Codi:

Examen parcial de Física - ONES 11 de juny de 2018

Model A

Qüestions: 100% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) La funció d'una ona harmònica transversal en una corda és $y(x,t) = 0.4\sin(25\pi x + 50\pi t)$, on x i y s'expressen en metres, i t en segons. Si v és a la velocitat de propagació i λ la longitud d'ona, quina de les següents afirmacions és certa?
 - a) L'ona es propaga cap a la dreta, amb v=2 m/s i $\lambda=8$ cm.
 - b) L'ona es propaga cap a la dreta, amb $v=0.5~\mathrm{m/s}$ i $\lambda=4~\mathrm{cm}$.
 - c) L'ona es propaga cap a l'esquerra, amb v=2 m/s i $\lambda=8$ cm.
 - d) L'ona es propaga cap a l'esquerra, amb $v=0.5~\mathrm{m/s}$ i $\lambda=4~\mathrm{cm}$..
- **T2)** Una ona ve descrita per la funció $y(x,t) = A\sin[2\pi(x/2) (t/4)]$ on x s'expressa en cm i t en segons. Si en un determinat instant la diferència de fase entre dos punts separats una distància Δx és $\Delta \phi = \pi/2$, aleshores
 - a) $\Delta x = 0.5 \text{ cm}.$

b) $\Delta x = 2$ cm.

c) $\Delta x = 0.25 \text{ cm}.$

- d) $\Delta x = 1$ cm.
- **T3)** Una ona electromagnètica es propaga en el sentit negatiu de l'eix de les z. El camp elèctric \mathbf{E} en un punt de l'espai està dirigit instantàniament en el sentit positiu de l'eix de les x. En aquest punt i en el mateix instant, el camp magnètic \mathbf{B} està dirigit
 - a) en el sentit positiu de l'eix de les z.
 - b) en el sentit negatiu de l'eix de les y.
 - c) en el sentit positiu de l'eix de les y.
 - d) en el sentit negatiu de l'eix de les x.
- **T4)** A una distància r_1 d'una antena emissora d'ones electromagnètiques harmòniques i esfèriques, la intensitat mitjana és I_1 i l'amplitud del camp elèctric és E_1 . A una distància $r_2 = r_1/2$, la intensitat mitjana I_2 i l'amplitud del camp elèctric E_2 valen
 - a) $I_2 = 2I_1$ i $E_2 = 2E_1$.
- b) $I_2 = 2I_1$ i $E_2 = 4E_1$.
- c) $I_2 = 4I_1$ i $E_2 = 4E_1$.
- d) $I_2 = 4I_1$ i $E_2 = 2E_1$.
- **T5)** Una estació de comunicacions emet ones esfèriques amb una potència mitjana P = 1 kW. Si en un punt es detecta un camp magnètic amb una amplitud $B_0 = 0.5 \cdot 10^{-9}$ T, a quina distància de l'estació es troba el punt?

$$(\epsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m}, \, \mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}, \, c = 3 \cdot 10^8 \text{ m/s})$$

- a) 109 m.
- b) 1633 m.
- c) 8921 m.
- d) 3.10^8 m.

T6) Es fa incidir llum natural no polaritzada d'intensitat I_0 perpendicularment sobre tres làmines polaritzadores paral·leles entre sí, situades una a continuació de l'altra, amb l'eix polaritzador (o de transmissió) de les tres en la direcció vertical. La intensitat de la llum transmesa després de travessar-les és

a) $I_0/4$.

b) $I_0/8$. c) $I_0/2$. d) I_0 .

T7) Un feix de llum que es propaga per l'aire (amb índex de refracció n=1) incideix sobre la superfície d'un medi no conductor amb un angle de 30° respecte de la normal. Part de l'ona incident es refracta i el raig refractat forma una angle de 20° respecte de la normal. La velocitat de propagació de la llum en el medi no conductor és

a) $2.48 \cdot 10^8$ m/s.

b) $1.46 \cdot 10^8$ m/s.

c) $2.05 \cdot 10^8$ m/s.

d) $3 \cdot 10^8$ m/s.

T8) Un làser emet un feix infraroig amb una longitud d'ona en el buit de 780 nm. Si emet amb una potència mitjana de 5 mW, el valor més aproximat del nombre de fotons que hi ha en un segment del feix de llargada 1 mm és

 $(h = 6.63 \cdot 10^{-34} \text{ Js} ; c = 3 \cdot 10^8 \text{ m/s})$

a) $65 \cdot 10^6$ fotons.

b) No tenim prou dades per saber-ho.

c) $65 \cdot 10^9$ fotons.

d) $65 \cdot 10^3$ fotons.

T9) La figura representa una fibra òptica de quars d'índex de refracció $n_1 = 1.5$. Per que la fibra funcioni correctament, l'angle d'entrada de la llum incident ha de ser $\alpha \leq 15^{\circ}$. Quant val l'índex de refracció n_2 del recobriment?

a) $n_2 = 1.5$.

b) $n_2 = 1.523$.

c) $n_2 = 1.333$.

d) $n_2 = 1.4775$.

T10) En el procés de lectura d'un DVD s'utilitza un làser de freqüència $f = 4.25 \cdot 10^{14}$ Hz. Si el disc està recobert de policarbonat d'índex de refracció n = 1.46, quant val la profunditat d dels esglaons?

a) $d = 0.24 \,\mu\text{m}$.

b) $d = 0.12 \,\mu\text{m}$.

c) $d = 0.35 \,\mu\text{m}$.

d) $d = 0.18 \,\mu\text{m}$.

Cognoms i Nom:

Codi:

Examen parcial de Física - ONES

Model B

11 de juny de 2018

Qüestions: 100% de l'examen

À cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Una ona electromagnètica es propaga en el sentit negatiu de l'eix de les z. El camp elèctric \mathbf{E} en un punt de l'espai està dirigit instantàniament en el sentit positiu de l'eix de les x. En aquest punt i en el mateix instant, el camp magnètic \mathbf{B} està dirigit
 - a) en el sentit positiu de l'eix de les z.
 - b) en el sentit negatiu de l'eix de les x.
 - c) en el sentit positiu de l'eix de les y.
 - d) en el sentit negatiu de l'eix de les y.
- **T2)** A una distància r_1 d'una antena emissora d'ones electromagnètiques harmòniques i esfèriques, la intensitat mitjana és I_1 i l'amplitud del camp elèctric és E_1 . A una distància $r_2 = r_1/2$, la intensitat mitjana I_2 i l'amplitud del camp elèctric E_2 valen
 - a) $I_2 = 2I_1$ i $E_2 = 2E_1$.
- b) $I_2 = 4I_1 \text{ i } E_2 = 4E_1.$
- c) $I_2 = 4I_1 \text{ i } E_2 = 2E_1.$
- d) $I_2 = 2I_1$ i $E_2 = 4E_1$.
- T3) Una estació de comunicacions emet ones esfèriques amb una potència mitjana P=1 kW. Si en un punt es detecta un camp magnètic amb una amplitud $B_0=0.5\cdot 10^{-9}$ T, a quina distància de l'estació es troba el punt?

$$(\epsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m}, \, \mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}, \, c = 3 \cdot 10^8 \text{ m/s})$$

- a) 109 m.
- b) 8921 m.
- c) 3.10^8 m.
- d) 1633 m.
- **T4)** La funció d'una ona harmònica transversal en una corda és $y(x,t) = 0.4\sin(25\pi x + 50\pi t)$, on x i y s'expressen en metres, i t en segons. Si v és a la velocitat de propagació i λ la longitud d'ona, quina de les següents afirmacions és certa?
 - a) L'ona es propaga cap a l'esquerra, amb $v=0.5~\mathrm{m/s}$ i
 $\lambda=4~\mathrm{cm}..$
 - b) L'ona es propaga cap a la dreta, amb $v=0.5~\mathrm{m/s}$ i $\lambda=4~\mathrm{cm}.$
 - c) L'ona es propaga cap a l'esquerra, amb v=2 m/s i $\lambda=8$ cm.
 - d) L'ona es propaga cap a la dreta, amb v=2 m/s i $\lambda=8$ cm.

T5) Es fa incidir llum natural no polaritzada d'intensitat I_0 perpendicularment sobre tres làmines polaritzadores paral·leles entre sí, situades una a continuació de l'altra, amb l'eix polaritzador (o de transmissió) de les tres en la direcció vertical. La intensitat de la llum transmesa després de travessar-les és

a) $I_0/4$.

b) I_0 . c) $I_0/2$. d) $I_0/8$.

T6) Un làser emet un feix infraroig amb una longitud d'ona en el buit de 780 nm. Si emet amb una potència mitjana de 5 mW, el valor més aproximat del nombre de fotons que hi ha en un segment del feix de llargada 1 mm és

 $(h = 6.63 \cdot 10^{-34} \text{ Js} ; c = 3 \cdot 10^8 \text{ m/s})$

a) $65 \cdot 10^3$ fotons.

b) $65 \cdot 10^9$ fotons.

c) $65 \cdot 10^6$ fotons.

d) No tenim prou dades per saber-ho.

T7) En el procés de lectura d'un DVD s'utilitza un làser de freqüència $f = 4.25 \cdot 10^{14}$ Hz. Si el disc està recobert de policarbonat d'índex de refracció n=1.46, quant val la profunditat d dels esglaons?

a) $d = 0.35 \,\mu\text{m}$.

b) $d = 0.18 \,\mu\text{m}$.

c) $d = 0.24 \,\mu\text{m}$.

d) $d = 0.12 \,\mu\text{m}$.

T8) La figura representa una fibra òptica de quars d'índex de refracció $n_1 = 1.5$. Per que la fibra funcioni correctament, l'angle d'entrada de la llum incident ha de ser $\alpha \leq 15^{\circ}$. Quant val l'índex de refracció n_2 del recobriment?

a) $n_2 = 1.523$.

- b) $n_2 = 1.4775$.
- c) $n_2 = 1.5$.
- d) $n_2 = 1.333$.

T9) Un feix de llum que es propaga per l'aire (amb índex de refracció n=1) incideix sobre la superfície d'un medi no conductor amb un angle de 30° respecte de la normal. Part de l'ona incident es refracta i el raig refractat forma una angle de 20° respecte de la normal. La velocitat de propagació de la llum en el medi no conductor és

a) $3 \cdot 10^8$ m/s.

b) $1.46 \cdot 10^8$ m/s.

c) $2.48 \cdot 10^8$ m/s.

d) $2.05 \cdot 10^8$ m/s.

T10) Una ona ve descrita per la funció $y(x,t) = A\sin[2\pi(x/2) - (t/4)]$ on x s'expressa en cm i t en segons. Si en un determinat instant la diferència de fase entre dos punts separats una distància Δx és $\Delta \phi = \pi/2$, aleshores

a) $\Delta x = 0.5$ cm.

b) $\Delta x = 0.25 \text{ cm}.$

c) $\Delta x = 1$ cm.

d) $\Delta x = 2$ cm.

Respostes correctes

Qüestió	Model A	Model B
T1)	c	d
T2)	a	c
T3)	b	d
T4)	d	c
T5)	b	c
T6)	c	a
T7)	c	d
T8)	d	b
T9)	d	d
T10)	b	a

Resolució del Model A

- T1) Si la funció d'una ona harmònica que es propaga per l'eix de les x és $y(x,t)=A\sin(kx\mp\omega t)$, el signe + de la fase indica que ho fa en el sentit negatiu, és a dir cap a l'esquerra. I identificant termes, $k=2\pi/\lambda=25\pi$ rad/m i $\omega=2\pi/T=50\pi$ rad/s, trobem $\lambda=0.08$ m i T=0.04 s, així com $v=\lambda/T=2$ m/s.
- T2) En un determinat instant t, la diferència de fase entre dos punts x_1 i x_2 és $\Delta \phi = [2\pi(x_2/2) (t/4)] [2\pi(x_1/2) (t/4)] = 2\pi(x_2 x_1)/2 = \pi \Delta x$ Per tant, si $\Delta \phi = \pi/2$, $\pi \Delta x = \pi/2$, i $\Delta x = 1/2 = 0.5$ cm Si a partir de la funció d'ona tenim present que la longitud d'ona és $\lambda = 2$ cm, i que dos punts separats aquesta distància estan en fase, és a dir amb $\Delta \phi = 2\pi$, si $\Delta \phi = \pi/2$, estaran separats $\lambda/4 = 0.5$ cm.
- T3) Si dibuixem la velocitat \mathbf{v} i \mathbf{E} sobre els eixos de coordenades com s'indica a l'enunciat, tenim la figura següent, on el sentit de \mathbf{B} queda determinat per la regla de la ma dreta que ens diu que el polze indica el seu sentit quan fem girar els altres quatre dits de \mathbf{v} a \mathbf{E} .

T4) La intensitat disminueix amb la inversa del quadrat de la distància i es compleix $I_2/I_1 = (r_1/r_2)^2$. Per tant, si $r_2 = r_1/2$, $I_2 = (r_1/r_2)^2I_1 = (2r_1/r_1)^2I_1 = 4I_1$ Atès que la intensitat és proporcional al quadrat de l'amplitud del camp elèctric, aquesta última disminueix amb la inversa de la distància i es compleix $E_2/E_1 = r_1/r_2$. Per tant, $E_2 = (r_1/r_2)E_1 = (2r_1/r_1)E_1 = 2E_1$.

- **T5)** $I = P/(4\pi r^2) = c(B_0)^2/(2\mu_0)$. Per tant, $r^2 = (\mu_0 P)/(c(B_0)^2 2\pi)$, d'on surt r = 1633 m
- **T6)** La intensitat inicial I_0 de la llum natural no polaritzada després de travessar el primer polaritzador es redueix a la meitat, $I_1 = I_0/2$ i surt polaritzada verticalment. Si després travessa un segon polaritzadors amb l'eix de transmissió paral·lel al del primer (vertical i formant un angle $\theta = 0$), el segon no filtrarà i la intensitat no variarà, tal com es dedueix a partir de la llei de Malus: $I_2 = I_1 \cos^2(\theta)$, que per $\theta = 0$ implica $I_2 = I_1 = I_0/2$. I, anàlogament, quan travessi el tercer polaritzador, la intensitat tampoc variarà i $I_3 = I_2 = I_1 = I_0/2$.
- **T7)** $n_1 \sin \theta_1 = n_2 \sin \theta_2 \to 1 \sin 30^\circ = n_2 \sin 20^\circ \to n_2 = \sin 30^\circ / \sin 20^\circ = 1.4619$ $v_2 = c/n_2 = 3 \cdot 10^8 / 1.4619 = 2.05 \cdot 10^8 \text{ m/s}.$
- T8) L'energia total continguda en un segment de longitud L és $\Delta U = P\Delta t$, on Δt és el temps que triga la llum en recórrer la longitud L, és a dir $\Delta t = L/c$, i $\Delta U = PL/c$. Per tant, tenint en compte que l'energia d'un fotó és $hf = hc/\lambda$, el nombre de fotons és $N = \Delta U/(hf) = \lambda \Delta U/(hc) = PL\lambda/(hc^2) = 65359$ fotons $\approx 65 \cdot 10^3$ fotons.
- **T9)** Aplicant la llei de la refracció a la transmissió aire-fibra, ha de ser $1 \sin \alpha = 1.5 \sin \beta \Rightarrow \beta \leq 9.94^{\circ}$, on hem dit β a l'angle amb que el raig incident es refracta. Per que la fibra funcioni correctament, s'ha de produir reflexió total a la superfície nucli-recobriment, per tant ha de ser $1.5 \sin(90^{\circ} 9.94^{\circ}) = n_2 \sin 90^{\circ}$ d'on s'obté $n_2 = 1.4775$.
- **T10)** Al llegir el DVD, en els esglaons s'ha de produir una interferència destructiva, per tant, la diferència de camins recorreguts ha de ser $2d = \lambda/2 = v/2f \Rightarrow d = v/4f$, essent v la velocitat de propagació en el policarbonat, és a dir v = c/n. Queda, per tant, $d = c/4fn = 0.12 \ \mu\text{m}$.