Lecture 4 - Optimality conditions for	2
Un constrained optimization	
The maximum of multiple convex function convex.	75 are
Pefinifica of a Convex Set	
A set $S \subseteq \mathbb{R}^n$ is convex if, for any two point and any $\lambda \in [0,1]$; $\lambda \alpha_1 + (y-\lambda) x_2 \in S$	nts X,X£5
Geometric Interpretation:	
A set is convex if the line segment connection points in the set lies entirely within the set	ig any two
Y Y	
Convex Not convex	

Convex function! $f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda) f(x_2)$ The graph of a convex function always lies below the line segment connecting any two points on the graph