3. Übungsblatt zu "Analysis I" Wintersemester 2022/23

Abgabetermin: Sonntag, 06.11.2022, 24.00 Uhr

Aufgabe 1: (1+2+3=6 Punkte) Beweisen Sie folgende Aussagen

- a) Für $x, y \in \mathbb{R}$ gilt $||x| |y|| \le |x y|$.
- **b)** Aus $\lim_{n\to\infty} a_n = a$ folgt $\lim_{n\to\infty} |a_n| = |a|$
- c) Aus $\lim_{n\to\infty} a_n = a$ folgt $\lim_{n\to\infty} \sqrt{|a_n|} = \sqrt{|a|}$

Aufgabe 2: (2+2+2=6 Punkte)

- a) Sei $N \in \mathbb{N}$ und (a_n) eine Nullfolge mit $a_n > 0$ für alle $n \geq N$. Zeigen Sie, dass die Folge $(1/a_n)$ gegen ∞ divergiert.
- **b)** Zeigen Sie, dass $a_n = \frac{n}{2^n}$ eine Nullfolge ist.
- c) Zeigen Sie, dass $a_n = \frac{n!}{n^n}$ eine Nullfolge ist.

Aufgabe 3: (1+1+1+1=4 Punkte)

Untersuchen Sie die angegebenen Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$, $(d_n)_{n\in\mathbb{N}}$ auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

a)
$$a_n := \frac{1}{\sqrt[3]{n+1}}$$
 b) $b_n := \frac{2n^2 - 7n + 9}{n(n+2)}$ c) $c_n := \frac{(-1)^n n^2 - n^2 - 1}{n+3}$

d)
$$d_n := \sqrt{n^2 + 1} - n$$

Aufgabe 4: (4 Punkte)

Es sei M eine nicht leere Menge positiver reeller Zahlen. Definiere

$$M' := \left\{ \frac{1}{x} \mid x \in M \right\}.$$

Zeigen Sie, dass M' genau dann nach oben beschränkt ist, wenn inf M > 0 ist, und dass in diesem Fall sup $(M') = (\inf M)^{-1}$ gilt.