Seshan Rajaraman

CONTROL THEORY · PHYSICAL FACTORS · TIME SERIES · MULTIBODY SYSTEMS · POWER SYSTEMS

■ seshan.rajaraman@uwaterloo.ca | ★ https://seshan-r.github.io/ | 🛅 seshanrajaraman

"Be the change that you want to see in the world."

Summary₋

My ultimate goal is to expand my understanding on the durability and efficiency of systems that promise to respond to the current environmental degradation. Focussing towards my goal, I work towards specalizing in Mechatronics, Physical Systems and Control Theory during my graduate degree program at University of Waterloo, Ontario, Canada.

Education

University of Waterloo

MENG IN SYSTEMS DESIGN ENGINEERING Sept 2022 - Present • Primary focus on Mechatronics and Physical Factors, Control Theory.

• CGPA: 91% (4.0)

Vellore Institute of Technology

B.Tech. IN Electronics and Communication Engineering

• Primary focus on Control Systems and Robotics.

• Supervisor: Dr. Sofana Rekha, Dr. Velmathi G

• CGPA: 8.48

Chennai, India July 2018 - April 2022

Ontario, Canada

Area of Expertise

Simulation Tools : MATLAB, Vitich Genesys, Visure Requirements, LTSpice, Proteus, NodeRed

Programming Tools: Python, C, C++, R Programming, Keil

: Google Cloud, AWS, Innoslate Rational System Architect Platforms

: English, Tamil, Hindi, German, Arabic Languages

Experience_

Adnoc Abu dhabi, UAE **OPERATOR INTERN** December 2020 - May 2021

• Optimizing plant efficiently to obtain maximum output.

Control and monitor planned and unplanned plant shutdowns.

Teaching Assistantship

ECE2006

Digital Signal Processing VIT University SUPERVISOR: PROF. SRIVATSAN K *July 2020 – Dec 2020*

ECE2005

Probability Theory and Random Processes VIT University

SUPERVISOR: PROF. REVATHI S Dec 2019 - April 2020

ECE2010

VIT University **Control Systems**

SUPERVISOR: PROF. SOFANA REKHA *July 2021 – Dec 2021*

MAT3005

Applied Numerical Methods VIT University SUPERVISOR: PROF. UMA DEVI Dec 2020 - July 2021

Publication

Smart Classroom

INTEGRATED RESILIENT ENERGY SOLUTIONS, SCRIVENER PUBLICATION

Trashsort

HACKKU, KANSAS UNIVERSITY, USA

IOT based Self checkout stores using facemask detection

INTEGRATED RESILIENT ENERGY SOLUTIONS, SCRIVENER PUBLICATION

The Influence of Adolescent Siblings on Family Purchase Decisions

JOURNAL OF CHENGDU UNIVERSITY OF TECHNOLOGY

Projects

Stock Market Prediction

SOFTWARES: R STUDIO

- The main objective of the project was to forecast the stock prices of a company (Apple) with the available data by building an ARIMA model.
- Considering that the data consisted mostly of Open, High, Low, Closing or OHLC, our model was designed to be a univariate time series.

Infectious Disease Surveillance using Time Series

SOFTWARES: R STUDIO

- The project focused on the practical aspects of using ARIMA (autoregressive, integrated, moving average) time series modelling in the surveillance of reportable infectious diseases, with a focus on the widely available SSS1 package from the Centers for Disease Control and Prevention.
- ARIMA modelling requires the following steps: time series selection, series transformations, model selection, parameter estimation, forecasting, and forecast updating.

Route Planning with Real-time Traffic Predictions

SOFTWARES: R STUDIO

- A system for individual trip planning was designed, that effectively plans the route considering the future traffic hazards.
- Conditioning spatial regression on intermediate predictions of a discrete probabilistic graphical model allowed for the simultaneous incorporation of historical data, streamed online data, and a rich dependency structure.

Design of LQR Servo Controller

SOFTWARES: MATLAB AND SIMULINK

- The goal was to perform a steady coordinated turn for an aircraft.
- A controller that commands a steady turn by going through a 60° roll was designed.
- In addition, the design was made such that the pitch angle (θ) stayed close to zero.

LQR Design for Vehicle Suspension System

SOFTWARES: MATLAB AND SIMULINK

- Designed a Linear Quadratic Regulator (LQR) control system for the vehicle suspension system is the recommended approach.
- Based on the condition and inputs of the vehicle, the LQR system is a feedback control system that improves suspension performance.
- The LQR system will be made up of a state observer that will gauge the condition of the car and a feedback controller that will regulate the suspension system in accordance with the gauged condition.

Bluetooth-controlled Home automation System

SOFTWARES: C, PROTEUS

- The project consisted of a virtual simulation of the devices which can be controlled by Bluetooth through our phone such as AC, Light etc.
- All the features had to be done manually and not with the help of a PIR sensor.

Holistic Healthcare

SOFTWARES: C, ESP32-PICO-D4 MICROCONTROLLER

- The main features of this project are detection of sleepwalking, high heart rate, high body temperature and intimation.
- In an emergency, it must intimate a family member about the patient by making a call.
- The accelerometer data is used by the microcontroller to calculate the number of steps taken by the user, their body temperature and pulse rate.
- If the values exceed a particular threshold, then the family member gets notified.

Image Compression and Decompression using LZW Coding

SOFTWARES: PYTHON

- The idea of the compression algorithm is the following: As the input data is being processed, a dictionary keeps a correspondence between the longest encountered words and a list of code values.
- The words are replaced by their corresponding codes and so the input file is compressed.
- Therefore, the efficiency of the algorithm increases as the number of long, repetitive words in the input data increases.

Image Compression and Decompression using LZW Coding

SOFTWARES: ARDUINO UNO

- The project focuses on the development of a Wireless Sensor Network-based Forest Fire Detection System that comprises basic RF modules for wireless communication and solar energy harvesting system.
- The system will detect the presence of a fire using temperature, gas, and flame sensors and transmit a message to the base station with the help of a Zigbee module.

 It will also trigger the controller which will enable the process of extinguishing the fire.