MTL101::Linear Algebra and Differential Equations Tutorial 1

Department of Mathematics Indian Institute of Technology Delhi

Suppose we have a system of three linear equations in real coefficients and in two unknowns:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$
$$a_3x + b_3y = c_3$$

Interpret geometrically the following statements:

- (a) the system has no solutions.
- (b) the system has a unique solution.
- (c) the system has an infinitely many solutions.

Further, provide values to $a_i, b_i, c_i \in \mathbb{R}$, (i = 1, 2, 3), so that the above statements hold.

Question 1(a)

Solution: (a) The system has no solutions

All three lines are parallel.

$$L_1: x + y = -2$$

 $L_2: x + y = 0$
 $L_3: x + y = 2$

Two lines coincide and other line is parallel to them.

$$L_1: x + y = 0$$

 $L_2: x + y = 0$
 $L_3: x + y = 2$

Question 1(a) Contd.

• Two lines are parallel and the third line intersects the other two lines.

$$L_1: x - 2y = 1$$

 $L_2: x + y = 0$
 $L_3: x + y = 2$

• Three lines intersect at three different points.

$$L_1: x - 2y = 1$$

 $L_2: 2x - y = -4$
 $L_3: x + y = 2$

Question 1(b), 1(c)

(b) The system has a unique solution

All the three lines have only one common point of intersection.

$$L_1: x + y = 4$$

$$L_2: 3x + y = 7$$

$$L_3: x - y = -1$$

(c) The system has an infinitely many solutions.

All three lines coincide.

$$L_1: x + y = 1$$

$$L_2: x + y = 1$$

$$L_3: x + y = 1$$

Suppose we have a system of three linear equations in real coefficients and in three unknowns:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

Interpret geometrically the following statements:

- (a) the system has no solutions.
- (b) the system has a unique solution.
- (c) the system has an infinitely many solutions.

Further, provide values to $a_i, b_i, c_i, d_i \in \mathbb{R}, (i = 1, 2, 3)$, so that the above statements hold.

Question 2(a)

Solution: (a) The system has no solutions.

• All three planes are parallel.

$$P_1: x-2y+z=-2$$

$$P_2: x - 2y + z = 1$$

$$P_3: x-2y+z=5$$

Two planes coincide and other plane is parallel.

$$P_1: x - 2y + z = -2$$

$$P_2: x - 2y + z = 5$$

$$P_3: x - 2y + z = 5$$

Question 2(a) Contd.

 Two planes are parallel and the third plane intersects the other two planes.

$$P_1: x+y-z=1$$

$$P_2: x - 2y + z = 1$$

$$P_3: x-2y+z=5$$

• Line of intersection of two planes is parallel to the third plane.

$$P_1 : z = 0$$

$$P_2: y = 0$$

$$P_3: y + z = 2$$

Question 2(b), 2(c)

(b) The system has a unique solution.

Line of intersection of two planes intersects the third plane.

$$P_1 : x = 0$$

$$P_2: y = 0$$

$$P_3 : z = 0$$

(c) The system has an infinitely many solutions.

• Line of intersection of two planes completely lie on the third plane.

$$P_1:y+z=0$$

$$P_2: y = 0$$

$$P_3 : z = 0$$

Question 2(c) Contd.

• All three planes coincide.

$$P_1: x - 2y + z = 5$$

 $P_2: x - 2y + z = 5$
 $P_3: x - 2y + z = 5$

Two planes coincide and the third plane intersects these planes.

$$P_1: x+y-z=1$$

$$P_2: x - 2y + z = 5$$

$$P_3: x - 2y + z = 5$$

Suppose we have a system of two linear equations in real coefficients and three unknowns:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$

Interpret geometrically the following statements:

- (a) the system has no solutions.
- (c) the system has an infinitely many solutions.

Further, provide values to $a_i, b_i, c_i, d_i \in \mathbb{R}, (i = 1, 2, 3)$, so that the above statements hold. Can you have unique solution ?

Question 3(a)

Solution: (a) The system has no solution

Two planes are parallel.

$$P_1: x - 2y + z = -2$$

 $P_2: x - 2y + z = 5$

(c) The system has an infinitely many solutions

Two planes coincide.

$$P_1: x - 2y + z = 5$$

 $P_2: x - 2y + z = 5$

Question 3(c) Contd.

• Two planes intersects each other.

$$P_1: x + y - z = 1$$

 $P_2: x - 2y + z = 5$

As the number of unknown variables are greater than the number of equations, the system cannot have a unique solution.

Let $\vec{y} = A\vec{x}$ and $\vec{x} = B\vec{w}$ with A and B being 2×2 matrices and $\vec{x}, \vec{y}, \vec{w} \in \mathbb{R}^2$. If $\vec{y} = C\vec{w}$, then find the relation between A, B and C.

Solution: Let
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$.

- The y_1y_2 -coordinate system is related to the x_1x_2 -coordinate system by the formula $\vec{y} = A\vec{x}$.
- The x_1x_2 -coordinate system is related to the w_1w_2 -coordinate system by the formula $\vec{x} = B\vec{w}$.
- The y_1y_2 -coordinate system is related to the w_1w_2 -coordinate system by the formula $\vec{y} = C\vec{w}$. Therefore for every $\vec{w} \in \mathbb{R}^2$,

$$C\vec{w} = \vec{y} = A\vec{x} = A(B\vec{w}) = (AB)\vec{w}.$$

• Consequently, we have C = AB.

Let L_1 , L_2 are lower triangular and U_1 , U_2 are upper triangular, then which of the following matrices are lower triangular and upper triangular ? (a) $L_1 + L_2$ (b) $U_1 + L_2$ (c) U_1^2 (d) $L_1 U_1$ (e) $U_1 L_2$

Recall: $A = [a_{ij}]$ and $B = [b_{ij}]$ are $n \times n$ real matrices.

- A is lower triangular matrix if $a_{ij} = 0$ for i < j.
- B is upper triangular matrix if $b_{ij} = 0$ for i > j.
- If C = A + B and $C = [c_{ij}]$, then $c_{ij} = a_{ij} + bij$.
- If D = AB and $D = [d_{ij}]$, then

$$d_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Question 5(a), 5(b)

Solution: (a) $L_1 + L_2$

- Let $L_1 = [p_{ij}]$, $L_2 = [q_{ij}]$ and $L_1 + L_2 = [l_{ij}]$.
- As L_1, L_2 are lower triangular matrices, $p_{ij} = 0$ and $q_{ij} = 0$ for i < j.
- $I_{ij} = p_{ij} + q_{ij} = 0$ for i < j.
- Hence, $L_1 + L_2$ is a lower triangular matrix.

Solution: (b) $U_1 + L_2$

- $U_1 + L_2$ may neither be a lower triangular nor upper triangular matrix.
- Consider

$$U_1 = \left(\begin{array}{cc} 1 & 2 \\ 0 & 2 \end{array} \right), \quad L_2 = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right).$$

Question 5(c)

Solution: (c) U_1^2

- Let $U_1 = [u_{ij}]$ and $U_1^2 = [v_{ij}]$.
- As U_1 is upper triangular, $u_{ij} = 0$ for i > j.
- For i > j

$$v_{ij} = \sum_{k=1}^{n} u_{ik} u_{kj}$$

$$= \sum_{k=1}^{j} u_{ik} u_{kj} + \sum_{k=j+1}^{n} u_{ik} u_{kj}$$

$$= 0.$$

• Hence, U_1^2 is an upper triangular matrix.

Question 5(d), 5(e)

Solution: (d) L_1U_1 , (e) U_1L_2

- Both L_1U_1 and U_1L_2 may neither be an upper triangular matrix nor a lower triangular matrix.
- Consider

$$U_1 = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, \quad L_1 = L_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Then

$$L_1 U_1 = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix},$$

$$U_1 L_2 = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}.$$

Let $\vec{x}, \vec{y} \in \mathbb{R}^2$ and

$$A = \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right) \text{ and } B = \left(\begin{array}{cc} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{array} \right).$$

Show that $\vec{y} = A\vec{x}$ is the rotation of vector \vec{x} counter clockwise by angle α . Also compute $\vec{y} = A^n\vec{x}$ and $\vec{y} = AB\vec{x}$. Interpret the results geometrically.

Solution:

- Let θ be the angle between $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $\vec{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- Then $x_1 = |\vec{x}| \cos \theta$ and $x_2 = |\vec{x}| \sin \theta$.

Question 6 Contd.

- $\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ is a new position of \vec{x} after rotating counter clockwise by an angle α .
- Angle between \vec{y} and $\vec{e_1}$ is $\theta + \alpha$.
- Therefore,

$$\begin{aligned} y_1 &= |\vec{y}| \cos(\theta + \alpha) & y_2 &= |\vec{y}| \sin(\theta + \alpha) \\ &= |\vec{x}| \cos \theta \cos \alpha - |\vec{x}| \sin \theta \sin \alpha &= |\vec{x}| \sin \theta \cos \alpha + |\vec{x}| \cos \theta \sin \alpha \\ &= x_1 \cos \alpha - x_2 \sin \alpha &= x_1 \sin \alpha + x_2 \cos \alpha \end{aligned}$$

Hence,

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A\vec{x}$$

• Therefore, A rotates vector \vec{x} by angle α .

Question 6 Contd.

- To understand the behavior of $\vec{y} = AB\vec{x}$ on \vec{x} , note that
 - The product,

$$AB = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix}$$

- Hence, AB rotates the vector \vec{x} counter clockwise by angle $\alpha + \beta$.
- To understand the behavior of $\vec{y} = A^n \vec{x}$ on \vec{x} , note that

•
$$A^2 = \begin{pmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{pmatrix}$$
 and using induction
$$A^n = \begin{pmatrix} \cos n\alpha & -\sin n\alpha \\ \sin n\alpha & \cos n\alpha \end{pmatrix}.$$

• Hence, A^n rotates the vector \vec{x} counter clockwise by angle $n\alpha$.

Which of the following matrices are row echelon and row reduced echelon matrix. Give a reason when the matrix is not row reduced echelon.

$$\left(\begin{array}{ccc} 1 & 0 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 0 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

Recall: Row echelon matrix

- All zero-rows are at the bottom.
- The leading coefficient of a non-zero row is always strictly left to the leading coefficient of the next row.

Row reduced echelon matrix

- It is a row echelon matrix.
- The leading entry in each non-zero row is equal to 1.
- Each column containing a leading 1 has zeros in all its other entries.

Solution:

- $\begin{pmatrix} 1 & 0 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ is a row echelon matrix. It is not a row reduced echelon matrix as the leading coefficient of the second row is not equal to 1.
- $\bullet \begin{pmatrix}
 1 & 0 & 5 \\
 0 & 1 & 3 \\
 0 & 0 & 0
 \end{pmatrix}$ is a row reduced echelon matrix.
- $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is not a row echelon matrix as a zero row is lying above a non-zero row.
- $\bullet \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \text{ is a row reduced echelon matrix.}$

Find row reduced echelon matrix which is row equivalent to the matrices in the previous question and their transposes.

Recall: A is row equivalent to the matrix B if A can be obtained from B by finitely many row operations.

Solution:

$$\begin{pmatrix}
1 & 0 & 5 \\
0 & 2 & 3 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{R_2 \to \frac{1}{2}R_2}
\begin{pmatrix}
1 & 0 & 5 \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 \leftrightarrow R_3}
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

Row reduced echelon matrix of transpose matrix

$$\begin{array}{c}
\bullet \begin{pmatrix} 1 & 0 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 5 & 3 & 0 \end{pmatrix} \xrightarrow{R_{2} \to \frac{1}{2}R_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 3 & 0 \end{pmatrix} \\
\xrightarrow{R_{3} \to R_{3} - 5R_{1}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 0 \end{pmatrix} \xrightarrow{R_{3} \to R_{3} - 3R_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\bullet \left(\begin{array}{ccc} 1 & 0 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{array}\right)^T = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 3 & 0 \end{array}\right), \text{ then proceed as above.}$$

Question 8 Contd.

$$\bullet \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{T} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
\bullet \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^{T} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \\
\bullet \begin{pmatrix} \frac{R_{2} \leftrightarrow R_{3}}{R_{2} \leftrightarrow R_{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\bullet \begin{pmatrix} \frac{R_{2} \leftrightarrow R_{3}}{R_{2} \leftrightarrow R_{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Show that every elementary matrix is invertible and inverse is an elementary matrix

Recall:

- ① A square matrix E of size n is called an elementary matrix if there is an elementary row operation q such that $E = q(I_n)$.
- ② Let q be an elementary row operation, then, for $A \in M_{m \times n}(\mathbb{R})$

$$q(A) = q(I_m)A$$

- If matrix A is obtained from identity matrix I by a certain row operation q then A^{-1} is obtained from I by its inverse operation q^{-1} , i.e.,
 - If q is swapping operation then $q^{-1} = q$.
 - If q is multiplication of a row by x (where $x \neq 0$) then q^{-1} is multiplication of a row by x^{-1} .
 - If q is an adding operation i.e $R_l \to R_l + xR_j$, then q^{-1} will be $R_l \to R_l xR_i$.

Solution:

- Let E be an elementary matrix. Therefore, E=q(I) for some elemenatry operation q.
- Define $F = q^{-1}(I)$, where q^{-1} is the reverse operation of q.
- Then,

$$I = (q^{-1} \circ q)(I) = q^{-1} \circ (q(I))$$

= $q^{-1}(E)$
= $q^{-1}(I)E$ (see 'Recall, point-2')
= FE

Similarly,

$$I = (q \circ q^{-1})(I) = q \circ (q^{-1}(I))$$

= $q(F)$
= $q(I)F$ (see 'Recall, point-2')
= EF

Question 9 Contd.

- Thus I = FE = EF, i.e., E is invertible and the inverse is given by F.
- As, by definition, *F* is obtained by a single row operation applied on *I*, therefore *F* is an elementary matrix.

Compute the rank of the following matrices. Using the rank determine which of these matrices are invertible.

$$\left(\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 3 & 8 \\ -3 & -1 & 2 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 3 & -4 \\ 1 & 5 & -1 \\ 3 & 13 & -6 \end{array}\right).$$

Recall:

- The rank of a matrix A is the number of non-zero rows in the Row Echelon form of A.
- A matrix $A_{n \times n}$ is invertible \iff Rank(A) = n.
- Row-equivalent matrices have the same rank.

Solution: Using elementary row operations we have,

$$\bullet \begin{pmatrix}
1 & 1 & 2 \\
2 & 3 & 8 \\
-3 & -1 & 2
\end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 4 \\
0 & 2 & 8
\end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{pmatrix}$$

As the rank A = 2, the above matrix is not invertible.

Question 10 Contd.

$$\bullet \begin{pmatrix}
1 & 2 & -4 \\
-1 & -1 & 5 \\
2 & 7 & -3
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + R_1}
\begin{pmatrix}
1 & 2 & -4 \\
0 & 1 & 1 \\
0 & 3 & 5
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 3R_2}
\begin{pmatrix}
1 & 2 & -4 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{pmatrix}$$

As the rank A = 3, the above matrix is invertible.

$$\bullet \begin{pmatrix}
1 & 3 & -4 \\
1 & 5 & -1 \\
3 & 13 & -6
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - R_1}
\begin{pmatrix}
1 & 3 & -4 \\
0 & 2 & 3 \\
0 & 4 & 6
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 2R_2}$$

$$\begin{pmatrix}
1 & 3 & -4 \\
0 & 2 & 3 \\
0 & 0 & 0
\end{pmatrix}$$

As the rank A = 2, the above matrix is not invertible.

Find the inverse of the invertible matrices in the previous question by reducing the matrix to row reduced echelon form (identity matrix).

Solution:

• Consider [A|I], where A is the matrix considered in Question 10(b) and I is the 3×3 identity matrix.

$$\bullet \begin{bmatrix}
1 & 2 & -4 & 1 & 0 & 0 \\
-1 & -1 & 5 & 0 & 1 & 0 \\
2 & 7 & -3 & 0 & 0 & 1
\end{bmatrix}
\xrightarrow[R_3 \to R_3 - 2R_1]{R_2 \to R_2 + R_1}
\begin{bmatrix}
1 & 2 & -4 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 3 & 5 & -2 & 0 & 1
\end{bmatrix}$$

$$\xrightarrow[R_1 \to R_1 - 2R_2]{R_3 \to R_3 - 3R_2}
\begin{bmatrix}
1 & 0 & -6 & -1 & -2 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 2 & -5 & -3 & 1
\end{bmatrix}
\xrightarrow[R_1 \to R_1 + 3R_3]{R_1 \to R_1 + 3R_3}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & -16 & -11 & 3 \\ 0 & 1 & 1 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & | & -\frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_3} \begin{bmatrix} 1 & 0 & 0 & | & -16 & -11 & 3 \\ 0 & 1 & 0 & | & \frac{7}{2} & \frac{5}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & | & -\frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

Therefore,
$$A^{-1} = \begin{pmatrix} -16 & -11 & 3 \\ \frac{7}{2} & \frac{5}{2} & -\frac{1}{2} \\ -\frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$$

Write down the following matrices as the product of elementary matrices (whenever possible).

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{array}\right), \quad \left(\begin{array}{cccc} 1 & 1 & 2 \\ 2 & 3 & 8 \\ -3 & -1 & 2 \end{array}\right).$$

Recall:

- A is row equivalent to I if and only if I is row equivalent to A. If $I = (q_s \circ ... \circ q_2 \circ q_1)(A)$, then $A = (q_1^{-1} \circ ... \circ q_{s-1}^{-1} \circ q_s^{-1})(I)$.
- That is, $A = E_1^{-1} E_2^{-1} \dots E_s^{-1}$, where $E_k = q_k(I)$.

Solution:

Hence, A is row equivalent to I, and $A = E_1^{-1}E_2^{-1}E_3^{-1}$, where

$$E_1 = q_1(I) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

• $\begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & 8 \\ -3 & -1 & 2 \end{pmatrix}$ is not invertible since rank is 2, see Question 10.

Solve the following systems of equations by reducing the augmented matrix to the row reduced echelon form:

a)
$$x_1 - x_2 + 2x_3 = 1$$
, $2x_1 + 2x_3 = 1$, $x_1 - 3x_2 + 4x_3 = 2$,

b)
$$x_1 + 7x_2 + x_3 = 4$$
, $x_1 - 2x_2 + x_3 = 0$, $-4x_1 + 5x_2 + 9x_3 = -9$,

c)
$$x_2 + 5x_3 = -4$$
, $x_1 + 4x_2 + 3x_3 = -2$, $2x_1 + 7x_2 + x_3 = -1$,

d)
$$-2x_1 - 3x_2 + 4x_3 = 5$$
, $x_2 - x_3 = 4$, $x_1 + 3x_2 - x_3 = 2$.

Solution: a)
$$x_1 - x_2 + 2x_3 = 1$$
, $2x_1 + 2x_3 = 1$, $x_1 - 3x_2 + 4x_3 = 2$

• Above system of equations can be written as Ax = b, i.e.,

$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 2 \\ 1 & -3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Question 13(a)

• Using elementary row transformations on augmented matrix (A|B) we have,

$$\begin{pmatrix}
1 & -1 & 2 & | & 1 \\
2 & 0 & 2 & | & 1 \\
1 & -3 & 4 & | & 2
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - 2R_1}
\begin{pmatrix}
1 & -1 & 2 & | & 1 \\
0 & 2 & -2 & | & -1 \\
0 & -2 & 2 & | & 1
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2}
\xrightarrow{R_2 \to R_2/2}
\begin{pmatrix}
1 & -1 & 2 & | & 1 \\
0 & 1 & -1 & | & -\frac{1}{2} \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

- Since, rank A = 2 and rank (A|b) = 2. Also, rank A = rank (A|b) < 3, above system of equations have infinite solutions.
- Here x_3 is the free variable. Let $x_3 = a$. We have,

$$x_1 - x_2 + 2x_3 = 1$$
, $x_2 - x_3 = -\frac{1}{2}$

Therefore,
$$(x_1 \ x_2 \ x_3)^T = \left(\frac{1}{2} - a \ a - \frac{1}{2} \ a\right)^T$$

Question 13(b)

(b)
$$x_1 + 7x_2 + x_3 = 4$$
, $x_1 - 2x_2 + x_3 = 0$, $-4x_1 + 5x_2 + 9x_3 = -9$

• Above system of equations can be written as Ax = b, i.e.,

$$\left(\begin{array}{ccc} 1 & 7 & 1 \\ 1 & -2 & 1 \\ -4 & 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 4 \\ 0 \\ -9 \end{array}\right)$$

• Using elementary row operations on augmented matrix (A|B) we have,

$$\begin{pmatrix}
1 & 7 & 1 & | & 4 \\
1 & -2 & 1 & | & 0 \\
-4 & 5 & 9 & | & -9
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - R_1}
\begin{pmatrix}
1 & 7 & 1 & | & 4 \\
0 & -9 & 0 & | & -4 \\
0 & 33 & 13 & | & 7
\end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2/9}
\begin{pmatrix}
1 & 7 & 1 & | & 4 \\
0 & -1 & 0 & | & -\frac{4}{9} \\
0 & 33 & 13 & | & 7
\end{pmatrix}
\xrightarrow{R_3 \to R_3 + 33R_2}$$

Question 13(b) Contd.

$$\left(\begin{array}{ccc|c} 1 & 7 & 1 & 4 \\ 0 & -1 & 0 & -\frac{4}{9} \\ 0 & 0 & 13 & -23/39 \end{array}\right) \xrightarrow{R_3 \to R_3/13} \left(\begin{array}{ccc|c} 1 & 7 & 1 & 4 \\ 0 & -1 & 0 & -\frac{4}{9} \\ 0 & 0 & 1 & -23/39 \end{array}\right)$$

• As rank A = rank (A|b) = 3, above system of equations has a unique solution. Hence, we have

$$x_1 + 7x_2 + x_3 = 4$$
, $-x_2 = -\frac{4}{9}$, $x_3 = -\frac{23}{39}$.

• So, by backward substitution we get,

$$(x_1 \ x_2 \ x_3)^T = \left(\frac{173}{117} \ \frac{4}{9} \ -\frac{23}{39}\right)^T$$

Question 13 (c)

(c)
$$x_2 + 5x_3 = -4$$
, $x_1 + 4x_2 + 3x_3 = -2$, $2x_1 + 7x_2 + x_3 = -1$

• Above system of equations can be written as Ax = b, i.e.,

$$\left(\begin{array}{ccc} 0 & 1 & 5 \\ 1 & 4 & 3 \\ 2 & 7 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} -4 \\ -2 \\ -1 \end{array}\right).$$

ullet Using elementary row operations on augmented matrix (A|b) we have,

$$\left(\begin{array}{cc|c} 0 & 1 & 5 & -4 \\ 1 & 4 & 3 & -2 \\ 2 & 7 & 1 & -1 \end{array}\right) \xrightarrow{R_1 \leftrightarrow R_2} \left(\begin{array}{cc|c} 1 & 4 & 3 & -2 \\ 0 & 1 & 5 & -4 \\ 2 & 7 & 1 & -1 \end{array}\right)$$

Question 13(c) Contd.

$$\begin{pmatrix}
1 & 4 & 3 & | & -2 \\
0 & 1 & 5 & | & -4 \\
2 & 7 & 1 & | & -1
\end{pmatrix}
\xrightarrow{R_3 \to R_3 + R_2}
\begin{pmatrix}
1 & 4 & 3 & | & -2 \\
0 & 1 & 5 & | & -4 \\
0 & -1 & -5 & | & 3
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2}
\begin{pmatrix}
1 & 4 & 3 & | & -2 \\
0 & 1 & 5 & | & -4 \\
0 & 0 & 0 & | & -1
\end{pmatrix}$$

• Hence, rank A=2 and rank (A|b)=3. As, rank $A\neq \text{rank }(A|b)$, above system of equation has no solution.

Question 13(d)

(d)
$$-2x_1 - 3x_2 + 4x_3 = 5$$
, $x_2 - x_3 = 4$, $x_1 + 3x_2 - x_3 = 2$

• Above system of equations can be written as Ax = b, i.e.,

$$\left(\begin{array}{ccc} -2 & -3 & 4 \\ 0 & 1 & -1 \\ 1 & 3 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 5 \\ 4 \\ 2 \end{array}\right)$$

• Using elementary row operations on augmented matrix (A|B) we have,

$$\begin{pmatrix}
-2 & -3 & 4 & 5 \\
0 & 1 & -1 & 4 \\
1 & 3 & -1 & 2
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_3}
\begin{pmatrix}
1 & 3 & -1 & 2 \\
0 & 1 & -1 & 4 \\
-2 & -3 & 4 & 5
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + 2R_1}
\begin{pmatrix}
1 & 3 & -1 & 2 \\
0 & 1 & -1 & 4 \\
0 & 3 & 2 & 9
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 3R_2}$$

Question 13(d) Contd.

$$\left(\begin{array}{ccc|c} 1 & 3 & -1 & 2 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 5 & -3 \end{array}\right) \xrightarrow{R_3 \to R_3/5} \left(\begin{array}{ccc|c} 1 & 3 & -1 & 2 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 1 & -\frac{3}{5} \end{array}\right)$$

• As rank A = rank (A|B) = 3, above system of equations have a unique solution. Hence, we have

$$x_3 = -3/5$$
, $x_2 - x_3 = 4$, $x_1 + 3x_2 - x_3 = 2$.

• So, by backward substitution we get,

$$(x_1 \ x_2 \ x_3)^T = \left(-\frac{44}{5} \ \frac{17}{5} \ -\frac{3}{5}\right)^T$$

Consider the following system of equations:

$$x + 2y + z = 3$$
, $ay + 5z = 10$, $2x + 7y + az = b$.

a) Find all values of a for which the following system of equations has a unique solution. b) Find all pairs (a, b) for which the system has more than one solution.

Solution:

• Above system of equations can be written as Ax = b, i.e.,

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & a & 5 \\ 2 & 7 & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 10 \\ b \end{pmatrix}$$

- The system of equations will have a unique solution iff $|A| \neq 0$.
- Since, $|A| = a^2 2a 15 = (a 5)(a + 3)$. Therefore, the above system of equation has a unique solution iff $a \neq 5, -3$.

Question 14 Contd.

Case 1: When a=-3

• Using elementary row operations on augmented matrix we have,

$$\begin{pmatrix}
1 & 2 & 1 & 3 \\
0 & -3 & 5 & 10 \\
2 & 7 & -3 & b
\end{pmatrix}
\xrightarrow{R_3 \to R_3 - 2R_1}
\begin{pmatrix}
1 & 2 & 1 & 3 \\
0 & -3 & 5 & 10 \\
0 & 3 & -5 & b - 6
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2}
\begin{pmatrix}
1 & 2 & 1 & 3 \\
0 & -3 & 5 & 10 \\
0 & 0 & 0 & b + 4
\end{pmatrix}$$

- rank A = 2. Above system of equation will have infinite solutions iff rank A = rank (A|B) < 3. This implies that rank (A|B) = 2.
- This gives, b + 4 = 0, i.e., b = -4.
- Hence, for (a, b) = (-3, -4) the system has more than one solution.

Question 14 Contd.

Case 2: When a = 5

ullet Using elementary row transformations on augmented matrix (A|B) we

have,
$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 5 & 5 & 10 \\ 2 & 7 & 5 & b \end{pmatrix} \xrightarrow{R_3 \to R_3 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 5 & 5 & 10 \\ 0 & 3 & 3 & b - 6 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2/5} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & \frac{b-6}{3} \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & \frac{b-12}{3} \end{pmatrix}$$

- rank A = 2. Above system of equation will have infinite solutions ifF rank A = rank (A|B) < 3. This implies that rank (A|B) = 2.
- Therefore, $\frac{b-12}{3} = 0$, i.e., b = 12.
- Hence, for (a, b) = (5, 12) the system has more than one solution.

Find $a, b, c, p, q \in \mathbb{R}$ such that the following system has a solution:

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & p \\ 0 & 0 & q \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} a \\ b \\ c \end{array}\right).$$

Solution: The system of equation written in the form of Ax = b has a solution if

- rank A = rank (A|b) = 3. In this case it will have a unique solution.
- rank A = rank (A|b) < 3. In this case it will have infinite solutions.

Case 1: Unique Solution

- The system will have a unique solution iff A is invertible, equivalently $|A| \neq 0$.
- |A| = q, therefore the system of equation has a unique solution iff $q \neq 0$ and $p, a, b, c \in \mathbb{R}$.

Case 2: Infinite Solutions

- For this case, we must have rank A = rank (A|b) < 3.
- Now, rank A < 3 iff q = 0, and in that case rank A = 2 because A has two non zero pivot columns.
- Consider (A|b) when q=0

$$\left(\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & 1 & p & b \\
0 & 0 & 0 & c
\end{array}\right)$$

- Now, rank (A|b) = 2 when c = 0.
- Hence, the system of equations have infinite solutions if c=q=0 and $p,a,b\in\mathbb{R}$.

Assume A, B are square matrices os same size, then,

- (a) trace(A + B) = trace(A) + trace(B) and trace(AB) = trace(BA).
- (b) Let A, B are 2×2 matrices, then det(AB) = det(A)det(B).
- (c) Find A, B such that $det(A + B) \neq det(A) + det(B)$

Solution: (a) trace(A + B) = trace(A) + trace(B)

- Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $n \times n$ matrix.
- Then

$$trace(A) + trace(B) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii}$$

$$= \sum_{i=1}^{n} (a_{ii} + b_{ii})$$

$$= trace(A + B)$$

Question 16 (a)

trace(AB) = trace(BA)

- $(i,j)^{th}$ entry of matrix AB is given by $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.
- Consider

$$trace(AB) = \sum_{i=1}^{n} (AB)_{ii}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ki} a_{ik}$$

$$= trace(BA)$$

Question 16 (b)

(b) Let A, B are 2×2 matrices, then det(AB) = det(A)det(B). Solution:

Let

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 and $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

- As $det(A) = a_{11}a_{22} a_{21}a_{12}$ and $det(B) = b_{11}b_{22} b_{21}b_{12}$.
- Now,

$$det(AB) = (a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22}) - (a_{21}b_{11} + a_{22}b_{21})(a_{11}b_{12} + a_{12}b_{22}) = a_{11}a_{22}(b_{11}b_{22} - b_{21}b_{12}) - a_{12}a_{21}(b_{11}b_{22} - b_{21}b_{12}) = (a_{11}a_{22} - a_{21}a_{12})(b_{11}b_{22} - b_{21}b_{12}) = det(A)det(B).$$

Question 16 (c)

(c) Find A, B such that $det(A + B) \neq det(A) + det(B)$

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ $A + B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Then det(A) = 1, det(B) = 1 and det(A + B) = 0.

Show that computation of nth order determinant using expansion needs atleast n! multiplication. If a multiplication takes 10^{-9} sec on a computer, compute the time needed for computing determinant of a 25×25 matrix.

Solution:

- Let f(n) be the numbers of multiplications required to find the determinant of a $n \times n$ matrix using cofactor expansion.
- We claim that $f(n) = \sum\limits_{k=1}^{n-1} \frac{n!}{k!}$, for n>1
- Cofactor expansion of determinant of $n \times n$ matrix A along j^{th} row is

$$det(A) = \sum_{k=1}^{n} a_{jk} (-1)^{j+k} det A_{jk}$$

where A_{jk} is the matrix formed by removing j^{th} row and k^{th} column.

- Since each minor A_{jk} is of size $n-1 \times n-1$, it requires f(n-1) multiplications.
- There are total of n minors.
- Also there are n more multiplications of each element of j^{th} row with the corresponding minor.
- By the above reasoning and absorbing multiplications of $(-1)^{i+j}$ in the addition, we have the following recursive formulae,

$$f(n) = nf(n-1) + n$$

- Now, using mathematical induction on f(n).
- Hence, we obtain that $f(n) \ge n!$.
- As 25! $\approx 10^{25}$. Therefore, time needed to compute the determinant of a 25 \times 25 matrix will be 10^{16} seconds $\approx 3 \times 10^9$ years.