

Translations between bases in Base-extension Semantics

Yll Buzoku

Department of Computer Science University College London

November 22, 2024

Goals for this talk

- Introduce the concept of bases and general inference figures
- Introduce two notions of atomic derivability
- Show how one may relate these notions of atomic derivability

Presentation root directory

- 1 Bases and inference figures
- 2 Atomic derivability
- 3 Comparing relations

Presentation root directory

- 1 Bases and inference figures
- 2 Atomic derivability
- 3 Comparing relations

Notation

- A represents a fixed, countably infinite set of propositional atoms.
- Lower case latin letters represent propositional atoms.
- Upper case latin letters represent finite multisets of propositional atoms.
- Atomic multiset is taken to mean multiset of propositional atoms.
- The sum of two multisets P and Q is denoted P, Q.

Atomic rules take the form:

$$(P_1 \Rightarrow p_1), \ldots, (P_n \Rightarrow p_n) \Rightarrow p$$

Pictorially, we can represent this as:

$$\begin{array}{ccc}
[P_1] & & [P_n] \\
p_1 & \dots & p_n \\
\hline
p & & \\
\end{array}$$

Pictorially, we can represent this as:

$$\begin{array}{ccc}
[P_1] & & [P_n] \\
\hline
\rho_1 & \dots & \rho_n \\
\hline
\rho
\end{array}$$

Any idea what these figures are supposed to look like?

Pictorially, we can represent this as:

$$\begin{array}{ccc}
[P_1] & & [P_n] \\
\hline
\rho_1 & \dots & \rho_n \\
\hline
\rho
\end{array}$$

Any idea what these figures are supposed to look like?

Natural deduction!

Contextual atomic rules

Contextual atomic rules are rules which may have contextual brackets distributed across them.

Contextual atomic rules

Pictorially, we can represent such rules as:

$$\frac{\left\{ \begin{bmatrix} P_{1_1} \end{bmatrix} & \begin{bmatrix} P_{1_{l_n}} \end{bmatrix} \\ p_{1_1} & \dots & p_{1_{l_1}} \end{bmatrix}}{p} & \dots & \left\{ \begin{bmatrix} P_{n_1} \end{bmatrix} & \begin{bmatrix} P_{n_{l_n}} \end{bmatrix} \\ p_{n_1} & \dots & p_{n_{l_n}} \end{bmatrix} \right\}$$

Contextual atomic rules

Pictorially, we can represent such rules as:

$$\frac{\left\{ \begin{bmatrix} P_{1_1} \end{bmatrix} & \begin{bmatrix} P_{1_{l_n}} \end{bmatrix} \\ p_{1_1} & \dots & p_{1_{l_1}} \end{bmatrix} \cdots \left\{ \begin{bmatrix} P_{n_1} \end{bmatrix} & \begin{bmatrix} P_{n_{l_n}} \end{bmatrix} \\ p_{n_1} & \dots & p_{n_{l_n}} \end{bmatrix} \right\}}{p}$$

or linearly, like this:

$$\{(P_{1_i} \Rightarrow p_{1_i})\}_{i=1}^{l_1}, \ldots, \{(P_{n_i} \Rightarrow p_{n_i})\}_{i=1}^{l_n} \Rightarrow p_{n_i}\}_{i=1}^{l_n}$$

Examples of atomic rules

- $\blacksquare \{\Rightarrow a\} \Rightarrow c$
- \blacksquare { \Rightarrow a}, {(c, d \Rightarrow e), (f \Rightarrow g)} \Rightarrow q
- $\blacksquare \{a \Rightarrow b\}, \{\Rightarrow e\}, (f \Rightarrow g) \Rightarrow q$
- \blacksquare (\Rightarrow a) \Rightarrow c
- \blacksquare (\Rightarrow *b*) \Rightarrow *c*
- $\blacksquare \ (\Rightarrow c), (a \Rightarrow p), (b \Rightarrow p) \Rightarrow p$

Bases

Definition (Base)

A base is a set of atomic rules.

Bases

Definition (Base)

A base is a set of atomic rules.

A base is said to be contextual if it contains contextual rules.

Else it is said to be context-free.

Bases

Definition (Base)

A base is a set of atomic rules.

A base is said to be contextual if it contains contextual rules.

Else it is said to be context-free.

$$\blacksquare \{((\Rightarrow a) \Rightarrow c), ((\Rightarrow b) \Rightarrow c), ((\Rightarrow c), (a \Rightarrow p), (b \Rightarrow p) \Rightarrow p)\}$$

$$\blacksquare \{(\{\Rightarrow a\} \Rightarrow c), (\{a \Rightarrow c\} \Rightarrow b), (\{\Rightarrow a\}, \{\Rightarrow a\} \Rightarrow a)\}$$

$$\blacksquare \{(\{\Rightarrow a\} \Rightarrow c), (\{a \Rightarrow c\} \Rightarrow b), (\{\Rightarrow d\}, \{\Rightarrow d\} \Rightarrow a), (\{\Rightarrow a\} \Rightarrow d)\}$$

Presentation root directory

- 1 Bases and inference figures
- 2 Atomic derivability
- 3 Comparing relations

Definition (Context-free atomic derivability $\triangleright_{\mathscr{B}}$)

The relation of derivability in a context-free base \mathcal{B} , is defined as so:

Ref $S \triangleright_{\mathscr{B}} p$ if $p \in S$.

App For $((P_1 \Rightarrow p_1), \dots, (P_n \Rightarrow p_n) \Rightarrow q) \in \mathcal{B}$ and S, $P_i \triangleright_{\mathcal{B}} p_i$ for each $i \in \{1, \dots, n\}$ then $S \triangleright_{\mathcal{B}} q$.

Definition (Context-free atomic derivability $\triangleright_{\mathscr{B}}$)

The relation of derivability in a context-free base \mathcal{B} , is defined as so:

Ref $S \rhd_{\mathscr{B}} p$ if $p \in S$.

App For $((P_1 \Rightarrow p_1), \dots, (P_n \Rightarrow p_n) \Rightarrow q) \in \mathcal{B}$ and $S_q, P_i \triangleright_{\mathcal{B}} p_i$ for each $i \in \{1, \dots, n\}$ then $S \triangleright_{\mathcal{B}} q$.

Definition (Contextual atomic derivability ⊢_∞)

The relation of derivability in a contextual base \mathcal{B} , is defined as so:

Ref $p \vdash_{\mathscr{B}} p$.

App For
$$(\{(P_{1_i} \Rightarrow p_{1_i})\}_{i=1}^{l_1}, \ldots, \{(P_{n_i} \Rightarrow p_{n_i})\}_{i=1}^{l_n} \Rightarrow q) \in \mathscr{B}$$
 and C_i , $P_{i_j} \vdash_{\mathscr{B}} p_{i_j}$ for each $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, l_i\}$ then C_1 , \cdots , $C_n \vdash_{\mathscr{B}} q$.

Example

Let
$$\mathscr{B} = \{(\Rightarrow a), ((\Rightarrow a), (\Rightarrow b) \Rightarrow c)\}$$

$$\frac{\overline{b \rhd_{\mathscr{B}} b} \operatorname{Ref} \quad \overline{\rhd_{\mathscr{B}} a} \Rightarrow a}{b \rhd_{\mathscr{B}} c} (\Rightarrow a), (\Rightarrow b) \Rightarrow c$$

Example

Let
$$\mathscr{B} = \{(\Rightarrow a), (\{\Rightarrow a\}, \{\Rightarrow b\} \Rightarrow c)\}$$

$$\frac{\overline{b \vdash_{\mathscr{B}} b} \operatorname{Ref} \quad \overline{\vdash_{\mathscr{B}} a}}{b \vdash_{\mathscr{B}} c} \Rightarrow a$$

$$\{\Rightarrow a\}, \{\Rightarrow b\} \Rightarrow c$$

Example

By the definition of $\vdash_{\mathscr{B}}$, deriving a from a, a in the empty base is not possible, i.e. a, $a \vdash_{\varnothing} a$ is not possible. But a, $a \vartriangleright_{\varnothing} a$ is possible.

Example

By the definition of $\vdash_{\mathscr{B}}$, deriving a from a, a in the empty base is not possible, i.e. a, $a \vdash_{\varnothing} a$ is not possible. But a, $a \vartriangleright_{\varnothing} a$ is possible.

Example

Let
$$\mathscr{B} = \{(\{\Rightarrow a\} \Rightarrow c), (\{a\Rightarrow c\} \Rightarrow b)\}$$

$$\frac{\cfrac{\times}{a, a \vdash_{\mathscr{B}} a}}{\cfrac{a, a \vdash_{\mathscr{B}} c}{a \vdash_{\mathscr{B}} b}} \{\Rightarrow a\} \Rightarrow c$$

We see that in this base, a is not derivable from $a \circ a$.

Example

Let
$$\mathscr{B} = \{((\Rightarrow a) \Rightarrow c), ((a \Rightarrow c) \Rightarrow b)\}$$

$$\frac{\overline{a, a \rhd_{\mathscr{B}} a}}{\overline{a, a \rhd_{\mathscr{B}} c}} \underset{(\Rightarrow a) \Rightarrow c}{\text{Ref}}$$

$$\overline{a, a \rhd_{\mathscr{B}} b} \underset{(a \Rightarrow c) \Rightarrow b}{\text{Ref}}$$

Example (A very interesting derivation)

Let \mathscr{B} be the following set of rules:

$$\{(\{\Rightarrow b\}\Rightarrow c), (\{\Rightarrow a\}, \{b\Rightarrow c\}\Rightarrow d), (\{\Rightarrow d, \Rightarrow a\}\Rightarrow e), (\{a\Rightarrow e\}\Rightarrow f)\}$$

$$\frac{\overline{a \vdash_{\mathscr{B}} a} \operatorname{Ref} \quad \frac{\overline{b \vdash_{\mathscr{B}} b}}{b \vdash_{\mathscr{B}} c} \underset{\{\Rightarrow a\}, \{b \Rightarrow c\} \Rightarrow d}{\text{Ref}} \\
\underline{a \vdash_{\mathscr{B}} d} \quad \overline{a \vdash_{\mathscr{B}} e} \underset{\{\Rightarrow a, \Rightarrow e\} \Rightarrow f}{\text{Ref}} \\
\underline{a \vdash_{\mathscr{B}} e} \quad \{a \Rightarrow e\} \Rightarrow f$$

Example (A live complicated derivation!)

Consider a base $\mathcal B$ with only the following rules:

- $\blacksquare \{\Rightarrow c\}, \{\Rightarrow y\} \Rightarrow f$
- $\blacksquare \Rightarrow Z$
- $\blacksquare \{\Rightarrow a\}, \{\Rightarrow b\}, \{\Rightarrow z\} \Rightarrow h$
- $\blacksquare \{\Rightarrow h\} \Rightarrow g$
- $\blacksquare \{\Rightarrow x\}, \{\Rightarrow g\} \Rightarrow e$

is there a derivation of d from the multiset $a_9 b_9 c$ in \mathcal{B} ?

Presentation root directory

- 1 Bases and inference figures
- 2 Atomic derivability
- 3 Comparing relations

Comparing relations

Definition (Structural rules)

We define two rules:

$$\blacksquare \mathsf{Wk}_q^p = (\{ \Rightarrow p \}, \{ \Rightarrow q \} \Rightarrow q)$$

$$\blacksquare \ \mathsf{Ctn}^p_q = (\{\Rightarrow p\}, \{p \ , \ p \Rightarrow q\} \Rightarrow q)$$

Mappings between bases

Mappings between bases

Definition

Let \mathscr{B} be a context-free base. We define structural contextualisation of that base $(\mathscr{B})^*$ as follows:

$$\begin{split} (\mathscr{B})^{\star} &= \{ \{P_1 \Rightarrow p_1\}, \dots, \{P_n \Rightarrow p_n\} \Rightarrow q \,|\, ((P_1 \Rightarrow p_1), \dots, (P_n \Rightarrow p_n) \Rightarrow q) \in \mathscr{B} \} \\ &\quad \cup \{ \mathsf{Wk}_q^{p}, \mathsf{Ctn}_q^{p} \,|\, \forall p, \, q \in \mathbb{A} \} \end{split}$$

Mappings between bases

Definition

Let \mathscr{B} be a context-free base. We define structural contextualisation of that base $(\mathscr{B})^*$ as follows:

$$\begin{split} (\mathscr{B})^{\star} &= \{ \{P_1 \Rightarrow p_1\}, \dots, \{P_n \Rightarrow p_n\} \Rightarrow q \,|\, ((P_1 \Rightarrow p_1), \dots, (P_n \Rightarrow p_n) \Rightarrow q) \in \mathscr{B} \} \\ &\quad \cup \{ \mathsf{Wk}_q^{p}, \mathsf{Ctn}_q^{p} \,|\, \forall p, \, q \in \mathbb{A} \} \end{split}$$

We define the decontextualisation of a contextual base as:

$$(\mathscr{B})_{\star} = \{ (P_{1_{1}} \Rightarrow p_{1_{1}}), \dots, (P_{n_{l_{n}}} \Rightarrow p_{n_{l_{n}}}) \Rightarrow q$$

$$| (\{P_{1_{i}} \Rightarrow p_{1_{i}}\}_{i=1}^{l_{i}}, \dots, \{P_{n_{i}} \Rightarrow p_{n_{i}}\}_{i=1}^{l_{n}} \Rightarrow q) \in \mathscr{B} \}$$

Let \mathcal{B} be a context-free base. Then the following hold:

$$\blacksquare ((\mathscr{B})^{\star})_{\star} \supseteq \mathscr{B}.$$

Let \mathcal{B} be a context-free base. Then the following hold:

- $\blacksquare ((\mathscr{B})^*)_* \supseteq \mathscr{B}.$

Let \mathcal{B} be a context-free base. Then the following hold:

- $\blacksquare ((\mathscr{B})^*)_* \supseteq \mathscr{B}.$
- $\blacksquare (((\mathscr{B})^*)_*)^* = (\mathscr{B})^*.$
- For all $\mathscr{C} \supseteq \mathscr{B}$ we have that $(\mathscr{C})^* \supseteq (\mathscr{B})^*$.

Let \mathscr{B} be a context-free base. Then the following hold:

- $\blacksquare ((\mathscr{B})^*)_* \supseteq \mathscr{B}.$
- $(((\mathscr{B})^*)_*)^* = (\mathscr{B})^*.$
- For all $\mathscr{C} \supseteq \mathscr{B}$ we have that $(\mathscr{C})^* \supseteq (\mathscr{B})^*$.
- For all $\mathscr{C} \supseteq (\mathscr{B})^*$ there exists an extension $\mathscr{X} \supseteq \mathscr{B}$ such that $(\mathscr{X})^* = \mathscr{C}$.

Structural admissibility in a structurally contextualised base

Lemma

Suppose $L \vdash_{(\mathscr{B})^*} p$ holds. Then R, $L \vdash_{(\mathscr{B})^*} p$ also holds for any atomic multiset R.

Proof.

Let $R = \{r_1, \dots, r_n\}$ for some n. Then we have that we can effectively weaken S away as follows:

$$\frac{\frac{1}{r_{n-1} \vdash_{(\mathscr{B})^{\star}} r_{n-1}} \operatorname{Ref}}{\frac{r_{n-1} \vdash_{(\mathscr{B})^{\star}} r_{n-1}}{r_{n}} \cdot L \vdash_{(\mathscr{B})^{\star}} p} \operatorname{Wk}_{p}^{r_{n-1}}}{\vdots} \times \frac{\frac{1}{r_{n} \vdash_{(\mathscr{B})^{\star}} r_{n}} \operatorname{Wk}_{p}^{r_{n-1}}}{r_{n} \cdot L \vdash_{(\mathscr{B})^{\star}} p} \operatorname{Wk}_{p}^{r_{n-1}}}{R \cdot L \vdash_{(\mathscr{B})^{\star}} p} \times \frac{1}{R \cdot L \vdash_{(\mathscr{B})^{\star}} p} \operatorname{Wk}_{p}^{r_{n}}$$

Structural admissibility in a structurally contextualised base

Lemma

Suppose R , $R \vdash_{(\mathscr{B})^*} p$ holds. Then $R \vdash_{(\mathscr{B})^*} p$ also holds.

Structural admissibility in a structurally contextualised base

Lemma

Suppose R, $R \vdash_{(\mathscr{B})^*} p$ holds. Then $R \vdash_{(\mathscr{B})^*} p$ also holds.

Corollary

For arbitrary $m \geqslant 1$, if $R^m \vdash_{(\mathscr{B})^*} p$ then $R \vdash_{(\mathscr{B})^*} p$.

Proof.

Let $R = \{r_1, \dots, r_n\}$ for some n. Then we have that we can effectively contract on R as follows:

$$\frac{\frac{r_{n-1} \vdash_{(\mathscr{B})^{\star}} r_{n-1}}{r_{n-1} \vdash_{(\mathscr{B})^{\star}} r_{n-1}} \operatorname{Ref} \qquad \frac{\overline{r_{n} \vdash_{(\mathscr{B})^{\star}} r_{n}} \operatorname{Ref} \qquad Ref \qquad R, R \vdash_{(\mathscr{B})^{\star}} p}{r_{1}, \dots, r_{n-1}, R \vdash_{(\mathscr{B})^{\star}} p} \operatorname{Ctn}_{p}^{r_{n}} \\ \vdots \\ \frac{r_{1} \vdash_{(\mathscr{B})^{\star}} r_{1}}{R \vdash_{(\mathscr{B})^{\star}} p} \operatorname{Ctn}_{p}^{r_{1}} \\ \end{array}}$$

■ If $R \triangleright_{\mathscr{B}} p$ then $R \vdash_{(\mathscr{B})^*} p$.

- If $R \triangleright_{\mathscr{B}} p$ then $R \vdash_{(\mathscr{B})^*} p$.
- $R \vdash_{(\mathscr{B})^*} p$ iff for all bases $\mathscr{X} \supseteq (\mathscr{B})^*$ where for each $r \in R$ we have $\vdash_{\mathscr{X}} r$ then it follows that $\vdash_{\mathscr{X}} p$.

- If $R \triangleright_{\mathscr{B}} p$ then $R \vdash_{(\mathscr{B})^*} p$.
- $R \vdash_{(\mathscr{B})^*} p$ iff for all bases $\mathscr{X} \supseteq (\mathscr{B})^*$ where for each $r \in R$ we have $\vdash_{\mathscr{X}} r$ then it follows that $\vdash_{\mathscr{X}} p$.
- $\blacksquare R \vdash_{(\mathscr{B})^*} p \text{ iff } !R \Vdash_{(\mathscr{B})^*}^{\varnothing} p$

- If $R \triangleright_{\mathscr{B}} p$ then $R \vdash_{(\mathscr{B})^*} p$.
- $R \vdash_{(\mathscr{B})^*} p$ iff for all bases $\mathscr{X} \supseteq (\mathscr{B})^*$ where for each $r \in R$ we have $\vdash_{\mathscr{X}} r$ then it follows that $\vdash_{\mathscr{X}} p$.
- $\blacksquare R \vdash_{(\mathscr{B})^*} p \text{ iff } !R \Vdash_{(\mathscr{B})^*}^{\varnothing} p$
- $\blacksquare \Vdash^{R}_{(\mathscr{B})^{*}} p \text{ iff } ! R \Vdash^{\varnothing}_{(\mathscr{B})^{*}} p$

Thank you!

```
C:\>ver

SCP/DOS Version 0.98

C:\>

Comments? Obervations? Please ask and/or feel free\
to email me at y.buzoku@ucl.ac.uk
```

Figure: Thank you from DOS!:D

References I

- G.M. Bierman, *On intuitionistic linear logic*, Tech. Report UCAM-CL-TR-346, University of Cambridge, Computer Laboratory, August 1994.
- YII Buzoku, A proof-theoretic semantics for intuitionistic linear logic, 2024.
- Alexander V. Gheorghiu, Tao Gu, and David J. Pym, *Proof-theoretic semantics for intuitionistic multiplicative linear logic*, Automated Reasoning with Analytic Tableaux and Related Methods (Cham) (Revantha Ramanayake and Josef Urban, eds.), Springer Nature Switzerland, 2023, pp. 367–385.

References II

- J.-Y. Girard, Linear logic: its syntax and semantics, London Mathematical Society Lecture Note Series, p. 1–42, Cambridge University Press, 1995.
- Alexander V. Gheorghiu and David J. Pym, From proof-theoretic validity to base-extension semantics for intuitionistic propositional logic, 2022.
- Sara Negri, A normalizing system of natural deduction for intuitionistic linear logic, Archive for Mathematical Logic **41** (2002), no. 8, 789–810.
- Tor Sandqvist, *An inferentialist interpretation of classical logic*, Ph.D. thesis, Uppsala universitet, 2005.

References III

_____, Base-extension semantics for intuitionistic sentential logic, Log. J. IGPL **23** (2015), 719–731.