BOKMÅL

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK

Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil)

EKSAMEN I EMNE TFY 4102 FYSIKK

31. mai 2012 kl. 09.00-13.00 (4 timer)

Tillatte hjelpemidler: C

Spesifisert trykt hjelpemiddel: Karl Rottmann, Matematisk formelsamling. Bestemt enkel kalkulator tillatt.

Generell informasjon

Det er mange oppgaver som ikke nødvendigvis kommer i økende vanskelighetsgrad så dersom du står fast på en oppgave, ikke vent for lenge med å gå videre. Oppgavesettet består av 4 sider: 1 forside og 3 sider med totalt 10 oppgaver.

Part 1

Oppgave 1

Anta at vi har en partikkel med ladning q_1 i punktet (a,0,0) og en partikkel med ladning q_2 i punktet (b,0,0), b>a.

- a) Hvor stor er kraften som virker på partikkel q_2 fra q_1 ? Angi kraften som en vektor uttrykt ved størrelsene q_1, q_2, a, b og ϵ_0 .
- b) Hva er det elektrisk feltet i punkt (0, c, 0)? Angi feltet som en vektor uttrykt ved størrelsene q_1, q_2, a, b, c og ϵ_0 .
- c) Hva er potensialforskjellen mellom punkt (0, c, 0) og punkt (0, d, 0), uttrykt ved størrelsene q_1, q_2, a, b, c, d og ϵ_0 ? (Hint: Det kan være lurt å ta utgangspunkt i potensialet for en punktladning relativt til et punkt uendlig langt borte: $V = \frac{1}{4\pi\epsilon} \frac{q}{r}$.

Anta at vi har to metalliske kuler hengt opp i tynne isolerende snorer. Den ene kulen har fått en ladning q_1 mens den andre kulen er nøytral.

- d) Når vi fører kulene nærme hverandre (uten berøring) ser vi at de tiltrekkes. Hvorfor skjer dette selv om den ene kulen er nøytral?
- e) Hvis vi så lar kulene berøre hverandre vil de sprette fra hverandre og hvis vi prøver å føre dem sammen igjen ser vi at kulene frastøter hverandre. Hvorfor skjer det?

Oppgave 2

Anta at vi har to parallelle, uendelig store plater med en overflateladning (ladning per areal) $+\sigma$ på den en og $-\sigma$ og en avstand d mellom platene.

- a) Bruk Gauss lov til å vise at det elektriske feltet inni platene er gitt ved $E = \frac{\sigma}{\epsilon_0}$. Hva er det elektriske feltet utenfor platene? Begrunn svaret.
- b) Hva er potensialforskjellen mellom platene?

Oppgave 3

En bil med masse m starter i ro ved t=0 og får så en akselerasjon gitt av $a(t)=c_1t-c_2t^3$.

- a) Hyor langt har bilen beveget seg ved tident t = t'?
- b) Om vi antar at all effekten fra motoren går med til å skyve bilen fremover og at vi ikke har noen friksjon, finn et uttrykk for hvor stor effekt motoren genererer når akselerasjonen er gitt av uttrykket over.

Oppgave4

En bil med masse m=1500 kg og med en hastighet på 30 m/s kolliderer med en fjellvegg. Bilen stanser i løpet av 0.5 s. Anta at kraften som virker på bilen under kollisjonen er konstant

- a) Hvor stor er den totale impulsen som virker på bilen gjennom kollisjonen?
- b) Hvor stor er kraften som virker gjennom kollisjonen?
- c) Forklar ved hjelp av impulsoverføring hvorfor en tung kuffert bør ligge inntil baksiden av seteryggen i en stasjonsvogn.

Figur 1: Krets for oppgave 9b)

Oppgave 5

En planet med masse m_1 roterer rundt en mye større stjerne med masse m_2 i en avstand r.

a) Hva er rotasjonsperioden for planeten? (for unform sirkelbevegelse gjelder $a_r = v^2/r$).

Oppgave 6

En person står på skøyter på en friksjonsfri isflate. Han drar i et tau som går rundt en trinse som er festet i en vegg. Den andre enden går fra trinsa og tilbake til personen og er festet til beltet hans.

- a) Hvis personen drar med en kraft F i tauet hva blir akselerasjonen hans?
- b) Hvor mye arbeid har personen gjort når han har beveget seg en lengde s?

Oppgave 7

Vi har en masse m
 som er hengt opp i en fjær som henger i taket. Fjærkonstanten er k og responsen følger Hooks lov (F = -kx). Anta at fjæren er masseløs og all bevegelse er friksjonsfri. Vi trekker massen ned en lengde A fra likevektsposisjonen og slipper den.

a) Hva er den største hastigheten som massen har i løpet av en svingesyklus (Hint: kan være lurt å først regne ut den potensielle energien som funksjon av posisjon)?

Oppgave 8

a) Basert på dine fysiske intuisjon, ranger følgende matrialer etter lydhastighet: bly, vann, aluminium og luft. Forklar rangeringen.

Anta at vi eksiterer stående bølger i en orgelpipe med lengde L (som er lukket i den ene enden og åpen i den andre).

- b) Hva blir bølgelengden til de to modene med lavest frekvens?
- c) Hvor i pipen er trykkamplituden størst for moden med lavest frekvens?
- d) Bølgehastigheten i luft er 300 m/s. La L=1 m. Hva blir frekvensen til lydbølgen som kommer ut fra orgelpipen for hver av de to modene med lavest frekvens?

Figur 2: Krets for oppgave 9d)

Oppgave 9

- a) Vis at for seriekoblinger er ekvivalent motstand $R_{\text{eff}} = R_1 + R_2 + \dots$
- b) Anta at kretsen i figur 1 har stått på lenge og nådd likevekt (symbolet lengst til venstre er en standard spenningskilde). R2 representerer en lyspære. Hvor mye effekt omsettes i lyspæren (Hint: P = VI)? R1 = 10 Ohm, R2 = 100 Ohm, V = 10V, C = 10 μ F.
- c) Hva er spenningen over kondensatoren?
- d) Vi introduserer så en bryter i kretsen som vist i figur 2. Anta at bryteren har vært åpen lenge. Hvis vi nå lukker bryteren vil det ta litt tid før lyspæren begynner å lyse. Dersom vi øker kapasitansen på kondensatoren, vil det ta lengere eller kortere tid før lyspærene lyser? Vil den lys sterkere, svakere eller likt? Begrunn svaret

Oppgave 10

Du er teknisk sjef i et investeringsselskap. En industridesigner kommer til deg og ønsker at du skal invistere 10 millioner i et kjøleskap han har laget som kan fjerne opptil 100 kJ/min i varme fra kjøleskapet og max effekt er 100 W (når det er 4°C i kjøleskapet og 22°C i rommet). Før du bestemmer deg gjør du noen utregninger:

- a) Vis at varme overført når en ideell gass ekspanderer isotermt fra V_1 til V_2 er $Q = nRT \ln \left(\frac{V_2}{V_1}\right)$ (Hint: for en ideell gass er indre energi bare avhengig av temperaturen...også er det lurt å kunne termodynamikkens først lov).
- b) Vis at $\frac{|Q_C|}{|Q_H|} = \frac{T_C}{T_H}$ for en Carnot-syklus, der C og H referer til henholdsvis den kalde og varme isoterme delen av syklusen (Hint: kan være lurt å anta en ideell gas (pV = nRT) og bruke at $TV^{\gamma-1} = \text{konstant}$ for en adiabatisk prosess)
- c) Kjølekoeffisienten for et kjøleskapet er $K = \frac{|Q_C|}{|W|}$. Vis at for et kjøleskap drevet av en Carnotsyklus er $K = \frac{T_C}{T_H T_C}$.
- d) Sparker du designeren på dør eller vil du vurdere prosjeketet nærmere? Avgjørelsen må begrunnes slik at du kan rettferdiggjøre den overfor direktøren (som hverken vil være fornøyd med å kaste bort 10 millioner eller gå glipp av en veldig bra investering).