

ETC3250

Business Analytics

Week 4
The Bootstrap
16 August 2016

Pull yourself up by your bootstraps

4. The Bootstrap 2/15

What is the bootstrap?

The bootstrap is a flexible statistical tool to **quantify the uncertainty** associated with a *given* estimator or statistical learning method.

- The bootstrap allows us to use a computer to mimic the process of obtaining new data sets, so that we can estimate the variability of our estimate without generating additional samples
- We obtain distinct data sets (with the same size as our original dataset) by repeatedly sampling observations from the original data set with replacement (nonparametric) or from an estimated model (parametric).

Bootstrapping: Ideal world

4. The Bootstrap 4/15

Bootstrapping: Bootstrap world

4. The Bootstrap 5/15

Illustration of the bootstrap

The bootstrap procedure

- Find a good estimate \hat{P} of P
 - Parametric bootstrap
 - Nonparametric bootstrap
- Draw *B* independent bootstrap samples $X^{*(1)}, \ldots, X^{*(B)}$ from \hat{P} :

$$X_1^{*(b)}, \ldots, X_n^{*(b)} \sim \hat{P} \quad b = 1, \ldots, B.$$

Evaluate the bootstrap replications:

$$\hat{\theta}^{*(b)} = s(X^{*(b)}) \quad b = 1, \dots, B.$$

■ Estimate the quantity of interest from the distribution of the $\hat{\theta}^{*(b)}$

Examples

What is the standard error of $\hat{\theta}$ (i.e., the standard deviation of the sampling distribution of $\hat{\theta}$)?

- $\hat{\theta} = \mathsf{sample} \; \mathsf{mean}$
- $\hat{\theta} = \text{sample median}$
- $\hat{\theta}=$ expected shortfall at 5%
- $\hat{\theta} = \log 1$ autocorrelation.

Sample mean: n = 50

■ Two types of random variation

4. The Bootstrap 9/15

Sample mean: n = 9

Fit the model on a set of bootstrap samples, and then keep track of how well it predicts the original dataset

$$\mathsf{Err}_{\mathsf{boot}} = \frac{1}{B} \frac{1}{N} \sum_{b=1}^{B} \sum_{i=1}^{N} L(y_i, \hat{f}^{*b}(x_i))$$

sampling with replacement, and is the same size as our original dataset. As a result some observations may appear more than once in a given bootstrap data set and some not at all.

Fit the model on a set of bootstrap samples, and then keep track of how well it predicts the original dataset

$$Err_{boot} = \frac{1}{B} \frac{1}{N} \sum_{b=1}^{B} \sum_{i=1}^{N} L(y_i, \hat{f}^{*b}(x_i))$$

Each of these bootstrap data sets is created by sampling with replacement, and is the same size as our original dataset. As a result some observations may appear more than once in a given bootstrap data set and some not at all.

Training and validation sets have observations in common! Overfit predictions will look very good.

P(observation $i \in bootstrap sample b) = ??$

Training and validation sets have observations in common! Overfit predictions will look very good.

$$=1-(1-rac{1}{n})^n$$
 $pprox 1-rac{1}{e}$
 $=0.632$

Remember that cross-validation uses

non-overlapping data for the training and

validation samples

P(observation $i \in bootstrap sample b) = ??$

Better bootstrap version: we only keep track of predictions from bootstrap samples not containing that observation. The leave-one-out bootstrap estimate of prediction error can be defined as

$$\mathsf{Err}_{\mathsf{loo-boot}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|C^{-i}|} \sum_{b \in C^{-i}} L(y_i, \hat{f}^{*b}(x_i))$$

where C^{-i} is the set of indices of the bootstrap samples b that do not contain observation i. Problem of overfitting with Err_{boot} solved but training-set-size bias as with cross-validation.

Many applications

- Computing standard errors for complex statistics
- Prediction error estimation
- Bagging (Bootstrap aggregating)
- ...

Variations

There are several types of bootstrap based on different assumptions:

- block bootstrap
- sieve bootstrap
- smooth bootstrap
- residual bootstrap
- wild bootstrap

Many applications

- Computing standard errors for complex statistics
- Prediction error estimation
- Bagging (Bootstrap aggregating)
- **...**

Variations

There are several types of bootstrap based on different assumptions:

- block bootstrap
- sieve bootstrap
 - smooth bootstrap
 - residual bootstrap
 - wild bootstrap