Interesting things about XOR

- Recall that I mentioned XOR gates are useful in arithmetic circuits (e.g., to build adders) and other sorts of circuits.
- ► Sometimes, we can "discover" a **XOR** gate "buried" or "hidden" inside of a logic expression. If we can find it, it can help to reduce the implementation cost.
- Recall that XOR and NXOR operators perform the "odd" and "even" function, respectively.

Karnaugh maps (K-Maps) for XOR and NXOR

- K-Maps are not "pretty" in terms of optimization.
- Example for 4-input XOR and NXOR...

ab	00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	0	1	0	1
10	1	0	1	0

cd ab	00	01	11	10
00	1	0	1	0
01	0	1	0	1
11	1	0	1	0
10	0	1	0	1

$$f = a \oplus b \oplus c \oplus d$$

$$f = \overline{a \oplus b \oplus c \oplus d}$$

Implementing an XOR or NXOR using AND, OR and NOT would be a disaster.

Hunting for XOR and NXOR

- Sometimes we might have an expression which yields a K-Map that sort of looks like an XOR.
- Example of a 4-input function f = f(a, b, c, d)...

ab cd	00	01	11	10
00	0	1	0	0
01	1	0	1	1
11	0	1	0	0
10	1	0	1	1

We can perform Boolean algebra...

$$\begin{array}{lll} f & = & a'b'c'd + a'bc'd + a'bcd + a'bcd' + abc'd + ab'c'd' + ab'cd + ab'cd' \\ & = & a'b'c'd + abc'd + a'bc + ab'c + a'bd' + ab'd' \end{array}$$

This is the minimum SOP and has a cost of 33

Hunting for XOR and NXOR

Try to continue the optimization...

```
\begin{array}{ll} f & = & a'b'c'd + a'bc'd + a'bcd + a'bcd' + abc'd + ab'c'd' + ab'cd + ab'cd' \\ = & a'b'c'd + abc'd + a'bc + ab'c + a'bd' + ab'd' \\ = & (a'b' + ab)(c'd) + (a'b + ab')c + (a'b + ab')d' \\ = & (a \oplus b)(c'd) + (a \oplus b)c + (a \oplus b)d' \\ = & (a \oplus b)(c'd) + (a \oplus b)(c + d') \\ = & (a \oplus b)(c'd) + (a \oplus b)(c'd) \\ = & (a \oplus b) \oplus (c'd) \\ = & a \oplus b \oplus (c'd) \end{array}
```

- If we assume an 3-input XOR gate costs the same as any other 3-input gate, then this implementation costs 7.
- Although XOR are more expensive (in reality), this implementation is most certainly cheaper than the minimum SOP!

Hunting for XOR and NXOR

Here's another example which is a bit different...

cd ab	00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	0	0	0	0
10	0	0	0	0

- We can observe that the input a is acting like a "gate" when a=0, f is an **XOR** and when a=1, f=0.
- ▶ In other words... $f = \overline{a}(b \oplus c \oplus d)$ which (again) is likely much cheaper than the minimum SOP implementation.
- In general, finding XOR operations hidden in general logic expressions can be quite difficult, but it's cool.