Análise das evidências da matéria escura: perfis de densidade em curvas de rotação galácticas

Sérgio Eduardo Laranjeira

Orientador: Armando Bernui

Observatório Nacional

07/07/2017

Estrutura da apresentação

- Introdução
 - Preâmbulo
 - Objetivo
 - Breve Histórico

Estrutura da apresentação

- Introdução
 - Preâmbulo
 - Objetivo
 - Breve Histórico
- Desenvolvimento
 - Base de dados
 - Metodologia
 - Apresentação dos Perfis
 - Critério estatístico (χ²)

Estrutura da apresentação

- Introdução
 - Preâmbulo
 - Objetivo
 - Breve Histórico
- Desenvolvimento
 - Base de dados
 - Metodologia
 - Apresentação dos Perfis
 - Critério estatístico (χ²)
- Conclusão
 - Curvas Produzidas
 - Análise dos Resultados
 - Perspectivas

Visão Geral

- \bullet Dados observacionais recentes sugerem que, do conteúdo total do Universo, $\approx 24\%$ encontra-se sob a forma da chamada Matéria Escura (ME).
- Estruturas galácticas são fontes importantes de estudo. Sua presença influencia tanto seu processo formativo quanto seu histórico evolutivo.
- Medidas fotométricas do componente luminoso de uma galáxia revelam a distribuição de matéria bariônica e derivar-se a cinemática do sistema usando as leis de Newton.
- No entanto, é conhecido um forte desacordo com aquela obtida via espectroscopia

Figura: Créditos: ESA/Planck2015

Visão Geral

 $\mbox{Medidas fotométricas} \rightarrow \mbox{Componente luminoso} \rightarrow \mbox{distribuição de massa} \rightarrow \mbox{Leis de Newton} \rightarrow \mbox{Curvas de rotação (CR)}$

$$\neq$$

Curvas de rotação \leftarrow Medidas espectroscópicas \leftarrow Efeito Doppler \leftarrow Desvio das linhas espectrais

Figura: http://sitn.hms.harvard.edu/flash/2016/galactic-rotation-curves-revisited. Créditos: Gemini Observatory

Resumo do trabalho

- Estamos interessados em estudar observáveis cosmológicos indicadores da presença de ME no Universo.
- Evidências indicam que as galáxias possuem um halo composto de ME.
 Estudamos sua influência na cinemática de seus componentes.
- Especificamente, vamos analisar as CR de estrelas e nuvens de gás HI ao redor de galáxias espirais.
- Assumimos dois dos perfis de distribuição de densidade de ME conhecidos, sendo Navarro-Frenk-White (NFW) e Pseudo Esfera Isotérmica (PSE), a velocidade de rotação do halo galáctico pode ser confrontada às obtidas via espectroscopia.
- Fazemos esse teste para modelos puramente bariônico, bariônico+NFW e bariônico+PSE, utilizando uma amostra cuidadosamente escolhida composta por 18 galáxias.

Breve Histórico

- F. Zwikky 1933 estudou a dinâmica de galáxias no aglomerado de Coma e introduziu a idéia da ME.
- Percebeu que as órbitas das galáxias, em torno do centro do aglomerado, possuiam velocidades superiores à velocidade de escape do sistema.
- Deveria ali estar contido uma quantidade de massa muito maior (não detectável diretamente dada a não interação com radiação) do que previsões teóricas estimavam.
- No entanto, essa questão permaneceu fora dos debates até que ressurgiu no final da década de 70, com a pesquisadora Vera Rubin em seu famoso artigo de 1980 (Rubin et al.; 1980) sobre a velocidade de rotação de estrelas em galáxias espirais. Mostrando assim, que a velocidade orbital das estrelas é basicamente constante ao longo do raio galáctico.
- Requer-se desta forma a existência de um vasto halo de matéria escura que englobe todo o sistema[4].

Breve Histórico

Figura: À esquerda, https://alchetron.com/Fritz-Zwicky-1315677-W. À direita, http://mulheresnaciencia-mc.blogspot.com.br/2013/02/vera-rubin.html

Base de Dados

- Dados fotométricos e espectroscópicos das galáxias amostradas serão usados para estudar suas respectivas CR.
- Dispomos de 18 galáxias espirais, sendo 9 de alto brilho superficial (em inglês, High Surface Brightness, HSB) e 9 de baixo brilho superficial (em ingles, Low Surface Brightness, LSB), para as quais temos informações sobre as respectivas densidades superficiais de brilho, assim como CR espectroscópicas.
- A partir desta amostra foram selecionadas galáxias que não apresentam barras ou warps, distorções no disco galáctico, de forma que não contrariam a suposição da simetria axial.
- ullet Para cada galáxia, há imagens na banda I e mapas de velocidade bidimensional de Hlpha, a partir dos quais tem-se a distribuição de brilho superficial, levando a construção das CR para cada galáxia.

Base de Dados

Galáxias HSB

- Todas as 9 espirais de alto brilho superficial (HSB) foram obtidas na banda I (Palunas & Williams 2000). Onde foram apresentados modelos de disco máximo para uma amostra de 74 galáxias espirais localizadas nas proximidades do cluster Hydra-Centaurus (R.A. 13h13m35s; Dec. $-33^{\circ}21'53''$; e z=0.016).
- ESO215G39, ESO322G76, ESO322G77, ESO323G25, ESO383G02, ESO445G19, ESO446G01, ESO509G80, ESO569G17
- $\approx 18 20 magarcsec^{-2}$

Base de Dados

Galáxias LSB

- Das 9 galáxias LSB (anãs do tipo esferoidais), 8 foram detectadas na banda R;
- F561-1, UGC1230, van der Hulst et al., 1993; F563-1, F579-V1, F583-1, de Blok et al., 1996; F568-3, UGC128, UGC5750 de Blok et al., 1995.
- E uma na banda V, F730-V1, Kim 2007.
- Segundo de Block. 2010, para finalidade deste tipo de estudo, as LSB remetem à galáxias do tipo late-type, ricas em gás, que possuem magnitude central mais fraca que ≈ 23magarcsec².

Modelo bariônico

- O objetivo é investigar a compatibilidade do modelo bariônico puro e bariônico mais matéria escura. Em outras palavras, investigamos quando o componente escuro, e em que quantidade, é necessário para explicar as CR espectroscópicas e qual deles apresenta melhor desempenho no ajuste.
- Com isso, classificamos os modelos de acordo com **critério estatístico de** χ^2 , que quantifica a concordância com os dados.

Metodologia

Critério estatístico χ^2

- O conceito de ajuste de parâmetros usando mínimos quadrados consiste na comparação entre dados (observações) e modelo assumido.
- O menor χ^2 , evidencia quais **parâmetros são mais compatíveis com as observações**, caracterizando assim o melhor ajuste.
- A expressão utilizada é

$$\chi^2 = \sum_{1}^{n} \left(\frac{d_{obs} - d_{modelo}}{\sigma_{obs}} \right)^2 \tag{1}$$

12/39

Modelo bariônico

- Utilizamos a distribuição espacial de densidade luminosa do componente bariônico com base no perfil do brilho superficial das galáxias.
- O modelo que considera simetría axial de massa bariônica com razão entre eixos variável, para os componentes bojo e disco.
- Os modelos de matéria escura são empregados para ajustar as CR teóricas para o conjunto de dados.
- O brilho superficial S é o fluxo radiativo F por unidade de ângulo sólido $\Delta\Omega$ tal que $S\approx F/\Delta\Omega$, independente da distância (já que consideramos um Universo plano). S é dado em unidades L_{\bigcirc}/kpc^2 e se relaciona com a quantidade μ em unidades de $mag/arcsec^2$,

$$S_{obs}(R) \propto 10^{(M_{\odot} - \mu(R) - 5)}$$
 . (2)

Modelo bariônico

 Derivamos o brilho superficial a partir do modelo sob a suposição de que a distribuição espacial da densidade de luminosidade é dada por,

$$l(a) = l_0 e^{-(a/ka_0)^{\frac{1}{N}}} \quad , \tag{3}$$

- ullet l_0 é a densidade central,
- $a=(R^2+z^2/q^2)^{\frac{1}{2}}$; R e z são as coordenadas cilíndricas no plano galáctico,
- q é a razão entre eixos,
- ullet k é o parâmetro de normalização,
- ullet a_0 é o raio médio harmônico,
- ullet N é o parâmetro livre.

Extração de parâmetros fotométricos

 A distribuição de densidade é projetada perpendicularmente à linha de visada, e sua soma fornece a distribuição de brilho superficial do modelo, dada por

$$S(R) = 2\sum_{i=1}^{n} q_{i} \int_{0}^{\infty} \frac{l_{i}(a)a}{\sqrt{a^{2} - R^{2}}} da \quad , \tag{4}$$

Metodologia

Extração de parâmetros fotométricos

- É comparada com o brilho superficial das galáxias $\mu(R)$, para revelar a densidade espacial $l_i(a)$.
- Além disso, decompomos o modelo em componentes em bojo e disco, que possui perfil de densidade escrita como

$$\rho(a) = \sigma_b l(a) + \tau_d l(a) \quad , \tag{5}$$

onde, σ é a razão massa-luminosidade do bojo, τ é a razão massa-luminosidade do disco,

Metodologia

Extração de parâmetros fotométricos

 Usando a equação de Poisson, obtemos a velocidade de rotação no plano galáctico gerado pelo i-ésimo componente bariônico

$$V_i^2(R) = 4\pi q_i G \int_0^R \frac{\rho_i(a)a^2}{\sqrt{R^2 - e_i^2 a^2}} da \quad , \tag{6}$$

onde, $e_i = (1 - q_i^2)^{1/2}$ é a excentricidade do i-ésimo componente, $\rho_i(a)$ é a densidade de massa, e que **usamos para obter a velocidade do sistema**.

Extensão do modelo com o componente escuro

 Levando em consideração tanto a matéria visível, bojo e disco quanto a escura (no halo), o quadrado da velocidade orbital é

$$V^{2}(R) = V_{b}^{2} + V_{d}^{2} + V_{DM}^{2} \quad , \tag{7}$$

onde DM significa Dark Matter (na sigla em inglês).

 Assumindo que a matéria escura possui distribuição esferoidal, então sua contribuição é dada por

$$V_{DM}^2(r) = \frac{GM_{DM}(r)}{r} \quad , \tag{8}$$

com coordenada radial r e a massa contida na esfera de raio r sendo

$$M_{DM}(r) = 4\pi \int_0^r \rho_{DM}(r')r'^2 dr' \quad . \tag{9}$$

Apresentação dos Perfis - Navarro-Frenk-White

- O perfil Navarro, Frenk and White foi desenvolvido num contexto de simulação de N-corpos, onde o estudo do perfil de densidade do Halo (escuro) de uma galáxia encontra-se em equilíbrio (virializado)
- Concluiu-se que todos os perfis de densidade apresentam o mesmo comportamento. São independentes da massa do Halo e das flutuações primordias de matéria. Também, de parâmetros cosmológicos
- O perfil NFW é dado por [3]

$$\rho_{NFW} = \frac{\rho_S}{(\frac{r}{r_S})(1 + \frac{r}{r_S})^2} \quad , \tag{10}$$

• ρ_S e r_S são parâmetros, descrevendo a densidade característica (no centro) e a escala de distância respectivamente.

Apresentação dos Perfis - Navarro-Frenk-White

• A distribuição radial da densidade nesse caso correspone a figura abaixo.

Figura: Distribuição radial de densidade de matéria assumindo o perfil NFW. Crédito: Navarro et al., 1997

• Assim, sua contribuição para velocidade é:

$$V_{NFW}^2 = 4\pi G \rho \frac{r_s^3}{r} \left[ln \left(1 + \frac{r}{r_s} \right) - \frac{r}{r_s} \left(\frac{1}{1 + \frac{r}{r_s}} \right) \right] \quad . \tag{11}$$

Apresentação dos Perfis - Esfera Isotérmica

 O perfil de distribuição tipo esfera isotérmica é motivado teoricamente, e é resultado da equação[1]

$$\frac{dP}{dr} = \frac{k_B T}{m} \frac{d\rho}{dr} = -\rho \frac{GM(r)}{r^2} \quad , \tag{12}$$

- k_B é a constante de Boltzman, T é a temperatura, m é a massa por partícula, P é a pressão e ρ é a densidade.
- E compreende a estrutura de um gás ideal politrópico, com equação de estado $P(r)=\frac{K_BT}{m}\rho(r)$, em um sistema não colisional, representando o balanço hidrostático de uma esfera auto-gravitante.

Apresentação dos Perfis - Esfera Isotérmica

ullet Sua solução é conhecida como o perfil radial de densidade que recebe o nome de Esfera Isotérmica, que ao ter seu raio reescalado para que se evite a divergência central em r=0, é denominado Pseudo Esfera Isotérmica, e é dado por

$$\rho_{PSE}(r) = \rho_{P,0} \left[1 + \left(\frac{r}{r_c^2} \right)^2 \right]^{-1} ,$$
(13)

• onde $\rho_{P,0}$ e r_c são parâmetros que descrevem a densidade central e o raio que fornece a escala do núcleo. Dessa maneira, sua contribuição para a velocidade é

$$V_{PSE}^{2} = 4\pi G \rho_{P,0} r_{c}^{2} \left[1 - \left(\frac{r_{c}}{r} \right) \arctan \left(\frac{r}{r_{c}} \right) \right] \quad . \tag{14}$$

Parâmetros

Tabela: Parâmetros que descrevem a distribuição de densidade de luminosidade da matéria bariônica de 18 galáxias (sendo 9 HSB e 9 LSB)[2].

ID	$l(0)_b \times 10^9 L_{\odot}/kpc^3$	$ka_{0,b} \times kpc$	N_b	q_b	$l(0)_b \times 10^7 L_{\odot}/kpc^3$	$ka_{0,d} \times kpc$	N_d	q_d
ESO215G39	0.203 ± 0.004	0.496 ± 0.020	0.814 ± 0.049	1.019 ± 0.035	0.983 ± 0.001	5.792 ± 0.001	0.461 ± 0.008	0.345 ± 0.010
ESO322G76	1.808 ± 0.003	0.586 ± 0.010	0.887 ± 0.021	0.742 ± 0.0018	8.627 ± 0.003	3.658 ± 0.002	0.841 ± 0.003	0.367 ± 0.007
ESO322G77	4.297 ± 0.006	0.177 ± 0.002	1.147 ± 0.007	0.840 ± 0.010	33.29 ± 0.02	1.484 ± 0.002	1.080 ± 0.015	0.374 ± 0.015
ESO323G25	3.398 ± 0.005	0.232 ± 0.002	1.018 ± 0.010	0.689 ± 0.014	12.37 ± 0.04	3.001 ± 0.001	0.954 ± 0.010	0.569 ± 0.010
ESO383G02	30.02 ± 0.05	0.123 ± 0.001	1.290 ± 0.004	0.855 ± 0.008	6.272 ± 0.003	2.693 ± 0.003	1.186 ± 0.004	0.512 ± 0.012
ESO445G19	5.650 ± 0.004	0.177 ± 0.004	1.343 ± 0.027	0.713 ± 0.037	4.853 ± 0.008	5.650 ± 0.004	0.742 ± 0.002	0.376 ± 0.005
ESO446G01	1.213 ± 0.001	0.762 ± 0.011	1.100 ± 0.018	0.694 ± 0.020	3.551 ± 0.002	4.219 ± 0.003	1.065 ± 0.006	0.471 ± 0.016
ESO509G80	0.972 ± 0.001	0.666 ± 0.022	0.963 ± 0.031	0.986 ± 0.023	2.036 ± 0.001	11.304 ± 0.001	0.564 ± 0.005	0.265 ± 0.005
ESO569G17	3.936 ± 0.003	0.479 ± 0.031	0.443 ± 0.059	0.492 ± 0.076	64.28 ± 0.02	1.651 ± 0.124	0.899 ± 0.030	0.394 ± 0.054
ID	$l(0)_b \times 10^7 L_{\odot}/kpc^3$	$ka_{0,b} \times kpc$	N_b	q_b	$l(0)_b \times 10^6 L_{\odot}/kpc^3$	$ka_{0,d} \times kpc$	N_d	q_d
F561 - 1	2.235 ± 0.002	0.877 ± 0.098	1.045 ± 0.088	0.894 ± 0.085	1.731 ± 0.001	9.482 ± 0.036	0.138 ± 0.048	0.292 ± 0.016
F563 - 1	61.20 ± 0.20	0.174 ± 0.015	2.128 ± 0.019	0.855 ± 0.019	_	_	_	-
F568 - 3	1.654 ± 0.007	2.282 ± 0.014	0.652 ± 0.018	0.939 ± 0.028	0.946 ± 0.002	11.095 ± 0.004	0.250 ± 0.002	0.669 ± 0.014
F568 - 3 F579 - V1	1.654 ± 0.007 1.686 ± 0.002	2.282 ± 0.014 1.222 ± 0.032	0.652 ± 0.018 0.611 ± 0.066	0.939 ± 0.028 0.903 ± 0.062	0.946 ± 0.002 3.938 ± 0.006	11.095 ± 0.004 6.800 ± 0.005	0.250 ± 0.002 0.597 ± 0.007	0.669 ± 0.014 0.469 ± 0.013
F579 - V1	1.686 ± 0.002	1.222 ± 0.032	0.611 ± 0.066	0.903 ± 0.062				
F579 - V1 F583 - 1	1.686 ± 0.002 6.059 ± 0.008	$\begin{array}{c} 1.222 \pm 0.032 \\ 0.390 \pm 0.004 \end{array}$	$\begin{array}{c} 0.611 \pm 0.066 \\ 1.629 \pm 0.007 \end{array}$	$\begin{array}{c} 0.903 \pm 0.062 \\ 0.625 \pm 0.006 \end{array}$	3.938 ± 0.006	6.800 ± 0.005	0.597 ± 0.007 -	0.469 ± 0.013
F579 - V1 F583 - 1 F730 - 1	1.686 ± 0.002 6.059 ± 0.008 4.351 ± 0.008	$\begin{array}{c} 1.222 \pm 0.032 \\ 0.390 \pm 0.004 \\ 1.120 \pm 0.046 \end{array}$	$\begin{array}{c} 0.611 \pm 0.066 \\ 1.629 \pm 0.007 \\ 1.217 \pm 0.031 \end{array}$	0.903 ± 0.062 0.625 ± 0.006 0.816 ± 0.021	3.938 ± 0.006 $ 5.434 \pm 0.02$	6.800 ± 0.005 $ 9.404 \pm 0.003$	0.597 ± 0.007 - 0.743 ± 0.058	0.469 ± 0.013 $ 0.327 \pm 0.054$

Parâmetros

Tabela: Parâmetros que descrevem o best-fit do modelo puramente bariônico, bariônico + NFW, bariônico + PSE em galáxias HSB[2].

ID	σ_b	τ_b	σ_{b+NFW}	τ_{b+NFW}	$log \rho_s \times [M_{\odot} pc^{-3}]$	$r_s \times kpc$	σ_{b+PSE}	τ_{b+PSE}	$log \rho_c \times [M_{\odot} pc^{-3}]$	$r_c \times kpc$
ESO215G39	2.81	8.37	1.58	0.57	-3.31	116	0.48	0.00	-0.77	1.78
ESO322G76	0.48	1.92	0.51	0.33	-3.89	243	0.83	0.09	-1.67	4.26
ESO322G77	0.61	3.54	0.74	0.62	-3.45	277	1.57	0.00	-0.61	2.05
ESO323G25	1.96	2.96	2.53	1.67	-4.94	722	0.38	0.30	-0.08	0.75
ESO383G02	0.83	2.93	0.79	2.56	-3.94	9	0.62	1.80	-1.60	1.10
ESO445G19	0.77	2.37	0.78	0.89	-3.90	153	0.91	0.04	-1.31	3.76
ESO446G01	0.83	2.32	0.99	0.02	-4.07	485	0.60	0.00	-1.10	2.56
ESO509G80	1.32	3.43	1.01	1.64	-3.72	82	0.82	0.00	-1.24	5.18
ESO569G17	0.07	1.88	0.18	0.88	-3.71	120	0.02	0.87	-0.30	0.34

Parâmetros

Tabela: Parâmetros que descrevem o best-fit do modelo puramente bariônico, bariônico + NFW, bariônico + PSE em galáxias LSB[2].

ID	σ_b	τ_b	σ_{b+NFW}	τ_{b+NFW}	$log \rho_s \times [M_{\odot} pc^{-3}]$	$r_s \times kpc$	σ_{b+PSE}	τ_{b+PSE}	$log \rho_c \times [M_{\odot} pc^{-3}]$	$r_c \times kpc$
F561 - 1	1.61	1.34	1.37	1.19	-5.75	16.21	0.35	0.42	-2.17	1.4
F563 - 1	2.68	_	0.14	_	-2.65	18.79	0.05	-	-1.31	2.10
F568 - 3	1.45	4.89	1.31	4.24	-5.47	32.72	0.03	0.00	-1.54	3.20
F579 - V1	13.36	4.43	9.07	0.50	-3.20	29.84	0.22	0.07	-0.33	0.65
F583 - 1	8.11	_	0.03	-	-3.03	35.5	0.04	_	-1.58	2.66
F730 - 1	4.87	1.69	2.8	0.47	-3.52	39	0.38	0.56	-0.96	1.2
UGC128	0.03	14.79	0.004	2.9	-3.85	82	0.26	0.19	-2.13	6.43
UGC1230	0.01	19.80	0.12	1.00	-3.22	32	0.17	0.21	-2.15	5.33
UGC5750	0.02	4.65	0.02	0.38	-3.31	23	0.08	0.80	-2.62	6.40

25/39

- Verificamos ao longo do nosso trabalho que os parâmetros originais falham ao reproduzir as curvas conforme concebidas.
- Oportunamente, produzimos uma rotina em python com o fim de encontrarmos quais valores melhor representariam as observações.
- Nossos resultados encontram-se nas tabelas a seguir

Tabela: Parâmetros que descrevem o best-fit do modelo puramente bariônico, bariônico + NFW, bariônico + PSE. Análises correspondentes as galáxias HSB.

ID	σ_b	τ_b	χ^2	σ_{b+NFW}	τ_{b+NFW}	$log \rho_s \times [M_{\odot} pc^{-3}]$	$r_s kpc$	χ^2	σ_{b+PSE}	τ_{b+PSE}	$log \rho_c \times [M_{\odot} pc^{-3}]$	$r_c kpc$	χ^2
ESO215G39	7.53	11.46	17.4	5.76	3.43	-3.11	116	9.22	3.47	0.01	-0.72	1.78	4.21
ESO322G76	1.22	2.83	25.75	1.22	1.85	-3.77	243	10.44	1.39	1.48	-1.54	4.26	10.67
ESO322G77	2.67	4.39	3.76	2.67	3.56	-3.67	277	3.34	3.34	3.00	-1.01	2.05	4.59
ESO323G25	5.86	3.69	44.01	6.20	3.14	-4.45	722	32.78	3.28	1.69	-0.001	0.75	16.10
ESO383G02	2.87	4.00	7.44	2.87	3.83	-2.87	9	7.42	2.38	2.83	-0.75	1.10	7.29
ESO445G19	2.78	3.00	5.11	2.78	2.78	-4.00	153	3.99	2.78	2.33	-1.67	3.76	3.89
ESO446G01	1.51	4.22	16.17	2.01	0.44	-3.77	485	8.23	1.67	1.00	-1.00	2.56	10.75
ESO509G80	3.14	4.86	18.95	3.14	4.89	-4.43	82	18.10	2.57	0.15	-1.15	5.18	16.43
ESO569G17	1.12	1.89	4.35	1.12	1.67	-3.33	120	3.81	0.67	1.67	-0.001	0.34	2.59

Tabela: Parâmetros que descrevem o best-fit do modelo puramente bariônico, bariônico + NFW, bariônico + PSE. Análises correspondentes as galáxias HSB.

ID	σ_b	τ_b	χ^2	σ_{b+NFW}	τ_{b+NFW}	$log \rho_s \times [M_{\odot} pc^{-3}]$	$r_s kpc$	χ^2	σ_{b+PSE}	τ_{b+PSE}	$log \rho_c \times [M_{\odot} pc^{-3}]$	$r_c kpc$	χ^2
ESO215G39	7.53	11.46	17.4	5.76	3.43	-3.11	116	9.22	3.47	0.01	-0.72	1.78	4.21
ESO322G76	1.22	2.83	25.75	1.22	1.85	-3.77	243	10.44	1.39	1.48	-1.54	4.26	10.67
ESO322G77	2.67	4.39	3.76	2.67	3.56	-3.67	277	3.34	3.34	3.00	-1.01	2.05	4.59
ESO323G25	5.86	3.69	44.01	6.20	3.14	-4.45	722	32.78	3.28	1.69	-0.001	0.75	16.10
ESO383G02	2.87	4.00	7.44	2.87	3.83	-2.87	9	7.42	2.38	2.83	-0.75	1.10	7.29
ESO445G19	2.78	3.00	5.11	2.78	2.78	-4.00	153	3.99	2.78	2.33	-1.67	3.76	3.89
ESO446G01	1.51	4.22	16.17	2.01	0.44	-3.77	485	8.23	1.67	1.00	-1.00	2.56	10.75
ESO509G80	3.14	4.86	18.95	3.14	4.89	-4.43	82	18.10	2.57	0.15	-1.15	5.18	16.43
ESO569G17	1.12	1.89	4.35	1.12	1.67	-3.33	120	3.81	0.67	1.67	-0.001	0.34	2.59

Tabela: χ^2 de [2].

ID	χ^2_{BAR}	χ^2_{NFW}	χ^2_{PSE}
ESO215G39	15.99	5.37	4.42
ESO322G76	37.34	9.73	9.57
ESO322G77	4.51	2.32	2.56
ESO323G25	42.07	20.28	11.48
ESO383G02	6.06	6.02	5.91
ESO445G19	5.22	2.71	2.63
ESO446G01	25.33	6.46	15.93
ESO509G80	9.01	8.53	6.77
ESO569G17	14.78	3.89	2.02

Tabela: Parâmetros que descrevem o best-fit do modelo puramente bariônico, bariônico + NFW, bariônico + PSE. Análises correspondentes as galáxias LSB.

ID	σ_b	τ_b	χ^2	σ_{b+NFW}	τ_{b+NFW}	$log \rho_s \times [M_{\odot} pc^{-3}]$	$r_s kpc$	χ^2	σ_{b+PSE}	τ_{b+PSE}	$log \rho_c \times [M_{\odot} pc^{-3}]$	r _c kpc	χ^2
F561 - 1	2.97	2.36	6.07	2.84	2.42	-5.78	16.21	6.00	0.38	0.76	-5.75	1.4	2.75
F563 - 1	2.68	_	10.65	0.32	-	-2.47	18.79	0.96	0.22	_	-1.21	2.10	0.85
F568 - 3	2.97	8.42	10.29	2.92	8.47	-18.68	32.72	10.29	0.75	0.56	-1.55	3.20	5.20
F579 - V1	25.0	7.86	1.07	20.08	0.54	-2.71	29.84	1.67	4.89	1.31	-0.29	0.65	0.15
F583 - 1	8.17	-	114.86	1.40	-	-3.07	35.5	13.25	0.48	-	-1.55	2.66	0.75
F730 - 1	7.71	5.39	0.40	3.30	0.01	-2.64	39	3.25	6.50	4.96	-1.29	1.2	1.53
UGC128	1.34	14.16	17.93	0.94	6.89	-3.67	82	0.71	1.83	0.94	-2.00	6.43	0.59
UGC1230	0.001	17.00	37.10	0.001	1.78	-3.07	32	25.62	0.72	4.86	-2.14	5.33	1.53
UGC5750	0.01	9.50	2.54	0.01	2.32	-3.07	23	12.62	0.01	5.14	-2.50	6.40	0.21

Tabela: Parâmetros que descrevem o best-fit do modelo puramente bariônico, bariônico + NFW, bariônico + PSE. Análises correspondentes as galáxias LSB.

ID	σ_b	τ_b	χ^2	σ_{b+NFW}	τ_{b+NFW}	$log \rho_s \times [M_{\odot} pc^{-3}]$	$r_s kpc$	χ^2	σ_{b+PSE}	τ_{b+PSE}	$log \rho_c \times [M_{\odot} pc^{-3}]$	r _c kpc	χ^2
F561 - 1	2.97	2.36	6.07	2.84	2.42	-5.78	16.21	6.00	0.38	0.76	-5.75	1.4	2.75
F563 - 1	2.68	_	10.65	0.32	-	-2.47	18.79	0.96	0.22	-	-1.21	2.10	0.85
F568 - 3	2.97	8.42	10.29	2.92	8.47	-18.68	32.72	10.29	0.75	0.56	-1.55	3.20	5.20
F579 - V1	25.0	7.86	1.07	20.08	0.54	-2.71	29.84	1.67	4.89	1.31	-0.29	0.65	0.15
F583 - 1	8.17	_	114.86	1.40	-	-3.07	35.5	13.25	0.48	-	-1.55	2.66	0.75
F730 - 1	7.71	5.39	0.40	3.30	0.01	-2.64	39	3.25	6.50	4.96	-1.29	1.2	1.53
UGC128	1.34	14.16	17.93	0.94	6.89	-3.67	82	0.71	1.83	0.94	-2.00	6.43	0.59
UGC1230	0.001	17.00	37.10	0.001	1.78	-3.07	32	25.62	0.72	4.86	-2.14	5.33	1.53
UGC5750	0.01	9.50	2.54	0.01	2.32	-3.07	23	12.62	0.01	5.14	-2.50	6.40	0.21

Tabela: χ^2 de [2].

ID	χ^2_{BAR}	χ^2_{NFW}	χ^2_{PSE}
F561 - 1	35.5	31.44	25.72
F563 - 1	10.77	0.74	0.82
F568 - 3	6.07	0.70	4.22
F579 - V1	1.82	0.10	0.27
F583 - 1	111.78	11.32	0.59
F730 - 1	1.77	0.82	0.51
UGC128	25.3	1.41	0.46
UGC1230	39.44	17.16	6.38
UGC5750	9.41	8.03	3.72

Curvas das galáxias HSB

Figura: Linhas sólidas usam [2], As cores referem-se aos modelos bariônico, bariônico + NFW e bariônico + PSE como azul, vermelho e verde respectivamente. Curvas pontihadas: parâmetros recalculados.

Curvas das galáxias LSB

Figura: Seguem o mesmo padrão. Os pontos com barra de erro denotam dados espectroscópicos.

Em particular

Figura: À direita, a distribuição radial de densidade de matéria escura e as cores correspondem bárion, bariôns + NFW e bariôns + PSE em azul, vermelho e verde respectivamente.

Caso particular

Figura: À direita, a distribuição radial de densidade de matéria escura e as cores correspondem bárion, bariôns + NFW e bariôns + PSE em azul, vermelho e verde respectivamente.

Análise de Galáxias de alto brilho Superficial (HSB)

HSB

- Neste caso, há leve preferência pelo modelo PSE. O perfil NFW demonstrou melhor desempenho em 3 casos, enquanto que o perfil bariônico não fita melhor as observações em nenhum caso. Sintetizamos o seguinte cenário;
- Em Em 3 casos, ESO322G76, ESO322G77 e ESO446G01, se obteve um excelente fit, com χ^2 indicando a preferência pelo modelo **NFW**.
- Em 6 casos, ESO323G25, ESO445G19, ESO509G80, ESO215G39, ESO383G02 e ESO569G17, obtivemos um bom fit, com χ^2 indicando a preferência pelo modelo **PSE**.

Análise de Galáxias de baixo brilho superficial, (LSB)

LSB

- Neste caso, há clara preferência pelo modelo PSE (NFW não demonstrou melhor desempenho em nenhum caso).
 O perfil bariônico fita melhor as observações somente para F730-V1. Sintetizamos o seguinte cenário;
- Em 8 casos, F561-1, F563-1, F579-V1, F583-3, F568-3, UGC1230, UGC128 e UGC5750, se obteve um melhor fit com χ^2 indicando a preferência pelo modelo **PSE**.
- Em 1 caso, o modelo puramente bariônico obteve o melfor fit, F730-V1 com χ² indicando a preferência pelo modelo puramente bariônico.

Discussão dos resultados

- Notamos que, à excessão das galáxias ESO383G02 e ESO322G76 dentre as HSB e a LSB F730-1, a alta extensão radial onde se detectou pontos via espectroscopia ($\sim 15-20 Kpc$) pode favorecer o perfil PSE, pois segundo a de Block 2010, "a velocidade constante observada sugere que a matéria escura nas partes externas (onde $log\rho \propto -3$) das galáxias tem um perfil de densidade de massa próximo a de uma esfera isotérmica ($log\rho \propto -3$), dado que nas regiões mais internas (onde $\rho \propto -1$), o movimento orbital é dominado pelo componente bariônico."
- Além disso, no caso das galáxias HSB ESO322G76, ESO322G77, ESO383G02 e ESO445G19, não encontramos uma clara preferência por um dos perfis pois apresentaram uma discrepância de no máximo \sim 2% no computo do χ^2 .
- Por outro lado, no caso das galáxias LSB F563-1 e UGC128, onde houve maior proximidade entre melhor ajuste (χ^2_{NFW} é próximo ao χ^2_{PSE}), sua diferença no cômputo do χ^2 é $\sim 15-20\%$, o que mostra menor ambiguidade na opção pelo perfil PSE.

Conclusões

- Por fim, a não inclusão de quaisquer dos perfis, ou seja, somente o componente bariônico, como modelo bastante na tentativa de explicar as CR observadas, apresenta melhor ajuste em apenas um caso, F730-1.
- Em todos os outros casos aqui considerados, os ajustes do modelo bariônico se mostraram insatisfatórios, quando comparados à adição de ME.

Perspectivas futuras

Perspectivas futuras

 Finalmente, esperamos através desta dissertação, incentivar novos testes envolvendo outros perfis de halo de matéria escura, como por exemplo, o perfil de Einasto, de Hernquist ou Darkexp. Inclusive, estendendo-os a novos surveys que provejam uma quantidade cada vez maior de dados, tanto no contexto fotométrico quanto no espectroscópico.

Agradecimentos

Muito obrigado!

38/39

Muito obrigado!

Referências

James Binney and Michael Merrifield.

Galactic astronomy. Princeton University Press, 1998.

E Kun, G Szűcs, Z Keresztes, and LÁ Gergely.

Comparative testing of dark matter models with 9 hsb and 9 lsb galaxies. arXiv preprint arXiv:1604.02465, 2016.

Julio F Navarro, Carlos S Frenk, and Simon DM White.

A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2):493, 1997.

Vera C Rubin, W Kent Ford Jr, and Norbert Thonnard.

Rotational properties of 21 sc galaxies with a large range of luminosities and radii, from ngc 4605/r = 4kpc/to ugc 2885/r = 122 kpc. The Astrophysical Journal, 238:471–487, 1980.

