AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (original) A method of estimating channel coefficients (h) in a multi carrier system operating in accordance with a block-code based transmit diversity scheme, in which a data content ($\mathbf{C}^{(i)}$) of a code matrix (\mathbf{C}) is multiplexed in a frequency domain, comprising:
- a) determining a phase ramp (φ_{est}) in the frequency domain or an equivalent (Δt) thereof in the time domain, the phase ramp (φ_{est}) or the equivalent (Δt) thereof being comprised within a receive signal $(\mathbf{Y}_{\Delta t})$ after timing synchronization;
- b) processing the receive signal ($\mathbf{Y}_{\Delta t}$) to remove the phase ramp (φ_{est}) or the equivalent (Δt) thereof; and
- c) estimating the channel coefficients (h) on the basis of the processed receive signal $(\mathbf{Y}_{\Delta t})$.
- 2. (original) The method of claim 1, wherein the phase ramp (φ_{est}) or the equivalent (Δt) thereof is determined by way of estimation.
- 3. (original) The method of claim 2, wherein the estimation is performed by linear regression.
- 4. (currently amended) The method of one of claims 1 to 3 claim 1, further comprising the step of performing timing synchronization with the object of minimizing intersymbol interference.
- 5. (currently amended) The method of one of claims 1 to 4 claim 1, wherein at least one of steps a) and b) is performed in the frequency domain.

- 6. (currently amended) The method of one of claims 1 to 4 claim 1, wherein at least one of steps a) and b) is performed in a time domain.
- 7. (currently amended) The method of one of claims 1 to 6 claim 1, wherein after timing synchronization the receive signal ($\mathbf{Y}_{\Delta t}$) is split and fed into a channel estimation branch (56) on the one hand and a demodulation branch (58) on the other hand, and wherein the phase ramp (φ_{est}) or the equivalent (Δt) thereof is removed in the channel estimation branch (56).
- 8. (currently amended) The method of one of claims 1 to 6 claim 1, wherein after timing synchronization the receive signal ($\mathbf{Y}_{\Delta t}$) is split and fed into a channel estimation branch (56) on the one hand and a demodulation branch (58) on the other hand, and wherein the phase ramp (φ_{est}) or the equivalent (Δt) thereof is removed prior to splitting of the receive signal ($\mathbf{Y}_{\Delta t}$).
- 9. (currently amended) The method of one of claims 1 to 7 claim 1, further comprising introducing the phase ramp (φ_{est}) or the equivalent (Δt) thereof into the estimated channel coefficients (\hat{h}).
- 10. (currently amended) The method of one of claims 1 to 9 claim 1, further comprising demodulating the receive signal $(Y_{\Delta t})$ utilizing the estimated channel coefficients (\hat{h}) .
- 11. (currently amended) The method of one of claims 1 to 10 claim 1, wherein the block-code based transmit diversity scheme of space-frequency block coding (SFBC) or of permutation in the frequency domain is employed.
- 12. (currently amended) A computer program product comprising program code portions for performing the steps of one of claims 1 to 11 claim 1 when the product is run on a computer.

- 13. (original) The computer program product of claim 12 stored on a computer readable recording medium.
- 14. (original) An estimating stage (60) for estimating channel coefficients (h) in a multi carrier system operating in accordance with a block-code based transmit diversity scheme in which a data content ($\mathbf{C}^{(i)}$) of a code matrix (\mathbf{C}) is multiplexed in a frequency domain, comprising:
- a) a unit (48) for determining a phase ramp (φ_{est}) in the frequency domain or an equivalent (Δt) thereof in the time domain, the phase ramp (φ_{est}) or the equivalent (Δt) thereof being comprised within a receive signal ($\mathbf{Y}_{\Delta t}$) after timing synchronization;
- b) a unit (50) for processing the receive signal ($\mathbf{Y}_{\Delta t}$) to remove the phase ramp (φ_{est}) or the equivalent (Δt) thereof; and
- c) a unit (44) for estimating the channel coefficients (h) on the basis of the processed receive signal ($\mathbf{Y}_{\Delta t}$).
- 15. (original) The estimating stage according to claim 14, further comprising a node (54) for splitting a signal path (55) after timing synchronization into a channel estimation branch (56) on the one hand and a demodulation branch (58) on the other hand, and wherein the unit (50) for processing the receive signal ($\mathbf{Y}_{\Delta t}$) is arranged in the channel estimation branch (56).
- 16. (original) The estimating stage according to claim 14, further comprising a node (54) for splitting a signal path (55) after timing synchronization into a channel estimation branch (56) on the one hand and a demodulation branch (58) on the other hand, and wherein the unit (50) for processing the receive signal ($\mathbf{Y}_{\Delta t}$) is arranged in the signal path (55) prior to the node (54).

PAULI, M. et al. Serial No. Unknown

- 17. (currently amended) The estimating stage according to claim 14 or 15, further comprising a unit (52) for introducing the phase ramp (φ_{est}) or the equivalent (Δt) thereof into the estimated channel coefficients (\hat{h}).
- 18. (currently amended) A transceiver of a wireless communication system comprising a receiver stage (40) with an estimating stage (60) according to ene of claims 14 to 17 claim 14.