

## Theoretische Informatik

Prof. Dr. Juraj Hromkovič Dr. Hans-Joachim Böckenhauer https://courses.ite.inf.ethz.ch/theoInf20

# Exemplary Solutions – Sheet 10

Zürich, November 27, 2020

# Solution to Exercise 26

Let  $f: \mathbb{N} \to \mathbb{N}$  be a monotonically increasing function such that  $f(n) \geq n$  for all  $n \in \mathbb{N}$ .

(a) Let  $L_1, L_2 \in \text{NTIME}(f)$ . We seek to prove that  $L_1 \cup L_2 \in \text{NTIME}(f)$ . By definition of NTIME(f), there exist two nondeterministic multitape Turing machines  $M_1$  with  $k_1$  tapes and  $M_2$  with  $k_2$  tapes for  $k_1, k_2 \geq 1$ , such that  $L_1 = L(M_1), L_2 = L(M_2)$ , and  $\text{Time}_{M_1}(w_1), \text{Time}_{M_2}(w_2) \in O(f(n))$  for all inputs  $w_1 \in L_1, w_2 \in L_2$  of length n. From them, we construct a nondeterministic  $(k_1 + k_2 + 1)$ -tape TM M for  $L = L_1 \cup L_2$  as follows.

The machine M first copies its input onto the first working tape and then brings the heads on the tapes back to the beginning. This is clearly feasible in time O(n) and thus also in O(f(n)), since  $f(n) \ge n$ , for all  $n \in \mathbb{N}$ .

Now M simulates the work of  $M_1$  on the input tape and the working tapes 2 through  $k_1 + 1$  and the work of  $M_2$  on the working tape 1 as the input tape and the working tapes  $k_1 + 2$  through  $k_1 + k_2 + 1$  in parallel. The machine M accepts if and only if at least one of the two simulations of  $M_1$  and  $M_2$  accepts. Clearly, there exists an accepting computation of M on the word w if and only if there exists an accepting computation of  $M_1$  or  $M_2$  on w. Furthermore, the length of the shortest accepting computation of M on w does not exceed the time to copy the input plus the length of the shortest accepting computation of  $M_1$  or  $M_2$  on w. Hence,  $\text{Time}_M(w) \in O(n) + \min\{\text{Time}_{M_1}(w), \text{Time}_{M_2}(w)\} \subseteq O(f(n))$  for all  $w \in L_1 \cup L_2$ . It follows that  $L_1 \cup L_2 \in \text{NTIME}(f)$ .

(b) Let  $L \in \text{NTIME}(f)$  and  $L' \in \text{TIME}(f)$ . Then there exist a nondeterministic  $k_1$ -tape Turing machine  $M_1$  for L and a deterministic  $k_2$ -tape Turing machine  $M_2$  for L' such that  $\text{Time}_{M_1}(n)$ ,  $\text{Time}_{M_2}(n) \in O(f(n))$ . From them, we construct a nondeterministic  $(k_1 + k_2)$ -tape TM M for L - L' with a time complexity in O(f(n)) as follows.

The machine M first simulates the work of  $M_2$  on the input w of length n on the working tapes  $k_1 + 1$  through  $k_1 + k_2$ . Because  $\mathrm{Time}_{M_2}(n) \in O(f(n))$ , this simulation is guaranteed to terminate on every input of length n in time O(f(n)). If  $M_2$  reaches the accepting state, then  $w \in L'$ , hence,  $w \notin L - L'$ , and M thus rejects its input. If  $M_2$  reaches the rejecting state, then  $w \notin L'$ . In this case, M brings the reading head on the input tape back to the beginning and starts a simulation of  $M_1$  on w on the

first  $k_1$  working tapes. If  $M_1$  accepts the word w, then M accepts as well and vice versa.

The time complexity of M can be bounded as follows. The simulation of  $M_2$  clearly requires O(f(n)) steps, bringing back the reading head then requires again at most  $O(n) \subseteq O(f(n))$  steps. If the word w is accepted by  $M_1$ , then, by definition of nondeterministic time complexity, there exists a computation of  $M_1$  that can be simulated in O(f(n)) time. Hence,  $\operatorname{Time}_M(n) \in O(f(n))$ .

### Solution to Exercise 27

- (a) Let M be a nondeterministic MTM with  $Time_M(n) \in O(n^2)$  that in addition uses at most O(n) space during every computation. To prove that  $L(M) \in SPACE(n \log n)$ , we construct a deterministic MTM A such that L(A) = L(M), that simulates the computation of M. For the construction, we follow the proof of Savitch's theorem from the textbook. This means we again assume that M has a unique accepting configuration for all words  $w \in L(M)$ , so that a deterministic simulation of the work of M, performed by A, only needs to determine if the accepting configuration  $C_{\text{accept}}(w)$  is reachable from the initial configuration  $C_{\text{start}}(w)$ . Due to the assumption on the time complexity of M, the length of the shortest accepting computation of Mon w is at most  $d \cdot |w|^2$ , for a suitable constant d. To determine whether  $C_{\text{accept}}(w)$  is reachable from  $C_{\text{start}}(w)$  in  $d \cdot |w|^2$  steps, we use the same procedure REACHABLE as in the proof of Savitch's theorem. Because the function  $\log_2(d \cdot n^2) = 2\log_2 n + \log_2 d$ is space constructible, A can compute and save the value  $d \cdot |w|^2$  for an arbitrary word using  $2\log_2|w| + \log_2 d$  space. Every internal configuration of a computation of M on w can be represented in  $c \cdot |w|$  space, because O(n) space is sufficient for every computation by assumption. To execute REACHABLE, at most  $O(\log_2 |w|)$ configurations have to be saved at the same time, because the recursion depth is logarithmic in the time complexity of M. Hence, we derive a space requirement in  $O(|w| \cdot \log |w|)$  for A by the same argument as in the proof of Savitch's theorem.
- (b) An analogous construction as in part (a) or in the proof of Savitch's theorem cannot be applied here. For every language L in NSPACE $(f(n)) \cap \text{NTIME}(f(n)^k)$ ,  $L \in \text{NSPACE}(f(n))$  and  $L \in \text{NTIME}(f(n)^k)$  holds as well. Hence, there exists a nondeterministic MTM  $M_1$  such that  $L(M_1) = L$  and  $\text{Space}_{M_1}(n) \in O(f(n))$  and a nondeterministic MTM  $M_2$  such that  $L(M_2) = L$  and  $\text{Time}_{M_2}(n) \in O((f(n))^k)$ . However, it is still possible that  $\text{Space}_{M_2}(n) \notin O(f(n))$  and  $\text{Time}_{M_1}(n) \notin O((f(n))^k)$ . In this case, we would only have, on the one hand, an MTM that decides L with sufficiently low space complexity, but too high time complexity and, on the other hand, another MTM that decides L with sufficently low time complexity, but too high time complexity. To make an analogous argument as in part (a), we need a single nondeterministic MTM that satisfies both bounds for space and time.

#### Solution to Exercise 28

Let  $L \in VP$  and let A be a polynomial-time verifier for L. Assume that, for every word  $w \in L$ , there exists a witness x such that  $|x| \leq \log_2 |w|$  and A accepts the input (w, x).

The following multitape Turing machine M decides L: For all potential witnesses  $x \in \Sigma_{\text{bool}}^*$  such that  $|x| \leq \log_2 |w|$ , M simulates successively the work of A on (w, x). If A accepts a pair (w, x), then M accepts as well. If A rejects each pair (w, x), then M rejects.

We first prove that L(M) = L. We start with  $L(M) \supseteq L$ . If  $w \in L$ , then there exists a witness  $x \in \Sigma_{\text{bool}}^*$  such that  $|x| \le \log_2 |w|$  by assumption, so that (w, x) is accepted by A. This witness will be considered by M in one of its simulations, M thus accepts. Hence,  $w \in L(M)$ .

Now we prove that  $L(M) \subseteq L$ . If  $w \in L(M)$ , then M accepts its input in one of its simulations. But this can only happen if the input (w, x) is accepted by the verifier A for the witness x used in that particular simulation. Hence, the condition for  $w \in L$  is satisfied.

It remains to show that M works in polynomial time. As A is a polynomial-time verifier, there exists a polynomial p such that  $\mathrm{Time}_A(w,x) \leq p(|w|)$  for all  $x \in \Sigma^*_{\mathrm{bool}}$ . The running time of one simulation performed by M is thus bounded by p(|w|) + |w| for a constant c. The additional overhead |w| comes from the fact that M has to bring the head on the input tape back to the beginning of the respective tapes after each simulation and must produce the next potential witness.

The number of potential witnesses  $x \in \Sigma_{\text{bool}}^*$  such that  $|x| \leq \log_2 |w|$  is

$$\sum_{i=0}^{\lfloor \log_2 |w| \rfloor} 2^i = 2^{\lfloor \log_2 |w| \rfloor + 1} - 1 < 2^{\lfloor \log_2 |w| \rfloor + 1} \leq 2|w| \,.$$

This is an upper bound on the number of simulations performed by M, it follows that, for a constant c,

$$\text{Time}_M(w) \le 2|w| \cdot (p(|w|) + |w|) + c \in O(|w|^2 p(|w|)).$$

Hence, M is a deterministic polynomial-time MTM deciding L, i.e.,  $L \in P$ .