True wOBA:

Estimation of true talent level for batters

Scott Powers and Eli Shayer

Stanford University

2016 SABR Analytics Conference

True strikeout probability p

Observed strikeout rate
$$\hat{p} = \frac{K}{PA}$$

Regression to the mean
$$p^* = \frac{K + N\bar{p}}{PA + N}$$

 $ar{p} = ext{league}$ average strikeout rate

True strikeout probability

Observed strikeout rate

$$\hat{
ho} = rac{ extsf{K}}{ extsf{PA}}$$

$$\frac{23}{138} = 16.7\%$$

$$ho^* = rac{ extsf{K} + extsf{N} ar{
ho}}{ extsf{PA} + extsf{N}}$$

Regression to the mean
$$p^* = \frac{K + N\bar{p}}{PA + N} = \frac{23 + 40(20.4\%)}{138 + 40} = 17.5\%$$

 $\bar{p} = \text{league average strikeout rate}$

Tuffy Gosewisch

Ralph Freso, Getty Images

True strikeout probability

$$\hat{p} = rac{ extsf{K}}{ extsf{PA}}$$

$$\frac{23}{138} = 16.7\%$$

$$p^* = \frac{K + N\bar{p}}{PA + N}$$

Regression to the mean
$$p^* = \frac{K + N\bar{p}}{PA + N} = \frac{23 + 40(20.4\%)}{138 + 40} = 17.5\%$$

 $\bar{p} = \text{league average strikeout rate}$

$$N = \frac{\bar{p}(1-\bar{p})}{\sigma_T^2}$$

Tuffy Gosewisch

Ralph Freso, Getty Images

$$p \sim \mathcal{N}(\bar{p}, \sigma_T^2)$$

$$p \sim \mathcal{N}(ar{p}, \sigma_{T}^{2})$$
 $\hat{p}|p \sim \mathcal{N}\left(p, \ \sigma_{L}^{2} = rac{p(1-p)}{n}
ight)$

$$p \sim \mathcal{N}(ar{p}, \sigma_T^2)$$
 $\hat{p}|p \sim \mathcal{N}\left(p, \ \sigma_L^2 = rac{p(1-p)}{n}
ight)$ \uparrow \uparrow \uparrow \bar{p} p^* \hat{p}

$$p^* = E[p|\hat{p}] = \arg\min_{p^*} E[(p - p^*)^2|\hat{p}] = \frac{\sigma_T^{-2}\bar{p} + \sigma_L^{-2}\hat{p}}{\sigma_T^{-2} + \sigma_L^{-2}}$$

Outline for this presentation

 Theory Regression to the mean Regularized linear regression Regularization vs. regression to the mean Regularization vs. mixed effect modelling 	Scott
 Application Regressing wOBA to the mean Comparison of true talent estimators True wOBA results 	Eli

A simple linear model

Data:

For plate appearance $i \in \{1, ..., n\}$,

$$K_i = \left\{ egin{array}{ll} 1 & ext{if } i^{th} \ ext{PA results in strikeout} \\ 0 & ext{otherwise} \end{array}
ight.$$

 $B_i = identity of batter in ith PA (e.g. Paul Goldschmidt)$

Model:

$$K_i = \alpha + \beta_{B_i} + \epsilon_i$$
, where $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$

Estimator:

$$(\hat{\alpha}, \hat{\beta}) = \arg\min \sum_{i=1}^{n} (K_i - \alpha - \beta_{B_i})^2 \quad \Rightarrow \quad \hat{\alpha} + \hat{\beta}_B = \frac{\sum_{i:B_i = B} K_i}{\sum_{i:B_i = B} 1}$$

ç

Regularized linear regression

Instead of solving

$$(\hat{\alpha}, \hat{\beta}) = \arg\min \sum_{i=1}^{n} (K_i - \alpha - \beta_{B_i})^2,$$

let's try solving

$$(\alpha^*, \beta^*) = \arg\min \sum_{i=1}^n (K_i - \alpha - \beta_{B_i})^2 + \lambda \sum_B \beta_B^2, \quad \lambda > 0.$$

The result is

$$eta_B^* = rac{\lambda \cdot 0 + n_B \hat{eta}_B}{\lambda + n_B}, \quad ext{where} \quad n_B = \sum_{i:B_i = B} 1$$

Regularization vs. regression to the mean

Regression to the mean:

$$p^* = \frac{\sigma_T^{-2} \bar{p} + \sigma_L^{-2} \hat{p}}{\sigma_T^{-2} + \sigma_L^{-2}}$$

Regularization:

$$\alpha^* + \beta^* = \frac{\lambda \hat{\alpha} + n(\hat{\alpha} + \hat{\beta})}{\lambda + B} = \frac{\lambda \bar{p} + n\hat{p}}{\lambda + n}$$

If $\lambda = n\sigma_L^2/\sigma_T^2$, these estimates are identical!

Regularization vs. regression to the mean

Regression to the mean:

$$p^* = \frac{\sigma_T^{-2}\bar{p} + \sigma_L^{-2}\hat{p}}{\sigma_T^{-2} + \sigma_L^{-2}}$$

– σ_{T}^{2} estimated by comparing across-player variance to σ_{L}^{2}

Regularization:

$$\alpha^* + \beta^* = \frac{\lambda \hat{\alpha} + n(\hat{\alpha} + \hat{\beta})}{\lambda + B} = \frac{\lambda \bar{p} + n\hat{p}}{\lambda + n}$$

If $\lambda = n\sigma_L^2/\sigma_T^2$, these estimates are identical!

Regularization vs. regression to the mean

Regression to the mean:

$$p^* = \frac{\sigma_T^{-2} \bar{p} + \sigma_L^{-2} \hat{p}}{\sigma_T^{-2} + \sigma_L^{-2}}$$

 $-\sigma_T^2$ estimated by comparing across-player variance to σ_L^2

Regularization:

$$\alpha^* + \beta^* = \frac{\lambda \hat{\alpha} + n(\hat{\alpha} + \hat{\beta})}{\lambda + B} = \frac{\lambda \bar{p} + n\hat{p}}{\lambda + n}$$

 $-\lambda$ chosen by cross-validation

If $\lambda = n\sigma_L^2/\sigma_T^2$, these estimates are identical!

Logistic regression

A better model:

$$\eta_i = \alpha + \beta_{B_i}$$
, and $\mathbb{P}(K_i = 1 | \eta_i) = e^{\eta_i}/(1 + e^{\eta_i})$

Estimator (Ridge):

$$(\alpha^*, \beta^*) = \arg\min - \sum_{i=1}^n \log \mathbb{P}(K_i | \eta_i) + \lambda \sum_B \beta_B^2$$

True wOBA

Data:

 $Y_i \in \mathcal{Y} = \{G, F, K, BB, HBP, 1B, 2B, 3B, HR\}$ $B_i = \text{identity of } \mathbf{B} \text{atter in } i^{th} \text{ PA (e.g. Paul Goldschmidt)}$ $P_i = \text{identity of } \mathbf{P} \text{itcher in } i^{th} \text{ PA (e.g. Zach Greinke)}$ $S_i = \text{identity of } \mathbf{S} \text{tadium in } i^{th} \text{ PA (e.g. Chase Field)}$ $H_i = 1 \text{ if } B_i \text{ is on } \mathbf{H} \text{ome team, 0 otherwise}$ $O_i = 1 \text{ if } B_i \text{ and } P_i \text{ have } \mathbf{O} \text{pposite handedness, 0 otherwise}$

Model (multinomial logistic regression):

$$\eta_{ik} = \alpha_k + \beta_{B_ik} + \gamma_{P_ik} + \delta_{S_ik} + \zeta_k H_i + \theta_k O_i$$
$$\mathbb{P}(Y_i = k | \eta_i) = \frac{e^{\eta_{ik}}}{\sum_{\ell \in \mathcal{Y}} e^{\eta_{i\ell}}}$$

True wOBA

Estimation:

$$\min \left\{ -\sum_{i=1}^{n} \mathbb{P}(Y_i | \eta_i) + \sum_{k \in \mathcal{Y}} \lambda_k \left(\sum_{B} \beta_{Bk}^2 + \sum_{P} \gamma_{Pk}^2 + \sum_{S} \delta_{Sk}^2 + \zeta_k^2 + \theta_k^2 \right) \right\}$$

- Choose λ_k via cross validation
- For batter B, estimated K rate in average situation is

$$\mathbb{P}_{B}(K) = \frac{e^{\alpha_{K}^{*} + \beta_{BK}^{*} + \frac{1}{2}\zeta_{K}^{*} + \frac{1}{2}\theta_{K}^{*}}}{\sum_{\ell \in \mathcal{V}} e^{\alpha_{\ell}^{*} + \beta_{B\ell}^{*} + \frac{1}{2}\zeta_{\ell}^{*} + \frac{1}{2}\theta_{\ell}^{*}}}$$

Combine rates of outcomes into True wOBA estimate

Random effect model

Model:

$$\eta_i = \alpha + \beta_{B_i}$$
, where $\beta_B \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_\beta^2)$
 $\mathbb{P}(K_i = 1 | \eta_i) = \Phi(\eta_i) \leftarrow \text{Normal CDF}$

Estimator (Random):

$$(\alpha^*, \beta^*, \sigma_{\beta}^{2*}) = \arg\max L(\alpha, \beta, \sigma_{\beta}^2 | B_i, K_i)$$

Application

Regression to the Mean

Regression to the mean for each outcome probability

For each outcome, use 1st 200 PAs to predict rate on next 200 PAs

(Naive) (Regressed)			
	$\hat{\sigma}_T^2$	$RMSE(\hat{p})$	$RMSE(p^*)$
G	15.85	4.80	4.42
F	20.13	4.45	4.22
K	29.10	4.19	3.89
BB	6.26	3.33	3.04
HBP	0.24	0.94	0.80
1B	7.02	3.81	3.17
2B	0.45	2.01	1.62
3B	0.13	0.74	0.67
HR	1.88	1.79	1.61

Units: percentage points

Upshot: Different population variances for different outcomes, but regression to the mean improves RMSE for all of them!

Regressed wOBA vs. observed wOBA

Projected change in wOBA vs. BABIP

Estimator Comparison

Test RMSE for different talent estimators

Randomly split PAs into training and test sets, using training set to predict test set rate for each outcome

	Naive	Regressed	Ridge	Random
G	4.41	3.98	3.97	3.98
F	4.45	3.97	3.99	3.98
K	4.25	3.89	3.90	3.90
BB	2.60	2.38	2.39	2.39
HBP	1.04	0.89	0.88	0.88
1B	3.66	3.09	3.08	3.08
2B	2.21	1.68	1.67	1.67
3B	0.82	0.63	0.64	0.64
HR	1.71	1.52	1.51	1.50

Units: percentage points

Upshot: In this simple example, these three estimators are virtually equivalent!

Ridge estimator vs. Regressed estimator for 1B rate

True wOBA Validation

Validation

- Evaluate results on 2015 MLB regular season PAs
 - Discard intentional walks, catcher interferences
 - Discard PAs in which pitcher is batting
- Fit each method on training set to predict wOBA in test set
 - $\{O_i = 0\} \Rightarrow$ training set with prob. 90%
 - $\{O_i = 1\} \Rightarrow$ test set with prob. 90%
- Training set: 93,868 PAs
- Test set: 82,692 PAs

Estimator	Naive	Regressed	True	Mixed
Estimated MSE	45.6	22.0	17.3	18.0
Stadard error	±4.4	± 1.8	± 1.4	± 1.5
Units: wOBA points				

True wOBA Results

True wOBA vs. observed wOBA

True wOBA against vs. observed wOBA against

Top 5 and bottom 5 batters by True wOBA

	Batter	Team	True wOBA
	Bryce Harper	WSN	.416
Тор	Mike Trout	LAA	.407
5	José Bautista	TOR	.399
	Paul Goldschmidt	ARI	.395
	Joey Votto	CIN	.393
	Alexi Amarista	SDP	.270
Bottom	Chris Owings	ARI	.269
5	René Rivera	TBR	.265
	Danny Santana	MIN	.265
	Omar Infante	KCR	.262

Top 5 and bottom 5 pitchers by True wOBA against

	Pitcher	Team	True wOBA against
	Jake Arrieta	CHC	.255
Top	Clayton Kershaw	LAD	.256
5	Zack Greinke	LAD	.261
	Wade Davis	KCR	.267
	Dallas Keuchel	HOU	.267
	Jeremy Guthrie	KCR	.346
Bottom	Matt Boyd	DET	.346
5	David Holmberg	CIN	.349
	Dustin McGowan	PHI	.354
	Allen Webster	ARI	.356

Top differences between naive and True wOBA

Batter	Team	Δ wOBA
Wilson Ramos	WSN	+.022
Michael Taylor	WSN	+.021
Albert Pujols	LAA	+.017
Alcides Escobar	KCR	+.016
Chris Owings	ARI	+.014
•••		
Anthony Rizzo	CHC	035
Nolan Arenado	COL	037
Charlie Blackmon	COL	039
Bryce Harper	WSN	045
David Peralta	ARI	046
	Wilson Ramos Michael Taylor Albert Pujols Alcides Escobar Chris Owings Anthony Rizzo Nolan Arenado Charlie Blackmon Bryce Harper	Wilson Ramos WSN Michael Taylor WSN Albert Pujols LAA Alcides Escobar KCR Chris Owings ARI Anthony Rizzo CHC Nolan Arenado COL Charlie Blackmon Bryce Harper WSN

Min. 500 PA

Top differences between naive and True wOBA against

	Pitcher	Team	Δ wOBA against
	Chris Rusin	COL	068
Тор	Kyle Kendrick	COL	062
5	Jerome Williams	PHI	047
	Matt Garza	MIL	045
	Kyle Lohse	MIL	041
	Jacob deGrom	NYM	+.016
Bottom	Sonny Gray	OAK	+.016
5	Clayton Kershaw	LAD	+.019
	Jake Arrieta	CHC	+.021
	Zack Greinke	LAD	+.023

Min. 500 PA

Discussion

Three contributions:

- We remind everyone of regression to the mean for interpretation of small sample sizes
- We explain relationship between regularized linear models and regression to the mean
- We compare regularized linear models with linear mixed effects models

Thank you!

Questions?

Scott Powers sspowers@stanford.edu

Eli Shayer eshayer@stanford.edu elishayer.com

github.com/saberpowers/true-woba

stanfordsportsanalytics.com

