Data Mining

Name:

Surname:

Badge number:

Exercize I (ISLR, Chapter 6, Applied Exercize 10)

We have seen that as the number of predictors used in a model increases, the training error will necessarily decrease, but the test error may not. We will now explore this in a simulated data set.

a. Generate a simulated data set as follows:

```
set.seed(123)
p = 20
n = 1000
X = matrix(rnorm(p*n), ncol=p)
beta = c(rep(1,p/4),rep(0,3*p/4))
y = X%*%beta + rnorm(n)
```

b. Split your data set into a training set containing the first 100 observations and a test set containing the last 900 observations.

write here

c. Perform best subset selection on the training set, and **plot in output** the training set MSE associated with the best model of each size.

write here

d. Plot in output the test set MSE associated with the best model of each size.

write here

e. **Print in output** the model size for which the test set MSE takes on its minimum value. Comment on your results.

```
# write here
```

Write here.

Exercize 2

The table below provides a training data set containing six observations, three predictors, and one qualitative response variable.

obs.	X1	X2	Х3	у
1	0	3	0	red
2	2	0	0	red
3	0	1	3	red
4	0	1	2	green
5	-1	0	1	green
6	1	1	1	red

Suppose we wish to use this data set to make a prediction for Y when $X_1 = X_2 = X_3 = 0$ using K-nearest neighbors.

a. Print in output the Euclidean distance between each observation and the test point, $X_1 = X_2 =$

$$X_3 = 0.$$

write here

b. What is your prediction with K = 1?

write here

c. What is your prediction with K = 3?

write here

d. If the Bayes decision boundary in this problem is highly nonlinear, then would we expect the best value for K to be large or small? Why?

Write here.