Cyclic groups

(generator for g)

Recall: A group G is cyclic if $\exists g \in G \text{ s.t.}$ $G = \langle g \rangle = \{g^k : k \in \mathbb{Z}\}$. (or $\{k \cdot g : k \in \mathbb{Z}\} \text{ if } G \text{ is }\}$ Written additively

If $G = \langle g \rangle$, $H = \langle h \rangle$, and |G| = |H|, then

the map $\tau : G \Rightarrow H$ defined by $\tau(g^k) = h^k$ is an isomorphism.

If G is cyclic and $|G| = n \in \mathbb{N}$ then $G \cong C_n = \langle x \mid x^n = e \rangle$.

[Ex: $\mathbb{Z}/n\mathbb{Z} \cong C_n$ (presentation)

for C_n

· If G is cyclic and $|G| = \infty$ then $G \cong C_{\infty} = \langle x \mid \phi \rangle$ (one generator and no relations)

Orders of elements in cyclic groups

Recall from Subgroups video:

If ge6 then the <u>order of g</u>, denoted Ig1

or o(g), is defined to be the smallest

or o(g), is defined to be the smallest keN satisfying $g^k = e$, or ∞ if there

is no such k.

Theorem 0: Yg = G, Ig1 = 1<g71. More precisely:

i) If Igl= then gi + gj, Vijj EZ with i +j.

ii) If $|g|=n \in \mathbb{N}$ then $\langle g \rangle = \{e, g, g^2, ..., g^{n-1}\}$, and $g^i=g^j$ for $i,j \in \mathbb{Z}$ iff $i=j \mod n$.

· Infinite cyclic groups:

Write Co= <x>. Then

· YkeZ\{0}, |x+|= ~ /

Pf: Suppose $|x^k| = q$ for some $q \in \mathbb{N}$. Then $e = (x^k)^q = x^k q \implies |x| \le |kq| \implies |C_{\infty}| < \infty.$

Contradiction => |x+| = 0.

```
· Finite cyclic groups:
  * Lemma: If G is any group, geG,
         and Igl=neIN, then VmeIL,
             g<sup>m</sup>= e ← m= 0 mod n.
    Pf: Suppose geG and Igl=n. Then
        · m=0 mod n ⇒ g = e: /
            m=ln for some let => gn=gln=(gn) = e.
        · g~= e ⇒ m=0 mod n: /
            Write m = qn + r, 0 \le r < n. Then
q^r = (q^n)^q q^r = q^m = e \implies r = 0. \quad (def. of order of g)
 Suppose nEIM, write Cn= <x>. Then
              \forall k \in \mathbb{Z}, |\chi^k| = \frac{(k!n)}{(k!n)} \cdot (Note: \frac{(k!n)}{(k!n)} \in \mathbb{N}
 Pf: Using the lemma,
  \{m\in\mathbb{Z}:(\chi^k)^m=e\}=\{m\in\mathbb{Z}:\chi^{km}=e\}
               = {mEIL: km=0 mod n}
               = \left\{ m \in \mathbb{Z} : m = 0 \mod \frac{n}{(k_1 n)} \right\} . \left( \begin{array}{c} \text{see Integers} \\ \text{modulo } n \end{array} \right)
   The order of xk is the smallest positive
     integer in this set, which is (kin). B
```

Generators for Cn: $C_n = \langle x \rangle = \{e, x, x^2, ..., x^{n-1}\}.$ Since $|x^k| = \frac{n}{(k_i n)}$, we have that $C_{n}=\langle \chi^{k}\rangle \iff (k_{1}n)=1.$ So there are useln) generators for Cn. Exs: 1) n=15=3.5, $C_{15}=(x)$ (Q(15)= 2.4=8) generators for Cis: x', x2, x4, x7, x8, x", x13, x14. 2a) If n=pl, p an odd prime, le N, then (Z/nZ) is cyclic, (Primitive Root Theorem) and $|(\mathbb{Z}/n\mathbb{Z})^{k}| = \varphi(n) = p^{k-1}(p-1)$. · The number of primitive roots modulo n is $\varphi(\varphi(n)) = \varphi(p^{\varrho-1}(p-1))$. · If g is any primitive root mod n, then the collection of all primitive

 $\left\{ \begin{array}{l} \partial_{k} : \ | \leq k \leq \delta(u) \end{array} \right\} \left(k \delta(u) \right) = 1 \right\}$

2b) 5 is a primitive root mod 103 (from previous video) $\varphi(103) = 102 = 2 \cdot 3 \cdot 17$ $\varphi(\varphi(103)) = \varphi(102) = 1 \cdot 2 \cdot 16 = 32$ Collection of all primitive roots mod 103: $\{5^k : 1 \le k \le 102, (k, 102) = 1\}.$ (mod 103)

Subgroups of cyclic groups

Theorem 1: If $G = \langle x \rangle$ and $H \leq G$ then either $H = \{e\}$ or $H = \langle x^k \rangle$, where k is the smallest positive integer with the property that $x^k \in H$.

Proof: Suppose H= {e} and let S= {leM: xeH}.

Note that ILEZIEO3 s.t. xLEH, and also

x-leH, so S = Ø. Therefore, by the Well Ordering

Principle, S has a smallest element, which we call k.

Now we have that:

- · H = (xk): /

(Division Algorithm)

TheH, h= x2, for some lEZ. Write l=qk+r, O=r<k.

Then $x^{-qk} \in H \implies x^r = x^{-qk} x^k \in H \implies r = 0$. (k is the smallest)

Therefore, $h = (x^k)^q \in \langle x^k \rangle$.

We conclude that H= (xk). D

· Infinite cyclic groups:

The distinct subgroups of $C_{\infty} = \langle x \rangle$ are $\{\langle x^k \rangle : k = 0,1,2,...\}$.

Proof: By Thm. I, every subgroup of $C_{\infty}=\langle x\rangle$ is of the form $\langle x^k\rangle$, for some $k\in\{0,1,2,...3.$ Suppose $k,l\in\{0,1,2,...3.$ and k<l.

• If k=0 then $\langle x^k \rangle = \{e\}$ but $|\langle x^k \rangle| = |x^k| = \infty$, so $\langle x^k \rangle \neq \langle x^k \rangle$.

•If k>0 then $k\neq ql$, for any $q\in \mathbb{Z}$ so, by Theorem 0, $\chi^k\neq \chi^{ql}$, $\forall q\in \mathbb{Z}$. Therefore $\chi^k\notin \langle \chi^{l}\rangle$, so $\langle \chi^k\rangle \neq \langle \chi^{l}\rangle$. \square Note: It follows from this that the only generators for $C_\infty=\langle \chi^2\rangle$ are χ^2 and χ^{-1} .

To see this: Suppose $C_{\infty} = \langle x^2 \rangle$ for some LeZ. Then $C_{\infty} = \langle x^{(2)} \rangle = \langle x' \rangle$ and, since the subgroups listed above are distinct, $||\mathbf{l}|| = ||\mathbf{l}|| = |\mathbf{l}| = 1$.

· Finite cyclic groups:

Suppose $n \in M$, write $C_n = \langle x \rangle$. Then there is exactly one subgroup of C_n of order d, for every $d \in M$ with $d \mid n$. More precisely:

i) If H < C, then IHI | n.

ii) If dely, dln, then | (x >) = d.

iii) If $H \leq C_n$ with |H| = d, for some d | n, then $H = \langle x^{n/a} \rangle$.

Pf. of i): Follows from Lagrange's Theorem. \square Pf. of ii): $|\langle x^{n/a} \rangle| = |x^{n/a}|$ (Thm 0)

$$= \frac{n}{(n/q^{1}u)} \int_{-\infty}^{\infty} \frac{(n/q)}{(n/q)} = q. \quad \square$$

Pf of iii): Let k be the smallest positive integer with the property that $x^k \in H$, so that $H = \langle x^k \rangle$. Then $d = |H| = |x^k| = \frac{n}{(k_1 n)} \implies (k_1 n) = \frac{n}{d}$ $\implies \frac{n}{d} |k| \implies x^k \in \langle x^{n/d} \rangle$ $\implies H \leq \langle x^{n/d} \rangle$

 $||f|| = d = |\langle x^{n/d} \rangle| \implies H = \langle x^{n/d} \rangle.$

Exs: Lattices of subgroups of cyclic groups

1) p prime: {e}

2) C12= (x): 12= 22.31

(b total)

divisors of 12: 29 36, 0= a=2, 0= b=1: 1, 2, 3, 4, 6, 12

3) $C_{\infty} = \langle \chi \rangle$: $\langle \chi^{k} \rangle \leq \langle \chi^{k} \rangle \iff l \mid k$

