

PHYSICS

- 1. A solenoid having 70 turns per cm current flowing in solenoid is 2 amp. Find magnetic field inside the solenoid.
 - (1) $860 \pi \times 10^{-4} \text{ T}$

(2)
$$560 \pi \times 10^{-4} \text{ T}$$

(4) $360 \pi \times 10^{-4} \text{ T}$

(3) $280 \pi \times 10^{-4} \text{ T}$

Ans. (2)

Sol. $B=\mu_0\pi I$

$$B = 4\pi \times 10^{-7} \times \frac{70}{10^{-2}} \times 2$$

$$B = 560\pi \times 10^{-4} T$$

(1) NAND

- (2) NOR
- (3) OR

Ans. Sol.

(1)		
A	В	Out
0	0	
1	0	100
0	1	17
1	1	0
	A Company of the Comp	

- (4) AND 1.5×10^6 ?Separation between earth and sun is given by 1.5×10^6 km. Time period of another planet is 3. 2.83 year. Find distance of another planet from sun?
 - $(1) 3 \times 10^6 \text{ km}$
- (2) $2 \times 10^7 \text{ km}$
- (3) $3 \times 10^7 \text{ km}$
- $(4) 2 \times 10^6 \text{ km}$

Ans.

Sol.
$$T^2 \propto R^2$$

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{R_1}{R_2}\right)^3$$

$$\left(\frac{1}{2.83}\right)^2 = \left(\frac{1.5 \times 10^6}{R_2}\right)^3$$

$$R_2 = (1.5 \times 10^6) (2.83)^{2/3} \text{ km}$$

$$=(1.5\times10^6)(8)^{1/3}$$

$$= 3 \times 10^6 \text{ km}$$

- 4. Choose the correct options based on the column shown below.
 - 1. TV signal
- (P) 12 GHz

2. Satellite

(Q) 30 MHz

3. AM

(R) 88 MHz

4. FM

(S) 1 MHz

4

S

- 1
- 2 3
- (1) P
- Q
- R
- (2) Q
- P

Q

- R
- (3) S
- R

S

- P
- (4) P
- Q
- R

Ans. (2)

- each otherwise (4) m = 1If two vectors $\vec{P} = \hat{i} + 2m\hat{j} + m\hat{k}$ & $\vec{Q} = 4\hat{i} - 2\hat{j} + m\hat{k}$ are perpendicular to each other, then find value **5.** of m.
 - (1) m = 3
- (2) m = 2

Ans. (2)

Sol.
$$P \cdot Q = 0$$

$$(\hat{i} + 2m\hat{j} + m\hat{k}).(4\hat{i} - 2\hat{j} + m\hat{k}) = 0$$

$$4-4m+m^2=0$$

$$m^2 - 2m - 2m + 4 = 0$$

$$m(m-2)-2(m-2)=0$$

$$m = 2$$

- A photon is emitted from n = 4 to n = 1 level in hydrogen atom the corresponding wavelength for 6. this transfer will be [hc = 1240 nm eV].
 - (1) 88.2 nm
- (2) 121.7 nm
- (3) 102.5 nm
- (4) 97.3 nm

Ans. (4)

Sol.
$$\Delta E = \frac{hc}{\lambda}$$

$$1 = \frac{hc}{\Delta E_{4-1}} = \frac{1240 \text{nm eV}}{12.75 \text{ eV}} = 97.3 \text{ nm}$$

When _zX²⁴⁰ nucleus goes for fission, energy released is 200 MeV. Total energy released when 7. 120g of this sample is 10^{25} MeV.

Ans.

Sol.
$$n_A = \frac{120}{240} = \frac{1}{2}$$

$$E_{total} = \frac{1}{2} \times 6.02 \times 10^{23} \times 200 MeV = 6 \times 10^{25} MeV$$

In an electromagnetic wave electric field and magnetic field is given by 8.

$$E = E_0 \sin (kx - \omega t + \phi)$$

$$B = B_0 \sin(kx - \omega t + \phi)$$

Find correct relation.

$$(1) \frac{\omega}{k} = \frac{E_0}{B_0}$$

$$(2) \frac{k}{\omega} = \frac{E_0}{B_0}$$

(3)
$$\frac{\omega}{k} = B_0$$

$$(4) \omega k = E_0 B_0$$

Ans. (1)

Sol.
$$E_0 = B_0 C$$

Speed of light
$$C = \frac{\omega}{k}$$

$$\frac{E_0}{B_0} = \frac{\omega}{k}$$

If all the particles have same kinetic energy, The relation between the wavelengths of alpha 9. particle, electron and proton is:

(1)
$$\lambda_{\rho} > \lambda_{\alpha} > \lambda_{e}$$

(2)
$$\lambda_e > \lambda_\rho > \lambda_\alpha$$

(3)
$$\lambda_{\alpha} > \lambda_{e} > \lambda_{\rho}$$

(4)
$$\lambda_{\alpha} > \lambda_{\rho} > \lambda_{e}$$

Ans. (2)

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mk}}$$

$$\therefore \qquad \mu_e < m_\rho < m_\alpha$$

$$\mu_e < m_\rho < m_\alpha \qquad \qquad \therefore \qquad \lambda_e > \lambda_\rho > \lambda_\alpha$$

A rod of length ℓ is rotating in a uniform magnetic field as shown in figure. Then induced e.m.f **10.** across its ends is.

- (1) $B\omega \ell^2$
- $(2) \frac{B\omega^{2}}{2}$
- $(4) \frac{B\omega^{2}}{8}$

Ans. (2)

Sol.

11. Find reading of voltmeter?

Ans. **40**

Sol.

$$\frac{1}{R_{12}} = \frac{1}{100} + \frac{1}{400} = \frac{5}{400}$$

$$R_{12} = 80$$

$$V_{12} = 90 \times \frac{800}{(80 + 100)} = \frac{90 \times 80}{180} = 40V$$

- When a parallel beam of white light incident on convex lens split into different colours the **12.** phenomenon is called.
 - (1) Spherical aberration

(2) Chromatic aberration

(3) Polarization

(4) Diffraction

Ans. (2)

13. If frequency can be represented as $f = (radius)^a (density)^b (surface tension)^c$. Find a, b, c?

(1)
$$a = \frac{3}{2}$$
, $b = \frac{1}{2}$, $c = \frac{-1}{2}$

(2)
$$a = \frac{-3}{2}$$
, $b = \frac{-1}{2}$, $c = \frac{1}{2}$

(3)
$$a = \frac{-3}{2}$$
, $b = \frac{1}{2}$, $c = \frac{-1}{2}$

(4)
$$a = \frac{1}{2}$$
, $b = \frac{3}{2}$, $c = \frac{-1}{2}$

Ans.

Sol.
$$M^0L^0T^{-1} = L^a (ML^{-3})^b (MT^{-2})^c$$

 $M^0L^0T^{-1} = L^a M^bL^{-3b} M^cT^{-2c}$

Equivalent the power of MLT

$$M \Rightarrow 0 = b + c$$

 $L \Rightarrow 0 = a - 3b$

$$T \Rightarrow -1 = -2c$$

$$a = \frac{-3}{2}$$
, $b = \frac{-1}{2}$, $c = \frac{1}{2}$

A dielectric of 3.5 is inserted and the distance between the plates is doubled. Find new 14. eashing capacitance, if original capacitance was 7.5 pF?

Ans. 13.33

Sol.
$$C' = \frac{K\epsilon_0 A'}{d'} = \frac{7}{2} \times \frac{\epsilon_0 A}{2d} = \frac{7}{4} \times \frac{15}{2} = \frac{105}{8} pF$$

Statement-I: If we move upward and downward from the surface of earth surface acceleration due **15.** to gravity decreases in both upward and downward direction.

Statement-II: Acceleration due to gravity changes by same amount when we go up to height h and depth d when h = d.

Choose the correct options based on above statements.

- (1) Both statement-I and Statement-II are true.
- (2) Statement-I is true and Statement-II is false.
- (3) Statement-I is false and Statement-II are true.
- (4) Both statement-I and Statement-II are false.

Ans. (2)

16. A particle follows the above V - t graph, then the ratio of distance travelled and displacement of particle is given by :

- (1)3:1
- (2) 1:3
- (3) 2 : 3
- (4) 3 : 2

Ans. (1)

Sol. Distance = 16 + 8 + 16 + 8 = 48 m

Displacement =
$$16 + 16 - 8 - 8 = 16 \text{ m}$$

Ratio =
$$\frac{48}{16}$$
 = 3

17. For an Isothermal expansion of an ideal gas in a closed container at different temperature P-V graph is given. Then choose the correct graph where $T_1 > T_2 > T_3 > T_4$.

Ans. (3)

Sol. PV = C; C = constant

If temperature will increase then C will increase.

$$P = \frac{C}{V} \rightarrow rectangular hyperbola$$

A block of mass 200 gm is connected with a spring of spring constant 12.5 N/m. It is rotating in **18.** horizontal plane with angular speed 5 rad/sec. Find ratio of elongation in spring and natural length?

$$(1) \frac{2}{3}$$

 $(2) \frac{3}{2}$

 $(3) \frac{1}{3}$

 $(4) \frac{1}{2}$

Ans. (1)

$$kx = m\omega^2 (\ell + x)$$

$$(k - m\omega^2)x = m\omega^2 \ell$$

$$\frac{x}{r} = \frac{m\omega^{2}}{k - m\omega^{2}} = \frac{0.2 \times 25}{\frac{25}{2} - 0.2 \times 25}$$

$$\frac{x}{x} = \frac{2}{3}$$

 $\frac{x}{r} = \frac{2}{3}$ A wire is extended by 20% keeping its volume is constant. Find the percentage change in its resistance. constant. 19.

Ans. 44

Sol.
$$R = \frac{\rho \ell}{A} = \frac{\rho \ell}{V/\ell} = \frac{\rho \ell^2}{V} \propto \ell^2$$

$$\ell \rightarrow 1.2 \ \ell$$

$$\frac{\Delta R}{R} = \frac{1.44R - R}{R} \times 100\% = 44\%$$

- **20.** S-1 \rightarrow Steel is used in construction of a bridge and house.
 - $S-2 \rightarrow$ Modulus of elasticity of steel is high.
 - (1) S-1 & S-2 both are true

- (2) S-1 is true & S-2 is false
- (3) S-1 is false & S-2 is true
- (4) S-1 & S-2 both are false

Ans. (1)

- 21. A lens of refractive index 1.5 and focal length 18 cm in air is submerged in water change in focal length of lens is $(\mu_w = \frac{4}{3})$
- Ans. 54

Sol.
$$\frac{1}{18} = (1.5 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
(1

$$\frac{1}{f} = \left(\frac{1.5}{\frac{4}{3}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \qquad \dots (2)$$

$$\frac{\text{Eq(1)}}{\text{Eq(2)}}$$
: $\frac{\text{f}}{18} = \frac{1.5 - 1}{\frac{9}{8} - 1} = \frac{1/2}{1/8}$

$$f = 18 \times 4 = 72 \text{ cm}$$

change in focal length = 72 - 18 = 54 cm

22. Two semicircular arcs of linear charge density λ are placed as shown in figure. Find the potential at the point O.

- (1) $\frac{2\lambda}{\varepsilon_0}$
- (2) $\frac{\lambda}{\varepsilon_0}$
- $(3) \frac{\lambda}{2\varepsilon_0}$
- (4) $\frac{3\lambda}{\varepsilon_0}$

Ans. (3)

$$\textbf{Sol.} \quad \frac{K[\lambda(\pi R_1)]}{R_1} + \frac{K\lambda(\pi R_2)}{R_2} = 2k\lambda\pi = \frac{\lambda}{2\epsilon_0}$$

- 23. Ratio of molar heat capacity at constant pressure and at constant volume for monoatomic and diatomic gas is?
 - (1) 25 : 21
- (2) 21 : 25
- (3) 16:25
- (4) 25:16

Ans. (1)

Sol.
$$\frac{\frac{5}{3}}{\frac{7}{5}} \Rightarrow \frac{5}{3} \times \frac{5}{7} = \frac{25}{21}$$

Current through the battery after long time is:

3 Ans

After long time

$$R_{eq} = \frac{12}{3} = 4\Omega$$

$$I = \frac{V}{R_{eq.}} = \frac{12}{4} = 3A$$

25. A solid cylinder of radius R and length L have moment of inertia I_1 and a second solid cylinder of radius $\frac{R}{2}$ and length $\frac{L}{2}$ cut from it have moment of inertia I_2 . Find $\frac{I_1}{I_2}$.

(1) 64

(2)32

(3) 128

(4)256

The ashing Potential

Ans. (2)

Sol.
$$I_1 = M \left(\frac{R^2}{4} + \frac{L^2}{12} \right)$$

$$I_1 = \frac{M}{4} \left(R^2 + \frac{L^2}{3} \right)$$

$$M = \rho \pi R^2 L$$

$$M_2=\rho\pi\frac{R^2}{8}L^-=\frac{M}{8}$$

$$I_2 = \frac{M}{8} \times \frac{1}{4} \left[\frac{R^2}{4} + \frac{L^2}{12} \right]$$

$$=\frac{M}{128}\left(R^2+\frac{L^2}{3}\right)$$

CHEMISTRY

1. Sum of π -bonds in one molecule each of Peroxydisulphuric acid & Pyrosulphuric acid is:

Ans. 8

(Chemical Bonding)

Sol. Peroxydisulphuric acid

$$\pi$$
-bonds = 4

Pyrosulphuric acid

$$\pi$$
-bonds = 4

$$Sum = 4 + 4 = 8$$

1 mole of ideal gas undergoes above cyclic process.

Value of work done (in J) is : $(\ln 2 = 0.7)$

Ans. 608

(Thermodynamics)

Sol.
$$W = W_{AB} + W_{BC} + W_{CA}$$

= $0 - 1(20 - 40) + \left[-20 \pm n \left(\frac{40}{20} \right) \right]$

$$= 20 - 20 \ \ell n2$$

$$=20(1-0.7)$$

$$= 6 L-atm$$

$$= 6 \times 101.3$$

$$= 607.8 J \approx 608 J$$

3.
$$H$$
C-COOH (Lactic acid) has $K_a = 10^{-5}$
OH

pH of a solution containing 0.005M anionic form of above acid $\begin{pmatrix} CH_3 \\ H-C-COO^- \end{pmatrix}$ is :

(Nearest integer)

Ans.

(Ionic Equilibrium)

Salt of WA & SB Sol.

$$pH = \frac{1}{2} (pK_w + pK_a + \log C)$$
$$= \frac{1}{2} (14 + 5 - 3 + \log 5)$$
$$= 8.35 \approx 8$$

w isotherm of C Which of the following statements are correct for given Andrew isotherm of CO2 4.

- Formation of liquid starts at point C.
- (ii) From point B to C amount of liquid decreases.
- (iii) Formation of liquid starts from point B.
- (iv) At points B & C, both liquid & vapour coexist.
- (1) i, ii
- (2) ii, iii
- (3) iii, iv
- (4) i, iv

(3) Ans.

(Real gas)

Sol. (i) Formation of liquid ends at point C.

(ii) From B to C, amount of liquid increases.

5. Which of the following are concentration terms.

Mole, Mass%, Molality, Molarity, Mole fraction, ppm.

Ans. 5 (Mole Concept)

Sol. All other than mole.

6. Unipositive ion of an atom containing 55 protons contains how many s electrons?

Ans. 10 (Atomic Structure)

Sol. $_{55}\text{Cs}^+$: $1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^64\text{s}^23\text{d}^{10}4\text{p}^65\text{s}^24\text{d}^{10}5\text{p}^6$ Number of s-electrons = 2 + 2 + 2 + 2 + 2 = 10

7. $[Co(NH_3)_6]^{3+}$ is _____ hybridised and _____.

(1) d²sp³, Diamagnetic

(2) d²sp³, Paramagnetic

(3) sp³d², Diamagnetic

(4) sp³d², Paramagnetic

Ans. 1 (Coordination Compounds)

Sol. $Co^{3+}(3d^6) + SFL(CN = 6)$ $\Rightarrow t_{2g}^{222}e_g^{00} \Rightarrow d^2sp^3$ and Diamagnetic

8. The metal which is extracted by oxidation and subsequent reduction from its ore is:

- (1) Au
- (2) Cu
- (3) Fe
- (4) Al

Ans. (1)

(Metallurgy)

Sol. Au $\xrightarrow{\text{NaCN}}$ [Au(CN)₂] $\xrightarrow{\text{Zn}}$ Au \downarrow (Reduction)

- **9.** How many statement/statements is/are correct for physisorption?
 - (i) physisorption is highly specific in nature.
 - (ii) physisorption is monolayer in nature.
 - (iii) physisorption has zero activation energy
 - (iv) physisorption decreases with increasing temperature.
 - (v) physisorption has high $\Delta H_{Adsorption}$

Ans. 2 (iii, iv)

(Surface Chemistry)

Sol. (i) physisorption is less specific in nature.

- (ii) physisorption is multimolecular layer
- (iii) physisorption has low $\Delta H_{Adsorption}$

An ideal solution containing $X_A = 0.7$ has VP = 350 torr **10.**

Another ideal solution containing $X_B = 0.2$ has VP = 410 torr

$$P_A^o = ?$$
 (nearest integer)

314 Ans.

(Solution & Colligative Properties)

 $0.7 P_A^o + 0.3 P_B^o = 350$ Sol.

&
$$0.2 P_A^o + 0.8 P_B^o = 410$$

$$\therefore P_A^o = 314 \text{ torr}$$

H₂O₂ behave like reducing agent in which of the following reactions: 11.

(1)
$$Fe^{+2} + H_2O_2 \longrightarrow Fe^{+3} + H_2O$$

(2)
$$H_2S + H_2O_2 \longrightarrow SO_4^{2-} + H_2O$$

(3)
$$HOCl + H_2O_2 \longrightarrow Cl^- + 2H_2O + O_2$$

$$(4) Mn^{+2} + H_2O_2 \longrightarrow MnO_2 + H_2O$$

Ans. **(3)** (p-Block (15-16 family))

H₂O₂ reduces HOCl to Cl⁻ and itself gets oxidised to O₂. Sol.

AB₃(g) dissociates into gaseous products with following data: 12.

	20			
t _{1/2}	4 sec.	2 sec.	1 sec.	0.5 sec.
P ₀ (AB ₃)	50 torr	100 torr	200 torr	400 torr
Order of rea	action is			49,
2			/ 1	000
$t_{1/2} \propto \frac{1}{P} \Rightarrow$	II order		1 JA	

Ans.

(Chemical Kinetics)

Sol.
$$t_{1/2} \propto \frac{1}{P_0} \Rightarrow II \text{ order}$$

13. Number of unpaired electron in highest occupied molecular orbital of following species is:

$$N_2 \qquad N_2^{\oplus} \qquad O_2 \qquad O_2^{\oplus}$$

- 2 (1) 0 1 1
- 1 2 (2) 1 0
- (3) 2 2 0 2
- (4) 1 1 1 0

(Chemical Bonding) Ans. **(1)**

Sol.
$$N_2 \to \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\left[\pi 2p_x^2 = \pi 2p_y^2\right]\sigma 2p_z^2$

$$N_2^{\oplus} \to \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\left[\pi 2p_x^2 = \pi 2p_y^2\right] \sigma 2p_z^1$

$$O_2 \to \sigma 1s^2$$
, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p_z^2$, $\left[\pi 2p_x^2 = \pi 2p_y^2\right]$ $\left[\pi^* 2p_x^1 = \pi^* 2p_y^1\right]$

$$O_{2}^{\oplus} \rightarrow \sigma 1s^{2}, \ \sigma^{*}1s^{2}, \ \sigma 2s^{2}, \ \sigma^{*}2s^{2}, \ \sigma 2p_{z}^{2}, \left[\pi 2p_{x}^{2} = \pi 2p_{y}^{2}\right] \underbrace{\left[\pi^{*}2p_{x}^{1} = \pi^{*}2p_{y}^{0}\right]}_{HOMO}$$

- Which is good oxidising agent? 14.
 - (i) Sm^{+2}
- (ii) Ce^{+2}
- (iii) Ce⁺⁴
- (iv) Tb^{+4}

- (1) Sm⁺² only
- (2) Ce^{4+} , Tb^{4+}
- (3) Ce⁺⁴ only
- $(4) \text{ Ce}^{2+} \text{ only}$

Ans. **(2)** (f-Block)

- Ce⁴⁺ & Tb⁴⁺ are good oxidising agents (both get reduced to +3). Sol.
- K₂Cr₂O₇ paper acidified with dil. H₂SO₄ turns green when exposed to : 15.
 - (1) SO₂
- (2) SO₃
- (3) CO₂
- $(4) H_2S$

Ans. **(1)** (d-Block)

Sol.
$$SO_2 \xrightarrow{K_2Cr_2O_7} Cr^{3+} + SO_4^2$$

- α-particle, proton & electron have same kinetic energy. Select correct order of their de-Broglie **16.** wavelength. wavelength. $(1) \lambda_e > \lambda_p > \lambda_\alpha \qquad (2) \lambda_\alpha > \lambda_e > \lambda_p \qquad (3) \lambda_p = \lambda_\alpha = \lambda_e \qquad (4) \lambda_p > \lambda_e > \lambda_\alpha$

Ans.

(Atomic Structure)

Sol.
$$\lambda = \frac{h}{m \cdot v} = \frac{h}{\sqrt{2 \cdot m \cdot K.E.}}$$

as K.E. is same
$$\Rightarrow \lambda \propto \frac{1}{\sqrt{m}}$$

mass of electron = 9.1×10^{-31} kg

mass of proton = 1.67×10^{-27} kg mass of α -particle = 6.68×10^{-27} kg

 $\Rightarrow \lambda_e > \lambda_p > \lambda_\alpha$

17. Which of the following is correct graph for conductometric titration between benzoic acid & NaOH?

Ans. (2)

(Electrochemistry)

18. $S_1 : Be^{+2}$ has higher SRP than other alkaline earth metals.

 S_2 : Be⁺² has higher hydration energy and greater $\Delta_a H$ (atomisation enthalpy) than other alkaline earth metals.

(1) Both $S_1 & S_2$ are true

(2) S_1 is true; S_2 is false

(3) S₁ is false; S₂ is true

(4) Both $S_1 \& S_2$ are false

Ans. (1) (s-Block)

Sol. Be has least –ve SRP value because of high $\Delta_a H$ (atomisation enthalpy), inspite of maximum hydration energy.

$$Cl$$
 $+$ Cl (d/ℓ)

20. Which of the following is most easily deprotonated?

- (1) a
- (2) b

(b) CH₃O

- (3) c
- (4) d

Ans. (3)

[GOC-2]

21. (1) BH₃-THF (2) H₂O₂/OH (1) Hg(OAc)₂, H₂O (2) NaBH₄ B

A & B are respectively

$$(1)$$
 OH

(2) OH , OH

$$(4) \qquad OH \qquad OH$$

Ans. (1)

[Hydrocarbons]

- 22. Average human being requires nearly ____ times more air than the food
 - (1) 12–15
- (2) 100
- (3) 40-50
- (4)75

Ans. (1)

[Environmental]

23. Statement-I: Aniline and other aryl amines are usually colourless

Statement-II: Aniline and other arylamines get coloured on storage due to atmospheric oxidation

- (1) Both Statement-I and Statement-II are correct.
- (2) Both Statement-I and Statement-II are incorrect.
- (3) Statement-I is correct but Statement-II is incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.

Ans. (1)

[Aromatic compound]

Sol. Both are correct

24. Assertion (A): Benzene is more stable than hypothetical cyclohexatriene

Reason (R): The delocalised π -electrons cloud is attracted more strongly by the nuclei of the carbon atoms than the electron cloud localised between two carbon atoms.

- (1) Both (A) and (R) are true but (R) is not the true explanation of (A)
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true and (R) is the true explanation of (A)

Ans. (4) [Hydrocarbon]

25. Match the column

- (P) Antifertility drugs
- (A) Norethindrone
- (Q) Anti histamines
- (B) Seldane
- (R) Tranquilizers
- (C) Meprobamate
- (S) Antibiotics
- (D) Penicillin

(1)
$$P \rightarrow (A)$$
, $Q \rightarrow (B)$, $R \rightarrow (C)$, $S \rightarrow (D)$

$$(2) P \rightarrow (A), Q \rightarrow (C), R \rightarrow (B), S \rightarrow (D)$$

$$(3) P \rightarrow (D), Q \rightarrow (C), R \rightarrow (B), S \rightarrow (A)$$

$$(4) P \rightarrow (A), Q \rightarrow (D), R \rightarrow (B), S \rightarrow (C)$$

Ans. (1)

[Chemistry in every day life]

26. How many tripeptides can be formed from the amino acid valine and proline?

Ans. 8

[Biomolecules]

MATHEMATICS

SECTION-A

- Find number of numbers greater then 7000 which can be formed by using the digits 3, 5, 6, 7 and 1. 8. Repetition of digits is not allowed.
 - (1)68
- (2) 168
- (3) 120
- (4) 172

(2) Ans.

Sol. Number of digit number

$$\boxed{7} \qquad \boxed{4 \times 3 \times 2 = 24}$$

$$\boxed{8} \qquad \boxed{4 \times 3 \times 2 = 24}$$

Number of 5 digit number

 \therefore Total number of numbers = 24 + 24 + 120 = 168

- $\frac{1}{x^2}$ dx is equal to-2.
 - $(1) 2\pi$

Ans.

- Sol.
- If system of equation x + 2y = 6, x 3y + 72z = 0, $x + y + \lambda z = \mu + 9$ has infinite solution then **3.** ordered pair (λ, μ) is

- $(3)\left(\frac{-21}{5}, \frac{72}{5}\right) \qquad (4)\left(\frac{-21}{5}, \frac{-72}{5}\right)$

Ans.

 $\begin{vmatrix} 1 & 2 & 0 \\ 1 & -3 & 72 \\ 1 & 1 & \lambda \end{vmatrix} = 0 \qquad \Rightarrow \lambda = \frac{72}{5}$ Sol.

$$\Delta_{x} = \begin{vmatrix} 6 & 2 & 0 \\ 0 & -3 & 72 \\ \mu + 9 & 1 & \lambda \end{vmatrix} = 0$$

solving
$$\mu = -\frac{21}{5}$$

Consider a 3×3 matrix P such that $|adj (adj (adj P))| = (12)^4$, then find $|P^{-1}|$ adj P

(1)
$$2\sqrt{3}$$

(2)
$$\sqrt{3}$$

(3)
$$\frac{\sqrt{3}}{2}$$

$$(4) \frac{1}{\sqrt{3}}$$

Ans. (1)

Sol.
$$|P|^{2^3} = 12^4 \Rightarrow |P|^8 = 12^4 \Rightarrow |P| = 12^{\frac{1}{2}} = 2\sqrt{3}$$

$$|P^{-1} \text{ adj } P| = |P^{-1}| |\text{adj } P| = \frac{1}{|P|} \times |P|^2 = |P| = 2\sqrt{3}$$

5. Let
$$f(x) = \frac{2^{2x}}{2^{2x} + 2}$$
, then $\sum_{r=1}^{2022} f\left(\frac{r}{2023}\right)$ is

(2)
$$\frac{2023}{2}$$

$$(4) \frac{2021}{2}$$

Ans. (3)

Sol.
$$f(x) = \frac{4^x}{4^x + 2} \implies f(x) + f(1 - x) = 1$$

(3)

$$f(x) = \frac{4^{x}}{4^{x} + 2} \implies f(x) + f(1 - x) = 1$$

$$\therefore \sum_{r=1}^{2022} f\left(\frac{r}{2023}\right) = \left[f\left(\frac{1}{2023}\right) + f\left(\frac{2022}{2023}\right)\right] + \left[f\left(\frac{2}{2023}\right) + f\left(\frac{2021}{2023}\right)\right] + \dots$$

$$\dots + \left[f\left(\frac{1011}{2023}\right) + f\left(\frac{1012}{2023}\right)\right] = 1011$$
If $\frac{dy}{dx} = \frac{3y^{2} - x^{2}}{3xy}$, $y(1) = 1$, find $6y^{2}(e)$
(1) e^{2} (2) $\frac{e^{2}}{2}$ (3) $\frac{e^{2}}{3}$ (4) $3e^{2}$
(3)
$$y = mx \implies \frac{dy}{dx} = m + x \frac{dm}{dx}$$

.....+
$$\left[f\left(\frac{1011}{2023}\right) + f\left(\frac{1012}{2023}\right) \right] = 1011$$

6. If
$$\frac{dy}{dx} = \frac{3y^2 - x^2}{3xy}$$
, $y(1) = 1$, find $6y^2(e)$

$$(1) e^2$$

$$(2) \frac{e^2}{2}$$

(3)
$$\frac{e^2}{3}$$

$$(4) 3e^2$$

Ans.

Sol.
$$y = mx \Rightarrow \frac{dy}{dx} = m + x \frac{dm}{dx}$$

$$m + x \frac{dm}{dx} = \frac{3m^2x^2 - x^2}{3mx^2} = \frac{3m^2 - 1}{3m}$$

$$x \frac{dm}{dx} = \frac{3m^2 - 1 - 3m^2}{3m}$$

$$3m dm = -\frac{dx}{x}$$

$$3 \frac{m^2}{2} = -\ell n x + c$$

$$\frac{3}{2} \frac{y^2}{x^2} = -\ell n x + c$$

Given x = 1, y = 1

$$\Rightarrow$$
 $c = \frac{3}{2}$

$$\frac{3}{2} \frac{y^2}{x^2} = -\ell n x + \frac{3}{2}$$

At
$$x = e$$
, $\frac{3}{2} \frac{y^2}{e^2} = -1 + \frac{3}{2} = \frac{1}{2}$

$$3y^2 = e^2$$

$$y^2(e) = \frac{e^2}{3}$$

$$\therefore 6y^2(e) = 2e^2$$

$$(3)$$
 9

$$(4)\ 10$$

Ans. **(1)**

Sol.
$$\frac{\left(\frac{n(n+1)}{2}\right)^2}{2 \cdot \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}} = \frac{9}{5}$$

$$\Rightarrow \frac{\frac{n(n+1)}{4}}{\frac{2n+1}{3} + \frac{1}{2}} = \frac{9}{5}$$

$$\Rightarrow \frac{\frac{3}{2}n(n+1)}{4n+2+3} = \frac{9}{5}$$

$$\Rightarrow \frac{15}{2}(n^2 + n) = 9(4n + 5)$$

$$5n^2 + 5n = 24n + 30$$

$$5n^2 - 19n - 30 = 0$$

$$5n^2 - 25n + 6n - 30 = 0$$

$$(5n+6)(n-5) = 0 \Rightarrow n = 5$$

8.
$$\left(\frac{1+\cos\frac{2\pi}{9}+i\sin\frac{2\pi}{9}}{1+\cos\frac{2\pi}{9}-i\sin\frac{2\pi}{9}}\right)^3 \text{ is equal to}$$

(1)
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 (2) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (3) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (4) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$

(2)
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

(3)
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

$$(4) \ \frac{1}{2} + \frac{\sqrt{3}}{2} i$$

Ans.

Sol.
$$\left(\frac{2\cos^2\frac{\pi}{9} + 2i\cos\frac{\pi}{9} \cdot \sin\frac{\pi}{9}}{2\cos^2\frac{\pi}{9} - 2i\cos\frac{\pi}{9} \cdot \sin\frac{\pi}{9}}\right)^3 = e^{i\frac{2\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

9. If
$$f(x) = x^3 + x^2 f'(1) + x f''(2) - f'''(3)$$
. Then the relation between $f'(1)$, $f''(2)$, $f'''(3)$

$$(1) f(0) = f'(1) + 3f''(2) + f'''(3)$$

(2)
$$f(0) = 2f'(1) + 3f''(2) - f'''(3)$$

(3)
$$f(0) = 2f'(1) - f''(2) + f'''(3)$$

$$(4) f(0) = 3f'(1) - f''(2) - 3f'''(3)$$

Ans.

Sol.
$$f'(x) = 3x^2 + 2xf'(1) + f''(2) \Rightarrow f'(1) + f''(2) + 3 = 0$$

$$f''(x) = 6x + 2f'(1) \Rightarrow 2f'(1) - f''(2) + 12 = 0$$

$$f'''(x) = 6$$

$$f'(1) = -5$$

$$f''(2) = 2$$

$$f'''(3) = 6$$

$$f(0) = -6$$

10.
$$\sim (p \land (p \rightarrow \sim q))$$
 is equivalent to-

$$(1) p \rightarrow q$$

(2)
$$p \wedge q$$

$$(3) p \vee 0$$

$$(4) p \leftrightarrow c$$

(1) Ans.

Sol.
$$\sim p \lor (\sim (p \rightarrow \sim q))$$

$${\sim}p \lor (p \land q) = p \to q$$

11. The sum of coefficients of first 3 terms in the expansion of
$$\left(x - \frac{3}{x^2}\right)^n$$
 is 376. Find the coefficient

of x^4 .

Ans. (3)

Sol.
$${}^{n}C_{0} - {}^{n}C_{1}(3) + {}^{n}C_{2}(9) = 376$$

$$1 - 3n + \frac{9n(n-1)}{2} = 376$$

$$2 - 6n + 9n^2 - 9n = 752$$

$$9n^2 - 15n - 750 = 0$$

$$3n^2 - 5n - 250 = 0$$

$$\Rightarrow$$
 n = 10

$$T_{r+1} = {}^{10}C_r(x)^{10-r} \left(\frac{-3}{x^2}\right)^r$$

$$T_3 = 405$$

If $\lim_{x \to a} [x-5] - [2x+2] = 0$, (where [] denotes greatest integer function) then 'a' belongs to **12.**

$$(1)\left(-\frac{15}{2}, -\frac{13}{2}\right) \qquad (2)\left[-\frac{15}{2}, -\frac{13}{2}\right) \qquad (3)\left(-\frac{15}{2}, -\frac{13}{2}\right] \qquad (4)\left[-\frac{15}{2}, -\frac{13}{2}\right]$$

(2)
$$\left[-\frac{15}{2}, -\frac{13}{2} \right]$$

$$(3)\left(-\frac{15}{2}, -\frac{13}{2}\right)$$

$$(4) \left[-\frac{15}{2}, -\frac{13}{2} \right]$$

Ans. **(1)**

f(x) is continuous $\forall x \in R - \left\{n + \frac{1}{2}\right\}, n \in I$ Sol.

$$\lim_{x \to a} f(x) = f(a)$$

Hence
$$[a-5] - [2a+2] = 0$$

$$\Rightarrow$$
 [a] – [2a] = 7

$$a \in I a = -7$$

$$a \notin I a = I + f$$

$$-I - [2f] = 7$$

Case-I :
$$f \in \left(0, \frac{1}{2}\right)$$

I = -8

$$f \in \left(\frac{1}{2}, 1\right)$$

$$-I = 7$$

$$I = -7$$

$$a \in (-7.5, -6.5)$$

At
$$a = n + \frac{1}{2}$$
, $n \in I$

$$\Rightarrow$$
 a \in (-7.5, -7)

$$LHL \neq RHL$$

$$\therefore$$
 a \in (-7.5, -6.5)

SECTION-B

Let a_1 , a_2 ,, a_6 are in Arithmetic Progression where $a_1 + a_3 = 10$. If mean of a_1 , a_2 ,, a_6 is $\frac{19}{2}$, **13.** then find the value of $8\sigma^2$ (where σ^2 denotes the variance of given numbers)

Ans. 210

Sol.
$$a_1, a_2,, a_6$$

$$mean = \frac{19}{2}$$

variance =
$$\sigma^2$$

$$a_1 + a_3 = 10$$

$$8\sigma^2 = ?$$

$$\frac{a_1 + a_2 + a_3 + a_4 + a_5 + a_6}{6} = \frac{19}{2}$$

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 57$$

$$a_2 + a_4 + a_5 + a_6 = 47$$

$$\sigma^2 = \frac{1}{6} \sum x_i^2 - \left(\frac{19}{2}\right)^2$$

$$a_1 + d + a_1 + 3d + a_1 + 4d + a_1 + 5d = 47$$

$$4a_1 + 13d = 47$$

$$a_1 + a_1 + 2d = 10$$

$$a_1 + d = 5$$

$$4a_1 + 13(5 - a_1) = 47$$

$$a_1 = 2, d = 3$$

$$\sigma^2 = \frac{1}{6} (4 + 25 + 64 + 121 + 196 + 289) - \left(\frac{19}{2}\right)^2$$

$$=\frac{1}{6}\times699-\frac{361}{4}=\frac{699}{6}-\frac{361}{4}$$

$$\therefore 8\sigma^2 = 210$$

- 2. If urn 1 contain 7 red & 3 green balls, urn2 contain 3 red and 2 green balls, urn 3 contain λ red & 2 green balls. One urn is selected at random & one ball is drawn. If probability of getting red ball is 0.6 then find value of λ .
- Ans. **(2)**

Ans. (2)
Sol.
$$\frac{1}{3} \left[\frac{7}{10} + \frac{3}{5} + \frac{\lambda}{\lambda + 2} \right] = 0.6 \Rightarrow \cdot 7 + \cdot 6 + \frac{\lambda}{\lambda + 2} = 1.8 \Rightarrow \frac{\lambda}{\lambda + 2} = \cdot 5 = \frac{1}{2} \Rightarrow 2\lambda = \lambda + 2$$

- Relation R on the set $P = \{a, b, c, d\}$ is given by $R = \{(a, b), (b, c), (b, d)\}$. Find the minimum **3.** number of ordered pairs to be added in R so that it is an equivalence relation.
- Ans.

Sol.
$$R = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (b, c), (c, b), (b, d), (d, b), (a, c), (c, a), (c, d), (d, c), (a, d), (d, a)\}$$

- minimum no. of ordered pairs = 13
- Consider a matrix of order 5×5 which can be formed using numbers 0 or 1. How many such 4. matrices can be formed in which sum of elements in each column & each row is 1.
- Ans.

I row has 5 options to place '1'

II row has 4 options

III row has 3 options

IV row has 2 options

V row has 1 options

so total matrix = $5 \times 4 \times 3 \times 2 \times 1 = 120$

5. Consider a function f(x) such that $f(x + y) = f(x) \cdot f(y) & f(1) = 3$. If $\sum_{k=1}^{n} f(k) = 3279$. Find 'n'.

Ans. 7

Sol. Put
$$x = y = 1$$
, $f(2) = 3^2$
Put $x = 2$, $y = 1$, $f(3) = 3^3$
and so on
 $\Rightarrow f(x) = 3^x$; $x \in N$

$$\sum_{r=1}^{n} f(r) = 3 + 3^{2} + \dots + 3^{n} = 3279$$

 \Rightarrow n = 7

Consider a triangle formed by lines AC : x - y = 3, AB : x + 2y = 0 & BC : x + py = 21a. If centroid is (2, a), find $\ell(BC)^2$.

Ans. 17

Sol.
$$\frac{-2\alpha + 2 + \beta + 3}{3} = 2 \Rightarrow \beta = 1 + 2\alpha$$
 so C $(2\alpha + 4, 1 + 2\alpha)$

$$\frac{\alpha-1+\beta}{3}=a\Rightarrow\alpha+\beta=3a+1\Rightarrow\alpha+2\alpha+1=3\alpha+1=3a+1\Rightarrow\alpha=a\;,\;\beta=1+2a$$

B & C lies on x + py = 21a

$$\Rightarrow$$
 $-2\alpha + p\alpha = 21\alpha$ &

$$2\alpha + 4 + p(1 + 2\alpha) = 21a$$

also
$$-2a + pa = 21a$$

$$2a + 4 + p + 2pa = 21a$$

$$pa = 23a$$

$$2a + 4 + p + 46a = 21a$$

$$\Rightarrow$$
 a = 0 or p = 23 (rejected)

$$p + 4 = -27a$$

p = -4

BC =
$$\sqrt{16+1}$$
 = $\sqrt{17}$

so
$$(BC)^2 = 17$$