Analysis Notes

Cruz Godar

Math 412, 413, and 414 Professor Hamilton Cal Poly, Fall 2017–Spring 2018

I - A Construction of \mathbb{R}

Definition 1.1: A **Dedekind cut** is a set $A \subseteq \mathbb{Q}$ such that

- 1. $A \neq \emptyset$ and $A \neq \mathbb{Q}$.
- 2. If $r \in A$, then $q \in A$ for all $q \in \mathbb{Q}$ with q < r.
- 3. A does not have a maximum element that is, if $r \in A$, then r < s for some $s \in A$.

Definition 1.2: The **real numbers**, \mathbb{R} , are the set of all Dedekind cuts.

Definition 1.3: Let $A, B \in \mathbb{R}$. A is **less than** B, written $A \leq B$, if $A \subseteq B$.

Proposition 1.4: \leq is a total order on \mathbb{R} .

Proof: Clearly, \leq is reflexive, antisymmetric, and transitive, since \subseteq is. Thus \leq is a partial order on $\mathbb R$. To show that it is a total order, suppose $A \nleq B$. Then $A \nsubseteq B$, so there is an $a \in A$ with $a \notin B$. Let $b \in B$. Since $a \notin B$, $b \in B$, and B is a cut, a > b (where \leq here is the standard order on $\mathbb Q$), and since A is a cut, $b \in A$. Thus $B \subseteq A$, so $B \leq A$.

Definition 1.5: Let $A, B \in \mathbb{R}$. The sum of A and B is A + B $\{a + b \mid a \in A, b \in B\}$.

Theorem 1.6: \mathbb{R} is closed under addition.

Proof: Let $A, B \in \mathbb{R}$. To show $A + B \in \mathbb{R}$, we need to verify each of the three Dedekind cut axioms.

- (1) Since $A \neq \emptyset$ and $B \neq \emptyset$, $A + B \neq \emptyset$. Since $A \neq \mathbb{Q}$ and $B \neq \mathbb{Q}$, there is an $s \in \mathbb{Q} \setminus A$ and a $t \in \mathbb{Q} \setminus B$, and since A and B are cuts, a < s and b < t for all $a \in A$ and $b \in B$. Thus a + b < s + t for all $a \in A$ and $b \in B$, or equivalently, for all $a + b \in A + B$. Thus $s + t \notin A + B$, so $A + B \neq \mathbb{Q}$.
- (2) Let $a+b \in A+B$ and let $s \in \mathbb{Q}$ such that s < a+b. Then s-b < a, so $s-b \in A$, since A is a cut. Thus $(s-b)+b=s \in A+B$.
- (3) Let $a + b \in A + B$. Since A and B are cuts, there is an $s \in A$ and a $t \in B$ such that a < s and b < t. Then $s + t \in A + B$ and a + b < s + t.

Proposition 1.7: Let $A, B, C \in \mathbb{R}$. Then A + B = B + A and (A + B) + C = A + (B + C).

Definition 1.8: The real numbers **zero** and **one** are defined as $\mathbf{0} = \{q \in \mathbb{Q} \mid q < 0\}$ and $\mathbf{1} = \{q \in \mathbb{Q} \mid q < 1\}$.

Proposition 1.9: For all $A \in \mathbb{R}$, $A + \mathbf{0} = A$.

Proof: (\subseteq) Let $a + x \in A + \mathbf{0}$. Since x < 0, a + x < a, and since A is a cut, $a + x \in A$. Thus $A + \mathbf{0} \subseteq A$.

(2) Let $a \in A$. Since A is a cut, there is an $s \in A$ such that s > a. Then a - s < 0, so $a - a \in \mathbf{0}$. Thus $a = s + (a - s) \in A + \mathbf{0}$, so $A \subset A + \mathbf{0}$.

Definition 1.10: Let $A \in \mathbb{R}$. The additive inverse of A is $-A = \{r \in \mathbb{Q} \mid r < -t \text{ for some } t \notin A\}$.

Proposition 1.11: Let $A \in \mathbb{R}$. Then $-A \in \mathbb{R}$.

Proposition 1.12: Let $A \in \mathbb{R}$. Then A + (-A) = 0.

Proof: (\subseteq) Let $a + n \in A + (-A)$. Since $n \in -A$, there is a $t \notin A$ such that n < -t, and since $a \in A$ and $t \notin A$, a < t < -n, so a + n < 0. Thus $a + n \in \mathbf{0}$, so $A + (-A) \subseteq \mathbf{0}$.

(2) Let $x \in \mathbf{0}$, let $\varepsilon = \frac{|x|}{2} = -\frac{x}{2}$, and let $t \in \mathbb{Q}$ such that $t \notin A$ but $t - \varepsilon \in A$. Since $t \notin A$, $-(t + \varepsilon) \in -A$, since $t < -(-(t + \varepsilon))$ and therefore $-(t + \varepsilon) < -t$. Then $x = -2\varepsilon = -(t + \varepsilon) + (t - \varepsilon) \in A + (-A)$, so $\mathbf{0} \subseteq A + (-A)$.

Definition 1.13: Let $A, B \in \mathbb{R}$. If $A \ge 0$ and $B \ge 0$, then the **product** of A and B is

$$AB = \{ab \mid a \in A, b \in B, a \ge 0, b \ge 0\} \cup \mathbf{0}.$$

If $A \ge 0$ and B < 0, then AB = -(A(-B)), if A < 0 and $B \ge 0$, then AB = -((-A)B), and if A < 0 and B < 0, then AB = (-A)(-B).

Theorem 1.14: Let $A, B, C \in \mathbb{R}$. Then $AB \in \mathbb{R}$, AB = BA, (AB)C = A(BC), 1A = A, and if $A \neq 0$, then there is an $A^{-1} \in \mathbb{R}$ with $AA^{-1} = 1$.

Definition 1.15: A set $U \subseteq \mathbb{R}$ is **bounded above** if there is a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in U$. We call B an **upper bound** for U, and define **bounded below** and **lower bound** similarly.

Definition 1.16: Let $U \in \mathbb{R}$ such that $U \neq \emptyset$ and U is bounded above. We define $S(U) = \bigcup_{A \in U} A$.

Theorem 1.17: Let $U \subset \mathbb{R}$ be nonempty and bounded above. Then S(U) is a cut.

Proof: (1) Since $U \neq \emptyset$ and $U \subseteq S(U)$, $S(U) \neq \emptyset$. Since U is bounded above, there is a $B \in \mathbb{R}$ such that $A \leq B$ for all $A \in U$. Then $A \subseteq B$ for all $A \in U$, so $S(U) = \bigcup A \subseteq B$. Since $B \neq \mathbb{Q}$, $S(U) \neq \mathbb{Q}$.

- (2) Let $a \in S(U)$ and q < a. Then $a \in A$ for some $A \in U$, and since A is a cut and $q < a, q \in A \subseteq S(U)$.
- (3) Let $a \in S(U)$. Then $a \in A$ for some $A \in U$, and since A is a cut, there is a $q \in A \subseteq S(U)$ with a < q.

Proposition 1.18: Let $U \subseteq \mathbb{R}$ be nonempty and bounded above. Then S(U) is an upper bound for U.

Proof: For all $A \in U$, $A \subseteq \bigcup A = S(U)$, so $A \le S(U)$.

Definition 1.19: A set $U \subseteq \mathbb{R}$ has a **supremum**, or least upper bound, if there is a $B \in \mathbb{R}$ such that B is an upper bound for U and $B \leq C$ for any upper bound C for U. We define the **infimum**, or greatest lower bound, similarly, and write $\sup U$ and $\inf U$ for the supremum and infimum.

Proposition 1.20: Let $U \subseteq \mathbb{R}$ be nonempty and bounded above. Then $S(U) = \sup U$.

Proof: Let C be an upper bound for U. Then $A \leq C$ for all $A \in U$, so $A \subseteq C$ for all $A \in U$. Then $S = \bigcup A \subset C$, so $S \leq C$.

Theorem 1.21: (The Completeness of the Reals) Every nonempty, bounded above subset of \mathbb{R} has a least upper bound in \mathbb{R} .

II — The Reals

Proposition 2.1: Let $A \subseteq \mathbb{R}$. If $\sup A \in A$, then $\sup A = \max A$.

Proposition 2.2: If $A, B \subseteq \mathbb{R}$ such that $A \subseteq B$, then $\sup A \le \sup B$.

Proof: Since $A \subseteq B$, $a \in B$ for all $a \in A$, and so since $\sup B \ge b$ for all $b \in B$, $\sup B \ge a$ for all $a \in A$. Then $\sup B$ is an upper bound for A, so $\sup A \le \sup B$.

Theorem 2.3: Let s be an upper bound for $A \subseteq \mathbb{R}$. Then $s = \sup A$ if and only if for all $\varepsilon > 0$, there is an $a \in A$ with $s - \varepsilon < a$.

Proof: (\Rightarrow) Assume $s = \sup A$ and let $\varepsilon > 0$. Since $s - \varepsilon < s = \sup A$, $s - \varepsilon$ cannot be an upper bound for A. Thus there must be an $a \in A$ with $a > s - \varepsilon$.

Assume s is an upper bound for A and that for every $\varepsilon > 0$, there is an $a \in A$ such that $a > s - \varepsilon$. Let b be an upper bound for A and suppose b < s. Let $\varepsilon = \frac{s-b}{2}$. Since a < b for all $a \in A$, there is no $a \in A$ such that $a > s - \varepsilon$, since $s - \varepsilon$ is the midpoint of s and b, and is therefore greater than b. \mathcal{I}

Theorem 2.4: (The Nested Interval Theorem) For each $n \in \mathbb{N}$, let $I_n = [a_n, b_n]$ be an interval such that $I_n \subseteq I_{n-1}$. Then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Proof: Let $A = \{a_n \mid n \in \mathbb{N}\}$. Since A is nonempty and bounded above (by b_1 , for instance), A has a least upper bound. In fact, each b_i is an upper bound for A, since otherwise the intervals would not be nested.

Let $s = \sup A$ and let $n \in \mathbb{N}$. Since s is an upper bound for $A, s \ge a_n$, and since b_n is an upper bound for $A, s \le b_n$. Thus $s \in I_n$ for all $n \in \mathbb{N}$, so $s \in \cap I_n$.

Theorem 2.5: (The Well-Ordering Principle) Every nonempty subset of \mathbb{N} has a minimum element.

Proposition 2.6: (The Archimedean Property) Let $x \in \mathbb{R}$. Then there is a $y \in \mathbb{N}$ with y > x.

Corollary 2.6.1: Let $x \in \mathbb{R}^+$. Then there is a $y \in \mathbb{N}$ with $\frac{1}{y} < x$.

Theorem 2.7: (The Density of \mathbb{Q} in \mathbb{R}) Let $a, b \in \mathbb{R}$ with a < b. Then there is a $q \in \mathbb{Q}$ with a < q < b.

Proof: First, suppose $a \ge 0$. By the Archimedean property, let $n \in \mathbb{N}$ such that $\frac{1}{n} < b-a$. Let m be the smallest natural greater than na. Then $m-1 \le na < m$, so $m \le na+1 < m+1$. Since na < m, $a < \frac{m}{n}$, and since $m \le na+1$ and $\frac{1}{n} < b-a$, $m < n\left(b-\frac{1}{n}\right)+1=nb$. Thus $\frac{m}{n} < b$, and so $a < \frac{m}{n} < b$.

If a < 0 and b > 0, then $a < \frac{0}{1} < b$, and if a < 0 and $b \le 0$, then since -b < -a (and -b, -a > 0), there is a $q \in \mathbb{Q}$ with -b < q < -a, so a < -q < b.

Theorem 2.8: There is an $\alpha \in \mathbb{R}$ with $\alpha^2 = 2$.

Proof: Let $T = \{t \in \mathbb{R} \mid t^2 < 2\}$, which is is nonempty and bounded above, and let $\alpha = \sup T$. Suppose $\alpha < 2$. By the Archimedean principle, there is an $n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{2-\alpha^2}{2\alpha+1}$, or equivalently, $\frac{2\alpha+1}{n} < 2-\alpha^2$. Then

$$\left(\alpha + \frac{1}{n}\right)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$

$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$

$$= \alpha^2 + \frac{2\alpha + 1}{n}$$

$$< \alpha^2 + (2 - \alpha^2)$$

$$= 2,$$

so $\alpha + \frac{1}{n} \in T$, but $\alpha + \frac{1}{n} > \alpha = \sup T$. $\mbox{$\rlap/2$}$ Similarly, a > 2 gives a contradiction.

III — Sequences and Series

Definition 3.1: A sequence in a set S is a function $f: \mathbb{N} \longrightarrow S$. We write $a_n = f(n)$ and (a_n) for the entire sequence.

Definition 3.2: A sequence $(a_n) \subseteq \mathbb{R}$ converges to $a \in \mathbb{R}$, written $(a_n) \to a$, if for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that if $n \ge \mathbb{N}$, then $|a_n - a| < \varepsilon$. A sequence **diverges** if it does not converge.

Example: Show $\left(\frac{1}{n}\right) \to 0$.

We want $\left|\frac{1}{n}-0\right|<\varepsilon$, so $n>\frac{1}{\varepsilon}$. Therefore, let N be the first natural number greater than $\frac{1}{\varepsilon}$. Then if $n\geq N, \ \left|\frac{1}{n}-0\right|=\frac{1}{n}\leq \frac{1}{N}<\varepsilon$.

Definition 3.3: A sequence $(a_n) \subseteq \mathbb{R}$ is **bounded** if there is an M > 0 such that $|a_n| \le M$ for all $n \in \mathbb{N}$.

Proposition 3.4: Every convergent sequence is bounded.

Proof: Let $(a_n) \to a \in \mathbb{R}$. With $\varepsilon = 1$, there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - a| < 1$. Let $M = \max\{|a_1|, ..., |a_{N-1}|, |a|+1\}$. Then if $k < N, |a_k| \le |a_k| \le M$, and if $k \ge N$, then $|a_k| - |a| \le M$. $|a_k - a| < 1$, so $|a_k| < |a| + 1 \le M$.

Theorem 3.5: Suppose $(a_n) \to a \in \mathbb{R}$ and $(b_n) \to b \in \mathbb{R}$. Then

- 1. $(a_n + b_n) \rightarrow a + b$.

- 2. $(ca_n) \to ca$. 3. $(a_nb_n) \to ab$. 4. $\left(\frac{a_n}{b_n}\right) \to \frac{a}{b}$ if $b \neq 0$.

Proof: We will provide proofs for parts 1 and 3.

- 1. Let $\varepsilon > 0$. Since $(a_n) \to a$, there is an $N_1 \in \mathbb{N}$ such that if $n \ge N_1$, then $|a_n a| < \frac{\varepsilon}{2}$. Similarly, there is an $N_2 \in \mathbb{N}$ such that if $n \ge N_2$, then $|b_n b| < \frac{\varepsilon}{2}$. Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$, $|(a_n + b_n) (a + b)| = |(a_n a) + (b_n b)| \le |a_n a| + |b_n b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, so $(a_n + b_n) \to a + b$.
- 3. Let $\varepsilon > 0$. Since (b_n) converges, it is bounded, so there is an M > 0 such that $|b_n| < M$ for all $n \in \mathbb{N}$. Since $(a_n) \to a$, there is an $N_1 \in \mathbb{N}$ such that if $n \ge N_1$, then $|a_n a| < \frac{\varepsilon}{2M}$. Similarly, since $(b_n) \to b$, there is an $N_2 \in \mathbb{N}$ such that if $n \ge N_2$, then $|b_n b| < \frac{\varepsilon}{2|a|}$ (if a = 0, simply omit this sentence). Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab|$$

$$\leq |a_n b_n - ab_n| + |ab_n - ab|$$

$$= |b_n (a_n - a)| + |a(b_n - b)|$$

$$= |b_n||a_n - a| + |a||b_n - b|$$

$$\leq M|a_n - a| + |a||b_n - b|$$

$$\leq M\left(\frac{\varepsilon}{2M}\right) + |a|\left(\frac{\varepsilon}{2|a|}\right)$$

$$= \varepsilon.$$

Proposition 3.6: (The Order Limit Theorem) Suppose $(a_n) \to a \in \mathbb{R}$ and $(b_n) \to b \in \mathbb{R}$. Then

- 1. If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$.
- 2. If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- 3. If there is a $c \in \mathbb{R}$ such that $c \leq b_n$ for all $n \in \mathbb{N}$, then $c \leq b$, and if $a_n \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$.

Proof: 1. Suppose a < 0 and let $\varepsilon = \frac{|a|}{2}$. Since $(a_n) \to a$, there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - a| < \varepsilon = \frac{|a|}{2}$. Then $a_N \in \left(\frac{3a}{2}, \frac{a}{2}\right)$, so $a_N < 0$.

- 2. Since $(b_n a_n) \rightarrow b a$ and $b_n a_n \ge 0$, $b a \ge 0$ by part 1.
- 3. Let $c_n = c$ for all $n \in \mathbb{N}$. Then part 2 gives both results.

Definition 3.7: A sequence $(a_n) \subseteq \mathbb{R}$ is **monotone increasing** if $a_{n+1} \ge a_n$ for all $n \in \mathbb{N}$, and **monotone decreasing** if $a_{n+1} \le a_n$ for all $n \in \mathbb{N}$.

Theorem 3.8: (Monotone Convergence) If a sequence is monotone increasing and bounded above, then it converges.

Proof: Let $(a_n) \subseteq \mathbb{R}$ be monotone increasing and bounded above, and let $A = \{a_n \mid n \in \mathbb{N}\}$. Since A is nonempty and bounded above, $s = \sup A$ exists. Let $\varepsilon > 0$. Then there is an $a_N \in A$ such that $s - \varepsilon < a_N$. Then if $n \ge N$, $s - \varepsilon < a_N \le a_n \le s < s + \varepsilon$, so $|a_n - s| < \varepsilon$. Thus $(a_n) \to s$.

Corollary 3.8.1: If a sequence is monotone decreasing and bounded below, it converges.

Definition 3.9: Let (b_n) be a sequence. An **infinite series** is a formal expression of the form

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + \cdots.$$

The corresponding sequence of partial sums is $(s_m) = (b_1 + \cdots + b_m)$.

Definition 3.10: The series $\sum b_n$ converges if (s_m) converges, and diverges otherwise.

Proposition 3.11: If $b_n \ge 0$, then $\sum b_n$ converges if and only if (s_m) is bounded above.

Proof: Since $b_n \ge 0$, (s_m) is monotone increasing, so by the Monotone Convergence Theorem, (s_m) converges if and only if (s_m) is bounded above.

Example: Show $\sum \frac{1}{n^2}$ converges.

We want an upper bound for (s_m) . To find one, notice that

$$s_{m} = a + \frac{1}{(2)(2)} + \frac{1}{(3)(3)} + \frac{1}{(4)(4)} + \dots + \frac{1}{(m)(m)}$$

$$< 1 + \frac{1}{(2)(1)} + \frac{1}{(3)(2)} + \frac{1}{(4)(3)} + \dots + \frac{1}{(m)(m-1)}$$

$$= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{m-1} - \frac{1}{m}\right)$$

$$= 1 + 1 - \frac{1}{m}$$

$$= 2 - \frac{1}{m}$$

$$< 2.$$

Example: Show $\sum \frac{1}{n}$ diverges.

We want to show that (s_m) is unbounded. To do this, note that

$$\begin{split} s_{2^k} &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{k-1} + 1} + \dots + \frac{1}{2^k}\right) \\ &> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^k} + \dots + \frac{1}{2^k}\right) \\ &= (k+2)\left(\frac{1}{2}\right) \\ &> \frac{k}{2}. \end{split}$$

Definition 3.12: Let (a_n) be a sequence and let $n_1 < n_2 < \cdots$ be a strictly increasing sequence of naturals. Then a_{n_1}, a_{n_2}, \ldots is a **subsequence** of (a_n) , denoted (a_{n_k}) .

Proposition 3.13: Subsequences of a convergent sequence converge to the same limit.

Example: Show that $\left(\left(\frac{3}{4}\right)^n\right) \to 0$.

Since the sequence is bounded below and decreasing, it converges, say to x. Since $\left(\left(\frac{3}{4}\right)^{2n}\right)$ is a subsequence of $\left(\left(\frac{3}{4}\right)^n\right)$, $\left(\left(\frac{3}{4}\right)^{2n}\right) \to x$. But $\left(\left(\frac{3}{4}\right)^{2n}\right) = \left(\left(\frac{3}{4}\right)^n\left(\frac{3}{4}\right)^n\right) \to x^2$, so $x = x^2$. Thus x = 0 or x = 1, and since $\left(\left(\frac{3}{4}\right)^n\right)$ is monotone decreasing and $\frac{3}{4} < 1$, x = 0.

Theorem 3.14: (Bolzano-Weierstrass) Every bounded sequence contains a convergent subsequence.

Proof: Let (a_n) be a bounded sequence. We wish to show that (a_n) has a monotone subsequence. First, define a peak index to be an $m \in \mathbb{N}$ such that $a_n \leq a_m$ for all $n \geq m$.

Suppose there are only finitely many peak indices. Then there is an $N \in \mathbb{N}$ such that there are no peak indices greater than N. Let $n_1 = N + 1$. Since n_1 is not a peak index, there is an $n_2 \in \mathbb{N}$ with $n_2 > n_1$ and $a_{n_2} \ge a_{n_1}$. Repeat this inductively. Then (a_{n_k}) is monotone increasing and bounded above, since (a_n) is, so it converges.

If there are infinitely many peak indices, then let n_k be the kth one. Then (a_{n_k}) is monotone decreasing, so it converges.

Definition 3.15: A sequence (a_n) is **Cauchy** if for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that if $m, n \ge N$, then $|a_m - a_n| < \varepsilon$.

Proposition 3.16: Every convergent sequence is Cauchy.

Proof: Suppose $(a_n) \to a$ and let $\varepsilon > 0$. Then there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - a| < \frac{\varepsilon}{2}$. Then if $m, n \ge N$, $|a_m - a_n| = |a_m - a + a - a_n| \le |a_m - a| + |a - a_n| < \varepsilon$.

Proposition 3.17: Every Cauchy sequence is bounded.

Proof: Let (a_n) be Cauchy. With $\varepsilon = 1$, there is an $N \in \mathbb{N}$ such that if $m, n \ge N$, then $|a_m - a_n| < 1|$. Thus $|a_n| \le |a_N| + 1$ for all $n \in \mathbb{N}$, so $\max\{|a_1|, ..., |a_{N-1}|, |a_N| + 1\}$ is a bound (a_n) .

Theorem 3.18: Every Cauchy sequence in \mathbb{R} converges.

Proof: Let $(a_n) \subseteq \mathbb{R}$ be a Cauchy sequence. Then (a_n) is bounded, so it contains a convergent subsequence $(a_{n_k}) \to a$. Let $\varepsilon > 0$. Since $(a_{n_k}) \to a$, there is a $k_0 \in \mathbb{N}$ such that $n_{k_0} \ge N$ and $\left|a_{n_{k_0}} - a\right| < \frac{\varepsilon}{2}$, and since (a_n) is Cauchy, there is an $N \in \mathbb{N}$ such that if $n \ge N$, then $\left|a_n - a_{n_{k_0}}\right| < \frac{\varepsilon}{2}$. Then if $n \ge N$, $\left|a_n - a\right| = \left|a_n - a_{n_{k_0}} + a_{n_{k_0}} + a_{n_{k_0}}\right| + \left|a_{n_{k_0}} - a\right| < \varepsilon$.

Proposition 3.19: Suppose $\sum a_k = a$ and $\sum b_k = b$. Then $\sum ca_k = ca$ and $\sum a_k + b_k = a + b$.

Proposition 3.20: A series $\sum a_k$ for $a_k \in \mathbb{R}$ converges if and only if for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that if $n > m \ge N$, then $|a_{m+1} + \dots + a_n| < \varepsilon$.

Proof: $\sum a_k$ converges if and only if (s_n) converges, if and only if it is Cauchy, if and only if there is an $N \in \mathbb{N}$ such that if $n > m \ge N$, then $|s_n - s_m| = |a_{m+1} + \dots + a_n| < \varepsilon|$.

Corollary 3.20.1: If $\sum a_k$ converges, then $(a_k) \to 0$.

Proposition 3.21: (The Ratio Test) Let (a_k) and (b_k) be sequences such that $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$. Then if $\sum b_k$ converges, so does $\sum a_k$, and if $\sum a_k$ diverges, then $\sum b_k$ does too.

Proof: The second statement is just the contrapositive of the first, so we need only prove one. Suppose $\sum b_k$ converges and let $\varepsilon > 0$. Then there is an $N \in \mathbb{N}$ such that if $n > m \ge N$, $|b_{m+1} + \cdots + b_n| < \varepsilon$. Since $0 \le a_k \le b_k$, $|a_{m+1} + \cdots + a_n| < \varepsilon$, so $\sum a_k$ converges.

Definition 3.22: A series is **geometric** if it is of the form $\sum ar^k$, where $r \neq 0$.

Theorem 3.23: The series $\sum ar^k$ converges if and only if |r| < 1, and if |r| < 1, then $\sum ar^k = \frac{a}{1-r}$.

Proof: If $r \neq 1$, then since $(1-r)(1+r+r^2+\cdots+r^{m-1})=1-r^m$, $s_{m-1}=a+ar+ar^2+\cdots+ar^{m-1}=\frac{a(1-r^m)}{1-r}$. If |r|>1, then (s_m) is not bounded, so it does not converge. If |r|<1, then $(r^m)\to 0$, so $(s_m)\to \frac{1}{1-r}$. Finally, if |r|=1, then either r=1, in which case $(s_m)=(ma)$ is unbounded, or r=-1, in which case $(s_m)=\left(\frac{a(1-(-1)^m)}{2}\right)=(a,0,a,0,\ldots)$, which does not converge. Either way, (s_m) diverges.

Theorem 3.24: If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Proof: Suppose $\sum |a_n|$ converges and let $\varepsilon > 0$. Then there is an $N \in \mathbb{N}$ such that if $n > m \ge N$, $|a_{m+1}| + \cdots + |a_n| = |a_{m+1}| + \cdots + |a_n| < \varepsilon$. Thus $|a_{m+1}| + \cdots + |a_n| \le |a_{m+1}| + \cdots + |a_n| < \varepsilon$.

Theorem 3.25: Let (a_n) be a sequence with $a_1 \ge a_2 \ge \cdots$ and $(a_n) \to 0$. Then $\sum (-1)^{n+1} a_n$ converges.

Definition 3.26: A series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges, and it converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Theorem 3.27: Suppose $\sum a_k$ converges conditionally. Then for any $A \in \mathbb{R}$, there is a permutation σ of \mathbb{N} such that $\sum a_{\sigma(k)} = A$.

Theorem 3.28: If $\sum a_k$ converges absolutely, then $\sum a_{\sigma(k)} = \sum a_k$ for any permutation σ .

Proof: Suppose $\sum a_k$ converges absolutely to A and let $\sigma: \mathbb{N} \to \mathbb{N}$. Let $s_m = a_1 + \dots + a_m$ and $t_m = a_{\sigma(1)} + \dots + a_{\sigma(n)}$ and let $\varepsilon > 0$. Since $(s_m) \to A$, there is an $N_1 \in \mathbb{N}$ such that if $m \ge N_1$, then $|s_m - a| < \frac{\varepsilon}{2}$, and since $\sum |a_k|$ converges, there is an $N_2 \in \mathbb{N}$ such that if $n > m \ge N_2$, then $|a_{m+1}| + \dots + |a_n| < \frac{\varepsilon}{2}$. Let $M = \max\{N_1, N_2\}$ and call the subsequence $(a_{M+1}, a_{M+2}...)$ the tail of (a_k) . Then the sum of the absolute values of any finite collection of elements in the tail is less than $\frac{\varepsilon}{2}$, since $M \ge N_2$. Let $N \in \mathbb{N}$ such that $\{1, ..., M\} \subseteq \{\sigma(1), ..., \sigma(N)\}$. Then if $n \ge N$, $t_n - s_M$ is the sum of a finite number of terms in the tail of (a_k) , so by the triangle inequality, $|t_n - s_M| < \frac{\varepsilon}{2}$. Also, since $N \ge M \ge N_1$, $|s_N - A| < \frac{\varepsilon}{2}$. Thus if $n \ge N$,

$$|t_n - A| = |t_n - s_M + s_M - A|$$

$$\leq |t_n - s_M| + |s_M - A|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$