90-110-

AD-A279 152

TECHNICAL SUPPORT FOR ROCKY MOUNTAIN ARSENAL

FINAL
HUMAN HEALTH EXPOSURE ASSESSMENT
FOR ROCKY MOUNTAIN ARSENAL
STUDY AREA EVALUATIONS
VOLUME VI-D
NORTH CENTRAL STUDY AREA
EXPOSURE ASSESSMENT
VERSION 4.1
SEPTEMBER 1990
CONTRACT NO. DAAA15-88-D-0024

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes

Dist Avail and / or Special

94-13808

4942

Prepared by:

RIFS2

EBASCO SERVICES INCORPORATED
Applied Environmental, Inc.
CH2M HILL
DataChem, Inc.
R.L. Stollar and Associates

Prepared for:

U.S. ARMY PROGRAM MANAGER'S OFFICE FOR THE ROCKY MOUNTAIN ARSENAL CONTAMINATION CLEANUP

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THIS REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. C704-0188

Licollection of information, including suggestic	and completing and reviewing the collection of in onsitor reducing this burden to Washington Head 202-4302, and to the Office of Management and c	ntormation. Dend comments regarding t dquarters Services. Directorate for Infor	mation Coerations and Reports 1215 interesals
1. AGENCY USE ONLY Leave of	ank) 2. REPORT 04/16 09/00/90	3. REPORT TYPE AND DA	TES COVERED
4. NUTAN AND FAIR EXPOSURE ASSES	SMENT FOR ROCKY MOUNTAIN ARSENAL	FINAL, VERSION 5.	FUNDING NUMBERS
6. AUTHOR(S)		DA	NA15 88 D 0024
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		PERFORMING ORGANIZATION REPORT NUMBER
EBASCO SERVICES, INC.			TEPORT NOMBER
			90277R01
9. SPONSORING MONITORING AC	GENCY NAME(S) AND ADDRESS(ES)	■ · · = ·	SPONSORING MONITORING AGENCY REPORT NUMBER
ROCKY MOUNTAIN ARSENAL (CO.). PMRMA		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	(12b	. DISTRIBUTION CODE
			. 0101001
APPROVED FOR PUBLIC 1	RELEASE; DISTRIBUTION I	S UNLIMITED	
1. ESTIMATE THE 2. IDENTIFY CONT 3. IDENTIFY SITH 4. RECOMMEND SITH 5. PROVIDE A BASE	THE HUMAN HEALTH EXPOSITIVE AND MAGNITUDE OF TAMINANTS OF CONCERN ES FOR REMEDIAL ACTION RISES FOR DETAILED CHARACT	EXPOSURES TO CONTAM EMEDIAL ALTERNATIVE	INANTS
AND EXPOSED POPULATION (INCLUDES ARMY AND SEV - PPLV CALCULATIONS B WESTERN STUDY AREA, ECENTRAL STUDY AREA, E	IS OF THE FOLLOWING: AN ON EVALUATIONS. VOL.II HELL TOXICITY PROFILES) S. VOL. VI - STUDY AREA, C SOUTHERN STUDY AREA, F EASTERN STUDY AREA, G VOL. VII - SUMMARY EXPOSE	& III - TOXICITY A . VOL. IV - PPLV M A EXPOSURE ANALYSIS , D NORTHERN CENTRA SOUTH PLANTS STUDY	SSESSMENT ETHODOLOGY. VOL. (A INTRODUCTION, L STUDY AREA, E AREA, AND H NORTH
14. SUBJECT TERMS PPLV, LAND USE, SOIL, WATER,	, BIOTA		15. NUMBER OF PAGES
			16. PRICE CODE
7. SECURITY CLASSIFICATION UNCLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATIO OF ABSTRACT	N 20. LIMITATION OF ABSTRACT

TABLE OF CONTENTS

EX	ECUT	TVE SU	<u>MMARY</u>	Page xxix
1.0	INTE	RODUCT	<u>rion</u>	1-1
2.0	SITE	-BY-SIT	E EXPOSURE ASSESSMENT	2-1
	2.1	SITE N	ICSA-1a: BASIN A	2-1
		2.1.1 2.1.2	Site-Specific Considerations	2-1 2-1
	2.2	2.1.3	Site Exposure Summary	2-2 2-20
	2.4	2.2.1 2.2.2 2.2.3	Site-Specific Considerations Spatial Distribution of Measured Contaminant Concentrations Site Exposure Summary	2-20 2-20 2-20 2-21
	2.3	SITE N	CSA-1c: DRAINAGE DITCH	2-32
		2.3.1 2.3.2 2.3.3	Site-Specific Considerations Spatial Distribution of Measured Contaminant Concentrations Site Exposure Summary	2-32 2-32 2-33
	2.4	SITE N	CSA-1d: LIQUID STORAGE POOL	2-43
		2.4.1 2.4.2 2.4.3	Site-Specific Considerations Spatial Distribution of Measured Contaminant Concentrations Site Exposure Summary	2-43 2-43 2-43
	2.5	SITE N	ICSA-le: BURN SITE	2-54
		2.5.1 2.5.2 2.5.3	Site-Specific Considerations	2-54 2-54 2-54
	2.6	SITE N	ICSA-1f: SOUTH PLANTS DRAINAGE DITCHES	2-64
		2.6.1 2.6.2 2.6.3	Site-Specific Considerations	2-64 2-64 2-65

		<u>Page</u>
2.7	SITE NCSA-1g: INFERRED SURFICIAL CONTAMINATION	2-75
	2.7.1 <u>Site-Specific Considerations</u>	2-75
	2.7.2 Spatial Distribution of Measured Contaminant Concentrations	2-75
	2.7.3 <u>Site Exposure Summary</u>	2-75
2.8	SITE NCSA-2a: BASIN C	2-87
	2.8.1 <u>Site-Specific Considerations</u>	2-87
	2.8.2 Spatial Distribution of Measured Contaminant Concentrations	2-87
	2.8.3 <u>Site Exposure Summary</u>	2-88
2.9	SITE NCSA-2b: BASIN D	2-98
	2.9.1 <u>Site-Specific Considerations</u>	2-98
	2.9.2 Spatial Distribution of Measured Contaminant Concentrations	2-98
	2.9.3 <u>Site Exposure Summary</u>	2-98
2.10	SITE NCSA-2c: BASIN E	2-108
	2.10.1 Site-Specific Considerations	2-108
	2.10.2 Spatial Distribution of Measured Contaminant Concentrations	2-108
	2.10.3 Site Exposure Summary	2-109
2.11	SITE NCSA-2d: DRAINAGE DITCHES	2-118
	2.11.1 Site-Specific Considerations	2-118
	2.11.2 Spatial Distribution of Measured Contaminant Concentrations	2-118
	2.11.3 Site Exposure Summary	2-118
2.12	SITE NCSA-3: BASIN F	2-129
	2.12.1 <u>Site-Specific Considerations</u>	2-129
	2.12.2 Spatial Distribution of Measured Contaminant Concentrations	2-129
	2.12.3 <u>Site Exposure Summary</u>	2-130
2.13	SITE NCSA-4a: DEEP DISPOSAL WELL	2-149
	2.13.1 <u>Site-Specific Considerations</u>	2-149
	2.13.2 Spatial Distribution of Measured Contaminant Concentrations	2-149
	2 13 3 Site Exposure Summary	2-150

		Page
2.14	SITE NCSA-4b: BASIN F EXTERIOR	2-162
	2.14.1 Site-Specific Considerations 2.14.2 Spatial Distribution of Measured Contaminant Concentrations 2.14.3 Site Exposure Summary 2.14.1 Site-Specific Considerations 2.14.2 Spatial Distribution of Measured Contaminant Concentrations 2.14.3 Site-Specific Considerations 2.14.1 Spatial Distribution of Measured Contaminant Concentrations 2.14.2 Spatial Distribution of Measured Contaminant Concentrations 2.14.3 Site-Specific Considerations 2.14.3 Spatial Distribution of Measured Contaminant Concentrations 2.14.3 Site-Specific Considerations	2-162 2-162 2-162
2.15	SITE NCSA-5a: BASIN B	2-179
	2.15.1 Site-Specific Considerations 2.15.2 Spatial Distribution of Measured Contaminant Concentrations 2.15.3 Site Exposure Summary 2.15.4 Site Exposure Summary 2.15.5 Site Exposure Summary 2.15.6 Site Exposure Summary 2.15.7 Site Exposure Summary 2.15.8 Site Exposure Summary 2.15.9 Site Exposure Summary 2.15.1 Site-Specific Considerations 2.15.2 Spatial Distribution of Measured Contaminant Concentrations 2.15.2 Site-Specific Considerations 2.15.3 Site-Specific Considerations 2.15.4 Spatial Distribution of Measured Contaminant Concentrations 2.15.3 Site-Specific Considerations 2.15.4 Site-Specific Considerations 2.15.5 Spatial Distribution of Measured Contaminant Concentrations 2.15.6 Site-Specific Considerations 2.15.8 Site-Specific Considerations 2.15.8 Site-Specific Considerations 2.15.9 Site-Specific Consid	2-179 2-179 2-180
2.16	SITE NCSA-5b: DRAINAGE DITCHES	2-190
	2.16.1 Site-Specific Considerations 2.16.2 Spatial Distribution of Measured Contaminant Concentrations 2.16.3 Site Exposure Summary	2-190 2-190 2-190
2.17	SITE NCSA-5c: SAND CREEK LATERAL	2-200
	 2.17.1 <u>Site-Specific Considerations</u> 2.17.2 <u>Spatial Distribution of Measured Contaminant Concentrations</u> 2.17.3 <u>Site Exposure Summary</u> 	2-200 2-200 2-200
2.18	SITE NCSA-5d: SURFACE DRAINAGE CANAL	2-211
	2.18.1 Site-Specific Considerations 2.18.2 Spatial Distribution of Measured Contaminant Concentrations 2.18.3 Site Exposure Summary 2.18.4 Site Exposure Summary	2-211 2-211 2-211
2.19	SITE NCSA-6a: CHEMICAL SEWERS FROM SOUTH PLANTS	2-222
	2.19.1 Site-Specific Considerations 2.19.2 Spatial Distribution of Measured Contaminant Concentrations 2.19.3 Site Exposure Summary	2-222 2-222 2-222
2.20	SITE NCSA-6b: CHEMICAL SEWERS FROM NORTH PLANTS	2-231
	2.20.1 Site-Specific Considerations 2.20.2 Spatial Distribution of Measured Contaminant Concentrations 2.20.3 Site Exposure Summary	2-231

		Page
2.21	SITE NCSA-7: NORTH BOG	2-240
	2.21.1 Site-Specific Considerations	2-240
2.22	SITE NCSA-8a: SANITARY SEWER LINES	2-250
	2.22.1 Site-Specific Considerations 2.22.2 Spatial Distribution of Measured Contaminant Concentrations 2.22.3 Site Exposure Summary 2.22.1 Site Exposure Summary	2-250
2.23	SITE NCSA-8b: DOMESTIC SEWAGE TREATMENT PLANT	2-260
	2.23.1 Site-Specific Considerations 2.23.2 Spatial Distribution of Measured Contaminant Concentrations 2.23.3 Site Exposure Summary 2.23.4 Site Exposure Summary 2.23.5 Site Exposure Summary 2.23.6 Site Exposure Summary	2-260
2.24	SITE NCSA-8c: SECTION 34 - MERCURY DETECTION	2-270
	2.24.1 Site-Specific Considerations 2.24.2 Spatial Distribution of Measured Contaminant Concentrations 2.24.3 Site Exposure Summary 2.24.1 Site-Specific Considerations 2.24.2 Spatial Distribution of Measured Contaminant Concentrations 2.24.3 Site-Specific Considerations 2.24.1 Spatial Distribution of Measured Contaminant Concentrations 2.24.2 Spatial Distribution of Measured Contaminant Concentrations 2.24.3 Site-Specific Considerations	2-270
2.25	SITE NCSA-9a: SECTION 23 - DIISOPROPYLMETHYL PHOSPHONATE DETECTION	2-279
	 2.25.1 <u>Site-Specific Considerations</u> 2.25.2 <u>Spatial Distribution of Measured Contaminant Concentrations</u> 2.25.3 <u>Site Exposure Summary</u> 	2-279
2.26	SITE NCSA-9b: SECTION 23 - CADMIUM DETECTION	2-290
	2.26.1 Site-Specific Considerations 2.26.2 Spatial Distribution of Measured Contaminant Concentrations 2.26.3 Site Exposure Summary 2.26.1 Site Exposure Summary	2-290 2-290 2-290
2.27	SITE NCSA-9c: SECTION 23 - CADMIUM DETECTION	2-299
	2.27.1 Site-Specific Considerations	2-299 2-299 2-299

		Page
2.28	SITE NCSA-9d: SECTION 23 - CADMIUM DETECTION	2-308
	2.28.1 Site-Specific Considerations 2.28.2 Spatial Distribution of Measured Contaminant Concentrations 2.28.3 Site Exposure Summary 2.28.1 Site Exposure Summary 2.28.2 Site Exposure Summary	2-308 2-308 2-308
2.29	SITE NCSA-9e: SECTION 24 - ZINC DETECTION	2-319
	2.29.1 Site-Specific Considerations 2.29.2 Spatial Distribution of Measured Contaminant Concentrations 2.29.3 Site Exposure Summary	2-319 2-319 2-319
2.30	SITE NCSA-9f: SECTION 25 - ZINC AND COPPER DETECTIONS .	2-329
	2.30.1 Site-Specific Considerations 2.30.2 Spatial Distribution of Measured Contaminant Concentrations 2.30.3 Site Exposure Summary	2-329 2-329 2-329
2.31	SITE NCSA-9g: SECTION 26 - SUSPECTED METHYLENE CHLORIDE DETECTION	
	2.31.1 Site-Specific Considerations 2.31.2 Spatial Distribution of Measured Contaminant Concentrations 2.31.3 Site Exposure Summary 2.31.4 Site Exposure Summary 2.31.5 Site Exposure Summary 2.31.6 Site Exposure Summary	2-337 2-337 2-337
2.32	SITE NCSA-9h: SECTION 26 - CADMIUM DETECTION	2-349
	2.32.1 Site-Specific Considerations 2.32.2 Spatial Distribution of Measured Contaminant Concentrations 2.32.3 Site Exposure Summary	2-349 2-349 2-349
2.33	SITE NCSA-9i: SECTION 26 - BUTOXYETHANOL DETECTION	2-359
	2.33.1 Site-Specific Considerations	2-359
2.34	SITE NCSA-9j: SECTION 26 - MERCURY DETECTION	2-362
	2.34.1 Site-Specific Considerations	2-362 2-362 2-362

		Page
2.35	SITE NCSA-9k: SECTION 26 - TRICHLOROPROPENE	
	DETECTION	2-372
		2-372
		2-372
	2.35.3 <u>Site Exposure Summary</u>	2-372
2.36	SITE NCSA-91: SECTION 27 - ARSENIC DETECTION	2-383
	2.36.1 <u>Site-Specific Considerations</u>	2-383
		2-383
	2.36.3 <u>Site Exposure Summary</u>	2-383
2.37	NCSA-9m: ZINC DETECTION IN BEDROCK	2-392
	2.37.1 Site-Specific Considerations	2-392
	2.37.2 Spatial Distribution of Measured Contaminant Concentrations	2-392
	2.37.3 Site Exposure Summary	2-392
2.38	SITE NCSA-9n: SECTION 35 - TRICHLOROPROPENE	
	DETECTION	2-402
	2.38.1 <u>Site-Specific Considerations</u>	2-402
		2-402
	2.38.3 <u>Site Exposure Summary</u>	2-403
2.39	SITE NCSA-90: SECTION 35 - ARSENIC DETECTION	2-411
	2.39.1 <u>Site-Specific Considerations</u>	2-411
		2-411
	2.39.3 Site Exposure Summary	2-411
2.40	SITE NCSA-9p: SECTION 36 - ARSENIC AND MERCURY	
		2-421
	2.40.1 Site-Specific Considerations	2-421
		2-421
		2-421

			Page
2.41	SITE N	ICSA-9q: MERCURY DETECTION	2-431
	2.41.1	Site-Specific Considerations	
	2.41.2	Spatial Distribution of Measured Contaminant Concentrations	2-431
	2.41.3		2-431
2.42	SITE N	ICSA-9r: CADMIUM DETECTION	2-443
	2.42.1	Site-Specific Considerations	2-443
	2,42.2	Spatial Distribution of Measured Contaminant Concentrations	
	2.42.3	Site Exposure Summary	
2.43	SITE N	ICSA-9s: SECTION 36 - MERCURY DETECTION	2-455
	2.43.1	Site-Specific Considerations	2-455
	2.43.2	·· -· -· -· -· -· ·· ·· ·· ·· ·· ·· ·· ·	
	2.43.3		
3.0 <u>STU</u>	DY ARE	EA EXPOSURE SUMMARY	3-1
4.0 <u>REF</u>	ERENCE	<u>ES</u>	4-1
APPEND	OIX A -	NONTARGET SCREENING	
APPEND	-	OPEN SPACE INHALATION PATHWAY SCREENING	

LIST OF TABLES

<u>Table</u>		Pag
NCSA-1a-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-1a	2-
NCSA-1a-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-1a	2-
NCSA-1a-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-1
NCSA-1a-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-1
NCSA-1a-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-1
NCSA-1a-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-1
NCSA-1a-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-1
NCSA-1b-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-1b	2-2
NCSA-1b-2	SOIL GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-1b	2-2
NCSA-1b-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-2
NCSA-1b-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-2
NCSA-1b-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-2
NCSA-1b-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-3
NCSA-1b-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-3
NCSA-1c-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-1c	2-3
NCSA-1c-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-1c	2-3
NCSA-1c-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-3
NCSA-1c-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-3

<u>Table</u>		<u>Page</u>
NCSA-1c-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-40
NCSA-1c-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-41
NCSA-1c-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-42
NCSA-1d-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-1d	2-46
NCSA-1d-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-1d	2-47
NCSA-1d-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-49
NCSA-1d-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-50
NCSA-1d-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-51
NCSA-1d-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-52
NCSA-1d-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-53
NCSA-1e-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-le	2-57
NCSA-1e-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-1e	2-58
NCSA-1e-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-59
NCSA-1e-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-60
NCSA-1e-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-61
NCSA-1e-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-62
NCSA-1e-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-63
NCSA-1f-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR	2-67

<u>Table</u>		Page
NCSA-1f-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-1f	2-68
NCSA-1f-3	EXPOSURF EVALUATIONS FOR REGULATED VISITORS	2-70
NCSA-1f-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-71
NCSA-1f-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-72
NCSA-1f-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-73
NCSA-1f-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-74
NCSA-1g-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-1g	2-78
NCSA-1g-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-1g	2-79
NCSA-1g-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-82
NCSA-1g-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-83
NCSA-1g-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-84
NCSA-1g-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-85
NCSA-1g-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-86
NCSA-2a-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-2a	2-90
NCSA-2a-2	SOIL GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-2a	2-91
NCSA-2a-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-93
NCSA-2a-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-94
NCSA-2a-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-95

<u>Table</u>		Page
NCSA-2a-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-96
NCSA-2a-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-97
NCSA-2b-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-2b	2-101
NCSA-2b-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-2b	2-102
NCSA-2b-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-103
NCSA-2b-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-104
NCSA-2b-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-105
NCSA-2b-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-106
NCSA-2b-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-107
NCSA-2c-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-2c	2-111
NCSA-2c-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-2c	2-112
NCSA-2c-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-113
NCSA-2c-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-114
NCSA-2c-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-115
NCSA-2c-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-116
NCSA-2c-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-117
NCSA-2d-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-2d	2-121
NCSA-2d-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-2d	2-122

Table		<u>Page</u>
NCSA-2d-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-124
NCSA-2d-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-125
NCSA-2d-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-126
NCSA-2d-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-127
NCSA-2d-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-128
NCSA-3-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-3	2-134
NCSA-3-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-3	2-136
NCSA-3-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-139
NCSA-3-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-141
NCSA-3-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-143
NCSA-3-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-145
NCSA-3-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-147
NCSA-4a-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-4a	2-153
NCSA-4a-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-4a	2-154
NCSA-4a-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-157
NCSA-4a-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-158
NCSA-4a-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-159
NCSA-4a-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-160

<u>Table</u>		<u>Page</u>
NCSA-4a-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-161
NCSA-4b-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-4b	2-165
NCSA-4b-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-4b	2-166
NCSA-4b-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-169
NCSA-4b-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-171
NCSA-4b-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-173
NCSA-4b-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-175
NCSA-4b-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-177
NCSA-5a-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-5a	2-182
NCSA-5a-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-5a	2-183
NCSA-5a-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-185
NCSA-5a-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-186
NCSA-5a-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-187
NCSA-5a-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-188
NCSA-5a-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-189
NCSA-5b-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-5b	2-193
NCSA-5b-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-5b	2-194
NCSA-5b-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-195

<u>Table</u>		Page
NCSA-5b-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-196
NCSA-5b-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-197
NCSA-5b-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-198
NCSA-5b-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-199
NCSA-5c-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-5c	2-203
NCSA-5c-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-5c	2-204
NCSA-5c-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-206
NCSA-5c-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-207
NCSA-5c-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-208
NCSA-5c-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-209
NCSA-5c-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-210
NCSA-5d-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-5d	2-214
NCSA-5d-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-5d	2-215
NCSA-5d-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-217
NCSA-5d-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-218
NCSA-5d-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-219
NCSA-5d-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-220
NCSA-5d-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-221

<u>Table</u>		Page
NCSA-6a-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-6a	2-225
NCSA-6a-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-226
NCSA-6a-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-227
NCSA-6a-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-228
NCSA-6a-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-229
NCSA-6a-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-230
NCSA-6b-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-6b	2-234
NCSA-6b-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-235
NCSA-6b-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-236
NCSA-6b-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-237
NCSA-6b-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-238
NCSA-6b-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-239
NCSA-7-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-7	2-243
NCSA-7-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-7	2-244
NCSA-7-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-245
NCSA-7-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-246
NCSA-7-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-247
NCSA-7-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-248
NCS 4-7-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-249

Table		<u>Page</u>
NCSA-8a-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-8a	2-254
NCSA-8a-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-255
NCSA-8a-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-256
NCSA-8a-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-257
NCSA-8a-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-258
NCSA-8a-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-259
NCSA-8b-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-8b	2-263
NCSA-8b-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-8b	2-264
NCSA-8b-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-265
NCSA-8b-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-266
NCSA-8b-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-267
NCSA-8b-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-268
NCSA-8b-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-269
NCSA-8c-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-8c	2-273
NCSA-8c-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-274
NCSA-8c-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-275
NCSA-8c-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-276
NCSA-8c-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-277

<u>Table</u>		Page
NCSA-8c-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-278
NCSA-9a-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9a	2-282
NCSA-9a-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9a	2-283
NCSA-9a-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-285
NCSA-9a-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-286
NCSA-9a-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-287
NCSA-9a-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-288
NCSA-9a-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-289
NCSA-9b-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9b	2-293
NCSA-9b-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-294
NCSA-9b-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-295
NCSA-9b-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-296
NCSA-9b-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-297
NCSA-9b-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-298
NCSA-9c-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9c	2-302
NCSA-9c-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-303
NCSA-9c-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-304
NCSA-9c-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-305
NCSA-9c-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-306

Table		Page
NCSA-9c-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-307
NCSA-9d-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9d	2-311
NCSA-9d-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9d	2-312
NCSA-9d-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-314
NCSA-9d-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-315
NCSA-9d-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-316
NCSA-9d-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-317
NCSA-9d-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-318
NCSA-9e-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9e	2-322
NCSA-9e-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9e	2-323
NCSA-9e-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-324
NCSA-9e-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-325
NCSA-9e-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-326
NCSA-9e-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-327
NCSA-9e-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-328
NCSA-9f-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9f	2-331
NCSA-9f-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-332
NCSA-9f-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-333

<u>Table</u>		Page
NCSA-9f-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-334
NCSA-9f-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-335
NCSA-9f-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-336
NCSA-9g-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9g	2-340
NCSA-9g-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9g	2-341
NCSA-9g-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-344
NCSA-9g-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-345
NCSA-9g-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-346
NCSA-9g-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-347
NCSA-9g-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-348
NCSA-9h-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9h	2-352
NCSA-9h-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9h	2-353
NCSA-9h-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-354
NCSA-9h-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-355
NCSA-9h-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-356
NCSA-9h-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-357
NCSA-9h-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-358
NCSA-9i-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR	2-361

<u>Table</u>		Page
NCSA-9j-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9j	2-365
NCSA-9j-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9j	2-366
NCSA-9j-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-367
NCSA-9j-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-368
NCSA-9j-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-369
NCSA-9j-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-370
NCSA-9j-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-371
NCSA-9k-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9k	2-375
NCSA-9k-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9k	2-376
NCSA-9k-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-378
NCSA-9k-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-379
NCSA-9k-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-380
NCSA-9k-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-381
NCSA-9k-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-382
NCSA-91-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-91	2-386
NCSA-91-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-387
NCSA-91-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-388
NCSA-91-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-389

<u>Table</u>		Page
NCSA-91-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-390
NCSA-91-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-391
NCSA-9m-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9m	2-395
NCSA-9m-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9m	2-396
NCSA-9m-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-397
NCSA-9m-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-398
NCSA-9m-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-399
NCSA-9m-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-400
NCSA-9m-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-401
NCSA-9n-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9n	2-405
NCSA-9n-2	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-406
NCSA-9n-3	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-407
NCSA-9n-4	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-408
NCSA-9n-5	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-409
NCSA-9n-6	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-410
NCSA-90-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-90	2-414
NCSA-90-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-90	2-415
NCSA-90-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-416

<u>Table</u>		Page
NCSA-90-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-417
NCSA-90-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-418
NCSA-90-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-419
NCSA-90-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-420
NCSA-9p-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9p	2-424
NCSA-9p-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9p	2-425
NCSA-9p-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-426
NCSA-9p-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-427
NCSA-9p-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-428
NCSA-9p-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-429
NCSA-9p-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-430
NCSA-9q-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9q	2-434
NCSA-9q-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9q	2-435
NCSA-9q-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS	2-438
NCSA-9q-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS	2-439
NCSA-9q-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .	2-440
NCSA-9q-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS	2-441
NCSA-9g-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS	2-442

<u>Table</u>	
NCSA-9r-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9r
NCSA-9r-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9r
NCSA-9r-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS
NCSA-9r-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS
NCSA-9r-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .
NCSA-9r-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS
NCSA-9r-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS
NCSA-9s-1	SOIL CONTAMINANT CONCENTRATIONS (ug/g) FOR SITE NCSA-9s
NCSA-9s-2	GROUNDWATER CONTAMINANT CONCENTRATIONS (ug/L) FOR SITE NCSA-9s
NCSA-9s-3	EXPOSURE EVALUATIONS FOR REGULATED VISITORS
NCSA-9s-4	EXPOSURE EVALUATIONS FOR CASUAL VISITORS
NCSA-9s-5	EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS .
NCSA-9s-6	EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS
NCSA-9s-7	EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS
NCSA-3-1	NUMBER OF EXCEEDANCES FOR CONTAMINANTS OF CONCERN IN THE NORTH CENTRAL STUDY AREA
NCSA_A_1	NORTH CENTRAL STUDY AREA NONTARGET SCREENING

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
NCSA-1-0	Sample Exposure Summary Table	1-6
NCSA-1a-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-4
NCSA-1b-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-23
NCSA-1c-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-34
NCSA-1d-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-45
NCSA-1e-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-56
NCSA-1f-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-66
NCSA-1g-1	Phase I and II Analytes Detected Within or Above Indicator Leve's	2-77
NCSA-2a-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-89
NCSA-2b-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-100
NCSA-2c-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-110
NCSA-2d-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-120
NCSA-3-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-132
NCSA-3-2	Phase I and II Analytes Detected Within or Above	2-133

LIST OF FIGURES (Continued)

<u>Figure</u>		<u>Page</u>
NCSA-4a-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-152
NCSA-4b-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-164
NCSA-5a-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-181
NCS 4-5h-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-192
NCSA-5c-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-202
NCSA-5d-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-213
NCSA-6a-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-224
NCSA-6b-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-233
NCSA-7-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-242
NCSA-8a-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-252
NCSA-8a-2	Phase I and II Analytes Detected Within or Above Indicator Levels	2-253
NCSA-8b-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-262
NCSA-8c-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-272
NCSA-9a-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-281

LIST OF FIGURES (Continued)

<u>Figure</u>		<u>Page</u>
NCSA-9b-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-292
NCSA-9c-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-301
NCSA-9d-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-310
NCSA-9e-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-321
NCSA-9f-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-330
NCSA-9g-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-339
NCSA-9h-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-351
NCSA-9i-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-360
NCSA-9j-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-364
NCSA-9k-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-374
NCSA-91-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-385
NCSA-9m-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-394
NCSA-9n-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-404
NCSA-90-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-413

LIST OF FIGURES (Continued)

Figure		<u>Page</u>
NCSA-9p-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-423
NCSA-9q-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-433
NCSA-9r-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-445
NCSA-9s-1	Phase I and II Analytes Detected Within or Above Indicator Levels	2-457

LIST OF ACRONYMS

CAR Contamination Assessment Report

COC contaminant of concern COS contaminant of significance CRL certified reporting limit

d depth to the top of the contamination zone

EI exposure index

h depth to the bottom of the contamination zone

ICP Inductively Coupled Plasma

ISCLT Industrial Source Complex Long Term Plume Dispersion

MKE Morrison-Knudsen Engineers NCSA North Central Study Area

PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane

PPLV preliminary pollutant limit value

RI remedial investigation RMA Rocky Mountain Arsenal

RMACCPMT Rocky Mountain Arsenal Contamination Control Program Management Team

SAR Study Area Report

SPPPLV single pathway preliminary pollutant limit value

VEI vapor exposure index

EXECUTIVE SUMMARY

The North Central Study Area (NCSA) Exposure Assessment presents detailed exposure analyses for the 43 potentially contaminated areas defined by the North Central Study Area Report (SAR). The evaluations were based on the soil and sediment contaminant concentrations presented in the site-specific Contamination Assessment Reports (CARs) and the overall SARs and groundwater contaminants from DP Associates Groundwater Database. The maximum concentrations for each contaminant detected were extracted from these data and reported. Draft preliminary pollutant limit values (PPLVs) were computed for each of these site-specific contaminants as described in Volume IV of the Exposure Assessment Report for the direct (soil ingestion, suspended particulate inhalation, and dermal contact) and indirect (open and enclosed space vapor inhalation) exposure pathways. Cumulative PPLVs were computed for the five exposed populations (regulated visitors, casual visitors, recreational visitors, commercial workers, and industrial workers). The site-by-site evaluations consisted of comparisons of the maximum site contaminant concentrations to their corresponding cumulative Draft PPLVs in order to determine exceedances and, hence, established a first screen for determining sites which may be considered as candidates for remedial action during the Feasibility Study. These are ranked into two categories: Priority 1 which consists of sites where available soil contaminant concentration data indicate that the maximum detected concentrations exceed the draft human health based criteria, and Priority 2 which consists of sites where available soil contaminant concentration data indicate that the maximum detected concentrations do not exceed the draft human health based criteria. Site designations will be reconsidered throughout the Endangerment Assessment process as health based criteria are refined and additional data become available.

No samples from the interior of sewer lines present in the NCSA were included in the analysis since these evaluations are based on soil contaminants only. Sewers are being considered for remedial action under the ongoing Feasibility Study.

A groundwater plume has been identified in the NCSA. Therefore, in addition to the direct soil exposure evaluations, the significance of the inhalation of volatile groundwater contaminants which diffuse through site soils was estimated using the open space and enclosed space vapor inhalation models as described in detail in Volume IV (Sections 4.5 and 4.6, respectively) and the exposure analysis procedures presented in Volume VI-A. The exposure evaluations were performed for the most sensitive exposed population (i.e., the industrial worker).

Of the 43 sites evaluated in the NCSA, 30 were designated Priority 1 sites based on the most sensitive exposed population PPLV (i.e., the industrial worker). These include:

- Basin A (NCSA-1a)
- Lime Settling Basins (NCSA-1b)
- Drainage Ditch (NCSA-1c)
- Liquid Storage Pool (NCSA-1d)
- Burn Site (NCSA-1e)
- South Plants Drainage Ditches (NCSA-1f)
- Basin C (NCSA-2a)
- Basin D (NCSA-2b)
- Basin E (NCSA-2c)
- Drainage Ditches (NCSA-2d)
- Basin F (NCSA-3)
- Deep Disposal Well (NCSA-4a)
- Basin F Exterior (NCSA-4b)
- Basin B (NCSA-5a)
- Drainage Ditches (NCSA-5b)
- Sand Creek Lateral (NCSA-5c)
- Surface Drainage Canal (NCSA-5d)
- Chemical Sewers from South Plants (NCSA-6a)
- Chemical Sewers from North Plants (NCSA-6b)
- North Bog (NCSA-7)

- Sanitary Sewer Lines (NCSA-8a)
- Domestic Sewage Treatment Plant (NCSA-8b)
- Section 34 Mercury Detection (NCSA-8c)
- Section 23 Cadmium Detection (NCSA-9b)
- Section 23 Cadmium Detection (NCSA-9c)
- Section 23 Cadmium Detection (NCSA-9d)
- Section 26 Cadmium Detection (NCSA-9h)
- Section 27 Arsenic Detection (NCSA-91)
- Section 35 Arsenic Detection (NCSA-90)
- Cadmium Detection (NCSA-9r)

Of the 43 sites evaluated in the NCSA, 13 were designated Priority 2 sites based on the most sensitive exposed population PPLV (i.e., the industrial worker). These include:

- Inferred Surficial Contamination (NCSA-1g)
- Section 23 Diisopropylmethyl Phosphonate Detection (NCSA-9a)
- Section 24 Zinc Detection (NCSA-9e)
- Section 25 Zinc and Copper Detections (NCSA-9f)
- Section 26 Suspected Methylene Chloride Detection (NCSA-9g)
- Section 26 Butoxyethanol Detection (NCSA-9i)
- Section 26 Suspected Mercury Detection (NCSA-9i)
- Section 26 Trichloropropene Detection (NCSA-9k)
- Zinc Detection in Bedrock (NCSA-9m)
- Section 35 Trichloropropene Detection (NCSA-9n)
- Section 36 Arsenic and Mercury Detections (NCSA-9p)
- Mercury Detection (NCSA-9q)
- Section 36 Mercury Detection (NCSA-9s)

The contaminants of concern (COCs) in soils (i.e., those displaying cumulative exposure indices (EIs) greater than 0.1) for the NCSA, based on the most sensitive exposed population PPLV (i.e., the industrial worker), are:

- Aldrin
- Benzene
- Bicycloheptadiene
- Chlordane
- Chloroacetic acid
- Chlorobenzene
- Chloroform
- Chlorophenylmethyl sulfide
- Chlorophenylmethyl sulfone
- Chlorophenylmethyl sulfoxide
- Dibromochloropropane
- 1,2-Dichloroethane
- Dicyclopentadiene
- 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene (PPDDE)
- 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane (PPDDT)
- Dieldrin
- Dimethyldisulfide
- Endrin
- Fluoroacetic acid
- Hexachlorocyclopentadiene
- Isodrin
- Methylene chloride
- 1,1,2,2-Tetrachloroethane
- Tetrachloroethylene
- Trichloroethylene
- Toluene
- Arsenic
- Cadmium
- Chromium

- Lead
- Mercury

The contaminants of significance (COSs) in groundwater (i.e., those displaying vapor exposure indices (VEIs) greater than 1) for the NCSA are:

- Benzene
- · Carbon tetrachloride
- Chlorobenzene
- Chloroform
- Dibromochloropropane
- 1,2-Dichloroethane
- 1,1-Dichloroethylene
- Dicyclopentadiene
- Methylene chloride
- Tetrachloroethylene
- Trichloroethylene

1.0 INTRODUCTION

The analyses and evaluations performed under the Rocky Mountain Arsenal (RMA) Exposure Assessment are documented in eight report volumes. These include Volume I, Surface Use and Exposed Population Evaluations; Volumes II and III, Toxicity Assessment; Volumes IV and V, Preliminary Pollutant Limit Value (PPLV) Methodology; Volume VI, Study Area Exposure Assessments; Volume VII, Summary Exposure Assessment; and Volume VIII, Response to Comments on the Draft Exposure Assessment.

Volume VI of the Exposure Assessment is a detailed presentation of the study area exposure analyses, consisting of site-by-site comparisons of measured maximum contaminant concentrations to their Draft PPLVs derived for an industrial worker (the most sensitive receptor). Volume VI consists of eight subvolumes, VI-A through VI-H. Subvolume D (this document) constitutes the Study Area Exposure Assessment for the North Central Study Area (NCSA). The remaining subvolumes are: VI-A, Introduction; VI-B, Western Study Area; VI-C, Southern Study Area; VI-E, Central Study Area; VI-F, Eastern Study Area; VI-G, South Plants Study Area; and VI-H, North Plants Study Area. A description of the contents, approach, specific procedures, and format in preparing the Study Area Exposure Assessment documents is presented in Volume VI-A.

The exposure assessment for the NCSA was performed on a site-by-site basis. The site designations are consistent with those used in the remedial investigation (RI) Study Area Report (SAR) for the NCSA (EBASCO, 1989a). The analytical data used for each site were based on the original Rocky Mountain Arsenal Contamination Control Program Management Team (RMACCPMT)/Phase I and II RI site Contamination Assessment Reports (CARs). Additional information on the history of these sites can be found in Section 3.2 of the SAR (EBASCO, 1989a). The SARs present a regional overview of the extent of contamination and migration characteristics throughout the Arsenal. An analogous regional overview of the exposure assessment for the NCSA is presented in the Study Area Exposure Summary, Section 3.0 of this report volume. This regional summary is integrated with the other study area exposure summaries in Volume VII to provide an Arsenal-wide perspective of the significance of the measured contamination.

The sites included in the NCSA Exposure Assessment are as follows:

- Site NCSA-1a: Basin A
- Site NCSA-1b: Lime Settling Basins
- Site NCSA-1c: Drainage Ditch
- Site NCSA-1d: Liquid Storage Pool
- Site NCSA-1e: Burn Site
- Site NCSA-1f: South Plants Drainage Ditches
- Site NCSA-1g: Inferred Surficial Contamination
- Site NCSA-2a: Basin C
- Site NCSA-2b: Basin D
- Site NCSA-2c: Basin E
- Site NCSA-2d: Drainage Ditches
- Site NCSA-3: Basin F
- Site NCSA-4a: Deep Disposal Well
- Site NCSA-4b: Basin F Exterior
- Site NCSA-5a: Basin B
- Site NCSA-5b: Drainage Ditches
- Site NCSA-5c: Sand Creek Lateral
- Site NCSA-5d: Surface Drainage Canal
- Site NCSA-6a: Chemical Sewers from South Plants
- Site NCSA-6b: Chemical Sewers from North Plants
- Site NCSA-7: North Bog
- Site NCSA-8a: Sanitary Sewer Lines
- Site NCSA-8b: Domestic Sewage Treatment Plant
- Site NCSA-8c: Section 34 Mercury Detection
- Site NCSA-9a: Section 23 Diisopropylmethyl Phosphonate Detection
- Site NCSA-9b: Section 23 Cadmium Detection
- Site NCSA-9c: Section 23 Cadmium Detection
- Site NCSA-9d: Section 23 Cadmium Detection
- Site NCSA-9e: Section 24 Zinc Detection

- Site NCSA-9f: Section 25 Zinc and Copper Detections
- Site NCSA-9g: Section 26 Suspected Methylene Chloride Detection
- Site NCSA-9h: Section 26 Cadmium Detection
- Site NCSA-9i: Section 26 Butoxyethanol Detection
- Site NCSA-9j: Section 26 Mercury Detection
- Site > SA-9k: Section 26 Trichloropropene Detection
- Site . SA-91: Section 27 Arsenic Detection
- Site NCSA-9m: Zinc Detection in Bedrock
- Site NCSA-9n: Section 35 Trichloropropene Detection
- Site NCSA-90: Section 35 Arsenic Detection
- Site NCSA-9p: Section 36 Arsenic and Mercury Detections
- Site NCSA-9q: Mercury Detection
- · Site NCSA-9r: Cadmium Detection
- Site NCSA-9s: Section 36 Mercury Detection

The locations of each of the sites listed above in the NCSA were depicted in the North Central SAR (EBASCO, 1989a). The site-by-site exposure assessments for each of the 43 areas investigated are presented in Sections 2.1 through 2.43. A study area exposure summary for the NCSA is presented in Section 3.0.

The Soil Contaminant Concentration Tables in Sections 2.1 through 2.43, list the maximum concentrations that were calculated for each site over two depth intervals, designated as Horizon 1 and Horizon 2. Horizon 1 included depths from 0 to 10 feet (ft), and Horizon 2 accounted for all depths, including 0 to 10 ft. If the maximum concentration for all depths is in Horizon 1, then the listed concentration in Horizon 2 will equal Horizon 1. For a further discussion, see Volume VI-A, Section 2.2.4. The Inductively Coupled Plasma (ICP) metals (i.e., cadmium, chromium, copper, lead, and zinc), arsenic, and mercury identified as site contaminants in the tables include only those which were detected above indicator levels. The following are the indicator levels used:

Contaminant	Indicator Level
Arsenic	CRL1/-10 ug/g2/
Cadmium	1-2 ug/g
Chromium	25-40 ug/g
Copper	20-35 ug/g
Lead	25-40 ug/g
Mercury	CRL-0.10 ug/g
Zinc	60-80 ug/g

As described in Volume VI-A of this report, nontarget contaminants were subjected to two screening processes to determine whether or not they should be evaluated in detail in the site-by-site exposure assessments. The first screening was conducted as part of the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01), and was based on the toxicity, concentration, and frequency of occurrence of the nontarget compounds. Contaminants passing through this first screening were then subjected to a second screening that was conducted on a study area-by-study area basis within Appendix A of each Study Area Exposure Assessment (Volumes VI-B through VI-H). This second screening process considered frequency of occurrence, similarity of the nontarget concentration to that of target contaminants, and co-occurrence of nontarget compounds with target compounds in the soil and sediment samples. The reader is encouraged to consult the RMA Chemical Index and the Study Area Exposure Assessment Appendices for details of the screening processes, as it was judged too repetitive to include this information in each site where nontargets were detected.

Draft PPLVs for each of the site contaminants were computed for the five exposed populations of concern which are regulated visitors, casual visitors, recreational visitors, commercial workers, and industrial workers for the direct (i.e., soil ingestion, dermal contact, and suspended particulate inhalation) and indirect (i.e., open and enclosed space vapor inhalation) exposure pathways, according to the methodology detailed in Volume IV of the Exposure Assessment. Draft PPLVs for each site are presented in the Exposure

^{1/} certified reporting limit

^{2/} micrograms per gram

Evaluation Tables. Figure NCSA-1-0 explains various aspects of the data presented in the Exposure Evaluation Tables. For a further discussion of these tables, see Section 3.0 in Volume VI-A.

The cumulative Draft PPLVs in these tables for ICP metals, arsenic, and mercury do not include the single pathway preliminary pollutant limit values (SPPPLVs) computed for vapor inhalation exposure pathways since the potential for inhalation of vaporized ICP metals, arsenic, and mercury is assumed to be negligible (see Volume VI-A). SPPPLVs for the inhalation pathways are not included in the cumulative Draft PPLVs for chloroacetic acid, 1,2-dichloroethylene, dimethylmethyl phosphonate, Dithiane, fluoroacetic acid, isopropylmethyl phosphate, isopropylmethyl phosphonic acid, n-nitrosodimethylamine, 1,4-Oxathiane, Sarin, and thiodiglycol. These chemicals are highly soluble (log Kow less than one) and, therefore, are assumed to have low potential for vaporization.

The chemical-specific and site-specific parameters used to calculate the open and enclosed space vapor inhalation PPLVs are included in the RMA Source Data File, provided as part of the PPLV Computer Model for RMA (Volume V). Contaminant-specific parameters for the open space pathways are the depth to the top of the contamination zone (d), and the depth to the bottom of the contamination zone (h), diffusivity and soil concentration. These variables are calculated as described in Volume IV. The site-specific parameter, X/F_o , represents the wind dispersion factor at the receptor location receiving the maximum concentration. This parameter was generated by the Industrial Source Complex Long Term (ISCLT) model as described in Volume IV. The distance from the center of the site to the critical receptor location, D_{max} , used with the computation of X/F_o , was calculated as described in Volume IV.

Site-by-site comparisons of the maximum site contaminant concentrations to their corresponding cumulative Draft PPLVs were done in order to determine sites which may be considered for remedial action during the Feasibility Study. These are ranked into two categories: Priority 1 which consists of sites where available soil contaminant concentration data indicate that the maximum detected concentrations exceed the draft

Figure NCSA-1-0 Sample Exposure Summary Table

-	7	€0	4	'n	•	7	90	6	10
Contaminant	Direct PPIV	Indire	Indirect PPLV 1/	Cumulative PPLV	Direct El 5/	Indirect	Cumulative	> 3 NaC	VEI 2/ ENC 7/
Aldrin	1.16E-01	1.175+04	4.20E+01	1.16E-01	- 6.87E+02	1.91E+C0*	6.89E.02*	2.23E-06	_1.68E-03
Carbon Tetrachloride	1.52£+01	0.00E+00	0.00E+00	1.52E+01	0.00€ 400	0.00E+00	0.00E+00	6.07E-04	4.58E-01
Chlordane	1.52£+00	1.26E+06	5.17£+00	1.17E+00	5.27E+02*	F 1.55E+02*	6.81E+02 * p	-0.00E+00	0.00E+00
Chloroform	-3.11E+02	0.00£+00	0.00£+00	3.11E+02	0.00E+00	0.00E+00	0.00E+00	1.36E-05	1.02E-02
PPDDE	5.72E+00	7.07E+05	1.95E+01	4.42E+00	1.43E-02	4.21E-03	1.85E-02	1.346-07	1.02E-04
PPDDT	5.72E+00	1,49E+06	1.95E+01	4.42E+00	1.75E+00	5.14E-01	2.26E+00*	0.00E+00	0.00£+00
Dieldrin	1.22E-01	5.35E+03	1.92E+01	1.22E-01	2.45E+04	1.57E+02	2.47E+04	0.00€+00	0.00E+00
Diisopropylmethyl Phosphonate	6.77E+04	0.00E+00	0.00£+00	6.77E+04	0.00E+06	0.00E+00	0.00€+00	3.13E-10	2.37E-07
Endrin	2.54E+02	4.33E+06	1.00E+06	2.50E+02	7.88E-02	r 1.29E-03a	8.91E-2	-0.00£+00	0.00E+00
Hexachlorocyclopentadiene	3.84€+02	5.96E+01	8.346-01	8.20E-01	7.81E+00	3.65E+03	3.v6E+03*	0.00E+00	0.00E+00
Isodrin	5.92E+01	8.47E+05	3.04E+03	5.81E+01	8.45E+00	1.65E-01	\$.51E+00	0.00E+00	0.00E+00
Supona	1.27E+02	0.005+00	0.00E+00	1.27E+02	00.E+00	0.00E+00	0.001400	1,39E-12	1.051-09
Arsenic	1.61E+00	J-0.00E+00	0.005+00	1.61E+00	1.30E+01	0.00€ • 30	1.30E+01*	0.00£+00	0.00E+00
Copper	5.71E+02	0.00£+00	0,00E+00	5.71E+04	6.83E-04	0.00E+C	6.835-04	0.00E+00	0.00E+00
Mercury	4.61E+02	0.00E+00	0.00£+00	4.61E+02	2.38E-03	0.00E+00	2.38E-03	0.00E+00	0.00£+00
Zinc	1.39£+05	0.005+00	0.00F±00	1 395+05	7 17E-04	0.005+00	7.17F-04	0.005	0.005+000

ORCANICS

a This contaminant saturates the soil gas and produces a vapor flux that is below one-tenth of the critical flux. The SPPPLV 4 for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

A contaminant which saturates the soil gas but does not have an Indirect El -Contaminants with an Indirect £1 > 0.1 are denoted with an asterisk. A contaminant which saturates the soil gas will not show a VEI. Contaminants with a Direct $\{1 > 0.1\}$ are denoted with an asterisk. Lindirect PPLVs are not computed for the nonvolatile contaminants (metals). A direct PPLV will be ϵ omputed even if contaminant does not occur in the soil but only in the groundwater.

If PPLV preii ry pollutant limit value
V VEI vapor exposure index
M OSVI open space vapor inhalation PPLLV

3/ OSVI - open space vapor inhalation PPLLV 4/ ESVI - enclosed space vapor inhalation PPLV 5/ EI - exposure index

5/ El exposure index 6/ OPN open

7 OPN open 7 ENC enclosed

8/ SPPPLV - single pathway preliminary pollutant limit value

L. An enclosed space VEI may not be computed if the reported drepth to groundwater is less than 10 if it in such cases, the enclosed space VEI will have if. In our papilicable. No enclosed space VEI will be computed for lake sites. For take sites, then

e. losed space VEI will have "US" for take site.

Contaminants which occur in the groundwater, but also occur in the soil may not have a computed VEI if the contamination saturates the soil gas.

exceedance will be denoted with the footnote marker "a." The indirect PPLVs (OSV), ESVI) are set to 1,00E+06 (pure compound).

 VEIs are not computed for metals or organics of the contaminant does not occur in the groundwater.

METALS

human health based criteria, and Priority 2 which consists of sites where available soil contaminant concentration data indicate that the maximum detected concentrations do not exceed the draft human health based criteria. Site designations will be reconsidered throughout the Endangerment Assessment process as health based criteria are refined and additional data become available.

2.0 SITE-BY-SITE EXPOSURE ASSESSMENT

2.1 SITE NCSA-1a: BASIN A (formerly Site 36-1: Basin A; ESE, 1987a/RIC 87203R07 and ESE, 1988a/RIC 87203R07A)

2.1.1 Site-Specific Considerations

Figure NCSA-1a-1 and Tables NCSA-1a-1 and NCSA-1a-2 depict the target contaminants for site NCSA-1a. Borings 3041, 3042, 3199 through 3201, 3203 through 3205, 3207, 3208, 3210 through 3212, 3216 through 3229, 3231, 3232, 3234 through 3257, 3259, 3312, 3331, 3342 through 3346, 3348 through 3352, 3493 through 3499, 3500/3733, 3501 through 3503, 3504/3734, 3505 through 3515, 3516/3735, 3517 through 3529, 3530/3736, 3531,3532, 3533/3737, 3534 through 3538, 3540 through 3551, 3553 through 3559, 3626, and 3646 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-1a (ESE, 1987a/RIC 87203R07).

2.1.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-1a are shown in Figure NCSA-1a-1. The following contaminants were not included in the figure, since they were not considered target contaminants during the Phase I and Phase II investigations: Methyl cyclohexane, occurring in Borings 3503 (7-8 ft); methylphosphonic acid, occurring in Boring 3546 (4-5 ft); hexachlorobutadiene, occurring in Boring 3503 (7-8 ft); oxybisethanol, occurring in Borings 3205 (7-8 ft), 3207 (0-1, 4-5 and 8-9 ft), 3211 (0-1 and 3-4 ft), 3216 (0-1 ft), 3221 (0-1 ft), 3223 (0-1 ft), 3229 (0-1 and 4-5 ft), 3240 (0-1 ft), 3241 (0-1 ft), 3245 (0-1 ft), 3246 (0-1 and 4-5 ft), 3249 (0-1 ft), and 3250 (0-1 and 4-5 ft); phosphoric acid, triphenyl ester, occurring in Borings 3199 (0-1, 4-5, and 9-10 ft), 3200 (4-5 ft), 3201 (0-1 and 4-5 ft), 3207 (4-5 ft), 3242 (4-5 ft), 3243 (0-1 ft), 3248 (0-1 ft), and 3256 (0-1 and 3-4 ft); and tetrachlorobenzene, occurring in Boring 3350 (0-1 ft). Although not shown on this figure, these nontargets were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-1a-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and certified reporting limits (CRLs) for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-1a-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.1.3 Site Exposure Summary

Tables NCSA-1a-3 through NCSA-1a-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-1a is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Chlordane	Direct	Direct	Direct	Direct	Direct
PPDDE	Direct	Direct	Direct	Direct	Direct
PPDDT	Direct	Direct	Direct	Direct	Direct
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Fluoroacetic acid	Direct	Direct	Direct	Direct	Direct
Arsenic	Direct	Direct	Direct	Direct	Direct
Cadmium			Direct		Direct
Isodrin			Direct	Direct	Direct
Chromium	Direct	Direct	Direct	Direct	Direct
Benzene				Indirect	Indirect
Dicyclopentadiene				Indirect	Indirect
Hexachlorocyclo-					
pentadiene				Indirect	Dir/Ind
Methylene chloride				Indirect	Indirect
Tetrachloroethylene				Indirect	Indirect
Trichloroethylene				Indirect	Indirect
Mercury			Direct	Direct	Direct

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Chlorobenzene Endrin			 		Indirect Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-1a is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Trichloroethylene (enclosed)
- Methylene chloride (enclosed)
- Dicyclopentadiene (enclosed)
- 1,1-Dichloroethylene (enclosed)
- Chloroform (enclosed)
- Chlorobenzene (enclosed)
- Benzene (enclosed)
- Carbon tetrachloride (enclosed)

TABLE NCSA-1a-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-1a

		Horizon 1			orizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	400	0-1	3343	400	0-1	3343
Benzene	1.6	7-8	3503	1.6	7-8	3503
Chlordane	400	0-1	3208	400	0-1	3208
		0-1	3346		0-1	3346
Chlorobenzene	4.4	7-8	3503	4.4	7-8	3503
Chloroform	0.27	7-8	3509	0.27	7-8	3509
Chlorophenylmethyl sulfide	5.3	1-2	3532	5.3	1-2	3532
Chlorophenylmethyl sulfone	2	0-1	3343	2	0-1	3343
•		0-1	3342		0-1	3342
Chlorophenylmethyl sulfoxide	9	0-1	3204	9	0-1	3204
PPDDÉ	10	0-1	3346	10	0-1	3346
PPDDT	09	0-1	3346	09	0-1	3346
Dibromochloropropane	0.007	0-1	3201	0.007	0-1	3201
Dicyclopentadiene	С	2-3	3537	т	2-3	3537
Dieldrin	700	0-1	3346	200	0-1	3346
Diisopropylmethyl phosphonate	10	0-1	3256	10	0-1	3256
		9-9	3244		2-6	3244
Dithiane	0.80	0-1	3346	08.0	0-1	3346
Endrin	06	0-1	3208	06	0-1	3208
Ethylbenzene	7.2	2-3	3503	7.2	2-3	3503
Fluoroacetic acid	21	4-5	3514	21	4-5	3514
Hexachlorobutadiene"	0.6	7-8	3503	0.6	7-8	3503
Hexachlorocyclopentadiene	100	0-1	3346	100	0-1	3346
Isodrin	49	0-1	3500/3733	49	0-1	3500/3733
Isopropylmethyl phosphonic acid	4.9	4-5	3546	4.9	4-5	3546
Methyl cyclohexane"	30	7-8	3503	30	7-8	3503
•						

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 1

TABLE NCSA-1a-1 (Continued)
SOIL CONTAMINANT CONCENTRATIONS
FOR SITE NCSA-1a

		Horizon 1		1	Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Methylene chloride	2	2-6	3244	7	2-6	3244
Methyl phosphonic acid"	35	4-5	3546	35	4-5	3546
Oxybisethanol ¹⁷	8.0	3-4	3211	8.0	3-4	3211
Phosphoric acid, triphenyl	20	0-1	3243	20	0-1	3243
ester"		0-1	3256		0-1	3256
Tetrachlorobenzene ¹⁷	1.0	0-1	3350	1.0	0-1	3350
Tetrachloroethylene	3.3	2-3	3503	3.3	2-3	3503
Toluene	0.89	7-8	3503	0.89	7-8	3503
Trichloroethylene	1.1	7-8	3503	1.1	7-8	3503
m-Xylene	13	2-3	3503	13	2-3	3503
o,p-Xylene	13	2-3	3503	13	2-3	3503
Arsenic	1100	0-1	3348	1	;	;
Cadmium	8.2	2-3	3508	1	;	;
Chromium	100	0-1	3243	:	;	;
Copper	210	0-1	3342	1	į,	;
Lead	120	0-1	3351	;	:	1
Mercury	250	2-3	3503	;	;	;
Zinc	190	0-1	3351	:	;	:

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 2

TABLE NCSA-1a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1a

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	88	36076	02/8/88
1,1,2-TRICHLOROETHANE	98	36168	01/5/89
1,1-DICHLOROETHYLENE	2.0	36076	02/8/88
1,1-DICHLOROETHANE	74	36168	01/5/89
1,2-DICHLOROETHYLENE	90	36168	01/5/89
1,2-DICHLOROETHANE	50	36019	02/9/88
M-XYLENE	3.9	36177	10/28/87
ALDRIN	5.9	36177	05/10/88
ATRAZINE	34	36076	01/6/89
BICYCLOHEPTADIENE	2.7	36082	02/9/88
BENZOTHIAZOLE	26	36177	10/28/87
BENZENE	12000	36076	01/6/89
CARBON TETRACHLORIDE	12	36177	10/28/87
METHYLENE CHLORIDE	33000	36076	01/6/89
CHLOROFORM	3900000	36168	05/11/88
HEXACHLOROCYCLOPENTADIENE	1.2	36168	01/5/89
CHLOROBENZENE	26000	36076	02/8/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-1a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1a

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
CHLORDANE	. 11	36177	01/6/89
CHLOROPHENYLMETHYL SULFIDE	30	36177	10/28/87
CHLOROPHENYLMETHYL SULFOXID	E 50	36168	01/5/89
CHLOROPHENYLMETHYL SULFONE	1300	36076	01/6/89
DIBROMOCHLOROPROPANE	30	36168	05/11/88
DICYCLOPENTADIENE	67	36168	01/5/89
VAPONA	190	36168	01/5/89
DIISOPROPYLMETHYL PHOSPHONA	TE 9100	36177	10/28/87
DITHIANE	5500	36177	01/6/89
DIELDRIN	1.2	36177	01/6/89
DIMETHYL DISULFIDE	14	36168	05/11/88
DIMETHYLMETHYL PHOSPHONATE	24	36177	01/6/89
ENDRIN	0.33	36084	01/6/89
ETHYLBENZENE	9.2	36177	10/28/87
ISODRIN	3.2	36084	01/6/89
TOLUENE	120	36168	01/5/89
METHYLISOBUTYL KETONE	4100	36168	05/11/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-1a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1a

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
MALATHION	. 89	36177	01/6/89
1,4-OXATHIANE	420	36081	02/9/88
PPDDE	0.75	36084	01/6/89
PPDDT	1.1	36177	01/6/89
PARATHION	4.1	36076	01/6/89
SUPONA	2.9	36076	01/6/89
TETRACHLOROETHYLENE	77	36168	01/5/89
TRICHLOROETHYLENE	2100	36168	01/5/89
O, P-XYLENE	24	36177	10/28/87

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-1a-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPA
ALDRIN	1.5E+00	1.0E+06	1.5E+00	2.7E+02*	2.0E-05a	2.7E+02*	0.0E+00
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-15
BENZENE	8.6E+02	1.5E+05	8.6E+02	1.9E-03	1.1E-05	1.9E-03	1.5E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-10
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-10
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-0
CHLORDANE	2.0E+01	1.0E+06	2.0E+01	2.0E+01*	1.9E-07a	2.0E+01*	0.0E-00
CHLOROBENZENE	1.6E+05	9.5E+06	1.6E+05	2.7E-05	4.6E-07	2.8E-05	2.9E-0
CHLOROFORM	4.0E+03	2.2E+06	4.0E+03	6.7E-05	1.2E-07	6.7E-05	7.5E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	1.8E+08	1.6E+05	3.2E-05	2.9E-08	3.2E-05	1.3E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	3.2E+08	1.6E+05	1.2E-05	6.2E-09	1.2E-05	7.0E-11
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	3.6E+08	1.6E+05	3.7E-05	1.7E-08	3.7F-05	5.1E-17
PPDDE	7.4E+01	1.2E+09	7.4E+01	1.4E-01*	8.3E-09	1.4E-01*	7.4E-1
PPDDT	7.4E+01	1.0E+06	7.4E+01	8.2E-01*	2.4E-08a	8.2E-01*	0.0E+0
DIBROMOCHLOROPROPANE	1.8E+01	1.3E+04	1.8E+01	3.9E-04	5.6E-07	3.9E-04	8.0E-0
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.65-1
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+30	3.6E-0
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	5.7E-0
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	5.4E+04	3.2E+05	4.6E+04	5.5E-05	9.5E-06	6.5E-05	2.6E-0
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	4.4E+02*	7.7E-05a	4.4E+02*	0.0E+0
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	7.7E+07	6.6E+05	1.5E-05	1.3E-07	1.5E-05	2.7E-0
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-0
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.05+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	8.3E+04	0.0E+00	8.3E+04	9.7E-06	0.0E+00	9.7E-06	0.0E+0
ENDRIN	2.5E+03	1.0E+06	2.5E+03	3.6E-02	1.2E-08a	3.6E-02	0.0E+0
ETHYLBENZENE	8.3E+05	2.5E+08	8.2E+05	8.7E-06	2.9E-08	8.7E-06	8.2E-1
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	5.4E-31*	0.0E+00	5.4E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	1.0E+06	1.7E+04	6.0E-03	1.3E-05a	6.0E-03	0.0E+00
ISODRIN	5.8E+02	1.0E+06	5.8E+02	8.5E-02	3.4E-08a	8.5E-02	0.06+00
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+06	0.0E+00	2.5E+06	2.0E-06	0.0E+00	2.0E-06	0.0E+00
MALATHION	1.7E+05	0. 0 E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	5.2E-14
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	3.5E-09
METHYLENE CHLORIDE	3.3E+03	3.2E+05	3.2E+03	6.1E-04	6.3E-06	6.2E-04	8.5E-05
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	5.6E-14
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-15
TETRACHLOROETHYLENE	5.1E+02	2.0E+06	5.1E+02	6.4E-03	1.6E-06	6.5E-03	4.5E-07
FOLUENE	2.5E+06	1.1E+09	2.5E+06	3.6E-07	8.2E-10	3.6E-07	2.4E-10
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	6.9E-10
1,1,2-TRICHLGROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	5.0E-07
TRICHLOROETHYLENE	2.3E+03	9.4E+05	2.3E+03	4.8E-04	1.2E-06	4.8E-04	2.4E-05
/APONA	8.6E+01	0.0E+00	8.6E+01	0. 0E+ 00	0.0E+00	0.0E+00	9.1E-10
1-XYLENE	1.4E+07	1.5E+09	1.4E+07	9.1E-07	8.9E-09	9.2E-07	4.8E-11
D,P-XYLENE	1.4E+07	1.5E+09	1.4E+07	9.1E-07	8.9E-09	9.2E-07	2.9E-10

NCSA-1a-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ARSENIC	2.2E+01	0.0E+00	2.2E+01	5.1E+01*	0.0E+00	5.1E+01*	0.0E+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	1.8E-02	0.0E+00	1.8E-02	0.0E+00
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	1.4E+00*	0.0E+00	1.4E+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	5.0E-04	0.0E+00	5.0E-04	0.0E+00
LEAD	1.5E+04	0.05+00	1.5E+04	7.8E-03	0.0E+00	7.8E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	7.6E-02	0.0E+00	7.6E-02	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	9.6E-05	0.0E+00	9.6E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-1a-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE	VE I OPN
ALDRIN	1.5E+00	1. 0 E+06	1.5E+00	2.7E+02*	2.0E-05a	2.7E+02*	0.0E+00
ATRAZ1NE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-15
BENZENE	8.6E+02	1.5E+05	8.6E+02	1.9E-03	1.1E-05	1.9E-03	1.5E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-10
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-10
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-06
CHLORDANE	2.0E+01	1.0E+06	2.0E+01	2.0E+01*	1.9E-07a	2.0E+01*	0.0E+00
CHLOROBENZENE	1.6E+05	9.5E+06	1.6E+05	2.7E-05	4.6E-07	2.8E-05	2.9E-06
CHLOROFORM	4.0E+03	2.2E+06	4.0E+03	6.7E-05	1.2E-07	6.7E-05	7.5E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	1.8E+08	1.6E+05	3.2E-05	2.9E-08	3.2E-05	1.3E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	3.2E+08	1.6E+05	1.2E-05	6.2E-09	1.2E-05	7.0E-11
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	3.6E+08	1.6E+05	3.7E-05	1.7E-08	3.7E-05	5.1E-12
PPDDE	7.4E+01	1.2E+09	7.4E+01	1.4E-01*	8.3E-09	1.4E-01*	7.4E-10
PPDDT	7.4E+01	1.0E+06	7.4E+01	8.2E-01*	2.4E-08a	8.2E-01*	0.05+00
DIBROMOCHLOROPROPANE	1.8E+01	1.3E+04	1.8E+01	3.9E-04	5.6E-07	3.9E-04	8.0E-07
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.6E-10
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.6E-07
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.00+30.0	0.0E+00	0.0E+00	5.7E-06
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00 5.5E-05	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	3.2E+05	4.6E+04		9.5E-06 7.7E-05a	6.5E-05 4.4E+02*	2.6E-06
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	4.4E+02*	1.3E-07	1.5E-05	0.0E+00 2.7E-09
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	7.7E+07	6.6E+05 6.7E+04	1.5E-05 0.0E+00	0.0E+00	0.0E+00	1.6E-09
DIMETHYLDISULFIDE DIMETHYMETHYL PHOSPHONATE	6.7E+04	0.0E+00 0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	1.5E+05 8.3E+04	0.0E+00	8.3E+04	9.7E-06	0.0E+00	9.7E-06	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	3.6E-02	1.2E-08a	3.6E-02	0.0E+00
ETHYLBENZENE	8.3E+05	2.5E+08	8.2E+05	8.7E-06	2.9E-08	8.7E-06	8.2E-11
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	5.4E-01*	0.0E+00	5.4E-01*	0.0E+00
HEXACHLOROCYCLOPENTADIENE	1.7E+04	1.0E+06	1.7E+04	6.0E-03	1.3E-05a	6.0E-03	0.0E+00
ISODRIN	5.6E+02	1.0E+06	5.8E+02	8.5E-02	3.4E · 38a	8.5E-02	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID		0.0E+00	2.5E+06	2.0E-06	0.0E+00	2.0E-06	0.0E+00
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	5.2E-14
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	3.5E-09
METHYLENE CHLORIDE	3.3E+03	3.2E+05	3.2E+03	6.1E-04	6.3E-06	6.2E-04	8.5E-05
1,4-OXATHIANE	2.5E+05	0.0E+C0	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+90
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	5.6E-14
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-15
TETRACHLOROETHYLENE	5.1E+02	2.0E+06	5.1E+02	6.4E-03	1.6E-06	6.5E-03	4.5E-07
TOLUENE	2.5E+06	1.1E+09	2.5E+06	3.6E-07	8.2E-10	3.6E-07	2.4E-10
1,1,1-TRICHLOROETHANE	7.5F+05	0.0E+00	7.5E+05	0.06+00	0.0E+00	0.0E+00	6.9E-10
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	5.0E-07
TRICHLOROETHYLENE	2.3E+03	9.4E+05	2.3E+03	4.8E-04	1.2E-06	4.8E-04	2.4E-05
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.08+00	0.0E+00	0.0E+00	9.1E-10
M-XYLENE	1.4E+07	1.5E+09	1.4E+07	9.1E-07	8.9E-09	9.2E-07	4.8E-11
O,P-XYLENE	1.4E+07	1.5E+09	1.4E+07	9.1E-07	8.9E-09	9.2E-07	2.9E-10

NCSA-1a-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
ARSENIC	2.2E+01	0.0E+00	2.2E+01	5.1E+01*	0.0E+00	5.1E+01*	0.0E+00
CADHIUM	4.5E+02	0.0£+00	4.5E+02	1.8E-02	0.0E+00	1.8E-02	0.0E+00
CHROM1UM	6.9E+01	0.0E+00	6.9E+01	1.4E+00*	0.0E+00	1.4E+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	5.0E-04	0.0E+00	5.0E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	7.8E-03	0.0E+00	7.8E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	7.6E-02	0.0E+00	7.6E-02	0.0E+00
ZINC	2.0E+06	0. 0E+0 0	2.0E+06	9.6E-05	0.0E+00	9.6E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-1a-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

	DIRECT	INDIRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VE I
CONTAMINANT	PPLV	PPLV	PPLV	ΕI	ΕI	ΕI	OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	2.1E-01	1.0E+06	2.1E-01	1.9E+03*	3.0E-04a	1.9E+03*	0.0E+00
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.00+30.0	9.5E-15
BENZENE	1.2E+02	2.3E+04	1.2E+02	1.3E-02	6.8E-05	1.3E-02	2.3E-03
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	9.2E-10
BICYCLOHEPTADIENE	1.4E+05	0.06+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	1.8E-09
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	4.0E-05
CHLORDANE	2.7E+00	1. 0 E+06	2.7E+00	1.5E+02*	2.8E-06a	1.5E+02*	0.0E+00
CHLOROBENZENE	6.8E+04	3.4E+06	6.7E+04	6.4E-05	1.3E-06	6.6E-05	1.9E-05
CHLOROFORM	5.6E+02	3.5E+05	5.6E+02	4.8E-04	7.8E-07	4.8E-04	1.1E-01
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	6.5E+07	7.0E+04	7.6E-05	8.1E-08	7.6E-05	8.7E-10
CHLOROPHENYLMETHYL SULFONE	7.0E+04	5.0E+07	7.0E+04	2.9E-05	4.0E-08	2.9E-05	4.5E-10
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	1.3E+08	7.0E+04	8.6E-05	4.6E-08	8.6E-05	3.3E-11
PPDDE	1.0E+01	8.0E+07	1.0E+01	9.8E-01*	1.3E-07	9.8E-01*	1.1E-08
PPDDT	1.0E+01	1.0E+06	1.0E+01	5.9E+00*	3.6E-07a	5.9E+00*	0.0E+00
DIBROMOCHLOROPROPANE	2.5E+00	1.9E+03	2.5E+00	2.8E-03	3.6E-06	2.8E-03	1.2E-05
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0+30.0	0.0E+00	0.0E+00	3.9E-09
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	5.4E-06
1,1-DICHLOROETHYLENE	5.9E+00	0.0E+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	8.6E-05
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.8E+04	1.1E+05	1.6E+04	1.6E-04	2.6E-05	1.9E-04	1.7E-05
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	3.2E+03*	1.2E-03a	3.2E+03*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	5.2E+07	2.8E+05	3.6E-05	1.9E-07	3.6E-05	1.7E-08
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-08
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	2.3E-05	0.0E+00	2.3E-05	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	8.5E-02	7.9E-08a	8.5E-02	0.0E+00
ETHYLBENZENE	3.5E+05	9.1E+07	3.5E+05	2.0E-05	7.9E-08	2.1E-05	5.3E-10
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	1.3E+00*	0.0E+00	1.3E+00*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	1.0E+06	5.6E+03	1.8E-02	8.4E-05a	1.8E-02	0.0E+00
ISODRIN	2.5E+02	1.0E+06	2.5E+02	2.0E-01*	2.2E-07a	2.0E-01*	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	1.1E+06	0.0E+00	1.1E+06	4.6E-06	0.0E+00	4.6E-06	0.0E+00
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-13
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	2.2E-08
METHYLENE CHLORIDE	4.5E+02	4.9E+04	4.5E+02	4.4E-03	4.1E-05	4.4E-03	1.3E-03
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-13
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	8.6E-15
TETRACHLOROETHYLENE	7.1E+01	3.1E+05	7.1E+01	4.6E-02	1.1E-05	4.6E-02	6.7E-06
TOLUENE	1.1E+06	3.9E+08	1.1E+06	8.4E-07	2.3E-09	8.4E-07	1.5E-09
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	C.0E+00	4.4E-09
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	7.5E-06
TRICHLOROETHYLENE	3.2E+02	1.4E+05	3.2E+02	3.5E-03	7.6E-06	3.5E-03	3.6E-04
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	1.4E-08
M-XYLENE	5.8E+06	5.9E+07	5.3E+06	2.2E-06	2.2E-07	2.5E-06	3.1E-10
O,P-XYLENE	5.8E+06	5.9E+07	5.3E+06	2.2E-06	2.2E-07	2.5E-06	1.9E-09

NCSA-1a-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI EI	VE 1 OPN
ARSENIC	3.9E+00	0.0E+00	3.9E+00	2 8E+02*	0.0E+00	2.8E+G2*	0.0€+00
CADMIUM	5.8E+01	0.0E+00	5.8E+01	1.4E-01*	0.0E+00	1.4E-01*	0.0E+00
CHROM1UM	8.8E+00	0.0E+00	8.8E+00	1.1E+01*	0.08+00	1.1E+01*	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	8.5E-04	0.0E+00	8.5E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	1.3E-02	0.06+00	1.3E-02	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	1.3E-01*	0.0E+00	1.3E-01*	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.8E-04	0.0E+00	1.8E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1a-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I
ALDRIN	1.9E+00	4.0E-01	3.3E-01	2.1E+02*	1.0E+03*	1.2E+03*	0.0E+00
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0€+00	1.3E-09
BENZENE	1.1E+93	4.1E-01	4.1E-01	1.5E-03	3.9E+00*	3.9E+00*	4.7E+01
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-04
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	2.5E-04
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	8.0E-01
CHLORDANE	2.5E+01	1.0E+06	2.5E+01	1.6E+01*	2.9E-02a	1.6E+01*	0. 0E+0 0
CHLOROBENZENE	8.8E+04	5.2E+01	5.2E+01	5.0E-05	8.4E-02	8.5E-02	2.6E+00
CHLOROFORM	5.1E+03	5.4E+00	5.4E+00	5.3E-05	5.0E-02	5.0E-02	2.3E+03
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	1.9E+04	1.6E+04	5.8E-05	2.8E-04	3.4E-04	1.2E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	6.5E+02	6.5E+02	2.2E-05	3.1E-03	3.1E-03	6.3E-05
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	1.9E+04	1.6E+04	6.6E-05	3.2E-04	3.88-04	4.6E-06
PPDDE	9.3E+01	7.6E+03	9.2E+01	1.1E-01*	1.3E-03	1.1E-01*	2.2E-04
PPDDT	9.3E+01	1.0E+06	9.2E+01	6.4E-01*	3.7E-03a	6.5E-01*	0.0E+00
DIBROMOCHLOROPROPANE	2.3E+01	4.8E+00	3.9E+00	3.1E-04	1.5E-03	1.8E-03	2.4E-01
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	7.8E-05
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-01
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0E+00	0.0E+00	1.7E+00
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.7E+04	9.7€-01	9.7E-01	1.7E-04	3.1E+00*	3.1E+00*	2.4E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	3.5E+02*	1.2E+01*	3.6E+02*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	1.6E+02	1.6E+02	2.7E-05	6.1E-02	6.1E-02	2.4E-03
DIMETHYLDISULFIDE	3.7E+04	0.GE+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-03
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	1.7E-05	0.0E+00	1.7E-05	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	6.5E-02	5.8E-03a	7.1E-02	0.0E+00
ETHYLBENZENE	4.6E+05	2.8E+02	2.8E+02	1.6E-05	2.5E-02	2.5E-02	7.4E-05
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	9.7E-01*	0.0E+00	9.7E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	1.6E+01	1.6E+01	1.8E-02	6.2E+00*	6.2E+00*	0.0E+00
ISODRIN	3.2E+02	1.0E+06	2.9E+02	1.5E-01*	1.6E-02a	1.7E-01*	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	1.4E+06	0.0E+00	1.4E+06	3.6E-06	0.0E+00	3.6E-06	0.0E+00
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	4.7E-08
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	3.1E-03
METHYLENE CHLORIDE	4.1E+03	8.5E-01	8.5E-01	4.9E-04	2.3E+00*	2.3E+00*	2.6E+01
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	5.1E-08
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-09
TETRACHLOROETHYLENE	6.5E+02	6.3E+00	6.2E+00	5.1E-03	5.2E-01*	5.3E-01*	1.3E-01
TOLUENE	1.4E+06	9.8E+02	9.8E+02	6.4E-07	9.1E-04	9.1E-04	2.1E-04
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	6.2E-04
1,1,2-TRICHLORDETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.06+00	1.5E-01
TRICHLOROETHYLENE	2.9E+03	2.2E+00	2.2E+00	3.8E-04	5.0E-01*	5.0E-01*	7.1E+00
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-04
M-XYLENE	7.0E+06	3.0E+03	3.0E+03	1.9E-06	4.4E-03	4.4E-03	4.3E-05
O,P-XYLENE	7.0E+06	3.0E+03	3.0E+03	1.9E-06	4.4E-03	4.4E-03	2.7E-04

NCSA-1a-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I ENC
ARSENIC	2.0E+01	0.0E+00	2.0E+01	5.5E+01*	0.0E+00	5.5E+01*	0.0E+00
CADHIUM	3.6E+02	0.0E+00	3.6E+02	2.3E-02	0.0E+00	2.3E-02	0.0€+00
CHROMIUM	5.5E+01	0.0E+00	5.5E+01	1.8E+00*	0.0E+00	1.8E+00*	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	1.2E-03	0.0E+00	1.2E-03	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.8E-02	0.0E+00	1.86-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.8E-01*	0.0E+00	1.8E-01*	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	2.4E-04	0.0E+00	2.4E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-1a-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VEI
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	El	ΕI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	2.6E+06	4.0E-01	9.0E-02	3.4E+03*	1.0E+03*	4.4E+03*	0.0E+00	0.0E+00
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-14	1.3E-09
BENZENE	6.7E+01	2.0E+04	4.1E-01	4.1E-01	2.4E-02	3.9E+00*	3.9E+00*	1.2E-03	1.4E+02
8ENZOTH1AZOLE	4.0E+03	0.0E+00	0.08+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-09	1.3E-04
BICYCLOHEPTADIENE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-09	2.5E-04
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	2.0E-05	2.4E+00
CHLORDANE	1.5E+00	1.0E+06	1.0E+06	1.5E+00	2.6E+02*	8.8E-02a	2.6E+02*	0.0E+00	0.0€+00
CHLOROBENZENE	1.5E+04	1.3E+06	2.6E+01	2.6E+01	2.9E-04	1.7E-01*	1.7E-01*	2.1E-05	2.6E+00
CHLOROFORM	3.1E+02	3.0E+05	5.4E+00	5.3E+00	8.7E-04	5.0E-02	5.1E-02	5.6E-02	6.8E+03
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	2.4E+07	5.7E+04	1.3E+04	3.2E-04	9.3E-05	4.1E-04	1.0E-09	1.2E-04
CHLOROPHENYLMETHYL SULFONE	1.7E+04	4.3E+07	2.0E+03	1.8E+03	1.2E-04	1.0E-03	1.1E-03	5.2E-10	6.3E-05
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	4.8E+07	5.7E+04	1.3E+04	3.6E-04	1.1E-04	4.6E-04	3.9E-11	4.6E-06
PPODE	5.7E+00	1.6E+08	2.5E+03	5.7E+00	1.7E+00*	3.9E-03	1.8E+00*	5.5E-09	6.7E-04
PPDDT	5.7E+00	1.0E+06	1.0E+06	5.7E+00	1.0E+01*	1.1E-02a	1.0E+01*	0.0E+00	0.0E+00
DIBROMOCHLOROPROPANE	1.4E+00	1.7E+03	4.8E+00	1.15+00	5.0E-03	1.5E-03	6.5E-03	6.0E-06	7.2E-01
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.08-09	2.4E-04
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	2.7E-06	3.2E-01
1,1-DICHLOROETHYLENE	3.2E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	4.3E-05	5.2E+00
1,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.2E+03	4.2E+04	2.9E+00	2.9E+00	2.6E-03	1.0E+00*	1.0E+00*	2.0E-05	2.4E+00
DIELDRIN	1.2E-01	1.2E+06	1.9E+01	1.2E-01	5.7E+03*	3.6E+01*	5.8E+03*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	1.0E+07	1.6E+02	1.6E+02	1.5E-04	6.1E-02	6.2E-02	2.0E-08	2,4E-03
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-08	1.5E-03
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	9.5E-05	0.0E+00	9.5E-05	0.0E+00	0.0E+00
ENDRIN	2.5E+02	1.0E+06	1.0E+06	2.5E+02	3.5E-01*	5.8E-03a	3.6E-01*	0.0E+00	0.0E+00
ETHYLBENZENE	8.5E+04	3.4E+07	8.5E+02	8.4E+02	8.5E-05	8.5E-03	8.6E-03	6.2E-10	7.4E-05
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	5.3E+00*	0.0E+00	5.3E+00*	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	1.0E+06	1.6E+01	1.6E+01	2.6E-01*	6.2E+00*	6.4E+00*	0.0E+00	0.0E+00
ISODRIN	5.9E+01	1.0E+06	1.0E+06	5.8E+01	8.3E-01*	1.6E-02a	8.4E-01*	0.0E+00	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+05	0.0E+00	0.0E+00	2.5E+05	1.9E-05	0.0E+00	1.9E-05	0.0E+00	0.0E+00
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.9E-13	4.7E-08
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-08	3.1E-03
METHYLENE CHLORIDE	2.5E+02	4.2E+04	8.5E-01	8.5E-01	8.1E-03	2.3E+00*	2.4E+00*	6.4E-04	7.7E+01
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.1E+03	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	4.2E-13	5.1E-08
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	9.9E-15	1.2E-09
TETRACHLOROETHYLENE	4.1E+01	2.7E+05	6.3E+00		8.0E-02	5.2E-01*	6.0E-01*	3.3E-06	4.0E-01
TOLUENE	2.6E+05	1.4E+08	2.9E+03	2.9E+03	3.4E-06	3.0E-04	3.1E-04	1.8E-09	2.1E-04
	7.8E+04	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	5.2E-09	6.2E-04
	3.4E+01	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	3.7E-06	4.5E-01
	1.8E+02	1.2E+05	2.2E+00		6.3E-03	5.0E-01*	5.0E-01*	1.8E-04	2.1E+01
	6.7E+00	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	6.8E-09	8.2E-04
	8.8E+05	1.9E+08	4.4E+02		1.5E-05	2.9E-02	2.9E-02	3.6E-10	4.3E-05

NCSA-1a-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VE 1
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	ΕI	EI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	6.8E+02*	0.0E+00	6.8E+02*	0.0E+00	0.0E+00
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	1.1E+00*	0.0E+00	1.1E+00*	0.0E+00	0.0E+00
CHROMIUM	1.1E+00	0.0E+00	0.0E+00	1.1E+00	8.7E+01*	0.0E+00	8.7E+01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	3.7E-03	0.0E+00	3.7E-03	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	5.5E-02	0.0E+00	5.5E-02	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	5.4E-01*	0.0E+00	5.4E-01*	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	1.4E-03	0.0E+00	1.4E-03	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.2 SITE NCSA-1b: LIME SETTLING BASINS (formerly Site 36-4: Lime Settling Basins; ESE, 1987b/RIC 87203R02 and ESE, 1988b/RIC 87203R02A; Site 36-5: Mercury Spill, ESE, 1988cc/RIC 88063R01; Site 36-10: Pit; ESE, 1988g/RIC 88033R02)

2.2.1 Site-Specific Considerations

Figure NCSA-1b-1 and Tables NCSA-1b-1 and NCSA-1b-2 depict the target contaminants for site NCSA-1b. Borings 3049, 3163 through 3172, 3203, 3206, 3413, 3414, 3416, 3418 through 3422, 3424 through 3429, 3492 and 3730 through 3732 from Site 36-4; 3146 and 3149 from Site 36 through 10; and 3133 through 3137, 3139, and 3140 from Site 36-5, were included in this exposure assessment, consistent with the North Central SAR. The historical search conducted under the contamination assessment revealed that mustard may have been disposed of on this site (ESE, 1987b/RIC 87203R02); however, mustard and its degradation products were not detected in soil during the Phase I and Phase II investigations. According to site history, no other chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-1b (ESE, 1987b/RIC 87203R02).

2.2.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-1b are shown in Figure NCSA-1b-1. Toluene, occurring in Boring 3167 (2-3 ft), was not included in this figure because it was detected in the nontarget analysis, but it is still considered a target contaminant for this exposure assessment (see Appendix A). The following contaminants were not included in this figure, since they were not considered target contaminants during the Phase I and Phase II investigations: 2-Butoxyethanol, occurring in Boring 3171 (2-3 ft); fluoranthene, occurring in Borings 3168 (0-1 ft) and 3421 (2-3 and 6-7 ft); hexachlorobutadiene occurring in Boring 3421 (2-3 ft); methyl naphthalene occurring in Boring 3168 (4-5 ft); methylphosphonic acid occurring in Boring 3732 (4-5 ft); oxybisethanol occurring in Borings 3167 (0-1 ft), 3169 (2-3 ft), and 3171 (2-3 ft); phosphoric acid, triphenyl ester occurring in Borings 3163 (0-1 and 2-3 ft), 3167 (0-1 and 2-3 ft), 3169 (0-1 ft) and 3171 (0-1 and 2-3 ft); and pyrene occurring in Borings 3168 (0-1 ft) and 3421 (2-3 and 6-7 ft). Although not shown on this figure, 2-butoxyethanol, fluoranthene, hexachlorobutadiene, methyl naphthalene, methylphosphonic

acid, oxybisethanol, phosphoric acid, triphenyl ester, and pyrene were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO 1988a/RIC 88357R01).

Table NCSA-1b-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-1b-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.2.3 Site Exposure Summary

Tables NCSA-1b-3 through NCSA-1b-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-1b is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Chloroform					Cumulative
Aldrin	Direct	Direct	Dir/Ind	Dir/Ind	Dir/Ind
Chlordane	Direct	Direct	Direct	Direct	Dir/Ind
PPDDE	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Fluoroacetic acid	Direct	Direct	Direct	Direct	Direct
Isodrin	Direct	Direct	Direct	Direct	Direct
Arsenic	Direct	Direct	Direct	Direct	Direct
PPDDT			Direct	Indirect	Dir/Ind
Benzene				Indirect	Indirect
Dibromochloropropane				Indirect	Indirect
Methylene chloride				Indirect	Indirect

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Endrin					Direct
Cadmium					Direct
Lead					Direct
Mercury	**				Direct
Dicyclopentadiene				Indirect	••

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. It should be noted for chloroform, the cumulative EI exceeds 0.1 for an industrial worker but the direct and indirect EIs do not exceed 0.1. Site NCSA-1b is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Chloroform (open, enclosed)
- Methylene chloride (enclosed)
- Carbon tetrachloride (enclosed)
- Trichloroethylene (enclosed)

TABLE NCSA-1b-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-1b

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	900	0-1	3172	009	0-1	3172
Benzene	9	4-5	3167	9	4-5	3167
2-Butoxvethanol ^{1/}	3.0	2-3	3171	3.0	2-3	3171
Chlordane	30	0-1	3165	30	0-1	3165
Chlorobenzene	7	4-5	3167	2	4-5	3167
Chloroform	7	4-5	3167	7	4-5	3167
		2-3	3171		2-3	3171
Chlorophenylmethyl sulfide	20	4-5	3168	20	4-5	3168
Chlorophenylmethyl sulfone	20	4-5	3168	20	4-5	3168
Chlorophenylmethyl sulfoxide	10	4-5	3166	10	4-5	3166
$PPDD\dot{E}^{u}$	25	4-5	3413	25	4-5	3413
PPDDT"	7	0-1	3171	7	0-1	3171
Dibromochloropropane	0.023	L-9	3428	0.023	L-9	3428
Dicyclopentadiene	7.1	2-3	3421	7.1	2-3	3421
Dieldrin	120	4-5	3413	120	4-5	3413
Endrin	40	Comp⁴′	3049	40	Comp	3049
		0-1,			0-1, • •	
:		6-5 0-6	,	•	ት የ	
Fluoranthene"	001	2-3	3421	901	2-3	3421
Fluoroacetic acid	260	2-9	3422	760	2-9	3422
Hexachlorobutadiene"	2.0	2-3	3421	2.0	2-3	3421
Hexachlorocyclopentadiene	0.50	2-3	3413	0.50	2-3	3413
Isodrin	300	4-5	3166	300	4-5	3166
Methylene chloride	2	4-5	3164	2	4-5	3164
Methyl napththalene"	9.0	4-5	3168	9.0	4-5	3168
Methyl phosphonic acid"	>400	4-5	3732	>400	4-5	3732

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 3

TABLE NCSA-1b-1 (Continued)
SOIL CONTAMINANT CONCENTRATIONS
FOR SITE NCSA-1b

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Oxvbisethanol"	4.0	2-3	3171	4.0	2-3	3171
Phosphoric acid, triphenyl	10	0-1	3163	10	0-1	3163
ester"		2-3	3163		2-3	3163
Pyrene ^{1/}	100	2-3	3421	100	2-3	3421
Tetrachloroethylene	0.25	L-9	3422	0.25	<i>L</i> -9	3422
Toluene	4.0	2-3	3167	4.0	2-3	3167
Arsenic	370	4-5	3167	ţ	ļ	:
Cadmium	3.7	4-5	3167	;	;	:
Copper	270	4-5	3168	;	;	1
Lead	230	4-5	3168	:	;	ŀ
Mercury	110	2-3	3421	!	1	1
Zinc	500	4-5	3168	;	;	1

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A. 2/ PPDDE 2,2.-bis-(Para-chlorophenyl)-1.1-dichloroethene 3/ PPDDT 2,2.-bis-(Para-chlorophenyl)-1.1,1-trichloroethane 4/ Comp Composite sample from 0-1 ft and 4.5 ft depth intervals.

North Central Study Area Maximum microgram per gram foovfeet NCSA Max. ug/g fi

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 4

2-25

TABLE NCSA-1b-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1b

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,2-TRICHLOROETHANE	25	36109	02/11/88
1,1-DICHLOROETHANE	19	36109	02/11/88
CARBON TETRACHLORIDE	120	36109	02/11/88
METHYLENE CHLORIDE	3200	36109	02/11/88
CHLOROFORM	460000	36109	02/11/88
CHLOROBENZENE	780	36109	02/11/88
CHLOROPHENYLMETHYL SULFIDE	170	36109	02/11/88
CHLOROPHENYLMETHYL SULFONE	25	36109	02/11/88
DIBROMOCHLOROPROPANE	35	36109	02/11/88
DITHIANE	150	36109	02/11/88
DIMETHYL DISULFIDE	12	36109	02/11/88
METHYLISOBUTYL KETONE	2400	36109	02/11/88
1,4-OXATHIANE	16	36109	02/11/88
PPDDT	3.0	36109	02/11/88
TETRACHLOROETHYLENE	88	36109	02/11/88
TRICHLOROETHYLENE	270	36109	02/11/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTI FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-1b-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.0E+06	1.5E+00	4.0E+02*	8.9E-03a	4.0E+02*	0.0E+00
BENZENE	8.6E+02	1.7E+03	5.8E+02	7.0E-03	3.4E-03	1.0E-02	0.0E+00
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	8.1E-03
CHLORDANE	2.0E+01	7.2E+06	2.0E+01	1.5E+00*	4.1E-06	1.5E+00*	0.0E+00
CHLOROBENZENE	1.6E+05	2.4E+05	9.7E+04	1.2E-05	8.3E-06	2.1E-05	2.6E-05
CHLOROFORM	4.0E+03	6.2E+03	2.4E+03	1.7E-03	1.1E-03	2.9E-03	2.6E-01
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	4.1E+06	1.6E+05	1.2E-04	4.8E-06	1.3E-04	2.3E-07
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.0E+06	1.4E+05	3.1E-04	4.6E-05a	3.5E-04	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	6.6E+05	1.3E+05	6.1E-05	1.5E-05	7.6E-05	0.0E+00
PPDDE	7.4E+01	1.0E+06	7.4E+01	3.4E-01*	6.2E-06a	3.4E-01*	0.0E+00
PPDDT	7.4E+01	1.0E+06	7.4E+01	9.5E-02	8.2E-07a	9.5E-02	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	6.4E+01	1.4E+01	1.3E-03	3.6E-04	1.6E-03	2.8E-04
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-08
DICYCLOPENTADIENE	5.4E+04	2.9E+03	2.8E+03	1.3E-04	2.4E-03	2.6E-03	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	7.6E+01*	3.9E-03a	7.6E+01*	0.0E+00
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-07
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	1.6E-02	1.6E-06a	1.6E-02	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	6.7E+00*	0.0E+00	6.7E+00*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	8.4E+02	8.0E+02	3.0E-05	5.9E-04	6.2E-04	0.0E+00
ISODRIN	5.8E+02	1.0E+06	5.8E+02	5.2E-01*	6.2E-05a	5.2E-01*	0.0E+00
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	6.0E-07
METHYLENE CHLORIDE	3.3E+03	2.5E+03	1.4E+03	6.1E-04	8.1E-04	1.4E-03	2.4E-03
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	5.1E+02	4.6E+04	5.1E+02	4.9E-04	5.4E-06	4.9E-04	1.5E-04
TOLUENE	2.5E+06	4.1E+07	2.3E+06	1.6E-06	9.8E-08	1.7E-06	0.0E+00
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	3.7E-05
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	9.0E-04
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.7E+01*	0.0E+00	1.7E+01*	0.0E+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	8.2E-03	0.0E+00	8.2E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	6.5E-04	0.0E+00	6.5E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	1.5E-02	0.0E+00	1.5E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.3E-02	0.0E+00	3.3E-02	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	2.5E-04	0.0E+00	2.5E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1b-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.0E+06	1.5E+00	4.0E+02*	8.9E-03a	4.0E+02*	0.0E+00
BENZENE	8.6E+02	1.7E+03	5.8E+02	7.0E-03	3.4E-03	1.0€-02	0.0E+00
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	8.1E-03
CHLORDANE	2.0E+01	7.2E+06	2.0E+01	1.5E+00*	4.1E-06	1.5E+00*	0.0E+00
CHLOROBENZENE	1.6E+05	2.4E+05	9.7E+04	1.2E-05	8.3E-06	2.1E-05	2.6E-05
CHLOROFORM	4.0E+03	6.2E+03	2.4E+03	1.7E-03	1.1E-03	2.9E-03	2.6E-01
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	4.1E+06	1.6E+05	1.2E-04	4.8E-06	1.3E-04	2.3E-07
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.0E+06	1.4E+05	3.1E-04	4.6E-05a	3.5E-04	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	6.6E+05	1.3E+05	6.1E-05	1.5E-05	7.6E-05	0.0E+00
PPDDE	7.4E+01	1.0E+06	7.4E+01	3.4E-01*	6.2E-06a	3.4E-01*	0.0E+00
PPDDT	7.4E+01	1.0E+06	7.4E+01	9.5E-02	8.2E-07a	9.5E-02	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	6.4E+01	1.4E+01	1.3E-03	3.6E-04	1.6E-03	2.8E-04
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-08
DICYCLOPENTADIENE	5.4E+04	2.9E+03	2.8E+03	1.3E-04	2.4E-03	2.6E-03	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	7.6E+01*	3.9E-03a	7.6E+01*	0.0E+00
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-07
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	1.6E-02	1.6E-06a	1.6E-02	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	6.7E+00*	0.0E+00	6.7E+00*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	8.4E+02	8.0E+02	3.0E-05	5.9E-04	6.2E-04	0.0E+00
ISODRIN	5.8E+02	1.0E+06	5.8E+02	5.2E-01*	6.2E-05a	5.2E-01*	0.0E+00
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	6.0E-07
METHYLENE CHLORIDE	3.3E+03	2.5E+03	1.4E+03	6.1E-04	8.1E-04	1.4E-03	2.4E-03
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	5.1E+02	4.6E+04	5.1E+02	4.9E-04	5.4E-06	4.9E-04	1.5E-04
TOLUENE	2.5E+06	4.1E+07	2.3E+06	1.6E-0ა	9.8E-08	1.7E-06	0.0E+00
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	3.7E-05
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	9.0E-04
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.7E+01*	0.0E+00	1.7E+01*	0.0E+00
CADHIUM	4.5E+02	0.0E+00	4.5E+02	8.2E-03	0.0E+00	8.2E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	6.5E-04	0.0E+00	6.5E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	1.5E-02	0.0E+00	1.5E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.3E-02	0.0E+00	3.3E-02	0.0E+00
ZINC	2.0E+06	0.06+00	2.0E+06	2.5E-04	0.0E+00	2.5E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

*: El is equal to or exceeds 1.0E-01

NCSA-1b-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE	VE I OPN
ALDRIN	2.1E-01	4.5E+03	2.1E-01	2.9E+03*	1.3E-01*	2.9E+03*	0.0E+00
BENZENE	1.2E+02	2.7E+02	8.3E+01	5.0E-02	2.2E-02	7.2E-02	0.0E+00
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-01
CHLORDANE	2.7E+00	4.8E+05	2.7E+00	1.1E+01*	6.2E-05	1.1E+01*	0.0E+00
CHLOROBENZENE	6.8E+04	8.7E+04	3.8E+04	2.9E-05	2.3E-05	5.2E-05	1.7E-04
CHLOROFORM	5.6E+02	9.5E+02	3.5E+02	1.2E-02	7.3E-03	2.0E-02	4.0E+00
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	1.6E+05	4.8E+04	2.9E-04	1.3E-04	4.1E-04	1.5E-06
CHLOROPHENYLMETHYL SULFONE	7.0E+04	1.0E+06	4.9E+04	7.2E-04	3.0E-04a	1.0E-03	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	1.0E+05	4.2E+04	1.4E-04	9.7E-05	2.4E-04	0.0E+00
PPDDE	1.0E+01	1.0E+06	1.0E+01	2.4E+00*	9.3E-05a	2.4E+00*	0.0E+00
PPDDT	1.0E+01	1.0E+06	1.0E+01	6.9E-01*	1.2E-05a	6.9E-01*	0.0E+00
DIBROMOCHLOROPROPANE	2.5E+00	3.8E+00	1.5E+00	9.2E-03	6.0E-03	1.5E-02	4.2E-03
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-07
DICYCLOPENTADIENE	1.8E+04	1.1E+03	1.0E+03	3.9E-04	6.7E-03	7.1E-03	0.0E+00
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	5.5E+02*	5.9E-02a	5.5E+02*	0.0E+00
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-06
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	3.8E-02	1.0E-05a	3.8E-02	0.0E+00
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	1.6E+01*	0.0E+00	1.6E+01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	3.0E+02	2.9E+02	8.8E-05	1.6E-03	1.7E-03	0.0E+00
ISODRIN	2.5E+02	1.0E+06	2.5E+02	1.2E+00*	4.0E-04a	1.2E+00*	0.0E+00
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-06
METHYLENE CHLORIDE	4.5E+02	3.8E+02	2.1E+02	4.4E-03	5.2E-03	9.7E-03	3.7E-02
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	7.1E+01	7.1E+03	7.0E+01	3.5E-03	3.5E-05	3.6E-03	2.3E-03
TOLUENE	1.1E+06	1.5E+07	9.9E+05	3.8E-06	2.7E-07	4.0E-06	0.0E+00
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	5.6E-04
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-02
ARSENIC	3.9E+00	0.0E+00	3.9E+00	9.4E+01*	0.0E+00	9.4E+01*	0.0E+00
CADMIUM	5.8E+01	0.0E+00	5.8E+01	6.4E-02	0.0E+00	6.42-02	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	1.1E-03	0.0E+00	1.1E-03	0.0E+00
LEAD	9.2E+03	C.0E+00	9.2E+03	2.5E-02	0.0E+00	2.5E-02	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	5.6E-02	0.0E+00	5.6E-02	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	4.8E-04	0.0E+00	4.8E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1b-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMENANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	ENC
ALDRIN	1.9E+00	1.3E+02	1.9E+00	3.2E+0Z*	4.8E+00*	3.2E+02*	0.0E+00
BENZENE	1.1E+03	2.5E+01	2.5E+01	5.5E-03	2.4E-01*	2.4E-01*	0.0E+00
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	8.2E+00
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	1.2E+00*	2.2E-03	1.2E+00*	0.0E+00
CHLOROBENZENE	8.8E+04	4.8E+03	4.5E+03	2.3E-05	4.2E-04	4.4E-04	7.8E-02
CHLOROFORM	5.1E+03	8.9E+01	8.8E+01	1.4E-03	7.8E-02	8.0E-02	2.7E+02
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	2.1E+03	2.1E+03	2.2E-04	9.5E-03	9.7E-03	6.9E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	1.0E+06	6.7E+02	5.5E-04	7.4E-02a	7.4E-02	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	2.1E+03	2.1E+03	1.1E-04	4.7E-03	4.9E-03	0.0E+00
PPDDE	9.3E+01	1.9E+01	1.6E+01	2.7E-01*	1.3E+00*	1.6E+00*	0.0E+00
PPODT	9.3E+01	1.9E+01	1.6E+01	7.5E-02	3.6E-01*	4.3E-01*	0.0E+00
DIBROMOCHLOROPROPANE	2.3E+01	4.4E-02	4.4E-02	1.0E-03	5.3E-01*	5.3E-01*	2.8E-01
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.06+00	0.0E+00	2.0E-05
DICYCLOPENTADIENE	1.7E+04	5.8E+01	5.7E+01	4.1E-04	1.2E-01*	1.2E-01*	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	6.0E+01*	2.1E+00*	6.2E+01*	0.0E+00
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-03
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	2.9E-02	2.6E-03a	3.2E-02	0.0E+00
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	1.2E+01*	0.0E+00	1.2E+01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	1.9E+01	1.9E+01	9.2E-05	2.6E-02	2.6E-02	0.0E+00
ISODRIN	3.2E+02	1.0E+06	2.9E+02	9.4E-01*	9.9E-02a	1.0E+00*	0.0E+00
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	1.8E-03
METHYLENE CHLORIDE	4.1E+03	4.4E+00	4.4E+00	4.9E-04	4.6E-01*	4.6E-01*	2.5E+00
1,4-OXATHIANE	1.4E+05	0.JE+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	6.5E+02	2.2E+02	1.7E+02	3.8E-04	1.1E-03	1.5E-03	1.5E-01
TOLUENE	1.4E+06	5.5E+05	3.9E+05	2.9E-06	7.3E-06	1.0E-05	0.0E+00
1,1,2-TRICHLOROETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.0E+00	3.8E-02
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	9.2E-01
ARSENIC	2.0E+01	0.0E+00	2.0E+01	1.9E+01*	0.0E+00	1.9E+01*	0.0E+00
CADMIUM	3.6E+02	0.0E+00	3.6E+02	1.0E-02	0.0E+00	1.0E-02	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	1.5E-03	0.0E+00	1.5E-03	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	3.5E-02	0.0E+00	3.5E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	7.9E-02	0.0E+00	7.9E-02	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	6.4E-04	0.0E+00	6.4E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1b-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	IND	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VEI
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	ΕI	EI	E1	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	8.9E+03	4.2E+01	1.2E-01	5.2E+03*	1.4E+01*	5.2E+03*	0.0E+00	0.0E+00
BENZENE	6.7E+01	2.3E+02	2.5E+01	1.7E+01	8.9E-02	2.6E-01*	3.5E-01*	0.0E+00	0.0E+00
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	6.1E-02	2.5E+01
CHLORDANE	1.5E+00	9.6E+05	5.2E+00	1.2E+00	2.0E+01*	5.8E+00*	2.6E+01*	0.0E+00	0.0E+00
CHLOROBENZENE	1.5E+04	3.2E+04	1.4E+04	6.0E+03	1.3E-04	2.0E-04	3.3E-04	1.9E-04	7.8E-02
CHLOROFORM	3.1E+02	8.2E+02	8.9E+01	6.4E+01	2.2E-02	8.7E-02	1.1E-01*	2.0E+00	8.0E+02
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	5.5£+05	6.3E+03	4.6E+03	1.2E-03	3.2E-03	4.4E-03	1.7E-06	6.9E-04
CHLOROPHENYLMETHYL SULFONE	1.7E+04	1.0E+06	1.0E+06	6.5E+02	3.0E-03	7.4E-02a	7.7E-02	0.0E+00	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	8.8E+04	6.3E+03	4.4E+03	6.0E-04	1.7E-03	2.3E-03	0.0E+00	0.0E+00
PPDDE	5.7E+00	5.4E+05	1.9E+01	4.4E+00	4.4E+00*	1.3E+00*	5.7E+00*	0.0E+00	0.0E+00
PPDDT	5.7E+00	1.1E+06	1.9E+01	4.4E+00	1.2E+00*	3.6E-01*	1.6E+00*	0.0E+00	0.0E+00
DIBROMOCHLOROPROPANE	1.4E+00	8.5E+00	4.4E-02	4.2E-02	1.6E-02	5.3E-01*	5.5E-01*	2.1E-03	8.4E-01
1,1-DICHLOROETHANE	2.3E+01	0.06+00	0.0E+00	2.3E+01	0.0E+00	0.08+00	0.0E+00	1.5E-07	6.1E-05
DICYCLOPENTADIENE	1.2E+03	3.9E+02	1.7E+02	1.1E+02	6.0E-03	5.9E-02	6.5E-02	0.0E+00	0.0£+00
DIELDRIN	1.2E-01	4.1E+03	1.9E+01	1.2E-01	9.8E+02*	6.3E+00*	9.9E+02*	0.0E+00	0.0E+00
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0€+00	0.0E+00	3.1E-06	1.2E-03
DITHIANE	8.5E+03	0.06+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	1.0E+06	1.0E+06	2.5E+02	1.6E-01*	2.6E-03a	1.6E-01*	0.0E+00	0.0E+00
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	6.5E+01*	0.0E+00	6.5E+01*	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTADIENE	3.8E+02	1.1E+02	5.8E+01	3.5E+01	1.3E-03	1.3E-02	1.4E-02	0.0E+00	0.0E+00
ISODRIN	5.9E+01	1.0E+06	1.0E+06	5.8E+01	5.1E+00*	9.9E-02a	5.2E+00*	0.0E+00	0.0E+00
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	4.5E-06	1.8E-03
METHYLENE CHLORIDE	2.5E+02	3.3E+02	4.4E+00	4.2E+00	8.1E-03	4.6E-01*	4.7E-01*	1.8E-02	7.5E+00
1.4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	4.1E+01	6.1E+03	2.2E+02	3.4E+01	6.	1.2E-03	7.2E-03	1.1E-03	4.6E-01
TOLUENE	2.6E+05	5.5E+06	1.6E+06	2.1E+05	1	3.2E-06	1.9E-05	0.0E+00	0.0E+00
1,1,2-TRICHLOROETHANE	3.4E+01	0.0E+00	0.0E+00	3.4E+01	0.0E+00	0.0E+00	0.0E+00	2.8E-04	1.1E-01
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	6.8E-03	2.7E+00
ADCCULO	1 45,00	0.05.00	0.05.00	1 45.00	2 75.02*	0.05,00	3 75.03*	0.05.00	0.05.00
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	2.3E+02* 4.9E-01*	0.0E+00	2.3E+02*	0.0E+00 0.0E+00	0.0E+00 0.0E+00
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00		0.05+00	4.9E-01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	4.7E-03	0.0E+00	4.7E-03		
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	1.0E-01*	0.0E+00	1.0E-01*	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	2.4E-01*	0.0E+00	2.4E-01*	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	3.6E-03	0.0E+00	3.6E-03	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.3 SITE NCSA-1c: DRAINAGE DITCH (formerly Site 36-8,: Chemical Drainage Ditch; ESE, 1987c/RIC 87113R01 and ESE, 1988c/RIC 87113R01A; Site 36-7: Solid Waste Burial/Sanitary Pit; ESE, 1988f/RIC 88063R07 and ESE, 1988bb/RIC 88063R07A)

2.3.1 Site-Specific Considerations

Figure NCSA-1c-1 and Tables NCSA-1c-1 and NCSA-1c-2 depict the target contaminants for site NCSA-1c. Borings 3053, 3183, 3184, and 3400 through 3412 from Site 36-8, and 3122 and 3123 from Site 36-7 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from RMA target contaminant list were suspected to be present in Site NCSA-1c (ESE, 1987c/RIC 87113R01; ESE, 1988f/RIC 88063R07).

2.3.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-1c are shown in Figure NCSA-1c-1. Methylphosphonic acid, occurring in Boring 3405 (14-15 ft) was not included in the figure, since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown on this figure, this nontarget compound was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-1c-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Tetrachloroethylene, shown in Table NCSA-1c-1, is excluded from consideration in the exposure analysis for this site, because it was considered a laboratory contaminant in the samples analyzed. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-1c-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.3.3 Site Exposure Summary

Tables NCSA-1c-3 through NCSA-1c-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-1c is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Fluoracetic acid	Direct	Direct	Direct	Direct	Direct
Arsenic	Direct	Direct	Direct	Direct	Direct
Aldrin			Direct		Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-1c is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-1c-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-1c

		Horizon 1		¥	Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	0.047	0-1	3402	0.047	0-1	3402
Chlordane	×0.11	0-1	3402	×0.11	0-1	3402
		4.5-5.5	3402	4.5-5.5	3402	
		0-1	3406	0-1	3406	
		0-1	3411	0-1	3411	
PPDDE"	0.29	0-1	3402	0.29	0-1	3402
PPDDT ^{2/}	0.010	0-1	3409	0.010	0-1	3409
Dieldrin	>2.0	0-1	3403	>2.0	0-1	3403
		0-1	3406	0-1	3406	
Diisopropylmethyl phosphonate	5	4-5	3184	5	4-5	3184
Endrin	>2.0	0-1	3403	>2.0	0-1	3403
		0-1	3406		0-1	3406
Fluoroacetic acid	9.3	4-5	3412	9.3	4-5	3412
Isodrin	0.023	0-1	3405	0.023	0-1	3405
Methyl phosphonic acid ³⁴	;	:	;	43	14-15	3405
Tetrachloroethylene	0.20	0-1	3053	0.20	0-1	3053
Arsenic	57	4-5	3405	;	;	1
Mercury	1.9	0-1	3409	ţ	;	ł

PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene
 PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane
 Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fr

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 5

TABLE NCSA-1c-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1c

AVERAGE SITE DEPTH TO GROUNDWATER: 25 Feet

CHEMICAL	CONCENT MAXIM			CATION NUMBER)	_	AMPLE DATE
1,1,1-TRICHLOROETHANE	•	3.1	3(6146	0	5/10/88
1,2-DICHLOROETHANE		22	3	6139	0	1/3/89
ALDRIN		5.2	3	6139	0	5/9/88
ATRAZINE		160	3	6137	0	1/3/89
BENZENE		3.3	3	6142	0	2/12/88
CARBON TETRACHLORIDE		1.2	3	6141	0	2/11/88
CHLOROFORM		4.1	3	6139	0	2/8/88
HEXACHLOROCYCLOPENTADIENE		0.065	3	6139	0	1/3/89
CHLOROBENZENE		3.4	3	6142	0	2/12/88
CHLORDANE		7.0	3	6137	0	1/3/89
CHLOROPHENYLMETHYL SULFIDE		14	3	6137	0	1/3/89
CHLOROPHENYLMETHYL SULFONE	GT	130	3	6139	0	2/8/88
DIISOPROPYLMETHYL PHOSPHONA	re	9000	3	6142	0	2/12/88
DITHIANE		1100	3	6142	0	2/12/88
DIELDRIN		0.31	3	6137	0	1/3/89
DIMETHYLMETHYL PHOSPHONATE		55	3	6137	0	1/3/89
ENDRIN		0.14	3	6137	0	1/3/89

FACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-1c-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1c

AVERAGE SITE DEPTH TO GROUNDWATER: 25 Feet

CHEMICAL	CONCENTRAT: MAXIMUM	ION	LOCATION (WELL NUMBER)	SAMPLE DATE
ISODRIN	1.	6	36137	01/3/89
TOLUENE	4.	0	36139	02/8/88
MALATHION	GT 50	0	36139	01/3/89
1,4-OXATHIANE	21	0	36137	01/3/89
PPDDE	0.	28	36139	01/3/89
PPDDT	0.	29	36137	01/3/89
TETRACHLOROETHYLENE	2.	1	36146	05/10/88
TRICHLOROETHYLENE	5.	2	36142	02/12/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-1c-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	EI	VE I OPN
ALDRIN	1.5E+00	1.4E+06	1.5E+00	3.1E-02	3.4E-08	3.1E-02	6.4E-07
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	8.1E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-07
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-06
CHLORDANE	2.0E+01	1.5E+08	2.0E+01	5.6E-03	7.4E-10	5.6E-03	3.9E-08
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+cű	0.0E+00	4.4E-09
CHLOROFORM	4.0E+03	0.1E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	9.2E-08
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	€+00	1.65+05	0.0E+00	0.0E+00	0.0E+00	7.4E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.62+05	0.0E+00	0.0E+00	0.0E+00	8.0E-11
PPDDE	7.4E+01	8.3E+07	7.4E+01	3.9E-03	3.5E-09	3.9E-03	3.2E-09
PPDDT	7.4E+01	1.8E+08	7.4E+01	1.4E-04	5.7E-11	1.4E-04	2.4E-08
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.8E-06
DIELDRIN	1.6E+00	6.3E+05	1.6E+00	1.3E+00*	3.2E-06	1.3E+00*	1.1E-09
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+0S	5.3E+06	5.9E+05	7.6E-06	9.4E-07	8.5E-06	3.1E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	8.1E-04	3.9E-09a	8.1E-04	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	2.4E-01*	0.0E+00	2.4E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	8.3E-08
ISODRIN	5.8E+02	9.9E+07	5.8E+02	4.0E-05	2.3F-10	4.0€-05	7.9E-09
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.4E-12
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	5.1E+02	8.8E+05	5.1E+02	3.9E-04	2.3E-07	3.9E-04	1.4E-07
YOLUENE	2.5E+06	0.02+00	2.5E+06	0.05+00	0.0E+00	0.0E+00	9.2E-11
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.06+00	0.0E+00	2.8E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	6.8E-07
ARSENIC	2.2E+01	0.0E+00	2.2E+01	2.6E+00*	0.08+00	2.6E+00*	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	5.7E-04	0.0E+00	5.7E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} E1 is equal to or exceeds 1.0E-01

NCSA-1c-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	1.5E+00	1.4E+06	1.5E+00	3.1E-02	3.4E-08	3.1E-02	6.4E-07
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	8.1E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-07
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.06+00	3.1E-06
CHLORDANE	2.0E+01	1.5E+08	2.0E+01	5.6E-03	7.4E-10	5.6E-03	3.9E-08
CHLOROBENZENE	1.6E+05	0.0E+0C	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.4E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	9.2E-08
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	7.4E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	8.0E-11
PPDDE	7.4E+01	8.3E+07	7.4E+01	3.9E-03	3.5E-09	3.98-03	3.2E-09
PPDDT	7.4E+01	1.8E+08	7.4E+01	1.4E-04	5.7E-11	1.4E-04	2.4E-08
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.8E-06
DIELDRIN	1.6E+00	o.3E+05	1.6E+00	1.3E+00*	3.2E-06	1.3E+00*	1.1E-09
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	5.3E+06	5.9E+05	7.6E-06	9.4F-07	8.5E-06	3.1E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	^.0E+0∪	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	8.1E-04	3.9E-09a	8.1E-04	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.CE+00	3.9E+01	2.4E-01*	0.0E+00	2.4E-01*	0.02+00
HEXACHLOROCYCLOPENTAD IENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	8.3E-08
ISODRIN	5.8E+02	9.9E+07	5.8E+02	4.0E-05	2.3E-10	4.0E-05	7.9E-09
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.4E-12
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLORGETHYLENE	5.1E+02	8.8E+05	5.1E+02	3.9E-04	2.3E · 07	3.9E-04	1.4E-07
TOLUENE	2.5E+06	0.06+00	2.5E+06	C.0E+00	0.0E+00	0.0E+00	9.2E-11
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	C.0E+00	2.8E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	C2+30.0	0.0E+00	6.8E-07
ARSENIC	2.2E+01	0.0E+00	2.2E+01	2.6E+00*	0.0E+00	2.6E+00*	0.0E+00
HERCURY	3.3E+03	0.0E+00	3.3E+03	5.7E-04	0.0E+00	5.7E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below on tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is squal to or exceeds 1.0E-01

NCSA-1c-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	E1 E1	OPN
ALDRIN	2.1E-01	9.1E+04	2.1E-01	2.3E-01*	5.2E-07	2.3E-01*	9.6E-06
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	5.2E-13
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	7.3E-06
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	4.7E-05
CHLORDANE	2.7E+00	9.8E+06	2.7E+00	4.1E-02	1.1E-08	4.1E-02	5.9E-07
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-08
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-06
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-09
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	5.2E-10
PPDDE	1.0E+01	5.5E+06	1.0E+01	2.8E-02	5.3E-08	2.8E-02	4.8E-08
PPDDT	1.0E+01	1.2E+07	1.0E+01	9.8E-04	8.6E-10	9.8E-04	3.6E-07
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	2.7E-05
DIELDRIN	2.2E-01	4.2E+04	2.2E-01	9.2E+00*	4.8E-05	9.2E+00*	1.6E-08
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	4.5E+06	2.6E+05	1.8E-05	1.1E-06	1.9E-05	2.0E-07
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	1.9E-03	2.5E-08a	1.9E-03	0.0E+00
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	5.6E-01*	0.0E+00	5.6E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	5.3E-07
ISODRIN	2.5E+02	1.5E+07	2.5E+02	9.3E-05	1.5E-09	9.3E-05	5.1E-08
MALATHION	7. JE+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-11
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	7.1E+01	1.4E+05	7.1E+01	2.8E-03	1.5E-06	2.8E-03	2.1E-06
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	5.9E-10
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.8E-09
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-05
ARSENIC	3.9E+00	0.0E+00	3.9E+00	1.4E+01*	0.0E+00	1.4E+01*	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	9.6E-04	0.0E+00	9.6E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1c-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE! ENC
ALDRIN	1.9E+00	1.3E+02	1.9E+00	2.5E-02	3.7E-04	2.5E-02	1.18-02
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-09
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	8.6E-03
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	5.5E-02
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	4.5E-03	8.1E-06	4.5E-03	6.9E-04
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	2.3E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-03
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	3.9E·05
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	4.2E-06
PPDDE	9.3E+01	1.9E+01	1.6E+01	3.1E-03	1.5E-02	1.8E-02	5.6E-05
PPDDT	9.3E+01	1.6E+04	9.2E+01	1.1E-04	6.2E-07	1.1E-04	4.2E-04
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-02
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.0E+00*	3.5E-02	1.0E+00*	1.9E-05
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	1.6E+02	1.6E+02	1.4E-05	3.1E-02	3.1E-02	1.6E-03
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	1.5E-03	1.3E-04a	1.6E-03	0.0E+00
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	4.3E-01*	0.0E+00	4.3E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	4.4E-03
ISODRIN	3.2E+02	6.7E+01	5.5E+01	7.2E-05	3.4E-04	4.1E-04	4.2E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-07
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	6.5E+02	2.0E+03	4.9E+02	3.1E-04	9.9E-05	4.1E-04	2.4E-03
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	4.9E-06
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-05
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	u.0E+00	0.0E+00	1.2E-02
ARSENIC	2.0E+01	0.0E+00	2.0E+01	2.9E+00*	0.0E+00	2.9E+00*	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.4E-03	0.0E+00	1.4E-03	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1c-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	•	VE I
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	EI	EI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	, <u> </u>				
ALDRIN	1.2E-01	1.8E+05	4.2E+01	1.2E-01	4.0E-01*	1.1E-03	4.0E-01*	4.8E-06	3.4E-02
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	6.1E-13	4.3E-09
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	3.6E-06	2.6E-02
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-05	1.7E-0
CHLORDANE	1.5E+00	2.0E+07	5.2E+00	1.2E+00	7.2E-02	2.1E-02	9.4E-02	2.9E-07	2.1E-03
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-08	2.3E-04
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	6.9E-07	4.9E-0
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.6E-09	3.9E-0
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	6.0E-10	4.2E-0
PPDDE	5.7E+00	1.1E+07	1.9E+01	4.4E+00	5.1E-02	1.5E-02	6.6E-02	2.4E-08	1.7E-0
PPODT	5.7E+00	2.3E+07	5.4E+03	5.7E+00	1.7E-03	1.9E-06	1.7E-03	1.8E-07	1.3E-0
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	1.3E-05	9.4E-0
DIELDRIN	1.2E-01	8.4E+04	1.9E+01	1.2E-01	1.6E+01*	1.0E-01*	1.6E+01*	8.0E-09	5.68-0
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	7.1E+05	5.6E+02	5.6E+02	7.4E-05	8.9E-03	9.0E-03	2.3E-07	1.6E-0
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	2.5E+02	1.0E+06	1.0E+06	2.5E+02	7.9E-03	1.3E-04a	8.0E-03	0.0E+00	0.0E+0
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	2.3E+00*	0.0E+00	2.3E+00*	0.0E+00	0.0E+0
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	6.2E-07	4.4E-0
ISODRIN	5.9E+01	1.3E+07	2.0E+02	4.6E+01	3.9E-04	1.1E-04	5.0E-04	6.0E-08	4.2E-0
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-11	1.8E-0
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
TETRACHLOROETHYLENE	4.1E+01	1.2E+05	2.0E+03	4.0E+01	4.9E-03	1.0E-04	5.0E-03	1.0E-06	7.2E-0
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	6.9E-10	4.9E-0
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-09	1.5E-0
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	5.1E-06	3.6E-0
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	3.5E+01*	0.0E+00	3.5E+01*	0.0E+00	0.0E+0
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	4.1E-03	0.0E+00	4.1E-03	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

2.4 SITE NCSA-1d: LIQUID STORAGE POOL (formerly Site 36-11: Liquid Storage Pond, ESE, 1987d/RIC 87133R01 and ESE, 1988d/RIC 87133R01A)

2.4.1 Site-Specific Considerations

Figure NCSA-1d-1 and Tables NCSA-1d-1 and NCSA-1d-2 depict the target contaminants for site NCSA-1d. Borings 3151, 3152, 3154 through 3158, 3379 through 3387, and 3491 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-1d (ESE, 1987d/RIC 87133R01).

2.4.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-1d are shown in Figure NCSA-1d-1. Table NCSA-1d-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-1d-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.4.3 Site Exposure Summary

Tables NCSA-1d-3 through NCSA-1d-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-1d is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct
Aldrin			Direct	Indirect	Dir/Ind

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-1d is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Methylene chloride (enclosed)
- 1,1-Dichloroethylene (enclosed)
- Chloroform (enclosed)
- Benzene (enclosed)
- Chlorobenzene (enclosed)

(2)

1

(t)

so (2)

Pre

Prepared for:

Program Manager's Office for Rocky Mountain Arsenal Cleanup Aberdeen Proving Ground, Maryland

Source: HLA, 1988

FIGURE NCSA-Id-I

Phase I and Phase II Analytes Detected Within or Above Indicator Levels

Rocky Mountain Arsenal
Prepared by: Ebasco Services Incorporated

TABLE NCSA-1d-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-1d

	# # 	Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin Chlordane	0.046	0-1 1-1	3381 3380	0.046	0-1	3381
		0-1	3381		0-1	3381
		0-1	3382		0-1 -	3382
		0-1	3384		0-1	3384 3384
PPDDE"	0.024	0-1	3381	0.024	0-1	3381
PPDDT [™]	>0.041	0-1	3381	>0.041	0-1	3381
Dibromochloropropane	0.013	0-1	3151	0.013	0-1	3151
Dieldrin	2	0-1	3151	2	0-1	3151
Endrin	0.18	2-3	3382	0.18	2-3	3382
Hexachlorocyclopentadiene	0.005	0-1	3381	0.005	0-1	3381
Isodrin	0.003	0-1	3381	0.003	0-1	3381
Arsenic	13	0-1	3154	i	:	ť
Copper	44	0-1	3151	;	1	;
Mercury	0.70	0-1	3154	:	:	1

2,2-bis(Para-chlorophenyl)-1,1-dichloroethene 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane 1/ PPDDE 2/ PPDDT

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

TABLE NCSA-1d-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1d

AVERAGE SITE DEPTH TO GROUNDWATER: 16 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	88	36076	02/8/88
1,1,2-TRICHLOROETHANE	3.6	36076	02/8/88
1,1-DICHLOROETHYLENE	2.0	36076	02/8/88
1,1-DICHLOROETHANE	6.3	36076	02/8/88
1,2-DICHLOROETHYLENE	9.0	36076	02/8/88
ALDRIN	0.70	36076	01/6/89
ATRAZINE	34	36076	01/6/89
BENZENF	12000	36076	01/6/89
METHYLENE CHLORIDE	33000	36076	01/6/89
CHLOROFORM	30000	36076	01/6/89
CHLOROBENZENE	26000	36076	02/8/88
CHLORDANE	5.7	36076	01/6/89
CHLOROPHENYLMETHYL SULFIDE	25	36076	01/6/89
CHLOROPHENYLMETHYL SULFONE	1300	36076	01/6/89
DIBROMOCHLOROPROPANE	0.44	36076	02/8/88
VAPONA	3.0	36076	01/6/89
DIISOPROPYLMETHYL PHOSPHONA	TE 1.4	36076	01/6/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-1d-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-1d

AVERAGE SITE DEPTH TO GROUNDWATER: 16 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
DITHIANE	GT	160	36076	02/8/88
DIELDRIN		0.33	36076	01/6/89
DIMETHYL DISULFIDE		2.6	36076	01/6/89
DIMETHYLMETHYL PHOSPHONATE		1.7	36076	01/6/89
ENDRIN		0.25	36076	01/6/89
ISODRIN		0.55	36076	01/6/89
METHYLISOBUTYL KETONE		20	36076	02/8/88
MALATHION		5.6	36076	01/6/89
1,4-OXATHIANE		54	36076	01/6/89
PPDDE		0.17	36076	01/6/89
PPDDT		0.98	36076	01/6/89
PARATHION		4.1	36076	01/6/89
SUPONA		2.9	36076	01/6/89
TETRACHLOROETHYLENE		3.4	36076	02/8/88
TRICHLOROETHYLENE		18	36076	01/6/89

FACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-1d-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT EI	E1 E1	VE I OPN
ALDRIN	1.5E+00	1.8E+05	1.5E+00	3.1E-02	2.6E-07	3.1E-02	1.0E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-02
CHLORDANE	2.0E+01	1.9E+07	2.0E+01	5.6E-03	5.8E-09	5.6E-03	3.9E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-04
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.2E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.8E-09
PPDDE	7.4E+01	1.1E+07	7.4E+01	3.3E-04	2.3E-09	3.3E-04	2.3E-08
PPDDT	7.4E+01	2.2E+07	7.4E+01	5.6E-04	1.8E-09	5.6E-04	9.8E-07
DIBROMOCHLOROPROPANE	1.8E+01	4.4E+02	1.7E+01	7.2E-04	2.9E-05	7.5E-04	1.6E-06
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.2E-09
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	8.1E-04
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	1.6E+00	8.0E+04	1.6E+00	1.3E+00*	2.5E-05	1.3E+00*	1.4E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.7E-11
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.4E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	6.5E+07	2.5E+03	7.3E-05	2.8E-09	7.3E-05	2.5E-11
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	5.4E+03	4.0E+03	3.0E-07	9.3E-07	1.2E-06	0.0E+00
ISODRIN	5.8E+02	1.3E+07	5.8E+02	5.2E-06	2.4E-10	5.2E-06	3.3E-08
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-13
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-09
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-02
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	7.9E-12
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-13
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-06
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0,0E+00	9.7E-08
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	2.6E-06
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-05
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	2.0E-09
ARSENIC	2.2E+01	0.0E+00	2.26+01	6.0E-01*	0.0E+00	6.0E-01*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.28+05	1.1E-04	0.0E+00	1.1E-04	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	2.1E-04	0.0E+00	2.1E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1d-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT El	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.8E+05	1.5E+00	3.1E-02	2.6E-07	3.1E-02	1.0E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-02
CHLORDANE	2.0E+01	1.9E+07	2.0E+01	5.6E-03	5.8E-09	5.6E-03	3.9E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-04
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.2E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.8E-09
PPDDE	7.4E+01	1.1E+07	7.4E+01	3.3E-04	2.3E-09	3.3E-04	2.3E-08
PPDDT	7.4E+01	2.2E+07	7.4E+01	5.6E-04	1.8E-09	5.6E-04	9.8E-07
DIBRONOCHLOROPROPANE	1.8E+01	4.4E+02	1.7E+01	7.2E-04	2.9E-05	7.5E-04	1.6E-06
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.2E-09
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	8.1E-04
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	1.6E+00	8.0E+04	1.6E+00	1.3E+00*	2.5E-05	1.3E+00*	1.4E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.7E-11
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.4E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	6.5E+07	2.5E+03	7.3E-05	2.8E-09	7.3E-05	2.5E-11
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	5.4E+03	4.0E+03	3.0E-07	9.3E-07	1.2E-06	0.0E+00
SODRIN	5.8E+02	1.3E+07	5.8E+02	5.2E-06	2.4E-10	5.2E-06	3.3E-08
ALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-13
AETHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-09
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-02
.4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	7.9E-12
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-13
ETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-06
.1.1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	9.7E-08
1.1.2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	2.6E-06
RICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-05
/APONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	2.0E-09
ARSENIC	2.2E+01	0. 0E+ 00	2.2E+01	6.0E-01*	0.0E+00	6.0E-01*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.1E-04	0.0E+00	1.1E-04	0.0E+00
ERCURY	3.3E+03	0.0E+00	3.3E+03	2.1E-04	0.0E+00	2.1E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1d-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	1.2E+04	2.1E-01	2.2E-01*	3.9E-06	2.2E-01*	1.6E-05
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-12
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	3.3E-01
CHLORDANE	2.7E+00	1.3E+06	2.7E+00	4.1E-02	8.7E-08	4.1E-02	5.9E-06
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-03
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0. 0 E+00	1.2E-01
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+0Ú	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-07
CHLOROPHENYLMETHYL SULFORE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	6.3E-08
PPDDE	1.0E+01	7.0E+05	1.0E+01	2.4E-03	3.4E-08	2.4E-03	3.5E-07
PPDDT	1.0E+01	1.5E+06	1.0E+01	4.0E-03	2.8E-08	4.0E-03	1.5E-05
D1BROMOCHLOROPROPANE	2.5E+00	6.9E+01	2.4E+00	5.2E-03	1.9E-04	5.4E-03	2.5E-05
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	4.8E-08
1,1-DICHLOROETHYLENE	5.9E+00	0.0E+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-02
1,2-DICHLORGETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	2.2E-01	5.3E+03	2.2E-01	9.2E+00*	3.8E-04	9.2E+00*	2.1E-07
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	3.7E-10
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-07
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	1.0E+07	1.1E+03	1.7E-04	1.8E-08	1.7E-04	1.6E-10
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	1.9E+03	1.4E+03	8.8E·07	2.6E-06	3.5E-06	0.0E+00
ISODRIN	2.5E+02	2.0E+06	2.5E+02	1.2E-05	1.5E-09	1.2E-05	2.1E-07
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-12
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-08
METHYLENE CHLORIDE	4.5E+02	0.05+00	4.5E+02	0.0E+00	0.0E+00	0.0E+0C	1.8E-01
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	5.1E-11
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0 0E+00	1.2E-12
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	4.2E-05
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	6.3E-07
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	3.9E-05
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	4.3E-04
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-08
ARSENIC	3.9E+00	0.0E+00	3.9E+00	3.3E+00*	0.0E+00	3.3E+00*	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	1.8E-04	0.0E+00	1.8E-04	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	3.5E-04	0.0E+00	3.5E-04	0.0F+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1d-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE E1	VE I
ALDRIN	1.9E+00	4.0E-01	3.3E-01	2.4E-02	1.2E-01*	1.4E-01*	3.6E-03
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-09
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	7.5E+01
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	4.5E-03	8.1E-06	4.5E-03	1.3E-03
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	4.2E+00
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.8E+01
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-04
PPDDE	9.3E+01	1.9E+01	1.6E+01	2.6E-04	1.2E-03	1.5E-03	8.0E-05
PPDDT	9.3E+01	1.9E+01	1.6E+01	4.4E-04	2.1E-03	2.5E-03	3.4E-03
DIBROMOCHLOROPROPANE	2.3E+01	4.8E+00	3.9E+00	5.7E-04	2.7E-03	3.3E-03	5.7E-03
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-05
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0E+00	0.0E+00	2.8E+00
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.0E+00*	3.5E-02	1.0E+00*	4.7E-05
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	5.9E-07
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	4.5E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	2.9E+02	2.4E+02	1.3E-04	6.3E-04	7.6E-04	2.6E-07
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	1.9E+01	1.9E+01	9.2E-07	2.6E-04	2.6E-04	0.0E+00
ISODRIN	3.2E+02	6.7E+01	5.5E+01	9.4E-06	4.5E-05	5.4E-05	3.4E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-09
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-05
METHYLENE CHLORIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	4.1E+01
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	8.2E-08
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-09
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	9.6E-03
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-03
1,1,2-TRICHLOROETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.0E+00	8.8E-03
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	9.9E-02
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	6.9E-06
ARSENIC	2.0E+01	0.0E+00	2.0E+01	6.5E-01*	0.0E+00	6.5E-01*	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	2.5E-04	0.0E+00	2.5E-04	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	5.0E-04	0.0E+00	5.0E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1d-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	•	VEI
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	El	EI	OPN	ENC
ALDRIN	1.2E-01	2.3E+04	4.0E-01	9.0E-02	4.0E-01*	1.2E-01*	5.1E-01*	7.8E-06	1.1E-02
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-12	2.1E-09
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	1.6E-01	2.3E+02
CHLORDANE	1.5E+00	2.5E+06	5.2E+00	1.2E+00	7.2E-02	2.1E-02	9.4E-02	2.9E-06	4.0E-03
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00 .	0.0E+00	3.0E-03	4.2E+00
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	6.1E-02	8.4E+01
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-07	1.6E-04
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.4E-08	1.0E-04
PPDDE	5.7E+00	1.4E+06	1.9E+01	4.4E+00	4.2E-03	1.2E-03	5.4E-03	1.7E-07	2.4E-04
PPDDT	5.7E+00	3.0E+05	1.9E+01	4.4E+00	7.2E-03	2.1E-03	9.3E-03	7.4E-06	1.0E-02
D I BROMOCHLOROPŘOPANE	1.4E+00	5.9E+01	4.8E+00	1.1E+00	9.3E-03	2.9E-03	1.2E-02	1.2E-05	1.7E-02
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.4E-08	3.3E-05
1,1-DICHLOROETHYLENE	3.2E+00	0.08+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	6.1E-03	8.3E+00
1,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	1.2E-01	1.1E+04	1.9E+01	1.2E-01	1.6E+01*	1.0E-01*	1.6E+01*	1.0E-07	1.4E-04
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.06+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-10	5.9E-07
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	3.3E-07	4.5E-04
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.02+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	8.7E+06	8.6E+02	2.0E+02	7.1E-04	2.1E-04	9.2E-04	1.9E-10	2.6E-07
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	7.1E+02	5.8E+01	4.7E+01	1.3E-05	9.4E-05	1.1E-04	0.0E+00	0. 0E +00
ISOURIN	5.9E+01	1.7E+06	2.0E+02	4.6E+01	5.1E-05	1.5E-05	6.6E-05	2.5E-07	3.4E-04
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-12	4.8E-09
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-08	2.4E-05
METHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	9.0E-02	1.2E+02
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	5.9E-11	8.2E-08
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-12	1.9E-09
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-05	2.9E-02
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	7.3E-07	1.0E-03
1,1,2-TRICHLOROETHANE	3.4E+01	0.0E+00	0.0E+00	3.4E+01	0.0E+00	0.0E+00	0.0E+00	1.9E-05	2.6E-02
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-04	3.0E-01
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-08	2.1E-05
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	8.1E+00*	0.0E+00	8.1E+00*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	7.7E-04	0.0E+00	7.7E-04	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	1.5E-03	0.0E+00	1.5E-03	0.0E+00	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.5 SITE NCSA-1e: BURN SITE (formerly Site 36-15: Burning Site, ESE, 1987e/RIC 87203R03 and ESE, 1988e/RIC 87203R03A)

2.5.1 Site-Specific Considerations

Figure NCSA-1e-1 and Tables NCSA-1e-1 and NCSA-1e-2 depict the target contaminants for site NCSA-1e. Borings 3191 through 3198 and 3560 through 3567 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-1e (ESE, 1987e/RIC 87203R03).

2.5.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-1e are shown in Figure NCSA-1e-1. The following contaminants were not included in the figure, since they were not considered target contaminants during the Phase I and Phase II investigations: Tetrachlorobenzene, occurring in Boring 3565 (4-5 ft), and methylphosphonic acid, occurring in Boring 3565 (4-5 ft). Although not shown on this figure, these nontarget compounds were included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO 1988a/RIC 88357R01).

Table NCSA-1e-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-1e-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.5.3 Site Exposure Summary

Tables NCSA-1e-3 through NCSA-1e-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-1e is greater than 10 ft,

the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Chlordane	Direct	Direct	Direct	Direct	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct
Chromium	Direct	Direct	Direct	Direct	Direct
Cadmium			Direct		Direct
Lead					Direct
Mercury					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-1e is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants appear to result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-1e-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-1e

į

	H	Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	10	2-3	3564	10	2-3	3564
Chlordane	10	3-4	3196	10	3-4	3196
Dieldrin	30	3-4	3196	30	3-4	3196
Diisopropylmethyl phosphonate		4-5	3565	_	4-5	3565
Dithiane	-	4-5	3565	-	4-5	3565
Endrin	_	4-5	3191		4-5	3191
Hexachlorocyclopentadiene	0.031	2-3	3565	0.031	2-3	3565
Isodrin	4.1	2-3	3564	4.1	2-3	3564
Methyl phosphonic acid"	290	4-5	3565	290	4-5	3565
Tetrachlorobenzene"	5.0	4-5	3565	5.0	4-5	3565
Arsenic	1200	3-4	3196	;	;	1
Cadmium	17	4-5	3566	;	ļ	;
Chromium	120	3-4	3196	ł	į	1
Copper	190	3-4	3196	;	ł	;
Lead	470	4-5	3566	1	ł	1
Mercury	63	3-4	3196	;	;	:
Zinc	790	2-3	3564	:	:	:

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 7

TABLE NCSA-1e-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-1e

AVERAGE SITE DEPTH TO GROUNDWATER: 14 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,2-DICHLOROETHANE	1.7	36085	02/8/88
DIISOPROPYLMETHYL PHOSPHONA	TE 90	36085	02/8/88
DITHIANE	140	36085	02/8/88
DIELDRIN	0.34	36085	02/8/88
ENDRIN	0.17	36085	02/8/88
1,4-OXATHIANE	11	36085	02/8/88
TRICHLOROETHYLENE	0.68	36085	02/8/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-1e-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT	INDIRECT PPLV	CUMULATIVE PPLV	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.5E+00	2.3E+06	1.5E+00	6.7E+00*	4.4E-06	6.7E+00*	0.0E+00
CHLORDANE	2.0E+01	4.5E+08	2.0E+01	5.1E-01*	2.2E-08	5.1E-01*	0.0E+00
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-06
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	1.9E+01*	3.7E-04a	1.9E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	6.5E+06	6.0E+05	1.5E-06	1.5E-07	1.7E-06	4.3E-09
DITHIANE	8.3E+04	0.0E+00	8.3E+04	1.2E-05	0.0E+00	1.2E-05	0.0E+00
ENDRIN	2.5E+03	8.8E+08	2.5E+03	4.0E-04	1.1E-09	4.0E-04	1.9E-11
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	2.2E+03	2.0E+03	1.9E-06	1.4E-05	1.6E-05	0.0E+00
ISODRIN	5.8E+02	1.3E+07	5.8E+02	7.1E-03	3.2E-07	7.1E-03	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-06
ARSENIC	2.2E+01	0.0E+00	2.2E+01	5.6E+01*	0.0E+00	5.6E+01*	0.0E+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	3.8E-02	0.0E+00	3.8E-02	0.0E+00
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	1.7E+00*	0.0E+00	1.7E+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	4.5E-04	0.0E+00	4.5E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	3.0E-02	0.0E+00	3.0E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	1.9E-02	0.0E+00	1.9E-02	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	4.0E-04	0.0E+00	4.0E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-1e-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I OPN	
ALDRIN	1.5E+00	2.3E+06	1.5E+00	6.7E+00*	4.4E-06	6.7E+00*	0.0E+00	
CHLORDANE	2.0E+01	4.5E+08	2.0E+01	5.1E-01*	2.2E-08	5.1E-01*	0.0E+00	
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-06	
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	1.9E+01*	3.7E-04a	1.9E+01*	0.0E+00	
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	6.5E+06	6.0E+05	1.5E-06	1.5E-07	1.7E-06	4.3E-09	
DITHIANE	8.3E+04	0.0E+00	8.3E+04	1.2E-05	0.0E+00	1.2E-05	0.0E+00	
ENDRIN	2.5E+03	8.8E+08	2.5E+03	4.0E-04	1.1E-09	4.0E-04	1.9E-11	
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	2.2E+03	2.0E+03	1.9E-06	1.4E-05	1.6E-05	0.0E+00	
ISODRIN	5.8E+02	1.3E+07	5.8E+02	7.1E-03	3.2E-07	7.1E-03	0.0E+00	
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-06	
ARSENIC	2.2E+01	0.0E+00	2.2E+01	5.6E+01*	0.0E+00	5.6E+01*	0.0E+00	
CADMIUM	4.5E+02	0.0E+00	4.5E+02	3.8E-02	0.0E+00	3.8E-02	0.0E+00	
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	1.7E+00*	0.0E+00	1.7E+00*	0.0E+00	
COPPER	4.2E+05	0.0E+00	4.2E+05	4.5E-04	0.0E+00	4.5E-04	0.0E+00	
LEAD	1.5E+04	0.0E+00	1.5E+04	3.0E-02	0.0E+00	3.0E-02	0.0E+00	
MERCURY	3.3E+03	0.0E+00	3.3E+03	1.9E-02	0.0E+00	1.98-02	0.0E+00	
ZINC	2.0E+06	0.0E+00	2.0E+06	4.0E-04	0.0E+00	4.0E-04	0.0E+00	

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-1e-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	PPLV PPLV		INDIRECT EI	CUMULATIVE	VE I OPN	
ALDRIN	2.1E-01	1.5E+05	2.1E-01	4.8E+01*	6.6E-05	4.8E+01*	0.0E+00	
CHLORDANE	2.7E+00	3.0E+07	2.7E+00	3.7E+00*	3.3E-07	3.7E+00*	0.0E+00	
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-05	
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	1.4E+02*	5.6E-03a	1.4E+02*	0.0E+00	
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	2.3E+06	2.5E+05	3.6E-06	4.3E-07	4.0E-06	2.8E-08	
DITHIANE	3.5E+04	0.0E+00	3.5E+04	2.8E-05	0.0E+00	2.8E-05	0.0E+00	
ENDRIN	1.1E+03	1.4E+08	1.1E+03	9.5E-04	7.3E-09	9.5E-04	1.2E-10	
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	8.0E+02	7.0E+02	5.5E-06	3.9E-05	4.4E-05	0.0€+00	
ISODRIN	2.5E+02	2.0E+06	2.5E+02	1.7E-02	2.1E-06	1.7E-02	0.0E+00	
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-05	
ARSENIC	3.9E+00	0.0E+00	3.9E+00	3.0E+02*	0.0E+00	3.0E+02*	0.0E+00	
CADMIUM	5.8E+01	0.0E+00	5.8E+01	2.9E-01*	0.CE+00	2.9E-01*	0.0E+00	
CHROMIUM	8.8E+00	0.0E+00	8.8E+00	1.4E+01*	0.0E+00	1.4E+01*	0.0E+00	
COPPER	2.5E+05	0.0E+00	2.5E+05	7.6E-04	0.0E+00	7.6E-04	0.0E+00	
LEAD	9.2E+03	0.0E+00	9.2E+03	5.1E-02	0.0E+00	5.1E-02	0.0E+00	
MERCURY	2.0E+03	0.0E+00	2.0E+03	3.2E-02	0.0E+00	3.2E-02	0.0E+00	
ZINC	1.1E+06	0.0E+00	1.1E+06	7.5E-04	0.0E+00	7.5E-04	0.0E+00	

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1e-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV	INDIRECT PPLV	-		INDIRECT EI	CUMULATIVE EI	VE I ENC
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.9E+00	4.0E-01	3.3E-01	5.3E+00*	2.5E+01*	3.1E+01*	0.06+00
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	4.0E-01*	7.4E-04	4.1E-01*	0.0E+00
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	8.7E-03
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.5E+01*	5.2E-01*	1.6E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	7.7E+04	6.3E+04	2.7E-06	1.3E-05	1.6E-05	5.6E-05
DITHIANE	4.6E+04	0.0E+00	4.6E+04	2.2E-05	0.0E+00	2.2E-05	0.0E+00
ENDRIN	1.4E+03	2.9E+02	2.4E+02	7.3E-04	3.5E-03	4.2E-03	2.5E-07
HEXACHLOROCYCLOPENTAD IENE	5.5E+03	1.9E+01	1.9E+01	5.7E·06	1.6E-03	1.6E-03	0.0E+00
ISODRIN	3.2E+02	6.7E+01	5.5E+01	1.3E-02	6.1E-02	7.4E-02	0.0E+00
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	5.4E-03
ARSENIC	2.0E+01	0.0E+00	2.0E+01	6.0E+01*	0.0E+00	6.0E+01*	0.0E+00
CADMIUM	3.6E+02	0.0E+00	3.6E+02	4.7E-02	0.0E+00	4.7E-02	0.0E+00
CHROMIUM	5.5E+01	0.0E+00	5.5E+01	2.2E+00*	0.0E+00	2.2E+00*	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	1.1E-03	0.0E+00	1.1E-03	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	7.2E-02	0.0E+00	7.2E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	4.5E-02	0.0E+00	4.5E-02	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.0E-03	0.0E+00	1.0E-03	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1e-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

DIRECT CONTAMINANT PPLV (mg/kg)	DIRECT INDI		RECT CUMULATIVE		DIRECT	INDIRECT	CUMULATIVE	VE I	
	PPLV	OSVI	ESVI	PPLV	ΕI	E1	EI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	3.1E+05	4.0E-01	9.0E-02	8.6E+01*	2.5E+01*	1.1E+02*	0.0E+00	0.0E+00
CHLORDANE	1.5E+00	6.1E+07	5.2E+00	1.2E+00	6.6E+00*	1.9E+00*	8.5E+00*	0.0E+00	0.0E+00
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-05	2.6E-02
DIELDRIN	1.2E-01	1.1E+04	1.9E+01	1.2E-01	2.5E+02*	1.6E+00*	2.5E+02*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	8.7E+05	2.3E+05	4.9E+04	1.5E-05	5.5E-06	2.0E-05	3.2E-08	5.6E-05
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	1.2E-04	0.0E+00	1.28-04	0.0E+00	0.0E+00
ENDRIN	2.5E+02	1.2E+08	8.6E+02	2.0E+02	3.9E-03	1.2E-03	5.1E-03	1.4E-10	2.5E-07
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	3.0E+02	5.8E+01	4.3E+01	8.1E-05	6.4E-04	7.2E-04	0.0E+00	0.0E+00
ISODRIN	5.9E+01	1.7E+06	2.0E+02	4.6E+01	6.9E-02	2.0E-02	9.0E-02	0.0E+00	0.0E+00
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.06+00
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	9.2E-06	1.6E-02
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	7.4E+02*	0.0E+00	7.4E+02*	0.0E+00	0.0E+00
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	2.2E+00*	0.0E+00	2.2E+00*	0.0E+00	0.0E+00
CHROMIUM	1.1E+00	0.0E+00	0.0E+00	1.7E+00	1.0E+02*	0.0E+00	1.0E+02*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	3.3E-03	0.0E+00	3.3E-03	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	2.1E-01*	0.0E+00	2.1E-01*	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	1.4E-01*	0.0E+00	1.4E-01*	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	5.7E-03	0.0E+00	5.7E-03	0.0E+00	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.6 SITE NCSA-1f: SOUTH PLANTS DRAINAGE DITCHES (formerly Site 36-8. Chemical Drainage Ditch; ESE, 1987c/RIC 87113RO1; Site 36-21: Drainage Ditch; ESE, 1987f/RIC 87133RO3)

2.6.1 Site-Specific Considerations

Figure NCSA-1f-1 and Tables NCSA-1f-1 and NCSA-1f-2 depict the target contaminants for site NCSA-1f. Borings 3188 through 3190, 3261, 3262, and 3370 through 3375 from Site 36-21, and 3181, 3182, and 3388 through 3399 from Site 36-8 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-1f (ESE, 1987f/RIC 87133R03; ESE, 1987c/RIC 87113R01).

2.6.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-1f are shown in Figure NCSA-1f-1. The following contaminants were not included in the figure, since they were not considered target contaminants during the Phase I and Phase II investigations: Methylphosphonic acid, occurring in Boring 3397 (9-10 ft), and pentachlorobenzene, occurring in Boring 3181 (0-1 ft). Although not shown on this figure, these nontarget compounds were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-1f-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-1f-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.6.3 Site Exposure Summary

Tables NCSA-1f-3 through NCSA-1f-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-1f is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Fluoracetic acid	Direct	Direct	Direct	Direct	Direct
Arsenic	Direct	Direct	Direct	Direct	Direct
Aldrin			Direct		Direct
Cadmium			Direct		Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-1f is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Benzene (open, enclosed)
- Chloroform (enclosed)
- Methylene chloride (enclosed)
- Chlorobenzene (enclosed)
- 1,1-Dichloroethylene (enclosed)

TABLE NCSA-1f-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-1f

	1	Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	0.043	0-1	3392	0.043	0-1	3392
Chlordane	×0.11	0-1	3392	×0.11	0-1	3392
		0-1	3396		0-1	3396
		0-1	3399		0-1	3399
PPDDE"	>0.040	0-1	3399	>0.040	0-1	3399
PPDDT ^{2/}	>0.041	0-1	3399	×0.041	0-1	3399
Dieldrin	2	0-1	3182	7	0-1	3182
		4-5	3181		4-5	3181
Endrin	0.19	0-1	3392	0.19	0-1	3392
Fluoroacetic acid	4.0	7-8	3392	4.0	7-8	3392
Hexachlorocyclopentadiene	0.021	4-5	3398	0.021	4-5	3398
Isodrin	0.045	0-1	3396	0.045	0-1	3396
Methyl phosphonic acid ³ /	5.1	9-10	3397	5.1	9-10	3397
Pentachlorobenzene ³ /	0.50	0-1	3181	0.50	0-1	3181
Arsenic	>250	4-5	3396	:	;	;
Cadmium	7.3	9-10	3262	:	:	!
Mercury	0.80	0-1	3399	;	!	1

PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichlorocthene
 PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichlorocthane
 Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 8

TABLE NCSA-1f-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1f

AVERAGE SITE DEPTH TO GROUNDWATER: 16 Feet

CHEMICAL	CONCENTRATION MAXIMUM	ATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	88	36076	02/8/88
1,1,2-TRICHLOROETHANE	3.6	36 07 c	02/8/88
1,1-DICHLOROETHYLENE	2.0	36076	02/8/88
1,1-DICHLOROETHANE	6.3	36076	02/8/88
1,2-DICHLOROETHYLENE	9.0	36076	02/8/88
ALDRIN	0.70	36076	01/6/89
ATRAZINE	34	36076	01/6/89
BENZENE	12000	36076	01/6/89
METHYLENE CHLORIDE	33000	36076	01/6/89
CHLOROFORM	30000	36076	01/6/89
CHLOROBENZENE	26000	36076	02/8/88
CHLORDANE	5.7	36076	01/6/89
CHLOROPHENYLMETHYL SULFIDE	25	36076	01/6/89
CHLOROPHENYLMETHYL SULFONE	1300	36076	01/6/89
DIBROMOCHLOROPROPANE	0.44	36076	02/8/88
VAPONA	3.0	36076	01/6/89
DIISOPROPYLMETHYL PHOSPHONAT	E 1.4	36076	01/6/89

TABLE NCSA-1f-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-1f

AVERAGE SITE DEPTH TO GROUNDWATER: 16 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
DITHIANE	GT	160	36076	02/8/88
DIELDRIN		0.33	36076	01/6/89
DIMETHYL DISULFIDE		2.6	36076	01/6/89
DIMETHYLMETHYL PHOSPHONATE		1.7	36076	01/6/89
ENDRIN		0.25	36076	01/6/89
ISODRIN		0.55	36076	01/6/89
METHYLISOBUTYL KETONE		20	36076	02/8/88
MALATHION		5.6	36076	01/6/89
1,4-OXATHIANE		54	36076	01/6/89
PPDDE		0.17	36076	01/6/89
PPDDT		0.98	36076	01/6/89
PARATHION		4.1	36076	01/6/89
SUPONA		2.9	36076	01/6/89
TETRACHLOROETHYLENE		3.4	36076	02/8/88
TRICHLOROETHYLENE		18	36076	01/6/89

NCSA-1f-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	OPN
ALDRIN	1.5E+00	1.8E+04	1.5E+00	2.9E-02	2.4E-06	2.9E-02	1.0E-05
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.GE+00	0.0E+00	2.0E-12
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-01
CHLORDANE	2.0E+01	1.9E+06	2.0E+01	5.6E-03	5.7E-08	5.6E-03	3.8E-06
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-03
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.1E-02
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-07
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6€+05	0.0E+00	0.0E+00	0.0E+00	9.7E-08
PPDDE	7,4E+01	1.1E+06	7.4E+01	5.4E-04	3.7E-08	5.4E-04	2.3E-07
PPDDT	7.4E+01	2.3E+06	7.4E+01	5.6E-04	1.8E-08	5.6E-04	9.7E-06
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.6E-05
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-08
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	8.0E-03
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	1.6E+00	8.1E+03	1.6E+00	1.3E+00*	2.5E-04	1.3E+00*	1.3E-07
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.6E-10
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-07
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	6.6E+06	2.5E+03	7.7E-05	2.9E-08	7.7E-05	2.5E-10
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	1.0E-01*	0.0E+00	1.0E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	9.1E+01	9.0E+01	1.3E-06	2.3E-04	2.3E-04	0.0E+00
ISODRIN	5.8E+02	1.3E+06	5.8E+02	7.8E-05	3.5E-08	7.8E-05	3.3E-07
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-12
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-08
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-01
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	7.8E-11
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-12
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-05
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	9.6E-07
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-05
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	2.8E-04
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	2.0E-08
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.2E+01*	0.0E+00	1.2E+01*	0.0E+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	1.6E-02	0.0E+00	1.6E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	2.4E-04	0.0E+00	2.4E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1f-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT E1	CUMULATIVE E1	VE I
ALDRIN	1.5E+00	1.8E+04	1.5E+00	2.9E-02	2.4E-06	2.9E-02	1.0E-05
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-12
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-01
CHLORDANE	2.0E+01	1.9E+06	2.0E+01	5.6E-03	5.7E-08	5.6E-03	3.8E-06
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-03
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.1E-02
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-07
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.7E-08
PPDDE	7.4E+01	1.1E+06	7.4E+01	5.4E-04	3.7E-08	5.4E-04	2.3E-07
PPDDT	7.4E+01	2.3E+06	7.4E+01	5.6E-04	1.8E-08	5.6E-04	9.7E-06
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.6E-05
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-08
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	8.0E-03
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	1.6E+00	8.1E+03	1.6E+00	1.3E+00*	2.5E-04	1.3E+00*	1.3E-07
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.6E-10
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-07
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	6.6E+06	2.5E+03	7.7E-05	2.9E-08	7.7E-05	2.5E-10
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	1.0E-01*	0.0E+00	1.0E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	9.1E+01	9.0E+01	1.3E-06	2.3E-04	2.3E-04	0.0E+00
ISODRIN	5.8E+02	1.3E+06	5.8E+02	7.8E-05	3.5E-08	7.8E-05	3.3E-07
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-12
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-08
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-01
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	7.8E-11
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-12
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-05
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	9.6E-07
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-05
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	2.8E-04
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	2.0E-08
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.2E+01*	0.0E+00	1.2E+01*	0.0E+00
CADHIUM	4.5E+02	0.0E+00	4.5E+02	1.6E-02	0.0E+00	1.6E-02	0.0E+00
MERCURY	3.3E+03	0. 0E+ 00	3.3E+03	2.4E-04	0.0E+00	2.4E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1f-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	1.2E+03	2.1E-01	2.1E-01*	3.6E-05	2.1E-01*	1.5E-04
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-11
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	3.3E+00
CHLORDANE	2.7E+00	1.3E+05	2.7E+00	4.1E-02	8.6E-07	4.1E-02	5.8E-05
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-02
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0€+00	1.2E+00
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-06
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	6.3E-07
PPDDE	1.0E+01	7.1E+04	1.0E+01	3.9E-03	5.6E-07	3.9E-03	3.4E-06
PPDDT	1.0E+01	1.5E+05	1.0E+01	4.0E-03	2.7E-07	4.0E-03	1.5E-04
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	2.5E-04
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	4.7E-07
1,1-DICHLOROETHYLENE	5.9E+00	0.0E+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-01
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	2.2E-01	5.4E+02	2.2E-01	9.2E+00*	3.7E-03	9.2E+00*	2.0E-06
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	3.6E-09
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-06
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	1.8E-04	1.9E-07	1.8E-04	1.6E-09
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	2.4E-01*	0.0E+00	2.4E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	3.3E+01	3.3E+01	3.7E-06	6.4E-04	6.5E-04	0.0E+00
ISODRIN	2.5E+02	2.0E+05	2.5E+02	1.8E-04	2.3E-07	1.8E-04	2.1E-06
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-11
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-07
METHYLENE CHLORIDE	4.5E+02	0.0E+00	4.5E+02	0.0E+00	0.0E+00	0.0E+00	1.8E+00
1.4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	5.1E-10
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-11
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	4.2E-04
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	6.2E-06
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	3.8E-04
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	4.3E-03
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-07
ARSENIC	3.9E+00	0.0E+00	3.9E+00	6.3E+01*	0.0E+00	6.3E+01*	0.0E+00
CADMIUM	5.8E+01	0.0E+00	5.8E+01	1.3E-01*	0.0E+00	1.3E-01*	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	4.1E-04	0.0E+00	4.1E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-1f-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E!	CUMULATIVE EI	ENC
ALDRIN	1.9E+00	1.3E+02	1.9E+00	2.3E-02	3.4E-04	2.3E-02	3.6E-03
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-09
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	7.5E+01
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	4.5E-03	8.1E-06	4.5E-03	1.3E-03
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	4.2E+00
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.8E+01
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-04
PPODE	9.3E+01	7.6E+03	9.2E+01	4.3E-04	5.3E-06	4.4E-04	8.0E-05
PPODT	9.3E+01	1.6E+04	9.2E+01	4.4E-04	2.6E-06	4.4E-04	3.4E-03
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	5.7E-03
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-05
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0E+00	0.0E+00	2.8E+00
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.0E+00*	3.5E-02	1.0E+00*	4.7E-05
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	5.9E-07
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	4.5E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.6E+04	1.3E+03	1.4E-04	1.2E-05	1.5E-04	2.6E-07
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	1.9E-01*	0.0E+00	1.9E-01*	0.0E+00
HEXACHLOROCYCLOPENTADIENE	5.5E+03	2.8E-01	2.8E-01	3.9E-06	7.6E-02	7.6E-02	0.0E+00
ISODRIN	3.2E+02	6.7E+01	5.5E+01	1.4E-04	6.7E-04	8.1E-04	3.4E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-09
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-05
METHYLENE CHLORIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	4.1E+01
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	8.2E-08
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-09
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	9.6E-03
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-03
1,1,2-TRICHLOROETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.0E+00	8.8E-03
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	9.9E-02
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	6.9E-06
ARSENIC	2.0E+01	0.0E+00	2.0E+01	1.3E+01*	0.0E+00	1.3E+01*	0.0E+00
CADHIUN	3.6E+02	0.0E+00	3.6E+02	2.0E-02	0.0E+00	2.0E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	5.7E-04	0.0E+00	5.7E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-1f-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	•	Æ I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	E\$VI (mg/kg)	PPLV (mg/kg)	EI	EI	El	OPN	ENC
ALDRIN	1.2E-01	2.4E+03	4.2E+01	1.2E-01	3.7E-01*	1.0E-03	3.7E-01*	7.7E-05	1.1E-02
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-11	2.1E-09
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	1.6E+00	2.3E+02
CHLORDANE	1.5E+00	2.6E+05	5.2E+00	1.2E+00	7.2E-02	2.1E-02	9.4E-02	2.9E-05	4.0E-03
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-02	4.2E+00
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	6.1E-01	8.4E+01
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0€+00	1.2E-06	1.6E-04
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.3E-07	1.0E-04
PPDDE	5.7E+00	1.4E+05	2.5E+03	5.7E+00	7.0E-03	1.6E-05	7.0E-03	1.7E-06	2.4E-04
PPODT	5.7E+00	3.0E+05	5.4E+03	5.7E+00	7.2E-03	7.8E-06	7.2E-03	7.3E-05	1.0E-02
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-04	1.7E-02
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-07	3.3E-05
1,1-DICHLOROETHYLENE	3.2E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	6.0E-02	8.3E+00
1,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIELDRIN	1.2E-01	1.1E+03	1.9E+01	1.2E-01	1.6E+01*	1.1E-01*	1.6E+01*	1.0E-06	1.4E-04
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.06+00	0.0E+00	4.2E-09	5.9E-07
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	3.2E-06	4.5E-04
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	8.8E+05	1.6E+04	2.5E+02	7.5E-04	1.2E-05	7.6E-04	1.8E-09	2.6E-07
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	1.0E+00*	0.0E+00	1.0E+00*	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	1.2E+01	8.3E-01	7.8E-01	5.5E-05	2.7E-02	2.7E-02	0.0E+00	0.0E+00
ISODRIN	5.9E+01	1.7E+05	2.0E+02	4.6E+01	7.6E-04	2.2E-04	9.8E-04	2.5E-06	3.4E-04
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-11	4.8E-09
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-07	2.4E-05
METHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	8.9E-01	1.2E+02
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	5.9E-10	8.2E-08
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-11	1.9E-09
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-04	2.9E-02
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	7.2E-06	1.0E-03
1,1,2-TRICHLOROETHANE	3.4E+01	0.0E+00	0.0E+00	3.4E+01	0.0E+00	0.0E+00	0.0E+00	1.9E-04	2.6E-02
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-03	3.0E-01
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-07	2.1E-05
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	1.5E+02*	0.0E+00	1.5E+02*	0.0E+00	0.0E+00
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	9.6E-01*	0.0E+00	9.6E-01*	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	1.7E-03	0.0E+00	1.7E-03	0.0E+00	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

2.7 SITE NCSA-1g: INFERRED SURFICIAL CONTAMINATION (formerly Site 36-5: Mercury Spill; ESE 1988cc/RIC 88063R01)

2.7.1 Site-Specific Considerations

Figure NCSA-1g-1 and Tables NCSA-1g-1 and NCSA-1g-2 depict the target contaminants for site NCSA-1g. Borings 3138, 3141, and 3142 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no analytes were detected above indicator levels (ESE, 1988cc/RIC 88063R01). Surficial contamination attributed to wind dispersion is inferred to exist at Site NCSA-1g (ESE, 1988cc/RIC 88063R01).

2.7.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of target contaminants that were detected in Site NCSA-1g are shown in Figure NCSA-1g-1. Table NCSA-1g-1 shows that no target contaminants were found above the indicator level. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-1g-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.7.3 Site Exposure Summary

Tables NCSA-1g-3 through NCSA-1g-7 present Draft PPLVs and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-1g is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity.

No soil contaminants are shown on Table NCSA-1g-1, therefore, no COCs were identified for this site. Site NCSA-1g is designated as a Priority 2 site.

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

• Benzene (enclosed)

- Carbon tetrachloride (enclosed)
- Chlorobenzene (enclosed)
- Chloroform (enclosed)
- Dibromochloropropane (enclosed)
- 1,1-Dichloroethylene (enclosed)
- Dicyclopentadiene (enclosed)
- Tetrachloroethylene (enclosed)
- Trichloroethylene (enclosed)

TABLE NCSA-1g-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-1g

	1	Horizon 1			Horizon 2	
Coutaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
None	;	ł	ŀ	1	1	:

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
fi foot/feet

TABLE NCSA-1g-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-1g

AVERAGE SITE DEPTH TO GROUNDWATER: 21 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBE	_
1,1,1-TRICHLOROETHANE		2200	36001	01/5/89
1,1,2-TRICHLOROETHANE		150	36181	ð5/10/88
1,1-DICHLOROETHYLENE		8.0	3,6001	02/11/88
1,1-DICHLOROETHANE		1.6	36181	05/10/88
1,2-DICHLOROETHYLENE		280	36181	01/5/89
M-XYLENE		510	36001	02/11/88
ALDRIN		6.3	36001	02/11/88
ATRAZINE	GT	180	36001	02/11/88
BICYCLOHEPTADIENE		390	36001	01/5/89
BENZOTHIAZOLE		6.6	36001	01/5/89
BENZENE		51000	36181	05/10/88
CARBON TETRACHLORIDE		540	36181	01/5/89
METHYLENE CHLORIDE		360	36001	01/5/89
CHLOROFORM		5100	36001	02/11/88
HEXACHLOROCYCLOPENTADIENE		4.4	36001	01/5/89
CHLOROBENZENE		70000	36181	05/10/88
CHLOROPHENYLMETHYL SULFIDE		110	36001	02/11/88

TABLE NCSA-1g-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-1g

AVERAGE SITE DEPTH TO GROUNDWATER: 21 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
CHLOROPHENYLMETHYL SULFOXID	E	3.7	36181	10/28/87
CHLOROPHENYLMETHYL SULFONE		130	36001	02/11/88
DIBROMOCHLOROPROPANE	GT	300	36001	01/5/89
DICYCLOPENTADIENE		92	36001	01/5/89
DIISOPROPYLMETHYL PHOSPHONA	ΓE	15	36181	01/5/89
DITHIANE		13	36001	02/11/88
DIELDRIN		1.2	36001	02/11/88
DIMETHYL DISULFIDE		67	36001	01/5/89
DIMETHYLMETHYL PHOSPHONATE		110	36181	10/28/87
ENDRIN		14	36001	01/5/89
ETHYLBENZENE		640	36001	02/11/88
TOLUENE		1300	36181	05/10/88
METHYLISOBUTYL KETONE		3500	36001	02/11/88
MALATHION		2.8	36001	01/5/89
1,4-OXATHIANE		16	36001	01/5/89
PARATHION		15	36001	01/5/89
SUPONA		18	36001	01/5/89

TABLE NCSA-1g-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-1g

AVERAGE SITE DEPTH TO GROUNDWATER: 21 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
TETRACHLOROETHYLENE	310	36001	01/5/89
TRICHLOROETHYLENE	7600	36181	05/10/88
O,P-XYLENE	1100	36181	05/10/88

NCSA-1g-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTANINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VEI
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-05
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-12
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-01
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0€+00	5.8E-09
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	6.4E-06
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0. 0 €+00	1.9E-02
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-03
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	7.9E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-09
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.1E-11
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.3E-03
1.1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	9.2E-10
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	3.7E-03
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	5.8E-04
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	5.7E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	7.1E-10
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-06
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-09
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	9.2E-07
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.8E-05
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	2.7E-13
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	4.7E-07
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-04
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-11
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-12
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.9E-04
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.1E-07
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.7E-06
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-04
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-02
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.02+00	1.0E-06
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	2.2E-06

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1g-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I OPA
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-05
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-12
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-01
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	5.8E-09
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	6.4E-06
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-02
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-03
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	7.9E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-09
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.1E-1
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.3E-03
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	9.2E-10
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	3.7E-03
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	5.8E-04
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	5.7E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	7.1E-10
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-0
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.08+00	1.6E-09
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	9.2E-0
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.8E-0
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	2.7E-1
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	4.7E-0
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-04
1.4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-1
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-1
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.9E-04
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.1E-0
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.7E-0
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-04
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-0
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	1.0E-0
O.P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	2.2E-06

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1g-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	1.6E-04
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	8.1E-12
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	1.6E+00
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.7E-08
BICYCLOHEPTADIENE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	4.2E-05
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	2.9E-01
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	8.0E-03
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-02
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	5.1E-07
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	7.2E-09
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.0E-10
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	1.9E-02
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	1.4E-08
1,1-DICHLOROETHYLENE	5.9E+00	0.0E+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	5.6E-02
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	3.8E-03
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0E+00	0.0E+00	8.5E-07
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-09
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	8.2E-06
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	1.0E-08
ETHYLBENZENE	3.55+05	0.0E+00	3.5E+05	0.0E+00	0.0E+00	0.0E+00	5.9E-06
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	5.0E-04
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-12
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-06
METHYLENE CHLORIDE	4.5E+02	0.0E+00	4.5E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-03
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-10
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	8.6E-12
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	4.3E-03
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	2.6E-06
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.8E-05
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	1.8E-03
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-01
M-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	6.4E-06
O,P-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	1.48-05

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1g-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT EI	CUMULATIVE E1	VE I
ALDRIN	1.9E+00	0.0E+00	1.7E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-02
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	6.5E-09
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	1.8E+02
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-05
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	3.3E-02
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	3.3E+0
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	6.4E+00
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.7E+00
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0€+00	0.06+00	0.0E+00	4.1E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	5.7E-0
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	3.2E-0
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.2E+0
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-0
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0E+00	0.08+00	6.4E+0
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.0E+0
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	9.7E-0
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	3.7E-0
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	6.6E-0
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	8.2E-0
ETHYLBENZENE	4.6E+05	0.0E+00	4.6E+05	0.0E+00	0.0E+00	0.0E+00	4.7E-0
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	4.0E-0
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-0
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-0
METHYLENE CHLORIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	2.6E-0
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-0
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	6.9E-0
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-0
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	2.1E-0
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-0
1,1,2-TRICHLOROETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-0
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	2.4E+0
M-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	5.1E-03
O,P-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	1.1E-02

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-1g-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL MORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VE I
CONTANINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	13	OPN	ENC
ALDRIN	1.2E-01	0.0E+00	0.0€+00	1.2E-01	0.0E+00	0.0E+00	0.0€+00	8.0E-05	5.5E-0
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	9.4E-12	6.5E-09
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	7.9E-01	5.4E+0
BENZOTHIAZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	4.3E-08	3.0E-0
BICYCLOHEPTADIENE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-05	3.3E-0
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0€+00	1.4E-01	9.9E+0
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	9.3E-03	6.4E+0
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-02	8.1E+0
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.9E-07	4.1E-0
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	8.3E-09	5.7E-0
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.6E-10	3.2E-0
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	9.6E-03	6.6E+0
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	6.9E-09	4.8E-0
1,1-DICHLOROETHYLENE	3.2E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	2.8E-02	1.9E+0
1,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	4.4E-03	3.0E+0
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	4.2E-07	2.9E-0
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	5.3E-09	3.7E-0
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	9.6E-06	6.6E-0
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-08	8.2E-0
ETHYLBENZENE	8.5E+04	0.0E+00	0.0E+00	8.5E+04	0.0E+00	0.0E+00	0.0E+00	6.9E-06	4.7E-0
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	5.8E-04	4.0E-0
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-12	1.4E-0
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-06	2.4E-0
METHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-03	7.7E-0
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.5E-10	1.7E-0
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-11	6.9E-0
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-03	1.5E+0
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	3.1E-06	2.1E-0
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-05	1.4E-0
1,1,2-TRICHLOROETHANE	3.4E+01	0.0E+00	0.0E+00	3.4E+01	0.0E+00	0.0E+00	0.0E+00	8.9E-04	6.1E-0
FRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-01	7.1E+0
4-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0€+00	7.5E-06	5.1E-0
D,P-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0€+00	1.6E-05	1.1E-0

2.8 SITE NCSA-2a: BASIN C (formerly Site 26-3; ESE, 1987g/RIC 87343R03 and ESE, 1988i/RIC 87343R03A)

2.8.1 Site-Specific Considerations

Figure NCSA-2a-1 and Tables NCSA-2a-1 and NCSA-2a-2 depict the target contaminants for site NCSA-2a. Borings 4503, 4510, 4515, 4520, 4550 through 4584, 4692, 4697, 4699, and 4708 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-2a (ESE, 1987g/RIC 87343R03).

2.8.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-2a are shown in Figure NCSA-2a-1. Methylphosphonic acid, occurring in Boring 4692 (4-5 ft) was not included in this figure, since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown on this figure, this nontarget compound was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-2a-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Methylene chloride, shown on Table NCSA-2a-1, is excluded from consideration in the exposure analysis for this site because it was considered a laboratory contaminant in the samples analyzed. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-2a-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.8.3 Site Exposure Summary

Tables NCSA-2a-3 through NCSA-2a-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-2a is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct
PPDDE					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-2a is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-2a-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-2a

	1	Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrip	40	0-1	4583	40	0-1	4583
PPDDE"	-	0-1	4554	1	0-1	4554
PPDDT"	0.19	0-1	4708	0.19	0-1	4708
Dieldrin	20	0-1	4583	20	0-1	4583
Diisopropylmethyl phosphonate	3	4-5	4552	33	4-5	4552
Endrin	0.43	0-1	4699	0.43	0-1	4699
Ethylbenzene	0.5	9-10	4578	0.5	9-10	4578
Fluoroacetic acid	;	;	;	14	10-11	4692
Isodrin	0.19	0-1	4708	0.19	0-1	4708
Methylene chloride ³ /	0.70	9-10	4697	0.70	9-10	4697
Methyl phosphonic acid*	>400	4-5	4692	>400	4-5	4692
m-Xylene	3	9-10	4578	3	9-10	4578
o,p-Xylene	2	9-10	4578	2	9-10	4578
Arsenic	56	0-1	4574	:	;	1
Copper	160	0-1	4552	1	;	:
Lead	66	0-1	4577	;	!	1
Mercury	1.3	4-5	4584	;	;	;
Zinc	120	0-1	4559	;	1	;

PPDDE 2.2-bis(Para-chlorophenyl)-1,1-dichloroethene
 PPDDT 2.2-bis(Para-chlorophenyl)-1,1,1-trichloroethane
 Suspected laboratory contaminant
 Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi REA5/TBL0067.REA VI.D 8/31/90 12:02 am sma

<u>c</u>

TABLE NCSA-2a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-2a

AVERAGE SITE DEPTH TO GROUNDWATER: 36 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	0.83	26085	01/26/88
ALDRIN	4.6	26063	05/3/88
ATRAZINE	44	26085	02/16/89
BENZOTHIAZOLE	14	26127	01/21/88
CHLOROFORM	24	26063	11/21/88
HEXACHLOROCYCLOPENTADIENE	0.12	26085	02/16/89
CHLOROBENZENE	3.7	26127	07/25/88
CHLORDANE	5.2	26085	02/16/89
CHLOROPHENYLMETHYL SULFOXID	E 35	26085	11/17/88
CHLOROPHENYLMETHYL SULFONE	24	26085	02/16/89
DIBROMOCHLOROPROPANE	0.18	26085	09/16/87
DICYCLOPENTADIENE	13	26127	01/21/88
VAPONA	1.2	26063	11/21/88
DIISOPROPYLMETHYL PHOSPHONA	TE 1600	26127	09/16/87
DITHIANE	100	26127	11/16/88
DIELDRIN	5.3	26127	07/25/88
DIMETHYLMETHYL PHOSPHONATE	5.9	26085	02/16/89

TABLE NCSA-2a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-2a

AVERAGE SITE DEPTH TO GROUNDWATER: 36 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ENDRIN	0.089	26127	02/10/89
ISODRIN	0.76	26085	02/16/89
TOLUENE	2.9	26127	11/16/88
1,4-OXATHIANE	7.7	26127	09/16/87
PPDDE	2.0	26085	01/26/88
PPDDT	2.4	26085	01/26/88
SUPONA	1.6	26085	02/16/89
TETRACHLOROETHYLENE	9.5	26127	01/21/88
TRICHLOROETHYLENE	13	26085	05/4/88

NCSA-2a-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.2E+05	1.5E+00	2.7E+01*	3.4E-04	2.7E+01*	4.6E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-13
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.06+00	7.3E-09
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.4E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.06+00	3.9E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	4.4E-06
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.4E-10
PPDDE	7.4E+01	7.0E+06	7.4E+01	1.4E-02	1.4E-07	1.4E-02	1.9E-07
PPODT	7.48+01	1.5E+07	7.4E+01	2.6E-03	1.3E-08	2.6E-03	1.6E-06
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	4.6E-07
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-05
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	1.3E+01*	3.8E-04a	1.3E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	5.0E+05	2.8E+05	4.5E-06	6.1E-06	1.1E-05	4.5E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	4.3E+07	2.5E+03	1.7E-04	1.0E-08	1.7E-04	6.0E-12
ETHYLBENZENE	8.3E+05	5.0E+06	7.1E+05	6.1E-07	1.0E-07	7.1E-07	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-06
ISODRIN	5.8E+02	8.4E+06	5.8E+02	3.3E-04	2.3E-08	3.3E-04	3.1E-08
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1,2E+03	0.0E+00	0.0E+00	0.0E+00	7.2E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	5.3E-06
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.02+00	5.3E-10
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	6.1E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.02+00	1.4E-05
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.02+00	5.5E-10
M-XYLENE	1.4E+07	2.2E+06	1.9E+06	2.1E-07	1.4E-06	1.6E-06	0.0E+00
O,P-XYLENE	1.4E+07	4.3E+06	3.3E+06	1.4E-07	4.7E-07	6.1E-07	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	2.6E+00*	0.0E+00	2.68+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	3.8E-04	0.0E+00	3.88-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	6.4E-03	0.0E+00	6.4E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.9E-04	0.0E+00	3.9E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.0E-05	0.0E+00	6.08-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-28-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI EI	VE1 OPN
ALDRIN	1.5E+00	1.2E+05	1.5E+00	2.7E+01*	3.4E-04	2.7E+01*	4.6E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-13
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	7.3E-09
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.4E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	4.4E-06
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.4E-10
PPDDE	7.4E+01	7.0E+06	7.4E+01	1.4E-02	1.4E-07	1.4E-02	1.9E-07
PPDDT	7.4E+01	1.5E+07	7.4E+01	2.6E-03	1.3E-08	2.6E-03	1.68-06
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	4.6E-07
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-05
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	1.3E+01*	3.8E-04a	1.3E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	5.0E+05	2.8E+05	4.5E-06	6.1E-06	1.1E-05	4.5E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	4.3E+07	2.5E+03	1.7E-04	1.0E-08	1.7E-04	6.0E-12
ETHYLBENZENE	8.3E+05	5.0E+06	7.1E+05	6.1E-07	1.0E-07	7.1E-07	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0£+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-06
ISODRIN	5.8E+02	8.4E+06	5.8E+02	3.3E-04	2.3E-08	3.3E-04	3.1E-08
1.4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.08+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.08+00	0.0E+00	0.0E+00	7.2E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.08+00	5.3E-06
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	5.3E-10
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	6.1E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-05
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	5.5E-10
M-XYLENE	1.4E+07	2.2E+06	1.9E+06	2.1E-07	1.4E-06	1.6E-06	0.0E+00
O,P-XYLENE	1.4E+07	4.3E+06	3.3E+06	1.4E-07	4.7E-07	6.1E-07	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	2.6E+00*	0.0E+00	2.6E+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	3.8E-04	0.0E+00	3.88-04	0. 0 E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	6.4E-03	0.0E+00	6.4E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.9E-04	0.0E+00	3.9E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.0E-05	0.0E+00	6.0E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-2a-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	7.7E+03	2.1E-01	1.9E+02*	5.2E-03	1.9E+02*	7.0€-05
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-12
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.7E-08
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	3.6E-06
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-07
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	6.7E-05
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	U.0E+00	0.0E+00	7.9E-10
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-09
PPDDE	1.0E+01	4.6E+05	1.0E+01	9.8E-02	2.2E-06	9.8E-02	2.8E-06
PPDDT	1.0E+01	9.8E+05	1.0E+01	1.9E-02	1.9E-07	1.9E-02	2.5E-05
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	6.9E-06
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-04
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	9.2E+01*	5.7E-03a	9.2E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	7.7E+04	6.0E+04	1.1E-05	3.9E-05	5.0E-05	2.9E-07
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	6.6E+06	1.1E+03	4.1E-04	6.5E-08	4.1E-04	3.9E-11
ETHYLBENZENE	3.5E+05	1.8E+06	2.9E+05	1.4E-06	2.8E-07	1.7E-06	0.0E+00
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	8.3E-06
ISODRIN	2.5E+02	1.3E+06	2.5E+02	7.7E-04	1.5E-07	7.7E-04	2.0E-07
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	4.6E-13
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	7.9E-05
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	3.4E-09
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-09
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.08+00	2.1E-04
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	8.3E-09
M-XYLENE	5.8E+06	8.0E+05	7.0E+05	5.2E-07	3.8E-06	4.3E-06	0.0E+00
O,P-XYLENE	5.8E+06	1.5E+06	1.2E+06	3.4E-07	1.3E-06	1.6E-06	0.0E+00
ARSENIC	3.9E+00	0.0E+00	3.9E+00	1.4E+01*	0.0E+00	1.4E+01*	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	6.4E-04	0.0E+00	6.4E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	1.1E-02	0.0E+00	1.1E-02	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	6.6E-04	0.0E+00	6.6E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.1E-04	0.0E+00	1.1E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-2a-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I
ALDRIN	1.9E+00	4.0E-01	3.36-01	2.1E+01*	1.0E+02*	1.2E+02*	5.8E-03
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	6.9E-10
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	2.7E-05
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-04
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	5.6E-03
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	4.6E-07
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-06
PPDDE	9.3E+01	1.9E+01	1.6E+01	1.1E-02	5.1E-02	6.2E-02	2.3E-04
PPODT	9.3E+01	1.9E+01	1.6E+01	2.0E-03	9.8E-03	1.2E-02	2.0E-03
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	5.7E-04
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-01
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.0E+01*	3.5E-01*	1.0E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	1.6E+02	1.6E+02	8.2E-06	1.8E-02	1.8E-02	1.7E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.6E+04	1.3E+03	3.1E-04	2.8E-05	3.4E-04	2.3E-08
ETHYLBENZENE	4.6E+05	6.0E+02	6.0E+02	1.1E-06	8.3E-04	8.4E-04	0.0E+00
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	4.8E-03
ISODRIN	3.2E+02	6.7E+01	5.5E+01	5.9E-04	2.8E-03	3.4E-03	1.2E-04
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-10
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-03
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	2.0E-06
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-06
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	1.7E-02
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	6.9E-07
M-XYLENE	7.0E+06	2.7E+02	2.7E+02	4.3E-07	1.1E-02	1.1E-02	0.0E+00
O,P-XYLENE	7.0E+06	5.2E+02	5.2E+02	2.9E-07	3.9E-03	3.9€-03	0.0E+00
ARSENIC	2.0E+01	0.0E+00	2.0E+01	2.8E+00*	0.0E+00	2.8E+00*	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	9.1E-04	0.0E+00	9.1E-04	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.5E-02	0.0E+00	1.5E-02	0.06+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	9.3E-04	0.0E+00	9.3E-04	0.0E+00
ZINC	7.8E+05	D.0E+00	7.8E+05	1.5E-04	0.0E+00	1.5E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-2a-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	IND	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULAT I VE		VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESV1 (mg/kg)	PPLV (mg/kg)	El	EI	EI	OPN	ENC
ALDRIN	1.2E-01	1.5E+04	4.0E-01	9.0E-02	3.4E+02*	1.0E+02*	4.4E+02*	3.5E-05	1.7E-02
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-12	6.9E-10
BENZOTHIAZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	5.4E-08	2.7E-05
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-06	9.0E-04
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-07	1.5E-04
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	3.3E-05	1.7E-02
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	9.1E-10	4.6E-07
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-09	1.3E-06
PPDDE	5.7E+00	9.3E+05	1.9E+01	4.4E+00	1.7E-01*	5.1E-02	2.3E-01*	1.4E-06	7.0E-04
PPDDT	5.7E+00	2.0E+06	1.9E+01	4.4E+00	3.3E-02	9.8E-03	4.3E-02	1.2E-05	6.1E-03
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	3.4E-06	1.7E-03
DICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.6E-04	1.8E-01
DIELDRIN	1.2E-01	7.1E+03	1.9E+01	1.2E-01	1.6E+02*	1.0E+00*	1.6E+02*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	6.6E+04	1.6E+02	1.6E+02	4.4E-05	1.8E-02	1.9E-02	3.4E-07	1.7E-04
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	5.7E+06	1.6E+04	2.5E+02	1.7E-03	2.8E-05	1.7E-03	4.5E-11	2.3E-08
ETHYLBENZENE	8.5E+04	6.6E+05	1.8E+03	1.8E+03	5.9E-06	2.8E-04	2.8E-04	0.0E+00	0.0E+00
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	9.6E-06	4.8E-03
ISODRIN	5.9E+01	1.1E+06	2.0E+02	4.6E+01	3.2E-03	9.4E-04	4.2E-03	2.3E-07	1.2E-04
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	5.4E-13	2.7E-1(
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	3,9E-05	2.0E-02
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-09	2.0E-0
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	4.6E-09	2.3E-0
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-04	5.2E-0
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	4.1E-09	2.1E-0
M-XYLENE	8.8E+05	2.9E+05	8.0E+02	7.9E+02	3.4E-06	3.8E-03	3.8E-03	0.0E+00	0.0E+0
O,P-XYLENE	8.8E+05	5.7E+05	1.5E+03	1.5E+03	2.3E-06	1.3E-03	1.3E-03	0.0E+00	0.0E+0
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	3.5E+01*	0.0E+00	3.5E+01*	0.0E+00	0.0E+01
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	2.8E-03	0.0E+00	2.8E-03	0.0E+00	0.0E+0
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	4.5E-02	0.0E+00	4.5E-02	0.0E+00	0.0E+0
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	2.8E-03	0.0E+00	2.8E-03	0.0E+00	0.0E+0
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	8.6E-04	0.0E+00	8.6E-04	0.0E+00	0.0E+0

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.9 SITE NCSA-2b: BASIN D (formerly Site 26-4: Basin D; ESE, 1987h/RIC 87293R01 and ESE, 1988j/RIC 87293R01A

2.9.1 Site-Specific Considerations

Figure NCSA-2b-1 and Tables NCSA-2b-1 and NCSA-2b-2 depict the target contaminants for site NCSA-2b. Borings 4506, 4509, 4586 through 4600, and 4665 through 4682 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-2b (ESE, 1987h/RIC 87293R01).

2.9.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-2b are shown in Figure NCSA-2b-1. Methylphosphonic acid, occurring in Boring 4667 (4-5 ft) was not included in the figure, since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown on this figure, this nontarget compound was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-2b-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-2b-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.9.3 Site Exposure Summary

Tables NCSA-2b-3 through NCSA-2b-7 present Draft PPLVs, Els, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-2b is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the

cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Fluoroacetic acid	Direct	Direct	Direct	Direct	Direct
Arsenic	Direct	Direct	Direct	Direct	Direct
Lead				Direct	Direct
Cadmium			~-		Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-2b is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-2b-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-2b

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	5	0-1	4592	S	0-1	4587
Chlorophenylmethyl sulfone	0.7	9-10	4587	0.7	9-10	4587
PPDDE"	0.052	0-1	4678	0.052	0-1	4678
PPDDT ²	0.030	0-1	4678	0.030	0-1	4678
Dieldrin	3.0	0-1	4680	3.0	0-1	4680
Endrin	0.027	0-1	4680	0.027	0-1	4680
Fluoroacetic acid	16	9-10	4667	16	9-10	4667
Isodrin	0.009	0-1	4680	0.009	0-1	4680
Methyl phosphonic acid ³ /	19	4-5	4667	19	4-5	4667
Arsenic	98	0-1	4590	;	;	;
Cadmium	3.9	9-10	4596	:	;	:
Copper	45	0-1	4590	;	;	ì
Lead	920	0-1	4590	;	;	;
Mercury	1.3	0-1	4590	;	;	;
Zinc	190	0-1	4590	1	!	:

2-101

1/ PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene
2/ PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane
3/ Nontarget contaminant. Refer to the exposure assessment nontarget serven in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

TABLE NCSA-2b-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-2b

AVERAGE SITE DEPTH TO GROUNDWATER: 37 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ALDRIN	6.1	26005	05/3/88
CHLOROBENZENE	2.9	26005	05/3/88
CHLOROPHENYLMETHYL SULFONE	15	26005	05/3/88
DIISOPROPYLMETHYL PHOSPHONA	TE 110	26005	05/3/88
DITHIANE	350	26005	05/3/88
1,4-OXATHIANE	68	26005	05/3/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-2b-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI EI	OPN
ALDRIN	1.5E+00	1.4E+05	1.5E+00	3.3E+00*	3.5E-05	3.3E+00*	4.9E-06
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	9.4E+06	1.6E+05	4.3E-06	7.4E-08	4.4E-06	6.1E-11
PPDDE	7.4E+01	8.6E+06	7.4E+01	7.1E-04	6.1E-09	7.1E-04	0.0E+00
PPDDT	7.4E+01	1.8E+07	7.4E+01	4.1E-04	1.7E-09	4.1E-04	0.0E+00
DIELDRIN	1.6E+00	6.5E+04	1.6E+00	1.9E+00*	4.6E-05	1.9E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-09
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.CE+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	5.2E+07	2.5E+03	1.1E-05	5.1E-10	1.1E-05	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	4.1E-01*	0.0E+00	4.1E-01*	0.0E+00
ISODRIN	5.8E+02	1.0E+07	5.8E+02	1.6E-05	8.8E-10	1.6E-05	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.58+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	4.0E+00*	0.0E+00	4.0E+00*	0.0E+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	8.6E-03	0.0E+00	8.6E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.1E-04	0.0E+00	1.1E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.9E-02	0.0E+0C	5.9E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.9E-04	0.0E+00	3.9E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	9.6E-05	0.0E+00	9.6E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-2b-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.4E+05	1.5E+00	3.3E+00*	3.5E-05	3.3E+00*	4.9E-06
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	9.4E+06	1.6E+05	4.3E-06	7.4E-08	4.4E-06	6.1E-11
PPODE	7.4E+01	8.4E+06	7.4E+01	7.1E-04	6.1E-09	7.1E-04	0.0E+00
PPDDT	7.4E+01	1.8E+07	7.4E+01	4.1E-04	1.7E-09	4.1E-04	0.0E+00
DIELDRIN	1.6E+00	6.5E+04	1.6E+00	1.9E+00*	4.6E-05	1.9E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-09
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	5.2E+07	2.5E+03	1.1E-05	5.1E-10	1.1E-05	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.3E+00	3.9E+U1	4.1E-01*	0.0E+00	4.1E-01*	0.0E+00
ISODRIN	5.8E+02	1.0E+07	5.8E+02	1.6E-05	8.8E-10	1.6E-05	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	4.0E+00*	0.0E+00	4.0E+00*	0.0E+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	8.6E-03	0.0E+00	8.6E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.1E-04	0.0E+00	1.1E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.9E-02	0.0E+00	5.9E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.9E-04	0.0E+00	3.9E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	9.6E-05	0.0E+00	9.6E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-2b-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	9.4E+03	2.1E-01	2.4E+01*	5.3E-04	2.4E+01*	7.4E-05
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-07
CHLOROPHENYLMETHYL SULFONE	7.0E+04	1.5E+06	6.7E+04	1.0E-05	4.8E-07	1.1E-05	4.0E-10
PPDDE	1.0E+01	5.7E+05	1.0E+01	5.1E-03	9.1E-08	5.1E-03	0.0E+00
PPDDT	1.0E+01	1.2E+06	1.0E+01	2.9E-03	2.5E-08	2.9E-03	0.0E+00
DIELDRIN	2.2E-01	4.3E+03	2.2E-01	1.4E+01*	7.0E-04	1.4E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	8.1E+06	1.1E+03	2.6E-05	3.3E-09	2.6E-05	0.0E+00
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	9.7E-01*	0.0E+00	9.7E-01*	0.0E+00
ISODRIN	2.5E+02	1.6E+06	2.5E+02	3.7E-05	5.7E-09	3.7E-05	0.0E+00
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ARSENIC	3.9E+00	0.0E+00	3.9E+00	2.2E+01*	0.06+00	2.2E+01*	0.0E+00
CADMIUM	5.8E+01	0.0E+00	5.8E+01	6.8E-02	0.0E+00	6.8E-02	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	1.8E-04	0.0E+00	1.8E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	1.0E-01	0.0E+00	1.0E-01	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	6.6E-04	0.0E+00	6.6E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.8E-04	0.0E+00	1.8E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-2b-6
EXPOSURE EVALUATIONS FOR COMMERCIAL MORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE 1 ENC
ALDRIN	1.9E+00	4.0E-01	3.3E-01	2.6E+00*	1.3E+01*	1.5E+01*	7.4E-03
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	7.4E+02	7.3E+02	7.7E-06	9.5E-04	9.6E-04	2.8E-07
PPDDE	9.3E+01	1.9E+01	1.6E+01	5.6E-04	2.7E-03	3.2E-03	0.0E+00
PPDDT	9.3E+01	1.9E+01	1.6E+01	3.2E-04	1.5E-03	1.9E-03	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.5E+00*	5.2E-02	1.6E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-05
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	2.9E+02	2.4E+02	2.0E-05	9.4E-05	1.1E-04	0.0E+00
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	7.4E-01*	0.0E+00	7.4E-01*	0.0E+00
ISODRIN	3.2E+02	6.7E+01	5.5E+01	2.8E-05	1.3E-04	1.6E-04	0.0E+00
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ARSENIC	2.0E+01	0.0E+00	2.0E+01	4.3E+00*	0.0E+00	4.3E+00*	0.0E+00
CADMIUM	3.6E+02	0.0E+00	3.6E+02	1.1E-02	0.0E+00	1.1E-02	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	2.6E-04	0.0E+00	2.6E-04	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.4E-01*	0.0E+00	1.4E-01*	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	9.3E-04	0.0E+00	9.3E-04	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	2.4E-04	0.0E+00	2.4E-04	0.0E+00

^{*:} E1 is equal to or exceeds 1.0E-01

NCSA-2b-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	IND!	IRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VE 1
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	El	ΕI	OPN	EN
	(mg/kg)	(mg /kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	1.9E+04	4.0E-01	9.0E-02	4.3E+01*	1.3E+01*	5.6E+01*	3.7E-05	2.2E-
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-07	1.1E-
CHLOROPHENYLMETHYL SULFONE	1.7E+04	1.3E+06	7.4E+02	7.0E+02	4.2E-05	9.5E-04	9.9E-04	4.6E-10	2.8E-
PPDDE	5.7E+00	1.1E+06	1.9E+01	4.4E+00	9.1E-03	2.7E-03	1.2E-02	0.0E+00	0.0E+
PPDDT	5.7E+00	2.4E+06	1.9E+01	4.4E+00	5.2E-03	1.5E-03	6.8E-03	0.0E+00	0.0E+
DIELDRIN	1.2E-01	8.6E+03	1.9E+01	1.2E-01	2.5E+01*	1.6E-01*	2.5E+01*	0.0E+00	0.0E+
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-08	1.1E-
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+
ENDRIN	2.5E+02	7.0E+06	8.6E+02	2.0E+02	1.1E-04	3.1E-05	1.4E-04	0.0E+00	0.0E+
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	4.0E+00*	0.0E+00	4.0E+00*	0.0E+00	0.0E+
ISODRIN	5.9E+01	1.4E+06	2.0E+02	4.6E+01	1.5E-04	4.5E-05	2.0E-04	0.0E+00	0.0E+
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	5.3E+01*	0.0E+00	5.3E+01*	0.0E+00	0.0E+
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	5.1E-01*	0.0E+00	5.1E-01*	0.0E+00	0.0E+
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	7.9E-04	0.0E+00	7.9E-04	0.0E+00	0.0E+
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	4.2E-01*	0.0E+00	4.2E-01*	0.0E+00	0.0E+
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	2.8E-03	0.0E+00	2.8E-03	0.0E+00	0.0E+
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	1.4E-03	0.0E+00	1.4E-03	0.0E+00	0.0E+

t: EI is equal to or exceeds 1.0E-01

2.10 SITE NCSA-2c: BASIN E (formerly Site 26-5; ESE, 1987i/RIC 87203R04 and ESE, 1988k/RIC 87203R04A)

2.10.1 Site-Specific Considerations

Figure NCSA-2c-1 and Tables NCSA-2c-1 and NCSA-2c-2 depict the target contaminants for site NCSA-2c. Borings 4517, 4601 through 4616, and 4650 through 4664 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-2c (ESE, 1987i/RIC 87203R04).

2.10.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-2c are shown in Figure NCSA-2c-1. The following contaminants were not included in this figure, since they were not considered target contaminants during the Phase I and Phase II investigations: Oxybisethanol, occurring in Borings 4601 (0-1 and 4-5 ft), 4602 (4-5 ft and 14-15 ft), 4607 (4-5 ft), 4608 (0-1 and 4-5 ft), 4609 (0-1, 4-5, 9-10, and 14-15 ft), 4610 (0-1 ft), and 4611 (0-1 ft), and phosphoric acid, triphenyl ester, occurring in Borings 4602 (9-10 ft), 4607 (0-1 and 4-5 ft), 4608 (0-1, 4-5, and 9-10 ft), 4609 (0-1, 4-5, and 19-20 ft), 4610 (4-5 ft) and 4611 (0-1 ft). Although not shown on this figure, these nontarget compounds were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-2c-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Methylene chloride, shown in Table NCSA-2c-1 is excluded from consideration in the exposure analysis for this site, because it was considered a laboratory contaminant in the samples analyzed. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Diisopropylmethyl phosphonate was not detected in the 0-10 ft. Table NCSA-2c-2 summarizes the maximum concentrations

detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.10.3 Site Exposure Summary

Tables NCSA-2c-3 through NCSA-2c-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-2c is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Dieldrin	Direct	Direct	Direct	Direct	Direct
Fluoroacetic acid	Direct	Direct	Direct	Direct	Direct
Arsenic	Direct	Direct	Direct	Direct	Direct
Chromium	Direct	Direct	Direct	Direct	Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs. Site NCSA-2c is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 12

TABLE NCSA-2c-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-2c

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Chlorophenylmethyl sulfone	0.4	9-10	4609	0.4	9-10	4609
Dieldrin	_	0-1	4609	•	0-1	4609
Diisopropylmethyl phosphonate	;	;	;	3	29-30	4650
Endrin	0.006	0-1	4650	900.0	0-1	4650
Fluoroacetic acid	5.8	4-5	4650	5.8	4-5	4650
Methylene chloride"	0.4	4-5	4651		14-15	4651
		4-5	4652	:	:	;
Oxybisethanol ²	3.0	9-10	4609	3.0	9-10	4609
Phosphoric acid, triphenyl ester2	20	9-10	4602	20	9-10	4602
Arsenic	20	9-10	4654	;	:	;
Chromium	46	9-10	4602	;	i	;
Lead	82	0-1	4609	;	:	;
Zinc	87	0-1	4615	;	:	:

1/ Suspected laboratory contaminant.
2/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

TABLE NCSA-2c-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-2c

AVERAGE SITE DEPTH TO GROUNDWATER: 32 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
CHLOROFORM	26	26088	11/21/88
VAPONA	0.95	26088	11/21/88
DIISOPROPYLMETHYL PHOSPHONAT	TE 11	26088	11/21/88
DIELDRIN	2.0	26088	11/21/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYT FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-2c-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (rig/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI EI	VE I OPN
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.2E-06
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.3E+07	1.6E+05	2.4E-06	3.1E-08	2.5E-06	0.0E+00
DIELDRIN	1.6E+00	8.7E+04	1.6E+00	6.4E-01*	1.1E-05	6.4E-01*	3.8E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.6E+06	4.7E+05	0.0E+00	1.8E-06	1.8E-06	2.2E-10
ENDRIN	2.5E+03	7.18+07	2.5E+03	2.4E-06	8.5E-11	2.4E-06	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.08+00	3.9E+01	1.5E-01*	0.0E+00	1.5E-01*	0.0E+00
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-10
ARSENIC	2.2E+01	0.0E+00	2.2E+01	9.3E-01*	0.0E+00	9.3E-01*	0.0E+00
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	6.6E-01*	0.0E+00	6.6E-01*	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.3E-03	0.0E+00	5.3E-03	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	4.4E-05	0.0E+00	4.4E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-2c-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT El	CUMULATIVE EI	VE I OPN
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.2E-06
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.3E+07	1.6E+05	2.4E-06	3.1E-08	2.5E-06	0.0E+00
DIELDRIN	1.6E+00	8.7E+04	1.6E+00	6.4E-01*	1.1E-05	6.4E-01*	3.8E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.6E+06	4.7E+05	0.0E+00	1.8E-06	1.8E-06	2.2E-10
ENDRIN	2.5E+03	7.1E+07	2.5E+03	2.4E-06	8.5E-11	2.4E-06	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	1.5E-01*	0.0E+00	1.5E-01*	0.0E+00
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-10
ARSENIC	2.2E+01	0.0E+00	2.2E+01	9.3E-01*	0.0E+00	9.3E-01*	0.0E+00
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	6.6E-01*	0.0E+00	6.6E-01*	0.0E+00
LEAD	1.5E+04	0.QE+00	1.5E+04	5.3E-03	0.0E+00	5.3E-03	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	4.4E-05	0.0E+00	4.4E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-2c-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE	VEI
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0. 0E+00	4.8E-05
CHLOROPHENYLMETHYL SULFONE	7.0E+04	2.0E+06	6.7E+04	5.7E-06	2.0E-07	5.9E-06	0.0E+00
DIELDRIN	2.2E-01	5.8E+03	2.2E-01	4.6E+00*	1.7E-04	4.6E+00*	5.8E-07
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	1.6E+06	2.4E+05	0.0E+00	1.9E-06	1.9E-06	1.4E-09
ENDRIN	1.1E+03	1.1E+07	1.1E+03	5.7E-06	5.5E-10	5.7E-06	0.0E+00
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	3.5E-01*	0.0E+00	3.5E-01*	0.0E+00
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	4.5E-09
ARSENIC	3.9E+00	0.0E+00	3.9E+00	5.1E+00*	0.0E+00	5.1E+00*	0.0E+00
CHROMIUM	8.8E+00	0.0E+00	8.8E+00	5.2E+00*	0.0E+00	5.2E+00*	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	8.9E-03	0.0E+00	8.9E-03	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	8.3E-05	0.0E+00	8.3E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-2c-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	ENC
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	6.9E-03
CHLOROPHENYLMETHYL SULFONE	9.1E+04	7.4E+02	7.3E+02	4.4E-06	5.4E-04	5.5E-04	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	5.0E-01*	1.7E-02	5.2E-01*	8.3E-05
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	2.9E+02	2.9E+02	0.0E+00	1.0E-02	1.0E-02	1.4E-06
ENDRIN	1.4E+03	2.9E+02	2.4E+02	4.4E-06	2.1E-05	2.5E-05	0.0E+00
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	2.7E-01*	0.0E+00	2.7E-01*	0.0E+00
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	6.4E-07
ARSENIC	2.0E+01	0.0E+00	2.0E+01	1.0E+00*	0.0E+00	1.0E+00*	0.0E+00
CHROMIUM	5.5E+01	0.0E+00	5.5E+01	8.4E-01*	0.0E+00	8.4E-01*	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.3E-02	0.0E+00	1.3E-02	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.1E-04	0.0E+00	1.1E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-2c-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	IRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VE I
CONTAM! NANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	El	EI	OPN	ENC
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0€+00	2.4E-05	2.1E-02
CHLOROPHENYLMETHYL SULFONE	1.7E+04	1.7E+06	7.4E+02	7.0E+02	2.4E-05	5.4E-04	5.7E-04	0.0E+00	0.0E+0(
DIELDRIN	1.2E-01	1.2E+04	1.9E+01	1.2E-01	8.2E+00*	5.2E-02	8.2E+00*	2.9E-07	2.5E-04
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	2.2E+05	2.9E+02	2.9E+02	0.0E+00	1.0E-02	1.0E-02	1.6E-09	1.4E-00
ENDRIN	2.5E+02	9.4E+06	8.6E+02	2.0E+02	2.4E-05	7.0E-06	3.1E-05	0.0E+00	0.0E+00
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	1.5E+00*	0.0E+00	1.5E+00*	0.0E+00	0.0E+00
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-09	1.9E-0
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	1.2E+01*	0.0E+00	1.2E+01*	0.0E+00	0.0E+0
CHROMIUM	1.1E+00	G.0E+00	0.0E+00	1.1E+00	4.0E+01*	0.0E+00	4.0E+01*	0.0E+00	0.0E+0
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	3.7E-02	0.0E+00	3.7E-02	0.0E+00	0.GE+0.
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	6.2E-04	0.0E+00	6.2E-04	0.06+00	0.0E+0

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.11 SITE NCSA-2d: DRAINAGE DITCHES (formerly Site 26-3: Basin C; ESE, 1987g/RIC 87343R03 and ESE, 1988i/RIC 87343R03A; Site 35-4/26-7: Basins A, B, and C Drainage Ditches; ESE, 1987l/RIC 87203R06 and ESE, 1988s/RIC 87203R06A; Section 26-Uncontaminated; ESE, 1987j/RIC8729R02 and Section 26-Nonsource Area; ESE, 1988g/RIC 87293R02A

2.11.1 Site-Specific Considerations

Figure NCSA-2d-1 and Tables NCSA-2d-1 and NCSA-2d-2 depict the target contaminants for site NCSA-2d. Borings 4052, 4108 through 4111, 4577, 4584, 4593, 4600, and 4631, from Sites 26-3, 35-4/26-7 and Boring 4505 from the Section 26-Uncontaminated were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-2d.

2.11.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of target contaminants that were detected in Site NCSA-2d are shown in Figure NCSA-2d-1. Table NCSA-2d-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-2d-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.11.3 Site Exposure Summary

Tables NCSA-2d-3 through NCSA-2d-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-2d is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-2d is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

2-120

different method in Phase II-See leaf

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 13

TABLE NCSA-2d-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-2d

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	4	0-1	4631	4	0-1	4631
PPDDE"	0.016	2-3	4111	0.016	2-3	4111
Dieldrin	4	0-1	4631	4	0-1	4631
Endrin	0.041	7-8	4110	0.041	7-8	4110
Arsenic	30	0-1	4109	;	;	1
Lead	130	4-5	4052	;	;	;
Mercury	1.7	0-1	4109	;	;	1
Zinc	82	2-3	4111	;	;	1

1/ PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

TABLE NCSA-2d-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-2d

AVERAGE SITE DEPTH TO GROUNDWATER: 33 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,2-DICHLOROETHANE	5.4	26006	11/21/88
ALDRIN	0.81	26006	11/21/88
ATRAZINE	24	26006	11/21/88
CHLOROFORM	1.1	26006	11/21/88
CHLOROBENZENE	5.4	26006	11/21/88
CHLOROPHENYLMETHYL SULFONE	660	26006	11/21/88
DIBROMOCHLOROPROPANE	0.26	26006	11/21/88
VAPONA	0.88	26006	11/21/88
DIISOPROPYLMETHYL PHOSPHONA	TE 980	26006	11/21/88
DITHIANE	220	26006	11/21/88
DIELDRIN	0.17	26006	11/21/88
ENDRIN	0.12	26006	11/21/88
ISODRIN	0.12	26006	11/21/88
MALATHION	6.0	26006	11/21/88
1,4-OXATHIANE	14	26006	11/21/88
PPDDT	0.14	26006	11/21/88
PARATHION	4.6	26006	11/21/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALY FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-2d-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-2d

AVERAGE SITE DEPTH TO GROUNDWATER: 33 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
SUPONA	3.8	26006	11/21/88
TETRACHLOROETHYLENE	1.1	26006	11/21/88
TRICHLOROETHYLENE	2.6	26006	11/21/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYT FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-2d-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.1E+06	1.5E+00	2.7E+00*	3.6E-06	2.7E+00*	9.3E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-14
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.5E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-10
PPDDE	7.4E+01	6.7E+07	7.4E+01	2.2E-04	2.4E-10	2.2E-04	0.0E+00
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-08
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	7.5E-08
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	4.2E-07
DIELDRIN	1.6E+00	5.0E+05	1.6E+00	2.5E+00*	7.9E-06	2.5E+00*	5.4E-10
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	3.2E-09
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	4.1E+08	2.5E+03	1.7E-05	1.0E-10	1.7E-05	9.6E-13
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	5.7E-10
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-14
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	7.0E-13
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	7.0E-08
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.2E-07
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	4.6E-11
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.4E+00*	0.0E+00	1.4E+00*	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	8.4E-03	0.0E+00	8.4E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	5.1E-04	0.0E+00	5.1E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	4.1E-05	0.0E+00	4.1E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-2d-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT E1	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.1E+06	1.5E+00	2.7E+00*	3.6E-06	2.7E+00*	9.3E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-14
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.5E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-10
PPDDE	7.4E+01	6.7E+07	7.4E+01	2.2E-04	2.4E-10	2.2E-04	0.0E+00
PPODT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-08
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	7.5E-08
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	4.2E-07
DIELDRIN	1.6E+00	5.0E+05	1.6E+00	2.5E+00*	7.9E-06	2.5E+00*	5.4E-10
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	3.2E-09
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	4.1E+08	2.5E+03	1.7E-05	1.0E-10	1.7E-05	9.6E-13
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	5.7E-10
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-14
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	7.0E-13
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	7.0E-08
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.2E-07
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	4.6E-1
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.4E+00*	0.0E+00	1.4E+00*	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	8.4E-03	0.0E+00	8.4E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	5.1E-04	0.0E+00	5.1E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	4.1E-05	0.0E+00	4.1E-05	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-2d-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	7.3E+04	2.1E-01	1.9E+01*	5.5E-05	1.9E+01*	1.4E-06
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	7.3E-14
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	4.2E-08
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0€+00	3.4E-07
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-09
PPDDE	1.0E+01	4.4E+06	1.0E+01	1.6E-03	3.6E-09	1.6E-03	0.0E+00
PPODT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	1.6E-07
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-06
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	6.4E-06
DIELDRIN	2.2E-01	3.3E+04	2.2E-01	1.8E+01*	1.2E-04	1.8E+01*	8.2E-09
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	2.0E-08
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	6.3E+07	1.1E+03	3.9E-05	6.5E-10	3.9E-05	6.2E-12
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	3.7E-09
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-13
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	4.5E-12
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-13
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-06
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-06
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	6.9E-10
ARSENIC	3.9E+00	0.0E+00	3.9E+00	7.6E+00*	0.0E+00	7.6E+00*	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	1.4E-02	0.0E+00	1.4E-02	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	8.6E-04	0.0E+00	8.6E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	7.8E-05	0.0E+00	7.8E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-2d-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I
ALDRIN	1.9E+00	4.0E-01	3.3E-01	2.1E+00*	1.0E+01*	1.2E+01*	1.1E-03
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	4.2E-10
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	2.4E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.8E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-05
PPDDE	9.3E+01	1,9E+01	1.6E+01	1.7E-04	8.2E-04	9.9E-04	0.0E+00
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	1.3E-04
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	9.3E-04
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	5.2E-03
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	2.0E+00*	7.0E-02	2.1E+00*	6.7E-06
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0€+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-04
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.6E+04	1.3E+03	3.0E-05	2.6E-06	3.2E-05	3.6E-08
ISODRIN	3.2E+02	0.0E+00	3.2E+C	0.0E+00	0.0E+00	0.0E+00	2.1E-05
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-09
1.4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E-00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-08
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	7.1E-10
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.55+02	0.0E+00	0.0E+00	0.0E+00	8.6E-04
TRICHLOROETHYLENE	2.98+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	4.0E-03
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	5.6E-07
ARSENIC	2.0E+01	0.0E+00	2.0E+01	1.5E+00*	0.0E+00	1.5E+00*	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	2.0E-02	0.0E+00	2.0E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.2E-03	0.0E+00	1.2E-03	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.0E-04	0.0E+00	1.0E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-2d-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE DIRECT		INDIRECT	CUMULATIVE	1	/E I
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	13	EI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	1.5E+05	4.0E-01	9.0E-02	3.4E+01*	1.0E+01*	4.4E+01*	7.0E-07	3.4E-0
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0€+00	8.5E-14	4.2E-1
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-08	2.4E-0
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	1.7E-07	8.3E-0
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.9E-09	1.4E-0
PPDDE	5.7E+00	8.9E+06	1.9E+01	4.4E+00	2.8E-03	8.2E-04	3.6E-03	0.0E+00	0.0E+0
PPDDT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	8.2E-08	4.0E-0
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	5.7E-07	2.8E-0
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0€+00	3.2E-06	1.6E-0
DIELDRIN	1.2E-01	6.7E+04	1.9E+01	1.2E-01	3.3E+01*	2.1E-01*	3.3E+01*	4.1E-09	2.0E-0
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	2.4E-08	1.2E-0
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	2.5E+02	5.4E+07	1.6E+04	2.5E+02	1.6E-04	2.6E-06	1.6E-04	7.2E-12	3.6E-0
ISODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	4.3E-09	2.1E-0
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.9E-13	1.4E-0
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	5.2E-12	2.6E-0
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-13	7.1E-1
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+0G	0.0E+00	0.0E+00	5.3E-07	2.6E-0
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-06	1.2E-0
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	3.4E-10	1.7E-0
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	1.9E+01*	0.0E+00	1.9E+01*	0.0E+00	0.0E+0
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	5.9E-02	0.0E+00	5.9E-02	0.0E+00	0.0E+0
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	3.7E-03	0.0E+00	3.7E-03	0.0E+00	0.0E+0
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	5.9E-04	0.0E+00	5.9E-04	0.0E+00	0.0E+0

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.12 SITE NCSA-3: BASIN F (formerly Site 26-6: Basin F; ESE, 1988l/RIC 88173R02; EBASCO, 1989b/RIC 88173R02B)

2.12.1 Site-Specific Considerations

Figures NCSA-3-1 and NCSA-3-2 and Tables NCSA-3-1 and NCSA-3-2 depict the target contaminants for site NCSA-3. Borings 4617 through 4630, 4639 through 4646, 002606DJ11, 002606DJ12, 002606DJ14, 002606DJ16 through 002606DJ20, 002606DJ22 through 002606DJ25, 002606DJ27, 002606DJ28, and 002606DJ30 through 002606DJ40 were included in this exposure assessment, consistent with the North Central SAR. The historical search conducted under the contamination assessment revealed that carbon tetrachloride and n-nitrosodimethylamine may have been present in discharges of liquid waste to Basin F (ESE, 1988l/RIC 88173R02); however, they were not detected in soil during the Phase I and Phase IIb investigations. According to site history, no other chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-3 (ESE, 1988l/RIC 88173R02).

2.12.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-3 are shown in Figures NCSA-3-1 and NCSA-3-2 in the Phase IIb CAR (EBASCO, 1989b/RIC 88173R02B). The following contaminants were not included in these figures, since they were not considered target contaminants during the Phase I and Phase IIb investigations: Hexachlorobutadiene, occurring in Borings 4643 (0-1 ft), 4644 (0-1 and 2-3 ft), 4645 (0-1 and 2-3 ft), 2606DJ14 (9-10, 19-20, 29-30 and 37-37.5 ft), 2606DJ37 (4-5 ft), and 2606DJ38 (4-5 ft); oxybisethanol, occurring in Boring 4621 (4-5 ft); tetrachlorobenzene, occurring in Borings 4620 (0.5-1.5 ft), 4645 (0-1 and 2-3 ft), 4646 (0-1 ft), 2606DJ34 (0-1 ft) and 2606DJ36 (4-5 ft); and 1,1,2,2-tetrachloroethane, occurring in Boring 4643 (0-1 ft). Although not shown in these figures, these nontarget compounds were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-3-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizoi. 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Methylene chloride was not detected in the 0-10 ft interval. Table NCSA-3-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.12.3 Site Exposure Summary

Tables NCSA-3-3 through NCSA-3-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-3 is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Chloroacetic acid	Direct	Direct	Direct	Direct	Direct
Dibromochloropropane	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Endrin	Direct	Direct	Direct	Direct	Direct
Isodrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
1,1,2,2-Tetrachloroethane	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct
Chloroform			Direct	Indirect	Dir/Ind
Dicyclopentadiene			Dir/Ind	Dir/Ind	Dir/Ind
Tetrachloroethylene			Direct	Indirect	Dir/Ind
Benzene			•-	Indirect	Indirect
Bicycloheptadiene			~-	Indirect	Indirect
Chlorophenylmethyl sulfide				Indirect	Indirect

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Cadmium					Direct
Chlorophenylmethyl					
sulfone				Indirect	Indirect
Chlorophenylmethyl					
sulfoxide				Indirect	Indirect
1,2-Dichloroethane				Indirect	Indirect
Methylene chloride				Indirect	Indirect
Toluene				Indirect	Indirect

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-3 is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

9-10 14:15 19-20 29-30 34-35	As 3.5 CLC2A 760 CPMSO2 0.A Cr 29 MPA 59 TDGCL 23 Zn 78 As 3.2 CPMSO2 1 MPA 70 Zn 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zn 74 As 2.7 Cd 1.3 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zn 75 Hg 0.061 HMPA 14 Pb 36 Zn 75 Hg 0.061 HMPA 14 Pb 36 Zn 64 Hg 0.069 HG 0.066 HG	1-2 Cr 25 DIMP 3 MPA 35 Zfr 66 68 4.0 DIMP 2 H5 DIMP 36.5-37.5 Bit D026060J17 1-2 As 3.1 MPA 42 As 4.1 H5 As 4.1 H5 D032 As 4.1 H5 D032 As 4.1 H5 D032 D032	4-5 9-10 14-15 19-20 29-30 38-6-39-6 0026060J25 1-2	MPA 9.1 C 27 MPA 15 BL BL BL BL 37	002606DJ31 0-1 4-5	As CPMSO2 CF Hg MPA 1. Pb 1. As CF DOINP Hg NA (TDGCL C) As NA (TDGCL C) As CF D NA (TDGCL C)
9-10 1-2 4-5 9-10 14-15 19-20 29-30 34-35	CPMSO2 0.4 C1 29 MPA 59 TDGCL 23 Zn 78 As 3.2 CPMSO2 1 MPA 70 Zn 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 PP 36 Zn 74 As 2.7 Cd 1.3 Cr 26 Hg 0.081 HMPA 14 PP 36 Zn 64 Hg 0.091 HMPA 14 Hg 0.059 Hg 0.095	MPA 35 Zn 66 4-5 As 4.0 DIMP 2 H9 9,000 14-15 DIMP 2 H9 9,000 14-15 DIMP 2 H9 9,000 19-20 H9 9,11 36.5-37.5 Bit. 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 3.1 HPA 42	9-10 14-15 19-20 29-30 38-6-39-6 0026060 J25	As 26 Cr 26 IMPA 91 Cr 27 IMPA 15 Bit. Bit. Bit. Bit.	4-5	CPMSO2 Cr Hg MPA 1- Po Zn NA/TDQCL Cr Cd Cr DMP Hg MPA Pb NA/TDQCL Cr As Cr Cr Z
9-10 9-10 14-15 19-20 29-30 34-35	Cr 29 MPA 59 TDGCL 23 Zn 78 As 32 CPMSO2 1 MPA 70 Zn 90 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zn 74 As 27 Cd 1.3 Cr 26 Hg 0.091 HMPA 14 Pb 36 Zn 54 Hg 0.095 Hg 0.059 Hg 0.059 Hg 0.059 Hg 0.059 Hg 0.059 Hg 0.059	4-5 As 4.0 DIMP 2 Hg 0.080 9-10 Hg 0.080 14-15 DIMP 2 Hg 0.080 19-20 Hg 0.10 29-30 Hg 0.11 36.5-37.5 Bit. 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 4.1 Hg 0.032	9-10 14-15 19-20 29-30 38-6-39-6 0026060 J25	C7 26 MPA 9.1 C2 27 MPA 15 BL BL BL BR		Hg MPA 11. Pb Zh NA (TDGCL C) Ag Cd Cr DMP Hg MPA PA NA (TDGCL C) As O C C C C C C C C C C C C C C C C C C
9-10 9-10 14-15 19-20 29-30 34-35	TDGCL 23 Zn 78 As 32 CPMSO2 1 MPA 70 Dn 60 As 38 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zn 74 As 27 Cd 13 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zn 64 Hg 0.059 Hg 0.059 Hg 0.059 Hg 0.065	DIMP 2 HS 0.090 14-15 DIMP 2 HS 0.090 14-15 DIMP 2 HS 0.090 19-20 HS 0.10 29-30 HS 0.11 36.5-37.5 Bit 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 3.9 4-5 As 4.1 HS 0.002	14-15 19-20 29-30 38-6-39-6 0026060J25	MPA 9.1 C 27 MPA 15 BL BL BL BL 37		BMPA 1. Physics Circle Co.
9-10 9-10 14-15 19-20 29-30 34-35	Zn 78 As 3.2 CPMSO2 1 MPA 70 Zn 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zn 74 As 2.7 Cd 1.3 Cr 26 Hg 0.091 HMPA 14 Pb 36 Zn 54 Hg 0.091 HMPA 14 Pb 36 Hg 0.095	9:10 Hg 0,083 9:10 Hg 0,080 14-15 DIMP 2 Hg 0,080 19:20 Hg 0,10 29:30 Hg 0,11 36:5-37.5 Bit. 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1:2 As 3.1 1:2 As 4.1 1:3 As 4.1 1:4 As 4.1	19-20 29-30 38-6-39-6 0026060-J25	BL 15. BL		Pb Zn NA (TDGC) C As Cd Cr DIMP Hg MPA Pb NA (TDGC) C As Cr
9-10 9-10 14-15 19-20 29-30 34-35	As 3.2 CPMSO2 1 MPA 70 Zh 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Z0 74 As 27 Cd 1.3 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zh 66 Zh 67 Zh 68 Hg 0.0651 HMPA 14 HD 36	9-10 Hg 0,090 14-15 DIMP 2 Hg 0,090 19-20 Hg 0,10 29-30 Hg 0,11 36.5-37.5 Bit. 002606DJ17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 3.9 4-5 As 4.1 Hg 0,032	29-30 38-6-39-6 002606DJ25 12 002606DJ27	BL BL BH. 37		NA (TDGC) CO As Cd Cr DIMP Hg MPA Pb NA (TDGC) Ci As Cr
9-10 9-10 14-15 19-20 29-30 34-35	As 3.2 CPMSO2 1 MPA 70 Zh 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zn 74 As 2.7 Cd 1.3 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zh 56 Zh 56 Hg 0.061 HMPA 14 HD 36 HD 36 HD 0.059 HD 0.055	14-15 DIMP 2 Hg 0,069 19-20 Hg 0,10 29-30 Hg 0,11 36.5-37.5 Bit 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 3.9 4-5 As 4.1 HG 0,002	29-30 38-6-39-6 002606DJ25 12 002606DJ27	84. 84. 37		As Cd Cr DIMP Hg MPA Pb NA/TDGCL Cl As Cr
9-10 9-10 14-15 19-20 29-30 34-35	As 3.2 CPMSO2 1 MPA 70 Zh 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zn 74 As 2.7 Cd 1.3 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zh 56 Zh 56 Hg 0.061 HMPA 14 HD 36 HD 36 HD 0.059 HD 0.055	19-20 Hg 0.10 29-30 Hg 0.10 36.5-37.5 Bit 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 3.9 4-5 As 4.1 Hg 0.032	38 6-39 6 002606DJ25 1-2 002606DJ27	8 ML 37		Cd Cr DIMP Hg MPA Pb NA (TDGC), Cr As Cr
9-10 	CPMSO2 1 MPA 70 Zh 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zi 74 As 27 Cd 1.3 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zh 54 Hg 0.095 HMPA 36 HMPA 14 HMPA 14 HMPA 14 HMPA 15 HMPA 16	29-30 Hg 0.11 36.5-37.5 Bit 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 3.9 4-5 As 4.1 HG 0.002	002606DJ27	 	9-10	Cr DIMAP Hg IMPA Pb NA/TDGCL C As Cr
9-10 9-10 14-15 19-20 29-30 34-35	CPMSO2 1 MPA 70 Zh 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zi 74 As 27 Cd 1.3 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zh 54 Hg 0.095 HMPA 36 HMPA 14 HMPA 14 HMPA 14 HMPA 15 HMPA 16	36.5-37.5 Bit. 0026060J17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 39 4-5 As 4.1 HG 0.002	1.2 002606DJ27	As 37	9- 10	DMP Hg MPA Pb NA/TDGCL_C As Cr
9-10 	Zn 60 As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zn 74 As 27 Cd 1.3 Cr 26 Hg 0.061 HMPA 14 Pb 36 Zn 64 Hb 0.066 Hb 0.066 Hb 0.066	002606DJ17 1-2 As 3.1 MPA 42 0026060J18 1-2 As 39 4-5 As 4.1 HD 0.032	1.2 002606DJ27	As 37	9-10	RAPA PO NA (TDGCL C A4 C7
9-10 -14:15 -19:20 -29:30 -34:35	As 3.8 Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Zo 74 As 27 Cd 1.3 Cr 26 Hg 0.091 IMPA 14 Pb 36 Zo 54 Hg 0.091 HMPA 14 Pb 36 Zo 56 Hg 0.091	1-2 As 3.1 MPA 42 0026060J18 1-2 As 39 4-5 As 4.1 HB 0.032	002606DJ27	<u> </u>	9-10	Po NA (TDOC), C As Cr
9-10 	Cr 37 DIMP 3 Hg 0.12 MPA 24 Pb 36 Z0 74 As 27 Cd 1.3 Cr 26 Hg 0.091 IMPA 14 Pb 36 Z0 54 Hg 0.059 Hg 0.059	1-2 As 3.1 MPA 42 0026060J18 1-2 As 39 4-5 As 4.1 HB 0.032	002606DJ27	<u> </u>	9-10	NA (TDGC) C
14:15 19:20 29:30 34:35	Hg 0.12 MPA 24 Pb 36 Zn 74 As 27 Cd 1.3 Cr 26 Hg 0.061 IMPA 14 Pb 36 Zn 54 Hg 0.069 Hg 0.069 Hg 0.069 Hg 0.069	0026060J18 1.2 As 39 4.5 As 4.1 100022		•	9. 10	Cr :
14:15 19:20 29:30 34:35	MPA 24 Pb 36 Zc 74 As 27 Cd 13 Cr 26 Hg 0091 HMPA 14 Pb 36 Zc 54 Hg 0.059 Hg 0.059	0026060J18 1.2 As 39 4.5 As 4.1 100022		•	}	
14:15 19:20 29:30 34:35	Pb 36 Z0 74 As 2.7 Cd 1.3 Cr 26 Hg 0.081 HMPA 14 Pb 36 Z0 64 Hb 0.059 Hb 0.059	1:2 As 3.9 4:5 As 4.1 Hd 0002		•		Hg
14:15 19:20 29:30 34:35	Zn 74 As 27 Cd 1.3 Cr 26 Hg 0.091 HMPA 14 Pb 36 Zn 54 Hg 0.059 Hg 0.059	1:2 As 3.9 4:5 As 4.1 Hd 0002	1-2		İ	MPA
14:15 19:20 29:30 34:35	Cd 1.3 Cr 26 Hg 0.081 IMPA 14 Pb 36 Zn 64 Hg 0.059 Ha 0.059	1:2 As 3.9 4:5 As 4.1 Hd 0002		CLC2A 510		Po :
19-20 29-30 34-35 026060J14	Cr 26 Hg 0.061 HMPA 14 Pb 36 Zn 64 Hg 0.059 Hg 0.059	4-5 As 4.1 Hg 0,032		IMPA 450	ł	Zh NA (TDGCL C
19-20 29-30 34-35 026060J14	Hg 0.061 HMPA 14 Pb 36 7n 64 Hg 0.059 Hg 0.085	4-5 As 4.1 Hg 0,032		TDGC 9	14-15	Hg
19-20 29-30 34-35 026060J14	HAPA 14 Pb 36 7n 64 Hg 0.059 Hg 0.095	Ha 0.032	4-5	As 3.2 Ha 0.075		NA (TDGCL C
19-20 29-30 34-35 226060J14	Zn 64 Ha 0.059 Ha 0.095		9-10	As 27	19-20	Ho
19-20 29-30 34-35 226060J14	Hg 0.059 Hg 0.086	9-10 As 27	• • •	G 31		NA TOGCILO
19-20 29-30 34-35 26060J14	Hg 0,095	14-15 CLC2A 43		Ho 0.049	29.30	Hg NA CTOCCL C
29-30 34-35 26060J14		20-21 Hg 0.031	14-15	Hg 0.054	35-36	NÁ (TDGC), C
34-35 2606DJ14	~ ~		20:21	Hg 0.040	33.36	CU :
1 26060J14	Ha 0.065	36 5-37.5 Hg 0.056	29:30	Hg 0.075		Po :
2606DJ14	Hg 0.066	Zn 61	39-40	Hg 0.051		Zn i
		Ī		ı		NA (TOGCL, C
1.2 1		002606DJ19	002606DJ28		0026060132	
	As 29	1.2 BL	i-2	ALDRN 70	3020000132	
	CLC2A 54	4-5 Hg 0.074		As 48	0-1	As Cd
ł	CPMSO2 3	9-10 Hg 0.056		CLC2A 200 CPMSO2 2	}	Cd
	DIMP 2			DCPD (VO) 0.9	ļ	CPMSO2
	ALDRN 100	14-15 Hg 0.032		DLDRN 10	į	Hg
	ALDRN 100 As 5.2	19-20 Hg 0.038		ENDRN 10 IMPA 79		IMPA 7
- 1	CLC2A 6200			ISODR 400	,	Pb 2 NA (TOGCL, CL
	CPMS02 30	36 5-37.5 Hg 0.057		Zn64	4-6	As
	CU 1400 DCPD (VO) 8	1	4-5	As 2.8	ł	Hg
	DLDRN 20	002606DJ20		C6H6 0.3 CLC2A 52		NA (TDGCL CL
i .	Hg 0.14	1-2_1 As	ſ	Hg 0.057	9-10	As Cd
	ISODR 100 MEC6H5 4	1-2 As 32 4-5 As 42	↓	IMPA 14		Cd Hg
	TDGCL 95	Hg 0.068	9-10	As 3.0		NA (TDGCL_CL
- 1	Zn 62	9-10 As 3.5	Í	Cd 1.3 CLC2A 58		Cd
	NA (IMPA)	- Ha 0.084	ļ	Hg 0 033		Hg Po 3:
	As 4.1 CLC2A 59	14-15 Hg		MPA !7		Zn 6
	CPMSG2 10	19-20 Ha 0.079 29-30 CU 22		CHCL3 04		NA (TDGCL CL
- [0	CU 32	Hg 0.16		CLC2A 79 DIMP 1		Hg
	DCPD (VO) 400	Po 35		Hg 0.076		NA (TDGCL CL
	DCPD (SVO) 20 DLDAN 100	Zn 70		MPA 31		Hg NA (TDGCL, CL)
1.	HØ 0 042	36 5-37.5 GH2CL2 3		CHCL3 0.4		Cd
	MEC6H5 100	Hg		Ho 0.066		Hg (
	TOGOL 39	•		As 5.1 CHCL3 0.7		NA (TDGCL CL
	Zri 64 NA.(IMPA)	0026060122		Hg 0.25		CHCL3
	NORN 08	1.2 40 27	1	MPA 4.8	[]	Hg (TDGCL, CL
	le 2v	1-2 As 27 CPMSO 3		MECSH5 0.4	1	was produced. Cit
	CLC2A 79	CPMSO2 20		CHCL3 2	0000000 100	
	CPD (VO) 0.9 SODR 0.8	CU 67		Hg 0.068	002606DJ33	
	SODR 0.8 DGCL 73	MPA 68	•		0-1 4	A :
	A (MPA)	10GC 100	002606DJ30		Jo	Caf 1
	LDRN 2000	4-5 As 4.9 CLC2A 860		C011500		29
	CLC2A 55	IMPA 1100		CPMS02 0.9 Hg 0.071	12	+g 0 −b 26
	PCPD (VO) 1000 PCPD (SVO)2000			MPA470		žn <u>64</u>
0	SLDAN 200	9-10 As 3.5 MPA (90		Hg 0.050		la 3
	IEC6H5 200	4 15 BL		Cd 1.3		2
	A (MPA)			Ho 0.061	يّ [+g 0 •b 25
	LDRN 300 LC2A 64	29-30 BL		CLC2A 230 TDGCL 60		
	CPD (VO) 500	39-40 Bit.			9-10 A	
D	CPD (SVO) 300	1		Hg 0.040 Cd 24	\c	> 26
	LDRN 200	002606DJ23		Hg 0.036	[#	9 0
	NDRN 400			MPA 65		
	g 0.033 IPA 140	1 2 As 41	38 5-39 5	MPA 84		6 0
	ECOHS 20	C 28	•		Z	
	LC2A 52	MPA 54 Zn 20			19-20 H	
7-37 5 CI		7070			29-20 _H	<u> </u>
7-37 5 CI	CPD (VO) 1000	' -			27 20 In	
7-37 5 CI	CPD (SVO) 30				37-38 B	
7-37 5 CI OC OC	CPD (SVO) 30 LDRIN 10	$\boldsymbol{\nu}$.			37-36 8	
7-37 5 CI OX OX DI EN	CPD (SVO) 30 LORIN 10 NORIN 20	f_1			3/-36 8	-

**

ŧ

026060134 3	31	002606DJ34	002606DJ37		4619		4625	
0-1	As 5.3 CPMSO2 0.9 Cr 31	0-1 As 5. BCHPD 1 CHCL3 3		ALDRN 2000 As 5.3 CPMSO2 0.6	0.5-1.5	As 8.9 Cr 28 DMMP 3	0.5-1.5	As NA/SVO1
	Hg 0.13	CLC2A 280 CPMS 50		CU 120 DCPD (VO) 200	4-5	Zn 60	9-10	NA (SVO)
	Po 38 Zn 78	CPMSO2 10 CU 150		DCPD (SVO) 2000 DLDRN 40	9-10	As 4.9	7.0	Cu 111TCE
].	NA TOGCI CICAN	DCP0 (VO) 3 DCP0 (SVO) 30		Hg 0.034 IMPA 700		i		Zn
]	Cd 1.2	DLDRN 40		ISOOR 1000 MEC6H5 60	4620		1	NA(SVO)
	DIMP 2	Hg 0. MPA 580 ISOOR 20		NA (TOGCL, CLCZA)	0.5-1.5	As 9.3	4626	
	Hg 0.13 MPA 6.4	MEC6H5 5 Pb 32				BCHPD 8 C6H6 2	0-1	ALDRN
	NA (TDGCL CLC2A)		002606DJ38			CPMSO2 20 Cr 28		As BCHPD
4.5	As 3.0 Cr 29	4-5 As 4. CHCL3 2	4-5			DIMP 0.8 DMDS 10	- 1	CHCL3 CLC6H5
	Hg 0.061 IMPA 13	CLC2A 540 CPMSO 2		CPMSO2 20		DMMP 20 DCPD 2000	1	CPMS CPMSO
	Po 31 Zn 73	CPMSO2 4 CU 63		CU 1100 DBCP (SVO) 20		DLDAN 400 ENDAN 900		CPMSO2 Cr
1	NA (TDGCL CLC2A) Hg 0.12	MPA 510		DCPD (VO) 2000 DLDRN 400		ISODR 3000 MEC6H5 800	1	Cu 13DMB
	NA (TDGCL CLC2A) Hg 0.096	MEC6H5 0. TDGCL 570	9	Hg 0.072 MPA 4600		TCLEE 5 Zn 67	i	DBCP DCPD
9-10	NA (TDGCL_CLC>A)	9-10 As 2. CHCL3 2		MEC6H5 2000 TDGCL 120	4-5	ALDRN 800 BCHPD 4		DLDRN DMDS
	NA (TDGCL CLC2A)		.099		,	Cu 23 DBCP 0.04		DMMP ENDRN
	CU 35 Hg 0.12	MPA 650 MEC6H5 0.	3 002606DJ39			DCPD 1000 DLDRN 200		ETC6H5 Hg
	Po 33 Zn 84	Pb 26 TDGCL 390		As 4.9		ENDRN 500 ISOOR 1000	j	ISODA MECGHS
14-15	NA (TOGCL, CLC2A)	14-15 CLC2A 130		CLC2A 6000 CPMSQ2 20		MECSHS 300 TCLEE 10		TCLEE Zn
	2	MPA 100		CU 1100 DCPD (VO) 1000	9-10	ALDRN 2000	4-5	ALDRN
19-20	As 4.2	CLC2A 210		DCPD (SVO) 2000 DLDRN 500		8CHPD 5 C6H6 3		BCHPD C6H6
	Cd 2.3 CPMSO2 3	MPA 9		Hg 0.063		Cu 26 12DCLE 1		CHCL3 CLC6H5
28.8-29.8	Cr 25 →g 0.096	28.8-29.8 CLC2A 620 IMPA 160		ISODR 1000 MEC6H5 1000		DBCP 3 DCPD 4000		CPMS CPMSO
36-37	MPA 75 Pb 26	TDGO 7. 36-37 111TCE 0.		WE 00.10		DLDRN 400 ENDRN 800		CPMSO2
33 37	NA (TDGCL CLC2A)	CLC2A 850 CPMSO2 0.		1		ISODR 3000 MEC6H5 1000	İ	DBCP
	Hg 0.095	IMPA 290				MISK 0.4 TCLEE 40		DCPD DLDRN
002606DJ35	As 3.4	002606DJ35	0-1	As 26	14-15	ALDRN 500 DCPD 300		DMDS DMMP
0-1 1	Cd 1.2 +g 0.11	0-1 ALDRN 4		CPMSO2 0.5		DBCP 0.5 DLDRN 100		ENDRN ETC6H5
	Cd 12	CPMSO2 4 CU 510		Cr 30 CU 1000		ENDRN 300 ISODR 700	i	ISOOR MEC6H5
	Hg 0.11 Po 35		.064	DCPD (VO) 4 DIMP 2		MEC6H5 100 TCLEE 6		TCLEE
ن د	Zn 68 NA .TDGCL CLC2A)	4-5 Cd 2. CPMSO2 4	1	DLDRN 0.8 IMPA 150	19-20	ALDRN 900 BCHPD 2	i	Zn
9-10	Hg 0.091 NA (TDGCL CLC2A)	9-10 CLC2A 80		ISODR 0.4 Zn 76		DBCP 0.06 DCPD 600	4627	
	Hg 0 081	CPMSO 2 CPMSO2 5		As 3.4 DIMP 2		DLDRN 200	0-1 🕻	As
	Cd 1.1		9-10	MPA 15 Cr 30		ISODR 1000		CHCL3 CPMS
14-15 C	NA (TDGCL CLC2A)	14-15 CLC2A 210		MPA 4.8 Zo 78		MEC6H5 300 TCLEE 20		CPMSO2
	CHCL3 1	CPMSO2 0. DIMP 2		BL BL				Cr Cu
	NĂ (TOGCL, CLC2A)	Hg 0. MPA 380	29-30	BA	4621]	DBCP MECSH5
	t t	TDGCL 14 Zn 91		IMPA 4.9	05-15	Zn 61		TCLEE Zn
19 20	As 3.0 Cd 12	19-20 CPMSO2 0.	063	1	4-5	As 14 Cd 2.0	4.5	As CPMSO
	29	MPA 120	4617			l	į	CPMSO2 Zn
29-30	Po 26	NPA		CPMSO2 0.8	4622	_	9-10	As CPMSO
35.5-36.5 H	70 64 As 30	35.5-36.5 ∫ Hg 0.	.061	Zn 320 Cu 25	0-0 5	Cr 34	ĺ	CPMSO2 Zn
102606DJ36	Cd 2.0 Hg 0.088	002606DJ36				Zn 96 NA (VO)		Zn
4-5 A	Po 25 2n 66	4-5 As	3.9 4618		4.5	NA (SVO) Cu 26	4628	
	As 29 Cr 26	CPMSO2	20 0-1	ALDRN 0.7 CPMSO2 20	. •		0-1	As CPMSQ2
0	x] Po 26	DCPD (\$VO) 30	00	CI 140 ALDRN 1	4623			Cr Pla
0		DLDAN Hg	0.048	CPMSO2 0.7 Cu 26	<u>0-1</u> 4-5	SL.	4-5	As NA (SVO)
i i	Zn 2	MEC6H5 2	00	V3 40	•-3	G-C	i	- (- / - / - /
T	1 -10 0.091		25		4624			
	' 3 L				0-1	As 6.6		
					4-5	CPMSO2 2 As 5.2		
	ł	(1,)			į			
	}	9						

•

	t	4629	4644
-1.5	As 6.6 NA(SVO)	0-1 CPMSOZ Cu 2	0-! ALDRN 100 CPMS 100
4.5	As 10	Zh Z	CPMSO :
-10	NA (SVO)	4-5 R4 9-10 RL	CPMSO2 10 Legend
	Cu 20	14-15 Cu 2	DCPD 6
	111TCE 0.4 Zn 73	19-20 Cu 2	OLDAN 8C
	Zn 73 NA(SVO)		ENORN 100
	j	29-29.75 Cu 2	ISODA 10
26		39-39.25 MIBK	NA NO
	1 41 DOM	i	2-3 ALDRN 40 (feet) 4-5 Bit
. 1	ALDRN 3000 As 15	4630	CPMS 20 CPMSO 06
	8CHPD 30	0-1 CPMSO2	CPMSO2 4
	CHCL3 4 CLC6H5 0.8	DMMP	Cu 240 DCPD 04
	CPMS 400	4-5 A 1	DIMP 2 Bit. Below indicator level
	CPMSO 70 CPMSO2 300		.5 DDDAN 20 DMMP 5 NA = Not Analyzed
	G 31	DMMP	ENDRN 20
	Cu 2300 13DMB 5	9-10 BIL	ISODR 2 VOLATILE ORGANIC COMPOUNDS (VO) NA (VO: 1,2-Dichloroethane 120CLE
	13DMB 5 DBCP 5	ě	NA (VO) 1.2-Dichloroethane 12DCLE 1.1.* Trichloroethane (TCA) 111TCE
	OCPO 30	4639	Benzene C6H6
	DLDAN 700 DMDS 2	0-7 C u 370	4645 Bicycloheptaciene BCHPD Chlorobenzene CLC6H5
	DMMP 9	Hg (09 C ALDRN 5 Chloroform CHCL3
	ENDRN 90 ETC6H5 1	Aldrin 100 Dielarin 90	CPMSO2 6 Dibromochioropropane DBCP Cu 240 Dicyclopentadiene DCPD
	Hg 0.08	Dielarin 90 Engrin 10	DIMP 0.6 Dimentification DMDS
	ISOOR 100 MEC6H5 >25	Isodrin	OLDRN 6 Ethylbenzene ETC6H5 5 ENDRN 2 m-Xylene 130MB
	TCLEE 20	CPMS C	5 ENDRN 2 m-Xylene 130MB NA(VO: Methylene chloride CH2CL2
_	Zh 90	CºMSO2 C	4 2.3 ALDRN 20 Methylisobutyl ketone MBK
5	ALDRN 4000 As 92	1-7 As 6 CPMSO 2	9 CPMS 5 0.0-Xylene XYLEN CPMSO ; Tetrachloroethene (PCE) TCLEE
	BCHPD > 25	2-4 C' 28	CPMSC2 5 Toluene MEC6H5
	C6H6 1 CHCL3 70	As 7	
	CLC6H5 5	DIMP 2 CPMSC 0	0.00
	CPMS 700 CPMSO 4	CPMSO2	ENDRN 5 Chiorophenylmethyl suffide CPMS
j	CPMSO 4 CPMSO2 90	4640	NA (VO) Chloruprienylmethyr sulfaxide CPMSO Chloruprienylmethyl sulfaxide CPMSO2
- 1	Cu 290	40-0	Discomposition propagation DBCP
	DBCP 8 DCPD 100	0-1 CPMS 3 CPMSO2 5	4646 Dicyclopentad ene DCPD Diedrin DLDRN
- [DLDRN 2000	CPMSO2 5	Discoropy/methyl phosphonate DIMP
- 1	DMDS 70 DMMP 70	3-4 CPMSO 0	CPMSOZ 4 Dimethylimethyl phosphonate DMMP Cu 63 Isodrin ISODR
- [ENDRN 200	CPMSO2 5	Cu 63 Isodrin ISODR DLDRN 0.9 Endrin ENDRN
-	ETC\$H5 8 ISOOR 300	DMMP 6	NA(YO) 2-3 CPMSO2 META SICP
	SOOR 300 MEC6H5 600	NA (VO)	Cadmum Cd
-	TCLEE > 25	1	DIMP 1 Communication Communica
- [XYLEN 10 Zn 61		NA VO Lead Po
ı		4641	Zinc Zn
7		CPMSO2 6	SEPARATE ANALYSES
		Cu 120	Arsenic As 5 Mercury Hg
۱ ٔ	As 14 CHCL3 0.3	CLOAN	•
۱,	CPMS 6	NA(VO)	ARMY DEGRADATION PRODUCTS Chippagnets Asia Circan
J	CPMSO 10	2:3 CPMSO2 2 Cu 360	Chioroacetic Acid CLC2A Thiodigiycol TDGCt
1	CPMSO2 30 Cr 29	DLDAN 0	
-	Cu 24	NA (VO)	NO*ES
1	DBCP 0.9 MEC6H5 1	ı	
١	TCLEE 1	4642	Depths of all samples are reported in feet and are referenced to the asphalt liner.
┨	Zn 81	GHT CPMSO2 3	to me aspoan uner
5	As 4.8 CPMSO 5	Cu 60	Data presented for Phase II investigation are preliminary data
1	CPMSO2 10	2.3 Cu 25	that have not been validated to Level 2 status
4	Zo 66	NA IVO:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3	CPMSO 5	4643	Prepared for:
٥	CPMSO2 8	4043)
٦	_	01 ALDRY 40	Program Manager's Office for
٥	Zn 160		
<i>□</i>	_	CPMSO2 70	I Dacky Maria Assaul Classos
	Zn 160	Cu 120 00°0 80	Rocky Mountain Arsenal Cleanup
	Zn 180	Cu 120 DCPD B0 DLDPN 30	· · · · · · · · · · · · · · · · · · ·
•	Zn 180 As 9.1 CPMSO2 0.8	Cu 120 0040 80 010PN 30 8004 13 Zn 65	Rocky Mountain Arsenal Cleanup Aberdeen Proving Ground, Maryland
•	Zn 180 As \$.1 CPMSO2 0.9 Cr 26 Pb 36	00 120 0070 80 000PN 30 800P 13	• • • • • • • • • • • • • • • • • • •
•	Zn 180 As 9.1 CPMSO2 0.9 Cr 26 Pb 15 As 7,8	Cu 120 0040 80 010PN 30 8004 13 Zn 65	Aberdeen Proving Ground, Maryland
•	Zn 180 As \$.1 CPMSO2 0.9 Cr 26 Pb 36	Cu 120 0040 80 010PN 30 8004 13 Zn 65	· · · · · · · · · · · · · · · · · · ·

9

Phase I and Phase II Analytes Detected Within or Above Indicator Level

Rocky Mountain Arsenal
Prepared by Ebasco Services Incorporated

TABLE NCSA-3-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-3

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	4000	4-5	4626	4000	4-5	4626
Benzene	3	9-10	4620	3	9-10	4620
Bicycloheptadiene	30	0-1	4626	30	0-1	4626
Chloroacetic acid	1900	4-5	DJ38	7900	4-5	DJ38
Chlorobenzene	5	4-5	4626	5	4-5	4626
Chloroform	70	4-5	4626	70	4-5	4626
Chlorophenylmethyl sulfide	700	4-5	4626	700	4-5	4626
Chlorophenylmethyl sulfone	300	0-1	4626	300	0-1	4626
Chlorophenylmethyl sulfoxide	70	0-1	4626	70	0-1	4626
Dibromochloropropane	20	4-5	DJ38	20	4-5	DJ38
1,2-Dichloroethane	-	9-10	4620	-	9-10	4620
Dicyclopentadiene	4000	4-5	4620	4000	4-5	4620
Dieldrin	2000	4-5	4626	2000	4-5	4626
Diisopropylmethyl phosphonate	3	1-2	DJ16	33	1-2	DJ 16
		4-5	DJ12		4-5	DJ12
Dimethyldisulfide	70	4-5	4626	70	4-5	4626
Dimethylmethyl phosphonate	70	4-5	4626	70	4-5	4626
Endrin	006	0.5-1.5	4620	006	0.5-1.5	4620
Ethylbenzene	∞	4-5	4626	œ	4-5	4626
Hexachlorobutadiene1/	06	4-5	DJ38	06	4-5	DJ38
Isodrin	3000	0.5-1.5	4620	3000	0.5-1.5	4620
		9-10	4620		9-10	4620
Isopropylmethylphosphonic acid	4600	4-5	DJ38	4600	4-5	DJ38
Methylene chloride	:	;	ł	3	36.5-37.5	DJ20
Methylisobutyl ketone	0.4	9-10	4620		38-39.25	4629
Oxybisethanol"	0.50	4.5	4621	0.50	4-5	4621

BPAEFFBIANCY BEA WID 0/21/0/ 17:0/ LA STEEF LAND 17:0/

TABLE NCSA-3-1 (Continued)
SOIL CONTAMINANT CONCENTRATIONS
FOR SITE NCSA-3

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Tetrachlorobenzene"	10	0.5-1.5	4620	10	0.5-1.5	4620
1,1,2,2-Tetrachloroethane"	30	0-1	4643	30	0-1	4643
Tetrachloroethylene	40	9-10	4620	40	9-10	4620
Thiodiglycol	570	4-5	DJ34	570	4-5	DJ34
Toluene	2000	4-5	DJ38	2000	4-5	DJ38
1,1,1-Trichloroethane	0.4	9-10	2625	9.0	36-37	DJ34
m-Xylene	5	0-1	4626	S	0-1	4626
o-p-Xylene	10	4-5	4626	10	4-5	4626
Arsenic	48	1-2	DJ28	;	;	į
Cadmium	2.3	0-1	DJ32	;	;	;
Copper	2300	0-1	4626	:	;	:
Mercury	0.34	9-10	DJ35	:	;	:
Zinc	320	0-1	4617	1	;	:

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max.

ug/g fi

TABLE NCSA-3-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-3

AVERAGE SITE DEPTH TO GROUNDWATER: 48 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	3.7	26041	02/3/88
1,2-DICHLOROETHANE	95	26041	09/17/87
M-XYLENE	2.2	26017	07/26/88
ALDRIN	0.77	26011	01/13/88
ATRAZINE	130	26041	11/17/88
BICYCLOHEPTADIENE	16	26041	11/17/8
BENZOTHIAZOLE	270	26041	02/3/88
BENZENE	19	26041	02/9/89
CHLOROFORM	9.6	26015	05/3/88
HEXACHLOROCYCLOPENTADIENE	2.4	26041	11/17/8
CHLOROBENZENE	6.4	26015	05/3/88
CHLORDANE	63	26041	02/9/89
CHLOROPHENYLMETHYL SULFIDE	31	26041	02/3/88
CHLOROPHENYLMETHYL SULFOXID	E 400	26041	11/17/8
CHLOROPHENYLMETHYL SULFONE	760	26041	02/3/88
DIBROMOCHLOROPROPANE	0.24	26041	02/9/89
DICYCLOPENTADIENE	54	26041	02/9/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALY FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-3-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-3

AVERAGE SITE DEPTH TO GROUNDWATER: 48 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
VAPONA	2.8	26015	11/14/88
DIISOPROPYLMETHYL PHOSPHONA	TE 3900	26041	09/17/87
DITHIANE	77	26041	02/3/88
DIELDRIN	1.8	26041	11/17/88
DIMETHYL DISULFIDE	4.4	26041	11/17/88
DIMETHYLMETHYL PHOSPHONATE	14000	26041	02/4/88
ENDRIN	0.41	26041	02/9/89
ETHYLBENZENE	5.1	26041	11/17/88
ISODRIN	12	26041	02/3/88
TOLUENE	140	26041	09/17/87
METHYLISOBUTYL KETONE	16	26041	11/17/88
MALATHION	7.4	26041	11/17/88
1,4-OXATHIANE	190	26041	11/17/88
PPDDE	1.5	26041	07/26/88
PPDDT	1.5	26041	11/17/88
SUPONA	20	26041	11/17/88
TETRACHLOROETHYLENE	1.3	26015	05/3/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTER FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-3-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-3

AVERAGE SITE DEPTH TO GROUNDWATER: 48 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
TRICHLOROETHYLENE	5.4	26041	02/3/88
O,P-XYLENE	22	26041	05/4/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYT FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-3-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

	DIRECT	INDIRECT	CUMULATIV	E DIRECT	INDIRECT	CUMULATIVE	VEI
CONTAMINANT	PPLV	PPLV	PPLV	EI	EI	EI	OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.5E+00	1.0E+06	1.5E+00	2.7E+03*	1.4E-04a	2.7E+03*	0.0E+00
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-15
BENZENE	8.6E+02	4.4E+05	8.6E+02	3.5E-03	6.9E-06	3.5E-03	7.0E-08
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.96+04	0.0E+00	0.0E+00	0.0E+00	4.2E-10
BICYCLOREPTADIENE	3.2E+05	1.2E+08	3.2E+05	9.4E-05	2.5E-07	9.5E-05	4.6E-10
CHLORDANE	2.0E+01	0.06+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	8.6E-09
CHLOROACETIC ACID	1.7E+04	0.0E+00	1.7E+04	4.8E-01*	0.0E+00	4.8E-01*	0.0E+00
CHLOROBENZENE	1.6E+05	4.8E+07	1.6E+05	3.1E-05	1.0E-07	3.18-05	2.0E-10
CHLOROFORM	4.0E+03	5.1E+05	4.0E+03	1.7E-02	1.4E-04	1.7E-02	5.3E-09
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	1.0E+06	1.6E+05	4.3E-03	3.9E-07a	4.3E-03	0.0E+00
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.0E+06	1.6E+05	1.8E-03	6.4E-07a	1.8E-03	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	2.9E+08	1.6E+05	4.3E-04	2.4E-07	4.3E-04	1.2E-11
PPODE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	©.⊅E+00	4.2E-10
PPDDT	7.4E+01	0.DE+00	7.4E+01	0.0E+00	0.0E+0U	G SE+00	3.0E-09
DIBROMOCHLOROPROPANE	1.8E+01	2.8E+04	1.8E+01	1.1E+00*	7.2E-04	1.1E+00*	1.8E-09
1,2-DICHLOROETHANE	2.8E+02	3.2E+05	2.8E+02	3.6E-03	3.1E-06	3.6E-03	1.9E-07
DICYCLOPENTADIENE	5.4E+04	1.0E+06	5.1E+04	7.4E-02	4.6E-03a	7.8E-02	0.0E+00
DIELDRIN	1.6E+00	1.08+06	1.6E+00	1.3E+03*	1.5E-04a	1.3E+03*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.1E+08	6.6E+05	4.5E-06	2.7E-08	4.6E-06	3.3E-10
DIMETHYLDISULFIDE	6.7E+04	7.7E+07	6.7E+04	1.0E-03	9.1E-07	1.0E-03	1.5E-10
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	4.7E-04	0.0E+00	4.7E-04	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	3.6E-01ª	8.4E-08a	3.6E-01*	0.0E+00
ETHYLBENZENE	8.3E+05	9.5E+08	8.3E+05	9.7E-06	8.4E-09	9.7E-06	1.3E-11
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.06+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.6E-08
ISCORIN	5.8E+02	1.0E+06	5.8E+02	5.2E+00*	1.4E-06a	5.2E+00*	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+06	0.0E+00	2.5E+06	1.9E-03	0.0E+00	1.9E-03	0.06+00
MALATHION	1.7E+05	0.06+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-15
METHYLISOBUTYL KETONE	4.1E+05	5.0E+07	4.1E+05	9.8E-07	2.0E-08	1.0E-06	3.96-12
METHYLENE CHLORIDE	3.36+03	5.5E+06	3.3E+03	0.0E+00	5.5E-07	5.5E-07	0.0E+00
1,4-OXATHIANE	2.5E+05	0.08+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.06+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	2.6E-15
1,1,2,2-TETRACHLOROETHANE	1.3E+02	5.8E+05	1.3E+02	2.4E-01*	5.2E-05	2.4E-01*	0.0E+00
TETRACHLOROETHYLENE	5.1E+02	2.3E+06	5.1E+02	7.8E-02	1.7E-05	7.8E-02	2.2E-09
THIODIGLYCOL	3.3E+05	0.0€+00	3.3E+05	1.7E-03	0.0E+00	1.7E-03	0.0E+00
TOLUENE	2.5E+06	1.0E+06	2.5E+06	8.0E-04	5.3E-07a	8.0E-04	0.0E+00
1,1,1-TRICHLOROETHANE	7.5E+05	6.7E+08	7.5E+05	5.4E-07	8.9E-10	5.4E-07	8.2E-12
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.7E-08
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	3.8E-12
M-XYLENE	1.4E+07	2.8E+08	1.4E+07	3.5E-07	1.8E-08	3.7E-07	7.8E-12
O,P-XYLENE	1.4E+07	2.8E+08		7.0E-07	3.6E-08	7.4E-07	7.6E-11
•	-	-					

NCSA-3-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
ARSENIC	2.25+01	0.0E+00	2,25+01	2.2E+00*	0.0€+00	2.25+00*	0.0E+00
CADMIUN	4.5E+02	0.0E+00	4.5E+02	5.1E-03	0.06+00	5.1E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	5.5E-03	0.0E+00	5.5E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	1.0E-04	0.0E+00	1.0E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	1.6E-04	0.0E+00	1.6E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-3-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

	DIRECT	INDIRECT	CUMULATIVE	E DIRECT	INDIRECT	CUMULATIVE	VE 1
CONTAMINANT	PPLV	PPLV	PPLV	EI	EI	EI	OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.5E+00	1.0E+06	1.5E+00	2.7E+03*	1.4E-04a	2.7E+03*	0.02+00
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.68-15
BENZENE	8.6E+02	4.4E+05	8.6E+02	3.5E-03	6.9E-06	3.5E-03	7.06-08
BENZOTHIAZOLE	3.9E+04	0.06+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	4.2E-10
BICYCLOHEPTADIENE	3.2E+05	1.2E+08	3.2E+05	9.4E-05	2.5E-07	9.5E-05	4.6E-10
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.06+00	0.0E+00	0.0E+00	8.66-09
CHLOROACETIC ACID	1.7E+04	0.0E+00	1.7E+04	4.8E-01*	0.0E+00	4.8E-01*	0.0+30.0
CHLOROBENZENE	1.6E+05	4.8E+07	1.6E+05	3.1E-05	1.0E-07	3.1E-05	2.0E-10
CHLOROFORM	4.0E+03	5.1E+05	4.0E+03	1.7E-02	1.4E-04	1.7E-02	5.3E-09
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	1.0E+06	1.6E+05	4.3E-03	3.9E-07a	4.3E-03	0.06+00
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.0E+06	1.6E+05	1.8E-03	6.4E-07a	1.8E-03	0.08+00
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	2.9E+08	1.6E+05	4.3E-04	2.4E-07	4.3E-04	1.28-11
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	4.2E-10
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	3.08-09
DIBROMOCHLOROPROPANE	1.8E+01	2.8E+04	1.8E+01	1.1E+00*	7.2E-04	1.1E+00*	1.8E-09
1,2-DICHLOROETHANE	2. 8 E+02	3.2E+05	2.8E+02	3.6E-03	3.1E-06	3.6E-03	1.9E-07
DICYCLOPENTADIENE	5.4E+04	1.0E+06	5.1E+04	7.4E-02	4.6E-03a	7.8E-02	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	1.3E+03*	1.5E-04a	1.3E+03*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.1E+08	6.6E+05	4.5E-06	2.7E-08	4.6E-06	3.3E-10
DIMETHYLDISULFIDE	6.7E+04	7.7E+07	6.7E+04	1.0E-63	9.1E-07	1.0E-03	1.5E-10
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	4.7E-04	0.0E+00	4.7E-04	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	3.6E-01*	8.4E-08a	3.6E-01*	0.0E+00
ETHYLBENZENE	8.3E+05	9.5E+08	8.3E+05	9.7E-06	8.4E-09	9.7E-06	1.3E-11
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.6E-08
ISODRIN	5.8E+02	1.0E+06	5.8E+02	5.2E+00*	1.4E-06a	5.2E+00*	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+06	0.0E+00	2.5E+06	1.9E-03	0.0E+00	1.9E-03	0.0E+00
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-15
METHYLISOBUTYL KETONE	4.1E+05	5.0E+07	4.1E+05	9.8E-07	2.0E-08	1.0E-06	3.9E-12
METHYLENE CHLORIDE	3.3E+03	5.5E+06	3.3E+03	0.0E+00	5.5E-07	5.5E-07	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5£+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	2.6E-15
1 1,2,2-TETRACHLOROETHANE	1.3E+02	5.8E+05	1.3E+02	2.4E-01*	5.2E-05	2.4E-01*	0.0E+00
TETRACHLOROETHYLENE	5.1E+02	2.3E+06	5.1E+02	7.8E-02	1.7E-05	7.8E-02	2.2E-09
THIOD IGLYCOL	3.3E+05	0.0E+00	3.3E+05	1.7E-03	0.0E+00	1.7E-03	0.0E+00
TOLUENE	2.5E+06	1.0E+06	2.5E+06	8.0E-04	5.3E-07a	8.0E-04	0.0E+00
,1,1-TRICHLOROETHANE	7.5E+05	6.7E+08	7.5E+05	5.4E-07	8.9E-10	5.4E-07	8.2E-12
RICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.7E-08
/APONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	3.8E-12
I-XYLENE	1.4E+07	2.8E+08	1.4E+07	3.5E-07	1.8E-08	3.7E-07	7.8E-12
P-XYLENE	1.4E+07	2.8E+08	1.4E+07	7.0E-07	3.6E-08	7.4E-07	7.6E-11

NCSA-3-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE	VEI
ARSENIC	2.2E+01	0.05+00	2.2E+01	2.2E+00*	0.06+00	2.2E+00*	0.06+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	5.18-03	0.0E+00	5.1E-03	0.0E+00
COPPER	4.2E+05	0. 0E+0 0	4.2E+05	5.5E-Q3	0.0E+00	5.5E-Q3	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	1.0E-04	0.0E+00	1.0E-04	0.0E+00
ZINC	2.0E+06	0.06+00	2.0E+06	1.6E-04	0.0E+00	1.68-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-3-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

	DIRECT	INDIRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VE I
CONTAMINANT	PPLV	PPLV	PPLV	ΕI	El	El	OPN
	(mg/kg)	(mg/kg)	(mg/kg)	·			
ALDRIN	2.1E-01	1.06+06	2.1E-01	1.9E+04*	2.1E-03a	1.9E+04*	0.0E+00
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-14
BENZENE	1.2E+02	6.8E+04	1.2E+02	2.5E-02	4.4E-05	2.5E-02	1.1E-06
BENZOTHIAZOLE	1.7E+04	0.06+00	1.7E+04	0.0E+00	0.0E+00	0.0€+00	2.7E-09
BICYCLONEPTADIENE	1.45+05	4.4E+07	1.4E+05	2.2E-04	6.8E-07	2.2E-04	3.0E-09
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0€+00	0.0€+00	1.3E-07
CHLOROACETIC ACID	7.0E+03	0.0E+00	7.0E+03	1.1E+00*	0.0E+00	1.1E+00*	0.0E+00
CHLOROBENZENE	6.8E>34	1.7E+07	6.8E+04	7.3E-05	2.9E-07	7.3E-05	1.3E-09
CHLOROFORM	5.6E+02	7.9E+04	5.6E+02	1.2E-01*	8.9E-04	1.3E-01*	7.9E-08
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	1.0E+06	7.0E+04	1.0E-02	1.0E-05a	1.0E-02	0.0E+00
CHLOROPHENYLMETHYL SULFONE	7.0E+04	1.0E+06	7.0E+04	4.3E-03	4.1E-06e	4.3E-03	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	4.5E+07	7.0E+04	1.0E-03	1.6E-06	1.06-03	7.5E-11
PPODE	1.0E+01	0.0€+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	6.3E-09
PPDDT	1.0E+01	0.08+00	1.0E+01	0.0E+00	0.08+00	0.0E+00	4.6E-08
DIBROMOCHLOROPROPANE	2.5E+00	1.8E+03	2.5E+00	8.0E+00*	1.1E-02	8.0E+00*	2.8E-08
1,2-DICHLOROETHANE	3.9E+01	4.9E+04	3.9E+01	2.6E-02	2.0E-05	2.6€-02	2.9E-06
DICYCLOPENTADIENE	1.8E+04	3.8E+04	1.2E+04	2.2E-01*	1.1E-01*	3.2E-01*	0.0E+00
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	9.2E+03*	2.3E-03a	9.2E+03*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	1.1E+08	2.8E+05	1.1E-05	2.7E-08	1.1E-05	2.1E-09
DIMETHYLDISULFI'E	2.9E+04	2.8E+07	2.8E+04	2.5E-03	2.5E-06	2.5E-03	9.5E-10
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	1.1E-03	0.0E+00	1.1E-03	0.0E 00
DITHIANE	3.5E+04	0.0E+00	3.5E+G4	0.0E+00	0.0E+00	0.0E+00	0.0.+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	8.5E-01*	5.4E-07a	8.5E-01*	0.0E+00
ETHYLBENZENE	3.5E+05	3.4E+08	3.5E+05	2.3E-05	2.3E-08	2.3E-05	8.4E-11
HEXACHLOROCYCLOPENTAD LENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	4.9E-07
ISODRIN	2.5E+02	1.0E+06	2.56+02	1.2E+01*	9.2E-06a	1.2E+01*	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	1.1E+06	0.0E+00	1.1E+06	4.4E-03	0.0E+00	4.4E-03	0.0E+00
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	8.0E-15
METHYLISOBUTYL KETONE	1.7E+05	7.8E+06	1.7E+05	2.3E-06	1.3E-07	2.4E-06	2.5E-11
METHYLENE CHLORIDE	4.5E+02	8.5E+05	4.5E+02	0.0E+00	3.5E-06	3.5E-06	0.0E+00
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+0G	0.0E+00	0.0E+00
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	1.7E-14
1,1,2,2-TETRACHLOROETHANE	1.8E+01	9.0E+04	1.8E+01	1.7E+00*	3.3E-04	1.7E+00*	0.0E+00
TETRACHLOROETHYLENE	7.1E+01	3.5E+05	7.1E+01	5.6E-01*	1.1E-04	5.6E-01*	3.3E-08
THIODIGLYCOL	1.4E+05	G.DE+00	1.4E+05	4.0E-03	0.0E+00	4.0E-03	0.0E+00
TOLUENE	1.1E+06	1.0E+06	1.1E+06	1.9E-03	5.8E-06a	1.9E-03	0.0E+00
1,1,1-TRICHLOROETHANE	3.2E+05	2.4E+08	3.2E+05	1.3E-06	2.5E-09	1.3E-06	5.3E-11
TRICHLOROETHYLENE	3.2E+02	0.0E+00		0.0E+00	0.0E+00	0.0E+00	2.6E-07
/APONA	1.2E+01	0.0E+00		0.0E+00	0.0E+00	0.0E+00	5.7E-11
N-XYLENE	5.8E+06	1.0E+08		8.6E-07	4.9E-08	9.1E-07	5.0E-11
),P-XYLENE	5.8E+06	1.0E+08		1.7E-06	9.8E-08	1.8E-06	4.9E-10

NCSA-3-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VEI OPN
ARSENIC	3.9E+00	0.0E+00	3.9E+00	1.2E+01*	0.0E+00	1.2E+01*	0.0E+00
CADMIUM	5.8E+01	0.0E+00	5.8E+01	4.0E-02	0.0E+00	4.0E-02	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	9.3E-03	0.0E+00	9.3E-03	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	1.7E-04	0.0E+00	1.7E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	3.0E-04	0.0E+00	3.0E-04	0.0€+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-3-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

	DIRECT	INDIRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VE I
CONTAMINANT	PPLV	PPLV	PPLV	EI	ΕI	ΕI	ENC
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.9E+00	1.3E+02	1.9E+00	2.1E+03*	3.2E+01*	2.1E+03*	0.0E+00
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-09
BENZENE	1.1E+03	1.3E+00	1.3E+00	2.8E-03	2.2E+00*	2.2E+00*	2.0E-02
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-04
BICYCLOHEPTADIENE	1.8E+05	8.6E+01	8.6E+01	1.7E-04	3.5E-01*	3.5E-01*	4.0E-04
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	2.5E-03
CHLOROACETIC ACID	9.2E+03	0.0E+00	9.2E+03	8.6E-01*		8.6E-01*	0.0E+00
CHLOROBENZENE	8.8E+04	5.3E+02	5.3E+02	5.7E-05	9.4E-03	9.4E-03	1.8E-04
CHLOROFORM	5.1E+03	2.4E+00	2.4E+00	1.4E-02	2.9E+01*	2.9E+01*	1.5E-03
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	2.1E+03	2.1E+03	7.7E-03	3.3E-01*	3.4E-01*	0.0E+00
CHLOROPHENYLMETHYL SULFONE	9.1E+04	6.8E+02	6.7E+02	3.3E-03	4.4E-01*	4.5E-01*	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	4.2E+02	4.1E+02	7.7E-04	1.7E-01*	1.7E-01*	1.0E-05
PPDDE	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-04
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	8.8E-04
DIBROMOCHLOROPROPANE	2.3E+01	1.2E-01	1.2E-01	8.9E-01*	1.7E+024	1.7E+02*	5.3E-04
1.2-DICHLOROETHANE	3.5E+02	4.6E-01	4.6E-01	2.8E-03	2.2E+00*	2.2E+00*	5.6E-02
DICYCLOPENTADIENE	1.7E+04	1.3E+00	1.3E+00	2.3E-01*	3.2E+03*	3.2E+03*	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+0C	1.0E+03*	3.5E+01*	1.0E+03*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	1.6E+02	1.6E+02	8.2E-06	1.8E-02	1.8E-02	2.8E-04
DIMETHYLDISULFIDE	3.7E+04	8.6E+02	8.4E+02	1.9E-03	8.1E-02	8.3E-02	1.3E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	8.5E-04	0.0E+00	8.5E-04	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.UE+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	6.5E-01*	5.8E-02a	7.1E-01*	0.0E+00
ETHYLBENZENE	4.6E+05	1.1E+04	1.0E+04	1.7E-05	7.5E-04	7.7E-04	1.1E-05
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	6.5E-02
ISODRIN	3.2E+02	3.0E+03	2.9E+02	9.4E+00*	9.9E-01*	1.0E+01*	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	1.4E+06	0.0E+00	1.4E+06	3.3E-03	0.0E+00	3.3E-03	0.0E+00
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-09
METHYLISOBUTYL KETONE	2.2E+05	5.3E+01	5.3E+01	1.8E-06	1.9E-02	1.9E-02	3.4E-06
METHYLENE CHLORIDE	4.1E+03	7.9E+00	7.9E+00	0.0E+00	3.8E-01*	3.8E-01*	0.0E+00
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-09
1,1,2,2-TETRACHLOROETHANE	1.6E+02	3.4E+01	2.8E+01	1.9E-01*	8.9E-01*	1.1E+00*	0.0E+00
TETRACHLOROETHYLENE	6.5E+02	4.9E+00	4.9E+00	6.2E-02	8.1E+00*	8.2E+00*	6.3E-04
THIODIGLYCOL	1.8E+05	0.0E+00	1.8E+05	3.1E-03	0.0E+00	3.1E-03	0.0E+00
TOLUENE	1.4E+06	5.5E+03	5.4E+03	1.4E-03	3.7E-01*	3.7E-01*	0.0E+00
1,1,1-TRICHLOROETHANE	4.2E+05	3.2E+02	3.2E+02	9.6E-07	1.9E-03	1.9E-03	7.1E-06
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0. 0E+ 00	5.0E-03
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-06
M-XYLENE	7.0E+06	3.0E+03	3.0E+03	7.2E-07	1.7E-03	1.7E-03	6.7E-06
O,P-XYLENE	7.0E+06	3.0E+03	3.0E+03	1.4E-06	3.4E-03	3.4E-03	6.6E-05

NCSA-3-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE	ENC
ARSENIC	2.06+01	0.0E+00	2.0E+01	2.4E+00*	0.0E+00	2.4E+00*	0.0E+00
CADHIUN	3.6E+02	0.0E→00	3.6E+02	6.4E-03	0.0E+00	6.4E-03	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	1.3E-02	0.0E+00	1.3E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	2.4E-04	0.0E+00	2.4E-04	0.0E+00
ZINC	7.8E+05	0.0€+00	7.8E+05	4.1E-04	0.0E+00	4.1E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-3-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL MORKERS

	DIRECT	IND	IRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VEI
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	EI	EI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.28-01	3.9E+06	4.2E+01	1.2E-01	3.4E+04*	9.5E+01*	3.4E+04*	0.0E+ 00	0.0E+00
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-14	1.4E-09
BENZENE	6.7E+01	5.8E+04	1.3E+00	1.3E+00	4.5E-02	2.2E+00*	2.3E+00*	5.2E-07	6.0E-02
BENZOTHIAZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.1E-09	3.6E-04
BICYCLOHEPTADIENE	3.36+04	1.6E+07	2.6€+02	2.6E+02	9.2E-04	1.2E-01*	1.2E-01*	3.4E-09	4.0E-04
CHLORDANE	1.5E+00	0.0E+00	0.05+00	1.5E+00	0.05+00	0.0E+00	0.0E+00	6.5E-08	7.5E-03
CHLOROACETIC ACID	1.7E+03	0.0E+00	0.0E+00	1.7E+03	4.7E+00*	0.0E+00	4.7E+00*	0.0E+00	0.0E+00
CHLOROBENZENE	1.5E+04	6.4E+06	1.6E+03	1.4E+03	3.3E-04	3.1E-03	3.5E-03	1.5E-09	1.8E-04
CHLOROFORM	3.1E+02	6.8E+04	9.0E-01	8.9E-01	2.2E-01*	7.8E+01*	7.8E+01*	4.0E-08	4.6E-03
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	2.4E+08	6.3E+03	4.6E+03	4.2E-02	1.1E-01*	1.5E-01*	0.0E+00	0.0E+00
CHLOROPHENYLMETHYL SULFONE	1.7E+04	6.3E+07	6.8E+02	6.5E+02	1.8E-02	4.4E-01*	4.6E-01*	0.0E+00	0.0E+00
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	3.8E+07	4.2E+02	4.0E+02	4.2E-03	1.7E-01*	1.7E-01*	8.8E-11	1.0E-05
PPODE	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	3.2E-09	3.6E-04
PPDDT	5.7E+00	0.0E+00	0. 0E+ 00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	2.3E-08	2.6E-03
DIBROMOCHLOROPROPANE	1.4E+00	3.7E+03	4.0E-02	3.9E-02	1.4E+01*	5.0E+02*	5.1E+02*	1.4E-08	1.6E-03
1,2-DICHLOROETHANE	2.2E+01	4.3E+04	4.6E-01	4.5E-01	4.6E-02	2.2E+00*	2.2E+00*	1.4E-06	1.7E-01
DICYCLOPENTADIENE	1.2E+03	1.2E+05	1.8E-01	1.8E-01	3.4E+00*	2.ZE+04*	2.2E+04*	0.0E+00	0.0E+00
DIELDRIN	1.2E-01	1.8E+06	1.9E+01	1.2E-01	1.6E+04*	1.0E+02*	1.6E+04*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	1.5E+07	7.2E+02	7.1E+02	4.4E-05	4.2E-03	4.2E-03	2.5E-09	2.8E-04
DIMETHYLDISULFIDE	6.9E+03	1.0E+07	2.6E+03	1.9E+03	1.0E-02	2.7E-02	3.7E-02	1.1E-09	1.3E-04
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.06+00	1.5E+04	4.6E-03	0.0E+00	4.6E-03	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	1.0E+06	1.0E+06	2.5E+02	3.5E+00*	5.8E-02a	3.6E+00*	0.0E+00	0.0E+00
ETHYLBENZENE	8.5E+04	1.3E+08	3.2E+04	2.3E+04	9.5E-05	2.5E-04	3.5E-04	9.7E-11	1.1E-05
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	5.7E-07	6.5E-02
ISODRIN	5.9E+01	2.8E+08	3.0E+03	5.8E+01	5.1E+01*	9.9E-01*	5.2E+01*	0.0E+00	0.0E+00
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+05	0.0E+00	0.0E+00	2.5E+05	1.8E-02	0.0E+00	1.8E-02	0.0E+00	0.0E+00
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	9.3E-15	1.1E-09
METHYL ISOBUTYL KETONE	4.0E+04	6.7E+06	5.3E+01	5.3E+01	1.08-05	1.9E-02	1.9E-02	2.9E-11	3.4E-06
METHYLENE CHLORIDE	2.5E+02	7.3E+05	7.9E+00	7.7E+00	0.0E+00	3.8E-01*	3.8E-01*	0.0E+00	0.0E+00
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-14	2.3E-09
1,1,2,2-TETRACHLOROETHANE	9.9E+00	7.7E+04	3.4E+01	7.6E+00	3.0E+00*	8.9E-01*	3.9E+00*	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	4.1E+01	3.1E+05	4.9E+00		9.7E-01*	8.1E+00*	9.1E+00*	1.6E-08	1.9E-03
THIODIGLYCOL	3.4E+04	0.0E+00	0.0E+00		1.7E-02	0.0E+00	1.7E-02	0.0E+00	0.0E+00
TOLUENE	2.6E+05	5.1E+08	1.6E+03		7.7E-03	1.2E+00*	1.2E+00*	0.0E+00	0.0E+00
1,1,1-TRICHLOROETHANE	7.8E+04	9.08+07	9.7E+02		5.1E-06	6.2E-04	6.2E-04	6.2E-11	7.1E-06
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	_	0.0E+00	0.0E+00	0.0E+00	1.3E-07	1.5E-02
/APONA	6.7E+00	0.0E+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	2.8E-11	3.2E-06
M-XYLENE	8.8E+05	3.7E+07	6.0E+02	- · · - ·	5.7E-06	8.3E-03	8.3E-03	5.8E-11	6.7E-06
D.P-XYLENE	8.8E+05	3.8E+07	6.0E+02		1.1E-05	1.7E-02	1.7E-02	5.7E-10	6.6E-05
'ye mekana	0.02705	J.UL *U!	J. 0L+UL	2.45.05	03	02		3.72 10	J. 02 03

NCSA-3-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	IND	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	ENC
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	3.0E+01*	0.0E+00	3.0E+01*	0.0E+00	0.0E+00
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	3.0E-01*	0.0E+00	3.0E-01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.DE+00	5.7E+04	4.0E-02	0.0€+00	4.0E-02	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	7.4E-04	0.0€+00	7.4E-04	0.0E+00	0. 0E+0 0
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	2.3E-03	0.0E+00	2.3E-03	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

2.13 SITE NCSA-4a: DEEP DISPOSAL WELL (formerly Site 26-1: Deep Disposal Well and Chemical Sewers; ESE, 1988m/RIC 88103R02 and ESE, 1988n/RIC 88103R02A)

2.13.1 <u>Site-Specific Considerations</u>

Figure NCSA-4a-1 and Tables NCSA-4a-1 and NCSA-4a-2 depict the target contaminants for site NCSA-4a. Borings 4537A through 4549A, 4549B, 4549C, 4549F, 4549G, 4540Z, 4544Y, 4546Y, 4549H, 4546Z, and 4753 through 4767, were included in this exposure assessment, consistent with the North Central SAR. The historical search conducted under the contamination assessment revealed that undocumented amounts of diisopropylmethyl phosphonate, dicyclopentadiene, and chlorophenylmethyl sulfone were detected previously in the vitrified clay pipeline (Z line) and surrounding soil (ESE, 1988m/RIC 88103R02), but were not detected during the Phase I and Phase II investigations. According to site history, no other chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-4a (ESE, 1988m/RIC 88103R02).

2.13.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-4a are shown in Figure NCSA-4a-1. The following contaminants were not included in this figure, since they were not considered target contaminants during the Phase I and Phase II investigations: Phosphoric acid, tributyl ester, occurring in Boring 4546Z (10-11 ft) and pyrene occurring in Boring 4762 (0-1 ft). Although not shown on this figure, these nontarget compounds were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-4a-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Dibromochloropropane, tetrachloroethylene, and phosphoric acid, tributyl ester were not detected in the 0-10 ft interval.

Table NCSA-4a-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.13.3 Site Exposure Summary

Tables NCSA-4a-3 through NCSA-4a-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-4a is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Methylene chloride				Indirect	Indirect
Tetrachloroethylene			••	Indirect	Indirect
Dibromochloropropane				~ *	Indirect
Isodrin					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-4a is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Benzene (enclosed)
- Chloroform (enclosed)
- 1,2-Dichloroethane (enclosed)

- Tetrachloroethylene (enclosed)
- Dicyclopentadiene (enclosed)

- Table Company

-

ı

SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-4a

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	30	9-10	4762	30	9-10	4762
PPDDE ^{1/2}	0.021	4-5	4764	0.021	4-5	4764
PPDDT ^{2/2}	9000	4-5	4764	0.0060	4-5	4764
Dibromochloropropane	;	;	1	0.00	10-11	4763
Dieldrin	7.5	9-10	4762	7.5	9-10	4762
Endrin	0.6	4-5	4762	9.0	4-5	4762
Isodrin	10	9-10	4547A	10	9-10	4547A
Methylene chloride	20	9-10	4548A	20	10-11	4763
Tetrachloroethylene	:	;	!	0.3	10-11	4544Y
Phosphoric acid, tributyl	1	;	:	8.0	10-11	4546Z
ester. Dyrene ^{3/}	06 0	0-1	4762	06.0	0-1	4762
Mercury	0.19	4-5	4762	1	;	;
		9-10	4767	1	;	* *
Zinc	100	9-6	4544A	:	1	;
		L-9	4540A	;	;	;
		9-9	4540Z	;	:	;

PPDDE 2.2-bis(Para-chlorophenyl)-1.1-dichloroethene
 PPDDT 2.2-bis(Para-chlorophenyl)-1.1.1-trichloroethane
 Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 16

TABLE NCSA-4a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-4a

AVERAGE SITE DEPTH TO GROUNDWATER: 49 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1-DICHLOROETHANE	6.7	26133	08/11/88
1,2-DICHLOROETHYLENE	14	26133	02/10/89
1,2-DICHLOROETHANE	950	26133	02/10/89
M-XYLENE	13	26133	11/16/88
ALDRIN	0.95	26133	05/4/88
ATRAZINE	8.3	26133	02/10/89
BICYCLOHEPTADIENE	1100	26133	01/21/88
BENZOTHIAZOLE	26	26133	11/16/88
BENZENE	520	26133	08/11/88
METHYLENE CHLORIDE	1300	26133	02/10/89
CHLOROFORM	86000	26133	11/16/88
HEXACHLOROCYCLOPENTADIENE	10	26133	08/11/88
CHLOROBENZENE	19	26133	02/10/89
CHLORDANE	23	26133	02/10/89
CHLOROPHENYLMETHYL SULFIDE	790	26133	05/4/88
CHLOROPHENYLMETHYL SULFOXID	E 200	26133	11/16/88
CHLOROPHENYLMETHYL SULFONE	790	26133	08/11/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-4a-2

GROUNDWATER CONTAMINANT CONCENTPATIONS (UG/L)
FOR SITE NCSA-4a

AVERAGE SITE DEPTH TO GROUNDWATER: 49 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
DIBROMOCHLOROPROPANE	53	26133	01/21/88
DICYCLOPENTADIENE	1500	26133	01/21/88
DIISOPROPYLMETHYL PHOSPHONA	TE 1000	26133	11/16/88
DITHIANE	180	26133	11/16/88
DIELDRIN	1.4	26133	08/11/88
DIMETHYL DISULFIDE	7.0	26133	11/16/88
DIMETHYLMETHYL PHOSPHONATE	1300	26133	02/10/89
ENDRIN	1.0	26133	11/16/88
ETHYLBENZENE	13	26133	08/11/88
ISODRIN	0.87	26133	01/21/88
TOLUENE	280	26133	02/10/89
METHYLISOBUTYL KETONE	350	26133	02/10/89
1,4-OXATHIANE	23	26133	11/16/88
PPDDE	0.59	26133	01/21/88
PPDDT	0.54	26133	01/21/88
PARATHION	5.1	26133	11/16/88
TETRACHLOROETHYLENE	1100	26133	05/4/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-4a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-4a

AVERAGE SITE DEPTH TO GROUNDWATER: 49 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
TRICHLOROETHYLENE	100	26133	01/21/88
O, P-XYLENE	75	26133	08/11/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-4a-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VEI OPN
ALDRIN	1.5E+00	5.2E+05	1.5E+00	2.0E+01*	5.7E-05	2.0E+01*	1.6E-07
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	5.6E-15
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-09
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.8E-06
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	1.7E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.3E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0€+00	2.6E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.5E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.6E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.2E-10
PPDDE	7.4E+01	3.2E+07	7.4E+01	2.95-04	6.7E-10	2.9E-04	9.0E-09
PPDDT	7.4E+01	6.7E+07	7.4E+01	8.2E-05	9.0E-11	8.2E-05	6.0E-08
DIBROMOCHLOROPROPANE	1.8E+01	5.0E+02	1.7E+01	0.0E+00	1.8E-05	1.8E-05	2.2E-05
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.7E-10
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-04
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	9.3E-04
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	4.8E+00*	3.1E-05a	4.8E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-09
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	3.6E-03	4.7E-08a	3.6E-03	0.0E+00
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	1.8E-09
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-05
ISODRIN	5.8E+02	3.8E+07	5.8E+02	1.7E-02	2.6E-07	1.7E-02	5.8E-09
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-09
METHYLENE CHLORIDE	3.3E+03	4.9E+03	2.0E+03	6.1E-03	4.1E-03	1.0E-02	5.3E-05
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-12
TETRACHLOROETHYLENE	5.1E+02	2.1E+04	5.0E+02	0.0E+00	1.5E-05	1.5E-05	9.9E-05
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	8.6E-09
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.8E-05
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	2.5E-09
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	1.4E-08
MERCURY	3.3E+03	0.0E+00	3.3E+03	5.7E-05	0.0E+00	5.7E-05	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	5.0E-05	0.0E+00	5.0E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-4a-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

ATRAZINE 4.1E+04 0.0E+00 4.1E+04 0.0E+00 <	
BENZEME	.6E-07
BENZOTHIAZOLE 3.9E+04 0.0E+00 3.9E+04 0.0E+00	.6E - 15
BENZOTNIAZOLE 3.9F+04 0.0E+00 3.9F+04 0.0E+00	.0E-04
BICYCLOHEPTADIENE 3.2E+05 0.0E+00 3.2E+05 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1	.2E-09
CHLORDANE 2.0E+01 0.0E+00 2.0E+01 0.0E+00	.8E-06
CHLOROBENZENE 1.6E+05 0.0E+00 1.6E+05 0.0E+00	.7E-07
CHLOROFORM 4.0E+03 0.0E+00 4.0E+03 0.0E+00	.3E-08
CHLOROPHENYLMETHYL SULFIDE 1.6E+05 0.0E+00 1.6E+05 0.0E+00 0.0E	.6E-03
CHLOROPHENYLMETHYL SULFONE 1.6E+05	.5E-08
PPDDE 7.4E+01 3.2E+07 7.4E+01 2.9E-04 6.7E-10 2.9E-04 9 PPDDT 7.4E+01 6.7E+07 7.4E+01 8.2E-05 9.0E-11 8.2E-05 6 DIBROMOCHLOROPROPANE 1.8E+01 5.0E+02 1.7E+01 0.0E+00 1.8E-05 1.8E-05 2 1,1-DICHLOROETHANE 2.8E+02 0.0E+00 2.8E+02 0.0E+00	.6E-10
PPDDT 7.4E+01 6.7E+07 7.4E+01 8.2E-05 9.0E-11 8.2E-05 6 DIBROMOCHLOROPROPANE 1.8E+01 5.0E+02 1.7E+01 0.0E+00 1.8E-05 1.8E-05 2 1,1-DICHLOROETHANE 2.8E+02 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 1.2-DICHLOROETHANE 2.8E+02 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 1.2-DICHLOROETHYLENE 1.7E+05 0.0E+00 1.7E+05 0.0E+00 0.0E	.2E-10
DIBROMOCHLOROPROPANE 1.8E+01 5.0E+02 1.7E+01 0.0E+00 1.8E-05 1.8E-05 2 1,1-DICHLOROETHANE 2.8E+02 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1,2-DICHLOROETHANE 2.8E+02 0.0E+00 2.8E+02 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1,2-DICHLOROETHYLENE 1.7E+05 0.0E+00 1.7E+05 0.0E+00 0.	. OE - 09
1,1-DICHLOROETHANE 2.8E+02 0.0E+00 2.8E+02 0.0E+00 0.0	.0E-08
1,2-DICHLOROETHANE 2.8E+02 0.0E+00 2.8E+02 0.0E+00 0.0	. ZE - 05
1,2-DICHLOROETHYLENE 1.7E+05 0.0E+00 1.7E+05 0.0E+00 0	.7E-10
DICYCLOPENTADIENE 5.4E+04 0.0E+00 5.4E+04 0.0E+00 0.0E+00 0.0E+00 9 DIELDRIN 1.6E+00 1.0E+06 1.6E+00 4.8E+00* 3.1E-05a 4.8E+00* 0 DIISOPROPYLMETHYL PHOSPHONATE 6.6E+0S 0.0E+00 6.6E+0S 0.0E+00 0.0E+00 0.0E+00 J. 1.400 4 DIMETHYLDISULFIDE 6.7E+04 0.0E+00 6.7E+04 0.0E+00 0.0E+00 0.0E+00 1 DIMETHYMETHYL PHOSPHONATE 1.5E+0S 0.0E+00 1.5E+0S 0.0E+00 0.0E+00 0.0E+00 0 DITHIANE 8.3E+04 0.0E+00 8.3E+04 0.0E+00 0.0E+00 0.0E+00 0 ENDRIN 2.5E+03 1.0E+06 2.5E+03 3.6E-03 4.7E-08a 3.6E-03 0 ETHYLBENZENE 8.3E+05 0.0E+00 8.3E+05 0.0E+00 0.0E+00 0.0E+00 1 HEXACHLOROCYCLOPENTADIENE 1.7E+04 0.0E+00 1.7E+04 0.0E+00 0.0E+00 1 ISOORIN 5.8E+02 3.8E+07 5.8E+02 1.7E-02 2.6E-07 1.7E-02 5 METHYLISOBUTYL KETONE 4.1E+0S 0.0E+00 4.1E+0S 0.0E+00 0.0E+00 0.0E+00 4.4E+0S	.1E-04
DIELDRIN 1.6E+00 1.0E+06 1.6E+00 4.8E+00* 3.1E-05a 4.8E+00* 0 0 DIISOPROPYLMETHYL PHOSPHONATE 6.6E+05 0.0E+00 6.7E+04 0.0E+00 1.7E-04 0.0E+00 1.7E-04 0.0E+00	.0E+00
DIISOPROPYLMETHYL PHOSPHONATE 6.6E+0S 0.0E+00 6.6E+0S 0.0E+00 0	.3E-04
DIMETHYLDISULFIDE 6.7E+04 0.0E+00 6.7E+04 0.0E+00 1.0E+00 0.0E+00 0.0E+00 0.0E+00 1.0E+00 1.0E+00 1.0E+00 0.0E+00 0.0E+00 0.0E+00 1.0E+00 1.0E+00 0.0E+00 0.0E	.0E+00
DIMETHYMETHYL PHOSPHONATE 1.5E+05 0.0E+00 1.5E+05 0.0E+00 1.0E+00 0.0E+00 0.0E+00 1.0E+00 1.0E+00 0.0E+00 1.0E+00 1.0E+00 1.0E+00 1.0E+00 0.0E+00	.6E-09
DITHIANE 8.3E+04 0.0E+00 8.3E+04 0.0E+00 1.0E+00 0.0E+00 0.0E+00 1.0E+00 1.0E+00 0.0E+00 1.0E+00 <	.3E-08
ENDRIN 2.5E+03 1.0E+06 2.5E+03 3.6E-03 4.7E-08a 3.6E-03 0 ETHYLBENZENE 8.3E+05 0.0E+00 8.3E+05 0.0E+00 0.0E+00 0.0E+00 1 HEXACHLOROCYCLOPENTADIENE 1.7E+04 0.0E+00 1.7E+04 0.0E+00 0.0E+00 0.0E+00 1 ISODRIN 5.8E+02 3.8E+07 5.8E+02 1.7E-02 2.6E-07 1.7E-02 5 METHYLISOBUTYL KETONE 4.1E+05 0.0E+00 4.1E+05 0.0E+00 0.0E+00 0.0E+00 4	.0E+00
ETHYLBENZENE 8.3E+05 0.0E+00 8.3E+05 0.0E+00 0.0E+00 0.0E+00 1 HEXACHLOROCYCLOPENTADIENE 1.7E+04 0.0E+00 1.7E+04 0.0E+00 0.0E+00 0.0E+00 1 ISODRIN 5.8E+02 3.8E+07 5.8E+02 1.7E-02 2.6E-07 1.7E-02 5. METHYLISOBUTYL KETONE 4.1E+05 0.0E+00 4.1E+05 0.0E+00 0.0E+00 0.0E+00 4.	.0E+00
HEXACHLOROCYCLOPENTADIENE 1.7E+04 0.0E+00 1.7E+04 0.0E+00 0.0E+00 0.0E+00 1. ISODRIN 5.8E+02 3.8E+07 5.8E+02 1.7E-02 2.6E-07 1.7E-02 5. METHYLISOBUTYL KETONE 4.1E+05 0.0E+00 4.1E+05 0.0E+00 0.0E+00 4.	.0E+00
ISODRIN 5.8E+02 3.8E+07 5.8E+02 1.7E-02 2.6E-07 1.7E-02 5 METHYLISOBUTYL KETONE 4.1E+05 0.0E+00 4.1E+05 0.0E+00 0.0E+00 4.	.8E-09
METHYLISOBUTYL KETONE 4.1E+05 0.0E+00 4.1E+05 0.0E+00 0.0E+00 4.0E+00 4.1E+05 0.0E+00 4.1E+00	.7E-05
	.8E-09
METHVIENE PHI ODINE 7 70.07 / 00.07 0 00.07 / 40.07 / 40.07 4.00	.6E-09
METHYLENE CHLORIDE 3.3E+03 4.9E+03 2.0E+03 6.1E-03 4.1E-03 1.0E-02 5	. 3E - 05
1,4-OXATHIANE 2.5E+05 0.0E+00 2.5E+05 0.0E+00 0.0E+00 0.0E+00 0.	.0E+00
PARATHION 5.0E+04 0.0E+00 5.0E+04 0.0E+00 0.0E+00 0.0E+00 1.	1E-12
TETRACHLOROETHYLENE 5.1E+02 2.1E+04 5.0E+02 0.0E+00 1.5E-05 1.5E-05 9.	9E-05
TOLUENE 2.5E+06 0.0E+00 2.5E+06 0.0E+00 0.0E+00 0.0E+00 8.	6E-09
TRICHLOROETHYLENE 2.3E+03 0.0E+00 2.3E+03 0.0E+00 0.0E+00 0.0E+00 1.	8E-05
M-XYLENE 1.4E+07 0.0E+00 1.4E+07 0.0E+00 0.0E+00 0.0E+00 2.	5E-09
D,P-XYLENE 1.4E+07 0.0E+00 1.4E+07 0.0E+00 0.0E+00 1.	4E-08
MERCURY 3.3E+03 0.0E+00 3.3E+03 5.7E-05 0.0E+00 5.7E-05 0.	0E+00
ZINC 2.0E+06 0.0E+00 2.0E+06 5.0E-05 0.0E+00 5.0E-05 0.	0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-4a-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	3.5E+04	2.1E-01	1.4E+02*	8.7E-04	1.4E+02*	2.3E-06
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-14
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-03
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-08
BICYCLOHEPTADIENE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-05
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	2.6E-06
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	2.1F ***
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	3.
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.6
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.2E
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-09
PPDDE	1.0E+01	2.1E+06	1.0E+01	2.1E-03	1.0E-08	2.1E-03	1.4E-07
PPDDT	1.0E+01	4.4E+06	1.0E+01	5.9E-04	1.4E-09	5.9E-04	9.0E-07
DIBROMOCHLOROPROPANE	2.5E+00	3.3E+01	2.3E+00	0.0E+00	2.7E-04	2.7E-04	3.3E-04
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	5.5E-09
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	1.6E-03
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	6.0E-03
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	3.4E+01*	4.7E-04a	3.4E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-08
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	8.3E-08
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	8.5E-03	3.0E-07a	8.5E-03	0.0E+00
ETHYLBENZENE	3.5E+05	0.0E+00	3.5E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-08
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-04
ISODRIN	2.5E+02	5.8E+06	2.5E+02	4.1E-02	1.7E-06	4.1E-02	3.7E-08
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-08
METHYLENE CHLORIDE	4.5E+02	7.5E+02	2.8E+02	4.4E-02	2.7E-02	7.1E-02	7.9E-04
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	7.1E-12
TETRACHLOROETHYLENE	7.1E+01	3.2E+03	6.9E+01	0.0E+00	9.4E-05	9.4E-05	1.5E-03
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	5.5E-08
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-04
M-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	1.6E-08
O,P-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	9.2E-08
MERCURY	2.0E+03	0.0E+00	2.0E+03	9.6E-05	0.0E+00	9.6E-05	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	9.5E-05	0.0E+00	9.5E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-4a-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I ENC
ALDRIN	1.9E+00	1.3E+02	1.9E+00	1.6E+01*	2.4E-01*	1.6E+01*	8.0E-04
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	8.6E-11
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	5.4E-01
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-05
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	2.7E-02
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	8.9E-04
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	5.0E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.3E+01
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	8.5E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-05
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-06
PPDDE	9.3E+01	7.6E+03	9.2E+01	2.3E-04	2.8E-06	2.3E-04	4.6E-05
PPDDT	9.3E+01	1.6E+04	9.2E+01	6.4E-05	3.7E-07	6.5E-05	3.1E-04
DIBROMOCHLOROPROPANE	2.3E+01	1.2E-01	1.2E-01	0.0E+00	7.5E-02	7.5E-02	1.1E-01
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-06
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	5.4E-01
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.4E+01
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	3.8E+00*	1.3E-01*	3.9E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	7.1E-05
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	6.5E-03	5.8E-04a	7.1E-03	0.0E+00
ETHYLBENZENE	4.6E+05	0.0E+00	4.6E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-05
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	2.7E-01
ISODRIN	3.2E+02	3.0E+03	2.9E+02	3.1E-02	3.3E-03	3.4E-02	8.9E-05
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	7.1E-05
METHYLENE CHLORIDE	4.1E+03	4.7E-01	4.7E-01	4.9E-03	4.3E+01*	4.3E+01*	2.7E-01
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.06+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-08
TETRACHLOROETHYLENE	6.5E+02	2.0E+00	2.0E+00	0.0E+00	1.5E-01*	1.5E-01*	5.1E-01
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	1.3E-04
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	9.4E-02
M-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	3.9E-05
O,P-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	2.2E-04
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.4E-04	0.0E+00	1.4E-04	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.3E-04	0.0E+00	1.3E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-4a-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	ΕI	ΕI	OPN	ENC
ALDRIN	1.2E-01	7.0E+04	4.2E+01	1.2E-01	2.6E+02*	7.1E-01*	2.6E+02*	1.2E-06	2.4E-03
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	4.2E-14	8.6E-11
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	7.8E-04	1.6E+00
BENZOTHIAZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-08	3.4E-05
BICYCLOHEPTADIENE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-05	2.7E-02
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-06	2.7E-03
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	2.4E-07	5.0E-04
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-02	4.0E+01
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-07	8.5E-04
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-09	1.0E-05
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.4E-09	4.9E-06
PPDDE	5.7E+00	4.2E+06	2.5E+03	5.7E+00	3.7E-03	8.3E-06	3.7E-03	6.8E-08	1.4E-04
PPDDT	5.7E+00	8.9E+06	5.4E+03	5.7E+00	1.0E-03	1.1E-06	1.0E-03	4.5E-07	9.2E-04
DIBROMOCHLOROPROPANE	1.4E+00	6.6E+01	4.0E-02	3.9E-02	0.0E+00	2.2E-01*	2.2E-01*	1.6E-04	3.4E-01
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.7E-09	5.7E-06
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	7.9E-04	1.6E+00
1,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	6.9E-03	1.4E+01
DIELDRIN	1.2E-01	3.2E+04	1.9E+01	1.2E-01	6.1E+01*	3.9E-01*	6.2E+01*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-08	7.1E-05
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	9.6E-08	2.0E-04
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	1.0E+06	1.0E+06	2.5E+02	3.5E-02	5.8E-04a	3.6E-02	0.0E+00	0.0E+00
ETHYLBENZENE	8.5E+04	0.0E+00	0.0E+00	8.5E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-08	2.8E-05
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	1.3E-04	2.7E-01
ISODRIN	5.9E+01	5.0E+06	3.0E+03	5.8E+01	1.7E-01*	3.3E-03	1.7E-01*	4.3E-08	8.9E-05
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-08	7.1E-05
METHYLENE CHLORIDE	2.5E+02	6.5E+02	4.7E-01	4.7E-01	8.1E-02	4.3E+01*	4.3E+01*	3.9E-04	8.1E-01
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	8.2E-12	1.7E-08
TETRACHLOROETHYLENE	4.1E+01	2.7E+03	2.0E+00	1.9E+00	0.0E+00	1.5E-01*	1.5E-01*	7.4E-04	1.5E+00
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	6.4E-08	1.3E-04
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-04	2.8E-01
M-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	1.9E-08	3.9E-05
O,P-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-07	2.2E-04
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	4.1E-04	0.0E+00	4.1E-04	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	7.2E-04	0.0E+00	7.2E-04	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

2.14 SITE NCSA-4b: BASIN F EXTERIOR (formerly Site 26-6: Basin F Exterior; ESE, 1988o/RIC 88173R02A)

2.14.1 Site-Specific Considerations

Figure NCSA-4b-1 and Tables NCSA-4b-1 and NCSA-4b-2 depict the target contaminants for site NCSA-4b. Borings 4712 through 4752 were included in this exposure assessment, consistent with the North Central SAR. This site includes only the perimeter and wind rose data collected during the Phase II investigation for Basin F. There was no site history associated with this area in the SAR (ESE, 1988o/RIC 88173R02A).

2.14.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-4b are shown in Figure NCSA-4b-1. Methylphosphonic acid, occurring in Boring 4738 (29-30 ft) was not included in this figure, since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown on this figure, this nontarget compound was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-4b-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Methylphosphonic acid was not detected in the 0-10 ft interval. Table NCSA-4b-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.14.3 Site Exposure Summary

Tables NCSA-4b-3 through NCSA-4b-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-4b is greater than 10 ft,

the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
PPDDT	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Chlordane		**	Direct		Direct
Fluoroacetic acid			Direct	Direct	Direct
Methylene chloride				Indirect	Indirect
Endrin					Direct
Isodrin					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-4b is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- 1,2-Dichloroethane (enclosed)
- 1,1-Dichloroethylene (enclosed)
- Dicyclopentadiene (enclosed)
- Chloroform (enclosed)

TABLE NCSA-4b-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-4b

		Horizon 1			Horizon 2		
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number	1
Aldrin	470	0-1	4722	470	0-1	4722	
		0-1	4747		0-1	4747	
Chlordane	0.44	0-1	4747	0.44	0-1	4747	
prophenylmethyl sulfone	8.0	0-1	4747	8.0	0-1	4747	
PPDDĖ"	0.20	0-1	4747	0.20	0-1	4747	
PPDDT"	56	0-1	4747	56	0-1	4747	
Dibromochloropropane	0.043	0-1	4747	0.043	0-1	4747	
Diisopropylmethyl phosphonate	0.14	4-5	4737	0.14	4-5	4737	
Dieldrin	290	0-1	4722	590	0-1	4722	
Endrin	82	0-1	4722	82	0-1	4722	
Suoroacetic acid	3.2	4-5	4737	4.6	19-20	4738	
Hexachlorocyclopentadiene	9000	0-1	4723	900.0	0-1	4723	
sodrin	15	0-1	4722	15	0-1	4722	
hylene chloride	0.7	4-5	4742	6.0	14-15	4742	
Methyl phosphonic acid ³ /	;	;	:	5.2	29-30	4738	
per	2100	0-1	4747	;	;	:	
Lead	180	0-1	4738	:	;	:	
Mercury	0.65	0-1	4747	:	i	;	
Zinc	1400	0-1	4730	:	;	;	

PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene
 PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane
 Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 17

TABLE NCSA-4b-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-4b

AVERAGE SITE DEPTH TO GROUNDWATER: 46 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	•	120	23049	01/26/88
1,1,2-TRICHLOROETHANE		4.3	26148	11/22/88
1,1-DICHLOROETHYLENE		230	26157	07/27/88
1,1-DICHLOROETHANE		4.4	26148	08/16/88
1,2-DICHLOROETHYLENE		13	26148	02/9/89
1,2-DICHLOROETHANE		930	26157	02/13/89
M-XYLENE		2.2	26017	07/26/88
ALDRIN		10	26157	11/21/88
ATRAZINE	GT	1000	23237	02/8/89
BICYCLOHEPTADIENE		540	26148	08/16/88
BENZOTHIAZOLE	GT	50	26020	01/15/88
BENZENE		220	26148	02/9/89
METHYLENE CHLORIDE		430	23179	01/25/88
CHLOROFORM		56000	26157	11/21/88
HEXACHLOROCYCLOPENTADIENE		12	26148	08/16/88
CHLOROBENZENE		70	23049	01/26/88
CHLORDANE		120	26148	02/9/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-4b-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-4b

AVERAGE SITE DEPTH TO GROUNDWATER: 46 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
CHLOROPHENYLMETHYL SULFIDE	420	26148	08/16/88
CHLOROPHENYLMETHYL SULFOXID	E 390	26148	11/22/88
CHLOROPHENYLMETHYL SULFONE	860	26157	07/27/88
DIBROMOCHLOROPROPANE	28	26157	11/21/88
DICYCLOPENTADIENE	3600	23049	11/11/88
VAPONA	2.4	23049	11/11/88
DIISOPROPYLMETHYL PHOSPHONA	TE 2600	23239	11/18/88
DITHIANE	570	26148	08/16/88
DIELDRIN	7.6	23241	11/18/88
DIMETHYL DISULFIDE	4.0	23049	05/31/88
DIMETHYLMETHYL PHOSPHONATE	140	23049	02/10/89
ENDRIN	4.8	23239	11/18/88
ETHYLBENZENE	6.1	23049	09/1/87
ISODRIN	4.9	26011	01/13/88
TOLUENE	79	26148	02/9/89
METHYLISOBUTYL KETONE	140	26148	08/16/88
MALATHION	4.2	23049	02/10/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-4b-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-4b

AVERAGE SITE DEPTH TO GROUNDWATER: 46 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
l,4~OXATHIANE	78	23049	11/11/88
PPDDE	2.1	23049	07/26/88
PPDDT	4.4	23049	09/1/87
PARATHION	15	26157	11/21/88
SUPONA	11	23049	02/10/89
TETRACHLOROETHYLENE	350	26157	11/21/88
TRICHLOROETHYLENE	230	26157	11/21/88
O, P-XYLENE	22	26148	02/9/89

FACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-4b-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

	DIRECT	INDIRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VE I
CONTAMINANT	PPLV	PPLV	PPLV	ΕI	ΕI	E1	OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.5E+00	1.0E+06	1.5E+00	3.1E+02*	1.5E-05a	3.1E+02*	0.0E+00
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	8.0E-07
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	7.7E-11
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
CHLORDANE	2.0E+01	3.3E+09	2.0E+01	2.3E-02	1.3E-10	2.3E-02	1.6E-08
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.2E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-05
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.3E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	4.9E+08	1.6E+05	4.9E-05	1.6E-08	4.9E-05	1.3E-11
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-11
PPDDE	7.4E+01	1.9E+09	7.4E+01	2.7E-03	1.1E-10	2.7E-03	5.8E-10
PPDDT	7.4E+01	1.0E+06	7.4E+01	7.6E-01*	1.4E-08a	7.6E-01*	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	4.6E+04	1.8E+01	2.4E-03	9.3E-07	2.4E-03	2.1E-07
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	4.4E-12
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-06
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	1.9E-04
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	4.0E-05
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	3.7E+02*	4.2E-05a	3.7E+02*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.3E+09	6.6E+05	2.1E-07	1.1E-10	2.1E-07	2.2E-10
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-10
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	3.3E-02	7.2E-09a	3.3E-02	0.0E+00
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-11
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	8.2E-02	0.0E+00	8.2E-02	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	5.6E+05	1.6E+04	3.6E-07	1.1E-08	3.7E-07	3.7E-07
ISODRIN	5.8E+02	2.2E+09	5.8E+02	2.6E-02	6.8E-09	2.6E-02	5.9E-10
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	7.0E-16
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	3.4E-11
METHYLENE CHLORIDE	3.3E+03	5.2E+05	3.3E+03	2.1E-04	1.7E-06	2.2E-04	3.1E-07
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	6.0E-14
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-15
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	5.7E-07
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.4E-11
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.6E-10
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	6.2E-09
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	7.3E-07
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	3.2E-12
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	7.7E-12
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	7.6E-11

NCSA-4b-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT		DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
COPPER	,	4.2E+05	0.0E+00	4.2E+05	5.0E-03	0.0E+00	5.0E-03	0.0E+00
LEAD		1.5E+04	0.0E+00	1.5E+04	1.2E-02	0.0E+00	1.2E-02	0.0E+00
MERCURY		3.3E+03	0.0E+00	3.3E+03	2.0E-04	0.0E+00	2.0E-04	0.0E+00
ZINC		2.0E+06	0.0E+00	2.0E+06	7.1E-04	0.0E+00	7.1E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-4b-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.0E+06	1.5E+00	3.1E+02*	1.5E-05a	3.1E+02*	0.0E+00
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	8.0E-07
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	7.7E-11
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
CHLORDANE	2.0E+01	3.3E+09	2.0E+01	2.3E-02	1.36-10	2.3E-02	1.6E-08
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.2E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-05
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0. 0 E+00	1.6E+05	0.0E+00	0.06+00	0.0E+00	5.3E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	4.9E+08	1.6E+05	4.9E-05	1.6E-08	4.9E-05	1.3E-11
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0£+00	0.0E+00	1.1E-11
PPDDE	7.4E+01	1.9E+09	7.4E+01	2.7E-03	1.1E-10	2.7E-03	5.8E-10
PPDDT	7.4E+01	1.0E+06	7.4E+01	7.6E-01*	1.4E-08a	7.6E-01*	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	4.6E+04	1.8E+01	2.4E-03	9.3E-07	2.4E-03	2.1E-07
1,1-DICHLOROETHANE	2.8F+02	0.0E+00	2.8E+02	0.0E+00	0.06+00	0.0E+00	4.4E-12
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-06
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	1.9E-04
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4ē+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	4.0E-05
DIELORIN	1.6E+00	1.0E+06	1.6E+00	3.7E+02*	4.2E-05a	3.7E+02*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.3E+09	6.6E+05	2.1E-07	1.1E-10	2.1E-07	2.2E-10
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-10
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	3.3E-02	7.2E-09a	3.3E-02	0.0E+00
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-11
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	8.2E-02	0.0E+00	8.2E-02	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	5.6E+05	1.6E+04	3.6E-07	1.1E-08	3.7E-07	3.7E-07
ISODRIN	5.8E+02	2.2E+09	5.8E+02	2.6E-02	6.8E-09	2.6E-02	5.9E-10
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	7.0E-16
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	3.4E-11
METHYLENE CHLORIDE	3.3E+03	5.2E+05	3.3E+03	2.1E-04	1.7E-06	2.2E-04	3.1E-07
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	6.0E-14
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-15
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	5.7E-07
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.4E-11
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.6E-10
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	6.2E-09
TRICHLOROETHYLENE	2.3E+03	0.0E+CO	2.3E+03	0.0E+00	0.0E+00	0.0E+00	7.3E-07
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.06+00	0.0E+00	3.2E-12
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	7.7E-12
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	7.6E-11

NCSA-4b-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
COPPER	4.2E+05	0.0E+00	4.2E+05	5.0E-03	0.0E+00	5.0E-03	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	1.2E-02	0.0E+00	1.2E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	2.0E-04	0.0E+00	2.0E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	7.1E-04	0.0E+00	7.1E-04	0. 0E+ 00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-4b-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	2.1E-01	1.0E+06	2.1E-01	2.3E+03*	2.3E-04a	2.3E+03*	0.0E+00
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	8.0E-14
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-05
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.0E-10
BICYCLOHEPTADIENE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-07
CHLORDANE	2.7E+00	2.2E+08	2.7E+00	1.6E-01*	2.0E-09	1.6E-01*	2.5E-07
CHLOROBENZENE	6. 8 E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-08
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	4.6E-04
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-09
CHLOROPHENYLMETHYL SULFONE	7.0E+04	2.0E+08	7.0E+04	1.1E-04	4.0E-08	1.1E-04	8.4E-11
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	7.3E-11
PPDDE	1.0E+01	1.2E+08	1.0E+01	2.0E-02	1.6E-09	2.0E-02	8.8E-09
PPDDT	1.0E+01	1.0E+06	1.0E+01	5.5E+00*	2.2E-07a	5.5E+00*	0.0E+00
DIBROMOCHLOROPROPANE	2.5E+00	7.2E+03	2.5E+00	1.7E-02	6.0E-06	1.7E-02	3.2E-06
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	6.6E-11
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	2.8E-05
1,1-DICHLOROETHYLENE	5.9E+00	0.0E+00	5.9E+00	0.0E+00	0.0E+C0	0.0E+00	2.8E-03
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-04
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	2.7E+03*	6.4E-04a	2.7E+03*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2. 8 E+05	4.5E+08	2.8E+05	5.0E-07	3.1E-10	5.0E-07	1.4E-09
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	8.7E-10
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	7.8E-02	4.7E-08a	7.8E-02	0.0E+00
ETHYLBENZENE	3.5E+05	0.0E+00	3.5E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-10
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	1.9E-01*	0.0E+00	1.9E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	2.0E+05	5.5E+03	1.1E-06	3.0E-08	1.1E-06	2.4E-06
ISODRIN	2.5E+02	3.4E+08	2.5E+02	6.1E-02	4.4E-08	6.1E-02	3.8E-09
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.5E-15
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	2.2E-10
METHYLENE CHLORIDE	4.5E+02	8.0E+04	4.5E+02	1.5E-03	1.1E-05	1.6E-03	4.7E-06
1,4-OXATHIANE	1.1E+05	0.0E+0C	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	3.9E-13
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	8.9E-15
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	8.6E-06
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	2.8E-10
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-09
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	9.3E-08
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-05
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	4.8E-11
M-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	5.0E-11
O,P-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	4.9E-10

NCSA-4b-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE E1	VE I OPN
COPPER	2.5E+05	0.0E+00	2.5E+05	8.5E-03	0.0E+00	8.5E-03	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	1.9E-02	0.0E+00	1.9E-02	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	3.3E-04	0.0E+00	3.3E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.3E-03	0.0E+00	1.3E-03	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-4b-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

	DIRECT	INDIRECT	CUMULAT I VE	DIRECT	INDIRECT	CUMULATIVE	VE 1
CONTAMINANT	PPLV	PPLV	PPLV	EI	E!	ΕI	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	<u> </u>		·	
ALDRIN	1.9E+00	1.3E+02	1.9E+00	2.5E+02*	3.7E+00*	2.5E+02*	0.0E+00
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-08
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0 OE+00	2.5E-01
BENZOTHIAZOLE -	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	7.1E-05
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-02
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	1.8E-02	3.2E-05	1.8E-02	5.0E-03
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-03
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	9.3E+00
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	1.9E+04	1.6E+04	8.8E-05	4.2E-04	5.1E-04	1.2E-05
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-05
PPDDE	9.3E+01	1.9E+01	1.6E+01	2.1E-03	1.0E-02	1.2E-02	1.8E-04
PPDDT	9.3E+01	1.9E+01	1.6E+01	6.0E-01*	2.9E+00*	3.5E+00*	0.0E+00
DIBROMOCHLOROPROPANE	2.3E+01	4.8E+00	3.9E+00	1.9E-03	9.0E-03	1.1E-02	6.5E-02
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	1.3E-06
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	5.7E-01
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0E+00	0.0E+00	5.8E+01
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.7E+01
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	3.0E+02*	1.0E+01*	3.1E+02*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	8.5E+03	8.3E+03	3.8E-07	1.68-05	1.7E-05	2.0E-04
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	6.0E-02	5.3E-03a	6.5E-02	0.0E+00
ETHYLBENZENE	4.6E+05	0.0E+00	4.6E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-05
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	1.5E-01*	0.0E+00	1.5E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	1.9E+01	1.9E+01	1.1E-06	3.1E-04	3.1E-04	3-4E-01
ISODRIN	3.2E+02	3.0E+03	2.98+02	4.7E-02	4.9E-03	5.2E-02	5.4E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	6.4E-10
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	3.1E-05
METHYLENE CHLORIDE	4.1E+03	8.7E-01	8.7E-01	1.7E-04	1.0E+00*	1.0E+00*	9.6E-02
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	5.5E-08
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.08+00	0.0E+00	1.3E-09
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.08+00	0.0E+00	1.7E-01
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0+30.0	0.0E+00	4.0E-05
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-04
1,1,2-TRICHLOROETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-03
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-01
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	9.8E-07
M-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	7.1E-06
O,P-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	7.0E-05

NCSA-4b-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	EI	VE I ENC
COPPER	1.8E+05	0.0E+00	1.8E+05	1.2E-02	0.0E+00	1.2E-02	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	2.8E-02	0.0E+00	2.8E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	4.7E-04	0.0E+00	4.7E-04	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.8E-03	0.0E+00	1.8E-03	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-4b-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT INDIRECT		CUMULATIVE DIRECT		INDIRECT	CUMULATIVE	٧	ΕI	
CONTAMENANT	PPLV	OSVI	ESVI	PPLV	ΕI	El	ΕÌ	OPN	ENC
CONTAMINANT	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
	1.2E-01	4.1E+06	4.2E+01	1.2E-01	4.0E+03*	1.1E+01*	4.0E+03*	0.0E+00	0.0E+00
ALDRIN	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	9.2E-14	1.1E-08
ATRAZINE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	6.0E-06	7.4E-01
BENZENE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	5.8E-10	7.1E-05
BENZOTHIAZOLE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-07	1.4E-02
BICYCLOHEPTADIENE	1.5E+00	4.4E+08	4.5E+03	1.5E+00	2.9E-01*	9.7E-05	2.9E-01*	1.2E-07	1.5E-02
CHLORDANE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-08	2.0E-03
CHLOROBENZENE	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-04	2.88+01
CHLOROFORM CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.0E-09	4.9E-04
CHLOROPHENYLMETHYL SULFONE	1.7E+04	6.6E+07	5.7E+04	1.3E+04	4.8E-04	1.4E-04	6.2E-04	9.7E-11	1.2E-05
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	8.5E-11	1.0E-05
	5.7E+00	2.5E+08	1.9E+01	4.4E+00	3.5E-02	1.0E-02	4.5E-02	4.4E-09	5.4E-04
PPDDE	5.7E+00	5.2E+08	1.9E+01	4.4E+00	9.8E+00*	2.9E+00*	1.3E+01*	0.0E+00	0.0E+00
PPDDT	1.4E+00	6.2E+03	4.8E+00	1.1E+00	3.1E-02	9.0E-03	4.0E-02	1.6E-06	1.9E-01
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	3.3E-11	4.0E-06
1,1-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	1.4E-05	1.7E+00
1,2-DICHLOROETHANE	3.2E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-03	1.7E+02
1,1-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,2-DICHLOROETHYLENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-04	3.7E+01
DICYCLOPENTADIENE	1.2E-01	1.9E+06	1.9E+01	1.2E-01	4.8E+03*	3.1E+01*	4.9E+03*	0.0E+00	0.0E+00
DIELDRIN	6.8E+04	1.7E+08	2.6E+04	1.9E+04	2.1E-06	5.5E-06	7.5E-06	1.6E-09	2.0E-04
DIISOPROPYLMETHYL PHOSPHONATE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	1.0E-09	1.2E-04
DIMETHYLDISULFIDE		0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	1.0E+06	1.0E+06	2.5E+02	3.2E-01*	5.3E-03a	3.3E-01*	0.0E+00	0.0E+00
ENDRIN	2.5E+02		0.0E+00	8.5E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-10	1.4E-05
ETHYLBENZENE	8.5E+04	0.05+00	0.0E+00	4.0E+00	8.1E-01*	0.0E+00	8.1E-01*	0.0E+00	0.0E+0
FLUOROACETIC ACID	4.0E+00	0.0E+00	5.8E+01	5.0E+01	1.6E-05	1.0E-04	1.2E-04	2.8E-06	3.4E-0
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	7.5£+04		5.8E+01	2.5E-01*	4.9E-03	2.6E-01*	4.4E-09	5.4E-04
ISODRIN	5.9E+01	3.0E+08	3.0E+03	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.3E-15	6.4E-10
MALATHION	1.7E+04	0.06+00	0.0E+00 0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-10	3.1E-05
METHYL ISOBUTYL KETONE	4.0E+04	0.06+00	8.7E-01	8.6E-01	2.8E-03	1.0E+00*	1.0E+00*	2.3E-06	2.9E-0
METHYLENE CHLORIDE	2.5E+02	6.98+04		2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,4-OXATHIANE	2.5E+04	0.06+00	0.06+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	4.5E-13	5.5E-0
PARATHION	5.1E+03	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-14	1.3E-0
SUPONA	1.3E+02	0.05+00	0.0E+00		0.0E+00	0.0E+00	0.0E+00	4.3E-06	5.2E-0
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	3.3E-10	4.0E-0
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.06+00	0.0E+00	0.0E+00	2.0E-09	2.4E-0
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.06+00	0.0E+00	0.0E+00	4.6E-08	5.7E-0
1,1,2-TRICHLOROETHANE	3.4E+01	0.0E+00	0.0E+00	3.4E+01		0.0E+00	0.0E+00	5.5E-06	6.7E-0
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-11	2.9E-0
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.05+00	0.0E+00	0.0E+00	5.8E-11	7.1E-0
M-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00		0.0E+00	5.7E-10	7.0E-0
O,P-XYLENE	8.8E+05	0.05+00	0.06+00	8.8E+05	0.0E+00	0.0E+00	0.02.00		

NCSA-4b-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	√E I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	El	OPN	ENC
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	3.7E-02	0.0E+00	3.7E-02	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	8.2E-02	0.0E+00	8.2E-02	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	1.4E-03	0.0E+00	1.4E-03	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	1.0E-02	0.0E+00	1.0E-02	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

2.15 SITE NCSA-5a: BASIN B (formerly Site 35-3: Basin B; ESE, 1987k/RIC 87203R05 and ESE, 1988r/RIC 87203R05A)

2.15.1 <u>Site-Specific Considerations</u>

Figure NCSA-5a-1 and Tables NCSA-5a-1 and NCSA-5a-2 depict the target contaminants for site NCSA-5a. Borings 4046 through 4051, 4112, 4113, 4114/4138, and 4115 through 4122, and 4138 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-5a (ESE, 1987k/RIC 87203R05).

2.15.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-5a are shown in Figure NCSA-5a-1. Methylphosphonic acid occurring in Boring 4114/4138 (4-5 ft) was not included in the figure since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown in this figure, methylphosphonic acid was included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-5a-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Methylene chloride, shown in Table NCSA-5a-1 is excluded from consideration in the exposure analysis for this site because it was considered a laboratory contaminant in the samples analyzed. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-5a-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.15.3 Site Exposure Summary

Tables NCSA-5a-3 through NCSA-5a-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-5a is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Direct	Direct
Chlordane	Direct	Direct	Direct	Direct	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct
Cadmium				-	Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-5a is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-5a

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Bc ing Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	0.30	0-1	4,15	0.30	0-1	4115
Chlordane	5.4	0-1	4114/4138	5.4	2-0	4114/4138
PPDDE"	090.0	0-1	4114/4138	0900	0-1	4114/4138
PPDDT ² /	0.0040	0-1	4119	0.0040	0-1	4119
Dieldrin	7.0	0-1	4112	7.0	0-1	4112
Dithiane	0.9	0-1	4114/4138	0.9	0-1	4114/4138
Endrin	0.70	0-1	4118	0.70	0-1	4118
Fluoroacetic acid	;	;	;	8.2	14-15	4112
Methylene chloride ³ /	2	4-5	4112	2	4-5	4112
Methyl phosphonic acid4'	110	4-5	4114/4138	110 .	4-5	4114/4138
Arsenic	170	0-1	4048	;	;	:
Cadmium	2.9	0-1	4048	;	;	;
Conper	40	0-1	4112	;	;	;
Lear	82	0-1	4112	;	;	;
Mercury	2.2	0-1	4114/4138	;	1	:
Zinc	140	0-1	4048	;	:	;

PPDDE 2.2-bis(Para-chlorophenyl)-1.1-dichloroethene
 PPDDT 2,2-bis(Para-chlorophenyl)-1.1.1-trichloroethane
 Suspected laboratory contaminant.
 Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ng/g fi

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 18

TABLE NCSA-5a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-5a

AVERAGE SITE DEPTH TO GROUNDWATER: 33 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ATRAZINE	53	35079	12/1/88
BENZENE	2.4	35079	06/9/88
CHLOROFORM	2.3	35079	12/1/88
HEXACHLOROCYCLOPENTADIENE	0.10	35079	12/1/88
CHLOROPHENYLMETHYL SULFIDE	6.8	35079	06/9/88
CHLOROPHENYLMETHYL SULFONE	8.1	35079	11/30/88
DIISOPROPYLMETHYL PHOSPHONA	TE 2000	35079	12/1/88
DITHIANE	840	35079	12/1/88
DIELDRIN	0.38	35079	12/1/88
ENDRIN	0.41	35079	12/1/88
ISODRIN	0.90	35079	12/1/88
MALATHION	7.2	35079	12/1/88
1,4-OXATHIANE	73	35079	12/1/88
PPDDE	0.34	35079	12/1/88
PPDDT	0.39	35079	12/1/88
SUPONA	1.2	35079	12/1/88
TETRACHLOROETHYLENE	1.1	35079	12/1/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-5a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-5a

AVERAGE SITE DEPTH TO GROUNDWATER: 33 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
TRICHLOROETHYLENE	4.3	35079	12/1/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-5a-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	1.5E+05	1.5E+00	2.0E-01*	2.0E-06	2.0E-01*	0.0E+00
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-06
CHLORDANE	2.0E+01	1.6E+07	2.0E+01	2.8E-01*	3.3E-07	2.8E-01*	0.0E+00
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.6E-07
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-09
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.5E-11
PPDDE	7.4E+01	9.1E+06	7.4E+01	8.2E-04	6.6E-09	8.2E-04	2.7E-08
PPDDT	7.4E+01	1.9E+07	7.4E+01	5.4E-05	2.1E-10	5.4E-05	2.2E-07
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	4.4E+00*	1.0E-04a	4.4E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	4.7E-08
DITHIANE	8.3E+04	0.0E+00	8.3E+04	7.3E-05	0.0E+00	7.3E-05	0.0E+00
ENDRIN	2.5E+03	5.6E+07	2.5E+03	2.8E-04	1.3E-08	2.8E-04	2.3E-11
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	9.0E-07
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-08
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.4E-13
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	4.3E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	5.3E-07
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.9E-06
ARSENIC	2.2E+01	0.0E+00	2.2E+01	7.9E+00*	0.0E+00	7.9E+00*	0.0E+00
CADHIUN	4.5E+02	0.0E+00	4.5E+02	6.4E-03	0.0E+00	6.4E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	9.6E-05	0.0E+00	9.6E-05	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.3E-03	0.0E+00	5.3E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	6.7E-04	0.0E+00	6.7E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	7.1E-05	0.0E+00	7.1E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-5a-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	1.5E+00	1.5E+05	1.5E+00	2.0E-01*	2.0E-06	2.0E-01*	0.0E+00
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-06
CHLORDANE	2.0E+01	1.6E+07	2.0E+01	2.8E-01*	3.3E-07	2.8E-01*	0.0E+00
CHLOROFORM	4.0E+03	0.0E+00	4.05+03	0.0E+00	0.0E+00	0.0E+00	3.6E-07
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0€+00	0.0E+00	2.4E-09
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.5E-11
PPDDE	7.4E+01	9.1E+06	7.4E+01	8.2E-04	6.6E-09	8.2E-04	2.7E-08
PPDOT	7.4E+01	1.9E+07	7.4E+01	5.4E-05	2.1E-10	5.4E-05	2.2E-07
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	4.4E+00*	1.0E-04a	4.4E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.GE+00	4.7E-08
DITHIANE	8.3E+04	0.0E+00	8.3E+04	7.3E-05	0.0E+00	7.3E-05	0.0E+00
ENDRIN	2.5E+03	5.6E+07	2.5E+03	2.8E-04	1.3E-08	2.8E-04	2.3E-11
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E÷00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	9.0E-07
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-08
MALATHION	1.7E+05	0.0E+00	1.7E+05	Q.0E+00	0.0E+00	0.0E+00	3.4E-13
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	4.3E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.GE+00	5.3E-07
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.9E-06
ARSENIC	2.2E+01	0.0E+00	2.2E+01	7.9E+00*	0.0E+00	7.9E+00*	0.0E+00
CADMIUM	4.5E+02	0.0E+00	4.5E+02	6.4E-03	0.0E+00	6.4E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	9.6E-05	0.0E+00	9.6E-05	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.3E-03	0.0E+00	5.3E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	6.7E-04	0.0E+00	6.7E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	7.1E-05	0.0E+00	7.1E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-5a-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	1.0E+04	2.1E-01	1.4E+00*	3.0E-05	1.4E+00*	0.0E+00
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-12
BENZENÉ	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	3.7E-05
CHLORDANE	2.7E+00	1.1E+06	2.7E+00	2.0E+00*	5.0E-06	2.0E+00*	0.0E+00
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	5.4E-06
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-08
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-10
PPDDE	1.0E+01	6.0E+05	1.0E+01	5.9E-03	1.0E-07	5.9E-03	4.1E-07
PPDDT	1.0E+01	1.3E+06	1.0E+01	3.9E-04	3.1E-09	3.9E-04	3.3E-06
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	3.2E+01*	1.5E-03a	3.2E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	3.1E-07
DITHIANE	3.5E+04	0.0E+00	3.5E+04	1.7E-04	0.0E+00	1.7E-04	0.0E+00
ENDRIN	1.1E+03	8.6E+06	1.1E+03	6.6E-04	8.1E-08	6.6E-04	1.5E-10
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	5.8E-06
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-07
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-12
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-13
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	8.0E-06
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3. ?E+02	0.0E+00	0.0E+00	0.0E+00	5.9E-05
ARSENIC	3.9E+00	0.0E+00	3.9E+00	4.3E+01*	0.0E+00	4.3E+01*	0.0E+00
CADHIUM	5.8E+01	0.0E+00	5.8E+01	5.0E-02	0.0E+00	5.0E-02	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	1.6E-04	0.0E+00	1.6E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	8.9E-03	0.0E+00	8.9E-03	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	1.1E-03	0.0E+00	1.1E-03	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.3E-04	0.0E+00	1.3E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-5a-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT E1	CUMULATIVE EI	VE I
ALDRIN	1.9E+00	1.3E+02	1.9E+00	1.6E-01*	2.4E-03	1.6E-01*	0.0E+00
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	9.3E-10
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	4.1E-03
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	2.2E-01*	4.0E-04	2.2E-01*	0.0E+00
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	6.0E-04
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-05
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-07
PPDDE	9.3E+01	1.9E+01	1.6E+01	6.4E-04	3.1E-03	3.7E-03	4.6E-05
PPDDT	9.3E+01	1.9E+01	1.6E+01	4.3E-05	2.1E-04	2.5E-04	3.7E-04
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	3.5E+00*	1.2E-01*	3.6E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	2.4E-04
DITHIANE	4.6E+04	0.0E+00	4.6E+04	1.3E-04	0.0E+00	1.3E-04	0.0E+00
ENDRIN	1.4E+03	1.6E+04	1.3E+03	5.1E-04	4.5E-05	5.5E-04	1.2E-07
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	4.5E-03
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-09
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-10
TETRACHLOROETHYLENE	6.5E+02	0.06+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	8.9E-04
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	6.5E-03
ARSENIC	2.0E+01	0.0E+00	2.0E+01	8.5E+00*	0.0E+00	8.5E+00*	0.0E+00
CADMIUM	3.6E+02	0.0E+00	3.6E+02	8.1E-03	0.0E+00	8.1E-03	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	2.3E-04	0.0E+00	2.3E-04	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.3E-02	0.0E+00	1.3E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.6E-03	0.0E+00	1.6E-03	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.8E-04	0.0E+00	1.8E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-5a-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VE I
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	ΕI	EI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	2.0E+04	4.2E+01	1.2E-01	2.6E+00*	7.2E-03	2.6E+00*	0.0E+00	0.0E+00
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-12	9.3E-10
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	1.8E-05	1.2E-02
CHLORDANE	1.5E+00	2.2E+06	5.2E+00	1.2E+00	3.6E+00*	1.0E+00*	4.6E+00*	0.0E+00	0.0E+00
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-06	1.8E-03
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-08	1.2E-05
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-10	1.7E-07
PPODE	5.7E+00	1.2E+06	1.9E+01	4.4E+00	1.0E-02	3.1E-03	1.4E-02	2.0E-07	1.4E-04
PPDDT	5.7E+00	2.6E+06	1.9E+01	4.4E+00	7.0E-04	2.1E-04	9.0E-04	1.7E-06	1.1E-03
DIELDRIN	1.2E-01	9.1E+03	1.9E+01	1.2E-01	5.7E+01*	3.7E-01*	5.8E+01*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-07	2.4E-04
DI	8.5E+03	0.0E+00	0.0E+00	8.5E+03	7.1E-04	0.0E+00	7.1E-04	0.0E+00	0.0E+00
ENL	2.5E+02	7.4E+06	1.6E+04	2.5E+02	2.8E-03	4.5E-05	2.8E-03	1.8E-10	1.2E-07
FLUORGACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTADIENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	6.7E-06	4.5E-03
ISODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-07	1.6E-04
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-12	1.7E-09
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	3.2E-13	2.1E-10
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	4.0E-06	2.7E-03
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	2.9E-05	2.0E-02
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	1.1E+02*	0.0E+00	1.1E+02*	0.0E+00	0.0E+00
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	3.8E-01*	0.0E+00	3.8E-01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	7.0E-04	0.0E+00	7.0E-04	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	3.7E-02	0.0E+00	3.7E-02	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	4.8E-03	0.0E+00	4.8E-03	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	1.0E-03	0.0E+00	1.0E-03	0.0E+00	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.16 SITE NCSA-5b: DRAINAGE DITCHES (formerly Site 35-4/26-7: Basins A, B, and C Drainage Ditches; ESE 19871/RIC 87203R06 and ESE, 1988s/RIC 87203R06A)

2.16.1 Site-Specific Considerations

Figure NCSA-5b-1 and Tables NCSA-5b-1 and NCSA-5b-2 depict the target contaminants for site NCSA-5b. Borings 4052 through 4056, 4086 through 4088, 4100 through 4111, and 4631 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-5b (ESE, 19871/RIC 87203R06).

2.16.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-5b are shown in Figure NCSA-5b-1. The following contaminants were not included in this figure, since they were not considered target contaminants during the Phase I and Phase II investigations: Oxybisethanol, occurring in Boring 4052 (4-5 ft), and 1,1,2,2-tetrachloroethane, occurring in Boring 4053 (19-20 ft). Although not shown on this figure, oxybisethanol and 1,1,2,2-tetrachloroethane were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-5b-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-5b-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.16.3 Site Exposure Summary

Tables NCSA-5b-3 through NCSA-5b-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-5b is greater than 10 ft,

the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Chlordane	Direct	Direct	Direct	Direct	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct
Fluoroacetic acid		~-	Direct	Direct	Direct
Methylene chloride 1,1,2,2-Tetrachloro-				Indirect	Indirect
ethane				Indirect	Indirect
Cadmium					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-5b is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value less than 1.

Į

TABLE NCSA-5b-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-5b

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	6.5	2-3	4102	6.5	2-3	4102
Chlordane	10	2-3	4104	10	2-3	4104
PPDDE"	0.016	2-3	4111	0.016	2-3	4111
Dieldrin	12	2-3	4102	12	2-3	4102
Diisopropylmethyl phosphonate	5	4-5	4088	S	4-5	4088
Dithiane	30	4-5	4087	30	4-5	4087
Endrin	3.5	2-3	4104	3.5	2-3	4104
Fluoroacetic acid	3.1	4-5	4104	3.1	4-5	4104
Isodrin	0.012	0-1	4106	0.012	0-1	4106
Isopropylmethylphosphonic acid	5.7	2-6	4107	5.7	2-6	4107
Methylene chloride		7-8	4107		7-8	4107
Oxybisethanol ^{2/}	1.0	4-5	4052	1.0	4-5	4052
1,1,2,2-Tetrachloroethane ^{2/}	;	:	;	0.9	19-20	4053
Arsenic	190	0-1	4056	ŀ	:	i,
Cadmium	3.3	2-3	4102	:	į	:
Copper	26	0-1	4056	:	:	:
Lead	130	4-5	4052	;	ŧ	;
Mercury	2.3	0-1	4053	:	:	:
Zinc	160	0-1	4056	:	;	:

1/ PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene 2/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foov/feet NCSA Max. ug/g fi

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 19

TABLE NCSA-5b-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-5b

AVERAGE SITE DEPTH TO GROUNDWATER: 18 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE	
1,2-DICHLOROETHANE	40	35020	12/9/88	
ALDRIN	0.12	35020	06/2/88	
ATRAZINE	100	35020	12/9/88	
CHLOROFORM	2.0	35020	12/9/88	
HEXACHLOROCYCLOPENTADIENE	0.11	35020	06/2/88	
CHLORDANE	3.4	35020	12/9/88	
DIISOPROPYLMETHYL PHOSPHONAT	E 200	35020	12/9/88	
DITHIANE	350	35020	12/9/88	
DIELDRIN	1.2	35020	12/9/88	
DIMETHYLMETHYL PHOSPHONATE	3.6	35020	12/9/88	
ENDRIN	0.84	35020	12/9/88	
ISODRIN	0.19	35020	06/2/88	
TOLUENE	21	35020	12/9/88	
1,4-OXATHIANE	14	35020	12/9/88	
PPDDT	0.25	35020	12/9/88	
trichloroethylene	1.4	35020	12/9/88	

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-5b-3
EXPOS⊍9E EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I OPN	
ALDRIN	1.5E+00	6.8E+08	1.5E+00	4.3E+00*	9.5E-09	4.3E+00*	4.0E-11	
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-16	
CHLORDANE	2.0E+01	7.3E+10	2.0E+01	5.1E-01*	1.4E-10	5.1E-01*	5.3E-11	
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-10	
PPDDE	7.4E+01	4.1E+10	7.4E+01	2.2E-04	3.9E-13	2.2E-04	0.0E+00	
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	5.8E-11	
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	9.3E-09	
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	7.6E+00*	3.9E-08a	7.6E+00*	0.0E+00	
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	2.6E+09	6.6E+05	7.6E-06	1.9E-09	7.6E-06	1.9E-12	
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
DITHIANE	8.3E+04	0.0E+00	8.3E+04	3.6E-04	0.0E+00	3.6E-04	0.0E+00	
ENDRIN	2.5E+03	1.0E+06	2.5E+03	1.4E-03	1.4E-11a	1.4E-03	0.0E+00	
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	8.0E-02	0.0E+00	8.0E-02	0.0E+00	
HEXACHLOROCYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-10	
ISODRIN	5.8E+02	4.9E+10	5.8E+02	2.1E-05	2.4E-13	2.1E-05	2.6E-12	
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+06	0.0E+00	2.5E+06	2.3E-06	0.0E+00	2.3E-06	0.0E+00	
METHYLENE CHLORIDE	3.3E+03	1.7E+07	3.3E+03	3.1E-04	5.9E-08	3.1E-04	0.0E+00	
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+G0	
1,1,2,2-TETRACHLOROETHANE	1.3E+02	2.3E+07	1.3E+02	0.0E+00	2.6E-07	2.6E-07	0.0E+00	
TOLUENE	2.5E+06	0.0£+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	1.3E-12	
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.08+00	0.0E+00	5.3E-10	
ARSENIC	2.2E+01	0.08+00	2.2E+01	8.8E+00*	0.0E+00	8.8E+00*	0.0E+00	
CADMIUM	4.5E+02	0.06+00	4.5E+02	7.3E-03	0.0E+00	7.3E-03	0.0E+00	
COPPER	4.2E+05	0.0E+00	4.2E+05	1.3E-04	0.0E+00	1.3E-04	0.0E+00	
LEAD	1.5E+04	0.0E+00	1.5E+04	8.4E-03	0.0E+00	8.4E-03	0.0E+00	
MERCURY	3.3E+03	0.0E+00	3.3E+03	7.0E-04	0.0E+00	7.0E-04	0.0E+00	
ZINC	2.0E+06	0.0E+00	2.0E+06	8.1E-05	0.0E+00	8.1E-05	0.0E+00	

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-5b-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	6.8E+08	1.5E+00	4.3E+00*	9.5E-09	4.3E+00*	4.0E-11
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-16
CHLORDANE	2.0E+01	7.3E+10	2.0E+01	5.1E-01*	1.4E-10	5.1E-01*	5.3E-11
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-10
PPDOE	7.4E+01	4.1E+10	7.4E+01	2.2E-04	3.9E-13	2.2E-04	0.0E+00
PPDOT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	5.8E-11
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	9.3E-09
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	7.6E+00*	3.9E-08a	7.6E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	2.6E+09	6.6E+05	7.6E-06	1.9E-09	7.6E-06	1.9E-12
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	3.6E-04	0.0E+00	3.6E-04	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	1.4E-03	1.4E-11a	1.4E-03	0.0E+00
FLUOROACETIC ACID	3.9E+01	0.0E+00	3.9E+01	8.0E-02	0.0E+00	8.0E-02	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-10
ISODRIN	5.8E+02	4.9E+10	5.8E+02	2.1E-05	2.4E-13	2.1E-05	2.6E-12
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+06	0.0E+00	2.5E+06	2.3E-06	0.0E+00	2.3E-06	0.0E+00
METHYLENE CHLORIDE	3.3E+03	1.7E+07	3.3E+03	3.1E-04	5.9E-08	3.1E-04	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,1,2,2-TETRACHLOROETHANE	1.3E+02	2.3E+07	1.3E+02	0.0E+00	2.6E-07	2.68-07	0.0E+00
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	1.3E-12
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	5.3E-10
ARSENIC	2.2E+01	0.0E+00	2.2E+01	8.8E+00*	0.0E+00	8.8E+00*	0.0E+00
CADRIUM	4.5E+02	0.0E+00	4.5E+02	7.3E-03	0.0E+00	7.3E-03	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.3E-04	0.0E+00	1.3E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	8.4E-03	0.0E+00	8.4E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	7.0E-04	0.0E+00	7.0E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	8.1E-05	0.0E+00	8.1E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-5b-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	4.5E+07	2.1E-01	3.1E+01*	1.4E-07	3.1E+01*	6.0E-10
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	9.1E-16
CHLORDANE	2.7E+00	4.9E+09	2.7E+00	3.7E+00*	2.1E-09	3.7E+00*	8.0E-10
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-09
PPDDE	1.0E+01	2.7E+09	1.0E+01	1.6E-03	5.9E-12	1.6E-03	0.0E+00
PPDDT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	8.8E-10
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	1.4E-07
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	5.5E+01*	5.8E-07a	5.5E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	1.9E+09	2.8E+05	1.8E-05	2.7E-09	1.8E-05	1.2E-11
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	8.5E-04	0.0E+00	8.5E-04	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	3.3E-03	9.0E-11a	3.3E-03	0.0£+00
FLUOROACETIC ACID	1.7E+01	0.0E+00	1.7E+01	1.9E-01*	0.0E+00	1.9E-01*	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	2.6E-09
ISODRIN	2.5E+02	7.6E+09	2.5E+02	4.9E-05	1.6E-12	4.9E-05	1.7E-11
ISOPROPYL METHYL PHOSPHONIC ACID	1.1E+06	0.0E+00	1.1E+06	5.4E-06	0.0E+00	5.4E-06	0.0E+00
METHYLENE CHLORIDE	4.5E+02	2.6E+06	4.5E+02	2.2E-03	3.8E-07	2.2E-03	0.0E+00
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,1,2,2-TETRACHLOROETHANE	1.8E+01	1.5E+06	1.8E+01	0.0E+00	3.9E-06	3.9E-06	0.0E+00
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	8.6E-12
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	7.9E-09
ARSENIC	3.9E+00	0.0E+00	3.9E+00	4.8E+01*	0.0E+00	4.8E+01*	0.0E+00
CADHIUM	5.8E+01	0.0E+00	5.8E+01	5.7E-02	0.0E+00	5.7E-02	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	2.3E-04	0.0E+00	2.3E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	1.4E-02	0.0E+00	1.4E-02	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	1.2E-03	0.0E+00	1.2E-03	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.5E-04	0.0E+00	1.5E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-56-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLY (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I ENC	
ALDRIN	1.9E+00	4.0E-01	3.3E-01	3.4E+00*	1.6E+01*	2.0E+01*	4.6E-04	
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-09	
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	4.0E-01*	7.4E-04	4.1E-01*	6.1E-04	
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-03	
PPODE	9.3E+01	1.9E+01	1.6E+01	1.7E-04	8.2E-04	9.9E-04	0.0E+00	
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	6.7E-04	
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-01	
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	6.0E+00*	2.1E-01*	6.2E+00*	0.0E+00	
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	1.6E+02	1.6E+02	1.4E-05	3.1E-02	3.1E-02	6.6E-05	
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
DITHIANE	4.6E+04	0.0E+00	4.6E+04	6.5E-04	0.0E+00	6.5E-04	0.0E+00	
ENDRIN	1.4E+03	1.0E+06	1.3E+03	2.5E-03	2.3E-04a	2.8E-03	0.0E+00	
FLUOROACETIC ACID	2.2E+01	0.0E+00	2.2E+01	1.4E-01*	0.0E+00	1.4E-01*	0.0E+00	
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-02	
ISODRIN	3.2E+02	6.7E+01	5.5E+01	3.7E-05	1.8E-04	2.2E-04	9.0E-05	
ISOPROPYL METHYL PHOSPHONIC ACID	1.4E+06	0.06+00	1.4E+06	4.1E-06	0.0E+00	4.1E-06	0.0E+00	
METHYLENE CHLORIDE	4.1E+03	1.8E+00	1.8E+00	2.4E-04	5.4E-01*	5.4E-01*	0.0E+00	
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
1,1,2,2-TETRACHLOROETHANE	1.6E+02	2.8E+00	2.7E+00	0.0E+00	2.2E+00*	2.2E+00*	0.0E+00	
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	4.6E-05	
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	6.0E-03	
ARSENIC	2.0E+01	0.0E+00	2.0E+01	9.5E+00*	0.0E+00	9.5E+00*	0.0E+00	
CADMIUM	3.6E+02	0.0E+00	3.6E+02	9.2E-03	0.0E+00	9.2E-03	0.0E+00	
COPPER	1.8E+05	0.0E+00	1.8E+05	3.2E-04	0.0E+00	3.2E-04	0.0E+00	
LEAD	6.5E+03	0.0E+00	6.5E+03	2.0E-02	0.0E+00	2.0E-02	0.0E+00	
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.7E-03	0.0E+00	1.7E-03	0.0E+00	
ZINC	7.8E+05	0.0E+00	7.8E+05	2.0E-04	0.0E+00	2.0E-04	0.0E+00	

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-5b-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	νEΙ
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	El	El	13	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	9.1E+07	4.0E-01	9.0€-02	5.6E+01*	1.6E+01*	7.2E+01*	3.0E-10	1.4E-03
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-15	4.8E-09
CHLORDANE	1.5E+00	9.8E+09	5.2E+00	1.2E+00	6.6E+00*	1.9E+00*	8.5E+00*	4.0E-10	1.8E-03
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	9.2E-10	4.2E-03
PPDDE	5.7E+00	5.5E+09	1.9E+01	4.4E+00	2.8E-03	8.2E-04	3.6E-03	0.0E+00	0.0E+00
PPDDT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	4.4E-10	2.0E-03
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	6.9E-08	3.2E-01
DIELDRIN	1.2E-01	4.1E+07	1.9E+01	1.2E-01	9.8E+01*	6.3E-01*	9.9E+01*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	3.5E+08	1.6E+02	1.6E+02	7.4E-05	3.1E-02	3.1E-02	1.4E-11	6.6E-05
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	3.5E-03	0.0E+00	3.5E-03	0.0E+00	0.0E+00
ENDRIN	2.5E+02	1.0E+06	1.0E+06	2.5E+02	1.4E-02	2.3E-04a	1.4E-02	0.0E+00	0.0E+00
FLUOROACETIC ACID	4.0E+00	0.0E+00	0.0E+00	4.0E+00	7.8E-01*	0.0E+00	7.8E-01*	0.0E+00	0.0E+00
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-09	1.4E-02
ISODRIN	5.9E+01	6.6E+09	2.0E+02	4.6E+01	2.0E-04	6.0E-05	2.6E-04	2.0E-11	9.0E-05
ISOPROPYL METHYL PHOSPHONIC ACID	2.5E+05	0.0E+00	0.0E+00	2.5E+05	2.2E-05	0.0E+00	2.2E-05	0.0E+00	0.0E+00
METHYLENE CHLORIDE	2.5E+02	2.2E+06	1.8E+00	1.8E+00	4.0E-03	5.4E-01*	5.5E-01*	0.0E+00	0.0E+00
1_4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,1,2,2-TETRACHLOROETHANE	9.9E+00	3.1E+06	9.3E-01	8.5E-01	0.0E+00	6.5E+00*	6.5E+00*	0.0E+00	0.0E+00
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-11	4.6E-05
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	. 8E+02	0.0E+00	0.0E+00	0.0E+00	3.9E-09	1.8E-02
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	1.2E+02*	0.0E+00	1.2E+02*	0.0E+00	0.0E+00
CADMIUM	7.6E+00	0.0E+00	0.02+00	7.6E+00	4.3E-01*	0.0E+00	4.3E-01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	9.8E-04	0.0E+00	9.8E-04	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	5.9E-02	0.0E+00	5.9E-02	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	5.0E-03	0.0E+00	5.0E-03	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	1.1E-03	0.0E+00	1.1E-03	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to
1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

2.17 SITE NCSA-5c: SAND CREEK LATERAL (formerly Section 35-Uncontaminated; ESE, 1987m/RIC 87313R01; formerly Section 35-Nonsource Area; ESE, 1988t/RIC 87313R01A)

2.17.1 Site-Specific Considerations

Figure NCSA-5c-1 and Tables NCSA-5c-1 and NCSA-5c-2 depict the target contaminants for site NCSA-5c. Borings 4090 through 4097, 4123 through 4126, and 4128 through 4131 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-5c (ESE, 1987m/RIC 87313R01).

2.17.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-5c are shown in Figure NCSA-5c-1. Table NCSA-5c-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-5c-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.17.3 Site Exposure Summary

Tables NCSA-5c-3 through NCSA-5c-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-5c is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Lead			Direct	Direct	Direct
Cadmium					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-5c is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-5c

		Horizon 1		I	Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	40	0-1	4090	40	0-1	4090
PPDDE"	0.054	0-1	4124	0.054	0-1	4124
PPDDT ^{2/}	×0.041	0-1	4130	×0.041	0-1	4130
Dieldrin	20	0-1	4091	50	0-1	4091
Endrin	0.034	0-1	4126	0.034	0-1	4126
Hexachlorocyclopentadiene	0.036	0-1	4129	0.036	0-1	4129
Isodrin	0.041	0-1	4129	0.041	0-1	4129
Cadmium	2.3	4-5	4125	;	:	:
Lead	1400	0-1	4124	;	:	:
Zinc	320	0-1	4124	1	ł	1

1/ PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene 2/ PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 20

TABLE NCSA-5c-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-5c

AVERAGE SITE DEPTH TO GROUNDWATER: 43 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	2.4	26073	07/25/88
1,2-DICHLOROETHANE	20	26073	05/4/88
ALDRIN	0.44	26158	01/24/89
ATRAZINE	53	35079	12/1/88
BENZENE	8.7	35087	06/9/88
CARBON TETRACHLORIDE	5.9	26073	11/14/88
CHLOROFORM	460	35091	01/23/89
HEXACHLOROCYCLOPENTADIENE	0.10	35079	12/1/88
CHLOROBENZENE	150	26159	01/24/89
CHLORDANE	0.62	35058	12/14/88
CHLOROPHENYLMETHYL SULFIDE	6.8	35079	06/9/88
CHLOROPHENYLMETHYL SULFONE	8.1	35079	11/30/88
DIISOPROPYLMETHYL PHOSPHONAT	E 2000	35079	12/1/88
DITHIANE	840	35079	12/1/88
DIELDRIN	86	35058	17, 14/88
DIMETHYLMETHYL PHOSPHONATE	0.50	26073	02/15/89
ENDRIN	0.41	35079	12/1/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-5c-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-5c

AVERAGE SITE DEPTH TO GROUNDWATER: 43 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ISODRIN	0.90	35079	12/1/88
TOLUENE	1.5	26159	01/24/89
MALATHION	7.2	35079	12/1/88
1,4-OXATHIANE	73	35079	12/1/88
PPDDE	0.61	26073	01/26/88
PPDDT	0.39	35079	12/1/88
SUPONA	.1.2	35079	12/1/88
TETRACHLOROETHYLENE	1.6	26073	07/25/88
TRICHLOROETHYLENE	5.8	26159	01/24/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-5c-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	5.9E+05	1.5E+00	2.7E+01*	6.8E-05	2.7E+01*	7.3E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	1.8E-06
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-05
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	4.7E-09
CHLOROBENZENE	1.6E+05	0.06+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.6E-07
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-05
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.06+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.8E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.8E-12
PPDDE	7.4E+01	3.5E+07	7.4E+01	7.3E-04	1.5E-09	7.3E-04	9.5E-09
PPODT	7.4E+01	7.5E+07	7.4E+01	5.6E-04	5.5E-10	5.6E-04	4.3E-08
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-06
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	3.2E+01*	1.9E-04a	3.2E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	9.3E-09
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.02+00	0.0E+00
ENDRIN	2.5E+03	2.26+08	2.5E+03	1.4E-05	1.6E-10	1.4E-05	4.6E-12
HEXACHLOROCYCLOPENTAD IENE	1.7E+04	1.8E+04	8.6E+03	2.2E-06	2.0E-06	4.2E-06	1.8E-07
ISODRIN	5.8E+02	4.3E+07	5.8E+02	7.1E-05	9.6E-10	7.1E-05	6.1E-09
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0+30.0	6.6E-14
1.4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	8.4E-15
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.5E-07
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.6E-11
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.9E-10
TRICHLOROETHYLENE	2.3F+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.0E-06
CADMIUM	4.5E+02	0.0E+00	4.5E+02	5.1E-03	0.0E+00	5.1E-03	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	9.1E-02	0.0E+00	9.1E-02	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	1.6E-04	0.0E+00	1.6E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-5c-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	5.9E+05	1.5E+00	2.7E+01*	6.8E-05	2.7E+01*	7.3E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	1.8E-06
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-05
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	4.7E-09
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.6E-07
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-05
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.8E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.8E-12
PPDDE	7.4E+01	3.5E+07	7.4E+01	7.3E-04	1.5E-09	7.3E-04	9.5E-09
PPDDT	7.4E+01	7.5E+07	7.4E+01	5.6E-04	5.5E-10	5.6E-04	4.3E-C3
1.2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-06
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	3.2E+01*	1.9E-04a	3.2E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	9.3E-09
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+G0	0.0E+00	0.0E+00
ENDRIN	2.5E+03	2.2E+08	2.5E+03	1.4E-05	1.6E-10	1.4E-05	4.6E-12
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	1.8E+04	8.6E+03	2.2E-06	2.0E-06	4.2E-06	1.8E-07
ISODRIN	5.8E+02	4.3E+07	5.8E+02	7.1E-05	9.6E-10	7.1E-05	6.1E-09
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	6.6E-14
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	8.4E-15
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.5E-07
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.6E-11
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.9E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.0E-06
CADMIUM	4.5E+02	0.0E+00	4.5E+02	5.1E-03	0.0E+00	5.1E-03	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	9.1E-02	0.0E+00	9.1E-02	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	1.6E-04	0.0E+00	1.6E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical f'ux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-5c-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONYAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	2.1E-01	3.9E+04	2.1E-01	1.9E+02*	1.0E-03	1.9E+02*	1.1E-06
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	2.3E-13
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	2.65-05
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0€+00	0.0E+00	3.1E-04
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	7.0E-08
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-06
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-04
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-09
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+0C	0.0E+00	0.0E+00	4.4E-11
PPDDE	1.0E+01	2.4E+06	1.0E+01	5.3E-03	2.3E-08	5.3E-03	1.4E-07
PPDDT	1.0E+01	5.0E+06	1.0E+01	4.0E-03	8.3E-09	4.0E-03	6.5E-07
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	3.4E-05
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	2.3E+02*	2.8E-03a	2.3E+02*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.9E+00	0.0E+00	0.0E+00	6.0E-08
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.05-00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	3.4E+07	1.1E+03	3.2E-05	1.uE-09	3.2E-05	3.0E-11
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	6.5E+03	3.0E+03	6.4E-06	5.6E-06	1.2E-05	1.1E-06
ISODRIN	2.5E+02	6.6E+06	2.5E+02	1.7E-04	6.2E-09	1.7E-04	3 9E-08
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-13
1.4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	5.4E-14
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	2.2E-06
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	3.0E-10
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.9E-09
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-05
CADMIUM	5.8E+01	0.0E+00	5.8E+01	4.0E-02	0.0E+00	4.0E-02	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	1.5E-01*	0.0E+00	1.5E-01*	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	3.0E-04	0.0E+00	3.0E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-5c-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I ENC
ALDRIN	1.9E+00	1.3E+02	1.9E+00	2.1E+01*	3.2E-01*	2.1E+01*	4.3E-04
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	6.5E-10
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-02
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-01
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	2.8E-05
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	4.7E-03
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	8.4E-02
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	8.6E-06
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-07
PPDDE	9.3E+01	1.9E+01	1.6E+01	5.8E-04	2.8E-03	3.4E-03	5.7E-05
PPDDT	9.3E+01	1.9E+01	1.6E+01	4.4E-04	2.1E-03	2.5E-03	2.6E-04
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-02
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	2.5E+01*	8.7E-01*	2.6E+01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-04
STANOHOROUS STANOHOROUS	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.65+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	1.6E+04	1.3E+03	2.5E-05	2.2E-06	2.7E-05	8.3E-08
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	1.9E+01	1.9E+01	6.6E-06	1.9E-03	1.9E-03	.2E-03
ISODRIN	3.2E+02	6.7E+01	5.5E+01	1.3E-04	6.1E-04	7.4E-04	1.1E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-09
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	1.5E-10
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	8.8E-04
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	8.3E-07
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	5.2E-06
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	6.2E-03
CADMIUM	3.6E+02	0.0E+00	3.6E+02	6.4E-03	0.0E+00	6.4E-03	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	2.1E-01*	0.0E+00	2.1E-01*	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	4.1E-04	0.0E+00	4.1E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-5c-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VE I
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	ΕI	EI	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	7.8E+04	4.2E+01	1.2E-01	3.4E+02*	9.5E-01*	3.4E+02*	5.4E-07	1.3E-0
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	2.7E-13	6.5E-1
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	1.3E-05	3.2E-0
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	1.6E-04	3.7E-0
CHLORDANE	1.5E+03	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	3.5E-08	8.4E-0
CHLOROBENZENE	1.5E+64	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-06	4.7E-0
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-04	2.5E-0
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-09	8.6E-0
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.1E-11	1.2E-0
PPDDE	5.7E+00	4.7E+06	1.9E+01	4.4E+00	9.4E-03	2.8E-03	1.2E-02	7.1E-08	1.7E-0
PPDDT	5.7E+00	1.0E+07	1.9E+01	4.4E+00	7.2E-03	2.1E-03	9.3E-03	3.2E-07	7.8E-0
,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	1.7E-05	4.1E-0
DIELDRIN	1.2E-01	3.6E+04	1.9E+01	1.2E-01	4.1E+02*	2.6E+00*	4.1E+02*	0.0E+00	0.0E+0
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	7.0E-08	1.7E-0
IMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	2.5E+02	2.9E+07	1.6E+04	2.5E+02	1.3E-04	2.2E-06	1.4E-04	3.5E-11	8.3E-0
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	2.4E+03	5.8E+01	4.9E+01	9.4E-05	6.4E-04	7.3E-04	1.3E-06	3.2E-0
SODRIN	5.9E+01	5.7E+06	2.0E+02	4.6E+01	6.9E-04	2.0E-04	9.0E-04	4.6E-08	1.1E-0
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-13	1.2E-0
.4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
UPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	6.3E-14	1.5E-1
ETRACHLOROZTHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-06	2.6E-0
OLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	3.5E-10	8.3E-0
,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-09	5.2E-0
RICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	7.7E-06	1.8E-0
:ADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	3.0E-01*	0.0E+00	3.0E-01*	0.06+00	0.0E+0
.EAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	6.4E-01*	0.0E+00	6.4E-01*	0.0E+00	0.0E+0
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	2.3E-03	0.0E+00	2.3E-03	0.0E+00	0.0E+0

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.18 SITE NCSA-5d: SURFACE DRAINAGE CANAL (formerly Section 35-Uncontaminated; ESE, 1987m/RIC 87313R01; formerly Section 35-Nonsource Area; ESE 1988t/RIC87313R01A)

2.18.1 Site-Specific Considerations

Figure NCSA-5d-1 and Tables NCSA-5d-1 and NCSA-5d-2 depict the target contaminants for site NCSA-5d. Borings 4027, 4043, 4095, 4127, and 4132 through 4134 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-5d (ESE, 1987m/RIC 87313R01).

2.18.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-5d are shown in Figure NCSA-5d-1. Table NCSA-5d-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-5d-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.18.3 Site Exposure Summary

Tables NCSA-5d-3 through NCSA-5d-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-5d is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Cadmium			Direct		Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-5d is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminant results in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

Chloroform (enclosed)

TABLE NCSA-5d-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-5d

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	(0-1	4095	- 0	0-1	4095
Dieldrin	50	0-1	4095	3	0-1	4095
Endrin	0.008	0-1	4127	0.008	0-1	4127
Cadmium	7.8	Comp" 0-1, 4-5	4027	:	:	1

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fr

REA5/TBL0067.REA VI-D 8/31/90 9:08 am sma 21

TABLE NCSA-5d-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-5d

AVERAGE SITE DEPTH TO GROUNDWATER: 25 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	1.8	35023	02/3/88
1,2-DICHLOROETHANE	40	35020	12/9/88
ALDRIN	0.21	35091	01/23/89
ATRAZINE	100	35020	12/9/88
CARBON TETRACHLORIDE	1.3	35023	02/3/88
CHLOROFORM	1700	35023	12/9/88
HEXACHLOROCYCLOPENTADIENE	0.22	35023	12/9/88
CHLOROBENZENE	70	35091	01/23/89
CHLORDANE	3.4	35020	12/9/88
CHLOROPHENYLMETHYL SULFOXIDE	22	35023	02/3/88
CHLOROPHENYLMETHYL SULFONE	21	35023	12/9/88
DIBROMOCHLOROPROPANE	6.3	35023	12/9/88
DIISOPROPYLMETHYL PHOSPHONAT	E 1700	35077	06/2/88
DITHIANE	350	35020	12/9/88
DIELDRIN	1.2	35020	12/9/88
DIMETHYLMETHYL PHOSPHONATE	3.6	35020	12/9/88
ENDRIN	0.84	35020	12/9/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-5d-2 GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-5d

AVERAGE SITE DEPTH TO GROUNDWATER: 25 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ISODRIN	0.19	35020	06/2/88
TOLUENE	21	35020	12/9/88
1,4-OXATHIANE	14	35020	12/9/88
PPDDT	0.25	35020	12/9/88
PARATHION	9.8	35023	12/9/88
TETRACHLOROETHYLENE	4.7	35023	12/9/88
TRICHLOROETHYLENE	4.2	35091	01/23/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-5d-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE	VE I OPN
ALDRIN	1.5E+00	1.3E+06	1.5E+00	6.7E-01*	7.9E-07	6.7E-01*	2.7E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	5.5E-14
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	3.6E-06
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-08
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.8E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	4.1E-05
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-11
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-11
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-08
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-06
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.6E-06
DIELDRIN	1.6E+00	5.8E+05	1.6E+00	1.9E+00*	5.2E-06	1.9E+00*	4.5E-09
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	6.3E-09
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	4.7E+08	2.5E+03	3.2E-06	1.7E-11	3.2E-06	7.5E-12
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-07
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-09
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0€+00	1.7E-12
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1F+02	0.0E+00	0.0E+00	0.0E+00	3.4E-07
TOLUENE	2.5E+06	0.0E+00	2 .÷+06	0.0E+00	0.0E+00	0.0E+00	5.2E-10
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	5.9E-07
CADMIUM	4.5E+02	0.0E+00	4.5E+02	1.7E-02	0.0E+00	1.7E-02	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-5d-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT EI	CUMULATIVE EI	VE1 OPN
ALDRIN	1.5E+00	1.3E+06	1.5E+00	6.7E-01*	7.9E-07	6.7E-01*	2.7E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	5.5E-14
CARBON TETRACHLORIDE	2.0€+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	3.68-06
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-08
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.8E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	4.1E-05
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-11
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-11
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-08
DIBRONOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-06
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.6E-06
DIELDRIN	1.6E+00	5.8E+05	1.6E+00	1.9E+00*	5.2E-06	1.9E+00*	4.5E-09
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	6.3E-09
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	4.7E+08	2.5E+03	3.2E-06	1.7E-11	3.2E-06	7.5E-12
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-07
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-09
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-12
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	3.4E-07
TOLUENE	2.5E+06	0.0E+00	2.5E+ 16	0.0E+00	0.0E+00	0.0E+00	5.2E-10
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-10
TRICHLOROETHYLENE	2. 3 E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	5.9E-07
CADMIUM	4.5E+02	0.0E+00	4.5E+02	1.7E-02	0.0E+00	1.7E-02	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-5d-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE	VE I OPN
ALDRIN	2.1E-01	8.4E+04	2.1E-01	4.8E+00*	1.2E-05	4.8E+00*	4.1E-07
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-13
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	5.4E-05
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	3.1E-07
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	6.3E-07
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	6.2E-04
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	9.3E-11
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0€+00	1.8E-10
PPDDT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	3.4E-07
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	3.2E-05
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	5.4E-05
DIELDRIN	2.2E-01	3.8E+04	2.2E-01	1.4E+01*	7.9E-05	1.4E+01*	6.7E-08
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	4.1E-08
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	7.2E+07	1.1E+03	7.6E-06	1.1E-10	7.6E-06	4.9E-11
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	2.0E-06
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-09
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-11
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	5.1E-06
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	3.4E-09
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-09
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	8.9E-06
CADMIUM	5.8E+01	0.0E+00	5.8E+01	1.4E-01*	0.0E+00	1.4E-01*	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-5d-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT EI	CUMULATIVE	VEI
ALDRIN	1.9E+00	4.0E-01	3.3E-01	5.3E-01*	2.5E+00*	3.1E+00*	4.4E-04
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	2.7E-09
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	5.8E-02
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	3.3E-04
CHLOROSENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-03
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	6.7E-01
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	7.0E-07
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-06
PPDDT ·	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0€+00	3.7E-04
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+G0	3.4E-02
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	5.8E-02
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.5E+00*	5.2E-02	1.6E+00*	7.2E-05
DIISOPRC YLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	3.1E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	2.9E+02	2.4E+02	5.8E-06	2.8E-05	3.4E-05	3.7E-07
HEXACHLOROCYCLOPENTADIENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-02
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-05
1.4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	8.3E-08
TETRACHLOROETHYLENE	6.5E+02	0.0E+Q0	6.5E+02	0.0E+00	0.0E+00	0.0E+00	5.5E-03
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	2.5E-05
1.1.1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	8.4E-06
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	9.58-03
CADMIUM	3.6E+02	0.0E+00	3.6E+02	2.2E-02	0.0E+00	2.2E-02	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-5d-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	ΕI	EI	OPN	ENC
ALDRIN	1.2E-01	1.7E+05	4.0E-01	9.0E-02	8.6E+00*	2.5E+00*	1.1E+01*	2.1E-07	1.3E-03
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	4.1E-13	2.7E-09
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	2.7E-05	1.7E-01
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-07	1.0E-03
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	7.4E-07	4.8E-03
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-04	2.0E+00
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-10	7.0E-07
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-10	1.4E-06
PPDDT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	1.7E-07	1.1E-03
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-05	1.0E-01
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	2.7E-05	1.7E-01
DIELDRIN	1.2E-01	7.7E+04	1.9E+01	1.2E-01	2.5E+01*	1.6E-01*	2.5E+01*	3.4E-08	2.25-04
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.CE+00	0.0E+00	0.0E+00	4.7E-08	3. ∟-04
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	6.2E+07	8.6E+02	2.0E+02	3.2E-05	9.3E-06	4.1E-05	5.7E-11	3.7E-07
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-06	1.5E-02
ISODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	7.7E-09	4.9E-05
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-11	8.3E-08
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.6E-06	1.6E-0
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-09	2.5E-0
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-09	8.4E-0
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	4.4E-06	2.9E-02
CADMIUM	7.6E+00	0.0E+00	0.0E+0U	7.6E+00	1.0E+00*	0.0E+00	1.0E+00*	0.0E+90	0.0E+0

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.19 SITE NCSA-6a: CHEMICAL SEWERS FROM SOUTH PLANTS (formerly Site 35-2/26-9: Chemical Sewer; ESE, 1988u/RIC 88133R02)

2.19.1 <u>Site-Specific Considerations</u>

Figure NCSA-6a-1 and Table NCSA-6a-1 depict the target contaminants for site NCSA-6a. Borings 4057 through 4069 and 4632 through 4638 were included in this exposure assessment, consistent with the North Central SAR. Since this site is a sewer line, most of the chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-6a (ESE, 1988u/RIC 88133R02).

2.19.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-6a are shown in Figure NCSA-6a-1. Tetrachlorobenzene, occurring in Boring 4063 (10-11 ft and 11-12 ft) was not included in the figure, since it was not considered a target contaminant during the Phase I investigation. Although not shown on this figure, this nontarget compound was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-6a-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No groundwater data table was included for Site NCSA-6a since this site is a sewer line (see Volume VI-A).

2.19.3 Site Exposure Summary

Tables NCSA-6a-2 through NCSA-6a-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Chloroform				Indirect	Indirect
Dieldrin				Indirect	Indirect
Dimethyldisulfide				Indirect	Indirect
Aldrin				••	Indirect

Note: Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the indirect pathways are the primary contributors to the exceedance of the cumulative PPLVs for an industrial worker. Site NCSA-6a is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

Phase I and Phase II Analytes Detected Rocky Mountain Arsenal Prepared by: Ebasco Services incorporated Within or Above Indicator Levels Samble | As | Bil | As | Bil | As | Bil | (ug/g) | FIGURE NCSA-60-1 NV Volatiles not analyzed Legend Phase II boring - Analyte O Phose I boring Site Boundary CPMSO2 - DMDS - MIRK Aberdeen Proving Ground, Maryland Program Manager's Office for Rocky Mountain Arsenal Cleanup Source: HLA, 1987 Prepared for: 4064 4063@ 4061 j 4065 11.12 (811. 4062 11-12 CM 12-13 Cu 110 4069 11-12 4068 12-13 Cu ZZ 4066 7 3 % 3 % Avenue Seventh 2, í P 2-126

TABLE NCSA-6a-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-6a

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	;	;	:	7	11-12	4063
Chloroform	;	;	;	30	11-12	4063
Chlorophenylmethyl sulfone	;	;	;	6.0	10-11	4063
Dieldrin	;	;	;	10	10-11	4063
	;	;	;		11-12	4063
Dimethyldisulfide	;	:	;	20	12-13	4062
Endrin	:	;	;	6	11-12	4063
Isodrin	;	:	;	9	11-12	4063
Methylisobutyl ketone	:	:	;	10	11-12	4063
Tetrachlorobenzene"	:	;	;	0.20	10-11	4063
Copper	63	9-10	4068	;	;	;
Zinc	120	9-10	4068	1	;	1

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

NCSA-6a-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE	VE I OPN
ALDRIN	1.5E+00	8.9E+05	1.5E+00	0.0E+00	7.9E-06	7.9E-06	0.0E+00
CHLOROFORM	4.0E+03	3.4E+05	4.0E+03	0.0E+00	8.8E-05	8.8E-05	0.0E+00
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.4E+07	1.6E+05	0.0E+00	6.3E-08	6.3E-08	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	0.0E+00	2.5E-05a	2.5E-05	0.0E+00
DIMETHYLDISULFIDE	6.7E+04	2.2E+06	6.5E+04	0.0E+00	8.9E-06	8.9E-06	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	0.0E+00	2.7E-08a	2.7E-08	0.0E+00
ISODRIN	5.8E+02	6.4E+07	5.8E+02	0.0E+00	9.3E-08	9.3E-08	0.0E+00
METHYLISOBUTYL KETONE	4.1E+05	3.2E+06	3.6E+05	0.0E+00	3.1E-06	3.1E-06	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.5E-04	0.0E+00	1.5E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.0E-05	0.0E+00	6.0E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

NCSA-6a-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	8.9E+05	1.5E+00	0.0E+00	7.9E-06	7.9E-06	0.0E+00
CHLOROFORM	4.0E+03	3.4E+05	4.0E+03	0.0E+00	8.8E-05	8.8E-05	0.0E+00
CHLOROPHENYLMETHYL SULFONE	1.6E+05	1.4E+07	1.6E+05	0.0E+00	6.3E-08	6.3E-08	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	0.0E+00	2.5E-05a	2.5E-05	0.0E+00
DIMETHYLDISULFIDE	5.7E+04	2.2E+06	6.5E+04	0.0E+00	8.9E-06	8.9E-06	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	0.0E+00	2.7E-08a	2.7E-08	0.0E+00
ISODRIN	5.8E+02	6.4E+07	5.8E+02	0.0E+00	9.3E-08	9.3E-08	0.0E+00
METHYLISOBUTYL KETONE	4.1E+05	3.2E+06	3.6E+05	0.0E+00	3.1E-06	3.1E-06	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.5E-04	0.0E+00	1.5E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.0E-05	0.0E+00	6.0E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

NCSA-6a-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	5.9E+04	2.1E-01	0.0E+00	1.2E-04	1.2E-04	0.0E+00
CHLOROFORM	5.6E+02	5.3E+04	5.6E+02	0.0E+00	5.7E-04	5.7E-04	0.0E+00
CHLOROPHENYLMETHYL SULFONE	7.0E+04	2.2E+06	6.8E+04	0.0E+00	4.1E-07	4.1E-07	0.0E+00
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	0.0€+00	3.7E-04a	3.7E-04	0.0E+00
DIMETHYLDISULFIDE	2.9E+04	8.1E+05	2.8E+04	0.0E+00	2.5E-05	2.5E-05	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	0.0E+00	1.8E-07a	1.8E-07	0.0E+00
ISODRIN	2.5E+02	1.0E+07	2.5E+02	0.0E+00	6.0E-07	6.0E-07	0.0E+00
METHYLISOBUTYL KETONE	1.7E+05	1.2E+06	1.5E+05	0.0E+00	8.6E-06	8.6E-06	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	2.5E-04	0.0E+00	2.5E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.1E-04	0.0E+00	1.1E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-6a-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VEI
ALDRIN	1.9E+00	1.3E+02	1.9E+00	0.0E+00	5.6E-02	5.6E-02	0.0E+00
CHLOROFORM	5.1E+03	1.6E+01	1.6E+01	0.0E+00	1.9E+00*	1.9E+00*	0.0E+00
CHLOROPHENYLMETHYL SULFONE	9.1E+04	6.8E+02	6.7E+02	0.0E+00	1.3E-03	1.3E-03	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	0.0E+00	1.7E-01*	1.7E-01*	0.0E+00
DIMETHYLDISULFIDE	3.7E+04	3.9E+01	3.9E+01	0.0E+00	5.1E-01*	5.1E-01*	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	0.0E+00	5.8E-04a	5.8E-04	0.0E+00
ISODRIN	3.2E+02	3.0E+03	2.9E+02	0.0E+00	2.0E-03	2.0E-03	0.0E+00
METHYLISOBUTYL KETONE	2.2E+05	1.1E+02	1.1E+02	0.0E+00	9.3E-02	9.3E-02	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	3.6E-04	0.0E+00	3.6E-04	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.5E-04	0.0E+00	1.5E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-6a-6
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT INDIRECT		CUMULATIVE DIRECT		INDIRECT	CUMULATIVE	VEI		
CONTAMENANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	13	13	OPN	ENC
ALDRIN	1.2E-01	1.2E+05	4.2E+01	1.2E-01	0.0E+00	1.7E-01*	1.7E-01*	0.0E+00	0.0E+00
CHLOROFORM CHLOROPHENYLMETHYL SULFONE	3.1E+02 1.7E+04	4.5E+04 1.9E+06	1.6E+01 6.8E+02	1.5E+01 6.5E+02	0.0E+00 0.0E+00	1.9E+00* 1.3E-03	1.9E+00* 1.3E-03	0.0E+00 0.0E+00	0.0E+00 0.0E+00
DIELDRIN DIMETHYLDISULFIDE	1.2E-01 6.9E+03	5.4E+04 3.0E+05	1.9E+01 1.2E+02	1.2E-01 1.2E+02	0.0E+00 0.0E+00	5.2E-01* 1.7E-01*	5.2E-01* 1.7E-01*	0.0E+00 0.0E+00	0.0E+00 0.0E+00
ENDRIN ISODRIN	2.5E+02 5.9E+01	1.0E+06 8.6E+06	1.0E+06 3.0E+03	2.5E+02 5.8E+01	0.0E+00 0.0E+00	5.8E-04a 2.0E-03	5.8E-04 2.0E-03	0.0E+00 0.0E+00	0.0E+00 0.0E+00
METHYL ISOBUTYL KETONE	4.0E+04	4.3E+05	3.2E+02	3.2E+02	0.0E+00	3.1E-02	3.1E-02	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	1.1E-03	0.0E+00	1.1E-03	0.0E+00	0.06+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	8.6E-04	0.0E+00	8.6E-04	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

2.20 SITE NCSA-6b: CHEMICAL SEWERS FROM NORTH PLANTS ((formerly Site 36-20: Chemical Sewer; ESE, 1987n/RIC 87133R02 and ESE, 1988v/RIC 87133R02A; Chemical Sewers North Plants and South Plants, EBASCO, 1988g/RIC88286R08)

2.20.1 <u>Site-Specific Considerations</u>

Figure NCSA-6b-1 and Table NCSA-6b-1 depict the target contaminants for Site NCSA-6b. Borings 3137, 3138, 3141, 3144, 3147, 3185 through 3187, 3340, and 3352 through 3369 were included in this exposure assessment, consistent with the North Central SAR. Since this site is a sewer line, many of the chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-6b (ESE, 1987n/RIC 87133R02).

2.20.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-6b are shown in Figure NCSA-6b-1. The following contaminants were not included in this figure, since they were not considered target contaminants during the Phase I and Phase II investigations: Oxybisethanol occurring in Boring 3356, 4-5 ft, and trichloropropene occurring in Boring 3187, 9-10 ft. Although not shown on this figure, oxybisethanol and trichloropropene were included in the North Central SAR and in this exposure assessment because they passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-6b-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Methylene chloride, shown in Table NCSA-6b-1 is excluded from consideration in the exposure analysis for this site because it was considered a laboratory contaminant in the samples analyzed. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No groundwater data table was included for Site NCSA-6b since this site is a sewer line (see Volume VI-A).

2.20.3 Site Exposure Summary

Tables NCSA-6b-2 through NCSA-6b-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Direct	Dir/Ind
Dieldrin	Direct	Direct	Direct	Dir/Ind	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct
PPDDT	***		Direct		Direct
Dibromochloropropane				Indirect	Indirect
PPDDE					Direct
Isodrin					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs for an industrial worker. Site NCSA-6b is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-6b-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-6b

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	6	4-5	3187	6	4-5	3187
Chlordane	× 7.11	4-5	3363	× 70.11	4-5	3363
PPDDE"		4-5	3185		4-5	3185
PPDDT"	2	9-10	3185	2	9-10	3185
Dibromochloropropane	0.032	4-5	3187	0.032	4-5	3187
Dieldrin	9	4-5	3187	9	4-5	3187
Endrin	9	4-5	3187	9	4-5	3187
Isodrin	7	4-5	3187	7	4-5	3187
Methylene chloride ³ /	1.0	4-5	3186	1.0	4-5	3186
Oxybisethanol ⁴	0.40	4-5	3356	0.40	4-5	3356
Tetrachloroethylene	09:0	0-1	3185	09.0	0-1	3185
Trichloropropene4	0.20	9-10	3187	0.20	9-10	3187
Arsenic	37	9-10	3185	;	;	:
Copper	44	0-1	3186	;	:	;
Lead	68	0-1	3369	;	;	:
Mercury	0.98	0-1	3185	;	:	:
Zinc	130	0-1	3362	ţ	1	:

PPDDE 2.2-bis(Para-chlorophenyl)-1,1-dichioroethene
 PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane
 Suspected laboratory contaminant.
 Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 23

NCSA-6b-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE 1 OPN
ALDRIN	1.5E+00	1.3E+07	1.5E+00	6.0E+00*	7.0E-07	6.0E+00*	0.0E+00
CHLORDANE	2.0E+01	2.5E+09	2.0E+01	5.6E-03	4.3E-11	5.6E-03	0.0E+00
PPDDE	7.4E+01	5.4E+08	7.4E+01	1.4E-02	1.8E-09	1.4E-02	0.0E+00
PPDDT	7.4E+01	8.0E+08	7.4E+01	2.7E-02	2.5E-09	2.7E-02	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	6.9E+02	1.8E+01	1.8E-03	4.7E-05	1.8E-03	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	3.8E+00*	5.5E-07a	3.8E+00*	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	2.4E-03	1.2E-09a	2.4E-03	0.0E+00
ISODRIN	5.8E+02	2.2E+08	5.8E+02	1.2E-02	3.2E-08	1.2E-02	0.0E+00
TETRACHLOROETHYLENE	5.1E+02	3.8E+05	5.1E+02	1.2E-03	1.6E-06	1.2E-03	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.7E+00*	0.0E+00	1.7E+0^+	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.1E-04	0.0E+00	1.1E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.8E-03	0.0E+00	5.8E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.0E-04	0.0E+00	3.0E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.6E-05	0.0E+00	6.6E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-6b-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E!	CUMULATIVE	VE I OPN
ALDRIN	1.5E+00	1.3E+07	1.5E+00	6.0E+00*	7.0E-07	6.0E+00*	0.0E+00
CHLORDANE	2.0E+01	2.5E+09	2.0E+01	5.6E-03	4.3E-11	5.6E-03	0.0E+00
PPODE	7.4E+01	5.4E+08	7.4E+01	1.4E-02	1.8E-09	1.4E-02	0.0E+00
PPDDT	7.4E+01	8.0E+08	7.4E+01	2.7E-02	2.5E-09	2.7E-02	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	6.9E+02	1.8E+01	1.8E-03	4.7E-05	1.8E-03	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	3.8E+00*	5.5E-07a	3.8E+00*	0.0E+00
ENDRIN	2.5E+03	1.0E+06	2.5E+03	2.4E-03	1.2E-09a	2.4E-03	0.0E+00
ISODRIN	5.8E+02	2.2E+08	5.8E+02	1.2E-02	3.2E-08	1.2E-02	0.0E+00
TETRACHLOROETHYLENE	5.1E+02	3.8E+05	5.1E+02	1.2E-03	1.6E-06	1.2E-03	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.7E+00*	0.0E+00	1.7E+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.1E-04	0.0E+00	1.1E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.8E-03	0.0E+00	5.8E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.0E-04	0.0E+00	3.0E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.6E-05	0.0E+00	6.6E-05	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-6b-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	8.5E+05	2.1E-01	4.3E+01*	1.1E-05	4.3E+01*	0. 0 E+00
CHLORDANE	2.7E+00	1.7E+08	2.7E+00	4.1E-02	6.5E-10	4.1E-02	0.0E+00
PPDDE	1.0E+01	3.6E+07	1.0E+01	9.8E-02	2.8E-08	9.8E-02	0. 0E +00
PPDDT	1.0E+01	5.3E+07	1.0E+01	2.0E-01*	3.8E-08	2.0E-01*	0.0E+00
DIBROMOCHLOROPROPANE	2.5E+00	4.0E+01	2.4E+00	1.3E-02	8.0E-04	1.4E-02	0.0E+00
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	2.7E+01*	8.3E-06a	2.7E+01*	0.0E+00
ENDRIN	1.1E+03	1.0E+06	1.1E+03	5.7E-03	7.9E-09a	5.7E-03	0.0E+00
ISODRIN	2.5E+02	3.4E+07	2.5E+02	2.8E-02	2.1E-07	2.8E-02	0.0E+00
TETRACHLOROETHYLENE	7.1E+01	5.9E+04	7.1E+01	8.4E-03	1.0E-05	8.5E-03	0.0E+00
ARSENIC	3.9E+00	0.0E+00	3.9E+00	9.4E+00*	0.0E+00	9.4E+00*	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	1.8E-04	0.0E+00	1.8E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	9.6E-03	0.0E+00	9.6E-03	0.0E+00
MERCURY	2.0E+03	0.0E+v0	2.0F+03	5.0E-04	0.0E+00	5.0E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.2E-04	0.0E+00	1.2E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-6b-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PP_V (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT El	CUMULATIVE EI	ENC
ALDRIN	1.9E+00	1.3E+02	1.9E+00	4.8E+00*	7.1E-02	4.8E+00*	0.0E+00
CHLORDANE	2.5E+01	1.4E+04	2.5E+01	4.5E-03	8.1E-06	4.5E-03	0.0E+00
PPDDE	9.3E+01	7.6E+03	9.2E+01	1.1E-02	1.3E-04	1.1E-02	0.0E+00
PPDDT	9.3E+01	1.6E+04	9.2E+01	2.1E-02	1.2E-04	2.2E-02	0.0E+00
DIBROMOCHLOROPROPANE	2.3E+01	3.4E-02	3.4E-02	1.4E-03	9.3E-01*	9.4E-01*	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	3.0E+00*	1.0E-01*	3.16+00*	0.0E+00
ENDRIN	1.4E+03	1.0E+06	1.3E+03	4.4E-03	3.9E-04a	4.8E-03	0.0E+00
ISODRIN	3.2E+02	3.0E+03	2.9E+02	2.2E-02	2.3E-03	2.4E-02	0.0E+00
TETRACHLOROETHYLENE	6.5E+02	2.0E+03	4.9E+02	9.2E-04	3.0E-04	1.2E-03	0.0E+00
ARSENIC	2.0E+01	0.0E+00	2.0E+01	1.9E+00*	0.0E+00	1.9E+00*	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	2.5E-04	0.0E+00	2.5E-04	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.4E-02	0.0E+00	1.4E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	7.0E-04	0.0E+00	7.0E-04	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	1.7E-04	0.0E+00	1.7E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-66-6
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	IND	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VEI
	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	ENC
ALDRIN	1.2E-01	1.7E+06	4.2E+01	1.2E-01	7.7E+01*	2.1E-01*	7.8E+01*	0.0E+00	0.0E+00
CHLORDANE	1.5E+00	3.4E+08	4.5E+03	1.5E+00	7.2E-02	2.4E-05	7.2E-02	0.0E+00	0.0E+00
PPODE	5.7E+00	7.2E+07	2.5E+03	5.7E+00	1.7E-01*	3.9E-04	1.8E-01*	0.0E+00	0.0E+00
PPDDT	5.7E+00	1.1E+08	5.4E+03	5.7E+00	3.5E-01*	3.7E-04	3.5E-01*	0.0E+00	0.0E+00
DIBROMOCHLOROPROPANE	1.4E+00	9.1E+01	3.4E-02	3.3E-02	2.3E-02	9.3E-01*	9.6E-01*	0.0E+00	0.0E+00
DIELDRIN	1.2E-01	1.5E+06	1.9E+01	1.2E-01	4.9E+01*	3.1E-01*	4.9E+01*	0.0E+00	0.0E+00
ENDRIN	2.5E+02	1.0E+06	1.0E+06	2.5E+02	2.4E-02	3.9E-04a	2.4E-02	0.0E+00	0.0E+00
ISODRIN	5.9E+01	2.9E+07	3.0E+03	5.8E+01	1.2E-01*	2.3E-03	1.2E-01*	0.0E+00	0.0E+00
TETRACHLOROETHYLENE	4.1E+01	5.0E+04	2.0E+03	4.0E+01	1.5E-02	3.1E-04	1.5E-02	0.0E+00	0.0E+00
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	2.3E+01*	0.0E+00	2.3E+01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	7.7E-04	0.0E+00	7.7E-04	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	4.1E-02	0.0E+00	4.1E-02	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	2.1E-03	0.0E+00	2.1E-03	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	6.9E+00	1.4E+05	9.3E-04	0.0E+00	9.3E-04	0.0E+00	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux.

The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

2.21 SITE NCSA-7: NORTH BOG (formerly Site 24-7: North Bog; EBASCO, 1988b/RIC 88076R05; and EBASCO, 1988c/RIC 88076R05A)

2.21.1 Site-Specific Considerations

Figure NCSA-7-1 and Tables NCSA-7-1 and NCSA-7-2 depict the target contaminants for Site NCSA-7. Borings 1 through 15 from the North Bog were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-7 (EBASCO, 1988b/RIC 88076R05).

2.21.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-7 are shown in Figure NCSA-7-1. Table NCSA-7-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. The concentrations listed for PPDDE, Dieldrin, dimethylmethyl phosphonate, and Endrin represent soil samples taken from outside of the bog, and those for lead and zinc represent sediment samples taken from within the bog (see Figure NCSA-7-1). No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-7-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.21.3 Site Exposure Summary

Tables NCSA-7-3 through NCSA-7-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-7 is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Dieldrin			Direct		Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs. Site NCSA-7 is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-7-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-7

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
PPDDE"	0.0074	0-1	10	0.0074	0-1	10
Dieldrin	0.14	7-8	12	0.14	7-8	12
Dimethylmethyl phosphonate	0.20	4-5	12	0.20	4-5	12
Endrin	0.021	0-1	10	0.021	0-1	10
Lead	44	0-1	-	:	;	:
Zinc	100	0-1	1	;	:	:

1/ PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

TABLE NCSA-7-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-7

AVERAGE SITE DEPTH TO GROUNDWATER: 18 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	1.8	24163	12/10/87
METHYLENE CHLORIDE	2.7	24163	09/18/87
CHLOROFORM	3.8	24163	09/18/87
CHLOROBENZENE	120	24163	01/12/89
DIBROMOCHLOROPROPANE	0.52	24163	01/12/89
DIISOPROPYLMETHYL PHOSPHONA	TE 1.3	24163	01/12/89
TETRACHLOROETHYLENE	2.1	24163	01/12/89
TRICHLOROETHYLENE	3.4	24163	01/12/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

MCSA-7-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTANINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE 1 OPN	
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0€+00	0.0E+00	0.0 E+00	7.2E-07	
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0. 0E+00	4.0E-07	
PPDDE	7.4E+01	2.5E+07	7.4E+01	1.0E-04	3.0E-10	1.0E-04	0.0E+00	
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	7.5E-07	
DIELDRIN	1.6E+00	1.9E+05	1.6E+00	8.9E-02	7.5E-07	8.9E-02	0.0E+00	
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.06+00	0.0E+00	2.1E-11	
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	1.3E-06	0.0E+00	1.3E-06	0.0E+00	
ENDRIN	2.5E+03	1.5E+08	2.5E+03	8.5E-06	1.4E-10	8.5E-06	0.0E+00	
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.08+00	0.0E+00	3.7E-07	
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-07	
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	7.5E-10	
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	2.1E-06	
LEAD	1.5E+04	0.0E+00	1.5E+04	2. 8 E-03	0.0E+00	2.8E-03	0.0E+00	
ZINC	2.0E+06	0.0E+00	2.0E+06	5.0E-05	0.0E+00	5.0E-05	0.0E+00	

NCSA-7-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT El	EJ EJ	VE I OPN
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0€+00	7.2E-07
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	4.0E-07
PPODE	7.4E+01	2.5E+07	7.4E+01	1.0E-04	3.0E-10	1.0E-04	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.02+00	0.0E+00	7.5E-07
DIELDRIN	1.6E+00	1.9E+05	1.6:+00	8.9E-02	7.5E-07	8.9€-02	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6 5€+05	0.0E+00	0.0E+00	0.0E+00	2.1E-11
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	1.3E-06	0.06+00	1.3E-06	0.0E+00
ENDRIN	2.5E+03	1.5E+08	2.5E+03	8.5E-06	1.4E-10	8.5E-06	0.0E+00
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	3.7E-07
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-07
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	7.5E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.06+00	0.0E+00	2.1E-06
LEAD	1.5E+04	0.0E+0C	1.5E+04	2.86-03	0.0E+00	2.8E-03	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	5.0E-05	0.0E+00	5.0E-05	0.0E+00

NCSA-7-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EJ	CUMULATIVE EI	VE1 OPN
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E÷00	0.0E+00	0.0E+00	4.7E-06
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	6.0E-06
PPODE	1.0E+01	1.6E+06	1.0E+01	7.3E-04	4.5E-09	7.3E-04	0.0E+00
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-05
DIELDRIN	2.2E-01	1.2E+04	2.2E-01	6.4E-01*	1.1E-05	6.4E-01*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-10
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	3.2E-06	0.0E+00	3.2E-06	0.0E+00
ENDR I N	1.1E+03	2.3E+07	1.1E+03	2.0E-05	9.0E-10	2.0E-05	0.0E+00
METHYLENE CHLORIDE	4.5E+02	0.0E+00	4.5E+02	0.0E+00	0.0E+00	0.0E+00	5.6E-06
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	9.9E-06
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	4.88-09
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-05
LEAD	9.2E+03	0.0E+00	9.2E+03	4.8E-03	0.0E+00	4.8E-03	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	9.5E-05	0.0E+00	9.5E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-7-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VEI ENC	
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	LS	
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	LS	
PPDDE	9.3E+01	1.9E+01	1.6E+01	8.0E-05	3.8E-04	4.6E-04	LS	
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	LS	
DIELDPIN	2.0E+00	5.8E+01	1.9E+00	7.0E-02	2.4E-03	7.3E-02	LS	
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	LS	
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	2.4E-06	0.0E+00	2.4E-06	LS	
ENDRIN	1.4E+03	1.6E+04	1.3E+03	1.5E-05	1.45-06	1.7E-05	LS	
METHYLENE CHLORIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	LS	
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	LS	
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	LS	
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	LS	
LEAD	6.5E+03	0.0E+00	6.5E+03	6.7E-03	0.0E+00	6.7E-03	LS	
ZINC	7.8E+05	0.0E+00	7.8E+05	1.3E-04	0.0E+00	1.3E-04	LS	

NCSA-7-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	IRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	V	ΕI
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	ΕI	EI	ΕI	OPN	ENC
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	5.4E-06	LS
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	3.0E-06	LS
PPDDE	5.7E+00	3.3E+06	1.9E+01	4.4E+00	1.3E-03	3.8E-04	1.7E-03	0.0E+00	LS
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	5.6E-06	LS
DIELDRIN	1.2E-01	2.5E+04	1.9E+01	1.2E-01	1.1E+00*	7.3E-03	1.2E+00*	0.0E+00	LS
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-10	LS
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	1.3E-05	0.0E+00	1.3E-05	0.0E+00	LS
ENDRIN	2.5E+02	2.0E+07	1.6E+04	2.5E+02	8.3E-05	1.4E-06	8.4E-05	0.0E+00	LS
METHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-06	LS
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	4.9E-06	LS
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	5.6E-09	LS
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	1.5E-05	LS
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	2.0E-02	0.0E+00	2.0E-02	0.0E+00	LS
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	7.2E-04	0.0E+00	7.2E-04	0.0E+00	LS

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.22 SITE NCSA-8a: SANITARY SEWER LINES (formerly Sites 24-5, 25-2, 26-8, and 35-1 and Sanitary Sewer Interceptor Line and Sanitary Sewer-Railyard and Administrative Areas; EBASCO, 1988d/RIC 88126R06; and EBASCO, 1988e/RIC 88256R03)

2.22.1 Site-Specific Considerations

Figure NCSA-8a-1 and Table NCSA-8a-1 depict the target contaminants for Site NCSA-8a. MKE-Trench 12 Borings 1 through 3, Trench SS01 Borings 1 through 12, Trench SS01 Borings 1 through 8, and Borings B392, 11, 39, 40, 50, 64, and 65 were included in the exposure assessment consistent with the North Central SAR. Since this site is a sewer line, some of the chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-8a (EBASCO, 1988d/RIC 88126R06).

2.22.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-8a were shown in Figures NCSA-8a-1 and NCSA-8a-2. Table NCSA-8a-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Methylene chloride, shown in Table 8a-1, is excluded from consideration in the exposure analysis for this site because it was considered a laboratory contaminant in the samples analyzed. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No groundwater data table was included for Site NCSA-8a since this site is a sewer line (see Volume VI-A).

2.22.3 Site Exposure Summary

Tables NCSA-8a-2 through NCSA-8a-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Chromium	Direct	Direct	Direct	Direct	Direct
Chloroform				Indirect	Indirect

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs for an industrial worker. Site NCSA-8a is designated as a Priority 1 six based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-8a-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-8a

Horizon 2	İ	5.4 65 24.4-25.4 SS02-8 ¹⁷ 39.4-40.4 SS02-84				
Hori	Max. (ug/g)	62				1 1
	Boring Number	59	50 SS02-6+	SS01-6+ SS01-6+	50	65 50
Horizon 1	Depth (ft)	5.4	4.7 5.4-6.4	5.7-6.7	4.7	5.4 7.7
	Max. (ug/g)	62	0.014	 10 49	180 87	1.3
	Contaminant	Chloroacetic acid Chloroform	Dibromochloropropane Dieldrin	Diisopropylmethyl phosphonate Methylene chloride ² Chromium	Copper	Mercury

1/ Boring is in Figure NCSA-8a-2.2/ Suspected laboratory contaminant.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

NCSA-8a-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	OPN OPN
CHLOROACETIC ACID	1.7E+04	0.0E+00	1.7E+04	3.8E-03	0.0E+00	3.8E-03	0.0E+00
CHLOROFORM	4.0E+63	1.6E+05	3.9E+03	0.0E+00	6.4E-06	6.4E-06	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	6.3E+03	1.8E+01	7.8E-04	2.2E-06	7.8E-04	0.0E+00
DIELDRIN	1.6E+00	2.3E+06	1.6E+00	1.3E+00*	8.8E-07	1.3E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.8E+08	6.6E+05	0.0E+00	1.6E-08	1.6E-08	0.0E+00
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	7.1E-01*	0.0E+00	7.1E-01*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	4.3E-04	0.0E+00	4.3E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.6E-03	0.0E+00	5.6E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.9E-04	0.0E+00	3.9E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	9.1E-05	0.0E+00	9.1E-05	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-8a-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
CHLOROACETIC ACID	1.7E+04	0.0E+00	1.7E+04	3.8E-03	0.0E+00	3.8E-03	0.0E+00
CHLOROFORM	4.0E+03	1.6E+05	3.9E+03	0.0E+00	6.4E-06	6.4E-06	0.0E+00
DIBROMOCHLOROPROPANE	1.8E+01	6.3E+03	1.8E+01	7.8E-04	2.2E-06	7.8E-04	0.0E+00
DIELDRIN	1.6E+00	2.3E+06	1.6E+00	1.3E+00*	8.8E-07	1.3E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.8E+08	6.6E+05	0.0E+00	1.6E-08	1.6E-08	0.0E+00
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	7.1E-01*	0.0E+00	7.1E-01*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	4.3E-04	0.0E+00	4.3E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	5.6E-03	0.0E+00	5.6E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.9E-04	0.0E+00	3.9E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	9.1E-05	0.0E+00	9.1E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-8a-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	OPN
CHLOROACETIC ACID	7.0E+03	0,0€+00	7.0E+03	8.8E-03	0.0E+00	8.8E-03	0.0E+00
CHLOROFORM	5.6E+02	2.4E+04	5.5E+02	0.0E+00	4.1E-05	4.1E-05	0.0E+00
DIBROMOCHLOROPROPANE	2.5E+00	9.7E+02	2.5E+00	5.6E-03	1.4E-05	5.6E-03	0.0E+00
DIELDRIN	2.2E-01	1.5E+05	2.2E-01	9.2E+00*	1.3E-05	9.2E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	6.6E+07	2.8E+05	0.0E+00	4.6E-08	4.6E-08	0.0E+00
CHRONIUM	8.8E+00	0.0€+00	8.8E+00	5.6E+00*	0.0E+00	5.6E+00*	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	7.2E-04	0.0E+00	7.2E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	9.4E-03	0.0E+00	9.4E-03	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	6.6E-04	0.0E+00	6.6E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.7E-04	0.0E+00	1.7E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-8a-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTANTNANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EJ	INDIRECT EJ	CUMULATIVE E1	VE I ENC
CHLOROACETIC ACID	9.2E+03	0.0E+00	9.2E+03	6. 8 E-03	0.0E+00	6.8E-03	0.0E+00
CHLOROFORM	5.1E+03	3.1E+00	3.1E+00	0.06+00	3.2E-01*	3.2E-01*	0.0E+00
DISROMOCHLOROPROPANE	2.3E+01	2.5E-01	2.5E-01	6.1E-04	5.6E-02	5.6E-02	0.0E+00
DIELDRIN	2.0E+00	5.8E+01	1.9E+00	1.0E+00*	3.5E-02	1.0E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	2.5E+02	2.5E+02	0.0E+00	1.2E-02	1.2E-02	0.0E+00
CHRONIUM	5.5E+01	0.0E+00	5.5E+01	8.9E-01*	0.0E+00	8.9E-01*	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	1.0E-03	0.0E+00	1.0E-03	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.3E-02	0.0E+00	1.3E-02	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	9.3E-04	0.0E+00	9.3E-04	0.0E+00
ZINC	7.8E+05	0.0E+00	7.8E+05	2.3E-04	0.0E+00	2.3E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-8a-6
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	•	VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	ENC
CHLOROACETIC ACID	1.7E+03	0.0E+00	0.06+00	1.7E+03	3.7E-02	0.0E+00	3.7E-02	0.0E+00	0.0E+00
CHLOROFORM	3.1E+02	2.1E+04	1.3E+00	1.3E+00	0.0E+00	7.6E-01*	7.6E-01*	0.0E+00	0.0E+00
DIBROMOCHLOROPROPANE	1.4E+00	8.4E+02	2.5E-01	2.1E-01	1.0E-02	5.6E-02	6.6E-02	0.0E+00	0.0E+00
DIELDRIN	1.2E-01	3.0E+05	1.9E+01	1.2E-01	1.6E+01*	1.0E-01*	1.6E+01*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	2.4E+07	1.5E+03	1.5E+03	0.0E+00	2.0E-03	2.0E-03	0.0E+00	0.0E+00
CHROMIUM	1.1E+00	0.0€+00	0.0€+00	1.1E+00	4.3E+01*	0.0E+00	4.3E+01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	3.2E-03	0. 0 €+00	3.2E-03	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	4.0E-02	0.0E+00	4.0E-02	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	2.8E-03	0.0E+00	2.8E-03	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	1.3E-03	0.0E+00	1.3E-03	0.0E+00	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.23 SITE NCSA-8b: DOMESTIC SEWAGE TREATMENT PLANT (formerly Site 24-6: Sewage Treatment Plant; EBASCO, 1987/RIC 87216R08; and EBASCO, 1988f/RIC 87216R08A)

2.23.1 Site-Specific Considerations

Figure NCSA-8b-1 and Tables NCSA-8b-1 and NCSA-8b-2 depict the target contaminants for Site NCSA-8b. Borings 1 through 22 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-8b (EBASCO, 1987/RIC 87216R08).

2.23.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-8b are shown in Figure NCSA-8b-1. Table NCSA-8b-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury for Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-8b-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.23.3 Site Exposure Summary

Tables NCSA-8b-3 through NCSA-8b-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-8b is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated Visitor	Casual Visitor	Recreational Visitor	Commercial Worker	Industrial Worker
Aldrin	Direct	Direct	Direct	Direct	Direct
Dieldrin	Direct	Direct	Direct	Direct	Dir/Ind
Arsenic	Direct	Direct	Direct	Direct	Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

Indirect exposure pathways include open and enclosed space vapor inhalation.

The results of the soil exposure summary indicate that exposure to contamination from the direct and indirect pathways both contribute to the exceedance of the cumulative PPLVs. Site NCSA-8b is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminant results in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

• Carbon tetrachloride (enclosed)

TABLE NCSA-8b-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-8b

		Horizon 1		I	Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Aldrin	3	0-1	22	ო	0-1	22
PPDDE"	0.021	0-1	21	0.021	0-1	21
PPDDT ²	0.52	0-1	21	0.52	0-1	21
Dieldrin	5	0-1	22	5	0-1	22
Endrin	0.19	0-1	21	0.19	0-1	21
Isodrin	_	0-1	22	_	0-1	22
Methylene chloride	33	4-5	11	3	4-5	11
1,1,1-Trichloroethane	2	4-5	7	2	4-5	7
Arsenic	26	0-1	21	;	:	:
Copper	52	0-1	21	;	;	1
Mercury	0.51	0-1	21	;	:	:
Zinc	1000	0-1	22	!	ť	;

1/ PPDDE 2,2-bis(Para-chlorophenyl)-1,1-dichloroethene 2/ PPDDT 2,2-bis(Para-chlorophenyl)-1,1,1-trichloroethane

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
fi

TABLE NCSA-8b-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-8b

AVERAGE SITE DEPTH TO GROUNDWATER: 16 Feet

CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
12	24117	09/22/87
2.6	24199	01/27/88
2.2	24199	01/27/88
TE 15	24199	01/27/88
0.096	24199	05/18/88
0.097	24199	01/27/88
	MAXIMUM 12 2.6 2.2 TE 15 0.096	MAXIMUM (WELL NUMBER) 12 24117 2.6 24199 2.2 24199 TE 15 24199 0.096 24199

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-8b-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	IND I RECT EI	CUMULATIVE EI	VE I
ALDRIN	1.5E+00	6.5E+04	1.5E+00	2.0E+00*	4.6E-05	2.0E+00*	0.0E+00
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-03
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.4E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-06
PPDDE	7.4E+01	3.9E+06	7.4E+01	2.9E-04	5.3E-09	2.9E-04	0.0E+00
PPDDT	7.4E+01	8.3E+06	7.4E+01	7.1E-03	6.3E-08	7.1E-03	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	3.2E+00*	1.7E-04a	3.2E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-09
ENDRIN	2.5E+03	2.4E+07	2.5E+03	7.7E-05	7.9E-09	7.7E-05	2.6E-11
ISODRIN	5.8E+02	4.7E+06	5.8E+02	1.7E-03	2.1E-07	1.7E-03	0.0E+00
METHYLENE CHLORIDE	3.3E+03	3.5E+03	1.7E+03	9.2E-04	8.5E-04	1.8E-03	0.0E+00
1,1,1-TRICHLOROETHANE	7.5E+05	6.4E+06	6.7E+05	2.7E-06	3.1E-07	3.0E-06	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.2E+00*	0.0E+00	1.2E+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.2E-04	0.0E+00	1.2E-04	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	1.5E-04	0.0E+00	1.5E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	5.0E-04	0.0E+00	5.0E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-8b-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT E1	EI	VE I OPN
ALDRIN	1.5E+00	6.5E+04	1.5E+00	2.0E+00*	4.6E-05	2.0E+00*	0.0E+00
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-03
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.4E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-06
PPDDE	7.4E+01	3.9E+06	7.4E+01	2.9E-04	5.3E-09	2,9E-04	0.0E+00
PPDDT	7.4E+01	8.3E+06	7.4E+01	7.1E-03	6.3E-08	7.1E-03	0.0E+00
DIELDRIN	1.6E+00	1.0E+06	1.6E+00	3.2E+00*	1.7E-04a	3.2E+00*	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-09
ENDRIN	2.5E+03	2.4E+07	2.5E+03	7.7E-05	7.9E-09	7.7E-05	2.6E-11
ISODRIN	5.8E+02	4.7E+06	5.8E+02	1.7E-03	2.1E-07	1.7E-03	0.0E+00
METHYLENE CHLORIDE	3.3E+03	3.5E+03	1.7E+03	9.2E-04	8.5E-04	1.8E-03	0.0E+00
1,1,1-TRICHLOROETHANE	7.5E+05	6.4E+06	6.7E+05	2.7E-06	3.1E-07	3.0E-06	0.0E+00
ARSENIC	2.2E+01	0.0E+00	2.2E+01	1.2E+00*	0.0E+00	1.2E+00*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.2E-04	0.0E+00	1.2E-04	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	1.5E-04	0.0E+00	1.5E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	5.0E-04	0.0E+00	5.0E-04	0.0E+00

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-8b-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE I OPN	
ALDRIN	2.1E-01	4.3E+03	2.1E-01	1.4E+01*	6.92-04	1.4E+01*	0.0E+00	
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-02	
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	6.1E-07	
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-05	
PPODE	1.0E+01	2.6E+05	1.0E+01	2.1E-03	8.0E-08	2.1E-03	0.0E+00	
PPDDT	1.0E+01	5.5E+05	1.0E+01	5.1E-02	9.4E-07	5.1E-02	0.0E+00	
DIELDRIN	2.2E-01	1.0E+06	2.2E-01	2.3E+01*	2.5E-03a	2.3E+01*	0.0E+00	
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-08	
ENDRIN	1.1E+03	3.7E+06	1.1E+03	1.8E-04	5.1E-08	1.8E-04	1.7E-10	
ISODRIN	2.5E+02	7.3E+05	2.5E+02	4.1E-03	1.4E-06	4.1E-03	0.0E+00	
METHYLENE CHLORIDE	4.5E+02	5.5E+02	2.5E+02	6.6E-03	5.5E-03	1.2E-02	0.0E+00	
1,1,1-TRICHLOROETHANE	3.2E+05	2.3E+06	2.8E+05	6.3E-06	8.6E-07	7.1E-06	0.0E+00	
ARSENIC	3.9E+00	0.0E+00	3.9E+00	6.6E+00*	0.0E+00	6.6E+00*	0.0E+00	
COPPER	2.5E+05	0.0E+00	2.5E+05	2.1E-04	0.0E+00	2.1E-04	0.0E+00	
MERCURY	2.0E+03	0.0E+00	2.0E+03	2.6E-04	0.0E+00	2.6E-04	0.0E+00	
ZINC	1.1E+06	0.0E+00	1.1E+06	9.5E-04	0.0E+00	9.5E-04	0.0E+00	

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} El is equal to or exceeds 1.0E-01

NCSA-8b-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE	VE I ENC	
ALDRIN	1.9E+00	1.3E+02	1.9E+00	1.6E+00*	2.4E-02	1.6E+00*	0.0€+00	
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.3E+00	
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-04	
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.4E-03	
PPDDE	9.3E+01	1.9E+01	1.6E+01	2.3E-04	1.1E-03	1.3E-03	0.0E+00	
PPODT	9.3E+01	1.6E+04	9.2E+01	5.6E-03	3.2E-05	5.6E-03	0.0E+00	
DIELDRIN	2.0E+00	1.0E+06	1.9E+00	2.5E+00*	8.7E-02a	2.6E+00*	0.0E+00	
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	6.3E-06	
ENDRIN	1.4E+03	2.9E+02	2.4E+02	1.4E-04	6.6E-04	8.0E-04	1.0E-07	
ISODRIN	3.2E+02	6.7E+01	5.5E+01	3.1E-03	1.5E-02	1.8E-02	0.0E+00	
METHYLENE CHLORIDE	4.1E+03	5.3E+01	5.2E+01	7.3E-04	5.7E-02	5.7E-02	0.0E+00	
1,1,1-TR:CHLOROETHANE	4.2E+05	3.2E+04	3.0E+04	4.8E-06	6.3E-05	6.7E-05	0.0E+00	
ARSENIC	2.0E+01	0.0E+00	2.0E+01	1.3E+00*	0.0E+00	1.3E+00*	0.0E+00	
COPPER	1.8E+05	0.0E+00	1.8E+05	3.0E-04	0.0E+00	3.0E-04	0.0E+00	
MERCURY	1.4E+03	0.0E+00	1.4E+03	3.7E-04	0.0E+00	3.7E-04	0.0E+00	
ZINC	7.8E+05	0.0E+00	7.8E+05	1.3E-03	0.0E+00	1.3E-03	0.0E+00	

a: This contaminant saturates the soil gas and produces a vapor flux which is below one-tenth of the critical flux. The SPPPLV for this contaminant is considered to be equal to pure compound. The SPPPLV has therefore been set to 1.00E+06 mg/kg (See volume VI-A).

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-8b-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

CONTAMINANT	DIRECT	INDIRECT		CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VE1	
	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	El	ΕI	OPN	ENC
ALDRIN	1.2E-01	8.7E+03	4.2E+01	1.2E-01	2.6E+01*	7.2E-02	2.6E+01*	0.0E+00	0.0E+00
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	7.5E-03	3.8E+00
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	7.0E-07	3.6E-04
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-05	7.2E-03
PPDDE	5.7E+00	5.3E+05	1.9E+01	4.4E+00	3.7E-03	1.1E-03	4.7E-03	0.0E+00	0.0E+00
PPDOT	5.7E+00	1.1E+06	5.4E+03	5.7E+00	9.1E-02	9.8E-05	9.1E-02	0.0E+00	0.0E+00
DIELDRIN	1.2E-01	4.0E+03	1.9E+01	1.2E-01	4.1E+01*	2.6E-01*	4.1E+01*	0.0E+00	0.0E+00
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-08	6.3E-06
ENDRIN	2.5£+02	3.2E+06	8.6E+02	2.0E+02	7.5E-04	2.2E-04	9.7E-04	2.0E-10	1.0E-07
ISODRIN	5.9E+01	6.3E+05	2.0E+02	4.6E+01	1.7E-02	5.0E-03	2.2E-02	0.0E+00	0.0E+00
METHYLENE CHLORIDE	2.5E+02	4.7E+02	5.3E+01	4.0E+01	1.2E-02	6.3E-02	7.5E-02	0.0E+00	0.0E+00
1,1,1-TRICHLOROETHANE	7.8E+04	8.5E+05	9.6E+04	4.1E+04	2.6E-05	2.3E-05	4.9E-05	0.0E+00	0.0E+00
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	1.6E+01*	0.0E+00	1.6E+01*	0.0E+00	0. 0E +00
COPPER	5.7E+04	0.0E+00	0.0E+00	5.7E+04	9.1E-04	0.0E+00	9.1E-04	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	1.1E-03	0.0E+00	1.1E-03	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	7.2E·03	0.0E+00	7.2E-03	0.0E+00	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.24 SITE NCSA-8c: SECTION 34 - MERCURY DETECTION (formerly Section 34-Nonsource Area; ESE, 1988w/RIC 88203R04)

2.24.1 Site-Specific Considerations

Figure NCSA-8c-1 and Table NCSA-8c-1 depict the target contaminants for Site NCSA-8c. Borings LS0002 and H2 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-8c (ESE, 1988w/RIC 88203R04).

2.24.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-8c are shown in Figure NCSA-8c-1. Table NCSA-8c-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Based on available groundwater data from the first quarter 1987 to the first quarter 1989 sampling period, no evidence of groundwater contamination beneath this site was found (see Volume VI-A).

2.24.3 Site Exposure Summary

Tables NCSA-8c-2 through NCSA-8c-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Chromium Lead	Direct	Direct	Direct	Direct Direct	Direct Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs for an industrial worker. Site NCSA-8c is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-8c-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-8c

	Contaminant Chloroacetic acid Chromium Copper	Max. (ug/g) 63 56 57 700	Horizon 1 Depth (ft) 5.2 5.2 0-1 5.2	Boring Number H2 H2 LS0002 H2	Max. (ug/g)	Horizon 2 Depth (ft)	Boring Number H2
--	---	---	--------------------------------------	--	-------------	----------------------	------------------------

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

NCSA-8c-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
CHLOROACETIC ACID	1.7E+04	0.0E+00	1.7E+04	3.8E-03	0.0E+00	3.8E-03	0.0E+00
CHROMIUM	6.9E+01	0.0E+00	6.9E+01	7.2E-01*	0.0E+00	7.2E-01*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.4E-04	0.0E+00	1.4E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	4.5E-02	0.0E+00	4.5E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.3E-04	0.0E+00	3.3E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.0E-05	0.0E+00	6.0E-05	0.0E+00

^{*:} E. is equal to or exceeds 1.0E-01

NCSA-8c-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE E1	VE I OPN
CHLOROACETIC ACID	1.7E+04	0.0E+00	1.7E+04	3.8E-03	0.0E+00	3.8E-03	0.0E+00
CHRONIUM	6.9E+01	0.0E+00	6.9E+01	7.2E-01*	0.0E+00	7.2E-01*	0.0E+00
COPPER	4.2E+05	0.0E+00	4.2E+05	1.4E-04	0.0E+00	1.4E-04	0.0E+00
LEAD	1.5E+04	0.0E+00	1.5E+04	4.5E-02	0.0E+00	4.5E-02	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.38+03	3.3E-04	0.0E+00	3.3E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	6.0E-05	0.0E+00	6.0E-05	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-8c-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	IMDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE I OPN
CHLOROACETIC ACID	7.0E+03	0.0E+00	7.0E+03	9.0E-03	0.0E+00	9.0E-03	0.0E+00
CHROMIUM	8.8E+00	0.0E+00	8.8E+00	5.7E+00*	0.0E+00	5.7E+00*	0.0E+00
COPPER	2.5E+05	0.0E+00	2.5E+05	2.3E-04	0.0E+00	2.3E-04	0.0E+00
LEAD	9.2E+03	0.0E+00	9.2E+03	7.6E-02	0.0E+00	7.6E-02	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	5.6E-04	0.0E+00	5.6E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	1.1E-04	0.0E+00	1.1E-04	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-8c-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I ENC
CHLOROACETIC ACID	9.2E+03	0.0E+00	9.2E+03	6.9E-03	0.0E+00	6.9E-03	0.0E+00
CHRONIUM	5.5E+01	0.0E+00	5.5E+01	9.1E-01*	0.0E+00	9.1E-01*	0.0E+00
COPPER	1.8E+05	0.0E+00	1.8E+05	3.2E-04	0.0E+00	3.2E-04	0.0E+00
LEAD	6.5E+03	0.0E+00	6.5E+03	1.1E-01*	0.06+00	1.1E-01*	0.0E+00
MERCURY	1.4E+03	0.0E+00	1.4E+03	7.9E-04	0.0E+00	7.9E-04	0.0E+00
ZINC	7.88+05	0.0E+00	7.8E+05	1.5E-04	0.0E+00	1.5E-04	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-8c-6
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	•	ΈI
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	ENC
CHLOROACETIC ACID	1.7E+03	0.0E+00	0.0E+00	1.7E+03	3.7E-02	0.06+00	3.7E-02	0. 0E+0 0	0.0E+00
CHRONIUM	1.1E+00	0.0E+00	0.0E+00	1.1E+00	4.4E+01*	0.0E+00	4.4E+01*	0.0E+00	0.0E+00
COPPER	5.7E+04	0.0E+00	0.QE+00	5.7E+04	1.0E-03	0.0E+00	1.0E-03	0.0E+00	0.0E+00
LEAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	3.2E-01*	0.0E+00	3.2E-01*	0.0E+00	0.0E+00
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	2.4E-03	0.0E+00	2.4E-03	0.0E+00	0.0E+00
ZINC	1.4E+05	0.0E+00	0.0E+00	1.4E+05	8.6E-04	0.0E+00	8.6E-04	0.0E+00	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

2.25 SITE NCSA-9a: SECTION 23 - DIISOPROPYLMETHYL PHOSPHONATE DETECTION (formerly Section 23-Nonsource Area; ESE, 1988p/RIC 88243R02)

2.25.1 Site-Specific Considerations

Figure NCSA-9a-1 and Tables NCSA-9a-1 and NCSA-9a-2 depict the target contaminants for Site NCSA-9a. Borings 5078 and 001 through 003 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9a (ESE, 1988p/RIC 88243R02).

2.25.2. Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9a are shown in Figure NCSA-9a-1. Table NCSA-9a-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury because direct soil exposure below 10 ft. is assumed to be negligible (see Volume VI-A). Table NCSA-9a-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.25.3 Site Exposure Summary

Tables NCSA-9a-3 through NCSA-9a-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9a is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
None					**

The results of the soil exposure summary indicate that there are no COCs. Site NCSA-9a is designated as a Priority 2 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Dicyclopentadiene (enclosed)
- Chloroform (enclosed)

TABLE NCSA-9a-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9a

		Horizon 1		I	Horizon 2		
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number	
Diisopropylmethyl phosphonate	98.0	6-8	003	0.86	6-8	003	

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

TABLE NCSA-9a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-9a

AVERAGE SITE DEPTH TO GROUNDWATER: 21 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1-DICHLOROETHANE	0.86	23231	12/7/88
1,2-DICHLOROETHYLENE	6.5	23160	09/17/87
1,2-dichloroethane	14	23119	01/8/88
ALDRIN	3.4	23231	12/7/88
ATRAZINE	60	23231	12/7/88
BICYCLOHEPTADIENE	46	23231	12/7/88
BENZENE	9.7	23119	01/8/88
METHYLENE CHLORIDE	12	23119	01/8/88
CHLOROFORM	3100	23119	01/8/88
HEXACHLOROCYCLOPENTADIENE	2.0	23231	05/16/88
CHLOROBENZENE	3.3	23232	01/27/88
CHLORDANE	11	23231	12/7/88
CHLOROPHENYLMETHYL SULFIDE	41	23119	01/8/88
CHLOROPHENYLMETHYL SULFOXII	DE 20	23231	05/16/88
CHLOROPHENYLMETHYL SULFONE	150	23160	09/17/87
DIBROMOCHLOROPROPANE	0.28	23119	01/8/88
DICYCLOPENTADIENE	940	23231	12/7/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-9a-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-9a

AVERAGE SITE DEPTH TO GROUNDWATER: 21 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
DIISOPROPYLMETHYL PHOSPHONA	re	5000	23119	01/8/88
DITHIANE		67	23231	05/16/88
DIELDRIN		4.8	23231	12/7/88
DIMETHYLMETHYL PHOSPHONATE		28	23231	12/7/88
ENDRIN	GT	10	23231	12/7/88
ETHYLBENZENE		1.5	23160	09/17/87
TOLUENE		9.0	23231	12/7/88
MALATHION		2.7	23231	12/7/88
1,4-OXATHIANE		18	23119	01/8/88
PPDDE		0.17	23231	05/16/88
PPDDT		0.75	23231	12/7/88
PARATHION		2.2	23231	12/7/88
SUPONA		1.4	23231	12/7/88
TETRACHLOROETHYLENE		87	23231	05/16/88
TRICHLOROETHYLENE		11	23231	01/26/88
O, P-XYLENE		3.0	23231	05/16/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.
DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-9a-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	2.0E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	6. 8 E-06
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	2.6E-07
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.9E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.0E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0€+00	3.2E-04
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	4.4E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-10
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	9.1E-09
PPDDT	7.4E+01	0.0F+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.9E-07
D1BROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	4.1E-07
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-10
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	5.3E-06
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-03
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	7.7E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.3E+06	4.4E+05	1.3E-06	6.4E-07	1.9E-06	8.0€-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	3.9E-10
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	7.3E-10
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-05
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	8.6E-14
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.7E-06
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-12
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.5E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-05
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	9.6E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	6.9E-06
O.P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	2.0E-09

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9a-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTANINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	2.0E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	6.8E-06
BICYCLONEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	2.6E-07
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.9E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+0G	2.0E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.2E-04
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-08
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+0U	0.0E+00	0.0E+00	4.4E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-10
PPODE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	9.1E-09
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.9E-07
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	4.1E-07
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-10
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	5.3E-06
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.08+00	2.0E-03
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0+30.0	7.7E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	1.3E+06	4.4E+05	1.3E-06	6.4E-07	1.9E-06	8.0E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.08+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	3.9E-10
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	7.3E-10
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-05
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.06+00	8.6E-14
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.7E-06
1.4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.6E-12
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.5E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-05
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	9.6E-10
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	6.9E-06
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	2.0E-09

NCSA-9a-5 EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	2.9E-05
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0€+00	9.2E-13
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-04
BICYCLOHEPTADIENE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-06
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	4.3E-06
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-07
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-03
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	6.5E-08
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-09
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	7.1E-10
PPDDE	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	1.4E-07
PPDDT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	4.4E-06
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.06+00	0.0E+00	6.1E-06
1.1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	2.5E-09
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	8.0E-05
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-02
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0E+00	0.0E+00	1.2E-06
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	9.1E+05	2.1E+05	3.1E-06	9.5E-07	4.0E-06	5.2E-07
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENORIN	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	2.5E-09
ETHYLBENZENE	3.5E+05	0.0E+00	3.5E+05	0.0E+00	0.0E+00	0.0E+00	4.7E-09
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	7.8E-05
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	5.6E-13
METHYLENE CHLORIDE	4.5E+02	0.0E+00	4.5E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-05
1.4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-11
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-13
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	4.1E-04
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	6.2E-09
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-04
O,P-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	1.3E-08

NCSA-98-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT EI	CUMULATIVE E1	ENC
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	9.9E-03
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-09
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	3.4E-02
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-03
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-03
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.6E+00
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	6.6E-06
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-06
PPDDE	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.06+00	0.0E+00	4.6E-05
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-03
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-03
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.08+00	8.3E-07
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	2.7E-0
1.2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.08+00	0.0E+00
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.1E+01
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	3.9E-04
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	1.6E+02	1.6E+02	2.3E-06	5.3E-03	5.3E-03	1.2E-03
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	0.0E+00	1.51+03	0.0E+00	0.0E+00	0.0E+00	5.9E-06
ETHYLBENZENE	4.6E+05	0.0E+00	4.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-05
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+Q0	5.5E+03	0.0E+00	0.0E+00	0.0E+00	1.8E-01
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-09
METHYLENE CHLOPIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	8.5E-03
1.4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.JE+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-0
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	5.3E-10
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-01
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	1.5E-05
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	3.5E-02
O,P-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.05+00	0.0E+00	0.0E+00	3.0E-05

NCSA-9a-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT		RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VE I
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	EI	EI	OPN	E
	(mg/kg)	(mg /kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	1.5E-05	3.0E
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-12	2.2E
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	5.1E-05	1.0E
BICYCLOHEPTADIENE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-06	3.9E
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-06	4.4E
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-07	3.0E
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-03	4.9E
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.5E-08	1.5E
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-09	6.6E
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	8.2E-10	1.7E
PPDDE	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	6.8E-08	1.4E
PPDDT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-06	4.4E
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	3.0E-06	6.2E
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-09	2.5E
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	4.0E-05	8.1E
1,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
DICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-02	3.1E
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	5.8E-07	1.2E
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	1.8E+05	1.6E+02	1.6E+02	1.3E-05	5.3E-03	5.3E-03	6.0E-07	1.2E
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.56+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
ENDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.9E-09	5.9E
ETHYLBENZENE	8.5E+04	0.0E+00	0.0E+00	8.5E+04	0.0E+00	0.0E+00	0.0E+00	5.4E-09	1.1E
HEXACHLOROCYCLOPENTADIENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	9.0E-05	1.8E
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	6.5E-13	1.3E
METHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.3E-05	2.6E
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-11	2.5E
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	2.6E-13	5.3E
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-04	4.2E
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	7.2E-09	1.5E
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	5.1E-05	1.0E
D.P-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-08	3.0E

2.26 SITE NCSA-9b: SECTION 23 - CADMIUM DETECTION (formerly Section 23-Nonsource Area; ESE, 1988p/RIC 88243R02)

2.26.1 Site-Specific Considerations

Figure NCSA-9b-1 and Table NCSA-9b-1 depict the target contaminants for Site NCSA-9b. Boring 5081 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9b (ESE, 1988p/RIC 88243R02).

2.26.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9b are shown in Figure NCSA-9b-1. Table NCSA-9b-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Based on available groundwater data from the first quarter 1987 to the first quarter 1989 sampling period, no evidence of groundwater contamination beneath this site was found (see Volume VI-A).

2.26.3 Site Exposure Summary

Tables NCSA-9b-2 through NCSA-9b-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Cadmium					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs for an industrial worker. Site NCSA-9b is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-9b-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9b

		Horizon 1		1	Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Cadmium	4.5	Comp ¹ / 0-1, 4-5	5081	1	ı	:

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

REAS/TBL0067.REA VI-D 8/31/90 12:02 am sma 29

NCSA-9b-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	PPLV	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VEI OPN
CADHIUM	4.5E+02	0.0E+00	4.5E+02	1.0E-02	0.0E+00	1.0E-02	0.0E+00

NCSA-96-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	EI	OPN OPN
CADMIUM	4.5E+02	0.0E+00	4.5E+02	1.0E-02	0.0E+00	1.0E-02	0.0E+00

NCSA-9b-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I OPN
CADMIUM	5.8E+01	0.06+00	5.8E+01	7,8E-02	0.0E+00	7.8E-02	0.0E+00

NCSA-96-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTANINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CLMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT El	CUMULATIVE EI	VE I
CADNIUN	3.6€+02	0.0E+00	3.6E+02	1.3E-02	0.0€+00	1.3E-02	0.0E+00

NCSA-9b-6 EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	IND: OSVI (mg/kg)	RECT ESVI (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE E1	OPN	VE I EI
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	5. 9 E-01*	0.0E+00	5. 9 E-01*	0.0E+00	0.0€₁

^{*:} EI is equal to or exceeds 1.0E-01

2.27 SITE NCSA-9c: SECTION 23 - CADMIUM DETECTION (formerly Section 23-Nonsource Area; ESE, 1988p/RIC 88243R02)

2.27.1 Site-Specific Considerations

Figure NCSA-9c-1 and Table NCSA-9c-1 depict the target contaminants for Site NCSA-9c. Boring 5073 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9c (ESE, 1988p/RIC 88243R02).

2.27.2 Spatial Distribution of Measured Contaminant Concentrations

The location and concentration of the target contaminants that were detected in Site NCSA-9c are shown in Figure NCSA-9c-1. Table NCSA-9c-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP, metals, arsenic and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Based on available groundwater data from the first quarter 1987 to the first quarter 1989 sampling period, no evidence of groundwater contamination beneath this site was found (see Volume VI-A).

2.27.3 Site Exposure Summary

Tables NCSA-9c-2 through NCSA-9c-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Cadmium					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs for an industrial worker. Site NCSA-9c is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-9c-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9c

1

Horizon 2	Depth Boring (ft) Number	1
	Max. (ug/g)	;
Horizon 1	Boring Number	5073
	Depth (ft)	Comp ^{1/} 0-1, 4-5
	Max. (ug/g)	2.8
	Contaminant	Cadmium

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

NCSA Max. ug/g ft

North Central Study Area Maximum microgram per gram foot/feet

NCSA-9c-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VEI OPN
CADMIUM	4.5E+02	0.0E+00	4.5E+02	6.2E-03	0.06+00	6.2E-03	0.0E+00

NCSA-9c-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	PPLV	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VEI OPN
CADHIUM	4.5E+02	0.0E+00	4.5E+02	6.2E-03	0. 0 E+00	6.2E-03	0.0E+00

NCSA-9c-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE E1	VE I OPN
CADHIUM	5.8E+01	0.0E+00	5.8E+01	4.8E-02	0.0E+00	4.8E-02	0.0E+00

NCSA-9c-5
EXPOSURE EVALUATIONS FOR COMMERCIAL MORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I ENC
CADHIUN	3.6E+02	0.0E+00	3.6E+02	7.8E-03	0. 0E+0 0	7.8E-03	0.0€+00

NCSA-9c-6
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDI OSVI (mg/kg)	RECT ESVI (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT El	E1 E1	OPN	EN
CADMIUM	7.6€+00	0.0E+00	0.0E+00	7.6E+00	3.7E-01*	0.0E+00	3.7E-01*	0.0E+00	0.0E+

^{*:} El is equal to or exceeds 1.0E-01

2.28 SITE NCSA-9d: SECTION 23 - CADMIUM DETECTION (formerly Section 23-Nonsource Area, ESE, 1988p/RIC 88243R02)

2.28.1 Site-Specific Considerations

Figure NCSA-9d-1 and Tables NCSA-9d-1 and NCSA-9d-2 depict the target contaminants for Site NCSA-9d. Boring 5063 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9d (ESE, 1988p/RIC 88243R02).

2.28.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9d are shown in Figure NCSA-9d-1. Table NCSA-9d-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Table NCSA-9d-2 summarizes the maximum concentrations detected in groundwater together with the way in the property of

2.28.3 Site Exposure Summary

Tables NCSA-9d-3 through NCSA-9d-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9d is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Cadmium					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs. Site NCSA-9d is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-9d-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9d

		Updicar 1				
		חסוומו ו			Honzon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Cadmium	3.7	Comp ^{1/} 0-1, 4-5	5063	ŀ	:	ı

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

REA5/TBL0067.REA VI-D 8/31/90 12:02 am sma 31

TABLE NCSA-9d-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9d

AVERAGE SITE DEPTH TO GROUNDWATER: 40 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ALDRIN	0.20	23108	02/7/89
ATRAZINE	11	23108	11/14/88
BENZOTHIAZOLE	2.8	23108	09/15/87
CHLOROFORM	7.6	23108	11/14/88
CHLORDANE	10	23108	02/7/89
CHLOROPHENYLMETHYL SULFONE	6.8	23108	09/15/87
DICYCLOPENTADIENE	15	23108	07/26/88
VAPONA	2.4	23108	11/14/88
DIISOPROPYLMETHYL PHOSPHONAT	E 1.6	23108	02/7/89
DIELDRIN	0.95	23108	02/7/89
DIMETHYLMETHYL PHOSPHONATE	0.94	23108	02/7/89
ENDRIN	0.068	23108	02/7/89
ISODRIN	0.092	23108	01/15/8
MALATHION	2.0	23108	02/7/89
1,4-OXATHIANE	6.5	23108	07/26/8
PPDDE	0.13	23108	02/7/89
PPDDT	0.12	23108	02/7/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALY FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-9d-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9d

AVERAGE SITE DEPTH TO GROUNDWATER: 40 Feet

CHEMICAL	CONCENTRATION	LOCATION	SAMPLE
	MAXIMUM	(WELL NUMBER)	DATE
SUPONA	1.2	23108	02/7/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALY: FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-9d-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMENANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	OPN.
ALDRIN	1.5E+00	0.0€+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-09
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-16
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	9.5E-12
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0€+00	0.0E+00	0.0E+00	9.1E-09
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-13
PPODE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	8.3E-11
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	5.4E-10
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.06+00	0.0E+00	3.8E-07
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-10
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.CE+00	6.6€+05	0.0E+00	0.0E+00	0.0E+00	3.0E-13
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-14
ISODRIN	5.86+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	211
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	7.3E-16
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.06+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.5E-16
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	7.3E-12
CADMIUM	4.5E+02	0.0E+00	4.5E+02	8.2E-03	0.0E+00	8.2E-03	0.0E+00

NCSA-9d-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

	DIRECT	INDIRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VE 1
CONTAMINANT	PPLV	PPLV	PPLV	ΕI	El	EI	OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-09
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-16
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	9.5E-12
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	3.0E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	9.1E-09
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-13
PPODE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	8.3E-11
PPDOT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	5.4E-10
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	3.8E-07
DIELDRIN	1.6E+00	0.0E+00	1-6E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-10
DIISOPROPYLMETHYL PHOSPHON &	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-13
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-14
ISCORIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-11
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	7.3E-16
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.5E-16
/APONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	7. 3 E-12
CADMIUM	4.5E+02	0.0E+00	4.5E+02	8.2E-03	0.0E+00	8.2E-03	0.0E+00

NCSA-9d-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTANINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	E1 E1	VE 1 OPN
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	2.0E-08
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-15
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	6.1E-11
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	4.6E-08
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-07
CHLOROPHENYLMETHYL SULFCHE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-12
PPDDE	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-09
PPDDT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	8.1E-09
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	2.5E-06
DIELORIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0E+00	0.0E+00	2.6E-09
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	2.0E-12
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	2.0E-13
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-10
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.7E-15
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	5.3E+02	0.0F.+00	5.3E+02	0.07+00	0.0E+00	0.0E+00	2.2E-15
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	1 1E-10
CADMIUM	5.8E+01	0.0E+00	5.8E+01	6.4E-02	0.0E+00	5.4E-02	0.0E+00

NCSA-9d-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I ENC
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	2.1E-04
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-10
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	4.7E-06
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+G0	5.0E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-03
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-07
PPDDE	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	1.4E-05
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	8.8E-05
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-01
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	2.9E-05
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-07
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-08
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-05
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-10
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	1.7E-10
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-06
CADHIUM	3.6E+02	0.0E+00	3.6E+02	1.0E-02	0.0E+00	1.0E-02	0.0E+00

NCSA-9d-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VEI
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	E1	EI	OPN	E
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	9.7E-09	6.4E
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	2.3E-15	1.5E
BENZOTH I AZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.06+00	1.0E+00	7.1E-11	4.7E
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0€+00	0.0E+00	0.0E+00	2.3E-08	1.5E
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	6.9E-08	4.5E
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-12	1.1E
PPDDE	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	6.2E-10	4.1E
PPDDT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	4.0E-09	2.7E
DICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-06	1.9E
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	1.3E-09	8.7E
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.QE+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	2.3E-12	1.5E
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
ENDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-13	1.5E
ISODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	1.8E-10	1.2E
MALATHION	1.7E+04	0. 0E+ 00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.5E-15	3.6E
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	2.6E-15	1.7E
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0€+00	5.5E-11	3.68
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	4.9E-01*	0.0E+00	4.9E-01*	0.0E+00	0.0
				_					

^{*:} El is equal to or exceeds 1.0E-01

2.29 SITE NCSA-9e: SECTION 24 - ZINC DETECTION (formerly Section 24-Nonsource Area; ESE, 1988x/RIC 88203R03)

2.29.1 Site-Specific Considerations

Figure NCSA-9e-1 and Tables NCSA-9e-1 and NCSA-9e-2 depict the target contaminants for Site NCSA-9e. Boring 5088 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9e (ESE, 1988x/RIC 88203R03).

2.29.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9e are shown in Figure NCSA-9e-1. Table NCSA-9e-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury for Horizon 2 because the chance of direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Table NCSA-9e-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.29.3 Site Exposure Summary

Tables NCSA-9e-3 through NCSA-9e-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9e is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
None					

The results of the soil exposure summary indicate that there are no COCs. Site NCSA-9e is designated as a Priority 2 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-9e-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9e

n 2	Depth Boring (ft) Number	1
Horizon 2	Max. De (f (ug/g)	1
	Boring Number	5088
Horizon 1	Depth (ft)	Comp ^{1/} 0-1, 4-5
	Max. (ug/g)	92
	Contaminant	Zinc

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

17 am cma 17.00 17.00 am cma 30

TABLE NCSA-9e-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9e

AVERAGE SITE DEPTH TO GROUNDWATER: 45 Feet

			*
CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
BENZENE	3.3	23008	09/14/8
CHLOROFORM	3.4	23008	09/14/1
CHLOROBENZENE	13	23008	09/14/1
DIELDRIN	0.12	23008	09/14/1

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANA FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-9e-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULAT: PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	VE I OPN
BENZENE	8.6E+02	0.0€+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	5.1E-08
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	7.8E-09
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	4.4E-11
ZINC	2.0E+06	0.0E+00	2.0E+06	4.6E-05	0.0E+00	4.6E-05	0.0E+00

NCSA-9e-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT Ei	CUMULATIVE E1	VE I OPN
8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	5.1E-08
1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-09
4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	7.8E-09
1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	4.4E-11
2.0E+06	0.0E+00	2.0E+06	4.6E-05	0.0E+00	4.6E-05	0.0E+00
	8.6E+02 1.6E+03 1.6E+03	PPLV PPLV (mg/kg) (mg/kg) 8.6E+02 0.0E+00 1.6E+05 0.0E+00 4.0E+03 0.0E+00 1.6E+00 0.0E+00	PPLV PPLV PPLV (mg/kg) (mg/kg) (mg/kg) 8.6E+02 0.0E+00 8.6E+02 1.6E+05 0.0E+00 1.6E+05 4.0E+03 0.0E+00 4.0E+03 1.6E+00 0.0E+00 1.6E+00	PPLV PPLV PPLV E1 (mg/kg) (mg/kg) (mg/kg) 8.6E+02 0.0E+00 8.6E+02 0.0E+00 1.6E+05 0.0E+00 1.6E+05 0.0E+00 4.0E+03 0.0E+00 4.0E+03 0.0E+00 1.6E+00 0.0E+00 1.6E+00 0.0E+00	PPLV PPLV PPLV EI EI (mg/kg) (mg/kg) (mg/kg) 8.6E+02 0.0E+00 8.6E+02 0.0E+00 0.0E+00 1.6E+05 0.0E+00 1.6E+05 0.0E+00 0.0E+00 4.0E+03 0.0E+00 4.0E+03 0.0E+00 0.0E+00 1.6E+00 0.0E+00 1.6E+00 0.0E+00 0.0E+00	PPLV PPLV PPLV EI EI EI EI (mg/kg) (mg/kg) (mg/kg) 8.6E+02 0.0E+00 8.6E+02 0.0E+00 0.0E+00 0.0E+00 1.6E+05 0.0E+00 1.6E+05 0.0E+00 0.0E+00 0.0E+00 4.0E+03 0.0E+00 4.0E+03 0.0E+00 0.0E+00 0.0E+00 1.6E+00 0.0E+00 1.6E+00 0.0E+00 0.0E+00

NCSA-9e-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	OPN
1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0€+00	7.6E-07
6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.08+00	0.0E+00	1.1E-08
5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-07
2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0€+00	0.0E+00	6.6E-10
1.1E+06	0.0E+00	1.1E+06	8.8E-05	0.0E+00	8.8E-05	0.0E+00
	1.2E+02 6.8E+04 5.6E+02 2.2E-01	PPLV PPLV (mg/kg) (mg/kg) 1.2E+02 0.0E+00 6.8E+04 0.0E+00 5.6E+02 0.0E+00 2.2E-01 0.0E+00	PPLV PPLV PPLV (mg/kg) (mg/kg) 1.2E+02 0.0E+00 1.2E+02 6.8E+04 0.0E+00 6.8E+04 5.6E+02 0.0E+00 5.6E+02 2.2E-01 0.0E+00 2.2E-01	PPLV PPLV PPLV EI (mg/kg) (mg/kg) (mg/kg) 1.2E+02 0.0E+00 1.2E+02 0.0E+00 6.8E+04 0.0E+00 6.8E+04 0.0E+00 5.6E+02 0.0E+00 5.6E+02 0.0E+00 2.2E-01 0.0E+00 2.2E-01 0.0E+00	PPLV PPLV PPLV EI EI (mg/kg) (mg/kg) (mg/kg) 1.2E+02 0.0E+00 1.2E+02 0.0E+00 0.0E+00 6.8E+04 0.0E+00 6.8E+04 0.0E+00 0.0E+00 5.6E+02 0.0E+00 5.6E+02 0.0E+00 0.0E+00 2.2E-01 0.0E+00 2.2E-01 0.0E+00 0.0E+00	PPLV PPLV PPLV EI EI EI EI (mg/kg) (mg/kg) (mg/kg) 1.2E+02 0.0E+00 1.2E+02 0.0E+00 0.0E+00 0.0E+00 6.8E+04 0.0E+00 6.8E+04 0.0E+00 0.0E+00 0.0E+00 5.6E+02 0.0E+00 5.6E+02 0.0E+00 0.0E+00 0.0E+00 2.2E-01 0.0E+00 2.2E-01 0.0E+00 0.0E+00 0.0E+00

NCSA-9e-6
EXPOSURE EVALUATIONS FOR COMMERCIAL MORKERS

DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE El	VEI
1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	3.7E-03
8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	3.8E-04
5.1E+03	0.0€+00	5,1E+03	0.0E+00	0.0E+00	0.06+00	5.8E-04
2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	3.2E-06
7.8E+05	0.0£+00	7.8E+05	1.2E-04	0.0E+00	1.2E-04	0.0E+00
	PPLV (mg/kg) 1.1E+03 8.8E+04 5.1E+03 2.0E+00	PPLV PPLV (mg/kg) (mg/kg) 1.1E+03 0.0E+00 8.8E+04 0.0E+00 5.1E+03 0.0E+00 2.0E+00 0.0E+00	PPLV PPLV PPLV (mg/kg) (mg/kg) 1.1E+03 0.0E+00 1.1E+03 8.8E+04 0.0E+00 8.8E+04 5.1E+03 0.0E+00 5.1E+03 2.0E+00 0.0E+00 2.0E+00	PPLV PPLV PPLV EI (mg/kg) (mg/kg) (mg/kg) 1.1E+03 0.0E+00 1.1E+03 0.0E+00 8.8E+04 0.0E+00 8.8E+04 0.0E+00 5.1E+03 0.0E+00 5.1E+03 0.0E+00 2.0E+00 0.0E+00 2.0E+00 0.0E+00	PPLV PPLV (mg/kg) (mg/kg) 1.1E+03 0.0E+00 1.1E+03 0.0E+00 0.0E+00 8.8E+04 0.0E+00 8.8E+04 0.0E+00 0.0E+00 5.1E+03 0.0E+00 5.1E+03 0.0E+00 0.0E+00 2.0E+00 0.0E+00 2.0E+00 0.0E+00 0.0E+00	PPLV PPLV (mg/kg) (mg/kg) 1.1E+03 0.0E+00 1.1E+03 0.0E+00 0.0E+00 0.0E+00 8.8E+04 0.0E+00 8.8E+04 0.0E+00 0.0E+00 0.0E+00 5.1E+03 0.0E+00 5.1E+03 0.0E+00 0.0E+00 0.0E+00 2.0E+00 0.0E+00 2.0E+00 0.0E+00 0.0E+00 0.0E+00

NCSA-9e-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	•	VE I
PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	EN(
6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	3.5£-07	1.1E-(
1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-08	3.8E-(
3.1E+02	0.0€+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	5.9E-08	1.7E-(
1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	3.3E-10	9.7E-(
1.4E+05	0.0E+00	0.0E+00	1.4E+05	6.6E-04	0.0E+00	6.6E-04	0.0E+00	0.0E+(
	6.7E+01 1.5E+04 3.1E+02 1.2E-01	PPLV OSVI (mg/kg) (mg/kg) 6.7E+01 0.0E+00 1.5E+04 0.0E+00 3.1E+02 0.0E+00 1.2E-01 0.0E+00	PPLV OSVI ESVI (mg/kg) (mg/kg) 6.7E+01 0.0E+00 0.0E+00 1.5E+04 0.0E+00 0.0E+00 3.1E+02 0.0E+00 0.0E+00 1.2E-01 0.0E+00 0.0E+00	PPLV OSVI ESVI PPLV (mg/kg) (mg/kg) (mg/kg) (mg/kg) 6.7E+01 0.0E+00 0.0E+00 6.7E+01 1.5E+04 0.0E+00 0.0E+00 1.5E+04 3.1E+02 0.0E+00 0.0E+00 3.1E+02 1.2E-01 0.0E+00 0.0E+00 1.2E-01	PPLV OSVI ESVI PPLV E1 (mg/kg) (mg/kg) (mg/kg) (mg/kg) 6.7E+01 0.0E+00 0.0E+00 6.7E+01 0.0E+00 1.5E+04 0.0E+00 0.0E+00 1.5E+04 0.0E+00 3.1E+02 0.0E+00 0.0E+00 3.1E+02 0.0E+00 1.2E-01 0.0E+00 0.0E+00 1.2E-01 0.0E+00	PPLV OSVI ESVI PPLV E1 E1 (mg/kg) (mg/kg) (mg/kg) (mg/kg) 6.7E+01 0.0E+00 0.0E+00 6.7E+01 0.0E+00 0.0E+00 1.5E+04 0.0E+00 0.0E+00 1.5E+04 0.0E+00 0.0E+00 3.1E+02 0.0E+00 0.0E+00 3.1E+02 0.0E+00 0.0E+00 1.2E-01 0.0E+00 0.0E+00 1.2E-01 0.0E+00 0.0E+00	PPLV OSVI ESVI PPLV EI EI EI (mg/kg) (mg/kg) (mg/kg) (mg/kg) 6.7E+01 0.0E+00 0.0E+00 6.7E+01 0.0E+00 0.0E+00 0.0E+00 1.5E+04 0.0E+00 0.0E+00 1.5E+04 0.0E+00 0.0E+00 0.0E+00 3.1E+02 0.0E+00 0.0E+00 3.1E+02 0.0E+00 0.0E+00 0.0E+00 1.2E-01 0.0E+00 0.0E+00 1.2E-01 0.0E+00 0.0E+00 0.0E+00	PPLV OSVI ESVI PPLV E1 E1 E1 OPN (mg/kg) (mg/kg) (mg/kg) (mg/kg) 6.7E+01 0.0E+00 0.0E+00 6.7E+01 0.0E+00 0.0E+00 0.0E+00 3.6E-07 1.5E+04 0.0E+00 0.0E+00 1.5E+04 0.0E+00 0.0E+00 0.0E+00 1.3E-08 3.1E+02 0.0E+00 0.0E+00 3.1E+02 0.0E+00 0.0E+00 0.0E+00 5.9E-08 1.2E-01 0.0E+00 0.0E+00 1.2E-01 0.0E+00 0.0E+00 0.0E+00 3.3E-10

2.30 SITE NCSA-9f: SECTION 25 - ZINC AND COPPER DETECTIONS (formerly Section 25-Nonsource Area; ESE, 1988y/RIC 88063R09 and ESE, 1988z/RIC 88063R09A)

2.30.1 Site-Specific Considerations

Figure NCSA-9f-1 and Table NCSA-9f-1 depict the target contaminants for Site NCSA-9f. Boring 5140 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9f (ESE, 1988y/RIC 88063R09).

2.30.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9f are shown in Figure NCSA-9f-1. Table NCSA-9f-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury for Horizon 2 because the chance of direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Based on available groundwater data from the first quarter 1987 to the first quarter 1989 sampling period, no evidence of groundwater contamination beneath this site was found (see Volume VI-A).

2.30.3 Site Exposure Summary

Tables NCSA-9f-2 through NCSA-9f-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
None					

The results of the soil exposure summary indicate that there are no COCs. Site NCSA-9f is designated as a Priority 2 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-9f-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9f

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Copper	53	Comp ^{1/} 0-1,	5140	;	:	;
Zinc	100	4-5 Comp 0-1, 4-5	5140	;	1	;

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

REAS/TBL0067.REA VI-D 8/31/90 12:02 am sma 33

NCSA-91-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
COPPER	4.2E+05	0.0E+00	4.2E+05	1.3E-04	0.0E+00	1.3E-04	0.0E+00
ZINC	2.0E+06	0.0E+00	2.0E+06	5.0E-05	0.0E+00	5.0E-05	0.0E+00

NCSA-9f-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
COPPER	4.2E+05	0.0E+00	4.2E+05	1.3E-04	0.0E+00	1.3E-04	0.0E+00
ZINC	2.0€+06	0.0E+00	2.0E+06	5.0E-05	0.0E+00	5.0E-05	0.0E+00

NCSA-9f-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE E1	VE I OPN
COPPER	2.5E+05	0.0E+00	2.5E+05	2.1E-04	0.0E+00	2.1E-04	0.0E+00
ZINC	1.1E+06	0.0E+00	1.1E+06	9.5E-05	0.0E+00	9.5E-05	0.0E+00

NCSA-9f-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VE I
COPPER	1.8E+05	0.0E+00	1.8E+05 7.8E+05	3.0E-04 1.3E-04	0.0E+00 0.0E+00	3.0E-04	0.0E+00
ZINC	7.8E+05	0.0E+00	7.86+05	1.35-04	0.05+00	1.3E-04	0.0E+00

NCSA-9f-6
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

DIRECT	INDI	RECT	CUMULAT I VE	DIRECT	INDIRECT	CUMULATIVE	,	/E 1
PPLV (mg/kg)		ESVI (mg/kg)	PPLV (mg/kg)	El	EI	EI	OPN	ENC
5.7E+04	0.0E+00	0.0E+00	5.7E+04	9.3E-04	0.0E+00	9.3E-04	0.0E+00	0.0E+00
1.4E+05	0.0E+00	0.0E+00	1.4E+05	7.2E-04	0.0E+00	7.2E-04	0.0E+00	0.0E+00
	PPLV (mg/kg) 5.7E+04	PPLV OSVI (mg/kg) (mg/kg) 5.7E+04 0.0E+00	PPLV OSVI ESVI (mg/kg) (mg/kg) (mg/kg) 5.7E+04 0.0E+00 0.0E+00	PPLV OSVI ESV! PPLV (mg/kg) (mg/kg) (mg/kg) (mg/kg) 5.7E+04 0.0E+00 0.0E+00 5.7E+04	PPLV OSVI ESVI PPLV EI (mg/kg) (mg/kg) (mg/kg) (mg/kg) 5.7E+04 0.0E+00 0.0E+00 5.7E+04 9.3E-04	PPLV OSVI ESVI PPLV EI EI (mg/kg) (mg/kg) (mg/kg) 5.7E+04 0.0E+00 0.0E+00 5.7E+04 9.3E-04 0.0E+00	PPLV OSVI ESVI PPLV EI EI EI (mg/kg) (mg/kg) (mg/kg) 5.7E+04 0.0E+00 0.0E+00 5.7E+04 9.3E-04 0.0E+00 9.3E-04	PPLV OSVI ESV! PPLV EI EI EI OPN (mg/kg) (mg/kg) (mg/kg) (mg/kg) 5.7E+04 0.0E+00 0.0E+00 5.7E+04 9.3E-04 0.0E+00 9.3E-04 0.0E+00

2.31 SITE NCSA-9g: SECTION 26 - SUSPECTED METHYLENE CHLORIDE DETECTION (formerly Section 26-Uncontaminated; ESE, 1987j/RIC 87293R02; Section 26-Nonsource Area; ESE, 1988q/RIC 87293R02A)

2.31.1 Site-Specific Considerations

Figure NCSA-9g-1 and Tables NCSA-9g-1 and NCSA-9g-2 depict the target contaminants for Site NCSA-9g. Boring 4533 was included in this exposure assessment, consistent with the North Central SAR. The historical search conducted for Site NCSA-9g revealed that methylene chloride was suspected to be present, however, no chemicals from the RMA target contaminant list were detected in the soil during the Phase I and Phase II investigations (ESE, 1987j/RIC 87293R02).

2.31.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9g are shown in Figure NCSA-9g-1. Table NCSA-9g-1 shows that no target contaminants were found above the indicator level. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-9g-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.31.3 Site Exposure Summary

Tables NCSA-9g-3 through NCSA-9g-7 present Draft PPLVs and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9g is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity.

No soil contaminants are shown on Table NCSA-9g-1, therefore, no COCs were identified for this site. Site NCSA-9g is designated as a Priority 2 site.

The following groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

• Benzene (enclosed)

- Chloroform (enclosed)
- 1,1-Dichloroethylene (enclosed)
- Dicyclopetadiene (enclosed)
- Tetrachloroethylene (enclosed)
- 1,2-Dichloroethane (enclosed)

TABLE NCSA-9g-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9g

Ser.

•	ig ber	
Horizon 2	Boring Number	;
	Depth (ft)	;
Horizon 1	Max. (ug/g)	;
	Boring Number	;
	Depth (ft)	;
	Max. (ug/g)	;
	Contaminant	None

NCSA North Central Study Area
Max. Max num
ug/g nicrogram per gram
ft foot/feet

TABLE NCSA-9g-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-9g

AVERAGE SITE DEPTH TO GROUNDWATER: 46 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
		06157	07/27/00
1,1-DICHLOROETHYLENE	230	26157	07/27/88
1,1-DICHLOROETHANE	6.7	26133	08/11/88
1,2-DICHLOROETHYLENE	14	26133	02/10/89
1,2-DICHLOROETHANE	950	26133	02/10/89
M-XYLENE	13	26133	11/16/88
ALDRIN	10	26157	11/21/88
ATRAZINE	92	26157	11/21/88
BICYCLOHEPTADIENE	1100	26133	01/21/88
BENZOTHIAZOLE	26	26133	11/16/88
BENZENE	520	26133	08/11/88
METHYLENE CHLORIDE	1300	26133	02/10/89
CHLOROFORM	86000	26133	11/16/88
HEXACHLOROCYCLOPENTADIENE	10	26133	08/11/88
CHLOROBENZENE	19	26133	02/10/89
CHLORDANE	98	26157	02/13/89
CHLOROPHENYLMETHYL SULFIDE	790	26133	05/4/88
CHLOROPHENYLMETHYL SULFOXID	E 200	26133	11/16/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-9g-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-9g

AVERAGE SITE DEPTH TO GROUNDWATER: 46 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
CHLOROPHENYLMETHYL SULFONE	860	26157	07/27/88
DIBROMOCHLOROPROPANE	53	26133	01/21/88
DICYCLOPENTADIENE	1500	26133	01/21/88
DIISOPROPYLMETHYL PHOSPHONAT	E 1100	26157	11/21/88
DITHIANE	180	26133	11/16/88
DIELDRIN	1.8	26157	11/21/88
DIMETHYL DISULFIDE	7.0	26133	11/16/88
DIMETHYLMETHYL PHOSPHONATE	1300	26133	02/10/89
ENDRIN	1.1	23007	01/15/88
ETHYLBENZENE	13	26133	08/11/88
ISODRIN	1.5	26157	11/21/88
TOLUENE	280	26133	02/10/89
METHYLISOBUTYL KETONE	350	26133	02/10/89
MALATHION	2.3	26157	02/13/89
1,4-OXATHIANE	23	26133	11/16/88
PPDDE	0.85	26157	07/27/88
PPDDT	0.79	26157	02/13/89

TABLE NCSA-9g-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9g

AVERAGE SITE DEPTH TO GROUNDWATER: 46 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
PARATHION	15	26157	11/21/88
SUPONA	1.3	26157	02/13/89
TETRACHLOROETHYLENE	1100	26133	05/4/88
TRICHLOROETHYLENE	230	26157	11/21/88
O, P-XYLENE	75	26133	08/11/88

NCSA-9g-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	5.1E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	3.3E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	6.8E-09
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	5.5E-06
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-06
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-07
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0£+00	8.1E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-07
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.2E-09
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-09
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	4.1E-08
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.7E-07
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	6.9E-05
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-09
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.3E-04
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	3.3E-02
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	2.9E-03
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	2.6E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.0E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	3.8E-11
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	5.7E-09
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.4E-05
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-08
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	6.6E-14
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-08
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-04
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0. 0 E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-11
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-04
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	2.7E-08
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-04
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	7.9E-09
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	4.5E-08

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9g-4 EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI EI	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	5.1E-06
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	2.0E-13
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	3.3E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	6.8E-09
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	5.5E-0
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-0
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-07
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.1E-03
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-07
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.2E-09
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-09
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	4.1E-08
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.7E-0
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	6.9E-0
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	υ 1E+00	0.0E+00	1.1E-09
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.9E+00	0.0E+00	0.0E+00	3.3E-04
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	3.3E-0
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	2.9E-0
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	2.6E-0
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-0
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	4.0E-0
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	3.8E-1
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	5.7E-09
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.4E-05
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-08
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	6.6E-14
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-0
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.6E-04
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-1
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-04
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	2.7E-0
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-04
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	7.9E-09
D.P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	4.5E-08

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9g-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPI
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	7.7E-0
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-1
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-0
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+0	4.4E-0
BICYCLOHEPTADIENE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+C	5.6E-0
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	3.5E-0
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.QE+00	0.0E+00	6.6E-0
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1,2E-0
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-0
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-0
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	6.4E-0
PPDDE	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	6.1 0
PPDDT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	4.1E-0
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	1.0E-0
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	1.7E-0
1.2-DICHLOROETHANE	3.9E+01	0.08+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	5.0E-0
1,1-DICHLOROETHYLENE	5.9E+00	0.0£+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	4.9E-0
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-0
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0E+00	0.0E+00	3.9E-0
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.06+00	0.0E+00	0.0E+00	1.0E-0
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.7~+04	0.0E+00	0.0E+00	0.0E+00	2.6E-0
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	2.5E-1
ETHYLBENZENE	3.5E+05	0.0E+00	3.5E+05	0.0E+00	0.0E+00	0.0E+00	3.7E-0
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	3.5E-0
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-0
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-1
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	9.3E-0
METHYLENE CHLORIDE	4.5E+02	0.0E+00	4.5E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-0
1.4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	6.7E-1
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-1
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	4.7E-0
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	1.7E-0
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-0
M-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	5.1E-0
O,P-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	2.9E-0

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9g-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	9.1E-03
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-09
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	5.8E-01
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-05
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	2.9E-02
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	4.1E-03
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	5.5E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.4E+01
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	9.2E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-05
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	5.3E-06
PPDDE	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	7.2E-05
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	4.9E-04
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-01
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-0
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	5.9E-01
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0E+00	0.0E+00	5.8E+01
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.5E+0
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	4.6E-05
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	8.4E-05
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-04
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	2.0E-07
ETHYLBENZENE	4.6E+05	0.0E+00	4.6E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-05
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-01
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.7E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-10
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	7.6E-05
METHYLENE CHLORIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-01
1,4-OXATHIANE	1.4E+05	0. 0E+ 00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	5.5E-08
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	1.5E-10
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	5.5E-01
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	1.4E-04
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-01
1-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	4.2E-05
D,P-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	2.4E-04

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9g-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL MORKERS

CONTABONANT	DIRECT		RECT	CUMULATIVE	DIRECT		CUMULATIVE		VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	ΕI	EI	El	OPN	ENC
ALDRIN	1,2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	3.9E-05	2.7E-0
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-12	1.0E-0
BENZENE	6,7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	2.4E·03	1.7E+0
BENZOTHIAZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	5.1E-08	3.6E-0
BICYCLOHEPTADIENE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-05	2.9E-0
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.7E-05	1.2E-0
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	7.7E-07	5.5E-0
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	6.0E-02	4.3E+(
CHLOROPHENYLMETHYL SULFIDE	1,7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-06	9.2E-0
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-08	1.2E-0
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.5E-09	5.3E-0
PPDDE	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	3.0E-07	2.2E-
TDDP	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	2.1E-06	1.5E-0
IBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	5.2E-04	3.7E-
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	8.6E-09	6.1E-
.2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	2.56-03	1.8E+
,1-DICHLOROETHYLENE	3.2E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	2.4E-01	1.7E+
,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+
ICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-02	1.5E+
IELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	1.9E-07	1.4E-
IIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-07	8.4E-0
IMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-07	2.1E-1
IMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+
ITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
NDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.9E-10	2.0E-0
THYLBENZENE	8.5E+04	0.0E+00	0.0E+00	8.5E+04	0.0E+00	0.0E+00	0.0E+00	4.2E-08	3.0E-0
EXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	4.0E-04	2.9E-0
SODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-07	1.7E-0
ALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-13	3.5E-1
ETHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-07	7.6E-0
ETHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-03	8.8E-0
,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	7.7E-11	5.5E-0
UPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-13	1.5E-1
ETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-03	1.6E+0
OLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	2.0E-07	1.4E-0
RICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	9.4E-04	6.7E-0
-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	5.9E-08	4.2E-0
,P-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	3.3E-07	2.4E-0

2.32 SITE NCSA-9h: SECTION 26 - CADMIUM DETECTION (formerly Section 26-Uncontaminated; ESE, 1987j/RIC 87293R02; Section 26-Nonsource Area; ESE, 1988q/RIC 87293R02A)

2.32.1 Site-Specific Considerations

Figure NCSA-9h-1 and Tables NCSA-9h-1 and NCSA-9h-2 depict the target contaminants for Site NCSA-9h. Borings 4512 and 4683 through 4685 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9g (ESE, 1987j/RIC 87293R02).

2.32.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9h are shown in Figure NCSA-9h-1. Table NCSA-9h-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Table NCSA-9h-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.32.3 Site Exposure Summary

Tables NCSA-9h-3 through NCSA-9h-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9h is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Cadmium			Direct		Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs. Site NCSA-9h is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-9h-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9h

		Horizon 1	j		Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Cadmium	6.5	Comp ^{1/} 0-1, 4-5	4512	ŀ	i	ŀ

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

2-352

TABLE NCSA-9h-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9h

AVERAGE SITE DEPTH TO GROUNDWATER: 46 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
BENZENE	6.4	26159	01/24/89
CHLOROFORM	1.5	26159	01/24/89
CHLOROBENZENE	150	26159	01/24/89
TOLUENE	1.5	26159	01/24/89
TETRACHLOROETHYLENE	1.3	26159	01/24/89
TRICHLOROETHYLENE	5.8	26159	01/24/89

NUTA-9h-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE EI	VEI OPN
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-07
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0. 0E+0 0	2.2E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.9E-09
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-08
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.0E-12
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	8.8E-08
CADMIUM	4.5E+02	0.0E+00	4.5E+02	1.4E-02	0.0E+00	1.4E-02	0.0E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9h-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT E1	EI	OPN
8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-07
1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.2E-08
4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.3E+00	3.9E-09
5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.0E-08
2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	4.0E-12
2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	8.8E-08
4.5E+02	0.0E+00	4.5E+02	1.4E-02	0.0E+00	1.4E-02	0. 0E+0 0
	8.6E+02 1.6E+05 4.0E+03 5.1E+02 2.5E+06 2.3E+03	PPLV PPLV (mg/kg) (mg/kg) 8.6E+02 0.0E+00 1.6E+05 0.0E+00 4.0E+03 0.0E+00 5.1E+02 0.0E+00 2.5E+06 0.0E+00 2.3E+03 0.0E+00	8.6E+02 0.0E+00 8.6E+02 1.6E+05 0.0E+00 1.6E+05 4.0E+03 0.0E+00 4.0E+03 5.1E+02 0.0E+00 5.1E+02 2.5E+06 0.0E+00 2.5E+06 2.3E+03 0.0E+00 2.3E+03	PPLV PPLV PPLV EI (mg/kg) (mg/kg) (mg/kg) 8.6E+02 0.0E+00 8.6E+02 0.0E+00 1.6E+05 0.0E+00 1.6E+05 0.0E+00 4.0E+03 0.0E+00 4.0E+03 0.0E+00 5.1E+02 0.0E+00 5.1E+02 0.0E+00 2.5E+06 0.0E+00 2.5E+06 0.0E+00 2.3E+03 0.0E+00 2.3E+03 0.0E+00	PPLV PPLV (mg/kg) (mg/kg) 8.6E+02 0.0E+00 8.6E+02 0.0E+00 0.0E+00 1.6E+05 0.0E+00 1.6E+05 0.0E+00 0.0E+00 4.0E+03 0.0E+00 4.0E+03 0.0E+00 0.0E+00 5.1E+02 0.0E+00 5.1E+02 0.0E+00 0.0E+00 2.5E+06 0.0E+00 2.5E+06 0.0E+00 0.0E+00 2.3E+03 0.0E+00 2.3E+03 0.0E+00 0.0E+00	PPLV PPLV (mg/kg) (mg/kg) 8.6E+02 0.0E+00 8.6E+02 0.0E+00 0.0E+00 0.0E+00 1.6E+05 0.0E+00 1.6E+05 0.0E+00 0.0E+00 0.0E+00 4.0E+03 0.0E+00 4.0E+03 0.0E+00 0.0E+00 0.0E+00 5.1E+02 0.0E+00 5.1E+02 0.0E+00 0.0E+00 0.0E+00 2.5E+06 0.0E+00 2.5E+06 0.0E+00 0.0E+00 0.0E+00 2.3E+03 0.0E+00 2.3E+03 0.0E+00 0.0E+00 0.0E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9h-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	VE I OPN
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	1.7E-06
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-07
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	5.9E-08
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-07
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	2.6E-11
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.3E-06
CADMIUM	5.8E+01	0.0E+00	5.8E+01	1.1E-01*	0.0E+00	1.1E-01*	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9h-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	7.1E-03
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-03
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.5E-04
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-04
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	7.7E-07
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	5.7E-03
CADMIUM	3.6E+02	0.0E+00	3.6E+02	1.8E-02	0.0E+00	1.8E-02	0.0E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9h-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	,	VEI
CONTAMINANT	PPLV (mg/kg)	OSV1 (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	E1	EI	OPN	ENC
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	8.3E-07	2.1E-02
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-07	4.3E-03
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	2.9E-08	7.5E-04
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0€+00	7.7E-08	2.0E-03
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-11	7.7E-07
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-07	1.7E-02
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	8.5E-01*	0.0E+00	8.5E-01*	0.0E+00	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

2.33 SITE NCSA-9i: SECTION 26 - BUTOXYETHANOL DETECTION (formerly Section 26-Uncontaminated; ESE, 1987j/RIC 87293R02; formerly Section 26-Nonsource Area; ESE, 1988q/RIC 87293R02A)

2.33.1 Site-Specific Considerations

Figure NCSA-9i-1 and Table NCSA-9i-1 depict the target contaminants for Site NCSA-9i. Boring 4501 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9i (ESE, 1987j/RIC 87293R02).

2.33.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9i are shown in Figure NCSA-9i-1. 2-Butoxyethanol, occurring in Boring 4501 (0-1/4-5 ft), was not included in this figure since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown in this figure, this nontarget compound was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-9i-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Table NCSA-9i-1 shows that no target contaminants were found above the indicator level. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Based on available groundwater data from the first quarter 1987 to the first quarter 1989 sampling period, no evidence of groundwater contamination beneath this site was found (see Volume VI-A).

2.33.3 Site Exposure Summary

Only nontarget soil contaminants are shown on Table NCSA-9i-1. Since nontarget contaminants (excluding 1,1,2,2-tetrachloroethane) were not assessed using the PPLV methodology, no COCs were identified for this site. Site NCSA-9i is designated as a Priority 2 site.

SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9i

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
2-Butoxyethanol ^{1/}	2.0	Comp ^{2/} 0-1, 4-5	4501	2.0	Comp 0-1, 4-5	4501

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A. 2/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

2~361

2.34 SITE NCSA-9j: SECTION 26 - MERCURY DETECTION (formerly Section 26-Uncontaminated; ESE, 1987j/RIC 87293R02; Section 26-Nonsource Area; ESE, 1988q/RIC 89293R02A)

2.34.1 Site-Specific Considerations

Figure NCSA-9j-1 and Tables NCSA-9j-1 and NCSA-9j-2 depict the target contaminants for Site NCSA-9j. Borings 4527 and 4686 through 4771 were included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9j (ESE, 1987j/RIC 87293R02).

2.34.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9j are shown in Figure NCSA-9j-1. Table NCSA-9j-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Table NCSA-9j-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.34.3 Site Exposure Summary

Tables NCSA-9j-3 through NCSA-9j-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9j is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
None	**				

The results of the soil exposure summary indicate that there are no COCs. Site NCSA-9j is designated as a Priority 2 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-9j-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9j

		Horizon 1		, 1	Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Mercury	0.11	Comp ^{1/} 0-1, 4-5	4527	1	1	1

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

TABLE NCSA-9j-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-9j

AVERAGE SITE DEPTH TO GROUNDWATER: 34 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ALDRIN	0.66	26083	02/15/89
ATRAZINE	6.0	26083	11/17/88
CHLOROFORM	0.93	26076	01/26/88
DIISOPROPYLMETHYL PHOSPHONAT	E 400	26076	01/26/88
DIELDRIN	8.7	26083	11/17/88
DIMETHYLMETHYL PHOSPHONATE	8.2	26083	11/17/88
ENDRIN	0.29	26076	01/26/88
ISODRIN	0.41	26083	02/15/89
MALATHION	1.6	26083	11/17/88
PPDDE	0.14	26083	02/15/89
PPDDT	0.086	26083	02/15/89
PARATHION	1.0	26083	11/17/88
SUPONA	1.6	26083	11/17/88

NCSA-9j-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

	DIRECT	INDIRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VE I
CONTAMINANT	PPLV	PPLV	PPLV	El	Εl	El	OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	3.2E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-15
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.3E-09
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	6.2E-10
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.8E-09
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-10
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.68+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.4E-10
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	9.3E-13
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	8.1E-10
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.3E-15
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	6.4E-14
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.3E-15
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.3E-05	0.0E+00	3.3E-05	0.0E+00

NCSA-9j-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

	DIRECT	INDIRECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	VEI
CONTAMINANT	PPLV	PPLV	PPLV	EI	EI	El	OPN
	(mg/kg)	(mg/kg)	(mg/kg)				
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	3.2E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-15
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.3E-09
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	6.2E-10
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	C.0E+00	0.0E+00	2.8E-09
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-10
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.4E-10
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	9.3E-13
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	8.1E-10
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.3E-15
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	6.4E-14
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.3E-15
MERCURY	3.3E+03	0.0E+00	3.3E+03	3.3E-05	0.0F-30	3.3E-05	0.0E+00

NCSA-9j-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I OPN
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	4.8E-07
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0€+00	0.0E+00	0.0E+00	7.8E-15
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-07
PPODE	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	9.3E-09
PPDDT	1.0E+01	0.0E+0∪	1.0E+01	0.0E+00	0.0E+00	0.0E+00	4.2E-08
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0€+00	0.0E+00	1.9E-09
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0E+00	0.0E+00	1.8E-07
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.CE+00	2.8E+05	0.0E+60	0.0E+00	0.0E+00	3.5E-09
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	6.0E-12
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	5.3E-09
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-14
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-13
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-14
MERCURY	2.0E+03	0.0E+00	2.0E+03	5.6E-05	0.0E+00	5.6E-05	0.0E+00

NCSA-9j-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT E)	EI	VEI
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	9.0E-04
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-10
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.3E-04
PPDDE	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	1.7E-05
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.05+00	0.0E+00	7.9E-05
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	3.5E-06
DIELDRIN	2.0E+00	0.0E+00	2.0€+00	0.0E+00	0.0E+00	0.0E+00	3.3E-04
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-05
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	7.8E-08
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	6.8E-05
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-10
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	5.4E-09
SUPOMA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-10
MERCURY	1.4E+03	0.08+00	1.4E+03	7.9E-05	0.0E+00	7.9E-05	0.0E+00

NCSA-9j-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	•	Æ I
CONTAMENANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	ENC
ALDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-07	2.7E-03
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	9.1E-15	1.0E-10
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	6.2E-08	6.9E-04
PPDDE	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.06+00	0.0E+00	0.0E+00	4.6E-09	5.2E-05
PPODT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	2.1E-08	2.4E-04
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	9.5E-10	1.1E-05
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	8.8E-08	9.9E-04
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	4.1E-09	4.6E-05
IMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	0.0E+00	0.08+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	7.0E-12	7.8E-08
SODRIN	5.9E+01	0.0E+00	0.06+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	6.1E-09	6.8E-05
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.2E-14	3.6E-10
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+0G	0.0E+00	4.8E-13	5.4E-09
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-14	2.8E-10
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	2.4E-04	0.0E+00	2.4E-04	0.0E+00	0.0E+00

2.35 SITE NCSA-9k: SECTION 26 - TRICHLOROPROPENE DETECTION (formerly Section 26-Uncontaminated; ESE, 1987j/RIC 87293R02; Section 26-Nonsource Area; ESE, 1988q/RIC 87293R02A)

2.35.1 <u>Site-Specific Considerations</u>

Figure NCSA-9k-1 and Tables NCSA-9k-1 and NCSA-9k-2 depict the target contaminants for Site NCSA-9k. Boring 4507 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9k (ESE, 1987j/RIC 87293R02).

2.35.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9k are shown in Figure NCSA-9k-1. Trichloropropene, occurring in Boring 4507 (0-1/4-5 ft), was not included in this figure since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown in this figure, this nontarget compound was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-9k-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Table NCSA-9k-1 shows that no target contaminants were found above indicator level. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-9k-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.35.3 Site Exposure Summary

Tables NCSA-9k-3 through NCSA-9k-7 present Draft PPLVs and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9k is greater than 10 ft,

the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity.

Only nontarget soil contaminants are shown on Table NCSA-9k-1. Since nontarget contaminants (excluding 1,1,2,2-tetrachloroethane) were not assessed using the PPLV methodology, no COCs were identified for this site. Site NCSA-9k is designated as a Priority 2 site.

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-9k-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9k

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Trichloropropene"	1.0	Comp ^{2/} 0-1, 4-5	4507	1.0	Comp 0-1, 4-5	4507

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Appendix A. 2/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

TABLE NCSA-9k-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9k

AVERAGE SITE DEPTH TO GROUNDWATER: 33 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,2-DICHLOROETHANE	5.4	26006	11/21/88
ALDRIN	0.81	26006	11/21/88
ATRAZINE	24	26006	11/21/88
CHLOROFORM	1.1	26006	11/21/88
CHLOROBENZENE	5.4	26006	11/21/88
CHLOROPHENYLMETHYL SULFONE	660	26006	11/21/88
DIBROMOCHLOROPROPANE	0.26	26006	11/21/88
VAPONA	0.88	26006	11/21/88
DIISOPROPYLMETHYL PHOSPHONA	TE 980	26006	11/21/88
DITHIANE	220	26006	11/21/88
DIELDRIN	0.17	26006	11/21/88
ENDRIN	0.12	26006	11/21/88
ISODRIN	0.12	26006	11/21/88
MALATHION	6.0	26006	11/21/88
1,4-OXATHIANE	14	26006	11/21/88
PPDDT	0.14	26006	11/21/88
PARATHION	4.6	26006	11/21/88

TABLE NCSA-9k-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9k

AVERAGE SITE DEPTH TO GROUNDWATER: 33 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE	
SUPONA	3.8	26006	11/21/88	
TETRACHLOROETHYLENE	1.1	26006	11/21/88	
TRICHLOROETHYLENE	2.6	26006	11/21/88	

NCSA-9k-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-15
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.6E-09
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.2E-11
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	1.8E-09
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-08
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	6.8E-08
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	8.7E-11
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.1E-10
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-13
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	9.2E-1
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	6.2E-1
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-13
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.1E-1
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-0
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	5.2E-0
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	7.4E-1

NCSA-9k-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI EI	VE I OPN
ALDRIN	1.5E+00	0.0€+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-15
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.6E-09
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.2E-11
PPODT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	1.8E-09
D I BROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-08
1,2-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0. 0E+0 0	6.8E-08
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	8.7E-11
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.1E-10
DITHIANE	8.3E+04	0.06+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-13
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	9.2E-11
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	6.2E-15
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-13
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.1E-15
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-08
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	5.2E-08
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	7.4E-12

NCSA-9k-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMENANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	OPN VEI
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	2.3E-07
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-14
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	6.8E-09
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	5.5E-08
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0€+00	4.0E-10
PPOOT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	2.6E-08
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-07
1,2-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	1.0E-06
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0E+00	0.0E+00	1.3E-09
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	3.38-09
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	1.0E-12
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	5.9E-10
HALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.0E-14
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	7.2E-13
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-14
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	1.7E-07
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	7.9E-07
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-10

NCSA-9k-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	EI	VE I ENC
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	1.1E-03
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	4.2E-10
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	2.4E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.8E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-05
PPDDT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	1.38-04
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	9.3E-04
1,2-DICHLOROETHANE	3.5E+02	0.0E+00	3.5E+02	0.0E+00	0.0E+00	0.0E+00	5.2E-03
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	6.7E-06
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-04
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	3.6E-08
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	2.1E-05
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	1.4E-09
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	2.6E-08
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	7.1E-10
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	8.6E-04
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	4.0E-03
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	5.6E-07

NCSA-9k-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	1	/E1
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	ENC
ALDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	1.1E-07	3.4E-03
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-14	4.2E-10
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	7.9E-09	2.4E-04
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0€+00	2.7E-08	8.3E-04
CHLOROPHENYLMETNYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.6E-10	1.4E-05
PPODT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-08	4.0E-04
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	9.1E-08	2.8E-03
1,2-DICHLOROETHANE	2.2E+01	0.0E+00	0.0E+00	2.2E+01	0.0E+00	0.0E+00	0.0E+00	5.1E-07	1.6E-02
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	6.5E-10	2.0E-05
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	3.8E-09	1.2E-04
DITHIANE	8.5E+03	0.0E^90	0.9E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.2E-12	3.6E-08
ISODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+0G	0.0E+00	6.9E-10	2.1E-05
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.7E-14	1.4E-09
1,4-OXATHIANE	2.5E+04	0.0E+00	0.GE+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	8.4E-13	2.6E-08
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+^0	0.0E+00	0.0E+00	2.3E-14	7.1E-10
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	8.4E-08	2.6E-03
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	3.9E-07	1.2E-02
VAPONA	5.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	5.5E-11	1.7E-06

2.36 NCSA-91: SECTION 27 - ARSENIC DETECTION (formerly Section 27-Nonsource Area; ESE, 1987o/RIC 88013R02)

2.36.1 Site-Specific Considerations

Figure NCSA-91-1 and Table NCSA-91-1 depict the target contaminants for Site NCSA-91. Boring 5182 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-91 (ESE, 1987o/RIC 88013R02).

2.36.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-91 are shown in Figure NCSA-91-1. Table NCSA-91-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Based on available groundwater data from the first quarter 1987 to the first quarter 1989 sampling period, no evidence of groundwater contamination beneath this site was found (see Volume VI-A).

2.36.3 Site Exposure Summary

Tables NCSA-91-2 through NCSA-91-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Arsenic	Direct	Direct	Direct	Direct	Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs. Site NCSA-91 is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-91-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-91

	Boring Number	1	
Horizon 2	Depth (ft)	1	
1	Max. (ug/g)	1	
	Boring Number	5182	
Horizon 1	Depth (ft)	Comp" 0-1,	
	Max.	12	
		Contaminant	

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

NCSA-91-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT E1	CUMULATIVE	OPN VEI
ARSENIC	2.2E+01	0.06+00	2.2E+01	5.Æ-01*	0.0E+00	5.6E-01*	0.0€+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-91-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE EI	VE I OPN
ARSENIC	2.2E+01	0.0E+00	2.2E+01	5.6E-01*	0.0E+00		0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-91-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ARSENIC	3.9E+00	0.0E+00	3.9E+00	3.0E+00*	0.0E+00	3.0E+00*	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-91-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I ENC
ARSENIC	2.06+01	0.0E+00	2.0E+01	6.0E-01*	0.0E+00	6.0E-01*	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-91-6 EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDI OSVI (mg/kg)	RECT ESVI (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	OPN	/E I Enc
ARSENIC	1.6E+00	0.0E+00	0.06+00	1.6E+00	7.4E+00*	0.0E+00	7.4E+00*	0.0€+00	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

2.37 SITE NCSA-9m: ZINC DETECTION IN BEDROCK (formerly Section 35-6: Possible Munitions Test Area; ESE, 1988aa/RIC 88293R04)

2.37.1 Site-Specific Considerations

Figure NCSA-9m-1 and Tables NCSA-9m-1 and NCSA-9m-2 depict the target contaminants for Site NCSA-9m. Boring 4070 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from RMA target contaminant list were suspected to be present in Site NCSA-9m (ESE, 1988aa/RIC 88293R04).

2.37.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9m are shown in Figure NCSA-9m-1. Table NCSA-9m-1 shows that no target contaminants were found above the indicator level. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-9m-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.37.3 Site Exposure Summary

Tables NCSA-9m-3 through NCSA-9m-7 present Draft PPLVs and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9m is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity.

No soil contaminants are shown on Table NCSA-9m-1, therefore, no COCs were identified for this site. Site NCSA-9m is designated as a Priority 2 site.

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

Prepared for:

Program Manager's Office for Rocky Mountain Arsenal Cleanup Aberdeen Proving Ground, Maryland

SOURCE: ESE. 1987

FIGURE NCSA - 9m -1

Phase I and Phase II Analytes Detected Within or Above Indicator Levels

Rocky Mountain Arsenal
Prepared by Ebasco Services Incorporated

TABLE NCSA-9m-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9m

	Boring Number	
2		1
Horizon 2	Depth (ft)	ł
	Max. (ug/g)	:
	Boring Number	;
Horizon 1	Depth (ft)	;
	Max. (ug/g)	:
	Contaminant	None

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

TABLE NCSA-9m-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9m

AVERAGE SITE DEPTH TO GROUNDWATER: 41 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
ALDRIN	0.21	35091	01/23/89
CHLOROFORM	460	35091	01/23/89
CHLOROBENZENE	70	35091	01/23/89
DIISOPROPYLMETHYL PHOSPHONAT	PE 93	35091	01/23/89
TETRACHLOROETHYLENE	1.4	35091	01/23/89
TRICHLOROETHYLENE	4.2	35091	01/23/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-9m-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMENANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE	VE1 OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.06+00	4.6E-09
CHLOROFORM	4.0E+03	0.0E+Q0	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-06
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.8E-11
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-08
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	9.9E-08

NCSA-9m-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI EI	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	4.6E-09
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	1.9E-06
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-08
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.8E-11
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-08
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	9.9E-08

NCSA-9m-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	6.9E-08
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	2.8E-05
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-07
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	3.7E-10
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	2.5E-07
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.5E-06

NCSA-9m-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT E1	CUMULATIVE	VE I
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0€+00	8.9E-02
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0€+00	2.3E-03
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	8.2E-06
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	7.8E-04
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	4.7E-03

NCSA-9m-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULAT I VE	DIRECT	INDIRECT	CUMULATIVE	,	/E I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	El	EI	EI	OPN	ENC
ALDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	3.4E-08	6.5E-04
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-05	2.7E-01
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-07	2.3E-03
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	4.3E-10	8.2E-06
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-07	2.3E-03
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	7.4E-07	1.4E-02

2.38 SITE NCSA-9n: SECTION 35 - TRICHLOROPROPENE DETECTION (formerly Section 35-Uncontaminated; ESE 1987m/RIC 87313R01; Section 35-Nonsource Area; ESE, 1988t/RIC 87313R01A)

2.38.1 Site-Specific Considerations

Figure NCSA-9n-1 and Table NCSA-9n-1 depict the target contaminants for Site NCSA-9n. Boring 4024 was included in this exposure assessment, consistent with the North Central SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9n (ESE, 1987m/RIC 87313R01).

2.38.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9n are shown in Figure NCSA-9n-1. Toluene was detected in the nontarget analysis, but it is still considered a target contaminant in this exposure assessment (see Appendix A). Trichloropropene, occurring in Boring 4024 (0-1/4-5 ft), was not included in this figure, since it was not considered a target contaminant during the Phase I and Phase II investigations. Although not shown in this figure, trichloropropene was included in the North Central SAR and in this exposure assessment because it passed through the screening process performed in the RMA Chemical Index (EBASCO, 1988a/RIC 88357R01).

Table NCSA-9n-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury and CRLs for organic contaminants from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. Table NCSA-9n-1 shows that no target contaminants were found above indicator level. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). Based on available groundwater data from the first quarter 1987 to the first quarter 1989 sampling period, no evidence of groundwater contamination beneath this site was found (see Volume VI-A).

2.38.3 Site Exposure Summary

Tables NCSA-9n-2 through NCSA-9n-6 present Draft PPLVs and EIs for each site contaminant. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
None					

The results of the soil exposure summary indicate that there are no COCs. Site NCSA-9n is designated as a Priority 2 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

TABLE NCSA-9n-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9n

		Horizon 1		H	Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Trichloropropene ^{1/}	0.40	$Comp^{\mu}$ 0-1,	4024	0.40	Comp 0-1,	4024
Toluene ^{1/}	0.3	4-5 Comp 0-1, 4-5	4024	0.3	4-5 Comp 0-1, 4-5	4024

1/ Nontarget contaminant. Refer to the exposure assessment nontarget screen in Apprendix A. 2/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g fi

NCSA-9n-2
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
TOLUENE	2.5E+06	1.4E+09	2.5E+06	1.2E-07	2.2E-10	1.2E-07	0.0E+00

NCSA-9n-3
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE	VE!
TOLUENE	2.5E+06	1.4E+09	2.5E+06	1.2E-07	2.2E-10	1.2E-07	0.0E+00

NCSA-9n-4
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
TOLUENE	1.1E+06	4.9E+08	1.1E+06	2.8E-07	6.1E-10	2.8E-07	0.0E+00

NCSA-9n-5
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I
TOLUENE	1.4E+06	1.9E+04	1.9E+04	2.2E-07	1.6E-05	1.6€-05	0.0E+00

NCSA-9n-6
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT INDIRECT		RECT	CUMULATIVE DIRECT		INDIRECT	CUMULATIVE	VEI	
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	El	E1	EI	OPN	ENC
TOLUENE	2.6E+05	1.8E+08	5.7E+04	4.6E+04	1.2E-06	5.3E-06	6.5E-06	0. 0E+0 0	0.0E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

2.39 SITE NCSA-90: SECTION 35 - ARSENIC DETECTION (formerly Section 35-Uncontaminated; ESE, 1987m/RIC 87313R01; Section 35-Nonsource Area; ESE, 1988t/RIC 87313R01A)

2.39.1 Site-Specific Considerations

Figure NCSA-90-1 and Tables NCSA-90-1 and NCSA-90-2 depict the target contaminants for Site NCSA-90. Borings 4045 and 4135 through 4137 were included in this exposure assessment, consistent with the North Plants SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-90 (ESE, 1987m/RIC 87313R01).

2.39.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-90 are shown in Figure NCSA-90-1. Table NCSA-90-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). So organic contaminants were detected at this location. Table NCSA-90-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.39.3 Site Exposure Summary

Tables NCSA-90-3 through NCSA-90-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-90 is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Arsenic	Direct	Direct	Direct	Direct	Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs. Site NCSA-90 is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminant results in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

• Chloroform (enclosed)

TABLE NCSA-90-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-90

多

表

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
	12	Comp ^{1/} 0-1, 4-5	4045	;	1	ŀ

1/ Comp Composite sample from 0-1 ft and 4-5 ft depth intervals.

North Central Study Area Maximum microgram per gram foot/feet NCSA Max. ug/g ft

2-414

TABLE NCSA-90-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-90

AVERAGE SITE DEPTH TO GROUNDWATER: 13 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	1.8	35023	02/3/88
ALDRIN	0.066	35023	12/9/88
CARBON TETRACHLORIDE	1.3	35023	02/3/88
CHLOROFORM	1700	35023	12/9/88
HEXACHLOROCYCLOPENTADIENE	0.22	35023	12/9/88
CHLORDANE	0.53	35023	12/9/88
CHLOROPHENYLMETHYL SULFOXII	DE 22	35023	02/3/88
CHLOROPHENYLMETHYL SULFONE	21	35023	12/9/88
DIBROMOCHLOROPROPANE	6.3	35023	12/9/88
DIISOPROPYLMETHYL PHOSPHONA	ATE 1.8	35023	12/9/88
ENDRIN	0.12	35023	02/3/88
PARATHION	9.8	35023	12/9/88
TETRACHLOROETHYLENE	4.7	35023	12/9/88
TRICHLOROETHYLENE	1.3	35023	12/9/88

NCSA-90-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-09
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	7.4E-07
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	6.6E-10
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.6E-06
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-12
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.8E-12
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	4.4E-07
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-12
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-13
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	6.5E-08
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-13
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	7.1E-08
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	3.6E-11
TRICHLOROETHYLENE	2. 3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.8E-08
ARSENIC	2.2E+01	0.0E+00	2.2E+01	5.6E-01*	0.0E+00	5.6E-01*	0.0E+00

^{*:} El is equal to or exceeds 1.0E-01

NCSA-90-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE1 OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-09
CARSON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	7.4E-07
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	6.6E-10
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.6E-06
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-12
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.8E-12
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	4.4E-07
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-12
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-13
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	6.5E-08
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-13
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	7.1E-08
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	3.6E-11
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.8E · U8
ARSENIC	2.2E+01	0.0E+00	2.2E+01	5.6E-01*	0.0E+00	5.6E-01*	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-90-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0€+00	0.0E+00	0.0E+00	2.7E-08
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-05
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	1.0E-08
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.3E-04
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-11
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.8E-11
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	6.6E-06
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	8.8E-12
ENDRIN	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-12
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	4.2E-07
PARATHION	2.15+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	2.3E-12
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-06
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-10
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	5.7E-07
ARSENIC	3.9E+00	0.0E+00	3.9E+00	3.0E+00*	0.0E+00	3.0E+00*	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-90-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT E1	INDIRECT EI	CUMULATIVE E1	VE I ENC
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	6.3E-04
CARSON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.6E-01
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	3.0E+00
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-06
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	6.0E-06
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-01
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-06
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-07
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	6.7E-02
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	3.7E-07
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-02
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	3.8E-05
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-02
ARSENIC	2.0E+01	0.0E+00	2.0E+01	6.0E-01*	0.0E+00	6.0E-01*	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

NCSA-90-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	IND	RECT	CUMUL	DIRECT	INDIRECT	CUMULATIVE	,	VE I
CONTAMINANT	PPLV	OSV1	ESVI	PPL+	EI	EI	E1	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	0.0E+00	0.08+00	1.2E-01	0.0E+00	0.0E+60	0.0E+00	1.4E-08	1.9E-03
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.06+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	5.6E-06	7.7E-01
CHLORDANE	1.5E+00	0.0E+00	0.06+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	5.0E-09	6.9E-04
CHLOROFORM	3.1E+02	0.06+00	0.0€+00	3.1E+02	0.06+00	0.0E+00	0.0E+00	6.4E-05	8.9E+00
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-11	3.1E-06
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.06+00	0.0€+00	0.0E+00	4.4E-11	6.0E-06
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0€ +00	3.3E-06	4.6E-01
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	00+30.0	0.0E+00	0.0E+00	1.0E-11	1.4E-06
ENDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0+400	0.0E+00	0.0E+00	1.6E-12	2.2E-07
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.06+00	0.0E+00	0.0E+00	4.8E-07	6.7E-02
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.06+00	0.0E+00	0.0E+00	2.7E-12	3.7E-07
TETRACHLOROETHYLENE	4.1E+01	0.06+00	0.0E+00	4.1E+01	0.08+00	0.0E+00	0.0E+00	5.3E-07	7.3E-02
1,1,1-TRICHLOROETHANE	7.8E+04	0.0€+00	0.0E+00	7.8E+04	0.08+00	0.0E+00	0.0E+00	2.7E-10	3.8E-05
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.06+00	0.0E+00	0.0E+00	2.9E-07	3.9E-02
ARSENIC	1.6E+00	0.0E+00	0.0E+00	1.6E+00	7.48+00*	0.0E+00	7.4E+00*	0.0E+00	0.0E+00

^{*:} EI is equal to or exceeds 1.0E-01

2.40 SITE NCSA-9p: SECTION 36 - ARSENIC AND MERCURY DETECTIONS (formerly Site 36-7: Solid Waste Burial/Sanitary Pit; ESE, 1988f/RIC 88063R07 and ESE, 1988bb/RIC 88063R07A; Site 36-5: Mercury Spill; ESE, 1988cc/RIC 88063R01)

2.40.1 Site-Specific Considerations

Figure NCSA-9p-1 and Tables NCSA-9p-1 and NCSA-9p-2 depict the target contaminants for Site NCSA-9p. Borings 3124 and 3125 were included in this exposure assessment, consistent with the North Plants SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9p (ESE, 1988f/RIC 88063R07).

2.40.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Sire NCSA-9p are shown in Figure NCSA-9p-1. Table NCSA-9p-1 shows that no target contaminants were found above the indicator level. Arsenic and mercury were detected in soils below 10 ft (in Horizon 2). However, they were not included in this exposure assessment and are not shown in Table NCSA-9p-1 since direct soil exposure of these compounds below 10 ft is assumed to be negligible (see Volume VI-A). Table NCSA-9p-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.40.3 Site Exposure Summary

Tables NCSA-9p-3 through NCSA-9p-7 present Draft PPLVs and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9p is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity.

No soil contaminants are shown on Table NCSA-9p-1, therefore, no COCs were identified for this site. Site NCSA-9p is designated as a Priority 2 site.

No groundwater contaminants result in an unacceptable exposure due to vapor inhalation as indicated by VEI values less than 1.

TABLE NCSA-9p-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9p

	Boring Number	:
Horizon 2	Depth (ft)	;
Hc	Max. (ug/g)	f
	Boring Number	1
Horizon 1	Depth (ft)	1
	Max. (ug/g)	i
	Contaminant	None

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

TABLE NCSA-9p-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)

FOR SITE NCSA-9p

AVERAGE SITE DEPTH TO GROUNDWATER: 35 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
BENZOTHIAZOLE	16	36112	02/11/88
CHLOROFORM	0.64	36112	02/11/88
CHLOROPHENYLMETHYL SULFOXID	E 73	36112	02/11/88
DIBROMOCHLOROPROPANE	0.45	36112	02/11/88
DITHIANE	350	36112	02/11/88
DIMETHYL DISULFIDE	1.0	36112	02/11/88
1,4-OXATHIANE	4 4	36112	02/11/88
TRICHLOROETHYLENE	0.62	36112	02/11/88

AD-A279 152 UNCLASSIFIED END FILMED DTIC

Association for Information and Image Management

1100 Wayne Avenue, Suite 1100 Silver Spring, Maryland 20910 301/587-8202

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

NCSA-9p-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	3.7E-10
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	5.3E-09
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.2E-11
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	5.1E-08
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	5.2E-10
DITHIANE	8.3E+04	0.06+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-08

NCSA-9p-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	VE I OPN
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	3.7E-10
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	5.3E-09
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	3.2E-11
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	5.1E-08
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	5.2E-10
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	3.0E-08

NCSA-9p-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I OPN
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.4E-09
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	7.9E-08
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-10
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	7.7E-07
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-09
DITHIANE	3.5E+04	0.0E+00	3.5E+U4	1.CE+00	0.0E+00	0.0E+00	0.0E+00
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	4.5E-07

NCSA-9p-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE EI	VE I
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0.0E+00	3.2E-05
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-04
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-06
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-03
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	4.5E-05
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	8.6E-04

NCSA-9p-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	1	VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	ENC
BENZOTHIAZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.06+00	0.0E+00	0.0E+00	2.7E-09	3.2E-05
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	3.9E-08	4.5E-04
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.4E-10	2.8E-06
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	3.9E-07	4.4E-03
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	3.9E-09	4.5E-05
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.06+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-07	2.6E-03

2.41 SITE NCSA-9q: MERCURY DETECTION (formerly Site 36-10: Pit; ESE, 1988g/RIC88033R02)

2.41.1 Site-Specific Considerations

Figure NCSA-9q-1 and Tables NCSA-9q-1 and NCSA-9q-2 depict the target contaminants for Site NCSA-9q. Boring 3147 was included in this exposure assessment, consistent with the North Plants SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9q (ESE, 1988g/RIC 88033R02).

2.41.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9q are shown in Figure NCSA-9q-1. Table NCSA-9q-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Table NCSA-9q-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.41.3 Site Exposure Summary

Tables NCSA-9q-3 through NCSA-9q-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9q is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Vicitor	V.sitor	Visitor	Worker	Worker
None					

The results of the soil exposure summary indicate that there are no COCs. Site NCSA-9q is designated as a Priority 2 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminants appear to result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Benzene (enclosed)
- Carbon tetrachloride (enclosed)
- Chlorobenzene (enclosed)
- Chloroform (enclosed)
- Dibromochloropropane (enclosed)
- 1,1-Dichloroethylene (enclosed)
- Dicyclopentadiene (enclosed)
- Methylene chloride (enclosed)
- Tetrachloroethylene (enclosed)
- Trichloroethylene (enclosed)

TABLE NCSA-9q-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9q

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Lead	41	0-1	3147	;	;	:
Mercury	0.17	0-1	3147	;	;	;

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

TABLE NCSA-9q-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-9q

AVERAGE SITE DEPTH TO GROUNDWATER: 19 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE		2200	36001	01/5/89
1,1,2-TRICHLOROETHANE		150	36181	05/10/88
1,1-DICHLOROETHYLENE		8.0	36001	02/11/88
1,1-DICHLOROETHANE		6.3	36076	02/8/88
1,2-DICHLOROETHYLENE		280	36181	01/5/89
M-XYLENE		510	36001	02/11/88
ALDRIN		6.3	36001	02/11/88
ATRAZINE	GT	180	36001	02/11/88
BICYCLOHEPTADIENE		390	36001	01/5/89
BENZOTHIAZOLE		6.6	36001	01/5/89
BENZENE		51000	36181	05/10/88
CARBON TETRACHLORIDE		540	36181	01/5/89
METHYLENE CHLORIDE		33000	36076	01/6/89
CHLOROFORM		30000	36076	01/6/89
HEXACHLOROCYCLOPENTADIENE		4.4	36001	01/5/89
CHLOROBENZENE		70000	36181	05/10/88
CHLORDANE		5.7	36076	01/6/89

TABLE NCSA-9q-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9q

AVERAGE SITE DEPTH TO GROUNDWATER: 19 Feet

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
CHLOROPHENYLMETHYL SULFIDE		110	36001	02/11/88
CHLOROPHENYLMETHYL SULFOXID	E	3.7	36181	10/28/87
CHLOROPHENYLMETHYL SULFONE		1300	36076	01/6/89
DIBROMOCHLOROPROPANE	GT	300	36001	01/5/89
DICYCLOPENTADIENE		92	36001	01/5/89
VAPONA		3.0	36076	01/6/89
DIISOPROPYLMETHYL PHOSPHONA	re	15	36181	01/5/89
DITHIANE	GT	160	36076	02/8/88
DIELDRIN		1.2	36001	02/11/88
DIMETHYL DISULFIDE		67	36001	01/5/89
DIMETHYLMETHYL PHOSPHONATE		110	36181	10/28/87
ENDRIN		14	36001	01/5/89
ETHYLBENZENE		640	36001	02/11/88
ISODRIN		0.55	36076	01/6/89
TOLUENE		1300	36181	05/10/88
METHYLISOBUTYL KETONE		3500	36001	02/11/88
MALATHION		5.6	36076	01/6/89

TABLE NCSA-9q-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9q

AVERAGE SITE DEPTH TO GROUNDWATER: 19 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,4-OXATHIANE	54	36076	01/6/89
PPDDE	0.17	36076	01/6/89
PPDDT	0.98	36076	01/6/89
PARATHION	15	36001	
SUPONA	18	36001	01/5/89
TETRACHLOROETHYLENE			01/5/89
	310	36001	01/5/89
TRICHLOROETHYLENE	7600	36181	05/10/88
O, P-XYLENE	1100	36181	05/10/88

NCSA-9q-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT El	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	8.8E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	8.7E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-11
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	5.4E-08 1.6E-04
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	3.7E-09
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	1.0E-05
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	7.7E-05
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.5E-10 9.2E-11
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.1E-13
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.2E-10 9.2E-09
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-05
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.05+00	3.0E-11
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-05
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.8E-06
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00 0.0E+00	4.7E-10
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00		5.9E-12
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.06+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-08
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-11
ENDRIN .	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	7.6E-09
ETHYLBENZENE	8.3E+05	0.0€+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	6.5E-07
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-10
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.05+00	4.4E-15
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-09
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-04
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-13
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-14
SUPONA	1.2E+03	0.0E+U0	1.2E+03	0.0E+00	0.0E+00	0.0E+00	2.4E-06
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	3.4E-09
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	2.3E-08
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	9.9E-0
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-04 1.9E-1
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	8.3E-09
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	1.8E-0
LEAD	1.5E+04	0.0E+00	1.5E+04	2.7E-03	0.0E+00	2.7E-03	0.0E+0
MERCURY	3.3E+03	0.0E+00	3.3E+03	5.1E-05	0.0E+00	5.1E-05	0.0E+0

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9q-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	8.8E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.0E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	8.7E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-11
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	5.4E-08
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-04
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	3.7E-09
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-05
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	7.7E-05
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	6.5E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	9.2E-11
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.1E-13
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.2E-10
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	9.2E-09
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.1E-05
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.0E-11
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	3.1E-05
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	4.8E-06
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	4.7E-10
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	5.9E-12
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1 1E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-11
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	7.6E-09
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.08+00	0.0E+00	0.0E+00	6.5E-07
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	3.1E-1
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	4.4E-1
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	3.9E-09
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-04
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-13
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-14
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	2.4E-0
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	3.4E-09
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.3E-08
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	9.9E-07
TRICHLOROETHYLENE	2.3E+03	0.0€+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.1E-04
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	1.9E-11
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	8.3E-09
D,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	1.8E-08
LEAD	1.5E+04	0.0E+00	1.5E+04	2.7E-03	0.0E+00	2.7E-03	0.0E+00
MERCURY	3.3E+03	0.0E+00	3.3E+03	5.1E-05	0.0E+00	5.1E-05	0.0E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9q-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
			 		·		
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	1.3E-06
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.06+00	0.0E+00	6.7E-14
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	1.3E-02
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.06+00	0.0E+00	3.1E-10
BICYCLOHEPTADIENE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.06+00	0.0E+00	3.5E-07
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	2.4E-03
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	5.56-08
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	6.6E-05
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.28-03
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.2E-09
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	6.0E-10
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-12
PPDDE	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	3.3E-09
PPDDT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	1.4E-07
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-04
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	4.5E-10
1,1-DICHLOROETHYLENE	5.9E+00	0.0E+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	4.7E-04
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0430.0	0.0E+00	0.0E+00	3.1E-05
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0+30.0	0.0E+00	0.0E+00	7.1E-09
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.05+00	2.8E+05	0.05+00	0.0E+00	0.0E+00	3.8E-11
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.06+00	0.0E+00	0.0E+00	6.8E-08
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.06+00	0.0E+00 0.0E+00	0.0E+00	0.0E+00 0.0E+00
DITHIANE	3.5E+04	0.0E+00 0.0E+00	3.5E+04 1.1E+03	0.0E+00 0.0E+00	0.0E+00	0.0E+00 0.0E+00	8.6E-11
ENDRIN ETUVI BENTENE	1.1E+03 3.5E+05	0.0E+00	3.5E+05	0.0E+00	0.0E+00	0.0E+00	4.9E-08
ETHYLBENZENE HEXACHLOROCYCLOPENTADIENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	4.2E-06
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-09
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	2.8E-14
METHYLISOBUTYL KETONE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	2.5E-08
METHYLENE CHLORIDE	4.5E+02	0.0E+00	4.5E+02	0.0E+00	0.0E+00	0.0E+00	1.7E-03
1.4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	1.8E-12
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	7.1E-14
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	3.6E-05
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	2.2E-08
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-07
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-05
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.7E-03
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	2.8E-10
M-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	5.4E-08
O,P-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	1.2E-07
att. terme	3.02.00	3.02.00	J	2		3 	
LEAD	9.2E+03	0.0E+00	9.2E+03	4.4E-03	0.0E+00	4.4E-03	0.0E+00
MERCURY	2.0E+03	0.0E+00	2.0E+03	8.6E-05	0.0E+00	8.6E-05	0.0E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9q-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	EI	VE En
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-0
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	7.8E-0
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	2.2E+0
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.26+04	0.0E+00	0.0E+00	0.0E+00	3.6E-0
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-0
CARBON TETRACHLORIDE	2.5E+02	0.0€+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	4.0E+0
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	9.1E-0
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	7.7E+0
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.9E+0
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-0
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	6.9E-0
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	3.8E-0
PPDDE	9.3E+01	0.0E+00	9 75 -01	0.0E+00	0.0E+00	0.0E+00	5.4E-0
PPDDT	9.3E+01	0.0E+00	9.3೬∞01	0.0E+00	0.0E+00	0.0E+00	2.3E-0
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.7E+0
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	7.4E-0
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0£+00	0.0E+00	7.8E+0
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.6E+0
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-0
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	4.4E-0
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3. 7€+04	0.0E+00	0.0E+00	0.0E+00	8.0E-0
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	4.6E+04	0.0E+00	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+0
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	9.9E-0
ETHYLBENZENE	4.6E+05	0.0E+00	4.6E+05	0.0E+00	0.0E+00	0.0E+00	5.7E-0
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	4.9E-0
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-0
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-0
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	0.0E+00	0.0E+00	2.9E-0
METHYLENE CHLORIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	2.8E+0
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	2.7E+04	0.0€+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-0
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	8.3E-0
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	6.0E-0
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	2.6E-0
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-0
1,1,2-TRICHLOROETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-0
FRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	2.8E+0
VAPONA	1.1E+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	4.7E-0
M-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	6.2E-0
O,P-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	1.36-0
LEAD	6.5E+03	0.0E+00	6.5E+03	6.3E-03	0.0E+00	6.3E-03	0.06+0
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.2E-04	0.0E+00	1.2E-04	0.0E+0

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9q-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT		RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE		VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	El	EI	OPN	EI
ALDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	6.6E-07	6.6E
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	7.8E-14	7.8E
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0E+00	0.0E+00	6.6E-03	6.6E
BENZOTHIAZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+0	E+00	0.0E+00	3.6E-10	3.6E
BICYCLOHEPTADIENE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	00+3C	0.0E+00	4.0E-07	4.0E
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-03	1.26
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	2.7E-08	2.7
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	7.7E-05	7.7E
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	5.8E-04	5.88
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-09	4.9E
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.62+50	0.0E+00	6.9E-10	6.9E
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+ 0⊍	0.0E+00	3.8E-12	3.88
PPDDE	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	1.6E-09	1.68
PPDDT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	6.9E-08	6.9
) I BROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	8.0E-05	8.0
,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.2E-10	2.28
,1-DICHLOROETHYLENE	3.2E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	2.3E-04	2.3
,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0. 0E+ 00	0.0E+00	0.0E+00	0.0E+00	0.0
ICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	3.6E-05	3.6
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	3.5E-09	3.5
ILSOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	4.4E-11	4.4
IMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	7.9E-08	8.0
IMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0
ITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0
NDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	9.9E-11	9.9
THYLBENZENE	8.5E+04	0.0E+00	0.0E+00	8.5E+04	0.0E+00	0.0E+00	0.0E+00	5.7E-08	5.7
IEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	4.9E-06	4.9
SODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-09	2.38
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-14	3.3
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	2.9E-08	2.9
METHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	8.5E-04	8.50
,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.1E-12	2.1
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	8.3E-14	8.3
ETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	1.8E-05	1.8
OLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	2.5E-08	2.6
,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	1.7E-07	1.7
,1,2-TRICHLOROETHANE	3.4E+01	0.0E+00	0.0E+00	3.4E+01	0.0E+00	0.0E+00	0.0E+00	7.4E-06	7.4
RICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	8.5E-04	8.5
/APONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	1.4E-10	1.48
				8.8E+05	0.0E+00	0.0E+00	0.0E+00	6.2E-08	6.2
I-XYLENE),P-XYLENE	8.8E+05 8.8E+05	0.0E+00 0.0E+00	0.0E+00 0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	1.3E-07	1.30
EAD	2.2E+03	0.0E+00	0.0E+00	2.2E+03	1.9E-02	0.0E+00	1.9E-02	0.0E+00	0.08
IERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	3.7E-04	0.0E+00	3.7E-04	0.0E+00	0.08

2.42 SITE NCSA-9r: CADMIUM DETECTION (formerly Site 36-10: Pit; ESE, 1988g/RIC88033R02)

2.42.1 <u>Site-Specific Considerations</u>

Figure NCSA-9r-1 and Tables NCSA-9r-1 and NCSA-9r-2 depict the target contaminants for Site NCSA-9r. Boring 3144 was included in this exposure assessment, consistent with the North Plants SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9r (ESE, 1988g/RIC 88033R02).

2.42.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminant that was detected in Site NCSA-9r are shown in Figure NCSA-9r-1. Table NCSA-9r-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Table NCSA-9r-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.42.3 Site Exposure Summary

Tables NCSA-9r-3 through NCSA-9r-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9r is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
Cadmium					Direct

Note: Direct exposure pathways for soils include soil ingestion, suspended particulate inhalation, and dermal contact.

The results of the soil exposure summary indicate that exposure to contamination from the direct pathways are the primary contributors to the exceedance of the cumulative PPLVs. Site NCSA-9r is designated as a Priority 1 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following contaminants result in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

- Benzene (enclosed)
- Carbon tetrachloride (enclosed)
- Chlorobenzene (enclosed)
- Chloroform (enclosed)
- Dibromochloropropane (enclosed)
- 1,1-Dichloroethylene (enclosed)
- Dicyclopentadiene (enclosed)
- Methylene chloride (enclosed)
- Trichloroethylene (enclosed)

TABLE NCSA-9r-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-5r

		Horizon 1			Horizon 2	
Contaminant	Max. (ug/g)	Depth (ft)	Boring Number	Max. (ug/g)	Depth (ft)	Boring Number
Cadmium	2.8	5.5-6.5	3144	í	ł	;

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foot/feet

2-446

TABLE NCSA-9r-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L)
FOR SITE NCSA-9r

AVERAGE SITE DEPTH TO GROUNDWATER: 19 Feet.

CHEMICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE		2200	36001	01/5/89
1,1,2-TRICHLOROETHANE		150	36181	05/10/88
1,1-DICHLOROETHYLENE		8.0	36001	02/11/88
1,1-DICHLOROETHANE		6.3	36076	02/8/88
1,2-DICHLOROETHYLENE		280	36181	01/5/89
M-XYLENE		510	36001	02/11/88
ALDRIN		6.3	36001	02/11/88
ATRAZINE	GT	180	36001	02/11/88
BICYCLOHEPTADIENE		390	36001	01/5/89
BENZOTHIAZOLE		6.5	36001	01/5/89
BENZENE		51000	36181	05/10/88
CARBON TETRACHLORIDE		540	36181	01/5/89
METHYLENE CHLORIDE		33000	36076	01/6/89
CHLOROFORM		30000	36076	01/6/89
HEXACHLOROCYCLOPENTADIENE		4.4	36001	01/5/89
CHLOROBENZENE		70000	36181	05/10/88
CHLORDANE		5.7	36076	01/6/89

TABLE NCSA-9r-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9r

AVERAGE SITE DEPTH TO GROUNDWATER: 19 Feet

CHENICAL	CONCENT MAXIM		LOCATION (WELL NUMBER)	SAMPLE DATE
CHLOROPHENYLMETHYL SULFIDE		110	36001	02/11/88
CHLOROPHENYLMETHYL SULFOXIO	DE	3.7	36181	10/28/87
CHLOROPHENYLMETHYL SULFONE		1300	36076	01/6/89
DIBROMOCHLOROPROPANE	GT	300	36001	01/5/89
DICYCLOPENTADIENE		92	36001	01/5/89
/APONA		3.0	36076	01/6/89
DIISOPROPYLMETHYL PHOSPHONA	ATE	15	36181	01/5/89
DITHIANE	GT	160	36076	02/8/88
DIELDRIN		1.2	36001	02/11/88
DIMETHYL DISULFIDE		67	36001	01/5/89
DIMETHYLMETHYL PHOSPHONATE		110	36181	10/28/87
ENDRIN		14	36001	01/5/89
ethylbenzene		640	36001	02/11/88
ISODRIN		0.55	36076	01/6/89
COLUENE		1300	36181	05/10/88
METHYLISOBUTYL KETONE		3500	36001	02/11/88
MALATHION		5.6	36076	01/6/89

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

TABLE NCSA-9r-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9r

AVERAGE SITE DEPTH TO GROUNDWATER: 19 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,4-OXATHIANE	. 54	36076	01/6/89
PPDDE	0.17	36076	01/6/89
PPDDT	0.98	36076	01/6/89
PARATHION	15	36001	01/5/89
SUPONA	18	36001	01/5/89
TETRACHLOROETHYLENE	310	36001	01/5/89
TRICHLOROETHYLENE	7600	36181	05/10/88
O, P-XYLENE	1100	36181	05/10/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYTE FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-9r-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE	VEI OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0€+00	9.7E-08
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-14
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0€+00	9.6E-04
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	5.3E-11
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.26+05	0.0E+00	0.0E+00	0.06+00	5.9E-08
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0€+00	1.8E-04
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0€+00	4.0E-09
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-05
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.4E-05
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0. 0E+0 0	7.2E-10
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.6E-13
PPDDE	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	2.4E-10
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0€+00	1.0E-08
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0€+00	1.2E-05
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0€+00	0.0E+00	0.06+00	3.2E-11
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	3.4E-05
1,2-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	5.3E-06
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	5.2E-10
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.06+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	6.5E-12
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-08
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	8.3E+04	0.0E+00	8.3E+04	0.0E+00	U.0E+00	0.0E+00	0.0E+00
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-11
ETHYLBENZENE	8.3E+05	0.0E+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	8.4E-09
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.1E-07
ISODRIN	5.8E+02	0.06+00	5.8E+02	0.0E+00	0.0E+00	0.0E+00	3.4E-10
MALATHION	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0€+00	4.8E-15
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	4.3E-09
METHYLENE CHLORIDE	3.3E+03	0.0E+00	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-04
1,4-OXATHIANE	2.5E+05	0.06+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-13
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-14
TETRACHLOROETHYLENE	5.1E+02	0.0€+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	3.9E-08
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	3.7E-09
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.5E-08
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-06
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-04
VAPONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-11
M-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	9.1E-09
O,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	2.0E-08
CADNIUM	4.5E+02	0.0E+00	4.5E+02	6.2E-03	0.0E+00	6.2E-03	0.GE+0C

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-91-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV	INDIRECT PPLV	CUMULATIVE PPLV	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE OP
CONTRACT	(mg/kg)	(mg/kg)	(mg/kg)	£.		EI	G.
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	9.7E-0
ATRAZINE	4.1E+04	0.0E+00	4.1E+04	0.0E+00	0.0E+00	0.0E+00	1.1E-1
BENZENE	8.6E+02	0.0E+00	8.6E+02	0.0E+00	0.0E+00	0.0E+00	9.6E-0
BENZOTHIAZOLE	3.9E+04	0.0E+00	3.9E+04	0.0E+00	0.0E+00	0.0E+00	5.3E-1
BICYCLOHEPTADIENE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	5.9E-0
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	1.8E-0
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	4.0E-0
CHLOROBENZENE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.1E-0
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	8.4E-0
CHLOROPHENYLMETHYL SULFIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	7.2E-1
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-1
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	5.6E-1
PPDDE	7.4E+01	0.0E+00	7.4E+01	C.0E+00	0.0E+00	0.0E+00	2.4E-1
PPDDT	7.4E+01	0.0E+00	7.4E+01	0.0E+00	0.0E+00	0.0E+00	1.0E-0
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.2E-0
1,1-DICHLOROETHANE	2.8E+02	0.0E+00	2.8E+02	0.0E+00	0.0E+00	0.0E+00	3.2E-1
1,1-DICHLOROETHYLENE	4.3E+01	0.0E+00	4.3E+01	0.0E+00	0.0E+00	0.0E+00	3.4E-0
I,C-DICHLOROETHYLENE	1.7E+05	0.0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DICYCLOPENTADIENE	5.4E+04	0.0E+00	5.4E+04	0.0E+00	0.0E+00	0.0E+00	5.3E-0
DIELDRIN	1.6E+00	0.0E+00	1.6E+00	0.0E+00	0.0E+00	0.0E+00	5.28-1
DIISOPROPYLMETHYL PHOSPHONATE	6.62+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	6.5E-
DIMETHYLDISULFIDE	6.7E+04	0.0E+00	6.7E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-0
DIMETHYMETHYL PHOSPHONATE	1.5E+05	0.0E+00	1.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
DITHIANE	8.3E+04	0.02+00	8.3E+04	0.0E+00	0.0E+00	0.0E+00	3.0E+0
	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	1.5E-1
ENDRIN		0.06+00	8.3E+05	0.0E+00	0.0E+00	0.0E+00	8.4E-0
ETHYLBENZENE	8.3E+05		1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.1E-0
HEXACHLOROCYCLOPENTADIENE	1.7E+04	0.0E+00	_		0.0E+00	0.0E+00	3.4E-1
ISODRIN	5.8E+02	0.0E+00	5.8E+02	0.0E+00			4.8E-1
MALATHION	1.7E+05	0,0E+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	
METHYLISOBUTYL KETONE	4.1E+05	0.0E+00	4.1E+05	0.0E+00	0.0E+00	0.0E+00	4.3E-0
METHYLENE CHLORIDE	3.3E+03	0.0E+90	3.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-0
1,4-OXATHIANE	2.5E+05	0.0E+00	2.5E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+0
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	3.0E-1
SUPONA	1.2E+03	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-1
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	3.9E-0
TOLUENE	2.5E+06	0.0E+00	2.5E+06	0.0E+00	0.0E+00	0.0E+00	3.7E-0
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	2.5E-0
1,1,2-TRICHLOROETHANE	4.3E+02	0.0E+00	4.3E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-0
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.2E-0
/APONA	8.6E+01	0.0E+00	8.6E+01	0.0E+00	0.0E+00	0.0E+00	2.1E-1
1-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	9.1E-0
D,P-XYLENE	1.4E+07	0.0E+00	1.4E+07	0.0E+00	0.0E+00	0.0E+00	2.0E-0
CADMIUM	4.5E+02	0.0E+00	4.5E+02	6.2E-03	0.0E+00	6.2E-03	0.0E+0

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9r-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE EI	VE I OPN
ALDRIN	2.1E-01	0.0E+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	1.5E-06
ATRAZINE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	7.4E-14
BENZENE	1.2E+02	0.0E+00	1.2E+02	0.0E+00	0.0E+00	0.0E+00	1.4E-02
BENZOTHIAZOLE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-10
BICYCLOHEPTADIENE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	3.8E-07
CARBON TETRACHLORIDE	2.7E+01	0.06+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	2.6E-03
CHLORDANE	2.7E+00	0.0E+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	6.0E-08
CHLOROBENZENE	6.8E+04	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	7.3E-05
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	1.3E-03
CHLOROPHENYLMETHYL SULFIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	4.6E-09
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	6.5E-10
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.QE+00	3.6E-12
PPDDE	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	3.6E-09
PPDDT	1.0E+01	0.0E+00	1.0E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-07
DIBROMOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-04
1,1-DICHLOROETHANE	3.9E+01	0.0E+00	3.9E+01	0.0E+00	0.0E+00	0.0E+00	4.9E-10
1,1-DICHLOROETHYLENE	5.9E+00	0.0E+00	5.9E+00	0.0E+00	0.0E+00	0.0E+00	5.1E-04
1,2-DICHLOROETHYLENE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.8E+04	0.0E+00	1.8E+04	0.0E+00	0.0E+00	0.0E+00	3.4E-05
DIELDRIN	2.2E-01	0.0E+00	2.2E-01	0.0E+00	0.0E+00	0.0E+00	7.8E-09
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	4.2E-11
DIMETHYLDISULFIDE	2.9E+04	0.0E+00	2.9E+04	0.0E+00	0.0E+00	0.0E+00	7.5E-08
DIMETHYMETHYL PHOSPHONATE	6.3E+04	0.0E+00	6.3E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	3.5E+04	0.0E+00	3.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.16+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	9.4E-11
ETHYLBENZENE	3.5E+05	0.0E+00	3.5E+05	0.0E+00	0.0E+00	0.0E+00	5.4E-08
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	4.6E-06
							2.2E-09
ISODRIN	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	
MALATHION	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-14
METHYLISOBUTYL KETONE	1.7E+05	0.05+00	1.7E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-08
METHYLENE CHLORIDE	4.5E+02	0.0E+00	4.5E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-03
1,4-OXATHIANE	1.1E+05	0.0E+00	1.1E+05	0.0E+00	0.0E+00	0.05+00	0.0E+00
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-12
SUPONA	5.3E+02	0.0E+00	5.3E+02	0.0E+00	0.0E+00	0.0E+00	7.8E-14
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	5.9E-07
TOLUENE	1.1E+06	0.0E+00	1.1E+06	0.0E+00	0.0E+00	0.0E+00	2.4E-08
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	1.6E-07
1,1,2-TRICHLOROETHANE	6.0E+01	0.0E+00	6.0E+01	0.0E+00	0.0E+00	0.0E+00	1.6E-05
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	1.9E-03
VAPONA	1.2E+01	0.0E+00	1.2E+01	0.0E+00	0.0E+00	0.0E+00	3.16-10
M-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0E+00	0.0E+00	0.0E+00	5.96-08
O,P-XYLENE	5.8E+06	0.0E+00	5.8E+06	0.0 +00	0.0E+00	0.0E+00	1.3E-07
CADMIUM	5.8E+01	0.0E+00	5.8E+01	4.8E-02	0.0E+00	4.8E-02	0.0E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9r-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI EI	ENC
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	2.2E-02
ATRAZINE	2.3E+04	0.0E+00	2.3E+04	0.0E+00	0.0E+00	0.0E+00	7.8E-09
BENZENE	1.1E+03	0.0E+00	1.1E+03	0.0E+00	0.0E+00	0.0E+00	2.2E+02
BENZOTHIAZOLE	2.2E+04	0.0E+00	2.2E+04	0.0E+00	0.0E+00	0. 0E+00	3.6E-05
BICYCLOHEPTADIENE	1.8E+05	0.0E+00	1.8E+05	0.0E+00	0.0E+00	0.0E+00	4.0E-02
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	4.0E+01
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	9.1E-04
CHLOROBENZENE	8.8E+04	0.0E+00	8.8E+04	0.0E+00	0.0E+00	0.0E+00	7.7E+00
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	1.9E+01
CHLOROPHENYLMETHYL SULFIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-04
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	6.9E-05
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	3.8E-07
PPDDE	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	5.4E-05
PPODT	9.3E+01	0.0E+00	9.3E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-03
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.7E+00
1,1-DICHLOROETHANE	3.6E+02	0.0E+00	3.6E+02	0.0E+00	0.0E+00	0.0E+00	7.4E-06
1,1-DICHLOROETHYLENE	5.4E+01	0.0E+00	5.4E+01	0.0E+00	0.0E+00	0.0E+00	7.8E+00
1,2-DICHLOROETHYLENE	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DICYCLOPENTADIENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.6E+00
DIELDRIN	2.0E+00	0.0E+00	2.0E+00	0.0E+00	0.0E+00	0.0E+00	1.2E-04
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	4.4E-06
DIMETHYLDISULFIDE	3.7E+04	0.0E+00	3.7E+04	0.0E+00	0.0E+00	0.0E+00	8.0E-03
DIMETHYMETHYL PHOSPHONATE	8.2E+04	0.0E+00	8.2E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
DITHIANE	4.6E+04	0.0E+Q0	4.6E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	9.9E-0
ETHYLBENZENE	4.6E+05	0.0E+00	4.6E+05	0.0E+00	0.0E+00	0.0E+00	5.7E-03
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	4.9E-0
ISODRIN	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	2.3E-04
MALATHION	9.2E+04	0.0E+00	9.2E+04	0.0E+00	0.0E+00	0.0E+00	3.3E-09
METHYLISOBUTYL KETONE	2.2E+05	0.0E+00	2.2E+05	0.0E+00	Q.0E+00	0.0E+00	2.9E-03
METHYLENE CHLORIDE	4.1E+03	0.0E+00	4.1E+03	0.0E+00	0.0E+00	0.0E+00	2.8E+01
1,4-OXATHIANE	1.4E+05	0.0E+00	1.4E+05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	2.1E-07
SUPONA	6.9E+02	0.0E+00	6.9E+02	0.0E+00	0.0E+00	0.0E+00	8.3E-09
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	9.0E-03
TOLUENE	1.4E+06	0.0E+00	1.4E+06	0.0E+00	0.0E+00	0.0E+00	2.6E-03
1,1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	1.7E-02
1,1,2-TRICHLOROETHANE	5.5E+02	0.0E+00	5.5E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-0
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	2.8E+0
VAPONA	1.16+02	0.0E+00	1.1E+02	0.0E+00	0.0E+00	0.0E+00	4.7E-06
M-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0E+00	0.0E+00	0.0E+00	6.2E-03
O,P-XYLENE	7.0E+06	0.0E+00	7.0E+06	0.0€+00	0.0E+00	0.0E+00	1.3E-02
CADITUM	3.6E+02	0.0E+00	3.6E+02	7.8E-03	0.0E+00	7.8E-03	0. 0 E+00

If the PPLV value indicated is greater than 1.00E+06 the calculations imply that the contaminant does not pose unacceptable chronic exposure through the exposure pathway considered, even in its pure form.

NCSA-9r-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT		RECT	CUMULATIVE	DIRECT	INDIRECT			VE I
CONTAMINANT	PPLV (mg/kg)	OSVI (mg/kg)	ESVI (mg/kg)	PPLV (mg/kg)	EI	EI	EI	OPN	EN
ALDRIN	1.2E-01	0.0€+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	7.3E-07	6.6E-
ATRAZINE	4.2E+03	0.0E+00	0.0E+00	4.2E+03	0.0E+00	0.0E+00	0.0E+00	8.6E-14	7.8E-
BENZENE	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	0.0E+00	7.2E-03	6.6E+
BENZOTHI AZOLE	4.0E+03	0.0E+00	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	3.9E-10	3.6E
BICYCLOHEPTADIENE	3.3E+04	0.0E+00	0.0E+00	3.3E+04	0.0E+00	0.0E+00	0.0E+00	4.4E-07	4.0E
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	1.3E-03	1.2E
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	3.0E-08	2.7E
CHLOROBENZENE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	8.5E-05	7.7E
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	6.3E-04	5.8E
CHLOROPHENYLMETHYL SULFIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	5.4E-09	4.9E
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.6E-10	6.9E
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+C0	0.0E+00	4.2E-12	3.8E
PPDDE	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-09	1.6E
PPDDT	5.7E+00	0.0E+00	0.0E+00	5.7E+00	0.0E+00	0.0E+00	0.0E+00	7.6E-08	6.9E
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0E+00	8.7E-05	8.0E
1,1-DICHLOROETHANE	2.3E+01	0.0E+00	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	2.4E-10	2.2E
1,1-DICHLOROETHYLENE	3.2E+00	0.0E+00	0.0E+00	3.2E+00	0.0E+00	0.0E+00	0.0E+00	2.6E-04	2.3E
1,2-DICHLOROETHYLENE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
DICYCLOPENTADIENE	1.2E+03	0.0E+00	0.0E+00	1.2E+03	0.0E+00	0.0E+00	0.0E+00	4.0E-05	3.6E
DIELDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	3.9E-09	3.5E
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	4.9E-11	4.4E
DIMETHYLDISULFIDE	6.9E+03	0.0E+00	0.0E+00	6.9E+03	0.0E+00	0.0E+00	0.0E+00	8.7E-08	8.0E
DIMETHYMETHYL PHOSPHONATE	1.5E+04	0.0E+00	0.0E+00	1.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
DITHIANE	8.5E+03	0.0E+00	0.0E+00	8.5E+03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
ENDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	1.1E-10	9.9E
ETHYLBENZENE	8.5E+04	0.0E+00	0.0E+00	8.5E+04	0.0E+00	0.0E+00	0.0E+00	6.3E-08	5.7E
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	5.3E-06	4.9E
ISODRIN	5.9E+01	0.0E+00	0.0E+00	5.9E+01	0.0E+00	0.0E+00	0.0E+00	2.6E-09	2.3E
MALATHION	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	3.6E-14	3.3E
METHYL ISOBUTYL KETONE	4.0E+04	0.0E+00	0.0E+00	4.0E+04	0.0E+00	0.0E+00	0.0E+00	3.2E-08	2.9E
METHYLENE CHLORIDE	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	9.3E-04	8.5E
1,4-OXATHIANE	2.5E+04	0.0E+00	0.0E+00	2.5E+04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	2.3E-12	2.1E
SUPONA	1.3E+02	0.0E+00	0.0E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	9.1E-14	8.3E
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.CE+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	2.9E-07	2.7E
TOLUENE	2.6E+05	0.0E+00	0.0E+00	2.6E+05	0.0E+00	0.0E+00	0.0E+00	2.8E-08	2.6E
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	0.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	1.9E-07	1.7E
1,1,2-TRICHLOROETHANE	3.4E+01	0.0E+00	0.0E+00	3.4E+01	0.0E+00	0.0E+00	0.0E+00	8.1E-06	7.4E
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.06+00	9.3E-04	8.5E
VAPONA	6.7E+00	0.0E+00	0.0E+00	6.7E+00	0.0E+00	0.0E+00	0.0E+00	1.5E-10	1.4E
M-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	6.8E-08	6.2E
D,P-XYLENE	8.8E+05	0.0E+00	0.0E+00	8.8E+05	0.0E+00	0.0E+00	0.0E+00	1.5E-07	1.3E
CADMIUM	7.6E+00	0.0E+00	0.0E+00	7.6E+00	3.7E-01*	0.0E+00	3.7E-01*	0.0E+00	0.0E

^{*:} El is equal to or exceeds 1.0E-01

2.43 SITE NCSA-9s: SECTION 36 - MERCURY DETECTION (formerly Site 36-22: Liquid Storage Pool; ESE, 1988h/RIC 88103R01)

2.43.1 Site-Specific Considerations

Figure NCSA-9s-1 and Tables NCSA-9s-1 and NCSA-9s-2 depict the target contaminants for Site NCSA-9s. Borings 3159 through 3162 and 3376 through 3378 were included in this exposure assessment, consistent with the North Plants SAR. According to site history, no chemicals from the RMA target contaminant list were suspected to be present in Site NCSA-9s (ESE, 1988h/RIC 88103R01).

2.43.2 Spatial Distribution of Measured Contaminant Concentrations

The locations and concentrations of the target contaminants that were detected in Site NCSA-9s are shown in Figure NCSA-9s-1. Table NCSA-9s-1 summarizes the maximum concentrations of contaminants measured in soil above indicator levels for the ICP metals, arsenic, and mercury from the Phase I and Phase II investigations. The boring number and depth where the maximum value was observed are shown. No data were included for ICP metals, arsenic, and mercury in Horizon 2 because direct soil exposure below 10 ft is assumed to be negligible (see Volume VI-A). No organic contaminants were detected at this location. Table NCSA-9s-2 summarizes the maximum concentrations detected in groundwater together with the well number, location, sampling interval, and depth to groundwater.

2.43.3 Site Exposure Summary

Tables NCSA-9s-3 through NCSA-9s-7 present Draft PPLVs, EIs, and VEIs for each site contaminant. Since the depth to groundwater below Site NCSA-9s is greater than 10 ft, the enclosed space vapor inhalation SPPPLV is included in the calculation of the cumulative quantity. The COCs are summarized below for each exposed population and with the critical exposure pathway identified.

Contaminants of Concern	Regulated	Casual	Recreational	Commercial	Industrial
	Visitor	Visitor	Visitor	Worker	Worker
None					

The results of the soil exposure summary indicate that there are no COCs. Site NCSA-9s is designated as a Priority 2 site, based on the most sensitive exposed population PPLV (i.e., the industrial worker).

The following groundwater contaminant results in an unacceptable exposure due to vapor inhalation as indicated by a VEI value greater than 1:

· Chloroform (enclosed)

TABLE NCSA-9s-1 SOIL CONTAMINANT CONCENTRATIONS FOR SITE NCSA-9s

Horizon 1 Horizon 2	Depth Boring Max. Depth (ft) Number (ug/g) (ft)	0-1 3376 0-1 3378
Ho	Max. (ug/g)	0.15
	Contaminant	hercury

NCSA North Central Study Area
Max. Maximum
ug/g microgram per gram
ft foou/feet

TABLE NCSA-9s-2

GROUNDWATER CONTAMINANT CONCENTRATIONS (UG/L) FOR SITE NCSA-9s

AVERAGE SITE DEPTH TO GROUNDWATER: 13 Feet

CHEMICAL	CONCENTRATION MAXIMUM	LOCATION (WELL NUMBER)	SAMPLE DATE
1,1,1-TRICHLOROETHANE	1.8	35023	02/3/88
ALDRIN	0.066	35023	12/9/88
CARBON TETRACHLORIDE	1.3	35023	02/3/88
CHLOROFORM	1700	35023	12/9/88
HEXACHLOROCYCLOPENTADIENE	0.22	35023	12/9/88
CHLORDANE	0.53	35023	12/9/88
CHLOROPHENYLMETHYL SULFOXIDE	E 22	35023	02/3/88
CHLOROPHENYLMETHYL SULFONE	. 21	35023	12/9/88
DIBROMOCHLOROPROPANE	6.3	35023	12/9/88
DIISOPROPYLMETHYL PHOSPHONA	TE 1.8	35023	12/9/88
ENDRIN	0.12	35023	02/3/88
PARATHION	9.8	35023	12/9/88
TETRACHLOROETHYLENE	4.7	35023	12/9/88
TRICHLOROETHYLENE	1.3	35023	12/9/88

EACH VALUE PRESENTED IS THE MAXIMUM CONCENTRATION FOR THE LISTED ANALYT FOR THE PERIOD March 17, 1987 TO February 28, 1989.

DATA SOURCE: DP ASSOCIATES, RMA Database, July 19, 1990

NCSA-9s-3
EXPOSURE EVALUATIONS FOR REGULATED VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	6.2E-08
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-05
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0E+00	2.9E-04
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	2.0E-10
DIBRONOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-05
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-11
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	7.4E-12
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-06
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-11
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-07
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-09
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-06
MERCURY	3.3E+03	0.0E+00	3.3E+03	4.5E-05	0.0E+00	4.5E-05	0.0E+00

NCSA-95-4
EXPOSURE EVALUATIONS FOR CASUAL VISITORS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT	INDIRECT EI	CUMULATIVE E1	VE I OPN
ALDRIN	1.5E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00	0.0E+00	6.2E-08
CARBON TETRACHLORIDE	2.0E+02	0.0E+00	2.0E+02	0.0E+00	0.0E+00	0.0E+00	2.5E-05
CHLORDANE	2.0E+01	0.0E+00	2.0E+01	0.0E+00	0.0E+00	0.0€+00	2.3E-08
CHLOROFORM	4.0E+03	0.0E+00	4.0E+03	0.0E+00	0.0E+00	0.0€+00	2.9E-04
CHLOROPHENYLMETHYL SULFONE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0E+00	1.0E-10
CHLOROPHENYLMETHYL SULFOXIDE	1.6E+05	0.0E+00	1.6E+05	0.0E+00	0.0E+00	0.0€+00	2.0E-10
DIBROMOCHLOROPROPANE	1.8E+01	0.0E+00	1.8E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-05
DIISOPROPYLMETHYL PHOSPHONATE	6.6E+05	0.0E+00	6.6E+05	0.0E+00	0.0E+00	0.0E+00	4.6E-11
ENDRIN	2.5E+03	0.0E+00	2.5E+03	0.0E+00	0.0E+00	0.0E+00	7.4E-12
HEXACHLOROCYCLOPENTAD I ENE	1.7E+04	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	2.2E-06
PARATHION	5.0E+04	0.0E+00	5.0E+04	0.0E+00	0.0E+00	0.0E+00	1.2E-11
TETRACHLOROETHYLENE	5.1E+02	0.0E+00	5.1E+02	0.0E+00	0.0E+00	0.0E+00	6.6E-07
1,1,1-TRICHLOROETHANE	7.5E+05	0.0E+00	7.5E+05	0.0E+00	0.0E+00	0.0E+00	1.2E-09
TRICHLOROETHYLENE	2.3E+03	0.0E+00	2.3E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-06
MERCURY	3.3E+03	0.0E+00	3.3E+03	4.5E-05	0.0E+00	4.5E-05	0.0E+00

NCSA-9s-5
EXPOSURE EVALUATIONS FOR RECREATIONAL VISITORS

CONTANINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	OPN
ALDRIN	2.1E-01	0.0€+00	2.1E-01	0.0E+00	0.0E+00	0.0E+00	9.3E-07
CARBON TETRACHLORIDE	2.7E+01	0.0E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	3.8E-04
CHLORDANE	2.7E+00	0.0€+00	2.7E+00	0.0E+00	0.0E+00	0.0E+00	3.4E-07
CHLOROFORM	5.6E+02	0.0E+00	5.6E+02	0.0E+00	0.0E+00	0.0E+00	4.4E-03
CHLOROPHENYLMETHYL SULFONE	7.0E+04	0.05+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	6.6E-10
CHLOROPHENYLMETHYL SULFOXIDE	7.0E+04	0.0E+00	7.0E+04	0.0E+00	0.0E+00	0.0E+00	1.3E-09
DIBRONOCHLOROPROPANE	2.5E+00	0.0E+00	2.5E+00	0.0E+00	0.0E+00	0.0E+00	2.3E-04
DIISOPROPYLMETHYL PHOSPHONATE	2.8E+05	0.0E+00	2.8E+05	0.0E+00	0.0E+00	0.0E+00	3.0E-10
ENDRIN	1.1E+03	0.0E+00	1.16+03	0.0E+00	0.0E+00	0.0E+00	4.8E-11
HEXACHLOROCYCLOPENTAD I ENE	5.7E+03	0.0E+00	5.7E+03	0.0E+00	0.0E+00	0.0E+00	1.4E-05
PARATHION	2.1E+04	0.0E+00	2.1E+04	0.0E+00	0.0E+00	0.0E+00	7.8E-11
TETRACHLOROETHYLENE	7.1E+01	0.0E+00	7.1E+01	0.0E+00	0.0E+00	0.0E+00	1.0E-05
1,1,1-TRICHLOROETHANE	3.2E+05	0.0E+00	3.2E+05	0.0E+00	0.0E+00	0.0E+00	7.9E-09
TRICHLOROETHYLENE	3.2E+02	0.0E+00	3.2E+02	0.0E+00	0.0E+00	0.0E+00	2.0E-05
MERCURY	2.0E+03	0.0E+00	2.0E+03	7.6E-05	0.0E+00	7.6E-05	0.0E+00

NCSA-9s-6
EXPOSURE EVALUATIONS FOR COMMERCIAL WORKERS

CONTAMINANT	DIRECT PPLV (mg/kg)	INDIRECT PPLV (mg/kg)	CUMULATIVE PPLV (mg/kg)	DIRECT EI	INDIRECT EI	EI	VE I ENC
ALDRIN	1.9E+00	0.0E+00	1.9E+00	0.0E+00	0.0E+00	0.0E+00	6.3E-04
CARBON TETRACHLORIDE	2.5E+02	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	2.6E-01
CHLORDANE	2.5E+01	0.0E+00	2.5E+01	0.0E+00	0.0E+00	0.0E+00	2.3E-04
CHLOROFORM	5.1E+03	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	3.0E+00
CHLOROPHENYLMETHYL SULFONE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	3.1E-06
CHLOROPHENYLMETHYL SULFOXIDE	9.1E+04	0.0E+00	9.1E+04	0.0E+00	0.0E+00	0.0E+00	6.0E-06
DIBROMOCHLOROPROPANE	2.3E+01	0.0E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	1.5E-01
DIISOPROPYLMETHYL PHOSPHONATE	3.7E+05	0.0E+00	3.7E+05	0.0E+00	0.0E+00	0.0E+00	1.4E-06
ENDRIN	1.4E+03	0.0E+00	1.4E+03	0.0E+00	0.0E+00	0.0E+00	2.2E-07
HEXACHLOROCYCLOPENTAD I ENE	5.5E+03	0.0E+00	5.5E+03	0.0E+00	0.0E+00	0.0E+00	6.7E-02
PARATHION	2.7E+04	0.0E+00	2.7E+04	0.0E+00	0.0E+00	0.0E+00	3.7E-07
TETRACHLOROETHYLENE	6.5E+02	0.0E+00	6.5E+02	0.0E+00	0.0E+00	0.0E+00	6.8E-03
1.1,1-TRICHLOROETHANE	4.2E+05	0.0E+00	4.2E+05	0.0E+00	0.0E+00	0.0E+00	3.8E-05
TRICHLOROETHYLENE	2.9E+03	0.0E+00	2.9E+03	0.0E+00	0.0E+00	0.0E+00	1.3E-02
MERCURY	1.4E+03	0.0E+00	1.4E+03	1.1E-04	0.0E+00	1.1E-04	0.0E+00

NCSA-98-7
EXPOSURE EVALUATIONS FOR INDUSTRIAL WORKERS

	DIRECT	INDI	RECT	CUMULATIVE	DIRECT	INDIRECT	CUMULATIVE	1	VE I
CONTAMINANT	PPLV	OSVI	ESVI	PPLV	EI	13	13	OPN	ENC
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
ALDRIN	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	4.6E-07	1. 9 E-03
CARBON TETRACHLORIDE	1.5E+01	0.0E+00	0.0E+00	1.5E+01	0.0E+00	0.0E+00	0.0E+00	1.9E-04	7.7E-01
CHLORDANE	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0€+00	0.0E+00	0.0E+00	1.7E-07	6.9E-04
CHLOROFORM	3.1E+02	0.0E+00	0.0E+00	3.1E+02	0.0E+00	0.0E+00	0.0E+00	2.2E-03	8.9E+00
CHLOROPHENYLMETHYL SULFONE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	7.6E-10	3.1E-06
CHLOROPHENYLMETHYL SULFOXIDE	1.7E+04	0.0E+00	0.0E+00	1.7E+04	0.0E+00	0.0E+00	0.0E+00	1.5E-09	6,CL 06
DIBROMOCHLOROPROPANE	1.4E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00	0.0£+00	1.1E-04	4.6E-01
DIISOPROPYLMETHYL PHOSPHONATE	6.8E+04	0.0E+00	0.0E+00	6.8E+04	0.0E+00	0.0E+00	0.0E+00	3.5E-10	1,4E-0c
ENDRIN	2.5E+02	0.0E+00	0.0E+00	2.5E+02	0.0E+00	0.0E+00	0.0E+00	5.5E-11	2.2E-07
HEXACHLOROCYCLOPENTAD I ENE	3.8E+02	0.0E+00	0.0E+00	3.8E+02	0.0E+00	0.0E+00	0.0E+00	1.6E-05	6.7E-02
PARATHION	5.1E+03	0.0E+00	0.0E+00	5.1E+03	0.0E+00	0.0E+00	0.0E+00	9.0E-11	3.7E-07
TETRACHLOROETHYLENE	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	0.0E+00	5.0E-06	2.0E-02
1,1,1-TRICHLOROETHANE	7.8E+04	0.0E+00	9.0E+00	7.8E+04	0.0E+00	0.0E+00	0.0E+00	9.2E-09	3.8E-05
TRICHLOROETHYLENE	1.8E+02	0.0E+00	0.0E+00	1.8E+02	0.0E+00	0.0E+00	0.0E+00	9.8E-06	4.0E-02
MERCURY	4.6E+02	0.0E+00	0.0E+00	4.6E+02	3.3E-04	0.0E+00	3.3E-04	0.0E+00	0.0E+00

3.0 STUDY AREA EXPOSURE SUMMARY

The exposure assessment results for the NCSA at RMA are summarized in Table 3-1. Of the 43 sites that were evaluated, 30 sites were designated as Priority 1 sites based on the most sensitive exposed population PPLV (i.e., the industrial worker). These include:

- Basin A (NCSA-1a)
- Lime Settling Basins (NCSA-1b)
- Drainage Ditch (NCSA-1c)
- Liquid Storage Pool (NCSA-1d)
- Burn Site (NCSA-1e)
- South Plants Drainage Ditches (NCSA-1f)
- Basin C (NCSA-2a)
- Basin D (NCSA-2b)
- Basin E (NCSA-2c)
- Drainage Ditches (NCSA-2d)
- Basin F (NCSA-3)
- Deep Disposal Well (NCSA-4a)
- Basin F Exterior (NCSA-4b)
- Basin B (NCSA-5a)
- Drainage Ditches (NCSA-5b)
- Sand Creek Lateral (NCSA-5c)
- Surface Drainage Canal (NCSA-5d)
- Chemical Sewers from South Plants (NCSA-6a)
- Chemical Sewers from North Plants (NCSA-6b)
- North Bog (NCSA-7)
- Sanitary Sewer Lines (NCSA-8a)
- Domestic Sewer Treatment Plant (NCSA-8b)
- Section 34 Mercury Detection (NCSA-8c)
- Section 23 Cadmium Detection (NCSA-9b)
- Section 23 Cadmium Detection (NCSA-9c)
- Section 23 Cadmium Detection (NCSA-9d)
- Section 26 Cadmium Detection (NCSA-9h)

- Section 34 Arsenic Detection (NCSA-91)
- Section 35 Arsenic Detection (NCSA-90)
- Cadmium Detection (NCSA-9r)

Thirteen sites were designated as Priority 2 sites based on the most sensitive exposed population PPLV (i.e., the industrial worker). These include:

- Inferred Surficial Contamination (NCSA-1g)
- Section 23 Diisopropylmethyl Phosphonate Detection (NCSA-9a)
- Section 24 Zinc Detection (NCSA-9e)
- Section 25 Zinc and Copper Detections (NCSA-9f)
- Section 26 Suspected Methylene Chloride Detection (NCSA-9g)
- Section 26 Butoxyethanol Detection (NCSA-9i)
- Section 26 Mercury Detection (NCSA-9i)
- Section 26 Trichloropropene Detection (NCSA-9k)
- Zinc Detection in Bedrock (NCSA-9m)
- Section 35 Trichloropropene Detection (NCSA-9n)
- Section 36 Arsenic and Mercury Detections (NCSA-9p)
- Mercury Detection (NCSA-9q)
- Section 36 Mercury Detection (NCSA-9s)

The COCs in soils (i.e., those displaying an EI greater than 0.1) for the NCSA, based on the most sensitive exposed population PPLV (i.e., the industrial worker), are:

- Aldrin
- Benzene
- · Bicycloheptadiene
- Chlordane
- · Chloroacetic acid
- Chlorobenzene
- Chloroform
- Chlorophenylmethyl sulfide
- · Chlorophenylmethyl sulfone

- Chlorophenylmethyl sulfoxide
- Dibromochloropropane
- 1,2,-Dichloroethane
- Dicyclopentadiene
- PPDDE
- PPDDT
- Dieldrin
- Dimethyldisulfide
- Endrin
- Fluoroacetic acid
- Hexachlorocyclopentadiene
- Isodrin
- Methylene chloride
- 1,1,2,2-Tetrachloroethane
- Tetrachloroethylene
- Trichloroethylene
- Toluene
- Arsenic
- Cadmium
- Chromium
- Lead
- Mercury

The COSs in groundwater (i.e., those displaying a VEI greater than 1), based on the most sensitive exposed population PPLV (i.e., the industrial worker), are:

- Benzene
- · Carbon tetrachloride
- Chlorobenzene
- Chloroform
- Dibromochloropropane
- 1,2-Dichloroethane

- 1,1-Dichloroethylene
- Dicyclopentadiene
- Methylene chloride
- Tetrachloroethylene
- Trichloroethylene

TABLE 3-1 NUMBER OF EXCEEDANCES FOR CONTAMINANTS OF CONCERN IN THE NORTH CENTRAL STUDY AREA

Contaminant of Concern	Number of Exceedances
Aldrin	19
Benzene	3
Bicycloheptadiene	1
Chlordane	6
Chloroacetic acid	1
Chlorobenzene	1
Chloroform	4
Chlorophenylmethyl sulfide	1
Chlorophenylmethyl sulfone	1
Chlorophenylmethyl sulfoxide	1
Dibromochloropropane	4
1,2-Dichloroethane	1
Dicyclopentadiene	3
PPDDE	4
PPDDT	4
Dieldrin	22
Dimethyldisulfide	1
Endrin	4
Fluoroacetic Acid	8
Hexachlorocyclopentadiene	1
sodrin	6
Methylene chloride	6
1,1,2,2-Tetrachloroethane	2
Tetrachloroethylene	3
Frichloroethylene	1
Foluene	1
Arsenic	17
Cadmium	15
Chromium	5
Lead	5 3
Mercury	3

4.0 REFERENCES

RIC 87216R08

EBASCO (Ebasco Services Incorporated). 1987. Final Phase I Contamination Assessment Report. Site 24-6: Sewage Treatment Plant. Version 3.2. July 1987. Task No. 7 - Lower Lakes. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88357R01

EBASCO. 1988a. Proposed Final Rocky Mountain Arsenal Chemical Index Volumes I-II. August 1988. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88076R05

EBASCO. 1988b. Final Phase I Contamination Assessment Report. Site 24-7: North Bog. Version 3.2. March 1988. Task No. 7 - Army Sites South. Task No. 20 - Lower Lakes. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88076R05A

EBASCO. 1988c. Final Phase II Data Addendum. Site 24-7: North Bog. Version 3.1. October 1988. Task No. 20 - Lower Lakes. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88126R06

EBASCO. 1988d. Final Contamination Assessment Report. Sanitary Sewer Interceptor Line. Version 3.2. April 1988. Task No. 10. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88256R03

EBASCO. 1988e. Final Contamination Assessment Report. Sanitary Sewer-Railyard and Administrative Areas. Version 3.2. August 1988. Task No. 10. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87216R08A

EBASCO. 1988f. Final Phase II Data Addendum. Site 24-6: Sewage Treatment Plant. Version 3.1. October 1988. Task No. 20 - Lower Lakes. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC88286R08

EBASCO. 1988g. Final Contamination Assessment Report. Chemical Sewers North Plants and South Plants. Version 3.2. September 1988. Task No. 10. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

EBASCO. 1989a. Final Remedial Investigation Report. Volume XI. North Central Study Area. Version 3.3. July 1989. Contract No. DAAA15-88-D-0024. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88173R02B

EBASCO. 1989b. LTS RMA Final Phase IIb Data Addendum. Site 26-6: Basin F. Version 3.1. January 1989. Task No. 6 - Section 26 and 35. Contract No. DAAK11-84-D-0017. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R07

ESE (Environmental Science and Engineering, Inc.). 1987a. Final Phase I Contamination Assessment Report. Site 36-1: Basin A. Version 3.2. July 1987. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R02

ESE. 1987b. Final Phase I Contamination Assessment Report. Site 36-4: Lime Settling Basins. Version 3.3. June 1987. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87113R01

ESE. 1987c. Final Phase I Contamination Assessment Report. Site 36-8: Chemical Drainage Ditch. Version 3.2. April 1987. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87133R01

ESE. 1987d. Final Phase I Contamination Assessment Report. Site 36-11: Liquid Storage Pool. Version 3.2. May 1987. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R03

ESE. 1987e. Final Phase I Contamination Assessment Report. Site 36-15: Burning Site. Version 3.2. July 1987. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87133R03

ESE. 1987f. Final Phase I Contamination Assessment Report. Site 36-21: Drainage Ditch. Version 3.2. April 1987. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87343R03

ESE. 1987g. Final Phase I Contamination Assessment Report. Site 26-3: Basin C. Version 3.3. December 1987. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87293R01

ESE. 1987h. Final Phase I Contamination Assessment Report. Site 26-4: Basin D. Version 3.3. October 1987. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R04

ESE. 1987i. Final Phase I Contamination Assessment Report. Site 26-5: Basin E. Version 3.2. July 1987. Task No. 6/19 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87293R02

ESE. 1987j. Final Phase I Contamination Assessment Report. Section 26 - Uncontaminated. Version 3.3. September 1987. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R05

ESE. 1987k. Final Phase I Contamination Assessment Report. Site 35-3: Basin B. Version 3.3. July 1987. Task No. 6/19 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R06

ESE. 19871. Final Phase I Contamination Assessment Report. Site 35-4/26-7: Basins A. B, and C Drainage Ditches. Version 3.2. July 1987. Task No. 6/19 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87313R01

ESE. 1987m. Final Phase I Contamination Assessment Report. Section 35 - Uncontaminated. Version 3.3. November 1987. Task No. 6 - Sections 26 and 35. September 1988. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87133R02

ESE. 1987n. Final Phase I Contamination Assessment Report. Site 36-20: Chemical Sewer. Version 3.2. April 1987. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88013R02

ESE 1987o. Final Phase I Contamination Assessment Report. Section 27: Nonsource Area. Version 3.1. December 1987. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R07A

ESE. 1988a. Final Phase II Data Addendum. Site 36-1: Basin A. Version 3.1. September 1988. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R02A

ESE. 1988b. Phase II Data Addendum. Site 36-4: Lime Settling Basins. Version 3.1. September 1988. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87113R01A

ESE. 1988c. Final Phase II Data Addendum. Site 36-8: Chemical Drainage Ditch. Version 3.1. August 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87133R01A

ESE. 1988d. Final Phase II Data Addendum. Site 36-11: Liquid Storage Foldows. Version 3.1. August 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R03A

ESE. 1988e. Final Phase II Data Addendum. Site 36-15: Burning Site. Version 3.1. August 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88063R07

ESE. 1988f. Final Phase I Contamination Assessment Report. Site 36-7: Solid Waste Burial/Sanitary Pit. Mercury Spill. Version 3.3. January 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88033R02

ESE. 1988g. Final Phase I Contamination Assessment Report. Site 36-10: Pit. Version 3.2. January 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88103R01

ESE. 1988h. Final Phase I Contamination Assessment Report. Site 36-22: Liquid Storage Pool. Version 3.2. March 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87343R03A

ESE. 1988i. Final Phase II Data Addendum. Site 26-3: Basin C. Version 3.1. September 1988. Task No. 6 - Section 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87293R01A

ESE. 1988j. Final Phase II Data Addendum. Site 26-4: Basin D. Version 3.1. September 1988. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R04A

ESE. 1988k. Final Phase II Data Addendum. Site 26-5: Basin E. Version 3.1. September 1988. Task No. 6/19 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88173R02

ESE. 19881. Final Phase I Contamination Assessment Report. Site 26-6: Basin F. Version 3.3. May 1988. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88103R02

ESE. 1988m. Final Phase I Contamination Assessment Report. Site 26-1: Deep Disposal Well and Chemical Sewers. Version 3.2. March 1988. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88103R02A

ESE. 1988n. Final Phase II Data Addendum. Site 26-1: Deep Disposal Well and Chemical Sewers. Version 3.2. August 1988. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88173R02A

ESE. 1988o. Final Phase II Data Addendum. Site 26-6: Basin F Exterior. Version 3.1. September 1988. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88243R02

ESE. 1988p. Final Phase I Contamination Assessment Report. Section 23 - Nonsource Area. Version 3.3. August 1988. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87293R02A

ESE. 1988q. Final Phase II Data Addendum. Section 26 - Nonsource Area. Version 3.1. August 1988. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R05A

ESE. 1988r. Final Phase II Data Addendum. Site 35-3: Basin B. Version 3.1. September 1988. Task No. 6/19 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87203R06A

ESE. 1988s. Final Phase II Data Addendum. Site 35-4/26-7: Basin A, B, and C Drainage Ditches. Version 3.1. September 1988. Task No. 6/19 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87313R01A

ESE. 1988t. Final Phase III Data Addendum. Section 35 - Nonsource Area. Version 3.1. September 1988. Task No. 6 - Sections 26 and 35. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88133R02

ESE. 1988u. Final Phase I Contamination Assessment Report. Site 35-2/26-9: Chemical Sewer. Version 3.1. May 1988. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 87133R02A

ESE. 1988v. Final Phase II Data Addendum. Site 36-20: Chemical Sewer. Version 3.1. August 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88203R04

ESE. 1988w. Final Phase I Contamination Assessment Report. Section 34 - Nonsource Area. Version 3.2. July 1988. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88203R03

ESE. 1988x. Final Phase I Contamination Assessment Report. Section 24 - Nonsource Area. Version 3.2. June 1988. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88063R09

ESE. 1988y. Final Phase I Contamination Assessment Report. Section 25 - Nonsource Area. Version 3.2. March 1988. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88063R09A

ESE. 1988z. Final Phase II Data Addendum. Section 25 - Nonsource Area. Version 3.1. September 1988. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88293R04

ESE. 1988aa. Final Phase I Contamination Assessment Report. Site 35-6: Possible Munitions Test Area. Version 3.2. July 1988. Task No. 14 - Army Sites North. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

RIC 88063R07A

ESE. 1988bb. Final Phase II Data Addendum. Site 36-7: Solid Waste Burial/Sanitary Pit. Version 3.1. August 1988. Contract No. DAAK11-84-D-0016. Prepared for: U.S. Army Program Manager's Office for Contamination Cleanup.

RIC 88063R01

ESE. 1988cc. Final Phase I Contamination Assessment Report. Site 36-5: Mercury Spill. Version 3.3. January 1988. Task No. 1 - Section 36. Contract No. DAAK11-84-D0016. Prepared for: U.S. Army Program Manager's Office for RMA Contamination Cleanup.

APPENDIX A
NONTARGET SCREENING

NONTARGET SCREENING

A number of nontarget contaminants were originally identified through a screen (i.e., toxicity, concentration, frequency of occurrence) of the nontarget fraction of the Phases I and II RI data as part of the RMA Chemical Index (EBASCO, 1988a/RIC88387R01). These contaminants were carried through to the exposure assessment where an additional screening was performed to determine whether PPLVs should be developed for each of the site-specific nontarget contaminants. Development of PPLVs for these contaminants was based on four screening criteria, namely, frequency of occurrence, similarity of the nontarget concentration to that of target contaminants, suspicion that the detection was a laboratory contaminant, and co-occurrence of nontargets with targets in Arsenal'soils (see Volume VI-A, Section 2.2.3.1).

The results of the nontarget evaluations for each site of North Central Study Area, their screening parameters, and the decision to further consider or reject them, are presented in Table A-1.

TABLE A-1 NORTH CENTRAL NONTARGET SCREENING

Site	Nontarget Contaminant	Frequency of Occurrence	Relative Concentration	Suspected Lab Contam.	Co-occurs with Drivers	Nontarget Decision
NCSA-1A	Methyl cyclohexane Hexachlorobutadiene Oxybisethanol Phosphoric acid, triphenyl ester Tetrachlorobenzene	Low Low Low Low	Low Low Low	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	Yes Yes Yes Yes	Reject Reject Reject Reject
NCSA-1B	2-Butoxyethanol Flouranthene Hexachlorobutadiene Methyl naphthalene Methyl phosphonic acid Oxybisethanol Phosphoric acid, triphenyl ester	Low Low Low Low Low Moderate Moderate	Low Moderate Low Low High Low Low		Yes Yes Yes Yes Yes	Reject Reject Reject Reject Reject Reject Reject
NCSA-1C	Methyl phosphonic acid	Low	Moderate	o Z	Yes	Reject
NCSA-1E	Tetrachlorobenzene Methyl phosphonic acid	Low	Low Moderate	o o	Yes Yes	Reject Reject
NCSA-1F	Methyl phosphonic acid Pentachlorobenzene	Low	Moderate Low	o o	Yes Yes	Reject Reject
NCSA-2A	Methyl phosphonic acid	Low	High	S.	Yes	Reject

REA3/APP0145.REA VI-C 9/4/90 2:14 pm sma

TABLE A-1 (Continued)
NORTH CENTRAL NONTARGET SCREENING

Site	Nontarget Contaminant	Frequency of Occurrence	Relative Concentration	Suspected Lab Contam	Co-occurs	Nontarget
NCSA-2B	Methyl phosphonic acid	Low	Low	No	Vec	Deject
NCSA-2C	Oxybisethanol	Low	Low	oN N	Yes	Reject
	Phosphoric acid, triphenyl ester	Low	Low	No	Yes	Reject
NCSA-3	Hexachlorobutadiene Oxybisethanol	Low	Low	S S S	Yes Yes	Reject Reject
	1,1,2,2-Tetrachloroethane	Low	Low	S S	Yes	Reject
NCSA-4A	Phosphoric acid, triphenyl ester	Low	Low	°Z	Yes	Reject
		Low	Low	S _o	Yes	Reject
NCSA-5B	Oxybisethanol 1,1,2,2-Tetrachloroethane	Low	Low	o N o N	Yes Yes	Reject Reject
NCSA-6A	Tetrachlorobenzene	Low	Low	N _o	Yes	Reject
NCSA-6B	Oxybisethanol Trichloropropene	Low Low	Low	°Z Z Z	Yes Yes	Reject Reject
NCSA-9I	2-Butoxyethanol	Low	Low	°Z	No	Reject

REA3/APP0145.REA VI-C 9/4/90 2:48 pm sma

TABLE A-1 (Continued)
NORTH CENTRAL NONTARGET SCREENING

Site	Nontarget Contaminant	Frequency of Occurrence	Relative Concentration	Suspected Lab Contam.	Co-occurs with Drivers	Nontarget Decision
NCSA-9K	Trichloropropene	Low	Low	S _o	No	Reject
NCSA-9N	Trichloroprop 3	Low	Low	No	No	Reject

1/ Although rejected, PPLVS are computed for this chemical since it was detected in the North Central Study Area.

APPENDIX B
NORTH CENTRAL STUDY AREA

Appendix B North Central Study Area

Two sites in this study area had exceedances of the open space vapor inhalation pathway: NCSA-1b and NCSA-3. According to the methodology presented in Volume IV, Section 4.5.8, the representative exposure index (EI_{REP}) was calculated using the mean soil contaminant concentration at the site for the specific contaminant(s) in question.

The mean soil contaminant concentrations were calculated as the geometric mean of the hits for contaminants with less than 30 percent hits and the adjusted geometric mean of the hits for contaminants with greater than 30 percent hits. This procedure was adopted to ensure the most conservative computation of the mean values.

The EI_{REP} was then calculated using the lowest open space SPPPLV calculated for a particular contaminant at the site. The open space SPPPLVs used were either recreational (Rec) and industrial (Ind). EI_{REP} 's with values greater than 0.1 are exceedances and are designated with an asterisk. The sites, contaminants, SPPPLVs, mean concentrations, and EI_{REP} 's are listed in Table B-1.

There were no EIREP exceedances for this study area.

TABLE B-1 NORTH CENTRAL STUDY AREA EI_{REP} 's

Site	Contaminant	SPPPLV (ug/kg)	Mean Concentrations (ug/kg)	EIREP
NCSA-1b	Aldrin	4,500 Rec ^u	3.33	7.2 x 10 ⁻⁴
NCSA-3	DCPD	38,00 Rec	93	2.4 x 10 ⁻³

^{1/} Rec denotes that the recreational visitor SPPPLV was used to calculate Elam.