Fast Shortest-path Distance Queries on Road Networks by Pruned Highway Labeling

Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, Yuki Kawata

Giulio Bazzanti Niccolò Biondi

Advanced Algorithms and Graph Mining, A.A. 2018/19

Outline

- Introduction
- Proposed Methods
 - Highway-based Labelings
 - Pruned Highway Labeling
- Heuristics for Small Labels
 - Highway Decomposition
 - Contraction Technique
- Experiments
- Questions Time

- Fast ...
 - fast systems for answer to users' queries of distance

- Fast ...
 - fast systems for answer to users' queries of distance
- ... Shortest-path Distance Queries ...
 - a generic query (u-v) asks for the shortest-path distance between u and v in the graph

- Fast ...
 - fast systems for answer to users' queries of distance
- ... Shortest-path Distance Queries ...
 - a generic query (u-v) asks for the shortest-path distance between u and v in the graph
- ...on Road Networks ...

- Fast ...
 - fast systems for answer to users' queries of distance
- ... Shortest-path Distance Queries ...
 - a generic query (u-v) asks for the shortest-path distance between u and v in the graph
- ... on Road Networks ...
- ... by Pruned Highway Labeling
 - proposed method

Some applications

- Distance queries are used in systems like Google maps, Bing Maps, Yahoo! Maps
- Dataset: road network of USA and of Western Europe

Proposed methods

The authors propose:

- Highway-based labelings
 - new labeling framework
 - data structure and query algorithm

Proposed methods

The authors propose:

- Highway-based labelings
 - new labeling framework
 - data structure and query algorithm
- Pruned highway labeling
 - preprocessing algorithm
 - small labels for the framework
 - based on pruned Dijkstra search

Timeline

- labeling methods
 - pre-computation on input graph
 - labels are used to answer queries without looking the graph
 - fast query time
 - pruned labeling
- shortest path decomposition of the input graph
- highway
 - many shortest paths must pass through highways

Previous work: Fast Exact Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling

Here the authors proposed:

- pruned labeling method
 - data structure
 - query algorithm

Previous work: Fast Exact Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling

Here the authors proposed:

- pruned labeling method
 - data structure
 - query algorithm
- Pruned Landmark labeling
 - based on pruned BFS search

Labeling Method and Query Definition

- For each vertex $v \in V$, pre compute a label L(v) which is a set of pairs (u, δ_{uv})
 - u is a vertex reached from v
 - $\delta_{uv} = d(u,v)$

Labeling Method and Query Definition

- For each vertex $v \in V$, pre compute a label L(v) which is a set of pairs (u, δ_{uv})
 - u is a vertex reached from v
 - $\delta_{uv} = d(u,v)$

Definition (QUERY(s, t, L))

Given the labels L, for an *s-t* query, we define:

$$QUERY(s, t, L) = \min\{\delta_{vs} + \delta_{vt} | (v, \delta_{vs}) \in L(s), (v, \delta_{vt}) \in L(t)\}$$

 $QUERY(s, t, L) = \infty$ if L(s) and L(t) not share any vertex

Pruned Landmark Labeling

- Conduct *pruned* BFSs from vertices in the order $v_1 \dots v_n$
- ullet Start with empty index L_0' and create index L_k' from L_{k-1}'
- Pruning:
 - If $QUERY(v_k, u, L'_{k-1}) \leq \delta$ then we prune
 - Do not add (v_k, δ) to $L_k'(u)$ and do not traverse any edge from vertex u

Pruned Landmark Labeling

- Conduct *pruned* BFSs from vertices in the order $v_1 \dots v_n$
- ullet Start with empty index L_0' and create index L_k' from L_{k-1}'
- Pruning:
 - If $QUERY(v_k, u, L'_{k-1}) \leq \delta$ then we prune
 - Do not add (v_k, δ) to $L'_k(u)$ and do not traverse any edge from vertex u
- otherwise set $L'_k(u) = L'_{k-1}(u) \bigcup \{(v_k, d(v_k, u))\}$ and traverse all the edge from vertex u
- set $L'_k(u) = L'_{k-1}(u)$ for all vertex $u \in V$ that were not visited in the k-th *pruned* BFS

Contributions

- highway-based labeling framework:
 - decompose the input graph in shortest path
 - 2 create a label for each vertex
 - store the distances from each vertex to the shortest paths
- pruned highway labeling:
 - small labels based on pruned Dijkstra search
- heuristics for good decomposition and techniques for efficient implementation

Highway-based Labelings

Proposed Methods

Proposed Methods Highway-based Labelings

Highway-based Labelings

Highway-based Labelings

The framework has the following structure:

- take in input the graph decomposition
- define the label's structure
- describe how to answer for a query
- describe how to store the labels

Graph Decomposition

Definition (Highway decomposition)

A highway decomposition of a given graph G is a family of ordered sets of vertices $\mathcal{P} = \{P_1, P_2, \dots, P_N\}$ such that:

- $P_i = (p_{i,1}, p_{i,2}, \dots, p_{i,l_i})$ is a shortest path between two vertices $p_{i,1}$ and p_{i,l_i}
- ② $P_i \cap P_j = \emptyset$ for any i and j with $i \neq j$
- $P_1 \cup P_2 \cup \ldots \cup P_N = V$

Highway-based Labelings

Labeling

For each vertex $v \in V$ the label, L(v), is a set of triples $(i, d(p_{i,1}, p_{i,j}), d(v, p_{i,j}))$

- i is a index of a path P_i
- $d(p_{i,1}, p_{i,j})$ is the distance from the starting point $p_{i,1}$ of the path to a vertex $p_{i,j}$ on the path
- $d(v, p_{i,j})$ the distance from the vertex v to the vertex $p_{i,j}$

Storing all the triples for all the index i or all the vertices on a path P_i will be expensive. There is a need to reduce the total size of labels (Pruned Highway Labeling).

Query definition

Definition (QUERY(s, t, L))

Given the labels L, for an *s-t* query, we define:

$$QUERY(s, t, L) = \min\{d(s, p_{i,j}) + d(p_{i,j}, p_{i,k}) + d(p_{i,k}, t) |$$

$$(i, d(p_{i,1}, p_{i,j}), d(s, p_{i,j})) \in L(s),$$

$$(i, d(p_{i,1}, p_{i,k}), d(t, p_{i,k})) \in L(t)\}$$

 $d(p_{i,j}, p_{i,k})$ is not contained in labels L(s) and L(t) but can be computed in the following way:

$$d(p_{i,j},p_{i,k}) = |d(p_{i,1},p_{i,j}) - d(p_{i,1},p_{i,k})|$$

Computation time

Computation time?

 $\bullet \ \Theta(|L(s)||L(t)|)$

Highway-based Labelings

Computation time

Computation time?

- $\Theta(|L(s)||L(t)|)$
- linear time, O(|L(s)| + |L(t)|), by sorting triples with indexes and the distances from the starting point of the path in ascending order. There is the following lemma:

Lemma

```
There exist triples (i, d(p_{i,1}, p_{i,j}), d(s, p_{i,j})) \in L(s) and (i, d(p_{i,1}, p_{i,k}), d(t, p_{i,k})) \in L(t) that achieve the minimum candidate distance and satisfy the following: for any vertex p_{i,l} with \min(j, k) < l < \max(j, k), (i, d(p_{i,1}, p_{i,l}), d(s, p_{i,l})) \notin L(s) and (i, d(p_{i,1}, p_{i,l}), d(t, p_{i,l})) \notin L(t).
```

Proposed Methods Pruned Highway Labeling

Naive Highway Labeling

•
$$L_0(v) = \emptyset$$
 for each vertex $v \in V$

Naive Highway Labeling

- $L_0(v) = \emptyset$ for each vertex $v \in V$
- $L_i(v) = L_{i-1}(v) \cup (i, d(p_{i,1}, p_{i,j}), d(v, p_{i,j}))$, where $d(v, p_{i,j})$ is computed with a Dijkstra search from each vertex $p_{i,j}$ of the path P_i

Naive Highway Labeling

- $L_0(v) = \emptyset$ for each vertex $v \in V$
- $L_i(v) = L_{i-1}(v) \cup (i, d(p_{i,1}, p_{i,j}), d(v, p_{i,j}))$, where $d(v, p_{i,j})$ is computed with a Dijkstra search from each vertex $p_{i,j}$ of the path P_i
- obviously we have $L_N = L$ and the following lemma:

Lemma

For any pair of vertices s and t in V, QUERY(s, t, L) = d(s, t).

Naive Highway Labeling

- $L_0(v) = \emptyset$ for each vertex $v \in V$
- $L_i(v) = L_{i-1}(v) \cup (i, d(p_{i,1}, p_{i,j}), d(v, p_{i,j}))$, where $d(v, p_{i,j})$ is computed with a Dijkstra search from each vertex $p_{i,j}$ of the path P_i
- obviously we have $L_N = L$ and the following lemma:

Lemma

For any pair of vertices s and t in V, QUERY(s, t, L) = d(s, t).

not so efficient

efficient algorithm for preprocessing

Pruned Highway Labeling

- efficient algorithm for preprocessing
- $L'_0(v) = \emptyset$ for each vertex $v \in V$
- $L'_{i+1}(v) = L'_i(v)$ for each vertex $v \in V$, and for each path P_i

- efficient algorithm for preprocessing
- $L'_0(v) = \emptyset$ for each vertex $v \in V$
- $L'_{i+1}(v) = L'_i(v)$ for each vertex $v \in V$, and for each path P_i
- if $QUERY(v, p_{i,j}, L_i') \leq \delta$ then the Dijkstra search is pruned
- otherwise, the triple $(i, d(p_{i,1}, p_{i,j}), \delta)$ is added to $L'_i(v)$ and the edges from v is checked

Algorithm 1 Pruned Dijkstra search

```
Require: G, P_i, L'_{i-1}
   Q \leftarrow an empty priority queue
   Push (0, p_{i,i}, p_{i,i}) onto Q for all p_{i,j} \in P_i
   L'_{:}(v) \leftarrow L'_{:-1}(v) for all v \in V
   while Q is not empty do
      Pop (\delta, v, p_{i,i}) from Q
      if QUERY(v, p_{i.i}, L'_i) \leq \delta then
         continue (prune the search)
      end if
      L'_i(v) \leftarrow L'_i(v) \cup (i, d(p_{i,1}, p_{i,i}), \delta)
      Push (\delta + I(v, w), w, p_{i,i}) onto Q for all (v, w) \in E
   end while
   return L'_i(v)
```

Pruned Highway Labeling

Algorithm 2 Preprocessing by the pruned highway labeling

```
Require: G
L'_0(v) \leftarrow \emptyset for all v \in V
P \leftarrow a highway decomposition of G
N \leftarrow the size of P
for i=1 to N do
L'_i \leftarrow prunedDijkstraSearch(G, P_i, L'_{i-1})
end for
return L'_N = L'
```

Example

original

Pruned Highway Labeling

Example

original

highway decomposition

•
$$P_1 = \{0, 3, 4, 1\}$$

•
$$P_1 = \{0, 3, 4, 1\}$$

•
$$L'_1(0) = \{(1,0,0)\}$$

•
$$L'_1(1) = \{(1,2,0)\}$$

•
$$L'_1(2) = \{(1,0,2), (1,2,3)\}$$

•
$$L'_1(3) = \{(1,1,0)\}$$

•
$$L'_1(4) = \{(1,2,0)\}$$

•
$$L'_1(5) = \{(1,0,1),(1,1,1)\}$$

•
$$L'_1(6) = \{(1,0,1)\}$$

•
$$L'_1(7) = \{(1,0,1),(1,2,1)\}$$

•
$$L'_1(8) = \{(1,0,1)\}$$

•
$$L'_1(9) = \{(1,0,1),(1,2,1)\}$$

•
$$L'_1(10) = \{(1,0,2), (1,2,2)\}$$

•
$$L'_1(11) = \{(1,0,1)\}$$

Correctness

 The distance computed by using L' is equal one computed using L

$\mathsf{Theorem}$

For any pair of vertices s and t,

$$QUERY(s, t, L') = QUERY(s, t, L)$$

Pruned Highway Labeling

Correctness

• The distance computed by using L' is equal one computed using L

Theorem

For any pair of vertices s and t,

$$QUERY(s, t, L') = QUERY(s, t, L)$$

 Moreover, a query can be computed correctly using labels from the pruned algorithm

Corollary

For any pair of vertices s and t, QUERY(s, t, L') = d(s, t).

Pruned Highway Labeling

Proof.

Let i the index such that

$$QUERY(s, t, L_{i'}) \neq d(s, t) \quad \forall i' < i$$

and

$$QUERY(s, t, L_i) = d(s, t).$$

 $\exists p_{i,j}, p_{i,k} \in P_i \text{ such that }$

$$d(s,t) = d(s,p_{i,j}) + d(p_{i,j},p_{i,k}) + d(t,p_{i,k})$$

We choose (j, k) such that no vertices on shortest path between s and $p_{i,j}$ or t and $p_{i,k}$ are in P_i . Suppose that for some i' < i, $\exists p_{i',j'} \in P_{i'}$ is in a shortest path between s and $p_{i,j} \Rightarrow (i', d(p_{i',1}, p_{i',j'}), d(s, p_{i',j'})) \in L(s)$ and $(i', d(p_{i',1}, p_{i',j'}), d(t, p_{i',i'})) \in L(t)$.

Pruned Highway Labeling

Proof.

Thus,
$$(i', d(p_{i',1}, p_{i',j'}), d(s, p_{i',j'})) \in L(s)$$
 and $(i', d(p_{i',1}, p_{i',j'}), d(t, p_{i',j'})) \in L(t) \Rightarrow$

$$QUERY(s, t, L_{i'}) = d(s, t)$$

that is a contradiction to the choice of i.

Moreover, the search from $p_{i,j}$ to s is not pruned, because any path $P_{i'}$ with i' < i contains no vertices on the shortest paths between s and $p_{i,j}$. Thus

$$(i, d(p_{i,1}, p_{i,j}), d(s, p_{i,j})) \in L'(s)$$

 $(i, d(p_{i,1}, p_{i,k}), d(t, p_{i,k})) \in L'(t)$

As a results, holds that:

$$QUERY(s, t, L') = QUERY(s, t, L)$$

Heuristics for Small Labels

Heuristics for Small Labels Highway Decomposition

Highway Decomposition

- we want to choose a path that hits many shortest paths(highway), because this would allow us to prune future searches
- each edge has a speed (I(u, v)/t(u, v))

Highway Decomposition

- we want to choose a path that hits many shortest paths(highway), because this would allow us to prune future searches
- each edge has a speed (I(u, v)/t(u, v))
- vertices are grouped in levels according to the speed of their connected edges
 - faster edges to higher level
 - shortest path is the highest levels
 - few vertices in a level (threshold) ⇒ mix the two highest levels

Shortest Path

How to choose the correct path from the highest level?

• a path must be a shortest path between two vertices

Shortest Path

How to choose the correct path from the highest level?

- a path must be a shortest path between two vertices
- compute the shortest path tree from a random root vertex
- pick a path between root and a vertex in the tree
 - many descendants many shortest paths hit the vertex
 - shortest path is chosen iteratively from the root to the child with more descendants

Shortest Path

How to choose the correct path from the highest level?

- a path must be a shortest path between two vertices
- compute the shortest path tree from a random root vertex
- pick a path between root and a vertex in the tree
 - many descendants many shortest paths hit the vertex
 - shortest path is chosen iteratively from the root to the child with more descendants
- not all the nodes are important
- if the difference between the number of descendants of v and one of his child w is small, the vertex v is skipped (with a shortcut edge)

Algorithm 3 Highway Decomposition

```
Require: G, num level
  for each edge (u, v) \in E compute the edge's speed
  add the vertex u, v to a level according to (u, v) speed
  for each level do
     while level is not empty do
       let v \in level the max degree node
       parent, childhood \leftarrow prim MST(v)
       compute number of descendant of vertex in Prim tree
       create path from v adding y = \operatorname{argmax} \{ \operatorname{descendant}(v) \}
       highway dec \leftarrow highway dec \cup shortest path
     end while
  end for
  return highway dec
```

Contraction Technique

Heuristics for Small Labels Contraction Technique

Contraction Technique

- for each vertex v such that deg(v) = 1 (let w his only child)
 - ullet any shortest path from v must pass from w
 - v isn't contained in shortest path between other vertices
 - QUERY(v, u, L) = QUERY(w, u, L) + I(v, w)

Contraction Technique

Contraction Technique

- for each vertex v such that deg(v) = 1 (let w his only child)
 - any shortest path from v must pass from w
 - v isn't contained in shortest path between other vertices
 - QUERY(v, u, L) = QUERY(w, u, L) + I(v, w)
- for each vertex v such that deg(v) > 1
 - v can be contained in some shortest path between other vertices
 - $QUERY(v, u, L) = \min_{(v,w) \in E} \{QUERY(w, u, L) + I(v, w)\}$
 - larger $deg(v) \Rightarrow$ slower the query time

- Preprocessing Time
 - Pruned Highway Labeling
- Space Usage
 - with the contraction techniques (less preprocessing time, more query time)
- Query Time
 - faster thanks to the storing of labels
 - in L(v) is saved i and $d(p_{i,1}, p_{i,i})$ separately
 - storing pairs of an index and the number of triples for the index
 - pointer arithmetic and align arrays storing labels to cache line

00000

Results

 Comparison of the performance between Pruned Highway Labeling (PHL) and previous methods

	USA			Europe			
	Preprocessing	Space	Query	Preprocessing	Space	Query	
Method	[h:m]	[GB]	[ns]	[h:m]	[GB]	[ns]	
CH [5]	0:27	0.5	130000	0:25	0.4	180000	
TNR [5]	1:30	5.4	3000	1:52	3.7	3400	
TNR+AF [5]	2:37	6.3	1700	3:49	5.7	1900	
HL local [1]	2:24	22.7	627	2:39	20.1	572	
HL global [1]	2:35	25.4	266	2:45	21.3	276	
HL-15 local [2]	-	-	-	0:05	18.8	556	
HL-∞ global [2]	-	-	-	6:12	17.7	254	
HLC-15 [7]	0:53	2.9	2486	0:50	1.8	2554	
PHL-1	0:29	16.4	941	0:34	14.9	1039	

Contraction technique Effects

• Comparison of the performance with the contraction technique

	USA			Europe		
	Preprocessing	Space	Query	Preprocessing	Space	Query
Contraction level	[h:m]	[GB]	[ns]	[h:m]	[GB]	[ns]
0	0:38	19.8	906	0:50	20.2	1080
1	0:29	16.4	941	0:34	14.9	1039
2	0:11	6.4	1793	0:22	8.5	2011
3	0:07	4.1	2970	0:11	4.6	3344

Label Size Distrbution

- different vertices same size of label
- few vertices have larger labels (highway)

Thanks for your attention