MONTE CARLO SIMULATION 3D Simulation.

Final Results

QUESTION:

Point source is anisotropic: all electrons are emitted along one direction; electronatom scattering is anisotropic: Theta, θ is determined from $\sin(\theta/2) = a_3$, (where a_1 , a_2 and a_3 are random numbers selected between 0 and 1)

Determination of λ and φ is given by:

Lambda, $\lambda = -\ln a_1$, phi, $\phi = 2\pi a_2$.

It is necessary to make simulation for the anisotropic case and to compare results with previous results for isotropic case.

Lambda is the length between the collisions, phi and theta are the angular displacement in x-y, x-z coordinates respectively.

From the sine identity formula, we have that:

```
\sin(\theta/2) = a_3
```

 $(\theta/2) = \arcsin(a_3)$

 $\theta = 2*\arcsin(a_3)$

Anisotropic Electron-Atom Scattering in 3D for 100, 1000, and 10000 collisions.

For 100 collisions:

The Slope (α): 0.5681

For 1000 collisions:

The Distance from the Source against Number of Collisions: Absolute Values

The Slope (α): 0.5414

For 10000 collisions:

The Slope (α): 0.5302

The codes for these Results can be found in My GitHub

By Mfeuter Joseph, Tachia

Moscow Institute of Physics and Technology (MIPT)