

Ecuaciones Diferenciales y Cálculo Numérico

Grado en Ingeniería de Tecnologías de Telecomunicación

Convocatoria Extraordinaria de Septiembre

20 de septiembre de 2013

ACLARACIONES SOBRE LA PRUEBA DE ORDENADOR

- La duración de la prueba es de 1 hora.
- La prueba corresponde a la parte de prácticas con ordenador y consta de 1 ejercicio valorado sobre 1 punto.
- Para cada apartado se desarrollará un script que debe ser autoejecutable, esto es, no se puede solicitar ninguna información al usuario en su ejecución.
- Deben incluirse todos los comentarios necesarios que eviten tener que recurrir a fuentes externas para entender y manejar adecuadamente el script.
- 1. Queremos calcular el valor de la integral definida $\int_{-1}^{1} e^{\alpha x^2 + \beta x^4} dx$, donde
 - α es solución de la ecuación $3 + 2x + \cos(4 + 3x) = 0$.
 - β es solución de la ecuación $3 2x + \sin(4 3x) = 0$.

Para ello seguimos los siguientes pasos.

- a) Representamos gráficamente $f_1(x) = 3+2x+\cos(4+3x)$ y $f_2(x) = 3-2x+\sin(4-3x) = 0$, $x \in [-8, 8]$, para comprobar visualmente que α y β son únicas.
- b) Determinamos α con el método de bisección usando los siguientes criterios de parada:
 - i) el número de iteraciones es superior a 100,
 - ii) el valor absoluto la diferencia entre dos iteraciones sucesivas es menor que 10^{-13} ,
 - iii) el valor absoluto de la función (asociada a la ecuación) es menor que 10^{-13} .

Es decir, se introducen los tres criterios y el programa finaliza cuando uno de ellos se satisfaga.

- c) Determinamos β mediante el método de la secante con los siguientes criterios de parada:
 - i) el número de iteraciones es superior a 75,
 - ii) el valor absoluto la diferencia entre dos iteraciones sucesivas es menor que 10^{-11} ,
 - iii) el valor absoluto de la función (asociada a la ecuación) es menor que 10^{-11} .

Mismo comentario que en el apartado anterior.

d) Calculamos un valor aproximado de la integral aplicando la fórmula compuesta que se deriva de aplicar la fórmula de Newton-Cotes abierta:

$$\int_{a}^{b} g(x)dx \approx \frac{b-a}{2} \left(g\left(\frac{2a+b}{3}\right) + g\left(\frac{a+2b}{3}\right) \right).$$

El número de subintervalos a considerar debe ser superior a 100.

Indicación: $\alpha = -1.711412191036$, $\beta = 1.400269368493$ y $\int_{-1}^{1} e^{\alpha x^2 + \beta x^4} dx = 1.522325403950$, los tres resultados dados con doce cifras decimales exactas. De esta información, sólo se podrán emplear los valores de α y β en el apartado d) si no se ha sido capaz de desarrollar los scripts correspondientes a los apartados b) y c).