CIS532v2: Estimating Probability Distributions

Live Session 1

Ernest Green

Today's Live Session

CIS532v2 - Course Info

Bayes Optimal Classifier, MLE, Naive Bayes

Pre-project coding exercises

Reminder about avoiding loops whenever possible

Ernest Green, Course Facilitator

How to get assistance:

 Private message me through Canvas

Additional Resources

Lecture 7 "Estimating Probabilities from Data: Maximum Likelihood Estimation" -Cornell CS4780 SP17

https://www.youtube.com/watch?v=RlawrYLVdlw

Machine Learning Lecture 8 "Estimating Probabilities from Data: Naive Bayes" -Cornell CS4780 SP17

https://www.youtube.com/watch?v=pDHEX2usCS0

Machine Learning Lecture 9 "Naive Bayes continued" -Cornell CS4780 SP17

https://www.youtube.com/watch?v=VDK0nkjFh5U

Machine Learning Lecture 10 "Naive Bayes continued" -Cornell CS4780 SP17

https://www.youtube.com/watch?v=rqB0XWoMreU

Machine Learning Lecture 11 "Logistic Regression" -Cornell CS4780 SP17

https://www.youtube.com/watch?v=GnkDzlOxfzl

Avoid the Appearance of Plagiarism

Key points:

- **Show your work -** comment out, do not delete, mistakes, print statements, test cells, etc. Messy notebook that shows original thought is better than pristine code that happens to look like someone else's work
- Reference helpful websites put links to discussion boards, Q&A forums (Stack Overflow, etc.) that contained information you found useful in developing your code
- When in doubt, ask your facilitator!

Statistics Refreshers

- Bayes' Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Chain Rule

$$P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)$$

Bayes Basics

The quick proof of Bayes' theorem

https://www.youtube.com/watch?v=U_85TaXbelo

Bayes theorem

https://www.youtube.com/watch?v=HZGCoVF3YvM

Naive Bayes, Clearly Explained!!!

https://www.youtube.com/watch?v=O2L2Uv9pdDA

Distributions

- Gaussian (a.k.a. Normal)
 - Continuous outcome variables
 - Bell curve, symmetric at center
 - Values for mean = mode = median
- Binomial
 - Two discrete outcome variables (ex: coin flips)
- Other distribution types https://www.unf.edu/~cwinton/html/cop4300/s09/class.notes/DiscreteDist.pdf

 Bayes Optimal Classifier - Bayes Theorem applied, but only works if you know the actual distribution of all data

 Bayes Optimal Classifier - Bayes Theorem applied, but only works if you know the actual distribution of all data

 Bayes Optimal Classifier - Bayes Theorem applied, but only works if you know the actual distribution of all

 Bayes Optimal Classifier - Bayes Theorem applied, but only works if you know the actual distribution of all

 Bayes Optimal Classifier - Bayes Theorem applied, but only works if you know the actual distribution of all

- Bayes Optimal Classifier Bayes Theorem applied, but only works if you know the actual distribution of all data
 - ...and you never actually know the underlying distribution of your data

Maximum Likelihood Estimation

Step 1: Estimate the distribution of your data based on known parameters

Coin flip: it's either heads or tails, so binomial distribution

Take the data you observe, tweak those parameters until what you observed becomes as likely as possible (becomes maximized)

Estimating Theta

In a binomial distribution, theta is the likelihood of a target outcome

The probability of theta for given data approximately equals theta to the power of an observed outcome times 1-theta to the power of the other outcome

$$P_{\theta}(Data) \approx \theta^h (1 - \theta)^t$$

Simplifying Theta

But first... a note about log values

The Case for Log Values - Simplification

Log (natural log) is the inverse of Exponential

Has some interesting properties that can be used to simplify calculations:

$$\log(a * b) = \log(a) + \log(b)$$

$$log(a / b) = log(a) - log(b)$$

$$\theta^h (1 - \theta)^t = h \log(\theta) + t \log(1 - \theta)$$

Simplifying Theta - First Derivative

To maximize a function, take the first derivative and set it equal to zero

$$h \log(\theta) + t \log(1 - \theta) \rightarrow \frac{h}{\theta} + \frac{t}{1 - \theta}(-1) = 0$$

If you're rusty on derivatives of logs (note - log and natural log are used interchangeably in portions of the course material, and numpy.log() refers to natural log):

https://www.youtube.com/watch?v=Dp9sglvaKPk

Simplifying Theta - Solve for Theta

$$\frac{h}{\theta} + \frac{t}{1-\theta}(-1) = 0 \quad \Rightarrow \quad \theta = \frac{h}{t+h}$$

Simplifying Theta - Solve for Theta

$$\frac{h}{\theta} + \frac{t}{1-\theta}(-1) = 0 \quad \Rightarrow \quad \theta = \frac{h}{t+h}$$

...which makes intuitive sense, but now we have the mathematical underpinning.

Smoothing - Why?

- Avoids "divide by 0" or "multiply by 0" errors
- Corrects for non-representative samples

Smoothing - Accounting for Unlikely Samples

- Avoids "divide by 0" or "multiply by 0" errors

Corrects for non-representative samples

Smoothing - Laplace (+1)

- Avoids "divide by 0" or "multiply by 0" errors

- Corrects for non-representative samples

Smoothing - Beware of Assumptions

 If our data ratio really was 40:1 or similar, our +1 smoothing would hinder our progress in getting to the actual distribution instead of helping!

Additional Reading

- Maximum A Posterior (MAP)
 - https://wiseodd.github.io/techblog/2017/01/01/mle-vs-map/
- Basically: MLE makes distribution assumptions, whereas MAP assumes prior knowledge is used to determine theta value

Classification with the Naive Bayes Algorithm

- MLE Curse of Dimensionality
 - The higher d, lower chance of there being an exact match
 - Thus, lots of cases where no probability exists
- Naive Bayes Assumption
 - "Naively" assume that all data points conditionally independent, even if you know they're not
 - Allows us to use chain rule to determine probabilities exact match not required for labeling

Naive Bayes in Action

Binary features:

C = "Guy wears a cape."

M = "Guy wears a mask."

U = "Guy wears his underwear outside his pants"

Labels:

G = "Guy is good"

B = "Guy is bad"

Class Prior Probabilites
P(G)
P(B)
Probabilities of Features for "Good" Class
P(C G)
P(M G)
P(U G)
Probabilities of Features for "Bad" Class
P(C B)
P(M B)
P(U B)

Naive Bayes in Action

Question 1: Estimate the probability that Suzie's date wears a mask and cape, given that he is good, using the Naive Bayes assumption.

P (M,C | G)

Multiply P(M|G) by P(C|G)

Question 2: Before Suzie meets her date, what's the probability he is wearing a mask and cape (she does not know if he is good or bad)? (Use NB Assumption)

P(M,C) = P(M,C|G)P(G) + P(M,C|B)P(B)

Naive Bayes in Action - Question 3

Using Naive Bayes assumption and Bayes' Rule, predict the probability that he is good if he wears a mask and a cape. Hint: P(G|M,C)

$$P(G|M,C) = \frac{\left(P(M,C|G^{\frac{1}{2}})\left(P(G)\right)}{P(M,C)}$$

Machine Learning Lecture 9 "Naive Bayes continued" -Cornell CS4780 SP17

https://www.youtube.com/watch?v=VDK0nkjFh5U

Reminder: Avoid Loops, Utilize Indexing and Slicing

Questions?

Thank You For Attending!

End of Live Session 1