

Analytical Geometry and Linear Algebra II, Lab 10

Symmetric matrices

Positive definite matrices and minima

How I spent last weekend

- 1 A symmetric matrix S has n real eigenvalues λ_i and n orthonormal eigenvectors q_1, \dots, q_n .
- **2** Every real symmetric S can be diagonalized: $S = Q\Lambda Q^{-1} = Q\Lambda Q^{T}$
- $\bf 3$ The number of positive eigenvalues of S equals the number of positive pivots.

Symmetric Matrices (2)

Symmetric matrices S have orthogonal eigenvector matrices Q. Look at this again:

Symmetry
$$S = X\Lambda X^{-1}$$
 becomes $S = Q\Lambda Q^{T}$ with $Q^{T}Q = I$.

This says that every 2 by 2 symmetric matrix is (rotation)(stretch)(rotate back)

$$S = Q\Lambda Q^{\mathrm{T}} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} \begin{bmatrix} \mathbf{q}_1^{\mathrm{T}} \\ \mathbf{q}_2^{\mathrm{T}} \end{bmatrix}. \tag{5}$$

Columns q_1 and q_2 multiply rows $\lambda_1 q_1^T$ and $\lambda_2 q_2^T$ to produce $S = \lambda_1 q_1 q_1^T + \lambda_2 q_2 q_2^T$.

Write A as S + N, symmetric matrix S plus skew-symmetric matrix N:

$$A = egin{bmatrix} 1 & 2 & 4 \\ 4 & 3 & 0 \\ 8 & 6 & 5 \end{bmatrix} = S + N \qquad \quad (S^{\mathrm{T}} = S \ \ \mathrm{and} \ \ N^{\mathrm{T}} = -N).$$

For any square matrix, $S = \frac{1}{2}(A + A^{T})$ and N = ____ add up to A.

Write A as S + N, symmetric matrix S plus skew-symmetric matrix N:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 4 & 3 & 0 \\ 8 & 6 & 5 \end{bmatrix} = S + N$$
 $(S^{T} = S \text{ and } N^{T} = -N).$

For any square matrix, $S = \frac{1}{2}(A + A^{T})$ and N = ____ add up to A.

Answer

$$A = \begin{bmatrix} 1 & 3 & 6 \\ 3 & 3 & 3 \\ 6 & 3 & 5 \end{bmatrix} + \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$
= symmetric + skew-symmetric.

Find an orthogonal matrix Q that diagonalizes $S = \begin{bmatrix} -2 & 6 \\ 6 & 7 \end{bmatrix}$. What is Λ ?

ann.

Find an orthogonal matrix Q that diagonalizes $S = \begin{bmatrix} -2 & 6 \\ 6 & 7 \end{bmatrix}$. What is Λ ?

Answer

$$\lambda=10 \text{ and } -5 \text{ in } \Lambda=\begin{bmatrix}10&0\\0&-5\end{bmatrix}, \ x=\begin{bmatrix}1\\2\end{bmatrix} \text{ and } \begin{bmatrix}2\\-1\end{bmatrix} \text{ have to be normalized to}$$
 unit vectors in $Q=\frac{1}{\sqrt{5}}\begin{bmatrix}1&2\\2&-1\end{bmatrix}$.

True (with reason) *or false* (with example).

- (a) A matrix with real eigenvalues and n real eigenvectors is symmetric.
- (b) A matrix with real eigenvalues and n orthonormal eigenvectors is symmetric.
- (c) The inverse of an invertible symmetric matrix is symmetric.
- (d) The eigenvector matrix Q of a symmetric matrix is symmetric.

True (with reason) *or false* (with example).

- (a) A matrix with real eigenvalues and n real eigenvectors is symmetric.
- (b) A matrix with real eigenvalues and n orthonormal eigenvectors is symmetric.
- The inverse of an invertible symmetric matrix is symmetric.
- The eigenvector matrix Q of a symmetric matrix is symmetric.

Answer

(a) False.
$$A=\begin{bmatrix}1&2\\0&1\end{bmatrix}$$
 (b) True from $A^{\mathrm{T}}=Q\Lambda Q^{\mathrm{T}}=A$ (c) True from $S^{-1}=Q\Lambda^{-1}Q^{\mathrm{T}}$

(b) True from
$$A^{\mathrm{T}} = Q\Lambda Q^{\mathrm{T}} = A$$

(c) True from
$$S^{-1} = Q\Lambda^{-1}Q^{-1}$$

Positive Definite Matrices

Applications from ML

- Cholesky decomposition $A = LL^H$ (A special case of A = LU)
- Least squares computation reduction
- Support Vector Machine (SVM), kernel Positive-definite kernel
- Representer Theorem

Five tests

Positive definite matrices are the best. How to test S for $\lambda_i > 0$?

- Test 1 Compute the **eigenvalues** of S: All eigenvalues positive
- Test 2 The energy $x^{\mathrm{T}}Sx$ is positive for every vector $x \neq 0$
- Test 3 The **pivots** in elimination on S are all positive
- Test 4 The upper left **determinants** of S are all positive
- Test 5 $S = A^T A$ for some matrix A with independent columns

Positive Definite Matrices

Applications from Robotics

Matrix form of Lagrange

Positive Definite Matrices

Important Application: Test for a Minimum

Does F(x,y) have a minimum if $\partial F/\partial x=0$ and $\partial F/\partial y=0$ at the point (x,y)=(0,0)?

For f(x), the test for a minimum comes from calculus: df/dx is zero and $d^2f/dx^2 > 0$. Two variables in F(x,y) produce a symmetric matrix S. It contains four second derivatives. Positive d^2f/dx^2 changes to positive definite S:

Second derivatives
$$S = \left[\begin{array}{ccc} \partial^2 F/\partial x^2 & \partial^2 F/\partial x \partial y \\ \partial^2 F/\partial y \partial x & \partial^2 F/\partial y^2 \end{array} \right]$$

F(x,y) has a minimum if $\partial F/\partial x = \partial F/\partial y = 0$ and S is positive definite.

Reason: S reveals the all-important terms $ax^2 + 2bxy + cy^2$ near (x, y) = (0, 0). The second derivatives of F are 2a, 2b, 2b, 2c. For F(x, y, z) the matrix S will be 3 by 3.

Oleg Bulichev AGLA2 1

Reference material

- Lecture 28, Positive Definite Matrices and Minima
- "Introduction to Linear Algebra", pdf pages 349–374
 6.4 Symmetric, 6.5 Positive Definite matrices
- "Linear Algebra and Applications", pdf pages 355–376
 Positive Definite Matrices 6.1, 6.2

