Uniqueness of Electrical. Conductivity Through an Open Bounded Domain Adam Miller University of California, Irvine June 26, 2024

Table of Contents

- 1 History of the Calderón Problem
- 2 The Dirchlet-to-Neumann Map
- **3** Complex Geometrical Optics Solutions
- 4 Applications

Inverse Problems

Inverse Problem

An *Inverse Problem* is a problem of recovering unknown parameters from external observations (measurements, data) on a system.

On an inverse boundary value problem

The Calderón Problem

Is it possible to determine the electrical conductivity throughout a domain Ω by making measurements of voltage and current on the boundary?

On an inverse boundary value problem

The Calderón Problem

Is it possible to determine the electrical conductivity throughout a domain Ω by making measurements of voltage and current on the boundary?

Figure: $\Omega \subseteq \mathbb{R}^n, n \geq 2$

Motivation

Motivation UC

> Exploration Geophysics

Motivation

UCI

> Exploration Geophysics

- >> Oil
- >> Ore deposits
- >> Water reservoirs

Dirichlet Problem

Dirichlet Problem

A Dirichlet Problem for a particular partial differential equation (PDE) is finding a function which solves the PDE on the interior of Ω given one that solves it on the boundary $\partial\Omega$.

Conductivity Problem

> Conductivity function $\gamma(x)$

Conductivity Problem

UCI

- **>** Conductivity function $\gamma(x)$
- **>** Voltage Potential function f(x) on $\partial\Omega$

Conductivity Problem

- **>** Conductivity function $\gamma(x)$
- **>** Voltage Potential function f(x) on $\partial\Omega$
- ightharpoonup u solves the Dirichlet problem for the conductivity equation:

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = 0 & \text{ in } \Omega \\ u = f & \text{ on } \partial \Omega \end{cases}.$$

Dirichlet-to-Neumann Map

Dirichlet-to-Neumann map

$$\Lambda_{\gamma} f = \gamma \frac{\partial u}{\partial \nu} \bigg|_{\partial \Omega}$$

Dirichlet-to-Neumann Map

Dirichlet-to-Neumann map

$$\Lambda_{\gamma} f = \gamma \frac{\partial u}{\partial \nu} \bigg|_{\partial \Omega}$$

 \blacktriangleright Describes the current flowing through the boundary of $\Omega.$

Theorem

If $\Lambda_{\gamma_1} = \Lambda_{\gamma_2}$ on $\partial \Omega$, then $\gamma_1 = \gamma_2$ on Ω .

- > Recall that Λ_{γ} is the Dirichlet-to-Neumann map for the positive conductivity function γ .
- If two conductivity functions have the same Dirichlet-to-Neumann map on $\partial\Omega$, then they must be the same.

Complex Geometrical Optics solutions

A Complex Geometrical Optics (CGO) solution to a PDE is of the form

$$u(x) = e^{i\zeta \cdot x} (1 + r(x))$$

The Schrödinger Equation

CGOs of the Schrödinger Equation

For a voltage potential $q \in L^{\infty}(\Omega)$, the Schrödinger equation

$$(\Delta + q)u = 0 \text{ in } \Omega$$

has a complex geometrical optics solution of the form

$$u(x) = e^{\zeta \cdot x} \gamma^{-\frac{1}{2}}(x) \left(1 + O\left(\frac{1}{|\zeta|}\right) \right), \ |\zeta| \to \infty.$$

The Schrödinger Equation

CGOs of the Schrödinger Equation

For a voltage potential $q \in L^{\infty}(\Omega)$, the Schrödinger equation

$$(\Delta + q)u = 0 \text{ in } \Omega$$

has a complex geometrical optics solution of the form

$$u(x) = e^{\zeta \cdot x} \gamma^{-\frac{1}{2}}(x) \left(1 + O\left(\frac{1}{|\zeta|}\right) \right), \ |\zeta| \to \infty.$$

> This CGO solution is the key to proving the uniqueness result.

Detection of Corrosion

- Detection of cracks, corrosion, and leaks
- Nondestructive testing of materials

Electrical Impedance Tomography

- Early Detection of Breast Cancer
- Monitoring Lung Health

Thank you!

