Санкт-Петербургский Академический университет – научно-образовательный центр нанотехнологий РАН

Кафедра математических и информационных технологий

Работа с файловыми системами в операционной системе Windows с использованием драйверов операционной системы Linux

Студент: Новокрещенов К.С.

Научный руководитель: Баталов Е.А.,

магистр прикладной

математики и физики

Файловые системы: Linux и Windows

	Linux		Windows
Amiga Fast FS	Fusion-IO NVMFS (DFS)	ReiserFS	FAT
Arla	HFS+	RomFS	NTFS
Aufs	JFS	RozoFS	exFAT
BtrFS	MINIX FS	SpadFS	
Captive NTFS	Next3	StegFS	
CDFS	NILFS	Tux3	
Chiron FS	NTFS-3G	UnionFS	
Ext Ext2 Ext3(cow) Ext4	OpenAFS	XFS	
FAT	OpenZFS	XiaFS	
FUSE	Reiser4	ZFS	

Цель

Предоставить приложениям операционной системы Windows возможность работать с файловыми системами операционной системы Linux, не поддерживаемыми операционной системой Windows

Организация доступа к файловой системе

Организация доступа к файловой системе

N файловых систем – в N раз больше проблем

Организация доступа к файловой системе

Портированные Windows-драйверы

Реализация драйвера «с нуля»

Высокая сложность разработки

Драйвера сторонних разработчиков

Низкое качество драйверов

Ограниченная поддержка ФС

N файловых систем – в N раз больше проблем

Нативные Linux-драйверы

Высокая надежность, эффективность

Полный доступ к файловой системе

Поддержка всех файловых систем

Разработка и тестирование Linux-сообществом

Реализация окружения Linux в Windows

Архитектура

• Проект компании RedHat

• Набор утилит для работы с образами дисков виртуальных машин

Библиотека libguestfs

Задачи

- Выбрать виртуальную машину для запуска Linux
- Портировать библиотеку libguestfs для работы в Windows
- Сравнить производительность работы в Windows и Linux
- Повысить производительность работы в Windows и Linux

Выбор виртуальной машины

Virtual Box

- + работает в Linux и Windows
- + открытый исходный код

coLinux

- + высокая скорость работы
- + свободно распространяется
- 32-битный драйвер режима ядра

QEMU

- + работает в Linux и Windows
- + открытый исходный код
- + поддерживается в libguestfs

Портирование libguestfs на Windows

Нативное портирование libguestfs

Исходный код

- Реализация Windows-аналогов Linux-функций
- Локализация платформозависимого кода
- Проектирование и реализация

кроссплатформенных интерфейсов

Примеры

- изменения в запуске виртуальной машины
- изменения в организации сетевого взаимодействия
- изменения в способе выполнения команд и т.д.

Система сборки

 Разрешение внешних зависимостей от сторонних библиотек

libxml2, XDR, libintl, iconv, ...

Интеграция в систему сборки GNU Autotools

Сравнение производительности

Замена XDR на ProtoBuf

Передача файлов через общую память

Передача файлов через общую память

Результаты

Библиотека для доступа к файловым системам Linux в Windows

- использование нативных Linux-драйверов
- эмуляция Linux-окружения с помощью QEMU
- передача файлов через разделяемую память

Спасибо за внимание!

Спасибо за внимание!

Дальнейшая работа

- Портировать UML (User Mode Linux) в Windows
- Использовать UML в качестве виртуальной машины

Сравнение производительности: QEMU и UML

Потребляемая память

Сравнение производительности: Windows

