_ _ _

Exercice 1. Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que $A^2 = A$, A non nulle.

- **1. a)** Soit λ une valeur propre de A. Quelles sont les valeurs possibles pour λ ?
 - **b)** Montrer que $\operatorname{Ker} A = \operatorname{Ker} A^2$.
- **2.** On suppose que dim Ker A = 1.
 - a) En prenant $x \in \mathbb{R}^2 \setminus \text{Ker } A$, construire un vecteur propre associé à la valeur propre 1.
 - b) En déduire que A est diagonalisable et exprimer A dans une base de diagonalisation.
- **3.** On suppose que Ker $A = \{0\}$. Montrer que $A = \mathrm{Id}$.
- **4.** Finalement, décrire toutes les matrices A de $\mathcal{M}_2(\mathbb{R})$ telles que $A^2 = A$.

Problème. () Soit d > 0 un réel que l'on cherche à estimer. On considère X une variable aléatoire dont la densité est définie, pour tout $t \in \mathbb{R}$, par

$$f(t) = \begin{cases} \frac{2t}{d^2} & \text{si } t \in [0, d], \\ 0 & \text{sinon.} \end{cases}$$

- **1. a)** Vérifier que f est une densité.
 - **b)** Calculer $\mathbf{E}[X]$ et la variance $\mathbf{V}(X)$ de X.

2. Soient X_1, \ldots, X_n , n variables aléatoires indépendantes et de même loi que X. Pour un $p \in \{2, \ldots, n-1\}$ fixé, on pose

$$T_1 = \frac{1}{p} \sum_{i=1}^{p} X_i, \qquad T_2 = \frac{1}{n-p} \sum_{i=p+1}^{n} X_i$$

et
$$\forall a, b \in \mathbb{R}, D_1(a, b) = aT_1 + bT_2.$$

- a) Quelle condition doit vérifier (a, b) pour que $D_1(a, b)$ soit un estimateur sans biais de d?
- **b)** On s'intéresse aux estimateurs $D_1(a, b)$ sans biais, c'est-à-dire tels que (a, b) vérifie la condition précédente. Parmi ces estimateurs, déterminer celui, noté D_1^* , qui est de variance minimale.
 - c) Calculer la limite de la variance de D_1^* , $\mathbf{V}(D_1^*)$ quand $n \to +\infty$.
- **3.** On note $\hat{D} = \max\{X_1, \dots, X_n\}$.
 - a) Déterminer la fonction de répartition \hat{F} et montrer que la densité \hat{f} de \hat{D} est définie par

$$\hat{f}(t) = \begin{cases} 0 & \text{si } t < 0 \text{ et si } t > d, \\ \frac{2nt^{2n-1}}{d^{2n}} & \text{si } 0 \leqslant t \leqslant d. \end{cases}$$

- **b)** Calculer l'espérance $\mathbf{E}\left[\hat{D}\right]$ et la variance $\mathbf{V}\left(\hat{D}\right)$ de \hat{D} .
- c) Calculer la limite de $\mathbf{E}\left[\hat{D}\right]$ et $\mathbf{V}\left(\hat{D}\right)$ quand $n \to \infty$.
- **d)** Déterminer le réel k tel que $k\hat{D}$ soit un estimateur sans biais de d. On note D_2^* cet estimateur. Calculer $\mathbf{V}(D_2^*)$.
- **4.** Comparer $\mathbf{V}(D_1^*)$ et $\mathbf{V}(D_2^*)$. Lequel de ces deux estimateurs est préférable?