Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский университет ИТМО

Расчетно-графическая работа №2

по дисциплине: «Дифференциальные уравнения»

Выполнил: студент группы R3243 Сайфуллин Д.Р.

Проверил: Танченко Ю.В.

Условие задачи

Методом Рунге-Кутта проинтегрировать дифференциальное уравнение:

$$y'' = 2y' - y + x^3$$
, $y(0) = 1$, $y'(0) = -1$

на отрезке [0,0.3] с шагом h=0.1. Найти аналитическое решение y=y(x) заданного уравнения и сравнить значения точного и приближённого решений в точках $x_1=0.1$, $x_2=0.2, x_3=0.3$. Все вычисления вести с шестью десятичными знаками.

Численное решение методом Рунге-Кутты

Методом Рунге-Кутта проинтегрируем дифференциальное уравнение:

$$y'' = 2y' - y + x^3$$
, $y(0) = 1$, $y'(0) = -1$.

Преобразуем его в систему первого порядка:

$$y' = z,$$

 $z' = 2z - y + x^{3},$
 $y(0) = 1, \quad z(0) = -1.$

Для решения системы применим метод Рунге-Кутта 4-го порядка с шагом h=0.1. Формулы метода:

$$y_{i+1} = y_i + \Delta y_i,$$

$$z_{i+1} = z_i + \Delta z_i,$$

$$\Delta y_i = \frac{1}{6} \left(K_1^{(i)} + 2K_2^{(i)} + 2K_3^{(i)} + K_4^{(i)} \right),$$

$$\Delta z_i = \frac{1}{6} \left(L_1^{(i)} + 2L_2^{(i)} + 2L_3^{(i)} + L_4^{(i)} \right),$$

где:

$$\begin{split} K_1^{(i)} &= h f_1(x_i, y_i, z_i), \\ K_2^{(i)} &= h f_1\left(x_i + \frac{h}{2}, y_i + \frac{K_1^{(i)}}{2}, z_i + \frac{L_1^{(i)}}{2}\right), \quad L_2^{(i)} &= h f_2\left(x_i + \frac{h}{2}, y_i + \frac{K_1^{(i)}}{2}, z_i + \frac{L_1^{(i)}}{2}\right), \\ K_3^{(i)} &= h f_1\left(x_i + \frac{h}{2}, y_i + \frac{K_2^{(i)}}{2}, z_i + \frac{L_2^{(i)}}{2}\right), \quad L_3^{(i)} &= h f_2\left(x_i + \frac{h}{2}, y_i + \frac{K_2^{(i)}}{2}, z_i + \frac{L_2^{(i)}}{2}\right), \\ K_4^{(i)} &= h f_1(x_i + h, y_i + K_3^{(i)}, z_i + L_3^{(i)}), \quad L_4^{(i)} &= h f_2(x_i + h, y_i + K_3^{(i)}, z_i + L_3^{(i)}). \end{split}$$

Функции f_1 и f_2 заданы как:

$$f_1(x, y, z) = z,$$

 $f_2(x, y, z) = 2z - y + x^3.$

Начальные условия: y(0) = 1, z(0) = -1. Вычисляем:

$$\begin{split} K_1^{(0)} &= hf_1(0,1,-1) = 0.1 \cdot (-1) = -0.1 \\ L_1^{(0)} &= hf_2(0,1,-1) = 0.1 \cdot (2 \cdot (-1) - 1 + 0^3) = -0.3 \\ K_2^{(0)} &= hf_1\left(0.05,1 + \frac{-0.1}{2},-1 + \frac{-0.3}{2}\right) = 0.1 \cdot (-1.15) = -0.115 \\ L_2^{(0)} &= hf_2\left(0.05,1 + \frac{-0.1}{2},-1 + \frac{-0.3}{2}\right) = 0.1 \cdot (2 \cdot (-1.15) - 0.95 + 0.05^3) = -0.325 \\ K_3^{(0)} &= hf_1\left(0.05,0.8925,-1.312494\right) = 0.1 \cdot (-1.31249) = -0.131249 \\ L_3^{(0)} &= hf_2\left(0.05,0.8925,-1.312494\right) = 0.1 \cdot (2 \cdot (-1.312494) - 0.8925 + 0.05^3) = -0.351736 \\ K_4^{(0)} &= hf_1\left(0.1,0.826875,-1.488362\right) = 0.1 \cdot (-1.48836) = -0.148836 \\ L_4^{(0)} &= hf_2(0.1,0.826875,-1.488362) = 0.1 \cdot (2 \cdot (-1.488362) - 0.826875 + 0.1^3) = -0.380260 \end{split}$$

Находим изменения:

$$\Delta y_0 = \frac{-0.1 + 2(-0.115) + 2(-0.131249) + (-0.148836)}{6} = -0.123556$$

$$\Delta z_0 = \frac{-0.3 + 2(-0.324988) + 2(-0.351736) + (-0.380260)}{6} = -0.338951$$

Новые значения:

$$y(0.1) = y(0) + \Delta y_0 = 1 - 0.123556 = 0.876444$$

 $z(0.1) = z(0) + \Delta z_0 = -1 - 0.338951 = -1.338951$

Аналогично выполняем вычисления для остальных значений. Итоговой результат представлен в таблице:

i	x_i	y_i	z_i	K_i	L_i	Δy_i	Δz_i
0	0	1.000000	-1.000000	-0.100000	-0.300000	-0.100000	-0.300000
	0.05	0.950000	-1.150000	-0.115000	-0.324988	-0.230000	-0.649975
	0.05	0.892500	-1.312494	-0.131249	-0.351736	-0.262499	-0.703473
	0.1	0.826875	-1.488362	-0.148836	-0.380260	-0.148836	-0.380260
						-0.123556	-0.338951
1	0.1	0.876444	-1.338951	-0.133895	-0.355335	-0.133895	-0.355335
	0.15	0.809497	-1.516619	-0.151662	-0.383936	-0.303324	-0.767872
	0.15	0.733666	-1.708587	-0.170859	-0.414746	-0.341717	-0.829493
	0.2	0.648236	-1.915960	-0.191596	-0.447216	-0.191596	-0.447216
						-0.161755	-0.399986
2	0.2	0.714689	-1.738937	-0.173894	-0.418456	-0.173894	-0.418456
	0.25	0.627742	-1.948165	-0.194817	-0.450845	-0.389633	-0.901689
	0.25	0.530334	-2.173588	-0.217359	-0.486188	-0.434718	-0.972377
	0.3	0.421654	-2.416682	-0.241668	-0.522802	-0.241668	-0.522802
						-0.206652	-0.469221
3	0.3	0.508037	-2.208158				

В результате этих вычислений получаем следующую таблицу приближенных значений решения системы:

i	x_i	y_i	x_i
1	0.1	0.876444	-1.338951
2	0.2	0.714689	-1.738937
3	0.3	0.508037	-2.208158

Аналитическое решение

Для нахождения аналитического решения дифференциального уравнения второго порядка:

$$y'' - 2y' + y = x^3 + 6x^2 + 18x + 24,$$

мы решим его как линейное дифференциальное уравнение с постоянными коэффициентами. Решение состоит из общего решения однородного уравнения и частного решения неоднородного уравнения. Рассмотрим однородное уравнение:

$$y'' - 2y' + y = 0.$$

Характеристическое уравнение имеет вид:

$$\lambda^2 - 2\lambda + 1 = 0.$$

Корни характеристического уравнения:

$$\lambda = 1, \quad \lambda = 1.$$

Следовательно, общее решение однородного уравнения имеет вид:

$$y_h(x) = (C_1 + C_2 x)e^x$$
.

Ищем частное решение уравнения:

$$y'' - 2y' + y = x^3 + 6x^2 + 18x + 24.$$

Предположим, что частное решение имеет вид:

$$y_p(x) = Ax^3 + Bx^2 + Cx + D.$$

Подставим $y_p(x)$ в уравнение и вычислим:

$$y'_p(x) = 3Ax^2 + 2Bx + C,$$

 $y''_p(x) = 6Ax + 2B.$

Подставляя в исходное уравнение, получаем:

$$(6Ax + 2B) - 2(3Ax^{2} + 2Bx + C) + (Ax^{3} + Bx^{2} + Cx + D) = x^{3} + 6x^{2} + 18x + 24.$$

Сравнивая коэффициенты при одинаковых степенях x, получаем систему уравнений:

$$A = 1,$$

 $B = 6,$
 $C = 18,$
 $D = 24.$

Следовательно, частное решение имеет вид:

$$y_p(x) = x^3 + 6x^2 + 18x + 24.$$

Общее решение уравнения складывается из общего решения однородного уравнения и частного решения:

$$y(x) = y_h(x) + y_p(x) = (C_1 + C_2 x)e^x + x^3 + 6x^2 + 18x + 24.$$

Используем начальные условия y(0) = 1 и y'(0) = -1. Найдём y'(x):

$$y'(x) = (C_1 + C_2 x)e^x + C_2 e^x + 3x^2 + 12x + 18.$$

Подставляем начальные условия:

$$y(0) = C_1 + 0 + 24 = 1, \Rightarrow C_1 = -23,$$

 $y'(0) = C_1 + C_2 + 0 + 18 = -1, \Rightarrow -23 + C_2 + 18 = -1, \Rightarrow C_2 = 4.$

Подставляем найденные константы в общее решение:

$$y(x) = (4x - 23)e^x + x^3 + 6x^2 + 18x + 24.$$

Сравнение результатов численного и аналитического решений

Проведём сравнение значений y(x), полученных численным методом Рунге-Кутты, с точным решением, а также определим абсолютную погрешность.

x_i	Метод Рунге-Кутта y_i	Точное решение $y(x_i)$	Абсолютная погрешность
$x_0 = 0$	1.000000	1.000000	
$x_1 = 0.1$	0.876444	0.876137	0.000307
$x_2 = 0.2$	0.714689	0.714859	0.000270
$x_3 = 0.3$	0.508037	0.508478	0.000441

Как видно из таблицы, метод Рунге-Кутты обеспечивает высокую точность, а абсолютные погрешности остаются малыми.

Выводы

В данной работе были решены задачи численного и аналитического решения дифференциального уравнения второго порядка.

Метод Рунге-Кутты четвёртого порядка показал высокую точность при интегрировании уравнения, что подтверждается минимальными значениями абсолютной погрешности в сравнении с точным решением.

Аналитическое решение уравнения позволило получить точное выражение функции y(x), что дало возможность проверить корректность численных расчётов. Совпадение значений подтверждает корректность реализации метода Рунге-Кутты и правильность проведённых вычислений.

Таким образом, цель работы была достигнута: продемонстрировано применение численных методов к решению дифференциальных уравнений и их сравнение с аналитическим решением.