$\begin{array}{c} \text{Monte-Carlo methods} \\ \text{TP2} \end{array}$

The simulations should be written as a **Jupyter Notebook**. At the end of the computer sessions,

please send an email with your jupyter notebook to randal.douc@telecom-sudparis.eu

with the subject: TP2JVN.

You can add any additional graphs and comments on your results!!!!

Exercice 1. Recall that if $(S_t)_{t>0}$ satisfies the Stochastic Differential Equation (SDE)

$$dS_t = rS_t dt + \sigma S_t dW_t \tag{1}$$

where $r \in (0,1)$ and $\sigma > 0$, then we can show that for all $t \geq 0$,

$$S_t = S_0 e^{(r - \sigma^2/2)t + \sigma W_t} \tag{2}$$

- 1. Using (1), write the Euler discretization scheme for (S_t) on a grid of [0,T] with equal segments of size T/N: this should be a function named $\mathbf{euler}(T,N,S_0)$. The output is the vector S such that S[n] is the value of the discretized process $S_{t_n}^N$ at $t_n = nh$ where $h = \frac{T}{N}$.
- 2. We now choose for example T = 1, r = 0.05, $\sigma = 1$ and try some values of N (for example N = 1000 but this is just a suggestion). Compare the distribution of S_1^N using a sample of size M = 1000 with the distribution of S_1 , using another sample of size M = 1000. You can use the function qqplotSample (see the padlet site) to compare the two samples. Any comments?
- 3. Write a function which outputs a sample of the maximum conditionally to an Euler Scheme (see Algorithm 8 in the lecture notes). Can we just consider $\max(S_t^N)_{0 \le n \le N}$ to approximate the maximum $\max(S_t)_{0 \le t \le 1}$.

 $\overline{R.Douc}$