Oppgaver for kapittel 0

0.2.1

Gitt likningen

$$x^3 + 4x^2 - 5 = 0$$

- a) Hvorfor vil ikke Newtons metode fungere viss du starter med $x_0 = 0$?
- b) Lag et skript som finner tilnærminger for de tre løsningene av likningen. Stopp søket når $|x_{n+1} x_1| < 10^{-6}$.

0.3.1

Forklar hvorfor (??) også kan skrives som

$$\int_{a}^{b} f \, dx \approx \Delta x \left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} \left[f(x_i) + f(x_{i+1}) \right] \right)$$

0.3.2

I TM2 har vi sett at det bestemte integralet I av en funksjon f(x) over intervallet [a, b] er gitt som

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \tag{1}$$

hvor $x_i = a + (i-1)\Delta x$ og $\Delta x = \frac{b-a}{n}$. La I_n være tilnærmingen av I gitt ved å la n være et gitt tall. Implementer I_n i et skript, og bruk integralet $\int\limits_0^1 3x^2\,dx$ til å sjekke at du får output som forventet.

0.3.3

Hvis funksjonen du skal integrere er konkav, vil trapesmetoden gi et overestimat eller et underestimat?

Gruble 1

Trapesmetoden kan også implementeres slik at delintervallene ikke nødvendigvis har samme bredde. Forklar hvorfor (??) da kan skrives som

$$\int_{a}^{b} f \, dx \approx \frac{1}{2} \sum_{i=0}^{n} (x_{i+1} - x_i) \left[f(x_i) + f(x_{i+1}) \right]$$

Gitt funksjonen

$$f(x) = 1 + \frac{1}{2}x^2 + \sin(\pi x)$$
 $x \in [0, 2]$

- a) Bruk (for eksempel) GeoGebra til å tegne grafen til f.
- b) Du skal bruke trapesmetoden for å tilnærme $\int_{0}^{2} f dx$, men får bare lov til å dele [0,2] inn i tre delintervaller. Det er naturlig at x=0 og x=2 er med i hvert sitt delintervall. Forklar hvorfor de to x-verdiene som løser likningen

$$x + \pi \cos(\pi x) = 0$$

også er gode kandidater til å være med i delintervallene.

c) Bruk Newtons metode til å finne x-verdiene du ønsker. Stopp søket når $|x_n - x_{n+1}| \le 10^{-6}$.

Gruble 2

Gitt integralet

$$I = \int_{0}^{2} x^3 - 5x + 6 \, dx$$

La I_n være intgralet tilnærmet ved trapesmetoden med n delintervaller.

- a) Beregn I_{10} og I_{100} og I_{1000}
- b) La $E_n = I I_n$
- c) Bruk regresjon til å finne den best tilpassede polynomfunksjonen for punktene $\left(\frac{1}{n}, E_n\right), n \in [10, 100, 1000].$