VNU-HUS MAT3500: Toán rời rac

Bài tập Quy nạp và Đệ quy

Hoàng Anh Đức

Bộ môn Tin học, Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Ngày 16 tháng 3 năm 2024

Bài tập 8. Giả sử m và n là các số nguyên dương với m > n và f là một hàm từ $\{1, 2, \ldots, m\}$ đến $\{1, 2, \ldots, n\}$. Hãy sử dụng phương pháp quy nạp để chứng minh rằng f không phải là đơn ánh với mọi số nguyên dương n.

Chứng minh. Gọi P(n) là vị từ

Hàm $f:\{1,\ldots,m\} \to \{1,\ldots,n\}$ không là đơn ánh, trong đó m là số nguyên dương nào đó thỏa mãn m>n

Ta chúng minh $\forall n \in \mathbb{Z}^+ P(n)$ bằng phương pháp quy nạp.

- Bước cơ sở: Ta chứng minh P(1) đúng, nghĩa là $f:\{1,\ldots,m\}\to\{1\}$ không là đơn ánh Thật vậy, do f là một hàm, ta có f(i)=1 với mọi $i\in\{1,\ldots,m\}$. Do m>n=1, tồn tại $i,j\in\{1,\ldots,m\}$ thỏa mãn $i\neq j$. Với các giá trị i,j này, f(i)=f(j)=1. Do đó, f không là đơn ánh.
- Bước quy nạp: Giả sử với số nguyên $k \geq 1$ nào đó, P(k) đúng, nghĩa là $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, k\}$ không là đơn ánh, trong đó m là số nguyên dương nào đó thỏa mãn m > k. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $f': \{1, \ldots, m'\} \rightarrow \{1, \ldots, k+1\}$ không là đơn ánh, trong đó m' là số nguyên dương nào đó thỏa mãn m' > k+1. Ta xét các trường hợp sau:
 - TH1: không tồn tại $i \in \{1, ..., m'\}$ thỏa mãn f(i) = k+1. Trong trường hợp này, f cũng là một hàm từ $\{1, ..., m'\}$ đến $\{1, ..., k\}$ và m' > k+1 > k. Do đó, theo giả thiết quy nạp, f không là đơn ánh.
 - **TH2:** tồn tại $i \in \{1, \dots, m'\}$ thỏa mãn f(i) = k + 1. Ta xét hai trường hợp nhỏ sau:
 - * **TH2.1:** tồn tại $i, j \in \{1, \dots, m'\}$ thỏa mãn $i \neq j$ và f(i) = f(j) = k+1. Trong trường hợp này, theo định nghĩa, f hiển nhiên không là đơn ánh.
 - * TH2.2: tồn tại duy nhất $i \in \{1, \dots, m'\}$ thỏa mãn f(i) = k+1. Ta định nghĩa hàm $g: \{1, \dots, m'-1\} \to \{1, \dots, m'\}$ như sau:

$$g(j) = \begin{cases} j & \text{n\'eu } j < i \\ j+1 & \text{n\'eu } j \ge i \end{cases}$$

Trước tiên, ta chỉ ra g là đơn ánh. Thật vậy, với mọi $j, j' \in \{1, \dots, m'-1\}$ thỏa mãn $j \neq j'$,

- · nếu j, j' < i, thì $g(j) = j \neq g(j') = j'$;
- nếu $j, j' \ge i$, thì $g(j) = j + 1 \ne g(j') = j' + 1$; và
- · nếu $j < i \le j'$, thì g(j) = j < g(j') = j' + 1, và do đó $g(j) \ne g(j')$.

Trong mỗi trường hợp, ta đã chỉ ra rằng nếu $j \neq j'$ thì $g(j) \neq g(j')$, với $j, j' \in \{1, \dots, m'-1\}$. Do đó, g là đơn ánh.

Chú ý rằng theo định nghĩa, tập giá trị của g không chứa i. Do đó, $f\circ g$ là một hàm từ $\{1,\ldots,m'-1\}$ đến $\{1,\ldots,k+1\}$ thỏa mãn điều kiện không tồn tại $\ell\in\{1,\ldots,m'-1\}$ sao cho $(f\circ g)(\ell)=f(g(\ell))=k+1$, bởi vì nếu ℓ tồn tại thì $g(\ell)=i$ và điều này mâu thuẫn với định nghĩa của g. (Nhắc lại là theo giả thiết, i là số duy nhất trong $\{1,\ldots,m'\}$

thỏa mãn f(i)=k+1.) Tương tự như **TH1**, $f\circ g$ cũng là một hàm từ $\{1,\ldots,m'-1\}$ đến $\{1,\ldots,k\}$ và chú ý rằng m'-1>k. Do đó theo giả thiết quy nạp, $f\circ g$ không là đơn ánh.

Do đó, tồn tại $j,j' \in \{1,\ldots,m'-1\}$ thỏa mãn $j \neq j'$ và $(f \circ g)(j) = (f \circ g)(j') \in \{1,\ldots,k+1\}$. Do $(f \circ g)(j) = (f \circ g)(j')$, theo định nghĩa của $f \circ g$, ta có f(g(j)) = f(g(j')). Do g là đơn ánh, $g(j) \neq g(j')$. Do đó, tồn tại x = g(j) và y = g(j') thuộc $\{1,\ldots,m'\}$ thỏa mãn $x \neq y$ và f(x) = f(y). Suy ra, f không là đơn ánh.

Theo nguyên lý quy nạp, ta có $\forall n \in \mathbb{Z}^+ P(n)$.