Práctica 1

Gonzalo Barrera Borla

03/09/2019

Parte 1

Ejercicio 10

Sea $x \sim N_p(0, I_p)$ donde p = 10.

- 1. Sea D la distancia de x al centro de la distribución, en este caso 0. Calcule $\mathbb{E}(D^2)$.
- 2. Sean $\mathbf{x}_i \overset{iid}{\sim} \mathbf{x}, \ 1 \leq i \leq n$ una muestra aleatoria de \mathbf{x} y sea $\mathbf{x}_0 \sim \mathbf{x}$ independiente de $\mathbf{x}_i \forall \ 1 \leq i \leq n$.
 - (a) ¿Qué distribución tiene $\mathbf{x}_0^\mathsf{T}\mathbf{x}_i/\|\mathbf{x}_0\|$?
 - (b) Calcule la distancia al cuadrado esperada entre el centro de los datos y x_0 dado x_0 , es decir $\mathbb{E}\left(\|\bar{x}-x_0\|^2 |x_0\right)$.
 - (c) Deduzca el valor de $\mathbb{E}\left(\left\|\bar{\mathbf{x}}-\mathbf{x}_{0}\right\|^{2}\right)$ ¿Qué observa?

Punto 1

$$D = \|\mathbf{x} - \mu\| = \|\mathbf{x} - 0\| = \|\mathbf{x}\| = \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{x}}$$

$$\Rightarrow \mathbb{E}(D^{2}) = \mathbb{E}(\mathbf{x}^{\mathsf{T}} \mathbf{x}) = \mathbb{E}\left(\sum_{j=1}^{p} x_{j}^{2}\right)$$

$$= \sum_{j=1}^{p} \mathbb{E}(x_{j}^{2})$$

Por definición, las componentes de x tienen distribución $x_j \stackrel{iid}{\sim} N_1\left(0,1\right) \Rightarrow x_j^2 = y_j \stackrel{iid}{\sim} \chi_1^2$. Luego, $\sum_{j=1}^p y_j = D^2 \sim \chi_p^2$ y $\mathbb{E}\left(D^2\right) = p$.

Punto 2(a)

Sean el vector aleatorio $\mathbf{v} = \frac{\mathbf{x}_0}{\|\mathbf{x}_0\|}$ de norma 1 y la variable aleatoria $\mathbf{w} = \frac{\mathbf{x}_0^\mathsf{T} \mathbf{x}_i}{\|\mathbf{x}_0\|} = \mathbf{v}^\mathsf{T} \mathbf{x}_i$. Luego, la variable aleatoria $\mathbf{w}|_{\mathbf{v}=\mathbf{v}_0}$ se puede escribir como una combinación lineal de VA normales independientes, $\mathbf{w}|_{\mathbf{v}=\mathbf{v}_0} = \sum_{j=1}^p v_j \cdot x_{ij}$, donde $\mathbf{v}_0 = (v_1, \dots, v_p)$. Usando el resultado de 1.1.1, tenemos que $\mathbf{w}|_{\mathbf{v}=\mathbf{v}_0} \sim N\left(\mu_0, \sigma_0^2\right)$, con

$$\mu_0 = \sum_{j=1}^p v_j \mathbb{E}(x_{ij}) = 0$$

$$\sigma_0^2 = \sum_{j=1}^p v_j^2 \text{Var}(x_{ij}) = \sum_{j=1}^p v_j^2 = ||\mathbf{v}|| = 1$$

Resulta entonces que $\mathbf{w}\big|_{\mathbf{v}=\mathbf{v}_0} \sim N\left(0,1\right) \ \forall \ \mathbf{v}_0,$ con lo cual \mathbf{w} es independiente de \mathbf{v}, \mathbf{y} haciendo un abuso de notación, $\frac{\mathbf{x}_0^\mathsf{T}\mathbf{x}_i}{\|\mathbf{x}_0\|} = \mathbf{w} \sim \mathbf{w}\big|\mathbf{v} \sim N\left(0,1\right).$

Punto 2(b) Consideremos el vector de constantes $a \in \mathbb{R}^p$ y usemos la linealidad de la esperanza para operar. Recordemos además que como $\bar{x} \perp x_0 \Rightarrow \mathbb{E}(\bar{x}|x_0) = \mathbb{E}(\bar{x})$:

$$g(\mathbf{a}) = \mathbb{E}\left(\left\|\bar{\mathbf{x}} - \mathbf{x}_0\right\|^2 \middle| \mathbf{x}_0 = \mathbf{a}\right)$$

$$= \mathbb{E}\left(\left(\bar{\mathbf{x}} - \mathbf{a}\right)^\mathsf{T} \left(\bar{\mathbf{x}} - \mathbf{a}\right)\right)$$

$$= \mathbb{E}\left(\left\|\bar{\mathbf{x}}\right\|^2 - 2\bar{\mathbf{x}}^\mathsf{T}\mathbf{a} + \left\|\mathbf{a}\right\|^2\right)$$

$$= \mathbb{E}\left(\left\|\bar{\mathbf{x}}\right\|^2\right) - 2\mathbb{E}\left(\bar{\mathbf{x}}\right)^\mathsf{T}\mathbf{a} + \left\|\mathbf{a}\right\|^2$$

Por el mismo resultado 1.1.1, sabemos que $\bar{\mathbf{x}} \sim N_p\left(0, n^{-1}\mathbf{I}_p\right)$, y por ende $\sqrt{n}\bar{\mathbf{x}} \sim N_p\left(0, \mathbf{I}_p\right)$. Luego, $\|\sqrt{n}\bar{\mathbf{x}}\|^2 = |\sqrt{n}|^2 \|\bar{\mathbf{x}}\|^2 = n \|\bar{\mathbf{x}}\|^2 \sim \chi_p^2$ y resulta que $\mathbb{E}\left(\|\bar{\mathbf{x}}\|^2\right) = \frac{p}{n}$. Finalmente, $\mathbb{E}\left(\|\bar{\mathbf{x}} - \mathbf{x}_0\|^2 |\mathbf{x}_0\right) = g\left(\mathbf{x}_0\right) = \frac{p}{n} + \|\mathbf{x}_0\|^2$.

Punto 2(c) Usando que $\mathbb{E}\left(\mathbb{E}\left(X\big|Y\right)\right) = \mathbb{E}\left(X\right)$ y que $\left\|\mathbf{x}_{0}\right\|^{2} = D^{2} \sim \chi_{p}^{2}$, vemos que

$$\mathbb{E}\left(\left\|\bar{\mathbf{x}} - \mathbf{x}_0\right\|^2\right) = \mathbb{E}\left[\mathbb{E}\left(\left\|\bar{\mathbf{x}} - \mathbf{x}_0\right\|^2 \middle| \mathbf{x}_0\right)\right]$$

$$= \mathbb{E}\left(g\left(\mathbf{x}_0\right)\right)$$

$$= \mathbb{E}\left[\frac{p}{n} + \left\|\mathbf{x}_0\right\|^2\right]$$

$$= \frac{p}{n} + \mathbb{E}\left(\left\|\mathbf{x}_0\right\|^2\right)$$

$$\mathbb{E}\left(\left\|\bar{\mathbf{x}} - \mathbf{x}_0\right\|^2\right) = \frac{(n+1)p}{n}$$

Es decir que $\mathbb{E}\left(\|\bar{\mathbf{x}}-\mathbf{x}_0\|^2\right) \stackrel{n\to\infty}{\longrightarrow} \mathbb{E}\left(\|\mathbf{x}_0\|^2\right) = p$. El centro de los datos (*id est*, de la muestra), $\bar{\mathbf{x}}$, tenderá a coincidir con el centro de la distribución (*id est*, de la población), $\mu = 0$, y la distancia cuadrada de un elemento cualquiera \mathbf{x}_0 a $\bar{\mathbf{x}}$ será igual a su norma cuadrada.