

https://ieeexplore.ieee.org/abstract/document/8441801

9

4. LEARNING ALGORITHM

Policy Gradient

Returns:
$$G = E_{s_{t+1} \sim P_{a(s_t, s_{t+1})}} \left[\sum_{t=0}^{\infty} \gamma^t R_{a_t}(s_t, s_{t+1}) \right] = E_{\tau}[R(\tau)]$$

- Directly evaluating G as an objective function
- Represent policy as a function approximator (e.g. neural network): $\pi(a|s)$
- Use gradient ascent and backpropagation to improve $\pi(a|s)$

4. LEARNING ALGORITHM

Proximal Policy Optimization (PPO)

- · Limit the deviation of new policy Avoid destructive updates
- Use Advantage instead of Monte-Carlo return
 - ➤ Reduce gradient variance
- · Can monotonically improve policy

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϵ

Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k=\pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

 $\theta_{k+1} = \arg \max_{a} \mathcal{L}_{\theta_k}^{\mathit{CLIP}}(\theta)$

by taking K steps of minibatch SGD (via Adam), where

$$\mathcal{L}_{\theta_k}^{\textit{CLIP}}(\theta) = \underset{\tau \sim \pi_k}{\text{E}} \left[\sum_{t=0}^{T} \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \text{clip}\left(r_t(\theta), 1 - \epsilon, 1 + \epsilon\right) \hat{A}_t^{\pi_k}) \right] \right. \\ \left. \left. \left[r_t(\theta) = \frac{\pi_{\theta(\text{cl}\ \mid s_t)}}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \right] \right. \right.$$

end for

13

Generalized Advantage Estimates (GAE)

- Similar approach with TD(λ)
- Bias-Variance trade-off
 - λ = 0: 1-step return
 - λ = 1: Monte-Carlo return with baseline
- Only estimate value function (V)

14

4. LEARNING ALGORITHM

Proposed Modifications

• Use advantage definition

$$\delta_t^A = Q_{s_t} - V_{s_t}$$

Use Q-function to estimate action values

15

4. LEARNING ALGORITHM

Q-function Approximation (Theory)

- Represent Q-function as a neural network Q_{ϕ}
- Action values recursive relation
 - SARSA(0)

$$Q^{\pi}(s,a) = r + \gamma Q^{\pi}(s',a')$$

• Minimizes Time-Difference Error

$$\phi^* = \underset{\phi}{\operatorname{argmin}} \left(Q_{\phi}(s, a) - \left(r + \gamma Q_{\phi}(s', a') \right) \right)$$

4. LEARNING ALGORITHM

Q-function Approximation (Practice)

- Represent 2 Q-functions as neural networks:
 - Learning function Q_ϕ
 - ullet Target function $Q_{\phi_{targ}}$
- Uses replay buffer to store and sample training data
 - (s, a, r, s') tuples
- Minimizes Mean Squared Bellman Error (MSBE):

$$\frac{1}{N} \sum_{i=0}^{N} \left(Q_{\phi}(s_i, a_i) - y(r_i, s_i', d_i) \right)^2$$

where y(.) is the regession target

Deep Q-Network

Deep Deterministic Policy Gradient

Soft Actor-Critic

19

Target Q-Values

$$y(r_i, s_i', d_i) = r_i + \gamma (1 - d_i) Q_{\phi_{targ}}(s_i', \tilde{\alpha}')$$

where:

 d_i indicates whether or not the state is terminal,

 \tilde{a}' is the action sampled from the lastest policy for state s'_i .

- Uses target Q-function, $Q_{\phi_{targ}}$ to calculate regression targets
- Samples training data from replay buffer
- $ilde{a}'$ ensures that $Q_{m{\phi}}$ is on-policy
- Update $Q_{\phi_{targ}}$ by polyak averaging $\phi'_{targ} = (1-\rho)\phi + \, \rho\phi_{targ}$

$$\phi'_{targ} = (1 - \rho)\phi + \rho\phi_{targ}$$

4. LEARNING ALGORITHM

Model-based Reinforcement Learning

- Suppose there exists a function \mathcal{T} such that: $\mathcal{T}(s,a)=(s')$
- Approximate ${\mathcal T}$
- Motivations:
 - Physical interactions are expensive
 - · Hard or unable to simulate environment
- Advantages:
 - · Sample-efficient
 - · Accelerate learning if model is accurate

4. LEARNING ALGORITHM

Learning Transition Dynamics

- Model ${\mathcal T}$ with a function approximator
- Collect state transitions (s, a, s') or sample from replay buffer
- Solve regression problem

 $\mathcal{L}_{dyn} = \frac{1}{N} \sum_{i=1}^{N} (T_{\omega}(s_i, a_i) - s_i')^2$

 $\mathcal{T}_{\omega}(.)$ is the dynamic model to be trained with parameters $\omega,$ N is the number of sampled data from D.

Algorithm 1: Q-PPO
1: Input: - Initial policy parameters θ_0

- Initial value function parameters η_0 Initial Q-function parameters ϕ_0
- Initial dynamic model parameters ω_0
- Set target Q-function parameters $\phi_{targ} \leftarrow \phi_0$

- Greate empty repay buffer \mathcal{D} . for k=1,2,3,...do Collect set of trajectories $\{r_k\}$ by running policy π_{θ_k} in environment. Generate imaginary rollouts using dynamic model \mathcal{D}_{ω_k} and add them to $\{r_k\}$.
- Add all tuples (s, a, r, s') from $\{\tau_k\}$ to \mathcal{D} .
- Compute \hat{A}' for all collected states s with Q_{ϕ_k} and V_{η_k} .
- Update policy parameter θ_k via stochastic gradient ascent. Update value function parameters η_k by minimizing the loss:

- Sample training set $\{\mathcal{R}_k\}$ from \mathcal{D} .
- Update Q-function parameters ϕ_k using samples from $\{\mathcal{R}_k\}$ 12: 13: Update ϕ_{targ} .
- 14: Upda 15: end for Update dynamic model parameters ω_k using samples from $\{\mathcal{R}_k\}$.

22

4. LEARNING ALGORITHM

Implementation

5. EXPERIMENTS AND RESULTS

Test Environments (OpenAl Gym)

24

