《自动检测技术与系统实验》实验报告

系列三: 涡流传感器 实验

学 校: 南开大学

学 院: 人工智能学院

专 业: 智能科学与技术

实验成员: 2211292 郑皓文

2212055 张箫鹏

2212266 张恒硕

实验二十二 涡流传感器的位移特性实验

一、实验目的

- 1、了解涡流式传感器的基本结构。
- 2、掌握涡流式传感器的工作原理及性能。

二、实验所用单元

涡流式传感器和铁片、涡流式传感器转换电路板、直流稳压电源、数字电压表、位移台架。

三、实验原理及电路

通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,引起线圈的电感发生变化。而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。实验电路如图 22–1 所示,采用电容式三点式振荡器,用于产生高频电流,电流的大小与电感 L_2 (即涡流感应头中的线圈)的大小有关,滤波后输出直流信号。

图 22-1 涡流式传感器实验原理图

四、实验步骤

- 1、将涡流式传感器装在位移台架上,并与转换电路板相连。
- 2、将测微器测杆与铁片连接在一起。
- 3、接通电源,适当调节测微器的高度,使铁片与涡流感应头刚刚接触,记下此时测微器读数和输出电压,并从此点开始向上移动铁片,将位移量 X 与输出电压 U₀记入下表中。建议每隔 0.2mm 读一次数值,共读取 20 组数据。

表 22-1

X (mm)	15	15.2	15. 4	15.6	15.8	16	16.2	16.4	16.6	16.8
$U_{o}(V)$	0	0	0	0	0	1.64	2. 36	2.92	3. 67	4. 47
X (mm)	17	17.2	17.4	17.6	17.8	18	18.2	18.4	18.6	18.8
U ₀ (V)	5. 27	6. 24	7. 18	8. 22	9. 34	10. 4 7	10.6 1	10. 7 1	10.8 1	10. 9 0

五、实验报告

1、根据表 22-1 的数据,画出涡流式传感器的输入/输出特性曲线 $U_0 = f(X)$,并求出拟合曲线的方程。

图 22-2 实验二十二输入输出特性曲线

灵敏度:

灵敏度:
$$k = \frac{\Delta y}{\Delta x} = k_{校准} = \frac{10.90 - 0}{18.8 - 15} = 2.868 \text{ V/mm}$$

非线性误差:

图 22-3 实验二十二拟合直线

拟合直线: y = 3.551692x - 54.783090

最大误差: $\Delta L_{max} = 1.507714V$

非线性误差:
$$\delta = \frac{\Delta L_{max}}{L} \times 100\% = 13.8322\%$$

最小二乘法误差:
$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_{i \text{ 真实}} - y_{i \text{ 拟合}})^2} = 0.763049V$$

- 2、涡流式传感器的量程与哪些因素有关?
- 被测物体的材料: 物体的材料决定导电性能和磁导率, 导致电涡流强度不同, 进而影响传感器的量程。
- 被测物体、线圈等的形状:物体的形状会改变磁场的分布,从而影响涡流的产生和分布,这可能会影响传感器的量程。线圈的尺寸、匝数以及材料等都会影响传感器的量程。
- 工作频率:激励线圈中的电流频率会影响电涡流的深度和强度。
- 环境因素:周围环境的温度、湿度以及其他电磁干扰源也会影响到传感器的工作状态,进而影响量程。

实验二十三 被测体材质对涡流传感器特性的影响实验

一、实验目的

了解不同的被测体材料对涡流式传感器特性的影响。

二、实验所用单元

与实验二十相同,另加铜和铝的被测体小圆盘。

三、实验原理及电路

涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有 不同的特性。

四、实验步骤

实验步骤与实验二十二相同,只是分别用铜圆盘和铝圆盘代替实验二十二中的铁圆盘,并将实验数据分别记入表 23-1 和表 23-2 中。

注:由于电路中自带的增益较大,铜、铝所测得的结果变化极小。

X (mm)	14	14.2	14.4	14.6	14.8	15	15. 2	15. 4	15.6	15.8
U ₀ (V)	10. 8 7	10.9 8	11.0 2	11. 0 5	11. 0 7	11. 0 9	11.1	11. 1 2	11. 1 2	11. 1 3
X (mm)	16	16.2	16.4	16.6	16.8	17	17.2	17.4	17.6	17.8
U ₀ (V)	11. 1 4	11. 1 5	11. 1 5	11. 1 6	11. 1 6	11. 1 6	11. 1 7	11. 1 7	11. 1 7	11. 1 7

表 23-1 被测体为铜圆盘时的位移与输出电压数据

表 23-2 被测体为铝圆盘时的位移与输出电压数据

X (mm)	14.6	14.8	15	15. 2	15. 4	15.6	15.8	16	16. 2	16. 4
U ₀ (V)	11.0	11.0	11.0	11.0	11.1	11.1	11.1	11.1	11.1	11.1
	2	3	6	8	0	1	2	3	4	5
X (mm)	16.6	16.8	17	17.2	17.4	17.6	17.8	18	18. 2	18.4
U ₀ (V)	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1
	5	6	6	6	6	7	7	7	8	8

五、实验报告

1、根据表 23-1 和表 23-2 的数据,分别画出特性曲线,并与实验二十二的实验结果一起进行比较。

图表 23 实验二十三实验结果展示图

可以发现,铜和铝与传感器挨着的时候,其初值就基本与铁离较远时基本不再变化的值相仿,在移动时也基本没有变化。

铁作为磁性材料,相比于非磁性的铜和铝,其电导率较低,磁导率较高。 前者导致涡流在磁导率接近于空气的铜和铝中形成时,不会引起外部磁场的显 著变化,而在铁中形成时,会有显著变化。后者导致相同频率下,铁中的涡流 渗透深度会小于铜或铝中的渗透深度。 2、如果被测体为非金属,如何进行位移的测量?

● 间接测量法:

- 附加金属反射层:在非金属物体上加一层金属箔或导电涂层,利用电涡流传感器检测该层的位置变化。
- 磁性标记法:在非金属物体上固定小磁铁或其他磁性标记物,然后使用 能够感应磁场变化的传感器来检测磁性标记的位置变化。
- 复合传感器系统:结合其他类型的传感器,与电涡流传感器一起使用,以实现非金属物体位移的测量。