Kryptographie

Fabio Oesch, Michael Künzli & Jan Fässler

4. Semester (FS 2013)

Inhaltsverzeichnis

0	Mat	thematische Grundlagen	1
	0.1	Euklid	1
	0.2	Modulare Division	1
	0.3	Modulares Potenzieren	1
	0.4	Chinesischer Restsatz	2
1	Klas	ssische Kryptographie	3
	1.0	Repetition	3
	1.1	Klassische Verschlüsselungsverfahren	
	1.2	Spezielles Bsp für Substitution Homophone Verschlüsselung	3
	1.3	Kasiski-Text (monographisch & polyalphabetisch)	3
	1.4	Playfair-Cipher	4
		1.4.1 Beschreibung	4
		1.4.2 Beispiel	4
	1.5	Koinzidenzindex (index of coincidence)	4
	1.6	Vigenères Chipres	5
		1.6.1 Beschreibung	5
		1.6.2 Berechnung der Schlüssellänge eines Vigenère-Cipher	6
		1.6.3 Kryptoanalysis des Vigenère-Cipher	6
	1.7	One-Time-Pad	7
	1.8	Kryptosysteme	7
	1.9	Kryptoanalysis	7
		1.9.1 Ciphertext-only attack	7
		1.9.2 known-plaintext attack	8
		1.9.3 chosen-plaintext attack	8
		1.9.4 chosen-ciphertext attack	8
2	Blo	ck-Cipher	9
	2.1	Data Encription Standard (DES)	9
	2.2	Modi von Block-Cipher	9
		2.2.1 ECB-Modus (electronic code block)	9
		2.2.2 CBC-Modus (cipher block chaining)	10
		2.2.3 CFB-Modus (cipher feedback)	10
3	RSA	A	11
J	3.1	Schlüsselerzeugung	
	3.2	Verschlüsselung und Entschlüsselung	
	0.2	3.2.1 RSA ist ein Blockcipher	
		3.2.2 Beweis	
	3.3	Hastad Attack	
	3.4	Wiener's Angriff	
	3.5	de Wenger - Spezialfall: RSA-Schlüssel	
	5.5	de Wenger - Spezianan. RSA-Schlüsser	10
4	Kelt	tenbrüche	14
5	Fakt	torisierungsalgorithmen	15
0	5.1		15
	5.2	Fermat-Faktorisierung	
	0.2	1 CTINEW 1 WAS COLUMN TO THE COLUMN TO THE COLUMN TWO THE COLUMN T	10
6	Sign	naturen	17
	6.1	Einführung	17
	6.2	Verifikation	18
7	Diff	rie-Hellman-Protokoll	18
8	\mathbf{Ueb}	oungen	20

0 Mathematische Grundlagen

0.1 Euklid

ggT(a,b):

a = q	$q*b$ \dashv	$\vdash b_{n\epsilon}$	eu		s_1 =	= 1 &	$:t_1:$	=0		s =	$t_{ m alt}$ &	z t =	= $s_{ m alt}$ -	$-q \cdot t_{ m a}$	ılt
a	b	q	s	t	a	b	q	s	t	a	b	q	s	t	
99	78	1			99	78	1			99	78	1	-11	14	
78	21	3			78	21	3			78	21	3	3	-11	
21	15	1			21	15	1			21	15	1	-2	3	
15	6	2			15	6	2			15	6	2	1	-2	
6	3	2			6	3	2			6	3	2	0	1	
3	0				3	0		1	0	3	0		1	0	

Daraus folgt dann $3 = -11 \cdot 99 + 14 \cdot 78$

0.2 Modulare Division

Eine modulare Division hat die Form $a/b \mod n$, gesucht wird die ganze Zahl c im Intervall [0, n-1], welche die Gleichung $bc \equiv a \mod n$. Die modulare Division ist nur möglich, wenn ggT(b,n) = 1. Beispiel: 23/27 mod 31

```
31 = 1*27 + 4 //ggT(27,31) mittels euklidischem Algorithmus 27 = 6*4+3 4 = 1*3+1 3 = 3*1+0 \Longrightarrow ggT(27,31) = 1 \to \text{modulare Division m\"oglich}
```

Jetzt fahren wir mit dem erweiterten euklidischen Algorithmus fort, um c (23 = 27c + 31x) zu ermitteln:

```
\begin{array}{l} 1=4-1*3\\ 1=4-1*(27-6*4) \; // \; \text{ersetze 3 durch Klammer, obigen Algorithmus rückwärts}\\ 1=4-1*27+6*4=7*4-1*27 \; // \; \text{ausmultiplizieren}\\ 1=7*(31-1*27)-1*27 \; // \; \text{ersetze 4 durch Klammer}\\ 1=7*31-7*27)-1*27=7*31-8*27 \; // \; \text{ausmultiplizieren}\\ 23*1=23*7*31+23*(-8)*27 \; // \; \text{erweitern mit 23} \end{array}
```

 \implies uns interessiert nur c=23*(-8)=-184 was der **Restklasse 2** (von Modulo 31) entspricht. Dies ermittelt man, indem man zu -184 so oft 31 addiert, bis man eine positive Zahl erhält. Die gesuchte Gleichung lautet also: $27*2 \equiv 23 \mod 31$.

0.3 Modulares Potenzieren

Seien $a, b, n \in \mathbb{Z}$ und b, n > 1. Berechnen Sie $a^b \mod n$.

Da es für grosse b für den Taschenrechner nicht möglich ist dies zu berechnen verwenden wir ein spezielles Verfahren:

- 1.) binäre Darstellung von b
: $b = \textstyle \sum_{i=0}^k \alpha_i 2^i \text{ mit } \alpha \in \{0,1\}.$
- 2.) Anwendung auf a: $a^b = a^{\sum_{i=0}^k \alpha_i 2^i} \\ a^b = \prod_{i=0}^k a^{\alpha_i 2^i} \\ a^b = a^{\alpha_k 2^k} * a^{\alpha_{k-1} 2^{k-1}} * a^{\alpha_{k-2} 2^{k-2}} \dots a^{\alpha_1 2} * a^{\alpha_0} \\ a^b = (\dots ((a^{a_k})^2 * a^{a_{k-1}})^2 \dots * a^{\alpha_1})^2 * a^{\alpha_0}$
- 3.) Das Verfahren besteht nun darin, den letzten Ausdruck von innen nach aussen auszuwerten und nach jeder Multiplikation das Resultat modulo n zu rechnen.

Beispiel:

 $977^{2222} \mod 11$

```
1.) 2222_{10} \rightarrow bin = 1000101011110_2
```

```
2.) (\dots(977)^2)^2)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2 * 977)^2
```

3.) Anwendung des Verfahren:

```
\mod 11
977
                 = 9
9^2
         \mod 11
4^{2}
         \mod 11
                  =5
5^2
         \mod 11
                 =3
3^2
         \mod 11
                 =9
9 * 977
         \mod 11
                  =4
4^2
         \mod 11
5^2
         \mod 11
                  = 3
3 * 977
         \bmod \ 11
                  =5
         \mod 11
                  =3
3^2
         \mod 11
                  = 9
9 * 977
                  =4
         \mod 11
4^2
         \mod 11
                  =5
5*977
         \mod 11
         \mod 11
                  = 1
1*977
         \mod 11
                 = 9
         mod 11
                 = 4
```

0.4 Chinesischer Restsatz

```
\begin{array}{lll} x \equiv m_1 \mod n_1 & \Rightarrow & x \equiv 2 \mod 3 \\ x \equiv m_2 \mod n_2 & \Rightarrow & x \equiv 3 \mod 4 \\ x \equiv m_3 \mod n_3 & \Rightarrow & x \equiv 2 \mod 5 \\ N = n_1 \cdot n_2 \cdot n_3 = 3 \cdot 4 \cdot 5 = 60, \ N_1 = \frac{N}{n_1} = 20, \ N_2 = \frac{N}{n_2} = 15, \ N_3 = \frac{N}{n_3} = 12 \\ ggT(N_i, n_i) = x \cdot n_i + y \cdot N_i = 1 \rightarrow e_i = y \cdot N_i & // \ erweiterter \ Euklid \\ ggT(20, 3) = 7 \cdot 3 + (-1) \cdot 20 = 1 \rightarrow e_1 = -20 \\ ggT(15, 4) = 4 \cdot 4 + (-1) \cdot 15 = 1 \rightarrow e_2 = -15 \\ ggT(12, 5) = 5 \cdot 5 + (-2) \cdot 12 = 1 \rightarrow e_3 = -24 \\ x = m_1 \cdot e_1 + m_2 \cdot e_2 + m_3 \cdot e_3 = 2 \cdot -20 + 3 \cdot -15 + 2 \cdot -24 = -133 \ \mathrm{mod} \ 60 = 47 \\ \end{array}
```

1 Klassische Kryptographie

1.0 Repetition

Alphabet endliche Mengen von Zeichen

Beispiel

$$\begin{split} \mathcal{A} &:= \{A, B, C, ..., Z\}, \ |\mathcal{A}| = 26 \\ \Sigma &:= \{0, 1\}, \ |\Sigma| = 2 \\ \mathcal{A}^* &:= \{\text{endliche W\"{o}rter \"{u}ber } \mathcal{A}\} \end{split}$$

Sprachen über $A: L \subset A^*$

1.1 Klassische Verschlüsselungsverfahren

Substitution Cipher	Transposition Cipher						
Einheiten werden ersetzt .	Einh	eiter	ı wer	den '	verta	auscht.	
	3	1	5	6	2	4	
	K	О	Μ	Μ	E	H	
	Ε	U	Τ	\mathbf{E}	A	В	
	Ε	Ν	D		U	${ m M}$	
	\mathbf{Z}	Ο	Ο	A	В	\mathbf{C}	
	$\Rightarrow C$	UN()EA	UB.	. B	em.	
			n wer Pad			uscht	

${f monoalphabetisch}$	polyalphabetisch
$E: \mathcal{A} \to B, \ x \mapsto E(x)$	$E: \mathcal{A} \to P(B), x \mapsto E(x)$
monographisch	polygraphisch
Buchstaben	Gruppen von Buchstaben

1.2 Spezielles Bsp für Substitution Homophone Verschlüsselung

Gegeben: $\Sigma := \{0, 1\}, B := \{a, b, c\}$

Information über die Sprache des Klartextes: H

Häufigkeit von $0:\frac{1}{3}$ Häufigkeit von $1:\frac{3}{3}$

$$E: \Sigma \to P(B)$$
$$0 \mapsto \{b\}$$
$$1 \mapsto \{a, c\}$$

 $\mathbf{Bsp:} \quad \begin{array}{ll} 10110110011 \\ \mathrm{abccbacbbaa} \end{array}$

1.3 Kasiski-Text (monographisch & polyalphabetisch)

Klartext TO BE OR NOT TO BE

Schlüssel NOW

 $\mathbf{p} = |\text{NOW}|$

TOB	EOR	NOT	TOB	Е
NOW	NOW	NOW	NOW	N
GCX	RCN	ACP	GCX	R

GCX kommt 2x for so können wir eine Annahme zur Periode p machen. Die Periode ist dann $c \cdot p$. Dies kann aber auch zufällig passieren.

1.4 Playfair-Cipher

1.4.1 Beschreibung

Bei der Playfair-Methode handelt es sich um eine Substitution, die monoalphabetisch und bigraphisch ist, das heißt, es kommt nur ein einziges festes Alphabet zur Anwendung und als zu verschlüsselnde Symbole werden Bigramme, also jeweils ein Paar (zwei) Buchstaben benutzt.

1.) Vorbereitung des Schlüssel-Quadrates:

- a.) Von links nach rechts alle Buchstaben streichen die bereits einmal vorgekommen sind im Schlüssel.
- b.) Die Buchstaben in ein 5x5 Quadrat füllen und danach mit den restlichen Bustaben des Alphabetes der Reihe nach auffüllen. Die Buchstaben I und J kommen zusammen in ein Feld.

2.) Preprocessing:

Zwischen alle doppelten Buchstaben im Klartext ein X einsetzen und die Buchstaben in Zweierpaare unterteilen. Falls es nicht aufgeht kommt am Ende noch ein X.

3. Verschlüsselung:

- Falls 2 auf gleicher Zeile: Beide Buchstaben um eins nach rechts
- Falls 2 auf gleicher Spalte: Beide Buchstaben um eins nach unten
- Falls 2 nicht auf gleicher Zeile/Spalte: Man nimmt die Buchstaben die auf seiner Zeile und auf des anderen Spalte liegen.

1.4.2 Beispiel

```
HARYP
 OTEBC
 DFG IK
         Schlüssel: Harry Potter, HAR&Y POTÆ&
 LMNQS
 UVWXZ
     Klartext
                  HA
                                 ZU
                                      SA
                                          MM
                                                EN
Bsp:
     Preprocessed
                  HA
                       LX
                            LO
                                 ZU
                                      SA
                                          MX
                                                ME
                       QU
     Secret
                  AR
                            UD
                                 UV
```

1.5 Koinzidenzindex (index of coincidence)

Der Koinzidenzindex ist die Grösse, die von der Sprache abhängt, aber invariant ist gegenüber Cäsar-Verschiebungen.

NX

Gegeben

```
Alphabet Alphabet \mathcal{A} := \{A, B, C, \dots, Z\} p_A \quad p_B \quad \dots \quad p_Z \Rightarrow \text{Buchstabenhäufigkeit:} \quad \square \quad \square \quad \text{mit } 0 \leq p_i \leq 1 \text{ und } \sum_{i=1}^{26} p_i = 1 p_1 \quad p_2 \quad \dots \quad p_3
```

Bemerkung:

Jede Sprache hat ihren eigenen Konzidenzindex

$$IC_{German} = 0.0766 / IC_{Arabic} = 0.0759 / IC_{flat} = 0.0385$$

Je unregelmässiger die buchstabenhäufigkeit, umso grösser der Index.

Berechnung 1:

$$\mathbf{IC_L} = \sum_{i=1}^n p_i^2$$

Denn der Erwartungswert IC_L für die Sprache S lässt sich aus den Buchstabenhäufigkeiten nach der Formel berechnen, wobei p_i die Wahrscheinlichkeit des i-ten Zeichens des Alphabets in Texten der entsprechenden Sprache angibt.

Sprache_{flat}:
$$p_1 = p_2 = p_3 = \ldots = p_{26} = \frac{1}{26}$$
: $IC_{flat} = \sum_{i=1}^{26} (\frac{1}{26})^2$

Berechnung 2:

$$\mathbf{IC_L} = \frac{\sum_{i=A}^{Z} n_i(n_i-1)}{N(N-1)}$$

In seiner grundlegenden Form wird der Koinzidenzindex ermittelt, indem man die Einzelanzahlen der unterschiedlichen Einzelzeichen n_i eines Geheimtextes zählt, also beispielsweise wie oft der Buchstabe A auftritt, wie oft B, und so weiter. Diese werden nach oben angegebener Formel mit den um 1 verminderten Einzelanzahlen multipliziert und für alle Buchstaben (beispielsweise von A bis Z) aufsummiert. Die Summe wird schließlich dividiert durch die Gesamtanzahl N der Buchstaben des Textes (also der Textlänge) sowie die um 1 verminderte Textlänge.

Alphabet
$$\Sigma := \{0, 1\} / F = 00110111101$$

$$\frac{n_0 = 4}{n_1 = 7}$$

$$IC_F = \frac{4*3+7*6}{11*10} = 0.49$$

Frage: Wie gross ist die Wahrscheinlichkeit zwei gleiche Buchstaben aus F herauszugreifen?

Definition
$$\mathbf{IC_F} = \frac{\sum_{1}^{26} \binom{n_i}{2}}{\binom{n}{2}} \binom{n}{k} = \frac{n!}{k!*(n-k)!}$$

Bemerkung

Permutation der Buchstaben:
$$F \mapsto \text{Perm}(F)$$
 $IC_F = IC_{Perm(F)}$ $F = \text{"AXCA..."} \mapsto \text{Perm}(F) = \text{"CBYC..."}$

1.6 Vigenères Chipres

1.6.1 Beschreibung

Das Schlüsselwort sei "AKEY", der Text "geheimnis". Vier Caesar-Substitutionen verschlüsseln den Text. Die erste Substitution ist eine Caesar-Verschlüsselung mit dem Schlüssel "A". "A" ist der erste Buchstabe im Alphabet. Er verschiebt den ersten Buchstaben des zu verschlüsselnden Textes, das "g", um 0 Stellen, es bleibt "G". Der zweite Buchstabe des Schlüssels, das "K", ist der elfte Buchstabe im Alphabet, er verschiebt das zweite Zeichen des Textes, das "e", um zehn Zeichen. Aus "e" wird ein "O" (siehe Tabelle). Das dritte Zeichen des Schlüssels ("E") verschiebt um 4, "Y" um 24 Stellen. Die Verschiebung des nächsten Buchstabens des Textes beginnt wieder bei "A", dem ersten Buchstaben des Schlüssels:

5

Klartext: $_{\mathrm{m}}$ A Κ \mathbf{E} Y Κ Ε Y Schlüssel: Α Α G Ο \mathbf{C} Geheimtext:

Berechnung der Schlüssellänge eines Vigenère-Cipher

Gegeben

C Vigenère-Chiffrat der Länge n Die Schlüssellänge sei p (unbekannt)

		<i>p</i>				
C_1	C_2	C_3	C_4		C_p)
C_{p+1}	C_{p+2}	C_{p+3}	C_{p+4}		C_{2p}	
C_{2p+1}	C_{2p+2}	C_{2p+3}	C_{2p+4}		C_{3p}	$\left.\right] \left.\right\} \frac{n}{p}$
C_{n-2}	C_{n-1}	C_n	-	-	-	J
	×	Х				

monoalphabetisch

alle Spalten = p, alle Zeilen = $\frac{n}{p}$, letzte Zeile = monoalphabetisch!

 $\alpha:=$ Anzahl Buchstabenpaare aus gleicher Spalte, $\alpha=\frac{n(\frac{n}{p}-1)}{2}=\frac{n(n-p)}{2p}$ $\beta:=$ Anzahl Buchstabenpaare aus verschiedenen Spalten, $\beta=\frac{n(n-\frac{n}{p})}{2}=\frac{n^2(p-1)}{2p}$

 $\gamma := \text{Anzahl gleicher Buchstabenpaare aus } C, IC_L = \frac{\gamma}{\binom{n}{2}}$

$$\boxed{\gamma = \alpha \cdot IC_L + \beta \cdot IC_{\text{flat}}}$$

$$p = \frac{n(IC_L - IC_{flat})}{IC_C \cdot (n-1) + IC_L - n \cdot IC_{\text{flat}}}$$

Kryptoanalysis des Vigenère-Cipher

- 1) Schlüssellänge p=1,2,3,...
 - Einleitung des Cipher-Tests in p Abschnitte
 - Berechnung des IC des Abschnitts
 - Wähle p mit $IC \sim IC_L$ (oder hoch)
- **2)** Sei s,t zwei Strings über dem Alphabet A: $s=s_1,s_2,s_3,\ldots,s_k \ / \ t=t_1,t_2,t_3,\ldots,t_l$ Seien $n_1(s) := \#A$'s in s, $n_2(s) := \#B$'s in s, ...

Def.
$$MIC(s,t) := \frac{\sum_{i=1}^{26} n_i(s) * n_i(t)}{k * l}$$

Beispiel: s="AABCCA"/t="ABCABCABC"

$$\left. \begin{array}{l} n_1(s) = 3, n_1(t) = 3 \\ n_2(s) = 1, n_2(t) = 3 \\ n_3(s) = 2, n_3(t) = 3 \end{array} \right\} \rightarrow MIC(s,t) = \frac{1}{6*9} [3*3 + 1*3 + 2*3]$$

3.) Anwendung auf Cipher Text

			-	
$(i,j)\backslash k$	0	1	2	
(1, 2)				
(1,3)				
(1, 4)				
(1, 5)				
(2,3)			$MIC(c_2, c_{3+2})$	
(2,4)				
(2,5)				
(3, 4)				
(3, 5)				
(4, 5)				

p = Schlüssellänge von c (Annahme:5) $c_1, c_2, ..., c_5$ Abschnitte des Ciphertext

i = 1, ..., p j = i + 1, ..., p k = 0, ..., 25 $\rightarrow MIC(c_i, c_{j+k})$

 $k = 0, \dots, 25$ $\rightarrow MIC(c_i, c_i)$ Beispiel: $c_1: AXBM...$ $c_3: ABXH...$ c_{3+2} :CDZJ... 4.) Wir suchen Einträge in der Tabelle, die hoch sind (> 0.06)

$$MIC(s,t) = \frac{1}{kl} \sum_{i=1}^{26} n_i(s) n_i(t), |s| = k, |t| = l$$

zb: $MIC(c_2, c_3 + 22 > 0.06 \iff c_2 \sim c_3 + 22 \Rightarrow \beta_2 - \beta_3 = k$

Notation $s \sim t \iff s$ und t sind mit dem gleichen Shift aus zwei Klartexten entstanden.

Bsp. $klar_1 \sim klar_2$

$$\begin{vmatrix}
klar_1 \xrightarrow{\beta_1} c_1 \\
klar_2 \xrightarrow{\beta_2} c_2
\end{vmatrix} c_1 = klar_1 + \beta_1 \begin{vmatrix}
\beta_1 + klar_1 = c_1 - \beta_1 + \beta_1 = c_1 \\
\beta_1 + klar_2 = c_2 - \beta_2 + \beta_1 = c_2 + (\beta_1 + \beta_2)
\end{vmatrix}$$

Wir suchen die grossen Werte von $MIC(c_i, c_j + k)$ $MIC(c_i, c_j + k)$ gross $\iff c_i \sim c_j + k$

$$c_i = klar_i + \beta_i \sim klar_i + \beta_j + k = \frac{k}{k} = \frac{\beta_i}{l} + \frac{\beta_j}{l}$$

$$\begin{cases} \downarrow \text{ sind } \frac{\text{bekannt}}{k_{12} = \beta_2 - \beta_1} \\ k_{13} = \beta_3 - \beta_1 \\ k_{52} = \beta_2 - \beta_5 \end{cases} \text{Auflösen nach } \beta_1$$

 $\begin{array}{l} \textbf{Schlüsselwort:} \ \beta_1, \quad \beta_2, \dots, \beta_p \\ \textbf{Ausprobieren:} \ \beta_1 = 0, 1, \dots, 25 \end{array} = \beta_1, \beta_1 + k_{12}, \dots,$

1.7 One-Time-Pad

$$\Sigma = \{0,1\}$$
 Klartext:
$$p_1 p_2 p_3 p_4 p_5 \cdots = \begin{bmatrix} 0 \\ 1 \end{bmatrix} 0101 \dots$$
 Schlüssel:
$$k_1 k_2 k_3 k_4 k_5 \cdots = \begin{bmatrix} 1 \\ 0110 \dots \\ 1 \end{bmatrix} 0111 \dots$$
 ciphertext:
$$c_1 c_2 c_3 c_4 c_5 \cdots = \begin{bmatrix} 1 \\ 1 \end{bmatrix} 0011 \dots$$

1.8 Kryptosysteme

Kryptosystem: (P, C, K, e, d)

P Menge der Klartexte

C Menge der Geheimtexte

K Menge der Schlüssel

$$e: K \times P \to C$$

$$d: K \times C \to P$$

$$\forall k \varepsilon K \ \forall p \varepsilon P : d(k, e(k, p)) = p$$

$$\rightarrow \forall k \varepsilon K : e(k, -) \text{ ist injektiv}$$

$$\rightarrow \forall k \varepsilon K : d(k, -) \text{ ist surjektiv}$$

1.9 Kryptoanalysis

1.9.1 Ciphertext-only attack

Gegeben
$$c_i = e_k(p_i), i=1, ..., n$$

Gesucht p_i , i= 1, ...,n oder k

1.9.2 known-plaintext attack

Gegeben
$$(p_i, c_i = e_k(p_i))$$
, i=1, ..., n

Gesucht k

1.9.3 chosen-plaintext attack

Gegeben
$$(p_i, c_i = e_k(p_i)), i=1, ..., n$$

 p_i nach Wahl des Kryptoanalytikers

 $\mathbf{Gesucht} \;\; \mathbf{k}$

Verwendung DIE Attacke gegen jedes Public-Key System

1.9.4 chosen-ciphertext attack

Gegeben
$$(p_i, p_i = d_k(c_i))$$
, i=1, ..., n
 c_i nach Wahl des Kryptoanalytikers

 $\mathbf{Gesucht} \;\; \mathbf{k}$

2 Block-Cipher

Alphabet

$$\Sigma = \{0, 1\}$$

$$\Sigma^n := \Sigma \times \Sigma \times \cdots \times \Sigma$$

Definition

Ein Block - Cipher ist eine **injektive** Abbildung $C: K \to Perm(\Sigma^n)$ wobei K der Schlüsselraum ist.

Bsp.

$$n = 3$$

$$\Sigma^{3} = \Sigma \times \Sigma \times \Sigma$$

$$p \begin{cases} 000 & \nearrow & 000 \\ 001 & \rightarrow & 001 \\ \dots & \dots & \dots \\ 111 & \searrow & 111 \\ & \uparrow Schlüssel \end{cases}$$

Frage:

Wie gross ist der Schlüsselraum K maximal? $|K| \leq (2^n)!$

2.1 Data Encription Standard (DES)

2.2 Modi von Block-Cipher

Sei
$$\Sigma := \{0, 1\}$$

 $p = c = \Sigma^4 = \{\square\square\square\square\}$
 $k = \text{Permutation von } \Sigma^4$
 $k = \pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$

Vor- und Entschlüsselung

Sei
$$m = 0101 \in p$$
 (Klartext)
 $e_k(m) = e_k(0101) = 1010 = c$

2.2.1 ECB-Modus (electronic code block)

$$m = \underbrace{1100}_{m_1} |\underbrace{0110}_{m_2}| \underbrace{1100}_{m_3} |101^*$$

$$\xrightarrow{m_1} e_k \xrightarrow{e_1} c_1$$

Bem: $m_1 = m_3 \Rightarrow c_1 = c_3$

2.2.2 CBC-Modus (cipher block chaining)

$$m = \underset{\text{Länge n}}{m_1} | m_2 | \dots, n : \text{Blocklänge}$$

$$IV = \underset{\text{Initialvektor}}{\text{Initialvektor}} \text{ (i.a. bekannt)}$$

$$C_0 := IV$$

$$C_1 := e_k(C_0 \oplus m_1)$$

$$C_2 := e_k(C_1 \oplus m_2)$$

$$C_3 := e_k(C_1 \oplus m_2)$$

$$E_1 := e_k(C_1 \oplus m_2)$$

$$E_2 := e_k(C_1 \oplus m_3) = e_k(0111) = 1011$$

$$E_3 := e_k(C_2 \oplus m_3) = e_k(0111) = 1011$$

Entschlüsselung:

$$\begin{array}{l} c_1 \oplus d_k(c_2) = c_1 \oplus d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2 \\ m = \underset{\text{Länge n}}{m_1} \mid m_2, \ n : \text{Blocklänge} \ / \ IV = \text{Initialvektor (i.a. bekannt)} \\ c_0 := IV, \ c_1 := e_k(c_0 \oplus m_1), \ c_2 := e_k(c_1 \oplus m_2) \\ c_1 \oplus d_k(c_2) = d_k(e_k(c_1 \oplus m_2)) = c_1 \oplus m_2 \oplus c_1 = m_2 \end{array}$$

Bem: $m_1 = m_3 \Rightarrow c_1 = c_3$

2.2.3 CFB-Modus (cipher feedback)

$$m = \underbrace{\tilde{m_1}}_{\text{Länge}=r} |\tilde{m_2}|\tilde{m_3}|\dots,\,n$$
: Cipher Block-Länge (DES: 64) und $\boxed{0 < r \leq n}$

Bsp: m = 110|001|101|100|101, IV = 1110, r = 3, n = 4

$$I_{1} = 1110$$
 $I_{2} = 1110 000$

$$\downarrow \qquad \qquad \downarrow \\ e_{k} \qquad \qquad \downarrow \\ O_{1} \quad 1101 \qquad O_{2} \quad 0000$$

$$\oplus \qquad \rightarrow c_{1} = 000 \qquad \oplus \qquad \rightarrow c_{2} = 001$$
 $\tilde{m_{1}} = 110 \qquad \tilde{m_{2}} = 001$

3 **RSA**

Schlüsselerzeugung 3.1

$$\begin{split} & \text{PK} = (\text{n,e}) \text{ und SK} = (\text{n,d}) \\ & \text{Wir w\"{a}hlen zwei (grosse) Primzahlen p,q} \in \mathbb{R}^*. \ \varphi \neq q \\ & n = p*q \\ & \varphi(n) = (p-1)(q-1) \ // \ \varphi(n) = |\mathbb{Z}_n^*| \\ & \text{Wir w\"{a}hlen } e \in \mathbb{Z}_{\varphi(n)}^* \ // \ \text{ggT}(\text{e},\varphi(n)) = 1 \\ & d := e^{-1} \text{ in } \mathbb{Z}_{\varphi(n)}^* \ // \ \text{ed} = 1 \text{ in } \mathbb{Z}_{\varphi(n)}^* \Leftrightarrow \text{ed} \equiv 1 \text{ mod } \varphi(n) \\ & \Longrightarrow \varphi(n) | (ed-1) \\ & \Longrightarrow \boxed{\exists k \in \mathbb{Z} : e*d + k*\varphi(n)) = 1} \\ & d := e^{-1} \in \mathbb{Z}_{120}^* : \boxed{ed + k\varphi(n) = 1} \end{split}$$

Beispiel:

$$\begin{aligned} p &= 11, \ q = 13 \\ n &= p*q = 143 \\ \varphi(n) &= 120 = 2^3*3*5 \\ \mathbf{e} &:= 7 \Rightarrow \text{PK} = (143,7) \\ \mathbb{Z}_n &= \{0,1,2,3,\ldots,n-1\} \end{aligned}$$

	i	q_i	r_i	s_i	t_i				
	0	-	120	1	0	190 71			
	1	17	7	0	1	120 = q*7 + r			
ĺ			1	1	-17				
:	$\Rightarrow (*) \underbrace{e}_{7} * (-17) + 1 * \underbrace{\varphi(n)}_{120} = 1 // \bmod \varphi(n) \Rightarrow \boxed{d \equiv (-17) \bmod \varphi(n)}$								

3.2Verschlüsselung und Entschlüsselung

120

3.2.1 RSA ist ein Blockcipher

 $ggT(m,n)\neq 1 \Rightarrow m = l * p \text{ oder } m = k * q$

3.2.2 Beweis

Fall 1:
$$\operatorname{ggT}(\mathbf{m},\mathbf{n})=1$$
 und $(m^e)^d=m$ in \mathbb{Z}_n
Weil $\operatorname{ggT}(\mathbf{m},\mathbf{n})=1$ existiert das Inverse von m: $\underbrace{m^{ed-1}=1}_{\text{Das ist zu Zeigen!}}$ in \mathbb{Z}_n
 $e*d+k*\varphi(n)=1$ // Konstruktion des Schlüssel $\Rightarrow e*d-1=-k*\varphi(n): m^{ed-1}=m^{-k*\varphi(n)}=(m^{-k})=1$ // Satz von Euler-Fermat Fall 2:

3.3 Hastad Attack

Chinesischer Restsatz: $m^3 = crt([m^3, m^3, m^3], [n_1, n_2, n_3])$ Es benötigt so viele Gleichungen für den Restsatz wie e gross ist.

3.4 Wiener's Angriff

$$\begin{array}{l} \frac{5}{3} = \\ 5 = \boxed{1} & \cdot 3 + 2 \\ 3 = \boxed{1} & \cdot 2 + 1 \\ 2 = \boxed{2} & \cdot 1 \\ \\ \frac{\text{KE von } \frac{5}{3} = <1, 1, 2 > 1 + \frac{1}{1 + \frac{1}{2}} = \frac{5}{3} \\ \text{Satz:} \end{array}$$

Voraussetzung

- (n, e), (n, d) RSA-Schlüssel mit $n = p \cdot q, p < q < 2p$
- $0 < d \leqslant \frac{1}{3} \sqrt[4]{n}$

Behauptung \exists schneller Alg. zur Faktorisierung von n

Beweis:

$$\begin{array}{l} \bullet \quad e \cdot d - k \cdot \varphi(n) = 1 \\ e < \varphi(n) \end{array} \} \Rightarrow k \leqslant d \\ \bullet \quad \left| \begin{array}{l} \frac{e}{n} - \frac{k}{d} \right| = \left| \frac{ed - n \cdot k}{n \cdot d} \right| = \left| \frac{ed - k \varphi(n) + k \varphi(n) - nk}{nd} \right| = \left| \frac{ed - k \varphi(n) - k(n - \varphi(n))}{nd} \right| = \left| \frac{1 - k(n - \varphi(n))}{nd} \right| \leqslant \left| \frac{k(n - \varphi(n))}{nd} \right| = \left| \frac{k(p + q - 1)}{nd} \right|^{\frac{N}{N}} \leqslant \left| \frac{3p}{nd} \right| \leqslant \left| \frac{3p}{n} \right| \leqslant \left| \frac{3\sqrt{n}}{n} \right| = \left| \frac{3}{\sqrt{n}} \right| \\ & \leqslant \left| \frac{3}{9d^2} \right| = \left| \frac{1}{3d^2} \right| < \frac{1}{2d^2} \\ \Rightarrow \left| \frac{e}{n} - \frac{k}{d} \right| < \frac{1}{2d^2} \right| \\ \Rightarrow \frac{k}{d} \text{ ist Konvergente von } \frac{e}{n} \\ p = \text{ nth-prime } (2000) \\ q = \text{ nth-prime } (2030) \\ n = p * q \\ phi = (p - 1) * (q - 1) \\ d = 101 \\ e = d \cdot \text{invers-mod } (phi) \ // \ 139917965 \\ \text{con = continued-fraction-list } (e/n, \ partial_convergents = true) \\ \text{conv1} \\ [(0, 1), \\ (1, 2), \\ (5, 11), \\ (46, 101), \\ (51, 112), \\ (97, 213), \\ (342, 751), \end{array}$$

```
\begin{array}{l} (781\,,\ 1715)\,,\\ (32363\,,\ 71066)\,,\\ (33144\,,\ 72781)\,,\\ (131795\,,\ 289409)\,,\\ (1482889\,,\ 3256280)\,,\\ (1614684\,,\ 3545689)\,,\\ (3097573\,,\ 6801969)\,,\\ (17102549\,,\ 37555534)\,,\\ (139917965\,,\ 307246241)] \end{array}
```

3.5~ de Wenger - Spezialfall: RSA-Schlüssel

Vor.

1.
$$n = p * q, p, q \in \mathbb{P}^*, p > q$$

$$2. \ \delta = p - q$$

Beh.
$$0$$

Bew.

1.
$$\delta^2 = (p-q)^2 = (p+q)^2 - 4 * n = (p+q-2 * \sqrt{n})(p+q+2 * \sqrt{n}) > 0$$

2.
$$p+q-2*\sqrt{n} = \frac{\delta^2}{(p+q)+2*\sqrt{n}} < \frac{\delta^2}{2*\sqrt{n}+2*\sqrt{n}} = \frac{\delta^2}{4*\sqrt{n}}$$

Keltenbrüche 4

Definition

Ein Ausdruck der From $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_n}}}}$ mit $a_0 \in \mathbb{Z}$ & $a_1, a_2, a_3 \ldots \in \mathbb{N}^*$ nennen wir endliche (reguläre)

Keltenbrüche.

Notation

Wir schreiben dafür: $\langle a_0; a_1, a_2, a_2, \dots, a_n \rangle$

Entwicklung (KE)

Sei
$$a \in \mathbb{Q} \setminus \mathbb{Z} / / \mathbb{R} \setminus \mathbb{Z}$$

 $\xi_0 := a$
 $x_0 := [\xi_0]$
if $\xi_0 - x_0 \neq 0$
 $\xi_1 := \frac{1}{\xi_0 - x_0}$
 $x_1 := [\xi_1]$
if $\xi_1 - x_1 \neq 0$
 $\xi_2 := \frac{1}{\xi_1 - x_1}$
 $x_2 := [\xi_2]$

Beispiel

$$\xi_0 = \frac{37}{7}$$

$$x_0 = [\xi_0] = 5$$

$$\xi_1 = \frac{1}{\xi_0 - x_0} = \frac{1}{\frac{2}{7}} = \frac{7}{2}$$

$$x_1 = [\xi_1] = 3$$

$$\xi_2 = \frac{1}{\xi_1 - x_1} = \frac{1}{\frac{1}{2}} = 2$$

$$x_2 = [\xi_2] = 2$$
Ende $\Rightarrow \frac{37}{7} = < 5; 3, 2 >$

euklidischer Algorithmus
$$37 = \frac{5}{7} * 7 + 2$$

$$07 = \frac{3}{7} * 2 + 1$$

$$02 = \frac{2}{7} * 1$$

$$\frac{37}{7} = 5 + \frac{2}{7}$$

$$\frac{7}{2} = 3 + \frac{1}{2} / / \frac{1}{\frac{7}{2}} = \frac{1}{3 + \frac{1}{2}}$$

$$\frac{2}{1} = 2 + \frac{0}{1}$$

Konvergente

Sei $a \in \mathbb{Q}\backslash\mathbb{Z}(\mathbb{R}\backslash\mathbb{Z})$ durch die KE gegeben: $a = \langle a_0; a_1, a_2, a_3, \ldots, a_n \rangle$ Die Brüche: $\langle a_0 \rangle$, $\langle a_0; a_1 \rangle$, $\langle a_0; a_1, a_2 \rangle$, $\langle a_0; a_1, a_2, a_3 \rangle$, ..., $\langle a_0; a_1, a_2, a_3, \ldots, a_n \rangle$ heissen die Konvergenten a.

Beispiel

$$a = \frac{37}{7}$$

Konvergenten: $5, 5 + \frac{1}{3} = \frac{16}{3}, \frac{37}{7}$ Sage: continued_fraction_list(37/7, partial_convergents=True)

5 Faktorisierungsalgorithmen

5.1 Pollard's (p-1)-Methode

Sei $n \in \mathbb{N}^*$ ungerade, $p \in \mathbb{P}^*$ unbekannt, $p|n, a \in \mathbb{N}^*, 0 < a < n, ggT(a, n) = 1$

Annahme: Wir kennen ein $k \in \mathbb{N}^*$ mit

Wie komme ich zu einem geeigneten k?

Falls $(p-1)|k \Rightarrow a^k \equiv 1\%p$ // Satz von Fermat

Primfaktorzerlegung: $p-1=q_1^{\beta_1}\cdot q_2^{\beta_2}\cdot \dots q_r^{\beta_r}$ mit $q_1,\dots,q_r\in\mathbb{P},\ \beta_1,\dots,\beta_r\in\mathbb{N}$

Annahme: Für $B\in\mathbb{N}$ gilt: $q_i^{\beta_i}\leq B$ für $i-1,\cdots,r$

Notation: $\beta(q, B) := max\{i \in \mathbb{N} | q^i \leq B\}$

Wir setzen:
$$k := \prod q^{\beta(q,B)} q \in \mathbb{P} q \leq B \Rightarrow a^k \equiv 1\% p$$

Beispiel 1:

$$n=1241143,\,B=13,\,\rightarrow q\in\{2,3,5,7,11,13\}$$

$$\beta(2,13) = 3, \beta(3,13) = 2$$

$$\beta(5,13) = \beta(7,13) = \beta(11,13) = \beta(13,13) = 1$$

$$k := \prod q^{\beta(q,13)} = 2^3 * 3^2 * 5 * 7 * 11 * 13, q \in \mathbb{P}, q \le 13$$

Berechne: $ggT(a^k - 1, n)$, Wähle: a=2

Sage: gcd(2.powermod(k,n),n) =547 $\in \mathbb{P}$ // $\frac{n}{547}$ = 2269 $\in \mathbb{P}$

Beispiel 2:

$$p = 2^8 * 3^6 * 5^3 * 7^7 * 11^7 * 13^5 + 1 \text{ // p.is_prime()};$$

$$q = 2^8 * 3^5 * 5^4 * 7^3 * 11^5 * 17^5 * 19^3 + 1$$

$$n = p * q$$

$$b=a.powermod(k,n)$$

return
$$gcd(b-1,n)$$

pMinusOne(n,80,2)

$$|n|_2 = 171$$

Beispiel 3:

$$n = 491389 // |n|_2 = 19$$

$$pMinusOne(n,100,2) = 1$$

$$pMinusOne(n,150,2) = 1$$

$$pMinusOne(n,190,2) = 1$$

$$pMinusOne(n,191,2) = 383$$

$$n = 383 * 1282$$

5.2 Fermat-Faktorisierung

Sei $n \in \mathbb{N}^*$, n = a * b ungerade, a > b > 0

• Wir setzen: $t := \frac{a+b}{2}, s := \frac{a-b}{2} \Rightarrow \boxed{n = t^2 - s^2}$

•
$$n = t^2 - s^2 = (t+s)(t-s)$$

Allgemein:

Bemerkung: Der Alg. terminiert immer, spätestens bei $t=\frac{n+1}{2}$ $t^2-n=(\frac{n+1}{2})^2-n$

Lemma

Vor.

1.
$$n = p * q, p, q \in \mathbb{P}^*, p > q$$

$$2. \ \delta := p - q$$

$$0 < Q + p - 2 * \sqrt{n} < \frac{\delta^2}{4*\sqrt{n}}$$

Satz

Vor.

1.
$$n = p * q, p, q \in \mathbb{P}^*, p > q$$

2.
$$\delta = p - q < c\sqrt[4]{n}$$

Beh.

Der Alg. "Fermat"
faktorisiert n in höchstens $\lceil \frac{c^2}{8} \rceil$ Schlüssellänge.

Bemerkung: Resultat ist unabhängig von n!!!

Beweis:

Initialisierung
$$t := [\sqrt{n}] + 1$$

$$t:=t+1$$
 bis n Differenz von Quadraten : $n=t_0^2-s_0^2\Rightarrow t_0=\frac{p+q}{2}$. $s_0=\frac{p-q}{2}$

A := # Schleifendurchgänge

$$A = t_0 - [\sqrt{n}] \gtrsim t_0 - \sqrt{n} = \frac{p+q}{2} - \sqrt{n} = \frac{1}{2}(p+q-2*\sqrt{n}) \overset{\text{Lemma}}{<} \frac{1}{2}(\frac{\delta^2}{4*\sqrt{n}}) \overset{\text{Vor. 2}}{<} \frac{1}{2} * \frac{c^2*(\sqrt[4]{n})^2}{4*\sqrt{n}} = \frac{c^2}{8} < \lceil \frac{c^2}{8} \rceil > A$$

6 Signaturen

6.1 Einführung

Bsp.

1. **RSA-Signatur** Alice (m, h(m))

Alice \to Bob: $(m, sig(h(m))) = d(SK_{Alice}, h(m)) = h(m)^d \mod n$

Bem: Das Verfahren funktioniert, weil d(), e() kommutivieren, d.h.

$$e(PK, sig(h(m))) = (h(m)^d \mod n)^e \mod n \equiv h(m)^{de} \equiv h(m)^{ed} \equiv h(m) \mod n$$

2. Das Lamport-Schema (One-time-Signatur

Gegeben: Ein-weg-Funktion: $f: Y \to Z$ $m = x = (x_1, x_2, \dots, x_n)$ mit $x_i \in \{0, 1\}$ Jedes Bit wird einzeln signiert!

(a) Wähle **zufällig** Elemente aus Y

$$\begin{bmatrix} y_{10} & y_{11} \\ y_{20} & y_{21} \\ \vdots & \vdots \\ y_{k0} & y_{k1} \end{bmatrix}$$
 Geheim

(b) Berechne und publiziere: $f(y_{j,j}) =: z_{j,j}$

$$\begin{bmatrix} z_{10} & z_{11} \\ z_{20} & z_{21} \\ \vdots & \vdots \\ z_{k0} & z_{k1} \end{bmatrix}$$

(c) Signieren von x_i : $sig(x_i) = \begin{cases} y_{i0}, \text{ falls } x_i = 0 \\ y_{i1}, \text{ falls } x_i = 1 \end{cases}$

Bsp:
$$x = (0,0,1)$$
 $\begin{vmatrix} z_{10} & z_{11} \\ z_{20} & z_{21} \\ z_{30} & z_{31} \end{vmatrix}$ $sig(X) = y_{10}, y_{20}, y_{31} \xrightarrow{f} f(y_{10})$

3. El-Gamal-Signatur 1987 (DSS: NIST)

Initialisierung: Wähle grosse Primzahl $p \in \mathbb{P}^*$.

 $\Rightarrow \mathbb{Z}_p^*$ zyklisch. Sei ω ein erzeugendes Element von \mathbb{Z}_p^*

$$\Rightarrow \boxed{(p,w)}$$
 für alle Teilnehmer gleich

Teilnehmer T Wähle a_T mit $0 < a_T < p - 1$ (geheimer Schlüssel)

Berechne den öffentlichen Schlüssel: $b_T = \omega^{a_T} \mod p$ (a_T ist der index von b_T zur Basis ω bzgl p)

$$\begin{array}{cccc} & p & \longmapsto & S \\ sig: & \mathbb{Z}_p^* & & \mathbb{Z}_p^* \times \mathbb{Z}_{p-1} \\ & m & \longmapsto & (x,y) \end{array}$$

Wähle zufällig $r \in \mathbb{Z}_{p-1}^*$

$$x = \omega^r \mod p \in \mathbb{Z}$$

 $y = (m - a_T \cdot x) \cdot r^{-1} \mod p - 1 \in \mathbb{Z}_{p-1}$

Verifikationsfunktion

$$(m, sig(m)) = (m, x, y)$$
 ist gütig $\Leftrightarrow b_T^x \cdot x^y \equiv \omega^m \mod p$

Bsp:
$$p = 41$$
 $\omega := 7 \in Gen_p$

m=13 zu signieren:

$$\begin{aligned} a_t := & 5 \\ b_t := & \omega^{a_T} \mod p = 7^5 \mod 41 = 38 \end{aligned}$$

Wähle
$$r \in \mathbb{Z}_{p-1}^* = \mathbb{Z}_{40}^*$$
: Sei $r = 3, r^{-1} = 27 \mod 40$

$$x = \omega^r \mod p = 7^3 \mod 41 = 15$$

 $y = (m - a_T \cdot x) \cdot r^{-1} \mod p - 1 = (13 - 5 \cdot 15)27 \mod 40 = 6$

$$\Rightarrow (m, sig(m)) = (13, 15, 6)$$

6.2 Verifikation

Signatur sig(m) = (m, x, y) ist gültig \Leftrightarrow (*) $b_T^x \cdot x^y \equiv \omega^m \mod p$

Bem: $y \equiv (m - a_T \cdot x) \cdot r^{-1} \mod p - 1 \Leftrightarrow a_T \cdot x + r \cdot y \equiv m \mod p - 1 \Leftrightarrow \exists k \in \mathbb{Z} : a_T \cdot x + r \cdot = m + k(p - 1)$ $\alpha \equiv \beta \mod n \Leftrightarrow n \mid \alpha - \beta$

Bew:
$$\Rightarrow$$

$$\underbrace{b_T^x \cdot \underbrace{x^y}_{(\omega^a T)^x} \cdot \underbrace{(\omega^r)^y}_{(\omega^r)^y}} \equiv \omega^m \mod p$$

 $\omega^{a_T \cdot x + r \cdot y} = \omega^{m + k(p-1)} = \omega^m \cdot (\omega^{p-1})^k \stackrel{\text{Fermat}}{\equiv} \omega^m \cdot 1 \mod p$

 ω Erzeugendes von \mathbb{Z}_p^* : $\omega^i \equiv \omega^j \mod p$ und $0 < i, j < p-1 \Rightarrow i = j$

7 Diffie-Hellman-Protokoll

 $Alice \stackrel{?}{\longleftrightarrow} Bob$

Gegeben: $p \in \mathbb{P}^*$ (gross), $\omega \in Gen_P$ Erzeugendes von \mathbb{Z}_p^* bekannt

			-
	Alice	Bob	
Wähle	α	β	zufällig $1 < \alpha, \beta < p - 1$
Berechne	$\alpha = \omega^{\alpha} \mod p$	$b = \omega^{\beta} \mod p$	
Sende	\rightarrow Bob: a	\rightarrow Alice: b	öffentlich bekannt!
Berechne	$k_a = b^\alpha \mod p$	$k_b = a^\beta \mod p$	

```
Behauptung: k := k_a = k_b

Beweis: k_a = b^{\alpha} = (\omega^{\beta})^{\alpha} = \omega^{\beta \cdot \alpha} = \omega^{\alpha \cdot \beta} = (\omega^{\alpha})^{\beta} = a^{\beta} = k_{\beta} in \mathbb{Z}_p^*

Aufgabe: Gegeben: (p, \omega, a, b)

p = \text{nth\_prime}(2000) = 17389
w = 2
a = 1000 = \text{w^alpha} = 2^{\text{alpha}} \text{mod p} \Rightarrow k = \text{b^alpha} \text{mod p}
b = 500
```

8 Uebungen

Serie 4

Aufgabe 1

m =	001	1	010	1	0110) (0000			
Pade	ding	1	1	1	1	0	0	0	0	$IV = c_0 \text{ (bekannt)}$

Aufgabe 4 (Broadcast-attack)

Serie 5

Aufgabe 1

```
(n, e), (n, d) RSA-Schlüssel Oscar
(n, e_A), (n, ?) RSA-Schlüssel Alice
unbekannt p, q \ (n = p \cdot q) bzw. \varphi(n)
Ziel: Finde \tilde{d}_A mit falls c = m^{m_A} \mod n ist, gilt m = c^{\tilde{d}_A} \mod n
Oscar: h := e \cdot d - 1 (Es gilt ed - k\varphi(n) = 1, \varphi(n) \mid h)
h:=\tfrac{\overset{k\varphi(n)}{h}}{\underset{k\varphi(n)}{ggT(ed-1,e_A)}}
                                            (ggT(e_A, \varphi(n)) = 1, \varphi(n) \mid h)
                                                     (\varphi(n) \mid h)
d := ggT(h, e_A), h := \frac{h}{d}
\underline{e_A \cdot \alpha + h \cdot \beta} = 1
e_A \cdot \tilde{\alpha} + \varphi(n) \cdot \tilde{\beta} = 1 löst der Provider
\tilde{d_A} := \alpha \mod h
Behauptung: m = c^{\tilde{d_A}} \mod n = (m^{e_A})^{\tilde{d_A}} \mod n = m^{e_A \cdot \tilde{d_A}} \mod n = m^{1+h^{\tilde{\beta}}} = m \cdot (m^h)^{\tilde{\beta}} \mod n \ ((m^h)^{\tilde{\beta}} = m^h)^{\tilde{\beta}} \mod n
  n = 78654787
  e = 11
  d = 64339331
  ea = 17
  c = m. power_mod(ea, n)
  h = e * d - 1
  gcd(h, ea) //1
  xgcd(ea, h) //1, alpha, beta
  dd = a \% h
 mm = c. power\_mod(dd, n)
 m\,=\,1337
```

Serie 7

Aufgabe 1

 $exp_a : \mathbb{Z}_6 \to \mathbb{Z}_7$ $exp_a : x \to a^x \mod 7$

$$\begin{array}{l} (\mathbb{Z}_6, \oplus, 0) : \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} \\ (\mathbb{Z}_7, \oplus, 1) : \mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\} \\ \end{array}$$

$\stackrel{\mathbb{Z}_6}{\longrightarrow}$									
a	0	1	2	3	4	5			
2	1	2	4	1	2	3			
3	1	3	2	6	4	5			

 $\mathbf{a=3} \Rightarrow exp_a$ beistz eine Umkehrbabbildung: $ind_a: \mathbb{Z}_p^* \to \mathbb{Z}_{p-1}$

- a) $ind_3(5) = 5$
- b) $ind_3(3) = 1$

Aufgabe 2

a)

$$n=403$$
 $[\sqrt{403}] = 20$

$$\begin{array}{c|cccc} t & t^2-n & t^2-n=s^2, s \in \mathbb{N}?\\ \hline 21 & 441\text{-}403=23 & \text{nein}\\ 22 & 484\text{-}403=81 & 81=9^2: \text{ja}\\ \Rightarrow t=22, s=9 \to a=(t+s)=31, b=(t-s)=13\\ \Rightarrow n=403=13*31 \end{array}$$

b)

$$n=187~a=2~k=10$$
 Berechne: $ggT(a^k-1,n)=ggT(1023,187)=11$ $p:=11$ $q:=\frac{n}{p}=\frac{187}{11}=17$

Ergänzung: B=10

Gesucht:

$$\begin{array}{l} \textbf{Gesucht:} \\ q \in \mathbb{P}mitq \leq 10: \{2,3,5,7\} \\ \beta(q,B): q^{\beta(q,B)} \leq \beta < q^{\beta(q,B)+1} \\ \beta(2,10) = 3, \ \beta(2,10) = 2, \beta(5,10) = \beta(7,10) = 1 \end{array} \right\} \ k := \prod q^{\beta(q,B)} = 2^3 * 3^2 * 5 * 7 = 72 * 35 = 2520$$

Sage:

$$\gcd(\underbrace{2.powermod(k,n)-1}_{0},n)$$

Aufgabe 3

```
factor(n) \\ 10000993 \\ 1000003
```

Aufgabe 4

```
\begin{array}{l} factor\left(n\right) = p * q \\ phi = (p-1)(q-1) \\ d\!\!=\!\!e.inverse\_mod\left(phi\right) \\ \left(n.nth\_root\left(4\right)\right).n\left(\right) \ // \ *.n\left(\right) = numerisch \end{array}
```

Wieners Attacke: $0 < d \le \frac{1}{3} * \sqrt[4]{n}$

e=18439769619

Serie 8

Aufgabe 1

Aufgabe 2

Nr.	Bit
0	0
8	1
13	0
15	0
16	0
17	0
401	0
500	0
510	0
511	0

Aufgabe 3

- 1. 11
- 2. Padding-Block
- 3. c_3 und c_4
- 4. 53
- 5.