

VERROU: Nouveaux modes d'arrondi stochastique pour la vérification numérique

09/06/23 Réunion InterFLOP

Bruno Lathuilière (EDF R&D)

Travail en commun avec : Nestor Demeure.

Plan

- Contexte
 Les arrondis stochastiques et leurs limitations.
- 3. Les arrondis stochastiques déterministes
- 4. Recherche d'implémentations efficaces
- 5. Les arrondis stochastiques commutatifs déterministes
- 6. Arrondis stochastiques monotones
- 7. Perspectives
- 8. Bonus: prandom

Arithmétique stochastique

Modéliser l'imprécision par un aléa sur le mode d'arrondi

Arrondi au plus proche (défaut IEEE-754)

Arithmétique stochastique

Modéliser l'imprécision par un aléa sur le mode d'arrondi

Arrondi aléatoire

Arithmétique stochastique

Modéliser l'imprécision par un aléa sur le mode d'arrondi

Arrondi aléatoire

Instruction	Eval. 1	Eval. 2	Eval. 3	
a = 1/3	0.333↓	0.334↑	0.334↑	
$b = a \times 3$	0.999	1.00_{\downarrow}	1.01^{\uparrow}	1.0 0

Faux positifs avec les arrondis stochastiques

```
double a1=foo(42.); 1 float x = foo(42);
                           if(x>0) return sqrt(foo(42));
2 double a2=foo(42.);
   assert(a1==a2):
                              else return sqrt(-foo(42));
Echec du assert
                           NaN
  1 class ProjectedCentralCircularSortOrder{
  2 ... constructor...
  3 bool operator()(const double* pt1, const double* pt2){
      const double ang1=atan2(pt1[_aIdx]-_a,pt1[_bIdx]-_b);
      const double ang2=atan2(pt2[_aIdx]-_a,pt2[_bIdx]-_b);
      return ang1 > ang2;}
  7 }
     ProjectedCentralCircularSortOrder order(...);
     sort((polygon.begin()), polygon.end(), order);
 Erreur de segmentation
```

Contournements actuels

- 1 Ne pas pertuber ces fonctions :
 - Les erreurs commises dans ces fonctions sont ignorées.
- 2 Réécrire le code en stockant les calculs multiples.
 - ► Il n'est pas toujours facile/possible de modifier le code
 - Le nouveau code peut être moins performant.

Dans tous les cas on doit connaître les fonctions concernées : cela nécessite l'usage de delta-debug puis de faire le tri entre les faux positifs et les vraies erreurs.

Transformation sans erreur:

- ightharpoonup $a \circ b = \sigma + \delta$.

Transformation sans erreur:

$$\triangleright$$
 $a \circ b = \sigma + \delta$.

♦ Si
$$\delta < 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b) - ulp$,
 $\lceil a \circ b \rceil = fl(a \circ b)$.

♦ Si
$$\delta = 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$
 $\lceil a \circ b \rceil = fl(a \circ b)$.

• Si
$$\delta > 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b),$
 $\lceil a \circ b \rceil = fl(a \circ b) + ulp.$

Transformation sans erreur:

$$\triangleright$$
 $a \circ b = \sigma + \delta$.

♦ Si
$$\delta < 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b) - ulp$,
 $\lceil a \circ b \rceil = fl(a \circ b)$.

Si
$$\delta = 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$
 $\lceil a \circ b \rceil = fl(a \circ b)$.

• Si
$$\delta > 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b),$
 $\lceil a \circ b \rceil = fl(a \circ b) + ulp.$

- Transformation sans erreur:
 - ightharpoonup $a \circ b = \sigma + \delta$.
 - $ightharpoonup \sigma = fl(a \circ b)$

- Si $\delta < 0$: $|a \circ b| = fl(a \circ b) ulp$, Si $\delta = 0$: $|a \circ b| = fl(a \circ b)$ Si $\delta > 0$: $|a \circ b| = fl(a \circ b)$, \bullet Si $\delta < 0$:
- $[a \circ b] = f((a \circ b)).$ $[a \circ b] = f((a \circ b)).$ $[a \circ b] = f((a \circ b)) + u(b).$

Mode random:
$$fl_{random}(a \circ b) = \begin{vmatrix} \lfloor a \circ b \rfloor & avec \ p = 1/2 \\ \lceil a \circ b \rceil & avec \ p = 1/2 \end{vmatrix}$$

Générateur pseudo aléatoire dans $\{0,1\}$: (tinyMT ou xoshiro256plus)+ bit shift.

Transformation sans erreur:

$$a \circ b = \sigma + \delta,$$

$$\begin{array}{l} \bullet \quad \text{Si } \delta < 0 : \\ \lfloor a \circ b \rfloor = fl(a \circ b) - ulp, \end{array}$$

$$\begin{array}{l} \bullet \quad \text{Si } \delta = 0 : \\ \lfloor a \circ b \rfloor = fl(a \circ b), \end{array}$$

$$\begin{array}{l} \bullet \quad \text{Si } \delta > 0 : \\ \lfloor a \circ b \rfloor = fl(a \circ b), \end{array}$$

$$\begin{array}{l} \bullet \quad \text{Si } \delta > 0 : \\ \lfloor a \circ b \rfloor = fl(a \circ b), \end{array}$$

$$\begin{array}{l} \bullet \quad \text{Si } \delta > 0 : \\ \lfloor a \circ b \rfloor = fl(a \circ b), \end{array}$$

$$\begin{array}{l} \bullet \quad \text{Si } \delta > 0 : \\ \lfloor a \circ b \rfloor = fl(a \circ b), \end{array}$$

Si
$$\delta = 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$

Mode average:
$$fl_{average}(a \circ b) = \begin{vmatrix} \lfloor a \circ b \rfloor & avec \ p = \frac{1 - \delta}{|ulp|} \\ \lceil a \circ b \rceil & avec \ p = \frac{\delta}{|ulp|} \end{vmatrix}$$

Générateur pseudo aléatoire dans $\mathbb{F} \cap [0,1]$: tinyMT ou xoroshiro128plus. Equivalence avec MCA RR à la précision machine souvent appelé SR nearness.

random_det et average_det

Idée : assurer le déterminisme interne à une exécution Verrou au niveau des opérations flottantes.

Moyen : remplacer le générateur pseudo aléatoire par une fonction de hashage qui prend en paramètre :

- verrou_seed : une graine de 64bit.
- arg1, [arg2, [arg3]] : les opérandes de l'opération.
- ▶ Op : le type de l'opération (enum désignant \oplus , \ominus , \otimes , \oslash , fma, cos, sin ...).

Pour random_det (respectivement average_det) l'espace d'arrivée de la fonction de hashage est $\{0,1\}$ (respectivement $\mathbb{F} \cap [0,1]$)

Souhait : conserver les mêmes propriétées que random (respectivement average), dans les cas où les opérandes ne se répétent pas .

Implémentation naïve : mersenne twister

```
1 uint64_t mersenne_twister(uint64_t arg1, uint64_t arg2,
                             uint32 t Op){
   //const uint64_t keys[4]={verrou_seed,arg1, arg2, 0p};
   const uint64_t keys[3] = {verrou_seed^Op,arg1, arg2};
   tinymt64 t gen;
   tinymt64_init_by_array(&gen, keys, 3);
   return tinymt64_generate_uint64(&gen);
8 }
hash function for random_det :
1 return mersenne_twister(arg1,arg2, Op) >> 63;
hash function for average det:
1 const uint32_t v=mersenne_twister(arg1,arg2,0p)>>32;
2 constexpr double invMax= (1./4294967296.);
3 return ((double)v * invMax );
```

Evaluation Seq

- ▶ Seq : sommation séquentiel de 2²⁰ termes valant 0.1.
 - Comme l'accumulateur est différent à chaque étape: on s'attend à ce que random et random_det soient similaires.

Evaluation Rec

- ▶ Rec : sommation récurssive de 2²⁰ termes valant 0.1.
 - ► Récursion de base 4 : chaque tache est divisée en 4 sous-tâches.
 - ▶ Une tache de taille inférieure à 1024 éléments est calculée séquentiellement.
 - ► En base 2, sans seuil séquentiel, il n'y aurait pas d'erreur.

• élargissement du support de la distribution empirique.

Effet sur la stagnation : incrément constant

Error (and value) of accumulator (initialized to 100000) after i additions of 0.1. The vertical bars represent the beginning of stagnation.

Effet sur la stagnation : incrément constant

Error (and value) of accumulator (initialized to 100000) after i additions of 0.1. The vertical bars represent the beginning of stagnation.

Effet sur la stagnation : incrément constant

Error (and value) of accumulator (initialized to 100000) after i additions of 0.1. The vertical bars represent the beginning of stagnation.

Effet sur la stagnation : incrément random

Error (and value) of accumulator (initialized to 10000000) after i additions of random value (uniform distribution between 0 and 2)

Effet sur la stagnation : incrément random

Error (and value) of accumulator (initialized to 10000000) after i additions of random value (uniform distribution between 0 and 2)

Effet sur la stagnation : incrément random

Error (and value) of accumulator (initialized to 10000000) after i additions of random value (uniform distribution between 0 and 2)

Recherche d'implémentations efficaces

	Espace de départ et d'arrivée	Références
dietzfelbinger multiply_shift double_tabulation xxhash(xxh3) tinyMT	$\begin{array}{c} \text{uint64} \rightarrow \text{uint32} \\ \text{multiple de uint32} \rightarrow \text{uint32} \\ \text{multiple de uint8} \rightarrow \text{uint32} \\ \text{multiple de uint8} \rightarrow \text{uint64} \\ \text{muliple de uint64} \rightarrow \text{uint64} \\ \end{array}$	[1 p.6] [1 Pair-Multiply-Shift p.15] [2] [3]

- [1] M.Thorup. High Speed Hashing for Integers and Strings.
- [2] M.Thorup. Fast and Powerful Hashing using Tabulation.
- [3] https://github.com/Cyan4973/xxHash
- [4] S Dahlgaard, M.B.T Knudsen et M. Thorup. Practical Hash Function for Similarity Estimation and Dimensionality.

Résultats : estimateurs sur 100 échantillons

	Seq		R	lec
	float	double	float	double
error(nearest)	6.66	35.92	18.67	47.92
all	4.61	34.05	16.58	45.99
random	5.73	36.05	17.68	47.92
random_det(double_tabulation)	5.73	36.06	17.41	47.32
random_det(xxhash)	5.73	36.05	17.41	47.32
random_det(mersenne_twister)	5.73	36.05	17.59	47.32
average	6.67	35.91	18.63	47.92
average_det(double_tabulation)	6.67	35.91	18.19	47.32
average_det(xxhash)	6.67	35.91	18.32	47.32
average_det(mersenne_twister)	6.67	35.91	18.32	47.59

$$s_{random} = -log2\left(\frac{\textit{max}_{i \in random}(|x_i - x_{nearest}|)}{|x_{nearest}|}\right) \quad \textit{error}(\textit{nearest}) = -log2\left(\frac{|x_{ref} - x_{nearest}|}{|x_{ref}|}\right)$$

 $s_{all} = max(s_{random}, s_{average}, s_{downward}, s_{upward})$

Résultats : performance

Programme: stencil en float/double compilé en O0/O3 (avec fma)

type	do	uble	float	
compilation option	00	O3	O0	O3
nearest	×11.9	×24.9	×11.7	x32.4
random	x18.8	x52.2	x19.2	x77.6
random_det(double_tabulation)	x22.8	×66.4	×21.6	×93.3
random_det(xxhash)	x19.2	x51.7	x19.6	x80.5
random_det(mersenne_twister)	×36.9	×115.6	×39.4	×204.6
average	x21.7	x60.1	x22.2	x92.0
<pre>average_det(double_tabulation)</pre>	×26.8	×80.5	×26.5	×116.7
average_det(xxhash)	x23.4	x65.4	x24.5	x102.2
average_det(mersenne_twister)	×41.0	×127.5	×44.7	×228.1

Arrondis stochastiques commutatifs déterministes

Problème:

```
1 assert (dot(x,y) == dot(y,x))
```

Solution : Introduction des modes [random, average]_comdet qui garantissent que $x \circ p y$ soient arrondis comme $y \circ p x$ si op est commutatif.

Implémentation:

- Pour dietzfelbinger random_det a déjà cette propriété.
- ▶ Pour les autres on remplace :
 - ▶ hash(arg1, arg2, op) par hash(min(arg1, arg2), max(arg1, arg2), op) pour les opérateurs commutatifs (\oplus, \otimes) .
 - hash(arg1, arg2, arg3, FmaEnum) par hash(min(arg1, arg2), max(arg1, arg2), arg3, FmaEnum).

Arrondis stochastiques commutatifs déterministes

Variante signée

Problème:

1 assert
$$(dot(x,y) == dot(-x,-y))$$

Solution : Introduction des modes [random, average]_scomdet qui garantissent la commutativité des opérateurs commutatifs et : $\forall a,b,c \in \mathbb{F}^3$

Bilan des contraintes sur les hash

Soit $x, y, z, a, b \in \mathbb{F}^5$ avec $a > 0, b > 0$								
О	P	\oplus	Θ	\otimes	0		fma	
X	У					z>0	z=0	z<0
а	b	r _⊕	r _⊖	r⊗	r_{\oslash}^{1}	r_{fma}^1	r_{\otimes}	r_{fma}^2
b	a	r _⊕	$\overline{r_{\ominus}}$	r⊗	<i>r</i> _⊘ ²	r_{fma}^1	r_{\otimes}	r_{fma}^2
-a	-b	<u>r</u> ⊕	$\overline{r_{\ominus}}$	r⊗	r_{\oslash}^{1}	r_{fma}^{\perp}	r_{\otimes}	r_{fma}^2
-b	-a	<u>r</u> ⊕	r _⊖	r⊗	r_{\odot}^2	r_{fma}^1	r_{\otimes}	r_{fma}^2
а	-b	r _⊖	r _⊕	$\overline{r_{\otimes}}$	$\overline{r_{\oslash}^1}$	r _{fma}	$\overline{r_{\otimes}}$	r_{fma}^1
-b	a	r _⊖	<u>r</u> ⊕	$\overline{r_{\otimes}}$	$\overline{r_{\oslash}^2}$	r_{fma}^2	$\overline{r_{\otimes}}$	r_{fma}^{\perp}
-a	b	<u>r</u> ⊖	<u>r</u> ⊕	$\overline{r_{\otimes}}$	$\begin{array}{c c} r_{\odot}^{1} \\ \hline r_{\odot}^{2} \\ \hline r_{\odot}^{1} \\ \hline \end{array}$	r_{fma}^2	$\overline{r_{\otimes}}$	r_{fma}^1
					2	2		- 1

 $ar{r}=1-r$: si r conduit à un arrondi upward alors $ar{r}$ conduit à un arrondi downward (et reciproquement)

Les cas x=0 et y=0 sont non traités car ils conduisent à des opérations exactes.

Résultats : estimateurs sur 100 échantillons

	Seq		Rec	
	float	double	float	double
error(nearest)	6.66	35.92	18.67	47.92
all	4.61	34.05	16.58	45.99
random	5.73	36.05	17.68	47.92
random_scomdet(xxhash)	5.73	36.05	17.49	47.32
random_scomdet(mersenne_twister)	5.73	36.05	17.45	47.32
average	6.67	35.91	18.63	47.92
average_scomdet(xxhash)	6.67	35.91	18.19	47.32
<pre>average_scomdet(mersenne_twister)</pre>	6.67	35.91	18.19	47.32

$$\begin{split} s_{random} &= -log2\left(\frac{max_{i \in random}(|x_{i} - x_{nearest}|)}{|x_{nearest}|}\right) \quad \textit{error} \left(\textit{nearest}\right) = -log2\left(\frac{|x_{ref} - x_{nearest}|}{|x_{ref}|}\right) \\ s_{all} &= \textit{max} \left(s_{random}, s_{average}, s_{downward}, s_{upward}\right) \end{split}$$

Arrondis stochastiques monotones

Problème:

```
1 \text{ assert}((x \le y) == (a+x \le a+y))
```

Solution: Introduction du mode sr_monotonic:

$$fl_{monotonic}(a \circ b) = \begin{vmatrix} \lfloor a \circ b \rfloor & si \ a \circ b < seuil \\ \lceil a \circ b \rceil & si \ a \circ b > seuil \\ \lfloor a \circ b \rfloor & si \ a \circ b = seuil & et \quad a \circ b < 0 \\ \lceil a \circ b \rceil & si \ a \circ b = seuil & et \quad a \circ b > 0 \end{vmatrix}$$

avec *seuil* échantillonné (une fois par exécution du programme) suivant une loi uniforme dans $[|a \circ b|, [a \circ b]]$ tel que

$$seuil([\lfloor -(a \circ b) \rfloor, \lceil -(a \circ b) \rceil]) = -seuil([\lfloor a \circ b \rfloor, \lceil a \circ b \rceil])$$

Remarque:

- la contrainte de parité du seuil permet de respecter les contraintes de [average|random]_scomdet.
- dans la pratique seuil est obtenu par le produit de ulp par la fonction de hashage dans [0.,1] prennant en paramètre l'arrondi vers 0 de $|a \circ b|$.

Comparaison à average

Comparaison à average

Remarque: Vis-à-vis de average:

- on perd l'indépendance des tirages aléatoires,
- mais si les résultats de toutes les opérations sont dans des intervalles différents, on a équivalence.

Résultats : estimateurs sur 100 échantillons

	Seq		Rec	
	float	double	float	double
error(nearest)	6.66	35.92	18.67	47.92
all	4.61	34.05	16.58	45.99
average	6.67	35.91	18.63	47.92
average_scomdet(xxhash)	6.67	35.91	18.19	47.32
average_scomdet(mersenne_twister)	6.67	35.91	18.19	47.32
sr_monotonic(xxhash)	6.67	35.91	18.22	47.32
sr_monotonic(mersenne_twister)	6.67	35.90	18.25	47.32

$$s_{random} = -log2\left(\frac{max_{i \in random}(|x_i - x_{nearest}|)}{|x_{nearest}|}\right) \quad error(nearest) = -log2\left(\frac{|x_{ref} - x_{nearest}|}{|x_{ref}|}\right)$$

 $s_{\mathit{all}} = \mathit{max}(s_{\mathit{random}}, s_{\mathit{average}}, s_{\mathit{downward}}, s_{\mathit{upward}})$

Effet sur la stagnation : incrément constant

Error (and value) of accumulator (initialized to 100000) after i additions of 0.1. The vertical bars represent the beginning of stagnation.

Effet sur la stagnation : incrément random

Error (and value) of accumulator (initialized to 10000000) after i additions of random value (uniform distribution between 0 and 2)

Performances

Programme: stencil en float/double compilé en O0/O3 (avec fma)

type	double		float	
compilation option	00	O3	00	O3
nearest	×11.9	x24.9	×11.7	x32.4
random	×18.8	×52.2	×19.2	×77.6
random_det(xxhash)	×19.2	×51.7	×19.6	x80.5
$random_comdet(xxhash)$	×19.6	×53.7	×20.1	x83.4
random_scomdet(xxhash)	×23.8	×70.3	×25.0	×112.0
average	×21.7	×60.1	×22.2	×92.0
average_det(xxhash)	x23.4	×65.4	×24.5	×102.2
average_comdet(xxhash)	×24.6	×69.2	×26.3	x118.2
average_scomdet(xxhash)	×25.4	×72.4	×27.3	×124.8
sr_monotonic(xxhash)	×24.3	×70.7	×25.5	×110.7

Conclusions et perspectives

Les nouveaux modes [random, average]_[[s]com]det et sr_monotonic

- suppriment des faux-positifs sans besoin de modifier le code,
- simplifient le deboguage avec une graine fixée,
- ont un surcoût acceptable vis à vis de [random, average],
- nécessitent de faire attention à la stagnation.

Perspectives

- Etude des applications utilisant average (IA typiquement) pour savoir dans quel régime elles sont vis-à-vis de la stagnation.
- ▶ Etude du mode sr_monotonic sur la convergence d'algorithme itératif.
- Besoin de REX sur les résultats du delta-debug avec les nouveaux modes stochastiques/déterministes.

Definition de prandom

Mode random:

$$fl_{random}(a \circ b) = \begin{vmatrix} \lfloor a \circ b \rfloor & avec \ p = \frac{1}{2} \\ \lceil a \circ b \rceil & avec \ p = \frac{1}{2} \end{vmatrix}$$

Mode prandom:

$$fl_{prandom}(a \circ b) = \begin{bmatrix} \lfloor a \circ b \rfloor & avec \ p = p_r \\ \lceil a \circ b \rceil & avec \ p = 1 - p_r \end{bmatrix}$$

avec p_r selectionné suivant une loi uniforme entre 0 et 1 au début du programme.

Exemple sur la somme

Exemple sur le conditionnement du produit scalaire

$$cond = 2. \frac{\sum_{i} |a_{i}.b_{i}|}{\sum_{i} a_{i}.b_{i}}$$

Avec $a_i > 0$ et $b_i > 0$, cond = 2

l'enjeu de l'update de p

Si on remet à jour p au début de chaque fonction :

Attention:

- Très sensible aux options de compilation et l'inlining.
- Si on remet à jour p à chaque opération prandom est équivalent à random

Perspectives sur prandom

Questionnement

- Où et comment placer les update?
- Pertinence sur des cas industriels pour la localisation par delta-debug?
- Pertinence sur des cas industriels pour la localisation par méthode de couverture?
- Pertinence sur des cas industriels pour la localisation par méthode d'analyse de donnée (cf. travail avec R.M.)?
- Version déterministe et update?