北京邮电大学

《数字电路与逻辑设计》期中考试试题

2015.4.11

班级			姓名_			_ 班	内序号	<u> </u>	
题号	_	=	三	四	五.	六	七	八	总成绩
分数	20	12	10	10	10	20	10	8	
得分									

注意: 所有答案(包括选择题和计算题)一律写在试卷纸上,如果卷面位置不够,请写在试卷的背后,否则不计成绩。

一、(每题1分,共20分)判断(填/或×)、单项选择题

(请先在本试卷上答题之后,将全部答案汇总到本题末尾的表格中。)

- 1. ECL 逻辑门与 TTL 门相比,主要优点是抗干扰能力强。(X)
- 2. CMOS 门电路在使用时允许输入端悬空,并且悬空的输入端相当于输入逻辑"1"。(\times)
- 3. 若对 4 位二进制码(B₃B₂B₁B₀)进行奇校验编码,则校验位 C= B₃⊕B₂⊕B₁⊕B₀⊕1。(√)
- 4. 根据表 1-1,用 CMOS4000 系列的逻辑门驱动 TTL74 系列的逻辑门,驱动门与负载门之间的电平匹配不存在问题()
- 5. 根据表 1-1,用 CMOS4000 系列的逻辑门驱动 TTL74 系列的逻辑门,驱动门与负载门之间的电流驱动能力不存在问题(\times)

表 1-1 常用的 TTL 和 CMOS 门的典型参数

	TTL	TTL	CMOS	高速CMOS	高速CMOS
	74系列	74LS系列	4000系列	74HC系列	74HCT系列
V _{OH(min)} /V	2.4	2.7	4.6	4.4	4.4
V _{OL(max)} /V	0.4	0.5	0.05	0.1	0.1
I _{OH(max)} /mA	-0.4	-0.4	-0.51	-4	-4
I _{OL(max)} /mA	16	8	0.51	4	4
V _{IH(min)} /V	2	2	3.5	3.5	2
V _{IL(max)} /V	0.8	0.8	1.5	1	0.8
I _{IH(max)} /uA	40	20	0.1	0.1	0.1
I _{IL(max)} /mA	-1.6	-0.4	-0.1×10 ⁻³	-0.1×10 ⁻³	-0.1×10 ⁻³

6. 当 $i \neq j$ 时,必有两个最小项之和 $m_i + m_j = 0$ 。(\times)
7. CMOS 门电路的静态功耗很低,但在输入信号动态转换时会有较大的电流,工作频率越高,静态功耗越大。(×)
8. 逻辑函数的表达式是不唯一的,但其标准的最小项之和的表达式是唯一的。(√)
9. 用数据分配器加上门电路可以实现任意的逻辑函数。(√) 10. 格雷 BCD 码具有单位距离特性(任意两个相邻的编码之间仅有一位不同) 且是无权代码。(√)
11. 关于函数 $F = AC + BCD + ABgC$,下列说法中正确的有B。
A. 不存在冒险;
B. 存在静态逻辑冒险,需要加冗余项 $\overline{^{A}BD}$ 和 $\overline{^{A}CD}$ 进行消除;
C. 存在静态功能冒险,需要加冗余项 \overline{ABD} 和 \overline{ACD} 进行消除;
D. 当输入 ABCD 从 0001→0100 变化时存在静态逻辑冒险。12. 逻辑函数 F=A ⊕ B 和 G=A⊙B 满足关系。
A. $F = G$ B. $F + G = 0$ C. $F g G = 1$ D. $F = G e 0$
13. 若逻辑函数 $F(A,B,C) = \sum m(1,2,3,6)$, $G(A,B,C) = \sum m(0,2,3,4,5,7)$,则
$F \bullet G = \underline{\qquad} \land \underline{\qquad} \circ$
A. $m_2 + m_3$ B. 1 C. $A\overline{B}$ D. AB
14. 若干个具有三态输出的电路输出端接到一点工作时,必须保
证 <u>B</u> 。
A. 任何时刻最多只能有一个电路处于高阻态,其余应处于工作态。
B. 任何时刻最多只能有一个电路处于工作态,其余应处于高阻态。
C. 任何时刻至少有一个电路处于高阻态,其余应处于工作态。
D. 任何时刻至少有一个电路处于工作态,其余应处于高阻态。
15. 可以用来传输连续变化的模拟信号的电路是。 A. 三态输出的门电路。; B. 漏极开路的 CMOS 门电路; C. ECL 门电路; D. CMOS 传输门
16. 逻辑表达式 $F = [(\overline{AB} + C)\overline{D} + E] \cdot B$ 的对偶式为。

 $(\overline{AB} \cdot C + \overline{D}) \cdot E + B$ $A + \overline{AB} = A + B$

 $A. \quad F = [(A + B \cdot C) + D \cdot E] + B$

$$F = (A+B\cdot C+D)\cdot E+B$$

 $\int_{C} F = (A+B)\overline{C} + D \cdot \overline{E} + \overline{B}$

$$\int_{C} F = [(AB + \overline{C})D + \overline{E}] \cdot \overline{B}$$

17. 下列说法中正确的是 D 。

A. 三态门的输出端可以直接并联,实现线或逻辑功能。

B. 0C 门的输出端可以直接并联,实现线或逻辑功能。

C. OD 门的输出端可以直接并联,实现线或逻辑功能。

D. ECL门的输出端可以直接并联,实现线或逻辑功能。

18. 某集成电路芯片,查手册知其最大输出低电平 Uolmax=0.5V,最大输入低电 平 U_{ILmax}=0.8V, 最小输出高电平 U_{OHmin}=2.7V, 最小输入高电平 U_{IHmin}=2.0V, 则其 低电平噪声容限 Um 和高电平噪声容限 Um 分别是 C 。

A. 1.5V, 2.2V

B. 2. 2V, 1. 2V C. 0. 3V, 0. 7V D. 1. 9V, 1. 5V

19. 下列说法中不属于组合电路的特点的是 C 。

- A. 组合电路由逻辑门构成;
- B. 组合电路不含记忆存储单元:
- C. 组合电路的输出到输入有反馈回路;

D. 任何时刻组合电路的输出只与当时的输入有关, 而与电路过去的输入无关。 20. 在图 1-1 的 CMOS 门电路中,输出为高电平的有 D。

答案汇总:

1	2	3	4	5	6	7	8	9	10
\times	\times	√	√	\times	\times	\times	√	✓	√
11	12	13	14	15	16	17	18	19	20
В	D	A	В	D	В	D	С	С	D

二、(共 12 分) 器件的内部电路如图 2-1 所示, A, B 为输入, F 为输出。(1), 写出 L、M、N、O、F 点与输入 A、B 间的相对逻辑关系表达式。(2),画出 该器件的符号。

解:

三、(10分)请用最少的或非门设计一个检出8421BCD码能被4整除的逻辑电路(输入变量为ABCD,且提供反变量):

- (1) 根据功能需求完成表3-1 真值表的填写;
- (2) 并写出该函数的标准与或表达式 (使用; $F = \Sigma$ + Σ 形式);
- (3) 将真值表填入图 3-1 的卡诺图,并用卡诺图法简化为最简或与式;
- (4) 用或非门实现该函数, 画出逻辑图。

表 3-1

输入	输出
A B C D	F

AB CD	00	01	11	10
00				
01				
11				
10				

图 3-1

解: 真值表 (2分)

输入	输出
ABCD	F
0000	1
0001	0
0010	0
0011	0
0100	1

0
0
0
1
0
X
X
X
X
X
X

$$F = \sum m(0,4,8) + \sum \varphi(10,11,12,13,14,15)$$
 (2 \(\frac{\frac{1}}{2}\))

$$F = \overline{D} \cdot \overline{C}$$
 (2分)

四、 $(10 \, \mathcal{G})$ 请用代数法化简函数 $F = \overline{AB + A \oplus B}(\overline{ABD} + C + D + Ee \, F)$ 为最简与或表达式,画出实现此逻辑函数的最简 CMOS 电路。

解:

$$F = \overline{AB} + A \oplus \overline{B}(\overline{ABD} + C + D + E \oplus F)$$

$$= \overline{AB} + \overline{AB} + \overline{AB}(\overline{A} + \overline{B} + \overline{D} + C + D + E \oplus F)$$

$$= \overline{B} + \overline{AB}$$

$$= \overline{A} + B = \overline{A} \cdot \overline{B}$$

$$= \overline{A} + B = \overline{A} \cdot \overline{B}$$

(化简8分,图2分)

五、(10分) TTL 门构成的电路如图 5-1 所示,请给电阻 RL选择合适的阻值。 已知 OC 门输出管截止时的漏电流为 IoH=200µ A, OC 门输出管导通时允许的 最大负载电流为 $I_{OLmax}=16$ mA;负载门的低电平输入电流为 $I_{IL}=1$ mA,高电平 输入电流为 I_H=40µ A, V_{CC}′=5V, 要求 OC 门的输出高电平 V_{OH}≥3.0V, 输出低电平 VoL≤0.4V。

(5分/个)

六、(20分)求函数 F=(A+B)(B+C)(A+C)的标准与或表达式,并分别用译 码器 74LS138 (输出低电平有效,功能表见6-1)、数据选择器 75LS153 (功能 表见6-2)、数据分配器74LS155(功能表见6-3)和最少的门电路实现此函数 (输入不提供反变量,在图6-1所给的符号图上完成)。

S 4 3	$\overline{S_B} + \overline{S_C}$	A ₂	A	Αn	$\overline{Y_{0}}$	\overline{Y} .	\overline{Y}	$\overline{\overline{Y}}$,	$\overline{\overline{Y}}$.	$\overline{Y_{5}}$	$\overline{\overline{Y}_{\epsilon}}$	$\overline{\overline{Y}_{7}}$
0	×		X		$\frac{1}{1}$	1	1	1	1	1	1	1
×	1		×		1	1	1	1	1	1	1	1
1	0	ô	ô	' \	lo	1	1	1	1	1	1	1
1	0	0	0	1	$ _{1}$	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

表 6-1 表 6-2 74LS153 功能表

7

ST	A ₁	Ą	$D_3 - D_0$	Y
1	×	×	×	0
0	0	0	$D_3 - D_0$	D_0
0	0	1	$D_3 - D_0$	D_1
0	1	0	$D_3 - D_0$	D_2
0	1	1	$D_3 - D_0$	D_3
1	I			

74LS138 功 能 表