

## 7. Complex Models

#### Overview

- 7.1 Issues
- 7.2 Object Modeling Technique
- 7.3 Use Case Approach

#### 7.1 Issues

- Complex systems require methods which provide a rich repertoire of concepts and tools
- Effective application of such techniques demands
  - specialized training
  - deep understanding of fundamentals
  - project by project tailoring
  - gradual acquisition of expertise
- Multiple models must be integrated formally
- Graphical representations are not always economical and intuitive
- Established methods do not always deliver

## 7.2 Object Modeling Technique

Object Modeling
 Technique (OMT)
 (Rumbaugh et al)
 attempts to
 integrate several
 traditional
 methods with
 object-oriented
 analysis

#### Object model

- application-specific information (structure) is captured in terms of objects having attributes and operations
- classes and inheritance are used to generalize objects
- links and associations define logical relationships among objects and classes

#### Dynamic model

the dynamic behavior of objects is captured using state machine models

#### Functional model

 the processing of environmental inputs is captured by means of a dataflow model

## **Model Overview**

#### **Functionality**



#### Concepts



## **Objects**

- An object is characterized by its visible attributes and the operations (services) it provides
- Objects often are immediately identifiable in the application domain
- Initial definitions may be misleading and may need rethinking



- What does it do?
- What happens in Australia?

### **Classes and Inheritance**

 The class provide the means for object generalization, from instance to concept



### **Constraints and Associations**

- Established data modeling techniques provide the means for defining semantic constraints existing in the application
- Such models help analysis



#### **Structure**

 Object instances model the abstract state of the system



# Dynamic Model



### **Functional Model**



[§7:10]



## Strengths of OMT

- Comprehensive application analysis
- Powerful object-oriented model
- Inclusion of relational concepts (semantic constraints)
- Reliance on established models



### **Concerns with OMT**

- Complex graphical notation
- Lack of precise formal definition
- Weak integration among models
- Inadequate treatment of the environment
- Use of models whose effectiveness is questionable (dataflow)
- Unrealistic expectations regarding a direct transition to design

## 7.3 Use Case Approach

- Use Case Approach
  (OOSE) (Jacobson et al)
  combines object oriented modeling with
  a strong emphasis on
  processing scenarios
- RDD (requirements model)
  - interfaces
  - domain object model
  - use case model (scenarios)
- SRS (analysis model)
  - object-oriented model of the functionality

#### **Use Case Model**

#### Actors

- model the environment and the users
- initiate activity by providing stimuli
- can be primary or secondary

#### Use cases

- are complete courses of action initiated by actors (basic or alternative)
- can be extended by (interrupt analogy) or use other use cases (call analogy)



## Analysis Model

- Objects are divided into three categories
  - interface
  - entity
  - control





## Strengths of OOSE

- Comprehensive application analysis
- Emphasis on processing scenarios and scenario composition
- Reliance on simple forms of established models
- Powerful object-oriented model
- Emphasis on the development process



- Complexity and cost associated with developing the domain object model
- Optimistic expectations regarding the transition to design