

AD-756 103

LARGE DEFLECTIONS OF PLATES WITH NON-LINEAR ELASTICITY AND HOLLOW SHELLS WITH HINGE-SUPPORTED EDGES

M. S. Kornishin, et al

Foreign Technology Division
Wright-Patterson Air Force Base, Ohio

26 January 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

AD 756103

FTD-HT-23-1814-72

FOREIGN TECHNOLOGY DIVISION

LARGE DEFLECTIONS OF PLATES WITH
NONLINEAR ELASTICITY AND HOLLOW
SHELLS WITH HINGE-SUPPORTED EDGES

by

M. S. Kornishin, N. N. Stolyarov,
and N. I. Dedov

Approved for public release;
distribution unlimited.

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
Foreign Technology Division Air Force Systems Command U. S. Air Force		2b. GROUP
3. REPORT TITLE LARGE DEFLECTIONS OF PLATES WITH NONLINEAR ELASTICITY AND HOLLOW SHELLS WITH HINGE-SUPPORTED EDGES		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Translation		
5. AUTHOR(S) (First name, middle initial, last name) M. S. Kornishin, N. N. Stolyarov, N. I. Dedov		
6. REPORT DATE 1971	7a. TOTAL NO. OF PAGES 9	7b. NO. OF REFS 3
8a. CONTRACT OR GRANT NO.	8c. ORIGINATOR'S REPORT NUMBER(S)	
b. PROJECT NO. 782	PTD-HT-23-1814-72	
c.	10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited.	
d.	11. SUPPLEMENTARY NOTES	
	12. SPONSORING MILITARY ACTIVITY Foreign Technology Division Wright-Patterson AFB, Ohio	
13. ABSTRACT <p>In this work, method of finite differences is used to solve problems dealing with large deflections of rectangular plates in-plane with nonlinear elasticity and hollow shells with hinge-supported edges, which are under the effect of external normal pressure uniformly distributed along the entire surface or along the central rectangular area. The curvature parameter values at which a crack in a cylindrical panel occurs are established. Critical loads and their corresponding deflections have been found for panels with different curvature parameters.</p>		

DD FORM 1 NOV 65 1473

I

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Elasticity Elasticity Theory Hollow Shell						

TL

UNCLASSIFIED

Security Classification

FTD - HT - 23-1814-72

EDITED TRANSLATION

FTD-HT-23-1814-72

LARGE DEFLECTIONS OF PLATES WITH NONLINEAR ELASTICITY AND HOLLOW SHELLS WITH HINGE-SUPPORTED EDGES

By: M. S. Kornishin, N. N. Stolyarov, and
N. I. Dedov

English pages: 9

Source: AN SSSR. Kazanskiy Fiziko-Tekhnicheskiy.
Trudy Seminara po Teorii Obolochek.
No. 2, 1971, pp 49-58.

Requester. FTD/PHE

Translated by: TSgt Victor Mesenzeff

Approved for public release;
distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-AFB, OHIO.

FTD - HT - 23-1814-72

Date 26 Jan 1973

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
А а	А а	A, a	Р р	Р р	R, r
Б б	Б б	B, b	С с	С с	S, s
В в	В в	V, v	Т т	Т т	T, t
Г г	Г г	G, g	У у	У у	U, u
Д д	Д д	D, d	Ф ф	Ф ф	F, f
Е е	Е е	Ye, ye; E, e*	Х х	Х х	Kh, kh
Ж ж	Ж ж	Zh, zh	Ц ц	Ц ц	Ts, ts
З з	З з	Z, z	Ч ч	Ч ч	Ch, ch
И и	И и	I, i	Ш ш	Ш ш	Sh, sh
Я я	Я я	i, y	Щ щ	Щ щ	Shch, shch
К к	К к	K, k	Ъ ъ	Ъ ъ	"
Л л	Л л	L, l	Ы ы	Ы ы	Y, y
М м	М м	M, m	Ь ь	Ь ь	'
Н н	Н н	N, n	Э э	Э э	E, e
О о	О о	O, o	Ю ю	Ю ю	Yu, yu
П п	П п	P, p	Я я	Я я	Ya, ya

* ye initially, after vowels, and after ъ, ь; e elsewhere.
When written as ё in Russian, transliterate as yё or ё.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.

All figures, graphs, tables, equations, etc.
merged into this translation were extracted
from the best quality copy available.

LARGE DEFLECTIONS OF PLATES WITH NONLINEAR ELASTICITY AND HOLLOW SHELLS WITH HINGE-SUPPORTED EDGES

M. S. Kornishin, N. N. Stolyarov,
and N. I. Dedov

In this work, method of finite differences is used to solve problems dealing with large deflections of rectangular plates in plan with nonlinear elasticity and hollow shells with hinge-supported edges, which are under the effect of external normal pressure uniformly distributed along the entire surface or along the central rectangular area. The curvature parameter values at which a crack in a cylindrical panel occurs are established. Critical loads and their corresponding deflections have been found for panels with different curvature parameters.

1. Principal dependences. Let us consider a hollow shell which is rectangular in plan with sides $2a$, $2b$ and thickness h . We will place the origin of the coordinates in the center of the shell and direct axes \bar{x} , \bar{y} parallel to the sides of the plan.

We introduce the following designations: $\bar{\phi}$ - stress function; \bar{u} , \bar{v} , \bar{w} , - corresponding displacements of a point of the middle surface along axes \bar{x} , \bar{y} , \bar{z} ; k_1 , k_2 - shell curvatures;

written here in total derivatives:

$$\frac{d^2}{dz^2} \left[EI_k \frac{df_k(z)}{dz} \right] + p^2 m_k s_k \ddot{\varphi}_k(z) - p^2 m_k f_k(z) = 0, \quad (1_1)$$

$$- \frac{d}{dz} \left[Gl_k \frac{d\varphi_k(z)}{dz} \right] + p^2 m_k s_k f_k(z) - p^2 l_k \dot{\varphi}_k(z) = 0, \quad (1_2)$$

$$\frac{d^2}{dx^2} \left[El_\Phi \frac{df_\Phi(x)}{dx} \right] - p^2 m_\Phi f_\Phi(x) = 0. \quad (1_3)$$

The conditions of articulation ($z = 0; x = 0$):

$$1^\circ f_k(0) = f_\Phi(0),$$

$$2^\circ \frac{df_k(0)}{dz} = 0 - \text{condition of symmetry of vibration shapes,}$$

$$3^\circ - \dot{\varphi}_k(0) = \frac{df_\Phi(0)}{dx},$$

$$4^\circ \frac{d}{dx} \left[El_\Phi \frac{df_\Phi(0)}{dx} \right] = -2 \frac{d}{dz} \left[EI_k \frac{df_k(0)}{dz} \right],$$

$$5^\circ El_\Phi \frac{d^2 f_\Phi(0)}{dx^2} = 2 Gl_k \frac{d\dot{\varphi}_k(0)}{dz}.$$

Boundary equations when $z = l_k$:

$$6^\circ \frac{d}{dz} \left[EI_k \frac{df_k}{dz} \right] = 0 - \text{absence of shearing force,}$$

$$7^\circ EI_k \frac{d^2 f_k}{dz^2} = 0 \quad \text{absence of bending moment,}$$

$$8^\circ Gl_k \frac{d\dot{\varphi}_k}{dz} = 0 - \text{absence of torque.}$$

Boundary conditions when $x = l_\Phi$:

Assuming that $\bar{\epsilon}_{33} = 0$, from relationships (1) we obtain

$$\bar{\epsilon}_{ii} = \frac{E\gamma(\psi^2)}{(i+\mu)(i-\mu)} (\epsilon_{ii} - \gamma \epsilon_{zz}), \quad \underline{i}, \quad \bar{\tau}_z = \frac{E\gamma(\psi^2)}{2(i+\mu)} r_z, \quad (2)$$

$\gamma = \frac{3\mu\epsilon - i\psi^2}{2(3\mu + \nu\psi^2)}$

Here and subsequently 1, 2 - index transposition symbol.

The expressions for stresses and moments

$$\begin{aligned}\bar{T}_{ii} &= \int_{-L/2}^{L/2} \bar{\epsilon}_{ii} d\bar{z}, \quad (i=1,2), \quad \bar{t}_z = \int_{-L/2}^{L/2} \bar{\tau}_z d\bar{z}, \\ \bar{M}_{ii} &= \int_{-L/2}^{L/2} \bar{\epsilon}_{ii} \bar{z} d\bar{z}, \quad (i=1,2), \quad \bar{M}_z = \int_{-L/2}^{L/2} \bar{\tau}_z \bar{z} d\bar{z}\end{aligned}$$

after certain transformations with the use of relationships (2) will assume the form

$$\begin{aligned}\bar{T}_{ii} &= \frac{Eh}{i-\mu} (\epsilon_i + \mu \epsilon_z) + \Delta \bar{T}_{ii}, \quad \underline{i}, \quad \bar{t}_z = \frac{Eh^3}{2(i-\mu)} \bar{r}_z + \Delta \bar{t}_z, \\ \bar{M}_{ii} &= \frac{Eh^3}{12(1-\mu^2)} (\alpha_{ii} + \mu \alpha_{zz}) + \Delta \bar{M}_{ii}, \quad \underline{i}, \quad \bar{M}_z = \frac{Eh^3}{2(i-\mu)} \chi + \Delta \bar{M}_z,\end{aligned} \quad (3)$$

where

$$\begin{aligned}\Delta \bar{T}_{ii} &= \frac{Eh}{i+\mu} (E\epsilon_i + Q\epsilon_z) + \frac{Eh^2}{i+\mu} (L\epsilon_{ii} - M\epsilon_{zz}), \quad \underline{i}, \\ \Delta \bar{T}_z &= \frac{Eh}{2(i-\mu)} R\bar{r}_z + \frac{Eh^2}{i-\mu} M\chi, \\ \Delta \bar{M}_{ii} &= \frac{Eh^2}{i+\mu} (L\epsilon_i + M\epsilon_z) + \frac{Eh^3}{i+\mu} (X\epsilon_{ii} - Y\epsilon_{zz}), \quad \underline{i}, \\ \Delta \bar{M}_z &= \frac{Eh^2}{2(i-\mu)} R\bar{r}_z + \frac{Eh^3}{i-\mu} Z\chi.\end{aligned} \quad (4)$$

Coefficients P, Q, R, ..., X, Y, Z represent integrals
 [Translator's note: equation (5) is not indicated - assumed to
 be one of the following]

$$P = \frac{1}{h} \int_{-0.5h}^{0.5h} F_1 d\bar{z}, \quad Q = \frac{1}{h} \int_{-0.5h}^{0.5h} F_2 d\bar{z}, \quad R = -\frac{1}{h} \int_{-0.5h}^{0.5h} (A\psi')^{\alpha} d\bar{z},$$

$$L = \frac{1}{h^2} \int_{-0.5h}^{0.5h} F_1 \bar{z} d\bar{z}, \quad M = \frac{1}{h^2} \int_{-0.5h}^{0.5h} F_2 \bar{z} d\bar{z}, \quad Z = -\frac{1}{h^2} \int_{-0.5h}^{0.5h} (A\psi')^{\alpha} \bar{z} d\bar{z},$$

$$X = \frac{1}{h^3} \int_{-0.5h}^{0.5h} F_1 \bar{z}^2 d\bar{z}, \quad Y = \frac{1}{h^3} \int_{-0.5h}^{0.5h} F_2 \bar{z}^2 d\bar{z}, \quad N = -\frac{1}{h^3} \int_{-0.5h}^{0.5h} (A\psi')^{\alpha} \bar{z}^2 d\bar{z},$$

where

$$F_1 = \frac{\nu + \gamma(1-\mu)-1}{(1-\mu)(1-\nu)}, \quad F_2 = \frac{\gamma\nu(1-\mu) - \mu(1-\nu)}{(1-\mu)(1-\nu)}$$

Having expressed \bar{T}_{11} , \bar{T}_{22} , \bar{T}_{12} in terms of the stress function $\bar{\phi}$,

$$\bar{T}_{11} = \bar{\phi}_{yy}, \quad \bar{T}_{22} = \bar{\phi}_{xx}, \quad \bar{T}_{12} = -\bar{\phi}_{xy},$$

from relationships (3) we obtain

$$\begin{aligned} \epsilon_1 &= \frac{1}{Eh} (\bar{\phi}_{yy} - \mu \bar{\phi}_{xx}) - \frac{1}{Eh} (\Delta \bar{T}_{11} - \mu \Delta \bar{T}_{22}), \\ \epsilon_2 &= \frac{1}{Eh} (\bar{\phi}_{xx} - \mu \bar{\phi}_{yy}) - \frac{1}{Eh} (\Delta \bar{T}_{22} - \mu \Delta \bar{T}_{11}). \end{aligned} \quad (6)$$

$$\bar{\gamma}_{12} = -\frac{2(1+\mu)}{Eh} \bar{\phi}_{xy} - \frac{2(1+\mu)}{Eh} \Delta \bar{T}_{12}.$$

Using the well known nonlinear equations of equilibrium and the condition of compatibility of deformations of the theory of hollow shells, and introducing dimensionless variables

$$x = \frac{\bar{x}}{a}, \quad y = \frac{\bar{y}}{b}, \quad \lambda = \frac{b}{a}, \quad w = \frac{\bar{w}}{h}, \quad K_1 = \frac{4a^2}{R_1 h}, \quad K_2 = \frac{4b^2}{R_2 h}.$$

$$\Phi = \frac{\bar{\Phi}}{Eh^3}, \quad \rho = \frac{16\bar{\rho}b^4}{Eh^4}, \quad z = \frac{2\bar{z}}{h}, \quad T_{11} = \frac{\bar{T}_{11}b^2}{Eh^3}, \quad T_{22} = \frac{\bar{T}_{22}b^2}{Eh^3},$$

$$T_{12} = \frac{\bar{T}_{12}b^2}{Eh^3}, \quad M_{11} = \frac{\bar{M}_{11}b^2}{Eh^4}, \quad M_{22} = \frac{\bar{M}_{22}b^2}{Eh^4}, \quad M_{12} = \frac{\bar{M}_{12}b^2}{Eh^4},$$

we will obtain a system of two nonlinear differential equations

$$\begin{aligned} & \lambda^4 \Phi_{xxxx} + 2\lambda^2 \Phi_{xxyy} + \Phi_{yyyy} + 0,25K_1\lambda^2 w_{yy} + 0,25K_2\lambda^2 w_{xx} = \\ & = \lambda^2 w_{xy}^2 - \lambda^2 w_{xx} w_{yy} + \Delta T_{11,yy} - \mu \lambda^2 \Delta T_{11,xx} - \mu \Delta T_{22,yy} + \\ & + \lambda^2 \Delta T_{22,xx} - 2(\mu+1)\lambda \Delta T_{12,xy}, \end{aligned} \quad (7)$$

$$\begin{aligned} & \frac{i}{12(1-\mu^2)} (\lambda^4 w_{xxxx} + 2\lambda^2 w_{xxyy} + w_{yyyy}) - 0,25K_1\lambda^2 \Phi_{yy} - \\ & - 0,25K_2\lambda^2 \Phi_{xx} = \rho/16 + \lambda^2 w_{xx} \Phi_{yy} + \lambda^2 w_{yy} \Phi_{xx} - 2\lambda^2 w_{xy} \Phi_{xy} + \\ & + \lambda^2 \Delta M_{11,xx} + 2\lambda \Delta M_{12,xy} + \Delta M_{22,yy}. \end{aligned}$$

Presented below are solution results of the geometrically and physically nonlinear problems of bending a square plate and a square cylindrical panel using external normal pressure with boundary conditions of hinged support, which can be presented as:

with $x = \pm 1$

$$\Phi_{xx} = \Phi_{xy} = 0, \quad w = M_{11} = 0;$$

with $y = \pm 1$

$$\Phi_{xx} = \Phi_{xy} = 0, \quad w = M_{22} = 0.$$

Reproduced from
best available copy.

Conditions (8) indicate the equality to zero on the contour of normal and tangential stresses, and also the deflection and moment.

2. Method for solving nonlinear problems using the electronic digital computer and the calculation results. To resolve the problem, we will use a method of finite differences. Having selected a rectangular net 10×10 , we substitute the initial system of differential equations (7) with a system of difference equations, approximating the biharmonic operator and all the derivatives with the symmetric difference equations with an error on the order of $O(\bar{h}^2)$ where \bar{h} - net spacing. The derivatives of function w in boundary conditions we approximate with an error on the order of $O(\bar{h}^4)$.

In accordance with the boundary conditions the contour values of functions $w_k=0$, $\Phi_k=0$, and the values of functions w_{k+1} , Φ_{k+1} , beyond the contour, are expressed in terms of the intracontour values according to formulas [2]:

with $x = \pm 1$

$$w_{k+1} = -\frac{6}{11} w_{k-1} - \frac{4}{11} w_{k-2} + \frac{1}{11} w_{k-3} + \frac{5.76}{11} (1-\mu^2) \lambda^2 \Delta M_{11},$$

$$\Phi_{k+1} = 3\Phi_{k-1} - 0.5\Phi_{k-2};$$

with $y = \pm 1$

$$w_{k+1} = -\frac{6}{11} w_{k-1} - \frac{4}{11} w_{k-2} + \frac{1}{11} w_{k-3} + \frac{5.76}{11} (1-\mu^2) \lambda^2 \Delta M_{11},$$

$$\Phi_{k+1} = 3\Phi_{k-1} - 0.5\Phi_{k-2}.$$

 Reproduced from
best available copy.

Due to the symmetry of deformational state of the shell relative to axes x and y the number of difference equations is reduced to 50. The obtained system of 50 nonlinear algebraic equations was solved using a method of total iteration, similarly to those described in monograph [2].

Part of the calculation results with $\mu = 0.3$, $A = 0$, $18 \cdot 10^6$ for $\alpha/\varepsilon_0 = 1$. ($\gamma = 1 - \sqrt{A_0}$) is presented in the table and on figures. The calculations were carried out for the following loads: load of constant intensity P_1 distributed throughout the surface $s_1 = 4ab$; with intensity P_2 - along the cylindrical area $s_2 = 4ab$; with intensity P_3 along area $s_3 = 0.36ab$; with intensity P_4 along area $s_4 = 0.04ab$. We used the following designations in the figures:

$$\beta_i = \frac{\varepsilon_i \beta_i}{E_i}, \quad \beta_i = \beta_i \frac{s_i}{ab}, \quad i=1,2,3,4; \quad \beta_i = \frac{\beta_i}{\gamma},$$

where β_i - load intensity parameter, β - parameter of total load, β_i - deflection parameter at the center.

β_i	32	40	48	56	64	72	80
$\gamma = 1 - \sqrt{A_0}$							
β_i^1	48.5	69.2	97.4	133.1	176.1	225.3	277.7
β_i^2	1.05	1.75	2	2	2.25	2.25	2.5
β_i^3	48.3	56.4	60.2	61.7	58.2	54.0	44.6
β_i^4	2.5	3.75	4.75	5.5	6.5	7.5	8.
$\gamma = 1$							
β_i^1	79.8	115.3	162.2	222.2	286.9	-	-
β_i^2	2.0	2.0	2.0	2.25	2.25	-	-
β_i^3	68.6	75.9	79.1	92.5	95.7	-	-
β_i^4	3.5	4.5	5.75	6.5	7.5	-	-
β_i^5	13	16	18	21	24	-	-
β_i^6	18	21	22	26	27	-	-

The table shows the obtained, with the consideration of ($\gamma = 1 - \sqrt{A_0}$) and without the consideration of ($\gamma = 1$) of physical nonlinearity, parameter values for upper (β_i^1) and lower (β_i^2) critical loads and their corresponding deflection parameters in

Reproduced from
best available copy.

center (w_0^b , w_0^n) for a square cylindrical panel uniformly loaded along the entire surface in the plan with different curvature parameters K_2 and with ratio $h/b=0,005$. Given here also are the values expressed in per cent for relations

$$\varepsilon_1 = \frac{P_{1,f=1}^b - P_{1,f \neq 1}^b}{P_{1,f=1}^b} \cdot 100\% \quad \varepsilon_2 = \frac{P_{1,f=1}^n - P_{1,f \neq 1}^n}{P_{1,f=1}^n} \cdot 100\%$$

It is evident from the table that physical nonlinearity lowers the critical loads significantly. With an increase in parameter K_2 the effect of physical nonlinearity noticeably increases, moreover, its effect on P_1^n is somewhat greater than on P_1^b . At the same time, for the critical states the corresponding deflection parameters $w_{0,f=1}^b$ and $w_{0,f \neq 1}^b$ are very close or coincide.

For a twice nonlinear case ($f \neq 1$), Fig. 1 shows relationships $P_1(w_0)$ for a number of values K_2 and $h/b = 0,005$, and Fig. 2 shows relationships $P_1(w_0)$ for a square panel with $K_2 = 40$ and $h/b = 0,002$ with loading areas which differ with respect to size. Here ρ_n - parameter of the total load per area.

Fig. 1.

Fig. 2.

obvious algebraic transformations we get:

$$\begin{aligned} & \{(\vec{\sigma}_1 \cdot \vec{\tau}_0) - (\vec{\beta}_1 \cdot \vec{\gamma}_0)\} \cdot f_b(0) + \{(\vec{\tau}_1 \cdot \vec{\tau}_0) - (\vec{\gamma}_1 \cdot \vec{\gamma}_0)\} \varphi_b(0) \rightarrow \\ & \rightarrow p^2(\vec{\alpha}_1 \cdot A_1 \cdot \vec{f}_b) + p^2(\vec{\beta}_1 \cdot A_1 \cdot \vec{f}_b) + p^2(\vec{\gamma}_1 \cdot B_1 \cdot \vec{\gamma}_0) + \\ & + p^2(\vec{\beta}_1 \cdot B_1 \cdot \vec{\gamma}_0) - p^2(\vec{\tau}_1 \cdot C_1 \cdot \vec{f}_b). \end{aligned} \quad (26)$$

If we introduce still more designations to certain equations

$$\begin{aligned} l_{11} &= (\vec{\tau}_1 \cdot \vec{\tau}_0) - (\vec{\beta}_1 \cdot \vec{\gamma}_0), \\ l_{12} &= (\vec{\tau}_1 \cdot \vec{\tau}_0) - (\vec{\gamma}_1 \cdot \vec{\gamma}_0), \\ (\vec{a}_1 \cdot \vec{f}_b) &= (\vec{\alpha}_1 \cdot A_1 \cdot \vec{f}_b) + (\vec{\beta}_1 \cdot A_1 \cdot \vec{f}_b), \\ (\vec{b}_1 \cdot \vec{\gamma}_0) &= (\vec{\gamma}_1 \cdot B_1 \cdot \vec{\gamma}_0) + (\vec{\beta}_1 \cdot B_1 \cdot \vec{\gamma}_0), \\ (\vec{C}_1 \cdot \vec{f}_b) &= -(\vec{\tau}_1 \cdot C_1 \cdot \vec{f}_b), \end{aligned} \quad (27)$$

then equation (26) is rewritten in the form of

$$l_{11} \cdot f_b(0) + l_{12} \cdot \varphi_b(0) - p^2(\vec{a}_1 \cdot \vec{f}_b) + p^2(\vec{b}_1 \cdot \vec{\gamma}_0) + p^2(\vec{C}_1 \cdot \vec{f}_b). \quad (28)$$

By performing algebraic calculations for equation (23₂) and the second trio of vectors \vec{B}_2 , $\vec{\gamma}_2$, $\vec{\alpha}_2$, we get equation

$$l_{21} \cdot f_b(0) + l_{22} \cdot \varphi_b(0) - p^2(\vec{a}_2 \cdot \vec{f}_b) + p^2(\vec{b}_2 \cdot \vec{\gamma}_0) + p^2(\vec{C}_2 \cdot \vec{f}_b). \quad (29)$$

Here the numbers l_{21} , l_{22} , and vectors \vec{a}_2 , \vec{b}_2 , \vec{C}_2 are determined by the same formulas as numbers l_{11} , l_{12} and vectors \vec{a}_1 , \vec{b}_1 , \vec{C}_1 , by, of course substituting index 1 in these formulas for the indicated quantities and index 2 for vectors $\vec{\alpha}$, \vec{B} , $\vec{\gamma}$.

From Fig. 2 it is evident that the localization of the load on a smaller area leads to a considerable increase in maximum deflection and to a decrease in the value of the upper critical load. Thus, with a load distributed along the central area S_2 equalling one fourth of the total panel area (curve ρ_1) deflections w in the precritical state having increased almost three times, while cracking load ρ_n^* has decreased by approximately two times, as compared to the corresponding values for a panel uniformly loaded along the entire surface (curve ρ_0). With a load of ρ_3 the crack virtually disappears.

Figure 3 shows relationships $\rho_1(w_0)$ with various ratios λ/δ for a square panel ($\lambda=1$, $\kappa_2=0$) uniformly loaded along the entire surface. It is evident that with an increase of this ratio the effect of physical nonlinearity on deflections and critical loads increases significantly.

Fig. 3.

BIBLIOGRAPHY

1. Каудерер Г. Нелинейная механика. М., ИЛ, 1961.
2. Корнилов М.С. Нелинейные задачи теории пластин и оболочек и методы их решения. М., "Наука", 1964.
3. Сырский И.В., Ганеева М.С. Падение пластин из материала, обладающего нелинейному закону упругости. Сб."Исследования по теории пластин и оболочек", № 4, изд. АГУ, 1966.