Uncountable Sets

Theorem: Cantor Diagonalization

The set of real numbers \mathbb{R} is uncountable.

Proof. ABC that (0,1) is countable. This means that there exists some bijection $f: \mathbb{N} \to (0,1)$. Let a_{ij} be j^{th} decimal digit of the i^{th} number:

$$f(1) = 0.a_{11}a_{12}a_{13}a_{14}a_{15} \cdots$$

$$f(2) = 0.a_{21}a_{22}a_{23}a_{24}a_{25} \cdots$$

$$f(3) = 0.a_{31}a_{32}a_{33}a_{34}a_{35} \cdots$$

$$f(4) = 0.a_{41}a_{42}a_{43}a_{44}a_{45} \cdots$$

$$f(5) = 0.a_{51}a_{52}a_{53}a_{54}a_{55} \cdots$$

$$\vdots = \vdots$$

If f(n) is rational with more than one representation, for example: $0.4\overline{9} = 0.5\overline{0}$, then the repeating 0 case is selected.

Now, let $b = b_1b_2b_3b_4b_5\cdots$ where:

$$b_i = \begin{cases} 1, & a_{ii} \neq 1 \\ 2, & a_{ii} = 1 \end{cases}$$

So b never contains a 0 or 9 digit and thus the non-unique cases are avoided. This means that $b \in (0,1)$ but $b \notin f(\mathbb{N})$, contradicting the bijectiveness of f. Thus, (0,1) is uncountable. But $(0,1) \subset \mathbb{R}$.

Therefore \mathbb{R} is uncountable.

Definition: Power Set

Let A be a set. The *power set* of A, denoted by 2^A , is the set of all subsets of A.

Example

Let $A = \{a, b, c\}$:

$$2^A = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

Theorem

Let *A* be a finite set:

$$|2^A| = 2^{|A|}$$

Proof. For each $B \in 2^A$, for each $a \in A$, either $a \in B$ or $a \notin B$: 2 possibilities. Therefore, since there are |A| elements in A:

$$|2^A| = 2^{|A|}$$

Theorem

Let A be a set. There exists an injection from A to 2^A .

Proof. Consider $f: A \to 2^A$ defined by $f(a) = \{a\} \subset A$. This is an injection from A to 2^A .

Theorem

Let A be a set and let P be the set of all functions from A to the two-point set $\{0,1\}$:

$$|P| = |2^A|$$

Proof. Consider the function $f: P \to 2^A$ defined by f(p) = B such that:

$$p(a) = \begin{cases} 0, & a \notin B \\ 1, & a \in B \end{cases}$$

Claim: f is a bijection.

Assume $f(p_1)=f(p_2)=B$. Assume $a\in A$. If $a\notin B$ then $p_1(a)=p_2(a)=0$. If $a\in B$ then $p_1(a)=p_2(a)=1$. So $\forall\, a\in A, p_1(a)=p_2(a)$. Thus, by definition, $p_1=p_2$ and therefore f is injective.

Now, assume $B \in 2^A$. Since $B \subset A$, for each $a \in A$, a is either not in B or in B. So define $p:A \to \{0,1\}$ as above. Thus $p \in P$ and f(p)=B. Therefore f is surjective.

Therefore f is a bijection and thus $|P| = |2^A|$.

Theorem

Let ${\cal B}$ be the set of all bit strings of infinite length.

$$|B| = |2^{\mathbb{N}}|$$

Proof. Let P be the set of all functions from \mathbb{N} to the two-point set $\{0,1\}$. Consider the function $f:P\to B$ defined by f(p)=b such that $b=b_1b_2b_3\cdots$ and $p(i)=b_i$.

Claim: f is a bijection.

Assume $f(p_1)=f(p_2)=b$. Assume $i\in\mathbb{N}$. If $b_i=0$ then $p_1(i)=p_2(i)=0$. If $b_i=1$ then $p_1(i)=p_2(i)=1$. So $\forall\,i\in\mathbb{N},p_1(i)=p_2(i)$. Thus, by definition, $p_1=p_2$ and therefore f is injective.

Now, assume $b \in B$. For each $i \in \mathbb{N}$, b_i is either 0 or 1. So define $p : \mathbb{N} \to \{0,1\}$ as above. Thus $p \in P$ and f(p) = b. Therefore f is surjective.

Thus f is a bijection and |P| = |B|. But, by the previous theorem, $|P| = |2^{\mathbb{N}}|$.

$$\therefore |B| = |2^{\mathbb{N}}|$$

Theorem: Cantor Power Set

Let A be a set:

$$|A| \neq |2^A|$$

Proof. Let $f:A\to 2^A$ and ABC that f is bijective. For all $a\in A$ let $f(a)=B_a$. This means that either $a\notin B_a$ or $a\in B_a$. Now, construct $B\in 2^A$ as follows:

$$B = \{ a \in A \mid a \notin f(a) \}$$

Note that if $a \notin B_a$ then $a \in B$ and if $a \in B_a$ then $a \notin B$ and so $\forall a \in A, B_a \neq B$. Thus, $B \in 2^A$ but $B \notin f(A)$, contradicting the bijectiveness of f.

$$\therefore |A| \neq |2^A|$$