11.5 Hyperplanes and Linear Forms

Actually Proposition 11.7 below follows from Parts (c) and (d) of Theorem 11.4, but we feel that it is also interesting to give a more direct proof.

Proposition 11.7. Let E be a vector space. The following properties hold:

- (a) Given any nonnull linear form $f^* \in E^*$, its kernel $H = \operatorname{Ker} f^*$ is a hyperplane.
- (b) For any hyperplane H in E, there is a (nonnull) linear form $f^* \in E^*$ such that $H = \operatorname{Ker} f^*$.
- (c) Given any hyperplane H in E and any (nonnull) linear form $f^* \in E^*$ such that $H = \operatorname{Ker} f^*$, for every linear form $g^* \in E^*$, $H = \operatorname{Ker} g^*$ iff $g^* = \lambda f^*$ for some $\lambda \neq 0$ in K.

Proof. (a) If $f^* \in E^*$ is nonnull, there is some vector $v_0 \in E$ such that $f^*(v_0) \neq 0$. Let $H = \operatorname{Ker} f^*$. For every $v \in E$, we have

$$f^*\left(v - \frac{f^*(v)}{f^*(v_0)}v_0\right) = f^*(v) - \frac{f^*(v)}{f^*(v_0)}f^*(v_0) = f^*(v) - f^*(v) = 0.$$

Thus,

$$v - \frac{f^*(v)}{f^*(v_0)}v_0 = h \in H,$$

and

$$v = h + \frac{f^*(v)}{f^*(v_0)}v_0,$$

that is, $E = H + Kv_0$. Also since $f^*(v_0) \neq 0$, we have $v_0 \notin H$, that is, $H \cap Kv_0 = 0$. Thus, $E = H \oplus Kv_0$, and H is a hyperplane.

- (b) If H is a hyperplane, $E = H \oplus Kv_0$ for some $v_0 \notin H$. Then every $v \in E$ can be written in a unique way as $v = h + \lambda v_0$. Thus there is a well-defined function $f^* \colon E \to K$, such that, $f^*(v) = \lambda$, for every $v = h + \lambda v_0$. We leave as a simple exercise the verification that f^* is a linear form. Since $f^*(v_0) = 1$, the linear form f^* is nonnull. Also, by definition, it is clear that $\lambda = 0$ iff $v \in H$, that is, Ker $f^* = H$.
- (c) Let H be a hyperplane in E, and let $f^* \in E^*$ be any (nonnull) linear form such that $H = \text{Ker } f^*$. Clearly, if $g^* = \lambda f^*$ for some $\lambda \neq 0$, then $H = \text{Ker } g^*$. Conversely, assume that $H = \text{Ker } g^*$ for some nonnull linear form g^* . From (a), we have $E = H \oplus Kv_0$, for some v_0 such that $f^*(v_0) \neq 0$ and $g^*(v_0) \neq 0$. Then observe that

$$g^* - \frac{g^*(v_0)}{f^*(v_0)} f^*$$

is a linear form that vanishes on H, since both f^* and g^* vanish on H, but also vanishes on Kv_0 . Thus, $g^* = \lambda f^*$, with

$$\lambda = \frac{g^*(v_0)}{f^*(v_0)}.$$