

ESTIMATION OF HIGH-DIMENSIONAL MEAN REGRESSION IN ABSENCE OF SYMMETRY AND LIGHT-TAIL ASSUMPTIONS

{ Jianqing Fan, Quefeng Li, Yuyan Wang } Princeton University, Department of Operations research & Financial Engineering

OBJECTIVES

Data subject to heavy-tailed and/or asymmetric errors are encountered in various scientific fields. In the pursuit of estimating mean regression function under this setting and assuming high-dimensionality, our goal is to:

- 1. Propose a penalized method for the estimation of mean regression function under minimal assumptions on the data.
- 2. Develop efficient algorithms to solve for the estimator.

OPTIMAL STATISTICAL ERROR

$$||\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*||_2 \le ||\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*||_2 + ||\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*||_2 .$$
 statistical error approximation error estimation error

Thm 1. $\|\beta_{\alpha}^* - \beta^*\|_2 = O(\alpha^{k-1})$.

Fig. 2: Large Curvature **Fig. 3:** Large Curvature Restricted Strong Convexity (RSC):

$$\delta \mathcal{L}_n(\boldsymbol{\Delta}, \boldsymbol{\beta}_{\alpha}^*) \geq \kappa_{\mathcal{L}} \|\boldsymbol{\Delta}\|_2^2 - \tau_{\mathcal{L}}^2$$
, for all $\boldsymbol{\Delta} \in \mathbb{C}_{\alpha}$.

where
$$\delta \mathcal{L}_n(\boldsymbol{\Delta}, \boldsymbol{\beta}_{\alpha}^*) = \mathcal{L}_n(\boldsymbol{\beta}_{\alpha}^* + \boldsymbol{\Delta}) - \mathcal{L}_n(\boldsymbol{\beta}_{\alpha}^*) - [\nabla \mathcal{L}_n(\boldsymbol{\beta}_{\alpha}^*)]^T \boldsymbol{\Delta}.$$

Thm 2. $\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2 = O(\sqrt{R_q}[(\log p)/n]^{1/2-q/4})$. By choosing proper α , one gets:

$$\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 = O(\sqrt{R_q}[(\log p)/n]^{1/2-q/4}). \Rightarrow$$
 Only requires existence of 2nd moment; Rate is the same as under the light tails!

INTRODUCTION

The existing techniques for estimating mean regression function for high-dimensional data with possibly heavy OR asymmetric tails:

- Lasso: Light & Asymmetric Tails
- LAD: Heavy & Symmetric Tails

We propose a penalized robust approximate quadratic (RA-quadratic) loss and the RA-Lasso estimator, which deals with heavy & asymmetric tails.

NUMERICAL STUDIES

$$y_i = \mathbf{x}_i^T \boldsymbol{\beta}^* + c^{-1} (\mathbf{x}_i^T \boldsymbol{\beta}^*)^2 \epsilon_i,$$

$$\mathbf{x}_i \sim N(0, I_p), \ c = \sqrt{3} ||\boldsymbol{\beta}^*||^2.$$

	Light Tail	Heavy Tail
Symmetric	N(0,1)	$2t_3$
Asymmetric	MixN	LogNor, Weibull

Relative gain (RG_L, RG_{LAD}):

$$\frac{\|\hat{\boldsymbol{\beta}}_{\text{Lasso/LAD}} - \boldsymbol{\beta}^*\|_2 - \|\hat{\boldsymbol{\beta}}_{\text{oracle}} - \boldsymbol{\beta}^*\|_2}{\|\hat{\boldsymbol{\beta}}_{\text{our}} - \boldsymbol{\beta}^*\|_2 - \|\hat{\boldsymbol{\beta}}_{\text{oracle}} - \boldsymbol{\beta}^*\|_2}$$

 $RG_L > 1 \Rightarrow$ ours is better than LASSO. $RG_{LAD} > 1 \Rightarrow$ ours is better than LAD.

		RG_L	RG_{LAD}
${f N(0,1)}$	L_2 loss	1.00	0.93
	L_1 loss	1.00	1.00
2t ₃	L_2 loss	1.26	1.01
	L_1 loss	1.08	1.12
MixN	L_2 loss	1.00	1.06
	L_1 loss	1.06	1.23
LogNor	L_2 loss	1.43	1.13
	L_1 loss	1.10	1.09
Weibull	L_2 loss	1.53	1.92
	L_1 loss	1.23	1.48

Model & Methods: RA-Lasso

Consider the linear regression model:

$$y_i = \mathbf{x}_i^T \boldsymbol{\beta}^* + \epsilon_i.$$

- $\{\mathbf{x}_i\}_{i=1}^n$ are i.i.d p-dim with $\mathrm{E}(\mathbf{x}_i) = \mathbf{0}$;
- $\{\epsilon_i\}_{i=1}^n$ are i.i.d errors with $E(\epsilon_i) = 0$;
- $p \gg n$, $\log(p) = o(n^b)$ for some 0 < b < 1.

Build a sequence of surrogate losses to approximate the least squares *at a good rate*, in order to balance bias and robustification.

$$\ell_{\alpha}(x) = \begin{cases} 2\alpha^{-1}|x| - \alpha^{-2} & \text{if } |x| > \alpha^{-1}; \\ x^{2} & \text{if } |x| \le \alpha^{-1}. \end{cases}$$

 $\ell_{\alpha}(x) \to x^2 \text{ as } \alpha \to 0 \text{ and } \ell_{\alpha}(x) \to |x| \text{ as } \alpha \to \infty.$

We propose **RA-Lasso**:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_{\alpha} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})}_{\text{Huber loss } \mathcal{L}_n(\boldsymbol{\beta})} + \lambda_n \underbrace{\sum_{j=1}^{p} |\beta_j|}_{\text{penalty}}.$$

Fig. 1: Huber Loss with Varying Parameter

- For a fixed α , $\hat{\boldsymbol{\beta}}$ is an estimator of $\boldsymbol{\beta}_{\alpha}^* = \operatorname{argmin}_{\boldsymbol{\beta}} \operatorname{E} \ell_{\alpha} (y \mathbf{x}^T \boldsymbol{\beta})$.
- In general, $\beta_{\alpha}^* \to \beta^*$ as $\alpha \to 0$.
- We recommend letting $\alpha \to 0$ at a good rate.

GEOMETRIC CONVERGENCE OF COMPUTATIONAL ERROR

$$\hat{\boldsymbol{\beta}}^{t+1} = \underset{\|\boldsymbol{\beta}\|_{1} \leq \rho}{\operatorname{argmin}} \ \mathcal{L}_{n}(\hat{\boldsymbol{\beta}}^{t}) + [\nabla \mathcal{L}_{n}(\hat{\boldsymbol{\beta}}^{t})]^{T} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^{t}) + \frac{\gamma_{u}}{2} \|\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^{t}\|_{2}^{2} + \lambda_{n} \|\boldsymbol{\beta}\|_{1},$$

local quadratic approximation

Thm 3.
$$\|\hat{\boldsymbol{\beta}}^t - \hat{\boldsymbol{\beta}}\|_2^2 = O\left(\underbrace{R_q\left(\frac{\log p}{n}\right)^{1-(q/2)}}_{o(1)} \left[\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2^2 + R_q\left(\frac{\log p}{n}\right)^{1-(q/2)}\right]\right)$$
 for t large enough.

$$\Rightarrow \|\hat{\boldsymbol{\beta}}^{t} - \boldsymbol{\beta}^{*}\|_{2} \leq \underbrace{\|\hat{\boldsymbol{\beta}}^{t} - \hat{\boldsymbol{\beta}}\|_{2}}_{\text{computational error}} + \underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^{*}\|_{2}}_{\text{estimation error}} + \underbrace{\|\boldsymbol{\beta}_{\alpha}^{*} - \boldsymbol{\beta}^{*}\|_{2}}_{\text{approximation error}}$$

$$= o(\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^{*}\|_{2}) + \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^{*}\|_{2} + o(\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^{*}\|_{2})$$

$$= O(\sqrt{R_{q}}[(\log p)/n]^{1/2-q/4}) \Rightarrow \hat{\boldsymbol{\beta}}^{t} \text{ is as good as } \hat{\boldsymbol{\beta}}.$$

FUTURE RESEARCH

General theory for the robust estimation of the mean regression function in high dimension:

- A proper sequence of surrogate losses?
- should be close to quadratic loss for small errors.
- should penalize less severely for large errors.

SUMMARY

- Robust estimation of the mean function in HD.
- Approximate L_2 -losswith a sequence of surrogate loss functions to balance bias and robustification.
- Only requires the existence of 2nd moment.
- Attain optimality for a *wide* range of distributions.
- No efficiency loss under special cases, compared with existing methods (LAD, quantile regression).
- A computable solution that attains the optimal error rate after sufficient iterations.

CONTACT INFORMATION

Address ORFE, Sherrerd Hall, Princeton University, Princeton, NJ, 08540

Email vuvan@princeton.edu

Email yuyan@princeton.edu
Phone +1(609)815-5855