混合戦略均衡

- 定式化
- ナッシュ均衡の存在
 - 角谷の不動点定理
 - * 各条件の役割
 - ナッシュ均衡の存在の証明

例:じゃんけん

- 一見ナッシュ均衡は無いように見えるが、各人が<u>期待利得を最大化</u> していると考えると:相手がグー・チョキ・パーを等確率で出す ⇒ 自分は何を出しても最適 ⇒ 自分も同じようにするのが(ひとつ の)最適
- 「全てを等確率で出す」は互いに最適反応 ⇒ 一種のナッシュ均衡 ("混合戦略均衡")

定式化:混合戦略

- (戦略が有限個のケースを考える。)
- α_i … A_i (元々の戦略の集合)上の確率分布
 - 例: $A_i = \{ \, \mathcal{O}^-, \mathcal{F}^- \ni \mathcal{F}^+, \mathcal{F}^- \}$
- $\alpha_i(a_i)$ …プレーヤーiが $a_i \in A_i$ を取る確率
 - $-\alpha_i$ 混合戦略 (Mixed Strategy)
 - a_i 純粋戦略 (Pure Strategy)
- ∆_i…i の混合戦略全体の集合
 - グーを 0.8、チョキを 0.1、パーを 0.1

$$(\alpha_i(\mathcal{J}^-), \alpha_i(\mathcal{F} \exists +), \alpha_i(パー)) = (0.8, 0.1, 0.1)$$

等々

混合戦略均衡

• 混合戦略の組 $\alpha = (\alpha_i, ..., \alpha_N)$ の下での<u>期待利得</u>

$$g_i(\alpha) = \sum_a \pi_i(a) \underbrace{\alpha_1(a_1) \times \cdots \times \alpha_N(a_N)}_{a = (a_1, \dots, a_N)$$
が出る確率

 $(\pi_i(a):$ 元のゲームの利得(区別のため $\rightarrow g_i(a)$ とする手もある))

• <u>定義</u> 次の条件を満たす混合戦略の組 $\alpha^* = (\alpha_1^*, ..., \alpha_N^*)$ を<u>混合戦</u>略(ナッシュ)均衡という。

$$\forall i, \ \forall \alpha_i \in \Delta_i, \ g_i(\alpha^*) \geq g_i(\alpha^*_{-i}, \alpha_i)$$

- 混合戦略(&期待利得)を考えれば、「じゃんけん」にもナッシュ均衡はある。

ナッシュ均衡の存在

- <u>ナッシュの定理</u> (1950): 有限人のプレーヤーと有限個の戦略を持つ ゲームには、混合戦略まで含めて考えれば必ずナッシュ均衡がある
 - きわめて広い社会問題がナッシュ均衡で分析できる

数学的理由「不動点定理」

相手の混合戦略 α_{−i} に対する(混合戦略の)最適反応全体の集合

$$B_i(\alpha_{-i}) = \{\alpha_i \in \Delta_i | \forall \alpha_i', \ g_i(\alpha_{-i}, \alpha_i) \geq g_i(\alpha_{-i}, \alpha_i')\}$$

• 最適反応対応

$$B(\alpha) = B_1(\alpha_{-1}) \times \cdots \times B_N(\alpha_{-N}) = \{\alpha' | \forall i, \ \alpha_i' \in B_i(\alpha_{-i})\}$$

• α^* がナッシュ均衡 $\iff \alpha^* \in B(\alpha^*)$

角谷の不動点定理

- F をある集合 S からそれ自身への対応とし
 - 1. S は有限次元空間 (\mathbb{R}^m) 内の有界、閉、凸集合
 - 有界:ある半径 r < ∞ が存在して S ⊂ $\{s|||s|| \le r\}$
 - 閉: $s^n \in S \, \forall n$, $\lim_{n \to \infty} s^n = s \Rightarrow s \in S$
 - $\Box : s, s' \in S \Rightarrow ts + (1-t)s' \in S \ \forall t \in (0,1)$
 - 2. 各 $s \in S$ に対して F(s) は非空な凸集合
 - 3. *F* のグラフは閉
 - $-r^n \in F(s^n) \ \forall n, \lim_{n \to \infty} (s^n, r^n) = (s, r) \Rightarrow r \in F(s)$

が満たされると、不動点 s^* $(s^* \in F(s^*))$ が存在する。

例

- S = [0, 1]
- コップの水をどんなにかき回しても動かない水面上の点がある
 - コップの水面=円板
 - *F*(*s*)…1 秒後の位置 (*s* → もとの水面上の点の位置)

各条件の役割: S が有界でない

ナッシュ均衡の存在の証明

- 最適反応対応 B (及び B が定義されている集合=混合戦略の組全体の集合)が角谷の条件 1-3 を満たすことを示せばよい。
- 1. $S = \Delta_1 \times \cdots \times \Delta_N$ →有界、閉、凸
- 2. 各 α に対して $B(\alpha)$
 - 非空(最適反応は1つある)
 - 純粋戦略が有限個→どれか1つが純粋戦略の中で最適→混合 戦略全体の中でも最適
 - * $g_i(\alpha_{-i}, \alpha_i) = \sum_{a_i} \alpha_i(a_i) g_i(\alpha_{-i}, a_i)$ (※表記 a_i 濫用)
 - 凸(最適反応の確率的組み合わせも最適反応)
 - α'_i と α''_i が両方 α_{-i} に対して期待利得を最大化→ $t\alpha'_i + (1-t)\alpha''_i$ も最大化 * $g_i(\alpha_{-i}, t\alpha'_i + (1-t)\alpha''_i) = tg_i(\alpha_{-i}, \alpha'_i) + (1-t)g_i(\alpha_{-i}, \alpha''_i)$
- 3. Bのグラフが閉(収束先でも最適反応の関係)

- $\beta^n \in B(\alpha^n) \ \forall n \Rightarrow g_i(\alpha_{-i}^n, \beta_i^n) \ge g_i(\alpha_{-i}^n, \alpha_i') \ \forall \alpha_i' \ \forall i \ \forall n$
- 更に $\lim_{n\to\infty}(\alpha^n,\beta^n)=(\alpha,\beta)\Rightarrow g_i(\alpha_{-i},\beta_i)\geq g_i(\alpha_{-i},\alpha_i')\ \forall \alpha_i'\ \forall i$ $\iff \beta\in B(\alpha)$
 - gi (期待利得) は連続なので不等式は収束先で逆転しない