Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	\mathbf{R}^2

integers	7
positive integers	=
1	$\mathbf{Z}_{>0}$
positive reals	$ \mathbf{R}_{>0} $

Set symbols

Meaning	Symbol
is a member	\in
subset	C
intersection	

Meaning	Symbol	
union	U	
complement	superscript ^C	
set minus	\	

Intervals

For numbers a and b, we define the intervals:

$$(a,b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a,b) = \{ x \in \mathbf{R} \mid a \le x < b \}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Logic symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	3

Tautologies

$$\neg(P \land Q) \equiv \neg P \lor \neg Q
(P \implies Q) \equiv (\neg Q \implies \neg P)
P \implies Q \equiv P \land \neg Q
(P \iff Q) \equiv ((P \implies Q) \land (Q \implies P))
\neg(\forall x \in A)(P(x)) \equiv (\exists x \in A)(\neg P(x))
\neg(\exists x \in A)(P(x)) \equiv (\forall x \in A)(\neg P(x))$$

Function notation

dom(F)	domain of function F
range(F)	range of function F
C_A	set of continuous functions on set A
$\begin{bmatrix} \mathrm{C}_A \\ \mathrm{C}_A^1 \end{bmatrix}$	set of differentiable functions on set A
$A \rightarrow B$	set of functions from A to B

Generalized set operators

Each member of a set C is a set:

$$\bigcup_{A \in \mathcal{C}} A = \{ z \mid (\exists B \in \mathcal{C})(z \in B) \}$$
$$\bigcap_{A \in \mathcal{C}} A = \{ z \mid (\forall B \in \mathcal{C})(z \in B) \}$$

Theorem:
$$\bigcup_{A \in \mathcal{C}} A^{C} = \left(\bigcap_{A \in \mathcal{C}} A\right)^{C}$$

Functions applied to sets

Let $A \subset \text{dom}(F)$ and $B \subset \text{range}(F)$:

$$F(A) = \{ F(x) \mid x \in A \}$$
$$F^{-1}(B) = \{ x \in \text{dom}(F) \mid F(x) \in B \}$$

Triangle inequalities

For all $x, y \in \mathbf{R}$, we have

$$|x+y| \le |x| + |y|$$
$$||x| - |y|| \le |x-y|$$

Floor and ceiling

Definitions:

Properties:

$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(x < n \iff \lfloor x \rfloor < n)$$
$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(n < x \iff n < \lceil x \rceil)$$

Bounded sets

Bounded below A set A is bounded below provided $(\exists M \in \mathbf{R})(\forall x \in A)(M \le x).$

Bounded above The set *A* is *bounded above* provided $(\exists M \in \mathbf{R})(\forall x \in A)(x \leq M)$.

Bounded A set is *bounded* if it is bounded below and bounded above.

Elementary function properties

Increasing $(\forall x, y \in A)(x < y \implies F(x) \le F(y))$. For strictly increasing, replace $F(x) \le F(y)$ with F(x) < F(y).

Decreasing $(\forall x, y \in A)(x < y \implies F(x) \ge F(y))$ For strictly decreasing, replace $F(x) \ge F(y)$ with F(x) > F(y).

One-to-one

$$(\forall x, y \in dom(F))(F(x) = F(y) \implies x = y)$$

Subadditive

$$(\forall x, y \in \text{dom}(F))(F(x+y) \le F(x) + F(y))$$

Bounded above $(\exists M \in \mathbf{R})(\forall x \in \text{dom}(F))(F(x) \leq M)$

Bounded below $(\exists M \in \mathbf{R})(\forall x \in \text{dom}(F))(M \leq F(x))$

Topology

Open ball ball $(a, r) = \{x \in \mathbf{R} \mid -r + a < x < r + a\}$

Punctured ball $ball'(a, r) = ball(a, r) \setminus \{a\}$

Open set A subset A of \mathbf{R} is *open* provided

$$(\forall x \in A) (\exists r \in \mathbf{R}_{>0}) (\text{ball}(x, r) \subset A).$$

Closed set A subset A of R is closed provided $R \setminus A$ is open.

Limit point A number a is a *limit point* of a set A provided $(\forall r \in \mathbb{R}_{>0})(\text{ball}'(a,r) \cap A \neq \emptyset)$.

Boundary point A number a is a boundary point of a set A provided

$$(\forall r \in \mathbf{R}_{>0}) \Big(\mathrm{ball}(a, r) \cap A \neq \emptyset \wedge \mathrm{ball}(a, r) \cap A^{\mathbf{C}} \neq \emptyset \Big).$$

Set closure $\overline{A} = A \cup LP(A)$, were LP(A) is the set of limit points of A.

Open cover A set $\mathcal C$ is an open cover of a set A provided

- (a) every member of \mathcal{C} is an open set
- (b) $A \subset \bigcup_{B \in \mathcal{C}} B$

Compact A set A is compact provided for every open cover C of A, there is a finite subset C' of C such that C' is an open cover of A.

Least and greatest bounds

For any subset A of \mathbf{R} :

glb z = glb(A) provided

- (a) z is an lower bound for A
- (b) if x is a lower bound for A then $x \leq z$

 $\mathbf{lub} \quad z = \mathrm{lub}(A) \text{ provided}$

- (a) z is an upper bound for A
- (b) if x is a upper bound for A then $z \leq x$

Sequences

Bounded A sequence F is bounded if range(F) bounded.

Monotone A sequence is monotone if it either increases or decreases.

Cauchy A sequence F is Cauchy provided

- (a) for every $\varepsilon \in \mathbf{R}_{>0}$
- (b) there is $n \in \mathbf{Z}$
- (c) such that for all $k, \ell \in \mathbf{Z}_{>n}$
- (d) $|F_k F_\ell| < \varepsilon$

Converges A sequence F converges provided

- (a) there is $L \in \mathbf{R}$
- (b) and $n \in \mathbf{Z}$
- (c) such that for all $k \in \mathbb{Z}_{>n}$
- (d) $|F_k L| < \varepsilon$.

Functions

Continuous A function F is continuous at a provided

- (a) $a \in dom(F)$ and
- (b) for every $\varepsilon \in \mathbf{R}_{>0}$
- (c) there is $\delta \in \mathbf{R}_{>0}$
- (d) such that for all $x \in \text{ball}(a, \delta) \cap \text{dom}(F)$
- (e) we have $F(x) \in \text{ball}(F(a), \epsilon)$.

Uniformly continuous A function F is uniformly continuous on a set A provided

- (a) $A \subset dom(F)$; and
- (b) for every $\varepsilon \in \mathbf{R}_{>0}$
- (c) there is $\delta \in \mathbf{R}_{>0}$
- (d) such that for all $x, y \in A$ and $|x y| < \delta$
- (e) we have $|F(x) F(y)| < \epsilon$.

Limit A function F has a limit toward a provided

- (a) a is a limit point of dom(F); and
- (b) there is $L \in \mathbf{R}$
- (c) such that for every $\varepsilon \in \mathbf{R}_{>0}$
- (d) there is $\delta \in \mathbf{R}_{>0}$
- (e) such that for all $x \in \text{ball}'(a, \delta)$
- (f) we have $F(x) \in \text{ball}(L, \epsilon)$.

Differentiable A function F is differentiable at a provided

- (a) $a \in dom(F)$; and
- (b) there is $\phi \in \text{dom}(F) \to \mathbf{R}$
- (c) such that ϕ is continuous at a and
- (d) $(\forall x \in \text{dom}(F))(F(x) = F(a) + (x a)\phi(x)).$

Riemann sums

- (a) the set \mathcal{P} is finite
- (b) every member of \mathcal{P} is an open interval
- (c) the members of \mathcal{P} are pairwise disjoint
- (d) $\bigcup_{I \in \mathcal{P}} \overline{I} = [a, b]$

Let F be a bounded function on an interval [a, b] and let \mathcal{P} be a partition of [a, b].

 $\mathbf{Lower \ sum} \ \underline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \mathrm{glb}\big(F\big(\overline{I}\big)\big) \times \mathrm{length}(I)$

 $\mathbf{Upper\ sum}\quad \overline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \mathrm{lub}\big(F\big(\overline{I}\big)\big) \times \mathrm{length}(I)$

Riemann sum $\sum_{I \in \mathcal{P}, x^{\star} \in \overline{I}} F(x^{\star}) \times \operatorname{length}(I)$

Axioms

Completeness Every nonempty subset A of \mathbf{R} that is bounded above has a least upper bound.

Well-ordering Every nonempty set of positive integers contains a least element.

Induction $(\forall n \in \mathbf{Z}_{\geq 0})(P(n))$ if and only if $P(0) \wedge (\forall n \in \mathbf{Z}_{\geq 0})(P(n) \Longrightarrow P(n+1)).$

Named theorems

Archimedean $(\forall x \in \mathbf{R})(\exists n \in \mathbf{Z})(n > x) \equiv \text{true}.$

Bolzano–Weirstrass Every bounded real valued sequence has a convergent subsequence.

Heine–Borel A subset of **R** is compact iff it is closed and bounded.

 $\begin{array}{ccc} \textbf{Cauchy completeness} & \textbf{Every Cauchy sequence in } \mathbf{R} \\ & \textbf{converges.} \end{array}$

Monotone convergence Every bounded monotone sequence converges.

Intermediate value theorem If $F \in C_{[a,b]}$, then for all $y \in [\min(F(a), F(b)), \max(F(a), F(b))]$ there is $x \in [a,b]$ such that F(x) = y.

Mean Value If $F \in C_{[a,b]} \cap C^1_{(a,b)}$, there is $\xi \in (a,b)$ such that $(b-a)F'(\xi) = F(b) - F(a)$.