University of Calgary Department of Electrical and Computer Engineering

ENGG 225 - Fundamentals of Electrical Circuits and Machines Winter, 2017

Problem Assignment #4

Use the mesh-current method to solve Questions 1-3, and then use any circuit analysis method you wish to calculate the Thévenin equivalent circuits in problem 4-9.

1. [2 marks.] Use the mesh-current method to solve for mesh current i_1 as shown. Give your answer in Amperes.

2. [2 marks.] Use the mesh-current method to solve for mesh current i_1 as shown. Give your answer in Amperes.

3. [1 mark.] Use the mesh-current method to solve for mesh current i_1 as shown. Give your answer in Amperes. (Hint: This circuit looks rather intimidating; however, not all meshes are needed to find the answer!)

4. [2 marks.] Determine the Thévenin equivalent of the following circuit, and give the Thévenin voltage $v_t = v_{AB}$ in Volts.

5. [1 mark.] For the circuit above in Question 4, give the Thévenin resistance R_t in Ohms.

6. [2 marks.] Determine the Thévenin equivalent of the following circuit, and give the Thévenin voltage $v_t = v_{AB}$ in Volts.

- 7. [2 marks.] For the circuit above in Question 6, give the short-circuit current $i_{sc} = i_{AB}$ in Amperes. Assume that the direction of the current is from A to B.
- 8. [1 mark.] Determine the Thévenin equivalent of the following circuit, and give the Thévenin voltage $v_t = v_{AB}$ in Volts.

9. [1 mark.] For the circuit above in Question 8, give the short-circuit current $i_{sc} = i_{AB}$ in Amperes. Assume that the direction of the current is from A to B. (Hint: A KVL equation around a loop containing the two voltage sources could help!)