INTRODUZIONE AI SISTEMI OPERATIVI

Introduzione

- Il software può essere diviso un due grandi classi:
 - i programmi di sistema che gestiscono le operazioni del sistema di elaborazione
 - i programmi applicativi che risolvono i problemi dei loro utilizzatori;
- L'insieme dei *Programmi di Sistema* viene comunemente identificato con il nome di Sistema Operativo (SO).

Scopo del Sistema Operativo

- Gestione delle risorse del sistema di elaborazione
- Rendere AGEVOLE l'interfaccia tra l'uomo e la macchina.

Attività svolte dal Sistema Operativo

- Gestione della memoria di massa (file system);
- Gestione della memoria RAM;
- Gestione dei processi;

Attività svolte dal Sistema Operativo (Cont.)

- Gestione dell' interfaccia utente;
- Accesso simultaneo di più utenti alla stessa macchina;
- Esecuzione simultaneamente di più processi sulla stessa macchina.

Aspetti importanti di un sistema operativo

- Struttura: come è organizzato il SO?
- **Condivisione**: quali risorse vengono condivise tra utenti e/o programmi? In che modo?
- Efficienza: come massimizzare l'utilizzo delle risorse disponibili?
- Affidabilità: come reagisce il SO a malfunzionamenti (HW/SW)?
- Estendibilità: è possibile aggiungere funzionalità al sistema?
- Protezione e Sicurezza: il SO deve impedire interferenze tra programmi/utenti. In che modo?
- Conformità a standard: portabilità, estendibilità, apertura

Struttura del Sistema Operativo

- I SO sono generalmente costituiti da un insieme di moduli, ciascuno dedicato a svolgere una determinata funzione;
- I vari moduli del SO interagiscono tra di loro secondo regole precise al fine di realizzare le funzionalità di base dalla macchina.

Struttura del Sistema Operativo (cont.)

Gestore dei Processi

Processi

Processo = programma in esecuzione

- il **programma** è un'*entità passiva* (un insieme di byte contenente le istruzioni che dovranno essere eseguite)
- il processo è un'entità attiva:
 - è l'unità di lavoro/esecuzione all'interno del sistema.
 Ogni attività all'interno del SO è rappresentata da un processo
 - è l'istanza di un programma in esecuzione

Gestore dei Processi

- E' il modulo che si occupa di controllare la *sincronizzazione*, *interruzione* e *riattivazione* dei programmi in esecuzione cui viene assegnato un processore;
- La gestione dei processi viene compiuta in vari modi, in funzione del tipo di utilizzo cui il sistema è rivolto.

Gestore dei Processi (Cont.)

- Il programma che si occupa della distribuzione del tempo di CPU tra i vari processi attivi, decidendone l'avvicendamento, è comunemente chiamato *Scheduler*.
- Nel caso di elaboratori multi-processore si occupa anche di gestire la cooperazione tra le varie CPU presenti nel sistema.

Schedulazione

Criteri per la scelta dello Scheduling

- Esistono vari algoritmi di scheduling che tengono conto di varie esigenze e che possono essere più indicati in alcuni contesti piuttosto che in altri.

Criteri per la scelta dello Scheduling

- La scelta dell'algoritmo da usare dipende da cinque principali criteri:
 - Utilizzo del processore: la CPU (ovvero il processore) deve essere attivo il più possibile, ovvero devono essere ridotti al minimo i possibili tempi morti.
 - Produttività: il numero di processi completati in una determinata quantità di tempo.
 - Tempo di completamento: il tempo che intercorre tra la sottomissione di un processo ed il completamento della sua esecuzione.
 - Tempo d'attesa: il tempo in cui un processo pronto per l'esecuzione rimane in attesa della CPU.
 - Tempo di risposta: il tempo che trascorre tra la sottomissione del processo e l'ottenimento della prima risposta.

Politiche di Scheduling

- Le politiche di schedulazione utilizzate dallo scheduler sono raggruppabili in due grandi categorie:
 - Preemptive: la CPU in uso da parte di un processo può essere tolta e passata a un altro in un qualsiasi momento;
 - Non Preemptive: una volta che un processo ha ottenuto l'uso della CPU non può essere interrotto fino a che lui stesso non la rilascia.

Sistemi Mono-Tasking

- I SO che gestiscono l'esecuzione di un solo programma per volta sono catalogati come mono-tasking;
- Non è possibile sospendere l'esecuzione di un programma per assegnare la CPU a un altro
- Sono storicamente i primi SO (es MS-DOS).

Sistema Mono-Tasking

- Tempo di utilizzo della CPU.
- Tempo di attesa di eventi esterni.

Sistemi Multi-Tasking

- I SO che permettono l'esecuzione contemporanea di più programmi sono definiti multi-tasking (Windows-NT, Linux);
- Un programma può essere interrotto e la CPU passata a un altro programma

Sistema Multi-Tasking

- Tempo di utilizzo della CPU.
- Tempo di attesa di eventi esterni.

Sistemi Time-Sharing

- Un'evoluzione dei sistemi multi-tasking sono i sistemi *time sharing*.
- Ogni programma in esecuzione viene eseguito ciclicamente per piccoli quanti di tempo.
- Se la velocità del processore è sufficientemente elevata si ha l'impressione di un'evoluzione parallela dei processi.

Time-sharing: schema

- Ipotesi: 1 MIPS, 4 processi, 0.25 s/utente
- Conseguenze:
 - 0.25 MIPS/utente
 - $-T_{ELA} = 4 \times T_{CPU}$

Time-sharing: diagramma temporale

Gestore della Memoria

Gestore della Memoria

- L'organizzazione e la gestione della memoria centrale è uno degli aspetti più critici nel disegno di un SO;
- Il *gestore della memoria* è quel modulo del SO incaricato di assegnare la memoria ai vari task (per eseguire un task è necessario che il suo codice sia caricato in memoria);

Gestore della Memoria (Cont.)

- La complessità del gestore della memoria dipende dal tipo di SO;
- Nei sistemi multi-tasking più programmi contemporaneamente possono essere caricati in memoria.
- Problema: come allocare lo spazio in maniera ottimale

Allocazione Lineare

Memoria

0000x

Programma A

Programma B

Programma C

Allocazione Lineare

Memoria

0000x

PROBLEMA!!!!

FRAMMENTAZIONE

Programma C

Paginazione

Memoria

0000x

Programma A

Programma A

Programma A

Programma B

Programma B

Programma D

Paginazione

Memoria

0000x

Programma A

Programma A

Programma A

Programma E

Programma F

Programma D

Programma F

Memoria Virtuale

- Spesso la memoria non è sufficiente per contenere completamente tutto il codice dei vari task;
- Si può *simulare* una memoria più grande tenendo nella memoria di sistema (RAM) solo le parti di codice e dei dati che servono in quel momento;
- Si usa il concetto di memoria virtuale.

Memoria Virtuale (Cont.)

- I dati dei programmi non in esecuzione possono essere tolti dalla memoria centrale e parcheggiati su disco nella cosiddetta area di swap;
- Il rapporto tra le dimensioni dell'area di swap e della RAM è di 3 : 1 (max);
- I moderni processori posseggono meccanismi hardware per facilitare la gestione della memoria virtuale.

Memoria Virtuale

Memoria

0000x

Programma A-1

Programma B-1

Programma D

Swap

Programma A-2

Programma A-3

Programma B-2

Memoria Virtuale

Memoria

0000x

Programma A-2

Programma B-1

Programma D

Swap

Programma A-1

Programma A-3

Programma B-2

Gestore del File System

Gestore del File System

- Il *gestore del file system* è quel modulo del sistema operativo incaricato di gestire le informazioni memorizzate sui dispositivi di memoria di massa;
- Il gestore del file system deve garantire la correttezza e la coerenza delle informazioni;

Gestore del File System (Cont.)

Nei sistemi multi-utente, deve mettere a disposizione dei meccanismi di protezione in modo tale da consentire agli utenti di proteggere i propri dati dall'accesso da parte di altri utenti non autorizzati.

Gestore del File System (Cont.)

- Le *funzioni* tipiche che deve svolgere sono:
 - Fornire un meccanismo per *l'identificazione* dei Files;
 - Fornire opportuni *metodi* per *accedere* ai dati;
 - Rendere *trasparente* la *struttura fisica* del supporto di *memorizzazione*;
 - Implementare *meccanismi di protezione* dei dati.

Organizzazione

- Quasi tutti i sistemi operativi utilizzano un'organizzazione gerarchica del File System;
- L'elemento utilizzato per raggruppare più file insieme è la directory;
- L'insieme gerarchico delle directory e dei file può essere rappresentato attraverso un grafo delle directory.

Grafo delle Directory

Gestore dei Dispositivi di I/O

Gestore dei dispositivi di I/O

- Il gestore dei dispositivi di I/O è quel modulo del SO incaricato di assegnare i dispositivi ai task che ne fanno richiesta e di controllare i dispositivi stessi;
- Da esso dipende la qualità e il tipo di periferiche riconosciute dal sistema.

Device Driver

- Il controllo dei dispositivi di I/O avviene attraverso speciali programmi detti *Device Driver*;
- I device driver sono spesso realizzati dai produttori dei dispositivi stessi che ne conoscono le caratteristiche fisiche in maniera approfondita.

Device Driver (Cont.)

- Questi programmi implementano normalmente le seguenti funzioni:
 - Rendono trasparenti le caratteristiche fisiche tipiche di ogni dispositivo;
 - Gestiscono la comunicazione dei segnali verso i dispositivi;
 - Gestiscono i conflitti, nel caso in cui due o più task vogliono accedere contemporaneamente allo stesso dispositivo.

Interfaccia Utente

Interfaccia utente

- Tutti i Sistemi Operativi implementano dei meccanismi per rendere agevole l'utilizzo del sistema da parte degli utente;
- L'insieme di questi meccanismi di accesso al computer prende il nome di *Interfaccia Utente*.

Interfaccia utente (Cont.)

- Interfaccia testuale:
 - Interprete dei comandi (shell)
 - Esempio MS-DOS e/o Linux
- Interfaccia grafica (a finestre):
 - L'output dei vari programmi viene visualizzato in maniera grafica all'interno di finestre
 - L'utilizzo di disegni rende più intuitivo l'uso del calcolatore;
 - Esempio WINDOWS

I Sistemi Presenti in Commericio

I Sistemi Operativi presenti in commerciali

- In commercio sono presenti una grande quantità di diversi Sistemi Operativi;
- In passato la tendenza delle case costruttrici di sistemi di elaborazione era di sviluppare sistemi operativi proprietari per le loro architetture;
- La tendenza attuale è quella di sistemi operativi eseguibili su diverse piattaforme.

MS-DOS

- CPU Intel 80x86 (16 bit)
- monotask
- monoutente
- file-system gerarchico
- memoria limitata (1 MB / 640 KB)
- nessuna protezione
- PC- / IBM- / DR-DOS

MS-Windows

- CPU Intel 80386/486/Pentium
- multitask imperfetto(non ha la *preemption*)
- monoutente
- stesso file system del MS-DOS
- interfaccia grafica a finestre e menù
- sistema a 16 bit !!!!

Windows-NT

- CPU Intel 80386/486/Pentium/Sparc/Alfa
- multitask
- monoutente
- NTFS (NT File System)
- microkernel, thread
- non solo per Intel 80x86 (DEC-AXP, MIPS-R4000, ...)
- sistema a 32 bit

UNIX

- nato negli anni '60 (AT&T Bell Labs)
- rimasto all'avanguardia perchè sviluppato nelle università (UCB)
- multitask
- multiutente
- ottima integrazione in rete
- portabilità dei programmi