Instructions for preparing the solution script:

- Write your name, ID#, and Section number clearly in the very front page.
- Write all answers sequentially.
- Start answering a question (not the pat of the question) from the top of a new page.
- Write legibly and in orderly fashion maintaining all mathematical norms and rules. Prepare a single solution file.
- Start working right away. There is no late submission form. If you miss the deadline, you need to use the make-up assignment to cover up the marks.
- 1. Consider a function $f(x) = x^3 + x^2 4x 4$.
 - (a) (3 marks) Compute the minimum number of iterations required to find the root if the machine epsilon(error bound) is 1×10^{-2} and the interval is [-10,-1.5].
 - (b) (4 marks) Show 5 iterations using the Bisection Method to find the root of the above function within the interval [-10,-1.5].
 - (c) (2 marks) State the exact roots of f(x) and construct two different fixed point functions g(x) such that f(x) = 0.
 - (d) (3 marks) Compute the convergence rate of each fixed point function g(x) obtained in the previous part, and state which root it is converging to or diverging.
- 2. Consider the following function: $f(x) = xe^x 1$.
 - (a) (3 marks) Find solution of f(x) = 0 up to 5 iterations using Newton's method starting with $x_0 = 1.5$. Keep up to four significant figures.
 - (b) (4 marks) Consider the fixed point function, $g(x) = \frac{2x+1}{\sqrt{x+1}}$. Show that to be super-linearly convergent, the root must satisfy $x^* = \frac{-3}{2}$.
- 3. (a) (3 marks) Consider the function $f(x) = x^2 x + 1$ and starting point $x_0 = 0$. Show that the sequence using Newton's method x1, x2, \cdots fails to approach a root of f(x).
 - (b) (4 marks) Consider the function f(x) = cos(2x) sinx. Compute the solution of the function, such that f(x) = 0, using Newton's method with Aitken's acceleration and starting point, $x_0 = 0$. Consider up to five decimal places. [Error bound is 1×10^{-3}]