(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 November 2004 (25.11.2004)

PCT

(10) International Publication Number WO 2004/101951 A1

(51) International Patent Classification⁷: C04B 28/00

E21B 33/13,

(21) International Application Number:

PCT/EP2004/005478

(22) International Filing Date: 14 May 2004 (14.05.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/470,341

14 May 2003 (14.05.2003) US

- (71) Applicant (for FR only): SERVICES PETROLIERS SCHLUMBERGER [FR/FR]; 42 rue Saint Dominique, F-75007 Paris (FR).
- (71) Applicant (for AT, AZ, DE, DK, IT, KP, KR, KZ, NO, NZ, PL, RO, RU, TM, UA, ZA only): SCHLUMBERGER TECHNOLOGY B.V. [NL/NL]; Parkstraat 83-89, NL-2514 JG The Hague (NL).
- (71) Applicant (for GB, JP, NL only): SCHLUMBERGER HOLDINGS LIMITED; P.O. Box 71, Craigmuir Chambers, Road Town-Tortola (VG).
- (71) Applicant (for CA only): SCHLUMBERGER CANADA LIMITED [CA/CA]; 525 - 3rd Avenue S.W., Calgary, Alberta T2P OG4 (CA).
- (71) Applicant (for all designated States except AT, AZ, CA, DE, DK, FR, GB, IT, JP, KP, KR, KZ, NL, NO, NZ, PL, RO, RU, TM, UA, US, ZA): SOFITECH N.V. [BE/BE]; Rue de Stalle 140, B-1180 Brussels (BE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LE ROY-DELAGE, Sylvaine [FR/FR]; 15, rue Dulac, F-75015 Paris (FR).

GUILLOT, Dominique [FR/FR]; 5, rue Léon Bloy, F-92260 Fontenay-aux-Roses (FR). DISMUKE, Keith [US/FR]; Etudes et Productions Schlumberger, 1, rue Henri Becquerel BP 202, F-92142 Clamart Cedex (FR). NELSON, Erik [US/FR]; Etudes et Productions Schlumberger, 1, rue Henri Becquerel BP 202, F-92142 Clamart Cedex (FR).

- (74) Agent: MENES, Catherine; Etudes et Productions Schlumberger, 1, rue Becquerel, B.P. 202, F-92142 Clamart Cedex (FR).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SELF ADAPTIVE CEMENT SYSTEMS

(57) Abstract: A self-adaptive cement system includes cement, water and at least one additive that reacts or and expands in contact with oil and gas. Several chemical products have been identified including rubber alkylstyrene, polynorbomene, resins such precrosslinked substituted vinyl acrylate copolymers and diatomaceous earth. These additives have the effect of making the cement self-healing in the event of physical failure or damage such as micro-annuli. The self healing property is produced by the contact with subterranean hydrocarbon fluids, the potential repair mechanism is thus activated if and when needed in case of start of loss of zonal isolation. In another embodiment, the expansion is deliberately induced by pumping a hydrocarbon fluid in the vicinity of the set cement.

Self Adaptive Cement Systems

Technical Field of the Invention

The present invention relates to adaptive cement systems. In particular, the invention relates to cement systems which are "self-healing", i.e. system which can adapt to compensate for changes or faults in the physical structure of the cement, or which adapt their structure after the setting phase of the cement in the cementing of oil, gas, water or geothermal wells, or the like.

Background of the Invention

10 [0002] During the construction of underground wells, it is common, during and after drilling, to place a liner or casing, secured by cement pumped into the annulus around the outside of the liner. The cement serves to support the liner and to provide isolation of the various fluid-producing zones through which the well passes. This later function is important since it prevents fluids from different layers contaminating each other. For example, the cement prevents formation fluids from entering the water table and polluting drinking water, or prevents water from passing into the well instead of oil or gas. In order to fulfill this function, it is necessary that the cement be present as an impermeable continuous sheath. However, for various reasons, over time this sheath can deteriorate and become permeable. The deterioration can be due to physical stresses caused by tectonic movements of temperature effects, chemical degradation of the cement, or various other reasons.

20

25

30

There have been a number of proposals to deal with the problems of deterioration of the cement sheath over time. One approach is to design the cement sheath to take into account physical stresses that might be encountered during its lifetime. Such an approach is described in US 6,296,057. Another approach is to include in the cement composition materials that improve the physical properties of the set cement. US 6,458,198 describes the addition of amorphous metal fibers to the cement slurry to improve its strength and resistance to impact damage. EP 1129047 and WO 00/37387 describe the addition of flexible materials (rubber or polymers) to the cement to confer a degree of flexibility on the cement sheath. WO 01/70646 and PCT/EP03/01578 describe cement compositions that are formulated so as to be less sensitive to the effects of temperature on the cement when setting.

[0004] A number of proposals have been made for designs of self-healing concretes for use in the construction industry. These are described in US 5,575,841, US 5,660,624, US 5,989,334, US 6,261,360 and US 6,527,849, and in "Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability", Dry, C. M., Cement and Concrete Research 30 (2000) 1969-1977. None of these are immediately

applicable to well cementing operations because of the need for the cement to be pumpable during placement and because of the pressure and temperature range.

[0005] It is an objective of the present invention to provide well cementing systems that can be placed by pumping in the normal manner, and which contain materials that allow the cement sheath to adapt its structure in response to environmental conditions.

5

20

25

30

35

Summary of the Invention

[0006] In a first aspect, the invention concerns thus a well cementing composition comprising a pumpable slurry of cement, water and a material that reacts and/or expands (swells) in contact with liquid or gaseous hydrocarbon. This behavior has the effect of making the cement self-healing in the event of physical failure or damage.

10 [0007] Numerous materials can be added as additive to the cement matrix and available to react/expand upon contact with hydrocarbons. Examples of such materials include rubber, in particular styrene butadiene rubber and ground rubber, poly 2 2 1 bicyclo heptene (polynorbornene), alkylstyrene, crosslinked substituted vinyl acrylate copolymers and diatomaceous earth. Mixture of two or more of these materials can also be used, in particular to provide a cement that is susceptible to react to a large variety of subterranean hydrocarbon liquids.

15 [0008] The material can be of almost any shape and size: spherical, fiber-like, ovoid, mesh systems, ribbons, etc., which allows their easy incorporation in cement slurries of comprising solid materials in discrete particle size bands. From a mixing and pumping point of view, it is usually better to use granular particles having a dimension less than 850 μm.

[0009] As mentioned above, after setting, the cement composition of the present invention will expand upon contact with a liquid or gaseous hydrocarbon. In that aspect, this provides a method of cementing a well with a self-healing cement, in particular with a cement that will fill the micro-cracks or fractures in the cement matrix when underground hydrocarbon enters the fault in the cement matrix and thus prevents the onset of the permeability. Moreover the properties of expansion of the set cement in contact with oil or more generally with hydrocarbon can also repair the micro-annuli at the interface between the cement and the casing or formation, a property that is particularly interesting to prevent gas migration.

lonol In another aspect of the present invention, the cement composition further comprises an additive having residual water-absorption properties after the setting of the cement, thereby susceptible to swell in contact with underground water. This provides cement that is able to self-heal whatever fluid it comes in contact with in the underground formation. This type of additive are more specifically described in the International Patent Application also entitled "self-adaptive cement", claiming the same priority as the present invention and naming Sylvaine Leroy-Delage, Muriel Martin-Beurel, Keith Dismuke and Erik Nelson as inventors, and which is hereby incorporated by reference. Suitable additive includes in particular super-absorbent polymer preferably selected from the list consisting of polymethacrylate and polyacrylamide or a non-soluble acrylic polymers. The super-absorbent polymer is preferably added dry-blended with the cement, at concentrations ranging from 0.05% to 3.2% by weight of cement

[0011] The cement slurry according to any of claims 17 to 20, wherein the super-absorbent polymer is added under the form of particles ranging form 10μ to 1500μ.

[0012] In another aspect of the invention, the hydrocarbon fluid is considered as a triggering event that will cause the final expansion of the cement during a cementing process. In that case, the composition of the present invention may be pumped in a given zone, allowed to set and the hydrocarbon fluid is pumped in the immediate vicinity of the set cement to promote its expansion and the complete filling of the area to be cemented. Of course, this method is particularly suitable for hard to cement zones, in particular zones that are too narrow for conventional cement to properly penetrate such as micro-fractures or other repair jobs.

5

15

20

25

30

Detailed Description

10 [0013] Different solid materials have the property to react with hydrocarbons in particular with subterranean hydrocarbons.

[0014] One example of a polymer suitable for such use is alkylstyrene which is available in bead form from Imtech Imbibitive Technologies Corp. under the name: Imbiber Beads. These are cross-linked alkylstyrene polymers engineered to absorb a broad range of organic chemicals (hence hydrocarbons). The beads are solid, spherical beads of approx. 200 – 300 microns diameter. They are unaffected by water but when placed in contact with liquid organic materials will absorb up to 27 times the volume of organic liquid and expand up to three times the original diameter, depending on the liquid and other environmental variable such as temperature, pressure, etc. The organic liquid is held in the organic structure and is not released under pressure.

Other examples of polymer capable of absorbing hydrocarbons are polymers used for hydrocarbons spills are for instance poly 221 bicyclo heptene (polynorbornene, e.g. Norsorex®AP X1 from ATOFINA) or INIPOL ®AB40 from CECA.

Several grades from Norsorex are available (Norsorex NS or Norsorex APX1 for instance). The behavior in oil may vary from simple gelling effect without expansion to gelling and expansion. Norsorex® is a white polymer powder, it is hydrophobic and oleophilic and has a low density (0.96 g/cm³). It is insoluble and inert in water. It has been developed by ATOFINA to absorb high quantities of various hydrocarbons including for instance naphtenic oil, kerosene aromatic oil.

Other example is ground rubber. The ground rubber particles are obtained by recycling tires. The recycling process is a series of shredding and special grinding operations to remove metal and fiber. These particles contain a certain amount of carbon black. Two sources have been tested: ground rubber from ATR (American Tyre Recycler) and ECORR RNM 45 from Rubber Ressources. Density of such products is between 1.1 –1.2 g/cm³. It has been patented that the use of ground rubber particles in cement formulations improved the cement mechanical properties by decreasing the value of the Young's modulus and by improving the behavior under shock. These ground rubber particles also have self healing effect and lead to expansion properties in contact with hydrocarbon.

[0018] It is possible to mix different flexible particles such as polypropylene, polyethylene or acrylonitrile butadiene to have flexibility and self-healing effect. The ratio of mixture for such particles allows adjusting flexibility and self-healing effect. The concentration is an important factor.

[0019] Other possibility is to use resins such as precrosslinked substituted vinyl acrylate copolymers in dry powder form. For instance the Pliolite family developed by Eliokem. These resins are available in different range with different behavior in terms of swelling effect in organic fluids. They produce soft colloidal microgels in organic fluids. They should be slowly added to the fluid under shear to ensure complete gel development. They are already used in oilfield in organic based drilling fluids as primary fluid loss control additives with secondary rheological contribution. They are suitable for HTHP wells since they are heat stable up to 500°F. They are insoluble in water and are able to swell in various aromatics and aliphatic fluids.

10

15

20

25

30

However all polymers or elastomers having the properties to swell in contact with hydrocarbon are not adequate for oil well conditions. A counter example is for instance EPDM (elastomeric terpolymer from ethylene, propylene and a nonconjugated diene). Nordel® products from Dupont Dow Elastomer are given as midperformance in ASTM D2000: it means that at a service temperature equal to 120°C the volume swell in ASTM no 3 oil is around 120%. Amongst the several grades available, Nordel MG (NDR 47085.01) has been selected for its finer particle size (although granular form thus coarse particle for our specifications application in cement slurry) and its mixture with carbon black. The presence of carbon black and the granular form facilitate the oil absorption.

Materials such as diatomaceous earth or perlite can also be used in an absorbent, swelling role. Diatomite it is a soft bulky solid material (88% silica) composed of skeletons of small prehistoric aquatic plants related to algae. They are available in powder, its specific gravity is between 1.9 and 2.35. This powder is able to absorb 1.5 to 4 times its weight of water and also has high oil absorption capacity it is used as absorbent in industry. The particle size is an important factor because this material is able to swell in water and also in oil.

[0022] The absorbent materials are typically dry blended with the cement and any other solid components before transport to the well-site, mixing with water and placement in the well. The sizes and quantities will be selected to allow even dispersion through the cement matrix. A range of materials and/or particle sizes can be used to permit extended behavior over a period of time. However for some material it could be necessary to prehydrate the material in mix water before adding the cement.

[0023] Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the examples which follows, taken in conjunction with the accompanying drawings.

Description of the drawings

[0024] Figures 1 to 8 are plots of the development of the linear expansion (in %) with time (in days) for different systems according to the present inveniton

15

20

25

30

Testing procedure

Tests have been carrying out by incorporating powders of various types of polymers as solid additives in cement slurries. The cement slurries are then placed in annular expansion cell to study the expansion behavior when the cement set and also the behavior after setting when it is in contact with hydrocarbon. To compare the product behavior in oil, the same blend is used; the comparison between tests is made by changing the polymer nature. Several polymer concentrations have been tested, ranging from 10% to 50% BVOB (by volume of blend). All designs are based on fresh water and black Dyckerhoff North cement. Most slurries include fine crystalline silica (noted fine silica).

10 [0026] The slurries were optimized with the mere objective of obtaining stability. Focus was to get acceptable plastic viscosity (PV) and yield stress (TY) at mixing time and after 20 minutes of conditioning. Free water and sedimentation tests were also carried out. Mixing and test procedure was according to API Spec 10.

[0027] The same equipment and bob was used for all rheology measurements, whatever the tested design. With large particles, the results are therefore only indicative of a trend. Indeed, no measurement was made with particles greater than 1 mm.

The linear expansion of the cement slurries is measured with a device consisting of a bottom plate, a split expandable ring with two attached pins and a top plate. The expandable ring is placed between the two plates, and a screw fixes the two plates together. When the cement sets and expands, the outside diameter of the expandable ring grows and the distance between the attached pins increases. The linear expansion of the slurry is calculated from the difference of the readings by multiplying this value times a constant corresponding to the circumference of the mold.

The curing process includes two steps: first, the slurry is put in water bath during at least 7 days at the selected temperature to follow the linear expansion versus the time, this step can be prolonged if necessary to reach a flat level of expansion; then the set sample is then transferred in oil to record expansion versus time. This two-step curing procedure simulates setting of the cement matrix in the well followed by contact with oil due to loss of zonal isolation (either cracks or creation of a micro-annuli).

Tests were performed with three different oils: an oil consisting from 60 to 100% of aliphatic hydrocarbons (not O1), with a flash point of 113°C; diesel (O2) — tested only at room temperature due to a flash point below 60°C; and a dearomatized hydrocarbon fluid having a flash point of 103 °C (O3). Samples were cured in molds at 60 °C in a water bath under atmospheric pressure for one week. Cylinders (1-inch diameter, 2-inch long) were then cored and the cores placed in oil.

Example 1: ground rubber

[0031] Two sources of ground rubber particles obtained by recycling tires were tested. GR1 particles are commercialized by American Tyre Recycler under the name "Rubber 40 mesh" have a density of 1.2 g/cm³ and an average particle size of 425µ. GR2 are commercialized by Rubber Ressources, under the product name ECORR RNM 45. The density is 1.2 g/cm³, the average particle size 355µ. Both are ground rubber obtained by a recycling process involving a series of shredding and special grinding operations to remove metal and fiber. These particles are black and contain a certain amount of carbon black. Recycled rubber has the advantage of being flexible and cheap. The slurry designs and rheological properties are in table 1 below in which the concentration of solid are given either by reference to the original cement blend (BVOB) or by weight of blend and the concentrations of liquid additives are given in US gallons per sack of 94 lbs of blend (in other words, 1 gpsb = 88.78 cc/kg)

5

10

15

Formulations:	A1	A5	A6	A12
Particle	GR1	GR1	GR2	GR2
Density ppg	16.1	16.8	16.1	16.8
Porosity %	42	42	42	42
Cement (%BVOB)	40	40	40	40
Fine silica (%BVOB)	10	10	10	10
Ground rubber (%BVOB)	20	10	20	10
Silica sand (%BVOB)	30	. 40	30	40
Polypropylene glycol (antifoam) (gpsb)	0.03	0.03	0.03	0.03
Polynaphtalene sulfonate (dispersant (gpsb)	0.01	0.01	0.01	0.01
Lignosulfonate (gpsb)	0.045	0.045	0.045	0.045
Rheology After mixing	·			
PV (cP)	134	120	134	132
Ty (lbf/100 ft²)	2	3.5	2	4
Rheology After Conditioning At 60 °C				
PV (cP)	132	98	132	119
Ty (lbf/100 ft ²)	13	12	13	8
API free water (mL)	2	2	1	1
Sedimentation (delta bottom/top in ppg)	0.31	0.66	0.27	0.39

Table 1

[0032] Linear expansion values are reported Table 2 below. In all case ground rubber shows a rapid increase of expansion immediately after being contacted with oil.

5

15

	Linear expa	nsion (%)		
	At room ter	nperature	At 60°C	
	O2	03	01	03
A1	0.25	0.26	0.7	1.5
A5			0.12	
A6		0.14	0.36	2.5-5
A12			0.12	

Table 2

[0033] Figure 1 is a plot of the linear expansion along time (in days) for slurry A2, when exposed to the dearomatized oil. Note that virtually no expansion was observed on reference cores put in water. The open circles correspond to the tests performed at room temperature while the full squares are for the test at 60 °C. Expansion is observed with oil and the expansion level increases with temperature (0.26% at room temperature and up to 0.9% at 60 °C. It should be observed that for clarity purpose, the value of only one test have been reported in this figure 1 – and in all other similar figures – while the result data given in table 2 – or in corresponding similar tables – are average based on several tests and consequently, do not necessarily match in values.

10 [0034] Increasing the concentration of rubber particles affects the expansion level. For example, figure 2 shows the linear expansion vs. time for slurry A1 (full squares) and A2 (full triangles) upon exposition to the aliphatic hydrocarbon oil O1, at 60 °C. The expansion reaches 0.7% at 20 % BVOB instead of 0.1% at 10 % BVOB.

[10035] With the second source of ground rubber, higher levels of expansion have been observed. Indeed, as shown figure 3 where the linear expansion vs. time is plotted for samples A6, put in oil O3, expansion levels are almost doubled compared to previous tests. Figure 3 also confirms the temperature effect (open square plots for room temperature tests, full circles for tests at 60 °C).

Example 2: flexible particles

20 [0036] Different types of flexible particles whose characteristics are provided table 3 were studied.

Code	Chemical nature	Product name	Supplier	Density g/cm ³	Size (micron)
F1	Polypropylene	Icorene 9013 P	ICO polymer	0.9	200-800
F2	Acrylonitrile butadiene copolymer	Chemigum P86F	Eliokem	1.0	350

Table 3

[0037] Different slurries were prepared as for example 1, whose designs and rheological properties are shown table 4 below.

Formulations:	A9	A36	A22
Particle	F1	F1	F2
Density ppg	15.8	13.5	15.9
Porosity %	42	42	42
Cement (%BVOB)	40	40	40
Fine silica (%BVOB)	10	10	10
Flexible particles (%BVOB)	20	20	20
Ground rubber GR1 (%BVOB)		30	
Silica sand (%BVOB)	30		30
Polypropylene glycol (antifoam) (gpsb)	0.03	0.03	0.03
Polynaphtalene sulfonate (dispersant (gpsb)	0.010	0.03	0.01
Lignosulfonate (gpsb)	0.045	0.045	0.045
Rheology After mixing			
PV (cP)	92	102	136
Ty (lbf/100 ft ²)	0.4	14	9
Rheology After Conditioning At 60 °C			
PV (cP)	83	104	99
Ty (lbf/100 ft ²)	6	7 .	11
API free water (mL)	1.3	2	
Sedimentation (delta bottom/top in ppg)	0.05		

Table 4

5

[0038] Linear expansion values are reported Table 5 below. In all case ground rubber shows a rapid increase of expansion immediately after being contacted with oil at 60 °C.

	Linear expansion at 60°C (%)		
	01	O3	
A9	0.1		
A36		2.5	
A22	<0.1		

Table 5

Neither acrylonitrile butadiene rubber (F2) nor polypropylene (F1) has developed expansion even under temperature in oil. However the F1/GR1 blend mixture of test A36 develops expansion in contact with oil. For instance in oil O3 at 60°C the expansion is not flat after 40 days and get up to 2.5% as illustrated figure 4.

Example 3: alkylstyrene particles

5

10

15

Imbiber beads® (a registered names of Imbibitive Technologies Corporation) are cross-linked alkylstyrene polymers engineered to absorb a broad range of organic chemicals. The beads are solid, spherical particles that are approximatively 200-300 microns in diameter. Typical application of such beads is too prevent spills from escaping into the environment. They are unaffected by water, and once contact has been made with a adequate liquid organic the beads will absorb up to 27 volumes of the organic liquid and swell up to 3 diameters depending on the liquid and on other variables such as temperature. The liquid is held in the molecular structure, the imbiber bead will not release the liquid due to compression. Its density is 1.12 g/cm3.

Beads B1 are made exclusively of alkylstyrene. Beads B2 are a mixture at a 50:50 weight ratio of alkylstyrene beads and sand. The compositions of the tested slurries are shown in table 6. Note that for slurries A17 and A29, the concentration of beads is given by weight of cement and not by weight of blend as for slurries A30 and A31.

Table 6

				100
Formulations:	A30	A31	A17	A29
Particle	B2	B2	B1	B2
Density ppg	16.85	15.8	15.8	15.8
Porosity %	42	42	49.4	48.3
Cement (%BVOB)	40	40	<u> </u>	
Fine silica (%BVOB)	10	10		
Beads (%BVOB)	20	50	(10)	(10)
Silica sand (%BVOB)	30			
Polypropylene glycol (antifoam) (gpsb)	0.03	0.03	0.03	0.03
Polynaphtalene sulfonate (dispersant (gpsb)	0.04	0.04	0.06	0.04
Lignosulfonate (gpsb)				
Rheology After mixing				
PV (cP)				98
Ty (lbf/100 ft ²)				27

Formulations:	A30	A31	A17	A29
Rheology	After Cond	litioning A	60 °C	
PV (cP)				
Ty (lbf/100 ft ²)				·
API free water (mL)	0			1.5
Sedimentation (delta bottom/top in ppg)	0.25			0.23

[0042] The expansion starts immediately upon contact with oil. Results are provided table 7. Acceptable expansion levels are achieved at 60 °C as shown figure 5 for samples A31 where the stars correspond to samples put in contact with oil O1 and the triangles to a contact with oil O3.

5

		Linear expansion (%)					
	At re	oom tempera	At 6	60°С			
	01	O2	О3	01	03		
A30	0.1	0.1		0.14	0.17		
A31	0.15	0.15	<0.1	0.5	0.22		
A17	0.35			0.7-3			

Table 7

10

15

Example 4: Polynorbornene

[0043] Fluorinated resins like poly 221 bicyclo heptene (polynorbornene) are used for hydrocarbon spills are commercial products include for instance Norsorex® AP XI available from ATOFINA, Paris, France and INIPOL AB 40 available from CECA, Paris, France.Depending on the specific grade, the behavior in oil varies form simple gelling to gelling with expansion. Norsorex AP XI is a white polymer powder, made from particles ranging from about 0.5mm to about 1mm, having a density of 0.96g/cm³.

[0044] Table 8 recaps some slurries designs and rheological properties. Expansion tests results are displayed table 9.

Formulations:	A27	A32	A34
Density ppg	15.85	13.31	15.8
Porosity %	42	42	47.7
Cement (%BVOB)	_40	40	

Fine silica (%BVOB)	10	10	
Polynorbornene (%BVOB)	20	50	9
Silica sand (%BVOB)	30		
Polypropylene glycol (antifoam) (gpsb)	0.03	0.03	0.03
Polynaphtalene sulfonate (dispersant (gpsb)	0.03	0.05	0.03

Formulations:	A27	A32	A34
Rheolog	y after mixing		`
PV (cP)	180	194	220
Ty (lbf/100 ft²)	21	18	45
Rheology after	conditioning at	60 °C	
PV (cP)	146	136	210
Ty (lbf/100 ft²)	28	13	71
API free water (mL)	0	1.5	0
Sedimentation (delta bottom/top in ppg)	0	-0.57	

Table 8

		Linear expansion (%)				
	At	At room temperature			60°C	
	. 01	O2	03	01	03	
A27	0.12	0.18	0.19	0.17	0.6	
A32	0.5	0.36	1	2.2	1.9	
A34		1	<0.1		0.4	

Table 9

Some expansion is observed with oil O3 at 60 °C, as illustrated figure 6 where the full squares correspond to the tests performed on cements A32 and the open triangles to the tests performed with cement A27, clearly showing that the higher the concentration of added particles, the higher the expansion.

10

Tests carried out with cement A32 were repeated with the 3 oils. Figure 7 shows the results with oil O1 (stars), O2 (open circles) and O3 (full squares). Equivalent results are obtained with O1 and O2 oils while higher levels are obtained with O3.

Example 5: Acrylic copolymers

For this series of tests, dry acrylic copolymers, commercialized under the name Pliolite® and available from Eliokem, Villejust, France have been tested. These resins are typically used for exterior masonry paints, concrete and metal protection and coatings.

- These resins produce soft colloidal microgels in organic fluids and should be slowly added to the fluid under shear to ensure complete gel development. Two of the tested grades provided acceptable level of expansion. These two grades correspond to pre-reticulated substituted styrene acrylate copolymer; having a density of 1.03 g/cm³, and commercialized under the name Pliolite DF02 (CAS number 68240-06-2; resin R1) and Pliolite DF04 (CAS number172201-26-2; resin R2).
- 10 [0049] Test compositions are provided Table 10. Note that the resins are prehydrated in water during 5 minutes at 4000 rpm. Rheological properties could not be measured due to unstable readings. Expansion levels are reported table 11

Formulations:	A23	A24
Resin	R1	R2
Density ppg	13.6	13.6
Porosity %	42	42
Cement (%BVOB)	40	40
Fine silica (%BVOB)	10	10
Resin (%BVOB)	50	50
Polypropylene glycol (antifoam) (gpsb)	0.03	0.03
Polynaphtalene sulfonate (dispersant (gpsb)	0.04	0.05

· Table 10

15

20

	Linear expansion (%)						
	At	room tempe	At 60°C				
	01	O2	03	01	O3		
A27		<0.1		0.12			
A32		0.12	0.1	0.39	0.5		

Table 11

[0050] As shown table 11 above, fair expansion levels can be obtained with this type of resins. Figure 8 shows the development of the expansion level along time for test A24 in oil O3— with the full-square marks corresponding to the tests at 60°C and the open-triangle marks for the tests at room temperature.

Example 5: Elastomeric terpolymers

[0051] In the preceding examples, the expansion was enhanced by an elevation of the temperature. This is however not a definitive rule as it will be illustrated with the following test, performed with Nordel® MG, an elastomeric terpolymer from ethylene, propylene and a non-conjugated diene (EPDM), available from Dupon Dow Elastomer, Wilmington, Delaware, USA.

[0052] The composition of slurry A28 is shown table 12, expansion levels table 13.

Formulation:	A28_
Density ppg	15.87
Porosity %	42
Cement (%BVOB)	40_
Fine silica (%BVOB)	10
EPDM (%BVOB)	20
Silica sand (%BVOB)	30
Polypropylene glycol (antifoam) (gpsb)	0.03
Polynaphtalene sulfonate (dispersant (gpsb)	. 0.03

Table 12

10

5

	Linear expansion (%)					
	At	room tempe	At 60°C			
	01	02	03	01	03	
A28	0.85	>1.2*	0.7-1.7		<0.1	

*cracks

Table 13

The tested formulation A28 shows expansion in contact with oil O3 at room temperature, contrary to other tested products, the expansion level is decreased by temperature since it is below 0.1% at 60 °C and reached between 0.6 % and 1.6 % with large dispersion in measurement at room temperature

Claims

- A composition for well cementing comprising a pumpable slurry of cement, water and a material that reacts and/or expands in contact with liquid or gaseous hydrocarbon.
- 2. The composition of claim 1, wherein said material comprises a rubber.
- 5 3. The composition of claim 2, wherein said rubber is styrene butadiene rubber or ground rubber.
 - 4. The composition of claim 1, wherein said material comprises poly 2 2 1 bicyclo heptene (polynorbornene).
 - 5. The cement system as claimed in claim 1, wherein said material comprises alkylstyrene.
 - 6. The cement system as claimed in claim 1, wherein said material comprises crosslinked substituted vinyl acrylate copolymers.
- 10 7. The cement system as claimed in claim 1, wherein said material comprises diatomaceous earth.
 - 8. The cement system according to any of the preceding claims comprising a mixture of at least two additives selected form the list consisting of rubber, poly 2 2 1 bicyclo heptene (polynorbornene), alkylstyrene, crosslinked substituted vinyl acrylate copolymers and diatomaceous earth.
- 9. The cement system according to any of the preceding claims further comprising a flexible additives selected from the list consisting of polypropylene, polyethylene and acrylonitrile butadiene.
 - 10. The cement system according to any of the preceding claims, wherein the material has a granular $^{\circ}$ dimension of less than 850 μm .
 - 11. The cement system according to any of the preceding claims, wherein the material has a density in the range 0.8 to 2.7 g/cm³.
- 20 12. The cement system of claim 11, wherein the material has a density in the range 0.9 to 1.5 g/cm³.
 - 13. The cement system according to any of the preceding claims wherein the material is added at a concentration up to 40% by weight of the solid content of the cement slurry.
 - 14. The cement system of claim 13, wherein the material is added at a concentration up to 30% by weight of the solid content of the cement slurry
- The cement slurry of claim 14, wherein the material is added at a concentration up to 20% by weight of the solid content of the cement slurry.

16. The cement slurry according to any of the preceding claims further comprising an additive having residual water-absorption properties after the setting of the cement, thereby susceptible to swell in contact with underground water.

- 17. The cement slurry of claim 16, wherein said additive is a super-absorbent polymer.
- 5 18. The cement slurry of claim 17, wherein said super-absorbent polymer is selected from the list consisting of polymethacrylate and polyacrylamide or a non-soluble acrylic polymers.
 - 19. The cement slurry of claim 18, wherein said super-absorbent polymer is added to the slurry dry-blended with the cement.
- The cement slurry according to any of claims 17 to 19, wherein the super-absorbent polymer is added at a concentration between 0.05% and 3.2% by weight of cement.
 - 21. The cement slurry according to any of claims 17 to 20, wherein the super-absorbent polymer is added under the form of particles ranging form 10μ to 1500μ.
 - 22. A method of cementing a well comprising pumping a cement composition comprising a pumpable slurry of cement, water and a material that reacts and/or expands in contact with liquid or gaseous hydrocarbon.
- A method of repairing a faulty set cement composition, said composition including a pumpable slurry of cement, water and a material that reacts and/or expands in contact with liquid or gaseous hydrocarbon, comprising pumping a liquid or gaseous hydrocarbon in the immediate vicinity the faulty set cement composition.
- A method of cementing a crack or narrow fracture in a subterranean formation comprising pumping a composition according to any of claims 1 to 21, allowing said composition to set and pumping a liquid with which the set cement reacts to promote the expansion of the set cement.

FIGURE 1

FIGURE 2

FIGURE 3

Figure 5

Figure 6

Figure 7

International Application No PCT/EP2004/005478

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 E21B33/13 C04B28/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 E21B C04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, COMPENDEX

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	US 5 456 751 A (ZANDI IRAJ ET AL)	1-3,
	10 October 1995 (1995-10-10)	13–15
Y	_column 2 - column 3	9,16-21
X	WO 00/20350 A (SOFITECH NV ; SCHLUMBERGER	1,2,
	CA LTD (CA); BARET JEAN FRANCOIS (FR);	10-15,
	SCHL) 13 April 2000 (2000-04-13)	22-24
	cited in the application	
Y	page 3, line 25 - page 4, line 25; table 1 claims 1-6	9,16-21
χ	US 3 487 038 A (TOY LEONARD E ET AL)	1,5,8,
	30 December 1969 (1969-12-30)	13-15
Υ	the whole document	9,16-21
		,
	-/ .	
•		·

χ Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the International search 20 September 2004	Date of mailing of the international search report . 27/09/2004
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Zimpfer, E

International Application No
PCT/EP2004/005478

		4/0054/6
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	US 6 656 263 B2 (AUDIBERT ANNIE ET AL) 2 December 2003 (2003-12-02)	1,6
P,Y	column 1, line 45 - line 50; claim 1 column 3, line 49 - line 55	9,16-21
X Y	US 3 558 335 A (MESSENGER JOSEPH U) 26 January 1971 (1971-01-26) column 3, line 25 - line 60	1,7,10, 13-15,24 9,16-21
Υ	DATABASE WPI Section Ch, Week 200204 Derwent Publications Ltd., London, GB; Class A93, AN 2002-028940 XP002295616 & JP 2001 146457 A (DENKI KAGAKU KOGYO KK) 29 May 2001 (2001-05-29) abstract	16-21
P,Y	US 6 645 288 B1 (DARGAUD BERNARD ET AL) 11 November 2003 (2003-11-11) cited in the application column 2, line 43 - column 3, line 35	9
Y .	WO 00/37387 A (SOFITECH NV ; SCHLUMBERGER CA LTD (CA); SCHLUMBERGER CIE DOWELL (FR);) 29 June 2000 (2000-06-29) cited in the application page 4, line 21 - page 6, line 27	9
A	US 4 182 677 A (BOCARD CHRISTIAN ET AL) 8 January 1980 (1980-01-08) the whole document 	1-24
	·	

information on patent family members

International Application No
PCT/EP2004/005478

		tent document in search report		Publication date		Patent family member(s)	-	Publication date
	US	5456751	Α	10-10-1995	NONE			
	WO	0020350	A	13-04-2000	FR AT AU CA CN DE WO EP ID JP	2784095 228104 6472599 2346169 1103752 69904076 0020350 1129047 29045 2002526604 20011688	T A A1 B D1 A1 A A T A	07-04-2000 15-12-2002 26-04-2000 13-04-2000 26-03-2003 02-01-2003 13-04-2000 05-09-2001 26-07-2001 20-08-2002 05-06-2001
	US	3487038	Α	30-12-1969	US DE FR GB SE	1719200 1527342 1190204 341858	A1 A A	15-01-2004
,	US	6656263	B2	30-05-2002	FR CA EP NO US	2815029 2358655 1195362 20014877 2002062764	A1 A1 A	12-04-2002 09-04-2002 10-04-2002 10-04-2002 30-05-2002
	US	3558335	A	26-01-1971	US .	3467193	A	16-09-1969
	JP	2001146457	A	29-05-2001	NONE			
	US	6645288	B1	11-11-2003	FR AT AU BR CA DE EP NO WO	2787441 256088 1977100 9916160 2353726 69913569 1152996 20013059 0037387	T A A A1 D1 A1	23-06-2000 15-12-2003 12-07-2000 30-10-2001 29-06-2000 22-01-2004 14-11-2001 21-08-2001 29-06-2000
	WO	0037387	Α	29-06-2000	FR AT AU BR CA DE WO EP NO US	2787441 256088 1977100 9916160 2353726 69913569 0037387 1152996 20013059 6645288	T A A A1 D1 A1 A1	23-06-2000 15-12-2003 12-07-2000 30-10-2001 29-06-2000 22-01-2004 29-06-2000 14-11-2001 21-08-2001 11-11-2003
		4182677	A	08-01-1980	FR FR BE DE GB IT JP	2306172 2339643 840230 2613507 1531873 1064791 51122685	A1 A1 A1 A B	29-10-1976 26-08-1977 30-09-1976 21-10-1976 08-11-1978 25-02-1985 26-10-1976

Information on patent family members

International Application No
PCT/EP2004/005478

Patent document cited in search report	Publication date	•	Patent family member(s)		Publication date
US 4182677 A		NL	7603545	A	05-10-1976
	۔ کہ کا کہ نہ نہ ہا ہے کہ جات میں این این ہے ہے جو نزی ک				
					•
	•				
					•
				• *	,
			•		
·			•		
,					
			,		
				•	