Indian Institute of Technology Guwahati Probability Theory (MA590) Problem Set 02

1. Let $S = \{0, 1, 2, ...\}$ be a sample space. Let $\mathcal{F} = \mathcal{P}(S)$. In each of the following cases, verify if $P(\cdot)$ is a probability.

(a)
$$P(A) = \sum_{x \in A} \frac{e^{-\lambda} \lambda^x}{x!}, A \in \mathcal{F}, \lambda > 0.$$

(b)
$$P(A) = \sum_{x \in A} p(1-p)^x$$
, $A \in \mathcal{F}$, $0 .$

- (c) P(A) = 0, if A has a finite number of elements, and P(A) = 1, if A has infinite number of elements, $A \in \mathcal{F}$.
- 2. Let I be any index set. Let \mathcal{F}_{α} , $\alpha \in I$ be a collection of σ -algebras on \mathcal{S} . Prove that $\bigcap_{\alpha \in I} \mathcal{F}_{\alpha}$ is a σ -algebra.
- 3. Give a counter-example to show that union of two σ -algebras need not be a sigma algebra.
- 4. Let \mathcal{S} be the sample space of a random experiment. Let \mathcal{A} be a collection of subsets of \mathcal{S} . The smallest σ -algebra containing \mathcal{A} or the σ -algebra generated by \mathcal{A} is defined as

$$\sigma(\mathcal{A}) \doteq \bigcap_{\mathcal{A} \subset \mathcal{F}, \mathcal{F} \text{ is } \sigma-\text{algebra on } \mathcal{S}} \mathcal{F}.$$

- (a) Let A be a non-empty subset of S. Write down the smallest σ -algebra containing A.
- (b) Let A and B be two non-empty subsets of S such that $A \cup B \neq S$ and $A \cap B \neq \phi$. Write down the smallest σ -algebra containing A and B.
- 5. Let A_1, A_2, \ldots, A_n be n > 1 events. Then prove that

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right).$$

6. Let A_1, A_2, \ldots be a sequence of events. Then prove that

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P\left(A_i\right).$$

7. (Principle of inclusion and exclusion) Let A_1, A_2, \ldots, A_n be n > 1 events. Then prove that

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} P\left(A_{i_{1}} \cap A_{i_{2}}\right) + \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \sum_{i_{3}=1}^{n} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right) - \dots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_{i}\right)$$

8. (Bonferroni's Inequality) Given n > 1 events A_1, A_2, \ldots, A_n , prove that

$$\sum_{i=1}^{n} P(A_i) - \sum_{\substack{i=1 \ i < j}}^{n} \sum_{j=1}^{n} P(A_i \cap A_j) \le P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i).$$

[Hint: To prove the LHS, use induction.]

- 9. For any two events A and B, prove that $P(A \cap B) \ge 1 P(A^c) P(B^c)$.
- 10. Let A, B, C, and D be four events such that P(A) = 0.6, P(B) = 0.5, P(C) = 0.4, $P(A \cap B) = 0.3$, $P(A \cap C) = 0.2$, $P(B \cap C) = 0.2$, $P(A \cap B \cap C) = 0.1$, $P(B \cap D) = P(C \cap D) = 0$, $P(A \cap D) = 0.1$, and P(D) = 0.2. Find
 - (a) $P(A \cup B \cup C)$ and $P(A^c \cap B^c \cap C^c)$. (Ans: 0.9 and 0.1)
 - (b) $P((A \cup B) \cap C)$ and $P(A \cup (B \cap C))$. (Ans: 0.3 and 0.7)
 - (c) $P((A^c \cup B^c) \cap C^c)$ and $P((A^c \cap B^c) \cup C^c)$. (Ans. 0.4 and 0.7)
 - (d) $P(D \cap B \cap C)$ and $P(A \cap C \cap D)$. (Ans: 0 and 0)
 - (e) $P(A \cup B \cup D)$ and $P(A \cup B \cup C \cup D)$. (Ans: 0.9 and 1.0)
 - (f) $P((A \cap B) \cup (C \cap D))$. (Ans: 0.3)
- 11. Let (Ω, \mathcal{F}, P) be a probability space and let $A, B \in \mathcal{F}$. Show that $P(A \cap B) P(A)P(B) = P(A)P(B^c) P(A \cap B^c) = P(A^c)P(B) P(A^c \cap B) = P(A \cup B)^c P(A^c)P(B^c)$.
- 12. Suppose that we have $n \geq 2$ letters and corresponding n addressed envelopes. If these letters are inserted at random in n envelopes, find the probability that no letter is inserted into the correct envelop. (Ans: $\frac{1}{2!} \frac{1}{3!} + \frac{1}{4!} \ldots + (-1)^n \frac{1}{n!}$.)