DETERMINISTIC VS PROBABILISTIC

- Textbook RSA (Deterministic):
 - ► Always same output for given input
 - ► Function("Hello") = 2345
 - Arr RSA(2345) = 184
 - Eve can analyze RSA("Hello") = 184 by observation
- ► RSA with Padding (Probabilistic):-
 - ▶ Pad input with random hash
 - ► Input Function("Hello") + Hash(Random string) = 5677
 - Arr RSA(5677) = 091
 - ➤ Since RSA("Hello") not always = 184, Eve cannot break the scheme

RSA ALGORITHM

- Rivest-Shamir-Adleman (RSA) Algorithm:
 - ► Choose 2 large prime numbers (p and q), and calculate n = p*q
 - ► Calculate Phi(n) = (p-1)(q-1)
 - ► Choose a number e, such that GCD(e, Phi(n)) = 1
 - ► Choose d such that; $e \cdot d \equiv 1$. mod Phi(n) i.e., $d = e^{-1}$
- Now, we can perform encryption and decryption as follows:
 - ► Encryption:- $c = (m)^e \mod n$
 - ► Decryption:- m = (c)^d mod n

PRIME NUMBER THEOREM

- Probability of odd number p being prime = 2 / log_e(p)
- Probability for bit lengths generated:

Bit length	Number of tries
512	177
647	224
768	266
813	292
1024	355
2048	710

Prime number 1024-bit long = 2^{1024}

```
P(2^{1024} is prime)
= 2 / log_e(2^{1024})
= 2 / log_e(2)
= 2 / log_e(2)
= 2 / log_e(2)
= 1 / log_e(3)
```

Thus, about 355 1024-bit odd numbers need to be checked for obtaining a prime number.

Public key Cryptography Standards (PKCS) #1 v1.5

OPTIMAL ASYMMETRIC ENCRYPTION PADDING (OAEP)

Ciphertext RSA DECRYPT Tag Masked message MGF MGF Padded message **REMOVE PADDING** Message

Encryption with RSA-OAEP

Decryption with RSA-OAEP

REFERENCES

- https://externalcontent.duckduckgo.com/iu/?u=https%3A%2F%2Finterstices.info%2Fupload%2Fcode s-secrets%2Falice-et-bob1.jpg&f=1&nofb=1
- https://upload.wikimedia.org/wikipedia/commons/7/70/EME-OAEP.jpg
- https://image.slideserve.com/1301747/pkcs-1-v-1-5-padding-for-encryption-l.jpg