T-Fold Sequential Validation Technique for Out-Of-Distribution Generalization with Financial Time Series Data

Juan Diego Sánchez-Torres 1 Juan Francisco Muñoz-Elguezabal ¹

¹Western Institute of Technology and Higher Education (ITESO)

Presented Case Specifications

Hipothesis: There exists a set of conditions under which a cross-validation process can be defined and conducted in order to achieve Out-Of-Sample and Out-Of-Distribution Generalization when performing a Predictive Modeling Process using Financial Time Series Data.

Dataset: Continuous futures prices of the UsdMxn (U.S. Dollar Vs Mexican Peso), extracted from CME group MP Future Contract. Prices are Open, High, Low, Close in intervals of 8 Hours, **OHLC** data. GMT timezone-based and a total of 66,500 from 2010-01-03 18:00:00 to 2021-06-14 16:00:00.

Experiment: A classification problem is formulated as to predict the target variable, CO_{t+1} , which is defined as the sign($Close_{t+1} - Open_{t+1}$). For the explanatory variables, the base definition is to use only those of endogenous nature, that is, to create them using only **OHLC** values.

A discrete multi-period characterization

Let V_t be the value of a financial asset at any given time t, and S_t as a discrete representation of V_t if there is an observable transaction Ts_t . Similarly, if there is a set of discrete Ts_t observed during an interval of time T of n=1,2,...,n units of time, $\{S_T\}_{T=1}^n$, can be represented by $OHLC_T$: $\{Open_t, High_t, Low_t, Close_t\}$. The frequency of sampling T, can be arbitrarly defined.

OHLC representation

For every $OHLC_T$: $\{Open_t, High_t, Low_t, Close_t\}$:

Timestamp: The date and time for each interval.

Open: The first price of the interval.

High: The highest price registered during the interval. **Low**: The lowest price registered during the interval.

Close: The last price of the interval.

Candlestick Visual Representation (Figure 1)

Linear Variables

micro-volatility: $\rightarrow HL_t$ micro-trend: $\rightarrow CO_t$ micro-uptrend: $\rightarrow HO_t$ micro-downtrend: $\rightarrow OL_t$

Autoregressive Variables

Fundamental operations: MA_t , lag: LAG_t , standard deviation: SD_t and cumulative sumation: $CSUM_t$. This operations where applied to the past linear features: $\{OL\}_{t-k}$, $\{HO\}_{t-k}, \{HL\}_{t-k}, \{HLV\}_{t-k}, \{COV\}_{t-k}, \{VOL\}_{t-k} \text{ for values of } k = 1, 2, ...K,$ with K as a proposed memory parameter.

Target variable

A continuous variable prediction (regression problem), into a discrete variable prediction (classification problem):

$$\hat{y}_t = sign\left\{CO_t\right\}$$

T-Fold-SV (Steps)

1.- Fold Formation

Depends on labeling, can be calendar based.

2.- Target and Feature Engineering

In-Fold exclusive or Global and then divide.

3.- Information Tensor

To asses information sparsity among Folds.

4.- Model Training

Hyperparameter optimization Train-Val sets.

5.- Generalization Assessment Out-Of-Sample and/or Out-Of-Distribution.

T-Fold-SV (Figure 2)

Information Representation and Sparsity Metric

A gamma distribution to fit the PDF of two set of variables, and the Kullback-Leibler Divergence to measure the similarity between the two:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \quad \text{for} \quad x > 0 \quad \alpha, \beta > 0$$
 (1)

 $\Gamma(\alpha)$: The gamma function $\forall \alpha \in \mathbb{Z}^+$ and the $D_{KL}(P||Q)$: Kullback-Liebler Divergence, which for unknown continuous random variables, P, Q, or for p, q as empirically adjusted Probability Density Functions (PDF) is denoted by:

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{g(x)}\right) dx \tag{2}$$

Predictive Modeling: Part 1

One common component of the predictive modeling process is binary-logloss cost function with *elasticnet* regularization:

$$J(w) = J(w) + C \frac{\lambda}{m} \sum_{j=1}^{n} \|w_j\|_1 + (1 - C) \frac{\lambda}{2m} \sum_{j=1}^{n} \|w_j\|_2^2$$
 (3)

 L_1 : Also known as Lasso

 L_2 : Also known as Ridge

C: A coefficient to regulate the effect between L_1 and L_2

Predictive Modeling: Part 2

Two models were defined, Logistic-Regression and Multi-layer Feedforward Perceptron.

Metric	ann-mlp	logistic
acc-train	0.9155	0.8311
acc-val	0.8245	0.7368
acc-weighted	0.4486	0.4061
acc-inv-weighted	0.4213	0.3778
auc-train	0.9924	0.9300
auc-val	0.8401	0.8017

Metric	ann-mlp	logistic
auc-weighted	0.4810	0.4521
auc-inv-weighted	0.4353	0.4137
logloss-train	0.2290	5.8333
logloss-val	6.0595	9.0892
logloss-weighted	0.6975	3.2422
logloss-inv-weighted	2.4467	4.2190

Repository

For more information about the code implementation, data, and file templates go to the GitHub repository for this work.

- github.com/IFFranciscoME/EcoSta2021

References

- Lopez de Prado, Marcos M (2018), Advances in Financial Machine Learning, Wiley.
- Pezeshki et al (2020). Gradient Starvation: A Learning Proclivity in Neural Networks, Mohammad Pezeshki, Sekou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, Guillaume Lajoie, arXiv:2011.09468.
- Goddfellow et al (2017), *Deep Learning*, Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT Press

Additional Row-Block

Additional content inside block