INSTITUTO TECNOLÓGICO DE AERONÁUTICA

Pedro Kuntz Puglia

ORBITAL MANEUVER OPTIMIZATION

Trabalho de Graduação 2025

Curso de Engenheria Aeroespacial

Pedro Kuntz Puglia

ORBITAL MANEUVER OPTIMIZATION

Orientador

Prof. Dr. Willer Gomes dos Santos (ITA)

Coorientador

Prof. Emilien Flayac (ISAE-SUPAERO)

ENGENHERIA AEROESPACIAL

São José dos Campos Instituto Tecnológico de Aeronáutica

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

Puglia, Pedro Kuntz Orbital Maneuver Optimization / Pedro Kuntz Puglia. São José dos Campos, 2025. 18f.

Trabalho de Graduação – Curso de Engenheria Aeroespacial
– Instituto Tecnológico de Aeronáutica, 2025. Orientador: Prof. Dr. Willer Gomes dos Santos. Coorientador: Prof. Emilien Flayac.

1. Optimization. 2. Control. 3. Orbital Mechanics. I. Instituto Tecnológico de Aeronáutica. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

PUGLIA, Pedro Kuntz. **Orbital Maneuver Optimization**. 2025. 18f. Iniciação Científica – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: Pedro Kuntz Puglia TITULO DO TRABALHO: Orbital Maneuver Optimization. TIPO DO TRABALHO/ANO: Trabalho de Graduação / 2025

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta iniciação científica e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta iniciação científica pode ser reproduzida sem a autorização do autor.

Pedro Kuntz Puglia Rua H8C, Ap. 303 12.228- 462 – São José dos Campos- SP

ORBITAL MANEUVER OPTIMIZATION

Pedro Kuntz Puglia					
Autor					
114001					
Willer Gomes dos Santos (ITA)					
Orientador					
English Flance (ICAE CUDAEDO)					
Emilien Flayac (ISAE-SUPAERO)					
Coorientador					

A todos que algum dia contribuíram ou contribuirão à ciência brasileira

Agradecimentos

Agradeço ao professor Leonardo Gouvêa por, certo dia falando sobre qualquer coisa, levantar a possibilidade deste trabalho, e por auxiliar no que é necessário auxílio e dar liberdade no que é necessário liberdade.

Agradeço também ao João Vitor Baldo e Arthur Zoppi, que acompanharam todas as minhas impressões 3D no Laboratório Aberto do CCM-ITA, sempre dando dicas e sugestões que iam além do esperado deles. Obrigado por transformar impressões problemáticas e fracassadas em momentos de descontração e aprendizado sobre mundo real.

Agradeço por fim a toda a equipe do Laboratório Feng, que foi recrutada por acaso no meio do caminho para minha iniciação científica. Agradeço ao Prof. Dr. Tiago Barbosa, que permitiu o uso do laboratório, e ao professor André Fernando de Castro, que certo dia por acaso resolveu (quase) todos os problemas experimentais do meu trabalho comigo. Agradeço especialmente aos técnicos Newton, que me auxiliou com toda a montagem mecânica do experimento, e Wilson, que me acompanhou pelas várias horas de montagem e calibração.

Por fim agradeço à minha família, que sempre me incentivou, e aos meus amigos de ITA e H8, que inúmeras vezes me ouviram falar detalhadamente sobre os problemas deste trabalho.

Resumo

Este trabalho apresenta o processo de desenvolvimento e caracterização de um sistema de vetorização de empuxo com motor a gás frio. O motor tem como requisito empuxo de 2 N e 5 bar de pressão de câmara. O método de vetorização escolhido para teste foi o de *jet vane*. O motor construído apresentou divergências pequenas com os requisitos, tendo um impulso específico de 46,6 s. Este motor foi montado em um mecanismo de controle da lâmina defletora e esta montagem foi acoplada a uma balança de três componentes para caracterização das forças e momentos gerados. Como resultado final, obtiveram-se as derivadas de controle de força lateral e momento. Por fim, apresentaram-se os problemas metodológicos encontrados e *trade-offs* de engenharia identificados para o sistema.

Abstract

This work presents the development and characterization process of a cold gas thruster vectorization system. The motor is required to have a thrust of 2 N and a chamber pressure of 5 bar. The chosen vectorization method for testing was the jet vane. The constructed motor had slight deviations from the requirements, with a specific impulse of 46.6 s. This motor was mounted on a control mechanism of the deflecting blade, and this assembly was coupled to a three-component scale for force and moment characterization. As a final result, the control derivatives for lateral force and moment were obtained. Finally, the methodological issues encountered and engineering trade-offs identified for the system were presented.

Lista de Figuras

Lista de Tabelas

Lista de Símbolos

F

 M_{δ}

F	Empuxo propulsivo
\dot{m}	Vazão mássica
v_e	Velocidade de exaustão média
p_c	Pressão de câmara
p_e	Pressão de saída média
p_{amb}	Pressão ambiente
A_c	Área da seção transversal da câmara
A_e	Área da seção transversal da saída da tubeira
A_t	Área da seção transversal da garganta
ε	Razão de expansão
I_{sp}	Impulso específico
C_F	Coeficiente de empuxo
C^*	Velocidade característica
F_x	Força horizontal, transversal ao motor foguete
F_y	Força vertical, na direção do empuxo propulsivo
M	Torque resultante
δ	Deflexão da lâmina (jet vane)
$F_{x\delta}$	Derivada da força lateral em relação à deflexão da lâmina

Derivada de momento em relação à deflexão da lâmina

Sumário

1	INTRODUÇÃO	13
	1.1 Contexto histórico e motivação	13
2	METODOLOGIA	14
3	RESULTADOS E DISCUSSÃO	15
4	CONCLUSÃO	16
R	EFERÊNCIAS	17
	PÊNDICE A – HISTÓRICO DE DESENVOLVIMENTO DO MOTOR	18

1 INTRODUÇÃO

1.1 Contexto histórico e motivação

2 METODOLOGIA

3 RESULTADOS E DISCUSSÃO

4 CONCLUSÃO

Referências

Apêndice A - Histórico de desenvolvimento do motor foguete

FOLHA DE REGISTRO DO DOCUMENTO								
1. CLASSIFICAÇÃO/TIPO TC	 DATA 25 de março de 2015 	3. DOCUMENTO Nº DCTA/ITA/DM-018/2015	^{4.} № DE PÁGINAS 18					
5. TÍTULO E SUBTÍTULO: Orbital Maneuver Optimization								
6. AUTOR(ES): Pedro Kuntz Puglia								
7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES): Instituto Tecnológico de Aeronáutica — ITA								
8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR: Cupim; Cimento; Estruturas								
9. PALAVRAS-CHAVE RESULT Propulsão; Gás Frio; Vetoriz								
10. APRESENTAÇÃO: (X) Nacional () Internacional ITA, São José dos Campos. Curso de Mestrado. Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont.								
12. GRAU DE SIGILO: (X) OSTENSI	IVO () RESER	RVADO () SEC	RETO					