Department of Electronics Engineering Image Transform (DCT)

Aim:- To perform Discrete Cosine transform on a small matrix of an image.

Theory:-

The Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub-bands) of differing importance (with respect to the image's visual quality). The DCT is similar to the discrete Fourier transform: it transforms a signal or image from the spatial domain to the frequency domain (Fig 7.8).

DCT Encoding

The general equation for a 1D (*N* data items) DCT is defined by the following equation:

$$F(u) = \sum_{i=0}^{2} \sum_{i=0}^{N-1} \Lambda(i) \cdot \cos\left[\frac{\pi \cdot u}{2 \cdot N} (2i+1)\right] f(i)$$

and the corresponding *inverse* 1D DCT transform is simple $F^{-1}(u)$, i.e.:

where

$$\Lambda(i) = \begin{cases} \frac{1}{\sqrt{2}} & \text{for } \xi = 0\\ 1 & \text{otherwise} \end{cases}$$

The general equation for a 2D (*N* by *M* image) DCT is defined by the following equation:

$$F(u,v) = \left(\frac{2}{N}\right)^{\frac{1}{2}} \left(\frac{2}{M}\right)^{\frac{1}{2}} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \Lambda(i) . \Lambda(j) . cos\left[\frac{\pi.u}{2.N}(2i+1)\right] cos\left[\frac{\pi.v}{2.M}(2j+1)\right] . f(i,j)$$

B.E (Electronics)/ Sem VIII/ DIP

Department of Electronics Engineering

and the corresponding *inverse* 2D DCT transform is simple $F^{-1}(u,v)$, i.e.:

where

$$\Lambda(\xi) = \begin{cases} \frac{1}{\sqrt{2}} & \text{for } \xi = 0\\ 1 & \text{otherwise} \end{cases}$$

The basic operation of the DCT is as follows:

- The input image is N by M;
- f(i,j) is the intensity of the pixel in row i and column j;
- F(u,v) is the DCT coefficient in row k1 and column k2 of the DCT matrix.
- For most images, much of the signal energy lies at low frequencies; these appear in the upper left corner of the DCT.
- Compression is achieved since the lower right values represent higher frequencies, and are often small small enough to be neglected with little visible distortion.
- The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray scale level;
- 8 bit pixels have levels from 0 to 255.
- Therefore an 8 point DCT would be:

where

$$\Lambda(\xi) = \begin{cases} \frac{1}{\sqrt{2}} & \text{for } \xi = 0\\ 1 & \text{otherwise} \end{cases}$$

Question: What is F[0,0]?

answer: They define DC and AC components.

- The output array of DCT coefficients contains integers; these can range from -1024 to 1023.
- It is computationally easier to implement and more efficient to regard the DCT as a set of **basis functions** which given a known input array size (8 x 8) can be precomputed and stored. This involves simply computing values for a convolution mask (8 x8 window) that get applied (summ values x pixelthe window overlap with image apply window across all rows/columns of image). The values as simply calculated from the DCT formula. The 64 (8 x 8) DCT basis functions are illustrated in Fig 7.9.

B.E (Electronics)/ Sem VIII/ DIP

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics Engineering

DCT basis functions

Why DCT not FFT?

DCT is similar to the Fast Fourier Transform (FFT), but can approximate lines well with fewer coefficients (Fig 7.10)

DCT/FFT Comparison

- Computing the 2D DCT
 - Factoring reduces problem to a series of 1D DCTs (Fig 7.11):

B.E (Electronics)/ Sem VIII/ DIP

Department of Electronics Engineering

- apply 1D DCT (Vertically) to Columns
- apply 1D DCT (Horizontally) to resultant Vertical DCT above.
- or alternatively Horizontal to Vertical.

The equations are given by:

Implementation Instructions:-

Consider a small matrix representing a small part of image & perform 2 dimensional DCT operation on it & observe the result. Do not use direct matlab/python function.

B.E (Electronics)/ Sem VIII/ DIP Name: Krisha Lakhani Saj

Sap Id: 60001200097

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Department of Electronics Engineering

```
1
        %Experiment 8 - Image Transform (DCT)
 2
        %Krisha Lakhani - 60001200097
 3
 4 -
       clc;
 5 -
       clear all;
       % Original Matrix
 6
 7 -
       a = [
 8
           0 1 2 1;
            1 2 3 2;
 9
            2 3 4 3;
10
            1 2 3 2
11
12
       ];
13
14 -
      t = zeros(4, 4);
15 -
       N = 4;
16
        % Calculating DCT Transformation Matrix
17
     \Box for u = 1:N
18 -
19 -
     Ė
           for v = 1:N
20 -
                if u == 1
21 -
                    t(u,v) = 1/sqrt(N);
22 -
                else
23 -
                    t(u,v) = (sqrt(2/N)) * cos((((2*(v-1))+1)*pi*(u-1))/(2*N));
                end
24 -
25 -
            end
26 -
      L end
27
       % Calculating DCT Matrix
28
29 -
       dct = t*a*transpose(t);
30
31 -
       disp("Krisha Lakhani - 60001200097")
       disp("Original matrix:");
32 -
33 -
       disp(a);
34 -
       disp("DCT transformation matrix(T):");
35 -
       disp(t);
36 -
      disp("DCT matrix:");
37 -
      disp(dct);
```


Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Department of Electronics Engineering

Command Window					
Krisha Lakhani - 60001200097					
Original matrix:					
	0	1	2	1	
	1 :	2	3	2	
	2	3	4	3	
	1 :	2	3	2	
DCT transformation matrix(T):					
0	.5000	0.5	000	0.5000	0.5000
0	.6533	0.2	706	-0.2706	-0.6533
0	.5000	-0.5	000	-0.5000	0.5000
0	.2706	-0.6	533	0.6533	-0.2706
DCT matrix:					
8	.0000	-1.8	47 8	-2.0000	0.7654
-1	.8478		0	0.0000	0.0000
-2	.0000		0	0.0000	0.0000
0	.7654	0.0	000	0.0000	-0.0000

Conclusion:

Successful implementation of Discrete Cosine Transform on a 4x4 image (which is a part of an image) has been carried out and DCT Matrix has been achieved with the help of transformation matrix.

B.E (Electronics)/ Sem VIII/ DIP