Exercice 1:

Soit x un réel. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par : $\forall n\in\mathbb{N}^*, u_n=\frac{2}{n^2}\sum_{k=1}^n \lfloor kx\rfloor$.

- 1. Déterminer un encadrement judicieux de u_n (simplifier au maximum les termes de l'encadrement autres que u_n).
- 2. Vérifier alors que (u_n) est une suite de nombres rationnels qui converge vers x. ¹
- 3. En déduire une fonction Python Approxim prenant en entrée un réel x, un réel $\varepsilon > 0$, et donnant en sortie un couple (a,b) d'entiers tel que $\frac{a}{b}$ est une approximation de x à ε près (c'est-à-dire tel que $\left|x-\frac{a}{b}\right|<\varepsilon$).

Exercice 2:

Pour tout $n \in \mathbb{N}^*$, on pose

$$H_n = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k}.$$

1. Établir :

$$\forall x \in \mathbb{R}_+^*, \quad \frac{1}{1+x} \leqslant \ln(x+1) - \ln x \leqslant \frac{1}{x}$$

2. En déduire :

$$\forall n \in \mathbb{N}^*, \ \ln(n+1) \leqslant H_n \leqslant \ln(n) + 1$$

3. Déterminer alors la limite de H_n quand n tend vers $+\infty$ puis calculer $\lim_{n\to+\infty}\frac{H_n}{\ln(n)}$.

^{1.} On dit que l'ensemble $\mathbb Q$ des rationnels est **dense** dans $\mathbb R$: Pour tout réel x et tout $\varepsilon > 0$, on pourra toujours trouver un nombre rationnel dans l'intervalle $]x - \varepsilon, x + \varepsilon[$ (ici, puisque $\lim_{n \to +\infty} u_n = x$, il existera toujours un rang n_0 tel que, $\forall n \geq n_0$, $u_n \in]x - \varepsilon, x + \varepsilon[$).

Les deux derniers exercices ne sont pas indépendants mais peuvent être traités dans l'ordre que l'on veut (toutefois, l'ordre naturel serait de traiter l'exercice 3 avant le 4). L'objectif de ces deux exercices est de montrer que, pour $x \in \mathbb{R}_+$,

$$\left(\sum_{k=0}^n \frac{x^k}{k!}\right)_{n\in\mathbb{N}} \text{ converge et } \lim_{n\to+\infty} \sum_{k=0}^n \frac{x^k}{k!} = e^x.$$

Exercice 3:

Pour tout entier naturel n et tout réel x, on posera $E_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ et $f_n(x) = e^x \left(1 - \frac{x^{n+1}}{(n+1)!}\right)$.

1. (a) Pour tout entier naturel n, justifier que E_n est dérivable sur \mathbb{R} et, si $n \in \mathbb{N}^*$, établir :

$$\forall x \in \mathbb{R}, \quad E'_n(x) = E_{n-1}(x)$$

(b) Justifier:

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, \quad f'_n(x) = f_{n-1}(x) - e^x \frac{x^{n+1}}{(n+1)!}$$

2. Démontrer par récurrence sur n que : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}_+, f_n(x) \leqslant E_n(x) \leqslant e^x$.

Ainsi, on a:

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}_+, \quad e^x \left(1 - \frac{x^{n+1}}{(n+1)!}\right) \leqslant \sum_{k=0}^n \frac{x^k}{k!} \leqslant e^x$$

Exercice 4 :

1. Dans cette question, nous nous fixons un réel x positif ou nul et on cherche à démontrer :

$$\lim_{n \to +\infty} \frac{x^n}{n!} = 0.$$

- (a) Soit $n \in \mathbb{N}^*$. Simplifier l'écriture du produit $\prod_{k=1}^n \frac{x}{k}$.
- (b) On note p le plus petit entier naturel supérieur ou égal à 2x et on pose $A = \prod_{k=1}^{p-1} \frac{x}{k}$. Démontrer :

$$\forall n \geqslant p, \ 0 \leqslant \prod_{k=1}^{n} \frac{x}{k} \leqslant A \times \left(\frac{1}{2}\right)^{n-p+1}$$

- (c) Conclure.
- 2. A l'aide de l'encadrement établi dans l'exercice 3, démontrer :

$$\forall x \in \mathbb{R}_+, \lim_{n \to +\infty} \sum_{k=0}^n \frac{x^k}{k!} = e^x$$

3. Toujours à l'aide de l'encadrement de l'exercice 3, déterminer un encadrement de $e^x - \sum_{k=0}^n \frac{x^k}{k!}$ pour tout $(x,n) \in \mathbb{R}_+ \times \mathbb{N}$.

En déduire une fonction Python ApproxExp prenant en entrée un réel $\varepsilon \in \mathbb{R}_+^*$, un réel $x \in [0, 10]$ et donnant en sortie une valeur approchée de e^x à ε près.

On fournit $e^{10} \simeq 22026,466$ et on **impose** que le code de la fonction ApproxExp n'utilise pas la fonction exp ou le nombre e (ce qui lui ferait perdre tout son intérêt...).