4. <u>Определение</u> (линейной независимости матриц). Система матриц одинакового размера $A_1, A_2, \cdots A_k$ линейно независима, если нулевая матрица раскладывается по ней однозначно, т.е. из равенства

$$\alpha_1 A_1 + \alpha_2 A_2 + \dots + \alpha_k A_k = 0$$

следует, что $\alpha_1=\alpha_2=\cdots=\alpha_k=0$.

- 5. Система линейных уравнений является невырожденной, если определитель матрицы, составленной из коэффициентов системы, квадратный и отличен от нуля, т.е. если число уравнений системы равно числу неизвестных и определитель матрицы системы отличен от нуля.
- 6. <u>Теорема Кронекера-Капелли.</u> Для совместимости системы m линейных уравнений с n неизвестными необходимо и достаточно, чтобы ранг матрицы системы был равен рангу ее расширенной матрицы.

Векторная алгебра

Векторы

1. Направленный отрезок.

 \overrightarrow{AB}

2. Длина направленного отрезка.

$$\left|\overrightarrow{AB}\right| = AB$$

3. Сонаправленные отрезки.

[AB)

(CD]

 $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$

 $\overrightarrow{AB} \uparrow \downarrow \overrightarrow{CD}$

4. Эквивалентные отрезки.

$$\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$$

$$\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD} \qquad |\overrightarrow{AB}| = |\overrightarrow{CB}|$$

5. Свободный вектор (вектор).

$$|\vec{a}| = a$$

7. Коллинеарные векторы.

8. Компланарные векторы.

9. Угол между векторами.
$$\vec{a}$$
, \vec{b}

$$\vec{a}$$
,

$$\overrightarrow{AB}$$
,

$$\overrightarrow{AC}$$

$$\widehat{\vec{a}}, \widehat{\vec{b}}$$

10. Равенство векторов.

1. Определение. Направленным отрезком, или связанным вектором называется отрезок прямой одна из граничных точек которого принята за начало, а другая за конец.

или Отрезок прямо, концы которого упорядочены, т.е. известно какой конец первый, а какой второй

- 1. Направленный отрезок.
- **2. Определение.** Длиной или модулем направленного отрезка \overrightarrow{AB} называется расстояние между точками A и B

$$\left|\overrightarrow{AB}\right| = AB$$

3. Определение. Направленные отрезки \overrightarrow{AB} и \overrightarrow{CD} называются сонаправленными, если лучи [AB) и (CD] сонаправлены.

$$\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$$

За. Определение. Направленные отрезки \overrightarrow{AB} и \overrightarrow{CD} называются противоположно направленными, если лучи [AB) и (CD] противоположно направлены.

$$\overrightarrow{AB} \uparrow \downarrow \overrightarrow{CD}$$

4. Определение. Направленный отрезок, начало и конец которого совпадают, называется нулевым направленным отрезком.

Направление нулевого направленного отрезка не определено, а длина его считается равной нулю.

5. Определение. Два ненулевых направленных отрезков называются <u>эквивалентными</u>, если их <u>длины равны и они сонаправленые</u>.

Все нулевые отрезки эквивалентны.

6. Определение. Вектором или свободным вектором называется множество всех направленных отрезков, эквивалентных между собой.

Обозначение \vec{a}

Длиной (модулем, нормой) вектора \vec{a} называется длина его любого представителя из множества эквивалентных направленных отрезков.

Обозначение
$$|\vec{a}| = a$$

- **7. Определение.** Векторы называются коллинеарными, если существует такая прямая, которой они параллельны, т.е. они сонаправлены или противоположно направлены.
 - **8. Определение.** Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

9. Определение. Угол между векторами \vec{a} и \vec{b} это угол между их представителями \overrightarrow{AB} и \overrightarrow{AC} , имеющие общее начало. За угол φ между ними принимают угол $\leq \pi$.

Обозначение
$$\widehat{\vec{a}},\widehat{\vec{b}}$$

Два вектора называются ортогональными, если угол между ними равен $\pi/2$

10. Определение. Два вектора называются равными, если они коллинеарные, одинаково направлены и имеют равные длины.

Линейные операции над векторами

Линейными операциями над векторами называются сложение векторов или умножение вектора на число

Пример. Угол между векторами

$$\vec{a} = \overrightarrow{AB}$$
 $\vec{b} = \overrightarrow{AC}$

11. Сумма векторов.

Даны два вектора \vec{a} и \vec{b} . Возьмем направленный отрезок $\vec{a} = \overline{AB}$ в качестве представителя вектора \vec{a} , а представителем вектора \vec{b} возьмем направленный отрезок $\vec{b} = \overrightarrow{BC}$, выходящий из точки B, тогда направленный отрезок \overrightarrow{AC} называется суммой векторов \vec{a} и \vec{b} и обозначается $\vec{a} + \vec{b}$.

Из этого определения суммы векторов следует правило треугольника и правило параллелограмма.

12. Умножение вектора на число.

$$\alpha \vec{a}$$

$$a) \quad \left| \vec{b} \right| = |\alpha| \cdot |\vec{a}|$$

- b) \vec{b} коллинеарен \vec{a}
- c) lpha>0 \vec{b} и \vec{a} сонаправлены lpha<0 \vec{b} и \vec{a} противоположно направлены

Свойства линейных операций над векторами

$$1) \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

2)
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

3)
$$\vec{a} + \vec{0} = \vec{a}$$

4)
$$(-1)\vec{a} + \vec{a} = \vec{0}$$

5)
$$(\alpha \cdot \beta)\vec{a} = \alpha(\beta\vec{a})$$

$$6) \ (\alpha + \beta)\vec{a} = \alpha\vec{a} + \beta\vec{a}$$

7)
$$\alpha \left(\vec{a} + \vec{b} \right) = \alpha \vec{a} + \alpha \vec{b}$$

8)
$$1 \cdot \vec{a} = \vec{a}$$

$$-\vec{b} = (-1) \cdot \vec{b}$$
$$\vec{a} + (-1) \cdot \vec{b} = \vec{a} - \vec{b}$$

Теорема. Необходимым и достаточным условием коллинеарности ненулевых векторов \vec{a} и \vec{b} является условие

$$\vec{b} = \alpha \vec{a}$$
,

где α - отличное от нуля число.

Необходимость. 1. Векторы \vec{a} и \vec{b} сонаправлены. Тогда Доказательство.

$$ec{a}
eq ec{0}$$
 $ec{b}=+rac{\left|ec{b}
ight|}{\left|ec{a}
ight|}ec{a}$ Вводим обозначение $\dfrac{\left|ec{b}
ight|}{\left|ec{a}
ight|}=lpha$ Тогда получаем $ec{b}=lphaec{a}$,

2. Векторы \vec{a} и \vec{b} противоположно направлены. Тогда

$$ec{a}
eq ec{0} \quad ec{b} = -rac{\left| ec{b}
ight|}{\left| ec{a}
ight|} ec{a}$$
 Вводим обозначение $-rac{\left| ec{b}
ight|}{\left| ec{a}
ight|} = lpha$ Тогда получаем $ec{b} = lpha ec{a}$, Достаточность. Пусть выполнено $ec{b} = lpha ec{a}$. Тогда, согласно определению умножения

вектора на число векторы \vec{a} и \vec{b} коллинеарны.

 $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_k \vec{a}_k$ - линейная комбинация векторов

 $lpha_1$, $lpha_2 \cdots lpha_k$ - коэффициенты линейной комбинации

Свойства линейной комбинации:

Если векторы \vec{a}_1 , $\vec{a}_2 \cdots \vec{a}_k$ - коллинеарные, то их линейная комбинация им коллинеарна.

Если векторы \vec{a}_1 , $\vec{a}_2 \cdots \vec{a}_k$ - компланарны, то их линейная комбинация им компланарна.

Определение. Множество векторов, замкнутое относительно линейных операций называется **векторным пространством**.

Линейная зависимость векторов

$$ec{b}$$
 $ec{a}_1,ec{a}_2,\cdots,ec{a}_k$ eta_1,eta_2,\cdots,eta_k $ec{b}=eta_1ec{a}_1+eta_2ec{a}_2+\cdots+eta_kec{a}_k$ Пример. $ec{a}_3=ec{a}_1+ec{a}_2$ $ec{b}=-ec{a}_3$ $ec{b}=-ec{a}_1-ec{a}_2$ $ec{b}=ec{a}_3-2ec{a}_1-2ec{a}_2$ и т.д.

Свойства линейно-зависимых и линейно-независимых векторов

- 1. Если среди векторов $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_k$ есть нулевой вектор, то такая система линейно-зависима.
- 2. Система, содержащая один вектор, линейно-зависима, если он нулевой.
- 3. Если к линейно-зависимой системе $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_k$ добавить какие-то векторы $\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_s$, то полученная система векторов будет линейно-зависима.
- 4. Если в системе векторов какая-то часть линейно-зависима, то и вся система линейно-зависима.
- 5. Любая часть линейно-независимой системе линейно-независима.

<u>Теорема.</u> Если вектор \vec{b} раскладывается по система векторов $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_k$, то это разложение единственное тогда и только тогда, когда система векторов $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_k$ - линейно-независимая система.

Доказательство.
$$\vec{b} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \cdots + \alpha_k \vec{a}_k$$
 $\vec{b} = \beta_1 \vec{a}_1 + \beta_2 \vec{a}_2 + \cdots + \beta_k \vec{a}_k$ $\vec{0} = (\alpha_1 - \beta_1) \vec{a}_1 + (\alpha_2 - \beta_2) \vec{a}_2 + \cdots + (\alpha_k - \beta_k) \vec{a}_k$ $\alpha_1 - \beta_1 = 0, \quad \alpha_2 - \beta_2, = 0 \quad \cdots, \quad \alpha_k - \beta_k = 0$ $\alpha_1 = \beta_1, \quad \alpha_2 = \beta_2, \quad \cdots, \quad \alpha_k = \beta_k$ $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_k \quad \text{- линейно-зависимая система}$ $\sum_{i=1}^k \alpha_i^2 \neq 0$ $\vec{0} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \cdots + \alpha_k \vec{a}_k$ $\vec{b} = \beta_1 \vec{a}_1 + \beta_2 \vec{a}_2 + \cdots + \beta_k \vec{a}_k$ $\vec{0} + \vec{b} = \vec{b} = (\alpha_1 + \beta_1) \vec{a}_1 + (\alpha_2 + \beta_2) \vec{a}_2 + \cdots + (\alpha_k + \beta_k) \vec{a}_k$

Теорема. Для того, чтобы система из k>1 векторов линейнозависима, необходимо и достаточно, чтобы один из векторов системы раскладывается по остальным векторам системы.

Доказательство. Необходимость.

Пусть система векторов \vec{a}_1 , \vec{a}_2 , \cdots , \vec{a}_k линейно зависима

Это означает, что существует $\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \cdots + \alpha_k \vec{a}_k = \vec{0}$, где

$$\sum_{i=1}^{k} \alpha_i^2 \neq 0$$
. Пусть $\alpha_1 \neq 0 \to \vec{a}_1 = -\frac{\alpha_2}{\alpha_1} \vec{a}_2 - \frac{\alpha_3}{\alpha_1} \vec{a}_3 - \dots - \frac{\alpha_k}{\alpha_1} \vec{a}_k$

Получили разложение \vec{a}_1 по остальным векторам

$$\vec{a}_1 = \beta_2 \vec{a}_2 + \beta_3 \vec{a}_3 + \dots + \beta_k \vec{a}_k$$

<u>Достаточность.</u> Пусть один из векторов системы, например, \vec{a}_1 является комбинаций остальных $\vec{a}_1 = \beta_2 \vec{a}_2 + \beta_3 \vec{a}_3 + \dots + \beta_k \vec{a}_k$ $\vec{0} = -1 \vec{a}_1 + \beta_2 \vec{a}_2 + \dots + \beta_k \vec{a}_k$, где не все β_k равны 0

- **Теорема.** 1. Система из одного вектора линейно-зависима тогда и только тогда, когда этот вектор нулевой.
- 2. Система из двух векторов линейно-зависима тогда и только тогда, когда эти векторы коллинеарные.
- 3. Система из трех векторов линейно-зависима тогда и только тогда, когда эти векторы компланарные.