cm008 Exercises: Fix the Plots

In this worksheet, we'll be looking at some erroneous plots and fixing them.

I think you might not have these two packages installed:

```
install.packages("ggridges")
install.packages("scales")
knitr::opts_chunk$set(error = TRUE, warning = FALSE)
gapminder
```

```
## # A tibble: 1,704 x 6
##
                                                pop gdpPercap
      country
                  continent year lifeExp
##
      <fct>
                  <fct>
                             <int>
                                     <dbl>
                                              <int>
                                                        <dbl>
    1 Afghanistan Asia
                             1952
                                      28.8
                                            8425333
                                                         779.
##
##
    2 Afghanistan Asia
                             1957
                                      30.3
                                            9240934
                                                         821.
  3 Afghanistan Asia
                             1962
                                      32.0 10267083
                                                         853.
##
  4 Afghanistan Asia
                             1967
                                      34.0 11537966
                                                         836.
  5 Afghanistan Asia
                                      36.1 13079460
                                                         740.
##
                             1972
  6 Afghanistan Asia
                                      38.4 14880372
##
                             1977
                                                         786.
##
  7 Afghanistan Asia
                             1982
                                      39.9 12881816
                                                         978.
   8 Afghanistan Asia
                             1987
                                      40.8 13867957
                                                         852.
  9 Afghanistan Asia
                                      41.7 16317921
                                                         649.
                             1992
## 10 Afghanistan Asia
                             1997
                                      41.8 22227415
                                                         635.
## # ... with 1,694 more rows
```

Exercise 1: Overlapping Points

After fixing the error, fix the overlapping problem in the following plot (attribution: "R for data science").

Exercise 2: Line for each Country

Fix this plot so that it shows life expectancy over time for each country. Notice that ggplot2 ignores the grouping of a tibble!

```
ggplot(gapminder, aes(year, lifeExp, group = country)) +
geom_line()
```



```
gapminder %>%
  # group_by(country) %>%
  ggplot(aes(year, lifeExp, group = country, colour = country == "Rwanda")) +
  geom_line(alpha = 0.3) +
  scale_colour_discrete("", labels = c("Other", "Rwanda"))
```


Exercise 3: More gdpPercap vs lifeExp

3(a) Facets

- Change the x-axis text to be in "comma format" with scales::comma_format().
- Separate each continent into sub-panels.

```
ggplot(gapminder, aes(gdpPercap, lifeExp)) +
geom_point(alpha = 0.2) +
scale_x_log10(labels = scales::comma_format()) +
facet_wrap(~ continent, scales = "free_y")
```


3(b) Bubble Plot

- Put the plots in one row, and free up the axes.
- Make a bubble plot by making the size of the points proportional to population.
- Try adding a scale_size_area() layer too (could also try scale_radius()).
- Use shape=21 to distinguish between fill (interior) and colour (exterior).

```
gapminder %>%
  filter(continent != "Oceania") %>%
  ggplot(aes(gdpPercap, lifeExp, size = pop, colour = continent)) +
  facet_wrap(~ continent, nrow = 1) +
  geom_point(alpha = 0.1) +
  scale_x_log10(labels = scales::comma_format()) +
  scale_size_area()
```


A list of shapes can be found at the bottom of the scale_shape documentation.

3(c) Size "not working"

Instead of alpha transparency, suppose you're wanting to fix the overplotting issue by plotting small points. Why is this not working? Fix it.

Exercise 4: Walking caribou

The following mock data set marks the (x,y) position of a caribou at four time points.

• Fix the plot below so that it shows the path of the caribou.

- Add an arrow with arrow = arrow().
- Add the time label with geom_text().

Exercise 5: Life expectancies in Africa

5(a) Unhiding the data

Fix the plot so that you can actually see the data points. Be sure to solve the problem of overlapping text, without rotating the text.

```
gapminder %>%
  filter(continent == "Americas") %>%
  ggplot(aes(country, lifeExp)) +
  geom_point() +
  geom_boxplot()
```


5(b) Ridgeplots

We're starting with the same plot as above, but instead of the points + boxplot, try a ridge plot instead using ggridges::geom_density_ridges(), and adjust the bandwidth.

```
gapminder %>%
  filter(continent == "Americas") %>%
  ggplot(aes(country, lifeExp)) +
  geom_point() +
  geom_boxplot()
```


Exercise 6: Bar plot madness

6(a) Colour and stacking madness

- Change the following plot so that it shows *proportion* on the y-axis, not count.
- Change the x-axis so that it doesn't appear to be continuous.
- Put the bars for transmission side-by-side with their own colour.
- Capitalize the legend title.

```
mtcars %>%
  mutate(transmission = if_else(am == 0, "automatic", "manual")) %>%
  ggplot(aes(cyl)) +
  geom_bar(aes(colour = transmission))
```


6(b) Bar heights already calculated

Here's the number of people having a certain hair colour from a sample of 592 people:

```
(hair <- as_tibble(HairEyeColor) %>%
  count(Hair, wt = n))
```

```
## # A tibble: 4 x 2
## Hair n
```

Fix the following bar plot so that it shows these counts.

```
ggplot(hair, aes(Hair, n)) +
  geom_bar()
```

Error: stat_count() must not be used with a y aesthetic.

Exercise 7: Tiling

Here's the number of people having a certain hair and eye colour from a sample of 592 people:

```
(hair_eye <- as_tibble(HairEyeColor) %>%
  count(Hair, Eye, wt = n))
```

```
5 Blond Blue
                      94
##
    6 Blond Brown
                       7
    7 Blond Green
                      16
                      10
##
   8 Blond Hazel
##
    9 Brown Blue
                      84
## 10 Brown Brown
                     119
## 11 Brown Green
                      29
## 12 Brown Hazel
                      54
## 13 Red
            Blue
                      17
## 14 Red
                      26
            Brown
## 15 Red
            Green
                      14
## 16 Red
            Hazel
                      14
```

Fix the following plot so that it shows a filled-in square for each combination.

```
ggplot(hair_eye, aes(Hair, Eye)) +
geom_point(aes(colour = n))
```


By the way, geom_count() is like geom_bar(): it counts the number of overlapping points.

Additional take-home practice

If you'd like some practice, give these exercises a try

Exercise 1: Make a plot of year (x) vs lifeExp (y), with points coloured by continent. Then, to that same plot, fit a straight regression line to each continent, without the error bars. If you can, try piping the data frame into the ggplot() function.

Exercise 2: Repeat Exercise 1, but switch the *regression line* and *geom_point* layers. How is this plot different from that of Exercise 1?

Exercise 3: Omit the geom_point() layer from either of the above two plots (it doesn't matter which). Does the line still show up, even though the data aren't shown? Why or why not?

Exercise 4: Make a plot of year (x) vs lifeExp (y), facetted by continent. Then, fit a smoother through the data for each continent, without the error bars. Choose a span that you feel is appropriate.

Exercise 5: Plot the population over time (year) using lines, so that each country has its own line. Colour by gdpPercap. Add alpha transparency to your liking.

Exercise 6: Add points to the plot in Exercise 5.