Quantum Anti-Gravity Generator (QAG-1): Technical Specifications and System Architecture

Quantum Technologies Division

June 12, 2025

System Overview

The Quantum Anti-Gravity Generator (QAG-1) is a revolutionary device based on the Unified Quantum Gravity-Particle Framework (UQGPF) that produces measurable repulsive forces through controlled quantum interactions. The core technology exploits axion-photon coupling in topological materials under intense electromagnetic fields.

1 Technical Specifications

2 System Architecture

2.1 Critical Components

Axion Generation Unit

• Material: Bismuth Selenide (BiSe) topological insulator

• Structure: 50nm thin-film with = axion field configuration

• Activation: 100fs laser pulses at 800nm wavelength

• Quantum Efficiency: 15% at 4K

Table 1: QAG-1 Performance Parameters

Parameter	Value	Unit
Maximum Thrust Output	32	pN
Operating Voltage	10	kV
Laser Power	0.5	PW (pulsed)
Pulse Duration	100	fs
Repetition Rate	10	${ m Hz}$
Operating Temperature	4-77	K
Power Consumption	1	kW
Continuous Operation	1000	hours
Force Resolution	0.1	aN

Field Generation Unit

- Capacitor Array: Graphene/hBN electrodes with 500nm gap
- Field Strength: $1.3 \times 10^{17} \text{ V/m}$ (10% of Schwinger limit)
- **Dielectric**: Vacuum-sealed at 10^{-7} Torr
- Electrode Coating: 10nm nanodiamond layer for spark suppression

Quantum Control System

- Processor: 50-qubit CMOS quantum chip
- Sensors: Nitrogen-vacancy centers in diamond
- Feedback Speed: 1ns response time
- Algorithms: Machine learning optimization of field parameters

Figure 1: QAG-1 System Architecture

3 Force Generation Mechanism

The anti-gravity force is produced through quantum electrodynamic processes:

$$\begin{split} F_{\rm anti-g} &= \kappa \frac{\alpha^2}{\pi} \left(\frac{E}{E_{\rm cr}}\right)^4 \frac{\hbar c}{r^2} \theta_{\rm axion} \eta_{\rm QE} \\ \text{where} \quad \kappa &= 1.6 \times 10^{-3}, \quad E_{\rm cr} = 1.3 \times 10^{18} {\rm V/m} \\ \theta_{\rm axion} &= \pi, \quad \eta_{\rm QE} = 0.15 \end{split}$$

Figure 2: Force density vs. electric field relationship

4 Industrial Applications

Space Propulsion Systems

- Orbital Maintenance: Station-keeping without propellant
- Deep Space Probes: Continuous acceleration capability

Precision Measurement

• Quantum Gravimeters: 10^{-18} g sensitivity

• Seismic Isolation: Nano-vibration suppression

• Casimir Force Cancellation: For nanoscale devices

5 Manufacturing Process

Nanofabrication Steps

1. Wafer Preparation: 100mm Si wafers with thermal oxide

2. Graphene Growth: CVD at 1000°C (CH/H atmosphere)

3. hBN Transfer: Mechanical exfoliation and alignment

4. Nano-Patterning: E-beam lithography with 10nm resolution

5. **BiSe Deposition**: MBE at 10^{-10} Torr

Assembly and Calibration

Table 2: Manufacturing Cost Breakdown

Component	Cost (USD)	% of Total
Nanofabrication	50,000	35%
Laser System	70,000	49%
Quantum Processor	20,000	14%
Calibration	4,000	2%

6 Development Timeline

Conclusion

The QAG-1 represents the first practical implementation of quantum antigravity technology. With its compact size $(10 \times 10 \times 5 \text{ cm})$, modular archi-

Table 3: Technology Development Roadmap

	Oi	<u> </u>
Phase	Timeline	Milestone
Lab Prototype	2024-2026	1pN force demonstration
Engineering Model	2026-2028	Space-qualified version
Commercial Unit	2028-2030	Terrestrial applications
Advanced QAG-2	2030-2035	100nN thrust capability

tecture, and compatibility with standard cryogenic systems, it enables revolutionary applications in space propulsion and precision measurement. The 2026 prototype will demonstrate force generation at the piconewton level, with commercial availability projected for 2028.