Exercici 23.1 Calculeu els valors propis de la matriu

$$A = \left(\begin{array}{rrr} 4 & 0 & -4 \\ -1 & 3 & 2 \\ 1 & 0 & 0 \end{array}\right)$$

Solució:

$$|A - \lambda I| = \begin{vmatrix} 4 - \lambda & 0 & -4 \\ -1 & 3 - \lambda & 2 \\ 1 & 0 & -\lambda \end{vmatrix} = (3 - \lambda)(2 - \lambda)^2$$

per tant, els valors propis i les seues multiplicitas algebraiques són:

$$\lambda_1 = 3, n_1 = 1, \quad \lambda_2 = 2, n_2 = 2$$

Noteu que en els apunts la multiplicitat algebraica ve denotada com $\mathbf{ma}(\lambda, A)$

Exercici 23.2 Calculeu els valors propis de la matriu

$$A = \left(\begin{array}{ccc} 1 & 2 & 1\\ 0 & -1 & 1\\ 0 & 0 & 3 \end{array}\right)$$

Solució:

$$|A - \lambda I| = \begin{pmatrix} 1 - \lambda & 2 & 1 \\ 0 & -1 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{pmatrix} = (1 - \lambda)(-1 - \lambda)(3 - \lambda)$$

per tant, els valors propis i les seues multiplicitas algebraiques són:

$$\lambda_1 = 1, n_1 = 1, \quad \lambda_2 = -1, n_2 = 1, \quad \lambda_3 = 3, n_3 = 1$$

Exercici 23.3 Calculeu els valors propis de la matriu

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

Solució:

$$|A - \lambda I| = \begin{pmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{pmatrix} = \lambda^2 (3 - \lambda)$$

per tant, els valors propis i les seues multiplicitas algebraiques són:

$$\lambda_1 = 0, n_1 = 2, \quad \lambda_2 = 3, n_2 = 1$$

Exercici 23.4 Calculeu els valors propis de la matriu

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Solució:

$$|A - \lambda I| = \begin{pmatrix} -\lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & -\lambda \end{pmatrix} = -\lambda^3$$

per tant, els valors propis i les seues multiplicitas algebraiques són:

$$\lambda_1 = 0, n_1 = 3$$

Exercici 23.5 Calculeu els subespais propis de la matriu

$$A = \left(\begin{array}{rrr} 4 & 0 & -4 \\ -1 & 3 & 2 \\ 1 & 0 & 0 \end{array}\right)$$

de la qual sabem els seus valors propis:

$$\lambda_1 = 3, n_1 = 1, \quad \lambda_2 = 2, n_2 = 2$$

Solució: Per definició:

$$H_{\lambda_i} = Nul(A - \lambda_i I) = \{ \mathbf{u} \in \mathbb{R}^3 / (A - \lambda_i I)\mathbf{u} = \mathbf{0} \}$$

Per a calcular H_{λ_1} hem de resoldre el sistema d'equacions amb matriu ampliada:

$$(A - \lambda_1 I | \mathbf{0}) \to \begin{pmatrix} 1 & 0 & -4 & 0 \\ -1 & 0 & 2 & 0 \\ 1 & 0 & -3 & 0 \end{pmatrix} \xrightarrow{E_{21}(1), E_{31}(-1)} \begin{pmatrix} 1 & 0 & -4 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{E_{23}, E_{32}(2)} \begin{pmatrix} 1 & 0 & -4 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\stackrel{E_{12}(4)}{\to} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \forall \alpha \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_1 = 3$ és:

$$H_{\lambda_1} = \langle (0, 1, 0) \rangle$$

Podeu comprovar que, efectivament:

$$A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Anàlogament, Per a calcular H_{λ_2} hem de resoldre el sistema d'equacions amb matriu ampliada:

$$(A - \lambda_2 I | \mathbf{0}) \to \begin{pmatrix} 2 & 0 & -4 & 0 \\ -1 & 1 & 2 & 0 \\ 1 & 0 & -2 & 0 \end{pmatrix} \xrightarrow{E_{13}} \begin{pmatrix} 1 & 0 & -2 & 0 \\ -1 & 1 & 2 & 0 \\ 2 & 0 & -4 & 0 \end{pmatrix} \xrightarrow{E_{21}(1), E_{31}(-2)} \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \quad \forall \alpha \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_2 = 2$ és:

$$H_{\lambda_2} = \langle (2,0,1) \rangle$$

Podeu comprovar que, efectivament:

$$A \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

Exercici 23.6 Calculeu els subespais propis de la matriu

$$A = \left(\begin{array}{ccc} 1 & 2 & 1\\ 0 & -1 & 1\\ 0 & 0 & 3 \end{array}\right)$$

de la qual sabem els seus valors propis:

$$\lambda_1 = 1, n_1 = 1, \quad \lambda_2 = -1, n_2 = 1, \quad \lambda_3 = 3, n_3 = 1$$

Solució: Per definició:

$$H_{\lambda_i} = Nul(A - \lambda_i I) = \{ \mathbf{u} \in \mathbb{R}^3 / (A - \lambda_i I)\mathbf{u} = \mathbf{0} \}$$

Per a calcular H_{λ_1} hem de resoldre el sistema d'equacions amb matriu ampliada:

$$(A-\lambda_1 I|\mathbf{0}) \to \begin{pmatrix} 0 & 2 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} \xrightarrow{E_1(\frac{1}{2}), E_{21}(2)} \begin{pmatrix} 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} \xrightarrow{E_{32}(-1), E_2(\frac{1}{2}), E_{12}(-\frac{1}{2})} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \forall \alpha \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_1 = 1$ és:

$$H_{\lambda_1} = \langle (1,0,0) \rangle$$

Podeu comprovar que, efectivament:

$$A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Per a calcular H_{λ_2} hem de resoldre el sistema d'equacions amb matriu ampliada:

$$(A - \lambda_2 I | \mathbf{0}) \to \begin{pmatrix} 2 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 4 & 0 \end{pmatrix} \xrightarrow{E_1(\frac{1}{2}), E_{32}(-4)} \begin{pmatrix} 1 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{E_2(\frac{1}{2})E_{12}(-\frac{1}{2})} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad \forall \alpha \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_2 = -1$ és:

$$H_{\lambda_2} = \langle (-1, 1, 0) \rangle$$

Podeu comprovar que, efectivament:

$$A \left(\begin{array}{c} -1\\1\\0 \end{array} \right) = - \left(\begin{array}{c} -1\\1\\0 \end{array} \right)$$

Per a calcular H_{λ_3} hem de resoldre el sistema d'equacions amb matriu ampliada:

$$(A - \lambda_3 I | \mathbf{0}) \to \begin{pmatrix} -2 & 2 & 1 & 0 \\ 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{E_1(-\frac{1}{2}), E_2(-\frac{1}{4})} \begin{pmatrix} 1 & -1 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{4} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{E_{12}(1)} \begin{pmatrix} 1 & 0 & -\frac{3}{4} & 0 \\ 0 & 1 & -\frac{1}{4} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} \frac{3}{4} \\ \frac{1}{4} \\ 1 \end{pmatrix}, \quad \forall \alpha \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_3 = 3$ és:

$$H_{\lambda_3} = \langle (\frac{3}{4}, \frac{1}{4}, 1) \rangle = \langle (3, 1, 4) \rangle$$

Podeu comprovar que, efectivament:

$$A \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

Exercici 23.7 Calculeu els subespais propis de la matriu

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

de la qual sabem els valors propis:

$$\lambda_1 = 0, n_1 = 2, \quad \lambda_2 = 3, n_2 = 1$$

Solució: Per a calcular H_{λ_1} hem de resoldre el sistema d'equacions amb matriu ampliada:

$$(A - \lambda_1 I | \mathbf{0}) \to \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{E_{21}(-1), E_{31}(-1)} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \forall \alpha, \beta \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_1 = 0$ és:

$$H_{\lambda_1} = \langle (-1, 1, 0), (-1, 0, 1) \rangle$$

Podeu comprovar que, efectivament:

$$A \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$A \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 0 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Per a calcular H_{λ_2} hem de resoldre el sistema d'equacions amb matriu ampliada:

$$(A - \lambda_2 I | \mathbf{0}) \to \begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix} \xrightarrow{E_{12}} \begin{pmatrix} 1 & -2 & 1 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix} \xrightarrow{E_{21}(2), E_{31}(-1)} \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & 3 & -3 & 0 \end{pmatrix}$$

$$\stackrel{E_{32}(1),E_{2}(-\frac{1}{3})}{\to} \left(\begin{array}{ccc|c} 1 & -2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \stackrel{E_{12}(2)}{\to} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \forall \alpha \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_2 = 3$ és:

$$H_{\lambda_2} = \langle (1,1,1) \rangle$$

Podeu comprovar que, efectivament:

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Exercici 23.8 Calculeu els subespais propis de la matriu

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

de la qual sabem els valors propis:

$$\lambda_1 = 0, n_1 = 3$$

Solució:

Per a calcular H_{λ_1} hem de resoldre el sistema d'equacions amb matriu ampliada:

que té com a solucions:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \forall \alpha, \beta, \gamma \in \mathbb{R}$$

és a dir el subespai propi associat a $\lambda_1 = 0$ és:

$$H_{\lambda_1} = \langle (1,0,0), (0,1,0), (0,0,1) \rangle = \mathbb{R}^3$$

és a dir, qualsevol vector no nul \mathbf{u} de \mathbb{R}^3 és un vector propi de la matriu nul·la, ja que

$$O_{3\times 3}\mathbf{u} = 0\mathbf{u} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

Exercici 23.9 Donada la matriu

$$A = \left(\begin{array}{rrr} 4 & 0 & -4 \\ -1 & 3 & 2 \\ 1 & 0 & 0 \end{array}\right)$$

sabem que els seus valors propis i les seues multiplicitats algebraiques són:

$$\lambda_1 = 3, \mathbf{ma}(\lambda_1) = 1, \quad \lambda_2 = 2, \mathbf{ma}(\lambda_2) = 2$$

trobeu les seues multiplicitats geomètriques $\mathbf{mg}(\lambda_i)$ sense calcular explícitament els subespais propis.

Solució: Sabem que donada una matriu de tamany $n \times n$ s'acompleix:

$$\mathbf{mg}(\lambda_i) = dim(H_{\lambda_i}) = dim(\mathbf{R}^n) - \text{nre. d'eq. implícites de} H_{\lambda_i} = n - rang(A - \lambda_i I)$$

En aquest exemple tenim n = 3. Per tant:

$$\mathbf{mg}(\lambda_i) = 3 - rang(A - \lambda_i I)$$

Noteu que sempre tenim que $rang(A - \lambda_i) < n$ ja que obliguem a $det(A - \lambda_i) = 0$ per traure els valors propis.

Per a $\lambda_1 = 3$ hem d'estudiar el rang de:

$$\begin{pmatrix} 4-3 & 0 & -4 \\ -1 & 3-3 & 2 \\ 1 & 0 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -4 \\ -1 & 0 & 2 \\ 1 & 0 & -3 \end{pmatrix}$$

que clarament és 2, ja que trobem un menor d'ordre 2 amb determinant no nul, per xemple:

$$\left|\begin{array}{cc} 1 & -4 \\ -1 & 2 \end{array}\right| = -2$$

per tant:

$$mg(\lambda_1) = 3 - rang(A - \lambda_1 I) = 3 - 2 = 1$$

que és coincident amb el resultat obtingut a l'exercici 23.5: $dim(H_{\lambda_1}) = 1$.

Respecte a la multiplicitat geomètrica de λ_2 , com que la seua multiplicitat algebraica és 1 sabem que la seua multiplicitat geomètrica ha de ser 1, d'acord amb la propietat 23.4 dels apunts, pàg 196, que diu:

 $\boxed{1 \leq \mathbf{mg}(\lambda_i) \leq \mathbf{ma}(\lambda_i), \quad \forall i}$

Exercici 23.10 Donada la matriu

$$A = \left(\begin{array}{ccc} 1 & 2 & 1\\ 0 & -1 & 1\\ 0 & 0 & 3 \end{array}\right)$$

sabem que els seus valors propis i les seues multiplicitats algebraiques són:

$$\lambda_1 = 1, \mathbf{ma}(\lambda_1) = 1, \quad \lambda_2 = -1, \mathbf{ma}(\lambda_2) = 1, \quad \lambda_3 = 3, \mathbf{ma}(\lambda_3) = 1$$

trobeu les seues multiplicitats geomètriques $\mathbf{mg}(\lambda_i)$ sense calcular explícitament els subespais propis.

Solució: Com que tots els valors propis són simples sabem que totes les multiplicitas algebraiques seran simples, per la propietat que acabem de recordar en l'exercici anterior. És a dir:

$$\mathbf{mg}(\lambda_1) = 1, \mathbf{mg}(\lambda_2) = 1, \mathbf{mg}(\lambda_3) = 1$$

Exercici 23.11 Donada la matriu

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

sabem que els seus valors propis i les seues multiplicitats algebraiques són:

$$\lambda_1 = 0, \mathbf{ma}(\lambda_1) = 2, \quad \lambda_2 = 3, \mathbf{ma}(\lambda_2) = 1$$

trobeu les seues multiplicitats geomètriques $\mathbf{mg}(\lambda_i)$ sense calcular explícitament els subespais propis.

Solució: Aplicant que:

$$\mathbf{mg}(\lambda_i) = n - rang(A - \lambda_i I)$$

estudiem què passa pel valor propi λ_1 . Hem d'estudiar el rang de la matriu:

$$\begin{pmatrix} 1-0 & 1 & 1 \\ 1 & 1-0 & 1 \\ 1 & 1 & 1-0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

que clarament és de rang igual a 1. Per tant:

$$mg(\lambda_1) = 3 - 1 = 2$$

que està d'acord amb l'obtingut a l'exercici 23.7 on hem vist que $dim(H_{\lambda_1})=2$.

Respecte a la multiplicitat geomètrica de λ_2 , com que la seua multiplicitat algebraica és 1 sabem que la seua multiplicitat geomètrica ha de ser 1.

Exercici 23.12 Sabent que $\mathbf{u} = (3, -6, 2)$ és un vector propi de $A = \begin{pmatrix} -5 & -5 & \beta \\ 8 & 9 & \alpha \\ -2 & -3 & -7 \end{pmatrix}$ associat a $\lambda = -1$, calculeu α i β .

Solució:

S'ha d'acomplir: $A\mathbf{u} = \lambda \mathbf{u}$, és a dir:

$$\begin{pmatrix} -5 & -5 & \beta \\ 8 & 9 & \alpha \\ -2 & -3 & -7 \end{pmatrix} \begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix} = -\begin{pmatrix} 3 \\ -6 \\ 2 \end{pmatrix}$$

D'on trobem el sistema d'equacions:

$$-15 + 30 + 2\beta = -3
 24 - 54 + 2\alpha = 6
 -6 + 18 - 14 = -2$$

que resolt dona: $\alpha = 18$, $\beta = -9$.

Exercici 23.13 Discutiu quan és diagonalitzable la matriu $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & a & 0 \\ a & 0 & a \end{pmatrix}$ en funció del paràmetre a.

Solució:

Per a que siga diagonalitzable es necessita que coincidisquen les multiplicitats algebraiques i geomètriques de cada valor propi, és a dir:

$$\mathbf{ma}(\lambda_i) = \mathbf{mg}(\lambda_i), \quad \forall i$$

Calculem els valors propis:

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & a - \lambda & 0 \\ a & 0 & a - \lambda \end{vmatrix} = (a - \lambda)^2 (1 - \lambda) - a(a - \lambda) = (a - \lambda)((a - \lambda)(1 - \lambda) - a(a - \lambda)$$

$$= (a - \lambda)(\lambda^2 - \lambda(a+1)) = -\lambda(\lambda - a)(\lambda - (a+1))$$

per tant, els valors propis són:

$$\lambda_1 = 0, \quad \lambda_2 = a, \quad \lambda_3 = a + 1$$

Noteu que λ_2 i λ_3 són sempre diferents, ja que $a \neq a+1$. Però λ_1 i λ_2 sí poden ser iguals. També pot passar que λ_1 i λ_3 siguen iguals. Per tant, hem d'obrir tres casos:

Cas 1 $a \neq 0$ i $a \neq -1$ aleshores tots els valors propis són diferents i simples, per tant, la matriu A és diagonalitzable.

Cas 2 a=0, aleshores només hi ha un valor propi doble, el $\lambda_1=0$. Perquè A siga diagonalitzable necessitem que $\mathbf{mg}(\lambda_2)=2$, és a dir, $2=n-rang(A-\lambda_1 I)$, és a dir, $rang(A-\lambda_1 I)=1$. La qual cosa s'acompleix en ser:

$$rang \left(\begin{array}{ccc} 1 - 0 & 0 & 1 \\ 0 & 0 - 0 & 0 \\ 0 & 0 & 0 - 0 \end{array} \right) = rang \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) = 1$$

per tant, en aquest cas la matriu és diagonalitzable.

Cas 3 a=-1, aleshores tenim el valor propi doble el $\lambda_1=0$. Perquè A siga diagonalitzable necessitem que $\mathbf{mg}(\lambda_2)=2$ és a dir $2=n-rang(A-\lambda_1 I)$ és a dir, $rang(A-\lambda_1 I)=1$. La qual cosa no s'acompleix en ser

$$rang \begin{pmatrix} 1-0 & 0 & 1 \\ 0 & -1-0 & 0 \\ -1 & 0 & -1-0 \end{pmatrix} = rang \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix} = 2$$

per tant, en aquest cas la matriu no és diagonalitzable.

En resum A és diagonalitzable sempre que $a \neq -1$.

Noteu que quan un valor propi és simple tenim assegurat que la seua multiplicitat geomètrica és 1, per això no discutim eixos valors propis.

Exercici 23.14 Discutiu quan és diagonalitzable la matriu $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & a & 0 \end{pmatrix}$ en funció del paràmetre a.

Solució:

Calculem els valors propis:

$$|A - \lambda I| = \begin{vmatrix} -\lambda & 0 & 0 \\ 0 & -\lambda & a \\ 0 & a & -\lambda \end{vmatrix} = -\lambda^3 + a^2\lambda = -\lambda(\lambda^2 - a^2) = -\lambda(\lambda + a)(\lambda - a)$$

per tant, els valors propis són:

$$\lambda_1 = 0, \quad \lambda_2 = a, \quad \lambda_3 = -a$$

Noteu que λ_2 i λ_3 són iguals només si a=0. Com que $\lambda_1=0$ només cal obrir dos casos:

Cas 1 a=0, aleshores només tenim un valor propi triple $\lambda=0$. Perquè A siga diagonalitzable necessitem que $\mathbf{mg}(\lambda)=3$ és a dir $3=n-rang(A-\lambda_1 I)$ és a dir, $rang(A-\lambda I)=0$. La qual cosa s'acompleix en ser:

$$(A - \lambda I) = \begin{pmatrix} -0 & 0 & 0 \\ 0 & -0 & 0 \\ 0 & 0 & -0 \end{pmatrix}$$

que té rang igual a zero. Per tant, A és diagonalitzable en aquest cas.

Cas 2 $a \neq 0$, aleshores tenim tres valors propis simples i, per tant, A és diagonalitzable.

En resum, aquesta matriu sempre és diagonalitzable.

Exercici 23.15 Donada
$$A = \begin{pmatrix} -4 & 3 & 3 \\ -3 & 2 & 3 \\ -3 & 3 & 2 \end{pmatrix}$$
 es demana:

- a) El polinomi característic i els valors propis de A
- b) Diagonalitzeu-la, si és possible
- c) Comproveu la diagonalització
- **d)** Calculeu A^n .

Solució:

 $\mathbf{a})$

Valors propis. Hem de calcular el determinant

$$q_{\lambda}(A) = |A - \lambda I| = \begin{vmatrix} -4 - \lambda & 3 & 3 \\ -3 & 2 - \lambda & 3 \\ -3 & 3 & 2 - \lambda \end{vmatrix} = -\lambda^3 + 3\lambda + 2$$

Trobant les arrels pel mètode de Ruffini trobem:

$$-\lambda^3 + 3\lambda + 2 = -(\lambda+1)^2(\lambda-2)$$

per tant, els valors propis són:

$$\lambda_1 = -1$$
 amb multiplicitat algebraica $n_1 = 2$

$$\lambda_2 = 2$$
 amb multiplicitat algebraica $n_2 = 1$

b)Càlcul dels subespais propis.

Per a cada valor propi hem de resoldre (usant Gauss-Jordan) el sistema d'equacions homogeni escrit en forma de matriu ampliada:

$$(A - \lambda I|0)$$

on 0 és una columna de zeros.

Subespai propi associat a $\lambda_1 = -1$. Hem de resoldre:

$$\begin{pmatrix}
-4 - (-1) & 3 & 3 & 0 \\
-3 & 2 - (-1) & 3 & 0 \\
-3 & 3 & 2 - (-1) & 0
\end{pmatrix}$$

és a dir:

$$\left(\begin{array}{ccc|c}
-3 & 3 & 3 & 0 \\
-3 & 3 & 3 & 0 \\
-3 & 3 & 3 & 0
\end{array}\right)$$

Només tenim una equació: -x + y + z = 0, i la solució en paramètriques és:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \forall \alpha, \beta \in \mathbb{R}$$

Per tant una base de H_{λ_1} és:

$$\{(1,1,0),(1,0,1)\}$$

Per tant la dimensió és: $dim(H_{\lambda_1}) = 2$.

Comprovació: podeu comprovar que:

$$A\begin{pmatrix} 1\\1\\0 \end{pmatrix} = (-1)\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \quad A\begin{pmatrix} 1\\0\\1 \end{pmatrix} = (-1)\begin{pmatrix} 1\\0\\1 \end{pmatrix}.$$

Subespai propi associat a $\lambda_2 = 2$. Hem de resoldre:

$$\begin{pmatrix}
-4-2 & 3 & 3 & 0 \\
-3 & 2-2 & 3 & 0 \\
-3 & 3 & 2-2 & 0
\end{pmatrix}$$

és a dir:

$$\left(\begin{array}{ccc|c}
-6 & 3 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
-3 & 3 & 0 & 0
\end{array}\right)$$

Aplicant el mètode de Gauss-Jordan:

$$\begin{pmatrix} -6 & 3 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ -3 & 3 & 0 & 0 \end{pmatrix} \xrightarrow{E_1(-1/6)} \xrightarrow{E_{21}(3)} \xrightarrow{E_{31}(3)} \begin{pmatrix} 1 & -1/2 & -1/2 & 0 \\ 0 & -3/2 & 3/2 & 0 \\ 0 & 3/2 & -3/2 & 0 \end{pmatrix}$$

$$\stackrel{E_{32}(1)}{\to} \stackrel{E_{2}(-2/3)}{\to} \left(\begin{array}{ccc|c} 1 & -1/2 & -1/2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \stackrel{E_{12}(1/2)}{\to} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

per tant, la solució en paramètriques és:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \forall \alpha \in \mathbb{R}$$

Per tant una base de H_{λ_2} és:

$$\{(1,1,1)\}$$

Per tant la dimensió és: $dim(H_{\lambda_2}) = 1$. Comprovació: podeu comprovar que:

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Com que la multiplicitat algebraica de cada valor propi coincideix amb la multiplicitat geomètrica (o el que és el mateix, tenim tres vectors propis linealment independents) aleshores la matriu A és diagonalitzable.

Per tant, $A = PDP^{-1}$, amb:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

 $\mathbf{c})$

Tenim $|P| = -1 \neq 0$, per tant P és invertible. Tenim AP = PD. Per tant, la diagonalització està ben feta.

d)

Per tal de calcular A^n usarem la propietat següent: Si A és diagonalitzable tenim que $A = PDP^{-1}$ la qual cosa implica que:

$$A^n = PD^nP^{-1}$$

Necessitem calcular P^{-1} . Calculant-la, resulta:

$$P^{-1} = \left(\begin{array}{rrr} 1 & 0 & -1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{array}\right)$$

per tant:

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} (-1)^{n} & (-1)^{n} & 2^{n} \\ (-1)^{n} & 0 & 2^{n} \\ 0 & (-1)^{n} & 2^{n} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2(-1)^n - 2^n & -(-1)^n + 2^n & -(-1)^n + 2^n \\ (-1)^n - 2^n & 2^n & -(-1)^n + 2^n \\ (-1)^n - 2^n & -(-1)^n + 2^n & 2^n \end{pmatrix} = \begin{pmatrix} 2(-1)^n - 2^n & (-1)^{n+1} + 2^n & (-1)^{n+1} + 2^n \\ (-1)^n - 2^n & 2^n & (-1)^{n+1} + 2^n \\ (-1)^n - 2^n & (-1)^{n+1} + 2^n & 2^n \end{pmatrix}$$

Podeu comprovar que per a n=0 s'obté $A^0=I$, i per a n=1 s'obté $A^1=A$.

Exercici 23.16 Diagonalitzeu la matriu

$$A = \left(\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array}\right)$$

Solució: El polinomi característic resulta:

$$q_A(\lambda) = -\lambda^3 + 7\lambda^2 - 11\lambda + 5 = -(\lambda - 5)(\lambda - 1)^2$$

Calculant els subespais propis s'obté finalment: $A = PDP^{-1}$, amb:

$$P = \begin{pmatrix} 1 & -2 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$