STAT430 Homework #4: Due Friday, March 1, 2019.

Name:

- 0. Remember that there is no class or office hour on Monday, February 25. We start Chapter 8 in this homework, with some additional problems related to the end of Chapter 7. Read Sections 8.1-8.4 on estimation. We have the first midterm February 22. Be sure you are strong so far on distribution of maximum and minimum order statistic; expectation, variance and covariance calculations; normal probability computations; the "origin stories" of the χ^2 , t, and F distributions; and the Central Limit Theorem and its applications and extensions (normal approximation for sample mean and sample total; normal approximation to the binomial; delta method; bias and mean squared error). This homework has some good review problems and is worth working on prior to the exam.
- 1. Let $Y \sim \text{Binomial}(n, p)$. The "odds of success" are defined as

$$\frac{\text{probability of success}}{\text{probability of failure}} = \frac{p}{1-p}$$

and the log-odds are

$$\lambda = \ln\left(\frac{p}{1-p}\right).$$

The standard, unbiased estimator of p is $\hat{p} = Y/n$. Plugging in this estimator, we have the estimated log-odds

$$\hat{\lambda} = \ln\left(\frac{\hat{p}}{1 - \hat{p}}\right).$$

Use the delta method as described in class to determine the approximate distribution of $\hat{\lambda}$ for large n. For p = 0.3 and n = 100, verify that the variance of your approximate distribution is 1/21.

Answer:

2. Suppose Y_1, \ldots, Y_{40} denote a random sample of measurements on the proportion of impurities in iron ore samples. Let each Y_i have probability density function given by

$$f(y) = \begin{cases} 3y^2, & 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

The ore is to be rejected by the potential buyers if \bar{Y} exceeds 0.7. Find the approximate probability that $P(\bar{Y} > 0.7)$ for the sample of size n = 40.

Answer:

3. Let Y_1, \ldots, Y_n denote a random sample from a population whose density is given by

$$f(y) = \begin{cases} \alpha y^{\alpha - 1} / \theta^{\alpha}, & 0 \le y \le \theta, \\ 0, & \text{elsewhere,} \end{cases}$$

where $\alpha > 0$ is a known, fixed value, but θ is unknown. Consider the estimator $\hat{\theta} = \max(Y_1, \dots, Y_n)$. (a). Show that $\hat{\theta}$ is a biased estimator for θ .

aswer:
Derive expressions for bias, variance and MSE of $\hat{\theta}$ as functions of n , α , and θ . (You do not need to aplify beyond evaluating the integrals.) Use R to evaluate your expressions numerically when $n=6$, $\alpha=2$, if $\theta=5$.
aswer:
Use the following R code to simulate 10000 random samples of size $n = 6$ from the original density with $= 2$ and $\theta = 5$ and compute $\hat{\theta}$ for each random sample. Then approximate the bias by mean(theta_hat) theta, the variance by var(theta_hat), and the MSE by mean((theta_hat - theta) ^ 2). Compare your theoretical values in (b).
<pre>im <- function(n, alpha, theta){ n <- runif(n) 7 <- theta * u ^ (1 / alpha) return(Y) eps <- 10000 6 - 6 cha <- 2 eta <- 5 c.seed(4302019) 6 - rsim(n * nreps, alpha = 2, theta = 5) # simulate 10,000 random samples of size 6</pre>
aswer:
4. Complete Exercise 8.2 of the text.
aswer:
5. Complete Exercise 8.6 of the text. If σ_2^2 is much larger than σ_1^2 , does your answer make sense? What if σ_2^2 is much smaller than σ_1^2 ?
aswer:
6. Complete Exercise 8.8 of the text, giving an explicit expression for the mean and variance of each estimator. You can use the result of Exercise 6.81 : if Y_1, Y_2, \ldots, Y_n are iid exponential random variables with mean θ , then $\min(Y_1, Y_2, \ldots, Y_n)$ has an exponential distribution with mean θ/n .

Answer:

7. Assess your results in problem 6 above via simulation, using $\theta = 10$. Check your theoretical variance expressions against the empirical variances from simulation, and compare the estimators using side-by-side boxplots of their values. Use the following code to get started:

Side-by-side boxplots to compare estimators (you can add more estimators, separated by commas):
boxplot(theta_hat1, theta_hat2, col = "LightBlue", names = c(expression(hat(theta)[1]), expression(hat(abline(h = theta, lwd = 3, col = "red"))

Answer: