# Digitise, Optimise, Visualise: Data Visualization

Peter H. Gruber

July 1-5, 2019

# Why data viz?

Why data viz?

Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

Perception

Translation

Color

Danish physicist Tor Nørretranders converted the bandwidth of the senses into computer terms



- □ Data Viz is the highway to the brain.
- $\square$  Brain has incredible graphics processor.  $\rightarrow$  Viz as cognitive aid.

Data Visualization 2 / 32

# **Unique Skillset**

Why data viz?

Dataviz

Distinctions

Example

Dataviz = science?

Perception

Translation

Color



Data Visualization 3 / 32

#### **Dataviz**

Why data viz? What is data viz? Unique Skillset Translation of data into graphic language to enable . . . Dataviz Distinctions Exploratory data analysis Example (i.e. formualte hypothesis, John Tukey, 1977) Dataviz = science?Confirmation Perception Translation Presentation Color Story telling How is it done? Mapping of data onto graphic objects **Context** is important Application, scientific discipline, Audience: background, data literatcy Culture (e.g. colors)

Data Visualization 4 / 32

#### **Distinctions**

Why data viz? **Infographics** Unique Skillset Explain a mechanism Dataviz Distinctions Information vizualization Example Dataviz = science?Translate facts into images Perception **Data visualization**  $\leftarrow$  this is what we do Translation Color Translate data into graphics Goals: exploration – confirmation – presentation Data art Translate data into graphics with some artistic freedom Goal: beauty Data decoration Add graphical elements to data that have no information content

Data Visualization 5 / 32

# **E**xample



Data Visualization 6 / 32

# **Example with annotations**



Data Visualization 7 / 32

# Information content (1)



Data Visualization 8 / 32

# Information content (2)



Data Visualization 9 / 32

# Information content (3)



Data Visualization 10 / 32

#### Dataviz = science?

Why data viz? Def: A statistic is a calculable function of the data Unique Skillset  $\rightarrow$  every visualization is a statistic. Dataviz Distinctions Data visualizations are falisifiable. Example  $\triangleright$  Dataviz = science? Scientific foundation in cognitive science + statistics. Perception Translation Good viz. leads to statistically superior inference. Color Design = finding the best possible (most efficient) solution for a given problem.

Data Visualization 11 / 32

Why data viz?

Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

> Perception

The night sky ...

... and how we see it

Gestalt Principles

Translation

Color

# Perception

Data Visualization 12 / 32

# The night sky ...

Why data viz? Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

#### Perception

▶ The night sky ...... and how we see itGestalt Principles

Translation

Color



Data Visualization 13 / 32

### ... and how we see it

Why data viz?

Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

#### Perception

The night sky ...

... and how we see

**Gestalt Principles** 

Translation

Color



14 / 32 Data Visualization

# **Gestalt Principles**

Why data viz?
Unique Skillset
Dataviz
Distinctions
Example
Dataviz = science?

Perception
The night sky ...
... and how we see it
Gestalt Principles

Translation

Color

#### The brain wants to find sense in our environment

- $\square$  Christian von Ehrenfels (1890)
- □ Law of Prägnanz:"We order our experience in a manner that is . . .
  - regular,
  - orderly,
  - symmetrical,
  - and simple."
- □ Pre-attentive processing
- → Exercise: seeing plots

### **Gestalt Principles**

Why data viz?

Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

Perception

The night sky ...

... and how we see it

Translation

Color



More: symmetry, common fate, past experience, common region, connectedness

→ Exercise: how can we make use of the gestalt principles?

Data Visualization 16 / 32

Why data viz?

Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

Perception

▶ Translation

Aesthetics
The translation

process: simple case

The translation

process: advanced

case

Aesthetics

Visual Encodings

Color

# The translation problem

Data Visualization 17 / 32

#### **Aesthetics**

Why data viz?
Unique Skillset
Dataviz
Distinctions
Example

Dataviz = science?

Perception

#### Translation

Color

Aesthetics
The translation
process: simple case
The translation
process: advanced
case
Aesthetics
Visual Encodings

# Q: How to translate numbers into graphics?

- ☐ Jacques Bertin (cartographer, 1967), Semiology of Graphics List of "les variables de l'image"
- $\square$  Leyland Wilkinson (2005), Grammar of graphics **Aesthetics** = mappings of the data

Data Visualization 18 / 32

# The translation process: simple case

Why data viz?
Unique Skillset
Dataviz
Distinctions
Example
Dataviz = science?
Perception
Translation
Aesthetics

The translation process: simple

case

The translation process: advanced

case

Aesthetics

Visual Encodings

Color



 $Data \longrightarrow Length$ 

# The translation process: advanced case

Why data viz?

Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

Perception

Translation

**Aesthetics** 

The translation

process: simple case

The translation

process: advanced

**Aesthetics** 

Visual Encodings

Color

Data DE, DE, CH, CH, DE, CH, DE, DE

Statistics 3xCH, 5xDE (count)

Aesthetics

length



Data  $\longrightarrow$  Statistics  $\longrightarrow$  Length

### **Aesthetics**

Why data viz? Unique Skillset Dataviz Distinctions Length Width Orientation Intensity Example Dataviz = science?Perception Translation Aesthetics The translation process: simple case The translation process: advanced Shape Size **Enclosure** 2-D position case > Aesthetics Visual Encodings Color

Data Visualization 21 / 32

# **Visual Encodings**

Why data viz? Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

Perception

Translation

Aesthetics

The translation

process: simple case
The translation

process: advanced

case

Aesthetics

Color

Which encodings work best?

Jock D. Mackinlay (1986): Automating the design of graphical presentations of relational information



Data Visualization 22 / 32

# Visual Encodings (2a)

| Example          | Encoding                  | Ordered                  | Useful values | Quantitative | Ordinal |  |
|------------------|---------------------------|--------------------------|---------------|--------------|---------|--|
| 000              | position,<br>placement    | yes                      | infinite      | Good         | Good    |  |
| 1, 2, 3; A, B, C | text labels               | optional<br>alpha or num | infinite      | Good         | Good    |  |
|                  | length                    | yes                      | many          | Good         | Good    |  |
| . 0              | size, area                | yes                      | many          | Good         | Good    |  |
| /_               | angle                     | yes                      | medium        | Good         | Good    |  |
|                  | pattern<br>density        | yes                      | few           | Good         | Good    |  |
|                  | weight,<br>boldness       | yes                      | few           |              | Good    |  |
|                  | saturation,<br>brightness |                          | few           |              | Good    |  |

Data Visualization 23 / 32

# Visual Encodings (2b)

| Example  | Encoding                 | Ordered | Useful values | Quantitative | Ordinal | Categorical |
|----------|--------------------------|---------|---------------|--------------|---------|-------------|
|          | color                    | no      | few (<20)     |              |         | Good        |
|          | shape, icon              | no      | medium        |              |         | Good        |
|          | pattern texture          | no      | medium        |              |         | Good        |
|          | enclosure,<br>connection | no      | infinite      |              |         | Good        |
| ====     | line pattern             | no      | few           |              |         |             |
| <b>5</b> | line endings             | no      | few           |              |         |             |
|          | line weight              | yes     | few           |              | Good    |             |

From: Julie Steele, Noah Ilinsky: Designing Data Visualizations, Safari books

Data Visualization 24 / 32

Why data viz?

Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

Perception

Translation

Color

Humans and color

**RGB** Color Wheel

Alternatives to RGB

Color scheme

Color Brewer

Final considerations

# Color

Data Visualization 25 / 32

#### **Humans and color**

Why data viz?
Unique Skillset
Dataviz
Distinctions
Example
Dataviz = science?

Perception

Translation

#### Color

Humans and color
RGB Color Wheel
Alternatives to RGB
Color scheme
Color Brewer
Final considerations

### **Perception**

- ☐ Human retina has 100-150 mio light-sensitive cells
   Only 7 mio are color-sensitive
- ☐ Approx. 8% of men and 0.5% of women are color-blind Online test: enchroma.com/test/instructions
- extstyle ext
- □ Discrete: Can distinguish, recognize and name 100s of colors

#### **Communication**

- □ Names: "blue", "sky blue", "steel blue", "navy blue"
- ☐ Formula: how much Red, Greed and Blue light is in a color?
- $\square$  RGB is color mixing by light: (0,0,0) = black, (1,1,1) = white

#### **RGB Color Wheel**

Why data viz? Unique Skillset

Dataviz

Distinctions

Example

Dataviz = science?

Perception

Translation

Color

Humans and color

RGB Color Wheel

Alternatives to RGB

Color scheme

Color Brewer

Final considerations

 $\square$  Most computers: 256 shades of R/G/B each  $\rightarrow 256^3 \approx 16$  mio colors



### **Alternatives to RGB**

Why data viz? Unique Skillset

Dataviz

Distinctions

Example

 $\mathsf{Dataviz} = \mathsf{science}?$ 

Perception

Translation

Color

Humans and color RGB Color Wheel Alternatives to

▶ RGB

Color scheme

Color Brewer

Final considerations

### Is the RGB system the best?

- ☐ Technically motivated
- □ Color Space of the eye is(1) black-white, (2) blue-yellow, (3) red-green
- $\Box$  Luminance (1): L = 0.31R + 0.59G + 0.1B
  - → RGB coloes with equal color sums have different brightness

#### **HCL** Model

- □ Perception-based color space HCL
  - $\mathbf{H}$ ue [0-360] = angle in the color wheel
  - $\mathbf{C}$ roma [0-100] = color intensity between grey and intense
  - Luminance [0-100] = perceived brightness

#### **HCL** Model



Data Visualization 29 / 32

#### How to choose a color scheme for visualization?

Why data viz? Default colors not a good idea Unique Skillset Dataviz Type of variable  $\rightarrow$  color scheme Distinctions Binary – contrast Example Dataviz = science? Qualitative – distinction Perception Diverging – continuous scale with neutral center Translation Sequential – continuous scale Color Humans and color Possible to combine 2 schemes RGB Color Wheel Alternatives to RGB Cultural connotations Color scheme Hot - cold Color Brewer Final considerations Countries, companies, continents Color blindness, printing process, limitations of beamers Predefined schemes: colorbrewer.py

See www.colorbrewer2.org

Data Visualization 30 / 32

#### **Color Brewer Combinations**

Why data viz? Unique Skillset

. Dataviz

Distinctions

Example

Dataviz = science?

Perception

Translation

Color

Humans and color

**RGB Color Wheel** 

Alternatives to RGB

Color scheme

Color Brewer

Final considerations



See colorbrewer2.org

Source www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

#### **Final considerations**

The graphical method has considerable superiority for the exposition of statistical facts over the tabular.

A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers.

# **Arthur & Henry Farquhar**

in Economic and Industrial Delusions (1891)

Data Visualization 32 / 32