Contents

Ten	nplate	2
		2
2.1	Ternary Search	2
Dat	a Structures	3
3.1	Segment Tree	3
Sea	llences	4
_		4
1.1	4.1.1 Max/Min submatrix	4
A 1		_
_		5
		5 5
		5 5
		6
5.4		6
		6
5 5		7
5.5		7
T 6		7
5.0	· ·	7
r 77		8
5.7		9
	5.7.1 Polynomial Multiplication	9
Gra		10
6.1	DFS	10
6.2	BFS	10
	6.2.1 Shortest path on unweighted graph	11
6.3	Flood Fill	12
6.4	Topological Sort (Directed Acyclic Graph)	12
	6.4.1 DFS Variation	12
	6.4.2 Kahn's Algorithm	12
6.5	Bipartite Graph Check (Undirected Graph)	13
6.6		13
6.7	Dijkstra	14
Dyr	namic Programming	15
•		15
1.1		15
7 2	· · · · · · · · · · · · · · · · · · ·	17
•		18
7.3		10
	Sea 2.1 Dat 3.1 Seq 4.1 Alg 5.1 5.2 5.3 5.4 5.5 6.6 6.7 Gra 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Dyn 7.1 7.2 7.3	Data Structures

8	Mat	th Formulas	19
	8.1	Sum of an arithmetic progression	19
	8.2	Permutation with repeated elements	19
	8.3	Check if is geometric progression	20
	8.4	Bitwise equations	20
	8.5	Cube of Binomial	20
		8.5.1 Sum of Cubes	20
		8.5.2 Difference of Cubes	20
	8.6	Binomial expansion	20
9	Fac	${f ts}$	20
	9.1	XOR	20
		9.1.1 Self-inverse property	20
		9.1.2 Identity element	20
		9.1.3 Commutative	21
		9.1.4 Associative	21

1 Template

```
#include <bits/stdc++.h>
   using namespace std;
  using 11 =
                          long long;
  #define vll
                          vector<11>
  #define vvll
                          vector <vll>>
                          pair<11, 11>
  #define pll
  #define vpll
                          vector <pll>
  #define vvpll
                          vector < vpll >
  #define endl '\n'
  #define all(xs)
                          xs.begin(), xs.end()
11
  #define found(x, xs) (xs.find(x) != xs.end())
```

2 Search

2.1 Ternary Search

 $O(\log n)$

Function f(x) is unimodal on an interval [l, r]. Unimodal means: the function strictly increases first, reaches a maximum, and then strictly decreases OR the function strictly decreases first, reaches a minimum and then strictly decreases

```
double ternary_search(double 1, double r) {
    double eps = 1e-9; // error limit
    while(r - 1 > eps) {
        double m1 = 1 + (r-1) / 3;
}
```

3 Data Structures

3.1 Segment Tree

 $O(n \log n)$

Maximum value variation.

```
* Author: Lucian Bicsi
    * Date: 2017-10-31
    * License: CCO
    * Source: folklore
    * Description: Zero-indexed max-tree. Bounds are inclusive
       to the left and exclusive to the right.
    * Can be changed by modifying T, f and unit.
    * Status: stress-tested
9
10
11
   struct Tree {
       typedef int T;
12
       static constexpr T unit = INT_MIN;
       T f(const T &a,const T &b) { return max(a, b); } // (any
14
            associative fn)
15
       vector <T> s; int n;
       Tree(int n = 0, T def = unit) : s(2*n, def), n(n) {}
16
       void update(int pos, T val) {
17
           for (s[pos += n] = val; pos /= 2;)
18
               s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
19
20
       T query(int b, int e) { // query [b, e)
21
           T ra = unit, rb = unit;
           for (b += n, e += n; b < e; b /= 2, e /= 2) {
               if (b \% 2) ra = f(ra, s[b++]);
24
               if (e % 2) rb = f(s[--e], rb);
```

4 Sequences

4.1 Max/Min subsegment

O(n)

```
ll kadane(const vll &a) {
        11 n = a.size();
        ll ans = a[0], ans_1 = 0, ans_r = 0;
        11 \text{ sum} = 0, \text{ minus_pos} = -1;
6
        for (ll r = 0; r < n; ++r) {</pre>
             sum += a[r];
             if (sum > ans) {
10
                  ans = sum;
                  ans_l = minus_pos + 1;
11
                  ans_r = r;
12
             }
             if (sum < 0) {</pre>
14
                  sum = 0;
15
                  minus_pos = r;
             }
        }
18
19
        return ans;
20
   }
21
```

4.1.1 Max/Min submatrix

 $O(nm^2)$

5 Algebra

5.1 All divisors

 $O(\sqrt{n})$

```
vll divisors(ll n) {
  vll divs;
  for (ll i = 1; 1LL * i * i <= n; i++) {
    if (n % i == 0) {
        divs.push_back(i);
        if (i != n / i) {
            divs.push_back(n / i);
        }
        }
    }
    return divs;
}</pre>
```

5.2 Primality test

 $O(\sqrt{n})$

```
bool isPrime(11 n)
{
    if(n!=2 && n % 2==0)
        return false;

    for(11 d=3; d*d <= n; d+=2)
    {
        if(n % d==0)
            return false;
    }

    return n >= 2;
}
```

5.3 Binary exponentiation

 $O(\log n)$

```
1  ll binpow(ll a, ll b) {
        ll res = 1;
        while (b > 0) {
            if (b & 1)
                res = res * a;
                 a = a * a;
                 b >>= 1;
            }
            return res;
}
```

5.4 Greatest common divisor

 $O(\log \min(a, b))$

5.4.1 Least common multiple

5.4.2 Extended Euclides Algorithm

```
11 gcd(l1 a, l1 b, l1& x, l1& y) {
       if (b == 0) {
2
           x = 1;
3
           y = 0;
           return a;
5
       }
6
       ll x1, y1;
       11 d = gcd(b, a % b, x1, y1);
       x = y1;
9
       y = x1 - y1 * (a / b);
10
       return d;
11
   }
12
```

5.5 Linear Diophantine Equations

 $O(\log \min(a, b))$

5.5.1 Any solution

```
bool find_any_solution(ll a, ll b, ll c, ll &x0, ll &y0, ll
    &g) {
       g = gcd(abs(a), abs(b), x0, y0);
       if (c % g) {
            return false;
       }

       x0 *= c / g;
       y0 *= c / g;
       if (a < 0) x0 = -x0;
       if (b < 0) y0 = -y0;
       return true;
}</pre>
```

5.6 Integer Factorization

5.6.1 Pollard's Rho

 $O(\sqrt[4]{n}\log n)$

```
/**
       @param a first multiplier
       @param b second multiplier
       @param mod
       @return a * b mod n (without overflow)
       @brief Multiplies two numbers >= 10^18
       Time Complexity: O(log b)
   11 mult(11 a, 11 b, 11 mod) {
9
       11 \text{ result = 0};
10
       while (b) {
11
            if (b & 1)
12
                result = (result + a) % mod;
13
            a = (a + a) \% mod;
14
            b >>= 1;
15
16
       return result;
17
   }
18
   /**
       @param x first multiplier
21
       @param c second multiplier
       @param mod
```

```
Oreturn f(x) = x^2 + c \mod (mod)
24
       Obrief Polynomial function chosen for pollard's rho
25
       Time Complexity: 0(1)
26
   */
27
   11 f(11 x, 11 c, 11 mod) {
        return (mult(x, x, mod) + c) % mod;
29
   }
30
31
   /**
32
       {\tt Oparam} n number that we want to find a factor p
33
       @param x0 number where we will start
       Oparam c constant in polynomial function
       @return fac
36
       Obrief Pollard's Rho algorithm (works only for composite
37
         numbers)
       if(g==n) try other starting values
38
       Time Complexity: O(n^{(1/4)} \log n)
39
40
   ll rho(ll n, ll x0=2, ll c=1) {
41
       11 x = x0;
42
       11 y = x0;
43
       11 g = 1;
44
       while (g == 1) {
45
            x = f(x, c, n);
            y = f(y, c, n);
47
            y = f(y, c, n);
48
            g = gcd(abs(x - y), n);
49
50
       return g;
51
   }
52
```

5.7 Fast Fourier Transform

 $O(n \log n)$

```
using cd = complex <double >;
   const double PI = acos(-1);
2
   /**
       Oparam a vector that we want to transform
       Oparam invert inverse fft or not
       Obrief apply fft or inverse fft to a vector
       Time Complexity: O(n log n)
   void fft(vector<cd> &a, bool invert) {
10
       ll n = a.size();
11
       if (n == 1)
           return;
13
14
```

```
vector < cd > a0(n / 2), a1(n / 2);
        for (11 i = 0; 2 * i < n; i++) {
16
            a0[i] = a[2*i];
17
            a1[i] = a[2*i+1];
18
19
       fft(a0, invert);
20
       fft(a1, invert);
21
22
        double ang = 2 * PI / n * (invert ? -1 : 1);
23
       cd w(1), wn(cos(ang), sin(ang));
24
       for (11 i = 0; 2 * i < n; i++) {</pre>
            a[i] = a0[i] + w * a1[i];
26
            a[i + n/2] = a0[i] - w * a1[i];
27
            if (invert) {
28
                a[i] /= 2;
29
                a[i + n/2] /= 2;
30
            }
31
            w *= wn;
       }
33
   }
34
```

5.7.1 Polynomial Multiplication

```
/**
       @param a first polynomial coefficients
       Oparam b second polynomial coefficients
       Oreturn product of two polynomials
       Obrief Multiplies two polynomials
       Time Complexity: O(n log n)
6
   vll multiply(vll const& a, vll const& b) {
       vector < cd > fa(a.begin(), a.end()), fb(b.begin(), b.end()
           );
       11 n = 1;
10
       while (n < a.size() + b.size())</pre>
           n <<= 1;
13
       fa.resize(n);
       fb.resize(n);
14
15
       fft(fa, false);
16
       fft(fb, false);
17
       for (11 i = 0; i < n; i++)</pre>
18
            fa[i] *= fb[i];
19
       fft(fa, true);
20
21
22
       vll result(n, 0);
       for (ll i = 0; i < n; i++) {</pre>
23
            result[i] += round(fa[i].real());
24
```

6 Graphs

6.1 DFS

O(n+m)

```
void dfs(ll at, ll n ,vpll adj[], bool visited[]) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
for(auto nex: neighbours)
   dfs(nex.first, n, adj, visited);
}
```

6.2 BFS

O(n+m)

```
void bfs(ll s, ll n, vll adj[]) {
       bool visited[n] = {0};
       visited[s] = true;
       queue <11> q;
       q.push(s);
       while (!q.empty())
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
10
                if(!visited[nex]) {
                    visited[nex]=true;
                    q.push(nex);
                }
14
            }
            cout << q.front() << '\n';</pre>
16
           q.pop();
17
       }
18
   }
```

6.2.1 Shortest path on unweighted graph

O(n+m)

```
vll solve(ll s, ll n, vll adj[]) {
       bool visited[n] = {0};
2
       visited[s] = true;
3
       queue <11> q;
       q.push(s);
       vll prev(n, -1);
       while (!q.empty())
9
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
11
                if(!visited[nex]) {
12
                     visited[nex]=true;
13
                     q.push(nex);
14
                     prev[nex] = q.front();
15
16
            }
17
18
            q.pop();
       }
19
       return prev;
21
22
23
   vll reconstructPath(ll s, ll e, vll prev) {
24
       vll path;
25
       for(ll i=e; i!=-1; i=prev[i])
            path.push_back(i);
28
       reverse(path.begin(), path.end());
29
30
       if (path [0] == s)
31
            return path;
32
        else {
            vll place;
34
            return place;
35
36
   }
37
   vll bfs(ll s, ll e, ll n, vll adj[]) {
       vll prev = solve(s, n, adj);
40
41
       return reconstructPath(s, e, prev);
42
   }
43
```

6.3 Flood Fill

O(n+m)

```
int dir_y[] = {};
2
   int dir_x[] = {};
   int ff(int i, int j, char c1, char c2) {
       if ((i < 0) || (i >= n)) return 0;
       if ((j < 0) || (j >= m)) return 0;
       if (grid[i][j] != c1) return 0;
       int ans = 1;
9
       grid[i][j] = c2;
10
11
       for (int d = 0; d < 8; ++d)
           ans += floodfill(i+dir_y[d], j+dir_x[d], c1, c2);
13
14
       return ans;
15
16
```

3.4 Topological Sort (Directed Acyclic Graph)

6.4.1 DFS Variation

O(n+m)

```
void dfs(ll at, ll n ,vpll adj[], bool visited[], vll &ts) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
for(auto nex: neighbours)
   dfs(nex.first, n, adj, visited);
ts.push_back(at);
// Only change
```

6.4.2 Kahn's Algorithm

6.5 Bipartite Graph Check (Undirected Graph)

O(n+m)

```
bool isBipartite(ll s, ll n, vll adj[]) {
       queue <11> q;
       q.push(s);
       vll color(n, -1); color[s]=0;
       bool flag = true;
       while (!q.empty())
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
                if(color[nex] == -1) {
                    color[nex] = 1-(color[q.front()]);
                    q.push(nex);
                }
13
                else if(color[nex] == color[q.front()]) {
14
                    flag = false;
                    break;
16
                }
            }
           q.pop();
20
21
       return flag;
22
   }
23
```

6.6 Cycle Check (Directed Graph)

```
O(n+m)
```

```
enum { UNVISITED = -1, VISITED = -2, EXPLORED=-3};

void cycleCheck(ll at, ll n ,vll adj[], int visited[], ll
    dfs_parent[]) {
    visited[at] = EXPLORED;

vll neighbours = adj[at];
```

```
for(auto nex: neighbours) {
7
            if(visited[nex] == UNVISITED) {
                // Tree edges (part of the DFS spanning tree)
9
                dfs_parent[nex] = at;
10
                cycleCheck(nex, n, adj, visited);
11
            }
12
            else if(visited[nex] == EXPLORED) {
13
                if(nex == dfs_parent[at]) {
14
                    // Trivial cycle
                    // Do something
                }
                else {
18
                    // Non trivial cycle - Back Edge ((u, v)
19
                        such that v is the ancestor of node u but
                         is not part of the DFS tree)
                    // Do something
20
21
           }
23
            else if(visited[nex] == VISITED) {
24
                // Forward/Cross edge ((u, v) such that v is a
25
                    descendant but not part of the DFS tree)
                // Do something
26
            }
28
       }
29
30
       visited[at] = VISITED;
31
   }
32
```

6.7 Dijkstra

 $O(n\log n + m\log n)$

```
void dijkstra(ll s, vll & d, vll & p) {
       d.assign(n, LLONG_MAX);
2
       p.assign(n, -1);
3
       d[s] = 0;
       priority_queue < pll , vpll , greater < pll >> q;
6
       q.push({0, s});
       while (!q.empty()) {
            11 v = q.top().second;
           11 d_v = q.top().first;
10
            q.pop();
            if (d_v != d[v])
12
                continue;
14
            for (auto edge : adj[v]) {
15
```

```
11 to = edge.first;
16
                 11 len = edge.second;
17
18
                 if (d[v] + len < d[to]) {</pre>
19
                      d[to] = d[v] + len;
                      p[to] = v;
21
                      q.push({d[to], to});
22
23
            }
24
        }
25
   }
```

7 Dynamic Programming

7.1 Coin Change

O(nm)

```
/**
    st Obrief Calculates the minimum number of coins required to
        make a target amount using dynamic programming (
        memoization).
    * Oparam m The target amount of money to reach.
    * Oparam cs Coins
    st @return The minimum number of coins needed to sum up to '
    */
   11 coin_change(ll m, const vll &cs)
8
       if (m == 0)
9
           return 0;
11
       if (st[m] != -1)
12
           return st[m];
13
       auto res = oo;
15
       for (auto c : cs)
16
           if (c <= m)
17
               res = min(res, coin_change(m - c, cs) + 1);
18
       return st[m] = res;
19
```

7.1.1 Canonicality check

```
O(n^3)
```

```
1 /**
```

```
* Obrief Makes change for a given amount using a greedy
        approach.
    st Assumes the coin denominations 'xs' are sorted in
        descending order.
    */
   vll greedy(ll x, ll N, const vll &xs)
6
       vll res(N, O);
       for(11 i=0; i<N; i++)</pre>
9
            auto q = x / xs[i];
10
            x -= q*xs[i];
11
            res[i] = q;
12
14
       return res;
15
   }
16
17
   /**
18
    * @brief Calculates the total monetary value of a given
19
        combination of coins.
20
   ll value(const vll &M, ll N, const vll &xs)
21
22
       11 res=0;
23
       for(11 i=0; i<N; i++)</pre>
24
            res += M[i]*xs[i];
25
       return res;
26
   }
27
28
29
    st Cbrief Finds the smallest amount of money for which the
        greedy algorithm fails
    * to produce an optimal solution (i.e., the minimum number
31
        of coins).
    * This is based on a known algorithm for testing if a coin
32
        system is "canonical".
    */
   ll min_counterexample(ll N, const vll &xs)
34
35
       if(N \le 2)
36
           return -1;
37
38
       11 ans=oo;
39
       for(11 i=N-2; i>=0; --i) {
42
            auto g = greedy(xs[i]-1, N, xs);
43
            vll M(N, 0);
44
45
```

```
for(11 j=0; j<N; ++j)</pre>
46
47
                M[j] = g[j] + 1;
48
                 auto w = value(M, N, xs);
49
                 auto G = greedy(w, N, xs);
50
51
                 auto x = accumulate(M.begin(), M.end(), 0);
                 auto y = accumulate(G.begin(), G.end(), 0);
53
54
                 if(x < y)
55
                     ans = min(ans, w);
57
                 M[j]--;
58
            }
59
60
61
        return ans == oo ? -1 : ans;
62
   }
```

7.2 Knapsack

O(nm)

```
/**
    * @brief Finds the maximum sum possible of the knapsack
    * Can solve subset sum problem (change max to logic OR)
   pair<11, vll> knapsack(11 M, const vpll &cs)
5
6
       11 N = cs.size() - 1; // Elements start at 1
       for(ll i=0; i<=N; i++)</pre>
            st[i][0] = 0;
10
        for(11 m=0; m<=M; m++)</pre>
            st[0][m] = 0;
14
        for(ll i=1; i<=N; i++)</pre>
15
16
            for(ll m = 1; m <= M; m++)</pre>
17
18
                st[i][m] = st[i-1][m];
19
                ps[i][m] = 0;
20
                auto [w, v] = cs[i];
                if(w \le M \&\& st[i-1][m-w] + v > st[i][m])
23
24
                     st[i][m] = st[i-1][m-w] + v;
25
                     ps[i][m] = 1;
26
```

```
}
27
            }
28
        }
29
30
        // Elements recuperation
31
        11 m = M;
32
        vll is;
33
34
        for(ll i=N; i>=1; --i)
35
36
             if(ps[i][m])
38
                 is.push_back(i);
39
                 m -= cs[i].first;
40
             }
41
        }
42
43
        reverse(is.begin(), is.end());
44
        return {st[N][M], is};
46
   }
47
```

7.3 LIS

 $O(n \log n)$

```
/**
                        Target Vector.
       @param xs
       Oparam values True if want values, indexes otherwise.
                        Longest increasing subsequence as values
       @return
         or indexes.
       https://judge.yosupo.jp/problem/
       longest_increasing_subsequence
       source: Yogi Nam
6
       Time complexity: O(Nlog(N))
   vll lis(const vll& xs, bool values) {
9
       assert(!xs.empty());
10
       vll ss, idx, pre(xs.size()), ys;
11
       for(ll i=0; i<xs.size(); i++) {</pre>
12
           // change to upper_bound if want not decreasing
           11 j = lower_bound(all(ss), xs[i]) - ss.begin();
14
           if (j == ss.size()) ss.eb(), idx.eb();
           if (j == 0) pre[i] = -1;
                        pre[i] = idx[j - 1];
           ss[j] = xs[i], idx[j] = i;
18
19
       11 i = idx.back();
20
       while (i != -1)
21
```

```
ys.eb((values ? xs[i] : i)), i = pre[i];
reverse(all(ys));
return ys;
}
```

7.4 Travelling Salesman Problem

 $O(N^22^N)$

```
/**
   * Obrief Returns the min cost hamiltonian cycles
    * @param i Current city
    * Oparam mask Visited cities
    * Can be modified to return the max cost
    * Can include only a set qnt of cities
    st Can modify the dist graph to a non-complete graph:
    * Set dist[i][j] = INT_MAX
   int tsp(int i, int mask) {
11
       if(mask == (1 << n) - 1)
           return dist[i][0];
13
14
       if(st[i][mask] == -1)
15
           return st[i][mask];
17
       int res = INT_MAX;
18
       for(int j=0; j<n; j++) {</pre>
19
           if(mask & (1 << j))</pre>
                continue;
           res = min(res, tsp(j, mask | (1 << j), n) + dist[i][
       }
23
24
       return (st[i][mask] = res);
25
```

8 Math Formulas

8.1 Sum of an arithmetic progression

$$S_n = \frac{n}{2}(a_1 + a_n)$$

8.2 Permutation with repeated elements

$$P_n = \frac{n!}{n_1! n_2! \dots n_k!}$$

8.3 Check if is geometric progression

$$a_i^2 = a_{i-1} a_{i+1}$$

8.4 Bitwise equations

$$a|b = a \oplus b + a\&b$$

$$a \oplus (a\&b) = (a|b) \oplus b$$

$$(a\&b) \oplus (a|b) = a \oplus b$$

$$a+b = a|b+a\&b$$

$$a+b = a \oplus b + 2(a\&b)$$

$$\begin{aligned} a-b &= (a \oplus (a\&b)) - ((a|b) \oplus a) \\ a-b &= ((a|b) \oplus b) - ((a|b) \oplus a) \\ a-b &= (a \oplus (a\&b)) - (b \oplus (a\&b)) \\ a-b &= ((a|b) \oplus b) - (b \oplus (a\&b)) \end{aligned}$$

8.5 Cube of Binomial

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

8.5.1 Sum of Cubes

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

8.5.2 Difference of Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

8.6 Binomial expansion

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

9 Facts

9.1 XOR

9.1.1 Self-inverse property

To cancel a XOR, you can XOR again the same value because $a \oplus a = 0$, so $(value \oplus a) \oplus a = value$

9.1.2 Identity element

$$a \oplus 0 = a$$

9.1.3 Commutative

$$a\oplus b=b\oplus a$$

9.1.4 Associative

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$