Problem 1. Edge states in the SSH chain

In this problem we will explicitly consider both an semi-infinite chain as well as a finite chain to understand both edge states and their splitting

For the semi-infinite chain, the SSH Hamiltonian takes the form

$$H = \sum_{n=1}^{\infty} (t_1 | n, A \rangle \langle n, B | + t_2 | n + 1, A \rangle \langle n, B | + \text{h.c.}).$$
 (1)

- (a) Let $|\psi\rangle = \sum_{n} (\psi_{n,A} |n,A\rangle + \psi_{n,B} |n,B\rangle)$ and evaluate $H |\psi\rangle = E |\psi\rangle$ to obtain a recurrence relation for $\psi_{n,A}$ and $\psi_{n,B}$.
- (b) Derive a (normalizeable) solution for E = 0. Plot $|\psi_{n,A}|^2$ and $|\psi_{n,B}|^2$ vs. n. What conditions are needed for it to be normalizeable?
- (c) Write the recurrence relations in such a way that you eliminate ψ_{nA} (to obtain a recurrence relation solely in ψ_{nB}), and using the boundary condition $\psi_{0B} = 0$, solve the recurrence relations (Recall that if $a_{n+2} = pa_{n+1} + qa_n$ that we can find two solutions with $a_n = c\lambda_1^n + b\lambda_2^n$). We require normalization so $|\psi_{nB}| \to 0$ as $n \to \infty$, this will restrict $|\lambda_j| \le 1$ in fact you should find that for E > 0, $|\lambda_j| = 1$. If we let E = 0, can we recover the solution from part (b)? Why or why not?
- (d) Lastly, consider now the finite chain

$$H = \sum_{n=1}^{L} (t_1 | n, A) \langle n, B | + t_2 | n + 1, A \rangle \langle n, B | + \text{h.c.}).$$
 (2)

Argue or compute what the edge state localized at L looks like based on what you found in part (b). Approximate the n=1 edge state with $|\text{Left}\rangle = \sum_{n=1}^{L} (\psi_{nA} | n, A\rangle + \psi_{nB} | nB\rangle)$ (ψ_{nA} and ψ_{nB} coming from your part (b) solution) and similarly for the edge state localized at L, which we call $|\text{Right}\rangle$. With these edge states, compute the effective Hamiltonian

$$H_{\text{edge}} = \begin{pmatrix} \langle \text{Left}|H|\text{Left} \rangle & \langle \text{Left}|H|\text{Right} \rangle \\ \langle \text{Right}|H|\text{Left} \rangle & \langle \text{Right}|H|\text{Right} \rangle \end{pmatrix}. \tag{3}$$

What are the eigenstates and what is the effective gap between them?

Problem 2. Modified Bulk SSH model

Consider the usual SSH Hamiltonian

$$H_0 = \sum_{n=-\infty}^{\infty} (t_1 | n, A \rangle \langle n, B | + t_2 | n + 1, A \rangle \langle n, B | + \text{h.c.}), \tag{4}$$

but with an added term

$$V = t' \sum_{n=-\infty}^{\infty} (i | n+1, A \rangle \langle n, A | -i | n, A \rangle \langle n+1, A |)$$

$$(5)$$

- (a) For the full Hamiltonian $H = H_0 + V$ what symmetries remain in this Hamiltonian (list the symmetries of H_0 and indicate which ones V breaks and which ones it preserves)? What is its topological classification $(0, \mathbb{Z}_2, \text{ or } \mathbb{Z})$?
- (b) Find the k-space Hamiltonian for $H = H_0 + V$ and cast it into the form $H = \epsilon(k) + \mathbf{d}(k) \cdot \boldsymbol{\sigma}$. What are its eigenenergies?
- (c) Compute the polarization of the bottom band.

Problem 3. The quantum Hall effect with spin

Electrons have spin and that directly interacts with a magnetic field. In this problem, we will explore the implications of that.

(a) First, assuming a magnetic field in the $\mathbf{B} = B\hat{\mathbf{z}}$ in a two-dimensional electron gas. Using your favorite gauge, find the eigenstates and eigenenergies of the Pauli Hamiltonian

$$H_{\rm P} = \frac{1}{2m} \left(\mathbf{p} - \frac{e}{c} \mathbf{A} \right)^2 - \frac{e}{2mc} \mathbf{B} \cdot \boldsymbol{\sigma}. \tag{6}$$

In particular, note how spin changes things: What is the degeneracy of each Landau level (make your space finite in whichever way is convenient for your gauge so that you have a total flux Φ through the system)? How has the inclusion of spin changed this?

- (b) Define an operator $Q_1 = \frac{1}{\sqrt{4m}} (\mathbf{p} \frac{e}{c} \mathbf{A}) \cdot \boldsymbol{\sigma}$, and show that $H_P = 2Q_1^2$. and show that if you have an eigenstate $|\psi_E\rangle$ then $|\psi_E'\rangle = \sqrt{2/E} Q_1 |\psi_E\rangle$ is also an eigenstate (in general or for this specific problem). Q_1 is known as a *supercharge*.
- (c) Complex supercharge. Let the vector potential be $\mathbf{A} = (A_x(\mathbf{r}), A_y(\mathbf{r}), 0)$ (with \mathbf{A} independent of z; don't specify the gauge any further), and define

$$A = \frac{1}{\sqrt{2m}} \left[\left(p_x - \frac{e}{c} A_x \right) - i \left(p_y - \frac{e}{c} A_y \right) \right], \quad Q = (\sigma_x + i \sigma_y) A. \tag{7}$$

Compute Q^2 , $\{Q, Q^{\dagger}\}$, and $[A, A^{\dagger}]$. (Recall that the cyclotron frequency is $\omega_c = \frac{eB}{mc}$.)

(d) Write the Hamiltonian in the basis of spin \uparrow and spin \downarrow , and purely in terms of A and A^{\dagger} . Specifically, show that the partially projected operators $\langle \uparrow | H_{\rm P} | \uparrow \rangle = A^{\dagger} A$ and $\langle \downarrow | H_{\rm P} | \downarrow \rangle = A A^{\dagger}$ in terms of A and A^{\dagger} . These expressions are said to be *isospectral* in that the spectrum of both are the same except at zero energy. In particular, something called an *index theorem* relates them:

$$(\# \text{ of zeros of } A^{\dagger}A) - (\# \text{ of zeros of } AA^{\dagger}) = \Delta$$
 (8)

What is the index Δ in this problem? (*Hint*: Don't forget the degeneracy from part (a))

(e) Given a chemical potential $\mu = \epsilon_{\rm F} = \frac{5}{2}\omega_c$ what is the magnetization $M = \langle \sigma_z \rangle = \sum_{E < \mu} \langle \psi_E | \sigma_z | \psi_E \rangle$? Relate this back to Δ from part (d).