

Instituto Tecnológico Autónomo de México División Académica de Ingeniería Departamento de Ingeniería Industrial y Operaciones

Ejercicios del Examen Final

4.5 La viga de acero que se muestra en la figura está hecha de un tipo de acero para el cual $\sigma_Y = 250$ MPa y $\sigma_U = 400$ MPa. Con un factor de seguridad de 2.50, determine el mayor par que puede aplicarse a la viga cuando se dobla alrededor del eje x.

4.7 a 4.9 Dos fuerzas verticales se aplican a una viga con la sección transversal que se muestra en las figuras. Determine los esfuerzos máximos de tensión y de compresión en la porción *BC* de la viga.

4.16 La viga mostrada en la figura está hecha de un nylon para el cual el esfuerzo permisible es de 24 MPa en tensión y de 30 MPa en compresión. Determine el máximo par **M** que puede aplicarse a la viga.

4.21 Una cinta de acero para sierra, que originalmente era recta, pasa sobre poleas de 8 in. de diámetro cuando está montada sobre una sierra de banda. Determine el esfuerzo máximo en la cinta, si se sabe que tiene 0.018 in. de grosor y 0.625 in. de ancho. Utilice $E = 29 \times 10^6$ psi.

4.33 y 4.34 Una barra que tiene la sección transversal mostrada en la figura se forma al unir fuertemente piezas de latón y aluminio. Con los datos que se presentan a continuación, determine el momento flector máximo permisible cuando la barra compuesta se flexiona alrededor de un eje horizontal.

	Aluminio	Latón
Módulo de elasticidad	70 GPa	105 GPa
Esfuerzo permisible	100 MPa	160 MPa

4.39 y 4.40 Una barra de acero ($E_s = 210$ GPa) y una barra de aluminio ($E_a = 70$ GPa) se unen para formar la barra compuesta mostrada en la figura. Si la barra se dobla alrededor de un eje horizontal mediante un par con M = 200 N·m, determine el esfuerzo máximo en a) la barra de aluminio, b) la barra de acero.

4.47 Una viga de concreto se refuerza con tres varillas de acero colocadas como se muestra en la figura. El módulo de elasticidad es de 3×10^6 psi para el concreto y de 30×10^6 psi para el acero. Con un esfuerzo permisible de 1 350 psi para el concreto y de 20 ksi para el acero, determine el momento flector máximo positivo permisible en la viga.

4.48 La viga de concreto reforzado que se observa en la figura se sujeta a un momento flector positivo de $175 \text{ kN} \cdot \text{m}$. Si se sabe que el módulo de elasticidad es de 25 GPa para el concreto y de 200 GPa para el acero, determine a) el esfuerzo en el acero, b) el esfuerzo máximo en el concreto.

4.55 y **4.56** Cinco tiras de metal, cada una de ellas con una sección transversal de 15×45 mm, se unen para formar la viga compuesta que se muestra en la figura. El módulo de elasticidad es de 210 GPa para el acero, 105 GPa para el latón y 70 GPa para el aluminio. Si la viga se flexiona alrededor de un eje horizontal mediante un par con momento de 1 400 N · m, determine a) el esfuerzo máximo en cada uno de los tres metales, b) el radio de curvatura de la viga compuesta.

10.11 Determine la dimensión d tal que las barras de aluminio y acero tengan el mismo peso, y calcule la carga crítica para cada barra.

Aluminio

$$E = 10.1 = 10^6 \text{ psi}$$

 $\gamma = 170 \text{ lb/ft}^3$

10.22 La columna AB soporta una carga céntrica P con magnitud de 15 kips. Los cables BC y BD están tensos y evitan el movimiento del punto B en el plano xz. Con la fórmula de Euler y un factor de seguridad de 2.2 y despreciando la tensión en los cables, determine la máxima longitud permisible L. Utilice $E = 29 \times 10^6$ psi.

10.23 Un perfil de acero laminado $w_{200 \times 52}$ se utiliza con el arreglo de apoyo y cable que se muestra en el problema 10.22. Si se sabe que L=24 ft, determine la carga céntrica permisible **P** cuando se desea un factor de seguridad de 2.2. Utilice $E=29\times 10^6$ psi.

NOTA: Para los ejercicios 10.22 y 10.23 consulte los valores de lx e ly en la Tabla de propiedades de perfiles W.

Apéndice C. Propiedades de perfiles laminados de acero (Unidades SI)

Perfiles W

(Perfiles de aleta ancha)

			Aleta		Espe- Eje X-X		Eje <i>Y-Y</i>				
Designación†	Área <i>A</i> , mm²	Altura d, mm	Ancho b _t , mm	Espesor t_t , mm	sor del alma t_w , mm	<i>I_x</i> 10 ⁶ mm ⁴	<i>S_x</i> 10 ³ mm ³	r _x mm	<i>I_y</i> 10 ⁶ mm ⁴	<i>S_y</i> 10 ³ mm ³	r _y mm
W920 × 446	57 000	933	423	42.70	24.0	8 470	18 200	385	540	2 550	97.3
201	25 600	903	304	20.10	15.2	3 250	7 200	356	94.4	621	60.7
W840 × 299	38 100	855	400	29.20	18.2	4 790	11 200	355	312	1 560	90.5
176	22 400	835	292	18.80	14.0	2 460	5 890	331	78.2	536	59.1
$W760 \times 257$ 147	32 600	773	381	27.10	16.6	3 420	8 850	324	250	1 310	87.6
	18 700	753	265	17.00	13.2	1 660	4 410	298	52.9	399	53.2
$W690 \times 217$ 125	27 700	695	355	24.80	15.4	2 340	6 730	291	185	1 040	81.7
	16 000	678	253	16.30	11.7	1 190	3 510	273	44.1	349	52.5
W200 × 86 71 59 52	9 100 7 560	222 216 210 206	209 206 205 204	20.6 17.4 14.2 12.6	13.0 10.2 9.1 7.9	94.7 76.6 61.1 52.7	853 709 582 512	92.4 91.7 89.9 89.0	31.4 25.4 20.4 17.8	300 247 199 175	53.2 52.8 51.9 51.7
46	.7 5 310	203	203	11.0	7.2	45.5	448	87.9	15.3	151	51.1
41		205	166	11.8	7.2	40.9	399	87.8	9.01	109	41.2
35		201	165	10.2	6.2	34.4	342	86.7	7.64	92.6	40.8
31 26 22 19	.6 3 390 .5 2 860	210 207 206 203	134 133 102 102	10.2 8.4 8.0 6.5	6.4 5.8 6.2 5.8	31.4 25.8 20.0 16.6	299 249 194 164	88.6 87.2 83.6 81.8	4.1 3.3 1.42 1.15	61.2 49.6 27.8 22.5	32.0 31.2 22.3 21.5

751