### Diffusion-Based Hierarchical Graph Neural Networks for Simulating Nonlinear Solid Mechanics

#### Challenges

#### Message Passing Bottleneck

Local boundary conditions...



- Local Information has to be propagated globally
- However, Message Passing Layer act locally
- Infeasible for large (mesh-) graphs / graph diameters



#### **Spectral bias of MSE-trained Model**

Ground truth





 Conventional MSE-based training is more sensitive to global deformation deviations than to local mesh distortions (spectral bias)

#### **Conventional Denoising**

- Conventional diffusion-based simulators denoise step-wise
  - $\rightarrow \sigma(KT)$  for K diffusion and T physical steps

## Iterative Inference One Step Denoising Physical time Physical time t

#### ROBIN: Rolling diffusion-Batched Inference Network

#### Algebraic hierarchical Message Passing Networks

- Maximized receptive field One cycle propagates information across the entire mesh
- Increase prediction fidelity by multiscale message passing
- Algebraic Multigrid (AMG)-based Mesh Coarsening that preserves the geometry
- Mesh-size independent architecture by shared blocks



#### Denoising diffusion probabilistic models

- DDPMs and AMPNs allow for rich, high-fidelity predictions across frequencies
- Early denoising steps focus on global frequencies, and the later on local frequencies



#### **ROBI: Rolling diffusion-Batched Inference**

- ROBI parallelize the denoising of consecutive time steps  $\rightarrow \approx \sigma(T)$
- The model prediction still only depends on the previous physical state, preserving training efficiency and time-shift equivariance
- Denoising stride and truncation step enable the trade-off of accuracy for speed



# **Datasets** a) BendingBeam b) ImpactPlate c) DeformingPlate

Tobias Würth<sup>1\*</sup>, Niklas Freymuth<sup>2</sup>, Gerhard Neumann<sup>2</sup>, Luise Kärger<sup>1</sup>

<sup>1</sup>Institute of Vehicle System Technology <sup>2</sup>Autonomous Learning Robots \*tobias.wuerth@kit.edu



#### Results

#### High-fidelity physical simulations



#### Variable Inference with ROBI

 ROBI enables faster yet equally accurate inferences as conventional inference (20/20).

Early denoising steps reduce displacement error (global), later displacement gradient error (local)



#### Generalization to large meshes

The AMPN architecture enables quick transfers to much larger meshes



#### **Project website**

Gradient

