Dynamic programming for k sequences

U(i1, i2) = optimal alignment between SICI...i,] and Sz[1...iz]

$$V(i_1,i_2) = Mox$$
 $V(i_1-1,i_2-1) + 8(S(i_1), S(i_2))$
 $V(i_1,i_2) = Mox$ $V(i_1-1,i_2-1) + 8(S(i_1), -)$
 $V(i_1, i_2-1) + 8(-, S(i_2))$

II Align two sequences

U(i,iz) = Max (U(i,-b,,iz-b)) + 8 (S(i,b)) S[izb] b1,b2 = {0,1}2-{(0,0)}

Assume Sj[0]= -

II Align three sequences

 $V(i_1, i_2, i_3) = Max \{ V(i_1-b_1, i_2-b_2, i_3-b_3) + S(S_1[i_1b_1], S_2[i_2b_2], b_1, b_2, b_3 \in \{0,1]^3 - \{10,0\} \}$ $S_3Ci_3b_3J \}$

1) Align 1< sequences

V(i1,...,ik) = Max (V(i,-b,...,ik-bk)+&(s,Cirbi),--.
b...bk = {0,1} - {(0,0)}

SkCikbk)

For three sequences, there are 7 path to V(i,j,k)

when # sequences > 3, we cannot directly visualize the path

Example: Align 3 sequences

Score matrix

$$S_1 = CTCA$$

 $S_2 = CCGA$
 $S_3 = CCA$

	-	Α	С	G	Т
_	0	-1	-1	-1	-1
Α	-1	2	-1	-1	-1
С	-1	-1	2	-1	-1
G	-1	-1	-1	2	-1
Т	-1	-1	-1	-1	2

_		0	1	2	3	4	С		0	1	2	3	4	С		0	1	2	3	4	Α		0	1	2	3	4
		_	С	С	G	Α			_	С	С	G	Α			_	С	С	G	Α			_	С	С	G	Α
0	_ [0 +	2	-4	-6	-8	0	_	-2	0	-2	-4	-6	0	_	-4	-2	0	-2	-4	0	_	-6	-4	-2	-3	-2
1	С	-2	0	-2	-4	-6	1	С	0	- 6	4	2	0	1	С	-2	4	6	4	2	1	С	-4	2	4	3	4
2	Т	-4	-2	-3	-5	-7	2	T	-2	4	3	1	-1	2	Т	-3	3	6	4	2	2	Т	-5	1	4	3	4
3	c	-6	/-4	-2	-4	-6	3	С	-4	2	4	2	0	3	С	-2	4	- 10 <	- 8 -	6	3	С	-4	2	8	7	8
4	Α [-8	-6	-4	-5	-4	4	Α	-6	0	2	1	2	4	Α	-4	2	8	7	8	4	Α	-2	4	10	10	14

$$6 = max \left(\begin{array}{c} -2 + 8(--c) \\ 0 + 8(--c) \\ 0 + 8(--c) \\ 0 + 8(--c) \\ -2 + 8(--c) \\ -2 + 8(--c) \\ 0 + 8(--c) \\ \end{array} \right)$$

Complexity

Time:

Entries: $N_1 N_2 \cdots N_K$ Each entry: $2^k k^2$ compute the cost

Total running time: $0 (2^k k^2 n_1 n_2 \cdots n_K)$ Space:

Space: O(n,n2---nk)