Kholle 5 filière MP* Jean-Louis CORNOU

- 1. Donner la définition d'un générateur d'un groupe. Décrire les générateurs de $(\mathbb{Z}/n\mathbb{Z},+)$.
- 2. Soit *n* un entier naturel.
 - (a) Montrer que 5 divise $2^{3n+5} + 3^{n+1}$
 - (b) Montrer que 30 divise $n^5 n$.
- 3. Soit a et b deux entiers naturels non nuls. Montrer que $PGCD(X^a-1, X^b-1) = X^{PGCD(a,b)} 1$.

Kholle 5 filière MP* Jean-Louis CORNOU

- 1. Donner la définition d'un élément inversible d'un anneau. A quelle condition nécessaire et suffisante sur l'entier naturel n l'anneau $\mathbb{Z}/n\mathbb{Z}$ est-il un corps?
- 2. Montrer qu'il existe une infinité de nombres premiers congrus à -1 modulo 6.
- 3. Soit G un groupe de neutre e, noté multiplicativement. On suppose que $\forall x \in G, x^2 = e$
 - (a) Montrer que G est commutatif.
 - (b) On suppose que G est fini et non réduit à $\{e\}$. Montrer qu'il existe un entier n tel que G est isomorphe à $((\mathbb{Z}/2\mathbb{Z})^n, +)$.

Kholle 5 filière MP* Jean-Louis CORNOU

- 1. Donner la définition de l'indicatrice d'Euler φ . Décrire les idéaux de K[X] avec K un sous-corps de $\mathbb C$.
- 2. Soit A un anneau commutatif et I un idéal de A. On note

$$\sqrt{I} = \{x \in A | \exists n \in \mathbb{N}^*, x^n \in I\}$$

- (a) Montrer que \sqrt{I} est un idéal de A.
- (b) On se place dans l'anneau ($\mathbb{Z}, +, \times$). Décrire $\sqrt{n\mathbb{Z}}$.
- 3. Soit G un groupe. On note $Z(G) = \{x \in G | \forall y \in G, xy = yx\}$. Montrer que Z(G) est un sous-groupe commutatif de G. En déduire que tout groupe fini d'ordre p^2 avec p un entier premier est commutatif.

Kholle 5 filière MP* Jean-Louis CORNOU

- 1. Décrire l'ensemble des irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$.
- 2. On appelle anneau euclidien un anneau A muni d'une application $\varphi:A^*\to\mathbb{N}$ appelée stathme qui vérifie les choses suivantes :

$$\forall (a,b) \in A \times A^*, \exists (q,r) \in A^2, a = bq + r \land (r = 0 \lor \varphi(r) < \varphi(b))$$
$$\forall (x,y) \in (A^*)^2, \varphi(xy) \geqslant \varphi(y)$$

Montrer que pour tout idéal I d'un anneau euclidien A, $\exists a \in A$, I = aA.

3. Montrer que l'anneau $\mathbb{Z}[i]$ est euclidien.

