Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Southern Piedmont Conservation Research Center Agricultural Research Service, USDA Watkinsville, GA 30677

> RESEARCH REPORT No. IRC 070187 July 1987

Research Report $\frac{1}{2}$ No. IRC 070187

UCT 1 199

Computer Programs for Analysis and Simulation of Seasonally Continuous Probability Distributions

A. W. Thomas
Agricultural Engineer
Southern Piedmont Conservation Research Center
Agricultural Research Service, USDA
Watkinsville, GA 30677

W. M. Snyder Hydrologic Consultant 275 Gatewood Circle Athens, GA 30607

and

A. L. Dillard
Agricultural Engineer (Graduate Co-Op Student)
Southern Piedmont Conservation Research Center
Agricultural Research Service, USDA
Watkinsville, GA 30677

July 1987

 $\frac{1}{\text{This}}$ report describes computer programs and their operational details that calculate continuous seasonal cycles of probabilities for values of climatic variables and then synthesize distributions that will describe probabilistic levels of risk.

PREFACE

This report is one of a series of "Research Reports" published by the Integrated Row Crop Management Systems Research Unit at the Southern Piedmont Conservation Research Center, Watkinsville, GA. The purpose of these reports is to provide a mechanism for technology transfer to potential users of information developed by the scientists in this Research Unit. Below is a list of the reports developed in this series. Any report may be obtained by requesting it at the Watkinsville address (phone 404/769-5631 or FTS 250-2425).

Research Report No.	Authors and Title
IRC 060183	White, A. W., Jr., R. R. Bruce, A. W. Thomas, G. W. Langdale, and H. F. Perkins. The effects of soil erosion on soybean production in the Southern Piedmont of Georgia in 1982.
IRC 093083	Welch, R., T. R. Jordan, A. W. Thomas, and J. W. Ellis. Photogrammetric techniques for monitoring soil erosion.
IRC 060184	White, A. W., Jr., R. R. Bruce, A. W. Thomas, G. W. Langdale, and H. F. Perkins. Effect of soil erosion on soybean yields and characteristics of Cecil-Pacolet soils.
IRC 070184	Thomas, A. W. and W. M. Snyder. Computer programs for analysis and simulation of probability distribution using sliding polynomials.
IRC 010186	Thomas, A. W., W. M. Snyder, and A. L. Dillard. A computer program for transforming stochastic data and evaluating probability distributions.
IRC 060686	Harper, L. A. and W. M. Snyder. A laboratory guide to smoothing and use of stochastic integrals for time-distribution data.
IRC 070686	Harper, L. A. and W. M. Snyder. A laboratory guide to sliding polynomial smoothing and testing for significant difference of functions in non-standard data sets.
IRC 070187	Thomas, A. W., W. M. Snyder, and A. L. Dillard. Computer programs for analysis and simulation of seasonally continuous probability distributions

INTRODUCTION

We in agriculture readily recognize how dependent we are on seasonal patterns of rainfall, temperature, streamflow, and other climatological variables. Because of this dependency, we are motivated to develop methodology useful in the study and treatment of climatological variates that impact agriculture. We wish to isolate and define quantitatively the seasonal variation of natural risk and uncertainty in order to provide improved inputs into the planning and implementation of seasonally dependent activities.

We have developed a series of papers under the general theme of "Stochastic Impacts on Farming" that treat the determination of risk and uncertainty in relation to resource management and agricultural production. In the first paper, Thomas and Snyder (1986a) presented a data transformation method that was developed and tested against selected climatological records. Then, Thomas et al. (1986) published a companion research report that describes a computer program which transforms stochastic data. In the second paper, Snyder and Thomas (1986) presented a method for computing seasonally continuous probability distributions. The third paper (Thomas and Snyder, 1986b) used simulation techniques to develop seasonal variation of risk. This research report gives the computer programs and their operational details used in the studies of paper two (analysis) and paper three (simulation).

In the analysis phase, we adapt two-dimensional sliding polynomials to form-free frequency distributions having mathematically continuous cyclic variability through the annual march of season. The season is defined by monthly samples of data consisting of one observation per

and the second s	

month for the period of record. Such data may be extremes of maxima or minima or may be monthly averages or totals. Bi-modal distributions or statistical outliers require no special or subjective treatment; however, this method is presently limited to samples containing only positive skew. The monthly data are standardized by a separate transformation for each of the twelve calendar months. The standardized data are smoothed by fitting the two-dimensional sliding polynomial surface by least squares. Smoothing is constrained by imposition of boundary conditions for extreme magnitude and for maintenance of full seasonal cyclic continuity. Thus, we develop variate probabilities that are defined by the mathematical surface based on magnitude of event and month of the year.

During the analysis phase the sliding polynomial surface establishes the relationship between magnitudes of an event and the probability of occurrence of the event. In the simulation phase, the numerical relationship is reversed. The surface is now used to calculate event magnitudes from computer-generated and linearly distributed probabilities. The process simply reduces to reverse interpolation. In the analysis, the derivation of form-free seasonally continuous probability distributions establishes the stochastic characteristics of the climatological variate that includes seasonal cycles. Simulation converts these characteristics into utilitarian expressions of risk and uncertainty.

ANALYSIS

The method of analysis consists of two parts. First, transformation of the variate is necessary to bring into alignment the samples from different months of the year, factoring out the different

means and standard deviations to produce nearly homogeneous data that can be smoothed by a mathematical surface. Resulting from this first step are 12 graphs of sample probabilities versus an abstract variate v. The reader is referred to Thomas and Snyder (1986a) and Thomas et al. (1986) for a full discussion of the variate transform and a computer program that performs the transformation.

The second part of the methodology is to smooth simultaneously the 12 monthly sample probabilities and the month-to-month transition in order to produce continuous probability functions that follow the natural continuity of seasonal transitions. A surface of smoothing is required which may be visualized as a set of contours on a cylinder of the seasons. The smoothing space is defined by the magnitude of events in v-scale versus the time by months. The height of the surface across this space is probability. Two-dimensional sliding polynomials produce the continuous but piece-wise form-free surface. Boundaries of the space in v-scale are given by Snyder and Thomas (1986), while in time scale they have a particular requirement. Seasonal continuity requires that the smoothing surface pass through December at the end of the year and join with January at the beginning of the year with mathematical continuity. We used the cyclically continuous form of sliding polynomials as presented by Snyder (1980).

The smoothing surface in the time vs v space is found by least squares determination of the values of a grid of nodes. Our nodal arrangement is shown as Fig. 1. We place lines of nodes at January, April, June, October, and again at January. By imposing boundary conditions, the initial 5x7 grid is reduced to a 4x5 grid. First, all nodes at v=0 are set to zero, and the nodes at v=-1 are set equal to

			{
			-
			{
			ſ
			ſ
			1
			ſ
			11
			(6
			Oi.
			{{
			Chi
			A

the nodes at v=1 (Thomas and Snyder, 1986a). Five nodes in v-scale remain. The right boundary at v=4 is a free boundary. Next, the nodes of the upper January are set equal to the nodes of the lower January to produce the cyclindrical surface. This leaves four nodes in the seasonal time scale. This boundary-constrained 4x5 grid of nodes is then evaluated by two-dimensional least-squares smoothing of the 12 monthly samples.

SIMULATION

The method of simulation consists of two numerical steps: the computer-generation of linearly distributed pseudo-random numbers and a transformation of these numbers to other, different distributions. The pseudo-random numbers are generated in a scale from zero to 100 and each may be considered a probability. Each value of probability has an equal chance of occurrence. In the second step, the numerical relationship as developed in the stochastic analysis is reversed as described earlier. The computed mathematical surface is now used to calculate event magnitudes from the computer-generated and linearly distributed probabilities. Through the simulation process, we synthesize distributions that will describe probablistic levels of risk, and that will detail the variation of this risk in a continuous fashion by months throughout the year.

The complete process of seasonal simulation of risk requires consideration of four elements. The first two, probability-event magnitude relation and the seasonal variation of this relationship, are quantified by the least-square determination of the sliding polynomial smoothing surface. These first two elements are thus internal to the stochastic analysis. The other two elements are external and require

{
Į
[
ſ
ı
1
l
1
(1)
E.
fi
6.9 6.1
U

subjective operational decision. One of these elements is the length of the synthetic samples that are to be generated. This number could be described as the length of the planning period. Thus, simulation establishes the levels of risk of occurrence of events during the planning period. The last element is the number of synthetic samples to be generated. This number sets a level of precision, or a level of confidence, that can be placed on the statements of risk.

DISCUSSION

A rainfall sample was selected to demonstrate the results of the analysis and simulation. This sample was a 99-year record (1885-1983) of monthly total rainfall measured at Athens, GA. The monthly values of mean, standard deviation, skew, range, and transformation parameters for this sample are given by Snyder and Thomas (1986).

The smoothing of this monthly historical data set produces a surface of probability. As shown in Fig. 2, this surface can be displayed by contours of equal probability drawn in the season-event magnitude space of the problem. The figure displays the strong natural seasonality of rainfall that is typical of the region. These contours are calculated on the full set of 24-nodes defining the two-dimensional surface as in Fig. 1 of Snyder et al. (1984). This includes the four boundary nodes set to zero at v=0. The values of these nodes in probability scale and their standard deviations are given in Table 3 of Snyder and Thomas (1986). The standard deviations are expressions of localized variance (Snyder et al., 1984) and are alternatives to the cumbersome errors of prediction of conventional regression analysis. They provide measures of the instability of the surface at these nodes and are one measure of the goodness of fit. Since all deviations are

1
-
(0

less than 1.5%, we conclude that the contours of probability are closely defined.

To demonstrate the simulation process, we chose the length of the planning period to be 20 years. We generated 100 samples for this planning period. The results of simulation are presented in Fig. 3 in two parts. Part "a" shows simulated values of rainfall which is number 5 in ranking in the 100 samples simulated. Part "b" shows values which is number 25 in ranking in the 100 samples. These figure parts are thus simulated approximations to confidence levels of 95% and 75% since risk values would be exceeded on the average in only 5% or 25%, respectively, of occurrences at selected risk levels.

Fig. 3 shows event magnitude versus month for coordinate scale. The items plotted to this scale are selected rank values within the planning period and therefore express risk. For example, we see that in January, there is a 1-in-20 risk that monthly rainfall will equal or exceed about 33 cm. This statement is made with 95% confidence. These contours of equal risk show patterns closely resembling the seasonal probabilities of Fig. 2. However, this does not mean that we should perform the stochastic analysis and omit the simulation. The simulation is necessary to quantify risk and uncertainty.

In this simulation, two elements of variation are incorporated. First, the values of the nodes defining the mathematical surface are varied in conformance with their standard deviations. After varying the nodes, random numbers are generated and converted to event magnitude using the mathematical surface through the pulsed nodes. Therefore, both natural stochasticity and derived system variance determine the variances of the simulations.

•
-
1
(4
Į.
eri.
1
4,24
ni.
66
11

REFERENCES

- Snyder, Willard M. 1980. Smoothed Data and Gradients Using Sliding Polynomials with Optional Controls. Water Resource. Bull. 16(1):22-30.
- Snyder, W. M. and A. W. Thomas. 1986. Stochastic Impacts on Farming: II. Seasonally Continuous Probability Distributions. Trans. ASAE. 29(4):1017-1025.
- Snyder, W. M., R. R. Bruce, L. A. Harper, and A. W. Thomas. 1984.
 Two Dimensional Sliding Polynomials. The University of Georgia
 College of Agricultural Experiment Stations. Res. Bull. 320. 57 p.
- 4. Thomas, A. W. and W. M. Snyder. 1986a. Stochastic Impacts on Farming: I. Transformation of Agriculturally Relevant Variates for Probability Analysis. Trans. ASAE 29(1):128-134.
- Thomas, A. W. and W. M. Snyder. 1986b. Stochastic Impacts on Farming: III. Simulation of Seasonal Variation of Climatic Risk. Trans. ASAE. 29(4):1026-1031.
- 6. Thomas, A. W., W. M. Snyder, and A. L. Dillard. 1986. A Computer Program for Transforming Stochastic Data and Evaluating Probability Distributions. Technical Research Report No. IRC 010186.

 Watkinsville, GA.

Į
1

Fig. 1. Arrangement of nodes for smoothing probabilities in two dimensions.

	65
	Į
	1
	1
	_
	0
	1

Fig. 2. Seasonal contours of probability for Athens monthly total rainfall.

1
U
1
•
ı
1
1
U
1
G
ı
L

Fig. 3. Seasonal contours of risk for Athens monthly total rainfall.

1
11
(1
ue ue
()(
W.
L

APPENDIX

The Appendix includes a description of input and output variables, program listing, and sample output in the determination of risk and uncertainty (including analysis and simulation) of a 99-year monthly-total rainfall record.

The programs are presented for the convenience of potential users. While the programs have been run and tested on various data sets, the originators of the programs assume no responsibility for their accuracy or adequacy. Such responsibility must rest solely on the user. We stand ready to assist and advise within the limitations imposed by our operating resources. The analysis program is listed in Hewlett-Packard BASIC with Ext. 2.1. The simulation program is listed in FORTRAN V. (Trade name is included for the benefit of the reader and does not imply an endorsement or preferential treatment of the named product.)

1
(8
Ø
((0
W.
1
and a
Tr.
ill
141
1

ANALYSIS PROGRAM

This seasonally continuous probability program fits a two-dimensional sliding polynomial surface to a sample made up of one event per month. Record for each month is converted to a sample accumulated probability curve across 40 classes. Height of the surface is probability. Data are input from disk by calendar month and classified in v-scale by month.

The program 'WRITEWTINV' provides data files needed by the seasonally continuous probability program. The data files contain sliding polynomial weights and the inverse sums of square matrix. No inputs are required since it is programmed for the fixed field of nodes as shown in Fig. 1.

		1
		•
		1
		_
		1
		•
		1
		1
		-
		-
		ı

Analysis Program Input Variables

Prtr	Printer output device control. (1=CRT, 706=Printer)				
Dsname\$	Sample input disk file name				
Stnam\$	Output disk file name				
T\$	Problem title				
Ny	Number of years in record				
Ck\$	Program control variable.				
H(I)	Monthly sample variate For I=1 to 12				
Wt(*)	Nodal weights for least square smoothing For *=1 to 41				
B(*,**)	<pre>Inverse sums-of-squares matrix for least squares For *=1 to 20:**=1 to 20</pre>				

1
•
[
1
a a
Į.
W.
41
1110

Analysis Program Output Variables

Variable name	Comment
T\$	Problem title
Hb(I)	Monthly sample mean For I=1 to 12
Hsd(I)	Monthly sample std. deviation For I=1 to 12
Hsk(I)	Monthly sample coeff. of skew For I=1 to 12
Нр	Minimum value of intermediate variate, h', at minimum class limit
Ср	Common point of two exponential limbs (in v-scale)
Vr	<pre>Right asymptotic boundary for limb v2 (in v-scale)</pre>
F	Shape parameter
D	Shape parameter
Hmin(I)	Monthly minimum class limit For I=1 to 12
Cf(J,I)	Sample class probabilities For I=1 to 41:J=1 to 12
Lim(J,I)	Sample class limits For I=1 to 41:J=1 to 12
Yn(M)	Sliding polynomial solution nodes For M=1 to 20
Py(I)	Smoothed probability values For I=1 to 492
E(I)	Residual errors For I=1 to 492
Nvar(J)	Nodal variances For J=1 to 20
Lu3(J)	Nodal sum of weights For J=1 to 20
Ssy	Total adjusted sum of squares

Ses	Total residual error square
Rs	Coefficient of determination
Ab(*,**)	Smoothed probabilities For *=1 to 12:**=1 to 41

· ·
ſ
,
ĺ
ſ

```
Analysis Program Listing
         10
                               "SEACONPRB"
20
     REM
         ######## THIS PROGRAM FITS A 2-D SLIDING POLYNOMIAL
                                                        ###############
     REM
30
         ######## SURFACE TO A SAMPLE MADE UP OF ONE EVENT
                                                        ################
40
     RFM
         ######## PER MONTH. RECORD FOR EACH MONTH IS CONVERTED ###########
50
     REM
         ######## TO A SAMPLE ACCUMULATED PROBABILITY CURVE
                                                        #############
     REM
60
         70
     REM
         ######## PROBABILITY. DATA ARE INPUT FROM DISK BY
80
     REM
         REM
90
         ####### MONTH.
     RFM
100
         110
     REM
         ######### CHECK LEFT DISK DRIVE FOR NECESSARY FILES
120
     REM
         130
     REM
     CAT ":INTERNAL,4,1"
140
                 'PROBWTSP' AND 'PRBINVMATP' ON LEFT DRIVE? Y OR N", Ck$
     LINPUT " ARE
150
                                                        ###############
         ######## IF YES, CONTINUE WITH PROGRAM
160
     REM
     IF Ck$="Y" THEN 200
170
                                                        ###############
         ######## IF NO, RUN PROGRAM TO GENERATE FILES
     REM
180
     LOAD "WRITEWTINV: INTERNAL, 4, 1", 10
190
         200
     OPTION BASE 1
210
     DIM H(100), Hb(12), Hsd(12), Hsk(12), Lim(12,41), Cf(12,41), T$[50], U(12)
220
     DIM B(20,20), Wt(20), Py(492), E(492), Sy(20), Yn(20), Ab(12,41), Hmin(12)
230
     DIM Lu1(20), Lu2(20), Lu3(20), Nvar(20), Hku(16), Dsname$[30], Stnam$[30]
240
250
     DIM Ct(40), Ch(40)
     INTEGER Ny,I,J,K,N,L,M,Knt
260
270
     REAL Nv1
     INPUT "TO PRINT TO CRT ENTER<1>, HARDCOPY ENTER<706>", Prtr
280
     LINPUT "INPUT SAMPLE DATA SET NAME", Dsname$
290
     LINPUT "STORAGE DATA SET NAME", Stnam$
300
     CREATE BDAT Stnam$,50
310
     INPUT "PROBLEM TITLE".T$
320
     OUTPUT Prtr;T$
330
     ASSIGN @Four TO Dsname$
340
     INPUT "NUMBER OF YEARS IN RECORD", Ny
350
360
     Nv1=Nv
     LINPUT " CAN HMIN BE NEGATIVE VALUE? Y OR N", Ck$
370
                    Ks=.2
380
                                                         п
                                                COEFFS.
     OUTPUT Prtr:"
390
                                                        ";
                                      STD DEV
                                                SKEW
     OUTPUT Prtr;" MONTH
                          MEAN
400
                                                   D":
                                           F
     OUTPUT Prtr;"HP
                         CP
                                  ٧R
410
                       HMIN "
     OUTPUT Prtr;"
420
                                                         ###############
                       BEGIN MONTH LOOP
         #########
430
     REM
     FOR I=1 TO 12
440
     MAT Ch=(0)
450
460
     MAT Ct=(0)
                                                     ##############
                     FIND FIRST THREE MOMENTS FOR MONTH I
470
      REM ########
      PRINT I:
480
490
      Sh=0.
      Shh=0.
500
      Shhh=0.
 510
      Hmin(I) = 999999.
 520
 540
      FOR J=1 TO Ny
```

		l
		1
		l
		1
		Į.
		ı
		•
		a i
		n
		9
		ſ
		U
		Í
		O.
		- 1

```
550
      PRINT J:
      ENTER @Four;H(J)
560
570
      Check=H(J)
580
      IF Check<Hmin(I) THEN</pre>
590
         Hmin(I)=Check
600
         END IF
610
      Sh=Sh+H(J)
620
      Hh=H(J)*H(J)
630
      Thh=Thh+Hh
640
      Th=Th+H(J)
650
      Shh=Shh+Hh
660
      Shhh=Shhh+Hh*H(J)
      NEXT J
670
680
      PRINT
690
      Hb(I)=Sh/Ny1
      M2=(Shh-Sh*Sh/Ny)/Ny1
700
710
      Hsd(I)=SQR(M2)
720
      Hb3=Hb(I)*Hb(I)*Hb(I)
730
      Hs3=Hsd(I)*Hsd(I)*Hsd(I)
740
      Hsk(I)=((Shhh/Ny1)-(3*Hb(I)*Shh)/Ny1+(2*Hb3))/Hs3
750
      REM ######## KS=0.2 SETS Hmin 20% OF 1 STD DEV BELOW
                                                               ###############
760
      REM ####### MINIMUM DATA VALUE.
                                                                  ##############
      Hmin(I)=Hmin(I)-Ks*Hsd(I)
770
780
      REM ########
                       MAY LIMIT Hmin TO ZERO
                                                                  ###############
      IF Ck$="N" THEN
790
800
       IF Hmin(I)<0. THEN
810
        Hmin(I)=0.
820
        END IF
830
      END IF
840
      OUTPUT Prtr USING 850; I, Hb(I), Hsd(I), Hsk(I)
      IMAGE #,5D,7D.4D,2X,6D.4D,2X,3D.4D
850
      IMAGE 5(5D.4D),6D.2D,2X
860
870
      REM ########
                                SET TRANSFORM PARAMETERS ############
      Hp=(Hmin(I)-Hb(I))/Hsd(I)+Hsk(I)/8
088
890
      Cp=2.+.375*Hsk(I)
900
      Vr=4.05+(Cp-2.)
      F=LOG((4.-Vr)/(Cp-Vr))/Hp
910
920
      D=F*(Vr-Cp)/Cp
      OUTPUT Prtr USING 860; Hp, Cp, Vr, F, D, Hmin(I)
930
940
      V1=0.
                       CALCULATE CLASS LIMITS
950
      REM ########
                                                                  ###############
      FOR K=1 TO 39
960
970
      V1=V1+.1
980
      IF V1>Cp THEN 1020
990
      REM ########
                            LEFT SIDE OF TRANSFORM
                                                                  ###############
      Ch(K)=-Hsd(I)*(LOG(V1/Cp)/D+Hsk(I)/8)+Hb(I)
1000
1010
      GOTO 1040
      REM ####### RIGHT SIDE OF TRANSFORM
1020
                                                                  ###############
     Ch(K)=Hsd(I)*(LOG((V1-Vr)/(Cp-Vr))/F-Hsk(I)/8)+Hb(I)
1030
1040
      NEXT K
      Ch(40) = Hmin(I)
1050
1060
      Itt=1
1070
      Cf(I,1)=0.
1080
     Lim(I,1)=99999.99
```

		•
		•
		1
		1
		•
		1
		ſ
		1
		_
		•
		•
		-
		_
		-

```
CALCULATE SAMPLE CLASS PROBABILITIES ################
1090 REM #########
     FOR J=1 TO Ny
1100
     FOR K=Itt TO 40
1110
     IF H(J)>Ch(K) THEN 1140
1120
     GOTO 1160
1130
      Ct(K)=Ct(K)+1
1140
      GOTO 1170
1150
     NEXT K
1160
     NEXT J
1170
1180
      REM
1190
     FOR J=2 TO 40
      Ct(J)=Ct(J)+Ct(J-1)
1200
1210
     NEXT J
1220
     FOR K=Itt TO 40
     Ct(K)=Ct(K)/Ny
1230
1240
     NEXT K
     REM ####### REALIGN LIMITS AND SAMPLE PROBS INTO 41 CLASSES #######.
1250
     FOR N=1 TO 40
1260
     Cf(I,N-Itt+2)=Ct(N)
1270
     Lim(I,N-Itt+2)=Ch(N)
1280
                                                     '\
     NEXT N
1290
     FOR N=1 TO 41
1300
      Tp=Tp+Cf(I,N)
1310
      Tp2=Tp2+Cf(I,N)*Cf(I,N)
1320
1330
      NEXT N
1340
      NEXT I
                                                                  ################
                             END OF MONTH LOOP
      REM #########
1350
      ASSIGN @Four TO *
1360
                        SAMPLE CLASS PROBABILITIES"
     OUTPUT Prtr;"
1370
     FOR I=1 TO 12
1380
1390 OUTPUT Prtr USING 1400;I
     IMAGE #,5X,5D
1400
     NEXT I
1410
1420 OUTPUT Prtr
      IMAGE #,4D
1430
1440 FOR I=1 TO 41
1450 OUTPUT Prtr USING 1430; I-1
1460 FOR J=1 TO 12
1470 OUTPUT Prtr USING 1480;Cf(J,I)
1480 IMAGE #,3D.3D,3X
1490
      NEXT J
      OUTPUT Prtr
1500
1510
      NEXT I
 1520
      OUTPUT Prtr
1530 OUTPUT Prtr;"
                          CLASS LIMITS"
      FOR I=1 TO 12
 1540
      OUTPUT Prtr USING 1400; I
 1550
      NEXT I
 1560
 1570
      OUTPUT Prtr
      FOR I=1 TO 41
 1580
      OUTPUT Prtr USING 1430; I-1
 1590
 1600
      FOR J=1 TO 12
      IF Lim(J,I)=99999.99 THEN
 1610
```

OUTPUT Prtr;" +++++ ";

1620

				1
				ſ
				1
				į
				1
				1
				1
				•
				ı
				n
				ı
				9.
				-
				(60

```
1630
       GOTO 1670
1640
        END IF
1650 OUTPUT Prtr USING 1660:Lim(J.I)
1660
     IMAGE #,6D.D,2X
1670
     NEXT J
1680
    OUTPUT Prtr
1690
     NEXT I
1700 OUTPUT Prtr
1710 REM ####### READ IN WEIGHTS A DATA POINT AT A TIME ##############
1720 REM ######## ACCUMULATE XY VECTOR.
                                                            ################
1730 ASSIGN @Wrts TO "PROBWTSP: INTERNAL, 4.1"
1740 FOR I=1 TO 12
1750 PRINT I;
1760 FOR J=1 TO 41
1770 ENTER @Wrts:Wt(*)
1780 FOR L=1 TO 20
1790 Sy(L)=Sy(L)+Wt(L)*Cf(I,J)
1800 NEXT L
1810
    NEXT J
1820 NEXT I
1830 ASSIGN @Wrts TO *
1840 REM ######## READ IN INVERSE MATRIX
                                                           #############
1850 ASSIGN @Ivn TO "PRBINVMATP: INTERNAL, 4,1"
1860 ENTER @Ivn;B(*)
    FOR L=1 TO 20
1870
    FOR I=1 TO 20
1880
    Yn(L)=Yn(L)+Sy(I)*B(L,I)
1890
1900
    NEXT I
1910
    NEXT L
1920
    1930 OUTPUT Prtr; "SOLUTION NODES"
1940 FOR M=1 TO 8
1950 OUTPUT Prtr USING 1960; M, Yn(M)
1960
    IMAGE #,4D,2X,3D.5D
1970 NEXT M
    OUTPUT Prtr
1980
1990
    FOR M=9 TO 16
2000 OUTPUT Prtr USING 1960;M,Yn(M)
2010
    NEXT M
2020
    OUTPUT Prtr
2030 FOR M=17 TO 20
2040 OUTPUT Prtr USING 1960; M, Yn(M)
2050 NEXT M
2060 OUTPUT Prtr
2070 ASSIGN @Ivn TO *
2080 REM ######## LAY IN SLIDING POLYNOMIAL SURFACE THROUGH ###############
2090 REM ####### SOLUTION NODES.
                                                            ###############
2100 ASSIGN @Wts TO "PROBWTSP:INTERNAL,4,1"
2110
    Ip=0
2120 FOR I=1 TO 12
2130 FOR J=1 TO 41
2140 Ip=Ip+1
```

2150 PRINT Ip;

		1
		1
		•
		1
		ı
		l
		- 1
		•
		1
		1
		•
		1
		_
		· ·

```
2160
     ENTER @Wts;Wt(*)
     FOR L=1 TO 20
2170
     Py(Ip)=Py(Ip)+Wt(L)*Yn(L)
2180
2190
     NEXT L
                                                                 ################
                                  CALCULATE RESIDUALS
2200
      REM #########
      E(Ip)=Cf(I,J)-Py(Ip)
2210
      T1=E(Ip)*E(Ip)
2220
2230
      Ses=Ses+T1
     FOR L=1 TO 20
2240
     T2=Wt(L)*Wt(L)
2250
2260
     Lu2(L)=Lu2(L)+T1*T2
     Lu1(L)=Lu1(L)+T2
2270
2280 Lu3(L)=Lu3(L)+Wt(L
     NEXT L
2290
2300
     NEXT J
2310
     NEXT I
     ASSIGN @Wts TO *
2320
     OUTPUT Prtr2340 OUTPUT Prtr;" SMOOTHED PROBABILITY VALUES"
2330
      FOR I=1 TO 12
2350
2360 OUTPUT Prtr USING 1400;I
      NEXT I
2370
2380
     OUTPUT Prtr
    FOR J=1 TO 41
2390
2400 OUTPUT Prtr USING 1430;J-1
      FOR I=J TO (451+J) STEP 41
2410
2420 OUTPUT Prtr USING 1480; Py(I)
      NEXT I
2430
     OUTPUT Prtr
2440
2450
     NEXT J
                       RESIDUAL ERRORS"
      OUTPUT Prtr:"
2460
2470
      FOR J=1 TO 12
      OUTPUT Prtr USING 1400;J
2480
      NEXT J
2490
      OUTPUT Prtr
2500
     FOR I=1 TO 41
2510
      OUTPUT Prtr USING 1430; I-1
2520
      FOR J=I TO (451+I) STEP 41
2530
      OUTPUT Prtr USING 2550; E(J)
2540
      IMAGE #,SDD.5D,1X
2550
      NEXT J
2560
2570
      OUTPUT Prtr
      NFXT I
2580
      FOR L=1 TO 20
2590
      IF Lu3(L)<=0. THEN 2630
2600
      Nvar(L)=Lu2(L)/Lu1(L)*Ny*12/(Ny*12-16)/Lu3(L)
2610
2620
      GOTO 2640
      Nvar(L)=9999.999
2630
2640
      NEXT L
      OUTPUT Prtr;" NODAL VARIANCE";" NODAL STANDARD DEV.";" SUM OF WTS."
2650
2660
      FOR J=1 TO 20
      OUTPUT Prtr USING "4D,5D.6D,5D.6D,6D.4D"; J, Nvar(J), SQR(Nvar(J)), Lu3(J)
2670
2680
      NEXT J
2690
      Ssy=Tp2-Tp*Tp/492
      OUTPUT Prtr; "TOTAL ADJUSTED SUM OF SQUARES "; Ssy
```

2700

		Į.
		{
		(1
		ı
		ON
		,
		_
		_
		_
		1
		_
		_
		-

```
OUTPUT Prtr;"TOTAL RESIDUAL ERROR SQUARE ";Ses
OUTPUT Prtr;" MEAN RESIDUAL ERROR";SQR(Ses/492)
2710
2720
     Rs=(Ssy-Ses)/Ssy
2730
     2740
2750
     Knt=0
2760
     FOR I=1 TO 12
2770
     PRINT I
2780
     FOR J=1 TO 41
2790
     Knt=Knt+1
2800
2810
     PRINT Knt;
     Ab(I,J)=Py(Knt)
2820
     NEXT J
2830
     PRINT
2840
2850
     NEXT I
2860
2870 ASSIGN @Out TO Stnam$
2880 OUTPUT @Out; Cf(*), Lim(*), Ab(*)
2890 ASSIGN @Out TO *
     ST0P
2900
```

2910 END

	1
	1
	į
	1
	1
	ſ
	1
	1
	ſ
	ı
	•

12 32.5 27.7 24.9 22.9 22.9 21.3 .879 .919 .960 .990 12 0.000 0.000 010 040 061 061 11 36.8 30.5 26.9 24.1 22.1 11 .000 .010 .010 .010 .010 .869 .879 .919 .970 10 20.8 17.8 16.0 14.7 10 00.000 .010 .071 .081 .111 .747 .788 .869 .879 .879 9 25.6 21.8 19.6 18.0 16.8 .778 .869 .939 .970 9 .000 .020 .051 .071 .071 D. 8573 ..2550 .9207 ..0062 .9840 .7155 .7066 .5602 .0614 8 54.4 45.0 39.4 35.3 8 0.000 0.000 .020 .020 .020 .879 .909 .960 .980 .000 F. .9687 .2931 .0371 .1158 .0939 .8795 .8419 .7671 ..2222 7 42.7 35.8 32.0 29.2 26.9 7 0.000 0.000 .020 .020 .030 .889 .949 .970 .990 VR 4.3664 4.1622 4.3592 1.3231 1.3290 1.6697 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 1.8572 1.4928 6 0.000 0.000 .010 .020 .030 .eviated) .889 .960 .960 .990 6 34.8 34.8 29.5 26.2 23.9 23.9 CP 2.3164 2.1122 2.3092 2.2731 2.2730 2.5197 2.4428 2.8072 2.3606 2.2984 2.3218 2.3218 5 -++++ 26.9 23.1 20.8 19.0 17.8 5 0.000 .010 .020 .051 .061 .879 .879 .879 .879 .919 -1.7776
-1.9618
-1.6793
-1.6725
-1.6931
-1.1366
-1.3158
-1.2442 27.4 23.4 23.4 21.1 19.3 18.0 4 0.000 .010 .030 .040 .061 .859 .919 .960 .980 COEFF SKEW .8437 .2992 .8246 .7283 .7439 .3860 .1525 .9615 .9615 .7956 Analysis Program Output (Abbreviated) 99 YR RAIN TEST 36.8 31.8 28.4 26.4 24.6 3 0.000 0.000 .010 .030 .071 . 980 . 980 . 980 . 980 . 1000 က STD DEV 5.9421 5.9421 7.0386 5.7386 5.7531 6.8534 7.6685 6.0005 5.9205 5.9205 26.2 22.9 22.9 21.1 19.6 18.5 .808 .859 .909 .960 2 .000 .020 .030 .081 .141 11.9317 12.1458 13.6520 10.0254 9.7955 9.9746 12.6152 10.7795 8.6164 7.5573 7.7813 .919 .939 .980 .990 .1.000 .5S LIMITS .1 +++++ .33.0 .28.2 .25.4 .23.4 0.000 0.000 .010 .010 .051

1
i
1
1
i
1
l
1
•
•
•
1
•
1
•
•
4
ı
1

4.8 3.0 1.8 8.	60273 21467 12	-0.000 .005 .015 .030 .049	.866 .904 .940 .972	12 +0.00000 00455 00483 +.01023 +.01128	+.01298 +.01488 +.01940 +.01755 +.00035
2.8 2.0 1.5 0.0	• •	0.000 .003 .015 .033	.815 .858 .903 .948	11 -0.00000 +.00683 00457 02552 04548	+.05363 +.02038 +.01628 +.02127 +.00516
3.0 2.5 1.8 1.0	.46774 .73348	0.000 .004 .016 .035 .058	. 791 . 839 . 889 . 940	10 +0.00000 +.00574 +.05425 +.04599 +.05314 +.06709	04369 05106 01991 06120 +.00707
3.3 2.8 2.0 1.0	.24166 7 .00892 15	-0.000 .002 .011 .026 .045	.817 .862 .908 .953	9 +0.00000 +.01824 +.03950 +.04493 +.02574 +.02574	03952 +.00625 +.03167 +.01692 +.00279
3.8 3.0 2.0 1.0	5 .24	-0.000 .003 .010 .029	.871 .914 .952 .983 1.004	8 -0.00000 00346 +.01057 +.00193 00890	+.00737 00524 +.00754 00290
4.8 3.8 2.8 1.5	.94817	0.000 .001 .005 .011 .019	.903 .943 .975 .998	7 00000 00132 +.01508 +.00897 +.01089	01435 +.00688 00509 00771 00892
4.1 2.5 1.8 .5	.00311 5 .33605 13 .62713	-0.000 .004 .010 .019 .031	re 1	6 00000 00360 00004 +.00084 01080 01448	00537 +.02420 +.02034 +.00556 00772
4.1 2.3 1.3 0.0	4 1.0 2 .3 0 1.6 5	-0.000 .002 .012 .028 .049	(Арр	5 +0.00000 +.00790 +.00825 +.02259 +.01186 +.01783	
3.3 2.5 1.3 0.0	.67558 .10099 .99293	0.000 .005 .018 .037 .063	.849 .893 .935 .971	40.00000 +.00544 +.01265 +.00294 00201	+.00978 +.02579 +.02487 +.00863
6.1 5.3 4.1 2.8 1.0	9987	-0.000 .004 .016 .035 .059	.863 .904 .942 .975	3 +0.00000 00351 00552 00446 +.01134 +.02327	+.03633 +.05569 +.03803 +.00500 00151
6.1 7.1 2.5 .5		0.000 .005 .015 .031 .051	.889 .925 .958 .958 1.003	2 0000 1552 1487 4954 9019 7720	08057 06680 04862 02449
5.3 4.3 3.3 2.3 110N NODES	18232 18232 30112 36658 0 PRO	0.000 .003 .012 .027 .045	.897 .931 .961 .961 1.003	00 - 27 27 35 47 07	+.02237 +.00828 +.01865 +.00431
36 37 38 39 40	1 9 17 SM00	243710	36 37 38 39 40	1 + 1 2 3 5 4 5 5	36 37 38 39 40

	•
	•
	,
	•
	1
	•
	í
	1
	1
	1
	1
	•
	1
	· ·
	-
	•
	1
	G
	l l

SUM OF WTS.																					16094	19		.99081185014
NODAL STANDARD DEV.	.007335 30.0000	.009013 30.0000	.005815 31.2375	.007184 16.5000	99.999995* -1.2375	.005505 30.0000	.005754 30.0000	.004542 31.2375	.005624 16.5000	99.999995 -1.2375	.008139 30.0000	.007755 30.0000	.006446 31.2375	.003157 16.5000	99.999995 -1.2375	.013970 30.0000	.010270 30.0000	.005055 31.2375	.007884 16.5000	99,999995 -1,2375	OF SQUARES 42.6867316094	SQUARE .7808204707	JR .0398375887457	.981708122377
NODAL VARIANCE.	1 .000054	2 .000081	3 .000034	4 .000052	5 *000666.6666 5	000000. 9	7 .000033	8 .000021	9 000032	10 9999.999000	11 .000066	12 .000060	13 .000042	.000010	000666.6666	•	17 .000105	18 .000026	19 .000062	20 9999,999000	ADJUSTED SUM	TOTAL RESIDUAL ERROR	MEAN RESIDUAL ERROR	CORRELATION

*Defaults for undefined values

	1
	•
	1
	•
	1
	ſ
	•
	•
	1
	•
	1
	•

```
"WRITEWTINV" Program Listing
10
    "WRITEWTINV"
20
    REM ########
30
    REM ######## PROGRAM TO WRITE WEIGHTS AND INVERSE #############
    REM ######## SUMS OF SQUARES TO DISK. FILES NEEDED #############
40
    REM ######## FOR SEASONALLY CONTINUOUS ANALYSIS ###############
50
60
    70
    OPTION BASE 1
80
    DIM Gc(7,8),C(16),Wt(20),Sx(20,20),Sxinv(20,20)
    INTEGER Id, Js, Is, L, M, Ic, Iw, Ix, Im, N, K
100
    110
    REM ######## OPEN DOUBLE DO LOOP TO SCAN ENTIRE ################
    REM ######## 12 X 41 SURFACE MATRIX. FIND U AND ###############
120
130
    REM ######## Z VALUES AND GET WEIGHTS FOR EACH ################
    REM ######## POINT. VERTICAL SCALE (W) IS MONTH ##############
140
150
    REM ######## HORIZONTAL SCALE (X) IS V TRANSFORM ##############
    160
    PRINT "WEIGHTS FOR SEASONALLY CONTINUOUS PROB
170
180 PRINT
190 K1=3
                                      ٠,
200 K2=1
210 K3=3
220 K4=7
230 CREATE BDAT "PROBWTSP: INTERNAL, 4, 1", 310
240 ASSIGN @Owt TO "PROBWTSP: INTERNAL.4.1"
250 REM ######## MONTH LOOP BEGINS ###########
260 REM ####### LOCATE MONTH ON SURFACE ################
270 Id=0
280 FOR Wm=1 TO 12
290 W=1+(Wm-1)/3
300 Js=INT(W+.000001)
    Tw = (W + .000001) - FRACT(W + .000001)
310
320 U=-.5+W-Tw
330 PRINT
340 REM ######## V TRANSFORM LOOP BEGINS
350 REM ######## LOCATE V ON SURFACE
                                              #################
                                              ##################
360
   FOR Xc=1 TO 41
370 PRINT "JS=";Js;" IS=";
380
    Id=Id+1
390 X=1+(Xc-1)/10
400
   Is=INT(X)
410
   Tx=X-FRACT(X)
420
   Z=-.5+X-Tx
   PRINT Is;
430
   PRINT " ID= ";Id
440
470
    REM ######## NODAL SUB MATRIX.
                                              ##################
480
    GOSUB Weight gen
490 FOR L=1 TO 7
500 FOR M=1 TO 7
510 Gc(L,M)=0.
520 NEXT M
530
    NEXT L
```

	1
	f
	!
	1
	1
	•
	1
	Į.
	п
	1
	ı
	· ·
	ı
	•

```
540 Ic=0
550 FOR L=1 TO 4
560 FOR M=1 TO 4
570 Ic=Ic+1
580 Gc(L+Js-1,M+Is-1)=C(Ic)
590 NEXT M
600 NEXT L
620 REM ######## ZERO NODE AND ZERO SLOPE
                                            ################
630 FOR Iw=1 TO 7
640 Gc(Iw, K1) = Gc(Iw, K1) + Gc(Iw, K2)
650 NEXT Iw
680 FOR Ix=K3 TO K4
690 Gc(2,Ix)=Gc(2,Ix)+Gc(6,Ix)
700 Gc(5,Ix)=Gc(5,Ix)+Gc(1,Ix)
710 Gc(3,Ix)=Gc(3,Ix)+Gc(7,Ix)
720 NEXT Ix
730 REM ######## LINEARIZE THE Gc( , ) MATRIX, SAVE ###############
740 REM ######## AND TAKE THE SUM OF SQUARES. ##############
750 Im=0
760 FOR Iw=2 TO 5
770 FOR Ix=K3 TO K4
780 Im=Im+1
790 Wt(Im)=Gc(Iw,Ix)
800 PRINT Wt(Im);
810 NEXT Ix
820 NEXT Iw
830 PRINT
840 OUTPUT @Owt; Wt(*)
850 PRINT
860 FOR N=1 TO Im
870 FOR K=N TO Im
880 Sx(N,K)=Sx(N,K)+Wt(N)*Wt(K)
890 NEXT K
900 NEXT N
910 NEXT Xc
920 NEXT Wm
930 ASSIGN @Owt TO *
950 REM ######## SQUARES MATRIX AND PRINT
                                            #################
960 FOR N=1 TO Im
970 FOR K=N TO Im
980 Sx(K,N)=Sx(N,K)
990 NEXT K
1000 NEXT N
1010 PRINT " SUMS OF SQUARES MATRIX"
1020 FOR N=1 TO 20
1030 FOR K=1 TO 10
1040 PRINT Sx(N,K);
1050 NEXT K
1060 PRINT
1070 FOR K=11 TO 20
```

	al and a second
	H
	1
	İ
	1
	i

```
1080 PRINT Sx(N,K);
1090 NEXT K
1100 PRINT
1110 PRINT
1120 NEXT N
1130 PRINT
1140 FOR K=1 TO 8
1150 PRINT Sx(K,17);
1160 NEXT K
1170 PRINT
1180 FOR K=9 TO 16
1190 PRINT Sx(K,17);
1200 NEXT K
1210 PRINT
1220 REM
          ######## USE SUBROUTINE Matt inv TO INVERT ###############
1230 REM ######## MATRIX.
                                                        ##################
1240 GOSUB Matt inv
1250 REM ######## LOAD AND EXECUTE SEASONALLY
                                                        ##################
1260 REM ######## CONTINUOUS ANALYSIS PROGRAM
                                                        ################
1270 PRINT " DISK FILES HAVE BEEN GENERATED "
1280 LOAD "SEACONPST",200
1290 STOP
1300 Weight gen:
1310
     IF U=Ūs THEN 1350
1320 Us=U
1330
     Tr=1
1340
     GOTO 1360
1350
     Tr=2
1360
      ON Tr GOTO 1370,1450
1370
      U1=(((8*U-4)*U-2)*U+1)/256
1380
     U2=(((-32*U+4)*U+8)*U-1)/128
     U3=(((-8*U+4)*U+2)*U-1)/64
1390
1400
     U4=(((32*U-4)*U-8)*U+1)/32
1410
      U5=(((-72*U+36)*U+18)*U-9)/256
1420
     U6=(((160*U-44)*U-40)*U+11)/128
1430 U7=(((8*U-4)*U-2)*U+1)/64
1440 \quad U8=(((-96*U+12)*U+24)*U-3)/32
1450
     C(1)=((U4*Z+U3)*Z+U2)*Z+U1
      C(2)=((U8*Z+U7)*Z+U6)*Z+U5
1460
1470
     C(3)=((-U8*Z+U7)*Z-U6)*Z+U5
     C(4)=((-U4*Z+U3)*Z-U2)*Z+U1
1480
1490
     ON Tr GOTO 1500,1580
     V1=(((-24*U+4)*U+22)*U-9)/256
1500
     V2=(((96*U-4)*U-40)*U+9)/128
1510
      V3=(((24*U-4)*U-22)*U+9)/64
1520
1530
     V4=(((-96*U+4)*U+40)*U-9)/32
1540
     V5=(((216*U-36)*U-198)*U+81)/256
     V6=(((-480*U+44)*U+296)*U-99)/128
1550
1560
     V7=(((-24*U+4)*U+22)*U-9)/64
1570
     V8=(((288*U-12)*U-120)*U+27)/32
1580
     C(5)=((V4*Z+V3)*Z+V2)*Z+V1
     C(6)=((V8*Z+V7)*Z+V6)*Z+V5
1590
     C(7)=((-V8*Z+V7)*Z-V6)*Z+V5
1600
     C(8)=((-V4*Z+V3)*Z-V2)*Z+V1
1610
```

	· ·
	1
	•
	1
	•
	1
	1
	ı
	1
	ı

```
1620 ON Tr GOTO 1630,1710
1630 G1=(((24*U+4)*U-22)*U-9)/256
1640 G2=(((-96*U-4)*U+40)*U+9)/128
1650 \quad G3=(((-24*U-4)*U+22)*U+9)/64
1660 G4=(((96*U+4)*U-40)*U-9)/32
1670 G5=(((-216*U-36)*U+198)*U+81)/256
      G6 = (((480*U+44)*U-296)*U-99)/128
1680
1690 G7 = (((24*U+4)*U-22)*U-9)/64
      G8=(((-288*U-12)*U+120)*U+27)/32
1700
1710
      C(9) = ((G4*Z+G3)*Z+G2)*Z+G1
      C(10) = ((G8*Z+G7)*Z+G6)*Z+G5
1720
1730 C(11) = ((-G8*Z+G7)*Z-G6)*Z+G5
1740 C(12)=((-G4*Z+G3)*Z-G2)*Z+G1
1750 ON Tr GOTO 1760,1840
1760 H1=(((-8*U-4)*U+2)*U+1)/256
1770 H2=(((32*U+4)*U-8)*U-1)/128
1780 H3=(((8*U+4)*U-2)*U-1)/64
1790 H4=(((-32*U-4)*U+8)*U+1)/32
1800 \text{ H5}=(((72*U+36)*U-18)*U-9)/256
1810 H6=(((-160*U-44)*U+40)*U+11)/128
1820 H7=(((-8*U-4)*U+2)*U+1)/64
1830 H8=(((96*U+12)*U-24)*U-3)/32
1840 C(13)=((H4*Z+H3)*Z+H2)*Z+H1
1850 C(14)=((H8*Z+H7)*Z+H6)*Z+H5
1860 C(15)=((-H8*Z+H7)*Z-H6)*Z+H5
1870 C(16)=((-H4*Z+H3)*Z-H2)*Z+H1
1880 RETURN
1890 Matt inv:
1900 REM ######## THIS SUBROUTINE USES THE ADVANCED ###############
1910 REM ####### PROGRAM FEATURE TO INVERT A MATRIX ################
        CREATE BDAT "PRBINVMATP: INTERNAL, 4, 1", 13
1920
        ASSIGN @Siv TO "PRBINVMATP: INTERNAL, 4,1"
1930
1940 REM ######## CLEAR THE TARGET MATRIX
                                                         ###############
1950
       MAT Sxinv= (0)
1960 REM ######## AND PUT THE INVERTED MATRIX IN
                                                         ################
1970
       MAT Sxinv= INV(Sx)
1980
       Check det=DET
1990
       PRINT
2000
       PRINT "INVERSE MATRIX"
2010
       PRINT
2020
       FOR I=1 TO 20
       FOR N=1 TO 10
2030
2040
       PRINT Sxinv(I,N);
2050
       NEXT N
2060
       PRINT
       FOR N=11 TO 20
2070
       PRINT Sxinv(I,N);
2080
2090
       NEXT N
2100
       PRINT
2110
       PRINT
2120
       NEXT I
2130 REM ######## CHECK THE DETERMINANT AND RETURN ###############
2140
       PRINT " DETERMINANT = "; Check det
2150
       BEEP 500,2
```

			- ,
			1
			1
			,
			1
			1
			•
			•
			•
			n n
			ı

2160 WAIT 4 2170 OUTPUT @Siv;Sxinv(*) 2180 ASSIGN @Siv TO * 2190 RETURN 2200 END

SIMULATION PROGRAM

This program simulates the seasonal variation of climatic risk by randomly drawing and ordering events from a 2-D sliding polynomial surface. This surface or smoothing space is defined by the magnitude of events in v-scale versus time by month. The height of the surface across this space is probability.

		0

Simulation Program Input Variables

Variable name	Comment
COEF(I)	Sliding polynomial coefficients For I=1 to 4
AT(I)	Problem title For I=1 to 80
NR, N1, N2	Random number seeds
NS	Number of samples
NI	Planning period
HB(I)	Monthly mean For I=1 to 12
HSD(I)	Monthly standard deviation For I=1 to 12
HSK(I)	Monthly coeff. of skew For I=1 to 12
HMIN(I)	Monthly minimum class limit For I=1 to 12
YN(I,J)	Solution nodes For I=2 to 5: J=3 to 7
SN(I,J)	Nodal standard deviation For I=2 to 5: J=3 to 7

Simulation Program Output Variables

Variable name	Comment
AT(I)	Problem title For I=1 to 80
NR, N1, N2	Random number seeds
NS	Number of samples
NI	Planning period
HB(I)	Monthly mean For I=1 to 12
HSD(I)	Monthly sample std. deviation For I=1 to 12
HSK(I)	Monthly sample coeff. of skew For I=1 to 12
(L,I)NY	Solution nodes For I=2 to 5: J=3 to 7
SN(I,J)	Nodal standard deviation For I=2 to 5: J=3 to 7
НР	Minimum value of intermediate variate, h', at minimum class limit
СР	Common point of two exponential limbs (in v-scale)
VR	Right asymptotic boundary for limb v2 (in v-scale)
F	Shape parameter
D	Shape parameter
H(M,K,N)	Simulated variate For N=1 to 12: M=1 to NS: K=1 to NI

```
Simulation Program Listing
  SIMULATION OF SEASONAL CONTINUOUS VARIATION ##########
  ############
C
               OF CLIMATIC RISK. MONTHLY EVENTS ARE DRAWN
  ############
  ###########
               FROM A 2-D SLIDING POLYNOMIAL SURFACE AS
               DEFINED BY SEASONALLY CONTINUOUS PROB.
  ############
  ############
               ANALYSIS. HEIGHT OF SURFACE IS PROBABILITY. ########
C
               MONTHLY EVENTS ARE ORDERED BY PLANNING
               PERIODS AND SAMPLES.
  ###########
                                                         ##########
  DIMENSION H(100,50,12),HSK(12),C(4),RNOD(12,7)
     DIMENSION AT(80), HB(12), HSD(12), HMIN(12)
     DIMENSION CP(12), HP(12), VR(12), F1(12), D1(12)
     COMMON YN(7,7),SN(7,7),COEF(4),SNOD(12,7),YNOD(12,7)
     READ(5,8110) (COEF(I), I=1,4)
8110 FORMAT(4F12.0)
     READ(5,8080) (AT(I), I=1,80)
8080 FORMAT(80A1)
WRITE(6,8081) (AT(I),I=1,80)
8081 FORMAT('',80A1)
     READ(5,1000) NR,N1,N2,NS,NI
     WRITE(6,8010)
8010 FORMAT(' '/,20X,'INPUT DATA'/,9X,'SEEDS',9X,'NS',9X,'NI')
1000 FORMAT(315,2110)
  WRITE(6,50) NR,N1,N2,NS,NI
50 FORMAT('',6X/,5I8)
     WRITE(6,8020)
8020 FORMAT(' '/,' MONTH
                         MEAN STD DEV
                                          SKEW
                                                HMIN')
8022 FORMAT(' ',14,2F12.3,2F12.3)
     READ(5,1001) (HB(I),HSD(I),HSK(I),HMIN(I),I=1,12)
     WRITE(6,8022) (I, HB(I), HSD(I), HSK(I), HMIN(I), I=1,12)
     KNT=1
     DO 41 I=2.5
     DO 40 J=3,7
     READ(5,8082) YN(I,J),SN(I,J)
8082 FORMAT(2F10.0)
     YNOD(KNT,J)=YN(I,J)
     SNOD(KNT,J)=SN(I,J)
  40 CONTINUE
     KNT=KNT+3
     WRITE(6,8035) (YN(I,J),SN(I,J),J=3,7)
8035 FORMAT(' ',2F12.3)
  41 CONTINUE
1001 FORMAT(4F10.0)
  ########## EXPAND 20 SOLUTION NODES TO 12 X 7 #######################
  ######### FIELD OF NODES
                                               #########################
     CALL INTERP
     WRITE(6,332)
 332 FORMAT(' ',8X,'HP',8X,'CP',8X,'VR',8X,'F',9X,'D'/)
  ###########
                DO 1060 I=1,12
     HP(I)=(HMIN(I)-HB(I))/HSD(I)+HSK(I)/8
     CP(I)=2.+0.375*HSK(I)
     VR(I)=4.05+(CP(I)-2.)
```

```
F1(I) = ALOG((4.-VR(I))/(CP(I)-VR(I)))/HP(I)
     D1(I)=F1(I)*(VR(I)-CP(I))/CP(I)
     WRITE(6,333) HP(I),CP(I),VR(I),F1(I),D1(I)
333 FORMAT(' ',5F10.4)
     DO 1060 L=1.7
     RNOD(I,L)=YNOD(I,L)
1060 CONTINUE
  ######### INITIALIZE THE RANDOM NUMBER MATRIX ######################
     CALL RAND(NR,N1,N2,R,1)
  ######### BEGIN LOOPS:
                                                   #####################
                            M = NUMBER OF SAMPLE
  ############
                                                   #######################
  ##########
                            I = PLANNING PERIOD
                                                   ########################
                            K = MONTH
                                                   ######################
  ##########
     DO 1003 M=1,NS
     DO 1004 I=1.NI
     DO 1080 K=1,12
     VS=1.
  ###########
               ######### ARC USING INTERVAL-HALVING METHOD
                                                        ################
     CALL RAND(NR,N1,N2,R,2)
                                            ٠,
     IF (R.LT.RNOD(K,3)) GO TO 1005
     IF (R.LT.RNOD(K,4)) GO TO 1006
     IF (R.LT.RNOD(K,5)) GO TO 1007
     IF (R.LT.RNOD(K,6)) GO TO 1715
     H(M,I,K)=HMIN(K)
     GO TO 1080
1005 BL=0.0
     BR=VS
     IS=1
     GO TO 1008
1006 BL=VS
     BR=2.0*VS
     IS=2
     GO TO 1008
1007 BL=2.0*VS
     BR=3.0*VS
     IS=3
     GO TO 1008
1715 BL=3.0*VS
     BR=4.0*VS
     IS=4
1008 A=(-BL)/(BR-BL)-0.5
     C(1)=(9.*(RNOD(K,IS+1)+RNOD(K,IS+2))-RNOD(K,IS)-RNOD(K,IS+3))/16.
     C(2)=(11.*(RNOD(K,IS+2)-RNOD(K,IS+1))+RNOD(K,IS)-RNOD(K,IS+3))/8.
     C(3)=(RNOD(K,IS)-RNOD(K,IS+1)-RNOD(K,IS+2)+RNOD(K,IS+3))/4.
     C(4)=(3.*(RNOD(K,IS+1)-RNOD(K,IS+2))-RNOD(K,IS)+RNOD(K,IS+3))/2.
     B=1./(BR-BL)
1100 Z=A+B*(BL+BR)/2.0
     PC = ((C(4)*Z+C(3))*Z+C(2))*Z+C(1)
     IF(R.LT.PC) GO TO 1009
     BL=(Z-A)/B
     GO TO 1010
1009 BR = (Z-A)/B
1010 IF(ABS(BR-BL).LT.0.001) GO TO 1011
```

```
GO TO 1100
1011 V=(BL+BR)/2.
                 C #############
     IF(V.LE.CP(K)) GO TO 1012
     HS=HSD(K)*(ALOG((V-VR(K))/(CP(K)-VR(K)))/F1(K)-HSK(K)/8)+HB(K)
     GO TO 1111
 1012 CONTINUE
     HS=-HSD(K)*(ALOG(V/CP(K))/D1(K)+HSK(K)/8)+HB(K)
 1111 H(M,I,K)=HS
C ######### PULSE NODES WITH RANDOM NORMAL DEVIATE ####################
     DO 1112 L=3,7
     CALL RANDN(NR,N1,N2,RANUM)
     RNOD(K,L)=YNOD(K,L)+RANUM*SNOD(K,L)
1112 CONTINUE
     RNOD(K,1)=RNOD(K,3)
1080 CONTINUE
C ############### END OF MONTH LOOP
                                      #######################
1004 CONTINUE
 ################
                    END OF NI LOOP
                                             ######################
     DO 1035 K=1,12
     DO 10 J=1.NI
     X6=H(M,J,K)
     DO 20 J1=1,NI
     IF(H(M,J1,K).GE.X6) GO TO 20
     H(M,J,K)=H(M,J1,K)
     H(M,J1,K)=X6
     X6=H(M,J,K)
  20 CONTINUE
  10 CONTINUE
1035 CONTINUE
       REMOVE COMMENTS ON CARDS TO PRINT EACH SAMPLE
C
     WRITE(6,1017) M
1017 FORMAT(' '/,10X,'SAMPLE NO.',14)
     DO 1045 K1=1.12
WRITE(6,8083) K1
8083 FORMAT(' '/,10X,'MONTH',14)
    WRITE(6,1018) (K,H(M,K,K1),K=1,NI)
1018 FORMAT(' ',8(I4,F8.3)/)
1045 CONTINUE
1003 CONTINUE
                    END OF NS LOOP
C ###########
                                            ########################
  DO 2000 J1=1,12
     DO 2010 K=1,NI
     DO 2005 I=1,NS
     CHECK=H(I,K,J1)
     DO 2004 J=1,NS
     IF(H(J,K,J1).GE.CHECK) GO TO 2004
     H(I,K,J1)=H(J,K,J1)
     H(J,K,J1)=CHECK
     CHECK=H(I,K,J1)
2004 CONTINUE
2005 CONTINUE
```

```
2010 CONTINUE
2000 CONTINUE
     DO 2233 N=1,12
    WRITE(6,2235) N
2235 FORMAT(' '/,10X,'MONTH',14)
     WRITE(6,2223) (L,L=1,NI)
2223 FORMAT(' ',//11X,' SORTED DATA '/,8X,20(I2,4X))
     DO 2001 M=1,NS
     WRITE(6,2222) M, (H(M,K,N),K=1,NI)
2222 FORMAT(' ',I3,2X,20F6.2)
2001 CONTINUE
2233 CONTINUE
  70 STOP
     END
  ################
              SUBROUTINE RAND
  ###########
  ########## RANDOM DRAW FROM A 10 X 10 MATRIX
                                                       ###############
     SUBROUTINE RAND(NR,N1,N2,DRAW,IENT)
     DIMENSION TAB(10,10)
     IF(IENT.NE.1) GO TO 1003
     CALL RANDO(N1,N12,XRN)
     N1=N12
     II = INT(10.0*XRN)+1
     CALL RANDO(N2, N22, XRN)
     N2 = N22
     JJ=INT(10.0*XRN)+1
     DO 1000 I=1,10
     DO 1001 J=1,10
     CALL RANDO(NR, NR2, XRN)
     NR=NR2
1001 \text{ TAB}(I,J)=XRN
1000 CONTINUE
     IC=1
1003 DRAW=TAB(II,JJ)
     CALL RANDO(NR, NR2, XRN)
     NR=NR2
     TAB(II,JJ)=XRN
     IF(MOD(IC,2).EQ.0) GO TO 1005
     CALL RANDO(N1, N12, XRN)
     N1=N12
     II = INT(10.0*XRN)+1
     GO TO 1006
1005 CALL RANDO(N2, N22, XRN)
     N2=N22
     JJ=INT(10.0*XRN)+1
1006 IC=IC+1
     RETURN
     END
     SUBROUTINE RANDO(IX, IY, YFL)
     IY=IX*65539
     IF(IY) 5,6,6
   5 IY=IY+2147483647+1
   6 YFL=FLOAT(IY)*0.4656613E-9
     RETURN
```

```
FND
 ########## SUBROUTINE INTERP
                                            ###################
########## 12 X 7 FIELD OF NODES
                                            ####################
     SUBROUTINE INTERP
     COMMON YNN(7,7), SNN(7,7), COEFN(4), SNODN(12,7), YNODN(12,7)
  ######## FILL IN BOUNDARY NODES FOR CYLINDER FUNCTION #############
     DO 11 J=3,7
     YNN(1,J)=YNN(5,J)
     YNN(6.J)=YNN(2.J)
     SNN(1,J)=SNN(5,J)
     SNN(6,J)=SNN(2,J)
     YNN(7,J)=YNN(3,J)
     SNN(7,J)=SNN(3,J)
  11 CONTINUE
  KNT=0
    DO 17 I=1,10,3
    DO 16 J=3.7
    YNODN(I+1,J)=0.0
    YNODN(I+2,J)=0.0
    SNODN(I+1,J)=0.0
    SNODN(I+2,J)=0.0
    VAR1=0.0
    VAR11=0.0
    VAR2=0.0
    DO 15 K=1,4
    YNODN(I+1,J)=YNODN(I+1,J)+COEFN(K)*YNN(K+KNT,J)
    YNODN(I+2,J)=YNODN(I+2,J)+COEFN(K)*YNN(5-K+KNT,J)
    VAR1=VAR1+COEFN(K)*COEFN(K)*SNN(K+KNT,J)*SNN(K+KNT,J)
    VAR2=VAR2+COEFN(K)*COEFN(K)
    COEF2=COEFN(K)*COEFN(K)
    SNOD2=SNN(5-K+KNT,J)*SNN(5-K+KNT,J)
    VAR11=VAR11+COEF2*SNOD2
  15 CONTINUE
    SNODN(I+1,J)=SQRT(VAR1/VAR2)
    SNODN(I+2,J)=SQRT(VAR11/VAR2)
  16 CONTINUE
    KNT=KNT+1
  17 CONTINUE
    DO 19 I=1.12
    YNODN(I,1)=YNODN(I,3)
    SNODN(I,1)=SNODN(I,3)
    YNODN(I,2)=0.0
    SNODN(I,2)=0.0
  19 CONTINUE
    RETURN
    END
  SUBROUTINE RANDN
 #########
                                            ###################
  ######## DRAW RANDOM NORMAL NUMBER
                                             ###################
    SUBROUTINE RANDN(NR,N1,N2,RANUM)
    RANUM=0.
```

DO 10 I=1,12
CALL RAND(NR,N1,N2,X,2)
RANUM=RANUM+X

10 CONTINUE
RANUM=RANUM-6
RETURN
END

١,

		7.

			HMIN	0.740	0.450	1,120	000.0	0.000	0.610	0.000	000.0	•			.41														
RECIP	NI		SK	0.844	2.	æ	7.	7:	٣,			9		0	∞														
MONTHLY TOTAL PRECIP DATA	SN	1	2	•	5.847	•		•				•		•	•	STD DEV	•	•	•	•	•	•	900.0	•	•	900.0	•	•	0.003
99 YR INPUT	. 0	99 55376	EAN	1.93	12.146	3,65	0.02	.79	.97	.61	0.78	.61	.55	7.781	.42	SOLUTION NODES		4.	0.676	٠.	ي.	0.242	4.	9	٠, -		0.336	0.	0.733
SEACONPRB		2986	MONTH	-	2	က	4	2	9	7	∞	6		11		σ,													

Simulation Program Output (Abbreviated)

	20 7.64 6.78 6.75 6.66 6.34 1.10 0.74 0.74 0.74 0.74 6.92 6.63
	19 9.74 8.51 8.50 8.28 7.78 1.73 1.47 1.23 0.74 8.87 8.87 8.65 8.65
	11.18 9.65 9.40 9.07 8.78 3.47 3.24 1.25 1.25 9.43 9.16
	11.36 111.34 10.43 10.22 9.47 4.25 3.98 3.81 2.62 10.62 10.52
	16 12.03 11.52 10.82 10.66 10.19 4.75 4.75 4.76 4.48 4.15 10.68 10.68
	15 12.23 11.95 10.98 10.93 10.88 6.49 6.38 6.23 4.75 4.26 11.75 11.75
	14 12.56 12.51 11.67 11.60 11.55 7.01 6.82 5.76 5.76 5.53 12.27 11.94 11.94
	13 13.87 12.71 12.58 12.35 12.18 7.39 7.08 6.90 6.50 6.50 5.67 13.67 12.67 12.67
	12 14.39 12.86 12.81 12.86 7.90 7.79 7.63 7.10 12.63 12.68
	11 15.32 14.71 14.48 13.90 13.90 8.59 8.59 5.54 8.33 7.63 11 14.02 13.26 13.36 13.08
	10 15.70 15.41 15.36 14.23 9.49 9.49 9.21 8.36 10 14.11 13.98 13.96
	9 16.39 16.35 15.99 15.98 15.86 10.07 9.69 9.66 9.64 9.64
D 8571 2544 9218 0062 9840 7162 7065 5602 0614 2705 6390 8595	8 17.61 16.76 16.71 16.70 16.65 ated) 10.62 10.60 10.60 10.35 15.42 15.42 15.42
55 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 18.66 18.38 18.37 18.21 17.97 10.92 10.78 10.78 10.67 17.18 15.95 15.95
6.00 688 0.9688 1.2924 1.0338 0.8803 0.7671 1.2222 1.4244 0.8638	6 19.97 19.29 18.95 18.91 11.71 11.62 11.27 11.06 17.70 17.70 17.60 17.28
/R 564 522 592 592 597 597 118	5 21.32 21.20 21.08 20.18 19.98 12.85 12.07 11.81 11.52 11.52 11.53
10 10 10 10 10 10 10 10 10 10	23.87 23.28 23.28 22.52 21.69 21.48 13.50 13.36 13.29 12.71 12.71 12.71 12.71 12.71 12.71 12.71 12.71
0.01 0.00 0.00 0.00 0.00 0.00 1122 3164 1122 3197 2731 2731 2790 5197 4428 8072 3606 3606 3218	3 28.26 25.58 24.78 24.44 24.27 15.26 14.65 14.63 12.30 3 24.11 21.58 21.16 21.58
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2222 H 11111 22223
0.3 0.3 0.9 1.6 1.6 1.656 1.656 1.656 1.656 1.13	1 1 36.97 36.97 36.97 36.97 36.97 35.78 35.78 35.78 19.69 17.66 17
1111111111	

6.41	0.45	4.	4.	•		8.11	ထ	.5		6.			∹		Π.	1.12				6	5	4	3.91	Φ.		•	0.00	•	•	•	(20 5.88
8.13	2.61	.33	.26	0.7.	6	က	.91	.26	.13	.62		.35	.07	.01	.84	1.74					0	9.	5,63	.2		.80	69.0	. o.	.64	.40		19 6.36
8.84	28 01	66.	.92 A8		œ	07	.72	.52	.35	.29		.12	.10	.71	.68	2.57			8	.32	.24	00.	5.89	98.	;	.62	1,45	67.	. I8	66.	(18 7.29
9.77	55	.05	584		7	6 1	.13	.84	.74	.70		.13	60.	.03	.41	2.93			7	98	94	.91	6.77	69.	•	4.	2.30	٠,	φ,	o.		1/ 7.40
0.42	6.05	6.	5.4	•	9	3.18 1	2.96 1	2.50 1	2.26	1.61		∞	φ	7.	9.	4.32			16	7	7	6	7.84	9.	,	9.	3,44	٠,	ي ر	∞		16 8.71
1.03 1	6.71 6.70	.5	പ് പ	•		4.33	3.97	3.97	3	3.34		6.	4.	4.	.2	4.92				0.2	0.0	9.1	9.08	.7	•	_ (4.01 7.77	-	ه و	λ,		15 9.50
11.43 1	7.20	0.	ۍ د	•		4.97	4.44	4.23		4.01		.2	۲.		∞	5.72				0.99	.5	0.18	9.97	6.	•	4.	4.40	۷,	_: લ	<u>ن</u>		14 9.64
12.09 1	7.90	3	7.	•		5.16	4.73	4.65	.62	4.46		٣,	•	9.	9.	5.90				2,30	1.22	1.05	10.72	9.0	(ဆ် (4.81	0	ه د	ç.		13 11.56
12.59	8.40	٣,	7	•		5.90	2.67	5.30	.24	5.19		9.		4.	4.				12	2.43	2.42	1.95	11.62	1,33		•	5.2	•	•	•	(12 12.05
12.80	8.85	7	7.	•		6.93	6.64	6.48	.41	6.38		.5	8.14		ω.	ω.				2.75	2.73	2.62	12.54	2.40	ı	` .	5,44	. (ن ر	·		12.18
13,45	9.38	2.	ى تى ت	•	10	8.84	7.95	7.74	.74	7.69		9.		6.	7.	2.			10	4.12	3.52	3,41	13.14	3.14	(ص	0.84 . 0.3	o r	-	٥.	(10 12.99
14.01	9.95	9	N 0	•	6	0.4	9.8	9.2	19.28	8.2		•	9.78	9.	.5	.5			6	6.04	6.03	5.51	13.80	3.49	(<u>ب</u> ر	.0°/	o r		c.	¢	9 14.36
4.6 tec	10.77 10.49	0.0	٠.	,	8	2.2	2.0	1.6	21,60	1.1	ted	1.8	1.2	0.1	ω.	9.			8	7.5	6.3	0.9	5.6	15.25	ted	٠ د	۷.	٠.	ດຸ	7.	c	8 14.43
15.3 bbre	11.25	$\frac{1.0}{2}$	ر 2 م		7	ິຕໍ	$\ddot{\circ}$	ç.	22.24	21:	ppk	က	Ċ.	o;	ç,	o.			7	8.2	7.4	8.9	6.7	16.51	bre	ນໍເ	ກໍດ	j, c	ລັ ຕ	ဂ	٢	15,94
16.65 (A	$\frac{11.93}{11.92}$	1.7	$\frac{1.7}{1.3}$) •	9	4.68	4.31	3.70	24	2.92	∀)		3.64	3,63	3.03	0.93			9	9,3	8.2	7.5	2	7.21	1). 	0	2 0	ς° ι	•	J	0 18.84
17.53	12.71 12.35	2.3	2.2) •	2	6.2	5.9	5.7	25.47	4.6		15.27	5.2	4.9	4.5	4.4			2	0.9	9.9	9.8	19.04	7.9		1.5	11.48		7.0	٥. ر	Ų	19,39
18.82	13.11	2.9	2.5	 - 	4	0.4	8.9	6.3	26.35	0.9		16.92	6.7	5,3	5,3	4.7			4	2.7	9.0	0.4	20.37	0.1	,	7.T	12.18	1.0	1.0	T. J	~	22.28
10.70	13.52 13.27	3.2	3.2 3.0	•	က	3.8	9.6	9.5	28.96	ж Э		18.09	8.0	7.9	6.3	4.8			က	3.2	2.7	1.8	21.82	1.7	ç	7.5	13.19		٠, د د	0.7	c	25.41
22.01	15.02 14.97	4.5	4°.3 3°.6	3 TA	2	5.1	4.9	4.7	31.58	1.2		19.76	9.0	α. α.	8.5	6.4	4	TTA	2	6.0	4.7	4.5	23.87	3,4	•	4	14.80	, c		14.1 5	I	25.85
27.15	16.80 16.78	ας ι	റ ശ	MONTH SORTED DA	-	5.6	3.0	2.9	42.61	9.8		23.03	\sim 1	\sim	-	10	MONTH	RTED DA	-	\sim	0.7	9.7	29,61	7.9	Ç	7.0	0 10			# * E E	111	31.48
2	96 97	∞	ص م	, ,		-	2	က	4	2		96		\sim	O,	\sim	Ē	ōS S		-	2	က	4	2	ر	0 1) a) (ν		SO	1

					45
5.35 5.23 4.55	0.34 0.29 0.00 0.00	20 6.55 6.37 5.56 5.45 5.06	1.55 1.44 1.42 1.28 0.88	20 6.97 6.52 6.09 6.07 5.82	1.59 1.57 1.57 1.51 1.27
5.83 5.63 5.47 5.46	1.30 1.03 1.00 1.00 0.81	19 8.05 7.05 6.87 6.57 6.25	2.28 2.14 2.04 2.03 2.03	19 7.50 7.43 7.15 7.13 7.03	2.61 2.61 2.44 2.28 2.00
6.45 6.33 6.11 6.05	2.18 2.14 2.03 1.95 1.82	18 8.48 8.03 7.06 6.90 6.59	2.77 2.71 2.71 2.49 2.42	18 9.91 9.04 8.86 8.82 8.30	3.45 3.44 3.42 3.24 3.08
7.23 (7.21 (6.94 (6.86 (2.95 2.80 2.56 2.54 2.25	17 8.58 8.34 7.84 7.82	3.41 3.26 3.12 2.85 2.80	17 10.35 10.30 9.61 9.23 9.23	4.41 4.26 4.10 3.85 3.65
8.28 7 8.20 7 8.02 6	3.50 3.33 3.25 2.85	16 9.59 9.06 8.84 8.81 8.55	4.09 4.01 3.70 3.47 3.37	16 11.54 10.44 9.65 9.53 9.48	5.05 5.04 5.00 4.65 4.42
9.06 8 8.84 8 8.83 8	4.01 3.92 3.78 3.58 3.30	15 0.11 9.36 9.36 9.23 9.23	4.59 4.59 4.50 4.27 4.23	15 12.02 11.26 11.09 11.06	5.70 5.65 5.58 5.25 4.43
9.58 9.47 8 9.38 8 9.33	4.79 4.58 4.51 4.41 3.36	14 0.38 1 0.35 9.82 9.65	5.04 5.00 4.77 4.69 4.59	14 12.37 12.10 11.94 11.53	6.52 6.45 6.25 6.24 6.15
1.54 9 0.84 9 0.35 9	4.92 4.85 4.72 3.93	13 0.70 1 0.65 1 0.63 10.39	5.66 5.52 5.38 5.31 5.14	13 14.19 12.72 12.52 12.08 11.79	7.09 6.98 6.98 6.94 6.71
1.83 11 1.26 10 1.16 10 0.87	5.74 5.42 5.21 4.96 3.96	12 1.21 1.07 1.07 0.87 1.0.80	5.83 5.78 5.70 5.39 5.38	12 14.27 13.29 12.84 12.82 12.69	7.63 7.62 7.46 7.17
2.05 11 1.62 11 1.33 11 0.99 10	6.13 5.95 5.86 5.40	11 2.99 1 1.88 1 1.64 1 11.30 1	6.32 6.19 6.00 5.82 5.73	11 14.55 13.87 13.87 13.63	8.41 8.34 8.25 8.25 8.24
2.72 12 2.46 11 2.31 11 1.91 10	6.64 6.31 6.22 5.87 4.84	10 3.68 3.51 3.08 1.2.61 2.45	6.71 6.67 6.59 6.31 6.03	10 14.86 14.80 14.78 14.78	9.04 8.77 8.53 8.47 8.29
3.01 12 2.69 12 2.64 12 2.50 11	.85 .82 .78 .97	9 4.45 1.24 1.03 1.3.81 3.53	7 7 9 9	9 16.73 16.48 15.65 15.33	0.0000
03 1 65 1 32 1 19 1		8 4.7 4.4 5.2	ted) 8.15 8.03 7.47 7.46 6.66	1000	ated) 10.50 10.16 10.06 9.47 9.40
40 1 32 1 78 1 64 1	evia 81 73 65 60 84	5.5	brevi 9.30 9.28 8.81 8.46 8.29	06 80 58 60	bbrevi 11.30 11.17 10.97 9.86 9.48
.32 1 .44 1 .32 1	(Ab. 76 51 40 43	6 8.0 7.7 7.7	(A) 9.83 9.57 9.28 9.16		(A) 1.99 1.62 1.42 1.42 0.33
.30 16 .65 15 .56 15	. 52 1. 37 1. 12 1. 12 1. 82 1. 90	5 0.16 18 9.85 1 9.37 1 8.56 1	0.29 0.21 0.17 9.57 9.36	5 23.72 23.70 23.70 22.53 21.97	2.66 2.59 2.32 2.32 1.23
.16 17 .59 16 .36 16	.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1.14 20 0.91 19 0.18 19	1.32 0.84 0.69 0.43	4 25.87 25.57 24.91 24.61	3.60 3.55 3.55 3.43 1.94
. 44 19 . 01 18 . 08 18	67 1 23 1 .90 1 21 1 21 1	3 4.61 2 4.29 2 3.14 2 2.93 2	2.43 2.93 1 2.63 1 2.63 1 1.70 1 0.44 1 9.90	3 87 3.76 3.56 5.15	4.46 4.14 3.68 3.02 2.74
.41 23 .71 21 .56 20	50 1	A 2 2 89 2 2 2 37 2 2 11 44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.89 3.25 3.25 3.15 2.98	A 2 2 11.90 11.56 11.56 10.67	5.80 5.71 5.58 4.43 3.83
. 97 24 3.78 23 3.69 23	7.51 2. 5.39 1 1.96 1 1.81 1 1.03 1 3.50 1	HH 6 ED DAT, 1.79 3 2.76 3 2.55 3		TH 10 DA 10	11.78 19.15 18.62 17.32 16.84 14.32
2 29 3 29 4 29	7 11111	SORTE 2 47 4 4 4	, 44eee	S 1284	¥
	1000		_	•	

		{
		(
	1	

SORTED DATA 1 2 67.06 56.52	37.9	1.5	5	6 5.05	7 2.6	8 1,35	9	10 6.61	111	12 4.47	13 3.29	4 4.	.8	9	7.60	8.1	6	0 & 1
33	.18 .58 .46	20.61 20.61 29.53 29.46	28.00 24.54 24.42	23.64 23.38 23.26	21.30 20.23 18.69	69 52 92	16.60 16.15 16.15	14.84 14.52 14.05	14.62 13.82 12.66 12.62	13.95 12.37 11.14 10.92	11.62 10.46 10.17 10.05	10.75 9.59 9.56 9.25	8.79 8.71 8.41 8.37	8.24 7.92 7.41 7.36	7.21 7.16 6.58 6.57	6.8/ 6.51 6.39 6.09	5.32 5.07 5.05 5.01	4.74 4.38 4.24 4.21
-	0.	3.1	1.9	۸) 0.99	ore 9.0	ted 8.1	7.	œ	٣,	6	.3	5	6		7	6	_	~
	9.	2.7	1.7		0.		4.	ω	۳,	.7	, m	4.	ω.	۳.	7.	9		. 2
	ຕຸຕຸ	2.5	4.	9.	٠.4	ω, ι	4.	9	2.	9.	.2	1.	9.	-	٤.	. 7	0.	0.
/ 1 1 1	2.63	12.21	9.67	9.35	. O.	٥٥	6.83	6.21	6.02 5.92	5.61 4.92	4.75	3.72	2.87	2.65 2.42	$\frac{2.07}{1.69}$	1.70 1.69	0.74 0.16	0.06 0.06
	က	4	2	9	7	∞	6	10				14		16		18		20
	0.1	9.5	8.9	7.88	5.22	3,83	2.5	3	9.38			8.05	7.23		6.36	\sim		5
	19.80	18,30	17.11	44	5.12	3,14	11.25	69.6				7.80		6.31		5.10		3.37
	9°33	7.7	6.4	5.44	4.58	2.98	0.5	9.	0.	.5	ω	0.	.5	.2	9•	.7	9.	
	9.2	\tilde{i} .1	5.9	5,33	4.00	2.05	0.4	9.	6.	٠.	9.	7.	٠,	0.	٤,	.5	∞	0.
	χ. X	/.1	o. G	4.75 (A	13.87 bbrevi	11.89 ated)	0.4	٠.	. 7	-	4.	۲.	.2	0.	0.	٠.	.7	. 7
	.5	6.	ω.	0.	9.	9	٠.	.7	.5	0	4.		5	2	•	0	4.	
	9.51	8.71	7.61	7.01	٣.	6	4.89	4.66	4.35	3.80	3.32	3.16	2.45	2.14	1.20	0.99	3	0.00
	٠.	• 6	0.	0.	ο.	ω	∞	9.	٠,	9.	.2	∞	4.	0.	•	ω.	ς,	
		0.	9.	.5	9.	9.	٠,	4.		ς,		∞	ω,	∞	•	9	2	
	. 7	.5	٣.	٣.	6.	9	9.	0.	6.	4.	0.	7.	$\vec{}$	1		4.	0.13	
	က	4	2	9	7	∞	6					14						20
	5.9	5.2	5.03	2.50	2.29	1.7	7.	7	, 3	. 「	6	. 2	,	7	ر کر	4	, –	7
	5.9	4.5	3,63	2.47	1.78	0.9	0	۳,	. 8	. 2	0	6	7	6		0	0	٠.
	15.70	13.90	/		1.55	0.9	ω	. –:	. 2	. ~	. 6	6	. ~	9	, (7		ع ز	. –
	5,3	3.8	3.10	2.23	1.24	0.5	7	6	0.	. 0	5		! -	9	. ~	٧		: -
	5.0	3.8	2.99	1.59	.18	.2	9.43	8.53	8.05	6.98	6.45	5.58	5,13	4.61	4.14	3.62	2.71	1,99
	(ı	ı	Y ,	brevi	ted	•	•	•									
	8.82	7.52	6.52	6.11 5.08	5.74	4.92	4.65	4.46	3.98	3.64	3,15	2.74	2.30	1.62	$\frac{1.06}{1.04}$	0.63	0.15	0.00
	. 4	9	5 ~	, 0	.0	ō		÷ (?)	. r.	† ~	- ∝	C 4	4.0	٠ م	ی م	. ⊿	. c	•
					•)		•	1		•	•	•)	•	•	•

0.00	0	•	•	•	2.28	•		0.00	•	•	•		0	٠.	5.77	. ,	ۍ د	ဂ	4.	٠.	٠.	0.41	٠.	
0.00	6	0.	0.	ن.	3.69	7.	2	0.16	_; '	<u>-</u> د	·		0	9.	7.44	ຕຸ	ي. د	٠.	.2	2		0.74	.7	
0.45	æ	ο.	9	9	4.57	ဂ့	.5	0.48	٠,4	4٠	γ.		ω	ο.	7.95	റ	٠,	7.	2		6	1.68	٠.	
0.79	7	0.	6.	Τ.	5.00	ي	.2	$\frac{1.20}{2.2}$	∞ '	ہ ب	٠.		7	٣.	9.29	2	۰,	٠,	Π.	Π.	6	2.26	0.	
1.43	9	φ	.2	.2	5.20	Ξ.	0	$\frac{1.93}{1.93}$		2	${}^{\circ}$			2	10.49	0	∞	و				3,35	•	
1.83	15	٣.	7.	ഹ	6.19	•	7.	2.48	ٔ نی	ς,	⁻.		15	1.31	11.08	0.64	0.38	0.19	0	0	7.	4.65	9.	
2.38	14	7.	6.	.5	7.16	• 9	0.	2.97	ဆ	9	ဂ		14	1.55	11.52	1.24	0.54	0.49	0	9	ີນ	5.52	æ	
2.84	13	0	2	6	8.41	က္	4.	3.37	٣.	٣,	. 2		3	2.07	11.67	1.35	1.35	1.33	בי	4	ς,	5.99	6	
2.99	Ω Ι	.08	88	.63	9.27	.81	ω.	3.79	. 5	٠4	٣.		12	3.7	12.72	2.1	1.8	1.8	7			6.53	<u>ر</u>	
3.34		1.62	0.72	0.49	10,35	0.16	.2	4.20	Ξ.	⁻;	0.			5.0	13.26	3.0	3.0	2.8	~	. ~		6.84	9.	
4.29	10	2.08	2.05	1.82	11.72	1.59	7.	4.57	.2		0.		10	5.6	14.64	3.9	3.8	3.8	σ	ی د	. וכ	7.50		
4.37	6	4.58	3,81	3.74	13.50	2.98	ς.	5,31			٠,4		6	8.3	16.12	5.8	5.6	5.2	4	י ה	. ~	80.8	. 7	
4.73	8	6.47	6.38	6.24	4.86	47	ced 6.1		0	.	0.		∞	8.4	7.2	7.0	6.8	٠. ت	ated)	ic	1	; 0	·	
5.03	7	8.38	8.26	8.22	7.79	51	prev. 7.05	æ	۲.	3	~:		7	8.9	8.6	7.8	7.5	17.4	qq o		٠	. 4	· ~	
5.55	9	0.74	0.03	9,53	92	8.47	,64	7.27	0.	9.	٣.		9	2.9	20.21	9.5	9.4	9.20	0		, c		· ~	
6.26	2	3.5	1.7	1.5	21.54	0.9	.2	8.12	ω	ο.	• 6		Ŋ	3	21.79	0.7	0.5	0.1	- -	יי ר ני ת		; _	9	
6.68	4	4.7	4.0	3.8	23.73	2.5	0.9	10.44	9	ω	. 7		4	٠ ٦	23.63	3.2	3,1	2.4	,	7.7	7 C		11.04	
7.74	cr.	5.	2.9	5.4	24.47	4.1	3, 4	12.93	2.5	2.3	8.6		C	٦ 0	24.41	4.0	4.0	3.5	L.	ດຸເ	 	າ ເ	11.43	
	¥	3 31	2.90	2.17	31.80	0.83	Ω	15.59	5.5	3.4	13.0	2.7	_	7	28.74	ω α	7.3	6.9		ກໍເ		4. 0. c	11.61	
<	3	1 42	1.16	7.55	26	7.08	7	+ 🔾	6.6	8	5.31	NTH 1	ן בי טר	7 1	34.20	4.5	3.8	3.6	(ک ص•ر	7.0	Σ α	13.83	,
99 100 MO	SON	-	٠ د	٦ ٣	4	2		97				WO	100	-	٦ ٥	٦ ٣	4	ی.				200	100	i.

w

