Blatt1 - Einführung in die Logik

Viradia, Yash - Informatik - 5275038 - Gruppe 01 y.viradia@tu-braunschweig.de

30.04.2023

a) Laut Definition bei Folien 36,37

- = {A, ((¬r vp) 1 q)} U T ((¬r vp)) U T (q)
- = {A, ((-rvp) 19), (-rvp), } U T(-r) U T(p)
- = {A, ((arvp) 14), (arvp), q, ar, p} UT(2)
- = {A, ((-r vp) 1 q), (-r vp), q, -r, p, r}.

Teilwörter mit Farben: (Grüne Farbe)

7 ((Tr VP) A G)

7 ((-1r vp) 1 q)

7((7r VP) 19)

7 ((7xvp) 1 2)

i((7rvp)12)

7 ((7rvp) 12)

Syntax baum:

HA4

a) Mithilfe einem Beispiel in Hacher Notation bei Folie 53 lässt Sich diese Aunage berechnen.

$$\neg (p \rightarrow q) \vee r$$

1 + 0 0 1 0

Daher
$$\hat{\phi}(\gamma(\rho \rightarrow q) v r) = 1$$
.

b), c), d) lässt sich einfach mit der Wahrheitstabelle bestimmen.

b)
$$P \neq r \qquad q \longrightarrow (r \longrightarrow (p \lor q))$$
 $0 \qquad 0 \qquad 0 \qquad 1 \qquad 1 \qquad 0 \qquad 0$
 $0 \qquad 0 \qquad 1 \qquad 0 \qquad 0$
 $0 \qquad 1 \qquad 0 \qquad 1 \qquad 1 \qquad 1$
 $0 \qquad 1 \qquad 1 \qquad 1 \qquad 1$
 $1 \qquad 0 \qquad 0 \qquad 1 \qquad 1 \qquad 1$
 $1 \qquad 0 \qquad 1 \qquad 1 \qquad 1$
 $1 \qquad 1 \qquad 0 \qquad 1 \qquad 1$
 $1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$
 $1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$
 $1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$

o)
$$\{q \rightarrow p\} \models p \rightarrow q = (q \rightarrow p) \Rightarrow (p \rightarrow q)$$

$$p \quad q \quad (q \rightarrow p) \rightarrow (p \rightarrow q)$$

Die Aussage gitt nicht.

Betrachte
$$\phi(p) = I$$
 $\phi(q) = 0$ $Z.B.$

dann $\hat{\phi}(p \rightarrow q) = 0$ aber $\hat{\phi}(q \rightarrow p = I)$ $\hat{Z}.$

of) $\neg p \vee \neg q + \neg (p \wedge q) = \neg p \vee \neg q \iff \neg (p \wedge q)$ P \(q \quad \tau p \vert \neq \quad \neq \quad \neq \quad \neq (p \wedge q) \)

O \(0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \qu

Diese Annage ist gultig. .

4

HA5

Die Aussagen a) und b) können ab dan Folgende umformuliert werden.

- 1) Tist erfüllbar
- D' ist endlich erfüllbar, d.h. T' hat eine eindliche erfüllban Teilmende.

Wegen Kempaktheitischtz sind D und 2) äquivalent. Schließlich sind a) und b) auch äquivalent.

4

HA6

a) Dan beragt, dan vier Farben immer ausreichen, eine beliebige Landkaste in der enklidischen Ebene so einzufärben, dan keine zwei andrenzenden Länder die gleiche Farbe bekommen. Technisch betrachtet:

4-Farbbeit ist ein zusammenhängender Graph (EZ(V, E) Hier sind alle Knoten VEV was mit den Kanten EEE so verbunden, dans an jeder Seite der Kanten die Knoten unterschiedlich sind sozusagen keine gleiche Farbe besitzen.

Z.B.

V= {0,1,2,3} die Nummer sind Farben.

Unter gewissen Bedingungen gilt 4-Farbheit nur in der enktidischen Ebene. enktidischen Ebene.

Sei G5 = (V5, E) und G4 = (V4, E')

Der Graph & lässt auf die Kugelöberstäche Zeichnen, Sodan je zwei verschiedene Knoten durch eine Kante verbunden sind.

Dann 1st & nicht mehr planar. Dementsprechend ist die Embettung von Gy auf Kugeloberfläche nicht möglich.

c) $Cu_{ij} := \langle u_{ij} \rangle \in V \times J$ $J := \{0,1,2,3\}$

Dann gibt es Möglichkeit für verschiedene Formeln:

- 1) Jeder Knoten hat mindestens eine Farbe

 Minu := Cu, o V Cu, 1 V Cu, 2 V Cu, 3
- 2) Jeder Knoten hat sonst höchstens eine Farbe.

Hocy: Euro A Cu, I A Cu, 2 A Cuis Mickey (Cu, j -> 7 Cu, k)

Am Ende besitzt T Formelmenke eine erfüllende Belegiung.

b.h. ein gegebener planarer Graph ist genau dann

wit einer 4-Färbung, wenn T erfüllbar ist.

d) Für die Erfüllbarkeit von g ET nehmen wir eine endliche Menge U C V.

Durch die Knoten von U entsteht eine aufgespannte Teilgraph Wck.

Jetzt können wir die Formeln ven b) also Miny und Hocu 74 g ergänzen. Douwit ist die resultierunde Menge ge Ta immer noch endlich, d.h. nach dem 4-Färbensatz erfüllbar.

Das gilt auch für die Teilmengen von g-Durch Kompaktheitssatz ist dann Tauch erfüllbar.