Interactive Physical Zero-Knowledge Proof for Norinori

Jean-Guillaume Dumas¹ Pascal Lafourcade² ○**Daiki Miyahara**³,⁴ Takaaki Mizuki³ Tatsuya Sasaki³ Hideaki Sone³

- 1. Univ. Grenoble Alpes 2. Univ. Clermont Auvergne
- 3. Tohoku Univ. 4. National Institute of Advanced Industrial Science and Technology

Outline

- 1. Background
- Norinori
 Scenario
 Contribution
- 2. Idea
- 3. Our Construction
- 4. Conclusion

✓One of the most *famous* puzzles published by Nikori.

An example of a challenge of Norinori.

✓ Goal: Make some of empty cells become black so that:

Rules.

Room condition. Each room must contain exactly <u>two</u> black cells.

Pair condition. Each black cell must be adjacent to **exactly one** other black cell.

An example of a challenge of Norinori.

✓ Goal: Make some of empty cells become black so that:

Rules.

Room condition. Each room must contain exactly <u>two</u> black cells.

Pair condition. Each black cell must be adjacent to **exactly one** other black cell.

A solution of the challenge.

✓ Solving Norinori was shown to be NP-complete. [BS17] M. Biro and C. Schmidt, "Computational complexity and bounds for Norinori and LITS," EuroCG 2017.

 $\checkmark P$ has brought a challenge of Norinori to V.

 $\checkmark P$ has brought a challenge of Norinori to V.

✓ But V can't solve this, so V wonders if this puzzle really has a solution.

✓ **Dilemma**: P wants to convince V but does not want to reveal the solution.

The scenario

✓ Convince V that the problem has a solution without revealing it.

Restrictions:

- ✓ Use everyday objects.
- ✓ Prove it manually.

Player V

Physical Zero-Knowledge Proof (ZKP)!

Contribution

✓ Design <u>a physical ZKP protocol</u> for Norinori using cards and envelopes.

Outline

- 1. Background
 - Norinori
 Scenario
 Contribution
- 2. Idea
 - 3. Our Construction
 - 4. Conclusion

A deck of cards used in our protocol

Marker cards

Number cards

✓ Setup: P puts one face-down card on each cell according to the solution.

15

√Then, the Room condition can be <u>easily</u> verified.

√Then, the Room condition can be <u>easily</u> verified.

✓Then, how we verify the Pair condition?

✓ Exactly one black cell exists among <u>four</u> adjacent cells of each black one.

✓ Exactly one black cell exists among <u>four</u> adjacent cells of each black one.

Outline

- 1. Background
 - Norinori
 Scenario
 Contribution
- 2. Idea
- 3. Our Construction
- 4. Conclusion

Our construction

Player P

Our construction

Setup

- ✓ P puts one face-down card on each cell according to the solution.
- √They put additional white cards for the Pair verification.

Our construction

Player P

P pid Note: we use the existing of it technique^[KW17] to hide the positions. (see our paper)

- ✓ Now, we have the four adjacent cards.
- ✓ We can verify the Pair condition by just revealing these four cards, but:

These are **necessary** for the next verifications.

2. V puts number cards below the four adjacent cards, which specify the <u>original</u> positions (and then turn them over).

3. V puts each two cards into an envelope, and then shuffles them:

4. V reveals the four adjacent cards.
Then, <u>exactly one</u> black or marker should appear.

5. V turns them over, and then shuffles them as before.

6. V reveals the four number cards.
V can place the four adjacent cards in the original positions.

✓ By repeating the previous steps twice as the number of rooms, V is convinced of the Pair condition.

Our construction

Player P

Room verification is easy

✓ Shuffle the cards corresponding to each room and then reveal them.

Room verification is easy

✓ By repeating the previous step, V is convinced of the Room condition.

Our construction

Player P

Outline

- 1. Background
 - Norinori
 Scenario
 Contribution
- 2. Idea
- 3. Our Construction
- 4. Conclusion

Conclusion

✓ Designed <u>a physical ZKP protocol</u> for Norinori using cards and envelopes.

