```
In [21]:
           import pandas as pd
           import matplotlib.pyplot as plt
           %matplotlib inline
In [22]: #Import the CSV file
           df = pd.read csv("OpenBCI.csv")
           df.head()
Out[22]:
               sequence
                          channel_1
                                     channel_2 channel_3 channel_4 channel_5 channel_6 channel_7
                                                                                                         chan
            0
                       1
                            9305.95
                                      -11284.14
                                                 -44654.13
                                                             -25342.99
                                                                         -7965.54
                                                                                   -51180.17
                                                                                               -11820.97
                                                                                                          -208
            1
                       2
                            10282.90
                                      -10282.85
                                                 -44095.50
                                                            -24926.49
                                                                         -8072.51
                                                                                                          -205
                                                                                   -51185.27
                                                                                               -11671.32
                       3
            2
                            9841.61
                                      -10652.42
                                                 -44369.60
                                                             -25201.52
                                                                         -8009.26
                                                                                   -51365.45
                                                                                               -11783.82
                                                                                                          -206
            3
                       4
                            8889.02
                                      -11628.25
                                                 -44910.78
                                                            -25598.54
                                                                         -7909.92
                                                                                   -51352.86
                                                                                               -11923.83
                                                                                                          -209
                       5
                            9145.48
                                      -11442.73
                                                 -44758.94
                                                             -25411.00
                                                                         -7962.32
                                                                                   -51199.60
                                                                                               -11851.03
                                                                                                          -208
In [23]: #Change the timestampe into datetime format
           df.Timestamp = pd.to_datetime(df.Timestamp )
           df
In [24]:
Out[24]:
                   sequence
                              channel_1
                                         channel_2 channel_3 channel_4 channel_5 channel_6 channel_7
                0
                           1
                                 9305.95
                                          -11284.14
                                                      -44654.13
                                                                 -25342.99
                                                                             -7965.54
                                                                                        -51180.17
                                                                                                   -11820.97
                1
                           2
                                10282.90
                                          -10282.85
                                                      -44095.50
                                                                 -24926.49
                                                                             -8072.51
                                                                                        -51185.27
                                                                                                   -11671.32
                2
                           3
                                 9841.61
                                          -10652.42
                                                      -44369.60
                                                                 -25201.52
                                                                             -8009.26
                                                                                        -51365.45
                                                                                                   -11783.82
                3
                                 8889.02
                                          -11628.25
                                                      -44910.78
                                                                 -25598.54
                                                                             -7909.92
                                                                                        -51352.86
                                                                                                   -11923.83
                4
                           5
                                 9145.48
                                          -11442.73
                                                      -44758.94
                                                                 -25411.00
                                                                             -7962.32
                                                                                        -51199.60
                                                                                                   -11851.03
                5
                           6
                                10186.09
                                          -10391.86
                                                      -44156.34
                                                                 -24941.84
                                                                             -8089.05
                                                                                        -51167.52
                                                                                                   -11674.36
                                10067.29
                                          -10428.25
                                                      -44235.24
                                                                 -25071.44
                                                                             -8068.78
                                                                                        -51354.16
                                                                                                   -11727.38
```

```
In [25]: #Get some stats about the data

df.describe()
```

Out[25]:

	channel_5	channel_4	channel_3	channel_2	channel_1	sequence	
31	31503.000000	31503.000000	31503.000000	31503.000000	31503.000000	31503.000000	count
-41	-2875.556079	-41793.275299	-42215.286421	2398.759095	16111.093013	127.443101	mean
7	2992.984251	16042.460976	5632.906123	6519.925245	3466.460556	73.929888	std
-56	-8089.050000	-67272.630000	-100399.920000	-11692.510000	-871.180000	0.000000	min
-49	-5287.830000	-53973.200000	-44538.830000	-1246.530000	13435.335000	63.000000	25%
-40	-3684.260000	-50867.540000	-42710.200000	4446.630000	16847.830000	127.000000	50%
-34	-792.540000	-27631.580000	-39449.275000	7661.050000	19200.930000	191.000000	75%
	3718.010000	-1612.100000	-29602.560000	10683.780000	21427.920000	255.000000	max
							4

In [46]: #Plot a line graph fig = plt.figure(figsize=(20,10)) ax=fig.add_subplot(111) ax.plot(df.iloc[0:,1:9].transpose()) plt.xlabel("Channel Number") plt.ylabel("EEG Reading") plt.title(" Line plot of EEG Reading for 8 Channels ") plt.show()

In [38]: df_channel=df.iloc[0:,1:9].transpose()

```
In [39]: df_channel
```

Out[39]:

	0	1	2	3	4	5	6	7	
channel_1	9305.95	10282.90	9841.61	8889.02	9145.48	10186.09	10067.29	9001.70	
channel_2	-11284.14	-10282.85	-10652.42	-11628.25	-11442.73	-10391.86	-10428.25	-11505.54	-
channel_3	-44654.13	-44095.50	-44369.60	-44910.78	-44758.94	-44156.34	-44235.24	-44862.32	-4
channel_4	-25342.99	-24926.49	-25201.52	-25598.54	-25411.00	-24941.84	-25071.44	-25556.67	-;
channel_5	-7965.54	-8072.51	-8009.26	-7909.92	-7962.32	-8089.05	-8068.78	-7932.95	
channel_6	-51180.17	-51185.27	-51365.45	-51352.86	-51199.60	-51167.52	-51354.16	-51381.72	-:
channel_7	-11820.97	-11671.32	-11783.82	-11923.83	-11851.03	-11674.36	-11727.38	-11908.25	-
channel_8	-20801.38	-20540.52	-20688.53	-20934.75	-20851.47	-20557.41	-20604.71	-20907.57	-;

8 rows × 31503 columns

```
In [45]: df.iloc[0:,1:9].plot(kind='box', figsize=(20,12))
    plt.xlabel("Channel Number")
    plt.ylabel("EEG reading")
    plt.title("Box plot of 8 Channels")
    plt.show()
```



```
In [49]: df.iloc[0:,1:9].plot(kind='hist', figsize=(20,12))
    plt.title("Histogram of 8 Channels")
    plt.show()
```



```
In [50]: df.iloc[0:,1:9].plot(kind='kde', figsize=(20,12))
    plt.title("Density plot of 8 Channels")
    plt.show()
```


In []:

In []: