Definições e Propriedades P1 Introdução a Topologia

Yuri Kosfeld

Abril 2025

Definição (**Distância**). Seja M um conjunto. Uma **distância** em M é uma função $d: M \times M \to [0, \infty)$ que satisfaz as seguintes propriedades:

- 1. d(x,x) = 0 para todo $x \in M$.
- 2. d(x,y) > 0 para todos $x, y \in M$ com $x \neq y$.
- 3. d(x,y) = d(y,x) para todos $x, y \in M$.
- 4. $d(x,z) \le d(x,y) + d(y,z)$ para todos $x, y, z \in M$.

Definição (Bola Aberta). Sejam (M, d) um espaço métrico, $x \in M$ e $\varepsilon > 0$. Definimos a bola aberta centrada em x e de raio ε como:

$$B(x,\varepsilon) = \{ y \in M \mid d(x,y) < \varepsilon \}$$

Definição (Bola da distância induzida).

$$B_A(x,\varepsilon) = \{ y \in A \mid d_A(x,y) < \varepsilon \}$$

$$B_A(x,\varepsilon) = B(x,\varepsilon) \cap A$$

Definição (Conjunto Aberto). $U \subset M$ é conjunto aberto se $\forall x \in U \ \exists \varepsilon > 0 \ tal \ que \ B(x, \varepsilon) \subset U$.

Definição (Vizinhança). U aberto tal que $x \in U$.

Definição (**Topologia**). Seja (M, d) espaço metrico, dizemos que **topologia** é a familia de todos os subconjuntos abertos de M.

$$\mathcal{T} = \{ U \subset M \mid U \ \acute{e} \ aberto \}$$

Definição (Aberto EM). Dizemos que U é aberto em $A \Leftrightarrow \exists V$ aberto em M tal que $U = V \cap A$.

Definição (Ponto de Interior). Dizemos que $x \in A$ é um ponto de interior de A se existir U vizinhança de x tal que $U \subset A$. Temos então int(A).

Proposição. Valem:

- 1. $int(A) \subset A$.
- 2. int(int(A)) = int(A)

- 3. $int(A \cap B) = int(A) \cap int(B)$
- 4. $int(A \cup B) \subset int(A) \cup int(B)$

Definição (**Ponto Limite**). Seja (M, d) espaço metrico e $A \subset M$. Dizemos que $x \in M$ é **ponto limite** de A, se $\forall \varepsilon > 0$ temos que $B(x, \varepsilon) \cap A \setminus x \neq \emptyset$. Conjunto de todos os pontos limites de A: A'.

Definição (**Ponto Isolado**). Dizemos que x é **ponto isolado** de A, se $x \in A \setminus A'$, ou seja, $\exists \varepsilon > 0$ tal que $B(x,\varepsilon) \cap A \setminus x = \emptyset$

Definição (Conjunto Fechado). Dizemos que $F \subset M$ é um conjunto fechado se $F' \subset F$.

Proposição. (M, d) espaço metrico e $A \subset M$. A é aberto $\Leftrightarrow A^c$ é fechado.

Definição (Fecho). Definimos o fecho de um conjunto A como $\overline{A} = A \cup A'$.

Proposição. Valem:

- 1. $x \in \overline{A} \Leftrightarrow \forall \varepsilon > 0 \ B(x, \varepsilon) \cap A \neq \emptyset$
- 2. $F \notin fechado \Leftrightarrow \overline{F} = F$

Definição (**Denso**). (M, d) espaço metrico, $A \subset M$. Dizemos que $A \notin denso$ se $\overline{A} = M$.

Proposição. A é denso \Leftrightarrow para todo U aberto de M, $U \cap A \neq \emptyset$.

Definição (Conjunto Perfeito). (M, d) espaço metrico, $A \subset M$. A é **perfeito** se A = A'. Todo conjunto perfeito é fechado.

Definição. Dizemos que um conjunto $A \subset M$ é **discreto** se para todo $x \in A$, existe $\varepsilon > 0$ tal que $B(x,\varepsilon) \cap A = \{x\}$.

Definição (Fronteira). (M, d) espaço metrico, $A \subset M$. A fronteira de A é definida como: $\partial A = \overline{A} \cap \overline{A^c}$

Proposição. Valem:

- 1. int(A) e ∂A são disjuntos.
- 2. $\overline{A} = int(A) \cup \partial A$
- 3. $\partial A = \emptyset \Leftrightarrow A \notin aberto \ e \ fechado \ ao \ mesmo \ tempo.$

Definição (Sequencia Convergente). Seja $\{x_k\}_{k\in\mathbb{N}}$ uma sequencia em M. x_k é convergente se:

$$\forall \varepsilon > 0 \exists k_0 \in \mathbb{N} \quad tal \ que \quad x_k \in B(x, \varepsilon) \ \forall \ k \geq k_0$$

Proposição. Valem:

- 1. A convergencia é unica.
- 2. M um conjunto e d_1 e d_2 duas distancias topologicamente equivalentes. Então x_k converge a x por d_1 se e somente se x_k converge a x por d_2 .
- 3. M espaço metrico e $A \subset M$. Então, $x \in \overline{A}$ se e somente se existe uma sequencia $\{a_k\}_{k \in \mathbb{N}}$ de pontos em A que convergem a x.

4. Sejam M_1, \ldots, M_n espaços metricos, e defina $M = M_1 \times \cdots \times M_n$ espaço metrico. Uma sequencia x_k em M é convergente se e somente se cada sequencia coordenada for convergente.

Definição (Sequencia de Cauchy). Dizemos que $x_{kk\in\mathbb{N}}$ é uma sequencia de cauchy se:

$$\forall \varepsilon > 0 \,\exists \, k_0 \in \mathbb{N} \quad tal \, que \, se \quad k,l \geq k_0 \, ent \tilde{a}o \, d(x_k,x_l) < \varepsilon$$

Definição (espaço Completo). Um espaço metrico M é completo se toda sequencia de Cauchy em M converge para um ponto de M.

Definição (Ponto de Aderencia). Dizemos que x é um ponto de aderencia de x_k se existe uma sub de x_k que converge a x.

Proposição. Valem:

- 1. Se x_k é convergente, então é de Cauchy.
- 2. Se x_k é de Cauchy e possui uma subsequencia convergente, então x_k é convergente.
- 3. Se $x_k \subset \mathbb{R}$ é monotona e limitada, então x_k é convergente.
- 4. Se $x_k \subset \mathbb{R}$ é limitada, então x_k possui uma sub convergente.
- 5. \mathbb{R} é completo.

Definição (Eventualmente Constante). Dizemos que x_k é eventualmente constante se existe k_0 tal que para todo $k, m \ge k_0$ temos $x_k = x_m$.

Definição (Isometria). Dizemos que $f: M \to N$ é uma isometria se é bijetiva e:

$$\forall x, y \in M$$
 $d_N(f(x), f(y)) = d_M(x, y)$

Definição (Homeomorfismo). Dizemos que f é um homeomorfismo se é bijetiva e:

$$U \in T_M$$
 se e somente se $f(U) \in T_N$

Definição (Continua). Uma função $f: M \to N$ é dita continua, se para todo aberto $U \subset N$, a pré-imagem $f^{-1}(U)$ é aberto em M.

Proposição. Valem as equivalencias:

- 1. f é continua
- 2. Para todo F fechado em N, $f^{-1}(F)$ é fechado em M.
- 3. Para todo $x \in M$ e para todo varepsilon > 0, existe $\Delta > 0$ tal que $f(B(x,\Delta)) \subset B(f(x),\varepsilon)$.
- 4. Para toda sequencia x_k em M e x em M, se x_k converge a x então $f(x_k)$ converge a f(x).
- 5. Para todo A em M, $f(\overline{A}) \subset \overline{f(A)}$.