This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

R, M, n - как в формуле I;

 $X = H, Br, SO_3M;$ R = H, Ar;

R'- H, Hal, Alk, OAlk, NHPh, OPh;

M - катион, n = 2-4.

(21) 95117403/04 (22) 06.10.95

(13) A

(51) 6 G 02 B 5/30, C 09 B 1/34, 1/48, 3/14, 3/50, 5/28, 5/48, 29/01, 33/02, 57/12

(72) Хан И.Г., Бобров Ю.А., Игнатов л.я.

(71) Хан Ир Гвон

(54) МАТЕРИАЛ ДЛЯ ДИХРОИЧНЫХ ПОЛЯРИЗАТОРОВ СВЕТА

(57) 1. Материал для дихроичных поляризаторов света (ДПС), включающий в качестве пленкообразующей компоненты органический краситель, способный к образованию жидкокристаллической фазы, антиоксидант, и/или ингибитор, и/или поверхностно-активное вещество, растворитель, отличающееся тем, что в качестве пленкообразующей компоненты содержит органический краситель формулы (I-XXXIV) или их смесь: .

$$\begin{bmatrix} R & O & \\ & & & \\$$

R = H, Br, NHAr, -NH O

M - катион, n = 2-4;

М - катион, п = 2-4;

(SO₃M)

R = H, NHCOPh;

R, M, n - как в формуле I;

R, R' = H, Hal, Alk, OAlk, ArNH, OPh: М - катион, п = 2-4;

R, R', M, n - как в формуле V;

R, R', M, п - как в формуле V;

R = H, OH, OCH₃; М - катион, n = 2-4

R, M, n - как в формуле IX

R, M, n - как в формуле V

R, M, n- как в формуле I;

X = H, Br, SO₃M: R = H, Ar; R'= H, Hal, Alк. **ОА**4. M - катион, n = **2.4**

X = H, Br; R = H, Alκ, Ar; R'. π' Α' = Hal, CH₃SO₄. Color n = 2-3;

R', R", A - как в форми $R = CH_3$, C_2H_5 ; X^1 , X^2 , $X^3 = H$, Cl, NO_3

$$R = H, CH_3O;$$

 $R' = CH_3, C_2H_5, Ar;$
 $R' = C_2H_5, C_2H_4OH;$
 $A' = \kappa \alpha \kappa B \phi \rho \rho \rho \gamma \rho \sigma \kappa V^*$

 $X = COOM, PO(OM)_2;$

M. ILI

C₂H₅; n = 0-1;

XX

• формуле XV;

XXI

$$R' \xrightarrow{R'} N-R \sim 0$$

$$R' \times XXII$$

$$R = \begin{pmatrix} Y & Y & Y \\ - & & & \\ 0 & & \\ 0 & & \\$$

X — O, CH₂, NH, CONH, CH-CH; Y — H, CH₃, CH₃O, COOM, SO₃M; R' — H, NO₂, COOM, SO₃M; M - катион;

R' - как в формуле XXII;

R - как в формуле XXII;

Y = H, SO_3M ;

Y - как в формуле XXV;

R - как в формуле XXII;

У - как в формуле XXV;

R, M - как в формуле XXII; R' , R" = OH, NH₂, ~A=R~ XXXI

R - как в формуле XXII;

$$A = \begin{array}{c} O & HN - \\ -NH & O & HN - \\ -NH & O & HN - \\ \end{array}$$

R - как в формуле XXII, A - как в формуле XXXI

М - катион $R^0 = H, CH_3; X, X'.$ R, R', R"- как и 🚓 также (CH₂)_п, п а также дополнительно с фицирующую добавку ж содержании компонентов, Пленкообразующий компонент - органический краситель формулы 1-XXXIV или их смесь 2 Антиоксидант 0,01-И/или ингибиторы И/или поверхностно-ак тивное вещество Модифицирующая цая до-0,01- 20, бавка , Растворитель 911130 2. Материал по п. 1. тем, что в качестве мателя добавки используют низколекулярные органические стем держащие группы ОН, СО, CONH₂, CHO. 3. Материал по п. 1. тем, что в качестве можно добавки используют кремина соединения. 4. Материал по п. 1.; тем, что в качестве модельных добавки используют жилилися ские полимеры. (21) 95122279/28

(22) 18.09.95 (51) 6 G 02 B 6/36 (31) 019075 (32) 18.02.93 (86) PCT/US 94/00572 (18展課 (72) Кубусиян Нуран Х.(Сф. Гордон Д.(US), Лин Никова Стендер Марк Т.(US) (71) Миннесота Майнинг фекчуринг Компани (US) (74) Безрукова О.М. (54) НЕСЪЕМНАЯ МОДУЛЬВ ЛОКОННО-ОПТИЧЕСКАЯ С ТЕЛЬНАЯ СИСТЕМА (57) 1. Сборочный узел воления ческого соединителя, содержжения корпус соединителя с первым ж концами, предназначенный же ния нескольких оболочек стер наконечник, устройство фикация нечника, имеющее первый концы, при этом первый кожий начен для установки наконта второй конец выполнен с возый размещения в первом конти соединителя и снабжен средств ления устройства фиксации изме в корпусе соединителя, срежи смещения устройства фиксация 😹 ника к первому концу корпуса @ теля, средство обжима для эпо усиливающих элементов волочачи ческого кабеля на втором кожем соединителя. 2. Сборочный узел волокожей ского соединителя по п. 1, отлича тем, что вторые концы устром

сации и корпуса соединителя разпа

ны приблизительно в одной плов

2403/P411

- (21) 95117403/04
- (22) October 6, 1995
- (51) 6 G 02 B 5/30, C 09 B 1/34, 1/48, 3/14, 3/50, 5/28, 5/48, 29/01, 33/02, 57/12
- (72) Khan I.G., Bobrov Yu.A., and Ignatov L.Ya.
- (71) Khan Ir Gwon
- (54) MATERIAL FOR DICHROIC LIGHT POLARIZERS
- (57) 1. A material for dichroic light polarizers (DLP), comprising as a film-forming component an organic dye able to form a liquid-crystal phase, an antioxidant and/or inhibitor, and/or a surfactant, a solvent, characterized in that as the film-forming component it comprises an organic dye of formula (I-XXXIV) or a mixture thereof:

$$R = H, Br, NHAr, -NH O$$

M is a cation, n = 2-4;

M is a cation, n = 2-4;

R = H, NHCOPh;

$$\begin{array}{c|c} R & O \\ \hline & O$$

R, M, n are as in formula I;

R, R' = H, Hal, Alk, OAlk, ArNH, OPh;

M is a cation, n = 2-4;

R, R', M, n are as in formula V;

R, R', M, n are as in formula V;

X = NH, S;

R = H, Alk;

M is a cation, n = 1-3;

R = H, OH, OCH₃;

M is a cation, n = 2-4

R, M, n are as in formula IX

$$\begin{bmatrix} C_1 & C_1 & MH \\ -1 &$$

R, M, n are as in formula ${\tt V}$

R, M, n are as in formula I;

[For particulars concerning formulas XIII—XXI, please, see pp. 240—241 of the Russian original].

X = O, CH_2 , CONH, CH=CH;

Y = H, CH_3 , CH_3O , COOM, SO_3M ;

R' = H, NO_2 , COOM; SO_3M ;

M is a cation;

R' is as in formula XXII;

R is as in formula XXII;

Y = H, SO_3M ;

M is a cation;

R is as in formula XXII;

Y is as in formula XXV;

R is as in formula XXII;

Y is as in formula XXV;

R, M are as in formula XXII;

R', R'' = OH, NH_2

~A=R~

R is as in formula XXII;

$$A = \begin{array}{c} 0 & HN - \\ -NH & 0 & HN - \\ -NH & 0 & HN - \\ \end{array}$$

R is as in formula XXII, A is as in formula XXXI

A, B, C =
$$\begin{array}{c} -NH & O \\ RNH & O \\ a) \end{array}$$

$$R^3 = H$$
, Br, SO_3 ;
X = H, SO_3M ;

M is a cation

 $R^0 = H$, CH, CH_3 ; X, X', X'' = ...

R, R', R" are as in formula XXII, as well as $(CH_2)_n$, n=2-4; and also additionally a modifying additive, with the content of the components being as follows (in % by weight):

- 2. A material according to claim 1, characterized in that low- and high-molecular organic compounds containing OH, CO,..., CONH₂, CHO groups are used as the modifying additive.
- 3. A material according to claim 1, characterized in that organosilicon compounds are used as the modifying additive.
- 4. A material according to claim 1, characterized in that liquid-crystal polymers are used as the modifying additive.