23,05,2025, 20:19 Wiki

Илья Дуванов

Обоснование выбранной модели

Обновлено 23 мая 2025, 20:19

Содержание страницы

Обоснование выбранной модели

Общая информация

Критерии выбора

Обоснование выбора XGBoost

Преимущества XGBoost

Сравнение с альтернативными моделями

Соответствие требованиям

Ограничения и риски

Обоснование выбранной модели

Общая информация

Для проекта "Прогнозирование спроса на аренду велосипедов", использующего датасет UCI Bike Sharing Dataset, была выбрана модель **Gradient Boosting Regressor**, реализованная через библиотеку **XGBoost** (Extreme Gradient Boosting).

Этот выбор обусловлен требованиями к точности, производительности, поддержке дообучения, а также интеграцией с инфраструктурой проекта (хранение в PostgreSQL, кэширование в Redis). Ниже приведено детальное обоснование выбора.

Критерии выбора

Выбор модели основан на следующих ключевых критериях:

- Точность прогнозирования: Модель должна минимизировать ошибки (MAE, RMSE) на задачах регрессии с временными рядами и категориальными признаками (например, hr, temp, weathersit).
- Производительность: Время предсказания должно быть менее 1 секунды с учетом кэширования.
- Дообучаемость: Возможность инкрементного обновления модели на новых данных (например, actual_rentals).
- Интеграция: Поддержка сериализации для хранения в PostgreSQL (вутел) и кэширования в Redis.
- Сложность реализации: Удобство использования в рамках курсовой работы с минимальными вычислительными ресурсами.

Обоснование выбора XGBoost

Преимущества XGBoost

1. Высокая точность:

- XGBoost использует градиентный бустинг, что позволяет эффективно моделировать нелинейные зависимости между погодными условиями (temp , weathersit) и спросом (cnt).
- ∘ На тестовой выборке UCI Bike Sharing Dataset модель достигает MAE ~10−20 и RMSE ~25−30, что превосходит линейные модели.

2. Производительность:

- Оптимизирована для скорости обучения и предсказания, что важно для микросервисной архитектуры.
- ∘ С кэшированием в Redis время предсказания сокращается до ~5 мс.

3. Дообучаемость:

- Поддерживает инкрементное дообучение через метод fit с параметром xgb_model, что позволяет обновлять модель на новых данных без полного переобучения.
- Пример: дообучение индивидуальных моделей для премиум-пользователей раз в неделю.

4. Интеграция с инфраструктурой:

- Модель сериализуется в байтовый формат (pickle или joblib) и сохраняется в поле model_data таблицы models в PostgreSQL.
- Легко кэшируется в Redis с TTL (например, 24 часа) для быстрого доступа.

5. **Гибкость**:

• Поддерживает настройку гиперпараметров (например, n_estimators, max_depth, learning_rate) для оптимизации под конкретные данные.

Сравнение с альтернативными моделями

Модель Точность Производительность Дос (MAE)	учаемость Интеграция Сложность
---	--------------------------------

23.05.2025, 20:19 Wiki

XGBoost	10-20	Высокая (~5 мс)	Да	Отличная	Средняя
Random Forest	15-25	Средняя (~10 мс)	Нет (требуется retrain)	Хорошая	Низкая
Linear Regression	25-40	Высокая (~2 мс)	Да	Отличная	Низкая
Neural Network	10-15	Низкая (~50 мс)	Нет (требуется retrain)	Плохая (большой размер)	Высокая

- Random Forest: Высокая точность, но отсутствие инкрементного дообучения делает его менее подходящим для динамического обновления.
- Linear Regression: Простота и быстрота, но низкая точность на нелинейных данных.
- Neural Network: Потенциально высокая точность, но сложность реализации, большие размеры модели и отсутствие дообучения делают её неоптимальной для курсовой.

Соответствие требованиям

- Хранение в PostgreSQL: Модель сериализуется в вутба и сохраняется в таблице models . Размер модели (~10-50 МБ) управляется сжатием (например, gzip , но с потерей в финальной скорости выполнения запроса на прогнозирование).
- Кэширование в Redis: Сериализованная модель загружается в Redis с TTL 24 часа, обеспечивая быстрый доступ (~1 мс).
- Дообучение: Метод fit с параметром xgb_model позволяет обновлять модель на новых данных.

Ограничения и риски

- Ресурсы: Дообучение общей модели на полном датасете (17 379 записей) может потребовать значительных вычислительных ресурсов (4–8 ГБ RAM).
- Размер модели: Сериализованная модель может достигать больших размеров, что требует оптимизации хранения в PostgreSQL.
- Сложность настройки: Подбор гиперпараметров (например, n_estimators=100, max_depth=5) требует экспериментов для достижения оптимальной точности.