Uniwersytet Jagielloński w Krakowie

Wydział Fizyki, Astronomii i Informatyki Stosowanej

Łukasz Kostrzewa

Nr albumu: 1080514

Wizualizacja, edycja i przetwarzanie grafów on-line

Praca magisterska na kierunku Informatyka stosowana

Praca wykonana pod kierunkiem dr hab. Barbary Strug Zakład Projektowania i Grafiki Komputerowej

Kraków 2017

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Kraków, dnia

Podpis autora pracy

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Kraków, dnia

Podpis kierującego pracą

Spis treści

W	stęp		4
1	Wp: 1.1 1.2 1.3	rowadzenie Czym są grafy	5 5 5
0		Zastosowania grafów	
2	2.1 2.2 2.3 2.4 2.5	magania Tworzenie grafów 2.1.1 Importowanie grafów 2.1.2 Generowanie grafów Wizualizacja Edycja Przetwarzanie Eksportowanie	6 6 8 9 9 9
3	Istn 3.1 3.2	niejące rozwiązania Aplikacje internetowe	11 11 17
4	Pro. 4.1	jekt i analiza Biblioteki do wizualizacji grafów w JavaScript 4.1.1 Cytoscape.js 4.1.2 sigma.js 4.1.3 VivaGraph.js 4.1.4 Linkurious.js Interfejs użytkownika Część serwerowa	18 18 18 18 18 18 18
5	Imp	olementacja	19
6	Test	tv	20

7	Wnioski	21
A	Instrukcje dla użytkowników	22
В	Instrukcje dla programistów	23
C	C Użyte narzędzia	24
В	Bibliografia	25

\mathbf{Wstep}

"This question is so banal, but seemed to me worthy of attention in that geometry, nor algebra, nor even the art of counting was sufficient to solve it¹". Tak w 1736 roku pisał Leonhard Euler w liście do Giovanniego Marinoniego, włoskiego matematyka i inżyniera, o jednym z pierwszych problemów w teorii grafów – problemie mostów królewskich. Banalny, ale warty uwagi.

W dzisiejszych czasach teoria grafów rozwiązuje wiele nietrywialnych problemów, a część z nich nadal pozostaje otwarta. Grafy znalazły praktyczne zastosowanie w wielu różnorodnych dziedzinach nauki, takich jak informatyka, ekonomia, socjologia, jak również chemia, lingwistyka, geografia czy nawet architektura. Bez wątpienia teoria grafów jest dziedziną matematyki i informatyki, która zasługuje na uwagę, co postaram się w niniejszej pracy przedstawić.

Głównym celem mojej pracy jest stworzenie aplikacji służącej do wizualizacji i edycji grafów w przeglądarce. W przeciągu kilku ostatnich lat mogliśmy zaobserwować gwałtowny wzrost znaczenia aplikacji internetowych. Co dziwne, na dzień dzisiejszy w sieci praktycznie nie ma rozwiązania, które pozwalałoby wczytać graf, wyświetlić, w łatwy sposób przetworzyć, a następnie wyeksportować do znanego formatu. Praca ta jest odpowiedzią na ów deficyt.

W pracy dokonam również przeglądu i analizy bibliotek JavaScript oraz technologii służących do wizualizacji grafów w przeglądarce.

¹Cytat zaczerpnięty z [HW04], wyróżnienie własne.

Rozdział 1

Wprowadzenie

- 1.1 Czym są grafy
- 1.2 Znane grafy
- 1.3 Zastosowania grafów

Rozdział 2

Wymagania

Rozdział ten zawiera wszystkie wymagania funkcjonalne, które powinna spełniać aplikacja, aby praca z grafami była możliwie przystępna.

2.1 Tworzenie grafów

Podstawowym i oczywistym wymaganiem jest, aby użytkownik mógł stworzyć nowy, pusty graf. Ponadto użytkownik powinien mieć możliwość zaimportowania istniejącego grafu oraz wygenerowania znanego grafu, np. cyklu lub grafu pełnego o zadanej ilości wierzchołków.

2.1.1 Importowanie grafów

Istnieje wiele formatów służących do opisu grafów. Do najpopularniejszych należą [MB04; Gep]

- ullet GraphML Graph Markup Language
- GEXF Graph Exchange XML Format
- JGF JSON Graph Format
- DOT format programu Graphviz
- GML Graph Modeling Language
- DGML Directed Graph Markup Language
- XGMML eXtensible Graph Markup and Modeling Language

Użytkownik powinien móc wczytać graf w formatach GraphML, GEXF oraz JGF.

Graph Markup Language (GraphML)

Listing 2.1: Przykład grafu w formacie GraphML

```
<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
    http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
    <graph id="G" edgedefault="undirected">
        <node id="1"/>
        <node id="2"/>
        <edge source="1" target="2"/>
        </graph>
</graph></graphml>
```

Graph Exchange XML Format (GEXF)

Listing 2.2: Przykład grafu w formacie GEXF

JSON Graph Format (JGF)

Listing 2.3: Przykład grafu w formacie JGF

DOT Graphviz

Listing 2.4: Przykład grafu w formacie DOT

```
graph graphname {
    a -- b -- c;
    b -- d;
}
```

2.1.2 Generowanie grafów

Użytkownik powinien mieć możliwość wygenerowania znanych grafów, dla zadanych parametrów wejściowych:

- Graf pusty
- Graf liniowy

- Graf cykliczny
- Koło
- Graf pełny (lub turniej)
- Graf pełny dwudzielny
- Graf Petersena
- Drzewa

Definicje i przykłady powyższych grafów znajdują się w sekcji 1.2. Ponadto przydatnym dodatkiem w aplikacji będzie możliwość wygenerowania grafu losowego – o danej ilości wierzchołków oraz parametrem prawdopodobieństwa określającym, czy pomiędzy dwoma wierzchołkami istnieje krawędź.

2.2 Wizualizacja

oddalanie, przybliżanie layouts (grid, circle, concentric, bfs) samodzielne ustawianie wierzchołków i force layout różne typy wierzchołków / kolory / ikony w wierzchołkach style / kolor krawędzi wyszukiwanie po danych

2.3 Edycja

osobny tryb edycji dodawanie/usuwanie wierzchołków/krawędzi dodawanie etykiet / własności grupowanie wierzchołków

2.4 Przetwarzanie

Podstawowe algorytmy:

- Wyszukiwanie najkrótszej ścieżki
- Minimalne drzewo rozpinające
- Page rank
- Spójne składowe
- Cykl Eulera
- Cykl Hamiltona

2.5 Eksportowanie

Użytkownik powinien mieć możliwość wyeksportowania do formatów, które zostały przedstawione w podsekcji 2.1.1. Ponadto przydatną funkcjonalnością będzie możliwość wyeksportowania obecnego widoku do pliku graficznego, np. PNG lub JPG.

Rozdział 3

Istniejące rozwiązania

W tym rozdziale przedstawię istniejące aplikacje internetowe i desktopowe służące do tworzenia i wizualizacji grafów. Tabela 3.1 zawiera porównanie funkcjonalności opisywanych aplikacji internetowych.

3.1 Aplikacje internetowe

Graph Creator

	http://illuminations.nctm.org/Activity.aspx?id=3550
Autor	National Council of Teachers of Mathematics

Aplikacja pozwala tworzyć grafy skierowane i nieskierowane. Posiada możliwość kolorowania wierzchołków, wyrównania ich do siatki oraz ustawienia wag na krawędziach i etykiet w wierzchołkach. Ponadto użytkownik może wyświetlić stopnie wierzchołków oraz wyginać krawędzie. Dodatkową funkcjonalnością jest możliwość zaznaczenia kilku wierzchołków na raz.

Graph Creator nie daje możliwości eksportowania i importowania grafów. Nie można również przesuwać widoku ani oddalać oraz przybliżać grafu. Aplikacja posiada ograniczenie liczby wierzchołków – maksymalna dozwolona ilość to 52 wierzchołki.

label show degree

vertex tools

edge tools

graph explorer

Rysunek 3.1: Zrzut ekranu z aplikacji Graph Creator

Graph Online

Adres URL	http://graphonline.ru/en/
Autor	Unick-soft

Aplikacja również daje możliwość stworzenia grafów zarówno skierowanych jak i nieskierowanych. Podobnie jak poprzednia aplikacja pozwala na zmianę etykiet wierzchołków, nadanie wag krawędziom oraz na wyświetlenie stopnia wierzchołków. Ponadto użytkownik ma możliwość przesuwania widoku oraz jego przybliżania i oddalania. Dodatkowo *Graph Online* pozwala zapisać graf jako macierz sąsiedztwa lub incydencji oraz wczytać graf zapisany w takiej postaci. Użytkownik może również zapisać graf na serwerze – po zapisaniu wyświetlany jest ogólnodostępny adres URL do grafu. Ciekawą funkcjonalnością jest eksport grafu do obrazka (plik PNG).

Graph Online posiada możliwość wykonania podstawowych algorytmów na grafie, takich jak: znajdowanie najkrótszej ścieżki pomiędzy dwoma wierz-

chołkami, znajdowanie cyklu Eulera, znajdowanie spójnych składowych, znajdowanie minimalnego drzewa rozpinającego.

W przeciwieństwie do poprzedniej aplikacji nie mamy możliwości kolorowania wierzchołków, zaznaczania kilku wierzchołków na raz oraz wyginania krawędzi. Maksymalna dozwolona ilość wierzchołków to 299.

♣ Graph ▼
Q View ▼
Click on the object to remove

** Remove object

**Click on the object to remove

**Click on the object to remove

Rysunek 3.2: Zrzut ekranu z aplikacji Graph Online

GraphJS

Adres URL	https://dl.dropboxusercontent.com/u/4189520/GraphJS/
	graphjs.html
Autor	David Kofoed Wind

Aplikacja pozwala na tworzenie grafów nieskierowanych. Podobnie jak w poprzednich aplikacjach możemy nadawać etykiety wierzchołkom i krawędziom. Niespotykaną funkcjonalnością jest możliwość stworzenia kilku grafów i przełączania się pomiędzy nimi oraz możliwość eksportu grafu do formatu LATEX (pakiet TikZ). Ponadto użytkownik ma możliwość eksportu do własnego formatu JSON oraz importu grafu z tego formatu. Aplikacja posiada funkcjonalność zaznaczania wielu wierzchołków na raz.

W *GraphJS* nie ma możliwości przesuwania widoku oraz przybliżania i oddalania grafu. Nie ma również możliwości kolorowania wierzchołków oraz

wyginania krawędzi. Aplikacja zdaje się nie mieć limitu na liczbę wierzchołków – udało się wczytać graf C_{1000} jednakże dodanie kolejnego wierzchołka zajmuje około 10 sekund.

Rysunek 3.3: Zrzut ekranu z aplikacji GraphJS

Graphrel

Adres URL	https://yiboyang.github.io/graphrel/
Autor	Yibo Yang

Aplikacja daje możliwość tworzenia grafów skierowanych. W przeciwieństwie do poprzednio opisywanych aplikacji posiada układ kierowany siłą (ang. force-directed layout), choć istnieje również opcja samodzielnego rozstawienia wierzchołków – poprzez przytrzymanie klawisza Ctrl. Użytkownik może zaimportować graf z formatu stworzonego przez aplikację (tablice list sąsiedztwa dla każdego wierzchołka). Bardzo przydatną i niespotykaną funkcjonalnością jest możliwość cofania oraz ponawiania ostatnich akcji.

W Graphrel nie możemy nadawać własnych etykiet na krawędziach ani w wierzchołkach, nie możemy przesuwać widoku ani zmieniać przybliżenia grafu. Nie ma również możliwości wyginania krawędzi, zaznaczania kliku

wierzchołków na raz oraz kolorowania wierzchołków. Do aplikacji udało się wczytać graf C_{100} , przy próbie wczytania C_{101} pojawia się informacja o niepoprawnym formacie.

Rysunek 3.4: Zrzut ekranu z aplikacji Graphrel

Graphrel

VisuAlgo

Adres URL	https://visualgo.net/en/
Autor	Dr Steven Halim

Aplikacja stworzona przez Dr Stevena Halima z National University of Singapore. Posiada możliwość tworzenia prostych grafów, jednak jej głównym celem jest wizualizacja algorytmów przez animację (nie tylko na grafach, ale również na strukturach danych). Użytkownik wraz z przebiegiem algorytmu może obserwować przebieg kodu, może zatrzymać się w dowolnym jego kroku, cofnąć się do kroku poprzedniego albo przejść do następnego.

Rysunek 3.5: Zrzut ekranu z aplikacji VisuAlgo

Linkurious

Adres URL http://linkurio.us
Autor Linkurious

Rysunek 3.6: Zrzut ekranu z aplikacji Linkurious

yEd Live

Adres URL https://www.yworks.com/yed-live/
yWorks

Rysunek 3.7: Zrzut ekranu z aplikacji yEd Live

3.2 Aplikacje desktopowe

Gephi

 $\rm https://gephi.org/$

${\bf GraphTea}$

http://www.graphtheorysoftware.com/

Cytoscape

http://www.cytoscape.org/

Tablica 3.1: Porównanie aplikacji Graph Creator, Graph Online, GraphJS i Graphrel

	Graph Greator	Gi ^s ph Online	G. aphys	Graphies
graf nieskierowany	✓	✓	√	_
graf skierowany	1	✓	_	✓
etykiety na krawędziach	✓	✓	✓	_
etykiety w wierzchołkach	✓	✓	✓	_
kolorowanie wierzchołków	✓	_	_	_
wyginanie krawędzi	✓	_	_	_
zaznaczanie kilku wierzchołków	✓	_	✓	_
przesuwanie widoku	_	✓	_	_
przybliżanie/oddalanie	_	✓	_	_
zapisywanie/wczytywanie	_	\checkmark^1	\checkmark^2	\checkmark^3

 $^{^1}$ jako macierz sąsiedztwa lub jako obrazek 2 własny format <code>JSON</code> lub jako <code>LATEX</code>

³ własny format (listy sąsiedztwa)

yEd Graph Editor

https://www.yworks.com

Rozdział 4

Projekt i analiza

4.1 Biblioteki do wizualizacji grafów w Java-Script

	Cytoscape.js	Sigma	VivaGraphJS
Licencja	MIT	MIT	BSD 3
Rozmiar	294	112,9	60,4
Renderowanie			
SVG	•	tak	•
HTML5 Canvas	•	tak	•
WebGL Canvas	•	tak	•
Obsługiwane formaty	•	•	•
Rozszerzalność	•	•	•
•	•	•	•

- 4.1.1 Cytoscape.js
- 4.1.2 sigma.js
- 4.1.3 VivaGraph.js
- 4.1.4 Linkurious.js
- 4.2 Interfejs użytkownika
- 4.3 Część serwerowa

Rozdział 5 Implementacja

Rozdział 6

Testy

Rozdział 7 Wnioski

Dodatek A Instrukcje dla użytkowników

Dodatek B Instrukcje dla programistów

Dodatek C Użyte narzędzia

Bibliografia

- [HW04] Brian Hopkins i Robin Wilson. "The Truth about Königsberg". W: College Mathematics Journal 35 (maj 2004), s. 198-207. URL: https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/hopkins.pdf (term. wiz. 29.04.2017).
- [MB04] S. Mohammed i M. Bernard. *Graph File Formats*. Spraw. tech. Mona, Kingston, Jamajka: Department of Mathematics and Computer Science, The University of the West Indies, 2004. URL: http://www2.sta.uwi.edu/~mbernard/research_files/fileformats.pdf (term. wiz. 29.04.2017).
- [Gep] Gephi. Supported Graph Formats. The Gephi Consortium. URL: https://gephi.org/users/supported-graph-formats/ (term. wiz. 29.04.2017).