Theorem 2. For a Kripke structure K with initial state s and $\varphi \in LTL$, the model checking problem $L(K,s) \subseteq L(\varphi)$? is PSPACE-complete.

Proof. PSPACE Compute the intersection automaton for $L(K,s) \cap L(\neg \varphi)$ and test it for emptiness. PSPACE-hard Encode a poly.-length Turing tape as a Kripke structure and its correct behavior in LTL.

Theorem 3 (Büchi). The MSO theory of $(\mathbb{N}, +1, <, 0)$ is decidable.

Proof. Corresponds to S1S formula. Can be checked with NBA emptiness test.

Theorem 4. The FO theory of $(\mathbb{R}, +, <, 0)$ is decidable.

Proof. Encode real numbers x by triples of sets (X_s, X_i, X_f) with the number's sign $(X_s = \emptyset)$ or $\{0\}$, the positive decimal digits in binary encoding, and the positive fractional digits in binary

encoding. Then an FO sentence can be transformed to an equi-satisfiable MSO sentence over

 $(\mathbb{N}, +1, <, 0).$

Theorem 1. Every non-empty ω -regular language contains an ultimately periodic word.