Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

9. ARIMA models

9.8 Forecasting
OTexts.org/fpp3/

- Rearrange ARIMA equation so y_t is on LHS.
- Rewrite equation by replacing t by T + h.
- On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, ...

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t,$$

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t$$

$$\left[1 - \phi_{1}B - \phi_{2}B^{2} - \phi_{3}B^{3} - B + \phi_{1}B^{2} + \phi_{2}B^{3} + \phi_{3}B^{4}\right]y_{t} = (1 + \theta_{1}B)\varepsilon_{t}$$

ARIMA(3,1,1) forecasts: Step 1

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t$$

$$\left[1 - \phi_{1}B - \phi_{2}B^{2} - \phi_{3}B^{3} - B + \phi_{1}B^{2} + \phi_{2}B^{3} + \phi_{3}B^{4}\right]y_{t} = (1 + \theta_{1}B)\varepsilon_{t}$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4]y_t = (1 + \theta_1B)\varepsilon_t$$

3

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t$$

$$\left[\mathbf{1}-\phi_{1}\mathbf{B}-\phi_{2}\mathbf{B}^{2}-\phi_{3}\mathbf{B}^{3}-\mathbf{B}+\phi_{1}\mathbf{B}^{2}+\phi_{2}\mathbf{B}^{3}+\phi_{3}\mathbf{B}^{4}\right]\mathbf{y}_{t}=(\mathbf{1}+\theta_{1}\mathbf{B})\varepsilon_{t}$$

$$\left[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4\right]y_t = (1 + \theta_1B)\varepsilon_t$$

$$y_t - (1 + \phi_1)y_{t-1} + (\phi_1 - \phi_2)y_{t-2} + (\phi_2 - \phi_3)y_{t-3} + \phi_3y_{t-4} = \varepsilon_t + \theta_1\varepsilon_{t-1}$$

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t$$

$$\left[1 - \phi_{1}B - \phi_{2}B^{2} - \phi_{3}B^{3} - B + \phi_{1}B^{2} + \phi_{2}B^{3} + \phi_{3}B^{4}\right]y_{t} = (1 + \theta_{1}B)\varepsilon_{t}$$

$$\left[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4\right]y_t = (1 + \theta_1B)\varepsilon_t$$

$$y_t - (1 + \phi_1)y_{t-1} + (\phi_1 - \phi_2)y_{t-2} + (\phi_2 - \phi_3)y_{t-3} + \phi_3y_{t-4} = \varepsilon_t + \theta_1\varepsilon_{t-1}$$

$$y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3} - \phi_3y_{t-4} + \varepsilon_t + \theta_1\varepsilon_{t-1}$$

Point forecasts (h=1)

$$\mathbf{y}_{t} = (\mathbf{1} + \phi_{1})\mathbf{y}_{t-1} - (\phi_{1} - \phi_{2})\mathbf{y}_{t-2} - (\phi_{2} - \phi_{3})\mathbf{y}_{t-3} - \phi_{3}\mathbf{y}_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}$$

Point forecasts (h=1)

$$y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3} - \phi_3y_{t-4} + \varepsilon_t + \theta_1\varepsilon_{t-1}$$

$$y_{T+1} = (1 + \phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2} - \phi_3y_{T-3} + \varepsilon_{T+1} + \theta_1\varepsilon_T$$

Point forecasts (h=1)

$$\mathbf{y}_{t} = (\mathbf{1} + \phi_{1})\mathbf{y}_{t-1} - (\phi_{1} - \phi_{2})\mathbf{y}_{t-2} - (\phi_{2} - \phi_{3})\mathbf{y}_{t-3} - \phi_{3}\mathbf{y}_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}$$

ARIMA(3,1,1) forecasts: Step 2

$$\mathbf{y}_{T+1} = (\mathbf{1} + \phi_1)\mathbf{y}_T - (\phi_1 - \phi_2)\mathbf{y}_{T-1} - (\phi_2 - \phi_3)\mathbf{y}_{T-2} - \phi_3\mathbf{y}_{T-3} + \varepsilon_{T+1} + \theta_1\varepsilon_T$$

$$\hat{\mathbf{y}}_{\mathsf{T+1}|\mathsf{T}} = (\mathbf{1} + \phi_1)\mathbf{y}_{\mathsf{T}} - (\phi_1 - \phi_2)\mathbf{y}_{\mathsf{T-1}} - (\phi_2 - \phi_3)\mathbf{y}_{\mathsf{T-2}} - \phi_3\mathbf{y}_{\mathsf{T-3}} + \theta_1\mathbf{e}_{\mathsf{T}}$$

Point forecasts (h=2)

$$y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3} - \phi_3y_{t-4} + \varepsilon_t + \theta_1\varepsilon_{t-1}$$

Point forecasts (h=2)

$$y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3} - \phi_3y_{t-4} + \varepsilon_t + \theta_1\varepsilon_{t-1}$$

$$\mathbf{y}_{T+2} = (\mathbf{1} + \phi_1)\mathbf{y}_{T+1} - (\phi_1 - \phi_2)\mathbf{y}_T - (\phi_2 - \phi_3)\mathbf{y}_{T-1} - \phi_3\mathbf{y}_{T-2} + \varepsilon_{T+2} + \theta_1\varepsilon_{T+1}.$$

Point forecasts (h=2)

$$y_t = (1 + \phi_1)y_{t-1} - (\phi_1 - \phi_2)y_{t-2} - (\phi_2 - \phi_3)y_{t-3} - \phi_3y_{t-4} + \varepsilon_t + \theta_1\varepsilon_{t-1}$$

ARIMA(3,1,1) forecasts: Step 2

$$y_{T+2} = (1 + \phi_1)y_{T+1} - (\phi_1 - \phi_2)y_T - (\phi_2 - \phi_3)y_{T-1} - \phi_3y_{T-2} + \varepsilon_{T+2} + \theta_1\varepsilon_{T+1}.$$

$$\hat{\mathbf{y}}_{T+2|T} = (\mathbf{1} + \phi_1)\hat{\mathbf{y}}_{T+1|T} - (\phi_1 - \phi_2)\mathbf{y}_T - (\phi_2 - \phi_3)\mathbf{y}_{T-1} - \phi_3\mathbf{y}_{T-2}.$$

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

 $\mathbf{v}_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96\sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

- $\mathbf{v}_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models
- Multi-step prediction intervals for ARIMA(0,0,q):

$$y_{t} = \varepsilon_{t} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^{2} \left[1 + \sum_{i=1}^{h-1} \theta_{i}^{2} \right], \quad \text{for } h = 2, 3, \dots.$$

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

- $\mathbf{v}_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models
- Multi-step prediction intervals for ARIMA(0,0,q):

$$y_{t} = \varepsilon_{t} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^{2} \left[1 + \sum_{i=1}^{h-1} \theta_{i}^{2} \right], \quad \text{for } h = 2, 3, \dots.$$

Other models beyond scope of this subject.

- Prediction intervals increase in size with forecast horizon.
- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
 - the uncertainty in the parameter estimates has not been accounted for.
 - the ARIMA model assumes historical patterns will not change during the forecast period.
 - the ARIMA model assumes uncorrelated future errors