NOIp2023 模拟赛 (CSP-S2023 模拟赛?)

myee

题目名称	First Snow	Paradise	nέο χόsmo	Nirv lucE
题目类型	传统型	传统型	传统型	传统型
目录	firstsnow	paradise	neokosmo	nirvluce
可执行文件名	firstsnow	paradise	neokosmo	nirvluce
输入文件名	firstsnow.in	paradise.in	neokosmo.in	nirvluce.in
输出文件名	firstsnow.out	paradise.out	neokosmo.out	nirvluce.out
每个测试点时限	5.0 秒	5.0 秒	5.0 秒	5.0 秒
内存限制	1024 MB	512 MB	2048 MB	2048 MB
测试点数目	100	20	50	100
测试点是否等分	是	是	是	是

提交源程序程序名

对于 C++ 语言	firstsnow.cpp	paradise.cpp	neokosmo.cpp	nirvluce.cpp
-----------	---------------	--------------	--------------	--------------

编译选项

注意事项

- 1. 文件名(包括程序名,后缀名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须为 0。
- 3. 提交的程序代码文件的放置位置请参照考场具体要求。
- 4. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 7. 评测在当前最新公布的 NOI Linux 信友队评测机下进行,**各语言的编译器版本** 以你提交时选择的语言为准,请勿错选!
- 8. 最终评测时所用的编译命令中不含编译选项之外的任何优化开关。
- 9. 本次比赛各题时限均较长,请不要卡评测。
- 10. 题目背景中的概念可能比较模糊,建议阅读题目描述来获得相对准确的题意。

First Snow (firstsnow)

【题目背景】

自于破碎世界苏醒以来,白姬始终戴着头上的王冠,未曾放松过手中的权杖。

白姬试图相信,自己应当是来自另一个世界的贵族或者君主,被反叛的民众们用「魔法」清除了记忆,而被送来了这神秘的「魔法世界」。

不错,白姬还相信「魔法」的存在。

在这个充满回忆的世界,玻璃碎片能在空中飞舞,除了「魔法」,还有什么能解释的呢? 其实并不是。不过白姬对此深信不疑。白姬理所当然地认为自己是特别的,应当受到敬仰。 为了找回自己的记忆,白姬保持着在众多记忆碎片中寻觅,希望能从琐碎的线索中拼出自 己的过往。

白姬框定了一个矩阵, 试图从中找出排成方形的四块残片, 来进行探索。

有几种选法呢?

在这片充满回忆的世界里,答案是无声的。

【题目描述】

给定一个 01 矩阵 $A = (a_{ij})_{n \times n}$ 。

在二维平面 xOy 上,我们称一个坐标 (x,y) 有点,当且仅当 x,y 均为 $1\sim n$ 间的整数且 $a_{xy}=1$ 。

求有多少个大小为4的点集,满足点集中的点刚好为一个正方形的四个顶点。

注意正方形可以是斜的。

四个点不可重合;只要是相同的四个点,无论怎么排列都视为相同的点集。

【输入格式】

从文件 firstsnow.in 中读入数据。

第一行两个整数 n, o,其中 o 将指示更多特殊性质,请参见【数据范围与提示】一节的描述。

接下来 n 行,假设依次为 $i=1,2,\ldots,n$ 行,每行一个长度为 n 的 01 字符串,表示该 01 矩阵第 i 行的各列元素。

【输出格式】

输出到文件 firstsnow.out 中。

一行一个整数,表示答案。

【输入输出样例】

请参见下发文件 firstsnow*.in/ans, 共 20 组,基本按照部分分的方法造。

为了方便你更好地理解题意,此处附一个手搓的样例 0,这份样例未被放入下发文件。**建 议使用该组样例及样例解释校验你对题意的理解,以免误读**。

【样例输入】

【样例输出】

1 15

【样例解释】

所有 15 种方案: (1,1)(1,2)(2,2)(2,1), (1,1)(1,3)(3,3)(3,1), (1,1)(1,4)(4,4)(4,1), (1,2)(1,3)(2,3)(2,2), (1,2)(2,1)(3,2)(2,3), (1,2)(1,4)(3,4)(3,2), (1,3)(1,4)(2,4)(2,3), (1,3)(2,2)(3,3)(2,4), (1,3)(2,1)(4,2)(3,4), (2,1)(2,2)(3,2)(3,1), (2,2)(2,3)(3,3)(3,2), (2,2)(3,1)(4,2)(3,3), (2,2)(2,4)(4,4)(4,2), (2,3)(2,4)(3,4)(3,3), (3,1)(3,2)(4,2)(4,1)。

【数据范围与提示】

对于所有的数据, $2 \le n \le 500$, $0 \le o \le 5$ 。 以下是部分分配置,各测试点等分。每个 o 对应了一个特殊性质,o = 0 时即无特殊性质。

测试点编号	n	О	特殊性质
$1 \sim 5$	≤ 500	= 5	$\forall 1 \le x \le n \land 1 \le y \le n, a_{xy} = 0$
$6 \sim 10$	≤ 3	=0	
$11 \sim 15$	≤ 20	=0	
$16 \sim 20$	≤ 50	=0	
$21 \sim 25$	≤ 100	= 1	$\forall 2 \mid x \land 1 \le y \le n, a_{xy} = a_{yx} = 0$
$26 \sim 30$	≤ 100	= 2	$\forall 2 \mid x \land 1 \le y \le n, a_{xy} = 0$
$31 \sim 35$	≤ 100	= 3	$\forall 2 \mid x \land 2 \mid y, a_{xy} = 0$
$36 \sim 40$	≤ 100	=4	$\forall 1 \leq x \leq n \land 1 \leq y \leq n, a_{xy} = 1$
$41 \sim 45$	≤ 100	=0	
$46 \sim 50$	≤ 300	= 1	$\forall 2 \mid x \land 1 \le y \le n, a_{xy} = a_{yx} = 0$
$51 \sim 55$	≤ 300	=2	$\forall 2 \mid x \land 1 \le y \le n, a_{xy} = 0$
$56 \sim 60$	≤ 300	= 3	$\forall 2 \mid x \land 2 \mid y, a_{xy} = 0$
$61 \sim 65$	≤ 300	= 4	$\forall 1 \le x \le n \land 1 \le y \le n, a_{xy} = 1$
$66 \sim 70$	≤ 300	=0	
$71 \sim 75$	≤ 500	= 1	$\forall 2 \mid x \land 1 \le y \le n, a_{xy} = a_{yx} = 0$
$76 \sim 80$	≤ 500	= 2	$\forall 2 \mid x \land 1 \le y \le n, a_{xy} = 0$
$81 \sim 85$	≤ 500	= 3	$\forall 2 \mid x \land 2 \mid y, a_{xy} = 0$
$86 \sim 90$	≤ 500	= 4	$\forall 1 \le x \le n \land 1 \le y \le n, a_{xy} = 1$
$91 \sim 100$	≤ 500	=0	

【更多提示】

本题时限虽然比较宽松,但正解仍可能无法通过,请考虑优化你的常数。

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成,你可以用下发样例来估计评测数据的实际范围。

Paradise (paradise)

【题目背景】

如同最伟大的建筑师,红将一个个物体,重新搭建在通往天空的路途上。

虽然看上去这个结构仍然很不规律,但比上次的结构总要合理很多了——是吧?

从螺旋阶梯逐级登上,红终于抵达了那片「天堂」。可是……

这个「天堂」, 只是一层厚厚的, 无法穿透的云?

阶梯已不能继续往上,红于是尝试将双手伸入云中,感受到的却是莫大的压力。

不行, 完全过不去。

被压回来后,红还未来得及沮丧,便看到一簇闪着光的物体从云中掉出,向其徐徐飘来。好像见到了熟悉的人一样。

二十枚。这是……玻璃碎片?红……与回忆碎片……产生了初次共鸣的回忆。

红的面前转变为另一片场景。

这是一个小镇, 炊烟袅袅, 空气中充满了各种温柔的香气。

这是一个崭新的回忆世界。

红默默伫立着,全神贯注地体味着所有新鲜的体验感。

这是一个旧时代的小镇。在如此奇妙的世界里,真是心旷神怡!

这段回忆属于另一名少女——一位工匠的助手,正值差事途中。

不过, 红对此并不在意。

红在甜点试吃区域徘徊了好一小会,直到看到了那一抹艳红——草莓馅饼。

红毫不犹豫地掏出一枚学徒的硬币,换取了一片蛋糕,狠狠地咬了一口。

这一刻,红感受到了甜蜜和幸福,仿佛置身天堂……

后来,随着这段回忆的结束,红开始重新回味这段体验。

那个商铺有一个特殊的营销策略,即可以用若干钱买一种整袋的蛋糕,每一种整袋由若干 个前一种整袋形成;最初一个蛋糕会被单独装一袋。

红开始思考,如果对于小于若干量的蛋糕各买一次,一共要最少花费多少呢?由于这只是红的回想,数据显得非常的不真实,答案也进入了迷津之中……

【题目描述】

考虑出售一种商品,有m种卖法。

第 j 种卖法将卖出其中 a_i 个, 收 b_i 的钱。

对所有 $1 \le i < m$, a_i 是 a_{i+1} 的因数; 且保证 $a_1 = 1$ 。

假设买恰好 n 个物品最少要花 f(n) 的钱。你可以同时使用多种买法。

现在 q 组询问, 每次给定 n, 要求出 $\sum_{0 \le j \le n} f(j)$ 。

由于答案可能很大,请对 264 取模。

【输入格式】

从文件 paradise.in 中读入数据。

本题每个测试点中有多组测试数据。

第一行两个整数 T,o,其中 T 表示数据组数,o 将指示更多特殊性质,请参见【数据范围与提示】一节的描述。

接下来 T 组数据。

对于每组数据, 先是一行两个整数 m,q。

接下来 m 行,假设依次为 $j=1,2,\ldots,m$ 行,每行两个整数 a_j,b_j ,表示第 j 种售货方案。接下来 q 行,每行一个整数 n,表示一组询问。

【输出格式】

输出到文件 paradise.out 中。 对于每组询问输出一行,表示答案。

【输入输出样例】

请参见下发文件 paradise*.in/ans, 共 10 组,基本按照部分分的方法造。

为了方便你更好地理解题意,此处附一个手搓的样例 0,这份样例未被放入下发文件。**建 议使用该组样例及样例解释校验你对题意的理解,以免误读**。

【样例输入】

```
3 0
   3 3
2
3 1 6
4 5 30
5 10 68
7
   9
8 13
9 3 3
10
   1 7
11
   10 68
13
   9
14
15 | 13
   4 10
16
17 | 1 1
18 550 34
19 1100 68
20
   2200 136
21
   50
   100
22
23
   200
24
    300
    400
26
    500
27
    600
   114514
28
29 1919810
30 1145141919810
```

【样例输出】

```
1
   36
 2 216
 3 468
 4 42
 5 248
   535
 6
 7
    1225
 8
    4950
10
    44850
11
   79800
12 124750
13 153900
14 434789049
15 114415038745
16 5140438760072153873
```

【样例解释】

对于样例中第一组数据, 我们有

n	0	1	2	3	4	5	6	7	8	9	10	11	12
f(n)	0	6	12	18	24	30	36	42	48	54	60	66	72

对于样例中第二组数据, 我们有

n	0	1	2	3	4	5	6	7	8	9	10	11	12
f(n)	0	7	14	21	28	34	41	48	55	62	68	75	82

【数据范围与提示】

对于所有的测试点, $1 \le T \le 10$, $0 \le o \le 2$ 。

对于测试点中的每组数据, $1 \le m \le 10^5$, $1 \le q \le 10^5$, $0 \le n \le 10^{18}$, $1 \le a_i \le 10^{18}$, $0 \le b_i \le 10^{18}$,且满足题目描述内的特殊限制。

以下是部分分配置,各测试点等分。o将指示更多特殊性质,将在之后说明。

测试点编号	m	q	n	0
$1 \sim 2$	$\leq 10^{5}$	$\leq 10^{5}$	≤ 1	=0
$3 \sim 4$	≤ 20	≤ 10	≤ 100	=0
$5\sim 6$	$\leq 10^{5}$	≤ 10	≤ 100	=0
$7 \sim 8$	$\leq 10^{5}$	$\leq 10^{5}$	≤ 100	=0
$9 \sim 10$	$\leq 10^{5}$	$\leq 10^{5}$	$\leq 10^{5}$	=2
$11 \sim 12$	$\leq 10^{5}$	$\leq 10^{5}$	$\leq 10^5$	=0
$13 \sim 14$	$\leq 10^{5}$	$\leq 10^{5}$	$\leq 10^{18}$	=2
$15 \sim 16$	$\leq 10^{5}$	$\leq 10^{5}$	$\leq 10^{18}$	= 1
$17 \sim 18$	≤ 50	$\leq 10^{5}$	$\leq 10^{18}$	= 0
$19 \sim 20$	$\leq 10^{5}$	$\leq 10^{5}$	$\leq 10^{18}$	=0

接下来阐述关于 o 的特殊性质。

- o = 0 时,不保证特殊性质。
- o=1 时,保证输入中 $\forall 1 \leq i \leq m, a_i=a_1 \vee a_i=a_m$ 。
- o=2 时,保证 $\exists k \in \mathbb{N}, a_n=2^k$ 。

【更多提示】

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成,你可以用下发样例来估计评测数据的实际范围。

nέο χόsmo (neokosmo)

【题目背景】

那些玻璃碎片究竟是别人的回忆。它不是你。想从中探索出你自己的回忆,未必是正确的。探查完了一个又一个的记忆残片后,白姬心灰意冷了。

白姬意识到,自己可能根本不是什么异国的公主;

哪怕真的是远方国度的公主······被废黜的伟大统治者······体内流着王室贵族的血液······依旧只是凡人,而凡人无法永远保持坚强。

泪水划过脸颊。

骤然间,天空划过一道绯红的光幕。

倒不如说,是一块绯红的彗星。恰好,陨落在白姬的身边。

这是……红。

白姬吓了一跳。

红一下来就非常吃惊地看到,这里居然有其他人。

而不是记忆。

两人交谈起来。

白姬对红能够让物体漂浮起来感到很惊讶。

然后便不由得生出疑问,在这个破碎世界,还有其他人存在吗?

就这样,两人开始了同行。

可在后来的旅途中,红和白姬却偶有摩擦:白姬内心深处的骄傲,使得红感受到白姬似乎将红当作了附庸。

赶路本就疲惫,每段路径 e 都会带来 w_e 的不愉快度。

在其中若干个地点,爆发的摩擦则带来了 b_p 的不愉快度。

后来,走到了一个似曾相识的地方。这是,当初相遇的地方。

这个地方伸出两侧道路,一侧是白昼,而另一侧是黑夜。明和暗的界限,看上去非常朦胧。 在那光和影的分界口,又是一次摩擦,带来了 a_p 的不愉快度。红和白姬便在此分别了。

白姬感到很后悔, 但是……

白姬想知道,如果当初相遇时并不在此处,或者少经过了几个爆发摩擦的地方,两人是否 会分别。

【题目描述】

给定一张 n 个点 m 条边的无向连通图,点标号 $0 \sim n-1$,其中前 c 个点为关键点。每个点有点权 a_n ,边有长度 w_e 。关键点还额外有一个权值 b_n 。

你要选定一个起点,从起点开始,中间经过**至少** t 个关键点(允许重复经过一个关键点,但只统计一次),最后回到起点。起点可以是关键点,也可以不是。可以待在起点不移动,但那样所统计的关键点仅包括起点本身。

规定该方案的代价为 路径长度 $+a_{\text{\tiny zla}} + \sum_{q \in \mathsf{M}, q \in \mathsf{M}, q \in \mathsf{M}} b_q$,如果一个关键点被多次经过也只统计一次。

你要对 t = 1, 2, 3, ..., c 求出最小代价。

注意不保证无重边自环。

【输入格式】

```
从文件 neokosmo.in 中读入数据。
第一行三个整数 n, m, c。
```

接下来一行 n 个整数,表示 $a_0, a_1, \ldots, a_{n-1}$ 。

接下来一行 c 个整数,表示 $b_0, b_1, \ldots, b_{c-1}$ 。

接下来 m 行,每行三个数 u,v,w,表示存在一条连接 u,v 的边权为 w 的边。

【输出格式】

输出到文件 neokosmo.out 中。 一行 c 个数,分别表示 t = 1, 2, 3, ..., c 时的最小代价。

【输入输出样例】

请参见下发文件 neokosmo*.in/ans, 共 25 组,基本按照部分分的方法造。 为了方便你更好地理解题意,此处附一个手搓的样例 0,这份样例未被放入下发文件。建 **议使用该组样例及样例解释校验你对题意的理解,以免误读**。

【样例输入】

```
1 10 14 3
2 111 111 444 555 111 444 111 999 111 999
   888 111 0
   1 4 90
    2 3 10
    0 9 20
   4 5 0
   3 7 60
   9 3 90
   6 3 10
10
11 5 7 80
12 8 1 10
13 2 5 40
14 | 1 7 90
15
   5 4 0
   6 9 10
16
   0 8 10
```

【样例输出】

```
1 151 482 1250
```

【样例解释】

如图所示。

对于 t=1 的情况,可以走 $6 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 6$ 。

对于 t=2 的情况,可以走 $1 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 1$ 。

对于 t=3 的情况,可以走 $1 \rightarrow 8 \rightarrow 0 \rightarrow 9 \rightarrow 6 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 0 \rightarrow 8 \rightarrow 1$.

【数据范围与提示】

对于所有的数据, $1 \le c \le 20$, $c \le n \le 10^5$, $1 \le m \le 3 \times 10^5$, $0 \le a_p, b_p \le 10^{13}$, $0 \le w_e \le 10^9$ 。

以下是部分分配置, 各测试点等分。

测试点编号	n	c	测试点编号	n	c
$1 \sim 3$	$\leq 10^{5}$	= 1	$27 \sim 28$	= c	≤ 15
$4 \sim 6$	$\leq 10^{5}$	=2	$29 \sim 30$	$\leq 10^{2}$	≤ 15
$7 \sim 10$	$\leq 10^{5}$	=3	$31 \sim 32$	$\leq 10^{3}$	≤ 15
$11 \sim 12$	=c	≤ 8	$33 \sim 34$	$\leq 10^{5}$	≤ 15
$13 \sim 14$	$\leq 10^{2}$	≤ 8	$35 \sim 36$	=c	≤ 18
$15 \sim 16$	$\leq 10^{3}$	≤ 8	$37 \sim 38$	$\leq 10^{2}$	≤ 18
$17 \sim 18$	$\leq 10^{5}$	≤ 8	$39 \sim 40$	$\leq 10^{3}$	≤ 18
$19 \sim 20$	=c	≤ 12	$41 \sim 42$	$\leq 10^{5}$	≤ 18
$21 \sim 22$	$\leq 10^{2}$	≤ 12	$43 \sim 44$	= c	≤ 20
$23 \sim 24$	$\leq 10^{3}$	≤ 12	$45 \sim 46$	$\leq 10^{2}$	≤ 20
$25 \sim 26$	$\leq 10^{5}$	≤ 12	$47 \sim 48$	$\leq 10^{3}$	≤ 20
			$49 \sim 50$	$\leq 10^{5}$	≤ 20

【更多提示】

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成,你可以用下发样例来估计评测数据的实际范围。

Nirv lucE (nirvluce)

【题目背景】

还在那份甜美的回忆中的时候,红所抵达的那个小镇,其实就布满着技艺、信仰和魔法。 红意识到为何这里的一切都很反常规了……红本身就是从一个飞舞着玻璃碎片的世界进来 的,怎能断定这个回忆所处的世界没有所谓的「精灵」呢?

这份回忆属于一位工匠的助手,而那位工匠则是一位货真价实的巫师。

红尝试往小镇外走,却发现小镇外的橡树林已经是回忆的边界,不能再往外一步。

完成工匠拜托的差事,而非无端地离开镇子······这段回忆似乎只允许以固有的流程进行下去。

完成之后,红便离开了这片回忆;随即红又进入了下一份回忆中······如此反复。直到那一 簇碎片中的最后的几片回忆。

今日的红是一名档案员。

或者说,是在探索一座北方的古老城堡——北方其余的陆地,早已被一场大洪水吞没。

不过值得庆幸的是,尽管箱子几乎被浸湿,里面的文件却幸免于难。

这是一份古老的卷轴,里面记载了先祖与邪恶精灵斗争的历史,正契合的先前所经历的那 段回忆。

但是红的同伴觉得这份卷轴有可能是虚假的记录,因此红希望计算出这份卷轴的「刻板度」;如果「刻板度」过高,则很有可能是伪造的。

然而,「刻板度」的计算极为繁琐,红需要你的帮助。

具体的,我们设一段字符的「边界串」为同时为前缀和后缀的串。

则两段字符的「相对转化代价」为对第一段字符删去若干「边界串」直至剩下的「边界串」均为另一段字符的「边界串」,此时删去的「边界串」总长。

两段字符互相的「相对转化代价」中,较大的一个则称为「绝对转化代价」。

「刻板度」即为文本的任意两个后缀的「绝对转化代价」之和。

由于这份卷轴过于古老,所以文字的种类数非常繁多,绝不是小写英文字母足以囊括的。

由于这份卷轴前面的许多字符已不是很可见,红希望你能算出原文本的多个后缀的「刻板度」。

你能解决这个问题吗?

【题目描述】

我们称长度为 n 的字符串 S 为由 n 个在 $0 \sim m-1$ 内的整数构成的数列,我们称该数组中的各个元素为其的各个字符,依次记为 $S_0, S_1, \ldots, S_{n-1}$ 。

对一个字符串 S,我们称其子串 $S_{l\sim r}$ 为 $S_l, S_{l+1}, \ldots, S_r$ 这些字符顺次拼接起来形成的字符串。

我们称两个字符串相等当且仅当其长度相等且各字符顺次相同。即,对于字符串 A,B,我们称 A=B 当且仅当 n=m 且 $\forall 0 \leq j < n, A_i=B_i$ 。

对于一个长为 n 的字符串 S,我们称长度 b 为其的一个 Border 长度,当且仅当 $1 \le b \le n$ 且 $S_{0\sim b-1}=S_{n-b\sim n-1}$ 。在此基础上,我们称子串 $S_{0\sim b-1}$ 为其的一个 Border。

我们称字符串 A 对 B 的**相对代价**,为 A 的 Border 中不是 B 的 Border 的字符串的长度 之和。

我们称字符串 A 和 B 的**绝对代价**,为 A 对 B 的相对代价和 B 对 A 的相对代价中较大的一个,记为 f(A,B)。

我们称长度为 n 的字符串 S 的**刻板度**为其**每两个后缀的绝对代价之和**,也即

$$g(S) = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} f(S_{i \sim n-1}, S_{j \sim n-1})$$

现在给你一个长度为 n 的字符串 S, 你要对其最长的 c 个后缀子串 S', 求出 S' 的刻板度; 即,你需要对每个 0 < l < c 求出

$$h_l(S) = g(S_{l \sim n-1}) = \sum_{i=l}^{n-1} \sum_{j=i+1}^{n-1} f(S_{i \sim n-1}, S_{j \sim n-1})$$

由于答案可能很大,只用输出对 264 取模的结果。

【输入格式】

从文件 nirvluce.in 中读入数据。

第一行四个整数 n, m, c, o,其中 o 将指示更多特殊性质,请参见【数据范围与提示】一节的描述。

接下来一行 n 个整数, 依次表示 $S_0, S_1, S_2, \ldots, S_{n-1}$ 。

【输出格式】

输出到文件 nirvluce.out 中。

一行 c 个整数,依次表示 $h_0(S) \bmod 2^{64}, h_1(S) \bmod 2^{64}, h_2(S) \bmod 2^{64}, \dots, h_{c-1}(S) \bmod 2^{64}$ 。

【输入输出样例】

请参见下发文件 nirvluce*.in/ans, 共 50 组,基本按照部分分的方法造。

为了方便你更好地理解题意,此处附一个手搓的样例 0,这份样例未被放入下发文件。**建 议使用该组样例及样例解释校验你对题意的理解,以免误读**。

【样例输入】

1 5 10 5 0 2 5 3 5 3 5

【样例输出】

. 56 25 9 2 0

【样例解释】

设行表示 i, 列表示 j, 那我们有

$f(S_{i \sim n-1}, S_{j \sim n-1})$	0	1	2	3	4
0	0	9	5	9	8
1	9	0	6	4	6
2	5	6	0	4	3
3	9	4	4	0	2
4	8	6	3	2	0

【数据范围与提示】

对于所有的数据, $1 \le c \le n \le 10^6$, $1 \le m \le 10^6$, $0 \le o \le 2$ 。 以下是部分分配置,各测试点等分。o 将指示更多特殊性质,将在之后说明。

测试点编 号	n	c	m	0	测试点编 号	n	c	m	0
$1 \sim 2$	≤ 30	= 1	$=10^{6}$	= 0	$51 \sim 52$	$\leq 3 \times 10^4$	= n	= 2	= 1
$3 \sim 4$	≤ 30	= n	$=10^{6}$	=0	$53 \sim 54$	$\leq 3 \times 10^4$	= n	$=10^{6}$	=2
$5 \sim 6$	≤ 50	= 1	$=10^{6}$	= 0	$55 \sim 56$	$\leq 3 \times 10^4$	= n	$=10^{6}$	= 0
$7 \sim 8$	≤ 50	= n	$=10^{6}$	= 1	$57 \sim 58$	$\leq 3 \times 10^5$	= 1	=2	= 1
$9 \sim 10$	≤ 50	= n	$=10^{6}$	=0	$59 \sim 60$	$\leq 3 \times 10^5$	= 1	$=10^{6}$	=2
$11 \sim 12$	≤ 200	= 1	=2	= 1	$61 \sim 62$	$\leq 3 \times 10^5$	= 1	$=10^{6}$	=0
$13 \sim 14$	≤ 200	= 1	$=10^{6}$	= 0	$63 \sim 64$	$ \leq 3 \times 10^5 $	$ \leq 10^2 $	= 2	= 1
$15 \sim 16$	≤ 200	= n	= 1	= 1	$65 \sim 66$	$\leq 3 \times 10^5$	\leq 10^2	$=10^{6}$	= 0
$17 \sim 18$	≤ 200	= n	= 2	= 1	$67 \sim 68$	$\leq 3 \times 10^5$	\leq 10^3	= 2	= 1
$19 \sim 20$	≤ 200	= n	$=10^{6}$	= 0	$69 \sim 70$	$\leq 3 \times 10^5$	$\leq 10^{3}$	$=10^{6}$	= 0
$21 \sim 22$	$\leq 10^{3}$	= 1	= 1	= 1	$71 \sim 72$	$\leq 3 \times 10^5$	= n	= 2	= 1
$23 \sim 24$	$\leq 10^{3}$	= 1	= 2	= 1	$73 \sim 74$	$\leq 3 \times 10^5$	= n	$=10^{6}$	= 2
$25 \sim 26$	$\leq 10^{3}$	= 1	$=10^{6}$	=0	$75 \sim 76$	$\leq 3 \times 10^5$	= n	$=10^{6}$	= 0
$27 \sim 28$	$\leq 10^{3}$	= n	=2	= 1	$77 \sim 78$	$\leq 10^{6}$	= 1	= 1	= 1
$29 \sim 30$	$\leq 10^{3}$	= n	$=10^{6}$	=0	$79 \sim 80$	$\leq 10^{6}$	= 1	=2	= 1
$31 \sim 32$	$\leq 10^{4}$	= 1	=2	= 1	$81 \sim 82$	$\leq 10^{6}$	= 1	$=10^{6}$	=2
$33 \sim 34$	$\leq 10^{4}$	= 1	$=10^{6}$	=2	$83 \sim 84$	$\leq 10^{6}$	= 1	$=10^{6}$	=0
$35 \sim 36$	$\leq 10^4$	= 1	$=10^{6}$	=0	$85 \sim 86$	$\leq 10^6$	$ \leq 10^2 $	=2	= 1
$37 \sim 38$	$\leq 10^4$	= n	= 2	= 1	87 ~ 88	$\leq 10^{6}$	\leq 10^2	$=10^{6}$	= 0
$39 \sim 40$	$\leq 10^4$	= n	$=10^{6}$	= 2	89 ~ 90	$\leq 10^6$	\leq 10^3	= 2	= 1
$41 \sim 42$	$\leq 10^4$	= n	$=10^{6}$	= 0	$91 \sim 92$	$\leq 10^{6}$	\leq 10^3	$=10^{6}$	= 0
$43 \sim 44$	$\leq 3 \times 10^4$	= 1	= 1	= 1	$93 \sim 94$	$\leq 10^{6}$	= n	= 1	= 1
$45 \sim 46$	$\leq 3 \times 10^4$	= 1	= 2	= 1	$95 \sim 96$	$\leq 10^{6}$	= n	= 2	= 1
$47 \sim 48$	$\leq 3 \times 10^4$	= 1	$=10^{6}$	= 2	$97 \sim 98$	$\leq 10^{6}$	= n	$=10^{6}$	=2
$49\sim50$	$\leq 3 \times 10^4$	= 1	$=10^{6}$	= 0	$99 \sim 100$	$\leq 10^{6}$	= n	$=10^{6}$	= 0

接下来阐述关于 o 的特殊性质。

- o = 0 时,不保证特殊性质。
- o=1 时,保证 S 中各字符在 $0\sim m-1$ 中均匀独立随机生成。

• o=2 时,保证 S 中每个 S_i 在 $0 \sim \min\{m-1, n-i-1\}$ 中均匀独立随机生成。

【更多提示】

下发样例与真实数据使用同一个 Generator 和基本一致的参数生成,你可以用下发样例来估计评测数据的实际范围。