

Posts and Telecommunication Institute of Technology Faculty of Information Technology 1

Introduction to Artificial Intelligence

Local search

Dao Thi Thuy Quynh

Outline

- Introduction to local search
- Hill-climbing search
- Simulated annealing algorithm

Local search

- Previous search algorithms (blind or informed) investigate the search space systematically according to certain rules
 - Need to store information about traversed states and paths
 - Not suitable for problems with large state spaces
- Local search only considers the current state and its neighbors
 - Does not store information about traversed states and paths
 - Saves time and memory
 - Applicable to problems with large state spaces
 - Does not give optimal solution

Combinatorial optimization problem

- Find an optimal state or an optimal combination in a discrete space of states
 - Do not care about the path
- Huge state space
 - Can't use learned search methods to traverse all states
- There is no algorithm that allows to find the optimal solution with small computational complexity
 - Accept a relatively good solution
- Examples: planning, scheduling, etc.

Local search: Idea

- Local search only cares about goal state (optimal state), doesn't care about paths
 - Each state is a solution (sub-optimal)
- Iteratively improve the solution by starting from one state, then moving to another state with a better objective function value
- Moving to other states by taking actions
 - $_{\circ}$ A state obtained by taking an action from sate n is call a neighbor of n

Local search problem

- State space X
- ▶ Objective function $Obj: X \to R$
- Set of actions (to generate neighbors)
 - \circ N(x) set of neighbors of x
- ▶ Task: Find state x^* such that $Obj(x^*)$ is maximum (or minimum)

Local search

Outline

- ▶ Introduction to local search
- Hill-climbing search
- Simulated annealing algorithm

Hill-climbing algorithm: Idea

- ▶ Hill-climbing: Name of a family of algorithms with the same principle
- Principle: From the current state, consider the set of neighbors, move to a better state
 - How to choose a neighbor to move?
- Goal state: The algorithm stops when there is no better neighbor
 - Algorithm can find the global maximum or a local maximum

Moving to the best state

Input: combinatorial optimization problem

Output: state with the maximum value of the objective function (or local maximum)

- 1. Select a random state x
- 2. Let Y denotes the set of neighbors of x
- 3. if $\forall y_i \in Y : Obj(y_i) < Obj(x)$
 - o return *x*

Moving to the best state

- $4. x \leftarrow y_i \text{ where } i = argmax_i (Obj(y_i))$
- **5. Go to** 2

Properties of hill-climbing algorithm

- Simple, easy to implement
- Less memory (does not store states)
- Can get stuck on local maxima (sub-optimal)
- Selecting the set of actions is important; there are no general rules
 - If the number of actions is large
 - Generate many neighbors
 - Take time to choose the best neighbor
 - If the number of actions is small
 - Usually give a local maximum

Random hill-climbing: idea

- Another version of the hill-climbing algorithm
- Randomly select a neighbor
 - Move to this neighbor if it is better (than the current state)
 - If it isn't better, randomly select another neighbor
- End when patience runs out
 - Number of selected neighbors (in a loop or in the algorithm)

Random hill-climbing

- 1. Select a random state x
- 2. Let *Y* denote the set of neighbors of *x*
- 3. Select a random state $y_i \in Y$
- 4. **if** $Obj(y_i) > Obj(x)$

$$\circ x \leftarrow y_i$$

5. **Go to** 2 if still have patience

Problem: How to choose the ending condition?

Some properties

- When each state has many neighbors
 - Random hill-climbing usually gives results faster and has more chance to find the global maximum (than "moving to the best state" version)
- For state spaces with few local maxima
 - Hill-climbing algorithms usually find a solution quickly
- For complex state spaces
 - Hill-climbing algorithms usually find a local maximum
 - Random-restart hill-climbing can find a good local maximum

Outline

- ▶ Introduction to local search
- Hill-climbing search
- Simulated annealing algorithm

Simulated annealing: Idea

- A generalized version of random hill-climbing
- Goal: partially solve the problem of local maxima in hillclimbing algorithms
- ullet **Principle**: accept states that are worse than the current state with a probability p
 - \circ How to choose the value of p?

Choosing *p*

- **Principle**: does not choose a fix value for p; the value of p depends on two factors
 - If the new state is much worse than the current state, p must be decreased
 - The probability of accepting a state is inversely proportional to the poorness of the state
 - Over time, the value of p must be decreased
 - At the beginning, the algorithm is not in a good state region, a big change can be accepted
 - Over time, the algorithm is in a good state region, the change should be limited

Simulated annealing algorithm

```
SA(X, Obj, N, m, x, C)
```

Input: number of iterations *m*

initial state x (random)

cooling schedule C

Output: optimal state x^* (maximize objective function)

Initialize: $x^* = x$

for i = 1 to m

- 1. randomly select $y \in N(x)$
 - a) calculate $\Delta(x, y) = Obj(x) Obj(y)$
 - b) if $\Delta(x, y) < 0$ then p = 1
 - c) else $p = e^{-\Delta(x,y)/T}$
 - d) if rand[0,1] < p then $x \leftarrow y$ if $Obj(x) > Obj(x^*)$ then $x^* \leftarrow x$
- 2. decrease T by using schedule C

return x*

Cooling schedule *C*

$$T_t = T_0 * \alpha^{t*k}$$

- $T_0 > 0$
- $\alpha \in (0,1)$
- $0.1 \le t \le m$
- 0.1 < k < m

Meaning

- Increase t; small T; small p
- Large T: accept every states
 - Random walk
- Small T: does not accept worse states
 - Random hill-climbing

Properties of simulated annealing

- No clear theoretical foundations
- Usually gives better results than hill-climbing algorithms
 - Reduce the possibility of giving local maxima
- Parameter selection depends on specific problems