Summary for Introduction to Set Theory

SEUNGWOO HAN

Hrbacek, Karel, and Thomas J. Jech. *Introduction to Set Theory, Revised and Expanded*. 3rd ed., CRC Press, 1999.

CONTENTS

CHAPTER	Sets	Page 3	
1.1	Introduction to Sets	3	
1.2	Properties	3	
1.3	Axioms	3	
1.4	Elementary Operations on Sets	6	
Chapter	Relations, Function, and Ordering	Page 9	
2.1	Ordered Pairs	9	
2.2	Relations	9	
2.3	Functions	13	
2.4	Equivalences and Partitions	18	
2.5	Orderings	20	
Chapter	Natural Numbers	PAGE 27	
3.1	Introduction to Natural Numbers	27	
3.2	Properties of Natural Numbers	28	
3.3	The Recursion Theorem	33	
3.4	Arithmetic of Natural Numbers	37	
3.5	Operations and Structures	45	
Chapter	FINITE, COUNTABLE, AND UNCOUNTABLE SETS	PAGE 50	
4.1	Cardinality of Sets	50	
4.2	Finite Sets	53	
4.3	Countably Infinite sets	57	
4.4	Linear Orderings	63	
4.5	Complete Linear Ordering	69	
Chapter	Cardinal Numbers	Page 73	
5.1	Cardinal Arithmetic	73	

CHAPTER	Ordinal Numbers	PAGE 77
CHAPTER	Alephs	Page 78
CHAPTER	Axiom of Choice	Page 79

Chapter 1

Sets

1.1 Introduction to Sets

Definition 1.1.1: Set

Every object in the universe of discourse is called a set.

1.2 Properties

Definition 1.2.1: Property

Any mathematical sentence* is called a *property*. If X, Y, \dots, Z are free variables of a property \mathbf{Q} , we write $\mathbf{Q}(X, Y, \dots, Z)$ and say $\mathbf{Q}(X, Y, \dots, Z)$ is a property of X, Y, \dots, Z .

1.3 Axioms

Axiom I The Axiom of Existence

There exists a set which has no elements.

$$\exists A \ \forall x \ \neg(x \in A)$$

Note:-

The Axiom of Existence guarantees that the universe of discourse is not void.

Axiom II The Axiom of Extensionality

If every element of X is an element of Y and every element of Y is an element of X, then X = Y.

$$\forall X \ \forall Y \ [\forall x \ (x \in X \iff x \in Y) \implies X = Y]$$

Note:-

The Axiom of Extensionality defines the equality relation with the containment relation (\in) .

^{*}Refer to mathematical logic textbook for detailed discussion.

Lemma 1.3.1

There exists only one set with no elements.

Proof. Let A and B are sets such that $\forall x \neg (x \in A)$ and $\forall x \neg (x \in B)$. Then, we have $\forall x (x \in A \iff x \in B)$. Therefore, by The Axiom of Extensionality, A = B is guaranteed.

Definition 1.3.2: Empty Set

The unique set with no elements is called the *empty set* and is denoted \emptyset .

Note:-

Definition 1.3.2 is justified by Lemma 1.3.1.

Axiom III The Axiom Schema of Comprehension

Let P(x) be a property of x. For any set A, there exists a set B such that $x \in B$ if and only if $x \in A$ and P(x).

$$\forall A \exists B (x \in B \iff x \in A \land \mathbf{P}(x))$$

🛉 Note:- 🛉

Axiom III is a axiom schema since it provides unlimited amount of axioms for varying P.

Lemma 1.3.3

Let P(x) be a property of x. For any set A, there uniquely exists a set B such that $x \in B$ if and only if $x \in A$ and P(x).

Proof. Let B' be another set such that $x \in B'$ if and only if $x \in A$ and P(x). Then, for any x, we have $x \in B' \iff x \in A \land P(x) \iff x \in B$. Hence, by The Axiom of Extensionality, we have B = B'.

Notation 1.3.4: Set-Builder Notation

Let P(x) be a property of x. Let A be a set. The unique set B such that $x \in B$ if and only if $x \in A$ and P(x) is denoted $\{x \in A \mid P(x)\}$.

Note:- 🛉

Notation 1.3.4 is justified by Lemma 1.3.3.

Axiom IV The Axiom of Pair

For any *A* and *B*, there exists *C* such that $x \in C$ if and only if x = A or x = B.

$$\forall A \forall B \exists C (x \in C \iff x = A \lor x = B)$$

Note:-

Similarly, the set C such that $x \in C \iff x = A \lor x = B$ is unique by The Axiom of Extensionality.

Notation 1.3.5

Let *A* and *B* be sets. The unique set *C* such that $x \in C$ if and only if x = A or x = B is denoted $\{A, B\}$. In particular, if A = B, we write $\{A\}$ instead of $\{A, A\}$.

Axiom V The Axiom of Union

For any S, there exists U such that $x \in U$ if and only if $x \in A$ for some $A \in S$.

$$\forall S \exists U (x \in U \iff \exists A x \in A \land A \in S)$$

Definition 1.3.6: The Union of System of Sets

Let *S* be a set. The unique set *U* such that $x \in U$ if and only if $x \in A$ for some $A \in S$ is denoted $\bigcup S$.

Definition 1.3.7: The Union of Two Sets

Let *A* and *B* be sets. Then, $A \cup B$ denotes the unique set $\bigcup \{A, B\}$.

Definition 1.3.8: Subset

Let *A* and *B* sets. *B* is said to be a *subset* of *A* if $\forall x (x \in B \implies x \in A)$. If *B* is a subset of *A*, then we write $B \subseteq A$.

Axiom VI The Axiom of Power Set

For any *S*, there exists *P* such that $X \in P$ if and only if $X \subseteq S$.

Note:-

Similarly, the set *P* is unique by The Axiom of Extensionality.

Definition 1.3.9: Power Set

Let *S* be a set. The unique set *P* such that $X \in P$ if and only if $X \subseteq S$ is called the *power* set of *S* and is denoted $\mathcal{P}(S)$.

Lemma 1.3.10

Let P(x) be a property of x. Let A and A' be sets such that $P(x) \implies x \in A \land x \in A'$. Then, $\{x \in A \mid P(x)\} = \{x \in A' \mid P(x)\}$.

Proof. For all x, we have $x \in A \land P(x) \iff P(x) \iff x \in A' \land P(x)$. Therefore, by The Axiom of Extensionality, the result follows.

Notation 1.3.11

Let P(x) be a property of x. If there exists a set A such that P(x) implies $x \in A$, we write $\{x \mid P(x)\} \triangleq \{x \in A \mid P(x)\}$, and it is called the set of all x with the property P(x).

Note:-

Notation 1.3.11 is justified by Lemma 1.3.10.

Selected Problems

Exercise 1.3.1

The set of all x such that $x \in A$ and $x \notin B$ exists.

Proof. We have $x \in A \land x \notin B \implies x \in A$. Hence, the set exists and is equal to $\{x \in A \mid x \in A \land x \notin B\}$.

Exercise 1.3.2

Prove The Axiom of Existence only from The Axiom Schema of Comprehension and The Weak Axiom of Existence.

Weak Axiom of Existence Some set exists.

Proof. Let A be a set known to exist. Then, there exists $B = \{x \in A \mid x \neq x\}$ by The Axiom Schema of Comprehension. Since $\forall x (x = x), \ \forall x (x \notin B)$.

Exercise 1.3.3

- (a) Prove that a set of all sets($\{x \mid \top\}$) does not exist.
- (b) Prove that $\forall A \exists x (x \notin A)$.

Proof.

- (a) Suppose $V = \{x \mid T\}$ exists. Then, by The Axiom Schema of Comprehension, $R = \{x \in V \mid x \notin x\}$ exists. However, we have $R \in R \iff R \notin R$ by definition of R. Hence, V does not exist.
- (b) Suppose $\exists A \forall x (x \in A)$ for the sake of contradiction. Then, *A* is the set of all sets, which is impossible by (a).

Exercise 1.3.6

Prove $\forall X \neg (\mathcal{P}(X) \subseteq X)$.

Proof. Let $Y = \{u \in X \mid u \notin u\}$. Then, by definition, $Y \subseteq X$, and thus $Y \in \mathcal{P}(X)$. Now, suppose $Y \in X$ for the sake of contradiction. Then, $Y \in Y \iff Y \in X \land Y \notin Y \iff Y \notin Y$, which is a contradiction. Hence, $Y \notin X$.

1.4 Elementary Operations on Sets

Definition 1.4.1: Proper Subset

Let *A* and *B* sets. *B* is said to be a *proper subset* of *A* if $B \subseteq A$ and $B \neq A$. If *B* is a proper subset of *A*, we write $B \subsetneq A$.

Definition 1.4.2: Elementary Operations on Sets

- (i) Intersection
 - The intersection of *A* and *B*, $A \cap B$, is the set $\{x \mid x \in A \land x \in B\}$.
- (ii) Union
 - The *union* of *A* and *B*, $A \cup B$, is the set $\{x \mid x \in A \lor x \in B\}$.
- (iii) Difference
 - The difference of A and B, $A \setminus B$, is the set $\{x \mid x \in A \land x \notin B\}$.
- (iv) Symmetric Difference
 - The symmetric difference of *A* and *B*, $A \triangle B$, is the set $(A \setminus B) \cup (B \setminus A)$.

Lemma 1.4.3 Simple Properties of Elementary Operations

- (i) Commutativity
 - $A \cap B = B \cap A$
 - $A \cup B = B \cup A$
 - $A \triangle B = B \triangle A$
- (ii) Associativity
 - $(A \cap B) \cap C = A \cap (B \cap C)$
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \triangle B) \triangle C = A \triangle (B \triangle C)$
- (iii) Distributivity
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (iv) De Morgan's Laws
 - $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$
 - $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$
- (v) Miscellaneous
 - $A \cap (B \setminus C) = (A \cap B) \setminus C$
 - $A \setminus B = \emptyset \iff A \subseteq B$
 - $A \triangle B = \emptyset \iff A = B$

Definition 1.4.4: Intersection of System of Sets

Let *S* be a nonempty set. Then, the *intersection* $\bigcap S$ is the set $\{x \mid \forall A \in S \ (x \in A)\}$.

Note:-

Note that $\bigcap S$ exists for all nonempty S since $\forall A \in S \ (x \in A) \implies x \in A_1$ where A_1 is any set such that $A_1 \in S$.

Definition 1.4.5: System of Mutually Disjoint Sets

We say the sets A and B are disjoint if $A \cap B = \emptyset$. A set S is a system of mutually disjoint sets if $\forall A, B \in S$, $(A \neq B \implies A \cap B = \emptyset)$.

Selected Problems

Exercise 1.4.2

- (i) $A \setminus B = (A \cup B) \setminus B = A \setminus (A \cap B)$
- (ii) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$
- (iii) $A \cap B = A \setminus (A \setminus B)$

Proof.

(i)
$$x \in A \land x \notin B \iff x \in A \land x \notin B \lor x \in B \land x \notin B$$
 \Rightarrow V-intro / V-syllogism \iff $(x \in A \lor x \in B) \land x \notin B$ \Rightarrow Distribution \Rightarrow Distribution \Rightarrow \Rightarrow Distribution \Rightarrow De Morgan's Law \Rightarrow Distribution \Rightarrow Distribution \Rightarrow Distribution \Rightarrow Distribution \Rightarrow Distribution

Exercise 1.4.4

For any set A, prove that a "complement" of A ($\{x \mid x \notin A\}$) does not exist.

Proof. Let *B* be the complement of *A* for the sake of contradiction. Then, $A \cup B$ is the set of all sets, which is impossible by Exercise 1.3.3.

Chapter 2

Relations, Function, and Ordering

2.1 Ordered Pairs

Definition 2.1.1: Ordered Pair

 $(a,b) \triangleq \{\{a\},\{a,b\}\}$

Theorem 2.1.2

$$(a,b) = (a',b') \iff a = a' \land b = b'$$

Proof. (\Leftarrow) is direct.

(⇒) If a = b, we have $\{\{a\}\} = \{\{a'\}, \{a', b'\}\}$, and thus $\{a\} = \{a'\} = \{a', b'\}$, leaving the only option a = a' = b'.

If $a \neq b$, we must have $a' \neq b'$ by the argument above. Hence, we have $\{\{a\}, \{a, b\}\} = \{\{a'\}, \{a', b'\}\}$, which implies $\{a\} = \{a'\}$ and $\{a, b\} = \{a', b'\}$.

Definition 2.1.3: Ordered Triples and Quadruples

- (a,b,c) = ((a,b),c)
- (a, b, c, d) = ((a, b, c), d)

Selected Problems

Exercise 2.1.1

If $a, b \in A$, then $(a, b) \in \mathcal{P}(\mathcal{P}(A))$.

Proof. If $a, b \in A$, then $\{a\}, \{a, b\} \in \mathcal{P}(A)$, and thus $(a, b) = \{\{a\}, \{a, b\}\} \subseteq \mathcal{P}(A)$.

2.2 Relations

Definition 2.2.1: Binary Relation

A set *R* is a *binary relation* if all elements of *R* are ordered pairs.

R is a binary relation \iff $(a \in R \implies \exists x, \exists y, a = (x, y))$

Notation 2.2.2

If $(x, y) \in R$, we write xRy and say x is in relation R with y.

Definition 2.2.3: Domain, Range, and Field of Binary Relation

Let *R* be a binary relation.

- dom $R \triangleq \{x \mid \exists y \ xRy \}$ is called the *domain* of R.
- $ran R \triangleq \{ y \mid \exists x \ xRy \}$ is called the *range* of *R*.
- field $R \triangleq \text{dom } R \cup \text{ran } R$ is called the *field* of R.
- If field $R \subseteq X$, we say that R is a *relation in* X or that R is a relation *between* elements of X.

Lemma 2.2.4

Let R be a binary relation. Then, dom R and ran R exist.

Proof. By Exercise 2.2.1, if xRy, then $x, y \in A \triangleq \bigcup (\bigcup R)$. Hence, dom R and ran R exist. \Box

Definition 2.2.5: Image and Inverse Image

Let *R* be a binary relation and *A* be a set.

- $R[A] \triangleq \{ y \in ran R \mid \exists x \in A, xRy \}$ is called the *image* of A under R.
- $R^{-1}[A] \triangleq \{x \in \text{dom } R \mid \exists y \in A, xRy \}$ is called the *inverse image* of A under R.

Notation 2.2.6

We write $\{(x, y) \mid \mathbf{P}(x, y)\}$ instead of $\{w \mid \exists x, \exists y, w = (x, y) \land \mathbf{P}(x, y)\}$.

Definition 2.2.7: Inverse Relation

Let *R* be a binary relation. The *inverse* of *R* is the set

$$R^{-1} \triangleq \{(x,y) \mid yRx \}.$$

Definition 2.2.8: Composition

Let *R* and *S* be binary relations. The relation

$$S \circ R \triangleq \{(x,z) \mid \exists y, xRy \land ySz\}$$

is called the *composition* of R and S.

Definition 2.2.9: Membership Relation and Identity Relation

Let *A* be a set.

• The membership relation on A is defined by

$$\in_A \triangleq \{(a,b) \mid a,b \in A \land a \in b\}.$$

• The *identity relation on A* is defined by

$$\mathrm{Id}_A \triangleq \{(a,a) \mid a \in A\}.$$

Definition 2.2.10: Cartesian Product

Let *A* and *B* be sets. The set $A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$ is called the *Cartesian product* product of *A* and *B*.

Lemma 2.2.11

Let A and B be sets. $A \times B$ exists.

Proof. If $a \in A$ and $b \in B$, by Exercise 2.1.1, we have $(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B))$.

Corollary 2.2.12

Let *R* and *S* be binary relations and *A* be a set. Then, R^{-1} , $S \circ R$, \in_A , and Id_A exist.

Proof.

- If yRx, then $(x, y) \in (\operatorname{ran} R) \times (\operatorname{dom} R)$.
- If $(x,z) \in S \circ R$, then $(x,z) \in (\text{dom } R) \times (\text{ran } S)$.
- If $a, b \in A$, then $(a, b) \in A \times A$.
- If $a \in A$, then $(a, a) \in A \times A$.

Lemma 2.2.13

Let *R* be a binary relation. The inverse image of *A* under *R* is equal to the image of *A* under R^{-1} .

Proof. Note that dom $R = \{x \mid \exists y \ xRy \} = \{x \mid \exists y \ yR^{-1}x \} = \operatorname{ran} R^{-1}$. Therefore,

 $x \in (\text{the inverse image of } A \text{ under } R)$

 $\iff x \in \text{dom}\,R \land \exists y \in A, xRy$

 $\iff x \in \operatorname{ran} R^{-1} \wedge \exists y \in A, \ yR^{-1}x$

 \iff $x \in (\text{the image of } A \text{ under } R^{-1}).$

♦ Note:- 🛉

Lemma 2.2.13 resolves the possible ambiguity on the expression $R^{-1}[A]$.

Notation 2.2.14

We write A^2 instead of $A \times A$.

Selected Problems

Exercise 2.2.1

Let *R* be a binary relation. Let $A = \bigcup (\bigcup R)$. Prove that $(x, y) \in R$ implies $x \in A$ and $y \in A$.

Proof. If $(x, y) = \{\{x\}, \{x, y\}\} \in R$, Then $\{x, y\} \in \bigcup R$, and thus $x, y \in A$. □

Exercise 2.2.3

Let *R* be a binary relation and *A* and *B* be sets. Prove:

- (i) $R[A \cup B] = R[A] \cup R[B]$.
- (ii) $R[A \cap B] \subseteq R[A] \cap R[B]$.
- (iii) $R[A \setminus B] \supseteq R[A] \setminus R[B]$.
- (iv) Show by an example that \subseteq and \supseteq in parts (ii) and (iii) cannot be replaced by =.
- (v) $R^{-1}[R[A]] \supseteq A \cap \text{dom } R$ and $R[R^{-1}[B]] \supseteq B \cap \text{ran } R$. Give examples where equality does not hold.

Proof.

- (i) $y \in R[A \cup B] \iff \exists x, x \in A \cup B \land xRy$
 - $\iff \exists x, (x \in A \land xRy) \lor (x \in B \land xRy)$
 - $\iff y \in R[A] \lor y \in R[B] \iff y \in R[A] \cup R[B]$
- (ii) Take any $y \in R[A \cap B]$. Then, there exists $x \in A \cap B$ such that xRy. Hence, $y \in R[A]$ and $y \in R[B]$.
- (iii) Take any $y \in R[A] \setminus R[B]$. Then, there exists $x \in A$ such that xRy. If $x \in B$, it implies that $y \in R[B]$, which is a contradiction. Hence, $x \in A \setminus B$. Therefore, $y \in R[A \setminus B]$.
- (iv) Let a, b, and c be mutually different sets. Let $R = \{(a, a), (b, a), (c, c)\}$. Let $A = \{a, c\}$ and $B = \{b, c\}$. Then, $R[A \cap B] = \{c\} \subsetneq R[A] \cap R[B] = \{a, c\}$, and $R[A] \setminus R[B] = \emptyset \subsetneq R[A \setminus B] = \{a\}$.
- (v) Take any $a \in A \cap \text{dom } R$. Then, there exists b such that aRb. Moreover, $b \in R[A]$. Since $bR^{-1}a$, we conclude that $a \in R^{-1}[R[A]]$.

Take any $b \in B \cap \operatorname{ran} R$. Then, there exists a such that aRb. Moreover, $a \in R^{-1}[B]$. Hence, $b \in R[R^{-1}[B]]$.

Exercise 2.2.4

Let $R \subseteq X \times Y$. Prove:

- (i) $R[X] = \operatorname{ran} R \text{ and } R^{-1}[Y] = \operatorname{dom} R$.
- (ii) $dom R = ran R^{-1}$ and $ran R = dom R^{-1}$.
- (iii) $(R^{-1})^{-1} = R$.
- (iv) $R^{-1} \circ R \supseteq \mathrm{Id}_{\mathrm{dom}R}$ and $R \circ R^{-1} \supseteq \mathrm{Id}_{\mathrm{ran}R}$

- (i) We already have $R[X] \subseteq \operatorname{ran} R$ by definition. Take any $y \in \operatorname{ran} R$. There exists x such that $(x, y) \in R$. Since $R \subseteq X \times Y$, $x \in X$. Therefore, $y \in R[X]$; $\operatorname{ran} R \subseteq R[X]$. A similar argument goes for $R^{-1}[Y]$.
- (ii) See the proof of Lemma 2.2.13.
- (iii) For any relation R and for all x and y, we have $xRy \iff yR^{-1}x$. Since R^{-1} is also a relation, we have $xRy \iff yR^{-1}x \iff x(R^{-1})^{-1}y$.
- (iv) Take any $x \in \text{dom } R$. Then, there exists y such that xRy. Then, $yR^{-1}x$, and thus $x(R^{-1} \circ R)x$. A similar argument goes for $R \circ R^{-1}$.

Exercise 2.2.8

 $A \times B = \emptyset$ if and only if $A = \emptyset$ or $B = \emptyset$.

Proof. (\Rightarrow) If $A \neq \emptyset$ and $B \neq \emptyset$, we have $(a, b) \in A \times B$ where $a \in A$ and $b \in B$, and thus $A \times B \neq \emptyset$.

 (\Leftarrow) If $A \times B \neq \emptyset$, then $a \in A$ and $b \in B$ where $(a, b) \in A \times B$.

2.3 Functions

Definition 2.3.1: Function

A binary relation *F* is called a *function* (or *mapping*) if

$$\forall a \forall b_1 \forall b_2 (aFb_1 \land aFb_2 \implies b_1 = b_2).$$

For each $a \in \text{dom } F$, the unique b such that aFb is called the *value of F at a* and is denoted F(a) of F_a .

Notation 2.3.2

If F is a function with dom F = A and ran $F \subseteq B$, we write $F: A \to B$, $\langle F(a) \mid a \in A \rangle$, $\langle F_a \mid a \in A \rangle$, $\langle F_a \rangle_{a \in A}$ for the function F. The range of the function F can then be denoted $\{F(a) \mid a \in A\}$ or $\{F_a\}_{a \in A}$.

Lemma 2.3.3

Let F and G be functions. $F = G \iff \operatorname{dom} F = \operatorname{dom} G \land \forall x \in \operatorname{dom} F, F(x) = G(x)$.

Proof. (\Rightarrow) is direct.

(\Leftarrow) Take any $(x, F(x)) \in F$. Then, we have $(x, F(x)) = (x, G(x)) \in G$. Therefore, $F \subseteq G$. Similarly, $G \subseteq F$, and thus F = G. □

Definition 2.3.4

Let *F* be a function and *A* and *B* be sets.

- F is a function on A if dom F = A.
- *F* is a function *into B* if ran $F \subseteq B$.
- F is a function *onto* B if ran F = B.
- The *restriction* of the function F to A is the function $F|_A \triangleq \{(a,b) \in F \mid a \in A\}$. If G is a restriction of F to some A, we say that F is an *extension* of G.

Theorem 2.3.5

Let f and g be functions.

- (i) $g \circ f$ is a function.
- (ii) $\operatorname{dom}(g \circ f) = (\operatorname{dom} f) \cap f^{-1}[\operatorname{dom} g].$
- (iii) $\forall x \in \text{dom}(g \circ f), (g \circ f)(x) = g(f(x)).$

- (i) Suppose $x(g \circ f)z_1$ and $x(g \circ f)z_2$. There exists y_1 and y_2 such that xfy_1 , y_1gz_1 , xfy_2 , and y_2gz_2 . Since f and g are functions, we have $y_1 = y_2$ and $z_1 = z_2$. Therefore, $g \circ f$ is a function.
- (ii) $x \in \text{dom}(g \circ f) \iff \exists z \ x(g \circ f)z$

$$\iff \exists z \,\exists y \, xf \, y \land ygz$$

$$\iff x \in \text{dom } f \land f(x) \in \text{dom } g \iff x \in \text{dom } f \land x \in f^{-1}[\text{dom } g] \quad \Box$$

Definition 2.3.6: Invertible Function

A function f is said to be *invertible* if f^{-1} is a function.

Definition 2.3.7: Injective Function

A function *f* is said to be *injective* (or *one-to-one*) if

$$\forall a_1, a_2 \in \text{dom } f, (f(a_1) = f(a_2) \implies a_1 = a_2).$$

Notation 2.3.8

Let f be a function.

- If f is a function on A onto B, we may write $f: A \rightarrow B$.
- If f is an *injective* function on A into B, we may write $f: A \hookrightarrow B$.
- If f is an injective function on A onto B, we may write $f: A \hookrightarrow B$.
- If f is a function on a *subset* of A into B, we may write $f: A \rightarrow B$.

Theorem 2.3.9

Let *f* be a function.

- (i) *f* is invertible if and only if *f* is one-to-one.
- (ii) If f is invertible, then f^{-1} is also invertible and $(f^{-1})^{-1} = f$.

Proof.

- (i) (\Rightarrow) Suppose f^{-1} is a function. Then, $f^{-1}(f(a)) = a$ for all $a \in \text{dom } f$. Hence, for all $a_1, a_2 \in \text{dom } f$ such that $f(a_1) = f(a_2)$, it follows that $a_1 = f^{-1}(f(a_1)) = f^{-1}(f(a_2)) = a_2$; f is one-to-one.
 - (\Leftarrow) Suppose f is one-to-one. If $yf^{-1}x_1$ and $yf^{-1}x_2$, then x_1fy and x_2fy , i.e., $y = f(x_1) = f(x_2)$. Therefore, $x_1 = x_2$; f^{-1} is a function.
- (ii) As f is a relation, by Exercise 2.2.4 (iii), $(f^{-1})^{-1} = f$, and thus f^{-1} is invertible.

Definition 2.3.10: Compatible Functions

- Functions f and g are called *compatible* if $\forall x \in (\text{dom } f) \cap (\text{dom } g), f(x) = g(x).$
- A set of functions *F* is called a *compatible system of functions* if any two functions *f* and *g* from *F* are compatible.

Lemma 2.3.11

Let f and g be functions.

- (i) f and g are compatible if and only if $f \cup g$ is a function.
- (ii) f and g are compatible if and only if $f|_{(\text{dom } f)\cap(\text{dom } g)} = g|_{(\text{dom } f)\cap(\text{dom } g)}$.

- (i) (\Rightarrow) Suppose $x(f \cup g)y_1$ and $x(f \cup g)y_2$. WLOG, $(x, y_1) \in f$. If $(x, y_2) \in f$, since f is a function, $y_1 = y_2$. If $(x, y_2) \in g$, since f and g are compatible, $y_1 = f(x) = g(x) = y_2$. Therefore, $f \cup g$ is a function.
 - (\Leftarrow) Take any $x \in (\text{dom } f) \cap (\text{dom } g)$. $(x, f(x)) \in f \cup g$ and $(x, g(x)) \in f \cup g$. Since $f \cup g$ is a function, we have f(x) = g(x).
- (ii) Let $A = (\text{dom } f) \cap (\text{dom } g)$.
 - (⇒) By definition, $\operatorname{dom} f|_A = \operatorname{dom} g|_A = (\operatorname{dom} f) \cap (\operatorname{dom} g)$. Moreover, for all $x \in (\operatorname{dom} f) \cap (\operatorname{dom} g)$, $f|_A(x) = f(x) = g(x) = g|_A(x)$. Hence, the result follows by Lemma 2.3.3.
 - (\Leftarrow) Take any $x \in A$. Then, $f(x) = f|_A(x) = g|_A(x) = g(x)$.

Theorem 2.3.12

If *F* is a compatible system of functions, then $\bigcup F$ is a function with dom $\bigcup F = \bigcup \{ \text{dom } f \mid f \in F \}$. The function $\bigcup F$ extends all $f \in F$.

Proof. Note that $\bigcup F$ is already a relation. If $(a, b_1), (a, b_2) \in \bigcup F$, then there exist $f_1, f_2 \in F$ such that $(a, b_1) \in f_1$ and $(a, b_2) \in f_2$. Since f_1 and f_2 are compatible and $a \in (\text{dom } f_1) \cap (\text{dom } f_2)$, we have $b_1 = f_1(a) = f_2(a) = b_2$. Hence, $\bigcup F$ is a function.

 $dom | JF = | J\{dom f | f \in F\}$ since

$$x \in \text{dom} \bigcup F \iff \exists y, (x, y) \in \bigcup F$$

$$\iff \exists y, \exists f \in F, (x, y) \in f$$

$$\iff \exists f \in F, x \in \text{dom} f \iff x \in \bigcup \{\text{dom} f \mid f \in F\}.$$

Take any $f \in F$. As $f \cup \bigcup F = \bigcup F$, f and $\bigcup F$ are compatible by Lemma 2.3.11 (i). Moreover, dom $f \cap \text{dom } \bigcup F = \text{dom } f$. Hence, by Lemma 2.3.11 (ii), $f = f \big|_{\text{dom } f} = \big(\bigcup F\big) \big|_{\text{dom } f}$; $\bigcup F$ extends each $f \in F$.

Definition 2.3.13

Let A and B be sets. Then, we define

 $B^A \triangleq \{ f \mid f \text{ is a function on } A \text{ into } B \}.$

Definition 2.3.14: Indexed System of Sets

- Let $S = \langle S_i \mid i \in I \rangle$ be a function with domain I. We call the function S an *indexed* system of sets whenever we stress that the values of S are sets.
- We say that a system of sets A is indexed by S if $A = \{S_i \mid i \in I\} = \operatorname{ran} S$.

Notation 2.3.15

If *A* is indexed by $S = \langle S_i | i \in I \rangle$, we may write

$$\bigcup \{S_i \mid i \in I\} \quad \text{or} \quad \bigcup_{i \in I} S_i$$

instead of $\bigcup A$. Similarly, we may write $\bigcap \{S_i \mid i \in I\}$ or $\bigcap_{i \in I} S_i$ instead of $\bigcap A$.

Definition 2.3.16: Product of Indexed System of Sets

Let $S = \langle S_i \mid i \in I \rangle$ be an indexed system of sets. We call the set

$$\prod S \triangleq \{f \mid f \text{ is a function on } I \text{ and } \forall i \in I, f_i \in S_i\}$$

the *product* of the indexed system *S*.

Notation 2.3.17

Other notations for the product of the indexed system $S = \langle S_i | i \in I \rangle$ are:

$$\prod \langle S(i) \mid i \in I \rangle, \quad \prod_{i \in I} S(i), \quad \prod_{i \in I} S_i.$$

Note:-

The existence of B^A and $\prod_{i \in I} S_i$ is proved in Exercise 2.3.9.

Note:-

If $A = S_i$ for all $i \in I$, $\prod_{i \in I} S_i = A^I$.

Selected Problems

Exercise 2.3.4

Let f be a function. If there exists a function g such that $g \circ f = \mathrm{Id}_{\mathrm{dom}f}$, then f is invertible and $f^{-1} = g\big|_{\mathrm{ran}f}$.

Proof. For $x_1, x_2 \in \text{dom } f$, suppose $f(x_1) = f(x_2)$. Then, $x_1 = (g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2) = x_2$. Hence, f is one-to-one and is inverible by Theorem 2.3.9.

Take any $(y, x) \in f^{-1}$. Then, as $x \in \text{dom } f$, we must have $(y, x) \in \text{Id}_{\text{dom } f}$. Hence, $f^{-1} \subseteq g\big|_{\text{ran } f}$. Now, take any $(y, x) \in g\big|_{\text{ran } f}$. Since $y \in \text{ran } f$, there exists $x' \in \text{dom } f$ such that $(x', y) \in f$. Since $g \circ f = \text{Id}_{\text{dom } f}$, we have x = x'. Therefore, $(y, x) \in f^{-1}$; $g\big|_{\text{ran } f} \subseteq f^{-1}$.

Exercise 2.3.6

Let *f* be a function.

- (i) $f^{-1}[A \cap B] = f^{-1}[A] \cap f^{-1}[B]$
- (ii) $f^{-1}[A \setminus B] = f^{-1}[A] \setminus f^{-1}[B]$

Proof. Thanks to Exercise 2.2.3 (ii) and (iii), we only need to prove the other inclusions.

- (i) Take any $x \in f^{-1}[A] \cap f^{-1}[B]$. Then, there exists $a \in A$ and $b \in B$ such that xfa and xfb. Since f is a function, a = b, and thus $x \in f^{-1}[A \cap B]$.
- (ii) Take any $x \in f^{-1}[A \setminus B]$. Then, $f(x) \in A \setminus B$. If $x \in f^{-1}[B]$, we would have $f(x) \in B$; thus $x \notin f^{-1}[B]$. Therefore, $x \in f^{-1}[A] \setminus f^{-1}[B]$.

Exercise 2.3.8

Every system of sets *A* can be indexed by a function.

Proof. Let *S* be the function Id_A so $S_i = i$ for all $i \in A$. Then, $A = \{S_i \mid i \in A\}$; *A* is indexed by *S*. □

Exercise 2.3.9

- (i) Let A and B be sets. Prove that B^A exists.
- (ii) Let $\langle S_i | i \in I \rangle$ be an indexed system of sets. Prove that $\prod_{i \in I} S_i$ exists.

Proof.

- (i) If f is a function from A into B, then $f \subseteq A \times B$, i.e., $f \in \mathcal{P}(A \times B)$.
- (ii) If f is a function on I and $f_i \in S_i$ for all $i \in I$, then f is a function onto $\bigcup_{i \in I} S_i$. Hence, $f \in \left(\bigcup_{i \in I} S_i\right)^I$.

Exercise 2.3.10

Let $\langle F_a \mid a \in \bigcup S \rangle$ be an indexed system of sets.

(i)
$$\bigcup_{a \in \bigcup S} F_a = \bigcup_{C \in S} \left[\bigcup_{a \in C} F_a \right]$$

(ii)
$$\bigcap_{a \in \bigcup S} F_a = \bigcap_{C \in S} [\bigcap_{a \in C} F_a]$$
 if $S \neq \emptyset$ and $\forall C \in S, C \neq \emptyset$.

Proof.

(i)
$$x \in \bigcup_{a \in \bigcup S} F_a \iff \exists a \in \bigcup S, x \in F_a$$

 $\iff \exists C \in S, \exists a \in C, x \in F_a$
 $\iff \exists C \in S, x \in \bigcup_{a \in C} F_a \iff x \in \bigcup_{C \in S} \left[\bigcup_{a \in C} F_a\right]$
(ii) $x \in \bigcap_{a \in \bigcup S} F_a \iff \forall a \in \bigcup S, x \in F_a$
 $\iff \forall C \in S, \forall a \in C, x \in F_a$
 $\iff \forall C \in S, x \in \bigcap_{a \in C} F_a \iff x \in \bigcap_{C \in S} \left[\bigcap_{a \in C} F_a\right]$

Exercise 2.3.11

Let $\langle F_a \mid a \in A \rangle$ be an nonempty indexed system of sets.

(i)
$$B \setminus \bigcup_{a \in A} F_a = \bigcap_{a \in A} (B \setminus F_a)$$

(ii)
$$B \setminus \bigcap_{a \in A} F_a = \bigcup_{a \in A} (B \setminus F_a)$$

Proof.

(i)
$$x \in B \setminus \bigcup_{a \in A} F_a \iff x \in B \land \neg (\exists a \in A, x \in F_a)$$

 $\iff x \in B \land \forall a \in A, x \notin F_a$
 $\iff \forall a \in A, (x \in B \land x \notin F_a) \iff x \in \bigcap_{a \in A} (B \setminus F_a)$
(ii) $x \in B \setminus \bigcap_{a \in A} F_a \iff x \in B \land \neg (\forall a \in A, x \in F_a)$
 $\iff x \in B \land \exists a \in A, x \notin F_a$
 $\iff \exists a \in A, (x \in B \land x \notin F_a) \iff x \in \bigcup_{a \in A} (B \setminus F_a)$

Exercise 2.3.12

Let *R* be a relation and let $\langle F_a \mid a \in A \rangle$ be an indexed system of sets.

(i)
$$R\left[\bigcup_{a\in A}F_a\right] = \bigcup_{a\in A}R\left[F_a\right]$$

(ii)
$$R\left[\bigcap_{a\in A}F_a\right]\subseteq\bigcap_{a\in A}R[F_a]$$
 if $A\neq\emptyset$.

(iii)
$$R\left[\bigcap_{a\in A}F_a\right]=\bigcap_{a\in A}R[F_a]$$
 if $A\neq\emptyset$ and R is an injective function.

(iv)
$$R^{-1}\left[\bigcap_{a\in A}F_a\right]=\bigcap_{a\in A}R^{-1}[F_a]$$
 if $A\neq\emptyset$ and R is a function.

Proof.

(i)
$$y \in R[\bigcup_{a \in A} F_a] \iff \exists x \in \bigcup_{a \in A} F_a, xRy \iff \exists a \in A, \exists x \in F_a, xRy \iff \exists a \in A, y \in R[F_a] \iff x \in \bigcup_{a \in A} R[F_a]$$

- (ii) Take any $y \in R[\bigcap_{a \in A} F_a]$. Then, there exists $x \in \bigcap_{a \in A} F_a$ such that xRy. Hence, for all $a \in A$, $y \in R[F_a]$, i.e., $y \in \bigcap_{a \in A} R[F_a]$.
- (iii) If R is an injective function, then R^{-1} is also a function. Hence, the result follows from (iv) and the fact that $R = (R^{-1})^{-1}$.
- (iv) Thanks to (ii), since R^{-1} is a relation, we only need to prove the other inclusion. Take any $x \in \bigcap_{a \in A} R^{-1}[F_a]$. Fix any $a^* \in A$. Then, there exists $y^* \in F_{a^*}$ such that xRy^* . Now, take any $a \in A$. Then, $\exists y \in F_a$ such that xRy. Since R is a function, $y = y^*$; $y^* \in F_a$, i.e., $y^* \in \bigcap_{a \in A} F_a$. Therefore, $x \in R^{-1} \bigcap_{a \in A} F_a$.

2.4 Equivalences and Partitions

Definition 2.4.1: Equivalence

Let *R* be a binary relation in *A*.

- *R* is called *reflexive* in *A* if $\forall a \in A$, *aRa*.
- R is called *symmetric in A* if $\forall a, b \in A$, $(aRb \implies bRa)$.
- R is called transitive in A if $\forall a, b, c \in A$, $(aRb \land bRc \implies aRc)$.
- R is called an equivalence on A if it is reflexive, symmetric, and transitive in A.

Definition 2.4.2: Equivalence Class

Let *E* be an equivalence on *A* and let $a \in A$. The *equivalence class of a modulo E* is the set

$$[a]_E \triangleq \{x \in A \mid xEa\}.$$

Lemma 2.4.3

Let *E* be an equivalence on *A* and let $a, b \in A$.

- (i) $aEb \iff [a]_E = [b]_E$
- (ii) $\neg (aEb) \iff [a]_E \cap [b]_E = \emptyset$

- (i) (\Rightarrow) Suppose aEb. Take any $c \in [a]_E$. Then, cEa and aEb, and thus cEb by transitivity. Hence, $c \in [b]_E$; $[a]_E \subseteq [b]_E$. $[b]_E \subseteq [a]_E$ can be shown similarly since bEa holds as E is symmetric.
 - (\Leftarrow) Suppose [a]_E = [b]_E. Since aEa by reflexivity, we have $a \in [a]_{E} = [b]_{E}$. Therefore, aEb.
- (ii) (\Rightarrow) Suppose $[a]_E \cap [b]_E \neq \emptyset$. Then, there exists $c \in [a]_E \cap [b]_E$, i.e., cEa and cEb. Then, as E is symmetric, we have aEc, and therefore aEb by transitivity.
 - (⇐) Suppose aEb. Then, since aEa by reflexivity, we have $a \in [a]_E$. We can see $a \in [b]_E$ from (i). Hence, $[a]_E \cap [b]_E \neq \emptyset$.

Definition 2.4.4: Partition

A system S of nonempty sets is called a partition of A if

- (i) S is a system of mutually disjoint sets (Definition 1.4.5) and
- (ii) $\bigcup S = A$.

Definition 2.4.5: System of All Equivalence Classes

Let *E* be an equivalence on *A*. The system of all equivalence classes modulo *E* is the set

$$A/E \triangleq \{ [a]_E \mid a \in A \}.$$

Theorem 2.4.6

Let E be an equivalence on A. Then, A/E is a partition of A.

Proof. If $[a]_E \neq [b]_E$, then by Lemma 2.4.3, we have $[a]_E \cap [b]_E = \emptyset$. Since E is reflexive, $a \in [a]_E$; each $[a]_E$ is nonempty. Therefore, A/E is a system of mutually disjoint nonempty sets.

Take any $a \in A$. Since E is reflexive, $a \in [a]_E \subseteq \bigcup A/E$. Therefore, $A \subseteq \bigcup A/E$. Conversely, since $[a]_E \subseteq A$, we have $\bigcup A/E \subseteq A$.

Definition 2.4.7

Let *S* be a partition of *A*. The relation E_S in *A* is defined by

$$E_S \triangleq \{(a,b) \in A \times A \mid \exists C \in S, \ a \in C \land b \in C\}.$$

Theorem 2.4.8

Let S be a partition of A. Then, E_S is a equivalence on A.

Proof.

- Take any $a \in A$. As $A = \bigcup S$, there exists $C \in S$ such that $a \in C$. Therefore, aE_Sa . E_S is reflexive.
- Assume aE_Sb . Then, there exists $C \in S$ such that $a, b \in C$. Hence, bE_Sa . E_S is symmetric.
- Assume aE_Sb and bE_Sc . Then, there exist $C,D \in S$ such that $a,b \in C$ and $b,c \in D$. Then, $C \cap D \neq \emptyset$ as b belongs to both sets. Hence, C = D, which implies aE_Sc . E_S is transitive.

Theorem 2.4.9

- (i) If *E* is an equivalence on *A* and S = A/E, then $E_S = E$.
- (ii) If *S* is a partition of *A*, then $A/E_S = S$.

- (i) $aE_S b \iff \exists C \in S, \ a \in C \land b \in C \iff \exists c \in A, \ a \in [c]_E \land b \in [c]_E \iff aEb.$ Lemma 2.4.3
- (ii) Take any $[a]_{E_S} \in A/E_S$. Since S is a partition, there (uniquely) exists C such that $a \in C$. Then, for all b, we have $b \in C \iff aE_S b \iff b \in [a]_{E_S}$; $C = [a]_{E_S}$. Therefore,

$$A/E_S \subseteq S$$
.

For the converse, take any $C \in S$. As C is nonempty, we may take some $a \in C$. Similarly, we have $C = [a]_{E_S}$. Therefore, $C \subseteq A/E_S$.

Note:-

Theorem 2.4.9 essentially states that equivalence and partition describe the same "mathematical reality."

Definition 2.4.10: Set of Representatives

A set $X \subseteq A$ is called a *set of representatives* for the equivalence E_S (or for the partition S of A) if

$$\forall C \in S, \exists a \in C, X \cap C = \{a\}.$$

Selected Problems

Exercise 2.4.2

Let f be a function on A onto B. Define a relation E in A by: aEb if and only if f(a) = f(b).

- (i) Show that *E* is an equivalence on *A*.
- (ii) Show that $[a]_E = [a']_E$ implies that f(a) = f(a') so that the function φ on A/E into B defined by $\varphi([a]_E) = f(a)$ is well-defined. Show also that φ is *onto* B.
- (iii) Let *j* be the function on *A* onto A/E given by $j(a) = [a]_E$. Show that $\varphi \circ j = f$.

Proof.

- (i) *E* can readily be shown to be reflexive, symmetric, and transitive.
- (ii) Assume $[a]_E = [a']_E$. Then, f(a) = f(a') by definition of E. Hence, φ is well-defined. Take any $b \in B$. Since f is onto, there exists $a \in A$ such that f(a) = b. Hence, $\varphi([a]_E) = f(a) = b$; φ is onto B.
- (iii) $\operatorname{dom}(\varphi \circ j) = (\operatorname{dom} j) \cap j^{-1}[\operatorname{dom} \varphi] = A = \operatorname{dom} f$ since j is onto. For all $a \in A$, $(\varphi \circ j)(a) = \varphi([a]_E) = f(a)$. Hence, by Lemma 2.3.3, $\varphi \circ j = f$.

2.5 Orderings

Definition 2.5.1: Partial Ordering and Strict Ordering

Let *R* be a binary relation in *A*.

- R is called antisymmetric in A if $\forall a, b \in A$, $(aRb \land bRa \implies a = b)$.
- R is called asymmetric in A if $\forall a, b \in A$, $\neg (aRb \land bRa)$.
- R is called a (partial) ordering of A if it is reflexive, antisymmetric, and transitive in
- *R* is called a *strict ordering* of *A* if it is asymmetric and transitive in *A*.
- If R is a partial ordering of A, then the pair (A, R) is called an *ordered set*.

Example 2.5.2

- Define the relation \subseteq_A in A as follows: $x \subseteq_A y$ if and only if $x, y \in A \land x \subseteq y$. Then, (A, \subseteq_A) is an ordered set.
- The relation Id_A is a partial ordering of A.

Theorem 2.5.3

(i) Let *R* be a partial ordering of *A*. Then the relation *S* in *A* defined by

$$S \triangleq R \setminus \mathrm{Id}_A$$

is a strict ordering.

(ii) Let *S* be a strict ordering of *A*. Then the relation *R* in *A* defined by

$$R \triangleq S \cup \mathrm{Id}_A$$

is a partial ordering.

Proof.

- (i) Suppose aSb and bSa. Since $S \subseteq R$, we have aRb and bRa. As R is antisymmetric, we have aRa, which is impossible since $S \cap Id_S = \emptyset$. Hence, S is asymmetric in A. Now, assuming aSb and bSc, we also have aRc since R is transitive. Moreover, a cannot be equal to c since S is shown to be asymmetric. Therefore, aSc; S is transitive in A.
- (ii) Assume aRb and bRa. If $a \neq b$, then we have aSb and bSa, which is impossible. Therefore, a = b; R is antisymmetric. Assume aRb and bRc. If a = b or b = c, then we immediately have aRc. If $a \neq b$ and $b \neq c$, then aSb and bSc, and thus aSc as S is transitive in A; R is transitive in A). R is reflexive in A since $Id_A \subseteq R$.

Notation 2.5.4

- If R is a partial ordering, we say $S = R \setminus Id_A$ corresponds to the partial ordering R.
- If S is a strict ordering, we say $R = S \cup Id_A$ corresponds to the strict ordering S.

Definition 2.5.5: Comparability

Let $a, b \in A$ and let \leq be a partial ordering of A.

- We say that a and b are comparable in the ordering \leq if $a \leq b$ or $b \leq a$.
- We say that a and b are *incomparable* in the ordering \leq if neither $a \leq b$ nor $b \leq a$. They can be stated equivalently in terms of the corresponding strict ordering \leq .
- We say that a and b are comparable in the ordering < if a = b or a < b or b < a.
- We say that a and b are *incomparable* in the ordering < if none of a = b, a < b, and b < a holds.

Definition 2.5.6: Total Ordering

An ordering \leq (or <) is called *linear* or *total* if any two elements of *A* are comparable. The pair (A, \leq) is then called a *totally ordered set*.

Definition 2.5.7: Chain

Let (A, \leq) be an ordered set and $B \subseteq A$. B is a *chain* in A if any two elements of B are comparable.

Definition 2.5.8: Least/Minimal/Greatest/Maximal Element

Let (A, \leq) be an ordered set and $B \subseteq A$.

- $b \in B$ is the least element of B in the ordering \leq if $\forall x \in B, b \leq x$.
- $b \in B$ is a minimal element of B in the ordering \leq if $\forall x \in B$, $(x \leq b \implies x = b)$.
- $b \in B$ is the greatest element of B in the ordering \leq if $\forall x \in B, x \leq b$.
- $b \in B$ is a maximal element of B in the ordering \leq if $\forall x \in B$, $(b \leq x \implies x = b)$.

Notation 2.5.9

Let (A, \leq) be an ordered set and $B \subseteq A$.

- The least element of *B* is denoted min *B*.
- The greatest element of B is denoted max B.

Theorem 2.5.10

Let (A, \leq) be an ordered set and $B \subseteq A$.

- (i) *B* has at most one least element.
- (ii) The least element of *B*—it it exists—is also minimal.
- (iii) If *B* is a chain, then every minimal element of *B* is also least.

Proof.

- (i) If b and b' are least elements of B, then $b \le b'$ and $b' \le b$ by the definition. As \le is antisymmetric, we have b = b'.
- (ii) Let b be the least element of B (assuming its existence). Take any $x \in B$ and assume $x \le b$. Then, as b is the least, we have $b \le x$. As \le is antisymmetric, x = b; b is minimal.
- (iii) Let *b* be a minimal element of *B*. Take any $x \in B$. Since *b* and *x* are comparable, it is $x \le b$ or $b \le x$. If $x \le b$, then x = b as *b* is minimal. Therefore, *b* is the least.

Note:-

Theorem 2.5.10 still holds when 'least' and 'minimal' are replaced by 'greatest' and 'maximal', respectively.

Definition 2.5.11: Lower/Upper Bound and Infimum/Supremum

Let (A, \leq) be an ordered set and $B \subseteq A$.

- $a \in A$ is a lower bound of B in the ordered set (A, \leq) if $\forall x \in B, a \leq x$.
- $a \in A$ is called an *infimum* (or *greatest lower bound*) of B in the ordered set (A, \leq) if $a = \max\{x \in A \mid x \text{ is a lower bound of } B\}$.
- $a \in A$ is an upper bound of B in the ordered set (A, \leq) if $\forall x \in B, x \leq a$.
- $a \in A$ is called an *supremum* (or *least upper bound*) of B in the ordered set (A, \leq) if $a = \min\{x \in A \mid x \text{ is an upper bound of } B\}$.

Notation 2.5.12

Let (A, \leq) be an ordered set and $B \subseteq A$.

- The infimum of *B* is denoted inf *B*.
- The supremum of *B* is denoted sup *B*.

Theorem 2.5.13

Let (A, \leq) be an ordered set and $B \subseteq A$.

- (i) *B* has at most one infimum.
- (ii) If *b* is the least element of *B*, then *b* is the infimum of *B*.
- (iii) If $b \in B$ is the infimum of B, then b is the least element of B.

Proof.

- (i) The result follows from the definition and Theorem 2.5.10 (i).
- (ii) b is a lower bound of B. If x is a lower bound of B, since $b \in B$, we must have $x \le b$. Therefore, b is the greatest lower bound.

(iii) $b \in B$ is a lower bound of B, and thus b is the least element.

Note:-

Theorem 2.5.13 still holds when 'least' and 'infimum' are replaced by 'greatest' and 'supremum', respectively.

Definition 2.5.14: Isomorphism Between Ordered Sets

An *isomorphism* between two ordered sets (P, \leq) and (Q, \preceq) is a function $f: P \hookrightarrow Q$ such that

$$\forall p_1, p_2 \in P, (p_1 \leq p_2 \iff f(p_1) \leq f(p_2)).$$

If an isomorphism exists between (P, \leq) and (Q, \preceq) , then we say (P, \leq) and (Q, \preceq) are *isomorphic*. This is justified by Exercise 2.5.13.

Lemma 2.5.15

Let (P, \leq) be a totally ordered set and let (Q, \leq) be an ordered set. Let $h: P \hookrightarrow Q$ be a function such that

$$\forall p_1, p_2 \in P, (p_1 \leq p_2 \implies h(p_1) \leq h(p_2)).$$

Then, h is an isomorphism between (P, \leq) and (Q, \leq) , and (Q, \leq) is totally ordered.

Proof. Take any $p_1, p_2 \in P$ and assume $h(p_1) \leq h(p_2)$. Suppose $p_2 < p_1$ for the sake of contradiction. Then, since h is injective, $h(p_1) \neq h(p_2)$, and thus $h(p_1) \prec h(p_2)$. Then, we have $\neg (p_2 \leq p_1)$, which is a contradiction. Hence, $\neg (p_2 < p_1)$. Therefore, $p_1 \leq p_2$ since (P, \leq) is totally ordered.

Take any $q_1, q_2 \in Q$. Then, since h is onto Q, there exist $p_1, p_2 \in P$ such that $q_1 = h(p_1)$ and $p_2 = h(p_2)$. Since P is totally ordered, it is $p_1 \leq p_2$ or $p_2 \leq p_1$. In either case, we have $q_1 \leq q_2$ or $p_2 \leq q_1$. Therefore, (Q, \leq) is totally ordered.

Selected Problems

Exercise 2.5.1

- (i) Let R be a partial ordering of A and let S be the strict ordering of A corresponding to R. Let R^* be the partial ordering of A corresponding to S. Show that $R^* = R$.
- (ii) Let *S* be a strict ordering of *A* and let *R* be the partial ordering of *A* corresponding to *S*. Let S^* be the partial ordering of *A* corresponding to *R*. Show that $S^* = S$.

Proof.

(i) $R^* = S \cup Id_A = (R \setminus Id_A) \cup Id_A = R$ since $Id_A \subseteq R$.

(ii) $S^* = R \setminus Id_A = (S \cup Id_A) \setminus Id_A = S$ since $Id_A \cap S = \emptyset$.

Exercise 2.5.6

Let $(A_1, <_1)$ and $(A_2, <_2)$ be strictly ordered sets and let $A_1 \cap A_2 = \emptyset$. Define a relation \prec on $B \triangleq A_1 \cup A_2$ as follows:

$$x \prec y \iff (x <_1 y) \lor (x <_2 y) \lor (x \in A_1 \land y \in A_2).$$

Show that \prec is a strict ordering of B and $\prec \cap A_1^2 = <_1$, $\prec \cap A_2^2 = <_2$.

Proof. Note that $\prec = <_1 \cup <_2 \cup A_1 \times A_2$.

Suppose $x \prec y$ and $y \prec x$. By definition, $x, y \in A_1$ or $x, y \in A_2$. In both cases, we have $(x <_1 y \text{ and } y <_1 x)$ or $(x <_2 y \text{ and } y <_2 x)$, which are impossible as $<_1$ and $<_2$ are asymmetric. Hence, \prec is asymmetric. Transitivity of \prec can be shown easily.

Since $<_1 \cap A_2^2 = <_2 \cap A_1^2 = (A_1 \times A_2) \cap A_1^2 = (A_1 \times A_2) \cap A_2^2 = \emptyset$, we get $< \cap A_1^2 = <_1$ and $< \cap A_2^2 = <_2$.

Exercise 2.5.7

Let R be a reflexive and transitive relation in A (R is called a *preordering* of A). Define a relation E in A by

$$aEb \iff aRb \land bRa$$
.

Show that *E* is an equivalence on *A*. Define the relation R/E in A/E by

$$[a]_E R/E[b]_E \iff aRb.$$

Show that R/E is well-defined and that R/E is a partial ordering of A/E.

Proof. Since $aEa \equiv aRa$ and R is reflexive, E is reflexive as well. Since $aEb \equiv bEa$, E is symmetric. Since $aEb \wedge bEc \iff (aRb \wedge bRc) \wedge (cRb \wedge bRa) \implies aRc \wedge cRa \iff aEc$, E is transitive. \checkmark

Assume $[a]_E = [a']_E$ and $[b]_E = [b']_E$. Then, we have aEa' and bEb' by Lemma 2.4.3, i.e., aRa', a'Ra, bRb', and b'Rb. By transitivity of R, it follows that $aRb \iff a'Rb'$. Therefore, R/E is well-defined. \checkmark

It can be shown readily that R/E is reflexive and transitive. To prove R/E is antisymmetric, assume $[a]_E R/E[b]_E$ and $[b]_E R/E[a]_E$. Then, aRb and bRa, which means aEb. Therefore, $[a]_E = [b]_E$ by Lemma 2.4.3. \checkmark

Exercise 2.5.8

Let $A = \mathcal{P}(X)$ where X is a set.

- (i) Any $S \subseteq A$ has a supremum in the ordering \subseteq_A ; sup $S = \bigcup S$.
- (ii) Any $S \subseteq A$ has an infimum in the ordering \subseteq_A ; $\inf S = \begin{cases} \bigcap S & \text{if } S \neq \emptyset \\ X & \text{if } S = \emptyset \end{cases}$.

Proof.

(i) As $C \subseteq_A \bigcup S$ for all $C \in S$, $\bigcup S$ is an upper bound of S. Let U be any upper bound of S. Take any $x \in \bigcup S$. Then, there exists $C \in S$ such that $x \in C$. Since $C \subseteq_A U$, we have $x \in U$. Therefore, $\bigcup S \subseteq U$; $\bigcup S$ is the least upper bound of S.

(ii) If $S = \emptyset$, then any $C \in A$ is an lower bound of S. Since $\bigcup A = X$ —by (i), the supremum of the set of lower bounds of S—is a lower bound of S, X is the infimum of $S = \emptyset$. \checkmark If $S \neq \emptyset$, as $\bigcap S \subseteq C$ for all $C \in S$, $\bigcap S$ is a lower bound of S. Let L be any lower bound of S. Take any $X \in L$. Then, $\forall C \in L$, $X \in C$, i.e., $X \in \bigcap S$. Therefore, $X \subseteq A \cap S$ is the infimum of $X \in A$.

Exercise 2.5.9

Let $\operatorname{Fn}(X,Y)$ be the set of all functions mapping a subset of X into Y, i.e., $\operatorname{Fn}(X,Y) = \bigcup_{Z \in \mathcal{P}(X)} Y^Z$. Define a relation $\leq \operatorname{in} \operatorname{Fn}(X,Y)$ by

$$f \leq g \iff f \subseteq g$$
.

- (i) \leq is a partial ordering of Fn(X, Y).
- (ii) Let $F \subseteq \operatorname{Fn}(X, Y)$. sup F exists if and only if F is a compatible system of functions. Moreover, sup $F = \bigcup F$ if it exists.

Proof.

- (i) $\leq = \subseteq_{\operatorname{Fn}(X,Y)}$ by definition; $\subseteq_{\operatorname{Fn}(X,Y)}$ is already a partial ordering of $\operatorname{Fn}(X,Y)$.
- (ii) (⇒) Assume $h \in Fn(X,Y)$ is a supremum of F. Then, $\forall f \in F$, $f \subseteq s$. Take any $f,g \in F$. Then, $f \cup g \subseteq h$, and thus $f \cup g$ is a function as h is a function. Therefore, by Lemma 2.3.11, f and g are compatible. Hence, F is a compatible system of functions. (⇐) Assume F is a compatible system of functions. Then, $\bigcup F \in Fn(X,Y)$ by Theorem 2.3.12, and $f \subseteq \bigcup F$ for all $f \in F$ by definition; $\bigcup F$ is an upper bound of F. Let F be any upper bound of F. Then, there exists $f \in F$ such that $f(x,y) \in F$ is Since $f \subseteq_A U$, we have $f(x,y) \in F$ is the least upper bound of F.

Exercise 2.5.10

Let Pt(A) be the set of all partitions of A. Define a relation \leq in Pt(A) by

$$S_1 \preccurlyeq S_2 \iff \forall C \in S_1, \exists D \in S_2, C \subseteq D.$$

(We say that the partition S_1 is a refinement of the partition S_2 if $S_1 \leq S_2$.)

- (i) \leq is a partial ordering of Pt(A).
- (ii) inf T exists for all $T \subseteq Pt(A)$.
- (iii) sup T exists for all $T \subseteq Pt(A)$.

Proof.

(i) \leq is reflexive since, for all $S \in Pt(A)$ and $C \in S$, $C \subseteq C$, i.e., $S \leq S$.

Assume $S_1 \preccurlyeq S_2$ and $S_2 \preccurlyeq S_1$. Take any $C \in S_1$. Then, there exists $D \in S_2$ such that $C \subseteq D$. In addition, there exists $E \in S_1$ such that $D \subseteq E$. We have $C \subseteq E$ but C is nonempty as S_1 is a partition, which implies $C \cap E \neq \emptyset$. Therefore, as S_1 is a partition, we must have C = E and thus C = D. Hence, $S_1 \subseteq S_2$. This shows that \preccurlyeq is antisymmetric. \checkmark

Assume $S_1 \preccurlyeq S_2$ and $S_2 \preccurlyeq S_3$. Take any $C \in S_1$. There exists $D \in S_2$ such that $C \subseteq D$. There exists $E \in S_3$ such that $D \subseteq E$. Hence, $C \subseteq E$; $S_1 \preceq S_3$. This shows that \preccurlyeq is transitive. \checkmark

(ii) Define a relation E in A by $E \triangleq \{(a,b) \in A^2 \mid \forall S \in T, \exists C \in S, a \in C \land b \in C\}$. It can be easily shown that E is an equivalence mimicking the proof of Theorem 2.4.8. Then, $A/E \in Pt(A)$ by Theorem 2.4.6.

Claim 1. A/E is a lower bound of T.

Proof. If $T = \emptyset$, there is nothing to prove; so assume $T \neq \emptyset$. Take any $S \in T$ and $a \in A$. Then, there exists $C \in S$ such that $a \in S$ since S is a partition of A. Let $b \in [a]_E$. Then, there exists $D \in S$ such that $a, b \in D$, which implies C = D. Therefore, $[a]_E \subseteq C$. Hence, $A/E \leq S$.

Claim 2. For each lower bound *L* of T, $L \leq A/E$.

Proof. If $T = \emptyset$, then $A/E = \{A^2\}$ and every partition of A is a lower bound. Since $S \leq \{A^2\}$ for all $S \in Pt(A)$, the result follows.

Now, assume $T \neq \emptyset$. Let *L* be a lower bound of *T*. Take any $D \in L$. Fix some $a \in D$. Then, each $d \in D$ has the property that $\forall S \in T$, $\exists C \in S$, $\{a, d\} \subseteq D \subseteq C$ as *L* is a lower bound of *T*. Therefore, $d \in [a]_E$; $D \subseteq [a]_E$. Hence, $L \leq A/E$.

Claims 1 and 2 say that $\inf T = A/E$. Hence, $\inf T$ exists.

(iii) Let $T' \triangleq \{ S' \in Pt(A) \mid \forall S \in T, S \leq S' \}$. By (ii), $S^* \triangleq \inf T'$ exists.

Claim 3. S^* is an upper bound of T.

Proof. In (ii), we showed that $S^* = A/E$ where $E = \{(a, b) \in A^2 \mid \forall S' \in T', \exists C' \in S', a \in C' \land b \in C'\}$. Take any $S \in T$ and let $C \in S$. Fix some $c_0 \in C$.

Now, take arbitrary $c \in C$. Then, for all $S' \in T'$, since $S \leq S'$, there exists $D' \in S'$ such that $c \in C \subseteq D'$. Hence, we have cEc_0 ; $C \subseteq [c_0]_E$. Therefore, $S \leq S^*$.

Claim 3 essentially says that $S^* \in T'$. By Theorem 2.5.13 (iii), $S^* = \min T'$, i.e., $S^* = \sup T$.

Exercise 2.5.13

If h is isomorphism between (P, \leq) and (Q, \preceq) , then h^{-1} is an isomorphism between (Q, \preceq) and (P, \leq) .

Proof. Take any $q_1, q_2 \in Q$. Then, we have $q_1 \leq q_2 \iff h(h^{-1}(q_1)) \leq h(h^{-1}(q_2)) \iff h^{-1}(q_1) \leq h^{-1}(q_2)$.

Exercise 2.5.14

If f is an isomorphism between (P_1, \leq_1) and (P_2, \leq_2) , and if g is an isomorphism between (P_2, \leq_2) and P_3, \leq_3 , then $g \circ f$ is an isomorphism between (P_1, \leq_1) and (P_3, \leq_3) .

Proof. $\operatorname{ran}(g \circ f) = g[\operatorname{ran} f] = P_3$. Moreover, $g \circ f$ is one-to-one. Hence, $g \circ f : P_1 \hookrightarrow P_3$. For all $p, q \in P_1$, we have $p \leq_1 q \iff f(p) \leq_2 f(q) \iff g(f(p)) \leq_3 \iff g(f(q))$. Hence, $g \circ f$ is an isomorphism between (P_1, \leq_1) and (P_3, \leq_3) .

Chapter 3

Natural Numbers

3.1 Introduction to Natural Numbers

Note:-

We cannot prove an existence of an 'infinite' set (in the classical sense) or discuss infinity only from Axioms I to VI.

Definition 3.1.1: Successor

The *successor* of a set x is the set $S(x) = x \cup \{x\}$.

Notation 3.1.2: n + 1

We write n+1 to denote S(n). There is no implication regarding the classic "addition" in this notation.

Notation 3.1.3: Natural Numbers

- $0 = \emptyset$
- $1 = {\emptyset} = S(0) = 0 + 1$
- $2 = {\emptyset, {\emptyset}} = S(1) = 1 + 1$
- ..

Definition 3.1.4: Inductive Set

A set *I* is called *inductive* if

$$0 \in I \land \forall n \in I, (n+1) \in I.$$

Axiom VII Axiom of Infinity

An inductive set exists.

Definition 3.1.5: Set of All Natural Numbers

The set of all natural numbers is the set

$$\mathbb{N} \triangleq \{ x \mid x \in I \text{ for all inductive set } I \}.$$

Note:-

Axiom of Infinity guarantees the existence of \mathbb{N} . For, if A is any inductive set, then $\mathbb{N} = \{x \in A \mid x \in I \text{ for all inductive set } I\}$.

Lemma 3.1.6

 \mathbb{N} is inductive. In addition, if *I* is an inductive set, then $\mathbb{N} \subseteq I$.

Proof. Since $0 \in I$ for all inductive set, $0 \in \mathbb{N}$. If $n \in \mathbb{N}$, then $n \in I$ for all inductive set, and thus $(n+1) \in I$ for all inductive set. Therefore, $(n+1) \in \mathbb{N}$. Hence, \mathbb{N} is inductive.

 $\mathbb{N} \subseteq I$ directly follows from the definition of \mathbb{N} .

Definition 3.1.7

The relation < on \mathbb{N} is defined by: m < n if and only if $m \in n$.

Notation 3.1.8

Although we did not prove < is a strict ordering of \mathbb{N} , we shall use \le to denote the relation on \mathbb{N} :

$$\leq \triangleq < \cup Id_{\mathbb{N}}$$

Selected Problems

Exercise 3.1.1

- (i) $\forall x, x \subseteq S(x)$
- (ii) $\forall x, \neg(\exists z, x \subseteq z \subseteq S(x))$

Proof.

- (i) $x \subseteq x \subseteq x \cup \{x\} = S(x)$
- (ii) Take any z such that such that $x \subseteq z \subseteq S(x) = x \cup \{x\}$. If $z \subseteq x$, then we have z = x. If $z \not\subseteq x$, then there exists y such that $y \in z$ and $y \notin x$. However, $y \in x \cup \{x\}$, and thus y = x. Therefore, $S(x) \subseteq z$; z = S(x). In conclusion, any z such that $x \subseteq z \subseteq S(x)$ must satisfy z = x or z = S(x).

3.2 Properties of Natural Numbers

Theorem 3.2.1 The Induction Principle

Let P(x) be a property (possibly with parameters).

$$P(0) \land \forall n \in \mathbb{N}, (P(n) \Longrightarrow P(n+1)) \Longrightarrow \forall n \in \mathbb{N}, P(n)$$

Proof. The premise simply says that $A = \{ n \in \mathbb{N} \mid \mathbf{P}(n) \}$ is inductive. Therefore, $\mathbb{N} \subseteq A$ follows.

Lemma 3.2.2

- (i) $\forall n \in \mathbb{N}, 0 \leq n$
- (ii) $\forall k, n \in \mathbb{N}, (k < n + 1 \iff k < n \lor k = n)$

Proof.

- (i) Let P(x) be the property " $0 \le x$." P(0), i.e., $0 \le 0$, holds since 0 = 0. Now, assume $n \in \mathbb{N}$ and P(n). If n = 0, then we have $0 \in S(0) = n+1$ by definition (Definition 3.1.1). If 0 < n, then $0 \in n$, and thus $0 \in n \cup \{n\} = S(n)$. Therefore, by The Induction Principle, the result follows.
- (ii) Note that $k \in n \cup \{n\}$ if and only if $k \in n$ or k = n.

Theorem 3.2.3 (\mathbb{N}, \leq) is Totally Ordered (\mathbb{N}, \leq) is a totally ordered set.

Proof. We first need to prove that (\mathbb{N}, \leq) is an ordered set.

Claim 1. < is transitive in \mathbb{N} .

Proof. Let P(x) be the property " $\forall k, m \in \mathbb{N}$, $(k < m \land m < x \implies k < x)$." P(0) is true because there is no $m \in \mathbb{N}$ such that $m \in 0 = \emptyset$.

Now assume $n \in \mathbb{N}$ and $\mathbf{P}(n)$. Now, let $k, m \in \mathbb{N}$ and k < m and m < n + 1. By Lemma 3.2.2 (ii), m < n or m = n.

- If m < n, then we have k < n as P(n) holds,
- If m = n, then we immediately have k < n.

In both cases, we have k < n; thus k < n + 1 by Lemma 3.2.2 (ii). Therefore, the result follows from The Induction Principle.

Claim 2. < is asymmetric in \mathbb{N} .

Proof. Let P(x) be the property " $\neg(x < x)$." P(0) evidently holds since $\emptyset \notin \emptyset$.

Now, assume $n \in \mathbb{N}$ and $\mathbf{P}(n)$. Suppose (n+1) < (n+1) for the sake of contradiction. By Lemma 3.2.2 (ii), we have (n+1) = n or (n+1) < n. In both cases, we have n < n by n < (n+1) (from Lemma 3.2.2 (ii)) and Claim 1, which contradicts $\mathbf{P}(n)$. Therefore, $\mathbf{P}(n+1)$ holds. The result follows from The Induction Principle.

Hence, (\mathbb{N}, \leq) is an ordered set by Claims 1 and 2 and Theorem 2.5.3. We are left to prove that \leq is a total ordering of \mathbb{N} .

Claim 3. $\forall n, m \in \mathbb{N}, n < m \implies (n+1) \leq m$

Proof. Let P(x) be the property " $\forall n \in \mathbb{N}$, $(n < x \implies n + 1 \le x)$." P(0) holds since there is no $n \in \mathbb{N}$ such that n < 0.

Now, assume $m \in \mathbb{N}$ and $\mathbf{P}(m)$. Take any $n \in \mathbb{N}$ such that n < (m+1). Then, by Lemma 3.2.2, we have n = m or n < m. If n = m, then we have (n+1) = (m+1), which implies $(n+1) \le (m+1)$. If n < m, then $(n+1) \le m < (m+1)$. Therefore, the result follows from The Induction Principle.

Claim 4. < is a total ordering of \mathbb{N} .

Proof. Let P(x) be the property " $\forall m \in \mathbb{N}$, $m = x \lor m < x \lor x < m$." P(0) is essentially Lemma 3.2.2 (i).

Assume $n \in \mathbb{N}$ and $\mathbf{P}(n)$. Take any $m \in \mathbb{N}$. If m < n or m = n, we have m < (n + 1) by Lemma 3.2.2 (ii). If n < m, by Claim 3, we have $(n + 1) \le m$. Hence, $\mathbf{P}(n + 1)$ holds. Therefore, the result follows from The Induction Principle.

Notation 3.2.4

We may write " $\forall k < n, \mathbf{P}(k)$ " instead of " $\forall k \in \mathbb{N}$, $(k < n \implies \mathbf{P}(k))$ " or " $\exists k < n, \mathbf{P}(k)$ " instead of " $\exists k \in \mathbb{N}$, $k < n \land \mathbf{P}(k)$ " when no confusion may arise. We may similarly write $(\forall /\exists)k(\le/>/\ge)n, \mathbf{P}(k)$.

Theorem 3.2.5 The Strong Induction Principle

Let P(x) be a property (possibly with parameters). If, for all $n \in \mathbb{N}$, P(k) holds for all k < n, then P(n) holds for all $n \in \mathbb{N}$.

$$\forall n \in \mathbb{N}, [\forall k < n, \implies \mathbf{P}(k) \implies \mathbf{P}(n)] \implies \forall n \in \mathbb{N}, \mathbf{P}(n)$$

Proof. Assume the premise $(\forall n \in \mathbb{N}, [\forall k < n, \implies P(k) \implies P(n)])$. Let Q(n) be the property " $\forall k < n, P(k)$." Q(0) holds since there is no k < 0.

Now, assume $n \in \mathbb{N}$ and $\mathbf{Q}(n)$. Then, by the premise, we have $\mathbf{P}(n)$. Lemma 3.2.2 (ii) enables us to say that $\forall k \in \mathbb{N}$, $(k < n+1 \implies P(k))$. Therefore, $\forall n \in \mathbb{N}$, $\mathbf{Q}(n)$ holds by The Induction Principle.

Take any $k \in \mathbb{N}$. Then, we have k < k+1 and thus $\mathbf{P}(k)$ holds by $\mathbf{Q}(k+1)$.

Definition 3.2.6: Well-Ordering

A total ordering \leq of a set A is a well-ordering if every nonempty subset of A has a least element. Then, the ordered set (A, \leq) is called a well-ordered set.

Theorem 3.2.7 (\mathbb{N}, \leq) is Well-Ordered

 (\mathbb{N}, \leq) is a well-ordered set.

Proof. Let $X \subseteq \mathbb{N}$ has no least element. For each $n \in \mathbb{N}$, if $\forall k < n, k \in \mathbb{N} \setminus X$, we must have $n \in \mathbb{N} \setminus X$ since otherwise $n = \min X$. Then, by The Strong Induction Principle, $\forall n \in \mathbb{N}, n \in \mathbb{N} \setminus X$, i.e., $X = \emptyset$.

Theorem 3.2.8

Let $\emptyset \subsetneq X \subseteq \mathbb{N}$. If *X* has an upper bound in the ordering \leq , then *X* has a greatest element.

Proof. Let $Y \triangleq \{k \in \mathbb{N} \mid k \text{ is an upper bound of } X\}$. The assumption says that $Y \neq \emptyset$. By (\mathbb{N}, \leq) is Well-Ordered, $n \triangleq \min Y = \sup X$ exists.

Suppose $n \notin X$ for the sake of contradiction. Then, $\forall m \in X$, m < n, which implies $n \neq 0$ as $X \neq \emptyset$. Therefore, n = k + 1 for some $k \in \mathbb{N}$ by Exercise 3.2.4; and thus $\forall m \in X$, $m \leq k$ by Lemma 3.2.2 (ii). Then, k is an upper bound of A and k < n, which is a contradiction to $n = \sup X$. Therefore, $n \in X$, and hence $n = \max X$ by Theorem 2.5.13.

Selected Problems

Exercise 3.2.2

 $\forall m, n \in \mathbb{N}$, $(m < n \implies m+1 < n+1)$. Hence, $S : \mathbb{N} \to \mathbb{N}$ where $n \mapsto n+1$ defines a one-to-one function on \mathbb{N} .

Proof. By Claim 3 in the proof of (\mathbb{N}, \leq) is Totally Ordered, we have $m+1 \leq n$. Together with n < n+1, we have m+1 < n+1.

Now, take any $m, n \in \mathbb{N}$ with $m \neq n$. Then, by (\mathbb{N}, \leq) is Totally Ordered, we have m < n or n < m, i.e., S(m) < S(n) or S(n) < S(m). In both cases, $S(m) \neq S(n)$. Therefore, $S(m) \neq S(n)$ is one-to-one.

Exercise 3.2.3

There exists $X \subsetneq \mathbb{N}$ and $f : \mathbb{N} \to X$ such that f is injective.

Proof. Let $S: \mathbb{N} \to \mathbb{N}$ where $n \mapsto n+1$. Then, S is injective by Exercise 3.2.2. Since there exists no $n \in \mathbb{N}$ such that $n \cup \{n\} = \emptyset$, $0 \notin \operatorname{ran} S$; $\operatorname{ran} S \subsetneq \mathbb{N}$. Therefore, $S: \mathbb{N} \to \operatorname{ran} S$ is the function we are looking for. □

Exercise 3.2.4

 $\forall n \in \mathbb{N} \setminus \{0\}, \exists ! k \in \mathbb{N}, n = k + 1$

Proof. Let P(x) be the property " $x = 0 \lor \exists ! k \in \mathbb{N}$, x = k + 1." P(0) holds by definition.

Now, assume P(n) where $n \in \mathbb{N}$. There exists $k \in \mathbb{N}$ such that n+1=k+1, namely, k=n. If k' is another natural number such that n+1=k'+1, then by Exercise 3.2.2, we have k=k'. Hence, P(n+1) holds. The result follows from The Induction Principle.

Exercise 3.2.6

 $\forall n \in \mathbb{N}, n = \{ m \in \mathbb{N} \mid m < n \}$

Proof. Let P(x) be the property " $x = \{ m \in \mathbb{N} \mid m < x \}$." We have P(0) since there exists no $m \in \mathbb{N}$ with m < 0.

Now, assume P(n) where $n \in \mathbb{N}$. Then, $n+1 = \{m \in \mathbb{N} \mid m < n\} \cup \{n\}$. By Lemma 3.2.2 (ii), m < n+1 if and only if m < n or m = n. Therefore, $\{m \in \mathbb{N} \mid m < n\} \cup \{n\} = \{m \in \mathbb{N} \mid m < n+1\}$; P(n+1) holds. The result follows from The Induction Principle.

Exercise 3.2.8

There is no function $f: \mathbb{N} \to \mathbb{N}$ such that $\forall n \in \mathbb{N}, f(n+1) < f(n)$.

Proof. Let P(x) be the property "there is no function $f : \mathbb{N} \to \mathbb{N}$ such that f(0) = x and $\forall n \in \mathbb{N}, f(n+1) < f(n)$."

For the sake of induction, assume $\forall k < n$, P(k) where $n \in \mathbb{N}$. Suppose there exists $f: \mathbb{N} \to \mathbb{N}$ such that f(0) = n and $\forall k \in \mathbb{N}$, f(k+1) < f(k). Now, define $g: \mathbb{N} \to \mathbb{N}$ by g(k) = f(k+1). Then, g(0) = f(1) < n and $\forall k \in \mathbb{N}$, g(k+1) = f((k+1)+1) < f(k+1) = g(k). However, by P(g(0)), such g cannot exist; by contradiction, P(n) holds. Hence, $\forall m \in \mathbb{N}$, P(m) by The Strong Induction Principle.

Finally, suppose there exists $f: \mathbb{N} \to \mathbb{N}$ such that $\forall n \in \mathbb{N}$, f(n+1) < f(n). Then, by $\mathbf{P}(f(0))$, such f may not exist.

Exercise 3.2.11

Let P(x) be a property and let $k \in \mathbb{N}$.

$$P(k) \land \forall n \ge k, (P(n) \Longrightarrow P(n+1)) \Longrightarrow \forall n \ge k, P(n)$$

Proof. Let Q(x) be the property " $x < k \lor P(x)$." If k = 0, then P(0) holds. If k > 0, then 0 < k holds. Hence, in both cases, Q(0) holds.

Now assume $\mathbf{Q}(n)$ holds where $n \in \mathbb{N}$. Then, by (\mathbb{N}, \leq) is Totally Ordered, we have n+1 < k, n+1=k, or n+1 > k. If n+1 < k or n+1=k, we immediately have $\mathbf{Q}(n+1)$. If n+1 > k, we have $n \geq k$ by Lemma 3.2.2 (ii). Therefore, $\mathbf{P}(n)$ holds, and thus $\mathbf{P}(n+1)$ holds by assumption. Hence, $\mathbf{Q}(n+1)$. By The Induction Principle, $\forall n \in \mathbb{N}, n < k \vee \mathbf{P}(n)$. In other words, $\forall n \geq k$, $\mathbf{P}(n)$.

Exercise 3.2.12 The Finite Induction Principle

Let P(x) be a property and let $k \in \mathbb{N}$.

$$P(0) \land \forall n < k, (P(n) \Longrightarrow P(n+1)) \Longrightarrow \forall n \le k, P(n)$$

Proof. Let $\mathbf{Q}(x)$ be the property " $x > k \vee \mathbf{P}(x)$." $\mathbf{Q}(0)$ holds as $\mathbf{P}(0)$.

Now, assume $\mathbf{Q}(n)$ holds where $n \in \mathbb{N}$. Then, by (\mathbb{N}, \leq) is Totally Ordered, we have $n+1 \leq k$ or n+1 > k. If n+1 > k, then we immediately have $\mathbf{Q}(n+1)$. If $n+1 \leq k$, by Lemma 3.2.2, n+1 < k+1. By Exercise 3.2.2 and (\mathbb{N}, \leq) is Totally Ordered, we must have n < k. Hence, $\mathbf{P}(n)$ holds, and therefore $\mathbf{P}(n+1)$ holds by the assumption. By The Induction Principle, $\forall n \in \mathbb{N}, n > k \vee \mathbf{P}(n)$. In other words, $\forall n \leq k$, $\mathbf{P}(n)$.

Exercise 3.2.13 The Double Induction Principle

Let P(x, y) be a property.

$$\forall m, n \in \mathbb{N}, [\forall k, \ell \in \mathbb{N}, (k < m \lor k = m \land \ell < n \Longrightarrow \mathbf{P}(k, \ell)) \Longrightarrow \mathbf{P}(m, n)] \qquad [*]$$
$$\Longrightarrow \forall m, n \in \mathbb{N}, \mathbf{P}(m, n)$$

Proof. Let $\mathbf{Q}(x)$ be the property " $\forall n \in \mathbb{N}$, $\mathbf{P}(x,n)$."

Now, assume $\forall k < m$, $\mathbf{Q}(k)$ where $m \in \mathbb{N}$. For the sake of induction, assume again that $\forall \ell < n$, $\mathbf{P}(m,\ell)$ where $n \in \mathbb{N}$. Now, we have $\mathbf{P}(k,\ell)$ for all $k,\ell \in \mathbb{N}$ such that k < m or k = m and $\ell < n$. Hence, by [*], $\mathbf{P}(m,n)$. By The Strong Induction Principle, we have $\forall n \in \mathbb{N}$, $\mathbf{P}(m,n)$. In other words, $\mathbf{Q}(m)$. Again by The Strong Induction Principle, we have $\forall m \in \mathbb{N}$, $\mathbf{Q}(m)$, that is to say $\forall m, n \in \mathbb{N}$, $\mathbf{P}(m,n)$.

3.3 The Recursion Theorem

Definition 3.3.1: Sequence

- A sequence is a function whose domain is a natural number or \mathbb{N} .
- A sequence whose domain is a natural number *n* is called a *finite sequence of length n* and is denoted

$$\langle a_i | i < n \rangle$$
 or $\langle a_i | i = 0, 1, \dots, n-1 \rangle$ or $\langle a_0, a_1, \dots, a_{n-1} \rangle$.

In particular, $\langle \rangle = \emptyset$ —the *empty sequence*—is the unique sequence of length 0.

$$Seq(A) \triangleq \bigcup_{n \in \mathbb{N}} A^n$$

denote the set of all finite sequence of elements of *A*.

• A sequence whose domain is \mathbb{N} is called a *infinite sequence* and is denoted

$$\langle a_i \mid i \in \mathbb{N} \rangle$$
 or $\langle a_i \mid i = 0, 1, 2, \dots \rangle$ or $\langle a_i \rangle_{i=0}^{\infty}$.

Infinite sequences of elements of A are members of $A^{\mathbb{N}}$. We also use the notation $\{a_i \mid i \in \mathbb{N}\}\$ or $\{a_i\}_{i=0}^{\infty}$, etc., for the range of the sequence $\langle a_i \mid i \in \mathbb{N} \rangle$.

Note:-

- A natural number $n \in \mathbb{N}$ is the set of all natural numbers less than n. See Exercise 3.2.6.
- Since $A^n \in \mathcal{P}(\mathbb{N} \times A)$ for each $n \in \mathbb{N}$, $\mathcal{A} = \{w \mid \exists n \in \mathbb{N}, w = A^n\}$ exists, and thus $Seq(A) = \bigcup \mathcal{A}$ exists.

Theorem 3.3.2 The Recursion Theorem

Let *A* be a set, $a \in A$, and $g : A \times \mathbb{N} \to A$. Then, there uniquely exists an infinite sequence $f : \mathbb{N} \to A$ such that

- (i) $f_0 = a$ and
- (ii) $\forall n \in \mathbb{N}, f_{n+1} = g(f_n, n).$

Proof. We say $t: (m+1) \to A$ is an m-step computation based on a and g if $t_0 = a$ and $\forall k < m, t_{k+1} = g(t_k, k)$. Let $F \triangleq \{ t \in \text{Seq}(A) \mid t \text{ is an } m \text{ step computation for some } m \in \mathbb{N} \}$. Let $f \triangleq \{ \mid F \mid A \in \mathbb{N} \}$.

Claim 1. f is a function.

Proof. We shall show that F is a compatible system of functions so we may conclude f is a function thanks to Theorem 2.3.12. Take any $t,u \in F$. Let $n = \text{dom } t \in \mathbb{N}$ and $m = \text{dom } u \in \mathbb{N}$. WLOG, $n \le m$ (thanks to (\mathbb{N}, \le) is Totally Ordered), i.e., $n \subseteq m$. Hence, $(\text{dom } t) \cap (\text{dom } u) = n$. If n = 0, then it is done; assume n > 0. Then, there exists $n' \in \mathbb{N}$ such that n' + 1 = n by Exercise 3.2.4.

Surely, $t_0 = a = u_0$. Moreover, if $t_k = u_k$ where k < n', then k + 1 < n' + 1 = n (Exercise 3.2.2) and $t_{k+1} = g(t_k, k) = g(u_k, k) = u_{k+1}$. Therefore, by The Finite Induction Principle, we have $\forall k \le n'$, $t_k = u_k$; t and u are compatible.

Claim 2. dom $f = \mathbb{N}$ and ran $f \subseteq A$.

Proof. We already have dom $f \subseteq \mathbb{N}$ and ran $f \subseteq A$ by Theorem 2.3.12. To show dom f = A \mathbb{N} , it suffices to show that, for any $n \in \mathbb{N}$, there is an n-step computation based on a and g. Clearly, $t = \{(0, a)\}$ is a 0-step computation.

Assume there exists an *n*-step computation $t:(n+1)\to A$ where $n\in\mathbb{N}$. Then, define $u: ((n+1)+1) \to A$ by $u \triangleq t \cup \{(n+1, g(t_n, n))\}$. Then, one may easily verify that u is an (n + 1)-step computation. Therefore, by The Induction Principle, the result follows.

We now check if f satisfies the conditions (i) and (ii).

- (i) Clearly, $f_0 = a$.
- (ii) Take any $n \in \mathbb{N}$. Let t be an (n+1)-step computation. Then, $\forall k \leq n, f_k = t_k$, and $f_{n+1} = t_{n+1} = g(t_n, n) = g(f_n, n).$

Now, we are left to show the uniqueness of such f.

Let $h: \mathbb{N} \to A$ be a sequence that satisfies the conditions (i) and (ii). Clearly, $f_0 = a = h_0$. And, if $f_n = h_n$, then $f_{n+1} = g(f_n, n) = g(h_n, n) = h_{n+1}$. Therefore, by The Induction Principle, $\forall k \in \mathbb{N}, f_k = h_k$, i.e., f = k by Lemma 2.3.3.

Theorem 3.3.3

Let (A, \preceq) be a nonempty linearly ordered set with the properties:

- (i) For every $p \in A$, there exists $q \in A$ such that $p \prec q$.
- (ii) Every nonempty subset of *A* that has a \leq -least element.
- (iii) Every nonempty subset of A that has an upper bound has a \leq -greatest element. Then, (A, \preceq) is isomorphic to (\mathbb{N}, \leq) .

Proof. By (i), $\{a \in A \mid x \prec a\} \neq \emptyset$ for each $x \in A$ and it has a \leq -least element. Hence, we may define $g: A \times \mathbb{N} \to A$ by $g(x, n) \triangleq \min\{a \in A \mid x \prec a\}$. Then, The Recursion Theorem guarantees the existence of a function $f: \mathbb{N} \to A$ such that:

•
$$f_0 = \min A$$
 \triangleright (i) and $A \neq \emptyset$

• $\forall n \in \mathbb{N}, f_{n+1} = g(f_n, n) = \min\{a \in A \mid f_n \prec a\}.$ By Exercise 3.3.1, we have $f_m \prec f_n$ whenever m < n. This also implies that f is injective.

Claim 1. ran f = A

Proof. Suppose ran $f \subseteq A$ for the sake of contradiction. Then, $A \setminus \operatorname{ran} f \neq \emptyset$, and thus we $p \} \neq \emptyset$ and p is an upper bound of B. By (iii), $q = \max B$ exists. Since $q \prec p$, we have $q \in \operatorname{ran} f$, i.e., $q = f_m$ for some $m \in \mathbb{N}$.

Suppose there is some $r \in A$ such that $q \prec r \prec p$. Then, $r \in B$, which contradicts the maximality of q. Hence, $p = \min\{a \in A \mid f_m \prec a\} = f_{m+1}$, which contradicts $p \notin A$ ran f.

We have $f: \mathbb{N} \hookrightarrow A$ by Claim 1. Hence, by (\mathbb{N}, \leq) is Totally Ordered and Lemma 2.5.15, f is an isomorphism between (\mathbb{N}, \leq) and (A, \leq) .

Theorem 3.3.4 The Recursion Theorem: General Version

Let S be a set and let $g: Seq(S) \to S$. Then, there exists a unique sequence $f: \mathbb{N} \to S$ such that

$$\forall n \in \mathbb{N}, f_n = g(f|_n) = g(\langle f_0, f_1, \cdots, f_{n-1} \rangle).$$

Proof. Define $G: \operatorname{Seq}(S) \times \mathbb{N} \to \operatorname{Seq}(S)$ by

$$G(t,n) = \begin{cases} t \cup \{(n,g(t))\} & \text{if } t \text{ is a sequence of length } n \\ \langle \rangle & \text{otherwise.} \end{cases}$$

Then, by The Recursion Theorem, there exists a sequence $F: \mathbb{N} \to \text{Seq}(S)$ such that:

- $F_0 = \langle \rangle$
- $\forall n \in \mathbb{N}, F_{n+1} = G(F_n, n).$

If $F_k \in S^k$, then $F_{k+1} = F_k \cup \{k, g(F_k)\} \in S^{k+1}$. Hence, by The Induction Principle, $\forall n \in \mathbb{N}$, $F_n \in S^n$. Moreover, since $F_k \subsetneq_{\text{Seq}(S)} F_{k+1}$, by Exercise 3.3.1, $\forall m, n \in \mathbb{N}$, $(m < n \implies F_m \subsetneq F_n)$; hence $\{F_n \mid n \in \mathbb{N}\}$ is a compatible system of functions.

hence $\{F_n \mid n \in \mathbb{N}\}$ is a compatible system of functions. Let $f \triangleq \bigcup_{n \in \mathbb{N}} F_n$. Then, we have $f \mid_n = F_n$ for all $n \in \mathbb{N}$. Therefore, for each $n \in \mathbb{N}$, $f_n = F_{n+1}(n) = g(F_n) = g(f \mid_n)$.

Let $h: \mathbb{N} \to S$ be another sequence such that $\forall n \in \mathbb{N}$, $h_n = g(h|_n)$. Suppose $\forall k < n, f_k = h_k$. Then, we have $f_n = g(f|_n) = g(h|_n) = h_n$. Therefore, by The Strong Induction Principle, f = h.

Theorem 3.3.5 The Recursion Theorem: Parametric Version

Let $a: P \to A$ and $g: P \times A \times \mathbb{N} \to A$ be functions. Then, there uniquely exists a function $f: P \times \mathbb{N} \to A$ such that

- (i) $\forall p \in P, f(p,0) = a(p)$
- (ii) $\forall n \in \mathbb{N}, \forall p \in P, f(p, n+1) = g(p, f(p, n), n).$

Proof. Let $G: A^P \times \mathbb{N} \to A^P$ be defined by

$$G(x,n)(p) = g(p,x(p),n)$$

for each $x \in A^P$, $p \in P$, and $n \in \mathbb{N}$. Then, by The Recursion Theorem, there exists $F : \mathbb{N} \to A^P$ such that

$$F_0 = a$$
 and $\forall n \in \mathbb{N}, F_{n+1} = G(F_n, n).$

Now, let $f: P \times \mathbb{N} \to A$ be defined by $f(p, n) = F_n(p)$. We now check if f satisfies the conditions:

- (i) For all $p \in P$, we have $f(p,0) = F_0(p) = a(p)$.
- (ii) For each $n \in \mathbb{N}$ and $p \in P$, $f(p, n + 1) = F_{n+1}(p) = G(F_n, n)(p) = g(p, F_n(p), n) = g(p, f(p, n), n)$.

Let $h: P \times \mathbb{N} \to A$ be another function that satisfies (i) and (ii). Clear, we have $\forall p \in P, f(p,0) = a(p) = h(p,0)$. Assuming $\forall p \in P, f(p,n) = h(p,n)$ gives, for all $p \in P, f(p,n+1) = g(p,f(p,n),n) = g(p,h(p,n),n) = h(p,n+1)$. Hence, by The Induction Principle, we get f = h.

Selected Problems

Exercise 3.3.1

Let $f: \mathbb{N} \to A$ be an infinite sequence where (A, \preceq) is an ordered set. Then,

$$\forall n \in \mathbb{N}, f_n \prec f_{n+1} \Longrightarrow \forall m, n \in \mathbb{N}, (n < m \Longrightarrow f_n \prec f_m).$$

Proof. Fix any $n \in \mathbb{N}$ and let $\mathbf{P}(x)$ be the property " $f_n \prec f_x$." $\mathbf{P}(n+1)$ evidently holds. Now, suppose $\mathbf{P}(k)$ holds where $k \in \mathbb{N}$. Then, chaining $f_n \prec f_k$ and $f_k \prec f_{k+1}$ gives $\mathbf{P}(k+1)$. Therefore, by Exercise 3.2.11, we get $\forall m \geq n+1, f_n \prec f_m$.

Exercise 3.3.2

Let (A, \preceq) be a nonempty linearly ordered set. We say that $q \in A$ is a *successor* of $p \in A$ if there is no $r \in A$ such that $p \prec r \prec q$. Assume (A, \preceq) has the following properties:

- (i) Every $p \in A$ has a successor.
- (ii) Every nonempty subset of *A* has a \leq -least element.
- (iii) If $p \in A$ is not the \leq -least element of A, then p is a successor of some $q \in A$. Then, (A, \leq) is isomorphic to (\mathbb{N}, \leq) .

Proof. By (i), for each $p \in P$, $\{q \in A \mid p \prec q\} \neq \emptyset$, and thus it has a \preceq -least element by (ii). Therefore, by The Recursion Theorem, there exists a sequence $f : \mathbb{N} \to A$ such that $f_0 = \min A$ and $\forall n \in \mathbb{N}$, $f_{n+1} = \min \{q \in A \mid f_n \prec q\}$.

Claim 1. ran f = A

Proof. Suppose $X \triangleq A \setminus \operatorname{ran} f \neq \emptyset$ for the sake of contradiction. Then, by (ii), we may take $p = \min X$. Since $\min A = f_0 \in \operatorname{ran} f$, p is not the \preceq -least element of A. Hence, by (iii), p is a successor of some $q \in A$. As $q \prec p$, we have $q \in \operatorname{ran} f$ by minimality of q, i.e., $q = f_m$ for some $m \in \mathbb{N}$. Since there is no $r \in A$ such that $q \prec r \prec p$, we have $p = f_{m+1}$ by definition, which contradicts $p \notin \operatorname{ran} f$.

Since $f_n \prec f_{n+1}$ for all $n \in \mathbb{N}$, by Exercise 3.3.1, $\forall m, n \in \mathbb{N}$, $(m < n \implies f_m \prec f_n)$, which means f is injective.

Therefore, together with Claim 1, f is an isomorphism between (\mathbb{N}, \leq) and (A, \leq) by Lemma 2.5.15.

Exercise 3.3.5 The Recursion Theorem: Partial Version

Let g be a function such that $\operatorname{dom} g \subseteq A \times \mathbb{N}$ and $\operatorname{ran} g \subseteq A$. Let $a \in A$. Then, there uniquely exists a sequence f of elements of A such that

- (i) $f_0 = a$
- (ii) $\forall n \in \mathbb{N}, [n+1 \in \text{dom } f \implies f_{n+1} = g(f_n, n)]$
- (iii) f is either an infinite sequence or a finite sequence of length k+1 and $(f_k,k) \notin \text{dom } g$.

Proof. Let $\overline{A} = A \cup \{\overline{a}\}$ where $\overline{a} \notin A$. (Such \overline{a} exists by Exercise 1.3.3 (ii).) Define $\overline{g} : \overline{A} \times \mathbb{N} \to \overline{A}$ by

$$\overline{g}(x,n) = \begin{cases} g(x,n) & \text{if } (x,n) \in \text{dom } g \\ \overline{a} & \text{otherwise.} \end{cases}$$

Then, The Recursion Theorem guarantees the existence of $\overline{f}: \mathbb{N} \to \overline{A}$ such that $\overline{f}_0 = a$ and $\forall n \in \mathbb{N}, \overline{f}_{n+1} = \overline{g}(\overline{f}_n, n)$. We have two cases: " $\forall n \in \mathbb{N}, \overline{f}_n \neq \overline{a}$ " and " $\exists n \in \mathbb{N}, \overline{f}_n = \overline{a}$." They are resolved by Claims 1 and 2, respectively.

Claim 1. If " $\forall n \in \mathbb{N}, \overline{f}_n \neq \overline{a}$," then \overline{f} is an infinite sequence of elements of A that satisfies (i) and (ii).

Proof. The assumption essentially says that $(\overline{f}_n, n) \in \text{dom } g$ and $\overline{f}_{n+1} = g(\overline{f}_n, n) \in A$ for all $n \in \mathbb{N}$, i.e., \overline{f} satisfies (i) and (ii). As $\overline{f}_0 = a \in A$, \overline{f} is an infinite sequence of elements of A.

Claim 2. If " $\exists n \in \mathbb{N}, \overline{f}_n = \overline{a}$," then there exists $k \in \mathbb{N}$ such that \overline{f}_{k+1} satisfies the conditions (i), (ii), and (iii).

Proof. By (\mathbb{N}, \leq) is Well-Ordered, we have $\ell \triangleq \min\{n \in \mathbb{N} \mid \overline{f}_n = \overline{a}\}$. Since $\overline{f}_0 \in A$, we have $\ell \neq 0$, and thus $\ell = k+1$ for some $k \in \mathbb{N}$ by Exercise 3.2.4. It immediately follows that $\forall n \leq k, \overline{f}_n \in A$. Hence, $f \triangleq \overline{f}|_{k+1}$ is a finite sequence of length k+1 of elements of

We check if f satisfies the conditions (i), (ii), and (iii):

- (i) $f_0 = f_0 = a$
- (ii) If n < k, i.e., $n + 1 \in \text{dom } f = k + 1$, then $\underline{f}_{n+1} = \overline{f}_{n+1} = \overline{g}(\overline{f}_n, n) = g(f_n, n)$. (iii) If $(f_k, k) \in \text{dom } g$, then we would have $\overline{f}_{\ell} = \overline{g}(\overline{f}_k, k) = \overline{g}(f_k, k) = g(f_k, k) \neq \overline{a}$. Hence, we must have $(f_k, k) \notin \text{dom } g$.

Now, we prove the uniqueness. Let f and h be two sequences of elements of A that satisfies the conditions (i), (ii), and (iii). WLOG, $dom h \subseteq dom f$.

Let P(x) be the property " $x \in \text{dom } h \land f_x = h_x$." P(0) evidently holds.

```
Claim 3. \forall n \in \mathbb{N}, (n+1 \in \text{dom } f \land \mathbf{P}(n) \Longrightarrow \mathbf{P}(n+1))
Proof. Assume n+1 \in \text{dom } f and \mathbf{P}(n). Then, since (h_n, n) = (f_n, n) \in \text{dom } g, n+1 \in \text{dom } h
and h_{n+1} = g(h_n, n) = g(f_n, n) = f_{n+1}. Hence, P(n + 1) holds.
```

If f is a finite sequence, Claim 3 and The Finite Induction Principle imply h = f. If f is an infinite sequence, Claim 3 and The Induction Principle imply h = f.

Exercise 3.3.6

If $X \subseteq \mathbb{N}$, then there is a one-to-one (finite or infinite) sequence f such that ran f = X.

Proof. If $X = \emptyset$, $\langle \rangle$ is the one we are looking for. Assume $X \neq \emptyset$.

Let $g = \{((x, n), y) \in (X \times \mathbb{N}) \times X \mid y = \min\{k \in X \mid x < k\}\}$. Then, g is a function with dom $g \subseteq \mathbb{N} \times \mathbb{N}$ and ran $g \subseteq \mathbb{N}$. By The Recursion Theorem: Partial Version, there exists a sequence *f* of elements of *X* such that

(i) $f_0 = \min X$

- \triangleright min X exists by (\mathbb{N}, \leq) is Well-Ordered
- (ii) $\forall n \in \mathbb{N}, (n+1 \in \text{dom } f \implies f_{n+1} = g(f_n, n))$
- (iii) f is either an infinite sequence or a finite sequence of length k+1 and $(f_k,k) \notin \text{dom } g$. Note that dom $g = \{(x, n) \in X \times \mathbb{N} \mid \exists y \in X, x < y \}$. Moreover, for each $n \in \mathbb{N}$ such that $n+1 \in \text{dom } f$, we have $f_n < f_{n+1}$; hence $\forall m, n \in \text{dom } f$, $(m < n \implies f_m < f_n)$ (in the similar manner of Exercise 3.3.1), and thus f is injective.

Suppose $Y = X \setminus \operatorname{ran} f \neq \emptyset$ for the sake of contradiction. By (\mathbb{N}, \leq) is Well-Ordered, we may take $y = \min Y$. Then, by Theorem 3.2.8, we may let $z = \max\{x \in X \mid x < y\}$. $z = f_m$ for some $m \in \text{dom } f$. Hence, $y = f_{m+1}$.

Arithmetic of Natural Numbers 3.4

Theorem 3.4.1

There uniquely exists a function $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that

- (i)) $\forall m \in \mathbb{N}, +(m,0) = m$
- (ii)) $\forall m, n \in \mathbb{N}, +(m, n+1) = S(+(m, n)).$

Proof. The result directly follows from exploiting The Recursion Theorem: Parametric Version with $A = P = \mathbb{N}$, a(p) = p for all $p \in \mathbb{N}$, and g(p, x, n) = S(x) for all $p, x, n \in \mathbb{N}$.

Definition 3.4.2: Addition

The function + defined in Theorem 3.4.1 is called the *addition*.

Notation 3.4.3

For all $m \in \mathbb{N}$, we have +(m,1) = +(m,0+1) = +(m,0) + 1 = m+1. Hence, we may write m+n instead of +(m,n) without causing any confusion regarding Notation 3.1.2. We restate the defining properties of the addition for future reference:

$$\forall m \in \mathbb{N}, \, m+0=m \tag{1}$$

$$\forall m, n \in \mathbb{N}, m + (n+1) = (m+n) + 1$$
 [2]

Theorem 3.4.4 + is Commutative

Addition is commutative; that is to say

$$\forall m, n \in \mathbb{N}, m+n=n+m.$$

Proof. Let P(x) be the property " $\forall m \in \mathbb{N}, m + x = x + m$."

Claim 1. P(0) holds.

Proof. Since m + 0 = m already, we only need to prove 0 + m = m for all $m \in \mathbb{N}$. We shall make use of induction. First of all 0 + 0 = 0 holds by [1].

Suppose 0 + m = m where $m \in \mathbb{N}$. Then,

$$0 + (m+1) = (0+m) + 1$$
 \triangleright [2]
= $m+1$. \triangleright $0 + m = m$

Hence, by The Induction Principle, 0 + m = m for all $m \in \mathbb{N}$.

Claim 2. $\forall n \in \mathbb{N}, \lceil \mathbf{P}(n) \Longrightarrow \mathbf{P}(n+1) \rceil$

Proof. Assume P(n). We shall show P(n+1) holds by induction. 0+(n+1)=(n+1)+0 is already shown by Claim 1. Hence, assume m+(n+1)=(n+1)+m for fixed $m \in \mathbb{N}$. Then,

$$(m+1)+(n+1) = ((m+1)+n)+1 \qquad \triangleright [2]$$

$$= (n+(m+1))+1 \qquad \triangleright P(n)$$

$$= ((n+m)+1)+1 \qquad \triangleright [2]$$

$$= ((m+n)+1)+1 \qquad \triangleright P(n)$$

$$= (m+(n+1))+1 \qquad \triangleright [2]$$

$$= ((n+1)+m)+1 \qquad \triangleright m+(n+1) = (n+1)+m$$

$$= (n+1)+(m+1). \qquad \triangleright [2]$$

Hence, by The Induction Principle, P(n + 1) holds.

From Claim 1, Claim 2, and The Induction Principle, we get $\forall m, n \in \mathbb{N}, m+n=n+m$.

Theorem 3.4.5 + is Associative

Addition is associative; that is to say

$$\forall k, m, n \in \mathbb{N}, (k+m)+n=k+(m+n).$$

Proof. Let P(x) be the property " $\forall k, m \in \mathbb{N}$, (k+m)+x=k+(m+x)." P(0) is direct by [1]. Now, fix any $n \in \mathbb{N}$ and assume P(n). Then, for all $k, m \in \mathbb{N}$,

$$(k+m)+(n+1) = ((k+m)+n)+1$$
 \triangleright [2]
= $(k+(m+n))+1$ \triangleright P(n)
= $k+((m+n)+1)$ \triangleright [2]
= $k+(m+(n+1))$. \triangleright [2]

Hence, by The Induction Principle, the result follows.

Theorem 3.4.6

There uniquely exists a function $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that

- (i) $\forall m \in \mathbb{N}, m \cdot 0 = 0$
- (ii) $\forall m, n \in \mathbb{N}, m \cdot (n+1) = m \cdot n + m$.

Proof. The result directly follows from exploiting The Recursion Theorem: Parametric Version with $A = P = \mathbb{N}$, a(p) = 0 for all $p \in \mathbb{N}$, and g(p, x, n) = x + p for all $p, x, n \in \mathbb{N}$.

Definition 3.4.7: Multiplication

The function \cdot defined in Theorem 3.4.6 is called the *multiplication*.

$$\forall m \in \mathbb{N}, \, m \cdot 0 = 0 \tag{3}$$

$$\forall m, n \in \mathbb{N}, \ m \cdot (n+1) = m \cdot n + m \tag{4}$$

Theorem 3.4.8 ⋅ is Commutative

Multiplication is commutative, i.e.,

$$\forall m, n \in \mathbb{N}, m \cdot n = n \cdot m.$$

Proof. Let P(x) be the property " $\forall m \in \mathbb{N}, m \cdot x = x \cdot m$."

Claim 1. P(0) holds.

Proof. Since $m \cdot 0 = 0$ already by [3], we only need to prove $0 \cdot m = 0$ for all $m \in \mathbb{N}$. We shall make use of induction. First of all $0 \cdot 0 = 0$ holds by [3].

Suppose $0 \cdot m = 0$ where $m \in \mathbb{N}$. Then,

$$0 \cdot (m+1) = 0 \cdot m + 0$$
 \triangleright [4]
= 0 + 0 \triangleright 0 · $m = 0$
= 0.

Hence, by The Induction Principle, $0 \cdot m = 0$ for all $m \in \mathbb{N}$.

Claim 2. $\forall n \in \mathbb{N}, [P(n) \Longrightarrow P(n+1)]$

Proof. Fix any $n \in \mathbb{N}$ and assume P(n). We shall prove P(n+1) by induction. We already have $0 \cdot (n+1) = (n+1) \cdot 0$ by Claim 1.

Fix any $m \in \mathbb{N}$ and assume $m \cdot (n+1) = (n+1) \cdot m$. Then,

$$(m+1) \cdot (n+1) = (m+1) \cdot n + (m+1) \qquad \triangleright [4]$$

$$= n \cdot (m+1) + (m+1) \qquad \triangleright P(n)$$

$$= (n \cdot m + n) + (m+1) \qquad \triangleright [4]$$

$$= (m \cdot n + n) + (m+1) \qquad \triangleright P(n)$$

$$= (m \cdot n + m) + (n+1) \qquad \triangleright + \text{ is Commutative, } + \text{ is Associative}$$

$$= m \cdot (n+1) + (n+1) \qquad \triangleright [4]$$

$$= (n+1) \cdot m + (n+1) \qquad \triangleright m \cdot (n+1) = (n+1) \cdot m$$

$$= (n+1) \cdot (m+1). \qquad \triangleright [4]$$

Hence, by The Induction Principle, P(n + 1) holds.

From Claim 1, Claim 2, and The Induction Principle, we get $\forall m, n \in \mathbb{N}, m \cdot n = n \cdot m$.

Theorem 3.4.9 · Distributes Over +

Multiplication is distributive over addition, i.e.,

$$\forall k, m, n \in \mathbb{N}, \ k \cdot (m+n) = k \cdot m + k \cdot n$$
 and $\forall k, m, n \in \mathbb{N}, \ (m+n) \cdot k = m \cdot k + n \cdot k.$

Proof. Let P(x) be the property " $\forall k, m \in \mathbb{N}$, $k \cdot (m+x) = k \cdot m + k \cdot x$." P(0) holds by [1] and [3].

Fix any $n \in \mathbb{N}$ and assume $\mathbf{P}(n)$. Then, for each $k, m \in \mathbb{N}$,

$$k \cdot (m + (n + 1)) = k \cdot ((m + n) + 1)$$
 \Rightarrow + is Associative
 $= k \cdot (m + n) + k$ \Rightarrow [4]
 $= (k \cdot m + k \cdot n) + k$ \Rightarrow P(n)
 $= k \cdot m + (k \cdot n + k)$ \Rightarrow + is Associative
 $= k \cdot m + k \cdot (n + 1)$. \Rightarrow [4]

Hence, by The Induction Principle, we have $\forall k, m, n \in \mathbb{N}, \ k \cdot (m+n) = k \cdot m + k \cdot n$. Now, we have, for each $k, m, n \in \mathbb{N}$,

$$(m+n) \cdot k = k \cdot (m+n)$$
 \Rightarrow is Commutative
= $k \cdot m + k \cdot n$
= $m \cdot k + n \cdot k$. \Rightarrow is Commutative

Theorem 3.4.10 · is Associative

Multiplication is associative, i.e.,

$$\forall k, m, n \in \mathbb{N}, (k \cdot m) \cdot n = k \cdot (m \cdot n).$$

Proof. Let P(x) be the property " $\forall k, m \in \mathbb{N}$, $(k \cdot m) \cdot x = k \cdot (m \cdot x)$." P(0) is direct from [3]. Fix any $n \in \mathbb{N}$ and assume P(n). Then, for each $k, m \in \mathbb{N}$,

$$(k \cdot m) \cdot (n+1) = (k \cdot m) \cdot n + k \cdot m \qquad \triangleright [4]$$

$$= k \cdot (m \cdot n) + k \cdot m \qquad \triangleright \mathbf{P}(n)$$

$$= k \cdot (m \cdot n + m) \qquad \triangleright \cdot \mathbf{Distributes \ Over +}$$

$$= k \cdot (m \cdot (n+1)). \qquad \triangleright [4]$$

Hence, the result follows by The Induction Principle.

Lemma 3.4.11

 $\forall m \in \mathbb{N}, m \cdot 1 = m$

Proof.

$$m \cdot 1 = m \cdot (0+1)$$
 \triangleright [1], + is Commutative
 $= m \cdot 0 + m$ \triangleright [4]
 $= 0 + m$ \triangleright [3]
 $= m$ \triangleright [1], + is Commutative

Theorem 3.4.12

There uniquely exists a function $\uparrow : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that

- (i) $\forall m \in \mathbb{N}, m \uparrow 0 = 1$
- (ii) $\forall m, n \in \mathbb{N}, m \uparrow (n+1) = (m \uparrow n) \cdot m$

Proof. The result directly follows from exploiting The Recursion Theorem: Parametric Version with $A = P = \mathbb{N}$, a(p) = 1 for all $p \in \mathbb{N}$, and $g(p, x, n) = x \cdot p$ for all $p, x, n \in \mathbb{N}$.

Definition 3.4.13: Exponentiation

The function \uparrow defined in Theorem 3.4.12 is called the *exponentiation*. We write m^n instead of $m \uparrow n$.

$$\forall m \in \mathbb{N}, \, m^0 = 1 \tag{5}$$

$$\forall m, n \in \mathbb{N}, \ m^{n+1} = m^n \cdot m$$
 [6]

Theorem 3.4.14 Laws of Exponents

- (i) $\forall m \in \mathbb{N}, m^1 = m$
- (ii) $\forall k, m, n \in \mathbb{N}, k^{m+n} = k^m \cdot k^n$
- (iii) $\forall k, m, n \in \mathbb{N}, (m \cdot n)^k = m^k \cdot n^k$
- (iv) $\forall k, m, n \in \mathbb{N}, (k^m)^n = k^{m \cdot n}$

Proof.

(i) Take any $m \in \mathbb{N}$. Then,

$$m^1 = m^{0+1}$$
 \triangleright [1], + is Commutative
 $= m^0 \cdot m$ \triangleright [6]
 $= 1 \cdot m$ \triangleright [5]
 $= m$. \triangleright is Commutative, Lemma 3.4.11

(ii) Let $\mathbf{P}(x)$ be the property " $\forall k, m \in \mathbb{N}, k^{m+x} = k^m \cdot k^x$." $\mathbf{P}(0)$ holds since, for each $k, m \in \mathbb{N}$,

$$k^{m+0} = k^m \qquad \qquad \triangleright [1]$$

$$= k^m \cdot 1 \qquad \qquad \triangleright \text{Lemma 3.4.11}$$

$$= k^m \cdot k^0. \qquad \triangleright [5]$$

Now, fix $n \in \mathbb{N}$ and assume $\mathbf{P}(n)$. Then,

$$k^{m+(n+1)} = k^{(m+n)+1}$$
 \Rightarrow + is Associative
 $= k^{m+n} \cdot k$ \Rightarrow [6]
 $= (k^m \cdot k^n) \cdot k$ \Rightarrow P(x)
 $= k^m \cdot (k^n \cdot k)$ \Rightarrow is Associative
 $= k^m \cdot k^{n+1}$. \Rightarrow [6]

Therefore, by The Induction Principle, the result follows.

(iii) Let P(x) be the property " $\forall m, n \in \mathbb{N}$, $(m \cdot n)^x = m^x \cdot n^x$." P(0) holds since, for each $m, n \in \mathbb{N}$,

$$(m \cdot n)^0 = 1$$
 > [5]
= 1 \cdot 1 > Lemma 3.4.11
= $m^0 \cdot n^0$. > [5]

Now, fix $k \in \mathbb{N}$ and assume P(k). Then,

$$(m \cdot n)^{k+1} = (m \cdot n)^k \cdot (m \cdot n) \qquad \triangleright [6]$$

$$= (m^k \cdot n^k) \cdot (m \cdot n) \qquad \triangleright \mathbf{P}(k)$$

$$= (m^k \cdot m) \cdot (n^k \cdot n) \qquad \triangleright \text{ is Commutative, } \cdot \text{ is Associative}$$

$$= m^{k+1} \cdot n^{k+1}. \qquad \triangleright [6]$$

Therefore, by The Induction Principle, the result follows.

(iv) Let $\mathbf{P}(x)$ be the property " $\forall k, m \in \mathbb{N}$, $(k^m)^x = k^{m \cdot x}$." $\mathbf{P}(0)$ holds since, for each $k, m \in \mathbb{N}$,

$$(k^{m})^{0} = 1$$
 > [5]
= k^{0} > [5]
= $k^{m \cdot 0}$. > [3]

Now, fix $n \in \mathbb{N}$ and assume P(n). Then,

$$(k^{m})^{n+1} = (k^{m})^{n} \cdot k^{m} \qquad \triangleright [6]$$

$$= k^{m \cdot n} \cdot k^{m} \qquad \triangleright P(n)$$

$$= k^{m \cdot n + m} \qquad \triangleright \text{Laws of Exponents (ii)}$$

$$= k^{m \cdot (n+1)}. \qquad \triangleright [4]$$

Therefore, by The Induction Principle, the result follows.

Theorem 3.4.15

There uniquely exists $\Sigma \colon \operatorname{Seq}(\mathbb{N}) \to \mathbb{N}$ such that (i) $\Sigma(\langle \rangle) = 0$. (ii) $\Sigma(k) = \Sigma(k|_n) + k_n$ for all $k \in \text{Seq}(\mathbb{N})$ with length n + 1.

Proof. Let $g: Seq(\mathbb{N}) \times \mathbb{N} \times \mathbb{N}$ be defined by

$$g(k, s, n) = \begin{cases} s + k_n & \text{if } n \in \text{dom } k \\ s & \text{otherwise.} \end{cases}$$

Then, by The Recursion Theorem: Parametric Version, there exists a function $f : \text{Seq}(\mathbb{N}) \times \mathbb{N} \to \mathbb{N}$ such that

(i) $\forall k \in \text{Seq}(\mathbb{N}), f(k, 0) = 0$

(ii)
$$\forall n \in \mathbb{N}, \ \forall k \in \text{Seq}(\mathbb{N}), f(k, n + 1) = g(k, f(k, n), n) = \begin{cases} f(k, n) + k_n & \text{if } n \in \text{dom } k \\ f(k, n) & \text{otherwise.} \end{cases}$$
 [*]

Now, define $\Sigma \colon \operatorname{Seq}(\mathbb{N}) \to \mathbb{N}$ by $\Sigma(k) = f(k, \operatorname{dom} k)$. (i) evidently holds.

Claim 1. Let $k, \ell \in \text{Seq}(\mathbb{N})$. If $k \subseteq \ell$, then $f(k, \text{dom } k) = f(\ell, \text{dom } k)$.

Proof. Let P(x) be the property

$$\forall k, \ell \in \text{Seq}(\mathbb{N}), [\text{dom } k = x \land k \subseteq \ell \implies f(k, x) = f(\ell, x)].$$

P(0) is evident. Now, fix $n \in \mathbb{N}$ and assume P(n).

Fix any $k \in \text{Seq}(\mathbb{N})$ with dom k = n + 1. Then, for any $\ell \in \text{Seq}(\mathbb{N})$ with $k \subseteq \ell$,

$$f(\ell, n+1) = f(\ell, n) + \ell_n \qquad \triangleright [*]$$

$$= f(\ell|_n, n) + \ell_n \qquad \triangleright \mathbf{P}(n)$$

$$= f(k|_n, n) + k_n \qquad \triangleright k \subseteq \ell$$

$$= f(k, n) + k_n \qquad \triangleright \mathbf{P}(n)$$

$$= f(k, n+1). \qquad \triangleright [*]$$

Hence, by The Induction Principle, the result follows.

Let $k \in \text{Seq}(\mathbb{N})$ with length n+1. Then, $\Sigma(k) = f(k,n+1) = f(k,n) + k_n$.

$$\Sigma(k) = f(k, n + 1)$$

$$= f(k, n) + k_n \qquad \triangleright [*]$$

$$= f(k|_n, n) + k_n \qquad \triangleright \text{Claim 1}$$

$$= \Sigma(k|_n) + k_n.$$

The uniqueness easily follows.

Notation 3.4.16: Summation

For the function Σ defined in Theorem 3.4.15, we write

$$\sum_{0 \le i < n} k_i \quad \text{or} \quad \sum_{i=0}^{n-1} k_i$$

instead of $\Sigma(\langle k_0, \cdots, k_{n-1} \rangle)$.

Selected Problems

Exercise 3.4.2

 $\forall k, m, n \in \mathbb{N}, (m < n \iff m + k < n + k)$

Proof. Let P(x) be the property " $\forall m, n \in \mathbb{N}$, $(m < n \iff m + x < n + x)$." P(0) is evident from [1].

Now, fix any $k \in \mathbb{N}$ and assume $\mathbf{P}(k)$. Then, for all $m, n \in \mathbb{N}$,

$$m < n \iff m + k < n + k$$
 $\triangleright P(k)$
 $\iff (m + k) + 1 < (n + k) + 1$ $\triangleright Exercise 3.2.2$
 $\iff m + (k + 1) < n + (k + 1).$ $\triangleright + \text{ is Associative}$

By The Induction Principle, the result follows.

Exercise 3.4.3

 $\forall m, n \in \mathbb{N}, (m \le n \iff \exists! k \in \mathbb{N}, n = m + k)$

Proof. (\Rightarrow) Fix any $m \in \mathbb{N}$ and let $\mathbf{P}(x)$ be the property " $\exists k \in \mathbb{N}, x = m + k$." $\mathbf{P}(m)$ holds since k = 0 would satisfy by [1].

Fix any $n \in \mathbb{N}$ such that $m \le n$ and assume $\mathbf{P}(n)$. Then, there exists k such that n = m + k, which leads to n + 1 = m + (k + 1) by + is Associative. Hence, $\mathbf{P}(n + 1)$ holds. Therefore, $\forall n \ge m, \exists k \in \mathbb{N}, n = m + k$ by Exercise 3.2.11.

To prove the uniqueness, assume $m+k=m+\ell$ where $k,\ell,m\in\mathbb{N}$. WLOG, $k\leq\ell$. If it were $k<\ell$, by Exercise 3.4.2 and + is Commutative, we must have $m+k=k+m<\ell+m=\ell+m$. Hence, $k=\ell$.

(\Leftarrow) Let **P**(x) be the property " $\forall m, n \in \mathbb{N}$, ($n = m + x \implies m \le n$)." We have evidently **P**(0) by [1].

Fix any $k \in \mathbb{N}$ and assume P(k). Then, for each $m, n \in \mathbb{N}$ such that n = m + (k + 1), we have n = (m + 1) + k thanks to + is Commutative and + is Associative, and thus $m < m + 1 \le n$ by P(k). Hence, by The Induction Principle, the result follows.

Exercise 3.4.6

$$\forall k, m, n \in \mathbb{N}, [k \neq 0 \implies (m < n \iff m \cdot k < n \cdot k)]$$

Proof. Let P(x) be the property " $\forall m, n \in \mathbb{N}$, $(m < n \iff m \cdot k < n \cdot k)$." P(1) holds since, for all $n \in \mathbb{N}$,

$$n \cdot 1 = n \cdot (0+1)$$
 \triangleright [1], + is Commutative
= $n \cdot 0 + n$ \triangleright [4]
= $0 + n$ \triangleright [3]
= n . \triangleright [1], + is Commutative

Now, fix any $k \in \mathbb{N}$ and assume P(k). Then, for each $m, n \in \mathbb{N}$ with m < n,

$$m \cdot (k+1) = m \cdot k + m$$
 > [4]
 $< m \cdot k + n$ > Exercise 3.4.2
 $< n \cdot k + n$ > $P(k)$, + is Commutative, Exercise 3.4.2
 $= n \cdot (k+1)$. > [4]

Therefore, by Exercise 3.2.11, the result follows.

3.5 Operations and Structures

Definition 3.5.1: Operation

- A unary operation on S is a function $S \rightarrow S$.
- A binary operation on S is a function $S^2 \rightarrow S$.

Notation 3.5.2: Binary Operation

Non-letter symbols such as +, \times , *, \triangle , etc., are often used to denote operations. The value of the operation * at (x, y) is then denoted x * y rather than *(x, y).

Definition 3.5.3: Closedness Under Operation

Let f be a binary operation on S and $A \subseteq S$. A is said to be *closed under the operation* f if $\forall x, y \in A$, $[(x, y) \in \text{dom } f \implies f(x, y) \in A]$.

Definition 3.5.4: *n*-Tuple

Let $n \in \mathbb{N}$. An *n*-tuple is a finite sequence of length *n*.

Note:-

Let $\langle a_0, \dots, a_{n-1} \rangle$ and $\langle b_0, \dots, b_{n-1} \rangle$ be two *n*-tuples. We have, by Lemma 2.3.3,

$$\langle a_0, \cdots, a_{n-1} \rangle = \langle b_0, \cdots, b_{n-1} \rangle \iff \forall i < n, \ a_i = b_i.$$

This satisfies the usual defining property of n-tuple.

Note:-

- If $\langle A_i \mid 0 \le i < n \rangle$ is a finite sequence (of sets), then the product of the indexed system of sets $\prod_{0 \le i < n} A_i$ (Definition 2.3.16) is just the set of all n-tuples $a = \langle a_0, \cdots, a_{n-1} \rangle$ such that $\forall i < n, a_i \in A_i$.
- If $\forall i < n, A_i = A$, then $\prod_{0 \le i < n} A_i = A^n$.
- $A^0 = \{\langle \rangle \}$.

Notation 3.5.5

The 'ordered pair' (Definition 2.1.1), $(a_0, a_1) = \{\{a_0\}, \{a_0, a_1\}\}$, is different set from the '2-tuple' (Definition 3.5.4), $\langle a_0, a_1 \rangle = \{(0, a_0), (1, a_1)\}$. Consequently, $A_0 \times A_1$ (Definition 2.2.10) does not generally equal to $\prod_{0 \le i \le 2} A_i$ (Definition 2.3.16).

However, since there is a natural one-to-one correspondence

$$\delta: A_0 \times A_1 \longleftrightarrow \prod_{0 \le i < 2} A_i$$
$$(a_0, a_1) \longleftrightarrow \langle a_0, a_1 \rangle,$$

for almost all practical purposes—when only the defining property of *n*-tuple is needed)—it makes so difference which definition one uses.

Therefore, we do not distinguish between ordered pairs and 2-tuples now on. That is to say we use notations

$$\langle a_0, \cdots, a_{n-1} \rangle$$
 and (a_0, \cdots, a_{n-1})

interchangeably from now on.

Definition 3.5.6: n-ary Relation

An *n-ary relation* R in A is a subset of A^n . We write $R(a_0, a_1, \dots, a_{n-1})$ instead of $\langle a_0, a_1, \dots, a_{n-1} \rangle \in R$.

Definition 3.5.7: *n*-ary Operation

An *n*-ary operation F on A is a function $A^n \to A$. We write $F(a_0, a_1, \dots, a_{n-1})$ instead of $F(\langle a_0, a_1, \dots, a_{n-1} \rangle)$.

Note:-

- 1-ary relations in *A* need not be distinguished from subsets of *A*.
- 1-ary operations on A need not be distinguished from functions $A \rightarrow A$.
- Nonempty 0-ary operations on A need not be distinguished from A. (A nonempty 0-ary operation is of the form $\{(\langle \rangle, a)\}$ where $a \in A$; a nonempty 0-ary operation is called a *constant*.)

Definition 3.5.8: Structure

- A *type* τ is an ordered pair $(\langle r_0, \cdots, r_{m-1} \rangle, \langle f_0, \cdots, f_{n-1} \rangle)$ of finite sequences of natural numbers.
- A structure of type τ is a triple

$$\mathfrak{A} = (A, \langle R_0, \cdots, R_{m-1} \rangle, \langle F_0, \cdots, F_{n-1} \rangle)$$

where R_i is an r_i -ary relation on A for each i < m and F_j is an f_j -ary operation on A for each j < n. In addition, we require $F_j \neq \emptyset$ if $f_j = 0$, i.e., F_j should be constant. A is called the *universe* of the structure \mathfrak{A} .

Example 3.5.9

 $\mathfrak{N} = (\mathbb{N}, \langle \leq \rangle, \langle 0, +, \cdot \rangle)$ is a structure of type $(\langle 2 \rangle, \langle 0, 2, 2 \rangle)$.

Notation 3.5.10

We often write the structure of type $(\langle r_0, \cdots, r_{m-1} \rangle, \langle f_0, \cdots, f_{n-1} \rangle)$ as a (1+m+n)-tuple, for example, $(\mathbb{N}, \leq, 0, +, \cdot)$, when it is understood which symbol represent relations and which operations.

Definition 3.5.11: Isomorphism Between Structures

Let $\mathfrak A$ and $\mathfrak A'$ be structures of the same type $\tau=(\langle r_0,\cdots,r_{m-1}\rangle,\langle f_0,\cdots,f_{n-1}\rangle)$. Write $\mathfrak A=(A,\langle R_0,\cdots,R_{m-1}\rangle,\langle F_0,\cdots,F_{n-1}\rangle)$ and $\mathfrak A'=(A',\langle R'_0,\cdots,R'_{m-1}\rangle,\langle F'_0,\cdots,F'_{n-1}\rangle)$. An isomorphism between structures $\mathfrak A$ and $\mathfrak A'$ is a mapping $h\colon A\hookrightarrow A'$ such that

- (i) $\forall i < m, \forall a \in A^{r_i}, [R_i(a_0, \dots, a_{r_i-1}) \iff R'_i(h(a_0), \dots, h(a_{r_i}-1))]$
- (ii) $\forall j < n, \forall a \in A^{f_j}, [(a_0, \dots, a_{f_i-1}) \in \text{dom } F_j \iff (h(a_0), \dots, h(a_{f_i-1})) \in \text{dom } F_j']$
- (iii) $\forall j < n, \ \forall a \in A^{f_j}, [(a_0, \dots, a_{f_j-1}) \in \text{dom } F_j \\ \implies h(F_j(a_0, \dots, a_{f_i-1})) = F'_j(h(a_0), \dots, h(a_{f_i-1}))].$

Definition 3.5.12: Automorphism

An isomorphism between a structure $\mathfrak A$ and itself is called an *automorphism*.

Definition 3.5.13: Closed Set

Fix a structure $\mathfrak{A}=(A,\langle R_0,\cdots,R_{m-1}\rangle,\langle F_0,\cdots,F_{n-1}\rangle).$ A set $B\subseteq A$ is called *closed* if

$$\forall j < n, \ \forall a \in B^{f_j}, \ [(a_0, \cdots, a_{f_i-1}) \in \text{dom } F_j \Longrightarrow F_j(a_0, \cdots, a_{f_i-1}) \in B].$$

Definition 3.5.14: Closure

Fix a structure $\mathfrak{A} = (A, \langle R_0, \cdots, R_{m-1} \rangle, \langle F_0, \cdots, F_{n-1} \rangle)$. Let $C \subseteq A$. The *closure* of C,

$$\overline{C} \triangleq \bigcap \{ B \subseteq A \mid C \subseteq B \text{ and } B \text{ is closed } \},$$

is the least closed set containing all elements of *C*.

Theorem 3.5.15

Let $\mathfrak{A} = (A, \langle R_0, \cdots, R_{m-1} \rangle, \langle F_0, \cdots, F_{n-1} \rangle)$ be a structure and let $C \subseteq A$. If the sequence $\langle C_i | i \in \mathbb{N} \rangle$ is defined recursively by

$$C_0 = C;$$

$$\forall i \in \mathbb{N}, \ C_{i+1} = C_i \cup \bigcup_{j=0}^{n-1} F_j[C_i^{f_j}],$$

then $\overline{C} = \bigcup_{i=0}^{\infty} C_i$.

Proof. Note the recursive definition is justified by The Recursion Theorem. Let $\tilde{C} \triangleq \bigcup_{i=0}^{\infty} C_i$.

Claim 1. $\overline{C} \subseteq \tilde{C}$

Proof. Since we have $C_0 \subseteq \tilde{C}$, it is enough to show that \tilde{C} is closed.

Take any j < n and $a \in \tilde{C}^{f_j}$. By the definition of \tilde{C} , $\forall r < f_j$, $\exists i_r \in \mathbb{N}$, $a_r \in C_{i_r}$. We may take $\bar{\iota} = \max\{i_r \mid r < f_j\}$ by Exercise 3.5.13. Since $C_i \subseteq C_{i+1}$ for all $i \in \mathbb{N}$, we have $a_r \in C_{i_r} \subseteq C_{\bar{\iota}}$ for all $r < f_j$. Hence, if $(a_0, \dots, a_{f_j-1}) \in \text{dom } F_j$, we have $F_j(a_0, \dots, a_{f_j-1}) \in F_j[C_{\bar{\iota}}^{f_j}] \subseteq C_{\bar{\iota}+1} \subseteq \tilde{C}$. Hence, \tilde{C} is closed.

Claim 2. $\tilde{C} \subseteq \overline{C}$

Proof. Clearly $C_0 = C \subseteq \overline{C}$. If $C_i \subseteq \overline{C}$, then, for each j < n, $F_j[C_i^{f_j}] \subseteq \overline{C}$ since \overline{C} is closed. Hence, $C_{i+1} \subseteq \overline{C}$. Therefore, by The Induction Principle, $\forall i \in \mathbb{N}$, $C_i \subseteq \overline{C}$; hence $\widetilde{C} \subseteq \overline{C}$.

Combining Claims 1 and 2 completes the proof.

Theorem 3.5.16 The General Induction Principle

Let $\mathfrak{A} = (A, \langle R_0, \dots, R_{m-1} \rangle, \langle F_0, \dots, F_{n-1} \rangle)$ be a structure and let $C \subseteq A$. Let $\mathbf{P}(x)$ be a property. If

- (i) $\forall a \in C$, $\mathbf{P}(a)$
- (ii) $\forall j < n, \forall a \in A^{f_j}, [(a_0, \dots, a_{f_j-1}) \in \text{dom } F_j \land \forall i < f_j, \mathbf{P}(a_i) \implies \mathbf{P}(F_j(a_0, \dots, a_{f_j-1}))]$ hold, then $\forall x \in \overline{C}, \mathbf{P}(x)$.

Proof. Let $B = \{x \in A \mid \mathbf{P}(x)\}$. (i) says $C \subseteq B$ and (ii) says B is closed. Therefore, $\overline{C} \subseteq B$. \square

♦ Note:- ♦

The Induction Principle is a special case of The General Induction Principle for the structure (\mathbb{N}, S) where S is the successor function.

Selected Problems

Exercise 3.5.4

Let $B = \mathcal{P}(A)$. Show that (B, \cup_B, \cap_B) and (B, \cap_B, \cup_B) are isomorphic structures.

Proof. Let $h: B \to B$ be defined by $h(X) = A \setminus X$. If $A \setminus X = A \setminus Y$, then $X = A \setminus (A \setminus X) = A \setminus (A \setminus Y) = Y$ by Exercise 1.4.2 (iii). Moreover, h(h(X)) = X for all $X \in B$. Hence, $h: B \hookrightarrow B$. □

Exercise 3.5.7

Let R be a set whose elements are n-tuples. Then, R is an n-ary relation in A for some A.

Proof. Let $a \in R$. Then, $a = \{(0, a_0), \dots, (n-1, a_{n-1})\}$. For each i < n, $a_i \in \{i, a_i\} \in (i, a_i) \in a \in R$. Hence, $a_i \in \bigcup [\bigcup (\bigcup R)]$, i.e., R is an n-ary relation in $A = \bigcup [\bigcup (\bigcup R)]$.

Exercise 3.5.10

Let *A* be a sequence of length *n*. Then, $\prod_{0 \le i < n} A_i \ne \emptyset \iff \forall i < n, A_i \ne \emptyset$

Proof. Let P(x) be the property "if A is a sequence of length x, then $\prod_{0 \le i < n} A_i \ne \emptyset \iff \forall i < n, A_i \ne \emptyset$." P(0) holds since, if A is a function with $\text{dom} A = \emptyset$, then $\prod A = \{\emptyset\}$. Fix $n \in \mathbb{N}$ and assume P(n) holds. Take any sequence A of length n + 1.

- Assume $\prod A \neq \emptyset$ and take $a \in \prod A$. Then, for each i < n+1, $a_i \in A_i$; and thus $A_i \neq \emptyset$.
- Assume $\forall i < n+1, A_i \neq \emptyset$. Then, by $\mathbf{P}(n)$, we may take $a' \in \prod_{0 \le i < n} A_i$. We also may take $b \in A_n$. Then, $a' \cup \{(n,b)\} \in \prod A$.

Hence, P(n) holds. Thus, the result follows by The Induction Principle.

Exercise 3.5.13

Let $\langle k_0, \cdots, k_{n-1} \rangle$ be a finite sequence of natural numbers of length $n \geq 1$. Then, its range $\{k_0, \cdots, k_{n-1}\}$ has a greatest element.

Proof. Let P(x) be the property "the range of a finite sequence of natural numbers of length x has a greatest element."

Let $\langle k_0 \rangle$ be a sequence of natural numbers of length 1. Then, $k_0 = \max \operatorname{ran} \langle k_0 \rangle$. Hence, **P**(1).

Fix any $n \in \mathbb{N}$ and assume $\mathbf{P}(n)$. Take any $k \in \operatorname{Seq}(\mathbb{N})$ with length n+1. Let $k' = \langle k_0, \cdots, k_{n-1} \rangle$ be another sequence. Then, by $\mathbf{P}(n)$, there exists $m' = \max\{k_0, \cdots, k_{n-1}\}$. Now, let $m = \max\{m', k_n\}$. Then, for all i < n, $k_i \le m' \le m$, and $k_n \le m$. Hence, m is an upper bound of $\operatorname{ran} k$; the result follows by Theorem 3.2.8 and Exercise 3.2.11.

Exercise 3.5.15

Let $R \subseteq A^2$ be a binary relation. Define a binary operation F_R on A^2 by

$$F_R((a_1, a_2), (b_1, b_2)) = \begin{cases} (a_1, b_2) & \text{if } a_2 = b_1 \\ \text{undefined} & \text{otherwise.} \end{cases}$$

Then.

- (i) The closure of R in (A^2, F_R) is a transitive relation.
- (ii) If *R* is reflexive and symmetric, \overline{R} is also an equivalence.

Proof.

- (i) Take any $a, b, c \in A$ and assume $a\overline{R}b$ and $b\overline{R}c$. Then, since \overline{R} is closed, $F((a, b), (b, c)) = (a, c) \in \overline{R}$. Hence, \overline{R} is transitive.
- (ii) $\operatorname{Id}_A \subseteq R \subseteq \overline{R}$; \overline{R} is reflexive.

Let P(x, y) be the property " $y\overline{R}x$." As $R \subseteq \overline{R}$, we have $\forall (a, b) \in R$, P(a, b). Now, take any $(a, b), (b, c) \in A^2$ such that P(a, b) and P(b, c). Then, by (i), we have $c\overline{R}a$; $P(F_R((a, b), (b, c)))$ hold. Therefore, by The General Induction Principle, $b\overline{R}a$ holds for all $(a, b) \in \overline{R}$.

Chapter 4

Finite, Countable, and Uncountable Sets

4.1 Cardinality of Sets

Definition 4.1.1: Equipotent Sets

Let *A* and *B* be sets. *A* is *equipotent* to *B* if there is a function $f: A \hookrightarrow B$. We write |A| = |B|.

Lemma 4.1.2

Let *A*, *B*, and *C* be sets.

- (i) |A| = |A|.
- (ii) If |A| = |B|, then |B| = |A|.
- (iii) If |A| = |B| and |B| = |C|, then |A| = |C|.

Proof.

- (i) Id_A is an injective function on A onto A.
- (ii) If $f: A \hookrightarrow B$, then $f^{-1}: B \hookrightarrow A$.
- (iii) If $f: A \hookrightarrow B$, and if $g: B \hookrightarrow C$, then $f \circ g: A \hookrightarrow C$.

Note:- 🛉

Lemma 4.1.2 essentially says that |A| = |B| behaves like an equivalence relation.

Definition 4.1.3

• We say the cardinality of A is less than or equal to the cardinality of B if there is a function $f: A \hookrightarrow B$. We write $|A| \leq |B|$.

• We say the cardinality of *A* is less than the cardinality of *B* if $|A| \le |B|$ and $\neg(|A| = |B|)$. We write |A| < |B|.

Lemma 4.1.4

Let A, B, and C be sets.

- (i) If |A| = |B|, then $|A| \le |B|$.
- (ii) $|A| \leq |A|$
- (iii) If $|A| \le |B|$ and $|B| \le |C|$, then $|A| \le |C|$.

Proof.

(i) If $f: A \hookrightarrow B$, then f is injective as well.

- (ii) Id_A is an injective function on A into A.
- (iii) If $f: A \hookrightarrow B$, and if $g: B \hookrightarrow C$, then $f \circ g: A \hookrightarrow C$.

Lemma 4.1.5

If $A_1 \subseteq B \subseteq A$ and $|A_1| = |A|$, then |B| = |A|.

Note:-

We present two proofs for Lemma 4.1.5. The second proof can be viewed as a more fundamental proof in the sense that it does not depend on Axiom of Infinity.

Proof 1. Let $f: A \hookrightarrow A_1$. Define a sequence $\langle A_i \mid i \in \mathbb{N} \rangle$ and $\langle B_i \mid i \in \mathbb{N} \rangle$ recursively by

$$A_0 = A, \qquad B_0 = B,$$

$$\forall n \in \mathbb{N}, A_{n+1} = f[A_n], \qquad \forall n \in \mathbb{N}, B_{n+1} = f[B_n]$$
 [*]

thanks to The Recursion Theorem.

We clearly have $A_1 \subseteq B_0 \subseteq A_0$. If $A_{n+1} \subseteq B_n \subseteq A_n$, then $A_{n+2} = f[A_{n+1}] \subseteq B_{n+1} = f[B_n] \subseteq A_{n+1} = f[A_n]$ by [*]. Hence, by [*] and The Induction Principle, we have $A_{n+1} \subseteq B_n \subseteq A_n$ for all $n \in \mathbb{N}$.

Let, for each $n \in \mathbb{N}$, $C_n \triangleq A_n \setminus B_n$. Then, by Exercise 2.3.6 (ii), $C_{n+1} = f[A_n] \setminus f[B_n] = f[A_n \setminus B_n] = f[C_n]$. Let

$$C \triangleq \bigcup_{n=0}^{\infty} C_n$$
 and $D \triangleq A \setminus C$.

Hence, $f[C] = \bigcup_{n=1}^{\infty} C_n \subseteq C$. Now, define a function $g: A \to A$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \in C \\ x & \text{if } x \in D. \end{cases}$$

We immediately notice that $g|_C = f|_C$ and $g|_D$ are injective and their ranges—f[C] and D—are disjoint; g is injective.

As, $\forall n \ge 1$, $C_n \subseteq A_n \subseteq B_0 = B$, we have $f[C] \subseteq B$. If $x \in D$, then $x \in A \setminus C_0 = A \setminus (A \setminus B) = B$ by Exercise 1.4.2 (iii).

Now, we shall show $B \subseteq f[C] \cup D$ and thus $B = \operatorname{ran} g$. Take any $y \in B$. Then, $y \in C$ or $y \in D$. If $y \in D$, then it is done; so assume $y \in C$. Then, as $y \notin A \setminus B = C_0$, $y \in f[C]$. Hence, $g : A \hookrightarrow B$.

Proof 2. Let $f: A \hookrightarrow A_1$. Let $F: \mathcal{P}(A) \to \mathcal{P}(A)$ be defined by $F(X) = (A \setminus B) \cup f[X]$. If $X \subseteq Y \subseteq A$, then $F(X) = (A \setminus B) \cup f[X] \subseteq (A \setminus B) \cup f[Y] = F(Y)$. Hence, by Exercise 4.1.10, there exists $C \subseteq A$ such that

$$C = (A \setminus B) \cup f[C].$$

Let $D \triangleq A \setminus C$.

Now, define a function $g: A \rightarrow A$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \in C \\ x & \text{if } x \in D. \end{cases}$$

Then, since $f[C] \subseteq C$, g is injective.

Moreover, $f[C] \subseteq \operatorname{ran} f = A_1 \subseteq B$ and $D = A \setminus C = A \setminus ((A \setminus B) \cup f[C]) \subseteq A \setminus (A \setminus B) = B$, and thus $\operatorname{ran} g \subseteq B$.

Now, take any $y \in B$. If $y \in C$, then, as $y \notin A \setminus B$, $y \in f[C]$. Hence, $B \subseteq f[C] \cup D$. Therefore, $g: A \hookrightarrow B$.

Theorem 4.1.6 Cantor-Bernstein Theorem

If $|X| \le |Y|$ and $|Y| \le |X|$, then |X| = |Y|.

Proof. Let $f: X \hookrightarrow Y$ and $g: Y \hookrightarrow X$. Then, $g: Y \hookrightarrow g[Y]$, i.e., |Y| = |g[Y]|; and $g \circ f: X \hookrightarrow (g \circ f)[X]$, i.e., $|X| = |(g \circ f)[X]|$. Moreover, $(g \circ f)[X] \subseteq g[Y] \subseteq X$. Hence, by Lemma 4.1.5, |g[Y]| = |X|. We conclude |X| = |Y| from Lemma 4.1.2.

Assumption 4.1.7

There are sets called *cardinal numbers* (or *cardinals*) with the property that for every set X there is a unique cardinal |X| (the *cardinal number of* X, the *cardinality of* X) and sets X and Y are equipotent if and only if |X| is equal to Y.

Note:-

Assumption 4.1.7 essentially asserts the existence of a unique "representative" for each class of mutually equipotent sets. Assumption 4.1.7 is *harmless* in the sense that we only use it for convenience and we could formulate the theorems without it. We prove Assumption 4.1.7 in Chapter 8: Axiom of Choice. However, for certain classes of sets, cardinal numbers can be defined without the Axiom of Choice.

Selected Problems

Exercise 4.1.2

Let *A*, *B*, and *C* be sets.

- (i) If |A| < |B| and $|B| \le |C|$, then |A| < |C|.
- (ii) If $|A| \le |B|$ and |B| < |C|, then |A| < |C|.

Proof.

- (i) We already have $|A| \le |C|$ by Lemma 4.1.4 (iii). Let $g: B \hookrightarrow C$. Suppose $f: A \hookrightarrow C$ for the sake of contradiction. Then, $f^{-1} \circ g: B \hookrightarrow A$, i.e., $|B| \le |A|$. By Cantor–Bernstein Theorem, we get |A| = |B|, which is a contradiction.
- (ii) We already have $|A| \le |C|$ by Lemma 4.1.4 (iii). Let $g: A \hookrightarrow B$. Suppose $f: A \hookrightarrow C$ for the sake of contradiction. Then, $g \circ f^{-1}: C \hookrightarrow B$, i.e., $|C| \le |B|$. By Cantor–Bernstein Theorem, we get |B| = |C|, which is a contradiction.

Exercise 4.1.3

If $A \subseteq B$, then $|A| \le |B|$.

Proof. Id_A is an injective function on A into B.

Exercise 4.1.7

If $S \subseteq T$, then $|A^S| \le |A^T|$. In particular, $|A^m| \le |A^n|$ if $m \le n$.

Proof. If $T = \emptyset$, then $A^S = A^T = \{\emptyset\}$ and it is done.

Assume $T \neq \emptyset$. Fix some $t \in T$. Now, define $f : A^S \hookrightarrow A^T$ by $g \mapsto g \cup \{(x,t) \mid x \in T \setminus S\}$.

Exercise 4.1.10

Let $F: \mathcal{P}(A) \to \mathcal{P}(A)$ be monotone, i.e., if $X \subseteq Y \subseteq A$, then $F(X) \subseteq F(Y)$. Then, F has a least fixed point \overline{X} , that is to say $F(\overline{X}) = \overline{X}$ and $\forall X \subseteq A$, $(F(X) = X \Longrightarrow \overline{X} \subseteq X)$.

Proof. Let $T \triangleq \{X \subseteq A \mid F(X) \subseteq X\}$. Then, as $A \in T$, $T \neq \emptyset$; we may let $\overline{X} \triangleq \bigcap T$.

Then, for all $X \in T$, $\overline{X} \subseteq X$; and thus $F(\overline{X}) \subseteq F(X) \subseteq X$. We have $F(\overline{X}) \subseteq \bigcap T = \overline{X}$, i.e., $\overline{X} \in T$.

On the other hand, we have $F(F(\overline{X})) \subseteq F(\overline{X})$, or $F(\overline{X}) \in T$, and thus $\overline{X} = \bigcap T \subseteq F(\overline{X})$. Therefore, $F(\overline{X}) = \overline{X}$. Moreover, if X is a fixed point, then $X \in T$, and thus $\overline{X} = \bigcap T \subseteq X$. \square

Exercise 4.1.14

A function $F: \mathcal{P}(A) \to \mathcal{P}(A)$ is *continuous* if, for each sequence $\langle X_i \mid i \in \mathbb{N} \rangle$ of subsets of A such that $\forall i, j \in \mathbb{N}$, $(i \leq j \Longrightarrow X_i \subseteq X_j)$, $F(\bigcup_{i \in \mathbb{N}} X_i) = \bigcup_{i \in \mathbb{N}} F(X_i)$ holds.

If \overline{X} is the least fixed point of a monotone continuous function, $F: \mathcal{P}(A) \to \mathcal{P}(A)$, then $\overline{X} = \bigcup_{i \in \mathbb{N}} X_i$ where we define recursively $X_0 = \emptyset$, $\forall i \in \mathbb{N}$, $X_{i+1} = F(X_i)$.

Proof. Let $\tilde{X} \triangleq \bigcup_{i \in \mathbb{N}} X_i$. We have $X_0 = \emptyset \subseteq X_1$.

If $X_n \subseteq X_{n+1}$, then $X_{n+1} \subseteq X_{n+2}$ since F is monotone. Hence, $\forall n \in \mathbb{N}, X_n \subseteq X_{n+1}$. Therefore, similarly to Exercise 3.3.1, we have $X_m \subseteq X_n$ whenever $m \le n$. Hence, $F(\tilde{X}) = \bigcup_{i \in \mathbb{N}} F(X_i) = \bigcup_{i = 1}^{\infty} X_i = \tilde{X}$; \tilde{X} is a fixed point of F; hence $\overline{X} \subseteq \tilde{X}$.

We have $X_0 \subseteq \overline{X}$. If $X_n \subseteq \overline{X}$ for $n \in \mathbb{N}$, then $X_{n+1} \subseteq F(\overline{X}) = \overline{X}$. Hence, by The Induction Principle, $\tilde{X} \subseteq \overline{X}$.

4.2 Finite Sets

Definition 4.2.1: Finite Set and Infinite Set

A set *S* is *finite* if it is equipotent to some natural number $n \in \mathbb{N}$. We then define |S| = n and say *S* has *n* elements. A set is *infinite* if it is not finite.

Note:-

According to Definition 4.2.1, cardinal numbers of finite sets are the natural numbers. We evidently have $\forall n \in \mathbb{N}, |n| = n$.

Lemma 4.2.2

If $n \in \mathbb{N}$ and $X \subsetneq n$, then there is no $f : n \hookrightarrow X$.

Proof. If n = 0, there is no $X \subseteq n$; the assertion is true.

Assume the assertion holds for n. Suppose there is some $f:(n+1) \hookrightarrow X$ where $X \subsetneq n+1$. There are two cases: $n \in X$ and $n \notin X$.

If $n \notin X$, then $X \subseteq n$, and thus $f \mid_n : n \hookrightarrow X \setminus \{f(n)\}$; however $X \setminus \{f(n)\} \subsetneq X \subseteq n$, which is a contradiction.

If $n \in X$, then n = f(k) for some $k \le n$. Define a function g on n by following:

$$g(i) = \begin{cases} f(n) & \text{if } i = k < n \\ f(i) & \text{otherwise.} \end{cases}$$

Then, $g: n \hookrightarrow X \setminus \{n\}$ and $X \setminus \{n\} \subsetneq n$, which is also a contradiction.

Corollary 4.2.3

- (i) If $m \neq n$ where $m, n \in \mathbb{N}$, then there is no $f : m \hookrightarrow n$.
- (ii) If |S| = m and |S| = n, then m = n.
- (iii) \mathbb{N} is infinite.

Proof.

- (i) If $n \neq m$, by (\mathbb{N}, \leq) is Totally Ordered, we have $n \subsetneq m$ or $m \subsetneq n$. In either case, we do not have such function by Lemma 4.2.2.
- (ii) By Lemma 4.1.2, we have |m| = |n|. (i) asserts that m = n; otherwise we cannot have |m| = |n|.
- (iii) By Exercise 3.2.3, there exists $f: \mathbb{N} \hookrightarrow X$ where $X \subsetneq \mathbb{N}$. If there exists $n \in \mathbb{N}$ and $g: n \hookrightarrow \mathbb{N}$, $g^{-1} \circ f^{-1} \circ f \circ g$ is a function on n onto a proper subset of n. This contradicts Lemma 4.2.2.

Theorem 4.2.4

If X is a finite set and $Y \subseteq X$, then Y is finite.

Proof. We may assume $X = \{x_0, \dots, x_{n-1}\}$, where $\langle x_0, \dots, x_{n-1} \rangle$ is an injective sequence, and $Y \neq \emptyset$.

Let $g: n \times \mathbb{N} \rightarrow n$ be defined by

$$g(a, -) = \begin{cases} \min\{j \in n \mid a < j \land x_j \in Y\} & \text{if it exists} \\ \text{undefined} & \text{otherwise.} \end{cases}$$
 [*]

By The Recursion Theorem: Partial Version, there exists a sequence k of elements in n such that

(i)
$$k_0 = \min\{j \in n \mid x_j \in Y\}.$$
 $\triangleright Y \neq \emptyset$

- (ii) $\forall i \in \mathbb{N}, [i+1 \in \text{dom } k \implies k_{i+1} = g(k_i, i) = \min\{j \in n \mid k_i < j \land x_j \in Y\}\}.$
- (iii) k is either an infinite sequence or a finite sequence of length $\ell+1$ and $(k_\ell,\ell) \notin \operatorname{dom} g$. By (ii) and [*], $\forall i \in \mathbb{N}$, $(i+1 \in \operatorname{dom} k \implies k_i < k_{i+1})$. Hence, k is injective. If k were an infinite sequence, i.e., $k \colon \mathbb{N} \hookrightarrow n$, then $|\mathbb{N}| \leq |n|$. Together with Exercise 4.1.3 and Cantor-Bernstein Theorem, we get $|\mathbb{N}| = |n|$, which contradicts Corollary 4.2.3 (iii). Hence, k is a finite sequence of length ℓ .

Let $y_i \triangleq x_{k_i}$ for each $i < \ell$. By (i) and (ii), the sequence y is injective and its range is a subset of Y. By the same argument of Claim 1 of Theorem 3.3.3, we have ran y = Y. Therefore, $y: \ell \hookrightarrow Y$; Y is finite.

Theorem 4.2.5

If *X* is finite and *f* is a function, then f[X] is finite. Moreover, $|f[X]| \le |X|$.

Proof. If $f[X] = \emptyset$, then it is done; assume $f[X] \neq \emptyset$. WLOG, $X \subseteq \text{dom } f$.

We may assume $X = \{x_0, \dots, x_{n-1}\}$, where $\langle x_0, \dots, x_{n-1} \rangle$ is an injective sequence. Let $g : \text{Seq}(n) \rightarrow n$ be defined by

$$g(\langle k_0, \cdots, k_{\ell'-1} \rangle) = \begin{cases} 0 & \text{if } \ell' = 0 \\ \min\{k \in n \mid k_{\ell'-1} < k \land \forall i < \ell', f(x_k) \neq f(x_{k_i})\} & \text{if it exists and } \ell' > 0 \\ \text{undefined} & \text{otherwise.} \end{cases}$$

[*]

Then, one may modify The Recursion Theorem: General Version to its partial version like The Recursion Theorem: Partial Version to get a sequence k of elements of n such that:

- (i) $\forall i \in \text{dom } k$, $k_i = g(k|_i)$. In particular, $k_0 = 0$.
- (ii) k is either an infinite sequence or a finite sequence of length $\ell + 1$ and $k \notin \text{dom } g$.

By (i) and [*], $\forall i, j \in \text{dom } k$, $(i \neq j \implies f(x_{k_i}) \neq f(x_{k_j}))$, i.e., the sequence $y = \langle f(x_{k_i}) | i \in \text{dom } k \rangle$ is injective and its range is a subset of f[X].

By the similar reason as in the proof of Theorem 4.2.4, k is finite and ran y = f[X]. Finally, we get $|f[X]| \le |X|$ from $x \circ y^{-1} : f[X] \hookrightarrow X$.

Lemma 4.2.6

Let *X* and *Y* be finite sets.

- (i) $X \cup Y$ is finite; moreover, $|X \cup Y| \le |X| + |Y|$.
- (ii) If *X* and *Y* are disjoint, then $|X \cup Y| = |X| + |Y|$.

Proof.

(i) Write $X = \{x_0, \dots, x_{m-1}\}$ and $Y = \{y_0, \dots, y_{n-1}\}$ where $\langle x_0, \dots, x_{m-1}\rangle$ and $\langle y_0, \dots, y_{n-1}\rangle$ are injective sequences.

Now, define $z:(n+m) \rightarrow X \cup Y$ by

$$z_i = x_i$$
 for $0 \le i < n$ and $z_i = y_{i-n}$ for $n \le i < n + m$.

(Here, i-n is the unique $k \in \mathbb{N}$ such that i=n+k. See Exercise 3.4.3.) Hence, by Theorem 4.2.5, $X \cup Y$ is finite and $|X \cup Y| \le n+m$.

(ii) If *X* and *Y* are disjoint, then $z:(n+m) \hookrightarrow X \cup Y$. Hence, $|X \cup Y| = n+m$.

Theorem 4.2.7

If *S* is finite and if every $X \in S$ is finite, then $\bigcup S$ is finite.

Proof. If |S| = 0, then it is done.

Assume that the statement is true for all S with |S| = n. Let $S = \{X_0, \dots, X_n\}$ be a set with n + 1 elements such that each $X_i \in S$ is finite. Then, we have

$$\bigcup S = \left(\bigcup_{i=0}^{n-1} X_i\right) \cup X_n$$

but $\bigcup_{i=0}^{n-1} X_i$ is finite by induction hypothesis and thus $\bigcup S$ is finite by Lemma 4.2.6. Hence, by The Induction Principle, the result follows.

Theorem 4.2.8

If *X* is finite, then $\mathcal{P}(X)$ is finite.

Proof. If |X| = 0, then $\mathcal{P}(X) = \{\emptyset\}$, which is indeed finite.

Fix any $n \in \mathbb{N}$ and assume that $\mathcal{P}(X)$ is finite for all X with |X| = n. Take any Y with |Y| = n + 1. Let $Y = \{y_0, \dots, y_n\}$ and $X \triangleq \{y_0, \dots, y_{n-1}\}$. Note that $\mathcal{P}(Y) = \mathcal{P}(X) \cup U$ where $U = \{u \subseteq Y \mid y_n \in u\}$. Moreover, $f: \mathcal{P}(X) \to U$ defined by $f(x) = x \cup \{y_n\}$ is injective and onto U. Hence, U is finite. By Lemma 4.2.6, $\mathcal{P}(Y)$ is finite. The result follows by The Induction Principle.

Theorem 4.2.9

If *X* is infinite, then |X| > n for all $n \in \mathbb{N}$.

Proof. We clearly have $0 \le |X|$.

For induction, fix any $n \in \mathbb{N}$ and assume $n \le |X|$, i.e., there exists $f: n \hookrightarrow X$. By Theorem 4.2.5, ran $f \subsetneq X$; we may take $x \in X \setminus \operatorname{ran} f$. Then, $g \triangleq f \cup \{(n, x)\}$ is an injective function on n+1 into X; hence $n+1 \le |X|$. Therefore, by The Induction Principle, we have $n \ge |X|$ for all $n \in \mathbb{N}$, which is suffices to induce the result.

Selected Problems

Exercise 4.2.1

If $S = \{X_0, \dots, X_{n-1}\}$ is a finite set of mutually disjoint sets. Then, $\left|\bigcup S\right| = \sum_{i=0}^{n-1} |X_i|$.

Proof. If $S = \emptyset$, then $\left| \bigcup S \right| = 0 = \sum_{i=0}^{n-1} |X_i|$.

Fix $n \in \mathbb{N}$ and assume the assertion holds for all S with |S| = n. Then, take any set T of mutually disjoint sets with |T| = n + 1. Write $T = \{X_0, \dots, X_n\}$ and let $S \triangleq \{X_0, \dots, X_{n-1}\}$. Then, since $\bigcup T = (\bigcup S) \cup X_n$, and since $\bigcup S$ and X_n are disjoint, $|\bigcup T| = |\bigcup S| + |X_n| = \sum_{i=0}^{n-1} |X_i| + |X_n| = \sum_{i=0}^{n} |X_i|$. Hence, the result follows from The Induction Principle.

Exercise 4.2.2

If *X* and *Y* are finite, then $|X \times Y| = |X| \cdot |Y|$.

Proof. We shall exploit the induction on |Y|. If |Y| = 0, then

$$|X \times Y| = 0$$
 \triangleright Exercise 2.2.8
= $|X| \cdot |Y|$. \triangleright [3]

Assume the statement holds for all X and Y with |Y| = n. Let $Z = \{z_0, \dots, z_n\}$ be a set with |Z| = n + 1. Let $Y \triangleq \{z_0, \dots, z_{n-1}\}$. Then, for all $X, X \times Z = (X \times Y) \cup (X \times \{z_n\})$. Note that $X \times \{z_n\}$ can be identified with X via $f: X \hookrightarrow X \times \{z_n\}$ defined by $x \mapsto (x, z_n)$. Hence, if X is finite,

$$|X \times Z| = |X \times Y| + |X \times \{z_n\}| \qquad \triangleright \text{ Lemma 4.2.6}$$

$$= |X \times Y| + |X| \qquad \triangleright |X \times \{z_n\}| = |X|$$

$$= |X| \cdot |Y| + |X| \qquad \triangleright P(n)$$

$$= |X| \cdot (|Y| + 1) \qquad \triangleright [4]$$

$$= |X| \cdot |Z|.$$

Therefore, by The Induction Principle, the result follows.

Exercise 4.2.3

If *X* is finite, $|\mathcal{P}(X)| = 2^{|X|}$.

Proof. Let P(x) be the property " $\forall X$, ($|X| = x \implies |\mathcal{P}(X)| = 2^{|X|}$)." P(0) holds since $|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0$.

Fix $n \in \mathbb{N}$ and assume $\mathbf{P}(n)$. Let $Y = \{y_0, \dots, y_n\}$ be a set with |Y| = n + 1. Let $X \triangleq \{y_0, \dots, y_{n-1}\}$. As in the proof of Theorem 4.2.8, $\mathcal{P}(Y) = \mathcal{P}(X) \cup U$ where $U = \{u \subseteq X \in \mathcal{P}(X) \cup U \}$

 $Y \mid y_n \in u \}$. Note that $\mathcal{P}(X) \cap U = \emptyset$ and $f : \mathcal{P}(X) \hookrightarrow U$ defined by $x \mapsto x \cup \{y_n\}$ asserts $|\mathcal{P}(X)| = |U|$. Therefore,

$$|\mathcal{P}(Y)| = |\mathcal{P}(X)| + |U| \qquad \triangleright \text{ Lemma 4.2.6}$$

$$= 2^{n} + 2^{n} \qquad \triangleright |\mathcal{P}(X)| = |U|, \mathbf{P}(n)$$

$$= 2^{n} \cdot 1 + 2^{n} \cdot 1 \qquad \triangleright \text{ Lemma 3.4.11}$$

$$= 2^{n} \cdot 2 \qquad \triangleright \text{ Distributes Over +}$$

$$= 2^{n+1}. \qquad \triangleright [6]$$

Therefore, by The Induction Principle, the result follows.

Exercise 4.2.4

If *X* and *Y* are finite, then X^Y is finite and $|X^Y| = |X|^{|Y|}$.

Proof. Let P(x) be the property "if X is finite and |Y| = x, then $|X^Y| = |X|^x$." P(0) holds since $|X^{\varnothing}| = |\{\emptyset\}| = 1 = |X|^0$ for all X.

Fix $n \in \mathbb{N}$ and assume $\mathbf{P}(n)$. Let $Y = \{y_0, \dots, y_n\}$ be a set with |Y| = n + 1. Let $Z \triangleq \{y_0, \dots, y_{n-1}\}$. Take any finite set X.

We have $|X^Y| = |X^Z \times X|$ since we may define $f: X^Y \hookrightarrow X^Z \times X$ by $g \mapsto (g|_Z, g(y_n))$. Hence,

$$|X^{Y}| = |X^{Z} \times X|$$

$$= |X^{Z}| \cdot |X| \qquad \triangleright \text{ Exercise 4.2.1}$$

$$= |X|^{n} \cdot |X| \qquad \triangleright \mathbf{P}(n)$$

$$= |X|^{n+1}. \qquad \triangleright [6]$$

The result follows by The Induction Principle.

Exercise 4.2.6

X is finite if and only if every $\emptyset \subsetneq U \subseteq \mathcal{P}(X)$ has a \subseteq -maximal element.

Proof.

(⇒) Let |X| = n and $\emptyset \subsetneq U \subseteq \mathcal{P}(X)$. Since $|Y| \leq n$ for all $Y \in U$, by Theorem 3.2.8, we may let $m \triangleq \max\{|Y| \mid Y \in U\}$.

There exists $Y \in U$ with |Y| = m. Then, for each $Y' \in U$ such that $Y \subseteq Y'$, we have $m \le |Y'|$ by Exercise 4.1.3 and $|Y'| \le m$ by definition of m; thus |Y'| = |Y| = m by Cantor–Bernstein Theorem, which implies we may not have $Y \subsetneq Y'$ by Lemma 4.2.2. Hence, Y is a maximal element of U.

(⇐) Assume *X* is infinite. Let $U = \{ Y \subseteq X \mid Y \text{ is finite} \}$. (Note $\emptyset \in U$, hence $U \neq \emptyset$.) Take any $Y \in U$. Since $Y \subsetneq X$, we may take $x \in X \setminus Y$. Then, $Y \subsetneq Y \cup \{x\}$ and $Y \cup \{x\} \in U$ by Lemma 4.2.6. Hence, there is no maximal element of U.

4.3 Countably Infinite sets

Definition 4.3.1: Countably Infinite Set

- A set *S* is countably infinite if $|S| = |\mathbb{N}|$.
- A set *S* is *countable* if $|S| \leq |\mathbb{N}|$.
- $|\mathbb{N}| = \mathbb{N}$, i.e., the cardinality of countably infinite sets is \mathbb{N} .

Note:-

In the book, the author uses the term 'countable' and 'at most countable' for $|S| = |\mathbb{N}|$ and $|S| \leq |\mathbb{N}|$, respectively.

Notation 4.3.2: Cardinality of Countably Infinite Sets

We use the symbol \aleph_0 (read *aleph-naught*) to denote the cardinality of countably infinite sets, i.e., $\aleph_0 = \mathbb{N}$.

Theorem 4.3.3

A subset of a countably infinite set is countable.

Proof. Assume *A* is countably infinite and $B \subseteq A$ is infinite. Let $\langle a_i \rangle_{i \in \mathbb{N}}$ be an injective sequence whose range is *A*.

Let $g: Seq(\mathbb{N}) \to \mathbb{N}$ be defined by

$$g(k) \triangleq \min \left\{ i \in \mathbb{N} \mid a_i \in B \setminus \{ a_{k_i} \mid j \in \text{dom } k \} \right\}.$$

Note that g is well-defined since B is infinite. Then, by The Recursion Theorem: General Version, there exists a sequence $\langle k_i \rangle_{i \in \mathbb{N}}$ of natural numbers such that $\forall n \in \mathbb{N}$, $k_n = g(k|_n)$. By construction, $\langle k_i \rangle_{i \in \mathbb{N}}$ is injective, and thus $\langle a_{k_i} \rangle_{i \in \mathbb{N}}$ is an injective sequence whose range is B by the same argument of Claim 1 of Theorem 3.3.3.

Corollary 4.3.4

A set is countable if and only if it is either finite or countably infinite.

Proof.

(⇒) Let *S* be countable. Let $f: S \hookrightarrow \mathbb{N}$. Then, $|S| = |\operatorname{ran} f|$ and $\operatorname{ran} f$ is a subset of \mathbb{N} . Hence, by Theorem 4.3.3, *S* is countably infinite if it is not finite.

 (\Leftarrow) Theorem 4.2.9

Theorem 4.3.5

If *X* is countably infinite and *f* is a function, then f[X] is countable.

Proof. If $f[X] = \emptyset$, then it is done; assume $f[X] \neq \emptyset$. WLOG, $X \subseteq \text{dom } f$. Let $\langle x_i \rangle_{i \in \mathbb{N}}$ be an injective sequence whose range is X. Let $g: f[X] \to \mathbb{N}$ be defined by

$$g(y) \triangleq \min\{i \in \mathbb{N} \mid y = f(x_i)\}.$$

g is injective, and thus $|f[X]| \leq \aleph_0$.

Theorem 4.3.6

- (i) If *A* and *B* are countably infinite, then $A \times B$ is countably infinite.
- (ii) If *A* is countably infinite and $B \neq \emptyset$ is finite, then $A \times B$ is countably infinite.
- (iii) If *A* and *B* are countable, then $A \times B$ is countable.

Proof.

(i) The function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(x,y) = 2^x \cdot 3^y$ is injective by elementary number theory. Also, we have an injection $g: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ defined by g(x) = (x,0). Hence, by Cantor–Bernstein Theorem, we have $|\mathbb{N} \times \mathbb{N}| = \aleph_0$.

(ii) Let |B| = n. Then, we have

$$|A \times B| = |\mathbb{N} \times n|$$

 $\leq |\mathbb{N} \times \mathbb{N}| \Rightarrow \text{Exercise 4.1.3}$
 $= \aleph_0. \Rightarrow \text{Theorem 4.3.6}$

Let $b \in B$. Then, we have

$$\aleph_0 = |A|$$

$$= |A \times \{b\}| \qquad \triangleright a \mapsto (a, b)$$

$$\leq |A \times B|. \qquad \triangleright \text{Exercise 4.1.3}$$

Hence, by Cantor–Bernstein Theorem, $|A \times B| = \aleph_0$.

(iii) If one of them is empty, then $A \times B = \emptyset$. If A and B are finite, then $A \times B$ is finite by Exercise 4.2.2. If any of them is countably infinite, and if both are nonempty, then $A \times B$ is countably infinite by (i) and (ii).

Corollary 4.3.7

Let $\langle A_i \mid i \in n \rangle$ be a system of countably infinite sets where n > 0. Then, $\prod_{i=0}^{n-1} A_i$ is countably infinite.

Proof. Let P(x) be the property " $\prod_{i=0}^{x-1} A_i$ is countably infinite for each system $\langle A_i \mid i \in x \rangle$ of countably infinite sets. P(1) evidently holds.

Fix n > 0 and assume $\mathbf{P}(n)$. Now, take any system $\langle A_i \mid i \in n+1 \rangle$ of countably infinite sets. Then, since we have a natural mapping $f: \prod_{i=0}^n A_i \hookrightarrow \left(\prod_{i=0}^{n-1} A_i\right) \times A_n$ defined by $\langle a_0, \cdots, a_n \rangle \mapsto (\langle a_0, \cdots, a_{n-1} \rangle, a_n)$, we get

$$\left| \prod_{i=0}^{n} A_i \right| = \left| \left(\prod_{i=0}^{n-1} A_i \right) \times A_n \right|$$

$$= \left| \mathbb{N} \times \mathbb{N} \right| \qquad \triangleright \mathbf{P}(n)$$

$$= \aleph_0. \qquad \triangleright \text{Theorem 4.3.6}$$

Hence, we have P(n+1).

Therefore, by Exercise 3.2.11, the result follows.

Theorem 4.3.8

Let $\langle a_n \mid n \in \mathbb{N} \rangle$ countably infinite system of infinite sequences. Then, $\bigcup_{n \in \mathbb{N}} \operatorname{ran} a_n$ is countable.

Proof. Define $f: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} \operatorname{ran} a_n$ by $f(n, k) = a_n(k)$. The result follows by Theorem 4.3.5 and Theorem 4.3.6.

♦ Note:- 🖣

Note that we cannot yet prove the proposition "the union of countably infinite system of countable sets is countable" since, if $\langle A_n \mid n \in \mathbb{N} \rangle$ is the system, we do not have enough tools to show the existence of $\langle a_n \mid n \in \mathbb{N} \rangle$ such that ran $a_n = A_n$ for each $n \in \mathbb{N}$.

Theorem 4.3.9

If *A* is countably infinite, then Seq(*A*) is countably infinite.

Proof. It is enough to show Seq(\mathbb{N}) = $\bigcup_{n \in \mathbb{N}} \mathbb{N}^n$ is countably infinite. Fix any $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. Define $\langle a_n \mid n \in \mathbb{N} \rangle$ recursively by

$$\forall i \in \mathbb{N}, \quad a_0(i) = \langle \rangle$$

$$\forall n, i \in \mathbb{N}, a_{n+1}(i) = \langle b_0, \dots, b_{n-1}, i_2 \rangle$$
where $g(i) = (i_1, i_2)$ and $a_n(i_1) = \langle b_0, \dots, b_{n-1} \rangle$.

The existence is justified by The Recursion Theorem. Then, with The Induction Principle, it is easy to prove that ran $a_n = \mathbb{N}^n$ for each $n \in \mathbb{N}$. Hence, by Theorem 4.3.8, $\bigcup_{n \in \mathbb{N}} \mathbb{N}^n$ is countably infinite.

Corollary 4.3.10

The set of all finite subsets of a countably infinite set is countably infinite.

Proof. Let *A* be countably infinite. Let $f: \operatorname{Seq}(A) \to \mathcal{P}(A)$ by $f(\langle a_0, \dots, a_{n-1} \rangle) = \{a_0, \dots, a_{n-1}\}$. Then, ran f is countable by Theorem 4.3.5 and Theorem 4.3.9. ran f is countably infinite since we have an injection $a \mapsto \{a\}$.

Theorem 4.3.11

An equivalence on a countably infinite set has at most countably many equivalence classes.

Proof. Let *E* be an equivalence on a countably infinite set *A*. Let $f: A \rightarrow A/E$ be defined by $a \mapsto [a]_E$. Hence, by Theorem 4.3.5, A/E is countable.

Theorem 4.3.12

Let $\mathfrak{A} = (A, \langle R_0, \cdots, R_{m-1} \rangle, \langle F_0, \cdots, F_{n-1} \rangle)$ be a structure. If $C \subseteq A$ is countable, then \overline{C} is also countable.

Proof. Theorem 3.5.15 says that $\overline{C} = \bigcup_{i \in \mathbb{N}} C_i$ where $C_0 = C$ and $C_{i+1} = C_i \cup \bigcup_{j=0}^{n-1} F_j[C_i^{f_j}]$. Let $c : \mathbb{N} \twoheadrightarrow C$. Let $g : \mathbb{N} \twoheadrightarrow (n+1) \times \mathbb{N} \times \mathbb{N}^{f_0} \times \cdots \times \mathbb{N}^{f_{n-1}}$. Now, define $\langle a_i \mid i \in \mathbb{N} \rangle$ recursively by

$$\forall k \in \mathbb{N} \qquad a_0(k) \triangleq c(k)$$

$$\forall i, k \in \mathbb{N}, \quad a_{i+1}(k) \triangleq \begin{cases} F_p(a_i(r_p^0), \cdots, a_i(r_p^{f_{p-1}})) & \text{if } 0 \leq p < n \\ a_i(q) & \text{if } p = n \end{cases}$$

$$\text{where } g(k) = \langle p, q, \langle r_0^0, \cdots, r_0^{f_0-1} \rangle, \cdots, \langle r_{n-1}^0, \cdots, r_{n-1}^{f^{n-1}-1} \rangle \rangle.$$

It is apparent by The Induction Principle that $\operatorname{ran} a_i = C_i$ for each $i \in \mathbb{N}$. Hence, by Theorem 4.3.8, \overline{C} is countable.

Selected Problems

Exercise 4.3.1

Let $|A_1| = |A_2|$ and $|B_1| = |B_2|$.

- (i) If $A_1 \cap B_1 = \emptyset$ and $A_2 \cap B_2 = \emptyset$, then $|A_1 \cup B_1| = |A_2 \cup B_2|$.
- (ii) $|A_1 \times B_1| = |A_2 \times B_2|$
- (iii) $|Seq(A_1)| = |Seq(A_2)|$

Proof.

- (i) Let $f_A: A_1 \hookrightarrow A_2$ and $f_B: B_1 \hookrightarrow B_2$. Then, $f_A \cup f_B: A_1 \cup B_1 \hookrightarrow A_2 \cup B_2$.
- (ii) Let $f_A: A_1 \hookrightarrow A_2$ and $f_B: B_1 \hookrightarrow B_2$. We may define $g: A_1 \times B_1 \hookrightarrow A_2 \times B_2$ by $(a, b) \mapsto (f_A(a), f_B(b))$.
- (iii) Let $f: A_1 \hookrightarrow A_2$. We may define $g: Seq(A_1) \hookrightarrow Seq(A_2)$ by

$$\langle a_0, \cdots, a_{n-1} \rangle \mapsto \langle f(a_0), \cdots, f(a_{n-1}) \rangle.$$

Exercise 4.3.2

If *A* is finite and *B* is countably infinite, then $A \cup B$ is countably infinite.

Proof. Let $f_A: A \hookrightarrow \mathbb{N}$ and $f_B: B \hookrightarrow \mathbb{N}$. Then, we may define $g: A \cup B \hookrightarrow \mathbb{N} \times \mathbb{N}$ by

$$g(x) = \begin{cases} (f_A(x), 0) & \text{if } x \in A \\ (f_B(x), 1) & \text{if } x \in B \setminus A \end{cases}$$

Hence, $|A \cup B| \le \aleph_0$ by Theorem 4.3.6. Moreover, $\aleph_0 = |B| \le |A \cup B|$ by Exercise 4.1.3. The result follows from Cantor–Bernstein Theorem.

Exercise 4.3.4

If A is finite and nonempty, then Seq(A) is countably infinite.

Proof. Let $B \triangleq A \cup \mathbb{N}$. Then, by Exercise 4.3.2, B is countably infinite and Seq(B) is countably infinite by Theorem 4.3.9. Hence, as Seq(A) ⊆ Seq(B), $|Seq(A)| \leq \aleph_0$.

Fix any $a \in A$. Let s be the infinite sequence with $\forall i \in \mathbb{N}$, $s_i = a$. Then, we have $f: \mathbb{N} \hookrightarrow \operatorname{Seq}(A)$ defined by $f(n) = s |_n$; thus $\aleph_0 \leq |\operatorname{Seq}(A)|$. The result follows from Cantor–Bernstein Theorem.

Exercise 4.3.5

Let *A* be countably infinite. The set $[A]^n = \{ S \subseteq A \mid |S| = n \}$ is countably infinite for all n > 0.

Proof. It is enough to show that $[\mathbb{N}]^n$ is countably infinite for all n > 0. Evidently, $i \mapsto \{i\}$ is an injective mapping on \mathbb{N} onto $[\mathbb{N}]^1$. Hence, $|[\mathbb{N}]^1| = \aleph_0$.

For the sake of induction, fix n > 0 and assume $|[\mathbb{N}]^n| = \aleph_0$. We may define $f : [\mathbb{N}]^n \hookrightarrow [\mathbb{N}]^{n+1}$ by

$$f(x) \triangleq x \cup \big\{ \max\{i \in \mathbb{N} \mid i \in x\} + 1 \big\}.$$

Hence, $\aleph_0 \leq |[\mathbb{N}]^{n+1}|$.

Now, since $|[\mathbb{N}]^n| = |\mathbb{N}^n| = \aleph_0$ by Corollary 4.3.7, there exists an injection $g : [\mathbb{N}]^n \hookrightarrow \mathbb{N}^n$. We define $h : [\mathbb{N}]^{n+1} \hookrightarrow \mathbb{N}^{n+1}$ by

$$h(x) \triangleq g(x \setminus \{i\}) \cup \{(n, i)\}$$

where $i = \max x$.

Hence, $|[\mathbb{N}]^{n+1}| \leq |\mathbb{N}^{n+1}| \leq \aleph_0$. Exercise 3.2.11 assures that $\forall n > 0$, $|[\mathbb{N}]^n| = \aleph_0$.

Exercise 4.3.6

A sequence $\langle s_n \rangle_{n=0}^{\infty}$ of natural numbers is *eventually constant* if

$$\exists n_0, s \in \mathbb{N}, \ \forall n \geq n_0, \ s_n = s.$$

The set of eventually constant sequences of natural numbers is countable.

Proof. Let P be the set of eventually constant sequences of natural numbers. As $P \subseteq Q$ where Q is the set of eventually periodic sequences of natural numbers (see Exercise 4.3.7), we have $|P| \le \aleph_0$ by Exercises 4.1.3 and 4.3.7.

Moreover, we may define an injective infinite sequence into P recursively by

$$g_0 = \langle 0, 0, \cdots \rangle$$

$$\forall n \in \mathbb{N}, \quad g_{n+1} = \langle n+1, a_0, a_1, \cdots \rangle$$
where $g_n = \langle a_0, a_1, \cdots \rangle$.

Hence, $\aleph_0 \leq |P|$. The result follows by Cantor–Bernstein Theorem.

Exercise 4.3.7

A sequence $\langle s_n \rangle_{n=0}^{\infty}$ of natural numbers is *eventually periodic* if

$$\exists n_0 \in \mathbb{N}, \exists p > 0, \forall n \geq n_0, s_{n+p} = s_n.$$

The set of eventually periodic sequences of natural numbers is countably infinite.

Proof. Let Q be the set of eventually periodic sequences of natural numbers. We may define $f: Q \to Seq(\mathbb{N}) \times \mathbb{N}$ by

$$f(x) \triangleq \left(x\big|_{n^*+p^*}, p^*\right)$$
where $n^* = \min\{n_0 \in \mathbb{N} \mid \exists p > 0, \ \forall n \ge n_0, \ s_{n+p} = s_n\}$
and $p^* = \min\{p > 0 \mid \forall n \ge n^*, \ s_{n+p} = s_n\}.$

Then, it can be easily shown that f is injective. Hence, $|Q| \le |\operatorname{Seq}(\mathbb{N}) \times \mathbb{N}| = \aleph_0$ by Theorems 4.3.6 and 4.3.9.

Moreover, as $P \subseteq Q$ where P is the set of eventually constant sequences of natural numbers and $\aleph_0 \le |P|$ by Exercise 4.3.6, we have $|Q| = \aleph_0$ by Exercise 4.1.3 and Cantor–Bernstein Theorem.

Exercise 4.3.10

Let (S, \preceq) be a linearly ordered set and let $\langle A_n \mid n \in \mathbb{N} \rangle$ be an infinite sequence of finite subsets of S. Then, $\bigcup_{n=0}^{\infty} A_n$ is countable.

Proof. WLOG, $A_n \neq \emptyset$ for each $n \in \mathbb{N}$.

Claim 1. For each finite $A \subseteq S$, there uniquely exists a unique isomorphism between $(|A|, \le \cap |A|^2)$ and $(A, \le \cap A^2)$.

Proof. We have existence for each *A* by Theorem 4.4.3. Hence, we only prove the uniqueness by induction. If |A| = 0, we have only one isomorphism \emptyset .

Fix some $n \in \mathbb{N}$ and assume the proposition holds for all A with cardinality n. Take

any $A \subseteq S$ with |A| = n + 1. Let f and g be two isomorphisms between $(n + 1, \le \cap (n + 1)^2)$ and $(A, \le \cap A^2)$. Then, f(n) = g(n) since the greatest element is unique. Let $B = A \setminus \{f(n)\}$. Then, $f \mid_n$ and $g \mid_n$ are isomorphisms between $(n, \le \cap n^2)$ and $(B, \le \cap B^2)$. Hence, $f \mid_n = g \mid_n$, and thus f = g. The result follows from The Induction Principle.

Claim 1 enables us to guarantee the existence of infinite sequence $\langle a_n \mid n \in \mathbb{N} \rangle$ such that, for each $n \in \mathbb{N}$:

- (i) $a_n|_{|A_n|}$ is the isomorphism between $(|A_n|, \le |_{|A_n|^2})$ and $(A_n, \le |_{A_n^2})$.
- (ii) $\forall k \ge |A_n|, \ a_n(k) = a_n(0).$

Hence, ran $a_n = A_n$ for each $n \in \mathbb{N}$, and thus $\bigcup_{n=0}^{\infty} A_n$ is countable by Theorem 4.3.8.

Exercise 4.3.11

Any partition of a countable set has a set of representatives.

Proof. Let A be countable and S be a partition of A. There exists $f: A \hookrightarrow \mathbb{N}$. Then,

$$X \triangleq \{ f^{-1}(\min f[C]) \mid C \in S \}$$

is a set of representatives.

4.4 Linear Orderings

Definition 4.4.1: Similar Ordered Sets

Totally ordered sets (A, \leq) and (B, \leq) are *similar* (have the same order type) if they are isomorphic. (Definition 2.5.14)

Lemma 4.4.2

Every total ordering on a finite set is a well-ordering.

Proof. Let (A, \leq) be a finite totally ordered set. If $B \subseteq A$ has |B| = 1, then the only element of B is min B.

Now, fix n > 0 and assume that every $B \subseteq A$ with |B| = n has a least element. Take any $B \subseteq A$ with |B| = n + 1 and write $B = \{b_0, \dots, b_n\}$. Let $C \triangleq \{b_0, \dots, b_{n-1}\}$. Then, if $b_n \le \min C$, then b_n is a least element of B; otherwise, $\min C$ is a least element of B. Hence, by Exercise 3.2.11, every nonempty finite subset of A has a least element, i.e., (A, \le) is well-ordered.

Theorem 4.4.3

If (A_1, \leq_1) and (A_2, \leq_2) are finite totally ordered sets with the same cardinality, then (A_1, \leq_1) and (A_2, \leq_2) are similar.

Proof. We shall conduct the induction on the size of the sets. If $A_1 = A_2 = \emptyset$, then they are evidently similar by the isomorphism \emptyset .

Fix $n \in \mathbb{N}$ and assume the proposition holds whenever $|A_1| = |A_2| = n$. Take any totally ordered sets (A_1, \leq_1) and (A_2, \leq_2) such that $|A_1| = |A_2| = n + 1$. By Lemma 4.4.2, there exist $a_1 = \min A_1$ and $a_2 = \min A_2$. Let $A_1' \triangleq A_1 \setminus \{a_1\}$ and $A_2' \triangleq A_2 \setminus \{a_2\}$. Since $(A_1', \leq_1 \cap A_1'^2)$ and $(A_2', \leq_2 \cap A_2'^2)$ are finite totally ordered sets with $|A_1'| = |A_2'| = n$, there exists an isomorphism

 $g: A_1' \hookrightarrow A_2'$ by the induction hypothesis. Then, $f \triangleq g \cup \{(a_1, a_2)\}$ is an isomorphism between (A_1, \leq_1) and (A_2, \leq_2) . Therefore, the result follows from The Induction Principle.

Lemma 4.4.4

If (A, \leq) is a totally ordered set, then (A, \leq^{-1}) is also a totally ordered set.

Proof. Take any $a, b \in A$. Then, it is $a \le b$ or $b \le a$. If $a \le b$, then $b \le^{-1} b$. If $b \le a$, then $a \le^{-1} b$. Hence, (A, \le^{-1}) is totally ordered.

Lemma 4.4.5

Let (A_1, \leq_1) and (A_2, \leq_2) be totally ordered sets such that $A_1 \cap A_2 = \emptyset$. The relation \leq on $A = A_1 \cup A_2$ defined by

$$a \le b \iff (a \le_1 b) \lor (a \le_2 b) \lor (a \in A_1 \land b \in A_2)$$

is a total ordering.

Proof. Exercise 2.5.6 already shows that \leq is an ordering of *A*. Totality follows directly by the definition. □

Lemma 4.4.6

Let (A_1, \leq_1) and (A_2, \leq_2) be totally ordered sets. The relation \leq on $A = A_1 \times A_2$ defined by

$$(a_1, a_2) \le (b_1, b_2) \iff a_1 <_1 b_1 \lor (a_1 = b_1 \land a_2 \le_2 b_2)$$

is a total ordering.

Proof.

- Assume $(a_1, a_2) < (b_1, b_2)$ and $(b_1, b_2) < (c_1, c_2)$. If $a_1 <_1 b_1$, then, we have $a_1 <_1 c_1$ by $b_1 <_1 c_1$. If $b_1 <_1 c_1$, then, we have $a_1 <_1 c_1$ by $a_{1\,1}b_1$. In the only left case, we have $a_1 = b_1 = c_1$ and $a_2 \le_2 b_2 \le_2 c_2$. Hence, $(a_1, a_2) < (c_1, c_2)$. Thus < is transitive in A. \checkmark
- Assume $(a_1, a_2) < (b_1, b_2)$ and $(b_1, b_2) < (a_1, a_2)$. Since $a_1 \le_1 b_1$ and $b_1 \le_1 a_1$, by antisymmetry of \le_1 , $a_1 = b_1$. The only option now is $a_2 \le_2 b_2$ and $b_2 \le_2 a_2$, which implies $a_2 = b_2$ by the antisymmetry of \le_2 . Hence, $(a_1, a_2) = (b_1, b_2)$, which is a contradiction. Thus, < is asymmetric in A. \checkmark
- Let $(a_1, a_2), (b_1, b_2) \in A_1 \times A_2$. As \leq_1 is total, WLOG, $a_1 \leq_1 b_1$. If $a_1 < b_1$, then we immediately have $(a_1, a_2) < (b_1, b_2)$. Now, assume $a_1 = b_1$. Then, as \leq_2 is total, WLOG, $a_2 \leq_2 b_2$, and thus $(a_1, a_2) \leq (b_1, b_2)$. Hence, \leq is a total ordering. \checkmark

Theorem 4.4.7

Let $\langle (A_i, \leq_i) \mid i \in I \rangle$ be an indexed system of totally ordered sets where $I \subseteq \mathbb{N}$. The relation \prec on $\prod_{i \in I} A_i$ defined by

$$f \prec g \iff \operatorname{diff}(f,g) \triangleq \{i \in I \mid f_i \neq g_i\} \neq \emptyset \land f_{i_0} <_{i_0} g_{i_0}$$

where $i_0 = \min_{\leq} \operatorname{diff}(f,g)$

is a total strict ordering of $\prod_{i \in I} A_i$.

Proof.

• Assume $f \prec g$ and $g \prec h$ and let $i_0 = \min \operatorname{diff}(f, g)$ and $j_0 = \min \operatorname{diff}(g, h)$.

- If $i_0 \le j_0$, then $f_{i_0} < g_{i_0} \le h_{i_0}$ and diff $(f,h) = i_0$. If $j_0 < i_0$, then $f_{j_0} = g_{j_0} < h_{j_0}$ and diff $(f,h) = j_0$.

Hence, $f \prec h$; \prec is transitive in $\prod_{i \in I} A_i$. \checkmark

- For $f, g \in \prod_{i \in I} A_i$ with $f \neq g$, since $i_0 = \text{diff}(f, g) = \text{diff}(g, f)$, we cannot have $f \prec g$ and $g \prec f$ because of the asymmetry of $<_{i_0}$. \checkmark
- If diff $(f,g) = \emptyset$, we have f = g. If $i_0 = \min \operatorname{diff}(f,g)$, then we have $f \prec g$ when $f_{i_0} <_{i_0} g_{i_0}$ and $g \prec f$ when $g_{i_0} <_{i_0} f_{i_0}$. Hence, \prec is a total ordering. \checkmark

Definition 4.4.8: Dense Ordered Set

An ordered set (X, \leq) is dense if

$$2 \le |X| \land \forall a, b \in X, (a < b \implies \exists x \in X, a < x < b).$$

Definition 4.4.9: Endpoints

We now will call the least and greatest elements of a totally ordered set endpoints of the set.

Theorem 4.4.10

Let (P, \preceq) and (Q, \leq) be countably infinite dense totally ordered sets without endpoints. Then, (P, \preceq) and (Q, \leq) are similar.

Proof. Let $\langle p_n \mid n \in \mathbb{N} \rangle$ be an injective sequence onto P. Let $\langle q_n \mid n \in \mathbb{N} \rangle$ be an injective sequence onto Q. Let us call $h: P \rightarrow Q$ a partial isomorphism from P to Q if

$$\forall p, p' \in \text{dom } h, (p \prec p' \iff h(p) < h(p')).$$

Claim 1. If h is a partial isomorphism from P to Q with finite dom h, and if $p \in P$ and $q \in Q$, then there exists a partial isomorphism $h_{p,q}$ from P to Q that extends h such that $p \in \text{dom } h_{p,q} \text{ and } q \in \text{ran } h_{p,q}.$

Proof. Write $h = \{(p_{i_0}, q_{i_0}), \cdots, (p_{i_k}, q_{i_k})\}$ where $p_{i_0} \prec p_{i_1} \prec \cdots \prec p_{i_k}$ and thus $q_{i_0} < q_{i_1} < \cdots < q_{i_k}$. (This is justified by Theorem 4.4.3.) We have four cases:

- Assume $p \in \text{dom } h$. Then, let $h' \triangleq h$.
- Assume $p \prec p_{i_0}$. Then, as Q has no least element, $n = \min\{i \in \mathbb{N} \mid q_i < q_{i_0}\}$ exists. Let $h' \triangleq h \cup \{(p, q_n)\}.$
- Assume there exists e < k such that $p_{i_e} \prec p \prec p_{i_{e+1}}$. Then, as Q is dense, n = $\min\{i \in \mathbb{N} \mid q_{i_e} < q_i < q_{i_{e+1}}\} \text{ exists. Let } h' \triangleq h \cup \{(p, q_n)\}.$
- Assume $p_{i_k} \prec p$. Then, as Q has no greatest element, $n = \min\{i \in \mathbb{N} \mid q_{i_k} < q_i\}$ exists. Let $h' \triangleq h \cup \{(p, q_n)\}.$

Then, h' is a partial isomorphism from P to Q and $p \in \text{dom } h'$. Similarly, one may extend h' in the same way so it has q in its range.

Now, we may create a sequence of compatible partial isomorphisms from P to Q recursively by

$$h_0 = \emptyset$$

$$\forall n \in \mathbb{N}, \quad h_{n+1} = (h_n)_{p_n,q_n}$$

where $(h_n)_{p_n,q_n}$ is the extension of h_n (provided by the steps in the proof of Claim 1) such that $p_n \in \text{dom}[(h_n)_{p_n,q_n}]$ and $q_n \in \text{ran}[(h_n)_{p_n,q_n}]$. Then, $h \triangleq \bigcup_{n \in \mathbb{N}} h_n$ is a function by Theorem 2.3.12. It is easy to check if $h: P \hookrightarrow Q$ is a desired isomorphism.

Theorem 4.4.11

Let (P, \preceq) be a countably infinite totally ordered set, and let (Q, \leq) be a countably infinite dense totally ordered set without endpoints. Then, there exists $h: P \hookrightarrow Q$ such that

$$\forall p, p' \in P, (p \prec p' \Longrightarrow h(p) < h(p')).$$

Proof. This is essentially the one-sided version of Theorem 4.4.10. Let $\langle p_n \mid n \in \mathbb{N} \rangle$ be an injective sequence onto P. In a similar way as Claim 1 in the proof of Theorem 4.4.10, if f is a partial isomorphism from P to Q with finite dom f, and if $p \in P$, there exists another partial isomorphism f_p from P to Q that extends f such that $p \in \text{dom } f_p$.

Then, one is able to make a sequence of compatible partial isomorphisms from P to Q recursively by

$$h_0 = \emptyset$$

$$\forall n \in \mathbb{N}, \quad h_{n+1} = (h_n)_{p_n}$$

where $(h_n)_{p_n}$ is the extension of h_n such that $p_n \in \text{dom}[(h_n)_{p_n}]$. The rest is the same as the proof of Theorem 4.4.10.

Selected Problems

Exercise 4.4.1

Assume that (A_1, \leq_1) is similar to (B_1, \leq_1) and (A_2, \leq_2) is similar to (B_2, \leq_2) .

- (i) Assuming $A_1 \cap A_2 = B_1 \cap B_2 = \emptyset$, the sum of (A_1, \leq_1) and (A_2, \leq_2) is similar to the sum of (B_1, \leq_1) and (B_2, \leq_2) . (See Lemma 4.4.5.)
- (ii) The lexicographic product of (A_1, \leq_1) and (A_2, \leq_2) is similar to the lexicographic product of (B_1, \leq_1) and (B_2, \leq_2) .

Proof. Let f_1 be an isomorphism between (A_1, \leq_1) and (B_1, \leq_1) , and let f_2 be an isomorphism between (A_2, \leq_2) and (B_2, \leq_2) .

- (i) $g \triangleq f_1 \cup f_2$ is an isomorphism between 'the sum of (A_1, \leq_1) and (A_2, \leq_2) ' and 'the sum of (B_1, \leq_1) and (B_2, \leq_2) '.
- (ii) $g: A_1 \times A_2 \hookrightarrow B_1 \times B_2$ defined by $(a_1, a_2) \mapsto (f_1(a_1), f_2(a_2))$ is an isomorphism between 'the lexicographic product of (A_1, \leq_1) and (A_2, \leq_2) ' and 'the lexicographic product of (B_1, \leq_1) and (B_2, \leq_2) '.

Exercise 4.4.2

Give an example of linear orderings (A_1, \leq_1) and (A_2, \leq_2) such that the sum of (A_1, \leq_1) and (A_2, \leq_2) does not have the same order type as the sum of (A_2, \leq_2) and (A_1, \leq_1) . Do the same for lexicographic product.

Proof. Let $A = \{a, b\}$ where $a \neq b$ and $a, b \notin \mathbb{N}$ with $\leq \{(a, a), (a, b), (b, b)\}$.

- The sum of (\mathbb{N}, \leq) and (A, \preceq) has a greatest element b but the sum of (A, \preceq) and (\mathbb{N}, \leq) does not have a greatest element. Hence, they are not similar.
- The lexicographic product of (\mathbb{N}, \leq) and (A, \preceq) is isomorphic to (\mathbb{N}, \leq) via the isomorphism $(n, x) \mapsto \begin{cases} 2 \cdot n & \text{if } x = a \\ 2 \cdot n + 1 & \text{if } x = b. \end{cases}$ However, $\{a\} \times \mathbb{N}$, a subset of $A \times \mathbb{N}$, is bounded above by (b, 0) but it does not have a greatest element in the lexicographic product of (A, \preceq) and (\mathbb{N}, \leq) . Hence, they are not similar.

Exercise 4.4.3

The sum and the lexicographic product of two well-orderings are well-orderings.

Proof. Let (A_1, \leq_1) and (A_2, \leq_2) be well-orderings.

- Assume $A \cap B = \emptyset$. Let (B, \leq) be the sum of (A_1, \leq_1) and (A_2, \leq_2) . Take any $C \subseteq B$ with $C \neq \emptyset$. If $C \cap A_1 = \emptyset$, then $\min_{\leq C} C = \min_{\leq_2} C$. Otherwise, $\min_{\leq C} C = \min_{\leq_1} (C \cap A_1)$.
- Let $(A_1 \times A_2, \leq)$ be the lexicographic product of (A_1, \leq_1) and (A_2, \leq_2) . Take any $R \subseteq A_1 \times A_2$ with $R \neq \emptyset$. Let $a_1 \triangleq \min_{\leq_1} \text{dom } R$ and $a_2 \triangleq \min_{\leq_2} R[\{a_1\}]$. Then, $(a_1, a_2) = \min_{\leq} R$.

Exercise 4.4.4

If $\langle A_i \mid i \in \mathbb{N} \rangle$ is an infinite sequence of totally ordered sets of natural numbers and $|A_i| \geq 2$ for all $i \in \mathbb{N}$, then the lexicographic ordering of $\prod_{i \in \mathbb{N}} A_i$ is *not* a well-ordering.

Proof. For each $i \in \mathbb{N}$, justified by $|A_i| \ge 2$, let $a_i \triangleq \min A_i$ and $b_i \triangleq \min (A_i \setminus \{a_i\})$. Define $X \subseteq \prod_{i \in \mathbb{N}} A_i$ by

$$X \triangleq \{ f \in \prod_{i \in \mathbb{N}} A_i \mid \exists i \in \mathbb{N}, [f(i) = b_i \land \forall j \in \mathbb{N}, (i \neq j \implies f(j) = a_j)] \}.$$

Then, X, being similar to (\mathbb{N}, \leq^{-1}) , does not have a least element.

Exercise 4.4.5

Let $\langle (A_i, \leq_i) \mid i \in I \rangle$ be an indexed system of mutually disjoint totally ordered sets where $I \subseteq \mathbb{N}$. The relation \prec on $\bigcup_{i \in I} A_i$ defined by

$$a \prec b \iff (\exists i \in I, \ a <_i b) \lor (\exists i, j \in I, \ i < j \land a \in A_i \land b \in A_j)$$

is a strict total ordering. Moreover, if all \leq_i are well-orderings, so is \leq .

Proof.

- Assume $a \prec b$ and $b \prec c$. There exist $i, j, k \in I$ such that $a \in A_i$, $b \in A_j$ and $c \in A_k$. Then, we have $i \leq j \leq k$. If i < j or j < k, we immediately have $a \prec c$ by definition. If i = j = k, by transitivity of $<_i$, we have $a \prec c$. Hence, \prec is transitive in $\bigcup_{i \in I} A_i$. \checkmark
- Suppose $a \prec b$ and $b \prec a$ for the sake of contradiction. There exists $i, j \in I$ such that $a \in A_i$ and $b \in A_j$. We cannot have i < j or j < i as it contradicts one of $a \prec b$ and $b \prec a$. Hence, i = j by totality of (\mathbb{N}, \leq) . Then, we have $a <_i b$ and $b <_i a$, which is impossible by asymmetry of $<_i$. Hence, \prec is asymmetric in $\bigcup_{i \in I} A_i$. \checkmark
- Take any $a, b \in \bigcup_{i \in I} A_i$. There exists $i, j \in I$ such that $a \in A_i$ and $b \in A_j$. If $i \neq j$, we immediately have $a \prec b$ or $b \prec a$. If i = j, as \leq_i is total, we have $a \leq_i b$ or $b \leq_i a$. Thus, $a \leq b$ or $b \leq a$. Hence, \leq is total. \checkmark
- Assume \leq_i is a well-ordering for each $i \in \mathbb{N}$. Take any $X \subseteq \bigcup_{i \in I} A_i$ with $X \neq \emptyset$. Let $i_0 \triangleq \min\{i \in I \mid A_i \cap X \neq \emptyset\}$, thanks to (\mathbb{N}, \leq) is Well-Ordered and X being nonempty. Then, let $a \triangleq \min_{\leq_{i_0}} (A_{i_0} \cap X)$, which exists as \leq_{i_0} is a well-ordering. Then, $a = \min_{\leq X} X$.

Exercise 4.4.7

Let \leq be the lexicographical ordering of $\mathbb{N}^{\mathbb{N}}$ (where \mathbb{N} is ordered in the usual way) and let $P \subseteq \mathbb{N}^{\mathbb{N}}$ be the set of all eventually periodic, but not eventually constant, sequences of natural numbers. (See Exercises 4.3.6 and 4.3.7 for the definitions.) Then, $(P, \leq \cap P^2)$

is a countably infinite dense totally ordered set without endpoints.

Proof. We already have $\leq \cap P^2$ is a total ordering.

Claim 1. P is countably infinite.

Proof. As *P* is a subset of the set of all eventually periodic sequences, by Exercises 4.1.3 and 4.3.7, $|P| \le \aleph_0$. We may define an injective infinite sequence into *P* recursively by

$$g_0 = \langle 0, 1, 0, 1, \cdots \rangle$$

$$\forall n \in \mathbb{N}, \quad g_{n+1} = \langle n+1, a_0, a_1, \cdots \rangle$$
where $g_n = \langle a_0, a_1, \cdots \rangle$.

Hence, $\aleph_0 \le |P|$; thus $|P| = \aleph_0$ by Cantor–Bernstein Theorem.

Claim 2. $(P, \preceq \cap P^2)$ is dense.

Proof. Take any $f, g \in P$ with $f \prec g$. Then, $f_{i_0} < g_{i_0}$ where $i_0 = \min\{i \in \mathbb{N} \mid f_i \neq g_i\}$. Define $h \in \mathbb{N}^{\mathbb{N}}$ by

$$h_i \triangleq \begin{cases} f_i & \text{if } i \le i_0 \\ f_i + 1 & \text{otherwise.} \end{cases}$$

Then, it is evidently $f \prec h \prec g$.

There exist $n_0 \in \mathbb{N}$ and p > 0 such that $\forall n \ge n_0$, $f_{n+p} = f_n$. Let $n_0' \triangleq \max\{n_0, i_0 + 1\}$. Then, for each $n \ge n_0'$, we have $h_{n+p} = f_{n+p} + 1 = f_n + 1 = h_n$; thus $h \in P$. Hence, $(P, \le \cap P^2)$ is dense.

Claim 3. (P, \leq ∩ P²) has no endpoints.

Proof. Fix any $f \in P$. Then, we may define $g \in \mathbb{N}^{\mathbb{N}}$ by $\forall n \in \mathbb{N}$, $g_n = f_n + 1$. It is easy to show that $f \prec g$ and $g \in P$. Hence, $(P, \preceq \cap P^2)$ has no greatest element.

We may also define $h \in \mathbb{N}^{\mathbb{N}}$ by

$$\forall n \in \mathbb{N}, h_n = \begin{cases} 0 & \text{if } n = 0 \\ f_{n-1} & \text{otherwise.} \end{cases}$$

As f is not eventually constant, $f \neq h$ and we may let $i_0 \triangleq \min\{i \in \mathbb{N} \mid f_i \neq 0\}$. As $\forall i < i_0, f_i = 0$, $\min \operatorname{diff}(f, h) = i_0$. Since $0 = h_{i_0} < f_{i_0}, h \prec f$. Thus, $(P, \preceq \cap P^2)$ has no least element.

Combining Claims 1 to 3 gives the desired result.

Exercise 4.4.11

Let (A, \preceq) be a dense totally ordered set. Show that for all $a, b \in A$ such that $a \prec b$, the closed interval $[a, b] \triangleq \{x \in A \mid a \preceq x \preceq b\}$ is infinite.

Proof. Assume there are some $a, b \in A$ such that $a \prec b$ and I = [a, b] is finite. Let |I| = n. (Since $a, b \in I$, $n \ge 2$.) Then, by Theorem 4.4.3, there exists an isomorphism $h: n \hookrightarrow I$ between $(n, \le \cap n^2)$ and $(I, \le \cap I^2)$. Then, $\exists i < n, h(0) \prec h(i) \prec h(1)$ as (A, \le) is dense. However, there does not exist $i \in \mathbb{N}$ with 0 < i < 1 by Exercise 3.1.1, which is a contradiction.

Exercise 4.4.12

Let (P, \preceq) and (Q, \leq) be countably infinite dense totally ordered sets with both endpoints. Then, (P, \preceq) and (Q, \leq) are similar.

Proof. Define the following:

$$\begin{split} p &\triangleq \min_{\preceq} P & p' &\triangleq \max_{\preceq} P \\ q &\triangleq \min_{\leq} Q & q' &\triangleq \max_{\leq} Q \\ P_0 &\triangleq P \setminus \{p, p'\} & Q_0 &\triangleq Q \setminus \{q, q'\}. \end{split}$$

Then, $(P_0, \preceq \cap P_0^2)$ and $(Q_0, \preceq \cap Q_0^2)$ are countably infinite dense totally ordered sets without endpoints. Hence, by Theorem 4.4.10, we have an isomorphism $h: P_0 \hookrightarrow Q_0$ between them. Then, $h' \cup \{(p,q), (p',q')\}$ is an isomorphism between (P, \preceq) and (Q, \leq) .

4.5 Complete Linear Ordering

Definition 4.5.1: Cut, Dedekind Cut, and Gap

Let (P, \leq) be a totally ordered set.

- A *cut* is a pair (*A*, *B*) of sets such that
 - (i) $\{A, B\}$ is a partition of P.
 - (ii) $\forall a \in A, \forall b \in B, a < b$
- A *Dedekind cut* is a cut (A, B) such that max A does not exist.
- A gap is a cut (A, B) such that max A and min B do not exist.

Definition 4.5.2

Let (P, \leq) be a totally ordered set and let $\emptyset \subseteq A \subseteq P$.

- *A* is *bounded* if *A* has both lower and upper bounds.
- *A* is *bounded from below* if it has a lower bound.
- A is bounded from above if it has an upper bound.

Lemma 4.5.3

Let (P, \leq) be a totally ordered set. Every nonempty $S \subseteq P$ bounded from above has a supremum if and only if (P, \leq) has no gap.

Proof.

(⇒) Suppose (A, B) is a gap of (P, ≤). Then, as any $b \in B$ is a supremum of A, A is bounded from above. Hence, by assumption, there exists $\mu = \sup A$. There are two cases: $\mu \in A$ and $\mu \in B$.

If $\mu \in A$, then by Theorem 2.5.13 (iii), $\mu = \max A$, which contradicts the fact that (A, B) is a gap. If $\mu \in B$, as any $b \in B$ is an upper bound of A, $\forall b \in B$, $\mu \leq b$, i.e., $\mu = \min B$, which is a contradiction as well.

(\Leftarrow) Suppose there is nonempty *S* ⊆ *P* such that *S* is bounded above and *S* has no supremum. Let

$$A \triangleq \{ x \in P \mid \exists s \in S, \ x \le s \}, \\ B \triangleq \{ x \in P \mid \forall s \in S, \ x > s \}.$$

Claim 1. $\{A, B\}$ is a partition of P.

Proof. We have $A \cap B = \emptyset$ and $A \cup B = P$. As A = P implies the existence of $\max S$, which contradicts the nonexistence of $\sup S$ by Item Theorem 2.5.13 (ii), we have $B \neq \emptyset$; moreover, as B = P is impossible by $S \cap P = \emptyset$, we have $A \neq \emptyset$. Hence, $\{A, B\}$ is a partition of P.

Claim 2. $\forall a \in A, \forall b \in B, a < b.$

Proof. Take any $a \in A$ and $b \in B$. Then, there exists $s \in S$ such that $a \le s$. As $b \in B$, we have $a \le s < b$. Hence, a < b. □

Claim 3. max *A* and min *B* do not exist.

Proof. Suppose $m = \min B$ exists for the sake of contradiction. Let m' be an upper bound of S. If $m' \in S$, then $m' = \sup S$, which is a contradiction. Hence, we have $\forall s \in S, m' > s$, i.e., $m' \in B$. This implies $m \le m'$, that is to say $m = \sup S$. Hence, $\min B$ does not exist.

Suppose $M = \max A$ exists for the sake of contradiction. Then, as $S \subseteq A$, M is an upper bound of S. Let M' be another upper bound of S. Then, as $\forall s \in S$, $M \le s \le M'$, $M = \sup S$, which is a contradiction. Hence, $\max A$ does not exist. \square

Combining Claims 1 to 3 gives the result.

Definition 4.5.4: Complete Dense Totally Ordered Set

Let (P, \leq) be a dense totally ordered set. (P, \leq) is said to be *complete* if every nonempty $S \subseteq P$ bounded from above has a supremum, i.e., if (P, \leq) has no gap. (See Lemma 4.5.3.)

Theorem 4.5.5 Completion

Let (P, \leq) be a dense totally ordered set without endpoints. Then, there exists a complete totally ordered set (C, \leq) such that

- (i) $P \subseteq C$.
- (ii) $\forall p, q \in P, (p < q \iff p \prec q)$.
- (iii) $\forall c, d \in C$, $(c \prec d \implies \exists p \in P, c \prec p \prec d)$, i.e., *P* is dense in *C*.
- (iv) C does not have endpoints.

Moreover, such (C, \preceq) is unique up to isomorphism h with $\mathrm{Id}_P \subseteq h$.[†] The complete totally ordered set (C, \preceq) is called the *completion* of (P, \leq) .

Proof. For each $B \subseteq P$, one may easily verify that min B exists if and only if there exists $p \in P$ such that $B = \{x \in P \mid x \ge p\}$. Hence, there are two types of Dedekind cuts—a Dedekind cut (A, B) such that:

- (i) There (uniquely) exists $p \in P$ such that $B = \{x \in P \mid x \ge p\}$; in this case we write $(A,B) = \lceil p \rceil$.
- (ii) (A, B) is a gap.

Note that [p] is a Dedekind cut of (P, \leq) for all $p \in P$.

[†]In other words, if (C, \preceq) and (C^*, \preceq^*) satisfy all the requirements, then there exists an isomorphism h between (C, \preceq) and (C^*, \preceq^*) such that $\forall p \in P$, h(p) = p.

Now, define C and a relation \leq on C by:

$$C \triangleq \{(A, B) \mid (A, B) \text{ is a Dedekind cut of } (P, \leq)\}$$

and

$$(A,B) \leq (A',B') \iff A \subseteq A'.$$

Claim 1. (C, \preceq) is a totally ordered set.

Proof. It is evident that (C, \leq) is an ordered set. Take any $(A, B), (A', B') \in C$. Suppose they are incomparable for the sake of contradiction, i.e., $A \setminus A' = A \cap B' \neq \emptyset$ and $A' \setminus A = A' \cap B \neq \emptyset$. Let $a \in A \cap B'$ and $a' \in A' \cap B$. Then, a < a' and a' < a, which is impossible by asymmetry of <. □

If p < q where $p, q \in P$, then we have $[p] \prec [q]$. Hence, $(P', \preceq \cap P'^2)$ is isomorphic to (P, \leq) where $P' \triangleq \{[x] \mid x \in P\}$. Thus, we simply prove that (C, \preceq) is a completion of $(P', \preceq \cap P'^2)$.

Claim 2. $\forall c, d \in C$, $(c \prec d \implies \exists p \in P, c \prec [p] \prec d)$.

Proof. Take any $c,d \in C$ with $c \prec d$. In other words, c = (A,B) and d = (A',B') with $A \subsetneq A'$. Take $p \in A' \setminus A$. As (P, \leq) has no greatest element, WLOG, we may assume p is not a least element of B. Let [p] = (A'', B'').

- As (P, \leq) is totally ordered, the fact that p is not a least element of B asserts the existence of $b \in B$ such that b < p. Hence, $\forall x \in B''$, $\forall a \in A, a < b < p \leq x$. Thus, $B'' \subsetneq B$; $(A, B) \prec \lceil p \rceil$. \checkmark
- As A' has no greatest element and (P, \leq) is totally ordered, there exists $a' \in A'$ such that p < a'. Then, we have $\forall x \in A''$, $\forall b' \in B'$, $x , i.e., <math>A'' \subsetneq A'$. Hence, $[p] \prec (A', B')$. \checkmark

Claim 2 also shows that (C, \preceq) is a densely ordered set.

Claim 3. (C, \preceq) has no endpoints.

Proof. Take any $(A, B) \in C$.

- In the same way as in the proof of Claim 2, any $p \in B$ which is not a least element of B (which exists) satisfies $(A, B) \prec \lceil p \rceil$. Hence, C has no greatest element. \checkmark
- Take any $p \in A$. As A has no greatest element, there exists $a \in A$ such that p < a. Hence, $[p] \prec (A, B)$. \checkmark

Claim 4. (C, \preceq) is complete.

Proof. Let $\emptyset \subsetneq S \subseteq C$ be bounded from above. Let (A_0, B_0) be an upper bound of S. Define

$$A_S \triangleq \bigcup \{A \mid (A, B) \in S\}$$
 and $B_S \triangleq P \setminus A_S = \bigcap \{B \mid (A, B) \in S\}.$

As $B_0 \subseteq B_S$, (A_S, B_S) is a cut. Moreover, if x is a greatest element of A_S , then x is a greatest element of some A where $(A, B) \in S$. Hence, A_S has no greatest element; $(A_S, B_S) \in C$.

As $A \subseteq A_S$ for all $(A, B) \in S$, (A_S, B_S) is an upper bound of S. If (A', B') is another upper bound of S, then $\forall (A, B) \in S$, $A \subseteq A'$, i.e., $A_S \subseteq A'$. Hence, $(A_S, B_S) \preceq (A', B')$. Thus, $(A_S, B_S) = \sup_{\preceq} S$.

Claims 1 to 4 shows that (C, \preceq) satisfies the requirements of the theorem; hence the existence part is done. We now prove the uniqueness.

Claim 5. Let (C, \preceq) and (C^*, \preceq^*) be two complete totally ordered sets that satisfies (i)–(iv). Then, there exists an isomorphism h between (C, \preceq) and (C^*, \preceq^*) such that $\forall p \in P$, h(p) = p.

Proof. For each $c \in C$ and $c^* \in C^*$ define

$$S_c \triangleq \{ p \in P \mid p \prec c \} \text{ and } S_{c^*} \triangleq \{ p \in P \mid p \prec^* c^* \}.$$

Note that:

- (I) $\sup_{\prec} S_c = c$ and $\sup_{\prec^*} S_{c^*} = c^*$ by (iii).
- (II) Take any $c \in C$. By (iii) and (iv), there exists $q \in P$ such that $c \prec q$. Hence, $\forall p \in S_c$, $p \prec c \prec q$, and thus, $\forall p \in S_c$, $p \prec^* q$ by (ii). Therefore, every S_c is bounded from above in (C^*, \preceq^*) . By symmetry, every S_{c^*} is bounded from above in (C, \preceq) .
- (III) For $p \in P$ and $\emptyset \subsetneq X \subseteq P$ such that both $\sup_{\prec} X$ and $\sup_{\prec^*} X$ exist, we have

$$p \prec \sup_{\prec} X \iff \exists x \in X, \ p \prec x \iff \exists x \in X, \ p \prec^* x \iff p \prec^* \sup_{\prec^*} X.$$

Now, define $h: C \to C^*$ by $c \mapsto \sup_{\preceq^*} S_c$. h is well-defined by (II) and (C^*, \preceq^*) being complete. We now show that h is a desired isomorphism.

• Take any $c^* \in C^*$. Let $c \triangleq \sup_{\leq} S_{c^*}$. Then,

$$h(c) = \sup_{\preceq^*} S_c$$

$$= \sup_{\preceq^*} \{ p \in P \mid p \prec \sup_{\preceq} S_{c^*} \}$$

$$= \sup_{\preceq^*} \{ p \in P \mid p \prec^* \sup_{\preceq^*} S_{c^*} \} \qquad \triangleright \text{(III)}$$

$$= \sup_{\preceq^*} \{ p \in P \mid p \prec^* c^* \} \qquad \triangleright \text{(I)}$$

$$= \sup_{\prec^*} S_{c^*} = c^*. \qquad \triangleright \text{(I)}$$

Hence, *h* is onto C^* . \checkmark

• Take any $c,d \in C$ with $c \prec d$. Then, by (iii), there exist $p_1,p_2 \in P$ such that $c \prec p_1 \prec p_2 \prec d$. We then have $\sup_{\preceq^*} S_c \preceq^* p_1 \prec^* p_2 \preceq^* \sup_{\preceq^*} S_d \prec$. Hence, $h(c) \prec^* h(d)$; h is an isomorphism. \checkmark

• For each $p \in P \subseteq C \cap C^*$, by (I), $h(p) = \sup_{\leq^*} S_p = p$. \checkmark

Thus the theorem is now proven.

Selected Problems

Exercise 4.5.4

A dense totally ordered set (P, \preceq) is complete if and only if every nonempty $S \subseteq P$ bounded from below has an infimum.

Proof. We notice that (A, B) is a gap of (P, \preceq) if and only if (B, A) is a gap of (P, \preceq^{-1}) . Hence, by Lemma 4.5.3, (P, \preceq) is complete if and only if every nonempty set $S \subseteq P$ bounded from above in (P, \preceq^{-1}) has an supremum in (P, \preceq^{-1}) .

Note that $S \subseteq P$ is bounded from above in (P, \leq^{-1}) if and only if S is bounded from below in (P, \leq) , and $\sup_{\leq^{-1}} S = \inf_{\leq} S$.

Chapter 5

Cardinal Numbers

5.1 Cardinal Arithmetic

Definition 5.1.1: Sum and Product of Two Cardinals

Let $|A| = \kappa$ and $|B| = \lambda$.

- We write $|A \cup B| = \kappa + \lambda$ if $A \cap B$.
- We write $|A \times B| = \kappa \cdot \lambda$.

These are justified by Exercise 4.3.1 (i) and (ii).

Lemma 5.1.2

If $|A_1| = |A_2|$ and $|B_1| = |B_2|$, then $|A_1^{B_1}| = |A_2^{B_2}|$.

Proof. Let $f: A_1 \hookrightarrow A_2$ and $g: B_1 \hookrightarrow B_2$. Define $F: A_1^{B_1} \to A_2^{B_2}$ by $k \mapsto f \circ k \circ g^{-1}$. Then, F is one-to-one and onto.

$$\begin{array}{ccc} B_1 & \stackrel{g}{\longrightarrow} & B_2 \\ \downarrow^k & & \downarrow^{F(k)=f \circ k \circ g^{-1}} \\ A_1 & \stackrel{f}{\longrightarrow} & A_2 \end{array}$$

Definition 5.1.3: Exponentiation of Two Cardinals

Let $|A| = \kappa$ and $|B| = \lambda$. We write $\kappa^{\lambda} = |A^{B}|$. This is justified by Lemma 5.1.2.

Note:-

Here are some direct facts regarding sum, product, and exponentiation of cardinal numbers.

- (i) $\kappa + \lambda = \lambda + \kappa$.
- (ii) $\kappa + (\lambda + \mu) = (\lambda + \kappa) + \mu$.
- (iii) $\kappa \leq \kappa + \lambda$.
- (iv) If $\kappa_1 \le \kappa_2$ and $\lambda_1 \le \lambda_2$, then $\kappa_1 + \lambda_1 \le \kappa_2 + \lambda_2$.
- (v) $\kappa \cdot \lambda = \lambda \cdot \kappa$.
- (vi) $\kappa \cdot (\lambda \cdot \mu) = (\lambda \cdot \kappa) \cdot \mu$.
- (vii) $\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$.
- (viii) $\kappa \leq \kappa \cdot \lambda$ if $\lambda > 0$.
- (ix) If $\kappa_1 \le \kappa_2$ and $\lambda_1 \le \lambda_2$, then $\kappa_1 \cdot \lambda_1 \le \kappa_2 \cdot \lambda_2$.

- (x) $\kappa + \kappa = 2 \cdot \kappa$.
- (xi) $\kappa \leq \kappa^{\lambda}$ if $\lambda > 0$.
- (xii) $\lambda \leq \kappa^{\lambda}$ if $\kappa > 1$.
- (xiii) If $\kappa_1 \le \kappa_2$ and $\lambda_1 \le \lambda_2$, then $\kappa_1^{\lambda_1} \le \kappa_2^{\lambda_2}$.
- (xiv) $\kappa \cdot \kappa = \kappa^2$.

Theorem 5.1.4

Let κ , λ , μ be cardinal numbers.

- (i) $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$
- (ii) $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$
- (iii) $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$

Proof. Let $\kappa = |K|$, $\lambda = |L|$, and $\mu = |M|$.

- (i) Assume $L \cap N = \emptyset$. Then, we may define $F: K^L \times K^M \hookrightarrow K^{L \cup M}$ by $(f, g) \mapsto f \cup g$.
- (ii) Define $F: (K^L)^M \hookrightarrow K^{L \times M}$ by $f \mapsto \{((\ell, m), f_m(\ell)) \mid m \in M, \ell \in L\}.$
- (iii) Define $F: K^M \times L^M \hookrightarrow (K \times L)^M$ by $(f_1, f_2) \mapsto \{(m, (f_1(m), f_2(m))) \mid m \in M\}.$

Theorem 5.1.5 Cantor's Theorem

 $\forall X, |X| < |\mathcal{P}(X)|$

Proof. The function $f: X \to \mathcal{P}(X)$ defined by $f(x) = \{x\}$ is injective, and we have $|X| \le |\mathcal{P}(X)|$.

We now show that there exists no function on X onto $\mathcal{P}(X)$. Let $f: X \to \mathcal{P}(X)$ be arbitrary. Define $S \triangleq \{x \in X \mid x \notin f(x)\}$ and suppose there exists $z \in X$ such that f(z) = S for the sake of contradiction. Then, we have $z \in S$ if and only if $z \notin f(z) = S$. Therefore, f is not onto $\mathcal{P}(X)$.

Theorem 5.1.6

 $\forall X, |\mathcal{P}(X)| = 2^{|X|}$

Proof. For each $S \subseteq \mathbb{N}$, define the *characteristic function* of S, $\chi_S: X \to \{0,1\}$ by

$$\chi_S(n) \triangleq \begin{cases} 0 & \text{if } n \in S \\ 1 & \text{if } n \notin S. \end{cases}$$

Then, we define $F: \mathcal{P}(X) \hookrightarrow 2^X$ by $S \mapsto \chi_S$.

 $\forall S, \exists Y, \forall X \in S, |X| < |Y|$

Proof. Take any S. Then, let $Y \triangleq \mathcal{P}(\bigcup S)$. By Theorem 5.1.5 and Exercise 4.1.3, $|Y| > |\bigcup S| \ge |X|$ for all $X \in S$.

Selected Problems

Exercise 5.1.4

For every cardinal number κ , $\kappa^{\kappa} \leq 2^{\kappa \cdot \kappa}$.

Proof. As $\kappa \leq 2^{\kappa}$, we have $\kappa^{\kappa} \leq (2^{\kappa})^{\kappa} = 2^{\kappa \cdot \kappa}$ by Theorem 5.1.4 (ii).

Exercise 5.1.5

If $|A| \le |B|$ and $A \ne \emptyset$, then there exists $f: B \rightarrow A$.

Proof. Fix some $a \in A$. Let $g: A \hookrightarrow B$. Then, define $f: B \twoheadrightarrow A$ by

$$f(b) \triangleq \begin{cases} g^{-1}(b) & \text{if } b \in \text{ran } g \\ a & \text{otherwise.} \end{cases}$$

Exercise 5.1.6

If there exists $g: B \rightarrow A$, then $2^{|A|} \le 2^{|B|}$.

Proof. Let $g: B \to A$. Define $f: \mathcal{P}(A) \to \mathcal{P}(B)$ by $X \mapsto g^{-1}[X]$. Then, f is injective. \square

Definition 5.1.8: Dedekind Infinite Set

- A set *X* is called *Dedekind infinite* if there exists an injection on *X* onto its proper subset.
- A set *X* is called *Dedekind finite* if *X* is not Dedekind infinite.

Exercise 5.1.8

A Dedekind infinite set is infinite.

Proof. Let X be a set and let $f: X \hookrightarrow X$ with $f[X] \subsetneq X$. Suppose |X| = n for some $n \in \mathbb{N}$ for the sake of contradiction. Then, |f[X]| = |X| = n as f is injective, but this is impossible by Lemma 4.2.2.

Exercise 5.1.9

Every countably infinite set is Dedekind infinite.

Proof. It is enough to show that \mathbb{N} is Dedekind infinite. By Exercise 3.2.2, $f : \mathbb{N} \to \mathbb{N}$ defined by $n \mapsto n+1$ is injective but $0 \notin \operatorname{ran} f$. Hence, \mathbb{N} is Dedekind infinite.

Exercise 5.1.10

If *X* has a countably infinite subset, then *X* is Dedekind infinite.

Proof. Let $Y \subseteq X$ and $|Y| = \aleph_0$. By Exercise 5.1.9, there exists $f: Y \hookrightarrow Y$ such that ran $f \subsetneq Y$. Let $g \triangleq f \cup \operatorname{Id}_{X \setminus Y}$. Then, $g: X \hookrightarrow X$ and $Y \setminus \operatorname{ran} f \subseteq X \setminus \operatorname{ran} g$. Therefore, X is Dedekind infinite.

Exercise 5.1.11

If *X* is Dedekind infinite, then *X* has a countably infinite subset.

Proof. Let $f: X \hookrightarrow X$ with ran $f \subsetneq X$. Fix any $x \in X \setminus \operatorname{ran} f$. Define $\langle x_n \rangle_{n \in \mathbb{N}}$ by

$$x_0 \triangleq x$$

$$\forall n \in \mathbb{N}, \quad x_{n+1} \triangleq f(x_n).$$

Let P(n) be the property " $\forall m < n, x_m \neq x_n$." P(0) is vacuously true, and P(1) follows from $x_0 \notin \operatorname{ran} f$.

Fix $n \ge 1$ and assume $\mathbf{P}(n)$ for the sake of induction. Then, for each 0 < m < n, $x_n = f(x_{n-1}) \ne f(x_{m-1}) = x_m$ as f is injective. $x_0 \ne x_n$ since $x_0 \ne \operatorname{ran} f$. Hence, $\mathbf{P}(n+1)$ holds. By The Induction Principle, $\langle x_n \rangle_{n \in \mathbb{N}}$ is injective, and thus $\{x_n \mid n \in \mathbb{N}\}$ is a countably infinite subset of X.

Note:-

Exercise 5.1.10 and Exercise 5.1.11 say that X is Dedekind infinite if and only if X has a countably infinite subset. In Chapter 8, we will show that a set is Dedekind infinite if and only if it is infinite using ??.

Exercise 5.1.12

If *A* and *B* are Dedekind finite, then $A \cup B$ is Dedekind finite.

Proof. Suppose $A \cup B$ is Dedekind infinite for the sake of contradiction. Then, by Exercise 5.1.11, there exists $C \subseteq A \cup B$ such that C is countably infinite. Noting that at least one of $A \cap C$ and $B \cap C$ is countably infinite, by Exercise 5.1.10, we conclude A or B is Dedekind infinite, which is a contradiction.

Exercise 5.1.13

If A and B are Dedekind finite, then $A \times B$ is Dedekind finite.

Proof. Suppose $A \times B$ is Dedekind infinite for the sake of contradiction. Then, by Exercise 5.1.11, there exists $C \subseteq A \times B$ such that C is countably infinite. Let $A' \triangleq \text{dom } C$ and $B' \triangleq \text{ran } C$. If A' and B' were both finite, then $C \subseteq A' \times B'$ would be finite by Exercise 4.2.2 and Theorem 4.2.4.

WLOG, A' is infinite. Let $f: \mathbb{N} \to C$. Then, define $g: \mathbb{N} \to A'$ by $n \mapsto a'$ where (a', b') = f(n). Hence, by Theorem 4.3.5, ran g = A' is countably infinite. Therefore, by Exercise 5.1.10, A is Dedekind infinite, which is a contradiction.

Chapter 6 Ordinal Numbers

Chapter 7 Alephs

Chapter 8 Axiom of Choice