Micro-reactor evaluation for hydrogen economy

Roberto Fairhurst Agosta

Advanced Reactors and Fuel Cycles University of Illinois at Urbana-Champaign

December 2, 2020

- 1 Introduction Co-generation
- 2 Hydrogen Production Methods Electrolysis Sulfur-lodine
- 3 Some results Transportation Energy generation
- 4 Future work Temperature Boosting Natural Gas Reforming TEMOA

Electricity and Hydrogen Generation

Figure: Diagram of a reactor coupled to a hydrogen plant.

- 1 Introduction Co-generation
- 2 Hydrogen Production Methods Electrolysis Sulfur-lodine
- 3 Some results
 Transportation
 Energy generation
- 4 Future work Temperature Boosting Natural Gas Reforming TEMOA

Electrolysis

Figure: Energy required by HTE at 3.5 MPa.

$\Delta H = \Delta G + T \Delta S$

- ΔG : specific electrical energy $kWh \cdot kg_{H_2}^{-1}$
- T Δ S: specific thermal energy $kWh \cdot kg_{H_2}^{-1}$.
- In low temperature electrolysis (LTE), electricity provides the thermal energy.
- In high temperature electrolysis (HTE), a heat source provides the thermal energy.
- HTE has the advantage of decreasing the electricity requirement.

Sulfur-Iodine

Figure: Diagram of the Sulfur-Iodine Thermochemical process.

Figure: Energy required by the Sulfur-Iodine Thermochemical Cycle.

Co-generation

Figure: Diagram of a reactor coupled to a hydrogen plant.

Table: Energy requirements of the different H_2 production methods.

Method	γ	P_{EH2}	P_{TH2}
LTE	1	≠ 0	0
HTE	$0<\gamma<1$	$\neq 0$	$\neq 0$
SI	0	0	$\neq 0$

- 1 Introduction Co-generation
- 2 Hydrogen Production Methods Electrolysis Sulfur-lodine
- 3 Some results
 Transportation
 Energy generation
- 4 Future work Temperature Boosting Natural Gas Reforming TEMOA

Fuel demand

Figure: MTD fuel consumption. Data goes from July 1, 2018, until June 30, 2019 [6].

Figure: UIUC fleet fuel consumption. Data goes from January 1, 2019, until December 31, 2019 [10].

Hydrogen requirement

Table: GGE, DGE, and E85GE [8] [2].

	Hydrogen mass [kg]	
GGE	1	
DGE	1.13	
E85GE	0.78	

Table: Hydrogen requirements.

Total [tonnes/year]	943
Average [kg/day]	2584
Average [kg/h]	108
Maximum in one day	4440 kg

Figure: Hydrogen requirement for MTD and UIUC fleets.

Hydrogen production rate

Table: Microreactor designs.

Reactor	$P[MW_{th}]$	$T_o[^{\circ}C]$
MMR [9]	15	640
eVinci [5]	5	650
ST-OTTO [4]	30	750
U-battery [3]	10	750
Starcore [7]	36	850

Figure: Hydrogen production rate by the different microreactor designs.

Net demand prediction

Figure: Prediction of the total electricity generation in the US for 2050. Data from [1].

Figure: Prediction of the solar electricity generation in the US for 2050. Data from [1].

Duck curve

Figure: Prediction of UIUC's net demand for 2050.

- Spring: solar production is higher, total demand is low.
- Solar generation peaked on April 4, 2019.

 $D_{NET} = \text{Total demand - Solar energy}$

- Peak demand: 46.9 MW at 5 P.M.
- Lowest demand: 15 MW at 11 A.M.
- Requires an installed capacity of 31.9 MW of dispatchable sources.

Over-generation

Figure: Hydrogen production with the excess of energy due to a net demand decrease.

25 MWe reactor

Low temperature electrolysis (LTE):

- $\eta = 33\%$.
- Cumulative H₂: 660 kg.

High temperature electrolysis (HTE):

- HTGR.
- $T_o = 850^{\circ} C$.
- $\eta = 49.8\%$
- Cumulative H₂: 1129 kg.

Sulfur-Iodine (SI):

- HTGR.
- $T_o = 850^{\circ} C$.
- $\eta = 49.8\%$
- Cumulative H₂: 815 kg.

- IntroductionCo-generation
- 2 Hydrogen Production Methods Electrolysis Sulfur-Iodine
- 3 Some results Transportation Energy generation
- Future work Temperature Boosting Natural Gas Reforming TEMOA

HTE with Steam Temperature Boosting System

Figure: Diagram of a reactor coupled to a hydrogen plant via HTE with steam temperature boosting system.

Natural Gas Reforming

Figure: Steam methane reforming technology.

Addition of Hydrogen in Transportation to TEMOA's Model

Figure: UIUC's grid model in TEMOA.

References I

- [1] US Energy Information Administration.
 - Electric Power Monthly with data for February 2020.
 - page 273, April 2020.
- [2] Alternative Fuels Data Center.
 - Fuel Properties Comparison, October 2014.
- [3] Ming Ding, J. L. Kloosterman, Theo Kooijman, and Rik Linssen.
 - Design of a U-Battery.
 - Technical Report PNR-131-2011-014, Urenco, and Koopman and Witteveen, November 2011.
- [4] Bowers Harlan.
 - X-energy Xe-100 Reactor initial NRC meeting, September 2018.
- [5] Richard Hernandez, Michael Todosow, and Nicholas R. Brown.
 - Micro heat pipe nuclear reactor concepts: Analysis of fuel cycle performance and environmental impacts.
 - Annals of Nuclear Energy, 126:419-426, April 2019.
- [6] MTD.
 - MTD Public Records, December 2019.

References II

- [7] Star Core Nuclear.Star Core Spec Sheet, December 2015.
- [8] DOE Office of Energy Efficiency and Renewable Energy. Hydrogen Production, January 2020.
- [9] USNC.MMR USNC, 2019.
- [10] Pete Varney.Personal Communication, January 2020.