BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Le cas du rectangle	2
2.	Le cas du parallélogramme	2
3.	Le cas du triangle	3

Date: 18 Janvier 2025.

1. LE CAS DU RECTANGLE

Fait 1. Considérons tous les rectangles de périmètre fixé p. Parmi tous ces rectangles, celui d'aire maximale est le carré de côté c = 0.25p.

Démonstration. Une preuve courante est d'exprimer l'aire du rectangle comme un polynôme du 2^e degré en L par exemple. On peut en fait faire plus simplement grâce au dessin suivant où les rectangles 1, 2 et 3 sont isométriques au rectangle vert étudié de dimension $L \times \ell$.

Le raisonnement tient alors aux constations suivantes accessibles à un collégien.

- (1) Le grand carré a un aire supérieure ou égale à $4L\ell$.
- (2) Le grand carré a un périmètre égal à $4(L + \ell)$.
- (3) Via une homothétie de rapport 0.5, nous obtenons un carré d'aire supérieure ou égale à $0.5^2 \times 4L\ell = L\ell$, et de périmètre égal à $0.5 \times 4(L+\ell) = 2(L+\ell)$.

Donc pour tout rectangle de périmètre $p=2(L+\ell)$ et d'aire $\mathscr{A}=L\ell$, nous pouvons construire un carré de périmètre identique, mais avec une aire supérieure ou égale à \mathscr{A} . Joli! Non? \square

Remarque 1.1. Au passage, nous avons pour $(L;\ell) \in (\mathbb{R}_+^*)^2$, $4L\ell \leq (L+\ell)^2$, c'est-à-dire $2L\ell \leq L^2 + \ell^2$, d'où $\sqrt{L\ell} \leq \sqrt{\frac{1}{2}(L^2 + \ell^2)}$, soit la comparaison des moyennes géométriques et quadratiques d'ordre 2.

2. LE CAS DU PARALLÉLOGRAMME

Fait 2. Considérons tous les parallélogrammes de périmètre fixé p. Parmi tous ces parallélogrammes, celui d'aire maximale est le carré de côté c = 0.25p.

 $D\acute{e}monstration$. Le calcul de l'aire d'un parallélogramme donne l'astuce : dans le dessin cidessous, nous avons Aire(ABCD) = Aire(ABHH') et $Perim(ABCD) \ge Perim(ABHH')$.

^{1.} L'aire est donnée par $L\ell=L(0.5p-L)$ qui est maximale en $L_M=0.25p$ (moyenne des racines), d'où $\ell_M=0.25p=L_M.$

Via une homothétie de rapport $k \geq 1$, nous obtenons un rectangle d'aire supérieure ou égale à Aire(ABCD), et de périmètre égal à p. Nous revenons à la situation du fait 1 qui permet de conclure.

Remarque 2.1. Une méthode analytique devient pénible ici, car il faut par exemple prendre en compte l'angle au sommet A du parallélogramme. L'auteur préfère battre en retraite en clôturant cette remarque ici.

3. Le cas du triangle

Fait 3. Considérons tous les triangles de périmètre fixé p. Parmi tous ces triangles, celui d'aire maximale est le triangle équilatéral de côté $c = \frac{1}{3}p$.

 $D\'{e}monstration$. Une première idée, calculatoire, est de passer via la classique formule de Héron $Aire = \sqrt{s(s-a)(s-b)(s-c)}$ où s=0.5p désigne le demi-périmètre, et les variables a,b et c les mesures des côtés du triangle. Comme l'aire est positive ou nulle, il suffit de chercher les maxima de $Aire^2 = s(s-a)(s-b)(s-c)$. La méthode des extrema liés s'appliquent ici, 2 mais il se trouve que l'on peut établir le fait 3 ci-dessus avec des raisonnements géométriques élémentaires. La petite astuce toute simple est de considérer le problème plus contraint exprimé dans le fait 4 donné plus bas, et qui permet de conclure comme suit.

- XXX
- XXX
- XXX

Fait 4. Considérons tous les triangles de périmètre fixé p et ayant tous au moins un côté de même mesure c. Parmi tous ces triangles, celui qui a une aire maximale est le triangle isocèle ayant une base de mesure c.

Démonstration. Soit ABC un triangle de périmètre p, et posons c = AB. Les points M sur la parallèle à (AB) passant C sont tels que Aire(ABM) = Aire(ABC). On note O le point sur cette parallèle tel que ABO soit isocèle en O.

^{2.} Nous devons trouver un éventuel maximum de $f(a;b;c)=\frac{1}{16}(a+b+c)(b+c-a)(a+c-b)(a+b-c)$ sous la contrainte 2s=a+b+c où s>0 est une constante. Notant g(a;b;c)=a+b+c-2s, la contrainte s'écrit g(a;b;c)=0. Selon la méthode des extrema liés, un éventuel maximum doit vérifier $\partial_a f=\lambda \partial_a g, \, \partial_b f=\lambda \partial_b g$ et $\partial_c f=\lambda \partial_c g$ pour un certain réel λ . Donc, $-s(s-b)(s-c)=-s(s-a)(s-c)=-s(s-a)(s-b)=\lambda$, puis (s-b)(s-c)=(s-a)(s-c)=(s-a)(s-b). Le cas s=a, s=b ou s=c donne f(a;b;c)=0 à chaque fois. Quant au cas $s\neq a, s\neq b$ et $s\neq c$, il n'est envisageable que si $a=b=c=\frac{p}{3}$ qui implique $f(a;b;c)=\frac{1}{16}p\left(\frac{p}{3}\right)^3>0$. En résumé, l'existence d'un maximum implique que ce maximum corresponde au cas du triangle équilatéral. Il reste à justifier qu'un tel maximum existe pour pouvoir conclure. Ceci est facile à justifier en considérant le compact $[0;s]^3$.

Via une petite symétrie axiale, voir ci-dessous, il est aisé de noter que $Perim(ABC) \ge Perim(ABO)$.

Via une dilatation verticale de rapport $r \geq 1$, on obtient finalement un triangle isocèle ABO' de périmètre p tel que $Aire(ABO') \geq Aire(ABC)$. Contrat rempli!

^{3.} Il est immédiat d'adapter les arguments de la méthode des extrema liés pour le triangle général au cas qui nous a occupé dans cette preuve.