Price Formulation of Constant Function Market Makers

Colin Grove

HydraDX

1 Price Functions

1.1 Definition of Price Functions

The purpose of this research note is to explore a way of defining Constant Function Market Makers (CFMMs) by their price functions p(x, y), where x is the quantity of one asset, y the quantity of the second asset, and p(x, y) the spot price of x with numeraire y.

Given intervals $I_1 \subset [0, \infty)$ and $I_2 \subset [0, \infty)$, we define $p: I_1 \times I_2 \to [0, \infty)$ to be a **price function** provided that p(x, y)

- 1. is non-increasing in x,
- 2. is non-decreasing in y,
- 3. is non-negative,
- 4. is continuous,
- 5. is Lipschitz continuous in y on any closed interval $I \subset I_2$.

We next prove existence of a CFMM with spot price equal to the any given price function.

1.2 Existence of CFMM for p(x, y)

We would like to solve the following ODE:

$$u'(x) = -p(x, u(x))$$
$$u(x_0) = y_0$$

It follows from the last condition that the Picard-Lindelof theorem gives us a unique soluction u(x) to the ODE on any closed interval $I \subset I_2$. Since the solution is unique, it can be extended to all of I_2 .

Observe then that $K(x,y) = \frac{y}{u(x)} = 1$ is a constant function from which a CFMM can be built.

Furthermore,

$$\frac{\partial K}{\partial x} = -\frac{y}{u^2(x)}u'(x) = \frac{y}{u^2(x)}p(x,y)$$
$$\frac{\partial K}{\partial y} = \frac{1}{u(x)}$$

Thus the spot price of the CFMM using K(x,y) as the constant function will be p(x,y).

1.3 Properties

We define the weights intuitively as the percentages of the pool made up of each asset:

$$W_x = \frac{xp(x,y)}{xp(x,y) + y}$$
$$W_y = \frac{y}{xp(x,y) + y}$$

Observe that this implies that $p(x,y) = \frac{W_x}{W_y} \frac{y}{x}$, the familiar constant product CFMM price formula.

2 Scale-Invariant Price Functions

We say a price function is **scale-invariant** if p(kx, ky) = p(x, y).

3 Composing Price Functions