Estimating Probabilities From data

- MLE Recap:

- Seek an estimate of that maximizes the probability of the observed data

A fundion of $f(x; \theta)$ $f(x; \theta)$ $f(x; \theta)$ $f(x; \theta)$ $f(x; \theta)$

-To do so, we define the likelihood fundion $L(\theta) = L(\theta|X) = f(X; \theta)$

- MLE principle firel = argmax log (f(x;0))

Remark: Given that we observe the doita, which parameter (s) would make it most likely that we observe what we observe what

-Extension to the data set

 $L(\theta) = L(\theta|D) = f(p;\theta)$ $= f(x_i|\theta) - f(x_i|\theta) - ... f(x_i|\theta) = \prod_{i=1}^{n} f(x_i|\theta)$ $= f(x_i|\theta) - f(x_i|\theta) - ... f(x_i|\theta)$

=) θ_{mlf} = argmax $\log \left(\prod_{i \neq j} f(x_i; \theta) \right)$ = arg mix $\sum_{i \neq j} \left(\log f(x_i; \theta) \right)$ Summary:

- MLE gives the explanation of the data we observed.

-If n is large and $f(x|\theta)$ is chosen correctly, then MLE will find the true parameter.

-MLE can oversit the data if n is small.

-If f(xlo) is chosen incorrectly, then MLC combe terribly morg.

MAP (Another way of estimating probabilities from data)

MLE: Estimate of that makes P(D) maximized.

RV. Porevuty

- MLE is frequentist statistics, meeming that & is just some constant.

- In Bayesian statistics, & can be r. v.

There is the distribution

(0) TEncode your belief of 0

Bayes rule: likelihood prior and 9

P(O|D) = P(D|O) P(O)

Posterior Thormalized form

2) P(O|D) & P(D|O) P(O)

P(DD) - which parameter makes our data the most likely

P(DD) - Given that we have data, what is the most likely porenter

MAP Principle: first θ_{MAP} = are many log $P(\theta | D)$.

= are many log $P(D|\theta) P(\theta)$ = are m

Simple Scenerario: coin toss w/ prior knowledge

- EX, suppose you toss a coin and observe $D = \{H, H, H, H, H\}$ $MLE \Rightarrow \theta_{MLE} = \frac{n_H}{n} = 1$

- If you don't trust your estimate, then you can Fix it by

 $\theta = \frac{n_{H} t m}{n + 2m}$

result in m = 0.5 (your hurch is close to 0.5)

- For longe n, 0 -> OMLE

-For small n, this incorporates your "prior belief" about what a should be

- Let Formalize this using MAP principle

Natural choice for the prior $P(\theta)$ is the Beta distribution, $P(\theta) = \frac{\theta^{N-1}(1-\theta)}{B(\theta,\beta)}$ constant

1000 P(0) & 1000 (1-0) B-1 yrmo

 $P(\theta|D) \propto P(D|\theta) P(\theta) \propto {n \choose n_H} \theta^{n_H} \theta^{$

 $\frac{1}{2} \frac{\partial}{\partial AP} = \frac{h_{+} + (\lambda - 1)}{2 + (\lambda - 1)}$