Last Passage Percolation on Complete Graphs

Charles Beck, Stanley Jian, Catherine Lyu, Harrison Wang

Columbia University, New York

Problem Description - Last Passage Percolation

- First Passage Percolation Fluid Flow in Porous Media
- Complete graph G_n , each edge e has i.i.d weight X_e
- Label vertices $V = \{1,2,...,n\}$, consider self-avoiding paths from $1 \rightarrow n$
- W_n = highest weight path among all paths
- How does W_n grow and vary as $n \to \infty$?

Extreme Value Theory

• Given i.i.d. random variables X_1, \ldots, X_n distributed as X, define

$$M_n^{(i)} :=$$
 the ith maximum $M_n := M_n^{(1)}$

- ullet Goal: identify deterministic b_n which grows approximately like M_n
- ullet b_n strictly increasing, but speed of b_n growth dependent upon distribution X
 - ullet Heavy-tailed \Longrightarrow greater probability of high values \Longrightarrow fast growth
 - ullet Light-tailed \Longrightarrow lower probability of high values \Longrightarrow slow growth
- Would describe LPP well if each path was independent, but this isn't the case

igust 4, 2022 3/9

Upper Bound

- Path Length < n
- \bullet Consider n largest edges in entire graph $M_{n^2}^{(1)}, M_{n^2}^{(2)}, ..., M_{n^2}^{(n)}$

This has weight:

$$W_n \leq \sum_{i=1}^n M_{n^2}^{(i)} \leq \sum_{i=1}^n b_{n^2}^{(i)} \approx \begin{cases} O(nb_n) & \text{Light Tail} \\ O(nb_ng(n)) & \text{Heavy Tail} \end{cases}$$

where $g(n) \to \infty$ as $n \to \infty$.

Lower Bounds

Single Edge:

• There must exist an edge through the largest edge

Greedy Approach:

- Start at node 1 and choose the largest edge M_n to any unvisited node (besides node n)
- Repeat until all nodes visited. When i nodes besides n left, the next edge has weight M_i
- Connect last node to node n

• k_n largest edges:

- If k_n edges all disjoint, path can be drawn through them
- For all sublinear k_n $(\frac{k_n}{n} \to 0)$, k_n edges will be disjoint **w.h.p.**
- W.h.p., W_n greater than sum of k_n largest edge weights

$$M_{n^2} \le W_n$$

$$\sum_{i=1}^{n-1} M_i \le W_n$$

$$\sum_{i=1}^{o(n)} M_{n^2}^{(i)} \le W_n$$

5/9

Lower Bounds(cont.)

General Theorems

Bounded Distributions:

$$\mu := \inf\{x : \mathbb{P}(X \ge x) = 0\}$$

$$\frac{W_n}{n} \xrightarrow[n \to \infty]{} \mu$$

Unbounded Distributions:

For sufficiently light tailed(slowly varying, Hegde Condition)

$$\frac{W_n}{nb_n} \xrightarrow[n \to \infty]{} 1$$

Results

$$\lim_{n \to \infty} \frac{W_n}{n} \approx h(n)$$

Distribution	Exp	Rayleigh	Power	Power	Power	Bounded
	e^{-x}	e^{-x^2}	$x^{-\alpha} \ (\alpha < 1)$	$x^{-\alpha} \ (\alpha = 1)$	$x^{-\alpha} \ (\alpha > 1)$	$X \leq M < \infty$
h(n)	$\log(n)$	$\sqrt{2\log(n)}$	$n^{\frac{1}{\alpha}}$	$n\log(n)$	$n^{\frac{2}{\alpha}-1}$	M
Method used	Greedy	Greedy	Single Edge	Single Edge	Single Edge	Greedy

Thank you!