Q.	Scheme	Marks
6	(a) $8\theta = 6$ $\theta = \frac{3}{4}$ (accept 0.75) oe	M1A1
	(b) $\frac{1}{2}r^2\theta = \frac{1}{2} \times 8^2 \times \frac{3}{4} = 24 \text{ cm}^2$	M1A1
	(c) Area of $\triangle ABC = \frac{1}{2} \times 8^2 \times \sin AOB = 21.81$	M1A1
	Area of segment = $24 - 21.81 = 2.187 = 2.19 \text{ cm}^2$	A1ft (7)
7.	(a) $V = 3x^2h = 30$	B1
	$S = 3x^2 + 2xh + 2 \times 3xh$ 10	B1
	$xh = \frac{10}{x} \Rightarrow S = 3x^2 + 2 \times \frac{10}{x} + 6 \times \frac{10}{x}$	M1
	$S = 3x^2 + \frac{80}{x}$	A1
	(b) $\frac{dS}{dx} = 6x - \frac{80}{x^2}$	M1
	$\frac{dS}{dx} = 0 6x^3 = 80 x = \sqrt[3]{\frac{40}{3}} (= 2.371)$	M1A1
	$S_{\min} = 3 \left(\sqrt[3]{\frac{40}{3}} \right)^2 + \frac{80}{\sqrt[3]{\frac{40}{3}}} = 50.60 = 50.6 \text{ cm}^3$	M1A1
	(c) $\frac{d^2S}{dx^2} = 6 + \frac{160}{x^3} > 0 \text{ for } x > 0$ $\therefore \text{ minimum}$	M1 A1ft (11)