

Inteligência Artificial

Aula 05 – Busca Heurística

Ms Gustavo Molina <msc.gustavo.unip@gmail.com>

Métodos de Busca

Busca Cega ou Exaustiva:

 Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Estima qual o melhor nó da fronteira a ser expandido com base em funções heurísticas.

Busca Local:

Operam em um único estado e movem-se para a vizinhança deste estado.

- Algoritmos de Busca Heurística:
 - Busca Gulosa
 - $-A^*$
- A busca heurística leva em conta o objetivo para decidir qual caminho escolher.
- Conhecimento extra sobre o problema é utilizado para guiar o processo de busca.

Como encontrar um barco perdido?

- Busca Cega -> Procura no oceano inteiro.
- Busca Heurística -> Procura utilizando informações relativas ao problema.
 - Exemplo: correntes marítimas, vento, etc.

Função Heurística (h)

- Estima o custo do caminho mais barato do estado atual até o estado final mais próximo.
- São específicas para cada problema.

Exemplo:

- Encontrar a rota mais curta entre duas cidades:
 - h(n) = distância em linha reta direta entre o nó n e o nó final.

Função Heurística

Algoritmos de Busca Heurística:

- Busca Gulosa

 $-A^*$

Estratégia:

 Expande os nós que se encontram mais próximos do objetivo (uma linha reta conectando os dois pontos no caso de distancias), desta maneira é provável que a busca encontre uma solução rapidamente.

 A implementação do algoritmo se assemelha ao utilizado na busca cega, entretanto utiliza-se uma função heurística para decidir qual o nó deve ser expandido.

Função Heurística (h): Distancia em linha reta

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Custo de busca mínimo:

No exemplo, não expande nós fora do caminho.

Não é ótima:

- No exemplo, escolhe o caminho que é mais econômico à primeira vista, via Fagaras.
- Porém, existe um caminho mais curto via Rimnicu Vilcea.

Não é completa:

- Pode entrar em loop se não detectar a expansão de estados repetidos.
- Pode tentar desenvolver um caminho infinito.

• Ir de lasi para Fagaras?

Busca A*

Estratégia:

- Combina o custo do caminho g(n) com o valor da heurística h(n)
- -g(n) = custo do caminho do nó inicial até o nó n
- -h(n) = valor da heurística do nó n até um nó objetivo (distancia em linha reta no caso de distancias espaciais)
- -f(n)=g(n)+h(n)

• É a técnica de busca mais utilizada.

Busca A*

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
lasi	226	Vaslui	199
Lugoj	244	Zerind	374
Hirsova	151	Urziceni	80

Busca A*

A estratégia é completa e ótima.

Custo de tempo:

 Exponencial com o comprimento da solução, porém boas funções heurísticas diminuem significativamente esse custo.

Custo memória:

Guarda todos os nós expandidos na memória.

Nenhum outro algoritmo ótimo garante expandir menos nós.

 Cada problema exige uma função heurística diferente.

 Como escolher uma boa função heurística para o jogo 8-Puzzle?

Start State

	1	2
3	4	5
6	7	8

Goal State

$$h_2\left(\begin{array}{c} 248\\ 735\\ 16 \end{array}\right) = ?$$

Outra Heurística?

$$h_2$$
 $\begin{pmatrix} 248 \\ 735 \\ 16 \end{pmatrix}$ $=$ Número de movimentos $=$ necessários para colocar $=$ cada peça no seu lugar $=$ 10

- Como escolher uma boa função heurística para o jogo 8-Puzzle?
 - $-h^1$ = número de elementos fora do lugar.
 - $-h^2$ = soma das distâncias de cada número à sua posição final (movimentação horizontal e vertical).

Start State

Goal State

Exemplo - A*

Qual é o espaço de estados?

Quais são as ações possíveis?

Qual será o custo das ações?

Exercícios

- 1. Diferencie busca cega (ou exaustiva) de buscas heurísticas.
- 2. Em um determinado problema de busca envolvendo custos, há dados de custo real e de heurística. Deseja-se utilizar ambos os dados com o objetivo de encontrar o melhor caminho entre o estado inicial e o estado final informado. Assinale abaixo qual método de busca utiliza estes dois dados em conjunto:
- () Em profundidade.
 () Em largura.
 () Aprofundamento iterativo.
 () Gulosa.
 () A*.

Leitura Complementar

 Russell, S. and Norvig, P. Artificial Intelligence: a Modern Approach, 3nd Edition, Prentice-Hall, 2009.

 Capítulo 3: Resolução de Problemas por Meio de Busca

