

The Road Less Traveled: Utilizing Non-Abelian Symmetry in Quantum Chemistry

Stephen Goodlett

Schaefer Group Center for Computational Quantum Chemistry

December 10th, 2022

Symmetry speeds up calculations

- Most electronic structure programs implement symmetry utilization for only Abelian point groups
- What about the rest of the point groups?
 - We can exploit up to 8-fold symmetry using Abelian point groups
 - But we could be exploiting even 120-fold symmetry
- Non-Abelian point groups are hard, because of degeneracies and the need for irreducible representation matrices
- We have implemented several symmetry utilization features that work for Abelian and Non-Abelian point groups

- Symmetry speeds up calculations
- Most electronic structure programs implement symmetry utilization for only Abelian point groups
- What about the rest of the point groups?
 - We can exploit up to 8-fold symmetry using Abelian point groups
 - But we could be exploiting even 120-fold symmetry
- Non-Abelian point groups are hard, because of degeneracies and the need for irreducible representation matrices
- We have implemented several symmetry utilization features that work for Abelian and Non-Abelian point groups

- Symmetry speeds up calculations
- Most electronic structure programs implement symmetry utilization for only Abelian point groups
- What about the rest of the point groups?
 - We can exploit up to 8-fold symmetry using Abelian point groups
 - But we could be exploiting even 120-fold symmetry
- Non-Abelian point groups are hard, because of degeneracies and the need for irreducible representation matrices
- We have implemented several symmetry utilization features that work for Abelian and Non-Abelian point groups

- Symmetry speeds up calculations
- Most electronic structure programs implement symmetry utilization for only Abelian point groups
- What about the rest of the point groups?
 - We can exploit up to 8-fold symmetry using Abelian point groups
 - But we could be exploiting even 120-fold symmetry
- Non-Abelian point groups are hard, because of degeneracies and the need for irreducible representation matrices
- We have implemented several symmetry utilization features that work for Abelian and Non-Abelian point groups

- Symmetry speeds up calculations
- Most electronic structure programs implement symmetry utilization for only Abelian point groups
- What about the rest of the point groups?
 - We can exploit up to 8-fold symmetry using Abelian point groups
 - But we could be exploiting even 120-fold symmetry
- Non-Abelian point groups are hard, because of degeneracies and the need for irreducible representation matrices
- We have implemented several symmetry utilization features that work for Abelian and Non-Abelian point groups

- "Julia aims to create an unprecedented combination of ease-of-use, power, and efficiency in a single language."
- We have done almost all of the work so far in the FermiQC environment
- Why?
 - Fermi had no symmetry functionality, so we could start from the bottom and build our own package
 - Julia is a lot of fun to program in

- A point group is uniquely defined by the symmetry elements comprising it
- Therefore, if we find the unique symmetry elements we can determine the point group and the remaining symmetry elements
- We use the method outlined here¹
 - Find sets of Symmetry Equivalent Atoms (SEAs)
 - Find highest order rotations for each SEA set by exploiting principal moments of inertia for the SEAs
 - Check for perpendicular C_2 , σ_v , or σ_h

- (ロ) (団) (E) (E) (E) (9QC

¹Beruski and Vidal J. Comp. Chem. 2014

- When the point group is known, the symmetry elements and character table can be generated for any finite point group
 - \blacksquare C_n , C_{nv} , C_{nh} , S_{2n} , D_n , D_{nd} , D_{nh}
 - $\begin{tabular}{l} \blacksquare & C_i, C_2, T, T_d, T_h, O, O_h, I, I_h \\ \end{tabular}$
- From the symmetry elements, we can build the multiplication table for the point group

Irreducible Representation Matrices

CCQC

- Irreducible representation matrices contain all of the symmetry information relevant to a point group
 - These are necessary when working with non-Abelian point groups
- We have built a library of irreducible representation matrices for all of the point groups found in the back of Cotton
 - There are 1,200 matrices for I_h!!!

	A_1	A_2	Е
Ê	(1)	(1)	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\hat{C}_3	(1)	(1)	$\begin{pmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$
\hat{C}_3^2	(1)	(1)	$\begin{pmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{pmatrix}$
$\hat{\sigma}_1$	(1)	(-1)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
$\hat{\sigma}_2$	(1)	(-1)	$\begin{pmatrix} -\cos\theta & -\sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$
$\hat{\sigma}_3$	(1)	(-1)	$ \begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} $

Symmetrized Integrals

CCQC

- Using the Davidson double coset method, we have been able to compute symmetrized one and two electron integrals
- It is slow

- We have been able to use our symmetry library to calculate HF energies that match the C_1 energy
- That by itself is not that impressive, but it means we at least get correct answers
- We plan to also symmetrize MP2, CCSD, and CCSD(T)

Plugging Into Psi4

CCQC

- Stand alone Python symmetry detection and SALCs
 - lacktriangle The tragic story of the C_{1h} point group
- Interface with Psi4, OptKing, and CMA

CCQC

- Nate Kitzmiller
- Prof. Schaefer
- Dr. Allen
- Dr. Turney
- CCQC

