Kaixuan Wei

Master of Science, Beijing Institute of Technology (BIT)

Email:

 $kaixuan_wei@bit.edu.cn$

EDUCATION

EDUCATION	Major in Computer Science, Advisor: Prof. Ying Fu Bachelor of Science, Beijing Institute of Technology Major in Electronic Engineering (Xu class) GFA: 5.5/4.0 2018 - 2021(expected) GPA: 3.4/4.0 2014 - 2018
VISITING POSITION	University of Cambridge, Host: Prof. Carola-Bibiane Schnlieb Microsoft Research Asia (MSRA), Mentor: Dr. Jiaolong Yang 2019.7 - 2019.9 2018.4 - 2018.11
RESEARCH INTEREST	Computer vision, computational photography, computational imaging
PUBLICATIONS	[CVPR'20] Kaixuan Wei, Ying Fu, Jiaolong Yang, Hua Huang. "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising", IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2020. (Oral) [TFPnP] Kaixuan Wei, Angelica Aviles-Rivero, Jingwei Liang, Ying Fu, Carola-Bibiane Schnlieb, Hua Huang. "Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems". Submitted, arXiv preprint:2002.09611, 2020. [TNNLS'20] Kaixuan Wei, Ying Fu, Hua Huang. "3D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising". IEEE Transactions on Neural Networks and Learning Systems, 2020. [CVPR'19] Kaixuan Wei, Jiaolong Yang, Ying Fu, David Wipf, Hua Huang. "Single Image Reflection Removal Exploiting Misaligned Training Data and Network Enhancements". IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [NEUCOM'19] Kaixuan Wei, Ying Fu. "Low-rank Bayesian Tensor Factorization for Hyperspectral Image Denoising". Neurocomputing, 2019.
ACADEMIC SERVICE	Conference Reviewer: WACV 2020, ECCV 2020, NeurIPS 2020
PROJECTS	Plug-and-Play Method for Inverse Imaging Problems [TFPnP] Work is done at University of Cambridge and BIT. 2019.7 - 2020.2 ● We introduce reinforcement learning into the plug-and-play (PnP) framework, yielding a tuning-free (TF) PnP proximal algorithm for a wide range of inverse imaging problems. We demonstrate our TFPnP algorithm often reaches to the comparable performance to the one using "oracle" parameters tuned via the inaccessible ground truth. Noise Modeling for Extreme Low-light Imaging [CVPR'20]
	Work is done at MSRA and BIT. 2018.12 - 2019.11

Single Image Reflection Removal [CVPR'19]

trained with paired real data.

• We present a highly accurate noise formation model based on the characteristics of CMOS photosensors. We demonstrate a network trained only with our synthetic data can compete with or sometimes even outperform the network

Work is done at MSRA and BIT.

Homepage:

GPA: 3.5/4.0

https://kxwei.net

• This work aims to expand the sources of viable real training data by facilitating the use of misaligned training pairs, which are considerably easier to collect. An alignment-invariant loss function is introduced to provide useful supervisions to networks granted unaligned data.

Hyperspectral Image Denoising [NEUCOM'19] [TNNLS'20]

Work is done at BIT.

2017.6 - 2019.2

- We present a hierarchical probabilistic model for hyperspectral image (HSI)
 denoising based on low-rank Bayesian tensor factorization, which can not only
 fit the noise adaptively without knowing the specific noise intensity, but also
 determine the tensor rank automatically without requiring parameter tuning.
- We design a novel neural network tailored to HSI modeling via embedding the domain knowledge. We show our pretrained model can be directly applied to remotely sensed images with various number of bands, without sacrificing the restoration accuracy.

SKILLS

Computing Skills: C++, Python, Matlab, LaTeX, Pytorch, Tensorflow

Language: Chinese (native), English (fluent)

SELECTED COURSE

Programming language	98/100	Probability theory	96/100	
Data structure	98/100	Matrix algebra	91/100	
Machine learning	97/100	Ordinary differential equation	90/100	
Electromagnetic theory	92/100	Partial differential equation	90/100	
Information theory	85/100	Complex Analysis	95/100	
Virtual reality and human computer				
interaction	90/100			

HONORS AND AWARDS

Visiting Fellowship, CMIH, University of Cambridge ($\approx 4000 \$$)	2019
China National Scholarship, Ministry of Education ($\approx 2800 \ \$$)	2019
Excellent BIT Undergraduate Thesis Award	2018
Runner Up Award on PIRM Challenge on Spectral Image Super Resolution	2018