ЛАБОРАТОРНАЯ РАБОТА №4 «ИССЛЕДОВАНИЕ ИНСТРУМЕНТОВ ПРЕДСТАВЛЕНИЯ И СТАТИСТИЧЕСКОГО АНАЛИЗА ИНФОРМАЦИИ»

Цель работы:

Представить исходную информацию в виде функциональной (или корреляционной) таблицы y = f(x); изучить взаимосвязи эколого-экономических явлений, построить математическую модель эколого-экономической корреляции и исследовать приложения модели; привести статистическую оценку генеральной средней.

Ход работы:

Был получен вариант задания (рисунок 1).

x_i	16	16	22	27	17	2	22	4	12	30	29	29	11	19	2
<i>y</i> _i	360	530	710	790	590	620	740	680	380	590	170	240	230	970	450
x_i	11	22	13	6	4	10	17	23	11	7	16	14	7	9	17
y_i	130	740	420	250	250	360	180	240	430	200	910	600	310	140	290

Рисунок 1 — Вариант задания

Проранжируем по аргументу х_і исходные данные (Таблица 1).

Таблица 1 – Исходные данные, проранжированные по аргументу х

хi	2	2	4	4	6	7	7	9	10	11	11	11	12	13	14
yi	620	450	680	250	250	200	310	140	360	130	430	230	380	420	600
xi	16	16	16	17	17	17	19	22	22	22	23	27	29	29	30
yi	910	360	530	590	180	290	970	710	740	740	240	790	170	240	590

Количество интервалов m было определено по эмпирической формуле Стерджесса:

$$m = l + 3,32lg(n).$$

В рассматриваемом случае $\pi=30,\ lg(n)=1,477,\ m=5,9.$ Для удобства счета принимается m=5. Вычислим длину интервала l_x по формуле на рисунке 2:

$$l_x = \frac{x_{max} - x_{min}}{m}.$$

Рисунок 2 – Формула вычисления длины интервала

В данном случае размах выборки $R = x_{max} - x_{min} = 28$, lx = 5,6. Поэтому границы интервалов будут такими:

- 1) первый интервал: 2...7,6; частота 7;
- 2) второй интервал: 7,6...13,2; частота 7;
- 3) третий интервал: 13,2...18,8; частота 7;
- 4) четвёртый интервал: 18,8...24,4; частота 5;
- 5) пятый интервал: 24,4...30; частота 4.

Были вычеслены средние значения аргумента х и функции у для каждого из пяти интервалов путём деления суммы значений в интервале на их количество в интервале.

Также был расчитан процентный «штрафа Пигу» (ШП) по формуле, представленной на рисунке 3.

$$\overline{III}\overline{\Pi}_j = \frac{\overline{y}_j}{\overline{x}_j} 100,\%.$$

Рисунок 3 – Формула «штрафа Пигу»

Была построена итоговая таблица 3 метода группировок.

Таблица 3 – Итоговая таблица метода группировок

Интервалы по х	$\overline{\mathbf{x}}_{\mathbf{j}}$ млн. руб.	у _ј , тыс. руб.	ШП, %	Fj
27,6	4,571428571	394,2857143	8,625	7
7,613,2	11	298,5714286	2,714285714	7
13,218,8	16,14285714	494,2857143	3,061946903	7
18,824,4	21,6	680	3,148148148	5
24,430	28,75	447,5	1,556521739	4

Анализируя таблицу, можно сделать следующие выводы:

- 1) с ростом экономического оборота х экологический штраф у изменяется немонотонно (рисунок 4).
- 2) налог Пигу также изменяется немонотонно (рисунок 5).

Рисунок 4 – Связь между экологическим штрафом и ежемесячным оборотом

Рисунок 5 — Связь между зелёным «штрафом» (или налогом Пигу) и ежемесячным оборотом

Используя процедуру нахождения средней арифметической взвешенной величины (рисунок 6), найдём средние значения аргумента и функции.

$$\bar{x} = \frac{\sum x_j f_j}{n}$$

$$\bar{y} = \frac{\sum y_j f_j}{n}$$

$$\bar{y} = \frac{\sum y_j f_j}{n}$$

Рисунок 6 – Процедура нахождения средней арифметической взвешенной величины

Были получены $\bar{x} = 14,83333$ и $\bar{y} = 450$. Средний налог Пигу находим по формуле, представленной на рисунке 7.

$$\overline{IIIII} = 100 \frac{\overline{y}}{\overline{x}}$$

Рисунок 7 – Средний налог Пигу

Получаем $\overline{Ш}\overline{\Pi} = 3,033707865$.

Далее было проведено выяснение взаимосвязи между аргументом х и функцией у с помощью прямолинейной зависимости по формуле на рисунке 8. Для этого также были определены коэффициенты a_0 и a_1 по формулам на рисунке 9. Была вычислена s_{xy} – ковариация, учитывающая взаимовлияние функции и аргумента по формуле на рисунке 10, и D_x – дисперсия по x, которая характеризует рассеивание случайной величины х вокруг своего среднего значения, по формуле на рисунке 11.

$$\widetilde{y} = a_0 + a_1 x.$$

Рисунок 8 – Теоретическое значение экологического штрафа

$$a_1 = s_{xy} / \sigma_x^2$$
; $a_0 = \overline{y} - a_1 \overline{x}$

Рисунок 9 – Коэффициенты прямой линии

$$S_{xy} = \frac{\sum (x_j - \overline{x})(y_j - \overline{y})f_j}{n}$$

Рисунок 10 – Ковариация, учитывающая взаимовлияние функции и аргумента

$$D_X = \frac{\sum (x_j - x)^2 f_j}{n}$$

Рисунок 11 – Дисперсия по х

Были получены следующие результаты:

$$D_x = 61,85484$$
; $S_{xy} = 537,1309524$; $a_1 = 8,683733421$; $a_0 = 321,1912876$.

Найденная функциональная зависимость:

$$\tilde{y} = 321,19 + 8,68x$$

Были вычислены: коэффициент корреляции Пирсона по формуле, представленной на рисунке 12, дисперсия по функции у по формуле, показанной на рисунке 13, а также среднеквадратичные отклонения, которые являются квадратными корнями из дисперсий.

$$r_{xy} = \frac{s_{xy}}{\sigma_x \sigma_y}$$

Рисунок 12 – Коэффициент корреляции Пирсона

$$D_{y} = \frac{\sum (y_{j} - \bar{y})^{2} f_{j}}{n}$$

Рисунок 13 – Дисперсия по функции у

Итого, искомые величины таковы:

$$D_y = 15349,88095; \ \sigma_y = 123,8946365; \ \sigma_x = 7,864784884; \ r_{xy} = 0,551240129.$$

Такое значение коэффициента корреляции Пирсона свидетельствует о среднем уровне корреляции.

По формуле, показанной на рисунке 14, была найдена средняя «эластичность» модели $\overline{9} = 0.286241583$. Её смысл таков: если аргумент х увеличить на 1%, то функция у в среднем изменится на 0,29%.

$$\overline{\mathfrak{Z}} = a_1 \frac{\overline{x}}{\overline{y}}$$

Рисунок 14 – Средняя «эластичность» модели

Далее с помощью формул Чебышева П.Л. и Ляпунова А.М. (рисунок 15), позволяющих определить интервалы изменения аргумента X и функции Y для «генерального» случая N=1000 для требуемого уровня риска p, полученные результаты были перенесены на «генеральную совокупность»:

$$\bar{x} - t_p \frac{\sigma_x}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}} \le X \le \bar{x} + t_p \frac{\sigma_x}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}}$$

$$\bar{y} - t_p \frac{\sigma_y}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}} \le Y \le \bar{y} + t_p \frac{\sigma_y}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}}$$

Рисунок 15 – Формулы Чебышева П.Л. и Ляпунова А.М.

Если принять риск p=5%, тогда $t_p=2$ (по таблице критических точек распределения Стьюдента), n=30 изначально.

В итоге были получены следующие интервалы изменения аргумента X и функции Y:

$$12,\!00351 \leq X \leq 17,\!66316;\, 405,\!4215466 \leq Y \leq 494,\!5784534.$$

Пользуясь формулой, представленной на рисунке 7, были вычислены пределы изменения экологического штрафа Пигу:

 $2,800056976 \le \coprod \prod \le 3,377524992$

Общие выводы:

- 1) с ростом экономического оборота х экологический штраф у изменяется немонотонно (рисунок 4);
- 2) налог Пигу также изменяется немонотонно (рисунок 5);
- 3) средний экономический налог составил 3,03%;
- 4) если аргумент х увеличить на 1%, то функция у в среднем изменится на 0,29%;
- 5) значение коэффициента корреляции, равное 0,55, свидетельствует о среднем уровне корреляции;
- 6) средний экологический штраф (штраф Пигу) для рассматриваемого региона на уровне риска 5% меняется в пределах 2,8...3,38.

Вывод:

В ходе лабораторной работы исходная информация была представлена в виде функциональной (или корреляционной) таблицы y = f(x). Была изучена взаимосвязь эколого-экономических явлений, также была построена математическая модель эколого-экономической корреляции и были исследованы приложения модели. Была приведена статистическая оценка генеральной средней.