

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE COORDENADORIA ESPECIAL DE FÍSICA, QUÍMICA E MATEMÁTICA

PLANO DE ENSINO

SEMESTRE 2024.1

I. IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS TEÓRICAS PRÁTICAS		TOTAL DE HORAS-AULA SEMESTRAIS
FQM7105	Cálculo III	04	-	72

HORÁRIO		MÓDULO
TURMAS TEÓRICAS	TURMAS PRÁTICAS	Presencial
04655 – 2.1420.2 - SL304A	-	
4.1420.2 - SL304A		

II. PROFESSOR MINISTRANTE

Mauricio Girardi

III. PRÉ-REQU	ISITOS
CÓDIGO	NOME DA DISCIPLINA
FQM7102	Cálculo II

IV. CURSOS PARA OS QUAIS A DISCIPLINA É OFERECIDA

Graduação em Engenharia de Computação

V. JUSTIFICATIVA

Esta disciplina justifica-se pela contribuição na formação básica de egressos da área de ciências naturais e tecnológicas. Ela fornece parte do ferramental matemático necessário para a descrição e modelagem de fenômenos físicos e problemas em engenharia. O conteúdo compreendido no cálculo vetorial e em equações diferenciais fornece subsídios para resolução de inúmeros problemas práticos em áreas tão distintas como dinâmica de partículas, eletromagnetismo e mecânica do fluídos.

VI. EMENTA

Funções vetoriais. Derivadas direcionais e o vetor gradiente. Cálculo vetorial: Integrais de linha, teorema de Green, rotacional e divergente, integrais de superfície, teorema de Stokes e de Gauss. Sequências. Séries numéricas. Séries de potências. Séries de Taylor.

VII. OBJETIVOS

Objetivos Gerais:

- Capacitar o aluno nos temas relativos ao Cálculo Vetorial
- Desenvolver no aluno a capacidade de dedução, raciocínio lógico e organizado bem como de formulação e interpretação de situações matemáticas
- Capacitar o graduando na aplicação das ferramentas matemáticas em problemas de Física e Engenharia.

Objetivos Específicos:

- Introduzir os conceitos de cálculo vetorial.
- Identificar o cálculo vetorial como ferramenta em problemas ligados à Física e Engenharia
- Resolver problemas envolvendo integrais de linha e superfície.

VIII. CONTEÚDO PROGRAMÁTICO

Definição de função vetorial; Operações com funções vetoriais; Curvas e representação paramétrica; Derivada; Curvas suaves; Orientação de uma curva; Comprimento de arco; Funções vetoriais de várias variáveis; Campos escalares e vetoriais; Derivada direcional de um campo escalar; Gradiente de um campo escalar; Divergências de um campo vetorial; Rotacional de um campo vetorial; Campos conservativos; Integrais de linha de campos escalares; Integrais de linha de campos vetoriais; Integrais curvilíneas independentes do caminho; Teorema de

Green; Representação de uma superfície; Representação paramétrica de uma superfície; Curvas coordenadas; Plano tangente e reta normal; Superfícies suaves e orientação; Área de uma superfície; Integral de superfície de um campo escalar; Centro de massa e momento de inércia; Integral de superfície de um campo vetorial; Teorema de Stokes; Teorema de Gauss; Definição de sequência; Sequências Monótonas e limitadas; Definição de Série; Conceito de somas parciais; Séries Infinitas de termos constantes; Teoremas sobre séries infinitas; Séries de termos positivos; Teste da integral; Séries Alternadas; Convergência Absoluta e condicional; Teste da razão, da raiz e da comparação; Séries de Potencias e raio de convergência; Derivação e integração de séries de potências; Séries de Taylor e McLaurin; Teorema de Taylor; Expansão em série de Taylor de algumas funções elementares; Aplicações da série de Taylor.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Serão ministradas aulas teóricas em que o professor expõe o assunto ilustrando-o com exemplos e exercícios.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento do aluno compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando reprovado o aluno com mais de 25% de faltas (Frequência Insuficiente - FI).
- •Serão realizadas três provas escritas individuais.
- •A média final (MF) será calculada como a média aritmética das três notas obtidas nas provas escritas.
- •As datas das provas poderão ser alteradas de acordo com as necessidades do curso e do andamento do cronograma.
- A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com Frequência Suficiente (FS) e média das notas de avaliações do semestre MF entre 3,0 e 6,0 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70, § 2°. A Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/Cun/1997).
- Ao aluno que não comparecer às avaliações terá atribuída nota 0 (zero) nas mesmas. (Art. 70 da Res. nº 17/CUn/97)

Observações:

Pedido de Nova Avaliação

- Pedido de Nova Avaliação em caso de perda por motivo de força maior Art. 74 da Res. nº 17/Cun/97 e Instrução normativa n. 001/CTS/ARA/2019: O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória.
- O pedido de nova avaliação deverá ser formalizado na Secretaria Integrada de Departamento.
- A Nova Avaliação será realizada no final do semestre letivo, após a terceira avaliação, em dia a ser combinado.

SEMANA	DATAS	ASSUNTO	
1 ^a	11/03-13/03	Definição de função vetorial; Operações com funções vetoriais; Curvas e representação paramétrica; Derivada; Curvas suaves; Orientação de uma curva;	
2ª	18/03-20/03	Comprimento de arco; Funções vetoriais de várias variáveis; Campos escalares e vetoriais; Derivada direcional de um campo escalar; Rotacional de um campo vetorial; Campos conservativos;	
3ª	25/03-27/03		
4ª	01/04- 03/04	Integrais de linha de campos escalares;Integrais de linha de campos vetoriais; Integrais curvilíneas independentes do caminho. Teorema de Green. Dia não letivo.	
5ª	08/04-10/04	Aula de exercícios. Prova 1.	
6ª	15/04-17/04	Representação paramétrica de uma superfície.	
7 ª	22/04-24/04	Curvas coordenadas; Plano tangente e reta normal;	
8ª	29/04- 01/05	Superfícies suaves e orientação; Área de uma superfície; Dia não letivo.	
9ª	06/05-08/05	Integral de superfície de um campo escalar;	
10 ^a	13/05-15/05	Integral de superfície de um campo vetorial.	
11 ^a	20/05-22/05	Teorema de Stokes; Teorema de Gauss;	
12ª	27/05-29/05	Aula de exercícios. Prova 2.	

13ª	03/06-05/06	Definição de sequência. Sequências Monótonas e limitadas.	
14ª	10/06-12/06	Definição de Série. Conceito de somas parciais. Séries Infinitas de termos constantes.	
14		Teoremas sobre séries infinitas. Séries de termos positivos.	
15ª	17/06-19/06	Convergência Absoluta e condicional. Teste da integral. Séries Alternadas. Teste da	
15		razão, da raiz e da comparação. Séries de Potencias e raio de convergência.	
16ª	24/06-26/06	Derivação e integração de séries de potências. Teorema de Taylor. Expansão em	
16		série de Taylor de algumas funções elementares. Aplicações da série de Taylor	
17 ^a	01/07-03/07	Aula de exercícios. Prova 3.	
18ª	08/07-10/07	Divulgação das médias. Prova de recuperação final;	

Atendimento aos alunos

Horários:08:00-10:00 Local: Sala 104 – Mato Alto

Feriados previstos para o semestre 2024/1:

DATA	
29/03	Sexta-feira Santa
30/03	Dia não letivo
03/04	Aniversário de Araranguá
21/04	Tiradentes
01/05	Dia do Trabalho
04/05	Padroeira de Araranguá
30/05	Corpus Christi
31/05	Dia não letivo
01/06	Dia não letivo

XIII. BIBLIOGRAFIA BÁSICA

- 1. FLEMMING, Diva Marilia; GONÇALVES, Mirian Buss;. Cálculo B: funções de várias variáveis, integrais múltiplas, integrais curvilíneas e de superfície. 6. ed. São Paulo (SP): Pearson, 2007. 448p.
- 2. STEWART James. Cálculo Volume 2. 6a edição São Paulo (SP): Thompson Pioneira. 2009, 688p
- 3. THOMAS. George. Cálculo Volume 2. 11a edição. São Paulo (SP): Pearson, 2009, 784p.
- 4. ANTON, Howard. Cálculo, um Novo Horizonte Volume 2. 6a edição. Porto Alegre(RS): Bookman, 2000, 578p

XIV. BIBLIOGRAFIA COMPLEMENTAR:

- 5. ÁVILA, Geraldo. Cálculo 3: Funções de várias variáveis. 7. ed. São Paulo: Livros Técnicos e Científicos, 2006. 240p.
- 6. PINTO, Diomara; MORGADO, Maria Candida Ferreira. Cálculo diferencial e integral de funções de várias variáveis. 3. ed. Rio de Janeiro: UFRJ, 2009. 348 p.
- 7. SIMMONS, George Finlay. Cálculo com Geometria Analítica Volume 1. 1ª edição. São Paulo (SP): McGraw-Hill, 1987, 829p.
- 8. LEITHOLD, Louis. O Cálculo com Geometria Analítica. 3ª edição. São Paulo (SP): Harbra, 1994, 788p. Vol. 2.
- 9. GUIDORIZZI, Hamilton Luiz. Um curso de cálculo. Volume 1 e 2. 5ª Edição. Rio de Janeiro: Livros Técnicos e Científicos, 2001. 580p
- 6. KREYSZIG, Erwin. Matemática superior para engenharia. 9.ed. Rio de Janeiro: Livros Técnicos e Científicos, 2009. 448p. Volume 1.

Mauricio Girardi	
Aprovado na Reunião do Colegiado do departamento em / /	
· — — —	Coordenação/Chefia