Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Monday 18 May	2020
Morning (Time: 1 hour 30 minutes)	Paper Reference WCH11/01
Chemistry International Advanced Sub Unit 1: Structure, Bonding a Organic Chemistry	,
Candidates must have: Scientific calc	ulator Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 What is the empirical formula of butane?
 - A C₄H₁₀
 - C₂H₅

 - \square **D** C_nH_{2n+2}

(Total for Question 1 = 1 mark)

- 2 When zinc is added to copper(II) sulfate solution, copper is formed.
 - (a) Which of these is the best name for this type of reaction?

(1)

- A addition
- B displacement
- C neutralisation
- D substitution
- (b) Which is the ionic half-equation for a process that takes place during this reaction?

(1)

- \blacksquare **A** $Cu^{2+} + e^- \rightarrow Cu^+$
- \blacksquare **B** $Cu^+ + e^- \rightarrow Cu$
- \square C Zn \rightarrow Zn⁺ + e⁻
- \blacksquare **D** $Zn \rightarrow Zn^{2+} + 2e^-$

(Total for Question 2 = 2 marks)

3 How many molecules are there in 44.0 g of carbon monoxide?

Avogadro constant
$$L = 6.02 \times 10^{23} \,\text{mol}^{-1}$$

A, values: $C = 12.0 \, O = 16.0$

- \triangle **A** 3.83 × 10²³
- **B** 6.02×10^{23}
- \square **C** 9.46 × 10²³
- **D** 1.89×10^{24}

(Total for Question 3 = 1 mark)

A compound has M_r = 84 and its composition by mass is 71.4% carbon, 9.6% hydrogen and 19.0% oxygen.

What is the molecular formula of this compound?

[
$$A_r$$
 values: $H = 1.0 C = 12.0 O = 16.0$]

- \triangle A $C_4H_3O_2$
- \boxtimes **B** $C_4H_4O_2$
- \square C C₅H₈O
- \square **D** $C_6H_{10}O$

(Total for Question 4 = 1 mark)

5 The formula of barium chloride is BaCl₂.

Which is correct for barium chloride?

[
$$A_r$$
 values: Ba = 137.3 Cl = 35.5]

- A barium chloride exists as a molecule
- ☑ B barium chloride is a compound
- ☑ **C** the empirical formula of barium chloride is BaCl
- \square **D** the M_r of barium chloride is 172.8

(Total for Question 5 = 1 mark)

6 The mass spectrum of a sample of an element is shown.

- (a) What is the A_r of the element?
 - **A** 42.0
 - **■ B** 48.0
 - **C** 63.6
- (b) Which species could be responsible for the peak at m/z = 32.5?

(1)

(1)

- $A^{32}S^{+}$
- B ⁶³Cu²⁺
- C 65Cu²⁺

(Total for Question 6 = 2 marks)

7 What is the molecular formula of the compound shown?

- \triangle A C_2HO_2
- \blacksquare **B** $C_4H_2O_4$
- \square **C** $C_4H_4O_4$
- \square **D** $C_4H_6O_4$

(Total for Question 7 = 1 mark)

8 A sequence of four molecules is shown.

1

2

3

4

(a) What is the molecular formula for the fifth molecule in this sequence?

(1)

- A CH₄O
- B C₆H₁₁O
- \square **C** $C_6H_{14}O$
- □ C₇H₁₆O

(b) What is the name of this type of sequence?

(1)

- A functional group
- B homologous series
- C homolytic series
- **D** skeletal formulae

(Total for Question 8 = 2 marks)

9 Which ion does **not** have the electronic configuration shown?

- B Ca²⁺
- D Sc³⁺

(Total for Question 9 = 1 mark)

10 What is the electronic configuration of the nitride ion, N^{3-} ?

- \triangle A 1s² 2s²
- \blacksquare **B** 1s² 2s² 2p³
- \square **C** $1s^2 2s^2 2p^4$
- \square **D** $1s^2 2s^2 2p^6$

(Total for Question 10 = 1 mark)

11 Which of these ions has the smallest ionic radius?

- \triangle A AI³⁺
- B Ga³⁺
- \boxtimes **C** Mg²⁺
- D F⁻

(Total for Question 11 = 1 mark)

12 What is the percentage atom economy, by mass, for the production of hydrogen in the reaction shown?

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

[A_r values: H = 1.00 C = 12.0 O = 16.0]

- A 8.8%
- **B** 17.6%
- **C** 21.4%
- **D** 82.4%

(Total for Question 12 = 1 mark)

- 13 How many lone pairs of electrons are there in the outer shell of the sulfur atom in a molecule of H_2S ?
 - 🛛 A zero
 - B one
 - C two
 - **D** four

(Total for Question 13 = 1 mark)

- **14** Which equation represents the **third** ionisation energy for element J?

 - \square **C** $J(q) \rightarrow J^{3+}(q) + e^{-}$
 - **■ D** $J(q) \rightarrow J^{3+}(q) + 3e^{-}$

(Total for Question 14 = 1 mark)

- 15 In which sequence are the molecules in order of **decreasing** bond angle?
 - \square **A** BeCl₂ > BCl₃ > CH₄
 - \square **B** BeCl₂ > NH₃ > CH₄
 - \square **C** $CH_4 > BCI_3 > BeCI_2$
 - \square **D** $CH_4 > NH_3 > BeCl_2$

(Total for Question 15 = 1 mark)

- **16** Which pair of ions will form the compound with the most covalent character?
 - A Li⁺ and I[−]
 - B Na⁺ and Br⁻

(Total for Question 16 = 1 mark)

17 Which diagram best represents the electron density in a molecule of hydrogen chloride?

(Total for Question 17 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

	SECTION B	
	Answer ALL the questions. Write your answers in the spaces provided.	
18 This	s question is about the structure of atoms.	
(a)	State what is meant by the term orbital.	(2)
(b)	State the shape of an s orbital and the shape of a p orbital.	(1)
	Describe what can be deduced about the electronic structure of sodium from its successive ionisation energies.	(3)

(d) (i) The log of the **fourth** ionisation energy for six elements is shown in the table.

Element	log_{10} (fourth ionisation energy / kJ mol ⁻¹)
0	3.87
F	3.92
Ne	3.97
Na	
Mg	4.02
Al	4.06

Plot a graph of these data.

(3)

(ii)	Use your graph to estimate the fourth ionisation energy for sodium, in kJ mol ⁻¹	. (1)
		(1)
(iii)	Suggest why the fourth ionisation energies of neon and sodium are similar in magnitude even though the elements are in different periods of the	
	Periodic Table.	(1)
	(Total for Question 18 = 11 ma	rks)

- **19** This question is about the compound ammonium dichromate(VI), $(NH_4)_2Cr_2O_7$.
 - (a) $(NH_4)_2Cr_2O_7$ breaks down at around 180 °C, producing an oxide of chromium, nitrogen and water as the only products.
 - (i) Write an equation for the reaction. State symbols are not required.

(2)

(ii) Give a name for this type of reaction.

(1)

(b) When 0.00100 mol of ammonium dichromate(VI) was heated, 25.2 cm³ of nitrogen gas, measured at laboratory temperature, was formed.

Calculate the temperature in the laboratory, in degrees Celsius, using the ideal gas equation. Use atmospheric pressure = 101 kPa.

$$[pV = nRT \quad R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}]$$

(4)

(i) Draw a dot-and-cross diagram of the ammonium ion.	
Use dots (●) for the nitrogen electrons and crosses (x) for the hydrogen electrons	electrons.
	(=)
(ii) Explain the shape of the ammonium ion using electron-pair repulsion the	eory.

- (d) Ammonium dichromate(VI) comes with several warnings on its packaging.
 - This compound is toxic when inhaled and by passing through the skin.
 - Handle with extreme caution.
 - Contact can irritate and burn the skin and eyes, with possible eye damage.
 - Inhaling can irritate the nose and throat.
 - Ammonium dichromate(VI) is a strong oxidiser that enhances the combustion of other substances.
 - (i) Some of the symbols shown are used for ammonium dichromate(VI).

Identify the symbols for ammonium dichromate(VI) by placing a tick (\checkmark) in the box under each relevant symbol.

(2)

(ii) Suggest why ammonium dichromate(VI) is **not** stored in the same cupboard as alkanes.

(1)

(Total for Question 19 = 14 marks)

20 This question is about polymers.

(a) Plastic bags can be made from poly(lactic acid) (PLA), which is biodegradable. Lactic acid is obtained from corn.

An equation for the polymerisation of lactic acid is shown.

(i) Write a balanced equation for the polymerisation of propene using displayed formulae.

(2)

(ii) Give **one** difference between the polymerisation of propene and that of lactic acid.

(1)

(iii) State the meaning of the term biodegradable.

(1)

(1)

(iv) Give three advantages of biodegradable polymers.	(3)
(b) Isoprene is used to make synthetic rubber. The skeletal formula for isoprene is s	hown.
(i) State why isoprene does not have geometric isomers.	(1)
(ii) A related molecule does show geometric isomerism.	

Draw the geometric isomer of this molecule.

(iii) Give a reason why a double bond may result in geometric isomerism.	
	(1)
(Total for Question 20 = 10 r	narks)

21 This question is about the liquids cyclohexene, C₆H₁₀, and bromine, Br₂.

cyclohexene

(a) Calculate the volume, in cm³, of 0.0300 mol of cyclohexene. Give your answer to an appropriate number of significant figures. You must show your working.

Data A_r values: H = 1.0 C = 12.0

Density of cyclohexene = $0.811 \,\mathrm{g\,cm^{-3}}$

(2)

- (b) Bromine reacts with cyclohexene.
 - (i) State the colour change when an excess of cyclohexene is added to liquid bromine.

(2)

(ii) This reaction is very similar to the reaction of ethene with bromine.

Draw the mechanism for this reaction of cyclohexene with bromine. Include curly arrows, and any relevant dipoles and lone pairs.

(4)

- (c) Bromine vapour in the atmosphere can cause irritation to the eyes at a concentration of 1.1 ppm and to the lungs at a concentration of 10 ppm.
 - (i) State the meaning of ppm.

(1)

(ii) A sample of 3.25 cm³ of bromine vapour leaks into a laboratory.

Calculate the minimum volume, in **dm**³, of the laboratory for the resulting concentration of bromine to be at a safe level.

(3)

(d) Because bromine is so hazardous it is usually used in the laboratory in aqueous solution.

A sample of bromine reacts with exactly 0.0300 mol of cyclohexene.

Calculate the minimum volume of water needed to completely dissolve this sample of bromine at room temperature.

Data A_r value: Br = 79.9

Concentration of bromine in water at room temperature = $35 g dm^{-3}$

(3)

(Total for Question 21 = 15 marks)

BLANK PAGE

22 In the upper atmosphere, ozone can react with halogens and with halogen-containing compounds, such as molecule **X**.

molecule X

(a) Name molecule X.

(1)

- (b) The C—CI bond undergoes homolytic fission in the upper atmosphere.
 - (i) State the essential condition necessary for this process.

(1)

(ii) Write an equation for this fission in molecule **X**. Include curly half-arrows.

(2)

(iii) Write an equation for the reaction of a chlorine free radical with a molecule of **X**. Curly half-arrows are not required.

(2)

(iv) Write an equation, using displayed formulae, for a free radical formed in this sequence to give a molecule with the formula $C_4H_4CI_6$.

(2)

(v) State the type of reaction occurring in (b)(iv) and the name of the product with the formula $C_4H_4CI_6$.

(2)

(Total for Question 22 = 10 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS

Lr lawrencium

nobelium

mendelevium

103

102

101

100

66

86

46

95

94

93

92

6

90

uranium

protactinium

232 **Th** thorium

[251] **Cf** californium

[245] **Bk** berkelium

[247] **Cm** aurium

63 [243]

Np Pu Am neptunium plutonium americium

[242] Pu

61 [237]

238 U

[231] **Pa**

[257]

[254] No

[356] Md

[253] Fm fermium

[254] **Es**einsteinium

20

69

89

65

64

62

9

29

Lu

173 **Yb** ytterbium

Ta thulium

167 Er erbium

163 165

Dy Ho
dysprosium holmium
66 67

 141
 144
 [147]
 150
 152
 157
 159

 Pr
 Nd
 Pm
 Sm
 Eu
 Gd
 Tb

 prasecodymium neodymium promethium promethium samarium promethium samarium promethium prom

175

	0	4.0 He	7) helium 2	19.0 20.2		9 10	35.5 39.9	.1 Ar	chlorine argon	-	7	e k	+	126.9 131.3	ı Xe	iodine xenon 53 54	[210] [222]	At Rn	astatine radon 85 86		reported	
	7		(17)	19	- 10		35	บ	chlori 17	79	В	-	\dashv			- 11		600	-	ļ	e been	
	9		(16)	16.0	٥	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium	34	127.6	ē	tellurium 52	[506]	8	polonium 84	B	-116 hav	nticated
	2		(12)	14.0	z	nitrogen 7	31.0	۵	phosphorus 15	74.9	As	a	33	121.8	S	antimony 51	209.0	B	bismuth 83		Elements with atomic numbers 112-116 have been reported	but not fully authenticated
	4		(14)	12.0	Ų.	carbon 6	28.1	Si	silicon	72.6	Ge	germanium	32	118.7	Sn	20 ti	207.2	Ъ	lead 82		atomic nu	but not
Ġ	m		(13)	10.8	ω.	boron 5	27.0	¥	aluminium 13	7.69	g	gallium	31	114.8	드	indium 49	204.4	F	thallium 81		nents with	
ents									(12)	65.4	Zu	zinc	30	112.4	5	cadmium 48	200.6	퐈	mercury 80			
rlem									(11)	63.5	n	copper	29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	sentgenium
The Periodic Table of Elements				(01)						58.7	ž	nickel	28	106.4	Б	palladium 46	195.1	<u>۲</u>	platinum 78	[271]	S	Jamistadtium In
labi				(6)						58.9	ප	cobalt	27	102.9	윤	rhodium 45	192.2	_	iridium 77	[568]	Mt	meitnerium damstadtium
DOL	1.0 Hydrogen		1	8						55.8	e.	iron	26	101.1	æ	ruthenium 44	190,2	So	osmium 76	[277]		hassium
e Pe									(2)	54.9	W	manganese	25	[86]	բ	technetium 43	186.2	Re	rhenium 75	7.7		bohrium
				mass	log	umber			(9)	52.0	ڻ	chromium manganese	24	95.9	Wo	molybdenum technetium 42 43	183.8	>	tungsten 74	[592]	Sg	seaborgium
		Key	relative atomic mass	mic symb	atomic symbol name atomic (proton) number			(2)	50.9	>	Ę	23	67.6		niobium 41	180.9	Þ	tantalum 73	1		dubnium	
				relativ	relativ atoric				(4)	47.9	F	E	72	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]	₩.	nutherfordium
				3						45.0	S	scandium	21	88.9		yttrium 39	138.9	ra*	lanthanum 57	[227]		actinium
	7		(2)	0.6	Be	beryllium 4	24.3	Wg	magnesium	40.1	S	F	20	87.6	Ş	strontium 38	137.3		barium 56	[526]	Ra	radium
	-		(1)	6.9	5	uthium 3	23.0		sodium 11	39.1	¥	potassium	19	85.5	8	rubidium 37	132.9	ა	caesium 55	[223]	Ŀ	francium

* Lanthanide series * Actinide series

Cerium