2019 MMILAB.DIP Seminar Week5(2/6~2/16)

Seong Su Kim

Contents

Motion estimation and Motion vector

- Various search algorithm
- -Exhaustive search, Three step search, Logarithmic search, New three step search, Simple and efficient search, Diamond search

Motion estimation

Motion estimation

- 1. The process of determining motion vectors that describe the transformation from one 2D image to another
- 2. Helps in saving bits by sending encoded difference images which have inherently less entropy as opposed to sending a fully coded frame

Simple difference image

Frame 10

Motion estimation

Motion estimation

The most computationally expensive operation in the entire compression process

fast and computationally inexpensive algorithms needed

Block matching

Mean Absolute Difference(MAD) =
$$rac{1}{N^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} |C_{ij} - R_{ij}|$$

Block matching

Motion vector

Motion vector

Frame t-1

Frame t

Block_size = 8, Search range = 4, Step_size =1

Motion vector - Reconstruction

Frame t-1

Frame t

Estimate Frame t

Evaluation Metrics

Mean Squared Error (MSE) =
$$\frac{1}{N^2}\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}(C_{ij}-R_{ij})^2$$

Lower, better reconstruction

$$PSNR = 10 \log_{10} \frac{(peak \ to \ peak \ value \ of \ original \ data)^2}{MSE}$$

Higher, better reconstruction

Motion vector(Block size)

Reconstruction(Block size)

Motion vector(Search range)

Frame t-1

Frame t

Block size = 8, Step size =1

Search range :2

Reconstruction(Search range)

Frame t

Search range :12

Search range :4

Search range :8

Search range :2

MSE and PSNR

Block size	Operations(MAD)	MSE	PSNR
16	29260	41.143	31.953
8	122608	30.163	33.302
4	501760	19.874	35.114
2	2024164	12.279	37.205

Search range :4

Search range	Operations(MAD)	MSE	PSNR
12	934784	16.894	35.819
8	436272	19.356	35.228
4	122608	30.163	33.302
2	38016	50.108	31.097

Block size:4

Effect of Thresholding

Frame t-1

Frame t

Block size = 8, Search range = 4, Step size = 1

MSE: 30.163 PSNR: 33.302

MAD Threshold =100

MSE: 27.520 PSNR: 33.700

Various search algorithm- Basic concept

The fast motion estimation techniques based on UESA mainly constrain the number of checking points.

UESA = Unimodal Error Surface Assumption

Meaning?

-Residual error of the block matching increases monotonically when the checking point moves away from the location of the global minimum error

Fault?

- Search could fall into a local minimum, which is not the optimal motion vector

And some other assumptions...

- 1. No change in the ambient lighting.
- 2. Objects are rigid
- 3. No objects appeared or left the scene

Frame t-1

Frame t

Block size: 8, Search range:4

Block size : 8 Search range :4

Operations(MAD): 28355

MSE: 24.421 PSNR: 34.220

Block size : 8 Search range :8

Operations(MAD): 35167

MSE: 24.372 PSNR: 34.228

Frame t-1

Frame t

Block size: 8, Step size: 4,2,1

Block size : 8 Step size :4,2,1

Operations(MAD): 41370

MSE: 25.691 PSNR: 33.999

Block size: 8

Search range: 8,4,2

Operations(MAD): 41349

MSE: 28..800 PSNR: 33.503

TSS uses a uniformly allocated search pattern in its first step, which is not very efficient to catch small motions.

For optimization, we should considerate some basic charcteristics of the distribution of global minima

The block motion field of a real world image sequence is usually gentle, smooth, and varies slowly

Global minimum distribution is **center-biased**, instead of distributed uniformly

A New Three-Step Search Algorithm for Block Motion Estimation

Renxiang Li, Bing Zeng, and Ming L. Liou, Senior Member, IEEE

Fig. 1. The motion vector distribution derived from the full search for 100 frames of (a) Salesman sequence and (b) Miss America sequence (block size: 16×16).

Frame t-1

Frame t

Block size: 8, Step size: 4,2,1

SIEMENS

TSS

Block size : 8 Step size :4,2,1

Operations(MAD): 41370

MSE: 25.691 PSNR: 33.999

NTSS

Block size : 8 Step size :4,2,1

Operations(MAD): 41549

MSE: 25.338 PSNR: 34.408

Various search algorithm- Diamond search

A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation

Shan Zhu and Kai-Kuang Ma

Various search algorithm- Diamond search

A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation

Shan Zhu and Kai-Kuang Ma

- (a) Case 1: the corner point. LDSP \rightarrow LDSP
- (b) Case 2: the edge point. LDSP \rightarrow LDSP
- (c) Case 3: the center point. LDSP → SDSP

Various search algorithm- Diamond search

A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation

Shan Zhu and Kai-Kuang Ma

Various search algorithm- Diamond Search

Frame t-1

Frame t

Block size: 8,

Operations: 35439 (39831, 11% decreased)

MSE = 23.337

PSNR = 34.408

A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation

Jianhua Lu and Ming L. Liou

UESA = Unimodal Error Surface Assumption

A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation

Jianhua Lu and Ming L. Liou

A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation

Jianhua Lu and Ming L. Liou

A fast three-step search algorithm with minimum checking points using unimodal error surface assumption Jong-Nam Kim and Tae-Sun Choi

1or 2 additional Checking point

3 additional Checking point

A fast three-step search algorithm with minimum checking points using unimodal error surface assumption

Jong-Nam Kim and Tae-Sun Choi


```
• If MAD(6) < MAD(5) & MAD(8) < MAD(5)
                 check 9 & select min\{MAD(x)\}
                                                   (4 pts)
   End
• If MAD(6) < MAD(5) < MAD(8)
      then check 3 & select min\{MAD(x)\}\
                                                   (4 pts)
   End
• If MAD(8) < MAD(5) < MAD(6)
      then check 7 & select min\{MAD(x)\}
                                                  (4 pts)
   End
• If MAD(5) < MAD(6) & MAD(5) < MAD(8)
     If MAD(5) \le MAD(6) \le MAD(8)
      If MAD(2) < MAD(5)
       then check I & select min\{MAD(x)\}\
                                                   (5 pts)
      else min\{MAD(x)\}=MAD(5)
                                                   (4 pts)
      end
    end
    If MAD(5) < MAD(8) < MAD(6)
      If MAD(4) < MAD(5)
       then check 1 & select min{MAD(x)}
                                                   (5 pts)
      else min\{MAD(x)\}=MAD(5)
                                                   (4 pts)
      end
    end
```


Frame t-1

Frame t

Block size: 8 Operations: 5480 MSE = 32.511 PSNR = 32.593

Various search algorithm- Consequence

Various search algorithm- Consequence

Block size = 8 Search range =4	MAD Operations	MSE	PSNR
Exhaustive search	122608	30.164	33.302
Log search	28355	24.421	34.220
Three step search	41370	25.691	33.999
New Three step search	41549	23.381	34.408
Diamond search	35439	23.337	34.408
Simple and efficient search	5480	32.511	32.593

Various search algorithm- Other image

17.5 - 15.0 - 12.5 - 10.0 12.5 15.0 17.5 20.0 - 17.5 2

Frame t-1

Exhaustive Search

Log Search

Three step Search

New Three step Search

Frame t

Various search algorithm- Other image

Frame t-1

Frame t

Diamond Search

Simple and efficient Search

Various search algorithm- Other image

Block size = 8 Search range =4	MAD Operations	MSE	PSNR
Exhaustive search	29503	300.545	22.933
Log search	8742	682.012	19.374
Three step search	10263	674.925	19.420
New Three step search	9169	666.357	19.475
Diamond search	9620	703.826	19.237
Simple and efficient search	1902	847.619	18.430

THANK YOU for your attention