CAN207 Continuous and Discrete Time Signals and Systems

Lecture 15 DTFT Properties and Applications

Qing Liu

Qing.Liu@xjtlu.edu.cn

Room SC340

Content

- 1. Definitions
 - Frequency mapping
 - Existence of DTFT (convergence)
- 2. DTFT properties
 - Periodicity, Linearity, ...
 - Convolution property
 - Modulation property
 - Duality

1.0 DTFT Definition

• The discrete-time Fourier transform (DTFT) $X(e^{j\omega})$ of a sequence x[n] is defined by:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- DTFT $X(e^{j\omega})$ of a sequence x[n] is a continuous function of ω
- Inverse Discrete-Time Fourier Transform the Fourier coefficients $\{x[n]\}$ can be computed from $X(e^{j\omega})$ using

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

1.1 Frequency Mapping

– The discrete frequency 2π corresponds to the sampling frequency Ω_s used to sample the original continuous signal x(t) to obtain x[n].

No worries, this will be elaborated in details in the "sampling" lecture later...

1.2 Existence of DTFT

- In the case of finite-length sequences, the sum defining the DTFT has a finite number of terms, thus the DTFT always exists.
- In the general case, where one or both of the limits on the sum in the definition are infinite, the DTFT sum may diverge (become infinite).
- A sufficient condition for the existence of the DTFT of a sequence
 x[n] is

$$\left|X(e^{j\omega})\right| \leqslant \sum_{n=-\infty}^{\infty} |x[n]| < \infty.$$

Proof:

$$\begin{aligned} \left| X(e^{j\omega}) \right| &= \left| \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \right|, \\ &\leqslant \sum_{n=-\infty}^{\infty} \left| x[n] e^{-j\omega n} \right|, \\ &= \sum_{n=-\infty}^{\infty} \left| x[n] || e^{-j\omega n} |, \\ &= \sum_{n=-\infty}^{\infty} |x[n]|. \end{aligned}$$

1.2 Existence of DTFT

• Example: Find the DTFT of $x[n] = r^n e^{j\omega_0 n} u[n]$, and determine the condition to guarantee its existence.

$$\begin{split} X(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} r^n e^{j\omega_0 n} u[n] e^{-j\omega n}, \\ &= \sum_{n=0}^{\infty} r^n e^{j\omega_0 n} e^{-j\omega n} = \sum_{n=0}^{\infty} \left[r e^{-j(\omega - \omega_0)} \right]^n \\ &= \frac{1}{1 - r e^{-j(\omega - \omega_0)}}, \quad |r e^{-j(\omega - \omega_0)}| < 1 \\ &= \frac{1}{1 - r e^{-j(\omega - \omega_0)}}, \quad |r| < 1. \end{split}$$

1.2 Special case

$$X(\omega) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & \omega_c \le |\omega| \le \pi \end{cases}$$

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{\sin \omega_c n}{\pi n}$$
 (with $n \ne 0$)

- The sequence $\{x(n)\}\$ is not absolutely summable $\sum_{n=-\infty}^{\infty} |x(n)| \leqslant \infty$
- But it is mean-square convergent $\sum_{n=0}^{\infty} |x(n)|^2 < \infty$

2.1 DTFT Property - Periodicity

• The DTFT of a discrete sequence is periodic with the period 2π , that is

$$X(\omega) = X(\omega + 2\pi k)$$
 for any integer k

• The periodicity of DTFT can be easily verified from the definition:

$$X(\omega + 2\pi k) = \sum_{n = -\infty}^{\infty} x[n]e^{-j(\omega + 2\pi k)n}$$
$$= \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n}e^{-j(2\pi k)n} = \sum_{n = -\infty}^{\infty} x[n]e^{-j(\omega)n} = X(\omega)$$

2.2 DTFT Property - Linearity

Linearity

- Given $x_1[n]$ and $X_1(\omega)$ form a DTFT pair, and $x_2[n]$ and $X_2(\omega)$ form another DTFT pair i.e.

$$x_1[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X_1(\omega)$$
 $x_2[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X_2(\omega)$

– We can show that

$$ax_1[n] + bx_2[n] \stackrel{\text{DTFT}}{\longleftrightarrow} aX_1(\omega) + bX_2(\omega)$$

– Example:

$$x[n] = 0.8^n u[n] + 2(-0.5)^n u[n]$$

2.3 DTFT Property - Time-reversal

• Time-reversal: A reversal of the time domain variable causes a reversal of the frequency variable

$$x[-n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X(-\omega)$$

2.4 DTFT Properties - Conjugate symmetry

Conjugation

$$x^*[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X^*(-\omega) \qquad x^*[-n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X^*(\omega)$$

Conjugate Symmetry

- 1. If x[n] is real:
$$X(\omega) = X^*(-\omega)$$

 $|X(\omega)| = |X(-\omega)|$ $X_R(\omega) = X_R(-\omega)$
 $\varphi(\omega) = -\varphi(-\omega)$ $X_I(\omega) = -X_I(-\omega)$

$$-2. \text{ If } x[n] = x_{even}[n] + x_{odd}[n]$$

$$x_{even}[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X_{real}(\omega)$$

$$x_{odd}[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} jX_{imag}(\omega)$$

2.5 DTFT Properties - Shifting

Time Domain Shifting (TD Delay) => FD Phase Shift

$$x[n-M] \stackrel{\mathsf{DTFT}}{\longleftarrow} e^{-j\omega M} X(\omega)$$

- Note that the magnitude spectrum is unchanged by time shift.
- Frequency Domain Shifting => TD Phase Shift

$$e^{j\omega_0 n}x[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X(\omega - \omega_0)$$

• Example: Find DTFT of $x[n] = A\cos(\omega_0 n + \varphi) \alpha^n u[n]$, with $|\alpha| < 1$.

2.6 DTFT Properties - Differencing

Differencing in Time

$$x[n] - x[n-1] \stackrel{\mathsf{DTFT}}{\longleftarrow} (1 - e^{-j\omega})X(\omega)$$

Differentiation in Frequency

$$nx[n] \leftarrow DTFT \rightarrow j \frac{dX(\omega)}{d\omega}$$

2.7 DTFT Properties - Parseval Theorem

• Parseval Theorem: The energy of the signal, whether computed in TD or FD, is the same!

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$
Energy density spectrum of the signal
$$\sum_{n=-\infty}^{\infty} x[n] \cdot x^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) \cdot X^*(\omega) d\omega$$

2.7 DTFT Properties - Parseval Theorem

• Example - Determine and sketch the energy density spectrum of the signal

$$x(n) = a^n u(n), -1 < a < 1$$

• Result:

(a)

(b)

Quiz 1

- Example: Consider the sequence x[n] whose Fourier transform $X(e^{j\omega}) = X(\omega)$ is depicted for $-\pi \le \omega \le \pi$.
- Determine whether or not, in the time domain, x[n] is periodic, real, even, and/or of finite energy.

2.8 DTFT Properties - Convolution Property

Convolution in TD = multiplication in FD

$$y[n] = x[n] * h[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} X(\omega) \cdot H(\omega) = Y(\omega)$$

- The convolution property illustrates the system's response to input, in TD, the output is the result of convolution, and in FD, the output is the result of multiplication;
- By designing the $H(\omega)$ carefully, we can pass certain frequency components, then make $|H(\omega)| \cong 1$; stop certain frequency components, i.e. $|H(\omega)| \cong 0$. This is the concept of *FILTERING*

2.8 DTFT Properties - Convolution Property

- Example: Consider an LTI system with impulse response $h[n] = a^n u[n], \quad |a| < 1$
- Suppose that the input to this system is $x[n] = \beta^n u[n], \quad |\beta| < 1$
- Find the output y[n].

2.8 DTFT Properties - Convolution Property

- Example: Consider the system shown in below figure with input x[n] and output y[n]. The LTI systems with frequency response $H_{1p}(\omega)$ are ideal lowpass filters with cutoff frequency $\pi/4$ and unity gain in the passband.
- Find the overall frequency response of this system.

2.8 DTFT Properties - Multiplication Property

• Multiplication in TD = convolution integral in FD

$$x[n] \cdot h[n] \stackrel{\mathsf{DTFT}}{\longleftarrow} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\gamma) \cdot H(\omega - \gamma) d\gamma$$

- h[n] can be considered as either system impulse response or another signal;
- This property is also called the modulation property, since it involves the modulation of one signal x[n] with the other h[n];

2.8 DTFT Properties - Multiplication Property

• Example: Find the Fourier transform $X(e^{j\omega})$ of a signal $x[n] = x_1[n] x_2[n]$ where:

$$x_1[n] = \frac{\sin(3\pi n/4)}{\pi n}$$
$$x_2[n] = \frac{\sin(\pi n/2)}{\pi n}$$

2.9 Duality - DTFS (Optional)

- Since the Fourier series coefficients ak of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series.
- The duality property for DTFS implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original signal, reversed in time).
- Example:

$$x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi n/9)}{\sin(\pi n/9)}, & n \neq \text{ multiple of } 9 \\ \frac{5}{9}, & n = \text{ multiple of } 9 \end{cases}$$

$$problem x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi n/9)}{\sin(\pi n/9)}, & n \neq \text{ multiple of } 9 \\ 0, & 2 < |n| \le 4. \end{cases}$$

$$problem x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi k/9)}{\sin(\pi k/9)}, & k \neq \text{ multiple of } 9 \\ \frac{5}{9}, & k = \text{ multiple of } 9 \end{cases}$$

$$problem x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi k/9)}{\sin(\pi k/9)}, & k \neq \text{ multiple of } 9 \\ \frac{5}{9}, & k = \text{ multiple of } 9 \end{cases}$$

$$problem x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi k/9)}{\sin(\pi k/9)}, & k \neq \text{ multiple of } 9 \\ \frac{5}{9}, & k = \text{ multiple of } 9 \end{cases}$$

$$problem x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\pi k/9)}{\sin(\pi k/9)}, & k \neq \text{ multiple of } 9 \\ \frac{5}{9}, & k = \text{ multiple of } 9 \end{cases}$$

2.9 Duality - DTFT (Optional)

• Recall: Duality for CTFT

For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

– implies that

$$X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x (-\omega)$$

- Time domain and frequency domain are symmetric.
 - This property suggests if signal A's frequency spectrum is signal B, then signal B's frequency spectrum takes a form similar to signal A.
- Using linear frequency f instead of angular frequency ω , there is:

$$X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} x(-f)$$

for DTFT

the duality is between the DTFT and CTFS

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega,$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n},$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t},$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt.$$

2.9 Duality - DTFT (Optional)

• Example:

$$g(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & T_1 < |t| \le \pi \end{cases} \xrightarrow{\text{CTFS}} a_k = \frac{\sin(kT_1)}{k\pi}$$

$$x[n] = \frac{\sin(\pi n/2)}{\pi n} \xrightarrow{\text{DTFT}} X(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \pi/2 \\ 0 & \pi/2 < |\omega| \le \pi \end{cases}$$

2.9 Duality - Summary (Optional)

Summary

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

	Continuous time		Discrete time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier Series	$x(t) = $ $\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t)e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$
	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time duality	discrete frequency periodic in frequency
Fourier	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n}$	$X(e^{j\omega)} = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$
	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency

Quiz 2

- If $X(e^{j\omega})$ is the DTFT of the sequence $x[n] = \{3, 1, -4, 0, -5, 2, 1; -4 \le n \le 2\}$. Calculate the values of following expressions without calculating the DTFT:
 - (a) $X(e^{j0})$;
 - (b) $X(e^{j\pi})$;
 - (c) $\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$;
 - (d) $\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$;
 - (e) $\int_{-\pi}^{\pi} \left| \frac{dX(e^{j\omega})}{d\omega} \right|^2 d\omega$.

Next ...

- DTFT pairs
- Inverse DTFT
- DTFT of LTID systems
- Concept of filtering

