ΝΟΜΟΙ ΚΑΤΗΓΟΡΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ

ΚΑΤΗΓΟΡΗΜΑΤΙΚΗ ΛΟΓΙΚΗ www.psounis.gr

\rightarrow	

TOMOTRATIO TOTAL				
<u>Οι νόμοι ΚΛ</u> είναι:				
	Όνομα Νόμου	Διατύπωση		
1	Άρνηση Ποσοδείκτη	$\neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$ $\neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$		
2	Κατανομή Ποσοδείκτη	$\forall x (\varphi \land \psi) \leftrightarrow \forall x \varphi \land \forall x \psi$ $\exists x (\varphi \lor \psi) \leftrightarrow \exists x \varphi \lor \exists x \psi$		
3	Εναλλαγή Ποσοδεικτών	$\forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$ $\exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$		

 $(\varphi \to \forall x\psi) \leftrightarrow \forall x(\varphi \to \psi)$ $(\varphi \to \exists x\psi) \leftrightarrow \exists x(\varphi \to \psi)$ $(\forall x\varphi \to \psi) \leftrightarrow \exists x(\varphi \to \psi)$ $(\exists x\varphi \to \psi) \leftrightarrow \forall x(\varphi \to \psi)$

<u>Ορισμός:</u> Ένας τύπος φ θα λέμε ότι είναι σε **Κανονική Ποσοδεικτική Μορφή** αν έχει τη μορφή:

$$Q_1 y_1 Q_2 y_2 \dots Q_n y_n \Psi$$

Όπου τα:

- Q_1,Q_2,\ldots,Q_n είναι ποσοδείκτες, δηλαδή: \exists ή \forall
- $y_1, y_2, ..., y_n$ είναι μεταβλητές
- Το Ψ είναι ανοιχτός τύπος (δεν έχει ποσοδείκτες)

ΜΕΟΔΟΛΟΓΙΑ Εύρεσης Κανονικής Ποσοδεικτικής Μορφής:

Μετακίνηση Ποσοδείκτη

Στην αρχή του τύπου μόνο ποσοδείκτες που δεσμεύουν όλο τον τύπο. Κάνουμε αλφαβητικές παραλλαγές (αν έχουμε ποσοδείκτες με το ίδιο όνομα ή ελεύθερη μεταβλητή με ίδιο όνο-μα με μεταβλητή ποσοδείκτη) και εφαρμόζουμε νόμους κατηγορηματικής λογικής για να φέρουμε τους ποσοδείκτες μπροστά (μετακίνησης και άρνησης και νόμοι της προτασιακής που κανουν τα σύμβολα συνεπαγωγές).

<u>ΘΕΩΡΗΜΑ:</u> Κάθε τύπος είναι ταυτολογικά ισοδύναμος με έναν τύπο σε κανονική ποσοδεικτική μορφή!

ΠΑΡΑΔΕΙΓΜΑ: Να βρεθεί η κανονική ποσοδείκτη μορφή του τύπου $\forall xQ(\mathbf{x}) \lor \forall xR(x,x)$

```
 \forall x Q(x) \lor \forall x R(x,x) \qquad \text{(Αλφαβητική Παραλλαγή)}  \equiv \forall x Q(x) \lor \forall y R(y,y) \qquad \text{(Εφαρμόζω το νόμο διπλής άρνησης)}  \equiv \neg \neg \forall x Q(x) \lor \forall y R(y,y) \qquad \text{(Εφαρμόζω το 1ο νόμο αντικατάστασης)}  \equiv \neg \forall x Q(x) \rightarrow \forall y R(y,y) \qquad \text{(Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)}  \equiv \forall y [\neg \forall x Q(x) \rightarrow R(y,y)] \qquad \text{(Εφαρμόζω το νόμο άρνησης ποσοδείκτη)}  \equiv \forall y [\exists x \neg Q(x) \rightarrow R(y,y)] \qquad \text{(Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)}  \equiv \forall y \forall x [\neg Q(x) \rightarrow R(y,y)] \qquad \text{(Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)}
```