Финальная работа по курсу Skillbox "Machine Learning Junior"

Кульгускина Оксана Викторовна

Данные:

Кредитная история заемщиков и атрибуты кредитных продуктов

Задача:

Оценка кредитного риска по клиенту

Целевая метрика:

ROC AUC >= 0.75

Особенности датасета:

- Исходные данные разбиты на 12 батчей в формате parquet, целевая переменная в отдельном датасете
- 300000 строк в итоговом датасете, 61 признак
- Несбалансированное соотношение классов целевой переменной в датасете

• Абсолютное преобладание категориальных признаков, все значения закодированы или бинаризованы, ряд категорий содержат до 20 уникальных значений

Основные сложности при подготовке модели

Вычислительные ресурсы

Уменьшить размерность датасета за счет исключения нерелевантных признаков

Использовать доступные облачные ресурсы (Yandex Datasphere, Google Colab, Kaggle)

Контролировать потребление вычислительных ресурсов и время обработки в процессе разработки и обучения

Преобладание категориальных признаков

Создать новые числовые признаки на основе доступных категориальных:

⋄ОНЕ и агрегация по ID позволит перевести категориальные признаки в количественные.

 Можно создать новые количественные признаки на базе полученных с помощью ОНЕ и агрегации

Несбалансированность выборки

Использовать инструменты и алгоритмы предназначенные для работы с несбалансированными данными

Baseline

Анализ данных и подготовка к сборке датасета

Сборка датасета с использованием OneHotEncoder и агрегации по id

Обучение базовых моделей

Выводы

Анализ данных и подготовка к сборке

Поскольку признаки в основном категориальные, и значения категорий закодированы, основными инструментами анализа являются nunique() и value_counts().

Отбор признаков

pre_loans_total_overdue

содержит 1 значение категории, этот признак можно игнорировать

pre_since_opened pre_since_confirmed pre_till_pclose pre_till_fclose

Набор признаков, связанный с датой сбора данных оператором, количество значений в этих категориях доходит до 20. Мы ничего не знаем о процессе сбора данных, но, по всей видимости, дата сбора данных оператором не может влиять на вероятность дефолта со стороны заемщика.

Ошибки в данных

enc_paym_{0..N}

В отдельных признаках значения категорий смещены на 1- поправим

Признаки, исключенные из ОНЕ

id

rn

pre_loans_total_overdue

pre_since_opened

pre_since_confirmed

pre_till_pclose

pre_till_fclose

Сборка датасета*

*Базовый скрипт для порционной обработки данных приложен к ТЗ.

Обработка батча

- 1. Функция, заменяющая [1, 2, 3, 4] на [0, 1, 2, 3] в признаках enc_paym_{0..N}
- 2. Функция, применяющая ОНЕ к переданному списку колонок
- Функция, агрегирующая строки по id заемщика и одновременно заполняющая 'rn' максимальным значением (максимальный порядковый номер продукта соответствует количеству кредитных продуктов заемщика)

Агрегированный датасет

Из-за разного набора значений категорий в батчах агрегированный датасет содержит NaN.

Заменим NaN на 0

Датасет с признаками и целевой переменной

Размерность датасета после объединения с целевой переменной: (3000000, 348)

Train/Test = 80/20

Baseline Model: HistGradientBoostingClassifier

* HistGradientBoostingClassifier

HistGradientBoostingClassifier(class_weight='balanced', scoring='roc_auc')

NB: Метрики приведены для тестовой выборки

Baseline Model: LogisticRegression

NB: К обучающей и тестовой выборкам применен StandardScaler()

NB: Метрики приведены для тестовой выборки

Baseline Model: Torch Neural Net

```
class BaseClassifier(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super().__init__()
        self.hidden = nn.Linear(input_dim, hidden_dim)
        self.f1 = nn.ReLU()
        self.output = nn.Linear(hidden_dim, output_dim)
        self.f2 = nn.Sigmoid()
    def forward(self, x):
        x = self.fl(self.hidden(x))
        x = self.f2(self.output(x))
        return x
 basenet = BaseClassifier(347, 231, 1)
 loss_fn = nn.BCELoss()
 optimizer = torch.optim.SGD(basenet.parameters(), 1r=0.01)
```

```
num_epochs = 10
```


NB: Для балансировки классов для экономии времени на первом этапе использовался RandomUnderSampler

NB: метрики приведены для тестовой выборки

Выводы

Две из трех опробованных базовых моделей без настройки и подбора параметров, прицельного feature engineering и с грубой балансировкой преодолевают желаемый порог метрики 0.75 на тестовой части. Наиболее перспективной выглядит модель HistGradientBoostingClassifier, на нее и будем ориентироваться.

Feature Importances, полученные с помощью permutation_importance для HistGradientBoostingClassifier

Feature Engineering

Пересборка датасета с добавлением агрегации по столбцам

Отбор релевантных признаков

Отбор нерелевантных признаков

Добавление средневзвешенных значений отобранных признаков

Уточняющий отбор нерелевантных признаков

Валидация результатов

Признаки с использование агрегации по столбцам

• флаг о том, что по продукту не было ни одной просрочки

```
def count_zero_loans(data):
    zero_loans = ['is_zero_loans5', 'is_zero_loans530', 'is_zero_loans3060', 'is_zero_loans6090', 'is_zero_loans90']
    data["no_delays"] = data.loc[:, zero_loans].eq(1).sum(axis=1).apply(lambda x:1 if x==5 else 0)
    return data
```

• количество статусов платежей за весь период

Отбор релевантных признаков на пересобранном датасете

```
permutation_importance(n_repeats=3, scoring='roc_auc')
Порог отсечения: 0.0001

HistGradientBoostingClassifier: 317 features of importance value < 0.0001

LogisticRegression: 203 features of importance value < 0.0001
```

Список релевантных признаков (на основе результатов для HistGradientBoostingClassifier):

```
'enc_loans_credit_type_5', 'enc_paym_2_1', 'enc_loans_credit_type_2', 'enc_loans_credit_status_2', 'pre_loans_credit_cost_rate_7', 'enc_paym_7_3', 'enc_paym_11_0', 'pre_loans_credit_limit_4', 'pre_loans_next_pay_summ_5', 'enc_paym_22_0', 'is_zero_loans6090_0', 'pre_loans_outstanding_5', 'enc_paym_value2', 'enc_paym_23_0', 'enc_paym_2_3', 'enc_paym_1_3', 'is_zero_loans530_0', 'pre_fterm_7', 'enc_loans_credit_status_5', 'is_zero_util_0', 'pre_util_16', 'enc_paym_value0' 'enc_paym_20_0', 'enc_paym_0_1', 'is_zero_loans90_0', 'pre_loans_credit_limit_2', 'pre_util_18', 'enc_paym_18_0', 'is_zero_loans3060_0', 'enc_loans_credit_type_0', 'no_delays', 'pre_loans_credit_cost_rate_6', 'enc_paym_value1', 'pre_util_6', 'pre_util_3'

Признаков
```

HistGradientBoostingClassifier

Новые признаки попали в число наиболее важных

Logistic Regression

Нерелевантные признаки

Удалим из датасета признаки, которые по результатам permutation_importance оказались нерелевантными для обеих моделей

Новые признаки

На основе списка релевантных признаков создадим новые признаки: средневзвешенные значения

Повторное обучение

Переобучим модели на новом наборе признаков

Повторно применим permutation_importance

Уточним список нерелевантных признаков с учетом добавленных колонок

Удалим из датасета признаки, которые по результатам 2 прохода permutation_importance оказались нерелевантными для обеих моделей

```
def add_avg_features(data, flist):
    datanew = data.copy()
    datanew[flist] = datanew[flist].apply(lambda x: round(x/datanew['rn'], 2)).astype('float32')
    datanew = datanew[flist]

datanew_cols=[str(i)+'_avg' for i in flist]
    colsdict = {i:j for i,j in zip(flist, datanew_cols)}
    datanew = datanew.rename(colsdict, axis=1)
    data = data.join(datanew, on='id')
    gc.collect()
    return data
```

HistGradientBoostingClassifier

Permutation Importances (train set)

Logistic Regression

Валидация результатов Feature Engineering

Размерность датасетов после всех преобразований:

x_train.shape, x_test.shape

((2400000, 160), (600000, 160))

HistGradientBoostingClassifier

HistGradientBoostingClassifier(class_weight='balanced', scoring='roc_auc')

LogisticRegression
LogisticRegression(class_weight='balanced', max_iter=1000)

ROC AUC=0.7	54				ROC AUC=0.744				
	precision	recall	f1-score	support		precision	recall	f1-score	support
	0.98	0.66	0.79	578712	0	0.98	0.69	0.81	578712
	0.07	0.72	0.13	21288	1	0.07	0.68	0.13	21288
accuracy	y		0.66	600000	accuracy			0.69	600000
macro av	g 0.53	0.69	0.46	600000	macro avg	0.53	0.68	0.47	600000
weighted av	g 0.95	0.66	0.77	600000	weighted avg	0.95	0.69	0.78	600000

Выводы

Метрика ROC AUC для градиентного бустинга при контрольном прогоне на датасете с новыми признаками уменьшилась на 0.001, что можно отнести к несущественным колебаниям, т.к. random_state и другие параметры baseline-модели не фиксировались

Прирост метрики ROC AUC для логистической регрессии составил > 0.1, что считаем хорошим результатом, т.к. модель планируется использовать в составе ансамбля.

Добавленные признаки по результатам применения permutation_importances входят в число наиболее значимых признаков, при этом мы существенно уменьшили размерность датасета без потери качества и избавились от потенциальных шумов.

Проведенный feature engineering считаем успешным и полезным.

Modelling

Настройка классификатора

Stacking

Выбор финального классификатора

HistGradientBoostingClassifier tuning

Подбор оптимальных параметров осуществлялся в ходе первых экспериментов с помощью нескольких попарных проходов GridSearchCV(cv=3, scoring = roc_auc_score)

На первом проходе паре параметров задавалась широкая сетка значений, на втором полученные результаты уточнялись. Т.о. была сформирована сетка параметров.

В дальнейшем при необходимости с помощью GridSearchCV или RandomizedSearchCV уточнялись только значения max_depth и min_samples_leaf.

Итоговый вариант классификатора: class_weight='balanced', max_depth=15, max_leaf_nodes=72, min_samples_leaf=28, max_iter=150, scoring='roc_auc', tol=0.00001, l2_regularization=0.01, learning_rate=0.1.

Существенного прироста метрики это не дало (0.001-0.002 относительно Baseline), но благоприятно повлияло на стабильность результатов. Также в сравнении с Baseline классификатор стал меньше ошибаться на 0

2nd Torch Neural Net

Во второй вариант nn добавили балансировку классов, также слегка изменили архитектуру

```
n_features = x_train.shape[1]
hidden_layer_size = round((n_features/3)*2)
class BaseClassifier(nn.Module):
    def __init__(self, input_dim=n_features, hidden_dim=hidden_layer_size, output_dim=1):
        super().__init__()
        self.hidden1 = nn.Linear(input_dim, hidden_dim)
        self.f1 = nn.Sigmoid()
        self.hidden2 = nn.Linear(hidden_dim, 10)
        self.f2 = nn.Sigmoid()
        self.output = nn.Linear(10, output_dim)
        self.f3 = nn.Sigmoid()
    def forward(self, x):
        x = self.f1(self.hidden1(x))
        x = self.f2(self.hidden2(x))
        x = self.f3(self.output(x))
        return x
```

```
basenet = BaseClassifier()
optimizer = torch.optim.SGD(basenet.parameters(), 1r=0.01)
num epochs = 10
class_weights = class_weight.compute_class_weight(class_weight='balanced',
                                                      classes=np.unique(y_train),
                                                      y=y_train)
for epoch in range(num_epochs):
        for X, y in train_dataloader:
            pred = basenet(X)
            weights = torch.zeros_like(y.unsqueeze(-1))
            weights[y==0] = class_weights[0]
            weights[y==1] = class_weights[1]
           loss = F.binary_cross_entropy(pred, y.unsqueeze(-1), weight=weights)
            optimizer.zero_grad()
            loss.backward()
           optimizer.step()
```


Для логистической регрессии прицельно параметры не подбирали, но далее вместо LogisticRegression будем задействовать LogisticRegressionCV:

and the second s
LogisticRegressionCV

			precision	recal1	f1-score	support
Градиентный						
бустинг:		0	0.98	0.68	0.80	578712
		1	0.07	0.70	0.13	21288
	accur	acy			0.68	600000
	macro	avg	0.53	0.69	0.47	600000
	weighted	avg	0.95	0.68	0.78	600000
		ţ	recision	recall	f1-score	support
Логистическая	0	9	0.98	0.69	0.81	578712
регрессия:	8	1	0.07	0.68	0.13	21288
	accuracy	y			0.69	600000
	macro av	g	0.53	0.68	0.47	600000
	weighted av	9	0.95	0.69	0.78	600000
			precision	recall	f1-score	support
NN:		0	0.98	0.64	0.78	578712
		1	0.07	0.73	0.13	21288
	accur	асу			0.65	600000
	macro	avg	0.53	0.69	0.45	600000

0.95

0.65

0.75

600000

weighted avg

Stacking

Попробуем еще поднять качество классификации с помощью ансамблевых методов. Будем использовать стекинг

Не будем строить большой ансамбль, вместо этого попробуем результаты добавить в качестве признаков к датасету.

```
scale_pos_weight = round(len(y_train[y_train==0])/len(y_train[y_train==1]))
estimators L1 = [
   ('gr1', HistGradientBoostingClassifier(class_weight='balanced', max_depth=15, max_leaf_nodes=72, min_samples_leaf=28,
                                        max_iter=150, scoring='roc_auc', tol=0.00001, 12_regularization=0.01, learning_rate=0.
1)),
   ('logreg', LogisticRegressionCV(class_weight='balanced', refit=True, cv=3, scoring='roc_auc', max_iter=1000)),
                                                                                                                                   добавим XGBClassifier
   ('xqb', XGBClassifier(scale_pos_weight=scale_pos_weight, n_jobs=-1, learning_rate=0.1, max_depth=15))
stack1 = StackingTransformer(estimators=estimators_L1,
                          regression=False,
                                                                                                                           На выходе вероятности, а
                          variant='A',
                          needs_proba=True, -
                                                                                                                           не метки классов
                          n_folds=3.
                          shuffle=False.
                          random_state=None,
                          stratified=True
```

IsolationForest вынесем в отдельный ансамбль, т.к. у него нет predict_proba

Обучим ансамбли

```
11_pipe = Pipeline([
  ('stack1', stack1)])
11_pipe.fit(x_train, y_train)

12_pipe = Pipeline([
  ('stack2', stack2)])
12_pipe.fit(x_train, y_train)
```

Пересоберем датасет

```
def add_stacked_features(data):

    data_copy1 = data.copy()
    data_copy2 = data.copy()
    s1 = l1_pipe_.transform(data_copy1)
    s2 = l2_pipe_.transform(data_copy2)
    s_train = pd.DataFrame(s1, columns=['mod1_0', 'mod1_1', 'mod2_0', 'mod2_1', 'mod3_0', 'mos=3_1'])
    s_train = s_train.drop(['mod1_0', 'mod2_0', 'mod3_0'],axis=1)
    s2 = pd.DataFrame(s2, columns=['if'])
    data = data.join(s_train)
    data = data.join(s2)
    gc.collect()

return data
```

Поскольку мы просили на выходе вероятности, каждая модель из 1-го ансамбля выдает 2 колонки, но нам нужна только одна из них

Размеры полученного датасета: (2400000, 164)

Обучим классификатор на обновленном датасете:

•	HistGradientBoostingClassifier
HistGradient	tBoostingClassifier(class_weight='balanced', 12_regularization=0.01,
	max_depth=15, max_iter=150, max_leaf_nodes=72,
	min_samples_leaf=30, scoring='roc_auc',
	tol=1e-05)

A ROC AUC=0	759				
		precision	recall	f1-score	support
	0	0.98	0.67	0.80	578712
	1	0.07	0.72	0.13	21288
accur	acy			0.67	600000
macro	avg	0.53	0.69	0.47	600000
weighted	avg	0.95	0.67	0.77	600000

При обучении NN на обновленном датасете гос auc score 0.7559.

Результаты улучшились, но NN по-прежнему отстает от градиентного бустинга, при этом ее интеграция сложнее, и времени на обучение тратится больше. В качестве финального классификатора выбираем HistGradBoostingClassifier

Выводы

Подбор гиперпараметров классификатора незначительно улучшил качество классификации.

Применение stacking и добавление новых признаков позволило улучшить качество классификации.

В качестве финального классификатора выбран: HistGradientBoostingClassifier (class_weight='balanced', max_depth=15, max_leaf_nodes=72, min_samples_leaf=28, max_iter=150, scoring='roc_auc', tol=0.00001, l2_regularization=0.01, learning_rate=0.1)

Задача добиться максимально возможного значения метрики не ставилась, ставилась задача определить тенденции и пути дальнейшего улучшения модели. На каждом этапе эксперимента удавалось добиться устойчивого роста, что считаем успешным результатом. Потенциал развития и улучшения текущей модели сохраняется.

Pipeline

Сборка финального пайплайна

Сериализация модели

Данные

При сборке пайплайна использовали подготовленные на этапе feature engineering и сохраненные в отдельные файлы данные :

- 1) Датасет, содержащий признаки, полученные с помощью ОНЕ и агрегации, и целевую переменную
- 2) Список признаков нулевой значимости
- 3) Список релевантных признаков

Загружаем подготовленный или пересобираем датасет, содержащий признаки и целевую переменную

```
data.shape
(3000000, 354)
```

Переразбиваем датасет на обучающую и тестовую выборки

```
train, test = train_test_split(data, stratify=data['flag'], test_size=0.2, random_state=17)
```

```
train.shape, test.shape
((2400000, 354), (600000, 354))
```

Для корректной работы функций сбрасываем индексы

```
train.reset_index(drop=True, inplace=True)
test.reset_index(drop=True, inplace=True)
```

Разделяем признаки и целевую переменную

```
x_train = train.drop('flag', axis=1)
y_train = train['flag']
x_test = test.drop('flag', axis=1)
y_test = test['flag']
```

Этапы сборки

```
Pабота с признаками

constructor = Pipeline(steps=[
    ('add_avg_features', FunctionTransformer(add_avg_features)),
    ('del_zero_imp_features', FunctionTransformer(del_zero_imp_features))
    ])

удаляем нерелевантные колонки по списку
```

```
def add_avg_features(data, flist=relevant_features):
    datanew = data.copy()
    datanew[flist] = datanew[flist].apply(lambda x: round(x/datanew['rn'], 2)).astype('float32')
    datanew = datanew[flist]
    datanew_cols=[str(i)+'_avg' for i in flist]
    colsdict = {i:j for i,j in zip(flist, datanew_cols)}
    datanew = datanew.rename(colsdict, axis=1)
    data = data.join(datanew)
    qc.collect()
    return data
def del_zero_imp_features(data, flist=zero_features);
    datanew=data.copv()
    datanew = datanew.drop(flist, axis=1)
    return datanew
```

Масштабирование:

Собираем промежуточный пайплайн:

```
preprocessor_pipe = Pipeline([
  ('constructor', constructor),
   ('encoder', encoder)])
```

Готовим датасет для обучения ансамблей:

```
\verb|x_train_prep = preprocessor_pipe.fit_transform(x_train)||\\
```

Сборка и обучение ансамблей

```
11_pipe = Pipeline([
  ('stack1', stack1)])
11_pipe.fit(x_train_prep, y_train)

12_pipe = Pipeline([
  ('stack2', stack2)])
12_pipe.fit(x_train_prep, y_train)
```

учим ансамбли на подготовленном датасете вне основного пайплайна В функции вызываем обученные ансамбли и трансформируем датасет, подклеивая к нему результаты ансамблей

```
def add_stacked_features(data):

    data_copy1 = data.copy()
    data_copy2 = data.copy()
    s1 = 11_pipe_.transform(data_copy1)
    s2 = 12_pipe_.transform(data_copy2)
    s_train = pd.DataFrame(s1, columns=['mod1_0', 'mod1_1', 'mod2_0', 'mod2_1', 'mod3_0', 'mos=3_1'])
    s_train = s_train.drop(['mod1_0', 'mod2_0', 'mod3_0'],axis=1)
    s2 = pd.DataFrame(s2, columns=['if'])
    data = data.join(s_train)
    data = data.join(s2)
    gc.collect()

return data
```

Добавляем трансформер в основной пайплайн

```
pipe_transformer = Pipeline([
  ('constructor', constructor),
  ('encoder', encoder),
  ('stacker', FunctionTransformer(add_stacked_features)),
])
```

Назначаем классификатор:

Финальный пайплайн из двух шагов:

```
pipe = Pipeline([
  ('transformer', pipe_transformer),
   ('classifier', model)])
```

Учим:

```
res = pipe.fit(x_train, y_train)
```

Тестируем:

```
eval_classifier(res, x_test, y_test)
ROC AUC=0.761
             precision
                          recall f1-score
                                            support
                  0.98
                            0.67
                                     0.80
                                             578712
          1
                  0.07
                           0.72
                                     0.13
                                              21288
                                     0.67
                                             600000
   accuracy
                                     0.47
                  0.53
                            0.69
                                             600000
  macro avg
weighted avg
                  0.95
                            0.67
                                     0.77
                                             600000
```


Сериализация классификатора

```
Сериализуем обученный пайплайн
```

```
with open('model.pkl', 'wb') as f:
    dill.Pickler(f, recurse=True).dump(res)
```



```
Загрузим и проверим, что все работает
```

```
with open('/kaggle/working/model.pkl', 'rb') as f:
    restest = dill.load(f)
```

```
samp = x_test.sample(n=3)
samp.reset_index(drop=True, inplace=True)
restest['transformer'].transform(samp)
```

fterm_0	pre_fterm_1	pre_fterm_3	enc_loans_credit_type_0_av	g no_delays_avg	pre_loans_credit_cost_rate_6_avg	enc_paym_value1_avg	pre_util_6_avg	pre_util_3_avg	mod1_1	mod2_1	mos=3_1	if
.516986	-0.538554	-0.239964	0.51786	2 0.596240	-0.156009	-0.487358	0.803812	0.367095	0.241818	0.389350	0.044856	1
.589566	-0.538554	-0.239964	0.34286	4 0.942752	-0.156009	-0.562584	-0.271329	-0.391822	0.111388	0.190909	0.054000	1
.516986	0.799470	-0.239964	0.34286	4 -1.867840	-0.156009	3.315769	-0.271329	-0.391822	0.596555	0.545237	0.141719	1

600000

```
restest.predict(samp)

array([0, 0, 1])
```

predict работает

0.95

weighted avg

transform работает

качество не изменилось

Сводная таблица ROC AUC score по этапам

Классификатор: HistGradientBoostingClassifier (другие варианты применялись выборочно и/или были отброшены на ранних этапах, и системных замеров на всех этапах не проводилось)

Выборка: Test (замеры на train прицельно не фиксировались)

Stage	ROC AUC score
Baseline	0.755
Feature Engineering	0.754
Hyperparameter Tuning	0.756
Add Stacking Features	0.759
Final Pipeline	0.761

Выводы

- Целевое значение метрики 0.75 достигнуто.
- Удалось повысить качество классификации и добиться значения метрики 76.1
- Был проведен успешный feature engineering: размерность датасета уменьшена без потери качества, добавлены полезные признаки, сохраняется потенциал улучшения классификатора
- Классификатор успешно сериализован, проверена работоспособность классификатора после десериализации