

<u>Course</u> > <u>Week 5</u>... > <u>Proble</u>... > Proble...

Problem Set 5

Problems 1-4 correspond to "Unconstrained optimization I"

Problem 1

1/1 point (graded)

Let F be a function from \mathbb{R}^d to \mathbb{R} . Which of the following is the most accurate description of the derivative ∇F ?

- lt is a real number.
- \bigcirc It is a d-dimensional vector.
- igcup For any point $u\in\mathbb{R}^{d}$, the derivative at that point, $abla F\left(u
 ight)$, is a real number.
- lacktriangledown For any point $u\in\mathbb{R}^d$, the derivative at that point, abla F(u) , is a d-dimensional vector.

Submit

1 Answers are displayed within the problem

Problem 2

6/6 points (graded)

Consider the following loss function on vectors $w \in \mathbb{R}^3$:

$$L\left(w
ight) =w_{1}^{2}-2w_{1}w_{2}+w_{2}^{2}+2w_{3}^{2}+3.$$

a) Compute $\nabla L(w)$.	Match each of its	coordinates to t	the following list:
----------------------------	-------------------	------------------	---------------------

Option 1: $4w_3$

Option 2: $2w_1-2w_2$

Option 3: $-2w_1 + 2w_2$

What is dL/dw_1 ? (Just answer 1,2,or 3)

 $dL/dw_2 =$

 $dL/dw_3 =$

b) What is the minimum value of $L\left(w\right)$?

c) Is there is a unique solution \boldsymbol{w} at which this minimum is realized?

no ▼ **Answer:** no

d) Suppose we use gradient descent to minimize this function, and that the current estimate is w=(1,2,3). If the step size is $\eta=0.5$, what is the next estimate?

$$\bigcirc w = (1,1,0)$$

$$\bigcirc \ w = (-1,0,1)$$

$$left w = (2,1,-3)$$

$$w = (0, -1, -1.5)$$

Explanation

The derivative of $L\left(w
ight)$ is $abla L\left(w
ight) = \left(2w_{1}-2w_{2},-2w_{1}+2w_{2},4w_{3}
ight)$.

To minimize $L\left(w\right)$, we set the derivative to zero and get $w_1=w_2$ and $w_3=0$. Thus there isn't a single minimizer, but rather infinitely many of them. The minimum value of $L\left(w\right)$, obtained at any of these points, is 3.

For the final part, let the current point be w'=(1,2,3). The gradient at this point is $\nabla L\left(w'\right)=(-2,2,12)$. Thus the gradient step updates w' to $w'-\eta\nabla L\left(w'\right)=(1,2,3)-0.5\left(-2,2,12\right)=(2,1,-3)$.

Submit

1 Answers are displayed within the problem

Problem 3

1/1 point (graded)

We are given a set of data points $x^{(1)},\dots,x^{(n)}\in\mathbb{R}^d$, and we want to find a single point $z\in\mathbb{R}^d$ that minimizes the loss function

$$L\left(z
ight) =\sum_{i=1}^{n}\left\Vert x^{\left(i
ight) }-z
ight\Vert ^{2}.$$

Use calculus to determine z, in terms of the $x^{(i)}$. (Hint: It might help to just start by looking at one particular coordinate.) Then select which of the following correctly describes the solution.

- igcup The sum of the $x^{(i)}$ vectors
- lacktriangle The average of the $x^{(i)}$ vectors
- igcup The average of the $x^{(i)}$ vectors, times a constant c
 eq 1
- igcup Zero, regardless of what the $x^{(i)}$ vectors are

Explanation

Notice that

$$L\left(z
ight) = \sum_{i=1}^{n} \left\|x^{(i)} - z
ight\|^2 = \sum_{i=1}^{n} \sum_{j=1}^{d} \left(x_{j}^{(i)} - z_{j}
ight)^2.$$

Take the derivative with respect to a single coordinate z_i :

$$rac{dL}{dz_j} = -2\sum_{i=1}^n \left(x_j^{(i)} - z_j
ight).$$

Stacking these together into a single d-dimensional vector, we get

$$abla L\left(z
ight) = -2\sum_{i=1}^{n}\left(x^{(i)}-z
ight).$$

Setting this to zero then yields the solution

$$z = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$
.

Submit

1 Answers are displayed within the problem

Problem 4

2/2 points (graded)

Given a set of data points $x^{(1)},\ldots,x^{(n)}\in\mathbb{R}^d$, we want to find the vector $w\in\mathbb{R}^d$ that minimizes this loss function:

$$L\left(w
ight) = \sum_{i=1}^{n} \left(w\cdot x^{(i)}
ight) + rac{1}{2}c\left\|w
ight\|^{2}.$$

Here c>0 is some constant.

a) Let s denote the sum of the data points, that is, $s=\sum_{i=1}^n x^{(i)}$. Express $\nabla L\left(w\right)$ in terms of s, c, and w.

$$\bigcirc
abla L\left(w
ight) =s+w$$

$$lacksquare
abla L\left(w
ight) = s + cw$$

$$\bigcirc
abla L\left(w
ight) =cw$$

$$\bigcirc
abla L\left(w
ight) =s/c+w$$

Answer

Correct: The derivative is $abla L\left(w
ight) = \sum_{i} x^{(i)} + cw = s + cw$

b) What value of w minimizes $L\left(w\right)$? Give the answer in terms of s and c.

$$left w = -rac{s}{c}$$

$$\bigcirc w = cs$$

$$\bigcirc w = rac{s}{4c}$$

$$\bigcirc w = -rac{s}{2c}$$

Answer

Correct: This results from setting $abla L\left(w\right)=0$.

Submit

1 Answers are displayed within the problem

Problem 5

7/7 points (graded)

For each of the following functions of one variable, say whether it is convex, concave, both, or neither.

a)
$$f(x) = x^2$$

convex ▼ **Answer:** convex

Answer

Correct: f''(x) = 2

b)
$$f\left(x
ight) =-x^{2}$$

concave ▼ **Answer:** concave

Answer

Correct: f''(x) = -2

c)
$$f(x) = x^2 - 2x + 1$$

convex

▼ ✓ Answer: convex

Answer

Correct: f''(x) = 2

$$d) f(x) = x$$

both

▼ ✓ Answer: both

Answer

Correct: f''(x) = 0

e)
$$f(x)=x^3$$

neither

Answer

Correct: f''(x) = 6x, which is sometimes positive, sometimes negative.

f)
$$f(x)=x^4$$

convex

Answer: convex

Answer

Correct: $f''(x) = 12x^2$

g)
$$f(x) = \ln x$$

concave ▼

✓ Answer: concave

Answer

Correct: $f''\left(x
ight)=-1/x^2$

? Hint (1 of 2): First rule: a twice-differentiable function is convex if its second derivative is always ≥ 0 .

Hint (2 of 2): Second rule: a function f is concave if and only if -f is convex.

Next Hint

Submit

1 Answers are displayed within the problem

Problem 6

1/1 point (graded)

Consider the function $f:\mathbb{R}^3 o\mathbb{R}$ given by

$$f\left(x_{1},x_{2},x_{3}
ight)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-4x_{1}x_{2}+6x_{2}x_{3}.$$

Compute and select the matrix of second derivatives (the Hessian) $H\left(x\right)$.

$$\begin{pmatrix}
1 & -2 & 0 \\
-2 & 1 & 3 \\
0 & 3 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -4 & 0 \\
-4 & 2 & 6 \\
0 & 6 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -4 & 0 \\
-4 & 2 & 6 \\
0 & 6 & -2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -4 & 0 \\
0 & 2 & 6 \\
0 & 0 & -2
\end{pmatrix}$$

? Hint (1 of 1): Helpful first step:
$$abla f(x) = (2x_1 - 4x_2, 2x_2 - 4x_1 + 6x_3, -2x_3 + 6x_2)$$

Next Hint

Submit

1 Answers are displayed within the problem

Problem 7

1/1 point (graded)

For some fixed vector $u \in \mathbb{R}^d$, define the function $F: \mathbb{R}^d o \mathbb{R}$ by

$$F(x) = e^{u \cdot x}$$
.

Which of the following is the Hessian H(x)?

$$igodesign e^{(u\cdot x)}uu^T$$

$$\bigcirc e^{(u\cdot x)}I$$
 (here I is the $d imes d$ identity matrix)

$$igcup e^{(u\cdot x)}\|u\|^2$$

$$\bigcirc \, e^{(u\cdot x)} (u\cdot x)^2$$

Explanation

First derivative:

$$rac{dF}{dx_j}=e^{u\cdot x}u_j$$

Second derivative:

$$rac{d^2F}{dx_k\,dx_j}=e^{u\cdot x}u_ju_k$$

Putting together the full d imes d matrix, we get $e^{u \cdot x} u u^T$.

? Hint (1 of 1): Helpful first step: $abla F\left(x
ight)=e^{u\cdot x}u$

Next Hint

Submit

1 Answers are displayed within the problem

Problems 8-11 correspond to "Positive semidefinite matrices"

Problem 8

1/1 point (graded)

Is the matrix $M=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ positive semidefinite?

- $\hfill \bigcirc$ Yes, because every entry in the matrix is ≥ 0
- \bigcirc No, because not every entry is >0

Yes.	because u^T	Mu > 1	0 for a	ıll vectors	u
103,	because a	111 W =	0 101 0	III VCCCOIS	u

- lacksquare No, because there is a vector u for which $u^T M u < 0$
- **~**

Explanation

The quadratic function represented by this matrix is $u^TMu=2u_1u_2$. This is negative whenever u_1u_2 is negative, for instance with u=(1,-1).

Submit

1 Answers are displayed within the problem

Problem 9

1/1 point (graded)

Is the matrix $M=\begin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$ positive semidefinite?

- \bigcirc No, because not every entry is ≥ 0
- lacksquare Yes, because $u^TMu \geq 0$ for all vectors u
- igcup No, because there is a vector u for which $u^T M u < 0$
- igcap No, because there is a vector u for which $u^T M u = 0$
- ~

Explanation

The quadratic function represented by this matrix is $u^TMu=u_1^2-2u_1u_2+u_2^2=(u_1-u_2)^2.$ This is never negative.

Submit

1 Answers are displayed within the problem

Problem 10

1/1 point (graded)

For a fixed set of vectors $v^{(1)},\ldots,v^{(n)}\in\mathbb{R}^d$, let M be the $n\times n$ matrix of all pairwise dot products: that is, $M_{ij}=v^{(i)}\cdot v^{(j)}$. Do you see why M is positive semidefinite? Think about it a little bit, and then choose one of the following options (you'll get marked as correct whichever you choose).

That counds right	but I can't fully	construct the argument. $ullet$	
That sounds right,	but I carri runy t	Lonstruct the argument. 🔻	

Explanation

Let U denote the $n \times d$ matrix whose rows are the $v^{(i)}$. Then $M = UU^T$, and thus M is PSD (any matrix that can be written in this way is PSD).

Submit

1 Answers are displayed within the problem

Problem 11

1/1 point (graded)

Suppose M and N are positive semidefinite matrices of the same size. Which of the following matrices are *necessarily* positive semidefinite? Select all that apply.

$$M-N$$

Explanation

The first is PSD because the sum of PSD matrices is also PSD. The third and fourth are PSD because any non-negative multiple of a PSD matrix is PSD.

The second option is *not* PSD: consider, for instance, the 1×1 matrices M=1 and N=10.

For the fourth option, notice that since N is PSD, we can write it in the form $N=UU^T$ for some matrix U . Then,

$$M^TNM=M^TUU^TM=\left(M^TU\right)\left(M^TU\right)^T=VV^T,$$
 where $V=M^TU.$ Thus this matrix is also PSD.

Submit

1 Answers are displayed within the problem

Problems 12-13 correspond to "Convexity II"

Problem 12

2/2 points (graded)

For some fixed vector $u \in \mathbb{R}^d$, define

$$F(x) = \|x - u\|^2.$$

We wish to determine whether F(x) is a convex function of x.

a) The Hessian matrix $H\left(x\right)$ is of the form cI, where I is the $d\times d$ identity matrix and c is some constant. What is c?

2

b) Is $F\left(x\right)$ a convex function?

igcup It depends on the specific vector u

Explanation

For the first part, we have

$$F(x) = \sum_{j=1}^d \left(x_j - u_j
ight)^2.$$

Thus

$$rac{dF}{dx_{j}}=2\left(x_{j}-u_{j}
ight)$$

and d^2F/dx_kdx_j is either 2 if j=k or 0 otherwise. Thus the Hessian is 2I, which is PSD, implying that F is convex.

Submit

1 Answers are displayed within the problem

Problem 13

3/3 points (graded)

Let $p=(p_1,p_2,\ldots,p_m)$ be a probability distribution over m possible outcomes. The *entropy* of p is a measure of how much randomness there is in the outcome. It is defined as

$$F\left(p
ight) =-\sum_{i=1}^{m}p_{i}\ln p_{i},$$

where \ln denotes natural logarithm. We wish to ascertain whether $F\left(p\right)$ is a convex function of p. As usual, we begin by computing the Hessian.

a) Consider the specific point $p=(1/m,1/m,\ldots,1/m)$. What is the (1,1) entry of the Hessian at this point? Your answer should be a function of m.

-m ✓ Answe

b) Continuing, what is the (1,2) entry of the Hessian at this specific point?

c) Is the function F(p) convex, concave, both, or neither?

concave ▼	✓ Answer: concave
-----------	-------------------

Explanation

First we have

$$rac{dF}{dp_i} = -\left(1 + \ln p_i
ight)$$

Thus, if j
eq i , then

$$\frac{d^2F}{dp_jdp_i}=0$$

while

$$rac{d^2F}{dp_i^2}=-rac{1}{p_i}$$
 .

Thus the Hessian is a diagonal matrix with negative entries, meaning the function is concave.

Submit

1 Answers are displayed within the problem