

On NH16, Telaprolu, Near Gannavaram, Krishna Dist. – 521109

Ph.: 0866-2527558, www.usharama.edu.in

(An Autonomous Institute, Approved by AICTE, New Delhi, Permanently Affiliated to JNTUK, Kakinada)

	(,	,			
-	Subject Name & Code : Digital Logic & Computer C	rgan	sation (23ES303D)		Exa	am Na	me :Q1	
1.	1's complement of -0 is A) 0	В)	1	C)	1000	D)	1111	[D]
	A) 0	D)		C)	1000	ט)	1111	
2.	2's complement of 11001011 is							[C]
	A) 1010111	B)	11010100	C)	110101	D)	11100010	
3.	2's complement of binary number 0101 is							[A]
	A) 1011	B)	1111	C)	1101	D)	1110	
4.	A basic multiplexer principle can be demonstra	ated	through the use of a					[C]
	A) Single-pole relay	B)	DPDT switch	C)	Rotary switch	D)	Linear stepper	
5.	How many selection lines for 8 x 1 multiplexer	?						[C]
	A) 1	B)	2	C)	3	D)	4	
6.	A NAND gate has:							[D]
	active-LOW inputs and an active-HIGH output.	B)	active-LOW inputs and an active-LOW output.	C)	active-HIGH inputs and an active-HIGH output.	D)	active-HIGH in LOW output.	puts and an active-
7.	A variable on its own or in its complemented for	orm	s known as a					[B]
	A) Product Term	B)	Literal	C)	Sum Term	D)	Word	
8.	According to boolean law: A + 1 = ?							[A]
	A) 1	B)	A	C)	0	D)	A'	
9.	An analog signal has a range from 0 V to 5 V.	Wha	at is the total number of analog possibilities	s with	nin this range?			[D]

	Subject Name & Code : Digital Logic & Computer O	rganisation (23ES303D)	Exam Name : Q1				
	A) 5	B) 50	C)	250	D)	Infinite	
10.	An overflow occurs in					[A]	
	A) MSD position	B) LSD position	C)	Middle position	D)	Signed Bit	
11.	Can an encoder be a transducer?					[A]	
	A) Yes	B) No	C)	May or may not be	D)	Both are not even related slightly	
12.	Convert the binary number 1001.00102 to deci	imal.				[C]	
	A) 90.125	B) 9.125	C)	125	D)	12.5	
13.	Don't care conditions can be used for simplifying	ng Boolean expressions in				[C]	
	A) Registers	B) Terms	C)	K-maps	D)	Latches	
14.	Hexadecimal letters A through F are used for c	decimal equivalent values from:				[C]	
	A) 1 through 6	B) 9 through 14	C)	10 through 15	D)	11 through 17	
15.	How many binary digits are required to count to	o 10010?				[A]	
	A) 7	B) 2	C)	3	D)	100	
16.	How many NOT gates are required for the con	struction of a 4-to-1 multiplexer?				[C]	
	A) 3	B) 4	C)	2	D)	5	
17.	How many OR gates are required for a Decima	al-to-bcd encoder?				[D]	
	A) 2	B) 10	C)	3	D)	4	
18.	In boolean algebra, the OR operation is perform	, ,				[D]	
	A) Associative properties	B) Commutative properties	C)	Distributive properties	D)	All of the Mentioned	
19.	In which of the following gates the output is 1 if					[D]	
	A) AND	B) NOR	C)	NAND	D)	OR	

	Subject Name & Code : Digital Logic & Computer Organisation (23ES303D) Exam Name : Q1										
20.	Binary weighted number system are							[A]			
	A) position weighted number system	B)	alpha numeric number system	C)	ASCII	D)	all of the mention	oned			
21.	Product-of-Sums expressions can be impleme	ented	using					[D]			
	A) 2-level OR-AND logic circuits	B)	2-level NOR logic circuits	C)	2-level XOR logic circuits	D)	Both 2-level Of circuits	R-AND and NOR logic			
22.	The enable input is also known as	_						[C]			
	A) Select input	B)	Decoded input	C)	Strobe	D)	Sink				
23.	The hexadecimal representation of 14 is							[D]			
	A) A	B)	F	C)	D	D)	E				
24.	The prime implicant which has at least one ele	emer	at that is not present in any other implicant	is kn	own as			[A]			
	A) Essential Prime Implicant	B)	Implicant	C)	Complement	D)	Prime Compler	nent			
25.	The sum of 11101 + 10111 equals							[C]			
	A) 110011	B)	100001	C)	110100	D)	100100				
26.	The time required for a gate or inverter to char	nge i	ts state is called					[C]			
	A) Rise time	B)	Decay time	C)	Propagation time	D)	Charging time				
27.	What is the function of an enable input on a m	ultip	exer chip?					[C]			
	A) To apply Vcc	B)	To connect ground	C)	To active the entire chip	D)	To active one h	nalf of the chip			
28.	Which of the examples below expresses the a	ssoc	iative law of addition:					[A]			
	A) $A + (B + C) = (A + B) + C$	B)	A + (B + C) = A + (BC)	C)	A(BC) = (AB) + C	D)	ABC = A + B +	С			
29.	Which of the following represents a number of	outp	out lines for a decoder with 4 input lines?					[B]			
	A) 15	B)	16	C)	17	D)	18				

Page No.: 3

30. Which one of the following can be used as parallel to series converter?

[C]

	Subject Name & Code : Digital Logic & Computer C	abject Name & Code : Digital Logic & Computer Organisation (23ES303D)					me : Q1
	A) Decoder	B)	Digital counter	C)	Multiplexer	D)	Demultiplexer
31.	Which type of gate can be used to add two bit	s?					[A]
	A) Ex-OR	B)	Ex-NOR	C)	Ex-NAND	D)	NOR
32.	Why is an exclusive-NOR gate also called an	equa	ality gate?				[C]
	A) The output is false if the inputs are equal.	B)	The output is true if the inputs are opposite.	C)	The output is true if the inputs are equal.	D)	None of the mentioned
33.	A computer language that is written in binary of	code	s only is				[A]
	A) machine language	B)	С	C)	c#	D)	Pascal
34.	A logic circuit that provides a HIGH output for	both	inputs HIGH or both inputs LOW is a(n):				[A]
	A) Ex-NOR gate	B)	OR gate	C)	Ex-OR gate	D)	NAND gate
35.	A NOR gate with one HIGH input and one LO	W in	put:				[D]
	A) will output a HIGH	B)	functions as an AND	C)	will not function	D)	will output a LOW
36.	It is possible for an enable or strobe input to u large number of	ndeı	go an expansion of two or more MUX ICs t	o the	e digital multiplexer with the proficiency	of	[A]
	A) Inputs	B)	Outputs	C)	Selection lines	D)	Enable lines
37.	If m is the 2's complement and n is the binary	num	ber, then				[B]
	A) m=n'	B)	m=n'+1	C)	m=n'-1	D)	m=n
38.	In the decimal numbering system, what is the	MSI					[A]
	A) The middle digit of a stream of numbers	B)	The digit to the right of the decimal point	C)	The last digit on the right	D)	The digit with the most weigh
39.	Which of the following is not a positional numb	oer s	ystem?				[A]
	A) Roman Number System	B)	Octal Number Syste	C)	Binary Number System	D)	Hexadecimal Number System
40.	Which IC is used for the implementation of 1-t	:o-16	DEMUX?				[A]

	Subject Name & Code : Digital Logic & Computer C	rgani	sation (23ES303D)			Exam Na	me : Q1	
	A) C 74154	B)	IC 74155	C)	IC 74139	D)	IC 74138	
41.	1's complement can be easily obtained by usir	ng						[B]
	A) Comparator	B)	Inverter	C)	Adder	D)	Subtractor	
42.	4 to 1 MUX would have							[A]
	A) Multiplexer	B)	Demultiplexer	C)	Decoder	D)	Digital counter	
43.	A basic multiplexer principle can be demonstra	ated	through the use of a					[C]
	A) Single-pole relay	B)	DPDT switch	C)	Rotary switch	D)	Linear stepper	
44.	A bit in a computer terminology means either (or ·	1.					[A]
	A) TRUE	B)	FALSE	C)	May be	D)	Can't say	
45.	A combinational circuit that selects one from m	nany	inputs are					[D]
	A) Encoder	B)	Decoder	C)	Demultiplexer	D)	Multiplexer	
46.	A digital system consists of types of circ	uits.						[A]
	A) 2	B)	3	C)	4	D)	5	
47.	A Karnaugh map (K-map) is an abstract form of	of	diagram organized as a matrix	of s	quares.			[A]
	A) Venn Diagram	B)	Cycle Diagram	C)	Block diagram	D)	Triangular Diag	gram
48.	A Karnaugh map is a systematic way of reduc	ing v	which type of expression?					[C]
	A) product-of-sums	B)	exclusive NOR	C)	sum-of-products	D)	those with over	bars
49.	A logic circuit that provides a HIGH output for	both	inputs HIGH or both inputs LOW is an					[A]
	A) Ex-NOR gate	B)	OR gate	C)	Ex-OR gate	D)	NOR gate	
50.	A product term containing all K variables of the	e fun	ction in either complemented or uncomple	ment	ed form is called a			[A]
	A) Minterm		Maxterm		Midterm	D)	? term	

	Subject Name & Code : Digital Logic & Computer O	rgani	sation (23ES303D)		Exa	m Nai	me : Q1	
51.	A universal logic gate is one which can be use		-			D)	NAND	[D]
	A) OR	B)	AND	C)	XOR	D)	NAND	
52.	According to boolean law: A + AB = ?	_,		- `			_	[C]
	A) 0	B)	1	C)	A	D)	В	
53.	According to the property of minterm, how mar	пу сс	ombinations will have value equal to 1 for K	inpu	ut variables?			[B]
	A) 0	B)	1	C)	2	D)	3	
54.	All logic operations can be obtained by means	of _						[D]
	A) AND and NAND operations	B)	OR and NOR operations	C)	OR and NOT operations	D)	NAND and NOF	R operations
55.	An OR gate with schematic "bubbles" on its inp	outs	performs the same functions as a(n) gate					[D]
	A) NOR	B)	OR	C)	NOT	D)	NAND	
56.	Convert binary 01001110 to decimal.							[B]
	A) 4E	B)	78	C)	76	D)	116	
57.	Convert decimal 213 to binary.							[B]
	A) 11001101	B)	11010101	C)	1111001	D)	11100011	
58.	Convert hexadecimal value 16 to decimal.							[A]
	A) (22)10	B)	(16)10	C)	(10)10	D)	(20)10	
59.	Decimal number 10 is equal to binary number							[B]
	A) 1110	B)	1010	C)	1001	D)	1000	
60.	Decoder is constructed from							[C]
	A) Inverters		AND gates	C)	Inverters and AND gates	D)	None of the me	
61.	If enable input is high then the multiplexer is							[B]
	, , , , , , , , , , , , , , , , , , , ,							

	Subject Name & Code : Digital Logic & Computer C	Organ	isation (23ES303D)		Exa	m Nai	me : Q1	
	A) Enable	B)	Disable	C)	Saturation	D)	High Impedance	Э
62.	If the decimal number is a fraction then its bina	ary e	equivalent is obtained by the number contin	uous	sly by 2.			[B]
	A) Dividing	B)	Multiplying	C)	Adding	D)	Subtracting	
63.	If two inputs are active on a priority encoder, v	whic	n will be coded on the output?					[A]
	A) The higher value	B)	The lower value	C)	Neither of the inputs	D)	Both of the inpu	ts
64.	In a combinational circuit, the output at any tin	ne d	epends only on the at that time.					[C]
	A) Voltage	B)	Intermediate values	C)	Input values	D)	Clock pulses	
65.	In a multiplexer the output depends on its							[B]
	A) Data inputs	B)	Select inputs	C)	Select outputs	D)	Enable pin	
66.	In Boolean algebra the AND function is repres							[C]
	A) plus	B)	Minus	C)	Multiplication	D)	Division	
67.	In case of XOR/XNOR simplification we have	to lo	ok for the following					[D]
	A) Diagonal Adjacencies	B)	Offset Adjacencies	C)	Straight Adjacencies	D)	Both diagonal a	nd offset adjacencies
68.	Logic circuitry is used to detect							[C]
	A) Underflow	B)	MSD	C)	Overflow	D)	LSD	
69.	The 1's complements requires							[A]
	A) One operation	B)	Two operations	C)	Three operations	D)	Combined Oper	rations
70.	The 2's complement of 5 is							[A]
	A) 1011	B)	101	C)	11	D)	1010	
71.	The addition of +19 and +43 results as in 2's o		•					[D]
	A) 11001010	B)	101011010	C)	101010	D)	111110	

	Subject Name & Code : Digital Logic & Computer O	rganisation (23ES303D)		Exa	m Na	me : Q1	
72.	The basic building blocks of the arithmetic unit	in a digital computers are					[B]
	A) Subtractors	B) Adders	C)	Multiplexer	D)	Comparator	
73.	The basic logic gate whose output is the comp	lement of the input is the:					[C]
	A) OR gate	B) AND gate	C)	inverter	D)	comparator	
74.	The binary number 1110 is equal to the decima	al number					[D]
	A) 3	B) 1	C)	7	D)	14	
75.	The Boolean expression A? B is equivalent to						[B]
	A) AB + AB	B) A'B + AB'	C)	В	D)	Α	
76.	The boolean function A + BC is a reduced form	n of					[B]
	A) AB + BC	B) $(A + B)(A + C)$	C)	A'B + AB'C	D)	A + C)B	
77.	The computer language that is written in binary	codes only is					[A]
	A) machine language	B) C	C)	C++	D)	Pascal	
78.	The decimal number 188 is equal to the binary	number					[A]
	A) 10111100	B) 111000	C)	1100011	D)	1111000	
79.	The design of an ALU is based on	_					[B]
	A) Sequential logic	B) Combinational logic	C)	Multiplexing	D)	De-Multiplexing	
30.	The enable input is also known as						[C]
	A) Select input	B) Decoded input	C)	Strobe	D)	Sink	
31.	The expression Y=AB+BC+AC shows the open	ration					[B]
	A) EX-OR	B) SOP	C)	POS	D)	NOR	
32.	The inputs/outputs of an analog multiplexer/de	multiplexer are					[A]

	Subject Name & Code : Digital Logic & Computer O	Exam Name : Q1				
	A) Bidirectional	B) Unidirectional	C)	Even parity	D)	Binary-coded decimal
83.	The involution of A is equal to					[C]
	A) 1	B) A'	C)	Α	D)	0
84.	The logical sum of two or more logical product	terms is called				[A]
	A) SOP	B) POS	C)	OR operation	D)	NAND operation
85.	The octal equivalent of 1100101.001010 is					[B]
	A) 624.12	B) 145.12	C)	154.12	D)	145.21
86.	The octal numbering system:					[D]
	A) simplifies tasks	B) groups binary num	bers in groups of 4 C)	saves time	D)	simplifies tasks and saves time
87.	The output of an EX-NOR gate is 1. Which inp	it combination is correct	t?			[C]
	A) A = 1, B = 0	B) A = 0, B = 1	C)	A = 0, B = 0	D)	A = 0, B' = 1
88.	The parameter through which 16 distinct value	can be represented is	known as			[C]
	A) Bit	B) Byte	C)	Word	D)	Nibble
89.	The possible number of bit patterns with 8 bits					[D]
	A) 128	B) 8	C)	16	D)	256
90.	The prime implicant which has at least one ele	ment that is not present	in any other implicant is kn	own as		[A]
	A) Essential Prime Implicant	B) Implicant	C)	Complement	D)	Prime Complement
91.	The sign magnitude representation of binary no	ımber + 1101.011 is				[A]
	A) 1101.011	B) 11101.011	C)	110.1	D)	10010.1
92.	The time required for a gate or inverter to chan	ge its state is called				[C]
	A) Rise time	B) Decay time	C)	Propagation time	D)	Charging time

	Subject Name & Code : Digital Logic & Computer C	Organ	isation (23ES303D)		I	Exam Na	ime: Q1	
93.	The two input MUX would have							[A]
	A) 1 select line	B)	2 select line	C)	3 select line	D)	4 select line	
94.	The value of radix in binary number system is							[A]
	A) 2	B)	8	C)	16	D)	1	
95.	The word demultiplex means							[D]
	A) One into many	B)	Many into one	C)	Distributor	D)	One into many	as well as Distributo
96.	There are cells in a 4-variable K-map							[B]
	A) 12	B)	16	C)	18	D)	8	
97.	There are Minterms for 3 varia	bles	(a, b, c).					[C]
	A) 6	B)	7	C)	8	D)	5	
98.	There are many situations in logic design in w operations.	hich	simplification of logic expression is possible	e in t	terms of XOR and			[A]
	A) X-NOR	B)	XOR	C)	NOR	D)	NAND	
99.	These logic gates are widely used in		design and therefore are available in I	C for	m.			[B]
	A) Sampling	B)	Digital	C)	Analog	D)	Systems	
100.	Using the transformation method you can real	ize a	any POS realization of OR-AND with		_only.			[D]
	A) XOR	B)	NAND	C)	AND	D)	NOR	
101.	What is the addition of the binary numbers 11	0110	011010 and 010100101?					[C]
	A) 111001000	B)	1100110110	C)	11101111111	D)	10011010011	
102.	What is the minimum number of two input NA	ND g	gates used to perform the function of two in	put C	DR gates?			[C]
	A) One	B)	Two	C)	Three	D)	Four	
103.	What is the primary motivation for using Boole	ean a	algebra to simplify logic expressions?					[D]

Page No.: 10

	Subject Name & Code : Digital Logic & Computer C)rgani	sation (23ES303D)	Exam Name : Q1					
	it may make it easier to understand the overall function of the circuit	B)	It may reduce the number of gates	C)	It may reduce the number of inputs required	D)	all of these		
104.	A source program is usually in						[C]		
	A) Assembly language	B)	Machine level language	C)	High-level language	D)	Natural language		
105.	Which of the following memory of the compute	er is ı	used to speed up the computer processing	?			[A]		
	A) Cache	B)	RAM	C)	Accumulators	D)	Stacks		
106.	The ALU makes use of to store the in	term	ediate results.				[A]		
	A) Accumulators	B)	Registers	C)	Неар	D)	Stack		
107.	The control unit controls other units by genera	ting					[B]		
	A) Control signals	B)	Timing signals	C)	Transfer signals	D)	Command Signals		
108.	are numbers and encoded characters,	gene	erally used as operands.				[B]		
	A) Input	_	Data	C)	Information	D)	Stored Values		
100							Γ Λ 1		
109.	bus structure is usually used to connect A) Single bus		Multiple bus	C)	Star bus	D)	[A]		
	A) Single bus	D)	wulliple bus	C)	Stal bus	(ט	Nambus		
110.	Which of the following computer memory is fas	stest	?				[A]		
	A) Register	B)	Hard disk	C)	RAM	D)	ROM		
111.	Which of the following circuit is used to store of	one b	oit of data?				[A]		
	A) Flip Flop	B)	Decoder	C)	Encoder	D)	Register		
112.	Which of the following is a way in which the co	mnc	ments of a computer are connected to each	n oth	ner?		[B]		
	A) Computer parts	-	Computer architecture		Computer hardware	D)			
		-,	20	٠,		-,	2 2p 2.0. 3. ga.m_atton		
113.	Which of the following circuit convert the binar	y da	ta into a decimal?				[C]		
	A) Decoder	B)	Encoder	C)	Code converter	D)	Multiplexer		

114.	A three state gate defined as:						[C]
	A) Analog circuit	B) Analog fundamentals	C)	Digital circuit	D)	Auxiliary Bus	
115.	Which of the following memory unit communication	ates directly with the CPU?					[B]
	A) Auxiliary memory	B) Main memory	C)	Secondary memory	D)	Heap Memory	
116.	The collection of 8-bits is called as -						[A]
	A) Byte	B) Nibble	C)	Word	D)	Record	
117.	Which of the following computer bus connects	the CPU to a memory on the system board?					[C]
	A) Expansion bus	B) Width bus	C)	System bus	D)	Auxiliary Bus	
118.	In 3 state gate third position termed as high im	pedance state which acts as:					[A]
	A) Open circuit	B) Close circuit	C)	Logic 1	D)	Logic 0	
119.	In which of the following form the computer sto	ores its data in memory?					[C]
	A) Hexadecimal form	B) Octal form	C)	Binary form	D)	Decimal form	
120.	Which of the following is a group of bits that tel	lls the computer to perform a particular operation	on?				[C]
	A) Accumulator	B) Register		Instruction code	D)	Accumulator &	Registe
121.	Where is the document temporarily stored duri	ing working on a document on PC?					[C]
	A) ROM	B) CPU	C)	RAM	D)	Flash memory	
122.	The status bit is also called as -						[C]
	A) Unsigned bit	B) Signed bit	C)	Flag bit	D)	Unsigned & Sig	ned bit
123.	Which of the following register keeps track of the	the instructions stored in the program stored in	mem	norv?			[C]
	A) Accumulator	B) Address Register		Program Counter	D)	Index Register	- -
124.	The Program Counter is also called as -						[A]

	Subject Name & Code : Digital Logic & Computer Organisation (23ES303D)				Exam Name : Q1			
	A) Digit	B)	Kilobyte	C)	Bit	D)	Byte	
135.	A computer works on anumber system A) Binary	B)	Octal	C)	Decimal	D)	Hexadecimal	[A]
136.	Which of the following is the largest unit of stor A) GB	_	? KB	C)	МВ	D)	ТВ	[D]
137.	Information on a computer is stored as A) Analog data	B)	Digital data	C)	Modern data	D)	Watts data	[B]
138.	Decimal number system is the group of r A) 0 to 1		oer 0 to 9	C)	0 to 7	D)	0 to 9 and A to	[B] F
139.	Hexadecimal number system has base. A) 2	B)	8	C)	10	D)	16	[D]
140.	A word whose individual bits represent a contra A) Command word		gnal is Control word	C)	Co-ordination word	D)	Generation wor	[B] rd
141.	Arithmetic operation are carried by such micro A) register		ration on stored numeric data available in : data		hardwired	D)	normalized	[B]
142.	RTL stands for A) Register transfer language	B)	Random transfer language	C)	Arithematic transfer language	D)	rambus transfe	[A] r language
143.	In memory transfer location address is supplie A) ALU		that puts this on address bus:	C)	MAR	D)	MDR	[B]
144.	In memory read the operation puts memory ad A) PC		ss on to a register known as :	C)	MAR	D)	MDR	[C]

B) MDR

B) Multiple Instruction Multiple Data

A) Registers

160. What does MIMD stand for?

A) Multiple Instruction Memory Data

C) PC

C) Memory Instruction Multiple Data

D) IR

[B]

D) Memory Information Memory Data