Lecture 7: Function Approximation

Chong Li

Outline

- Introduction & Preliminaries
- RL Prediction with Function Approximation
- RL Control with Function Approximation
- Batch Method for RL Applications

^{*}materials are modified from David Silver's RL lecture notes

Outline

- Introduction & Preliminaries
- RL Prediction with Function Approximation
- RL Control with Function Approximation
- Batch Method for RL Applications

Motivation

- How to solve large-scale reinforcement learning problems:
 - Backgammon: 10^20 states
 - Computer GO: 10^170 states
 - Autonomous driving: continuous state space
- Curse of dimensionality

Value Function Approximation

- So far we have represented value function by a *lookup table* Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$
 or $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

Generalise from seen states to unseen states Update parameter **w** using MC or TD learning

Types of Approximation

Which Function Approximator?

- There are many function approximators:
 - Linear: linear combinations of features
 - Non-linear: neural network
 - Decision tree
 -
- We consider *differentiable* function approximators in this lecture:
 - Linear: linear combinations of features
 - Non-linear: neural network

Gradient Descent

- Let J(w) be a differentiable function of parameter vector w
- Define the *gradient* of $J(\mathbf{w})$ to be

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$
- Adjust w in direction of -ve gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

Stochastic Gradient Descent

• Goal: find parameter vector \mathbf{w} minimising mean-squared error between approximate value fn $\hat{v}(s, \mathbf{w})$ and true value fn $v_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))^2 \right]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \right]$$

• Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})$$

Expected update is equal to full gradient update

Stochastic Gradient Descent - Example

Suppose we want to fit a straight line

$$y = w_1 + w_2 x$$

Use data set

$$(x_1,y_1),\ldots,(x_n,y_n)$$

Objective function

$$Q(w) = \sum_{i=1}^n Q_i(w) = \sum_{i=1}^n \left(w_1 + w_2 x_i - y_i
ight)^2$$

SGD: sweep through the training set

$$\left[egin{array}{c} w_1 \ w_2 \end{array}
ight] := \left[egin{array}{c} w_1 \ w_2 \end{array}
ight] - \eta \left[egin{array}{c} 2(w_1+w_2x_i-y_i) \ 2x_i(w_1+w_2x_i-y_i) \end{array}
ight]$$

Outline

- Introduction & Preliminaries
- RL Prediction with Function Approximation
- RL Control with Function Approximation
- Batch Method for RL Applications

RL Prediction with Value Approximation

- Have assumed true value function $v_{\pi}(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a *target* for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha(\mathbf{G_t} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

• For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha (R_{t+1} + \gamma \hat{\mathbf{v}}(S_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

• For TD(λ), the target is the λ -return G_t^{λ}

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

How to compute the gradient?

$$\Delta \mathbf{w} = \alpha(v_{\pi}(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})$$

- We can compute it for
 - Linear: linear combinations of features
 - Non-linear: neural network

Feature Vectors

Represent state by a feature vector

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

- For example:
 - Distance of robot from landmarks
 Trends in the stock market
 Piece and pawn configurations in chess

- Ways to combine features
 - Polynomials
 - Fourier basis
 - Coding techniques
 - Radical basis functions
 -

Linear Approximation

• Represent value function by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S) \mathbf{w}_{j}$$

Objective function is quadratic in parameters w

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[(v_{\pi}(S) - \mathbf{x}(S)^{\top} \mathbf{w})^{2} \right]$$

- Stochastic gradient descent converges on global optimum
- Update rule is particularly simple

$$\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$
$$\Delta \mathbf{w} = \alpha(v_{\pi}(S) - \hat{v}(S, \mathbf{w}))\mathbf{x}(S)$$

 $\mathsf{Update} = \mathit{step-size} \times \mathit{prediction} \ \mathit{error} \times \mathit{feature} \ \mathit{value}$

Table Lookup Features

- Table lookup is a special case of linear value function approximation
- Using table lookup features

$$\mathbf{x}^{table}(S) = egin{pmatrix} \mathbf{1}(S = s_1) \ dots \ \mathbf{1}(S = s_n) \end{pmatrix}$$

• Parameter vector **w** gives value of each individual state

$$\hat{v}(S, \mathbf{w}) = egin{pmatrix} \mathbf{1}(S = s_1) \\ \vdots \\ \mathbf{1}(S = s_n) \end{pmatrix} \cdot egin{pmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_n \end{pmatrix}$$

Non-linear Approximation

Neural network

Monte-Carlo with Value Function Approximation

- Return G_t is an unbiased, noisy sample of true value $v_{\pi}(S_t)$
- Can therefore apply supervised learning to "training data":

$$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, ..., \langle S_T, G_T \rangle$$

For example, using linear Monte-Carlo policy evaluation

$$\Delta \mathbf{w} = \alpha (G_t - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha (G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation

TD(0) with Value Function Approximation

- The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ is a biased sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

$$\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, ..., \langle S_{T-1}, R_T \rangle$$

For example, using linear TD(0)

$$\Delta \mathbf{w} = \alpha (R + \gamma \hat{\mathbf{v}}(S', \mathbf{w}) - \hat{\mathbf{v}}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S, \mathbf{w})$$
$$= \alpha \delta \mathbf{x}(S)$$

Linear TD(0) converges (close) to global optimum

TD(λ) with Value Function Approximation

- The λ -return G_t^{λ} is also a biased sample of true value $v_{\pi}(s)$
- Can again apply supervised learning to "training data":

$$\langle S_1, G_1^{\lambda} \rangle, \langle S_2, G_2^{\lambda} \rangle, ..., \langle S_{T-1}, G_{T-1}^{\lambda} \rangle$$

• Forward view linear $TD(\lambda)$

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$
$$= \alpha (\mathbf{G}_t^{\lambda} - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)$$

• Backward view linear $\mathsf{TD}(\lambda)$

$$\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})$$
$$E_t = \gamma \lambda E_{t-1} + \mathbf{x}(S_t)$$
$$\Delta \mathbf{w} = \alpha \delta_t E_t$$

TD(λ) with Value Function Approximation

```
Initialize w as appropriate for the problem, e.g., \mathbf{w} = \mathbf{0}

Repeat (for each episode):

\mathbf{z} = 0

S \leftarrow \text{initial state of episode}

Repeat (for each step of episode):

A \leftarrow \text{action given by } \pi \text{ for } S

Take action A, observe reward, R, and next state, S'

\delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})

\mathbf{z} \leftarrow \gamma \lambda \mathbf{z} + \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})

\mathbf{w} \leftarrow \mathbf{w} + \alpha \delta \mathbf{z}

S \leftarrow S'

until S' is terminal
```

Convergence of Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	TD(0)	✓	✓	×
	$TD(\lambda)$	✓	✓	×
Off-Policy	MC	✓	✓	✓
	TD(0)	✓	×	×
	$TD(\lambda)$	✓	X	X

See Baird's counter-example (in the textbook) which shows the divergence of TD algorithm

Gradient TD algorithm resolved the divergence problem. See paper "Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation" by Richard Sutton etc.

Outline

- Introduction & Preliminaries
- RL Prediction with Function Approximation
- RL Control with Function Approximation
- Batch Method for RL Applications

RL Control

Policy evaluation Approximate policy evaluation, $\hat{q}(\cdot, \cdot, \mathbf{w}) \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Action-value Function Approximation

Approximate the action-value function

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

• Minimise mean-squared error between approximate action-value fn $\hat{q}(S, A, \mathbf{w})$ and true action-value fn $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w})\right)^{2}\right]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$
$$\Delta \mathbf{w} = \alpha(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S, A, \mathbf{w})$$

Linear Action-value Function Approximation

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \mathbf{x}(S, A)$$

RL Control with Value Approximation

• For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha(\mathbf{G_t} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

• For TD(0), the target is the TD target $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

• For forward-view $TD(\lambda)$, target is the action-value λ -return

$$\Delta \mathbf{w} = \alpha (\mathbf{q}_t^{\lambda} - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

• For backward-view $\mathsf{TD}(\lambda)$, equivalent update is

$$\delta_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})$$

$$E_t = \gamma \lambda E_{t-1} + \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha \delta_t E_t$$

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	Х
Sarsa	✓	(✓)	X
Q-learning	✓	×	X

 (\checkmark) = chatters around near-optimal value function

Outline

- Introduction & Preliminaries
- RL Prediction with Function Approximation
- RL Control with Function Approximation
- Batch Method for RL Applications

Motivation

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")

Least Square Prediction

- Given value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- And experience \mathcal{D} consisting of $\langle state, value \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$

- Which parameters **w** give the best fitting value fn $\hat{v}(s, \mathbf{w})$?
- Least squares algorithms find parameter vector \mathbf{w} minimising sum-squared error between $\hat{v}(s_t, \mathbf{w})$ and target values v_t^{π} ,

$$LS(\mathbf{w}) = \sum_{t=1}^{T} (v_t^{\pi} - \hat{v}(s_t, \mathbf{w}))^2$$

= $T \mathbb{E}_{\mathcal{D}} [(v^{\pi} - \hat{v}(s, \mathbf{w}))^2]$

Experience Replay

• Given experience consisting of (state, value) pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, ..., \langle s_T, v_T^{\pi} \rangle\}$$

- Repeat:
 - Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Converges to least squares solution

$$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} LS(\mathbf{w})$$

Experience Replay in Deep Q-Network (DQN)

DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w^-
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2\right]$$

Using variant of stochastic gradient descent

DQN in Atari Games

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters do not change across games

See paper "Human-level control through deep reinforcement learning" Nature, 2015