homework11.1 Johnson's algorithm

Description

Johnson's 演算法可用於計算 All pairs shortest path 問題。

在邊的數量不多的時候,如|E|=O(|V|log|V|)時,能有比 Floyd-Warshall 演算法更佳的效能。

Johnson's Algorithm 首先重新調整邊的權重為非負數,順便檢查圖上是否有負環,接著放心地使用 Dijkstra's Algorithm 計算所有兩點之間的最短路徑。

給定一個 directed weighted sparse graph,請問某兩點間的最短路徑為何?

圖上可能有重邊(multiple edge)或負邊,但無負環(negative cycle)或自環(self loop)

Input Format

第一行包含三個整數 $n(1 \le n \le 1000)$, $m(0 \le m \le 5n)$, $q(1 \le q \le 10n)$, 分別是點和邊的數目以及接下來的詢問次數,彼此間以空格隔開

接下來m行包含整數 $ui\ vi\ wi(-50000 \le wi \le 50000)$,分別是第i個邊的起點、終點、權重 (點的編號從 1 到 n)

接下來q行包含 u_i v_j ,代表需要輸出最短路徑的點對,起點是 u_j ,終點是 v_i

Output Format

輸出q行,每行包含 u_i 到 v_i 的最短路徑距離,若不存在路徑則輸出"no path"

Sample Input	Sample Output
5 9 10	1
213	0
2 3 -4	-4
3 4 6	1
4 5 -5	-4
5 1 4	3
258	-1
422	4
137	3
141	-1

2 1	
22	
23	
1 4	
15	
12	
1 3	
5 1	
5 3	
4 1	

.

Hint