Numerical Methods for Noulinear Equations

- · compute yield of a bond (y)
- · compute implied volatility (Timp)
- · compute zero note curves from bond prices

Involve solving a nonlinear equation of the form $f(x) = 0 \qquad \text{for } x$

Bisection Method

Let $f: [a, b] \rightarrow R$ such that f(a) = -sgu(f(b))Example cases.

b. x

From the intermediate value theorem there exists at least one point $x \in (a, b)$ for which f(x) = 0

There are might be more points but the bisection method finds only one se it considers
the case of only one point over sa, b]. net $C = \frac{a+b}{2}$ compute f(c)

. If f(c) = 0 then solution is x=c

. If f (cc) how different sign than f (a) then New Crew = C+OI and repeat process

. If feet hois some sign as feat them new Cnew = C+b and repeat process for interval (Cnew, 6)

Process slops when |f(Cuew) | < ftoler. and interval is less than Int-tolerance. Theorem 8.1 If $f: [a,b] \rightarrow [a]$ is a continuous function and f(a) and f(b) have opposite signs, then the bisection method coveryes to a solution f(x) = 0 for some $x \in (a,b)$.

Outline of proof

At each step the interval is halved. After N-steps the active interval is

 $\times_{e} - \times_{L} = \frac{b-\alpha}{2^{n}}$ $\times_{e} \times_{L}$

One Stopping condition |XR-XL < tol-Interval

 $\frac{b-\alpha}{2^n} \leq tol_{-1}ntonal$

=> I ou n such that slopping criterion
is satisfied

Assuming f(x) is differentiable in $|f'(x)| \le c$ $\forall x \in [a, b]$ for some constant C > 0.

From MVT $\exists \alpha \text{ point } \xi \in (X_L, X_E)$ $\frac{f(X_E) - f(X_L)}{X_E - X_L} = f'(\xi)$

$$\max\left(\left|f(X_{E})\right|,\left|f(X_{L})\right|\right) \leq \left|f(X_{E})-f(X_{L})\right| \leq C\frac{(b-a)}{2^{M}}$$

due to $f(X_{E})$ making opposite sign with $f(X_{L})$

Is satisfied.

Example $f(x) = x^{4} - 5x^{2} + 4 - \frac{1}{1 + e^{x^{3}}}, \quad [-2,3]$ $f(-2) = -0.9997, \quad f(3) = 40$ $tol_{-1} \text{ Interval} = 10^{-6}, \quad tol_{-1} \text{ function} = 10^{-9}$ $After 33 \quad \text{i terrations} \quad \text{the solution is } -0.889642$ $Note that 2.000028 \in [-2,3] \quad \text{is another zero}$

Commonly used. It can extend to high dimensional systems.

Consider f(x) = 0 $f(x_0), y$ $f(x_0) = f(x_0) + f'(x_0)(x - x_0)$ $f(x_0) = f(x_0) + f'(x_0)(x - x_0)$

Let x_k be an approximation of the solution f(x) = 0. The noxt value of x denoted by x_{k+1} is taken as the value of x which corresponds to the x-axis intercept of the transpond $y = f(x_k) + f'(x_k)(x-x_k)$ at the point x_k , i.e. for $y = f(x_k) + f'(x_k)(x_k)$

 $\Rightarrow \qquad \times_{k+1} = \times_k - \frac{f(x_k)}{f'(x_k)}$

$$f(x) \approx f(x_k) + f'(x_k) (x - x_k)$$

het X = XK+1 Men

Sething $f(x_{k+1}) = 0 \Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$

Stænt will om initial guess Xo

Compute $f(x_0)$, $f'(x_0)$ then $x_1 = x_0 - \frac{f(x_0)}{f(x_0)}$

 $\chi_1 = \chi_0 - \frac{f(\chi_0)}{f'(\chi_0)}$

compute f(XI), f'(XI) then

$$X_2 = X_1 - \frac{f(x_1)}{f'(x_1)}$$

etc.

Given, initial guess to there is no guarantee that the medhod will converge to on X that satisfies f(X) = 0.

Speed and convergence depend on the occurracy of initial guess to.

In financial applications usually liere is a good initial guess i.e yield is positive within certain possible values etc.

Stopping criteria

 $|X_{N+1}-X_N| \leq tol-consel$. $\approx 10^{-6}$ $|f(X_{N+1})| \leq tol-approx. \approx 10^{-9}$

Theorem 8.72 Let x^* be a solution of f(x) = 0. Assume that f(x) is twice differentiable with f''(x) continuous, If $f'(x^*) \neq 0$ and If x_0 is close enough to x^* , then Newton's method converges quadratically i.e. $\exists M \geq 0$ and a positive integer n_M such that

Outline of proof

het
$$x^*$$
 be a solution of $f(x^*) = 0$

than the recursion equation satisfies

$$x_{u+i} - x^{*} = x_{u} - x^{*} - (f(x_{u}) - f(x^{*}))$$

$$= f(x^{*}) - f(x_{u}) + (x_{u} - x^{*}) f'(x_{u})$$

$$= f'(x_{u})$$

From Taylor's formula

$$f(x) - P_n(x) = \frac{(x-\alpha)^{n+1}}{(n+1)!} f(x)$$

where $C \in (a, x)$ and

$$P_{N}(x) = \sum_{k=0}^{N} \frac{(x-\alpha)^{k}}{k!} f^{(k)}(\alpha)$$

For n=1

$$f(x) - P_i(x) = f(x) - f(\alpha) + (x - \alpha) f'(\alpha) = \frac{(x - \alpha)}{z} f'(c)$$

We conclude that \exists constant C_k between χ^* and χ_k such that $f(\chi^*) - \left(f(\chi_k) + (\chi^* - \chi_k)f'(\chi_k)\right) = \left(\frac{\chi^* - \chi_k}{2}\right)^2 f''(C_k)$

 $f'(x_{k+1} - x^{*} = (x^{*} - x_{k})^{2} \frac{f''(c_{k})}{2f'(x_{k})}$

 $= \frac{|x_{k+1} - x^{*}|}{|x_{k} - x^{*}|^{2}} = \frac{|f''(c_{k})|}{2|f'(x_{k})|}$

Since f'', f' were continuous and $f(x^*) \neq 0$ It follows that if X_k is close to x^* then $f'(x_k) \neq 0$ by continuity.

 $\Rightarrow \frac{|f''(c_u)|}{2|f'(x_u)|} \geq \infty$

For some problems f'(x) connot be calculated as f(x) may be given in firm of data and a closed form for f(x) may not be known. In such case the Newton's method uses an approximation of $f'(x_k)$ as $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$

 $x_{k+1} = x_k - \frac{(x_k - x_{k-1}) f(x_k)}{f(x_k) - f(x_{k-1})}, \forall k \ge 0$

Two approximate guesses X_{-1} and X_0 with $f(X_{-1}) \neq f(X_0)$ must be used to initialize the secont method.

The stopping criterion are the same as in Newton's case.

Secont method is usually clower thom Newton's method.

N- dimensional systems

Let
$$F: \mathbb{R}^N \longrightarrow \mathbb{R}^N$$
, $F = \begin{bmatrix} F_i c x y \\ F_2 c x y \end{bmatrix}$, $\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_N \end{bmatrix}$

where
$$F_{\mathcal{L}}(x): \mathbb{R}^N \to \mathbb{R}$$

Solve

$$F(x) = 0$$
 for x .

Gradient DF(x) of F(x) is the N×N matrix

$$DF(x) = \begin{pmatrix} \frac{\partial F_{1}(x)}{\partial x_{1}}, & \frac{\partial F_{1}}{\partial x_{2}}, & -\frac{\partial F_{1}(x)}{\partial x_{N}} \\ \frac{\partial F_{N}}{\partial x_{1}} & ----\frac{\partial F_{N}}{\partial x_{N}} \end{pmatrix}$$

From Toylor expousion around xx

$$F(x) \approx F(x_k) + DF(x_k)(x-x_k)$$

Setting
$$F(x_{k+1}) = 0$$

 $x_{k+1} = x_k - (DF(x_k)) F(x_k)$

comparing vector $U_{K} = (DF(x_{ii}))^{T}F(x_{ii})$ is equivalent to solving the linear equation

DF(Zu) Ux = F(Xx)

More efficient numerical linear algebra methods may be used to solve for Uk for each k and then compute

Xx+1 = Xx - Ux

Stopping criterial

|| F(Xnew) || = tol-ouppr.

|| Xnew - Xoes || = tol-consey.

| . | = Euclidean norm

Theorem 8:3 Let x* be a solution of F(x) = 0 where F(x) is a function with continuous 2nd order partial derivatives. If $DF(x^*)$ is invertible and XO is close to X^* , then the Newton's method converges quadratically i.e $\exists M > 0$ and $n_M positives$ integer $\|X_{K+1} - X^*\| \ge M \|X_K - X^*\|^2 = \forall K \ge n_M$

Approximate Newton's Method

Forward finite difference approx-
$$\frac{\partial F_{\mathcal{E}}(x)}{\partial x_{\mathcal{G}}} \approx \Delta_{\mathcal{G}} F_{\mathcal{E}}(x) = \frac{F_{\mathcal{E}}(x + h e_{\mathcal{G}}) - F_{\mathcal{E}}(x)}{h}$$

$$e_{\mathcal{G}} = \begin{pmatrix} 0 - 0 & 1 & 0 - 0 & 0 \end{pmatrix}^{T}$$

$$\int_{\mathcal{G}} + h \ \text{derm}$$

$$\Delta F(x) = \begin{pmatrix} \Delta_{1} F_{1}(x) & \Delta_{2} F_{1}(x) & -\Delta_{N} F_{1}(x) \\ \Delta_{1} F_{N}(x) & \Delta_{2} F_{N}(x) - -\Delta_{N} F_{N}(x) \end{pmatrix}$$

$$\chi_{k+1} = \chi_{k} - \left(\Delta F(\chi_{k})\right)^{-1} F(\chi_{k})$$

Another approximation (central finite differences)
$$\frac{\partial F_{\mathcal{L}}(x)}{\partial x_{i}} \approx \frac{F_{\mathcal{L}}(x+he_{j}) - F_{\mathcal{L}}(x-he_{j})}{2h}$$

More computations.