

HOW TO PERFORM DRIFT AND BATCH CORRECTION?

W4M Core Team

The "Batch correction" module

The Batch correction module provides correction of analytical effects inter and intra batch on intensities, using quality-control pooled samples (QC-pools), according to the algorithm mentioned by Van der Kloet (J Prot Res 2009).

This module is accessible via the left panel:

Mandatory information in your data

To run this module, your data must fit particular specifications:

- The 3 input .tsv data files (dataMatrix, sampleMetadata and variableMetadata) must be in the required W4M post-processing format (see How to format your data for post-processing?)
- The data matrix must not contain missing values
- The sample meta-data file must contain 3 specific columns with the following names:
 - batch
 - injectionOrder
 - sampleType

See the Help section of the module for more information.

Note: if you have only one batch, you still need to provide the « batch » column, that will contain a constant value.

Input files

Parameter : num + label	Format
1 : Data Matrix file	tabular
2 : Sample metadata file	tabular
3 : Variable metadata file	tabular

Data Matrix file must contain the intensity values of variables.

First line must contain all the samples names

First column must contain all the variables id

Sample metadata file must have at least the three following columns:

"batch" to identify the batches of analyses; need at leat 3 pools for linear adjustment and 8 for lo(w)ess adjustment

"injectionOrder" integer defining the injection order of all samples : QC-pools and analysed samples

"sampleType" indicate if defining a samples or a pool

A

🔔 NO MISSING DATA are allowed

Parameters

Parameters are described in the Help section.

Parameters

Factor of interest

factor name (column header) that will be used as a categorical variable for plots and PCA. (often a biological factor; if none, leave "batch")

This factor does not affect correction calculation.

Type of regression model:

To choose between *linear*, *lowess* and *loess* regression.

Define which model type should be used in Van der Kloet correction algorithm concerning QC-pools regression.

Level of details for plots

basic: PCA + CV boxplot (before and after correction)

standard: 'basic' plots + before/after-correction plots of intensities and design effects for each ion

complete: 'standard' plots + QC-pools regression plots per batch with samples intensities

Note:

The choice of the type of regression model is left to the expert assessment of the user:

- the module "Determine batch correction" flags variables for which correction is not appropriate (see slide #8)
- on an indicative basis, one may consider using « linear » when pools intensities vary linearly according to the injection order, and « loess » otherwise;

Still the user is the only judge regarding which model is the more appropriate for his data.

Example

Outputs

The module generates 5 files:

- An Rdata file containing the results for further export and processing with R
- A pdf file containing diagnosis plots of the correction
 - The level of detail can be selected as one of the arguments of the module
- Two tables corresponding to the data matrix and the variable meta-data file
 - The data matrix contains the new intensities
 - The variable meta-data table is the original one plus columns indicating if intra-batch correction as been applied for each ion and each batch (0=no, 1=yes)
- A combined table that corresponds to the junction of the sample meta-data file and the data matrix of corrected intensities

Example

Notes

To help you determine which type of regression model you should use with your data, you can use the "Determine batch correction" module.

- It generates plots of intensities according to injection order and design effects for each ion.
- Each type of regression is displayed on intensity plots to enable comparison between the methods.

A table indicating whether intra-batch correction is possible for each

References

F.M. Van Der Kloet, I. Bobeldijk, E.R. Verheij, R.H. Jellema (2009). "Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping." Journal of Proteome Research p5132-5141