Modular Model-based Supervisory Controller Design for Wafer Logistics in Lithography Machines

Bram van der Sanden, Michel Reniers, Marc Geilen, Twan Basten, Johan Jacobs, Jeroen Voeten, Ramon Schiffelers

MODELS 2015

Embedded Systems
Innovation BY TNO

TU/e

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Supervisory Controllers

Time-driven

Event-driven

Time-driven

Supervisory controllers

How to design supervisory controllers?

Hybrid plant model

Discrete plant model

Hybrid plant model

Discrete plant model

Hybrid plant model

informal requirements

supervisory controller

Discrete plant model

Hybrid plant model

informal requirements

supervisory controller

What about:

- requirement traceability?
- system is evolving: changing requirements?

Discrete plant model

Hybrid plant model

Why not use **formally specified requirements** as part of the model?

informal requirements

supervisory controller

Discrete plant model

Hybrid plant model

informal requirements

Formal Requirements

supervisory controller

Discrete plant model

Hybrid plant model

- is deadlock-free
- is maximally permissive
- does not block environment actions

Model-based Development Process

Apply this development process to an industrial case study

- What we have modeled in the paper:
 - Wafers
 - Positions in system
 - Life cycle requirement
 - System capabilities
 - Global flow restrictions (FIFO ordering)

This presentation: focus on modeling the wafer stage

Wafer Stage: Measure, Expose and Chuck Swap

Wafer Stage: Measure, Expose and Chuck Swap

Modeling the Wafer Stage

(1) Chucks

Positions, allowed actions

Can hold at most one wafer

(2) Water layer

Below exposure lens

(3) Wafers

Position and life cycle

Modeling the Wafer Stage (1/3): Chuck Position

uncontrollable event

controllable event

event name synchronization

Modeling the Wafer Stage (1/3): Chuck Actions

CH0.atMeasure

```
ActionsCH0
CHO Measure * s,
CH0toWH * s,
WHtoCH0 * s ⇒
    PositionCH0.atMeasure
CH0 Expose * s ⇒
    PositionCH0.atExpose
```

```
ActionsCH1
 CH1 Measure * s,
 CH1toWH * s,
 WHtoCH1 * s ⇒
    PositionCH1.atMeasure
 CH1 Expose * s ⇒
    PositionCH1.atExpose
```

refer to states using variables

Modeling the Wafer Stage (1/3): Chuck Capacity

Chuck can hold at most one wafer

Modeling the Wafer Stage (2/3): Wafers Position and Life Cycle

Position of wafer j

Life cycle of wafer j

Modeling the Wafer Stage (3/3): Water Layer

BreakWater

breakWater ⇒
 (PositionCH0.atExpose Λ StatusCH0.free)
v (PositionCH1.atExpose Λ StatusCH1.free)

When no wafer is present below the lens, the water layer will break

ReqBreakWater
breakWater ⇒
false

Breaking the wafer layer is never allowed

Modeling the Wafer Stage: Complete Specification Model

CH0_Measure_*_s, CH0toWH_*_s, WHtoCH0_*_s ⇒ PositionCH0.atMeasure CH0_Expose_*_s ⇒ PositionCH0.atExpose

Modeling the Wafer Stage: Apply Synthesis on Specification Model

Modeling the Wafer Stage: Complete Model After Synthesis

Business Case

- Why does ASML want this?
 - Controller design is now done manually:
 - Time consuming
 - Going from requirements to a supervisory controller design is difficult
 - Tight coupling between concepts: hard to make proper decomposition
 - High-tech systems evolve rapidly and adapting supervisory controllers take a lot of time
 - Exploring impact of changes is hard

Take-away points and lessons learned

- Compositional modeling of plant and requirements: divide and conquer.
- When requirements are formally part of the specification, requirement traceability is trivial.
- Multiparty synchronization provides advantages in terms of modularity and adaptability/maintainability.

Challenges: road towards industrial adaptation

- Synthesis step using monolithic synthesis does not scale well enough
 - Evaluation of modular synthesis techniques
- Completeness: specifying liveness goals, timing requirements
- Performance optimization: maximize throughput, minimize makespan

Available tooling

- CIF3: http://cif.se.wtb.tue.nl/
 - Modeling using (extended) finite (hybrid) automata
 - Synthesis of supervisors
 - (Graphical) simulation of controlled system with a discrete/hybrid plant

Available tooling: CIF3

CIF3: http://cif.se.wtb.tue.nl

bramvandersanden.com/models2015 b.v.d.sanden@tue.nl

