10/049280

RECTIPTO 08 MAY 2002

SEQUENCE LISTING <110> BASF Aktiengesellschaft <120> Homogentisate-Dioxygenase <130> M/40226 <140> 19937957.2 <141> 1999-08-11 <160> 15 <170> PatentIn Ver. 2.1 <210> 1 <211> 575 <212> DNA <213> Brassica napus <220> <221> misc_feature <222> (1)..(6) <223> /function= "restriction site" <220> <221> misc_feature <222> (570)..(575) <223> /function = "restriction site" <400> 1 gtcgacgggc cgatgggggc gaagggtctt gctgcaccaa gagattttct tgcaccaacg 60 gcatggtttg aggaagggct acggcctgac tacactattg ttcagaagtt tggcggtgaa 120 ctctttactg ctaaacaaga tttctctccg ttcaatgtgg ttgcctggca tggcaattac 180 gtgccttata agtatgacct gcacaagttc tgtccataca acactgtcct tgtagaccat 240 ggagatccat ctgtaaatac agttctgaca gcaccaacgg ataaacctgg tgtggccttg 300 cttgattttg tcatattccc tcctcgttgg ttggttgctg agcatacctt tcgacctcct 360 tactaccatc gtaactgcat gagtgaattt atgggcctaa tctatggtgc ttacgaggcc 420 aaagctgatg gatttctacc tggtggcgca agtcttcaca gttgtatgac acctcatggt 480 ccagatacaa ccacatacga ggcgacgatt gctcgtgtaa atgcaatggc tccttataag 540 575 ctcacaggca ccatggcctt catgtttgag gtacc <210> 2 <211> 26 <212> DNA <213> artificial sequence <220> <223> description of artificial sequence: /desc = "oligonucleotide" <220> <221> misc_feature <222> (9) $<223> /mod_base = i$

```
<220>
<221> misc_feature
<222> (12)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (15)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (18)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (21)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (24)
<223> /mod_base = i
<400> 2
gtcgacggnc cnatnggngc naangg
                                                                    26
<210> 3
<211> 29
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<220>
<221> misc_feature
<222> (18)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (24)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (27)
<223> /mod_base = i
<400> 3
                                                                     29
ggtacctcra acatraangc catngtncc
```

```
<210> 4
<211> 25
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 4
                                                                    25
gaattcgatc tgtcgtctca aactc
<210> 5
<211> 26
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 5
                                                                    26
ggtaccgtga tagtaaacaa ctaatg
<210> 6
<211> 34
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
                                                                    34
atggtacctt ttttgcataa acttatcttc atag
<210> 7
<211> 43
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
                                                                    43
atgtcgaccc gggatccagg gccctgatgg gtcccatttt ccc
<210> 8
<211> 25
<212> DNA
<213> artificial sequence
```

```
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 8
                                                                    25
gtcgacgaat ttccccgaat cgttc
<210> 9
<211> 24
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 9
                                                                    24
aagcttccga tctagtaaca taga
<210> 10
<211> 25
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 10
                                                                    25
aagcttgatc tgtcgtctca aactc
<210> 11
<211> 24
<212> DNA
<213> artificial sequence
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 11
                                                                    24
aagcttccga tctagtaaca taga
<210> 12
<211> 32
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 12
```

```
32
```

241

```
<210> 13
<211> 32
<212> DNA
<213> artificial sequence
<223> description of artificial sequence: /desc =
      "oligonucleotide"
<400> 13
attctagagg acaatcagta aattgaacgg ag
                                                                   32
<210> 14
<211> 1159
<212> DNA
<213> artificial sequence
<220>
<223> description of artificial sequence: /desc =
      "DNA"
<220>
<221> misc_feature
<222> (1)..(6)
<223> /function = "restriction site"
<220>
<221> CDS
<222> (8)..(1153)
<220>
<221> misc_feature
<222> (1154)..(1159)
<223> /function = "restriction site"
<400> 14
gtcgact atg act caa act act cat cat act cca gat act gct aga caa
        Met Thr Gln Thr Thr His His Thr Pro Asp Thr Ala Arg Gln
gct gat cct ttt cca gtt aag gga atg gat gct gtt ttc gct gtt
                                                                   97
Ala Asp Pro Phe Pro Val Lys Gly Met Asp Ala Val Val Phe Ala Val
 15
                     20
                                          25
gga aac gct aag caa gct gct cat tac tac tct act gct ttc gga atg
                                                                   145
Gly Asn Ala Lys Gln Ala Ala His Tyr Tyr Ser Thr Ala Phe Gly Met
                 35
                                      40
                                                          45
caa ctt gtt gct tac tct gga cca gaa aac gga tct aga gaa act gct
                                                                   193
Gln Leu Val Ala Tyr Ser Gly Pro Glu Asn Gly Ser Arg Glu Thr Ala
             50
                                 55
                                                      60
tet tae gtt ett aet aac gga tet get aga tte gtt ett aet tet gtt
```

Ser	Tyr	Val 65	Leu	Thr	Asn	Gly	Ser 70	Ala	Arg	Phe	Val	Leu 75	Thr	Ser	Val	
												gat Asp				289
_			_		_	_	_		-		_	gtt Val			_	337
_	•	-		-		-		-			_	aga Arg				385
_			_		_	_	_				_	gtt Val		_		433
	_				_		_				-	gat Asp 155	_			481
	_								-			gct Ala				529
												cat His				577
	-	-			_	_		-		_		ttc Phe			_	625
												gat Asp				673
												gat Asp 235				721
-	-						_		_		_	aag Lys	-			769
												gga Gly				817
												aga Arg				865
-	_		-									tac Tyr				913

•

		290					295					300			
	 _		_		-	act Thr 310	-	-		_	_			-	961
_	_			-	-	aga Arg	_	-	_						1009
		_		-		gat Asp	_						-		1057
						gga Glv									1105

The Glu Arg His Gly Ser Met Gly Phe Gly Lys Gly Asn Phe Lys Ala 355 360 365

Ctt ttc gaa gct att gaa aga gaa caa gag aag aga gga aac ctt tag 1153

Leu Phe Glu Ala Ile Glu Arg Glu Gln Glu Lys Arg Gly Asn Leu

gtcgac 1159

375

<210> 15

<211> 381

<212> PRT

<213> artificial sequence

<220>

<223> description of artificial sequence: /desc =
 "DNA"

<400> 15

Met Thr Gln Thr Thr His His Thr Pro Asp Thr Ala Arg Gln Ala Asp
1 5 10 15

Pro Phe Pro Val Lys Gly Met Asp Ala Val Val Phe Ala Val Gly Asn 20 25 30

Ala Lys Gln Ala Ala His Tyr Tyr Ser Thr Ala Phe Gly Met Gln Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Ala Tyr Ser Gly Pro Glu Asn Gly Ser Arg Glu Thr Ala Ser Tyr 50 60

Val Leu Thr Asn Gly Ser Ala Arg Phe Val Leu Thr Ser Val Ile Lys
65 70 75 80

Pro Ala Thr Pro Trp Gly His Phe Leu Ala Asp His Val Ala Glu His
2 85 90 95

Gly Asp Gly Val Val Asp Leu Ala Ile Glu Val Pro Asp Ala Arg Ala
100 105 110

Ala His Ala Tyr Ala Ile Glu His Gly Ala Arg Ser Val Ala Glu Pro

Tyr	Glu 130	Leu	Lys	Asp	Glu	His 135	Gly	Thr	Val	Val	Leu 140	Ala	Ala	Ile	Ala
Thr 145	Tyr	Gly	Lys	Thr	Arg 150	His	Thr	Leu	Val	Asp 155	Arg	Thr	Gly	Tyr	Asp 160
Gly	Pro	Tyr	Leu	Pro 165	Gly	Tyr	Val	Ala	Ala 170	Ala	Prọ	Ile	Val	Glu 175	Pro
Pro	Ala	His	Arg 180	Thr	Phe	Gln	Ala	Ile 185	Asp	His	Cys	Val	Gly 190	Asn	Val
Glu	Leu	Gly 195	Arg	Met	Asn	Glu	Trp 200	Val	Gly	Phe	Tyr	Asn 205	Lys	Val	Met
Gly	Phe 210	Thr	Asn	Met	Lys	Glu 215	Phe	Val	Gly	Asp	Asp 220	Ile	Ala	Thr	Glu
Туг 225	Ser	Ala	Leu	Met	Ser 230	Lys	Val	Val	Ala	Asp 235	Gly	Thr	Leu	Lys	Val 240
Lys	Phe	Pro	Ile	Asn 245	Glu	Pro	Ala	Leu	Ala 250	Lys	Lys	Lys	Ser	Gln 255	Ile
Asp	Glu	Tyr	Leu 260	Glu	Phe	Туr	Gly	Gly 265	Ala	Gly	Val	Gln	His 270	Ile	Ala
Leu	Asn	Thr 275	Gly	Asp	Ile	Val	Glu 280	Thr	Val	Arg	Thr	Met 285	Arg	Ala	Ala
Gly	Val 290	Gln	Phe	Leu	Asp	Thr 295	Pro	Asp	Ser	Tyr	Tyr 300	Asp	Thr	Leu	Gly
Glu 305	Trp	Val	Gly	Asp	Thr 310	Arg	Val	Pro	Val	Asp 315	Thr	Leu	Arg	Glu	Leu 320
Lys	Ile	Leu	Ala	Asp 325	Arg	Asp	Glu	Asp	Gly 330	Tyr	Leu	Leu	Gln	Ile 335	Phe
Thr	Lys	Pro	Val 340	Gln	Asp	Arg	Pro	Thr 345	Val	Phe	Phe	Glu	Ile 350	Ile	Glu
Arg	His	Gly 355	Ser	Met	Gly	Phe	Gly 360	Lys	Gly	Asn	Phe	Lys 365	Ala	Leu	Phe
Glu	Ala 370	Ile	Glu	Arg	Glu	Gln 375	Glu	Lys	Arg	Gly	Asn 380	Leu			