Viewing, Projection and Viewport Transformations

2016 Spring

National Cheng Kung University

Instructors: Min-Chun Hu 胡敏君

Shih-Chin Weng 翁士欽(西基電腦動畫)

Classical and Computer Viewing

Viewing

- How to describe our virtual camera?
- What is the relationship between classical viewing techniques and computer viewing?
- How to implement projection?

Outline

- Classical views
- Computer viewing
- Projection matrices

Classical Viewing

- Viewing requires three basic elements
 - One or more objects
 - A viewer with a projection surface
 - Projectors that go from the object(s) to the projection surface

Perspective View vs Parallel View

- Classical viewing developed different techniques for drawing each type of projection
- Mathematically parallel viewing is the limiting case of perspective viewing
 - Set the COP to infinity

Multimedia Information System Laboratory

■ Computer graphics treats all projections the same and implements them with a single pipeline

Classical Projections

Planar Geometric Projections

- Standard projections project onto a plane.
- Projectors are lines that either converge at a center of projection or are parallel
- Such projections preserve lines but not necessarily angles

Taxonomy of Planar Geometric Projections

Orthographic View

Orthographic View (Cont.)

The default camera and an orthographic view volume.

Orthographic Projection.

Viewing Volume

Multiview Orthographic Projection

- Projection plane parallel to principal faces
- Usually form front, top, side views

isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric top

Advantages and Disadvantages

- Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric

Axonometric Projections

- Projectors are still orthogonal to the projection plane.
- Allow projection plane to move relative to object

Classify by how many angles of a corner of a projected cube are the same:

Multimedia Information System Laboratory

2016/03/15

14

Types of Axonometric Projections

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
 - Projection of a circle in a plane not parallel to the projection plane is an ellipse
- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Oblique Projection

Arbitrary relationship between projectors and projection plane

Perspective Projection

- Projectors converge at center of projection
- The viewer is located symmetrically with respect to the projection plane

Vanishing Points

- Parallel lines (not parallel to the projection plan):
 - converge at a single point in the projection (the *vanishing point*)
- Drawing simple perspectives by hand uses these vanishing point(s)

Three-Point Perspective

- No principal face parallel to the projection plane
- Three vanishing points for cube

Two-Point Perspective

- On principal direction parallel to the projection plane
- Two vanishing points for cube

One-Point Perspective

- Two principal faces parallel to the projection plane
- One vanishing point for cube

Perspective Projection Example

How many vanish points in this painting?

Advantages and Disadvantages

- Diminution:
 - Objects farther from viewer are projected smaller (Looks realistic)
- Nonuniform foreshortening:
 - Equal distances along a line are not projected into equal distances
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections

Viewing with A Computer

■ Pipeline View

Viewing with A Computer (Cont.)

- Three aspects of the viewing process implemented in the pipeline:
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix: orthogonal or perspective
 - Normalization & Clipping
 - Setting the view volume

Moving the Camera

■ We can move the camera to any desired position by a sequence of rotations and translations

- Example: side view
 - Rotate the camera
 - Move it away from origin
 - View matrix C = TR

How to Obtain the View Matrix?

Given
$$\mathbf{VRP} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
, $\mathbf{n} = \begin{bmatrix} n_x \\ n_y \\ n_z \\ 1 \end{bmatrix}$, $\mathbf{v_{up}} = \begin{bmatrix} \mathbf{v_{up}}_x \\ \mathbf{v_{up}}_y \\ \mathbf{v_{up}}_z \\ 1 \end{bmatrix}$

$$\mathbf{v} = \alpha \mathbf{n} + \beta \mathbf{v}_{\mathbf{up}}$$

To simplify, set
$$\beta = 1$$
 and $\alpha = -\frac{v_{up} \cdot n}{n \cdot n}$

$$\Rightarrow v = v_{up} - \frac{v_{up} \cdot n}{n \cdot n} n$$

$$\mathbf{u} = \mathbf{v} \times \mathbf{n}$$

How to Obtain the View Matrix? (Cont.)

Normalize **u**, **v**, and **n**, and set the rotation matrix as:

$$\mathbf{A} = \begin{bmatrix} u'_{x} & v'_{x} & n'_{x} & 0 \\ u'_{y} & v'_{y} & n'_{y} & 0 \\ u'_{z} & v'_{z} & n'_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

What we want is the opposite direction (\mathbf{A}^{-1})that represent the vectors in the original system in the $\mathbf{u}'\mathbf{v'n'}$ coordinate system. Hence, the rotation matrix of the model-view matrix is:

$$\mathbf{R}' = \mathbf{A}^{-1} = \mathbf{A}^T = \begin{bmatrix} u'_x & u'_y & u'_z & 0 \\ v'_x & v'_y & v'_z & 0 \\ n'_x & n'_y & n'_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Finally, by multiplying the translation matrix **T**, we have:

$$C = R'T' = \begin{bmatrix} u'_x & u'_y & u'_z & 0 \\ v'_x & v'_y & v'_z & 0 \\ n'_x & n'_y & n'_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x \\ 0 & 1 & 0 & -y \\ 0 & 0 & 1 & -z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u'_x & u'_y & u'_z & -xu'_x - yu'_y - zu'_z \\ v'_x & v'_y & v'_z & -xv'_x - yv'_y - zv'_z \\ n'_x & n'_y & n'_z & -xn_x - yn'_y - zn'_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Moving the Camera Frame

- If we want to visualize object with both positive and negative z values we can either
 - Move the camera in the positive z direction
 - Translate the camera frame
 - Move the objects in the negative z direction
 - Translate the world frame
- Both of these views are equivalent and are determined by the modelview matrix
 - Want a translation (glTranslatef(0.0,0.0,-d);)
 - $\blacksquare d > 0$

Moving Camera back from Origin

The OpenGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

How to Set the Camera Position/Orientation?

OpenGL: gluLookAt(eye_x, eye_y, eye_z, at_x, at_y, at_z, up_x, up_y, up_z)

$$vpn = a - e$$

$$\mathbf{n} = \frac{\mathbf{vpn}}{|\mathbf{vpn}|}$$

$$\mathbf{u} = \frac{\mathbf{v}_{\mathbf{up}} \times \mathbf{n}}{|\mathbf{v}_{\mathbf{up}} \times \mathbf{n}|}$$

$$\mathbf{v} = \frac{\mathbf{n} \times \mathbf{u}}{|\mathbf{n} \times \mathbf{u}|}$$

Viewing with A Computer

- Three aspects of the viewing process implemented in the pipeline:
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix: orthogonal or perspective
 - Normalization & Clipping
 - Setting the view volume

Projections and Normalization

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume

$$\blacksquare \chi_p = \chi$$

$$y_p = y$$

$$\blacksquare z_p = 0$$

Homogeneous Coordinate Representation

default orthographic projection

$$\mathbf{Z}_{p} = \mathbf{X}_{p}$$

$$y_p = y$$

$$\blacksquare z_p = 0$$

$$\blacksquare w_p = 1$$

$$q = Mp$$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In practice, we can let M=I and set the z term to zero later

Simple Perspective Projections

- Center of projection : at the origin
- Projection plane z = d, d < 0

Perspective Equations

Homogeneous Coordinate Representation

Consider **q= Mp** where

$$\chi_p = \frac{x}{z/d}$$

$$y_p = \frac{y}{z/d}$$

$$z_p = d = \frac{z}{z/d}$$

$$\mathbf{q} = \begin{bmatrix} y \\ z \\ z/d \end{bmatrix}$$

$$x_{p} = \frac{x}{z/d}$$

$$y_{p} = \frac{y}{z/d}$$

$$z_{p} = d = \frac{z}{z/d}$$

$$q = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

$$p = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{p} = \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$

Perspective Division

The desired perspective equations:

$$x_{p} = \frac{x}{z/d}$$

$$y_{p} = \frac{y}{z/d}$$

$$z_{p} = d$$

$$q = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

■ However $w \neq 1$, so we must divide by w to return from homogeneous coordinates. This perspective *division* yields

$$\mathbf{q'} = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \\ 1 \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$

Viewing with A Computer (Cont.)

- Three aspects of the viewing process implemented in the pipeline:
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix: orthogonal or perspective
 - Normalization & Clipping
 - Setting the view volume

Taking Clipping into Account

- After the view transformation, a simple projection and viewport transformation can generate screen coordinate.
- However, projecting all vertices are usually unnecessary.
- Clipping with 3D volume.
- Associating projection with clipping and normalization.

Why do we use normalization?

Orthogonal Viewing Volume

Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert specified clipping volume to default

Orthogonal Normalization Matrix

- Two steps
 - T: Move center to origin
 - S: Scale to have sides of length 2

$$\mathbf{T} = \mathbf{T}(-\frac{(right + left)}{2}, -\frac{(top + bottom)}{2}, -\frac{(far + near)}{2})$$

$$\mathbf{S} = \mathbf{S}(\frac{2}{(right - left)}, \frac{2}{(top - bottom)}, \frac{2}{(near - far)})$$

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{xw_{\text{max}} - xw_{\text{min}}} & 0 & 0 & -\frac{xw_{\text{max}} + xw_{\text{min}}}{xw_{\text{max}} - xw_{\text{min}}} \\ 0 & \frac{2}{yw_{\text{max}} - yw_{\text{min}}} & 0 & -\frac{yw_{\text{max}} + yw_{\text{min}}}{yw_{\text{max}} - yw_{\text{min}}} \\ 0 & 0 & \frac{2}{z_{near} - z_{far}} & \frac{z_{near} + z_{far}}{z_{near} - z_{far}} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Orthogonal Projection

- \blacksquare Set z = 0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ Hence, general orthogonal projection in 4D is

$$P = M_{orth}ST$$

Perspective Viewing Volume

Using Field/Angle of View

■ In addition to directly assigning the viewing frustum, assigning field of view may be more user-friendly.

Clipping for Perspective Views

Perspective Normalization

Perspective Normalization (Cont.)

Normalization

■ Rather than derive a different projection matrix for each type of projection, we can **convert all projections to orthogonal projections** with the default view volume

■ This strategy allows us to use **standard transformations** in the pipeline and makes for **efficient clipping**

Effect on Clipping

■ The projection matrix **P= STH** transforms the original clipping volume to the default clipping volume

Perspective-Projection Transformation

$$x_p = (1-u)x + ux_{prp}$$

$$y_p = (1-u)y + uy_{prp}$$
 $u = 0 \sim 1$

$$x_{p} = x \left(\frac{z_{prp} - z_{vp}}{z_{prp} - z} \right) + x_{prp} \left(\frac{z_{vp} - z}{z_{prp} - z} \right)$$
$$y_{p} = y \left(\frac{z_{prp} - z_{vp}}{z_{prp} - z} \right) + y_{prp} \left(\frac{z_{vp} - z}{z_{prp} - z} \right)$$

Given
$$x_{prp} = y_{prp} = z_{prp} = 0$$
, $z_{vp} = z_{near}$

$$x_p = x \left(\frac{-z_{near}}{-z} \right)$$
$$y_p = y \left(\frac{-z_{near}}{-z} \right)$$

Perspective-Projection Transformation (Cont.)

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

$$M_{pers} = \begin{bmatrix} -z_{near} & 0 & 0 & 0 \\ 0 & -z_{near} & 0 & 0 \\ 0 & 0 & s_z & t_z \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

After perspective division, the point (x,y,z,1) goes to

$$x_{p} = x \left(\frac{-Z_{near}}{-Z} \right)$$

$$y_{p} = y \left(\frac{-Z_{near}}{-Z} \right)$$

$$z_{p} = \frac{s_{z}z + t_{z}}{-z} = -\left(s_{z} + \frac{t_{z}}{z} \right)$$

To make $-1 \le z_p \le 1$

$$S_z = \frac{Z_{near} + Z_{far}}{Z_{near} - Z_{far}}$$

$$t_z = \frac{-2Z_{near}Z_{far}}{Z_{near} - Z_{far}}$$

Further Normalization

$$M_{normperz} = \begin{bmatrix} -z_{near} & 2 & 0 & 0 & 0 \\ 0 & -z_{near} & \frac{2}{yw_{\text{max}} - yw_{\text{min}}} & 0 & 0 \\ 0 & 0 & \frac{z_{near} + z_{far}}{z_{near} - z_{far}} & \frac{-2z_{near}z_{far}}{z_{near} - z_{far}} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Notes

- Normalization let us clip against a simple cube regardless of type of projection
- Delay final "projection" until end
 - Important for *hidden-surface removal* to retain depth information as long as possible

Why do we do it this way?

- Normalization allows for *a single pipeline* for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- Clipping is now "easier".

Cohen-Sutherland Method in 3D

- Use 6-bit outcodes
 - When needed, clip line segment against planes

Cohen-Sutherland Method in 3D (Cont.)

Check for outcodes:

$$-1 \le x_p \le 1$$
, $-1 \le y_p \le 1$, $-1 \le z_p \le 1$

Since

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow \dots \Rightarrow \begin{bmatrix} x_h \\ y_h \\ z_h \\ h \end{bmatrix} \Rightarrow \dots \Rightarrow \begin{bmatrix} x_h \\ y_h \\ x_h \\ h \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix}$$

To avoid unnecessary float division, We can check

$$-h \le x_h \le h$$
, $-h \le y_h \le h$, $-h \le z_h \le h$

Cohen-Sutherland Method in 3D (Cont.)

- If outcode(A) == outcode(B) == 0
 - Accept the whole line segment.
- If(outcode(A) and outcode(B))!=0
 - Reject the line segment.

- Other cases
 - Calculate an intersection (according to outcode bits)
 - Then check outcode again
- Note: use parametric forms

$$x_h = x_{ha} + (x_{hb} - x_{ha})u$$

$$y_h = y_{ha} + (y_{hb} - y_{ha})u$$

$$z_h = z_{ha} + (z_{hb} - z_{ha})u$$

$$h = h_a + (h_b - h_a)u$$

Polygon Clipping in 3D

- Similar to 2D clipping
 - Bounding box
 - Clipping with each clipping plane
 - Etc.....

Viewport Transformation

■ From the working coordinate to the coordinate of display device.

By 2D scaling and translation

By Coordinate Transformations

Example

Pipeline View

Multimedia Information System Laboratory

2016/03/15

Loading an Object

Modeling Transformation

 $(x_m, y_m, z_m, 1)^t = M_m(x_o, y_o, z_o, 1)^t$ where $M_m = \dots T_m R_m S_m \dots$

Put a Virtual Camera

■ Move a camera from the origin (by T_vR_v)

Virtual Camera's Coordinate

- Change the object's coordinate
- $\blacksquare (x_v, y_v, z_v, 1)^t = M_{view}(x_m, y_m, z_m, 1)^t$

Virtual Camera's Coordinate (Cont.)

Perspective Projection

Projection + Normalization

Multimedia Information System Laboratory

2016/03/15

Projection + Normalization (Cont.)

Clipping

- Perform clipping with $(x_h, y_h, z_h, h)^t$
- Avoid unnecessary division $h \le x_h \le h$, $h \le y_h \le h$, $h \le z_h \le h$
- Use parametric forms for intersection

$$x_h = x_{ha} + (x_{hb} - x_{ha})u$$

$$y_h = y_{ha} + (y_{hb} - y_{ha})u$$

$$z_h = z_{ha} + (z_{hb} - z_{ha})u$$

$$h = h_a + (h_b - h_a)u$$

Viewport Transformation

 (x_{dmin}, y_{dmin})

$$X_{hxis}$$
 Y_{haxis}
 Z_{haxis}
 Z_{haxis}
 Z_{haxis}
 Z_{haxis}
 Z_{vaxis}
 Z_{vaxis}

Multimedia Information System Laboratory

$$M_{viewport} = \begin{bmatrix} \frac{x_{d \max} - x_{d \min}}{2} & 0 & 0 & \frac{x_{d \max} + x_{d \min}}{2} \\ 0 & \frac{y_{d \max} - y_{d \min}}{2} & 0 & \frac{y_{d \max} + y_{d \min}}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2016/03/15

Rasterization

Line drawing or polygon filling with

$$(x_d, y_d, z_d, 1)^t$$
 or $(x_d, y_d)^t$ and z_h

Appendix
Oblique Parallel Projection

Oblique Parallel Projection

Multimedia Information System Laboratory

2016/03/15

Oblique Parallel Projection (Cont.)

■ Oblique Projection = Shear + Orthogonal Projection

Shear Matrix

xy shear (*z* values unchanged)

$$\mathbf{H}(\theta,\phi) = \begin{bmatrix} 1 & 0 & -\cot\theta & 0 \\ 0 & 1 & -\cot\phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Projection matrix $P = M_{orth} H(\theta, \phi)$
- General case: $P = M_{orth} STH(\theta, \phi)$

More General Cases

$$\frac{x_p - x}{z_{vp} - z} = \frac{V_{px}}{V_{pz}}$$

$$\frac{y_p - y}{z_{vp} - z} = \frac{V_{py}}{V_{pz}}$$

Figure 7-37

Oblique parallel projection of position (x, y, z) to a view plane along a projection line defined with vector \mathbf{V}_p .

More General Cases (Cont.)

$$x_p = x + (z_{vp} - z) \frac{V_{px}}{V_{pz}}$$

$$y_p = y + (z_{vp} - z) \frac{V_{py}}{V_{pz}}$$

$$x_{p} = x + (z_{vp} - z) \frac{V_{px}}{V_{pz}}$$

$$y_{p} = y + (z_{vp} - z) \frac{V_{py}}{V_{pz}}$$

$$M_{oblique} = \begin{bmatrix} 1 & 0 & -\frac{V_{px}}{V_{pz}} & z_{vp} \frac{V_{px}}{V_{pz}} \\ 0 & 1 & -\frac{V_{py}}{V_{pz}} & z_{vp} \frac{V_{py}}{V_{pz}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{\it oblique,norm} = M_{\it ortho,norm} M_{\it oblique}$$

Top view of an oblique parallel-projection transformation. The oblique view volume is converted into a rectangular parallelepiped, and objects in the view volume, such as the green block, are mapped to orthogonal-projection coordinates.

Figure 7-39

Equivalency

