Разбор задач домашнего задания по алгебре на 19.02 для группы БПИ209 3 модуль

Автор: vk.com/yourkumir

60.45 б) Сколько элементов: порядка 2, 4 и 5 в группе $\mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5$?

Данный номер, но пункт а, мы разобрали в предыдущем домашнем задании. Мы нашли порядок всех элементов для наглядности устройства прямой суммы групп и применения утверждения 60.8 о том, что

- 1) прямой порядок произведения конечных групп равен произведению порядков сомножителей
- 2) порядок элемента прямого произведения конечных групп равен НОК порядков компонент.

Сейчас мы тоже воспользуемся данным утверждением, но не будем выписывать все элементы (их 2*4*4*5 = 160, пожалейте себя и ассистента), поэтому используем комбинаторику на порядках элементов в группе.

Выпишем сами порядки, не забывайте про формулу $ord(x) = n \Rightarrow ord(kx) = \frac{n}{\text{HOЛ}(n,k)}$:

 \mathbb{Z}_2 : ord(0) = 1, ord(1) = 2

 \mathbb{Z}_4 : ord(0) = 1, ord(1) = 4, ord(2) = 2, ord(3) = 4

 \mathbb{Z}_4 : ord(0) = 1, ord(1) = 4, ord(2) = 2, ord(3) = 4

 \mathbb{Z}_5 : ord(0) = 1, ord(1) = 5, ord(2) = 5, ord(3) = 5, ord(4) = 5

Найдём количество элементов порядка 2. Чтобы HOK порядков был равен 2, то порядки должны быть равны 1 или 2 и хотя бы один порядок равен 2, то есть HOK(1,1,1,1) нам не подходит.

Тогда таких элементов: 2 * 2 * 2 * 1 - 1 = 7

Найдём количество элементов порядка 4. Чтобы НОК порядков был равен 4, то порядки должны быть равны 1, 2, 4 и хотя бы один порядок равен 4.

Тогда таких элементов: 2*(4*4-4)*1=24

Примечание. -4, потому что нам не подходят в паре \mathbb{Z}_4 и \mathbb{Z}_4 такие порядки, как 1-1, 1-2, 2-1, 2-2

Найдём количество элементов порядка 5. Чтобы НОК порядков был равен 5, то порядки должны быть равны 1 или 5 и хотя бы один порядок равен 5, то есть HOK(1,1,1,1) нам не подходит.

Тогда таких элементов: 1*1*1*5-1=4

60.42 в), г) Изоморфны ли группы

- в) $\mathbb{Z}_6 \oplus \mathbb{Z}_{36}$ и $\mathbb{Z}_9 \oplus \mathbb{Z}_{24}$
- Γ) $\mathbb{Z}_6 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{10}$ и $\mathbb{Z}_{60} \oplus \mathbb{Z}_{10}$?

B)
$$\mathbb{Z}_6 \oplus \mathbb{Z}_{36} = (\mathbb{Z}_2 \oplus \mathbb{Z}_3) \oplus (\mathbb{Z}_4 \oplus \mathbb{Z}_9) = \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_9$$

 $\mathbb{Z}_9 \oplus \mathbb{Z}_{24} = \mathbb{Z}_9 \oplus (\mathbb{Z}_3 \oplus \mathbb{Z}_8) = \mathbb{Z}_3 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_9$

Чтобы выяснить изоморфны эти группы или нет, достаточно проверить на изоморфность $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ и \mathbb{Z}_8 По утверждению 60.4 (его доказательство есть в прошлом домашнем задании) прямая сумма циклических групп $Z_m \oplus Z_n$ является циклической группой тогда и только тогда, когда наибольший общий делитель m и n равен 1.

 $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ не является циклической по данному утверждению, а \mathbb{Z}_8 - это циклическая группа, то есть они не изоморфны.

r)
$$\mathbb{Z}_6 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{10} = (\mathbb{Z}_2 \oplus \mathbb{Z}_3) \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_5) \oplus \mathbb{Z}_{10} = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{10}$$

 $\mathbb{Z}_{60} \oplus \mathbb{Z}_{10} = (\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5) \oplus \mathbb{Z}_{10} = \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{10}$

Чтобы выяснить изоморфны эти группы или нет, достаточно проверить на изоморфность $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ и $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ не является циклической по утверждению 60.4, а \mathbb{Z}_4 - это циклическая группа, то есть они не изоморфны.

57.40 a) Доказать, что $AutS_3 \cong S_3$, причем все автоморфизмы группы S_3 внутренние.

Это утверждение - частный случай теоремы Гёльдера, которая утверждает, что совершенными группами $(AutG \cong G)$ являются все симметрические группы $S_n, n \neq 2, 6$. Доказательство теоремы Гёльдера и этого утверждения оставим на самостоятельный разбор.

60.27 а), б) Найти группы автоморфизмов групп: а) \mathbb{Z} , б) \mathbb{Q}

- а) Пусть $f:\mathbb{Z}\to\mathbb{Z}$ автоморфизм, тогда автоморфизм будет определяться тем, куда переходит порождающий элемент, то есть f(1)=k и f(0)=0, f(x)=xf(1)=xk. Тогда в силу сюръективности автоморфизма $\exists a\in\mathbb{Z}\ f(a)=1\Rightarrow f(a)=af(1)=ak=1,$ но a,k- целые числа, следовательно, $k=\pm 1,$ то есть у \mathbb{Z} два автоморфизма: тождественный и обратный $Aut\mathbb{Z}\cong\mathbb{Z}_2$
- б) $\forall k\ (k\neq 0)\in\mathbb{Q}^*$ \exists автоморфизм $f:\mathbb{Q}\to\mathbb{Q}$ f(q)=kq, то есть $Aut\mathbb{Q}\subseteq\mathbb{Q}^*$ Докажем, что $\mathbb{Q}^*\subseteq Aut\mathbb{Q}$. Пусть $f\in Aut\mathbb{Q}$, тогда f(0)=0 и $f(1)=k\in\mathbb{Q}^*$. $k=f(1)=f(q*\frac{1}{q})=qf(\frac{1}{q})\Rightarrow f(\frac{1}{q})=\frac{k}{q}$ $f(\frac{p}{q})=f(p\frac{1}{q})=pf(\frac{1}{q})=p\frac{k}{q}=\frac{kp}{q}$

Таким образом, каждый автоморфизм имеет вид f(q)=kq, то есть $\mathbb{Q}^*\subseteq Aut\mathbb{Q}$ и $Aut\mathbb{Q}\subseteq\mathbb{Q}^*\Rightarrow Aut\mathbb{Q}\cong\mathbb{Q}^*$

57.42 Найти порядок группы $AutAutAut\mathbb{Z}_9$.

В прошлом домашнем задании мы разбирали количество автоморфизмов у групп \mathbb{Z}_n в 57.39, поэтому воспользуемся теми рассуждениями: $Aut\mathbb{Z}_9 \cong \mathbb{Z}_6$, $Aut\mathbb{Z}_6 \cong \mathbb{Z}_2$

У \mathbb{Z}_2 только один автоморфизм - тождественный, то есть $|AutAutAut\mathbb{Z}_9|=1$