Problema 1

Dado el circuito iterativo de la figura

- a) Confeccione las tablas de verdad de la celda iterativa. ¿Qué sucede con la salida y cuando la entrada de transporte es '1'? ¿Y cuando es '0'?
- b) Construya la tabla de verdad del circuito completo. ¿Qué función cumple?
- c) ¿Qué función cumple si la condición de frontera es '1'?

a)
$$y(k) = a(k) \oplus ti(k)$$
 $to(k) = a(k) \oplus ti(k)$
 $\forall k \in \{0,1,1,3\}$

bi a to y

o o o o o

o o o o o

o o o o o

o o o o o

si ti=o =) y=a

Si ti=l =) y=a

Del circuito se observa que ti(0) = 0 t: (k) = to (k-1) tk + 0 entonces Qo a, (1) a Q1+Q0 az (a1+010) a2+a1+a0 R3 P Z a; Q(3:0) 7 (3:0) 0000 0000 0001 1111 1001 0111 1000 1000

c) Ahara se tendra que tilo) = 1 ti(u) = to(u-1) + k to entonces a_{1} 3 se concluye que si t; (0)=1=) Y(3:0) = a(3:0) Por lo tanta y = CA1(2)

Problema 2

El siguiente es el calendario correspondiente al mes de enero del año 2020. Solo están indicados los días del 1 al 15.

ром	LUN	MAR	MIE	JUE	VIE	SAB
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15			

Construya un circuito que recibe en su entrada el número de día y produce en su salida el día de la semana correspondiente. El día de la semana correspondiente se codifica así

día de la semana	código
DOM	001
LUN	010
MAR	011
MIE	100
JUE	101
VIE	110
SAB	111

- a) Obtenga las expresiones del circuito en forma de producto de sumas.
- b) Si dispusiera de un decodificacor de 4 a 16 ¿Cómo obtendría las salidas del circuito?

		<u> </u>	
#	DiA	グル	02,00
Ĵ	~	0000	
1	Mi	0001	100
2		. • •	101
3	V		110
4	S		111
5	Ď		001
6	L		<i>0</i> 10
8	М		011
හි	M;		100
9	J		101
lO	V		110
	Ş		111
12	D		001
13	پ		010
14	۲		011
12	Mi	1411	100

C1 = 4.12.13.14.15

Como suma de productos Sintes, o de C(2)

Sintesis de C(1)

Sintesis de C(0)

mortes = 07+014

Recordando que

día de la semana	código
DOM	001
LUN	010
MAR	011
MIE	100
JUE	101
VIE	110
SAB	111

entonces

- a) Diseñe a nivel RTL un circuito que sume 2 palabras signadas de W bits codificadas en binario desplazado.
- b) Agregue la lógica necesaria al circuito anterior para saturar la salida.

Problema 4

- **a)** Diseñe un circuito que multiplique una palabra entrante no signada de 4 bits por 3/2 y sature el resultado a 4 bits. Solo puede emplear circuitos sumadores, multiplexores y unos pocos inversores.
- b) Repita el anterior con palabras signadas.

