Cours

Charles Vin

Date

1 Notation

L number of layer

2 Neural ODE

Comme je connais vraiment rien en équa dif je vais sum up une vidéo.

- Neural ODE : mieux que les RNN pour prédire les time series
- Considère une NN non plus de manière discrète avec des layers/block de neurone mais d'une manière continue
- Proche des Equa dif, et on peut utiliser la théorie de ça pour train à la place de la descente de gradiant
- Pas appris beaucoup plus

3 Introduction

- Problème pour train les resnet en fonction de la profondeur : vanishing / exploding gradients.
- Solution classique : batch norm \rightarrow fix la variance du signal \rightarrow mais apporte d'autre problème
- Solution 2 : scaling factor dépendant de L mais comment?? == objectif du papier
- 3 chapitres
 - Scaling at initialization :
 - Initialisation importante: avoid grad problems, larger learning rate (better generalization)
 - Exploding gradients **during backprop**== $\left\| \frac{\partial \mathcal{L}}{\partial h_0} \right\| \ge \ge \left\| \frac{\partial \mathcal{L}}{\partial h_L} \right\|$ with an high probability
 - \rightarrow they study distibution and the choice of $\alpha_L = \frac{1}{\sqrt{L}}$
 - The continuous approach:
 - Si on pose $\alpha_L=1/L o {\sf ResNet=ODE}$
 - Mais contradictoire avec le résultat de la section précédente $\alpha_L = \frac{1}{\sqrt{L}}$
 - En faite $\alpha_L=\frac{1}{\sqrt{L}}$ correspond au bon choix pour neural stochastic pdifferential equation (SDE). Qui correspond à un ResNet avec une initialisation particulière
 - Section 4 : test de differente valeur de α_L dans le cadre SDE
- Related work :
 - Plein de papier sur α_L , plein de solution possible
 - Nous on analise α_L au moment de l'initialisation des paramètres
 - D'autre gens on trouvé $\alpha_L = \frac{1}{\sqrt{L}}$ mais sans donner trop de math et sans fouiller les autres cas $\alpha_L \ll \frac{1}{\sqrt{L}}$, $\alpha_L \approx \frac{1}{\sqrt{L}}$, $\alpha_L \gg \frac{1}{\sqrt{L}}$ et sans faire le lien avec les équa dif
 - Des gens on déjà fait le lien avec les equa diff mais dans des cas moins général je crois

4 Scaling at initialization

4.1 Model and assumptions

4.2 Probabilistic setting at initialization

- Les paramètre du modèle est une collection iid de variable aléatoire ightarrow donc les états cachés
- h_0,\dots,h_L aussi (mais il sont martingale eux mais osef pour l'instant) La distribution initial des paramèter n'est pas dépendante de L, donc indépendante de l'architecture du modèle considéré. Pratique!

4.3 Assumptions

— s^2 sub-Gaussian : $\forall \lambda \in \mathbb{R}, \mathbb{E}(\lambda X) \leq \exp(\frac{\lambda^2 s^2}{2})$ a sub-Gaussian distribution is a probability distribution with strong tail decay.