# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Н.Э.БАУМАНА

Факультет "Энергомашиностроение" Кафедра "Э3"

Жигалкин Александр Сергеевич

Курсовоей проект

Проектирование свободной турбины ТВлД

Руководитель курсового проекта \_\_\_\_\_ В. Н. Шадрин «\_\_\_\_» \_\_\_\_ 2016 г.

# 1 Задание

Спроектировать двуступенчатую свободную турбину турбовального двигателя с температурой после камеры сгорания  $T_{\scriptscriptstyle \Gamma}^*=1463~{
m K}$  и мощностью на валу свободной турбины  $N_e=2.07~{
m MBr}.$ 



Рис. 1: Схема ГТД

# Содержание

| 1 | Задание                                           | 1  |
|---|---------------------------------------------------|----|
| 2 | Расчет параметров цикла ГТД                       | 3  |
|   | 2.1 Исходные данные                               |    |
|   | 2.2 Вариантные расчеты                            | 3  |
|   | 2.3 Расчет цикла при $\pi_{\kappa} = 13.41$       | 5  |
| 3 | Поступенчатый расчет турбины                      | 10 |
|   | 3.1 Расчет первой ступени                         | 10 |
|   | 3.2 Расчет второй ступени                         | 14 |
|   | 3.3 Вычисление интегральных параметров турбины    | 18 |
| 4 | Профилирование первой ступени турбины компрессора | 19 |
| 5 | Расчет на прочность диска первой ступени          | 22 |
|   | 5.1 Исходные данные для расчета                   | 22 |
|   | 5.2 Алгоритм расчета                              |    |
|   | 5.3 Результаты расчета                            |    |

# 2 Расчет параметров цикла ГТД

#### 2.1 Исходные данные

| Величина                                | Обозначение                                  | Размерность | Значение |
|-----------------------------------------|----------------------------------------------|-------------|----------|
| Политропический КПД компрессора         | $\eta_{\kappa p}^*$                          | -           | 0.9      |
| Полнота сгорания топлива                | $\eta_{\scriptscriptstyle \Gamma}$           | -           | 0.98     |
| Политропический КПД турбины компрес-    | $\eta_{{\scriptscriptstyle \mathrm{TK}}p}^*$ | -           | 0.91     |
| copa                                    | 1                                            |             |          |
| Политропический КПД свободной турбины   | $\eta_{{}^{	ext{	iny T}p}}^*$                | -           | 0.91     |
| Относительная скорость на выходе из ГТД | $\lambda_{\scriptscriptstyle  m BMX}$        | -           | 0.05     |
| Мощность на валу свободной турбины      | $N_e$                                        | кВт         | 2069.0   |
| Температура перед турбиной компрессора  | $T_{\scriptscriptstyle \Gamma}^*$            | K           | 1463.5   |
| Коэффициент сохранения полного давле-   | $\sigma_{	ext{bx}}$                          | -           | 0.995    |
| ния во входном устройстве компрессора   |                                              |             |          |
| Коэффициент сохранения полного давле-   | $\sigma_{\scriptscriptstyle \Gamma}$         | -           | 0.961    |
| ния в камере сгорания                   |                                              |             |          |
| Коэффициент сохранения полного давле-   | $\sigma_{	ext{\tiny BMX}}$                   | -           | 0.995    |
| ния в выходном патрубке                 |                                              |             |          |
| Механический КПД турбины компрессора    | $\eta_{	ext{	iny M}}$                        | -           | 0.99     |
| КПД редуктора                           | $\eta_{ m p}$                                | -           | 0.985    |
| Относительный расход утечек             | $g_{ m yr}$                                  | -           | 0.01     |
| Относительный расход на охлаждение      | $g_{ m ox}$                                  | -           | 0.18     |
| Относительный расход возвращаемого воз- | $g_{ m возвр}$                               | -           | 0.02     |
| духа                                    |                                              |             |          |

#### 2.2 Вариантные расчеты

Для определения оптимальной степени повышения давления в компрессоре был произведен расчет цикла ГТД для различных значений  $\pi_{\kappa}^*$  в интервале 6 до 27. В результате были построены графики зависимостей КПД, удельной расхода топлива и расхода через компрессор от степени повышения давления в компрессоре.

Ниже представлены графики зависимостей КПД, расхода топлива и расхода воздуха ГТД от  $\pi_{\kappa}^*$ . Также представлен их сводный график, на котором для наглядности значения КПД, расхода топлива и расхода воздуха отнесены к максимальным на представленном промежутке значений степени повышения давления.



Рис. 2: Зависимость расхода воздуха от степени повышения давления



Рис. 3: Зависимость удельного расхода топлива от степени повышения давления



Рис. 4: Зависимость КПД двигателя от степени повышения давления



Рис. 5: Сводный график зависимостей КПД, расхода воздуха и расхода топлива от степени повышения давления в компрессоре

В качестве оптимального принимаем  $\pi_{\kappa}=13.41.$  Ниже представлен расчет цикла ГТД при  $\pi_{\kappa}=13.41$ 

#### **2.3** Расчет цикла при $\pi_{\kappa} = 13.41$

Расчет некоторых узлов ГТД (а именно обоих турбин и компрессора) носит итерационный характер, так как удельная теплоемкость и коэффициент адиабаты зависят от температуры на выходе из узла. Поэтому ниже представлены расчеты для последних итераций.

1. Определим давление за входным устройством:

$$p_{\text{вх}}^* = \sigma_{\text{вх}} p_{\text{а}} = 0.995 \cdot 0.1013 = 0.101 \text{ МПа}$$

2. Определим давление за компрессором:

$$p_{\kappa}^* = \pi_{\kappa} p_{\text{BX}}^* = 13.41 \cdot 0.101 = 1.352 \text{ M}\Pi a$$

3. Определим адиабатический КПД компрессора, принимая показатель адиабаты воздуха  $k_{\scriptscriptstyle \rm B}=1.403$ :

$$\eta_{\kappa}^* = \frac{\pi_{\kappa}^{\frac{k_B - 1}{k_B} - 1}}{\pi_{\kappa}^{\frac{k_B - 1}{k_B \eta_{\kappa p}^* - 1}}} = \frac{13.41^{\frac{1.403 - 1}{1.403} - 1}}{13.41^{\frac{1.403 - 1}{1.403 \cdot 0.9 - 1}}} = 0.8589$$

4. Определим температуру газа за компрессором:

$$T_{\kappa}^* = T_a \left[ 1 + \frac{\pi_{\kappa}^{\frac{k_{\rm B}-1}{k_{\rm B}}} - 1}{\eta_{\kappa}^*} \right] = 288 \left[ 1 + \frac{13.41^{\frac{1.403-1}{1.403}} - 1}{0.8589} \right] = 659.096 \text{ K}$$

- 5. Определим уточненное значение показателя адиабаты:
  - 5.1. Средняя теплоемкость воздуха при температуре  $T_a$ :

$$\begin{split} c_{p\text{вср}}(T_a) &= \left(1.2 \cdot 10^{-5} \left(T_a - 70\right) + 0.236\right) \cdot 4.187 \cdot 10^3 = \\ &= \left(1.2 \cdot 10^{-5} \left(288 - 70\right) + 0.236\right) \cdot 4.187 \cdot 10^3 = 999.085 \; \text{Дж/(кг} \cdot \text{K)} \end{split}$$

5.2. Средняя теплоемкость воздуха при температуре  $T_{\kappa}^{*}$ :

$$c_{pвсp}(T_{\kappa}^{*}) = (1.2 \cdot 10^{-5} (T_{a} - 70) + 0.236) \cdot 4.187 \cdot 10^{3} =$$

$$= (1.2 \cdot 10^{-5} (659.096 - 70) + 0.236) \cdot 4.187 \cdot 10^{3} = 1017.731 \, \text{Дж/(кг} \cdot \text{K)}$$

5.3. Средняя теплоемкость воздуха в интервале температур от  $T_a$  до  $T_{\kappa}^*$ :

$$c_{p\text{B}} = \frac{c_{p\text{BCp}}(T_{\text{K}}^*)(T_{\text{K}}^* - T_0) - c_{p\text{BCp}}(T_a)(T_a - T_0)}{T_{\text{K}}^* - T_a} =$$

$$= \frac{1017.731 \cdot (659.096 - 273) - 999.085 \cdot (288 - 273)}{659.096 - 288} = 1018.484 \text{ Дж/(кг · K)}$$

5.4. Новое значение показателя адиабаты:

$$k_{\rm\scriptscriptstyle B}' = \frac{c_{p\rm\scriptscriptstyle B}'}{c_{p\rm\scriptscriptstyle B}' - R_{\rm\scriptscriptstyle B}} = \frac{1018.484}{1018.484 - 287.4} = 1.393$$

6. Определим погрешность определения показателя адиабаты:

$$\delta = \frac{|k_{\rm B}' - k_{\rm B}|}{k_{\rm E}} \cdot 100\% = \frac{|1.393 - 1.403|}{1.403} \cdot 100\% = 0.68\% < 5\%$$

Точность определения показателя адиабаты воздуха находится в пределах допуска.

7. Используя найденный показатель адиабаты воздуха, определим теплоемкость воздуха в процессе сжатия воздуха в компрессоре:

$$c_{p\text{B}} = \frac{k_{\text{B}}}{k_{\text{P}} - 1} R_{\text{B}} = \frac{1.403}{1.403 - 1} \cdot 287.4 = 1018.484 \text{ Дж/кг}$$

8. Определим работу компрессора:

$$L_{\text{\tiny K}} = c_{\text{\tiny PB}} (T_{\text{\tiny K}}^* - T_a) = 1018.484 \cdot (659.096 - 288) = 0.378 \cdot 10^6 \,\text{Дж/кг}$$

9. Температура газа за камерой сгорания:

$$T_{\rm r}^* = 1463.5 \; {\rm K}$$

- 10. Определим относительный расход топлива. Теплоемкость продуктов сгорания керосина рассчитывается через коэффициент избытка воздуха температуру. При расчета приняты следующие значения:
  - 1) температура определения теплофизических параметров веществ:

$$T_0 = 290 \text{ K};$$

2) средняя теплоемкость воздуха перед камерой сгорания:

$$c_{pB}(T_{\kappa}^{*}) = 1017.731 \, \text{Дж/(кг} \cdot \text{K)};$$

3) средняя теплоемкость чистых продуктов сгорания керосина после камеры сгорания:

$$c_{p\Gamma}\left(T_{\Gamma}^{*},\ 1\right) = \left[\frac{1.25 + 2.2}{10^{5}}\left(T_{\Gamma}^{*} + 450\right) + 0.218\right] \cdot 4.187 \cdot 10^{3} =$$

$$= \left[\frac{1.25 + 2.2}{10^{5}}\left(1463.5 + 450\right) + 0.218\right] \cdot 4.187 \cdot 10^{3} = 1189.174\ \text{Дж/(кг · K)};$$

4) средняя теплоемкость чистых продуктов сгорания керосина при температуре  $T_0$ :

$$c_{p\Gamma}\left(T_0,\ 1\right) = \left[\frac{2.25+1.2}{10^5}(T_0-70)+0.236\right]\cdot 4.187\cdot 10^3 =$$
 
$$\left[\frac{2.25+1.2}{10^5}(290-70)+0.236\right]\cdot 4.187\cdot 10^3 = 1019.622\ \text{Дж/(кг · K)};$$

5) низшая теплота сгорания топлива:

$$Q_{\rm H}^{\rm p} = 43600.0 \cdot 10^3 \, \text{Дж/(кг} \cdot \text{K)};$$

6) полнота сгорания:

$$\eta_{\rm r} = 0.98;$$

7) масса воздуха, необходимая для сжигания 1 кг топлива:

$$l_0 = 14.61 \text{ kg};$$

10.1. Определим относительный расход топлива:

$$\begin{split} g_m &= \frac{G_m}{G_{\scriptscriptstyle \mathrm{B}}^{\scriptscriptstyle \mathrm{T}}} = \frac{c_{p\scriptscriptstyle \mathrm{T}} \left(T_{\scriptscriptstyle \mathrm{T}}^*\right) T_{\scriptscriptstyle \mathrm{T}}^* - c_{p\scriptscriptstyle \mathrm{B}} \left(T_{\scriptscriptstyle \mathrm{K}}^*\right) T_{\scriptscriptstyle \mathrm{K}}^*}{Q_{\scriptscriptstyle \mathrm{B}}^{\rm p} \eta_{\scriptscriptstyle \mathrm{T}} - \left[c_{p\scriptscriptstyle \mathrm{T}} \left(T_{\scriptscriptstyle \mathrm{T}}^*\right) T_{\scriptscriptstyle \mathrm{T}}^* - c_{p\scriptscriptstyle \mathrm{T}} \left(T_0\right) T_0\right]} = \\ &= \frac{1189.174 \cdot 1463.5 - 1017.731 \cdot 659.096}{43600.0 \cdot 10^3 \cdot 0.98 - \left[1189.174 \cdot 1463.5 - 1019.622 \cdot 290\right]} = 0.0259 \end{split}$$

10.2. Определим коэффициент избытка воздуха

$$\alpha = \frac{1}{g_m l_0} = \frac{1}{0.0259 \cdot 14.61} = 2.642$$

11. Определим относительный расход газа:

$$g_{\text{r}} = (1 + g_m)(1 - g_{\text{yt}} - g_{\text{oxj}}) + g_{\text{возвр}} = (1 + 0.0259)(1 - 0.01 - 0.18) + 0.02 = 0.851$$

Расчет турбины компрессора состоит из двух частей. Первая часть - это определения температуры на выходе из турбины. Этот расчет является итерационным и ведется до сходимости по  $k_{\rm r}$ . Вторая часть - расчет давления торможения на выходе из турбины. Этот расчет также является итерационным и ведется до сходимости по  $\pi_{\rm tk}^*$ . Ниже приведены последнии итерации обоих расчетов.

12. Определим удельную работу турбины компрессора:

$$L_{ ext{\tiny TK}} = \frac{L_{ ext{\tiny K}}}{g_{ ext{\tiny T}}\eta_{ ext{\tiny M}}} = \frac{0.378 \cdot 10^6}{0.851 \cdot 0.99} = 0.449 \cdot 10^6 \; Дж/кг$$

13. Определим давление газа перед турбиной компрессора:

$$p_{\rm r}^* = p_{\rm r}^* \sigma_{\rm r} = 1.352 \cdot 0.961 = 1.299 \ {\rm M}\Pi{\rm a}$$

14. Определим среднюю теплоемкость газа в процессе расширения газа в турбине, принимая показатель адиабаты газа  $k_{\scriptscriptstyle \Gamma}=1.309$ :

$$c_{pr} = \frac{k_r}{k_r - 1} R_r = \frac{1.309}{1.309 - 1} \cdot 287.4 = 1218.599$$
Дж/(кг · K)

15. Определим температуру за турбиной компрессора:

$$T_{\text{\tiny TK}}^* = T_{\text{\tiny \Gamma}}^* - \frac{L_{\text{\tiny TK}}}{c_{p_{\text{\tiny \Gamma}}}} = 1463.5 - \frac{0.449 \cdot 10^6}{1218.599} = 1095.352$$

- 16. Определим уточненное значение показателя адиабаты газа:
  - 16.1. Определим значение средней теплоемкости газа при температуре  $T_{\mathrm{rk}}^*$ :

$$\begin{split} c_{p_{\Gamma} \text{ cp}}(T^*_{\text{тк}}) &= \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T^*_{\text{тк}} + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ &= \left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5} (1095.352 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1085.731 \text{ Дж/(кг} \cdot \text{K)} \end{split}$$

16.2. Определим значение средней теплоемкости при температуре  $T_{\scriptscriptstyle \Gamma}^*$ :

$$c_{p\Gamma \ cp}(T_{\Gamma}^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5}(T_{\Gamma K}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$\left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5}(1095.352 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1006.859 \ \text{Дж/(K} \cdot \text{K})$$

16.3. Новое значение средней теплоемкости в интервале температур от  $T_{\text{\tiny TK}}^*$  до  $T_{\text{\tiny T}}^*$ :

$$\begin{split} c_{p\Gamma}' &= \frac{c_{p\Gamma \text{ cp}}(T_{\Gamma}^*)(T_{\Gamma}^* - T_0) - c_{p\Gamma \text{ cp}}(T_{\text{TK}}^*)(T_{\text{TK}}^* - T_0)}{T_{\Gamma}^* - T_{\text{TK}}^*} = \\ &= \frac{1006.859 \cdot (1463.5 - 273) - 1085.731 \cdot (1095.352 - 273)}{1463.5 - 1095.352} = 1218.978 \; \text{Дж/(кг} \cdot \text{K)} \end{split}$$

16.4. Новое значение показателя адиабаты:

$$k'_{\text{B}} = \frac{c'_{p_{\Gamma}}}{c'_{p_{\Gamma}} - R_{\Gamma}} = \frac{1218.978}{1218.978 - 287.4} = 1.309$$

17. Определим погрешность определения показателя адиабаты:

$$\delta = \frac{|k_{\rm r}' - k_{\rm r}|}{k_{\rm r}} \cdot 100\% = \frac{|1.309 - 1.309|}{1.309} \cdot 100\% = 0.01\% < 5\%$$

Погрешность определения показателя адиабаты в пределах допуска.

18. Определим значение адиабатического КПД турбины компрессора, приняв степень понижения давления  $\pi_{\text{тк}} = 3.872$ :

$$\eta_{\text{TK}}^* = \frac{1 - \pi_{\text{TK}}^{\frac{(1 - k_{\text{r}})\eta_{\text{TKP}}^*}{k_{\text{r}}}}}{1 - \pi_{\text{TK}}^{\frac{1 - k_{\text{r}}}{k_{\text{r}}}}} = \frac{1 - 3.872^{\frac{(1 - 1.309) \cdot 0.91}{1.309}}}{1 - 3.872^{\frac{1 - 1.309}{1.309}}} = 0.922$$

19. Определим давление воздуха за турбиной компрессора:

$$p_{\scriptscriptstyle \mathrm{TK}}^* = p_{\scriptscriptstyle \mathrm{T}}^* \left[ 1 - \frac{L_{\scriptscriptstyle \mathrm{TK}}}{c_{p_{\scriptscriptstyle \mathrm{T}}} T_{\scriptscriptstyle \mathrm{T}}^* \eta_{\scriptscriptstyle \mathrm{TK}}^*} \right]^{\frac{k_{\scriptscriptstyle \mathrm{T}}}{k_{\scriptscriptstyle \mathrm{T}}-1}} = 1.299 \left[ 1 - \frac{0.449 \cdot 10^6}{1218.599 \cdot 1463.5 \cdot 0.922} \right]^{\frac{1.309}{1.309-1}} = 0.337 \; \mathrm{M} \Pi \mathrm{a}$$

20. Определим новую степень понижения давления:

$$\pi_{\text{\tiny TK}}^{*\prime} = \frac{p_{\text{\tiny T}}^*}{p_{\text{\tiny TM}}^*} = \frac{1.299}{0.337} = 3.857$$

21. Определим погрешность определения степени понижения давления:

$$\delta = \frac{|\pi_{\text{\tiny TK}}^{*\prime} - \pi_{\text{\tiny TK}}^{*}|}{\pi^{*}} \cdot 100\% = \frac{|3.857 - 3.872|}{3.872} \cdot 100\% = 0.39\% < 5\%$$

Погрешность определения степени понижения давления в пределах допуска.

22. Зададим значение приведенной скорости на выходе из выходного устройства:

$$\lambda_{\scriptscriptstyle \mathrm{BMX}} = 0.05$$

23. Определим давление торможения на выходе из выходного устройства, задавая показатель адиабаты газа  $k_{\rm r}=1.321$ :

$$p_{\text{вых}}^* = p_a \pi \left( \lambda_{\text{вых}}, k_{\text{г}} \right) = 0.1013 \cdot \pi \left( 0.05, 1.321 \right) = 0.101 \text{ M}\Pi a$$

24. Определим давление торможения за силовой турбиной:

$$p_{\text{\tiny T}}^* = \frac{p_{\text{\tiny BMX}}^*}{\sigma_{\text{\tiny BMY}}} = \frac{0.101}{0.995} = 0.102 \text{ M}\Pi \text{a}$$

25. Определим степень понижения давления в силовой турбине:

$$\pi_{\scriptscriptstyle \rm T} = \frac{p_{\scriptscriptstyle \rm TK}^*}{p_{\scriptscriptstyle \rm T}^*} = \frac{0.337}{0.102} = 3.324$$

26. Определим адиабатический КПД силовой турбины:

$$\eta_{\rm T}^* = \frac{1 - \pi_{\rm T}^{\frac{(1 - k_{\rm F})\eta_{\rm Tp}^*}{k_{\rm F}}}}{1 - \pi_{\rm T}^{\frac{1 - k_{\rm F}}{k_{\rm F}}}} = \frac{1 - 3.324^{\frac{(1 - 1.321)0.91}{1.321}}}{1 - 3.324^{\frac{1 - 1.321}{1.321}}} = 0.9215$$

27. Определим температуру торможения на выходе из силовой турбины:

$$T_{\scriptscriptstyle \mathrm{T}}^* = T_{\scriptscriptstyle \mathrm{TK}}^* \left\{ 1 - \left[ 1 - \left( \frac{p_{\scriptscriptstyle \mathrm{TK}}^*}{p_{\scriptscriptstyle \mathrm{T}}^*} \right)^{\frac{k_{\scriptscriptstyle \mathrm{\Gamma}}}{k_{\scriptscriptstyle \mathrm{\Gamma}} - 1}} \right] \eta_{\scriptscriptstyle \mathrm{T}}^* \right\} = 1095.352 \left\{ 1 - \left[ 1 - \left( \frac{0.337}{0.102} \right)^{\frac{1.321}{1.321 - 1}} \right] \cdot 0.9215 \right\} = 840.0 \; \mathrm{K}$$

- Определим уточненное значение показателя адиабаты газа в процессе расширения в силовой турбине:
  - 28.1. Определим значение средней теплоемкости газа при температуре  $T_{r\kappa}^*$ :

$$\begin{split} c_{prcp}(T_{\text{tk}}^*) &= \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_{\text{tk}}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ &= \left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5} (1095.352 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1085.731 \text{ Дж/(кг · K)} \end{split}$$

28.2. Определим значение средней теплоемкости при температуре  $T_{\pi}^{*}$ :

$$c_{prep}(T_{\scriptscriptstyle \mathrm{T}}^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_{\scriptscriptstyle \mathrm{TK}}^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ \left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5} (1095.352 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1057.14 \; \text{Дж/(кг} \cdot \text{K)}$$

28.3. Значение средней теплоемкости в интервале температур от  $T_{\scriptscriptstyle 
m T}^*$  до  $T_{\scriptscriptstyle 
m TK}^*$ :

$$c_{p\Gamma} = \frac{c_{p\Gamma cp}(T_{\text{tk}}^*)(T_{\text{tk}}^* - T_0) - c_{p\Gamma cp}(T_{\text{t}}^*)(T_{\text{t}}^* - T_0)}{T_{\text{tk}}^* - T_{\text{t}}^*} = \\ \frac{1085.731 \cdot (1095.352 - 273) - 1057.14 \cdot (840.0 - 273)}{1095.352 - 840.0} = 1149.182 \ \text{Дж/(кг} \cdot \text{K)}$$

28.4. Новое значение показателя адиабаты:

$$k_{\rm B}' = \frac{c_{p_{\rm \Gamma}}}{c_{p_{\rm \Gamma}} - R_{\rm \Gamma}} = \frac{1218.978}{1218.978 - 287.4} = 1.333$$

29. Определим погрешность определения показателя адиабаты газа в процессе расширения в силовой турбине:

$$\delta = \frac{|k_{\rm r}' - k_{\rm r}|}{k} \cdot 100\% = \frac{|1.333 - 1.321|}{1.321} \cdot 100\% = 0.01\% < 5\%$$

Погрешность определения показателя адиабаты в пределах допуска.

30. Определим значение теплоемкости газа в свободной турбине:

$$c_{p\Gamma} = rac{k_{\Gamma}}{k_{\Gamma} - 1} R_{\Gamma} = rac{1.321}{1.321 - 1} \cdot 287.4 = 1149.182$$
Дж/(кг · K)

31. Определим удельную работу силовой турбины:

$$L_{\scriptscriptstyle
m T} = c_{p\scriptscriptstyle
m \Gamma} \cdot (T_{\scriptscriptstyle
m TK}^* - T_{\scriptscriptstyle
m T}^*) = 1149.182 \, (1095.352 - 840.0) = 0.294 \cdot 10^6$$
Дж/кг

32. Определим удельную мощность ГТД:

$$N_{\rm evg} = L_{\rm t} g_{\rm r} \eta_{\rm m} \eta_{\rm d} = 0.294 \cdot 10^6 \cdot 0.8510.990.985 = 0.2436 \cdot 10^6$$
Дж/кг

33. Определим экономичность ГТД:

$$C_e = \frac{3600}{N_{e\text{v}\text{A}}} g_{\text{\tiny T}} \left( 1 - g_{\text{ох}\text{\tiny A}} - g_{\text{y}\text{\tiny T}} \right) = \frac{3600}{0.2436 \cdot 10^6} \cdot 0.0259 \cdot \left( 1 - 0.18 - 0.01 \right) = 0.3101 \cdot 10^{-3} \text{kg/} \left( \text{Bt · q} \right)$$

34. Определим КПД ГТД:

$$\eta_e = \frac{3600}{C_e Q_{\rm H}^{\rm p}} = \frac{3600}{0.3101 \cdot 10^{-3} \cdot 43600.0 \cdot 10^6} = 0.2662$$

35. Определим расход воздуха:

$$G_{\scriptscriptstyle \mathrm{B}} = rac{N_e}{N_{
m eyg}} = rac{2069.0 \cdot 10^3}{0.2436 \cdot 10^6} = 8.492$$
кг/с

## 3 Поступенчатый расчет турбины

#### 3.1 Расчет первой ступени

Исходные данные для расчета перовй ступени:

| Величина                                                               | Обозначение                             | Размерность | Значение |
|------------------------------------------------------------------------|-----------------------------------------|-------------|----------|
| Реактивность ступени                                                   | ρ                                       | -           | 0.32     |
| Радиальный зазор                                                       | $\delta_r$                              | -           | 0.00066  |
| Относительная длина лопатки статора                                    | $\left(\frac{l}{D}\right)_1$            | -           | 0.17     |
| Удлинение лопатки статора                                              | $\left(rac{l}{b_a} ight)_{ m CA}$      | -           | 2.037    |
| Удлинение лопатки ротора                                               | $\left(\frac{l}{b_a}\right)_{ m PK}$    | -           | 4.0      |
| Относительная ширина зазора между лопатками ротора и лопатками статора | $\left(rac{\delta}{b_a} ight)_{ m CA}$ | -           | 0.2593   |
| Угол раскрытия на втулке                                               | $\gamma_{	ext{\tiny BT}}$               | 0           | 8.0      |
| Угол раскрытия на периферии                                            | $\gamma_{ m nep}$                       | 0           | 13.2     |
| Теплоперепад по статическим параметрам                                 | $H_{\scriptscriptstyle  m T}$           | Дж/кг       | 0.18     |

1. Определим теплоперепад на сопловом аппарате:

$$H_{\rm c} = (1 - \rho) H_{\scriptscriptstyle 
m T} = (1 - 0.32) \cdot 0.18 \cdot 10^6 = 0.122 \cdot 10^6 \; \mbox{Дж/кг}$$

- 2. Примем коэффициент адиабаты равным:  $k_{\scriptscriptstyle \Gamma} = 1.3287$
- 3. Теплоемкость газа при данном значении коэффициента адиабаты:

$$c_{p_{\Gamma}} = rac{k_{\Gamma}R_{\Gamma}}{k_{\Gamma}-1} = rac{1.3287 \cdot 287}{1.3287-1} = 1162.0$$
 Дж/(кг · K)

4. Определим действительную скорость истечения из СА:

$$c_1 = \phi \sqrt{2H_c} = 0.97 \cdot \sqrt{20.122 \cdot 10^6} = 479.929 \text{ m/c}$$

5. Определим температуру на выходе из СА:

$$T_1 = T_0^* - \frac{c_1^2}{2c_{pr}} = 1095.352 - \frac{479.929^2}{2 \cdot 1162.0} = 996.225 \text{ K}$$

6. Определим температуру конца адиабатного расширения:

$$T_1' = T_0^* - \frac{H_c}{c_{pr}} = 1095.352 - \frac{0.122 \cdot 10^6}{1162.0} = 990.0 \text{ K}$$

7. Определим давление на выходе из СА:

$$p_1 = p_0^* \left(\frac{T_1'}{T_0^*}\right)^{\frac{k_r}{k_r - 1}} = 0.337 \cdot \left(\frac{990.0}{1095.352}\right)^{\frac{1.3287}{1.3287 - 1}} = 0.224 \text{ M}\Pi \text{a}$$

8. Определим плотность газа на выходе из СА:

$$\rho_1 = \frac{p_1}{R_{\rm r}T_1} = \frac{0.224 \cdot 10^6}{287 \cdot 996.225} = 0.782 \ {\rm kg/m}^3$$

9. Зададим угол на выходе из СА:

$$\alpha_1 = 16.994^{\circ}$$

10. Определим осевую скорость на выходе из СА:

$$c_{1a} = c_1 \cdot \sin \alpha_1 = 479.929 \cdot \sin 16.994^\circ = 140.272 \text{ m/c}$$

11. Определим площадь на выходе из СА:

$$A_1 = \frac{G}{c_{1a}\rho_1} = \frac{7.0}{140.272 \cdot 0.782} = 0.06591 \text{ m}^2$$

12. Определим средний диаметр турбины на выходе из СА:

$$D_1 = \sqrt{\frac{A_1}{\pi \left(\frac{l}{D}\right)_1}} = \sqrt{\frac{0.06591}{\pi \cdot 0.17}} = 0.3513 \text{ M}$$

13. Определим окружную скорость на среднем диаметре на входе в РК:

$$u_1 = \frac{\pi D_1 n}{60} = \frac{\pi \cdot 0.3513 \cdot 18000.0}{60} = 331.091 \text{ m/c}$$

14. Определим относительную скорость на входе в РК:

$$w_1 = \sqrt{c_1^2 + u_1^2 - 2c_1u_1\cos\alpha_1} = \sqrt{479.929^2 + 331.091^2 - 2\cdot479.929\cdot331.091\cdot\cos16.994^\circ} = 189.815 \text{ m/c}$$

15. Определим теплоперепад на РК:

$$H_{\scriptscriptstyle 
m II} = H_{\scriptscriptstyle 
m II} 
ho rac{T_1}{T_1'} = 0.18 \cdot 10^6 \cdot 0.32 \cdot rac{996.225}{990.0} = 0.058 \cdot 10^6 \; {
m Дж/кг}$$

16. Определим осевую ширину рабочего колеса:

$$b_{\text{a pK}} = \left(\frac{l}{b_a}\right)_{\text{PK}} \frac{1}{1 - \frac{\tan\gamma_{\text{H}} + \tan\gamma_{\text{E}}}{\left(\frac{l}{b_a}\right)_{\text{PK}}}} D_1 \left(\frac{l}{D}\right)_1 = 4.0 \frac{1}{1 - \frac{\tan13.2 + \tan8.0}{4.0}} 0.3513 \cdot 0.17 = 0.016$$

17. Определим средний диаметра на выходе из РК:

$$D_2 = D_1 + \frac{\tan \gamma_{\text{\tiny B}} - \tan \gamma_{\text{\tiny H}}}{2} b_{\text{\tiny a pk}} = 0.3513 + \frac{\tan 8.0^{\circ} - \tan 13.2^{\circ}}{2} \cdot 0.016 = 0.3528 \text{ m}$$

18. Определим длину лопатки на выходе из РК:

$$l_2 = D_1 \left(\frac{l}{D}\right)_1 + \frac{\tan\gamma_{\text{B}} + \tan\gamma_{\text{B}}}{2} b_{\text{a pk}} = 0.3513 \cdot 0.17 + \frac{\tan8.0^{\circ} + \tan13.2^{\circ}}{2} \cdot 0.016 = 0.0659 \text{ m}$$

19. Определим относительную длину лопаток на выходе из РК:

$$\left(\frac{l}{D}\right)_2 = \frac{l_2}{D_2} = \frac{0.0659}{0.3528} = 0.187$$

20. Определим площадь на выходе из РК:

$$A_2 = \pi D_2 l_2 = \pi \cdot 0.3528 \cdot 0.0659 = 0.073051 \text{ m}^2$$

21. Определим окружную скорость на среднем диаметре на выходе из РК:

$$u_2 = \frac{\pi D_2 n}{60} = \frac{\pi \cdot 0.3528 \cdot 18000.0}{60} = 332.551 \text{ m/c}$$

22. Определим относительную скорость истечения газа из РК:

$$w_2 = \psi \sqrt{w_1^2 + 2H_{\mathrm{J}} + (u_2^2 - u_1^2)} = 0.97 \cdot \sqrt{189.815^2 + 2 \cdot 0.058 \cdot 10^6 + \left(332.551^2 - 331.091^2\right)} = 379.322 \, \mathrm{m/c}$$

23. Определим статическую температуру на выходе из РК:

$$T_2 = T_1 + \frac{\left(w_1^2 - w_2^2\right) + \left(u_2^2 - u_1^2\right)}{2c_{pr}} = 996.225 + \frac{\left(189.815^2 - 379.322^2\right) + \left(332.551^2 - 331.091^2\right)}{2 \cdot 1162.0} = 950.224 \, \mathrm{K}$$

24. Определим статическую температуру при адиабатическом процессе в РК:

$$T_2' = T_1 - \frac{H_{\pi}}{c_{p_{\Gamma}}} = 996.225 - \frac{0.058 \cdot 10^6}{\cdot 1162.0} = 946.335 \text{ K}$$

25. Определим давление на выходе из РК:

$$p_2 = p_1 \left(\frac{T_2'}{T_1}\right)^{\frac{k_r}{k_r-1}} = 0.224 \left(\frac{946.335}{996.225}\right)^{\frac{1.3287}{1.3287-1}} = 0.182 \text{ M}\Pi \text{a}$$

26. Определим плотность газа на выходе из РК:

$$\rho_2 = \frac{p_2}{RT_2} = \frac{0.182 \cdot 10^6}{287 \cdot 950.224} = 0.666$$

27. Определим осевую составляющую абсолютной скорости на выходе из РК:

$$c_{2a} = \frac{G}{A_2 \rho_2} = \frac{7.0}{0.073051 \cdot 0.666} = 148.581$$

28. Определим угол в относительном движении на выходе из РК:

$$\beta_2 = \arcsin \frac{c_{2a}}{w_2} = \arcsin \frac{148.581}{379.322} = 23.06^{\circ}$$

29. Определим угол выхода из РК в абсолютном движении:

$$\alpha_2 = \arctan \frac{w_2 \cos \beta_2 - u_2}{c_{2a}} = \arctan \frac{379.322 \cdot \cos 23.06^\circ - 332.551}{148.581} = 83.678^\circ$$

30. Определим окружную составляющую скорости на выходе из РК

$$c_{2u} = w_2 \cos \beta_2 - u_2 = 379.322 \cdot \cos 23.06^{\circ} - 332.551 = 16.461 \text{ м/с}$$

31. Определим скорость потока на выходе из РК:

$$c_2 = \sqrt{c_{2u}^2 + c_{2a}^2} = \sqrt{16.461^2 + 148.581^2} = 149.49 \text{ m/c}$$

32. Определим работу на окружности колеса:

$$L_u = c_{1u}u_1 + c_{2u}u_2 = 458.973 \cdot 331.091 + 16.461 \cdot 332.551 = 0.157 \cdot 10^6$$
 Дж/кг

33. Определим КПД на окружности колеса:

$$\eta_u = \frac{L_u}{H_t} = \frac{0.157}{0.18} = 0.8746$$

34. Определим удельные потери на статоре:

$$h_c = \left(\frac{1}{\phi^2} - 1\right) \frac{c_1^2}{2} = \left(\frac{1}{0.97^2} - 1\right) \frac{479.929^2}{2} = 7.234 \cdot 10^3 \; Дж/кг$$

35. Определим удельные потери на роторе:

$$h_{\rm p} = \left(\frac{1}{\psi^2} - 1\right) \frac{w_2^2}{2} = \left(\frac{1}{0.97^2} - 1\right) \frac{379.322^2}{2} = 4.519 \cdot 10^3 \; \text{Дж/кг}$$

36. Определим удельные потери с выходной скоростью:

$$h_{\text{вых}} = \frac{c_2^2}{2} = \frac{149.49^2}{2} = 11.174 \cdot 10^3 \text{ Дж/кг}$$

37. Определим удельные потери в радиальном зазоре:

$$h_3 = 1.37 \cdot (1 + 1.6\rho) \left[ 1 + \left( \frac{l}{D} \right)_1 \right] \frac{\delta_r}{l_2} L_u =$$

$$= 1.37 \cdot (1 + 1.6 \cdot 0.32) \left[ 1 + 0.187 \right] \frac{0.00066}{0.0659} \cdot 0.157 = 3.872 \cdot 10^3 \text{ Дж/кг}$$

38. Определим удельные потери на вентиляцию:

$$h_{\text{вент}} = \frac{1.07 D_2^2 \left(\frac{u_2}{100}\right)^3 \rho}{G} = \frac{1.07 \cdot 0.3528^2 \left(\frac{332.551}{100}\right)^3 \cdot 0.32}{7.0} = 0.000215 \cdot 10^3 \text{ Дж/кг}$$

39. Определим температуру торможения за РК:

$$T_2^* = T_2 + \frac{h_{\text{\tiny 3}} + h_{\text{\tiny BeHT}} + h_{\text{\tiny BbIX}}}{c_{p_\Gamma}} = 950.224 + \frac{3.872 \cdot 10^3 + 0.000215 \cdot 10^3 + 11.174 \cdot 10^3}{1162.0} = 963.174 \text{ K}$$

40. Определим давление торможения за РК:

$$p_2^* = p_2 \left(\frac{T_2^*}{T_2}\right)^{\frac{k_r}{k_r-1}} = 0.182 \cdot \left(\frac{963.174}{950.224}\right)^{\frac{1.3287}{1.3287-1}} = 0.189 \text{ M}\Pi\text{a}$$

41. Определим мощностной КПД ступени:

$$\eta_{\text{\tiny T}\ \text{MOЩH}} = \eta_u - \frac{h_{\text{\tiny 3}} + h_{\text{\tiny BeHT}}}{H_{\text{\tiny T}}} = 0.8746 - \frac{3.872 \cdot 10^3 + 0.000215 \cdot 10^3}{0.18 \cdot 10^6} = 0.8531$$

42. Определим работу ступени:

$$L_{\text{\tiny T}} = H_{\text{\tiny T}} \eta_{\text{\tiny T}} = 0.18 \cdot 10^6 \cdot 0.8531 = 0.154 \cdot 10^6 \; \text{Дж/кг}$$

43. Определим теплоперепад по параметрам торможения:

$$H_{\scriptscriptstyle \mathrm{T}}^* = c_{p\scriptscriptstyle \mathrm{\Gamma}} T_0^* \left[ 1 - \left( \frac{p_2^*}{p_0^*} \right)^{\frac{k_{\scriptscriptstyle \mathrm{\Gamma}} - 1}{k_{\scriptscriptstyle \mathrm{\Gamma}}}} \right] = 1162.0 \cdot 1095.352 \left[ 1 - \left( \frac{0.189}{0.337} \right)^{\frac{1.3287 - 1}{1.3287}} \right] = 0.169 \cdot 10^6 \; \text{Дж/кг}$$

44. Определим КПД ступени по параметрам торможения:

$$\eta_{\rm T}^* = \frac{L_{\rm T}}{H_{\rm T}^*} = \frac{0.154 \cdot 10^6}{0.169 \cdot 10^6} = 0.9088$$

- 45. Определим уточненное значение показателя адиабаты газа в процессе расширения в ступени:
  - 45.1. Определим значение средней теплоемкости газа при температуре  $T_0^*$ :

$$c_{p\Gamma \text{ cp}}(T_0^*) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5}(T_0^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$= \left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5}(1095.352 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1085.731 \text{ Дж/(кг \cdot K)}$$

45.2. Определим значение средней теплоемкости при температуре  $T_2$ :

$$c_{p\Gamma \ cp}(T_2) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_2 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$\left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5} (950.224 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1069.487 \ \text{Дж/(кг} \cdot \text{K)}$$

45.3. Новое значение средней теплоемкости в интервале температур от  $T_2$  до  $T_0^*$ :

$$\begin{split} c_{p\Gamma}' &= \frac{c_{p\Gamma \text{ cp}}(T_2)(T_2 - T_0) - c_{p\Gamma \text{ cp}}(T_0^*)(T_0^* - T_0)}{T_2 - T_0^*} = \\ &\frac{1069.487 \cdot (950.224 - 273) - 1085.731 \cdot (1095.352 - 273)}{950.224 - 1095.352} = 1161.902 \text{ Дж/(кг · K)} \end{split}$$

45.4. Новое значение показателя адиабаты

$$k_{\rm B}' = \frac{c_{\rm pr}'}{c_{\rm nr}' - R_{\rm r}} = \frac{1161.902}{1161.902 - 287} = < St1KGasLong$$

46. Определим погрешность определения показателя адиабаты газа в процессе расширения в ступени:

$$\delta = \frac{|k_{\rm r}' - k_{\rm r}|}{k_{\rm r}} \cdot 100\% = \frac{|1.3286 - 1.3287|}{1.3287} \cdot 100\% = 0.003\% < 5\%$$

Погрешность определения показателя адиабаты в пределах допуска.

#### 3.2 Расчет второй ступени

Исходные данные для расчета перовй ступени:

| Величина                                  | Обозначение | Размерность | Значение |
|-------------------------------------------|-------------|-------------|----------|
| Реактивность ступени                      | ρ           | -           | 0.33     |
| Радиальный зазор                          | $\delta_r$  | -           | 0.00092  |
| Средний диеметр на входе в РК             | $D_1$       | M           | 0.3577   |
| Средний диаметр на выходе из РК           | $D_2$       | M           | 0.3594   |
| Длина лопатки на входе в РК               | $l_1$       | M           | 0.0852   |
| Длина лопатки на выходе из РК             | $l_2$       | M           | 0.0919   |
| Статическое давление на выходе из ступени | $p_2$       | МПа         | 0.096    |

1. Примем значение показателя адиабаты:

$$k_{\rm r} = 1.339$$

2. Теплоемкость газа при данном значении коэффициента адиабаты:

$$c_{p_{\Gamma}} = rac{k_{\Gamma}R_{\Gamma}}{k_{\Gamma}-1} = rac{1.339 \cdot 287}{1.339-1} = 1135.0$$
 Дж/(кг · K)

3. Определим давление торможения на входе вступень по значению статического давления на выходе из предыдущей ступени:

$$p_0^* = p_0 \left( 1 + \frac{c_0^2}{2c_p T_0} \right)^{\frac{k_r}{k_r - 1}} = 0.182 \left( 1 + \frac{149.49^2}{2 \cdot 1135.0 \cdot 950.224} \right)^{\frac{1.339}{1.339 - 1}} = 0.189$$

4. Определим теплоперепад на ступени:

$$H_t = c_{pr} T_0^* \left[ 1 - \left( \frac{p_2}{p_0^*} \right)^{\frac{k_r - 1}{k_r}} \right] = 1135.0963.174 \left[ 1 - \left( \frac{0.096}{0.189} \right)^{\frac{1.339 - 1}{1.339}} \right] = 0.173$$

5. Определим теплоперепад на сопловом аппарате:

$$H_{\rm c} = (1 - \rho) H_{\rm t} = (1 - 0.33) \cdot 0.173 \cdot 10^6 = 0.116 \cdot 10^6 \, \text{Дж/кг}$$

6. Определим скорость действительного истечения из СА:

$$c_1 = \phi \sqrt{2H_c} = 0.97 \cdot \sqrt{20.116 \cdot 10^6} = 467.261 \text{ m/c}$$

7. Определим температуру на выходе из СА:

$$T_1 = T_0^* - \frac{c_1^2}{2c_{pr}} = 963.174 - \frac{467.261^2}{2 \cdot 1135.0} = 867.009 \text{ K}$$

8. Определим температуру конца адиабатного расширения

$$T_1' = T_0^* - \frac{H_c}{c_{pr}} = 963.174 - \frac{0.116 \cdot 10^6}{1135.0} = 861.0 \text{ K}$$

9. Определим давление на выходе из СА:

$$p_1 = p_0^* \left(\frac{T_1'}{T_0^*}\right)^{\frac{k_r}{k_r - 1}} = 0.189 \cdot \left(\frac{861.0}{963.174}\right)^{\frac{1.339}{1.339 - 1}} = 0.122 \text{ M}\Pi\text{a}$$

10. Определим плотность газа на выходе из СА:

$$\rho_1 = \frac{p_1}{R_r T_1} = \frac{0.122 \cdot 10^6}{287 \cdot 867,009} = 0.488 \text{ kg/m}^3$$

11. Определим площадь входа в РК:

$$A_1 = \pi D_1 l_1 = \pi \cdot 0.3577 \cdot 0.0852 = 0.09574 \text{ m}^2$$

12. Определим осевую составляющую абсолютной скорости на входе в РК:

$$c_{1a} = \frac{G}{\rho_1 A_1} = \frac{7.0}{0.488 \cdot 0.09574} = 154.705$$

13. Определим угол на выходе из СА:

$$\alpha 1 = \arcsin \frac{c1_a}{c1} = \arcsin \frac{154.705}{467.261} = 19.335^{\circ}$$

14. Определим окружную скорость на среднем диаметре на входе в РК:

$$u_1 = \frac{\pi D_1 n}{60} = \frac{\pi \cdot 0.3577 \cdot 18000.0}{60} = 337.11 \text{ m/c}$$

15. Определим относительную скорость на входе в РК:

$$w_1 = \sqrt{c_1^2 + u_1^2 - 2c_1u_1\cos\alpha_1} = \sqrt{467.261^2 + 337.11^2 - 2\cdot467.261\cdot337.11\cdot\cos19.335^\circ} = 186.3~\text{m/c}$$

16. Определим теплоперепад на РК:

$$H_{\scriptscriptstyle 
m II} = H_{\scriptscriptstyle 
m I} 
ho rac{T_1}{T_1'} = 0.173 \cdot 10^6 \cdot 0.33 \cdot rac{867.009}{861.0} = 0.058 \cdot 10^6$$
 Дж/кг

17. Определим площадь на выходе из РК:

$$A_2 = \pi D_2 l_2 = \pi \cdot 0.3594 \cdot 0.0919 = 0.103716 \text{ m}^2$$

18. Определим окружную скорость на среднем диаметре на выходе из РК:

$$u_2 = \frac{\pi D_2 n}{60} = \frac{\pi \cdot 0.3594 \cdot 18000.0}{60} = 338.685 \text{ m/c}$$

19. Определим относительную скорость истечения газа из РК:

$$w_2 = \psi \sqrt{w_1^2 + 2H_{^{_{\rm I\! I}}} + (u_2^2 - u_1^2)} = 0.97 \cdot \sqrt{186.3^2 + 2 \cdot 0.058 \cdot 10^6 + \left(338.685^2 - 337.11^2\right)} = 376.762 \text{ m/c}$$

20. Определим статическую температуру на выходе из РК:

$$T_2 = T_1 + \frac{\left(w_1^2 - w_2^2\right) + \left(u_2^2 - u_1^2\right)}{2c_{p\Gamma}} = 867.009 + \frac{\left(186.3^2 - 376.762^2\right) + \left(338.685^2 - 337.11^2\right)}{2 \cdot 1135.0} = 820.242 \text{ K}$$

21. Определим статическую температуру при адиабатическом процессе в РК:

$$T_2' = T_1 - \frac{H_{^{_{\rm I\! I}}}}{c_{pr}} = 867.009 - \frac{0.058 \cdot 10^6}{\cdot 1135.0} = 816.315 \ {\rm K}$$

22. Определим давление на выходе из РК:

$$p_2 = p_1 \left(\frac{T_2'}{T_1}\right)^{\frac{k_\Gamma}{k_\Gamma - 1}} = 0.122 \left(\frac{816.315}{867.009}\right)^{\frac{1.339}{1.339 - 1}} = 0.096 \text{ M}\Pi\text{a}$$

23. Определим плотность газа на выходе из РК:

$$\rho_2 = \frac{p_2}{RT_2} = \frac{0.096 \cdot 10^6}{287 \cdot 820.242} = 0.407$$

24. Определим осевую составляющую абсолютной скорости на выходе из РК:

$$c_{2a} = \frac{G}{A_2 \rho_2} = \frac{7.0}{0.103716 \cdot 0.407} = 171.403$$

25. Определим угол в относительном движении на выходе из РК:

$$\beta_2 = \arcsin \frac{c_{2a}}{w_2} = \arcsin \frac{171.403}{376.762} = 27.061^{\circ}$$

26. Определим угол выхода из РК в абсолютном движении:

$$\alpha_2 = \arctan \frac{w_2 \cos \beta_2 - u_2}{c_{2a}} = \arctan \frac{376.762 \cdot \cos 27.061^\circ - 338.685}{171.403} = 91.06^\circ$$

27. Определим окружную составляющую скорости на выходе из РК:

$$c_{2u} = w_2 \cos \beta_2 - u_2 = 376.762 \cdot \cos 27.061^{\circ} - 338.685 = -3.17 \text{ m/c}$$

28. Определим скорость потока на выходе из РК:

$$c_2 = \sqrt{c_{2u}^2 + c_{2a}^2} = \sqrt{-3.17^2 + 171.403^2} = 171.432$$
 м/с

29. Определим работу на окружности колеса:

$$L_u = c_{1u}u_1 + c_{2u}u_2 = 440.907 \cdot 337.11 + -3.17 \cdot 338.685 = 0.148 \cdot 10^6$$
 Дж/кг

30. Определим КПД на окружности колеса:

$$\eta_u = \frac{L_u}{H_t} = \frac{0.148}{0.173} = 0.8521$$

31. Определим удельные потери на статоре:

$$h_c = \left(\frac{1}{\phi^2} - 1\right) \frac{c_1^2}{2} = \left(\frac{1}{0.97^2} - 1\right) \frac{467.261^2}{2} = 6.857 \cdot 10^3 \; \text{Дж/кг}$$

32. Определим удельные потери на роторе:

$$h_{\rm p} = \left(\frac{1}{\psi^2} - 1\right) \frac{w_2^2}{2} = \left(\frac{1}{0.97^2} - 1\right) \frac{376.762^2}{2} = 4.458 \cdot 10^3 \; \text{Дж/кг}$$

33. Определим удельные потери с выходной скоростью:

$$h_{ ext{вых}} = rac{c_2^2}{2} = rac{171.432^2}{2} = 14.694 \cdot 10^3 \; ext{Дж/кг}$$

34. Определим удельные потери в радиальном зазоре:

$$h_{\scriptscriptstyle 3} = 1.37 \cdot (1+1.6\rho) \left[1+\left(\frac{l}{D}\right)_1\right] \frac{\delta_r}{l_2} L_u =$$
 
$$= 1.37 \cdot (1+1.6 \cdot 0.33) \left[1+0.26\right] \frac{0.00092}{0.0659} \cdot 0.148 = 3.881 \cdot 10^3 \; \text{Дж/кг}$$

35. Определим удельные потери на вентиляцию:

$$h_{\text{вент}} = \frac{1.07 D_2^2 \left(\frac{u_2}{100}\right)^3 \rho}{G} = \frac{1.07 \cdot 0.3594^2 \left(\frac{338.685}{100}\right)^3 \cdot 0.33}{7.0} = 0.000242 \cdot 10^3 \text{ Дж/кг}$$

36. Определим температуру торможения за РК:

$$T_2^* = T_2 + \frac{h_3 + h_{\text{Beht}} + h_{\text{Bbix}}}{c_{\text{2D}}} = 820.242 + \frac{3.881 \cdot 10^3 + 0.000242 \cdot 10^3 + 14.694 \cdot 10^3}{1135.0} = 836.606 \text{ K}$$

37. Определим давление торможения за РК:

$$p_2^* = p_2 \left(\frac{T_2^*}{T_2}\right)^{\frac{k_{\Gamma}}{k_{\Gamma}-1}} = 0.096 \cdot \left(\frac{836.606}{820.242}\right)^{\frac{1.339}{1.339-1}} = 0.102 \text{ M}\Pi a$$

38. Определим мощностной КПД ступени:

$$\eta_{\text{\tiny T}\ \text{MOII}\text{\tiny H}} = \eta_u - \frac{h_{\text{\tiny 3}} + h_{\text{\tiny BeHT}}}{H_{\text{\tiny T}}} = 0.8521 - \frac{3.881 \cdot 10^3 + 0.000242 \cdot 10^3}{0.173 \cdot 10^6} = 0.8297$$

39. Определим работу ступени:

$$L_{\text{\tiny T}} = H_{\text{\tiny T}} \eta_{\text{\tiny T}} = 0.173 \cdot 10^6 \cdot 0.8297 = 0.144 \cdot 10^6 \; \text{Дж/кг}$$

40. Определим теплоперепад по параметрам торможения:

$$H_{\scriptscriptstyle \mathrm{T}}^* = c_{p\scriptscriptstyle \mathrm{\Gamma}} T_0^* \left[ 1 - \left( \frac{p_2^*}{p_0^*} \right)^{\frac{k_{\scriptscriptstyle \mathrm{\Gamma}} - 1}{k_{\scriptscriptstyle \mathrm{\Gamma}}}} \right] = 1135.0 \cdot 963.174 \left[ 1 - \left( \frac{0.102}{0.189} \right)^{\frac{1.339 - 1}{1.339}} \right] = 0.159 \cdot 10^6 \; \text{Дж/кг}$$

41. Определим КПД ступени по параметрам торможения:

$$\eta_{\rm T}^* = \frac{L_{\rm T}}{H_{\rm T}^*} = \frac{0.144 \cdot 10^6}{0.159 \cdot 10^6} = 0.9053$$

- 42. Определим уточненное значение показателя адиабаты газа в процессе расширения в ступени:
  - 42.1. Определим значение средней теплоемкости газа при температуре  $T_0^*$ :

$$\begin{split} c_{p\Gamma\text{ cp}}(T_0^*) &= \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_0^* + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = \\ &= \left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5} (963.174 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1070.936 \text{ Дж/(кг} \cdot \text{K)} \end{split}$$

42.2. Определим значение средней теплоемкости при температуре  $T_2$ :

$$c_{p\Gamma \ cp}(T_2) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^5} (T_2 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 =$$

$$\left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^5} (820.242 + 450) + 0.218\right] \cdot 4.187 \cdot 10^3 = 1054.939 \ \text{Дж/(кг · K)}$$

42.3. Новое значение средней теплоемкости в интервале температур от  $T_2$  до  $T_0^*$ :

$$c_{p\Gamma}' = \frac{c_{p\Gamma \text{ cp}}(T_2)(T_2 - T_0) - c_{p\Gamma \text{ cp}}(T_0^*)(T_0^* - T_0)}{T_2 - T_0^*} = \\ \frac{1054.939 \cdot (820.242 - 273) - 1070.936 \cdot (963.174 - 273)}{820.242 - 963.174} = 1132.57 \text{ Дж/(кг \cdot K)}$$

42.4. Новое значение показателя адиабаты:

$$k'_{\text{B}} = \frac{c'_{p_{\Gamma}}}{c'_{p_{\Gamma}} - R_{\Gamma}} = \frac{1132.57}{1132.57 - 287} = 1.3401$$

43. Определим погрешность определения показателя адиабаты газа в процессе расширения в ступени:

$$\delta = \frac{|k_{\rm r}' - k_{\rm r}|}{k_{\rm r}} \cdot 100\% = \frac{|1.3401 - 1.339|}{1.339} \cdot 100\% = 0.078\% < 5\%$$

Погрешность определения показателя адиабаты в пределах допуска.

#### 3.3 Вычисление интегральных параметров турбины

- 1. Определим среднее значение коэффициента адиабаты и теплоемкости в интервале температур от  $T_{\scriptscriptstyle {
  m TK}}^*$  до  $T_{\scriptscriptstyle {
  m T}}$ :
  - 1.1. Значение средней теплоемкости в интервале температур от  $T_{\text{тк}}^*$  до  $T_{\text{т}}$ :

$$\begin{split} c_{p \Gamma} &= \frac{c_{p \Gamma \text{ cp}}(T_{\text{\tiny T}})(T_{\text{\tiny T}} - T_0) - c_{p \Gamma \text{ cp}}(T_{\text{\tiny TK}}^*)(T_{\text{\tiny TK}}^* - T_0)}{T_{\text{\tiny T}} - T_{\text{\tiny TK}}^*} = \\ &= \frac{1054.939 \cdot (820.242 - 273) - 1085.731 \cdot (1095.352 - 273)}{820.242 - 1095.352} = 1215.538 \text{ Дж/(кг} \cdot \text{K)} \end{split}$$

1.2. Значение показателя адиабаты:

$$k_{\scriptscriptstyle \rm B} = \frac{c_{p\scriptscriptstyle \rm \Gamma}}{c_{p_{\scriptscriptstyle \rm \Gamma}} - R_{\scriptscriptstyle \rm \Gamma}} = \frac{1215.538}{1215.538 - 287} = 1.31$$

2. Работа турбины:

$$L_{\text{\tiny T}} = L_{\text{\tiny T}1} + L_{\text{\tiny T}2} = 0.154 \cdot 10^6 + 0.144 \cdot 10^6 = 0.297 \cdot 10^6$$
 Дж/кг

3. Теплоперепад в турбине:

$$H_t = c_p T_{\text{тк}}^* \left[ 1 - \left( \frac{p_{\text{г}}^*}{p_{\text{г}}} \right)^{\frac{1-k_{\text{г}}}{k_{\text{г}}}} \right] = 1215.538 \cdot 1095.352 \left[ 1 - \left( \frac{0.337}{0.096} \right)^{\frac{1-1.31}{1.31}} \right] = 0.342 \cdot 10^6 \text{Дж/кг}$$

4. КПД турбины по статическим параметрам:

$$\eta_{\text{\tiny T}} = \frac{L_{\text{\tiny T}}}{H_{\text{\tiny T}}} = \frac{0.297}{0.342} = 0.8683$$

5. Лопаточный КПД турбины:

$$\eta_{\text{\tiny J}} = \frac{L_{\text{\tiny T}} + \frac{c_{\text{\tiny T}}^2}{2}}{H_{\text{\tiny T}}} = \frac{0.297 \cdot 10^6 + \frac{171.432^2}{2}}{0.342 \cdot 10^6} = 0.9113$$

- 6. Определим среднее значение коэффициента адиабаты и теплоемкости в интервале температур от  $T_{\text{тк}}^*$  до  $T_{\text{т}}^*$ :
  - 6.1. Значение средней теплоемкости при температуре  $T_{\scriptscriptstyle 
    m T}^*$ :

$$c_{p_{\Gamma} \text{ cp}}(T_{_{\mathrm{T}}}^{*}) = \left[\frac{1.25 + 2.2\alpha}{\alpha \cdot 10^{5}}(T_{_{\mathrm{T}}}^{*} + 450) + 0.218\right] \cdot 4.187 \cdot 10^{3} =$$

$$= \left[\frac{1.25 + 2.2 \cdot 2.642}{2.642 \cdot 10^{5}}(836.606 + 450) + 0.218\right] \cdot 4.187 \cdot 10^{3} = 1056.77 \text{ Дж/(кг · K)}$$

6.2. Значение средней теплоемкости в интервале температур от  $T_{\text{тк}}^*$  до  $T_{\text{т}}^*$ :

$$\begin{split} c_{p\Gamma} &= \frac{c_{p\Gamma \text{ cp}}(T_{\text{\tiny T}}^*)(T_{\text{\tiny T}}^* - T_0) - c_{p\Gamma \text{ cp}}(T_{\text{\tiny TK}}^*)(T_{\text{\tiny TK}}^* - T_0)}{T_{\text{\tiny T}}^* - T_{\text{\tiny TK}}^*} = \\ &= \frac{1056.77 \cdot (836.606 - 273) - 1085.731 \cdot (1095.352 - 273)}{836.606 - 1095.352} = 1217.408 \; \text{Дж/(кг \cdot K)} \end{split}$$

6.3. Значение показателя адиабаты:

$$k_{\text{\tiny B}} = \frac{c_{p\Gamma}}{c_{p\Gamma} - R_{\Gamma}} = \frac{1217.408}{1217.408 - 287} = 1.309$$

7. Теплоперепад по параметрам торможения:

$$H_t^* = c_p T_{\scriptscriptstyle \Gamma}^* \left[ 1 - \left( \frac{p_{\scriptscriptstyle \Gamma}^*}{p_{\scriptscriptstyle T}^*} \right)^{\frac{1-k_{\scriptscriptstyle \Gamma}}{k_{\scriptscriptstyle \Gamma}}} \right] = 1217.408 \cdot 1095.352 \left[ 1 - \left( \frac{0.337}{0.102} \right)^{\frac{1-1.309}{1.309}} \right] = 0.328 \cdot 10^6 \; \text{Дж/кг}$$

8. КПД турбины по параметрам торможения:

$$\eta_{\text{\tiny T}}^* = \frac{L_{\text{\tiny T}}}{H_{\text{\tiny T}}^*} = \frac{0.297}{0.328} = 0.9066$$

9. Мощность турбины:

$$N = L_{\rm T} G \eta_{\rm M} = 0.297 \cdot 7.0 \cdot 0.99 = 2.127 \cdot 10^6 \; {\rm Br}$$

### 4 Профилирование первой ступени турбины компрессора

Исходными данными для данного этапа проектирования турбины являются результы расчета по средней линии тока.

Ступень была спрофилирована по закону  $\alpha_1 = const.$ 

Определим треугольники скоростей на произвольно радиусе лопатки.

1. В этом случае значения абсолютной скорости на входе на рабочие лопатки на произвольном радиусе определялись по следующим формулам (в приведенных ниже формулах значения со штрихом относятся к среднему радиусу):

$$c_{1u} = c'_{1u} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}; \ c_{1a} = c'_{1a} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}; \ c_{1} = c'_{1} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}$$

2. Окружная скорость рабочей лопатки на произвольном радиусе была определена по закон вращения твердого тела:

$$u = u' \frac{r}{r'}$$

3. Относительная скорость на произвольном радиусе на входе в рабочие лопатки была определена по следующим формулам:

$$w_{1u} = c_{1u} - u; \ w_{1a} = c_{1a}; w_1 = \sqrt{w_{1u}^2 + w_{1a}^2}$$

4. Абсолютная скорость на выходе из рабочих лопаток была определена по условию постоянства работы, отводимой от газа на различных радиусах лопатки.

По формуле Эйлера для правила отсчета углов, принятого в теории турбин удельная работа на окружности колеса  $L_u$  определяется слеюущей формулой:

$$L_u = c_{1u} + c_{2u}$$

Таким образом, зная работу на окружности колеса на среднем радиусе лопатки  $L'_u$ , мы можем определить значение окружной скорости на выходе из рабочих лопаток:

$$c_{2u} = \frac{L'_u}{u} - c_{1u} = \frac{L'_u}{u'} \frac{r'}{r} - c'_{1u} \left(\frac{r'}{r}\right)^{\cos^2 \alpha_1}$$

5. Используя значения окружной и осевой скорости на среднем радиусе лопатки, определим значение осевой скорости на выходе из рабочих лопаток, проинтегрировав уравнение Бернулли для цилиндрического течения, записанное в дифференциальной форме, и полагая температуры торможения постоянными по радиусу:

$$c_{2a}^2 = c_{2a}^{\prime 2} + c_{2u}^{\prime 2} - c_{2u}^2 - 2 \int_{r'}^r \frac{c_{2u}^2}{r} dr$$

Введем обозначения  $a = \frac{L'_u}{u}; \ b = c'_{1u}.$ 

Тогда после интегрирования получим:

$$c_{2a} = c_{2a}^{\prime 2} + c_{2u}^{\prime 2} - c_{2u}^{2} + \left[ -a^{2} \left( \frac{r'}{r} \right)^{2} + \frac{4ab}{1 + \cos^{2} \alpha_{1}} \left( \frac{r'}{r} \right)^{1 + \cos^{2} \alpha_{1}} - \frac{b^{2}}{\cos^{2} \alpha_{1}} \left( \frac{r'}{r} \right)^{2\cos^{2} \alpha_{1}} \right]_{r'}^{r}$$

6. Значения проекций относительной скорости на выходе из лопаток находим так же, как и значения на входе в рабочие лопатки.

Определим профили давления и реактивности на произвольном радиусе лопатки:

1. Запишем выражение для числа Маха на произвольном радиусе лопатки с учетом постоянства температуры торможения:

$$M_{1,2} = \frac{c_{1,2}}{\sqrt{kR\left(T_{1,2}' + \frac{c_{1,2}^2 - c_{1,2}'^2}{c_p}\right)}}$$

2. Запишем выражение для давления на произвольном радиусе лопатки, используя ГДФ давления:

$$p_{1,2} = p'_{1,2} \frac{\pi(M_{1,2}, k)}{\pi(M'_{1,2}, k)}$$

3. Запишем выражение для статической температуры на произвольном радиусе лопатки, используя  $\Gamma Д \Phi$  температуры:

$$T_{1,2} = T'_{1,2} \frac{\tau(M_{1,2}, k)}{\tau(M'_{1,2}, k)}$$

4. Таким образом, зная степень понижения давления на среднем и произвольном радусе лопатки, мы можем определить степень реактивности на произвольном радиусе:

$$r = \frac{\pi^{\frac{k-1}{k}} - 1}{\pi'^{\frac{k-1}{k}} - 1} r'$$

Построим графики изменения углов потока и степени реактивности, а также треугольники скоростей на различных радиусах по высоте лопатки.



Рис. 6: Изменение углов  $\alpha_1$  и  $\beta_2$  по радиусу



Рис. 7: Измене<br/>ие углов  $\alpha_2$  и  $\beta_1$  по радиусу



Рис. 8: Изменение степени реактивности по радиусу



Рис. 9: Треугольники скоростей

### 5 Расчет на прочность диска первой ступени

#### 5.1 Исходные данные для расчета

- 1. Частота вращения: n = 18000.0 об/мин
- 2. Зависимость толщины диска от радиуса: h(r)
- 3. Сила инерции, действующая на лопатку:  $P_{\text{лоп}} = 39960.0 \text{ H}$
- 4. Ширина хвостовика:  $h_{m-1} = 0.01587$  м
- 5. Радиусы хвостовика: r1 = 0.12786 м и r2 = 0.13864 м
- 6. Температура на внутреннем радиусе:  $T_1 = 200 \text{ K}$
- 7. Температура на внешен<br/>м радиусе:  $T_m = 700 \ {\rm K}$
- 8. Закон изменения температуры диска по радиусу: Примем, что температура диска изменяется по радиусу по закону квадратной параболы:

$$T(r) = T_1 + (T_m - T_1) \frac{r}{r_m}^2$$

- 9. Число лопаток:  $z_{\scriptscriptstyle \rm I}=48$
- 10. Параметры материала:
  - 10.1. Материал сплав ЭИ698.
  - 10.2. Плотность:  $\rho = 8320 \text{кг/м}^3$
  - 10.3. Коэффициент Пуассона:  $\mu = 0.3$
  - 10.4. Зависимость модуля Юнга от температуры:

| Т, К   | 20               | 400                 | 500                 | 600                 | 700                 | 800                |
|--------|------------------|---------------------|---------------------|---------------------|---------------------|--------------------|
| Е, МПа | $2 \cdot 10^{5}$ | $1.82 \cdot 10^{5}$ | $1.75 \cdot 10^{5}$ | $1.65 \cdot 10^{5}$ | $1.55 \cdot 10^{5}$ | $1.4 \cdot 10^{5}$ |

10.5. Зависимость коэффициента линейного раширения от температруы

|                      |     |      |      |      |      | •    |      |      | ·    |
|----------------------|-----|------|------|------|------|------|------|------|------|
| T, K                 | 100 | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900  |
| $\alpha, 10^{-6}1/K$ | 11  | 11.4 | 11.7 | 12.1 | 12.4 | 12.7 | 13.4 | 13.9 | 14.7 |

 α, 10 °1/К | 11 | 11.4 | 11.7 | 12.1 | 12.4 | 12.7 | 13.4 | 1

 10.6. Зависимость предела временной прочности от температуры

| T, K                                                              | 20   | 400  | 500  | 600  | 700  |
|-------------------------------------------------------------------|------|------|------|------|------|
| $\sigma_{\scriptscriptstyle \mathrm{B}}, \mathrm{M}\Pi\mathrm{a}$ | 1220 | 1180 | 1160 | 1120 | 1040 |

#### 5.2 Алгоритм расчета

1. Определяем силу нагрузку на периферии:

$$p_m = \frac{P_{\text{лоп}} z_{\pi}}{2\pi r_2 h_{m-1}} + \rho \left(\frac{\pi n}{30}\right)^2 \frac{r_2^3 - r_1^3}{3r_1} = \frac{39960.0 \cdot 48}{2\pi \cdot 0.13864 \cdot 0.01587} + 8320 \cdot \left(\frac{\pi \cdot 18000.0}{30}\right)^2 \frac{0.13864^3 - 0.12786^3}{30.12786} = 198.13 \text{ MHz}$$

- 2. Разобьем диск на m-1 участков постоянной толщины.
- 3. Зададим значение  $\sigma_r^{1,1} = \sigma_t^{1,1} = 100..200 \text{ M}\Pi \text{a}$
- 4. Длякаждого из участков решим следующую систему уравнений:

$$\begin{cases} S_{i,i} = \sigma_r^{i,i} + \sigma_t^{i,i}, \\ D_{i,i} = \sigma_r^{i,i} - \sigma_t^{i,i}, \\ S_{i,i+1} = S_{i,i} - \frac{1+\mu}{2} \rho_i \omega^2 \left( r_{i+1}^2 - r_i^2 \right) - E_i \left( \theta_{i+1} - \theta_i \right), \\ S_{i,i+1} = D_{i,i} \frac{r_i^2}{r_{i+1}^2} + \frac{1-\mu}{4} \rho \omega^2 \left( r_{i+1}^2 - \frac{r_i^4}{r_{i+1}^2} \right) + 2 \frac{E_i}{r_{i+1}^2} \int\limits_{r_i}^{r_{i+1}} \theta r dr - E_i \left( \theta_{i+1} - \theta_i \frac{r_i^2}{r_{i+1}^2} \right), \\ \sigma_t^{i,i+1} = \frac{S_{i,i+1} + D_{i,i+1}}{2}, \\ \sigma_r^{i,i+1} = \frac{S_{i,i+1} - D_{i,i+1}}{2}, \\ \sigma_r^{i+1,i+1} = \sigma_r^{i,i+1} \frac{h_i}{h_{i+1}}, \\ \sigma_t^{i+1,i+1} = \mu \sigma_t^{i,i+1} \frac{h_i}{h_{i+1}} + \frac{E_{i+1}}{E_i} \left( \sigma_t^{i,i+1} - \mu \sigma_r^{i,i+1} \right), \end{cases}$$

где  $\theta\left(r_{i}\right)=\alpha\left(r_{i}\right)\left(T\left(r_{i}\right)-T_{0}\right)$  - температурные деформации, а  $T_{0}=20^{\circ}C$ 

- 5. Повторяем пукты 3 и 4 при  $\theta=0$  и  $\omega=0$
- 6. Находим коэффициент k:

$$k = \frac{p_m - (\sigma_r^{m-1,m})_I}{(\sigma_r^{m-1,m})_{II}}$$

7. Находим значения напряжений на каждом из участков:

$$\sigma_r^{i,j} = (\sigma_r^{i,j})_I + k(\sigma_r^{m-1,m})_{II}$$
  
$$\sigma_t^{i,j} = (\sigma_t^{i,j})_I + k(\sigma_t^{m-1,m})_{II}$$

### 5.3 Результаты расчета

1. Результаты первого расчета.

| i  | $r_i$ , MM | $\sigma_r^{i,j}, \text{ M}\Pi a$ | $\sigma_t^{i,j}, \text{ M}\Pi a$ |
|----|------------|----------------------------------|----------------------------------|
| 0  | 0.0        | 100.0                            | 100.0                            |
| 0  | 6.3        | 98.8                             | 97.6                             |
| 1  | 6.3        | 101.5                            | 98.4                             |
| 1  | 12.7       | 97.2                             | 91.8                             |
| 2  | 12.7       | 100.0                            | 92.6                             |
| 2  | 19.0       | 93.2                             | 81.1                             |
| 3  | 19.0       | 96.0                             | 81.8                             |
| 3  | 25.4       | 86.8                             | 65.5                             |
| 4  | 25.4       | 89.5                             | 66.2                             |
| 4  | 31.7       | 77.9                             | 44.8                             |
| 5  | 31.7       | 80.3                             | 45.5                             |
| 5  | 38.1       | 66.4                             | 19.1                             |
| 6  | 38.1       | 68.5                             | 19.8                             |
| 6  | 44.4       | 52.2                             | -11.6                            |
| 7  | 44.4       | 53.9                             | -11.0                            |
| 7  | 50.7       | 35.2                             | -47.6                            |
| 8  | 50.7       | 36.1                             | -47.1                            |
| 8  | 57.1       | 15.1                             | -89.0                            |
| 9  | 57.1       | 15.4                             | -88.4                            |
| 9  | 63.4       | -8.1                             | -136.9                           |
| 10 | 63.4       | -8.3                             | -136.1                           |
| 10 | 69.8       | -34.3                            | -190.3                           |
| 11 | 69.8       | -35.1                            | -189.4                           |
| 11 | 76.1       | -63.5                            | -249.4                           |
| 12 | 76.1       | -65.9                            | -248.4                           |
| 12 | 82.5       | -96.8                            | -313.8                           |
| 13 | 82.5       | -100.6                           | -312.2                           |
| 13 | 88.8       | -133.6                           | -382.0                           |
| 14 | 88.8       | -139.1                           | -379.2                           |
| 14 | 95.1       | -174.3                           | -454.8                           |
| 15 | 95.1       | -181.7                           | -451.3                           |
| 15 | 101.5      | -218.9                           | -532.6                           |
| 16 | 101.5      | -228.6                           | -526.8                           |
| 16 | 107.8      | -267.8                           | -613.7                           |
| 17 | 107.8      | -280.2                           | -604.7                           |
| 17 | 114.2      | -321.0                           | -698.9                           |
| 18 | 114.2      | -336.7                           | -688.0                           |
| 18 | 120.5      | -379.7                           | -804.1                           |
| 19 | 120.5      | -294.2                           | -759.1                           |
| 19 | 126.9      | -343.0                           | -879.3                           |

2. Результаты второго расчета

| i  | $r_i$ , MM | $\sigma_r^{i,j}, \text{ M}\Pi a$ | $\sigma_t^{i,j}, \text{ M}\Pi a$ |
|----|------------|----------------------------------|----------------------------------|
| 0  | 0.000000   | 100.000000                       | 100.000000                       |
| 0  | 6.300000   | 100.000000                       | 100.000000                       |
| 1  | 6.300000   | 102.800000                       | 100.800000                       |
| 1  | 12.700000  | 102.000000                       | 101.500000                       |
| 2  | 12.700000  | 104.900000                       | 102.300000                       |
| 2  | 19.000000  | 104.200000                       | 103.100000                       |
| 3  | 19.000000  | 107.300000                       | 103.900000                       |
| 3  | 25.400000  | 106.500000                       | 104.600000                       |
| 4  | 25.400000  | 109.700000                       | 105.400000                       |
| 4  | 31.700000  | 109.000000                       | 106.200000                       |
| 5  | 31.700000  | 112.400000                       | 107.000000                       |
| 5  | 38.100000  | 111.500000                       | 107.800000                       |
| 6  | 38.100000  | 115.100000                       | 108.700000                       |
| 6  | 44.400000  | 114.300000                       | 109.500000                       |
| 7  | 44.400000  | 118.100000                       | 110.300000                       |
| 7  | 50.700000  | 117.200000                       | 111.200000                       |
| 8  | 50.700000  | 120.300000                       | 111.800000                       |
| 8  | 57.100000  | 119.400000                       | 112.700000                       |
| 9  | 57.100000  | 121.900000                       | 113.100000                       |
| 9  | 63.400000  | 121.100000                       | 113.900000                       |
| 10 | 63.400000  | 123.700000                       | 114.200000                       |
| 10 | 69.800000  | 122.900000                       | 115.000000                       |
| 11 | 69.800000  | 125.800000                       | 115.400000                       |
| 11 | 76.100000  | 125.000000                       | 116.200000                       |
| 12 | 76.100000  | 129.700000                       | 117.100000                       |
| 12 | 82.500000  | 128.800000                       | 118.000000                       |
| 13 | 82.500000  | 133.800000                       | 118.800000                       |
| 13 | 88.800000  | 132.800000                       | 119.800000                       |
| 14 | 88.800000  | 138.200000                       | 120.400000                       |
| 14 | 95.100000  | 137.100000                       | 121.500000                       |
| 15 | 95.100000  | 142.900000                       | 122.200000                       |
| 15 | 101.500000 | 141.700000                       | 123.400000                       |
| 16 | 101.500000 | 148.000000                       | 123.800000                       |
| 16 | 107.800000 | 146.600000                       | 125.200000                       |
| 17 | 107.800000 | 153.400000                       | 125.300000                       |
| 17 | 114.200000 | 151.900000                       | 126.800000                       |
| 18 | 114.200000 | 159.300000                       | 126.900000                       |
| 18 | 120.500000 | 157.700000                       | 128.600000                       |
| 19 | 120.500000 | 122.200000                       | 115.700000                       |
| 19 | 126.900000 | 121.900000                       | 116.000000                       |

3. Значение коэффициента k:

$$k = \frac{p_m - (\sigma_r^{m-1,m})_I}{(\sigma_r^{m-1,m})_{II}} = \frac{198.13 - -343.03}{121.861} = 4.4408$$

4. Значения напряжений на участках после пересчета.

| i  | $r_i$ , MM | $\sigma_r^{i,j}, \text{ M}\Pi a$ | $\sigma_t^{i,j}, \text{ M}\Pi a$ |
|----|------------|----------------------------------|----------------------------------|
| 0  | 0.000000   | 544.100000                       | 544.100000                       |
| 0  | 6.300000   | 542.900000                       | 542.900000                       |
| 1  | 6.300000   | 557.900000                       | 546.000000                       |
| 1  | 12.700000  | 550.300000                       | 550.300000                       |
| 2  | 12.700000  | 566.000000                       | 547.100000                       |
| 2  | 19.000000  | 556.100000                       | 556.100000                       |
| 3  | 19.000000  | 572.300000                       | 543.100000                       |
| 3  | 25.400000  | 559.900000                       | 559.900000                       |
| 4  | 25.400000  | 576.800000                       | 534.300000                       |
| 4  | 31.700000  | 561.800000                       | 561.800000                       |
| 5  | 31.700000  | 579.300000                       | 520.700000                       |
| 5  | 38.100000  | 561.700000                       | 561.700000                       |
| 6  | 38.100000  | 579.800000                       | 502.300000                       |
| 6  | 44.400000  | 559.600000                       | 559.600000                       |
| 7  | 44.400000  | 578.200000                       | 479.000000                       |
| 7  | 50.700000  | 555.500000                       | 555.500000                       |
| 8  | 50.700000  | 570.200000                       | 449.500000                       |
| 8  | 57.100000  | 545.200000                       | 545.200000                       |
| 9  | 57.100000  | 556.700000                       | 413.700000                       |
| 9  | 63.400000  | 529.500000                       | 529.500000                       |
| 10 | 63.400000  | 540.900000                       | 371.100000                       |
| 10 | 69.800000  | 511.300000                       | 511.300000                       |
| 11 | 69.800000  | 523.700000                       | 323.100000                       |
| 11 | 76.100000  | 491.600000                       | 491.600000                       |
| 12 | 76.100000  | 510.100000                       | 271.400000                       |
| 12 | 82.500000  | 475.100000                       | 475.100000                       |
| 13 | 82.500000  | 493.800000                       | 215.200000                       |
| 13 | 88.800000  | 456.100000                       | 456.100000                       |
| 14 | 88.800000  | 474.800000                       | 155.400000                       |
| 14 | 95.100000  | 434.500000                       | 434.500000                       |
| 15 | 95.100000  | 453.000000                       | 91.200000                        |
| 15 | 101.500000 | 410.200000                       | 410.200000                       |
| 16 | 101.500000 | 428.500000                       | 22.900000                        |
| 16 | 107.800000 | 383.200000                       | 383.200000                       |
| 17 | 107.800000 | 401.100000                       | -48.400000                       |
| 17 | 114.200000 | 353.500000                       | 353.500000                       |
| 18 | 114.200000 | 370.800000                       | -124.300000                      |
| 18 | 120.500000 | 320.500000                       | 320.500000                       |
| 19 | 120.500000 | 248.400000                       | -245.500000                      |
| 19 | 126.900000 | 198.100000                       | 198.100000                       |

5. Средние арифметические значения напряжений на радиусах

| i  | $r_i$ , MM | $\sigma_r^i$ , M $\Pi$ a | $\sigma_t^i$ , M $\Pi$ a | $\sigma^i_{\scriptscriptstyle{	ext{9KB}}}$ |
|----|------------|--------------------------|--------------------------|--------------------------------------------|
| 0  | 0.000000   | 544.100000               | 544.100000               | 544.100000                                 |
| 1  | 6.300000   | 550.400000               | 543.900000               | 550.400000                                 |
| 2  | 12.700000  | 558.100000               | 544.900000               | 558.100000                                 |
| 3  | 19.000000  | 564.200000               | 541.000000               | 564.200000                                 |
| 4  | 25.400000  | 568.400000               | 532.200000               | 568.400000                                 |
| 5  | 31.700000  | 570.600000               | 518.600000               | 570.600000                                 |
| 6  | 38.100000  | 570.800000               | 500.100000               | 570.800000                                 |
| 7  | 44.400000  | 568.900000               | 476.800000               | 568.900000                                 |
| 8  | 50.700000  | 562.800000               | 448.000000               | 562.800000                                 |
| 9  | 57.100000  | 551.000000               | 412.600000               | 551.000000                                 |
| 10 | 63.400000  | 535.200000               | 370.000000               | 535.200000                                 |
| 11 | 69.800000  | 517.500000               | 321.800000               | 517.500000                                 |
| 12 | 76.100000  | 500.800000               | 269.100000               | 500.800000                                 |
| 13 | 82.500000  | 484.500000               | 212.700000               | 484.500000                                 |
| 14 | 88.800000  | 465.500000               | 152.700000               | 465.500000                                 |
| 15 | 95.100000  | 443.800000               | 88.100000                | 443.800000                                 |
| 16 | 101.500000 | 419.300000               | 19.200000                | 419.300000                                 |
| 17 | 107.800000 | 392.200000               | -53.100000               | 421.200000                                 |
| 18 | 114.200000 | 362.200000               | -130.000000              | 441.800000                                 |
| 19 | 120.500000 | 284.400000               | -239.300000              | 454.200000                                 |

6. Максимальная величина эквивалентных напряжений:

$$\sigma^i_{\scriptscriptstyle \rm 9KB} = \sqrt{(\sigma^i_1)^2 + (\sigma^i_3)^2 - \sigma^i_1 \sigma^i_3}$$

$$\sigma_{_{9KB MAX}} = 570.773 M\Pi a$$

7. Минимальный коэффициент запаса по временной прочности:

$$n_{\text{B}min} = 2.096$$

8. Коэффициенты концентраций напряжений у отверстий:

$$k_1 = 3 - \frac{d_1}{b_1} - \frac{\sigma_{r1}}{\sigma_{t1}} = 3 - \frac{0.0085}{0.0255} - \frac{537.52}{376.231} = 1.238$$

$$k_2 = 3 - \frac{d_2}{b_2} - \frac{\sigma_{r2}}{\sigma_{t2}} = 3 - \frac{0.005}{0.023} - \frac{562.983}{448.628} = 1.516$$

9. Напряжения в зонах концентрации:

$$\sigma_{t \kappa 1} = k_1 \sigma_{t1} = 1.238 \cdot 376.231 = 465.763$$

$$\sigma_{t \times 2} = k_2 \sigma_{t2} = 1.516 \cdot 448.628 = 671.327$$

10. Зависимоть от радиуса радиальных, окружных и эквивалентных напряжений, а также коэффициента запаса по временной прочности.



Рис. 10: Зависимость напряжений от радиуса



Рис. 11: Зависимость коэффициента запаса от радиуса