Calcul de la courbure

David Fabre

(Received 12 December 2013)

VERIFIER LES SIGNES

1. Formules de base

On cherche a exprimer la courbure d'une surface ayant une symétrie de révolution. La courbure K se décompose en deux termes :

$$K = K^{(a)} + K^{(b)} \quad \text{ avec } \left| K^{(a)} \right| = \frac{1}{|MC^{(a)}|} \quad \text{ et } \left| K^{(b)} \right| = \frac{1}{|MC^{(b)}|}$$

Le premier terme est la courbure dans le plan méridien ; géométriquement, on l'exprime avec le point $C^{(a)}$ qui est le centre du cercle osculateur à la courbe méridienne. Le second terme est la courbure dans le plan orthogonal ; on l'exprime avec le point $C^{(b)}$ qui est l'intersection entre la normale à la courbe et l'axe de symétrie (voir figure a).

On prend la convention suivante pour le signe de $K^{(a)}$ et $K^{(b)}$: celles-ci sont positives si la surface est convexe et négatives si la surface est concave. Par exemple, dans le cas représenté sur la figure, on a $K^{(a)} > 0$ et $K^{(b)} < 0$.

Le premier terme se calcule a partir des formules de Frénet. On suppose que la courbe méridienne, dans le plan (r,z), admet une représentation paramétrique M(s), où s est l'abscisse curviligne. On note ${\bf T}$ le vecteur tangent à la courbe dans le plan méridien, et ${\bf N}$ le vecteur normal. On a :

$$\mathbf{T} = \frac{\partial \vec{OM}}{\partial s}$$

$$\frac{\partial \mathbf{T}}{\partial s} = -K^{(a)} \mathbf{N}$$

$$\frac{\partial \mathbf{N}}{\partial s} = K^{(a)} \mathbf{T}$$

En pratique on peut aussi utiliser la formule suivante :

$$K^{(a)} = \mathbf{T} \cdot \frac{\partial \mathbf{N}}{\partial s} = \mathbf{T} \cdot (\nabla \mathbf{N}) \cdot \mathbf{T}$$

Le second terme a l'expression suivante :

$$K^{(b)} = \frac{N_{,r}}{r}$$

où $N_{,r} = \mathbf{N} \cdot \mathbf{e_r}$ est la composante radiale du vecteur normal.

2. Courbure de la forme moyenne

On suppose que la forme moyenne de l'interface est donnée par un paramétrage de la forme $M_0(s_0)$, où s_0 est l'abscisse curviligne associée. On note T_0 , N_0 , K_0 les vecteurs tangents, normal, et la courbure associée. Ceux-ci sont donnés par :

$$\mathbf{T}_{0} = \frac{\partial O \vec{M}_{0}}{\partial s_{0}}$$

$$K_{0} = K_{0}^{(a)} + K_{0}^{(b)} = \mathbf{T}_{0} \cdot \frac{\partial \mathbf{N}_{0}}{\partial s_{0}} + \frac{\mathbf{N}_{0,r}}{r}$$
(2.1)

3. Perturbation

On suppose maintenant que la surface oscille faiblement autour de la forme moyenne précédemment définie (voir figure b).

On choisit de paramétrer la déformation de la manière suivante :

$$\vec{OM}(s_0) = \vec{OM}_0(s_0) + \epsilon \eta(s_0) \mathbf{N}_0$$

Dans cette expression, ϵ est un petit paramètre, et la fonction η correspond à l'amplitude de la déformation mesurée dans la direction normale à la surface *moyenne*. Notons que l'on garde le paramétrage par la variable s_0 qui est l'abscisse curviligne de la forme moyenne (et qui n'est pas identique à l'abscisse curviligne s de la surface déformée).

On injecte maintenant ce paramétrage dans les formules précédentes, et on linéarise par rapport à ϵ , ce qui aboutit à :

$$\frac{\partial s}{\partial s_0} = \left| \frac{\partial O\vec{M}}{\partial s_0} \right| = 1 - \epsilon \eta K_0^{(a)};$$

$$\mathbf{T} = \left(\frac{\partial s}{\partial s_0} \right)^{-1} \frac{\partial O\vec{M}}{\partial s_0} = \mathbf{T}_0 + \epsilon \mathbf{T}_1; \quad \mathbf{T}_1 = -\frac{\partial \eta}{\partial s_0} \mathbf{N_0}$$

$$\mathbf{N} = \mathbf{N}_0 + \epsilon \mathbf{N}_1; \quad \mathbf{N}_1 = \frac{\partial \eta}{\partial s_0} \mathbf{T_0}$$

$$K^{(a)} = \mathbf{T} \cdot \frac{\partial \mathbf{N}}{\partial s} = (\mathbf{T}_0 + \epsilon \mathbf{T}_1) \left(\frac{\partial s_0}{\partial s}\right) \frac{\partial}{\partial s_0} \left(\mathbf{N}_0 + \epsilon \mathbf{N}_1\right)$$

$$= K_0^{(a)} + \epsilon K_1^{(a)}$$

$$K_1^{(a)} = -\frac{\partial^2 \eta}{\partial s_0^2} - \left(K_0^{(a)}\right)^2 \eta$$

De même, pour la seconde composante de la courbure :

$$\begin{split} K^{(b)} &= \frac{N_{,r}}{r} = \frac{N_{0,r} + \epsilon N_{1,r}}{r + \epsilon \eta N_{0,r}} \\ &= K_0^{(b)} + \epsilon K_1^{(b)} \\ K_1^{(b)} &= -\frac{T_{0,r}}{r} \frac{\partial \eta}{\partial s_0} - \left(K_0^{(b)}\right)^2 \eta \end{split}$$

Au final on a donc:

$$K = K_0 + \epsilon K_1$$

$$K_0 = \mathbf{T_0} \frac{\partial \mathbf{N_0}}{\partial s_0} + \frac{N_{0,r}}{r}$$

$$K_1 = -\frac{1}{r} \frac{\partial}{\partial s_0} \left(r \frac{\partial \eta}{\partial s_0} \right) - \left[\left| \frac{\partial \mathbf{N_0}}{\partial s_0} \right|^2 + \frac{N_{0,r}^2}{r^2} \right] \eta$$

Dans cette dernière expression on a utilisé l'identité $T_{0,r}=\partial r/\partial s_0$

4. Cas particulier : forme moyenne sphérique

On suppose que la forme moyenne est une sphère de rayon R_0 . On utilise les coordonnées sphériques (R,Θ) . Dans ce cas, l'abscisse curviligne de la forme moyenne s_0 est donné par $s_0 = R_0\Theta$, et on a :

$$r = R_0 \sin \Theta; \quad z = R_0 \cos \Theta; \quad \frac{\partial}{\partial s_0} = \frac{1}{R_0} \frac{\partial}{\partial \Theta}$$

$$\mathbf{N_0} = \mathbf{e_R}; \quad \mathbf{T_0} = \mathbf{e_\Theta}; \quad N_{0,r} = \sin \Theta;$$

En injectant dans les formules précédentes, on aboutit à :

$$K_0 = \frac{2}{R_0}$$

$$K_{1} = -\frac{1}{R_{0}^{2} \sin \Theta} \frac{\partial}{\partial \Theta} \left(\sin \Theta \frac{\partial \eta}{\partial \theta} \right) - \frac{2}{R_{0}^{2}} \eta$$

Ce qui correspond bien aux formules obtenues dans ce cas.

1 David Fabre

5. Paramétrage selon r

Vérifions que les formules générales trouvée ici est équivalente à celles utilisées dans le cas où la surface est paramétrée par r et non par s_0 C'est-à-dire :

$$z = H(r) = h_0(r) + \epsilon \eta_z(r)$$

Dans ce cas le calcul de la courbure conduit à :

$$K = K_0(r) + \epsilon k(r)$$

avec:

$$K_0(r) = -\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r}{\sqrt{1 + h_0^{\prime 2}}} \frac{\partial h_0}{\partial r} \right)$$

$$k(r) = -\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r}{\left(1 + h_0^{\prime 2}\right)^3} \frac{\partial \eta_z}{\partial r} \right)$$

(Par rapport aux formules données dans le rapport de Jérôme on a changé les signes afin d'utiliser la même convention sur les normales, et on a rectifié une petite erreur dans le terme k).

La correspondance entre les deux formulations s'établit en utilisant les identités suivantes :

$$\eta_z(r) = \frac{\eta(s_0)}{N_{0,z}}; \quad T_{0,r} = N_{0,z} = \frac{1}{\sqrt{1 + h_0'^2}}; \quad T_{0,z} = -N_{0,r} = \frac{h_0'}{\sqrt{1 + h_0'^2}}$$
$$\frac{\partial}{\partial r} = N_{0,z} \frac{\partial}{\partial s_0}$$
$$k(r) = K_1(s_0) - \frac{\partial K_0}{\partial s_0} T_{0,z} \eta_z(r)$$

(formules vérifiées avec Maple)

6. Calcul de la forme d'équilibre par méthode de Newton

Le but est de construire un maillage tel que le long de sa frontière, on ait l'équilibre de Laplace :

$$F = K - \frac{\Delta P}{\sigma} = 0. \tag{6.1}$$

avec

$$\Delta P = \Delta P_b + \Delta \rho g z$$

Ici ΔP_b est la différence de pression à la base de la bulle (z=0), que l'on impose dans le calcul (on pourrait aussi imposer le volume dans la bulle et considérer ΔP_b comme une inconnue, mais cela reste à faire proprement).

La méthode est la suivante :

- (a) On part d'un maillage correspondant à une forme approximative de la bulle (par exemple un développement en série de Legendre issu des expériences).
- (b) On écrit un développement de Taylor de la fonction F par rapport à des petites variations η de la forme de la surface :

$$F \approx F_0 + F_1 = 0$$
 avec $F_0 = K_0 - (\Delta P + \Delta \rho gz)/\sigma$, $F_1 = K_1 - \frac{\Delta \rho g}{\sigma} N_{0,z} \eta$

où K_1 est donné (en fonction de η) par la formule de la section précédente.

- (c) On inverse la relation précédente, ce qui donne la fonction η correspondant au déplacement qu'il faut donner à l'interface pour assurer la condition F=0 (sous l'hypothèse de linéarisation).
- (d) On construit un champ de vecteurs \mathbf{U} , défini à l'intérieur du domaine, correspondant à un déplacement lagrangien vérifiant $\mathbf{U} = \eta \mathbf{N_0}$ sur la frontière du domaine et étant suffisamment régulier à l'intérieur (en pratique on résoud une équation de Poisson).
- (e) On déforme le maillage selon le champ de vecteur \mathbf{U} , ce qui aboutit à un nouveau maillage en principe plus proche de la solution d'équilibre.
- (f) On répète l'opération de manière itérative a partir du point (b), jusqu'à convergence (c'est à dire jusqu'à ce que la quantité F_0 devienne effectivement négligeable.

7. Implémentation avec Freefem

Pour le calcul de la courbure moyenne, il faut commencer par interpoler les vecteurs normal (et tangent) sous forme de champs P1 définis sur la frontière : (...)

```
mesh Shempty=emptymesh(Sh);
fespace Wh1(Shempty,P1);
Wh1 NOr,NOz,TOr,TOz,KOa,KOb,test;
problem CalcNOr(NOr,test)=
 int1d(Shempty,qfe=qf3pE)(N0r*test)-int1d(Shempty,qfe=qf3pE)(N.x*test);
problem CalcNOz(NOz,test)=
 int1d(Shempty,qfe=qf3pE)(NOz*test)-int1d(Shempty,qfe=qf3pE)(N.y*test);
CalcNOr;
CalcNOz;
TOr = NOz;
TOz = -NOr;
macro Ds(u1,u2)
[dx(u1)*T0r+dy(u1)*T0z,dx(u2)*T0r+dy(u2)*T0z]
problem ComputeKOa(KOa,test)=
 int1d(Shempty,qfe=qf3pE)(K0a*test)
-int1d(Shempty,qfe=qf3pE)(Ds(NOr,NOz)'*[TOr,TOz]*test);
ComputeK0a;
problem ComputeKOb(KOb,test)=
 int1d(Shempty,qfe=qf3pE)(K0b*test*x)
-int1d(Shempty,qfe=qf3pE)(NOr*test);
ComputeKOb;
```

6

Pour les perturbations, le terme de courbure se traite par intégration par partie :

$$p = \sigma K_1$$

$$\int_{\mathcal{S}} \eta^{\dagger} p r d\ell = \sigma \int_{\mathcal{S}} \left(\frac{\partial \eta^{\dagger}}{\partial s_0} \frac{\partial \eta}{\partial s_0} - \left[\left| \frac{\partial \mathbf{N_0}}{\partial s_0} \right|^2 + \frac{N_{0,r}^2}{r^2} \right] \eta^{\dagger} \eta \right) r d\ell \text{ (+ termes de bord)}$$