Chapter 8

Pushdown Automata

A. Construct a PDA for the following languages:

1. Odd palindromes wcw^R over $\{a, b, c\}$ where $w = (a + b)^*$. Show an accepting sequence of configurations for the input abbcbba. Show how it rejects abbcbb. See Example 8.6.

Solution: See Example 8.6 and Figure-8.9 for the PDA. The accepting sequence of configurations for *abbcbba* is: $(q_0, abbcbba, Z)$, $(q_0, bbcbba, 0Z)$, $(q_0, bcbba, 10Z)$, $(q_0, cbba, 110Z)$, $(q_1, ba, 110Z)$, $(q_1, a, 0Z)$, (q_1, λ, Z) , (q_2, λ, Z)

For *abbcbb*, the rejecting sequence is: $(q_0, abbcbb, Z)$, $(q_0, bbcbb, 0Z)$, $(q_0, bcbb, 10Z)$, $(q_0, cbb, 110Z)$, $(q_1, bb, 110Z)$, $(q_1, b, 10Z)$, $(q_1, \lambda, 0Z)$

That is, the PDA halts in a non-final state; the stack is also not empty and the string is rejected.

2. Proper nesting of parentheses and flower brackets. For example, {(())(){{()}{}}}. Show how it rejects {(){{()}}}.

Solution: Please see also the VIDEO SOLUTION for this exercise.

It can be seen that $\{(())()\{\{()\}\{\}\}\}$ is accepted with the sequence (showing only successive stack contents): Z, 1Z, 01Z, 01Z, 01Z, 1Z, 11Z, 11Z, 111Z, 111Z, 111Z, 111Z, 11Z, 1Z, 1Z,

The string {(){{(}})}} is rejected with the sequence:

Z, 1Z, 01Z, 1Z, 11Z, 111Z, 0111Z,

At this point, there is a mismatch between the next input symbol } and the symbol 0 on the stack and the PDA halts right there, rejecting the input.

3. $a^n b^n a^m b^m$, $n \ge 0$, $m \ge 0$. Show, along with two different accepting sequences of configurations, how non-determinism works to accept the string aaabbb in two different ways.

Solution:

Accepting sequence 1 for aaabbb:

 $(q_0, aaabbb, Z), (q_0, aabbb, aZ), (q_0, abbb, aaZ), (q_0, bbb, aaaZ), (q_1, bbb, aaaZ), (q_1, bb, aaZ), (q_1, b, aZ), (q_1, \lambda, Z), (q_2, \lambda, Z), (q_3, \lambda, Z), (q_4, \lambda, Z).$

Accepting sequence 2 for aaabbb:

 $(q_0, aaabbb, Z), (q_1, aaabbb, Z), (q_2, aaabbb, Z), (q_2, aabbb, aZ), (q_2, abbb, aaZ), (q_2, bbb, aaaZ), (q_3, bbb, aaaZ), (q_3, bb, aaZ), (q_3, b, aZ), (q_4, \lambda, Z).$

In fact, there is a third accepting sequence:

 $(q_0, aaabbb, Z), (q_0, aabbb, aZ), (q_0, abbb, aaZ), (q_0, bbb, aaaZ), (q_1, bbb, aaaZ), (q_2, bbb, aaaZ), (q_3, bbb, aaaZ), (q_3, bb, aaZ), (q_3, b, aZ), (q_3, \lambda, Z), (q_4, \lambda, Z).$

4. $a^n b^n ab$, n > 0. Make sure that the PDA is deterministic.

Solution: Please see also the VIDEO SOLUTION for this exercise. Note that the video solution has a lambda transition; this is not quite deterministic. The solution below corrects this by eliminating the lambda transition.

5. a^nbab^n , n > 0. Make sure that the PDA is deterministic.

Solution:

6. $a^n b^m c^k$ where 2n = m and $k \ge 2$. Make sure that the PDA is deterministic.

Solution:

7. $a^n b^m$ where $m = n \mod 3$. How much stack memory do you need to handle this language?

Solution: The stack is not needed at all; this is a regular language!

8. $a^n b^m$ where m is the nearest number equal to or higher than n that is divisible by 5. How much stack memory do you need to handle this language? How many states do you need in the PDA? Explain.

Solution: The strategy used by the PDA shown below is to push additional symbols on to the stack when the a s are over to make the total number divisible by 5. As such, the amount of stack memory used is m. The PDA has 10 states as shown below.

9. $a^n b^m$ where n is a multiple of 3 and m is n/3. Make sure that the PDA is deterministic.

Solution:

10. $a^n b^m$ where $m = n \times 3$. Make sure that the PDA is deterministic.

Solution: Please see also the VIDEO SOLUTION for this exercise.

11. The language of subtraction, that is, strings of the form $a^n b^m c^k$ where k = n - m if $n \ge m$ or else k = m - n. Show an accepting sequence of configurations for the input aabbbbcc. Show the rejecting sequence of configurations for the input aaaabbccc.

Solution:

The accepting sequence of configurations for *aabbbbcc* is:

 $(q_0, aabbbbcc, Z), (q_0, abbbbcc, AZ), (q_0, bbbbcc, AAZ), (q_1, bbbbcc, AAZ), (q_1, bbbcc, AZ), (q_1, bbcc, Z), (q_1, bcc, BZ), (q_1, cc, BBZ), (q_2, cc, BBZ), (q_2, c, BZ), (q_2, \lambda, Z), (q_3, \lambda, Z)$

The rejecting sequence of configurations for *aaaabbccc* is:

 $(q_0, aaaabbccc, Z), (q_0, aaabbccc, AZ), (q_0, aabbccc, AAZ), (q_0, abbccc, AAAZ), (q_0, bbccc, AAAAZ), (q_1, bbccc, AAAAZ), (q_1, bccc, AAAAZ), (q_1, ccc, AAZ), (q_2, ccc, AAZ), (q_2, cc, AZ), (q_2, cc, AZ)$

- 12. The language of addition with positive or negative numbers, that is, strings over the alphabet $\{a, b, c, -\}$ of the form:
 - (a) $a^n b^m c^k$ where k = n + m and both numbers are positive; for example, *aabbcccc*.
 - (b) $-a^nb^mc^k$ where k=m-n if $m \ge n$ and the first number is negative; for example, -aabbbbcc.
 - (c) $-a^n b^m c^k$ where k = n m if n > m and the first number is negative; for example, -aaabb-cc.
 - (d) $a^n b^m c^k$ where k = n m if $n \ge m$ and the second number is negative; for example, aaaa bbcc.
 - (e) $a^n b^m c^k$ where k = m n if m > n and the second number is negative; for example, aa bbbb cc.
 - (f) $-a^n-b^m-c^k$ where k=n+m and both numbers are negative; for example,

-aaa-bbb-ccccc.

Show an accepting sequence of configurations for each of the example strings shown above.

Solution: To Do: SAVE DIAGRAM

- (a) Accepting sequence of configurations for *aabbcccc*: $(q_0, aabbcccc, Z)$, $(q_8, abbcccc, AZ)$, $(q_8, bbcccc, AAZ)$, $(q_1, bcccc, BAAZ)$, $(q_1, cccc, BBAAZ)$, $(q_2, ccc, BAAZ)$, $(q_2, ccc, BAAZ)$, (q_2, ccc, AAZ) , (q_2, ccc, AZ) , (q_2, λ, Z) , (q_3, λ, Z)
- (b) Accepting sequence of configurations for -aabbbbcc: $(q_0, -aabbbbcc, Z), (q_4, aabbbbcc, Z), (q_4, aabbbbcc, Z), (q_4, abbbcc, AZ), (q_5, bbcc, Z), (q_5, bcc, BZ), (q_5, cc, BBZ), (q_6, c, BZ), (q_6, \lambda, \lambda), (q_3, \lambda, \lambda), (q_5, cc, BBZ), (q_6, \lambda, \lambda), (q_6, \lambda), ($
- (c) Accepting sequence of configurations for -aaaabb-cc: $(q_0, -aaaabb-cc, Z), (q_4, aaaabb-cc, Z), (q_4, aaaabb-cc, AZ), (q_4, aaabb-cc, AAZ), (q_4, aabb-cc, AAAZ), (q_5, b-cc, AAAZ), (q_5, b-cc, AAAZ), (q_7, c, AAZ), (q_7, c, AZ), (q_7, <math>\chi$, χ), χ
- (d) Accepting sequence of configurations for aaaa-bbcc: $(q_0, aaaa-bbcc, Z), (q_8, aaa-bbcc, AZ), (q_8, aa-bbcc, AAZ), (q_8, a-bbcc, AAAZ), (q_8, a-bbcc, AAAZ), (q_9, bbcc, AAAAZ), (q_9, bcc, AAAZ), (q_9, cc, AAZ), (q_{10}, c, AZ), (q_{10}, \lambda, Z), (q_3, \lambda, Z)$
- (e) Accepting sequence of configurations for aa-bbbb-cc: $(q_0, aa$ -bbbb- $cc, Z), (q_8, a$ -bbbb- $cc, AZ), (q_8, -bbbb$ - $cc, AAZ), (q_9, bbbb$ - $cc, AAZ), (q_9, bbb$ - $cc, AZ), (q_9, bb$ - $cc, Z), (q_9, b$ - $cc, BZ), (q_9, -cc, BBZ), (q_{11}, c, BZ), (q_{11}, \lambda, Z), (q_3, \lambda, Z)$
- (f) Accepting sequence of configurations for -aaa-bbb-ccccc:

 $(q_0, -aaa-bbb-ccccc, Z), (q_4, aaa-bbb-ccccc, Z), (q_4, aa-bbb-ccccc, AZ), (q_4, a-bbb-ccccc, AAZ), (q_4, a-bbb-ccccc, AAZ), (q_{12}, bbb-ccccc, AAAZ), (q_{12}, bb-ccccc, BAAAZ), (q_{12}, b-ccccc, BBAAAZ), (q_{13}, cccc, BBBAAAZ), (q_{13}, cccc, BBAAAZ), (q_{13}, cccc, BBAAAZ), (q_{13}, cccc, BAAAZ), (q_{13}, ccc, AAZ), (q_{13}, ccc, AAZ), (q_{13}, cc, AZ), (q_{13}, c, AZ),$

13. $a^ib^jc^k$ where either i = j (and k is any number) or k is the difference between i and j. Show an accepting sequence of configurations for the input aabbbc. Show how the PDA rejects both aabbbbc and aaaabbbcc.

Solution:

The accepting sequence of configurations for aabbbc is: $(q_0, aabbbc, Z)$, $(q_0, abbbc, aZ)$, $(q_0, bbbc, aaZ)$, (q_1, bbc, aaZ) , (q_1, bc, Z) , (q_1, c, bZ) , (q_3, λ, Z) , (q_4, λ, Z)

The rejecting sequence of configurations for aabbbbc is: $(q_0, aabbbbc, Z), (q_0, abbbbc, aZ), (q_0, bbbbc, aaZ), (q_1, bbbbc, aaZ), (q_1, bbbc, aZ), (q_1, bbc, Z), (q_1, bc, bZ), (q_1, c, bbZ), (q_3, <math>\lambda$, bZ)

The rejecting sequence of configurations for aaaabbbcc is: $(q_0, aaaabbbcc, Z), (q_0, aaabbbcc, aZ), (q_0, aabbbcc, aaZ), (q_0, abbbcc, aaaZ), (q_0, abbbcc, aaaZ), (q_1, bbbcc, aaaaZ), (q_1, bcc, aaaZ), (q_1, bcc, aaaZ), (q_1, cc, aZ), (q_3, c, Z)$

14. $a^n b^m a^m b^n$. Can this be a deterministic PDA? Explain.

Solution: No, it is nondeterministic because, after pushing the a s onto the stack (n > 0), when the first b is encountered, it is not known whether a symbol should be pushed (m > 0) or popped (m = 0).

15. ww^R where each $w = (ab)^* + (ba)^*$. Unlike in the generic case where w can be anything, can this be a deterministic PDA? Explain. Can you also ensure that the number of stack cells used is just one-fourth the length of the input string?

Solution: Yes, this is deterministic (the midpoint is known when the symbols change from *ab* to *ba* or vice versa) and yes, the stack size required is just one fourth since a single symbol can be used to count either *ab* or *ba*.

B. Convert each of the following context-free grammars to an equivalent PDA:

16.
$$S \rightarrow aSA \mid \lambda, A \rightarrow bB, B \rightarrow b$$

Solution:

a , S ; SA b , A ; B
$$\lambda$$
 , S ; λ b , B ; λ

17. $S \rightarrow 0S1 \mid A, A \rightarrow 1A0 \mid S \mid \lambda$

Solution: First, we need to convert the grammar to GNF:

$$S \rightarrow OSD \mid 1AC \mid \lambda, A \rightarrow 1AC \mid OSD \mid \lambda, C \rightarrow 0, D \rightarrow 1$$

The equivalent PDF is:

18. $S \rightarrow aA$, $A \rightarrow aABC \mid bB \mid a$, $B \rightarrow b$, $C \rightarrow c$. Show how aaabc is accepted.

Solution:

The string *aaabc* is accepted via:

 $(q_0, aaabc, Z), (q_1, aaabc, SZ), (q_1, aabc, AZ), (q_1, abc, ABCZ), (q_1, bc, BCZ), (q_1, c, CZ), (q_1, \lambda, Z), (q_2, \lambda, Z)$

19.
$$S \to 0AA, A \to 0S \mid 1S \mid 0$$

Solution: Please see also the VIDEO SOLUTION.

20. $S \rightarrow aA \mid bB \mid cC, A \rightarrow Sa, B \rightarrow Sb, C \rightarrow \lambda$

Solution: First we need to convert the given grammar to GNF:

 $S \rightarrow aA \mid bB \mid c, A \rightarrow aAD \mid bBD \mid cD, B \rightarrow aAE \mid bBE \mid cE, D \rightarrow a, E \rightarrow b$

21. $S \rightarrow aA$, $A \rightarrow aA \mid bA \mid a \mid b$

Solution: The grammar is already in GNF. Hence the PDA is:

C. Convert each of the following PDAs to an equivalent context-free grammar.

22. Consider the PDA shown in Figure-8.10. What is the language of the PDA (and the resulting grammar)?

Solution: The language is the set of all binary strings containing more 0 s than 1 s. The equivalent grammar is (using the variable *A* for the stack symbol 0 and *B* for the stack symbol 1):

$$S \rightarrow 0A \mid 1B, A \rightarrow 0AA \mid 1 \mid \lambda, B \rightarrow 1BB \mid 0$$

23. Consider the PDA shown in Figure. 8.11. What is its language?

Figuer 8.11

Solution: Binary strings beginning with an odd number of 0 s and having 1 s mixed with even numbers of 0 s (i.e., occurrence of 0 except at the beginning must be a run of even length), followed by as many 2 s as there were 1 s.

An equivalent CFG is:

$$S \rightarrow 0T$$
, $T \rightarrow 0S \mid 1TA \mid \lambda$, $A \rightarrow 1AA \mid B$, $B \rightarrow 2$

24. Consider the PDA shown in Figure-8.9 (Example 8.6). Do you get back the same grammar as in the example?

Solution: First, we need to modify the PDA slightly to enable automatic conversion to a CFG in JFLAP:

Its language is that of odd palindromes. The equivalent grammar obtained from this (after simplification) is:

LHS		RHS
S	\rightarrow	С
S	\rightarrow	bD
S	\rightarrow	аJ
J	\rightarrow	bDK
K	\rightarrow	a
E	\rightarrow	b
D	\rightarrow	bDE
D	\rightarrow	аJE
J	\rightarrow	аЈК
D	\rightarrow	сE
J	\rightarrow	cК

A much simpler grammar that we can construct for this language is:

$$S \rightarrow aSa \mid bSb \mid c$$

Even upon conversion to GNF, this grammar is much simpler than what we obtained from the PDA:

$$S \rightarrow aSA \mid bSB \mid c, A \rightarrow a, B \rightarrow b$$

25. Consider the PDA specified by the transitions shown below where q_2 is the accepting state:

$$\delta\left(q_{0},a,Z\right)=\left(q_{0},AZ\right)$$

$$\delta\left(q_{0},a,A\right)=\left(q_{0},AA\right)$$

$$\delta\left(q_{0},b,Z\right)=\left(q_{0},BZ\right)$$

$$\delta\left(q_{0},b,B\right)=\left(q_{0},BB\right)$$

$$\delta\left(q_0,a,B\right)=\left(q_1,\lambda\right)$$

$$\delta\left(q_{0},b,A\right)=\left(q_{1},\lambda\right)$$

$$\delta\left(q_{1},a,B\right)=\left(q_{1},\lambda\right)$$

$$\delta\left(q_{1},b,A\right)=\left(q_{1},\lambda\right)$$

$$\delta\left(q_{1},\lambda,Z\right)=\left(q_{2},Z\right)$$

Solution: The given PDA is:

The language is either a^nb^n or b^na^n , n>0. An equivalent CFG is: $S\to aA\mid bB, A\to aAA\mid b, B\to bBB\mid a$

D. Debug and fix the following PDAs:

26. For $a^n b^{2n}$, n > 0 (Figure-8.12):

Figure 8.12

Solution: The corrected PDA is:

27. For simplified XML tag strings as used in Exercise 71 of Chapter 7, for example, < a > < b > < a > < c > where <math>a, b and c are the only tag names (Figure-8.13):

Figure 8.13

Solution: The corrected PDA is:

It may also be noted that it may be desirable to split the multi-character inputs such as $\langle a \rangle$ into separate transitions for each symbol with intermediate states.

28. For the language of table tags in HTML {TABLE, TH, TR, TD} (as specified in Exercise 69 of Chapter 7), the PDA specified by the transitions shown below where q_1 is the accepting state:

$$\delta (q_0, \langle TABLE \rangle, Z) = (q_0, TZ)$$

$$\delta\left(q_{0}, , \mathsf{T}\right) = \left(q_{0}, HT\right) |$$

$$\delta\left(q_{0}, , \mathsf{H}\right) = \left(q_{0}, DH\right) |$$

$$\delta (q_0, , DH) = (q_0, H)$$

 $\delta (q_0, |, T) = (q_0, RT)
| |$
 $\delta (q_0, , R) = (q_0, \lambda)$
 $\delta (q_0, , T) = (q_1, \lambda)$

Solution: The given PDA is:

The corrected PDA is (note: tables can also be nested):