Automotive door control system design

Tarek Mahmoud

1. Static design

1.1 Block diagram

1.2 For ECU1

• Layered architecture

ECU1 layered archietecture

ECU components and modules

DIO for (LED switch, Magnetic switch for door)

ADC for (Speed sensor)

CAN for sending sensors data to ECU2

• APIs and typedefs

DIO Module:

typedef unsigned char u8

typedef struct pinInfo

o void DIO_Init(pinInfo* Pins, u8 size)

Name: DIO_Init

Arguments:

Name: Pins

Type: pointer to pinInfo

■ Range: structure size

 Description: pointer to array that has all configurations to the selected pins passed by use (ex: pin number, type, speed...)

Name: size

■ Type: u8

• Range: 0:10

Description: argument that has size of array of used pins

Return type: void

Description: This API called to configure GPIO pins in the ECU using array of struct => typedef struct pinInfo;

o u8 DIO_Read(u8 pin)

Name: DIO_Read

Arguments:

Name: pin

■ Type: u8

Range: 0:10

Description: pin number to be read

Return type: u8

Description: API to read the value of GPIO pin.

ADC Module:

void ADC_Init(u8 channels)

Name: ADC_Init

Arguments:

Name: channels

Type: u8

Range: 0:10

Description: the channel number to work as ADC

Return type: void

Description: This API called to configure the needed GPIO pin as ADC

pins

o u8 ADC_Read(u8 channel)

Name: ADC_ Read

Arguments:

Name: channel

■ Type: u8

• Range: 0:10

Description: the channel number to work as ADC

Return type: $u8 \rightarrow$ the value read by ADC

Description: This API to read ADC channel

CAN Module:

void Can_Init(void)

Name: Can_Init

Description: API to initializes CAN module.

void Can_SetBaudrate(u16 baudRate)

Name: Can_SetBaudrate

Arguments:

Name: baudRate

■ Type: u16

• Range: 0: 65535

Description: the new buad rate buadrate

Return type: void

Description: This service shall set the baud rate configuration of the CAN

controller.

o Can_Write(u16 data);

Name: Can_Write

Arguments:

Name: data

■ Type: u16

• Range: 0: 65535

Description: data would be sent via can bus

Return type: void

Description: API to send Data via CAN

Switch module:

o void Switch_Init(u8 pin)

Name: Switch _Init

Arguments: Name: pin

■ Type: u8

• Range: 0: 10

Description: pin connected to switch

Description: This API called to Configure the Switch to the GPIO pin

u8 Switch_Read(u8 pin)Name: Switch _ Read

Arguments:

Name: pin

■ Type: u8

• Range: 0: 10

Description: pin connected to switch

Return type: u8 → state of GPIO pin

Description: This API called to Read the specified GPIO pin for the switch **Speed Sensor module:**

void SpeedSensor_Init(u8 pin);

Name: SpeedSensor _Init

Arguments:

Name: pin

■ Type: u8

■ Range: 0: 10

Description: pin connected to speed sensor

Return type: void

Description: This API called to configure the Speed Sensor to the GPIO pin

o U8 SpeedSensor_GetReading(u8 pin)

Name: SpeedSensor_GetReading

Arguments:

■ Name: pin

■ Type: u8

• Range: 0: 10

Description: pin connected to speed sensor

Return type: u8 value of speed sensor

Description Get the current reading for the specified ADC channel

Magnetic Switch:

void MagneticSwitch_Init(u8 pin)

Name: MagneticSwitch_Init

Arguments: Name: pin

■ Type: u8

Range: 0: 10

Description: pin connected to MagneticSwitch

Return type: void

Description: This API called to configure the magnetic Switch to the GPIO

pin

o u8 MagneticSwitch_Read (u8 pin)

Name: MagneticSwitch_Read

`Arguments:

■ Name: pin

■ Type: u8

■ Range: 0: 10

Description: pin connected to switch

Return type: u8 → state of GPIO pin

Description: This API called to Read the specified GPIO pin for the magnetic switch

CAN Handler:

 To provide total abstraction the handler will be add as a middle of communication between CAN manager and can Protocol

CAN Manager:

Void Can_ManagerInit(void)

Name: Can_ ManagerInit

Return type: void

Description: Responsible for initialization of communication

Void Can_ManagerSendData(void)

Name: Can_ ManagerSendData

Return type: void

Description: Responsible for sending and receiving messages between layers

Parameters passed to the API from configuration files

Sensor Mannager:

Void Sensors_ManagerInit(void)

Name: Sensors_ManagerInit

Return type: void

Description:Responsible for initialization of all sensors by calling (Switch_Init(), MagneticSwitch_Init(), SpeedSensor_Init()).

Void Sensor_ManagerRead(void)

Name: Sensors_ManagerInit

Return type: void

Description:Responsible for get sensors readings (MagneticSwitch_Read(), SpeedSensor_Read(), Switch_Read()).

Parameters passed to the API from configuration files

BCM Module:

o BCM_Init()

Name: BCM_Init

Return type: void

Description: call the API in OS to establish CAN connection (Can_ManagerInit())

o BCM_Handler()

Name: BCM_ Handler

Return type: void

Description: call the API in OS to Send the status messeges to ECU2 (Can_ManagerSendData())

Car Control Module:

Void Init_Inputdevices(void)

Name: Init_Inputdevices

Return type: void

Description: API to call the OS API to initialize input devices

(Sensors_ManagerInit())

Void Control_Inputdevices(void)

Name: Init_Inputdevices

Description: API to Call OS API to read input devices readings

(Sensors_ManagerRead()).

For ECU2

• Layered architecture

ECU2 layered archietecture

• ECU components and modules
DIO for (LED, and buzzer)

CAN for receiving sensors data from ECU

CAN for receiving sensors data from ECU1

• APIs and typedefs

DIO Module:

o void DIO_Init(pinInfo* Pins, u8 size)

Name: DIO_Init

Arguments:

Name: Pins

Type: pointer to pinInfo

Range: structure size

 Description: pointer to array that has all configurations to the selected pins passed by use (ex: pin number, type, speed...)

■ Name: size

■ Type: u8

• Range: 0:10

Description: argument that has size of array of used pins

Return type: void

Description: This API called to configure GPIO pins in the ECU using array of struct => typedef struct pinInfo;

o void DIO_Write(u8 pin, u8 value)

Name: DIO_Write

Arguments:

Name: pin

■ Type: u8

Range: 0:10

Description: pin number to be read

Name: value

■ Type: u8

• Range: 0:1

Description: value of gpio pin

Return type: void

Description: API to write the value of GPIO pin.

CAN Module:

void Can_Init(void)

Name: Can_Init

Return type: void

Description: API to initializes CAN module.

o void Can_SetBaudrate(u16 baudRate)

Name: Can_SetBaudrate

Arguments:

Name: baudRate

■ Type: u16

• Range: 0: 65535

Description: the new baud rate

Return type: void

Description: This service shall set the baud rate configuration of the CAN

controller.

U16 Can_Read(void);

Name: Can_Read Arguments: void

Return type: $u16 \rightarrow data$ in can bus

Description: This service shall read the value in can bus

LED module:

o Led_Init(u8 pin)

Name: Led_Init

Arguments:

Name: pin

■ Type: u8

• Range: 0: 10

Description: pin to be connected to led

Return type: void

Description: Configure LED to the needed GPIO Pin

Void Led_High(u8 pin)

Name: Led_High

Arguments:

• Name: pin

■ Type: u8

■ Range: 0: 10

Description: pin to be connected to led

Return type: void

Description: Output high to the specified GPIO pin for the LEDs

Led_Low(u8 pin)Name: Led_ Low

Arguments:

■ Name: pin

■ Type: u8

• Range: 0: 10

Description: pin to be connected to led

Return type: void

Description: Output low to the specified GPIO pin for the LEDs

Buzzer module:

Buzzer_Init(u8 pin)

Name: Buzzer_Init

Arguments:

Name: pin

■ Type: u8

■ Range: 0: 10

Description: pin to be connected to Buzzer

Return type: void

Description: Configure Buzzer to the needed GPIO Pin

Void Buzzer _High(u8 pin)

Name: Buzzer _High

Arguments:

■ Name: pin

■ Type: u8

■ Range: 0: 10

Description: pin to be connected to Buzzer

Return type: void

Description: Output high to the specified GPIO pin for the Buzzer

Buzzer _Low(u8 pin)Name: Buzzer _ Low

Arguments:

■ Name: pin

■ Type: u8

■ Range: 0: 10

Description: pin to be connected to Buzzer

Return type: void

Description: Output low to the specified GPIO pin for the Buzzer

CAN Handler:

To provide total abstraction the handler will be add as a middle of communication between CAN manager and can Protocol

Output Mannager:

Output_ManagerInit()

Name: Output_ManagerInit

Return type: void

Description: Responsible for initialization of all Output devices by calling (Led_Init(), Buzzer_Init()).

Output_ManagerControl ()

 $Name: {\it Output_ManagerControl}$

Description:

Responsible for controlling output devices (Buzzer_High(), Buzzer_Low(),

Led_High(), Led_Low(),)

CAN Manager:

o Can_ManagerInit()

Name: Can_ ManagerInit

Return type: void

Description: Responsible for initialization of communication

Can_ManagerRecieveData()

Name: Can_ ManagerRecieveData

Return type: void

Description: Responsible for receiving messages (using Can_Read() API

Parameters passed to the API from configuration files

Car Control Module:

Void Init_CommunicationMannager(void)

Name: Init_CommunicationMannager

Return type: void

Description: Call the OS API to initialize Communication

(Can_ManagerInit())

Void Control_RecievingMesseges(void)

Name: Control_RecievingMesseges

Return type: void

Description: Call the OS API to initialize Communication

Call OS API to start receiving can messages

 $(Can_ManagerRecieveData())\\$

Init_Outputdevices()

Name: Control_RecievingMesseges

Return type: void

Description: Call the OS API to initialize Output devices

(Output_ManagerInit())

Control_Outputdevices()

Name: Control_RecievingMesseges

Description: Call OS API to control Output devices

 $(Output_ManagerControl())).$

Folder structure

Dynamic Design

For ECU1

• State Machine

• Sequence diagram

For ECU2

• State Machine diagram

• Sequence diagram

