GANs

SCSC, Seoyoung Lim

Background

Discriminative Model vs Generative Model

Features Class
$$X \to Y$$
 $P(Y|X)$

X가 강아지의 특징인 귀와 코라는 특징 일때, y라는 class인 개를 도출함

Noise Class Features
$$\xi, Y \to X$$
 $P(X|Y)$

Background

VAE vs GANs

Fake or Real?

GANs Model

Generator

Generator

- 1) The generator produces fake data
- 2) It learns the probability of features X
- 3) The generator takes as input noise (random features)

Discriminator

$$P(\mathbf{F}_{\mathsf{Class}}) = 0.85$$
 Features

Discriminator

- 1) The discriminator is a classifier
- 2) It learns the probability of class Y
- 3) The probabilities are the feedback for the generator

논문

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-

Table 1: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre-trained on CIFAR-10, but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

Model	Accuracy	Accuracy (400 per class)	max # of features units
1 Layer K-means	80.6%	63.7% (±0.7%)	4800
3 Layer K-means Learned RF	82.0%	70.7% (±0.7%)	3200
View Invariant K-means	81.9%	$72.6\%~(\pm 0.7\%)$	6400
Exemplar CNN	84.3%	77.4% (± 0.2 %)	1024
DCGAN (ours) + L2-SVM	82.8%	73.8% (±0.4%)	512

논문

Takes a vector of **noise** [N] and outputs an **image of** [H, W, C]. The network has to perform synthesis. Again, we use a very minimalistic custom architecture.

Cost - 어떻게 학습?

BCE Cost Function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

Average loss of the whole batch

Cost - 어떻게 학습?

$$\min_{G} \max_{D} V(D,G) = E_{x \sim p_{data}(x)}[logD(x)] + E_{z \sim P_{z}(z)}[log(1-D(G(z))]$$
 $D(x) = 1$ 일 때 최대 $D(G(z)) = 1$ 일 때 최대 $D(G(z)) = 0$ 일 때 최대

Cost - 어떻게 학습?

W-Loss

W-Loss approximates the Earth Mover's Distance

Cost - 어떻게 학습?- Wasserstein GAN

Cost - 어떻게 학습?- Wasserstein GAN

Wasserstein distance 는 이렇게 여러가지 γ 중에서 d(X,Y) 의 기대값이 가장 작게 나오는 확률분포를 취합니다! $\ensuremath{\text{$\mathbb{@}}}$

Cost - 어떻게 학습?- Wasserstein GAN

WGAN

출처: GAN - Wasserstein GAN & WGAN-GP

Conditional GANs

Conditional GANs

Conditional GANs

- 1) The class is passed to the generator as one-hot vectors
- 2) The class is passed to the discriminator as one-hot matrices
- 3) The size of the vector and the number of matrices represent the number of classes

CGANs

CGANs

Application

Zebras C Horses

Application - Cycle GANs

Great Wave off Kanagawa (Style)

"Great Waves off Chicago"

Combining the style of the famed "Great Wave off Kanagawa" with the Chicago skyline.

3

References - influential papers

- DCGAN https://arxiv.org/pdf/1511.06434v2.pdf
- Wasserstein GAN (WGAN) https://arxiv.org/pdf/1701.07875.pdf
- Conditional Generative Adversarial Nets (CGAN) https://arxiv.org/pdf/1411.1784v1.pdf
- Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks (LAPGAN) https://arxiv.org/pdf/1506.05751.pdf
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network (SRGAN) https://arxiv.org/pdf/1609.04802.pdf
- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (CycleGAN) https://arxiv.org/pdf/1703.10593.pdf
- InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets https://arxiv.org/pdf/1606.03657
- DCGAN https://arxiv.org/pdf/1704.00028.pdf
- Improved Training of Wasserstein GANs (WGAN-GP) https://arxiv.org/pdf/1701.07875.pdf
- Energy-based Generative Adversarial Network (EBGAN) https://arxiv.org/pdf/1609.03126.pdf
- Autoencoding beyond pixels using a learned similarity metric (VAE-GAN) https://arxiv.org/pdf/1512.09300.pdf
- Adversarial Feature Learning (BiGAN) https://arxiv.org/pdf/1605.09782v6.pdf
- Stacked Generative Adversarial Networks (SGAN) https://arxiv.org/pdf/1612.04357.pdf
- StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks https://arxiv.org/pdf/1710.10916.pdf
- Learning from Simulated and Unsupervised Images through Adversarial Training (SimGAN) https://arxiv.org/pdf/1612.07828v1.pdf