March 14, 2022 (Due: 08:00 March 21, 2022)

- 1. Interpolate the function f(x) = |x| over [-1, 1] using polynomials. Use equispaced nodes and Chebyshev nodes and plot the results. What do you observe?
- **2.** Let $f: \mathbb{R} \to \mathbb{R}$ be a sufficiently smooth function. Show that

$$\lim_{(x_1,\dots,x_k)\to(x_*,\dots,x_*)} f[x_1,x_2,\dots,x_k] = \frac{f^{(k-1)}(x_*)}{(k-1)!}$$

for any $x_* \in \mathbb{R}$.

- **3.** Try to simplify Newton's interpolation polynomial for equally spaced interpolation nodes $x_1 < x_2 < \cdots < x_n$ (with $x_i = x_1 + (i-1)h$).
- 4. Approximate the sine function over the closed interval $[0, 2\pi]$ using piecewise cubic Hermite interpolation, and visualize your result. You are recommended to partition the interval with n equally spaced interpolation nodes for n = 2, 3, 5, 9.
- 5. (optional) This exercise is about an atypical approach for two-dimensional interpolation.

Interpolating a data set $\{(x_i, y_i, z_i)\}_{i=1}^n \subset \mathbb{R}^3$ can be understood as interpolating $\{(x_i + \mathrm{i} y_i, z_i)\}_{i=1}^n \subset \mathbb{C} \times \mathbb{R}$, where the interpolation nodes $x_i + \mathrm{i} y_i$'s are complex numbers. The polynomial interpolation techniques we have learned from this course theoretically carry over to complex inputs, while the resulting interpolation polynomial is in general complex-valued. Nevertheless, we can take the real part of the output.

Use this approach to interpolate the following data set over the unit disk and visualize the result.

x_i	y_i	z_i
1.00000	0.00000	-1.0000
0.80902	0.58779	-2.6807
0.30902	0.95106	5.6161
-0.30902	0.95106	5.6161
-0.80902	0.58779	-2.6807
-1.00000	0.00000	-1.0000
-0.80902	-0.58779	-2.6807
-0.30902	-0.95106	5.6161
0.30902	-0.95106	5.6161
0.80902	-0.58779	-2.6807

(If you use MATLAB/Octave, the functions imagesc and colorbar are useful for visualizing a bivariate function.)