滑らかでない関数への微分のおしつけはできるか

1

命題 1.1. $\Omega\subset\mathbb{R}^n$ を開集合, $1\leq p\leq\infty$ とし, $u\in W^{1,p}(\Omega)$ とする.

$$\int_{\Omega} u \partial_i \varphi dx = -\int_{\Omega} \partial_i u \varphi dx \quad (\forall \varphi \in C_c^1(\Omega))$$

が成り立つ.

証明. $\varphi\in C^1_c(\Omega)$ をとる. 開集合 ω で, $\operatorname{supp}\varphi\subset\omega\in\Omega$ を満たすものをとる. 十分小さい ε_0 で, $0<\varepsilon<\varepsilon_0$ ならば

 $\operatorname{supp}\varphi_{\varepsilon}\subset\omega$

が成り立つようなものが存在する.

$$\int_{\Omega} u \partial_i \varphi_{\varepsilon} dx = -\int_{\Omega} (\partial_i u) \varphi_{\varepsilon} dx$$

が成り立つので、残りは、 φ_{ε} 、 $\partial_i \varphi_{\varepsilon}$ が ω 上で一様収束することに注意すると主張が従う.