Feuille d'exercices Probabilités et statistiques

N'hésitez pas à m'envoyer un mail si vous avez des questions. 1

1 Lois de probabilités

Exercice 1. Ecriture ensembliste (\star)

Soit Ω un univers fini et soient A, B et C trois évènements de Ω . Exprimer à l'aide d'opérations ensemblistes (union, intersection, complémentaire), les evènements suivants :

- 0. Exemple : L'évènement D="A ne se réalise pas" s'exprime par la formule $^2:D=\overline{A}.$
- 1. E = "seul A se réalise",
- 2. F = "A et B se réalisent mais pas C",
- 3. G = "les trois évènements se réalisent",
- 4. H = "au moins l'un des trois évènements se réalise",
- 5. I = "aucun des trois évènements ne se réalise",
- 6. J = "exactement deux des trois se réalisent".
- 7. K = "au plus l'un des trois évènements se réalise",

Exercice 2. Dé pipé (*)

On lance un dé à six faces pipé de sorte qu'il existe un coefficient $\alpha \in \mathbb{R}$ tel que la probabilité de faire un nombre n avec ce dé soit égale à $n\alpha$.

- 1. Proposer un univers modélisant cette expérience aléatoire.
- 2. Déterminer la valeur du paramètre α de la loi de probabilité $\mathbb P$ décrite par l'énoncé.
- 3. Quelle est la probabilité d'obtenir un chiffre pair?

Exercice 3. Propriétés du cours (*)

Soit Ω un univers fini et soit \mathbb{P} une loi de probabilité sur Ω . Montrer que :

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. Soient $A \in \mathcal{P}(\Omega)$ et $B \in \mathcal{P}(\Omega)$.
 - (a) Si $A \subseteq B$, alors $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$. En particulier, $\mathbb{P}(A) \leq \mathbb{P}(B)$.
 - (b) $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$.
 - (c) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- 3. Pour tout $A \in \mathcal{P}(\Omega)$, on a $0 \leq \mathbb{P}(A) \leq 1$.
- 1. vadim.lebovici@ens.fr
- 2. On rappelle que $\overline{A} = \Omega \setminus A$.

Exercice 4. Encadrement de la probabilité de l'intersection (*)

Soit Ω un univers fini, soit \mathbb{P} une loi de probabilité sur Ω et soient A et B deux évènements de Ω . Montrer que 3 :

$$\mathbb{P}(A) + P(B) - 1 \le \mathbb{P}(A \cap B) \le \min(\mathbb{P}(A), \mathbb{P}(B)).$$

2 Variables aléatoires

Dans toute cette section, on se fixe un univers fini Ω et une loi de probabilités \mathbb{P} sur Ω .

Exercice 5. Echauffements I (\star)

Soit X une variable aléatoire sur Ω d'univers image est $X(\Omega) = \{-2, -1, 1, 2\}$ et de probabilités données par :

$$\mathbb{P}(X = -2) = 0, 1$$
 $\mathbb{P}(X = -1) = 0, 35,$ $\mathbb{P}(X = 2) = 0, 4$ $\mathbb{P}(X = 1) = 0, 15.$

- 1. Quel est l'univers image de la variable aléatoire X^2 ?
- 2. La variable aléatoire X^2 suit-elle une loi uniforme?
- 3. Les variables X et X^2 sont-elles indépendantes?

Exercice 6. Echauffements II $(\star\star)$

Soient X et Y deux variables aléatoires indépendantes de même univers image $\{1, \ldots, n\}$ et suivant toutes deux la loi uniforme. Déterminer $\mathbb{P}(X = Y)$, avec une aide ⁴.

Exercice 7. Petits calculs (\star)

On considère le même cadre que l'exercice 5.

- 1. Calculer l'espérance de X et de X^2 .
- 2. Calculer la variance et l'écart-type de X et de X^2 .

Exercice 8. Formule de König-Huygens (*)

Soit X une VAR sur un univers fini Ω . Montrer que $\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$.

Exercice 9. Des variables de Bernoulli (*)

Soit $p \in \mathbb{R}$ tel que 0 et soit X une variable de Bernoulli de paramètre p.

- 1. On pose $Y = 1 X^2$. Montrer que Y est une variable de Bernoulli et donner son paramètre.
- 2. Les variables X et Y sont-elles indépendantes?

^{3.} Montrer que $a \leq \min(b, c)$ est équivalent à montrer que $a \leq b$ et $a \leq c$.

^{4.} On admettra que l'additivité de \mathbb{P} s'étend aux familles finies d'évènements : si A_1, \ldots, A_m sont m évènements deux à deux incompatibles (i.e. $A_i \cap A_j = \emptyset$ pour tout $i, j \in \{1, \ldots, m\}$) alors $\mathbb{P}(A_1 \cup \cdots \cup A_m) = \mathbb{P}(A_1) + \cdots + \mathbb{P}(A_m)$.

Exercice 10. Une convergence en probabilité $(\star\star)$

Pour tout $n \in \mathbb{N}^*$, on considère une variable aléatoire réelle X_n centrée (i.e. telle que $\mathbb{E}[X_n] = 0$) sur Ω et telle que $\mathbb{V}(X_n) = 1/n$. Montrer que pour tout $\varepsilon > 0$, on a $\mathbb{P}(X_n^2 \ge \varepsilon) \xrightarrow{n \to +\infty} 0$.