Vector Out-of-Order Indexes

- The index vector can even be out-of-order. Here is a vector slice with the order of first and second members reversed.
- For example,

```
> s = c("aa", "bb", "cc", "dd", "ee")
> s[c(2, 1, 3)]
[1] "bb" "aa" "cc"
```

Vector Range Index

- To produce a vector slice between two indexes, we can use the colon operator ":".
- · For example,

```
> s = c("aa", "bb", "cc", "dd", "ee")
> s[2:4]
[1] "bb" "cc" "dd"
```

Named Vector Members

- We can assign names to vector members.
- For example, the following variable v is a character string vector with two members.

```
> v = c("Mary", "Sue")
> v
[1] "Mary" "Sue"
```

We now name the first member as First, and the second as Last.

```
> names(v) = c("First", "Last")
> v
First Last
"Mary" "Sue"
```

Matrices

- A matrix is a collection of data elements arranged in a rowcolumn layout.
- A matrix can be regarded as a generalization of a vector.
- As with vectors, all the elements of a matrix must be of the same data type.
- A matrix can be generated in several ways.
 - ✓ Use the function dim
 - ✓ Use the function matrix

Matrices

Use the function dim

```
> x <- 1:8 [,1] [,2] [,3] [,4]
> dim(x) <- c(2,4) [1,] 1 3 5 7
> X [2,] 2 4 6 8
```

Use the function matrix

```
> A = matrix(c(2, 4, 3, 1, 5, 7), nrow=2, ncol=3, byrow = T)
> A
> A <- matrix(c(2, 4, 3, 1, 5, 7),2,3,byrow=T)
> A

A [,1] [,2] [,3]

[1,] 2 4 3

[2,] 1 5 7
```

Accessing Matrices

 An element at the mth row, nth column of A can be accessed by the expression A[m, n].

• The entire mth row A can be extracted as A[m,].

We can also extract more than one rows/columns at a time.

```
> A[,c(1,3)]
[,1] [,2]
[1,] 2 3
[2,] 1 7
```

Calculations on matrices

 We construct the transpose of a matrix by interchanging its columns and rows with the function t.

```
>t(A) # transpose of A

[,1] [,2]

[1,] 2 1

[2,] 4 5

[3,] 3 7
```

 We can deconstruct a matrix by applying the c function, which combines all column vectors into one.

```
>c(A)
[1] 2 4 3 1 5 7
```

Arrays

- In R, Arrays are generalizations of vectors and matrices.
- A vector is a one-dimensional array and a matrix is a two dimensional array.
- As with vectors and matrices, all the elements of an array must be of the same data type.
- An array of one dimension of two element may be constructed as follows.

```
> x = array(c(T,F),dim=c(2))
> print(x)
[1] TRUE FALSE
```

Arrays

A three dimensional array - 3 by 3 by 3 - may	.,1	
be created as follows.		[,2] [,3]
	[1,] 1	
	[2,] 2	
> z = array(1:27,dim=c(3,3,3))	[3,] 3	6 9
> dim(z)	2	
[1] 3 3 3	[,1]	[,2] [,3]
> print(z)	[1,] 10	13 16
> prim(z)	[2,] 11	14 17
	[3,] 12	15 18
	,,3	
	[,1]	[,2] [,3
	[1,] 19	22 25
	[2,] 20	23 26
	[3,] 21	24 27

Accessing Arrays

- R arrays are accessed in a manner similar to arrays in other languages: by integer index, starting at 1 (not 0).
- For example, the third dimension is a 3 by 3 array.

```
> z[,,3]
[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27
```

 Specifying two of the three dimensions returns an array on one dimension.

```
>z[,3,3]
[1] 25 26 27
```

Accessing Arrays

Specifying three of three dimension returns an element of the 3 by 3 by 3 array.

More complex partitioning of array may be had.

> z[,c(2,3),c(2,3)]

```
    (,1]
    (,1]
    (,2)

    [1,]
    [1,]
    [2,]

    [1,]
    13
    16
    [1,]
    22
    25

    [2,]
    14
    17
    [2,]
    23
    26

    [3,]
    15
    18
    [3,]
    24
    27
```

Lists

- A list is a collection of R objects. list() creates a list, unlist()
 - transform a list into a vector.
- The objects in a list do not have to be of the same type or length.

> 7 <matrix(c(1:4),nrow=2,ncol=2)

>x <-c(1:4)

>y <- FALSE

> myList <- list(x,y,z)> myList

[[1]]

[1] 1 2 3 4

[[2]] [1]

FALSE [[3]]

[,1] [,2]

[1,]1212134

Data Frame

- - It is a list of vectors of equal length.
- Most statistical modeling routines in R require a data frame as input.
 - For example, > weight = c(150, 135, 210, 140)

150

135

210

140

> study

- > height = c(65, 61, 70, 65)

A data frame is used for storing data like spreadsheet(table).

- > gender = c("Fe","Fe","Ma","Fe")

> study = data.frame(weight,height,gender) # make the data frame

- weight height gender
 - 65 Fe Fe
 - 61
 - 70
 - Ma 65 Fe

Creating a data frame

- The dataframe may be created directly using data.frame().
- For example, the dataframe is created naming each vector composing the dataframe as part of the argument list.

```
> patientID <- c(1, 2, 3, 4)
```

- > age <- c(25, 34, 28, 52)
- > diabetes <- c("Type1", "Type2", "Type1", "Type1")
- > status <- c("Poor", "Improved", "Excellent", "Poor")
- > patientdata <- data.frame(patientID, age, diabetes, status)
- > patientdata

	patientID	age	diabetes	status
1	1	25	Type1	Poor
2	2	34	Type2	Improved
3	3	28	Type1	Excellent
4	4	52	Type1	Poor

Accessing data frame elements

 Use the subscript notation/specify column names to identify the elements in the patient data frame [1] 25 34 28 52

>patientdata[1:2]		>patientdata[c("diabetes", "status")			
I	patient	ID age		diabetes	status
1	1	25	1	Type1	Poor
2	2	34	2	Type2	Improved
3	3	28	3	Type1	Excellent
4	4	52	4	Type1	Poor

>table(patientdata\$diabetes, patientdata\$status)

Excellent Improved Poor

	Annual State of Contract of State of St	In the second	
Type1	1	0	
Type2	0	1	

Importing and Exporting Data

- There are many ways to get data in and out.
- •Most programs (e.g. Excel), as well as humans, know how to deal with rectangular tables in the form of tab-delimited text files.
- •Normally, you would start your R session by reading in some data to be analysed. This can be done with the read.table function. Download the sample data to your local directory...

>x <- read.table("sample.txt", header = TRUE)

Also: read.delim, read.csv, scan

>write.csv(x, file = "samplenew.csv")

Also: write.matrix, write.table, write

Accessing data frame elements

 Use the subscript notation/specify column names to identify the elements in the patient data frame [1] 25 34 28 52

>pa	atientd	ata[1:2]	>pat	tientdata[c("dia	betes", "status")]
1	patient	ID age		diabetes	status
1	1	25	1	Type1	Poor
2	2	34	2	Type2	Improved
3	3	28	3	Type1	Excellent
4	4	52	4	Type1	Poor

>table(patientdata\$diabetes, patientdata\$status)
Excellent Improved Poor

Type1	1	0
Type2	0	1