Linear Algebra Class on 1 June

Seanie Lee

1 June 2019

6.3 Least Square

We want to find c, d such that minimize $\sum_{i=1}^{k} (y_i - (ct_i + d))^2$.

We want to find
$$\mathbf{c}, d$$
 such that minimize $\sum_{i=1}^{c} (y_i - (ct_i + d))$.
$$A = \begin{pmatrix} t_1 & 1 \\ \vdots & \vdots \\ t_k & 1 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} c \\ d \end{pmatrix}, \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_k \end{pmatrix}, \text{ then it is equivalent to find } \mathbf{x} \text{ such that minimizes } \|\mathbf{y} - A\mathbf{x}\|^2.$$

In other words, we want to find $\mathbf{x}_0 = (c_0, d_0)$ such that $\|\mathbf{y} - A\mathbf{x}_0\| \le \|\mathbf{y} - A\mathbf{x}\|$ for all $\mathbf{x} \in \mathbf{V}$. First we show the existence of \mathbf{x}_0 by corollary to the theorem 6.6.

Corollary. $\|\mathbf{v} - \mathbf{w}\| \le \|\mathbf{v} - \mathbf{x}\|$ for all $\mathbf{x} \in \mathbf{W} \le \mathbf{V}$

Proof. $\mathbf{v} := \mathbf{w} + \mathbf{w}' \quad \mathbf{w} \in \mathbf{W}, \mathbf{w}' \in \mathbf{W}^{\perp}$

$$\begin{aligned} \left\|\mathbf{v} - \mathbf{x}\right\|^2 &= \left\|\mathbf{w} + \mathbf{w}' - \mathbf{x}\right\|^2 \\ &= \left\|(\mathbf{w} - \mathbf{x}) + \mathbf{w}'\right\|^2 \\ &= \left\langle(\mathbf{w} - \mathbf{x}) + \mathbf{w}', (\mathbf{w} - \mathbf{x}) + \mathbf{w}'\right\rangle \\ &= \left\langle\mathbf{w} - \mathbf{x}, \mathbf{w} - \mathbf{x}\right\rangle + \left\langle\mathbf{w} - \mathbf{x}, \mathbf{w}'\right\rangle + \left\langle\mathbf{w}', \mathbf{w} - \mathbf{x}\right\rangle + \left\langle\mathbf{w}', \mathbf{w}'\right\rangle \\ &= \left\|\mathbf{w} - \mathbf{x}\right\|^2 + \left\|\mathbf{w}'\right\|^2 \\ &\geq \left\|\mathbf{w}'\right\|^2 = \left\|\mathbf{v} - \mathbf{w}\right\|^2 \end{aligned}$$

Since $\|\cdot\| \ge 0$, $\|\mathbf{v} - \mathbf{x}\| \ge \|\mathbf{v} - \mathbf{w}\|$

By taking $\mathbf{W} := \{A\mathbf{x} | \mathbf{x} \in \mathbb{C}^n\}$, we can find such $\mathbf{x}_0 \in \mathbb{C}^n$. Then is such an \mathbf{x}_0 is unique?

$$L_A$$
 is 1-1 $\iff kerL_A = \mathbf{O}$
 $\iff \dim imL_A = n$
 $\iff \dim \mathcal{C} = n$
 $\iff \operatorname{rank} A = n$

Lemma 6.1. $\langle A\mathbf{x}, \mathbf{y} \rangle_m = \langle \mathbf{x}, A^*\mathbf{y} \rangle_n$ where $A \in M_{m \times n}(\mathbb{C})$, $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{y} \in \mathbb{C}^m$, and $\langle \cdot, \cdot \rangle$ is dot product. *Proof.*

$$\langle A\mathbf{x}, \mathbf{y} \rangle_m = \mathbf{y}^* (A\mathbf{x})$$

$$= \overline{(A\mathbf{x})^* \mathbf{y}}$$

$$(\because \langle A\mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, A\mathbf{x} \rangle})$$

$$= \overline{\mathbf{x}^* (A^* \mathbf{y})}$$

$$= \overline{\langle A^* \mathbf{y}, \mathbf{x} \rangle}$$

$$= \langle \mathbf{x}, A^* \mathbf{y} \rangle_n$$

Lemma 6.2. $rankA = rank(A^*A) \ A \in \mathfrak{M}_{m \times n}(\mathbb{C})$

Proof. By the Dimension Theorem, $\dim(imL_A) + \dim(kerL_A) = n$. Thus it suffices to show that $A\mathbf{x} = \mathbf{0} \iff A^*A = \mathbf{0} \implies$ it is trivial. \iff

$$\langle A\mathbf{x}, A\mathbf{x} \rangle = \langle \mathbf{x}, A^*A\mathbf{x} \rangle$$
 (: by the Lemma 6.1)

$$= \langle x, \mathbf{0} \rangle$$

$$= 0$$

$$\therefore A\mathbf{x} = \mathbf{0}$$

By the Theorem 6.6 and its corollary, $A\mathbf{x}_0 - \mathbf{y} \in \mathbf{W}^{\perp}$ and $\forall \mathbf{x}, \langle A\mathbf{x}, A\mathbf{x}_0 - \mathbf{y} \rangle$. By the Lemma 6.1 $\langle A\mathbf{x}, A\mathbf{x}_0 - \mathbf{y} \rangle = \langle \mathbf{x}, A^*(A\mathbf{x}_0 - \mathbf{y}) \rangle = 0$. Thus $A^*A\mathbf{x}_0 - A^*\mathbf{y} = \mathbf{0}$. If rankA = n(full rank), then by the Lemma 6.2, A^*A is invertible. $\mathbf{x}_0 = (A^*A)^{-1}A^*\mathbf{y}$

6.4 Normal and Adjoint Operator

Theorem. If $T\mathbf{v} = \lambda \mathbf{v} \Longrightarrow T^*$ has eigenvector

Proof.

$$(T - \lambda I)\mathbf{v} = \mathbf{0}$$

$$\forall \mathbf{x} \quad 0 = \langle \mathbf{0}, \mathbf{x} \rangle = \langle (T - \lambda I)\mathbf{v}, \mathbf{x} \rangle$$

$$= \langle \mathbf{v}, (T - \lambda I)^* \mathbf{x} \rangle$$

$$= \langle \mathbf{v}, (T^* - \overline{\lambda} I)\mathbf{x} \rangle$$

$$(\because [(T - \lambda I)^*]_{\beta} = [T - \lambda I]_{\beta}^*$$

$$= [T]_{\beta}^* - [\lambda I]_{\beta}^*$$

$$= [T^*]_{\beta} - \overline{\lambda}[I]_{\beta}$$

$$\therefore (T - \lambda I)^* = T^* - \overline{\lambda}I$$

We want to show that $ker(T^* - \overline{\lambda} I) \neq \mathbf{O}$. Since \mathbf{v} is orthogonal to $(T^* - \overline{\lambda} I)\mathbf{v} \quad \forall \mathbf{x}, \mathbf{v} \perp im(T^* - \overline{\lambda} I)$. Since $\mathbf{v} \neq \mathbf{0}$, $(im(T^* - \overline{\lambda} I))^{\perp} \neq \mathbf{O}$, so that $im(T^* - \overline{\lambda} I) \nleq \mathbb{C}^n$. Thus $T^* - \overline{\lambda} I$ is not onto and by the pigeonhole's principle $T^* - \overline{\lambda} I$ is not 1-1. Thus $\exists \mathbf{v}_0 \neq \mathbf{0}$ such that $(T^* - \overline{\lambda} I)\mathbf{v}_0 = \mathbf{0}$.

$$oxed{\Box} T^* \mathbf{v}_0 = \overline{\lambda} \mathbf{v}_0$$

Theorem (Schur). If $\phi_T(t)$ splits, then there is an orthonormal basis β such that $[T]_{\beta}$ is upper-triangular.

Proof. It's up to you:)
$$\Box$$

Assume that there is an orthogonal basis consisting of eigenvectors of T. Then $[T]_{\beta}$ is diagonal. Since $[T^*]_{\beta} = [T]^*_{\beta}$, $[T^*]_{\beta}$ is also diagonal. Since diagonal matrices commute, so T and T^* commute. I.e., $TT^* = T^*T$

Definition 6.1. T is normal if $TT^* = T^*T$

Note. Normal operator T does not guarantee the existence of eigenvectors.

$$A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
 is rotation matrix $(0 < \theta < \pi)$. A has no eigenvectors, but A is normal.

Theorem.

- (a) $\|T\mathbf{x}\| = \|T^*\mathbf{x}\| \ \forall \mathbf{x} \in V$
- (b) $\mathbf{T} c\mathbf{I}$ is normal $\forall c \in \mathbb{C}$
- (c) $T\mathbf{x} = \mathbf{x} \Longrightarrow T^* = \overline{\lambda}\mathbf{x}$
- (d) $\lambda_1 = \lambda_2$ are eigenvalues of \mathbf{T} , \mathbf{x}_1 , \mathbf{x}_2 are corresponding eigenvectors of $\mathbf{T} \Longrightarrow \mathbf{x}_1 \perp \mathbf{x}_2$ Proof.

(a)

$$\begin{aligned} \left\| T\mathbf{x} \right\|^2 &= \left\langle T\mathbf{x}, T\mathbf{x} \right\rangle \\ &= \left\langle \mathbf{x}, T^*T\mathbf{v} \right\rangle \\ &= \left\langle \mathbf{x}, TT^*\mathbf{x} \right\rangle \\ &= \left\langle T^*\mathbf{x}, T^*\mathbf{x} \right\rangle \end{aligned}$$

 $(:T^* \text{ is linear such that } \langle T\mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{x}, T^*\mathbf{x} \rangle. \ \langle \mathbf{x}, T\mathbf{x} \rangle = \overline{\langle T\mathbf{x}, \mathbf{x} \rangle} = \overline{\langle \mathbf{x}, T^*\mathbf{x} \rangle} = \langle T^*\mathbf{x}, \mathbf{x} \rangle$

(b)

$$(T - cI)^*(T - cI) = (T^* - \overline{c}I)(T - cI)$$

$$= T^*T - \overline{c}T - cT^* - \overline{c}cI$$

$$= TT^* - \overline{c}T - cT^* - \overline{c}cI$$

$$= (T - cI)(T^* - \overline{c}I)$$

$$= (T - cI)(T - cI)^*$$

(c)

$$(T - \lambda I)\mathbf{x} = \mathbf{0}$$

$$0 = \|(T - \lambda I)\mathbf{x}\| = \|(T^* - \overline{\lambda}I)\mathbf{x}\| \text{ (by (a))}$$

$$(T^* - \overline{\lambda}I)\mathbf{x} = \mathbf{0}$$

$$\therefore T^*\mathbf{x} = \overline{\lambda}\mathbf{x}$$

(d)

$$\lambda_{1}\langle \mathbf{x}_{1}, \, \mathbf{x}_{2} \rangle = \langle \lambda_{1}\mathbf{x}_{1}, \, \mathbf{x}_{2} \rangle$$

$$= \langle \mathbf{T}\mathbf{x}_{1}, \, \mathbf{x}_{2} \rangle$$

$$= \langle \mathbf{x}_{1}, \, \mathbf{T}^{*}\mathbf{x}_{2} \rangle$$

$$= \langle \mathbf{x}_{1}, \, \overline{\lambda_{2}}\mathbf{x}_{2} \rangle$$

$$= \lambda_{2}\langle \mathbf{x}_{1}, \, \mathbf{x}_{2} \rangle$$

$$= \lambda_{2}\langle \mathbf{x}_{1}, \, \mathbf{x}_{2} \rangle$$

$$(\lambda_{1} - \lambda_{2})\langle \mathbf{x}_{1}, \, \mathbf{x}_{2} \rangle = 0$$
Since $\lambda_{1} \neq \lambda_{2}, \langle \mathbf{x}_{1}, \, \mathbf{x}_{2} \rangle = 0$. $\therefore \, \mathbf{x}_{1} \perp \mathbf{x}_{2}$