Ex. No : 1(a)	Dlayfair Cinhar
Date :	Playfair Cipher

AIM:

To implement a program to encrypt a plain text and decrypt a cipher text using play fair Cipher substitution technique.

ALGORITHM:

- 1. To encrypt a message, one would break the message into digrams (groups of 2 letters)
- 2. For example, "HelloWorld" becomes "HE LL OW OR LD".
- 3. These digrams will be substituted using the key table.
- 4. Since encryption requires pairs of letters, messages with an odd number of characters usually append an uncommon letter, such as "X", to complete the final digram.
- 5. The two letters of the digram are considered opposite corners of a rectangle in the key table. To perform the substitution, apply the following 4 rules, in order, to each pair of letters in the plaintext:

PROGRAM:

```
playfairCipher.java
import java.awt.Point;
class playfairCipher {
  private static char[][] charTable;
  private static Point[] positions;
  private static String prepareText(String s, boolean chgJtoI) {
     s = s.toUpperCase().replaceAll("[^A-Z]", "");
     return chgJtoI ? s.replace("J", "I") : s.replace("Q", "");
  private static void createTbl(String key, boolean chgJtoI) {
     charTable = new char[5][5];
     positions = new Point[26];
     String s = prepareText(key + "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
chgJtoI);
     int len = s.length();
     for (int i = 0, k = 0; i < len; i++) {
       char c = s.charAt(i);
```

```
if (positions[c - 'A'] == null) {
        charTable[k / 5][k % 5] = c;
       positions[c - 'A'] = new Point(k % 5, k / 5);
       k++;
  }
}
private static String codec(StringBuilder txt, int dir) {
  int len = txt.length();
  for (int i = 0; i < len; i += 2) {
     char a = txt.charAt(i);
     char b = txt.charAt(i + 1);
     int row1 = positions[a - 'A'].y;
     int row2 = positions[b - 'A'].y;
     int col1 = positions[a - 'A'].x;
     int col2 = positions[b - 'A'].x;
     if (row1 == row2) {
        col1 = (col1 + dir) \% 5;
       col2 = (col2 + dir) \% 5;
     ext{less if (col1 == col2) } {
       row1 = (row1 + dir) \% 5;
       row2 = (row2 + dir) \% 5;
     } else {
       int tmp = col1;
       col1 = col2;
        col2 = tmp;
     txt.setCharAt(i, charTable[row1][col1]);
     txt.setCharAt(i + 1, charTable[row2][col2]);
  return txt.toString();
private static String encode(String s) {
  StringBuilder sb = new StringBuilder(s);
  for (int i = 0; i < \text{sb.length}(); i += 2) {
     if (i == sb.length() - 1) {
```

```
sb.append(sb.length() % 2 == 1 ? 'X' : "");
       } else if (sb.charAt(i) == sb.charAt(i + 1)) {
          sb.insert(i + 1, 'X');
    return codec(sb, 1);
  private static String decode(String s) {
     return codec(new StringBuilder(s), 4);
  public static void main(String[] args) throws java.lang.Exception {
     String key = "CSE";
    String txt = "Security Lab"; /* make sure string length is even */ /* change J
to I */
     boolean chgJtoI = true;
     createTbl(key, chgJtoI);
    String enc = encode(prepareText(txt, chgJtoI));
    System.out.println("Simulating Playfair Cipher\n -----");
    System.out.println("Input Message : " + txt);
    System.out.println("Encrypted Message: " + enc);
    System.out.println("Decrypted Message: " + decode(enc));
OUTPUT:
Simulating Playfair Cipher
Input Message: Security Lab
Encrypted Message: EABPUGYANSEZ
Decrypted Message: SECURITYLABX
```

RESULT:

Thus the program for playfair cipher encryption and decryption algorithm has been implemented and the output verified successfully.