ZAI-OD 建模指南

文档版本: 1.0

最后修改时间: 2019-2

作者: qq600585

目录

OD 的概念	
OD 的技术指标	2
OD 建模步骤	3
准备环境	
准备需要导入的图片	4
多显示器的优势	5
开始导入我需要训练的图片	6
开始框住我们需要检测的目标	
使用多显示器操作检查框体正确性	9
检验框体	10
自动化调整框体尺度	11
用对齐工具自动生成框体	12
使用人脸对齐工具来生成人头的自动框体	13
使用 ODM 工具制作框体	15
使用 MMOD 工具制作框体	15
训练 OD	16
测试 OD	

OD 的概念

对象检测器在 ZAI 中简称 OD。当 OD 经过了高度训练后,它可以检测任何物体

OD 的技术指标

主要指标 运行平台: 任何平台 并行: 支持 运行时内存消耗:中小 运行时性能:低 CPU 需求: 高 GPU 需求: 无 超参数复杂度: 傻瓜化

训练后的文件尺寸: 极小

次要指标

残差网络支持: 不支持 光照变换训练: 不支持 深度学习支持: 不支持

训练内存消耗: 大规模训练内存消耗会巨大无比, 小规模训练它会很快完成

训练时长: 小规模很快, 大规模很久 能支持的最大数据集训练: 5000 张图片

OD 建模步骤

准备环境

需要配置 Al.conf,使用 Notepad++打开 Al.conf 首先确保 Key 是正确的 确保这里的 exe 和 dll 文件和 Al.conf 都在同一个目录下

```
# if conf公

1 申请Key
2 请访问 http://zpascal.net
3
4 [Auth]
5 ProductID
6 Key=TechnologyTest
7 Server=zpascal.net
8 Port=7988
9
10 [AI]
11 Engine=zAI_cuda_x64.dll
12 TrainingTool=TrainingTool.exe
13 PackageTool=TrainingTool.exe
14 ModelTool=Z_AI_Model.exe
15 Parallel=12
16 TrainingServer=127.0.0.1
```

确保 Key 的方法可以打开同一目录下的 LocalTrainingServer.exe 它会提示 key 的过期时间,key 所支持的技术体系,确保 OD_Key=True

准备需要导入的图片

提示:如果图片是原封不动的导入,一旦多了,内存消耗就会变得巨大无比,假如图片有2000 张,即使 64G 内存也会告急。

技巧: PS 是最强大的图片处理工具,它不光是编辑强大,批处理也能非常简单暴力的对你要导入图片做减肥,合理的减肥不光能减少训练时间,也能节省出更多的内存和磁盘空间关于 PS 的批处理技巧,请参考我撰写的 PS 自动脚本批处理。

打开 Z_AI_Model.exe

首次打开时,会提示 Key 的状态

如果看 accept Object Detector key,就表示 OD 可以使用,假如是 Reject Object Detector key,OD 将不会工作,发生这种情况,首先你需要确保 ai.conf 中的 key 正确的,接下来,检测你的网络连接,比如 ping 一下 zpascal.net(key 服务器),看看网络畅通,然后重开 Z_AI_Model.exe

Prepare Al Engine 后面是使用的 Al 引擎,这里提示正在使用支持 cuda 加速的 Al 引擎 如果你的电脑不支持 cuda,你可以通过修改 ai.conf 将 ai 引擎指定使用 zAl_x64.dll

多显示器的优势

Z_AI_Model 中的 Log window 是必不可少的状态监视器,我们的训练,保存,打开,都会在 log window 中反应出来,假如使用多显示器,可以将 log window 拖到另一台显示器去监控

开始导入我需要训练的图片

在 Tools Menu 中,我们通过 Import Picture 菜单来导入图片

在本文中, 我选择导入一批人物图片

Model 对批量图片的导入是并行化的,当我们导入数千张图片时,cpu 会吃满,系统会以最高效率将图片从导入到 Model 工具来,Model 内存消耗也巨大

导入进来以后,系统将会自动做一次图片框体的排序

我们通过右方篮框小窗的提示可以看到,我们当前只有35张图片,这 mini 数据集

在 Model 工具窗口的左上角,有两行绿色提示文字,分别代表分辨率: 1687 * 1028 显卡渲染器帧率: 64(dx 锁帧 60) 流水线每秒发给 gpu 的指令数量:5064 Renderer optimized:0:24:0:0,

当前数据集的框体总数:渲染器剪裁(剪裁照片):单张照片最大框体: 单张照片最小的框体

例 8:0:5:0 表示一共 6 个框体,裁剪 0 个,单张图片多的框体是 5 个,最少的框体是 0 个

我们先删除刚才的框体, 回到正题

开始框住我们需要检测的目标

先点 detector(检测器用的框体) 然后框照片里面的目标,我框的是个女孩的头像

由于框体操作是手动来的,很容易发生误操作,我们应该养成一个习惯:

使用多显示器操作检查框体正确性

每次当我们框完目标,都点一次 Label Editor,这里会罗列我们所有的框体,当我们看见没有内容的东西就 \mathbf{X} 干掉它

检验框体

现在我框了2个目标,一个是女孩头,一个是张朝阳

我们在 Label Editor 可以看出他们的框体比例还是差距很明显的

一个是接近方形,一个是长方形,这种差异,我将它称为框体尺度

Refresh(75) Detector Define label:

New visibled alignment Box size: 4 400 k

ro label define!

批注 [P1]: 框体尺度是个很重要的概念,在训练时,如果两个框体尺度不同,训练器就会发生迭代错误,并且不会提示,这很可能会造成我们的训练出来的模型不符合预期。

zAI 通过调整框体尺度工具来解决该问题

自动化调整框体尺度

使用菜单中的 Calibration Scale Space 矫正

1:1, 表示宽:高都是相同比例 1:1, 宽=1, 高=1

0.5:1, 表示宽只占高的 1/2, 宽=0.5, 高=1

1:0.5, 表示宽比例是高的 2 倍, 宽=1, 高=0.5

我们使用 1:1 矫正框体,完成后,我们在 Label Editor 可以看出两个框体尺度已经相同了

批注 [P2]: 制作数据集的过程是反反复复的,框体校正会步步为营

用对齐工具自动生成框体

我们先通过 Model 窗口的 auto 按钮鸟瞰全数据集

这里面的人头真不少, 我们一个一个去框, 实在是太累了

使用人脸对齐工具来生成人头的自动框体

这里有两个 face 对齐工具,他们的作用是生成对齐人脸图+框体+人脸对齐几何 这两个工具一个是放大以后对齐,这可以生成很小的人脸对齐数据,只要图片中包含了完整 的人脸,它在 99%的情况下都会生成正确数据。

一个是快速对齐,使用同比例尺度对齐,不过多余的人脸对齐预处理,这种预处理出来的框体大多是比较清晰的框体,质量更好

Face Alignment 是并行化的 cpu 计算,在运行期间,电脑的 cpu 会全部满负荷,耐心等待一会,它就会将人脸全部检测出来了

我们再次使用 Label Editor 来查看检测出来的人头

这是我们需要的结果吗?肯定会有很多框体质量不好,如图像模糊不清,这时候,我们需要将不合格的图像干掉

点 X 即可

使用 ODM 工具制作框体

ODM 是 OD 集合,会多出标签,需要一个已训练完成的数据文件。

这是高级内容,本文作为入门指南,对此不做过多介绍

使用 MMOD 工具制作框体

MMOD 工具需要 GPU 支持,,会多出标签,需要一个已训练完成的数据文件。

这是高级内容,本文作为入门指南,对此不做过多介绍

训练 OD

概念:将编辑器的数据集训练成为可以使用的 od_svm 检测器

按照 Debug 指引给训练参数即可

测试 OD

重新导入图片

在对齐工具使用 OD market,载入刚才训练的 od_svm 即可

By.qq600585 2018-9