Рекомендательные системы в продажах # В интернет-магазине есть данные по пользовательским сессиям, каждая из которых содержит список # просмотренных товаров (id) и список купленных товаров. # Необходимо на основе этих данных создать рекомендательную систему, предлагающую пользователю # k - товаров на основе его просмотров import pandas as pd In [1]: import numpy as np with open('Data/Coursera/coursera_sessions_train.txt', 'r') as f: sess_train = f.read().splitlines() with open('Data/Coursera/coursera_sessions_test.txt', 'r') as f: sess_test = f.read().splitlines() # представленные данные: каждая строка - список просмотренных товаров (id) пользователем за одну сессию, а через ";" - купленный sess_train[8:12] Out[5]: ['71,72,73,74;', '76,77,78;', '84,85,86,87,88,89,84,90,91,92,93,86;86', '114,77,115,116,117,118,119,120,121,120,122,123,124;'] # Проект построен следующим образом # 1. Создаём матрицы частот просматриваемых и покупаемых товаров # (товар - кол-во просмотров и товар - кол-во покупок), сортируем м-цы по убыванию частот. # Т.о., получили м-цу популярности просмотров и м-цу популярности покупок # 2. Для текущей сессии просмотров [id_1 , id_2 ,..., id_n] делаем рекомендации # на k товаров из этого списка (k <= n), стоящие в m-це популярности ПРОСМОТРОВ выше оставшихся n-k просмотров # 3. Для текущей сессии просмотров $[id_1,id_2,...,id_n]$ делаем рекомендации # на k товаров из этого списка (k <= n), стоящие в m-це популярности ПОКУПОК выше оставшихся n - k просмотров # 4. - 6. Проверяем все то же самое на тестовой выборке (используя, разумеется, м-цы популярности тренировочной выборки) # В итоге, значения метрик для рекомендаций по покупкам ведут себя на тестовой выборке немного лучше, # при этом значения метрик для тестовой выборке очень близки к значениям метрик по тренировочной выборке # для рекомендаций по просмотрам. 1. На обучении постройте частоты появления id в просмотренных и в купленных In []: #(id может несколько раз появляться в просмотренных, все появления надо учитывать) # разделяем м-цу сессий на просмотренные id и купленные id In [3]: # для обучающей выборки sess_train_lp = [] for sess in sess_train: look_items, pur_items = sess.split(';') # применяем ф-цию int() ко всем id сессии look_items = list(map(int, look_items.split(','))) if len(pur_items) > 0: pur_items = list(map(int, pur_items.split(','))) else: pur_items = [] sess_train_lp.append([look_items, pur_items]) # для тестовой выборки sess_test_lp = [] for sess in sess_test: look_items, pur_items = sess.split(';') look_items = list(map(int, look_items.split(','))) if len(pur_items) > 0: pur_items = list(map(int, pur_items.split(','))) else: pur_items = [] sess_test_lp.append([look_items, pur_items]) sess_train_lp[8:12] In [10]: Out[10]: [[[71, 72, 73, 74], []], [[76, 77, 78], []], [[84, 85, 86, 87, 88, 89, 84, 90, 91, 92, 93, 86], [86]], [[114, 77, 115, 116, 117, 118, 119, 120, 121, 120, 122, 123, 124], []]] # ДЛЯ ПРОСМОТРЕННЫХ In [4]: # сначала все просмотренные id загоняем в список sess_train_lid = [] for i in range(len(sess_train_lp)): for id in sess_train_lp[i][0]: sess_train_lid.append(id) # теперь столбец уникальных id со счетчиком sess_train_l_cnt = np.transpose(np.unique(sess_train_lid, return_counts=True)) # структура столбца: i-й элемент является двумерной строкой [id, кол-во раз которое он встречается] In [22]: sess_train_l_cnt Out[22]: array([[6], 9], [102804, [102805, 1]], dtype=int64) [102806, # ДЛЯ КУПЛЕННЫХ # сначала все просмотренные id загоняем в список sess_train_pid = [] for i in range(len(sess_train_lp)): for id in sess_train_lp[i][1]: sess_train_pid.append(id) # теперь столбец уникальных id со счетчиком sess_train_p_cnt = np.transpose(np.unique(sess_train_pid, return_counts=True)) sess_train_p_cnt In [24]: Out[24]: array([[1], 1], [102417, [102462, [102646, 1]], dtype=int64) # Сортируем полученные столбцы по счетчику (запись по убыванию) # sess_train_l_cnt[:,1].argsort() - список индексов строк нашего двумерного массива по возрастанию значения счетчика # sess_train_l_cnt[sess_train_l_cnt[:,1].argsort()] - отсортированный в порядке возрастания счетчика массив # onepaция среза - list[<start>:<stop>:<step>], [::-1] - просто вернет список с конца до начала sess_train_l_cnt = sess_train_l_cnt[sess_train_l_cnt[:,1].argsort()][::-1] sess_train_p_cnt = sess_train_p_cnt[sess_train_p_cnt[:,1].argsort()][::-1] In [40]: # итоговая м-ца купленных товаров: id товара - сколько раз он был куплен sess_train_p_cnt Out[40]: array([[158, 14], 12], 204, 11], 73, [38189, 1], [38177, 1], 1]], dtype=int64) [5, 2. Алгоритм рекомендаций - сортировка просмотренных id по популярности (частота появления в просмотренных) # ф-ция расчета метрик 'Precision@k' и 'Recall@k' для k-рекомендаций In [7]: # 'reccomendations' - список 'k' рекомендуемых товаров для текущей сессии, в которой был совершен список покупок 'session' def prec_rec_metrics(session, reccomendations, k): purchase = 0 for ind in reccomendations: if ind in session: purchase += 1 precision = purchase / k recall = purchase / len(session) return(precision, recall) # столбцы купленных и просмотренных товаров sess_train_p = [row[1] for row in sess_train_lp] sess_train_l = [row[0] for row in sess_train_lp] %%time In [9]: # Считаем метрики 'Precision@k' и 'Recall@k' на обучающей выборке для k=1 и k=5prec_at_1_tr_l, rec_at_1_tr_l = [], [] prec_at_5_tr_l, rec_at_5_tr_l = [], [] k1, k5 = 1, 5for i, sess_p in enumerate(sess_train_p): # не обрабатываем сессии без покупок if sess_p == []: continue # просмотренные ід для сессии і sess_l = sess_train_l[i] $l_{ind_sess} = []$ for j in range(len(sess_1)): # выбираем индекс (!) столбца-счетчика встречаемости просмотренных ід, # элемент в котором соответствует значению текущего id сессии. l_ind_sess.append(np.where(sess_train_l_cnt[:,0] == sess_l[j])[0][0]) # список индексов м-цы-счетчика купленных товаров для купленных товаров из текущей сессии l_ind_sess_sorted = np.unique(l_ind_sess) # k1 рекомендаций num_of_recs_k1 = min(k1, len(sess_1)) if num_of_recs_k1 == 0: continue # берем первые Min(k1, кол-во id в текущей сессии) кол-во id из текущей сессии,# согласно сортировке по частоте просмотров по всей обучающей выборке recs_k1 = sess_train_l_cnt[l_ind_sess_sorted[:num_of_recs_k1],0] # расчет k1-метрик prec_1, rec_1 = prec_rec_metrics(sess_p, recs_k1, k1) prec_at_1_tr_l.append(prec_1) rec_at_1_tr_l.append(rec_1) # k5 рекомендаций num_of_recs_k5 = min(k5, len(sess_1)) if num of recs k5 == 0: continue recs_k5 = sess_train_l_cnt[l_ind_sess_sorted[:num_of_recs_k5],0] # расчет k5-метрик prec_5, rec_5 = prec_rec_metrics(sess_p, recs_k5, k5) prec_at_5_tr_l.append(prec_5) rec_at_5_tr_l.append(rec_5) Wall time: 8.23 s avg_prec_at_1_tr_l = np.mean(prec_at_1_tr_l) In [10]: avg_rec_at_1_tr_l = np.mean(rec_at_1_tr_l) avg_prec_at_5_tr_1 = np.mean(prec_at_5_tr_1) avg_rec_at_5_tr_l = np.mean(rec_at_5_tr_l) r1 = round(avg_rec_at_1_tr_1, 2) In [13]: p1 = round(avg_prec_at_1_tr_1, 2) r5 = round(avg_rec_at_5_tr_1, 2) p5 = round(avg_prec_at_5_tr_1, 2) In [24]: # будем заносить все результаты этого проекта в единый датафрейм 'metrics' metrics = pd.DataFrame({'precision':p1, 'recall': r1},index={'Train_look_k=1'}) metrics.loc['Train_look_k=5'] = [p5,r5] 3. Алгоритм рекомендаций - сортировка просмотренных id по покупаемости (частота появления в покупках) In [25]: %%time # Считаем метрики 'Precision@k' и 'Recall@k' на обучающей выборке для k=1 и k=5prec_at_1_tr_p, rec_at_1_tr_p = [], [] prec_at_5_tr_p, rec_at_5_tr_p = [], [] k1, k5 = 1, 5for i, sess_p in enumerate(sess_train_p): # не обрабатываем сессии без покупок if sess_p == []: continue # просмотренные id для сессии i sess_l = sess_train_l[i] l_ind_sess = [] for j in range(len(sess_l)): # выбираем индекс столбца-счетчика встречаемости просмотренных id, # элемент в котором соответствует значению текущего id сессии # здесь первый [0] выбирает первую строку в найденном однострочном элементе, # второй [0] выбирает первый элемент строки, являющимся как раз индексом if sess_l[j] not in sess_train_p_cnt[:,0]: continue l_ind_sess.append(np.where(sess_train_p_cnt[:,0] == sess_l[j])[0][0]) l_ind_sess_sorted = np.unique(l_ind_sess) # к1 рекомендаций num_of_recs_k1 = min(k1, len(sess_1), len(l_ind_sess_sorted)) if num_of_recs_k1 == 0: continue # берем первые Min(k1, кол-во id в текущей сессии) кол-во id из текущей сессии,# согласно сортировке по частоте просмотров по всей обучающей выборке recs_k1 = sess_train_p_cnt[l_ind_sess_sorted[:num_of_recs_k1],0] # расчет k1-метрик prec_1, rec_1 = prec_rec_metrics(sess_p, recs_k1, k1) prec_at_1_tr_p.append(prec_1) rec_at_1_tr_p.append(rec_1) # k5 рекомендаций num_of_recs_k5 = min(k5, len(sess_1), len(l_ind_sess_sorted)) if num_of_recs_k5 == 0: continue recs_k5 = sess_train_p_cnt[l_ind_sess_sorted[:num_of_recs_k5],0] # расчет k5-метрик prec_5, rec_5 = prec_rec_metrics(sess_p, recs_k5, k5) prec_at_5_tr_p.append(prec_5) rec_at_5_tr_p.append(rec_5) Wall time: 1.74 s avg_prec_at_1_tr_p = np.mean(prec_at_1_tr_p) In [26]: avg_rec_at_1_tr_p = np.mean(rec_at_1_tr_p) avg_prec_at_5_tr_p = np.mean(prec_at_5_tr_p) avg_rec_at_5_tr_p = np.mean(rec_at_5_tr_p) r1 = round(avg_rec_at_1_tr_p, 2) p1 = round(avg_prec_at_1_tr_p, 2) r5 = round(avg_rec_at_5_tr_p, 2) p5 = round(avg_prec_at_5_tr_p, 2) metrics.loc['Train_purch_k=1'] = [p1,r1] In [27]: metrics.loc['Train_purch_k=5'] = [p5,r5] 4. На тестовой выборке построим частоты появления id в просмотренных и в купленных # Формируем столбец просмотренных товаров за все тренировочные сессии In [53]: sess_test_l = [row[0] for row in sess_test_lp] sess_test_l_np = [] for sess in sess_test_1: for idd in sess: sess_test_l_np.append(idd) sess_test_l_np = np.array(sess_test_l_np) # Формируем столбец купленных товаров за все тренировочные сессии sess_test_p = [row[1] for row in sess_test_lp] sess_test_p_np = [] for sess in sess_test_p: for idd in sess: sess_test_p_np.append(idd) sess_test_p_np = np.array(sess_test_p_np) 5. Алгоритм рекомендаций на тестовой выборке - сортировка просмотренных ід по популярности (частота появления в просмотренных) %%time In [57]: # метрики по тестовым данным prec_at_1_tst_l, rec_at_1_tst_l = [], [] prec_at_5_tst_l, rec_at_5_tst_l = [], [] k1, k5 = 1, 5for i, sess_p in enumerate(sess_test_p): # пропускаем сессии без покупок if sess_p == []: continue # проходимся по id из просмотренных товаров sess_l = sess_test_l[i] # выбираем индекс столбца-счетчика встречаемости просмотренных ід в тренировочной приоритетной матрице l_ind_sess = [] $new_ids = []$ for j in range(len(sess_1)): if sess_l[j] not in sess_train_l_cnt[:,0]: new_ids.append(sess_l[j]) continue l_ind_sess.append(np.where(sess_train_l_cnt[:,0] == sess_l[j])[0][0]) l_ind_sess_sorted = np.unique(l_ind_sess) # к1 рекомендации num_of_recs_k1 = min(k1, len(sess_1)) if num_of_recs_k1 == 0: continue # добавляем это условие, поскольку все просмотренные в сессии товары могут не быть в тренировочной м-це if l_ind_sess != []: recs_k1 = sess_train_l_cnt[l_ind_sess_sorted[:num_of_recs_k1],0] else: $recs_k1 = []$ # здесь объединяем отсортированные 'в порядке убывания приоритета приоритетной м-цы тренировочных данных' # рекомендуемые товары и новые товары, не присутствующие ранее в приоритетной м-це тренировочных данных recs_k1 = np.concatenate((np.array(recs_k1, dtype='int64'), np.unique(np.array(new_ids, dtype='int64'))))[:num_of_recs_k1] # k1 метрики prec_1, rec_1 = prec_rec_metrics(sess_p, recs_k1, k1) prec_at_1_tst_l.append(prec_1) rec_at_1_tst_l.append(rec_1) # k5 рекомендации num_of_recs_k5 = min(k5, len(sess_1)) if num_of_recs_k5 == 0: continue if l_ind_sess != []: recs_k5 = sess_train_l_cnt[l_ind_sess_sorted[:num_of_recs_k5],0] else: $recs_k5 = []$ recs_k5 = np.concatenate((np.array(recs_k5, dtype='int64'), np.unique(np.array(new_ids, dtype='int64'))))[:num_of_recs_k5] # k5 метрики prec_5, rec_5 = prec_rec_metrics(sess_p, recs_k5, k5) prec_at_5_tst_l.append(prec_5) rec_at_5_tst_l.append(rec_5) Wall time: 12.9 s avg_prec_at_1_tst_l = np.mean(prec_at_1_tst_l) In [59]: avg_rec_at_1_tst_l = np.mean(rec_at_1_tst_l) avg_prec_at_5_tst_1 = np.mean(prec_at_5_tst_1) avg_rec_at_5_tst_1 = np.mean(rec_at_5_tst_1) r1 = round(avg_rec_at_1_tst_1, 2) p1 = round(avg_prec_at_1_tst_l, 2) r5 = round(avg_rec_at_5_tst_1, 2) p5 = round(avg_prec_at_5_tst_1, 2) metrics.loc['Test_look_k=1'] = [p1,r1] In [60]: metrics.loc['Test_look_k=5'] = [p5,r5] 6. Алгоритм рекомендаций на тестовой выборке - сортировка просмотренных іd по покупаемости (частота появления в покупках) In [84]: prec_at_1_tst_p, rec_at_1_tst_p = [], [] prec_at_5_tst_p, rec_at_5_tst_p = [], [] k1, k5 = 1, 5for i, sess_p in enumerate(sess_test_p): if sess_p == []: continue sess_l = sess_test_l[i] l_ind_sess = [] new_ids = [] for j in range(len(sess_1)): if sess_l[j] not in sess_train_p_cnt[:,0]: new_ids.append(sess_l[j]) continue l_ind_sess.append(np.where(sess_train_p_cnt[:,0] == sess_l[j])[0][0]) l_ind_sess_sorted = np.unique(l_ind_sess) # k1 recommendations num_of_recs_k1 = min(k1, len(sess_l)) if num_of_recs_k1 == 0: continue if l_ind_sess != []: recs_k1 = sess_train_p_cnt[l_ind_sess_sorted[:num_of_recs_k1],0] else: $recs_k1 = []$ # химичим тут recs_k1 = np.concatenate((np.array(recs_k1, dtype='int64'), np.unique(np.array(new_ids, dtype='int64'))))[:num_of_recs_k1] # k1 метрики prec_1, rec_1 = prec_rec_metrics(sess_p, recs_k1, k1) prec_at_1_tst_p.append(prec_1) rec_at_1_tst_p.append(rec_1) # k5 рекомендации num_of_recs_k5 = min(k5, len(sess_1)) if num_of_recs_k5 == 0: continue if l_ind_sess != []: recs_k5 = sess_train_p_cnt[l_ind_sess_sorted[:num_of_recs_k5],0] else: $recs_k5 = []$ recs_k5 = np.concatenate((np.array(recs_k5, dtype='int64'), np.unique(np.array(new_ids, dtype='int64'))))[:num_of_recs_k5] # k5 метрики prec_5, rec_5 = prec_rec_metrics(sess_p, recs_k5, k5) prec_at_5_tst_p.append(prec_5) rec_at_5_tst_p.append(rec_5) avg_prec_at_1_tst_p = np.mean(prec_at_1_tst_p) avg_rec_at_1_tst_p = np.mean(rec_at_1_tst_p) avg_prec_at_5_tst_p = np.mean(prec_at_5_tst_p) avg_rec_at_5_tst_p = np.mean(rec_at_5_tst_p) r1 = round(avg_rec_at_1_tst_p, 2) p1 = round(avg_prec_at_1_tst_p, 2) r5 = round(avg_rec_at_5_tst_p, 2) p5 = round(avg_prec_at_5_tst_p, 2) Answer 4: 0.42 0.49 0.80 0.20 metrics.loc['Test_purch_k=1'] = [p1,r1] In [86]: metrics.loc['Test_purch_k=5'] = [p5,r5] 7. Анализ результатов metrics Out[87]: precision recall Train_look_k=1 0.51 0.44 0.21 0.83 Train_look_k=5 Train_purch_k=1 0.79 0.68 0.25 0.93 Train_purch_k=5 0.48 0.42 Test_look_k=1 Test_look_k=5 0.2 0.8 0.49 0.42 Test_purch_k=1 Test_purch_k=5 0.20 0.80 metrics.loc[['Train_look_k=1','Test_purch_k=1']] Out[93]: precision recall Train_look_k=1 0.51 0.44 Test_purch_k=1 0.49 0.42 metrics.loc[['Train_look_k=5','Test_purch_k=5']] precision recall Out[94]: Train_look_k=5 0.83 0.21 Test_purch_k=5 0.20 0.80 metrics.loc[['Train_look_k=1','Test_look_k=1']] Out[95]: precision recall Train_look_k=1 0.51 0.44 Test_look_k=1 0.48 0.42 metrics.loc[['Train_look_k=5','Test_look_k=5']] Out[96]: precision recall Train_look_k=5 0.21 0.83 Test_look_k=5 0.2 8.0 metrics.loc[['Train_purch_k=1','Test_purch_k=1']] Out[97]: precision recall Train_purch_k=1 0.79 0.68 Test_purch_k=1 0.49 0.42 metrics.loc[['Train_purch_k=5','Test_purch_k=5']] Out[98]: precision recall Train_purch_k=5 0.25 0.93 Test_purch_k=5 0.20 0.80