The self-testing scenario

 $\mathcal{L}(\mathcal{H})$ denotes the set of linear operators acting on Hilbert space \mathcal{H} .

We know there exist measurement operators $M_{a|x} \in \mathcal{L}(\mathcal{H})$ acting on Alice's Hilbert space and satisfying

$$M_{a|x} \succcurlyeq 0; \forall a, x \sum_{a} M_{a|x} = Id_A$$

Similarly there exist measurement operators $N_{b|y} \in \mathcal{L}(\mathcal{H})$ acting on Bob's Hilbert space. The measurement operators are therefore projective:

$$\forall a, a': \quad M_{a|x} M_{a'|x} = \delta_{a,a'} M_{a|x}$$

$$\forall b, b': \quad N_{b|y} N_{b'|y} = \delta_{b,b'} N_{b|y}$$

Now, from the Born rule, there must exist some quantum state $\rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \succcurlyeq 0$, and $\operatorname{tr} \rho_{AB} = 1$ such that

$$p(a,b|x,y) = \operatorname{tr}[\rho_{AB}M_{a|x} \otimes N_{b|y}]$$

In self-testing, one aims to infer the form of the state and the measurement in the trace from knowledge of the correlation p(a,b|x,y) alone, i.e. in device-independent scenario.

Born rule: A key postulate of quantum mechanics which gives the probability that a measurement of a quantum system will yield a given result. More formally, for a state $|\psi\rangle$ and a F_i POVM element (associated with the measurement outcome i), then the probability of obtaining i when measuring $|\psi\rangle$ is given by

$$p(i) = \langle \psi | F_i | \psi \rangle$$

Physical assumptions

- 1. The experiment admits a quantum description (state and measurement)
- 2. The laboratories of Alice and Bob are located in separate location in space and there is no communication between the two laboratories.
- 3. The setting x and y are chosen freely and independently of all other systems in the experiment.
- 4. Each round of the experiment is independent of all other rounds a physically equivalent to all others (i.e. there exists a single density matrix and measurement operators that are valid in every round).

Impossibility to infer exactly the references

- 1. Unitary invariance of the trace : one can reproduce the statistics of any state $|\psi\rangle$ and measurement $\{M_{a|x}\}, \{N_{b|y}\}$ by instead using the rotated state $U \otimes V |\psi\rangle$ and measurement $\{UM_{a|x}U^{\dagger}\}, \{VN_{b|y}V^{\dagger}\}$, where U, V are unitary transformations. Hence, one can never conclude that the state was $|\psi\rangle$ or $U \otimes V |\psi\rangle$.
- 2. Additional degrees of freedom : a state $|\psi\rangle\otimes|\xi\rangle$ and measurements $\{M_{a|x}\otimes Id_{\xi}\}, \{N_{b|y}\otimes Id_{\xi}\}$ gives the same correlation as $|\psi\rangle$ and $\{M_{a|x}\}, \{N_{b|y}\}$.