Some proofs in group theory

Peter Rowlett

1 Unique identity

It is not necessary for an identity element to exist, but if a set A does contain an identity element e for the operation \circ , then e is unique, as we will see in the following theorem.

Theorem 1.1. If $e, f \in A$ are both identity elements for an operation \circ , then e = f.

Proof. By definition, since e is an identity element, we have

$$e \circ x = x$$

for any $x \in A$. Putting x = f, we have

$$e \circ f = f$$
.

Similarly, since f is an identity element, we have

$$x \circ f = x$$

for any $x \in A$. Putting x = e, we have

$$e \circ f = e$$
.

Since

$$e = e \circ f = f$$

we have e = f, as required.

2 Unique annihilator

It is not necessary for an annihilator to exist, but if a set A does have one for an operation \circ , then it is unique.

Theorem 2.1. If $n, p \in A$ are both annihilators for \circ , then n = p.

Proof. By definition, since n is an annihilator, we have

$$n \circ x = n$$

for any $x \in A$. Putting x = p, we have

$$n \circ p = n$$
.

Similarly, since p is an annihilator, we have

$$x \circ p = p$$

for any $x \in A$. Putting x = n, we have

$$n \circ p = p$$
.

Since

$$n = n \circ p = p$$

we have n = p, as required.

3 Inverses

Theorem 3.1. For (G, \circ) , if $x, y \in G$ then there is one and only one $a \in G$ such that $a \circ x = y$, namely $a = y \circ x^{-1}$. Similarly, there is one and only one $b \in G$ such that $x \circ b = y$, namely $b = x^{-1} \circ y$.

Proof. If $a \circ x = y$, operate on the right by x^{-1} , giving $(a \circ x) \circ x^{-1} = y \circ x^{-1}$. But

$$(a \circ x) \circ x^{-1} = a \circ (x \circ x^{-1})$$
 (associativity)
= $a \circ e$ (inverse)
= a (identity)

therefore $a \circ x = y$ implies $a = y \circ x^{-1}$. Conversely, if $a = y \circ x^{-1}$, then $a \circ x = (y \circ x^{-1}) \circ x = y \circ (x^{-1} \circ x) = y \circ e = y$. So we have $a \circ x = y \iff a = y \circ x^{-1}$.

If $x \circ b = y$, then $x^{-1} \circ (x \circ b) = x^{-1} \circ y$, but $x^{-1} \circ (x \circ b) = (x^{-1} \circ x) \circ b = e \circ b = b$, therefore $x \circ b = y$ implies $b = x^{-1} \circ y$. Conversely, if $b = x^{-1} \circ y$ then $x \circ b = x \circ (x^{-1} \circ y) = (x \circ x^{-1}) \circ y = e \circ y = y$. So we have $x \circ b = y \iff b = x^{-1} \circ y$.

Corollary 3.1.1. If $x \in G$ and a is any element of G such that $a \circ x = e$, then $a = x^{-1}$. Similarly if b is any element such that $x \circ b = e$, then $b = x^{-1}$.

Proof. In theorem 3.1, let y=e. Then we have that $a\circ x=e\iff a=e\circ x^{-1}=x^{-1}$ and $x\circ b=e\iff b=x^{-1}\circ e=x^{-1}$, as required.

Corollary 3.1.2. If $x \in G$, then $(x^{-1})^{-1} = x$.

Proof. In corollary 3.1.1, replace x with x^{-1} and a with x. Now we have $x \circ x^{-1} = e \iff x = (x^{-1})^{-1}$.

Corollary 3.1.3. If $x, y \in G$, then $(x \circ y)^{-1} = y^{-1} \circ x^{-1}$.

Proof. In corollary 3.1.1, replace a with $(y^{-1} \circ x^{-1})$ and x by $(x \circ y)$. Now,

$$(y^{-1} \circ x^{-1})(x \circ y) = (y^{-1} \circ (x^{-1} \circ x) \circ y) \quad \text{(associativity)}$$

$$= (y^{-1} \circ e \circ y) \qquad \text{(inverse)}$$

$$= (y^{-1} \circ y) \qquad \text{(identity)}$$

$$= e \qquad \text{(inverse)}$$

Hence corollary 3.1.1 gives $y^{-1} \circ x^{-1} = (x \circ y)^{-1}$.

Corollary 3.1.4. The inverse of e is e.

Proof. Let a = x = e in 3.1.1. Then $e \circ e = e$ by identity.

4 Latin square property

Theorem 4.1. Every element in a group occurs exactly once in every row.

Proof. Suppose there is an element appearing twice within a row in a group with operation o.

	1	2		b	 c	
1	٠	·		:	:	
2		٠		:	:	
:			٠	:	:	
a				d	 d	
:				÷	÷	٠

Now $a \circ b = d$ and $a \circ c = d$. Hence $a \circ b = a \circ c$.

We know a^{-1} exists in the set because we have a group, so

$$a^{-1} \circ (a \circ b) = a^{-1} \circ (a \circ c)$$

$$\implies (a^{-1} \circ a) \circ b = (a^{-1} \circ a) \circ c \text{ (associativity)}$$

$$\implies e \circ b = e \circ c \text{ (inverse)}$$

$$\implies b = c \text{ (identity)}$$

Therefore the columns for b and c are in fact the same column, and every element must appear exactly once in each row.

A similar argument works the same for columns.

That each element appears exactly once in each row and column is called the Latin square property.