

R2 = SQM

Resumo - TE - Aula 7

Na nossa sétima aula, fizemos os esclarecimentos das dúvidas e uma revisão no início da aula!

Revisando a história da patricinha!

Acompanhe o racional da aula! Provamos matematicamente que

A	В		C	D	E	F	G	H	I	J
/	ybarra		erro para yb	a SQT		ychapeu	erro para ychapeu			SQM
gasto	gastom	edio	(y-ybarra)	(y-ybarra)^2	perfil_idade	chute sofisticado	(y - ychapeu)	(y - ychapeu)^2	(ychapeu - ybarra)	(ychapeu - ybarra)^2
	4	9	-5	5 25	jovem	5	-1	1	-4	16
	5	9		1 16	jovem	5	0	0	-4	16
	6	9		9	jovem	5	1	1	-4	16
	13	9		1 16	adulto	13	0	0	4	16
	12	9	:	3 9	adulto	13	-1	1	4	16
	14	9		5 25	adulto	13	1	1	4	16
	8	9	-:	1 1	idoso	9	-1	1	0	(
	9	9	(0	idoso	9	0	0	0	(
	10	9		1 1	idoso	9	1	1	0	(
			SQ.	102			SQE	6	SQM	96
			variancia	20.4						

Vamos conhecer algumas métricas de erro?

Mean Square Error

$$MSE = \frac{1}{n} \Sigma \left(y - \widehat{y} \right)^2$$

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{n} \sum \left(y - \widehat{y} \right)^2}$$

ychapeu	erro para ychapeu	
chute sofisticado	(y - ychapeu)	(y - ychapeu)^2
5	-1	ن ې
5	0	0
5	1	1
13	0	0
13	-1	1
13	1	1
9	-1	1
9	0	0
9	1	1
	SQE	6
	Mean Square Error	0.666666667
	Root MSE	0.816496581

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widehat{y}_i|$$

SQM	
(ychapeu - ybarra)^2	modulo(y - ychapeu)
16	1
16	0
16	1
16	0
16	1
16	1
0	1
0	0
0	1
96	
Mean Absolut Error	0.666666667

Discutimos sobre a utilização de cada uma delas e a existência de outras métricas igualmente válidas, como o MAPE!

ANOVA 1 fator

É um teste para a comparação de k médias, quando temos somente um fator (uma variável x categórica) para entendermos um y numérico.

Lembrando que esse é um teste paramétrico que exige homogeneidade de variâncias e normalidade das amostras!!

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k \\ H_1: pelo \ menos \ um \ \acute{\mathbf{e}} \neq 0 \end{cases}$$

Faremos um exemplo em R com a base dados ANOVA_1fator:

```
ANOVA_1fator <- read_excel("dados/ANOVA_1fator.xlsx")
```

Plotando o boxplot para cada perfil idade:

```
ANOVA_1fator %>%
    ggplot()+
    geom_boxplot(aes(x= Perfil_idade, y=Gasto))
```


Conseguimos notar que as variação dos três perfis são as mesmas, o que muda são as médias. Vamos fazer a ANOVA para confirmar?

 $anova_1fator = aov(Gasto \sim Perfil_idade, \ data=ANOVA_1fator) \\ summary(anova_1fator)$

```
Df Sum Sq Mean Sq F value Pr(>F)
Perfil_idade 2 96 48 48 0.000204 ***
Residuals 6 6 1
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Observe que na saída do R obtemos as métricas vistas anteriormente, SQT, SQM e SQE, mas vamos analisar o p-valor? Rejeitamos H0 ou não? O que a decisão significa?

ANOVA 2 fatores ou fatorial

É um teste para a comparação de k médias, quando temos dois ou mais fatores (variáveis x's categóricas) para entendermos um y numérico.

Lembrando que esse é um teste paramétrico que exige homogeneidade de variâncias e normalidade das amostras!!

$$\begin{cases} H_0^A: \mu_1 = \mu_2 = \dots = \mu_a \\ H_1^A: pelo \ menos \ um \ \acute{e} \neq \end{cases}$$

$$\begin{cases} H_0^B: \mu_1 = \mu_2 = \dots = \mu_b \\ H_1^B: pelo \ menos \ um \ \acute{e} \neq \end{cases}$$

$$\begin{cases} H_0^A: \gamma_{ij} = 0 \ (n\~ao \ h\'a \ intera\~a\~ao \ entre \ A \ e \ B) \\ H_1^A: \gamma_{ij} \neq 0 (h\'a \ intera\~a\~ao \ entre \ A \ e \ B) \end{cases}$$

Voltando ao nosso exemplo, agora teremos dois fatores, o perfil_idade e o gênero!

Podemos fazer a concatenação dessas duas variáveis para tentar entender se a interação entre elas ajuda na estimação do y. Assim, podemos fazer três testes:

Faremos um exemplo em R com a base dados ANOVA_2fatores:

anova_2fatores = aov(gastos ~ sexo*renda, data=df_anova_2fatores)
summary(anova_2fatores)

```
Df Sum Sq Mean Sq F value
                        205.4
                205.4
                              15.572 0.000231 ***
sexo
             2 2426.4
                               92.000 < 2e-16 ***
renda
                       1213.2
                         54.2
                108.3
                               4.107 0.021860 *
sexo:renda
             2
Residuals
            54
                712.1
                         13.2
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Repare que nesse teste resultaram 3 p-valores diferentes, pois utilizamos a sintaxe para a interação ser incluída (x1*x2). Mas e aí, como você interpretaria cada um dos p-valores?

Sem acompanhar o racional da aula, não gera sentimento!!

Assista aula!!

Lembre-se da tarefa de casa!!

