Devoir maison 01

ATTENTION: ce travail est à faire pendant les vacances et doit être rendu sur PRONOTE pour le lundi 8 novembre au plus tard, même si nous n'avons cours que le mardi 9. Aucun délai ne sera accepté et entraînera la nullité de la note.

Principe

On considère le jeu suivant :

- N est un entier positif compris entre 10 et 25 (au choix ou au hasard, peu importe);
- on dispose N jetons identiques sur une table;
- deux joueurs A et B jouent à tour de rôle, A commence;
- chacun d'eux, lorsque c'est son tour, prélève soit 1, soit 2, soit 3 jetons;
- bien entendu, s'il reste 2 jetons on ne peut en prendre 3 et cætera;
- il est interdit de passer son tour;
- le joueur qui prélève le(s) dernier(s) jeton(s) a perdu.

Exemple

On décide de démarrer la partie avec 14 jetons.

- A commence par en prendre 1, il en reste 13;
- B en prend 3 il en reste 10;
- A en prend 1 il en reste 9;
- B en prend 2 il en reste 7;
- A en prend 2 il en reste 5;
- B en prend 3 il en reste 2;
- A en prend 1 il en reste 1;
- B en prend 1 et donc B a perdu.

Travail à faire

Premier programme

1. Au brouillon, écris toi-même au moins deux exemples de partie en choisissant N entre 10 et 25, pour bien comprendre comment le jeu se déroule.

Pour la suite de l'exercice on considère que A est l'ordinateur et B un être humain.

- **2.** Tu vas devoir écrire en PYTHON un programme dans lequel l'ordinateur et l'humain jouent l'un contre l'autre :
- l'ordinateur joue pour l'instant au hasard, mais en veillant bien à respecter les règles;
- l'être humain fait des propositions mais le programme vérifie qu'il respecte lui aussi les règles.

Tu devras utiliser les variables suivantes :

- n, de type int, qui représente le nombre de jetons restants;
- choix_ordi, de type int, qui représentera à chaque tour de jeu le nombre de jetons que l'ordinateur choisit de prendre;
- choix_humain, de type int, qui représentera à chaque tour de jeu le nombre de jetons que l'humain choisit de prendre;
- gagnant, de type str, qui vaudra "humain" ou "ordi" à la fin de la partie (et que l'on affichera).

Pour t'aider, voici une description du fonctionnement du programme :

- Le programme commence par choisir un nombre de jetons au hasard;
- ensuite tant qu'il reste des jetons
 - l'ordinateur joue;
 - s'il n'y a plus de jetons le gagnant est l'humain;
 - sinon, c'est à l'humain de jouer;
 - s'il ne reste plus de jetons, c'est l'ordinateur qui gagne.
- on affiche le gagnant.

Pour choisir un nombre au hasard entre **a** et **b inclus**, il faut d'abord inclure au début de ton programme :

from random import randint

Ensuite pour choisir un nombre entre 10 et 15, tu utilisera randint (10, 25).

Comment taper mon programme Python?

- 1. Tu peux utiliser des éditeurs en ligne : https://www.onlinegdb.com/online_python_compiler est très bien fait, tu peux taper ton code et l'exécuter.

 Une fois le code terminé, tu le copieras (CTRL) et le colleras (CTRL) + C) dans
 - un fichier texte nommé **prog1.txt**.
 - Si tu sais le faire, tu peux le nommer prog1.py mais ce n'est pas obligé.
- 2. Tu peux aussi installer EDUPYTHON, qui est très simple à prendre en main et qui se trouve à cette adresse : https://edupython.tuxfamily.org/

Tu déposeras le fichier sur PRONOTE.

Deuxième programme

Pose-toi les questions suivantes et réponds-y :

Quand il reste 4 jetons, combien faut-il en prendre pour être sûr de gagner? De même pour 3 jetons. De même pour 2 jetons.

Modifie ton premier programme pour que l'ordinateur joue mieux en fin de partie.

Tu l'enregistreras dans un fichier nommé **prog2.txt** ou **prog2.py** et tu déposeras sur PRONOTE.

Troisième programme

- 1. Donner les valeurs de **n** pour lesquelles A est sûr de gagner en un coup (c'est-à-dire laisser un seul jeton à B).
- 2. Donner les valeurs de n pour lesquelles A est sûr de gagner en deux coups, c'est-à-dire : A joue, B joue, A joue et B a obligatoirement perdu (se ramener à la question précédente).
- 3. En extrapolant, quel est l'ensemble \mathcal{E} des valeurs de départ de N (plus nécessairement compris entre 10 et 25) pour lesquelles A est sûr de gagner (on ne demande pas de preuve)?
- 4. Quand A est sûr de gagner, quelle est la stratégie gagnante?
- 5. En déduire un troisième programme qui, si $N \in \mathcal{E}$, fait en sorte que A gagne. Tu le nommeras prog3.txt et tu le déposeras sur pronote.