Discrete Mathematics and Algorithms (MA3201) Assignment Set 2

1. Using the principle of mathematical induction, show that for any integer n > 1

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

- 2. Let $\alpha = \frac{1+\sqrt{5}}{2}$. Using mathematical induction, prove that $F_n < \alpha^{n-1}$, where $n \geq 3$. Here F_n is the n-th Fibonacci number defined by the recurrence relation: $F_{k+1} = F_k + F_{k-1}$, with $F_1 = F_2 = 1$.
- 3. Show that $(x^n 1)$ is divisible by (x 1) for a positive integers $n \ge 2$ using the principle of mathematical induction.
- 4. Given a set of sixteen natural numbers, none having a prime factor > 7. Using the pigeonhole principle, show that either some number is a perfect square or, the product of some two distinct numbers is a perfect square.

[Hint: Use the fundamental theorem of arithmetic. Any number n (> 1) can be expressed uniquely as $n=p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$, where p_1,p_2,\dots,p_k are distinct prime factors and $k_i\geq 0$ be an integer.]

- 5. Prove that among 100,000 people there are two who were born in exactly the same time (hour, minute and second).
- 6. Find $(132) \cdot (1742386) \cdot (132)$.
- 7. Let f, g be two permutations on the set $\{1, 2, 3, 4, 5, 6\}$. Find fg, gf, f^{-1}, g^{-1} when

(i)
$$f = (1 \ 2 \ 4 \ 5 \ 6), g = (2 \ 6 \ 3 \ 4 \ 5).$$

(ii)
$$f = (2\ 3\ 5\ 4), g = (4\ 5\ 3\ 2).$$

8	8. Show that, if p is an arbitrary potential the same cycle structure as p .	ermutation and q is the cy	cle $(1 \ 2 \cdots i)$, then the po	ermutation $q^{-1}pq$ has