Michelle da Costa Silva 427448

Correção da prova

01.) Projetar um circuito binário com portas lógicas capaz de produzir as seguintes saídas

	abcd	saidas	s2	s1	s0
0	0000	2	0	1	0
1	0001	4	1	0	0
2	0010	4	1	0	0
3	0011	4	1	0	0
4	0100	1	0	0	1
5	0101	2	0	1	0
6	0110	4	1	0	0
7	0111	4	1	0	0

	abcd	saidas	s2	s1	s0
8	1000	1	0	0	1
9	1001	1	0	0	1
10	1010	2	0	1	0
11	1011	4	1	0	0
12	1100	1	0	0	1
13	1101	1	0	0	1
14	1110	1	0	0	1
15	1111	2	0	1	0

a.) Montar a equação completa do sinal s2 por mintermos

$$f(x,y,w,z) = (x'*y'*w'*z) + (x'*y'*w*z') + (x'*y'*w*z) + (x'*y*w*z') + (x'*y*w*z') + (x'*y*w*z) + (x'*y*x*y*x) + (x'*y*x*y*x) + (x'*y*x*y*x) + (x'*y*x*y*x) + (x'*y*x*y*x) + (x'*y*x*y*x) + (x'*y*x*y*$$

b.) Montar a equação completa do sinal s1 por maxtermos

$$\prod$$
M (1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14)

c.) Montar a equação completa do sinal s0 por mintermos

$$f(x,y,w,z) = (x'*y*w'*z') + (x*y'*w'*z') + (x*y'*w'*z') + (x*y*w'*z') + (x*y*x''*z') + (x*y*x''*z') + (x*y*x''*z$$

d.) Montar a equação simplificada do sinal s2 pelo mapa de Veitch-Karnaugh

s2				
ab\cd	00	01	11	10
00	0	1	1	1
01	0	0	1	1

11	0	0	0	0
10	0	0	1	0

$$(2, 3, 6, 7) = (x'*y'*w*z') + (x'*y'*w*z) + (x'*y*w*z') + (x'*y*w*z')$$

$$= (x'*y'*w) + (x'*y*w)$$

$$= (x'*w)$$

$$(3, 11) = (x'*y'*w*z) + (x*y'*w*z)$$
$$= (y'*w*z)$$

$$(1, 3) = (x'*y'*w'*z) + (x'*y'*w*z)$$
$$= (x'*y'*z)$$

$$(x'^*y'^*z) + (y'^*w^*z) + (x'^*w)$$

e.) Montar a equação simplificada do sinal s1 pelo mapa de Veitch-Karnaugh

s1				
ab\cd	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

$$(1, 3) = (X+Y+W+Z')*(X+Y+W'+Z')$$

= $(X+Y+Z')$

$$(2, 3, 6, 7) = (X+Y+W'+Z)^* (X+Y+W'+Z')^* (X+Y'+W'+Z)^* (X+Y'+W'+Z')$$

= $(X+W')$

(6, 14)=
$$(X+Y'+W'+Z)*(X'+Y'+W'+Z)$$

= $(Y'+W'+Z)$

$$(4, 12)= (X+Y'+W+Z)*(X'+Y'+W+Z)$$

= $(Y'+W+Z)$

$$(8, 9, 12, 13) = (X'+Y+W+Z)^* (X'+Y+W+Z')^* (X'+Y'+W+Z)^* (X'+Y'+W+Z')$$

$$= (X'+W)$$

(9, 11)=
$$(X'+Y+W+Z')*(X'+Y+W'+Z')$$

= $(X'+Y+Z')$

$$(X+Y+Z')*(X+W')*(Y'+W'+Z)*(Y'+W+Z)*(X'+W)*(X'+Y+Z')$$

f.) Montar a equação simplificada do sinal s0 pelo mapa de Veitch-Karnaugh

s0				
ab\cd	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
1º	1	1	0	0

$$(8, 9, 12, 13) = (x*y'*w'*z') + (x*y'*w'*z) + (x*y*w'*z') + (x*y*w'*z)$$

$$= (x*w')$$

$$(4, 12) = (x'*y*w'*z') + (x*y*w'*z')$$

$$= (y*w'*z')$$

$$(12, 14) = (x*y*w'*z') + (x*y*w*z')$$

$$(x*w') + (y*w'*z') + (x*y*z')$$

g.) Montar a equação simplificada do sinal s2 pelas propriedades da álgebra

$$(x'*y'*z) + (y'*w*z) + (x'*w)$$

 $(x'*y'*z) + w* (y'*z +x')$

h.) Montar a equação simplificada do sinal s1 pelas propriedades da álgebra

$$(X+Y+Z')^* (X+W')^* (Y'+W'+Z)^* (Y'+W+Z)^* (X'+W)^* (X'+Y+Z')$$

 $(Y+Z')^* (Y'+Z)^* (X'+W)^* (X+W')$
 $(X \text{ xor } W)'^* (Y \text{ xor } Z)'$

i.) Montar a equação simplificada do sinal s0 pelas propriedades da álgebra

$$(x*w') + (y*w'*z') + (x*y*z')$$

 $y*z'*(w'+x) + (x*w')$

 j.) Montar a descrição por portas do Verilog do módulo capaz de calcular s2 pela expressão em (d)

k.) Montar a descrição por expressão no Verilog do módulo capaz de calcular s1 pela expressão em (h)

```
// -----
// -- k
// -----
module k (output s, input x, input w, input y, input z);
assign s = ~(x ^ w)& ~(y ^ z);
endmodule // notgate
```

I.) Montar a descrição por portas do Verilog do módulo capaz de calcular s0, usando entradas e saídas múltiplas (em Little Endian)

```
// -----
// -- 1
// -----
module 1 (output [2:0] saida,
         output [3:0] s1,
         output [3:0] s2,
         output [3:0] s3,
          output [3:0] saida not1,
          output [3:0] saida not2,
          input [3:0] x,
          input [3:0] z,
          input [3:0] y,
          input [3:0] w);
      not NOT1(saida not1, w);
      not NOT2(saida not2, z);
      and AND1(s1, saida not1, saida not2,y);
      and AND2(s2, saida not1, x);
      and AND3(s3, saida not2, x, y);
      or OR1(saida, s1, s2, s3);
      endmodule //l
```