Relatório — Simulação de epidemias – SIR

Bruno Kenji Sato kenji.sato21@unifesp.br

Guilherme Gimenes Diogo guilherme.gimenes@unifesp.br

Leonardo Loureiro Costa leonardo.costa@unifesp.br

Resumo—Neste relatório será apresentado o sistema SIR de modelagem matemática de epidemias e como ele se desenvolve em função do tempo quando os parâmetros de infecção e recuperação mudam. Serão estudados os efeitos na curva de Infectados e como ela abaixa quando os valores de infecção diminuem e quando os de recuperação aumentam. Além disso o sistema será testado em uma Rede circular, tendo seu comportamento analisado quando há migração de infectados por entre as populações.

I. INTRODUÇÃO

Para fim de emular o comportamento de doenças epidemiológicas, neste relatório serão realizadas simulações utilizando o modelo SIR — visando entender a maneira a qual uma determinada doença se espalha por uma população e como a mudança de parâmetros do modelo matemático influencia seu desenvolvimento.

A. Modelos matemáticos

Para simular como uma dada doença se espalha na população o modelo SIR foi selecionado. As equações em 3 representam, respectivamente, a taxa de variação de indivíduos suscetíveis, infectados, e recuperados (removidos).

$$\frac{dS}{dt} = -rSI$$

$$\frac{dI}{dt} = rSI - aI$$

$$\frac{dR}{dt} = aI$$
(1)

Onde:

S: suscetíveisI: infectadosR: removidosr: taxa de infecção

a : taxa de recuperação

Segundo o sistema de equações 3 cada indivíduo pode estar em 1 dos 3 estados listados no grafo 2.

Este grafo direcionado indica a ordem da mudança de estados.

$$S \longrightarrow I \longrightarrow R$$
 (2)

A taxa básica de reprodução, medida utilizada para dizer, em média, quantas pessoas um determinado indivíduo infecta dado um instante do tempo está presente em

$$R_0 = \frac{rS}{a} \tag{3}$$

Onde:

S: sucetíveis
I: infectados
R: removidos
r: taxa de infecção
a: taxa de recuperação

A fim de simular o sistema de equações dado em 3 o método de Euler foi aplicado.

$$\Delta S = -rSI\Delta t$$

$$\Delta I = (rSI - aI)\Delta t$$

$$\Delta R = aI\Delta t$$
(4)

A partir das equações obtidas em 4 é possível realizar uma integração numérica.

II. OBJETIVOS

- Medir a influência da variação das taxas de infecção e recuperação — r e a, respectivamente;
- Calcular, para cada cenário, o número máximo de infectados atingidos ao longo da evolução da doença;
- 3) Observar os fenômenos no formato da curva de infectados em função do tempo;
- Observar o comportamento em rede de populações quando o grau de migração de infectados aumenta.

III. RESULTADOS — SISTEMA SIR

A. Alterando os valores da taxa de infecção: r

Para as seguintes simulações serão considerados os parâmetros iniciais da tabela I.

Parâmetros	Valores
Tmax	20000
DT	0.01
S	1000
I	1
R	0
a	0,001
r	_

Tabela I: Parâmetros e valores

Os valores de r variam conforme os valores do eixo das abscissas em 1, 2, e 3.

As figuras 1, 2, e 3 apresentam gráficos da variação do número de indivíduos que estão em um dos 3 estados — Suscetível, Infectado e Recuperado — em função do tempo. A cor indica a variação do parâmetro r. Quanto mais vermelha é a cor maior é o valor de r; quanto mais verde, menor o valor.

Figura 1: Variação do número de indivíduos suscetíveis em função do tempo.

Figura 2: Variação do número de indivíduos infectados em função do tempo.

Figura 3: Variação do número de indivíduos recuperados em função do tempo.

A figura 4 apresenta um gráfico com o número máximo de infectados em função de x, onde $x = \frac{r}{2.10^6}$. A imagem explicita que quanto maior é a taxa de infecção maior será o número máximo de infectados na epidemia.

Figura 4: Quantidade máxima de indivíduos infectados em função do tempo.

B. Alterando os valores da taxa de recuperação: a

Analogamente às alterações feitas para o parâmetro r o parâmetro a também foi variado a fim de compreender os seus efeitos na disseminação da doença.

Para os valores das próximas simulações os valores iniciais da simulação são os da tabela II.

Parâmetros	Valores
Tmax	20000
DT	0.01
S	1000
I	1
R	0
a	
r	0,00001

Tabela II: Parâmetros e valores

Os valores de a variam conforme os valores do eixo das abscissas em 5, 6, e 7.

As figuras 5, 6, e 7 Apresentam o número de indivíduos em função do tempo quando a taxa de recuperação *a* varia.

Nota-se que quanto maior é a taxa de recuperação mais verde são os tracejados dos gráficos; quanto menor for a taxa, mais vermelho.

Figura 5: Variação do número de indivíduos suscetíveis em função do tempo quando o parâmetro *a* varia.

Figura 6: Variação do número de indivíduos infectados em função do tempo quando o parâmetro *a* varia.

Figura 7: Variação do número de indivíduos recuperados em função do tempo quando o parâmetro *a* varia.

Fica claro que quanto maior é a taxa de recuperação menor é a quantidade de indivíduos infectados e maior é a quantidade de pessoas suscetíveis e recuperadas.

Figura 8: Quantidade máxima de indivíduos infectados em função do tempo.

Observando o gráfico da figura 8 é possível notar que o número máximo de infectados decai conforme a taxa de recuperação *a* aumenta. Evidencia-se, desta forma, que quanto mais rápido a população se recuperar da doença menor será a quantidade de infectados.

IV. RESULTADOS — SISTEMA SIR EM REDE

Para as seguintes simulações o sistema SIR foi rearranjado em um grafo circular, como mostra a figura 9, onde cada elemento representa uma população isolada, cada uma com seus indivíduos.

Figura 9: Lista circular

As simulações realizadas a seguir foram compostas por um grafo circular de 10 elementos. Todos os elementos possuem população inicial de Suscetíveis igual a 2000 pessoas e de Recuperados igual a 0. O elemento de índice 0 possui população inicial de infectados igual a 10, os demais possuem tal população igual a 0.

Figura 10: Quantidade de infectados em função do tempo. Quanto mais verde maior o índice da população na lista circular. Migração de 1 pessoa a cada 10 unidades de tempo

Figura 11: Quantidade de infectados em função do tempo. Quanto mais verde maior o índice da população na lista circular. Migração de 1 pessoa a cada 100 unidades de tempo

Figura 12: Quantidade de infectados em função do tempo. Quanto mais verde maior o índice da população na lista circular. Migração de 1 pessoa a cada 1000 unidades de tempo

Observa-se que nas figuras ??, ??, e 12 conforme a taxa de migração diminui o tempo para que a pandemia acabe aumenta consideravelmente.

V. CONCLUSÃO

Apresentados os dados das simulações realizadas é possível concluir que a mudança nos parâmetros a e r, taxa de recuperação, e taxa de infecção, respectivamente, influenciam diretamente no comportamento da epidemia.

Observa-se que há um "achatamento" na curva de infectados em função do tempo quando há uma diminuição nos valores de r e um aumento nos valores de a.

Desta forma é possível afirmar que medidas sanitárias que reduzam a taxa de infecção da doença; ou que facilitem a recuperação do enfermo colaboram para um menor número total de infectados.

REFERÊNCIAS

- [1] Ross Beckley, Cametria Weatherspoon, Michael Alexander, Marissa Chandler, Anthony Johnson, and Ghan S Bhatt. Modeling epidemics with differential equations. *Tennessee State University Internal Report*, 2013.
- [2] James Dickson Murray. *Mathematical biology: I. An introduction.* Springer, 2002.