Experiment4. 对比多种方法求解结果

杨乐园 PB18010496

问题描述

1. 针对下述偏微分方程初值问题:

$$\begin{cases} u_t = u_x, & -\infty < x < +\infty, t > 0 \\ u(x,0) = \sin 2\pi x, & -\infty < x < +\infty \end{cases}$$
 Periodic boundary condition, $T=1$

该方程的精确解为 $u(x,t)=sin(2\pi(x+t))$, 对时空区域均匀剖分,其中 $x_j=j\cdot\Delta x, j=0,1,2,\ldots,J$, 空间步长 $\Delta x=\frac{1}{J}$, 令 $\lambda=\frac{\Delta t}{\Delta x}$ 。

2. 针对下述偏微分方程初值问题:

$$\left\{ egin{array}{ll} u_t = u_x, & -\infty < x < +\infty, t > 0 \ u(x,0) = \sin 2\pi x, & -\infty < x < +\infty \ ext{Periodic boundary condition,} & T = 1 \end{array}
ight.$$

该方程的精确解为 $u(x,t)=sin(2\pi(x+t))$, 对时空区域均匀剖分,其中 $x_j=j\cdot\Delta x, j=0,1,2,\ldots,J$, 空间步长 $\Delta x=\frac{1}{I}$, 令 $\lambda=\frac{\Delta t}{\Delta x}$ 。

 $ar{p}$ 2.2. 取 $\lambda=0.5, T=1.0$,分别取。 $ar{p}$ CTCS $ar{p}$ 式 $(v_{j})^{1}$ FTFS\$格式)计算其数值解,并与精确解画在同一张图上进行比较,并给出相应评论。

 \mathbf{p} 2.3. 取 $\lambda=0.5, J=80$,分别取T=0.2, 0.5。用FTBS格式计算其数值解,并与精确解画在同一张图上进行比较,并给出相应评论。

数值方法

 $i l v_i^n \approx u(x_i, t_n)$,根据不同格式的导数近似以及偏微分方程得到相应的格式:

- 1. FTCS: $v_i^{n+1} = v_i^n + \frac{\Delta t}{2\Delta x}(v_{i+1}^n v_{i-1}^n)$
- 2. Lax Friedrich: $v_j^{n+1} = (\frac{\Delta t}{2\Delta x} + \frac{1}{2})v_{j+1}^n + (-\frac{\Delta t}{2\Delta x} + \frac{1}{2})v_{j-1}^n$
- $3. \; Lax-Wendroff: \; v_{j}^{n+1}=(\tfrac{\Delta t}{2\Delta x}+\tfrac{\Delta t^{2}}{2\Delta x^{2}})v_{j+1}^{n}+(1-\tfrac{\Delta t^{2}}{\Delta x^{2}})v_{j}^{n}+(-\tfrac{\Delta t}{2\Delta x}+\tfrac{\Delta t^{2}}{2\Delta x^{2}})v_{j-1}^{n}$
- 4. CTCS: $v_j^{n+1} = v_j^{n-1} + \frac{\Delta t}{\Delta x}(v_{j+1}^n v_{j-1}^n)$
- 5. FTBS: $v_j^{n+1} = v_j^n + \frac{\Delta t}{\Delta x}(v_j^n v_{j-1}^n)$

其中定解条件为:初始条件: $v_j^0=sin2\pi x_j$,边界条件: $v_j^n=v_{j+J}^n$ 。

数值结果

1. \forall 1.1: $\lambda = 0.5, J = 80$, H = T = 0.1, 0.4, 0.8, 1.0.

通过观察误差随终止时间的增长,我们可以看到,误差逐渐增大;三种方法中,Lax-Wendroff的误差结果最小,其逼近效果更好一些。

2. $\[\] \mathbf{1.2} \]$ $\[\lambda = 0.5, T = 1.0, \]$ 并且 $\[J = 10, 20, 40, 80, 160, \]$ 格式为 $\[Lax - Wendroff, \]$

注:从上到下、从左到右分别为J=10,20,40,80,160的数值解与真解对比,红色为真解。

通过观察不同J时数值解与真解对比图,以及相应模最大误差随J变化图像,明显可以看出,模最大误差随空间离散程度J的增大而猪价减小。

3. 词 **2.1**:

 $T = 1.0, J = 80, \lambda = 0.5$,格式为CTCS。

 $T = 1.0, J = 80, \lambda = 1.5$,格式为CTCS。

输出如下:

问题2.1 T=1.0, J=80, lamuda=0.5: 模最大误差为: 0.00484657 T=1.0, J=80, lamuda=1.5: 模最大误差为: 167957

通过对比不同 λ 值时数值解与真解图像以及相应误差输出,可以看到, $\lambda=0.5$ 时数值逼近结果仍可以接受,误差较小;但 $\lambda=1.5$ 时则直接不稳定,误差爆炸!

4. \exists 2.2: $T = 1.0, \lambda = 0.5$, 分别取J = 10, 20, 40, 80, 160, 格式为CTCS。

误差输出结果:

```
问题2.2
T=1.0, J=80, lamuda=0.5:
J=10, 模最大误差为: 0.310785
J=20, 模最大误差为: 0.0778901
J=40, 模最大误差为: 0.0194072
J=80, 模最大误差为: 0.00484657
J=160, 模最大误差为: 0.0012113
```

通过观察不同J时数值解与真解对比图,以及相应模最大误差随J变化图像,明显可以看出,模最大误差随空间离散程度J的增大而猪价减小。

5. 问 **2.3**:

 $\lambda = 0.5, J = 80, T = 0.2$, 格式为FTBS。

 $\lambda = 0.5, J = 80, T = 0.5$, 格式为FTBS。

误差输出结果如下:

问题2.3 lamuda=0.5, J=80, T=0.2, FTBS结果: 模最大误差为: 0.0766887 lamuda=0.5, J=80, T=0.5, FTBS结果: 模最大误差为: 1.0564e+08

通过对比不同T值时数值解与真解图像以及相应误差输出,可以看到,T=0.2时数值逼近结果仍可以接受,误差较小;但T=0.5时则直接不稳定,误差爆炸!可见FTBS格式对于该方程不稳定,其不满足CFL条件。

代码

其中数值求解代码与绘图代码参见附件!