

Prova Bimestral

G182012 1.a Série Química

Beth Pontes/Carol/Franco/Mariana/Wanda

27/6/2018

Parte I: Testes (valor: 3,0)

1. a	6. c	11. d	16. a	
2. a	7. a	12. e	17. c	
3. a	8. c	13. b	18. c 19. d	
4. d	9. c	14. e		
5. b	10. d	15. d	20. e	

Parte II: Questões (valor: 5,0)

1.

a. Figura I: butano.

Figura II: propano.

b.

).	Substância	Fórmula estrutural	Geometria molecular	Quantidade de ligações estabelecidas pelo carbono			
				Simples	Duplas	Triplas	
	HCHO (metanal)	н с=о	Trigonal plana	2	1	0	
	HCN (cianeto de hidrogênio)	H—C≡N	Linear	1	0	1	

- c. (1) **Tetraédrica** (4 ligações simples).
 - (2) Linear (1 ligação simples e 1 ligação tripla).
 - (3) Trigonal plana (2 ligações simples e 1 ligação dupla).
 - (4) Trigonal plana (2 ligações simples e 1 ligação dupla).

2.

a. Funções orgânicas presentes em cada vitamina:

Ácido pantotênico

 A vitamina B5 é hidrossolúvel, pois apresenta grupos capazes de estabelecer ligações de hidrogênio com a água, razão pela qual essa vitamina é que deve ser adicionada para melhorar a qualidade nutritiva da água de coco.
 Já a vitamina A é lipossolúvel, pois é predominantemente apolar, sendo pouco solúvel em água, solvente presente em maior quantidade na água de coco.

3.

- a. Fórmula estrutural: $\rm H_3C-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_3$ Fórmula molecular: $\rm C_8H_{18}$
- b. O álcool contido na gasolina C dissolve-se na água porque suas moléculas são polares como as da água. Isto é, aqui aplica-se o dito "semelhante dissolve semelhante": substâncias polares dissolvem-se melhor em solventes polares e substâncias apolares dissolvem-se melhor em solventes apolares.
 A água e o álcool estabelecem ligações de hidrogênio, interações mais fortes do que as existentes entre a gasolina e o álcool, do tipo dipolo instantâneo-dipolo induzido, estabelecidas entre as cadeias carbônicas, de caráter predominantemente apolar.
- c. Como mencionado no item (b), o etanol dissolve-se preferencialmente na água.
 Como a mistura água e etanol é mais densa (conforme mostrado na figura do enunciado), ela fica localizada na parte inferior da proveta.
 Já a mistura de hidrocarbonetos fica localizada na parte superior da proveta.

d. 50 mL de gasolina — 12,5 mL de álcool (que passou para a água) 100 mL — x x = 25 mL ou 25%

Portanto a amostra analisada não está de acordo com as regras adotadas a partir de março de 2015, pois apresenta percentual de etanol dentro dos limites aceitáveis (18% < 25% < 27%).

4.

a. Alcool: etanol. Alceno: eteno.

$$\mathsf{b.}\quad \mathsf{CH_3} - \mathsf{CH_2} - \mathbf{OH} + \mathbf{HO} - \mathsf{CH_2} - \mathsf{CH_3} \rightarrow \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{O} - \mathsf{CH_2} - \mathsf{CH_3} + \mathsf{H_2O}$$

c. Éter: etoxietano.