Estimating Lighthouse Intrinsic Parameters Using LM Optimization

Stanford University , EE267 Final Project

Intrinsic Parameters Matrix

$$K = \begin{pmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & \nu_0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\left(\begin{array}{c} x^d \\ y^d \\ 1 \end{array}\right) = \mathbf{K} \left(\begin{array}{c} x^n \\ y^n \\ 1 \end{array}\right)$$

- **Default** : $\alpha_u = \alpha_v = 1$, $u_0 = v_0 = 0$
- Our Formulation: $\alpha_u = \alpha_v = F$, $u_0 = U$, $v_0 = V$

Parameters Estimation

Simulation Results

We simulate time stamps along with some user defined **U**, **V** and **F** and observe if the LM optimization yields the original intrinsic parameters.

Mean Relative Error in $\bf U$ (over 10000 samples): 14% Mean Relative Error in $\bf V$ (over 10000 samples): 10% Mean Relative Error in $\bf F$ (over 10000 samples): 6%

Average Residual (**Optimal U,V &F**) \approx **2.5x10**⁻⁶ Average Residual (**For U = V = 0 , F = I**) \approx **0.067**

Lighthouse Calibration Results

Optimal **U** (over 6000 samples) : **0.282**

Optimal **V** (over 6000 samples) : **-0.058**Optimal **F** (over 6000 samples) : **0.954**

Average Residual (**Optimal U, V & F**) \approx **5.6x10**⁻⁵ Average Residual (**For U = V = 0 , F = I**) \approx **0.092**

• While viewing a visual scene on the HMD , less amount of jitter in the scene is observed when optimal intrinsic parameters are used as compared to the default values ($\mathbf{U} = \mathbf{V} = \mathbf{0}$, $\mathbf{F} = \mathbf{I}$)

Takeaways

- Importance of lighthouse calibration for improving pose estimation
- Usage and implementation of an optimization technique such as Levenberg-Marquardt for calibrating the lighthouse base station and pose estimation

Conclusions and Future Work

- In VR, such a parameter estimation improves pose estimation and reduces jitteriness in the visual scene
- Future work could include modifying the LM algorithm to calculate a more generic intrinsic parameter matrix

References

- Zhang, Zhengyou. "A flexible new technique for camera calibration." IEEE Transactions on pattern analysis and machine intelligence 22.11 (2000): 1330-1334.
- Shao-xiong Tian, Lu Shan, and Liu Zong-ming. "Levenberg-Marquardt algorithm based nonlinear optimization of camera calibration for relative measurement." Control Conference (CCC), 2015 34th Chinese. IEEE, 2015.

Email: pmurgai@stanford.edu