COMPREHENSIVE EXAM IN ALGEBRAIC NUMBER THEORY (FALL 2014)

Recall that the Minkowski bound is

$$N(\mathfrak{a}) \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta_K|^{1/2}.$$

Please choose either the (E) (elementary) or (A) algebraic questions. You don't need to do both (although you can!)

- 1. Let K be the cubic field generated by a root of $x^3 + x^2 + 1$. Determine the following data associated to K:
 - (a) its **discriminant**;
 - (b) the **ring of integers**;
 - (c) the number of real and complex embeddings;
 - (d) the isomorphism class of its **unit group** (your answer should look like, e.g., $\mathbb{Z}^2 \times \mathbb{Z}/(6)$; you do not need to find the actual units);
 - (e) the list of ramified primes;
 - (f) the splitting types of the ideals (2), (3), (5), (7);
 - (g) whether or not K is **Galois** over \mathbb{Q} ; and if not, the Galois group of its Galois closure (i.e., the splitting field of $x^3 + 2x - 1$;
 - (h) (bonus: if you can) the **the class group**;
 - (i) (bonus: if you can) the **proportion of primes** which have the splitting types you found above.
- 2. Let K be the quartic field generated by a root of $f(x) := x^4 x^3 2x^2 3x 2$, and let L be its Galois closure. The aim of this exercise is to give a (partial) proof that its Galois group is S_4 .
 - (a) The discriminant of the ring generated by a root α of f(x) is -3751. Give a sketch of how you would prove this.
 - (b) What are the possible values for Disc(K)? (Bonus: actually determine Disc(K).)
 - (c) State an appropriate theorem which identifies an element of $Gal(L/\mathbb{Q})$ in terms of the splitting of a prime p in \mathcal{O}_K .
 - (d) By proving that $Gal(L/\mathbb{Q})$ contains 'enough' elements, prove that it is all of S_4 . If this becomes tedious, begin a proof and explain in detail how you would finish. Be sure not to assume that $\mathcal{O}_K = \mathbb{Z}[\alpha]$ unless you proved it previously.
 - (e) If f(x) instead generated a D_4 extension, it would be much more difficult to prove this. Explain why.
- 3. (a) Define the p-adic integers \mathbb{Z}_p (in any way you choose). Determine, with proof, the maximal ideal \mathfrak{m} and the residue class field $\mathbb{Z}_p/\mathfrak{m}$.
 - (b) Write out 5-adic expansions for $\frac{1}{4}$, 7, and $\sqrt{6}$ in \mathbb{Q}_5 . (First three digits for $\sqrt{6}$.)

- (c) (E) It is known that any element of \mathbb{Q} has a repeating decimal expansion when written in \mathbb{R} . Determine, with a proof or counterexamples, whether this result extends in a natural way to the p-adics.
- (d) Suppose you defined the 10-adic integers in an analogous way to the p-adics. State your definition precisely, and then prove that you don't obtain an integral domain.
- (e) (A) Like Z, $\mathbb{C}[x]$ is also a principal ideal domain. Define what should be the analogue of \mathbb{Z}_p for $\mathbb{C}[x]$, and describe the rings you obtain by your construction.
- 4. Compute the ring of integers and class group of $\mathbb{Q}(\sqrt{39})$.
- 5. (E) Let K be the number field generated by a root of $x^5 + 2x + 10$. It turns out that its ring of integers is generated by a root of this polynomial. Given this, compute Disc(K).
- 6. (A) Let L/K be an extension of number fields, let \mathcal{O}_L and \mathcal{O}_K be their rings of integers, and let \mathfrak{p} be a prime of \mathcal{O}_K . We are interested in proving that $\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$ is an $\mathcal{O}_K/\mathfrak{p}$ -vector space of dimension n := [L : K]. (This is an important step in the efg theorem.)
 - (a) Can we write the following, for some $\alpha_i \in \mathcal{O}_K$?

$$\mathcal{O}_L = \mathcal{O}_K \alpha_1 \oplus \cdots \oplus \mathcal{O}_K \alpha_n$$

If not in general, by quoting a relevant theorem give an example of a K for which we can do this.

(b) Assume that (1) holds. Prove that the images of the α_i under the natural reduction map modulo \mathfrak{p} form a basis for $\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$ as an $\mathcal{O}_K/\mathfrak{p}$ -vector space, thereby obtaining the result. You may (and almost certainly will) give a proof that requires an condition on \mathcal{O}_K . This is allowed, if you state your condition explicitly and if it does not restrict your proof to only $K = \mathbb{Q}$.