Scilab Textbook Companion for Manufacturing Processes For Engineering Materials by S. Kalpakjian And S. R. Schmid¹

Created by
Rajesh Kumar Ojha
B.Tech
Mechanical Engineering
Madan Mohan Malaviya University of technology
College Teacher
None
Cross-Checked by
Spandana

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Manufacturing Processes For Engineering Materials

Author: S. Kalpakjian And S. R. Schmid

Publisher: Pearson Education

Edition: 5

Year: 2007

ISBN: 9788131705667

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Fundamentals of the Mechanical Behavior of Materials	6
4	Surface Tribology Dimensional Characteristics Inspection and Product Quality Assurance	10
5	Metal Casting Processes and Equipment Heat Treatment	12
6	Bulk deformation Processes	15
7	Sheet Metal Forming processes	19
8	Material Removal Processes Cutting	24
9	Material Removal Processes Abrasive Chemical Electrical and High Energy Beams	29
10	Properties and Processing of Polymers and Reinforced Plastics Rapid prototyping and Rapid Tooling	33
11	Properties and Processing of Metal Powders Ceramics Glasses and Superconductors	s 39
f 12	Joining and Fastening Processes	44

List of Scilab Codes

Exa 2.1	Calculation of ultimate tensile strength	6
Exa 2.3	Calculation of modulus resilience from hardness	7
Exa 2.4	Elimination of stress by tension	7
Exa 2.5	Yielding of a thin walled shell	8
Exa 2.8	Temperature rise in simple deformation	8
Exa 4.1	Determination of coefficient of friction	10
Exa 4.2	Adhesive wear in sliding	11
Exa 5.1	Determining the amount of phases in carbon steel	12
Exa 5.2	Design and analysis of sprue for casting	13
Exa 5.3	Solidification time for various solid shapes	14
Exa 6.1	Calculation of upsetting force	15
Exa 6.4	Power required for rolling	16
Exa 6.6	Force in hot extrusion	16
Exa 6.7	Power required for rolling	17
Exa 7.1	Calculation of maximum punch force	19
Exa 7.3	Estimating springback	19
Exa 7.4	Work done in stretch forming	20
Exa 7.5	Peak pressure in explosive forming	21
Exa 7.7	Estimating the limiting drawing ratio	21
Exa 7.8	Theoretical limiting drawing ratio	22
Exa 7.9	Estimating cup diameter and earing	22
Exa 7.10	Estimating diameter of expansion	23
Exa 8.1	Relative energies in cutting	24
Exa 8.2	Comparison of forming and machining energy	25
Exa 8.3	Increase in tool life by reducing the cutting speed	26
Exa 8.4	Material removal rate and cutting force in turning	26
Exa 8.6	Calculation of material removal rate power required and	
	cutting time in face milling	27

Exa 9.1	Chip dimensions in grinding	29
Exa 9.2	Forces in surface grinding	30
Exa 9.5	Machining time in electrochemical machining vs drilling	30
Exa 9.6	Machining time in electrical discharge machining vs drilling	31
Exa 10.1	Degree of polymerization in polyvinyl chloride	33
Exa 10.2	Lowering the viscosity of a polymer	34
Exa 10.3	Stress relaxation in a thermoplastic members under ten-	
	sion	34
Exa 10.4	Properties of a graphite epoxy reinforce plastic	35
Exa 10.5	Analysis of plastic extruder	36
Exa 10.6	Blow film	37
Exa 10.7	Injection molding of gears	38
Exa 11.1	Particle shape factor determination	39
Exa 11.2	Density of metal powder lubricant mix	40
Exa 11.3	Pressure decay in composition	41
Exa 11.4	Shrinkage in sintering	41
Exa 11.7	Effect of porosity on properties	42
Exa 11.9	Dimensional changes during shaping of ceramic compo-	
	nents	42
Exa 12.1	Estimation of welding speed for different materials	44
Exa 12.2	Current in shielded metal arc welding	45
Exa 12.5	Heat generation in resistance spot welding	45

List of Figures

10.1 Analysis of plastic extruder

Fundamentals of the Mechanical Behavior of Materials

Scilab code Exa 2.1 Calculation of ultimate tensile strength

```
1 // Calculation of ultimate tensile strength
2 clc
3 K = 689655 // in kPa
4 n = 0.5
5 A0 = 1 // let
6 printf("\n Example 2.1")
7 sigma = K*n^n
8 A_neck = A0*exp(-n)
9 P= sigma*A_neck
10 UTS = P/A0
11 printf("\n True ultimate tensile strength is %.2 fkPa ", sigma)
12 printf("\n Engineering UTS of material is %.2 f kPa", UTS)
13 // Answer in book is 295521.79 kPa
```

Scilab code Exa 2.3 Calculation of modulus resilience from hardness

```
// Calculation of modulus resilience from hardness
clc
h = 400 // hardness of specimen in HB
E = 205e3 // Youngs modulus of steel in MPa
g = 9.8 // gravitational acceleration in m/s^2
printf("\n Example 2.3")
Y = h*1e6*g/3 // As, Hardness = c*Y
m_r = (Y/1e6)^2/(2*E) // modulus of resilience
printf("\n Modulus of resilience of body is %.2f Nm/m^3.", m_r)
// while numerical value of answer in book is 4.17
```

Scilab code Exa 2.4 Elimination of stress by tension

```
11
12 printf("\n Stretched length should be %0.4 f m",1_f)
13 // Numerical value of answer in book is 0.2510
```

Scilab code Exa 2.5 Yielding of a thin walled shell

```
1 // Yielding of a thin walled shell
2 clc
3 r = 254 // radius in mm
4 t = 2.54 // thickness in mm
5 \text{ sigma}_1 = 140 // \text{ stress in MPa}
6 \text{ sigma}_2 = 140 // \text{ stress in MPa}
7 sigma_min = 0 // stress in MPa
8 printf("\ Example 2.5")
9 Y = sigma_2 - sigma_min
10 p = 2*(t/1e3)*Y/(r*1e-3)
11 printf("\n\n According to maximum shear stress
      criterion, Required pressure is %.1f MPa",p)
12 \ Y = sqrt(0.5*(sigma_1^2+sigma_2^2))
13 p = 2*(t/1e3)*Y/(r*1e-3)
14 printf("\n\n According to maximum distortion energy
      criterion, Required pressure is %.1f MPa",p)
```

Scilab code Exa 2.8 Temperature rise in simple deformation

```
1 // Temperature rise in simple deformation
2 clc
3 d = 25 // diameter of cylinder in mm
4 h_i = 25 // Height of cylinder in mm
```

```
5 cp = 1255 // specific heat capacity in J/kg.K
6 rho = 2768 // density in kg
7 del_t = 55 // temperature change in K
8 K = 104 // in MPa
9 n = 0.5
10 printf("\n Example 2.8")
11 v = %pi/4*(d*1e-3)^2*h_i*1e-3 // volume of cylinder
12 H = cp*rho*v*del_t // heat in Joule
13
14 epsilon = (H/(v*K*1e6/(n+1)))^(1/(n+1))
15 h_f = h_i/exp(epsilon)
16
17 printf("\n Final height of specimen is %.1 f mm", h_f)
```

Surface Tribology Dimensional Characteristics Inspection and Product Quality Assurance

Scilab code Exa 4.1 Determination of coefficient of friction

```
1 // Determination of coefficient of friction
2 clc
3 h = 20 // height in mm
4 \text{ od_i} = 40 // \text{ initial outer diameter in mm}
5 id_i = 20 // initial inner diameter in mm
6 od_f = 50 // final outer diameter in mm
7 del_1 = 40// percentage reduction in length
8 printf("\n Example 4.1")
9 h_f = h*(1-del_1/100)
10 v = \%pi/4 * (od_i^2-id_i^2)*h
11 id_f = sqrt(od_f^2-(4/\%pi)*v/h_f)
12 \text{ del_id} = (id_f - id_i)/id_i *100
13
14 printf("\n For a change of %d %% in length and %.1 f
     \%\% in ID, \n By interpolation from figure, \n
     mu is 0.03 and m is 0.11", del_1, del_id)
```

Scilab code Exa 4.2 Adhesive wear in sliding

```
// Adhesive wear in sliding
clc
v = 1 // wear volume in mm^3
k = 1e-2 // from table
W = 100 //load in kg
p = 150 // hardness in HB
printf("\n Example 4.2")
L = 3*v*p/(k*W)
printf("\n Distance traveled is %d mm.",L)
```

Metal Casting Processes and Equipment Heat Treatment

Scilab code Exa 5.1 Determining the amount of phases in carbon steel

```
1 // Determining the amount of phases in carbon steel
2 clc
3 m = 10 // mass in kg
4 t1 = 1173 // temperature in kelvin
5 t2 = 1001 // temperature in kelvin
6 t3 = 999 // temperature in kelvin
7 c_gamma1 = 0.77 // from table for t2
8 c_o = 0.4// from table
9 c_a = 0.022// from table
10 c_gamma2 = 6.67// from table for t3
11 printf ("\n Example 5.1")
12 printf("\n\ Part A:")
13 printf("\n From figure, Percent gamma is 100 (10 kg)
       and percent alpha is zero")
14 printf("\n Part B:")
15 per_alpha = 100*((c_gamma1-c_o)/(c_gamma1-c_a))
16 \text{ per_gamma} = 100*((c_o-c_a)/(c_gamma1-c_a))
17 printf("\n \%% alpha is : \%.1f\%% \t \%% gamma is : \%0
      .1\,\mathrm{f}\%\%",per_alpha, per_gamma)
```

Scilab code Exa 5.2 Design and analysis of sprue for casting

```
1 // Design and analysis of sprue for casting
2 clc
3 Q = 1.667e-4 // discharge in m<sup>3</sup>/sec
4 d = 20 // diameter of sprue in mm
5 h = 200 // height of sprue in mm
6 g = 9.81 // acceleration due to gravity in m/s^2
7 p = 2700 // density in kg/m^3
8 neeta = 0.004 // viscosity coefficient
10 printf("\n Example 5.2")
11 A1 = \%pi/4*(d*1e-3)^2
12 \text{ v1} = Q/A1
13 v2 = sqrt((h*1e-3)*2*g+v1^2)
14 \quad A2 = Q/v2^2
15 D = sqrt(4/\%pi * A2)
16 \text{ Re} = v2*D*p/neeta
17
18 printf("\n Resultant velocity is %.2 f m/sec \n
      Reynolds number is %d", v2, Re)
19 // answers in book are as velocity: 1.45 m/sec and
```

Scilab code Exa 5.3 Solidification time for various solid shapes

```
1 // solidification time for various solid shapes
2 clc
3 n = 2
4 v = 1 // let
5 printf("\n Example 5.3")
6 \text{ A\_cube} = 6*(v^(1/3))^2// \text{ surface area of cube}
7 A_cylinder = 6*\%pi*((v/(2*\%pi))^(1/3))^2 //surface
      area of cylinder
9 A_sphere = 4*\%pi*((((3*v)/(4*\%pi))^(1/3))^2)
10 K1 = 1/(A_sphere)^2 // proportional solidification
      time for sphere
11 K2 = 1/(A_cube)^2// proportional solidification time
       for cube
12 K3 = 1/(A_cylinder)^2// proportional solidification
      time for cylinder
13 printf("\n Respective time periods are as:")
14 printf("\n t_sphere: \%.3 fC \setminus t t_cube = \%.3 fC \setminus t
      t_{-}c\,y\,li\,n\,d\,e\,r~=~\%.\,3\,f\,C\," , K1 , K2 , K3 )
```

Bulk deformation Processes

Scilab code Exa 6.1 Calculation of upsetting force

```
1 // Calculation of upsetting force
2 clc
3 d1 = 200 // diameter in mm
4 h1 = 125 // height in mm
5 \text{ h2} = 50 \text{ // height in mm}
6 K = 760 // in MPa
7 n = 0.19
8 \text{ mu} = 0.2 // \text{ coefficient of friction}
9 printf("\n Example 6.1")
10 epsilon1 = log(h1/h2)
11 	ext{ Yf = K*epsilon1^n}
12 v = \%pi/4*d1^2*h1
13 r2 = sqrt(v/(%pi*h2))
14
15 P_av = Yf * (1 + (2 * mu * r2/(3 * h2)))
16 F = P_av*1e6*\%pi*(r2*1e-3)^2
17 printf("\n Required upsetting force is %.2e N",F)
18 // Answer in book is 8.32\,\mathrm{e7N}
```

Scilab code Exa 6.4 Power required for rolling

```
1 // Power required for rolling
2 clc
3 t1 = 20 // initial thickness in mm
4 t2 = 12 // final thickness in mm
5 R = 300 // roll radius
6 N = 100 // \text{rpm of roll}
7 w = 250 // width in mm
8 K = 895 // in MPa
9 n = 0.49 // from table
10 mu = 0.1 // frictional coefficient
11 printf("\n Example 6.4")
12 L = sqrt((R*1e-3)*(t1-t2)*1e-3)
13 epsilon = log(t1/t2)
14 Y_bar = K*epsilon^n/(1+n)
15 Y_bar_1 = Y_bar*(1+(mu*L/((t1+t2)*1e-3)))
16 F = L*w*Y_bar_1*1e3
17 p = 2*\%pi*F*L*N/60000
19 printf("\n Power required for rolling is %d kW.",p)
20 // Answer in book is 3111kW
```

Scilab code Exa 6.6 Force in hot extrusion

```
1 // Force in hot extrusion
2 clc
3 D = 150 // initial diameter in mm
```

```
4 H = 300 // height in mm
5 v = 330 // velocity in m/sec
6 d = 75 // final diameter in mm
7 mu = 0.1 // frictional coefficient
8 \ C = 240 \ // \ in \ MPa
9 m = 0.06 // constant
10 a = 0.8 // from table
11 b = 1.5 // from table
12 printf("\n Example 6.6")
13 R = D^2/d^2 // its calculated value in book is 2,
      while in actual its 4
14 epsilon = 6*(H*1e-3)*log(R)/(D*1e-3)
15 sigma = C*epsilon^m
16 Y_bar = sigma // assumption
17 p = Y_bar*(a+b*log(R))
18 F = p*1e6*\%pi*(D*1e-3)^2/4
19 printf("\n Force required for rolling is %.1e N.",F)
20 // Answer in book is 8.8e6 N. It is because of wrong
      calculation of value of R
```

Scilab code Exa 6.7 Power required for rolling

```
1 // Power required for rolling
2 clc
3 t1 = 6 // initial thickness in mm
4 t2 = 3 // final thickness in mm
5 v = 0.6 // velocity in m/s
6 x = 0.35 // fractional difference between values
7 K = 895 // in MPa
8 n = 0.49 // from table
9
10 printf("\n Example 6.7")
```

Sheet Metal Forming processes

Scilab code Exa 7.1 Calculation of maximum punch force

```
1 // Calculation of maximum punch force
2 clc
3 L = 30 // diameter of punching in mm
4 t = 3 // thickness of sheet in mm
5 UTS = 1e3 // Tensile strength in MN
6 printf("\n Example 7.1")
7 F = 0.7*UTS*t*1e-3*L*1e-3*%pi
8 printf("\n Maximum required punching force is %.3 f MN.",F) // Answer in book is 0.197 MN
```

Scilab code Exa 7.3 Estimating springback

```
1 // Estimating springback
2 clc
3 Ri = 10 // initial radius in mm
4 Y = 205 // Yield stress in MPa
5 E = 190 // Youngs modulus in GPa
```

```
6 t = 10 // thickness in mm
7 printf("\n Example 7.3")
8 K = Ri*Y*1e6/(E*1e9*t)
9 R_ratio = 4*K^3-3*K+1
10 printf("\n Estimated Springback is %.4f",R_ratio)
11 // Answer in book is 0.9967
```

Scilab code Exa 7.4 Work done in stretch forming

```
1
2 // Work done in stretch forming
3 clc
4 L_o = 400 // initial length in mm
5 L_f = 441.4 // final length in mm
6 \ C = 700 \ // \ in \ MPa
7 n = 0.3
8 a = 300 // cross sectional area in mm<sup>2</sup>
9 A = 250 // distance between support and force point
10 B = 150 // distance between support and force point
11 epsilon = log(L_f/L_o)
12 printf("\n Example 7.4")
13 u = C*1e6*epsilon^(1+n)/(1+n)
14 \ V = L_o*1e-3*a*1e-6
15 \text{ work} = u*V
16 printf("\n\n Part A:")
17 printf("\n Total work done on ignoring end effect
      and bending is %d Nm.", work)
18 // Answer in book is 3133 Nm
19 printf("\n Part B:")
20 \text{ sigma} = 0.3
21 L_{max} = L_{o}*exp(sigma)
22
23 a = 1/2*((A^2-B^2)/L_max + L_max)
```

```
24 b = L_max - a
25 alpha_max = acos(A/a)*180/%pi
26
27 printf(" \n Maximum value of alpha before necking
    begins is %.1 f degrees.",alpha_max) // Answer in
    book is 35.4 degrees
```

Scilab code Exa 7.5 Peak pressure in explosive forming

```
1 // Peak pressure in explosive forming
2 clc
3 m = 0.1 // mass of TNT in kg
4 d = 0.5 // standoff distance in m
5 K = 3.9e7 // constant of explosive
6 a = 1.15
7 printf("\n Example 7.5")
8 p = K*((m^(1/3))/d)^a
9 printf("\n Pressure of amount %.1f MPa is sufficient to form sheet metals.", p/1e6)
```

Scilab code Exa 7.7 Estimating the limiting drawing ratio

```
1 // Estimating the limiting drawing ratio
2 clc
3
4 del_l = 0.23 // fractional change in length
5 del_t = -0.1 // fractional change in thickness
6 printf("\n Example 7.7")
7 l_ratio = (1+del_l)
```

```
8 t_ratio = (1+del_t)

9 w_ratio = 1/(1_ratio*t_ratio)

10 

11 R = log(1/w_ratio)/log(1/t_ratio)

12 printf("\n\n For planar isotropy and from figure , R = \%.3 f\n we estimate LDR to be 2.4",R)
```

Scilab code Exa 7.8 Theoretical limiting drawing ratio

```
1 // Theoretical limiting drawing ratio
2 clc
3 epsilon_max = 1
4 printf("\n Example 7.8")
5 DO_Dp = exp(epsilon_max)
6 printf("\n Theoretical limiting drawing ratio is %0 .3 f", DO_Dp)
```

Scilab code Exa 7.9 Estimating cup diameter and earing

```
1 // Estimating cup diameter and earing
2 clc
3 r_0 = 0.9
4 r_45 = 1.3
5 r_90 = 1.9
6 theta1 = 0 // angle in degree
7 theta2 = 45 // angle in degree
8 theta3 = 90 // angle in degree
9 printf("\n Example 7.9")
10 R_avg = (r_0+2*r_45+r_90)/4
```

```
11 del_r = (r_0-2*r_45+r_90)/4
12 printf(" \n\n For average R value %.2f LDR of steel
        can be approximated to be 2.5 (deduced from
        figure).",R_avg)
13 if del_r>0 then
14     printf("\n\n Ear will form in deep drawing of
        this material.")
15 end
```

Scilab code Exa 7.10 Estimating diameter of expansion

```
1 // Estimating diameter of expansion
2 clc
3
4 D_0 = 300 // original diameter in mm
5 e = 40 // allowable strain in %
6 printf("\n Example 7.10")
7 D_f = (1+e/100)*D_0
8 printf("\n Maximum diameter to which object can be safely expanded is %d mm.",D_f)
```

Material Removal Processes Cutting

Scilab code Exa 8.1 Relative energies in cutting

```
1 // Relative energies in cutting
2 clc
3 \text{ t_o} = 0.01 // \text{ depth in mm}
4 V = 125 // velocity in m/min
5 alpha = 10 // angle i degree
6 \text{ t_c} = 0.014 // \text{ depth of cut in mm}
7 w = 6 // width of cut in mm
8 \text{ F_c} = 55 \text{ // force in Kg}
9 	ext{ F_t = 25 } // 	ext{ force in kg}
10 printf("\n Example 8.1")
11 r = t_o/t_c
12 R = sqrt(F_c^2+F_t^2)
13 Beta = acos(F_c/R)*180/\%pi + alpha
14 F = R*(sin(Beta*\%pi/180))
15 percentage = 100*(F*r/F_c)
16 printf("\n Percentage frictional energy is %.1f%%",
      percentage)
17 printf("\n Percentage shear energy is \%.1f\%\%",100-
      percentage)
```

Scilab code Exa 8.2 Comparison of forming and machining energy

```
1 // Comparison of forming and machining energy
2 clc
3 d_i = 10 // diameter in mm
4 l = 125 // length in mm
5 del_d = 0.5 // reduction in diameter in mm
6 K = 1275 // constant in MPa
7 n = 0.45 // constant
8 Es = 4.1 // Specific energy in machining in W-S/mm<sup>3</sup>
9 printf("\n Example 8.2")
10 printf("\n Part A:")
11 d_o = d_i - del_d
12 epsilon = log((d_i/d_o)^2)
13 u = K*1e6*epsilon^(n+1)/(1+n)
14 W_tension = u*\%pi*1*1e-3*(del_d*1e-2)^2
15
16 printf("\n Work done by pulling in tension is %d Nm.
     ", W_tension)
17 printf("\n Part B:")
18 \ V = \%pi/4*(d_i^2-d_o^2)*1
19 \text{ W_mach} = \text{Es*V}
20 ratio = W_mach/W_tension
21 printf("\n Work done by machining on lathe is %d Nm.
     ", W_mach)
22 printf("\n Work done on machining is about %d time
      higher than that of tension.", ratio)
```

Scilab code Exa 8.3 Increase in tool life by reducing the cutting speed

Scilab code Exa 8.4 Material removal rate and cutting force in turning

```
// Material removal rate and cutting force in
turning

clc
D_o = 10 // diameter in mm
N = 360 // spindle rpm
D_i = 9 // machined diameter in mm
x = 1.75 // axial speed in mm/min
l = 125 // length in mm
rate = 4 // specific energy in W-s/mm^3
printf("\n Example 8.4")
V_o = %pi*D_o*1e-3*N
V_i = %pi*D_i*1e-3*N
d = (D_o-D_i)/2
f = x*100/N
mrr = %pi*(D_o-d)*d*f*N
```

Scilab code Exa 8.6 Calculation of material removal rate power required and cutting time in face milling

```
1 // Calculation of material removal rate, power
      required and cutting time in face milling
3 D = 160 // diameter in mm
4 w = 70 // width in mm
5 1 = 450//length in mm
6 d = 3 // depth in mm
7 v = 0.5 // velocity in m/min
8 N= 120 // rotation in rpm
9 p_u = 1.1 // unit power for material
10 printf("\n Example 8.6")
11 \quad a = w*d
12 \text{ mrr} = a*v*1000
13 \ 1_c = D/2
14 t = (1+2*1_c)/(v*1000)
15 f = v*1000/(d*N*10)
16 \text{ power} = p_u*mrr/60
17
18 printf("\n Material removal rate is %d mm^3/min.",
     mrr)
```

Material Removal Processes Abrasive Chemical Electrical and High Energy Beams

Scilab code Exa 9.1 Chip dimensions in grinding

```
1  // chip dimensions in grinding
2  clc
3  D = 150 // diameter in mm
4  d = 0.03 // depth in mm
5  C = 3 // per mm^2
6  r = 12 // radius in mm
7  v = 0.4 // velocity in m/sec
8  V = 25 // velocity in m/sec
9  printf("\n Example 9.1")
10  l = sqrt(D*d)
11  t = sqrt((4*v/(V*C*r))*sqrt(d/D))
12  printf("\n Length of chip is %.2 f mm. \n Thickness of chip is %.3 f mm.",1,t)
```

Scilab code Exa 9.2 Forces in surface grinding

```
1 // Forces in surface grinding
2 clc
3 d = 0.04 // depth of cut in mm
4 D = 200 // diameter in mm
5 N = 3600 // Rotation in rpm
6 \text{ w} = 20 \text{ // width of cut in mm}
7 v = 1200 // velocity in mm/min
8 u = 41 // specific energy in W-s/mm^3
9 x = 0.3 // fractional increase
10 printf("\n Example 9.2")
11 \text{ mrr} = d*w*v*10
12 \text{ power} = u*mrr/60
13 T = power/(2*\%pi*N/60)
14 F_c = T/(D*1e-3/2)
15 F_n = (1+x)*F_c
16
17 printf("\n Forces in surface grinding are as: \n
      F\_c:\%d\ N\ \backslash t\ F\_n:\ \%d\ N"\ \mbox{,} F\_c\ \mbox{,}\ F\_n\ \mbox{)}
```

Scilab code Exa 9.5 Machining time in electrochemical machining vs drilling

```
5 I = 5 // current density in A/mm^2
6 C = 1.5 // material constant in mm<sup>3</sup>/A-min
7 neeta = 0.92 // efficiency
8 depth = 15 // depth of hole in mm
9 N = 325 // rotation in rpm
10 f1 = 0.15 // feed in mm/rev
11
12 printf("\n Example 9.5")
13 f = C*I*neeta // feed rate
14 T_e = depth/f // time by electrochemical machining
15 f_rate = N*f1
16 T_d = depth/f_rate// time by drilling
17 t_ratio = T_d/T_e
18 printf("\n Machining time in electrochemical is %.2 f
      min.", T_e)
19 printf("\n Machining time in drilling is %.2f min.",
     T_d) // answer in boook is 0.030
20 printf("\n Machining time in drilling is %d %% of
     ECM. ",t_ratio*100)
```

Scilab code Exa 9.6 Machining time in electrical discharge machining vs drilling

```
// Machining time in electrical discharge machining
vs drilling

clc
d d = 12.5 // hole diameter in mm
I = 100 // current density in A/mm^2 for EDM
I1 = 5 // current density in A/mm^2 for ECM
h = 20 // depth in mm
C = 1.5
neeta = 0.92 // efficiency
```

```
10 depth = 15 // depth of hole in mm
11 N = 325 // rotation in rpm
12 f1 = 0.15 // feed in mm/rev
13 T_m = 1873.15 // melting point of titanium in K
14 t_m = 1373.15 // melting point of electrode in K
15 printf("\n Example 9.6")
16 printf("\n\n Part A:")
17 T_w = T_m - 273.15 // melting point in Celsius
18 mrr = 4e4*I*T_w^{(-1.23)}
19 v = \%pi/4*d^2*h
20 t = v/mrr // time by EDM
21 f = C*I1*neeta // feed rate
22 T_e = depth/f // time by electrochemical machining
23 \text{ f_rate} = N*f1
24 \text{ T_d} = \text{depth/f_rate}// \text{time by drilling}
25 t_edm_ecm = t/T_e // Time ratio between EDM and ECM
26 \text{ t\_edm\_d} = \text{t/T\_d} // Time ratio between EDM and
      drilling
27 printf("\n Machining time for EDM is \%.1 f min.",t)
28 printf("\n This time is \%.2 f time of that for ECM."
      ,t_edm_ecm) // Answer in book is 2.35 time
29 printf("\n This time is %.2f time of that for
      drilling. ",t_edm_d) // Answer in book is 11.3
      times
30 printf("\n Part B:")
31 t_t = t_m - 273.15
32 \text{ W_t} = 1.1e4*I*t_t^{-2.38}
33 printf("\n Wear rate of electrode is %.3 f mm<sup>3</sup>/min."
      , W_t)
```

Properties and Processing of Polymers and Reinforced Plastics Rapid prototyping and Rapid Tooling

Scilab code Exa 10.1 Degree of polymerization in polyvinyl chloride

```
// Degree of polymerization in polyvinyl chloride

clc
w_avg = 62500 // average molecular weight

A_H = 1 // Atomic weight of hydrogen
A_C = 12// Atomic weight of carbon

A_cl = 35.5 // Atomic weight of Chlorine

n_H = 3 // Number of hydrogen atoms in a molecule

n_C = 2// Number of carbon atoms in a molecule

n_cl = 1// Number of chlorine atoms in a molecule

printf("\n Example 10_1")

w = A_H*n_H+A_C*n_C+A_cl*n_cl // molecular weight

D = w_avg/w
```

```
16 printf("\n Degree of polymerization in polyvinyl chloride is %d",D)
```

Scilab code Exa 10.2 Lowering the viscosity of a polymer

```
1 // Lowering the viscosity of a polymer
2 clc
3 T1 = 453 // First temperature in K
4 T2 = 423 // Second temperature in K
5 k = 2.2 // ratio of obtained result to desired output
6 printf("\n Example 10.2")
7 del_t = T1-T2 // temperature difference in Kelvin
8 neeta1 = 10^(12-(17.5*del_t/(52+del_t))) // First viscosity
9 neeta2 = neeta1/k // Desired viscocity
10 del_t = ((12-log10(neeta2))*52/(5.5+log10(neeta2)))
11 T_n = T2 + del_t
12 printf("\n Polymer should be processed at %.1f K .", T_n)
```

Scilab code Exa 10.3 Stress relaxation in a thermoplastic members under tension

```
1
2 // stress relaxation in a thermoplastic members
     under tension
3
4 clc
```

Scilab code Exa 10.4 Properties of a graphite epoxy reinforce plastic

```
1 // properties of a graphite epoxy reinforce plastic
2 clc
3 x = 0.15
4 Ef = 250 // elastic modulus of fiber in GPa
5 Em = 80 // elastic modulus of resin in GPa
6 sigma_f = 2000 // strength of fiber in MPa
7 sigma_m = 100 // strength of resin in MPa
8 \text{ Fc} = 1 // \text{let}
9 printf("\n Example 10.4")
10 Ec = x*Ef+(1-x)*Em
11 F_{\text{ratio}} = x*Ef/((1-x)*Em)
12 printf("\n Part A:")
13 printf("\n Elastic modulus of composite is %.1f GPa.
     ",Ec)
14 \text{ Fm} = Fc/(1+F_ratio)
15 Ff = Fc*(1-(1/(1+F_ratio)))
16 printf("\n Fraction of load supported by fibers is
     %d%%.", Ff *100)
```


Figure 10.1: Analysis of plastic extruder

Scilab code Exa 10.5 Analysis of plastic extruder

```
1 // Analysis of plastic extruder
2 clc
3 H = 0.007 // channel depth in m
4 D = 0.05 // diameter barrel in m
5 N = 0.833 // revolution / sec
6 theta= 20 // thread angle in degrees
7 D_d = 0.005 // screw diameter in m
8 neeta = 300 // temperature in degree Celsius
9 l_d = 0.02 // land length in m
10 l = 1 // melt pumping zone in m
11 A = 1.96e-5 // area
12 printf("\n Example 10.5")
```

```
13 K = \frac{pi*D_d^4}{(128*neeta*l_d)}
14 a = (\%pi)^2*H*D^2*N*sin(theta*\%pi/180)*cos(theta*\%pi
      /180)/2
15 b = \pi^3*(\sin(\tanh^3))^2/(12*neeta*1)
16 p=a/(K+b)
17 Q = K*p
18 v = Q/A
19 printf("\n Flow rate is \%.2e \text{ m}^3/\text{sec.}",Q)
20 printf("\n Final velocity is \%0.2 \,\mathrm{f} \,\mathrm{m/sec}.",v)
21
22 p = 0 : 1 : 13;
23 y = 0.256*p;
24 z = 2.31 - 0.175e*p
25 plot2d(p, y);
26 plot(p, z);
27 xlabel("Pressure (MPa)");
28 ylabel("Flow Rate, q*1e-5 (m^3/s)")
```

Scilab code Exa 10.6 Blow film

```
// Blow film
clc
w = 300 // width in mm
printf("\n Example 10.6")
printf("\n\n Part A:")
p = 2*w // perimeter
D = p/%pi // tube diameter
d = D/2.5 // tube expansion consideration
printf("\n Extrusion diameter is to be %d mm.",d)
printf("\n Part B:")
printf("\n It is a theoretical problem.")
```

Scilab code Exa 10.7 Injection molding of gears

```
1 // Injection molding of gears
2 clc
3 D = 110 // diameter in mm
4 p = 100 // pressure on mould cavity in MPa
5 C = 980 // capacity of machine in KN
6 printf("\n Example 10.7")
7 A = %pi*D^2/4
8 f = A*1e-6*p*1e6/1e3 // required force in kN
9 k = floor(C/f)
10
11 printf("\n Mould can support the production of %d gear per cycle.",k)
```

Chapter 11

Properties and Processing of Metal Powders Ceramics Glasses and Superconductors

Scilab code Exa 11.1 Particle shape factor determination

```
1 // Particle shape factor determination
2 clc
3 D = 1 // let
4 L = 1 // let
5 h = 2*D // length to diameter ratio
6 printf("\n Example 11.1")
7 printf("\n Part A:")
8 D_eq = D
9 A = \%pi*D^2
10 \ V = \%pi*D^3/6
11 k = A/V*D_eq
12 printf("\n Shape factor for spherical particle is %d
     ",k)
13 printf("\n\ Part B:")
14 A = 6*L^2
15 V = L^3
16 D_{eq} = (6*V/\%pi)^(1/3)
```

Scilab code Exa 11.2 Density of metal powder lubricant mix

```
1 // Density of metal powder lubricant mix
2 clc
3 \text{ m_fe} = 1000 // \text{ mass of iron in gram}
4 \text{ m\_1} = 25 \text{ // mass} in gram
5 \text{ d_fe} = 7.86 \text{ // density of iron in } \text{gram/cc}
6 d_1 = 1.2 // density of lubricant in gram/cc
7 d_ap = 2.75 // apparent density in gram/cc
8 m_L = 30 // mass of lubricant in gram
9 printf("\n Example 11.2")
10 V = m_fe/d_fe + m_1/d_1 // Combined volume in CC
11 w = m_fe + m_L // combined mass in gram
12 d_th = w/V // theoretical density in gram/cc
13 d_m_ap = d_ap/d_fe*d_th // apparent density of mix
14
15 printf("\n Apparent density of metal powder
      lubricant mix is %.2 f g/cm<sup>3</sup>.",d_m_ap) // Answer
      in book is 2.42 g/cm<sup>3</sup>
```

Scilab code Exa 11.3 Pressure decay in composition

```
1 // Pressure decay in composition
2 clc
3 k = 0.6 // given constant
4 \text{ mu} = 0.4// \text{ given constant}
5 d = 10 // diameter in mm
6 px = 0 // pressure measure in N/mm^2
7 \text{ px_p0} = 0.5 // \text{ pressure ratio}
8 printf("\n Example 11.3")
9 printf("\n Part A:")
10 if px==0 then // no function deals with the
      calculation for an infinite number so if
      statement is used here
       printf("\n Value of X must approach infinity for
11
           pressure to decay to zero.")
12 end
13
14 printf("\n Part B:")
15 X = -\log(px_p0)/(4*k*mu/d)
16 printf("\n Value of X, required to get pressure to
      decay to \%.1 f is \%.2 f mm. ",px_p0,X)
```

Scilab code Exa 11.4 Shrinkage in sintering

```
1 // Shrinkage in sintering
2 clc
3 L = 1 // let
```

Scilab code Exa 11.7 Effect of porosity on properties

```
1 // Effect of porosity on properties
2 clc
3 \text{ UTSO} = 125 // \text{ in MPa}
4 EO = 500 // Youngs modulus in GPa
5 \text{ kO} = 0.6 \text{ // thermal conductivity in W/m-K}
6 n = 6 // given
7 p = 0.15 // given
8 printf("\n Example 11.7")
9 \quad UTS = UTS0 * exp(-5*p)
10 E = E0*(1-1.9*p+0.9*p^2)
11 k = k0*(1-p)
12 printf("\n Due to %d\% porosity", p*100)
13 printf("\n Tensile strength becomes %d MPa.", UTS)
14 printf("\n Modulus of elasticity becomes %d GPa.",E)
15 printf("\n Thermal conductivity becomes %.2 f W/m-K."
      , k)
```

Scilab code Exa 11.9 Dimensional changes during shaping of ceramic components

```
1 // Dimensional changes during shaping of ceramic
      components
2 clc
3 L = 25 // length in mm
4 \text{ s_d} = 0.09 // \text{drying shrinkage}
5 \text{ s_f} = 0.05 // \text{ firing shrinkage}
6 p_f = 4 //porosity of fired part
7 printf("\n Example 11.9")
8 printf("\n\ Part A:")
9 L_d = L/(1-s_f)
10 L_o = (1+s_d)*L_d
11 printf("\n Initial length of part is %.2 f mm.", L_o)
12 printf("\n Part B:")
13 Va_Vd = (1-p_f/100)/(1/(1-s_f)^3)
14 printf("\n Porosity P_d of dried part is %.2f%%."
      ,(1-Va_Vd)*100) // Answer in book is 18%
```

Chapter 12

Joining and Fastening Processes

Scilab code Exa 12.1 Estimation of welding speed for different materials

```
1 // Estimation of welding speed for different
     materials
2 clc
3 V = 20 // applied voltage in Volt
4 I = 200 // Current in ampere
5 A = 30 // cross sectional area in mm^2
6 = 0.75 // efficiency
7 u_al = 2.9 // specific energy of aluminium in J/mm^3
8 u_c = 12.3 // specific energy of carbon in J/mm^3
9 u_{ti} = 14.3// \text{ specific energy of titanium in } J/mm^3
10 printf("\n Example 12.1")
11 v_al = e*V*I/(u_al*A)// velocity for aluminum in mm/
12 v_c = e*V*I/(u_c*A) // velocity for carbon in mm/s
13 v_ti = e*V*I/(u_ti*A) // velocity for titanium in mm
14 printf("\n velocity for aluminum is %.1 f mm/sec.",
     v_al)
15 printf("\n velocity for carbon is %.1f mm/sec. ",v_c
```

```
) 16 printf("\n velocity for titanium is \%.1\,\mathrm{f} mm/sec.", v_ti)
```

Scilab code Exa 12.2 Current in shielded metal arc welding

```
// current in shielded metal arc welding
clc
V = 20 // applied voltage in Volt
b = 10 // base in mm
h = 10 // height in mm
e = 0.75 // efficiency
u = 10.3 // specific energy in J/mm^3
v = 10 // weld speed in mm/sec
printf("\n Example 12.2")
A = 1/2*b*h // Area in mm^2
I = v*u*A/(e*V) // Current in Ampere
printf("\n Amount of current needed for welding is %d Ampere.",I)
```

Scilab code Exa 12.5 Heat generation in resistance spot welding

```
1 // Heat generation in resistance spot welding
2 clc
3 I = 5500 // current in ampere
4 R = 250 // resistance in micro ohm
5 T = 0.15 // time in sec
6 d = 6 // diameter in mm
7 t = 3 // thickness in mm
```

```
8 rho = 7850 // density in kg/m^3
9 E = 1400 // energy required per gram mass
10 printf("\n Example 12.5")
11 Heat = I^2*R*1e-6*T
12 V = %pi/4*d^2*t
13 m = V*rho*1e-6
14 E_tot = m*E
15 H_r = Heat - E_tot
16 H_per = H_r/Heat*100
17 printf("\n Amount of heat generated is %d J.", Heat)
18 printf("\n Amount of heat in weld zone is %d J or %d%%.", H_r, H_per)
19 // Answer in book is 196 J
```