

SCHOOL OF ADVANCED SCIENCES

Winter Semester 2023-2024

Continuous Assessment Test -I

Programme Name & Branch: M.Tech. (Integrated) Computer Science and Engineering

Slot: G1+TG1-Common

Course Name & code: Linear Algebra & MAT1022

Class Number (s): VL2023240504931, VL2023240504934, VL2023240504935, VL2023240500431

Exam Duration: 90 Min.

Maximum Marks: 50

General instruction(s): Answer ALL Questions

Q.No.	Question	Max Marks
	Find the solutions for the system of linear equations using Gauss-Jordan inverse method.	10
	x - y + 4z = 6	
	x - 2z = 10	
	2x - 2y + 4z = 8	
2.	Given the system of linear equations.	
	x - y + 4z = 6	
	x - 2z = 10	
	2x - 2y + hz = 12	5
	Find the value of h for which the system of equations has	
	a) Unique solution	
	b) Infinitely many solutions	
3.	Solve the system of linear equations using LU-factorization method and find the solution space.	10
	x - y + 4z = 6	
	x - 2z = 10	
	2x - 2y + 9z = 5	
4.	Let V be the set R^2 with following operations defined as follows. • For any $(x_1, y_1), (x_2, y_2) \in R^2$ define	10
	$(x_1, y_1) + (x_2, y_2) = (2(x_1 + y_1 + 1 + x_2 + y_2), -1(x_1 + y_1 + x_2 + y_2)).$ • For any $c \in \mathbb{R}$ and for any $(x_1, y_1) \in \mathbb{R}^2$, define	
	$c \cdot (x_1, y_1) = (c \cdot x_1, c \cdot y_1).$ Verify whether V is a vector space or not under the given binary operations $+, \cdot$.	
	Let W be the set of all 2×2 matrices with $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $a + b + c + d = 0$. Is W is a subspace of $M_{2,X,2}$? Explain.	5
5.	 a) Express the polynomial v = t² + 4t - 3 in the set P polynomials of degree less than or equal to 2 as a linear combination of the polynomials. p₁ = t² - 2t + 5, p₂ = 2t² - 3t, p₃ = t + 1. b) Determine whether the set S forms basis of R⁴. 	10
	$S = \{(1,1,1,1), (1,2,3,2), (2,5,6,4), (2,6,8,5)\}.$	