CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS – CEFET/MG

Celso França Neto (20203018570) Diogo Emanuel Antunes Santos (20213002091)

AULA 5 - Projeto de um Processador: planejamento do conjunto de instruções.

Laboratório de Arquitetura e Organização de Computadores

BELO HORIZONTE 2022

1) Explique o que o programa embarcado deverá fazer.

O nosso programa realiza o cálculo do fatorial de um número salvo na memória, a lógica é bem simples, o programa pega esse número dado, e calcula dentro de uma estrutura de repetição, o número multiplicado por todos seus antecessores, ou seja, executa a fórmula de fatorial. Quando a multiplicação é pelo valor 1 o programa se encerra.

2) Apresente a lista de instruções suportadas pelo seu processador.

O nosso processador suporta as instruções:

"lw", "defi", "sw", "beq", "mul", "subi", "j" & "encerra".

- 3) Explique a operação realizada por cada uma das instruções.
- 4) Mostre a representação (sintaxe) em assembly de cada instrução.
- 5) Indique o formato binário de cada uma das instruções, apontando o tamanho (em número de bits) e a função de cada campo das instruções.
 - defi, (define um valor inteiro para um registrador).

Opcode			Destino	Valor inteiro				
0	0	0	1	0	0	0	1	

A instrução em assembly:

defi reg, inteiro

• beq, (compara 2 registradores, se forem iguais salta para determinada operação).

Opcode			Registra dor 1	Registr ador 2	Endereço do salto			
0	0	1	0	1	1	0	1	

A instrução em assembly:

beq reg1, reg2, operação

• sw, (armazena o valor de um registrador em um local na memória principal).

Opcode			Origem	Endereço de memória				
0	1	1	1	0	0	1	0	

A instrução em assembly:

sw reg, memória

• lw, (acessa um valor armazenado na memória e passa pro registrador).

Opcode			Destino	Endereço de memória				
0	1	0	1	0	0	1	0	

A instrução em assembly:

lw reg, memória

• mul, (multiplica dois registradores e salva no primeiro da multiplicação o resultado).

Opcode			Registra dor 1 e destino	Registr ador 2	Comp	oletando 8	bits
1	0	0	1	0	0	0	0

A instrução em assembly:

mul reg, reg.

• subi, (efetua a subtração de um registrador por um valor inteiro, salvando nesse registrador o resultado).

	Opcode				Valor	inteiro	
1	0	1	0	0	0	0	1

A instrução em assembly:

subi reg, inteiro

• j, (realiza uma operação jump, leva o retorno operação que recomeça o loop).

Opcode			Endereço de retorno						
1	1	0	0	0	0	1	1		

A instrução em assembly:

• encerra (encerra o programa quando o loop finaliza).

Opcode			Completando 8 bits					
1	1	1	0	0	0	0	0	

A instrução em assembly: encerra

6) Justifique todas as suas decisões de projeto.

Os motivos que nos levaram a escolher essa quantidade de bits destinada a diferenciar as equações foi a necessidade de usarmos 8 instruções em nosso programa, com 2 bits não seria possível, essa quantidade de instruções só é possível a partir de 3 bits. Sendo essa adaptação ao programa o motivo da nossa escolha.

Com esse valor de operações definido, escolhemos a quantidade de registradores para 2, pois dessa maneira não nos prejudicamos na elaboração do software e nem do hardware, sendo assim possível salvar os valores dos registradores nos endereços de memória corretos, acessá-los e realizar deslocamentos com os 3 bits que sobraram.

Assim, essas questões aritméticas foram os motivos de escolhermos essa quantidade de bits para as determinadas instruções, registradores, cálculos absolutos e deslocamentos.