

Résonance Magnétique Nucléaire (RMN)

- 1. Généralité et principes
- . Déplacement Chimique
- 3. Interaction spin-spin
- Exemples

IV.1 Généralité et Principe

Spin nucléaire

Soit un atome X

- de numéro atomique Z (le nombre de protons ou d'électrons),
- de masse atomique A, avec A = Z + N (N étant nombre de neutrons)

On a

dû à la rotation des particules élémentaires sur elles-mêmes. I = moment angulaire ou spin nucléaire

I ne peut prendre que les valeurs discrètes suivantes : 0, 1/2, 1, 3/2, etc.

W.1 Généralité et Principe

Spin nucléaire

Beaucoup de noyaux atomiques possèdent

· un moment cinétique de spin non nul (entier ou demi entier)

• un moment dipolaire magnétique, $\mu = \gamma.I$, colinéaire au moment cinétique (y est le rapport gyromagnétique). Les spins nucléaires sont en général en équilibre thermique avec le milieu environnant.

Les populations des niveaux d'énergie magnétique sont alors proportionnelles à exp(-E_m/kT),

T est la température,

k Constante de Boltzmann

E_m des spins nucléaires

Spin nucléaire

Spin nucléaire

I=1/2 ¹ H, ¹⁹ F, ¹³ C, ³¹ p I=3/2 ¹¹ B, ²³ Na I=5/2 ¹⁷ O, ²⁷ AI	I=1 ² H, ¹⁴ N I=3 ¹⁰ B	I=0 12C, 16O
I est un demi entier	I est un entier	I est nul
A impair	A pair et Z impair	A pair et Z pair

Lorsqu'un noyau présente des propriétés magnétiques caractérisées par l'existence d'un spin nucléaire I non nul, il est observable par R.M.N.

Si I ≠ 0, le noyau possède un moment magnétique μ, lié à l par la relation:

γ = rapport gyromagétique, caractéristique du noyau, h = constante de Planck Plongé dans un champ magnétique Bo, le moment m ou tout du moins ses projections mz sur l'axe des z ne peut donc prendre que certaines orientations discrètes

soit 2l +1 valeurs: I, I-1, I-3, etc.

Noyau à spin ½ dans un champ magnétique

A l'échelle du noyau (aspect microscopique) un spin (I=1/2) est associé à un moment magnétique de spin m (magnéton de Bohr).

Dans ce cas (I = 1/2) le moment magnétique de spin peut être assimilé à une aiguille aimantée microscopique.

En l'absence de champ, son orientation est quelconque.

L'application d'un champ magnétique B₀, provoque l'orientation de cette aiguille

- soit parallèlement au champ, situation la plus stable, m = +1/2,
- soit antiparallelement, situation la moins stable, m = -1/2.

On dit que le champ magnétique provoque une levée de dégénérescence des niveaux de spins (effet Zeeman).

Noyau à spin ½ dans un champ magnétique

Il faut noter que:

Le nombre de niveaux d'énergie est égal au nombre des états de spins (multiplicité des états de spins) = 2(I)+1

Pour I = 1/2 (${}^{1}H$, ${}^{13}C$) La multiplicité est 2(1)+1=2soit l'existence de $\frac{2}{2}$ niveaux : $m = \frac{1}{2}$ et $m = -\frac{1}{2}$

Représentation schématique d'un appareillage RMN

Noyau à spin ½ dans

un champ magnétique B₀

Ensemble de noyaux (I=1/2) dans un champ magnétique B₀

Fréquences d'observation et champ B₀

La fréquence $V=\gamma B_0/(2\pi)$ caractérise un noyau.

Le champ magnétique le plus utilisé en RMN est de 9,4 T (T = Tesla = 10⁴ Gauss).

Dans ce champ, le noyau ¹H est observé à la fréquence d'irradiation: $v = 4.10^8$ Hz (400 MHz).

Les champs magnétiques utilisés couvrent le domaine: 1,4 à 14,1 T, soit des fréquences pour le proton ¹H de 60 MHz à 600 MHz.

C'est cette fréquence liée à ¹H qui caractérise les spectromètres et non la force de leur champ magnétique. Une expérience de RMN permet l'observation d'un seul noyau. Lorsque le champ est fixé (exp: 1,4 T/ 60 MHz pour lH, 14 T/ 600 MHz pou lH), la fréquence des différents noyaux dépend de leur rapport gyromagnétique, y.

De plus, pour un noyau donné, la fréquence d'observation est modulée par son environnement électronique.

Fréquences d'observation et champ B₀

Fréquences de quelques noyaux (I = 1/2) pour un champ B_0 de 9,4 T

Phénomène de résonance

L'interaction entre l'onde magnétique et le spin nucléaire correspond au phénomène de résonance. En terme d'énergie, la condition nécessaire pour que cette interaction ait lieu est l'accord entre

- la fréquence de l'onde incidente: V
- la fréquence caractéristique du spin nucléaire V₀, qui correspond à sa fréquence propre de rotation (précession de Larmor) autour de l'axe du champ B_0 (axe z).

Donc à la résonance l'énergie du photon : $\Delta \mathbf{E} = \mathbf{h} \mathbf{v} = \mathbf{h} \mathbf{v}_0$

A ce moment la fréquence de précession:

$$V = V_0 = \omega_0/2\pi = \gamma B_0/2\pi$$

Populations des états de spins et transitions entre états

Nous venons de voir que pour N atomes d'hydrogène $(I=\frac{1}{2})$, la différence de population (n½ - n-½) est très faible et la répartition sur les deux niveaux est presque identique. Pour introduire une différence entre les deux niveaux, on fait évoluer l'aimantation grâce perpendiculaire à B₀) pendant un temps très court, quelques microsecondes et à une à une irradiation par une onde magnétique (champ oscillant B, dans le plan xy fréquence adéquate. Ce qui écarte l'aimantation de sa position d'équilibre.

Après l'arrêt de l'irradiation B₁, le signal détecté est induit par l'aimantation ou plus exactement par sa composante perpendiculaire. L'observation est réalisée pendant quelques secondes.

Expériences RMN

courte durée à l'échantillon au préalable à l'équilibre thermique. L'impulsion radio fréquence de $\pi/2$ Une expérience simple de RMN consiste à appliquer une impulsion radiofréquence intense, de très (= rotation autour de x) induit la précession dans le plan xy. L'angle 3 avec lequel bascule l'aimantation nette dans le plan xy est appelé angle d'impulsion (ou flip angle).

L'aimantation perpendiculaire oscillante amortie est détectée par une bobine réceptrice placée selon La coupure de B, marque le début du retour vers la position d'équilibre. l'axe y.

composante sur y de M. Il contient les informations de précession des divers types de spins (à différents Ce signal correspond à une réponse sinusoïdale amortie en fonction du temps. Il est proportionnel à la déplacements chimiques) ainsi que leur amplitude.

L'étape suivante consiste à "transcrire" ces informations en spectre avec des raies caractérisées par leur fréquence et leur intensité. L'intensité d'une raie est proportionnelle à Mo

Expériences RMN

Fourier de telle sorte que les données en fonction du temps et les données en fonction de Pratiquement, ces informations sont traitées mathématiquement par une transformée de la fréquence sont corrélées.

Cette transformée génère deux composantes: une composante réelle et une composante magmarre.

Le spectre RMN ne présente que la partie réelle

La fréquence de résonance d'un noyau dans une molécule est déterminée par son rapport gyromagnétique et la force du champ auquel il est soumis $v_0 = \gamma B_0 / 2\pi$. Ainsi dans un spectromètre délivrant un champ statique de 9,4 T, les protons résonnent à une fréquence de 400 MHz et les carbones ¹³C à 100,6 MHz.

Celle-ci dépend aussi de la densité électronique locale autour du noyau (dans une moindre Néanmoins, tous les protons (ou 13 C) ne résonnent pas exactement à la même fréquence.

Cet effet est le déplacement chimique qui rend inégale les fréquences de résonance des protons (ou 13C)

Ex: éthanol (CH₃CH₂OH)

Blindage nucléaire

Le déplacement chimique existe car le champ réellement perçu par un noyau dans une molécule diffère du champ externe B₀. Dans un atome, le noyau est entouré d'électrons. En circulant autour du noyau ces électrons créent un champ magnétique faible B' de direction opposée à B₀.

Le nuage électronique fait écran au champ B₀ de telle sorte que le champ réellement perçu par le noyau est :

$$B = B_0 - B' = B_0 (1-\sigma)$$

où o représente est dite constante d'écran.

Dans ces conditions:

$$v_0 = \gamma B_0(1-\sigma)/2\pi$$
 où $\sigma << 1$

Mesure des déplacements chimiques :

La constante d'écran o est une mesure peu pratique du déplacement chimique. Celui-ci est défini comme un rapport de fréquences selon la relation :

$$\delta = 10^6 \, (v - v_{\rm ref})/v_{\rm ref}$$

où v est la fréquence du noyau considéré, v_{réf} est la fréquence de résonance d'un noyau de référence. 8 est un rapport sans dimension et devient ainsi une propriété moléculaire indépendante du champ magnétique. Le facteur multiplicatif permet d'avoir une échelle simple. Le déplacement chimique δ est donné en ppm.

Il est corrélé à la constante d'écran selon la relation:

$$\delta = 10^6 \, (\sigma_{\rm ref} - \sigma) / (1 - \sigma_{\rm ref}) \approx 10^6 \, (\sigma_{\rm ref} - \sigma)$$

$$\delta = 10^6 (v - v_{\rm ref})/v_{\rm ref}$$

$$\delta = 10^6 (\sigma_{ref} - \sigma) / (1 - \sigma_{ref}) \approx 10^6 (\sigma_{ref} - \sigma)$$

Pour les spectres ¹H et ¹³C, la référence est le tétraméthyl silane (TMS), molécule merte, soluble dans la plupart des solvants organiques et qui donne une seule raie intense.

De plus, le signal du TMS apparaît à une fréquence très faible, de telle sorte que la plupart des déplacements chimiques ¹H ou ¹³C sont positifs.

Tetramethylsilane (TMS)

Ecran Magnétique

 $B_e = champ effectif vu par le noyau <math>\neq champ appliqué B_g$

$$B_e = B_o (1 - \sigma)$$

L'écran est dû au fait que les électrons en mouvement autour du noyau induisent un champ qui s'oppose au champ appliqué B₀. On appelle cela l'effet diamagnétique.

Dans ce cas,

$$B_{effectif} = B_0 (1-\sigma) < B_0$$

σ = constante d'écran

- * indépendante de B_o
- * caractéristique du noyau et de son environnement

Les hydrogène équivalents

Ce sont les hydrogène qui ont le même environnement chimique

Détermine le nombre d'ensemble d'hydrogène équivalent

Nombre de signaux en RMN

1 équivalent Hydrogène donne 1 signal RMN

онз СН3 ССН3

CICH₂ CH₂ CI

Cyclopentane

CH3

2,3-Dimethyl-

Propanone (Acetone)

1,2-Dichloroethane

2-butene

Les hydrogène équivalents

Influence de l'électronégativité

CH,F	1	CH ₁ Cl	3.0
O [‡] (*HO)	3.2	(CH ₃),S	N
(CH,),N	2.1	(CH _s),P	0.9
2 ^{'('H2)}	6.0	(CH _s),Si	0.0
Composé	ю	Composé	ю

Cpd. / Sub.	X=CI	X=Br	×	X=0R	X=SR
	3.0	2.7	2.1	3.4	2.1
	5. E.	2.0	3.9	4.4	3.7
	7.3	8'9	49	2.0	

Déplacements chimiques en ¹H RMN

Intensité des signaux en ¹H RIVIN

L'aire (intégration) de chaque signal est proportionnelle au nombre d'hydrogène équivalents

Intensité des signaux en ¹H RMN

Exemples

Illustration

Mustration : deux isomères

1,2 dichloro ethane

1,1 dichloro éthane

Règles de couplage :

• Il n'y a pas de couplage entre deux noyaux ayant le même environnement chimique

1,2 dichloro éthane

1,1 dichloro éthane

Règles de couplage :

- Il n'y a pas de couplage entre deux noyaux ayant le même environnement chimique
- le phénomène de couplage implique les noyaux voisins ayant des environnements chimiques différents
- Règle de (n + 1)

Règle de multilplicité au 1er ordre (n +1)

1,2 dichloro éthane

1,1 dichloro éthane

Constante de couplage J

