

Dipartimento di Informatica

Corso di laurea in Informatica

Metodi Avanzati di Programmazione

Progetto K-means: Documentazione

Progetto di:

Davide Cirilli (760412) d.cirilli2@studenti.uniba.it Mattia Curri (758306) m.curri8@studenti.uniba.it

Emanuele Fontana (758344) emanuele.fontana 7@studenti.uniba.it

INDICE

Indice

1	Intr	roduzione	2	
2	Implementazioni			
	2.1	Progetto Base	3	
	2.2	Estensione	3	
3	Inst	callazione e avvio	4	
	3.1	Requisiti Server	4	
		3.1.1 Base	4	
		3.1.2 Estensione	4	
	3.2	Requisiti Client	4	
		3.2.1 CLI	4	
		3.2.2 App	4	
	3.3	Avvio server	4	
		3.3.1 CLI	4	
		3.3.2 App	5	
	3.4	Avvio client	5	
		3.4.1 CLI	5	
		3.4.2 App	5	
4	Test	<u>.</u>	6	
4			_	
	4.1	CLI	6	
	4.2	App	9	

1 Introduzione

Il programma sviluppato fa uso dell'algoritmo di clustering K-means per analizzare informazioni estratte da tabelle di un database, sfruttando il servizio MySQL.

Il K-means è un algoritmo di clustering, una tecnica di apprendimento non supervisionato utilizzata per suddividere un insieme di dati in gruppi omogenei chiamati cluster. L'obiettivo del K-means è di assegnare ogni dato al cluster più vicino, in modo che i punti all'interno di ciascun cluster siano simili tra loro e i punti tra cluster diversi siano diversi. Ecco come funziona l'algoritmo K-means:

- 1. **Inizializzazione**: Si inizia scegliendo il numero k desiderato di *cluster*. L'algoritmo crea k partizioni e assegna casualmente k punti come centroidi iniziali, uno per partizione. Un centroide rappresenta il centro del *cluster*.
- 2. **Assegnazione**: Ciascuna transazione viene assegnata al suo *cluster*. L'appartenenza dipende dalla distanza della transazione dal centroide del *cluster*, l'obiettivo è minimizzare la distanza tra centroide e transazione.
- 3. **Aggiornamento dei centroidi**: Una volta assegnati tutti i punti ai *cluster*, i centroidi vengono aggiornati calcolando la media delle posizioni dei punti all'interno di ciascun *cluster*. Questa media diventa il nuovo centroide per il *cluster* corrispondente.
- 4. **Ripetizione**: I passi 2 e 3 vengono ripetuti fino a quando i centroidi smettono di cambiare o si raggiunge un numero massimo di iterazioni.
- 5. **Risultato**: Alla fine delle iterazioni si ottiene un insieme di *k cluster* e ogni transazione sarà stata assegnata al *cluster* più vicino.

E importante notare che il risultato finale può variare a seconda della scelta iniziale dei centroidi. In alcuni casi, l'algoritmo può convergere verso un minimo locale anziché verso il risultato ottimale.

2 Implementazioni

2.1 Progetto Base

La versione base del progetto consiste in un'architettura client/server che permette all'utente lo studio di cluster. Il server dovrà essere eseguito su una macchina con un database MySQL in esecuzione. Il servizio sarà raggiungibile sulla porta 8080, e potrà comunicare con diversi client contemporaneamente.

I servizi offerti dal server all'utente tramite il client CLI sono i seguenti:

- scoperta di cluster fornendo al server il nome della tabella presente nel database ed il numero di cluster da scoprire
- salvataggio dei cluster generati nella macchina dove il server viene eseguito. Il salvataggio avverrà in automatico alla generazione di nuovi cluster
- lettura dei centroidi dei cluster fornendo al server il path del file in cui sono salvati i centroidi da recuperare

Il server salverà informazioni relativi agli errori nel file di logging mentre nell'interfaccia CLI notificherà l'utente quando la comunicazione si interrompe o se vi sono problemi con gli input dati. Il client da riga di comando permette di collegarsi ad una macchina che sta eseguendo un'istanza del server. L'utente nel menù potrà scegliere tra due opzioni: scoperta di cluster e lettura da file.

2.2 Estensione

La versione base del progetto è stata estesa con l'aggiunta di un'interfaccia grafica per smartphone Android che funge da client, supportata da un server creato utilizzando Spring Boot, e da un indirizzo di un server di proprietà del team di sviluppo: cirillinet.ddns.net:8080 Il client Android permette di selezionare il numero di cluster utilizzando uno spinner, pertanto l'utente non deve conoscere a priori il numero di transazioni presenti nel database. Inoltre, è offerta la possibilità di selezionare il file da cui leggere i centroidi con un comodo menù che permette di cercare il file desiderato dall'elenco dei file memorizzati nel server a cui si è connessi, facilitando la fruizione di tale funzione.

3 Installazione e avvio

3.1 Requisiti Server

3.1.1 Base

Per utilizzare il server è necessario:

- Installare MySQL sul proprio computer
- Eseguire lo script sql presente in KmeansServer/out/artifacts/KmeansServer_jar se si vuole utilizzare il database di default
- Installare JRE 8
- Installare JDK 19.0.2

3.1.2 Estensione

Nel caso di host proprietario del server i requisiti sono gli stessi del server della versione base, per utilizzare il database di default il percorso è KmeansServer/out/artifacts/Server_main_jar. Nel caso di fruizione del server mediante indirizzo fornito dal team di sviluppo non sarà necessaria alcuna azione.

3.2 Requisiti Client

3.2.1 CLI

Per utilizzare il client è necessario:

- Installare JRE 8
- Server in ascolto

3.2.2 App

Per utilizzare il client app è necessario:

- Un dispositivo Android con sistema operativo Android 5.0 Lollipop o superiore
- Installare l'applicazione: trasferire l'APK presente nel percorso KmeansClient/app/build/outputs/apk/debug/KmeansClient.apk sullo smartphone. Aprire il file APK e installare l'applicazione. Se necessario abilitare l'installazione di applicazioni da sorgenti sconosciute e dare l'ok nel caso in cui l'installazione venga bloccata da Play Protect.
- Server in ascolto

3.3 Avvio server

3.3.1 CLI

Per avviare il server e' necessario eseguire il file server.bat presente nel percorso KmeansServer/out/artifacts/KmeansServer_jar. In alternativa è possibile avviarlo da riga di comando tramite il comando java -jar server.jar eseguito nella cartella dove si trova il jar.

3.3.2 App

Per avviare il server e' necessario eseguire il file server.bat presente nel percorso KmeansServer/out/artifacts/Server_main_jar. In alternativa è possibile avviarlo da riga di comando tramite il comando java -jar server.jar eseguito nella cartella dove si trova il jar.

3.4 Avvio client

3.4.1 CLI

Per avviare il client da riga di comando è necessario eseguire il file *client.bat* presente nel percorso KmeansClient/out/artifacts/KmeansClient_jar. Questa modalità di avvio connetterà il client ad un server in esecuzione sulla propria macchina sulla porta 8080. Per specificare un altro server a cui connettersi è necessario avviare il client da riga di comando tramite il comando *java -jar client.jar indirizzo_ip porta* o inserendo tale comando nel file batch.

3.4.2 App

Per avviare il client app basta avviare l'applicazione sul proprio smartphone ed inserire indirizzo ip e porta del server a cui ci si vuole connettere:

4 Test

4.1 CLI

1. Esecuzione del client con server offline

```
PS C:\Users\fonta\Desktop\Kmeans\Kmeans\Lient\src> Java MainTest 127.0.0.1 8080 addr = /127.0.0.1 Connection refused: connect
```

2. Esecuzione senza parametri: il programma deve essere avviato fornendo come parametri l'indirizzo IP/DNS del server e la porta logica. Se si lavora con la stessa macchina si può inserire come primo parametro localhost, 127.0.0.1 (indirizzo IPv4 locale) oppure ::1 (indirizzo IPv6 locale).

```
PS C:\Users\fonta\Desktop\Kmeans\Kmeans\Client\src> Java MainTest
Errore: inserire ip e porta come argomenti
```

3. Esecuzione con porta errata: la porta logica è un numero a 16 bit, dunque un decimale compreso tra 0 e 65.535.

```
PS C:\Users\fonta\Desktop\Kmeans\Kmeans\Client\src> Java MainTest 127.0.0.1 das Errore: la porta deve essere un numero
```

4. Esecuzione con IP/DNS inesistente: in questa esecuzione il server non esiste e dunque il client non riesce a connettersi. In particolare il programma si connette a un server DNS per convertire l'indirizzo fornito in un indirizzo IP ma tale indirizzo non è registrato e dunque si ha errore.

```
PS C:\Users\fonta\Desktop\Kmeans\KmeansClient\src> Java MainTest www.sdaiksdaik.it 8080
No such host is known (www.sdaiksdaik.it)
```

5. Esecuzione con parametri corretti: quando il programma viene eseguito nelle condizioni funzionali (quindi server avviato e parametri validi) vengono stampati a schermo indirizzo IP e porta del server, seguiti dalla porta che sta usando il processo per la comunicazione. Viene poi mostrato all'utente un menù con due opzioni. L'opzione (1) permetterà al client di caricare un cluster di dati che è stato serializzato sul server come un file, mentre l'opzione (2) consente di creare un nuovo cluster di dati mediante l'algoritmo del K-means. In caso di input non validi viene chiesto all'utente di reinserire finchè non si avrà un'opzione valida.

```
PS C:\Users\fonta\Desktop\Kmeans\Kmeans\KmeansClient\src> Java MainTest 127.0.0.1 8080
addr = /127.0.0.1
Socket[addr=/127.0.0.1,port=8080,localport=2784]
Scegli una opzione
(1) Carica Cluster da File
(2) Carica Dati
Risposta:
```

4.1 CLI 4 TEST

```
(1) Carica Cluster da File
(2) Carica Dati
Risposta:dsa
LETTO VALORE NON INTERO, REINSERIRE
43
(1) Carica Cluster da File
(2) Carica Dati
Risposta:
```

- Opzione (1): Viene chiesto all'utente di inserire il nome del database, della tabella e del numero di cluster creati. Il server andrà dunque a cercare il file corrispondente a tali informazioni e, se non trovato, manderà un messaggio di errore all'utente (come nell'esempio). Viene chiesto all'utente se vuole tornare al menù oppure terminare l'esecuzione del programma. Se viene digitato n il programma termina. Nel caso in cui il file corrispondente alle richieste esista viene inviato al client il contenuto del file, ovvero i centroidi dei cluster.

```
Risposta:1
Nome database:ciao
Nome tabella:das
Numero di cluster:43
Impossibile caricare il salvataggio
Vuoi scegliere una nuova operazione da menu?(y/n)
Scegli una opzione
(1) Carica Cluster da File
(2) Carica Dati
Risposta:1
Nome database:MapDB
Vome tabella:playtennis
Numero di cluster:9
Centroid=(rain 13.5525 normal weak yes)
Centroid=(overcast 0.1 normal strong ves)
Centroid=(sunny 12.5 normal strong yes)
Centroid=(sunny 0.1 normal weak yes)
Centroid=(sunny 30.3 high weak no)
Centroid=(overcast 21.25 high strong ves)
uoi scegliere una nuova operazione da menu?(y/n)
```

- Opzione (2): Viene chiesto all'utente se vuole usare i valori di default o meno:
 - Valori di default: i valori di default sono:
 - localhost \rightarrow server database
 - 3306 \rightarrow porta dabasase
 - MapDB \rightarrow nome database
 - playtennis \rightarrow nome tabella
 - MapUser \rightarrow nome utente
 - password di MapUser

```
Scegli una opzione
(1) Carica Cluster da File
(2) Carica Dati
Risposta:2
Vuoi usere dei valori di default per il database? (y/n)
```

4.1 CLI 4 TEST

Nel caso di risposta affermativa viene chiesto all'utente il numero dei cluster. Una volta confermati (se questi sono validi) il server eseguirà l'algoritmo di K-means e invierà il risultato al client. Viene poi chiesto se si vuole riprendere l'esecuzione sullo stesso dataset o meno.

```
Vuoi usere dei valori di default per il database? (y/n)y
Numero di cluster:5
Clustering output:Numero di iterazioni: 2
Examples:
[rain 13.0 high weak yes] dist=1.0
[sunny 13.0 high weak no] dist=1.0
AvaDistance=1.0
1:Centroid=(rain 8.3333333333334 high strong no)
Examples:
[overcast 12.5 high strong yes] dist=2.1375137513751374
[rain 12.5 high strong no] dist=0.1375137513751375
AvgDistance=1.1833516685001833
2:Centroid=(overcast 17.80250000000000 normal weak yes)
Examples:
[rain 0.0 normal weak yes] dist=1.5875412541254126
[rain 12.0 normal weak yes] dist=1.1915016501650166
[overcast 29.21 normal weak yes] dist=0.3764851485148515
AvgDistance=1.1395214521452146
Examples:
[sunny 30.3 high weak no] dist=1.0
[sunny 30.3 high strong no] dist=0.0
AvgDistance=0.5
4:Centroid=(sunny 4.2333333333333 normal strong yes)
Examples:
[overcast 0.1 normal strong yes] dist=1.1364136413641364
[sunny 0.1 normal weak yes] dist=1.136413641364
[sunny 12.5 normal strong yes] dist=0.27282728272827284
AvgDistance=0.8485515218188485
Vuoi ripetere l'esecuzione?(y/n)
```

Se l'utente non vuole ripetere l'esecuzione sul dataset ha due scelte:

- (a) Tornare al menù
- (b) Terminare l'esecuzione

```
Vuoi ripetere l'esecuzione?(y/n)n
Vuoi scegliere una nuova operazione da menu?(y/n)y
Scegli una opzione
(1) Carica Cluster da File
(2) Carica Dati
Risposta:
```

- Valori non di default: l'utente può scegliere di non usare i valori di default. In quel caso deve inserire tutte le informazioni necessarie. In caso di valori non validi verrà segnalato l'errore all'utente, il quale sceglierà se proseguire

4.2 App 4 TEST

con i valori di default oppure se riprovare a inserire dei valori personalizzati. L'uso di valori personalizzati permette di utilizzare dataset già presenti nel server del database.

```
Scegli una opzione
(1) Carica Cluster de File
(2) Carica Dati
Rispostes:

Wuoi usere dei valori di default per il database? (y/n)n
Inserisci l'indirizzo ip/DNS del database (localhost / 127.0.0.1 se il database si trova nel server a cui si è connessi):227.0.0.1
Inserisci il nome del database: (MppDB
Inserisci il nome del database: (MppDB
Inserisci il nome utente del database: (MppDB
Inserisci il indirizzo ip/DNS del database (localhost / 127.0.0.1 se il database si trova nel server a cui si è connessi):127.0.0.1
Inserisci il nome del database: (3366 se il database si trova nel server a cui si è connessi):127.0.0.1
Inserisci il nome del database: (MppDB
Inserisci il nome database: (MppDB
Inserisci il nome del database: (MppDB
Inserisci il nome del database: (MppDB
Inserisci il nome del database:
```

Ogni volta che l'utente richiede la creazione di un dataset al server, quest'ultimo serializzerà i cluster in un file con nome del tipo: **NomedatabaseNometabel-laNumerocluster.dat**.

```
Inserisci l'indirizzo ip/DNS del database (localhost / 127.0.0.1 se il database si trova nel server a cui si è connessi):127.0.0.1
Inserisci la porta del database:ditto
Inserisci il nome del database:ditto
Inserisci il nome tabella:coldoio
Inserisci il nome utente del database:root
Inserisci la password del database:rioot234/
Numero di cluster:2
Clustering output:Numero di iterazioni; 2
O:Centroid=(00001 DSM 12kw esterna gas 20.0)
Examples:
[00001 DSM 12kw esterna gas 20.0] dist=0.0
AvgDistance=0.0

1:Centroid=(00002 MFS 13kw esterna pellet 0.0)
Examples:
[00003 MFS 33kw esterna pellet 0.0] dist=2.0
AvgDistance=2.0

Vuoi ripetere l'esecuzione?(y/n)
```

4.2 App

1. Esecuzione del client senza inserire tutti i parametri: nel caso in cui nella schermata di apertura l'utente non inserisca tutti i parametri richiesti, riceverà un messaggio di errore.

2. Esecuzione del client con server offline, con porta errata, con IP/DNS inesistente o con telefono offline: una volta inseriti i dati, verranno richiesti all'utente le informazioni riguardanti il database. A questo punto l'utente proverà a connettersi al server e al database, ricevendo un messaggio di errore:

- 3. Esecuzione con parametri corretti: quando il server è avviato e vengono immessi i parametri corretti all'avvio dell'applicazione (o tramite l'apposito tab per cambiare server) l'utente può connettersi al database.
 - Connessione al database: se l'utente inserisce i parametri del database corretti l'applicazione si connetterà al server e darà la possibilità all'utente di selezionare il numero di cluster.

Se l'utente non compila tutti i campi, riceverà un errore.

Se l'utente non compila correttamente qualche campo, riceverà un errore a seconda del campo non compilato correttamente.

4.2 App 4 TEST

4. **Esecuzione dell'algoritmo**: una volta selezionato il numero di cluster, l'applicazione eseguirà l'algoritmo di K-means quando viene premuto il pulsante e mostrerà all'utente i risultati.

5. Caricamento di un file: l'utente può caricare un file di cluster serializzato sul server. Per farlo basta utilizzare l'apposito tab e cliccando su "Seleziona un file" l'utente può scegliere il file da caricare dall'elenco dei file presenti sul server.

Nel caso in cui vi sia un file non valido lato server, o se l'utente non sceglie alcun file, cliccando il pulsante "Recupera file" riceverà un errore.

Se il server non è corretto, l'utente riceverà un errore nel momento in cui proverà ad aprire l'elenco dei file.

6. Cambio server: nell'apposito tab l'utente può cambiare il server a cui connettersi. Nel caso in cui non vengano compilati tutti i campi, l'utente riceverà un errore.

