Конспект по Матлогу. Часть 1

Штукенберг Дмитрий

под редакцией Чепелина Вячеслава

Содержание

1	Лекция 5.	3						
1.1	Введение в исчисление предикатов	3						
1.2	Язык исчисления предикатов							
	1.2.1 Формальное определение	5						
1.3	Теория моделей исчисления предикатов	5						
	1.3.1 Оценка исчисления предикатов	6						
	1.3.2 Общезначимость и свободные переменные							
1.4	Теория доказательств исчисления предикатов							
1.5	Теоремы о исчислении предикатов	8						
	1.5.1 Теорема о дедукции							
	1.5.2 Корректность подстановки							
	1.5.3 Корректность исчисления предикатов							
2	Лекция 6.	10						
2.1	Теорема о полноте							
2.2	Модели для множеств формул							
2.3	Конструкция модели							
2.4	Теорема Гёделя о полноте							
2.5	Полнота исчисления предикатов							
2.6	Непротиворечивость исчисления предикатов							
2.7	Теорема Гёделя о компактности							
	•							
	Лекция 7:	17						
3.1	Машина Тьюринга							
	3.1.1 Неразрешимость задачи останова							
3.2	Аксиоматика Пеано и формальная арифметика	. 19						
3.3	Натуральные числа: аксиоматика Пеано	. 20						
	3.3.1 Обозначения и определения	. 20						
3.4	Уточнение исчисления предикатов	. 20						
3.5	Теория первого порядка							
3.6	Порядок логики/теории							
3.7	Формальная арифметика	. 21						

4 J	Іекция 8.	23
4.1	Арифметизация в работах Лейбница	. 23
4.2	Соглашения о записи	. 23
4.3	Примитивно-рекурсивные функции: $x + y$. 24
4.4	Общерекурсивные функции	. 24
4.5	Тезис Чёрча	. 25
4.6	Выразимость отношений в Ф.А	. 26
4.7	Представимость функций в Ф.А.	. 26
4.8	Соответствие рекурсивных и представимых функций	. 26
4.9	Примитив S представим в Ф.А	. 27
4.10	β -функция Гёделя	. 27
4.11	Примитив «примитивная рекурсия» представим в Ф.А	. 28
4.12	Представимость рекурсивных функций в Ф.А	. 28
4.13	Рекурсивность представимых в Ф.А. функций	. 28
	Гёделева нумерация	
5 I	Інформация о курсе.	30

1 Лекция 5.

1.1 Введение в исчисление предикатов

<u>def:</u> Силлогизм — «подытоживание, подсчёт, умозаключение»

<u>def:</u> Категорический — потому, что речь идёт о категориях (в философском смысле).

Определяем некоторые стандартные мыслительные блоки, с которыми у образованной аудитории есть навык работы. Цель — сделать неформальный человеческий язык чуть более формальным. Где важно: научный трактат, диспут, для исключения ошибок в рассуждениях.

Язык рассуждений понимается единым, без разделения на язык исследователя и предметный.

Пример категорического силлогизма:

Категорический силллогизм соединяет три термина:

предикат (больший термин, P) субъект (меньший термин, S) средний термин (M).

На основании соотношений Р и М, а также М и S строим соотношение Р и S.

Возможные соотношения:

A Affirmato (общеутвердительное) Матан есть раздел математики (SaP)

I affIrmato (частноутвердительное) Некоторые разделы математики сложны (SiP)

E nEgo (общеотрицательное) Никакой человек не знает всю математику

O negO (частноотрицательное) Некоторые разделы математики — не матан

<u>def:</u> Каждому силогизму соответствует фигура

	Фигура 1	Фигура 2	Фигура 3	Фигура 4
	$S \xrightarrow{M} P$	P = M $S = M$	M P M S	$P \longrightarrow M$ $M \longrightarrow S$
Большая посылка:	M-P	P-M	M-P	P-M
Меньшая посылка:	S-M	S-M	M— S	M— S
Заключение:	S—P	S—P	S—P	S—P

Расстановка соотношений вместо «—» в фигуре — модус. Например, тут — фигура 1, ааа.

$$\frac{\text{Каждый человек смертен}}{\text{Сократ смертен}}$$

Как этим пользоваться: по умозаключению (на русском языке) определяем, где в нём P, M, S и каковы между ними соотношения, находим соответствующую фигуру и модус, а дальше определяем силлогизм и его свойства в соответствии со следующими правилами.

Не все модусы осмысленны, большинство некорректно. Например фигура 1, аае:

Список всех правильных модусов (из них выделяют *слабые*, выводящие частное соотношение при возможности общего — указаны курсивом):

Фигура 1	Фигура 2	Фигура 3	Фигура 4
Barbara	Cesare	Darapti	Bramantip
Celarent	Camestres	Disamis	Camenes
Darii	Festino	Datisi	Dimaris
Ferio	Baroco	Felapton	Fesapo
Barbari	Cesaro	Bocardo	Fresison
Celaront	Camestros	Ferison	Camenos

Некоторые модусы требуют непустоты М: это все слабые модусы и четыре сильных (указаны серым), например Darapti:

Ограничения языка исчисления высказываний:

Цель: увеличить формализованную часть метаязыка.

Мы неформально знакомы с предикатами $(P:D\to V)$ и кванторами $(\forall x.H(x)\to S(x)).$

$$\frac{\forall x. \mathbf{H}(x) \to \mathbf{S}(x) \qquad \mathbf{H}(\text{Сократ})}{\mathbf{S}(\text{Сократ})}$$

1.2 Язык исчисления предикатов

Пример:

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - (a) Предметные переменные (x).
 - (b) Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - (c) Нульместные функциональные символы «ноль» (0) и «один» (1).
- 2. Логические выражения
 - (a) Предикатные символы «равно» и «больше»

1.2.1 Формальное определение

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - Функциональные выражения: $f(\theta_1, \dots, \theta_n)$, метапеременные f, g, \dots
 - Примеры: r, q(p(x, s), r).
- 3. Логические выражения: метапеременные $\alpha, \beta, \gamma, \dots$
 - Предикатные выражения: $P(\theta_1, \dots, \theta_n)$, метапеременная P. Имена: A, B, C, \dots
 - Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.
 - Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

Сокращение записи и метаязык:

- 1. Метапеременные:
 - ψ , ϕ , π , ...— формулы
 - \bullet P, Q, \ldots предикатные символы
 - θ , ...— термы
 - ullet f,g,\ldots функциональные символы
 - \bullet x, y, \ldots предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. \ A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

- 3. Дополнительные обозначения при необходимости:
 - $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$
 - $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$
 - 0 вместо z
 - ...

1.3 Теория моделей исчисления предикатов

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

Без синтаксического сахара:

$$\forall x. E(s(x), z) \lor G(p(q(s(x)), o), o)$$

1. Истинностные (логические) значения:

- (а) предикаты (в том числе пропозициональные переменные = нульместные предикаты);
- (b) логические связки и кванторы.

2. Предметные значения:

- (а) предметные переменные;
- (b) функциональные символы (в том числе константы = нульместные функциональные символы)

1.3.1 Оценка исчисления предикатов

<u>def:</u> Оценка — упорядоченная четвёрка (D, F, P, E), где:

- 1. $D \neq \emptyset$ предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V \qquad V = \{\mathbf{H}, \mathbf{\Pi}\}$$

4. Е — оценка для предметных переменных.

$$E(x) \in D$$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=H} = H$$

- 1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;
- 2.

$$[\![f_n(\theta_1, \theta_2, \dots, \theta_n)]\!] = F_{f_n}([\![\theta_1]\!], [\![\theta_2]\!], \dots, [\![\theta_n]\!])$$

3.

$$[P_n(\theta_1, \theta_2, \dots, \theta_n)] = P_{T_n}([\theta_1], [\theta_2], \dots, [\theta_n])$$

4.

$$\llbracket\forall x.\phi\rrbracket = \left\{ \begin{array}{ll} \mathbf{H}, & \text{если } \llbracket\phi\rrbracket^{x:=t} = \mathbf{H} \text{ при всех } t \in D \\ \boldsymbol{\Pi}, & \text{если найдётся } t \in D, \text{ что } \llbracket\phi\rrbracket^{x:=t} = \boldsymbol{\Pi} \end{array} \right.$$

5.

$$\llbracket\exists x.\phi\rrbracket = \left\{ \begin{array}{l} \mathsf{И}, & \text{если найдётся } t \in D, \text{ что } \llbracket\phi\rrbracket^{x:=t} = \mathsf{И} \\ \mathsf{Л}, & \text{если } \llbracket\phi\rrbracket^{x:=t} = \mathsf{Л} \text{ при всех } t \in D \end{array} \right.$$

Пример: Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

1.3.2 Общезначимость и свободные переменные

def: Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \phi$$

To есть истинна при любых D, F, P и E.

Пример:

$$\llbracket \forall x. Q(f(x)) \lor \neg Q(f(x)) \rrbracket = \mathbf{M}$$

Доказательство:

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t. Ясно, что $t \in V$. Разберём случаи.

- ullet Если $t={\mathrm{ I\! I}}$, то $[\![Q(f(x))]\!]^{Q(f(x)):=t}={\mathrm{ I\! I}}$, потому $[\![Q(f(x))\lor \neg Q(f(x))]\!]^{Q(f(x)):=t}={\mathrm{ I\! I}}$
- ullet Если $t=\Pi$, то $[\![\neg Q(f(x))]\!]^{Q(f(x)):=t}=\Pi$, потому всё равно $[\![Q(f(x)) \lor \neg Q(f(x))]\!]^{Q(f(x)):=t}=\Pi$

<u>def:</u> Вхождение подформулы в формулу — это позиция первого символа этой подформулы в формуле.

Вхождения
$$x$$
 в формулу: $(\forall x. A(x) \lor \exists x. B(x)) \lor C(x)$

<u>def:</u> Рассмотрим формулу $\forall x.\psi$ (или $\exists x.\psi$). Здесь переменная x **связана** в ψ . Все вхождения переменной x в ψ — связанные.

<u>def:</u> Вхождение x в ψ свободное, если не находится в области действия никакого квантора по x. Переменная входит свободно в ψ , если имеет хотя бы одно свободное вхождение. $FV(\psi), FV(\Gamma)$ — множества свободных переменных в ψ , в Γ

Пример:

$$\psi[x := \theta] := \begin{cases} \psi, & \psi \equiv y, y \not\equiv x \\ \psi, & \psi \equiv \forall x.\pi \text{ или } \psi \equiv \exists x.\pi \\ \pi[x := \theta] \star \rho[x := \theta], & \psi \equiv \pi \star \rho \\ \theta, & \psi \equiv x \\ \forall y.\pi[x := \theta], & \psi \equiv \forall y.\pi \text{ и } y \not\equiv x \\ \exists y.\pi[x := \theta], & \psi \equiv \exists y.\pi \text{ и } y \not\equiv x \end{cases}$$

<u>def:</u> Терм θ <u>свободен для подстановки вместо</u> x в ψ ($\psi[x:=\theta]$), если ни одно свободное вхождение переменных в θ не станет связанным после подстановки.

Свобода есть Свободы нет
$$(\forall x. P(y))[y := z]$$
 $(\forall x. P(y))[y := x]$ $(\forall y. \forall x. P(x))[x := y]$ $(\forall y. \forall x. P(t))[t := y]$

1.4 Теория доказательств исчисления предикатов

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо $x \bowtie \varphi$):

- 11. $(\forall x.\varphi) \to \varphi[x := \theta]$
- 12. $\varphi[x := \theta] \to \exists x. \varphi$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

$$\frac{\varphi \to \psi}{\varphi \to \forall x. \psi}$$
 Правило для \forall

$$\frac{\psi \to \varphi}{(\exists x.\psi) \to \varphi}$$
 Правило для \exists

def: Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

1.5 Теоремы о исчислении предикатов

1.5.1Теорема о дедукции

Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \rightarrow \beta$.

Доказательство:

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $\alpha \to \delta_n$, если предыдущие уже обоснованы.

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀.

Доказываем (n) $\alpha \to \psi \to \forall x. \varphi$ (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

$$(n-0.9)$$
 $(\alpha \to \psi \to \varphi) \to (\alpha \& \psi) \to \varphi$ Т. о полноте КИВ

$$(n-0.6)$$
 $(\alpha \& \psi) \to \varphi$ M.P. $k,n-0.8$

$$(n-0.4)$$
 $(\alpha \& \psi) \to \forall x.\varphi$ Правило для $\forall, n-0.6$

$$(n-0.3)$$
 $((\alpha \& \psi) \to \forall x.\varphi) \to (\alpha \to \psi \to \forall x.\varphi)$ Т. о полноте КИВ
 (n) $\alpha \to \psi \to \forall x.\varphi$ М.Р. $n=0.4$ $n=0.2$

(n)
$$\alpha \to \psi \to \forall x.\varphi$$
 M.P. $n = 0.4, n = 0.2$

Q.E.D.

<u>def:</u> $\gamma_1, \gamma_2, \ldots, \gamma_n \models \alpha$, если α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \ldots, \gamma_n$.

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

1.5.2 Корректность подстановки

Теорема.

Если θ свободен для подстановки вместо x в φ , то $\llbracket \varphi \rrbracket^{x:=\llbracket \theta \rrbracket} = \llbracket \varphi [x:=\theta] \rrbracket$

Доказательство (индукция по структуре φ)

- \bullet База: φ не имеет кванторов. Очевидно.
- Переход: пусть справедливо для ψ . Покажем для $\varphi = \forall y.\psi$.
 - -x=y либо $x\notin FV(\psi)$. Тогда: $\llbracket \forall y.\psi
 rbracket{x:=\llbracket \theta
 rbracket} = \llbracket \forall y.\psi
 rbracket{= \llbracket (\forall y.\psi) \llbracket x:=\theta
 rbracket}$
 - $x \neq y$. Тогда: $\llbracket \forall y.\psi \rrbracket^{x:=\llbracket \theta \rrbracket} = \llbracket \psi \rrbracket^{y \in D; x:=\llbracket \theta \rrbracket} = \dots$

Свобода для подстановки: $y \notin \theta$.

$$\cdots = \llbracket \psi \rrbracket^{x := \llbracket \theta \rrbracket; y \in D} = \dots$$

Индукционное предположение.

$$\cdots = \llbracket \psi[x := \theta] \rrbracket^{y \in D} = \llbracket \forall y. (\psi[x := \theta]) \rrbracket = \cdots$$

Ho $\forall y.(\psi[x:=\theta]) \equiv (\forall y.\psi)[x:=\theta]$ (как текст). Отсюда:

$$\cdots = \llbracket (\forall y.\psi)[x := \theta] \rrbracket$$

1.5.3 Корректность исчисления предикатов

Теорема. Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из $FV(\Gamma)$, то $\Gamma \models \alpha$

Доказательство:

Фиксируем D, F, P. Индукция по длине доказательства α : при любом E выполнено $\Gamma \models \alpha$ при длине доказательства n, покажем для n+1.

- Схемы аксиом (1)..(10), правило М.Р.: аналогично И.В.
- Схемы (11) и (12), например, схема $(\forall x.\varphi) \to \varphi[x:=\theta]$:

$$\llbracket (\forall x.\varphi) \to \varphi[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi)[x := \theta] \rrbracket = \llbracket (\forall x.\varphi) \to \varphi \rrbracket^{x := \llbracket \theta \rrbracket} = \mathbf{M}$$

• Правила для кванторов: например, введение \forall :

Пусть $[\![\psi \to \varphi]\!] = И$. Причём $x \notin FV(\Gamma)$ и $x \notin FV(\psi)$. То есть, при любом $[\![\psi \to \varphi]\!]^{x:=\S} = И$. Тогда $[\![\psi \to (\forall x.\varphi)]\!] = И$.

2 Лекция 6.

2.1 Теорема о полноте

Общая идея доказательства:

- 1. Надо справиться со слишком большим количеством вариантов. Модель задаётся как (D, F, P, E).
- 2. Для оценки в модели важно только какие формулы истинны. Поэтому факторизуем модели по истинности формул: модели \mathcal{M}_1 и \mathcal{M}_2 «похожи», если $[\![\varphi]\!]_{\mathcal{M}_1} = [\![\varphi]\!]_{\mathcal{M}_2}$ при всех φ .
- 3. Поступим так:
 - (a) построим эталонное множество моделей \mathfrak{M} , каждая модель из него соответствует какомуто своему классу эквивалентности моделей;
 - (b) докажем полноту \mathfrak{M} : если каждая $\mathcal{M} \in \mathfrak{M}$ предполагает $\mathcal{M} \models \varphi$, то $\vdash \varphi$;
 - (c) заметим, что если $\models \varphi$, то каждая $\mathcal{M} \in \mathfrak{M}$ предполагает $\mathcal{M} \models \varphi$.
- 4. В ходе доказательства нас ждёт множество технических препятствий.

def: Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ для любого α

Примеры:

• непротиворечиво:

$$-\Gamma = \{A \to B \to A\}$$
$$-\Gamma = \{P(x,y) \to \neg P(x,y), \forall x. \forall y. \neg P(x,y)\};$$

• противоречиво:

$$-\Gamma = \{P \to \neg P, \neg P \to P\}$$
 так как $P \to \neg P, \neg P \to P \; \vdash \; \neg P \ \& \ \neg \neg P$

• и ещё непротиворечиво: $\Gamma = \{P(1), P(2), P(3), \dots\}$

 $\underline{\operatorname{def:}}\ \Gamma$ — полное непротиворечивое множество замкнутых бескванторных формул, если:

- 1. Г содержит только замкнутые бескванторные формулы;
- 2. если α некоторая замкнутая бескванторная формула, то либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$.

 $\underline{\operatorname{def:}}\ \Gamma$ — полное непротиворечивое множество замкнутых формул, если:

- 1. Г содержит только замкнутые формулы;
- 2. если α некоторая замкнутая формула, то либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$.

Теорема:

Пусть Γ — непротивочивое множество замкнутых (бескванторных) формул. Тогда, какова бы ни была замкнутая (бескванторная) формула φ , хотя бы $\Gamma \cup \{\varphi\}$ или $\Gamma \cup \{\neg \varphi\}$ — непротиворечиво

Доказательство:

Пусть это не так и найдутся такие Γ , φ и α , что

$$\begin{array}{ccc} \Gamma, \varphi & \vdash \alpha \& \neg \alpha \\ \Gamma, \neg \varphi & \vdash \alpha \& \neg \alpha \end{array}$$

Тогда по лемме об исключении гипотезы

$$\Gamma \vdash \alpha \& \neg \alpha$$

То есть Γ не является непротиворечивым. Противоречие.

Q.E.D.

Теорема.

Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда найдётся полное непротиворечивое множество замкнутых (бескванторных) формул Δ , что $\Gamma \subseteq \Delta$

Доказательство:

- 1. Занумеруем все формулы (их счётное количество): $\varphi_1, \varphi_2, \dots$
- 2. Построим семейство множеств $\{\Gamma_i\}$:

$$\Gamma_0 = \Gamma$$
 $\Gamma_{i+1} = \begin{cases} \Gamma_i \cup \{\varphi_i\}, & \text{если } \Gamma_i \cup \{\varphi_i\} \text{ непротиворечиво} \\ \Gamma_i \cup \{\neg \varphi_i\}, & \text{иначе} \end{cases}$

3. Итоговое множество

$$\Delta = \bigcup_i \Gamma_i$$

4. Непротиворечивость Δ не следует из индукции — индукция гарантирует непротиворечивость только Γ_i при натуральном (т.е. конечном) i, потому. . .

Q.E.D.

Завершение доказательства теоремы о полноте

 Δ непротиворечиво:

1. Пусть Δ противоречиво, то есть

$$\Delta \vdash \alpha \& \neg \alpha$$

2. Доказательство конечной длины и использует конечное количество гипотез $\{\delta_1, \delta_2, \dots, \delta_n\} \subset \Delta$, то есть

$$\delta_1, \delta_2, \ldots, \delta_n \vdash \alpha \& \neg \alpha$$

3. Пусть $\delta_i \in \Gamma_{d_i}$, тогда

$$\Gamma_{d_1} \cup \Gamma_{d_2} \cup \cdots \cup \Gamma_{d_n} \vdash \alpha \& \neg \alpha$$

4. Но $\Gamma_{d_1} \cup \Gamma_{d_2} \cup \dots \cup \Gamma_{d_n} = \Gamma_{\max(d_1,d_2,\dots,d_n)}$, которое непротиворечиво, и потому

$$\Gamma_{d_1} \cup \Gamma_{d_2} \cup \cdots \cup \Gamma_{d_n} \not\vdash \alpha \& \neg \alpha$$

2.2 Модели для множеств формул

<u>def:</u> Моделью для множества формул F назовём такую модель \mathcal{M} , что при всяком $\varphi \in F$ выполнено $[\![\varphi]\!]_{\mathcal{M}} = \mathcal{U}$.

Альтернативное обозначение: $\mathcal{M} \models \varphi$.

Теорема.

Любое непротиворечивое множество замкнутых бескванторных формул имеет модель.

2.3 Конструкция модели

<u>def:</u> Пусть M — полное непротиворечивое множество замкнутых бескванторных формул. Тогда модель $\mathcal M$ задаётся так:

- 1. D множество всевозможных предметных выражений без предметных переменных. Оно непусто (язык обычно содержит много нуль-местных функций), но если пусто добавим туда какое-нибудь одно значение, пусть "z".
- 2. $[f(\theta_1, \dots, \theta_n)] = "f(" + [\theta_1]] + "," + \dots + "," + [\theta_n]] + ")"$
- 3. $\llbracket P(\theta_1, \dots, \theta_n) \rrbracket = \begin{cases} \Pi, & \text{если } P(\theta_1, \dots, \theta_n) \in M \\ \Pi, & \text{иначе} \end{cases}$
- 4. Так как $D \neq \emptyset$, то найдётся $z \in D$. Тогда $[\![x]\!] = z$. Это ничему не помешает, так как формулы замкнуты.

Лемма.

Пусть φ — бескванторная формула, тогда $\mathcal{M} \models \varphi$ тогда и только тогда, когда $\varphi \in M$.

Доказательство (индукция по длине формулы φ)

- 1. База. φ предикат. Требуемое очевидно по определению \mathcal{M} .
- 2. Переход. Пусть $\varphi = \alpha \star \beta$ (или $\varphi = \neg \alpha$), причём $\mathcal{M} \models \alpha$ ($\mathcal{M} \models \beta$) тогда и только тогда, когда $\alpha \in M$ ($\beta \in M$).

Тогда покажем требуемое для каждой связки в отдельности. А именно, для каждой связки покажем два утверждения:

- (a) если $\mathcal{M} \models \alpha \star \beta$, то $\alpha \star \beta \in M$.
- (b) если $\mathcal{M} \not\models \alpha \star \beta$, то $\alpha \star \beta \notin M$.

Q.E.D.

Если $\varphi = \alpha \to \beta$ и для любой формулы ζ , более короткой, чем φ , выполнено $\mathcal{M} \models \zeta$ тогда и только тогда, когда $\zeta \in M$, тогда:

- 1. если $\mathcal{M} \models \alpha \rightarrow \beta$, то $\alpha \rightarrow \beta \in M$;
- 2. если $\mathcal{M} \not\models \alpha \to \beta$, то $\alpha \to \beta \notin M$.

Доказательство (разбором случаев)

1. $\mathcal{M} \models \alpha \to \beta$: $[\![\alpha]\!] = \Pi$. Тогда по предположению $\alpha \notin M$, потому по полноте $\neg \alpha \in M$. И, поскольку в ИВ $\neg \alpha \vdash \alpha \to \beta$, то $M \vdash \alpha \to \beta$. Значит, $\alpha \to \beta \in M$, иначе по полноте $\neg (\alpha \to \beta) \in M$, что делает M противоречивым.

- 2. $\mathcal{M} \models \alpha \to \beta$: $[\![\alpha]\!] = \mathbb{N}$ и $[\![\beta]\!] = \mathbb{N}$. Рассуждая аналогично, используя $\alpha, \beta \vdash \alpha \to \beta$, приходим к $\alpha \to \beta \in M$.
- 3. $\mathcal{M} \not\models \alpha \to \beta$. Тогда $\llbracket \alpha \rrbracket = \mathcal{H}$, $\llbracket \beta \rrbracket = \mathcal{H}$, то есть $\alpha \in M$ и $\neg \beta \in M$. Также, $\alpha, \neg \beta \vdash \neg (\alpha \to \beta)$, отсюда $M \vdash \neg (\alpha \to \beta)$. Предположим, что $\alpha \to \beta \in M$, то $M \vdash \alpha \to \beta$ отсюда $\alpha \to \beta \notin M$.

Завершение доказательства теоремы о существовании модели

Доказательство:

Пусть M — непротиворечивое множество замкнутых бескванторных формул.

По теореме о пополнении существует M' — полное непротиворечивое множество замкнутых бескванторных формул, что $M \subseteq M'$.

По лемме M' имеет модель, эта модель подойдёт для M.

2.4 Теорема Гёделя о полноте

Теорема Гёделя о полноте исчисления предикатов

Если M — непротиворечивое множество замкнутых формул, то оно имеет модель.

Схема доказательства

<u>def:</u> Формула φ имеет поверхностные кванторы (находится в предварённой форме), если соответствует грамматике

$$\varphi ::= \forall x. \varphi \ | \ \exists x. \varphi \ | \ \tau$$

где τ — формула без кванторов

Теорема.

Для любой замкнутой формулы ψ найдётся такая формула φ с поверхностными кванторами, что $\vdash \psi \to \varphi$ и $\vdash \varphi \to \psi$

Индукция по структуре, применение теорем о перемещении кванторов.

Построение M^*

- Пусть M полное непротиворечивое множество замкнутых формул с поверхностными кванторами (очевидно, счётное). Построим семейство непротиворечивых множеств замкнутых формул M_k .
- ullet Пусть d_i^k семейство ceeнсих констант, в M не встречающихся.

- Индуктивно построим M_k :
 - База: $M_0 = M$
 - Переход: положим $M_{k+1}=M_k\cup S$, где множество S получается перебором всех формул $\varphi_i\in M_k$.
 - 1. φ_i формула без кванторов, пропустим;
 - 2. $\varphi_i = \forall x. \psi$ добавим к S все формулы вида $\psi[x:=\theta]$, где θ всевозможные замкнутые термы, использующие символы из M_k ;
 - 3. $\varphi_i = \exists x. \psi$ добавим к S формулу $\psi[x := d_i^{k+1}]$, где d_i^{k+1} некоторая свежая, ранее не использовавшаяся в M_k , константа.

<u>Лемма.</u> Если M непротиворечиво, то каждое множество из M_k — непротиворечиво

Доказательство по индукции, база очевидна ($M_0 = M$). Переход:

- пусть M_k непротиворечиво, но M_{k+1} противоречиво: $M_k, M_{k+1} \setminus M_k \vdash A \& \neg A$.
- Тогда (т.к. доказательство finite длины): $M_k, \gamma_1, \gamma_2, \dots, \gamma_n \vdash A \& \neg A$, где $\gamma_i \in M_{k+1} \setminus M_k$.
- По теореме о дедукции: $M_k \vdash \gamma_1 \to \gamma_2 \to \cdots \to \gamma_n \to A \& \neg A$.
- Научимся выкидывать первую посылку: $M_k \vdash \gamma_2 \to \cdots \to \gamma_n \to A \& \neg A$.
- И по индукции придём к противоречию: $M_k \vdash A \& \neg A$.

Q.E.D.

Лемма. Если $M_k \vdash \gamma \to W$ и $\gamma \in M_{k+1} \setminus M_k$, то $M_k \vdash W$.

Доказательство:

Покажем, как дополнить доказательство до $M_k \vdash W$, в зависимости от происхождения γ :

• Случай $\forall x. \varphi : \gamma = \varphi[x := \theta].$

Допишем в конец доказательства:

$$\forall x. \varphi$$
 (гипотеза) ($\forall x. \varphi$) \rightarrow ($\varphi[x:=\theta]$) (сх. акс. 11) γ (M.P.) W (M.P.)

• Случай $\exists x. \varphi \colon \gamma = \varphi[x := d_i^{k+1}]$

Перестроим доказательство $M_k \vdash \gamma \to W$: заменим во всём доказательстве d_i^{k+1} на y. Коллизий нет: под квантором d_i^{k+1} не стоит, переменной не является. Получим доказательство $M_k \vdash \gamma[d_i^{k+1} := y] \to W$ и дополним его:

$$\begin{array}{lll} \varphi[x:=y] \to W & \varphi[x:=d_i^{k+1}][d_i^{k+1}:=y] \\ (\exists y.\varphi[x:=y]) \to W & y \text{ не входит в } W \\ (\exists x.\varphi) \to (\exists y.\varphi[x:=y]) & \text{доказуемо (упражнение)} \\ \dots & \\ (\exists x.\varphi) \to W & \text{доказуемо как } (\alpha \to \beta) \to (\beta \to \gamma) \vdash \alpha \to \gamma \\ \exists x.\varphi & \text{гипотеза} \\ W & \end{array}$$

Q.E.D.

 $\underline{\mathbf{def:}}\ M^* = \bigcup_k M_k$

Теорема M^* непротиворечиво.

Доказательство:

От противного: доказательство противоречия конечной длины, гипотезы лежат в максимальном M_k , тогда M_k противоречив.

 $\underline{\mathbf{def:}}\ M^{\mathrm{B}}$ — множество всех бескванторных формул из M^* .

По непротиворечивому множеству M можем построить $M^{\rm B}$ и для него построить модель \mathcal{M} . Покажем, что эта модель годится для M^* (и для M, так как $M \subset M^*$).

Лемма. \mathcal{M} есть модель для M^* .

Доказательство Покажем, что при $\varphi \in M^*$ выполнено $\mathcal{M} \models \varphi$. Докажем индукцией по количеству кванторов в φ .

- База: φ без кванторов. Тогда $\varphi \in M^{\mathsf{B}}$, отсюда $\mathcal{M} \models \varphi$ по построению \mathcal{M} .
- Переход: пусть утверждение выполнено для всех формул с n кванторами. Покажем, что это выполнено и для n+1 кванторов.
 - Рассмотрим $\varphi = \exists x. \psi$, случай квантор всеобщности аналогично.
 - Раз $\exists x. \psi \in M^*$, то существует k, что $\exists x. \psi \in M_k$.
 - Значит, $\psi[x := d_i^{k+1}] \in M_{k+1}$.
 - По индукционному предположению, $\mathcal{M} \models \psi[x := d_i^{k+1}]$ в формуле n кванторов.
 - Но тогда $\llbracket \psi
 rbracket^{x:=\llbracket d_i^{k+1}
 rbracket} = \mathrm{H.}$
 - Отсюда $\mathcal{M} \models \exists x.\psi$.

Q.E.D.

Формулировка и доказательство теоремы Гёделя

Теорема Гёделя о полноте исчисления предикатов

Если M — замкнутое непротиворечивое множество формул, то оно имеет модель.

Доказательство:

- Построим по M множество формул с поверхностными кванторами M'.
- По M' построим непротиворечивое множество замкнутых бескванторных формул $M^{\rm B}$ ($M^{\rm E} \subseteq M^*$, теорема о непротиворечивости M^*).
- ullet Дополним его до полного, построим для него модель ${\cal M}$ (теорема о существовании модели).
- \mathcal{M} будет моделью и для M' ($M' \subseteq M^*$, лемма о модели для M^*), и, очевидно, для M.

2.5 Полнота исчисления предикатов

Следствие из теоремы Гёделя о полноте Исчисление предикатов полно.

Доказательство:

- Пусть это не так, и существует формула φ , что $\models \varphi$, но $\not\vdash \varphi$.
- Тогда рассмотрим $M = \{\neg \varphi\}$.
- M непротиворечиво: если $\neg \varphi \vdash A \& \neg A$, то $\vdash \varphi$ (упражнение).
- Значит, у M есть модель \mathcal{M} , и $\mathcal{M} \models \neg \varphi$.
- Значит, $[\![\neg \varphi]\!] = \Pi$, поэтому $[\![\varphi]\!] = \Pi$, поэтому $\not\models \varphi$. Противоречие.

2.6 Непротиворечивость исчисления предикатов

Теорема. Если у множества формул M есть модель \mathcal{M} , оно непротиворечиво.

Доказательство:

Пусть противоречиво: $M \vdash A \& \neg A$, в доказательстве использованы гипотезы $\delta_1, \delta_2, \dots, \delta_n$. Тогда $\vdash \delta_1 \to \delta_2 \to \dots \to \delta_n \to A \& \neg A$, то есть $\llbracket \delta_1 \to \delta_2 \to \dots \to \delta_n \to A \& \neg A \rrbracket = \Pi$ (корректность). Поскольку все $\llbracket \delta_i \rrbracket_{\mathcal{M}} = \Pi$, то и $\llbracket A \& \neg A \rrbracket_{\mathcal{M}} = \Pi$ (анализ таблицы истинности импликации). Однако $\llbracket A \& \neg A \rrbracket = \Pi$. Противоречие.

Следствие: Исчисление предикатов непротиворечиво

Доказательство:

Рассмотрим $M = \emptyset$ и любую классическую модель.

Доказательства опираются на непротиворечивость метатеории.

Q.E.D.

2.7 Теорема Гёделя о компактности

Если Γ — некоторое семейство бескванторных формул, то Γ имеет модель тогда и только тогда, когда любое его конечное подмножество имеет модель.

Доказательство:

(⇒): очевидно

 (\Leftarrow) : пусть каждое конечное подмножество имеет модель. Тогда Γ непротиворечиво:

Иначе для любой σ выполнено $\Gamma \vdash \sigma$. В частности, для $\gamma \in \Gamma$ выполнено $\Gamma \vdash \neg \gamma$. Доказательство имеет конечную длину и использует конечное количество формул $\gamma_1, \dots, \gamma_n \in \Gamma$. Тогда рассмотрим $\Sigma = \{\gamma, \gamma_1, \dots, \gamma_n\}$ и модель S для неё. Тогда:

- 1. $\models_S \gamma$ (определение модели)
- 2. $\models_S \neg \gamma$ (теорема о корректности: $\Sigma \vdash \neg \gamma$, значит $\Sigma \models \neg \gamma$ в любой модели)

Значит, Г имеет модель (вспомогательная теорема к теореме Гёделя о полноте).

3 Лекция 7:

3.1 Машина Тьюринга

def: Машина Тьюринга:

- 1. Внешний алфавит q_1,\ldots,q_n , выделенный символ-заполнитель q_{ε}
- 2. Внутренний алфавит (состояний) $s_1, \ldots, s_k; s_s$ начальное, s_f допускающее, s_r отвергающее.
- 3. Таблица переходов $\langle k, s \rangle \Rightarrow \langle k', s', \leftrightarrow \rangle$

def: Состояние машины Тьюринга:

- 1. Бесконечная лента с символом-заполнителем q_{ε} , текст конечной длины.
- 2. Головка над определённым символом.
- 3. Символ состояния (состояние в узком смысле) символ внутреннего алфавита.

Машина, меняющая все 0 на 1, а все 1 — на 0.

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и допускающее состояния соответственно).
- 3. Переходы:

$$\begin{array}{c|cccc}
 & \varepsilon & 0 & 1 \\
\hline
s_s & \langle s_f, \varepsilon, \cdot \rangle & \langle s_s, 1, \to \rangle & \langle s_s, 0, \to \rangle \\
s_f & \langle s_f, \varepsilon, \cdot \rangle & \langle s_f, 0, \cdot \rangle & \langle s_f, 1, \cdot \rangle
\end{array}$$

 $\underline{\text{def:}}$ Язык — множество строк

<u>def:</u> Язык L разрешим, если существует машина Тьюринга, которая для любого слова w переходит в допускающее состояние, если $w \in L$, и в отвергающее, если $w \notin L$.

3.1.1 Неразрешимость задачи останова

<u>def:</u> Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема

Язык всех останавливающихся машин Тьюринга неразрешим

Доказательство:

От противного. Пусть S(x,y) — машина Тьюринга, определяющая, остановится ли машина x, примененная к строке y.

$$W(x) = if(S(x,x))$$
 { while (true); return 0; } else { return 1; }

Что вернёт S(code(W), code(W))?

Q.E.D.

Кодируем состояния:

1. внешний алфавит: n 0-местных функциональных символов $q_1, \dots, q_n; q_{\varepsilon}$ — символ-заполнитель.

- 2. список: ε и c(l,s); «abc» представим как $c(q_a,c(q_b,c(q_c,\varepsilon)))$.
- 3. положение головки: «abpq» как $(c(q_b, c(q_a, \varepsilon)), c(q_p, c(q_q, \varepsilon)))$.
- 4. внутренний алфавит: k 0-местных функциональных символов s_1, \ldots, s_k . Из них выделенные s_s начальное и s_f допускающее состояние.

Достижимые состояния:

Предикатный символ $F_{x,y}(w_l, w_r, s)$: если у машины x с начальной строкой y состояние s достижимо на строке $rev(w_l)@w_r$.

Будем накладывать условия: семейство формул C_m .

Очевидно, начальное состояние достижимо:

$$C_0 := F_{x,y}(\varepsilon, y, s_s)$$

Кодируем переходы:

- 1. Занумеруем переходы.
- 2. Закодируем переход m:

$$\langle k, s \rangle \Rightarrow \langle k', s', \rightarrow \rangle$$
, в случае $q_k \neq q_{\varepsilon}$

 $C_m = \forall w_l. \forall w_r. F_{x,y}(w_l, c(q_k, w_r), s_s) \to F_{x,y}(c(q_{k'}, w_l), w_r, s_{s'})$ (здесь требуется, чтобы под головкой находился непустой символ q_k , потому мы обязательно требуем, чтобы лента была непуста)

3. Переход посложнее:

$$\langle k,s \rangle \Rightarrow \langle k',s',\leftarrow \rangle$$
, в случае $q_k \neq q_{\varepsilon}$

$$C_m = \forall w_l. \forall w_r. \forall t. F_{x,y}(c(t,w_l),c(q_k,w_r),s_s) \rightarrow F_{x,y}(w_l,c(t,c(q_{k'},w_r)),s_{s'}) \& \forall w_l. \forall w_r. F_{x,y}(\varepsilon,c(q_k,w_r),s_s) \rightarrow F_{x,y}(\varepsilon,c(q_{\varepsilon},c(q_{k'},w_r)),s_{s'})$$

4. и т.п.

Итоговая формула:

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

Теорема:

Состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

Доказательство:

- (\Leftarrow) Рассмотрим модель: предикат $F_{x,y}(w_l, w_r, s)$ положим истинным, если состояние достижимо. Это модель для C (по построению C_m). Значит, доказуемость влечёт истинность (по корректности).
- (⇒) Индукция по длине лога исполнения.

Неразрешимость исчисления предикатов: доказательство

Теорема. Язык всех доказуемых формул исчисления предикатов неразрешим

T.е. нет машины Tьюринга, которая бы по любой формуле α определяла, доказуема ли она.

Доказательство:

Пусть существует машина Тьюринга, разрешающая любую формулу. На её основе тогда несложно построить некоторую машину Тьюринга, перестраивающую любую машину S (с допускающим состоянием s_f и входом y) в её ограничения C и разрешающую формулу ИП $C \to \exists w_l. \exists w_r. F_{S,y}(w_l, w_r, s_f)$. Эта машина разрешит задачу останова.

Q.E.D.

3.2 Аксиоматика Пеано и формальная арифметика

«Бог создал целые числа, всё остальное — дело рук человека.» Леопольд Кронекер, 1886 г.

1. Рациональные (Q).

 $Q=\mathbb{Z}\times\mathbb{N}$ — множество всех простых дробей.

$$\langle p,q \rangle$$
 — то же, что $rac{p}{q}$

$$\langle p_1,q_1\rangle \equiv \langle p_2,q_2\rangle$$
, если $p_1q_2=p_2q_1$

$$\mathbb{Q} = Q/_{\equiv}$$

2. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ — дедекиндово сечение, если:

- (a) $A \cup B = \mathbb{Q}$
- (b) Если $a \in A$, $x \in \mathbb{Q}$ и $x \le a$, то $x \in A$
- (c) Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
- (d) A не содержит наибольшего.

 \mathbb{R} — множество всех возможных дедекиндовых сечений.

$$\sqrt{2} = \{ \{ x \in \mathbb{Q} \mid x < 0 \lor x^2 < 2 \}, \{ x \in \mathbb{Q} \mid x > 0 \& x^2 > 2 \} \}$$

Целые числа тоже попробуем определить

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

- $Z = \{\langle x, y \rangle \mid x, y \in \mathbb{N}_0\}$
- Интуиция: $\langle x, y \rangle = x y$

$$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$$

 $\langle a, b \rangle - \langle c, d \rangle = \langle a + d, b + c \rangle$

- Пусть $\langle a,b\rangle \equiv \langle c,d\rangle,$ если a+d=b+c. Тогда $\mathbb{Z}=Z/_{\equiv}$
- $0 = [\langle 0, 0 \rangle], \ 1 = [\langle 1, 0 \rangle], \ -7 = [\langle 0, 7 \rangle]$

3.3 Натуральные числа: аксиоматика Пеано

$$\mathbb{N}: 1, 2, \dots$$
 или $\mathbb{N}_0: 0, 1, 2, \dots$

 $\underline{\mathbf{def:}}\ N$ (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

- 1. Операция «штрих» (') : $N \to N$, причём нет $a,b \in N$, что $a \neq b$, но a' = b'. Если x = y', то x назовём следующим за y, а y предшествующим x.
- 2. Константа $0 \in N$: нет $x \in N$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») $P: N \to V$, если:
 - (a) P(0)
 - (b) При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

- 1. N- язык, порождённый грамматикой $\nu := 0 \mid \nu \ll ">$
- 2. 0 9TO «0», x' 9TO x + «, *)

3.3.1 Обозначения и определения

$$\underline{\mathbf{def:}}\ 1=0',\ 2=0'',\ 3=0''',\ 4=0'''',\ 5=0''''',\ 6=0'''''',\ 7=0''''''',\ 8=0'''''''',\ 9=0'''''''''$$

def:

$$a+b=\left\{ egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$

Например,

$$2 + 2 = 0'' + 0'' = (0'' + 0')' = ((0'' + 0)')' = ((0'')')' = 0'''' = 4$$

def:

$$a \cdot b = \begin{cases} 0, & \text{если } b = 0 \\ a \cdot c + a, & \text{если } b = c' \end{cases}$$

3.4 Уточнение исчисления предикатов

- Пусть требуется доказывать утверждения про равенство. Введём E(p,q) предикат «равенство».
- ullet Однако $ot \vdash E(p,q) \to E(q,p)$: если $D=\{0,1\}$ и E(p,q):=(p>q), то $ot \vdash E(p,q) \to E(q,p)$.
- Конечно, можем указывать $\forall p. \forall q. E(p,q) \rightarrow E(q,p) \vdash \varphi.$
- Но лучше добавим аксиому $\forall p. \forall q. E(p,q) \rightarrow E(q,p).$
- Добавив необходимые аксиомы, получим теорию первого порядка.

3.5 Теория первого порядка

<u>def:</u> Теорией первого порядка назовём исчисление предикатов с дополнительными («нелогическими» или «математическими»):

- предикатными и функциональными символами;
- аксиомами.

Сущности, взятые из исходного исчисления предикатов, назовём логическими

3.6 Порядок логики/теории

Порядок	Кванторы	Формализует суждения	Пример
нулевой	запрещены	об отдельных значениях	И.В.
первый	по предметным переменным	о множествах	И.П.
	$\{2,3,5,7,\dots\} = \{t \mid \forall p. \forall q. (p \neq$	$\{1 \& q \neq 1) \to (t \neq p \cdot q)\}$	
второй	по предикатным переменным	о множествах множеств	Типы
	$S = \{\{t \mid P(t)\} \mid \varphi[p := P]\}$		
	•••		

Пример логики 2 порядка

3.7 Формальная арифметика

<u>def:</u> Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими . . .

- двухместными функциональными символами (+), (\cdot) ; одноместным функциональным символом ('), нульместным функциональным символом 0;
- двухместным предикатным символом (=);
- восемью нелогическими аксиомами:

$$\begin{array}{lll} ({\rm A1}) \ a=b \to a=c \to b=c & ({\rm A5}) \ a+0=a \\ ({\rm A2}) \ a=b \to a'=b' & ({\rm A6}) \ a+b'=(a+b)' \\ ({\rm A3}) \ a'=b' \to a=b & ({\rm A7}) \ a\cdot 0=0 \\ ({\rm A4}) \ \neg a'=0 & ({\rm A8}) \ a\cdot b'=a\cdot b+a \\ \end{array}$$

• нелогической схемой аксиом индукции $\psi[x:=0]$ & $(\forall x.\psi \to \psi[x:=x']) \to \psi$ с метапеременными x и ψ .

Пример: Докажем, что a = a:

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:

(1)	$a = b \to a = c \to b = c$	(Акс. А1)
(2)	$(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$	(Cx. akc. 1)
(3)	$T \to (a = b \to a = c \to b = c)$	(M.P. 1, 2)
(4)	$ \top \to (\forall c.a = b \to a = c \to b = c) $	(Введ. ∀)
(5)	$ \top \to (\forall b. \forall c. a = b \to a = c \to b = c) $	(Введ. ∀)
(6)	$\top \rightarrow (\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$	(Введ. ∀)
(7)	Т	(Cx. akc 1)
(8)	$(\forall a. \forall b. \forall c. a = b \to a = c \to b = c)$	(M.P. 7, 6)
(9)	$(\forall a. \forall b. \forall c. a = b \to a = c \to b = c) \to$	
	$\rightarrow (\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$	(Cx. akc. 11)
(10)	$\forall b. \forall c. a + 0 = b \to a + 0 = c \to b = c$	(M.P. 8, 9)
(12)	$\forall c. a + 0 = a \to a + 0 = c \to a = c$	(M.P. 10, 11)
(14)	$a+0=a\to a+0=a\to a=a$	(M.P. 12, 13)
(15)	a + 0 = a	(Akc. A5)
(16)	$a + 0 = a \to a = a$	(M.P. 15, 14)
(17)	a = a	(M.P. 15, 16)

4 Лекция 8.

4.1 Арифметизация в работах Лейбница

- Любой термин пара взаимно простых чисел +a-b. Например, мудрый +70-33, благочестивый +10-3.
- Общеутвердительное предложение (каждый +a-b есть +c-d): a:c и b:d. Всякий мудрый есть благочестивый $(70=10\cdot 7,\ 33=3\cdot 11)$.
- Частноотрицательное предложение не верно общеутвердительное.
- Общеотрицательное предложение когда a,d или b,c имеют общий делитель, отличный от 1:

Ни один благочестивый (+10-3) не есть несчастный (+5-14), так как $10=2\cdot 5$ и $14=2\cdot 7$.

4.2 Соглашения о записи

- Рассматриваем функции $\mathbb{N}_0^n \to \mathbb{N}_0$.
- Обозначим вектор $\langle x_1, x_2, \dots, x_n \rangle$ как \overrightarrow{x} .

Примитивы Z, N, U, S

1. Примитив «Ноль» (Z)

$$Z: \mathbb{N}_0 \to \mathbb{N}_0, \qquad Z(x_1) = 0$$

2. Примитив «Инкремент» (N)

$$N: \mathbb{N}_0 \to \mathbb{N}_0, \qquad N(x_1) = x_1 + 1$$

3. Примитив «Проекция» (U) — семейство функций; пусть $k,n\in\mathbb{N}_0,k\leq n$

$$U_n^k: \mathbb{N}_0^n \to \mathbb{N}_0, \qquad U_n^k(\overrightarrow{x}) = x_k$$

4. Примитив «Подстановка» (S) — семейство функций; пусть $g: \mathbb{N}_0^k \to \mathbb{N}_0, \quad f_1, \dots, f_k: \mathbb{N}_0^n \to \mathbb{N}_0$ $S(q, f_1, f_2, \dots, f_k)(\overrightarrow{x}) = q(f_1(\overrightarrow{x}), \dots, f_k(\overrightarrow{x}))$

Примитив «примитивная рекурсия», *R*

Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$. Тогда $R\langle f, g \rangle: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y) = \left\{ \begin{array}{ll} f(\overrightarrow{x}), & y = 0 \\ g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)), & y > 0 \end{array} \right.$$

$$\begin{array}{ll} R\langle f,g\rangle(\overrightarrow{x},3) &= g(\overrightarrow{x},2,R\langle f,g\rangle(\overrightarrow{x},2)) \\ &= g(\overrightarrow{x},2,g(\overrightarrow{x},1,R\langle f,g\rangle(\overrightarrow{x},1))) \\ &= g(\overrightarrow{x},2,g(\overrightarrow{x},1,g(\overrightarrow{x},0,R\langle f,g\rangle(\overrightarrow{x},0)))) \\ &= g(\overrightarrow{x},2,g(\overrightarrow{x},1,g(\overrightarrow{x},0,f(\overrightarrow{x})))) \end{array}$$

<u>**def:**</u> Функция f — <u>**примитивно-рекурсивна**</u>, если может быть выражена как композиция примитивов $Z,\,N,\,U,\,S$ и R.

4.3 Примитивно-рекурсивные функции: x + y

Лемма: f(a,b) = a + b примитивно-рекурсивна

Доказательство:

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle:$$

$$R\langle f, g \rangle (x, y) = \begin{cases} f(x), & y = 0 \\ g(x, y - 1, R\langle f, g \rangle (x, y - 1)), & y > 0 \end{cases}$$

- База. $R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle (x, 0) = U_1^1(x) = x$
- Переход. $R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle (x, y+1) =$... = $S\langle N, U_3^3 \rangle (x, y, R\langle U_1^1(x), S\langle N, U_3^3 \rangle \rangle (x, y)) =$... = $S\langle N, U_3^3 \rangle (x, y, x+y) =$... = N(x+y) = x+y+1

Q.E.D.

Какие функции примитивно-рекурсивные?

- 1. Сложение, вычитание
- 2. Умножение, деление
- 3. Вычисление простых чисел
- 4. Неформально: все функции, вычисляемые конечным числом вложенных циклов for:

4.4 Общерекурсивные функции

<u>def:</u> Функция — **общерекурсивная**, если может быть построена при помощи примитивов Z, N, U, S, R и примитива минимизации:

$$M\langle f \rangle(x_1, x_2, \dots, x_n) = \min\{y : f(x_1, x_2, \dots, x_n, y) = 0\}$$

Если $f(x_1, x_2, \dots, x_n, y) > 0$ при любом y, результат не определён.

```
Пример: Пусть f(x,y)=x-y^2, тогда \lceil \sqrt{x}\rceil=M\langle f\rangle(x) int sqrt(int x) { int y = 0; while (x-y*y > 0) y++; return y; }
```

def: Функция Аккермана:

$$A(m,n) = \begin{cases} n+1, & m=0\\ A(m-1,1), & m>0, n=0\\ A(m-1,A(m,n-1)), & m>0, n>0 \end{cases}$$

Теорема.

Пусть $f(\overrightarrow{x})$ — примитивно-рекурсивная. Тогда найдётся k, что $f(\overrightarrow{x}) < A(k, \max(\overrightarrow{x}))$

Доказательство:

Индукция по структуре f.

- 1. f = Z, тогда k = 0, т.к. A(0, x) = x + 1 > Z(x) = 0;
- 2. f = N, тогда k = 1, т.к. A(1, x) = x + 2 > N(x) = x + 1;
- 3. $f = U_s^n$, тогда k = 0, т.к. $f(\overrightarrow{x}) \leq \max(\overrightarrow{x}) < A(0, \max(\overrightarrow{x}))$;
- 4. $f = S\langle g, h_1, \dots, h_n \rangle$, тогда $k = k_g + \max(k_{h_1}, \dots, k_{h_n}) + 2$;
- 5. $f = R\langle g, h \rangle$, тогда $k = \max(k_q, k_h) + 2$.

Q.E.D.

Лемма: Пусть $f = R\langle g, h \rangle$. Тогда при $k = \max(k_g, k_h) + 2$ выполнено $f(\overrightarrow{x}, y) \leq A^{(y+1)}(k - 2, \max(\overrightarrow{x}, y))$.

Доказательство:

Индукция по у.

- База: y=0. Тогда: $f(\overrightarrow{x},0)=g(\overrightarrow{x})\leq A(k_g,\max(\overrightarrow{x}))\leq A^{(1)}(k-2,\max(\overrightarrow{x},0))$.
- Переход: пусть $f(\overrightarrow{x},y) \le A^{(y+1)}(k-2,\max(\overrightarrow{x},y))$. Тогда $f(\overrightarrow{x},y+1) = h(\overrightarrow{x},y,f(\overrightarrow{x},y)) \le A(k_h,\max(\overrightarrow{x},y,f(\overrightarrow{x},y))) \le A(k_h,\max(\overrightarrow{x},y,A^{(y+1)}(k-2,\max(\overrightarrow{x},y))) = A(k_h,A^{(y+1)}(k-2,\max(\overrightarrow{x},y))) \le A^{(y+2)}(k-2,\max(\overrightarrow{x},y+1))$

Q.E.D.

Заметим, что $A^{(y+1)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+1)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+2)}(k-2,\max(\overrightarrow{x},y)) < A(k,\max(\overrightarrow{x},y))$

4.5 Тезис Чёрча

Тезис Чёрча для общерекурсивных функций: любая эффективно-вычислимая функция $\mathbb{N}_0^k \to \mathbb{N}_0$ является общерекурсивной.

 $\underline{\mathbf{def:}}$ Запись вида $\psi(\theta_1,\dots,\theta_n)$ означает $\psi[x_1:=\theta_1,\dots,x_n:=\theta_n]$

def:Литерал числа

$$\overline{a} = \left\{ egin{array}{ll} 0, & ext{если } a = 0 \\ (\overline{b})', & ext{если } a = b + 1 \end{array} \right.$$

Пример: пусть $\psi:=x_1=0$. Тогда $\psi(\overline{3})$ соответствует формуле 0'''=0

4.6 Выразимость отношений в Ф.А.

<u>def:</u> Будем говорить, что отношение $R\subseteq\mathbb{N}_0^n$ выразимо в $\Phi \mathbf{A}$, если существует формула ρ , что:

- 1. если $\langle a_1, \ldots, a_n \rangle \in R$, то $\vdash \rho(\overline{a_1}, \ldots, \overline{a_n})$
- 2. если $\langle a_1, \ldots, a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1}, \ldots, \overline{a_n})$

Теорема

Отношение «равно» выразимо в Ф.А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказательство:

Пусть $\rho := x_1 = x_2$. Тогда:

- $\vdash p = p$ при $p := \overline{k}$ при всех $k \in \mathbb{N}_0$: $\vdash 0 = 0, \vdash 0' = 0', \vdash 0'' = 0'', \dots$
- $\vdash \neg p = q$ при $p := \overline{k}, q := \overline{s}$ при всех $k, s \in \mathbb{N}_0$ и $k \neq s$. $\vdash \neg 0 = 0', \vdash \neg 0 = 0'', \vdash \neg 0''' = 0', \dots$

Q.E.D.

4.7 Представимость функций в Ф.А.

<u>def:</u> Будем говорить, что функция $f: \mathbb{N}_0^n \to \mathbb{N}_0$ представима в ΦA , если существует формула φ , что:

- 1. если $f(a_1,\ldots,a_n)=u$, то $\vdash \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 2. если $f(a_1,\ldots,a_n) \neq u$, то $\vdash \neg \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 3. для всех $a_i \in \mathbb{N}_0$ выполнено $\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x)) \& (\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \rightarrow p = q)$

4.8 Соответствие рекурсивных и представимых функций

Теорема. Любая рекурсивная функция представима в Ф.А.

Теорема. Любая представимая в Ф.А. функция рекурсивна.

Теорема. Примитивы Z, N и U_n^k представимы в Φ .А.

Доказательство:

- $\zeta(x_1,x_2):=x_2=0$, формальнее: $\zeta(x_1,x_2):=x_1=x_1\ \&\ x_2=0$
- $\nu(x_1, x_2) := x_2 = x_1'$
- $v(x_1, \ldots, x_n, x_{n+1}) := x_k = x_{n+1}$

формальнее:
$$v(x_1,\ldots,x_n,x_{n+1}) := (\underset{i\neq k,n+1}{\&} x_i = x_i) \& x_k = x_{n+1}$$

4.9 Примитив S представим в Ф.А.

$$S\langle f, g_1, \dots, g_k \rangle (x_1, \dots, x_n) = f(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n))$$

Теорема.

Пусть функции f, g_1, \ldots, g_k представимы в Ф.А. Тогда $S(f, g_1, \ldots, g_k)$ представима в Ф.А.

Доказательство:

Пусть $f, g_1, ..., g_k$ представляются формулами $\varphi, \gamma_1, ..., \gamma_k$.

Тогда $S\langle f, g_1, \ldots, g_k \rangle$ будет представлена формулой

$$\exists g_1, \ldots, \exists g_k, \varphi(g_1, \ldots, g_k, x_{n+1}) \& \gamma_1(x_1, \ldots, x_n, g_1) \& \cdots \& \gamma_k(x_1, \ldots, x_n, g_k)$$

4.10 β -функция Гёделя

Задача: закодировать последовательность натуральных чисел произвольной длины.

<u>**def:**</u> β -функция Гёделя: $\beta(b,c,i) := b\%(1+(i+1)\cdot c)$ Здесь (%) — остаток от деления.

Теорема β -функция Гёделя представима в Ф.А. формулой

$$\hat{\beta}(b, c, i, d) := \exists q \cdot (b = q \cdot (1 + c \cdot (i+1)) + d) & (d < 1 + c \cdot (i+1))$$

Деление b на x с остатком: найдутся частное (q) и остаток (d), что $b = q \cdot x + d$ и $0 \le d < x$.

Теорема Если $a_0, \ldots, a_n \in \mathbb{N}_0$, то найдутся такие $b, c \in \mathbb{N}_0$, что $a_i = \beta(b, c, i)$

Теорема: Китайская теорема об остатках (вариант формулировки): если u_0, \ldots, u_n — попарно взаимно просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Доказательство:

Положим $c = \max(a_0, \ldots, a_n, n)!$ и $u_i = 1 + c \cdot (i+1)$.

• НОД $(u_i, u_j) = 1$, если $i \neq j$.

Пусть p — простое, $u_i:p$ и $u_j:p$ (i< j). Заметим, что $u_j-u_i=c\cdot (j-i)$. Значит, c:p или (j-i):p. Так как $j-i\leq n$, то c:(j-i), потому если и (j-i):p, всё равно c:p. Но и $(1+c\cdot (i+1)):p$, отсюда 1:p — что невозможно.

• $0 \le a_i < u_i$.

Условия китайской теоремы об остатках выполнены и найдётся b, что

$$a_i = b\%(1 + c \cdot (i+1)) = \beta(b, c, i)$$

4.11 Примитив «примитивная рекурсия» представим в Ф.А.

Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ .

Зафиксируем $x_1, \ldots, x_n, y \in \mathbb{N}_0$.

Шаг вычисления Об. Утверждение в Ф.А.
$$R\langle f,g\rangle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n) \qquad a_0 \qquad \vdash \varphi(\overline{x_1},\ldots,\overline{x_n},\overline{a_0}) \\ R\langle f,g\rangle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,0,a_0) \qquad a_1 \qquad \vdash \gamma(\overline{x_1},\ldots,\overline{x_n},0,\overline{a_0},\overline{a_1}) \\ \ldots \\ R\langle f,g\rangle(x_1,\ldots,x_n,y)=g(x_1,\ldots,x_n,y-1,a_{y-1}) \qquad a_y \qquad \vdash \gamma(\overline{x_1},\ldots,\overline{x_n},\overline{y-1},\overline{a_{y-1}},\overline{a_y})$$

По свойству β -функции, найдутся b и c, что $\beta(b,c,i)=a_i$ для $0 \le i \le y$.

Теорема.

Примитив $R\langle f,g\rangle$ представим в Ф.А. формулой $\rho(x_1,\ldots,x_n,y,a)$:

$$\exists b. \exists c. (\exists a_0. \hat{\beta}(b, c, 0, a_0) \& \varphi(x_1, ... x_n, a_0)) \\ \& \forall k. k < y \to \exists d. \exists e. \hat{\beta}(b, c, k, d) \& \hat{\beta}(b, c, k', e) \& \gamma(x_1, ... x_n, k, d, e) \\ \& \hat{\beta}(b, c, y, a)$$

4.12 Представимость рекурсивных функций в Ф.А.

Теорема.

Пусть функция $f: \mathbb{N}_0^{n+1} \to \mathbb{N}_0$ представима в Ф.А. формулой $\varphi(x_1, \dots, x_n, y, r)$. Тогда примитив $M\langle f \rangle$ представим в Ф.А. формулой

$$\mu(x_1, \dots, x_n, y) := \varphi(x_1, \dots, x_n, y, 0) \& \forall u.u < y \to \neg \varphi(x_1, \dots, x_n, u, 0)$$

Теорема.

Если f — рекурсивная функция, то она представима в Φ .А.

Индукция по структуре f.

4.13 Рекурсивность представимых в Ф.А. функций

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

- 1. Закодируем доказательства натуральными числами.
- 2. Напишем рекурсивную функцию, проверяющую доказательства на корректность.
- 3. Параллельный перебор значений и доказательств: $s = 2^y \cdot 3^p$. Переберём все s, по s получим y и p. Проверим, что p код доказательства $\vdash \varphi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y})$.

4.14 Гёделева нумерация

1. Отдельный символ.

Номер	Символ	Номер	Символ	Имя	k, n	Гёделев номер
3	(17	&	0		27 + 6
5)	19	\forall	(')	0, 1	$27 + 6 \cdot 3$
7	,	21	3	(+)	0, 2	$27 + 6 \cdot 9$
9	•	23	F	(\cdot)		$27 + 6 \cdot 2 \cdot 9$
11	\neg	$25+6\cdot k$	x_k	(=)	0, 2	$29 + 6 \cdot 9$
13	\rightarrow	$27 + 6 \cdot 2^k \cdot 3^n$	f_k^n			
15	\vee	$29 + 6 \cdot 2^k \cdot 3^n$	P_k^n			

- 2. Формула. $\phi \equiv s_0 s_1 \dots s_{n-1}$. Гёделев номер: $\lceil \phi \rceil = 2^{\lceil s_0 \rceil} \cdot 3^{\lceil s_1 \rceil} \cdot \dots \cdot p_{n-1}^{\lceil s_{n-1} \rceil}$.
- 3. Доказательство. $\Pi = \delta_0 \delta_1 \dots \delta_{k-1}$, его гёделев номер: $\sqcap \Pi = 2^{\lceil \delta_0 \rceil} \cdot 3^{\lceil \delta_1 \rceil} \cdot \dots \cdot p_{k-1}^{\lceil \delta_{k-1} \rceil}$

Теорема.

Следующая функция рекурсивна:

$$\operatorname{proof}(f, x_1, x_2, \dots, x_n, y, p) = \begin{cases} 1, & \operatorname{если} \vdash \phi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y}), \\ p - \text{гёделев номер вывода}, f = \lceil \phi \rceil \\ 0, & \operatorname{иначе} \end{cases}$$

Идея доказательства

- 1. Проверка доказательства вычислима.
- 2. Согласно тезису Чёрча, любая вычислимая функция вычислима с помощью рекурсивных функций.

Перебор доказательств

Лемма.

Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = max\{p : n : k^p\}, fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0, \ \overline{k}(x) = k$.

Теорема.

Если $f: \mathbb{N}_0^n \to \mathbb{N}_0$, и f представима в Ф.А. формулой φ , то f — рекурсивна.

Доказательство:

Пусть заданы x_1, x_2, \ldots, x_n . Ищем $\langle y, p \rangle$, что $\operatorname{proof}(\lceil \varphi \rceil, x_1, x_2, \ldots, x_n, y, p) = 1$, напомним: $y = f(x_1, x_2, \ldots, x_n), \ p = \lceil \Pi \rceil$, Π — доказательство $\varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$.

$$f = S\langle \text{fst}, M \langle S \langle \text{proof}, \overline{}^{\Box}, U_{n+1}^1, U_{n+1}^2, \dots, U_{n+1}^n, S \langle \text{fst}, U_{n+1}^{n+1} \rangle, S \langle \text{snd}, U_{n+1}^{n+1} \rangle \rangle \rangle$$

5 Информация о курсе.

Поток — y2024.

Группы М3132-М3139.

Преподаватель — Штукенберг Дмитрий Григорьевич.

Нам пизда, ребятки.

