Thu 4/11

Today: R(DISJ)

DISJ $(x_1,y_1) = NAND(x_1,y_1) \wedge NAND(x_2,y_2) \wedge \dots \wedge NAND(x_n,y_n)$

Let M: Xn xn yn id ~ Bernoulli (Tn)

Goal DM (DISJ) > large

NB. We need M to be "balanced" (M (DIS) (7)=2(1))

(Our choice satisfies this) -> Prob(DISJ(xy)=1) = /e

Theorem: Under μ , $D_{\nu}^{\mu}(D|S) = \Omega(\sqrt{n})$ (Babai = Frank = S)mon (86) (in fact $\Theta(\sqrt{n})$)

Sero: $R(DIST) \ge \Omega(\sqrt{n})$.

Proof: Let To be a deterministic Protocol s.t.

 $\Pr_{(x,y)\sim\mu} \left(DISJ(x,y) = TI_0(x,y) \right) \ge 0.99$

the r.v.

Let T(X,X) be the transcript of TTo on (X,)~ p.

We know:
$$CC(TO) \ge \log_2 \left(\text{Supp}(TT(X, Y)) \right)$$

$$\ge H(TT(X, Y)) \ne I(X, Y; TT(X, Y))$$

$$= I(X, -X, Y, -Y, TT(X, Y))$$
independence $\sum_{i=1}^{n} I(X_i, Y_i; T(X_i, Y))$

$$= \sum_{i=1}^{n} I(X_i, Y_i; T(X_i, Y))$$

Def:
$$T^{i} = T((x,y))$$
 conditioned on $|X_{i}| = 0$

P.S. 1, Problem $6 \Rightarrow T((x,y))$; $T((x,y))$

$$\geq \mathbb{E} \left[\begin{array}{c} \Delta^{2} \\ Tv \end{array} \right] \left[\begin{array}{c} T((x,y)) \\ T((x,y)) \end{array} \right]$$

Recall: $\Delta_{TV}(A,B) \stackrel{\triangle}{=} 1 \sum_{i} Pr(A=I) - Pr(B=I) \stackrel{\text{total}}{=} 0$
 $T((x_{i},y_{i}), T((x,y)) \stackrel{\text{Explicit}}{=} 1$

$$\frac{1}{1}(x_{i},y_{i};\pi(x,y)) \stackrel{\geq}{=} \frac{1}{1-\frac{1}{1}} \left(1-\frac{1}{1-\frac{1}{1}}\right) \left(\frac{2}{1-\frac{1}{10}},\pi(x,y)\right) + \Delta^{2}_{TV}\left(\pi^{i},\pi(x,y)\right)$$

$$\frac{2}{4\sqrt{n}}\left(\frac{1}{10},\frac{1}{11}\right) + \Delta_{TV}\left(\frac{1}{10},\frac{1}{11}\right)^{2}$$
triangle in eq $4\sqrt{n} \cdot 2^{2}_{TV}\left(\frac{1}{10},\frac{1}{10}\right)$

$$\Rightarrow \frac{CC(\pi_0)}{n} \geq \frac{E}{i} \left(\frac{T(X_i, Y_i; \pi(X_i, Y))}{T(X_i, Y_i; \pi(X_i, Y))} \right)$$

$$\geq \frac{1}{4\sqrt{n}} \frac{E}{i} \frac{\lambda^2}{\pi} \left(\frac{\pi}{10} \frac{\lambda^2}{\pi} \frac{\pi^2}{\pi^2} \right) \frac{1}{\sqrt{n}} \frac{\lambda^2}{\pi^2} \frac{\pi^2}{\pi^2} \frac{\pi^2}{\pi^2} \frac{\lambda^2}{\pi^2} \frac{\pi^2}{\pi^2} \frac{\pi^2}{\pi^2} \frac{\lambda^2}{\pi^2} \frac{\pi^2}{\pi^2} \frac{\pi^2}{\pi$$

Clearly, we are done assuming (1) and (2)

form a rectangle RT = STXTT.

Lemma:
$$\triangle^2$$
 (T_{00}) T_{11}) = \triangle^2 (T_{01} , T_{10}).

Clearly, having the Lenna we are done with (2)

Proof of Lemma: Suffices to show the dot

Product of distributions remain
the same.

$$Pr\left(T_{00}^{i} = \tau \right) Pr\left(T_{11}^{i} = \tau \right)$$

 $= A_0(\tau) B_0(\tau) A_1(\tau) B_1(\tau)$

$$= A_0(\tau) B_1(\tau) A_1(\tau) B_0(\tau)$$

$$= P_{r}\left(\prod_{0} i = \tau \right) P_{r}\left(\prod_{10} i = \tau \right).$$

日

* B.F.S. Showed that every μ that is

a product distribution $(\mu(x,y) = \mu_{Alice}(x) \cdot \mu_{Bob}(y))$

$$D^{M}(DISJ) = O(\sqrt{n} \log n)$$

So getting a better lower bound requires correlation.

7	
	Next time: $R(DISJ) = \Omega(n)$.
4	* This was first preved by Kalyanasundaran Schnitger,
	* Razborov '90 "Simplified" this.
	* The proof we'll see is by Bar-Yossef - - Jayram- Kumar-Sivakumar
	(Information-theory based).
,	