贝尔加初中数学讲义

陈应洪

2018年8月13日

目录

第一	-章	初中数学思想和解题方法	5
	1.1	数型结合	5
	1.2	分类讨论	7
	1.3	整体带入法	7
本 —	- **	行い今日	9
第二		勾股定理	
	2.1	勾股定理各种题型	9
		2.1.1 方程思想和勾股定理结合的题目	9
			10
		2.1.3 网格问题	11
第=	音	全等三角形	13
	-	全等三角形	
		3.1.1 学习要求	
		3.1.2 概念	
		3.1.2 No. 1.1.	10
第四	章	一元二次方程	15
	4.1	概念	15
		4.1.1 定义	15
		4.1.2 一般形式	15
		4.1.3 判断一元二次方程	15
	4.2	解方程	15
	4.3	一元二次方程根的判别式	17
	4.4	根与系数的关系	17
	4.5	习题	17
		4.5.1 定义	17
		4.5.2 解一元二次方程	18
		4.5.3 根与系数的关系	18
		4.5.4 根的判别式	
	4.6	一元二次方程的应用	20
	4.6	一元二次方程的应用	
	4.6		20

4.6.4	商品销售问题	22
4.6.5	面积问题	23
166	粉字词斯	24

第一章 初中数学思想和解题方法

思考:现在有一个空水壶、水、煤气灶、火机,让你烧一壶水你怎么烧?如果其他条件不变,只是水壶里面有半壶开水,让你烧一壶开水,你怎么做?.

- (1)数形结合法:数学家华罗庚说得好:"数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.每个几何图形中蕴含着一定的数量关系,而数量关系常常又通过图形的直观性作出反映和描述,数与形之间可以相互转化,将问题化难为易,化抽象为具体.数形结合的思想方法通过借数解形、以形助数,能使某些较复杂的数学问题迎刃而解.
- (2) 分类讨论法: 在数学中, 我们常常需要根据研究对象性质的差异, 分各种不同情况予以考查. 这种分类思考的方法是一种重要的数学思想方法, 同时也是一种解题策略. 分类是按照数学对象的相同点和差异点, 将数学对象区分为不同种类的思想方法, 掌握分类的方法, 领会其实质, 对于加深基础知识的理解. 提高分析问题、解决问题的能力是十分重要的. 正确的分类必须是周全的, 既不重复、也不遗漏. 分类的原则: (1) 分类中的每一部分是相互独立的; (2) 一次分类按一个标准; (3) 分讨论应逐级进行.
- (3) 转化化归思想:所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等.
- (4) 方程与函数思想: 方程与函数是研究数量关系的重要工具, 在处理某些问题时, 往往根据已知与未知之间的内在联系和相等关系建立方程(或方程组)或函数关系, 这种通过方程(组)或函数来沟通已知与未知, 从而使问题获得解决的思想方法称之为方程与函数思想.

1.1 数型结合

- 1、绝对值小于 3 的非负整数是, 绝对值不大于 4 的整数是
- 2、设 a > 0, b < 0 且 |a| < |b|,用 "<"号 a,-a,b,-b 把它们连接起来
- 3、化简三个数 a,b,c 在数轴上的对应点如图 1, 化简 |a+b| |b| + |a+c| |c-a|.
- 4、化简 |a+c|+|b+c|-|a-b|.
- 5、化简 |a-b|-|b+c|+|c-a|-|a+c|.
- 6、若 a,b 为有理数, 有 a > 0, b < 0, a + b, 比较 a, -a, -b, b 大小.
- 7、已知两数,a,b, 如果 a 比 b 大, 那么 |a|, |b| 的大小 .

图 1.1:

8、用数轴方程解方程.

$$(1), |x+5|+2=5$$

$$(2), |x-3|-3=2$$

9、|x-1|+|x-3| 的最小值. (注: 绝对值是指一个数在数轴上所对应点到原点的距离, 用 "||"表示.|b-a| 或者 |a-b| 表示数轴上表示 a 点到 b 点的距离).

10、先阅读下面的材料, 然后解答问题:

在一条直线上有依次排列的 n (n > 1) 台机床在工作, 我们要设置零件供应站 P, 使这 n 台机床到供应站 P 的距离总和最小, 要解决这个问题, 先退到比较简单的情形:

如图, 如果直线上有 2 台机床时, 很明显设在 A1 和 A2 之间的任何地方都行, 因为甲和乙走的距离之和等于 A1 到 A2 的距离.

如图 ,如果直线上有 3 台机床时,不难判断,供应站设在中间一台机床 A2 处最合适,因为如果 P 放在 A2 处,甲乙和丙所走的距离之和恰好为 A1 到 A3 的距离,而如果把 P 放到别处,例如 D 处,那么甲和丙所走的距离之和仍是 A1 到 A3 的距离,可是乙还得走从 A2 到 D 的这一段,在是多出来的,一次 P 放在 A2 处是最佳选择.不难知道,如果直线上有 4 台机床,P 应设在第 2 台与第 3 台之间的任何地方;有 5 台机床,P 应设在第 3 台的位置.

问题 1: 有 n 台机床时,P 应设置在何处?

问题 2: 根据问题 1 的结论, 求 |x-1|+|x-2|+|x-3|+|x-4|+|x-5|+....+|x-617|的最小值.

1.2 分类讨论

- 1、解不等式方程.
- (1), |x+5|+2=5

(2), |x-3|-3=2

- 2、已知 a、b 互为相反数,c、d 互为倒数,x 的平方是 4, 求 $x^2 (a+b+cd)x + (a+b)^{2008} + (-cd)^{2009}$ 的值.
- 3、已知 a 为有理数且 $a \neq 0$,则 $\frac{a}{|a|} + \frac{2|a|}{a} =$
- 4、已知 a,b 均为不等于 0 的有理数, 则代数 $\frac{|a|}{a} + \frac{b}{|b|} + \frac{ab}{|ab|}$ 的值为_____
- 5、求代数式 $\frac{a}{|a|} + \frac{b}{|b|} + \frac{ab}{|ab|}$ 的值为
- 6、若 $abc \neq 0, \frac{a}{|a|} + \frac{2b}{|2b|} + \frac{3c}{|3c|}.$
- 7、解关于 x 的方程:
- (a-x)x = b-1

1.3 整体带入法

- $1, (\frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{1999})(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{1998}) (1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{1999})(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{1998})$
- $3, \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{2008}\right) \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{2007}\right) \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{2008}\right) \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots \frac{1}{2007}\right)$

第二章 勾股定理

2.1 勾股定理各种题型

2.1.1 方程思想和勾股定理结合的题目

1、一旗杆在其 $\frac{1}{3}$ 的 B 处折断, 量得 AC=5 米, 则旗杆原来的高度为 ().

 $A.\sqrt{5}$ 米

 $B.2\sqrt{5}$ 米

C.10 米

 $D.5\sqrt{3}$ 米

2、如图, 在 δ ABC 中, ∠ B=40°,EF//AB, ∠1=50°,CE=3,EF 比 CF 大 1, 则 EF 的长为 ().

A.5

B.6

C.3

D.4

3、已知, 如图长方形 ABCD 中,AB=3cm,AD=9cm, 将此长方形折叠, 使点 B 与 D 重合, 折痕为 EF, 则 BE 的长为().

A.3cm

B.4cm

C.5cm

D.6cm

4、在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为 10 尺的正方形,在水池正中央有一根新生的芦苇,它高出水面 1 尺,如图所示,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.那么水深多少?芦苇长为多少?

10 第二章 勾股定理

2.1.2 求最短距离问题

1、如图, 长方体的底面边长为 1 cm 和 3 cm, 高为 6 cm. 如果用一根细线从点 A 开始经过 4 个侧面缠绕一圈到达 B, 那么所用细线最短需要()

A.12cm B.11cm C.10cm D.9cm

2、如图, 是一长、宽都是 3cm, 高 BC=9cm 的长方体纸箱,BC 上有一点 $P,pC=\frac{2}{3}BC$, 一只 蚂蚁从点 A 出发沿纸箱表面爬行到点 P 的最短距离是(

 $A.6\sqrt{2}cm$ $B.3\sqrt{3}cm$ C.10cm D.12cm

3. 如图, 小红想用一条彩带缠绕易拉罐, 正好从 A 点绕到正上方 B 点共四圈, 已知易拉罐底面周长是 12cm, 高是 20cm, 那么所需彩带最短的是(

4. 长方体敞口玻璃罐, 长、宽、高分别为 16cm、6cm 和 6cm,在罐内点 E 处有一小块饼干碎末, 此时一只蚂蚁正好在罐外壁, 在长方形 ABCD 中心的正上方 2cm 处, 则蚂蚁到达饼干的最短距离是多少 cm. ()

A. $7\sqrt{5}$ cm B. $\sqrt{233}$ cm C.24cm D. $\sqrt{232}$ cm

5. 如图, 一圆柱高 8cm, 底面半径为 $\frac{6}{\pi}$ cm, 一只蚂蚁从点 A 爬到点 B 处吃食, 要爬行的最短路程是 ().

2.1.3 网格问题

1.1、在边长为 1 的小正方形组成的网格中, \triangle ABC 的三个顶点均在格点上,则 \triangle ABC 中 BC 边上的高为 2. 如图, 方格纸中每个小方格都是边长为 1 的正方形, 我们把以格点连线为边的

多边形称为"格点多边形". 如图(一)中四边形 ABCD 就是一个"格点四边形"

- (1) 求图中四边形 ABCD 的面积;
- (2) 在图方格纸中画一个格点三角形 EFG, 使 \triangle EFG 的面积等于四边形 ABCD 的面积且为轴对称图形.

12 第二章 勾股定理

第三章 全等三角形

3.1 全等三角形

3.1.1 学习要求

- 1. 理解全等图形及全等三角形的概念, 能识别全等三角形中的对应边, 对应角.
- 2. 掌握全等三角形的表示方法及全等三角形的性质.
- 3. 通过平移、翻折和旋转一个三角形等活动,发展、感知两个全等三角形的特征,学会判断对应的元素的方法.

3.1.2 概念

- **1. 全等的概念**: 能够完全重合的两个图形叫做全等形 (全等形关注的是两个图形的形状和大小,判断两个图形是否全等两个图形是否可以重合在一起).
- 2. 三角形的概念: 能够完全重合的两个三角形形叫做全三角形.
- **3.** 对应元素: 把两个全等三角形的重合在一起, 重合的顶点叫作对应顶点, 重合的边叫作对应边, 重合的角叫作对应角.
- **例** 如图, 已知 $\triangle ABC \cong \triangle DEC$ 写出所有的对应边, 对应角.

- **4. 表示方法**: 全等用符号 " \cong " 表示, 读作 "全等于". $\triangle ABC \cong \triangle DEF$ 和表示 $\triangle ABC$ 和 $\triangle DEF$ 全等, 读作" $\triangle ABC$ 全等于 $\triangle DEF$ ".
- 4. 全等三角形的性质:全等三角形的对应边相等; 全等三角形的对应角相等.
- 例. 如图,点 A,B,C,D 在同一条直线上, $\triangle ABF\cong\triangle DCE,AF$ 和 DE,BF 和 CE 是对应边,求证:AF//DE

第三章 全等三角形

第四章 一元二次方程

4.1 概念

4.1.1 定义

只含有一个未知数, 未知数的最高次数是 2, 且系数不为 0, 这样的方程叫一元二次方程.

4.1.2 一般形式

一元二次方程的一般形式为 $ax^2 + bx + c = 0$ (a,b,c 是已知数 $a \neq 0$). 其中 a,b,c 分别叫做二次项系数、一次项系数、常数项.

- (1) 二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号.
- (2) 要准确找出一个一元二次方程的二次项系数、一次项系数和常数项, 必须把它先化为一般形式.
- (3) 形如 $ax^2 + bx + c = 0$ 不一定是一元二次方程, 当且仅当 $a \neq 0$ 时是一元二次方程。

4.1.3 判断一元二次方程

一元二次方程必须同时满足以下三点:(1) 方程是整式方程.(2) 它只含有一个未知数.(3) 未知数的最高次数是(同时还要注意在判断时,需将方程化成一般形式).

4.2 解方程

1. 直接开平方法:对形如 $(x + a)^2 = b(b \ge 0)$ 的方程两边直接开平方而转化为两个一元一次方程的方法.

$$(1)9x^2 - 16 = 0$$
 $(2)(x+5)^2 - 16 = 0$ $(3)(x-5)^2 = (3x+1)$

2. 配方法 1:解一元二次方程时,在方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种方法叫做配方,配方后就可以用因式分解法或直接开平方法了,这样解一元二次方程的方法叫做配方法 (**注意**: 用配方法解一元二次方程 $x^2 + px + q = 0$,当对方程的左边配方时,一定记住在方程的左边加上一次项系数的一半的

平方后,还要再减去这个数).

$$(1)x^2 + 6x - 5 = 0 (2)x^2 - \frac{7}{2} - 2 = 0$$

3. 配方法 2:当一元二次方程的形式为 $ax^2 + bx + c = 0 (a \neq 0, a \neq 1)$ 时,用配方法解一元二次方程的步骤:(1)先把二次项的系数化为 1: 方程的左、右两边同时除以二项的系数;(2)移项:在方程的左边加上一次项系数的一半的平方,再减去这个数,把原方程化为 $(x+m)^2 = n$ 的形式;(3)若 $n \geq 0$,用直接开平方法或因式分解法解变形后的方程。

$$(1)3x^2 - 9x + 2 = 0$$

$$(2)-x^2-4x+3=0$$

4. 求根公式法:一元二次方程 $ax^2 + bx + c = 0 (a \neq 0)$ 的求根公式是: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 用求根公式法解一元二次方程的步骤是: (1) 把方程化为 $ax^2 + bx + c = 0 (a \neq 0)$ 的形式,确定的值 a, b, c(注意符号);(2) 求出 $b^2 - 4ac$ 的值;(3) 若 $b^2 - 4ac \geq 0$,则 a,b 把及 $b^2 - 4ac$ 的值代人求根公式,求出 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$,求出 x_1, x_2 .

$$(1)2x^2 - 3x - 1 = 0$$

$$(2)2x(x+\sqrt{2}) + 1 = 0$$

$$(3)x^2 + x + 25 = 0$$

5. 因式分解法: 把方程左边的多项式(方程右边为 0 时)的公因式提出,将多项式写出因式的乘积形式,然后利用"若 pq=0 时,则 p=0 或 q=0"来解一元二次方程的方法,称为因式分解法。

$$(1)x^2 - 5x + 6 = 0$$

$$(2)x^2 - x - 12 = 0$$

$$(3)x^2 - 4x + 3 = 0 (4)2x^2 - 3x - 5 = 0$$

列选方法解方程:

$$(1)(2x-3)^2 = 9(2x+3)^2$$

$$(2)x^2 - 8x + 6 = 0$$

$$(3)(x+2)(x-1) = 0$$

4.3 一元二次方程根的判别式

- (1)△ = $b^2 4ac > 0 \mapsto$ 方程有两个不相等的实数根.
- $(2)\triangle = b^2 4ac = 0 \longrightarrow$ 方程有两个相等的实数根.
- (3) $\triangle = b^2 4ac < 0 \mapsto$ 方程有无实数根.

列 判断下列一元二次方程根的情况:

$$(1)2x^2 - 3x - 5 = 0$$

$$(2)9x^2 = 30x - 25$$

$$(3)x^2 + 6x + 10 = 0$$

例: m 为何时, 方程 $(2m+1)x^2 + 4mx + 2m - 3 = 0$ 的根满足下列情况:

- (1) 有两个不相等的实数根:
- (2) 有两个不相等的实数根:
- (3) 没有实数根:

4.4 根与系数的关系

若 x_1,x_2 是一元二次方程 $ax^2+bx+c=0$ ($a\neq 0$) 的两个根,则有, $x_1+x_2=-\frac{b}{a},x_1x_2=\frac{c}{a}$ 根据一元二次方程的根与系数的关系求值常用的转化关系:

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$$

$$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$$

$$x_1^2 \cdot x_2 + x_1 \cdot x_2^2 = x_1 \cdot x_2(x_1 + x_2)$$

$$(x_1 + a)(x_2) = x_1 \cdot x_2 + a(x_1 + x_2) + a^2$$

$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 \cdot x_2}$$

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} = \frac{x_1^2 + x_2^2}{x_1^2 \cdot x_2^2} = \frac{(x_1 + x_2)^2 - 2x_1x_2}{(x_1 \cdot x_2)^2}$$

$$|x_1 - x_2| = \sqrt{(x_1 - x_2)^2} = \sqrt{(x_1 + x_2)^2 - 4x_1x_2}$$

例: 已知方程 $2x^2 - 5x - 3 = 0$ 的两根为 x_1, x_2 , 不解方程, 求下列各式的值.

$$(1)x_1^2 + x_2^2$$

$$(2)(x_1-x_2)^2$$

4.5 习题

4.5.1 定义

- 1. 关于 x 的一元二次方程 $(k-1)x^2-2x+1=0$ 有两个不相等的实数根,则实数 k 的取值范围是.
- 2. 已知关于 x 的一元二次方程 $x^2 + x + m^2 2m = 0$ 有一个实数根为 -1, 求 m 的值及方程的另一实根. 3. 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

$$(1)(x-2)(x+3) = 8$$

$$(2)(3x-4)(x+3) = (x+2)^2$$

- 4. 己知关于 x 的方程 $(m-1)x^{m^2+2}-(m+1)x-2=0$ 是一元二次方程时,则 m=
- 5. 关于 x 的方程 $(k+1)x^2 + 3(k-2)x + k^2 42 = 0$ 的一次项系数是一 6, 则 k=

4.5.2 解一元二次方程

1. 用配方法解一元二次方程 $x^2 - 6x - 4 = 0$, 下列变形正确的是

$$A.(x-6)^2 = -4 + 36$$
 $B.(x-6)^2 = 4 + 36$ $C.(x-3)^2 = -4 + 9$ $D.(x-3)^2 = 4 + 9$

- 2. 若方程 $x^2 x = 0$ 的两个根为 $x_1, x_2(x_1 < x_2)$, 则 $x_2 x_1 =$
- 3. 方程 $x^3 x = 0$ 的解是
- 4. 方程 (2x+1)(x-1) = 8(9-x) 1 的根为
- 5. 用合适的方法解方程:

$$x(x-2) + x - 2 = 0$$

$$2x^2 - 7x - 2 = 0$$

$$2(x-1)^2 + 5(x-1) + 2 = 0$$

$$\sqrt{2x^2-9x+5} = x-3$$

$$x^3 - 2x^2 - 3x = 0$$

4.5.3 根与系数的关系

1. 已知关于 x 的一元二次方程 $x^2 + mx - 8 = 0$ 的一个实数根为 2,则另一实数根及 m 的值分别为

A.4,-2

D.-4,2

2. 设 x_1, x_2 是方程 $x^2 + 5x - 3 = 0$ 的两根,则 $x_2^2 + x_2^2$ 的值是

A.19

D.30

3、若 x_1, x_2 是一元二次方程 $x^2 - 2x - 1 = 0$ 的两个根,则 $x_1^2 - x_1 + x_2$ 的值为

O \ 1

B 0

C = 2

D. 3

4. 已知关于 x 的一元二次方程 $x^2 + mx + n = 0$ 的两个实数根分别为 $x_1 = -2 x_2 = 4$,则 m+n 的值是

A.-10

B.10

 C_{-6}

D.2

- 5. 设 x_1, x_2 是方程 $2x^2 + 14x 16 = 0$ 的两个实数根, 则 $\frac{x_2}{x_1} + \frac{x_1}{x_2}$ 的值为
- 6. 设 a, b, 是方程 $x^2 + x 2013 = 0$ 的两个不相等的实数根, $a^2 + 2a + b$ 的值
- 7. 已知一元二次方程 x^2 3x + 1 = 0 的两个根为 x_1, x_2 那么 $(1 + x_1)(1 + x_2)$ 的值等于
- 8. 己知为 x_1, x_2 是方程 $x^2 3x$ 1 0 的两个实数根,则 $\frac{1}{x_1} + \frac{1}{x_2}$ 的值是

4.5 习题

9. 关于 x 的一元二次方程 $x^2 + 2k + 1x + k^2 + 1 = 0$ 有两个不等实根 x_1, x_2 .

(1) 求实数 k 的取值范围.

(2) 若方程两实根 x_1, x_2 满足 $|x_1| + |x_2| = x_1 \cdot x_2$, 求 k 的值

4.5.4 根的判别式

1. 一元二次方程 $(x+1)^2 - 2(x-1)^2 = 7$ 的根的情况是 (

- A. 无实数根
- B. 有一正根一负根
- C. 有两个正根
- D. 有两个负根
- 2. 下列选项中,能使关于 x 的一元二次方程 $ax^2 4x + c = 0$ 一定有实数根的是
- A. a > 0
- B. a=0
- C. c > 0
- D. c=0

3. 若关于 x 的一元二次方程 $4x^2 - 4x + c = 0$ 有两个相等实数根,则 c 的值是

A -

B 1

C. -4

D.4

- 4. 若矩形的长和宽是方程程 $2x^2 16x + m = 0 (0 \ m \le 32)$ 的两根,则矩形的周长为
- 5. 关于 x 的一元二次方程 $ax^2 + 2x + 1 = 0$ 的两个根同号,则 a 的取值范围是
- 6. 已知关于 x 的一元二次方程 $\frac{1}{2}mx^2 + mx + m 1 = 0$ 有两个相等的实数根.
- (1) 求 m 的值;
- (2) 解原方程;
- 7. 己知: 关于 x 的方程 $x^2 + 2mx + m^2 1 = 0$.
- (1) 不解方程, 判别方程根的情况;
- (2) 若方程有一个根为 3, 求 m 的值;

4.6 一元二次方程的应用

- 审题
- 设未知数
- 列方程
- 解方程
- 检验根是否符合实际情况
- 作答

4.6.1 传播问题

1. 有一人患了流感,经过两轮传染后共有 121 人患了流感,每轮传染中平均一个人传染了几个人?

2. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 91,每个支干长出多少小分支.

3. 参加一次足球联赛的每两队之间都进行一场比赛, 共比赛 45 场比赛, 共有多少个队参加比赛.

4. 参加一次足球联赛的每两队之间都进行两次比赛,共比赛 90 场比赛,共有多少个队参加比赛.

5. 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了 182 件,这个小组共有多少名同学.

6. 一个小组有若干人,新年互送贺卡,若全组共送贺卡 72 张,这个小组共有多少人.

4.6.2 平均增长率问题

- 1. 青山村种的水稻 2001 年平均每公顷产 7200 公斤, 2003 年平均每公顷产 8450 公斤, 求水稻每公顷产量的年平均增长率.
- 2. 某种商品经过两次连续降价,每件售价由原来的 90 元降到了 40 元, 求平均每次降价率是 多少.
- 3. 某种商品,原价 50 元,受金融危机影响,1 月份降价 10%,从2 月份开始涨价,2 月份的售价为64.8 元,求2、3 月份价格的平均增长率。
- 4. 某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率.
- 5. 为了绿化校园,某中学在 2007 年植树 400 棵,计划到 2009 年底使这三年的植树总数达到 1324 棵,求该校植树平均每年增长的百分数.

4.6.3 握手问题

- 1. 一个小组有若干人,新年互送贺卡,已知全组共送贺卡 56 张,则这个小组有多少人.
- 2. 假设每一位参加宴会的人见面时都要与其他人握手致意,这次宴会共握手 28 次,问参加 这次宴会的共有多少人.

3. 参加一次聚会的每两个人都握了一次手, 所有人共握手 10 次, 有多少人参加聚会.

4. 参加一次足球联赛的每两个队之间都进行两次比赛, 共要比赛 90 场, 共有多少个队参加比赛.

5. 学校组织一次兵乓球比赛,参赛的每两个选手都要比赛一场,所有比赛一共有36场,问有多少名同学参赛?用一元二次方程,化成一般形式.

4.6.4 商品销售问题

1. 某商店购进一种商品,进价 30 元. 试销中发现这种商品每天的销售量 P(4) 与每件的销售价 X(元) 满足关系: P=100-2X 销售量 P, 若商店每天销售这种商品要获得 200 元的利润,那么每件商品的售价应定为多少元? 每天要售出这种商品多少件.

- 2. 某玩具厂计划生产一种玩具熊猫,每日最高产量为 40 只,且每日产出的产品全部售出,已知生产。只熊猫的成本为 R(元),售价每只为 P(元),且 R 与 x 的关系式分别为 R=500+30X, P=170—2X.
- (1). 当日产量为多少时每日获得的利润为 1750 元.
- (2). 若可获得的最大利润为 1950 元,问日产量应为多少.
- 3. 某水果批发商场经销一种高档水果,如果每千克盈利 10 元,每天可售出 500 千克,经市场调查发现,在进货价不变的情况下,若每千克涨价 1 元,日销售量将减少 20 千克。现该商品要保证每天盈利 6000 元,同时又要使顾客得到实惠,那么每千克应涨价多少元.

4. 服装柜在销售中发现某品牌童装平均每天可售出 20 件,每件盈利 40 元。为了迎接"六一"儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价 4 元,那么平均每天就可多售出 8 件。要想平均每天在销售这种童装上盈利 1200 元,那么每件童装应降价多少元.

5. 西瓜经营户以 2 元 / 千克的价格购进一批小型西瓜,以 3 元 / 千克的价格出售,每天可售出 200 千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价 0.1 元/千克,每天可多售出 40 千克。另外,每天的房租等固定成本共 24 元。该经营户要想每天盈利 200 元,应将每千克小型西瓜的售价降低多少元

4.6.5 面积问题

- 1. 一个直角三角形的两条直角边的和是 14cm, 面积是 24cm², 求两条直角边的长。
- 2. 一个直角三角形的两条直角边相差 5cm, 面积是 7cm², 求斜边的长。
- 3. 一个菱形两条对角线长的和是 10 cm,面积是 12cm^2 ,求菱形的周长(结果保留小数点后一位)
- 4. 为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多 14 米,面积是 3200 平方米则操场的长为()米,宽为()米。
- 5. 若把一个正方形的一边增加 2 cm,另一边增加 1 cm,得到的矩形面积的 2 倍比正方形的面积多 11cm^2 ,则原正方形的边长为.
- 6. 一张桌子的桌面长为 6 米, 宽为 4 米, 台布面积是桌面面积的 2 倍, 如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽。

7. 有一面积为 $54cm^2$ 的长方形,将它的一组对边剪短 5cm,另一组对边剪短 2cm,刚好变成一个正方形,这个正方形的边长是多少?

4.6.6 数字问题

- 1. 两个数的和为 8, 积为 9.75, 求这两个数。
- 2. 两个连续偶数的积是 168, 则这两个偶数是.
- 3. 一个两位数,个位数字与十位数字之和为 5,把个位数字与十位数字对调,所得的两位数与原来的两位数的乘积为 736,求原来的两位数。