

<u>Gameboard</u>

Maths

Complex Numbers: Manipulations 3i

Complex Numbers: Manipulations 3i

The complex number 2+i is denoted by z, and the complex conjugate of z is denoted by z^* .

Part A z

Express z^2 in the form x + iy, where x and y are exact real numbers.

The following symbols may be useful: i

Part B $4z-z^2$

Express $4z - z^2$ in the form x + iy, where x and y are exact real numbers.

The following symbols may be useful: i

Part C zz^*

Express zz^* in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Part D $\frac{z+1}{z-1}$

Express $rac{z+1}{z-1}$ in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Gameboard:

<u>Further Maths Practice: Complex Numbers - Manipulations</u>

<u>Gameboard</u>

Maths

Complex Numbers: Manipulations 1i

Complex Numbers: Manipulations 1i

The complex number z has modulus $2\sqrt{3}$ and argument $-\frac{\pi}{3}$.

Part A z

Find z in the form z = x + iy, where x and y are are exact real numbers.

The following symbols may be useful: i, z

Part B
$$\frac{1}{(z^*-5i)^2}$$

Find $\frac{1}{(z^*-5i)^2}$ in the form x+iy, where x and y are exact real numbers.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, June 2016, Paper 4725, Question 2.

Gameboard:

Further Maths Practice: Complex Numbers - Manipulations

<u>Gameboard</u>

Maths

Complex Numbers: x+iy and Euler 3i

Complex Numbers: x+iy and Euler 3i

The complex number z satisfies the equation

$$z + 2iz^* = 12 + 9i$$

Part A

Find z in the form z = x + iy.

The following symbols may be useful: i, z

Part B Modulus-Argument

z can also be expressed in the form

$$z = r \left(\cos heta + i \sin heta
ight)$$

Find r.

The following symbols may be useful: r

Find θ to 3 significant figures in radians.

Adapted with permission from UCLES, A Level, Jan 2010, Paper 4725, Question 3.

<u>Gameboard</u>

Maths

Complex Numbers: Equations to Quartics 1ii

Complex Numbers: Equations to Quartics 1ii

Part A Square roots

The square roots of the complex number 5+12i can be expressed in the form x+iy.

Give the square root with positive x and positive y.

The following symbols may be useful: i

Give the square root with negative x and negative y.

The following symbols may be useful: i

Part B
$$(3-2i)^2$$

Find $(3-2i)^2$ in the form x+iy where x and y are exact.

The following symbols may be useful: \mathtt{i}

Part C Roots of quartic

The answers to the previous part can be used to solve the quartic

$$z^4 - 10z^2 + 169 = 0$$

The roots to the quartic can be expressed in the form x+iy.

Give the root with positive x and positive y.

The following symbols may be useful: i

Give the root with positive x and negative y.

The following symbols may be useful: i

Give the root with negative x and positive y.

The following symbols may be useful: i

Give the root with negative x and negative y.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 9.

<u>Gameboard</u>

Maths

Applying Complex Numbers 2ii

Applying Complex Numbers 2ii

One root of the cubic equation $x^3 + bx^2 + cx - 15 = 0$, where b and c are real, is the complex number 2 + i.

Part A Complex root

Find the other complex root in the form x + iy.

The following symbols may be useful: i

Part B Real root

Find the real root.

Part C

Find b.

The following symbols may be useful: b

Part D

Find c.

The following symbols may be useful: c

Adapted with permission from Sally Waugh.

Gameboard:

Further Maths Practice: Applying Complex Numbers

<u>Gameboard</u>

Maths

Complex Numbers: Equations to Quartics 1i

Complex Numbers: Equations to Quartics 1i

One root of the quadratic equation $z^2 + ax + b = 0$, where a and b are real, is 16 - 30i.

Part A Other root

Give the other root in the form x+iy.

The following symbols may be useful: i

Part B a and b

Find the value of *a*

The following symbols may be useful: a

Find the value of b.

The following symbols may be useful: b

Part C Quartic

The quartic equation $z^4 + az^2 + b = 0$ has roots in the form x + iy.

Give the root with positive x and positive y.

The following symbols may be useful: \mathtt{i}

Give the root with positive x and negative y.

The following symbols may be useful: i

Give the root with negative x and positive y.

The following symbols may be useful: i

Give the root with negative x and negative y.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, June 2011, Paper 4725, Question 9.

Gameboard:

<u>Further Maths Practice: Complex Numbers - Equations to Quartics</u>

<u>Gameboard</u>

Maths

Argand Diagrams and Simple Loci 2i

Argand Diagrams and Simple Loci 2i

The complex number a is denoted by $1+i\sqrt{3}$.

Part A

Find the value of |a|.

Find $\arg a$ in exact form.

The following symbols may be useful: pi

Part B Loci

Sketch the loci given by |z-a|=|a| and ${
m arg}\,(z-a)={1\over 2}\pi$ on a single Argand diagram.

Easier question?

Adapted with permission from UCLES, A Level, June 2010, Paper 4725, Question 5.

<u>Gameboard</u>

Maths

Argand Diagrams: Using Loci 2i

Argand Diagrams: Using Loci 2i

The loci C_1 and C_2 are given by

$$|z|=|z-4i|$$

and

$$rg z = rac{\pi}{6}$$

respectively.

Part A Loci of C_1 and C_2

Sketch the loci of C_1 and C_2 on a single Argand diagram.

Easier question?

Part B Intersection

Hence find, in the form x+iy, the complex number represented by the point of intersection of C_1 and C_2 . Give your answer as in exact form.

The following symbols may be useful: i

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 6.

<u>Gameboard</u>

Maths

Argand Diagrams: Solving Inequalities 1ii

Argand Diagrams: Solving Inequalities 1ii

The loci L_1 and L_2 are given by

$$|z|=2$$

and

$$arg(z-3-i)=\pi$$

respectively.

Part A Equation of L_1

Give the equation of L_1 in the form $(x-a)^2+(y-b)^2=c^2$.

The following symbols may be useful: x, y

Part B Loci

Sketch L_1 and L_2 on a single Argand diagram.

More practice questions?

Part C Inequalities

Indicate, by shading, the region of the Argand diagram for which

$$|z| \leq 2$$
 and $0 \leq \arg(z - 3 - i) \leq \pi$

More practice questions?

Adapted with permission from UCLES, A Level, June 2018, Paper 4725, Question 4.

Gameboard

Maths

Argand Diagrams: Solving Inequalities 4ii

Argand Diagrams: Solving Inequalities 4ii

The loci L_1 and L_2 are given by

$$|z - 3 + 4i| = 5$$

and

$$|z| = |z - 6|$$

respectively.

Part A Equation of L_1

Give the equation of L_1 in the form $(x-a)^2+(y-b)^2=c^2$.

The following symbols may be useful: x, y

Part B Inequalities

Indicate, by shading, the region of the Argand diagram for which

$$|z-3+4i| \leq 5 ext{ and } |z| \geq |z-6|$$

More practice questions?

Adapted with permission from UCLES, A Level, June 2018, Paper 4725, Question 4.

Gameboard:

Further Maths Practice: Argand Diagrams - Solving Inequalities