- Course Title: Engineering Cost Analysis & Economy (ENGR 222)
- Session: Fall 2024
- Instructor: Sudipta Chowdhury

(chowdhurys@marshall.edu)

- Class Time: TR 9.30 AM-10.45 AM
- Office hours: TR 11.00 AM-12.30 PM



### Present Worth Techniques to Evaluate and Select Alternatives

### Two types of economic proposals

Mutually Exclusive (ME) Alternatives: *Only one* can be selected; Compete against each other

Independent Projects: *More than one* can be selected; Compete only against DN

Do Nothing (DN) – An ME alternative or independent project to maintain the current approach; no new costs, revenues or savings

### Two types of cash flow estimates

Revenue: Alternatives include estimates of costs (cash outflows) and revenues (cash inflows)

Cost: Alternatives include only costs; revenues and savings assumed equal for all alternatives

### **PW Analysis of Alternatives**

Convert all cash flows to PW using MARR

Precede costs by minus sign; receipts by plus sign

#### **EVALUATION**

For one project, if PW > 0, it is justified

For mutually exclusive alternatives, select one with *numerically largest PW* 

For independent projects, select all with PW > 0

### Selection of Alternatives by PW

Example 1. For the alternatives shown below, which should be selected if they are (a) mutually exclusive; (b) independent?

| Project ID | Present Worth |
|------------|---------------|
| Α          | \$30,000      |
| В          | \$12,500      |
| С          | \$-4,000      |
| D          | \$ 2,000      |

#### **Example 2: PW Evaluation of Equal-Life ME Alts.**

Alternative X has a first cost of \$20,000, an operating cost of \$9,000 per year, and a \$5,000 salvage value after 5 years. Alternative Y will cost \$35,000 with an operating cost of \$4,000 per year and a salvage value of \$7,000 after 5 years. At an MARR of 12% per year, which should be selected?

| 12% |                              |                            |                           | Compound Ir                   | nterest Factors              |                            |                               |                              | 12% |
|-----|------------------------------|----------------------------|---------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----|
|     | Single Pa                    | yment                      | 121                       | Uniform Payment Series        |                              |                            |                               | Gradient                     |     |
|     | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Sinking<br>Fund<br>Factor | Capital<br>Recovery<br>Factor | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Gradient<br>Uniform<br>Series | Gradient<br>Present<br>Worth |     |
| n   | Find F<br>Given P<br>F/P     | Find P<br>Given F<br>P/F   | Find A<br>Given F<br>A/F  | Find A<br>Given P<br>A/P      | Find F<br>Given A<br>F/A     | Find P<br>Given A<br>P/A   | Find A Given G A/G            | Find P<br>Given G<br>P/G     | n   |
| 1   | 1.120                        | .8929                      | 1.0000                    | 1.1200                        | 1.000                        | 0.893                      | 0                             | 0                            | 1   |
| 2   | 1.254                        | .7972                      | .4717                     | .5917                         | 2.120                        | 1.690                      | 0.472                         | 0.797                        | 2   |
| 3   | 1.405                        | .7118                      | .2963                     | .4163                         | 3.374                        | 2.402                      | 0.925                         | 2.221                        | 3   |
| 4   | 1.574                        | .6355                      | .2092                     | .3292                         | 4.779                        | 3.037                      | 1.359                         | 4.127                        | 4   |
| 5   | 1.762                        | .5674                      | .1574                     | .2774                         | 6.353                        | 3.605                      | 1.775                         | 6.397                        | 5   |
| 6   | 1.974                        | .5066                      | .1232                     | .2432                         | 8.115                        | 4.111                      | 2.172                         | 8.930                        | 6   |
| 7   | 2.211                        | .4523                      | .0991                     | .2191                         | 10.089                       | 4.564                      | 2.551                         | 11.644                       | 7   |
| 8   | 2.476                        | .4039                      | .0813                     | .2013                         | 12.300                       | 4.968                      | 2.913                         | 14.471                       | 8   |
| 9   | 2.773                        | .3606                      | .0677                     | .1877                         | 14.776                       | 5.328                      | 3.257                         | 17.356                       | 9   |
| 10  | 3.106                        | .3220                      | .0570                     | .1770                         | 17.549                       | 5.650                      | 3.585                         | 20.254                       | 10  |
| 11  | 3.479                        | .2875                      | .0484                     | .1684                         | 20.655                       | 5.938                      | 3.895                         | 23.129                       | 11  |
| 12  | 3.896                        | .2567                      | .0414                     | .1614                         | 24.133                       | 6.194                      | 4.190                         | 25.952                       | 12  |
| 13  | 4.363                        | .2292                      | .0357                     | .1557                         | 28.029                       | 6.424                      | 4.468                         | 28.702                       | 13  |
| 14  | 4.887                        | .2046                      | .0309                     | .1509                         | 32.393                       | 6.628                      | 4.732                         | 31.362                       | 14  |
| 15  | 5.474                        | .1827                      | .0268                     | .1468                         | 37.280                       | 6.811                      | 4.980                         | 33.920                       | 15  |

**Example 3.** One of two methods must be used to produce expansion anchors. Method A costs \$80,000 initially and will have a \$15,000 salvage value after 3 years. The operating cost with this method will be \$30,000 per year. Method B will have a first cost of \$120,000, an operating cost of \$8000 per year, and a \$40,000 salvage value after its 3-year life. At an interest rate of 12% per year, which method should be used on the basis of a present worth analysis?

| 12% |                              |                            |                           | Compound Ir                   | nterest Factors              |                            |                               |                              | 12% |
|-----|------------------------------|----------------------------|---------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----|
|     | Single Pa                    | yment                      | 121                       | Uniform Payment Series        |                              |                            |                               | Gradient                     |     |
|     | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Sinking<br>Fund<br>Factor | Capital<br>Recovery<br>Factor | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Gradient<br>Uniform<br>Series | Gradient<br>Present<br>Worth |     |
| n   | Find F<br>Given P<br>F/P     | Find P<br>Given F<br>P/F   | Find A<br>Given F<br>A/F  | Find A<br>Given P<br>A/P      | Find F<br>Given A<br>F/A     | Find P<br>Given A<br>P/A   | Find A Given G A/G            | Find P<br>Given G<br>P/G     | n   |
| 1   | 1.120                        | .8929                      | 1.0000                    | 1.1200                        | 1.000                        | 0.893                      | 0                             | 0                            | 1   |
| 2   | 1.254                        | .7972                      | .4717                     | .5917                         | 2.120                        | 1.690                      | 0.472                         | 0.797                        | 2   |
| 3   | 1.405                        | .7118                      | .2963                     | .4163                         | 3.374                        | 2.402                      | 0.925                         | 2.221                        | 3   |
| 4   | 1.574                        | .6355                      | .2092                     | .3292                         | 4.779                        | 3.037                      | 1.359                         | 4.127                        | 4   |
| 5   | 1.762                        | .5674                      | .1574                     | .2774                         | 6.353                        | 3.605                      | 1.775                         | 6.397                        | 5   |
| 6   | 1.974                        | .5066                      | .1232                     | .2432                         | 8.115                        | 4.111                      | 2.172                         | 8.930                        | 6   |
| 7   | 2.211                        | .4523                      | .0991                     | .2191                         | 10.089                       | 4.564                      | 2.551                         | 11.644                       | 7   |
| 8   | 2.476                        | .4039                      | .0813                     | .2013                         | 12.300                       | 4.968                      | 2.913                         | 14.471                       | 8   |
| 9   | 2.773                        | .3606                      | .0677                     | .1877                         | 14.776                       | 5.328                      | 3.257                         | 17.356                       | 9   |
| 10  | 3.106                        | .3220                      | .0570                     | .1770                         | 17.549                       | 5.650                      | 3.585                         | 20.254                       | 10  |
| 11  | 3.479                        | .2875                      | .0484                     | .1684                         | 20.655                       | 5.938                      | 3.895                         | 23.129                       | 11  |
| 12  | 3.896                        | .2567                      | .0414                     | .1614                         | 24.133                       | 6.194                      | 4.190                         | 25.952                       | 12  |
| 13  | 4.363                        | .2292                      | .0357                     | .1557                         | 28.029                       | 6.424                      | 4.468                         | 28.702                       | 13  |
| 14  | 4.887                        | .2046                      | .0309                     | .1509                         | 32.393                       | 6.628                      | 4.732                         | 31.362                       | 14  |
| 15  | 5.474                        | .1827                      | .0268                     | .1468                         | 37.280                       | 6.811                      | 4.980                         | 33.920                       | 15  |

**Example 4.** Leonard, a company that manufactures explosion-proof motors, is considering two alternatives for expanding its international export capacity. Option 1 requires equipment purchases of \$900,000 now and \$560,000 two years from now, with annual M&O costs of \$79,000 in years 1 through 10. Option 2 involves subcontracting some of the production at costs of \$280,000 per year beginning *now* through the end of year 10. Neither option will have a significant salvage value. Use a present worth analysis to determine which option is more attractive at the company's MARR of 20% per year.

| 20% |                              |                            |                           | Compound Ir                   | nterest Factors              |                            |                               |                              | 20% |
|-----|------------------------------|----------------------------|---------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----|
|     | Single Pa                    | yment                      |                           | Uniform Payment Series        |                              |                            |                               | Gradient                     | -   |
|     | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Sinking<br>Fund<br>Factor | Capital<br>Recovery<br>Factor | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Gradient<br>Uniform<br>Series | Gradient<br>Present<br>Worth |     |
| n   | Find F<br>Given P<br>F/P     | Find P<br>Given F<br>P/F   | Find A<br>Given F<br>A/F  | Find A Given P A/P            | Find F<br>Given A<br>F/A     | Find P<br>Given A<br>P/A   | Find A<br>Given G<br>A/G      | Find P<br>Given G<br>P/G     | n   |
| 1   | 1.200                        | .8333                      | 1.0000                    | 1.2000                        | 1.000                        | 0.833                      | 0                             | 0                            | 1   |
| 2   | 1.440                        | .6944                      | .4545                     | .6545                         | 2.200                        | 1.528                      | 0.455                         | 0.694                        | 2   |
| 3   | 1.728                        | .5787                      | .2747                     | .4747                         | 3.640                        | 2.106                      | 0.879                         | 1.852                        | 3   |
| 4   | 2.074                        | .4823                      | .1863                     | .3863                         | 5.368                        | 2.589                      | 1.274                         | 3.299                        | 4   |
| 5   | 2.488                        | .4019                      | .1344                     | .3344                         | 7.442                        | 2.991                      | 1.641                         | 4.906                        | 5   |
| 6   | 2.986                        | .3349                      | .1007                     | .3007                         | 9.930                        | 3.326                      | 1.979                         | 6.581                        | 6   |
| 7   | 3.583                        | .2791                      | .0774                     | .2774                         | 12.916                       | 3.605                      | 2.290                         | 8.255                        | 7   |
| 8   | 4.300                        | .2326                      | .0606                     | .2606                         | 16.499                       | 3.837                      | 2.576                         | 9.883                        | 8   |
| 9   | 5.160                        | .1938                      | .0481                     | .2481                         | 20.799                       | 4.031                      | 2.836                         | 11.434                       | 9   |
| 10  | 6.192                        | .1615                      | .0385                     | .2385                         | 25.959                       | 4.192                      | 3.074                         | 12.887                       | 10  |
| 11  | 7.430                        | .1346                      | .0311                     | .2311                         | 32.150                       | 4.327                      | 3.289                         | 14.233                       | 11  |
| 12  | 8.916                        | .1122                      | .0253                     | .2253                         | 39.581                       | 4.439                      | 3.484                         | 15.467                       | 12  |
| 13  | 10.699                       | .0935                      | .0206                     | .2206                         | 48.497                       | 4.533                      | 3.660                         | 16.588                       | 13  |
| 14  | 12.839                       | .0779                      | .0169                     | .2169                         | 59.196                       | 4.611                      | 3.817                         | 17.601                       | 14  |
| 15  | 15.407                       | .0649                      | .0139                     | .2139                         | 72.035                       | 4.675                      | 3.959                         | 18.509                       | 15  |

#### **PW of Different-Life Alternatives**

Must compare alternatives for equal service (i.e., alternatives must end at the same time)

#### Two ways to compare equal service:

- Least common multiple (LCM) of lives
- Specified study period

(The LCM procedure is used unless otherwise specified)

### **Example 5: Different-Life Alternatives**

Compare the machines below using present worth analysis at i = 10% per year

|                      | <u>Machine A</u> | <u> Machine B</u> |  |  |
|----------------------|------------------|-------------------|--|--|
| First cost, \$       | 20,000           | 30,000            |  |  |
| Annual cost, \$/year | 9000             | 7000              |  |  |
| Salvage value, \$    | 4000             | 6000              |  |  |
| Life, years          | 3                | 6                 |  |  |

| 10% |                              |                            |                           | Compound I                    | nterest Factors              |                            |                               |                              | 10% |
|-----|------------------------------|----------------------------|---------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----|
|     | Single Payment               |                            | Uniform Payment Series    |                               |                              |                            | Arithmetic                    |                              |     |
|     | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Sinking<br>Fund<br>Factor | Capital<br>Recovery<br>Factor | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Gradient<br>Uniform<br>Series | Gradient<br>Present<br>Worth |     |
| n   | Find F<br>Given P<br>F/P     | Find P<br>Given F<br>P/F   | Find A<br>Given F<br>A/F  | Find A<br>Given P<br>A/P      | Find F<br>Given A<br>F/A     | Find P<br>Given A<br>P/A   | Find A<br>Given G<br>A/G      | Find P<br>Given G<br>P/G     | n   |
| 1   | 1.100                        | .9091                      | 1.0000                    | 1.1000                        | 1.000                        | 0.909                      | 0                             | 0                            | 1   |
| 2   | 1.210                        | .8264                      | .4762                     | .5762                         | 2.100                        | 1.736                      | 0.476                         | 0.826                        | 2   |
| 3   | 1.331                        | .7513                      | .3021                     | .4021                         | 3.310                        | 2.487                      | 0.937                         | 2.329                        | 3   |
| 4   | 1.464                        | .6830                      | .2155                     | .3155                         | 4.641                        | 3.170                      | 1.381                         | 4.378                        | 4   |
| 5   | 1.611                        | .6209                      | .1638                     | .2638                         | 6.105                        | 3.791                      | 1.810                         | 6.862                        | 5   |
| 6   | 1.772                        | .5645                      | .1296                     | .2296                         | 7.716                        | 4.355                      | 2.224                         | 9.684                        | 6   |
| 7   | 1.949                        | .5132                      | .1054                     | .2054                         | 9.487                        | 4.868                      | 2.622                         | 12.763                       | 7   |
| 8   | 2.144                        | .4665                      | .0874                     | .1874                         | 11.436                       | 5.335                      | 3.004                         | 16.029                       | 8   |
| 9   | 2.358                        | .4241                      | .0736                     | .1736                         | 13.579                       | 5.759                      | 3.372                         | 19.421                       | 9   |
| 10  | 2.594                        | .3855                      | .0627                     | .1627                         | 15.937                       | 6.145                      | 3.725                         | 22.891                       | 10  |
| 11  | 2.853                        | .3505                      | .0540                     | .1540                         | 18.531                       | 6.495                      | 4.064                         | 26.396                       | 11  |
| 12  | 3.138                        | .3186                      | .0468                     | .1468                         | 21.384                       | 6.814                      | 4.388                         | 29.901                       | 12  |
| 13  | 3.452                        | .2897                      | .0408                     | .1408                         | 24.523                       | 7.103                      | 4.699                         | 33.377                       | 13  |
| 14  | 3.797                        | .2633                      | .0357                     | .1357                         | 27.975                       | 7.367                      | 4.996                         | 36.801                       | 14  |
| 15  | 4.177                        | .2394                      | .0315                     | .1315                         | 31.772                       | 7.606                      | 5.279                         | 40.152                       | 15  |

### **PW Evaluation Using a Study Period**

Once a study period is specified, all cash flows after this time are ignored

Salvage value is the estimated market value at the end of study period

Short study periods are often defined by management when business goals are short-term

Study periods are commonly used in equipment replacement analysis

#### **Example 6: Study Period PW Evaluation**

Compare the alternatives below using present worth analysis at i = 10% per year with a 3-year study period

|                          | <u>Machine A</u> | Machine B                                       |
|--------------------------|------------------|-------------------------------------------------|
| First cost, \$           | -20,000          | <b>- 30,000</b>                                 |
| Annual cost, \$/year     | <b>- 9,000</b>   | <b>- 7,000</b>                                  |
| Salvage/market value, \$ | 4,000            | 6,000 (after 6 years)<br>10,000 (after 3 years) |
| Life, years              | 3                | 6                                               |

| 10% |                              |                            |                           | Compound I                    | nterest Factors              |                            |                               |                              | 10% |
|-----|------------------------------|----------------------------|---------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----|
|     | Single Payment               |                            | Uniform Payment Series    |                               |                              |                            | Arithmetic                    |                              |     |
|     | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Sinking<br>Fund<br>Factor | Capital<br>Recovery<br>Factor | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Gradient<br>Uniform<br>Series | Gradient<br>Present<br>Worth |     |
| n   | Find F<br>Given P<br>F/P     | Find P<br>Given F<br>P/F   | Find A<br>Given F<br>A/F  | Find A<br>Given P<br>A/P      | Find F<br>Given A<br>F/A     | Find P<br>Given A<br>P/A   | Find A<br>Given G<br>A/G      | Find P<br>Given G<br>P/G     | n   |
| 1   | 1.100                        | .9091                      | 1.0000                    | 1.1000                        | 1.000                        | 0.909                      | 0                             | 0                            | 1   |
| 2   | 1.210                        | .8264                      | .4762                     | .5762                         | 2.100                        | 1.736                      | 0.476                         | 0.826                        | 2   |
| 3   | 1.331                        | .7513                      | .3021                     | .4021                         | 3.310                        | 2.487                      | 0.937                         | 2.329                        | 3   |
| 4   | 1.464                        | .6830                      | .2155                     | .3155                         | 4.641                        | 3.170                      | 1.381                         | 4.378                        | 4   |
| 5   | 1.611                        | .6209                      | .1638                     | .2638                         | 6.105                        | 3.791                      | 1.810                         | 6.862                        | 5   |
| 6   | 1.772                        | .5645                      | .1296                     | .2296                         | 7.716                        | 4.355                      | 2.224                         | 9.684                        | 6   |
| 7   | 1.949                        | .5132                      | .1054                     | .2054                         | 9.487                        | 4.868                      | 2.622                         | 12.763                       | 7   |
| 8   | 2.144                        | .4665                      | .0874                     | .1874                         | 11.436                       | 5.335                      | 3.004                         | 16.029                       | 8   |
| 9   | 2.358                        | .4241                      | .0736                     | .1736                         | 13.579                       | 5.759                      | 3.372                         | 19.421                       | 9   |
| 10  | 2.594                        | .3855                      | .0627                     | .1627                         | 15.937                       | 6.145                      | 3.725                         | 22.891                       | 10  |
| 11  | 2.853                        | .3505                      | .0540                     | .1540                         | 18.531                       | 6.495                      | 4.064                         | 26.396                       | 11  |
| 12  | 3.138                        | .3186                      | .0468                     | .1468                         | 21.384                       | 6.814                      | 4.388                         | 29.901                       | 12  |
| 13  | 3.452                        | .2897                      | .0408                     | .1408                         | 24.523                       | 7.103                      | 4.699                         | 33.377                       | 13  |
| 14  | 3.797                        | .2633                      | .0357                     | .1357                         | 27.975                       | 7.367                      | 4.996                         | 36.801                       | 14  |
| 15  | 4.177                        | .2394                      | .0315                     | .1315                         | 31.772                       | 7.606                      | 5.279                         | 40.152                       | 15  |

Example 7. Dexcon Technologies, Inc., is evaluating two alternatives to produce its new plastic filament with tribological (i.e., low friction) properties for creating custom bearings for 3-D printers. The estimates associated with each alternative are shown below. Using a MARR of 12% per year, which alternative should you choose based on present worth analysis?

| Method            | DDM      | LS       |
|-------------------|----------|----------|
| First cost, \$    | -164,000 | -370,000 |
| M&O cost, \$/YEAR | -55,000  | -21,000  |
| Salvage value, \$ | 0        | 30,000   |
| Life, years       | 2        | 4        |

| 12% |                              |                            |                           | Compound Ir                                | nterest Factors              |                            |                               |                              | 12% |
|-----|------------------------------|----------------------------|---------------------------|--------------------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----|
|     | Single Pa                    | yment                      |                           | Uniform Payment Series Arithmetic Gradient |                              |                            |                               |                              |     |
|     | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Sinking<br>Fund<br>Factor | Capital<br>Recovery<br>Factor              | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Gradient<br>Uniform<br>Series | Gradient<br>Present<br>Worth |     |
| n   | Find F<br>Given P<br>F/P     | Find P<br>Given F<br>P/F   | Find A<br>Given F<br>A/F  | Find A<br>Given P<br>A/P                   | Find F<br>Given A<br>F/A     | Find P<br>Given A<br>P/A   | Find A<br>Given G<br>A/G      | Find P<br>Given G<br>P/G     | n   |
| 1   | 1.120                        | .8929                      | 1.0000                    | 1.1200                                     | 1.000                        | 0.893                      | 0                             | 0                            | 1   |
| 2   | 1.254                        | .7972                      | .4717                     | .5917                                      | 2.120                        | 1.690                      | 0.472                         | 0.797                        | 2   |
| 3   | 1.405                        | .7118                      | .2963                     | .4163                                      | 3.374                        | 2.402                      | 0.925                         | 2.221                        | 3   |
| 4   | 1.574                        | .6355                      | .2092                     | .3292                                      | 4.779                        | 3.037                      | 1.359                         | 4.127                        | 4   |
| 5   | 1.762                        | .5674                      | .1574                     | .2774                                      | 6.353                        | 3.605                      | 1.775                         | 6.397                        | 5   |
| 6   | 1.974                        | .5066                      | .1232                     | .2432                                      | 8.115                        | 4.111                      | 2.172                         | 8.930                        | 6   |
| 7   | 2.211                        | .4523                      | .0991                     | .2191                                      | 10.089                       | 4.564                      | 2.551                         | 11.644                       | 7   |
| 8   | 2.476                        | .4039                      | .0813                     | .2013                                      | 12.300                       | 4.968                      | 2.913                         | 14.471                       | 8   |
| 9   | 2.773                        | .3606                      | .0677                     | .1877                                      | 14.776                       | 5.328                      | 3.257                         | 17.356                       | 9   |
| 10  | 3.106                        | .3220                      | .0570                     | .1770                                      | 17.549                       | 5.650                      | 3.585                         | 20.254                       | 10  |
| 11  | 3.479                        | .2875                      | .0484                     | .1684                                      | 20.655                       | 5.938                      | 3.895                         | 23.129                       | 11  |
| 12  | 3.896                        | .2567                      | .0414                     | .1614                                      | 24.133                       | 6.194                      | 4.190                         | 25.952                       | 12  |
| 13  | 4.363                        | .2292                      | .0357                     | .1557                                      | 28.029                       | 6.424                      | 4.468                         | 28.702                       | 13  |
| 14  | 4.887                        | .2046                      | .0309                     | .1509                                      | 32.393                       | 6.628                      | 4.732                         | 31.362                       | 14  |
| 15  | 5.474                        | .1827                      | .0268                     | .1468                                      | 37.280                       | 6.811                      | 4.980                         | 33.920                       | 15  |

## **Future Worth Analysis**

FW exactly like PW analysis, except calculate FW

Must compare alternatives for equal service (i.e. alternatives must end at the same time)

#### Two ways to compare equal service:

- Least common multiple (LCM) of lives
- Specified study period

(The LCM procedure is used unless otherwise specified)

Example 8. Compare the machines below using future worth analysis at i = 10% per year

|                      | <u>Machine A</u> | <u>Machine B</u> |
|----------------------|------------------|------------------|
| First cost, \$       | -20,000          | -30,000          |
| Annual cost, \$/year | -9000            | -7000            |
| Salvage value, \$    | 4000             | 6000             |
| Life, years          | 3                | 6                |

| 10% |                              |                            |                           | Compound I                    | nterest Factors              |                            |                               |                              | 10% |
|-----|------------------------------|----------------------------|---------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----|
|     | Single Payment               |                            | Uniform Payment Series    |                               |                              |                            | Arithmetic                    |                              |     |
|     | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Sinking<br>Fund<br>Factor | Capital<br>Recovery<br>Factor | Compound<br>Amount<br>Factor | Present<br>Worth<br>Factor | Gradient<br>Uniform<br>Series | Gradient<br>Present<br>Worth |     |
| n   | Find F<br>Given P<br>F/P     | Find P<br>Given F<br>P/F   | Find A<br>Given F<br>A/F  | Find A<br>Given P<br>A/P      | Find F<br>Given A<br>F/A     | Find P<br>Given A<br>P/A   | Find A<br>Given G<br>A/G      | Find P<br>Given G<br>P/G     | n   |
| 1   | 1.100                        | .9091                      | 1.0000                    | 1.1000                        | 1.000                        | 0.909                      | 0                             | 0                            | 1   |
| 2   | 1.210                        | .8264                      | .4762                     | .5762                         | 2.100                        | 1.736                      | 0.476                         | 0.826                        | 2   |
| 3   | 1.331                        | .7513                      | .3021                     | .4021                         | 3.310                        | 2.487                      | 0.937                         | 2.329                        | 3   |
| 4   | 1.464                        | .6830                      | .2155                     | .3155                         | 4.641                        | 3.170                      | 1.381                         | 4.378                        | 4   |
| 5   | 1.611                        | .6209                      | .1638                     | .2638                         | 6.105                        | 3.791                      | 1.810                         | 6.862                        | 5   |
| 6   | 1.772                        | .5645                      | .1296                     | .2296                         | 7.716                        | 4.355                      | 2.224                         | 9.684                        | 6   |
| 7   | 1.949                        | .5132                      | .1054                     | .2054                         | 9.487                        | 4.868                      | 2.622                         | 12.763                       | 7   |
| 8   | 2.144                        | .4665                      | .0874                     | .1874                         | 11.436                       | 5.335                      | 3.004                         | 16.029                       | 8   |
| 9   | 2.358                        | .4241                      | .0736                     | .1736                         | 13.579                       | 5.759                      | 3.372                         | 19.421                       | 9   |
| 10  | 2.594                        | .3855                      | .0627                     | .1627                         | 15.937                       | 6.145                      | 3.725                         | 22.891                       | 10  |
| 11  | 2.853                        | .3505                      | .0540                     | .1540                         | 18.531                       | 6.495                      | 4.064                         | 26.396                       | 11  |
| 12  | 3.138                        | .3186                      | .0468                     | .1468                         | 21.384                       | 6.814                      | 4.388                         | 29.901                       | 12  |
| 13  | 3.452                        | .2897                      | .0408                     | .1408                         | 24.523                       | 7.103                      | 4.699                         | 33.377                       | 13  |
| 14  | 3.797                        | .2633                      | .0357                     | .1357                         | 27.975                       | 7.367                      | 4.996                         | 36.801                       | 14  |
| 15  | 4.177                        | .2394                      | .0315                     | .1315                         | 31.772                       | 7.606                      | 5.279                         | 40.152                       | 15  |

# QUESTIONS?