Mandatory Assignment 1 of 2

Håkon Berggren Olsen MAT2400- Real Analisys University of Oslo hakonberggren@gmail.com

Spring 2022

Problem 1

Let X be the set of all sequences $\{x_n\}_{n\in\mathbb{N}}$ of real numbers such that $\lim_{n\to\infty}x_n=0$.

a) Use the definiton of converge to show that if $x_n \in X$, then there is a $K \in \mathbb{N}$ such that $|x_K| = \sup\{|x_n| : n \in \mathbb{N}\}$ (i.e. x_K is an element of maximal absolute value).

Definition of convergence:

A sequence $\{x_n\}$ of real numbers converges to $a \in \mathbb{R}$ if for every $\epsilon > 0$ (no matter how small), there is an $N \in \mathbb{N}$ such that $|x_n - a| < \epsilon$ for all $n \leq N$. We write $\lim_{n \to \infty} x_n = a$.

(Or in laymans terms: You can always find a point x_n which is arbitrarily close, $\epsilon > 0$, to a by going deeper and deeper into the sequence $\{x_n\}$, i.e. choosing larger and larger N).

b) Define $d: X \times X \to [0, \infty)$ by

$$d(\{x_n\}, \{y_n\}) = \sup\{|x_n - y_n| : n \in \mathbb{N}\}.$$

Show that d is a metric on X.

Definition of a metric:

A metric space (X, d) consits of a nonempty set X and a function $d: X \times X \to [0, \infty)$ such that:

- (Positivity) For all $x, y \in X$, we have $d(x, y) \ge 0$ with equality if and only if x = y.
- (Symmetry) For all $x, y \in X$ we have d(x, y) = d(y, x).
- (Triangle Inequality) For all $x, y, z \in X$, we have

$$d(x,y) \le d(x,z) + d(z,y)$$

c) Let Y be the set of all sequences $\{y_n\}_{n\in\mathbb{N}}$ of real numbers such that

 $\sum_{n=1}^{\infty} |y_n| < \infty$. Show that $Y \subseteq X$. Find a sequence $\{x_n\}$ that belongs to X but not to Y (you can use everything you know from calculus).

d) Assume $\{x_n\} \in X \setminus Y$ and let $\epsilon > 0$. Show that the ball $B(\{x_n\}; \epsilon)$ contains elements from Y. Explain why this shows that Y is not closed.

Note: The ball is defined as such:

Let a be a point in a metric space (X, d), and assume that r is a positive, real number. The (open) ball centered at a with radius r is set

$$B(a; r) = \{ x \in X : d(x, a) < r \}$$

And the closed ball centered at a with radius r is the set

$$\overline{B}(a;r) = \{ x \in X : d(x,a) \le r \}$$

e) Assume $\{y_n\} \in Y$ and let $\epsilon > 0$. Show that $B(\{y_n\}; \epsilon)$ contains elements from $X \setminus Y$ Explain why this shows that Y is not open.

Problem 2

A metric space (X, d) is called disconnected if there are two non-empty, open subsets O_1, O_2 such that $O_1 \cup O_2 = X$ and $O_1 \cap O_2 = \emptyset$.

a) Let $X = [0, 1] \cup [2, 3]$ have the usual metric d(x, y) = |x - y|. The metric space is disconnected as there are two non-empty, open subsets $O_1 = [0, 1]$ and $O_2 = [2, 3]$ which have the properties

$$O_1 \cup O_2 = [0, 1] \cup [2, 3] = X$$

 $O_1 \cap O_2 = [0, 1] \cap [2, 3] = \emptyset$

b) Show that \mathbb{Q} with the usual metric d(x,y) = |x-y| is disconnected. (Hint: Consider $O_1 = \{x \in \mathbb{Q} : x^2 > 2\}$ and $O_1 = \{x \in \mathbb{Q} : x^2 > 2\}$.)

c) Assume that (X,d) is a connected (i.e. not disconnected) metric space and that $f: X \to \mathbb{R}$ is a continous function such that there are two points $a,b \in X$ with f(a) < 0 < f(b). Show that there is a point $c \in X$ such that f(c) = 0. (This is an abstract version of the Intermediate Value Theorem.)