Using RAMPAGE to identify and annotate regulatory elements in insect genomes

R. Taylor Raborn^{*1,2} and Volker P. Brendel^{1,2}

¹Department of Biology, Indiana University ²School of Informatics and Computing, Indiana University

Department of Biology and School of Informatics and Computing, Indiana University
212 S. Hawthorne Drive 205 Simon Hall, Bloomington, IN 47401, USA http://www.brendelgroup.org

Abstract. Application of Transcription Start Site (TSS) profiling technologies, coupled with large-scale next-generation sequencing (NGS) has yielded valuable insights into the location, structure and activity of promoters across diverse metazoan model systems. In insects, TSS profiling has been used to characterize the promoter architecture of *D. melanogaster*, and, shortly thereafter, to reveal widespread transposondriven alternative promoter usage.

In this chapter we highlight the utility of one TSS profiling method, RAMPAGE (RNA annotation and mapping of promoters for analysis of gene expression), for the precise, quantitative identification of promoters in insect genomes. We demonstrate this using our bioinformatics pipeline GoRAMPAGE, providing details instructions with the aim of taking the user from raw reads to processed results.

Keywords: *cis*-regulatory regions, promoter architecture, transcription initiation, transcription start sites (TSSs)

1 1 Introduction

2 1.1 TSS Profiling

- 3 The promoter, defined in eukaryotes as the genomic region bound by RNA Poly-
- 4 merase II immediately prior to transcription initiation [1], is the site where
- 5 regulatory signals unite to direct gene expression. The identification of pro-
- 6 moter regions is a valuable step for understanding the cis-regulatory signals
- that are present in an organism, and is important for genome annotation. How-
- $_{8}\,\,$ ever, despite the rapid accumulation of genome sequences across metazoan and
- $_{\rm 9}$ $\,$ arthropod diversity, accurate annotation of promoter regions remains sparse.
- 10 This is because—empirical mapping of TSSs—precisely identifying sequence
- motifs that demarcate the promoter is unreliable. In contrast with current in

^{*} Correspondence: rtraborn@indiana.edu

2 Raborn and Brendel

silico approaches, direct mapping of TSSs identifies the location of the core promoter. Cap Analysis of Gene Expression (CAGE) [2], one of the first meth-13 ods devised to identify 5'-ends of mRNAs at large-scale, involves selective capture of 5'-capped transcripts, first-strand reverse-transcription and ligation of a 15 short oligonucleotide (CAGE tag). CAGE was initially utilized by the FANTOM 16 (Functional Annotation of the Mammalian Genome) consortium to identify pro-17 moter architecture in human and mouse [3], providing the first glimpse of the 18 global landscape of transcription initiation. At the onset of the NGS era, CAGE 19 was coupled with massively-parallel sequencing to generate 5'-ends of mRNAs 20 at substantially higher scale. This advance provided more extensive coverage of 21 22 the expressed transcriptome, and provided increased sensitivity for quantitative measurements i.e. measurement of promoter activity. Hoskins and colleagues [4] 23 performed CAGE in D. melanogaster, identifying promoters at large-scale and 24 characterizing the promoter architecture of an insect genome for the first time. 25 Hoskins [4] indicated that TSS distributions at *Drosophila* promoters exhibit 26 a range of shapes that can be generally grouped into two major classifications: 27 peaked and broad. Peaked promoters have a single, major TSS position occupying 28 a narrow genomic region, whereas broad promoters lack a single, major TSS and contain TSSs across a wider region [5][6]. The authors also showed a strong asso-30 ciation between promoter class and motif composition (consistent with previous 31 findings [5,7]). Peaked promoters were associated with positionally-enriched *cis*-32 regulatory motifs including TATA, Inr and DPE, while broad promoters had an enrichment of less-well characterized motifs, including *Ohler6* and *Ohler7* [8]. 34 The existence of two promoter classes appears to be widespread, and has been 35 reported in insects, cladocerans [9], fish [10] and mammals [11,6].

- 37 2 Materials
- $_{38}$ 3 Methods
- $_{^{39}}$ 4 Notes
- 40 Acknowledgments
- 41 Disclosure Declaration
- The authors declare that they have no competing interests.

5 Figures

For LATEX users, we recommend using the *graphics* or *graphicx* package and the \includegraphics command.

Please check that the lines in line drawings are not interrupted and are of a constant width. Grids and details within the figures must be clearly legible and may not be written one on top of the other. Line drawings should have a resolution of at least 800 dpi (preferably 1200 dpi). The lettering in figures should have a height of 2 mm (10-point type). Figures should be numbered and should have a caption which should always be positioned *under* the figures, in contrast to the caption belonging to a table, which should always appear *above* the table; this is simply achieved as matter of sequence in your source.

Please center the figures or your tabular material by using the \centering declaration. Short captions are centered by default between the margins and typeset in 9-point type (Fig. 1 shows an example). The distance between text and figure is preset to be about 8 mm, the distance between figure and caption about 6 mm.

To ensure that the reproduction of your illustrations is of a reasonable quality, we advise against the use of shading. The contrast should be as pronounced as possible.

If screenshots are necessary, please make sure that you are happy with the print quality before you send the files.

Fig. 1. One kernel at x_s (dotted kernel) or two kernels at x_i and x_j (left and right) lead to the same summed estimate at x_s . This shows a figure consisting of different types of lines. Elements of the figure described in the caption should be set in italics, in parentheses, as shown in this sample caption.

Please define figures (and tables) as floating objects. Please avoid using optional location parameters like "[h]" for "here".

5.1 Formulas

Displayed equations or formulas are centered and set on a separate line (with an extra line or halfline space above and below). Displayed expressions should be numbered for reference. The numbers should be consecutive within each section

or within the contribution, with numbers enclosed in parentheses and set on the right margin – which is the default if you use the *equation* environment, e.g.,

$$\psi(u) = \int_{o}^{T} \left[\frac{1}{2} \left(\Lambda_{o}^{-1} u, u \right) + N^{*}(-u) \right] dt . \tag{1}$$

Equations should be punctuated in the same way as ordinary text but with a small space before the end punctuation mark.

5.2 Footnotes

The superscript numeral used to refer to a footnote appears in the text either directly after the word to be discussed or – in relation to a phrase or a sentence – following the punctuation sign (comma, semicolon, or period). Footnotes should appear at the bottom of the normal text area, with a line of about 2 cm set immediately above them.¹

5.3 Program Code

Program listings or program commands in the text are normally set in typewriter font, e.g., CMTT10 or Courier.

Example of a Computer Program

```
program Inflation (Output)
  {Assuming annual inflation rates of 7%, 8%, and 10%,...
   years};
   const
     MaxYears = 10;
   var
     Year: 0..MaxYears;
     Factor1, Factor2, Factor3: Real;
   begin
     Year := 0;
     Factor1 := 1.0; Factor2 := 1.0; Factor3 := 1.0;
     WriteLn('Year 7% 8% 10%'); WriteLn;
     repeat
       Year := Year + 1;
       Factor1 := Factor1 * 1.07;
       Factor2 := Factor2 * 1.08;
       Factor3 := Factor3 * 1.10;
       WriteLn(Year:5,Factor1:7:3,Factor2:7:3,Factor3:7:3)
     until Year = MaxYears
end.
```

(Example from Jensen K., Wirth N. (1991) Pascal user manual and report. Springer, New York)

 $^{^{\}rm 1}$ The footnote numeral is set flush left and the text follows with the usual word spacing.

5.4 Citations

For citations in the text please use square brackets and consecutive numbers: [?], [?], [?] – provided automatically by LATEX's \cite...\bibitem mechanism.

5.5 Page Numbering and Running Heads

There is no need to include page numbers. If your paper title is too long to serve as a running head, it will be shortened. Your suggestion as to how to shorten it would be most welcome.

6 References

References

- 1. J. T. Kadonaga, "Perspectives on the RNA polymerase II core promoter." Wiley Interdisciplinary Reviews: Developmental Biology, vol. 1, no. 1, pp. 40–51, Jan. 2012.
- R. Kodzius, M. Kojima, H. Nishiyori, M. Nakamura, S. Fukuda, M. Tagami,
 D. Sasaki, K. Imamura, C. Kai, M. Harbers, Y. Hayashizaki, and P. Carninci,
 "CAGE: cap analysis of gene expression." *Nature Methods*, vol. 3, no. 3, pp. 211–222, Mar. 2006.
- 3. P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M. C. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, V. B. Bajic, S. E. Brenner, S. Batalov, A. R. R. Forrest, M. Zavolan, M. J. Davis, L. G. Wilming, V. Aidinis, J. E. Allen, A. Ambesi-Impiombato, R. Apweiler, R. N. Aturaliya, T. L. Bailey, M. Bansal, L. Baxter, K. W. Beisel, T. Bersano, H. Bono, A. M. Chalk, K. P. Chiu, V. Choudhary, A. Christoffels, D. R. Clutterbuck, M. L. Crowe, E. Dalla, B. P. Dalrymple, B. de Bono, G. Della Gatta, D. di Bernardo, T. Down, P. Engstrom, M. Fagiolini, G. Faulkner, C. F. Fletcher, T. Fukushima, M. Furuno, S. Futaki, M. Gariboldi, P. Georgii-Hemming, T. R. Gingeras, T. Gojobori, R. E. Green, S. Gustincich, M. Harbers, Y. Hayashi, T. K. Hensch, N. Hirokawa, D. Hill, L. Huminiecki, M. Iacono, K. Ikeo, A. Iwama, T. Ishikawa, M. Jakt, A. Kanapin, M. Katoh, Y. Kawasawa, J. Kelso, H. Kitamura, H. Kitano, G. Kollias, S. P. T. Krishnan, A. Kruger, S. K. Kummerfeld, I. V. Kurochkin, L. F. Lareau, D. Lazarevic, L. Lipovich, J. Liu, S. Liuni, S. McWilliam, M. Madan Babu, M. Madera, L. Marchionni, H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone, S. Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder, N. Nakano, H. Nakauchi, P. Ng, R. Nilsson, S. Nishiguchi, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K. C. Pang, W. J. Pavan, G. Pavesi, G. Pesole, N. Petrovsky, S. Piazza, J. Reed, J. F. Reid, B. Z. Ring, M. Ringwald, B. Rost, Y. Ruan, S. L. Salzberg, A. Sandelin, C. Schneider, C. Schönbach, K. Sekiguchi, C. A. M. Semple, S. Seno, L. Sessa, Y. Sheng, Y. Shibata, H. Shimada, K. Shimada, D. Silva, B. Sinclair, S. Sperling, E. Stupka, K. Sugiura, R. Sultana, Y. Takenaka, K. Taki, K. Tammoja, S. L. Tan, S. Tang, M. S. Taylor, J. Tegner, S. A. Teichmann, H. R. Ueda, E. van Nimwegen, R. Verardo, C. L. Wei, K. Yagi, H. Yamanishi, E. Zabarovsky, S. Zhu, A. Zimmer, W. Hide, C. Bult, S. M. Grimmond, R. D. Teasdale, E. T. Liu, V. Brusic, J. Quackenbush, C. Wahlestedt, J. S. Mattick, D. A. Hume, C. Kai, D. Sasaki, Y. Tomaru, S. Fukuda, M. Kanamori-Katayama, M. Suzuki, J. Aoki, T. Arakawa, J. Iida, K. Imamura, M. Itoh, T. Kato, H. Kawaji, N. Kawagashira, T. Kawashima, M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M. Okada, C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, Y. Okamura-Oho, H. Suzuki, J. Kawai, Y. Hayashizaki, F. Consortium, R. G. E. R. Group, and G. S. G. G. N. P. C. Group, "The transcriptional landscape of the mammalian genome," Science (New York, NY), vol. 309, no. 5740, pp. 1559–1563, Sep.
- 4. R. A. Hoskins, R. A. Hoskins, J. M. Landolin, J. M. Landolin, J. B. Brown, J. B. Brown, J. E. Sandler, J. E. Sandler, H. Takahashi, H. Takahashi, T. Lassmann, T. Lassmann, C. Yu, C. Yu, B. W. Booth, B. W. Booth, D. Zhang, D. Zhang, K. H. Wan, K. H. Wan, L. Yang, L. Yang, N. Boley, N. Boley, J. Andrews, J. Andrews, T. C. Kaufman, T. C. Kaufman, B. R. Graveley, B. R. Graveley, P. J. Bickel, P. J. Bickel, P. Carninci, J. W. Carlson, J. W. Carlson, S. E. Celniker,

- and S. E. Celniker, "Genome-wide analysis of promoter architecture in Drosophila melanogaster." *Genome Research*, vol. 21, no. 2, pp. 182–192, Feb. 2011.
- E. A. Rach, H.-Y. Yuan, W. H. Majoros, P. Tomancak, and U. Ohler, "Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome." *Genome Biology*, vol. 10, no. 7, p. R73, 2009.
- B. Lenhard, A. Sandelin, and P. Carninci, "Metazoan promoters: emerging characteristics and insights into transcriptional regulation." *Nature Reviews Genetics*, vol. 13, no. 4, pp. 233–245, Apr. 2012.
- T. Ni, D. L. Corcoran, E. A. Rach, S. Song, E. P. Spana, Y. Gao, U. Ohler, and J. Zhu, "A paired-end sequencing strategy to map the complex landscape of transcription initiation." *Nature Methods*, vol. 7, no. 7, pp. 521–527, Jul. 2010.
- 8. U. Ohler, G.-c. Liao, H. Niemann, and G. M. Rubin, "Computational analysis of core promoters in the Drosophila genome." *Genome Biology*, vol. 3, no. 12, pp. research0087.1–0087.12, 2002.
- 9. R. T. Raborn, K. Spitze, V. P. Brendel, and M. Lynch, "Promoter Architecture and Sex-Specific Gene Expression in Daphnia pulex." *Genetics*, vol. 204, no. 2, pp. 593–612, Aug. 2016.
- 10. C. Nepal, Y. Hadzhiev, C. Previti, V. Haberle, N. Li, H. Takahashi, A. M. M. Suzuki, Y. Sheng, R. F. Abdelhamid, S. Anand, J. Gehrig, A. Akalin, C. E. M. Kockx, A. A. J. van der Sloot, W. F. J. van IJcken, O. Armant, S. Rastegar, C. Watson, U. Strahle, E. Stupka, P. Carninci, B. Lenhard, and F. Muller, "Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis," Genome Research, vol. 23, no. 11, pp. 1938–1950, Nov. 2013.
- P. Carninci, A. Sandelin, B. Lenhard, S. Katayama, K. Shimokawa, J. Ponjavic, C. A. M. Semple, M. S. Taylor, P. G. Engström, M. C. Frith, A. R. R. Forrest, W. B. Alkema, S. L. Tan, C. Plessy, R. Kodzius, T. Ravasi, T. Kasukawa, S. Fukuda, M. Kanamori-Katayama, Y. Kitazume, H. Kawaji, C. Kai, M. Nakamura, H. Konno, K. Nakano, S. Mottagui-Tabar, P. Arner, A. Chesi, S. Gustincich, F. Persichetti, H. Suzuki, S. M. Grimmond, C. A. Wells, V. Orlando, C. Wahlestedt, E. T. Liu, M. Harbers, J. Kawai, V. B. Bajic, D. A. Hume, and Y. Hayashizaki, "Genome-wide analysis of mammalian promoter architecture and evolution," Nature Genetics, vol. 38, no. 6, pp. 626–635, Apr. 2006.

In order to permit cross referencing within LNCS-Online, and eventually between different publishers and their online databases, LNCS will, from now on, be standardizing the format of the references. This new feature will increase the visibility of publications and facilitate academic research considerably. Please base your references on the examples below. References that don't adhere to this style will be reformatted by Springer. You should therefore check your references thoroughly when you receive the final pdf of your paper. The reference section must be complete. You may not omit references. Instructions as to where to find a fuller version of the references are not permissible.

We only accept references written using the latin alphabet. If the title of the book you are referring to is in Russian or Chinese, then please write (in Russian) or (in Chinese) at the end of the transcript or translation of the title.

The following section shows a sample reference list with entries for journal articles [?], an LNCS chapter [?], a book [?], proceedings without editors [?] and

8 Raborn and Brendel

 \cite{black} as well as a URL \cite{black} . Please note that proceedings published in LNCS are not cited with their full titles, but with their acronyms!

7 Checklist of Items to be Sent to Volume Editors

Here is a checklist of everything the volume editor requires from you:	
☐ The final LATEX source files	
☐ A final PDF file	
☐ A copyright form, signed by one author on behalf of all of the authors of t paper.	he
☐ A readme giving the name and email address of the corresponding author	r.