

® BUNDESREPUBLIK DEUTSCHLAND

® Offenlegungsschrift _m DE 100 57 818 A 1

இ Int. Cl.7: F 16 H 7/08 F 02 B 67/06

MARKENAMT

PATENT- UND

100 57 818.7 (2) Aktenzeichen: Anmeldeteq:

(4) Offenlegungstag:

21. 11. 2000 23. 5. 2002

(7) Anmelder:

INA-Schaeffler KG, 91074 Herzogenaurach, DE; ContiTech Antriebssysteme GmbH, 30165 Hannover, DE

(7) Vertreter:

Matschkur Lindner Blaumeier Patent- und Rechtsanwälte, 90402 Nürnberg

@ Erfinder:

Bonkowski, Manfred, Dipl.-Ing., 30900 Wedemark, DE; Bogner, Michael, Dipl.-Ing., 90542 Eckental, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE	198 49 886 A1
DE	196 09 420 A1
DE	43 17 949 A1
DE	43 06 360 A1
DE	30 43 287 A1
DE	73 15 940 U
DE	70 32 415 U
DE	68 04 829 U
DE	689 03 050 T2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(9) Zugmitteltrieb für einen Startergenerator

Die Erfindung bezieht sich auf einen Zugmitteltrieb (1) bestimmt für einen Antrieb von Aggregaten einer Brennkraftmaschine, dessen Zugmittel (5) die Riemenscheiben (3, 4) des Zugmittels (5) verbindet und ein schwenkbar gelagerter Startergenerator (2) über ein Federelement abgestützt ist.

Beschreibung

Gebiet der Erfindung

[0001] Die vorliegende Erfindung betrifft einen Zugmitstellteib, der für einen Antrieb von Agregetate einen Brennkraftmaschline, insbesondere zum Antrieb eines Startengenrators, bestimmt ist. Der Zugmittellzieb umfasst dabel ein Zugmittel, wie einen Ritemen, vorzugsweise einen Keitlippenriemen, der alle Ritemen-Scheiben des Zugmitteltriebs 10 bzw. der anzuftschoeden Aggregeds verbindet.

Hintergrund der Erfindung

190021 Deratige Zugmittellriebe dienen zum Antbieb von 15 Aggregaten, wie beispielsweise Wasserpumpe, Klimakompressor, Gienerator sowie einer Lonkhiltspumpe. Als Zugmittell für einen derartigen Aggregaterieb ist ein als Endlostiemen gestalteites Zugmittel vorgeschen. Pür die Funktion der einzelhen Aggregate sowie zur Erzielung einer höhen 20 Lebensdauer des Zugmittels ist ein möglichst schlupffreier Antribe aller Aggregate erforderlich. Bekamn ist dazu eine Spannorcifeltung zww. ein Spannyarien vorzussehen, bei dem eine Spannorule kraftbeaufschlagt an dem Zugmittel geführt ist, Zur Fazlelung einer Vorspannung des Zugmittels zis sind sowohl mechanische als auch hydraulisch wirkende Spannorrichiumgen bws. Spannysrein betwartstem bekannt zu den den Zugmittel geführt ist, Zur Fazlelung einer Vorspannung des Zugmittels zich sowie den der der Zugmittel zu den den Zugmittel geführt ist, Zur Fazlelung einer Vorspannung des Zugmittels zich zu den den Zugmittel zu den Zugmitel zu den Zugmittel zu den Zugmittel zu den Zugmittel zu den Zugm

[6003] Das Dekument DE43 05 360 A1 zeigt eine Spannverichtung, die eine Exzente runfast, der auf einer in einer Lagerbillse eingsetzten Welle befestigt ist. Auf der 30 Mantelfläche des Exzentes ist ein Radiallager angeordnet, über das eine Spannrolle drebber gelagert ist. Die Vorrichtung ist mit einem zweiarmigen Gebäuse an der Benntardimaschine befestigt. Eine Vorspannkraft wird erzeugt mittels einer Tersoinsefert, die konzentrisch zu der Welle bzw. ei- 35 ner Lagerbillse angeordnet ist und die mit einem Federende an dem Exzenter und mit dem weiteren Federende an dem Gehäuse abgestitzt ist. Die von der Torsfonsfeder ausgeübte Kraft bewikt eine kraftschlißsig-Abstützung der Spann-

rolle an dem Zugmittel. [0004] Aus der DE 196 09 420 A1 ist eine Spannvorrichtung mit einem mechanisch-hydraulischen Betätigungselement bekannt. Diese Vorrichtung umfasst ein Gehäuse, in dern zentrisch ein Zylinder angeordnet ist, zur Aufnahme eines längsverschiebbaren Kolbens. In axialer Verlängerung 45 des Kolbens ist endseitig ein Befestigungsauge vorgesehen, mit dem das Hydraulikelement schwenkbar an einem Spannrollenträger befestigt werden kann. Ein weiteres Befestigungsauge ist am Gehäuse angeordnet, mit dem die Spannvorrichtung schwenkbar an der Brennkraftmaschine 50 befestigt ist. Der längsverschiebbar im Zylinder eingesetzte Kolben ist federkraftbeaufschlagt und begrenzt einen Druckraum in dem Zylinder, Eine Kolbenbewegung bewirkt einen Volumenaustausch des Hydraulikfluids zwischen dem Druckraum und dem Gehäuse.

10005) Die bekannten Zugmitteltriebe sind vorgesehen zum Antrieb von mehreren Aggregaten, wodurch das alle Riemenscheiben verbindende Zugmittel einer hohen Wechselbiege-Beanspruchung unterliegt. Die Lebensdauer des Zugmittels ist bei einem derstügen Zugmittellayout begrenze, insbesondere bei Übertragung hoher Antriebsmomente.

Zusammenfassung der Erfindung

[0006] Ausgehend von den Nachteilen bekannter Lösungen ist es Aufgabe der Erfindung, einen Zugmitteltrieb zu schaffen, der zur Übertragung hoher Antriebsmomente ge-

eignet ist und eine hohe Lebensdauer des Zugmittels gewährleistet.

[0007] Zur Lösung dieser Problemstellung ist gemäß der Erfindung ein Zugmitteltrieb vorgesehen, der zumindest zwei Riemenscheiben umfaßt und keine separate Spannvorrichtung einschließt. Der erfindungsgemäße Zugmitteltrieb kann somit als ein Zweischeibentrieb ausgelegt werden, bei dem das Zugmittel ausschließlich die Antriebs-Riemenscheibe und die Abtriebs-Riemenscheibe verbindet. Diese Auslegung verursacht keine nachteilige Wechselbiege-Beanspruchung des Zugmittels und stellt damit für die Beanspruchung des Zugmittels einen Idealfall dar, ohne eine zusätzliche, nachteilige Störgröße. Der erfindungsgemäße, vorzugsweise als ein Zweischeibentrieb ausgelegte Zugmitteltrieb eignet sich folglich für hohe Antriebsmomente, die insbesondere für den Startmodus eines Startergeneratorbetriebs erforderlich sind, ohne Beeinträchtigung der Zugmittel-Lebensdauer.

[0008] Zur Beeinflussung der Zugmittel-Vorspannung schließt der erfindungsgemäße Zugmitteltrieb einen schwenkbar angelengten Startergenerator ein sowie ein Federelement, mit dem der Startergenerator beispielsweise an dem Gehäuse der Brennkraftmaschine abgestützt ist. Eine derartige Anordnung des Startergenerators ermöglicht eine wirkungsvolle Einflußnahme auf die Vorspannung des Zugmittels. Der Startergeneratorbetrieb erfordert unterschiedliche Zugmittel-Vorspannungen, abhängig von dem Betriebsmodus des Startergenerators, d. h. einem Startbetrieb der Brennkraftmaschine, bei dem der Startergenerator die Brennkraftmaschine antreibt, oder dem Normalbetrieb bzw. Generatorbetrieb, bei dem der Antrieb des Startergenerators von der Brennkraftmaschine erfolgt. Durch eine Varijerung der Anordnung und/oder der Dimensionierung des Federelementes in Verbindung mit einer entsprechenden Lage von dem Drehpunkt des Startergenerators kann die Vorspannung unmittelbar beeinflußt werden. Beispielsweise kann damit für den Startbetrieb eine höhere Vorspannung des Zugmittels realisiert werden als im Normalbetrieb.

[0010] Weitere, vorteilhafte Ausgestaltungen der Erfinden gind Gegenstand der abhängigen Anspriche 2 bis 9. [0011] Das Startergenerstorkonzept sieht vor, dass, abhängis von dem Betriebsmodus, die Breunkraffunsschine gestartet oder elektrische Energie erzeugt wird. Wahltweise wird ein Drehmoment von dem Startergenerstor oder der Brennkraffunsschine über die entsprechende Riemenscheite in das Zognitutel eingeleitet. Dammt verbunden ist ein Wechsel des Leertrums und des Zugtrums in dem Zugmittel zwischen den Riemenscheite der Perumkraffunsschine und des Stattengerentscheiten, abhängig von der Generatorsungsnigsleitung verändert abh das in dem Generatorsungsnigsleitung verändert abh das in dem Generators ducktete Montal veränder sich des Gegendehmoment des Startergenerators-Gehänssch

[9012] Gemäß einer weiteren Ausgestaltung der Erfinding ist der Startergenerator exemutrisch gelagert. Dabei bietet es sich an, den Drehpunkt an der Außenkontur des Generatorgehäuses vorzusiehen. Die exzentische Lagerung des Startergenerators Einfluss auf die Vorspannkraft des Zugnittels aimmit. Beispielsweise auf die Vorspannkraft des Zugnittels aimmit. Beispielsweise reduziert eine Verlagerung des Drehpunkts des Startergenerators in Richtung einer Wirklinie der resultierenden Zugnittelkarft die Vorspannkraft des Zugnittels. Eine Abstimmung der von dem Tederlenent ausgeütente Kraftfenomente in Verbindung mit der Drehpunktlage ermöglicht die erforderliche, differensierte Vorspannig des Zugnittels zwischen dem Starte-

trieb und dem Normalbetrieb des Startergenerators. [0013] In dem Startbetrieb des Startergenerators stellt sich 15 dabei folgendes Gleichgewicht der Drehmomente ein. Das von dem Federelement in Verbindung mit dem zugehörigen Hebelarm erzeugte Drehmoment, gemeinsam mit dem sich im Generatorgehäuse einstellenden Drehmoment, entspricht dem Drehmoment, welches durch die resultierende Kraft der 20 im Zugtrum und im Leertrum wirkenden Kräfte und dem zugehörigen Hebelarm ausgelöst wird. Die Summe aller in dem Drehpunkt wirkenden Drehmomente ist Null. Daraus ergibt sich die von dem Federelement aufzubringende Mindestfederkraft. Diese Mindestfederkraft ist so auszulegen, 25 dass sowohl im Startbetrieb als auch im Normalbetrieb das Zugmittel ausreichend vorgespannt ist. Das von der Gewichtskraft des Startergenerators verursachte Drehmoment ist bei der Drehmomentbetrachtung vernachlässigt.

[0014] Ebenfalls stellt sich im Normalbetrieb, dem gene- 30 ratorischen Betrieb des Startergenerators, ein Gleichgewicht der Drehmomente ein. Dabei wird an der Generatorscheibe ein Drehmoment induziert, wodurch das Gehäuse des Startergenerators ein Gegendrehmoment erfährt, Übereinstimmend mit der Drehrichtung des Gegendrehmomentes wirkt 35 das von der resultierenden Kraft der Zugmitteltrums in Verbindung mit dem zugehörigen Hebelarm erzeugte Drehmoment. Die gleichgerichteten, sich addierenden Drehmomente wirken dem von der Kraft des Federmittels in Verbindung mit dem zugehörigen Hebelarm erzeugten Drehmo- 40 ment entgegen. Damit verbunden stellt sich für den Normalbetrieb im Vergleich zu dem Startbetrieb eine niedrigere Vorspannkraft des Zugmittels ein. Diese Drehmomentbetrachtung berücksichtigt nicht das von dem Startergeneratorgewicht verursachte Drehmoment.

[9016] Alternativ zu einer Federdümpfungs-Einheit seine Stehließt die Efrüdung ebenfalls eine getrennte Anordung ein Neben einem Tederlennent, das vorragsweise zwischen dem Gehäuse des Startergenentours und beispielsweise dem 16 Kurbelgehäuse einer Breankraftmaschine angezorheit ist, 1st die Dämpfungseinheit mit der Lagerung des Startergenentors kombiniert. Weitentim umfasst die Erfindung ebenfalls eine sowoll von der Federeinheit als auch von der Lagerung des Startergenentors Lagerung des Startergenentors getrent ausgezordnete Dämpfungseih- 65 startergenentors getrent ausgezordnete Dämpfungseih-

[0017] Ein weiteres Konstruktionsmerkmal der Erfindung bezieht sich auf die Gestaltung des Federelementes bzw. der Federdämpfer-Einheit. Diese Bauteile können gemäß der Erfindung sowohl mechanisch als auch hydraulisch wirkend ausgelegt sein.

Kurze Beschreibung der Zeichnungen

[0018] Ein bevorzugtes Ausführungsbetspiel, abgehildet in zwei Figuren, verdeutlicht die Erfindung, Es zeigen: [0019] Fig. 1 in einer sehematischen Darstellung den erfindungsgemäßen Zugmitteltrieb in einem Startbetrieb des Startergenerators, [0020] Fig. 2 den Zugmitteltrieb gemäß Fig. 1 im Normal-

Detaillierte Beschreibung der Zeichnungen

[0021] Die Fig. 1 zeigt einen Zugmitteltrieb 1 zum Antrieb eines Startergenerators 2, in einer schematischen Darstellung. Dabei umfasst der Zugmitteltrieb 1 zwei Riemenscheiben 3, 4, die über ein Zugmittel 5, vorzugsweise einen Riemen, verbunden sind, Die Riemenscheibe 3 ist dabei über eine Kurbelwelle 6 mit einer Brennkraftmaschine 7 verbunden. Die weitere Riemenscheibe 4 steht unmittelbar mit dem Startergenerator 2 in Verbindung. Mit dem Startergenerator 2 kann die Brennkraftmaschine 7 gestartet oder elektrische Energie erzeugt werden. Abhängig von dem Betriebsmodus, dem Startbetrieb oder dem Normalbetrieb des Startergenerators 2, wird ein Drehmoment von dem Startergenerator 2 oder der Brennkraftmaschine 7 über die Riemenscheibe 3 oder die Riemenscheibe 4 in das Zugmittel 5 eingeleitet. Damit verbunden ist ein Wechsel des Leertrums und des Zugtrums im Zugmittel 5. Der Startergenerator 2 umfasst ein Gehäuse 8 mit integriertem Rotor, an dem die Riemenscheibe 4 drehstarr befestigt ist. Das Gehäuse 8 des Startergenerators 2 ist exzentrisch schwenkbar an der Brennkraftmaschine 7 gelagert, Dazu ist das Gehäuse 8 über ein Lagerauge 9 mit der Brennkraftmaschine 7 verbunden. Zur Erzielung einer definierten Vorspannkraft des Zugmittels 5, die erforderlich ist für einen schlupffreien Antricb, dient ein Federelement 10, das zwischen der Brennkraftmaschine 7 und einem weiteren Lagerauge 11 des Gehäuses 8 eingesetzt ist und eine im Gegenuhrzeigersinn gerichtete Kraftkomponente auf den Startergenerator 2 ausübt, [0022] În Fig. 1 sind die im Startbetrieb des Startergenera-

45 tors 2 sich ergebenden Drehmomente mit Richtungspfeilen versehen. In dem Startmodus erfolgt vom Startergenerator 2 ein Antrieb der Brennkraftmaschine 7. Dabei erzeugt der Startergenerator 2 ein im Uhrzeigersinn gerichtetes Drehmoment M1. Ein Trum 12 des Zugmittels 5 wird dabei zum Zugtrum und der Trum 13 zum Leertrum des Zugmittels 5. Entsprechend ist die sich im Trum 12 einstellende Zugmittelkraft Fz2 größer als die sich im Trum 13 einstellende Zugmittelkraft F21. Die voneinander abweichenden, gleichgerichteten Zugmittelkräfte bewirken eine resultierende Zugmittelkraft, die, bezogen auf einen Drehpunkt 14, der Lagerung des Startergenerators 2 über einen Hebelarm ein im Uhrzeigersinn wirkendes Drehmoment Ma entwickeln, Das Drehmoment M3 steht im Gleichgewicht zu den im Gegenuhrzeigersinn wirkenden Drehmomenten M2 und M4. Das Drehmoment M2 stellt sich im Gehäuse 8 des Startergenerators 2 ein. Das weitere Drehmoment M4 wird von dem Federelement 10 mit dem resultierenden Hebelarm zum Drehpunkt 14 gebildet. Die Vorspannkräfte des Zugmittels 5. d. h. die Zugmittelkräfte F22 und F21, sind beeinflussbar durch das Federelement 10 sowie durch eine Verlagerung des Drehpunktes 14, d. h. dem Lagerauge 9 des Startergenerators 2.

[0023] Die Fig. 2 zeigt den Zugmitteltrieb 1 im Normalbe-

20

trieb bzw. Generatorbetrieb, bei dem der Startergenerator 2, angetrieben durch die Brennkraftmaschine 7. Energie erzeugt. Die im Uhrzeigersinn umlaufende Riemenscheibe 3 der Brennkraftmaschine 7 führt dazu, dass im Zugmittel 5 der Trum 13 zum Zugtrum und der Trum 12 zum Leertrum 5 wird. Damit verbunden übertrifft die Zugmittelkraft F-1 die sich im Leertrum einstellende Zugmittelkraft F22. Im Vergleich zu Fig. 1 stellt sich weiterhin eine Drehrichtungsumkehr des Drehmoments M2 in dem Gehäuse 8 des Startergenerators 2 ein. Ein Gleichgewicht der Drehmomente ergibt 10 sich durch eine Addition der Drehmomente M2 und M3, die dem von dem Federelement 10 mit dem entsprechenden Hebelarm ausgelösten Drehmoment M4 entsprechen.

Bezugszahlen

- 1 Zugmitteltrieb
- 2 Startergenerator
- 3 Riemenscheibe
- 4 Riemenscheibe 5 Zugmittel
- 6 Kurbelwelle
- 7 Brennkraftmaschine
- 8 Gehäuse
- 9 Lagerauge 10 Federelement
- 11 Lagerauge
- 12 Trum 13 Trum
- 14 Drehpunkt
- M1 Generator-induziertes Drehmoment
- M2 Drehmoment im Generatorgehäuse
- Ma Drehmoment, erzeugt durch die resultierenden Zugmit-
- M4 Drehmoment, erzeugt durch das Federelement
- Fr Kraftkomponente des Federelementes
- Fz1 Zugmittelkraft Fro Zugmittelkraft

Patentansprüche

- 1. Zugmitteltrieb, bestimmt für einen Antrieb von Aggregaten einer Brennkraftmaschine, insbesondere eines riemengetriebenen Startergenerators (2), wobei der Zugmitteltrieb (1) zumindest als ein Zweischeibentrieb 45 ausgeführt ist, dessen Zugmittel (5) alle Riemenscheiben (3, 4) des Zugmitteltriebs (1) verbindet und der Startergenerator (2) schwenkbar gelagert über ein eine Vorspannkraft des Zugmittels (5) beeinflussendes Federelement (10) abgestützt ist.
- 2. Zugmitteltrieb nach Anspruch 1, wobei abhängig von einem Betriebsmodus, einem Startbetrieb und einem Normalbetrieb, ein Wechsel des Leertrums und des Zugtrums in dem Zugmittel (5) erfolgt.
- 3. Zugmitteltrieb nach Anspruch 1, wobei der Starter- 55 generator (2) exzentrisch gelagert ist und dazu ein Gehäuse (8) des Startergenerators (2) an einer Außenkontur ein Lagerauge (10) aufweist.
- 4. Zugmitteltrieb nach Anspruch 1, bei dem im Startbetrieb ein von dem Federelement (10) mit dem resul- 60 tierenden Hebelarm erzeugtes Drehmoment (M4) gemeinsam mit dem Drehmoment (Mb) im Gehäuse (8) des Startergenerators (2) in einem Gleichgewicht zu einem von der resultierenden Kraft der Zugmitteltrums erzeugten Drehmoment (M3) steht.
- 5. Zugmitteltrieb nach Anspruch 1, bei dem in einem Normalbetrieb das von dem Federelement (10) mit dem resultierenden Hebelarm erzeugte Drehmoment

(M4) übereinstimmt mit einer Addition der Drehmomente (M2) im Gehäuse (8) des Startergenerators (2) sowie dem von der resultierenden Kraft des Zugmitteltrums (12, 13) erzeugten Drehmoment (M3).

6. Zugmitteltrieb nach Anspruch 1, wobei das Federelement (10) als eine Federdämpfer-Einheit ausgeführt

- 7. Zugmitteltrieb nach Anspruch 1, wobei die Lagerung des Startergenerators (2) mit einer Dämpfungseinheit kombiniert ist.
- 8. Zugmitteltricb nach Anspruch 1, mit einem mechanisch wirkenden Federelement (10) oder einer mechanisch wirkenden Federdämpfer-Einheit.
- 9. Zugmitteltrieb nach Anspruch 1, mit einem hydraulisch wirkenden Federelement (10) oder einer hydraulisch wirkenden Federdämpfer-Einheit.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 57 818 A1 F 16 H 7/08 23. Mai 2002

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 57 818 A1 F 16 H 7/08 23. Mai 2002

