PRESENTATION PROJET COMPTE PERSONNES

Centre d'Enseignement et de Recherche Informatique d'Avignon

12 mai 2025

Auteurs
Mathis Hernandez
Amel Naak

Encadrants
M. Gozlan
M. Silanus

Sommaire

Introduction	3-5
 Problématique et Etat de l'art 	3
 Notre solution 	4
Notre organisation	5
Partie de Mathis	6-24
 Programmation Arduino 	6
Conception 3D	14
Assemblage et peinture	18
Partie d'Amel	25-33
 Création du site web 	26
 Réalisation du graphe 	29
 Communication des données via USB 	31
Conclusion	34

Problématique

Comment mettre à disposition en présentiel et à distance l'information du nombre de personnes présentes dans une salle ?

Etat de l'art : solutions existantes

Capteurs Infrarouges

Caméras 3D

Tapis connectés

Solution développée

TransitTracker

- Dispositif positionné sur la partie supérieure d'un encadrement de porte
- Alimenté par batterie
- Détecte les entrées et sorties
- Affiche en présentiel le nombre de personnes dans la pièce
- Envoie l'information à un site Web hébergé sur un ordinateur relié par câble

Besoin	Composant		
Détecter une entrée / sortie	2 capteurs à ultrasons HC-SR04		
Afficher le nombre de personnes présentes	2 matrices LED RGB Grove 8x8		
Traiter les informations	Carte Arduino Uno + Grove Base Shield		
Partager les informations via USB	Fil USB qui transmet des données		
Alimenter le système	Batterie 5200mAh sortie 5V		

Notre organisation

Répartition des tâches

Responsable	Tâche				
Mathis	Programmation				
	Conception 3D				
	Assemblage et peinture				
Amel	Communication des informations via USB				
	Stockage dans une base de données MySQL				
	Création du site Web				
	Réalisation d'un graphe				

Supports de communication

- WhatsApp
- E-mail
- Dépôt GitHub

Partie de Mathis

1.

Programmation Arduino

Première étape : Affichage simple

Branchement sur bus I2C

Bibliothèque officielle GroveTwoRGBLedMatrixClass

```
#include "grove_two_rgb_led_matrix.h"
GroveTwoRGBLedMatrixClass matrix;

void loop() {
    for (int i = 0; i < 35; i++) {
        matrix.displayEmoji(i, 5000, true);
        delay(5000);
    }
}</pre>
```

Affichage sympathique

Problème

Affichages identiques

Affichages différents

Solution

Instancier deux objets de la classe et donner à chacun une adresse différente :

GroveTwoRGBLedMatrixClass matrix1(GROVE_TWO_RGB_LED_MATRIX_DEF_I2C_ADDR, 1);
GroveTwoRGBLedMatrixClass matrix2(GROVE_TWO_RGB_LED_MATRIX_DEF_I2C_ADDR + 1, 1);

Même problème

Affichages toujours identiques

Solution

"Solution"

Contournement du problème Nous avons continué avec d'autres matrices qui ne posaient pas ce problème

Deuxième étape : recevoir les informations des capteurs

Branchement sur les broches 3, 2 pour le premier capteur 5,4 pour le deuxième

Bibliothèque HCSR04 ultrasonic sensor

```
#include <HCSR04.h>

HCSR04 hc1(3, 2); //(trig pin , echo pin)
HCSR04 hc2(5, 4);

void setup() {...}

void loop()
{
    Serial.println(hc1.dist());
    Serial.println(hc2.dist());
    delay(60);
}
```

Les distances renvoyées par les deux capteurs sont utilisables

```
Output Serial Monitor X

Message (Enter to send message to 'Arduino Uno' on 'COM4')

16:02:16.737 -> 85.22

16:02:16.817 -> 86.05

16:02:16.849 -> 85.61

16:02:16.883 -> 85.61

16:02:16.917 -> 86.12

16:02:16.950 -> 85.22

16:02:17.029 -> 85.75

16:02:17.029 -> 85.68

16:02:17.04 -> 85.77

16:02:17.100 -> 85.71
```

Principe de fonctionnement

Boucle de 50ms

Deux variables pour détecter un passage :

- hc1_detect = false
- hc2_detect = false

Couloir Salle

Principe de fonctionnement

<u>Passage</u>

Deux variables pour détecter un passage :

- hc1_detect = true
- hc2_detect = false

Couloir

Principe de fonctionnement

<u>Passage</u>

Deux variables pour détecter un passage :

- hc1_detect = true
- hc2_detect = *true*

Compteur + 1

Principe de fonctionnement

Reset toutes les secondes

Deux variables pour détecter un passage :

- hc1_detect = false
- hc2_detect = false

TransitTracker

Couloir Salle

Partie de Mathis

2. Conception 3D

Versions non retenues

Fusion 360

Version finale

Vue d'ensemble

Vue de dessous

Design et finitions

Supports / Rehausseurs pour capteurs

Design de la face avant

Contour

Partie de Mathis

3. **Assemblage et peinture**

Découpe laser

Ponçage

Peinture

Après 4 couches

Mise en évidence du Nom TransitTracker

Ouvertures pour bouton Marche/Arrêt et accès USB Arduino

Mise en place du bouton M/A

Ouverture accès Arduino et bouton M/A installé

Partie de Mathis

Installation des composants **Dispositif TransitTracker Fonctionnel**

Partie de Amel

1.

La création et la conception du site

Première étape : Création de la base de données

- Télécharger le serveur local MAMP (Mac + Apache + MySQL + PHP)
- La table "Salle "pour stocker les différentes salles

←T	→		∇	id 🔺 1	capacite	nom
	🥟 Éditer	≩ Copier	Supprimer	1	50	Salle C024
	Éditer	≩ Copier	Supprimer	2	30	Salle S4 Nodes
	🧷 Éditer	≩ Copier	Supprimer	3	100	Amphi Blaise

←Ţ	→		\triangledown	id	salle_id	nb_entrée	nb_sortie	nombre_personnes	heure
	🧷 Éditer	Copier	Supprimer	1	1	10	3	7	2025-03-31 22:23:54
	Ø Éditer	3	Supprimer	2	1	20	4	16	2025-03-31 22:24:55
	🧷 Éditer	≩ Copier	Supprimer	3	1	10	4	6	2025-03-31 22:24:55

• La table "Personnes" pour stocker le nombres des personnes dans les salles

Deuxième étape : Mise en page du site

- Le programme index.php qui se connecte à la base de données et génère cette interface en utilisant Boostrap et HTML et CSS
- http://localhost:8888/Site_compte_personnes/index.php

Les salles:

Barre de recherche

- Ce bout du code permet de faire une recherche dans la table salle, à partir d'un champ de formulaire nommé nom_salle.
- LIKE ? avec LOWER(nom)
 permet de chercher dans la
 table salle toutes les lignes
 dont le nom contient la
 chaîne tapée, sans tenir
 compte de la casse.

```
(isset($_GET['nom_salle']) && !empty(trim($_GET['nom_salle'])))
 $nom_salle = strtolower(trim($_GET['nom_salle']));
 /* Préparer une requête LIKE pour une recherche
 partielle et insensible à la casse */
 $sql = "SELECT * FROM salle WHERE LOWER(nom) LIKE ?";
 $stmt = $conn->prepare($sql);
 // Ajouter les jokers % pour recherche partielle
 $param = '%' . $nom salle . '%';
 $stmt->bind_param("s", $param);
 $stmt->execute();
 $result = $stmt->get result();
```

2. Réalisation du Graphe

un graphique dynamique représentant l'évolution des présences au fil du temps, basé sur les entrées et sorties enregistrées c'est-àdire le nombre des personnes dans cette salle.

Détails de la salle : Salle C024

Capacité: 50 personnes

Nombre de personnes présents : 29

Présence en temps réel

3. Communication des données via USB

Première étape : Programme Arduino

 Les deux ligne à ajouter pour envoyer la valeur du compteur via le SoftwareSerial.

```
Serial.println("ENTREE");
// ...
Serial.println("SORTIE");
```

Connexion
 d'Arduino via USB
 (fil d'alimentation et
 de transfert de
 données).

Deuxième étape : Le programme python

- Le nom du port sur Windows est "COM6"
- La bibliothèque "serial" pour communiquer avec l'Arduino
- Et la bibliothèque "mysql.connector" pour connecter à la BDD

```
import serial
import mysql.connector
import time
import datetime

# === Configuration ===

# Port série (à adapter si nécessaire,
# ex : /dev/ttyACM0 sur ubunto)

PORT_SERIE = "COM6"
```

PRESENTATION PROJET COMPTE PERSONNES

Centre d'Enseignement et de Recherche Informatique d'Avignon

12 mai 2025

Auteurs

Mathis Hernandez

Amel Naak

Conclusion

Encadrants

M. Gozlan

M. Silanus

