单元11.2 地图着色与 平面图点着色、边着色

第二编图论 第十一章平面图

12.3 地图着色与平面图点着色

12.4 边着色

内容提要

- 平面图的点着色
 - 面色数
 - 六色定理
 - 五色定理
- 边着色
 - 边色数
 - Vizing定理

(平面)地图

• 连通无桥平面图的平面嵌入及其所有的面

• 国家: 平面地图的面

• 相邻: 两国的公共边界至少有一条公共边

· k-面着色, k-色地图, 面色数χ*(G)

面着色与对偶图点着色

・定理12.13: 地图G可k-面着色 ⇔对偶图G*可k-着色. #

・ 定理12.14: 连通无环平面图G可k-面着色
⇔ 对偶图G*可k-着色. #

• 研究平面图面着色 ⇔ 研究平面图点着色

六色定理

• 定理12.15:

任何平面图都可6-着色

六色定理证明

・ 证明: (归纳法) (1) $n \le 7$: 结论为真. (2) 设 $n = k(\ge 7)$ 时结论为真. n = k + 1时, $\exists v \in V(G)$, $d(v) \le 5$. 令 $G_1 = G - v$,对 G_1 用归纳假设, G_1 可6 - 着色. 模仿 G_1 对G着色,与v相邻的点不超过S个,至少剩1种颜色给v着色,所以G可G-着色。#

五色定理

• 定理12.16(Heawood,1890):

任何平面图都可5-着色

五色定理证明

· 证明: (归纳法) (1) n≤5: 结论为真. (2) 设n=k(≥5)时结论为真. n=k+1时,∃v∈V(G), d(v)≤5. 令 $G_1=G-v$,对 G_1 用归纳假设, G_1 可5-着色. 模仿G₁对G着色. 当d(v)<5, 或d(v)=5但与v相邻的点用了少于5种颜色时, 至少剩1种颜色给v着色.

五色定理证明示意图

五色定理证明

· 当d(v)=5且与v相邻的点用了5种颜色时, 设v_i与v相邻且着颜色i, i=1, 2,..., 5. 根据Jordan定理,从v₁到v₃只有{1,3}这2种颜色 的路径,和从v,到v。只有{2,4}这2种颜色的路 径,不能同时存在.不妨设在只有{1,3}这2种 颜色的顶点的导出子图中, v, 与v, 是在不同的 连通分支中,于是把v₁所在分支里1与3颜色 互换,然后把颜色1给v.

经北京大学

边着色

• 定理12.17(Vizing):

• 边色数 χ' (G)

例12.5

G是二部图
$$\Rightarrow \chi$$
'(G)=Δ(G)

例12.5证明

- · 证: (归纳法) (1) m=0,1: 结论为真.
 - (2) 设m=k(≥1)时结论为真.

m=k+1时,∃e=(u,v)∈E(G). 令G₁=G-e.

 $\Delta(G_1) \leq \Delta(G) = \Delta$,由归纳假设, G_1 可 Δ -边着色.

模仿G₁对G边着色,当存在颜色α既不出现在

u也不出现在v时,用颜色α给e着色.

例12.5证明示意图

例12.5证明

• 设 颜色β出现在u而不出现在v, 颜色y出现在v而不出现在u. 则不存在从v到u只有 $\{\beta,\gamma\}$ 这2种颜色的路径. 即在只有 $\{\beta,\gamma\}$ 这2种颜色的边的导出子图中, v与u是在不同的连通分支中. 于是把v所在分支里 β 与 γ 颜色互换, 然后把颜色γ给e=(u,v).

例12.6

• n>1时,

$$\chi'$$
 (K_n) = $\begin{cases} n, & n$ 为奇数 \\ n-1, & n为偶数 \end{cases}

例12.6(n为奇数)

• n为奇数时, χ' (K_n)=n.

• 每边关联2个不同端点, 同色边没有公共端点, 同色边至多有(n-1)/2条, 至少需要n种颜色, χ' (K_n)≥n. 又存在n-边着色, χ' (K_n)≤n.

所以χ'(K_n)=n.

例12.6(n为偶数)

• n为偶数时, χ'(K_n)=n-1.

・每边关联2个不同端点, 同色边没有公共端点, 同色边至多有n/2条, 至少需要n-1种颜色, $\chi'(K_n)$ ≥n-1. 又存在(n-1)-边着色, $\chi'(K_n)$ ≤n-1. 所以 $\chi'(K_n)$ =n-1. #

同色边

无环图G=<V,E>进行k-边着色, k≥χ'(G). 令
 R = { (e_i,e_j) | e_i与e_j着同色 }
 则R是E上等价关系, 商集合
 E/R = {E₁,E₂,...,E_k}
 是的划分, 划分块中元素着同色

· 说明: 同色边构成"边独立集",或"匹配"

例12.7

- · 某一天内有n个教师给m个班上课.每个教师 在同课时只能给一个班上课.
 - (1) 这一天内至少排多少节课?
 - (2) 不增加节数情况下至少需要几个教室?
 - (3) 若n=4,m=5. 教师是 t_1 , t_2 , t_3 , t_4 , 班是 c_1 , c_2 , c_3 , c_4 , c_5 . 已知 t_1 给 c_1 , c_2 , c_3 上2节,1节,1节课, t_2 给 c_2 , c_3 各上1节课, t_3 给 c_2 , c_3 , c_4 各上1节课, t_4 给 c_4 , c_5 上1节,2节课. 求最省教室的课表.

例12.7

令二部图 G = <T,C; E> , 其中
 T = { t₁,t₂,...,t_n }
 C = { c₁,c₂,...,c_m }
 E = { (t_i,c_j) | t_i给c_j上一节课 }

给G进行边着色.

例12.7(1)(2)

- 同色边代表的教学可以同时进行。
 所以颜色数就是节数,同色边数就是教室数。
- (1) 最少节数 = χ' (G) = Δ (G).

例12.7(3)

(3) 已知条件下得出下图G,
 其中 T={t₁,t₂,...,t₄}, C={c₁,c₂,...,c₅}.
 Δ(G)=4, 节数最少是4.
 min max {k₁,k₂,...,k₄}=3, 教室数最少是3.

课表如下页所示.# t₁ t₂ t₃ t₄ c₁ c₂ c₃ c₃ c₅ 大学

例12.7(3)

节	t ₁	t ₂	t ₃	t ₄
1	C ₁	C ₂	C ₄	
2	C ₁		C ₃	C ₄
3	C ₂	C ₃		C ₅
4	C ₃		C ₂	C ₅

小结

- 面色数χ*(G), 边色数χ'(G)
- (五色定理) 平面图 χ*≤5
- (Vizing定理) 简单图 Δ≤χ'≤Δ+1
 - -二部图, 偶阶完全图 $\chi' = \Delta$
 - 奇阶完全图 χ' =Δ+1

