Assignment 7

Problem 1.

To perform the inverse dynamics analysis, please run the MATLAB file "simEngine3D_A7P1.m". The plot that displays the value of the torque:

Problem 2. Plots of x and y:

Problem 3.

(a)

Prob 3.

a) Proo f:

① $y(1) = \frac{1}{1} + \frac{1}{1} \tan(\frac{1}{1} + x_{-1})$ $= 1 + \tan(x)$ = 1 + 0 = 1So $y(t) = \frac{1}{6} + \frac{1}{6} \tan(\frac{1}{6} + x_{-1})$ satisfies the I(0) = 1.

② $\dot{y} = -\frac{1}{62} - \frac{2}{13} \tan(\frac{1}{6} + x_{-1}) + \frac{1}{6} \cdot (-\frac{1}{6}) \cdot [1 + \tan^{2}(\frac{1}{6} + x_{-1})]$ $= -\frac{1}{6} \cdot -\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$

(b) and (c)

(d)
From the plots, we can see the convergence of Backward Euler has a slope of 1, and the convergence of 4th order BDF is a quartic curve. To show this, I add a log-log plot where the slopes are 1 and 4 respectively. This result makes sense as Backward Euler is a first order method and 4th order BDF is a 4th order method.

