

Institutt for datateknikk og informasjonsvitenskap

EKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 2. JUNI 2010 KL. 09.00 – 13.00

Oppgavestillere: Richard Blake

Torbjørn Hallgren

Kvalitetskontroll: Jo Skjermo

Kontakt under eksamen: Richard Blake tlf. 93683/926 20 905

Torbjørn Hallgren tlf. 93679/986 17 341

Hjelpemidler – kode D:

Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt enkel kalkulator tillatt.

Sensurfrist: 23. juni

Besvar alle seks oppgavene! Maksimal samlet poengsum er 440.

- Det lønner seg å lese gjennom hele oppgavesettet før du setter i gang med besvarelsen. Da øker du sjansen din til å utnytte tida godt samtidig som du kan ha flere spørsmål klare når faglærer kommer på runden sin.
- Svart kort og konsist.
- Det vil i de fleste tilfelle være mulig å besvare deloppgavene uavhengig av hverandre slik at du ikke trenger å stå fast selv om du ikke greier å løse de foranstående deloppgavene.
- Dersom du mener at oppgaveformuleringen er ufullstendig, kan det være fornuftig å gjøre begrunnede antakelser.

OPPGAVE 1 Grafikk – Avbildning

(70 poeng)

Vi har en modell i verdenskoordinatsystemet med akser x, y og z. Kamerakoordinatsystemet har tilsvarende akser u, v og n. Origo i kamerakoordinatsystemet er (x_c, y_c, z_c) referert til verdenskoordinatsystemet. Enhetsvektorene langs u-aksen og n-aksen har komponentene henholdsvis (0,0,-1) og $(\frac{1}{2}\sqrt{3},\frac{1}{2},0)$ referert til verdenskoordinatsystemet.

- a) Still opp matrisen for konvertering av verdenskoordinater til kamerakoordinater og finn tallverdiene til elementene i matrisen.
 (30 poeng)
- b) Vi plasserer et avbildningsplan i kamerakoordinatsystemet loddrett på n-aksen. Planet skjærer aksen i punktet (0,0,-d),d>0. Finn avbildningsmatrisen for perspektivisk projeksjon med origo i kamerakoordinatsystemet som projeksjonssenter. Det forutsettes at matrisen skal brukes på kamerakoordinater og at den gir kamerakoordinater som resultat. (20 poeng)
- c) Vi forutsetter at vi har stilt opp et avbildningsplan som beskrevet i deloppgave b). Et objektpunkt har koordinatene (x_p, y_p, z_p) i verdenskoordinater. Still opp uttrykk for å beregne bildet av objektpunktet både i kamerakoordinater og i verdenskoordinater. Du trenger ikke å konkatenere uttrykkene. (20 poeng)

OPPGAVE 2 Grafikk – Farger og lys

(70 poeng)

- a) Svar på følgende spørsmål om farger og fargesystemer (svar kortfattet):
 - 1. Hva er den fysiologiske begrunnelsen for tristimulisystemet for farger?
 - 2. Hva er en fargegamut?
 - 3. Hva er anvendelsene for henholdsvis additive og subtraktive fargemodeller?
 - 4. Hva skiller RGBA-modellen fra RGB-modellen?
 - 5. Hva skiller CMYK-modeller fra CMY-modellen? (20 poeng)
- b) Nevn inntil fem typer av lyskilder som er aktuelle i datagrafikk og vis hvordan hver enkelt av typene kan modelleres matematisk.
 (30 poeng)
- c) Hvordan blir refleksjonen fra mer eller mindre ideelle blanke flater modellert i Phongs refleksjonsmodell?
 (20 poeng)

OPPGAVE 3 Grafikk – Rasterisering

(80 poeng)

- a) Hva er den grunnleggende ideen bak Bresenhams algoritme for rasterisering av en rett linje?
 (20 poeng)
- b) Hva brukes utkastingskodene i Cohen-Sutherlands algoritme til og hvordan brukes de? (20 poeng)
- c) To tester for å finne ut om et punkt er inne i eller utenfor en polygon er krysningstesten (odd-even-testen) og vindingstesten. Beskriv kort de to testene og vis et eksempel på at de kan gi forskjellige resultater.
 (20 poeng)
- d) Hvordan virker baksidefjerning (back-face removal) og hvordan kan denne algoritmen gjøre nytte sammen med bruk av andre algoritmer for bestemmelse av synlige flater? (20 poeng)

OPPGAVE 4 Bildebehandling – Grunnleggende begreper

(80 poeng)

- a) Hva menes med punktspredefunksjon? Illustrer svaret med en informativ skisse. (20 poeng)
- b) Hvilke kvantiseringer blir gjort når et bilde fanges? (20 poeng)
- c) Hvilke bildefangstparametre kan endres for å forbedre bildets presisjon? (20 poeng)
- d) Tegn et diagram som viser stegene i behandlingen av et bilde når hensikten er objektgjenkjennelse.
 (20 poeng)

OPPGAVE 5 Bildebehandling – Regionbaserte metoder

(80 poeng)

- a) Hva menes med terskling? (20 poeng)
- b) Angi tre metoder for terskling. (20 poeng)
- c) Beskriv detaljert en metode for terskling og angi hvilke forutsetninger som blir gjort når metoden brukes for segmentering.
 (20 poeng)
- d) Definer to forskjellige egenskaper som kan brukes til å beskrive en region. (20 poeng)

OPPGAVE 6 Bildebehandling – Fourierdomenemetoder

(60 poeng)

Forutsett at definisjonen av den 2D Fouriertransformasjonen av bildefunksjonen f(x, y) på et $N \times N$ -nett av piksler som resulterer i frekvensdomenerepresentasjonen F(u, v), er:

$$F(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} e^{-\frac{2\pi j(ux+vy)}{N}} f(x,y)$$

- a) Hvilken forutsetning om f(x, y) blir gjort når denne definisjonen brukes? (20 poeng)
- b) Origo til bildefunksjonen blir forskjøvet fra (x_0, y_0) til $f(x-x_0, y-y_0)$. Bruk definisjonen til å bestemme den nye transformasjonen uttrykt ved F(u,v). (Tips: Dette kan gjøres på 5 linjer.) (20 poeng)
- c) Hvordan kan lavpassfiltrering implementeres ved å avgrense summeringsområdet når den inverse av F(u,v) beregnes. (Tips: Ta i betraktning hva indeksene betyr som frekvens.
 Du kan også tenke på egenskapene til Fourierdeskriptoren brukt som kjennetegn.)
 (20 poeng)