RICOH

RP103x SERIES

LOW NOISE 150mA LDO REGULATOR

NO.EA-149-070426

OUTLINE

The RP103x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the RP103x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are PLP1010-4, SOT23-5, SC82-AB, therefore high density mounting of the ICs on boards is possible.

FEATURES

Supply Current	Τyp. 36μA
Standby Mode	Τyp. 0.1μA
Dropout Voltage	Тур. 0.21V (Іоит=150mA, Vоит=2.8V)
Ripple Rejection	Typ. 75dB (f=1kHz)
• Temperature-Drift Coefficient of Output Voltage	Typ. ±30ppm/°C
Line Regulation	Typ. 0.02%/V
Output Voltage Accuracy	±1.0%
Packages	PLP1010-4, SOT-23-5, SC-82AB
Output Voltage	1.2V, 1.3V, 1.5V, 1.8V, 1.85V, 1.9V, 2.0V, 2.5V
	2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.1V, 3.3V
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
• Ceramic capacitors are recommended to be used v	vith this IC 0.47μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
- Power source for home appliances.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function*, and the taping type for the ICs can be selected at the user's request.

The selection can be made with designating the part number as shown below;

Code	Contents
а	Designation of Package Type: K: PLP1010-4 N: SOT-23-5 Q: SC-82AB
b	Setting Output Voltage (Vout): The following 16 kinds of voltage are standard. 1.2V, 1.3V, 1.5V, 1.8V, 1.85V, 1.9V, 2.0V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.1V, 3.3V Exceptions:1.85V=RP103x181x5-xx-x, 2.85V=RP103x281x5-xx-x
С	Designation of Mask Option B: active high, without auto discharge function* at OFF state. D: active high, with auto discharge function* at OFF state.
d	Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.)
е	Designation of composition of pin plating: -F: Lead free plating (SOT-23-5, SC-82AB) None: Au plating (PLP1010-4)

^{*)} When the mode is into standby with CE signal, auto discharge transistor turns on, and it makes the turn-off speed faster than normal type.

PIN CONFIGURATIONS

• PLP1010-4

Top View

Bottom View

• SOT-23-5

• SC-82AB

PIN DESCRIPTIONS

• PLP1010-4

Pin No.	Symbol	Description
1	Vоит	Output Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	V _{DD}	Input Pin

• SOT-23-5

Pin No.	Pin No. Symbol Descrip	
1	V _{DD}	Input Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	NC	No Connection
5	Vоит	Output Pin

• SC-82AB

Pin No.	Symbol	Description
1	CE	Chip Enable Pin ("H" Active)
2	GND	Ground Pin
3	Vоит	Output Pin
4	V_{DD}	Input Pin

- *) Tab in the parts have GND level.
 - (They are connected to the reverse side of this IC.)
 - Do not connect to other wires or land patterns.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.0	V
Vce	Input Voltage (CE Pin)	6.0	V
Vouт	Output Voltage	-0.3 to V _{IN} +0.3	V
louт	Output Current	180	mA
	Power Dissipation (PLP1010-4) *	400	
P_D	Power Dissipation (SOT-23-5) *	420	mW
	Power Dissipation (SC-82AB) *	380	
Topt	Operating Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	-55 to 125	°C

 $[\]begin{tabular}{l} \star$) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.

ELECTRICAL CHARACTERISTICS

• RP103xxx1B/D

 $V_{\text{IN}}\!\!=\!\!Set\ V_{\text{OUT}}\!+\!1V\ \text{for}\ V_{\text{OUT}}\ \text{options}\ \text{greater}\ \text{than}\ 1.5V.\ V_{\text{IN}}\!\!=\!\!2.5V\ \text{for}\ V_{\text{OUT}}\leqq 1.5V.$

Iout=1mA, CIN=Cout=0.47 μ F, unless otherwise noted.

Topt=25°C

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit	
Vouт	Output Voltage	V _{IN} =Set V _{OUT} +1V V _{OUT} > 2.0V		×0.99		×1.01	V	
V 001	Output Voltage	louт=1mA Vouт ≦ 2.0V		-20mV		+20mV	V	
І оит	Output Current				150			mA
Δ Vουτ/ Δ Ιουτ	Load Regulation	1mA ≦ І о∪т ≦	150mA			10	30	mV
			1.2V ≦	≨ Voυτ < 1.5V		0.50	0.62	
			1.5V ≦	€ Vouτ < 1.7V		0.38	0.47	
V _{DIF}	Dropout Voltage	І оит= 150mA	1.7V ≦	€ Voυτ < 2.0V		0.34	0.42	V
V DIF	Diopodi voltage	1001=130111A	2.0V ≦	€ Vouτ < 2.5V		0.28	0.36	V
			2.5V ≦	€ Vout < 2.8V		0.22	0.30	
			2.8V ≦	≤ Vout ≤ 3.3V		0.21	0.27	
Iss	Supply Current	Іоит=0mA				36	50	μΑ
Istandby	Supply Current (Standby)	Vce=0V				0.1	1.0	μΑ
ΔV _{OUT} / ΔV _{IN}	Line Regulation	Set V_{OUT} +0.5 $V \le V_{\text{IN}} \le 5.0V$			0.02	0.10	%/V	
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p V_{IN} =Set V_{OUT} +1V, I_{OUT} =30mA (In case that $V_{OUT} \le 2.0$ V, V_{IN} =3.0V)			75		dB	
VIN	Input Voltage*			1.70		5.25	V	
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	$-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$			±30		ppm /°C	
llim	Short Current Limit	Vout=0V				40		mA
I PD	CE Pull-down Current				0.3		μΑ	
Vсен	CE Input Voltage "H"			1.5			V	
Vcel	CE Input Voltage "L"					0.3	V	
en	Output Noise	BW=10Hz to 100kHz			60		μVrms	
RLOW	Low Output Nch Tr. ON Resistance (of D version)	V _{IN} =4.0V V _{CE} =0V			30		Ω	

^{*)} Max. Input Voltage is 5.5V during 500hours

TYPICAL APPLICATION

(External Components)
C2 0.47μF MURATA: GRM155B30J474KE18B

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $0.47\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

Test Circuit for Load Transient Response

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (C1=0.47 μ F, C2=0.47 μ F, Topt=25°C)

2) Output Voltage vs. Input Voltage (C1=0.47 μ F, C2=0.47 μ F, Topt=25°C)

RP103x

3) Supply Current vs. Input Voltage (C1=0.47 μ F, C2=0.47 μ F, Topt=25°C)

4) Output Voltage vs. Temperature (C1=0.47μF, C2=0.47μF, Ιουτ=1mA)

5) Supply Current vs. Temperature (C1=0.47μF, C2=0.47μF, Ιουτ=0mA)

RP103x

6) Dropout Voltage vs. Output Current (C1=0.47 μ F,C2=0.47 μ F)

7) Dropout Voltage vs. Set Output Voltage (C1=0.47μF, C2=0.47μF, Topt=25°C)

8) Ripple Rejection vs. Input Bias Voltage (C1=0.47μF, C2=0.47μF, Ripple=0.2V_{P-P}, Topt=25°C)

9) Ripple Rejection vs. Frequency (C1=none, C2=0.47μF, Ripple=0.2V_{P-P})

RP103x

10) Input Transient Response (Ιουτ=30mA, tr=tf=5μs, Topt=25°C)

11) Load Transient Response (C1=0.47μF, C2=0.47μF, Topt=25°C)

12) Turn On Speed with CE pin (C1=0.47μF, C2=0.47μF, Topt=25°C)

RP103x331x

13) Turn Off Speed with CE pin (D Version) (C1=0.47 μ F, C2=0.47 μ F, Topt=25°C)

RP103x

14) Dropout Voltage vs. Temperature (C1=0.47 μ F, C2=0.47 μ F)

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between Iout (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band: 10Hz to 2MHz Temperature : -40°C to 85°C

RP103x121x

RP103x331x

• PLP1010-4 Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc)

POWER DISSIPATION (PLP1010-4)

This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plactic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-hole	φ0.54mm × 24pcs	

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern
Power Dissipation	400mW
Thermal Resistance	θja=(125-25°C)/0.4W=250°C/W
Thermal Resistance	θjc=67°C/W

4

40

Power Dissipation

Measurement Board Pattern

() IC Mount Area (Unit : mm)

RECOMMENDED LAND PATTERN

(Unit: mm)

• SOT-23-5 (SC-74A)

Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc)

(1reel=3000pcs)

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P₀) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

Measurement Conditions

	Standard Land Pattern
Environment	Mounting on Board (Wind velocity=0m/s)
Board Material	Glass cloth epoxy plactic (Double sided)
Board Dimensions	40mm × 40mm × 1.6mm
Copper Ratio	Top side : Approx. 50% , Back side : Approx. 50%
Through-hole	φ0.5mm × 44pcs

Measurement Result (Topt=25°C,Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja=(125–25°C)/0.42W=263°C/W	400°C/W

Power Dissipation Measurement Board Pattern

() IC Mount Area Unit : mm

RECOMMENDED LAND PATTERN

• SC-82AB Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS

(1reel=3000pcs)

POWER DISSIPATION (SC-82AB)

This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plactic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side : Approx. 50% , Back side : Approx. 50%	
Through-hole	φ0.5mm × 44pcs	

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	380mW	150mW
Thermal Resistance	θja=(125-25°C)/0.38W=263°C/W	667°C/W

Power Dissipation

Measurement Board Pattern

() IC Mount Area (Unit: mm)

RECOMMENDED LAND PATTERN

(Unit: mm)

RP103K SERIES MARK SPECIFICATION

• PLP1010-4

①, ② : Product Code (Refer to Part Number vs. Product Code)

③, ④ : Lot Number

• Part Number vs. Product Code

Part Number	Product Code	
Fait Number	1	2
RP103K121B	7	Α
RP103K131B	7	В
RP103K151B	7	C
RP103K181B	7	D
RP103K181B5	7	Е
RP103K191B	7	F
RP103K201B	7	G
RP103K251B	7	Н
RP103K261B	7	J
RP103K271B	7	K
RP103K281B	7	L
RP103K281B5	7	М
RP103K291B	7	N
RP103K301B	7	Р
RP103K311B	7	Q
RP103K331B	7	R

Part Number	Product Code		
Part Number	1	2	
RP103K121D	8	Α	
RP103K131D	8	В	
RP103K151D	8	С	
RP103K181D	8	D	
RP103K181D5	8	Е	
RP103K191D	8	F	
RP103K201D	8	G	
RP103K251D	8	Н	
RP103K261D	8	J	
RP103K271D	8	K	
RP103K281D	8	L	
RP103K281D5	8	М	
RP103K291D	8	N	
RP103K301D	8	Р	
RP103K311D	8	Q	
RP103K331D	8	R	

RP103N SERIES MARK SPECIFICATION

• SOT-23-5

①, ②, ③ : Product Code (Refer to Part Number vs. Product Code)

4, 5 : Lot Number

• Part Number vs. Product Code

Part Number	Product Code		
Part Number	1	2	3
RP103N121B	8	0	Α
RP103N131B	8	0	В
RP103N151B	8	0	С
RP103N181B	8	0	D
RP103N181B5	8	0	Е
RP103N191B	8	0	F
RP103N201B	8	0	G
RP103N251B	8	0	Н
RP103N261B	8	0	J
RP103N271B	8	0	K
RP103N281B	8	0	L
RP103N281B5	8	0	М
RP103N291B	8	0	N
RP103N301B	8	0	Р
RP103N311B	8	0	Q
RP103N331B	8	0	R

David Massack ass	Product Code		
Part Number	1	2	3
RP103N121D	8	1	Α
RP103N131D	8	1	В
RP103N151D	8	1	С
RP103N181D	8	1	D
RP103N181D5	8	1	Е
RP103N191D	8	1	F
RP103N201D	8	1	G
RP103N251D	8	1	Н
RP103N261D	8	1	J
RP103N271D	8	1	K
RP103N281D	8	1	L
RP103N281D5	8	1	М
RP103N291D	8	1	N
RP103N301D	8	1	Р
RP103N311D	8	1	Q
RP103N331D	8	1	R

RP103Q SERIES MARK SPECIFICATION

• SC-82AB

①, ② : Product Code (Refer to Part Number vs. Product Code)

③, ④ : Lot Number

• Part Number vs. Product Code

Part Number	Product Code	
Part Number	1	2
RP103Q121B	G	0
RP103Q131B	G	1
RP103Q151B	G	2
RP103Q181B	G	3
RP103Q181B5	G	4
RP103Q191B	G	5
RP103Q201B	G	6
RP103Q251B	G	7
RP103Q261B	G	8
RP103Q271B	G	9
RP103Q281B	Н	0
RP103Q281B5	Н	1
RP103Q291B	Η	2
RP103Q301B	Η	3
RP103Q311B	Н	4
RP103Q331B	Н	5

Part Number	Produc	t Code
Fait Number	1	2
RP103Q121D	J	0
RP103Q131D	J	1
RP103Q151D	J	2
RP103Q181D	J	3
RP103Q181D5	J	4
RP103Q191D	J	5
RP103Q201D	J	6
RP103Q251D	J	7
RP103Q261D	J	8
RP103Q271D	J	9
RP103Q281D	K	0
RP103Q281D5	K	1
RP103Q291D	K	2
RP103Q301D	K	3
RP103Q311D	K	4
RP103Q331D	K	5