Computationalphysics 1: Übungsaufgabe Numerische Integration

Aufgabe 1: Konvergenz des Rechteckverfahrens

Jakob Hollweck

Abgabe 17.11.17

1 Differenz Numerisches Ergebnis - Analytisches Ergebnis

Abbildung 1: $A_N - A_A$ über h

Das erarbeitete Skript zur numerischen Integration basierend auf der Rechteckregel liefert für die Berechnung der Differenz des numerischen und analytischen Ergebnisses für $f_1(x) = x$, $f_2(x) = x^2$ und $f_3(x) = \exp(x)$ auf dem Intervall [0,10] und der Schrittweite $h \in [10^{-4}, 10^{-1}]$, die in Abbildung 1 aufgezeigten Graphen. Es ist zu erkennen, dass die Differenzen zwischen numerischem und analytischem Integral mit steigendem

h linear zunehmen. Dies bestätigt die Vorlesung, die hierfür das Verschwinden der ungeraden Terme der Taylorentwicklung bei der Integration über die Teilintervalle als Erklärung anbringt.

2 Stammfunktionen für verschiedene Startpunkte

Abbildung 2: Stammfunktionen $F_a(x)$ von $f(x) = x^2$ für verschiedene Startpunkte a

Des weiteren wurde untersucht, inwiefern das numerische Integral der Funktion $f(x)=x^2$ von der Wahl des Startpunktes a abhängt. Abbildung 2 zeigt, dass die Wahl der Integrationsmethode dazu führte, dass nur noch langsam veränderliche Funktionen gut approximiert werden können. Der Graph zeigt, dass für größer werdende a die Qualität der Approximation abnimmt. Der Grund hierfür ist, dass größere a auch eine größere Änderung der Stammfunktion an dieser Stelle bedeuten. Dies wurde durch Differenzen der einzelnen Stammfunktionen deutlich gemacht. Dies ist auch in Abbildung 1 zu sehen, da die Funktion mit dem größten Anstieg auch den größten Fehler liefert.