Math 324: Linear Algebra Section 4.3: Subspaces of Vector Spaces

Mckenzie West

Last Updated: December 29, 2023

Last Time.

- Proving Something is not a Vector Space
- Definition of Subspaces
- Test for Subspaces

Today.

- Subspaces of \mathbb{R}^2
- Subspaces of \mathbb{R}^3
- Intersections of Subspaces

Exercise 1.

Solve the homogeneous system of equations with coefficient matrix

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}.$$

Is the set of solutions to this system a vector space with standard operations from \mathbb{R}^3 ?

Exercise 2.

Let $A = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. Is the set of solutions to the system $A\vec{x} = \vec{b}$ a vector space with the standard operations in \mathbb{R}^2 ?

Exercise 3.

Let A be any $n \times n$ matrix. Complete the proof of the fact that the set of solutions to the homogeneous system $A\vec{x} = \vec{0}$ is a vector space by showing that it is a subspace of \mathbb{R}^n .

Proof.

Let A be a $n \times n$ matrix. Let \vec{u} and \vec{v} be two solutions to $A\vec{x} = \vec{0}$. This means that $A\vec{u} = \vec{0}$ and $A\vec{v} = \vec{0}$. Let c be a scalar.

- (a) Show that $\vec{0}$ is in the set.
- (b) Show that $\vec{u} + \vec{v}$ is a solution to $A\vec{x} = \vec{0}$. (What is $A(\vec{u} + \vec{v})$?)
- (c) Show that $c\vec{u}$ is a solution to $A\vec{x} = \vec{0}$. (What is $A(c\vec{u})$?)

Exercise 4.

Show that the set of points on the line $y = \frac{1}{3}x$ is a subspace of \mathbb{R}^2 .

Exercise 5.

Show that the set of points on the line $y = \frac{1}{3}x + 2$ is not a subspace of \mathbb{R}^2 .

Subspaces of \mathbb{R}^2

The only possible subspaces of \mathbb{R}^2 are:

- $V = {\vec{0}}$
- The set of points on a line that passes through the origin
- $-V=\mathbb{R}^2$

Subspaces of \mathbb{R}^3

The only possible subspaces of \mathbb{R}^3 are:

- $V = {\vec{0}}$
- The set of points on a line that passes through the origin
- The set of points on a plane that passes through the origin
- $-V=\mathbb{R}^3$

Example.

The set of points on the plane x + y + z = 0 is a subspace of \mathbb{R}^3 .

Example.

The set of points in the intersection of the planes x + y + z = 0 and x + 2y + 3z = 0 is a subspace of \mathbb{R}^3 .

Brain Break.

What is the best piece of advice you've ever been given?

This less-than-wise owl missed the advice of avoiding the dog.

Exercise 6.

In the video for today we proved that the set $W=\{(a+b,3a,a-2b):a,b\in\mathbb{R}\}$ is a subspace of \mathbb{R}^3 . In fact, this subspace is the plane -2x+y-z=0. How do we show this? Notice that every vector in W is on the plane because

$$-2x + y - z = -2(a + b) + (3a) - (a - 2b) = 0.$$

Think about the other hand. What a and b could we choose with respect to a point (x, y, z) that satisfies -2x + y - z = 0? That is, solve for a and b given the equation (x, y, z) = (a + b, 3a, a - 2b), assuming x, y and z are fixed.

Definition.

The intersection of two sets is the set consisting of everything that appears in both sets, the shaded region in the Venn diagram below. The intersection of V and W is denoted

$$V\cap W=\{\vec{x}\ :\ \vec{x}\in V\ \text{and}\ \vec{x}\in W\}.$$

Theorem 4.6.

If V and W are both subspaces of a vector space U, then the intersection of V and W is also a subspace of U.

Exercise 7.

Complete the proof of Theorem 4.6.

Proof.

Let V and W be subspaces of a vector space U. We want to show that $V \cap W$ is a subspace of U using the subspace test.

- (a) Explain why $\vec{0} \in V \cap W$.
- (b) Let \vec{v} and \vec{w} be in $V \cap W$ this means that \vec{v} and \vec{w} are in V and that \vec{v} and \vec{w} are in W. Explain why $\vec{v} + \vec{w}$ is in $V \cap W$.
- (c) Let \vec{v} be in $V \cap W$ and c be a scalar. Explain why $c\vec{v} \in V \cap W$ too.

Exercise 8.

- (a) Prove that the set $V = \{(a, b, a + b) : a, b \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- (b) Prove that the set $W = \{(a, b, 3a) : a, b \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- (c) Find the intersection of these sets and verify that it is also a subspace of R³.