

Limitations of Linear Control

 Assumption: roll and pitch angles, and all velocities are close to zero

Nonlinear Control

Control the robot at states far away from the equilibrium (hover) state

Trajectory Tracking

Commanded acceleration, calculated by the controller

$$r_T(t) = \begin{bmatrix} x^{des}(t) \\ y^{des}(t) \\ z^{des}(t) \\ \psi^{des}(t) \end{bmatrix}$$

$$u_1 = (\ddot{r}^{des} + K_v \mathbf{e}_{\dot{r}} + K_p \mathbf{e}_r + mg\mathbf{a}_3) \cdot \mathbf{Rb}_3$$

$$\mathbf{R}^{des}\mathbf{b}_3 = \frac{\mathbf{t}}{\|\mathbf{t}\|}$$
$$\psi = \psi^{des}$$

$$R^{des}$$
 $e_R(R^{des},R)$

$$\mathbf{u}_{2} = \omega \times \mathbf{I}\omega + \mathbf{I}\left(-K_{R}\mathbf{e}_{R} - K_{\omega}\mathbf{e}_{\omega}\right)$$

How to determine \mathbf{R}^{des} ?

You are given two pieces of information

$$\mathbf{R}^{des}\mathbf{b}_3 = rac{\mathbf{t}}{\|\mathbf{t}\|} \ \psi = \psi^{des}$$

You know that the rotation matrix has the form

$$\mathbf{R} = \begin{bmatrix} c\psi c\theta - s\phi s\psi s\theta & -c\phi s\psi & c\psi s\theta + c\theta s\phi s\psi \\ c\theta s\psi + c\psi s\phi s\theta & c\phi c\psi & s\psi s\theta - c\theta s\phi c\psi \\ -c\phi s\theta & s\phi & c\phi c\theta \end{bmatrix}$$

You should be able to find the roll and pitch angles.

How to calculate the error $\mathbf{e}_R(\mathbf{R}^{des}, \mathbf{R})$?

 Cannot simply take the difference of two rotation matrices

What is the magnitude of the rotation required to go from the current orientation to the desired orientation?

$$\mathbf{R} o \mathbf{R}^{des}$$

The required rotation is

$$\Delta R = \mathbf{R}^T \mathbf{R}^{des}$$

The angle and axis of rotation can be determined using Rodrigues formula

Stability

Large basin of attraction*

$$tr[I - (R^{des})^T R] < 2$$
 $\|e_{\omega}(0)\|^2 \le \frac{2}{\lambda_{min}(I)} k_R \left(1 - \frac{1}{2} tr \left[I - (R^{des})^T R\right]\right)$

*T. Lee, M. Leoky, and N. H. McClamroch, Geometric tracking control of a quadrotor UAV on SE(3), IEEE Conference on Decision and Control, 2010.

Smaller, safer ...

Recovery from mid air collisions

basin of attraction

D. Mellinger and V. Kumar, "Minimum Snap Trajectory Generation and Control for Quadrotors," *Proc. IEEE International Conference on Robotics and Automation*. Shanghai, China, May, 2011.

Y. Mulgaonkar, G. Cross and V. Kumar, "Design of small, safe and robust quadrotor swarms," in IEEE International Conference on Robotics and Automation (ICRA), Seattle WA, May 2015.

Sequential Composition

Trajectory Planning

Planar Quadrotor

Inputs

$$u_1 = F_2 + F_4$$

$$u_1, u_2$$

$$u_2 = (F_2 - F_4)L$$

$$\mathbf{q} = egin{bmatrix} y \ z \ \phi \end{bmatrix}$$

State

 $(\mathbf{q},\dot{\mathbf{q}})$

Equations of motion

$$\begin{bmatrix} \ddot{y} \\ \ddot{z} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix} + \begin{bmatrix} -\frac{1}{m}\sin\phi & 0 \\ \frac{1}{m}\cos\phi & 0 \\ 0 & \frac{1}{I_{xx}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Differential Flatness

All state variables and the inputs can be written as smooth functions of flat outputs and their derivatives (and the other way around)

Planar Quadrotor

Planar Quadrotor

The flat outputs and their derivatives can be written as a function of the state, the inputs, and their derivatives

Flat outputs State Input
$$\begin{bmatrix} y \\ z \end{bmatrix} \qquad \begin{bmatrix} y \\ z \\ \phi \\ \dot{y} \\ \dot{z} \end{bmatrix}$$

$$\begin{bmatrix} \ddot{y} \\ \ddot{z} \end{bmatrix} = \begin{bmatrix} -\frac{1}{m} \sin \phi \\ \frac{1}{m} \cos \phi \end{bmatrix} u_1$$

$$\begin{bmatrix} y^{(iii)} \\ z^{(iii)} \end{bmatrix} = \frac{1}{m} \begin{bmatrix} -u_1 \dot{\phi} \cos \phi - \dot{u}_1 \sin \phi \\ -u_1 \dot{\phi} \sin \phi + \dot{u}_1 \cos \phi \end{bmatrix}$$

$$\begin{bmatrix} y^{(iv)} \\ z^{(iv)} \end{bmatrix} = \frac{1}{m} \begin{bmatrix} -\sin \phi & -\frac{u_1}{I_{xx}} \cos \phi \\ \cos \phi & -\frac{u_1}{I_{xx}} \sin \phi \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ u_2 \end{bmatrix} + \frac{1}{m} \begin{bmatrix} -2\dot{u}_1 \dot{\phi} \cos \phi + u_1 \dot{\phi}^2 \sin \phi \\ -2\dot{u}_1 \dot{\phi} \sin \phi - u_1 \dot{\phi}^2 \cos \phi \end{bmatrix}$$
19

Planar Quadrotor

The state, the inputs, and their derivatives can be written as a function of the flat outputs and their derivatives

Flat outputs

State

Input

 $\begin{bmatrix} y \\ z \end{bmatrix}$

 $\begin{bmatrix} y \\ z \\ \phi \end{bmatrix}$

 $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

$$u_1 = m \left(\ddot{y}^2 + \ddot{z}^2 \right)$$
$$\phi = \operatorname{atan2} \left(-\frac{m\ddot{y}}{u_1}, \frac{m\ddot{z}}{u_1} \right)$$

$$u_1 = \dots$$

$$\dot{u}_1 = m(-y^{(iii)}\sin\phi + z^{(iii)}\cos\phi)$$

$$\phi = \dots$$

$$\dot{\phi} = \frac{-m}{u_1} \left(y^{(iii)} \cos \phi + z^{(iii)} \sin \phi \right)$$

$$u_2 = \dots$$

Differential Flatness

All state variables and the inputs can be written as smooth functions of flat outputs and their derivatives (and the other way around)

Planar Quadrotor

Diffeomorphism

Differential Flatness

All state variables and the inputs can be written as smooth functions of *flat outputs* and their derivatives

3-D Quadrotor

