MATLAB EXPO 2021

基于模型构建燃料电池堆与整车虚拟平台

齐卓锟, MathWorks

要点

- MathWorks 工具为虚拟燃料电池整车建模赋能
 - 真实的环境和测试场景
 - 基于整车仿真的分析、控制设计和优化

- 燃料电池系统建模的方法论和工作流
 - 基于物理和化学的第一法则法
 - 使用实验数据或高精度仿真的数据驱动统计方法

交通运输领域: 什么是电气化?

电气化是指电气技术和能源管理日益增多的使用,以提高交通运输,工业高交通运输,工业系统,消费级和专业级设备以及发电和输电系统的效率、性能和可靠性。

燃料电池分类

燃料电池 类型	电解质类型	工作温度	催化剂类 型	优势	劣势	应用领域
PEM	高分子电解 质膜	50-100	铂	快速启动室温工作空气为氧化剂	• 对 CO 敏感 • 反应物需加湿	• 车辆动力 • 便携电源
AFC	碱	90-100	镍 / 银	快速启动室温工作	• 需要纯氧气作为 氧化剂	航空航天军工
PAFC	磷酸	150-200	铂	• 对 CO2 不敏感	对 CO 敏感启动缓慢	• 分布式发电
SOFC	固体氧化物	650-1000	LaMnO ₃ / LaCoO ₃	空气为氧化剂高能源效率	• 工作温度高	・ 大型分布式发电・ 便携电源
MCFC	熔融碳酸盐	600-700	镍	空气为氧化剂高能源效率	• 工作温度高	• 大型分布式发电

燃料电池分类

燃料电池 类型	电解质类型	工作温度	催化剂类 型	优势	劣势	应用领域
PEM	高分子电解 质膜	50-100	铂	快速启动室温工作空气为氧化剂	• 对 CO 敏感 • 反应物需加湿	• 车辆动力 • 便携电源
AFC	碱	90-100	镍 / 银	快速启动室温工作	• 需要纯氧气作为 氧化剂	航空航天军工
PAFC	磷酸	150-200	铂	• 对 CO2 不敏感	对 CO 敏感启动缓慢	• 分布式发电
SOFC	固体氧化物	650-1000	LaMnO ₃ / LaCoO ₃	空气为氧化剂高能源效率	• 工作温度高	大型分布式发电便携电源
MCFC	熔融碳酸盐	600-700	镍	空气为氧化剂高能源效率	• 工作温度高	• 大型分布式发电

PEM 燃料电池是汽车领域的首要选项。

燃料电池分类

燃料电池 类型	电解质类型	工作温度	催化剂类 型	优势	劣势	应用领域
PEM	高分子电解 质膜	50-100	铂	快速启动室温工作空气为氧化剂	• 对 CO 敏感 • 反应物需加湿	车辆动力便携电源
AFC	碱	90-100	镍 / 银	快速启动室温工作	需要対象与作为优势	• 航空航天
PAFC	磷酸	150-200	铂	• 对 CO2 不敏感		传统燃油更 传统燃油更
SOFC	固体氧化物	650-1000	LaMnO ₃ / LaCoO ₃	空气为氧化剂高能源效率	• 相	其它系统更 同功率下较
MCFC	熔融碳酸盐	600-700	镍	空气为氧化剂高能源效率	,,,,	本更高 氢气的存储
					-τ.	主いいけいには

PEM 燃料电池是汽车领 域的首要选项。

• 较传统燃油更低的排放

- 较传统燃油更高的燃油经济性
- 较其它系统更易扩展
- 相同功率下较电池更轻
- 劣势
 - 成本更高
 - 纯氢气的存储和运输面临挑战
 - 杂质会降低系统性能
- 其他 大量的投资!

燃料电池虚拟整车 (FCEV) 架构

挑战: 燃料电池系统与电驱动总成其余部分的相互作用

- 驾驶循环和运行场景
- 电机, 电池, DCDC 转换器, 传动总成
- 顶层调度和局部控制算法

FCEV 中的燃料电池系统操作

- 确定瞬时功率需求
- 将功率需求转换为电流需求
- 在电池和燃料电池之间分配电流需求
- 将电流指令转换为氢气/空气流量的指令

案例视频: 燃料电池整车的控制开发

燃料电池虚拟整车建模

通过垂直集成实现基于燃料电池的系统交付

燃料电池虚拟整车建模

通过垂直集成实现基于燃料电池的系统交付

电驱动物理模型

案例: 燃油电池虚拟整车的仿真

- 整车燃油经济性、性能和热分析
- 实现基于模型的控制设计

燃料电池系统建模

- 面向热力学的方法论
 - 电化学 & BoP 辅助系统
 - 设计并优化燃料电池系统
 - 更高精度,更多细节
 - 物理建模工具
- 面向系统集成的方法论
 - 输入-输出/查表/统计学
 - 集成和调度控制
 - 快速运行,更少细节
 - 统计建模工具

燃料电池系统模型:面向热力学

- 燃料电池堆
 - 用 Simscape language来实现反应过程
- BoP 辅助系统
 - 压缩机
 - 加湿器
 - 冷却系统
 - 氢气再循环
 - 水管理

Shipping example in R2021a: PEM Fuel Cell System

案例: 特性曲线和驾驶循环研究

Stack Characteristic Curves (Current sweep)

燃料电池系统模型:面向系统集成

- 建立查表 (LUT) 和基于统计的模型
 - 从试验数据集创建
 - 从高精度仿真创建
 - 适用于集成分析和控制开发的快速运行模型
- Model-Based Calibration Toolbox
 - 用于复杂非线性系统建模和标定的应用程序 和设计工具

案例: 从试验数据建立燃料电池模型

从燃料电池实车收集而来的实验室数据

Argonne National Laboratory, "Technology Assessment of a Fuel Cell Vehicle: 2017 Toyota Mirai", ANL/ESD-18/12

- 为后续的仿真和验证生成并导出 MBC 模型
- 从试验数据到仿真模型的快速通道

总结

- PEM 燃料电池系统成为电驱动总成的趋势
- MathWorks 工具具备燃料电池虚拟车辆模型建模能力
- MathWorks 工具和工作流,支持使用如下方式建立燃料电池系统模型
 - 1) 基于燃料电池堆电化学原理的解析方法
 - 2) 基于试验数据或高精度仿真的统计学数据驱动方法
- 用于燃料电池电动车燃油经济性、性能和热分析的高效、可定制解决方案,

MATLAB EXPO 2021

谢谢!

© 2021 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.