# Cours: Fonctions usuelles

# Table des matières

| 1        | $\operatorname{Log}$ | arithme, exponentielle, puissance                                     | 1 |
|----------|----------------------|-----------------------------------------------------------------------|---|
|          | 1.1                  | Logarithme népérien                                                   | 1 |
|          | 1.2                  | Exponentielle                                                         | 2 |
|          | 1.3                  | Logarithme et exponentielle en base $a \dots \dots \dots \dots \dots$ | 3 |
|          | 1.4                  | Fonction puissance                                                    | 3 |
|          | 1.5                  | Croissances comparées                                                 | 5 |
| <b>2</b> | Fon                  | ctions trigonométriques                                               | 5 |
|          | 2.1                  | Fonctions trigonométriques directes                                   | 5 |
|          | 2.2                  | Fonction Arcsin                                                       | 5 |
|          | 2.3                  | Fonction Arccos                                                       | 6 |
|          | 2.4                  | Fonction Arctan                                                       | 7 |
|          | 2.5                  | Formules de trigonométrie réciproque                                  | 8 |
| 3        | Fon                  | ctions trigonométriques hyperboliques                                 | 8 |
|          |                      | Trigonométrie hyperbolique directe                                    | 8 |

# 1 Logarithme, exponentielle, puissance

# 1.1 Logarithme népérien

**Définition 1.** On appelle logarithme népérien et on note  $\ln$  l'unique primitive s'annulant en 1 de la fonction  $x \mapsto 1/x$  définie sur  $\mathbb{R}_+^*$ .

$$\ln: \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_1^x \frac{dt}{t}$$

# Proposition 1.

- ln est continue sur  $\mathbb{R}_+^*$ .
- In est dérivable sur  $\mathbb{R}_+^*$  et :

$$\forall x \in \mathbb{R}_+^* \quad \ln' x = \frac{1}{x}$$

—  $\ln \operatorname{est} \mathcal{C}^{\infty} \operatorname{sur} \mathbb{R}_{+}^{*}$ .

#### Remarques:

 $\Rightarrow$  Sur  $\mathbb{R}^*$ 

$$\int \frac{\mathrm{d}x}{x} = \ln|x|$$

 $\Rightarrow$  Si f est une fonction dérivable ne s'annulant pas, la fonction d'expression

$$\frac{f'(x)}{f(x)}$$

est appelée dérivée logarithmique de f. C'est la dérivée de la fonction d'expression  $\ln |f(x)|$ .

**Proposition 2.** On a:

$$\ln 1 = 0$$

$$\forall x, y \in \mathbb{R}_{+}^{*} \qquad \ln (xy) = \ln x + \ln y$$

$$\forall x \in \mathbb{R}_{+}^{*} \qquad \ln (1/x) = -\ln x$$

$$\forall x \in \mathbb{R}_{+}^{*} \qquad \forall n \in \mathbb{Z} \qquad \ln x^{n} = n \ln x$$

**Proposition 3.** In est strictement croissante sur  $\mathbb{R}_+^*$  et:

$$\ln x \xrightarrow[x \to +\infty]{} +\infty \ et \ \ln x \xrightarrow[x \to 0]{} -\infty$$

# Exemples:

 $\Rightarrow$  Résoudre l'inéquation  $\ln |x+1| - \ln |2x+1| \le \ln 2$ .

Proposition 4.

- ln est injectif:  $\forall x, y \in \mathbb{R}_+^*$   $\ln x = \ln y \Longrightarrow x = y$
- In réalise une surjection de  $\mathbb{R}_+^*$  dans  $\mathbb{R}: \forall y \in \mathbb{R}$   $\exists x \in \mathbb{R}_+^*$   $\ln x = y$

**Définition 2.** Il existe un unique réel noté e et appelé nombre de Néper tel que  $\ln e = 1$ .

Proposition 5. On a:

$$\forall x \in \mathbb{R}_+^* \quad \forall n \in \mathbb{N}^* \quad \ln \sqrt[n]{x} = \frac{1}{n} \cdot \ln x$$

Proposition 6. On a:

$$\forall x \in ]-1, +\infty[ \quad \ln(1+x) \leqslant x$$

### Exemples:

 $\Rightarrow$  Montrer que pour tout  $n \in \mathbb{N}^*$ ,  $\frac{1}{n+1} \leqslant \ln\left(1+\frac{1}{n}\right) \leqslant \frac{1}{n}$ .

$$\frac{x}{\ln x} \xrightarrow[x \to +\infty]{} +\infty \qquad x \ln x \xrightarrow[x \to 0]{} 0$$

$$\ln (1+x)$$

$$\frac{\ln{(1+x)}}{x} \xrightarrow[x\to 0]{} \stackrel{1}{\longrightarrow} \frac{1}{x}$$



# 1.2 Exponentielle

**Définition 3.** Pour tout  $y \in \mathbb{R}$ , il existe un unique  $x \in \mathbb{R}_+^*$  tel que  $\ln x = y$ ; on le note  $x = \exp y$ . On définit alors la fonction :

$$\begin{array}{ccc} \exp: \mathbb{R} & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \exp y \end{array}$$

# Proposition 8. On a:

$$\forall x \in \mathbb{R}$$
  $\ln(\exp x) = x$   
 $\forall x \in \mathbb{R}^*_{\perp}$   $\exp(\ln x) = x$ 

# ${\bf Proposition} \,\, {\bf 9.}$

- exp est injective :  $\forall x, y \in \mathbb{R}$  exp  $x = \exp y \Longrightarrow x = y$
- exp réalise une surjection de  $\mathbb{R}$  dans  $\mathbb{R}_+^*$ :  $\forall y \in \mathbb{R}_+^*$   $\exists x \in \mathbb{R}$  exp x = y

# Proposition 10.

$$\begin{aligned} \exp 0 &= 1 && \exp 1 &= e \\ \forall x,y \in \mathbb{R} && \exp \left( x + y \right) &= \exp \left( x \right) \exp \left( y \right) \\ \forall x \in \mathbb{R} && \exp \left( -x \right) &= \frac{1}{\exp x} \\ \forall x \in \mathbb{R} && \forall n \in \mathbb{Z} && \exp \left( nx \right) &= \left( \exp x \right)^n \end{aligned}$$

**Proposition 11.** exp est strictement croissante sur  $\mathbb{R}$  et :

$$\exp x \xrightarrow[x \to -\infty]{} 0 \ et \ \exp x \xrightarrow[x \to +\infty]{} +\infty$$

#### Proposition 12.

- exp est continue sur  $\mathbb{R}$ .
- exp est dérivable sur  $\mathbb{R}$  et :

$$\forall x \in \mathbb{R} \quad \exp' x = \exp x$$

— exp  $est C^{\infty} sur \mathbb{R}$ .

# **Proposition 13.** On a:

$$\forall x \in \mathbb{R} \quad \exp x \geqslant 1 + x$$

# Exemples:

 $\Rightarrow$  Montrer que

$$\forall x < 1 \quad \exp x \leqslant \frac{1}{1-x}$$

 $\Rightarrow$  Soit  $a, b \in \mathbb{R}$  tels que 0 < a < b. Montrer que

$$\forall x \in \mathbb{R}_+^* \quad 0 < b \exp(-ax) - a \exp(-bx) < b - a$$

#### Proposition 14. On a:

$$\frac{\exp x}{x} \xrightarrow[x \to +\infty]{} +\infty \qquad x \exp x \xrightarrow[x \to -\infty]{} 0$$

$$\frac{\operatorname{xp} x - 1}{x} \xrightarrow[x \to 0]{} 1$$



# 1.3 Logarithme et exponentielle en base a

**Définition 4.** Soit  $a \in \mathbb{R}_+^* \setminus \{1\}$ . On appelle logarithme en base a et on note  $\log_a$  la fonction définie par :

$$\log_a x : \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{\ln x}{\ln a}$$

# ${\bf Remarques:}$

 $\Rightarrow$  Le logarithme népérien n'est rien d'autre que le logarithme en base e. Si a=10, on obtient le logarithme décimal qui est utilisé en physique (décibels) et en chimie (pH). Enfin, si a=2, on obtient le logarithme binaire, utilisé en informatique.

# Exemples:

⇒ Résoudre le système

$$\begin{cases} 2\log_x y + 2\log_y x = -\xi \\ xy = e \end{cases}$$

**Proposition 15.** Soit  $a \in \mathbb{R}_+^* \setminus \{1\}$ . Alors:

$$\begin{aligned} \forall x,y \in \mathbb{R}_+^* & \log_a{(xy)} = \log_a{x} + \log_a{y} \\ \forall x \in \mathbb{R}_+^* & \log_a{(1/x)} = -\log_a{x} \\ \forall x \in \mathbb{R}_+^* & \forall n \in \mathbb{Z} & \log_a{x}^n = n\log_a{x} \end{aligned}$$

**Définition 5.** Soit  $a \in \mathbb{R}_+^* \setminus \{1\}$ . Alors, pour tout  $y \in \mathbb{R}$ , il existe un unique  $x \in \mathbb{R}_+^*$  tel que  $\log_a x = y$ ; on le note  $x = \exp_a y$  et on a:

$$\exp_a x = \exp\left(x \ln a\right)$$

On définit alors la fonction  $\exp_a$ :

$$\exp_a : \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \exp(x \ln a)$$

#### Remarques:

 $\Rightarrow$  Lorsque a = e, on retrouve la fonction exponentielle.

# 1.4 Fonction puissance

**Définition 6.** Pour  $x \in \mathbb{R}_+^*$  et  $y \in \overline{\mathbb{R}}$ , on définit  $x^y$  par :

$$x^y = \exp\left(y\ln x\right)$$

### Remarques:

 $\Rightarrow$  En particulier, pour tout  $x \in \mathbb{R}$ ,  $\exp x = e^x$ . Plus généralement, si  $a \in \mathbb{R}_+^* \setminus \{1\}$ 

$$\forall x \in \mathbb{R} \quad \exp_a(x) = a^x$$

On utilisera désormais cette notation pour désigner l'exponentielle ainsi que l'exponentielle en base a.

 $\Rightarrow$  Afin de dériver une fonction de la forme  $f(x) = u(x)^{v(x)}$  où u et v sont des fonctions dérivables sur  $\mathcal{D}$  et u est une fonction à valeurs strictement positives, il est indispensable de la mettre sous la forme

$$f(x) = e^{v(x)\ln(u(x))}$$

# Exemples:

 $\Rightarrow$  Résoudre l'équation  $x^{\sqrt{x}} = \sqrt{x}^x$ .

 $\Rightarrow$  Calculer  $\frac{\mathrm{d}}{\mathrm{d}x}(x^x)$ .

**Définition 7.** Soit  $a \in \mathbb{R}$ . On appelle fonction puissance, la fonction définie sur  $\mathbb{R}_+^*$  par :

$$\varphi_a: \mathbb{R}_+^* \longrightarrow \mathbb{I}$$

### Proposition 16. On a:

$$\forall x \in \mathbb{R}_{+}^{*} \quad x^{0} = 1 \qquad \forall a \in \mathbb{R} \quad 1^{a} = 1$$

$$\forall x \in \mathbb{R}_{+}^{*} \quad \forall a, b \in \mathbb{R} \qquad x^{a+b} = x^{a}x^{b}$$

$$\forall x \in \mathbb{R}_{+}^{*} \quad \forall a \in \mathbb{R} \qquad x^{-a} = 1/x^{a}$$

$$\forall x, y \in \mathbb{R}_{+}^{*} \quad \forall a \in \mathbb{R} \qquad (xy)^{a} = x^{a}y^{a}$$

$$\forall x \in \mathbb{R}_{+}^{*} \quad \forall a, b \in \mathbb{R} \qquad (x^{a})^{b} = x^{ab}$$

$$\forall x \in \mathbb{R}_{+}^{*} \quad \forall a \in \mathbb{R} \qquad \ln(x^{a}) = a \ln x$$

**Proposition 17.** Soit  $a \in \mathbb{R}$ . La fonction  $\varphi_a : x \mapsto x^a$  définie sur  $\mathbb{R}_+^*$  est :

- continue sur  $\mathbb{R}_+^*$ .
- dérivable sur  $\mathbb{R}_+^*$  et :

$$\forall x \in \mathbb{R}^*_{\perp} \quad \varphi_a'(x) = ax^{a-1}$$

 $-\mathcal{C}^{\infty}$  sur  $\mathbb{R}_{+}^{*}$ .

#### Remarques:

 $\Rightarrow$  Soit  $f_1, \ldots, f_n$  des fonctions dérivables à valeurs strictement positives sur  $\mathcal{D}$  et  $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ . On définit la fonction f sur  $\mathcal{D}$  par

$$\forall x \in \mathcal{D} \quad f(x) = f_1(x)^{\alpha_1} \cdots f_n(x)^{\alpha_n}$$

Alors f est dérivable sur  $\mathcal{D}$  et

$$\forall x \in \mathcal{D} \quad \frac{f'(x)}{f(x)} = \alpha_1 \cdot \frac{f'_1(x)}{f_1(x)} + \dots + \alpha_n \cdot \frac{f'_n(x)}{f_n(x)}$$

Cette relation reste vraie si l'on suppose juste que les fonctions  $f_k$  sont dérivables et ne s'annulent pas, dans le cas bien sur où l'expression  $f_1(x)^{\alpha_1} \cdots f_n(x)^{\alpha_n}$  conserve un sens (c'est-à-dire lorsque les  $\alpha_k$  associés aux fonctions  $f_k$  prenant des valeurs strictement négatives sont entiers). On a donc :

$$\forall x \in \mathcal{D} \quad f'(x) = \sum_{k=1}^{n} \alpha_k \cdot f_1(x)^{\alpha_1} \cdots f_k'(x) f_k^{\alpha_k - 1}(x) \cdots f_n(x)^{\alpha_n}$$

Cette relation reste d'ailleurs vraie si l'on suppose juste les fonctions  $f_k$  dérivables dans la mesure où l'expression  $f_1(x)^{\alpha_1} \cdots f_n(x)^{\alpha_n}$  conserve un sens (c'est-à-dire lorsque les  $\alpha_k$  associés aux fonctions  $f_k$  pouvant s'annuler sont entiers naturels).

#### Exemples:

⇒ Calculer

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{e^x}{\sqrt{1+x^2}} \right), \qquad \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{x+2}{\sqrt[3]{1+x^2}} \right)$$

**Proposition 18.** Soit  $a \in \mathbb{R}$ . Alors:

$$x^{a} \xrightarrow[x \to +\infty]{} \begin{cases} +\infty & si \ a > 0 \\ 1 & si \ a = 0 \end{cases} \xrightarrow{et \ x^{a}} \xrightarrow[x \to 0]{} \begin{cases} 0 & si \ a > 0 \\ 1 & si \ a = 0 \\ +\infty & si \ a < 0 \end{cases}$$

#### Remarques:

 $\Rightarrow$  Si a>0, on définit  $0^a$  en posant  $0^a=0$ . La fonction

$$\varphi_a: \mathbb{R}_+ \longrightarrow \mathbb{R} \\
x \longmapsto x^a$$

est alors continue sur  $\mathbb{R}_+$  et dérivable sur :

 $-\mathbb{R}_+$  lorsque  $a \geqslant 1$  avec :

$$\forall x \in \mathbb{R}_{+} \quad \varphi_{a}'(x) = ax^{a-1}$$

 $-\mathbb{R}_{+}^{*}$  lorsque a < 1 avec :

$$\forall x \in \mathbb{R}_{+}^{*} \quad \varphi_{a}'(x) = ax^{a-1}$$



# 1.5 Croissances comparées

Proposition 19. Soit  $\alpha, \beta > 0$  et  $n \in \mathbb{N}^*$ . Alors:  $\frac{e^{\alpha x}}{x^{\beta}} \xrightarrow[x \to +\infty]{} + \infty \qquad \frac{x^{\alpha}}{(\ln x)^{\beta}} \xrightarrow[x \to +\infty]{} + \infty$  $x^{\alpha} (\ln x)^{n} \xrightarrow[x \to 0]{} 0$ 

#### ${\bf Remarques:}$

 $\Rightarrow$  Mnémotechniquement, on dit qu'en 0 et en  $+\infty$ , l'exponentielle l'emporte sur la puissance qui l'emporte sur le logarithme.

# $\mathbf{Exemples}:$

⇒ Calculer les limites suivantes

$$\frac{(\ln x)^2}{e^x} \quad \text{en } +\infty, \qquad \frac{1}{x} \cdot e^{-\frac{1}{x^2}} \quad \text{en } 0, \qquad \left|\ln x\right|^x \quad \text{en } 0$$

# 2 Fonctions trigonométriques

# 2.1 Fonctions trigonométriques directes

**Proposition 20.** Les fonctions sin, cos et tan sont  $C^{\infty}$  sur leur ensemble de définition et :

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \qquad \sin^{(n)} x = \sin\left(x + n\frac{\pi}{2}\right)$$

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \qquad \cos^{(n)} x = \cos\left(x + n\frac{\pi}{2}\right)$$

$$\forall x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi\mathbb{Z}\right) \qquad \tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

### Exemples:

 $\Rightarrow$  Montrer que

$$\forall x \in \mathbb{R}_+ \quad \sin x \leqslant x \text{ et } \forall x \in \left[0, \frac{\pi}{2}\right] \quad \sin x \geqslant \frac{2}{\pi}x$$

 $\Rightarrow$  Calculer la dérivée *n*-ième de la fonction d'expression  $\sin^2 x$ .







### **2.2 Fonction** Arcsin

**Définition 8.** Pour tout  $y \in [-1,1]$ , il existe un unique  $x \in [-\pi/2, \pi/2]$  tel que  $\sin x = y$ ; on le note x = Arcsin y. On définit alors la fonction :

$$Arcsin: [-1,1] \longrightarrow \mathbb{R}$$
$$y \longmapsto Arcsin y$$

# ${\bf Remarques:}$

 $\Rightarrow$  Par définition de la fonction Arcsin

$$\forall x \in [-1, 1] \quad -\frac{\pi}{2} \leqslant \operatorname{Arcsin} x \leqslant \frac{\pi}{2}$$

# Proposition 21. On a:

$$\forall x \in [-1, 1]$$
  $\sin(\operatorname{Arcsin} x) = x$   
 $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$   $\operatorname{Arcsin}(\sin x) = x$ 

#### Exemples:

□ Calculer

$$\operatorname{Arcsin}(1), \quad \operatorname{Arcsin}\left(\sin\frac{\pi}{7}\right), \quad \operatorname{Arcsin}\left(\sin\frac{5\pi}{7}\right), \quad \operatorname{Arcsin}\left(\cos\frac{\pi}{5}\right)$$

#### Proposition 22.

- Arcsin est injective :  $\forall x, y \in [-1, 1]$  Arcsin  $x = Arcsin y \Longrightarrow x = y$
- Arcsin réalise une surjection de [-1,1] dans  $[-\pi/2,\pi/2]$  :

$$\forall y \in [-\pi/2, \pi/2] \quad \exists x \in [-1, 1] \quad \operatorname{Arcsin} x = y$$

# Proposition 23.

- Arcsin est strictement croissante sur [-1, 1].
- Arcsin est impaire.

# Exemples:

⇒ On pose

$$x = Arcsin \, \frac{1 + \sqrt{5}}{4}$$

Calculer  $\cos(4x)$  puis en déduire x.

# Proposition 24.

- Arcsin est continue sur [-1,1].
- Arcsin est dérivable sur ]-1,1[ et :

$$\forall x \in ]-1,1[ \quad \operatorname{Arcsin}' x = \frac{1}{\sqrt{1-x^2}}$$

— Arcsin est  $C^{\infty}$  sur ]-1,1[.

# Exemples:

⇒ Montrer que

$$\forall x \in [0,1] \quad x \leqslant \operatorname{Arcsin} x \leqslant \frac{x}{\sqrt{1-x^2}}$$

⇒ Calculer



# 2.3 Fonction Arccos

**Définition 9.** Pour tout  $y \in [-1, 1]$ , il existe un unique  $x \in [0, \pi]$  tel que  $\cos x = y$ ; on le note  $x = \operatorname{Arccos} y$ . On définit alors la fonction :

$$\begin{array}{cccc} \operatorname{Arccos}: [-1,1] & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \operatorname{Arccos} y \end{array}$$

#### Remarques:

⇒ Par définition de la fonction Arccos

$$\forall x \in [-1, 1] \quad 0 \leqslant \operatorname{Arccos} x \leqslant \pi$$

Proposition 25. On a:

$$\forall x \in [-1, 1]$$
  $\cos(\operatorname{Arccos} x) = x$   
 $\forall x \in [0, \pi]$   $\operatorname{Arccos}(\cos x) = x$ 

#### Exemples:

⇒ Calculer

$$\operatorname{Arccos}\left(-\frac{1}{2}\right), \quad \operatorname{Arccos}\left(\cos\frac{4\pi}{3}\right)$$

- $\Rightarrow$  Simplifier Arccos  $(\cos x) \frac{1}{2} \operatorname{Arccos} (\cos(2x))$  pour tout  $x \in [0, 2\pi]$ .
- Arr Calculer  $\cos(3\operatorname{Arccos} x)$ . Plus généralement, montrer que pour tout  $n \in \mathbb{N}$ ,  $\cos(n\operatorname{Arccos} x)$  est un polynôme en x.

### Proposition 26.

- Arccos est injective:  $\forall x, y \in [-1, 1]$  Arccos  $x = \text{Arccos } y \Longrightarrow x = y$
- Arccos réalise une surjection de [-1,1] dans  $[0,\pi]$ :

$$\forall y \in [0, \pi] \quad \exists x \in [-1, 1] \quad \operatorname{Arccos} x = y$$

#### **Proposition 27.** Arccos est strictement décroissante sur [-1,1].

#### Proposition 28.

- Arccos est continue sur [-1, 1].
- Arccos est dérivable sur ]-1,1[ et :

$$\forall x \in ]-1,1[ \quad \operatorname{Arccos}' x = \frac{-1}{\sqrt{1-x^2}}$$

— Arccos est  $C^{\infty}$  sur ]-1,1[.



#### Exemples:

 $\ \, \ \,$  À l'aide d'un changement de variable judicieux, déterminer la limite lorsque x tend vers 0 de

$$\frac{\operatorname{Arccos}(1-x)}{\sqrt{x}}$$

#### 2.4 Fonction Arctan

**Définition 10.** Pour tout  $y \in \mathbb{R}$ , il existe un unique  $x \in ]-\pi/2, \pi/2[$  tel que  $\tan x = y$ ; on le note  $x = \operatorname{Arctan} y$ . On définit alors la fonction :

$$Arctan : \mathbb{R} \longrightarrow \mathbb{R}$$
$$y \longmapsto Arctan y$$

#### Remarques:

⇒ Par définition de la fonction Arctan

$$\forall x \in \mathbb{R} \quad -\frac{\pi}{2} < \operatorname{Arctan} x < \frac{\pi}{2}$$

Proposition 29. On a:

$$\forall x \in \mathbb{R}$$
  $\tan(\operatorname{Arctan} x) = x$   
 $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$   $\operatorname{Arctan}(\tan x) = x$ 

#### Exemples:

- $\Rightarrow$  Calculer Arctan  $\left(\tan \frac{1789\pi}{45}\right)$ .
- ⇒ Le langage de programmation Shadok dispose de la fonction Arctan mais pas des fonctions Arcsin et Arccos. Définissez ces dernières à partir de la fonction Arctan.

# Proposition 30.

- Arctan est injective:  $\forall x, y \in \mathbb{R}$  Arctan  $x = \operatorname{Arctan} y \Longrightarrow x = y$
- Arctan réalise une surjection de  $\mathbb{R}$  dans  $]-\pi/2,\pi/2[$  :

$$\forall y \in ]-\pi/2, \pi/2[ \quad \exists x \in \mathbb{R} \quad \operatorname{Arctan} x = y$$

# Proposition 31.

— Arctan est strictement croissante sur  $\mathbb{R}$  et :

$$\operatorname{Arctan} x \xrightarrow[x \to -\infty]{} -\frac{\pi}{2} \ et \ \operatorname{Arctan} x \xrightarrow[x \to +\infty]{} \frac{\pi}{2}$$

— Arctan est impaire.

# Exemples:

 $\Rightarrow$  Résoudre l'équation  $Arctan(2x) + Arctan(3x) = \frac{\pi}{4}$ .

#### Proposition 32.

- Arctan est continue sur  $\mathbb{R}$ .
- Arctan est dérivable sur  $\mathbb{R}$  et :

$$\forall x \in \mathbb{R} \quad \operatorname{Arctan}' x = \frac{1}{1+x^2}$$

— Arctan  $est\ \mathcal{C}^{\infty}\ sur\ \mathbb{R}$ .

#### Exemples:

 $\implies$  Montrer que pour tout  $x \ge 0$ , Arctan  $x \le x$ . En déduire que

$$4 \arctan \frac{1}{5} - \arctan \frac{1}{239} = \frac{\pi}{4}$$

⇒ Calculer

$$\int \frac{2x+3}{x^2+x+1} \, \mathrm{d}x, \qquad \int \operatorname{Arctan} x \, \mathrm{d}x$$



# 2.5 Formules de trigonométrie réciproque

 $\begin{aligned} & \forall x \in [-1,1] \quad \sin\left(\operatorname{Arcsin} x\right) = x \quad \cos\left(\operatorname{Arcsin} x\right) = \sqrt{1-x^2} \\ & \forall x \in [-1,1] \quad \tan\left(\operatorname{Arcsin} x\right) = \frac{x}{\sqrt{1-x^2}} \\ & \forall x \in [-1,1] \quad \cos\left(\operatorname{Arccos} x\right) = x \quad \sin\left(\operatorname{Arccos} x\right) = \sqrt{1-x^2} \\ & \forall x \in [-1,1] \setminus \{0\} \quad \tan\left(\operatorname{Arccos} x\right) = \frac{\sqrt{1-x^2}}{x} \\ & \forall x \in \mathbb{R} \quad \tan\left(\operatorname{Arctan} x\right) = x \quad \cos\left(\operatorname{Arctan} x\right) = \frac{1}{\sqrt{1+x^2}} \\ & \forall x \in \mathbb{R} \quad \sin\left(\operatorname{Arctan} x\right) = \frac{x}{\sqrt{1+x^2}} \end{aligned}$ 

#### Exemples:

 $\Rightarrow$  Résoudre l'équation  $\arctan x = Arcsin \frac{2x}{1+x^2}$ .

Proposition 34. On 
$$a$$
: 
$$\forall x \in [-1,1] \qquad \operatorname{Arcsin} x + \operatorname{Arccos} x = \frac{\pi}{2}$$
 
$$\forall x \in \mathbb{R}^* \qquad \operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x} = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$$

#### Exemples:

⇒ Calculer la dérivée de la fonction d'expression

$$-\frac{x}{2} + Arcsin\sqrt{\frac{1+\sin x}{2}}$$

En déduire une expression plus simple lorsque  $x \in \left[-\frac{3\pi}{2}, \frac{3\pi}{2}\right]$ . Retrouver ce résultat directement.

$$\forall x \geqslant 0 \quad \frac{x}{1+x^2} \leqslant \operatorname{Arctan} x \leqslant \frac{\pi}{2} - \frac{x}{1+x^2}$$

# 3 Fonctions trigonométriques hyperboliques

# 3.1 Trigonométrie hyperbolique directe

**Définition 11.** On définit les fonctions sh et ch sur  $\mathbb{R}$  par :

$$\forall x \in \mathbb{R} \quad \operatorname{ch} x = \frac{e^x + e^{-x}}{2} \ et \ \operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$

#### Exemples:

 $\Rightarrow$  Résoudre l'équation  $7 \cosh x + 2 \sinh x = 9$ .

# Proposition 35. On a:

$$\forall x \in \mathbb{R} \qquad \operatorname{ch} x + \operatorname{sh} x = e^x$$

$$\forall x \in \mathbb{R} \qquad \operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$$

### Exemples:

 $\Rightarrow$  Pour tout  $x \ge 0$ , on définit

$$y(x) = \arccos \frac{1}{\operatorname{ch} x}$$

Montrer que  $y(x) \in [0, \pi/2[$ , calculer  $1 + \tan y^2(x)$  puis en déduire une autre expression de y(x).

**Proposition 36.** ch est sh sont de classe  $C^{\infty}$  sur  $\mathbb{R}$  et :

$$\forall x \in \mathbb{R}$$
  $\operatorname{ch}' x = \operatorname{sh} x \ et \ \operatorname{sh}' x = \operatorname{ch} x$ 

#### Proposition 37.

- ch est paire et sh est impaire.
- On a:

$$\operatorname{ch} x \xrightarrow[x \to +\infty]{} +\infty \ et \ \operatorname{ch} x \xrightarrow[x \to -\infty]{} +\infty$$

$$\operatorname{sh} x \xrightarrow[x \to +\infty]{} +\infty \ et \ \operatorname{sh} x \xrightarrow[x \to -\infty]{} -\infty$$

# Remarques:

 $\, \, {\rm \ D} \,$  Si f et g sont deux fonctions respectivement paires et impaires telles que

$$\forall x \in \mathbb{R} \quad e^x = f(x) + g(x)$$

alors f = ch et g = sh. C'est pourquoi on dit parfois que ch est la partie paire de l'exponentielle et que sh est sa partie impaire.

# Proposition 38.

- ch est strictement décroissante sur  $\mathbb{R}_{-}$  et strictement croissante sur  $\mathbb{R}_{+}$ .
- sh est strictement croissante sur  $\mathbb{R}$ .
- $-\forall x \in \mathbb{R} \quad \operatorname{ch} x \geqslant 1$
- $\ \forall x \in \mathbb{R} \quad [\sh x = 0 \Longleftrightarrow x = 0] \ et \ [\sh x \geqslant 0 \Longleftrightarrow x \geqslant 0]$

### Proposition 39.

— sh est injective :

$$\forall x, y \in \mathbb{R} \quad \operatorname{sh} x = \operatorname{sh} y \Longrightarrow x = y$$

— sh réalise une surjection de  $\mathbb{R}$  dans  $\mathbb{R}$ :

$$\forall y \in \mathbb{R} \quad \exists x \in \mathbb{R} \quad \operatorname{sh} x = y$$

— ch n'est pas injective sur  $\mathbb{R}$ , mais :

$$\forall x, y \in \mathbb{R} \quad \operatorname{ch} x = \operatorname{ch} y \Longrightarrow [x = y \ ou \ x = -y]$$

En particulier, ch est injective sur  $\mathbb{R}_+$ .

— ch réalise une surjection de  $\mathbb{R}_+$  dans  $[1, +\infty[$  :

$$\forall y \in [1, +\infty[ \quad \exists x \in \mathbb{R}_+ \quad \operatorname{ch} x = y]$$



#### Remarques:

⇒ Le graphe de la fonction cosh est obtenu en laissant pendre une chaîne entre deux points. C'est pourquoi, le graphe de cette fonction est aussi appelé « chaînette ».

**Définition 12.** On définit la fonction th sur  $\mathbb{R}$  par :

**Proposition 40.** th est de classe  $C^{\infty}$  sur  $\mathbb{R}$  et :

$$\forall x \in \mathbb{R} \quad \text{th}' x = 1 - \text{th}^2 x = \frac{1}{\text{ch}^2 x}$$

En particulier th est strictement croissante sur  $\mathbb{R}$ .

#### Proposition 41.

- th est impaire.
- On a:

$$\operatorname{th} x \xrightarrow[x \to +\infty]{} 1 et \operatorname{th} x \xrightarrow[x \to -\infty]{} -1$$

#### Proposition 42.

- th est injective :  $\forall x, y \in \mathbb{R}$  th  $x = \text{th } y \Longrightarrow x = y$
- th réalise une surjection de  $\mathbb{R}$  dans ]-1,1[:

$$\forall y \in ]-1,1[ \exists x \in \mathbb{R} \quad \text{th } x = y$$



**Proposition 43.** La substitution :

$$\cos \rightarrow \text{ch}$$
 $\sin \rightarrow i \text{sh}$ 
 $\tan \rightarrow i \text{th}$ 

transforme une formule de trigonométrie circulaire en une formule de trigonométrie hyperbolique.

### Exemples:

⇒ Calculer

$$\sinh\left(\ln\frac{1+\sqrt{5}}{2}\right) \text{ et } \cosh\left(\ln\frac{1+\sqrt{5}}{2}\right)$$

En déduire les solutions de l'équation  $\operatorname{ch} x - \sqrt{5} \operatorname{sh} x = 2 \operatorname{sh}(3x)$ .

 $\Rightarrow$  Pour tout  $x \in \mathbb{R}$  et  $n \in \mathbb{N}$ , calculer

$$\sum_{k=0}^{n} \operatorname{sh}(kx)$$

 $\Rightarrow$  Calculer

$$\int \operatorname{ch}^3 x \, \mathrm{d}x, \qquad \int \operatorname{ch}^4 x \, \mathrm{d}x$$