Первые четыре поколения (1-4) традиционно связывают с элементной базой вычислительных систем:

электронные лампы, полупроводниковые приборы, интегральные схемы малой степени интеграции (ИМС), большие (БИС), сверхбольшие (СБИС) и ультрабольшие (УБИС) интегральные микросхемы.

Пятое поколение в общепринятой интерпретации ассоциируют не столько с новой элементной базой, сколько с **интеллектуальными возможностями ВС**.

Нулевое поколение (1492-1945)

События, произошедшие до нашей эры:

1. первые счеты — абак, изобретенные в древнем Вавилоне за 3000 лет до н. э., и их более «современный» вариант с косточками на проволоке, появившийся в Китае примерно за 500 лет также до н. э.

Нулевое поколение (1492–1945)

События, произошедшие до нашей эры:

2. «Механическая» эра (нулевое поколение) в эволюции ВТ связана с механическими, а позже — электромеханическими вычислительными устройствами. Основным элементом механических устройств было зубчатое колесо. Начиная с XX века роль базового элемента переходит к электромеханическому реле.

Хронология (ссылка, ссылка2)

Ни одно из созданных устройств механической эры нельзя с полным основанием назвать вычислительной машиной в современном ее понимании.

1 поколение - ламповые ЭВМ (ENIAC 1946 г., США, МЭСМ - 1950, СССР)

Основные черты:

Непосредственное общение, ввод с пульта, набор программ с помощью соединений на пульте, пошаговое решение, вывод на экран из неоновых ламп в двоичном виде, монопольный режим работы.

Недостаток - повышение быстродействия центральных устройств не дает общего повышения быстродействия.

2 поколение - транзисторные ЭВМ (конец 50-х годов)

Основные черты:

Элементная база, пакетный режим работы, зачатки операционной системы. Бурное развитие периферийных устройств для целей ускорения обмена информацией и предоставление большего сервиса пользователям.

Недостаток - пакетный режим - неудобный при необходимости проведения разных расчетов на ЭВМ с незначительными изменениями в программе.

3 поколение - ЭВМ на интегральных микросхемах (середина 60-х годов, 1965 - IBM-360)

Основные черты:

Интерактивные режимы работы, специализированные процессоры ввода-вывода(каналы - процессоры, которые занимаются только организацией обмена информацией между внешними и центральными устройствами).

4 поколение - ЭВМ на больших и сверхбольших интегральных микросхемах

Основные черты:

Микроминиатюризация, переносные и персональные ЭВМ, выделение управления связью и обменом между периферийными и центральными устройствами в отдельные блоки и, более того, передача указанных функций в сами внешние устройства. Для ЭВМ этого поколения характерно значительное увеличение объема внешней памяти.

5 поколение - ЭВМ на сверхбольших интегральных микросхемах

Основные черты:

ЭВМ как вычислительная система, интеллектуальные возможности, обработка знаний, наличие нескольких процессоров: центральный и периферийные, общение с ЭВМ на нескольких естественных языках, ввод/вывод графической информации.

Поколение	Элементная база	Быстро- действие, оп/с	Программное обеспечение	Применение	Примеры
1-e (1946 - 1959)	Электронные лампы	10 - 20 тыс.	Машинные языки	Расчетные задачи	ЭНИАК (США), МЭСМ (СССР)
2-e (1960 - 1969)	Полупроводники	100 - 500 тыс.	Алгоритмические языки, диспетчерские системы, пакетный режим	Инженерные, научные, экономические задачи	IBM 701 (США), БЭСМ-6, БЭСМ-4 (СССР)
3-e (1970 - 1979)	Интегральные микросхемы	Порядка 1млн.	Операционные системы, режим разделения времени	АСУ, САПР, научно-техничес- кие задачи	IBM 360 (США), EC 1030, 1060 (СССР)
4-е (1980 - настоящее время)	БИС, микропроцессоры	Десятки и сотни млн.	Базы и банки данных	Управление, коммуникации, АРМ, обработка текстов, графика	ПЭВМ, серверы
5-е (1990 - настоящее время)	СРИС	Единицы и десятки млрд.	ЭВМ как вычислительная система, интеллектуальные возможности, обработка знаний	Все возможные области	Рабочие станции, ноутбуки, интеллектуальные контроллеры

Эволюция компьютерных информационных технологий

Этапы развития технологии

Параметр	50-е годы	60-е годы	70-е годы	80-е годы	Настоящее время
Цель использования компьютера (преимущественно)	Научно- технические расчеты	Технические и экономические расчеты	Управление и экономические расчеты	Управление, предоставление информации	Телекоммуникации, информационное обслуживание и управление
Режим работы компьютера	Однопрограммный	Пакетная обработка	Разделение времени	Персональная работа	Сетевая обработка
Интеграция данных	Низкая	Средняя	Высокая	Очень высокая	Сверхвысокая

Эволюция компьютерных информационных технологий

Этапы развития технологии

Параметр	50-е годы	60-е годы	70-е годы	80-е годы	Настоящее время
Расположение пользователя	Машин ный зал	Отдельное помещение	Терминальный зал	Рабочий стол	Произвольное мобильное
Тип пользователя	Инженеры- программисты	Профессиональные программисты	Программисты	Пользователи с общей компьютер ной подготовкой	Малообученные пользователи
Тип диалога	Работа за пультом компьютера	Обмен перфоносителями и машинограммами	Интерактивный (через клавиатуру и экран)	Интерактивный с жестким меню	Интерактивный экранный типа «вопрос—ответ»

1971 г. –

микропроцессор INTEL - 4004 -Эдвард Хофф

1974 г. – Intel 8080. Zilog Z80 - микропроцессор

1974 г.—Эдвард Робертс создал первый персональный компьютер "Altair" на основе микропроцессора 8080 фирмы "Intel".

https://pikabu.ru/story/unikalnyie fotografii iz istorii vyichislitelnoy tekhniki chast 2 6854289

Первый персональный компьютер "Altair" на основе микропроцессора 8080 фирмы "Intel"

•

EC - 3BM

1970 г. Мини - ЭВМ PDP-11 фирмы Digital Equipment Corporation (DEC)

СМ ЭВМ

1971 г. – первый микропроцессор 4-х разрядный 4004 – инженер фирмы INTEL Тед Хофф

1972 r. – Wang Word-processing System

1974 г. – Intel 8080. Zilog Z80 - микропроцессор

1974 г. – СР/М

1975 г. – Студенты Пол Аллен и Билл Гейтс впервые использовали язык Бейсик программного ДЛЯ обеспечения персонального компьютера "Альтаир".

В 1976 году 26-летний инженер Стив Возняк из Hewlettкомпании **Packard** создал новый принципиально

Новый компьютер Стив Возняк и Стив Джобс назвали Apple-I.

Персональный компьютер Apple II

1977 r. – 3 PC

Apple-2 (Apple Computer) на базе процессора **6502**, **TRS-80** (Tendy Corporation) на базе процессора **Z80**,

PET (Commodore) на базе процессора **8088**)

1978 r. – DEC VAX-780

1979 г. – 1 электронная таблица Visicale (Software Arts)

Апрель 1981 г. – 1 портативный computer OSBORNE I

Сентябрь1981 г. - Персональный компьютер модели ІВМ РС.

1982 r. – Lotus 1-2-3

- 1983 г. Фирма Apple Computer построила персональный компьютер Apple "Lisa" первый компьютер, управляемый манипулятором "мышь".
- В этом же году началось массовое использование гибких дисков (дискет), как стандартных носителей информации.

1983 г. – INTERNET (дата

стандартизации протокола

связи ТСР/ІР)

60-е годы прошлого века ARPANET - компьютерная сеть исследовательского центра Министерства обороны США (Advanced Research Project Agency Агентство перспективных исследований).

1991 года, Европейская Январь Лаборатория ядерной физики CERN во главе с Тимом Бернерсом-Ли - создание языка описания документов HTML (Hypertext Markup Language), в результате чего родилась служба World Wide Web (WWW) или, сокращенно, Web.

В 1971 году программист разработал Рой Томлинсон систему организации почтовых адресов удаленных на компьютерах.

Знак "@« вместо предлога "at" (на).

История сети Интернет и электронной почты

В 2006 году электронной почте (E-mail) исполнилось 35 лет. Разумеется, история ее создания и развития тесно связана с ее основой - сетью Интернет и ее прародителя - сетью ARPANET.

Число пользователей сети Интернет В 1999 году - 201 млн человек, в том числе в США и Канаде - 112,4 млн (43%), в Европе - 47,15 млн, в Азии - 33,61 млн, в Латинской Америке - 29 млн, в России - 5,4 млн.

К концу 2000 года в России -7,8 млн пользователей, в 2001 году - 11 млн, в 2002 году - около 12. В 2005 году - от 17 до 21 млн.

В начале июля 2008 года общее число пользователей Интернета в мире достигло 1.4 миллиарда человек.

Середина 80-х годов XX века — стандартные технологии объединения компьютеров в сеть Ethernet, Arcnet, Token Ring.

1983 г. – XT

1984 г. – АТ

1986 r. – 80386

1987 r. – PS/2

2000 r. – Pentium – 4

В 2002 году в Японии был построен суперкомпьютер

NEC Earth Simulator, выполняющий 35,6 триллионов

операций в секунду.