Spectral Clustering

Isaac Rodríguez Bribiesca

CIMAT

18 noviembre 2019

Graph Clustering

Similarity Graph: G(V,E,W)

V – Vertices (Data points)

E - Edge if similarity > 0

W - Edge weights (similarities)

Similarity graph

Algoritmo

Implementación.

Dataset: $\{x_i\}_{i=1}^{200} \text{ con } x_i \in \mathbb{R}$

Implementación.

- Función de similitud: $s(i,j) = exp(\|x_i x_j^2\|/(2\sigma)^2) = W_{ij}$
- Matriz laplaciana: $L = I_n D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- Eigensolver Jacobi
- Algoritmo de clustering k-means

Sea $v \in \mathbb{R}^{200}$ un vector propio de L. Se transforma cada componente v_i del vector propio de la siguiente manera:

$$v_i = \begin{cases} 0 & v_i < 0 \\ 1 & v_i \ge 0 \end{cases}$$

Primer vector propio

Segundo vector propio

Tercer vector propio

Resultado clustering.

