ANÁLISIS NUMÉRICO I 75.12 - 95.04 - Curso 6

FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES

Segundo Cuatrimestre 2016

Trabajo Práctico 1

Introducción

Resolver aproximadamente la siguiente ecuación:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

donde u(x,y) representa la temperatura en el punto (x,y) del plano.

Considerando la ecuación en el rectángulo $[0,a] \times [0,b]$, siendo a = (n+1)*h y b = (m+1)*h, superponiendo al dominio $[0,a] \times [0,b]$ una malla formada por cuadrados de lado h, es posible obtener la solución aproximada en los nodos de la malla.

Objetivo

Implementar en Octave las funciones que permitan determinar las temperaturas en los nodos de la malla, evaluando la conveniencia del uso de métodos directos e iterativos.

Desarrollo

- 1) Obtener el Sistema de Ecuaciones Lineales (SEL) a partir de las derivadas parciales en x e y, indicando por $u_{i,j}$ el valor de u en el punto $(x_i, x_j) = (i * h, j * h), i = 0, 1, \dots, n + 1, j = 0, 1, \dots, m + 1$
- 2) Construir la matriz del SEL, ordenando los nodos de la malla de arriba hacia abajo y de izquierda a derecha.
- 3) Considerar la ecuación en el rectángulo $[0,1] \times [0,1]$ con las siguientes condiciones:

$$u(x,0) = u(x,1) = 0 u(0,y) = u(1,y) = y(1-y)$$

- a) Obtener el SEL resultante al discretizar con h=0.1 y resolverlo mediante un método directo.
- b) Resolver el SEL mediante los métodos de Jacobi y Gauss-Seidel.
- c) Hallar un factor ω que acelere la convergencia por el método de sobrerrelajación.
- 4) Comparar las soluciones obtenidas y extraer conclusiones con respecto a la aplicación de los métodos directos e iterativos para las condiciones de este caso en particular.

Fecha de Entrega

03/10/2016 por Campus.