FCC RF Test Report

APPLICANT : Bullitt Group

EQUIPMENT: Rugged Smart Phone

BRAND NAME : CAT MODEL NAME : S31

FCC ID : ZL5S31A

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The product was received on Aug. 06, 2017 and testing was completed on Oct. 06, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 1 of 62

1190

Report No.: FR780604-01A

Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

TABLE OF CONTENTS

SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Modification of EUT	5
	1.5	Testing Location	6
	1.6	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	UT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	21
	3.4	20dB and 99% Bandwidth Measurement	23
	3.5	Peak Output Power Measurement	
	3.6	Conducted Band Edges Measurement	37
	3.7	Conducted Spurious Emission Measurement	44
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	60
4		OF MEASURING EQUIPMENT	
5	UNC	ERTAINTY OF EVALUATION	62
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PEND	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PEND	X C. RADIATED SPURIOUS EMISSION	
AP	PEND	X D. RADIATED SPURIOUS EMISSION PLOTS	
AP	PEND	X E. DUTY CYCLE PLOTS	
AP	PEND	X F. SETUP PHOTOGRAPHS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 2 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No. : FR780604-01A

REVISION HISTORY

REPORT NO. VERSION		DESCRIPTION	ISSUED DATE
FR780604-01A	Rev. 01	Initial issue of report	Oct. 16, 2017

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 3 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No. : FR780604-01A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	3.4 - 99% Bandwidth		-	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	3.7 Conducted Spurious Emission		≤ 20dBc	Pass	-
3.8	Radiated Band Edg 3.8 15.247(d) and Radiated Spurio Emission		15.209(a) & 15.247(d)	Pass	Under limit 3.04 dB at 47.550 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 14.20 dB at 0.590 MHz
3.10	15.203 & Antenna Requirement		N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 4 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No. : FR780604-01A

1 General Description

1.1 Applicant

Bullitt Group

One Valpy, Valpy Street, Reading, Berkshire, England RG1 1AR

1.2 Manufacturer

Compal Electronics, INC.

No. 385, Yangguang St. Neihu District, Taipei City 11491, Taiwan, R.O.C

1.3 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, FM Receiver, and GPS.

Product Specification subjective to this standard					
	WWAN: Coupling type (LDS) Antenna				
	WLAN: PIFA Antenna				
Antenna Type	Bluetooth: PIFA Antenna				
	GPS / Glonass / BDS: PIFA Antenna				
	FM: using earphone as antenna				

Report No.: FR780604-01A

<Sample Information>

S31 has 2 different Variant					
Sample 1	Dual SIM				
Sample 2	Single SIM				
For Dual-SIM or Single-SIM control by SW, The HW difference is SIM holder					

Remark: All test items were performed with Sample 1.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 5 of 62

 TEL: 886-3-327-3456
 Report Issued Date
 : Oct. 16, 2017

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: ZL5S31A Report Template No.: BU5-FR15CBT Version 2.0

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.			
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,			
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.			
rest Site Location	TEL: +886-3-327-3456			
	FAX: +886-3-328-4978			
Toot Site No	Sporton	Site No.		
Test Site No.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,		
Test Site Location	Taoyuan City, Taiwan (R.O.C.)		
Test Site Location	TEL: +886-3-327-0868		
	FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
Test Site No.	03CH11-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 6 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 ${\it SPORTON\ INTERNATIONAL\ INC.}$

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 7 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 8 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

the following summary table is showing all test modes to demonstrate in compliance with the standard.							
Summary table of Test Cases							
		Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π /4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Conducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	Bluetooth EDR 3Mbps 8-DPSK						
Radiated		Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz						
		Mode 3: CH78_2480 MHz					
	Summa	ry table of Test Cases					
AC							
Conducted		Bluetooth Link + WLAN (2.4GI	, , ,				
Emission	Earphone + USB Cable (Charging from Adapter) + SIM 1						
1 _							

Remark:

For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and the conducted spurious emissions and conducted band edge measurement for each data rate are no worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 9 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
5.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
6.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
8.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 10 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

2.5 UT Operation Test Setup

The RF test items, programmed RF utility, "QRCT" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 4.2 + 10 = 14.2 (dB)

Page Number : 11 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 12 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

Date: 13.SEP.2017 15:10:49

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A

: 13 of 62 Page Number Report Issued Date: Oct. 16, 2017

: Rev. 01

Report No.: FR780604-01A

Report Version Report Template No.: BU5-FR15CBT Version 2.0

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels;
 - RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 14 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

<1Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 13.SEP.2017 15:25:07

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 15 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

Channel Separation Plot on Channel 39 - 40

Date: 13.SEP.2017 15:27:49

Channel Separation Plot on Channel 77 - 78

Date: 13.SEP.2017 15:30:37

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 16 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

<2Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 13.SEP.2017 15:33:23

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 17 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No. : FR780604-01A

Channel Separation Plot on Channel 39 - 40

Date: 13.SEP.2017 15:38:39

Channel Separation Plot on Channel 77 - 78

Date: 13.SEP.2017 15:41:33

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 18 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

<3Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 13.SEP.2017 15:46:23

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 19 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No. : FR780604-01A

Channel Separation Plot on Channel 39 - 40

Date: 13.SEP.2017 15:49:20

Channel Separation Plot on Channel 77 - 78

Date: 13.SEP.2017 15:52:45

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 20 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 21 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 13.SEP.2017 15:37:05

Remark:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 22 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW \geq 1% of the 20 dB bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;

Trace = \max hold.

- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW \geq 1% of the 99% bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;

Trace = max hold.

6. Measure and record the results in the test report.

3.4.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 23 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 13.SEP.2017 15:12:35

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 24 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

20 dB Bandwidth Plot on Channel 39

Date: 13.SEP.2017 15:13:32

20 dB Bandwidth Plot on Channel 78

Date: 13.SEP.2017 15:14:46

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 25 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

Report No. : FR780604-01A

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 13.SEP.2017 15:18:46

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 26 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

20 dB Bandwidth Plot on Channel 39

Date: 13.SEP.2017 15:17:11

20 dB Bandwidth Plot on Channel 78

Date: 13.SEP.2017 15:15:59

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 27 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

Report No. : FR780604-01A

<3Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 13.SEP.2017 15:19:50

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 28 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

20 dB Bandwidth Plot on Channel 39

Date: 13.SEP.2017 15:21:10

20 dB Bandwidth Plot on Channel 78

Date: 13.SEP.2017 15:22:11

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 29 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 13.SEP.2017 15:23:55

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 30 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

99% Occupied Bandwidth Plot on Channel 39

Date: 13.SEP.2017 15:26:43

99% Occupied Bandwidth Plot on Channel 78

Date: 13.SEP.2017 15:29:18

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 31 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 13.SEP.2017 15:32:10

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 32 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

99% Occupied Bandwidth Plot on Channel 39

Date: 13.SEP.2017 15:37:21

99% Occupied Bandwidth Plot on Channel 78

Date: 13.SEP.2017 15:40:21

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 33 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 13.SEP.2017 15:44:46

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 34 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

99% Occupied Bandwidth Plot on Channel 39

Date: 13.SEP.2017 15:47:56

99% Occupied Bandwidth Plot on Channel 78

Date: 13.SEP.2017 15:50:47

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 35 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 36 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 37 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.6.5 Test Result of Conducted Band Edges

Please refer to Appendix A.

<1Mbps>

Low Band Edge Plot on Channel 00

Date: 13.SEP.2017 15:24:16

High Band Edge Plot on Channel 78

Date: 13.SEP.2017 15:29:39

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 38 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

FCC RF Test Report

<2Mbps>

Low Band Edge Plot on Channel 00

Date: 13.SEP.2017 15:32:31

High Band Edge Plot on Channel 78

Date: 13.SEP.2017 15:40:40

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A

Page Number : 39 of 62 Report Issued Date: Oct. 16, 2017 Report Version : Rev. 01

Report No.: FR780604-01A

<3Mbps>

Low Band Edge Plot on Channel 00

Date: 13.SEP.2017 15:45:20

High Band Edge Plot on Channel 78

Date: 13.SEP.2017 15:51:35

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 40 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 13.SEP.2017 14:59:01

Hopping Mode High Band Edge Plot

Date: 13.SEP.2017 14:59:36

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 41 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 13.SEP.2017 15:00:50

Hopping Mode High Band Edge Plot

Date: 13.SEP.2017 15:07:03

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 42 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

FCC RF Test Report

<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 13.SEP.2017 15:08:56

Hopping Mode High Band Edge Plot

Date: 13.SEP.2017 15:07:48

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 43 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 44 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 2.0

3.7.5 Test Result of Conducted Spurious Emission

Please refer to Appendix A.

<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:22:59

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:23:21

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 45 of 62 Report Issued Date : Oct. 16, 2017 Report Version : Rev. 01

Report No.: FR780604-01A

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:25:37

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:25:59

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 46 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:28:21

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:28:42

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 47 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:34:41

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:35:03

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 48 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:35:45

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:36:07

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 49 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:39:25

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:39:47

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 50 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:43:48

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:44:10

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 51 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:46:57

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:47:18

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 52 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 13.SEP.2017 15:49:51

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 13.SEP.2017 15:50:13

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 53 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 54 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds

 On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$ Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.
 - Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 55 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 56 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 57 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted	limit (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 58 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 59 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 60 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1218006	N/A	Oct. 06, 2016	Sep.13, 2017~ Sep.14, 2017	Oct. 05, 2017	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1207363	300MHz~40GHz	Oct. 06, 2016	Sep.13, 2017~ Sep.14, 2017	Oct. 05, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101067	9kHz ~ 30GHz	Nov. 17, 2016	Sep.13, 2017~ Sep.14, 2017	Nov. 16, 2017	Conducted (TH05-HY)
BT Base Station (Measure)	Rohde & Schwarz	CBT	101136	BT 3.0	Sep. 21, 2016	Sep.13, 2017~ Sep.14, 2017	Sep. 20, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Oct. 06, 2017	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Sep. 20, 2017	Oct. 06, 2017	Sep. 19, 2018	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Oct. 06, 2017	Nov. 28, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 06, 2016	Oct. 06, 2017	Dec. 05, 2017	Conduction (CO05-HY)
Amplifier	MITEQ	TTA1840-35-HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 18, 2017	Sep. 17, 2017 ~ Sep.19, 2017	Jul. 17, 2018	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 10, 2016	Sep. 17, 2017 ~ Sep.19, 2017	Nov. 09, 2017	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D&N-6-06	35414&AT-N06 02	30MHz~1GHz	Oct. 15, 2016	Sep. 17, 2017 ~ Sep.19, 2017	Oct. 14, 2017	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz ~ 18GHz	Oct. 07, 2016	Sep. 17, 2017 ~ Sep.19, 2017	Oct. 06, 2017	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Oct. 20, 2016	Sep. 17, 2017 ~ Sep.19, 2017	Oct. 19, 2018	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 10, 2016	Sep. 17, 2017 ~ Sep.19, 2017	Nov. 09, 2017	Radiation (03CH11-HY)
Preamplifier	MITEQ	AMF-7D-001018 00-30-10P	1902247	1GHz~18GHz	Jun. 23, 2017	Sep. 17, 2017 ~ Sep.19, 2017	Jun. 22, 2018	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz ~ 44GHz	Oct. 12, 2016	Sep. 17, 2017 ~ Sep.19, 2017	Oct. 11, 2017	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Sep. 17, 2017 ~ Sep.19, 2017	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Sep. 17, 2017 ~ Sep.19, 2017	N/A	Radiation (03CH11-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290053	20Hz~26.5GHz	Jan. 12, 2017	Sep. 17, 2017 ~ Sep.19, 2017	Jan. 11, 2018	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170584	18GHz- 40GHz	Nov. 08, 2016	Sep. 17, 2017 ~ Sep.19, 2017	Nov. 07, 2017	Radiation (03CH11-HY)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 61 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No. : FR780604-01A

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.70
of 95% (U = 2Uc(y))	2.70

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.50
of 95% (U = 2Uc(y))	5.50

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

		<u>-</u>
Ме	asuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.20

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: ZL5S31A Page Number : 62 of 62
Report Issued Date : Oct. 16, 2017
Report Version : Rev. 01

Report No.: FR780604-01A

Report Number : FR780604-01A

Appendix A. Test Result of Conducted Test Items

Bluetooth

Test Engineer:	Aking chang	Temperature:	21~25	°C
Test Date:	2017/9/13~2017/9/14	Relative Humidity:	51~54	%

			20dB	and 99	9% Occup		SULTS DATA Ith and Hopping	Channel Separa	ation
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.992	0.896	1.002	0.6613	Pass
DH	1Mbps	1	39	2441	0.928	0.876	1.002	0.6187	Pass
DH	1Mbps	1	78	2480	0.928	0.880	1.002	0.6187	Pass
2DH	2Mbps	1	0	2402	1.272	1.176	1.002	0.8480	Pass
2DH	2Mbps	1	39	2441	1.268	1.172	1.002	0.8453	Pass
2DH	2Mbps	1	78	2480	1.268	1.172	1.002	0.8453	Pass
3DH	3Mbps	1	0	2402	1.228	1.148	1.002	0.8187	Pass
3DH	3Mbps	1	39	2441	1.232	1.148	1.002	0.8213	Pass
3DH	3Mbps	1	78	2480	1.228	1.144	1.002	0.8187	Pass

			<u>TES</u>	T RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

					T RESUL
			Peak Power	Power Limit	Test
DH	CH.	NTX	(dBm)	(dBm)	Result
	0	1	10.13	20.97	Pass
DH1	39	1	10.17	20.97	Pass
	78	1	9.46	20.97	Pass
					_
2DH	CH.	NTX	Peak Power	Power Limit	Test
			(dBm)	(dBm)	Result
l	0	1	10.83	20.97	Pass
2DH1	39	1	10.90	20.97	Pass
	78	1	10.19	20.97	Pass
3DH	CH.	NTX	Peak Power	Power Limit	Test
			(dBm)	(dBm)	Result
l . .	0	1	11.16	20.97	Pass
3DH1	39	1	11.35	20.97	Pass
	78	1	10.63	20.97	Pass

Appendix B. AC Conducted Emission Test Results

Took Engineer		Temperature :	25~26 ℃
Test Engineer :	Diue Lan	Relative Humidity :	42~43%

Report No. : FR780604-01A

SPORTON INTERNATIONAL INC. Page Number : B1 of B1

TEL: 886-3-327-3456 FAX: 886-3-328-4978

EUT Information

Report NO: 780604-01
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz

Phase: Line

ENV216 Auto Test FCC Power Bar - L

Final Result 1

Frequency	QuasiPeak	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	39.4	Off	L1	19.6	26.6	66.0
0.302000	31.5	Off	L1	19.6	28.7	60.2
0.574000	33.6	Off	L1	19.6	22.4	56.0
1.974000	25.4	Off	L1	19.6	30.6	56.0
3.806000	26.9	Off	L1	19.7	29.1	56.0
7.718000	33.8	Off	L1	19.9	26.2	60.0
26.646000	42.7	Off	L1	20.9	17.3	60.0

Final Result 2

Frequency	Average	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	27.7	Off	L1	19.6	28.3	56.0
0.302000	24.3	Off	L1	19.6	25.9	50.2
0.574000	24.7	Off	L1	19.6	21.3	46.0
1.974000	18.7	Off	L1	19.6	27.3	46.0
3.806000	17.5	Off	L1	19.7	28.5	46.0
7.718000	26.4	Off	L1	19.9	23.6	50.0
26.646000	30.4	Off	L1	20.9	19.6	50.0

EUT Information

Report NO: 780604-01
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

ENV216 Auto Test FCC Power Bar - N

Final Result 1

Frequency	QuasiPeak	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	46.3	Off	N	19.5	19.7	66.0
0.590000	37.8	Off	N	19.5	18.2	56.0
0.678000	32.4	Off	N	19.5	23.6	56.0
1.382000	27.6	Off	N	19.6	28.4	56.0
1.966000	27.5	Off	N	19.6	28.5	56.0
7.494000	33.8	Off	N	19.9	26.2	60.0
26.182000	35.5	Off	N	21.0	24.5	60.0

Final Result 2

Frequency	Average	Filter	Line	Corr.	Margin	Limit						
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)						
0.150000	25.4	Off	N	19.5	30.6	56.0						
0.590000	31.8	Off	N	19.5	14.2	46.0						
0.678000	27.5	Off	N	19.5	18.5	46.0						
1.382000	21.0	Off	N	19.6	25.0	46.0						
1.966000	21.2	Off	N	19.6	24.8	46.0						
7.494000	26.6	Off	N	19.9	23.4	50.0						
26.182000	26.7	Off	N	21.0	23.3	50.0						

Appendix C. Radiated Spurious Emission

Toot Engineer		Temperature :	20-24°C
Test Engineer :	Jacky Hung	Relative Humidity :	50-55%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2375.94	42.34	-31.66	74	42.84	26.81	6.29	33.6	128	97	Р	Н
		2375.94	17.55	-36.45	54	-	-	-	-	-	-	Α	Н
	*	2402	106.42	-	-	106.78	26.87	6.36	33.59	128	97	Р	Н
	*	2402	81.63	-	-	-	-	-	-	-	-	Α	Н
ВТ													Н
CH00													Н
2402MHz		2370.8	42.2	-31.8	74	42.7	26.81	6.29	33.6	359	60	Р	V
		2370.8	17.41	-36.59	54	-	-	-	-	-	-	Α	V
	*	2402	101.79	-	-	102.15	26.87	6.36	33.59	359	60	Р	V
	*	2402	77	-	-	-	-	-	-	-	-	Α	V
													V
													V
		2340.66	42.62	-31.38	74	43.3	26.7	6.22	33.6	121	91	Р	Н
		2340.66	17.83	-36.17	54	-	-	-	-	-	-	Α	Н
	*	2441	107.45	-	1	107.62	27.03	6.38	33.58	121	91	Р	Η
	*	2441	82.66	-	ı	-	-	-	-	-	-	Α	Н
ВТ		2484.81	43.44	-30.56	74	43.49	27.14	6.39	33.58	121	91	Р	Н
CH 39		2484.81	18.65	-35.35	54	-	-	-	-	-	-	Α	Н
2441MHz		2366.28	43.24	-30.76	74	43.79	26.76	6.29	33.6	386	65	Р	٧
Z77 (IVI) (Z		2366.28	18.45	-35.55	54	-	-	-	-	-	-	Α	٧
	*	2441	103.28	-	1	103.45	27.03	6.38	33.58	386	65	Р	٧
	*	2441	78.49	-	-	-	-	-	-	-	-	Α	V
		2489.71	42.96	-31.04	74	42.95	27.2	6.39	33.58	386	65	Р	V
		2489.71	18.17	-35.83	54	-	-	-	-	-	-	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

*	2480	107.15	-	-	107.21	27.14	6.38	33.58	118	87	Р	Н
*	2480	82.36	-	-	-	-	-	-	-	-	Α	Н
	2483.56	52.58	-21.42	74	52.64	27.14	6.38	33.58	118	87	Р	Н
	2483.56	27.79	-26.21	54	-	-	-	-	-	-	Α	Н
												Н
												Н
*	2480	102.02	-	-	102.08	27.14	6.38	33.58	376	70	Р	V
*	2480	77.23	-	-	-	-	-	-	-	-	Α	V
	2483.52	47.4	-26.6	74	47.46	27.14	6.38	33.58	376	70	Р	V
	2483.52	22.61	-31.39	54	_	-	-	-	-	-	Α	V
												V
												V
	*	* 2480 2483.56 2483.56 * 2480 * 2480 2483.52	* 2480 82.36 2483.56 52.58 2483.56 27.79 * 2480 102.02 * 2480 77.23 2483.52 47.4	* 2480 82.36 - 2483.56 52.58 -21.42 2483.56 27.79 -26.21 * 2480 102.02 - * 2480 77.23 - 2483.52 47.4 -26.6	* 2480 82.36	* 2480 107.15 - - 107.21 * 2480 82.36 - - - 2483.56 52.58 -21.42 74 52.64 2483.56 27.79 -26.21 54 - * 2480 102.02 - - 102.08 * 2483.52 47.4 -26.6 74 47.46	* 2480 107.15 - - 107.21 27.14 * 2480 82.36 - - - - - 2483.56 52.58 -21.42 74 52.64 27.14 2483.56 27.79 -26.21 54 - - * 2480 102.02 - - 102.08 27.14 * 2480 77.23 - - - - 2483.52 47.4 -26.6 74 47.46 27.14	* 2480 107.15 - - 107.21 27.14 6.38 * 2483.56 52.58 -21.42 74 52.64 27.14 6.38 2483.56 27.79 -26.21 54 - - - * 2480 102.02 - - 102.08 27.14 6.38 * 2480 77.23 - - - - - 2483.52 47.4 -26.6 74 47.46 27.14 6.38	* 2480 107.13 - - 107.21 27.14 6.38 33.58 * 2483.56 52.58 -21.42 74 52.64 27.14 6.38 33.58 2483.56 27.79 -26.21 54 - - - - - * 2480 102.02 - - 102.08 27.14 6.38 33.58 * 2483.52 47.4 -26.6 74 47.46 27.14 6.38 33.58	* 2480 107.13 - - 107.21 27.14 6.38 33.58 118 * 2483.56 52.58 -21.42 74 52.64 27.14 6.38 33.58 118 2483.56 27.79 -26.21 54 - - - - - - * 2480 102.02 - - 102.08 27.14 6.38 33.58 376 * 2483.52 47.4 -26.6 74 47.46 27.14 6.38 33.58 376	* 2480 107.13 - - 107.21 27.14 6.38 33.58 118 87 * 2483.56 52.58 -21.42 74 52.64 27.14 6.38 33.58 118 87 2483.56 27.79 -26.21 54 -	* 2480 107.13 - - 107.21 27.14 6.38 33.58 116 87 P * 2483.56 52.58 -21.42 74 52.64 27.14 6.38 33.58 118 87 P 2483.56 27.79 -26.21 54 - - - - - A * 2480 102.02 - - 102.08 27.14 6.38 33.58 376 70 P * 2483.52 47.4 -26.6 74 47.46 27.14 6.38 33.58 376 70 P

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	
		4804	43.71	-30.29		65.1	31.6	9.6	63.02	100	0	P	Н
		4804	18.92	-35.08		-	-	-	-	-	-	Α	Н
													Н
ВТ													Н
CH 00		4804	45.26	-28.74	74	67.08	31.6	9.6	63.02	100	0	Р	V
2402MHz		4804	20.47	-33.53	54	-	-	-	-	-	-	Α	V
													V
													V
		4882	44.01	-29.99	74	65.18	31.71	9.56	62.87	100	0	Р	Н
		4882	19.22	-34.78	54	-	-	-	-	-	-	Α	Н
		7323	44.69	-29.31	74	58.13	37.51	11.31	62.7	100	0	Р	Н
BT		7323	19.9	-34.1	54	-	-	-	-	-	-	Α	Н
CH 39		4882	45.58	-28.42	74	67.18	31.71	9.56	62.87	100	0	Р	V
2441MHz		4882	20.79	-33.21	54	-	-	-	-	-	-	Α	V
		7323	43.8	-30.2	74	57.68	37.51	11.31	62.7	100	0	Р	V
		7323	19.01	-34.99	54	-	-	-	-	-	-	Α	V
		4960	48.04	-25.96	74	68.91	31.84	9.53	62.68	100	0	Р	Н
		4960	23.25	-30.75	54	-	-	-	-	-	-	Α	Н
5.		7440	44.05	-29.95	74	57.04	38.06	11.34	62.77	100	0	Р	Н
BT CU 79		7440	19.26	-34.74	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz		4960	53.83	-20.17	74	75.14	31.84	9.53	62.68	100	0	Р	V
2700WII IZ		4960	29.04	-24.96	54	-	-	-	-	-	-	Α	V
		7440	44.49	-29.51	74	57.86	38.06	11.34	62.77	100	0	Р	V
		7440	19.7	-34.3	54	-	-	-	-	-	-	Α	V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz

2.4GHz BT (LF)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	1
		146.37	24.39	-19.11	43.5	38.06	17.19	1.51	32.44	-	-	Р	Н
		201.45	28.41	-15.09	43.5	44.05	14.97	1.72	32.39	-	-	Р	Н
		250.32	29.52	-16.48	46	41.33	18.55	1.95	32.38	-	-	Р	Н
		858.6	31.75	-14.25	46	30.42	29.38	3.67	31.87	-	-	Р	Н
		904.8	32.79	-13.21	46	31.2	29.25	3.79	31.61	-	-	Р	Н
		955.2	34.35	-11.65	46	30.41	31.02	3.9	31.15	100	0	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT LF		40.8	36.34	-3.66	40	49.17	18.83	0.82	32.49	-	-	Р	٧
-1		47.55	36.96	-3.04	40	53.05	15.38	1.02	32.49	100	0	Р	V
		72.39	26.59	-13.41	40	45.43	12.41	1.22	32.49	-	-	Р	V
		883.1	31.51	-14.49	46	30.16	29.21	3.73	31.75	-	-	Р	V
		941.9	33.61	-12.39	46	30.44	30.45	3.82	31.27	-	-	Р	V
		951.7	34	-12	46	30.33	30.86	3.82	31.18	-	-	Р	V
													٧
													V
													V
													V
													٧
													V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: C4 of C6

Note symbol

Report No. : FR780604-01A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL INC. Page Number : C5 of C6

TEL: 886-3-327-3456 FAX: 886-3-328-4978

A calculation example for radiated spurious emission is shown as below:

Report No.: FR780604-01A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC. Page Number : C6 of C6

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Jacky Hung	Temperature :	20-24°C
		Relative Humidity :	50-55%

2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

CC RF Test Report No.: FR780604-01A

TEL: 886-3-327-3456 FAX: 886-3-328-4978 CC RF Test Report No.: FR780604-01A

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz 2.4GHz BT (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR780604-01A

Appendix E. Duty Cycle Plots

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

Page Number

: E-1 of E2

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.4 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

$$2.88 \text{ ms } x 2 = 5.74 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.76 \text{ ms}/100\text{ms}) = -24.79 \text{ dB}$

TEL: 886-3-327-3456 FAX: 886-3-328-4978