

Controle Térmico de Satélites

Rafael Lopes Costa

<u>rafael.costa@inpe.br</u> (12)3208-6204 / (12)98813-7846

Curso de Inverno 2018

INTRODUÇÃO ÀS TECNOLOGIAS ESPACIAIS

São José dos Campos – SP, 17 de julho de 2018

Alguns Tipos de Satélites

Comunicações

Estações Espaciais

Sensoriamento Remoto

Científicos/Tecnológicos

Meteorológicos

Navegação

Configuração de um Satélite

Tipos de Órbitas Terrestres

LEO = Low Earth Orbit (100 - 1,500 km)

MEO = Medium Earth Orbit (5,000 - 10,000 km)

GEO = Geostationary Orbit (36,000 km)

HEO = Highly Eliptical Orbit

Principais Parâmetros Orbitais para o Controle Térmico

- ☐ Ângulo de inclinação da órbita
- ☐ Atitude do satélite
- □ Altitude da órbita
- ☐ Variação da Constante Solar (± 3,5%)
- Angulo Beta (β)

Ambiente Térmico Orbital

Cargas térmicas na órbita terrestre

Radiação solar direta (S≈ 1370 W/m²)

Albedo (A≈ 0,1 – 0,9)

Radiação da Terra (IR≈ 240 W/m²)

Objetivos do Controle Térmico

□ Manter as temperaturas, gradientes e transientes dos componentes mecânicos, elétricos e eletrônicos do satélite dentro dos limites estabelecidos, em condições operacionais e não-operacionais, em todas as fases da missão.

Faixas de Temperaturas Típicas em Satélites

Faixas de temperatura típicas para o CBERS 04A

	Operating T Rar		Non-Operating (*) Temperature Range	
Equipment Description	Tmin	Tmax	Tmin	Tmax
	(°C)	(°C)	(°C)	(°C)
Platform Equipment				
General Electronic Boxes	-10	45	-30	65
Propulsion System (**)	9	60	9	65
Battery Assembly	-5	15	-10	25
Solar Array Generator	-80	95	-80	100
Rate Integration Gyro Assembly	0	45	-5	50
Infrared Earth Sensor	0	30	-5	35
Analog Sun Sensors 1 (body)	-50	50	-60	60
Analog Sun Sensors 2 (SAG)	-80	80	-90	90
Digital Sun Sensor	-30	50	-40	60
"0-1" Sun Sensor	-50	50	-60	60
ВАРТА	-20	60	-30	60
Star Sensor	0	40	-10	50
Momentum Wheel	0	55	-10	65
Structural Panels	-100	100	-100	100
Payload Equipment				
General Electronic Boxes	-10	45	-30	65
MUX Optical Mechanism	-10	45	-20	45
WPM Optical Mechanism	-10	45	-10	45
WFI Optical Mechanism	-10	45	-10	45
Solid State Recorder	-10	45	-30	60
Antennas	-90	90	-90	90

Trocas Térmicas no Satélite

Exterior do satélite

(somente radiação)

Interior do satélite

(radiação e condução)

- Dissipação dos equipamentos
- Acoplamento nas interfaces (RTC)
- Trocas condutivas na estrutura
- Trocas radiativas no int. do compartimento
- Dimensionamento dos radiadores

Modelo Térmico Matemático (TMM)

TMM é a ferramenta que <u>simula o comportamento térmico</u> do satélite.

Entradas:

- Dados do satélite (geometria, materiais, revestimentos, acoplamentos nas interfaces, etc.)
- Dados de órbita e atitude do satélite (ambientais)

Saída:

Temperaturas

Finalidade:

 Usado para fazer análises térmicas e definir o projeto térmico com redução de testes experimentais

Modelo Térmico Matemático (TMM)

Analogia elétrica:

☐ Equacionamento de balanço:

$$m_i C_{p_i} \frac{dT_i}{dt} = \sum_{j=1}^{n+1} R_{ji} \sigma (T_j^4 - T_i^4) + \sum_{j=1}^n B_{ji} \sigma (T_j - T_i) + Q_i \qquad \qquad i = 1 \dots n$$
 Variação da energia interna Trocas por radiação Trocas por condução imposto

Etapas da Análise Térmica

1. Pré-processamento

- Estabelecer a divisão nodal
- Determinar dos coeficientes das equações:

m_iCp_i - capacitância térmica

R_{ii} - condutâncias radiativas

B_{ii} - condutâncias condutivas

Q_i - cargas térmicas internas ou externas

2. Processamento

Resolver o sistema de equações

3. Pós-processamento

 Apresentação das temperaturas ou fluxos em forma de mapas ou gráficos

Softwares para Projeto e Análise Térmica de Satélites

Elementos e Dispositivos de Controle Térmico

- Revestimentos térmicos: tintas, fitas, tratamentos superficiais e superfícies óticas refletoras (OSR)
- Mantas Multicamada Super-isolantes (MLI)
- Elementos nas interfaces (condutivas ou isolantes)
- Radiadores
- Capacitores térmicos
- Venezianas Térmicas
- Tubos de Calor (HP), CPL e LHP
- Aquecedores elétricos
- Cryocoolers
- Resfriadores termoelétricos
- Circuitos com bombeamento mecânico
- Sensores de temperatura (termopares, termistores, RTD)
- Termostatos
- Controladores de estado sólido

PASSIVOS

ATIVOS

MONITORAMENTO E CONTROLE

Revestimentos Térmicos

Tipos usados em satélites:

- Tintas
- Tratamentos superficiais
- Fitas adesivas
- Refletores solares (OSR)

Propriedades óticas importantes:

• Emissividade no espectro infravermelho ϵ_{IR} = 0~1 (corpo negro, ϵ_{IR} = 1)

$$Q_{emit} = A_{emiss\~ao} \epsilon_{IR} \sigma T^4$$

• Absortividade no espectro solar $\alpha_s = 0 \sim 1$ (corpo negro, $\alpha_s = 1$)

$$Q_{abs} = A_{projetada} \alpha_{IR} S$$

- Selective blacks (solar absorbers)
- Sandblasted metals and conversion coatings
- White paints and second-surface mirrors
- Bulk metals (unpolished)
- Dielectric films on polished metals

Revestimentos Térmicos - exemplo

Problema:

- Esfera no espaço a grande altitude (albedo e radiação terrestre desprezíveis)
- Radiação de fundo do espaço desprezível
- Sem dissipação de calor interna
- Qual revestimento aplicar na superfície da esfera para manter a mesma entre -10 e +45 °C?
- □ Fluxo absorvido (solar): $Q_{in} = A_p \alpha_S S$
- □ Fluxo emitido (IR): $Q_{out} = A_T \varepsilon_{IR} \sigma T^4$
- lacksquare No equilíbrio: $Q_{out} = Q_{in}$
- ☐ Temperatura de equilíbrio:

$$T = \sqrt[4]{\frac{A_P \alpha_S S}{A_T \varepsilon_{IR} \sigma}} \longrightarrow T = \sqrt[4]{\frac{\alpha_S}{\varepsilon_{IR}} \frac{S}{4\sigma}}$$

Modelo de satélite isotérmico esférico

A_p= área projetada (círculo)

 A_T = área total (esfera)

Revestimento	α_{s}	ε _{IR}	α/ε	T (°C)
OSR	0.07	0.80	0.09	-122
Tinta preta	0.95	0.87	1.09	+12
Tinta branca	0.23	0.86	0.27	-73
Alumínio polido	0.15	0.05	3.00	+94
Ouro polido	0.30	0.05	6.00	+163
Aço inox polido	0.42	0.11	3.82	+117

Mantas Multicamadas Super-Isolantes (MLI)

CBERS-4

Exemplo:

$$\epsilon_1 = \epsilon_2 = 0.04$$
n = 15
 $\alpha_{\text{ext}} = 0.4$
 $\epsilon_{\text{ext}} = 0.7$
 $\epsilon_{\text{eff}} = \textbf{0.001} \text{ (teórico)}$

 α_{eff} = **0.0006** (teórico)

Interfaces de Contato - Montagens

Condutiva (materiais de interface)

Condutiva (doubler)

Isolante

Radiadores

Radiadores em satélites:

- Rejeitam o excesso de calor do satélite para o espaço
- Revestimento refletor solar (baixo α_s)
- Revestimento com alto poder de emissão (alto ε_{IR})
- Importante: razão α_s/ε_{IR} baixa

CBERS-4

Revestimento	α_{s}	ε _{IR}	α/ε
Tinta branca	0.23	0.86	0.27
OSR	0.07	0.80	0.09
Teflon, Ag	0.08	0.81	0.10

Seccond-surface mirror

Balanço térmico no radiador

ISS

Capacitores Térmicos (PCM)

- Utilizados para absorver alta dissipação de calor em períodos curtos de tempo
- Utilizam calor latente para estabilizar a temperatura
- Material mais utilizado: parafina

Thermal Straps

Aplicações espaciais:

- Utilizados para drenar a dissipação de calor de equipamentos e sensores
- Flexíveis e altamente condutivos
- Não transmitem vibrações

Venezianas Térmicas

Características das venezianas em satélites:

- Controlam a emissão de calor
- Emissividade efetiva variável com a abertura de aletas (0 - 90°)
- Evitam que equipamentos/compartimentos fiquem muito frios
- Economizam energia elétrica
- Têm massa maior que radiadores comuns
- Confiabilidade menor que radiadores comuns

Satélite ADEOS (japonês)

Tubos de Calor (HPs)

- Super-condutor de calor
- Transporte de calor pelo fluido de trabalho

Aquecedores Elétricos (heaters)

Aquecedores usados em satélites:

- Planos e flexíveis
- Cobertos com Kapton®
- Várias formas e tamanhos

Resfriadores Termoelétricos (TEC)

 Utilizam o <u>Efeito Peltier</u> para transferir calor

Aplicações em satélites:

 Resfriamento de equipamentos eletrônicos e sensores

Sistemas Criogênicos

Mais utilizados em aplicações espaciais:

- Radiador criogênico
- Resfriador termoelétrico (TEC-Peltier)
- Cryocoolers com ciclo Stirling (S)
- Sistema de evaporação aberta: ciclo J-T

Cryocoolers com ciclo Stirling

Radiadiador criogênico multi-estágios

Radiadiador criogênico shielding

Ciclo aberto J-T

Circuitos com Bombeamento Mecânico

Sensores de Temperatura

Aplicações em satélites:

- Monitoramento de temperaturas
- Controle de circuitos de aquecedores

TIPOS DE SENSORES

☐ Termopares (Efeito Seebeck)

□ RTD (resistência elétrica)

☐ Termistores (resistência elétrica)

Termostatos e Controladores de Estado Sólido

Aplicações em satélites:

Controle automático de circuitos de aquecimento com *heaters*

- Termostatos (ON/OFF)
- Controladores de estado sólido
- Controle por computador

P Honeywell

Testes Térmicos

- □ Ciclagem Térmica (TCT)
 - equipamentos
- □ Choque Térmico
 - antenas, SAG, etc.
- □ Burn-in
 - equipamentos
- Ciclagem Termica em Vácuo (TVT)
 - equipamentos, satélite
- □ Balanço Térmico (TBT)
 - equipamentos, satélite

Fases do projeto de um satélite

□ O projetista de Controle Térmico deve participar de todas as fases e revisões do projeto do satélite

Concepção

Projeto Preliminar

Projeto Detalhado

> Fabricaça FM

Atividades do Projetista do Controle Térmico

- Participação na definição da arquitetura mecânica do satélite
- Estabelecimento dos requisitos térmicos
- Definição de uma concepção preliminar para o CT
- Desenvolvimento de TMM simplificado do satélite
- Identificação dos casos críticos (térmicos)
- Realização de testes de desenvolvimento e planejamento de testes de qualificação
- Desenvolvimento de TMM detalhado do satélite
- Desenvolvimento do projeto térmico do satélite
- Acompanhamento da implementação do projeto térmico
- Realização testes de qualificação (TBT e TVT)
- Correlação e ajuste do TMM com dados do TBT
- Planejamento de testes de aceitação
- Realização de testes de aceitação (TVT)
- Realização de TBT (se necessário) correlação do TMM com dados do TBT
- Acompanhamento da implementação do CT durante campanha de lançamento
- Acompanhamento dos testes funcionais durante campanha de lançamento
- Acompanhamento comportamento térmico do satélite durante fase de lançamento
- Aquisição de telemetrias durante as primeiras órbitas e durante a missão

Controle Térmico de Satélites

Rafael Lopes Costa

<u>rafael.costa@inpe.br</u> (12)3208-6204 / (12)98813-7846

Curso de Inverno 2018

INTRODUÇÃO ÀS TECNOLOGIAS ESPACIAIS

São José dos Campos – SP, 17 de julho de 2018