

✓ Congratulations! You passed!

TO PASS 80% or higher

GRADE 100%

Natural Language Processing & Word Embeddings

LATEST SUBMISSION GRADE			
100%			

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words. True False	1/1 point
	Correct The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.	
2.	What is t-SNE? A linear transformation that allows us to solve analogies on word vectors A non-linear dimensionality reduction technique A supervised learning algorithm for learning word embeddings An open-source sequence modeling library	1/1 point
	✓ Correct Yes	

3. Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this 1/1 point word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

○ False

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

 \square θ_{\perp} and e_{\perp} are both 10000 dimensional vectors

	of and of are pour room annersonal receipt	
	$m{arphi}_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.	
	✓ Correct	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	1 point
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$	
	Which of these statements are correct? Check all that apply.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$oldsymbol{arphi}_i$ and e_j should be initialized randomly at the beginning of training.	
	✓ Correct	
	$oldsymbol{ odd} X_{ij}$ is the number of times word j appears in the context of word i.	
	✓ Correct	
	lacksquare The weighting function $f(.)$ must satisfy $f(0)=0.$	
	✓ Correct The weighting function helps prevent learning only from extremely common word pairs. It is not necessary	
	that it satisfies this function.	
10.	0. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?	1 point
	$\bigcirc m_1 \ll m_2$	
	✓ Correct	