

planetmath.org

Math for the people, by the people.

characterization of abelian extensions of exponent n

 ${\bf Canonical\ name} \quad {\bf Characterization Of Abelian Extensions Of Exponent N}$

Date of creation 2013-03-22 18:42:13 Last modified on 2013-03-22 18:42:13

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 4

Author rm50 (10146) Entry type Theorem Classification msc 12F10 **Theorem 1.** Let K be a field containing the n^{th} roots of unity, with characteristic not dividing n. Let L be a finite extension of K. Then the following are equivalent:

- 1. L/K is Galois with abelian Galois group of exponent dividing n
- 2. $L = K(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_k})$ for some $a_i \in K$.

Proof. Let $\zeta \in K$ be a primitive n^{th} root of unity.

 $(2\Rightarrow 1)$: Choose $\alpha_i\in L$ such that $\alpha_i^n=a_i\in K$. Then for each i, the elements $\alpha_i,\ \zeta\alpha_i,\ \ldots,\ \zeta^{n-1}\alpha_i$ are distinct and are all the roots of x^n-a_i in L. Thus x^n-a_i is separable over K and splits in L, so that L is the splitting field of the set of polynomials $\{x^n-a_i\mid 1\leq i\leq k\}$. Thus L/K is Galois. Given $\sigma\in \mathrm{Gal}(L/K)$, for each i we have $\sigma(\alpha_i)=\zeta^j\alpha_i$ for some $1\leq j\leq n$, so that $\sigma^k(\alpha_i)=\zeta^{kj}\alpha_i$. It follows that σ^n is the identity for every $\sigma\in \mathrm{Gal}(L/K)$, so that the exponent of $\mathrm{Gal}(L/K)$ divides n. It remains to show that $\mathrm{Gal}(L/K)$ is abelian; this follows trivially from the simple definition of the Galois action as multiplication by some n^{th} root of unity: if $\sigma,\tau\in\mathrm{Gal}(L/K)$ with $\sigma(\alpha_i)=\zeta^r\alpha_i,\quad \tau(\alpha_i)=\zeta^s\alpha_i$, then

$$(\sigma\tau)(\alpha_i) = \sigma(\zeta^s \alpha_i) = \zeta^s \zeta^r \alpha_i$$
$$(\tau\sigma)(\alpha_i) = \tau(\zeta^r \alpha_i) = \zeta^r \zeta^s \alpha_i$$

Thus $\sigma \tau = \tau \sigma$ on each α_i . But the α_i generate L/K, so $\sigma \tau = \tau \sigma$ on L and Gal(L/K) is abelian.

 $(1 \Rightarrow 2)$: Let $G = \operatorname{Gal}(L/K)$, and write $G = C_1 \times \cdots \times C_r$ where each C_i is cyclic; $|C_i| = m_i \mid n$ for each i. For each i, define a subgroup $H_i \leq G$ by

$$H_i = C_1 \times \cdots \times C_{i-1} \times C_{i+1} \times \cdots \times C_r$$

Then $G/H_i \cong C_i$. Let L_i be the fixed field of H_i . L_i is normal over K since H_i is normal in G, and $\operatorname{Gal}(L_i/K) \cong G/H_i \cong C_i$ and thus L_i/K is cyclic Galois of order m_i . K contains the primitive m_i^{th} root of unity ζ^{n/m_i} and thus $L_i = K(\alpha_i)$ for some $\alpha_i \in L$ with $\alpha_i^{m_i} \in K$ (by Kummer theory). But then also $\alpha_i^n \in K$. Then

$$\operatorname{Gal}(L:K(\alpha_1,\ldots,\alpha_r))=H_1\cap\cdots\cap H_r=\{1\}$$

since any element of the left-hand group fixes each α_i and thus fixes L_i so is the identity in G/H_i . Thus $L = K(\alpha_1, \ldots, \alpha_r)$.

Corollary 2. If L/K is the maximal abelian extension of K of exponent n, where n is prime to the characteristic of K, then $L = K(\{\sqrt[n]{a}\})$ for some set of $a \in K$.

Proof. Clearly $K(\{\sqrt[n]{a} \mid a \in K^*)$ is an infinite abelian extension of exponent n. If L is the maximal such extension, choose $b \in L$. Then K(b) is a finite extension of exponent dividing n and thus K(b) is of the required form. Thus $L = \bigcup_{b \in L} K(b)$ is also of the required form; for example, if $S \subset K^*$ is a set of coset representatives for $K^*/(K^*)^n$, then L = K(S).

References

[1] Morandi, P., Field and Galois Theory, Springer, 1996.