Multilingual Machine Translation

Surafel M. Lakew

Ethnologue: > 7000 languages are spoken in the world. Figure source: Wikimedia (CC)

Talk Outline

- Overview of Multilingual/Neural Machine Translation
- Translation Tasks & Progress in NMT
- NMT Methods, Experiments, Results and Key Takeaways
- Conclusion, Current and Future Trends (Q&A's)

Overview

Neural Machine Translation

Multilingual
Neural Machine Translation

Task Overview

Neural Machine Translation

Requires sentence aligned parallel training data between the source (Italian) and target(English) language pairs.

Neural Machine Translation

The NMT model is parameterized with a **seq2seq (encoder-decoder)** neural network.

Neural Machine Translation

The NMT translation performance depends on several factors, ranging from the training data size and domain to the model type and capacity.

Machine Translation with Recurrent NN

Machine Translation with Transformer NN

Machine Translation with Transformer NN

Overview of Tasks

Multilingual Neural Machine Translation

Modeling a single NMT model to translate between multiple languages

Low/Zero Resource NMT

In the absence of parallel examples, we use monolingual or/and multilingual data.

Transfer-Learning in NMT

Improving low-resource tasks by leveraging high-resource language pairs.

NMT into Language Varieties

Multilingual NMT repurposed to translate into language varieties.

Multilingual NMT repurposed to translate into different verbosity level.

Overview of Tasks: what makes them similar?

Unbalanced/Unavailable resources across languages, varieties and styles.

Overview of Tasks: what makes them similar?

Modeling multiple tasks in a single model and enabling positive transfer-learning.

Progress in NMT

Tasks and Approaches

Low/Zero Resource NMT

Dynamic Transfer Learning for NMT

NMT into Language Varieties

Controlling NMT Verbosity

Low/Zero-Resource Neural Machine Translation

Previous Work:

Low/Zero-Resource Neural Machine Translation

Previous Work:

Does multilingual NMT improve in low-resource conditions?

Can we further improve Zero-Shot translation of a multilingual NMT?

Lakew et al. 2017

Transfer Learning for Low-Resource Languages

Previous Work:

Transfer Learning for Low-Resource Languages

Previous Work:

Does dynamic transfer-learning improves over fixed parent model transfer?

Can we do better transfer-learning with relevant data selection?

Lakew et al., 2019

NMT into Language Varieties

Previous Work:

NMT into Language Varieties

Previous Work:

Does modeling multiple varieties in a single model is achievable?

How to handle unlabeled LV data?

Lakew et al., 2018

Controlling the Verbosity of NMT

Previous Work:

Controlling the Verbosity of NMT

Previous Work

Can we bias length of an NMT output, while keeping the translation quality?

Can we make it versatile to any pre-trained model?

Lakew et al., IWSLT, 2019.

Approaches & Applications

Methods, Experiments, Results and Findings

Zero-Shot NMT Modeling

Dynamic Transfer Learning

NMT into Language Varieties

Controlling NMT Verbosity

Zero-Shot Translation

Zero-Shot Translation is among the advantages of Multilingual NMT

Pivoting Translation as Alternative

Pivot (N-step) Inference

Research Questions

Does multilingual NMT improve low/zero-resource translation?

Can we further improve Zero-Shot translation of a multilingual NMT?

Zero-Shot NMT Modeling

Available Resource and ZST Task

Zero-Shot Translation

Zero-Shot NMT Modeling

Available Resource and ZST Task

Zero-Shot Translation

Zero-Shot NMT Learning Steps

- Leverage monolingual data

Perform dual back-translation

 Self-Learning using iterative data augmentation & learning with supervised tasks.

Zero-Shot NMT Modeling: Three Steps

Results

Results of the Italian <> Romanian zero-shot directions on IWSLT test-2017

Comparative Results

Zero-Shot NMT modeling outperformed the baseline **Multilingual NMT** and the **Pivoting** mechanism on IWSLT *test-2017*.

Key Takeaways

- Improves over the initial zero-shot translation only approach
- Learns through the different round of training and inference
- Shows better performance than pivoting
- Signals the universality of multilingual NMT

Lakew et al., IWSLT, 2017

Approaches & Applications

Zero-Shot NMT Modeling

Dynamic Transfer Learning

NMT into Language Varieties

Controlling NMT Verbosity

Transfer Learning

Notice: the parent model parameters are fixed following a one-size-fits-all approach.

Research Questions

Does dynamic transfer-learning improves over fixed parent model transfer-learning?

Can we expand pre-trained NMT into unseen languages directions?

Can we do better transfer-learning with data selection?

Dynamic Transfer Learning: Two Approaches

Progressive Adapt (ProgAdapt)

- Transfer parent model parameter to child model with new language pair.

Progressive Grow (ProgGrow)

Accommodate new language pairs when data becomes available.

Lakew et al., IWSLT, 2018

Dynamic Transfer Learning: ProgAdapt

Existing TL Approach

Experimental Settings

Parent Language pairs / Model

200K

Child Language Pairs / Two Settings

50K

5K

Results

DTL approach outperform both single-pair NMT and M-NMT approaches In ProgAdapt parent model vocab size is ~10% larger

Low-Resource Results

Key Takeaway

A higher % of shared vocabulary b/n consecutive models in progAdapt shows better gain.

Compared to a model trained from scratch, DTL takes 4% to 20% training steps with significantly higher performance.

Dynamic Transfer Learning

Multilingual Model

- Train a large scale multilingual parent model to dynamically transfer parameters.

Two Additional Proposals

Data selection for TL

 Train language model on the test language (child) to select relevant data for the TL stage.

Experimental Settings

Dynamic Transfer Learning: Data Selection Strategies

^{*}except for Select-fam, other selection strategies pick equal proportion of data.

Using Select-One strategy

Results

DataAugment: Xia et al., 2019

DynAdapt: Lakew et al., 2019

M2M: Aharoni et al., 2019

Key Takeaways

- Utilizing a universal pre-trained multilingual model improves dynamic/TL for LRL's.
- Relevant data-selection further improves dynamic adaptation & cheaper to acquire.
- DynAdapt + Data selection approaches can provide the best performance over the other data augmentation and transfer-learning approaches.

Approaches & Applications

Zero-Shot NMT Modeling

Dynamic Transfer Learning

NMT into Language Varieties

Controlling NMT Verbosity

NMT into Language Varieties: A scenario

A large scale unlabeled data can lead to poor performance when translating to a specific language variety/dialect.

Research Questions

Can we model translation in to multiple language varieties/dialects using a single model?

Can we further improve over the baseline single LV models?

How to handle majority of LV unlabeled parallel data?

Modeling NMT into Language Varieties

We use a similar principles as in multilingual NMT

Offline labeling using an LVI classifier

A single LV aware NMT model Training

Experimental Settings: Two Scenarios

Dialects

Closely Related Languages

Experimental Settings: Data regimes & model types

Gen: unsupervised NMT model trained with the union of unlabeled data

Spec: supervised models trained with variety specific data

Mul: supervised model trained with the union of labeled data

M-U: semi-supervised trained with the union of both labeled and unlabeled data

M-C2: semi-supervised training using LVI to map the unlabeled segments to variety classes

M-C3: trained similarly as M-C2, ambiguous sentences with low classifier confidence are not labeled

Results

Mul (supervised) shows the largest improvement, with comparable performance from semi-supervised (M-C2/3)

Semi-supervised approaches are better than Mul

Key Takeaways

- Presented NMT from English into dialects & related languages, comparing models that can be trained under unsupervised, supervised, and semi-supervised settings.

- Multilingual model (M-C3) trained using labels from LVI module can perform very close to its supervised (Mul) version.

 The approach keeps resource together maximizing transfer-learning b/n the high and low-resourced variety.

- Delivers simplified modeling, in addition to improved performance & translation quality.

Approaches & Applications

Zero-Shot NMT Modeling

Dynamic Transfer Learning

NMT into Language Varieties

Controlling NMT Verbosity

Length Control of NMT Outputs: A Scenario

What if translations have to fit a given layout?
E.g. translating subtitles, dubbing script, headlines.

SRC	It is actually the true integration of the man and the machine.
MT	Es ist <u>tatsächlich</u> die <u>wahre</u> Integration von Mensch und Maschin <mark>e</mark> .
MT*	Es ist die <u>wirkliche</u> Integration von Mensch und Maschine
SRC	So we thought we would look at this challenge and create an exoskeleton that would help deal with this issue.
MT	Quindi abbiamo pensato di guardare a questa sfida e creare un esoscheletro che potesse aiutare <u>ad affrontare</u> ques <mark>to problema</mark> .
MT*	Pensavamo di guardare a questa sfida e creare un esoscheletro che potesse aiutare <u>a risolvere</u> il problema

Research Questions

Can we control length of an NMT output, while keeping the translation quality?

Can we make it versatile to any pre-trained model?

Controlling Verbosity of NMT: Length-Token

Approach conditions the output of NMT to a given target-source length-ratio class

Controlling Verbosity of NMT: Length-Encoding

Approach enriches the positional embedding of NMT with length information.

Controlling Verbosity of NMT: as a Fine-Tuning Task

Advantages:

- Versatile to any pre-trained model
- Better performance than training from scratch
- Faster training and language independent

Experimental Results

Models performance (left) with respect to output length (right)

Examples

English > Italian

SRC **And we in the West** couldn't understand NMT *E noi occidentali* non riuscivamo a capire **LC-NMT** *In occidente* non riuscivamo a capire -----

SRC how much **this would restrict** freedom NMT quanto **questo** avrebbe limitato la libertà **LC-NMT** quanto limitasse la libertà ------

SRC **this** is a **really** extraordinary honor for me NMT **questo** è un onore **davvero** straordinario per me **LC-NMT** per me è un onore straordinario -----

Examples of shorter translations obtained by (linguistic variations) paraphrasing, drop of words, and change of verb tense.

Key Takeaways

Proposed solutions for controlling the output length of NMT:

Length-Tok: coarse-grained control without degradation in quality

Length-Enc: fine-grained control with a slight decrease in the translation quality

Fine-Tuning: versatile to any pre-trained model

Conclusions

Multilingual Neural Machine Translation

Conclusions

- Multilingual NMT enables zero-shot translation, and
- Leveraging monolingual data improves zero-shot translation by large margin.
- Dynamic transfer-learning that tailors the parent (multilingual) model to the child model increases translation performance.
- Multilingual model can be repurposed to enable translation into language varieties (dialects), and verbosity of the NMT model outputs.

Current and Future Trends

Two primary directions

- Specialization
 - Improving a model performance on specific task or language.

- Generalization
 - Improving a model performance on several tasks or languages.

Current and Future Trends

Among current trends (reading material):

- Large scale model training/pre-training
 - <u>Kim et al., 2021</u> Scalable and Efficient MoE Training for Multitask Multilingual Models
- Multimodal/Multi-task training
 - Bapna et al., 2022 mSLAM: Massively multilingual joint pre-training for speech and text
- Self-Learning for multilingual training
 - Siddhant et al., 2022 Towards the Next 1000 Languages in Multilingual Machine Translation

Thank You! Q&A's ...

Slides: https://github.com/surafelml/talks/machine-translation/

Contact: Surafel M. Lakew surawinfo@gmail.com