Trabalho 2 SEP

Aluno: Victor Daniel Oliveira Gaete

Implementação em MATLAB, e aplicando ao sistema IEEE14 barras e IEEE33 barras.

IEEE 14 Barras

```
% Г
           NUM
                   TIPO
                            ٧
                                      TETA
                                                PG
                                                       QG
                                                                PD
                                                                            QD
                                                                                      GSH
                                                                                              BSH ]
barras = [
             1
                  2
                      1.060 0.0
                                  232.4 -16.9 0.0
                                                          0.0
                                                                   0.0
                                                                           0.0 0 0
             2
                                         42.4
                  1
                      1.045 0.0
                                  40.0
                                                21.70
                                                        12.70
                                                                  0.0
                                                                          0.0 -40
                                                                                    50
             3
                  1
                      1.010 0.0
                                  0.0
                                        23.4
                                               94.20
                                                       19.00
                                                                 0.0
                                                                         0.00
                                                                                   40
             4
                      1.000 0.0
                                  0.0
                                         0.0
                                              47.80
                                                        -3.90
                                                                 0.0
                                                                         0.0 0
                                                                                   0
             5
                  0
                                         0.0
                                               7.60
                                                       1.600
                      1.000 0.0
                                  0.0
                                                                 0.0
                                                                         0.00
                                                                                   0
             6
                                         12.2
                                                11.20
                                                        7.500
                                                                  0.0
                                                                          0.0 -6
                  1
                      1.070 0.0
                                  0.0
                                                                                    24
             7
                  0
                      1.000 0.0
                                  0.0
                                         0.0
                                                0.0
                                                        0.0
                                                                 0.0
                                                                         0.00
                                                                                   0
             8
                  1
                      1.090 0.0
                                         17.4
                                                 0.0
                                                         0.0
                                                                  0.0
                                                                          0.0 - 6
                                                                                    24
                                  0.0
             9
                  0
                      1.000 0.0
                                  0.0
                                         0.0
                                               29.50
                                                        16.60
                                                                 0.0
                                                                        19.00
                                                                                   0
             10
                 0
                      1.000 0.0
                                                9.00
                                                        5.800
                                                                         0.00
                                  0.0
                                         0.0
                                                                 0.0
                                                                                   0
             11
                 0
                      1.000 0.0
                                  0.0
                                         0.0
                                                3.50
                                                        1.800
                                                                 0.0
                                                                         0.00
                                                                                   0
             12
                                                                                   0
                  0
                      1.000 0.0
                                  0.0
                                         0.0
                                                6.10
                                                        1.600
                                                                 0.0
                                                                         0.00
             13
                 0
                      1.000 0.0
                                  0.0
                                         0.0
                                                13.50
                                                        5.800
                                                                 0.0
                                                                         0.00
                                                                                   0
             14
                 0
                      1.000 0.0
                                         0.0
                                                14.90
                                                        5.000
                                                                 0.0
                                                                         0.00
                                                                                   0];
                                  0.0
%
              [FR
                      TO
                                  R
                                               Χ
                                                       BSHtotal
                                                                   Tap
                                                                        ]
linhas = [
1
     2
           0.01938
                     0.05917
                                 0.05280
                                              0
     5
           0.05403
1
                     0.22304
                                 0.04920
                                              0
2
     3
           0.04699
                     0.19797
                                 0.04380
                                              0
2
           0.05811
     4
                     0.17632
                                 0.03400
                                              0
2
     5
           0.05695
                     0.17388
                                 0.03460
                                              0
3
     4
           0.06701
                     0.17103
                                 0.01280
                                              0
4
           0.01335
                     0.04211
                                              0
     5
                                 0
     7
4
           0.0
                     0.20912
                                              0.978
                                 0
4
     9
           0.0
                     0.55618
                                 0
                                              0.969
5
     6
           0.0
                     0.25202
                                 0
                                              0.932
6
            0.09498 0.19890
                                               0
     11
                                  0
            0.12291
6
     12
                      0.25581
                                  0
                                               0
            0.06615
6
     13
                      0.13027
                                  0
                                               0
7
                                                0
     8
           0.0
                     0.17615
                                    0
7
                                              0
     9
           0.0
                     0.11001
9
     10
            0.03181
                      0.08450
                                  0
                                                  0
9
     14
            0.12711
                      0.27038
                                               0
                                  0
10
             0.08205
                       0.19207
                                    0
                                                0
      11
12
      13
             0.22092
                       0.19988
                                    0
                                                0
13
      14
             0.17093
                       0.34802
                                    0
                                                0
                                                            ];
Ref= 1;
```

```
% ===========
% Leitura dos dados de entrada
[NumBarras,~] = size(barras);
[NumLinhas,~] = size(linhas);
% Linhas
% Init das variaveis
de = zeros(NumLinhas,1);
para = zeros(NumLinhas,1);
R = zeros(NumLinhas,1);
X = zeros(NumLinhas,1);
B = zeros(NumLinhas,1);
G = zeros(NumLinhas,1);
Tap = zeros(NumLinhas,1);
for i=1:NumLinhas
    de(i) = linhas(i,1);
    para(i) = linhas(i,2);
    R(i) = linhas(i,3);
    X(i) = linhas(i,4);
    B(i) = 1/X(i);
    G(i) = 1/(R(i) + 0.0001);
    Tap(i) = linhas(i,6);
end
% Desconsiderando taps
Tap = ones(NumLinhas,1);
% Barras
% Init das variaveis
Tipo = zeros(NumBarras,1);
V = zeros(NumBarras,1);
Teta = zeros(NumBarras,1);
Pg = zeros(NumBarras,1);
Qg = zeros(NumBarras,1);
Pd = zeros(NumBarras,1);
Qd = zeros(NumBarras,1);
Gsh = zeros(NumBarras,1);
Bsh = zeros(NumBarras,1);
for i=1:NumBarras
    Tipo(i) = barras(i,2);
    V(i) = barras(i,3);
    Teta(i) = barras(i,4);
    Pg(i) = barras(i,5);
    Qg(i) = barras(i,6);
    Pd(i) = barras(i,7);
    Qd(i) = barras(i,8);
    Gsh(i) = barras(i,9);
```

```
Bsh(i) = barras(i,10);
end
% Potencias em PU
Pg = Pg/100;
Qg = Qg/100;
Pd = Pd/100;
Qd = Qd/100;
% ===========
% Matriz B linha
B_linha = zeros(NumBarras, NumBarras);
for i=1:NumLinhas
    K = de(i);
   M = para(i);
    B_{inha}(K,K) = B_{inha}(K,K) + B(i)/(Tap(i)^2); % diagonal principal considerando tap
    B_linha(M,M) = B_linha(M,M) + B(i); % diagonal principal
    B_linha(K,M) = B_linha(K,M) - B(i)/Tap(i); % Fora da diagonal principal
    B_linha(M,K) = B_linha(M,K) - B(i)/Tap(i); % Fora da diagonal principal
end
% ==========
% Fluxo de potencia linearizado
B_REF = Ref;
B_linha(B_REF,B_REF) = 10^20; % Infinito
Teta= B_linha\(-Pd+Pg); % inv
```

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.588513e-21.

```
% Perdas
erro_min = 1e-6;
erro = 1;
perdas = zeros(NumBarras,1);
Pperdas = zeros(NumLinhas,1);
Iteracoes = 0;

while erro > erro_min
    Teta_antigo = Teta;
    % Calculo de Pperdas = Gkm*(Teta(K)-Teta(M))^2
    for i=1:NumLinhas

        K = de(i);
        M = para(i);
        Pperdas(i) = G(i)*(Teta(K)-Teta(M))^2/100;
```

```
perdas(K) = Pperdas(i)/2;
         perdas(M) = Pperdas(i)/2;
    end
    % Calculo de Teta
    Teta= B_linha\(-Pd+Pg-perdas); % inv
    % Erro
    erro = max(abs(Teta-Teta antigo));
    Iteracoes= Iteracoes+1;
end
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.588513e-21.
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.588513e-21.
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.588513e-21.
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.588513e-21.
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.588513e-21.
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.588513e-21.
Pkm = zeros(NumLinhas,1);
for i=1:NumLinhas
    K = de(i);
    M = para(i);
    Pkm(i) = (Teta(K)-Teta(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end
% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 14 Barras - Pd = 100%')
Fluxo de potencia linearizado - IEEE 14 Barras - Pd = 100%
disp('Theta: ')
Theta:
disp(Teta)
   -0.0000
   -0.1290
   -0.2949
   -0.2771
   -0.2480
   -0.3570
  -0.3432
  -0.3432
  -0.3731
  -0.3778
   -0.3710
   -0.3766
   -0.3797
   -0.3987
```

Pkm:

disp('Pkm: ')

```
disp(Pkm)
   2.1802
   1.1117
   0.8380
   0.8399
   0.6841
  -0.1041
  -0.6921
   0.3163
   0.1727
   0.4328
   0.0702
   0.0765
   0.1740
   -0.0000
   0.2716
   0.0548
   0.0945
  -0.0352
   0.0155
   0.0545
disp('Número de Iterações')
```

Número de Iterações

```
disp(Iteracoes)
```

6

IEEE 33 Barras

% Dados	:									
% [NUM	TIPO	V	TETA	PG	QG	PD	QD	GSH	BSH]
barras	= [_
	1	0	1.0000	0.0000	0	0	100.0	60.0	0.0	0.0;
	2	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	3	0	1.0000	0.0000	0	0	120.0	80.0	0.0	0.0;
	4	0	1.0000	0.0000	0	0	60.0	30.0	0.0	0.0;
	5	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	6	0	1.0000	0.0000	0	0	200.0	100.0	0.0	0.0;
	7	0	1.0000	0.0000	0	0	200.0	100.0	0.0	0.0;
	8	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	9	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	10	0	1.0000	0.0000	0	0	45.0	30.0	0.0	0.0;
	11	0	1.0000	0.0000	0	0	60.0	35.0	0.0	0.0;
	12	0	1.0000	0.0000	0	0	60.0	35.0	0.0	0.0;
	13	0	1.0000	0.0000	0	0	120.0	80.0	0.0	0.0;

	14	0	1.0000	0.0000	0	0	60.0	10.0		0.0;
	15	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	16	0	1.0000	0.0000	0	0	60.0	20.0	0.0	0.0;
	17	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	18	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	19	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	20	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	21	0	1.0000	0.0000	0	0	90.0	40.0	0.0	0.0;
	22	0	1.0500	0.0000	0	0	90.0	50.0	0.0	0.0;
	23	0		0.0000	0	0	420.0	200.0		0.0;
	24	0	1.0000	0.0000	0	0	420.0	200.0		0.0;
	25	0		0.0000	0	0	60.0	25.0		0.0;
	26	0		0.0000	0	0	60.0	25.0		0.0;
	27	0		0.0000	0	0	60.0	20.0		0.0;
	28	0		0.0000	0	0	120.0	70.0		0.0;
	29	0		0.0000	0	0	200.0	600.0		0.0;
	30	0		0.0000	0	0	150.0	70.0		0.0;
	31	0		0.0000	0	0	210.0	100.0		0.0;
	32	0		0.0000	0	0	60.0	40.0		0.0;
	33	2		0.0000	0	0	0.0	0.0		0.0
1.	55	۷	1.0000	0.0000	V	U	0.0	0.0	0.0	0.0
];										
%	(ED	T0	D		V	DCII+ •4	tal Tau	Tannin	T1	
	FR	T0	R	2 (X 2 0470	BSHtot	•	Tapmin	Tapmax]	
linhas	= [33	1	0.092		0.0470	0	0	0	0;	
	1	2	0.493		9.2511	0	0	0	0;	
	2	3	0.366		0.1864	0	0	0	0;	
	3	4	0.381		0.1941	0	0	0	0;	
	4	5	0.819		9.7070	0	0	0	0;	
	5	6	0.187		0.6188	0	0	0	0;	
	6	7	0.711		0.2351	0	0	0	0;	
	7	8	1.030		7.7400	0	0	0	0;	
	8	9	1.044		7400	0	0	0	0;	
	9	10	0.196		0.0650	0	0	0	0;	
	10	11	0.374		0.1238	0	0	0	0;	
	11	12	1.468		L.1550	0	0	0	0;	
	12	13	0.541		7.7129	0	0	0	0;	
	13	14	0.591		0.5260	0	0	0	0;	
	14	15	0.746		0.5450	0	0	0	0;	
	15	16	1.289		L.7210	0	0	0	0;	
	16	17	0.732		0.5740	0	0	0	0;	
	1	18	0.164		0.1565	0	0	0	0;	
	18	19	1.504		L.3554	0	0	0	0;	
	19	20	0.409	5 6	3.4784	0	0	0	0;	
	20	21	0.708	9 6	9.9373	0	0	0	0;	
	2	22	0.451	2 6	3083	0	0	0	0;	
	22	23	0.898	0 6	7091	0	0	0	0;	
	23	24	0.896	0 6	7011	0	0	0	0;	
	5	25	0.203	0 6	0.1034	0	0	0	0;	

```
25
                      26
                             0.2842
                                         0.1447
                                                                              0;
              26
                      27
                             1.0590
                                        0.9337
                                                      0
                                                                0
                                                                      0
                                                                              0;
              27
                      28
                                                      0
                                                                0
                                                                      0
                                                                              0;
                             0.8042
                                        0.7006
              28
                      29
                             0.5075
                                        0.2585
                                                                      0
                                                      0
                                                                0
                                                                              0;
              29
                      30
                             0.9744
                                        0.9630
                                                      0
                                                                0
                                                                      0
                                                                              0;
              30
                      31
                             0.3105
                                                      0
                                                                0
                                                                      0
                                                                              0;
                                        0.3619
              31
                      32
                             0.3410
                                        0.5302
                                                      0
                                                                0
                                                                      0
                                                                              0;
             1;
Sb = 1e6;
               % Potencia Base
Vb = 12.66e3; % Tensão Base
Zb = Vb^2/Sb;
linhas(:,3:4) = linhas(:,3:4)/Zb;
barras(:,7:8) = barras(:,7:8)*1e3/Sb;
ref = 1;
% ===========
% Leitura dos dados de entrada
[\sim, \sim] = size(barras);
[\sim, \sim] = size(linhas);
[NumBarras, NumBCol] = size(barras);
[NumLinhas,NumLCol] = size(linhas);
% Linhas
% Init das variaveis
de = zeros(NumLinhas,1);
para = zeros(NumLinhas,1);
R = zeros(NumLinhas,1);
X = zeros(NumLinhas,1);
B = zeros(NumLinhas,1);
G = zeros(NumLinhas,1);
Tap = zeros(NumLinhas,1);
for i=1:NumLinhas
    de(i) = linhas(i,1);
    para(i) = linhas(i,2);
    R(i) = linhas(i,3);
    X(i) = linhas(i,4);
    B(i) = 1/X(i);
    G(i) = 1/(R(i) + 0.00001);
    Tap(i) = linhas(i,6);
end
% Desconsiderando taps
Tap = ones(NumLinhas,1);
```

```
% Barras
% Init das variaveis
Tipo = zeros(NumBarras,1);
V = zeros(NumBarras,1);
Teta = zeros(NumBarras,1);
Pg = zeros(NumBarras,1);
Qg = zeros(NumBarras,1);
Pd = zeros(NumBarras,1);
Qd = zeros(NumBarras,1);
Gsh = zeros(NumBarras,1);
Bsh = zeros(NumBarras,1);
for i=1:NumBarras
    Tipo(i) = barras(i,2);
    V(i) = barras(i,3);
    Teta(i) = barras(i,4);
    Pg(i) = barras(i,5);
    Qg(i) = barras(i,6);
    Pd(i) = barras(i,7);
    Qd(i) = barras(i,8);
    Gsh(i) = barras(i,9);
    Bsh(i) = barras(i,10);
end
% Potencias em PU
Pg = Pg/100;
Qg = Qg/100;
Pd = Pd/100;
Qd = Qd/100;
% ===========
% Matriz B linha
B_linha = zeros(NumBarras, NumBarras);
for i=1:NumLinhas
    K = de(i);
    M = para(i);
    B_{inha}(K,K) = B_{inha}(K,K) + B(i)/(Tap(i)^2); % diagonal principal considerando tap
    B_linha(M,M) = B_linha(M,M) + B(i); % diagonal principal
    B_{inha}(K,M) = B_{inha}(K,M) - B(i)/Tap(i); % Fora da diagonal principal
    B_linha(M,K) = B_linha(M,K) - B(i)/Tap(i); % Fora da diagonal principal
end
% ===========
% Fluxo de potencia linearizado
```

```
B_REF = ref;
B_linha(B_REF,B_REF) = 10^20; % Infinito
Teta= B_linha\(-Pd+Pg); % inv
```

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.169055e-20.

```
% Perdas
erro min = 1e-6;
erro = 1;
perdas = zeros(NumBarras,1);
Pperdas = zeros(NumLinhas,1);
Iteracoes = 0;
while erro > erro_min
    Teta_antigo = Teta;
    % Calculo de Pperdas = Gkm*(Teta(K)-Teta(M))^2
    for i=1:NumLinhas
        K = de(i);
        M = para(i);
        Pperdas(i) = G(i)*(Teta(K)-Teta(M))^2/100;
        perdas(K) = Pperdas(i)/2;
        perdas(M) = Pperdas(i)/2;
    end
    % Calculo de Teta
    Teta= B_linha\(-Pd+Pg-perdas); % inv
    % Erro
    erro = max(abs(Teta-Teta_antigo));
    Iteracoes= Iteracoes+1;
end
```

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 2.169055e-20.

```
Pkm = zeros(NumLinhas,1);

for i=1:NumLinhas
    K = de(i);
    M = para(i);
    Pkm(i) = (Teta(K)-Teta(M))*B(i)/Tap(i); % Pkm = Pk - Pm
end

% Variaveis de saida
disp('Fluxo de potencia linearizado - IEEE 33 Barras - Pd = 100%')
```

Fluxo de potencia linearizado - IEEE 33 Barras - Pd = 100%

```
disp('Theta: ')
```

Theta:

disp(Teta) 1.0e-03 * -0.0000 -0.0510 -0.0770 -0.1026 -0.1933 -0.2348 -0.2476 -0.2788 -0.3072 -0.3094 -0.3133 -0.3458 -0.3631 -0.3720 -0.3791 -0.3952 -0.3984 -0.0035 -0.0263 -0.0317 -0.0370 -0.0689 -0.1060 -0.1244 -0.1992 -0.2070 -0.2536 -0.2859 -0.2959 -0.3211 -0.3272 -0.3292 -0.0000 disp('Pkm: ') Pkm: disp(Pkm) 0 0.0326 0.0224 0.0212 0.0206 0.0108 0.0088 0.0068 0.0062 0.0056 0.0051 0.0045 0.0039 0.0027 0.0021 0.0015 0.0009 0.0036 0.0027

```
0.0018
0.0009
0.0093
0.0084
0.0042
0.0092
0.0086
0.0080
0.0074
0.0062
0.0042
0.0027
0.0006
```

```
disp('Número de Iterações')
```

Número de Iterações

```
disp(Iteracoes)
```

1

Conclusão:

Foi observado que a convergência ocorreu rapidamente, principalmente para o sistema de 33 barras em que o resultado convergiu na preimeira iteração, demonstrando que as perdas são realmente pequenas. Considerase o trabalho um sucesso, visto que a implementação foi capaz de convergir e demonstrar a perdas no sistema