SLVS005J – JULY 1978 – REVISED JULY 1999 Перевод: Егоров А.В., 2012 г.

- Эквивалент полного температурного коэффициента ... 30 ppm/°C
- 0,2 W типовой выходной импеданс
- Выходной ток ... 1 100 mA
- Низкий выходной шум
- Настраиваемое выходное напряжение ... Vref - 36V
- Доступен в различных типах корпусов

Описание

Микросхемы TL431 и TL431A - это трёх выводные настраиваемые регуляторы шунта с температурной стабилизацией заданной прекрасно подходят для температурных диапазонов автомобильного, коммерческого и военного применения. Выходное напряжение может быть задано любым значением от Vref (примерно 2,5 V) до 36 V с помощью двух внешних резисторов (см. рис. 17). Эти чипы имеют типовой импеданс 0,2W. Схемы активного выхода С очень крутой характеристикой включения, делают эти чипы прекрасной Zenner (стабилитрон) заменой диодам множестве применений, таких как регуляторы на плате, перестраиваемые источники питания и коммутируемые источники питания.

Микросхемы TL431C и TL431AC предназначены для работы при температурах от 0°C до 70°C, а микросхемы TL431A и TL431AI для работы от –40°C до 85°C.

P OR PW PACKAGE (TOP VIEW)

NC - No internal connection

1 Доступные опции

T _A		Корпуса чипов							
	SMALL	PLASTIC	TO-226AA	PLASTIC	SOT-89	SHRINK	FORM		
	OUTLINE	FLANGE	(LP)	DIP	(PK)	SMALL	(Y)		
	(D)	MOUNT		(P)		OUTLINE			
		(KTP)				(PW)			
0°C - 70°C	TL431CD	TL431CKTPR	TL431CLP	TL431CP	TL431CPK	TL431CPW	TL431Y		
	TL431ACD		TL431ACLP	TL431ACP					
–40°C -	TL431ID		TL431ILP	TL431IP	TL431IPK				
85°C	TL431AID		TL431AILP	TL431AIP					

Корпуса D и LP доступны в кассете и в бобине. Корпуса KTP и PK доступны только в кассете и в бобине. Добавляется суффикс R к типу микросхемы (например, TL431CDR). Корпуса чипов тестируются при Ta = 25°C.

Символ

Функциональная схема

Эквивалентная схема*

*Все значения номинальные

TL431, TL431A Прецизионные настраиваемы регуляторы шунта

SLVS005J – JULY 1978 – REVISED JULY 1999 Перевод: Егоров А.В., 2012 г.

Абсолютный максимум рабочих характеристик*

Катодное напряжение, VKA (см. примечание 1) 37V Диапазон непрерывного катодного тока, IKA от -100 mA до 150 mA Диапазон обратного тока на входе от -50 mA до 10 mA

Полное тепловое сопротивление корпуса, qJA (см. примечание 2 и 3):

D 97°C/W, LP 156°C/W, KTP 28°C/W, P 127°C/W, PK 52°C/W, PW 149°C/W

Температура пайки 1,6 mm (1/16 inch) в случае для 10 секунд:

корпуса D, Р или PW 260°C

Температура пайки 1,6 mm (1/16 inch) в случае для 60 секунд:

корпуса LP или PK 300°C

Температура хранения, Tstg от –65°C до 150°C

*Нагрузки выше, чем представленные под надписью "абсолютный максимум рабочих характеристик", могут привести к повреждению микросхемы. Это является только диапазоном нагрузок, поэтому работа чипа в этих и других условиях, кроме описанных в "рекомендованных рабочих условиях", не разрешена. Приближение к условиям абсолютно максимальных рабочих характеристик может влиять на долговечность микросхемы.

Примечания:

- 1. Значение напряжения по отношению к выводу анода, если не указано другое.
- 2. Максимальное рассеивание мощности это функция TJ(max), qJA и TA. Максимально допустимое рассеяние мощности для любой допустимой температуры это PD = (TJ(max) TA)/qJA. Работа при абсолютно максимальной TJ (150°C) может влиять на долговечность.
- 3. Полное тепловое сопротивление считается в соответствие с JESD 51, за исключением корпусов со сквозными отверстиями, в которых используется нулевая длина.

Рекомендованные рабочие условия

		MIN	MAX	Ед. изм.
Катодное напряжение		Vref	36	V
Катодный ток		1	100	mA
Диапазон температур	TL431C, TL431AC	0	70	°C
	TL431I, TL431AI	-40	85	

Электрические характеристики по рекомендуемым режимам эксплуатации $T_A = 25$ °C (если другое не указано)

Параметр	Тест.	Тесто	овые условия	TL431C			Ед.изм
	цепь			MIN	TYP	MAX	
Vref	2	VKA = Vref, Ik	(A = 10 mA	2440	2495	2550	mV
Опорное напряжение							
V _I (dev)	2	VKA = Vref, Ik	KA = 10 mA,		4	25	mV
Отклонение опорного напряжения по полному температурному диапазону (см. рис. 1)		Т _А = полный д	циапазон*				
ΔVref/ΔVKA	3	IKA = 10 mA	ΔVKA = 10V - Vref		-1.4	-2.7	mV/V
Отношение изменения опорного напряжения к изменению катодного напряжения			$\Delta VKA = 36 V - 10 V$		-1	-2	
Iref	3	IKA = 10 mA6 R1 = 10 kΩ, R2 = ∞			2	3	μA
Опорный ток							
I _I (dev)	3	IKA = 10 mA6	$5 R1 = 10 k\Omega, R2 = \infty,$		0.4	1.2	μA
Отклонение опорного тока по полному температурному диапазону (см. рис. 1)		Т _А = полный д	циапазон*				
Imin	2	VKA = Vref			0.4	1	mA
Минимальный регулируемый ток катода							
loff	4	VKA = 36 V, Vref = 0			0.1	1	μA
Ток катода в выключенном состоянии							[]
ZKA	2	IKA = 1 mA - 100 mA, VKA = Vref,			0.2	0.5	Ω
Динамический импеданс (см. рис. 1)		f ≤ 1 kHz					1

^{*}Полный диапазон для TL431C это 0 .. 70°C

Параметры отклонения Vref(dev) и Iref(dev) определяются как разница между максимальным и минимальным значением, полученным на рекомендованном температурном диапазоне. Среднее арифметическое температурного коэффициента опорного напряжения (αVref) определяется так:

$$\left|\alpha_{\text{Vref}}\right| \begin{pmatrix} ppm \\ {}^{\circ}C \end{pmatrix} = \frac{\begin{pmatrix} V_{\text{I(dev)}} \\ \hline V_{\text{ref}} \text{ at } 25{}^{\circ}C \\ \hline \Delta T_{\text{A}} \end{pmatrix} \times 10^{6} \qquad \text{Minimum } V_{\text{ref}} = \frac{1}{200} \times 10^{6} \times 10$$

где:

ΔΤ_A - это рекомендованный температурный диапазон чипа.

 α Vref - может быть положительным и отрицательным в зависимости от того, минимальное или максимальное значение Vref было при минимальной температуре. Например: максимум Vref = 2496 mV при 30°C, минимум Vref = 2492 mV при 0°C, Vref = 2495 mV при 25°C, Δ T_A = 70°C для TL431C

$$\left|\alpha_{\text{Vref}}\right| = \frac{\left(\frac{4 \text{ mV}}{2495 \text{ mV}}\right) \times 10^6}{70^{\circ}\text{C}} \approx 23 \text{ ppm/}^{\circ}\text{C}$$

Поскольку минимум Vref произошёл при минимальной температуре, коэффициент положительный.

Подсчёт динамического импеданса

Динамический импеданс определяется как $|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$ Когда чил работост с

Когда чип работает с двумя внешними резисторами (см. рис. 3), общий динамический импеданс схемы получается следующим:

$$|z'| = \frac{\Delta V}{\Delta I} \approx \left| z_{KA} \right| \left(1 + \frac{R1}{R2} \right)$$

Рисунок 1. Подсчёт параметров отклонения и динамического импеданса

Электрические характеристики по рекомендуемым режимам эксплуатации $T_A = 25^{\circ}$ C (если другое не указано)

Параметр		Тест	овые условия	TL431I			Ед.изм
	цепь			MIN	TYP	MAX	
Vref	2	VKA = Vref, IKA = 10 mA		2440	2495	2550	mV
Опорное напряжение							
V _I (dev)	2	VKA = Vref, Ik	(A = 10 mA,		5	50	mV
Отклонение опорного напряжения по полному		Т _А = полный д	циапазон*				
температурному диапазону (см. рис. 1)							
ΔVref/ΔVKA	3	IKA = 10 mA	ΔVKA = 10V - Vref		-1.4	-2.7	mV/V
Отношение изменения опорного напряжения к			Δ VKA = 36 V – 10 V		-1	-2	
изменению катодного напряжения							
Iref	3	IKA = 10 mA6	$R1 = 10 \text{ k}\Omega, R2 = \infty$		2	4	μA
Опорный ток							
I _I (dev)	3	IKA = 10 mA6	$5 R1 = 10 k\Omega$, $R2 = \infty$,		8.0	2.5	μΑ
Отклонение опорного тока по полному		$T_A = полный \mu$	циапазон*				
температурному диапазону (см. рис. 1)							
Imin	2	VKA = Vref			0.4	1	mA
Минимальный регулируемый ток катода							
loff	4	VKA = 36 V, Vref = 0			0.1	1	μA
Ток катода в выключенном состоянии							
Z _{KA}	2	IKA = 1 mA - 1	100 mA, VKA = Vref,		0.2	0.5	Ω
Динамический импеданс (см. рис. 1)		f ≤ 1 kHz					

^{*}Полный диапазон для TL431I это -40°C .. 85°C

Электрические характеристики по рекомендуемым режимам эксплуатации $T_A = 25^{\circ}$ C (если другое не указано)

Параметр		Тесто	овые условия	TL431AC			Ед.изм
	цепь			MIN	TYP	MAX	
Vref	2	VKA = Vref, Ik	(A = 10 mA	2470	2495	2550	mV
Опорное напряжение							
V _I (dev)	2	VKA = Vref, Ik	(A = 10 mA,		4	25	mV
Отклонение опорного напряжения по полному температурному диапазону (см. рис. 1)		Т _А = полный д	циапазон*				
ΔVref/ΔVKA	3	IKA = 10 mA	ΔVKA = 10V - Vref		-1.4	-2.7	mV/V
Отношение изменения опорного напряжения к			$\Delta VKA = 36 V - 10 V$		-1	-2	
изменению катодного напряжения							
Iref	3	IKA = 10 mA6	R1 = 10 kΩ, R2 = ∞		2	4	μA
Опорный ток							
I _I (dev)	3	IKA = 10 mA6	$5 R1 = 10 k\Omega$, $R2 = \infty$,		0.8	1.2	μΑ
Отклонение опорного тока по полному		T _A = полный диапазон*					
температурному диапазону (см. рис. 1)							
lmin	2	VKA = Vref			0.4	0.6	mA
Минимальный регулируемый ток катода							
loff	4	VKA = 36 V, Vref = 0			0.1	0.5	μA
Ток катода в выключенном состоянии							
ZKA	2	IKA = 1 mA - 100 mA, VKA = Vref,			0.2	0.5	Ω
Динамический импеданс (см. рис. 1)		f≤1 kHz					

^{*}Полный диапазон для TL431AC это 0 .. 70°C

Электрические характеристики по рекомендуемым режимам эксплуатации $T_A = 25$ °C (если другое не указано)

Параметр	Тест.	Тесто	овые условия	TL431AI			Ед.изм
	цепь			MIN	TYP	MAX	
Vref	2	VKA = Vref, Ik	(A = 10 mA	2470	2495	2550	mV
Опорное напряжение							
V _I (dev)	2	VKA = Vref, Ik	A = 10 mA,		5	50	mV
Отклонение опорного напряжения по полному температурному диапазону (см. рис. 1)		Т _А = полный д	циапазон*				
ΔVref/ΔVKA	3	IKA = 10 mA	ΔVKA = 10V - Vref		-1.4	-2.7	mV/V
Отношение изменения опорного напряжения к изменению катодного напряжения			$\Delta VKA = 36 V - 10 V$		-1	-2	
Iref	3	IKA = 10 mA6 R1 = 10 kΩ, R2 = ∞			2	4	μA
Опорный ток							
I _I (dev)	3	IKA = 10 mA6	$\delta R1 = 10 k\Omega, R2 = \infty,$		8.0	2.5	μA
Отклонение опорного тока по полному температурному диапазону (см. рис. 1)		Т _А = полный д	циапазон*				
Imin	2	VKA = Vref			0.4	0.7	mA
Минимальный регулируемый ток катода	_				•	0	
loff	4	VKA = 36 V, Vref = 0			0.1	0.5	μA
Ток катода в выключенном состоянии		,					'
ZKA	2	IKA = 1 mA - 100 mA, VKA = Vref,			0.2	0.5	Ω
Динамический импеданс (см. рис. 1)		f ≤ 1 kHz					1

^{*}Полный диапазон для TL431AI это -40°C .. 85°C

Электрические характеристики по рекомендуемым режимам эксплуатации $T_A = 25$ °C (если другое не указано)

Параметр	Тест.	Тесто	овые условия		TL431Y		Ед.изм
·	цепь		•	MIN	TYP	MAX	1
Vref	2	VKA = Vref, IK	(A = 10 mA		2495		mV
Опорное напряжение							
ΔVref/ΔVKA	3	IKA = 10 mA	ΔVKA = 10V - Vref		-1.4		mV/V
Отношение изменения опорного напряжения к			$\Delta VKA = 36 V - 10 V$		-1		
изменению катодного напряжения							
Iref	3	IKA = 10 mA6 R1 = 10 kΩ, R2 = ∞			2		μA
Опорный ток							
Imin	2	VKA = Vref			0.4		mA
Минимальный регулируемый ток катода							
loff	4	VKA = 36 V, V	ref = 0		0.1		μA
Ток катода в выключенном состоянии							1
Z _{KA}	2	IKA = 1 mA - 1	100 mA, VKA = Vref,		0.2		Ω
Динамический импеданс* (см. рис. 1)		f ≤ 1 kHz					

^{*}Вычисление динамического импеданса:

Динамический импеданс определяется как $|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

Когда чип работает с двумя внешними резисторами (см. рис. 3), общий динамический импеданс схемы получается следующим:

$$|z'| = \frac{\Delta V}{\Delta I} \approx |z_{KA}| \left(1 + \frac{R1}{R2}\right)$$

Информация о вычислении параметров

Рисунок 2. Тестовая схема для V_{KA} = Vref

Рисунок 3. Тестовая схема для V_{KA} > Vref

Рисунок 4. Тестовая схема для loff

Перевод: Егоров А.В., 2012 г.

Типовые характеристики

Таблица 1. Графики

Название	Рис.
Входное опорное напряжение к температуре	5
Входной опорный ток к температуре	6
Катодный ток к катодному напряжению	7, 8
Катодный ток в выключенном состоянии к температуре	9
Отношение изменения опорного напряжения к изменению катодного	10
напряжения к температуре	
Эквивалент входного шумового напряжения к частоте	11
Эквивалент входного шумового напряжения за период 10 секунд	12
Усиление сигналов малого напряжения к частоте	13
Опорный импеданс к частоте	14
Отклик импульса	15
Граничное условие устойчивости	16

Таблица 2. Схемы применения TL431

Название	Рис.
Регулятор шунта	17
Компаратор с однополярным питанием и с порогом температурной компенсации	18
Прецизионный серийный сильноточный регулятор	19
Выходной контроль трёх выводного фиксированного регулятора	20
Сильноточный регулятор шунта	21
<u>Ломовая схема</u>	22
Прецизионный регулятор 5 V 1.5 A	23
Эффективный прецизионный регулятор 5 V	24
Конвертер широтно-импульной модуляции с базисом	25
Монитор напряжения	26
Таймер задержки	27
Прецизионный ограничитель тока	28
Прецизионный источник постоянного тока	29

Рис. 9. Катодный ток в выключенном состоянии к температуре

Рис. 10. Отношение изменения опорного напряжения к изменению катодного напряжения к температуре

Рис. 11. Эквивалент входного шумового напряжения к частоте

f - Frequency - Hz

Рис. 17. Регулятор шунта

A: R должен обеспечивать катодный ток ≥1 mA к TL431 при минимальном значении V_{I(BATT).}

Рис. 18. Компаратор с однополярным питанием и с порогом температурной компенсации

Рис. 19. Прецизионный серийный сильноточный регулятор

A: R должен обеспечивать катодный ток ≥1 mA к TL431 при минимальном значении $V_{I(BATT).}$

Рис. 21. Сильноточный регулятор шунта

Рис. 22. Ломовая схема

TL431, TL431A Прецизионные настраиваемы регуляторы шунта **SLVS005J – JULY 1978 – REVISED JULY 1999**

Перевод: Егоров А.В., 2012 г.

А: R3 и R4 должны обеспечивать катодный ток ≥1 mA к TL431 при заданном значении

Рис. 27. Таймер задержки

Рис. 28. Прецизионный ограничитель тока

