Python Notebook Viewer

EDA of Claim Dataaset

02_EDA_Claim

Date	User	Change Type	Remarks
24/09/2025	Adrienne	Created	Created to do EDA for Claim Dataset
27/09/2025	Adrienne	Updated	Added code from Martin
13/10/2025	Martin	Updated	Code cleanup

Content

- Load Data
- <u>Data Exploration</u>
 - o Observations on Code List
 - o Observations on Percentage of Values

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import re
from datetime import datetime
#import json_lines
import seaborn as sns
```

Load Data

```
In [3]:
    # readin clean datafiles
    path = "../data/clean/"
    claim_df = pd.read_pickle(path + 'claim.pkl')

In [4]:
    # readin secondary datasets
    mapper_path = "../data/mappers/"
    drg_df = pd.read_pickle(mapper_path + 'drg.pkl')
    hcpcs_df = pd.read_pickle(mapper_path + 'hcpcs.pkl')
    icd10_df = pd.read_pickle(mapper_path + 'icd10.pkl')

In [5]:
    # Additional preprocessing
    icd10_df = icd10_df.rename({
        "SHORT DESCRIPTION (VALID ICD-10 FY2025)": "SHORT DESCRIPTION"
    }, axis=1)
```

Data Exploration

Observations on Code Lists

Findings

- ICD-10 codes are in almost all claims
- ~56% of ICD-10 lists are length 1 or 2 in length
- HCPCS list that we currently have is just the HCPCS level II codes. Need to get level I and combine

```
In [6]:
          print(f"Number of non-NaN ICD10 entries: {claim_df.shape[0] - claim_df
Out [6]:
         Number of non-NaN ICD10 entries: 178570 out of 178761
In [7]:
          non_na_icd10 = claim_df[~claim_df['diagnosis_ls'].apply(lambda x: len())
          non_na_icd10['ls_len'] = non_na_icd10['diagnosis_ls'].str.len()
          non_na_icd10['first_icd10'] = non_na_icd10['diagnosis_ls'].str[0]
Out [7]:
         /tmp/ipykernel_594231/1123325870.py:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user_guide/indexing.html#returning-a-view-versus-a-copy
          non na icd10['ls len'] = non na icd10['diagnosis ls'].str.len()
         /tmp/ipykernel_594231/1123325870.py:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user guide/indexing.html#returning-a-view-versus-a-copy
          non_na_icd10['first_icd10'] = non_na_icd10['diagnosis_ls'].str[0]
In [8]:
          na_icd10 = claim_df[claim_df['diagnosis_ls'].apply(lambda x: len(x) ==
Out [9]:
          fig, ax = plt.subplots(figsize=(10, 8))
          sns.countplot(y='ls_len', data=non_na_icd10, order=non_na_icd10['ls_len']
          ax.set_title("Number of ICD-10 Codes per Claim")
          ax.set_ylabel("Number of ICD-10 Codes")
          ax.set_xlabel("Count")
```

. . . .

Out [9]: Text(0.5, 0, 'Count')

In [10]:
 len_one_and_two = len(non_na_icd10[non_na_icd10['ls_len']== 1]) + len()
 print(f"Number of claims with 1 and 2 ICD-10 Codes: {len_one_and_two}")

Out [10]:

Number of claims with 1 and 2 ICD-10 Codes: 106400

```
In [11]:
          def count_icd10(length):
            return len(non_na_icd10[non_na_icd10['ls_len'] == length])
In [12]:
          lengths = [11, 19, 21, 22, 23]
          for i in lengths:
            print(f"Number of claims with {i} ICD-10 Codes: {count_icd10(i)}")
Out [12]:
         Number of claims with 11 ICD-10 Codes: 2866
         Number of claims with 19 ICD-10 Codes: 303
         Number of claims with 21 ICD-10 Codes: 29
         Number of claims with 22 ICD-10 Codes: 3
         Number of claims with 23 ICD-10 Codes: 1
        HCPCS
In [13]:
          print(f"Number of non-NaN HCPCS entries: {claim_df.shape[0] - claim_df
Out [13]:
         Number of non-NaN HCPCS entries: 93842 out of 178761
In [14]:
          non_na_hcpcs['ls_len'] = non_na_hcpcs['hcpcs_ls'].str.len()
          non_na_hcpcs['first_hcpcs'] = non_na_hcpcs['hcpcs_ls'].str[0]
Out [14]:
         /tmp/ipykernel_594231/3941366260.py:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user_guide/indexing.html#returning-a-view-versus-a-copy
           non_na_hcpcs['ls_len'] = non_na_hcpcs['hcpcs_ls'].str.len()
         /tmp/ipykernel 594231/3941366260.py:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
```


Out [16]: Min length: 1 Max length: 350 Median length: 1.0

```
In [17]:
           unique_values = set(value for sublist in claim_df['hcpcs_ls'] for value
           print(unique_values)
           print(f"Number of unque HCPCS in all claims: {len(unique_values)}")
Out [17]:
          {'G0299', 'S9129', 'G0156', 'C8905', 'G9573', 'G0155', 'G0152', 'G8159', 'G0154',
          'G9572', 'G0107', 'G0157', 'G0444', 'G9857', 'G0102', 'G0458', '99221', 'S9473',
          'S0605', 'G9833', '00777310502', 'T1021', 'G8111', 'G0129', 'G0464', 'H2000', 'G0424',
          'G9708', 'G0153', 'T1502', 'S8075', 'C8908', 'S9131', 'G0402', 'G0158', 'S9126',
          '99241', 'C8928', 'Q5001', 'G0151', 'S9122', 'G9858', 'G9829', 'I3C', 'G0300',
          'G8946'}
         Number of unquee HCPCS in all claims: 46
In [18]:
           unique_ls = list(unique_values)
           un_df = pd.DataFrame({'list_col' : unique_ls})
           df = pd.merge(un_df, hcpcs_df, how = 'left',left_on='list_col', right_
           df.head(40)
```

Out [18]:

	list_col	Code	Description	
0	G0299	G0299	Direct skilled nursing services of a registere	
1	S9129	S9129	Occupational therapy, in the home, per diem	
2	G0156	G0156	Services of home health/hospice aide in home h	
3	C8905	C8905	Magnetic resonance imaging without contrast fo	
4	G9573	G9573	Adult patients 18 years of age or older with m	
5	G0155	G0155	Services of clinical social worker in home hea	
6	G0152	G0152	Services performed by a qualified occupational	
7	G8159	NaN	NaN	
8	G0154	G0154	Direct skilled nursing services of a licensed	
9	G9572	G9572	Index date phq-score greater than 9 documented	
10	G0107	NaN	NaN	

	list_col	Code	Description	
11	G0157	G0157	Services performed by a qualified physical the	
12	G0444	G0444	Annual depression screening, 5 to 15 minutes	
13	G9857	G9857	Patient admitted to hospice\nTerminated Decemb	
14	G0102	G0102	Prostate cancer screening; digital rectal exam	
15	G0458	G0458	Low dose rate (ldr) prostate brachytherapy ser	
16	99221	NaN	NaN	
17	S9473	S9473	Pulmonary rehabilitation program, non-physicia	
18	S0605	NaN	NaN	
19	G9833	G9833	Patient transfer to practice after initiation	
20	00777310502	NaN	NaN	
21	T1021	T1021	Home health aide or certified nurse assistant,	
22	G8111	NaN	NaN	
23	G0129	G0129	Occupational therapy services requiring the sk	
24	G0464	G0464	Colorectal cancer screening; stool-based dna a	
25	H2000	H2000	Comprehensive multidisciplinary evaluation	
26	G0424	G0424	Pulmonary rehabilitation, including exercise (
27	G9708	G9708	Women who had a bilateral mastectomy or who ha	
28	G0153	G0153	Services performed by a qualified speech-langu	
29	T1502	T1502	Administration of oral, intramuscular and/or s	
30	S8075	NaN	NaN	
31	C8908	C8908	Magnetic resonance imaging without contrast fo	
32	S9131	S9131	Physical therapy; in the home, per diem	
33	G0402	G0402	Initial preventive physical examination; face	
34	G0158	G0158	Services performed by a qualified occupational	

	list_col	Code	Description	
35	S9126	S9126	Hospice care, in the home, per diem	
36	99241	NaN	NaN	
37	C8928	C8928	Transthoracic echocardiography with contrast,	
38	Q5001	Q5001	Hospice or home health care provided in patien	
39	G0151	G0151	Services performed by a qualified physical the	

Observations on Percentage of Values

Findings

- ICD-10 list is not complete. About a third of codes aren't merging with a description
- 92.5% of all claims have no HCPCS in procedure list. The ones that are in there do not merge with a description
- DRG code list is complete enough. There are some that did not merge with a description
- 77% of claims are institutional which are inpatient and outpatient services provided by a healthcare facility like a hospital
- There are HCPCS codes that are 11 in length that make up 12.175262% of the data which are actually national drug codes (NDC). There are codes that are 3 in length that make up 0.155099% of the data all with value I3C.

ICD-10

diagnosis_ls	
[E669]	5.254522
[D649]	3.100185
[E785]	3.003864
[J329]	2.281458
[O039]	1.624573
[E781]	1.458252
[R739]	1.448172
[I10]	1.374811
[P292]	1.240970
[E669, E785]	1.093689
[E781, E785]	0.912807
[D649, E785]	0.677045
[K37]	0.577365
[M179]	0.574565
[E119]	0.539844
[1639]	0.503444
[T50904]	0.501764
[M810]	0.494484
[O039, E785]	0.461444
[E669, J209]	0.426163

Olita [20]:

```
# Percentage breakdown
vals = non_na_icd10['first_icd10'].value_counts(normalize=True) * 100
icd10_vals = vals.to_frame().reset_index()
df = pd.merge(icd10_vals, icd10_df[['CODE', 'SHORT DESCRIPTION']], how
```

df[['first_icd10', 'SHORT DESCRIPTION', 'proportion']].head(20)

	first_icd10	SHORT DESCRIPTION	proportion
0	E669	Obesity, unspecified	15.547964
1	D649	Anemia, unspecified	8.898471
2	J329	Chronic sinusitis, unspecified	7.197738
3	E785	Hyperlipidemia, unspecified	6.821975
4	E781	Pure hyperglyceridemia	5.686845
5	O039	Complete or unsp spontaneous abortion without	4.783558
6	R739	Hyperglycemia, unspecified	4.612757
7	K37	Unspecified appendicitis	3.487708
8	I10	Essential (primary) hypertension	3.369547
9	P292	Neonatal hypertension	3.267626
10	T50904	NaN	2.143137
11	E119	Type 2 diabetes mellitus without complications	2.037296
12	M810	Age-related osteoporosis w/o current pathologi	1.907935
13	K011	Impacted teeth	1.804334
14	G43719	Chronic migraine w/o aura, intractable, w/o st	1.785294
15	M179	Osteoarthritis of knee, unspecified	1.724254
16	I639	Cerebral infarction, unspecified	1.610013
17	R52	Pain, unspecified	1.544492
18	I2510	Athscl heart disease of native coronary artery	1.266730
19	K635	Polyp of colon	1.247130

In [21]:

df[['first_icd10', 'SHORT DESCRIPTION', 'proportion']].tail(50)

Out [21]:

	first_icd10	SHORT DESCRIPTION	proportion
133	J45909	Unspecified asthma, uncomplicated	0.01624
134	S303XX	NaN	0.01624
135	J208	Acute bronchitis due to other specified organisms	0.01624
136	R05	Cough	0.01568
137	J069	Acute upper respiratory infection, unspecified	0.01512
138	S81009	NaN	0.01456
139	S72009	NaN	0.01400
140	K625	Hemorrhage of anus and rectum	0.01344
141	Z3480	NaN	0.01176
142	J3089	Other allergic rhinitis	0.01176
143	R5081	Fever presenting with conditions classified el	0.01120
144	Z3400	NaN	0.01120
145	J22	Unspecified acute lower respiratory infection	0.01120
146	K644	Residual hemorrhoidal skin tags	0.01064
147	P542	Neonatal rectal hemorrhage	0.01008
148	K649	Unspecified hemorrhoids	0.01008
149	S46019	NaN	0.00728
150	K648	Other hemorrhoids	0.00672
151	K91841	Postproc hemor of a dgstv sys org fol oth proc	0.00672
152	N3090	Cystitis, unspecified without hematuria	0.00616
153	Z720	NaN	0.00616
154	S83519	NaN	0.00616
155	P393	Neonatal urinary tract infection	0.00560

	first_icd10	SHORT DESCRIPTION	proportion
156	S71111	NaN	0.00560
157	R110	Nausea	0.00504
158	S71129	NaN	0.00504
159	S83209	NaN	0.00504
160	I2699	Other pulmonary embolism without acute cor pul	0.00504
161	S83419	NaN	0.00448
162	S71119	NaN	0.00392
163	S76329	NaN	0.00336
164	J3081	Allergic rhinitis due to animal (cat) (dog) ha	0.00336
165	S46009	NaN	0.00280
166	J302	Other seasonal allergic rhinitis	0.00280
167	S76129	NaN	0.00280
168	S46029	NaN	0.00280
169	S71112	NaN	0.00280
170	M66862	Spontaneous rupture of other tendons, left low	0.00224
171	B9620	Unsp Escherichia coli as the cause of diseases	0.00224
172	R519	Headache, unspecified	0.00224
173	S069X0	NaN	0.00168
174	18290	Acute embolism and thrombosis of unspecified vein	0.00168
175	S76119	NaN	0.00168
176	M66861	Spontaneous rupture of other tendons, right lo	0.00168
177	J301	Allergic rhinitis due to pollen	0.00112
178	Y991	Military activity	0.00056
179	F4311	Post-traumatic stress disorder, acute	0.00056

	first_icd10	SHORT DESCRIPTION	proportion
180	B880	Other acariasis	0.00056
181	O09219	Suprvsn of preg w history of pre-term labor, u	0.00056
182	R509	Fever, unspecified	0.00056

In [22]:

print(f"Number of ICD-10 codes that does not merge with a description:

Out [22]:

Number of ICD-10 codes that does not merge with a description: 40 out of 183

HCPCS

```
In [23]:
```

```
# Percentage breakdown
vals = non_na_hcpcs['hcpcs_ls'].value_counts(normalize=True) * 100
pd.DataFrame({
   'hcpcs_breakdown': vals
}).head(10)
```

Out [23]:

	hcpcs_breakdown
hcpcs_ls	
[99241]	51.180708
[G0444]	19.458238
[99241, 00777310502]	8.125360
[99221]	6.286098
[G0444, 00777310502]	2.379532
[99221, 00777310502]	0.964387
[G0444, G9573]	0.667079
[G0444, G9572]	0.648963

	hcpcs_breakdown
hcpcs_ls	
[S8075]	0.578632
[G0151]	0.571173

In [24]:

Percentage breakdown
vals = non_na_hcpcs['first_hcpcs'].value_counts(normalize=True) * 100
hcpcs_vals = vals.to_frame().reset_index()
df = pd.merge(hcpcs_vals, hcpcs_df, how = 'left',left_on='first_hcpcs'
df[['first_hcpcs', 'Description', 'proportion']].head(20)

Out [24]:

	first_hcpcs	Description	proportion
0	99241	NaN	59.306068
1	G0444	Annual depression screening, 5 to 15 minutes	23.320049
2	99221	NaN	7.250485
3	G0402	Initial preventive physical examination; face	1.826474
4	S8075	NaN	0.668144
5	G8111	NaN	0.586092
6	G0151	Services performed by a qualified physical the	0.573304
7	S9131	Physical therapy; in the home, per diem	0.561582
8	G0157	Services performed by a qualified physical the	0.556254
9	G0299	Direct skilled nursing services of a registere	0.529614
10	G0155	Services of clinical social worker in home hea	0.494448
11	G0154	Direct skilled nursing services of a licensed	0.448626
12	G0300	Direct skilled nursing services of a licensed	0.440101
13	Q5001	Hospice or home health care provided in patien	0.436905

	first_hcpcs	Description	proportion
14	G0107	NaN	0.326080
15	S9473	Pulmonary rehabilitation program, non-physicia	0.313293
16	G0424	Pulmonary rehabilitation, including exercise (0.311161
17	G0464 Colorectal cancer screening; stool-based dna a		0.287718
18	I3C	NaN	0.250421
19	G0156	Services of home health/hospice aide in home h	0.198205

In [25]:

print(f"Number of HCPCS codes that does not merge with a description:

Out [25]:

Number of HCPCS codes that does not merge with a description: 7 out of 41

In [26]:

non_na_hcpcs['length_counts'] = non_na_hcpcs['hcpcs_ls'].apply(lambda :
non_na_hcpcs.head()

Out [26]:

/tmp/ipykernel_594231/3782310557.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/ user_guide/indexing.html#returning-a-view-versus-a-copy non_na_hcpcs['length_counts'] = non_na_hcpcs['hcpcs_ls'].apply(lambda x: max([len(code) for code in x]))

Out [26]:

	billablePeriod_end	billablePeriod_start	contained_0_birthDate	contained_0_gender	contained_
0	2012-09-16	2012-09-16	1944-05-25	female	patient

	$bill able Period_end$	$bill able Period_start$	$contained_0_birthDate$	$contained_0_gender$	contained_
1	2013-06-11	2013-06-11	1944-05-25	female	patient
2	2014-04-02	2014-04-01	1944-05-25	female	patient
3	2014-11-18	2014-11-17	1944-05-25	female	patient
4	2016-04-04	2016-04-04	1944-05-25	female	patient
5 r	ows × 2464 columns				

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/ user_guide/indexing.html#returning-a-view-versus-a-copy non_na_hcpcs['length_counts'] = non_na_hcpcs['hcpcs_ls'].apply(lambda x: max([len(code) for code in x]))

	length_breakdown
length_counts	
5	87.774131
11	12.011679
3	0.214190

In [28]:

non_na_hcpcs[non_na_hcpcs['length_counts'] == 3]

Out [28]:

	billablePeriod_end	billablePeriod_start	contained_0_birthDate	contained_0_gender	conta
1242	2021-09-29	2021-09-29	1952-06-30	female	patieı
1998	2019-06-11	2019-06-11	1950-08-08	male	patiei
4702	2021-01-09	2021-01-09	1946-05-26	female	patiei

	billablePeriod_end	billablePeriod_start	contained_0_birthDate	contained_0_gender	conta
4709	2022-01-05	2022-01-05	1946-05-26	female	patie
4946	2014-04-22	2014-04-22	1956-05-08	female	patiei
•••					•••
174319	2016-07-27	2016-07-27	1942-09-30	male	patieı
174659	2016-12-26	2016-12-26	1954-08-23	male	patiei
174898	2015-04-06	2015-04-06	1945-06-25	female	patie
177741	2014-09-10	2014-09-10	1945-03-21	female	patieı
178245	2020-11-06	2020-11-06	1943-12-31	female	patieı

```
In [29]:
          non_na_hcpcs['first_icd10'] = non_na_hcpcs['diagnosis_ls'].str[0]
          df = non_na_hcpcs[['first_icd10', 'first_hcpcs']].drop_duplicates()
          df = pd.merge(df, hcpcs_df, how = 'left',left_on='first_hcpcs', right_
          df = pd.merge(df, icd10_df[['CODE', 'SHORT DESCRIPTION']], how = 'left
          print(f"Number of unique pairs: {len(df)}")
          df.head()
Out [29]:
         Number of unique pairs: 1632
         /tmp/ipykernel 594231/4206087544.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
```

user_guide/indexing.html#returning-a-view-versus-a-copy non na hcpcs['first icd10'] = non na hcpcs['diagnosis ls'].str[0]

Out [29]:		first_icd10	first_hcpcs	Code	Description	CODE	SHORT DESCRIPTION
	0	R52	99221	NaN	NaN	R52	Pain, unspecified
	1	R52	G0444	G0444	Annual depression screening, 5 to 15 minutes	R52	Pain, unspecified
	2	R52	99241	NaN	NaN	R52	Pain, unspecified
	3	R52	G0464	G0464	Colorectal cancer screening; stoolbased dna a	R52	Pain, unspecified
	4	E669	99221	NaN	NaN	E669	Obesity, unspecified

Procedure

```
Out [30]:
         # Percentage breakdown
         vals = claim_df['procedure_ls'].value_counts(normalize=True) * 100
         pd.DataFrame({
            'procedure_breakdown': vals
```

```
}).head(10)
```

	procedure_breakdown
procedure_ls	
	92.514027
[BW03ZZZ]	1.111540
[0U2DXHZ]	0.828480
[BH00ZZZ]	0.405010
[BH01ZZZ]	0.396060
[BH02ZZZ]	0.378159
[09JY4ZZ]	0.301520
[B244ZZZ]	0.196352
[B24DZZZ]	0.178451
[0DBK0ZX]	0.133139

DRG

```
Out [32]:

# Percentage breakdown

claim_df['drg_pad'] = claim_df['drg_code'].apply( lambda x : '{0:0>3}'

vals = claim_df['drg_pad'].value_counts(normalize=True) * 100

drg_vals = vals.to_frame().reset_index()
```

	drg_pad	DRG_description	proportion
0	nan	NaN	95.210924
1	642	Inborn and other disorders of metabolism	0.301520
2	003	ECMO o r tracheostomy with MV >96 hours or PDX	0.298723
3	001	Heart transplant or implant of heart assist sy	0.259564
4	598	Malignant breast disorders with CC	0.228238
5	599	Malignant breast disorders without CC/MCC	0.226559
6	597	Malignant breast disorders with MCC	0.217609
7	582	Mastectomy for malignancy with CC/MCC	0.205861
8	583	Mastectomy for malignancy without CC/MCC	0.204743
9	641	Miscellaneous disorders of nutrition, metaboli	0.181807
10	640	Miscellaneous disorders of nutrition, metaboli	0.169500
11	153	Otitis media and URI without MCC	0.113559
12	812	Red blood cell disorders without MCC	0.110203
13	152	Otitis media and URI with MCC	0.101812
14	950	Aftercare without CC/MCC	0.098455
15	811	Red blood cell disorders with MCC	0.096218
16	949	Aftercare with CC/MCC	0.090064
17	553	Bone diseases and arthropathies with MCC	0.073282
18	917	Poisoning and toxic effects of drugs with MCC	0.071045
19	554	Bone diseases and arthropathies without MCC	0.070485

NaN

NaN

NaN

NaN

NaN

NaN

Type of Bill

167 522

nan

019

0

43

95.210924

0.021257

0.000559

NaN NaN

NaN NaN

NaN NaN

```
In [35]:
    # Percentage breakdown
    vals = claim_df['type_of_bill'].value_counts(normalize=True) * 100
    pd.DataFrame({
        'bill_type_breakdown': vals
    }).head(10)
```

```
      Out [35]:
      bill_type_breakdown

      type_of_bill
      1

      95.570552
      B

      4.429448
```

Claim Type

```
Olim [36]:

# Percentage breakdown

vals = claim_df['claim_type'].value_counts(normalize=True) * 100
```

```
pd.DataFrame({
   'claim_type_breakdown': vals
}).head(10)
```

	claim_type_breakdown
claim_type	
institutional	77.177349
professional	22.822651

Location of Bill

Out [37]:

	location_of_bill_breakdown
location_of_bill	
2	91.014982
4	6.957663
3	1.319194
9	0.708161

```
Outo [38]:
```

```
na_hcpcs = claim_df[claim_df['hcpcs_ls'].apply(lambda x: len(x) == 0)]
vals = na_hcpcs['location_of_bill'].value_counts(normalize=True) * 100
pd.DataFrame({
    'location_of_bill_breakdown': vals
}).head(10)
```

	location_of_bill_breakdown
location_of_bill	
2	90.577728
4	7.280706
3	1.399898
9	0.741668

Billable Period Start

```
In [39]:
```

```
# look at year of billable period
non_na_hcpcs['year'] = non_na_hcpcs['billablePeriod_start'].apply(lambout vals = non_na_hcpcs['year'].value_counts(normalize=True) * 100
pd.DataFrame({
    'year_breakdown': vals
}).head(30)
```

Out [39]:

/tmp/ipykernel_594231/1468730865.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/ user_guide/indexing.html#returning-a-view-versus-a-copy non_na_hcpcs['year'] = non_na_hcpcs['billablePeriod_start'].apply(lambda x: x[:4])

Out [39]:

	year_breakdown
year	
2021	15.048699
2014	13.918075
2020	9.890028
2019	9.424352

	year_breakdown
year	
2018	8.754076
2017	8.561199
2016	8.309712
2015	7.950598
2013	7.343194
2012	6.422497
2022	1.001684
2011	0.202468
2010	0.147056
2006	0.135334
2008	0.132137
2007	0.128940
2009	0.121481
2005	0.116153
2004	0.116153
1999	0.111890
2000	0.105496
2001	0.098037
1998	0.095906
	0.092709
2002	0.091643
1996	0.090578
1990	0.087381

	year_breakdown
year	
1997	0.078856
1994	0.077790
1992	0.075659

Look at Patient and Number of Claims

Findings

All Claims:

- Most common patient has 2550 claims
- Least common has one claim
- There are 410 patients with 20 or less claims

Claims with HCPCS codes:

- Most common patient has 1342
- There are 2419 with 50 claims or less
- There are multiple patients per patient medicare number. This is resolved by dropping unique_claim_IDs that are not 9 in length as it appears the number indicates garbage data

```
In [40]:
```

```
# Percentage breakdown
vals = claim_df['patient_medicare_number'].value_counts(normalize=True)
pd.DataFrame({
   'med_num_breakdown': vals
}).head(22)
```

Out [40]:

		med_num_breakdown
patient_	_medicare_number	

	med_num_breakdown
patient_medicare_number	
1S00E00GT33	1.426486
1S00E00KH30	1.198248
1S00E00GU73	1.164684
1S00E00GJ99	1.089723
1S00E00HT76	0.586258
1S00E00GW62	0.476055
1S00E00JN81	0.312708
1S00E00AA46	0.304876
1S00E00AF73	0.298723
1S00E00AA76	0.288654
1S00E00AH76	0.286416
1S00E00AG64	0.279144
1S00E00AK11	0.279144
1S00E00ME84	0.259564
1S00E00AM88	0.259564
1S00E00HU27	0.255649
1S00E00MH84	0.235510
1S00E00JP46	0.233272
1S00E00KQ76	0.230475
1S00E00MH30	0.228797
1S00E00KW06	0.217050
1S00E00AK54	0.213134

```
In [41]:
          print(f"Most common patient: { len(claim_df[ claim_df['patient_medicar
          print(f"Least common patient: { len(claim_df[ claim_df['patient_medica')
          vals = claim_df['patient_medicare_number'].value_counts()
          val_df = pd.DataFrame({
            'med_num_breakdown': vals
          })
          print(f"Number of patients with 20 claims or less: {len(val_df[ val_df
Out [41]:
         Most common patient: 2550 claims
         Least common patient: 1 claims
         Number of patients with 20 claims or less: 410
In [42]:
          # subset of data that have hcpcs
          print(f"Number of claims with hcpcs: {len(non_na_hcpcs)}")
          print(f"Most common patient: { len(non_na_hcpcs[ non_na_hcpcs['patient.
          print(f"Least common patient: { len(non_na_hcpcs[ non_na_hcpcs['patien')
          vals = non_na_hcpcs['patient_medicare_number'].value_counts()
          val_df = pd.DataFrame({
            'med_num_breakdown': vals
          })
          print(f"Number of patients with 50 claims or less: {len(val_df[ val_df
Out [42]:
         Number of claims with hcpcs: 93842
         Most common patient: 1342 claims
         Least common patient: 0 claims
         Number of patients with 50 claims or less: 2419
        Patient birthdate
```

```
Oun [43]:

# unique brithdate by patient medicare number

grp_ser = claim_df.groupby('patient_medicare_number')['contained_0_bir']
```

```
grp_df = pd.DataFrame({
    'num_birthdate': grp_ser
})
grp_df['ls'] = grp_df['num_birthdate'].apply(lambda x: [code for code
grp_df['num_bday'] = grp_df['num_birthdate'].apply(len)
#grp_df = pd.DataFrame( {'location_of_bill_ls': grp_ser})
vals = grp_df['num_bday'].value_counts(normalize=True) * 100
pd.DataFrame({
    'num_breakdown': vals
}).head(22)
```

-	
	num_breakdown
num_bday	
24	2.959610
22	2.332869
20	2.228412
18	2.123955
26	2.054318
27	1.915042
30	1.880223
21	1.740947
28	1.706128
34	1.671309
23	1.636490
32	1.601671
38	1.566852
46	1.566852

	num_breakdown
num_bday	
36	1.532033
16	1.532033
35	1.532033
48	1.497214
25	1.462396
40	1.462396
31	1.427577
29	1.392758

Unique Claim ID

Out [44]:

	len_claim
len_claim	
9	90.046487
19	5.670141
14	4.283373

```
In [45]:
          non_na_hcpcs['len_claim'] = non_na_hcpcs['unique_claim_ID'].str.len()
          vals = non_na_hcpcs['len_claim'].value_counts(normalize=True) * 100
          print('when rows without hcpcs are dropped unique_claim_IDs are all ni
          pd.DataFrame({
            'len_claim': vals
          ).head(30)
Out [45]:
         when rows without hcpcs are dropped unique_claim_IDs are all nine
         /tmp/ipykernel 594231/163330112.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user_guide/indexing.html#returning-a-view-versus-a-copy
           non na hcpcs['len claim'] = non na hcpcs['unique claim ID'].str.len()
Out [45]:
                 len_claim
         len claim
         9
                  100.0
Out [46]:
          non_na_hcpcs['len_claim'] = non_na_hcpcs['unique_claim_ID'].str.len()
          df = non_na_hcpcs[ non_na_hcpcs['len_claim'] == 9]
          grp_ser = df.groupby('patient_medicare_number')['contained_0_birthDate
          grp_df = pd.DataFrame({
            'num_birthdate': grp_ser
          })
          arp_df['num'] = arp_df['num_birthdate'].apply(set)
          qrp_df['ls'] = qrp_df['num'].apply(lambda x: [code for code in x if pd])
          arp_df['num_bday'] = grp_df['ls'].apply(len)
          #grp_df = pd.DataFrame( {'location_of_bill_ls': grp_ser})
          vals = grp_df['num_bday'].value_counts(normalize=True) * 100
          pd.DataFrame({
             'num_breakdown': vals
```

}).head(22)

```
/tmp/ipykernel_594231/1730549236.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
user_guide/indexing.html#returning-a-view-versus-a-copy
    non_na_hcpcs['len_claim'] = non_na_hcpcs['unique_claim_ID'].str.len()
```

	num_breakdown
num_bday	
1	99.473499
0	0.526501

In []: