Exploration in RL

Outline today

Image taken from http://burrsettles.com/pub/settles.activelearning.pdf

• We want ``good`` model ... but what does it mean?

We want ``good`` model ... but what does it mean?

- It has to explain observed data
- It has to generalise to unseen data

• Principles:

- Choose data points that would eliminate as many model hypotheses as possible. (Better explain data)
- 2. Choose data points that is representative of the class. (Improve generalisation)

• Principles:

- Choose data points that would eliminate as many model hypotheses as possible. (Better explain data)
- 2. Choose data points that is representative of the class. (Improve generalisation)

1.1 Uncertainty Sampling

1.2 Representative Sampling

1.3 Diversification

Instructive Feedback

2.1 Optimisation Problem

2.1 Optimisation Problem

General idea:

- 1. Evaluate the posterior measure given data
- 2. Compute Acquisition function
- 3. Select the point at the maximum of acquisition function

2.1 Optimisation Problem

- 1. Probability of Improvement (PI)
- 2. Expected Improvement (EI)
- 3. Upper Confidence Bound (UCB)
- 4. Thompson Sampling (TS)
- 5. Predictive Entropy Search (PES)

2.1 Optimisation Problem

- 1. Probability of Improvement (PI)
- 2. Expected Improvement (EI)
- 3. Upper Confidence Bound (UCB)
- 4. Thompson Sampling (TS)
- Predictive Entropy Search (PES)

2.1 Optimisation Problem

- 1. Probability of Improvement (PI)
- 2. Expected Improvement (EI)
- 3. Upper Confidence Bound (UCB)
- 4. Thompson Sampling (TS)
- Predictive Entropy Search (PES)

2.1 Optimisation Problem

- 1. Probability of Improvement (PI)
- 2. Expected Improvement (EI)
- 3. Upper Confidence Bound (UCB)
- 4. Thompson Sampling (TS)
- Predictive Entropy Search (PES)

2.2 Bandit Problem

$$\mathcal{A} = \{\text{pull arm}\}$$

$$r(\text{pull arm}) = ?$$

$$\mathcal{A} = \{ \text{pull}_1, \text{pull}_2, \dots, \text{pull}_n \}$$

$$r(a_n) = ?$$

assume
$$r(a_n) \sim p(r|a_n)$$

unknown per-action reward distribution!

2.2 Bandit Problem = Stochastic evaluative feedback + online learning

http://iosband.github.io/2015/07/28/Beat-the-bandit.html

In this simple setting, we have many provably `optimal algorithms'. Although, the empirical performance may vary.

2.2.1 Optimistic Exploration

$$a = \arg \max \hat{\mu}_a + C\sigma_a$$
 some sort of variance estimate

Example: UCB

$$a = \arg\max\hat{\mu}_a + \sqrt{\frac{2\ln T}{N(a)}} \qquad \qquad \text{Number of time we picked this action : Higher count = more certain about the outcome}$$

From Sergey Levine's slide http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_exploration.pdf

2.2.2 Thompson Sampling

assume $r(a_i) \sim p_{\theta_i}(r_i)$

idea: sample $\theta_1, \ldots, \theta_n \sim \hat{p}(\theta_1, \ldots, \theta_n)$ pretend the model $\theta_1, \ldots, \theta_n$ is correct take the optimal action
update the model

2.2.3 Information Gain

- Use entropy measure as a measure of information
- Estimate entropy after observation
- We gain more information if the entropy reduces more!

General Principle

- 1. Require some kind of uncertainty estimation
- 2. Assume some value to new information

Would these ideas work in RL setting?

Exploration in RL (outline)

- 1. Naive random exploration + Structured random exploration
- 2. Optimistic exploration
- 3. Thompson sampling style
- 4. Information gain style
- 5. Intrinsic Motivation style

An exploratory action can affect the future exploratory states !!

Naive Random Exploration

E-Greedy

Boltzmann / Softmax exploration

$$P(a) = \frac{e^{f(a)\theta^{-1}}}{\sum_{a \in Actions} e^{f(a')\theta^{-1}}}$$

Entropy Bonus

Structured Random Exploration

• Inject noise at the policy level

See: https://openai.com/blog/better-exploration-with-parameter-noise

 Hierarchical RL with exploration on meta-controller

Veznevets et al. 2017, https://arxiv.org/abs/1703.01161

Pseudo-Count (Bellemare et al. 2016; https://arxiv.org/pdf/1606.01868.pdf)

$$ho$$
 Add reward bonus: $R_n^+(x,a) := eta(\hat{N}_n(x) + 0.01)^{-1/2}$

Pseudo-count can be estimated with density model:

Pseudo-Count (Bellemare et al. 2016; https://arxiv.org/pdf/1606.01868.pdf)

$$\hat{n} = \frac{1 - p_{\theta'}(\mathbf{s}_i)}{p_{\theta'}(\mathbf{s}_i) - p_{\theta}(\mathbf{s}_i)} p_{\theta}(\mathbf{s}_i)$$

- Risk-Seeking Exploration (Dilokthanakul and Shanahan 2018)
 - Use variance of return as reward bonus

$$Var[G] = \mathbb{E}[G^2] - \mathbb{E}[G]^2$$

- Risk-Seeking Exploration (Dilokthanakul and Shanahan 2018)
 - Two types of uncertainty
 - 1. Epistemic Uncertainty
 - 2. Inherent Uncertainty

State Aliasing Effect

Thompson Sampling Style

Bootstrap DQN (Osband et al. 2016)

Shared network

Frame

Information Gain Style

VIME (Houthooft et al. 2016)

Amount of information gained in model after an observation!

Information Gain Style

Use model error as proxy (Stadie et al. 2015; https://arxiv.org/abs/1507.00814)

Build a forward predictive model

- If the predictive model predict wrongly then the state contain more information

Intrinsic motivation exploration

Empowerment Exploration (Shakir Mohamed and Danilo Rezende, 2015)

$$\mathcal{E}(\mathbf{s}) = \max_{\omega} \mathcal{I}^{\omega}(\mathbf{a}, \mathbf{s}' | \mathbf{s}) = \max_{\omega} \mathbb{E}_{p(s'|a, s)\omega(a|s)} \left[\log \left(\frac{p(\mathbf{a}, \mathbf{s}' | \mathbf{s})}{\omega(\mathbf{a} | \mathbf{s}) p(\mathbf{s}' | \mathbf{s})} \right) \right],$$

Intuition 1: We want to go to the state with maximum influence!

Intuition 2: We want our action to really affect the outcome!

Intrinsic motivation exploration

Feature-Control as Intrinsic Motivation (Dilokthanakul et al. 2019)

Main idea: Ability to control aspects of the environment is a good skill to have!

