Scalar Quantization with Noisy Partitions and its Application to Flash ADC Design

Da Wang, Yury Polyanskiy and Gregory Wornell

Signals, Information and Algorithms Laboratory

ISIT 2014, Honolulu, HI June 30, 2014

Outline

- Background on ADC
 - Flash ADC architecture
 - ► The issue of imprecise comparators
- Scalar Quantization with Noisy Partitions
- High resolution analysis
- 4 ADC design implications

Analog-to-Digital Converter (ADC)

Analog-to-Digital Converter (ADC)

$$x \sim ADC - 100 \rightarrow \hat{x}$$

- 2^b reconstruction values
- $n = 2^b 1$ reference voltages

ADC and its key building block: comparator

Comparator

The Flash ADC architecture

$$y_{\text{out}} = \begin{cases} 1 & v_{\text{in}} > v_{\text{ref}} \\ 0 & v_{\text{in}} \le v_{\text{ref}} \end{cases}$$

The imprecise comparator due to process variation

Z_{in} and Z_{ref} :

- offsets due to process variation
- variation \nearrow as comparator size
- independent, zero-mean
 Gaussian distributed [Kinget 2005, Nuzzo 2008]

Note:

- fixed after fabrication
- randomness: over a collection of comparators
- aggregate variation:

$$Z = Z_{ref} - Z_{in} \sim N(0, \sigma^2)$$

A call for mathematical framework

Existing theoretical error analysis (e.g., [Lundin 2005])

- assumes small process variation
- does not attempt to change the design

ADC design with imprecise comparators

Practice ADC with redundancy [Flynn et al., 2003]

 ADC with redundancy, calibration and reconfiguration [Daly et al., 2008]

A call for mathematical framework

Existing theoretical error analysis (e.g., [Lundin 2005])

- assumes small process variation
- does not attempt to change the design

ADC design with imprecise comparators

- Practice ADC with redundancy [Flynn et al., 2003]
 - ADC with redundancy, calibration and reconfiguration [Daly et al., 2008]
- Theory Little prior work
 - Related: scalar quantizer with random thresholds for uniform input [Goyal 2011]

System model: Scalar Quantization with Noisy Partition Points

b-bit ADC

 $n = 2^b - 1$ comparators

System model: Scalar Quantization with Noisy Partition Points

b-bit ADC

with redundancy

- "references" = "partition points"
- *r*: redundancy factor

System model: Scalar Quantization with Noisy Partition Points

b-bit ADC

with redundancy and calibration

- "references" = "partition points"
- *r*: redundancy factor

Performance measures of ADC

error function

$$e(x) = x - \hat{x}$$

mean-square error

$$MSE = \mathbb{E}_{X,\tilde{V}^n} \left[e(X)^2 \right]$$

 $v^n \longrightarrow \tilde{V}^n \longrightarrow$ analyze MSE

Given input distribution f_X , how to design optimal v_1, v_2, \ldots, v_n ?

Is scaling down the size of comparators actually beneficial?

e.g., design:

e.g., design:

or . . .

- $lue{}$ Ordering may change o order statistics
- **Random interval sizes** \rightarrow

High resolution approximation

Assume $n \to \infty$

Represent v^n by point density functions $\tau(x)$

High resolution approximation

Assume $n \to \infty$

Represent v^n by point density functions $\tau(x)$

$$\tau(x) dx \approx \frac{\text{number of } v^n \text{ in } [x, x + dx]}{n}$$

$$v_1 v_2 \qquad x_{x+dx} \qquad v_n$$

 \tilde{V}^n : point density functions $\lambda(x)$

$$\lambda(x) dx \approx \frac{\mathbb{E}\left[\text{number of } \tilde{V}^n \text{ in } [x, x + dx]\right]}{n}$$

Point density function simplifies analysis!

Point density function guides partition point design

partition points
$$v^n$$
 high res. approx. point density function $\tau(\cdot)$

Examples

- $\quad \blacksquare \ \tau \sim \mathsf{Unif}\left([-1,1]\right)$
- v^n : *n*-point evenly-spaced grid on [-1, 1]

Point density function guides partition point design

partition points
$$v^n$$
 high res. approx. point density function $\tau(\cdot)$

Examples

$$\tau(x) = 0.5 \cdot \delta(x-a) + 0.5 \cdot \delta(x+a)$$

- $v^{\hat{n}}$:
 - \triangleright n/2 points at +a
 - ▶ n/2 points at -a

With process variation, fabricated references matters

- Performance characterization in $\lambda(\cdot)$
- Want to find the optimal $\tau(\cdot)$

With process variation, fabricated references matters

Process variation increases MSE 6-fold

Input $X \sim f_X(\cdot)$,

 $MSE = \mathbb{E}_X \left[e(X)^2 \right]$

classical case [Bennett 1948, Panter & Dite 1951]

$$MSE \simeq \frac{1}{12n^2} \int \frac{f_X(x)}{\lambda^2(x)} dx$$

 $\lambda = \tau$

with process variations

$$MSE \simeq \frac{1}{2n^2} \int \frac{f_X(x)}{\lambda^2(x)} dx$$

$$\lambda = \tau * \phi$$

Why 6 times?

deterministic grid vs. random division of an interval (a topic in order statistics)

Optimal τ

a necessary and sufficient condition

Optimal partition point density

Key function:

$$R(\tau) = \int f_X(x)(\tau * \phi)^{-2}(x) dx$$

Theorem

 τ minimizes $R(\tau)$ if and only if

$$\sup_{x \in \mathcal{A}} \left[\frac{f_X}{(\tau * \phi)^3} * \phi \right] (x) \le \left\langle f_X, \frac{1}{(\tau * \phi)^2} \right\rangle.$$

In particular, if there exists τ^* *such that*

$$\tau^* * \phi \propto f_X^{1/3},$$

then τ^* minimizes $R(\tau)$ and

$$R(\tau^*) = \left(\int f_X^{1/3}(x) dx\right)^3.$$

Gaussian input distribution

Complete characterization of optimal au

When

$$f_X \sim \mathsf{N}\left(0, \sigma_X^2\right)$$
,

then

$$\tau^* \sim \begin{cases} N\left(0, 3\sigma_X^2 - \sigma^2\right) & \text{when } 3\sigma_X^2 > \sigma^2 \\ \delta(x) & \text{when } 3\sigma_X^2 \le \sigma^2 \end{cases}$$

and

$$R(\tau^*) = \begin{cases} 6\sqrt{3}\pi\sigma_X^2 & \text{when } 3\sigma_X^2 > \sigma^2 \\ 2\pi\sigma^3/\sqrt{\sigma^2 - 2\sigma_X^2} & \text{when } 3\sigma_X^2 \le \sigma^2 \end{cases}.$$

$$f_X \sim \mathsf{Unif}\left([-1,1]\right)$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \ge \sigma_0$$

the necessary and sufficient
condition
 $\Rightarrow \tau^*(x) = \delta(x)$

$$f_X \sim \mathsf{Unif}([-1,1])$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \geq \sigma_0$$
 the necessary and sufficient condition

$$f_X \sim \mathsf{Unif}([-1,1])$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \ge \sigma_0$$

the necessary and sufficient
condition
 $\Rightarrow \tau^*(x) = \delta(x)$

MSE-optimal designs can be quite different Uniform input distribution

$$f_X \sim \mathsf{Unif}([-1,1])$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \ge \sigma_0$$

the necessary and sufficient
condition
 $\Rightarrow \tau^*(x) = \delta(x)$

$$f_X \sim \mathsf{Unif}([-1,1])$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \ge \sigma_0$$

the necessary and sufficient
condition
 $\Rightarrow \tau^*(x) = \delta(x)$

MSE-optimal designs can be quite different Uniform input distribution

$$f_X \sim \mathsf{Unif}([-1,1])$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \ge \sigma_0$$

the necessary and sufficient
condition
 $\Rightarrow \tau^*(x) = \delta(x)$

MSE-optimal designs can be quite different Uniform input distribution

$$f_X \sim \mathsf{Unif}([-1,1])$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \ge \sigma_0$$

the necessary and sufficient
condition
 $\Rightarrow \tau^*(x) = \delta(x)$

$$f_X \sim \mathsf{Unif}([-1,1])$$

$$\sigma_0 \approx 0.7228$$

$$\sigma < \sigma_0$$
iterative optimization
 \Rightarrow locally optimal $\tau^*(x)$

$$\sigma \ge \sigma_0$$

the necessary and sufficient
condition
 $\Rightarrow \tau^*(x) = \delta(x)$

ADC design implications

Stochastic ADC [Weaver 2010] is suboptimal

■ Uniform input distribution over [-1, 1], $\sigma = 1.0$

Weaver:

$$\tau(x) = \delta(x - 1.078\sigma) + \delta(x + 1.078\sigma)$$

Minimum MSE

Optimal: $\tau(x) = \delta(x)$

- Flatter $\lambda(x)$, but larger MSE
- Many points out of input range

 $MSE_{stochastic}/MSE^* \approx 2.15!$

Scaling down the size of comparators is beneficial

For circuit fabrication [Kinget 2005, Nuzzo 2008],

process variation
$$\sigma^2 \propto \frac{1}{\text{component area}}$$

Given a fixed silicon area,

components
$$n \propto \frac{1}{\text{component area}}$$

Uniform input distribution, when $\sigma \geq \sigma_0$,

$$MSE \approx 2\pi\sigma^2/n^2 \qquad \xrightarrow{\sigma^2 \propto n} \qquad MSE = \Theta(1/n)$$

Scaling down the size of comparators is beneficial

For circuit fabrication [Kinget 2005, Nuzzo 2008],

process variation
$$\sigma^2 \propto \frac{1}{\text{component area}}$$

Given a fixed silicon area,

components
$$n \propto \frac{1}{\text{component area}}$$

Uniform input distribution, when $\sigma \geq \sigma_0$,

$$MSE \approx 2\pi\sigma^2/n^2 \qquad \xrightarrow{\sigma^2 \propto n} \qquad MSE = \Theta(1/n)$$

Building an ADC with more smaller but less precise comparators improves accuracy!

Recap and future work

Recap

- Scalar quantization with noisy partitions
- High resolution analysis of MSE
- Optimal partition point designs difference from the classical case

Work in progress

- More error metrics: maximum quantization error, ...
- Partial-calibration or no-calibration
- Take power consumption of ADC into account