מלבד החלפת המצב M נתונה מ"ט א"ד M. נבנה את המכונה הבאה: M זהה למכונה M מלבד החלפת המצב המקבל והדוחה (swap). תהיינה

$$L = L(M), O = L(M')$$

עבור כל אחת מהטענות הבאות קבעו האם היא נכונה, והוכיחו:

 $O=ar{L}$ א. בהכרח מתקיים

 $\bar{L} \subseteq O$ ב. בהכרח מתקיים

 $0 \subseteq \overline{L}$ ג. בהכרח

יש רדוקציה B ששייכת ל coNP אם היא שייכת ל coNP אם היא שייכת ל מפה A נקראת .2 .8 $\leq_P A$

NPC אם ורק אם המשלימה שלה היא coNPC הוכיחו

ב. נניח כי $P \neq NP$ תהי השפה

 $L = \{ \langle G, k \rangle | G \text{ is undirected graph and for every } v \in V(G) \deg(v) \leq 10,$ and $G \text{ contains a clique of size at least } k \}$

האם $L \in P$ הוכיחו את תשובתכם.

- 3. קבוצה שולטת בגרף. נמצא במטלה 3, לא נפתור את זה.
 - 4. נגדיר את השפה הבאה:

 $L = (< M_1>, < M_2> | M_1 \ and \ M_2 \ are \ TM \ and \ L(M_1) \cap L(M_2) \neq \phi \}$ הוכיחו/הפריכו:

 $L \in R$.א

 $L \in RE$.ב

פתרון

- Σ^* לא ולא. דוגמות נגדיות עם לולאה אינסופית, ניחוש ביט שגורם לשפה להיות.
 - $k \le 10$ ובהכרח, k ובהכרח, על גודל אין צריך לעבור רק על גודל. ב. כן! צריך לעבור רק על גודל
 - 3. במטלה
 - $.HP, L_u$ א. לא. רדוקציה מ
 - ב. כן. נבנה מכונה א"ד לשפה.

- :NPC הוכיחו כי הבעיה הבאה.
- $L_1 = \{ \langle G, k, \phi \rangle | G \text{ contains a } k \text{size clique, and } \phi \text{ is satisfiable} \}$
- -NPC א. בסעיף זה נניח כי P
 eq NP. הוכיחו/הפריכו: השפה הבאה היא 2

 $L_2 = \{ < A, b > | A \text{ is } m \times n \text{ matrix of integers, The system } Ax = b \}$ has a solution satisfying at least m-10 of the equations of the system הנחיה: קיים אלגוריתם לפתרון מערכת של m משוואות ב n נעלמים.

ב. בסעיף זה נניח שלכל $L \in \mathit{NP}$ גם $L \in \mathit{NP}$ ב.

 $SAT^t = \{ \langle M, x, 1^t \rangle | M \text{ is non } - \text{deterministic } TM \text{ that } runs \text{ with time bound } t, \text{ and accepts } x \text{ on all paths} \}$

t שפית כל השלשות ש-M מקבלת את בכל המסלולים, ורצה לכל היותר M שייכת ל NP. צעדים בכל מסלול).

- כלומר, זוהי שפת כל . $L_{sup}=\{x|\exists w\in L, \exists u\ such\ that\ x=wu\}$ כלומר, זוהי שפת כל .L המילים שרישא כלשהי שלהן שייכת ל .L הוכיחו/הפריכו: .L אם $L\in R$ אזי גם $L\in R$
- 4. נגדיר מודל חדש של מ"ט א"ד- מכונה לא החלטית. מוסיפים מצב $q_{don't\;know}$. מכונה כזו מקבלת שפה L אם: כל מילה $x\in L$ מתקבלת במסלול אחד לפחות, ואינה נדחית בשום מסלול (אבל יכולה להגיע ל $q_{don't\;know}$ או שיהיו מסלולים אינסופיים). כל מילה $q_{don't\;know}$ נדחית לפחות במסלול אחד, ואינה מתקבלת בשום מסלול (אבל יתכנו מסלולי $q_{don't\;know}$ או מסלולים אינסופיים).

אזי קיימת מ"ט לא החלטתית חסומה פולינומית שמקבלת אזי קיימת מ"ט אזי איז אזי קיימת ברוע באר $L \in \mathit{NP} \cap \mathit{coNP}$ את א

ב. הוכיחו/הפריכו: אם שפה מתקבלת ע"י מכונה לא החלטית שתמיד עוצרת, אזי השפה כריעה.

פתרון:

- 1. שייכות ל NP + רדוקציה מ SAT (או מקליקה)
- לחפש כל ,ולכן אריך רק לחפש לפתרון מערכת משוואות, וצריך רק לחפש כל .2 א. $L_2 \notin NPC$, ולכן ,ולכן .2 תתי הקבוצות בגודל m-10 ולא כולן.
- ב. נבנה מכונה א"ד למשלימה המנחשת מסלול באורך t+1. אם דחתה באמצע- קבל. אם לא עצרה- קבל. אחרת דחה.
 - x עם כל הפירוקים של L_{sup} עם כל הפירוקים של L_{sup} עם כל הפירוקים של .3
 - א. קיימת מ"ט מכריעות ל L, \overline{L} . נריץ את שתיהן. נענה לפי זו שקיבלה. שתיהן דחו "לא .4. ידוע".
 - ב. נריץ את הלא החלטית. קיבלה- קבל. דחתה או "לא ידוע" דחה.

- 1. לכל אחת מהשפות הבאות, קבעו אם היא ניתן להוכיח שהיא לא כריעה בעזרת רייס. אם כן, הוכיחו. אם לא, הוכיחו בדרכים אחרות או הראו שהיא כריעה:
 - $L_1 = \{ < M > | M \text{ stops after more than } 10 \text{ steps on each input} \}$ א.
 - $L_2 = \{ < M > | M \text{ is a TM and } | L(M) | \ge 100 \}$.2.
 - $L_3 = \{ \langle M \rangle | M \text{ is a TM}, \exists w \in L(M) \text{ s.t M accepts in less than } |w| \text{ steps} \}$.
 - $L_1,L_2\in coNP$ א. $L_1\cap L_2\in P$ וגם $L_1\cap L_2\in P$ וגם $L_1\cup L_2\in P$. $L_1,L_2\in NP$. . . 2 ב. נניח כי $P\neq NP$. תהי $L=\{< G>|G\ is\ undirected\ graph\ with\ IS\ of\ size\ at\ least\ 5\}$. $L\in P$ האם
 - $DoubleClique = \{ < G, k > | G \text{ is undirected graph } . 3$ with two different k-size cliques $\}$. $DoubleClique \in NPC$ הוכיחו כי
 - .4 תהי $E_{TM}=\{< M>|M~is~a~TM~and~L(M)=\phi\}$. הוכיחו/הפריכו: $E_{TM}\leq Clique$. ב. $Clique\leq E_{TM}$

פתרון:

- (ביצוע 10 צעדים סתם) א. לא. זו תכונה של מכונה ולא של שפה. רדוקציה מP or L_u א. לא. זו תכונה של מכונה ולא של שפה. $S \neq RE$ וגם $A \neq S$ וגם לא $A \neq S$ ולכן $A \neq S$ ולכן $A \neq S$ ב. כן. $A \neq S$ ולכן $A \neq S$ ולכן $A \neq S$ ולכן $A \neq S$ ב. לא זה תכונה של מכונה. רדוקציה מ
 - $..L_u$ ג. לא. זה תכונה של מכונה. רדוקציה מ $..L_u$ א. $(L_1 \cup L_2) \cup (L_2 \setminus (L_1 \cap L_2)) \cup (L_2 \cup (L_1 \cap L_2))$ א. $(L_1 \cup L_2) \cup (L_2 \cup (L_1 \cap L_2))$ סגורה משלים. ב. כל תתי קבוצות בגודל 5. בהחלט פולינומי.
 - $(k \le |V(G)|$ שתי קבוצות. רדוקציה- הוספת K_k בהנחה ש
 - $.E_{TM} \in coRE \setminus R$ אבל $Clique \in R$ א. ממש לא! 4. A . ב. בהחלט: נריץ את M_{Clique} ונענה הפוך.