Problem statement:

To predict the risk of heart diseases using Logistic Regression

In [19]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [20]:

```
df=pd.read_csv(r"C:\Users\chila\Downloads\framingham.csv")
df
```

Out[20]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
0	1	39	4.0	0	0.0	0.0	0	
1	0	46	2.0	0	0.0	0.0	0	
2	1	48	1.0	1	20.0	0.0	0	
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	
4233	1	50	1.0	1	1.0	0.0	0	
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	

4238 rows × 16 columns

In [21]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64

dtypes: float64(9), int64(7)

memory usage: 529.9 KB

In [22]:

df.describe()

Out[22]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	pre
count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	4185.000000	
mean	0.429212	49.584946	1.978950	0.494101	9.003089	0.029630	
std	0.495022	8.572160	1.019791	0.500024	11.920094	0.169584	
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	
4							

In [24]:

df.shape

Out[24]:

(4238, 16)

In [25]:

df.isnull().any()

Out[25]:

male False False age True education False currentSmoker cigsPerDay True BPMeds True prevalentStroke False prevalentHyp False diabetes False totChol True False sysBP diaBP False BMI True True heartRate True glucose TenYearCHD False

dtype: bool

In [26]:

df.describe().any()

Out[26]:

male True True age education True currentSmoker True cigsPerDay True BPMeds True prevalentStroke True prevalentHyp True diabetes True totChol True True sysBP diaBP True BMI True heartRate True glucose True TenYearCHD True

dtype: bool

```
In [30]:
```

```
ax=df["education"].hist (bins=15, density=True, stacked=True, color='cyan', alpha=0)
df["education"].plot(kind='density', color='teal')
ax.set(xlabel='education')
plt.xlim(-0,15)
plt.show()
```


In [31]:

```
print(df["education"].mean(skipna=True))
print(df["education"].median (skipna=True))
```

1.9789499153157513

2.0

In [32]:

```
print((df['glucose'].isnull().sum()/df.shape[0]*100))
```

9.155261915998112

In [33]:

```
print((df['totChol'].isnull().sum()/df.shape[0]*100))
```

In [34]:

```
print(df['totChol'].value_counts())
sns.countplot(x='totChol', data=df,palette='Set2')
plt.show()
totChol
240.0
         85
220.0
         70
260.0
         62
210.0
         61
232.0
         59
392.0
          1
405.0
          1
359.0
          1
398.0
          1
119.0
          1
Name: count, Length: 248, dtype: int64
    80
    70
    60
    50
    40
```

In [35]:

30

20

10

```
print(df['totChol'].value_counts().idxmax())
```

totChol

In [37]:

```
data=df.copy()
data["education"].fillna (df["education"].median (skipna=True), inplace=True)
data["totChol"].fillna(df["totChol"].value_counts().idxmax(),inplace=True)
data.drop('glucose',axis=1, inplace=True)
```

In [38]:

```
df.isnull().any()
```

Out[38]:

male False False age True education False currentSmoker cigsPerDay True True BPMeds prevalentStroke False prevalentHyp False diabetes False totChol True sysBP False diaBP False BMI True True heartRate glucose True False TenYearCHD

dtype: bool

In [40]:

```
ax=df["cigsPerDay"].hist (bins=15, density=True, stacked=True, color='cyan', alpha= 0)
df["cigsPerDay"].plot(kind='density',color='teal')
ax.set(xlabel='cigsPerDay')
plt.xlim(-10,85)
plt.show()
```


In [41]:

```
print(df["cigsPerDay"].mean (skipna=True))
print(df["cigsPerDay"].median(skipna=True))
```

9.003088619624615

0.0

In [42]:

```
print((df['BPMeds'].isnull().sum()/df.shape[0]*100))
```

1.2505899008966492

In [43]:

```
print((df['BMI'].isnull().sum()/df.shape[0]*100))
```

In [44]:

```
print((df['heartRate'].isnull().sum()/df.shape[0]*100))
```

0.023596035865974516

In [45]:

```
print(df['BPMeds'].value_counts())
sns.countplot(x='BPMeds', data=df, palette= 'Set2')
plt.show()
```

BPMeds 0.0 4061

1.0

Name: count, dtype: int64

124

In [46]:

```
print(df['heartRate'].value_counts().idxmax())
```

```
In [51]:
```

```
data=df.copy()
data["cigsPerDay"].fillna(df["cigsPerDay"].median (skipna=True), inplace=True)
data["BPMeds"].fillna(df["BPMeds"].median (skipna=True), inplace=True)
data["education"].fillna(df["education"].median(skipna=True), inplace=True)
data["totChol"].fillna (df["totChol"].value_counts().idxmax(), inplace=True)
data.drop('glucose',axis=1, inplace=True)
data.drop('BMI',axis=1, inplace=True)
data.drop('heartRate', axis=1, inplace=True)
```

In [52]:

```
df.isnull().sum()
```

Out[52]:

male	0
age	0
education	105
currentSmoker	0
cigsPerDay	29
BPMeds	53
prevalentStroke	0
prevalentHyp	0
diabetes	0
totChol	50
sysBP	0
diaBP	0
BMI	19
heartRate	1
glucose	388
TenYearCHD	0
dtype: int64	

In [54]:

df.head()

Out[54]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0

In [58]:

```
plt.figure(figsize=(15,8))
ax=df["education"].hist(bins=15, density=True, stacked=True, color='teal', alpha=0)
df["education"].plot(kind='density', color='teal')
ax=data["education"].hist (bins=15, density=True, stacked=True, color='orange', alpha=0)
data["education"].plot(kind='density',color='orange')
ax.legend(["education", "age"])
ax.set(xlabel='education')
plt.xlim(-0,10)
plt.show()
```


In [61]:

```
data['Disease']=np.where((data["prevalentHyp"]+data["prevalentStroke"])>0,0,1 )
data.drop('prevalentHyp', axis=1, inplace=True)
data.drop('prevalentStroke', axis=1, inplace=True)
```

In [63]:

```
training=pd.get_dummies (data, columns=["currentSmoker", "totChol", "sysBP"])
training.drop("TenYearCHD", axis=1, inplace=True)
training.drop("male", axis=1, inplace=True)
```

In [64]:

```
training.drop("diaBP",axis=1,inplace=True)
final_train=training
final_train.head()
```

Out[64]:

	age	education	cigsPerDay	BPMeds	diabetes	Disease	currentSmoker_0	currentSmoker
0	39	4.0	0.0	0.0	0	1	True	Fal
1	46	2.0	0.0	0.0	0	1	True	Fal
2	48	1.0	20.0	0.0	0	1	False	Tr
3	61	3.0	30.0	0.0	0	0	False	Tr
4	46	3.0	23.0	0.0	0	1	False	Tr

5 rows × 490 columns

•

In [70]:

```
final_train['IsMinor']=np.where(final_train['age']<=16, 1, 0)
print(final_train ['IsMinor'])</pre>
```

```
0
0
1
        0
2
        0
3
        0
4
        0
4233
        0
4234
        0
4235
        0
4236
        0
4237
Name: IsMinor, Length: 4238, dtype: int32
```

In [73]:

```
sns.barplot (x= 'Disease', y='education', data=final_train, color="cyan")
plt.show()
```


In [74]:

```
sns.barplot(x='diabetes', y='age', data=df, color='aquamarine')
plt.show()
```


In []: