IRS2004(S)PbF

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +200 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V input logic compatible
- Cross-conduction prevention logic
- Internally set deadtime
- High-side output in phase with input
- Shutdown input turns off both channels
- Matched propagation delay for both channels
- RoHS compliant

Description

The IRS2004 is a high voltage, high speed power MOSFET and IGBT driver with dependent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V

Product Summary

Voffset	200 V max.
I _O +/-	130 mA/270 mA
Vout	10 V - 20 V
t _{on/off} (typ.)	680 ns/150 ns
Deadtime (typ.)	520 ns

Packages

logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates from 10 V to 200 V.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units		
V _B	High-side floating absolute voltage		-0.3	225		
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3		
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3		
V _{CC}	Low-side and logic fixed supply voltage		-0.3	25	V	
V _{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3		
V _{IN}	Logic input voltage (IN & SD)		-0.3	V _{CC} + 0.3		
dV _s /dt	Allowable offset supply voltage transient		_	50	V/ns	
PD	P _D Package power dissipation @ T _A ≤ +25 °C (8 lead PDIP)		_	1.0	W	
ן יט	Fackage power dissipation @ 14 5 +25 C	(8 lead SOIC)	_	0.625	VV	
Dth	(8 lead PDI		_	125	°C/W	
Rth _{JA}	Thermal resistance, junction to ambient	(8 lead SOIC)	_	200	C/VV	
TJ	Junction temperature		_	150		
T _S	Storage temperature		-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		_	300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	Note 2	200	
V _{HO}	High-side floating output voltage	Vs	V _B	\ \
V _{CC}	Low-side and logic fixed supply voltage	10	20	\ \ \
V _{LO}	Low-side output voltage	0	V _{CC}	
V _{IN}	Logic input voltage (IN & SD)	0	V _{CC}	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 V to +200 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

 $\label{eq:Dynamic Electrical Characteristics} $$V_{BIAS}\left(V_{CC},V_{BS}\right) = 15\ V,\ C_L = 1000\ pF\ and\ T_A = 25\ ^{\circ}C\ unless\ otherwise\ specified.$

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions	
ton	Turn-on propagation delay	_	680	820		V _S = 0 V	
toff	Turn-off propagation delay	_	150	220		V _S = 200 V	
t _{sd}	Shutdown propagation delay	_	160	220			
t _r	Turn-on rise time	_	70	170	ns		
tf	Turn-off fall time	_	35	90			
DT	Deadtime, LS turn-off to HS turn-on &	400	400 500	400 500	400 520 650		
וט	HS turn-on to LS turn-off	400 520	320 030				
MT	Delay matching, HS & LS turn-on/off	_	_	60			

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25 °C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" (HO) & Logic "0" (LO) input voltage	2.5	_	_		
V _{IL}	Logic "0" (HO) & Logic "1" (LO) input voltage	_	_	0.8		\ \ - 40.\\ t= 20.\\
V _{SD,TH+}	SD input positive going threshold	2.5	_	_		V _{CC} = 10 V to 20 V
V _{SD,TH} -	SD input negative going threshold	_	_	0.8	V	
VoH	High level output voltage, V _{BIAS} - V _O	_	0.05	0.2		I _O = 2 mA
VoL	Low level output voltage, V _O	_	0.02	0.1		10 - 2 111/4
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 200 V
I _{QBS}	Quiescent V _{BS} supply current	_	30	55		V _{IN} = 0 V or 5 V
IQCC	Quiescent V _{CC} supply current	_	150	270	μA	
I _{IN+}	Logic "1" input bias current	_	3	10		V _{IN} = 5 V
I _{IN-}	Logic "0" input bias current	_	_	5		V _{IN} = 0 V
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8	8.9	9.8	V	
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9	v	
I _{O+}	Output high short circuit pulsed current	130	290	_	mA.	V _O = 0 V PW ≤ 10 μs
I _{O-}	Output low short circuit pulsed current	270	600		IIIA	V _O = 15 V PW ≤ 10 μs

Functional Block Diagram

Lead Definitions

Symbol	Description
IN	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO
SD	Logic input for shutdown
VB	High-side floating supply
НО	High-side gate drive output
Vs	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate drive output
COM	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 3. Shutdown Waveform Definitions

Figure 5. Delay Matching Waveform Definitions

Figure 2. Switching Time Waveform Definitions

Figure 4. Deadtime Waveform Definitions

IRS2004(S)PbF

Figure 6A. Turn-On Time vs. Temperature

1400

Figure 6C. Turn-On Time vs. Input Voltage

Figure 7A. Turn-Off Time vs. Temperature

Figure 7B. Turn-Off Time vs. Supply Voltage

Figure 7C. Turn-Off Time vs. Input Voltage

IRS2004(S)PbF

Figure 8A. Shutdown Time vs. Temperature

Figure 9A. Turn-On Rise Time vs. Temperature

Figure 10A. Turn-Off Fall Time vs. Temperature

Figure 8B. Shutdown Time vs. Voltage

Figure 9B. Turn-On Rise Time vs. Voltage

Figure 10B. Turn-Off Fall Time vs. Input Voltage

IRS2004(S)PbF

Figure 11A. Deadtime vs. Temperature

Figure 11B. Deadtime vs. Voltage

Figure12A. Logic "1" Input Voltage vs. Temperature

Figure 12B. Logic "1" Input Voltage vs. Supply Voltage

Figure 13A. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs. Temperature

Figure 13B. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs. Supply Voltage

IRS2004(S)PbF

Figure 14A. High Level Output Voltage vs. Temperature

Figure 15A. Low Level Output Voltage vs. Temperature

Figure 16A. Offset Supply Current vs. Temperature

Figure 14B. High Level Output Voltage vs. Supply Voltage

Figure 15B. Low Level Output Voltage vs. Supply Voltage

Figure 16B. Offset Supply Current vs. Voltage

IRS2004(S)PbF

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Voltage

Figure 18A. V_{CC} Supply Current vs. Temperature

Figure 18B. V_{CC} Supply Current vs. Voltage

Figure 19A. Logic"1" Input Current vs. Temperature

Figure 19B. Logic"1" Input Current vs. Voltage

11

10

8

6

-50

V_{cc} UVLO Threshold +(V)

Max.

9 Typ.

Min.

-25

0

IRS2004(S)PbF

Figure 20A. Logic "0" Input Bias Current vs. Temperature

125

Figure 21A. V_{CC} Undervoltage Threshold(+) vs. Temperature

25

50

Temperature (°C)

75

100

Figure 22A. Output Source Current vs. Temperature

Figure 20B. Logic "0" Input Bias Current vs. Voltage

Figure 21B. V_{CC} Undervoltage Threshold(-) vs. Temperature

Figure 22B. Output Source Current vs. Voltage

1000 Output Sink Current (mA) 800 600 400 Тур. 200 Min. 0 20 10 12 14 16 18 V_{BIAS} Supply Voltage (V)

Figure 23A. Output Sink Current vs. Temperature

Figure 23B. Output Sink Current vs. Supply Voltage

Figure 24A. SD Input Positive Going Threshold (+) vs. Temperature

Figure 24B. SD Input Positive Going Threshold (+) vs. Supply Voltage

IRS2004(S)PbF

Case Outline

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN Metric Im perial Min Max Min Max 7.90 8.10 0.311 0.318 3.90 4.10 0.153 0.161 11.70 12.30 0.46 0.484 5.45 5.55 0.214 0.218 6.30 6.50 0.248 0.255 5.10 5.30 0.200 0.208 1.50 0.059 n/a n/a 0.062 1.50 1.60 0.059

REEL DIMENSIONS FOR 8SOICN

	M e	tric	Im p erial		
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	18.40	n/a	0.724	
G	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2004PbF 8-Lead SOIC IRS2004SPbF 8-Lead SOIC Tape & Reel IRS2004STRPbF

International

TOR Rectifier

The SOIC-8 is MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 11/27/2006