Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories

Chao Zhang¹, Jiawei Han¹, Lidan Shou², Jiajun Lu¹, Thomas La Porta³

czhang82@Illinois.edu

¹ University of Illinois at Urbana-Champaign

² Zhejiang University

³ Penn State University

Frequent Sequential Pattern for Discrete Data

 Sequential pattern: a subsequence that matches at least n sequences (n is the support threshold) in the database.

Sequence Database:

```
Sequential Pattern (n=3):
A -> B
```

How do We Define Sequential Movement Pattern?

- Can we define it as a place sequence that matches at least n trajectories? No.
- Due to space continuity, similar places need to be grouped to collectively form frequent patterns.

How do We Define Sequential Movement Pattern?

- Meaningful patterns must satisfy three constraints:
 - Semantic consistency
 - Spatial compactness
 - Temporal continuity

Sequential Pattern: G₁ -> G₂ -> G₃

Existing Approaches

- Trajectory Pattern Mining [1, 2, 3]:
 - Partition the space into small grids
 - Group the places in the same grid (or several neighboring grids)
 - Mine frequent sequential patterns.

^[1] I. Tsoukatos et. al., Efficient mining of spatiotemporal patterns, SSTD, 2001.

^[2] J. Wang et. al., Flowminer: Finding flow patterns in spatio-temporal databases, ICTAI, 2004

^[3] F. Giannotti et. al., Trajectory Pattern Mining, KDD, 2007.

Existing Approaches

- Drawbacks of rigid space partitioning:
 - It suffers from the sharp boundary problem.
 - It is hard to pre-specify the partition granularity.

An Overview of Splitter

- Splitter is a two-step approach.
 - Step 1: mining coarse patterns that satisfy the semantic and temporal constraints.
 - Step 2: splitting each coarse patterns into fine-grained ones to meet the spatial constraint.

Mining Coarse Patterns

- Group the places by category such that the places having the same category go to the same group.
 - We obtain groups like office, gym, restaurant, etc.
 - Each group can be viewed as an independent item.

Mining Coarse Patterns

 Transform trajectories into item sequences, by mapping the place ids to the group ids.

Object	Semantic Trajectory
o_1	$<(p_3,0), (\pmb{p_1},10), (\pmb{p_7},30), (\pmb{p_9},40)>$
02	$<(p_5,0),(p_7,30),(\pmb{p_2},360),(\pmb{p_7},400),(\pmb{p_{10}},420)>$
03	$<(p_3, 0), (p_6, 30)>$
04	$<(p_2,0), (\pmb{p_1},120), (p_6,140), (\pmb{p_8},150), (\pmb{p_{11}},180)>$
05	$<(p_{12}, 50), (p_8, 80), (p_{II}, 120), (p_4, 210)>$

Object	Timestamped item sequence
o_1	$\langle (G_2,0), (G_1,10), (G_2,30), (G_3,40) \rangle$
o_2	$\langle (G_1,0), (G_2,30), (G_1,360), (G_2,400), (G_3,420) \rangle$
03	$\langle (G_2,0),(G_3,30)\rangle$
04	$\langle (G_1,0), (G_1,120), (G_3,140), (G_2,150), (G_3,180) \rangle$
05	$\langle (G_2, 50), (G_2, 80), (G_3, 120), (G_1, 210) \rangle$

Mining Coarse Patterns

- We modify PrefixSpan by using the full projection principle.
 - It guarantees the result patterns satisfy the time constraint.
 - It extracts the snippets (place sequences) for each coarse pattern.

What do We Have Now?

- A set of coarse patterns.
- The snippets for each coarse pattern.

Splitting Coarse Patterns

- We find fine-grained patterns by merging close snippets.
 - ► Each snippet is mapped to a weighted high-dimensional point (e.g., length-2 snippets are mapped to 4D points).
 - Detect dense and compact clusters in the high-dimensional space spanned by the snippets.

Splitting Coarse Patterns

Finding snippet clusters via weighted snippet shift:

Splitting Coarse Patterns

- Top-down pattern discovery:
 - Start with an initially large bandwidth.
 - Gradually dampen the bandwidth and find patterns on-the-fly.
 - Terminate until no more pattern can be found.
- We introduce a divide-and-conquer strategy to speed up the top-down discovery process.

Experimental Data

- A Foursquare check-in data set:
 - ~15K users in New York.
 - ~50K places.
 - 15 categories.
- Two synthetic data sets generated by the Brinkhoff's network-based generator.

Compared Methods

- Grid
 - Trajectory pattern mining [1] based on space partitioning.
- HC
 - Group the places via top-down hierarchical clustering.
 - Mine movement patterns using PrefixSpan.

[1] F. Giannotti et. al., Trajectory Pattern Mining, KDD, 2007.

Example Coarse Patterns

• Support threshold n = 100

	Pattern	Sup
	$Shop \rightarrow Food$	1819
	$Food \rightarrow Shop$	1464
length=2	Professional → Nightlife Spot	1121
	$Outdoor \rightarrow Food$	947
	Residence → College & University	647
	$Shop \to Food \to Shop$	262
	Professional \rightarrow Food \rightarrow Nightlife Spot	240
length=3	Entertainment \rightarrow Food \rightarrow Shop	178
	Transportation \rightarrow Shop \rightarrow Shop	174
	Residence \rightarrow Outdoor \rightarrow Food	163

Example Fine-Grained Patterns

Length-2 patterns for Shop -> Food:

Effectiveness Comparison

Varying the support threshold:

Efficiency Comparison

Varying the support threshold and the time interval:

(a) Running time w.r.t. σ .

(b) Running time w.r.t. Δt .

Efficiency Comparison

Efficiency on the synthetic data sets:

(a) Running time on S1K.

(b) Running time on S10K.

Summary

- Finding fine-grained sequential movement patterns is a critical yet challenging task.
- We develop a two-step method for mining fine-grained sequential movement patterns in semantic trajectories.
 - Step 1: mining coarse patterns
 - Step 2: splitting each coarse pattern into fine-grained ones.
- Our method significantly outperforms existing ones in both effectiveness and efficiency.