ECON 124: Problem Set #1

Due on Jun 5, 2025

 $Dr.\ Deniz\ Baglan$

Alejandro Ouslan

Problem 1

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} -3 & -2 & -1 \\ 1 & 2 & 3 \end{bmatrix}$. Find the following:

- 1. A C'
- 2. C' + 3D
- 3. *CB*
- 4. D'D

Problem 2

Given the square matrices:

$$A = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 0 & 3 \\ 3 & -2 & -5 \end{bmatrix}, B = \begin{bmatrix} 3 & -6 & -3 \\ 7 & -14 & -7 \\ -1 & 2 & 1 \end{bmatrix}$$

Verify that AB = 0

Problem 3

The following table shows the number of personnel, in thousands, in three branches of the U.S. Army in 2001, and the changes in 2002 and 2003.

	Active Duty	Reserve	National Guard
2001	75	35	60
Change in 2002	5	-15	2
2003	-12	5	-17

Use matrix algebra to find the number of personel in each branch

- 1. peronnel 2001
- 2. Personnel 2002

Problem 4

- 1. Suppose b_1 is the least squares estimator of the slope coefficient in a regression of Y on X and b_2 is the slope coefficient estimator in a "reverse" regression of X on Y. Show that $R^2 = b_1b_2$ where R is the correlation between Y and X.
- 2. From a sample of 200 observation the following quantities were calculated:

$$\sum X = 11, \sum Y = 20, \sum X^2 = 12, \sum XY = 22, \sum Y^2 = 84$$

Estimate both regression equations an calculate R^2 . Calculate the standard error of b_1 .

Problem 5

Consider the equation $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$, where $X_1 \sim (\mu_{X_1}, \sigma_{X_1}^2)$ is independent of $X_2 \sim (\mu_{X_2}, \sigma_{X_2}^2)$ with this information answer the following questions:

- 1. What is the expected value of X_1 ? What is the expected value of X_2 ?
- 2. What is the variance of X_1 ? what is the variance of X_2 .
- 3. What is the expected value of Y?
- 4. What is the variance of Y?
- 5. What is the marginal effect of X_1 on Y? What is the marginal effect of X_2 on Y?

Problem 6

Consider an independent random sample of data of size n drawn from the continuous distribution of $X \sim N(\mu, \sigma^2)$. Suppose for whatever reason, we do not like the fist observtion and we propose the following estimator of μ :

$$\bar{X} = \frac{x_2 + x_3 + \ldots + x_n}{n}$$

- 1. what is expected value of \bar{x}
- 2. What is the bias of \bar{x} ?
- 3. What is the variance of \bar{x} ?
- 4. What is the mean square error of \bar{x} ?
- 5. What happens to the results in parts (a-d) when the sample size n tends to infinity? what can be said about this estimator in this scenario?

Problem 7

Consider the following multiple linear regression model

$$y = X\beta + u$$

where y is $n \times 1$, X is $n \times k$ and u is $n \times 1$ such that $u|x \sim N(0, \sigma^2 I_n)$. Write $Y = \hat{Y} + \hat{u}$, where $\hat{y} = X\hat{\beta}$ is the least squares predicted values.

- 1. Show that $(\hat{\beta} \beta) = Au$ and $\hat{u} = Mu$, what are your A and M?
- 2. Show that $\bar{y} =$ the mean of the predicted values \hat{y}
- 3. Show that $X'\hat{u} = 0, \hat{y}\hat{u} = 0$
- 4. Derive \mathbb{R}^2 for the model where the first column of X has a constant.