Class 8 Mini-Project

4/28/23

Preparing the data

```
#assigning the .csv file to an object
fna.data <- "WisconsinCancer.csv"
#reading the csv and assigning it to a new object
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis radius	s_mean	texture_mean	<pre>perimeter_mean</pre>	area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	M	12.45	15.70	82.57	477.	1
	${\tt smoothness_mean}$	compa	ctness_mean co	ncavity_mean c	oncave.po	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f:	ractal	_dimension_mea	n radius_se te	xture_se	perimeter_se
842302	0.2419		0.0787	1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	0.7572	0.7813	5.438
843786	0.2087		0.0761	.3 0.3345	0.8902	2.217

```
area_se smoothness_se compactness_se concavity_se concave.points_se
842302
          153.40
                       0.006399
                                        0.04904
                                                     0.05373
                                                                         0.01587
           74.08
                       0.005225
                                                     0.01860
                                                                         0.01340
842517
                                        0.01308
84300903
           94.03
                       0.006150
                                        0.04006
                                                     0.03832
                                                                        0.02058
84348301
           27.23
                       0.009110
                                        0.07458
                                                     0.05661
                                                                        0.01867
84358402
           94.44
                       0.011490
                                        0.02461
                                                     0.05688
                                                                         0.01885
843786
           27.19
                       0.007510
                                        0.03345
                                                     0.03672
                                                                         0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
842302
             0.03003
                                  0.006193
                                                   25.38
                                                                  17.33
842517
             0.01389
                                  0.003532
                                                   24.99
                                                                  23.41
84300903
             0.02250
                                  0.004571
                                                   23.57
                                                                  25.53
84348301
             0.05963
                                  0.009208
                                                   14.91
                                                                  26.50
                                                                  16.67
84358402
             0.01756
                                  0.005115
                                                   22.54
843786
             0.02165
                                  0.005082
                                                   15.47
                                                                  23.75
         perimeter_worst area_worst smoothness_worst compactness_worst
842302
                  184.60
                              2019.0
                                                0.1622
                                                                   0.6656
842517
                   158.80
                              1956.0
                                                0.1238
                                                                   0.1866
84300903
                   152.50
                              1709.0
                                                0.1444
                                                                   0.4245
84348301
                   98.87
                               567.7
                                                0.2098
                                                                   0.8663
84358402
                   152.20
                              1575.0
                                                0.1374
                                                                   0.2050
                                                                   0.5249
843786
                  103.40
                               741.6
                                                0.1791
         concavity_worst concave.points_worst symmetry_worst
                                         0.2654
842302
                  0.7119
                                                         0.4601
842517
                  0.2416
                                         0.1860
                                                         0.2750
84300903
                  0.4504
                                         0.2430
                                                         0.3613
                  0.6869
                                         0.2575
                                                         0.6638
84348301
84358402
                  0.4000
                                         0.1625
                                                         0.2364
843786
                  0.5355
                                                         0.3985
                                         0.1741
         fractal_dimension_worst
842302
                          0.11890
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

Setting up the data

```
#removing the first column of the dataset
wisc.data <- wisc.df[,-1]

#making a new vector for the diagnosis column
diagnosis <- factor(wisc.df$diagnosis)</pre>
```

Exploratory Data Analysis

Q1. How many observations are in this dataset?

```
#using dim() to see the rows and columns of the dataset
dim(wisc.df)
[1] 569 31
```

There are 569 observations in this dataset.

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)

B M
357 212
```

There are 10.

There are 212 observations that have a malignant diagnosis.

Q3. How many variables/features in the data are suffixed with _mean?

```
length(grep('_mean', colnames(wisc.df)))
[1] 10
```

2. Principal Component Analysis

Performing PCA

colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
concavity_mean	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	compactness_worst	${\tt concavity_worst}$
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	<pre>fractal_dimension_worst</pre>
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	<pre>fractal_dimension_mean</pre>
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se

```
1.790818e-02
                                3.018606e-02
                                                         6.170285e-03
         symmetry_se
                        fractal_dimension_se
                                                         radius_worst
        8.266372e-03
                                2.646071e-03
                                                         4.833242e+00
       texture_worst
                             perimeter_worst
                                                           area_worst
        6.146258e+00
                                3.360254e+01
                                                         5.693570e+02
                           compactness_worst
    smoothness_worst
                                                      concavity worst
        2.283243e-02
                                1.573365e-01
                                                         2.086243e-01
concave.points_worst
                              symmetry_worst fractal_dimension_worst
        6.573234e-02
                                6.186747e-02
                                                         1.806127e-02
```

```
wisc.pr <- prcomp(wisc.data, scale =TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC2
                                          PC3
                                                  PC4
                                                          PC5
                          PC1
                                                                  PC6
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                   PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                          PC14
Standard deviation
                       0.69037\ 0.6457\ 0.59219\ 0.5421\ 0.51104\ 0.49128\ 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
                       0.92598 \ 0.9399 \ 0.95157 \ 0.9614 \ 0.97007 \ 0.97812 \ 0.98335
Cumulative Proportion
                          PC15
                                   PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                           PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                          PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

.4427 (44.27%) is the proportion of the original variance captured by the PC1.

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs are required.

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs are required.

```
biplot(wisc.pr)
```


Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is incredibly cluttered and hard to read, making it difficult to understand as there is no general trend that is really visible to someone trying to pull information from the plot.

```
plot( wisc.pr$x[,1:2] , col = diagnosis ,
     xlab = "PC1", ylab = "PC2")
```


Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

As PC2 explains more variance in the original data than PC3, the first plot generated has a cleaner separation between the two subgroups. The plots overall show that PC1 is capturing a difference between malignant (red) and benign (black) samples.

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Variance explained

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Communicating PCA results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean? This tells us how much this original feature contributes to the first PC.

(wisc.pr\$rotation[,1])

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
${\tt compactness_mean}$	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	${\tt concavity_mean}$
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	${\tt fractal_dimension_mean}$
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345

```
symmetry_se fractal_dimension_se
                                                  radius_worst
        -0.04249842
                              -0.10256832
                                                   -0.22799663
      texture_worst
                          perimeter_worst
                                                    area_worst
        -0.10446933
                              -0.23663968
                                                    -0.22487053
   smoothness_worst
                        compactness_worst
                                               concavity_worst
        -0.12795256
                              -0.21009588
                                                    -0.22876753
concave.points_worst
                           symmetry_worst fractal_dimension_worst
                              -0.12290456
        -0.25088597
                                                    -0.13178394
```

-0.26085376

3. Hierarchical clustering

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)

#Euclidean distnaces between pairs of observations
data.dist <- dist(data.scaled)

#creation of a hierarchical clustering model
wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Q10. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

The height is 19.

```
wisc.hclust.clusters <- cutree(wisc.hclust, h= 19)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
wisc.hclust.single <- hclust(data.dist, method = "single")
plot(wisc.hclust.single)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "single")

wisc.pr.hclust <- hclust(data.dist, method = "ward.D2")
plot(wisc.pr.hclust)</pre>

Cluster Dendrogram

data.dist hclust (*, "ward.D2") The "ward.D2" method gives my favorite results, as the clustering is incredibly clear and easier to interpret compared to the other methods. It is also more visually appealing in my opinion.

4. Combining methods

```
wisc.pr.hclust <- hclust(data.dist, method = "ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "ward.D2")

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)

grps
    1      2
184      385

table(grps,diagnosis)</pre>
```


plot(wisc.pr\$x[,1:2], col=diagnosis)


```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```



```
## Use the distance along the first 7 PCs for clustering i.e. wisc.pr$x[, 1:7] wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2") wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
```

Q13. How well does the newly created model with four clusters separate out the two diagnoses?

The newly created model separates out the two diagnoses well, creating compacted clusters in four groups that more clearly define the diagnoses. The clustering yields a more digestible/easy to understand idea of how the data is spread.

Q14. How well do the hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster andwisc.hclust.clusters) with the vector containing the actual diagnoses.

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

Prior to PCA, the hierarchical clustering models feature more spread and are less compact. It is harder to interpret what the data is actually trying to show, and the difference in clustering between diagnoses is not as clear.

6. Prediction

PC27

PC28

```
#url <- "new_samples.csv"</pre>
  url <- "https://tinyurl.com/new-samples-CSV"</pre>
  new <- read.csv(url)</pre>
  npc <- predict(wisc.pr, newdata=new)</pre>
  npc
          PC1
                    PC2
                              PC3
                                         PC4
                                                   PC5
                                                             PC6
                                                                        PC7
     2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                  0.8193031
           PC8
                     PC9
                              PC10
                                        PC11
                                                  PC12
                                                           PC13
                                                                    PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457
                                             0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
                               PC17
                                                       PC19
         PC15
                    PC16
                                           PC18
                                                                 PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
PC21
                     PC22
                               PC23
                                          PC24
                                                      PC25
                                                                  PC26
     0.1228233\ 0.09358453\ 0.08347651\ 0.1223396\ 0.02124121
                                                           0.078884581
[1,]
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
```

PC29

PC30

[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029 [2,] -0.001134152 0.09638361 0.002795349 -0.019015820

```
plot(wisc.pr$x[,1:2], col=g)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```


Q16. Which of these new patients should we prioritize for follow up based on your results?

g

84458202	844359	843786	84358402	84348301	84300903	842517	842302
1	1	1	1	1	1	1	1
84799002	84667401	846381	846226	84610002	845636	84501001	844981
1	1	2	1	2	2	1	1
851509	8511133	8510824	8510653	8510426	849014	84862001	848406
1	1	2	2	2	1	1	2
853612	853401	853201	852973	852781	852763	852631	852552
1	1	1	1	1	1	1	1

85382601							855138
1	1	2		2			2
855167		855625					85715
2	1	1		2	1		
857155	857156	857343	857373	857374	857392	857438	85759902
2	2	2		2			2
857637	857793	857810		858970	858981	858986	859196
1	2	2	2	2	2	1	2
85922302	859283	859464	859465	859471	859487	859575	859711
1	1	2	2	1	2	1	1
859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
1	2	2	1	2	1	1	2
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	2	1	1	2	1	2	1
861597	861598	861648	861799	861853	862009	862028	86208
2	1	2	2	2	2	1	1
86211	862261	862485	862548	862717	862722	862965	862980
2	2	2	2	2	2	2	2
862989	863030	863031	863270	86355	864018	864033	86408
2	1	1	2	1	2	2	2
86409	864292	864496	864685	864726	864729	864877	865128
1	2	2	2	2	1	1	2
865137	86517	865423	865432	865468	86561	866083	866203
2	1	1	2	2	2	2	2
866458	866674	866714	8670	86730502	867387	867739	868202
1	1	2		2	2		2
868223	868682	868826	868871	868999	869104	869218	869224
2	2	1					
869254						871001501	871001502
2	2	1		2			
8710441	_						871149
1	2	2	2	1	2		
8711561		871201			_		
2	1	1	2	1	2		
							872113
1	2	2					
_		873357					873843
1	1		2	1			
		874217				_	
2	2	1		2	2		
		_	_				877500
2	1	1			077139		
							879830
877501	811989	818196	87880	87930	8/9523	8/9804	879830

2	1	1	1	2	2	2	2
8810158	8810436	881046502			_		
2	2		2				
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	1	1	2	2	2	2
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
2	2	2	2	2	1	1	2
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	2	2	1	1	2	1
88350402	883539	883852	88411702	884180	884437	884448	884626
2	2	1	2	1	2	2	2
88466802	884689	884948	88518501			886226	886452
2	2		-	1		1	-
88649001	886776	887181	88725602				889403
1	1	_	_	_	_	_	_
889719	88995002		8910499		8910720	8910721	
1	1	_	2			2	-
8910988		8911163			8911670		
1	2	_	2			2	-
		89122			8912521		
1	2	_	1	_	_	2	-
		89143602					
2	2	1	2	2			
891936		892214					
2	2	2	2		_	1	-
89296		89344		893526		893783	
2	2		2			2	-
89382602	893988 2		894089 2		894326		
2 894604	_	894855	-	_	_	90504	_
2	2		093100	09311301		09524	
_	_	896839	_		897137		
0900902	2				2		
897604		897880					
2	1						
		898678					
2		2					1
899987		901011			901028		
1	2		2				2
901034302		9010598					9011495
2		2					2
9011971		9012315	9012568				
1	1	1	2	1	1	2	2

90251	90250	901836	901549	9013838	9013594	9013579	901315
2	2	2	2	1	2	2	1
903483	90317302	90312	903011	902976	902975	90291	902727
2	2	1	2	2	2	2	2
904357	904302	90401602	90401601	903811	903554	903516	903507
2	2	2	2	2	2	1	1
905190	905189	904971	904969	9047	904689	904647	90439701
2	2	2	2	2	2	2	1
905686	905680	905557	905539	905520	905502	905501	90524101
2	2	2	2	2	2	2	1
906878	906616	906564	906539	906290	906024	90602302	905978
2	2	1	2	2	2	1	2
907915	907914	90769602	90769601	90745	907409	907367	907145
2	1	2	2	2	2	2	2
909410	909231	909220	908916	908489	908469	908445	908194
2	2	2	2	2	2	1	1
9110944	9110732	9110720	9110127	909777	90944601	909445	909411
2						1	
9112085	911202	911201	9111843	9111805	9111596	911157302	911150
2	2	2	2	1	2	1	2
911320501	9113156	911296202			9112594	9112367	9112366
2	2	1	1	2	2	2	2
9113816	9113778	911366	9113538	9113514	9113455	9113239	911320502
2	2	1	1	2	2	2	2
911916	911685	911673	911654	911408	911391	9113846	911384
1	2	2	2	2	2	2	2
913505	913102	913063	912600	912558	912519	91227	912193
1	2	1	2	2	2	2	2
914333	914102	914101	914062	91376702	91376701	913535	913512
2	2	2	1	2	2	2	2
915143	91505	91504	914862	91485	914769	914580	914366
1	2	1	2	1	1	2	2
915664	91550				91544001	915276	915186
2	2	1	2	2	2	1	1
917080	917062	916838	916799	916221	91594602	915940	915691
2	2	1	1	2	2	2	1
		91805	917897	917896	91789	91762702	917092
2	2	2	2	2	2	1	2
919555	919537	91930402	91903902	91903901	91858	918465	918192
					2		2
922296	921644	921386	921385	921362	921092	919812	91979701
2	2	2	2	1	2	1	2
						922576	922297

2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	1	1	1	1	1	1
92751							
2							

Levels: 2 1

In the generated chart, the black clustering indicates 'benign' and the red clustering indicates 'metastatic' tumors. The normal cells (benign) tend to cluster, whereas there is more spread in the metastatic cells.

As such, we should prioritize patient 2 because they are more likely to have a metastatic tumor, as patient 2 falls within the metastatic clustering whereas patient 1 falls within the benign clustering.