ЛАБОРАТОРНАЯ РАБОТА №53

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ПОЛЕВОГО ТРАНЗИСТОРА С P-N ПЕРЕХОДОМ

Поляков Даниил, 19.Б23-фз

Цель работы: ознакомиться с принципом работы полевого транзистора, измерить его выходные характеристики.

Схема установки

Расчётные формулы

• Зависимость силы тока стока от напряжения на стоке на линейном участке:

$$I = \frac{U_{c}}{R}$$

 $U_{
m c}$ — напряжение на стоке;

R — сопротивление транзистора.

• Крутизна характеристики:

$$S = \frac{\delta I}{\delta U_2}$$

 δI — приращение силы тока стока;

 $\delta U_{\scriptscriptstyle 3}$ — изменение напряжения на затворе.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\Delta_{f(x_1, x_2, \dots)} = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta_{x_2}\right)^2 + \dots}$$

Здесь I_{fit} — подмножество значений I, использованных при аппроксимации $I(U_3)$.

1

Порядок измерений

- 1. Измерим зависимость силы тока стока I от напряжения на стоке $U_{\rm c}$ при пяти фиксированных значениях напряжения на затворе $U_{\rm s}$. Изменяя напряжение на стоке $U_{\rm c}$, снимаем соответствующие значения силы тока I с амперметра. Точки выбираем так, чтобы шаг по току был примерно постоянным.
- 2. Измерим зависимость силы тока стока I от напряжения на затворе $U_{\scriptscriptstyle 3}$ при пяти фиксированных значениях напряжения на стоке $U_{\scriptscriptstyle c}$. Изменяя напряжение на затворе $U_{\scriptscriptstyle 3}$, снимаем соответствующие значения силы тока I с амперметра. Точки выбираем так, чтобы шаг по току был примерно постоянным.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности коэффициентов аппроксимации рассчитаны с доверительной вероятностью P=95%.

1. Зависимость силы тока стока от напряжения на стоке

Таблица 1. Зависимость силы тока стока от напряжения на стоке

$U_3 = -0.000 \text{ B}$		$U_3 = -0.100 \text{ B}$		$U_3 = -0.200 \text{ B}$		$U_3 = -0.300 \text{ B}$		$U_3 = -0.400 \text{ B}$	
$U_{\rm c}$, B	<i>I</i> , мА	$U_{\rm c}$, B	<i>I</i> , мА	$U_{\rm c}$, B	<i>I</i> , мА	$U_{\rm c}$, B	<i>I</i> , мА	$U_{\rm c}$, B	<i>I</i> , мА
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.06	0.15	0.07	0.15	0.08	0.15	0.08	0.15	0.08	0.15
0.15	0.30	0.16	0.30	0.17	0.30	0.19	0.30	0.20	0.30
0.25	0.45	0.27	0.45	0.28	0.45	0.31	0.45	0.33	0.45
0.28	0.60	0.30	0.60	0.33	0.60	0.35	0.60	0.38	0.60
0.39	0.75	0.42	0.75	0.45	0.75	0.48	0.75	0.53	0.75
0.49	0.90	0.53	0.90	0.57	0.90	0.62	0.90	0.69	0.90
0.58	1.05	0.63	1.05	0.69	1.05	0.76	1.05	0.86	1.05
0.69	1.20	0.75	1.20	0.82	1.20	0.92	1.20	1.06	1.20
0.81	1.35	0.88	1.35	0.98	1.35	1.11	1.35	1.34	1.35
0.93	1.50	1.03	1.50	1.16	1.50	1.36	1.50	1.79	1.50
1.24	1.80	1.20	1.65	1.38	1.65	1.73	1.65	2.87	1.65
1.67	2.10	1.40	1.80	1.68	1.80	2.46	1.80	5.93	1.80
2.60	2.40	1.66	1.95	2.21	1.95	4.37	1.95	8.73	1.89
8.30	2.76	2.08	2.10	3.68	2.10	8.35	2.10		
_		2.80	2.25	6.99	2.25				
		4.87	2.40	8.53	2.31	1 – 1 –		_	
		8.40	2.55	_					

График 1. Зависимость силы тока стока от напряжения на стоке

Экспериментальные точки были интерполированы эрмитовым сплайном.

Все полученные зависимости вблизи нуля имеют достаточно линейную форму, однако наблюдаются необычные хаотичные и, в то же время, систематические отклонения от линейности. Например, если удалить 4-ую ($I=0.45~\mathrm{mA}$) или 5-ую ($I=0.60~\mathrm{mA}$) точку, график будет выглядеть более линейным. В то же время, эта изломанная форма графика сохраняется в каждой серии измерений при различных U_3 , поэтому назвать эти отклонения случайными нельзя. Вероятно, внутреннее сопротивление транзистора немонотонно изменяется при изменении напряжения на стоке $U_{\rm c}$. Объяснить, почему так происходит, затруднительно.

При увеличении напряжения на стоке транзистор постепенно переходит в режим отсечки, и график приобретает почти горизонтальный вид. Дальнейшее увеличение напряжения сопровождается незначительным увеличением тока, т. е. дифференциальное сопротивление транзистора становится очень велико. При уменьшении $U_{\mbox{\tiny CH}}$ соответствующее напряжение насыщения $U_{\mbox{\tiny CH}}$ уменьшается.

По полученным данным определим минимальное сопротивление транзистора, т. е. его сопротивление на начальном линейном участке, для каждого U_3 . Сначала надо определиться, какие конкретно точки принадлежат линейному участку. Поступим следующим образом: аппроксимируем наборы ближайших к нулю точек, добавляя к каждому последующему набору по одной точке. Минимальное количество точек выберем равным 4. По результатам всех аппроксимаций выберем для каждого U_3 такое количество точек n, при котором коэффициент детерминации модели (adjusted \mathbf{R}^2) является наибольшим.

Аппроксимирующая зависимость имеет вид:

$$I = a \cdot U_c$$

Подобрав коэффициент a, найдём сопротивление R:

$$R = a^{-1}$$

Таблица 2. Результаты аппроксимации и сопротивление транзистора на линейном участке

<i>U</i> ₃ , B	-0.000	-0.100	-0.200	-0.300	-0.400
n	8	8	6	6	6
$oldsymbol{R^2}_{ m adj}$	0.9896	0.9887	0.9931	0.9888	0.9879
<i>а</i> , мА/В	1.87 ± 0.09	1.73 ± 0.09	1.70 ± 0.09	1.58 ± 0.11	1.46 ± 0.10
<i>R</i> , Ом	530 ± 30	580 ± 30	590 ± 30	630 ± 40	690 ± 50

Получаем, что сопротивление транзистора возрастает с уменьшением напряжения на затворе, что согласуется с теорией.

График 2. Зависимость силы тока стока от напряжения на стоке, линейный участок и аппроксимирующие прямые

Можно наблюдать хаотичное отклонение экспериментальных точек от прямых. Несмотря на это, относительное расположение точек при разных $U_{\scriptscriptstyle 3}$ стабильное, из-за чего эти отклонения нельзя назвать случайными.

2. Зависимость силы тока стока от напряжения на затворе

Таблица 3. Зависимость силы тока стока от напряжения на затворе

$U_{\rm c} = 2$	2.00 B	$U_{\rm c} = 4$	1.00 B	$U_{\rm c} = \epsilon$	5.00 B	$U_{\rm c} = 7$	7.00 B	$U_{\rm c} = 8$	3.00 B
U_3 , B	<i>I</i> , мА	U_3 , B	<i>I</i> , мА	<i>U</i> ₃, B	<i>I</i> , мА	U_3 , B	<i>I</i> , мА	U_3 , B	<i>I</i> , мА
0.008	2.25	0.000	2.58	0.000	2.67	0.000	2.67	0.000	2.73
0.086	2.10	0.076	2.40	0.048	2.55	0.058	2.55	0.070	2.55
0.172	1.95	0.147	2.25	0.123	2.40	0.127	2.40	0.140	2.40
0.255	1.80	0.217	2.10	0.188	2.25	0.196	2.25	0.209	2.25
0.344	1.65	0.288	1.95	0.258	2.10	0.267	2.10	0.279	2.10
0.433	1.50	0.367	1.80	0.328	1.95	0.340	1.95	0.351	1.95
0.524	1.35	0.441	1.65	0.402	1.80	0.417	1.80	0.428	1.80
0.622	1.20	0.522	1.50	0.476	1.65	0.492	1.65	0.503	1.65
0.720	1.05	0.602	1.35	0.557	1.50	0.568	1.50	0.583	1.50
0.821	0.90	0.694	1.20	0.638	1.35	0.651	1.35	0.662	1.35
0.943	0.75	0.784	1.05	0.727	1.20	0.738	1.20	0.751	1.20
1.086	0.60	0.880	0.90	0.818	1.05	0.829	1.05	0.843	1.05
1.141	0.45	0.994	0.75	0.912	0.90	0.925	0.90	0.935	0.90
1.316	0.30	1.132	0.60	1.027	0.75	1.038	0.75	1.048	0.75
1.539	0.15	1.186	0.45	1.163	0.60	1.174	0.60	1.186	0.60
1.793	0.03	1.356	0.30	1.213	0.45	1.223	0.45	1.236	0.45
		1.570	0.15	1.382	0.30	1.394	0.30	1.403	0.30
_		1.827	0.03	1.593	0.15	1.604	0.15	1.611	0.15
		_	_	1.848	0.03	1.845	0.03	1.861	0.03

График 3. Зависимость силы тока стока от напряжения на затворе

Экспериментальные точки были интерполированы эрмитовым сплайном.

При малых значениях напряжения на затворе график имеет линейный вид, после чего асимптотически приближается к нулю при достижении напряжения отсечки. Как и в случае зависимости $I(U_{\rm c})$, на этом графике наблюдается сильное отклонение одной и той же точки (при I=0.60 мА) для каждой из характеристик.

Определим крутизну полученных характеристик на линейном участке. Выделим линейные участки таким же методом, как в первой части работы. Аппроксимирующая зависимость имеет вид:

$$I = a \cdot U_3 + b$$

Коэффициент a и является крутизной характеристики S. Напряжение отсечки U_{30} найдём как точку пересечения аппроксимирующей прямой с I=0. Тогда оно выражается через аппроксимирующие коэффициенты:

$$U_{30} = -b/a$$

Таблица 4. Результаты аппроксимации, крутизна характеристики на линейном участке и напряжение отсечки

U_{c} , B	2.00	4.00	6.00	7.00	8.00
n	4	5	7	5	6
R ² adj	0.9995	0.9993	0.9995	0.9999	0.9986
<i>a</i> ≡ <i>S</i> ,	1.81	2.18	2.16	2.14	2.20
мА/В	± 0.10	± 0.09	± 0.05	± 0.03	± 0.10
<i>b</i> , мА	2.26	2.57	2.661	2.672	2.72
	± 0.02	± 0.02	± 0.012	± 0.005	± 0.02
<i>U</i> ₃₀ , B	1.25	1.18	1.23	1.25	1.23
	± 0.06	± 0.04	± 0.02	± 0.02	± 0.05

Получаем, что крутизна характеристики одинакова при всех $U_{\rm c}$ кроме 2 В. Напряжение отсечки одинаково во всех случаях.

График 4. Зависимость силы тока стока от напряжения на затворе, линейный участок и аппроксимирующие прямые

Экспериментальные точки хорошо укладываются на аппроксимирующие прямые.

Выводы

Подавая напряжение на затвор полевого транзистора можно изменять толщину p-n перехода и тем самым регулировать его пропускную способность. В работе был рассмотрен режим насыщения транзистора, при котором сопротивление p-n перехода остаётся постоянным, и режим отсечки, при котором дифференциальное сопротивление становится очень велико, и рост тока сильно замедляется. Сопротивление транзистора в режиме насыщения растёт при уменьшении напряжения на затворе, а напряжение насыщения уменьшается.