Name: Verdad, Jane Benneth Dione Date: 09/16/24

Year & Section: BSCS IS 4B Instructor: Sir Mark Bernardino

Image Processing Techniques Comparison

Blurring Techniques

- Gaussian blur is often used to reduce noise and soften edges. It's a popular choice for general purpose blurring.
- **Median blur** is particularly effective at removing salt-and-pepper noise (random black and white pixels). It preserves edges better than Gaussian blur.
- **Bilateral filters** are useful for preserving edges while reducing noise. It's a good choice for images with fine details.
- **Box filter** is a simple blurring technique that can be used to smooth out noise. However, it can also blur edges.
- Motion blur can be used to create artistic effects or to simulate real-world motion.
- Unsharp mask is often used to enhance image details and make them appear sharper.

Comparisons

- **Blurring:** This refers to the smoothing effect that a filter applies to reduce detail in an image, usually to reduce noise or imperfections.
- **Noise Reduction:** Noise reduction techniques work by smoothing or filtering out unwanted variations, while attempting to preserve important image details like edges.
- Edge Preservation: Edge preservation refers to removing noise but retaining structural details such as object boundaries.
- Artistic Effects: It creates effects that can give an artistic appearance to an image.
- **Sharpening:** Enhance the edges of objects within an image, making the image appear clearer and crisper.

Output:

	4		
	9		
		7	
5 8			28

Gaussian Blur

Median Blur

Motion Blur

Bilateral Filter

Unsharpened Mask

Comparison:

Blurring Techniques	Blurring	Noise Reduction	Edge Preservation	Artistic Effects	Sharpening
Gaussian blur	~	~			
Median blur	V	~	V		
Bilateral filters	V	~	V		
Box filter	V				
Motion blur	V			V	
Unsharp mask					~

Edge Detection

- Canny edge detection is considered one of the most robust edge detection algorithms. It's
 less sensitive to noise than Sobel and Laplacian, and it can produce thin, continuous
 edges.
- Sobel edge detection is a simple and computationally efficient method. It's sensitive to noise and can produce double edges.
- Laplacian edge detection is less sensitive to noise than Sobel edge detection but can be more susceptible to noise. It may also produce multiple edges for a single edge.
- Prewitt edge detection is also a simple and computationally efficient method. It's like Sobel edge detection in terms of sensitivity to noise and the potential for double edges.

Comparisons

- Sensitivity to Noise: This refers to how much a filter is affected by noise in the image.
- Edge Thinness: Describes how sharply defined the edges are after filtering. A technique that preserves edge thinness maintains narrow, well-defined boundaries, whereas a filter that thickens edges might blur or broaden them, reducing clarity.
- Edge Continuity: Edge continuity refers to how well the edges in an image remain connected and smooth after applying a filter.
- **Computational Efficiency**: This measures how quickly and resource-effectively a filter processes an image.

Output:

Canny Edge Detection

Laplacian Edge Detection

Prewitt Edge Detection

Comparison:

Edge Detection	Sensitivity to Noise	Edge Thinness	Edge Continuity	Computational Efficiency
Canny Edge Detection	~	~	~	V
Sobel Edge Detection	~		~	V
Laplacian Edge Detection	~	~		~
Prewitt Edge Detection	~	~	~	V