Algorithm AdaBoost.M1

Input:

- Sequence of N examples $S = [(x_i, y_i)], i = 1, ..., N$ with labels $y_i \in \Omega$, $\Omega = \{ w_1, ..., w_C \}$;
- Weak learning algorithm WeakLearn;
- Integer T specifying number of iterations

Initialize
$$D_1(i) = \frac{1}{N}, i = 1, ..., N$$

Do for t = 1, 2, ..., T:

- 1. Select a training data subset S_t , drawn from the distribution D_t .
- 2. Train **WeakLearn** with S_t , receive hypothesis h_t .
- 3. Calculate the error of

$$h_t: \varepsilon_t = \sum_{th_t(x_i) \neq y_i} D_t(i).$$

If $\varepsilon > \frac{1}{2}$, abort.

4. Set $\beta_t = \varepsilon_t/(1 - \varepsilon_t)$.

5. Update distribution

$$D_t : D_{t+1}(i) = \frac{D_t(i)}{Z_t} \ x \begin{cases} \beta_t & \text{if } h_t(x_i) = y_i \\ 1, & \text{otherwise} \end{cases}$$
 where $Z_t = \sum_i D_t(i)$ is a normalization constant chosen so that D_{t+1} becomes a proper distribution function.

Test – Weighted Majority Voting: Given an unlabeled instance x,

1. Obtain total vote received by each class

$$V_j = \sum_{t: h_i(x) = \omega_j} \log\left(\frac{1}{\beta_t}\right), j = 1, \dots, C.$$

2. Choose the class that receives the highest total vote as the final classification.

i =>	01	02	03	04	05	06	07	08	09	010
\mathbf{D}_1	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	1 10	$\frac{1}{10}$
h ₁			X	X	x				X	
	misclassified (h1(0 _i) \neq y _i)									
ε ₁ =	$\beta_{1} = \frac{\varepsilon_{1}}{(1-\varepsilon_{1})} = \frac{\left(\frac{4}{10}\right)}{\left(\frac{6}{10}\right)} = \frac{2}{3}$ $\frac{1}{\beta_{1}} = \frac{3}{2} \text{ (less confidence)}$									
\mathbf{D}_2	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$		$\frac{1}{15}$			$\frac{1}{15}$
Normaliz e	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{8}$	$\frac{1}{12}$
		02	03	04		06	07		09	
\mathbf{h}_2				X						
ε ₂ =	$\beta_2 = \frac{\varepsilon_2}{1 - \varepsilon_2} = \frac{\frac{1}{8}}{\frac{7}{8}} = \frac{1}{7}$ $\frac{1}{\beta_2} = 7 \text{ (more confidence)}$									
D ₃	$\frac{1}{12}$	$\frac{1}{12} * \frac{1}{7}$	$\frac{1}{8} * \frac{1}{7}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{12} * \frac{1}{7}$	$\frac{1}{12}*\frac{1}{7}$	$\frac{1}{12}$	$\frac{1}{8} * \frac{1}{7}$	$\frac{1}{12}$
	$\frac{1}{12}$	$\frac{1}{84}$	$\frac{1}{56}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{84}$	$\frac{1}{84}$	$\frac{1}{12}$	$\frac{1}{56}$	$\frac{1}{12}$
Normaliz e D ₃ :	588 7056	$\frac{84}{7056}$	$\frac{126}{7056}$	441 7056	$\frac{441}{7056}$	84 7056	$\frac{84}{7056}$	588 7056	$\frac{126}{7056}$	588 7056

For D2:

normalization:
$$z_1 = \frac{\frac{1}{15}}{(\sum D_1(i))} = \frac{\frac{1}{15}}{(\frac{1}{15} + \frac{1}{10} + \frac{1}{10} + \frac{1}{15} + \frac{1}{15} + \frac{1}{15} + \frac{1}{15} + \frac{1}{15}}) = \frac{\frac{1}{15}}{\frac{1}{5}} = \frac{1}{12}$$

$$z_2 = \frac{\frac{1}{10}}{(\sum D_1(i))} = \frac{\frac{1}{10}}{(\frac{1}{15} + \frac{1}{15} + \frac{1}{10} + \frac{1}{10} + \frac{1}{15} + \frac{1}{15} + \frac{1}{10} + \frac{1}{15}}) = \frac{\frac{1}{10}}{\frac{1}{5}} = \frac{1}{8}$$

For D3:

$$\frac{\frac{1}{12}}{(\sum D_1(i))} = \frac{\frac{1}{12}}{\frac{1}{12} + \frac{1}{84} + \frac{1}{56} + \frac{1}{8} + \frac{1}{84} + \frac{1}{84} + \frac{1}{12} + \frac{1}{56} + \frac{1}{12}}{\frac{1}{7056}} = \frac{588}{7056}, \qquad \frac{\frac{1}{84}}{(\sum D_1(i))} = \frac{84}{7056},
\frac{\frac{1}{56}}{(\sum D_1(i))} = \frac{126}{7056}, \qquad \frac{\frac{1}{8}}{(\sum D_1(i))} = \frac{441}{7056}$$