

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 2 ปีการศึกษา 2555

วิชา CVE 237 Structural Analysis ! สอบวันพฤหัสบดีที่ 16 พฤษภาคม 2556 ภาควิชาวิศวกรรมโยธา ชั้นปีที่ 2 เวลา 13,00 – 16,00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 หน้า 7 ข้อ ให้ทำทุกข้อในสมุดคำตอบ
- อนุญาคิให้น้ำเครื่องคำนวณมาใช้ได้
- ไม่อนุญาตให้นำเอกสารใค ๆ เข้าห้องสอบ
- 4. ข้อมูลใดที่มิได้ให้ไว้หากจำเป็นต้องใช้ให้กำหนดขึ้นเองตามความเหมาะสม

เมื่อนักสึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ
เพื่อขออนุญาตออกนอกห้องสอบ
ห้ามนักสึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ
นักสึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักสึกษา

รศ.เอนก ศิริพานิชกร ผู้ออกข้อสอบ (โทร.9136)

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศวกรรมโยชาแล้ว

(ศ.คร.ชัย จาตุรพิทักษ์กุล)
 หัวหน้าภาควิชาวิศวกรรมโยชา

โครงสร้างที่สัมผัสบรรยากาศของอุณหภูมิที่แตกต่างกันดังรูปข้างล่าง ให้หาเฉพาะผลกระทบจากอุณหภูมิ
ดังกล่าวนี้ที่กระทำกับโครงสร้างนี้ที่ทำให้เกิดการเสียรูปที่อยู่ในรูปของการดัดเทียบเท่า (equivalent curvature, φ) และความเครียดเทียบเท่า (equivalent strain, €)
ทั้งนี้สมมติให้ α = สปส. ของการขยายตัวของวัสดุที่ทำโครงสร้าง
(10 คะแนน)

- 2. คานจริง (real beam) ดังรูป หากต้องการคำนวณหาระยะเคลื่อนที่ในแนวดิ่ง (vertical displacement) ที่ หน้าตัด A โดยวิธีคานเสมือน (conjugate beam)
 - 2.1 เขียนคานเสมือน เพื่อหาระยะเคลื่อนที่ดังกล่าวที่ต้องการ
 - 2.2 ใส่น้ำหนักบรรทุกเสมือนลงไปในคานเสมือนตาม ข้อ 2.1
 (10 คะแนน)

3. โครงสร้างดังรูป ให้คำนวณหาระยะเคลื่อนที่ในแนวดิ่งที่จุด A (vertical displacement at support A, u₂^A) โดยหลักการแรงเสมือน (virtual force principal)โดยให้พิจารณาเฉพาะผลที่เกิดจากแรงดัด (bending moment) ที่กำหนดผังโมเมนต์ดัดไว้ให้แล้ว (bending moment diagram) เท่านั้น

4. โครงข้อหมุน (truss) ดังรูป หากกำหนดให้บางขึ้นส่วนมีความแข็งแรงตามแกนของขึ้นส่วนเป็นค่าอนันต์ (EA= ∞) โดยวิธีพลังงาน (energy method) ให้คำนวณหาระยะเคลื่อนที่ในแนวนอนที่ที่รองรับ A (horizontal displacement at support A, u₁^A) (10 คะแนน)

หมายเหต

หมายความว่า EA ของขึ้นส่วนนั้นเป็นค่าอนันต์

กำหนดให้
$$u = \sum_{i=1}^{N} \frac{F_i f_i f_i}{F_i A_i}$$

- 5. คาน ABC และคาน DB'E รับน้ำหนักบรรทุกดังรูป
 - 5.1 หากกำหนดให้คาน ABC และคาน DB'E มีความแข็งแรงเชิงดัดคงที่เท่ากับ Et (EI = constant) ให้ คำนวณและเขียนผังโมเมนต์ดัด (bending moment diagram) (20 คะแนน)
 - 5.2 หากกำหนดให้คาน ABC มีความแข็งเชิงดัดคงที่เท่ากับ EI ในขณะที่คาน DB'E มีความแข็งแรงเชิงดัด เท่ากับ 3EI ผังโมเมนต์ดัดตามที่คำนวณไว้ในข้อ 5.1 จะเปลี่ยนแปลงไปหรือไม่ ? และหากเปลี่ยนแปลงไป

<u>กำหนด</u> สูตรในการคำนวณระยะแอ่น (deflection) ต่อไปนี้ไว้ เพื่อช่วยให้การคำนวณง่ายขึ้น

- 6. คานดังรูปให้พิจารณาหลักการของเส้นอิทธิพล (influence line)
 - 6.1 ให้คำนวณและเขียนเล้นอิทธิพลของแรงปฏิกิริยา (reactions) ที่ A และ C แรงเจือน (shear) และโมเมนต์ ดัดบวก (positive bending moment) ที่หน้าตัด B (10 คะแนน)
 - 6.2 กำหนดให้คิดเฉพาะน้ำหนักบรรทุกจรแผ่สม่ำเสมอ (uniformly distributed live load, w_{il}) เท่ากับ 10 ตัน/ม. ให้คำนวณหาแรงปฏิกิริยาอัดสูงสุดที่ที่รองรับ A และ C แรงเฉือนบวกและโมเมนต์ดัดบวกสูงสุดที่ หน้าตัด B (10 คะแนน)

- 7. ให้ตอบคำถามต่อไปนี้ พอสังเชป (20 คะแนน)
 - 7.1 โครงโค้งทั้ง 2 แบบ ดังรูป โครงสร้างแบบใดทำเป็นโครงสร้างที่มีความยาวช่วง (span length) มากกว่ากัน ให้อธิบายพฤติกรรมโครงสร้างทั้งสองมาให้ทราบด้วย

7.2 การก่อสร้างโครงสร้างช่วงยาวโดยการใช้โครงสร้างยื่น (cantilever construction) นำไปใช้ในโครงการ ก่อสร้างใดได้บ้าง ให้อธิบายและยกตัวอย่างประกอบ

missing 4 hivor $\int_0^L Mm \, dx$

	*	Linear M diagrams				Parobolic M diograms	40
E	I	% Y		Mo L	Origin L/2 L/2	Origin L	Mo Origin
m m	mML	1 mkoL	1 mM,L	1 mL(Mo+M1)	3 mM4L	1 mMgL	1/3 mL(2Mo-M ₁)
m _o	<u>1</u> ա ₀ ML	1 moMoL	t 6 moM1L	1 moL(2Mo+M1)	3 moM ₁ L	1 12 moM1 L	1 moL(5Mo-M1)
اس"		± €m₁MoL	<u>3</u> Պ,М,L	± m₁L(2M₁+M₀)	± 3m,M,t ³	<u>\$</u> ա ,M,L	4 m,L(Mo-M,)
mo	1 ML(mo+mt)		<u>†</u> M₁L (mo+2m₁)	ل [سو (کسو + ۱۳۰۰) + شر (کسر + ۱۳۰۰)	1 3 M;L(mo+m;)	12M1L(mo+3m1)	12 [mo(5Mo-M+) + 5m+ (Mo-M+)]