class13

```
library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
   match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
   Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which.max, which.min
Attaching package: 'S4Vectors'
The following objects are masked from 'package:base':
    expand.grid, I, unname
```

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

```
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1_kd
               hoxa1 kd
SRR493370
               hoxa1_kd
SRR493371
  # Import countdata
  countDataTmp = read.csv(countFile, row.names=1)
  head(countDataTmp)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q1. Complete the code below to remove the troublesome first column from countData

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countDataTmp[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Check that my metadata and count data match

```
rownames(colData) == colnames(countData)
```

- [1] TRUE TRUE TRUE TRUE TRUE TRUE
- Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples. to.keep <- rowSums(countData) != 0
```

```
countData <- countData[to.keep, ]
nrow(countData)</pre>
```

[1] 15975

head(countData)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

DESeq analysis

```
library(DESeq2)
```

Setup the object that DESeq needs for analysis with the lovely long-winded function:

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run the analysis:

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

```
mean-dispersion relationship

final dispersion estimates

fitting model and testing

res <- results(dds)
res
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 15975 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000273748	35.30265	0.674387	0.303666	2.220817	2.63633e-02
ENSG00000278817	2.42302	-0.388988	1.130394	-0.344117	7.30758e-01
ENSG00000278384	1.10180	0.332991	1.660261	0.200565	8.41039e-01
ENSG00000276345	73.64496	-0.356181	0.207716	-1.714752	8.63908e-02
ENSG00000271254	181.59590	-0.609667	0.141320	-4.314071	1.60276e-05
	pac	lj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			
ENSG00000279457	6.86555e-0	01			
ENSG00000187634	5.15718e-0)3			
ENSG00000188976	1.76549e-3	35			
ENSG00000187961	1.13413e-0)7			
ENSG00000187583	9.19031e-0	01			
	• •				
ENSG00000273748	4.79091e-0)2			
ENSG00000278817	8.09772e-0	01			
ENSG00000278384	8.92654e-0	01			
ENSG00000276345	1.39762e-0	01			
ENSG00000271254	4.53648e-0)5			

Q3. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)

out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Volcano plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q4. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "blue"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
mycols[ res$padj>0.05 ] <- "gray"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(abline(v=c(-2,2), lty=2)")</pre>
```


Add gene annotation data

We will load up AnnotationDbi and our Human data package to add gene symbols and entrez IDs to our results object.

Q5. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

^{&#}x27;select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre>> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		genename
	<numeric></numeric>	<character> <ch< td=""><td>naracter></td><td>•</td><td><pre><character></character></pre></td></ch<></character>	naracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alph	na motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nu	ıcleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me

pleckstrin homology	84069	PLEKHN1	9.19031e-01	ENSG00000187583
${\tt PPARGC1}$ and ${\tt ESRR}$ ind	84808	PERM1	4.03379e-01	ENSG00000187642
hes family bHLH tran	57801	HES4	1.30538e-24	ENSG00000188290
ISG15 ubiquitin like	9636	ISG15	2.37452e-02	ENSG00000187608
agrin	375790	AGRN	4.21963e-16	ENSG00000188157
ring finger protein	401934	RNF223	NA	ENSG00000237330

Q6. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Geneset enrichment analysis (pathway analysis)

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)
```

```
# Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                                               "1549"
                                  "10941"
                                            "151531" "1548"
                                                                         "1551"
 [9] "1553"
               "1576"
                        "1577"
                                            "1807"
                                                      "1890"
                                                               "221223" "2990"
                                  "1806"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                     "54490"
                                                               "54575"
                                                                         "54576"
                        "54579"
                                                               "54659"
[25] "54577"
               "54578"
                                  "54600"
                                            "54657"
                                                     "54658"
                                                                         "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                            "7172"
                                                     "7363"
                                                               "7364"
                                                                         "7365"
               "7367"
                                  "7372"
                                            "7378"
                                                     "7498"
                                                               "79799"
[41] "7366"
                         "7371"
                                                                         "83549"
[49] "8824"
               "8833"
                        "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                                             "10622"
                                                      "10623"
                                                                "107"
                "10201"
                         "10606"
                                   "10621"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                             "11128"
                                                      "11164"
                                                                "112"
                                                                          "113"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                "158"
                                                                          "159"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                                "205"
                                                                          "221823"
 [25] "1633"
                                   "246721" "25885"
                                                                          "270"
 [33] "2272"
                "22978"
                         "23649"
                                                      "2618"
                                                                "26289"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                      "2982"
                                                                "2983"
                                                                          "2984"
 [49] "2986"
                "2987"
                                   "3000"
                                                                "318"
                                                                          "3251"
                         "29922"
                                             "30833"
                                                      "30834"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                             "377841" "471"
                                                                "4830"
                                                                          "4831"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                             "4882"
                                                      "4907"
                                                                "50484"
                                                                          "50940"
                                                      "5138"
                                                                "5139"
                                                                          "5140"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                      "5146"
                                                                "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                      "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                      "5431"
                                                                "5432"
                                                                          "5433"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                      "5439"
                                                                "5440"
                                                                          "5441"
[121] "5471"
                "548644"
                         "55276"
                                   "5557"
                                             "5558"
                                                      "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                      "57804"
                                                                "58497"
                                                                          "6240"
                                                      "7498"
[137] "6241"
                "64425"
                         "646625" "654364"
                                             "661"
                                                                "8382"
                                                                          "84172"
                                   "8622"
[145] "84265"
                "84284"
                         "84618"
                                             "8654"
                                                       "87178"
                                                                "8833"
                                                                          "9060"
[153] "9061"
                "93034"
                         "953"
                                   "9533"
                                             "954"
                                                       "955"
                                                                "956"
                                                                          "957"
[161] "9583"
                "9615"
```

```
foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                         1465
                                  51232
                                             2034
                                                       2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
                                         p.geomean stat.mean
                                                                    p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                   exp1
hsa04110 Cell cycle
                                      0.001448312
                                                      121 8.995727e-06
                                                       36 9.424076e-05
hsa03030 DNA replication
                                      0.007586381
hsa03013 RNA transport
                                      0.073840037
                                                      144 1.375901e-03
hsa03440 Homologous recombination
                                                       28 3.066756e-03
                                      0.121861535
hsa04114 Oocyte meiosis
                                      0.121861535
                                                      102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                      53 8.961413e-03
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/MacCh/OneDrive/Documents/BIMM 143/class13

Info: Writing image file hsa04110.pathview.png

```
# A different PDF based output of the same data pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/MacCh/OneDrive/Documents/BIMM 143/class13

Info: Writing image file hsa04110.pathview.pdf

Figure 1: hsa04110

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")

Q7. Can you do the same procedure as above to plot the pathview figures for the top 5 down-regulated pathways?

```
downkeggrespathways <-rownames(keggres$less)[1:5]

downkeggresids = substr(downkeggrespathways, start=1, stop=8)
downkeggresids</pre>
```

```
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=downkeggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/MacCh/OneDrive/Documents/BIMM 143/class13
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/MacCh/OneDrive/Documents/BIMM 143/class13
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/MacCh/OneDrive/Documents/BIMM 143/class13
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/MacCh/OneDrive/Documents/BIMM 143/class13
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/MacCh/OneDrive/Documents/BIMM 143/class13
Info: Writing image file hsa04114.pathview.png
```


Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

		p.geomean	${\tt stat.mean}$	p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610	behavior	2.195494e-04	3.530241	2.195494e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val set	.size	exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.5	19724e-05
GD:0002009	morphogenesis of an epithelium	0.1951953	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.43	32451e-04
GO:0007610	behavior	0.2243795	427 2.19	95494e-04
GD:0060562	epithelial tube morphogenesis	0.3711390	257 5.93	32837e-04

GO:0035295 tube development 0.3711390 391 5.953254e-04

\$less

```
p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                       1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
```

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GO:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.530241	3.530241
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q8: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods? Endosomal/Vacuolar Pathway, yes