Neural Networks

Lecture 09: Deep Learning

http://www.informatik.uni-hamburg.de/WTM/

Feature Perception

- People are very good at recognizing patterns
- Our perceptual systems are very good at dealing with invariances
 - translation, rotation, scaling
 - pose, deformation, occlusion
 - contrast, lighting, color, texture

- However, it is too complex to model these systems explicitly (Rule based).
 - Deep Learning: Feature Learning

Feature Engineering vs Feature Learning

- Feature engineering
 - Classical computer vision

- Feature learning
 - Deep Learning

Feature Engineering vs Feature Learning

- Feature engineering
 - Domain-specific
 - Wide research field in the past decades
 - Many approaches and validated results
 - Performance stagnation in the past years
- Feature learning
 - Adapts to the domain
 - Learn specificity of the problem
 - Learning hierarchical features
 - Computationally expensive
 - Diverse applications and active research

Learning hierarchical features: Deep Learning

- Use of trained feature extractors to model data representation.
- Using sequences of layers to obtain hierarchical data representation: from low level features to high level of abstraction.

Hierarchical features

- Each layer increases the level of abstraction of the modeled data:
 - Image: pixel → edges → shapes → objects
 - Text: character → word → sentence → story
 - Speech: sound → phone → phoneme → word

Edges

Shapes

Objects

Convolutional Neural Networks (CNNs)

- Stack of convolution and pooling layers
 - Learn filters which code feature extractors
 - Increasing abstraction through layers
- Connected to a fully connected MLP

Convolutional Neural Networks (CNNs)

- Each layer is composed of:
 - Normalization: for outlier removal, high-pass filtering, smoothing over noise.
 - Conv: Filtering and activation function.
 - Pooling: dimensionality reduction.

Input Normalization

Local contrast normalization (LCN)

Subtraction of local mean followed by division with local standard deviation

$$h_{x,y} = \frac{h_{x,y} - m_{N(x,y)}}{\sigma_{N(x,y)}}$$

LCN images

What is Convolution

- 2D convolution
 - Weighted moving sum

What is Convolution

- 2D convolution
 - Example

1 _{×1}	1 _{×0}	1 _{×1}	0	0
O _{×0}	1 _{×1}	1 _{×0}	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Convolution

Filters are feature extractors

Convolution

Filters are feature extractors

Convolution

Filters are feature extractors

- Several different filters per layer
 - Feature redundancy strategy to learn different features
- Each filter is applied to the whole image
 - Weights are shared for all image locations
- Captures spatial structure of the input
- Use local weight connections, instead of fully connected layers

- x = input signal
- y = filter map
- W = kernel (filter)
- Sliding the filters over the input signal
- y_i is a dot product
 of the local neighborhood
 and the filter weights
- Apply an activation function on each filter map

2D convolution

$$Conv = \sum_{m=1}^{M} \sum_{h=1}^{H} \sum_{w=1}^{W} w_{(c-1)m}^{hw} u_{(m-1)}^{(h)(w)}$$

 Convolve the filters (M) weights (w) with the input (u) using the specified window (h,w)

3D convolution

$$Conv3D = \sum_{m=1}^{M} \sum_{h=1}^{H} \sum_{w=1}^{W} \sum_{z=1}^{Z} w_{(c-1)m}^{hwz} u_{(m-1)}^{hwz}$$

- Extract spatial-temporal structures
- Apply a 3D kernel (h,w,z) over a stack of images
- Slide the kernel in all three dimensions

Pooling Layer

- Reduce dimensionality by subsampling over a window
- Applied on each kernel's (filter's) output

http://cs231n.github.io/convolutional-networks/

- Translation invariance
- Usually max or average pooling

Convolution and Pooling Layers

http://cs231n.github.io/convolutional-networks/

Fully Connected MLP

- The outputs of the last convolutional layer are flattened
- The resulting feature vector is used as input to a hidden layer
- Usually uses a logistic regression classifier (softmax)
 - The softmax function squashes the logistic function's k-dimensional output of real values into a vector of probabilities per class, that can be added up to 1.

Training CNNs

- Use backprop to train Convolution Neural Networks
 - Calculate the gradient of the filters using the transpose of the filters (flipping the kernels)
- Usually trained with huge amount of data
- Tendency to overfit
 - Due to not enough data and/or high number of parameters
 - Regularizations are necessary in most of the cases

Training CNNs

- Batch Normalization
 - Normalizes the activations of the previous layer at each batch. Mean close to 0, standard deviation close to 1.
- Dropout regularization
 - Prevents network overfitting.
 - Temporarily remove the unit and its weights from the network
 - 50% chance of removal for one training epoch.
 - Improves network generalization.

(a) Standard Neural Net

(b) After applying dropout.

Dropout

Forces network to have a redundant representation.

- Why is this a good idea?
 - Another interpretation: Dropout is training a large ensemble of models (that share parameters)
 - Each binary mask is one model
- What do we do about the randomness at test time?
 - During testing all neurons are always active
 - Scale activations so that outputs are equal during testing and training

Training CNNs

- Shuffle the training samples
- Use batch learning and not online learning
 - Update the weights of the kernels after a batch (a small part) of the training set is presented
- Calculates the gradient against the samples of each batch, instead of one sample per time
- Usually results in a smoother convergence
 - The gradient computed for each training step uses more training samples, thus the summed gradient is more detailed

Understanding and Visualizing CNNs

- Neural networks are black boxes
 - Hard to understand what they learn
 - Difficult to evaluate the quality of the learned representations
- How to have an insight on what the network learned?
 - Different visualization techniques
 - Different knowledge

Filters visualization

- Transform the learned representations into high-abstraction information
 - Helpful way to subjectively analyze the effect of different parameters change and regularizations.
- Send a random image (x) to the network and backpropagate the gradient $(\partial a_i(x)/\partial x)$ of the activation of specific filter (a_i) to update the input image.

$$x \leftarrow x + \partial a_i(x)/\partial x$$

Attention maps

- Identify regions of the stimuli which activate specific network regions
 - Very popular method for attention-based networks
- Send a selected input image (i) to the network and backpropagate the gradient $(\partial a_i(i)/\partial x)$ of the activation of a specific filter (a_i) to generate a heatmap of the region that neuron activates to.

$$i \leftarrow \partial a_i(i)/\partial x$$

Adversarial Learning

- Train a neural network using an unsupervised method
 - Adversarial Generative Neural Networks (GANs)
- Adversarial training
 - Two networks: generator (G) and discriminator (D)
 - Generator: learns to generate data from noise (z)
 - Discriminator: learns to discriminate real data (r) from generated data.
 - Error function (E): is the generated image real (t)?

$$E = D(r, G(z)) - t$$

Unsupervised Learning

Adversarial Training

Generative Adversarial Network

Unsupervised Learning

Generated Images

Early CNN architectures

- LeNet-5
 - 2 Conv layers, connected with 2 max-pooling layers
 - 2 fully connected hidden layers
 - Applied to character and handwriting recognition

Recent CNN architectures

- GoogleLeNet ImageNet challenge
 - Inception layer: All conv. layers have kernels of different size which are concatenated

Recent CNN architectures

Multimodal Processing

- Cross Channel Convolutional Neural Network (CCCNN)
- Applied to emotion expression recognition
 - One stream dealing with face expression and the other with body posture.
- Use shunting inhibition to force strong features in deeper layers

Expectation Learning

- Unsupervised learning of crossmodal representations
 - I see a dog, I expect it to bark.
- Crossmodal convolution autoencoders
 - Encoding and decoding high-level information
- Self-organizing binding layer
 - Bind dog with barking

Expectation Learning

Expectation Learning

Perceived vision, generated audio

Perceived audio, generated vision

Summary

- Learned features adapt to domain and provide solutions for very hard tasks
- CNNs are composed of a stack of convolutional operations and pooling layers, extracting specific structures in each layer and compressing information.
- Usually used: backpropagation to train the network. Some regularization techniques are necessary to avoid overfitting
- Several architectures were and still are proposed, it is an open and active research field.

Next lecture:

Training Neural Networks – Best practices and Frameworks

References

- [LeCun, 1998] Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol.86, no.11, pp.2278-2324, 1998
- [Krizhevsky, 2012] A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012
- [Barros, 2015] Barros, Pablo, et al. "Multimodal emotional state recognition using sequence-dependent deep hierarchical features."

 Neural Networks 72 (2015): 140-151.
- [Szegedy, 2014], W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, "Going deeper with convolutions". C Szegedy. arXiv preprint arXiv:1409.4842

Call for Experiments

- Want to help us to develop the next generation deep learning models?
- Take part in our human behaviour experiments!
- Send an email to: barros@informatik.uni-hamburg.de

