

Feature Selective Anchor-Free Module for Single-Shot Object Detection

Chenchen Zhu, Yihui He, Marios Savvides

Carnegie Mellon University

04/18/2019

Overview

- Background
- Motivation
- Feature Selective Anchor-Free (FSAF) Module
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Online feature selection
- Experiments
- Qualitative Results

Overview

- Background
- Motivation
- Feature Selective Anchor-Free (FSAF) Module
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Online feature selection
- Experiments
- Qualitative Results

Object detection = localization + classification

A long-lasting challenge: sCale va liatiOn

Image pyramid

Anchor boxes [Ren et al, Faster R-CNN]

Pyramidal feature hierarchy, e.g. [Liu et al, SSD]

Feature pyramid network [Lin et al, FPN, RetinaNet]

Prior methods addressing scale variation

Multi-level feature pyramid network [Zhao et al, M2Det]

Combining feature pyramid with anchor boxes

- Smaller anchor associated with lower pyramid levels
- Larger anchor associated with higher pyramid levels

Overview

- Background
- Motivation
- Feature Selective Anchor-Free (FSAF) Module
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Online feature selection
- Experiments
- Qualitative Results

Motivation

Inherent limitations

Heuristic-guided feature selection

Motivation

Problem: feature selection by anchor boxes may not be optimal!

Question: how can we select feature level based on semantic information rather than just box size?

Answer: allowing arbitrary feature assignment by removing the anchor matching mechanism (using anchor-free methods), selecting the most suitable feature level.

Solution: Feature Selective Anchor-Free (FSAF) Module

Overview

- Background
- Motivation
- Feature Selective Anchor-Free (FSAF) Module
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Online feature selection
- Experiments
- Qualitative Results

The general concept

Instantiation

- Network architecture
- Ground-truth and loss
- Online feature selection

Network architecture (on RetinaNet)

Network architecture (on RetinaNet)

Ground-truth and loss

Definitions

- Instance box: b = [x, y, w, h]
- Projected box on P_l : $b_p^l = \left[x_p^l, y_p^l, w_p^l, h_p^l\right] = b/2^l$
- Effective box on P_l : $b_e^l = \left[x_p^l, y_p^l, \epsilon_e w_p^l, \epsilon_e h_p^l\right]$
- Ignoring box on P_l : $b_i^l = [x_p^l, y_p^l, \epsilon_i w_p^l, \epsilon_i h_p^l]$
- For pixel (i,j) in b_e^l , $[d_{t_{i,j}}^l, d_{l_{i,j}}^l, d_{b_{i,j}}^l, d_{r_{i,j}}^l]$ are distances of (i,j) to the top, left, bottom, right boundaries of b_p^l , respectively.

Ground-truth and loss

Online feature selection on anchor-free branches

$$l^* = \arg\min_{l} L_{FL}^{I}(l) + L_{IoU}^{I}(l)$$

Heuristic feature selection (for comparison)

$$l' = \left[l_0 + \log_2(\sqrt{wh}/224) \right]$$

where l_0 is the target level to which an instance with $w \times h = 224^2$ is mapped [Lin et al, FPN].

Overview

- Background
- Motivation
- Feature Selective Anchor-Free (FSAF) Module
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Online feature selection
- Experiments
- Qualitative Results

- Data
 - ◆ COCO Dataset, train set: trainval35k, validation set: minival, test set: test-dev
- Ablation study
 - ◆ Train on trainval35k, evaluate on minival
 - ◆ ResNet-50 as backbone network
- Runtime analysis
 - ◆ Train on trainval35k, evaluate on minival
 - ◆ Run on a single Titan X with CUDA 9 and CUDNN 7
- Compare to state of the art
 - ◆ Train on trainval35k with 1.5x iterations, evaluate on minival

Ablation study

		Anchor-free		or-free	АР					
-based	-based	Heuristic feature selection	Online feature selection	AP ₅₀		AP ₇₅	AP _s	AP _M	AP _L	
RetinaNet	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5	
		√		34.7	54.0	36.4	19.0	39.0	45.8	
			\checkmark	35.9	55.0	37.9	19.8	39.6	48.2	
	✓	√		36.1	55.6	38.7	19.8	39.7	48.9	
	\checkmark		\checkmark	37.2	57.2	39.4	21.0	41.2	49.7	

Ablation study

	Anchor -based	Anchor-free							
		Heuristic feature selection	Online feature selection	AP	AP ₅₀	AP ₇₅	AP _s	AP _M	AP _L
RetinaNet	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5
		\checkmark		34.7	54.0	36.4	19.0	39.0	45.8
0			√	35.9	55.0	37.9	19.8	39.6	48.2
Ours	✓	√		36.1	55.6	38.7	19.8	39.7	48.9
	√		√	37.2	57.2	39.4	21.0	41.2	49.7

Anchor-free branches only with heuristic feature selection are not able to compete with anchor-based counterparts due to less parameters.

Ablation study

	Anchor -based	Anchor-free		or-free	АР					
		Heuristic feature selection	Online feature selection	AP ₅₀		AP ₇₅	AP _s	AP _M	AP _L	
RetinaNet	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5	
		\checkmark		34.7	54.0	36.4	19.0	39.0	45.8	
0			\checkmark	35.9	55.0	37.9	19.8	39.6	48.2	
Ours	√	√		36.1	55.6	38.7	19.8	39.7	48.9	
	√		√	37.2	57.2	39.4	21.0	41.2	49.7	

Online feature selection is essential to overcome the parameter disadvantage!

Ablation study

	Anchor -based	Anchor-free							
		Heuristic feature selection	Online feature selection	AP	AP ₅₀	AP ₇₅	AP _s	AP _M	AP _L
RetinaNet	\checkmark			35.7	54.7	38.5	19.5	39.9	47.5
Ours		\checkmark		34.7	54.0	36.4	19.0	39.0	45.8
			\checkmark	35.9	55.0	37.9	19.8	39.6	48.2
	\checkmark	\checkmark		36.1	55.6	38.7	19.8	39.7	48.9
	\checkmark		\checkmark	37.2	57.2	39.4	21.0	41.2	49.7

Online feature selection also guarantees anchor-free and anchor-based branches to work well together.

Ablation study

Class name	AP improvement
Sports ball	+8.4
Tie	+5.9
Hair drier	+5.2
Kite	+5.1
Snowboard	+4.6
Skis	+4.3
Toothbrush	+3.9
Carrot	+3.8
Keyboard	+3.5

Runtime analysis

Backbone	Method	АР	AP ₅₀	Runtime (ms/im)
	RetinaNet	35.7	54.7	131
ResNet-50	Ours(FSAF)	35.9	55.0	107
	Ours(AB+FSAF)	37.2	57.2	138
	RetinaNet	37.7	57.2	172
ResNet-101	Ours(FSAF)	37.9	58.0	148
	Ours(AB+FSAF)	39.3	59.2	180
ResNeXt-101	RetinaNet	39.8	59.5	356
	Ours(FSAF)	41.0	61.5	288
	Ours(AB+FSAF)	41.6	62.4	362

Runtime analysis

Backbone	Method	АР	AP ₅₀	Runtime (ms/im)
	RetinaNet	35.7	54.7	131
ResNet-50	Ours(FSAF)	35.9	55.0	107
		37.2	57.2	138
	RetinaNet	37.7	57.2	172
ResNet-101	Ours(FSAF)	37.9	58.0	148
	Ours(AB+FSAF)	39.3	59.2	180
	RetinaNet	39.8	59.5	356
ResNeXt-101	Ours(FSAF)	41.0	61.5	288
		41.6	62.4	362

Runtime analysis

Backbone	Method	АР	AP ₅₀	Runtime (ms/im)
	RetinaNet	35.7	54.7	131
ResNet-50	Ours(FSAF)	35.9	55.0	107
	Ours(AB+FSAF)	37.2	57.2	138
	RetinaNet	37.7	57.2	172
ResNet-101	Ours(FSAF)	37.9	58.0	148
	Ours(AB+FSAF)	39.3	59.2	180
ResNeXt-101	RetinaNet	39.8	59.5	356
	Ours(FSAF)	41.0	61.5	288
	Ours(AB+FSAF)	41.6	62.4	362

Comparison with state-of-the-art single-shot detectors

Method	Backbone	AP	AP ₅₀	APs	AP _M	AP _L
YOLOv2	DarkNet-19	21.6	44.0	5.0	22.4	35.5
SSD513	ResNet-101	31.2	50.4	10.2	34.5	49.8
RefineDet512		36.4	57.5	16.6	39.9	51.4
RefineDet(ms)		41.8	62.9	25.6	45.1	54.1
RetinaNet800		39.1	59.1	21.8	42.7	50.2
Ours800		40.9	61.5	24.0	44.2	51.3
Ours(ms)		42.8	63.1	27.8	45.5	53.2
CornerNet511	Hourglass 104	40.5	56.5	19.4	42.7	53.9
CornerNet(ms)	Hourglass-104	42.1	57.8	20.8	44.8	56.7
Ours800	DocNoV+ 101	42.9	63.8	26.6	46.2	52.7
Ours(ms)	ResNeXt-101	44.6	65.2	29.7	47.1	54.6

Overview

- Background
- Motivation
- Feature Selective Anchor-Free (FSAF) Module
 - General concept
 - Network architecture
 - Ground-truth and loss
 - Online feature selection
- Experiments
- Qualitative Results

Qualitative Results

Qualitative Results

References

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." *Advances in neural information processing systems*. 2015.

Liu, Wei, et al. "Ssd: Single shot multibox detector." *European conference on computer vision*. Springer, Cham, 2016.

Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Lin, Tsung-Yi, et al. "Focal loss for dense object detection." *Proceedings of the IEEE international conference on computer vision*. 2017.

Huang, Lichao, et al. "Densebox: Unifying landmark localization with end to end object detection." arXiv preprint arXiv:1509.04874 (2015).

Yu, Jiahui, et al. "Unitbox: An advanced object detection network." *Proceedings of the 24th ACM international conference on Multimedia*. ACM, 2016.

Zhao, Qijie, et al. "M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network." *arXiv preprint arXiv:1811.04533* (2018).

Takeaway

Feature selection based on semantics is the key!

Q&A