# Algoritmos y Estructuras de Datos III

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

8 de Abril de 2016

# Trabajo Práctico Número 1

| Integrante                  | LU     | Correo electrónico         |
|-----------------------------|--------|----------------------------|
| Ciruelos Rodríguez, Gonzalo | 063/14 | gonzalo.ciruelos@gmail.com |
| Costa, Manuel José Joaquín  | 035/14 | manucos94@gmail.com        |
| Gatti, Mathias Nicolás      | 477/14 | mathigatti@gmail.com       |
| Maddonni, Axel              | 200/14 | axel.maddonni@gmail.com    |

# Índice

| 1.        | Kai  | o Ken                           | 3 |
|-----------|------|---------------------------------|---|
|           | 1.1. | Explicación formal del problema | 3 |
|           | 1.2. | Explicación de la solución      | 3 |
|           | 1.3. | Complejidad del algoritmo       | 3 |
|           |      | 1.3.1. Esbozo del algoritmo     | 3 |
|           |      | 1.3.2. Análisis temporal        | 3 |
|           | 1.4. | Performance del algoritmo       | 4 |
| <b>2.</b> | Gen  | ıkidama                         | 6 |
|           | 2.1. | Explicación formal del problema | 6 |
|           | 2.2. | Explicación de la solución      | 6 |
|           | 2.3. | Complejidad del algoritmo       | 6 |
|           | 2.4. | Performance del algoritmo       | 6 |
| 3.        | Kan  | nehameha                        | 7 |
|           | 3.1. | Explicación formal del problema | 7 |
|           | 3.2. | Explicación de la solución      | 7 |
|           | 3.3. | Complejidad del algoritmo       | 7 |
|           | 3.4. | Performance del algoritmo       | 7 |
| 4.        | Apé  | endice                          | 8 |

## 1. Kaio Ken

#### 1.1. Explicación formal del problema

### 1.2. Explicación de la solución

### 1.3. Complejidad del algoritmo

El análisis de complejidad es simple, es un algoritmo de Divide & Conquer clásico, que divide siempre el trabajo en 2 y luego fusiona los resultados de los subproblemas en tiempo O(n). Haciendo una analogía, por ejemplo, con el algoritmo de MergeSort, se puede predecir fácilmente que la complejidad será de O(nlogn).

#### 1.3.1. Esbozo del algoritmo

El algoritmo fue analizado en profundidad anteriormente. A grandes rasgos, puede describirse de la siguiente manera:

#### Algorithm 1 Esbozo del algoritmo de KaioKen

```
 \begin{aligned} & \textbf{procedure } \text{GENERARPELEAS}(\text{int } n, \text{ int } pactual, \text{ int } inicio) \\ & \textbf{if } n = 1 \textbf{ then} \\ & & matrizpeleas[pactual][inicio] \leftarrow 1 \\ & \textbf{if } n = 2 \textbf{ then} \\ & & matrizpeleas[pactual][inicio] \leftarrow 1 \\ & & matrizpeleas[pactual][inicio + 1] \leftarrow 2 \\ & \textbf{else} \\ & \textbf{for } j \in [0, ..., n) \textbf{ do} \\ & \textbf{if } j < \frac{n}{2} \textbf{ then} \\ & & matrizpeleas[pactual][inicio + j] \leftarrow 1 \\ & \textbf{else} \\ & & matrizpeleas[pactual][inicio + j] \leftarrow 2 \\ & & generarpeleas(\frac{n}{2}, pactual + 1, inicio) \\ & & generarpeleas(\frac{n+1}{2}, pactual + 1, n/2 + inicio) \end{aligned}
```

Como puede verse claramente, tenemos dos casos base que toman tiempo constante en ser resueltos.

Por otro lado, el tercer caso realiza un trabajo de costo lineal, escribiendo n entradas de la matriz, y luego hace 2 llamadas recursivas, dividiendo el trabajo en 2 mitades iguales (en caso de que n sea impar, la segunda mitad va a tener un elemento más).

#### 1.3.2. Análisis temporal

Si quisieramos expresar la cantidad de operaciones que realiza el algoritmo para un input de tama $\tilde{n}$ , podriamos escribirlo fácilmente de la siguiente manera:

$$T(1) = 1$$

$$T(2) = 2$$

$$T(n) = n + 2T\left(\frac{n}{2}\right)$$

Ahora podemos usar el teorema maestro. El teorema maestro se referia a relaciones de recurrencia de la pinta:

$$T(n) = f(n) + aT\left(\frac{n}{b}\right)$$

Y afirmaba, entre otras cosas, que si  $f(n) \in O(n^c log^k n)$  donde  $c = log_b a$ , entonces  $T(n) \in \Theta(n^c log^{k+1}n)$ . En este caso, se ve claramente que  $f(n) = n \in O(n^1 log^0 n)$ , y además  $1 = log_2 2$ , por lo que el teorema maestro se puede aplicar, y nos dice que

$$T(n) \in \Theta(nlogn)$$

La complejidad de este algoritmo es siempre  $\Theta(nlogn)$ , sin distinción entre casos, es decir, este algoritmo no tiene mejor o peor caso. La forma más clara de verlo es que el único input del problema es n, y no hay otro parámetro que pueda modificar su complejidad.

### 1.4. Performance del algoritmo

Como dijimos antes, la complejidad del algoritmo es siempre  $\Theta(nlogn)$ , sin distinción entre casos, por lo que el análisis de performance es simple.



Figura 1: asdfg.



Figura 2: asdfg.



Figura 3: asdfg.

## 2. Genkidama

- 2.1. Explicación formal del problema
- 2.2. Explicación de la solución
- 2.3. Complejidad del algoritmo
- 2.4. Performance del algoritmo

## 3. Kamehameha

- 3.1. Explicación formal del problema
- 3.2. Explicación de la solución
- 3.3. Complejidad del algoritmo
- 3.4. Performance del algoritmo

# 4. Apéndice