

Mock IMO 2

- 1. Let n be an integer greater than 1. For a positive integer m, let $S_m = \{1, 2, ..., mn\}$. Suppose that there exists a 2n-element set T such that
 - (a) each element of T is an m-element subset of S_m ;
 - (b) each pair of elements of T shares at most one common element; and
 - (c) each element of S_m is contained in exactly two elements of T.

Determine the maximum possible value of m in terms of n.

- 2. Given positive integers a and c and integer b, prove that there exists a positive integer x such that $a^x + x \equiv b \pmod{c}$.
- 3. Let \mathcal{P} be a convex polygon. A segment connecting two points on (distinct) sides of \mathcal{P} is called a *chord*. Suppose that if a chord bisects the area of the polygonal region, then the chord has length at most 1. Prove that the area of \mathcal{P} is at most $\frac{\pi}{4}$.

