Note

The shortest common nonsubsequence problem is NP-complete

M. Middendorf

Institut für Angewandte Informatik und Formale Sprachen, Postfach 6980, W-7500 Karlsruhe, Germany

Communicated by D. Perrin Received September 1991 Revised January 1992

Abstract

Middendorf, M., The shortest common nonsubsequence problem is NP-complete, Theoretical Computer Science 108 (1993) 365-369.

The Shortest Common Nonsubsequence (SCNS) problem is: Given a finite set L of strings over an alphabet Σ and an integer $k \in \mathbb{N}$, is there a string of length $\leq k$ over Σ that is not a subsequence of any string in L? The SCNS problem is shown to be NP-complete for strings over an alphabet of size ≥ 2 .

1. Introduction

Given a string T over an alphabet Σ , a subsequence of T is any string that can be obtained by erasing zero or more symbols from T. A subsequence S of T is called substring of T if T is of the form T'ST'', where T' and T'' are strings over Σ .

The Shortest Common Nonsubsequence (SCNS) problem is to find, for a finite set of strings L over an alphabet Σ and an integer $k \in \mathbb{N}$, a string S of length $\leq k$ over Σ that is not a subsequence of any string in L. Analogously, the Shortest Common Nonsubstring problem is to find, for a finite set of strings L over an alphabet

Correspondence to: M. Middendorf, Institut für Angewandte Informatik und Formale Sprachen, Postfach 6980, W-7500 Karlsruhe, Germany. Email: mmi@aifb.uni-karlsruhe.de.

 Σ and an integer $k \in \mathbb{N}$, a string S of length $\leq k$ over Σ that is not a substring of any string in L.

The SCNS problem and the Shortest Common Nonsubstring problem have been introduced by Timkovskii [5]. Both problems find applications in mechanical engineering (see [5]).

Timkovskii stated that the Shortest Common Nonsubstring problem is polynomial-time-solvable. He raises the question whether the SCNS problem is polynomial-time-solvable too.

In this paper we give a negative answer to this question (unless P=NP). We show that the SCNS problem is NP-complete for strings over an alphabet of size ≥ 2 .

Moreover, we consider a problem which is closely related to the SCNS problem. Let T and T' be two strings over an alphabet Σ and let $L = \{T_1, T_2, ..., T_l\}$ be a set of strings over Σ . We say that a string S distinguishes T and T' if S is a subsequence of T(T') and not a subsequence of T'(T). A string S distinguishes T and T if it distinguishes T and T if or all $i \in [1:l]$.

Polynomial-time algorithms have been proposed to find the shortest string that distinguishes two strings T and T' (cf. Hebrard [2]).

We consider the problem of finding the shortest string that distinguishes a string T and a finite set L of strings. We show that this problem is NP-complete for strings over an alphabet of size ≥ 2 .

Our results complete those of Maier [3], Räihä and Ukkonen [4] and Timkovskii [5]. Maier has shown that the Shortest Common Supersequence problem is NP-complete for strings over an alphabet of size ≥ 5 . This result has been extended by Räihä and Ukkonen to strings over an alphabet of size ≥ 2 . The Shortest Common Supersequence problem is the decision version of the problem of finding, for a given finite set L of strings, a shortest string S such that every string in L is a subsequence of S. Furthermore, Maier has shown that the Longest Common Subsequence problem is NP-complete for strings over an alphabet of size ≥ 2 . The Longest Common Subsequence problem is the decision version of the problem of finding, for a given finite set L of strings, a longest string that is a subsequence of every string in L. Timkovskii investigated the Longest Common Nonsupersequence problem (see [5] for results). The Longest Common Nonsupersequence problem is to find, for a given finite set L of strings over an alphabet Σ , a longest string S over Σ such that there exists a string in L that is not a subsequence of S (such a string S does not necessarily exist).

2. Basic definitions and notations

An alphabet Σ is a finite set of symbols. A string over Σ is a finite sequence of the symbols of Σ . The concatenation of two strings S and T is denoted by ST.

For a string T and $k \in \mathbb{N}$, define iteratively $(T)^k = T(T)^{k-1}$. $(T)^0$ denotes the empty string. If T consists of a single symbol the brackets are omitted.

Let $T = t_1 t_2 ... t_k$ be a string over an alphabet Σ . Then t_h is between t_i and t_j if i < h < j holds, $h, i, j \in [1:k]$. We say that $t_h, h \in [1:k]$ is the *n*th a in T for a symbol $a \in \Sigma$ if there are exactly n indices $i_1, i_2, ..., i_n \in [1:h]$, $i_1 < i_2 < \cdots < i_n = h$ such that $t_{i_1} = a$ for all $j \in [1:n]$.

Given a string T, a subsequence of T is any string S that can be obtained from T by erasing zero or more symbols from T. A string S is a nonsubsequence of T if S is not a subsequence of T. A string S is a nonsubsequence of a set T of strings if T is a nonsubsequence of every string in T.

Let a string $S = s_1 s_2 ... s_l$ be a subsequence of a string $T = t_1 t_2 ... t_k$ over an alphabet Σ . An embedding of S in T is a strong growing function f from [1:l] to [1:k] such that $s_i = t_{f(i)}$ for all $i \in [1:l]$. We say that s_i is mapped onto $t_{f(i)}$ by f, $i \in [1:l]$. An embedding f of S in T is leftmost if, for every embedding g of S in T, we have that $f(i) \leq g(i)$ holds for all $i \in [1:l]$.

The reader is assumed to be familiar with the theory of NP-completeness (see [1]).

3. The Shortest Common Nonsubsequence problem

Problem: SHORTEST COMMON NONSUBSEQUENCE (SCNS)

Instance: A finite set L of strings over an alphabet Σ . An integer $k \in \mathbb{N}$.

Question: Does L have a common nonsubsequence of length $\leq k$ over Σ ?

Theorem 3.1. SCNS is NP-complete for strings over an alphabet of size ≥ 2 .

Proof. SCNS is in NP because it can be tested in polynomial time whether a given string is a common nonsubsequence of a finite set L of strings.

To show that SCNS is NP-complete, we reduce the Vertex Cover problem to it. Let a graph G = (V, E), with node set $V = \{v_1, v_2, ..., v_n\}$ and edge set $E = \{e_1, e_2, ..., e_m\}$ and an integer $k' \le n$, be an instance of Vertex Cover. Recall that the Vertex Cover problem asks whether G has a vertex cover of size $\le k'$, i.e. a subset $V' \subset V$ with $|V'| \le k'$ such that, for each edge $\{v_i, v_j\} \in E$, at least one of v_i and v_j is in V'. We now construct a set L of strings over the alphabet $\Sigma = \{0, 1\}$ as follows.

Define

$$T = (0^{2n+3}1)^{k'-1}0^{2n+3}$$

and

$$T' = (1^{k'+1}0)^{2n+1}1^{k'+1}$$
.

For every edge $e_l = \{v_i, v_j\} \in E, i < j, l \in [1:m], define$

$$T = (1^{k'}0)^{2i}0(1^{k'}0)^{2(j-1-i)+1}0(1^{k'}0)^{2(n-j)+1}1^{k'}$$

Now set $L = \{T_1, T_2, ..., T_m, T, T'\}$ and k = 2n + 2 + k'.

We show that the following holds:

L has a common nonsubsequence of length $\leq k$ over $\{0, 1\}$ iff

G has a vertex cover of size $\leq k'$.

⇒: We need the following two claims.

Claim 3.2. A string S of length $\leq 2n + 2 + k'$ over $\{0, 1\}$ is a nonsubsequence of T and T' iff S contains exactly 2n + 2 zeros and k' ones.

Proof. The claim is a consequence of the following facts which are easy to obtain: Every string of length $\leq 2n+2+k'$ over $\{0,1\}$ that contains at most k'-1 ones is a subsequence of T. Every string of length $\leq 2n+2+k'$ over $\{0,1\}$ that contains at most 2n+1 zeros is a subsequence of T'. Every string that contains 2n+2 zeros and k' ones is a nonsubsequence of T and T'. \square

Claim 3.3. Let S be a string over $\{0, 1\}$ that contains exactly 2n+2 zeros and k' ones, and $e_l = \{v_i, v_j\}$, $i < j, l \in [1:m]$, be an edge of G. S is a nonsubsequence of T_l iff $0^{2i}10^{2(n-i+1)}$ or $0^{2j}10^{2(n-j+1)}$ is a subsequence of S.

Proof. At first observe that S and T_l both contain exactly 2n+2 zeros. This implies that, if there exists an embedding f of S in T_l , then for all $p \in [1:2n+2]$ the pth zero in S is mapped onto the pth zero in T_l by f.

Assume first that S contains $0^{2i}10^{2(n-i+1)}$ or $0^{2j}10^{2(n-j+1)}$ as a subsequence. Then, we conclude from the observation just mentioned, that an embedding of S in T_i cannot exist, since there is a one between the 2ith zero and the (2i+1)th zero in S or between the 2jth zero and the (2j+1)th zero in S whereas there are no ones between the corresponding zeros in T_i . Hence, S is a nonsubsequence of T_i .

On the other hand, if S contains neither $0^{2i}10^{2(n-i+1)}$ nor $0^{2j}10^{2(n-j+1)}$ as a subsequence, there is no one between the 2*i*th zero and the (2i+1)th zero in S and no one between the 2*j*th zero and the (2j+1)th zero in S. Since S contains only k' ones, it is then easy to find an embedding of S in T_i . Hence, S is a subsequence of T_i . \square

Proof of Theorem 3.1 (conclusion). Now let S be a common nonsubsequence of L of length $\leq k = 2n + 2 + k'$ over $\{0, 1\}$.

From Claim 3.2 it follows that S contains exactly 2n+2 zeros and k' ones. Let $\{i_1, i_2, ..., i_{k''}\}$ be the set of integers for which S contains $0^{2i_j}10^{2(n-i_j+1)}$ as a subsequence for all $j \in [1:k'']$. Then, $k'' \leq k'$.

Set
$$V' = \{v_{i_1}, v_{i_2}, \dots, v_{i_{k''}}\}.$$

We conclude from Claim 3.3 that, for every edge $e_l = \{v_i, v_j\}$, $l \in [1:m]$, in G, the string S contains $0^{2i}10^{2(n-i+1)}$ or $0^{2j}10^{2(n-j+1)}$ as a subsequence. Hence, by the definition of V', for every edge $e_l = \{v_i, v_j\}$, $l \in [1:m]$, in G, one of the nodes v_i or v_j is in V'. This means that V' is a vertex cover of size $k'' \leq k'$ of G.

 \Leftarrow : Let G have a vertex cover of size $\leq k'$. Then, obviously, G has a vertex cover $V' = \{v_{i_1}, v_{i_2}, \dots, v_{i_{k'}}\}$, $1 \leq i_1 < i_2 < \dots < i_{k'} \leq n$ of size k'.

Define

$$S = 0^{2i_1} 10^{2(i_2-i_1)} 10^{2(i_3-i_2)} 1 \dots 0^{2(i_{k'}-i_{k'-1})} 10^{2(n-i_{k'}+1)}$$

Note that S contains exactly k' ones and 2n+2 zeros. This implies that S is a nonsubsequence of T' and T''. Note, furthermore, that S contains $0^{2i_j} 10^{2(n-i_j+1)}$ as a

subsequence for every $j \in [1:k']$. Now, since V' is a vertex cover of G, for every edge $e_l = \{v_i, v_j\}$, $l \in [1:m]$, in G, one of the nodes v_i or v_j is in V'. Hence, by the definition of S, for every edge $e_l = \{v_i, v_j\}$, $l \in [1:m]$, in G, the string S contains $0^{2i} 10^{2(m-i+1)}$ or $0^{2j} 10^{2(m-j+1)}$ as a subsequence. Then Claim 3.3 shows that S is a nonsubsequence of T_l for every $l \in [1:m]$. Altogether, we have that S is a common nonsubsequence of C of length C. \Box

4. The Shortest Distinguishing String problem

Problem: SHORTEST DISTINGUISHING STRING (SDS)

Instance: A string T and a finite set L of strings over an alphabet Σ . An integer $k \in \mathbb{N}$. Question: Is there a string S of length $\leq k$ over Σ that distinguishes T and L?

Theorem 4.1. Shortest Distinguishing String is NP-complete for strings over an alphabet of $size \ge 2$.

Proof. Obviously SDS is in NP.

We reduce the SCNS problem for strings over an alphabet of size 2 to our problem. Let a finite set L of strings over the alphabet $\{0, 1\}$ and an integer $k \in \mathbb{N}$ be an instance of the SCNS problem.

Define $T = (01)^k$.

Now, since every string of length $\leq k$ over $\{0, 1\}$ is a subsequence of T, the following holds:

There exists a string of length $\leq k$ over $\{0, 1\}$ that is a common nonsubsequence of I iff

there exists a string S of length $\leq k$ over $\{0, 1\}$ that distinguishes T and L. \square

Acknowledgment

We thank the referee for helpful remarks.

References

- [1] M.R. Garey and D.S. Johnson, Computers and Intractability (W.H. Freeman, San Francisco, 1979).
- [2] J.-J. Hebrard, An algorithm for distinguishing efficiently bit-strings by their subsequences, *Theoret. Comput. Sci.* 82 (1991) 35-49.
- [3] D. Maier, The complexity of some problems on subsequences and supersequences, J. ACM 25 (1978) 322–336.
- [4] K.-J. Räihä and E. Ukkonen, The shortest common supersequence problem over binary alphabet is NP-complete, *Theoret. Comput. Sci.* 16 (1981) 187–198.
- [5] V.G. Timkovskii, Complexity of common subsequence and supersequence problems and related problems, Cybernetics 25 (1990) 565-580; translated from Kibernetika 25 (1989) 1-13.