

СЪСТЕЗАНИЯ

СЪСТЕЗАТЕЛИ

МЕЖДУНАРОДНА ОЛИМПИАДА ПО МАТЕМАТИКА' 2017

Д-р М. Плюс

Поредната 58. международна олимпиада по математика се проведе в Рио де Жанейро, Бразилия от 12 до 23 юли 2017 г. В нея взеха участие 615 ученици (553 момчета и 62 момичета) от рекордните 111 държави (досегашният рекорд беше 109 държави през миналата година на олимпиадата в Хонг Конг). Както обикновено, регламентът предвиждаше приблизително половината състезатели да получат медали, като златните, сребърните и бронзовите да са (също приблизително) в отношение 1:2:3. Журито на олимпиадата в Бразилия разпредели общо 291 медала, от които 48 златни с долна граница 25 точки вкл., 90 сребърни с граници от 19 до 24 точки вкл. и 153 бронзови с граници от 16 до 18 точки вкл. Българският отбор заслужи 4 сребърни и 2 бронзови медала, което е в рамките на незадоволителните представяния през последните 10 години. Той беше в състав: Иван Ганев (от Американски коллеж с учител д-р Борислава Кирилова), Виолета Найденова (от СМГ "П. Хилендарски" с учител Стойчо Стоев), Константин Гаров (от ПМГ "Н. Обрешков", Бургас с учител Магдалена Янева), Кирил Бангачев (от СМГ "П. Хилендарски" с учител Румяна Караджова), Атанас Динев (от ПМГ "Н. Обрешков", Бургас с учител Динко Раднев) и Христо Папазов (от Американски колеж с учител Десислава Йорданова). В отборното класиране по точки делим 18-21. място (миналата година 22-26, място) с Италия, Холандия и Сърбия, а по медали делим 25-26. място със Сърбия. Спечелените общо 116 точки характеризират един от най-слабите точкови резултати на българския отбор за всички негови участия в международни олимпиади. Дъното е през 2015 г. – 100 точки и през 2013 г. – 101 точки при същото "научно" ръководство на лаборантите от Лабораторията на Пазарджишкия доносник.

Победители в тазгодишната олимпиада са трима ученици, постигнали по 35 точки от максималните 42 — по един от Иран, Япония и Виетнам (и тримата с 0 точки на трета задача). По-долу са резултатите на нашите състезатели, както и класирането по държави.

58th International Mathematical Olympiad

58. МЕЖДУНАРОДНА ОЛИМПИАДА ПО МАТЕМАТИКА – 2017 Г. КЛАСИРАНЕ И РЕЗУЛТАТИ НА БЪЛГАРСКИТЕ УЧЕНИЦИ

Име	Място по	1	2	3	4	5	6	Общо	Медал
	точки	зад.	зад.	зад.	зад.	зад.	зад.	точки	
Иван Ганев	64–71	7	7	0	7	0	2	23	сребърен
Виолета Найденова	82–102	7	7	0	7	0	0	21	сребърен
Константин Гаров	115-138	5	7	0	7	0	0	19	сребърен
Кирил Бангачев	115–138	7	4	0	7	1	0	19	сребърен
Атанас Динев	188–264	7	3	0	7	0	0	17	бронзов
Христо Папазов	188–264	7	3	0	7	0	0	17	бронзов
ОБЩО	18–21	40	31	0	42	1	2	116	

58. МЕЖДУНАРОДНА ОЛИМПИАДА ПО МАТЕМАТИКА – 2017 Г. КЛАСИРАНЕ И РЕЗУЛТАТИ ПО ДЪРЖАВИ

Държава	бр. уч.	зад. 1	зад. 2	зад. З	зад. 4	зад. 5	зад. 6	об що	място	зл.	cp.	бр.
Южна Корея	6	42	39	1	42	22	24	170	1	6	0	0
Китай	6	42	25	0	42	19	31	159	2	5	1	0
Виетнам	6	42	36	0	42	21	14	155	3	4	1	1
САЩ	6	42	29	0	42	23	12	148	4	3	3	0
Иран	6	42	32	0	42	17	9	142	5	2	3	1
Япония	6	41	21	0	42	23	7	134	6	2	2	2
Сингапур	6	42	26	0	37	22	4	131	7-8	2	1	2
Тайланд	6	41	30	0	42	17	1	131	7-8	3	0	2
Тайван	6	40	31	0	42	7	10	130	9-10	1	4	1
Великобритания	6	42	17	5	42	8	16	130	9-10	3	0	2
Русия	6	42	26	7	37	8	8	128	11	1	3	2
Грузия	6	42	22	0	42	18	3	127	12-13	1	2	3
Гърция	6	42	33	0	42	9	1	127	12-13	1	4	1
Беларус	6	40	23	1	42	16	0	122	14-16	1	1	4

Държава	бр. уч.	зад. 1	зад. 2	зад. З	зад. 4	зад. 5	зад. 6	об що	място	зл.	cp.	бр.
Чехия	6	42	26	4	34	16	0	122	14-16	1	2	2
Украйна	6	42	30	0	36	10	4	122	14-16	1	2	2
Филипини	6	42	25	0	42	11	0	120	17	0	3	3
България	6	40	31	0	42	1	2	116	18-21	0	4	2
Италия	6	42	22	0	34	18	0	116	18-21	2	1	1
Холандия	6	41	21	0	39	15	0	116	18-21	1	2	1
Сърбия	6	40	30	0	42	4	0	116	18-21	0	4	2
Унгария	6	40	22	0	34	16	3	115	22-24	2	1	1
Полша	6	39	23	0	42	9	2	115	22-24	1	0	5
Румъния	6	42	17	0	42	9	5	115	22-24	0	3	2
Казахстан	6	40	18	0	35	15	5	113	25	1	2	1
Аржентина	6	40	20	0	42	9	0	111	26-28	1	2	1
Бангладеш	6	42	17	0	42	10	0	111	26-28	0	2	2
Хонг Конг	6	42	20	0	23	26	0	111	26-28	1	1	3
Канада	6	42	22	0	37	1	8	110	29	1	2	2
Перу	6	38	27	0	42	1	1	109	30	0	2	3
Индонезия	6	40	22	0	42	4	0	108	31	0	2	3
Израел	6	40	33	0	30	1	3	107	32	0	3	2
Германия	6	41	16	0	34	15	0	106	33	0	1	3
Австралия	6	42	10	8	31	11	1	103	34	0	3	2
Хърватия	6	38	25	0	37	2	0	102	35-36	0	2	3
Турция	6	40	15	0	42	4	1	102	35-36	0	1	3
Бразилия	6	40	17	0	37	6	1	101	37-38	0	2	1
Малайзия	6	40	17	0	42	2	0	101	37-38	0	2	2
Франция	6	41	11	0	32	16	0	100	39-40	0	2	2
Саудитска Арабия	6	40	17	0	36	7	0	100	39-40	0	2	2
Армения	6	41	18	0	38	2	0	99	41	0	2	2
Азербайджан	6	37	19	0	42	0	0	98	42	0	0	4
Мексико	6	42	13	0	39	2	0	96	43	0	1	2
Босна и Херцеговина	6	41	15	0	39	0	0	95	44-45	0	0	4
Таджикистан	6	40	13	0	42	0	0	95	44-45	0	0	3

Държава	бр. уч.	зад. 1	зад. 2	зад. З	зад. 4	зад. 5	зад. 6	об що	място	зл.	cp.	бр.
Макао	6	39	10	0	36	9	0	94	46-47	1	0	0
Нова Зеландия	6	42	8	0	42	2	0	94	46-47	0	0	3
Кипър	6	42	15	0	36	0	0	93	48-50	0	0	5
Монголия	6	37	12	0	42	1	1	93	48-50	0	1	2
Туркменистан	6	40	11	0	42	0	0	93	48-50	0	0	2
Швеция	6	42	13	0	27	8	1	91	51	0	1	2
Индия	6	42	18	0	30	0	0	90	52-53	0	0	3
Словения	6	42	16	0	32	0	0	90	52-53	0	0	2
Португалия	6	39	19	0	28	3	0	89	54	0	0	2
Испания	6	41	20	0	25	0	0	86	55	0	0	3
Сирия	6	33	10	0	42	0	0	85	56	0	1	0
Латвия	6	39	8	0	24	13	0	84	57	0	0	3
Молдова	6	38	11	0	27	7	0	83	58-59	0	1	0
Швейцария	6	42	9	0	22	10	0	83	58-59	0	0	1
Колумбия	6	41	2	0	35	3	0	81	60-61	0	0	1
Южна Африка	6	41	7	0	27	6	0	81	60-61	0	0	2
Белгия	6	39	14	0	23	3	1	80	62-64	0	1	2
Ирландия	6	36 .	8	0	34	2	0	80	62-64	0	0	2
Шри Ланка	6	42	8	0	30	0	0	80	62-64	0	0	3
Дания	6	41	5	0	27	4	0	77	65-66	0	0	1
Македония	6	35	6	0	36	0	0	77	65-66	0	0	1
Киргизстан	6.	34	4	0	35	2	0	75	67-69	0	0	2
Мароко	6	37	13	0	25	0	0	75	67-69	0	0	1
Словакия	6	40	4	0	26	5	0	75	67-69	0	0	1
Австрия	6	40	5	0	15	14	0	74	70	0	2	0
Естония	6	40	14	0	16	2	0	72	71	0	1	0
Норвегия	6	38	11	0	17	5	0	71	72	0	0	2
Алжир	6	28	11	0	31	0	0	70	73	0	0	1
Литва	6	41	7	0	20 .	1	0	69	74-75	0	0	2
Узбекистан	5	16	18	0	35	0	0	69	74-75	0	1	0
Албания	6	41	4	0	22 .	0	0	67	76-77	0	0	1

Държава	бр.	зад. 1	зад. 2	зад. З	зад. 4	зад. 5	зад. 6	об що	място	3Л.	cp.	бр.
Чили	6	36	5	0	26	0	0	67	76-77	0	0	1
Еквадор	6	38	6	0	20	2	0	66	78	0	0	1
Тунис	5	28	3	0	28	0	0	59	79-80	0	0	1
Венецуела	5	29	4	0	24	2	0	59	79-80	0	0	2
Коста Рика	6	34	1	0	23	0	0	58	81-82	0	0	0
Пакистан	6	23	6	0	29	0	0	58	81-82	0	0	1
Ел Салвадор	4	25	5	0	25	2	0	57	83	0	0	1
Финландия	6	40	4	0	10	1	1	56	84	0	0	0
Косово	5	29	1	0	22	2	1	55	85-86	0	0	1
Пуерто Рико	5	33	3	0	19	0	0	55	85-86	0	0	0
Нигерия	4	21	5	0	25	0	0	51	87	0	0	0
Парагвай	6	35	1	0	12	0	0	48	88	0	0	0
Исландия	6	31	5	0	9	0	0	45	89-90	0	0	0
Люксембург	6	27	1	0	15	2	0	45	89-90	0	0	1
Никарагуа	4	17	4	0	22	1	0	44	91	0	0	1
Уругвай	6	37	0	0	6	0	0	43	92	0	0	0
Черна Гора	4	21	4	0	10	7	0	42	93	0	0	1
Боливия	6	24	0	0.	17	0	0	41	94	0	0	0
Лихтенщайн	3	19	0	0	3	0	0	22	95-96	0	0	0
Уганда	6	6	5	0	11	0	0	22	95-96	0	0	0
Гватемала	4	12	0	0	6	2	0	20	97	0	0	0
Боствана	6	8	1	0	10	0	0	19	98	0	0	0
Мианмар	6	2	2	0	11	0	0	15	99-101	0	0	0
Панама	1	7	3	0	5	0	0	15	99-101	0	0	0
Тринидад и Тобаго	1	7	1	0	7	0	0	15	99-101	0	0	0
Куба	1	5	1	0	7	0	0	13	102-103	0	0	0
Ирак	4	11	0	0	2	0	0	13	102-103	0	0	0
Хондурас	2	6	0	0	6	0	0	12	104	0	0	0
Камбоджа	6	1	0	0	10	0	0	11	105-106	0	0	0
Кот д'Ивоар	6	2	2	0	7	0	0	11	105-106	0	0	0
Кения	6	3	0	0	3	2	0	8	107	0	0	0

Държава	бр. уч.	зад. 1	зад. 2			зад. 5	зад. б	об що	място	зл.	cp.	6p.
Гана	1	5	0	0	1	0	0	6	108	0	0	0
Танзания	2	4	0	0	1	0	0	5	109	0	0	0
Египет	3	2	0	0	1	0	0	3	110-111	0	0	0
Непал	6	0	1	0	2	0	0	3	110-111	0	0	0

Ето задачите от 58-ата международна олимпиада по математика:

Вторник, 18 юли 2017 г.

Задача 1. За всяко естествено число $a_0 > 1$ е дефинирана редицата a_0, a_1, a_2, \dots по следния начин:

$$a_{n+1} = \begin{cases} \sqrt{a_n} \text{, ако } \sqrt{a_n} \text{ е цяло число} \\ a_n + 3 \text{ в противен случай} \end{cases}$$
 , където $n \ge 0$ е цяло число.

Да се намерят всички стойности на a_0 , за които съществува такова число A, че $a_n = A$ за безброй много стойности на n.

(предложена от Стефан Вагнер, Южна Африка)

Задача 2. Нека \mathbb{R} е множеството на реалните числа. Да се намерят всички функции $f: \mathbb{R} \to \mathbb{R}$, за които f(f(x)f(y)) + f(x+y) = f(xy) за всеки две реални числа x и y.

(предложена от Дорлир Ахмети, Албания)

- **Задача 3.** Ловец и невидим заек играят следната игра в равнината. Началните точки A_0 и B_0 , съответно на заека и ловеца, съвпадат. Нека след n хода на играта заекът и ловецът се намират съответно в точките A_n и B_n . По време на (n+1)-ия ход се изпълняват последователно следните три условия:
- (i) Заекът, оставайки невидим, се придвижва до точка A_{n+1} , разстоянието от която до A_n е точно 1.
- (ii) Проследяващо устройство докладва на ловеца някаква точка P_{n+1} , за която гарантира, че е на разстояние най-много I от A_{n+1} .
- (iii) Оставайки видим, ловецът се придвижва до точка B_{n+1} , разстоянието от която до B_n е точно 1.

Винаги ли е възможно ловецът, независимо как се движи заекът и независимо какви точки докладва проследяващото устройство, да избере своите ходове така, че да е сигурен , че след $10^9\,$ хода разстоянието между него и заека да е най-много $100?\,$

(предложена от Герхард Воегингер, Австрия)

Време за работа: 4 часа и 30 минути Всяка задача се оценява със 7 точки

Сряда, 19 юли 2017 г.

Задача 4. Нека R и S са различни точки от окръжност Ω , като отсечката RS не е диаметър. Нека правата l се допира до Ω в точка R, а T е такава точка, че S е средата на отсечката TR. Точката J е избрана върху малката дъга \widehat{RS} на Ω така, че описаната окръжност Γ около ΔJST пресича l в две различни точки, по-близката от които до R е означена с A. Ако K е втората обща точка на правата AJ и окръжността Ω , да се докаже, че правата KT се допира до Ω .

(предложена от Чарлз Лейтем, Люксембург)

Задача 5. Група от N(N+1), $N \ge 2$, футболни играчи, никои двама от които не са еднакво високи, е подредена в редица. Сър Алекс иска да извади от редицата N(N-1) играчи така, че за оставащите 2N играчи да са изпълнени следните N условия:

- (1) няма играч между двамата най-високи;
- (2) няма играч между третия и четвъртия по височина;
- (N) няма играч между двамата най-ниски.

Да се докаже, че това е винаги възможно.

(предложена от Григорий Челноков, Русия)

Задача 6. Наредената двойка от цели числа (x, y) е *примитивна*, ако най-големият общо делител на x и y е равен на 1. Дадено е крайно множество S от примитивни двойки. Да се докаже, че съществуват естествено число n и цели числа a_0 , a_1 , ..., a_n така, че за всяка двойка (x, y) от S е изпълнено:

$$a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + ... + a_{n-1}xy^{n-1} + a_ny^n = 1$$
. (предложена от Джон Берман, САЩ)

Време за работа: 4 часа и 30 минути Всяка задача се оценява със 7 точки

Решение на задача 1.

<u>Случай 1</u>. $a_0 \equiv 0 \pmod{3}$

Ще докажем, че ако k е произволно естественно число, то $a_0=3k$ е решение на задачата. Ще използваме индукция по k. Ако k=1, то $a_0=3$ и следващите членове на редицата са $6, 9, 3, 6, 9, \ldots$ т.е. редицата е периодична с период 3. Следователно $a_0=3$ е решение на задачата. Забелязваме, че ако k=1, то всяко $a_0 \leq (3.1)^2=9$, което се дели на 3, е решение на задачата. Да допуснем, че твърдението е вярно за някое k, т.е. всяко $a_0 \leq (3.k)^2$, което се дели на 3, е решение на задачата. Ще докажем, че твърдението е вярно за k+1, т.е. всяко $a_0 \leq (3.(k+1))^2$, което се дели на 3, е също решение на задачата. Нека a_0 се дели на 3 и $(3.k)^2 \leq a_0 \leq (3.(k+1))^2$. Ако $a_0 < (3.(k+1))^2$, прибавяме последователно тройки към a_0 , докато стигнем до $(3.(k+1))^2$ и съгласно условието получаваме 3.(k+1) като член на редицата. Единственото, което трябва да проверим, е, че $3.(k+1) < (3.k)^2$, за да приложим

индуктивното предположение. Последното е еквивалентно с $k+1 < 3k^2$, за което лесно се проверява, че е изпълнено при k > 1.

Случай 2. $a_0 \equiv 2 \pmod{3}$

Този случай не води до решение, защото точните квадрати дават остатък 0 или 1 при деление на 3. Това означава, че всеки член на редицата се получава от предходния с прибавянене на 3 и следователно редицата е строго монотонно растяща.

Случай 3. $a_0 \equiv 1 \pmod{3}$

Ще докажем, че ако k е произволно естественно число, то $a_0=3k+1$ не е решение на задачата. Ще използваме индукция по k. Ако k=1, то $a_0=4$ и следващият член на редицата е 2, което води до случай 2. Да допуснем, че твърдението е вярно за някое k, т.е. всяко $a_0 \le (3k+1)^2$, което дава остатък 1 при деление на 3, води до член на редицата a_n , който дава остатък 2 при деление на 3. Ще докажем, че твърдението е вярно за k+1, т.е. всяко $a_0 \le (3.(k+1)+1)^2 = (3k+4)^2$, което дава остатък 1 при деление на 3, води до член на редицата a_n , който дава остатък 2 при деление на 3. Нека a_0 дава остатък 1 при деление на 3 и $(3k+1)^2 \le a_0 \le (3k+4)^2$. Ако $a_0 < (3k+4)^2$, прибавяме последователно тройки към a_0 , докато стигнем до $(3k+4)^2$ и съгласно условието получаваме 3k+4 като член на редицата. Единственото, което трябва да проверим, е, че $3k+4 < (3k+1)^2$, за да приложим индуктивното предположение. Последното е еквивалентно с $3k^2+k-1>0$, за което (както и в случай 1) лесно се проверява, че е изпълнено при k>1.

Окончателно, решенията на задачата са всички a_0 , които се делят на 3.

Решение на задача 2.

Случай 1. f(0) = 0

Като положим y=0, получаваме f(f(x)f(0))+f(x+0)=f(0) и следователно f(0)+f(x)=f(0), т.е. f(x)=0 за $\forall x\in\mathbb{R}$. Обратно, директно се проверява, че функцията f(x)=0 е решение на задачата.

<u>Случай 2</u>. $f(0) \neq 0$

Като положим x=y=0, получаваме $f\left(f(0)f(0)\right)+f(0)=f(0)$, откъдето $f(f^2(0))=0$. Сега ще намерим корените на уравнението f(x)=0. Ще покажем, че f(1)=0. Да допуснем противното, т.е. $f(1)\neq 0$ и нека $c\neq 1$ е корен, т.е. f(c)=0. Като положим $x=\frac{c}{c-1}$ и y=c, получаваме $f\left(f\left(\frac{c}{c-1}\right)f(c)\right)+f\left(\frac{c}{c-1}+c\right)=f\left(\frac{c}{c-1}\cdot c\right)$, откъдето $f\left(f\left(\frac{c}{c-1}\right).0\right)+f\left(\frac{c^2}{c-1}\right)=f\left(\frac{c^2}{c-1}\right)$ и следователно f(0)=0, което е противоречие с разглеждания случай 2. Заключаваме, че наистина f(1)=0. Нещо повече, от доказаното

разглеждания случай 2. Заключаваме, че наистина f(1) = 0. Нещо повече, от доказаното следва, че x = 1 е единственият корен на уравнението f(x) = 0. Но по-горе показахме, че $f(f^2(0)) = 0$. Заключаваме, че $f^2(0) = 1$ и следователно f(0) = -1 или f(0) = 1.

Вариант 1. f(0) = -1

Най-напред ще покажем, че ако $c \neq 0$, то $f(c) \neq -1$. Да допуснем противното, т.е. f(c) = -1. Като положим x = c и y = 1, получаваме f(f(c)f(1)) + f(c+1) = f(c), откъдето

-1+f(c+1)=-1, т.е. f(c+1)=0 и следователно c+1=1, т.е. c=0, което е противоречие. Заключаваме, че във вариант 1 уравнението f(x)+1=0 има единствено решение x=0.

По-нататък, като положим y = 1, получаваме f(f(x)f(1)) + f(x+1) = f(x), откъдето f(0) + f(x+1) = f(x) и следователно f(x+1) = f(x) + 1. Сега по индукция лесно следва, че число n. Изпълнено $\forall x \in \mathbb{R}$ и всяко естествено f(x+n) = f(x) + nза естествено число f(x-n) = f(x)-n $\forall x \in \mathbb{R}$ И всяко за f(x) = f(x-n+n) = f(x-n)+n, т.е. f(x) = f(x-n)+n, откъдето f(x-n) = f(x)-n.

Ще докажем, че ако f(x) е решение на задачата, то f(x) е инективна функция. Нека $f\left(a\right)=f\left(b\right)$. Тогава $f\left(a\right)+n=f\left(b\right)+n$ и от доказаното по-горе следва, че $f\left(a+n\right)=f\left(b+n\right)$ Да разгледаме квадратното естествено число n. $x^2 - (a+n)x + (b+n-1) = 0$. Неговата дискриминанта е $D = (a+n)^2 - 4(b+n-1)$ и тя е очевидно по-голяма от нула за достатъчно големи стойности на п. Следователно, за достатъчно големи стойности на n разглеждането квадратно уравнение има два различни реални корени r и s. От формулите на Виет имаме r+s=a+n и rs=b+n-1. Сега, като получаваме f(f(r)f(s)) + f(r+s) = f(rs),положим x = ry = s, f(f(r)f(s)) + f(a+n) = f(b+n-1), т.е. f(f(r)f(s)) + f(a) + n = f(b) + n-1. Следователно f(f(r)f(s)) = -1 и заключаваме, че f(r)f(s) = 0, защото сме във вариант 1. Тогава f(r) = 0или f(s) = 0, т.е. r = 1 или s = 1. Нека без ограничение r = 1. Сега формулите на Виет дават 1+s=a+n и 1.s=b+n-1. От тези две равенства следва, че 1+b+n-1=a+n и следователно a = b, което показва, че наистина функцията е инективна.

Да положим y=-x. Получаваме $f(f(x)f(-x))+f(0)=f(-x^2)=f(-x^2+1-1)$, т.е. $f(f(x)f(-x))-1=f(-x^2+1)-1$. Следователно $f(f(x)f(-x))=f(-x^2+1)$ и с помощта на инективността заключаваме, че $f(x)f(-x)=-x^2+1$. Но като положим y=1-x , получаваме f(f(x)f(1-x))+f(1)=f(x(1-x)) , откъдето f(f(x)f(1-x))=f(x(1-x)) и f(x)f(1-x)=x(1-x) , т.е. $f(x)(f(-x)+1)=x-x^2$ и $f(x)+f(x)f(-x)=x-x^2$. Последното заедно с полученото по-горе дава $f(x)-x^2+1=x-x^2$, т.е. f(x)=x-1 за $\forall x\in\mathbb{R}$. Лесно се проверява, че получената функция е решение на задачата.

Вариант 2. f(0) = 1

Този вариант може да се разгледа по аналогичен начин и той води до трето решение на задачата f(x) = 1 - x. До същия резултат достигаме и директно, като забележим, че ако f(x) е решение на задачата, то и функцията -f(x) е също решение.

Окончателно, задачата има 3 решения: f(x) = 0, f(x) = x - 1 и f(x) = 1 - x.

Решение на задача 3.

Да уточним, че при всеки ход най-напред се премества заекът, след това проследяващото устройство дава съответна информация и ходът завършва с преместване на ловеца. С P_n ще означаваме докладваната точка от проследяващото устройство при n-ия ход. Нека $d_n = B_n A_n$ е разстоянието между ловеца и заека след n-ия ход. Тъй като заекът се стреми да се отдалечава максимално от ловеца, той би следвало да се движи по правата между него и ловеца. В резултат на преместването на заека при (n+1)-ия ход до точка A_{n+1} ($A_n A_{n+1} = 1$), проследяващото устройство посочва точка (съгласно условието на задачата) в затворен кръг с радиус 1 и център – местоположението A_{n+1} на заека. Ако стратегията на ловеца е да се

движи по права линия по посока на посочената от проследяващото устройство точка P_{n+1} , то новото местоположение на ловеца е в точка $B_{n+1} \in B_n P_{n+1}$, за която $B_n B_{n+1} = 1$. Нека $B_n P_{n+1}$ е допирателна към кръга с радиус 1 и център A_{n+1} , а α е ъгълът между $B_n A_{n+1}$ и $B_n P_{n+1}$. От правоъгълния $\Delta B_n A_{n+1} P_{n+1}$ имаме $\sin \alpha = \frac{1}{d_n + 1}$. Ако B_{n+1}^* е проекцията на B_{n+1} върху $B_n A_{n+1}$, то

$$B_n B_{n+1}^* = \cos \alpha = \sqrt{1-\sin^2 \alpha} = \sqrt{1-\frac{1}{(d_n+1)^2}} \qquad . \qquad \text{Toraba} \qquad B_{n+1}^* A_{n+1} = d_n + 1 - \sqrt{1-\frac{1}{(d_n+1)^2}} \ . \qquad \text{Otherwise}$$

правоъгълния $\Delta A_{n+1}B_{n+1}^*$ (хипотенузата е по-голяма от катета) заключаваме, че за новото разстояние d_{n+1} между ловеца и заека е изпълнено $d_{n+1}=B_{n+1}A_{n+1}\geq d_n+1-\sqrt{1-\frac{1}{\left(d_n+1\right)^2}}$. Това е

възможно най-голямото разстояние между ловеца и заека след (n+1) -ия ход при положение, че заекът следва най-добрата своя стратегия, защото стойността на α е възможно най-голяма именно в случая, когато $B_n P_{n+1}$ е допирателна към кръга. Тук отчитаме, че тогава стойността на соз α е възможно най-малка, т.е. стойността на проекцията $B_n B_{n+1}^*$ е възможно най-малка и следователно $B_{n+1}^* A_{n+1}$, а оттук и стойността на d_{n+1} е възможно най-голяма.

Интересно е да се съобрази какво би се случило при първия ход на заека и ловеца. В началния момент $A_0 \equiv B_0$. Най-неизгодно за ловеца е, ако той тръгне в посока, противна на посоката на заека. Тогава $d_1 = B_1 A_1 = 2$ и можем да считаме, че играта започва оттук. По отношение на проследяващото устройство най-неизгоден за ловеца е случаят, когато проследяващото устройство докладва точката P_1 така, че тя да съвпада с $A_0 \equiv B_0$.

Тъй като търсим стратегия за ловеца независимо от ходовете на проследяващото устройство, можем да считаме, че P_2 е върху симетралата на отсечката $A_1A_2=1$. Ако O е средата на A_1A_2 , то $A_1O=OA_2=\frac{1}{2}$. От друга страна, P_2 трябва да лежи в кръг с радиус 1 и

център A_2 . Нека P_2 е пресечната точка на симетралата на A_1A_2 и окръжността с радиус 1 и център A_2 . Пресечните точки са 2, но без ограничение разглеждаме отбелязаната точка P_2 на чертежа. Тогава $\Delta A_1A_2P_2$ е равностранен и следователно P_2 лежи и на окръжността с радиус 1 и център A_1 . Запазваме означението α , както по-горе, за ъгъла между правата, определена от местоположението на ловеца и заека от една страна, както и правата, определена от местоположението на ловеца и точката P_2 . Тъй като $OP_2 = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}$ и

$$B_{1}P_{2} = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2} + \left(d_{1} + \frac{1}{2}\right)^{2}} \text{ , от правоъгълния } \Delta B_{1}OP_{2} \text{ намираме } \cos \alpha = \frac{d_{1} + \frac{1}{2}}{\sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2} + \left(d_{1} + \frac{1}{2}\right)^{2}}} \text{ .}$$

От косинусовата теорема за $\Delta B_1 A_2 B_2$ имаме $d_2 = B_2 A_2 = \sqrt{1 + (d_1 + 1)^2 - 2(d_1 + 1)\cos\alpha}$. Като използваме, че $d_1 = 2$, лесно стигаме, до $B_2 A_2 \approx 2,081$. Ако на мястото на $d_1 = 2$ поставим $d_k = 100$, по аналогичен начин пресмятаме $d_k \approx 100,000037$, т.е. разстоянието между ловеца и заека нараства приблизително с 0,000037. Тогава $100:0,000037\approx 2\,700\,000$, което е значително по-малко от 10^9 . Заключаваме, че при повече от $2\,700\,000$ хода разстоянието между ловеца и заека ще се увеличи още повече, което означава, че отговорът на задачата е отрицателен.

Решение на задача 4.

Ще докажем, че $RK \parallel AT$. Тъй като $\angle SJK = \angle STA$ (четириъгълникът ATSJ е вписан в Γ) и $\angle SJK = \angle KRS$ (измерват се с една и съща дъга от Ω), то $\angle STA = \angle KRS$ и следователно наистина $RK \parallel AT$. Нека правата през T, която е успоредна на I, пресича RK в точка B. Тогава четириъгълникът RATB е успоредник. Средата на диагонала AB е среда и на

диагонала RT, откъдето следва, че точките A, S и B са колинеарни. Ще докажем, че около четириъгълника KSTB може да се опише окръжност. Това следва от равенството на ъглите STB и RKS. Наистина, $\angle STB = \angle ARS$ (кръстни ъгли) и $\angle RKS = \angle ARS$ (измерват се с една и съща дъга от Ω). Имаме още, че $\angle ABK = \angle BAT$ (кръстни ъгли). Сега от факта, че четириъгълникът KSTB е вписан, следва, че $\angle STK = \angle ABK$. Тогава $\angle STK = \angle BAT$ и получаваме, че дъгите от Γ , с които тези ъгли се измерват, са равни. Това е възможно само когато KT е допирателна към Γ , което трябваше да се докаже.

Решение на задача 5.

Да номерираме играчите с числата от 1 до N така, че на по-висок играч да съответства по-голям номер. Ще посочим индуктивен алгоритъм, който води до решение на задачата. Да разпределим играчите по произволен начин на N групи по N+1 играчи. От всяка група ще изберем по двама играчи така, че да са изпълнени исканите от сър Алекс условия:

- 1. Разглеждаме групата, която съдържа най-ниския играч и го отделяме от тази група заедно със следващия по височина играч в тази група. Това са двамата играчи от тази група. Изваждаме от редицата останалите в групата играчи и приключваме с тази група.
- 2. От всяка от останалите групи изваждаме най-ниския играч. По този начин получаваме N-1 групи с по N играчи и постъпваме по описания вече начин.

Ще проверим алгоритьма за конкретни стойности на N.

Hека N=2.

Играчите по височина от най-ниския към най-високия са 1, 2, 3, 4, 5 и 6. По произволен начин разпределяме тези числа в 2 групи по трима, например така:

Дясната група съдържа най-малкото число 1 (най-ниския играч) и затова отделяме от нея двете най-малки числа 1 и 2, а изваждаме оставащото 5 от редицата. При втората стъпка на алгоритъма отделяме най-малкото число 3 от първата група. Оставащите две числа остават в редицата и като краен резултат получаваме числата 4, 6, 1 и 2. Лесно се проверява, че условията на сър Алекс са изпълнени.

Heka N=3.

Играчите по височина от най-ниския към най-високия са 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12. По произволен начин разпределяме тези числа в 3 групи по четирима, например така:

Средната група съдържа най-малкото число 1 и затова отделяме от нея двете наймалки числа 1 и 6, а изваждаме оставащите две числа 9 и 12 от редицата. С това приключваме с втората група. При втората стъпка на алгоритъма отделяме най-малкото число 2 от първата група и най-малкото число 3 от третата група. Получаваме 2 групи с по трима играчи и свеждаме задачата до случая N=2. Сега играчите по височина от найниския към най-високия са 5, 7, 8, 4, 10 и 11.

5 7 8

4 10 11

Втората група съдържа най-малкото число 4 и затова отделяме от нея двете най-малки числа 4 и 10, а изваждаме оставащото число 11 от редицата и приключваме с тази група. При втората стъпка на алгоритъма отделяме най-малкото число 5 от първата група. Оставащите две числа остават в редицата и като краен резултат получаваме числата 7, 8, 4 и 10. Тези числа, заедно с вече избраните 1 и 6, определят търсените числа 7, 8, 1, 6, 4 и 10, за които лесно се проверява, че условията на сър Алекс са изпълнени.

Hека N=4.

Играчите по височина от най-ниския към най-високия са 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 и 20. Разпределяме тези числа в 4 групи по петима, например така:

1 4 5 1619

3 7 10 17 18

2 9 12 13 14

6 8 11 15 20

Първата група съдържа най-малкото число I и затова отделяме от нея двете най-малки числа 1 и 4, а изваждаме оставащите 5, 16 и 19 от редицата, с което приключваме с тази група. При втората стъпка на алгоритъма отделяме най-малкото число 3 от втората група, най-малкото число 2 от третата група и най-малкото число 6 от четвъртата група. Получаваме 3 групи с по четирима играчи и свеждаме задачата до случая N=3. Сега играчите по височина от най-ниския към най-високия са 7, 10, 17, 18; 9, 12, 13, 14; 8, 11, 15 и 20.

7 10 17 18

9 12 13 14

8 11 15 20

Първата група съдържа най-малкото число 7 и затова отделяме от нея двете най-малки числа 7 и 10, а изваждаме оставащите 17 и 18 от редицата. По този начин приключваме с тази група. При втората стъпка на алгоритъма отделяме най-малкото число 9 от втората група и най-малкото число 8 от третата група. Получаваме 2 групи с по трима играчи и свеждаме задачата до случая N=2. Сега играчите по височина от най-ниския към най-високия са 12, 13, 14; 11, 15 и 20.

12 13 14

11 15 20

Втората група съдържа най-малкото число 11 и затова отделяме от нея двете най-малки числа 11 и 15, а изваждаме оставащото число 20 от редицата и приключваме с тази група. При втората стъпка на алгоритъма отделяме най-малкото число 12 от първата група. Другите две числа остават в редицата и като краен резултат получаваме числата 13, 14, 11 и 15. Тези числа, заедно с вече избраните 1, 4, 7 и 10 определят търсените числа 1, 4, 7, 10, 13, 14, 11 и 15, за които лесно се проверява, че условията на сър Алекс са изпълнени.

Оставяме на читателя да обоснове алгоритъма при индуктивната стъпка в общия случай от N към N-1 .

Решение на задача 6.

Да обърнем внимание, че търсеният полином е хомогенен, т.е. всеки едночлен в него е от степен n по отношение на променливите x и y. Най-напред ще разгледаме простия случай, когато множеството S съдържа само един елемент (x_1, y_1) , за който $HOД(x_1, y_1) = 1$. От Лемата на Безу следва, че съществуват цели числа a_0 и a_1 , за които $a_0x_1 + a_1y_1 = 1$. За хомогенен полином с цели коефициенти, който търсим, можем да вземем хомогенния полином от първа степен $g(x, y) = a_0x + a_1y$ и задачата е решена. За пълнота и за улеснение на читателя ще дадем общата формулировка на Лемата на Безу (Етиен Безу (1730–1783) е френски математик).

Лема на Безу. (известна още като *Тъждество на Безу*). Ако x и y са цели ненулеви числа, то съществуват цели числа a и b така, че $ax + by = \mathrm{HOД}(x,y)$.

При това HOД(x, y) е най-малкото естествено число, което може да се представи във вида ax + by. Освен това, всяко цяло число от вида ax + by е кратно на HOД(x, y). Важно е да се отбележи, че намирането на целите числа a и b (наричани коефициенти на Безу) може да стане с помощта на алгоритъма на Евклид за намиране на HOД, като в случая на коефициенти на Безу алгоритъмът е известен като разишрен алгоритъм на Евклид. Например, да намерим най-напред HOД(17,12) с алгоритъма на Евклид:

<u>Стъпка 1.</u> Делим 17 (по-голямото число) на 12 (по-малкото) и получаваме 17 = 12.1 + 5;

<u>Стъпка 2</u>. Делим делителя 12 от предната стъпка с остатъка 5 от предната стъпка и получаваме 12 = 5.2 + 2;

<u>Стъпка 3</u>. Делим делителя 5 от предната стъпка с остатъка 2 от предната стъпка и получаваме 5 = 2.2 + 1;

Стъпка 4. Делим делителя 2 от предната стъпка с остатъка 1 от предната стъпка и получаваме 2 = 2.1 + 0.

Процесът спира до получаване на остатък 0, което в разглеждания пример се реализира в стъпка 4. Последният различен от нула остатък задава търсения НОД. В нашия случай НОД (17,12) = 1. Разширяването на алгоритъма на Евклид касае определянето на коефициентите на Безу, което става на ходове по следния начин:

Xод 1. Изразяваме последния различен от нула остатък от стъпка 3 и получаваме 1=5-2.2;

 \underline{X} од 2. Изразяваме остатъка 2 от предната стъпка 2 и го заместваме в предния ход. Получаваме 2 = 12 - 5.2 и 1 = 5 - (12 - 5.2).2 = 5 - 12.2 + 5.4 = 5(1 + 4) - 12.2 = 2 = 5.5 - 12.2.

 \underline{X} од 3. Изразяваме остатъка 5 от предната стъпка 1 и го заместваме в предния ход. Получаваме 5 = 17 - 12.1 и 1 = 5.5 - 12.2 = 5.(17 - 12.1) - 12.2 = 5.17 - 12.5 - 12.2 = 5.17 - 7.12.

Окончателно тъждеството на Безу е 5.17-7.12=1, а коефициентите на Безу са 5 и -7.

Приключваме с отклонението по Лемата на Безу и се връщаме към решението на задача 6. Ще използваме индукция по броя на елементите на S. Да допуснем, че за m двойки (x_i,y_i) (i=1,2,...,m), за които НОД $(x_i,y_i)=1$ (i=1,2,...,m), съществува хомогенен полином $g(x,y)=a_0x^n+a_1x^{n-1}y+a_2x^{n-2}y^2+...+a_{n-1}xy^{n-1}+a_ny^n$ от степен n>0 така, че $g(x_i,y_i)=1$ (i=1,2,...,m). Ще докажем, че за всяко S с m+1 примитивни двойки съществува хомогенен полином f(x,y), за който $f(x_i,y_i)=1$ (i=1,2,...,m,m+1).

Нека g(x,y) е хомогенният полином от степен n>0, който съществува съгласно индуктивното предположение за първите m примитивни двойки и нека

$$f(x, y) = (g(x, y))^{M} - Cx^{Mn-m} \prod_{i=1}^{m} (y_{i}x - x_{i}y),$$

където M и C са подходящи константи. Да обърнем внимание, че f(x,y) се състои от 2 части, всяка от които е хомогенен полином. Освен това, очевидно $f(x_i,y_i)=1$ $(i=1,\ 2,\ ...,\ m$), след като $g(x_i,y_i)=1$ $(i=1,\ 2,\ ...,\ m$).

Ще разгледаме два случая.

<u>Случай 1</u>. $(x_{m+1}, y_{m+1}) = (1,0)$, която е очевидно примитивна двойка.

Имаме
$$f(1,0) = (g(1,0))^M - C \prod_{i=1}^m y_i$$
. Тъй като $g(x,y) = a_0 x^n + a_1 x^{n-1} y + ... + a_n y^n$, то

 $f(1,0) = \left(a_0\right)^M - C\prod_{i=1}^m y_i$. Ако $a_0 = 1$, можем да вземем M = 1, C = 0 и очевидно f(1,0) = 1, с което задачата е решена. Затова по-нататък в случай 1 ще считаме, че $a_0 \neq 1$.

Да забележим, че $1=g(x_i,y_i)\equiv a_0x_i^n \pmod{y_i}$. Заключаваме, че съществува цяло число k, за което $a_0x_i^n=ky_i+1$. Оттук следва, че НОД $(a_0,y_i)=1$. Това дава възможност при търсене на константите M и C така, че $f(1,0)=\left(a_0\right)^M-C\prod_{i=1}^m y_i$, да използваме Ойлеровата функция φ , наричана още momue ma. Нека $M=\varphi\left(\prod_{i=1}^m y_i\right)$. От теоремата на Ойлер-Ферма следва, че $a_0^{\varphi\left(\prod_{i=1}^m y_i\right)}\equiv 1 \pmod{\prod_{i=1}^m y_i}$, защото a_0 е взаимно просто с всички y_i , а следователно и с тяхното

произведение. Сега за C е достатъчно да вземем $C = \frac{\left(a_0\right)^M - 1}{\displaystyle\prod_{i=1}^m y_i}$. Тогава f(1,0) = 1 и задачата

е решена.

Разбира се, ако някоя от примитивните двойки (x_i, y_i) (i = 1, 2, ..., m, m + 1) е двойката (1,0), можем да преномерираме двойките и да считаме, че $(x_{m+1}, y_{m+1}) = (1,0)$, така че задачата е решена. Остава да разгледаме случая, когато нито една от примитивните двойки не е двойката (1,0), т.е.

Случай 2.
$$(x_i, y_i) \neq (1,0), (i = 1, 2, ..., m, m+1).$$

За първите m примитивни двойки прилагаме отново индуктивното предположение и използваме споменатия по-горе хомогенен полином g(x,y) от степен n>0. Тъй като $HOД(x_{m+1},y_{m+1})=1$, от Лемата на Безу следва, че съществуват цели числа t и s, за които

$$tx_{m+1} + sy_{m+1} = 1$$
. Да разгледаме матрицата $\begin{pmatrix} t & s \\ -y_{m+1} & x_{m+1} \end{pmatrix}$. Нейната детерминанта е

 $tx_{m+1} + sy_{m+1} = 1$ и е различна от 0, което означава, че матрицата е обратима, т.е. тя има обратна матрица. С помощта на горната матрица дефинираме трансформация T на точки от

равнината (x, y) в точки от равнината (u, v). Обръщаме внимание, че T е изоморфизъм, т.е. T е взаимно еднозначно съответствие между двете равнини. Имаме

$$(u,v) = T(x,y) = \begin{pmatrix} t & s \\ -y_{m+1} & x_{m+1} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}$$
, където $u = tx + sy$ и $v = -y_{m+1}x + x_{m+1}y$.

Образите се получават по правилото за умножаване на матрици. Трансформацията T преобразува хомогенния полином g(x,y) в хомогенен полином $g^*(u,v)$ на променливите u и v. При това забелязваме, че $T(x_{m+1},y_{m+1})=(1,0)$. Използвайки доказаното по-горе, можем да конструираме хомогенен полином $f^*(u,v)$, който с обратната трансформация T^{-1} се преобразува в хомогенен полином f(x,y), изпълняващ исканите условия. С това задачата е решена и в този случай.

Предлагаме упражнение върху описания алгоритъм с два типични примера в случая m=2 .

Пример 1.
$$(x_1, y_1) = (17,12), (x_2, y_2) = (1,0)$$

При обсъждането на Лемата на Безу намерихме коефициентите на Безу за примитивната двойка (17,12). По-точно видяхме, че 5.17-7.12=1 и следователно коефициентите на Безу са (5,-7) . Можем да използваме линейния хомогенен полином g(x,y)=5x-7y и да конструираме $f(x,y)=(5x-7y)^M-Cx^{M-1-1}(12x-17y)$. Имаме f(17,12)=1 и $f(1,0)=5^M-C.12$. От друга страна $\phi(12)=\phi(2^2.3)$ и като използваме правилото за пресмятане стойностите на Ойлеровата функция с помощта на каноничното разлагане на съответния аргумент, намираме $\phi(12)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4$. Тогава

$$M = \varphi\left(\prod_{i=1}^{m} y_{i}\right) = \varphi(12) = 4 \text{ и } C = \frac{5^{4} - 1}{12} = \frac{624}{12} = 52. \text{ Окончателно}$$

$$f(x, y) = (5x - 7y)^{4} - 52x^{3}(12x - 17y).$$

Пример 2.
$$(x_1, y_1) = (3, 2), (x_2, y_2) = (2, 5).$$

Коефициентите на Безу за примитивната двойка (3,2) са (1,-1). Наистина 1.3-1.2=1. Тогава линейният хомогенен полином от алгоритъма е g(x,y)=x-y и очевидно g(3,2)=1. Тъй като втората примитивна двойка е различна от двойката (1,2), съгласно алгоритъма

(общата схема) ще използваме изоморфизма
$$T = \begin{pmatrix} -2 & 1 \\ -5 & 2 \end{pmatrix}$$
. Имаме $\begin{pmatrix} -2 & 1 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, т.е.

$$T(2,5) = (1,0)$$
. Също така $u = -2x + y$ и $v = -5x + 2y$. От друга страна $T^{-1} = \begin{pmatrix} 2 & -1 \ 5 & -2 \end{pmatrix}$, защото $\begin{pmatrix} -2 & 1 \ -5 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \ 5 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$, което е единичната матрица и следователно $T.T^{-1}$ е идентитет.

Така
$$x=2u-v$$
 и $y=5u-2v$. Тогава $g(x,y)=x-y=2u-v-(5u-2v)=-3u+v$, т.е. $g^*(u,v)=-3u+v$. По-нататък $u_1=-2x_1+y_1=-2.3+2=-4$, $v_1=-5x_1+2y_1=-5.3+2.2=-11$,

 $u_2 = -2x_2 + y_2 = -2.2 + 5 = 1$ и $v_2 = -5x_2 + 2y_2 = -5.2 + 2.5 = 0$. По този начин задачата се пренася в равнината (u,v) за примитивните двойки (-4,-11) и (1,0). Тъй като 11 е просто число, то $\varphi(11) = 11 - 1 = 10$ и следователно M = 10, $C = \frac{(-3)^{10} - 1}{-11} = -5368$. Тогава $f^*(u,v) = (-3u+v)^{10} + 5368u^9(-11u+4v)$ и окончателно

$$f(x, y) = Tf^* = (x - y)^{10} = 5368(-2x + y)^9(2x - 3y).$$

Лесно се проверява, че са изпълнени условията на задачата, т.е. f(3,2) = f(2,5) = 1.

Естеството на задачите и резултатите на българските ученици са повод за някои изводи. Най-лесната задача в темата е задача 4. Това е осмокласна задача и подобни на нея се появяват доста често на контролни в 8. клас в математическите гимназии. Полученият тук максимален резултат е заслуга на българските учители, които са обучили нашите ученици да решават такива задачи и то не само тези, които са в националния отбор. Втората по трудност е задача 1. Решението й следва малко по-необичайна индукция и тази необичайност се е отразила на резултата, като отборът е загубил общо 2 точки. Третата по трудност е задача 2. Тук отборният резултат е 31 точки от възможните 42. Правилно е да се говори не за спечелени 31. а за загубени 11 точки предвид дългогодишните български традиции в областта на функционалните уравнения. Идва задача 5 по трудност, за която ще стане дума по-долу. Следващата е задача 3, която няма да коментираме, защото там всички участници в олимпиадата имат слаби резултати. Общо 615 ученици са получили 26 от възможните 4305 точки (българите са с 0 точки). Задачата е решена пълно само от двама участници – един от Австралия и един от Русия, един е с 5 точки, един с 4 и трима с по 1 точка. Основното затруднение идва от факта, че отговорът на задачата е отрицателен, а самото условие насочва по-скоро към търсене на положителен. Специално внимание заслужава най-трудната задача 6. По същество тя е обобщение на Лемата на Безу в случая на примитивни двойки, когато двойките са повече от една. Задачата има самостоятелно теоретично значение. Предизвикателство е да се намери пълно обобщение и за непримитивни двойки. Както се вижда от решението по-горе, задачата изисква сериозни познания по теория на числата (функция на Ойлер и теорема на Ойлер) и линейна алгебра (в двумерния случай). Жалко за българските ученици, между които има такива с доказани качества. Например Виолета Найденова и Кирил Бангачев са носители на златни и сребърни медали от балкански олимпиади за по-малки ученици, МВиолета е трикратен участник в международни олимпиади. Към това, на което са ги научили учителите в училище (то съвсем не е малко), "отговорните" фактори извън училище са проявили безотговорност и не са добавили почти нищо. Добри деца – слаби ръководители!

В заключение ще отбележим, че провалът на българските ученици е върху комбинаторната задача 5. А в "подготовката" са участвали професори и доктори на науките именно в областта на комбинаториката!!! Незадоволителен е резултатът на българите и върху функционалното уравнение, където за специалист се самоопределя друг професор и доктор на науките, участвал в подготовката. Оставяме читателят да съобрази що за професори и доктори на науките са лаборантите от Лабораторията на Пазарджишкия доносник. А някои от тях претендират и за по-високи звания в Българската академия на науките!!! Тежко ни и горко!

Следващата международна олимпиада ще се проведе в Клуж-Напока, Румъния от 3 до 14 юли 2018 г.