MEME15203 Statistical Inference

Assignment 2

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2024

Due by: 2/4/2024

Q1. A random sample of size n is taken from a distribution with probability density funtion (pdf)

$$f(x) = \frac{4x^3}{\theta^4}, 0 < x < \theta, \text{zero otherwise.}$$

- (a) Find the Maximum Likelihood Estimator(MLE) of θ . Call it $\hat{\theta}$.
- (b) Find the MLE of the median of the distribution.
- (c) Find the Method of Moment Estimator(MME) of θ . Call it $\tilde{\theta}$.
- (d) Find the constant c so that $c\hat{\theta}$ becomes an unbiased estimator of θ .
- (e) Find the Mean Square Error(MSE) of $\hat{\theta}$.
- (f) Find the MSE of $\tilde{\theta}$.

(30 marks)

Q2. Consider a random sample of size n from a distribution with discrete pdf

$$f(x; p) = p(1-p)^x; x = 0, 1, ..., \text{ zero otherwise.}$$

- (a) Find the MLE of p.
- (b) Find the MLE of $\theta = \frac{1-p}{p}$.
- (c) Find the CRLB for variance of unbiased estimators of θ .
- (d) Is MLE of θ a UMVUE?
- (e) Is MLE of θ MSE consistent?
- (f) Find the asymptotic distribution of the MLE of θ .

(30 marks)

Q3. Let X_1, \ldots, X_n be a random sample from the uniform distribution on the interval $(0, \theta)$, where $\theta > 0$ is unknown. Let the prior of θ be the log-normal distribution with parameter (μ, σ) , where $\mu \in R$ and $\sigma > 0$ are known constants. Find the posterior density of $\ln(\theta)$.

(15 marks)

MEME15203 Statistical Inference

Q4. Let X_1, X_2, \dots, X_n denote a random sample from the density function given by

$$f(x) = \begin{cases} \frac{3}{\theta} x^2 e^{-x^3/\theta}, & \theta > 0, x > 0, \\ 0, & \text{otherwise} \end{cases}$$

- (a) find the MME of θ .
- (b) Find the MLE of θ .
- (c) Find the CRLB of θ .

(15 marks)

Q5. Suppose $X|\theta \sim U(\theta - \frac{1}{2}, \theta + \frac{1}{2})$ and that a prior distribution of θ is N(0, 1). Find the Bayes estimator of θ under squared error loss.

(10 marks)