

# NTE74LS109A Integrated Circuit TTL – Dual J–K Positive Edge Triggered Flip–Flop with Preset and Clear

# **Description:**

The NTE74LS109A contains two independent J $\overline{K}$  positive–edge–triggered flip–flops in a 16–Lead plastic DIP type package. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the J and  $\overline{K}$  inputs meeting the setup time requirements are transferred to the outputs on the positive–going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of th clock pulse. Following the hold time interval, data at the J and  $\overline{K}$  inputs may be changed without affecting the levels at the outputs. This versatile flip–flop can perform as a toggle flip–flop by grounding  $\overline{K}$  and tying J high and also as a D–type flip–flop if J and  $\overline{K}$  are tied together.

Absolute Maximum Ratings: (Note 1)

| Supply Voltage, V <sub>CC</sub>                             |
|-------------------------------------------------------------|
| DC Input Voltage, V <sub>IN</sub>                           |
| Operating Temperature Range, T <sub>A</sub> 0°C to +70°C    |
| Storage Temperature Range, T <sub>stg</sub> –65°C to +150°C |
|                                                             |

Note 1. Unless otherwise specified, all voltages are referenced to GND.

## **Recommended Operating Conditions:**

| Parameter                                 | Symbol             | Min  | Тур | Max  | Unit |
|-------------------------------------------|--------------------|------|-----|------|------|
| Supply Voltage                            | V <sub>CC</sub>    | 4.75 | 5.0 | 5.25 | V    |
| High-Level Input Voltage                  | V <sub>IH</sub>    | 2.0  | _   | _    | V    |
| Low-Level Input Voltage                   | V <sub>IL</sub>    | _    | _   | 0.8  | V    |
| High-Level Output Current                 | I <sub>OH</sub>    | _    | -   | -0.4 | mA   |
| Low-Level Output Current                  | I <sub>OL</sub>    | _    | _   | 8    | mA   |
| Clock Frequency                           | f <sub>clock</sub> | 0    | _   | 25   | MHz  |
| Pulse Duration<br>CLK High                | t <sub>w</sub>     | 25   | _   | -    | ns   |
| PRE or CLR Low                            |                    | 25   | -   | _    | ns   |
| Setup Time before CLK↑<br>High Level Data | t <sub>su</sub>    | 35   | _   | _    | ns   |
| Low Level Data                            |                    | 25   | _   | _    | ns   |
| Hold Time Data after CLK↑                 | t <sub>h</sub>     | 5    | _   | _    | ns   |
| Operating Temperature Range               | T <sub>A</sub>     | 0    | _   | +70  | °C   |

#### **Electrical Characteristics**: (Note 2, Note 3)

| Parameter                               | Symbol          | Test Conditions                                                                              | Min | Тур  | Max  | Unit |
|-----------------------------------------|-----------------|----------------------------------------------------------------------------------------------|-----|------|------|------|
| Input Clamp Voltage                     | $V_{IK}$        | V <sub>CC</sub> = MIN, I <sub>I</sub> = -18mA                                                | -   | -    | -1.5 | V    |
| High Level Output Voltage               | V <sub>OH</sub> | V <sub>CC</sub> = MIN, V <sub>IH</sub> = 2V, V <sub>IL</sub> = MAX, I <sub>OH</sub> = -0.4mA | 2.7 | 3.4  | _    | V    |
| Low Level Output Voltage                | $V_{OL}$        | $V_{CC} = MIN, V_{IH} = 2V, V_{IL} = MAX, I_{OL} = 4mA$                                      | -   | 0.25 | 0.4  | V    |
|                                         |                 | $V_{CC} = MIN, V_{IH} = 2V, V_{IL} = MAX, I_{OL} = 8mA$                                      | -   | 0.35 | 0.5  | V    |
| Input Current<br>J, K or CLK            | II              | V <sub>CC</sub> = MAX, V <sub>I</sub> = 7V                                                   | _   | _    | 0.1  | mA   |
| CLR or PRE                              | 1               |                                                                                              | _   | _    | 0.2  | mA   |
| High Level Input Current<br>J, K or CLK | I <sub>IH</sub> | V <sub>CC</sub> = MAX, V <sub>I</sub> = 2.7V                                                 | _   | _    | 20   | μΑ   |
| CLR or PRE                              |                 |                                                                                              | -   | -    | 40   | μΑ   |
| Low Level Input Current<br>J, K or CLK  | I <sub>IL</sub> | V <sub>CC</sub> = MAX, V <sub>I</sub> = 0.4V                                                 | _   | _    | -0.4 | mA   |
| CLR or PRE                              |                 |                                                                                              | -   | -    | -0.8 | mA   |
| Short-Circuit Output Current            | Ios             | V <sub>CC</sub> = MAX, Note 4                                                                | -20 | _    | -100 | mA   |
| Supply Current                          | I <sub>CC</sub> | V <sub>CC</sub> = MAX, Note 5                                                                | -   | 4    | 8    | mA   |

- Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions".
- Note 3. All typical values are at  $V_{CC} = 5V$ ,  $T_A = +25$ °C.
- Note 4. For certain devices where state commutation can be caused by shorting an output to GND, an equivalent test may be performed with  $V_O = 2.125V$  and the minimum and maximum limits reduced to one half of their stated values.
- Note 5. With all outputs open,  $I_{CC}$  is measured with the Q and  $\overline{Q}$  outputs high in turn. At the time of measurement, the clock input is grounded.

## <u>Switching Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C \text{ unless otherwise specified})$

| Parameter                                                            | Symbol           | Test Conditions                 | Min | Тур | Max | Unit |
|----------------------------------------------------------------------|------------------|---------------------------------|-----|-----|-----|------|
| Maximum Clock Frequency                                              | t <sub>max</sub> | $R_L = 2k\Omega$ , $C_L = 15pF$ | 25  | 33  | _   | MHz  |
| Propagation Delay Time (From CLR, PRE or CLK Input to Q or Q Output) | t <sub>PLH</sub> |                                 | -   | 13  | 25  | ns   |
| (FIGHT OLA, FAE OF OLK INPUT to Q OF Q Output)                       | t <sub>PHL</sub> |                                 | _   | 25  | 40  | ns   |

# Function Table (Each Flip-Flop):

| Inputs |     |          |   | Out | puts   |                    |
|--------|-----|----------|---|-----|--------|--------------------|
| PRE    | CLR | CLK      | J | K   | Q      | Q                  |
| L      | Н   | Χ        | Χ | Χ   | Н      | L                  |
| Н      | L   | Χ        | Χ | Χ   | L      | Н                  |
| L      | L   | X        | X | X   | H†     | H†                 |
| Н      | Н   | <b>↑</b> | L | L   | L      | Н                  |
| Н      | Н   | <b>↑</b> | Н | L   | Toggle |                    |
| Н      | Н   | <b>↑</b> | L | Н   | $Q_0$  | $\overline{Q}_0$   |
| Н      | Н   | <b>↑</b> | Н | Н   | Н      | L                  |
| Н      | Н   | L        | X | Χ   | $Q_0$  | $\overline{Q}_{0}$ |

 $<sup>\</sup>dagger$  The output levels in this configuration are not guaranteed to meet the minimum levels for  $V_{OH}$  if the lows at preset and clear are near  $V_{IL}$  maximum. Furthermore, this configuration is nonstable; that is, it will not persist when preset or clear return to their inactive (high) level.

# **Pin Connection Diagram** 1CLR 1 16 V<sub>CC</sub> 15 2CLR 1J 2 1K 3 **14** 2J 1CLK 4 13 2K 1PRE 5 12 2CLK 11 2PRE 1Q 6 1Q 7 **10** 2Q GND 8 9 2<u>Q</u> 16 1 8 .260 (6.6) Max .870 (22.0) Max .200

.100 (2.54)

.700 (17.78)

(5.08) Max

.099 (2.5) Min