Projectile Motion

Kopaliani Mate

Introduction

Edge detection Algorithm

- Transform image to grayscale
- Perform Gaussian blurr
- Use Sobel Operator on the image and calculate Magnitude

$$S_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \quad S_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$
 (1)

• calculate the Magnitude

$$\begin{split} h_x &= I * S_x \quad h_y = I * S_y \\ M &= \sqrt{h_x^2 + h_y^2} \end{split} \tag{2}$$

• do binary thresholding

• use DBSCAN algorithm to detect the balls and also the starting points where we can shoot from (in blue)

Shooting Method

Projectile Motion give as Second order ODE

$$\frac{d^2y}{dt^2} = -g\tag{3}$$

where

- g = 9.81
- y(t) is the position of the ball

initial conditions $y(a) = a_0, y(b) = b_0$

which in our case is starting position of random point and the end position which is the center of the ball we want to hit.

Solution

we solve by shooting method. first transform the ODE into first order

$$\frac{dy}{dt} = v$$

$$\frac{dv}{dt} = -g$$
(4)

written in vector form

$$S(t) = \begin{bmatrix} y(t) \\ v(t) \end{bmatrix}$$

$$\frac{dS(t)}{dt} = \begin{bmatrix} 0 & -1 \\ 0 & -g/v \end{bmatrix} S(t)$$
(5)

we use RK4, Backward Euler and Euler to find the optimal velocity in shooting method

ullet formulation of Backward Euler (**A-stable** method)

$$S_{n+1} = S_n + hF(t_{n+1}, S_{n+1}) (6)$$

since we have S_{n+1} on both sides we are calculating next iteration by minimizing the residual

$$R(S_{n+1}) = S_{n+1} - S_n - hF(t_{n+1}, S_{n+1})$$
 (7)

using newton method to achieve $R(S_{n+1}) = 0$ with jacobian

$$J(S_{n+1}) = I - h \frac{\partial F(t_{n+1}, S_{n+1})}{\partial S_{n+1}} \tag{8}$$

• formulation of RK4

$$S_{n+1} = S_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \tag{9}$$

$$\begin{aligned} k_1 &= F(t_n, S_n) \\ k_2 &= F\left(t_n + \frac{h}{2}, S_n + \frac{h}{2}k_1\right) \\ k_3 &= F\left(t_n + \frac{h}{2}, S_n + \frac{h}{2}k_2\right) \\ k_4 &= F(t_n + h, S_n + hk_3) \end{aligned} \tag{10}$$

• formulation of Euler

$$S_{n+1} = S_n + hF(t_n, S_n) (11)$$

where

- F(t,S) is the system of equations defined as $F(t,s) = \frac{dS}{dt}$
- \bullet h is a step size
- \bullet t_n is the current time
- ullet S_n is the state vector at time t_n

analysis and comparison of methods

• Backward Euler

- 1 target coordinates: 520, 118
 2 last trajectory point: 520.0, 117.9999999981083
 3 target coordinates: 670, 118
 4 last trajectory point: 670.0, 117.9999999996071
 5 target coordinates: 219, 118
 6 last trajectory point: 219.0, 117.999999999999
 7 target coordinates: 73, 116
 8 last trajectory point: 73.0, 115.9999999999999
 9 target coordinates: 369, 118
 10 last trajectory point: 369.0, 117.9999999991633
- Rk4 output

1	target coordinates: 520, 118
2	last trajectory point: 520.0, 117.9999999972351
3	target coordinates: 670, 118
4	last trajectory point: 670.0, 117.9999999722058
5	target coordinates: 219, 118
6	last trajectory point: 219.0, 118.0000000000273
7	target coordinates: 73, 116
8	last trajectory point: 73.0, 116.00000000000102
9	target coordinates: 369, 118
10	last trajectory point: 369.0, 117.9999999993452

• Euler output

```
1 target coordinates: 520, 118
2 last trajectory point: 520.0, 117.99999999974534
3 target coordinates: 670, 118
4 last trajectory point: 670.0, 117.99999999959255
5 target coordinates: 219, 118
6 last trajectory point: 219.0, 118.0000000000273
7 target coordinates: 73, 116
8 last trajectory point: 73.0, 115.9999999999864
9 target coordinates: 369, 118
10 last trajectory point: 369.0, 118.0000000001346
```

- Rk4 method achieves high accuracy, with errors on the order of 10^{-10} to 10^{-12} .
 - ▶ but the errors result in less consistent form compared to backward euler.
- \bullet Euler method also reaches target coordinates with error on the order of 10^{-10} to 10^{-12} aswell.
 - ▶ Regular Euler also has non consistent error.
- Backward Euler
 - \blacktriangleright The errors are consistently small across all target coordinates (i.e 115.99999999999864 vs~116.00000000000102)

References

heplful article for ODE

 $\underline{https://pythonnumerical methods.studentorg.berkeley.edu/notebooks/chapter 23.02-The-Shooting-Method.html}$