UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA SPECIALISTICA IN MATEMATICA

PROPRIETÁ DI SOLLEVAMENTO DI UN RIVESTIMENTO

Relatore: Prof. Andrea Loi Tesi di laurea di: Caterina Fenu

Anno Accademico 2009-2010

Indice

In	trod_{1}	uzione	2
1	Prerequisiti		4
	1.1	Omotopie e gruppi fondamentali	4
	1.2	Rivestimenti e omeomorfismi locali	13
	1.3	Proprietá di sollevamento	15
	1.4	Topologia dei compatto-aperti	24
	1.5	Topologie sul prodotto cartesiano $X \times Y$	27
2	Sollevamento di rivestimenti		30
	2.1	Prodotti e coprodotti	30
3	Soll	evamenti di aperti banalizzanti	32
4	1 Ogni spazio topologico contraibile e di Hausdorff solleva gli aperti banalizzanti		36
Bi	Bibliografia		

Introduzione

Un rivestimento tra due spazi topologici \widetilde{X} e X é un'applicazione continua e suriettiva

$$p:\widetilde{X}\to X$$

tale che per ogni $x \in X$ esiste un aperto U contenente x tale che $p^{-1}(U)$ é unione di aperti disgiunti di \widetilde{X} ognuno dei quali si proietta omeomorficamente su U tramite p. I rivestimenti giocano un ruolo fondamentale nell'ambito della topologia e della geometria delle varietà topologiche e differenziabili. Una delle domande fondamentali nell'ambito della teoria dei rivestimenti é di capire quando, dato uno spazio topologico Y e una funzione continua $f: Y \to X$, esiste un suo sollevamento cioé un'applicazione continua $\widetilde{f}: Y \to \widetilde{X}$ tale che $f = p \circ \widetilde{f}$. Se lo spazio Y é connesso e localmente connesso per archi (ad esempio una varietá topologica) allora l'esistenza di un sollevamento di un'applicazione continua $f: Y \to X$, con $f(y_0) = x_0$, é equivalente alla condizione

$$f_*\pi_1(Y, y_0) \subseteq p_*\pi_1(\widetilde{X}, \widetilde{x_0})$$
 con $\widetilde{x_0} \in p^{-1}(x_0)$

dove

$$f_*: \pi_1(Y, y_0) \to \pi_1(X, x_0)$$
 $p_*: \pi_1(\widetilde{X}, \widetilde{x_0}) \to \pi_1(X, x_0)$

sono le applicazioni indotte sui gruppi fondamentali. É allora naturale chiedersi se, dato un sollevamento $\widetilde{f}:Y\to\widetilde{X}$ di un'applicazione continua $f:Y\to X$, esistono un intorno U di f, nella topologia compatto-aperta dello spazio delle funzioni continue C(Y,X), e un intorno V di \widetilde{f} , nella topologia compatto-aperta dello spazio delle funzioni continue $C(Y,\widetilde{X})$, tali che per ogni $g\in U$ esiste $\widetilde{g}\in V$ tale che $p\circ\widetilde{g}$ e tale che \widetilde{g} vari con "continuitá" al variare di g. In termini piú rigorosi ci si chiede se, dato un rivestimento $p:\widetilde{X}\to X$ e uno spazio topologico connesso Y, l'applicazione

$$p_{\sharp}: C(Y, \widetilde{X}) \to C(Y, X)$$
$$\widetilde{f} \longmapsto p_{\sharp}(\widetilde{f}) = p \circ \widetilde{f}$$

é un rivestimento. In questa tesi si fornirá una risposta positiva al precedente quesito dimostrando che se Y é di Hausdorff e contraibile allora p_{\sharp} é un rivestimento (Teorema 5.1). La dimostrazione presentata in questa tesi si basa su un lavoro di François Apéry [1].

La tesi é organizzata come segue.

Il primo capitolo é dedicato ai prerequisiti necessari per la formulazione topologica del problema. Si daranno quindi le definizioni e i principali teoremi utili ai fini della trattazione matematica, partendo dalle omotopie e concludendo con le topologie sul prodotto cartesiano $X \times Y$.

Nel secondo capitolo si affronta il problema che si vuole risolvere andando ad analizzare nello specifico i casi in cui si abbia a che fare con spazi prodotto e spazi coprodotto.

Nel capitolo terzo il problema della dimostrazione dell'esistenza di un sollevamento di un rivestimento viene ridotto al problema della ricerca di un sollevamento di aperti banalizzanti e si tratteranno i casi in cui le due condizioni sono equivalenti.

Il quarto capitolo é dedicato alle dimostrazione del teorema che risponde al nostro quesito iniziale.

1 Prerequisiti

1.1 Omotopie e gruppi fondamentali

Definizione 1.1. Siano X e Y due spazi topologici e $f_0, f_1 : X \to Y$ due funzioni continue. Diremo che f_0 é omotopa a f_1 se esiste un'applicazione continua $F : X \times I \to Y$, chiamata omotopia, tale che:

- $F(x,0) = f_0(x)$
- $F(x,1) = f_1(x)$

dove I = [0, 1] e $X \times I$ é dotato della topologia prodotto.

Lemma 1.1. Siano f_0 e f_1 due applicazioni continue da uno spazio topologico qualunque X a uno spazio $Y \subset \mathbb{R}^n$ convesso. Allora f_0 é omotopa a f_1 .

DIMOSTRAZIONE: Poiché Y é convesso esiste un segmento che unisce $f_0(x)$ e $f_1(x)$ che possiamo utilizzare per costruire l'omotopia $F: X \times I \to Y$. Poniamo

$$F(x,t) = (1-t)f_0(x) + tf_1(x)$$
(1)

Si ha

$$F(x,0) = f_0(x)$$
 e $F(x,1) = f_1(x)$

quindi F é un'omotopia tra f_0 e f_1 .

Corollario 1.1. Se il segmento di retta che unisce $f_0(x)$ e $f_1(x)$ é contenuto in $Y \subset \mathbb{R}^n$ per ogni $x \in X$, allora le applicazioni $f_0, f_1 : X \to Y$ sono omotope.

Definizione 1.2. L'omotopia (1) é detta omotopia lineare.

Definizione 1.3. Siano $f_0, f_1: X \to Y$ due funzioni continue e sia $A \subset X$ un sottoinsieme qualunque. Diremo che f_0 é omotopa a f_1 relativamente ad A se esiste un'omotopia $F: X \times I \to Y$ tale che F(a,t) non dipende da $t \in I$, cioé

$$f_0(a) = f_1(a) = f_t(a).$$

Se f_0 é omotopa a f_1 relativamente ad A scriveremo $f_0 \sim_A f_1$.

Proposizione 1.1. Sia $A \subset X$ un sottoinsieme di X e siano X e Y spazi topologici. L'omotopia relativa ad A é una relazione d'equivalenza nello spazio C(X,Y).

DIMOSTRAZIONE: Bisogna dimostrare che é riflessiva, simmetrica e transitiva

• Se $f \in C(X,Y)$ allora $f \sim_A f$. Un'omotopia di f in se stessa (che non dipende da t) é

$$F(x,t) = f(x).$$

• Se $f, g \in C(X, Y)$ e $f \sim_A g$ allora $g \sim_A f$. Un'omotopia tra g ed f é

$$G(x,t) = F(x,1-t)$$

dove F(x,t) é l'omotopia tra $f \in g$. Infatti:

$$-G(x,0) = F(x,1) = g(x)$$

$$-G(x,1) = F(x,0) = f(x)$$

G non dipende da t perché per ipotesi F non dipende da t.

• Se $f, g, h \in C(X, Y)$, $f \sim_A g$ e $g \sim_A h$ allora $f \sim_A h$. Siano F e G rispettivamente le omotopie tra f e g e tra g e h. Allora

$$H(x,t) = \begin{cases} F(x,2t) & \text{se } 0 \le t \le 1/2\\ G(x,2t-1) & \text{se } 1/2 \le t \le 1 \end{cases}$$

é un'omotopia tra f e h. Infatti:

$$-H(x,0) = F(x,0) = f(x)$$

$$-H(x,1) = G(x,1) = h(x)$$

Bisogna controllare che H sia continua, cioé bisogna verificare il suo comportamento per t=1/2:

$$H(x, 1/2) = F(x, 1) = g(x) = G(x, 0).$$

QuindiH é continua e non dipende da t perché F e G non dipendono da t.

Definizione 1.4. Diremo che due spazi topologici X e Y sono omotopi (oppure sono omotopicamente equivalenti oppure hanno lo stesso tipo di omotopia) se esistono due funzioni continue $X \xrightarrow{f} Y$ e $Y \xrightarrow{g} X$ tali che

$$g \circ f \sim id_X$$
 e $f \circ g \sim id_Y$.

Indicheremo che due spazi topologici X e Y sono omotopicamente equivalenti con la notazione $X \sim Y$.

Definizione 1.5. Uno spazio topologico X é contraibile se $X \sim \{x_0\}$ con $x_0 \in X$.

Definizione 1.6. Un arco (o un cammino) tra due punti x e y in uno spazio topologico X é un'applicazione $f \in C(I,X)$ tale che f(0) = x e f(1) = y.

Definizione 1.7. Siano $f, g: I \to X$ due archi in X tali che f(1) = g(0). Diremo che f * g definita come:

$$(f * g)(t) = \begin{cases} f(2t) & \text{se } 0 \le t \le 1/2\\ g(2t-1) & \text{se } 1/2 \le t \le 1 \end{cases}$$

é il prodotto (o la concatenazione) di f e g.

Osservazione 1.1. Essendo stata imposta la condizione f(1) = g(0), f * g é continua per il lemma di incollamento .

Lemma 1.2. Se f_0, f_1, g_0, g_1 sono archi in X tali che

$$f_0 \stackrel{F}{\sim} f_1 \qquad g_0 \stackrel{G}{\sim} g_1$$

e se $f_0(1) = g_0(0), f_1(1) = g_1(0), allora f_0 * g_0 \sim f_1 * g_1.$

DIMOSTRAZIONE: Siano F e G le omotopie rispettivamente tra f_0 e f_1 e tra g_0 e g_1 (entrambe relative a $\{0,1\}$). Allora $H:I\times I\to X$ definita come

$$H(t,s) = \begin{cases} F(2t,s) & \text{se } 0 \le t \le 1/2\\ G(2t-1,s) & \text{se } 1/2 \le t \le 1 \end{cases}$$

é continua per il lemma di incollamento, infatti

$$F(1,s) = f_0(1) = g_0(0) = G(0,s) = H(1/2,s).$$

Verifichiamo che é un'omotopia tra $f_0 * g_0$ e $f_1 * g_1$ relativa a $\{0,1\}$:

$$H(t,0) = \begin{cases} F(2t,0) = f_0(2t) & \text{se } 0 \le t \le 1/2\\ G(2t-1,0) = g_0(2t-1) & \text{se } 1/2 \le t \le 1 \end{cases} = (f_0 * g_0)(t)$$

$$H(t,1) = \begin{cases} F(2t,1) = f_1(2t) & \text{se } 0 \le t \le 1/2\\ G(2t-1,1) = g_1(2t-1) & \text{se } 1/2 \le t \le 1 \end{cases} = (f_1 * g_1)(t)$$

$$H(0,s) = F(0,s)$$
 e $H(1,s) = G(1,s)$

quindi non dipende da s perché F e G non dipendono da s.

Abbiamo visto che l'omotopia relativa é una relazione d'equivalenza. Diremo che due cammini f_0 e f_1 in X sono equivalenti se e solo se $f_0 \sim_{\{0,1\}} f_1$, cioé se esiste $F: I \times I \to X$ tale che

$$F(t,0) = f_0(t)$$

 $F(t,1) = f_1(t)$ é un'omotopia

$$F(0,s) = f_0(0) = f_1(0)$$

 $F(1,s) = f_0(1) = f_1(1)$ lascia fissi gli estremi

Sia $[f] = \{h : I \to X | h \sim_{\{0,1\}} f\}$ la classe di equivalenza di un arco $f : I \to X$ rispetto all'omotopia relativa a $\{0,1\}$ e sia [g] la classe di equivalenza dell'arco $g : I \to X$ tale che g(0) = f(1). Definiamo un prodotto tra le due classi di equivalenza [f] e [g] ponendo

$$[f]\cdot[g]=:[f*g]$$

Il Lemma 1.2 ci assicura che questo prodotto é ben definito, cioé non dipende dal rappresentante scelto. Infatti se $f' \sim f$ e $g' \sim g$ allora $f' * g' \sim f * g$ e quindi [f' * g'] = [f * g].

Lemma 1.3. Sia $k: X \to Y$ e siano $f, g: I \to X$ due cammini in X. Si hanno i seguenti risultati:

- 1. $k \circ (f * g) = (k \circ f) * (k \circ g);$
- 2. Se $f \sim g$ allora $k \circ f \sim k \circ g$;

3. k(i(f)) = i(k(f)), dove i(f) é il cammino inverso di f definito come i(f)(t) = f(1-t).

Proposizione 1.2. Se f(1) = g(0) e g(1) = h(0) allora vale la proprietá associativa:

$$([f] \cdot [g]) \cdot [h] = [f] \cdot ([g] \cdot [h])$$

DIMOSTRAZIONE: Facciamo delle considerazioni preliminari. Dati

$$0 \le a < b$$
 e $0 \le c < d$

esiste un'unica applicazione affine, cioé un'applicazione della forma h(x) = mx + q, tale che h(a) = c e h(b) = d. Chiamiamo h l'ALP (applicazione lineare positiva) da [a, b] a [c, d]. Si ha che la composizione di due ALP é un ALP cosí come la sua inversa. Possiamo reinterpretare la concatenazione di due cammini f e g

$$(f * g)(t) = \begin{cases} f(2t) & \text{se } 0 \le t \le 1/2\\ g(2t-1) & \text{se } 1/2 \le t \le 1 \end{cases}$$

in termini di ALP. Infatti 2t é un ALP da [0,1/2] a [0,1] e 2t-1 é un ALP da [1/2,1] a [0,1]. Supponiamo che $f,g,h:I\to X$ siano tre archi tali che f(1)=g(0) e g(1)=h(0). Se a,b sono tali che 0< a< b< 1 definiamo $k_{a,b}$ in questo modo

$$k_{a,b} = \begin{cases} f(\text{ALP da } [0, a] \text{ a } [0, 1]) & \text{in } [0, a] \\ g(\text{ALP da } [a, b] \text{ a } [0, 1]) & \text{in } [a, b] \\ h(\text{ALP da } [b, 1] \text{ a } [0, 1]) & \text{in } [b, 1] \end{cases}$$

Vale il seguente risultato

Lemma 1.4. Se a, b, c, d sono tali che 0 < a < b < 1 e 0 < c < d < 1 allora $k_{a,b} \sim k_{c,d}$.

DIMOSTRAZIONE: Consideriamo l'applicazione $P:I\to I$ definita a tratti in questo modo:

il primo tratto é l'ALP da [0, a] a [0, c];

il secondo tratto é l'ALP da [a, b] a [c, d];

il terzo tratto é l'ALP da [b,1] a [d,1];

Dato che I é convesso si pu
ó utilizzare l'omotopia lineare per dimostrare che $P \sim id_I$. In
oltre poiché l'ALP é unica in ogni tratto [0,a],[a,b],[b,1] si ha $k_{c,d} \circ P = k_{a,b}$. Quindi

$$P \sim id_I \Rightarrow k_{c,d} \circ P \sim k_{c,d} \circ id_I \Rightarrow k_{a,b} \sim k_{c,d}$$

Si ha quindi

$$(f*g)*h = k_{\frac{1}{4},\frac{1}{2}}$$
 e $f*(g*h) = k_{\frac{1}{2},\frac{3}{4}}$

Per il lemma appena visto $k_{\frac{1}{4},\frac{1}{2}} \sim k_{\frac{1}{2},\frac{3}{4}}$ quindi $(f*g)*h \sim f*(g*h)$, cioé

$$([f] \cdot [g]) \cdot [h] = [f] \cdot ([g] \cdot [h]).$$

Proposizione 1.3. Se f é un arco che collega i punti x e y esiste l'elemento neutro a sinistra $[\epsilon_x]$ e l'elemento neutro a destra $[\epsilon_y]$:

$$[\epsilon_x] \cdot [f] = [f] = [f] \cdot [\epsilon_y]$$

DIMOSTRAZIONE: Per dimostrare che $\epsilon_x * f \sim f$ consideriamo l'applicazione costante $\epsilon_0: I \to I$ definita come

$$\epsilon_0(t) = 0$$
 per ogni t

e $id_I: I \to I$. La loro concatenazione é:

$$(\epsilon_0 * id_I)(t) = \begin{cases} \epsilon_0(2t) & \text{se } 0 \le t \le 1/2\\ id_I(2t-1) & \text{se } 1/2 \le t \le 1 \end{cases}$$

Si ha $\epsilon_0 * id_I \sim id_I$. Infatti I é convesso e quindi l'applicazione

$$F(t,s) = st + (1-s)(\epsilon_0 * id_I)(t)$$

é un'omotopia fra $\epsilon_0 * id_I$ e id_I che lascia fissi gli estremi 0 e 1:

- $F(0,s) = 0 = id_I(0) = (\epsilon_0 * id_I)(0);$
- $F(1,s) = 1 = id_I(1) = (\epsilon_0 * id_I)(1)$.

Quindi, componendo con f:

$$f(\epsilon_0 * id_I) \sim f \circ id_I \Rightarrow (f \circ \epsilon_0) * (f \circ id_I) \sim f \Rightarrow \epsilon_x * f \sim f.$$

In modo analogo si dimostra che $f * \epsilon_y \sim f$.

Proposizione 1.4. Se f é un arco che collega i punti x e y allora [i(f)] é l'inverso a sinistra e a destra:

$$[i(f)] \cdot [f] = [\epsilon_y]$$
 e $[f][i(f)] = [\epsilon_x]$

DIMOSTRAZIONE: Per dimostrare che $f * i(f) \sim \epsilon_x$ consideriamo l'applicazione $i: I \to I$ definita come i(t) = 1 - t.

Consideriamo la concatenazione:

$$(id_I * i)(t) = \begin{cases} id_I(2t) = 2t & \text{se } 0 \le t \le 1/2\\ i(2t - 1) = -2t + 2 & \text{se } 1/2 \le t \le 1 \end{cases}$$

Si ha $id_I * i \sim \epsilon_0$. Infatti I é convesso e quindi l'applicazione

$$F(t,s) = (1-s)(id_I * i)(t)$$

é un'omotopia fra $id_I * i$ e ϵ_0 che lascia fissi gli estremi 0 e 1:

- $F(0,s) = 0 = \epsilon_0(0) = (id_I * i)(0);$
- $F(1,s) = 0 = \epsilon_0(1) = (id_I * i)(1)$.

Quindi, componendo con f:

$$f(id_I * i) \sim f \circ \epsilon_0 \Rightarrow (f \circ id_I) * (f \circ i) \sim \epsilon_x \Rightarrow f * i(f) \sim \epsilon_x$$

In modo analogo si dimostra che $i(f) * f \sim \epsilon_y$.

Osservazione 1.2. L'insieme che si ottiene quozientando C(I, X) rispetto alla relazione di equivalenza $\sim_{\{0,1\}}$ non é un gruppo dato che non é possibile definire un prodotto tra due suoi elementi qualsiasi.

Definizione 1.8. Sia X uno spazio topologico. Diremo che l'applicazione $f: I \to X$ é un cammino chiuso (o un laccio) se f(0) = f(1). Se f(0) = f(1) = x diremo che f é un laccio basato in x.

Definizione 1.9. Sia X uno spazio topologico. Consideriamo l'insieme

$$\pi_1(X, x) = \{ [f] \mid f : I \to X, f(0) = f(1) = x \}$$

con la relazione d'equivalenza definita dall'omotopia relativa a $\{0,1\}$, cioé $f \sim g$ se e solo se esiste $F: I \times I \to X$ tale che

$$\begin{cases} F(t,0) = f(t) \\ F(t,1) = g(t) \\ F(0,s) = F(1,s) = x. \end{cases}$$

 $\pi_1(X,x)$ é chiamato gruppo fondamentale (nel punto x) oppure primo gruppo di omotopia oppure gruppo di Poincaré.

Teorema 1.1. $\pi_1(X,x)$ é un gruppo con la moltiplicazione definita da

$$[f] \cdot [g] = [f * g].$$

DIMOSTRAZIONE: Discende direttamente dal Lemma 1.2 e dalle Proposizioni 1.2, 1.3 e 1.4. Infatti grazie alla condizione f(0) = f(1) = x si possono moltiplicare due elementi qualsiasi e l'elemento neutro é unico (in particolare é $[\epsilon_x]$).

Teorema 1.2 (Dipendenza di $\pi_1(X, x)$ dal punto x). Siano x e y due punti di X collegati da un arco f, cioé esiste $f: I \to X$ tale che f(0) = x e f(1) = y. Allora $\pi_1(X, x)$ e $\pi_1(X, y)$ sono isomorfi.

DIMOSTRAZIONE: Definiamo $\varphi_f: \pi_1(X,x) \to \pi_1(X,y)$ in questo modo

$$\varphi_f([q]) = [i(f) * q * f]$$

- φ_f é ben definita, cioé se [g'] = [g] allora [i(f) * g' * f] = [i(f) * g * f]. Infatti se $g' \sim g$ allora $i(f) * g' * f \sim i(f) * g * f$ (per il Lemma 1.2) e quindi [i(f) * g' * f] = [i(f) * g * f].
- φ_f é un omomorfismo, cioé $\varphi_f([g] \cdot [h]) = \varphi_f([g]) \cdot \varphi_f([h])$. Si ha $\varphi_f([g]) \cdot \varphi_f([h]) = [i(f) * g * f] \cdot [i(f) * h * f] = [i(f) * g * f * i(f) * h * f] =$ $= [i(f) * g * \epsilon_r * h * f] = [i(f) * g * h * f] = \varphi_f([g * h]) = \varphi_f([g] \cdot [h])$

• φ_f é invertibile e la sua inversa é $\varphi_f^{-1}:\pi(X,y)\to\pi(X,x)$ definita come

$$\varphi_f^{-1}([k]) = [f * k * i(f)].$$

Si ha

$$\varphi_f(\varphi_f^{-1}([h]) = \varphi_f([f * h * i(f)]) = [i(f) * f * h * i(f) * f] = [\epsilon_x * h * \epsilon_y] = [h]$$

quindi
$$\varphi_f \circ \varphi_f^{-1} = id_{\pi_1(X,y)}$$
. Con un ragionamento analogo si dimostra che $\varphi_f^{-1} \circ \varphi_f = id_{\pi_1(X,x)}$.

Corollario 1.2. Se X é uno spazio topologico connesso per archi allora il gruppo fondamentale non dipende dal punto scelto.

Definizione 1.10. Sia $\phi \in C(X,Y)$. Fissato $x \in X$ consideriamo $\pi_1(X,x)$ e definiamo

$$\phi_*: \pi_1(X, x) \to \pi_1(Y, \phi(x))$$
$$[f] \mapsto [\phi \circ f]$$

 ϕ_* é chiamata mappa indotta da ϕ .

Proposizione 1.5. Sia $\phi \in C(X,Y)$ e sia ϕ_* la mappa indotta da ϕ . Allora ϕ_* é un omomorfismo di gruppi.

DIMOSTRAZIONE:

- ϕ_* é ben definita. Infatti data $\widetilde{f} \sim f$ si ha $\phi \circ f \sim \phi \circ \widetilde{f}$ e quindi $[\phi \circ f] = [\phi \circ \widetilde{f}]$.
- ϕ_* é un omomorfismo, cio
é $\phi_*([f] \cdot [g]) = \phi_*[f] \cdot \phi_*[g]$. Infatti

$$\begin{split} \phi_*([f]\cdot[g]) &= \phi_*([f*g]) = [\phi\circ(f*g)] = \\ &= [\phi\circ f*\phi\circ g)] = [\phi\circ f]\cdot[\phi\circ g] = \phi_*[f]\cdot\phi_*[g]. \end{split}$$

Definizione 1.11. Uno spazio topologico X é detto semplicemente connesso se é connesso per archi e il suo gruppo fondamentale é il gruppo banale.

12

1.2 Rivestimenti e omeomorfismi locali

Definizione 1.12. Sia $\widetilde{X} \stackrel{p}{\to} X$ un'applicazione continua tra spazi topologici. Diremo che un aperto $U \subset X$ é banalizzante o uniformemente rivestito se $p^{-1}(U)$ é unione di aperti disgiunti di \widetilde{X} ognuno dei quali si proietta omeomorficamente su U tramite p.

Definizione 1.13. Un'applicazione continua e suriettiva $\widetilde{X} \stackrel{p}{\to} X$ tra spazi topologici é un rivestimento se per ogni $x \in X$ esiste un aperto U_x banalizzante per p.

Esempio 1.1. L'applicazione $e: \mathbb{R} \to \mathbb{S}^1$ definita come

$$e(x) = \exp(2\pi ix) = \cos(2\pi x) + i \sin(2\pi x)$$

é un rivestimento. Infatti $\mathbb{S}^1 \setminus \{x\}$ é un aperto banalizzante per p intorno ad ogni punto $y \neq x$. Consideriamo x = 1 (ci si puó ricondurre a questo caso tramite una rotazione), allora si ha

$$e^{-1}(\mathbb{S}^1 \setminus \{1\}) = \bigcup_{a \in \mathbb{Z}} (a, a+1).$$

Definizione 1.14. Un rivestimento $p:\widetilde{X}\to X$ é detto universale se \widetilde{X} é semplicemente connesso.

Definizione 1.15. Un'applicazione continua $f: X \to Y$ é un omeomorfismo locale se per ogni $x \in X$ esistono un aperto $A \subset X$ contenente x e un aperto $B \subset Y$ tale che la restrizione

$$f_{\mid A}:A\to B$$

é un omeomorfismo.

Proposizione 1.6. Un rivestimento $p: \widetilde{X} \to X$ é un omeomorfismo locale.

DIMOSTRAZIONE: Sia $\widetilde{x} \in \widetilde{X}$ e sia $x = p(\widetilde{x})$. Dato che p é un rivestimento esiste un aperto banalizzante U che contiene x, cioé

$$p^{-1}(U) = \bigcup_{j \in J} U_j$$
 (con $U_j \cap U_k = \emptyset$) e $p_{|U_j} : U_j \to U$ omeomorfismo.

Sia U_0 l'aperto che contiene \widetilde{x} . Allora $p_{|U_0}:U_0\to U$ é un omeomorfismo e quindi p é un omeomorfismo locale.

Osservazione 1.3. Il viceversa della proposizione appena dimostrata non é vero neanche nel caso in cui l'omeomorfismo locale sia suriettivo, come mostra il seguente

Esempio 1.2 (omeomorfismo locale suriettivo che non é un rivestimento). Sia $e: \mathbb{R} \to \mathbb{S}^1$ il rivestimento dell' Esempio 1.1. In quanto rivestimento é un omeomorfismo locale. Consideriamo la restrizione di e all'aperto (0,2): $e_{|(0,2)}$ é ancora un omeomorfismo locale perché é la restrizione di un omeomorfismo locale ad un aperto. Preso un aperto U contenente il punto $1 \in \mathbb{S}^1$ si ha che la sua controimmagine é formata da tre aperti $(0,\epsilon), (1-\epsilon,1+\epsilon), (2-\epsilon,2)$. La restrizione $e_{|(0,2)}$ non puó quindi essere un rivestimento dal momento che le restrizioni

$$e_{|(0,\epsilon)}:(0,\epsilon)\to U$$
 e $e_{|(2-\epsilon,2)}:(2-\epsilon,2)\to U$

non sono degli omeomorfismi.

Proposizione 1.7. Un omeomorfismo locale $p: \widetilde{X} \to X$ é un'applicazione aperta e quindi é un'identificazione.

DIMOSTRAZIONE: Sia V un aperto di \widetilde{X} . Dalla definizione di omeomorfismo locale segue che per ogni $\widetilde{x} \in V$ esistono un aperto $V_{\widetilde{x}} \subset \widetilde{X}$ e un aperto $U_{\widetilde{x}} \subset U$ tale che $p_{|V_{\widetilde{x}}}:V_{\widetilde{x}} \to U_{\widetilde{x}}$ é un omeomorfismo. Consideriamo l'aperto di V ottenuto intersecando V e $V_{\widetilde{x}}$:

$$W_{\widetilde{x}} = V \cap V_{\widetilde{x}}.$$

Al variare di \widetilde{x} in V, gli aperti $W_{\widetilde{x}}$ ricoprono V, cioé $\bigcup_{\widetilde{x} \in V} W_{\widetilde{x}} = V$. Si ha

$$p(V) = p\left(\bigcup_{\widetilde{x} \in V} W_{\widetilde{x}}\right) = \bigcup_{\widetilde{x} \in V} p\left(W_{\widetilde{x}}\right)$$

e quindi p(V) é un aperto perché unione di aperti $(p(W_{\widetilde{x}}))$ é aperto perché $W_{\widetilde{x}} \subset V_{\widetilde{x}}$ e $p_{|V_{\widetilde{x}}}$ é un omeomorfismo).

Corollario 1.3. Un rivestimento é un'identificazione.

1.3 Proprietá di sollevamento

Definizione 1.16. Dato il diagramma

la funzione \widetilde{f} che rende commutativo il diagramma, cioé tale che $p\circ\widetilde{f}=f$, si chiama sollevamento di f.

Teorema 1.3 (unicitá del sollevamento). Sia $\widetilde{X} \stackrel{p}{\to} X$ un rivestimento e $Y \stackrel{f}{\to} X$ una funzione continua con Y connesso. Se \widetilde{f} , $\widetilde{f'}: Y \to \widetilde{X}$ sono due sollevamenti di f, cioé $p \circ \widetilde{f} = p \circ \widetilde{f'} = f$, tali che $\widetilde{f}(y_0) = \widetilde{f'}(y_0)$ per un certo $y_0 \in Y$ allora $\widetilde{f} = \widetilde{f'}$.

DIMOSTRAZIONE: Definiamo l'insieme $Y' = \{y \in Y \mid \widetilde{f}(y) = \widetilde{f}'(y)\}$ e dimostriamo che Y' = Y. Dato che Y é connesso basta dimostrare che Y' é contemporaneamente aperto e chiuso ed é diverso dall'insieme vuoto.

- $Y' \neq \emptyset$, infatti contiene l'elemento y_0 ;
- Y' é aperto. Sia $y \in Y'$, quindi $\widetilde{f}(y) = \widetilde{f}'(y) = \widetilde{x} \in \widetilde{X}$. Sia $x = p(\widetilde{x})$; allora, per definizione di rivestimento, esiste un aperto banalizzante U di x, cioé
 - $-x \in U$;
 - $-p^{-1}(U) = \bigcup_{j \in J} U_j;$
 - $-p_{|U_i}:U_j\to U$ é un omeomorfismo;
 - $U_j \cap U_k = \emptyset, \forall j \neq k.$

Sia U_0 l'aperto contenente \widetilde{x} e consideriamo l'aperto

$$\widetilde{f}^{-1}(U_0) \cap \widetilde{f'}^{-1}(U_0) = V$$

contentente y. Se mostriamo che $V \in Y'$ abbiamo terminato perché significa che Y' é aperto. Sia $z \in V$, quindi $\widetilde{f}(z) \in U_0$ e $\widetilde{f}'(z) \in U_0$. D'altra parte

$$p(\widetilde{f}(z)) = f(z) = p(\widetilde{f}'(z)).$$

Ma $\widetilde{f}(z)$ e $\widetilde{f}'(z) \in U_0$ e p ristretto a U_0 é un omeomorfismo (perció é iniettivo) e quindi $\widetilde{f}(z) = \widetilde{f}'(z)$, cioé $z \in Y'$ (quindi $V \in Y'$ dato che z é arbitrario).

• Y' é chiuso. Sia $y \in Y \setminus Y'$, cio
é $\widetilde{f}(y) \neq \widetilde{f}'(y)$. Dato che \widetilde{f} e \widetilde{f}' sono sollevamenti di f, si ha

$$p(\widetilde{f}(y)) = p(\widetilde{f}'(y)) = f(y) = x.$$

Dal momento che p ristretto ad ogni U_j é iniettivo, $\widetilde{f}(y)$ e $\widetilde{f}'(y)$ devono stare su due aperti diversi, cioé esistono U_k (contenente $\widetilde{f}'(y)$), con $k \neq l$. Consideriamo l'aperto

$$W = \widetilde{f}^{-1}(U_k) \cap \widetilde{f'}^{-1}(U_l)$$

che contiene y. Si ha $W \subset Y \setminus Y'$; infatti se $z \in W$ allora $\widetilde{f}(z) \in U_k$ e $\widetilde{f}'(z) \in U_l$ che sono disgiunti. Perció $\widetilde{f}(z) \neq \widetilde{f}'(z)$ e quindi $z \in Y \setminus Y'$, cioé $Y \setminus Y'$ é aperto.

Lemma 1.5 (esistenza del numero di Lebesgue). Sia (X,d) uno spazio metrico compatto e sia $\{U_j\}_{j\in J}$ un ricoprimento aperto di X, cioé $\bigcup_{j\in J} U_j = X$. Allora esiste $\delta > 0$ reale (chiamato Numero di Lebesgue del ricoprimento $\{U_j\}_{j\in J}$) tale che per ogni $S\subset X$ con diam $(S)<\delta$, esiste $k\in J$ tale che $S\subset U_k$.

DIMOSTRAZIONE: Possiamo assumere che J sia un insieme finito in quanto X é compatto. Definiamo per ogni $j \in J$ l'applicazione $f_j: X \to \mathbb{R}$ definita come

$$f_j(x) = d(x, X \setminus U_j) = \inf d(x, y)$$

con $y \in X \setminus U_j$. f_j é continua perché la funzione distanza lo é. Consideriamo ora la funzione $f: X \to \mathbb{R}$ definita come

$$f(x) = \max_{j \in J} f_j(x).$$

f é continua e non negativa per ogni $x \in X$ perché le f_j lo sono. Il fatto che $\{U_j\}$ sia un ricoprimento implica che f(x) > 0. Supponiamo infatti per assurdo che per un certo $x \in X$ si abbia f(x) = 0. Per come é stata definita la funzione f si ha allora $f_j(x) = 0$, $\forall j \in J$, cioé

$$x \in X \setminus U_j$$
, $\forall j \in J \Rightarrow x \in \bigcap_{j \in J} (X \setminus U_j) \Rightarrow x \in X \setminus \left(\bigcup_{j \in J} U_j\right) \Rightarrow x \in X \setminus X = \emptyset$

che é assurdo.

Sia $0 < \delta < f(x) \quad \forall x \in X$. Per dimostrare che δ é il numero di Lebesgue del ricoprimento $\{Uj\}_{j\in J}$ fissiamo $x_0 \in S \subset X$. Quindi esiste $k \in J$ tale che $d(x_0, X \setminus U_k) > 0$. Infatti $d(x_0, X \setminus U_k) = f_k(x_0)$ e dato che f(x) > 0, esiste almeno un f_k tale che $f_k(x_0) > 0$. Sappiamo inoltre che $diam(S) < \delta$ e quindi $d(x, x_0) \le \delta$. Questo implica

$$d(x, X \setminus U_k) \ge d(x_0, X \setminus U_k) - d(x_0, x) > \delta - \delta = 0$$

cioé

$$x \notin X \setminus U_k \Rightarrow x \in U_k \Rightarrow S \subset U_k$$

Teorema 1.4 (sollevamento degli archi). Sia $p: \widetilde{X} \to X$ un rivestimento, $f: I \to X$ un arco $e \ \widetilde{x_0} \in \widetilde{X}$ tale che $p(\widetilde{x_0}) = x_0 = f(0)$. Allora esiste un unico sollevamento $\widetilde{f}: I \to \widetilde{X}$ tale che $p \circ \widetilde{f} = f$.

DIMOSTRAZIONE: Basta dimostrare l'esistenza in quanto l'unicitá di \widetilde{f} segue dal Teorema 1.3 dato che I é connesso.

Distinguiamo due casi:

- $f(I) \subset U$ aperto banalizzante. Se U_0 contenente $\widetilde{x_0}$ é un aperto tale che $p_{|U_0}: U_0 \to U$ é un omeomorfismo, allora $p_{|U_0}^{-1} \circ f = \widetilde{f}$ é un sollevamento di f.
- Se f(I) non é contenuto in un aperto banalizzante possiamo trovare $s_0, s_1 < \ldots, s_n$ (con $0 = s_0 < s_1 < \cdots < s_n = 1$) tali che $f([s_{j-1}, s_j])$ sia contenuto in un aperto banalizzante (per il Lemma 1.5). Poniamo $\widetilde{f}(0) = \widetilde{x_0}$ e supponiamo di aver definito $\widetilde{f}: [0, s_j] \to \widetilde{X}$ tale che $p \circ \widetilde{f} = f$. Per le scelte fatte sappiamo che $f([s_j, s_{j+1}])$ é contenuto in un aperto banalizzante U e quindi esiste U_0 contenente $\widetilde{f}(s_j)$ tale che $p_0 = p_{|U_0}: U_0 \to U$ é un omeomorfismo. Possiamo quindi definire un sollevamento $\widetilde{f}: [s_j, s_{j+1}] \to \widetilde{X}$ in questo modo:

$$\widetilde{f} = p_0^{-1} \circ f$$

e per il lemma di incollamento possiamo definire

$$\widetilde{f}:[0,s_{j+1}]\to\widetilde{X}$$
 tale che $p\circ\widetilde{f}=f$

Teorema 1.5 (sollevamento delle omotopie). $Sia\ p: \widetilde{X} \to X$ un rivestimento $e\ F: I \times I \to X$ un' applicazione continua tale che $F(0,0) = x_0$. $Sia\ inoltre\ \widetilde{x_0} \in \widetilde{X}$ tale che $p(\widetilde{x_0}) = x_0$. Allora esiste un'unica $\widetilde{F}: I \times I \to \widetilde{X}$ tale che $p \circ \widetilde{F} = F$. Inoltre se $F \in u$ n'omotopia tra archi, cioé

$$\begin{cases} F(t,0) = f(t) \\ F(t,1) = g(t) \\ F(0,s) = x_0 \\ F(1,s) = x_1 \end{cases}$$

allora \widetilde{F} é un'omotopia tra archi.

DIMOSTRAZIONE: Per il Lemma 1.5 possiamo trovare

$$0 = s_0 < s_1 < \dots < s_n = 1$$
 $0 = t_0 < t_1 < \dots < t_n = 1$

tali che $F([s_{j-1},s_j]\times[t_{j-1},t_j])$ sia contenuto in un aperto banalizzante. Sia $\widetilde{F}(0,0)=\widetilde{x_0}$ e sia

$$F(0,s) = \alpha(s) = F : \{0\} \times I \to X$$

un arco in X tale che $F(0,0)=x_0$. Definiamo il sollevamento $\tilde{\alpha}$ di α che inizia in $\tilde{x_0}$. In modo analogo si puó definire il sollevamento del lato $I \times \{0\}$ e quindi si puó assumere di aver sollevato F nell'insieme

$$\{0\} \times I \cup I \times \{0\}.$$

Procediamo per induzione e supponiamo che esista $\widetilde{F}_A:A\to\widetilde{X}$ continua tale che $p\circ\widetilde{F}=F$. Vogliamo estendere \widetilde{F} al rettangolo $[I_{i_0}\times J_{j_0}]$ adiacente ad A. $C=A\cap [I_{i_0}\times J_{j_0}]$ é connesso e $F(I_{i_0}\times J_{j_0})$ é contenuto in un aperto banalizzante U. Esiste quindi U_0 contenente $\widetilde{F}(C)$ nel quale

$$p_0 = p_{|U_0}: U_0 \to U$$

é un omeomorfismo. Quindi $(p_0 \circ \widetilde{F})(y) = F(y)$, per ogni $y \in C$, cioé

$$\widetilde{F}(y) = p_0^{-1}(F(y))$$
 per ogni $y \in C$.

Possiamo allora definire $\widetilde{F}:I_{i_0}\times J_{j_0}\to \widetilde{X}$ come $\widetilde{F}(z)=p_0^{-1}(F(z))$, per ogni $z\in I_{i_0}\times J_{j_0}$. In C le definizioni di \widetilde{F} e \widetilde{F}_A coincidono, quindi per il lemma di incollamento si puó trovare $\widetilde{F}:A\cup I_{i_0}\times J_{j_0}\to \widetilde{X}$ tale che $p\circ \widetilde{F}=F$:

$$\widetilde{F}(y) = \begin{cases} \widetilde{F_A}(y) & \text{se } y \in A \\ (p_0^{-1}F)(y) & \text{se } y \in I_{i_0} \times J_{j_0} \end{cases}$$

Dato che $I \times I$ é connesso, \widetilde{F} é unico. Resta da dimostrare che se $F(0,s) = x_0$ e $F(1,s) = x_1$ allora $\widetilde{F}(0,s) = \widetilde{x_0}$ e $\widetilde{F}(1,s) = \widetilde{x_1}$ (dove $p(\widetilde{x_0}) = x_0$ e $p(\widetilde{x_1}) = x_1$). $\widetilde{F}(\{0\} \times I)$ é connesso perché é immagine di un connesso tramite l'applicazione continua \widetilde{F} . Inoltre $p(\widetilde{F}(\{0\} \times I)) = F(\{0\} \times I) = x_0$, cioé

$$\widetilde{F}(\{0\} \times I) \in p^{-1}(x_0).$$

D'altra parte si ha che $p^{-1}(\{x_0\})$ é discreto e $\widetilde{F}(\{0\} \times I)$ é connesso quindi $\widetilde{F}(\{0\} \times I)$ é costituito da un solo punto appartenente a $p^{-1}(x_0)$, cioé

$$\widetilde{F}(\{0\} \times I) = \widetilde{x_0}.$$

Quindi se F fissa i punti iniziale e finale, anche \widetilde{F} fissa i punti iniziale e finale (infatti il medesimo ragionamento puó essere applicato all'insieme $\{1\} \times I$).

Corollario 1.4. Siano $f, g: I \to X$ due cammini in X tali che $f(0) = g(0) = x_0$ e sia $\widetilde{x}_0 \in \widetilde{X}$ tale che $p(\widetilde{x}_0) = x_0$. Se $\widetilde{f}, \widetilde{g}: I \to \widetilde{X}$ sono gli unici sollevamenti di f e g tale che $\widetilde{f}(0) = \widetilde{g}(0) = \widetilde{x}_0$ e se $f \sim g$ allora

$$\widetilde{f} \sim \widetilde{g}$$
 e $\widetilde{f}(1) = \widetilde{g}(1)$.

DIMOSTRAZIONE: Infatti si ha $\widetilde{f}(1) = \widetilde{F}(1,0) = \widetilde{F}(1,1) = \widetilde{g}(1)$.

Proposizione 1.8. Sia $p: \widetilde{X} \to X$ un rivestimento. Consideriamo $\pi_1(\widetilde{X}, \widetilde{x_0})$ e $\pi_1(X, x_0)$, con $p(\widetilde{x_0}) = x_0$. Allora

$$p_*: \pi_1(\widetilde{X}, \widetilde{x_0}) \to \pi_1(X, x_0)$$
$$[\widetilde{f}] \mapsto p_*([\widetilde{f}]) = [p \circ \widetilde{f}]$$

é iniettiva (o equivalentemente é un monomorfismo).

DIMOSTRAZIONE: Dobbiamo dimostrare che il $\ker(p_*)$ contiene solo l'elemento neutro $[\epsilon_{\widetilde{x}_0}]$. $\widetilde{f} \in \ker(p_*)$ se $p_*[\widetilde{f}] = [\epsilon_{x_0}]$. Ma

$$p_*[\widetilde{f}] = [p \circ \widetilde{f}] = [\epsilon_{x_0}] \iff f \sim \epsilon_{x_0} \implies \widetilde{f} \sim \epsilon_{\widetilde{x}_0} \iff [\widetilde{f}] = [\epsilon_{\widetilde{x}_0}].$$

Quindi si ha che $p_*\pi_1(\widetilde{X},\widetilde{x}_0)$ é un sottogruppo di $\pi_1(X,x_0)$, con $\widetilde{x}_0 \in p^{-1}(x_0)$.

Lemma 1.6. Sia $p: \widetilde{X} \to X$ un rivestimento con \widetilde{X} connesso per archi. Se \widetilde{f} é un arco in \widetilde{X} che collega i punti \widetilde{x}_0 e \widetilde{x}_1 e $f = p \circ \widetilde{f}$ collega i punti $p(\widetilde{x}_0)$ e $p(\widetilde{x}_1)$ allora

$$p_* \circ \varphi_{\widetilde{f}} = \varphi_f \circ p_*$$

dove φ_f é l'isomorfismo del Teorema 1.2.

DIMOSTRAZIONE: Preso $\widetilde{\alpha} \in \pi_1(\widetilde{X}, \widetilde{x}_0)$ si ha

$$\begin{split} p_*(\varphi_{\widetilde{f}}([\widetilde{\alpha}]) &= p_*[i(\widetilde{f}) * \widetilde{\alpha} * \widetilde{f}] = [p \circ \left(i(\widetilde{f}) * \widetilde{\alpha} * \widetilde{f}\right)] = \\ &= [p \circ i(\widetilde{f}) * p \circ \widetilde{\alpha} * p \circ \widetilde{f}] = [i(f) * \alpha * f] = \varphi_f([\alpha]) = \varphi_f \circ p_*([\widetilde{\alpha}]) \end{split}$$

Proposizione 1.9. Sia $p: \widetilde{X} \to X$ un rivestimento con \widetilde{X} connesso per archi. Per ogni coppia \widetilde{x}_0 , \widetilde{x}_1 esiste un arco f in X da $p(\widetilde{x}_0)$ a $p(\widetilde{x}_1)$ tale che

$$\varphi_f p_* \pi_1(\widetilde{X}, \widetilde{x}_0) = p_* \pi_1(\widetilde{X}, \widetilde{x}_1).$$

DIMOSTRAZIONE: Sia \widetilde{f} l'arco che collega \widetilde{x}_0 e \widetilde{x}_1 in \widetilde{X} . Per il Teorema 1.2 sappiamo che $\varphi_{\widetilde{f}}$ é un isomorfismo quindi $\varphi_{\widetilde{f}}\pi_1(\widetilde{X},\widetilde{x}_0)=\pi_1(\widetilde{X},\widetilde{x}_1)$. Applicando il monomorfismo p_* si ha

$$p_*\varphi_{\widetilde{f}}\pi_1(\widetilde{X},\widetilde{x}_0)=p_*\pi_1(\widetilde{X},\widetilde{x}_1).$$

Per il lemma precedente (Lemma 1.6) $p_* \circ \varphi_{\widetilde{f}} = \varphi_f \circ p_*$ dalla quale si ottiene

$$\varphi_f p_* \pi_1(\widetilde{X}, \widetilde{x}_0) = p_* \pi_1(\widetilde{X}, \widetilde{x}_1).$$

Teorema 1.6. Sia $p: \widetilde{X} \to X$ un rivestimento con \widetilde{X} connesso per archi. Se $x_0 \in X$, l'insieme

$$\{p_*\pi_1(\widetilde{X},\widetilde{x}_0)|\widetilde{x}_0\in p^{-1}(x_0)\}$$

é una classe di coniugio di sottogruppi di $\pi_1(X, x_0)$.

DIMOSTRAZIONE: Applicando la proposizione precedente (Proposizione 1.9) nel caso in cui $p(\widetilde{x}_0) = p(\widetilde{x}_1) = x_0$ si ottiene un arco chiuso f di base x_0 e quindi un elemento di $\pi_1(X, x_0)$ per il quale vale la relazione

$$p_*\pi_1(\widetilde{X},\widetilde{x}_1) = [f]^{-1} (p_*\pi_1(\widetilde{X},\widetilde{x}_0))[f].$$

Quindi $p_*\pi_1(\widetilde{X},\widetilde{x}_0)$ e $p_*\pi_1(\widetilde{X},\widetilde{x}_1)$ sono sottogruppi coniugati di $\pi_1(X,x_0)$. Sia ora H un sottogruppo di $\pi_1(X,x_0)$ coniugato ad uno dei sottogruppi $p_*\pi_1(\widetilde{X},\widetilde{x}_0)$, cioé

$$H = [f]^{-1} p_* \pi_1(\widetilde{X}, \widetilde{x}_0)[f]$$

con $[f] \in \pi_1(X, x_0)$. Dobbiamo dimostrare che esiste $\widetilde{x}_1 \in \widetilde{X}$ tale che $H = p_* \pi_1(\widetilde{X}, \widetilde{x}_1)$. Sia \widetilde{f} il sollevamento di f con punto iniziale in \widetilde{x}_0 , dove f é un rappresentante della classe [f]. Per la Proposizione 1.9 si ha

$$p_*\pi_1(\widetilde{X},\widetilde{f}(1)) = \varphi_f p_*\pi_1(\widetilde{X},\widetilde{x}_0) = H$$

e quindi, ponendo $\widetilde{x}_1 = \widetilde{f}(1)$, H appartiene all'insieme dato. \square

Definizione 1.17. Un rivestimento $p: \widetilde{X} \to X$ é detto regolare (o Galoisiano) se $p_*\pi_1(\widetilde{X}, \widetilde{x}_0)$ é un sottogruppo normale di $\pi_1(X, x_0)$, con $x_0 = p(\widetilde{x}_0)$.

Definizione 1.18. Uno spazio topologico X é localmente connesso per archi se per ogni $x \in X$ e per ogni U contenente x esiste un aperto $V \subset U$ contenente x connesso per archi.

Teorema 1.7 (condizione necessaria e sufficiente affinché esista un sollevamento). Sia $p:\widetilde{X}\to X$ un rivestimento e $f:Y\to X$ una funzione continua. Se Y é connesso e localmente connesso per archi allora esiste un unico sollevamento \widetilde{f} di f tale che $\widetilde{f}(y_0)=\widetilde{x_0}$ se e solo se

$$f_*\pi_1(Y, y_0) \subset p_*\pi_1(\widetilde{X}, \widetilde{x_0}). \tag{2}$$

DIMOSTRAZIONE:

• Condizione necessaria. Se esiste un sollevamento di f allora il diagramma

$$(\widetilde{X},\widetilde{x_0}) \xrightarrow{\widetilde{f}} (X,x_0)$$

induce il seguente diagramma commutativo

$$\pi_1(\widetilde{X}, \widetilde{x_0})$$

$$\downarrow^{p_*}$$

$$\pi_1(Y, y_0) \xrightarrow{f_*} \pi_1(X, x_0)$$

cioé $p_*\widetilde{f}_*\pi_1(Y,y_0)=f_*\pi_1(Y,y_0)$. Ma $\widetilde{f}_*\pi_1(Y,y_0)<\pi_1(\widetilde{X},\widetilde{x_0})\Longrightarrow p_*\widetilde{f}_*\pi_1(Y,y_0)\subset p_*\pi_1(\widetilde{X},\widetilde{x_0})$. Quindi la condizione (2) é necessaria.

• Condizione sufficiente. Definiamo \widetilde{f} utilizzando solo il fatto che Y é connesso per archi. Fissiamo dei punti base y_0 , x_0 e $\widetilde{x_0}$. Dato $y \in Y$ possiamo trovare un arco che congiunge y_0 e y. Se componiamo con f (che é continua) otteniamo un cammino in X, cioé

$$\begin{cases} f \circ \phi(0) = x_0 \\ f \circ \phi(1) = \text{punto finale del cammino } f \circ \phi. \end{cases}$$

Per il teorema di sollevamento degli archi (Teorema 1.4) esiste un unico sollevamento $\widetilde{f} \circ \phi$ di $f \circ \phi$ che inizia in $\widetilde{x_0}$. Poniamo

$$\widetilde{f}(y) \stackrel{def}{=} \widetilde{f \circ \phi}(1)$$

Verichiamo che é ben definita, cioé preso un altro cammino ψ che congiunge y_0 e y si deve avere $f \circ \phi(1) = f \circ \psi(1)$. Si ha che $\phi * i(\psi)$ é un laccio chiuso di base y_0 e quindi $f(\phi * i(\psi)) = f \circ \phi * f(i(\psi))$ é un laccio chiuso di base x_0 . Consideriamo $[f \circ \phi * f(i(\psi))] \in \pi_1(X, x_0)$, cioé come elemento del gruppo fondamentale. D'altra parte $[f \circ \phi * f(i(\psi))] \in f_*\pi_1(Y, y_0)$ (infatti $\phi * i(\psi) \in \pi_1(Y, y_0)$ e quindi $f \circ (\phi * i(\psi)) \in f_*\pi_1(Y, y_0)$). Per ipotesi $f_*\pi_1(Y, y_0) \subset p_*\pi_1(\widetilde{X}, \widetilde{x_0})$ quindi esiste $[\alpha] \in \pi_1(\widetilde{X}, \widetilde{x_0})$ tale che

$$[f \circ \phi * f(i(\psi))] = p_*([\alpha]) = [p \circ \alpha].$$

Perció

$$f \circ \phi * f(i(\psi)) = f \circ \phi * i(f(\psi)) \sim p \circ \alpha \Longrightarrow f \circ \phi \sim p \circ \alpha * f \circ \psi.$$

Si ha $(f \circ \phi)(0) = x_0$ e $(p \circ \alpha * f \circ \psi)(0) = (p \circ \alpha)(0) = p(\widetilde{x_0}) = x_0$, cioé $f \circ \phi$ e $p \circ \alpha * f \circ \psi$ hanno lo stesso punto iniziale e quindi, per il Corollario 1.4, i loro sollevamenti hanno lo stesso punto finale:

$$\widetilde{f\circ\phi}(1)=p\circ\widetilde{\alpha*f}\circ\psi(1)=\alpha*\widetilde{f\circ\psi}(1)=\widetilde{f\circ\psi}(1)=\widetilde{f}(y)$$

dove $\widetilde{f \circ \psi}$ é il sollevamento di $f \circ \psi$ che inizia in $\widetilde{x_0}$. Quindi \widetilde{f} é ben definita. Dimostriamo che é continua utilizzando il fatto che Y é localmente connesso per archi. Sia $y \in Y$ e U un aperto contenente $\widetilde{f}(y)$. Per dimostrare che \widetilde{f} é continua dobbiamo trovare un aperto

V contenente y tale che $\widetilde{f}(V) \subset U$. Abbiamo che p(U) é aperto in X perché p é aperta in quanto rivestimento (e quindi omeomorfismo locale) e contiene f(y). Sia U' un aperto banalizzante per p contenente f(y) e sia $U' \subset p(U)$. Quindi

$$p^{-1}(U') = \bigcup_{j \in J} V_j$$
 con $p_{|V_j} : V_j \to U$ omeomorfismo $\forall j \in J$.

Perció esiste V_k tale che $\widetilde{f}(y) \in V_k$. Allora $p(U \cap V_k)$ é un aperto contenente f(y) contenuto in U' e $f^{-1}(p(U \cap V_k))$ é un aperto contenente y in Y. Sia $V \subset f^{-1}(p(U \cap V_k))$ un aperto connesso per archi (esiste perché per ipotesi Y é localmente connesso per archi).

Si ha $f(V) \subset p(U \cap V_k)$. Se dimostriamo che $\tilde{f}(V) \subset U \cap V_k \subset U$ abbiamo terminato.

Sia $y' \in V$. Essendo V connesso per archi esiste un cammino ϕ che porta y in y'. Ma Y é connesso per archi quindi esiste anche un cammino ψ che porta y_0 in y, quindi il cammino $\psi * \phi$ porta y_0 in y'.

Per come abbiamo definito f si ha:

$$\widetilde{f}(y') = \widetilde{f(\psi * \phi)}(1) = (f \circ \widetilde{\psi * f} \circ \phi)(1) =$$

$$= (\widetilde{f \circ \psi} * L_{\widetilde{f}(y)}(f \circ \phi))(1) = (L_{\widetilde{f}(y)}(f \circ \phi))(1) \stackrel{not}{=} \beta(1).$$

Per dimostrare che $\beta(1) \in U \cap V_k$ mostriamo che $\beta(I)$ é interamente contenuto in $U \cap V_k$.

Si ha $\beta(0) = \tilde{f}(y)$ (infatti é il punto iniziale di $L_{\tilde{f}(y)}(f \circ \phi)$). Dato che β é il sollevamento di $f \circ \phi$ si ha

$$p(\beta(I)) = (f \circ \phi)(I) = f(\phi(I)) \subset f(V) \subset p(U \cap V_k)$$
 (3)

Se dimostriamo che p é iniettiva possiamo semplificare e abbiamo terminato. Si ha

$$\beta(I) \subset p^{-1}(f \circ \phi(I)) \subset p^{-1}(f(V)) \subset$$
$$\subset p^{-1}(p(U \cap V_k)) \subset p^{-1}(U') = \bigcup_{j \in J} V_j.$$

Ma I é connesso quindi $\beta(I)$ é connesso ed é perció contenuto in uno dei V_j . Dato che $\beta(0) = \widetilde{f}(y) \in V_k$ si ha proprio $\beta(I) \subset V_k$. Ora $p_{|V_k}$ é un omeomorfismo quindi é iniettiva e dalla (3) si ha la tesi.

1.4 Topologia dei compatto-aperti

Sia $S(K,V)=\{f\in C(X,Y)|f(K)\subset V\}$ con $K\in X$ compatto e $V\in Y$ aperto, cioé l'insieme delle funzioni che mandano un compatto fissato di X in un aperto fissato di Y e sia

$$S = \{S(K, V), K \subset X \text{ compatto e } V \subset Y \text{ aperto}\}\$$

una famiglia di sottoinsiemi di C(X,Y).

Definizione 1.19. Diremo che $U \subset C(X,Y)$ é aperto se e solo se

- $U = \emptyset$ oppure
- U = C(X, Y) oppure
- $\forall f \in U, \exists S_1, \ldots, S_n \in S \text{ tali che } f \in S_1 \cap \ldots S_n \subset U \text{ (o equivalente-mente se } U \text{ \'e unione di intersezioni finite di elementi di } S).$

Per verificare che é effettivamente una topologia bisogna controllare che le intersezioni finite e le unioni arbitrarie siano aperti della topologia (infatti \emptyset e $C(X,Y) \in \mathcal{F}$).

• Siano U_1 e U_2 due aperti di C(X,Y). Allora

$$f \in U_1 \cap U_2 \Longrightarrow f \in U_1 \in f \in U_2$$

cioé esistono

$$S_1^1,\dots,S_{k_1}^1\quad\text{tali che}\quad f\in S_1^1\cap\dots\cap S_{k_1}^1\subset U_1$$

 ϵ

$$S_1^2, \dots, S_{k_2}^2$$
 tali che $f \in S_1^2 \cap \dots \cap S_{k_2}^2 \subset U_2$.

Quindi

$$f \in S_1^1 \cap \dots \cap S_{k_1}^1 \cap S_1^2 \cap \dots \cap S_{k_2}^2 \subset U_1 \cap U_2.$$

• Consideriamo $\bigcup_{j\in J} U_j$ con U_j aperti in C(X,Y) e $f\in \bigcup_{j\in J} U_j$. Allora $f\in U_{j_1}$, cioé esistono $S_1,\ldots,S_n\in S$ tali che

$$f \in S_1 \cap \dots S_n \subset U_{j_1} \subset \bigcup_{j \in J} U_j$$
.

Lemma 1.7. Se X é uno spazio localmente compatto e di Hausdorff e C(X,Y) é dotato della topologia dei compatto-aperti, allora la mappa di valutazione

$$\begin{array}{c} ev: X \times C(X,Y) \to Y \\ (x,f) \longmapsto f(x) \end{array}$$

é continua.

DIMOSTRAZIONE: Sia $(x, f) \in X \times C(X, Y)$ e sia V un aperto di Y tale che $ev(x, f) = f(x) \in V$. Dobbiamo dimostrare che esiste un aperto $\widetilde{U} \subset X \times C(X, Y)$ contenente (x, f) tale che

$$ev(\widetilde{U}) \subset V$$
.

f é una funzione continua quindi esiste un aperto $U \subset X$ contenente x tale che $f(U) \subset V$. Inoltre X é localmente compatto e di Hausorff quindi esiste un intorno W di x contenuto in U tale che la sua chiusura \overline{W} é un compatto:

$$f(\overline{W}) \subset f(U) \subset V$$
.

Consideriamo l'aperto $\widetilde{U} = W \times S(\overline{W}, V \subset X \times C(X, Y))$ dotato della topologia prodotto. Gli $S(\overline{W}, V)$ sono gli aperti di C(X, Y) e rispetto alla topologia dei compatto-aperti si ha che ogni aperto di C(X, Y) puó essere espresso come unione di intersezioni finite di questi. Si ha

$$(x,f) \in \widetilde{U} = W \times S(\overline{W},V)$$

(infatti $x \in W$ e $f \in S(\overline{W}, V)$ in quanto $f(\overline{W}) \subset V$). Rimane da verificare che $ev(\widetilde{U}) \subset V$. Sia $(x', f') \in \widetilde{U}$. Allora

$$ev(x', f') = f'(x') \in V$$

infatti se $f'(z) \in V$ per $z \in \overline{W}$ allora $f'(z) \in V$ anche per $z \in W$.

Teorema 1.8 (legge esponenziale). Siano X,Y,Z spazi topologici con X,Y localmente compatti di Hausdorff. Se dotiamo tutti gli spazi di applicazioni continue della topologia dei compatto-aperti allora l'applicazione

$$C(X \times Y, Z) \xrightarrow{\Gamma} C(X, C(Y, Z))$$

definita da $\Gamma(f)(x)(y) = f(x,y)$ é un omeomorfismo.

DIMOSTRAZIONE: Per ogni $f: X \times Y \to Z$ continua, denotiamo

$$\hat{f} = \Gamma(f) : X \to C(Y, Z).$$

La dimostrazione si articola in vari passaggi.

- Se f é continua, allora anche \hat{f} é continua. Bisogna dimostrare che per ogni elemento W(K,U) della prebase di C(Y,Z) e per ogni $x \in X$ tale che $\hat{f}(x) \in W(K,U)$ esiste un aperto $A \subset X$ tale che $x \in A$ e $\hat{f}(a) \subset W(K,U)$. Dire che $\hat{f}(x) \in W(K,U)$ equivale a dire che $f(\{x\} \times K) \subset U$; per il teorema di Wallace esiste un aperto A tale che $x \in A$ e $A \times K \subset f^{-1}(U)$, ossia $\hat{f}(A) \subset W(K,U)$.
- L'applicazione Γ é biunivoca. L'iniettivitá é evidente. Bisogna dimostrare che per ogni $g: X \to C(Y, Z)$ continua, l'applicazione

$$f: X \times Y \to Z, \qquad f(x,y) = q(x)(y),$$

é continua. Siano $U \subset Z$ un aperto e $(x,y) \in f^{-1}(U)$; l'applicazione g(x) é continua e Y é localmente compatto di Hausdorff. Ne segue che esiste un intorno compatto B di y tale che $g(x)(B) \subset U$ e quindi $g(x) \in W(B,U)$. L'applicazione g é continua e quindi esite un intorno A di x in X tale che $g(A) \subset W(B,U)$ e questo implica che $f(A \times B) \subset U$.

• l'applicazione Γ é un omeomorfismo. Una prebase della topologia dei compatto-aperti su C(X,C(Y,Z)) é data dagli aperti W(H,W(K,U)), al variare di H e K tra i compatti di X e Y rispettivamente e di U tra gli aperti di Z. Dato che l'applicazione Γ identifica $W(H\times K,U)$ con W(H,W(K,U)), ne segue che é continua. Per dimostrare che é un omeomorfismo basta provare che gli aperti $W(H\times K,U)$ formano una prebase della topologia dei compatto-aperti su $C(X\times Y,Z)$. Siano dunque $T\subset X\times Y$ un compatto e $f\in W(T,U)$. Siccome X e Y sono localmente compatti di Hausdorff, per ogni $t\in T$ esistono due compatti $K_t\subset X$ e $H_t\subset Y$ tali che $f(K_t\times H_t)\subset U$ e t é un punto interno di $K_t\times H_t$. Passando a un sottoricroprimento finito troviamo due successioni finite di compatti $K_1,\ldots,K_n\subset X,H_1,\ldots,H_n\subset Y$ tali che

$$T \subset \bigcup_{i} (K_i \times H_i), \qquad f(K_i \times H_i) \subset U,$$

e dunque

$$f \in W(K_1 \times H_1, U) \cap \cdots \cap W(K_n \times H_n, U) \subset W(T, U).$$

Proposizione 1.10. Lo spazio topologico C(X,Y) é un funtore controvariante rispetto a X (supposto che sia di Hausdorff) e covariante rispetto a Y (arbitrario) nella categoria degli spazi topologici e delle funzioni continue.

Teorema 1.9. Sia \mathscr{A} una famiglia di sottoinsiemi di X tali che ogni sottoinsieme compatto di X é l'unione di un numero finito di sottoinsiemi compatti, ognuno dei quali é contenuto in un elemento di \mathscr{A} . Allora la topologia dei compatto-aperti su C(X,Y) coincide con la topologia indotta dalla restrizione

$$C(X,Y) \stackrel{\rho_A}{\to} C(A,Y)$$

dove A é un elemento di \mathscr{A} .

DIMOSTRAZIONE: La restrizione ρ_A é continua rispetto alla topologia dei compatto-aperti su C(X,Y) e C(A,Y) per la funtorialitá dato che le inclusioni $A \hookrightarrow X$ portano sottoinsiemi compatti in sottoinsiemi compatti (ricordiamo che compatti significa compatti e Hausdorff). Questo significa che la topologia indotta é meno fine della topologia dei compatto-aperti. Viceversa, consideriamo l'insieme aperto $C_{K,V}$ nella topologia dei compatto-aperti di C(X,Y). Per ipotesi il sottoinsieme compatto K é unione finita di sottoinsiemi compatti K_1, \ldots, K_n ognuno dei quali é contenuto in un elemento A_i di A. Allora si ha

$$C_{K,V} = \bigcap_{i=1}^{n} \rho_{A_i}^{-1}(C_{K_i,V})$$

che prova che $C_{K,V}$ appartiene alla topologia indotta. Dato che $C_{K,V}$ genera la topologia dei compatto-aperti, si ha la tesi.

1.5 Topologie sul prodotto cartesiano $X \times Y$

Definizione 1.20. Dati due spazi topologici X e Y definiamo lo spazio topologico $X \times_S Y$ che si ottiene dotando il prodotto cartesiano $X \times Y$ della topologia più fine che coincide con la topologia prodotto nei sottoinsiemi $\{x\} \times Y$ e $X \times L$, dove $x \in X$ e L é un sottoinsieme compatto di Y.

Questo equivale a richiedere che un sottoinsieme $A \subseteq X \times_S Y$ sia aperto se e solo se $A \cap (\{x\} \times Y)$ e $A \cap (X \times L)$ sono aperti in $\{x\} \times Y$ e $X \times L$ rispettivamente.

Dalla definizione seguono immediatamente i seguenti risultati.

Proposizione 1.11. Le proiezioni $X \times_S Y \xrightarrow{p_X} X$ e $X \times_S Y \xrightarrow{p_Y} Y$ sono continue, aperte e suriettive e le inclusioni $Y \xrightarrow{j_x} X \times_S Y$ e $X \xrightarrow{j_y} X \times_S Y$ definite come $j_x(y) = (x, y) = j_y(x)$ sono embedding topologici.

Proposizione 1.12. Un'applicazione $X \times_S Y \xrightarrow{F} Z$ é continua se e solo se le applicazioni $F_x = F(x, \cdot)$ e $F_{|X \times L}$ sono continue per ogni $x \in X$ e ogni sottoinsieme compatto L di Y.

Proposizione 1.13. L'applicazione $(X \times_S Y) \times_S Z \to X \times_S (Y \times_S Z)$ é una bigezione continua. Se inoltre Y e Z sono di Hausdorff allora é un omeomorfismo.

DIMOSTRAZIONE: La dimostrazione si puó trovare in [6] e [7].

Proposizione 1.14. Se Y é localmente compatto e di Hausdorff allora

$$X \times Y = X \times_S Y$$
.

DIMOSTRAZIONE: La dimostrazione si puó trovare in [6] e [7].

Proposizione 1.15. La mappa di valutazione $X \times_S C(X,Y) \stackrel{E}{\to} Y$ é continua.

DIMOSTRAZIONE: Per la Proposizione 1.12 si deve dimostrare che E_f e $E_{|C(X,Y)\times B}$ sono continue per ogni $f\in C(X,Y)$ e per ogni $B\subset Y$ compatto. E_f é continua dal momento che $f\in C(X,Y)$. Per dimostrare che lo é anche $E_{|C(X,Y)\times B}$ si consideri per semplicitá X di Hausdorff. Sia $K\subset X$ compatto, $x\in K,\ U\subset Y$ aperto e $(f,x)\in E^{-1}(U)$. Dato che f é continua su K, esiste un intorno M di x contenuto in K tale che $f(M)\subset U$. Quindi $S(M,U)\times M$ é un intorno di (f,x) in $C(X,Y)\times X$ ed é contenuto in $E^{-1}(U)$. Quindi $E_{|C(X,Y)\times B}$ é continua e per la Proposizione 1.12 lo é anche E. \square

Sia $\mu: C(X \times_S Y, Z) \to C(X, C(Y, Z))$ e siano $f \in C(X \times_S Y, Z)$ e $x \in X$. La formula

$$\mu(f)(x)(y) = f(x,y) \qquad (y \in Y)$$

definisce un'applicazione $\mu(f)(x): Y \to Z$. Vale il seguente

Lemma 1.8. $\mu(f)(x)$ é continua.

DIMOSTRAZIONE: Questa funzione coincide con la composizione

$$Y \xrightarrow{i} x \times Y \xrightarrow{f'} Z$$

dove $i(y) = (x, y), y \in Y$ e f' é la restrizione di f. Naturalmente i é continua e f' lo é per la Proposizione 1.12.

Da questo lemma segue che $\mu(f): X \to C(Y, Z)$ é ben definita.

Lemma 1.9. L'applicazione $\mu(f)$ é continua.

DIMOSTRAZIONE: Sia $g = \mu(f): X \to C(Y, Z)$ e sia W = S(B, U) una sottobase per la topologia compatto-aperta sullo spazio delle funzioni continue C(Y, Z). Questo significa che dato $B \subseteq Y$ compatto e $U \subseteq Z$ aperto si ha

$$W = \{ h \in C(Y, Z) : h(B) \subseteq U \}.$$

Dimostriamo che $g^{-1}(W)$ é aperto in X. Dato che B é compatto la restrizione $f_{|X\times B|}$ é continua per la Proposizione 1.12 e quindi $U'=(f_{|X\times B|})^{-1}(U)$ é aperto in $X\times B$. Sia $x\in g^{-1}(W)$. Quindi $\{x\}\times B\subseteq U'$. Con una dimostrazione simile a quella della Proposizione 1.15 si mostra che esiste un insieme aperto $V\subseteq X$ tale che $x\in V$ e $V\times B\subseteq U'$. Questo implica che $x\in V\subseteq g^{-1}(W)$ e quindi $g^{-1}(W)$ é aperto. \square

Da questo lemma segue che l'applicazione $\mu: C(X \times_S Y, Z) \to C(X, C(Y, Z))$ é ben definita.

Proposizione 1.16. $\mu: C(X \times_S Y, Z) \to C(X, C(Y, Z))$ é un omeomorfismo.

DIMOSTRAZIONE: Per la Proposizione 1.15 la mappa di valutazione

$$E: C(X \times_S Y, Z) \times_S X \times_S Y \to Z$$

é continua e dal Lemma 1.9 segue che le applicazioni

$$\mu': \mu(E): C(X \times_S Y, Z) \times_S X \to C(Y, Z)$$

$$\mu'': \mu(\mu'): C(X \times_S Y, Z) \to C(X, C(Y, Z))$$

sono continue. É banale verificare che $\mu'' = \mu$ e quindi μ é continua. Ancora per il Lemma 1.15 la composizione $h = E(E \times_S 1)$ é continua, dove h porta $C(X, C(Y, Z)) \times_S X \times_S Y$ in $C(Y, Z) \times_S Y \times Z$. Per il Lemma 1.9 l'applicazione

$$\nu = \mu(h) : C(X, C(Y, Z)) \to C(X \times_S Y, Z)$$

é continua. Si verifica banalmente che $\nu=\mu^{-1}$ e quindi μ é un omeomorfismo. \Box

2 Sollevamento di rivestimenti

Sia $p:\widetilde{X}\to X$ un rivestimento e sia

$$p_{\sharp}: C(Y, \widetilde{X}) \to C(Y, X)$$

l'applicazione definita come $p_{\sharp}(\widetilde{f}) = p \circ \widetilde{f}$. Ci si propone di verificare le condizioni sotto le quali l'applicazione p_{\sharp} é un rivestimento. In generale la risposta é negativa dato che non sempre p_{\sharp} é suriettiva. Per esempio, nel caso in cui X = Y sia uno spazio topologico che ammette un rivestimento contraibile $\widetilde{X} \stackrel{p}{\to} X$, si ha che l'identitá 1_X ammette controimmagine tramite p_{\sharp} se e solo se X é contraibile (per il Teorema 1.7). Anche nel caso in cui sia suriettiva, peró, la tesi non é verificata come dimostra il seguente

Esempio 2.1. Consideriamo $X = \mathbb{S}^1$, $Y = \mathbb{N}$ e p = e il rivestimento universale di \mathbb{S}^1 . Si ha

$$e_{\sharp}: C(\mathbb{N}, \mathbb{R}) \cong \mathbb{R}^{\mathbb{N}} \to C(\mathbb{N}, \mathbb{S}^1) \cong (\mathbb{S}^1)^{\mathbb{N}}.$$

 e_{\sharp} é suriettiva ma non é un rivestimento in quanto ogni sottoinsieme aperto di $(\mathbb{S}^1)^{\mathbb{N}}$ contiene un fattore \mathbb{S}^1 che non puó essere uniformemente rivestito da e_{\sharp} .

Diremo che Y solleva i rivestimenti se p_{\sharp} é un rivestimento per ogni p. Se p_{\sharp} é un rivestimento per un certo rivestimento p diremo che Y solleva p.

2.1 Prodotti e coprodotti

Teorema 2.1 (sollevamento di prodotti). Se Y e Y' sono entrambi di Hausdorff, uno di essi é localmente compatto e se entrambi sollevano i rivestimenti, allora anche il loro prodotto solleva i rivestimenti.

DIMOSTRAZIONE: Assumiamo che Y' sia localmente compatto di Hausdorff e quindi l'applicazione

$$C(Y \times Y', Z) \xrightarrow{\Gamma} C(Y, C(Y', Z))$$

é un omeomorfismo. Se $p:\widetilde{X}\to X$ é un rivestimento allora si puó considerare il seguente diagramma commutativo:

$$C(Y \times Y', \widetilde{X}) \xrightarrow{\Gamma} C(Y, C(Y', \widetilde{X}))$$

$$\downarrow^{p_{\sharp}} \qquad \qquad \downarrow^{p_{\sharp\sharp}}$$

$$C(Y \times Y', X) \xrightarrow{\Gamma} C(Y, C(Y', X))$$

Dato che Y' solleva i rivestimenti, l'applicazione

$$p_{\sharp}: C(Y', \widetilde{X}) \to C(Y', X)$$

é un rivestimento, e dato che Y solleva i rivestimenti, l'applicazione $p_{\sharp\sharp}$ é un rivestimento. Ne segue che

$$p_{\sharp}: C(Y \times Y', \widetilde{X}) \to C(Y \times Y', X)$$

é un rivestimento. Un ragionamento simile puó essere fatto partendo dall'assunzione che Y sia localmente compatto di Hausdorff.

Sia $Y=\bigsqcup_{i=1}^n Y_i$ il coprodotto di spazi topologici. Esiste un morfismo naturale φ che rende il seguente diagramma

commutativo. Le restrizioni $C(Y,X) \xrightarrow{\rho^i} C(Y_i,X)$ sono indotte dalle inclusioni $Y_i \hookrightarrow Y$. Per il Teorema 1.9, dato che ogni sottoinsieme compatto di Y é unione di un numero finito di sottoinsiemi compatti $K_i \subseteq Y_i$, la topologia di C(Y,X) coincide con la topologia indotta dalle restrizioni ρ_i , e perció φ^{-1} é continua. Se φ é un omeomorfismo allora vale il seguente

Teorema 2.2 (sollevamento di coprodotti). Se per ogni i, Y_i solleva p, allora $Y = \bigsqcup_{i=1}^n Y_i$ solleva p e p_{\sharp} é essenzialmente il prodotto di rivestimenti $\prod_{i=1}^n p_{\sharp i}$, dove $p_{\sharp i}$ corrisponde a Y_i .

Teorema 2.3. Se lo spazio topologico Y é il coprodotto delle sue componenti connesse e solleva il rivestimento universale e di \mathbb{S}^1 , allora Y ha un numero finito di componenti.

DIMOSTRAZIONE: Indichiamo con Y^i le componenti connesse di Y. Esse sono per ipotesi sottoinsiemi contemporaneamente aperti e chiusi di Y, quindi ogni sottoinsieme compatto di Y é unione di un numero finito di sottoinsiemi compatti $K^i \subseteq Y^i$. Quindi, per il Teorema 1.9, la topologia di C(Y,X) coincide con la topologia indotta dalle restrizioni $\rho^i: C(Y,X) \to C(Y^i,X)$. Il morfismo naturale φ che rende commutativo il seguente diagramma

é una bigezione continua e, dato che la topologia di C(Y,X) é la topologia indotta dalle restrizioni ρ^i , la sua inversa é continua e quindi é un omeomorfismo. Supponiamo per assurdo che Y abbia un numero infinito di componenti. Il diagramma commutativo

$$C(Y,\mathbb{R}) \xrightarrow{\tilde{\varphi}} \prod_{i} C(Y^{i},\mathbb{R})$$

$$\downarrow^{e_{\sharp}} \qquad \qquad \downarrow^{\prod_{i} e_{\sharp}^{i}}$$

$$C(Y,\mathbb{S}^{1}) \xrightarrow{\varphi} \prod_{i} C(Y^{i},\mathbb{S}^{1})$$

implica che $\prod_i e^i_\sharp$ é un rivestimento. Sia G un aperto banalizzante di $(g_i)_i \in \prod_i C(Y^i, \mathbb{S}^1)$. Se $(\tilde{g}_i)_i \in (\prod_i e^i_\sharp)^{-1}((g_i)_i)$, allora esiste un sottoinsieme aperto \tilde{G} contenente $(\tilde{g}_i)_i$ che si proietta omeomorficamente su G. \tilde{G} contiene un fattore $C(Y^{i_0}, \mathbb{R}) \times \prod_{i \neq i_0} \tilde{g}_i$ e $e^{i_0}_\sharp$ porta omeomorficamente $C(Y^{i_0}, \mathbb{R})$ su $C(Y^{i_0}, \mathbb{S}^1)$. La restrizione di $e^{i_0}_\sharp$ a \mathbb{R}) visto come sottoinsieme di $C(Y^{i_0}, \mathbb{R})$ e questo é assurdo.

3 Sollevamenti di aperti banalizzanti

Definizione 3.1. Diremo che lo spazio topologico Y solleva gli aperti banalizzanti ripetto a p se, fissato un punto $y \in Y$, per ogni coppia di sottoinsiemi aperti $\tilde{U} \subseteq \tilde{X}$ e $U \subseteq X$ tali che \tilde{U} viene portato omemorficamente su U

da p, l'insieme $C_{y,\tilde{U}}(Y,\tilde{X}) \stackrel{not}{=} C_{y,\tilde{U}}$ si proietta omemorficamente sull'insieme $C_{y,U}(Y,X) \stackrel{not}{=} C_{y,U}$ tramite p_{\sharp} dove

$$C_{y,U} = \{ f \in C(Y,X) : f(y) \in U \}.$$

Gli insiemi $C_{y,U}$ sono aperti della topologia dei compatto-aperti e, se U genera un ricoprimento aperto di X, allora $C_{y,U}$ genera un ricoprimento aperto di C(Y,X). Diremo che Y solleva gli aperti banalizzanti rispetto a p per ogni rivestimento p.

Teorema 3.1. Sia $p: \tilde{X} \to X$ un rivestimento. Se Y solleva gli aperti banalizzanti rispetto a p, allora solleva p.

DIMOSTRAZIONE: Consideriamo un aperto $U \in X$ uniformemente rivestito da p. Se $p^{-1}(U) = \bigcup_i \tilde{U}_i$, dove gli aperti \tilde{U}_i sono disgiunti e ognuno di essi si proietta omeomorficamente su U tramite p, e poniamo $\tilde{C}_i = C_{y,\tilde{U}_i}$, allora gli aperti \tilde{C}_i sono disgiunti e

$$p_{\sharp}^{-1}C_{y,U} = \bigcup_{i} \tilde{C}_{i}$$

e quindi $C_{y,U}$ é un aperto uniformente rivestito da p. Dato che gli aperti $C_{y,U}$ ricoprono C(Y,X), al variare di U tra gli aperti banalizzanti di X, se ne deduce che p_{\sharp} é un rivestimento.

Per l'unicitá del sollevamento (Teorema 1.3) si ha il seguente

Lemma 3.1. Se p é un rivestimento e Y é connesso, allora l'applicazione $p_{\sharp}: C_{u,\tilde{U}} \to C_{y,U}$ é iniettiva.

Una conseguenza del Teorema 1.7 é la seguente

Proposizione 3.1. Se Y é localmente connesso per archi e semplicemente connesso, o contraibile, l'applicazione $p_{\sharp}: C_{u,\tilde{U}} \to C_{y,U}$ é biunivoca.

Nel caso di un rivestimento regolare vale il seguente

Teorema 3.2. Sia p un rivestimento regolare. Se Y é connesso per archi, Y o X localmente connesso per archi e $p_{\sharp}: C(Y, \widetilde{X}) \to C(Y, X)$ suriettiva, allora $p_{\sharp}: C_{y_0,\widetilde{U}} \to C_{y_0,U}$ é biunivoca.

DIMOSTRAZIONE: Dobbiamo dimostrare che $p_{\sharp}: C_{y_0,\widetilde{U}} \to C_{y_0,U}$ é suriettiva. Data $f \in C_{y_0,U}$, essa ammette per ipotesi un sollevamento $\widetilde{f}' \in C(Y,\widetilde{X})$. Possiamo assumere che U sia un aperto banalizzante e che \widetilde{U} sia uno degli aperti di \widetilde{X} che si proiettano omeomorficamente su U tramite p. Sia ora \widetilde{U}' un altro di questi aperti e precisamente quello che contiene il punto $\widetilde{x}'_0 = \widetilde{f}'(y_0)$. Si ha

$$f_*\pi_1(Y, y_0) \subseteq p_*\pi_1(\widetilde{X}, \widetilde{X}'_0).$$

Dato che il rivestimento è regolare e sapendo che cambiando punto base sulla stessa fibra di $x_0 = p(\tilde{x}_0')$ si ottiene una classe di coniugio di sottogruppi di $\pi_1(X, x_0)$, si ha

$$p_*\pi_1(\widetilde{X},\widetilde{x}_0')=p_*\pi_1(\widetilde{X},\widetilde{x}_0)$$

dove $\widetilde{x}_0 = p^{-1}(x_0) \cap \widetilde{U}$. Possiamo allora scrivere

$$f_*\pi_1(Y, y_0) \subseteq p_*\pi_1(\widetilde{X}, \widetilde{x}_0). \tag{4}$$

Consideriamo i due casi:

- Y é localmente connesso per archi. Applicando il Teorema 1.7 si ottiene un sollevamento \widetilde{f} di f tale che $\widetilde{f}(y_0) = \widetilde{x}_0$ e quindi $\widetilde{f} \in C_{y_0,\widetilde{U}}$.
- X é localmente connesso per archi. Possiamo assumere che U sia un aperto banalizzante connesso per archi. Sia $y \in Y$. Consideriamo un arco γ da y_0 a y e definiamo

$$\widetilde{f}(y) =: (\widetilde{f \circ \gamma})(1)$$

cioé il punto finale dell'unico sollevamento di $f \circ \gamma$ che inizia in \widetilde{x}_0 . Verichiamo che é ben definita, cioé preso un altro cammino ψ che congiunge y_0 e y si ha $\widetilde{f} \circ \gamma(1) = \widetilde{f} \circ \psi(1)$. Si ha che $\gamma * i(\psi)$ é un laccio chiuso di base y_0 e quindi $f(\gamma * i(\psi)) = f \circ \gamma * f(i(\psi))$ é un laccio chiuso di base x_0 . Consideriamo $[f \circ \gamma * f(i(\psi))] \in \pi_1(X, x_0)$, cioé come elemento del gruppo fondamentale. D'altra parte $[f \circ \gamma * f(i(\psi))] \in f_*\pi_1(Y, y_0)$ (infatti $\gamma * i(\psi) \in \pi_1(Y, y_0)$ e quindi $f \circ (\gamma * i(\psi)) \in f_*\pi_1(Y, y_0)$). Per ipotesi $f_*\pi_1(Y, y_0) \subset p_*\pi_1(\widetilde{X}, \widetilde{x_0})$ quindi esiste $[\alpha] \in \pi_1(\widetilde{X}, \widetilde{x_0})$ tale che

$$[f \circ \gamma * f(i(\psi))] = p_*([\alpha]) = [p \circ \alpha].$$

Perció

$$f\circ\gamma*f(i(\psi))=f\circ\gamma*i(f(\psi))\sim p\circ\alpha\Longrightarrow f\circ\gamma\sim p\circ\alpha*f\circ\psi.$$

Si ha $(f \circ \gamma)(0) = x_0$ e $(p \circ \alpha * f \circ \psi)(0) = (p \circ \alpha)(0) = p(\widetilde{x_0}) = x_0$, cioé $f \circ \gamma$ e $p \circ \alpha * f \circ \psi$ hanno lo stesso punto iniziale e quindi, per il teorema di sollevamento dei cammini, i loro sollevamenti hanno lo stesso punto finale:

$$\widetilde{f \circ \gamma}(1) = p \circ \widetilde{\alpha * f} \circ \psi(1) = \alpha * \widetilde{f \circ \psi}(1) = \widetilde{f} \circ \psi(1) = \widetilde{f}(y)$$

dove $\widetilde{f} \circ \psi$ é il sollevamento di $f \circ \psi$ che inizia in $\widetilde{x_0}$. Quindi \widetilde{f} é ben definita. Per dimostrare che \widetilde{f} é continua, consideriamo y_0 e $\widetilde{f}(y_0) = \widetilde{x_0}$. Dobbiamo dimostrare che dato \widetilde{U} contenente $\widetilde{x_0}$, allora $V = \widetilde{f}^{-1}(\widetilde{U})$ é un aperto contenente y_0 . Sappiamo che \widetilde{f}' é continua quindi $V' = (\widetilde{f}')^{-1}(\widetilde{U}')$ é un intorno aperto di y_0 . Basterá quindi dimostrare che $V \subseteq V'$.

Dato che \widetilde{U}' é connesso per archi, preso $y \in V'$ esiste un arco $\widetilde{\varphi}'$ che collega \widetilde{x}'_0 e $\widetilde{f}'(y)$ completamente contenuto in \widetilde{U}' . Proiettando sull'aperto U tramite p otteniamo un arco φ che collega x_0 e f(y) contenuto nell'aperto banalizzante U. Sia $\widetilde{\gamma}$ il sollevamento di φ con punto iniziale \widetilde{x}_0 . D'altra parte p ristretto a \widetilde{U} é un omeomorfismo quindi un sollevamento di φ é $p_{|\widetilde{U}}^{-1} \circ \varphi$. Per il Teorema 1.3 i due sollevamenti devono quindi coincidere e dato che, per definizione, si ha $\widetilde{f}(y) = \widetilde{\gamma}(1)$, ne segue che $\widetilde{f}(y) \in \widetilde{U}$ e quindi $y \in V$.

Grazie a questo teorema si ha il seguente

Corollario 3.1. Se p é un rivestimento regolare, Y é di Hausdorff e connesso per archi e se Y o X é localmente connesso per archi allora Y solleva p se e solo se solleva gli aperti banalizzanti rispetto a p.

DIMOSTRAZIONE: La condizione necessaria segue dal Teorema 3.1. Per dimostrare la condizione sufficiente supponiamo che Y sollevi p. Per il teorema precedente (Teorema 3.2) l'applicazione $p_{\sharp}: C_{y_0, \widetilde{U}} \to C_{y_0, U}$ é biunivoca. Per la Proposizione 1.10 essa é anche continua. Non resta che da dimostrare che $(p_{\sharp})^{-1}$ é continua. Sia $f \in C_{y_0, U}$ e $\widetilde{f} = p_{\sharp}^{-1}(f) \in C_{y_0, \widetilde{U}}$. Per ipotesi f é contenuta in un aperto $C \subseteq C_{y_0, U}$ uniformemente rivestito da p_{\sharp} , cioé esiste un aperto $\widetilde{C} \subseteq C(Y, \widetilde{X})$ contenente \widetilde{f} che si proietta omeomorficamente su C tramite p_{\sharp} . L'intersezione $\widetilde{C} \cap C_{y_0, \widetilde{U}} = \widetilde{C}'$ é perció un intorno aperto di \widetilde{f} che é omeomorfo all'aperto $C' = p_{\sharp}(\widetilde{C}')$. Quindi $p_{\sharp}^{-1}: C_{y_0, U} \to C_{y_0, \widetilde{U}}$ é continua in f. La tesi segue dall'arbitrarietá di f.

4. Ogni spazio topologico contraibile e di Hausdorff solleva gli aperti banalizzanti

4 Ogni spazio topologico contraibile e di Hausdorff solleva gli aperti banalizzanti

Teorema 4.1. Ogni spazio topologico contraibile e di Hausdorff solleva gli aperti banalizzanti e quindi solleva i rivestimenti.

DIMOSTRAZIONE: Sia $\widetilde{X} \stackrel{p}{\to} X$ un rivestimento e siano $\widetilde{U} \subseteq \widetilde{X}$ e $U \subseteq X$ due aperti omeomorfi. Per la Proposizione 3.1 si ha che $p_{\sharp}: C_{y_0,\widetilde{U}} \to C_{y_0,U}$ é continua e biunivoca. Dobbiamo dimostrare che p_{\sharp}^{-1} é continua e per fare questo dimostreremo che $p_{\sharp}^{-1} = \Gamma(\widetilde{E})$ dove Γ é l'applicazione esponenziale e \widetilde{E} é il sollevamento della mappa di valutazione

$$C_{y_0,U} \times_S Y \stackrel{E}{\to} X.$$

La mappa di valutazione E é continua per la Proposizione 1.15. Inoltre Y é contraibile quindi esiste un'omotopia

$$Y \times I \xrightarrow{F} Y$$

tra l'applicazione costante ϵ_{y_0} e l'applicazione identica $1_Y,$ cioé

$$F(y,0) = \epsilon_{y_0}(y) = y_0$$
 e $F(y,1) = 1_Y(y) = y$.

Consideriamo l'applicazione $(C_{y_0,U} \times_S Y) \times I \xrightarrow{G} X$ definita come

$$G((g,y),t) = (g \circ F)(y,t)$$

e dimostriamo che é un'omotopia tra $u:(g,y)\mapsto g(y_0)$ ed E :

- $G((g,y),0) = (g \circ F)(y,0) = g(y_0) = u(g,y);$
- $G((g,y),1) = (g \circ F)(y,1) = g(y) = E(g,y);$
- ullet G é continua. La dimostrazione viene fatta in quatto parti:
 - -Y é di Hausdorff quindi l'applicazione

$$C_{y_0,U} \to C(Y \times I, X)$$
$$g \mapsto g \circ F$$

é continua per la Proposizione 1.10.

4. Ogni spazio topologico contraibile e di Hausdorff solleva gli aperti banalizzanti

- L'applicazione

$$C_{y_0,U} \times_S Y \to C(Y \times I, X) \times_S Y$$

 $(g, y) \mapsto (g \circ F, y)$

é continua. Per la Proposizione 1.12 basta considerare le applicazioni

$$y \mapsto (g \circ F, y)$$
 e $C_{y_0,U} \times_S L \to C(Y \times I, X) \times_S L$

dove L é un sottoinsieme compatto di Y. La prima é continua per la Proposizione 1.11. Per la seconda, grazie alla Proposizione 1.14, si possono considerare i prodotti ordinari

$$C_{u_0,U} \times L$$
 e $C(Y \times I, X) \times L$

(infatti L é compatto e quindi localmente compatto).

- Per le Proposizioni 1.13 e 1.14 si hanno le identificazioni

$$(C(Y \times I, X) \times_S Y) \times I = (C(Y \times I, X) \times_S Y) \times_S I \cong$$

$$\cong (C(Y \times I, X) \times_S (Y \times_S I) = (C(Y \times I, X) \times_S (Y \times I).$$

– La mappa di valutazione da $C(Y \times I, X) \times_S (Y \times I)$ a X é continua per la Proposizione 1.15.

Quindi G é effettivamente un'omotopia tra u ed E. Dato che u prende valori in U, ponendo $\widetilde{u} = p^{-1} \circ u$, si ottiene un sollevamento

$$C_{u_0,U} \times_S Y \xrightarrow{\widetilde{u}} \widetilde{U}.$$

Per il Teorema di sollevamento delle omotopie (Teorema 1.5), G ammette un sollevamento

$$(C_{y_0,U} \times_S Y) \times I \xrightarrow{\widetilde{G}} \widetilde{X}$$

tale che $\widetilde{G}((\cdot,\cdot),0) = \widetilde{u}$.

Si ha che $\alpha_g = G((g, y_0), \cdot)$ é un laccio basato in $g(y_0)$ (infatti $G((g, y_0), 0) = G((g, y_0), 1) = g(y_0)$) e l'applicazione

$$H(s,t) = (g \circ F)(F(y_0,s),t)$$

é un'omotopia tra $\epsilon_{g(y_0)}$ e α_g . Dato che il laccio α_g é omotopo al laccio costante, ammette un sollevamento e, per il Teorema 1.3 (unicitá del sollevamento), si ha

$$\widetilde{G}((q, y_0), 1) = \widetilde{G}((q, y_0), 0) = \widetilde{u}(q, y_0) \in \widetilde{U}.$$

4. Ogni spazio topologico contraibile e di Hausdorff solleva gli aperti banalizzanti

L'applicazione $\widetilde{E}=\widetilde{G}((\cdot,\cdot),1)\in C(C_{y_0,U}\times_SY,\widetilde{X})$ é un sollevamento di E tale che $\widetilde{E}(g,y_0)\in \widetilde{U}$. Se consideriamo l'applicazione

$$C(C_{y_0,U} \times_S Y, \widetilde{X}) \xrightarrow{\Gamma} C(C_{y_0,U}, C(Y, \widetilde{X}))$$

si ha $\Gamma(\widetilde{E}) \in C(C_{y_0,U},C_{y_0,\widetilde{U}})$ e

$$(p_{\sharp} \circ \Gamma(\widetilde{E}))(g) = p \circ (\Gamma(\widetilde{E})(g)) = p \circ \widetilde{E}(g, \cdot) = E(g, \cdot) = g,$$

cio
é $p_{\sharp}^{-1}=\Gamma(\widetilde{E})$ e, per la Proposizone 1.16, si ha che
 p_{\sharp}^{-1} é continua. \qed

Bibliografia

- [1] F. Apéry. Lifting Covering Maps. Topology and its Applications 114, 2001 (pagg. 295-310).
- [2] C. Kosniowski. Introduzione alla Topologia Algebrica. Zanichelli, 1988.
- [3] M. Manetti. Topologia. Springer, 2007.
- [4] W.S. Massey. Algebraic Topology: An introduction. Springer-Verlag, 1977.
- [5] J. R. Munkres. *Elements of Algebraic Topology*. Addison-Wesley Publishing Company, Inc., 1984.
- [6] R. Brown. Ten Topologies for $X \times Y$. Quart. J. Math. Oxford (2) 14, 1963 (pagg. 303-319).
- [7] R. Brown. Function Spaces and Product Topologies. Quart. J. Math. Oxford (2) 15, 1964 (pagg. 238-250).