Jordan標準形の計算の仕方

黒木玄

2010年6月10日更新 (2010年6月9日作成)

目次

0	設定	1
1	特性多項式を求める	2
2	最小多項式を求める	2
3	Jordan 標準形を求める	3
4	Jordan 標準形を求める (例で説明)	5
5	Jordan 標準形への相似変換を求める (例で説明)	5
6	n が小さい場合 6.1 n = 1 の場合	6
	n=1 の場合 $n=2$ の	6
	n=2 の場合 $n=3$ の	7
	6.4 $n=4$ の場合	7

0 設定

以下, K は代数閉体 (たとえば複素数体 $\mathbb C$ や素数 p に対する $\overline{\mathbb F_p}=\bigcup_n\mathbb F_{p^n}$) であるとし、単位行列を E と表わす. A は K の元を成分に持つ $n\times n$ 行列であるとし、A の特性多項式、最小多項式、G Jordan 標準形をそれぞれ G G と表わす.

固有値 a に属するサイズ l の Jordan ブロック $J_l(a)$ を次のように定める:

1 特性多項式を求める

特性多項式 $p_A(x) = |xE - A|$ を求める (n) が大きいと非常に大変). 特性多項式 $p_A(x)$ は次のように因数分解されると仮定する:

$$p_A(x) = (x - a_1)^{n_1} (x - a_2)^{n_2} \cdots (x - a_r)^{n_s} \quad (a_1, a_2, \dots, a_s \in K$$
 は互いに異なる).

このとき A の Jordan 標準形 J は対角成分がすべて a_i であるような n_i 次の上三角行列 J_i を用いて

$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{bmatrix}$$

と表わされる. 実際には J は J ordan 標準形なので対角成分を以外の 0 でない成分は対角成分のすぐ右上に並ぶ 1 だけである.

2 最小多項式を求める

A の最小多項式 $\varphi_A(x)$ を求めるためには以下の手続きにしたがえばよい:

- 1. $(x-a_1)^{k_1}(x-a_2)^{k_2}\cdots(x-a_r)^{k_s}$ $(1 \le k_i \le n_i)$ と表わされる多項式の x に A を代入したものを低次のものから順番に計算する.
- 2. 最初に 0 になった多項式が A の最小多項式 $\varphi_A(x)$ である.

たとえば $p_A(x) = (x-a)^3(x-b)^2 \ (a \neq b)$ の場合には

$$(x-a)(x-b)$$
, $(x-a)^2(x-b)$, $(x-a)(x-b)^2$, $(x-a)^2(x-b)^2$, $(x-a)^3(x-b)$

の順番に x に A を代入したものを計算する. そのとき最初に 0 になったものが A の最小多項式 $\varphi_A(x)$ である. どれも 0 にならなければ特性多項式 $p_A(x)$ 自身が最小多項式 $\varphi_A(x)$ になる. (Cayley-Hamilton の定理より $p_A(A)=0$ が常に成立することに注意せよ.) 特に特性多項式が重根を持たないとき、特性多項式自身が最小多項式になる.

最小多項式 $\varphi_A(x)$ は次の形をしていると仮定する:

$$\varphi_A(x) = (x - a_1)^{m_1} (x - a_2)^{m_2} \cdots (x - a_r)^{m_s} \quad (1 \le m_i \le n_i).$$

このとき固有値 a_i に属する (すなわち J_i に含まれる) Jordan ブロックのサイズの最大値は m_i になる. このことから以下が導かれる:

- 最小多項式が重根を持たないとき (特に特性多項式が重根を持たないとき), Jordan 標準形は対角成分に固有値を並べた対角行列になる.
- \bullet $n \leq 3$ の場合には、特性多項式と最小多項式から Jordan 標準形が一意に決定される.

• n=4 であるとする. 最小多項式が $\varphi_A(x)=(x-a)^2$ の形になる例外的な場合を除けば、特性多項式と最小多項式から Jordan 標準形が一意に決定される. 最小多項式が $\varphi_A(x)=(x-a)^2$ の形になる場合には Jordan 標準形は次のどちらかの形になる:

$$J = \begin{bmatrix} a & 1 & & \\ & a & & \\ & & a & \\ & & & a \end{bmatrix}, \begin{bmatrix} a & 1 & & \\ & a & & \\ & & a & 1 \\ & & & a \end{bmatrix}.$$

J-aE の rank は前者の場合に 1 になり、後者の場合に 2 になる。 A-aE と J-aE の rank は等しいので、最小多項式が $\varphi_A(x)=(x-a)^2$ の形になる場合には A-aE の rank が 1 であるか否かがわかれば A の Jordan 標準形が一意に決定される.

• $n \ge 5$ の場合にはさらに多くの場合の rank を計算しなければ Jordan 標準形が一意に決定できない場合が生じる.

3 Jordan 標準形を求める

一般に多項式 f(x) に対して A とその J ordan 標準形 J を代入してできる行列 f(A) と f(J) の r rank は等しくなる. なぜならば $A=PJP^{-1}$ (P はある可逆行列) が成立しているので $f(A)=f(PJP^{-1})=Pf(J)P^{-1}$ が成立するからである. 行列の r rank は左右から可逆な行列をかける操作で不変である. この事実を使えば最小多項式 $\varphi_A(x)$ の因子の x に x を代入してできる行列の x rank の情報を集めることよって x の x Jordan 標準形を一意に決定できることがわかる.

最小多項式の因子

$$\varphi_k^{(i)}(x) = (x - a_i)^k \prod_{j(\neq i)} (x - a_j)^{m_j} \quad (0 \le k_i \le m_i)$$

に J を代入してできる行列 $\varphi_k^{(i)}(J)$ の rank がどのような値になるかを調べよう. 以下 i を固定して考える.

 J_j に含まれる(すなわち固有値 a_j に属する)Jordan ブロックのサイズの最大値は m_j なので $(J_j-a_jE)^{m_j}$ は 0 になる.したがって $(J-a_jE)^{m_j}$ の J_j と同じ位置にあるブロックは 0 になる.このことから $j\neq i$ のとき $\prod_{j(\neq i)}(J-a_jE)^{m_j}$ の J_j と同じ位置にあるブロックはすべて 0 になる.一方 $j\neq i$ のとき J_i-a_jE は可逆行列なので $\prod_{j(\neq i)}(J-a_jE)^{m_j}$ の J_i と同じ位置にあるブロックは可逆行列になる.

ゆえに $\varphi_k^{(i)}(J)=(J-a_iE)^k\prod_{j(\neq i)}(J-a_jE)^{m_j}$ において i とは異なる j に対する J_j と同じ位置にあるブロックはすべて 0 になり, J_i と同じ位置にあるブロックの rank は $(J_i-a_iE)^k$ の rank に等しくなる. したがって

$$\operatorname{rank} \varphi_k^{(i)}(J) = \operatorname{rank} \left((J - a_i E)^k \prod_{j(\neq i)} (J - a_j E)^{m_j} \right) = \operatorname{rank} (J_i - a_i E)^k.$$

A の Jordan 標準形 J に含まれる固有値 a_i に属する (すなわちサイズ n_i の J_i に含まれる) すべての Jordan ブロックたちを

$$J_{l_1^{(i)}}, J_{l_2^{(i)}}, \dots, J_{l_{s_i}^{(i)}} \quad (1 \le l_1^{(i)} \le l_2^{(i)} \le \dots \le l_{s_i}^{(i)} = m_i, \ l_1^{(i)} + l_2^{(i)} + \dots + l_{s_i}^{(i)} = n_i)$$

と表わすと、

$$\operatorname{rank} \varphi_k^{(i)}(J) = \operatorname{rank} (J_i - a_i E)^k = \sum_{\nu=1}^{s_i} \operatorname{rank} (J_{l_{\nu}^{(i)}}(a_i) - a_i E)^k = \sum_{\nu=1}^{s_i} \operatorname{rank} J_{l_{\nu}^{(i)}}(0)^k$$

である. そして

$$\operatorname{rank} J_l(0)^k = \begin{cases} l - k & (k \le l), \\ 0 & (k > l) \end{cases}$$

なので、 $\operatorname{rank} \varphi_k^{(i)}(J)$ は k について単調減少、 $\operatorname{rank} \varphi_0^{(i)}(J) = n_i$ 、 $\operatorname{rank} \varphi_{m_i}^{(i)}(J) = 0$ であり、

$$d_k = \operatorname{rank} \varphi_{k-1}^{(i)}(J) - \operatorname{rank} \varphi_k^{(i)}(J)$$

とおくと

$$d_k = (k \leq l_{\nu}^{(i)}$$
 となる ν の個数).

したがって.

$$n_k(a_i)=(J$$
 に含まれる J ordan ブロック $J_k(a_i)$ の個数 $)=ig(l_
u^{(i)}=k$ となる u の個数 $ig)$

とおくと

$$d_k = n_k(a_i) + n_{k+1}(a_i) + \dots + n_{m_i}(a_i),$$

$$n_k(a_i) = d_k - d_{k+1} = \operatorname{rank} \varphi_{k-1}^{(i)}(J) - 2\operatorname{rank} \varphi_k^{(i)}(J) + \operatorname{rank} \varphi_{k+1}^{(i)}(J).$$

以上の結果から次の公式も得られる:

$$\varphi_k^{(i)}(J) = (J - a_i E) \varphi_{k-1}^{(i)}(J) \succeq d_k = \operatorname{rank} \varphi_{k-1}^{(i)}(J) - \operatorname{rank} \varphi_k^{(i)}(J) \text{ \& U}$$

$$\dim \left(\operatorname{Ker}(J - a_i E) \cap \operatorname{Im} \varphi_{k-1}^{(i)}(J) \right) = \dim \operatorname{Im} \varphi_{k-1}^{(i)}(J) - \dim \operatorname{Im} \varphi_k^{(i)}(J) = d_k.$$

行列 A の J ordan 標準形 J を決定するために必要なデータは $n_k(a_i)$ たちである. $\operatorname{rank} \varphi_k^{(i)}(J) = \operatorname{rank} \varphi_k^{(i)}(A)$ であることより, $\operatorname{rank} \varphi_k^{(i)}(A)$ を計算することによって $n_k(a_i)$ をすべて求め, A の J ordan 標準形 J の形を一意に決定できる. 次の節でそのような計算の例を示しておく.

4 Jordan 標準形を求める (例で説明)

たとえば
$$n=13,\,s=1,\,a_1=a,\,p_A(x)=(x-a)^{13},\,l_{\nu}^{(1)}=l_{\nu}$$
 であり、
$${\rm rank}(A-aE)^0=13, \\ {\rm rank}(A-aE)^1=7, \\ {\rm rank}(A-aE)^2=2, \\ {\rm rank}(A-aE)^3=0$$

であるとする. このとき $\varphi_A(x)=(x-a)^3$ であり, l_{ν} の最大値は 3 になり,

$$d_1=13-7=6=(1\leqq l_{\nu}$$
 となる ν の個数), $d_2=7-2=5=(2\leqq l_{\nu}$ となる ν の個数), $d_3=2-0=2=(3\leqq l_{\nu}$ となる ν の個数), $d_4=0-0=0=(3\leqq l_{\nu}$ となる ν の個数)

となる. ゆえに A の Jordan 標準形 J において

$$(\operatorname{Jordan} \ \mathcal{J}$$
ロック $J_1(a)$ の個数 $)=d_1-d_2=1,$ $(\operatorname{Jordan} \ \mathcal{J}$ ロック $J_2(a)$ の個数 $)=d_2-d_3=3,$ $(\operatorname{Jordan} \ \mathcal{J}$ ロック $J_3(a)$ の個数 $)=d_3-d_4=2.$

すなわち A の Jordan 標準形 J は次の形になる:

$$J = \begin{bmatrix} J_3(a) & & & & & & \\ & J_3(a) & & & & & \\ & & J_2(a) & & & & \\ & & & J_2(a) & & & \\ & & & & J_2(a) & & \\ & & & & & J_1(a) \end{bmatrix}.$$

5 Jordan 標準形への相似変換を求める (例で説明)

簡単のため前節の例で説明する.

- 一般の場合は以下の $(A-aE)^k$ を $arphi_k^{(i)}(A)$ で置き換えて同様に計算することになる.
- 1. $\operatorname{rank}(A-aE)^2=2$ なので $\operatorname{Im}(A-aE)^2$ に含まれるベクトル $v_{p,1}$ (p=1,2) の組で一次独立なものが存在する. p=1,2 に対して $v_{p,1}\in\operatorname{Im}(A-aE)^2$ なのであるベクトル $v_{p,2},v_{p,3}$ で $(A-aE)v_{p,2}=v_{p,1},$ $(A-aE)v_{p,3}=v_{p,2}$ を満たすものが存在する. このとき $(A-aE)^3=0$ より, p=1,2 に対して

$$(A-aE)v_{p,1}=0,\ (A-aE)v_{p,2}=v_{p,1},\ (A-aE)v_{p,3}=v_{p,2},$$

すなわち

$$Av_{p,1} = av_{p,1}, \ Av_{p,2} = v_{p,1} + av_{p,2}, \ Av_{p,2} = v_{p,2} + av_{p,3}.$$

より具体的には以下のように $v_{p,k}$ $(p=1,2,\,k=1,2,3)$ を取れる. 互いに異なる j_1,j_2 で $(A-aE)^2$ の第 j_1,j_2 列ベクトルの組が一次独立になるものが存在する. このとき $v_{p,k}=(A-aE)^{3-k}e_{j_p}$ $(p=1,2,\,k=1,2,3)$ と定めると, それらは上の性質を満たしている.

2. $\operatorname{Ker}(A-aE)\cap\operatorname{Im}(A-aE)^1$ は $\operatorname{rank}(A-aE)^1=7$, $\operatorname{rank}(A-aE)^2=2$ より 5 次元であり, $v_{p,1}$ (p=1,2) を含んでいる。したがって $\operatorname{Ker}(A-aE)\cap\operatorname{Im}(A-aE)^1$ に含まれるベクトル $v_{p,1}$ (p=3,4,5) で $v_{p,1}$ (p=1,2,3,4,5) が一次独立になるものが存在する。p=3,4,5 に対して $v_{p,1}\in\operatorname{Im}(A-aE)^1$ なのであるベクトル $v_{p,2}$ で $v_{p,1}=(A-aE)v_{p,2}$ をみたすものが存在する。このとき p=3,4,5 に対して

$$(A - aE)v_{p,1} = 0, (A - aE)v_{p,2} = v_{q,1},$$

すなわち

$$Av_{p,1} = av_{p,1}, \ Av_{p,2} = v_{p,1} + av_{p,2}.$$

3. $\operatorname{Ker}(A-aE)\cap\operatorname{Im}(A-aE)^0$ は $\operatorname{rank}(A-aE)^0=13$, $\operatorname{rank}(A-aE)^1=7$ より 6 次元であり, $v_{p,1}$ (p=1,2,3,4,5) を含んでいる。したがって $\operatorname{Ker}(A-aE)\cap\operatorname{Im}(A-aE)^0$ に含まれるベクトル $v_{6,1}$ で $v_{p,1}$ $(p=1,2,\ldots,6)$ が一次独立になるものが存在する。このとき

$$(A - aE)v_{6,1} = 0,$$

すなわち

$$Av_{6,1} = av_{6,1}.$$

4. 以上で定めた 13 本のベクトル $v_{p,k}$ たちは一次独立である. よって正方行列 P を $P=[v_{1,1},v_{1,2},v_{1,3},v_{2,1},v_{2,2},v_{2,3},v_{3,1},v_{3,2},v_{4,1},v_{4,2},v_{5,1},v_{5,2},v_{6,1}]$ と定めると P は可逆行列になる. さらに $v_{p,k}$ たちの性質より, AP=PJ すなわち $A=PJP^{-1}$ となることもわかる.

6 n が小さい場合

以下, Jordan ブロック $J_{k_1}(a_1),\ldots,J_{k_r}(a_r)$ を対角線に並べた行列を $\mathrm{diag}(J_{k_1}(a_1),\ldots,J_{k_r}(a_r))$ と表わす. 特に $J_1(a)=a$ であることに注意せよ.

6.1 n=1 の場合

 1×1 行列 A の Jordan 標準形 J は A 自身である.

6.2 n=2 の場合

 2×2 行列 A の Jordan 標準形 J は A の特性多項式 $p_A(x)$ と最小多項式 $\varphi_A(x)$ から一意に決まる:

1.
$$p_A(x) = (x-a)(x-b) \ (a \neq b)$$
 のとき

- $J = \operatorname{diag}(a, b)$.
- 2. $p_A(x) = (x-a)^2$ のとき
 - $J = \operatorname{diag}(a, a) = aE \iff \varphi_A(x) = x a \iff A = aE$,
 - $J = J_2(a) \iff \varphi_A(x) = (x a)^2 \iff A \neq aE$.

6.3 n=3 の場合

 3×3 行列 A の Jordan 標準形 J は A の特性多項式 $p_A(x)$ と最小多項式 $\varphi_A(x)$ から一意に決まる:

- 1. $p_A(x) = (x-a)(x-b)(x-c), (a,b,c)$ は互いに異なる) のとき
 - $J = \operatorname{diag}(a, b, c)$.
- 2. $p_A(x) = (x-a)^2(x-b) \ (a \neq b)$ のとき
 - $J = \operatorname{diag}(a, a, b) \iff \varphi_A(x) = (x a)(x b)$ $\iff \operatorname{rank}(A - aE) = 1,$
 - $J = \operatorname{diag}(J_2(a), b) \iff \varphi_A(x) = (x a)^2(x b)$ $\iff \operatorname{rank}(A - aE) = 2 \iff \operatorname{rank}(A - aE) \neq 1.$
- 3. $p_A(x) = (x-a)^3$ のとき
 - $J = \operatorname{diag}(a, a, a) = aE \iff \varphi_A(x) = x a$ $\iff A = aE,$
 - $J = \operatorname{diag}(J_2(a), a) \iff \varphi_A(x) = (x a)^2$ $\iff \operatorname{rank}(A - aE) = 1,$
 - $J = J_3(a) \iff \varphi_A(x) = (x a)^3$ $\iff \operatorname{rank}(A - aE) = 2 \iff A \neq aE$ かつ $\operatorname{rank}(A - aE) \neq 1$

6.4 n=4 の場合

 4×4 行列 A の Jordan 標準形 J は A の特性多項式 $p_A(x)$ と最小多項式 $\varphi_A(x)$ からひとつの例外的場合を除いて一意に決まる:

- $1. \ p_A(x) = (x-a)(x-b)(x-c)(x-d), \ (a,b,c,d)$ は互いに異なる) のとき
 - $J = \operatorname{diag}(a, b, c, d)$.
- $2. \ p_A(x) = (x-a)^2(x-b)(x-c) \ (a,b,c \$ は互いに異なる) のとき
 - $J = \operatorname{diag}(a, a, b, c) \iff \varphi_A(x) = (x a)(x b)(x c)$ $\iff \operatorname{rank}(A - aE) = 2,$
 - $J = \operatorname{diag}(J_2(a), b, c) \iff \varphi_A(x) = (x a)^2 (x b)(x c)$ $\iff \operatorname{rank}(A - aE) = 3 \iff \operatorname{rank}(A - aE) \neq 2.$

- 3. $p_A(x) = (x-a)^2(x-b)^2 (a \neq b)$ のとき
 - $J = \operatorname{diag}(a, a, b, b) \iff \varphi_A(x) = (x a)(x b)$ $\iff \operatorname{rank}(A - aE) = \operatorname{rank}(A - bE) = 2,$
 - $J = \operatorname{diag}(J_2(a), b, b) \iff \varphi_A(x) = (x a)^2(x b)$ $\iff \operatorname{rank}(A - aE) = 3$ かつ $\operatorname{rank}(A - bE) = 2$
 - $J = \operatorname{diag}(a, a, J_2(b)) \iff \varphi_A(x) = (x a)(x b)^2$ $\iff \operatorname{rank}(A - aE) = 2$ かつ $\operatorname{rank}(A - bE) = 3$
 - $J = \operatorname{diag}(J_2(a), J_2(b)) \iff \varphi_A(x) = (x-a)^2(x-b)^2$ $\iff \operatorname{rank}(A - aE) = 3$ かつ $\operatorname{rank}(A - bE) = 3$.
- 4. $p_A(x) = (x-a)^3(x-b) \ (a \neq b)$ のとき
 - $J = \operatorname{diag}(a, a, a, b) \iff \varphi_A(x) = (x a)(x b) \iff \operatorname{rank}(A aE) = 1,$
 - $J = \operatorname{diag}(J_2(a), a, b) \iff \varphi_A(x) = (x a)^2(x b) \iff \operatorname{rank}(A aE) = 2,$
 - $J = \operatorname{diag}(J_3(a), b) \iff \varphi_A(x) = (x a)^3(x b) \iff \operatorname{rank}(A aE) = 3.$
- 5. $p_A(x) = (x-a)^4$ のとき
 - $J = A = \operatorname{diag}(a, a, a, a) = aE \iff \varphi_A(x) = x a$,
 - $\varphi_A(x) = (x-a)^2$ のとき (これが例外的な場合)
 - $J = \operatorname{diag}(J_2(a), a, a) \iff \operatorname{rank}(A aE) = 1,$
 - $-J = \operatorname{diag}(J_2(a), J_2(a)) \iff \operatorname{rank}(A aE) = 2 \iff \operatorname{rank}(A aE) \neq 1,$
 - $J = \operatorname{diag}(J_3(a), a) \iff \varphi_A(x) = (x a)^3 \iff \operatorname{rank}(A aE) = 2$,
 - $J = J_4(a) \iff \varphi_A(x) = (x-a)^4$.

7 練習問題

- 1. 5×5 行列の Jordan 標準形についてまとめよ.
- 2. 以上で説明した方法とは異なる Jordan 標準形の計算法についてまとめよ.
- 3. Cayley-Hamilton の定理を Jordan 標準形の理論を用いて証明せよ.
- 4. Cayley-Hamilton の定理を Jordan 標準形の理論を経由せずに行列式の余因子展開 のみを用いて証明せよ.
- 5. べき零行列に限って Jordan 標準形の存在と一意性を証明せよ.
- 6. 単因子論について勉強し、単因子論を用いて Jordan 標準形の存在を証明せよ.
- 7. 有限生成 Abel 群の基本定理について勉強し、有限生成 Abel 群の理論と単因子論に基づいた Jordan 標準形の理論のあいだの類似性について論ぜよ.