

GUÍA DE MATEMÁTICA # 24

NOMBRE:		CURSO: 1° medio	FECHA: / / 2024
UNIDAD	 Unidad 3: Geometría Área y volumen del cilindro y del cono Determinar el área o el volumen de un cilindro o un cono a partir de sus medidas utilizando la fórmula apropiada. 		
CONTENIDOS			
OBJETIVOS			
INSTRUCCIONES	Resuelva en el espacio asignado para cada ejercicio.		

I. Ejercicios

1. Identifica los elementos de un cono: Luego, escribe el nombre de cada elemento en el cuadro asignado.

2. Al hacer rotar un triángulo en torno a uno de sus lados se genera un cuerpo geométrico.

Si π = 3,14, considera los siguientes casos.

Caso 1: Si ΔABC gira en torno al lado AB determina:

Caso 2: Si ΔABC gira en torno al lado AC determina:

a. El área basal.

c. El área basal.

b. El volumen del cono.

d. El volumen del cono.

3.	Res	esponde las siguientes preguntas con respecto al ejercicio ante	rior y justifica cada una de ellas.
	a.	a. ¿En qué caso el área basal es mayor? b.	¿Qué cuerpo tiene mayor volumen?
4.	Res	esuelve los siguientes problemas de cálculo de volumen del co	no. Considera π = 3,14.
	a.	. Calcula el volumen de un cono de 6 m de altura y 5 m de radio	0.
	b.	. ¿Qué altura tiene un cono de 4 cm de radio y 150,72 cm³ de v	olumen?
	c.	El radio de un cono es 8 cm y su generatriz mide 17 cm. Calcu	la la altura del cono y su volumen.
	d.	. ¿Cuál es el volumen de un cono cuyo radio basal mide 9 cm y	altura mide 12 cm?
	e.	. La altura de un cono es 12 cm. Para que su volumen sea 100π	m³, ¿cuánto debe medir su radio basal?
5.	En	n una fábrica de velas tienen un modelo cónico y deciden tripli	car su altura, manteniendo su base.
	Erغ	En cuánto varía su volumen?	

6.	Una barra cilíndrica de metal, de radio 3 cm y altura 12 cm, se derrite. Con el metal obtenido se quiere construir conos. Considera π = 3,14.
	a. Si se mantiene la altura y el radio, ¿cuántos conos se pueden construir?
	b. Si se construye un solo cono con todo el material con una altura de 9 cm, ¿cuánto mediría el diámetro basal?
	c. Si el radio del único cono construido con todo el material es 5 cm, ¿cuál debería ser su altura?
7.	Un recipiente para líquidos tiene forma cónica con una altura de 27 cm y un radio de 6 cm. ¿Cuál es aproximadamente su capacidad?
8.	Si el radio basal de un cono mide "a" y su altura mide el triple del radio basal, ¿cuál es el volumen de este cono? Expresa en función de a y de π.
9.	Si la generatriz de un cono circular recto y el radio están en razón 1,25, ¿cuál es la razón entre la altura del cono y su volumen? Expresa en función de r y de π .
10.	Un helado es servido en un cono recto de 15 cm de altura. Si el volumen total del cono es de 423,9 cm³, ¿cuál es, aproximadamente, el diámetro de la base del cono para helados? Considera π = 3,14.
11.	Un reloj de arena se forma con dos conos congruentes unidos en sus cúspides. La altura de cada cono mide 12 cm y sus radios miden 9 cm. ¿Cuál es el volumen de la arena que contiene el reloj, si esta corresponde a un tercio del volumen total de ambos conos? Considera π = 3,14.