

Autonomous Agents and Multiagent Systems Challenges in Earth Observation Satellite Constellations

Gauthier Picard¹ Clément Caron² Jean-Loup Farges¹ Jonathan Guerra² Cédric Pralet¹ Stéphanie Roussel¹

¹ ONERA/DTIS. Université de Toulouse

² Airbus Defence and Space, Toulouse

gauthier.picard@onera.fr

 Recent years have shown a large increase in the development of satellite constellations

- Recent years have shown a large increase in the development of satellite constellations
- Increasing the size allows to capture any point on Earth at higher frequency,
 e.g. the Planet constellation [Shah et al., 2019]

- Recent years have shown a large increase in the development of satellite constellations
- Increasing the size allows to capture any point on Earth at higher frequency,
 e.g. the Planet constellation [Shah et al., 2019]
- But, operating numerous Earth observation satellites (EOS) requires to cooperate, collectively solve and schedule, self-adapt and interact

- Recent years have shown a large increase in the development of satellite constellations
- Increasing the size allows to capture any point on Earth at higher frequency,
 e.g. the Planet constellation [Shah et al., 2019]
- But, operating numerous Earth observation satellites (EOS) requires to cooperate, collectively solve and schedule, self-adapt and interact

Many open challenges for autonomous agents and multiagent systems

Constellation Design Challenges

How to Design an EOS Constellation?

How to Design an EOS Constellation? Constellation composition

How to Design an EOS Constellation? Constellation composition

How to Design an EOS Constellation? Points of interest

How to Design an EOS Constellation? On-ground communication stations

THE FRENCH AEROSPACE LAB

How to Design an EOS Constellation? Visibility windows

How to Design an EOS Constellation? Other actors and stakeholders

How to Design an EOS Constellation? System organization

Constellation Design Challenges System Modeling and Simulation

Design phase should take into account composite nature, heterogeneity, dynamics, openness, guarantees and safety

Constellation Design Challenges System Modeling and Simulation

Design phase should take into account composite nature, heterogeneity, dynamics, openness, guarantees and safety

- Multiagent modeling and programming
 - Models (roles, goals, ...) [Boissier et al., 2013; Winikoff and Padgham, 2013]
 - EOS clustering [CHEN et al., 2018], team formation [ANDREJCZUK et al., 2017]
 - Agent-level and system-level formal verification

Design phase should take into account composite nature, heterogeneity, dynamics, openness, guarantees and safety

- Multiagent modeling and programming
 - Models (roles, goals, ...) [Boissier et al., 2013; Winikoff and Padgham, 2013]
 - EOS clustering [CHEN et al., 2018], team formation [ANDREJCZUK et al., 2017]
 - Agent-level and system-level formal verification
- Multiagent-based simulation (MABS)

[BASTIANELLI et al., 2012; BUDIANTO and OLDS, 2004; ZHANG et al., 2013]

- Agent-based simulation coupling and interoperability [CAMUS et al., 2018; NDIAYE et al., 2018]
- Ptolemy [PTOLEMAEUS, 2014]
- Multi-objective black box optimization vs. MABS fine-grained explanations

Design phase should take into account composite nature, heterogeneity, dynamics, openness, guarantees and safety

- Multiagent modeling and programming
 - Models (roles, goals, ...) [Boissier et al., 2013; Winikoff and Padgham, 2013]
 - EOS clustering [CHEN et al., 2018], team formation [Andrejczuk et al., 2017]
 - Agent-level and system-level formal verification
- Multiagent-based simulation (MABS)

[BASTIANELLI et al., 2012; BUDIANTO and OLDS, 2004; ZHANG et al., 2013]

- Agent-based simulation coupling and interoperability
 [CAMUS et al., 2018; NDIAYE et al., 2018]
- Ptolemy [PTOLEMAEUS, 2014]
- Multi-objective black box optimization vs. MABS fine-grained explanations
- ▲ Models used for assessing performance are different from models used for assessing requirements/safety [SÁNCHEZ et al., 2017]

How to Allocate Resources?

How to Allocate Resources?

How to Share Resources?

How to Share Resources?

Constellation Design Challenges

Resource Allocation and Fair Division

EOS constellation is used by several stakeholders ⇒ equitable or fair exploitation

Constellation Design Challenges

Resource Allocation and Fair Division

EOS constellation is used by several stakeholders \Rightarrow equitable or fair exploitation

- MultiAgent Resource Allocation (MARA) [CHEVALEYRE et al., 2006]
 - users share orbit portions or time windows (divisible)
 - users share EOS by requesting some observation of a POI (indivisible, bundle)

EOS constellation is used by several stakeholders ⇒ equitable or fair exploitation

- MultiAgent Resource Allocation (MARA) [CHEVALEYRE et al., 2006]
 - users share orbit portions or time windows (divisible)
 - users share EOS by requesting some observation of a POI (indivisible, bundle)
- Fair division [Boutilier et al., 2004; Bouveret et al., 2016]
 - Several fairness visions
 - Proportionality wrt. the financial contribution in the funding [Lemaître et al., 2003]
 - maxmin fairness [Johnston, 2020; Tangpattanakul et al., 2015]
 - Trade-off between several criteria is necessary, e.g. efficiency vs. fairness
 - ▲ Complex utility (*e.g.* priority, composite observations, weather) [VASEGAARD et al., 2020]
 - ▲ Additivity is often neither acceptable nor realistic, e.g. periodic requests

EOS constellation is used by several stakeholders ⇒ equitable or fair exploitation

- MultiAgent Resource Allocation (MARA) [CHEVALEYRE et al., 2006]
 - users share orbit portions or time windows (divisible)
 - users share EOS by requesting some observation of a POI (indivisible, bundle)
- Fair division [Boutilier et al., 2004; Bouveret et al., 2016]
 - Several fairness visions
 - Proportionality wrt. the financial contribution in the funding [LEMAÎTRE et al., 2003]
 - maxmin fairness [Johnston, 2020; Tangpattanakul et al., 2015]
 - Trade-off between several criteria is necessary, e.g. efficiency vs. fairness
 - ▲ Complex utility (e.g. priority, composite observations, weather) [VASEGAARD et al., 2020]
 - ▲ Additivity is often neither acceptable nor realistic, e.g. periodic requests
- Centralized or decentralized procedures, returning (near) optimal allocations
 - e.g. Auctions on orbit portions, geographic zone

Offline Operation Challenges

Offline Operation Challenges Scheduling Observations

Distributed by nature ⇒ partially or fully decomposable

Offline Operation Challenges Scheduling Observations

Distributed by nature ⇒ partially or fully decomposable

- Multiagent problem solving techniques
 - Marketplace for tasks, e.g. Contract Net Protocol [Peng Feng et al., 2015]

Distributed by nature \Rightarrow partially or fully decomposable

- Multiagent problem solving techniques
 - Marketplace for tasks, e.g. Contract Net Protocol [Peng Feng et al., 2015]
- Distributed constraint optimization (DCOP) [Modi et al., 2005]
 - LNS for multi-satellite scheduling [HE et al., 2018] in a distributed way
 - Distribution to bring *explainability*, *speedup*, and *privacy*
 - ▲ Scalability issues and mixed-integer problems [HOANG et al., 2020]

Distributed by nature ⇒ partially or fully decomposable

- Multiagent problem solving techniques
 - Marketplace for tasks, e.g. Contract Net Protocol [Peng Feng et al., 2015]
- Distributed constraint optimization (DCOP) [Modi et al., 2005]
 - LNS for multi-satellite scheduling [HE et al., 2018] in a distributed way
 - Distribution to bring *explainability*, *speedup*, and *privacy*
 - ▲ Scalability issues and mixed-integer problems [HOANG et al., 2020]
- EOS scheduling problems are multi-objective and asymmetric
 - ▲ Scalability of distributed methods [Delle Fave et al., 2011; Grinshpoun et al., 2013]

Distributed by nature ⇒ partially or fully decomposable

- Multiagent problem solving techniques
 - Marketplace for tasks, e.g. Contract Net Protocol [Peng Feng et al., 2015]
- Distributed constraint optimization (DCOP) [Modi et al., 2005]
 - LNS for multi-satellite scheduling [HE et al., 2018] in a distributed way
 - Distribution to bring explainability, speedup, and privacy
 - ▲ Scalability issues and mixed-integer problems [HOANG et al., 2020]
- EOS scheduling problems are multi-objective and asymmetric
 - ▲ Scalability of distributed methods [Delle Fave et al., 2011; Grinshpoun et al., 2013]
- Oalf amonifortion and be winted for large and a shade an
- Self-organization and heuristics for large scale schedules [BONNET et al., 2015]
 - ▲ No quality guarantees, yet?

Offline Operation Challenges Scheduling under Uncertainties

Offline Operation Challenges Scheduling under Uncertainties

- Multiagent planning under uncertainties [SPAAN and MELO, 2008]
 - *DEC-POMDP* [BERNSTEIN et al., 2002]
 - \triangle Algorithms do not scale \Rightarrow design simpler solutions

- Multiagent planning under uncertainties [SPAAN and MELO, 2008]
 - *DEC-POMDP* [Bernstein et al., 2002]
 - Algorithms do not scale ⇒ design simpler solutions
- Probabilistic problem solving (costs w/ stochastic properties or random variables)
 - Probabilistic DCOP [ATLAS and DECKER, 2010; NGUYEN et al., 2012; STRANDERS et al., 2011]
 - ▲ Still require investigation to scale up

- Multiagent planning under uncertainties [SPAAN and MELO, 2008]
 - DEC-POMDP [BERNSTEIN et al., 2002]
 - \blacktriangle Algorithms do not scale \Rightarrow design simpler solutions
- Probabilistic problem solving (costs w/ stochastic properties or random variables)
 - Probabilistic DCOP [ATLAS and DECKER, 2010; NGUYEN et al., 2012; STRANDERS et al., 2011]
 - ▲ Still require investigation to scale up
- Beyond probabilities
 - Possibility Theory [Dubois and Prade, 2014] → increased decision robustness
 - A How to define deterministic rewards that consider requests of different types and priorities, while being combined into the chosen uncertainty measure?

Offline Operation Challenges Deconflicting User Requests

Offline Operation Challenges Deconflicting User Requests

Satellite constellations involve many actors which implies conflicts and schedule privacy

 Distributed optimization techniques when users aim to a common objective (e.g. maximizing the number of scheduled observations) but keep some information private [SINHA and DUTTA, 2016]

- Distributed optimization techniques when users aim to a common objective (e.g. maximizing the number of scheduled observations) but keep some information private [SINHA and DUTTA, 2016]
- Consensus techniques when visions are diverging
 - Build agreements on some shared decision variables [Boyd et al., 2011; Nedić et al., 2018, 2010]

- Distributed optimization techniques when users aim to a common objective (e.g. maximizing the number of scheduled observations) but keep some information private [SINHA and DUTTA, 2016]
- Consensus techniques when visions are diverging
 - Build agreements on some shared decision variables [Boyd et al., 2011; Nedić et al., 2018, 2010]
- A Presence of discrete and continuous decision variables

- Distributed optimization techniques when users aim to a common objective (e.g. maximizing the number of scheduled observations) but keep some information private [Sinha and Dutta, 2016]
- Consensus techniques when visions are diverging
 - Build agreements on some shared decision variables [Boyd et al., 2011; Nedić et al., 2018, 2010]
- A Presence of discrete and continuous decision variables
 - Game Theory [SUN et al., 2018] and market design [DENIS et al., 2017], in more conflicting and non-cooperative settings

Online Operation Challenges Dynamics and Rescheduling

Image acquisition may fail and last-minute request may occur ⇒ rescheduling some observations

Online Operation Challenges Dynamics and Rescheduling

Image acquisition may fail and last-minute request may occur ⇒ rescheduling some observations

- On-ground plan repair is triggered once EOSs have downloaded data
 - Plan repair techniques [Wang et al., 2011; Wang et al., 2015]
 - ⚠ This repair should be provided as reactively as possible compared to full scheduling

Image acquisition may fail and last-minute request may occur ⇒ rescheduling some observations

- On-ground plan repair is triggered once EOSs have downloaded data
 - Plan repair techniques [Wang et al., 2011; Wang et al., 2015]
 - ⚠ This repair should be provided as reactively as possible compared to full scheduling
- On-board decision-making and inter-agent cooperation
 - Dynamic Distributed Constraint Optimization (DynDCOP) [Hoang et al., 2016; Rust et al., 2020]
 - Multiagent plan repair techniques [Komenda et al., 2014]
 - Dynamic consensus techniques [Franceschell and Frasca, 2018; Li et al., 2014]
 - ▲ Limited scalability and resilience to communication loss and asynchronicity [DIBAJI and ISHII, 2015; JOHNSTON, 2020; RUST et al., 2020]
 - ▲ Strong requirements for on-board operations

Interaction and Protocols

Interaction and Protocols

- Network of communication links
 - inter-satellite link
 - direct communication between mission centers
 - indirect communications through geostationary relay satellites or drones
 - ⇒ Delay Tolerant Network (DTN) protocol [NAG et al., 2019]

Interaction and Protocols

- Network of communication links
 - inter-satellite link
 - direct communication between mission centers
 - indirect communications through geostationary relay satellites or drones
 - ⇒ Delay Tolerant Network (DTN) protocol [NAG et al., 2019]
- Multi-agent protocols to answer questions like "which communication protocol should be used?", "when to communicate?", "which data to communicate and to who?", or "what is the value of an information?"
 - Epidemic communication protocols [Bonnet and Tessier, 2007]
 - Negotiation and coordination between spacecraft agents [ARAGUZ et al., 2015; CAHOY and KENNEDY, 2017; SCHETTER et al., 2003]

- Network of communication links
 - inter-satellite link
 - direct communication between mission centers
 - indirect communications through geostationary relay satellites or drones
 - ⇒ Delay Tolerant Network (DTN) protocol [NAG et al., 2019]
- Multi-agent protocols to answer questions like "which communication protocol should be used?", "when to communicate?", "which data to communicate and to who?", or "what is the value of an information?"
 - Epidemic communication protocols [Bonnet and Tessier, 2007]
 - Negotiation and coordination between spacecraft agents [ARAGUZ et al., 2015; CAHOY and KENNEDY, 2017; SCHETTER et al., 2003]
- ▲ Strong requirements for on-board operations

Many challenges in EOS constellations and related applications...

Many challenges in EOS constellations and related applications... open for the whole AAMAS community

Many challenges in EOS constellations and related applications... open for the whole AAMAS community

- Coordination, Organisations, Institutions, and Norms
- Engineering Multiagent Systems
- Knowledge Representation, Reasoning, and Planning
- Learning and Adaptation
- Markets, Auctions, and Non-Cooperative Game Theory
- Modelling and Simulation of Societies
- Robotics
- Social Choice and Cooperative Game Theory

Acknowledgements

This work has been performed with the support of the French government in the context of the "Programme d'Invertissements d'Avenir", namely by the BPI PSPC project "LiChIE"

Autonomous Agents and Multiagent Systems Challenges in Earth Observation Satellite Constellations

Gauthier Picard¹ Clément Caron² Jean-Loup Farges¹ Jonathan Guerra² Cédric Pralet¹ Stéphanie Roussel¹

¹ ONERA/DTIS, Université de Toulouse

² Airbus Defence and Space, Toulouse

gauthier.picard@onera.fr

References

ANDREJCZUK, E., J. A. RODRIGUEZ-AGUILAR, and C. SIERRA (2017). "A Concise Review on Multiagent Teams: Contributions and Research Opportunities". In: *Multi-Agent Systems and Agreement Technologies*. Ed. by Natalia CRIADO PACHECO, Carlos Carrascosa, Nardine Osman, and Vicente JULIÁN INGLADA. Cham: Springer International Publishing, pp. 31–39. ISBN: 978-3-319-59294-7.

ARAGUZ, C., A. ALVARO, I. del PORTILLO, K. ROOT, E. ALARCÓN, and E. BOU-BALUST (2015). "On autonomous software architectures for distributed spacecraft: A Local-Global Policy". In: *2015 IEEE Aerospace Conference*, pp. 1–9.

ATLAS, J. and K. DECKER (2010). "Coordination for Uncertain Outcomes Using Distributed Neighbor Exchange". In: *International Conference on Autonomous Agents and Multiagent Systems*. AAMAS '10. Toronto, Canada: International Foundation for Autonomous Agents and Multiagent Systems, 1047–1054. ISBN: 9780982657119.

BASTIANELLI, G., D. SALAMON, A. SCHISANO, and A. IACOBACCI (2012). "Agent-based simulation of collaborative unmanned satellite vehicles". In: 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL). Rome: IEEE, pp. 1–6. DOI: 10.1109/ESTEL.2012.6400072.

BERNSTEIN, D.S., R. GIVAN, N. IMMERMAN, and S. ZILBERSTEIN (2002). "The complexity of decentralized control of Markov decision processes". In: *Mathematics of operations research* 27.4, pp. 819–840.

- BONNET, J., M.-P. GLEIZES, E. KADDOUM, S. RAINJONNEAU, and G. FLANDIN (2015). "Multi-satellite Mission Planning Using a Self-Adaptive Multi-agent System". In: 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems. Boston: IEEE, pp. 11-20. DOI: 10.1109/SASD.2015.9.
- BOUTILIER, C., R. I. BRAFMAN, C. DOMSHLAK, H. H. HOOS, and D. POOLE (2004). "CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements". In: Journal of Artificial Intelligence Research 21, 135-191. ISSN: 1076-9757. DOI: 10.1613/jair.1234. URL: http://dx.doi.org/10.1613/jair.1234.
- BOUVERET, S., Y. CHEVALEYRE, and N. MAUDET (2016). "Fair Allocation of Indivisible Goods". In: Handbook of Computational Social Choice. Cambridge, UK: Cambridge University Press, pp. 284-310.
 - BOYD, S., N. PARIKH, E. CHU, B. PELEATO, and J. ECKSTEIN (Jan. 2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers". In: Found. Trends Mach. Learn. 3.1, 1-122. ISSN: 1935-8237. DOI: 10.1561/2200000016. URL: https://doi.org/10.1561/2200000016.

BUDIANTO, I. A. and J. R. OLDS (2004). "Design and Deployment of a Satellite Constellation Using Collaborative Optimization". In: Journal of Spacecraft and Rockets 41.6, pp. 956-963. DOI: 10.2514/1.14254. eprint: https://doi.org/10.2514/1.14254. URL: https://doi.org/10.2514/1.14254.

CAHOY, K.L. and A.K. KENNEDY (2017). "Initial Results from ACCESS: An Autonomous CubeSat Constellation Scheduling System for Earth Observation". In: 31st Annual AlAA/USU Conference on Small Satellites

CAMUS, B., T. PARIS, J. VAUBOURG, Y. PRESSE, C. BOURJOT, L. CIARLETTA, and V. CHEVRIER (2018). "Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the MECSYCO middleware". In: SIMULATION 94.12, pp. 1099–1127. DOI: 10.1177/0037549717749014. eprint: https://doi.org/10.1177/0037549717749014. URL: https://doi.org/10.1177/0037549717749014.

CHEN, H., S. YANG, J. LI, and N. JING (Aug. 2018). "Exact and Heuristic Methods for Observing Task-Oriented Satellite Cluster Agent Team Formation". In: Mathematical Problems in Engineering 2018. Ed. by Piotr JEDRZEJOWICZ, pp. 1-23. ISSN: 1024-123X. DOI: 10.1155/2018/2103625. URL: https://doi.org/10.1155/2018/2103625.

CHEVALEYRE, Y. et al. (2006). "Issues in Multiagent Resource Allocation". In: Informatica (Slovenia) 30.1, pp. 3-31. URL: http://www.informatica.si/index.php/informatica/article/view/70.

DELLE FAVE, F. M., R. STRANDERS, A. ROGERS, and N. R. JENNINGS (2011). "Bounded Decentralised Coordination over Multiple Objectives". In: International Conference on Autonomous Agents and Multiagent Systems. AAMAS '11. Taipei, Taiwan: International Foundation for Autonomous Agents and Multiagent Systems, 371-378. ISBN: 0982657153.

DENIS, G., A. CLAVERIE, X. PASCO, J.-P. DARNIS, B. DE MAUPEOU, M. LAFAYE, and E. MOREL (2017). "Towards disruptions in Earth observation? New Earth Observation systems and markets evolution: Possible scenarios and impacts". In: Acta Astronautica 137, pp. 415 -433. ISSN: 0094-5765. DOI: https://doi.org/10.1016/j.actaastro.2017.04.034.URL: http://www.sciencedirect.com/science/article/pii/S0094576516313492.

DIBAJI, S.M. and H. ISHII (2015). "Resilient Multi-Agent Consensus with Asynchrony and Delayed Information". In: IFAC-PapersOnLine 48.22. 5th IFAC Workshop on Distributed Estimation and Control in Networked Systems NecSys 2015, pp. 28 -33. ISSN: 2405-8963. DOI: https://doi.org/10.1016/j.ifacol.2015.10.302.URL: http://www.sciencedirect.com/science/article/pii/S240589631502193X.

DUBOIS, D. and H. PRADE (2014). "Possibilistic Logic — An Overview". In: Computational Logic. Ed. by Jörg H. SIEKMANN. Vol. 9. Handbook of the History of Logic. Amsterdam, Holland: North-Holland, pp. 283 -342. DOI: https://doi.org/10.1016/B978-0-444-51624-4.50007-1. URL: http://www.sciencedirect.com/science/article/pii/B9780444516244500071.

FRANCESCHELLI, P. and P. FRASCA (2018). "Proportional Dynamic Consensus in Open Multi-Agent Systems". In: 2018 IEEE Conference on Decision and Control (CDC). Miami Beach, FL, USA: IEEE, pp. 900–905. DOI: 10.1109/CDC.2018.8619639.

GRINSHPOUN, T., A. GRUBSHTEIN, R. ZIVAN, A. NETZER, and A. MEISELS (May 2013). "Asymmetric Distributed Constraint Optimization Problems". In: *J. Artif. Int. Res.* 47.1, 613–647. ISSN: 1076-9757.

HE, L., L. XIAOLU, G. LAPORTE, Y.-W. CHEN, and Y. CHEN (July 2018). "An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling". In: *Computers and Operations Research* 100, pp. 12–25. DOI: 10.1016/j.cor.2018.06.020.

HOANG, K. D., F. FIORETTO, P. HOU, M. YOKOO, W. YEOH, and R. ZIVAN (2016). "Proactive Dynamic Distributed Constraint Optimization". In: *International Conference on Autonomous Agents and Multiagent Systems*. AAMAS '16. Singapore, Singapore: International Foundation for Autonomous Agents and Multiagent Systems, 597–605. ISBN: 9781450342391.

HOANG, K. D., W. YEOH, M. YOKOO, and Z. RABINOVICH (2020). "New Algorithms for Continuous Distributed Constraint Optimization Problems". In: *International Conference on Autonomous Agents and MultiAgent Systems*. AAMAS '20. Auckland, New Zealand: International Foundation for Autonomous Agents and Multiagent Systems, 502–510. ISBN: 9781450375184.

JOHNSTON, M. (2020). "Scheduling NASA's Deep Space Network: Priorities, Preferences, and Optimization".

KOMENDA, A., P. NOVÁK, and M. PĚCHOUČEK (2014). "Domain-independent multi-agent plan repair". In: *Journal of Network and Computer Applications* 37, pp. 76 –88. ISSN: 1084-8045. DOI: https://doi.org/10.1016/j.jnca.2012.12.011. URL: http://www.sciencedirect.com/science/article/pii/S1084804512002585.

LEMAÎTRE, M., G. VERFAILLIE, H. FARGIER, J. LANG, N. BATAILLE, and J.-M. LACHIVER (2003). "Equitable allocation of earth observing satellites resources". In: 5th ONERA-DLR Aerospace Symposium (ODAS'03).

LI, Z., Z. DUAN, and F. L. LEWIS (2014). "Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties". In: *Automatica* 50.3, pp. 883 –889. ISSN: 0005-1098. DOI: https://doi.org/10.1016/j.automatica.2013.12.008. URL: http://www.sciencedirect.com/science/article/pii/S0005109813005670.

MODI, P.J., W.-M. SHEN, M. TAMBE, and M. YOKOO (Jan. 2005). "Adopt: Asynchronous Distributed Constraint Optimization with Quality Guarantees". In: *Artif. Intell.* 161.1–2, 149–180. ISSN: 0004-3702.

NAG, S., A. LI, V. RAVINDRA, M. SANCHEZ NET, K.-M. CHEUNG, R. LAMMERS, and B. BLEDSOE (2019). "Autonomous Scheduling of Agile Spacecraft Constellations with Delay Tolerant Networking for Reactive Imaging". In: International Conference on Automated Planning and Scheduling SPARK Workshop.

NDIAYE, K., F. BALBO, J.-P. JAMONT, and M. OCCELLO (2018). "Simulation Coupling Limitations with Respect to Shared Entities Constraints". In: 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications. INSTICC. SciTePress, pp. 338-346. ISBN: 978-989-758-323-0, DOI: 10.5220/0006859603380346.

NEDIĆ, A., A. OLSHEVSKY, and Wei SHI (2018). "Decentralized Consensus Optimization and Resource Allocation". In: Large-Scale and Distributed Optimization. Cham: Springer International Publishing, pp. 247-287. ISBN: 978-3-319-97478-1. DOI: 10.1007/978-3-319-97478-1_10. URL: https://doi.org/10.1007/978-3-319-97478-1_10.

NEDIĆ, A., A. OZDAGLAR, and P. A. PARRILO (2010). "Constrained Consensus and Optimization in Multi-Agent Networks". In: IEEE Transactions on Automatic Control 55.4, pp. 922–938. DOI: 10.1109/TAC.2010.2041686.

NGUYEN, D. T., W. YEOH, and H.C. LAU (2012). "Stochastic Dominance in Stochastic DCOPs for Risk-Sensitive Applications". In: International Conference on Autonomous Agents and Multiagent Systems. AAMAS '12. Valencia, Spain: International Foundation for Autonomous Agents and Multiagent Systems, 257-264, ISBN: 0981738117.

PENG FENG, HAO CHEN, SHUANG PENG, LUO CHEN, and LONGMEI LI (2015). "A method of distributed multi-satellite mission scheduling based on improved contract net protocol". In: 2015 11th International Conference on Natural Computation (ICNC). Zhangjiajie, China: IEEE, pp. 1062-1068. DOI: 10.1109/ICNC.2015.7378139.

PTOLEMAEUS, Claudius, ed. (2014). System Design, Modeling, and Simulation using Ptolemy II. Berkeley, California, USA: Ptolemy.org. URL: http://ptolemy.org/books/Systems.

RUST, P., G. PICARD, and F. RAMPARANY (2020). "Resilient Distributed Constraint Optimization in Physical Multi-Agent Systems". In: European Conference on Artificial Intelligence (ECAI). Amsterdam, Holland: IOS Press, pp. 195 -202. DOI: 10.3233/FAIA200093. URL: http://ecai2020.eu/papers/108_paper.pdf.

SCHETTER, T., M. CAMPBELL, and D. SURKA (2003). "Multiple agent-based autonomy for satellite constellations". In: Artificial Intelligence 145.1, pp. 147 –180. ISSN: 0004-3702. DOI: https://doi.org/10.1016/S0004-3702(02)00382-X.URL: http://www.sciencedirect.com/science/article/pii/S000437020200382X.

SHAH, V., V. VITTALDEV, L. STEPAN, and C. FOSTER (2019). "Scheduling the World's Largest Earth-Observing Fleet of Medium-Resolution Imaging Satellites". In: IWPSS.

SINHA, P. K. and A. DUTTA (2016). "Multi-satellite task allocation algorithm for Earth observation". In: 2016 IEEE Region 10 Conference (TENCON). New York, New York, US: IEEE, pp. 403-408. DOI: 10.1109/TENCON.2016.7848030.

SÁNCHEZ, A.H., T. SOARES, and A. WOLAHAN (2017). "Reliability aspects of mega-constellation satellites and their impact on the space debris environment". In: 2017 Annual Reliability and Maintainability Symposium (RAMS), pp. 1-5. DOI: 10.1109/RAM.2017.7889671.

SPAAN, M. T. J. and F. S. Melo (2008). "Interaction-Driven Markov Games for Decentralized Multiagent Planning under Uncertainty". In: International Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS '08. Estoril, Portugal: International Foundation for Autonomous Agents and Multiagent Systems, 525-532. ISBN: 9780981738109.

STRANDERS, R., F.M. DELLE FAVE, A. ROGERS, and N.R. JENNINGS (2011). U-GDL: A decentralised algorithm for DCOPs with Uncertainty. Project Report. URL: https://eprints.soton.ac.uk/273037/.

SUN, C., X. WANG, and X. LIU (2018). "Distributed Satellite Mission Planning via Learning in Games". In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). New York, New York, US: IEEE, pp. 4381-4386. DOI: 10.1109/SMC.2018.00740.

TANGPATTANAKUL, P., N. JOZEFOWIEZ, and P. LOPEZ (Sept. 2015). "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite". In: European Journal of Operational Research 245.2, pp. 542-554. DOI: 10.1016/j.ejor.2015.03.011. URL: https://hal.archives-ouvertes.fr/hal-01162839.

VASEGAARD, A.E., M. PICARD, F. HENNART, P. NIELSEN, and S. SAHA (2020). "Multi Criteria Decision Making for the Multi-Satellite Image Acquisition Scheduling Problem". In: Sensors 20.5, p. 1242. DOI: 10.3390/s20051242. URL: https://doi.org/10.3390/s20051242.

WANG, C., J. LI, N. JING, J. WANG, and H. CHEN (2011). "A Distributed Cooperative Dynamic Task Planning Algorithm for Multiple Satellites Based on Multi-agent Hybrid Learning". In: Chinese Journal of Aeronautics 24.4, pp. 493 -505. ISSN: 1000-9361. DOI: https://doi.org/10.1016/S1000-9361(11)60057-5.URL: http://www.sciencedirect.com/science/article/pii/S1000936111600575.

WANG, J., X. ZHU, L.T. YANG, J. ZHU, and M. MA (2015). "Towards dynamic real-time scheduling for multiple earth observation satellites". In: Journal of Computer and System Sciences 81.1, pp. 110 –124. ISSN: 0022-0000. DOI: https://doi.org/10.1016/j.jcss.2014.06.016. URL: http://www.sciencedirect.com/science/article/pii/S0022000014001032.

WINIKOFF, M. and L. PADGHAM (Jan. 2013). "Agent Oriented Software Engineering". In: Multiagent Systems. Ed. by G. Weiss. MIT Press. Chap. 13, pp. 695–757.

ZHANG, C., Y. WANG, and Y. ZHAO (2013). "Agent-Based Distributed Simulation Technology of Satellite Formation Flying". In: Proceedings of the 2013 Fourth World Congress on Software Engineering. WCSE '13. USA: IEEE Computer Society, 13-16. ISBN: 9781479928835. DOI: 10.1109/WCSE.2013.7. URL: https://doi.org/10.1109/WCSE.2013.7.

