TD7 M1S2 Probabilité, Martingale et chaîne de Markov

On se place toujours dans le cadre d'une chaîne de Markov à valeurs dans un espace d'états E au plus dénombrable, et adaptée à sa filtration naturelle $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

7.1 Chaîne non homogène

Soit $(X)_{n\geq 0}$ une chaîne de Markov non homogène de transition $(Q_n)_{n\geq 0}$, montrer que la chaîne de Markov $(Y_n)_{n\geq 0}=((n,X_n))_{n\geq 0}$ à valeurs dans $\mathbb{N}\times E$ est homogène, et donner sa matrice de transition.

7.2 Chaîne à deux états

On considère une chaîne de Markov $(X_n)_{n\geq 0}$ à deux états $E=\{-1,1\}$, avec $\mathbb{P}(X_0=1)=1$, et dont la matrice de transition est

$$Q = \begin{pmatrix} \varepsilon & 1 - \varepsilon \\ 1 - \varepsilon & \varepsilon \end{pmatrix}, \ \varepsilon \in]0,1[.$$

- 1. Montrer que pour $n \ge 0$, on a $\mathbb{P}(X_n = (-1)^n) \ge 1 n\varepsilon$.
- 2. Calculer Q^n pour $n \ge 0$ et montrer que la loi de X_n tend vers la mesure uniforme sur $\{-1,1\}$ quand $n \to \infty$.

7.3 Matrice stochastique

Soient Q une matrice stochastique sur E au plus dénombrable, et $(X_n)_{n\geq 0}$ une chaîne de Markov de transition Q.

- 1. Soit $\ell \in \mathbb{N}$, montrer que $Q_{\ell} := Q^{\ell}$ est bien défini et est une matrice stochastique.
- 2. Le processus $(X_{n\ell})_{n\geq 0}$ est-il une chaîne de Markov ? Quelle est sa matrice de transition ?
- 3. Soit $X_0 \sim \mu$, montrer que, pour toute $f: E \to \mathbb{R}$ bornée,

$$\mathbb{E}_{\mu}(f(X_n)) = \mu Q^n f$$

où on interprète μ comme un vecteur ligne et f comme un vecteur colonne.

- 4. Montrer que Q admet 1 comme valeur propre.
- 5. Supposons dès lors que Q est de plus une matrice symétrique, et que E est fini, montrer que $\lambda_1 = 1$ est la plus grande valeur propre de Q.
- 6. Quand 1 est-elle valeur propre simple de Q?
 Indication : regarder la connexité du graphe dont l'ensemble de sommets est E et tel que {x,y} est une arête ssi Q(x,y) > 0.