Recipe Site Traffic Prediction

Author: Son Hai Le

1. Project Overview

2. Method

3. Key Findings

4. Summary & Recommendations

1. Project Overview

- Background
- Business Goals

1. Project Overview

→ Background

- Homepage recipes can boost total site traffic by up to 40% if popular.
- Recipe currently selected based on personal preference.
- Increased traffic = more subscriptions → high business impact.

→ Business Goals

- Predict which recipes will lead to high traffic.
- Achieve 80+% accuracy in identifying popular recipes.
- Provide data-driven recommendations for homepage selection

2. Method

- Procedure
- Metrics Selection

Procedure

Data Validation

- Validation
- 2. Cleaning

Exploratory Data Analysis (EDA)

- Single variable analysis
- Multiple variable analysis

Model Evaluation

 Model evaluations on a specific metric

Model Development

- 1. Data Preprocessing
- 2. Models Construction and Comparison

Metrics Selection

- **③** Accuracy = (TP + TN) / (TP + TN + FP + FN)
 - Overall correctness of the model.
 - Can be misleading if popular vs. unpopular recipes are imbalanced.
- ✓ Precision = TP / (TP + FP)
 - Of all recipes predicted popular, how many actually were?
 - High precision = fewer wrongly promoted recipes (i.e., False Positive).

- Recall = TP / (TP + FN)
 - Of all truly popular recipes, how many did we catch?
 - High recall = fewer missed opportunities.
- F1-Score = 2 * (precision * recall) / (precision + recall)
 - Balance between precision and recall.
 - Useful when having imbalance data.

- → Accuracy and precision: for models comparison
- → F1-score: for hyperparameter tuning

3. Results

- Data Validation
- Exploratory Data Analysis (EDA)
- Data Preprocessing
- Models Construction and Comparison
- Key Findings

Data Validation

Column	Non-Null Count	Dtype	Clean steps	
recipe	947	int64	Remove	
calories	895	float64		
carbohydrate	895	float64		
sugar	895	float64	Remove rows w/ nulls (5.5%)	
protein	895	float64		
category	947	object	-	
servings	947	object	Clean, convert to int	
high_traffic	574	object	Replace nulls by 0, High by 1	

→ Before cleaning: 947 rows; After cleaning: 895 rows (5.5% \(\square\$ \)

EDA [1/3]

High traffic (1) /non-high traffic (0) recipe proportions

Food categories proportions

Probability of each category to be well-known

- → Target classes: balanced, might not need additional techniques
- → Category feature: balanced between each categories, not need combine rare ones
- → Vegetable, Potato and Pork: have highest chances to be popular

EDA [2/3]

Distributions of different numeric input features

- → All features except servings: have long tail distributions
- → Will need a suitable transformation before modeling

EDA [3/3]

- → No strong correlations between numeric input features
- → Keep all these features for modelling

Data Preprocessing

Column	Step 1	Step 2
calories		PCA
carbohydrate	Power Transform	
sugar		
protein		
servings		
category	One hot encoder	

- Power transform → Standardization
- One hot encoder → categorical variables into a binary format
- PCA → Dimension reduction

Models Construction

Model Type	Model	With PCA
Naive	Baseline	-
Linear	LinearSVC	Yes
	LogisticRegression	
Non-linear	SVC	
	KNeighborsClassifier	
Ensemble	RandomForestClassifier	Yes and No
	GradientBoostingClassifier	
	HistGradientBoostingClassifier	

[→] Apply Random Search for Models' hyperparameters and Number of PCA's components

Models Comparison

- → All models: better than the baseline one
- → Ensemble models w/ PCA: the best ones
- → No models achieve 80% accuracy on the test dataset

Models Comparison

→ Gradient boosting and Histogram gradient boosting w/ PCA: achieve 80% accuracy on the number of positive predictions

4. Key Findings

4. Key Findings

- Top performers: rf_pca, gbc_pca, and hgbc_pca approach or exceed the target
- Overfitting: rf_pca and hgbc_pca show train-test gaps, suggesting overfitting.
- Underperformers: knn, lsvc, and lr perform just above baseline
- → PCA-enhanced ensemble models generalize best
- → gbc_pca stands out as the most balanced and robust across train and test sets.

5. Recommendations

5. Recommendations

- Deploy gbc_pca (i.e., gradient boosting classifier enhanced w/ PCA)
 - Meets/exceeds 0.80 precision target
 - Low overfitting (small train-test gap)
 - Strong and stable test accuracy

Next Steps

- Threshold Tuning: Use precision-recall curve to reduce false positives
- Post-Prediction Check: Add business rules (e.g., ingredient trends, seasonality)
- Monitoring: Regular evaluation & retraining as user behavior shifts
- **PCA**: Keep in pipeline it's boosting precision, but monitor over time