Master's Degree in Computer Science Curriculum: Artificial Intelligence

Adaptively Combining Skill Embeddings for Reinforcement Learning Agents

Supervisors:

Prof. Davide Bacciu

Dott. Elia Piccoli

Examiner:

Prof. Marco Podda

Candidate:

Giacomo Carfi

Academic Year: 2023-2024

01. REINFORCEMENT LEARNING

Goal Find a policy π that maximizes the **Value Function**

01. PROBLEM FORMULATION

01. PROBLEM FORMULATION

Problem:

- State representation learning is executed from scratch each time for each new task.
- **No re-use** of previously learned knowledge.
- **No composition** of different knowledge.
- Agent's focus should be on policy learning.

01. PROBLEM FORMULATION

SKILLS DEFINITION

How can we represent prior knowledge for an RL agent to simplify the state representation learning and in order to re-use already trained abilities?

COMBINATION

 How can we combine different information coming from different skills or choose the best one to achieve agent's goals?

02. SKILLS DEFINITION

Foundational Models for Skills Representation

- Self-supervised or Unsupervised models.
- Trained on huge heterogeneous dataset.
- Extract hidden patterns.
- Fine-tuned on specific tasks.

02. GENERAL ARCHITECTURE

This provides the **re-use** of prior skills.

Combining various pre-trained environment state representations

- Handle various type of information.
- Capable of capturing the most relevant information from each individual skill.
- Fast in gathering information and mixing it.

Weight Sharing Attention (WSA)

Algorithm 5 Weight Sharing Attention

1: $\mathcal{C} = \mathcal{A}_0(\mathcal{E}(\mathcal{O}))$

2: for FM ψ in Ψ do

3: $x = \psi_i(\mathcal{O})$

4: $E_i = \mathcal{A}_i(x)$

5: $w_i = f_{\theta}(\mathcal{C}, E_i)$

6: end for

7: $\mathcal{R} = \sum_{i=0}^{|\Psi|} w_i * E_i$

Combination Module in Yellow

(

Weight Sharing Attention (WSA)

Action
Fully-Connected
Network

Algorithm 5 Weight Sharing Attention

1: $\mathcal{C} = \mathcal{A}_0(\mathcal{E}(\mathcal{O}))$

2: for FM ψ in Ψ do

3: $x = \psi_i(\mathcal{O})$

4: $E_i = \mathcal{A}_i(x)$

5: $w_i = f_{\theta}(\mathcal{C}, E_i)$

6: end for

7: $\mathcal{R} = \sum_{i=0}^{|\Psi|} w_i * E_i$

Combination Module in Yellow

Weight Sharing Attention (WSA)

Algorithm 5 Weight Sharing Attention

1: $\mathcal{C} = \mathcal{A}_0(\mathcal{E}(\mathcal{O}))$

2: for FM ψ in Ψ do

3: $x = \psi_i(\mathcal{O})$

4: $E_i = \mathcal{A}_i(x)$

5: $w_i = f_{\theta}(\mathcal{C}, E_i)$

6: end for

7: $\mathcal{R} = \sum_{i=0}^{|\Psi|} w_i * E_i$

Combination Module in Yellow

Weight Sharing Attention (WSA)

Combination Module in Yellow

Weight Sharing Attention (WSA)

Combination Module in Yellow

Algorithm 5 Weight Sharing Attention

(

Weight Sharing Attention (WSA)

Combination Module in Yellow

PRO

- Combines encodings of different types.
- Can be scaled to an arbitrary number of skills.
- Provides explainability.

Other Combination Modules

Combination Type	Configuration
Linear Combination (LIN)	$\mathcal{R}=E_1\oplus E_2\oplus,\ldots,\oplus E_k$
Fixed Linear Combination (FIX)	$\mathcal{R}=E_1\oplus E_2\oplus,\ldots,\oplus E_k$
Convolutional Combination (CNN)	$\mathcal{R} = conv(E_1 \oplus, \dots, \oplus E_k)$
Mixed Combination (MIX)	$\mathcal{R} = E_1^l \oplus, \dots, \oplus E_p^l \oplus conv(E_1^s \oplus, \dots, \oplus E_q^s)$
Reservoir Combination (RES)	$egin{aligned} IN = E imes \mathbf{W_{in}} \ H = IN imes \mathbf{W_{res}} \end{aligned} \mathcal{R} = tanh(IN + H)$
DotProduct Attention (DPA)	$\mathbf{W} = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}} ight)\!V ~~ \mathcal{R} = \sum_{i=0}^{ \Psi } w_i * E_i$

03. SETUP

A DICALLANDICANDICALLANDICALLANDICALLANDICALLANDICALLANDICALLANDICALLANDICALLANDICALLANDICALLANDICALLA

Kulkarni et al. (2019)

Object Keypoints Detection (OKK, OKE)

Skill Selection

State Representation (SR)

Goel et al. (2018)

Video Object Segmentation (**vos**)

State Encoder

Inspired by *Nature CNN*Mnih et al. (2015)

03. SETUP

Environments

Discrete action space and observations

03. SETUP

SKILLS PRE-TRAINING

 Creation of the dataset using a random agent collecting 1M frames per game.

AGENTS TRAINING

- Skill weights are frozen during agents' training.
- Max 10M steps in training.
- Evaluation each 40.000 steps for **100 episodes.**
- No hyperparameters search for agents with skills.

03. PRELIMINARY STUDY

- Tested all the combination modules.
- Single layer with **256** units for Policy Learning network.
- Agents are trained using early stopping for those who show no improvement for 5 consecutive evaluations.
- PPO as learning algorithm.

Feature Extractor	Configuration
LIN	-
FIX	256, 512, 1024
CNN	1, 2, 3
MIX	-
RES	512, 1024, 2048
DPA	256, 512, 1024
WSA	256, 512, 1024

- Tested only the top 3 combination modules.
- Single layer with **256** units for *Fully-Connected* network.
- No early stopping, agents trained for full 10M steps.
- Training results are averaged across 4
 runs per combination module per
 game. Seeds are fixed.
- Compared with an end-to-end PPO using already-tuned hyperparameters.

Environment	Configuration
Pong	WSA (1024) RES (1024) CNN (2)
Ms. Pacman	WSA (256) RES (1024) CNN (2)
Breakout	WSA (256) FIX (512) CNN (3)

Learning Curves during Training

WSA (and others) is better than PPO in the early stages.

Evaluation

Environment	Agent	Reward
Pong	WSA RES CNN PPO	21 ± 0.00 20.85 ± 0.29 21 ± 0.00 21 ± 0.00
Ms. Pacman	WSA RES CNN PPO	2530.20 ± 23.09 1369.27 ± 565.23 1801.30 ± 20.95 2258.40 ± 1.42

- Equivalent results in Pong.
- WSA is better than PPO in Ms. Pacman better generalization.

Learning Curves during Training

Not good results

Hypothesis - Underfitting Problems

- Only some components of the agents are updated during training.
- Policy learning network too small to capture relevant information.

New Experiments increasing Policy Network

From single layer of **256** units to three layers of **1024**, **512**, **256** units respectively Using **ReLU** activation function.

Hypothesis - Underfitting Problems

Little improvements for WSA in training.

Hypothesis - Distributional Shift

- First stages of the game the agent can focus on just bounce the ball back.
- Late game stages, agents needs to be more precise.
- Training dataset is missing of late game scenarios.
- Misleading Skills.

New Experiments retraining the skills on mixed data

We collected new dataset using both a **random** agent and an **expert** agents that plays Breakout to obtain early and late game scenarios.

Hypothesis - Distributional Shift

WSA achieved the biggest jump in performance.

Combination of increased policy network and using mixed data

WSA achieved the best performance.

Evaluation

Starting Point

Agent	Reward	
WSA	99.58 ± 6.66	
FIX	87.17 ± 6.87	
CNN	65.98 ± 1.62	

Results

Strategy	Agent	Reward
Policy & Mixed	<u>WSA</u> FIX CNN	387.15 ± 0.43 71.06 ± 5.04 68.51 ± 1.85
	PPO	413.51 ± 1.10

03. DEEP Q-LEARNING TESTS

Training

Evaluation

Environment	Agent	Reward
Ms. Pacman	WSA (256) DQL	2047.27 ± 231.18 1701.00 ± 490.41
Breakout	WSA (256) DQL	213.14 ± 39.37 166.65 ± 20.19

03. WSA EXPLAINABILITY

What skills does the agent use in different situations?

- Assigns different weights to skills.
- Analyze them in test phase to understand which skills are most important in specific contexts.

03. WSA EXPLAINABILITY

The individual skills are already very informative.

03. WSA EXPLAINABILITY

Combination of multiple skills

First Scenario
Strong presence of SR.

Second Scenario SR is less informative.

04. CONCLUSIONS

Discussion

- We analyzed the end-to-end mapping problem of current RL algorithms.
- We proposed a set of skills to equip the agent with prior knowledge.
- We proposed multiple ways of combining various encodings, and in particular we proposed WSA as general and scalable combination method.
- We obtained comparable results with an end-to-end PPO agent and better results w.r.t DQL without fine-tuning the hyperparameters.

04. CONCLUSIONS

Future Works

- Performing Hyperparameters Search could improve the performance of the agents.
- More Experiments are needed to obtain more reliable results on average.
- Test WSA on other benchmarks.
- Use different skills perhaps scaling to very big FMs.
- More in-depth study WSA Explainability.

THANKS FOR YOUR ATTENTION!

ANY QUESTIONS?

02. COMBINATION MODULES

Linear Combination Modules

$$\mathcal{R} = E_1 \oplus E_2 \oplus, \ldots, \oplus E_k$$

0

 \bigcirc

02. COMBINATION MODULES

Convolutional Combination Modules

$$\mathcal{R} = conv(E_1 \oplus, \ldots, \oplus E_k)$$

$$\mathcal{R} = E_1^l \oplus, \ldots, \oplus E_p^l \oplus conv(E_1^s \oplus, \ldots, \oplus E_q^s) \ p+q = |\Psi|$$

02. COMBINATION MODULES

Others Combination Modules

$$IN = E \times \mathbf{W_{in}}$$

 $H = IN \times \mathbf{W_{res}}$

$$\mathcal{R} = tanh(IN+H)$$

$$\mathbf{W} = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

$$\mathcal{R} = \sum_{i=0}^{|\Psi|} w_i * E_i$$

03. WSA EXPLAINABILITY

Optimizations

- Regularization techniques like Dropout, Batch Normalization.
- Changing activation function, from ReLU to **Linear** or **Sigmoid**.
- Adding a penalty term to the loss considering attention weights entropy.

Conclusions

 The individual skills are already very good because in their reference works they were used to improve the performance of an agent.

03. LEARNABLE PARAMETERS

Feature Extractor	Configuration
LIN	8.7M
FIX	4.9M - 19.4M
CNN	4.2M
MIX	4.5M
RES	0.3M - 1.1M
DPA	8.7M - 34.7M
WSA	8.7M - 34.7M
PPO	1.6M

03. SKILLS ARCHITECTURE

Kulkarni et al. (2019)

Object Keypoints Detection

03. SKILLS ARCHITECTURE

Anand et al. (2019)

03. SKILLS ARCHITECTURE

Goel et al. (2018)

Video Object Segmentation

01. REINFORCEMENT LEARNING

Environments as Markov Decision Process (MDP) MDP = (S, A, P, R, γ)

- S is the set of states an agent can be in.
- A is the set of actions an agent can take.
- P is the transition probability function.
- **R** is the reward function.
- γ is the discount factor.

$$P^a_{s,s'} = P(S_{t+1} = s' | S_t = s, A_t = a) \qquad \qquad \gamma \in [0,1]$$

$$R_s^a = \mathbb{E}[R_{t+1}|S_t=s,A_t=a]$$

01. DEEP Q-LEARNING

Algorithm 3 Deep Q-Learning Algorithm

```
Initialize replay buffer D
Initialize online network Q with random weights \mathbf{w}
Initialize target network Q^- with weights \mathbf{w}^- = \mathbf{w}
for each episode do
    Initialize S
    for each step of the episode do
        Choose A from S using \epsilon-greedy policy
        Take action A, observe R, S'
        Store transition (S, A, R, S') in D
        Sample random minibatch of transitions (s, a, r, s') from D
        Compute target y = r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-)
        Compute loss L = (y - Q(s, a, \mathbf{w}))^2
        Update weights w by minimizing the loss
       Every C step, update target network weights \mathbf{w}^- = \mathbf{w}
        S \leftarrow S'
   end for
    Until S is terminal
end for
```

01. PROXIMAL POLICY OPTIMIZATION


```
(\%)
```

```
Algorithm 4 Proximal Policy Optimization Algorithm
  Initialize policy network \pi(a|s, \mathbf{w}) and value network V(s, \mathbf{w})
  for each iteration do
     for each epoch do
         Collect a batch of data by running the policy in the environment
         Compute the advantage function A_t
         Compute the probability ratio r_t(\mathbf{w})
         Compute the clipped objective function L(\mathbf{w})
         Compute the value function loss L_v(\mathbf{w})
         Update the policy network by minimizing L(\mathbf{w})
         Update the value network by minimizing L_v(\mathbf{w})
     end for
  end for
```

REINFORCEMENT LEARNING

Return
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Policy

$$\pi(a|s) = P(a|s)$$

Value **Function**

$$v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma R_{t+2} + \ldots | S_t = s] = \mathbb{E}_\pi[G_t|S_t = s]$$

Goal

Find a policy π that maximizes the **Value Function**

01. PROBLEM FORMULATION

03. BREAKOUT: OUT OF DISTRIBUTION DATA

Hypothesis - Underfitting Problems

Little improvements for WSA in training

GAME OVER

