

Práctica 2: Carga de datos

Patricia Lázaro Tello

Índice

1.	Introducción	2
2.	Identificación de los procesos ETL	7
	2.1. Bloque IN	7
	2.2. Bloque TR	8
3.	Diseño de los procesos ETL	10
	3.1. Staging area	10
	3.2. Modelo multidimensional	12
	3.3. Creación de los procesos ETL	17
	3.4. Volumetría	52
4.	Implementación de los <i>jobs</i> con ETL	53
	4.1. <i>Job</i> IN	53
	4.2. <i>Job</i> TR_DIM	54
	4.3. <i>Job</i> TR_FACT	55
	4.4. <i>Job</i> DW	56

1. Introducción

Este documento recoge implementación del modelo multidimensional y la carga de datos de las diferentes fuentes a dicho modelo. Para ello se ha tenido que configurar el entorno de trabajo *Pentaho Data Integration* (PDI), diseñar e implementar los distintos procesos de extracción, transformación y carga (ETL), incluyendo una *staging area*.

Parte de la base de la solución de la práctica 1, donde se detallaban las dimensiones y hechos del modelo multidimensional, así como las fuentes de datos que se iban a utilizar para la primera carga del modelo.

El documento se divide en los siguientes apartados, correspondientes a los pasos necesarios para la carga de datos en las tablas del modelo multidimensional:

- Identificación de los procesos ETL, creando los vínculos entre fuentes y tablas del staging area, así como la relación entre los datos y las tablas del modelo multidimensional.
- Diseño de los procesos ETL, traduciendo las relaciones identificadas en el paso anterior a instrucciones concretas en PDI.
- Implementación de los *jobs*, aglutinando las transformaciones creadas en el paso anterior según su función para el modelo multidimensional.

2. Matriz de dimensiones y métricas

	Envi	Environmental Measurements	
Proceso	STG_AmbientalProtection	STG_ProtectedAreas	STG_Residuos
O IM/Métrica	Inversión en protección	Áreas terrestre y	Gestión de residuos
	ambiental (€)	marina protegidas	y reclicaje
DIM_Date	×	×	×
noine Min	>	Relación indirecta a	Relación indirecta a
	<	través de los países	través de los países
DIM_Economic	×	A/N	A/N
ActivitySector	×		
DIM_TypeEquipment Installation	×	N/A	N/A
בחפ אוח	'Ambito' es el código de	'Unit' es el código de	'Var' es el código de
	las áreas objetivo	las áreas objetivo	las áreas objetivo
	'Ambito' es el código de	'Unit' es el código de	'Var' es el código de
	la measurement	la measurement	la measurement
DIM_Measurement			
	La unidad de la	'Unit' permite obtener	'Unit' es la unidad de
	measurement es €	la ud. de la measurement	la measurement
DIM_Product	N/A	N/A	N/A
VIM Country	Relación indirecta a	'Geo' es el código	'Cou' es el código
	través de la C.C.A.A.	ISO-2 del país	ISO-2 del país

		Environment	Environmental Measurements	
Proceso	STG_EnergyBalance	STG_Objectives	STG_ObjectivesAreas	STG_Countries
DIM\Métrica	1	1	1	
DIM_Date	N/A	N/A	N/A	N/A
DIM_Region	N/A	A/N	N/A	Relación indirecta a través de los países
DIM_Economic ActivitySector	N/A	A/N	N/A	N/A
DIM_TypeEquipment Installation	N/A	N/A	N/A	N/A
DIM_SDG	N/A	×	'ODS principal' hace referencia a pk_sdg	N/A
DIM_Measurement	N/A	'Objetivo' es FK de la tabla	×	N/A
DIM_Product	N/A	N/A	N/A	N/A
DIM_Country	N/A	N/A	N/A	N/A

	En	Energy Balances	
Proceso	STG_AmbientalProtection	STG_ProtectedAreas	STG_Residuos
DIM\Métrica	1		1
DIM_Date	A/N	N/A	A/A
DIM_Region	A/N	N/A	A/A
DIM_Economic	< 2		
ActivitySector			2
DIM_TypeEquipment	4 /2	V/N	V/N
Installation			2
DIM_SDG	A/N	N/A	A/A
DIM_Measurement	A/N	N/A	N/A
DIM_Product	A/N	N/A	A/A
DIM_Country	N/A	N/A	N/A

		Energy E	Energy Balances	
Proceso	STG_EnergyBalance	STG_Objectives	STG_ObjectivesAreas	STG_Countries
DIM\Métrica	Balance energético por países	1	1	ı
DIM_Date	×	N/A	N/A	N/A
DIM_Region	N/A	N/A	N/A	N/A
DIM_Economic ActivitySector	N/A	N/A	N/A	A/N
DIM_TypeEquipment Installation	N/A	N/A	N/A	N/A
DIM_SDG	'flow' es el código de las áreas objetivo	×	'ODS principal' hace referencia a pk_sdg	N/A
DIM_Measurement	'flow' contiene el código y la unidad de la measurement	'Objetivo' es FK de la tabla	×	N/A
DIM_Product	×	N/A	N/A	N/A
DIM_Country	N/A	A/N	N/A	×

3. Identificación de los procesos ETL

Una vez se han analizado las fuentes de datos y se ha diseñado un modelo multidimensional con sus hechos y dimensiones, es momento de crear dicho modelo y proceder a la carga de datos.

Para tal efecto, se estructurarán los procesos ETL según la función que cumplan dentro del proceso de carga de datos, tomando en cuenta las características de la misma:

- Tipo de carga: carga inicial
- Uso de staging area permitido

Dadas estas características, se encuentran 2 bloques bien diferenciados dentro de los procesos ETL identificados:

- Bloque IN: corresponde con la carga de las fuentes de datos a las tablas intermedias en el staging area.
- **Bloque TR**: corresponde con la transformación y carga de datos de las tablas intermedias del *staging area* a las tablas finales del modelo multidimensional.

En este bloque se encuentran los procesos ETL que corresponden con la carga de datos en las dimensiones y los que corresponden con la carga de datos en los hechos.

A continuación se definen los procesos de ETL de los bloques identificados, adjuntando información del nombre del proceso, una descripción sucinta, el origen y el destino de los datos.

3.1. Bloque IN

Cuadro 5: Relación origen-destino

Nombre	${\bf Origen} \to {\bf Destino}$
IN_AMBIENTALPROTECTION	02002.xlsx → STG_AmbientalProtection
IN_COUNTRIES	${\sf Countries.json} \to {\sf STG_Countries}$
IN_ENVBIO1	env_bio1.tsv → STG_ProtectedAreas
IN_OBJECTIVES	ODS.xlsx → STG_Objectives
IN_OBJECTIVESAREAS	ODS.xlsx → STG_ObjectivesAreas

IN_RESIDUOS	$DataGeneric.xml \to STG_Residuos$
IN WORLD ENERGY BALANCES	WorldEnergyBalancesHighlights_final.xlsx
IN_WORLD_LINEIGH_BALANGES	$ ightarrow$ STG_EnergyBalance

Cuadro 6: Descripción de los procesos ETL

Nombre	Descripción
	Carga de los datos de inversión en protección
IN_AMBIENTALPROTECTION	ambiental por Comunidad Autónoma en
	la staging area
IN COUNTRIES	Carga de los datos relativos a países en la
IIV_COONTINES	staging area
IN ENVBIO1	Carga de los datos de áreas protegidas por
IIV_EIVVBIOT	países en la <i>staging area</i>
IN OBJECTIVES	Carga de los objetivos de desarrollo sostenible
IIV_OBSECTIVES	en la <i>staging area</i>
	Carga de las relaciones entre objetivos de
IN_OBJECTIVESAREAS	desarrollo sostenible y áreas en la
	staging area
IN RESIDUOS	Carga de los datos de residuos en la
\frac{11\text{1-\text{ColD0000}}{11	staging area
IN WORLD ENERGY BALANCES	Carga de los datos de balance energético en
IN_WORLD_LIVEROT_BALANCES	la staging area

3.2. Bloque TR

Dentro del bloque de procesos ETL correspondientes a cargar los datos finales en las tablas del modelo multidimensional se encuentran otros 2 bloques: los correspondientes a la población de las tablas de dimensiones (**TR_DIM**) y los correspondientes a la población de las tablas de hechos (**TR_FACT**).

3.2.1. Bloque TR_DIM

Cuadro 7: Relación origen-destino

Nombre	Origen $ o$ Destino
TR_DIM_Country	STG_Countries → DIM_Country

TR_DIM_Date	entrada manual $ ightarrow$ DIM_Date
TR DIM EconomicActivitySector	$STG_AmbientalProtection \to$
TT_DIM_EconomicActivitySector	DIM_EconomicActivitySector
	STG_AmbientalProtection,
	STG_EnergyBalance,
TR_DIM_Measurement	STG_ProtectedAreas,
	STG_Residuos, STG_ObjectivesAreas
	$ ightarrow$ DIM_Measurement
TR_DIM_Product	STG_EnergyBalance → DIM_Product
TR_DIM_Region	${\sf STG_AmbientalProtection} \to {\sf DIM_Region}$
TR_DIM_SDG	$STG_Objectives \to DIM_SDG$
TR DIM TypeEquipmentInstallation	$STG_AmbientalProtection \to$
TY_DIM_TypeEquipmentinstallation	DIM_TypeEquipmentInstallation

Cuadro 8: Descripción de los procesos ETL

Nombre	Descripción
TR_DIM_Country	Carga de los datos relativos a países en el modelo
TR_DIM_Date	Carga de las fechas en el modelo
TR DIM EconomicActivitySector	Carga de los tipos de sectores de actividad
TT_DIM_EconomicActivitySector	económica en el modelo
TR_DIM_Measurement	Carga de los tipos de medidas en el modelo
TR_DIM_Product	Carga de los tipos de productos en el modelo
TR DIM Region	Carga de los datos de regiones por países en
TT_DIW_ITegion	el modelo
TR DIM SDG	Carga de los objetivos de desarrollo sotenible
TIV_DIWI_SDG	en el modelo
TR DIM TypeEquipmentInstallation	Carga de los tipos de instalaciones y equipamiento
TY_DIM_TypeEquipmentinstallation	en el modelo

3.2.2. Bloque TR_FACT

Cuadro 9: Relación origen-destino

Nombre	$\mathbf{Origen} \to \mathbf{Destino}$
TR FACT EnergyBalances	$STG_EnergyBalance \to$
TIV_I ACT_Ellergybalances	FACT_EnergyBalance

	STG_AmbientalProtection, STG_Residuos,
TR_FACT_EnvironmentalMeasurements	$STG_ProtectedAreas \to$
	FACT_EnvironmentalMeasurements

Cuadro 10: Descripción de los procesos ETL

Nombre	Descripción
TR_FACT_EnergyBalances	Carga de los datos relativos al balance
	de energía en el modelo
TR_FACT_EnvironmentalMeasurements	Carga de las medidas ambientales en
	el modelo

4. Diseño de los procesos ETL

Después de identificar los procesos de extracción, transformación y carga de datos, se ha de proceder a diseñar e implementar las tablas SQL en las que los datos estarán contenidos, así como los procesos ETL para poblarlas.

4.1. Staging area

La creación de las tablas intermedias del *staging area* se realizará dentro de un *job* de PDI, antes de comenzar la transformación y carga de datos en las mismas. El proceso de creación de las tablas también podría llevarse a cabo una única vez a través de la ejecución de *scripts* en la base de datos SQL Server.

Script 1: STG_AmbientalProtection

```
CREATE TABLE [dbo].[STG_AmbientalProtection](

[Periodo] [int] NOT NULL,

[Sector] [varchar](100) NOT NULL,

[EquipoInstalacion] [varchar](200) NULL,

[Ambito] [varchar](200) NULL,

[ComunidadAutonoma] [varchar](200) NULL,

[Inversion] [decimal](19,4) NULL,

ON [PRIMARY]
```

Script 2: STG_Objectives

```
CREATE TABLE [dbo].[STG_Objectives](
[Objetivo] [int] NOT NULL,
```



```
[Nombre] [varchar] (100) NULL,

[Descripcion] [varchar] (512) NULL

ON [PRIMARY]
```

Script 3: STG_ObjectivesAreas

```
CREATE TABLE [dbo].[STG_ObjectivesAreas](
[Codigo] [varchar](100) NOT NULL,
[AmbitoVarFlow] [varchar](200) NULL,
[ODS principal] [int] NOT NULL

ON [PRIMARY]
```

Script 4: STG_EnergyBalance

```
CREATE TABLE [dbo].[STG_EnergyBalance](
[country] [varchar] (255) NULL,
[product] [varchar] (255) NULL,
[flow] [varchar] (255) NULL,
[year] [int] NULL,
[value] [float] NULL) ON [PRIMARY]
```

Script 5: STG_Countries

```
CREATE TABLE [dbo].[STG_Countries](

[Nombre] [varchar](50) NOT NULL,

[Name] [varchar](50) NULL,

[Nom] [varchar](50) NULL,

[Iso2] [varchar](2) NOT NULL,

[Iso3] [varchar](3) NOT NULL,

[Phone] [varchar](10) NULL

NON [PRIMARY]
```

Script 6: STG_ProtectedAreas

```
CREATE TABLE [dbo].[STG_ProtectedAreas](

[Geo][varchar](10) NOT NULL,

[Year] [int] NOT NULL,

[Unit][varchar](15) NOT NULL,

[Value][decimal](19,4) NULL,

ON [PRIMARY]
```

Script 7: STG Residuos

```
CREATE TABLE [dbo].[STG_Residuos](
[Cou][varchar](10) NOT NULL,
[Var][varchar](25) NULL,
[TimeFormat][varchar](5) NULL,
```



```
[Unit][varchar](15) NULL,
[Powercode][int] NULL,
[Year][int] NULL,
[Obs][decimal](19,4) NULL,
[Status][varchar](5) NULL
] ON [PRIMARY]
```

Las tablas intermedias se han creado sin índices para facilitar la carga de datos desde las fuentes de origen. Todas las tablas de la *staging area* tienen el prefijo «STG_» en su nombre.

4.2. Modelo multidimensional

El modelo multidimensional se ha estructurado de acuerdo a la división entre dimensiones y hechos. Los hechos tienen el prefijo «FACT_» mientras que las dimensiones cuentan con el prefijo «DIM » en su nombre de tabla.

4.2.1. Dimensiones

Para las tablas de las dimensiones, se han creado claves primarias (*primary keys*) de tipo entero para permitir ser referenciadas de forma sencilla por las tablas de hechos.

Script 8: DIM_Measurement

```
CREATE TABLE [dbo].[DIM_Measurement](

[pk_measurement] [int] NOT NULL,

[measurement_code] [varchar](100) NULL,

[measurement_name] [varchar](200) NULL,

[unit] [varchar](25) NULL,

[fk_sdg] [int] NULL,

CONSTRAINT [PK_DIM_Measurement] PRIMARY KEY CLUSTERED (

[pk_measurement] ASC

) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]
```

Script 9: DIM_Date

```
CREATE TABLE [dbo].[DIM_Date](
[pk_date] [int] NOT NULL,

[date_year] [int] NOT NULL,

[date_month] [int] NOT NULL,
```



```
[date_day] [int] NOT NULL,

[date_date] [datetime] NOT NULL,

CONSTRAINT [PK_DIM_Date] PRIMARY KEY CLUSTERED (

[pk_date] ASC

) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

ON [PRIMARY]
```

Script 10: DIM_EconomicActivitySector

```
CREATE TABLE [dbo].[DIM_EconomicActivitySector](

[pk_activitysector] [int] NOT NULL,

[activitysector_name] [varchar](100) NULL,

CONSTRAINT [PK_DIM_EconomicActivitySector] PRIMARY KEY CLUSTERED (

[pk_activitysector] ASC

) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]
```

Script 11: DIM_TypeEquipmentInstallation

Script 12: DIM_Product

```
CREATE TABLE [dbo].[DIM_Product](

[pk_product] [int] NOT NULL,

[product_name] [varchar](100) NULL,

CONSTRAINT [PK_DIM_Product] PRIMARY KEY CLUSTERED (

[pk_product] ASC

) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]
```

Script 13: DIM_Region

```
CREATE TABLE [dbo].[DIM_Region](
[pk_region] [int] NOT NULL,
[region] [varchar](100) NULL,
```



```
[country_code2] [varchar](2) NULL,
[country_code3] [varchar](3) NULL,
[country_name] [varchar](100) NULL,

CONSTRAINT [PK_DIM_Region] PRIMARY KEY CLUSTERED (
[pk_region] ASC
] WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

ON [PRIMARY]
```

Script 14: DIM_SDG

```
CREATE TABLE [dbo].[DIM_SDG](

[pk_sdg] [int] NOT NULL,

[sdg_name] [varchar](50) NULL,

[sdg_description] [varchar](500) NULL,

CONSTRAINT [PK_DIM_SDG] PRIMARY KEY CLUSTERED (

[pk_sdg] ASC

) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]
```

Script 15: DIM_Country

```
CREATE TABLE [dbo].[DIM_Country](

[pk_country] [int] NOT NULL,

[country_code] [varchar](2) NULL,

[country_name_sp] [varchar](100) NULL,

[country_name_en] [varchar](100) NULL,

[country_name_fr] [varchar](100) NULL,

[country_phone_code] [varchar](5) NULL,

CONSTRAINT [PK_DIM_Country] PRIMARY KEY CLUSTERED (

[pk_country] ASC

) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]
```

4.2.2. **Hechos**

Para las tablas de hechos también se han definido claves primarias (*primary keys*) según el diseño propuesto en la solución de la práctica 1.

Script 16: FACT_EnvironmentalMeasurements


```
CREATE TABLE [dbo].[FACT_EnvironmentalMeasurements](
          [pk_id] [int] NOT NULL,
          [fk_date] [int] NOT NULL,
          [fk_region] [int] NOT NULL,
          [fk_activitysector] [int] NOT NULL,
          [fk_typeequipinstall] [int] NOT NULL,
          [fk measurement] [int] NOT NULL,
          [value] [decimal](19,4) NULL,
      CONSTRAINT [PK_FACT_EnvironmentalMeasurements] PRIMARY KEY CLUSTERED (
9
          [pk_id] ASC
10
     ) WITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY =
11
     OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
      ) ON [PRIMARY]
```

Script 17: FACT_EnergyBalances

```
CREATE TABLE [dbo].[FACT_EnergyBalances](
          [pk_fk_date] [int] NOT NULL,
          [pk_fk_country] [int] NOT NULL,
          [pk_fk_product] [int] NOT NULL,
          [pk_fk_measurement] [int] NOT NULL,
          [value] [decimal](19,4) NULL,
6
      CONSTRAINT [PK_FACT_EnergyBalances] PRIMARY KEY CLUSTERED (
          [pk_fk_date] ASC,
          [pk_fk_country] ASC,
          [pk_fk_product] ASC,
10
          [pk fk measurement] ASC
11
     )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
     OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
    ) ON [PRIMARY]
```

4.2.3. Foreign keys

Después de crear todas las tablas de dimensiones y hechos se han definido las restricciones (*constraints*) para las claves foráneas (*foreign keys*) de todas las tablas que poseen una.

Script 18: Foreign keys

```
ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] WITH CHECK ADD CONSTRAINT [FK_FACT_EnvironmentalMeasurements_DIM_Date] FOREIGN KEY([fk_date])

REFERENCES [dbo].[DIM_Date] ([pk_date])
```



```
ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] CHECK CONSTRAINT [
     FK_FACT_EnvironmentalMeasurements_DIM_Date]
      ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] WITH CHECK ADD
     CONSTRAINT [FK_FACT_EnvironmentalMeasurements_DIM_EconomicActivitySector
     FOREIGN KEY([fk_activitysector])
      REFERENCES [dbo].[DIM_EconomicActivitySector] ([pk_activitysector])
      ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] CHECK CONSTRAINT [
     FK_FACT_EnvironmentalMeasurements_DIM_EconomicActivitySector]
10
      ALTER TABLE [dbo].[FACT EnvironmentalMeasurements] WITH CHECK ADD
11
     CONSTRAINT [FK_FACT_EnvironmentalMeasurements_DIM_Measurement] FOREIGN
     KEY([fk_measurement])
      REFERENCES [dbo].[DIM_Measurement] ([pk_measurement])
12
13
      ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] CHECK CONSTRAINT [
14
     FK_FACT_EnvironmentalMeasurements_DIM_Measurement]
15
      ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] WITH CHECK ADD
16
     CONSTRAINT [FK_FACT_EnvironmentalMeasurements_DIM_Region] FOREIGN KEY([
     fk_region])
      REFERENCES [dbo].[DIM_Region] ([pk_region])
17
18
      ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] CHECK CONSTRAINT [
19
     FK_FACT_EnvironmentalMeasurements_DIM_Region]
20
      ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] WITH CHECK ADD
21
     CONSTRAINT [
     FK_FACT_EnvironmentalMeasurements_DIM_TypeEquipmentInstallation] FOREIGN
      KEY([fk_typeequipinstall])
      REFERENCES [dbo].[DIM_TypeEquipmentInstallation] ([pk_typeequipinstall
     ])
23
      ALTER TABLE [dbo].[FACT_EnvironmentalMeasurements] CHECK CONSTRAINT [
24
     FK_FACT_EnvironmentalMeasurements_DIM_TypeEquipmentInstallation]
25
      ALTER TABLE [dbo].[FACT_EnergyBalances] WITH CHECK ADD CONSTRAINT [
     FK_FACT_EnergyBalances_DIM_Country] FOREIGN KEY([pk_fk_country])
      REFERENCES [dbo].[DIM_Country] ([pk_country])
27
28
      ALTER TABLE [dbo].[FACT_EnergyBalances] CHECK CONSTRAINT [
     FK_FACT_EnergyBalances_DIM_Country]
30
```



```
ALTER TABLE [dbo].[FACT_EnergyBalances] WITH CHECK ADD CONSTRAINT [
FK_FACT_EnergyBalances_DIM_Date] FOREIGN KEY([pk_fk_date])

REFERENCES [dbo].[DIM_Date] ([pk_date])

ALTER TABLE [dbo].[FACT_EnergyBalances] CHECK CONSTRAINT [
FK_FACT_EnergyBalances_DIM_Date]

ALTER TABLE [dbo].[FACT_EnergyBalances] WITH CHECK ADD CONSTRAINT [
FK_FACT_EnergyBalances_DIM_Measurement] FOREIGN KEY([pk_fk_measurement])

REFERENCES [dbo].[DIM_Measurement] ([pk_measurement])
```

4.3. Creación de los procesos ETL

Una vez ejecutados los *scripts* anteriores, la base de datos habrá de tener las tablas creadas y listas para ser pobladas. Los siguientes pasos incluyen configurar el entorno PDI para conectar con las bases de datos y crear los procesos ETL para cargar los datos en las tablas.

4.3.1. Variables de entorno y setup

En primer lugar es necesario cargar las variables de entorno en PDI. Estas variables de entorno incluyen la localización de las fuentes y la conexión a las bases de datos del *data warehouse* y *staging area*.

Estas variables pueden ser cargadas en cada *job* ejecutado mediante el nodo «Set variables» como se muestra en la figura, o se pueden cargar globalmente mediante la adición de propiedades en kettle.properties, o se pueden cargar para la sesión mediante el menú Edit >Set Environment Variables...

Figura 1: Valores de las variables de entorno

4.3.2. Conexión a la base de datos

Aunque la base de datos del modelo multidimensional y la del *staging area* son la misma, es necesario crear una conexión a la base de datos para cada una de ella. Esta separación de bases de datos final e intermedia se utiliza para poder hacer el sistema más flexible y escalable en un futuro.

Figura 2: Conexión a la base de datos del modelo multidimensional

Figura 3: Conexión a la base de datos intermedia

4.3.3. Bloque IN

El bloque IN corresponde con las transformaciones que tienen como origen las fuentes de datos en bruto o *raw* y como destino la base de datos intermedia. A continuación se detallan los pasos seguidos para cada uno de los procesos.

IN_AMBIENTALPROTECTION Row normaliser Corregir nombres CCAA STG_AmbientalProtection 02002.xlsx Null if Inversion=... Periodo, Inversion a INT

Figura 4: IN_AMBIENTALPROTECTION

En primer lugar, se procede a leer los datos del fichero fuente, "02002.xlsx". Se leen todos los campos de la hoja "tabla-0" y para cada campo se recortan todos sus valores, para evitar posibles caracteres invisibles.

A continuación se transforman las columnas correspondientes con las Comunidades Autónomas.

Se crea un campo "ComunidadAutonoma" y los valores de las distintas columnas se almacenan en "Inversion".

Por último, se cambian a *«null»* los valores de "Inversion" no numéricos, se cambia el formato de los valores de las Comunidades Autónomas, se cambian los tipos de "Inversion" y "Periodo" as entero y se vuelca el resultado en la base de datos del *staging area*.

Los resultados de ejecutar la transformación se encuentran en la siguiente figura:

Se han cargado 2.772 registros en STG_AmbientalProtection.

Figura 5: IN_COUNTRIES

El fichero JSON con los datos de los países ya se encuentra correctamente formateado, por lo que el único paso necesario es leerlo y escribir en la tabla intermedia.

A continuación se muestran los resultados de la ejecución:

Se han introducido 246 registros en STG_Countries.

IN_ENVBIO1 IN_ENVBIO1 Envio_bio1 Split fields Row normaliser Solo numeros STG_ProtectedAreas

Figura 6: IN_ENVBIO1

Se obtienen los campos del TSV delimitados por tabuladores; se corta el campo areaprot_geo\time y se normalizan los años. Después se obtienen solo los valores numéricos y se introducen los datos transformados en la tabla STG_ProtectedAreas.

Se muestran los resultados de la ejecución de la transformación:

Se han insertado 1.080 registros en la tabla STG_ProtectedAreas.

Figura 7: IN_OBJECTIVES

Los datos del fichero fuente ya se encuentran correctamente formateados; solo hay que cargarlos e insertarlos en la base de datos intermedia.

Se han insertado 17 registros en la tabla STG Objectives.

IN_OBJECTIVESAREAS

Figura 8: IN_OBJECTIVESAREAS

Los datos del fichero fuente ya se encuentran correctamente formateados; solo hay que cargarlos e insertarlos en la base de datos intermedia.

Se han insertado 50 registros en la tabla STG ObjectivesAreas.

Figura 9: IN_RESIDUOS

Los datos del fichero fuente no se encuentran correctamente formateados; hay que cargarlos, eliminar las observaciones no numéricas e insertar los datos transformados en la base de datos intermedia.

Se han insertado 20.779 registros en la tabla STG Residuos.

WorldEnergyBalancesHighlights_final Normalización filas Nulo SI Eliminar caracteres incorrectos (1) Salida Tabla Ordenación filas Selección valores

Figura 10: IN WORLD ENERGY BALANCES

Los datos del fichero fuente no se encuentran correctamente formateados; hay que cargarlos, normalizar las columnas de los años, eliminar las observaciones no numéricas e insertar los datos transformados en la base de datos intermedia. Además, se han transformado 2 valores perdidos de países.

Se han insertado 296.352 registros en la tabla STG_EnergyBalance.

4.3.4. Bloque TR_DIM

Figura 11: TR_DIM_COUNTRY

Los datos de la tabla intermedia se encuentran correctamente formateados. El único campo a crear es la clave primaria única, que se construirá con un nodo *«Add sequen-ce»*.

Se han insertado 246 registros en la tabla DIM Country.

Figura 12: TR_DIM_DATE

No se cuenta con datos en las tablas del *staging area*, sino que hay que crear las fechas manualmente. Se sabe que los datos están disponibles en el rango de años 1971-2019; por tanto, hay que generar registros para cada día entre esos años.

En primer lugar se crean $(2019-1971) \times (365+1) = 17{,}568 \approx 18{,}000$ registros con la fecha del primer día, 1 de enero de 1971. A cada registro se le añade una secuencia, que comienza en 0, para después sumar a la fecha la secuencia y obtener el día, mes y año de la fecha final.

Por último, para crear la clave primaria se utiliza la secuencia que comienza en 0 y se le suma 1; así se obtiene un número positivo único para cada registro; y se seleccionan solo los valores en el rango 1971-2019.

Se han insertado 17.897 registros en la tabla DIM_Date.

Figura 13: TR_DIM_ECONOMICACTIVITYSECTOR

Se procede a extraer los distintos sectores de la tabla intermedia correspondiente a la inversión en protección ambiental por las Comunidades Autónomas. Se añade también un registro "NA" para los hechos que no tengan sector asociado.

Se han insertado 2 registros en la tabla DIM EconomicActivitySector.

Figura 14: TR_DIM_MEASUREMENT

Para obtener los tipos de mediciones que registra el modelo multidimensional, es necesario cruzar los datos de varias tablas intermedias, concretamente las que tienen datos de mediciones y unidades de las mismas.

Para el flujo de datos de la tabla de protección ambiental por Comunidad Autónoma, se han de cruzar sus datos con las áreas de los Objetivos de Desarrollo Sostenible (ODS). Todas las medidas se encuentran en €, por lo que se añade también una constante para representarlo. Por último, se limpian las cadenas de texto y se convierten en minúsculas.

Para el flujo de datos de la tabla de balances energéticos, se ha de desglosar el campo "flow" en el código del ODS y las unidades. Este campo presenta la siguiente estructura: "código (unidades)". Se separa el campo por "(" y se elimina de las unidades ")".

Para el flujo de datos de áreas protegidas se han de mapear los códigos del ODS, que contienen embebida la información de la unidades, con las unidades.

Por último, el flujo de datos de residuos tiene que cruzarse con las áreas del ODS de la *staging area*. Algunos valores de la tabla de residuos no tienen contraparte en la tabla de áreas del ODS; para rellenar estos valores restantes se ejecuta una operación «NVL» que rellenará "AmbitoVarFlow" con "Var" en caso de que no exista la primera.

El siguiente paso consiste en renombrar los campos del *stream* y cambiar algunos valores de "measurement_name" (debido al «NVL» se han isnertado caracteres incorrectos) y transformar "PC" a "%" en las unidades. Por último se normalizarán las cadenas de texto y se cambiarán los valores nulos en las unidades a "%".

En último lugar se procede a unir los flujos de datos creados anteriormente, ordenándolos por código de medida, se filtran aquellas filas que no tengan ODS asociado, se crea la clave primaria única con una secuencia y se introduce el resultado en la tabla.

Se muestran los resultados de la ejecución:

Se han insertado 50 registros en la tabla DIM Measurement.

TR_DIM_PRODUCT STG_EnergyBalance Add sequence DIM_Product

Figura 15: TR_DIM_PRODUCT

Se recogen los productos distintos de la tabla de balance energético, se añade una clave primaria numérica con *«Add sequence»* y se introducen en la tabla de la dimensión del producto en el modelo multidimensional. A continuación se muestran los resultados de la ejecución:

Se han insertado 11 registros en la tabla DIM Product.

Comunidades autonomas Filter rows Countries (ESP) Countries (All) Sorted merge Add sequence DIM_Region Countries (Cartesian product) 2 Generate rows

Figura 16: TR_DIM_REGION

Para completar la tabla de regiones, se necesita la información de las Comunidades Autónomas y rellenar con "NA" el resto de países. En primer lugar se procede con el flujo de datos correspondiente a las Comunidades Autónomas, rellenando los campos restantes con la información de España de la tabla intermedia STG_Countries.

Para el resto de países, se les añade solo la región "NA", dado que no se tiene más

información de regiones que la de las Comunidades Autónomas.

Por último se unen ambos flujos y se les añade la clave primaria única numérica; después se introducen los nuevos datos en la base de datos del modelo multidimensional.

A continuación se muestran los resultados de la ejecución:

Se han insertado 263 registros en la tabla DIM_Region.

Table input (STG_Investments) Add sequence Table output (DIM_TypeEquipmentInstallation)

Figura 17: TR_DIM_TYPEEQUIPMENTINSTALLATION

La transformación de la tabla intermedia a la tabla del modelo multidimensional es trivial; solo hay que recuperar los registros del *staging area*, añadir la clave primaria única numérica como en transformaciones anteriores e introducirlos en la tabla de la dimensión.

Se han insertado 3 registros en la tabla DIM_TypeEquipmentInstallation.

4.3.5. Bloque TR_FACT

TR_FACT_ENERGYBALANCES STG_EnergyBalance FACT_EnergyBalance

Figura 18: TR_FACT_ENERGYBALANCES

La transformación de la tabla intermedia a la tabla del modelo multidimensional corresponde con una consulta SQL que mezcla tablas del *staging area* con las tablas de dimensiones ya creadas del modelo multidimensional.

```
SELECT

dbo.DIM_Country.pk_country as pk_fk_country
, dbo.DIM_Product.pk_product as pk_fk_product
, dbo.DIM_Product.pk_measurement as pk_fk_measurement
, "value"

FROM dbo.STG_EnergyBalance

INNER JOIN dbo.DIM_Date on dbo.STG_EnergyBalance.country=dbo.DIM_Country.country_name_en

LEFT JOIN dbo.DIM_Product on dbo.STG_EnergyBalance.ryear*dbo.DIM_Date.date_year

LEFT JOIN dbo.DIM_Product on dbo.STG_EnergyBalance.flow LIKE '%' + dbo.DIM_Product_name

LEFT JOIN dbo.DIM_Date.date_day=1 and dbo.DIM_Date.date_month=1 and DIM_Country.pk_country IS NOT NULL
and DIM_Date.pk_date IS NOT NULL and DIM_Product.pk_product IS NOT NULL and DIM_Product.pk_measurement IS NOT NULL
order by dbo.STG_EnergyBalance.country
```

Los resultados de ejecutar la transformación:

Se han insertado 225.008 registros en la tabla FACT_EnergyBalances.

TR_FACT_ENVIRONMENTALMEASUREMENTS

Figura 19: TR_FACT_ENVIRONMENTALMEASUREMENTS

La transformación de la tabla intermedia a la tabla del modelo multidimensional corresponde con varias consultas SQL que mezcla tablas del *staging area* con las tablas de dimensiones ya creadas del modelo multidimensional.

Los resultados de ejecutar la transformación:

Se han insertado 26.603 registros en la tabla FACT_EnvironmentalMeasurements.

4.4. Volumetría

4.4.1. Staging area

Nombre	Registros cargados		
IN_AMBIENTALPROTECTION	2.772		
IN_COUNTRIES	246		
IN_ENVBIO1	1.080		
IN_OBJECTIVES	17		
IN_OBJECTIVESAREAS	50		
IN_RESIDUOS	20.779		
IN_WORLDENERGYBALANCES	296.352		
Total	321.296		

4.4.2. Modelo multidimensional

Nombre	Registros cargados		
TR_DIM_COUNTRY	17.897		
TR_DIM_ECONOMICACTIVITYSECTOR	2		
TR_DIM_MEASUREMENT	50		
TR_DIM_PRODUCT	11		
TR_DIM_REGION	263		
TR_DIM_TYPEEQUIPMENTINSTALLATION	3		
Total	18.226		

Nombre	Registros cargados		
TR_FACT_ENERGYBALANCES	225.008		
TR_FACT_ENVIRONMENTALMEASUREMENTS	26.603		
Total	251.611		

5. Implementación de los jobs con ETL

Los trabajos que ejecutarán las transformaciones siguen la misma estructura que las propias transformaciones.

- Se utilizará un job para cargar las fuentes de datos a la staging area (job IN).
- Se utilizará un *job* para cargar las tablas correspondientes a las dimensiones desde la *staging area* (*job* TR_DIM).
- Se utilizará un job para cargar las tablas de los hechos (job TR_FACT).
- Se utilizará un job para cargarlo todo en un único paso (job DW).

5.1. **Job IN**

El *job* configura el entorno del PDI, recrea las tablas intermedias del *staging area* y ejecuta secuencialmente las transformaciones «IN». El resultado de la ejecución es:

Execution Results Logging O History 📜 Job metrics 📜 Metrics Job / Job Entry Filename Result Reason Log date ✓ JOB IN Job: JOB_IN 2021/12/11 12:36:36 Start of job execution start Start Start of job execution 2021/12/11 12:36:36 Start Job execution finished Success 2021/12/11 12:36:36 2021/12/11 12:36:36 Start of job execution Followed unconditional link Set variables 2021/12/11 12:36:36 2021/12/11 12:36:36 SQL - Crear tablas intermedias Start of job execution Followed link after success SQL - Crear tablas intermedias Job execution finished Success ProteccionAmbiental Start of job execution Followed link after success 2021/12/11 12:36:36 **ProteccionAmbiental** Job execution finished Success 2021/12/11 12:36:38 2021/12/11 12:36:38 Paises Start of job execution Followed link after success 2021/12/11 12:36:38 Followed link after success EnvBio1 Start of job execution EnvBio1 Success Objetivos Start of job execution Followed link after success 2021/12/11 12:36:38 Success 2021/12/11 12:36:39 AreasDeObjetivos 2021/12/11 12:36:39 Start of job execution Followed link after success AreasDeObjetivos ution finished 2021/12/11 12:36:39 2021/12/11 12:36:39 Residuos Start of job execution Followed link after success Success ${\sf Balance Energetico}$ Start of job execution Followed link after success 2021/12/11 12:36:44 2021/12/11 12:37:09 BalanceEnergetico Job execution finished Success 2021/12/11 12:37:09 Start of job execution Success Job execution finished Success 2021/12/11 12:37:09 2021/12/11 12:37:09 Job: JOB IN Job execution finished

5.2. Job TR_DIM

El *job* configura el entorno del PDI, elimina los registros de las tablas de dimensiones del modelo multidimensional y ejecuta secuencialmente las transformaciones «TR_DIM_». El resultado de la ejecución es:

Job / Job Entry	Comment	Result	Reason	Filename	Nr	Log date
✓ JOB TR DIM						
Job: JOB TR DIM	Start of job execution		start			2021/12/11 12:43:29
Start	Start of job execution		start			2021/12/11 12:43:2
Start	Job execution finished	Success			0	2021/12/11 12:43:2
Set variables	Start of job execution		Followed unconditional link			2021/12/11 12:43:2
Set variables	Job execution finished	Success			0	2021/12/11 12:43:2
DELETE ROWS	Start of job execution		Followed link after success			2021/12/11 12:43:2
DELETE ROWS	Job execution finished	Success			0	2021/12/11 12:43:2
DIM_DATE	Start of job execution		Followed link after success			2021/12/11 12:43:2
DIM_DATE	Job execution finished	Success			3	2021/12/11 12:43:
DIM_Country	Start of job execution		Followed link after success			2021/12/11 12:43:
DIM_Country	Job execution finished	Success			4	2021/12/11 12:43:
DIM_SDG	Start of job execution		Followed link after success			2021/12/11 12:43:
DIM_SDG	Job execution finished	Success			5	2021/12/11 12:43:
DIM_Product	Start of job execution		Followed link after success			2021/12/11 12:43:
DIM_Product	Job execution finished	Success			6	2021/12/11 12:43:
DIM_EconomicActivitySector	Start of job execution		Followed link after success			2021/12/11 12:43:
DIM_EconomicActivitySector	Job execution finished	Success			7	2021/12/11 12:43:
DIM_TypeEquipmentInstallation	Start of job execution		Followed link after success			2021/12/11 12:43:
DIM_TypeEquipmentInstallation	Job execution finished	Success			8	2021/12/11 12:43:
DIM_Region	Start of job execution		Followed link after success			2021/12/11 12:43:
DIM_Region	Job execution finished	Success			9	2021/12/11 12:43:
DIM_Measurement	Start of job execution		Followed link after success			2021/12/11 12:43:
DIM_Measurement	Job execution finished	Success			10	2021/12/11 12:43:3
Job: JOB_TR_DIM	Job execution finished	Success	finished		10	2021/12/11 12:43:3

5.3. Job TR_FACT

El *job* configura el entorno del PDI, elimina los registros de las tablas de hechos del modelo multidimensional y ejecuta secuencialmente las transformaciones «TR_FACT_». El resultado de la ejecución es:

5.4. **Job DW**

El *job* configura el entorno del PDI, crea las tablas del modelo multidimensional y ejecuta secuencialmente los anteriores trabajos. Por último, elimina las tablas del *staging area* cuando ya no son necesarias. El resultado de la ejecución es:

El tiempo total de la carga inicial del data warehouse es de algo más de un minuto.