# Learning the CBGM by Design

Greek Paul Project Webinar 28 April 2022

## **Joey McCollum**

Australian Catholic University Institute for Religion and Critical Inquiry

🔽 james.mccollum@myacu.edu.au

@jamesjmccollum

jjmccollum





- Developed over thirty years by Gerd Mink, culminating in the latest updates to the Editio Critica Maior (ECM)
- Important reading:
  - Gerd Mink, "Problems of a Highly Contaminated Tradition: The New Testament. Stemmata of Variants as a Source of a Genealogy for Witnesses," in *Studies in Stemmatology II*, ed. Pieter van Reenen, August den Hollander, and Margot van Mulken (Amsterdam: John Benjamins Publishing, 2004), 13–85
  - Peter J. Gurry, A Critical Examination of the Coherence-Based Genealogical Method in New Testament Textual Criticism, NTTSD 55 (Leiden: Brill, 2017)
  - Tommy Wasserman and Peter J. Gurry, A New Approach to Textual Criticism: An Introduction to the Coherence-Based Genealogical Method, RBS 80 (Atlanta, GA: SBL Press, 2017)
  - Andrew Charles Edmondson, "An Analysis of the Coherence-Based Genealogical Method Using Phylogenetics," (PhD diss., University of Birmingham, 2019), https://etheses.bham.ac.uk/id/eprint/9150/



• Intended to solve *contamination*, or mixture across branches of the textual tradition





- Methodological assumptions:
  - 1. Scribes typically copied their exemplars with fidelity.
  - 2. If a scribe introduced a variant, then it came from some other reading.
  - 3. Scribes typically used fewer sources rather than many.
  - 4. Scribes typically used closely related sources rather than distant ones.



- Not a new methodology for evaluating variant readings, but a "meta-approach" to be used on top of existing methods
- Not a way to make computers do textual criticism, but a way for them to help us refine human judgments



• "Iterative workflow" highlighted in blue





- To compare manuscripts' texts, we must first align them at independent variation units
- Variant readings occur at variation units



(Source: Swanson, New Testament Greek Manuscripts, Luke, 183)



- Variation units serve as our points of comparison between witnesses in the CBGM
- Think of them as the columns of a table and the witnesses as rows

|         | 3Jo 1:1/2 | 3Jo 1:1/6 | 3Jo 1:1/8 | <br>3Jo 1:15/23 |
|---------|-----------|-----------|-----------|-----------------|
| GA 69   | a         | afl       | a         | <br>a           |
| GA 1739 | a         | a         | b         | <br>a           |
| GA 2243 | b         | a         | a         | <br>a           |



This is readily encoded in TEI XML format

```
<?xml version='1.0' encoding='UTF-8'?>
<TEI xmlns="http://www.tei-c.org/ns/1.0">
               <title>A collation of Luke 10:2 in Swanson</title>
                Swanson, Reuben J., ed. <emph>New Testament Greek Manuscripts: Variant
    <text xml:lang="GRC">
            <div type="book" n="B03">
                <div type="chapter" n="B03K10">
                            <rdg n="1" wit="f13"><w>ελεγεν</w></rdg>
                            <rdg n="1-f1" type="defective" wit="P75">
                            <rde n="2" wit="f1"><w>ειπεν</w></rde>
```



```
έλεγεν
        B & C 1071 uw
        D75
-λεγεν
ἔλεγεν
έλεγεν
ἔλεγεν
       YKSII 28 565 τ
ἔλεγεν
       I. 124 579
ἔλεγεν
έλεγεν Ω
είπεν
έλεγεν f13
έλεγεν
        33
έλεγεν
       157
έλεγεν 700
                  [↓1424
έλεγεν ΜΜΝ UW ΓΔΛΨ2
```

## **The Local Stemma**



- The basic unit of comparison
- One for each variation unit
- A graphical representation of our judgments of readings
- Kurt Aland's "local genealogical" principle



#### **The Local Stemma**



- Some are more complicated
  - defective readings (e.g., misspellings, reconstructions)
  - orthographic readings (e.g., regional differences)
  - split attestations of the same reading (coincidental agreement)
  - ambiguous readings (can be reconstructed as more than one reading)
- Some of these may be collapsed with other substantive readings



• Computationally, just a directed graph.



```
graph type="directed">
  <node n="a" />
  <node n="af" />
  <node n="b" />
  <node n="c" />
  <node n="d" />
  <node n="d2" />
  <node n="zw-a/b" />
  <arc from="a" to="af" />
  <arc from="a" to="b" />
  <arc from="a" to="c" />
  <arc from="a" to="d" />
  <arc from="a" to="zw-a/b" /:</pre>
  <arc from="b" to="zw-a/b" /:</pre>
```

## **The Local Stemma**



- Relationships between readings are determined by checking for a path between them
- a = b: path of length 0
- a > b: path of length > 0 from a to b
- NOREL: no path from a to b, but both have a common ancestor
- UNCL: same as NOREL, but no common ancestor (reserved for when we don't know where a reading fits in the stemma)





- For the CBGM's purposes, a witness is a sequence of readings
- Typically, the *text* of a known manuscript, minus the material baggage (date, provenance, etc.)
  - "How texts relate" \( \neq \) "How manuscripts relate"

|         | 3Jo 1:1/2 | 3Jo 1:1/6 | 3Jo 1:1/8 | <br>3Jo 1:15/23 |
|---------|-----------|-----------|-----------|-----------------|
| GA 69   | a         | afl       | a         | <br>a           |
| GA 1739 | a         | a         | b         | <br>a           |
| GA 2243 | b         | a         | a         | <br>a           |



- Versions and fathers can also be treated as witnesses
- But back-translation may be ambiguous, and patristic citations may be "lacunose"



# **Genealogical Relationships**



• The relationship of two witnesses is the overall pattern *of the relationships of their readings* at all variation units where both are extant



# **Genealogical Relationships**



- We say that one reading *explains* another if
  - it is the same reading (explanation by agreement), or
  - there is an edge in the local stemma from it to the other reading



- Lacunae do not have to be explained, and they cannot explain readings
- The *cost* of a genealogical relationship is the number of explained readings that are not agreements (so the cost in the example above is 2)

# **Genealogical Relationships**



It is convenient to encode genealogical relationships with *bit-arrays* 



• Potential ancestor = "more prior than posterior readings"



#### **Textual Flow at a Variation Unit**



- Textual flow is a tool for helping us revise our judgments in a local stemma
- Not a global stemma (our ultimate goal), but still important







- How do we find a given witness's *textual flow ancestor*?
- We specify a connectivity limit κ (i.e., a radius of "close-enough" neighbors)
- Then, for each witness:
  - 1. List its potential ancestors, sorted from most agreement to least
  - 2. If one of the first  $\kappa$  has the same reading at this unit, then select it
  - 3. If not, then choose the first (non-lacunose) potential ancestor
- Core idea: use *general relationships* (between witnesses) to find *specific relationships* (between readings in a local stemma)



 Often, we just want to know the textual flow for witnesses with a specific reading



• (Numbers on edges represent the rank of the closest potential ancestor with the same reading, if it's not 1)

# **Textual Flow for a Variant Reading**



• We can use it to evaluate alternate hypotheses about the initial text (A)









# **Textual Flow for a Variant Reading**



 Or, we can look only at the parts of textual flow where a reading gets changed to find the most likely sources of unexplained readings (e and f)



# **Textual Flow for a Variant Reading**







- Between coherence (a form of external evidence) and internal evidence, we can attempt to explain previous unexplained readings
- A necessary step for our ultimate goal of constructing a global stemma



# The Substemma(ta) of a Witness



- The *substemma* of a witness is the portion of the global stemma consisting of the witness and its ancestors in the stemma
- Requirement: *every* extant reading in the witness must be explained by a reading in at least one of its ancestors

| Explained by GA 1832 | ••• | X        | > | > | <b>✓</b> |  |
|----------------------|-----|----------|---|---|----------|--|
| Explained by GA 2544 | ••• | ✓        | X | X | ✓        |  |
| Explained by Either  | ••• | <b>√</b> | ✓ | ✓ | ✓        |  |





- A witness may have multiple valid substemma (i.e., ones that explain all
  of its readings), but some are better than others
- Two of the CBGM's methodological assumptions are important here:
  - 3. Scribes typically used fewer sources rather than many.
  - 4. Scribes typically used closely related sources rather than distant ones.



# The Substemma(ta) of a Witness



- Based on assumption 3, we should prefer substemmata with fewer ancestors ("parsimony")
- Based on assumption 4, we should prefer substemmata with ancestors that agree as often as possible with the witness
- A balancing act: the substemma {L938} is more parsimonious, but may not explain as many readings by agreement



# The Substemma(ta) of a Witness



 A simple cost function for each ancestor is "the number of variation units where the ancestor explains the witness by descent and not agreement"



# Finding a (Good) Substemma



- ullet Also called  $substemma\ optimization$
- For n potential ancestors, a *weighted set cover* problem with n sets (and  $2^n-1$  combinations to check!)

| Substemma | Variation | Cost |   |   |         |
|-----------|-----------|------|---|---|---------|
| {A}       | 1         | 1    | 1 | 1 | 4       |
| {B}       | <b>✓</b>  | 1    | Х | Х | 1       |
| {C}       | Х         | 1    | 1 | 1 | 2       |
| {A, B}    | ✓         | 1    | 1 | 1 | 4+1=5   |
| {A, C}    | ✓         | 1    | 1 | 1 | 4+2=6   |
| {B, C}    | 1         | 1    | 1 | 1 | 1+2=3   |
| {A, B, C} | <b>√</b>  | ✓    | 1 | 1 | 1+2+4=7 |

# Finding a (Good) Substemma





- If a witness has many potential ancestors, then checking all  $2^n 1$  possible substemmata by brute force is prohibitive
- The branch-and-bound heuristic (pictured left) finds all minimum-cost substemmata quickly in practice
- Easily adapted to find all substemmata within a given cost



- Just as the local stemma relates readings, the global stemma relates witnesses
- Combination of all substemmata into a single graph



## The Global Stemma



- But every reading in every local stemma except the initial one must be explained by another reading
- Otherwise...





## The Global Stemma



• If we "complete" every local stemma (and ignore or manually account for super fragmentary witnesses) ...







- How is this different than a textual flow diagram?
  - · A witness can have more than one ancestor
  - All readings in a witness must be explained by readings in its ancestor(s)
  - More computationally intensive, so takes a bit longer to produce

\*Field trip\*



- The open-cbgm library (my implementation of the CBGM, based on these principles) is freely available at https://github.com/jjmccollum/open-cbgm, and the standalone command-line utility is available at https://github.com/jjmccollum/open-cbgm-standalone
  - Supported on Windows, Mac, and Linux
- The INTF's official implementation (using a Docker container) is now also available (download and instructions at http://ntvmr.uni-muenster .de/intfblog/-/blogs/download-the-cbgm-docker-container)



- Carlson, Stephen C. "A Bias at the Heart of the Coherence-Based Genealogical Method (CBGM)." *JBL* 139.2 (2020): 319–40.
- Edmondson, Andrew Charles. "An Analysis of the Coherence-Based Genealogical Method Using Phylogenetics." PhD diss., University of Birmingham, 2019. https://etheses.bham.ac.uk/id/eprint/9150/.
- Gurry, Peter. "The Harklean Syriac and the Development of the Byzantine Text: A Historical Test for the Coherence-Based Genealogical Method (CBGM)." *NovT* 60.2 (2018): 358–75.
- Gurry, Peter J. A Critical Examination of the Coherence-Based Genealogical Method in New Testament Textual Criticism. NTTSD 55. Leiden: Brill, 2017.
- Jongkind, Dirk. "On the Nature and Limitations of the Coherence Based Genealogical Method." Paper presented at the Annual Meeting of the Society of Biblical Literature. San Diego, CA, 22 November 2014.
- McCollum, Joey. "Biclustering Readings and Manuscripts via Non-negative Matrix Factorization, with Application to the Text of Jude." *AUSS* 57.1 (2019): 61–89. https://digitalcommons.andrews.edu/auss/vol57/iss1/6/.

# **Bibliography**



- McCollum, Joey. "Luke 9,35 and the Power of Polygenesis." *FilNeot* 33.53 (2020): 51–94.
- ------. "The open-cbgm Library: Design and Demonstration." Paper presented at the Annual Meeting of the Society of Biblical Literature. Boston, MA, 9 December 2020.
- -----. "The Text and Margin of Gregory-Aland 274." *TC* 26 (2021): 47–131.
- Mink, Gerd. "Problems of a Highly Contaminated Tradition: The New Testament. Stemmata of Variants as a Source of a Genealogy for Witnesses." Pages 13–85 in *Studies in Stemmatology II*. Edited by Pieter van Reenen, August den Hollander, and Margot van Mulken. Amsterdam: John Benjamins Publishing, 2004.
- Swanson, Reuben J., ed. New Testament Greek Manuscripts: Variant Readings Arranged in Horizontal Lines against Codex Vaticanus. Luke. Sheffield: Sheffield Academic Press, 1995.
- Wasserman, Tommy, and Peter J. Gurry. A New Approach to Textual Criticism: An Introduction to the Coherence-Based Genealogical Method. RBS 80. Atlanta, GA: SBL Press, 2017.