几何拓扑自驾游

熊锐

2021年3月6日

Contents

上同调速成 1 上同调速成 1 本节介绍如何理解和使用奇异 (singular) 上同调 (co-homology) 群. 对于拓扑空间 X, 上同调群 $H^*(X)$ 是 . 1.3 抛物子群 7 就像即使并不懂电脑的运行原理, 但是却可以使用电脑. 双旗流形 . 但是, 每多理解一点原理, 能做的事儿就多一点. 2 纤维丛 11 本节大部分内容成立都是需要条件的, 通常会在提及 之后的评注中给出. 实际上, 代数拓扑的使用原则是 2.4 绝不使用定义直接计算 3 向量丛 19 我们永远是发展足够多的理论, 再用刻画让计算成功. 3.1 向量丛的分类丛 19 3.3 主丛的分类丛 代数拓扑在组合中的相当于提供另一种计数工具. 其 有行之有效原因在于,相当一部分计算其实可以约化成计 算集合. 如果我们相信不同计数方法计算数目给出相同结 20 4 K 理论速成 果, 那我们也应该相信不同拓扑方法计算同调群会给出相 同结果. 5 等变拓扑速成 **21** 1.1 胞腔 我们在本小节需要下同调 $H_*(X)$ 和相对下同调 6 收纳箱 21 $H_*(X,Y)$, 其中 $Y \subseteq X$ 是一个子集 6.1仿射旗流形 记 n 维球面 (sphere) 和 n 维圆盘 (disk) 为 6.2 Connected K-theory 6.3 相交上同调 $S^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \dots + x_{n+1}^2 = 1\};$ $D^{n} = \{(x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} : x_{1}^{2} + \dots + x_{n}^{2} \leq 1\}.$ 6.522 注意 $S^{n-1} \subseteq D^n$ (上标是维数). 6.7 Hilbert 概形 (Hilbert Schemes) 箭图簇 (Quiver Varieties) 6.8需要知道的基本事实是 动量图 (Moment Graphs) $H_*(S^n)$ \mathbb{Z} 0 ···· $H_*(D^{n+1})$ 0 0 0 $H_*(D^{n+1}, S^n) \mid 0 \quad 0 \quad \cdots$

最后一行来自于长正合序列. 可以这样记:

 D^{n+1} 相对 $S^n = D^{n+1}/S^n$ 相对于缩点 = S^{n+1} 相对于一个点.

这里 D^{n+1}/S^n 表示把 D^{n+1} 上的 S^n 粘成一点 (缩点).

上同调其实是一样的

			n-1			
$H^*(S^n)$ $H^*(D^{n+1})$	\mathbb{Z}	0	 0	\mathbb{Z}	0	
$H^*(D^{n+1})$	\mathbb{Z}	0	 0	0	0	
$H^*(D^{n+1}, S^n)$	0	0	 0	0	\mathbb{Z}	

我们说一个拓扑空间 $X \in \mathbb{CW}$ 复形 (CW complex), 如果 X 是由圆盘 D^n 按照维数顺序粘结而成.

准确一点: X^0 是一些离散的点; X^1 是往 X^0 上粘 $D^1 = \boxtimes \Pi[0,1]$, 使得 0,1 粘到 X^0 上; X^2 是往 X^1 上粘 D^2 , 使得 D^2 的边界 S^1 粘到 X^1 上; 以此类推.

这样依次得到的 X^n 叫作 X 的 **骨架** (skeleton), 每 个黏上去的 D^n 叫作一个 n 维胞腔.

 $oxed{注意 1}D^n$ 的边界 S^{n-1} 必须落在低一维的"骨架" X^{n-1} 上. (不能不粘)

注意 $2 D^n$ 的内部到 X 是单射. (不能粘)

注意 3 严格来说,CW 的复形的拓扑是弱拓扑,即使得每个胞腔的粘结映射连续的最弱拓扑。(C=cellular, W=weak) 其实 CW 复形的拓扑有很多点集拓扑的良好性质,请见 [Bredon].

如果 X 有 CW 复形的结构, 记 X^n 是 n 维的骨架. 那么 $X^0 \subseteq X^1 \subseteq X^2 \subseteq \cdots$. 我们可以考虑相对同调 $H_*(X^i, X^{i-1})$ 和相对上同调 $H^*(X^i, X^{i-1})$.

有下面这个重要事实

这里 $X^{-1} = \varnothing$. 下同调结果是一样的. 请对比 $H_*(D^n, S^{n-1})$. 这是切除定理 (excision)的一个应用.

证明如下

(图中全是三角形, 但是 CW 复形不一定要求是三角形)

例如 S^n 是一个 CW 复形. 因为我们可以把 D^n 的边界 S^{n-1} 整个粘到一个点上得到 S^n . 最简单的胞腔取法是

维数	0	1	 n-1	n
胞腔数量	1	0	 0	1
骨架	l	点	 点	S^n
$H_n(X^n, X^{n-1})$	\mathbb{Z}	0	 0	\mathbb{Z}

例如 D^n 本身也是一个 CW 复形. 最简单的胞腔取法 是

维数	0	1	 n-2	n-1	n
胞腔数量	1	0	 1	1	1
骨架	点	点	 点	S^{n-1}	\mathbb{D}^n
$H_n(X^n, X^{n-1})$	\mathbb{Z}	0	 0	\mathbb{Z}	\mathbb{Z}

下面假设 X 是 CW 复形, 记 $C_n = H_n(X^n, X^{n-1})$. 那么存在一条复形

$$\cdots \longrightarrow C_n \longrightarrow \cdots \longrightarrow C_1 \longrightarrow C_0 \longrightarrow 0$$

使得其同调群同构于 $H_*(X)$. 记 $C^n = H^n(X^n, X^{n-1})$. 那么存在一条复形

$$0 \longrightarrow C^0 \longrightarrow C^1 \longrightarrow \cdots \longrightarrow C^n \longrightarrow \cdots$$

使得其上同调群同构于 $H^*(X)$. 这被称为 **胞腔 (cellular)** 同调.

这个定理本质上只是同调代数的追图, 见 [姜].

注意 1 在一些"正则"的情况,这个复形之间的微分 ∂ 是可以"看出来"的. 例如,当 X 是多面体的情况,n 维 抱歉就是一个 n 维面. 那么

$$\partial(\mbox{\ensuremath{\mbox{χ}}} n \mbox{\ensuremath{\mbox{ψ}}} n) = \sum \mbox{\ensuremath{\mbox{χ}}} \mbox{\ensuremath{\mbox{χ}}} \mbox{\ensuremath{\mbox{χ}}} n \mbox{\ensuremath{\mbox{ψ}}} n \mbox{\ensuremath{\mbox{ψ}}}.$$

这里的"和"需要根据预先指定的定向决定正负.

注意 2 有一些书喜爱使用单纯复形 (simplicial complex),此时要任何一个单纯形 (三角形) 每条边都不黏在一起不相交,因此往往简单的图形需要多次重分才能做到.但是这样的好处是可以计算乘法结构.

[注意 3] 在 [Hatcher] 中,他还定义了 Δ 复形,这时全部都是单纯形 (三角形),但是允许一个单纯形内部的边相交. 但是实际上三角形,四边形,五边形,甚至二边形都是可以的.

如果对于紧致的 Hausdorff 空间 X(例如流形), 如果有一个分层 (stratification)

$$X_0 \subseteq X_1 \subseteq \cdots \subseteq X$$

使得每个 X_k 都是闭的, 且 $X_k \setminus X_{k-1} \cong \mathbb{R}^{a_k}$ 对某个 a_k . 那么利用打洞的技巧 (见 [Fulton]), 可以得到 我们称这个分层给出一个胞腔结构. 我们也称 $X_k \setminus X_{k-1}$ 是一个 a_k 维胞腔.

记 $X^k = \bigcup_{\dim X_i < k}$, 那么同样也有

$$H^*(X^n, X^{n-1}) = egin{cases} \operatorname{UMFf} & \operatorname{n-4thme} \\ \operatorname{bset} & \operatorname{Abel} & \operatorname{\#i}. \\ 0 & * \neq n. \end{cases}$$

所以一切照旧.

对于线性空间 $V = \mathbb{C}^n$, 一个旗 (flag) 是一串子线性 空间

$$V^0 \subset V^1 \subset \dots \subset V^n$$

使得 $\dim V^i = i$. 此时为了区别也叫完全 (complete) 旗. 考虑 $\mathcal{F}\ell(n)$ 为 n 维复向量的所有旗 (flag) 组成的 集合, 这可以被赋予流形和代数簇的结构. 我们称 $F\ell(n)$ 为旗流形 (flag manifold) 或旗簇 (flag variety).

记 $G = GL_n$, B 是全体上三角矩阵. 将每一个 $x \in$ GL_n 视作 n 个线性无关的列向量 (x_1, \ldots, x_n) , 我们得到 一个其 张成的旗 $\operatorname{span} x$

$$0 \subseteq \operatorname{span}(x_1) \subseteq \operatorname{span}(x_1, x_2) \subseteq \cdots \subseteq \operatorname{span}(x_1, \dots, x_n).$$

这定义了一个 (连续) 映射 span : $GL_n \to \mathcal{F}\ell(n)$. 通过线性代数,不难发现 span 是满射,且

 $\operatorname{span} x = \operatorname{span} y \iff x = yb$ 对某个 $b \in B$.

换言之, $G/B \rightarrow \mathcal{F}\ell(n)$ 是双射 (同胚).

对于置换 $w \in \mathfrak{S}_n$, 记 w 是对应的置换矩阵, 即使得 $w(e_i) = e_{w(i)}$, 其中 e_i 是标准基. 也就是在 i = 1, ..., n 位 置 (w(i),i) 上是 1, 其他位置是 0 的矩阵.

利用 Gauss 消元法, 可以得到 Bruhat 分解

$$G = \bigcup_{w \in \mathfrak{S}_n} BwB \qquad (\mathbb{X} \not \Sigma \mathring{\mathcal{H}}).$$

其实就是打洞. 实际上这是 G 的双陪集分解. 等价地, 这 说明 B 在 G/B 上作用的轨道与对称群元素——对应. 其 中 BwB/B 被称为 **Schubert** 胞腔.

按下图表定义 U_w

$$U_w = \begin{bmatrix} \mathbb{C} & \mathbb{C} & \mathbb{C} & 1 & 0 & 0 \\ \mathbb{C} & 1 & 0 & 0 & 0 & 0 \\ \mathbb{C} & 0 & \mathbb{C} & 0 & \mathbb{C} & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

自然映射:
$$U_w \to BwB/B$$

是双射 (同胚).

用 ℓ 表示逆序数. 于是 $BwB/B \cong \mathbb{C}^{\ell(w)}$, 换句话说拓 扑维数是 $2\ell(w)$. 因为 U_w 中 "C" 的数目是 Rothe 图中 ₩ 的的数目.

现在我们考虑 $X^i = \bigcup_{2\ell(w) \le i} BwB/B$. 这给出 $\mathcal{F}\ell(n)$ 的一个胞腔结构. 但是因为我们没有奇数维的胞腔, 所以 胞腔复形将形如

$$0 \rightarrow C_0 \rightarrow 0 \rightarrow C_2 \rightarrow 0 \rightarrow C_4 \rightarrow \cdots$$
;

$$\cdots \to C_4 \to 0 \to C_2 \to 0 \to C_0 \to 0.$$

所以 $H^i(\mathcal{F}\ell(n)) = C^i$, $H_i(\mathcal{F}\ell(n)) = C_i$.

回忆 $C_{2i}($ 和 $C^{2i})$ 是维数为 2i 的胞腔生成的自由 Abel 群. 我们用 [BwB/B] 记对应的基. 注意: $\dim[BwB/B] =$ $2\ell(w)$.

于是我们得到了

$$H^*(G/B)=$$
以 $\{[BwB/B]\}_{w\in\mathfrak{S}_n}$ 为基的自由 Abel 群 $H_*(G/B)=$ 以 $\{[BwB/B]\}_{w\in\mathfrak{S}_n}$ 为基的自由 Abel 群

注意 1 我们需要一则事实, $F\ell(n)$ 是紧致的 (完备的). 这是因为紧 Lie 群 $U_n \subseteq GL_n$ 到 $F\ell(n)$ 是满射 (线性代 数).

注意 2 我们还需要一则事实, 每一个 BwB/B 的闭包都 是一些 BuB/B 的并. 这是因为 B 作用, 所以轨道的闭包 还是轨道的并.

实际上 $BuB/B \subseteq \overline{BwB/B}$ 当且仅当在 Bruhat or- $\operatorname{der} \operatorname{\mathcal{T}} u \leq w$.

注意 3 实际上 Schubert 胞腔也给出 CW 复形意义上的 胞腔. 这可以用 Morse 理论的类比 Bialynicki--Birula 定 理得到,请看 [CG] 第二章某一节.

习题 1. 验证 $G/B \rightarrow \mathcal{F}\ell(n)$ 是双射. [提示: 利用基的延 拓定理证明满射,再证明正文中提到的 $\operatorname{span} x = \operatorname{span} y$ 的等

习题 2. 验证 $U_w \to BwB/B$ 是双射. [提示: 首先证明 U_w 在 $G \rightarrow G/B$ 下的像落在 BwB/B 内; 对于每个 $x \in G$, 证明 xB/B 一定等于某个 yB/B 对某个 $y \in U_w$, 这需要从 最后一行开始打洞; 最后证明这是单射, 这需要从最后一行开 始比起.]

习题 3. 证明 $\dim G/B = 2 \max_{w \in \mathfrak{S}_w} \ell(w)$. 利用 G/B 光 滑的事实说明只有唯一的元素取到最大值.

习题 4. 记 $[n] = \frac{\mathbf{q}^n - 1}{\mathbf{q} - 1}$, $[n]! = [n] \cdot [n - 1] \cdot \dots \cdot [1]$. 经典 1.2 推出与拉回 的计数表明 [n]! 是有限域 $\mathbb{F}_{\mathbf{q}}$ 上 n 维线性空间中旗的数 量. 证明这还是 $H^*(G/B)$ 的 Poincaré 多项式

$$[n]! = \sum_{k} \operatorname{rank} H^{2k}(G/B) \mathbf{q}^{k}.$$

[提示: 在有限域上也有 Schubert 胞腔, 这时 $BwB/B \cong$ $\mathbb{F}_{\mathbf{q}}^{\ell(w)}$, 这贡献 $\mathbf{q}^{\ell(w)}$ 这么多元素, 而在 \mathbb{C} 上的情况, 这时 $BwB/B\cong \mathbb{C}^{\ell(w)}$ 在 Poincaré 多项式中贡献 $\mathbf{q}^{\ell(w)}$.]

习题 5. 考虑复射影空间 $\mathbb{C}P^n$ 为 n+1 维空间所有 的 1 维子空间. 将 $\mathbb{C}P^n$ 写成一些 \mathbb{C}^{2i} 的并, 并且证明 $H^{2k+1}(\mathbb{C}P^n)=0, \mathbb{A}$

[提示: 对非零向量 $(x_0,\ldots,x_n)\in\mathbb{C}^{n+1}$, 记 $[x_0:\cdots:x_n]$ 为 对应的 1 维子空间. 换言之 $[x_0:\cdots:x_n]=[y_0:\cdots:y_n]$ 当且仅当 $(x_0,\ldots,x_n)=\lambda(y_0,\ldots,y_n)$ 对某个 $\lambda\in\mathbb{C}^{\times}$. 对 $i=0,\ldots,n$, $\mbox{id}\ A^i=\{[\cdots 0:1:\underline{\mathbb{C}:\cdots:\mathbb{C}}]\}$.

 $\diamondsuit X \xrightarrow{f} Y$ 是一个连续映射, 那么诱导了**拉回 (pull** back)

$$H^*(X) \stackrel{f^*}{\longleftarrow} H^*(Y).$$

注意 1 这是一个齐次映射.

$$\alpha \in H^n(Y) \implies f^*(\alpha) \in H^n(X).$$

注意 2 这是一个代数同态.

$$f^*(\alpha \smile \beta) = f^*(\alpha) \smile f^*(\beta).$$

令 X 是紧致光滑定向流形. 那么有 Poincaré 对偶

$$H^*(X) \xrightarrow{\sim} H_{\bullet}(X) \qquad *+\bullet = \dim X.$$

|注意 1 | 这个最经典的, 也最容易理解的是组合的解释, 见 [姜]. 现代通行的做法是用 cap 积 个 给出具体的映射. 更进一步还可以用层的语言改写 (与对偶层对偶).

注意 2 这个同构需要选定一个定向, 所以区分"可定向 (orientable)"和"定向 (oriented)".

假设 X 和 Y 都是紧致光滑定向流形. 令 $X \xrightarrow{f} Y$ 是 一个连续映射, 那么可以定义推出 (push forward)

$$H^*(X) \xrightarrow{f_*} H^{\dagger}(Y),$$

其中 $\dim X - * = \dim Y - \dagger$, 使得下图交换

$$H^*(X) \longrightarrow H^{\dagger}(Y)$$

対偶 \downarrow 対偶
 $H_{\bullet}(X) \longrightarrow H_{\bullet}(Y)$

即, 先对偶到下同调, 推出, 再对偶回上同调.

注意 1 这不是一个齐次映射.

但是如果我们对 $\alpha \in H^*(X)$, 记 $\operatorname{codim} \alpha = \dim X - *$, 那么 f_* 保持 codim.

|注意 2|这不是一个代数同态. 但是对于 $\alpha \in H^*(X), \beta \in$ $H^*(Y)$, f projective formula

$$f_*(\alpha \smile f^*(\beta)) = f_*(\alpha) \smile \beta.$$

这是一个"模同态", 因为通过 f^* , $H^*(X)$ 是 $H^*(Y)$ -代 数, 从而是 $H^*(Y)$ -模.

|注意 3|其实我们不需要 X 和 Y 都紧致, 只需要 f 是 \mathcal{L} 紧的 (proper) 即可定义; 实际上最需要的是当 f 是一个 纤维丛, 且纤维是紧致光滑定向流形.

注意 4 对于一个"拉回方阵"

令 X 是一个紧致流形, 设 [X] 使得

单位元
$$1 \in H^0(X) \stackrel{\text{対偶}}{\longleftrightarrow} [X] \in H_n(X)$$

我们称 [X] 是 X 的基本类 (fundamental class).

注意 1 如果给 X 一个三角剖分, 即把 X 分割成一些单 纯形, 那么 $H_n(X)$ 是这些单纯形的和 (事先选好定向) 的 类. 换句话说,

$$[X] =$$
 "同调意义下"的 X 本身.

 $\Diamond Y$ 是一个紧致流形, X 是一个嵌入 \overline{I} 子流形. \Diamond $i: X \to Y$ 是包含映射. 定义 X 在 Y 中的 fundamental class(滥用记号)

$$[X] = i_*(1) \in H^*(Y),$$

特别地, 1 = [Y].

请注意!

$$deg[X] = codim X = dim Y - dim X 是 X 的余维数.$$

另外, $[X] \stackrel{\text{有可能}}{=\!=\!=} 0$.

注意 1 请看

$$1 \in H^0(X) \longrightarrow H^{\operatorname{codim} X}(Y) \ni [X]$$

対偶 \downarrow 対偶

 $X \in H_{\dim X}(X) \longrightarrow H_{\dim X}(Y) \ni (\cdots)$

所以

$$[X] = "Y$$
 的同调意义下"的 X 本身.

注意 1 对于代数簇, 即使子簇 X 不是光滑的, 我们也可 以在 $H^*(Y)$ 中定义代数闭链 (algebraic cycles) [X]. 但 是至少需要是闭的. 使用的方法是 Borel-Moore 同调, 请 见 [Fulton].

|注意 2 | 直接把代数闭链拿出来商掉"代数"同伦, 这就 是周环 (Chow ring)的定义. 只有 X 是光滑的时候, X的周"环"才是环.

这个是被 well-studied, 更广的配边理论也对此有研究.

—下面我们用 fundamental classes 重新理解上同调 —

 $\square \longrightarrow Y$ $F \downarrow \qquad \qquad \downarrow f$ 以下内容不尽严格. 严格地, 要加何种条件应该看 [Ful- $Z \longrightarrow X$ ton], 周环的版本应该看 [3264]. 但是拿来用基本是没问题 的,而且实际上用式性类等工具能很大程度上避免这类问

1. Cup 积

假设 dim A = a, dim B = b. 那么 $A \cap B$ 的期待维数 是 n - [(n-a) + (n-b)]. 此时

$$[A] \smile [B] = \begin{cases} [A \cap B] & A \text{ an } B \text{ 直交} \\ 0 & \text{比期待维数小} \end{cases}$$
不知道 比期待维数大

在 A 和 B **直交** (transversal) 时, 一定取到期待维数.

注意 1 所谓直交是说局部上上看是线性空间的交, 也就 是说没有 🔀.

注意 2 微分几何中需要计算定向, 但是如果是代数簇, 定 向是复结构一定选定的, 所以没有问题.

2. 拉回 $(f: X \to Y)$

对于 $B \subset Y$, dim B = b, 那么 $f^{-1}(B)$ 的期待维数是 x-(y-b).

在 $f^{-1}(B)$ **横截 (transversal)** 时, 一定取到期待维数. 注意 1 所谓横截是说局部上上看是线性映射, 例如对应 的 Jacobi 矩阵秩取到期待的秩.

(这不严格)

所以

$$\begin{bmatrix} f^*(\alpha \smile \beta) \\ = f^*(\alpha) \smile f^*(\beta) \end{bmatrix} = \begin{bmatrix} & \text{問调版本的} \\ & f^{-1}(A \cap B) \\ = f^{-1}(A) \cap f^{-1}(B) \end{bmatrix}$$

3. 推出 $(f: X \to Y)$

对于 $A \subseteq X$, dim A = a, 那么 f(A) 的期待维数是 a.

$$f_*[A] = \begin{cases} d \cdot [f(A)] & \text{取到期待维数} \\ 0 & \text{比期待维数小} \end{cases}$$

注意 $3 \mid -$ 的根来说上同调不一定总是由代数闭链生成的, 这里 d 是映射度, 即 f(A) 中几乎所有点的原像都是 d 个 A 中的点.

(这也不严格)

所以

对于 i = 1, ..., n - 1. 考虑

$$P_i = \begin{pmatrix} * \cdots * * \cdots * \\ \vdots \vdots \vdots \vdots \\ * * \cdots * \\ * \vdots \end{cases}$$

这比上三角矩阵群 B 在 (i+1,i) 位置多一个自由度.

齐次流形 G/B 和 $F\ell(n)$ 同胚. 那么 G/P 呢?

$$G/B \cong \left\{ V^0 \subseteq \dots \subseteq V^{i-1} \subseteq V^i \subseteq V^{i+1} \subseteq \dots \subseteq V^n \right\}$$

$$G/P \cong \left\{ V^0 \subseteq \dots \subseteq V^{i-1} \qquad \subseteq V^{i+1} \subseteq \dots \subseteq V^n \right\}$$

且自然映射

$$G/B \longrightarrow G/P$$

就是 "把 complete flags 中维数为 i 的子空间去掉".

考虑

$$P_i/B = \begin{pmatrix} * \cdots * * \cdots * \\ \vdots \vdots \vdots \vdots \\ * * \cdots * \\ * * \cdots * \\ \vdots \end{pmatrix} / \begin{pmatrix} * \cdots * * \cdots * \\ \vdots \vdots \vdots \vdots \\ * * \cdots * \\ * \cdots * \\ \vdots \\ * * \end{pmatrix}$$
$$= \binom{* *}{*} / \binom{* *}{*} = \mathcal{F}\ell(2) = \mathbb{C}P^1$$

最后 $\mathcal{F}\ell(2)=\mathbb{C}P^1$ 是因为 \mathbb{C}^2 中的旗实际上由维数为 1 的子空间决定.

另外注意到 $\mathbb{C}P^1 = \mathbb{C} \cup \{\infty\} \cong S^2$ 是 Riemann 球.

让我们考虑自然映射 $G/B \xrightarrow{\pi} G/P_i$. 我们定义 **Demazure operator**为

这里的 $2 = \dim G/B - \dim G/P = \dim P/B$. 用旗的语言,

令 $B^-=w_0Bw_0$ 为下三角矩阵群, 其中 w_0 是最长元 $\binom{1\cdots n}{n\cdots 1}\in\mathfrak{S}_n$. 那么我们记 Σ_w 为

[BwB/B]作为上同调胞腔 = $[\overline{B-wB/B}]$ 作为基本类.

这个等号实际上是通过计算下同调的相交证明的, 请见 [Fulton]. 于是

$$H^*(G/B) = 以 \{\Sigma_w\}_{w \in \mathfrak{S}_n}$$
 为基的自由 Abel 群

令 $s_i=(i,i+1)\in\mathfrak{S}_n$ 是 i 和 i+1 的对换. 注意到 $P_i=B\cup Bs_iB$.

下面我们可以计算 Demazure operator 在 Σ_w 上的作用. 根据定义

$$\begin{split} \partial_{i}(\Sigma_{w}) &= \pi^{*}(\pi_{*}(\Sigma_{w})) = \pi^{*}(\pi_{*}([\overline{B^{-}wB/B}])) \\ &= \delta_{\# \underline{w} \underline{\pi} \underline{m}} \cdot [\pi^{-1}(\pi(\overline{B^{-}wB/B})] \\ &= \delta_{\# \underline{w} \underline{\pi} \underline{m}} \cdot [\pi^{-1}(\overline{B^{-}wP/P})] \\ &= \delta_{\# \underline{w} \underline{\pi} \underline{m}} \cdot [\overline{B^{-}wB/B} \cup \overline{B^{-}ws_{i}B/B}] \\ &= \begin{cases} [\overline{B^{-}ws_{i}B/B}], & \ell(ws_{i}) = \ell(w) - 1, \\ 0, & \ell(ws_{i}) = \ell(w) + 1. \end{cases} \\ &= \begin{cases} \Sigma_{ws_{i}}, & \ell(ws_{i}) = \ell(w) - 1, \\ 0, & \ell(ws_{i}) = \ell(w) + 1. \end{cases} \end{split}$$

这里实际上用到了Tits system.

Tits system 是说

$$BwB \cdot Bs_iB = \begin{cases} Bws_iB, & \ell(ws_i) = \ell(w) + 1; \\ Bws_iB \cup BwB, & \ell(ws_i) = \ell(w) - 1. \end{cases}$$

注意 1 实际上我们已经可以证明在任何系数下 Demazure operator 满足幂零辫子关系 (braid relation). 但是之后我们会建立多项式版本的联系, 那时将可以直接证明.

习题 1. 哪条集合论的事实的上同调版本是 $g^* \circ f_* = F_* \circ G^*$? [提示: $F(G^{-1}(A)) = g^{-1}(f(A))$.] 习题 2. 根据 Poincaré 对偶,

$$H^*(\mathbb{C}P^n) \otimes H^{2n-*}(\mathbb{C}P^n) \xrightarrow{\smile} H^{2n}(\mathbb{C}P^n) \cong \mathbb{Z}$$

构成完美配对. 取 H 是 $\mathbb{C}P^n$ 中任意一个超平面,记 $x=[H]\in H^*(\mathbb{C}P^n)$. 证明 $H^*(\mathbb{C}P^n)$ 作为环同构于 $\mathbb{Z}[x]/(x^{n+1})$,其中 $\deg x=2$. [提示:显然 H 的 (实) 余维数是 2. 注意到不同超平面给出相同的基本类,所以我们直接计算相交知道 $x^n=1\cdot [k]\neq 0$. 要说明 $H^*(\mathbb{C}P^n)$ 是由 x 生成的,我们将 H 视为 $\mathbb{C}P^{n-1}$,用 i^* 结合完美配对的事实归纳证明.]

习题 3. 对于一般的 d 次超平面 $D \subseteq \mathbb{C}P^n$,证明 1.3 [D] = dx,其中 x 是超平面类. [提示: 注意到因为 $H^2(\mathbb{C}P^n) = \mathbb{Z}x$,所以一定有一个整数 d' 使得 [D] = d'x. 注意到 D 与一条一般位置的直线交 d 个点,而直线又可以写成 n-1 个超平面的交, $d'x \cdot x^{n-1} = [D] \cup [H]^{n-1} = [D \cap H_1 \cap \cdots] = d \cdot [\triangle] = dx^n$,所以 d = d'.]

习题 4. 请说明

$$\Sigma_w = [\overline{w_0 B w_0 w B / B}] = [\overline{B w_0 w B / B}]$$

[提示: 因为可以在 GL_n 中找到一条从 1 通往 w_0 的道路,从而构造一个同伦.]

习题 5. 在 [Fulton] 中,为了计算 Demazure operators, \square $\rightarrow G/B$ 他用了拉回方阵 \downarrow , 证明这时 \square 和下面的集合是 $G/B \rightarrow G/P$ 双射.

$$\square = \left\{ \cdots \subseteq V^{i-1} \ \ \ \ \ \ \ \ \ \ \ V^{i} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ V^{i+1} \subseteq \cdots \right\}.$$

1.3 抛物子群

对于 GL_n , 对于 $\lambda_1+\ldots+\lambda_k$, 我们记 **抛物 (parabolic)** 子群

$$P_{\lambda} = \begin{pmatrix} \operatorname{GL}_{\lambda_1} & * & \cdots & * \\ & \operatorname{GL}_{\lambda_2} & \cdots & * \\ & & \ddots & \vdots \\ & & \operatorname{GL}_{\lambda_k} \end{pmatrix}$$

我们考虑 G/P.

实际上 (集合论意义上可以直接验证)

$$G/P_{\lambda} = \left\{ 0 \subseteq V^{\lambda_1} \subseteq V^{\lambda_1 + \lambda_2} \subseteq \dots \subseteq \mathbb{C}^n \right\}$$

且如果 P_1 分的块都是 P_2 的子块, 那么

$$G/P_1 \rightarrow G/P_2$$

就是"把多余维数的子空间去掉".

让我们用分成 k 组的 n 个标上 1 到 n 的 • 来记 λ_i

$$(\lambda_1 \uparrow \bullet) (\lambda_2 \uparrow \bullet) \cdots (\lambda_k \uparrow \bullet)$$

如果 $\lambda_i = 1$, 则省略括号.

那么 $\lambda_1 + \ldots + \lambda_j$ 是第 j 组最后一个 • 的编号.

第一个例子

$$\begin{array}{cccc}
\bullet & \cdots & \bullet & (\bullet & \bullet & \bullet \\
1 & i-1 & i & i+1 & i+2 & n
\end{array}$$

对应上一节的

$$P_i = \begin{pmatrix} * \cdots * * \cdots * \\ \ddots \vdots \vdots \ddots \vdots \\ * * \cdots * \\ \vdots & \vdots \end{pmatrix}$$

第二个例子

$$\begin{pmatrix} \bullet & \cdots & \bullet \\ 1 & \cdots & k \end{pmatrix} \begin{pmatrix} \bullet & \cdots & \bullet \\ k+1 & \cdots & n \end{pmatrix}$$

对应 Grassmaniann 流形/簇

$$G/P_{\lambda} = \mathcal{G}r(k,n) = \{0 \subseteq V^k \subseteq \mathbb{C}^n\}.$$

令

$$\mathfrak{S}_{\lambda} = \mathfrak{S}_{\lambda_1} \times \cdots \times \mathfrak{S}_{\lambda_k}$$

是"组内置换"构成的群.

注意到

$$P = \bigcup_{u \in \mathfrak{S}_{\lambda}} BuB.$$

(严格说还是用了 Tits system).

对于 $\sigma \in \mathfrak{S}_{\lambda}$, 我们有

 $Bw\sigma P/P = BwP/P$.

所以

$$G = \bigcup_{w \in \mathfrak{S}_w/\mathfrak{S}_{\lambda}} BwP \qquad (无交并)$$

称 $\{BwP/P : w \in \mathfrak{S}_w/\mathfrak{S}_{\lambda}\}$ 为 G/P_{λ} 上的 **Schubert 胞** 腔.

注意 1 一般没有 dim $BwP/P = 2\ell(w)$.

但是, 如果 w 是陪集 wS_{λ} 中长度最小者, 则

自然映射: $BwB/B \longrightarrow BwP/P$

是双射 (同胚). 记

 $\mathfrak{S}^{\lambda} = \{ \text{每个陪集 } \mathfrak{S}_n/\mathfrak{S}_{\lambda} \text{ 选出的唯一的长度最小者} \}$

那么 $\{BwP_{\lambda}/P_{\lambda}:w\in\mathfrak{S}^{\lambda}\}$ 给出 G/P_{λ} 的胞腔结构. 注意 1 这是因为作用 P 等于作用 $\bigcup_{u\in\mathfrak{S}_{\lambda}}BuB$,而 $BwB\cdot BuB=BwuB$ 如果 $\ell(wu)=\ell(w)+\ell(u)$ (Tits system). 换句话说如果 P 内 B 以外的元素作用在 BwB上一定无法回到 BwB.

我们证明对于 Grassmaniann 的情况

$$\binom{\bullet}{1} \cdots \binom{\bullet}{k} \binom{\bullet}{k+1} \cdots \binom{\bullet}{n}$$

 \mathfrak{S}^{λ} 和 $k \times (n-k)$ 的 Young 图 (保持 ℓ) 一一对应. 请看

我们曾经提到 $\mathcal{F}\ell(n)$ 是紧致的, 是因为 $\mathcal{F}\ell(n)$ 是酉群 U_n 的商.

具体来说, 记 $K = U_n$, T_K 是 U_n 中的对角矩阵. 那么

$$U_n/T_K \xrightarrow{\sim} G/B \cong \mathcal{F}\ell(n)$$

是同胚. 这实际上是如下一则线性代数的转述

任何旗都 admits 一个酉正交基.

但是 U_n/T_K 上面没有显然的代数簇结构 (酉群不是代数群!), 所以**无法刻画 Schubert 胞腔**. 但是当我们不用胞腔的时候, 复结构 (代数簇结构) 反而显得累赘.

注意 \mathfrak{S}_n 通过共轭, 作用在如下群上

 U_n , U_n 中的对角矩阵群 = T_K ,

 GL_n , GL_n 中的对角矩阵群.

但是唯独不作用在上三角矩阵群 B 上.

前两者诱导了 \mathfrak{S}_n 在

$$U_n/T_K \xrightarrow{\sim} G/B \cong \mathcal{F}\ell(n)$$

上的作用.

但是 GL_n/B 上面没有显然的 \mathfrak{S}_n 作用.

上面的事实也有紧致版本. 记

$$U_{\lambda} = \begin{pmatrix} U_{\lambda_1} & & & \\ & U_{\lambda_2} & & \\ & & \ddots & \\ & & & U_{\lambda_k} \end{pmatrix}$$

那么

$$G/P_{\lambda} = U_n/U_{\lambda}$$
.

但是同样 Schubert 胞腔也无法刻画.

习题 1. 证明 G_n/G_λ 每个陪集中都有唯一的一个长度最小者, 他们是那些组内单调递增的置换.

习题 2. 请验证 $G/P_{\lambda} = U_n/U_{\lambda}$. [提示: 因为我们已经给出过 G/P_{λ} 对应的旗的刻画,所以可以直接验证;另一方面,还可以说明 $U_{\lambda} = U_n \cap P_{\lambda}$.]

习题 3 (极大紧子群). 证明 $\mathrm{GL}_n(\mathbb{C})$ 中任何一个紧致子群都共轭到 U_n 的子群. [提示:需要用到一则事实,紧致子群有 Haar 测度 μ . 任意取一个酉内积,将这个酉内积对这个子群作用取平均,如此得到一个新的酉内积,而这个子群作用保持. 再利用事实 --- \mathbb{C}^n 上的所有酉内积都相同.]

习题 4. 证明 GL_n/U_n 是一个欧式空间. [提示: 回忆正交化算法给出的所谓 QR 分解;对西群也是类似的,任何一个矩阵 x 都可以写成一个酉矩阵和一个上三角矩阵的乘积,如果我们要求上三角矩阵的对角线上排列着 1,那么这个分解是唯一的. 所以 GL_n/U_n 和对角线全为 1 的上三角矩阵同胚.]

1.4 双旗流形

Bruhat 分解

$$G = \bigcup_{w \in \mathfrak{S}_n} BwB$$
 (无交并)

有一个几何解释. 即

任何两个 Flags 都 admit 一组公共基.

而上面的解释可以用线性代数延拓定理解决.

对于一系列线性空间 V 的子空间 $\{V_i\}$, 称基 B 是他们的基如果 $V_i \cap B$ 是 V_i 的基.

回忆映射

$$G/B \longrightarrow \mathcal{F}\ell(n)$$

假设 xB 对应到旗

$$V^{\bullet} = \{V^i = \operatorname{span}(x_1, \dots, x_i)\}.$$

那么 V^{\bullet} 的基的所有选择就是 xB 的列向量 (忽略列向量的顺序).

因此

任意 $x, y \in G$, 存在 $w \in \mathfrak{S}_n$, $x' \in xB, y' \in yB$, 使得x'w = y'这等价到 Bruhat 分解.

回忆

$$G \curvearrowright_{\chi f f} G/B \times G/B$$

$$\downarrow (xB, yB) \mapsto x \times x^{-1}yB$$
 $G \curvearrowright_{\chi f f f} G \times_B G/B$ 比较 $G \curvearrowright_{\chi f f f f} G/B$

因此

对角
$$G$$
-轨道 $(G/B \times G/B)$ = 左乘 G -轨道 $(G \times_B G/B)$
= $\operatorname{pt} \times_G G \times_B G/B$
= $\operatorname{pt} \times_B G/B$
= B -轨道 (G/B) .

于是我们发现

$$B$$
-轨道 $(G/B) \longleftrightarrow$ 对角 G -轨道 $(G/B \times G/B)$

其中 BwB/B 对应于 $G/B \times G/B$ 中的

$$\{(xB, yB): x^{-1}y \in BwB\}.$$

此时我们称 xB 和 yB 对应的 flags 具有 **相对位置** w (和标准记号 up to left and right).

对于两个 flags F_1^{\bullet} , F_2^{\bullet} 具有相对位置 w. 根据条件, 我们可以找到一个矩阵 y, 使得

$$\operatorname{span} yw^{-1} = U^{\bullet}, \quad \operatorname{span} y = V^{\bullet}$$

 $\mathbb{P} y = (y_1, \dots, y_n)$

$$F_1^i = \text{span}(y_{w(1)}, \dots, y_{w(i)}), \qquad F_2^i = \text{span}(y_1, \dots, y_i).$$

考虑

$$\begin{split} &\dim \frac{F_1^{i-1} + F_2^j \cap F_1^i}{F_1^{i-1} + F_2^{j-1} \cap F_1^i} \\ &= \dim \frac{\operatorname{span} \left\{ (y_w(1), \dots, y_{w(i-1)}) \cup (y_1, \dots, y_j) \cap (y_{w(1)}, \dots, y_{w(i)}) \right\}}{\operatorname{span} \left\{ (y_1, \dots, y_{w(i-1)}) \cup (y_1, \dots, y_{j-1}) \cap (y_{w(1)}, \dots, y_{w(i)}) \right\}} \\ &= \# \big(\{ w(1), \dots, w(i-1) \} \cup \{ 1, \dots, j \} \cap \{ w(1), \dots, w(i) \} \big) \\ &- \# \big(\{ w(1), \dots, w(i-1) \} \cup \{ 1, \dots, j \} \cap \{ w(1), \dots, w(i) \} \big) \\ &= \begin{cases} 1 & w(i) = j \\ 0 & \text{ if the } \end{cases} \end{split}$$

所以这个恰好来自置换矩阵.

注意 1 这给出一个相对位置的内蕴刻画. 这样 $F\ell(n)$ 上的 Schubert 胞腔也可以内蕴刻画. 对于 $F\ell(n)$, 选定一个 旗 V_1^{ullet} , 所有和这个 V_1^{ullet} 相对位置为 w 的旗 V_2^{ullet} 恰好对应 Schubert 胞腔 BwB/B.

回忆 Zassenhaus' Butterfly Lemma

$$\begin{array}{ccc} \frac{F_1^{i-1} + F_2^j & \cap F_1^i}{F_1^{i-1} + F_2^{j-1} \cap F_1^i} & \cong & \frac{F_2^{j-1} + F_1^i & \cap F_2^j}{F_2^{j-1} + F_1^{i-1} \cap F_2^j} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

所以

$$\dim(F_1^i \cap F_2^j) = \#\{\bullet \le i : w(\bullet) \le j\}$$

$$\updownarrow$$

$$\dim(F_1^i + F_2^j) = i + j - \#\{\bullet \le i : w(\bullet) \le j\}$$

习题 1. 注意我这个蝴蝶定理比 Serge Lang 等书上多断言了一个同构,请证明之.

习题 2. 对于三个子空间,举例说明我们不能找到公共 $0 \subseteq \langle e_1 \rangle \subseteq \mathbb{C}^2$,

基. [提示: 例如 $0 \subseteq \langle e_2 \rangle \subseteq \mathbb{C}^2$.] $0 \subseteq \langle e_1 + e_2 \rangle \subseteq \mathbb{C}^2$

习题 3. 证明对于任意两条线性子空间的链,一定可以找到他们的一组基. [提示: 线性代数中学的 $\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$ 的证明过程.]

习题 4. 对于线性空间 V 中的三个线性子空间 V_1,V_2,V_3 ,证明一定存在这样一组基 B,使得 V_i 由 $(B+B)\cap V_i$ 张 成. 其中 B+B 为可以写成两个基之和的向量. [提示:我非常确定这是对的,但是我证明用了表示论. 我还没有想到简单证明. 原因如下,每个子空间的指定给出 D_4 的一个quiver表示,而其表示已经分类,一定是以下 12 种可能性的直和

前面九种对应单射 (包含),满足条件.]

注意 1 实际上能有类似结论的情况很少, 他们分别是

每个箭头 \rightarrow 代表一个包含 \subseteq . 注意 A 型是上上题, D_4 的情况是上题.

参考文献

- Hatcher. Algebraic Topology.
- Bredon. Geometry and Topology. GTM139.

- 姜伯驹. 代数拓扑.
- Fulton. Young Tableaux.
- Chriss, Ginzburg. Representation Theory and Complex Geometry.
- Eisenbud, Harris. 3264 and all that.

关于 Lie 群有不少书, 推荐

- Bump. Lie Group. GTM 225. 里面也有很多相关的组合.
- Knapp. Lie groups beyond an introduction.
- Humphreys. Linear Algebraic Groups. GTM21. 请 看 29. Tits system.
- Springer. Linear Algebraic Groups. 请看 8.5, Bruhat order 的几何解释.

~~ ★★ 菜谱 ★

—如何计算上同调?

1. 计算群结构.

找胞腔结构, 计算他们的维数. 胞腔复形, 计算上同调. 没有奇数 ⇒ 复形平凡

2. 计算相交配对

取两个维数相补的基本类 移动到直交位置 计算相交点的数目

- 3. 计算推出拉回 计算像和原像 比维数
- 4. 计算环结构

取两个基本类, 求第三个基本类前系数 通过完美配对, 变成计算三个基本类相交 移动到直交位置, 计算相交点的数目

本节的上同调 ≈ 集合论 + 算开闭 + 算维数

2 纤维丛

上节我们提到关于计算环结构的方法只是理论上的, 但是实际并不能广泛地用于计算.

4. 计算环结构

取两个基本类, 求第三个基本类前系数 通过完美配对, 变成计算三个基本类相交 移动到直交位置, 计算相交点的数目

2.1 纤维丛

为了真的能够计算, 并更好地理解上同调, 我们需要理解纤维丛.

对于连续映射
$$E \xrightarrow{\pi} B$$
, 对于 $E \xrightarrow{\pi} B$ $b \in B$, 称 $\pi^{-1}(b) \subseteq E \not = b \not = b$ 的 纤维 (fibre), 也记作 E_b . $E_b \longleftrightarrow_{\mathbb{R}^{(k)}} b$

B 和 F 是拓扑空间,

$$E = B \times F$$

$$\uparrow^{\pi_1}$$

$$B$$

$$F$$

那么投射 $E \xrightarrow{\pi_1} B$ 每一点的纤维 (= 原像) 都是一个 F 的拷贝. 此时 $E \to B$ 被称为以 F 为纤维的 **平凡丛**.

令 $E \stackrel{\pi}{\to} B$ 是一个连续映射, 我们说这是一个以 F 为 纤维的 **纤维丛** (fibre bundle), 如果局部上是平凡丛.

任意一个点
$$U \times F \cong \pi^{-1}(U) \subseteq E$$
 邻域 U 使得 $0 \to U$ 同构于平凡丛.

其中 B 叫底空间(base space), E 叫全空间 (total space).

例子: Möbius 带, 将下列纸带

卷成 Möbius 带时, 中间的轴线会粘成一个圆圈 S^1 . 而垂直方向则是一个区间 I. 所以 Möbius 带 $\to S^1$ 是以 I 为纤维的纤维丛.

不是所有纤维丛都平凡

例子: 任何一个流形 M, 在点 $x \in M$ 有切空间 T_xM . 定义切丛

$$TM = \bigcup_{x \in M} T_x M$$

为所有点处切空间的形式并. 实际上可以找到 TM 的流形 结构使得

$$TM \to M$$
 来自 T_xM 的切向量 $\mapsto x$

是一个纤维从.

注意 1 请注意

不是所有切丛都平凡

例如著名的毛球 (hairy ball) 定理. 点 x 处切空间 T_xM 可以看出这一点处的无穷小移动组成的向量空间. 这可以用线素 (毛) 画出.

对于纤维丛 $\pi = \stackrel{E}{\underset{B}{\downarrow}}$, 我们称 $s : \stackrel{E}{\underset{B}{\uparrow}}$ 是一个**截面 (section)** 如果 $\pi \circ s = \mathrm{id}_B$.

换句话说, $\forall x \in B, s(x) \in E_x$,

连续截面 = 每条纤维上连续地选一个点

对于平凡丛 $E = B \times F$,截面就是一个函数 $B \rightarrow F$. 而纤维丛局部上是平凡丛,所以截面局部上是函数.

一般而言对于纤维丛, 截面并没有一个典范地选择 (有时甚至不存在, 例如 Möbius 带的边界), 即: 我们不能 认为 $B \subset E$.

因为我们总遇到大量的纤维丛,如何计算他们的上同调呢?对于平凡丛, $E = B \times F$,可以用**万有系数定理**,例如在 $H^*(B)$ 或 $H^*(F)$ 其中一个自由的时候,

$$H^*(E) = H^*(B) \otimes H^*(F)$$
 (作为环).

一般地我们也希望这个成立. 但是一般不能作为环同构, 也不典范.

取纤维丛 \downarrow_B^E , 任意选择一个点 b, 纤维为 F. 由如下两个映射

我们称 $\underset{B}{\overset{E}{\downarrow}}$ 是 **形式的 (formal)** (非广泛术语) 如果满足下面的条件.

存在 $H^*(F)$ 在 $H^*(E)$ 的提升 A

即子群 $A \subseteq H^*(E)$ 使得下面复合是同构

$$H^*(F) \stackrel{\mathbb{R}}{\longleftarrow} H^*(E) \stackrel{\supseteq}{\longleftarrow} A$$

假设 $\tilde{\alpha} \in A$ 对应到 $\alpha \in H^*(F)$

使得

$$H^*(B)\otimes H^*(F)\longrightarrow H^*(E)$$
 $\beta\otimes\alpha\mapsto\pi^*(\beta)\smile\tilde{\alpha},$ 是群同构.

注意 1 此时

注意 2 此时

$$\begin{array}{cccc} H^*(E) & \xleftarrow{\pi^*} & H^*(B) \\ & \uparrow & & \parallel \\ H^*(B) \otimes H^*(F) & \longleftarrow & H^*(B) \\ \beta \otimes 1 & \longleftrightarrow & \beta \end{array}$$

有两个非平凡情况能得到 formality.

- 1. **Leray–Hirsch 定理** 如果 $H^*(F)$ 是自由模 (wrt 系数), 且存在一个 $H^*(E)$ 上的一些元素 $\{\alpha_i\}$ 使得 $\{\alpha_i\}$ 限制在每一点处的纤维 $H^*(E_x)$ 都构成一组基.
- 2. **Serre–Leray 谱序列退化情况** 如果 $H^*(B)$ 和 $H^*(F)$ 都只有偶数次的自由模 (wrt 系数).

前者请看 [Hatcher], 内含大量应用, 包括一个计算 $H^*(\mathcal{F}\ell(n))$ 的命题 (但是没有算出环结构, 所以我们不采用). 后者也推荐 [Hatcher].

假设纤维丛 $\underset{B}{\downarrow}$ 是 formal 的. 假设纤维 F 是紧致可定向的光滑流形, 我们能刻画推出 $H^*(E) \xrightarrow{\text{推出}} H^{*-\dim F}(B)$ 吗?

记 $d = \dim F$. 那么

$$egin{aligned} H^n(E) &\cong \bigoplus_{p+q=n} H^p(F) \otimes H^q(B) \ &= H^d(F) \otimes H^{n-d}(B) &\oplus (剩下的) \ &= \mathbb{Z} \cdot [点] \otimes H^{n-d}(B) \oplus \cdots \end{aligned}$$

实际上推出正是取 [点] 前的系数.

等价地, 如果点的基本类

$$[A] \in H^d(F)$$
 提升到 $\omega \in H^d(E)$.

那么上述复合等于

推出 = 取
$$\omega$$
 前系数.

想要证明并不困难. 假设 $\alpha \in H^*(F)$ 提升为 $\tilde{\alpha} \in H^*(E)$. 那么根据 projective formula,

$$\pi_*(\pi^*(\beta) \smile \tilde{\alpha}) = \beta \smile \pi_*\alpha.$$

而 π_* 降低 d 次,所以 $\deg \alpha < d$ 时, $\pi_*(\pi^*(\beta) \smile \tilde{\alpha}) = 0$. 当 $\deg \alpha = d$ 时, $\pi_*\alpha \in H^0(E) \cong \mathbb{Z}$ 是一个数.我们可以用下面的拉回方阵计算 ↓ ↓.

请看我们上节提到的

$$G/B \xrightarrow{\pi} G/P_i$$
.

这是一个以 $P_i/B \cong \mathbb{C}P^1$ 为纤维的向量丛. 一切都只有偶数维的同调, 所以我们可以放心地得到

$$H^*(G/B) = H^*(G/P_i) \otimes H^*(\mathbb{C}P^1).$$

等价地, 存在一个 $\omega_i \in H^2(G/B)$, 使得

$$\begin{array}{cccc} H^2(\mathbb{C}P^1) = H^2(P/B) & \longleftarrow & H^2(G/B) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & &$$

以及, 任何一个 $H^*(G/B)$ 的元素都可以唯一地写成

$$\omega_i \smile \pi^* \alpha + \pi^* \beta, \qquad \alpha, \beta \in H^*(G/P_i).$$

回忆 Demazure operator 是拉回和推出的复合, 所以 对于 $f = \omega_i \smile \pi^* \alpha + \pi^* \beta \in H^*(G/B)$,

$$\partial_i f = \pi^* \pi_* (\omega_i \smile \pi^* \alpha + \pi^* \beta) = \pi^* (\alpha).$$

另一方面我们可以证明 $H^*(G/P_i) \xrightarrow{\pi^*} H^*(G/B)$ 的像在 s_i 下不变.

$$\begin{array}{ccc} U_n/T & \xrightarrow{s_i} & U_n/T \\ \downarrow & & \downarrow \\ U_n/\binom{***}{***} & \xrightarrow{s_i} & U_n/\binom{***}{***} \end{array}$$

但是下方的 s_i 作用是平凡的.

注意 1 我们会在后面看到 ω_i 可以取作 (某种意义下的) x_i , 于是 $s_i(\pi^*\alpha \cdot x_i + \pi^*\beta) = \pi^*\alpha \cdot x_{i+1} + \pi^*\beta$. 那么此时 Demazure operator 就可以写成

$$\partial_i(\pi^*\alpha \cdot x_i + \pi^*\beta) = \pi^*\alpha = \frac{(\pi^*\alpha \cdot x_i + \pi^*\beta) - s_i(\pi^*\alpha \cdot x_i + \pi^*\beta)}{x_i - x_{i+1}}.$$

习题 1. 考虑紧致的版本 U_n 为酉群, T_K 为其对角矩阵. 注意到 $U_n/V = \mathcal{G}r(k,n)$, 其中 $V = \begin{pmatrix} U_k & U_n & k \end{pmatrix}$. 由此说明

$$H^*(\mathcal{F}\ell(n)) = H^*(\mathcal{F}\ell(k)) \otimes H^*(\mathcal{F}\ell(n-k)) \otimes H^*(\mathcal{G}r(k,n-k)).$$

[提示: 利用 $U_n/T_K \to U_n/V$. 需要证明 $V/T_K = \mathcal{F}\ell(k) \times \mathcal{F}\ell(n-k)$.]

习题 2. 回忆我们之前定义的 $[n] = \frac{\mathbf{q}^n-1}{\mathbf{q}-1}, [n]! = [n] \cdots [1]$. 我们可以定义 q-二项式系数 $\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$. 证明这是 $\mathbb{F}_{\mathbf{q}}$ 中 n 维空间 k 维子空间的数目. [提示:我们之前将 [n]! 解释成 Poincaré 多项式. 注意到张量的Poincaré 多项式是 Poincaré 多项式相乘. 所以根据上题我们得到 $H^*(\mathcal{G}r(k,n))$ 的 Poincaré 多项式. 而 $\mathcal{G}r(k,n)$ 也有胞腔结构,所以前面某道旗流形的问题是一样的.]

2.2 一些无穷空间

记 $G=\mathrm{GL}_n$,记 $T={*\cdots}_*$)为全体 GL_n 的对角矩阵, $B={*\cdots}_*$)为全体 GL_n 的上三角矩阵.那么

$$H^*(G/B) \cong H^*(G/T).$$

这是因为 $\underset{G/B}{\overset{G/T}{\downarrow}}$ 是以 B/T 为纤维的纤维丛, 而

$$B/T \cong \begin{pmatrix} 1 & \cdots & * \\ \vdots & \vdots & \vdots \end{pmatrix} \cong \mathbb{C}^{n(n-1)/2} \overline{\eta}$$
 $\widehat{\mathfrak{m}}$.

注意, 虽然二者同调群一样, 但是 G/T 不是紧致的.

我们也可以赋予 G/T 一个几何意义, 为全体线性无 关的一维子空间构成的集合

$$\widetilde{\mathcal{F}}\ell(n) = \{(\ell_1, \dots, \ell_n) \in \mathbb{C}P^{n-1} : \underset{\ell_1, \dots, \ell_n}{\dim \ell_i = 1} \ \text{\sharp the \sharp}\}.$$

且 $G/T \rightarrow G/B$ 的映射是 $(\ell_i) \mapsto F$, 其中

$$F$$
 的第 i 个子空间 $=$ 前 i 个 ℓ_* 张成的 i 维子空间

我们已经介绍了几套语言之间的互相转化

$$G/B \longleftrightarrow \{\text{所有旗}\} \longleftrightarrow U_n/T.$$

我们下面还要在一些无穷空间上用,对应法则也是完全一样的.

定义无穷旗流形

$$\mathcal{F}\ell(\infty) = \left\{ V^0 \subseteq V^1 \subseteq \cdots : \text{ 线性子空间}; \text{ 当 } n \text{ 充分} \right\}$$

$$\text{大时}, V^n \cong \mathbb{C}^n.$$

定义长度为 k 的旗流形

$$\mathcal{F}\ell(k,\infty) = \left\{ V^1 \subseteq \cdots V^k : \begin{array}{l} \text{$\oplus$$} \uparrow V_i \not\in \mathbb{C}^\infty \text{ in } i \not\in \mathbb{C}^\infty \\ \text{$\sharp$$} \notin \text{\sharp} \uparrow \text{\sharp} \end{pmatrix} \right\}$$

为了方便,也记

$$\widetilde{\mathcal{F}\ell}(k,\infty) = \left\{ \begin{aligned} & \text{每个 } \ell_i \text{ 是 } \mathbb{C}^{\infty} \text{ 的 1 } \text{ 维} \\ (\ell_i)_{i=1}^k : \text{ 线性子空间; } \text{ 全体 } \{\ell_i\} \\ & \text{ 线性无关;} \end{aligned} \right\}$$

定义无穷 Grassmannian

作为特例, 无穷维射影空间

定义

$$\mathbb{C}^{\infty} = \bigoplus_{i=1}^{n} \mathbb{C}e_{i} = \{(x_{i})_{i=1}^{\infty} : 几乎所有 i 都有 x_{i} = 0\}$$

$$\mathrm{GL}_{\infty} = \left\{ \begin{aligned} & \mathrm{可} \dot{\mathbb{D}}, \ \mathrm{Lth} \ n \gg 0 \ \mathrm{bt}, \ \mathrm{kr} \mathrm{cth} \\ & (x_{ij})_{1 \leq i,j} : \mathrm{Lth} \ n \times n \ \mathrm{cth} \mathrm{cth}, \ \mathrm{nh} \dot{\mathbb{D}} \mathrm{cth} \\ & \mathrm{pth} \mathrm{ch}. \end{aligned} \right\}$$

那么

$$\mathcal{F}\ell(\infty) = \operatorname{GL}_{\infty}/B_{\infty}.$$

$$\mathcal{F}\ell(k,\infty) = \operatorname{GL}_{\infty}/\binom{B_k}{\operatorname{GL}_{\infty}}^*.$$

$$\widetilde{\mathcal{F}}\ell(k,\infty) = \operatorname{GL}_{\infty}/\binom{T_k}{\operatorname{GL}_{\infty}}^*.$$

$$\mathcal{G}r(k,\infty) = \operatorname{GL}_{\infty}/\binom{\operatorname{GL}_k}{\operatorname{GL}_{\infty}}^*.$$

$$\mathbb{C}P^{\infty} = (\mathbb{C}^{\infty} \setminus 0) / \mathbb{C}^{\times}.$$

注意, 他们都不是流形, 也不紧致. 不过好在胞腔结构 总是良好, 所以

H*(以上) 都是自由 Abel 群, 且只有偶数维上同调

具体请看下表

$H^*(\mathcal{F}\ell(\infty)) = \bigoplus \mathbb{Z}[\Sigma_w]$	$w \in \mathfrak{S}_{\infty}$.
$H^*(\mathcal{F}\ell(k,\infty)) = \bigoplus \mathbb{Z}[\Sigma_w]$	$w \in \mathfrak{S}_{\infty}/\mathfrak{S}_{k+\infty}$
$\Pi^{-}(\mathcal{F}\ell(\kappa,\infty)) = \bigoplus \mathbb{Z}[\mathbb{Z}_w]$	$=\{k \land T \in \mathbb{R}\}$
$\mathcal{G}r(k,\infty) = \bigoplus \mathbb{Z}[\Sigma_w]$	$w \in \mathfrak{S}_{\infty}/\mathfrak{S}_k \times \mathfrak{S}_{\infty}$
$gr(\kappa,\infty) = \bigoplus \mathbb{Z}[\mathbb{Z}_w]$	$= \{k \ $ 个严格递增的数 $\}$.
	$n \in \mathbb{Z}_{\geq 0}$

习题 1. 计算 $H^*(\mathcal{F}\ell(k,\infty))$ 的 Poincaré 多项式. 示: 我们可以直接根据下一小节上同调环得到其 Poincaré 多 项式是 $\frac{1}{(1-n)^k}$. 我们也可以先算有限的情况再取极限, 计算 $\mathfrak{S}_{n+k}/\mathfrak{S}_n$

$$\prod_{i=1}^{n+k} \frac{\mathbf{q}^i - 1}{\mathbf{q} - 1} / \prod_{i=1}^{n} \frac{\mathbf{q}^i - 1}{\mathbf{q} - 1} = \prod_{i=n+1}^{n+k} \frac{\mathbf{q}^i - 1}{\mathbf{q} - 1} = \prod_{i=1}^{k} \frac{\mathbf{q}^{i+n} - 1}{\mathbf{q} - 1}$$

取幂级数意义下的极限 $\mathbf{q}^n \to 0$, 所以最终结果是 $\frac{1}{(1-\mathbf{q})^k}$.]

2.3 计算

计算 I

$$\widetilde{\mathcal{F}\ell}(k,\infty) = \begin{cases} &\text{ 每个 } \ell_i \text{ 是 } \mathbb{C}^\infty \text{ 的 } 1 \text{ 维} \\ (\ell_i)_{i=1}^k : \text{ 线性子空间; } \text{ 全体 } \{\ell_i\} \\ &\text{ 线性无关;} \end{cases} \rightarrow (\ell_i)_{i=1}^k : \mathbb{C}P^\infty = \begin{cases} V \subseteq \mathbb{C}^\infty : V \text{ 是 } \mathbb{C}^\infty \text{ 的 } 1 \text{ 维线性} \\ &\text{ 子空间.} \end{cases} \rightarrow \ell_i$$

其在 ℓ_i 处的纤维是

此时纤维和底空间都只有偶数维的上同调, 所以

$$\begin{split} &H^*(\mathcal{F}\ell(k,\infty)) = H^*(\widetilde{\mathcal{F}\ell}(k,\infty)) \\ &= H^*(\mathbb{C}P^\infty) \otimes H^*(\widetilde{\mathcal{F}\ell}(k-1,\infty)) \\ &= H^*(\mathbb{C}P^\infty) \otimes H^*(\mathbb{C}P^\infty) \otimes H^*(\widetilde{\mathcal{F}\ell}(k-2,\infty)) \\ &= H^*(\mathbb{C}P^\infty) \otimes \overset{k}{\cdots} \otimes H^*(\mathbb{C}P^\infty) \end{split}$$

注意 1 虽然我们已经知道

$$H^*(\mathbb{C}P^\infty) = \mathbb{Z}[t]$$

__且乘法是多项式乘法. 但是目前为止从上面的计算我们不 能对 $H^*(F\ell(k,\infty))$ 的环结构说些什么.

但是上面的 f_i 不止一个,

由此可以得到一个

$$H^*(\mathbb{C}P^{\infty}) \otimes \stackrel{k}{\cdots} \otimes H^*(\mathbb{C}P^{\infty}) \longrightarrow H^*(\mathcal{F}\ell(k,\infty))$$

生成元恰好打到我们上面计算同构中的生成元 (根据归纳 法), 因此这是一个环同构.

记 x_i 是 $H^*(\mathbb{C}P^{\infty})$ 的 (典范) 生成元在

$$f_i^*: H^*(\mathbb{C}P^\infty) \to H^*(\widetilde{\mathcal{F}\ell}(k,\infty))$$

下的像. 于是我们证明了环同构

$$H^*(\mathcal{F}\ell(k,\infty)) = \mathbb{Z}[x_1,\ldots,x_k].$$

上面的过程有一个有限版本. 考虑"取第一个子空间"

$$\mathcal{F}\ell(n) \longrightarrow \mathbb{C}P^{n-1}$$

是一个以 $F\ell(n-1)$ 为纤维的纤维丛, 所以

$$H^*(\mathcal{F}\ell(n)) = H^*(\mathbb{C}P^{n-1}) \otimes H * (\mathcal{F}\ell(n-1))$$

$$= H^*(\mathbb{C}P^{n-1}) \otimes H^*(\mathbb{C}P^{n-2}) \otimes H * (\mathcal{F}\ell(n-2))$$

$$= H^*(\mathbb{C}P^{n-1}) \otimes \cdots \otimes H^*(\mathbb{C}P^1)$$

我们已经知道

$$H^*(\mathbb{C}P^k) = \mathbb{Z}[t]/(t^{k+1}) = \bigoplus_{i=0}^k \mathbb{Z} \cdot t^i.$$

所以

$$H^*(\mathcal{F}\ell(n)) = \bigoplus_{\lambda \le \rho} \mathbb{Z} \cdot x^{\lambda}$$

其中 $\rho = (n-1, n-2, ...), \lambda \le \rho$ 表示对每个 i = 1, ..., n都有 $\lambda_i \leq n-i, x^{\lambda} = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$.

但是我们不知道这是否是环同构 (实际上不是环同 态).

回忆 formality, 上面同构同出现的 x_i 实际上依赖于 选取. 考虑自然的嵌入

$$\mathcal{F}\ell(n) \longrightarrow \mathcal{F}\ell(n,\infty)$$

通过归纳我们会发现我们可以选择 $x_i \in H^*(\mathcal{F}\ell(n))$ 使得

$$H^*(\mathcal{F}\ell(n,\infty)) \longrightarrow H^*(\mathcal{F}\ell(n))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}[x_1,\ldots,x_n] \longrightarrow \bigoplus_{\lambda \leq \rho} \mathbb{Z} \cdot x^{\lambda}.$$

将 x_i 映成 x_i .

计算 II

考虑

$$\widetilde{\mathcal{F}\ell}(k,\infty) = \begin{cases} \text{ $\mathfrak{F}\ell(k,\infty)$} & \text{$\mathfrak{F}\ell(k,\infty)$} = \begin{cases} \{\ell_i\}_{i=1}^k : \text{$\mathfrak{g}\mathfrak{F}\ell(k,\infty)$} \in \mathbb{C}^\infty$ 的 1 维 } \\ (\ell_i)_{i=1}^k : \text{$\mathfrak{g}\mathfrak{F}\ell(k,\infty)$} \in \mathbb{C}^\infty$ 的 1 $\mathfrak{g}\mathfrak{F}(k,\infty)$ = $\begin{cases} \ell_i\}_{i=1}^k : \text{$\mathfrak{g}\mathfrak{F}\ell(k,\infty)$} \in \mathbb{C}^\infty$ 的 1 $\mathfrak{g}\mathfrak{F}(k,\infty)$ = $\begin{cases} V \subseteq \mathbb{C}^\infty$: $V \in \mathbb{C}^\infty$ 的 k $\mathfrak{g}\mathfrak{F}(k,\infty)$ & $\mathfrak{g}\mathfrak{F}(k,\infty)$: $\mathfrak{g}\mathfrak{F}(k,\infty)$ & $\mathfrak{g$$

且这个映射的纤维是 $GL_k/T_k = \widetilde{\mathcal{F}\ell}(k)$.

注意到, $\widetilde{F\ell}$ 上有一个显然的 \mathfrak{S}_k 作用, 即置换这些 一维子空间的指标. 因为这反映在上同调上恰好对应 $\mathbb{Z}[x_1,\ldots,x_k]$ 上的置换作用. 而不论怎么换,

$$\widetilde{\mathcal{F}\ell}(k,\infty) \longrightarrow \mathcal{G}r(k,\infty)$$

的像不变.

所以综上所述诱导的映射

$$H^*(\mathcal{G}r(k,\infty)) \longrightarrow H^*(\widetilde{\mathcal{F}\ell}(k,\infty))$$

factor through

$$H^*(\mathcal{G}r(k,\infty)) \longrightarrow H^*(\widetilde{\mathcal{F}\ell}(k,\infty))^{\mathfrak{S}_k} =$$
 对称多项式环.

这实际上是一个同构.

注意到在任何下属下,上面的映射都是单射因为

 $[\Sigma_w] \mapsto 0$ 除非 w 是陪集中长度最小者.

满射是因为在任何系数下 (有理数 \mathbb{Q} 或有限域 \mathbb{F}_p), 两边 恰好有相同的 Poincaré 多项式.

此时因为 $Gr(k,\infty)$ 只有偶数维上同调, 所以

$$H^*(\widetilde{\mathcal{F}\ell}(k,\infty)) = H^*(\widetilde{\mathcal{F}\ell}(k)) \otimes H^*(\mathcal{G}r(k,\infty)).$$

不过这个同构只是作为 $H^*(\mathcal{G}r(k,\infty))$ 代数.

但是我们已经可以观察到

映射 $H^*(\widetilde{\mathcal{F}\ell}(k,\infty)) \to H^*(\widetilde{\mathcal{F}\ell}(k))$ 是满 射, 且 kernel 是 $H^{\geq 1}(\mathcal{G}r(k,\infty))$ 生成的 理想.

于是一石二鸟,

$$H^*(\mathcal{G}r(k,\infty)) = \mathbb{Z}[x_1,\ldots,x_k]^{\mathfrak{S}_k} =$$
对称多项式环.

 $H^*(\mathcal{F}\ell(k)) = \mathbb{Z}[x_1,\ldots,x_k]/\langle$ 常数项为 0 的对称多项式 \rangle . 前者被称为invariant algebra, 后者被称为coinvariant algebra.

我们现在其实已经可以说明 Demazure operator 的表 达式

$$\partial_i f = \frac{f(x) - f(s_i x)}{x_i - x_{i+1}}.$$

而 α, β 关于 s_i 的作用对称, 所以对于 $\phi = \omega_i \smile \pi^* \alpha + \pi^* \beta$

$$\partial_i \phi = \pi^* \alpha = \frac{\phi - s_i \phi}{x_i - x_{i-1}}.$$

注意 1 之后有了式性类作为工具这个可以看得更清楚.

习题 1. 计算对称多项式的 Poincaré 多项式. 计算 Schubert 多项式 Grassmannian 的 Poincaré 多项式.

习题 2. 证明作为 \mathfrak{S}_n 的表示, $H^*(\mathcal{F}\ell(n);\mathbb{C})$ 同构于群环. [提示: 我们断言同构

$$H^*(\mathcal{F}\ell(n,\infty)) = H^*(\mathcal{F}\ell(n)) \otimes H^*(\mathcal{G}r(n,\infty)),$$

是表示的同构. 所以 $H^*(\mathcal{F}\ell(n))$ 的 graded 特征是

$$\chi(g) = \frac{1}{\det(1 - \mathbf{q}\pi(g))} / \frac{1}{(1 - \mathbf{q})(1 - \mathbf{q}^2) \cdots (1 - \mathbf{q}^n)}$$

其中 $\pi: \mathfrak{S}_n \to \mathrm{GL}_n$ 是自然表示. 注意只有在 $\pi(g) = \mathrm{id}$, 带 入 q=1 才不是 0, 这恰好是群环的特征.]

习题 3. 找一个下列命题的代数证明.

$$\mathbb{Z}[x_1,\ldots,x_n]/\langle$$
常数项为 0 的对称多项式 \rangle

是自由 Abel 群, 且以那些支配序下小于 $x_1^{n-1} \cdots x_{n-1}$ 的

$$\{x_1^{\lambda_1}\cdots x_n^{\lambda_n}:(\lambda_1,\ldots,\lambda_n)\underset{\tilde{\#}^{\frac{n}{2}}}{\leq}(n-1,n-2,\cdots,1,0)\}$$

作为一组基. [提示: 反正我没找到过, ⊗Q 的版本反而见的 很多.]

习题 4. 计算

$$\mathcal{F}\ell(k,n) = \left\{ V^1 \subseteq \cdots V^k : \frac{\text{每个 } V_i \ \text{是 } \mathbb{C}^n \ \text{的 } i \ \text{4}}{\text{5th Points}} \right\}$$

$$\mathcal{F}\ell(k,n) = \operatorname{GL}_n / \begin{pmatrix} B_k & * \\ & \operatorname{GL}_{n-k} \end{pmatrix}.$$

[提示: 考虑 $\widetilde{\mathcal{F}}\ell(n,\infty) \to \widetilde{\mathcal{F}}\ell(n-k,\infty)$ 将 (ℓ_i) 后 n-k 个选出. 另一方面也可以考虑纤维丛 $\mathcal{F}\ell(k,n) \to \mathbb{C}P^{n-1}$, 这以 $\mathcal{F}\ell(k-1,n-1)$ 为纤维.]

不论怎么算 $F\ell(n)$ 的上同调, 结果都是一样的

(这是一句废话吗?)

我们用两种方式

胞腔 纤维

计算了 $\mathcal{F}\ell(n)$ 的上同调. 那么任何一个 Schubert 胞腔 [BwB/B] 一定对应一个 $\mathbb{Z}[x_1,\ldots,x_n]/(\cdots)$ 中的元素.

根据我们之前的计算,可以选择唯一的一个多项式 $\mathfrak{S}_w(x)$ 使得每个单项式都小于 $x_1^{n-1}\cdots x_{n-1}$. 这被称为 Schubert 多项式.

Demazure operator 用胞腔去写

$$\partial_i [\bar{\Sigma}_w] = \begin{cases} [\bar{\Sigma}_{ws_i}] & \ell(ws_i) = \ell(w) - 1\\ 0 & \ell(ws_i) = \ell(w) + 1 \end{cases}$$

在纤维去写

$$\partial_i f = \frac{f(x) - f(s_i x)}{x_i - x_{i+1}}.$$

所以计算出 w_0 对应的多项式这就得到了 Schubert 多项 式 $\mathfrak{S}_w(x)$ 的递推公式.

巧合地是, $x_1^{n-1} \cdots x_{n-1}$ 是 $H^*(\mathcal{F}\ell(n))$ 的一个 stable choice. 记 w_0^n 是 \mathfrak{S}_n 中的最长元. 那么 Bw_0^nB/B 作为 $\mathcal{F}\ell(n+1)$ 的胞腔经过计算还是 $x_1^{n-1}\cdots x_{n-1}$. 即,

$$\partial_{w_0^n w_0^{n+1}} x_1^n \cdots x_n = x_1^{n-1} \cdots x_{n-1}.$$

这一事实的无穷版本是, 胞腔 BwB/B 在 $H^*(\mathcal{F}\ell(\infty))$ 中也表作 $\mathfrak{S}_w(x)$. 这是一个 $H^*(\mathcal{F}\ell(\infty))$ 是无穷元的多项 式的证明.

2.4 Grassmannian 流形

对于 Grassmannian 流形, 还有一些其他的构造方法, Schubert 胞腔也有其他的刻画方式.

我们已经知道

$$\operatorname{GL}_n / \left({\operatorname{GL}_k} { * \atop \operatorname{GL}_{n-k}} \right) \xrightarrow{\sim} \mathcal{G}r(k,n)$$

即,将 $x \in G$ 的前 k个向量张成一个 k 维子空间.

$$U_n/\binom{U_k}{U_{n-k}} \xrightarrow{\sim} \mathcal{G}r(k,n)$$

即, 将 $x \in U_n$ 的前 k 个向量张成一个 k 维子空间.

一则基本变形如下.

考虑 $n \times k$ 阶矩阵 $\mathbb{M}_{n \times k}$, 考虑其中满秩的那些 $\mathbb{M}_{n \times k}^{\circ}$, 那么

$$\mathbb{M}_{n\times k}^{\circ}/\operatorname{GL}_k \xrightarrow{\sim} \mathcal{G}r(k,n)$$

即, 将 $x \in M_{n \times k}$ 的前 k 个向量张成一个 k 维子空间.

对于 $V \in \mathcal{G}r(k,n)$, 选取 V 的一组基 $v_1,\ldots,v_k \in \mathbb{C}^n$, 考虑

$$\mathbf{v} = v_1 \wedge \cdots \wedge v_k \in \Lambda^k \mathbb{C}^n$$
.

不同基的选取会导致上面的选择差一个常数. 所以我们良定义了

$$Gr(k,n) \longrightarrow \mathbb{P}(\Lambda^k \mathbb{C}^n).$$

被称为Plücker 嵌入.

注意

$$V = \{ x \in \mathbb{C}^n : x \wedge \mathbf{v} = 0 \}.$$

所以 Plücker 嵌入是单射.

令 $\binom{[n]}{k}$ 为 $\{1,\ldots,n\}$ 中的 k 元子集. 取 $A \in \binom{[n]}{k}$, 记

$$\mathbf{e}_A = \mathbf{e}_{a_1} \wedge \cdots \wedge \mathbf{e}_{a_k} \qquad A = \{a_1 < a_2 < \cdots < a_k\}$$

其中 $\mathbf{e}_1, \dots, \mathbf{e}_n$ 是 \mathbb{C}^n 的标准基.

那么 $\Lambda^k \mathbb{C}^n$ 以 $\{\mathbf{e}_A : A \in \binom{[n]}{k}\}$ 为基.

对于 $v_1, \ldots, v_k \in \mathbb{C}^n$, 假设

$$v_j = \sum_{i} x_{ij} \mathbf{e}_i = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

那么

$$v_1 \wedge \cdots \wedge v_k = \sum ??_A \cdot \mathbf{e}_A$$

其中

$$??_A = \det(x_{ij})_{i \in A, 1 < j < k}.$$

因此我们也可以纯代数地描述 Plücker 嵌入. 对于 $A \in \binom{[n]}{k}$,

$$\Delta_A : \mathbb{M}_{n \times k} \longrightarrow \mathbb{C} \qquad \Delta_A(x) = \det(x_{ij})_{i \in A, 1 \le j \le k}.$$

那么

$$\mathcal{G}r(k,n) = \mathbb{M}_{n \times k}^{\circ} / \operatorname{GL}_k \longrightarrow \mathbb{C}P^{\binom{n}{k}-1}$$

是

$$x \longmapsto (\Delta_A)_{A \in \binom{[n]}{b}} \notin \mathbb{C}P^{\binom{n}{k}-1} + \text{ph}$$
 \(\text{\$\text{\$k\$}} \).

|注意 1 | 实际上 $Pl\ddot{u}cker$ 嵌入的像可以由 $Pl\ddot{u}cker$ 关系给出,实际上 Gr(k,n) 是 $\mathbb{C}P^{\binom{n}{k}-1}$ 中的一些二次函数族的公共零点.

下面我们来刻画 Schubert 胞腔, 用上面三种语言. 考虑

$$\Lambda = \left\{ w \in \mathfrak{S}_n : \begin{array}{ccc} w & \text{在} & \{1, \dots, k\} & \text{和} & \{k + k\} \\ 1, \dots, n\} & \text{分别单调递增} \end{array} \right\}$$

那么 Gr(k,n) = G/P 的 Schubert 胞腔是

$$\{BwP/P: w \in \Lambda\}.$$

记

$$\mathbb{Y}_{k\times(n-k)} = \{k\times(n-k) \text{ 内的 Young } \mathbb{Z}\}.$$

对于 $w \in \Lambda$, 对应的 Young 图

$$\lambda : \lambda_{k+1-i} = \{j > k : w(j) < w(i)\}$$

反之, 对于 Young 图 $\lambda = \lambda_1 \ge \cdots \ge \lambda_k$, 对应的置换

$$w: w(i) = \lambda_{k-i+1} + i$$
 $i = 1, ..., k$

请看下图

对应的置换矩阵

对于 $\lambda \in \mathbb{Y}$, 记矩阵

$$U_{\lambda} = \left\{ (x_{ij}) : (\lambda_{k+j-1} + j, j) \text{ 为 } 1, \text{ 这个位} \right\} \subseteq \mathbb{M}_{n \times k}^{\circ}.$$
 置右方和下方都是 0.

那么 $\mathcal{G}r(k,n) = \mathbb{M}_{n \times k} / \operatorname{GL}_k$ 的 Schubert 胞腔是

$$\{U_{\lambda}$$
的像: $\lambda \in \mathbb{Y}_{k \times (n-k)}\}$.

记标准旗

$$F_0 = (F_0^i): F_0^i = \text{span}(\mathbf{e}_1, \dots, \mathbf{e}_i).$$

如果 $V \in \mathcal{G}r(k,n)$ 在对应的 $\lambda \in \mathbb{Y}$ 的 Schubert 胞腔里

那么对任意 i,

$$\dim(F_0^{\lambda_{k-i+1}+i}\cap V)=i.$$

记 Σ_{λ} 为满足上述条件的所有 V.

所以 Gr(k,n) 的 Schubert 胞腔是

$$\{\Sigma_{\lambda} : \lambda \in \mathbb{Y}_{k \times (n-k)}\}.$$

对每个 Young 图 λ 都对应一个 $\binom{[n]}{k}$ 的元素即

$$\{\lambda_1+k,\cdots,\lambda_k+1\}.$$

如果置换是w,对应

对于 $A, B \in \binom{[n]}{k}$, 定义

 $A \leq B$, "从最小元开始比起 B 更大".

可以定义

$$\Sigma_A = \{V : \Delta_A(V) \neq 0, \forall B > A, \Delta_B(V) = 0\}$$

所以 Gr(k,n) 的 Schubert 胞腔是

$$\{\Sigma_A : A \in \binom{[n]}{k}\}.$$

下面可以总结如下

Gr(k,n)	Schubert 胞腔
子空间	$\left\{ \Sigma_{\lambda} : \lambda \in \mathbb{Y}_{k \times (n-k)} \right\}$
G/P	$\{BwP/P:w\in\Lambda\}$
$\mathbb{M}_{n\times k}^{\circ}/\operatorname{GL}_{k}$	$\{U_{\lambda}$ 的像: $\lambda \in \mathbb{Y}_{k \times (n-k)}\}$
Plücker 嵌入	$\left\{ \Sigma_A : A \in \binom{[n]}{k} \right\}$

在 $\mathcal{G}r(k,\infty)$ 上也有类似的刻画.

[注意 1] 同样,如果用基本类的语言,我们应该改用 Bw_0wP/P ,上面的刻画得对应 Young 图在 $k \times (n-k)$ 中的补.

习题 1. 验证两个 Young 图 λ_1, λ_2 对应的置换 σ_1, σ_2 ,

$$\sigma_1 \leq \sigma_2 \iff \lambda_1 \subseteq \lambda_2.$$

Bruhat $\not = \sigma_2 \iff \lambda_1 \subseteq \lambda_2.$

从而 Σ_{λ} 的闭包是

$$\{V: \dim(F_0^{\lambda_{k-i+1}+i} \cap V) \le i\}.$$

习题 2. 对于 Young 图 λ , 对应的置换是 σ , 证明 $w_0\sigma$ 在 $\mathfrak{S}_n/\mathfrak{S}_k \times \mathfrak{S}_{n-k}$ 最小长度的陪集代表元对应的 Young 图 恰好是 λ 在 $k \times (n-k)$ 中的补.

习题 3. 对于 Young 图 λ , 假设对应置换 σ , 证明 $\mathfrak{S}_{\sigma}(x)$ 是 λ 对应的 Schur 多项式.

参考文献

- Hatcher. Algebraic Topology.
- Hatcher. Spectral Sequences.
- 時枝正. Topology in Four Days [翻译: 拓扑四日谈].
- Hiller. Geometry of Coxeter Groups.

- 向量丛 3
- 3.1 向量丛的分类丛
- 3.2 Chern 类
- 3.3 主丛的分类丛
- 3.4 切空间的计算

令 $G = GL_n$, H 为一个子群, 记 $\mathfrak{g} = \mathfrak{gl}_n$, \mathfrak{h} 为 H 的 Lie 代数. 记 $ad_x: \mathfrak{g} \to \mathfrak{g}$ 为共轭 $A \mapsto xAx^{-1}$.

对于 $xH \in G/H$, 考虑商空间 $\mathfrak{g}/\operatorname{ad}_x\mathfrak{h}$. 注意到 xH = $yH \, \mathbb{H}, \, \mathfrak{g}/\operatorname{ad}_x \mathfrak{h} = \mathfrak{g}/\operatorname{ad}_y \mathfrak{h}.$

考虑映射

$$\bigcup_{x\in G/H}\mathfrak{g}/\operatorname{ad}_x\mathfrak{h}\longrightarrow G/H$$

这定义了一个 G/H 向量丛. 实际上这就是 G/H 的切丛. 对于 $g \in G$, 定义

$$\operatorname{ad} g : \mathfrak{g} / \operatorname{ad}_x \mathfrak{h} \xrightarrow{\operatorname{ad} g} \mathfrak{g} / \operatorname{ad}_{gx} \mathfrak{h}.$$

这复原了 G 在 G/H 上的左乘作用.

注意 1 要严格说明,请看下图. 利用右平移,

得到 G 上诱导的 TG 作用可以重新写成

$$G$$
 $($ 左乘×共轭 $)$ $G \times \mathfrak{g}$ $($ 右乘×平凡 $)$ G

而在 x 处的 H 轨道等于把 H 这个子群从单位元处移过 来, 所以 (切片定理)

xH 在 G/H 的切空间 $= \frac{x$ 在 G 上的切空间 $= \mathfrak{g}/\operatorname{ad}_x\mathfrak{h}.$

因为商比较难把握, 所以我们考虑其对偶, 即余切丛 在一个 $b' \in \mathcal{B}$ 处的切空间是 \mathfrak{g}/b' . 余切空间是 $T^*(G/B)$. 为了计算 $(\mathfrak{g}/\operatorname{ad}_x\mathfrak{b})^*$, 我们考虑 \mathfrak{g} 上的二次型

$$\mathfrak{gl}_n \times \mathfrak{gl}_n : (A, B) \mapsto \operatorname{tr}(AB).$$

(注意: 这不是 Killing form)

不难验证这是完美配对,且

上三角代数
$$\begin{pmatrix} * \cdots * \\ \ddots * \end{pmatrix}^{\perp} = \begin{pmatrix} 0 \cdots * \\ \ddots * \end{pmatrix}$$
严格上三角代数
$$\langle \operatorname{ad}_x A, B \rangle = \langle A, \operatorname{ad}_{x^{-1}} B \rangle$$

令 n 为严格上三角代数. 因此

$$(\mathfrak{g}/\operatorname{ad}_x\mathfrak{b})^* = \operatorname{ad}_x\mathfrak{n}.$$

对应的 $g \in G$ 左平移作用 (注意到余切丛左乘诱导的方向 $g:T_{qx}^* \rightarrow T_x^*$

$$\operatorname{ad}_{gx} \mathfrak{n} \stackrel{\operatorname{ad}_{g^{-1}}}{\longrightarrow} \operatorname{ad}_{x} \mathfrak{n}.$$

考虑 B 在 G 中所有的共轭类

$$\mathcal{B} = \{x\mathfrak{b}x^{-1} \subseteq G : x \in G\}.$$

考虑

$$G \rightarrow \mathcal{B}$$
 $r \mapsto rhr^{-1}$

不难发现 $xbx^{-1} = yby^{-1}$ 当且仅当

$$y^{-1}x \in \{g \in G : g\mathfrak{b}g^{-1} = \mathfrak{b}\} \stackrel{\text{deft}}{=\!=\!=} B$$

所以有同构

$$G_{\pm}^{\widehat{\cap}}G/B$$
 xB \downarrow \downarrow \downarrow $G_{\pm}^{\widehat{\cap}}$ \mathcal{B} $x\mathfrak{b}x^{-1}$

我们考虑 B 的共轭类也有类似的结果.

所以 G/B 有很多解释.

$$\{V^i\} \longmapsto \{x \in \mathfrak{g} : xV^i = V^i\}$$

在一个 $flag\{V^i\} \in \mathcal{F}\ell(n)$ 处的余切空间是

$$\{x \in \mathfrak{g} : x \ \mathbb{R}^{\mathfrak{F}}, xV^i = V^i\}.$$

$$\{x \in \mathfrak{b}' : x \ \mathbb{F}_{\mathfrak{F}}\}.$$

习题 1. 验证

$$\{g\in G: g\mathfrak{b}g^{-1}=\mathfrak{b}\}\stackrel{\text{\sharp $\underline{\underline{\mathsf{t}}}$ $\underline{\mathsf{t}}$ $\underline{\mathsf{t}}$$$

习题 2. 验证 $F\ell(n) \to \mathcal{B}$ 的映射是

$$\{V^i\} \longmapsto \{x \in \mathfrak{g} : xV^i = V^i\}.$$

习题 3 (Springer 理论). 考虑矩阵

$$x = \begin{pmatrix} 0 & 1 \\ & 0 \\ & & 0 \end{pmatrix}.$$

记

$$\mathcal{F}\ell_x = \{V^i \in \mathcal{F}\ell(n) : xV^i = V^i\}.$$

求 $\dim F\ell_x$,以及 $F\ell_x$ 有多少不可约分支? [提示: 其实,这是 x 的不变子空间组成的旗. 只要分两种情况, V^2 是特征子空间时,有 $\dim \mathbb{C}P^1$ 多种选择. 当 V^2 不是特征子空间时, V_2 必须选为 $x^{-1}(V^1)$. 而 V^1 的选择也有 $\dim \mathbb{C}P^1\setminus \infty$ 多种选择, 维数是 2,不可约分支数目是 2. 这分别对应 $1 \ 3$ 和 $1 \ 2$. 1

注意 1 这个可以推广到任意的幂零矩阵上. 注意 Jordan 标准型告诉我们幂零矩阵也由 Young 图标定. 对应的连通分支的数目恰好是 hook length.

- 5 等变拓扑速成
- 5.1 等变上同调
- 5.2 等变 K 理论

6 收纳箱

6.1 仿射旗流形

对于带基点 x_0 的拓扑空间 X, 令

$$LX = \{$$
连续 $S^1 \xrightarrow{f} X \} = \mathsf{Map}(S^1; X).$

$$\Omega X = \{ f \in LX : f(1) = x_0 \} = \mathsf{Map}(S^1, 1; X, x_0).$$

如果 X 上有群 G 的作用, 那么 LX 上也有.

令 $G = \mathrm{GL}_n$. 选定 $K \subseteq G(\mathbb{C})$ 是一个紧群. 挑选一个收缩 $\rho: G \to K$ 将 Borel 子群 B 映入极大环面 T.

我们可以往 G 中带入 $\mathbb C$ 以外的其他环, 例如 $\mathrm{GL}_n(\mathbb R)$, $\mathrm{GL}_n(\mathbb Z)$.

考虑形式幂级数环 $\mathfrak{o}=\mathbb{C}[\![x]\!]$,以及其分式域 Laurant 级数环 $F=\mathbb{C}(\!(x)\!)$.

对于 $p(x) \in G(\mathbb{C}(\!(x)\!))$. 先选一列 $p_n(x)$ 趋于 p(x), 其中 $p_n(x) \in G\left(\mathbb{C}\left[x,\frac{1}{x}\right]\right)$ 定义在 $U \setminus 0$ 附近. 再对充分小的 r, 考虑道路 $\gamma_{n,r}(p): S^1 \to K$ 为 $z \mapsto \rho(p_n(rz))$. 最后取极限

$$\gamma(p) = \lim_{\substack{r \to 0 \\ n \to \infty}} \gamma_{n,r}(p).$$

这个过程定义了映射

$$G(\mathbb{C}((x))) \longrightarrow LK$$

需要验证这是良定义的.

不难验证 $G(\mathbb{C}[\![x]\!])$ 通过上述映射的像是 LK 中的全体常数映射. 因此

$$G(\mathbb{C}((x)))/G(\mathbb{C}[x]) \longrightarrow LK/K \cong \Omega K.$$

反之, 任何一条 K 上的连续道路, 都可以用 PDE 解出局 部全纯解 (Cauchy 问题), 通过这一点不难验证二者是同 伦等价.

令 $J = \{A(x) \in G(\mathbb{C}[x]] : A(0) \in B(\mathbb{C})\}$ 是 Iwahori 子群. 那么不难验证 J 通过上述映射的像是 LK 中的所有 T 上常数映射. 因此

$$\mathcal{F}\ell_{\mathsf{aff}} = G(\mathbb{C}((x)))/J \longrightarrow LK/T.$$

也是同伦等价.

另一方面

$$G(\mathbb{C}(\!(x)\!)) = \bigsqcup_{w \in W_{\mathrm{aff}}} JwJ.$$

每个 JwJ 都和 $U_w \times J$ 同胚, 其中 $U_w \cong \mathbb{C}^{\ell(w)}$. 因此有 **6.11 Buildings?** Schubert 胞腔分解

6.12 Cluster 代数

$$H^*(\mathcal{F}\ell_{\mathsf{aff}}) = \bigoplus_{w \in W_{\mathsf{aff}}} \mathbb{Z} \cdot [JwJ/J].$$

6.13 Hall 代数

- 6.2 Connected K-theory
- 6.3 相交上同调
- 6.4 量子上同调
- 6.5 反常层
- 6.6 旗流形的推广
- 6.7 Hilbert 概形 (Hilbert Schemes)
- 6.8 箭图簇 (Quiver Varieties)
- 6.9 动量图 (Moment Graphs)
- 6.10 热带几何?