

RELATÓRIO DE LEVANTAMENTO RADIOMÉTRICO AMBIENTAL E MEDIDA DA RADIAÇÃO DE FUGA

Estabelecimento: Grupo Fleury – A+ Campo Belo

Endereço: Rua Bernardino de Campos, 182

Cidade: São Paulo - SP

Responsável: Dr. Sergio Setsuo Maeda - CRM: 94164

Equipamento de Densitometria Óssea

Validade deste Relatório: Não havendo substituições e/ou manutenções nos componentes da máquina ou dispositivos periféricos, este relatório é <u>válido por 4 anos</u>.

Data de Execução das Medidas: 07 de Julho de 2016

Data deste Relatório: 08 de Julho de 2016

Ordem de Serviço: 003F

Este relatório contém cinco (05) páginas e foi elaborado por:

Renato Dimenstein

Físico em Medicina CNEN 004-92

RELATÓRIO DE LEVANTAMENTO RADIOMÉTRICO

1.0 Descrição da Instalação:

O presente relatório aferiu os sistemas de blindagens e as taxas de exposição às radiações do aparelho de densitometria óssea de acordo com os requisitos da portaria do Centro de Vigilância Sanitária CVS/Portaria 453/98.

Equipamento	Densitometria	Qtde	Barreiras Físicas	Carga de Trabalho
	Óssea			semanal
Marca	General Electric	4	Paredes em alvenaria	W = 2100
				mA.min/sem
Modelo	Lunar DPX	1	Acesso tipo porta	
Série:	151741	1	Distância > 1m do Comando	
kVp Máximo	76	Não	Laje Superior	
mA:	3	Sim	Laje Inferior	

2.0 Medidas de Radiação

- (a) Radiação de Fuga: O equipamento de Densitometria foi avaliado com o detector a 100cm de distância e técnica de 76 kVp e 0,75 μA durante o tempo correspondente a um exame. Executaram-se medições como a câmara de ionização para cinco (5) diferentes posições ao redor da ampola de raios-X. As leituras foram adquiridas no modo taxa de dose (mGy/h). Características do monitor de radiação: O teste de radiação de fuga foi executado com uma câmara de ionização de 10x5-180cm³ e um monitor modelo 9010 fabricado pela Radcal -corp, conforme certificado em anexo. Os valores para pressão e temperatura (21°C) foram corrigidos por um fator 0,99.
- (b) Levantamento Radiométrico Ambiental: Os procedimentos de medidas de dose acumulada doses para a radiação espalhada da unidade de raios-X foram executados em regime usual de operação. O feixe direcionado verticalmente para baixo atingiu um phantom (Escada de Cobre dentro da caixa de água) de 40x30x20 cm, o qual tem como finalidade a simulação do espalhamento da radiação no paciente. A dose acumulada foi medida para 5 diferentes posições para paredes, 3 para portas de acesso, 3 para áreas anexas nas condições normais de operação de forma a estimar a eficiência das barreiras de proteção. Características do monitor de radiação: O teste de levantamento radiométrico foi executado com uma câmara de ionização de 10x5-1800cm³ e um monitor modelo 9010 fabricado pela Radcal -corp, conforme certificado em anexo. Os valores para pressão e temperatura (21°C) foram corrigidos por um fator 0,99.

3.0 Tabela de resultados

Tipo de medida realizada	Condição	Validade	Necessidade de retorno
			após correção
Levantamento Radiométrico	S	4 anos (*)	Não
Radiação de Fuga	S	4 anos (**)	Não
S = satisfatório $NS = não sati$	sfatório		

(*) Validade máxima. Pode ser menor, caso haja alteração no "layout" da instalação ou manutenção na máquina. Nesse caso o relatório deverá ser refeito. O teste de fuga só deverá ser refeito caso o cabeçote ou cúpula da máquina sofra manutenção.

 Laje Inferior (ANC)

 F1 a F5
 Kalas de Coleta (ANC)
 ANC: Área Controlada (Limite – 5mSv/ano)

 T=1,00 U=0,25
 Salas de Coleta (ANC)
 ANC: Área Não Controlada (Limite – 1mSV/ano)

Layout não esta em escala e consta com as distâncias utilizadas para as medidas de radiação para fins de atenuação das barreiras

4.0 Resultados – Levantamento Radiométrico

* Dose externa (mSv)*60(s/min)/[I] (mA) *W (mA*min/sem)*U*T

Pac/dia 20 mA 3 Àrea da sala ex/dia 20 dias/sem 7 9.0 m²

tempo/ex 300 s **W (mA.min/sem)** min/sem 700,0 **2100**

Adequado Dose Pub - 0,5 Dose Dose anual mSv Trab-Posição **Pontos** Blindagem Т U Direção do Feixe (nSv) (mSv/min/mA) (mSv/ano) 5mSv Vertical para cima Comando A1 1,00 0,25 6,67E-08 1,75E-03 Sim A2 1,00 0,25 Vertical para cima 6,67E-08 1,75E-03 1 Sim 1.00 0.25 Vertical para cima 6,67E-08 Sim A3 1,75E-03 Vertical para cima A4 1,00 0,25 1 6,67E-08 1,75E-03 Sim A5 1,00 0,25 Vertical para cima 1 6,67E-08 1,75E-03 Sim 0.25 Vertical para cima Almoxarifaco B1 Parede 0.06 1 6,67E-08 1,05E-04 Sim **B**2 0,06 0,25 Vertical para cima 6,67E-08 1,05E-04 Sim 1 В3 0,06 0,25 Vertical para cima 1 6,67E-08 1,05E-04 Sim B4 0.25 Vertical para cima 0.06 1 6,67E-08 1,05E-04 Sim 0,25 6,67E-08 **B5** 1,00 Vertical para cima 1,75E-03 Sim Acesso C1 Porta 0,25 0,25 Vertical para cima 1 6,67E-08 4,38E-04 Sim Vertical para cima C2 0,25 0,25 6,67E-08 4,38E-04 Sim 1 C3 0,25 0,25 Vertical para cima 6,67E-08 4,38E-04 Sim 1 D1 0,25 Vertical para cima 0,25 6,67E-08 Corredor Parede 1 4,38E-04 Sim D2 0,25 0,25 Vertical para cima 6,67E-08 1 4,38E-04 Sim D3 0,25 0,25 Vertical para cima 1 6,67E-08 4,38E-04 Sim D4 0,25 0,25 Vertical para cima 6,67E-08 4,38E-04 Sim D5 Vertical para cima 0,25 0,25 1 6,67E-08 4,38E-04 Sim 0,25 Sala de E1 Parede 0.25 Vertical para cima 1 6,67E-08 4,38E-04 Sim Coleta E2 0,25 0,25 Vertical para cima 6,67E-08 4,38E-04 Sim 0.25 Vertical para cima E3 0.25 1 6,67E-08 4,38E-04 Sim E4 0,25 0,25 Vertical para cima 6,67E-08 4,38E-04 Sim 1 E5 0,25 0,25 Vertical para cima 1 6,67E-08 4,38E-04 Sim Laje Superior F1 Teto 1,00 0,25 Vertical para cima 1 6,67E-08 1,75E-03 Sim 0,25 6,67E-08 F2 1,00 Vertical para cima 1 1,75E-03 Sim F3 1,00 0,25 Vertical para cima 6,67E-08 Sim 1 1,75E-03 Vertical para cima F4 1.00 0,25 1 6,67E-08 1,75E-03 Sim 0,25 Vertical para cima F5 1,00 6,67E-08 1,75E-03 Sim

Tabela de dados relativos ao Teste de Radiação de Fuga

Taxa [mGy/hora] = Expos_{med} mGy * 5,0 * Corrente_{cont} (mA) / tempo _{medida} (seg) * Corrente _{med} (mA)

(Obs.: A Taxa de Exposição não deve ultrapassar 1,0 mGy/h)

Ponto	Expos (uR)	Taxa Expos.(mR/h)	I medida 0,75 mA	fuga Tubo de
1	0,00	0,00	I contínua 3 mA	1 2 3 raios-X
2	0,00	0,00	t (seg) medi 300 seg	14105-74
3	0,00	0,00	·	
4	0,00	0,00	max tx de fuga	← _
5	0,00	0,00	0,00 uGy/h	
6	0,00	0,00	Taxa de fuga < 1,0 mGy/h - Satisfatóri	o 4 5 6

5.0 Conclusões

- (a) A radiação de fuga do cabeçote do equipamento radiológico é inferior aos limites da ANVISA.
- (b) A instalação está segura sob o ponto de vista de Proteção Radiológica, indicando que as blindagens da sala estão adequadas com relação ao público e trabalhadores.

Renato Dimenstein Físico em Medicina CNEN 004-92