Section 11.3 General Convergence Theorems

Proposition (11.19). Let (X, \mathcal{B}) be a measure space, and $\{\mu_n\}$ be a sequence

Definition. By a **signed measure** on the measure space (X, \mathcal{B}) we mean an extended real-valued set function v defined for the sets of \mathcal{B} and satisfying the following conditions:

i. v assumes at most one of the values $+\infty$, $-\infty$.

ii.
$$v(\emptyset) = 0$$

iii.
$$v\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} v(E_i)$$
 for any sequence E_i of disjoint measurable sets, the equality

taken to mean that the series on the right converges absolutely if $v\left(\bigcup_{i=1}^{\infty} E_i\right)$ is finite and that it properly diverges.