ÉVALUATION SEQ 06 : COMMANDE DES LEDS

NOM:	Prénom:	
		/20

<u>Situation problème :</u>

Le projecteur doit pouvoir générer différentes couleurs à partir de LED rouges, vertes et bleues. Comment commander ces LED pour obtenir une palette de couleurs la plus large possible?

Pré-requis	Transistor en commutation Utilisation d'algorigramme Séquence 6
Moyens	Documentation constructeur (partielle): • Transistor TIP122 Algorigramme du programme de commande des trois couleurs de LED Schéma structurel de la commande des LED (partiel)
Conditions	Travail individuel : 1H30

A) ACTIVITÉ 1 - ÉTUDE STRUCTURELLE :

I) QUESTION 1.1:

2PTS

A partir du schéma structurel fourni en Annexe $N^{\circ}1$, donner le rôle des transistors Q1 à Q3.

II) QUESTION 1.2:

1PT

A partir de la documentation technique fournie, indiquer la particularité du transistor TIP122.

III) QUESTION 1.3:

3,5PTS

Soit la structure ci-dessous, correspondant à la commande des LED vertes.

Flécher sur le schéma ci-dessus, les tensions et courants suivants : VBEQ2 ; VCEQ2 ; UR11 ; UR12 ; IBQ2 ; ICQ2 ; IEQ2.

IV) QUESTION 1.4:

1PT + 5,5PTS

On suppose que le transistor Q2 fonctionne en commutation.

Soit les captures d'oscilloscope ci-dessous :

CH1: PT7: CMD_L_V CH2: PT10: VB L V

Tek Trig'd M Pos: 10.00ms CURSEURS

Type Fension

Source FE

Delta 820mV

Curseur 1 0.000V

2 820mV

CH1 : PT7 : CMD_L_V CH2 : PT14 : VCQ2

CH1: PT7: CMD_L_V

CH1 5,00V CH2 500mV M 2,50ms

CH2 : VR12 (mesure effectuée entre l'émetteur de Q2 et la borne de la résistance R12 reliée à la masse)

Utiliser les boutons VERTICAL POSITION pour contrôler les curseurs

CH1 \ 2.00V

- a) Pour une capture, indiquer l'état du transistor Q2 (bloqué ou saturé) sur le signal de la voie 2 (CH2).
- b) Déduire des captures précédentes, dans le cas où Q2 est saturé, les valeurs des tensions et courants suivants : VBEQ2 ; VCEQ2 ; UR11 ; UR12 ; IBQ2 ; ICQ2 ; IEQ2. On demande de détailler vos calculs (relation et application numérique).

B) ACTIVITÉ 2 - COMMANDE DES TROIS LEDS :

I) QUESTION 2.1 :

1PT

Dans le programme principal, à chaque débordement du timer 0, une interruption est déclenchée et appelle la macro « commande_led ».

En utilisant les captures ci-dessous, donner la valeur de la fréquence d'interruption puis déterminer le temps entre deux appels de la macro « commande_led ».

Propriétés de l'interruption

Interruption du Timer O

II) QUESTION 2.2:

2PTS

Soit la capture d'oscilloscope ci-dessous : M Pos: 4.000ms

CH1: Signal CMDE_LED_ROUGE

A: Signal CMDE_LED_VERTE

CH2: Signal CMDE_LED_BLEUE

A partir de la capture réalisée page précédente, indiquer :

- · La valeur de la période des signaux
- Le rapport cyclique du signal CMDE_LED_ROUGE
- Le rapport cyclique du signal CMDE_LED_VERTE
- Le rapport cyclique du signal CMDE_LED_BLEUE

Détailler votre démarche et vos calculs.

III) QUESTION 2.3:

1PT

On donne, en Annexe $N^{\circ}2$, l'algorigramme partiel du programme permettant la commande des 3 LED avec interruption.

Sachant que dans le système réel la période du signal de commande des leds correspond à la valeur déterminée à la question 2.2, préciser la valeur à mettre dans le test de la variable « Nboucle_cde_leds » de la macro « commande_led » (voir ci-dessous). Justifier votre calcul.

IV) QUESTION 2.4:

3PTS

Les variables « Valeur_basculement_rouge », « Valeur_basculement_vert » et « Valeur_basculement_bleu », contiennent la valeur de Nboucle à partir de laquelle le niveau logique du signal de commande des leds doit changer.

A l'aide de la question 2.2, déterminer la valeur des variables « Valeur_basculement_rouge », « Valeur_basculement_vert » et « Valeur_basculement_bleu ». Justifier votre réponse.

ANNEXE N°1

Projecteur à leds Commande leds

ANNEXE N°2

