MTH 230 HW 1

Esteban Morales

August 29, 2024

Excercise 1. 1. Express each statement using P, Q and logical connectives.

- (a) P whenever Q. Q => P
- (b) P is necessary for Q P => Q
- (c) P is sufficient for Q. P => Q
- (d) P only if Q. Q => P
- (e) P is necessary and sufficient for Q P => Q

Excercise 2. Prove Pierce's Law:

For any proposition P, Q, the proposition ((P->Q)->P)->P is a tautology.

Proof.

.	P	Q	P => Q	(P => Q) => P	((P => Q) => P) => P
	T	T	T	T	T
	T	F	F	T	T
	F	T	T	F	T
	F	F	T	F	T
			l	l	ı

Excercise 3. Prove that $((P \Rightarrow Q) \land (Q \Rightarrow R) \land P) \Rightarrow R$ is a tautology

Proof.

$$\left|\begin{array}{cc} P & Q & R \end{array}\right| P => Q \ \left|\begin{array}{cc} Q => R \end{array}\right| (P => Q) \wedge ((Q => R) \ \left|\begin{array}{cc} (P => Q) \wedge (Q => R) \wedge P\end{array}\right|$$