Linear Algebra MT18 - Week 2

Chapter 2 (Independence and Orthogonality)

- 1. Express $\mathbf{u} \in \mathbb{R}^n$ as a linear combination of vectors $\mathbf{v}_i \in \mathbb{R}^n$, $i = 1, \ldots, n$:
 - (a) n=3 and

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$$

(b) n = 3

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$$

(c) n = 4

$$\mathbf{u} = \begin{bmatrix} 9 \\ 5 \\ -2 \\ 2 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -4 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 6 \\ 0 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4 \end{bmatrix}$$

- 2. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ be a set of vectors in vector space V.
 - (a) Define span(S).
 - (b) Prove that span(S) is a subspace of V.
- 3. (optional) Suppose \mathbf{u} , \mathbf{v} and \mathbf{w} are in vector space V and $S = \{\mathbf{v} \mathbf{u}, \mathbf{w} \mathbf{v}, \mathbf{u} \mathbf{w}\}$. Investigate wether S is linearly dependent or independent.
- 4. Let \mathbf{u}, \mathbf{v} are vectors in a vector space V and suppose that $S = \{\mathbf{u}, \mathbf{v}\}$ is linearly independent. Prove that $S' = \{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}\}$ is linearly independent.
- 5. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, define $S' = \{c\mathbf{v}_1, c\mathbf{v}_2, \dots, c\mathbf{v}_n\}$, where c is a nonzero scalar. Prove that S' is also a basis for V.

- 6. (optional) Suppose \mathbf{u} and \mathbf{s} are vectors in \mathbb{R}^n . Find the orthogonal projection of \mathbf{u} onto \mathbf{s} if
 - (a) n = 2, $\mathbf{u} = [1, 2]^T$ and $\mathbf{s} = [2, 1]^T$,
 - (b) n = 3, $\mathbf{u} = [1, 3, -2]^T$ and $\mathbf{s} = [0, -1, 1]^T$.
- 7. Assume that \mathbf{u} and \mathbf{s} are vectors in \mathbb{R}^n and that $\mathbf{p_s}(\mathbf{u})$ denotes the orthogonal projection of \mathbf{u} onto \mathbf{s} . Prove that $\mathbf{u} \mathbf{p_s}(\mathbf{u})$ is orthogonal to \mathbf{s} .

Applications

of the classical Gram-Schmidt algorithm

- 1. Suppose that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent vectors in \mathbb{R}^3 . Describe the steps of the *classical Gram-Schmidt algorithm* that takes vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ as input and produces the orthonormal set $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ in \mathbb{R}^3 .
- 2. Apply the algorithmic steps described above for input vectors

$$\mathbf{u}_1 = [1, 0, 0]^T$$

$$\mathbf{u}_2 = [1, 1, 1]^T$$

$$\mathbf{u}_3 = [1, 1 - 1]^T$$

to generate the the orthonormal set $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$. Verify the correctness of your calculations by evaluating $\mathbf{q}_1^T \mathbf{q}_2, \mathbf{q}_1^T \mathbf{q}_3$ and $\mathbf{q}_2^T \mathbf{q}_3$.

3. (optional) Use Gram-Schmidt to form an orthonormal basis for the subspace $W = span\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$, where

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix}.$$

4. (optional) Using Gram-Schmidt, find an orthogonal basis for \mathbb{R}^3 that contains the vector $\mathbf{v}_1 = [1, 2, 3]^T$.