Cargas Pontuais:

- Campo elétrico
- Força elétrica
- Potencial elétrico
- Energia eletrostática

Campo Eléctrico

O campo eléctrico é um campo vectorial:

$$\vec{E}\left(x,y,z\right)=E_{\chi}\left(x,y,z\right)\hat{x}+E_{y}\left(x,y,z\right)\hat{y}+E_{z}\left(x,y,z\right)\hat{z}$$

Linhas de campo

- A tangente da linha de campo num ponto dá a direcção do campo nesse ponto.
- A densidade de linhas de campo numa região do espaço dá informação sobre a intensidade do campo nessa região.

Campo eléctrico criado por uma carga pontual

$$\vec{E} = \frac{1}{4\pi\,\varepsilon_0} \frac{Q}{r^2} \hat{r}$$

Permitividade eléctrica do vazio: $\varepsilon_0 \simeq 8,854 \times 10^{-12} \, Fm^{-1}$

Constante de Coulomb: $k = \frac{1}{4\pi\varepsilon_0} \approx 8,988 \times 10^9 \text{ N} \cdot \text{m}^2\text{C}^{-2}$

Campo eléctrico criado por uma carga pontual

Questões:

- 1. Calcule a intensidade do campo eléctrico criado por uma carga de 5 nC num ponto a 2 cm de distância e noutro ponto a 4 cm de distância. Compare os resultados obtidos.
- 2. Uma carga encontra-se sobre o eixo dos XX na posição 3 cm.
 - a) Calcule o campo eléctrico na posição 4 cm sobre o eixo dos XX.
 - ▶ b) Calcule o campo eléctrico na posição -2 cm sobre o eixo dos XX.
 - c) Calcule o campo eléctrico na posição 4 cm sobre o eixo dos YY.
 - d) Calcule o campo eléctrico na posição 2 cm sobre o eixo dos YY.

Campo eléctrico criado por
$$n$$
 cargas pontuais

Princípio da sobreposição: $\vec{E} = \vec{E}_1 + \vec{E}_2 + ... + \vec{E}_n$

Campo criado por duas cargas positivas iguais:

$$\vec{E}_{A} = \vec{E}_{B} + \vec{E}_{B} +$$

Campo eléctrico criado por n cargas pontuais

Princípio da sobreposição: $\vec{E} = \vec{E}_1 + \vec{E}_2 + ... + \vec{E}_n$

Campo eléctrico criado por *n* cargas pontuais

Questões:

- **1.** Considere num sistema de eixos ortonormado $f(\hat{x}, \hat{y}, \hat{z})$ a presença de uma carga pontual de valor $q_1 = 12 \ nC$ no ponto $\bar{P}_1 = (0 \ \hat{x} + 0 \ \hat{y} 5 \ \hat{z}) \ cm$ e de outra carga pontual de valor $q_2 = -q_1 = -12 \ nC$ no ponto $\bar{P}_2 = (0 \ \hat{x} + 0 \ \hat{y} + 5 \ \hat{z}) \ cm$. Chama-se a este sistema de duas cargas de valor simétrico um dipolo eléctrico.
 - **a)** Calcule o campo eléctrico no ponto \vec{P} 3= $(0\hat{x}+0\hat{y}+2\hat{z})$ cm.
 - **b**) Calcule o campo eléctrico no ponto \bar{p} 4= $(0\hat{x}+0\hat{y}-9\hat{z})$ cm.
 - c) Calcule o campo eléctrico no ponto \vec{p} 5= $(0\hat{x}+12\hat{y}+0\hat{z})$ cm.
- **2.** Uma carga $q_1 = 2 \, \text{nC}$ encontra-se na posição $\vec{r_1} = 0 \, \hat{i} + 0 \, \hat{j} + 0 \, \hat{k}$ (cm) e uma carga $q_2 = 8 \, \text{nC}$ encontra-se na posição $\vec{r_2} = 3 \, \hat{i} + 0 \, \hat{j} + 0 \, \hat{k}$ (cm).
 - a) Calcule o vector campo eléctrico criado pelas cargas na posição $\vec{r_3} = 0\hat{i} + 4\hat{j} + 0\hat{k}$ (cm).
 - b) Qual o ponto em que o campo eléctrico é nulo?
- 3. Uma carga q_1 = 10 nC encontra-se na origem e uma carga q_2 = 8 nC encontra-se na posição 3 cm sobre o eixo dos XX.
 - a) Calcule o vector campo eléctrico criado pelas cargas na posição $2\ cm$ sobre o eixo dos XX.
 - b) Qual o ponto onde o campo eléctrico é nulo?

Campo eléctrico criado por n cargas pontuais

Questões:

- **4.** Uma carga $q_1=2\,{\rm nC}$ encontra-se na origem e uma carga $q_2=-8\,{\rm nC}$ encontra-se na posição $\overline{r_i}=1,00\,\hat{x}$ (m).
 - a) Calcule o vector campo eléctrico gerado pelas duas cargas no ponto P, que se encontra na posição $\vec{r_p}=-2.00\,\hat{y}$ (m).
 - b) O campo eléctrico é nulo em que posição(ões)?
- 5. Quatro cargas, duas positivas e duas negativas, estão dispostas no vértice de um quadrado com 3 cm de lado como indica a figura. O módulo de cada carga é igual a 2 nC. Calcule o vector campo eléctrico gerado pelas quatro cargas no centro do quadrado (ponto O).

Lei de Coulomb

Lei de Coulomb (1785)

Balança de torção de Coulomb

http://www.youtube.com/watch?v=w-24elwtSbk

Lei de Coulomb

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2} \hat{r}$$

$$|\overrightarrow{F_{0-q}}| = |\overrightarrow{F_{q-Q}}| = k \frac{|q \times Q|}{r^2}$$

$$\overrightarrow{F_{12}} = \frac{1}{4 \pi \varepsilon_0} \frac{q_1 \ q_2}{r_{12}^2} \hat{r}_{12}$$

$$\overrightarrow{F_{21}} = \frac{1}{4 \pi \varepsilon_0} \frac{q_2 \ q_1}{r_{21}^2} \hat{r}_{21}$$

3ª Lei de Newton

$$\overrightarrow{F_{12}} = -\overrightarrow{F_{21}}$$

Cargas do mesmo sinal repelem-se. Cargas de sinal oposto atraem-se.

Lei de Coulomb

$$\overrightarrow{F_{12}} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 \ q_2}{r_{12}^2} \, \hat{r}_{12}$$

$$\overrightarrow{F_{21}} = \frac{1}{4\pi \,\varepsilon_0} \frac{q_2 \, q_1}{r_{21}^2} \,\hat{r}_{21}$$

Relação com o campo eléctrico:

$$\overrightarrow{F_{12}} = q_2 \overrightarrow{E_1}$$

$$\overrightarrow{F_{21}} = q_1 \overrightarrow{E_2}$$

Lei de Coulomb

Princípio da sobreposição:

$$\vec{F} = \vec{F}_1 + \vec{F}_2$$

$$\overrightarrow{F_3} = q_3 \overrightarrow{E_t} = q_3 (\overrightarrow{E_1} + \overrightarrow{E_2})$$

Potencial eléctrico

$$\vec{E} = -\vec{\nabla}V$$

$$\vec{E} = -\vec{\nabla}V \qquad V = -\int \vec{E} \bullet \overrightarrow{dr}$$

Para uma carga pontual:

$$V = \frac{1}{4\pi\,\varepsilon_0} \frac{q}{r} + C$$

$$C = V_{\infty}$$

Para n cargas pontuais (Princípio da sobreposição):

$$V = V_1 + V_2 + \dots + V_n$$

Energia electrostática

$$U = -\int \vec{F} \bullet \overrightarrow{dr}$$

Para duas cargas pontuais:

$$U_{12} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r_{12}} + C \qquad C = U_{\infty}$$

$$U_{12} = V_1 q_2 + C = V_2 q_1 + C$$

Para 3 cargas pontuais (Princípio da sobreposição):

$$U = U_{12} + U_{13} + U_{23}$$

Para 4 cargas pontuais (Princípio da sobreposição):

$$U = U_{12} + U_{13} + U_{23} + U_{14} + U_{24} + U_{34}$$