PRÁCTICA No. 4 Transistor Bipolar

Objetivos

- > Identificar las terminales de un transistor con el multímetro.
- > Analizar la polarización del BJT.
- > Analizar el transistor bipolar en conmutación.
- Analizar los puntos de saturación y corte del transistor bipolar.
- > Implementar alguna aplicación con el transistor en conmutación.

Material

- 1 Tablilla de experimentación (Proto Board)
- 4 Cables de 1.5 m Banana-Caimán
- 3 Transistores 2N2222
- 2 Transistores BC547C
- 2 Transistores BC557C
- 2 Transistores TIP41
- 2 Resistencia de 10Ω a 10 W
- 4 Resistencia de 100Ω
- 2 Resistencia de 180 Ω
- 2 Resistencia de 220 Ω

- 4 Resistencias 560Ω
- 4 Resistencias de 1 k Ω
- 2 Resistencias de $1.2 \text{ k}\Omega$
- 2 Resistencias de $4.7 \text{ k}\Omega$
- 2 Resistencia de $10 \text{ k}\Omega$
- 2 Resistencia de $22 \text{ k}\Omega$
- 2 LED Rojo
- 1 Motor de CD a 12v

Equipo

- 2 Multímetros digitales
- 1 Fuente de alimentación
- 1 Generador de Funciones

- 4 Puntas banana-caimán
- 4 Puntas caimán-caimán
- 2 Puntas BNC-Caimán para osciloscopio.
- 2 Juegos de Puntas de multímetro

Desarrollo Experimental

Valor de la Beta de los transistores

Medir mediante el multímetro en la opción de transistores (hfe pnp npn) la beta de cada uno de los transistores.

	2N2222	BC547C	BC557C
β			

Circuito por Divisor de Voltaje

Arme el siguiente circuito

Medir los voltajes y corrientes siguientes del circuito, posteriormente cambie el transistor 2N2222 por el BC547C y vuelva a medir los voltajes y corrientes del circuito.

	2N2222	BC547C
$V_{\rm B}$		
$V_{\rm C}$		
V _{CE}		
I_{B}		
$I_{\rm C}$		
$I_{\rm E}$		

Análisis del transistor en corte y saturación.

Armar el siguiente circuito

Medir los voltajes y corrientes del circuito colocando en el voltaje de entrada 5 V y posteriormente 0 V.

Voltaje de entrada (V _i)	5 V	0 V
V_{CE}		
I_{B}		
$I_{\mathbb{C}}$		

Cambiar la resistencia de $10~k\Omega$ por una de $22~k\Omega$ y medir los voltajes y corrientes del circuito colocando en el voltaje de entrada 5~V y posteriormente 0~V.

Voltaje de entrada (V _i)	5 V	0 V
V _{CE}		
I_{B}		
$I_{\rm C}$		

Circuitos Prácticos

Armar el siguiente circuito

Introducir una señal cuadrada de 5 V (Salida del generador TTL) a una frecuencia de 0.5 Hz.	Introducir una señal cuadrada de 5 V (Salida de generador TTL) a una frecuencia de 0.5 Hz.
Indicar lo que realiza el circuito.	Indicar lo que realiza el circuito.

Armar el siguiente circuito

ANÁLISIS TÉORICO

Realizar el análisis teórico de todos los circuitos anteriores.

ANÁLISIS SIMULADO

Realizar el análisis simulado de todos los circuitos anteriores.

COMPARACIÓN DE LOS RESULTADOS TEÓRICOS, PRÁCTICOS Y SIMULADOS.

Analizar todos los valores y dar una explicación de las variaciones ó diferencias que existan en el valor obtenido tanto en lo teórico, simulado y práctico.

CUESTIONARIO

- 1. ¿Cuál es la razón de la polarización del transistor?
- 2. ¿Qué nos representa la β (beta) del transistor?
- 3. ¿Qué nos representa la α (alfa) del transistor?
- 4. Menciona qué es el punto de operación del transistor
- 5. ¿Qué es la zona de saturación de un transistor bipolar?
- 6. ¿Qué es la zona de corte de un transistor bipolar?
- 7. ¿Qué diferencia existe entre el transistor 2N2222 y el TIP41?
- 8. Menciona 3 aplicaciones de circuitos en conmutación

CONCLUSIONES

Dar sus conclusiones de los circuitos armados, comparando los resultados teóricos, simulados y experimentales (Conclusiones individuales).