Grundpraktikum Bioinfo - Week 1 Biological Data Analysis

Carl Herrmann IPMB - Universität Heidelberg

Correction for Multiple Testing

Gene expression data

- Finding differentially expressed genes between healthy and disease patients (10.000 genes)
- H₀: non-significant expression difference between the two groups
- t-test with a = 5%

Fake news ...

This dataset contains only random numbers

- → H₀ holds for all 10.000 "genes"
- → all the 445 genes are <u>false-positives</u>

X <- matrix(rnorm(n=100000,sd=3),nrow=10000)</pre>

Pitfalls of multiple testing

- We have repeated 10.000 independent tests
- the p-value indicates the probability to obtain a more extreme test statistics if H₀ holds true
- α is the risk to call a positive event ("reject H_0 ") even if H_0 is true ("false-positive")
- Probability of calling at least one falsepositive across all tests:
 - 2 tests: 1-(1-α)²
 - k tests: 1-(1-α)^k
 - 10.000 tests: $1-(1-\alpha)^{10000} \sim 1$

Beware of confusions!

FWER nicht angesprochen

- 1-(1-α)^k is the probability to have at least one false-positive across all the tests
 - = family-wise error rate (FWER)
- a is the **False Positive Rate (FPR)** i.e. the proportion of false positives if H₀ holds true

FWER = Probability to obtain at least one point below this threshold = $1-(1-\alpha)^k$

FPR = Proportions of tests below the threshold = α

Type I errors

FWER nicht angesprochen

- Total number of tests
 - → "Family" (m tests)
- Probability of a type I error over all tests
 - → Family wise error rate (FWER)
 - \rightarrow FWER = P(V > 0)
- Proportion of false positive reported to all negatives
 - → False positive rate (FPR)
 - \rightarrow FPR = V / m0
- Proportion of false positives reported to all significant ones
 - → False discovery rate (FDR)
 - \rightarrow FDR = V/R

	H ₀ is valid	H₀ is NOT valid	
H ₀ rejected (p < α)	V	S	R
H ₀ not rejected (p > α)	U	T	m-R
	m ₀	m-m ₀	m

Control of the FWER

- Bonferroni correction
- adapt the significance level α to the number of tests
- when n tests are performed
 - \bullet $\alpha \rightarrow \alpha / n$
 - $p \rightarrow p_{adj} = min(np, 1)$
- Probability of having a type I error remains constant at α
- Very stringent correction!
 - → increased type II error rate (false negatives)
- Example gene expression:
 - n = 10.000 tests
 - $\alpha = 0.05 \rightarrow \alpha / n = 5e-6$

Effekt des multiple Testens

Control of false-discovery rate (FDR)

- When a large number of tests is performed (typically for genomics data),
 Bonferroni correction is too stringent (too many Type II errors!)
- We can live with some false positives, as long as we can control their proportions within the significant test = false discovery rate (FDR)
- FDR = proportion of false-positives within the significant results
- FDR = 10% : 10% of the test which I consider to be significant (p < α) are false positives

Linear Regression

Regression models

- Predict one numerical variable using one or several other numerical variables
- Different questions:
 - is there a relation between age and blood pressure? → Correlation
 - how well can I predict blood pressure from age? → Regression model
- Principle
 - learn regression model from data (training)
 - test validity on independent datasets (testing)
 - predict on new data (predict)

Linear regression

 We assume a linear relationship between variables (X,Y)

$$X = \{X_1, X_2, ..., X_n\}$$
 $Y = \{Y_1, Y_2, ..., Y_n\}$

$$\hat{Y}_i = b_0 + b_1 X_i$$

• For each X_i , we can estimate a value

Least square

- Parameters of the regression line are estimated using least-square method
 - → minimize the sum of squares of the deviations

$$b_0 = \bar{Y} - b_1 \cdot \bar{X}$$

$$b_1 = corr(X, Y) \frac{s_Y}{s_X}$$

Residuals

Estimated value and real value do not generally coincide

$$\hat{Y}_i \neq Y_i$$

we have

$$Y_i = b_0 + b_1 X_i + e_i = \hat{Y}_i + e_i$$

• the e_i are called **residuals**

$$e_i = Y_i - \hat{Y}_i$$

Residuals

• all the influence of X has been "absorbed" by \hat{Y}

X should have no influence on the residuals e_i

$$corr(X, \hat{Y}) = 1$$

 $corr(X, e) = 0$

Residuals

- residuals should
 - not correlate with X
 - have mean value 0
 - be normally distributed
- If this is not the case, the linearity assumption is not true!
- Important quality assessment!

Evaluating a regression model

Evaluating a regression model

Regression-model: blood pressure = b0 + b1 Age

- Does the regression model work better than the simple null-model?
- Probably more accurate, but also more complex (more parameters)
- Is this improvement worth the higher complexity?

We need to evaluate how much of the variance of the data is explained by the model

Variance decomposition

- Variance of Y can be decomposed in different components
 - ullet variance of \hat{Y}
 - variance of the residuals e
- because

$$corr(\hat{Y}, e) = 0$$

$$Var(Y) = Var(\hat{Y} + e) = Var(\hat{Y}) + Var(e)$$

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} e_i^2$$

Total sum of squares

Model sum of squares

Residuals sum of squares

Variance decomposition

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} e_i^2$$
 Total sum of squares Model sum of squares residuals sum of squares

• if the fit of the regression model is good, SS_R should be small and SS_M large

$$R^2 = \frac{SS_M}{SS_T} \in [0,1]$$

- R^2 is the proportion of variance explained by the model
- we have $corr(X,Y)^2 = R^2$
- example: corr(X,Y) = 0.6 : the linear regression model explains 36% of the total variance

Variance decomposition

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} e_i^2$$

Total sum of squares

Model sum of squares

residuals sum of squares

- explained variance
- variance not explained
- Ratio

$$SS_M = Var(Y)R^2$$

$$SS_R = Var(Y)(1 - R^2)$$

number of explanatory variables

$$F = \frac{S\bar{S}_M}{S\bar{S}_R}$$

$$SS_M = SS_M$$

$$df = n - 2$$

number of coefficients to estimate = expl. variables +1

• The larger *F* the better the model describes the data

F-test

- With the F-test, we can compare 2 models
 - **null model**: $Y_i = b_0$ with $b_0 = \text{mean}(Y)$
 - full model: $Y_i = b_0 + b_1 X_i$
- Null hypothesis:
 - full-model not significantly better than null-model
 - or: $b_1 = 0$
 - under H₀:

$$F \sim F_{1,n-2}$$

Example of regression

- 10 data points F = 43.93
- Degrees of freedom
 - Full model : df = 1
 - Residuals: df = 8
 - p = 0.00016

Example of regression

- 10 data points F = 2.88
- Degrees of freedom
 - Full model: df = 1
 - Residuals: df = 8

y-values could be as well predicted using the mean of y

Testing coefficients

- if $b_1 = 0$, then Y cannot be predicted using X
- Reverse statement: if b₁ is significantly different from 0, then X can help predict Y
- Beware
 - a small b₁ value can significantly be different from 0
 - a large b₁ value can be compatible with b₁=0
- Deviation from b1 = 0 can be tested using a t-test

$$t = \frac{b_1}{se_{b_1}} \qquad se_{b_1} = \frac{s}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}$$
standard error of the residues = sqrt(SS2/n-2)

Hypothesis testing for regression coefficients

$$y = 0.1x + 3$$

Coefficients:

large spread in the data can lead to high uncertainty in regression coefficients

Example of linear regression

height → weight ?


```
> l <- lm(weight ~ height, data=diab)</pre>
> summary(1)
Call:
lm(formula = weight ~ height, data = diab)
Residuals:
             10 Median
    Min
                                   Max
-82.906 - 26.380 - 6.731 21.331 152.445
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
             6.9422
                       33.1694
                                 0.209
(Intercept)
                                           0.834
              2.5877 0.5016
                                 5.159 3.94e-07 ***
height
Residual standard error: 39.13 on 395 degrees of freedom
  (6 observations deleted due to missingness)
Multiple R-squared: 0.06313, Adjusted R-squared: 0.06076
F-statistic: 26.62 on 1 and 395 DF, p-value: 3.938e-07
```

What can we learn?

- only 6% of the variance can be explained by the regression model (R²)
- b₁ coefficient is significantly different from 0 (t-test p-value)
- Regression model is significantly better than null-model (F-test p-value)

Diagnostic plots

- Residuals are independent of X variable
- Residuals are (kind of) normally distributed

Multiple Regression

$$Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_r X_{ri} + e_i$$

- Y is the variable to be explained (e.g. blood pressure)
- i = 1,..., n are the **observations** (e.g. patients)
- k = 1,..., r are the explanatory variables (e.g. age, cholesterol, weight, ...)

Example

blood pressure ~ age + weight + cholesterol

```
Call:
lm(formula = bp.1s \sim age + weight + chol, data = data)
Residuals:
    Min
             1Q Median
                                   Max
-49.725 -12.786 -1.705 9.603 96.990
                                             t-test
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       6.78992
(Intercept) 88.22918
                                12.994
                                         <2e-16 ***
                       0.06391
                                         <2e-16 ***
            0.59525
                                 9.314
age
weight
            0.06093
                       0.02536
                                         0.0167 *
                                 2.403
chol
            0.04789
                       0.02365
                                 2.025
                                         0.0435 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 20.2 on 392 degrees of freedom
  (7 observations deleted due to missingness)
Multiple R-squared: 0.2192, Adjusted R-squared: 0.2132
F-statistic: 36.68 on 3 and 392 DF, p-value: < 2.2e-16
```


F-test

t-test on regression coefficients

$$BP_i = b_0 + b_1 \text{ age}_i + b_2 \text{ weight}_i + b_3 \text{ chol}_i + e_i$$

Could this coefficient be equal to 0?

or: Does weight contribute to explain blood pressure?

$$t = \frac{b_2}{se_{b_2}} \qquad se_{b_2} = \frac{s_{b_2}}{\sqrt{(1 - R_{X_2, X_{l \neq 2}}^2) s_{X_2}^2 (n-1))}}$$

R² of the regression of weight with all other variables

Standard deviation of variable weight

Beware of correlated variables!

$$t = \frac{b_2}{se_{b_2}} \qquad se_{b_2} = \frac{s}{\sqrt{(1 - R_{X_2, X_{l \neq 2}}^2) s_{X_2}^2 (n - 1))}}$$

- If weight (= X_2) is strongly correlated with another variable (= X_1), then $R^2 \sim 1$
- Hence, the standard error se become very large
- The t coefficient become very small
- Test is no longer significant

Beware of correlated variables

- Highly correlated variables should be avoided in a regression model!
- Possible solutions:
 - inspect pairwise scatter-plots / correlations and eliminate variables if strongly correlated to others
 - perform principal component analysis on the explanatory variables, and use the PCs as explanatory variables (Remember: PCs are NOT correlated with each other)

F-statistics

SS_T SS_M SS_R

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} e_i^2$$

Total sum of squares

Model sum of squares

residuals sum of squares

$$F = \frac{S\bar{S}_M}{S\bar{S}_R} \qquad S\bar{S}_M = \frac{1}{r} SS_M \qquad df = r$$

$$S\bar{S}_R = \frac{1}{n-(r+1)} SS_R \qquad df = n-(r+1)$$
 s: full model is not better

H0 hypothesis: full model is not better than model with $Y = b_0$

$$H_0: F \sim F_{r,n-(r+1)}$$

number of coefficients to estimate = expl. variables +1

F-test

blood pressure ~ age + weight + cholesterol

```
Call:
lm(formula = bp.1s ~ age + weight + chol, data = data)
Residuals:
   Min
            1Q Median
                                  Max
-49.725 -12.786 -1.705 9.603 96.990
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 88.22918
                       6.78992 12.994
                                        <2e-16 ***
            0.59525
                      0.06391 9.314
                                       <2e-16 ***
age
                       0.02536
                               2.403 0.0167 *
weight
            0.06093
chol
                       0.02365 2.025
                                      0.0435 *
            0.04789
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 20.2 on 392 degrees of freedom
 (7 observations deleted due to missingness)
Multiple R-squared: 0.2192, Adjusted R-squared: 0.2132
F-statistic: 36.68 on 3 and 392 DF, p-value: < 2.2e-16
```

Correlation predicted values / real values $R^2 = 0.2192$

The F-test tests if ALL coefficients could be zero all together

Comparing models

- Does the inclusion of additional explanatory variables necessarily improve the model?
- Model 1: 1 variable $BP_i = b_0 + b_1 \text{age}_i + e_i$ $SS_R^1 = \sum_{i=1}^n e_i e_i$

3-1 n-(3+1)

- Model 2: 3 variables $BP_i = \tilde{b}_0 + \tilde{b}_1$ age $\tilde{b}_i + \tilde{b}_i$ weight $\tilde{b}_i + \tilde{b}_i$ chol $\tilde{b}_i + \tilde{e}_i$ $SS_R^2 = \sum_{i=1}^n \tilde{e}_i \tilde{e}_i$
- Is model 2 significantly better than model 1?

$$S = \frac{SS_R^1 - SS_R^2}{1 - SS_R^2} / \frac{SS_R^2}{1 - SS_R^2} \qquad H_0: \quad F \sim F_{3-1, n-3-1}$$

Carl Herrmann

Comparing models

$$BP_i = b_0 + b_1 \text{age}_i + e_i$$

```
Call:
lm(formula = bp.1s ~ age, data = data)
Residuals:
    Min
             10 Median
                            30
                                   Max
-49.985 -12.796 -1.836 9.309 96.313
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 108.03563
                        3.11026 34.735
                                          <2e-16 ***
              0.61691
                        0.06258
                                 9.857
                                          <2e-16 ***
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 20.42 on 394 degrees of freedom
Multiple R-squared: 0.1978, Adjusted R-squared: 0.1958
F-statistic: 97.17 on 1 and 394 DF, p-value: < 2.2e-16
```

$BP_i = \tilde{b}_0 + \tilde{b}_1 \text{ age}_i + \tilde{b}_2 \text{ weight}_i + \tilde{b}_3 \text{ chol}_i + \tilde{e}_i$

```
Call:
lm(formula = bp.1s ~ age + weight + chol, data = data)
Residuals:
    Min
             10 Median
                                    Max
-49.725 - 12.786 - 1.705 9.603 96.990
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       6.78992 12.994
                                         <2e-16 ***
(Intercept) 88.22918
             0.59525
                       0.06391
                                9.314
                                         <2e-16 ***
weight
             0.06093
                       0.02536
                                 2.403
                                         0.0167 *
chol
                       0.02365
             0.04789
                                2.025
                                         0.0435 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 20.2 on 392 degrees of freedom
Multiple R-squared: 0.2192, Adjusted R-squared: 0.2132
F-statistic: 36.68 on 3 and 392 DF, p-value: < 2.2e-16
```

Both models are better than the null-model (check the F-test)
But is model 2 better than model 1?

Comparing models

$$BP_i = b_0 + b_1 \text{age}_i + e_i$$

```
Call:
lm(formula = bp.1s ~ age, data = data)
Residuals:
    Min
            10 Median
                                   Max
-49.985 -12.796 -1.836 9.309 96.313
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 108.03563
                        3.11026 34.735 <2e-16 ***
                        0.06258 9.857 <2e-16 ***
age
             0.61691
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 20.42 on 394 degrees of freedom
Multiple R-squared: 0.1978, Adjusted R-squared: 0.1958
F-statistic: 97.17 on 1 and 394 DF, p-value: < 2.2e-16
```

$$F = \frac{SS_R^1 - SS_R^2}{3 - 1} / \frac{SS_R^2}{n - (3 + 1)}$$

Model 2 represents a significant improvement w.r.t. Model 1!

$$BP_i = \tilde{b}_0 + \tilde{b}_1 \text{ age}_i + \tilde{b}_2 \text{ weight}_i + \tilde{b}_3 \text{ chol}_i + \tilde{e}_i$$

```
Call:
lm(formula = bp.1s ~ age + weight + chol, data = data)
Residuals:
   Min
            10 Median
                            30
                                   Max
-49.725 - 12.786 - 1.705 9.603 96.990
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 88.22918
                       6.78992 12.994
                                         <2e-16 ***
                       0.06391 9.314
                                        <2e-16 ***
            0.59525
age
                       0.02536
weight
            0.06093
                                2.403
                                         0.0167 *
            0.04789
                       0.02365
                               2.025
chol
                                         0.0435 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 20.2 on 392 degrees of freedom
Multiple R-squared: 0.2192, Adjusted R-squared: 0.2132
F-statistic: 36.68 on 3 and 392 DF, p-value: < 2.2e-16
```

	degrees of freedom	SS _R	F	P-value
Model 1	396-2	164349		
Model 2	396-4	159978	5,3559	0,005072