Bipartite Entanglement Entropy

Aditya Chincholi June 28, 2021

Quasiperiodic Kicked Rotor

What I did earlier

Constructing the full floquet operator in a single basis.

What I did earlier

- Constructing the full floquet operator in a single basis.
- Using a density matrix the whole time for calculations.

What I did earlier

- Constructing the full floquet operator in a single basis.
- Using a density matrix the whole time for calculations.
- This has the drawback of increasing computational complexity of each individual step and the memory used at any given time is large.

• Separate the floquet operator into momentum space and position space parts.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.
- This is better as the memory used is less but computation increases. Since fourier transforms are computationally cheap anyway, so it's fine.

- Separate the floquet operator into momentum space and position space parts.
- Use a single pure state for calculations.
- Fourier transform the state at each time step and apply both parts of the floquet operator in their resp. basis.
- This is better as the memory used is less but computation increases. Since fourier transforms are computationally cheap anyway, so it's fine.
- Peak memory required scales the same way but we have reduced it by a constant factor and it is not used in all calculations.

Results

We use
$$\hbar=2.85, \omega_2=2\pi\sqrt{5}, \omega_3=2\pi\sqrt{13}$$
 , the momentum ranges from -10 to 10

$$H = \frac{p_1^2}{2} + p_2\omega_2 + p_3\omega_3 + K\cos(\theta_1)(1 + \alpha\cos(\theta_2)\cos(\theta_3))\sum_n \delta(t-n)$$

Figure 1: Precritical (Insulator): $K = 4, \alpha = 0.2$

Figure 2: Critical: $K = 6.36, \alpha = 0.4375$

Figure 3: Post-critical (Metal): $K = 8, \alpha = 0.8$

• I don't see much of a trend here. The entanglement grows faster and higher with higher K values i.e. more diffusive the regime higher the entanglement for the same number of time steps but other than that, I don't see anything here.

• What I was doing: $|\psi\rangle \to \rho \to \rho_1 = \textit{Tr}_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = \textit{Tr}_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.

9

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:
 - $P(p_1 = m\hbar)$

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:
 - $P(p_1 = m\hbar)$
 - $E = p_1^2/2 + p_2\omega_2 + p_3\omega_3$

9

- What I was doing: $|\psi\rangle \to \rho \to \rho_1 = Tr_{2,3}[\rho]$. This is a memory bottleneck as the full density matrix ρ still requires the $O(N^6)$ memory.
- What I realized: $|\psi\rangle \to \rho_1 = \textit{Tr}_{2,3}[\rho]$ This gives a really high speedup and allows me to check if localisation is happening properly or not.
- I used these params to generate the following results: p-basis = [-100, 100], 80 timesteps, $\omega_2=2\pi\sqrt{5}$, $\omega_3=2\pi\sqrt{13}$, $\hbar=2.85$.
- We plot the following quantities:
 - $P(p_1 = m\hbar)$
 - $E = p_1^2/2 + p_2\omega_2 + p_3\omega_3$
 - $S = -\rho_1 ln(\rho_1)$

9

Momentum (p_1) distributions

Figure 4: K = 3, α = 0.1

Momentum (p_1) distributions

Figure 5: K = 6.36, α = 0.4375

Momentum (p_1) distributions

Figure 6: K = 7, α = 0.8

Energy

Figure 7: K = 3, $\alpha = 0.1$

Energy

Figure 8: K = 6.36, $\alpha = 0.4375$

Energy

Figure 9: K = 7, $\alpha = 0.8$

Entropy

Figure 10: K = 3, $\alpha = 0.1$

Entropy

Figure 11: K = 6.36, α = 0.4375

Entropy

Figure 12: K = 7, $\alpha = 0.8$

Multiple K Values

- We look at the following plots for the following at different K, α values from the insulator to the metallic regime:
 - 1. Energy Expectation Value
 - 2. Entanglement Entropy
 - 3. Momentum Distribution
- To study the changes in the energy and entropy values with K, we have plotted the following quantities:
 - 1. Entropy Difference: $S(K_{n+1}, \alpha_{n+1}) S(K_n, \alpha_n)$ vs t
 - 2. Energy Difference: $E(K_{n+1}, \alpha_{n+1}) E(K_n, \alpha_n)$ vs t

Multiple K Values

- First we take a big picture look with 11 values with $K \in [3.00, 9.72]$ and $\alpha \in [0.200, 0.6750]$. Both ranges are centred around the critical point¹. Momentum range is -100 to 100 with 80 timesteps.
- Then we look very close to the critical point with 11 values with $K \in [6.30, 6.42]$ and $\alpha \in [0.4000, 0.4750]$. Both ranges are centred around the critical point. Momentum range is -100 to 100 with 80 timesteps.

 $^{^{1}}$ The (Lemarié, Grémaud, and Delande 2009) paper gives the value of K at critical point, but not of lpha.

The Big Picture

The Microscopic Picture

References

Lemarié, G., B. Grémaud, and D. Delande. 2009. "Universality of the Anderson Transition with the Quasiperiodic Kicked Rotor." *Europhys. Lett.* 87 (3): 37007. https://doi.org/10.1209/0295-5075/87/37007.