Basis and Linear Independence

Jeremy Teitelbaum

Basis

A set of vectors in ${f R}^n$ (or in any vector space V) is called a **basis** if

- ightharpoonup it spans V
- it is linearly independent.

Examples: if A is an invertible $n \times n$ matrix, its columns are linearly independent and span \mathbf{R}^n and therefore are a basis for \mathbf{R}^n .

The vectors $1,x,x^2,\dots,x^n$ span the polynomials of degree at most n and are linearly indepenent.

The "standard vectors" e_i for $i=1,\ldots,n$ are a basis for \mathbf{R}^n .

Subspace basis

The vectors (1,3,2) and (-1,-1,0) are linearly indepedent and span a subspace H of ${\bf R}^3.$

Therefore they are a basis for H.

Every spanning set contains a basis

If a set S of vectors v_1,\dots,v_n spans a subspace H, then a subset of S is a basis.

Proof: If the vectors are linearly indepenent, they are already a basis.

If they are dependent, then one is a linear combination of the others. Remove that one from ${\cal S}.$ The result still spans.

Continue removing dependent vectors until the remaining vectors are independent, and you've found your basis.

A basis is a minimal spanning set

If H is a subspace of V, suppose you have a bunch of vectors in H.

Too many vectors makes them dependent. To few means they can't span. If they are a basis, there are enough to span, but not to become dependent.

Basis for Nul(A).

The null space of A is spanned by the vectors with weights given by the free variables in the row reduced from of A.

Those vectors are independent and therefore form a basis.

Basis for Col(A).

Given vectors v_1,\dots,v_k , make an $m\times k$ matrix with the v_i as columns.

To find a linear relation among the columns of A, we need to solve Ax=0.

But Ax=0 if and only if EAx=0 where E is an elementary matrix.

Put another way, row reduction doesn't change the x such that Ax=0.

So we can assume A is in row reduced echelon form.

More on basis for Col(A).

Once A is in row reduced form, we see that:

- the columns corresponding to free variables are linear combinations of the pivot columns
- the pivot columns are linearly independent.

Basis for Col(A).

The **columns of** A corresponding to the pivot columns in the row reduced version of A are a basis for the column space. (note that these are *not* the columns of the reduced matrix).

So: a basis for the null space is made up of k vectors where k is the number of free variables, and a basis for the column space is made up of r vectors where r is the number of pivot columns.

Notice that k+r=n where n is the total number of columns of A.

Example

Suppose that

$$A = \begin{bmatrix} 2 & 4 & 5 & 1 \\ 1 & -3 & -2 & 0 \\ 0 & -2 & -3 & 1 \end{bmatrix}$$

The row reduced form of A is

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Since the first three columns are pivot columns, the first three columns of A span the column space of A, and the last column satisfies $c_4=c_1+c_2-c_3$.

Example continued

The nullspace of ${\cal A}$ is the solution to the homogeneous system, and it is given by the equations

$$\begin{array}{rcl} x_1 & = & -x_4 \\ x_2 & = & -x_4 \\ x_3 & = & x_4 \end{array}$$

so the null space is spanned by

$$\begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Null Space and Col Space

1. Nul *A* is a subspace of \mathbb{R}^n .

Contrast Between Nul A and Col A for an $m \times n$ Matrix A

Nul A

2. Nul A is implicitly defined; that is, you are

given only a condition $(A\mathbf{x} = \mathbf{0})$ that vec-

tors in Nul A must satisfy.	
3. It takes time to find vectors in Nul A . Row operations on $\begin{bmatrix} A & 0 \end{bmatrix}$ are required.	It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
4. There is no obvious relation between Nul A and the entries in A .	4 . There is an obvious relation between Col <i>A</i> and the entries in <i>A</i> , since each column of <i>A</i> is in Col <i>A</i> .
5. A typical vector \mathbf{v} in Nul A has the property that $A\mathbf{v} = 0$.	5. A typical vector \mathbf{v} in Col A has the property that the equation $A\mathbf{x} = \mathbf{v}$ is consistent.
 Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av. 	6. Given a specific vector v, it may take time to tell if v is in Col A. Row operations on [A v] are required.
7. Nul $A = \{0\}$ if and only if the equation $A\mathbf{x} = 0$ has only the trivial solution.	7. Col $A = \mathbb{R}^m$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m .
8. Nul $A = \{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.	8 . Col $A = \mathbb{R}^m$ if and only if the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Col A

2. Col A is explicitly defined; that is, you are

told how to build vectors in Col A.

1. Col *A* is a subspace of \mathbb{R}^m .

Figure 1: Null Space vs Col Space