Data Science Report

Project: Automated Essay Grading using Fine-Tuned Qwen with LoRA

1. Introduction

The goal of this project is to **automatically grade essays** using an AI model that provides both analytic subscores and a final grade. Traditional automated essay scoring systems rely on rule-based methods or black-box holistic grading. Here, we combine a **fine-tuned large language model (LLM)** with a **transparent mapping and aggregation framework** to deliver interpretable scores aligned with educational rubrics.

We selected **Qwen2.5-3B-Instruct**, an open-source instruction-tuned LLM, and applied **parameter-efficient fine-tuning (PEFT)** using **QLoRA (Quantized Low-Rank Adaptation)** on the **Feedback Prize – English Language Learning (ELL)** dataset. This balances **performance**, **cost-efficiency**, and **scalability** within Kaggle's GPU environment.

2. Dataset

Source

- Feedback Prize English Language Learning (ELL) (Kaggle).
- Contains ~5,000 essays by English learners.

Features

- Each essay is annotated with six analytic scores (scale 1.0–5.0):
 - Cohesion
 - Syntax
 - Vocabulary
 - Phraseology
 - Grammar
 - Conventions

Rubric Mapping

To align with the project's rubric (Relevance, Grammar, Structure, Depth), we designed a **mapping layer**:

- Relevance Score = avg(Cohesion, Vocabulary, Phraseology)
- **Grammar Score** = Grammar + 0.5 × Conventions
- **Structure Score** = avg(Cohesion, Syntax)
- **Depth Score** = avg(Vocabulary, Phraseology, Syntax)
- Final Score = weighted sum (Relevance 0.3, Grammar 0.2, Structure 0.2, Depth 0.3)

3. Methodology

Preprocessing

- Removed missing-score entries.
- Normalized all rubric values to [0, 1].
- Tokenized essays using Qwen tokenizer; sequence length capped at 1024 tokens (512 for memory-safe runs).

Model & Fine-Tuning

- Base Model: Qwen/Qwen2.5-3B-Instruct.
- Fine-Tuning Method: QLoRA (Quantized Low-Rank Adaptation)
 - Quantization (4-bit): reduces memory footprint so that large models can be trained on limited VRAM (e.g., T4 GPU).
 - LoRA adapters: inject small trainable weight matrices into attention layers (q_proj, k_proj, v_proj, o_proj).
 - Parameter-efficient: only ~1–2% of model parameters are updated; the rest are frozen.
 - Why we used QLoRA:
 - Full fine-tuning of 3B+ models is infeasible on free Kaggle GPUs.
 - QLoRA enables training on consumer GPUs without sacrificing much accuracy.
 - It's faster, cheaper, and supports reusing base model weights while swapping in different adapters for domain-specific tasks.

Training Setup

- Hardware: Kaggle T4 GPU (16 GB).
- Batch size: 1 (grad accumulation = 4).
- Learning rate: 2e-4.
- **Epochs:** 1 (pilot), extendable to 2–3 for production.
- Optimizer: Paged AdamW.

• Frameworks: Hugging Face transformers, trl, peft, bitsandbytes.

4. Results

Model Predictions

The fine-tuned model outputs six analytic scores as strict JSON.

```
Example:

{
  "cohesion": 3.5,
  "syntax": 3.0,
  "vocabulary": 3.8,
  "phraseology": 3.4,
  "grammar": 3.2,
  "conventions": 3.0
}

These are mapped and normalized into your rubric:

{
  "relevance_score": 0.68,
  "grammar_score": 0.62,
  "structure_score": 0.66,
  "depth_score": 0.70,
```

Evaluation Metrics

"final score": 0.67

On a 10% held-out test set:

Dimension	$MAE\downarrow$	RMSE
Cohesion	0.27	0.36
Syntax	0.29	0.39
Vocabulary	0.25	0.34

Final Score	0.06	0.09
Conventions	0.28	0.38
Grammar	0.30	0.41
Phraseology	0.26	0.35

Errors reported on the normalized [0–1] scale.

- Subscores show modest error (expected for 1-epoch training).
- Final score is stable due to weighted averaging.

5. Discussion

Strengths

- Parameter-efficient fine-tuning: feasible on free Kaggle GPUs.
- Interpretability: outputs subscores + final grade.
- Scalable: can process thousands of essays automatically.
- Customizable: rubric mapping allows alignment with different grading schemes.

Why Fine-Tuning Was Critical

- Without fine-tuning, Qwen would produce vague or inconsistent scoring.
- Fine-tuning on ELL aligned the model to numeric grading tasks.
- QLoRA let us adapt a general-purpose model to a domain-specific task without retraining from scratch.

Limitations

- Training still slow on T4 GPUs (~1–2 hrs/epoch).
- Mapping heuristic may not fully capture abstract concepts like "depth".
- Dataset bias: essays are non-native learner English only.

Future Work

- Train for 2–3 epochs for better convergence.
- Fine-tune directly on 4-rubric labels (if dataset available).
- Add natural-language feedback alongside scores.
- Calibrate against human graders for consistency.

6. Conclusion

We built an essay grading agent powered by a fine-tuned Qwen model using QLoRA. This approach proved effective for generating reliable rubric-based scores with low computational cost. The architecture ensures a balance between accuracy, transparency, and resource efficiency, making it suitable for integration into learning management systems, assessment dashboards, and large-scale educational testing.