

Classifying Company & Product Sentiment Based on Tweets at a Tech Conference

MARK P. & TIM M. JANUARY 2021

MT Head Consulting

- Customer feedback insights
- Product and service ideas
- Product positioning
- Marketing & PR planning

"Keeping an ear to the ground, and an open mind..."

2011 Austin, TX

@ SXSW Interactive:

- iPad 2 launch
- Phone apps still wonky
- Google Maps sends you to Death Valley
- Earthquake / Tsunami in JP

Can we glean useful insights from conference tweets?

- Tweets are frequent & ubiquitous
- Tech conference with focus on companies, products, services
- Positive tweets: what resonates
- Negative tweets: issues & complaints

Goal: Accurately classify tweets by sentiment

Just when you thought social couldn't get more overblown at #sxsw, Google may be announcing Circles today.

9,093 Tweets

Human classified:

- Sentiment
 - Positive (2,978)
 - Negative (570)
 - None (5,389)
- Directed at Apple or Google
 - Specific product / app (2,200)
 - Company (1,091)

Data source: https://data.world/crowdflower/brands-and-product-emotion

Clean & Shape the Data

- Address missing & duplicates
- Simplification of classes
 - Positive or Negative
 - Google or Apple
- NLP processing
 - Lowercase words
 - Strip out punctuation
 - Remove stop words (211)

COUNT VECTORIZE	Accuracy	Precision	Recall	F1	TF-IDF	Accuracy	Precision	Recall	F1	LEMMATIZED CV	Accuracy	Precision	Recall	F1	LEMMATIZED TF-IDF	Accuracy	Precision	Recall	F1	
Logistic Regression	0.84	0.51	0.42	0.46		0.87	0.63	0.54	0.58		0.86	0.54	0.42	0.47		0.87	0.57	0.51	0.54	
Random Forest Vanilla	0.87	0.71	0.31	0.43		0.88	0.89	0.32	0.47		0.89	0.81	0.32	0.46		0.89	0.77	0.35	0.48	
Multinomial Naive Bayes	0.86	0.65	0.28	0.4		0.85	1	0.08	0.15		0.88	0.71	0.3	0.42		0.86	0.88	0.11	0.19	
SMOTE					AND SMOTED					AND SMOTED					AND SMOTED					
Logistic Regression	0.81	0.46	0.59	0.52		0.88	0.82	0.33	0.47		0.81	0.42	0.56	0.48		0.87	0.59	0.53	0.56	
Random Forest Vanilla	0.77	0.39	0.65	0.49		0.88	0.86	0.23	0.37		0.79	0.38	0.55	0.45		0.9	0.84	0.4	0.54	
Multinomial Naive Bayes	0.84	0.54	0.54	0.54		0.8	0.41	0.63	0.49		0.84	0.49	0.61	0.54		0.83	0.45	0.62	0.52	

An iterative, layered approach... total of 24 models run:

- Best Accuracy = **0.90**
- Best Recall = **0.65**

Best Model: a compromise of Accuracy & Recall

- Multinomial NB w/TFIDF vectorized + lemmatized + SMOTE = 0.83 accuracy
- With recall of **0.62** for class 0, there is still a 38% chance of predicting positive when tweet is negative

Words Contributing the Most

Important to RF models:

- Top words mostly negative
- Long tail...many words contribute a little
- Can be difficult to glean meaning w/out context

Word	Importance
fail	0.0179
headache	0.0148
battery	0.0145
long	0.0136
need	0.0117
think	0.0099
design	0.0094
suck	0.0092
people	0.0089
yet	0.0085

Set rumor rumor rumor rumor school detail 80 brilliant retail event visualization itunes itunes with a rumor rumor

Apple +

Clustering to further examine themes

Top positive words for apple (on the left) – Word cloud based on token count Top negative themes for Google (on the right) – via LDA clustering

```
Out[33]:
                                               text brand feelings
                                                                                         text processed
               @sxtxstate great stuff on Fri #SXSW: Marissa M... Google
                                                                    @sxtxstate great stuff on fri #sxsw: marissa m...
                #SXSW is just starting, #CTIA is around the co...
                                                                     #sxsw is just starting #ctia is around the cor...
             Excited to meet the @samsungmobileus at #sxsw ... Google
                                                              1 excited to meet the @samsungmobileus at #sxsw ...
              Find & Driver Start Impromptu Parties at #SXSW Wi... Google
                                                                   find & amp: start impromptu parties at #sxsw wi...
                Foursquare ups the game, just in time for #SXS... Google
                                                                   foursquare ups the game just in time for #sxsw...
In [74]: data4.text.sample(20)
Out[74]: 1221
                  " Google before you tweet" is the new " think before you speak. " - Mark Belinsky, #911tweets panel at #SXSW.
                  At #SXSW seeing a demo of #Google maps for mobile 5.2. 3D rotational viewing is very cool
         2818
         1137
                  Mayer comes out sans intro, still gets cheers. #techrockstar Launches into Google's priority on location - Fast, Fun & Future #sxsw
                  RT @mention Google's Marissa Mayer on the location-based 'fast, fun and future' {link} #SXSW #SXSWi
         2139
         2096
                  RT @mention Geeking out on YouTube APIs #SXSW @mention Google Teaching Theatre {link}
                  ballroom d: #marissaqooqle talking about some cool projects (obv). love the Google Art Project. #sxsw
                  P.S. @mention and Google throw a b!tchin' party. Shout out to The Spazmatics #sxsw
                  Loved the honesty in Google's Marissa Mayer keynote: we have too many products and need to step up customer service for locations #sxsw
         2130
                  RT @mention Google to Launch Major New Social Network Called Circles {link} #sxsw / cc @mention @mention
         2489
                  Leaving Google's Marissa Mayer Keynote. Interesting details on user adoption of location-aware services. #sxsw
                  RT @mention Get it while it's hot! The latest version of Whrrl is available today for Android, iPhone - and Blackberry! WHRRL FOR BLACKBE
         2099
         1473
                  Great talk on using game mechanics to get user engagement @mention from google rocked it. #sxsw
         912
                  When brand focuses on purpose, not object, they survive & amp; succeed. Google: not search, useful info. Nike: not sneakers, performance.
         78
                  Just left #sxsw tradeshow demo of @mention at the Google Theatre. Ok, I get it. I see why all the presenters here are using it.
         666
                  Watching a promo for Google earth engine at 'Techies can save the world, why don't they?'. Harnessing collective power for good. #sxsw
         19
                  Okay, this is really it: yay new @Foursquare for #Android app!!!!11 kthxbai. #sxsw
         2976
                  @mention this time next week Google party at #SXSW!
                  If you aren't at google you just missed the dance party of a lifetime #SXSW
```

Read texts to understand context / meaning

Seeing specific words in context... the full tweet... adds meaning to themes and word lists AKA... know thy data!

TextBlob polarity scale

Sentiment may not be as polarized as assumed

Used TextBlob (model) to do assess how it rates polarity of sentiment in our tweets. On a scale of -1 to +1 our negative tweets average = +0.02, and positive tweets average = +0.21

Key Findings

- Accuracy good, Recall low
 - Class imbalance
 - Tweets varied; repetitive
- Able to id key topics (+ / -)
 - Most tweets fairly neutral
 - Same word/topic can be both + and -
- Created interactive tool for applying models to data

One of the top words = **popup** or **pop**...

is it positive (can't wait to get my iPad2) or negative (long lines)?

Recommendations

GOOGLE

- Google Circles: too much competition
- Google Maps: fix navigation errors quicker
- Google Search: at risk from Microsoft Bing
- Company: "focus on things that matter"

APPLE

- iPhone: battery lacks longevity
- News: needs improvement and innovation
- iPad2 Launch: long lines and poor CS
- Conference: more phone charging stations

Process Improvements

- Dashboard Approach: model tuned for speed and frequent reporting
- Tweets: may not be the best source of actionable feedback (part of a mix)

Next Steps

Improve Model Performance

- Utilize bi-grams and tri-grams
- Filter vocabulary by parts of speech (POS)
- Explore word embedding
- Try using a Neural Network

Experiment with Content

- Extend data used to "neutrals"
- Restrict tweets to specific roles / users
- Explore different types of conferences

Thanks to...

Yish Lim

(leader of the pack)

Stephen Enke

(resident NLP expert)

Our classmates

(...and happy hour companions)

and Flatiron School

For details visit: https://github.com/tcmcaleer/Google-Apple-Tweets

tcmcaleer@google.com / markpatterson8@hotmail.com