# Holiday Effect on Libor and Treasury Rates



By Knights >>

Anthony, Davood, Samantha, Vik, Xing

#### **Futures Contract**

Current price of rubber: \$115/ton.



#### **Futures Contract**

Current price of rubber: \$115/ton.



► If rubber prices fall to \$100/ton, the rubber supplier makes \$15 and the bicycle maker loses \$15 from this contract.

#### **Futures Contract**

Current price of rubber: \$115/ton.



- ► If rubber prices fall to \$100/ton, the rubber supplier makes \$15 and the bicycle maker loses \$15 from this contract.
- ► If rubber prices rise to \$120/ton, the rubber supplier loses \$5 and the bicycle maker makes \$5 from this contract.

#### Contract Market

Person A Sell: 115 Buy: 110 Person B Buy: 115 Sell: 120

Person C Buy: 120 Sell: 110

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 かへで

#### Contract Market

Person A Sell: 115 Buy: 110 Person B Buy: 115 Sell: 120

Person C Buy: 120 Sell: 110

#### Contract Market

Person A Sell: 115 Buy: 110 Person B Buy: 115 Sell: 120

Person C Buy: 120 Sell: 110

| LIBOR Rate |        |  |
|------------|--------|--|
| ON         | 2.362% |  |
| 1W         | 2.369% |  |
| 1M         | 2.261% |  |
| 6M         | 2.144% |  |
| 12M        | 2.158% |  |

Table: Rates from 21

July 2019



| LIBOR Rate |        |  |
|------------|--------|--|
| ON         | 2.362% |  |
| 1W         | 2.369% |  |
| 1M         | 2.261% |  |
| 6M         | 2.144% |  |
| 12M        | 2.158% |  |

Table: Rates from 21

July 2019



| LIBOR Rate |        |  |
|------------|--------|--|
| ON         | 2.362% |  |
| 1W         | 2.369% |  |
| 1M         | 2.261% |  |
| 6M         | 2.144% |  |
| 12M        | 2.158% |  |

Table: Rates from 21

July 2019



| LIBOR Rate |        |  |
|------------|--------|--|
| ON         | 2.362% |  |
| 1W         | 2.369% |  |
| 1M         | 2.261% |  |
| 6M         | 2.144% |  |
| 12M        | 2.158% |  |

Table: Rates from 21

July 2019



► After one month, Bank A owes Bank B

$$1000000 \times \left(1 + \frac{.0261}{12}\right) = \$1002175$$

#### **US** Treasury Rate



|               | Person A    |  |
|---------------|-------------|--|
| Borrowed      | \$1 million |  |
| Interest Rate | 5%          |  |



|               | Person A    |                       | Person B    |
|---------------|-------------|-----------------------|-------------|
| Borrowed      | \$1 million | $\longleftrightarrow$ | \$1 million |
| Interest Rate | 5%          |                       | 2% + LIBOR  |

▶ Person A thinks that the LIBOR rate will fall below 3%.

|               | Person A    |                       | Person B    |
|---------------|-------------|-----------------------|-------------|
| Borrowed      | \$1 million | $\longleftrightarrow$ | \$1 million |
| Interest Rate | 5%          |                       | 2% + LIBOR  |

- ▶ Person A thinks that the LIBOR rate will fall below 3%.
- Person B cannot afford the risk of the LIBOR rate rising too high.

|               | Person A    |  |
|---------------|-------------|--|
| Borrowed      | \$1 million |  |
| Interest Rate | 5%          |  |



- ▶ Person A thinks that the LIBOR rate will fall below 3%.
- Person B cannot afford the risk of the LIBOR rate rising too high.
- Frank Fabozzi: "The swap market is a market to buy and sell LIBOR".





### Take away changes accumulated over years to localize holiday effect:

Adjusted\_Rates\_j = Rates\_j - mean(Rates\_j),

where j is a year from 2004 to 2018

#### Data recentered by its means



#### Take those slopes away:

Normolized\_Rates\_j = Adjusted\_Rates\_j / slope\_j,

where **slope\_j** are obtained thru linear regression with linear functions on each year **j** from 2004 to 2018.

Now we should expect data look like y = x with noise and a potentially a jump



#### Building the model, finally...

Now we can combine data from all years and run linear regression on them to detect jump.

#### Results of LIBOR 15d before 6d after Christmas

2M Normalized\_Rate = \beta\_0 + \beta\_1 \* relative\_date + \beta\_{2} \* X^{Pre}

|             | β_0<br>(p-value)    | $\beta$ _1 (p-value)    | $\beta$ _2 (p-value)     | R^2Adj | Overall Pval |
|-------------|---------------------|-------------------------|--------------------------|--------|--------------|
| 2004 - 2018 | 2.28180** (0.00123) | 1.23930***<br>(< 2e-16) | -4.60371***<br>(0.00012) | 0.7022 | < 2.2e-16    |

Before Holiday: Rate = 2.28180 + 1.23930 \* Relative\_Date

After Holiday: Rate = (2.28180 - 4.60371) + 1.23930 \* Relative\_Date

#### Conclusion

Christmas holiday effect does exist.

We suggest expecting a jump computed as

Jump = 
$$-4.60371*s$$
,

where **s** is slope on 15 days before Christmas current year.

## Now you can give us your money. Thank you!

