Family Name
Given Name
Student No.
Signature

THE UNIVERSITY OF NEW SOUTH WALES

School of Electrical Engineering & Telecommunications

MID-SESSION EXAMINATION

S2 2016

ELEC1111 Electrical and Telecommunications Engineering

TIME ALLOWED: 50 minutes

TOTAL MARKS: 40
TOTAL NUMBER OF QUESTIONS: 4

THIS EXAM CONTRIBUTES 20%TO THE TOTAL COURSE ASSESSMENT

This paper contains 3 pages.

Candidates must **ATTEMPT ALL** questions.

Answer all questions in the answer booklet provided.

Marks for each question are indicated beside the question.

This paper may **NOT** be retained by the candidate.

Print your name, student ID and question number on the front page of each answer book.

Authorised examination materials:

Candidates should use their own UNSW-approved electronic calculators.

This is a closed book examination.

Assumptions made in answering the questions should be stated explicitly.

All answers must be written in ink. Except where they are expressly required, pencils **may only be used** for drawing, sketching or graphical work.

QUESTION 1 [10 marks]

- a) For the resistor network in Figure 1a below
 - i. [4 marks] Write down an expression for the equivalent resistance R_{ab} as seen from the terminals a and b in terms of individual resistor R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 .
 - ii. [2 marks] Calculate R_{ab} when $R_1 = R_2 = R_3 = R_4 = 60\Omega$ and $R_5 = R_6 = R_7 = 20\Omega$.
- b) A practical battery having voltage V_s and internal resistor R_s is connected to the terminals a-b of the resistor network in part (a-ii) as shown in Figure 1b.
 - i. [2 marks] Find the current I_s suppling by the battery
 - ii. [2 marks] Calculate the total power dissipated by the resistor network and R_s and the power supplied by the voltage source V_s . Show that power is conserved in this circuit.

QUESTION 2 [10 marks]

For the circuit below in Figure 2

- i. [6 marks] Apply nodal analysis to write down the node voltage equations at nodes V_a and V_b .
- ii. [2 marks] Solve the voltage equations in part (i) to find the voltages V_a and V_b.
- iii. [2 marks] Find the currents i_1 , i_2 and i_3 based on your results in part (ii)

Figure 2

QUESTION 3 [10 marks]

For the circuit below in Figure 3, find the current i in the 4Ω resistor using:

- (a) [6 marks] The superposition principle.
- (b) [4 marks] The Thevenin equivalent of the circuit to the left of terminal pair a-b.

Figure 3

QUESTION 4 [10 marks]

For the circuit below in Figure 4, the switch has been in the same position for a long time before changing position as shown at time t = 0.

Figure 4

- (a) [3 marks] Find the voltage v_c and the current i when t<0
- (b) [3 marks] Find v_c and i when t>0 and in steady state condition, i.e. $v_c(+\infty)$ and $i(+\infty)$
- (c) [4 marks] Write down expressions for voltage $v_c(t)$ and current i(t) when t>0

END OF PAPER