Angewandte Mathematik

Zahlentheorie und Matrizenrechnung

Jahrgang 4 - Semester 2 - Schularbeit 4

Markus Reichl

12. Juni 2017

Inhaltsverzeichnis

1	Zah	lentheorie	2
	1.1	Einführung	2
		1.1.1 Kongruenz	2
	1.2	Square and Multiply	2
	1.3	Kodierung und Dekodierung	3
		1.3.1 Cäsar	3
		1.3.2 RSA	3
2	Mat	rizenrechnung	5
	2.1	Grundlagen Vektoren	5
		2.1.1 Typen	5
		2.1.2 Rechenregeln	6
	2.2	Grundlagen Matrizen	7
		2.2.1 Rechenregeln	8
		2.2.2 Determinanten	10
	2.3	Gauß Algorithmus	12
	2.4	Grafik im 2-dimensionalen Raum	14
		2.4.1 Anwendung	15

1 Zahlentheorie

1.1 Einführung

Es sei x mit $x \in \mathbb{N}$ eine beliebige natürliche Zahl mit $n \geq 2$ mit $n \in \mathbb{N}$. Dann gelte:

$$x = q * n + r$$

n ...Modul

 $q \dots int(x/n), q \in \mathbb{N}$

r ... Nicht negativer Rest

Die Kurzschreibweise zur Berechnung von r lautet

$$r = x \mod n \quad \widehat{=} \quad r = x - n * q$$

Für Modulo n existieren genau n Restklassen

$$\{0, 1, 2, \dots, n-1\}$$

1.1.1 Kongruenz

2 natürliche Zahlen sind kongruent, wenn diese denselben, nicht negativen, Rest haben.

$$a \equiv b \rightarrow a \% n = b \% n$$

Regeln

Kongruenzen können multipliziert werden

$$a \equiv b \text{ und } c \equiv d \rightarrow a * c \equiv b * d$$

Kongruenzen können zu gleichen Potenzen erhöht werden

$$a \equiv b \rightarrow a^k \equiv b^k$$

1.2 Square and Multiply

Bei dieser Methode wird der Exponent in 2er Potenzen zerlegt.

Bsp.: 9²³ mod 7

$$9^{23} = 9^{16} * 9^4 * 9^2 * 9$$
$$9 \equiv 2$$

Die Potenzregel kann angewandt werden um die weiteren Potenzen zu bestimmen.

$$9^2 \equiv 2^2 = 4$$

$$9^4 \equiv 2^4 = 16 \equiv 2$$

$$9^{16} \equiv 2^4 = 16 \equiv 2$$

Anhand der Faktorregel können nun die Kongruenzen als Faktoren eingesetzt werden.

$$9^{23} \equiv 2 * 4 * 2 * 2 = 32$$

$$9^{23} \equiv 4$$

1.3 Kodierung und Dekodierung

Symmetrisch Gleicher Schlüssel für Ver- und Entschlüsselung Bsp.: Cäsar **Asymmetrisch** Verschiedene Schlüssel für Ver- und Entschlüsselung Bsp.: RSA

1.3.1 Cäsar

1.3.2 RSA

- 1. A wählt 2 Primzahlen p, q als **Private Key**
- 2. A wählt eine Zahl e (Encrypt), welche teilerfremd^I zu (p-1)*(q-1) ist
- 3. A veröffentlicht seinen **Public Key** bestehend aus der Zahl e und dem Produkt n aus

$$n = p*q$$

4. B möchte eine Nachricht an A senden und wandelt diese in eine Zahl um. Diese Zahl wird in x gleich lange Blöcke zerlegt. Die resultierende Nachricht y lautet

$$y = x^e \mod n$$

5. A berechnet den Private Key d (Decrypt) aus

$$d = \frac{1 + k(p-1)(q-1)}{e} \qquad k \in \mathbb{N}$$

6. A erhält die Nachricht y und ermittelt x aus

$$x = y^d \mod n$$

^I Zwei natürliche Zahlen und sind teilerfremd, wenn es keine natürliche Zahl außer Eins gibt, welche beide Zahlen teilt.

Bsp.: "BRAVO"

1. B möchte die Nachricht "BRAVO" an A senden und findet dafür den Public Key

$$n=1147~\mathrm{mit}~e=29$$

2. Zur Verschlüsselung wird die Nachricht in Zahlen umgewandelt und in gleich lange Blöcke unterteilt. Der letzte Block wird an der rechten Seite mit 0 aufgefüllt.

B R A V O

$$\downarrow$$
 \downarrow \downarrow \downarrow \downarrow
02 18 01 22 15

 \downarrow \downarrow \downarrow \downarrow
021 801 221 500

3. Nun werden die einzelnen Blöcke anhand des Public Keys kodiert. Diesmal werden zu kurze Blöcke an der linken Seite mit 0 aufgefüllt.

$$y_n = x_n^e \mod n$$

021 801 221 500
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
003 533 628 535

4. A empfängt die Nachricht und nutzt seinen Private Key p=31, q=37 und findet den Schlüssel d aus

$$d = \frac{1 + k(p-1)(q-1)}{e}$$

k wird dabei in natürlichen Schritten gesteigert, bis d ganzzahlig ist. Hier bei k=4.

$$d = \frac{1 + 4 * 30 * 36}{29} = 149$$

5. A erhält nun die Nachricht x aus

$$x_n = y_n^d \mod n$$

Zu kurze Blöcke werden von links aufgefüllt.

003 533 628 535

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$
021 801 221 500

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
02 18 01 22 15 00

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
B R A V O _

2 Matrizenrechnung

2.1 Grundlagen Vektoren

Vektoren sind gerichtete Größen, definiert durch ihren Betrag und ihre Länge. Sie geben also keine Punkte, sondern eine Richtung an.

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix}$$

 a_x ... Schaft

 a_y ...Spitze

Abbildung 1: Vektoren im \mathbb{R}^2

2.1.1 Typen

Einheitsvektor Vektoren mit der Länge 1 werden als Einheitsvektoren oder auch normierte Vektoren bezeichnet.

 $\vec{aE} = \frac{\vec{a}}{|\vec{a}|}$

Inverser Vektor Ein Vektor ist invertiert wenn \vec{a} und $-\vec{a}$ gleich lang aber entgegengesetzt gerichtet sind.

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix} \rightarrow -\vec{a} = \begin{pmatrix} -a_x \\ -a_y \end{pmatrix}$$

Ortsvektor Ein Vektor vom Ursprung O(0|0) zu einem bestimmten Punkt.

$$\overrightarrow{OP} = \begin{pmatrix} P_x \\ P_y \end{pmatrix}$$

Normalvektor Zwei Vektoren sind aufeinander normal, wenn deren x und y-Koordinaten vertauscht sind und ein Vorzeichen geändert wird.

$$ec{a} \perp ec{b}$$
 wenn $ec{a} = egin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ und $ec{b} = egin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$ oder $ec{b} = egin{pmatrix} a_2 \\ -a_1 \end{pmatrix}$

2.1.2 Rechenregeln

Betrag Die Länge eines Vektors ist als dessen Betrag definiert. Dieser kann über den Satz des Pythagoras hergeleitet werden.

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2}$$

Addition und Subtraktion Vektoren werden addiert oder subtrahiert indem deren Elemente nach Zeile addiert bzw. subtrahiert werden.

$$\begin{pmatrix} a_x \\ a_y \end{pmatrix} \pm \begin{pmatrix} b_x \\ b_y \end{pmatrix} = \begin{pmatrix} a_x \pm b_x \\ b_y \pm b_y \end{pmatrix}$$

Skalare Multiplikation Vektoren werden mit Zahlen multipliziert, indem jedes Element einzeln mit dem Faktor multipliziert wird.

$$\begin{pmatrix} a_x \\ a_y \end{pmatrix} * b = \begin{pmatrix} a_x * b \\ a_y * b \end{pmatrix}$$

Skalarprodukt zweier Vektoren Das Skalarprodukt zweier Vektoren ist von der Länge der Vektoren und dem eingeschlossenen Winkel abhängig.

$$\vec{a} * \vec{b} = |\vec{a}| * |\vec{b}| * \cos(\varphi)$$
$$\varphi = \sphericalangle(\vec{a}, \vec{a})$$

Abbildung 2: Skalarprodukt

Berechnet wird dieses aus

$$\begin{pmatrix} a_x \\ a_y \end{pmatrix} * \begin{pmatrix} b_x \\ b_y \end{pmatrix} = a_x * b_x + a_y + b_y$$

Das Skalarprodukt zweier Vektoren ist genau dann 0, wenn gilt $cos(\varphi) = 0^{I}$, oder der Betrag eines Vektors 0 ist. In diesem Fall sind die Vektoren zueinander orthogonal.

^I Dies ist sowohl bei 90, als auch bei 270 Grad der Fall

2.2 Grundlagen Matrizen

Eine Matrix vom Typ $(m \times n)$ ist ein Schema aus m Zeilen und n Spalten.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

 a_{mn} ... Element der Matrix

m ...Zeile

n ...Spalte

Zeilenvektor Eine Matrix mit nur einer Zeile.

$$(1 \times 3) \rightarrow A \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

Spaltenvektor Eine Matrix mit nur einer Spalte.

$$(3 \times 1) \to A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Skalar Eine einzelne Zahl kann auch als eine Matrix mit einer Zeile und einer Spalte gesehen werden. Eine solche Matrix nennt man einen Skalar.

$$(1 \times 1) \rightarrow A = 1$$

Quadratische Matrix Die Anzahl der Zeilen ist gleich der Anzahl der Spalten (m = n).

$$(2 \times 2) \to A \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

Diagonalmatrix Alle Elemente außerhalb der Hauptdiagonale sind gleich 0.

$$(3 \times 3) \to A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

7

Einheitsmatrix Alle Elemente der Hauptdiagonale sind gleich 1 und jene außerhalb 0.

$$(3 \times 3) \to A \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Transponierte Matrix Zeilen und Spalten einer Matrix werden vertauscht. Dabei wird jede Zeile zu einer Spalte.

$$A \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \rightarrow A^T \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Symmetrische Matrix Jede Diagonale einer Matrix enthält nur ein Element. Es gilt $A = A^T$.

$$(3 \times 3) \to A \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$

2.2.1 Rechenregeln

Addition und Subtraktion Die Addition 2er Matrizen A und B ist nur dann definiert, wenn diese vom selben Typen sind $(A_m = B_m \text{ und } A_n = B_n)$.

$$A + B = C \to A_{mn} \pm B_{mn} = C_{mn}$$

$$A \begin{pmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{pmatrix} \pm B \begin{pmatrix} b_{11} & b_{21} \\ b_{21} & b_{22} \end{pmatrix} = C \begin{pmatrix} a_{11} \pm b_{11} & a_{21} \pm b_{21} \\ a_{21} \pm b_{21} & a_{21} \pm b_{22} \end{pmatrix}$$

Skalare Multiplikation Jedes Element einer Matrix wird mit dem Faktor multipliziert.

$$A \begin{pmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{pmatrix} * b = C \begin{pmatrix} b * a_{11} & b * a_{21} \\ b * a_{21} & b * a_{22} \end{pmatrix}$$

Multiplikation von Matrizen C ist als Produkt von A * B nur dann definiert wenn gilt

$$A(m \times p)$$
 und $B(p \times n)$

Damit ist C eine $(m \times n)$ Matrix definiert als

$$C_{mn} = \sum_{i=1}^{p} a_{mi} * b_{in}$$

ACHTUNG! Die Multiplikation von Matrizen ist NICHT kommutativ!

$$A \cdot B \neq B \cdot A$$

Beispiel

$$A \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} B \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

Zur Berechnung der Matrix $C = A \cdot B$ ist es sinnvoll, die Matrizen versetzt nebeneinander zu schreiben, diese Methode nennt man auch Falk'sches Schema.

Falk'sches Schema

S Schema

B

A

C11 = 1 * 1 + 2 * 3 + 3 * 5 = 22

C12 = 1 * 2 + 2 * 4 + 3 * 6 = 28

C13 = 4 * 1 + 5 * 3 + 6 * 5 = 49

C21 = 4 * 1 + 5 * 3 + 6 * 5 = 49

C22 = 4 * 2 + 5 * 4 + 6 * 6 = 64

C31 = 7 * 1 + 8 * 3 + 9 * 5 = 76

C32 = 7 * 2 + 8 * 4 + 9 * 6 = 100

$$A\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \cdot B\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = C\begin{pmatrix} 22 & 28 \\ 49 & 64 \\ 76 & 100 \end{pmatrix}$$

2.2.2 Determinanten

Definition

'Eine Determinante ist eine Zahl, die einer quadratischen Matrix zugeordnet ist. Man kann die Determinante jeder allgemeinen Matrix vom Typ $(m \times m)$ bestimmen" [1]

Eigenschaften

• Die Determinante einer Matrix A ist gleich jener der transposierten Matrix A^T .

$$|A| = |A^T|$$

- Der Wert einer Determinante ist unabhängig von der Entwicklungszeile / -spalte.
- Eine Determinante ist gleich Null, wenn einer der folgenden Fälle zutrifft:
 - eine Zeile / Spalte besteht aus lauter Nullen
 - zwei Zeilen / Spalten sind gleich
 - eine Zeile / Spalte ist eine Linearkombination anderer Zeilen/Spalten
- Vertauscht man eine gerade Anzahl an Zeilen / Spalten ändert sich das Vorzeichen der Determinante.
- Multipliziert man eine Zeile / Spalte mit einer Zahl, wird die Determinante ebenfalls multipliziert.
- Die Determinante des Produktes zweier Matrizen entspricht dem ihrer Determinanten.

$$|A \cdot B| = |A| \cdot |B|$$

Berechnung

 2×2 (**Diagonalen**) Die Determinante einer Matrix 2×2 entspricht dem Produkt der Hauptdiagonale abzüglich des Produktes der Nebendiagonale.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a * d - b * c$$

 3×3 (Regel von Sarrus) Bei dieser Regel werden zu Beginn die ersten beiden Spalten noch einmal neben die Determinante geschrieben.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \rightarrow \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{vmatrix} a & b \\ d & e \\ g & h \end{vmatrix}$$

Jetzt bildet man die Produkte der Elemente der drei Diagonalen, welche von links oben nach rechts unten verlaufen. Diese Produkte werden addiert.

$$a * e * i + b * f * g + c * d * h$$

Von dieser Menge werden nun die Produkte der Elemente der drei Diagonalen, welche von links unten nach rechts oben verlaufen, abgezogen.

$$-q * e * c - h * f * a - i * d * b$$

Die Formel zur Berechnung einer 3×3 Determinante lautet also wie folgt.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - idb$$

2.3 Gauß Algorithmus

Ein lineares Gleichungssystem in n Gleichungen und n Unbekannten ist als Matrix genau dann eindeutig lesbar wenn $|A| \neq 0$ gilt.

Als Beispiel ist folgendes lineares Gleichungssystem in 3 Gleichungen und 3 Unbekannten gegeben. Dieses wird anschließend in einer Koeffizientenmatrix tabellarisch dargestellt.

Koeffizientenmatrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$

Multiplikation Zeilen dürfen beliebig multipliziert und dividiert werden.

Addition / Subtraktion Zeilen dürfen voneinander addiert und subtrahiert werden.

Ziel des Gauß Algorithmus ist es nun anhand der Rechenregeln alle Werte über oder unter der Hauptdiagonalen auf 0 zu bringen.

$$\begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{pmatrix} = \begin{pmatrix} \times \\ \times \\ \times \end{pmatrix}$$

Durch dieses Verfahren wird pro Zeile eine steigende Zahl an Koeffizienten gleich 0, wodurch deren Variablen eleminiert werden.

Die häufigste Vorgehensweise ist dabei die erste Spalte der ersten Zeile auf 1 zu bringen und anschließend die Zeile mit einer konstanten zu multiplizieren, um diese von der nächsten Zeile abziehen zu können.

$$II - I \rightarrow \begin{pmatrix} 0 & -1 & -2 \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$$

$$III - 3 * I \rightarrow \begin{pmatrix} 0 & -3 & -8 \end{pmatrix} = \begin{pmatrix} -6 \end{pmatrix}$$

$$\downarrow$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -3 & -8 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -6 \end{pmatrix}$$

$$\downarrow$$

$$III - 3 * II \rightarrow \begin{pmatrix} 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -6 \end{pmatrix}$$

Die neue Matrix kann nun einfach weiter verwendet werden. So kann die 2. Spalte der 3. Zeile auf 0 gebracht werden, indem die 2. Zeile mit 3 multipliziert, von der 3. Zeile abgezogen wird.

$$\downarrow$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -6 \end{pmatrix}$$

$$\downarrow$$

$$\downarrow$$

$$I \quad x \quad +2y \quad +3z \quad = 2$$

$$II \quad -y \quad -2z \quad = 0$$

$$III \quad -2z \quad = -6$$

$$\downarrow$$

$$z = 3, \quad y = -6, \quad x = 5$$

2.4 Grafik im 2-dimensionalen Raum

Abbildung 3: Drehung im \mathbb{R}^2

Gegeben sei ein Punkt P(x|y) in einem Koordinatensystem. Dieser Punkt soll um den Ursprung (0|0) um den Winkel φ gedreht werden.

$$P(x|y) \qquad x = r * \sin(\alpha)$$

$$y = r * \cos(\alpha)$$

$$P'(x'|y') \qquad x' = r * \sin(\alpha + \varphi)$$

$$y' = r * \cos(\alpha + \varphi)$$

Additionstheorem

$$\sin(\alpha \pm \beta) = \sin(\alpha) * \cos(\beta) \pm \cos(\alpha) * \sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha) * \cos(\beta) \pm \sin(\alpha) * \sin(\beta)$$

$$\downarrow$$

$$P'(x'|y') \quad x' = r * \sin(\alpha) * \cos(\varphi) + r * \cos(\alpha) * \sin(\varphi)$$

$$y' = r * \cos(\alpha) * \cos(\varphi) - r * \sin(\alpha) * \sin(\varphi)$$

$$\downarrow$$

$$P'(x'|y') \quad x' = x * \cos(\varphi) + y * \sin(\varphi)$$

$$y' = y * \cos(\varphi) - x * \sin(\varphi)$$

$$\downarrow$$

$$P'\begin{pmatrix} x' \\ y' \end{pmatrix} = D\begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix} * P\begin{pmatrix} x \\ y \end{pmatrix}$$

Drehmatrix

Beschreibt eine Drehung um den Ursprung um den Winkel φ .

$$D = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Spiegelungsmatrix

Beschreibt die Spiegelung an einer Geraden, durch den Ursprung mit der Steigung φ .

$$Sp = \begin{pmatrix} \cos(2\varphi) & \sin(2\varphi) \\ \sin(2\varphi) & -\cos(2\varphi) \end{pmatrix}$$

Streckungsmatrix

Beschreibt eine Streckung um S_x in x-Richtung und um S_y in y-Richtung.

$$St = \begin{pmatrix} S_x & 0 \\ 0 & S_y \end{pmatrix}$$

2.4.1 Anwendung

1. Verschieben des Ankerpunktes zum Ursprung.

$$A' = A - \overrightarrow{OB}$$

2. Matrix anwenden durch Multiplikation.

$$A'' = D \cdot A$$
 $A'' = Sp \cdot A$ $A'' = St \cdot A$

3. Zurückschieben um den Ortsvektor des Ankerpunktes.

$$A''' = A + \overrightarrow{OB}$$

Literatur

- [1] http://www.mathe-online.at/materialien/klaus.berger/files/Matrizen/determinante.pdf
- [2] https://de.wikipedia.org/wiki/Skalarprodukt

Abbildungsverzeichnis

http://www.mathe-online.at/mathint/vect1/grafiken/vektor1.gif
 https://de.wikipedia.org/wiki/Skalarprodukt#/media/File:Dot-product-3.3.svg
 http://systemdesign.ch/wiki/Drehung
 14