Probability Basics and Linear Classification

Machine Learning – Basic Methods

Prof. Gerhard Neumann
Autonomous Learning Robots
KIT, Institut für Anthrophomatik und Robotik

Learning Outcomes

- Understand probabilistic models and maximum likelihood
- Understand the classification problem
- What is a linear classifier?
- What is the loss function of linear classification?
- What is gradient descent?

Today's Agenda!

Basics: Probability Theory

- Probabilistic Models
- Expectations and Monte Carlo Methods
- Maximum Likelihood

Basics: Gradient Descent

Classification:

- Generative vs. discriminative classification
- Linear Classification
- Logistic Regression

Many slides are based on slides from Shenlon Wang, Yingyu Jiang, Michail Michailidis and Patrick Maiden

Basics: Probability Theory

- "Probability theory is nothing but common sense reduced to calculation", Pierre Laplace, 1812
- We will keep our discussion relatively informal and pick the things we need from probability theory

Notation

- A random variable X represents uncertain states or outcomes of the world
- We will write p(x) to mean the probability that X takes the value x
- The sample space is the space of all possible outcomes
 - Might be discrete, continuous or mixed
- p(x) is the **probability mass** (density) function
 - Assigns a number to each point of the sample space
 - Non-negative, sums (integrates) to 1
 - Intuitively: How often does x occur? How much do we believe in x?

Joint distribution

Probability that X=x and Y=y

Conditional distribution

Probability that X=x given Y=y

Conditional Distributions

W	Р
sun	0.4
rain	0.6

Joint Distribution

P(T, W)

Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

Rules of Probability

Sum rule (marginalization / integrating out):

$$p(x) = \sum_{y} p(x, y)$$
$$p(x_1) = \sum_{x_2} \sum_{x_3} \cdots \sum_{x_D} p(x_1, \dots, x_D)$$

Note: For continuous distributions, the sums will be replaced by integrals

Rules of Probability

Chain / product rule

$$p(x,y) = p(x|y)p(y)$$

$$p(x_1, \dots, x_D) = p(x_1)p(x_2|x_1)\dots p(x_D|x_1, \dots, x_{D-1})$$

P(W)W P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3

P(D|W)

P(D, W)

D	W	Р	
wet	sun	0.08	
dry	sun	0.72	
wet	rain	0.14	
dry	rain	0.06	

Bayes Rule

Bayes rule is one of the most important equations in probability theory and in machine learning

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{x'} p(y|x')p(x')}$$

- Way of "reversing" the conditional probabilities
- Often one conditional is tricky but the other one is simple
- One of the most important equations for ML!

Expectations

The expectation of a function f(x) with respect to a distribution p(x) is given by

$$\mathbb{E}_p[f(x)] = \int p(x)f(x)dx$$

A conditional expectation is given by

$$\mathbb{E}_p[f(x)|Y=y] = \int p(x|y)f(x)dx$$

Chain rule for expectations:

ain rule for expectations:
$$\mathbb{E}_p[f(x)] = \int p(y) \mathbb{E}[f(x)|Y=y] dy$$

Monte-carlo estimation

Expectations can always be approximated by samples:

$$\mathbb{E}_p[f(x)] = \int p(x)f(x)dx \approx \frac{1}{N} \sum_{x_i \sim p(x)} f(x_i)$$

Necessary if no analytical solution exists to compute the integral (typical case)

Moments

Moments are expectations:

- 1st moment (mean): $oldsymbol{\mu} = \mathbb{E}_p[oldsymbol{x}]$
- 2nd moment: $oldsymbol{M}_2 = \mathbb{E}_p[oldsymbol{x}oldsymbol{x}^T]$

Central moments are always computed relatively to the mean:

• 2nd central moment (covariance):

$$oldsymbol{\Sigma} = \mathbb{E}_p[(oldsymbol{x} - oldsymbol{\mu})(oldsymbol{x} - oldsymbol{\mu})^T]$$

Captures variability (diagional entries) and correlation (off-diagional)

Bernoulli Distribution:

- Binary random variable $X \in \{0,1\}$
- One parameter $p(X=1) = \mu$
- Probability distribution $p(x) = \mu^{(1-x)}$

Depending on x, selects either mu or 1-mu as probability

Think of it as tossing a coin

Multinomial / Categorical Distribution:

- K different events: $C \in \{1, \dots, K\}$
- Directly specifies probabilities: $p(C=k)=\mu_k, \quad \mu_k\geq 0, \quad \sum_{k=1}^K \mu_k=1$
- Or written with 1-hot-encoding (without an "if" clause)

$$p(c) = \prod_{k=1}^{K} \underbrace{\mu_{k}^{h_{c,k}}}_{\text{Depending on the class label of x, selects the correct}}_{\mu_{k}} \underbrace{L 1,0,0,...0}_{\mu_{c}} \underbrace{L 2,0,0,...0}_{\mu_{k}}$$

- where h_x is the K-dimensional 1-hot encoding vector, which is one for the dimension c = k and 0 elsewhere. $h_{x,k}$ is the k-th element of this vector.
- Think of it as tossing a die

Gaussian Distribution

- Continuous RV: $X \in \mathbb{R}$
- Distribution is completely specified by mean μ and variance σ^2

$$p(x) = \mathcal{N}(x|\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Multivariate Gaussian Distribution

• Continuous RV: $X \in \mathbb{R}^d$

 Distribution is completely specified by mean vector μ and covariance matrix Σ

$$p(x) = \mathcal{N}(x|\mu, \Sigma) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left\{\frac{((x-\mu)^T \Sigma^{-1}(x-\mu))}{2}\right\}$$

Important Properties of Gaussians:

- All marginals of a Gaussian are again Gaussian
- Every conditional is Gaussian
- The product of 2 Gaussians is again Gaussian
- Even the sum of 2 Gaussian RVs is again Gaussian

Maximum Likelihood Estimation (MLE)

- Given: the training data $D=\left\{(x_i,y_i)\right\}_{i=1...N}$ identically independently distributred (iid) from the data distribution p_{data}
- Let $p_{\theta}(x,y)$ be a family of distributions parametrized by $\theta \in \Theta$
- We want to find θ such that p fits the data well

Fitness of θ for one single data point:

$$lik(\boldsymbol{\theta}; x_i, y_i) = p_{\boldsymbol{\theta}}(x_i, y_i)$$

Fitness of θ for whole dataset (iid. assumption):

$$\operatorname{lik}(\boldsymbol{\theta}; D) = \prod_{i} p_{\boldsymbol{\theta}}(x_i, y_i)$$

Maximum Likelihood Estimation (MLE)

Log-likelihood is easier to optimize:

$$loglik(\boldsymbol{\theta}; D) = \sum_{i} log p_{\boldsymbol{\theta}}(x_i, y_i)$$

- Log is monotonous -> same optimum
- Sums are "nicer" to optimize than products
- Log cancels exponential form (most distributions are in the exponential family)

The MLE solution is given by:

$$\boldsymbol{\theta}_{\mathrm{ML}} = \operatorname{argmax}_{\boldsymbol{\theta}} \operatorname{loglik}(\boldsymbol{\theta}; D)$$

Example: Gaussian

Gaussian density function:

$$loglik(\boldsymbol{\theta}; D) = -N log \sqrt{2\pi\sigma^2} - \sum_{i} \frac{(x_i - \mu)^2}{2\sigma^2}$$

MLE solution for μ :

MLE: conditional log-likelihood

- Given the training data $D = ig\{(x_i, y_i)ig\}_{i=1\dots N}$ iid. from the data distribution $oldsymbol{
 ho}_{ ext{data}}$
- Let $p_{m{ heta}}(y|x)$ be a family of distributions parametrized by $m{ heta} \in m{\Theta}$
- We only care about distribution of y, not of x
- Typical case in supervised learning

Log-likelihood:

$$loglik(\boldsymbol{\theta}; D) = \sum_{i} log p_{\boldsymbol{\theta}}(y_i|x_i)$$

Example: Linear Gaussian model

We consider the following conditional Gaussian model:

$$p_{\boldsymbol{\theta}}(y|\boldsymbol{x}) = \mathcal{N}(y|\boldsymbol{w}^T\tilde{\boldsymbol{x}}, \sigma^2), \quad \boldsymbol{\theta} = \{\boldsymbol{w}, \sigma^2\}$$

Log-likelihood:

$$loglik(\boldsymbol{\theta}; D) = -\log \sqrt{2\pi\sigma^2} - \sum_{i} \frac{(y_i - \boldsymbol{w}^T \tilde{\boldsymbol{x}}_i)^2}{2\sigma^2}$$

For obtaining w, only the squared errors matter, i.e.

$$loglik(\boldsymbol{\theta}; D) = const_1 - const_2 \sum (y_i - \boldsymbol{w}^T \tilde{\boldsymbol{x}}_i)^2$$

- Hence, the MLE solution is equivalent to the least squares solution!
- But: we can also obtain the variance!

Takeaway messages

What have we learned so far?

- Basic rules of probabilities ... nothing new so far
- Expectations can be evaluated by samples
- How to compute the ML estimator
- Maximum likelihood is equivalent to minimizing the squared loss for:
 - Conditional Gaussian models
 - With constant noise

Today's Agenda!

Basics: Probability Theory

- Probabilistic Models
- Expectations and Monte Carlo Methods
- Maximum Likelihood

Linear Classification:

- Linear Classifiers
- Logistic Regression

Basics: Gradient Descent

Supervised Learning

Training data includes targets

– Regression:

- Learn continuous function
- Example: line

Classification:

- Learn class labels
- Example: Digit recognition

Example 1: Image classification

Indoor

outdoor

Example 2: Spam Classification

	#"\$"	#"Mr."	#"sale"	 Spam?
Email 1	2	1	1	Yes
Email 2	0	1	0	No
Email 3	1	1	1	Yes
Email n	0	0	0	No
New email	0	0	1	??

Definition

Given the dataset $\mathcal{D} = \left\{ (\boldsymbol{x}_i, c_i) \right\}_{i=1...N}$, where $\boldsymbol{x}_i \in \mathbb{R}^d$ are the input samples and $c \in \{1 \dots K\}$ are the class labels, we want to learn a classifier $f(\boldsymbol{x})$ that predicts the class label for unseen samples.

- K = 2: Binary classification
- K > 2: Multi-class classification

In difference to regression, the output is now discrete!

Generative vs. discriminative modelling

Generative Models:

- Assume some functional form for class prior p(c) and class densities $p(\boldsymbol{x}|c)$
- Learn prior and densities from data
 - This is a "generative" model, as we can create new datapoints ${m x}$ using $p({m x}|c)$
- Predict class label by computing posterior $p(c|\mathbf{x}) = \frac{p(\mathbf{x}|c)p(c)}{p(\mathbf{x})}$

Learn full joint distribution of the data (typically very hard)

• Our modelling assumptions, e.g. that $p(\boldsymbol{x}|c)$ is Gaussian, might introduce big errors

Generative vs. discriminative modelling

Discriminative Models:

- Directly assume some functional form for p(c|x) (or any other predictor f(x) that returns the class label).
- This is a 'discriminative' model of the data!
- Estimate parameters of p(c|x) directly from training data

Modelling needs to consider only points on the border

- Typically much simpler than generative modelling
- We therefore concentrate on discriminative models

Discriminative

(Discriminative) Binary Classification

Given the training data (x_i, y_i) , i = 1...N, with $x_i \in \mathbb{R}^d$ and $y_i \in \{0, 1\}$, learn a classifier f(x) such that:

$$f(\boldsymbol{x}_i) = \begin{cases} > 0, & \text{if } y_i = 1\\ < 0, & \text{if } y_i = 0 \end{cases}$$

Linear Classifiers

A linear classifier is given in the form:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

In 2D, the classifier is a line

- w is the normal to the line
- *b* is the bias

Linear Discriminators

A linear discriminator is given in the form:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

In 2D, the discriminator is a line

- w is the normal to the line
- b is the bias

In 3D, it's a plane

In N-D, it's a hyper-plane

Linear Separability

Linear Separable

Linear Classification: 0-1 loss (1st attempt)

Prediction:
$$y = \text{step}(f(\boldsymbol{x})) = \text{step}(\boldsymbol{w}^T \boldsymbol{x} + b)$$

- Predict class 1 for f(x) > 0
- else predict class 0

Optimization: Find w such that

$$L_0(\boldsymbol{w}) = \sum_i \mathbb{I}\left(\text{step}\left(\boldsymbol{w}^T\boldsymbol{x} + b\right) \neq y_i\right)$$

- where I returns 1 if the argument is true
- ... counts the number of misclassifications
- very difficult to optimize!!! (NP-hard)

Linear Classification: regression loss (2nd attempt)

We can use same loss as in regression

$$L_{\text{reg}}(\boldsymbol{w}) = \sum_{i} (f(\boldsymbol{x}_i) - y_i)^2$$

- Minimize the squared error: Easy!
- However: we ignored the fact that y_i is restricted to $\{0,1\}$

Not robust to outliers

Compare the two

- The output of a linear function is unbounded!
- However, useful output values are only 0 or 1

Logistic sigmoid function

Sigmoid function:

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

- Output is bounded between 0 and 1
- Smooth

For linear classification:

- Squash the output of the linear function
- Minimize the loss

$$L(\boldsymbol{w}) = \sum_{i} (\sigma(f(\boldsymbol{x}_i)) - y_i)^2 = \sum_{i} (\sigma(\boldsymbol{w}^T \boldsymbol{x} + b) - y_i)^2$$

Better: Probabilistic View

Define conditional probability distribution of the class label

$$p(c = 1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b), \quad p(c = 0|\mathbf{x}) = 1 - \sigma(\mathbf{w}^T \mathbf{x} + b)$$

- This is now a conditional Bernoulli distribution. I.e. the outcome of the event c depends on x
- We can use the same "exponential trick" to select the correct probability depending on the value of c, i.e.

$$p(c|\mathbf{x}) = p(c=1|\mathbf{x})^c p(c=0|\mathbf{x})^{1-c} = \sigma(\mathbf{w}^T \mathbf{x} + b)^c (1 - \sigma(\mathbf{w}^T \mathbf{x} + b))^{1-c}$$

Log-Likelihood

We can now directly optimize the conditional Bernoulli log-likelihood

$$\log \operatorname{lik}(\tilde{\boldsymbol{w}}, D) = \sum_{i} \log p(c_{i}|\boldsymbol{x}_{i}) = \sum_{i} \log \left(p(c = 1|\boldsymbol{x}_{i})^{c_{i}} p(c = 0|\boldsymbol{x}_{i})^{1-c_{i}}\right)$$

$$= \sum_{i} c_{i} \log p(c = 1|\boldsymbol{x}_{i}) + (1-c_{i}) \log p(c = 0|\boldsymbol{x}_{i})$$

$$= \sum_{i} c_{i} \log \sigma(\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{i}) + (1-c_{i}) \log \left(1 - \sigma(\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{i})\right)$$

Negative likelihood is also often referred to as cross-entropy loss

Logistic Regression

Optimizing the log-likelihood of a sigmoid is called logistic regression

$$\operatorname{argmax}_{\tilde{\boldsymbol{w}}} \operatorname{loglik}(\tilde{\boldsymbol{w}}, D) = \operatorname{argmax}_{\tilde{\boldsymbol{w}}} \sum_{i} c_{i} \log \sigma(\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{i}) + (1 - c_{i}) \log \left(1 - \sigma(\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{i})\right)$$

- ... even though we solve a classification problem
- One can show that the function is still convex (only one maximum exists)
- However, there is no closed form solution as in linear regression

How can we find the maximum? -> Gradient Descent!

Generalized logistic models

We can fit a linear discriminator in a non-linear feature space

Similar to generalized linear regression models

$$\operatorname{argmax}_{\boldsymbol{w}} \operatorname{loglik}(\boldsymbol{w}, D) = \operatorname{argmax}_{\boldsymbol{w}} \sum_{i} c_{i} \log \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i})) + (1 - c_{i}) \log \left(1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}))\right)$$

Problems that are not linear separable in input space can be linear separable in feature space

Regularization

Similar as in linear regression, we can again add a regularization penalty

$$L(\tilde{\boldsymbol{w}}, D) = \text{loglik}(\tilde{\boldsymbol{w}}, D) - \lambda \text{ penalty}(\tilde{\boldsymbol{w}})$$

Most common: L2 regularization loss

penalty(
$$\tilde{\boldsymbol{w}}$$
) = $||\tilde{\boldsymbol{w}}||^2$

L is still convex for most penalty terms

Today's Agenda!

Basics: Probability Theory

- Probabilistic Models
- Expectations and Monte Carlo Methods
- Maximum Likelihood

Linear Classification:

- Linear Classifiers
- Logistic Regression

Basics: Gradient Descent

Optimization

For most ML algorithms, we want to find the best model to fit the data.

Two examples we already know:

Least squares solution:

$$\operatorname{argmin}_{\boldsymbol{w}} \operatorname{SSE}(\boldsymbol{w}, D)$$

Maximum likelihood solution:

$$\operatorname{argmax}_{\boldsymbol{w}} \operatorname{loglik}(\boldsymbol{w}, D)$$

ptimization

For most ML algorithms, we want to find the best model to fit the data.

Two examples we already know:

Least squares solution:

$$\operatorname{argmin}_{\boldsymbol{w}} \operatorname{SSE}(\boldsymbol{w}, D) + \lambda \operatorname{penalty}(\boldsymbol{w})$$

Maximum likelihood solution:

$$\operatorname{argmax}_{\boldsymbol{w}} \operatorname{loglik}(\boldsymbol{w}, D) - \lambda \operatorname{penalty}(\boldsymbol{w})$$
 argmax $\operatorname{argmin}_{\boldsymbol{x}} f(\boldsymbol{x}) = \operatorname{argmax}_{\boldsymbol{x}} - f(\boldsymbol{x})$ Hence, the role of the penalty is

... plus regularization penalty

Note that:

$$\underset{\boldsymbol{x}}{\operatorname{arg\,min}} f(\boldsymbol{x}) = \underset{\boldsymbol{x}}{\operatorname{arg\,max}} - f(\boldsymbol{x})$$

Hence, the role of the penalty is the same

Optimization

General form of optimization for ML: loss + penalty

$$\underset{\text{parameters }\boldsymbol{\theta}}{\operatorname{arg \, min}} \sum_{i=1}^{N} l(\boldsymbol{x}_i, \boldsymbol{\theta}) + \lambda \ \text{penalty}(\boldsymbol{\theta})$$

Summed sample-loss plus regularization penalty

How to do that? **Optimization**

When can we do that?

- The global minimum/maximum can only be found for convex functions!
- For non-convex functions we are limited to finding a local minimum / maximum

Convex functions

A convex function $f: \mathbb{R}^d \to \mathbb{R}$ satisfies for any $\boldsymbol{x}_0, \boldsymbol{x}_1 \in \mathbb{R}^d$

$$f((1-\alpha)\boldsymbol{x}_0 + \alpha\boldsymbol{x}_1) \le (1-\alpha)f(\boldsymbol{x}_0) + \alpha f(\boldsymbol{x}_1), \quad \alpha \in [0,1]$$

- Line joining $(x_0, f(x_0))$ and $(x_1, f(x_1))$ is always above the function value
- · There is only one minimum!

Example: Linear Regression Objective

$$L_{\text{ridge}} = (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w}) + \lambda \boldsymbol{w}^T \boldsymbol{w}$$

- Convex
- Quadratic function in w
- Minimum can be obtained analytically
- One of the very rare cases!

In most other cases, we have to resort to incremental methods: Gradient descent

Gradient Descent

- Is good for finding global minima if function is convex
- Is good for finding local minima if function is non-convex
- Has many applications in ML:
 - Logistic Regression
 - Linear Regression (for large input dimensions)
 - Neural Networks
 - Mixture Models
 - ...

Gradient Descent

Start at some point, follow the gradient towards (a) minimum

$$x_0 \leftarrow \text{init}, t = 0$$

while termination condition does not hold do
 $x_{t+1} = x_t - \eta \nabla f(x_t), \qquad t = t+1$
end while

- η . . . learning rate or step size
- Gradient always points in the direction of steepest ascen.

Gradient Descent Interpretation

Approximate the function as quadratic function:

$$\hat{f}(\boldsymbol{x}) = \underbrace{f(\boldsymbol{x}_t) + \nabla f(\boldsymbol{x}_t)^T (\boldsymbol{x} - \boldsymbol{x}_t)}_{\text{linear approximation}} + \underbrace{\frac{1}{2\eta} ||\boldsymbol{x}_t - \boldsymbol{x}||^2}_{\text{proximity of } \boldsymbol{x}_t} \approx f(\boldsymbol{x})$$

• Finding the minimum of $\hat{f}(x)$ yields the gradient descent rule

$$x_{t+1} = \operatorname*{arg\,min}_{x} \hat{f}(x), \qquad x_{t+1} = x_t - \eta \nabla f(x_t)$$

Choosing the step-size

too small η_t , after 100 iterations

How to terminate

When change in iterates is small

- When gradient is small
- When change in function value is small

Or after a fixed time step or budget

Stochastic Gradient Descent

Usually we are minimizing the empirical loss (batch gradient descent)

$$\frac{1}{n} \sum_{i} l(\boldsymbol{x}_{i}; \boldsymbol{\theta}) \qquad \qquad \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t} - \frac{\eta}{n} \sum_{i} \nabla_{\boldsymbol{\theta}} l(\boldsymbol{x}_{i}; \boldsymbol{\theta}_{t})$$

We do this to approximate the expected loss

$$\mathbb{E}_{\boldsymbol{x}}\big[l(\boldsymbol{x};\boldsymbol{\theta})\big] \qquad \qquad \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \mathbb{E}_{\boldsymbol{x}}\big[\nabla_{\boldsymbol{\theta}}l(\boldsymbol{x};\boldsymbol{\theta}_t)\big]$$

• Use a rougher, cheaper approximation: stochastic gradient descent

$$l(\boldsymbol{x}_i; \boldsymbol{ heta})$$
 $oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - \eta
abla_{oldsymbol{ heta}} l(\boldsymbol{x}_i; oldsymbol{ heta}_t)$

for random sample i

Stochastic Gradient Descent (SGD)

Use only one sample to compute the update

- Does NOT always "descent"
- Iterations are much cheaper
- Requires more iterations
- ... and smaller step sizes

Stochastic vs. Batch Gradients

Blue: Batch Gradients

Red: Stochastic Gradients

Rule of thumb:

- Stochastic methods work well far away from optimum
- But struggle to find the exact optimum

Step-sizes

Standard in SGD is to use diminishing step sizes, e.g., $\eta_t = \frac{1}{t}$

- Assymptotically approach the optimum
- instead of "wiggling" around optimum

In general, it can be shown that SGD **converges to the optimum** for strictly convex functions if (**stochastic approximation theory**)

$$\sum_{t} \eta_t = \infty \quad \text{and} \quad \sum_{t} \eta_t^2 < \infty$$

Stochastic vs. Batch Gradients

Why are stochastic gradients often better than batch?

- Typically, our data-set will contain redundancy
- Hence, some computation in the batch gradients are redundant
 - compute the gradients for similar samples
 - using the same parameter vector
- This does not happen if we update immediately after one sample

As a consequence, **SGD requires less computation** (in most cases)

Mini-Batches

Take subset of samples $I_t \subset \{1, \dots, n\}, |I_t| = b, b \ll n$ to approximate real gradient:

$$\frac{1}{b} \sum_{i \in I_t} l(\boldsymbol{x}_i; \boldsymbol{\theta}) \qquad \qquad \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \frac{\eta}{b} \sum_{i \in I_t} \nabla_{\boldsymbol{\theta}} l(\boldsymbol{x}_i; \boldsymbol{\theta}_t)$$

- Intermediate version of stochastic and batch gradient descent
- Less noisy estimates
- Achieves "descent" more often
- Preferable for GPU implementations

Example

10000 samples, loglikelihood logistic regression:

Gerhard Neumar Pศาเมื่อเสน่อนearning | KIT | WS 2020/2021

Gradient Descent for Logistic Regression

Properties of the sigmoid function:

• Bounded:
$$\sigma(a) = \frac{1}{1 + \exp(-a)} \in (0, 1)$$

• Symmetric:
$$1 - \sigma(a) = \frac{\exp(-a)}{1 + \exp(-a)} = \frac{1}{1 + \exp(a)} = \sigma(-a)$$

• Gradient:
$$\sigma'(a) = \frac{\exp(-a)}{(1 + \exp(-a))^2} = \sigma(a)(1 - \sigma(a))$$

Classification loss

Data log-likelihood:

$$\log \operatorname{lik}(\mathcal{D}, \boldsymbol{w}) = \sum_{i=1}^{N} p(c_i | \boldsymbol{\phi}(\boldsymbol{x}_i), \boldsymbol{w}) = \sum_{i=1}^{N} \underbrace{c_i \log \sigma(\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_i)) + (1 - c_i) \log \left(1 - \sigma(\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_i))\right)}_{\operatorname{loss}_{i...} \operatorname{loss of the ith sample}}$$

$$\frac{\partial \operatorname{loss}_i}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left(c_i \log \sigma(\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_i)) + (1 - c_i) \log \left(1 - \sigma(\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_i))\right) - 2 \right)$$

Gradient for Logistic Regression

$$\frac{\partial \operatorname{loss}_{i}}{\partial \boldsymbol{w}} = \frac{\partial}{\partial \boldsymbol{w}} \left(c_{i} \operatorname{log} \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i})) + (1 - c_{i}) \operatorname{log} \left(1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i})) \right) \right) \\
= c_{i} \frac{1}{\sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}))} \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i})) (1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}))) \boldsymbol{\phi}(\boldsymbol{x}_{i}) \\
+ (1 - c_{i}) \frac{1}{1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}))} (-) \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i})) (1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}))) \boldsymbol{\phi}(\boldsymbol{x}_{i}) \\
= c_{i} (1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}))) \boldsymbol{\phi}(\boldsymbol{x}_{i}) - (1 - c_{i}) \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i})) \boldsymbol{\phi}(\boldsymbol{x}_{i}) \\
= (c_{i} - \sigma(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{i}))) \boldsymbol{\phi}(\boldsymbol{x}_{i})$$

Softmax Likelihood function:

$$p(c = i | \boldsymbol{x}) = \frac{\exp\left(\boldsymbol{w}_i^T \boldsymbol{\phi}(\boldsymbol{x})\right)}{\sum_{k=1}^K \exp\left(\boldsymbol{w}_k^T \boldsymbol{\phi}(\boldsymbol{x})\right)}$$

- Each class gets a weight vector
- Higher probability for class i if $oldsymbol{w}_i^T oldsymbol{\phi}(oldsymbol{x})$ is high
- For K = 2, w_2 is redundant -> better to use sigmoid

Recap: Multinomial distribution

Multinomial / Categorical Distribution:

- K different events: $C \in \{1, \dots, K\}$
- Directly specifies probabilities: $p(C=k)=\mu_k, \quad \mu_k\geq 0, \quad \sum_{k=1}^K \mu_k=1$
- Or written with 1-hot-encoding (without an "if" clause)

$$p(c) = \prod_{k=1}^K \mu_k^{h_{c,k}}$$
 Depending on the class label of x, selects the correct μ_k

- where h_x is the K-dimensional 1-hot encoding vector, which is one for the dimension c = k and 0 elsewhere. $h_{x,k}$ is the k-th element of this vector.
- Think of it as tossing a die

The multi-class classification problem can expressed as a conditional multinomial distribution:

- I.e. the probability of the event c depends on the input x
- We can again use the "exponential trick" to select the correct probability depending on c

$$p(c|\boldsymbol{x}) = \prod_{k=1}^{K} p(c = k|\boldsymbol{x})^{\boldsymbol{h}_{c,k}}$$
$$= \prod_{k=1}^{K} \left(\frac{\exp(\boldsymbol{w}_k^T \boldsymbol{\phi}(\boldsymbol{x}_i))}{\sum_{k'=1}^{K} \exp(\boldsymbol{w}_{k'}^T \boldsymbol{\phi}(\boldsymbol{x}_i))} \right)^{\boldsymbol{h}_{c,k}}$$

$$\begin{aligned} \textbf{Data log-likelihood:} & \ \log \operatorname{lik}(\mathcal{D}, \boldsymbol{w}_{1:K}) = \sum_{i=1}^{N} \log p(c_i|\boldsymbol{x}_i) = \sum_{i=1}^{N} \sum_{k=1}^{K} \boldsymbol{h}_{c_i,k} \log p(k|\boldsymbol{x}_i) \\ & = \sum_{i=1}^{N} \sum_{k=1}^{K} \boldsymbol{h}_{c_i,k} \left[\boldsymbol{w}_k^T \boldsymbol{\phi}(\boldsymbol{x}_i) - \log \left(\sum_{j=1}^{K} \exp \left(\boldsymbol{w}_j^T \boldsymbol{\phi}(\boldsymbol{x}_i) \right) \right) \right] \\ & = \sum_{i=1}^{N} \sum_{k=1}^{K} \boldsymbol{h}_{c_i,k} \boldsymbol{w}_k^T \boldsymbol{\phi}(\boldsymbol{x}_i) - \log \left(\sum_{j=1}^{K} \exp \left(\boldsymbol{w}_j^T \boldsymbol{\phi}(\boldsymbol{x}_i) \right) \right) \sum_{k} \boldsymbol{h}_{c_i,k} \\ & = \sum_{i=1}^{N} \sum_{k=1}^{K} \boldsymbol{h}_{c_i,k} \boldsymbol{w}_k^T \boldsymbol{\phi}(\boldsymbol{x}_i) - \log \left(\sum_{j=1}^{K} \exp \left(\boldsymbol{w}_j^T \boldsymbol{\phi}(\boldsymbol{x}_i) \right) \right) \sum_{k} \boldsymbol{h}_{c_i,k} \end{aligned}$$

Can again be optimized by gradient ascent

Gradient:

$$\frac{\partial loss_i}{\partial \boldsymbol{w}_k} = \frac{\partial}{\partial \boldsymbol{w}_k} \left(\sum_{k=1}^K \boldsymbol{h}_{c_i,k} \boldsymbol{w}_k^T \boldsymbol{\phi}(\boldsymbol{x}_i) - \log \left(\sum_{j=1}^K \exp \left(\boldsymbol{w}_j^T \boldsymbol{\phi}(\boldsymbol{x}_i) \right) \right) \right)$$
=?

Takeaway messages

What have we learned today?

- Refresher on probability theory and maximum likelihood
- Relation between maximum likelihood and least squares
- What is a linear classification problem ...
- ... and how to formalize it as likelihood maximization problem
 - Sigmoid likelihood for binary classification
 - Soft-max likelihood for multi-class
- What is gradient descent, stochastic gradient descent and mini-batches?
- How to apply gradient descent to logistic regression

