A Tutorial on Dirichlet Processes and Hierarchical Dirichlet Processes

Yee Whye Teh

Gatsby Computational Neuroscience Unit University College London

Mar 1, 2007 / CUED

Outline

- Dirichlet Processes
 - Definitions, Existence, and Representations (recap)
 - Applications
 - Generalizations
 - Generalizations
- Pierarchical Dirichlet Processes
 - Grouped Clustering Problems
 - Hierarchical Dirichlet Processes
 - Representations
 - Applications
 - Extensions and Related Models

 A Dirichlet distribution is a distribution over the K-dimensional probability simplex:

$$\Delta_K = \{(\pi_1, \dots, \pi_K) : \pi_k \ge 0, \sum_k \pi_k = 1\}$$

• We say (π_1, \dots, π_K) is Dirichlet distributed,

$$(\pi_1,\ldots,\pi_K) \sim \mathsf{Dirichlet}(\alpha_1,\ldots,\alpha_K)$$

with parameters $(\alpha_1, \ldots, \alpha_K)$, if

$$p(\pi_1,\ldots,\pi_K) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k-1}$$

Examples of Dirichlet distributions

Definition

- A Dirichlet Process (DP) is a distribution over probability measures.
- A DP has two parameters:
 - Base distribution H, which is like the mean of the DP.
 - Strength parameter α , which is like an *inverse-variance* of the DP.
- We write:

$$G \sim \mathsf{DP}(\alpha, H)$$

if for any partition (A_1, \ldots, A_n) of \mathbb{X} :

$$(G(A_1), \dots, G(A_n)) \sim \mathsf{Dirichlet}(\alpha H(A_1), \dots, \alpha H(A_n))$$

Cumulants

- A DP has two parameters:
 - Base distribution H, which is like the mean of the DP.
 - Strength parameter α , which is like an *inverse-variance* of the DP.
- The first two cumulants of the DP:

Expectation:
$$\mathbb{E}[G(A)] = H(A)$$

Variance:
$$\mathbb{V}[G(A)] = \frac{H(A)(1 - H(A))}{\alpha + 1}$$

where A is any measurable subset of X.

- A probability measure is a function from subsets of a space \mathbb{X} to [0,1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Pòlya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

- A probability measure is a function from subsets of a space \mathbb{X} to [0,1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Pòlya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

- A probability measure is a function from subsets of a space \mathbb{X} to [0,1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Pòlya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

- A probability measure is a function from subsets of a space \mathbb{X} to [0,1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Pòlya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

Representations

Distribution over probability measures.

$$(G(A_1),\ldots,G(A_n))\sim \mathsf{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$$

Chinese restaurant process/Pòlya's urn scheme.

$$P(n^{\text{th}} \text{ customer sit at table } k) = \frac{n_k}{n-1+\alpha}$$

 $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha}{i-1+\alpha}$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \quad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \quad \beta_k \sim \mathsf{Beta}(1, \alpha)$$

Representations

Distribution over probability measures.

$$(G(A_1), \dots, G(A_n)) \sim \mathsf{Dirichlet}(\alpha H(A_1), \dots, \alpha H(A_n))$$

Chinese restaurant process/Pòlya's urn scheme.

$$P(n^{\text{th}} \text{ customer sit at table } k) = \frac{n_k}{n-1+\alpha}$$

 $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha}{i-1+\alpha}$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \quad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \quad \beta_k \sim \mathsf{Beta}(1, \alpha)$$

Representations

Distribution over probability measures.

$$(G(A_1),\ldots,G(A_n)) \sim \mathsf{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$$

Chinese restaurant process/Pòlya's urn scheme.

$$P(n^{\text{th}} \text{ customer sit at table } k) = \frac{n_k}{n-1+\alpha}$$

 $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha}{i-1+\alpha}$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \quad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \quad \beta_k \sim \text{Beta}(1, \alpha)$$

Representations

Distribution over probability measures.

$$(G(A_1),\ldots,G(A_n)) \sim \mathsf{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$$

Chinese restaurant process/Pòlya's urn scheme.

$$P(n^{\text{th}} \text{ customer sit at table } k) = \frac{n_k}{n-1+\alpha}$$

 $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha}{i-1+\alpha}$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \quad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \quad \beta_k \sim \mathsf{Beta}(1, \alpha)$$

Pòlya's Urn Scheme

- A draw $G \sim \mathsf{DP}(\alpha, H)$ is a random probability measure.
- Treating G as a distribution, consider i.i.d. draws from G:

$$\theta_i | G \sim G$$

 Marginalizing out G, marginally each θ_i ~ H, while the conditional distributions are,

$$\theta_n | \theta_{1:n-1} \sim \frac{\sum_{i=1}^{n-1} \delta_{\theta_i} + \alpha H}{n-1+\alpha}$$

This is the Pòlya urn scheme.

Pòlya's Urn Scheme

- A draw $G \sim DP(\alpha, H)$ is a random probability measure.
- Treating G as a distribution, consider i.i.d. draws from G:

$$\theta_i | G \sim G$$

 Marginalizing out G, marginally each θ_i ~ H, while the conditional distributions are,

$$\theta_n | \theta_{1:n-1} \sim \frac{\sum_{i=1}^{n-1} \delta_{\theta_i} + \alpha H}{n-1+\alpha}$$

This is the Pòlya urn scheme.

Pòlya's Urn Scheme

• Pòlya's urn scheme produces a sequence $\theta_1, \theta_2, \ldots$ with the following conditionals:

$$\theta_n | \theta_{1:n-1} \sim \frac{\sum_{i=1}^{n-1} \delta_{\theta_i} + \alpha H}{n-1+\alpha}$$

- Imagine picking balls of different colors from an urn:
 - Start with no balls in the urn.
 - with probability $\propto \alpha$, draw $\theta_n \sim H$, and add a ball of that color into the urn.
 - With probability $\propto n-1$, pick a ball at random from the urn, record θ_n to be its color, return the ball into the urn and place a second ball of same color into urn.

Exchangeability and de Finetti's Theorem

- Starting with a DP, we constructed Pòlya's urn scheme.
- The reverse is possible using de Finetti's Theorem.
- Since θ_i are i.i.d. $\sim G$, their joint distribution is invariant to permutations, thus $\theta_1, \theta_2, \ldots$ are exchangeable.
- Thus a distribution over measures must exist making them i.i.d..
- This is the DP.

Chinese Restaurant Process

- Draw $\theta_1, \ldots, \theta_n$ from a Pòlya's urn scheme.
- They take on K < n distinct values, say $\theta_1^*, \dots, \theta_K^*$.
- This defines a partition of $1, \ldots, n$ into K clusters, such that if i is in cluster k, then $\theta_i = \theta_k^*$.
- Random draws $\theta_1, \dots, \theta_n$ from a Pòlya's urn scheme induces a random partition of $1, \dots, n$.
- The induced distribution over partitions is a Chinese restaurant process (CRP).

Chinese Restaurant Process

- Generating from the CRP:
 - First customer sits at the first table.
 - Customer n sits at:
 - Table k with probability $\frac{n_k}{\alpha+n-1}$ where n_k is the number of customers at table k.
 - A new table K + 1 with probability $\frac{\alpha}{\alpha + n 1}$.
 - Customers ⇔ integers, tables ⇔ clusters.
- The CRP exhibits the clustering property of the DP.

Chinese Restaurant Process

• To get back from the CRP to Pòlya's urn scheme, simply draw

$$\theta_k^* \sim H$$

for k = 1, ..., K, then for i = 1, ..., n set

$$\theta_i = \theta_{k_i}^*$$

where k_i is the table that customer i sat at.

 The CRP teases apart the clustering property of the DP, from the base distribution.

Stick-breaking Construction

- But how do draws G ~ DP(α, H) look like?
 - G is discrete with probability one, so:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*}$$

• The stick-breaking construction shows that $G \sim \mathsf{DP}(\alpha, H)$ if:

$$\pi_k = eta_k \prod_{l=1}^{k-1} (1 - eta_l)$$
 $eta_k \sim \operatorname{Beta}(1, lpha)$
 $eta_k^* \sim H$

• We write $\pi \sim \mathsf{GEM}(\alpha)$ if $\pi = (\pi_1, \pi_2, \ldots)$ is distributed as above.

Applications

- Mixture Modelling.
- Haplotype Inference.
- Nonparametric relaxation of parametric models.

Dirichlet Process Mixture Models

• We model a data set x₁,...,x_n using the following model:

$$egin{aligned} x_i &\sim F(heta_i) & & ext{for } i=1,\ldots,n \ heta_i &\sim G \ G &\sim \mathsf{DP}(lpha,H) \end{aligned}$$

- Each θ_i is a latent parameter modelling x_i , while G is the unknown distribution over parameters modelled using a DP.
- This is the basic DP mixture model.

Dirichlet Process Mixture Models

Since G is of the form

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*}$$

we have $\theta_i = \theta_k^*$ with probability π_k .

- Let k_i take on value k with probability π_k . We can equivalently define $\theta_i = \theta_k^*$.
- An equivalent model is:

$$x_i \sim F(\theta_{k_i}^*)$$
 for $i = 1, ..., n$ $p(k_i = k) = \pi_k$ for $k = 1, 2, ...$ $\pi_k = \beta_k \prod_{i=1}^{k-1} (1 - \beta_i)$ $\beta_k \sim \text{Beta}(1, \alpha)$ $\theta_k^* \sim H$

Dirichlet Process Mixture Models

- So the DP mixture model is a mixture model with an infinite number of clusters.
- But only finitely clusters ever used.
- The DP mixture model can be used for clustering purposes.
 - The number of clusters is not known a priori.
 - Inference in model returns a posterior distribution over number of clusters used to represent data.
 - An alternative to model selection/averaging over finite mixture models.

Haplotype Inference

- A bioinformatics problem relevant to the study of the evolutionary history of human populations.
- Consider a sequence of M markers on a pair of chromosomes.
- Each marker marks the site where there is an observed variation in the DNA in across the human population.
- A sequence of marker states is called a haplotype.
- A genotype is a sequence of unordered pairs of marker states.

$$\{0,0\}\ \{1,1\}\ \{0,1\}\ \{1,1\}\ \{0,1\}\ \{0,1\}\ \{1,1\}$$

Haplotype Inference

- Biological assays allow us to read the genotype of an individual, not the two haplotypes.
- Problem: from the genotypes of a large number of individuals, can we reconstruct the haplotypes accurately?
- Observation: only a very small number of haplotypes are observed in human populations.
- Model the process as a mixture model.
- Because the actual number of haplotypes in the observed population is not known, we use a DP mixture model.

Nonparametric Relaxation

• If $G \sim \mathsf{DP}(\alpha, H)$, then $G \to H$ as $\alpha \to \infty$, in the sense that for any function f,

$$\int f(\theta)G(\theta)d\theta \to \int f(\theta)H(\theta)d\theta$$

- We can use G as a nonparametric relaxation of H.
- Example: generalized linear models.
 - Observed data $\{x_1, y_1, \dots, x_n, y_n\}$ where , modelled as:

$$x_i \sim H(f^{-1}(\lambda^{\top} y_i))$$

where $H(\eta)$ is an exponential family distribution with parameter η and f is the link function.

• If we do not believe that $H(f^{-1}(\lambda^{\top}y))$ is the true model, then we can relax our strong parametric assumption as:

$$G(y_i) \sim \mathsf{DP}(\alpha(w^\top y_i), H(f^{-1}(\lambda^\top y_i)))$$

 $x_i \sim G(y_i)$

Generalizations

- Pitman-Yor processes.
- General stick-breaking processes.
- Normalized inversed-Gaussian processes.

- Pitman-Yor Processes are also known as Two-parameter Poisson-Dirichlet Processes.
- Chinese restaurant representation:

$$P(n^{\text{th}} \text{ customer sit at table } k, 1 \le k \le K) = \frac{n_k - d}{n - 1 + \alpha}$$

$$P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha + dK}{i - 1 + \alpha}$$

where 0 < d < 1 and $\alpha > -d$.

- When d = 0 the Pitman-Yor process reduces to the DP.
- When $\alpha =$ 0 the Pitman-Yor process reduces to a stable process.
- When $\alpha = 0$ and $d = \frac{1}{2}$ the stable process is a normalized inverse-gamma process.
- There is a stick-breaking construction for Pitman-Yor processes (later), but no known analytic expressions for its finite dimensional marginals, except for d=0 and $d=\frac{1}{2}$.

- Pitman-Yor Processes are also known as Two-parameter Poisson-Dirichlet Processes.
- Chinese restaurant representation:

$$P(n^{\text{th}} \text{ customer sit at table } k, 1 \le k \le K) = \frac{n_k - d}{n - 1 + \alpha}$$

 $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha + dK}{i - 1 + \alpha}$

where 0 < d < 1 and $\alpha > -d$.

- When d = 0 the Pitman-Yor process reduces to the DP.
- When $\alpha =$ 0 the Pitman-Yor process reduces to a stable process.
- When $\alpha = 0$ and $d = \frac{1}{2}$ the stable process is a normalized inverse-gamma process.
- There is a stick-breaking construction for Pitman-Yor processes (later), but no known analytic expressions for its finite dimensional marginals, except for d = 0 and $d = \frac{1}{2}$.

- Two salient features of the Pitman-Yor process:
 - With more occupied tables, the chance of even more tables becomes higher.
 - Tables with smaller occupancy numbers tend to have lower chance of getting new customers.
- The above means that Pitman-Yor processes produce Zipf's Law type behaviour.

Draw from a Dirichlet process

General Stick-breaking Processes

• We can relax the priors on β_k in the stick-breaking construction:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{ heta_k^*}$$
 $\pi_k = eta_k \prod_{l=1}^{k-1} (1 - eta_l)$ $heta_k^* \sim H$ $eta_k \sim \operatorname{Beta}(a_k, b_k)$

- We get the DP if $a_k = 1$, $b_k = \alpha$.
- We get the Pitman-Yor process if $a_k = 1 d$, $b_k = \alpha + kd$.
- To ensure that $\sum_{k=1}^{\infty} \pi_k = 1$, we need β_k to not go to 0 too quickly:

$$\sum_{k=1}^{\infty} \pi_k = 1 \quad \text{ almost surely iff } \quad \sum_{k=1}^{\infty} \log(1 + a_k/b_k) = \infty$$

Normalized Inverse-Gaussian Processes

ullet The inverse-Gaussian distribution with parameter lpha has density:

$$p(\nu) = rac{lpha}{\sqrt{2\pi}}
u^{-3/2} \exp\left(-rac{1}{2}\left(rac{lpha^2}{
u} +
u
ight) + lpha
ight) \quad
u \geq 0$$

• Additive property of inverse-Gaussian variables: if $\nu_1 \sim \text{IG}(\alpha_1)$ and $\nu_2 \sim \text{IG}(\alpha_2)$ then $\nu_1 + \nu_2 \sim \text{IG}(\alpha_1 + \alpha_2)$.

Normalized Inverse-Gaussian Processes

 The normalized inverse-Gaussian is a distribution over the m-simplex obtained by normalizing m inverse-Gaussian variables, and has density:

$$\begin{aligned} & p(w_1, \dots, w_m | \alpha_1, \dots, \alpha_m) \\ &= \frac{e^{\sum_{i=1}^m \alpha_i + \log \alpha_i}}{2^{m/2 - 1} \pi^{m/2}} K_{-m/2} \left(\sqrt{\sum_{i=1}^m \frac{\alpha_i^2}{w_i}} \right) \left(\sum_{i=1}^m \frac{\alpha_i^2}{w_i} \right)^{-m/4} \prod_{i=1}^m w_i^{-3/2} \end{aligned}$$

• Agglomerative property: if $\{J_1, \ldots, J_{m'}\}$ is a partition of $\{1, \ldots, m\}$,

$$\left(\sum_{i \in J_1} w_i, \dots, \sum_{i \in J_{m'}} w_i\right) \sim \mathsf{NIG}\left(\sum_{i \in J_1} \alpha_i, \dots, \sum_{i \in J_{m'}} \alpha_i\right)$$

• We can now define a normalized inverse-Gaussian process (NIGP) analogously to a Dirichlet process. $G \sim \text{NIGP}(\alpha, H)$ if for all partitions (A_1, \ldots, A_m) of \mathbb{X} :

$$(G(A_1),\ldots,G(A_m))\sim \mathsf{NIG}(\alpha H(A_1),\ldots,\alpha H(A_m))$$

Normalized Inverse-Gaussian Processes

- There is a tractable Pòlya urn scheme corresponding to the NIGP.
- The DP, the Pitman-Yor with $d = \frac{1}{2}$, and the NIG process are the only known normalized random measure with analytic finite dimensional marginals.
- The NIGP have wider support around its modes than does the DP:

Normalized Inverse-Gaussian Processes

- There is a tractable Polya urn scheme corresponding to the NIGP.
- The DP, the Pitman-Yor with $d = \frac{1}{2}$, and the NIG process are the only known normalized random measure with analytic finite dimensional marginals.
- The NIGP have wider support around its modes than does the DP:

Grouped Clustering Problems.

Hierarchical Dirichlet Processes.

- Representations of Hierarchical Dirichlet Processes.
- Applications in Grouped Clustering.

Extensions and Related Models.

Example: document topic modelling

- Information retrieval: finding useful information from large collections of documents.
- Example: Google, CiteSeer, Amazon...
- Model documents as "bags of words".

Example: document topic modelling

- We model documents as coming from an underlying set of topics.
 - Summarize documents.
 - Document/query comparisons.
 - Do not know the number of topics a priori—use DP mixtures somehow.
 - But: topics have to be shared across documents...

Example: document topic modelling

- Share topics across documents in a collection, and across different collections.
- More sharing within collections than across.
- Use DP mixture models as we do not know the number of topics a priori.

Example: haplotype inference

- Individuals inherit both ancient haplotypes dispersed across multiple populations, as well as more recent population-specific haplotypes.
- Sharing of haplotypes among individuals in a population, and across different populations.
- More sharing within populations than across.
- Use DP mixture models as we do not know the number of haplotypes.

Use a DP mixture for each group.

- Unfortunately there is no sharing of clusters across different groups because H is smooth.
- Solution: make the base distribution H discrete.
- Put a DP prior on the common base distribution.

Use a DP mixture for each group.

- Unfortunately there is no sharing of clusters across different groups because H is smooth.
- Solution: make the base distribution H discrete.
- Put a DP prior on the common base distribution.

Use a DP mixture for each group.

- Unfortunately there is no sharing of clusters across different groups because H is smooth.
- Solution: make the base distribution H discrete.
- Put a DP prior on the common base distribution.

A hierarchical Dirichlet process:

$$G_0 \sim \mathsf{DP}(lpha_0, H)$$

 $G_1, G_2 | G_0 \sim \mathsf{DP}(lpha, G_0)$

 Extension to deeper hierarchies is straightforward.

Making G₀ discrete forces shared cluster between G₁ and G₂

Stick-breaking construction

• We shall assume the following HDP hierarchy:

$$G_0 \sim \mathsf{DP}(\gamma, H)$$
 $G_j | G_0 \sim \mathsf{DP}(\alpha, G_0) \quad \mathsf{for} \ j = 1, \dots, J$

• The stick-breaking construction for the HDP is:

$$\begin{split} G_{0} &= \sum_{k=1}^{\infty} \pi_{0k} \delta_{\theta_{k}^{*}} & \theta_{k}^{*} \sim H \\ \pi_{0k} &= \beta_{0k} \prod_{l=1}^{k-1} (1 - \beta_{0l}) & \beta_{0k} \sim \text{Beta} (1, \gamma) \\ G_{j} &= \sum_{k=1}^{\infty} \pi_{jk} \delta_{\theta_{k}^{*}} \\ \pi_{jk} &= \beta_{jk} \prod_{l=1}^{k-1} (1 - \beta_{jl}) & \beta_{jk} \sim \text{Beta} (\alpha \beta_{0k}, \alpha (1 - \sum_{l=1}^{k} \beta_{0l})) \end{split}$$

Stick-breaking construction

• We shall assume the following HDP hierarchy:

$$G_0 \sim \mathsf{DP}(\gamma, H)$$
 $G_j | G_0 \sim \mathsf{DP}(\alpha, G_0) \quad \mathsf{for} \ j = 1, \dots, J$

• The stick-breaking construction for the HDP is:

$$\begin{split} G_{0} &= \sum_{k=1}^{\infty} \pi_{0k} \delta_{\theta_{k}^{*}} & \theta_{k}^{*} \sim H \\ \pi_{0k} &= \beta_{0k} \prod_{l=1}^{k-1} (1 - \beta_{0l}) & \beta_{0k} \sim \text{Beta} (1, \gamma) \\ G_{j} &= \sum_{k=1}^{\infty} \pi_{jk} \delta_{\theta_{k}^{*}} \\ \pi_{jk} &= \beta_{jk} \prod_{l=1}^{k-1} (1 - \beta_{jl}) & \beta_{jk} \sim \text{Beta} \left(\alpha \beta_{0k}, \alpha (1 - \sum_{l=1}^{k} \beta_{0l}) \right) \end{split}$$

Hierarchical Pòlya urn scheme

- Let *G* ∼ DP(α, *H*).
- We can visualize the Pòlya urn scheme as follows:

where the arrows denote to which θ_k^* each θ_i was assigned and

$$\theta_1, \theta_2, \ldots \sim G$$
 i.i.d. $\theta_1^*, \theta_2^*, \ldots \sim H$ i.i.d.

(but $\theta_1, \theta_2, \ldots$ are not independent of $\theta_1^*, \theta_2^*, \ldots$).

Hierarchical Pòlya urn scheme

- Let $G_0 \sim \mathsf{DP}(\gamma, H)$ and $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$.
- The hierarchical Pòlya urn scheme to generate draws from G_1 , G_2 :

Hierarchical Pòlya urn scheme

- Let $G_0 \sim \mathsf{DP}(\gamma, H)$ and $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$.
- The hierarchical Pòlya urn scheme to generate draws from G_1 , G_2 :

Hierarchical Pòlya urn scheme

- Let $G_0 \sim \mathsf{DP}(\gamma, H)$ and $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$.
- The hierarchical Pòlya urn scheme to generate draws from G_1 , G_2 :

Chinese restaurant franchise

- Let $G_0 \sim \mathsf{DP}(\gamma, H)$ and $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$.
- The Chinese restaurant franchise describes the clustering of data items in the hierarchy:

Chinese restaurant franchise

- Let $G_0 \sim \mathsf{DP}(\gamma, H)$ and $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$.
- The Chinese restaurant franchise describes the clustering of data items in the hierarchy:

Chinese restaurant franchise

- Let $G_0 \sim \mathsf{DP}(\gamma, H)$ and $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$.
- The Chinese restaurant franchise describes the clustering of data items in the hierarchy:

Application: Document Topic Modelling

 Compared against latent Dirichlet allocation, a parametric version of the HDP mixture for topic modelling.

Application: Document Topic Modelling

- Topics learned on the NIPS corpus.
 - Documents are separated into 9 subsections.
 - Model this with a 3 layer HDP mixture model.
- Shown are the topics shared between Vision Sciences and each other subsections.

Cognitive Science		Neuroscience		Algorithms & Architecture		Signal Processing	
task	examples	cells	visual	algorithms	distance	visual	signals
representation	concept	cell	cells	test	tangent	images	separation
pattern	similarity	activity	cortical	approach	image	video	signal
processing	Bayesian	response	orientation	methods	images	language	sources
trained	hypotheses	neuron	receptive	based	transformation	image	source
representations	generalization	visual	contrast	point	transformations	pixel	matrix
three	numbers	patterns	spatial	problems	pattern	acoustic	blind
process	positive	pattern	cortex	form	vectors	delta	mixing
unit	classes	single	stimulus	large	convolution	lowpass	gradient
patterns	hypothesis	fig	tuning	paper	simard	flow	eq

 A hidden Markov model consists of a discrete latent state sequence v_{1:T} and an observation sequence x_{1:T}.

• The transition and observation probabilities are:

$$P(v_t = k | v_{t-1} = I) = \pi_{kl}$$

 $p(x_t | v_t = k) = f(x_t | \theta_k^*)$

• In finite HMMs, we can place priors on the parameters easily:

$$(\pi_{1I}, \dots, \pi_{KI}) \sim \mathsf{Dirichlet}(\alpha/K, \dots, /alpha/K)$$

 $\theta_k^* \sim H$

$$P(v_t = k | v_{t-1} = I) = \pi_{kI}$$

 $(\pi_{1I}, \dots, \pi_{KI}) \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$

- Can we take $K \to \infty$?
- Probability of transitioning to a previously unseen state always 1...
- Say $v_{t_1} = I$ and this is first time we are in state I. Then

$$P(v_t = k | v_{t-1} = I) = 1/K \rightarrow 0$$

for all k.

$$P(v_t = k | v_{t-1} = I) = \pi_{kI}$$

 $(\pi_{1I}, \dots, \pi_{KI}) \sim \mathsf{Dirichlet}(\alpha/K, \dots, \alpha/K)$

- Can we take $K \to \infty$? Not just like that!
- Probability of transitioning to a previously unseen state always 1...
- Say $v_{t_1} = I$ and this is first time we are in state I. Then

$$P(v_t = k | v_{t-1} = I) = 1/K \rightarrow 0$$

for all k.

- Previous issue is that there is no sharing of possible next states across different current states.
- Implement sharing of next states using a HDP:

$$(au_1, au_2, \ldots) \sim \mathsf{GEM}(\gamma)$$

 $(\pi_{1l}, \pi_{2l}, \ldots) | au \sim \mathsf{DP}(lpha, au)$

 A variety of trajectory characteristics can be modelled using different parameter regimes.

- The HDP assumes that data group structure is observed.
- The group structure may not be known in practice, even if there is prior belief in some group structure.
- Even if known, we may still believe that some groups are more similar to each other than to other groups.
- We can cluster groups using a second level of mixture models.
- Using a second DP mixture to model this leads to the nested Dirichlet process.

- The HDP assumes that data group structure is observed.
- The group structure may not be known in practice, even if there is prior belief in some group structure.
- Even if known, we may still believe that some groups are more similar to each other than to other groups.
- We can cluster groups using a second level of mixture models.
- Using a second DP mixture to model this leads to the nested Dirichlet process.

- The HDP assumes that data group structure is observed.
- The group structure may not be known in practice, even if there is prior belief in some group structure.
- Even if known, we may still believe that some groups are more similar to each other than to other groups.
- We can cluster groups using a second level of mixture models.
- Using a second DP mixture to model this leads to the nested Dirichlet process.

Start with:

$$x_{ji} \sim F(\theta_{ji})$$
 $\theta_{ji} \sim G_{ji}$

 Cluster groups. Each group j belongs to cluster k_j:

$$k_j \sim \pi$$
 $\pi \sim \text{GEM}(\alpha)$

• Group j inherits the DP from cluster k_j :

$$G_j = G_{k_j}^*$$

$$G_k^* \sim \mathsf{DP}(\beta, G_0^*) \qquad G_0^* \sim \mathsf{DP}(\gamma, H)$$

Start with:

$$x_{ji} \sim F(\theta_{ji})$$
 $\theta_{ji} \sim G_{ji}$

 Cluster groups. Each group j belongs to cluster k_j:

$$\mathbf{k_{j}} \sim \pi$$
 $\pi \sim \mathsf{GEM}(\alpha)$

• Group j inherits the DP from cluster k_j :

$$G_j = G_{k_j}^*$$

$$G_k^* \sim \mathsf{DP}(\beta, G_0^*) \qquad G_0^* \sim \mathsf{DP}(\gamma, H)$$

Start with:

$$x_{ji} \sim F(\theta_{ji})$$
 $\theta_{ji} \sim G_{ji}$

 Cluster groups. Each group j belongs to cluster k_j:

$$k_j \sim \pi$$
 $\pi \sim \mathsf{GEM}(\alpha)$

Group j inherits the DP from cluster k_j:

$$G_j = G_{k_i}^*$$

$$G_k^* \sim \mathsf{DP}(\beta, G_0^*) \qquad G_0^* \sim \mathsf{DP}(\gamma, H)$$

Start with:

$$x_{ji} \sim F(\theta_{ji})$$
 $\theta_{ji} \sim G_j$

 Cluster groups. Each group j belongs to cluster k_j:

$$k_j \sim \pi$$
 $\pi \sim \mathsf{GEM}(\alpha)$

Group j inherits the DP from cluster k_j:

$$G_j = G_{k_j}^*$$

$$G_k^* \sim \mathsf{DP}(\beta, G_0^*) \qquad G_0^* \sim \mathsf{DP}(\gamma, H)$$

$$egin{aligned} G_0^* &\sim \mathsf{DP}(\gamma, H) \ Q &\sim \mathsf{DP}(lpha, \mathsf{DP}(eta, G_0^*)) \ G_j &\sim Q \ heta_{ji} &\sim G_j \ x_{ji} &\sim F(heta_{ji}) \end{aligned}$$

Dependent Dirichlet Processes

- The HDP induces a straightforward dependency among groups.
- What if the data is smoothly varying across some spatial or temporal domain?
 - Topic modelling: topic popularity and composition can both change slowly as time passes.
 - Haplotype inference: haplotype occurrence can change smoothly as function of geography.
- a dependent Dirichlet process is a stochastic process $\{G_t\}$ indexed by t (space or time), such that each $G_t \sim \mathsf{DP}(\alpha, H)$ and if t, t' are neighbouring points, G_t and $G_{t'}$ should be "similar" to each other.
- Simple example:

$$\pi \sim \mathsf{GEM}(lpha)$$
 $(heta_{tk}^*) \sim \mathsf{GP}(\mu, \Sigma)$ for each k $G_t = \sum_{k=1}^\infty \pi_k \delta_{ heta_{tk}^*}$

Summary

- Dirichlet processes and hierarchical Dirichlet processes.
- Described different representations: distribution over distributions; Chinese restaurant process; Pòlya urn scheme; Stick-breaking construction.
- Described generalizations and extensions:
 Pitman-Yor processes; General stick-breaking processes;
 Normalized inverse-Gaussian processes; nested Dirichlet processes;
 Dependent Dirichlet processes.
- Described some applications:
 Document mixture models; Topic modelling; Haplotype inference;
 Infinite hidden Markov models.
- I have not described inference schemes.
- A rich and growing area, and much to be discovered and tried.