

Due Date: Sat Oct 17 2015 by 9 PM

Name: Solutions
Lab Section & TF:
Collaborators:
For Grading Purposes Only:
Q1: / 10 Q2: / 10 Q3: / 15 Q4: / 10 Q5: / 5
Total: / 50

Problem 1: Circuit Analysis (10 points)

Assume the following resistances: R1=R3=1 Ω , R2=2 Ω , R4=R6=2 Ω , and R5=1 Ω .

a. (5 points) For the circuit above, solve for Vx and V5 using the **node voltage method**.

First, redraw to simplify.

R1+R3

VX

NOVE

R2 A

R4+R5+R6

KCL @ Vx gives

$$\frac{10-Vx}{R_1+R_3} - \frac{Vx}{R_2} + 2A - \frac{Vx}{R_4+R_5+R_6} = 0$$

$$Vx \left(\frac{1}{R_1+R_3} + \frac{1}{R_2} + \frac{1}{R_4+R_5+R_6}\right) = \frac{10}{R_1+R_3} + 2$$

$$Vx \left(\frac{1}{3} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{3} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{2} + \frac{1}{5}\right) = \frac{10}{2} + 2 = 7$$

$$Vx \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8}$$

b. (5 points) Now, solve for Vx and V5 using **superposition**.

Problem 2: Thevenin Equivalent Circuit (10 points)

(10 points) For the circuit shown above, find the Thevenin equivalent circuit from the perspective of R_L . Please find V_{THEV} and R_{THEV} in terms of V_A , I_B , and R_{1-5} .

Problem 3: RC Circuit (15 points)

For the circuit shown above, find v_1 , v_2 , and the *current* through the voltage source for two conditions below.

a. (5 points) The voltage source is a DC source (e.g., battery) with $V_s = 20V$.

b. (5 points) The voltage source, V_s , is an AC source $V_s = 20\sin(2\pi ft)$, where f is very high frequency relative to the RC time constants of this circuit.

at high frequency,
$$C \Rightarrow$$
 short circuit

therefore $V_1 = V_2 = \phi V$

$$T_{SC} = \frac{V_S}{20K} = \frac{20}{20K} \cdot \sin(2\pi f t)$$

c. (5 points) Calculate the average power delivered by the source for both (a) and (b) above.

(a)
$$P = I \cdot V = \frac{1}{5} \cdot 20 = 4W$$

(b) $P = \frac{V_{RMS}}{R}$ where $V_{RMS} = \frac{V_{aupli+lade}}{V_{2}}$

From Lecture 3

$$P = \frac{20^{2}}{2(20K)} = \frac{400}{40K} = \frac{1}{100}$$

or $10\mu W$

Problem 4: Step Response of RL Circuit (10 points)

Please refer to the circuit shown (to the right) and answer the questions the below. The switch has been closed for a long time and opens at t=0 and remains open. Please provide your answers in terms of I_S , R_1 , R_2 and L.

a. (2 points) What is the current flowing through the inductor, L, at $t=0^{-}$ and $t=\infty$?

at
$$t=0^-$$
 at $t=\infty$

$$T_L = T_S$$

$$T_L = \frac{R_1}{R_1 + R_2} T_S$$
Chwentdivider

b. (3 points) What is the current flowing through R1 and R2 at $t=0^{\circ}$ and $t=\infty$?

at t=0

$$I_{R1} = 0$$

$$I_{R2} = 0$$

$$I_{R2} = \frac{R_2}{R_1 + R_2} I_S$$

$$I_{R2} = \frac{R_1}{R_1 + R_2} I_S$$

c. (5 points) Please *sketch* the voltage, $v_{out}(t)$, across the inductor vs. time.

Problem 5: Op-amp Circuit with C (5 points)

For this problem, assume V_s provides a unit voltage step, u(t), 0V for t<0 and transitions to 1V at t=0 and stays at 1V for t>0.

a. (5 points) For the op-amp circuit, sketch the resulting waveform for V_{out} versus time.

at
$$t=0^-$$
, $V_S=0$ + $V_{out}=0$
at $t=\infty$, $V_S=1$ + $V_{out}=\frac{-R_F}{R_S}$ $=\frac{-R_F}{R_S}$