1. **Temat:** Analiza cen spolki

2. Nazwa spolki: Grupa Azoty Police SA (PCE)

3. Okres danych: 01.01.2022 - 31.12.2022

Spolka Grupa Azoty Zakłady Chemiczne "Police" SA to polskie przedsiebiorstwo branzy wielkiej syntezy chemicznej.

Kursy zamkniec na przestrzeni czasu.

Wykres:

Figure 1: Wykres kursow zamkniec

Histogram:

Histogram of pce_d\$Zamkniecie

Figure 2: Histogram kursow zamkniec

- Skośność liczona wzorem SKE = $\frac{n\sum(x_i-\bar{x})^3}{(n-1)(n-2)s^3}$ Skosnosc to miara symetrii/asymetrii — minusowa - lewo — dodatnia - prawo W naszym wypadku SKE = **0.7**, co oznacza, że prawe ramie wykresu jest wydłużone.
- Kurtoza liczona wzorem $K = \frac{m^4}{s^4} 3$ Kurtoza okresla intensywnosc wystyepowania wartosci skrajnych (w ogonach) w naszym przypadku wynoszaca **3.69** wskazuje na spora intensywność wartości skrajnych.
- Odchylenie standardowe liczone wzorem $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2}$ Mierzy rozproszenie zbioru według danych wzgledem średniej, w naszym przypadku wynosi **0.6**.
- Wariancja liczona wzorem $Var(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$ To średnia z kwadratów odchyleń każdej wartości od średniej arytmetycznej zbioru danych w naszym przypadku 0.39
- Srednia $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ Srednia cena na przestrzeni czasu to 11.18

DOPASOWANIE GESTOSCI

do dopasaowania uzyjemy trzech funkcji rozkładu: Normalnego, log-normalnego, Gamma

- Wzor na gestosc rozkladu Normalnego $(x|\mu,\sigma^2)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Wzor na gestosc rozkładu Log-Normalnego $(x|\mu,\sigma)=\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x-\mu)^2}{2\sigma^2}}$
- Wzor na gestosc rozkladu Gamma $(x|k,\theta) = \frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}$
- Wzor na test Kolmogorowa-Smirnov $D = \sup |F_n(x) F(x)|$
- Wzor na test Cramera-von Misesa $W^2 = \int [F_n(x) F(x)]^2 dF(x)$
- Wzor na test Anderson-Darling $A^2 = -n \sum_{i=1}^n \frac{2i-1}{n} \left[\ln(F(X_i)) + \ln(1 F(X_{n+1-i})) \right]$

Jak dobrac odpowiedni rozklad z testu?

wybieramy go poprzez wybieranie **najnizszej** wartosci wsrod testow w naszym przypadku 5/0 najnizsza wartosc ma test dla rozkladu Log-normalnego.

Empirical and theoretical CDFs

Figure 3: Wykres porównujacy Empiryczne i Teoretyczne dystrybuanty

Figure 4: Wykres porównujacy kwantyle empiryczne i teoretyczne

Histogram and theoretical densities

Figure 5: Wykres porównujacy na gestości

Table 1: testy Goddes of Statistic

Statistic	norm	lnorm	gamma
Kolmogorov-Smirnov	0.1012138	0.09105258	0.09436892
Cramer-von Mises	0.3689378	0.25513733	0.28957664
Anderson-Darling	2.3711022	1.66370275	1.87978109
Information Criterion			
Akaike's	474.6259	465.7726	468.4648
Bayesian	481.6447	472.7914	475.4836

Kolmogorov - Smirnov sprawdza w najdalsza odległolsc w jednym punkcie

Cramer - von mises oblicza dystrybuante w kazdym punkcie z probki danych pozniej oblicza dystrubuante dla podanej funkcji (gamma,lnorm,norm) w naszym przypadku pozniej liczy kwadrat roznicy tych dystrybuant

 $\bf Andreson$ - $\bf Darling$ suma kwadratow roznicy pomiedzy teoretyczna dystrybuanta a empiryczna

Testowanie rownosci rozkladow

Wynik testu Monte carlo na histogramie gdzie zaznaczony punkt to wynik dla oryginalnych danych.

obliczamy p-value wzorem: p-value = $\frac{\text{Liczba wartości w }Dln$ wiekszych niż $dn_ln}{N}$

Nasze p-value: 0.0294

przyjmujemy poziom istotnosci alpha = 0.05

Po porownaniu czy **p-value** \leq alpha hipoteze odrzucamy bo **p-value** jest mniejsza od poziomu istotności alpha

Figure 6: Histogram wynikow z testu Monte Carlo