Approximate Frequency Counts over Data Streams

Gurmeet Singh Manku Rajeev Motwani

Näherungsweise Häufigkeitszählung in Datenströmen

Seminarvortrag von Marco Möller

Wofür ist das gut?

- Was sind die Top Ten der Suchanfragen bei g**gle.de?
- Lernen von Assoziationsregeln:
 - Kunden, die das neue MS Office bestellen, bestellen auch häufig zusätzlichen RAM
- IP Traffic Mangagement:
 - finden von viel genutzten Links in Netzwerken um Routen danach zu optimieren
 - "Denial of Service" Attacken aufdecken

Worum geht's?

- In einem Datenstrom der Länge N sollen alle Elemente die häufiger als $s \cdot N$ mit $s \in (0,1)$ vorkommen extrahiert werden
- jeweils mit Angabe von Häufigkeit f
- in einem Durchlauf durch die Daten
 - also gut für Data Streams geeignet
- beweisbarer, möglichst kleiner Speicherbedarf

Was heißt näherungsweise?

- dabei nicht exakt zählen, sondern mit $\epsilon \in (0,1)$ einstellbarer (garantierter) Genauigkeit
 - alle Elemente die häufiger als sN vorkommen werden gefunden
 - kein Element das seltener als $(s-\epsilon)N$ vorkommt wird ausgegeben
 - angegebene Raten sind kleiner gleich den richtigen um maximal ϵN

Algorithmen Grundgerüst

- Initialisierung $K = \emptyset$
- FOR_EACH neues eintreffendes Element e
 - IF bereits ein Eintrag in *K* für *e* existiert?
 - THEN in Datenstruktur Zäher für e inkrementieren
 - ELSE evtl. neuen Eintrag in *K* einfügen
 - IF "Zeit zum Aufräumen" THEN
 - Elemente aus *K* entfernen
- Ausgabe: alle Elemente aus K, die häufig genug vorkamen

Sticky Sampling - Übersicht

- Stochastik bzw. Stichproben basiert
- Anforderungen nur mit wählbarer Wahrscheinlichkeit $1-\delta$ erfüllt
- Speicher maximal $\frac{2}{\epsilon} \log(s^{-1} \delta^{-1})$

Sticky Sampling - Benennung

- Datenstruktur S ist Menge von Einträgen der Form (e, f)
 - e Element im Datenstrom
 - f ∈ IN genäherte Häufigkeit
- Variable r für "sampling rate" wird mitgeführt

Sticky Sampling - Algorithmus (1)

- Initialisierung $S := \emptyset$, r := 1, $t := \frac{1}{\epsilon} \log(s^{-1} \delta^{-1})$
- FOR_EACH neues eintreffendes Element e
 - IF bereits ein Eintrag in S für e existiert?
 - THEN entsprechendes f um eins erhöhen
 - ELSE Mit Wahrscheinlichkeit $\frac{1}{r}$ neuen Eintrag der Form (e,1) in S einfügen
 - IF $N = 2 \cdot r \cdot t$ THEN
 - $r := 2 \cdot r$
 - *S* ausdünnen (siehe nächste Folie)

Sticky Sampling - Algorithmus (2)

- S ausdünnen:
 - FOR_EACH $(e, f) \in S$
 - WHILE Münzwurf = "Kopf"
 - -f := f 1
 - IF f = 0 THEN lösche Element aus S
- Ausgabe: Alle Elemente $(e, f) \in S$ mit $f \ge (s \epsilon)N$

Sticky Sampling - Beispiel

$$s = 0.1 \ \epsilon = 0.01 \ \delta = 0.01 \ t = \frac{1}{0.001} \log_2(\frac{1}{0.1} \cdot \frac{1}{0.01}) = 1000$$

1/4 ->f := 4-seitiger Würfel landet nicht auf der richtgen Seite

Lossy Counting - Übersicht

- deterministisch
- exakt in Anforderungsschranken
 - keinen Parameter δ
- Speicher maximal $\frac{1}{\epsilon} \log(\epsilon N)$
 - Im Gegensatz zu Sticky Sampling abhängig von N

Lossy Counting - Benennung

- Eingangsstrom in gedachte Behälter der Länge $w = \left\lceil \frac{1}{\epsilon} \right\rceil$ unterteilen
- nummeriere Behälter durch $id=1,2,\dots$
- aktuelle Behälternummer ist $id_{max} = \left\lceil \frac{N}{\epsilon} \right\rceil$
- Datenstruktur D Menge von Einträgen der Form (e,f,Δ)
 - e Element im Datenstrom
 - f∈IN genäherte Häufigkeit
 - ∆ maximal möglicher Fehler

Lossy Counting - Algorithmus

- Initialisierung $D = \emptyset$
- FOR_EACH neues eintreffendes Element e
 - IF bereits ein Eintrag in D für e existiert?
 - ullet THEN entsprechendes f um eins erhöhen
 - ELSE neuen Eintrag der Form $(e,1,id_{\max}-1)$ in D einfügen
 - $IFN \mod w = 0 THEN$
 - alle Elemente aus D löschen, für die gilt $f + \Delta \leq id_{max} = \frac{N}{w}$

• Ausgabe: alle Elemente $(e, f, \Delta) \in D$ mit $f \ge (s - \epsilon)N$

Lossy Counting - Beispiel

$$s=0,1 \ \epsilon=0,01$$
 $w=\left\lceil \frac{1}{\epsilon} \right\rceil = 100$

Vergleich - Memory

Sticky Sampling

$$\frac{2}{\epsilon}\log(s^{-1}\delta^{-1})$$

Lossy Counting

$$\frac{1}{\epsilon}\log(\epsilon N)$$

•Uniq: Alle Elemente Einzigartig

•Zipf: Zipf-Verteilung mit Parameter 1,25 Häufigkeit proportional zu 1 / (Rangfolge der Elements in der Gesamtmenge)

$$s = 10\% \epsilon = 1\% \delta = 0.1\%$$

Praxis

- Lossy Counting benötigt wesentlich weniger Speicher und ist praktisch nicht abhängig von N
- Beide Algorithmen arbeiten wesentlich genauer als die Angegebene Schranke es verlangt
 - Lossy Counting: Falls im ersten Fenster alle wichtigen Elemente vorkommen, ist die Zählung sehr warscheinlich exakt
- Lossy Counting prozessorlastig
 - geeignet um Daten direkt von Platte zu lesen ohne Performance Einbuße

Literatur

- J. Fürnkranz, G. Grieser. Vorlesungsskript "Maschinelles Lernen: Symbolische Ansätze". WS2006/07
- G. S. Manku and R. Motwani. Approximate Frequency Counts over Streaming Data. In Proceedings of VLDB 2002, Aug. 2002
- Wikipedia. 11.11.2006 http://en.wikipedia.org/wiki/Zipf%27s_law
- Cordula Nimz. Seminarvortrag. 15.12.2005
 http://www.inf.fu-berlin.de/lehre/WS05/Seminar-Algorithmen/Vortrag20051215.pdf