Prediction of the quantity of taxi orders in time

Content

- 1. Project Description
- 2. Data import and overview
- 3. Data Analysis
- 4. Models training
- 5. Models testing

Project Description

Taxi company wants to understand what time is the highest and lowest drivers load for the optimization of the cost and increase of the drivers in a peak drivers load time. Based on the provided historical data from the company (taxi orders in airports) it's required to predict the quantity of the orders in next hour.

Main tasks are:

- 1. Load the data and perform resampling to 1 hour.
- 2. Perform the data Analysis.
- 3. Train the models with different hypreparameters. The test sample shall be equal to 10% of all data.
- 4. Test the best model and draw a conclusion.
- 5. RMSE score on the best model shall not exceed 48.

Import of required libraries

```
import pandas as pd
import numpy as np
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import TimeSeriesSplit

import warnings
warnings.filterwarnings("ignore")
```

Data import, overview, resampling equal to 1 hour

```
data = pd.read csv('taxi.csv',index_col = [0], parse_dates = [0])
In [2]:
         data = data.sort index()
         data.head()
In [4]:
Out[4]:
                            num orders
                   datetime
                                      9
         2018-03-01 00:00:00
         2018-03-01 00:10:00
                                     14
                                     28
         2018-03-01 00:20:00
         2018-03-01 00:30:00
                                     20
                                     32
         2018-03-01 00:40:00
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

In [5]: data = data.resample('1H').sum()

Data Analysis

Out[8]:		num_orders
	count	4416.000000
	mean	84.422781
	std	45.023853
	min	0.000000
	25%	54.000000
	50%	78.000000
	75%	107.000000
	max	462.000000

Plotting of graphs: destribution of orders, weekly and daily flatterned

```
In [9]: temp_data = data.copy()
   temp_data['daily_rolling'] = temp_data.rolling(24).mean()
   temp_data['weekly_rolling'] = temp_data['num_orders'].rolling(172).mean()
   temp_data.plot()
```

Out[9]: <AxesSubplot:xlabel='datetime'>

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Trend and seasonality graphs plotting

```
In [10]: decomposed data = seasonal decompose(data)
         decomposed data szn = seasonal decompose(data.resample('1D').sum())
In [11]: plt.figure(figsize =(10,10))
         plt.subplot(311)
         decomposed data.trend.plot(ax=plt.gca())
         plt.title('trend')
         plt.ylabel('quantity of orders')
         plt.xlabel('date')
         plt.subplot(312)
         decomposed data szn.seasonal.head(30).plot(ax=plt.gca())
         plt.title('Sesonality in March')
         plt.ylabel('quantity of orders')
         plt.xlabel('day')
         plt.subplot(313)
         decomposed data.seasonal.head(168).plot(ax=plt.gca())
         plt.title('Sesonality on first week of March')
         plt.ylabel('quantity of orders')
         plt.xlabel('day')
         plt.tight layout()
```


Conclusion:

- Based on the analysis we see that demand on the taxi has slow growth from March to end of August.
- On the seasonal March graph we see increase of demand in the middle of the week and on weekends.
- On the season graph of first week of march we see that the highest demand is in the second half of the day and the lowest demand is the night.

Models training

Features extracting

```
data['year'] = data.index.year
  In [12]:
           data['month'] = data.index.month
           data['day'] = data.index.day
           data['dayofweek'] = data.index.dayofweek
           data['hour'] = data.index.hour
  In [16]:
           # function for adding the required qunatity of columns using shift method
  In [17]:
           def rol lag(df, lag num, rol qty):
                df['rolling mean'] = df['num orders'].shift().rolling(rol qty+1).mean()
                lag = 1
                for i in range(lag num):
                    df['lag'+str(lag)] = df['num orders'].shift(i)
                    lag+=1
                return(df)
  In [18]: data_set = rol_lag(data,3,5)
           data_set = data_set.dropna()
           data set.head(10)
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

```
Out[18]:
                              num orders year month day dayofweek hour rolling mean lag1 lag2 lag3
                    datetime
          2018-03-01 06:00:00
                                      12 2018
                                                                                 65.833333
                                                                                             12
                                                                                                  6.0
                                                                                                       43.0
          2018-03-01 07:00:00
                                      15 2018
                                                                     3
                                                                                 47.166667
                                                                                             15 12.0
                                                                                                        6.0
                                      34 2018
                                                                     3
                                                                                 35.500000
          2018-03-01 08:00:00
                                                     3
                                                         1
                                                                           8
                                                                                             34
                                                                                                 15.0
                                                                                                       12.0
          2018-03-01 09:00:00
                                      69 2018
                                                                     3
                                                                           9
                                                                                 29.333333
                                                                                             69 34.0 15.0
          2018-03-01 10:00:00
                                      64 2018
                                                                     3
                                                                                 29.833333
                                                     3
                                                                          10
                                                                                             64 69.0
                                                                                                       34.0
          2018-03-01 11:00:00
                                      96 2018
                                                                                 33.333333
                                                                                                       69.0
                                                                     3
                                                                          11
                                                                                             96 64.0
          2018-03-01 12:00:00
                                      30 2018
                                                                     3
                                                                          12
                                                                                 48.333333
                                                                                             30 96.0
                                                                                                       64.0
          2018-03-01 13:00:00
                                      32 2018
                                                                                 51.333333
                                                                                             32 30.0
                                                                     3
                                                                          13
                                                                                                       96.0
          2018-03-01 14:00:00
                                      48 2018
                                                                                 54.166667
                                                     3
                                                                     3
                                                                          14
                                                                                             48 32.0 30.0
          2018-03-01 15:00:00
                                      66 2018
                                                     3 1
                                                                     3
                                                                          15
                                                                                 56.500000
                                                                                             66 48.0 32.0
```

Logistic regression training

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

In [24]:

LR model = LogisticRegression(random state=0)

```
In [19]: train, test = train_test_split(data_set, shuffle = False, test_size = 0.1)
In [20]: train, valid = train_test_split(train, shuffle = False, test_size = 0.2)
In [21]: train_target = train['num_orders']
    train_features = train.drop('num_orders', axis = 1)
In [22]: valid_target = valid['num_orders']
    valid_features = valid.drop('num_orders', axis = 1)
In [23]: test_target = test['num_orders']
    test_features = test.drop('num_orders', axis = 1)
```

```
Out[25]: •
                  LogisticRegression
         LogisticRegression(random state=0)
         LR predictions = LR model.predict(valid features)
In [26]:
         RMSE LR = mean squared error(valid target, LR predictions, squared= False)
In [28]:
         RMSE LR
         32.28852920756703
Out[28]:
         Random forest training
In [29]: n estimators = [int(x) for x in np.linspace(start = 10, stop = 100, num = 10)]
         max features = ['auto', 'sqrt']
         max depth = [int(x) for x in np.linspace(10, 30, num = 10)]
         min samples split = [2, 5, 10]
         min samples leaf = [1, 2, 4]
         bootstrap = [True, False]
In [30]:
         random grid = {'n estimators': n estimators,
                        'max features': max features,
                        'max depth': max depth,
                        'min samples split': min samples split,
                        'min samples leaf': min samples leaf,
                        'bootstrap': bootstrap}
In [31]: RF = RandomForestRegressor()
In [32]: tscv = TimeSeriesSplit(max_train_size = 5, test_size=1)
         RF model = RandomizedSearchCV(estimator = RF, param distributions = random grid, random state=42, cv=tscv)
In [33]:
In [34]: RF_model.fit(train_features,train_target)
```

Models testing

selection of best model:

```
In [38]: list = [LR_model,RF_model]
In [39]: result_df = pd.DataFrame(list,columns = ['model'])
In [40]: prediction = []
    test_rmse =[]
    for i in range(len(list)):
        prediction.append(result_df['model'][i].predict(test_features))
        test_rmse.append(mean_squared_error(test_target,result_df['model'][i].predict(test_features),squared = False))
    result_df['prediction'] = prediction
    result_df['RMSE'] = test_rmse
In [41]: result_df.sort_values(by = 'RMSE')
```

```
Out[41]:
                                                     model
                                                                                                prediction
                                                                                                              RMSE
           1 RandomizedSearchCV(cv=TimeSeriesSplit(gap=0, m... [157.66814285714284, 145.987, 148.755492063492... 29.591714
           0
                            LogisticRegression(random_state=0)
                                                                   [129, 118, 129, 110, 146, 76, 115, 110, 129, 1... 58.060274
           best result = result df['RMSE'].min()
In [42]:
           best model = result df[result df['RMSE'] == best result]
In [43]:
           best model
In [44]:
                                                     model
Out[44]:
                                                                                               prediction
                                                                                                              RMSE
```

Conclusion

1) Best RMSE score has random forest model with hyperparameters tuning;

1 RandomizedSearchCV(cv=TimeSeriesSplit(qap=0, m... [157.66814285714284, 145.987, 148.755492063492... 29.591714

2) required score RMSE < 48 successfully achieved