

Cell proliferation

Autologous bone marrow transplants

Allogenic bone marrow transplants

Speaking of bone marrow matches...

Quickly recall the double arm transplant we saw in Module 1...

Bone marrow infusion from donor used to reduce rejection risk

Take the case of thrombocytopenia

Back to more traditional bone marrow transplants now...

 Umbilical cord blood (UBC) is one source of replacement cells are an option when bone marrow matches are unavailable

Take the case of thrombocytopenia

Back to more traditional bone marrow transplants now...

Idiopathic Thrombocytopenic Purpura (ITP)

- Umbilical cord blood (UBC) is one source of replacement cells are an option when bone marrow matches are unavailable
- Long-term success of this treatment hinges on high numbers of cell
 - Requires ex vivo expansion of cells

What can we do ex vivo?

Expand cell in culture!

But this has limits!

Telomeres limit cell divisions

The number of divisions that a primary cell can undergo is subject to the *Hayflick limit:* 30-50 divisions in culture

Telomeres limit cell divisions

The number of divisions that a primary cell can undergo is subject to the *Hayflick limit:* 30-50 divisions in culture

Wiltotic Clock

Telomeres

Telomeres limit cell divisions

Telomerase rebuilds the telomeres

High activity – in 80-90% of cancers allow cancer cells to escape cell cycle arrest

Anti-aging???

What does the Hayflick limit do to our meaningful cell numbers?

1 cell in culture can give rise to 10¹⁰ -10¹⁵ cells

Typical cellular therapies require 10⁷-10⁹ cells

Major methods for obtaining cells from tissues

Cell/Tissue Culture – growth of cells/tissue separate from the organism

Contact and density-dependent inhibition of cell growth

Contact and density-dependent inhibition of cell growth

Contact and density-dependent inhibition of cell growth

Splitting or passaging cell allows for expansion

Figure 4.21. Increase of cell number with sequential culture (redrawn from Freshney and Liss [22]). Sequential passaging of cells leads to an increase in the cumulative cell number (i.e., the total number of cell progeny produced from the initial starting material). As the length of time in culture increases, the properties of the cells change.

Splitting or passaging cell allows for expansion

Figure 4.21. Increase of cell number with sequential culture (redrawn from Freshney and Liss [22]). Sequential passaging of cells leads to an increase in the cumulative cell number (i.e., the total number of cell progeny produced from the initial starting material). As the length of time in culture increases, the properties of the cells change.

HeLa cells are immortal

Cell culture requires complex medium

Vitamins Amino acids Glucose Salts

- -

When minimum essential nutrients are unknown **serum** from other animals is used

Serum – non-cellular, non-clotting fraction of blood. Contains hormones and growth factors

Antibiotic are used to keep the cultures free of bacterial contamination

Cell Growth Kinetics

Back to math!

$$\frac{dN}{dt} = k_p \cdot N$$

N is the total number of cells K_p is the rate constant for cell proliferation t is time

Cell Growth Kinetics

$$\frac{dN}{dt} = k_p \cdot N$$

N is the total number of cells K_p is the rate constant for cell proliferation t is time N₀ is the number of cells at time = 0

$$N = N_0 \cdot e^{k_p \cdot t}$$

Cell Growth Kinetics

Substrates influence growth rates and require more complex mathematical models

$$\frac{dN}{dt} = k_p \cdot N$$

N is the total number of cells K_n is the rate constant for cell proliferation t is time N_0 is the number of cells at time = 0

$$N = N_0 \cdot e^{k_p \cdot t}$$
 t_D is the doubling $N = 2N_0$
time

In 2 Do the

$$t_D = \frac{\ln 2}{k_p}$$
Do the math yourself!

Review and Rewind

Next Module

Cell Adhesion and Migration

