Правительство Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет» Кафедра статистического моделирования

Миллер Анастасия Александровна

Некоторые методы оценки стоимости американских опционов

Отчет по научно-исследовательской работе

Научный руководитель: д. ф.-м. н., профессор С. М. Ермаков

Оглавление

Введение		3
	Задача оценки американского опциона в терминах тропической атики	
Глава 2.	Сравнение с методом стохастической сетки	7
Заключе	ние	9
Список л	итературы	10

Введение

Задачами семестра являлись формулировка проблемы на языке тропической математики и проведение детального сравнения разрабатываемого метода с методом стохастической сетки. Первая глава посвящена переформулировке задачи, во второй представлено
краткое описание метода стохастической сетки и проведён анализ преимуществ и недостатков этого метода по сравнению с разрабатываемым.

Глава 1

Задача оценки американского опциона в терминах тропической математики

Для Американского опциона с функцией выплат $h_t(X_t)$, где X_t — состояние актива, на который выписан опцион, в момент времени $t \in [0;T]$, задача оптимального исполнения — это задача о нахождении

$$V = \max_{\tau} Eh_{\tau} (X_{\tau}). \tag{1.1}$$

При дискретизации (1.1) (принятии предположения о том, что опцион может быть исполнен только в некотором конечном числе моментов времени $(\{t_i\}_{i=0}^m \in [0;T], t_0 = 0, t_m = T)$ задача обретает эквивалентную формулировку о нахождении $V_0(X_0)$ для

$$V_{m}(x) = h_{m}(x),$$

$$V_{i-1}(x) = \max \{h_{i-1}(x), \mathbb{E}[V_{i}(X_{i}) | X_{i-1} = x]\}.$$
(1.2)

В [1] были предложены оценки для $V_0(X_0)$ (см. также [2]). Оценка сверху:

$$\hat{V}_{m}^{j_{1}...j_{m}} = h_{m} \left(X_{m}^{j_{1}...j_{m}} \right),
\hat{V}_{i}^{j_{1}...j_{i}} = \max \left\{ h_{i} \left(X_{i}^{j_{1}...j_{i}} \right), \frac{1}{b} \sum_{i=1}^{b} \hat{V}_{i+1}^{j_{1}...j_{i}j} \right\}.$$
(1.3)

Оценка снизу:

$$\hat{v}_{m}^{j_{1}j_{2}\cdots j_{m}} = h\left(X_{m}^{j_{1}j_{2}\cdots j_{m}}\right),
\hat{v}_{ik}^{j_{1}j_{2}\cdots j_{i}} = \begin{cases}
h\left(X_{i}^{j_{1}j_{2}\cdots j_{i}}\right), & \text{если } \frac{1}{b-1}\sum_{j=1, j\neq k}^{b} \hat{v}_{i+1}^{j_{1}j_{2}\cdots j_{i}j} \leq h\left(X_{i}^{j_{1}j_{2}\cdots j_{i}}\right), \\
\hat{v}_{i+1}^{j_{1}j_{2}\cdots j_{i}k}, & \text{иначе}
\end{cases}$$

$$\hat{v}_{i}^{j_{1}j_{2}\cdots j_{i}} = \frac{1}{b}\sum_{k=1}^{b} \hat{v}_{ik}^{j_{1}j_{2}\cdots j_{i}}. \tag{1.4}$$

Для обеих оценок доказана состоятельность и асимптотическая несмещённость. Обозначения $X_i^{j_1\cdots j_i}$ соответствуют путям в дереве, пример которого приведён на рис. 1.1.

Рассмотрим оценку сверху (1.3) на небольшом примере: b=3, m=3. Обозначим операцию + как \odot и также \oplus . Будем также считать, что дерево состояний актива уже

Рис. 1.1. Дерево состояний актива

смоделировано и обозначим $h_i\left(X_i^{j_1\cdots j_i}\right)=h_{j_1\cdots j_i}.$ Тогда

$$\begin{split} \hat{V}_{1} &= h_{0} \oplus \left(\frac{h_{1}}{3} \odot \frac{h_{2}}{3} \odot \frac{h_{3}}{3}\right) \oplus \\ & \oplus \left(\frac{h_{1}}{3} \odot \frac{h_{2}}{3} \odot \left(\frac{h_{31}}{9} \odot \frac{h_{32}}{9} \odot \frac{h_{33}}{9}\right)\right) \oplus \\ & \oplus \left(\frac{h}{3} \odot \left(\frac{h_{21}}{9} \odot \frac{h_{22}}{9} \odot \frac{h_{23}}{9}\right) \odot \frac{h_{3}}{3}\right) \oplus \\ & \oplus \left(\left(\frac{h_{11}}{9} \odot \frac{h_{12}}{9} \odot \frac{h_{13}}{9}\right) \odot \frac{h_{2}}{3} \odot \frac{h_{3}}{3}\right) \oplus \\ & \oplus \left(\left(\frac{h_{11}}{9} \odot \frac{h_{12}}{9} \odot \frac{h_{13}}{9}\right) \odot \left(\frac{h_{21}}{9} \odot \frac{h_{22}}{9} \odot \frac{h_{23}}{9}\right) \odot \frac{h_{3}}{3}\right) \oplus \\ & \oplus \left(\frac{h_{1}}{3} \odot \left(\frac{h_{21}}{9} \odot \frac{h_{22}}{9} \odot \frac{h_{23}}{9}\right) \odot \left(\frac{h_{31}}{9} \odot \frac{h_{32}}{9} \odot \frac{h_{33}}{9}\right)\right) \oplus \\ & \oplus \left(\left(\frac{h_{11}}{9} \odot \frac{h_{12}}{9} \odot \frac{h_{13}}{9}\right) \odot \frac{h_{2}}{3} \odot \left(\frac{h_{31}}{9} \odot \frac{h_{32}}{9} \odot \frac{h_{33}}{9}\right)\right) \oplus \\ & \oplus \left(\left(\frac{h_{11}}{9} \odot \frac{h_{12}}{9} \odot \frac{h_{13}}{9}\right) \odot \left(\frac{h_{21}}{9} \odot \frac{h_{22}}{9} \odot \frac{h_{23}}{9}\right) \odot \left(\frac{h_{31}}{9} \odot \frac{h_{33}}{9}\right)\right) \oplus \\ & \oplus \left(\left(\frac{h_{11}}{9} \odot \frac{h_{12}}{9} \odot \frac{h_{13}}{9}\right) \odot \left(\frac{h_{21}}{9} \odot \frac{h_{22}}{9} \odot \frac{h_{23}}{9}\right) \odot \left(\frac{h_{31}}{9} \odot \frac{h_{33}}{9}\right)\right) \end{split}$$

В общем виде это выражение выглядит так:

$$\hat{V}_0 = \bigoplus_{\gamma \in \Gamma} A(\gamma), \qquad (1.5)$$

где Γ — полное дерево глубины m, т.е. дерево, у всех вершин которого, находящихся на меньшем, чем m, расстоянии от корня, есть ровно b дочерних вершин, а у вершин на расстоянии m детей нет, γ — поддерево Γ , у каждой вершины которого либо 0, либо b дочерних (примеры таких деревьев можно увидеть на рис.1.2),

$$A(\gamma) = \odot_{X \in \gamma} \frac{h_j(X)}{b^j}$$
, где j – расстояние от вершины X до корня. (1.6)

Рис. 1.2. Примеры поддеревьев γ

Таким образом, мы получаем выражение для верхней оценки опциона, построенное по отдельным поддеревьям $\gamma \in \Gamma$. Если мы докажем, что для получения состоятельной оценки максимума по всем γ необязательно подсчитывать $A\left(\gamma\right)$ для всех γ , мы добьёмся существенного снижения временных затрат.

Глава 2

Сравнение с методом стохастической сетки

Метод стохастической сетки излагается по [3] и (неопубликованной) [4].

Метод стохастической сетки также предлагает оценки сверху и снизу для решения (1.2), но принцип построения оценок несколько отличается от рассматриваемых мною оценок по случайному дереву.

Для описания состояния актива в моменты времени t_1, \ldots, t_m задаются плотности распределения случайной величины, характеризующей состояние актива, в зависимости от времени, обозначим их $g_i(\cdot)$. Для каждого момента $t \in \{t_i\}_{i=1}^m$ генерируется b точек X_t^1, \ldots, X_t^b в соответствии с этой плотностью. Оценка сверху по полученной сетке определяется как

$$\hat{Q}_{T}(X_{i}) = h_{T}(X_{T}^{i}),$$

$$\hat{Q}_{t}(X_{i}) = \max \left\{ h_{t}(X_{t}^{i}), \frac{1}{b} \sum_{j=1}^{b} \hat{Q}_{t+1}(X_{j}) w_{t}(X_{t}^{i}, X_{t+1}^{j}) \right\},$$
(2.1)

где $w_t\left(X_t^i,X_{t+1}^j\right)$ — вес, сопоставляемый переходу из X_t^i в X_{t+1}^j . \hat{Q}_0^0 является состоятельной и асимптотически несмещённой оценкой сверху для истинной цены опциона при условии, что веса w_t выбраны должным образом. Основная идея, поясняющая выбор весов, заключается в следующем рассуждении:

$$E(Q_{t+1}(X_{t+1})|X_t = x) = \int Q_{t+1}(u) f(x,t,u) du =$$

$$= \int Q_{t+1}(u) \frac{f(x,t,u)}{g_{t+1}(u)} g_{t+1}(u) du =$$

$$= E\left(Q_{t+1}(X_{t+1}) \frac{f(x,t,u)}{g_{t+1}(u)}\right),$$

где $f\left(x,t,u\right)$ — переходная плотность, плотность вероятности того, что актив из состояния x в момент t перейдёт в состояние u к моменту t+1. Таким образом, веса компенсируют неточность, порождённую моделированием состояний базового актива без учёта траекторий его развития. Для оценок по случайным деревьям эти веса не нужны, так как плотность распределения $X_{k+1}^{j_1\cdots j_{k+1}} \left| X_k^{j_1\cdots j_k} \right| = x$ всегда учитывает траекторию, по которой актив попадает в состояние $X_{k+1}^{j_1\cdots j_{k+1}}$ наличием условия в правой

части. Следовательно, ряд проблем, вызываемых поиском подходящей плотности g и весов w, которые бы обеспечили отсутствие экспоненциального роста дисперсии (решение этой проблемы и предлагается в [4]), пропадает сам собой.

Для построения оценки снизу моделируется ещё одна независимая траектория для базового актива, но сама оценка использует результаты, полученные при построении оценки сверху. Пусть эта независимая траектория – это X_0, \ldots, X_m . Тогда правило

$$\hat{\tau} = \min \left\{ t \in \left\{ t_i \right\}_{i=1}^m \middle| h_t \left(X_t \right) \geqslant \hat{Q}_t \left(X_t \right) \right\}$$

является субоптимальным правилом исполнения опциона (все моменты $\hat{\tau}$ являются оптимальными, но не все оптимальные моменты находятся этой политикой), следовательно, оценка

$$\hat{q} = h_{\hat{\tau}}(X_{\hat{\tau}}) \tag{2.2}$$

является оценкой снизу для истинной стоимости опциона. Оценка \hat{q} не имеет очевидных аналогов с оценкой снизу по случайному дереву (1.4), но на её основе, возможно, получится построить оценку снизу, удобно выражающуюся через операторы тропической математики.

Заключение

Получена формулировка задачи как задачи поиска максимума по всем возможным поддеревьям. Такая формулировка позволяет рассчитывать на то, что при применении соответствующих теорем (предположительно, [5], [6]) мы получим состоятельную оценку с меньшими временными затратами, чем в изначальном методе.

В дальнейшем планируется разработать такую состоятельную оценку.

Список литературы

- 1. Broadie Mark, Glasserman Paul. Pricing American-style securities by simulation // Journal of Economic Dynamics and Control. 1997. Vol. 21. P. 1323–1352.
- 2. Glasserman Paul. Monte Carlo Methods in Financial Engineering. Springer, 2004.
- 3. Broadie Mark, Glasserman Paul. A Sstochastic mesh method for pricing high-dimensional American options // The Journal of Computational Finance. 2004. Summer. Vol. 7, no. 4.
- 4. Kashtanov Yuri. Stochastic Mesh Method for Optimal Stopping Problem. 2015.
- 5. Невзоров Валерий Борисович. Рекорды. Математическая теория. ФАЗИС, 2000.
- 6. Zhigljavsky Anatoly, Žilinskas Antanas. Stochastic Global Optimization.— Springer, 2008.