Veri Tabanı Yönetimi ve Modellemesi

HAFTA 2

Haftalık Ders Akışı

- 1. Veritabanı Kavramlarına Giriş
- 2. Veri Tabanı Türleri, İlişkisel Veri Tabanı 9. Tasarımı
- 3. ER Diyagramları ve Normalizasyon
- 4. SQL Server Arayüzü, Veri Tabanı Nesneleri
- 5. T-SQL ve SQL Sorguları
- 6. Indeks ve View
- 7. Stored Procedure ve Fonksiyonlar

- 8. Ara Sınav
- 9. Tetikleyiciler
- 10. Transaction Kavramları ve Yedekleme
- 11. Kullanıcı Türleri ve Kullanıcı Yönetimi
- 12. No-SQL Veri Tabanları
- 13. No-SQL Veri Tabanları
- 14. Proje Sunumu
- 15. Proje Sunumları

Kaynak Kitaplar

- ORaghu Ramakrishnan & Johannes Gehrke, Database Management Systems, 3rd Edition, 2003
- oJan L. Harrington, Relational Database Design and Implementation, 4th Edition, 2009
- OVijay Krishna Pallaw, Database Management Systems, 2nd Edition, 2013
- Thomas Connolly & Carolyn Begg, Database Systems A Practical Approach to Design, Implementation, and Management, 6th Edition, 2015
- Carlos Coronel & Steven Morris, Database Systems Design, Implementation, and Management,
 12th Edition, 2016
- OR. Elmasri & S.B. Navathe, Fundamentals of Database Systems, 7th Edition, 2016
- Louis Davidson & Jessica Moss, Pro SQL Server Relational Database Design and Implementation,
 5th Edition, 2016

DBMS

- Gerçek dünya problemi
- Verinin Saklanması
- Veriler arasındaki bağlantılar
- oİlişkisel Veri Modeli

Veri Modeli

- Gerçek dünya problemi
- OVeri yapıları
- Grafiksel gösterimi

Veri Modeli Tasarlarken?

- OProblem Ne
- Problemin yazınsal ve grafiksel gösterimi
- oGenelden ──── Detaya
- Detayların şekilsel desteklenmesi

Veri Modeli Tasarlarken?

- Problemin yazınsal ve grafiksel gösterimi
- OVeri yapılarının belirlenmesi (şemalar)
- Problemin içinde tanımlı kural yapıları
- Veri dönüşümleri için uygulanacak yöntem
- ONihai Tasarım: Deneme Yanılma

Problem Belirleme Adımları

- Firmanın kuralları
 - Yasal prosedürler
 - Standartlar
- oİşin kuralları
 - o İşin yapılmasında takip edilen iş planları
 - o Hasta –ilaç: Hasta kaydı açılması
 - o İşin müşteri/çalışan/diğer işler ile ilişkisi
 - Müşteri-Fatura
- oİsimlendirme kuralları
 - Firmanın kullandığı özel terimler

Veri Modeli Yapı Taşları

- •Varlıklar
 - o Kişi
 - Yer
 - Eşya
 - Olay
- ONitelikler
 - Kişi :ad,soyad
 - Yer:Konum
- oİlişkiler
- •Kısıtlamalar

İlişki Türleri

Veri Modelinin Önemi

- Tasarımcı, uygulama geliştiricisi ve son kullanıcı
- Tasarlanan birime genel bakış
- Yetki Kontrolleri

Veri Modeli Türleri

- ODosya Sistemleri
- Hiyerarşik Model
- OAğ Modeli
- oİlişkisel(Relational) Model
- OVarlık-İlişki(Entity Relationship) Modeli
- ONesne Tabanlı (Object Oriented) Model
- OXml tabanlı model
- ONoSQL

Hiyerarşik Model

- OAğaç yapısında:
 - Ebeveyn- çocuk ilişkisi
- OAvantajları:
 - Basit
 - o 1:M ilişki
 - Veri bağımsız
 - Veri Entegresi kolay
- ODezavantajları:
 - Uygulamak zor
 - Esnek değil

Ağ Modeli

- Ağaç modelinde birden fazla root olması
- OAvantajları:
 - Basit
 - o 1:M ve N:M ilişkiler
- ODezavantajları:
 - Karmaşık
 - Kullanıcı dostu değil
- Bugün kullanılan Şema,DML,DDL gibi kavramlarınTanımı Ağ Modeli sayesindedir.

İlişkisel Model

- Codd tarafından, 1970
- oİlişkisel veri tabanındaki tüm bilgiler tablolardaki değerlerle tamamen tek ve tek bir şekilde temsil edilir.
- OHer bir verinin (atomik değer), tablo adı, anahtar değeri veya sütun ismi gibi farklı parametreler kullanılarak erişilebilir olmalıdır.
- Eksik bilgiden kaynaklı oluşabilecek NULL değerler desteklenir.
- OVeri tabanındaki açıklamalar; mantıksal seviyede, sıradan verilerle aynı şekilde gösterilir. Yani yetkili kullanıcılar, aynı ilişkisel dili kullanarak hem sıradan verilere hemde açıklamalara ulabilirler.
- oİlişkisel bir sistem birkaç dili veya çeşitli metodolojileri destekleyebilir. Ancak veri tanımlama, görüntüleme, kısıtlama, yetkilendirme gibi çeşitli özelliklerin tanımlanabileceği en az bir dil olamalıdır.

İlişkisel Model

- Tüm görünümler güncellenebilir olmalıdır.
- OYüksek seviyeede; ekleme, silme, güncelleme işlemlerinin yapılabilir olmalıdır.
- ODepolamada veya erişim yöntemlerinde bir değişiklik yapıldığında uygulama programlarında bir değişim yapılmasına gerek duyulmamalıdır.
- OTablo sütunlarında herhangi bir değişim yapıldığında uygulama programlarında bir bozulmanın olmaması gerekir
- oKısıtlamalar veritabanı tarafından tanımlanabilmelidir.
- OVerinin hangi diskte saklandığı yada fiziksel olarak nerede bulunduğu ile ilgili işlemlerin DBMS tarafından yapılması gerekir.
- ODBMS düşük seviye bir dil tarafından destekleniyorsa, yüksek seviyeli dil tarafında yazılmış kuralları uygulamak zorundadır.

İlişkisel Model

oİlişkisel model ençok kullanılan veritabanı

ER Model

- Veritabanına geçiş sürecinde kolaylık sağlar
- OGrafiksel gösterimi sayesinde anlaşılır, basit
- •Varlık
 - Çalışan
 - o Öğrenci
- Özellik
 - Çalışana yada öğrenciye ait isim
- oİlişkiler
 - Çalışanın birimi
 - Öğrencinin aldığı ders

ER Model

3 Farklı gösterimi

- OChen
- Crow's Foot
- OUML

Nesneye Dayalı Model

- oEr Modelindeki varlıklar, bu modelde Nesne olarak düşünülebilir
- OÖzellikler ise, nesnenin nitelikleridir.
- OBenzer özellikteki nesneler gruplanır.
- Sınıflar hiyerarşik olarak düzenlenir.
- OUML diyagramları kullanılarak gösterimler gerçekleştirilir.

Nesneye Dayalı Model

Nesne/İlişkisel ve XML veri Modeli

- Yapılandırılmamış veri alışverişi için ortaya çıkmıştır
- OXML verilerinde içerik olarak; sözcük, belge, web sayfası...vb

NoSQL

Büyük Veri?

- OUzun yıllardır devam eden müşteri geçmişi
- Sensör verileri
- Sosyal medyadaki davranış kalıpları
- •GPS verileri

Büyük veri ve V kavramı

Sık kullanılan teknolojiler

Hadoop

- Java tabanlı
- Dağıtık çalışan
- Hesaplama kapasitesine sahip

MapReduce

- O API
- Verinin paralel olarak dağıtılması
- Hesaplama sonuçlarının birleştirilmesi

ONoSql

Dağıtılmış veritabanı sistemi

NoSql

- oİlişkisel veri modelini kullanmazlar
- ODağıtık veritabanı mimarisini destekler
- Ölçeklenebilir
- Hata toleransına sahip
- OYüksek miktarda veri işleyebilen
- Onceliği işlem tutarlılığı yerine performansa verir

Applications that work best with NoSQL

Social

Enterprise

FIGURE 2.5 A SIMPLE KEY-VALUE REPRESENTATION

Trucks-R-Us

Driver 2732

Data stored using traditional relational model

DID	CERT1	CERT2	CERT3	DOB	LICTYPE	
732	80		95	1/24/1962	P	4
946		92		4/11/1970		
950 950	86			11/27/1963	R	
	732 946	732 80 946	732 80 946 92	732 80 95 946 92	732 80 95 1/24/1962 946 92 4/11/1970	732 80 95 1/24/1952 P 946 92 4/11/1970

- In the relational model:
 - Each row represents one entity instance.
 - Each column represents one attribute of the entity.
 - The values in a column are of the same data type.
- In the key-value model:
 - Each row represents one attribute/value of one entity instance.
 - The "key" column could represent any entity's attribute.
 - The values in the "value" column could be of any data type and therefore it is generally assigned a long string data type.

Data stored using key-value model

Į	DID	KEY	VALUE
١	2732	CERT1	80
	2732	CERT3	95
	2732	DOB	1/24/1962
	2732	LICTYPE	P
	2946	CERT2	92
	2946	DOB	4/11/1970
	3850	CERT1	86
	3650	DOB	11/27/63
	3550	LICTYPE	R

Veri Modellerinin Tarihsel Gelişimi

DATA MODEL	DATA INDEPENDENCE	STRUCTURAL INDEPENDENCE	ADVANTAGES	DISADVANTAGES
Hierarchical	Yes	No	 It promotes data sharing. Parent/child relationship promotes conceptual simplicity. Database security is provided and enforced by DBMS. Parent/child relationship promotes data integrity. It is efficient with 1:M relationships. 	 Complex implementation requires knowledge of physical data storage characteristics. Navigational system yields complex application development, management, and use; requires knowledge of hierarchical path. Changes in structure require changes in all application programs. There are implementation limitations (no multiparent or M:N relationships). There is no data definition or data manipulation language in the DBMS. There is a lack of standards.
Network	Yes	No	 Conceptual simplicity is at least equal to that of the hierarchical model. It handles more relationship types, such as M:N and multiparent. Data access is more flexible than in hierarchical and file system models. Data owner/member relationship promotes data integrity. There is conformance to standards. It includes data definition language (DDL) and data manipulation language (DML) in DBMS. 	 System complexity limits efficiency—still a navigational system. Navigational system yields complex implementation, application development, and management. Structural changes require changes in all application programs.
Relational	Yes	Yes	 Structural independence is promoted by the use of independent tables. Changes in a table's structure do not affect data access or application programs. Tabular view substantially improves conceptual simplicity, thereby promoting easier database design, implementation, management, and use. Ad hoc query capability is based on SQL. Powerful RDBMS isolates the end user from physical level details and improves implementation and management simplicity. 	 The RDBMS requires substantial hardware and system software overhead. Conceptual simplicity gives relatively untrained people the tools to use a good system poorly, and if unchecked, it may produce the same data anomalies found in file systems. It may promote islands of information problems as individuals and departments can easily develop their own applications.
Entity Relationship	Yes	Yes	 Visual modeling yields exceptional conceptual simplicity. Visual representation makes it an effective communication tool. It is integrated with the dominant relational model. 	 There is limited constraint representation. There is limited relationship representation. There is no data manipulation language. Loss of information content occurs when attributes are removed from entities to avoid crowded displays. (This limitation has been addressed in subsequent graphical versions.)
Object oriented	Yes	Yes	 Semantic content is added. Visual representation includes semantic content. Inheritance promotes data integrity. 	 Slow development of standards caused vendors to supply their own enhancements, thus eliminating a widely accepted standard. It is a complex navigational system. There is a steep learning curve. High system overhead slows transactions.
NoSQL	Yes	Yes	 High scalability, availability, and fault tolerance are provided. It uses low-cost commodity hardware. It supports Big Data. Key-value model improves storage efficiency. 	 Complex programming is required. There is no relationship support—only by application code. There is no transaction integrity support. In terms of data consistency, it provides an eventually consistent model.

Veri Tabanı Türleri

- Kullanıcı türüne göre
 - Tek kullanıcılı
 - Çok kullanıcılı
- Konumuna göre:
 - Merkezi DBMS
 - Dağıtık DBMS
 - Paralel DBMS
 - Oclient/Server DBMS

Merkezi DBMS

OAvantaj

- Güncelleme, yedekleme, sorgu, kontrol erişimi kolay
- Veritabanı boyutu, konumlandırılan bilgisayarı etkilemez

Dezavantaj

- Bozulma durumunda tüm kullanıcılar etkilenir
- o İletişim maliyetleri pahalı olabilir

Dağıtık DBMS

OBiruygulama coğrafi olarak farklı makinelere dağıtılan veriler üzerinde çalışabilir.

OAvantaj:

- o Farklı seviyelerde transperancy ile dağıtılmış verilerin yönetimi.
- Artan Güvenilirlik ve Kullanılabilirlik.
- o Dağıtılmış sorgu işleme.
- Performansı iyileştirme.
- Geliştirilmiş ölçeklenebilirlik
- Paralel değerlendirme.
- Dağıtılmış veritabanı kurtarma.
- Çoğaltılmış Veri yönetimi
- Güvenlik
- Ağ şeffaflığı.
- Daha fazla verimlilik ve daha iyi performans sağlar.
- Çoğaltma saydamlığı.

Dağıtık DBMS

Dezavantajları

- o Birbirine benzemeyen makinenin bağlanması ile ilgili teknik sorun.
- Yazılım maliyeti ve karmaşıklığı.
- Veri bütünlüğü kontrolünde zorluk.
- o Genel gider işleme.
- o İletişim ağı arızaları.
- O Başarısızlıktan kurtarma daha karmaşıktır.

Paralel DBMS

(c) Independent resource

Paralel DBMS

OAvantaj

- Büyük veritabanlarını sorgulamak veya saniyede çok fazla sayıda işlem yapmak zorunda kalan uygulamalar için çok kullanışlıdır.
- Veri sunucusu sistemlerinde, belirli teknikler kullanılarak sistem hızlandırılır.
- OGeçiş (belirli bir zaman aralığında tamamlanabilecek görev sayısı) ve yanıt süresi (yani, tek bir görevi tamamlamak için harcadığı zaman miktarı) gönderildiği zaman) çok yüksektir.

Dezavantajları

- Başlangıç maliyeti vardır ve başlangıç zamanı gerçek işlem süresini gölgeleyebilir.
- Genellikle paylaşılan kaynaklara eriştiğinden, yavaşlama, paylaşılan veri depolama diskleri, sistem veriyolu vb. gibi yaygın olarak tutulan kaynaklar için mevcut işlemlerle rekabet ettiğinden, her yeni işlemin müdahalesinden kaynaklanabilir.

Client/Server DBMS

OAvantajları:

- Kullanıcıların daha verimli çalışmasını
- Mevcut verilerin daha iyi kullanılmasını
- Merkezi sisteme göre daha esnektir.
- Tek bir veritabanı (sunucuda) birkaç farklı istemci (uygulama) sistemi arasında paylaşılabilir.
- o İstemci / sunucu mimarisi daha iyi bir DBMS performansı sağlar.

Dezavantajları

- İşçi veya programlama maliyeti
- Ağ ortamları için performans izleme ve ayarlama ve güvenlik kontrolü için yönetim araçları eksikliği vardır.

Veritabanı Dilleri

- OData Definition Language (DDL)
- OData Manipulation Language (DML)
- OData Control Language (DCL)
- OData Ouery Language (DQL)

DDL(Data Definition Language)

Varlıkları oluşturmak için kullanılan dildir.

- (i) CREATE: Veritabanında nesneler oluşturmak için.
- (ii) ALTER: Veritabanının yapısını değiştirir.
- (iii) DROP: Nesneleri verilerden silin.
- (iv) TRUNCATE: Kayıtlar için ayrılan tüm alanlar dahil, tüm kayıtları bir tablodan kaldır.
- (v) COMMENT: Veri sözlüğüne yorum ekleme

DML(Data Manipulation Language)

- OVeritabanından veri alınması.
- OVeriyi veri tabanından silme
- OYeni verilerin veritabanına eklenmesi
- Veritabanındaki verilerin değiştirilmesi.
- ODML temelde iki türdür:
- OProsedürel DML: Prosedürel DML'ler bir kullanıcının hangi Verilere ihtiyaç duyulduğunu ve bu verilerin nasıl elde edileceğini belirlemesini gerektirir.(SELECT value)
- OProcedürel Olmayan DML'ler: Bu DML'ler, bir kullanıcının bu verilerin nasıl alınacağını belirtmeden hangi verilere ihtiyaç duyulduğunu belirlemesini gerektirir. (SELECT *)
- OSELECT, INSERT, UPDATE, DELETE, LOCK TABLE

DCL(Data Control Language)

- OVeriye ve veritabanına erişimi kontrol eden SOL ifadelerinin bileşenleridir.
- COMMIT
- **OROLL-BACK**
- **OSAVE POINT**
- OGRANT/REVOKE
- **OSET TRANSACTION**

DQL(Data Query Language)

Veritabanından veri almayı ve üzerine sipariş vermeyi sağlayan

SOL ifadesinin bir bileşenidir.

Sorgu: Bir sorgu bilgi alınmasını isteyen bir ifadedir.

