

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-226914

(P2002-226914A)

(43)公開日 平成14年8月14日(2002.8.14)

(51)Int.Cl.
 C 21 D 8/00
 // C 22 C 38/00
 38/04
 38/50

識別記号

3 0 1

F I
 C 21 D 8/00
 C 22 C 38/00
 38/04
 38/50

テ-マコード*(参考)

B 4 K 0 3 2
 3 0 1 Z

審査請求 未請求 請求項の数 6 O L (全 7 頁)

(21)出願番号 特願2001-25416(P2001-25416)

(22)出願日 平成13年2月1日(2001.2.1)

(71)出願人 000008856
 新日本製鐵株式会社
 東京都千代田区大手町2丁目6番3号

(72)発明者 内野 純一
 北九州市戸畠区飛鷹町1-1 新日本製鐵
 株式会社八幡製鐵所内

(72)発明者 斎峰 健一
 北九州市戸畠区飛鷹町1-1 新日本製鐵
 株式会社八幡製鐵所内

(74)代理人 10062421
 弁理士 田村 弘明 (外1名)

最終頁に続く

(54)【発明の名称】 高耐摩耗・高剛性レールの製造方法

(57)【要約】

【課題】圧延中、圧延後の再結晶粗粒化の粒成長を抑制し、細粒のパーライト組織を得、強度と耐摩耗性に優れた高炭素のパーライト組織を呈した鋼に物性を付与した高剛性レールの製造方法を提供する。

【解決手段】質量でC:0.6~1.20%、その他の適宜合金元素を含む鋼片を粗圧延した後、リバース圧延機による中間圧延を表面温度が900~1050°Cの間で行い、続いて連続圧延機による仕上げ圧延を表面温度が850~1000°Cの間で、1バス当たり断面減少率が5~30%の圧延を2バス以上でかつ圧延バス間を10秒以下として施し、圧延後、レール表面での冷却速度0.5~5°C/sで800~950°Cまで冷却し、その後、放冷または加速冷却することを特徴とするパーライト金属組織を呈した高耐摩耗・高剛性レールの製造方法。

【特許請求の範囲】

【請求項1】 質量%でC:0.6~1.20%を含む鋼片を粗圧延した後、リバース圧延機による中間圧延を表面温度が900~1050°Cの間で行い、続いて連続圧延機による仕上げ圧延を表面温度が850~1000°Cの間で、1バス当たり断面減少率が5~30%の圧延を2バス以上でかつ圧延バス間を10秒以下として施し、圧延後、レール表面での冷却速度0.5~5°C/sで800~950°Cまで冷却し、その後、放冷することを特徴とするバーライト金属組織を呈した高耐摩耗・高韌性レールの製造方法。

【請求項2】 鋼片の成分が質量%で、

C : 0.6~1.20%,
Si : 0.10~1.20%,
Mn : 0.4~1.50%

を含み、残部がFeおよび不可避的不純物からなることを特徴とする請求項1記載のバーライト金属組織を呈した高耐摩耗・高韌性レールの製造方法。

【請求項3】 鋼片の成分が質量%でさらに、

Cr : 0.05~2.00%,
Mo : 0.01~0.30%,
Co : 0.10~2.00%

の1種または2種以上を含有することを特徴とする請求項2記載のバーライト金属組織を呈した高耐摩耗・高韌性レールの製造方法。

【請求項4】 鋼片の成分が質量%でさらに、

Cu : 0.05~2.00%,
Ni : 0.05~2.00%

の1種または2種を含有することを特徴とする請求項2または3に記載のバーライト金属組織を呈した高耐摩耗・高韌性レールの製造方法。

【請求項5】 鋼片の成分が質量%でさらに、

V : 0.01~0.30%,
Nb : 0.002~0.050%,
Ti : 0.005~0.100%,
Ca : 0.0005~0.0100%,
Mg : 0.0005~0.0100%

の1種または2種以上を含有することを特徴とする請求項2ないし4のいずれか1項に記載のバーライト金属組織を呈した高耐摩耗・高韌性レールの製造方法。

【請求項6】 レール表面を800~950°Cまで冷却した後に、引き続き700°C以上の温度から500°Cまでの間を2~15°C/sで冷却し、その後放冷することを特徴とする請求項1ないし5のいずれか1項に記載のバーライト金属組織を呈した高耐摩耗・高韌性レールの製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、鉄道その他産業機械用として使用される強度と耐摩耗性に優れた高炭素の

バーライト組織を呈した鋼に韌性を付与した高韌性レールの製造方法に関するものである。

【0002】

【従来の技術】高炭素でバーライトの金属組織を呈した鋼は強度が高く、耐摩耗性が良好なことから構造材料として使用され、中でも鉄道車両の重量増加に伴う高軸荷重化や高速輸送化に対応してレールが特に多く使用されている。

【0003】このような鋼材の製造法としては、例えば

10 特開昭55-276号公報には「バーライト組織を呈しやすい特定成分の鋼をA3点以上の加熱温度から冷却して450~600°Cの温度で恒温変態させて、微細バーライト組織を生成させる硬質レールの製造法」、また特開昭58-221229号公報には、「C:0.65~0.85%, Mn:0.5~2.5%を含有して高温度の熱を保有したMn鋼レールを急冷し、レールまたはレールヘッドの組織を微細なバーライトとして耐摩耗性を改善したレールの熱処理法」、さらには特開昭59-133322号公報には、「安定してバーライト組織を得られる特定成分の圧延レールを、A3点以上の温度から特定温度の溶融塩浴槽中に浸漬して、レール頭頂部表面下約10mmまでにHv>350の硬さをもつ微細なバーライト組織を呈するレールの熱処理方法」が開示されているごとく、多くの技術が知られている。

【0004】しかししながら、バーライト鋼の強度や耐摩耗性は合金元素の添加によって所要の規格品が容易に得られるとは言え、韌性はフェライト組織を主体とした鋼に比較して著しく低く、例えばバーライト鋼ではJIS S3号 Uノットシャルピー試験での常温試験値で

30 1.0~2.0N/mm程度である。このように韌性の低い鋼を繰り返し荷重や振動の掛かる分野で構造部材として使用した場合、鋼を初期欠陥や疲労き裂から低応力脆性破壊を引き起こすという問題があった。

【0005】一般に鋼の韌性を向上させるには、金属組織の微細化、すなわちオーステナイト組織の粗粒化や粒内変態によって達成されるものと言われている。オーステナイト組織の粗粒化は、例えば圧延時の低温加熱あるいは特開昭63-277721号公報に開示されているように、連続圧延と加熱処理の組合わせ、また圧延後の低温再加熱処理などが利用されている。

【0006】しかし、レールの製造法においては、成形性確保の観点から圧延時の低温加熱や割御圧延における低温圧延、大圧下圧延の適用が困難なため、今日においても從来からの低温再加熱処理による韌性の向上が囲まれている。ところがこの方法も、近来的各製品における省力化・生産性向上技術の開発が進められる中で、製造コストが高く生産性も低いなどの問題があり、これらの中長期課題が望まれている。

【0007】

【発明が解決しようとする課題】本発明は上記した問題

点を解消しようとするものであり、レール成形上、低温あるいは大圧下に依っていた制御圧延の問題を克服し、共析鋼特有的制御圧延を行い、レール鋼等のような共析炭素鋼の塑性を向上させる方法を提供することを目的とする。

【0008】

【課題を解決するための手段】本発明者らは、細粒のパーライト組織を得て塑性を向上させた鋼を製造するためには、鋼成分とその製造法から多くの実験を試みた結果、共析炭素鋼に近い高炭素の鋼はそのオーステナイト状態での加工において、比較的の低温で、かつ小さい圧下量でも圧延直後に再結晶することを見いだし、小圧下の連続圧延によって整粒の微細オーステナイト粒を得、その結果、粗粒のパーライト組織が得られるることを知見した。しかしながら、圧延直後の微細再結晶オーステナイト粒は圧延バス間の粒成長が大きく、各バスでの圧延の効果を相殺するほどの影響があることも知見した。

【0009】本発明はこのような知見に基づいて構成したものであって、その要旨とするところは以下の通りである。

(1) 質量%でC: 0.6~1.20%を含む鋼片を粗圧延した後、リバース圧延機による中間圧延を表面温度が900~1050°Cの間で行い、続いて連続圧延機による仕上げ圧延を表面温度が850~1000°Cの間で、1バス当たり断面減少率が5~30%の圧延を2バス以上でかつ圧延バス間を10秒以下として施し、圧延後、レール表面での冷却速度0.5~5°C/sで80~950°Cまで冷却し、その後、放冷することを特徴とするパーライト金属組織を呈した高耐摩耗・高塑性レールの製造方法。

(2) 鋼片の成分が質量%で、C: 0.6~1.20%, Si: 0.10~1.20%, Mn: 0.40~1.50%を含み、残部がFeおよび不可避の不純物からなることを特徴とする前記(1)記載のパーライト金属組織を呈した高耐摩耗・高塑性レールの製造方法。

(3) 鋼片の成分が質量%でさら、Cr: 0.05~2.00%, Mo: 0.01~0.30%, Co: 0.10~2.00%の1種または2種以上を含有することを特徴とする前記(2)記載のパーライト金属組織を呈した高耐摩耗・高塑性レールの製造方法。

(4) 鋼片の成分が質量%でさら、Cu: 0.05~2.00%, Ni: 0.05~2.00%の1種または2種を含有することを特徴とする前記(2)または(3)に記載のパーライト金属組織を呈した高耐摩耗・高塑性レールの製造方法。

(5) 鋼片の成分が質量%でさら、V: 0.01~0.30%, Nb: 0.002~0.050%, Ti: 0.005~0.100%, Ca: 0.0005~0.0100%, Mg: 0.0005~0.0100%の1種または2種以上を含有することを特徴とする前

記(2)ないし(4)のいずれか1項に記載のパーライト金属組織を呈した高耐摩耗・高塑性レールの製造方法。

(6) レール表面を800~950°Cまで冷却した後に、引き継ぎ700°C以上の温度から500°Cまでの間を2~15°C/sで冷却し、その後放冷することを特徴とする前記(1)ないし(5)のいずれか1項に記載のパーライト金属組織を呈した高耐摩耗・高塑性レールの製造方法。

【0010】

【発明の実施の形態】以下、本発明について詳細に説明する。先ず、本発明において鋼成分を上記のように限定した理由について説明する。Cはパーライト組織を生成させて耐摩耗性を確保する有効な成分として0.60%以上の含有が必要である。しかし、1.20%を超える高い含有量ではセメントサイト組織を多く析出して硬さは増加するが、延性は低下し、本発明の目的である塑性を著しく低下させる。

【0011】本発明は、少なくとも上記のような共析点近傍の要素を含有する鋼に特有のオーステナイト再結晶挙動の知見に基づいているため、必要に応じて各種合金を添加しても金属組織がパーライトを呈する範囲では何ら差し障りはない。このため、強度や延性、塑性を向上させることを目的として、以下の合金元素を適宜添加することができる。

【0012】Siは、パーライト組織中のフェライト相への腐食脆化によりレール頭部の硬度(強度)を上昇させる元素であるが、0.10%未満ではその効果が十分に期待できず、また1.20%を超えると、熱間圧延時に表面が多く生成することや、酸化物の生成により溶接性が低下するため、Si量を0.10~1.20%に限定した。

【0013】Mnは、パーライト変態温度を低下させ、焼入れ性を高めることによって高強度化に寄与し、さらに、初析セメントサイト組織の生成を抑制する元素であるが、0.40%未満の含有量ではその効果が小さく、レール頭部に必要される硬さの確保に困難となる。また1.50%を超えると、焼入れ性が著しく増加し、マルテンサイト組織が生成しやすくなることや、初析が助長され、偏析部にレールの塑性に有害な初析セメントサイト組織が生成し易くなるため、Mn量を0.40~1.50%に限定した。

【0014】Crは、パーライトの平衡変態点を上昇させ、結果としてパーライト組織を微細にして高強度化に寄与すると同時に、パーライト組織中のセメントサイト相を強化することによって耐摩耗性を向上させる元素であるが、0.05%未満ではその効果が小さく、2.00%を超える過剰な添加を行うと、マルテンサイト組織が多量に生成してレールの塑性を低下させるため、Cr量を0.05~2.00%に限定した。

【0015】Moは、Cr同様バーライトの平衡変態点を上昇させ、結果としてバーライト組織を微細にすることにより高強度化に寄与し、耐摩耗性を向上させる元素であるが、0.01%未満ではその効果が小さく、0.30%を超える過剰な添加を行うと偏析が助長され、さらに、バーライト変態速度が低下し、偏析部にマルテンサイト組織が生成してレールの延性が低下するため、Mo量を0.01~0.30%に限定した。

【0016】Coは、バーライトの変態エネルギーを増加させて、バーライト組織を微細にすることにより強度を向上させる元素であるが、0.10%未満ではその効果が期待できず、また2.00%を超える過剰な添加を行ってもその効果が飽和傾向に達してしまうため、Co量を0.10~2.00%に限定した。

【0017】Cuは、バーライト鋼の延性を損なわず強度を向上させる元素であり、その効果は0.05~2.00%の範囲で最も大きく、また2.00%を超えると赤熱脆化を生じ易くなることから、Cu量を0.05~2.00%に限定了。

【0018】Niは、バーライト鋼の延性と韌性を向上させ、同時に固溶強化によりバーライト鋼の高強度化を図る元素であるが、0.05%未満ではその効果が著しく小さく、また2.00%を超える過剰な添加を行ってもそれ以上の効果が期待できない。したがってNi量を0.05~2.00%に限定了。

【0019】Vはレール頭部の熱処理において、レール頭部表と比較して冷却速度の遅いレール頭部内部で炭化物や窒化物を形成し、バーライト組織中のフェライト地に析出することにより、頭部内部の硬度を向上させる元素であるが、0.01%未満では炭化物や窒化物の形成が困難となり、レール頭部内部のバーライト組織の析出硬化が難しくなる。また0.30%を超えて添加してもそれ以上の効果が期待できないため、V量を0.01~0.30%に限定了。

【0020】Nbは、Vと同様にNb炭化物、Nb窒化物による析出硬化で強度を高め、さらに、高温度に加熱する熱処理が行われる際に晶粒の成長を抑制する作用によりオーステナイト粒を微細化させ、そのオーステナイト粒成長抑制効果はVよりも高温度域(1200°C近傍)まで作用し、バーライト組織の延性と韌性を改善する。その効果は0.002%未満では期待できず、また0.050%を超える過剰な添加を行ってもそれ以上の効果が期待できない。したがってNb量を0.002~0.050%に限定了。

【0021】Tiは、レール圧延時の再加熱において、析出したTi炭化物、Ti窒化物が溶解しないことを利用して、圧延加熱時のオーステナイト晶粒の微細化を図り、バーライト組織の延性や韌性を向上させるのに有効な成分である。しかし、0.005%未満ではその効果が少なく、0.100%を超えて添加すると、粗大な

Ti炭化物、Ti窒化物が生成してレール使用中の疲労損傷の起点となり、き裂を発生させるため、Ti量を0.005~0.100%に限定した。

【0022】Caは、不可逆的不純物であるSとの結合力が強く、CaSとして硫化物を形成し、さらに、CaSがMnSを微細に分散させ、MnSの周囲にMnの希薄帶を形成し、バーライト変態の生成に寄与し、その結果、バーライトブロックサイズを微細化することにより、バーライト組織の延性や韌性を向上させるのに有効な元素である。しかし、0.0005%未満ではその効果は弱く、0.0100%を超えて添加するとCaの粗大硫化物が生成してレールの延性や韌性を劣化させるため、Ca量を0.0005~0.0100%に限定した。

【0023】Mgは、OまたはSやA1等と結合して微細な酸化物を形成し、レール圧延時の再加熱において結晶粒の成長を抑制し、オーステナイト粒の微細化を図り、バーライト組織の延性や韌性を向上させるのに有効な元素である。さらに、MgO、MgSがMnSを微細に分散させ、MnSの周囲にMnの希薄帶を形成し、バーライト変態の生成に寄与し、その結果、バーライトブロックサイズを微細化することにより、バーライト組織の延性や韌性を向上させるのに有効な元素である。しかし、0.0005%未満ではその効果は弱く、0.0100%を超えて添加するとMgの粗大酸化物が生成してレール延性や韌性を劣化させるため、Mg量を0.0005~0.0100%に限定した。

【0024】次に、本発明の各工程条件について説明する。レール鋼の圧延において、鋸片の粗形圧延を行った後の中間圧延段階、仕上げ圧延段階の1パス当たりの圧下量は、レールの成形性確保の観点から断面減少率にして通常5~30%の比較的小さい範囲であり、また仕上げ温度はおよそ1000°C程度である。これに対して、最近はより低温で圧延し、延性や韌性の改善を目的とした制御圧延も行われている。一般にフェライトを主体にした鋼の制御圧延の場合は、オーステナイトの未再結晶領域まで圧延温度を低めさせ、加工オーステナイト中のひずみの導入により、フェライト核の増大を図り、相移フェライトを得る制御圧延法が採られている。

【0025】しかしながらバーライト鋼の場合は共析変態のため、バーライトの成長速度が大きく、オーステナイト粒内変態核が有効に作用せず、実質的に粗粒バーライトが得られ難いことがわかった。したがって、粗粒の相移オーステナイトを得ることがバーライト粗粒化に必要なことがわかった。

【0026】かかる観点から、高炭素鋼のオーステナイトの再結晶挙動を詳細に検討した結果。

- 1) 低炭素鋼に比較して低い温度まで、かつ低加工度で再結晶すること、
- 2) 加工後、完全再結晶に要する時間が非常に小さい、

すなわち圧延直後に再結晶を完了すること。

3) 小さな圧下でも連続的に(およそ10秒以下)加工を加えると、その都度再結晶を繰り返し、次の加工までの粒成長が抑制される。あるいは10秒以上のバス間でも圧延後温度を低下させると粒成長が抑制されるため、整粒粒の再結晶オーステナイト粒が得られること、を知見した。

【0027】これらの知見をもとに、その最適な加工条件範囲を見出した。以下に条件の観察理由について述べる。リバース圧延機による中間圧延の際は、各圧延バス後に表面に応じた再結晶により細粒のオーステナイト粒が得られるが、リバース圧延のため、バス間の時間は具体的には2.0~6.0秒となり、その間に粒成長が著しい。そこで中間圧延の温度を900~1050°Cとすることにより粒成長を抑制でき、各バスでの粗粒オーステナイト粒の累積が得られ、仕上げ圧延前のオーステナイト粒の粗粒化が阻止する。なおバス回数は特に規定しないが、バス毎に必要な表面減少率からして2~3バスで行うのが通常である。

【0028】仕上げ圧延温度については850~1000°Cの範囲が最適で、850°C未満ではオーステナイトが未再結晶状態となり、先に述べたようにパーライトの微細化に有効でない。一方、1000°Cを超える場合は圧延後のオーステナイト粒の成長が大きく、パーライト変態時に粗粒の粗粒オーステナイトとなり、パーライトの微細化に有効でない。なお通常は、中間圧延後仕上げ圧延までの間に、レール内部からの復熱により表面温度が上昇するので、適冷冷却もしくは放冷により仕上げ温度を調整するのが好ましい。

【0029】1バスあたりの圧下率については5~30%の範囲が最適で、5%未満の場合は再結晶を発現せることに有効なひずみの導入ができない、また30%を超える場合は再結晶には有効であるが、レール圧延工程での全断面減少量から圧延バス回数が十分に確保なくなること、およびレール成形が困難になることから有効でない。

【0030】バス間時間については10秒以下であることが必要である。高温におけるオーステナイト粒は隣接粒同士の合体による結晶粒の粗大化、混粒化、いわゆる粒成長が起こりやすい。通常のリバース圧延や連続圧延でも圧延機間の距離が大きい場合、バス間時間は2.0~6.0秒程度と長くなり、この間に圧延されたオーステナイト粒のひずみの回復、再結晶、さらには粒成長が起こる。本発明の高炭素成分系では圧延直後に再結晶を完了するため、先に示したようなバス間時間の間に粒成長が生じ、再結晶により粗粒となった効果が消滅される。バス間時間が1秒を超えると、このバス間での粒成長の影響が看過できなくなる程に大きくなり、圧延再結晶によるオーステナイト粒の粗粒化効果が弱じ、目的を達成

できない。また、先に述べたように再結晶の繰り返しによる粗粒化の観点から、少なくとも2バス以上の連続圧延が必要である。

【0031】以上の圧延を完了後、統いてレール表面での冷却速度が0.5~5°C/sで800~950°Cまで冷却を行うことの理由について述べる。先に圧延バス間のオーステナイトの粒成長は圧延後10秒を超えるとその影響が看過できなくなることを述べたが、圧延終了後のオーステナイトの粒成長もまた同様な挙動を有する。この時、先に述べたリバース中間圧延と同様にオーステナイトの温度を低下させることで、粒成長の抑制が可能となる。したがって、レール表面での冷却速度が0.5~5°C/sで800~950°Cまで冷却することで、粒成長への影響を回避する必要がある。この場合の冷却方法もまた特に規定しないが、必要な冷却速度を確保するには、水などの液体もしくはミストを含む混合気体を吹き付ける方法が好ましい。

【0032】放冷または強度をさらに向上させる場合は加速冷却を行う。加速冷却の観察理由について述べる。

20 冷却開始温度は鋼のオーステナイト域、少なくとも700°C以上が必要で、これを下回る場合は有効な変態強化ができない。また、冷却速度は鋼の変態にかかる温度範囲、すなわち700以上の温度から500°Cまでの間で2~15°C/sが必要で、2°C/s未満では放冷と比較して差が顕著でない変態強化がもたらされない。また15°C/sを超えるとペイナイトあるいはマルテンサイトなどの異常組織の混入を招き、耐摩耗性や韌性を著しく阻害する。この場合の冷却方法もまた特に規定しないが、冷却速度の制御性の観点から、エアーなどの気体もしくはミストを含む混合気体を吹き付ける方法が好ましい。

【0033】

【実施例】以下に本発明の実施例を示す。表1に示す化学成分からなる供試鋼を粗圧延後、表2に示す条件で3バスからなる中間圧延、および仕上げ圧延を施し、表3に示す条件で圧延直後の冷却を行い、放冷もしくは表4に示す条件で高強度化のための熱処理と冷却を行った。なお、表2に示す中間圧延中の冷却および表3に示す圧延後の冷却は水を吹き付ける方法を用い、表4に示す熱処理と冷却はエアーを吹き付ける方法を用いた。

【0034】表5に、表1から表4に示した鋼成分、圧延条件、圧延直後の冷却条件および高強度化のための熱処理冷却条件を組み合わせてレールを製造した場合の、本発明法および比較法でのレール鋼の機械的性質を示す。本発明法では、鋼成分および冷却条件によりレールの強度は変化するが、延性値、韌性値は比較法のそれに比較して著しく高い値を示すことがわかる。

【0035】

【表1】

鋼	C	Si	Mn	Cr	Mo	V	Nb	Ti
A	0.65	0.20	0.90	-	-	-	-	-
B	0.60	0.60	1.00	0.50	-	0.05	-	-
C	0.75	0.60	0.80	0.50	-	-	0.02	0.01
D	0.80	0.25	0.90	1.20	0.20	-	-	-
E	0.95	0.20	0.80	-	-	-	-	-

【0036】

* * 【表2】

符号	中間圧延条件				仕上げ圧延条件			
	開始 温度 ℃	終了 温度 ℃	1バス目		2バス目		3バス目	
			速度 m/s	圧下 率%	速度 m/s	圧下 率%	速度 m/s	圧下 率%
本 発 明 法	1050	1010	1000	25	1	1000	5	1
a	1010	970	960	30	1	950	5	5
b	1010	970	960	50	1	950	10	-
c	940	900	880	15	1	880	5	7
d	940	900	880	25	1	880	2	-
比 較 法	1110	1070	960	30	1	950	2	-
e	1110	1070	1000	25	1	1000	5	25
f	1110	1070	1000	25	20	940	15	10
g	1110	1070	1000	25	20	940	15	5

【0037】

* * 【表3】

符号	冷却開始温度 ℃		冷却速度 ℃/s
	i	ii	
i	1000	-	40
ii	950	-	20
iii	880	-	0.5

【0038】

★【0039】

【表4】

【表5】

符号	冷却開始温度 ℃	冷却速度 ℃/s
I	800	4
II	800	6
III	720	10
IV	800	1

30

★

	符号	鋼	圧延 方法	圧延直 後冷却 方法	熱凍害 冷却方 法	引張り 強さ (MPa)	伸び (%)	sU _{50mm} (J/cm ²)
本 発 明 法	1	A	a	I	放冷	925	16	28
	2	B	b	ii	I	1220	17	35
	3	B	b	ii	III	1240	15	44
	4	D	b	ii	放冷	1095	14	39
	5	C	c	ii	II	1275	16	32
	6	B	d	ii	III	1260	18	46
比 較 法	7	A	e	-	放冷	940	12	15
	8	B	f	-	IV	1080	13	20
	9	D	g	-	放冷	1110	18	18

【0040】

☆バーライト組織を得、耐摩耗性に加え、韌性を向上させたレールを製造することができる。

フロントページの続き

Fターム(参考) 4K032 AA06 AA07 AA08 AA09 AA10
AA11 AA12 AA14 AA15 AA16
AA19 AA22 AA23 AA24 AA31
AA32 AA35 AA36 BA02 CB01
CC04 CD01 CD02 CD03 CD05