F. ESTUDIO DE LA RESPUESTA EN FRECUENCIA DE AMPLIFICADORES CON VARIOS TRANSISTORES

1) F-1. Admitir que en los circuitos indicados, los transistores poseen las siguientes características:

$$f_T=300~\text{MHz}$$
 ; $C_{\mu}=1~\text{pF}$; $C_{gs}=4~\text{pF}$; $C_{gd}=1~\text{pF}$; $r_x=100~\Omega$; $V_A\to\infty$; $\lambda=0$

Fig. F-1a

Fig. F-1b

Fig. F-1c

a) Determinar los valores de la amplificación de tensión y los valores aproximados de las frecuencias de corte inferior y superior

- **b)** Comparar sus respuestas en frecuencia. ¿Cuáles de ellas poseen mejor respuesta en altas frecuencias?. Justificar conceptualmente el por qué en base a la existencia de un nodo dominante.
- c) Determinar el tiempo de crecimiento y el porcentaje de declinación de la señal de salida si se aplican señales de entrada cuadrada de distinta frecuencia.
- **d)** Comparar los resultados anteriores con los obtenidos mediante simulación por PSPICE. Obtener conclusiones en cuanto a la validez de aplicación del método de las constantes de tiempo.

 I_{DSS} = -16mA; V_{P} = 3V y R_{G2} se ajusta para obtener V_{OQ} = 0V

- 2) F-3. a) Obtener los puntos de reposo de los transistores, indicando las tensiones de los tres terminales de cada uno contra común, si se ajusta R_{B2} de modo que la tensión de reposo sobre la carga $R_L = 1 \text{ K}\Omega$ sea $V_{OQ} = -2 \text{ V}$. ¿Resulta necesario considerar I_{BQ2} para la determinación de I_{CQ1} ?
 b) Dibujar el circuito de señal sin reemplazar los transistores por su modelo circuital. Obtener por inspección, la resistencia de entrada y de carga de cada etapa, la amplificación de tensión de cada
- **d)** Hallar los valores garantizables para f_l y f_h de A_{vs} . Justificar en cada caso si se desprecia la influencia de uno o más nodos. Trazar un diagrama de Bode de módulo y argumento para A_{vs} .

una y la amplificación total $A_v = v_o/v_i$. Definir, calcular R_i y R_o . Obtener A_{vs} .

- e) Obtener, si es posible, los ceros impuestos por $C_S=0.1~\mu F$ y $C_B=3~\mu F$, para A_{vs} . Analizar si puede admitirse que la frecuencia de corte obtenida se encuentra cercana al valor verdadero.
- f) Analizar cualitativamente cómo se modificarían A_{vs} , f_{l} y f_{h} si se conecta el capacitor C_{B} de forma tal de desacoplar totalmente la base de T_{3} .

Fig. F-3

Fig. F-1d

 β = 400 ; V_{A} = 120 V ; r_{x} = 400 Ω ; f_{T} = 300 MHz ; C_{μ} = 0,4 pF