

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat . **Solution:** Download the following files and execute the C program.

wget https://github.com/gadepall/probability/raw/master/manual/codes/exrand.c

wget https://github.com/gadepall/probability/raw/master/manual/codes/coeffs.h

1.2 Load the uni.dat file into python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: The following code plots Fig. 0

wget https://github.com/gadepall/probability/raw/master/manual/codes/cdf_plot.py

- 1.3 Find a theoretical expression for $F_U(x)$.
- 1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.2)

and its variance as

$$var[U] = E[U - E[U]]^{2}$$
 (1.3)

Write a C program to find the mean and variance of U.

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{1.4}$$

2 Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

Fig. 0: The CDF of U

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

2.2 Load gau.dat in python and plot the empirical CDF of X using the samples in gau.dat. What properties does a CDF have?

Solution: The CDF of X is plotted in Fig. 0

2.3 Load gau.dat in python and plot the empirical PDF of X using the samples in gau.dat. The PDF of X is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2}$$

What properties does the PDF have?

Solution: The PDF of X is plotted in Fig. 0 using the code below

wget https://github.com/gadepall/probability/raw/master/

Fig. 0: The CDF of X

- 2.4 Find the mean and variance of X by writing a C program.
- 2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \tag{2.3}$$

repeat the above exercise theoretically.

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF.

Fig. 0: The PDF of X

3.2 Find a theoretical expression for $F_V(x)$.

4 Triangular Distribution

4.1 Generate

$$T = U_1 + U_2 (4.1)$$

- 4.2 Find the CDF of T.
- 4.3 Find the PDF of T.
- 4.4 Find the theoretical expressions for the PDF and CDF of T.
- 4.5 Verify your results through a plot.

5 Maximul Likelihood

5.1 Generate

$$Y = AX + N, (5.1)$$

where A = 5 dB, $X_1\{1, -1\}$, is Bernoulli and $N \sim \mathcal{N}(0, 1)$.

- 5.2 Plot *Y*.
- 5.3 Guess how to estimate X from Y.
- 5.4 Find

$$P_{e|0} = \Pr(\hat{X} = -1|X = 1)$$
 (5.2)

and

$$P_{e|1} = \Pr(\hat{X} = 1|X = -1)$$
 (5.3)

- 5.5 Find P_e .
- 5.6 Verify by plotting the theoretical P_e .

6 Gaussian to Other

6.1 Let $X_1 \sim \mathcal{N}(0, 1)$ and $X_2 \sim \mathcal{N}(0, 1)$. Plot the CDF and PDF of

$$V = X_1^2 + X_2^2 (6.1)$$

6.2 If

$$F_V(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0, \end{cases}$$
 (6.2)

find α .

6.3 Plot the CDF and PDf of

$$A = \sqrt{V} \tag{6.3}$$

7 CONDITIONAL PROBABILITY

7.1

7.2 Plot

$$P_e = \Pr\left(\hat{X} = -1|X = 1\right) \tag{7.1}$$

for

$$Y = AX + N, (7.2)$$

where A is Raleigh with $E[A^2] = \gamma, N \sim \mathcal{N}(0, 1), X \in (-1, 1)$ for $0 \le \gamma \le 10$ dB. 7.3 Assuming that N is a constant, find an expression for P_e . Call this $P_e(N)$

- 7.4 For a function g,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x) dx$$
 (7.3)

Find $P_e = E[P_e(N)]$.

7.5 Plot P_e in problems 6.2 and 6.4 on the same graph w.r.t γ . Comment.

8 Two Dimensions

Let

$$\mathbf{y} = A\mathbf{x} + \mathbf{n},\tag{8.1}$$

where

$$x \in (\mathbf{s}_0, \mathbf{s}_1), \mathbf{s}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{s}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (8.2)

$$\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}, n_1, n_2 \sim \mathcal{N}(0, 1). \tag{8.3}$$

8.1 Plot

$$\mathbf{y}|\mathbf{s}_0 \text{ and } \mathbf{y}|\mathbf{s}_1$$
 (8.4)

on the same graph using a scatter plot.

- 8.2 For the above problem, find a decision rule for detecting the symbols s_0 and s_1 .
- 8.3 Plot

$$P_e = \Pr(\hat{\mathbf{x}} = \mathbf{s}_1 | \mathbf{x} = \mathbf{s}_0) \tag{8.5}$$

with respect to the SNR from 0 to 10 dB.

8.4 Obtain an expression for P_e . Verify this by comparing the theory and simulation plots on the same graph.