Numerical methods in scientific computing 2021

Exercise 4

Return by Tuesday 16.2.2021 23:59 to Moodle

Exercise session: Thursday 18.2.2021

Problem 1. (computer) (8 points)

Assume the following function:

$$f(x) = \sin \left[3\pi \frac{x^3}{x^2 - 1} \right] + \frac{1}{2}$$
.

- A) Write a function bisect_f(a,b) that implements the bisection method to find the solution of f(x)=0 in the interval [a,b] and returns the solution.
- B) Write a function other newton_f(x0) which uses the Newton's method starting from a given point x0 to find and return the same root. Put both your functions in a source file named "roots". You cannot use any library implementations of bisection or Newton methods.
- C) Use both methods to obtain the two smallest values of x that satisfy f(x)=0 in the interval [0,1]. Explain your results and comment on the computational efficiency of the two methods (when the same accuracy is required).

Problem 2. (computer) (4 points)

A) Modify your previous code and write a function $newton_g(x0,B)$ which uses the Newton's method to calculate the unique zero of the function

 $g(x)=x+e^{-Bx^2}\cos(x),$

for a given parameter B and initial guess x0. Your function should return the solution and be written in the same file "roots" as in problem 1.

B) Calculate the zero for B=0.1,1,10,100 and suitable initial guess. What happens if you start the iteration at $x_0=0$ and why?

Problem 3. (pencil and paper, computer) (6 points)

Consider the iteration

$$x_{i+1} = \mu x_i (1 - x_i)$$
 (1)

If we plot x_N (where N is a very large integer) as a function of μ , we obtain the following fractal-like figure:

Iteration (1) can also be interpreted as an application of Newton's method to find a zero of a function:

$$f(x)=0; x_{i+1}=x_i-\frac{f(x_i)}{f'(x_i)}$$

- A) Find out what is the function that produces iteration (1) when applying Newton's method.
- B) Plot the real part of the function in the interval $x \in (0.3,1)$ for $\mu=2.5, 3.0, 3.2, 3.5$. What happens to the function when $\mu=3$? Use your findings to explain the bifurcation behavior exhibited at that point in the above figure.

Problem 4. (computer) (6 points)

- A) Write a function myroots (N,p) which calculates all the complex roots r_i of a real polynomial $P(x) = \sum_{n=0}^{N-1} p_n x^n$ for an input array p of size N by using the eigenvalue method presented in the lecture notes. For the calculation of the eigenvalues of a matrix you can use a library function. Your function shall return a complex array containing the N roots.
- B) Show that your function gives correct results.