Calcul vectoriel et produit scalaire

I) Définition du produit scalaire

Définition:

On appelle produit scalaire de deux vecteurs \vec{u} et \vec{v} non nuls le <u>réel</u> noté \vec{u} . \vec{v} défini par

 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$ \leftarrow attention, c'est un réel

où (\vec{u}, \vec{v}) représente l'angle formé par les vecteurs \vec{u} et \vec{v} en tournant dans le sens trigonométrique.

Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$, le cosinus de l'angle (\vec{u}, \vec{v}) n'est pas défini. Dans ce cas, le produit scalaire est défini égal à 0.

 \vec{u} . \vec{v} se lit « \vec{u} scalaire \vec{v} ».

Remarques:

- Le cosinus d'un angle étant égal au cosinus de l'angle opposé, on a $\cos(\vec{v}, \vec{u}) = \cos(\vec{u}, \vec{v})$ et par suite $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- Il n'y a pas d'interprétation géométrique particulière du produit scalaire

Propriété:

Soient A, B et C trois points distincts du plan.

Soit H le projeté orthogonal de C sur (AB).

Si \widehat{BAC} est un angle aigu, alors \overrightarrow{AB} . $\overrightarrow{AC} = AB \times AH$

Si \widehat{BAC} est un angle obtus, alors $\overrightarrow{AB}.\overrightarrow{AC} = -AB \times AH$

Si l'angle \widehat{BAC} est un angle aigu, alors

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{AB},\overrightarrow{AC}) = AB \times AH$$

Si l'angle $\widehat{\mathit{BAC}}$ est un angle obtus, alors

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{AB},\overrightarrow{AC})$$

$$= AB \times AC \times (-\cos(\overrightarrow{AC}, \overrightarrow{AH}))$$

$$= -AB \times AC \times \cos(\overrightarrow{AC}, \overrightarrow{AH})$$

$$= -AB \times AH$$

<u>Cas particuliers</u>: on suppose $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$

 $\vec{u}.\,\vec{v} = \|\vec{u}\| \times \|\vec{v}\| \Leftrightarrow \vec{u}$ et \vec{v} sont colinéaires et de même sens

 $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\| \Leftrightarrow \vec{u}$ et \vec{v} sont colinéaires et de sens contraire

$$\vec{u}.\vec{v} = \|\vec{u}\| \times \|\vec{v}\|$$

$$\Leftrightarrow \cos(\vec{u}, \vec{v}) = 1$$

 \Leftrightarrow la mesure principale de l'angle (\vec{u}, \vec{v}) est 0

 $\Leftrightarrow \vec{u}$ et \vec{v} sont colinéaires et de même sens

$$\vec{u}.\vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$$

$$\Leftrightarrow \cos(\vec{u}, \vec{v}) = -1$$

 \Leftrightarrow la mesure principale de l'angle (\vec{u}, \vec{v}) est π

 $\Leftrightarrow \vec{u}$ et \vec{v} sont colinéaires et de même contraire

On a donc $\vec{u} \cdot \vec{u} = ||\vec{u}||^2$

Notation : on peut écrire $\vec{u} \cdot \vec{u} = \vec{u}^2$

<u>Définition</u>:

Deux vecteurs \vec{u} et \vec{v} sont dits orthogonaux si la mesure principale de l'angle (\vec{u}, \vec{v}) est $\frac{\pi}{2}$ ou $-\frac{\pi}{2}$.

Cela signifie que deux droites de vecteurs directeurs respectifs \vec{u} et \vec{v} sont perpendiculaires. Par convention, le vecteur nul $\vec{0}$ est orthogonal à tout vecteur.

Propriété :

Les vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si \vec{u} . $\vec{v}=0$

La démonstration est immédiate avec la définition retenue de l'orthogonalité de deux vecteurs car $\cos\left(\frac{\pi}{2}\right) = \cos\left(-\frac{\pi}{2}\right) = 0.$

Exemples de calcul du produit scalaire :

a) On considère un triangle équilatéral ABC de côté c

$$\overrightarrow{AB}.\overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos(\overrightarrow{AB},\overrightarrow{AC})$$
$$= c^2 \times \cos(\frac{\pi}{3})$$
$$= \frac{c^2}{3}$$

On peut aussi retrouver ce résultat en considérant le projeté orthogonal H de C sur (AB).

On a
$$AH = \frac{AB}{2} = \frac{c}{2}$$
 et donc \overrightarrow{AB} . $\overrightarrow{AC} = AH \times AB = \frac{c^2}{2}$

b) On considère un carré ABCD de côté c

On a:

$$\overrightarrow{AB}.\overrightarrow{AC} = AB^2 = c^2$$
 $\overrightarrow{AB}.\overrightarrow{DC} = AB^2 = c^2$
 $\overrightarrow{AB}.\overrightarrow{AD} = 0 \text{ car } \overrightarrow{AB} \perp \overrightarrow{AD}$
 $\overrightarrow{AB}.\overrightarrow{CA} = -AB^2 = -c^2$

 $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AH = 6 \times 2 = 12$

 $\overrightarrow{AB}.\overrightarrow{AC} = -AB \times AH = -6 \times 2 = -12$

Remarque : dans les deux cas, on a $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AH}$

II) Propriétés du produit scalaire

Propriétés:

Soient \vec{u} , \vec{v} et \vec{w} trois vecteurs.

Soit $\lambda \in \mathbb{R}$.

On a les relations suivantes :

(1)
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

(symétrie)

(2)
$$\vec{u}.(\vec{v} + \vec{w}) = \vec{u}.\vec{v} + \vec{u}.\vec{w}$$

(distributivité à gauche)

(3)
$$(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$$

(distributivité à droite)

(4)
$$(\lambda \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\lambda \vec{v}) = \lambda (\vec{u} \cdot \vec{v})$$

<u>Démonstrations</u>:

On suppose les vecteurs non nuls et $\lambda \neq 0$.

Les cas de nullité peuvent être démontrés séparément et sont immédiats.

(1)
$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$$

= $||\vec{u}|| \times ||\vec{v}|| \times \cos(-(\vec{v}, \vec{u}))$
= $||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{v}, \vec{u}) \text{ car } \cos(-x) = \cos(x)$
= $||\vec{v}|| \times ||\vec{u}|| \times \cos(\vec{v}, \vec{u})$
= $\vec{v} \cdot \vec{u}$

(2) La démonstration est faite dans un cas particulier. Elle est similaire dans les autres cas.

On considère 4 points A, B, C et D tels que $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$ et $\vec{w} = \overrightarrow{CD}$. On nomme H le projeté orthogonal de C sur (AB) et K le projeté orthogonal de D sur (AB).

On a:

$$\vec{u}.(\vec{v} + \vec{w}) = \overrightarrow{AB}.(\overrightarrow{AC} + \overrightarrow{CD}) = \overrightarrow{AB}.\overrightarrow{AD} = AB \times AK$$

D'autre part

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH$$

 $\vec{u} \cdot \vec{w} = \overrightarrow{AB} \cdot \overrightarrow{CD} = AB \times HK$

Et donc \vec{u} . $\vec{v} + \vec{u}$. $\vec{w} = AB \times AH + AB \times HK = AB \times (AH + HK) = AB \times AK$ L'égalité est bien vérifiée.

- (3) Démonstration identique à la démonstration précédente.
- (4) Montrons que \vec{u} . $(\lambda \vec{v}) = \lambda(\vec{u} \cdot \vec{v})$

On considère 4 points A, B, C et D tels que $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$ et $\lambda \vec{v} = \overrightarrow{AD}$. On nomme H le projeté orthogonal de C sur (AB) et K le projeté orthogonal de D sur (AB).

On a:

$$\vec{u}.(\lambda \vec{v}) = \overrightarrow{AB}.\overrightarrow{AD} = AB \times AK$$

D'autre part

$$\lambda(\vec{u}.\vec{v}) = \lambda(\overrightarrow{AB}.\overrightarrow{AC})$$

$$= \lambda \times AB \times AH$$

$$= AB \times \lambda \times AH$$

$$= AB \times AK$$

En effet, d'après le théorème de Thalès, on a : $\frac{AD}{AC} = \frac{AK}{AH} = \lambda$

L'égalité est bien vérifiée.

Par symétrie, on a $(\lambda \vec{u})$. $\vec{v} = \vec{v}$. $(\lambda \vec{u}) = \lambda(\vec{v} \cdot \vec{u}) = \lambda(\vec{u} \cdot \vec{v})$

Produit scalaire et norme

On a vu que \vec{u} . $\vec{u} = ||\vec{u}||^2$

On a donc
$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$$

 $= \vec{u} \cdot (\vec{u} + \vec{v}) + \vec{v} \cdot (\vec{u} + \vec{v})$ d'après (3)
 $= \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}$ d'après (2)
 $= \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$ d'après (1)

De même
$$\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}). (\vec{u} - \vec{v})$$

 $= \vec{u}. (\vec{u} - \vec{v}) - \vec{v}. (\vec{u} - \vec{v})$ d'après (3) et (4)
 $= \vec{u}. \vec{u} - \vec{u}. \vec{v} - \vec{v}. \vec{u} + \vec{v}. \vec{v}$ d'après (3) et (4)
 $= \|\vec{u}\|^2 - 2\vec{u}. \vec{v} + \|\vec{v}\|^2$ d'après (1)

Et
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot (\vec{u} - \vec{v}) + \vec{v} \cdot (\vec{u} - \vec{v})$$
 d'après (3) et (4)

$$= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} - \vec{v} \cdot \vec{v}$$
 d'après (3) et (4)

$$= ||\vec{u}||^2 - ||\vec{v}||^2$$
 d'après (1)

On retrouve des identités remarquables proches des identités remarquables connues avec des nombres réels.

Propriété:

Soient \vec{u} et \vec{v} deux vecteurs du plan. On a les relations : $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2 \iff (\vec{u}$

$$\begin{aligned} \|\vec{u} + \vec{v}\|^2 &= \|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2 \\ \|\vec{u} - \vec{v}\|^2 &= \|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2 \end{aligned} \Leftrightarrow (\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2 \quad \text{(a)}$$

$$\Leftrightarrow (\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u}.\vec{v} + \vec{v}^2 \quad \text{(b)}$$

$$(\vec{u} + \vec{v}).(\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2 \qquad \Leftrightarrow (\vec{u} + \vec{v}).(\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$

Propriété:

Soient \vec{u} et \vec{v} deux vecteurs du plan. On a la relation :

$$\vec{u}.\vec{v} = \frac{1}{2}(\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

Cette relation découle immédiatement de la relation (a) ci-dessus. En effet :

(a)
$$\Leftrightarrow 2\vec{u}.\vec{v} = ||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2$$

 $\Leftrightarrow \vec{u}.\vec{v} = \frac{1}{2}(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2)$

On a aussi les relations:

$$\vec{u}.\vec{v} = \frac{1}{2}(\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$
et $\vec{u}.\vec{v} = \frac{1}{4}(\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$

La première formule se démontre en utilisant la relation (b) et la seconde simplement en calculant (a)-(b).

Exemple d'application :

B Ici
$$\overrightarrow{AB}$$
. $\overrightarrow{AD} = \frac{1}{2} \left(\left\| \overrightarrow{AB} + \overrightarrow{AD} \right\|^2 - \left\| \overrightarrow{AB} \right\|^2 - \left\| \overrightarrow{AD} \right\|^2 \right)$

$$= \frac{1}{2} (3^2 - 4^2 - 5^2) \operatorname{car} \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$

$$= -16$$
et $\cos(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\overrightarrow{AB}.\overrightarrow{AD}}{\left\| \overrightarrow{AB} \right\| \left\| \overrightarrow{AD} \right\|} = -\frac{16}{4 \times 5} = -0.8$

et
$$\cos(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\overrightarrow{AB}.\overrightarrow{AD}}{\|\overrightarrow{AB}\|\|\overrightarrow{AD}\|} = -\frac{16}{4 \times 5} = -0.8$$

Dans ce parallélogramme, l'angle en A est d'environ 143° et l'angle en D de 180-143=37°.

b) On considère 3 points A, B et C du plan.

On a
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$
En effet a \overrightarrow{AB} . $\overrightarrow{AC} = \frac{1}{2}(\|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2 - \|\overrightarrow{AB} - \overrightarrow{AC}\|^2)$
 $\Leftrightarrow \overrightarrow{AB}$. $\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$ car $\|\overrightarrow{AB} - \overrightarrow{AC}\| = \|\overrightarrow{CB}\| = BC$

III) Expression du produit scalaire en géométrie repérée

Rappel:

On se place dans un repère **orthonormé** $(0; \vec{i}, \vec{j})$.

Soit \vec{u} de coordonnées $\binom{x}{y}$ dans ce repère. On a :

$$\|\vec{u}\| = \sqrt{x^2 + y^2} \Leftrightarrow \|\vec{u}\|^2 = x^2 + y^2$$

Expression algébrique du produit scalaire :

Soient
$$\vec{u} \binom{x}{y}$$
 et $\vec{v} \binom{x'}{y'}$ deux vecteurs du plan. On a : $\vec{u}.\vec{v} = xx' + yy'$

Cette formule n'est valable que dans un repère orthonormé!

<u>Démonstration</u>:

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)
= \frac{1}{2} ((x + x')^2 + (y + y')^2 - (x^2 + y^2) - (x'^2 + y'^2)) \text{ car } \vec{u} + \vec{v} \text{ a pour coordonnées } {x + x' \choose y + y'}
= \frac{1}{2} (x^2 + 2xx' + x'^2 + y^2 + 2yy' + y'^2 - x^2 - y^2 - x'^2 - y'^2)
= \frac{1}{2} (2xx' + 2yy')
= xx' + yy'$$

On a ainsi un moyen aisé pour déterminer si deux vecteurs sont orthogonaux.

$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u}. \vec{v} = 0$$
$$\Leftrightarrow xx' + yy' = 0$$

a)
$$\vec{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ sont orthogonaux car $xx' + yy' = 2 \times 1 + (-1) \times 2 = 2 - 2 = 0$

b) On sait calculer $\vec{u} \cdot \vec{v}$, $||\vec{u}||$ et $||\vec{v}||$ à partir des coordonnées des vecteurs \vec{u} et \vec{v} . On peut donc calculer le cosinus de l'angle (\vec{u}, \vec{v}) .

En effet
$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v}) \Leftrightarrow \cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \times ||\vec{v}||} \operatorname{si} \vec{u} \neq \vec{0} \operatorname{et} \vec{v} \neq \vec{0}.$$

Si on considère les vecteurs représentés ci-contre, on a $\vec{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

$$\vec{u} \cdot \vec{v} = 2 \times 3 + (-1) \times 1 = 6 - 1 = 5$$

 $||\vec{u}|| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$

$$\|\vec{u}\| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

$$\|\vec{v}\| = \sqrt{3^2 + 1^2} = \sqrt{10}$$

et donc
$$\cos(\vec{u}, \vec{v}) = \frac{5}{\sqrt{5} \times \sqrt{10}} = \frac{5}{\sqrt{5} \times \sqrt{5} \times \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

On en déduit que la mesure principale de l'angle (\vec{u}, \vec{v}) est $\frac{\pi}{1}$.

IV) Formule d'Al-Kashi

Propriété:

Soit ABC un triangle quelconque.

On note
$$a = CB$$
, $b = AC$, $c = AB$

et
$$\widehat{A} = \widehat{BAC}$$
, $\widehat{B} = \widehat{CBA}$, $\widehat{C} = \widehat{ACB}$

On a les formules :

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

$$b^2 = a^2 + c^2 - 2ac \cos \hat{B}$$

$$c^2 = a^2 + b^2 - 2ab \cos \hat{C}$$

<u>Démonstration</u>:

$$\alpha^2 = BC^2 = \overrightarrow{BC}^2 = \left(\overrightarrow{BA} + \overrightarrow{AC}\right)^2 = \overrightarrow{BA}^2 + 2\overrightarrow{BA}.\overrightarrow{AC} + \overrightarrow{AC}^2 = c^2 - 2\overrightarrow{AB}.\overrightarrow{AC} + b^2$$

$$\Leftrightarrow a^2 = b^2 + c^2 - 2bc \cos \hat{A} \operatorname{car} \overrightarrow{AB}. \overrightarrow{AC} = cb \cos \left(\overrightarrow{AB}, \overrightarrow{AC}\right) = 2bc \cos \hat{A}$$

Les autres formules se démontrent de la même manière.

Application:

Avec ces formules:

- on peut connaître la mesure des angles connaissant les longueurs a, b et c des côtés d'un triangle. En effet, on peut alors calculer facilement $\cos \hat{A}$, $\cos \hat{B}$ et $\cos \hat{C}$ en appliquant l'une des trois formules.
- on peut aussi calculer la longueur d'un côté connaissant la mesure d'un angle et les longueurs des deux autres côtés.

Exemples:

$$\cos \hat{A} = \frac{b^2 + c^2 - a^2}{2bc} = \frac{2^2 + 5^2 - 6^2}{2 \times 2 \times 5} = -\frac{7}{20} \operatorname{soit} \hat{A} \approx 110,49^{\circ}$$

$$\cos \hat{B} = \frac{a^2 + c^2 - b^2}{2ac} = \frac{6^2 + 5^2 - 2^2}{2 \times 6 \times 5} = \frac{57}{60} \operatorname{soit} \hat{B} \approx 18,19^{\circ}$$

$$\cos \hat{C} = \frac{a^2 + b^2 - c^2}{2ab} = \frac{6^2 + 2^2 - 5^2}{2 \times 6 \times 2} = \frac{15}{24} \operatorname{soit} \hat{C} \approx 51,32^{\circ}$$

On peut vérifier que le total fait bien 180°.

Je connais
$$cos \hat{A} = \frac{13}{20}$$
, $a = 4$ et $b = 2$

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A} \Leftrightarrow 4^2 = 2^2 + c^2 - 2 \times 2c \times \frac{13}{20}$$

$$\Leftrightarrow c^2 - \frac{13c}{5} - 12 = 0$$

$$\Leftrightarrow 5c^2 - 13c - 60 = 0$$

$$\Delta = 13^2 - 4 \times 5 \times (-60) = 1369 > 0 \text{ et } \sqrt{\Delta} = 37$$

On a deux solutions possibles:

$$c_1 = \frac{13-37}{10} = -2.4 \text{ et } c_1 = \frac{13+37}{10} = 5$$

La solution recherchée étant positive, on a c=5

L'aire du triangle ABC est donnée par la formule :

Aire =
$$\frac{c \times h}{2} = \frac{bcsin\hat{A}}{2}$$

$$h = b sin \hat{A}$$

$$h = bsin(\pi - \hat{A}) = bsin\hat{A}$$

On montre de la même façon que
$$Aire = \frac{acsin\hat{B}}{2} = \frac{absin\hat{C}}{2}$$

On a donc
$$\frac{bcsin\hat{A}}{2} = \frac{acsin\hat{B}}{2} = \frac{absin\hat{C}}{2} \Leftrightarrow bcsin\hat{A} = acsin\hat{B} = absin\hat{C}$$

$$\Leftrightarrow \frac{bcsin\hat{A}}{abc} = \frac{acsin\hat{B}}{abc} = \frac{absin\hat{C}}{abc}$$
$$\Leftrightarrow \frac{sin\hat{A}}{a} = \frac{sin\hat{B}}{b} = \frac{sin\hat{C}}{c}$$

$$\Leftrightarrow \frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$
 Cette loi est connue sous le nom de loi des sinus

Remarque:

D'une façon générale, dans un triangle, il suffit de connaître 3 des données $a, b, c, \hat{A}, \hat{B}$ ou \hat{C} pour déterminer les 3 autres. La résolution de tels problèmes se fait en utilisant, éventuellement en les combinant :

- les formules d'Al-Kashri
- la loi des sinus $\frac{a}{sin\hat{A}} = \frac{b}{sin\hat{B}} = \frac{c}{sin\hat{C}}$ la propriété sur la somme des mesures des angles d'un triangle, qui est égale à 180°

VI) Transformation de l'expression \overline{MA} . \overline{MB}

Propriété:

Soient A et B deux points du plan et I le milieu du segment [AB]. Pour tout point M du plan, on a :

$$\overrightarrow{MA}.\overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$$

Démonstration:

On fait apparaître le point I dans l'expression \overrightarrow{MA} . \overrightarrow{MB}

$$\overrightarrow{MA}.\overrightarrow{MB} = (\overrightarrow{MI} + \overrightarrow{IA}).(\overrightarrow{MI} + \overrightarrow{IB}) = MI^2 + \overrightarrow{MI}.(\overrightarrow{IB} + \overrightarrow{IA}) + \overrightarrow{IA}.\overrightarrow{IB}$$

I étant le milieu du segment [AB], on a $\overrightarrow{IB} = -\overrightarrow{IA}$ et donc $\overrightarrow{IB} + \overrightarrow{IA} = \overrightarrow{0}$

On a aussi $\overrightarrow{IA} = -\frac{1}{2}\overrightarrow{AB}$ et $\overrightarrow{IB} = \frac{1}{2}\overrightarrow{AB}$.

Finalement
$$\overrightarrow{MA}$$
. $\overrightarrow{MB} = MI^2 - \frac{1}{4}\overrightarrow{AB}$. $\overrightarrow{AB} = MI^2 - \frac{1}{4}AB^2$

Propriété:

Soient A et B deux points du plan.

Le cercle de diamètre [AB] est l'ensemble des points M du plan tels que \overline{MA} . $\overline{MB}=0$

Démonstration:

Soit O le milieu du segment [AB].

On a
$$\overrightarrow{MA}$$
. $\overrightarrow{MB} = (\overrightarrow{MO} + \overrightarrow{OA}) \cdot (\overrightarrow{MO} + \overrightarrow{OB})$
= $\overrightarrow{MO}^2 + \overrightarrow{MO} \cdot (\overrightarrow{OA} + \overrightarrow{OB}) + \overrightarrow{OA} \cdot \overrightarrow{OB}$

O étant le milieu du segment [AB], on a $\overrightarrow{OB} = -\overrightarrow{OA}$ et donc $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{0}$ et \overrightarrow{OA} . $\overrightarrow{OB} = -\overrightarrow{OA}^2 = -OA^2$ Finalement, \overrightarrow{MA} . $\overrightarrow{MB} = OM^2 - OA^2$

M appartient au cercle si et seulement si $OM = OA \Leftrightarrow OM^2 = OA^2 \Leftrightarrow OM^2 - OA^2 = 0 \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0$

<u>Propriété</u>:

Soient A et B deux points du plan.

Un point M du plan appartient au cercle de diamètre [AB] si et seulement si le triangle ABM est rectangle en M.

En effet, M appartient au cercle $\Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0 \Leftrightarrow$ le triangle ABM est rectangle en M

VII) Théorème de la médiane

Propriété:

Soient A et B deux points du plan et I le milieu du segment [AB]. Pour tout point M du plan, on a :

$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$

<u>Démonstration</u>:

$$\begin{split} MA^2 + MB^2 &= \overrightarrow{MA}^2 + \overrightarrow{MB}^2 \\ &= \left(\overrightarrow{MI} + \overrightarrow{IA}\right) \cdot \left(\overrightarrow{MI} + \overrightarrow{IA}\right) + \left(\overrightarrow{MI} + \overrightarrow{IB}\right) \cdot \left(\overrightarrow{MI} + \overrightarrow{IB}\right) \\ &= MI^2 + 2\overrightarrow{MI} \cdot \overrightarrow{IA} + IA^2 + MI^2 + 2\overrightarrow{MI} \cdot \overrightarrow{IB} + IB^2 \\ &= 2MI^2 + 2\overrightarrow{MI} \cdot \left(\overrightarrow{IA} + \overrightarrow{IB}\right) + 2IA^2 \text{ car } IA = IB \end{split}$$

I étant le milieu de [AB], on a $IA = \frac{1}{2}AB$ et $IA^2 = \frac{1}{4}AB^2 \Leftrightarrow 2IA^2 = \frac{1}{2}AB^2$ De plus $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.

On a bien l'égalité recherchée.