$12n_{0107} (K12n_{0107})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle 47441368u^{25} + 57693789u^{24} + \dots + 104373924b + 18568285,$$

$$120201295u^{25} + 398061213u^{24} + \dots + 104373924a + 783424087, \ u^{26} + 5u^{25} + \dots + 14u - 1 \rangle$$

$$I_2^u = \langle 2a^2u + a^2 - au + b - a + 2u, \ a^3 - a^2u + a^2 - 2au + 4a - 2u + 3, \ u^2 - u - 1 \rangle$$

$$I_3^u = \langle b + 1, \ a, \ u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle 4.74 \times 10^7 u^{25} + 5.77 \times 10^7 u^{24} + \dots + 1.04 \times 10^8 b + 1.86 \times 10^7, \ 1.20 \times 10^8 u^{25} + 3.98 \times 10^8 u^{24} + \dots + 1.04 \times 10^8 a + 7.83 \times 10^8, \ u^{26} + 5 u^{25} + \dots + 14 u - 1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} (-1.5164u^{25} - 3.81380u^{24} + \cdots - 24.4464u - 7.50594 \\ -0.454533u^{25} - 0.552761u^{24} + \cdots + 13.0629u - 0.177902 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} (-1.5164u^{25} - 3.81380u^{24} + \cdots - 24.4464u - 7.50594 \\ 3.33329u^{25} + 11.3654u^{24} + \cdots + 41.4363u - 2.12231 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} (-0.633480u^{25} - 1.36564u^{24} + \cdots + 2.69053u + 4.69952 \\ -1.23184u^{25} - 3.55184u^{24} + \cdots + 9.30359u + 4.49406 \\ -1.23184u^{25} - 3.55184u^{24} + \cdots + 9.30359u + 4.49406 \\ -1.23184u^{25} - 3.55184u^{24} + \cdots + 9.30359u - 4.49406 \\ -1.23184u^{25} - 3.55184u^{24} + \cdots + 9.30359u - 4.49406 \\ -1.23184u^{25} - 3.55184u^{24} + \cdots + 9.30359u - 4.49406 \\ -1.23184u^{25} - 3.55184u^{24} + \cdots + 9.30359u - 4.49406 \\ -0.203032u^{25} + 0.469119u^{24} + \cdots + 15.6624u - 0.533217 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{92088909}{17395654}u^{25} - \frac{188693588}{8697827}u^{24} + \dots - \frac{885802456}{8697827}u - \frac{15795407}{8697827}u^{25} - \frac{15795407}{8697827}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{26} + 20u^{25} + \dots + 79u + 1$
c_2, c_4	$u^{26} - 4u^{25} + \dots - 11u - 1$
c_3, c_6	$u^{26} - 3u^{25} + \dots - 6u + 2$
c_5,c_9	$u^{26} - 2u^{25} + \dots - 96u + 64$
c_7, c_8, c_{10} c_{11}	$u^{26} + 5u^{25} + \dots + 14u - 1$
c_{12}	$u^{26} - 21u^{25} + \dots + 52120u + 337$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{26} - 24y^{25} + \dots - 6127y + 1$
c_2, c_4	$y^{26} - 20y^{25} + \dots - 79y + 1$
c_{3}, c_{6}	$y^{26} - 3y^{25} + \dots - 40y + 4$
c_5, c_9	$y^{26} + 34y^{25} + \dots - 95232y + 4096$
c_7, c_8, c_{10} c_{11}	$y^{26} - 39y^{25} + \dots - 304y + 1$
c_{12}	$y^{26} - 123y^{25} + \dots - 2285596764y + 113569$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.476607 + 0.919429I		
a = -0.688440 - 0.733293I	-5.18299 + 2.95142I	-14.7696 - 4.0162I
b = 0.227587 + 1.287750I		
u = -0.476607 - 0.919429I		
a = -0.688440 + 0.733293I	-5.18299 - 2.95142I	-14.7696 + 4.0162I
b = 0.227587 - 1.287750I		
u = -0.757036		
a = -0.441343	-1.34161	-6.51520
b = 0.637723		
u = 1.223650 + 0.232594I		
a = -0.924838 - 0.484695I	-5.77000 - 3.25214I	-11.73752 + 3.41900I
b = 0.280314 - 1.358420I		
u = 1.223650 - 0.232594I		
a = -0.924838 + 0.484695I	-5.77000 + 3.25214I	-11.73752 - 3.41900I
b = 0.280314 + 1.358420I		
u = -1.329480 + 0.241157I		
a = 0.277950 + 0.611388I	-3.29395 - 1.34186I	-11.30499 + 4.69401I
b = 0.308061 + 0.000558I		
u = -1.329480 - 0.241157I		
a = 0.277950 - 0.611388I	-3.29395 + 1.34186I	-11.30499 - 4.69401I
b = 0.308061 - 0.000558I		
u = 1.369250 + 0.095489I		
a = 0.500507 - 0.680570I	-9.37037 - 1.40410I	-14.8448 + 0.4920I
b = 0.10931 - 1.70719I		
u = 1.369250 - 0.095489I		
a = 0.500507 + 0.680570I	-9.37037 + 1.40410I	-14.8448 - 0.4920I
b = 0.10931 + 1.70719I		
u = 1.273730 + 0.536724I		
a = 0.988931 + 0.204426I	-10.60190 - 7.95034I	-14.2939 + 5.5201I
b = -0.48656 + 1.60886I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.273730 - 0.536724I		
a = 0.988931 - 0.204426I	-10.60190 + 7.95034I	-14.2939 - 5.5201I
b = -0.48656 - 1.60886I		
u = -0.586682 + 0.167108I		
a = -0.045237 - 0.711969I	-2.72200 + 0.36882I	-3.94523 + 10.24837I
b = -0.71246 - 2.34576I		
u = -0.586682 - 0.167108I		
a = -0.045237 + 0.711969I	-2.72200 - 0.36882I	-3.94523 - 10.24837I
b = -0.71246 + 2.34576I		
u = -0.348677 + 0.367916I		
a = 1.247060 + 0.371784I	-0.636376 + 1.127340I	-7.20662 - 6.11077I
b = -0.209352 - 0.864493I		
u = -0.348677 - 0.367916I		
a = 1.247060 - 0.371784I	-0.636376 - 1.127340I	-7.20662 + 6.11077I
b = -0.209352 + 0.864493I		
u = 0.424219 + 0.095685I		
a = 0.07818 + 2.89428I	2.35620 + 2.67700I	3.89989 + 1.35809I
b = -0.1185550 - 0.0289313I		
u = 0.424219 - 0.095685I		
a = 0.07818 - 2.89428I	2.35620 - 2.67700I	3.89989 - 1.35809I
b = -0.1185550 + 0.0289313I		
u = 1.63681		
a = 0.377195	-9.79249	1.55260
b = -1.87474		
u = -1.80599 + 0.06787I		
a = 0.735548 - 0.651435I	-16.9214 + 4.6752I	0
b = -0.23521 - 1.59914I		
u = -1.80599 - 0.06787I		
a = 0.735548 + 0.651435I	-16.9214 - 4.6752I	0
b = -0.23521 + 1.59914I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.81333 + 0.15530I		
a = -0.732203 + 0.586510I	17.8851 + 11.1272I	0
b = 0.50599 + 1.87679I		
u = -1.81333 - 0.15530I		
a = -0.732203 - 0.586510I	17.8851 - 11.1272I	0
b = 0.50599 - 1.87679I		
u = -1.83864 + 0.02244I		
a = -0.672414 - 0.695929I	18.0411 + 1.9797I	0
b = -0.16075 - 1.49337I		
u = -1.83864 - 0.02244I		
a = -0.672414 + 0.695929I	18.0411 - 1.9797I	0
b = -0.16075 + 1.49337I		
u = 1.87792		
a = -0.655106	-16.1049	-16.4270
b = -0.356336		
u = 0.0594263		
a = -8.81083	-1.19028	-8.21100
b = 0.576606		

$$I_2^u = \langle 2a^2u + a^2 - au + b - a + 2u, \ a^3 - a^2u + a^2 - 2au + 4a - 2u + 3, \ u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -2a^{2}u - a^{2} + au + a - 2u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -2a^{2}u - a^{2} - 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{2}u \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{2}u \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{2}u \\ -2a^{2}u - a^{2} - 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-19a^2u 13a^2 + 9au + a 8u 29$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_9	u^6
c_6	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_8	$(u^2+u-1)^3$
c_{10}, c_{11}, c_{12}	$(u^2 - u - 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_{5}, c_{9}	y^6
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -0.922021	-2.10041	-20.9180
b = 1.08457		
u = -0.618034		
a = -0.34801 + 2.11500I	2.03717 + 2.82812I	-16.9959 - 7.7984I
b = 0.075747 + 0.460350I		
u = -0.618034		
a = -0.34801 - 2.11500I	2.03717 - 2.82812I	-16.9959 + 7.7984I
b = 0.075747 - 0.460350I		
u = 1.61803		
a = 0.132927 + 0.807858I	-5.85852 - 2.82812I	-12.10059 + 3.17745I
b = -0.198308 + 1.205210I		
u = 1.61803		
a = 0.132927 - 0.807858I	-5.85852 + 2.82812I	-12.10059 - 3.17745I
b = -0.198308 - 1.205210I		
u = 1.61803		
a = 0.352181	-9.99610	-41.8890
b = -2.83945		

III.
$$I_3^u = \langle b+1, \ a, \ u+1 \rangle$$

(i) Arc colorings

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_7, c_8	u-1
c_{3}, c_{6}	u
$c_4, c_9, c_{10} \\ c_{11}, c_{12}$	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	y-1
c_3, c_6	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u-1)(u^3 - u^2 + 2u - 1)^2(u^{26} + 20u^{25} + \dots + 79u + 1) $
c_2	$(u-1)(u^3+u^2-1)^2(u^{26}-4u^{25}+\cdots-11u-1)$
c_3	$u(u^3 - u^2 + 2u - 1)^2(u^{26} - 3u^{25} + \dots - 6u + 2)$
c_4	$(u+1)(u^3-u^2+1)^2(u^{26}-4u^{25}+\cdots-11u-1)$
<i>C</i> ₅	$u^{6}(u-1)(u^{26}-2u^{25}+\cdots-96u+64)$
<i>c</i> ₆	$u(u^3 + u^2 + 2u + 1)^2(u^{26} - 3u^{25} + \dots - 6u + 2)$
c_7, c_8	$(u-1)(u^2+u-1)^3(u^{26}+5u^{25}+\cdots+14u-1)$
<i>C</i> 9	$u^{6}(u+1)(u^{26}-2u^{25}+\cdots-96u+64)$
c_{10}, c_{11}	$(u+1)(u^2-u-1)^3(u^{26}+5u^{25}+\cdots+14u-1)$
c_{12}	$(u+1)(u^2-u-1)^3(u^{26}-21u^{25}+\cdots+52120u+337)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^3+3y^2+2y-1)^2(y^{26}-24y^{25}+\cdots-6127y+1)$
c_{2}, c_{4}	$(y-1)(y^3-y^2+2y-1)^2(y^{26}-20y^{25}+\cdots-79y+1)$
c_3, c_6	$y(y^3 + 3y^2 + 2y - 1)^2(y^{26} - 3y^{25} + \dots - 40y + 4)$
c_5,c_9	$y^{6}(y-1)(y^{26} + 34y^{25} + \dots - 95232y + 4096)$
c_7, c_8, c_{10} c_{11}	$(y-1)(y^2-3y+1)^3(y^{26}-39y^{25}+\cdots-304y+1)$
c_{12}	$(y-1)(y^2-3y+1)^3(y^{26}-123y^{25}+\cdots-2.28560\times 10^9y+113569)$