S Τ 11 GGAGTCGACCCACGCGTCCGCAGGGCTGAGGAACC ATG TCT CCA TCC CCG ACC GCC CTC TTC TGT CTT 68 C G R 0 S G Κ S 31 GGG CTG TGT CTG GGG CGT GTG CCA GCG CAG AGT GGA CCG CTC CCC AAG CCC TCC CTC CAG 128 Р S S Ε K Т Р ٧ L R 0 G 51 GCT CTG CCC AGC TCC CTG GTG CCC CTG GAG AAG CCA GTG ACC CTC CGG TGC CAG GGA CCT 188 G D Υ R L Ε S Κ S S R Υ 71 CCG GGC GTG GAC CTG TAC CGC CTG GAG AAG CTG AGT TCC AGC AGG TAC CAG GAT CAG GCA 248 F Ι R S М Κ S Υ 0 .91 G R GTC CTC TTC ATC CCG GCC ATG AAG AGA AGT CTG GCT GGA CGC TAC CGC TGC TCC TAC CAG 308 0 Ε 111 G AAC GGA AGC CTC TGG TCC CTG CCC AGC GAC CAG CTG GAG CTC GTT GCC ACG GGA GTT TTT 368 S S S Α Q G Ρ 131 GCC AAA CCC TCG CTC TCA GCC CAG CCC GGC CCG GCG GTG TCG TCA GGA GGG GAC GTA ACC 428 Υ R G F Q F Ε 151 Α Υ D CTA CAG TGT CAG ACT CGG TAT GGC TTT GAC CAA TTT GCT CTG TAC AAG GAA GGG GAC CCT 488 E Υ R 171 GCG CCC TAC AAG AAT CCC GAG AGA TGG TAC CGG GCT AGT TTC CCC ATC ATC ACG GTG ACC 548 S S 191 GCC GCC CAC AGC GGA ACC TAC CGA TGC TAC AGC TTC TCC AGC AGG GAC CCA TAC CTG TGG 608 Ε ٧ 211 TCG GCC CCC AGC GAC CCC CTG GAG CTT GTG GTC ACA GGA ACC TCT GTG ACC CCC AGC CGG 668 Ε S S Ε F S Α Ε Α 231 TTA CCA ACA GAA CCA CCT TCC TCG GTA GCA GAA TTC TCA GAA GCC ACC GCT GAA CTG ACC 728 F Τ T Ε Τ S S 251 GTC TCA TTC ACA AAC AAA GTC TTC ACA ACT GAG ACT TCT AGG AGT ATC ACC ACC AGT CCA 788 271 R 0 Υ Υ AAG GAG TCA GAC TCT CCA GCT GGT CCT GCC CGC CAG TAC TAC ACC AAG GGC AAC CTG GTC 848 Ι Ι Ι G 291 Α CGG ATA TGC CTC GGG GCT GTG ATC CTA ATA ATC CTG GCG GGG TTT CTG GCA GAG GAC TGG 908 R Н R G R Α ٧ Q 311 CAC AGC CGG AGG AAG CGC CTG CGG CAC AGG GGC AGG GCT GTG CAG AGG CCG CTT CCG CCC 968

331 D CTG CCG CCC CTC CCG CAG ACC CGG AAA TCA CAC GGG GGT CAG GAT GGA GGC CGA CAG GAT 1028 340 GTT CAC AGC CGC GGG TTA TGT TCA TGA 1055 CCGCTGAACCCCAGGCACGGTCGTATCCAAGGGAGGGATCATGGCATGGGAGGCGACTCAAAGACTGGCGTGTGTGGAG 1134 CGTGGAAGCAGGAGGCAGAGGCTACAGCTGTGGAAACGAGGCCATGCTGCCTCCTGGTGTTCCATCAGGGAGCCG 1213 AATATGGGCTCCAGACGGATCTCTAAGGTTCCCAGCTCTCAGGGTTGACTCTGTTCCATCCTCTGTGCAAAATCCTCCT 1450 GTGCTTCCCTTTGGCCCTCTGTGCTCTTGTCTGGTTTTCCCCAGAAACTCTCACCCTCACTCCATCTCCCACTGCGGTC 1529 AGCACGTTGCCCGCTTCCCTTCACATTAGAAAACAAGATCAGCCTGTGCAACATGGTGAAACCTCATCTCTACCAACAA 1687 AACAAAAAACACAAAAATTAGCCAGGTGTGGTGGTGCATCCCTATACTCCCAGCAACTCGGGGGGCCTGAGGTGGGAGA 1766 ATGGCTTGAGCCTGGGAGGCAGAGGCTGAGCTGAGATCACACCACTGCACTCTAGCTCGGGTGACGAAGCCTGA 1845 CCTTGTCTCAAAAAATACAGGGATGAATATGTCAATTACCCTGATTTGATCATAGCACGTTGTATACATGTACTGCAAT 1924 AAAAAAAAAAAAAAGGGCGGCCGCTAGACTAGTCTAGAGAACA 2047

FIG.1B

MSPSPTALFCLGLCLGRVPAQSGPLPKPSLQALPSSLVPLEKPVTLRCQGPPGVDLYRLE KLSSSRYQDQAVLF IPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQP GPAVSSGGDVTLQCQTRYGFDQFALYKEGDPAPYKNPERWYRASFPIITVTAAHSGTYRC YSFSSRDPYLWSAPSDPLELVVTGTSVTPSRLPTEPPSSVAEFSEATAELTVSFTNKVFT TETSRSITTSPKESDSPAGPARQYYTKGNLVRICLGAVILIILAGFLAEDWHSRRKRLRH RGRAVQRPLPPLPPLPQTRKSHGGQDGGRQDVHSRGLCS

FIG.2

OLD F COM SERVICE

Serial No.: 09/829,495 Inventor(s): BUSFIELD ET AL.

Title: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.3A

•/							
inputs	GAACCCCAG	CCACAGGTGG	GAGGTTCACAT	GCTATTACTA	600 ATTATATGAA	CACCCCCCAGO	TGTGGTCCCAC
	GAATCCCGA 470	: . : . GAGA	ATGGTAC - CGG 480		:: ·П	::::: CCCCAT- 500	:: CAT
inputs	CCCAGTGAC	CCCCTGGAGA	ATTCTGCCCTC	AGGCGTGTCT	670 FAGGAAGCCCT	CCCTCCTGAC	690 CCTGCAGGGCC
	CACGGTGAC 510	ČGČČ	GCCCAC 520	AG	• • • • • • • • • • • •		•••••
inputs	CTGTCCTGG	CCCCTGGGCA	IGAGCCTGACC	CTCCAGTGTG	740 GCTCTGATGT	CGGCTACGAC	AGATTTGTTCT
·		cG	GAACCTA 530	CCGATG	•	CTACAGO 540	:::: TTCT 550
inputs	770 GTATAAGGA	GGGGGAACGT	GACTTCCTCC	AGCGCCCTGG		CAGGCTGGGC	TCTCCCAGGCC
	840	850	860	870	880	890	900
inputs							ACACAACCTCT .:::: TACCT
inputs	910 CCTCCGAGT		930 CAGCGACCCC	940 CTGAACATCC	950 TGATGGCAGG	960 ACAGATCTAT	970 GACACCGTCTC :
		GGTCGGCCCC					G
inputs	CCTGTCAGC	ACAGCCGGGC	CCCACAGTGG	CCTCAGGAGA	1020 GAACGTGACC	CTGCTGTGTC	AGTCATGGTGG
	GTCA	CAGGA 610	ACCTCTGTGA 620	CC	cc	CAGC C 630	.:: GGT
	CAGTTTGACA	ACTTTCCTTC	TGACCAAAGA	AGGGGCAGCC		TGCGTCTGAG	1110 ATCAATGTACG
		TACCAAC 640	AGAAC	CAC 65			.:: TCG
inputs		AGTACCAGGC	1140 TGAATTCCCC .::::::::	ATGAGTCCTG	TGACCTCAGC	CCACGCGGGG	1180 ACCTACAGGTG
	GTA 660	GC	AGAATTCTC - 670	AG	680	CGCTGA-	::.: ACTGA 690
			F	IG.3B	•		

6

inputs MSPSPTALFCLGLCLG-RVPAOSGPLPKPSLOALPSSLVPLEKPVTLRCOGPPGVDLYRLEKLSSS----MTPALTALLCLGLSLGPRTRVQAGPFPKPTLWAEPGSVISWGSPVTIWCQGSLEAQEYRLDKEGSPEPLD inputs RYQ-----DQAVLFIPAMKRSLAGRYRCSYQNGSLWSLPSDQLELVATGVFAKPSLSAQPGPAVSSGGDV RNNPLEPKNKARFSIPSMTEHHAGRYRCHYYSSAGWSEPSDPLELVMTGFYNKPTLSALPSPVVASGGNM inputs TLQCQT------RY------RY------TLRCGSQKGYHHFVLMKEGEHQLPRTLDSQQLHSGGFQALFPVGPVNPSHRWRFTCYYYYMNTPQVWSHP inputs ------GFDQFALYKEGDP----: . : . : . : : : : . . SDPLEILPSGVSRKPSLLTLQGPVLAPGQSLTLQCGSDVGYDRFVLYKEGERDFLQRPGQQPQAGLSQAN inputs ------ERW--FTLGPVSPSHGGQYRCYGAHNLSSEWSAPSDPLNILMAGQIYDTVSLSAQPGPTVASGENVTLLCQSWWQ -----YRASFPIITVTAAHSGTYRCYSFSSRDPYLWSAPSDPLELVVTG FDTFLLTKEGAAHPPLRLRSMYGAHKYQAEFPMSPVTSAHAGTYRCYGSYSSNPHLLSFPSEPLELMVSG inputs TSVTPSRLPTEPPSS--VAEFSEATAELTVSFTNKVF-----TTETSRSITTSPKESD--SPAGPA-..:.:. HSGGSSLPPTGPPSTPGLGRYLEVLIGVSVAFVLLLFLLLFLLLRRQRHSKHRTSDQRKTDFQRPAGAAE inputs RQYYTKGNLVRICLGAVIL-----IILAGFLAEDW--------HSRRKR-----TEPKDRGLLRRSSPAADVQEENLYAAVKDTQSEDRVELDSQSPHDEDPQAVTYAPVKHSSPRREMASPPS inputs ------SHGGQDGGRQDVHSRGLC: :: :. :. SLSGEFLDTKDRQVEEDRQMDTEAAASEASQDVTYAQLHSLTLRRKATEPPPSQEGEPPAEPSIYATLAI

inputs S

	*	>GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysy	srlesgek	
		+ vtL+C+	r++ +	
hT268	41	EKPVTLRCQGPPGVDLY-RLEK1SSS	-RYQDQ	70
		anlsegrfsissltLtissvekeDsGtYtCvv<-*		
		++L i +++ +G Y+C		
hT268	71	AVLFIPAMKRSLAGRYRCSY 90		

FIG.5A

	*	->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek G++vtL+C+++ + ++ y k+g++ + y+++	
hT268	127	GGDVTLQCQTRYGFDQFALY-KEGDpAPYKNPERWYR 1	62
hT268	163	anlsegrfsissltLtissvekeDsGtYtCvv<-* ++++i++v++ sGtY+CASFPIITVTAAHSGTYRCYS 182	
		FIG.5B	

GAG	TCGA	CCCA	CGCG	TCCG	CTTC	CCTG	CTTG	GCCA	CATA	GCTC	AGGA	CTGG	GTTG	CAGA	ACC	M ATG	S TCT	P CCA	A GCC	4 74
S	P	T	F	F	C	I	G	L	C	V	L	Q	V	I	Q	T	Q	S	G	24
TCA	CCC	ACT	TTC	TTC	TGT	ATT	GGG	CTG	TGT	GTA	CTG	C AA	GTG	ATC	CAA	ACA	CAG	AGT	GGC	134
P	L	P	K	P	S	L	Q	A	Q	P	S	S	L	V	P	L	G	Q	S	44
CCA	CTC	CCC	AAG	CCT	TCC	CTC	CAG	GCT	CAG	CCC	AGT	TCC	CTG	GTA	CCC	CTG	GGT	CAG	TCA	194
V GTT	I ATT	L CTG	R AGG	C TGC	Q CAG	G GGA	P CCT	P CCA	D GAT	V GTG	D GAT	L	Y TAT	R CGC	L CTG	E GAG	K AAA	L	K AAA	64 254
P	E	K	Y	E	D	Q	D	F	L	F	I	P	T	M	E	R	S	N	A	84
CCG	GAG	AAG	TAT	GAA	GAT	CAA	GAC	TT	CTC	TTC	ATT	CCA	ACC	ATG	GAA	Aga	AGT	AAT	GCT	314
G	R	Y	R	C	S	Y	Q	n	G	S	H	W	S	L	P	S	D	Q	cTT	104
GGA	CGG	TAT	CGA	TGC	TCT	TAT	CAG	Aat	GGG	AGT	CAC	TGG	TCT	CTC	CCA	AGT	GAC	CAG		374
E	L	I	A	T	G	V	Y	A	K	P	S	L	S	A	H	P	S	S	A	124
GAG	CTA	ATT	GCT	ACA	GGT	GTG	TAT	GCT	AAA	CCC		CTC	TCA	GCT	CAT	CCC	AGC	TCA	GCA	434
V	P	Q	G	R	D	V	T	L	K	C	Q	S	P	Y	S	F	D	E	F	144
GTC	CCT	CAA	GGC	AGG	GAT	GTG	ACT	CTG	AAG	TGC	CAG	AGC	CCA	TAC	AGT	TTT	GAT	GAA	TTC	494
V	L	Y	K	E	G	D	T	G	P	Y	K	r	P	E	K	W	Y	R	A	164
GTT	CTA	TAC	AAA	GAA	GGG	GAT	ACT	GGG	CCT	TAT	AA G	Aga	CCT	GAG	AAA	TGG	TAC	CGG	GCC	554
N	F	P	I	I	T	V	T	A	A	H	S	G	T	Y	R	C	Y	S	F	184
AAT	TTC	CCC	ATC	ATC	ACA	GTG	ACT	GCT	GCT	CAC	AGT	GGG	ACG	TAC	CGG	TGT	TAC	AGC	TTC	614
S	S	S	S	P	Y	L	W	S	A	P	S	D	P	L	V	CTT	V	V	T	204
TCC	AGC	TCA	TCT	CCA	TAC	CTG	TGG	TCA	GCC	CCG	AGT	GAC	CCT	CTA	GTG		GTG	GTT	ACT	674
G	L	S	A	T	P	S	Q	V	P	T	E	E	S	F	P	V	T	E	S	224
GGA	CTC	TCT	GCC	ACT	CCC	AGC	CAG	GTA	CCC	ACG	GAA	GAA	TCA	TT	CCT	GTG	ACA	GAA	TCC	734
S	R	r	P	S	I	L	P	T	N	K	I	S	T	T	E	K	P	M	N	244
TCC	AGG	Aga	CCT	TCC	ATC	TTA		ACA	AAC	AAA	ATA	TCT	ACA	ACT	GAA	AAG	CCT	ATG	AAT	794
I	T	A	S	P	e	G	L	S	P	P	I	G	F	A	H	Q	H	Y	A	264
ATC	ACT	GCC	TCT	CCA	Gag	GGG	CTG	AGC	CCT	CCA	ATT	GGT	TTT	GCT	CAT	CAG	CAC	TAT	GCC	854
K	G	n	L	V	R	I	C	L	G	A	T	I	I	I	I	Ĺ	L	G	L	284
AAG	GGG	aat	CTG	GTC	CGG	ATA	TGC	CTT	GGT	GCC	ACG	ATT	ATA	ATA	ATT	TTG	TTG	GGG	CTT	914
L	A	E	D	W	H	s	R	K	K	C	L	Q	H	R .	M	R	A	L	Q	304
CTA	GCA	GAG	GAT	TGG	CAC	Agt	CGG	AAG	AAA ,	TGC	CTG	C AA	CAC	AGG	ATG	AGA	GCT	TTG	CAA	974
	P CCA																*			314 1004
AAAT GGAC A	AACT ATAC	TGGC TCAA	TTTC GAGT	AGCA GGGG	igagg iaggt	GATT TATA	GACC TAAA	agac Aaaa	ATCC TGAG	ATGC TGTG	ACAA GAGA	ACCAT ATAA	GGAC ATGC	atca Agag	CCAC CCAA	TAGA CAAG	GCCA GTGA	CAGA AAAA	CAT WAAA	1083 1162 1163

1163

MSPASPTFFCIGLCVLQVIQTQSGPLPKPSLQAQPSSLVPLGQSVILRCQGPPDVDLYRL EKLKPEKYEDQDFLFIPTMERSNAGRYRCSYQNGSHWSLPSDQLELIATGVYAKPSLSAH PSSAVPQGRDVTLKCQSPYSFDEFVLYKEGDTGPYKRPEKWYRANFPIITVTAAHSGTYR CYSFSSSSPYLWSAPSDPLVLVVTGLSATPSQVPTEESFPVTESSRRPSILPTNKISTTE KPMNITASPEGLSPPIGFAHQHYAKGNLVRICLGATIIIILLGLLAEDWHSRKKCLQHRM RALQRPLPPLPLA

FIG.7

innuta	ATCACCCC				40			70
inputs	ATGACGCCC			.:: :::	GGGCTGAGTCT	GGGCCCCAG	JACCCGCG I G	CAGGCAG
	ATGTCTCCA				CTGTAT			
	1			20	30			
	0	•	00	100		100		
innute	8 CCCCTTCC				110 CAGGCTCTGTG			
πρατο								
	• • • • • • • • • • • • • • • • • • • •		T	GGGCTG	:::: TGTG	TACTGC		
					40			
	15	n	160	170	180	190	200	210
inputs		GGGGAGC	CTGGAGGC	CCAGGAGTA	CCGACTGGATA	AAGAGGGAA(
•			•	:.:.:	:: CC	. : :	.: :::::	:::
					CC		ACACAGAG	
				50		60		70
	22	0	230	240	250	260	270	280
inputs	AGAAATAAC	CCACTGG	AACCCAAG	AACAAGGCC	AGATTCTCCAT	CCCATCCATO	GACAGAGCAC	CATGCGG
	:	:::::	:::	::::	:::: CCTT	::: :::: :		
	()	CACI	80	CAAG		CCC-TCCAGC 90	j ·	
			00			30		
					320			
inputs					GCTGGTCAGAG			
	: 	:.::: TCAGCC-			:::. CAGTT	:::.: :. : CCCTG_GTAC	CCCTCCCTC	. : .c
	10)0			11	0 1	120	10
		_						
inoute					390			
mpucs		• •			CCTGCCCAGCC			
	-TCAGTT/	ATTC				-TGAGGTG-C	CAGGGA	
	130				. 14	40	150	
	Λ.	20	440	450	460	470	400	
inputs					CCATTTTGTTC			CAGCTC
	::::: ::	:::::	:		:::	• • • • •		70714010
		ATGTGG-			CCTGGAGAAAC			
	160			170	180	190		
49	90 50	00	510	520	530	540	550	
	CCCCGGACCC	CTGGACT	CACAGCAG	CTCCACAGT	GGGGGGTTCCA	GCCCTGTTC	CCTGTGGGCC	
	:::::	::		::: ACT	. ::.: : Atgaagatcaa	:.: :::	::	:.:
		GA		AGI. 200	A I GAAGA I CAA(210	аAU1110 220	1611	-CAII-
				200	210	٠٨٨٥		

FIG. 8A

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.

ritle: "GLYCOPROTEIN VI AND USES THEREOF"

590 600 inputs ACCCCAGCCACAGGTGGAGGTTCACATGCTATTACTATTATATGAACACCCCCAGGTGTGGTCCCACCC :.:: ---CCAACCATGGAAAGAAGTA---ATGCT------GGAC------GGTAT-----: :: . ::::. CGATG---CTCTTA------TCAGA-----ATGGGAGTC-----ACTGGTCTCT inputs GTCCTGGCCCCTGGGCAGAGCCTGACCCTCCAGTGTGGCTCTGATGTCGGCTACGACAGATTTGTTCTGT ------CCCAAG-----TGACCAGCTTGAG-----CTAATT---GCTAC------inputs ATAAGGAGGGGAACGTGACTTCCTCCAGCGCCCTGGCCAGCCCCAGGCTGGGCTGTCCCAGGCCAA ---AGGTGTGTATGCTAAAC--CCTC------ACTCTC-----ACTCTC-----inputs CTTCACCCTGGGCCCTGTGAGCCCCTCCCACGGGGGCCAGTACAGGTGCTATGGTGCACACAACCTCTCC ------GCT------inputs TCCGAGTGGTCGGCCCCCAGCGACCCCCTGAACATCCTGATGGCAGGACAGATCTATGACACCGTCTCCC **** ** -----CAGCAGTCCC-----TC---AAGGCAGG---GAT--GTGACTCTGA-----..... AGT------CAGTTTTGATGA--inputs GTTTGACACTTTCCTTCTGACCAAAGAAGGGGCAGCCCATCCCCCACTGCGTCTGAGATCAATGTACGGA ------ATTCGTTCTATACAAAGAAGGGG------AT-----ACTGGGCCTTATA--AGAGACCTGA

FIG.8B

Serial No.: 09/829,495 Inventor(s): BUSFIELD ET AL.

Inventor(s): BUSFIELD ET AL.

Little: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.8C

1750	1760	1770		1790	1800	1810	2004400
	TGCTGCATCTG	•		AUGUCCAGUI	GUALAGUTTG	ACCCTTAGA	JGGAAGG
			· · · ·		::::		.::::
GC	CTGCAACA-	CAG	GATGAGA		GCTTT	GC	AAAGG
	890		900		9	10	
1820	1830	1840	1850	1860	1870	1880	
inputs CA	ACTGAGCCTCC	TCCATCCCAGG	AAGGGGAACC	TCCAGCTGAG	CCCAGCATCT	ACGCCACTC	FGGCCAT
· -	:::. ::		::			• :::	:::::
CC	ACTACC	ACC	CC	TCC		CAC	rggcc
•	920	•	9	30			
	٠						
1890							
inputs CC	AC						

FIG. 8D

THE LUCKER OF THE

Serial No.: 09/829,495
Inventor(s): BUSFIELD ET AL.

Iitle: "GLYCOPROTEIN VI AND USES THEREOF"

inputs	MSPASP	10 TFFCIGLC	20 VLQVIQTQS	30 GPLPKPSLQAI :::::::: GPFPKPTLWAI	40 QPSSLVPLGQ	50 SVILRCQGPP	60 DVDLYRLEKI	KPEKYE
	:.:: MTPALT	ALLCLGLS	LGPRTRVQA	::.::::: GPFPKPTLWA	.:.: EPGSVISWGS	.: PVTİWÇQGSL	:::: EAQEYRLDKE	:: EGSPEPLD
inputs	70 DQDFL-	10 F-	20 80 IPTMERSNA	30 90 GRYRCSYQNG:	100 SHWSLPSDQL	ELIATGVYAK	120 PSLSAHPSSA	70 130 AVPQGRDV
	RNNPLE	: PKNKARFS 80	IPSMTEHHA 90	::::: : GRYRCHYYSS/ 100	AGWSEPSDPL 110	::. :: ::: ELVMTGFYNK 120	:.::: ::. PTLSALPSP\ 130	VVASGGNM 140
inputs	TLKC	QSPY						
	TLRCGS	OKGYHHFV 150	LMKEGEHQL 160	PRTLDSQQLH: 170	SGGFQALFPV 180	GPVNPSHRWR 190	FTCYYYYMN7 200	
inputs				W ADOOC TO	140 SFDE	150 FVLYKEGD		
	SDPLEI	LPSGVSRK 220	PSLLTLQGP 230	VLAPGQSLTLI 240	QCGSDVGYDR 250	FVLYKEGERD 260	FLQRPGQQP(270	QAGLSQAN 280
inputs		TGPY	K			RP	· · · · · · · · · · · · · · · · · · ·	160 EKW
	FTLGPV	SPSHGGQY 290	RCYGAHNLS 300	SEWSAPSDPLI 310	NILMAGQIYD 320	TVSLSAQPGP 330	TVASGENVTL 340	LCQSWWQ 350
inputs				170 YRANFPI	180 ITVTAAHSGT	190 YRCYSFSSSSI	200 PYLWSAPSDF	PLVLVVTG
	FDTFLL	TKEGAAHP 360	PLRLRSMYG 370	170 YRANFPI ::::: AHKYQAEFPM 380	SPVTSAHAGT 390	YRCYGSYSSNI 400	PHLLSFPSEF 410	PLELMVSG 420
	FDTFLL 210 LSATPS	TKEGAAHP 360 QVPTEES-	PLRLRSMYG 370	AHKYQAEFPM: 380 220	SPVTSAHAGT 390 V	YRCYGSYSSNI 400	PHLLSFPSEF 410	PLELMVSG 420
	FDTFLL 210 LSATPS	TKEGAAHP 360 QVPTEES-	PLRLRSMYG 370 TPGLGRYLE	170 YRANFPI :::::: AHKYQAEFPM 380 220 FP! VLIGVSVAFVI 450	SPVTSAHAGT 390 V	YRCYGSYSSNI 400	PHLLSFPSEF 410	PLELMVSG 420
inputs	210 LSATPS :: HSGGSS	TKEGAAHP 360 QVPTEES- :: LPPTGPPS' 430	PLRLRSMYG 370 TPGLGRYLE 440	AHKYQAEFPM: 380 220 FP' : VLIGVSVAFVI	SPVTSAHAGT 390 V LLLFLLLFLLI 460 250	YRCYGSYSSNI 400 LRRQRHSKHR [*] 470 260	PHLLSFPSEF 410 TSDQRKTDFC 480	PLELMVSG 420 QRPAGAAE 490 270
inputs input	210 LSATPS :: HSGGSS TESS	TKEGAAHPI 360 QVPTEES- :: LPPTGPPS' 430 RRPS	PLRLRSMYG 370 TPGLGRYLE 440 230	AHKYQAEFPM 380 220 FP' : VLIGVSVAFVI 450	SPVTSAHAGT 390 V LLLFLLLFLLI 460 PMNI-TASPE(YRCYGSYSSNI 400 LRRQRHSKHR 470 260 GLSP-PIGFAI	PHLLSFPSEF 410 	PLELMVSG 420 QRPAGAAE 490 270 NLVRI
inputs	210 LSATPS :: HSGGSS TESS ::. TEPKDRG	TKEGAAHPI 360 QVPTEES- :: LPPTGPPS' 430 RRPS :::: LLRRSSPA	PLRLRSMYG. 370 TPGLGRYLE 440 230IL ADVQEENLY. 510	AHKYQAEFPM 380 220 FP' VLIGVSVAFVI 450 240 PTNKISTTEKI :	SPVTSAHAGT 390 V LLLFLLLFLLI 460 250 PMNI-TASPE :: RVELDSQSPHI 530	YRCYGSYSSNI 400 LRRQRHSKHR 470 260 GLSP-PIGFAI DEDPQAVTYAI 540	PHLLSFPSEF 410 TSDQRKTDFO 480 O HQHYAKGN PVKHSSPRRE 550	PLELMVSG 420 A20 PRPAGAAE 490 270 ILVRI MASPPS 560 310
inputs	210 LSATPS : : HSGGSS TESS :: . TEPKDRG	TKEGAAHPI 360 QVPTEES- :: LPPTGPPS' 430 RRPS :::: LLRRSSPA 500 280 IIILLGLL	PLRLRSMYG. 370 TPGLGRYLE 440 230IL ADVQEENLY. 510 290 AEDWH	AHKYQAEFPM 380 220 220 240 VLIGVSVAFVI 450 240 PTNKISTTEKI AAVKDTQSEDI	SPVTSAHAGT 390 V LLLFLLFLLI 460 250 PMNI - TASPE :: RVELDSQSPHI 530	YRCYGSYSSNI 400 LRRQRHSKHR 470 260 GLSP-PIGFAI 	PHLLSFPSEF 410 TSDQRKTDFO 480 O HQHYAKGN PVKHSSPRRE 550	PLELMVSG 420 420 RPAGAAE 490 270 ILVR - I MASPPS 560 310 LPL
inputs	210 LSATPS : HSGGSS TESS TEPKDRG	TKEGAAHPI 360 QVPTEES- :: LPPTGPPS' 430 RRPS :::: LLRRSSPA 500 280 IIILLGLL	PLRLRSMYG. 370 TPGLGRYLE 440 230IL ADVQEENLY 510 290 AEDWH EEDRQMDTE	AHKYQAEFPMS 380 220FPS VLIGVSVAFVI 450 PTNKISTTEKI AAVKDTQSEDI 520 AAASEASQDV	SPVTSAHAGT 390 V LLLFLLFLLI 460 PMNI-TASPE RVELDSQSPHI 530 3(SRKKCLQHI	YRCYGSYSSNI 400 400 LRRQRHSKHR 470 26(GLSP-PIGFAI .:: DEDPQAVTYAI 540 00 RMRALQRPL- ERKATEPPPSO	PHLLSFPSEF 410 TSDQRKTDFO 480 OHQHYAKGN PVKHSSPRRE 550 PP EEGEPPAEPS	PLELMVSG 420 420 RPAGAAE 490 270 NLVRI EMASPPS 560 310 LPL

	*	->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
		G+sv L+C+ ++v y + k ++ +++e +
mT268	42	GQSVILRCQGPPDVDLY-RLEK1KPEKYEDQ 71
		anlsegrfsissltLtissvekeDsGtYtCvv<-*
		L i + e++++G Y+C
mT268	72	91

FIG.10A

	*	->GesvtLtCsvsgfgppgvsvtWyfkngk.lgpsllgysysrlesgek
		G +vtL C++ ++ y k+g++ + Y+r+e +
mT268	128	GRDVTLKCQSPYSFDEFVLY-KEGDtGPYKRPEKW-Y 162
		anlsegrfsissltLtissvekeDsGtYtCvv<-*
		+ ++i++v++ sGtY+C
mT268	163	RANFPIITVTAAHSGTYRCYS 183

FIG.10B

	10	20	30	40	50	60	
inputs MSPSF	PTALFCLGLC	LGRV-PAQSG	PLPKPSLQALF	SSLVPLEKPV	/TLRCQGPPGV	DLYRLEKLS	SSRYQD
:::.		::::					
MSPAS			PLPKPSLQAQF				
70	10	20		40	• •		70
7 <u>0</u>	80	90 SEVECSVONC		110		130	COTOVC
inputs QAVLF	TPANKSLA	3K1KU31UNU	 	LVAIGVFARF	'SLSAUPGPAV	2200DN 1FA	LUIKIG
QDFLF	IPTMERSNA(GRYRCSYQNG	SHWSLPSDQLE	LIATGVYAKP	 SLSAHPSSAV	PQGRDVTLK	CQSPYS
	80	90	100	110	120	130	140
140	150	160	170	180	190	200	
inputs FDQFA	LYKEGDPAP	YKNPERWYRA	SFPIITVTAAM	SGTYRCYSFS	SRDPYLWSAP	SDPLELVVT	GTSVTP
::.:.	::::::	:: ::.::::	. : : : : : : : : : :	:::::::::::::::::::::::::::::::::::::::	: .:::::::	:::: ::::	: ::::
FDEFV			NFPIITVTAAH				
	150	160				200	210
210	220	230	240	250	260	270 🔻	
inputs SRLPT	EPPSSVAEFS	SEATAELTVS	FTNKVFTTETS	RSITTSPKES	IDSPAGPARQY	YTKGNLVRI	CLGAVI
:: TOVO	::.:	:	THE ICTTOE	MNITACDECI	: : :::	VANCAL VIDTO	CLOATT
SUVPI	220	230	-TNKISTTEKP 240	MNI TASPEGE 250	.SPP1GFANUN 260	7AKGNLVK10 270	JLUATI
	220	230	240	250	200	270	
280	290	300	310	320	330		
inputs LIILA	GFLAEDWHSF	RRKRLRHRGR	AVQRPLPPLPP	LPQTRKSHGG	QDGGRQDVHS	RGLCS	
.:::	GLI AFDWHSE	KKU OHRMBI	: . : : : : : : : : ALQRPLPPLP-	:. ΙΔ			
280	290	300	310	LA			

FIG.11

FIG.15A

FIG.15B

FIG.19

FIG.20

EFFET DES MONOCLONAUX SUR LA LIAISON GPVI-Fc/CONVULXINE

FIG.21

Serial No.: 09/829,495

Inventor(s): BUSFIELD ET AL.

Little: "GLYCOPROTEIN VI AND USES THEREOF"

FIG.23

FIG.244

Serial No.: 09/829,495 Inventor(s): BUSFIELD ET AL.

ritle: "GLYCOPROTEIN VI AND USES THEREOF"

Serial No.: 09/829,495 Inventor(s): BUSFIELD ET AL

FIG.26D

scFv1:A4 scFv2:B4 scFv3:A9 scFv4:C4 scFv5:C9 scFv6:C10 scFv7:A10

FIG.261

OPE CIES

inventor(s): BUSFIELD ET AL.

Hitle: "GLYCOPROTEIN VI AND USES THEREOF"

DATA .018

200

100

101

102

103

104

scFv5

FIG.26G

FIG.26E

FIG.26F

FIG.28A

FIG.28B

FIG.25

FIG.12

FIG.14A

FIG.14B

FIG.14C

FIG.14D

FIG. 27