Tribus, Fonctions Mesurables

Exercice 1 (Réunion et intersection dénombrables). 1. On a :

$$\bigcup_{n \in \mathbb{N}^*} \left[0, 1 - \frac{1}{n} \right] = [0, 1[, \bigcap_{n \in \mathbb{N}^*} \left[0, \frac{1}{n} \right] = \{0\}, \bigcup_{n \in \mathbb{N}^*} \left[\frac{1}{n}, 1 + \frac{1}{n} \right] =]0, 2[,$$

$$\bigcup_{k \in \mathbb{N}^*} \bigcap_{n=1}^{\infty} \left[k - \frac{1}{n+1}, k + \frac{1}{n} \right] = \bigcup_{k \in \mathbb{N}^*} \{k\} = \mathbb{N}^*.$$

2. Dire que x appartient à

$$\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{i\geq k}^{\infty} \left\{ x \in E, |f_i(x) - f(x)| \leqslant \frac{1}{n} \right\}$$

signifie que

$$\forall n \geqslant 1, \ \exists k \geqslant 1, \ \forall i \geqslant k, \quad |f_i(x) - f(x)| \leqslant \frac{1}{n},$$

c'est à dire que $\lim_{n\to\infty} f_n(x) = f(x)$.

Exercice 2. Commençons par remarquer que $x \in \limsup A_n$ signifie que

$$\forall n \in \mathbb{N}, \ \exists k \geqslant n, \quad x \in A_k,$$

c'est à dire x appartient à une infinité d'ensembles A_n .

D'un autre côté, $x \in \liminf A_n$ signifie que

$$\exists n \in \mathbb{N}, \ \forall k \geqslant n, \quad x \in A_k,$$

c'est à dire x appartient à tous les ensembles A_n sauf un nombre fini.

- 1. Il s'agit de montrer que, pour tout $n \in \mathbb{N}$, $\liminf A_n \subset \bigcup_{k \geqslant n} A_k$. Soit $x \in \liminf A_n$; il existe $n_0 \in \mathbb{N}$ tel que $x \in \bigcap_{k \geqslant n_0} A_k$. En particulier, pour tout $n, x \in A_{\max(n,n_0)} \subset \bigcup_{k \geqslant n} A_k$.
- 2. Si la suite $(A_n)_{\mathbb{N}}$ est croissante, pour tout $n \ge 0$, $\bigcap_{k \ge n} A_k = A_n$ et $\bigcup_{k \ge n} A_k = \bigcup_{k \ge 0} A_k$; par conséquent, $\liminf A_n = \limsup A_n = \bigcup_{n \in \mathbb{N}} A_n$.

Si la suite $(A_n)_{\mathbb{N}}$ est décroissante, pour tout $n \ge 0$, $\bigcap_{k \ge n} A_k = \bigcap_{k \ge 0} A_k$ et $\bigcup_{k \ge n} A_k = A_n$; par conséquent, $\liminf A_n = \limsup A_n = \bigcap_{n \in \mathbb{N}} A_n$.

Dans le 3e cas, pour tout $n\geqslant 0$, $\bigcap_{k\geqslant n}A_k=A\cap B$ et $\bigcup_{k\geqslant n}A_k=A\cup B$: $\liminf A_n=A\cap B$, $\limsup A_n=A\cup B$.

Finalement, si $A_n = \left[2 + (-1)^{n+1}, 3 + \frac{1}{n+1}\right]$, pour tout $n \ge 0$, $\bigcap_{k \ge n} A_k = \{3\}$ et $\bigcup_{k \ge n} A_k = [1, 3 + \frac{1}{n+1}]$: $\lim \inf A_n = \{3\}$, $\lim \sup A_n = [1, 3]$.

Exercice 3. 1. Soit $x \in \mathbb{R}$. L'ensemble $A = \{f(y) : y < x\}$ est non vide car $f(x-1) \in A$ et majoré par f(x) car f est croissante. Soit $M = \sup_{y < x} f(y)$. Pour tout $\varepsilon > 0$, il existe $t \in A$ tel que $A - \varepsilon < t \leqslant A$. Or t = f(z) avec z < x. Comme f est croissante, pour tout $z \leqslant y < x$, $A - \varepsilon < t = f(z) \leqslant f(y) \leqslant A$. Par conséquent, $\lim_{y \to x^-} f(y) = \sup_{y < x} f(y)$. On montre de même que $\lim_{y \to x^+} f(y) = \inf_{y > x} f(y)$.

2. Notons D l'ensemble des points de discontinuité de la fonction croissante f. On a

$$D = \left\{ x \in \mathbb{R} : \lim_{y \to x+} f(y) - \lim_{y \to x-} f(y) > 0 \right\} = \bigcup_{n \ge 1} \left\{ x \in [-n, n] : \lim_{y \to x+} f(y) - \lim_{y \to x-} f(y) \ge \frac{1}{n} \right\}.$$

Pour tout n, f(n+1) - f(-(n+1)) est supérieure à la somme des sauts de l'intervalle [-n, n]. Comme f(n+1) - f(-(n+1)) est une quantité finie, pour tout $\varepsilon > 0$, le nombre de sauts de l'intervalle [-n, n] supérieurs à ε est fini. En particulier, A_n est fini et D est (au plus) dénombrable.

Exercice 4. Soit $n \ge 0$. Pour tout $k \ge n$, $a_k + b_k \le \sup_{k \ge n} a_k + \sup_{k \ge n} b_k$; donc

$$\sup_{k\geqslant n}(a_k+b_k)\leqslant \sup_{k\geqslant n}a_k+\sup_{k\geqslant n}b_k.$$

En prenant la limite quand n tend vers l'infini, on obtient $\limsup (a_n + b_n) \leq \limsup a_n + \limsup b_n$.

Prenons $a_n = (-1)^n$ et $b_n = (-1)^{n+1}$. On a $\limsup a_n = \limsup b_n = 1$ alors que $\limsup (a_n + b_n) = 0$ puisque $a_n + b_n = 0$ pour tout n.

Soit $n \in \mathbb{N}$. Pour tout $k \geqslant n$, $a_k - b_k \leqslant \sup_{k \geqslant n} a_k - \inf_{k \geqslant n} b_k$. Par conséquent,

$$\sup_{k \geqslant n} (a_k - b_k) \leqslant \sup_{k \geqslant n} a_k - \inf_{k \geqslant n} b_k, \quad \text{et}, \quad \limsup(a_n - b_n) \leqslant \limsup a_n - \liminf b_n.$$

Cette dernière inégalité est une égalité lorsque $a_n = (-1)^n$ et $b_n = (-1)^{n+1}$.

Exercice 5. Comme \mathbb{R} est complet, la suite $(f_n(x))_{n\geq 0}$ et convergente si et seulement si elle est de Cauchy c'est à dire, comme $\lim_{r\to\infty} 2^{-r} = 0$,

$$\forall r \in \mathbb{N}, \quad \exists n \in \mathbb{N}: \quad \forall k \geqslant n, \forall l \geqslant n, \qquad |f_k(x) - f_l(x)| \leqslant 2^{-r};$$

autrement dit $(f_n(x))_{n\geq 0}$ est convergente si et seulement si x appartient à l'ensemble

$$\bigcap_{r \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} \bigcap_{l \ge n} \left\{ x \in \mathbb{R} : |f_k(x) - f_l(x)| \le 2^{-r} \right\}.$$

Pour tous entiers k et l, $|f_k - f_l|$ est une fonction mesurable et donc, pour tout r,

$$\left\{x \in \mathbb{R} : |f_k(x) - f_l(x)| \leqslant 2^{-r}\right\} \in \mathcal{A}.$$

Une tribu étant stable par union et intersection dénombrable,

$$A = \bigcap_{r \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{k \geqslant n} \bigcap_{l \geqslant n} \left\{ x \in \mathbb{R} : |f_k(x) - f_l(x)| \leqslant 2^{-r} \right\} \in \mathcal{A}.$$

On peut aussi remarquer que $(f_n(x))_{n\geqslant 0}$ converge dans $\mathbb R$ si et seulement si x appartient à l'ensemble

$$\{x\in\mathbb{R}: \liminf f_n(x)>-\infty\}\bigcap\{x\in\mathbb{R}: \limsup f_n(x)<+\infty\}\bigcap\{x\in\mathbb{R}: \liminf f_n(x)=\limsup f_n(x)\}.$$

Exercice 6. Dans \mathbb{R} , $A_n = [n, +\infty[$.

Exercice 7. Rappelons que

$$f^{-1}(Y) = \{x \in E : f(x) \in Y\}, \quad f(X) = \{f(x) : x \in X\}.$$

En particulier, $x \in f^{-1}(Y)$ équivaut à $f(x) \in Y$.

1. Dire que $x \in f^{-1}(Y^c)$ signifie que $f(x) \in Y^c$ c'est à dire que $f(x) \notin Y$ soit, en contraposant l'équivalence ci-dessus, que $x \notin f^{-1}(Y)$ ou encore que $x \in \left(f^{-1}(Y)\right)^c$.

On considère la fonction $f(x) = x^2$ de \mathbb{R} dans \mathbb{R} . Si

(i) Si
$$X = [-1, 1], f(X^c) =]1, +\infty[\subset f(X)^c =]-\infty, 0[\cup]1, +\infty[$$
;

(iii) Si
$$X = [0, 1], f(X^c) =]0, +\infty[$$
 et $f(X)^c =]-\infty, 0[\cup]1, +\infty[$.

On considère $f(x) = x^2$ de \mathbb{R} dans \mathbb{R}_+ .

(ii) Si
$$X = [0, +\infty[, f(X)^c = \emptyset \subset f(X^c) =]0, +\infty[.$$

2. On a

$$x \in f^{-1}(\cap Y_i) \iff f(x) \in \cap Y_i \iff \forall i \in I, \ f(x) \in Y_i \iff \forall i \in I, \ x \in f^{-1}(Y_i) \iff x \in \cap f^{-1}(Y_i) ;$$
$$x \in f^{-1}(\cup Y_i) \iff f(x) \in \cup Y_i \iff \exists i \in I, \ f(x) \in Y_i \iff \exists i \in I, \ x \in f^{-1}(Y_i) \iff x \in \cup f^{-1}(Y_i).$$

Dire que $y \in f(\cup X_i)$ signifie que y = f(x) avec $x \in \cup X_i$ c'est à dire qu'il existe $i \in I$ et $x \in X_i$ tel que y = f(x) soit encore qu'il existe $i \in I$ tel que $y \in f(X_i)$ autrement dit que $y \in \cup f(X_i)$.

Pour tout i, comme $\cap X_i \subset X_i$, on a $f(\cap X_i) \subset f(X_i)$ et donc $f(\cap X_i) \subset \cap f(X_i)$.

L'inclusion dans l'autre sens est fausse en général. Par exemple, si $f(x) = x^2$ de \mathbb{R} dans \mathbb{R} , $X_1 =]-\infty, 0[$ et $X_2 =]0, +\infty[$, $f(X_1 \cap X_2) = \emptyset$ alors que $f(X_1) \cap f(X_2) =]0, +\infty[$.

Elle est vraie si f est injective. En effet, si $y \in \cap f(X_i)$, pour tout i, il existe $x_i \in X_i$ tel que $y = f(x_i)$. Comme f est injective, tous les x_i sont égaux, disons à x, qui est élément de $\cap X_i$; donc $y \in f(\cap X_i)$.

Exercice 8 (Fonctions indicatrices).

Exercice 9. Remarquons tout d'abord un ensemble A appartient à \mathcal{A} si et seulement si A est symétrique c'est à dire $-x \in A$ dès que $x \in A$.

- 1. Vérifions les trois points de la définition.
 - (i) $\emptyset \in \mathcal{A}$.
- (ii) Soit $A \in \mathcal{A}$. Montrons que $A^c \in \mathcal{A}$. Soit $x \in A^c$. Si $-x \notin A^c$ alors $-x \in A$. Or A est symétrique donc $x \in A$ ce qui est bien évidemment faux. Donc $-x \in A^c$ et $A^c \in \mathcal{A}$.
- (iii) Soit $(A_n)_{\mathbb{N}} \subset \mathcal{A}$. Soit $x \in \cup A_n$. Il existe n tel que $x \in A_n$. Comme A_n est symétrique, $-x \in A_n \subset \cup A_n$. Donc $\cup A_n$ est symétrique.
- 2. Puisque f est paire, $f^{-1}(\mathcal{P}(\mathbb{R})) \subset \mathcal{A}$. En effet, si $B \subset \mathbb{R}$ et $x \in f^{-1}(B)$, on a $f(-x) = f(x) \in B$ c'est à dire $-x \in f^{-1}(B)$. D'autre part, si $A \in \mathcal{A}$, par parité, $A = f^{-1}(f(A \cap \mathbb{R}_+))$ ce qui montre que $\mathcal{A} \subset f^{-1}(\mathcal{P}(\mathbb{R}))$.
- 3. Commençons par montrer que les fonctions mesurables par rapport à \mathcal{A} et \mathcal{A} sont les fonctions f telle que f^2 est paire.
 - (i) Soit f mesurable par rapport à \mathcal{A} et \mathcal{A} : pour toute partie $B \subset \mathbb{R}$ symétrique, $f^{-1}(B)$ est symétrique. Soit $x \in \mathbb{R}$. Considérons $B = \{f(x), -f(x)\}$. x appartient à $f^{-1}(B)$ ($f(x) \in B$) qui est symétrique; donc $-x \in f^{-1}(B)$ c'est à dire f(-x) = f(x) ou f(-x) = -f(x). Par conséquent, $f^2(-x) = f^2(x)$; f^2 est une fonction paire.
 - (ii) Réciproquement, si f est telle que f^2 est paire, montrons que $f^{-1}(B)$ est symétrique lorsque B l'est. Si $x \in f^{-1}(B)$, on a $f^2(-x) = f^2(x)$ et donc f(-x) = f(x) ou f(-x) = -f(x). Comme $f(x) \in B$ et B est symétrique, $-f(x) \in B$ et donc f(-x) appartient à B c'est à dire $-x \in f^{-1}(B)$.

Montrons à présent que les fonctions mesurables par rapport à \mathcal{A} et $\mathcal{P}(\mathbb{R})$ sont les fonctions paires.

- (i) Si f est paire, l'image réciproque de toute partie est symétrique. En effet, si $x \in f^{-1}(B)$ i.e. $f(x) \in B$ alors $f(-x) = f(x) \in B$ c'est à dire $-x \in f^{-1}(B)$.
- (ii) Réciproquement, si l'image réciproque par f de toute partie est symétrique alors, pour tout $x \in \mathbb{R}$, $-x \in f^{-1}(\{f(x)\})$ c'est à dire f(-x) = f(x). La fonction f est paire.

Exercice 10 (Tribu trace).

Exercice 11. Rappelons que $A \otimes B$ est la tribu engendrée sur $E \times F$ par par les ensembles $A \times B$, où $A \in A$ et $B \in \mathcal{B}$.

Notons \mathcal{P} la tribu engendrée sur $E \times F$ par par les ensembles $A \times B$, où $A \in \mathcal{E}$ et $B \in \mathcal{F}$. Puisque $\mathcal{E} \subset \mathcal{A}$ et $\mathcal{F} \subset \mathcal{B}$, $\mathcal{P} \subset \mathcal{A} \otimes \mathcal{B}$.

Pour montrer que $\mathcal{A} \otimes \mathcal{B} \subset \mathcal{P}$, il suffit de montrer, puisque que « la tribu engendrée est la plus petite tribu contenant », que tout ensemble $A \times B$ où $A \in \mathcal{A}$ et $B \in \mathcal{B}$ appartient à \mathcal{P} .

Considérons l'ensemble \mathcal{C} suivant : $\mathcal{C} = \{A \in \mathcal{A} : A \times F \in \mathcal{P}\}$. Montrons que C est une tribu.

- (i) $E \in \mathcal{C}$ puisque \mathcal{A} et \mathcal{P} sont des tribus;
- (ii) Si $A \in \mathcal{C}$ i.e. $A \times F \in \mathcal{P}$ avec $A \in \mathcal{A}$, alors $A^c \in \mathcal{A}$ car \mathcal{A} est une tribu et $(A \times F)^c = A^c \times F \in \mathcal{P}$ puisque \mathcal{P} est aussi une tribu. Donc $A^c \in \mathcal{C}$.

(iii) Si $(A_n)_{\mathbb{N}} \subset \mathcal{C}$, pour tout entier $n, A_n \in \mathcal{A}$ et $A_n \times F \in \mathcal{P}$. A et \mathcal{P} étant des tribus donc stables par union dénombrable, $\cup A_n \in \mathcal{A}$ et $\cup (A_n \times F) = (\cup A_n) \times F \in \mathcal{P}$. Donc $\cup A_n \in \mathcal{C}$.

Par ailleurs, puisque $F \in \mathcal{F}$, $\mathcal{E} \subset \mathcal{C}$ par définition de \mathcal{P} . \mathcal{C} est une tribu qui contient \mathcal{E} : elle contient $\sigma(\mathcal{E})$. D'où $\mathcal{A} = \sigma(\mathcal{E}) \subset \mathcal{C}$. Par conséquent, $\mathcal{C} = \mathcal{A}$. En particulier, pour tout $A \in \mathcal{A}$, $A \times F \in \mathcal{P}$.

On montre de la même façon que, pour tout $B \in \mathcal{B}$, $E \times B \in \mathcal{P}$ et finalement que

$$\forall A \in \mathcal{A}, \quad \forall B \in \mathcal{B}, \qquad A \times B = (A \times F) \cap (E \times B) \in \mathcal{P}.$$

Exercice 12. 1. Puisque \mathbb{Q} est dense dans \mathbb{R} , si f(x) < g(x), il existe un rationnel q tel que f(x) < q < g(x) et réciproquement. D'où

$$\{x \in E : f(x) < g(x)\} = \bigcup_{q \in \mathbb{Q}} \{x \in E : f(x) < q < g(x)\} = \bigcup_{q \in \mathbb{Q}} \left(\{x \in E : f(x) < q\} \cap \{x \in E : g(x) > q\}\right).$$

Comme f et g sont mesurables, les ensembles $\{x \in E : f(x) < q\}$ et $\{x \in E : g(x) > q\}$ appartiennent à \mathcal{A} pour tout $q \in \mathbb{Q}$. Une tribu étant stable par intersection et union dénombrable, $A \in \mathcal{A}$ puisque \mathbb{Q} est dénombrable.

2. D'après la question précédente, l'ensemble $A' = \{x \in E : g(x) < f(x)\} \in \mathcal{A}$. Par conséquent, $B = (A')^c$ et $C = B \setminus A$ sont éléments de \mathcal{A} .

Exercice 13. Montrons que f n'est pas continue sur \mathbb{Q} . Soit $x_0 \in \mathbb{Q}$. On a $f(x_0) > 0$. Soit z un irrationnel (par exemple $z = \sqrt{2}$). Pour tout $n \in \mathbb{N}^*$, $x_n = x_0 + z/n$ est irrationnel et $f(x_n) = 0$. Par conséquent, $\lim_{n \to \infty} x_n = x_0$ et $\lim_{n \to \infty} f(x_n) = 0 < f(x_0)$: f n'est pas continue au point x_0 .

Montrons que f est continue sur $\mathbb{R}\backslash\mathbb{Q}$. Soient $x_0\in\mathbb{R}\backslash\mathbb{Q}$ et $(x_n)_{n\geqslant 0}$ telle $\lim_{n\to\infty}x_n=x_0$. Comme $x_0\neq 0$, on peut supposer que $x_n\neq 0$ pour tout n. Supposons que la suite $(f(x_n))_{n\geqslant 0}$ ne converge pas vers $f(x_0)=0$. Comme f est positive, il existe $\varepsilon>0$ telle que, pour tout $n\geqslant 0$, il existe $k\geqslant n$, telle que $f(x_k)>\varepsilon$. Il existe donc une sous-suite (x_{n_k}) telle que $f(x_{n_k})>\varepsilon$. Puisque f est nulle sur $\mathbb{R}\backslash\mathbb{Q}$, $x_{n_k}=p_{n_k}/q_{n_k}\in\mathbb{Q}$ avec $p_{n_k}\in\mathbb{Z}$ et $q_{n_k}\in\mathbb{N}^*$ premiers entre eux et $f(x_{n_k})=1/q_{n_k}>\varepsilon$. La suite $(q_{n_k})_k$ est donc bornée; elle possède une sous-suite convergente $(q_{n_{k_j}})$. La suite $(p_{n_{k_j}}=x_{n_{k_j}}q_{n_{k_j}})$ est aussi convergente. Ces deux suites étant à valeurs dans \mathbb{N}^* et \mathbb{Z} , elles sont constantes à partir d'un certain rang : pour tout $j\geqslant j_0,\ x_{n_{k_j}}=p/q$ avec $p\in\mathbb{Z}^*$ et $q\in\mathbb{N}^*$. Ceci est impossible car on aurait $\lim x_{n_{k_j}}=p/q\in\mathbb{Q}$ alors que $\lim x_{n_{k_j}}=x_0\notin\mathbb{Q}$.

Exercice 14 (Algèbre des fonctions étagées).