Целочисленное деление

Содержание

- Беззнаковое целочисленное деление
 - Деление с восстановлением остатков
 - Деление без восстановления остатков
- 2 Деление чисел со знаком
 - Деление без восстановления остатков
- Задания на практику
 - Проходное
 - Мегамозг
- Ф Самообучение

Целочисленное деление

В результате деления числа A (делимое) на число d (делитель) получается частное q и остаток Δ , такие, что выполняется равенство:

$$A = q \cdot d + \Delta$$
,

где A, q, d, Δ — целые, а $|\Delta| < |d|$.

Результат деления будем записывать как $A \div d = q$ rem Δ , например:

$$7 \div 3 = 2 \text{ rem } 1.$$

Результат целочисленного деления, как обратной умножению операции, получается серией вычитаний и сдвигов.

						частное
5	2	9	3	8	÷43	делимое ÷ делитель

	0						частное
	5	2	9	3	8	÷43	делимое ÷ делитель
	5						
-	0						
	5						Δ_1

	0	1					частное
	5	2	9	3	8	÷43	делимое ÷ делитель
	5						
-	0						
=	5						Δ_1
	5	2					
-	4	3					
=		9					Δ_2

	0	1	2				частное
	5	2	9	3	8	÷43	делимое ÷ делитель
	5						
-	0						
=	5						Δ_1
	5	2					
-	4	3					
=		9					Δ_2
		9	9				
	-	8	6				
	=	1	3				Δ_3

	0	1	2	3			частное
	5	2	9	3	8	÷43	делимое ÷ делитель
	5						
-	0						
=	5						Δ_1
	5	2					
-	4	3					
=		9					Δ_2
		9	9				
	-	8	6				
	=	1	3				Δ_3
		1	3	3			
	-	1	2	9			
	=			4			Δ_4

Целочисленное деление (10СС), $52938 \div 43$

	0	1	2	3	1		частное
	5	2	9	3	8	÷43	делимое ÷ делитель
	5						
-	0						
=	5						Δ_1
	5	2					
-	4	3					
=		9					Δ_2
		9	9				
	-	8	6				
	=	1	3				Δ_3
		1	3	3			
	-	1	2	9			
	=			4			Δ_4
				4	8		
			-	4	3		
			=		5		Δ_5

	0	1	2	3	1		частное
	5	2	9	3	8	÷43	делимое ÷ делитель
	5						
-	0						
=	5						Δ_1
	5	2					
-	4	3					
=		9					Δ_2
		9	9				
	-	8	6				
	=	1	3				Δ_3
		1	3	3			
	-	1	2	9			
	=			4			Δ_4
				4	8		
			-	4	3		
			=		5		Δ_5
					5		$52938 \div 43 = 1231 \text{ rem 5}.$

		частное
1 0 1 0	÷11	делимое ÷ делитель

	0					частное
	1	0	1	0	÷11	делимое ÷ делитель
	1					
-	0					
=	1					Δ_1

	0	0				частное
	1	0	1	0	÷11	делимое ÷ делитель
	1					
-	0					
=	1					Δ_1
	1	0				
-		0				
=	1	0				Δ_2

	0	0	1			частное
	1	0	1	0	÷11	делимое ÷ делитель
	1					
-	0					
=	1					Δ_1
	1	0				
-		0				
=	1	0				Δ_2
	1	0	1			
-		1	1			
=		1	0			Δ_3

	0	0	1	1		частное
	1	0	1	0	÷11	делимое ÷ делитель
	1					
-	0					
=	1					Δ_1
	1	0				
-		0				
=	1	0				Δ_2
	1	0	1			
-		1	1			
=		1	0			Δ_3
		1	0	0		
	-		1	1		
	=			1		Δ_4

	0	0	1	1		частное
	1	0	1	0	÷11	делимое ÷ делитель
	1					
-	0					
=	1					Δ_1
	1	0				
-		0				
=	1	0				Δ_2
	1	0	1			
-		1	1			
=		1	0			Δ_3
		1	0	0		
	-		1	1		
	=			1		Δ_4
				1		$(1010)_2 \div (11)_2 = (11)_2$ rem 1

Беззнаковое целочисленное деление

Первый способ

Начальное состояние:

Беззнаковое целочисленное деление

Первый способ

Конечное состояние:

Целочисленное деление

Второй способ

Начальное состояние:

Целочисленное деление

Второй способ

Конечное состояние:

На ноль делить нельзя!

Все приведенные ниже алгоритмы работают при условии, что не получают на входе нулевой делитель.

Беззнаковое целочисленное деление $A \div d = q \, \operatorname{rem} \, \Delta$

$$A = d \cdot q + \Delta$$
,

В результате деления положительных чисел делимого A на делитель d получаемые в результате частное q и остаток Δ — также положительны.

Алгоритм деления с восстановлением остатков

п-разрядные беззнаковые целые

- $i \leftarrow 1$; В младшую часть регистра остатков заносится делимое, в старшую часть регистра делителя делитель. Далее состояние регистра остатков остаток (Δ), регистра делителя делитель (d), регистра частного (q) частное.
- ② Выполнить сдвиги: частное q влево, остаток Δ влево (в первом способе), делитель d вправо (во втором способе).
- **3** Получить новый остаток $\Delta \leftarrow (\Delta d)$;
- $oldsymbol{0}$ Если $\Delta < 0$, то в младший разряд частного занести 0, иначе 1.
- ullet Если $\Delta < 0$, то выполнить восстановление старого значения остатка: $\Delta \leftarrow (\Delta + d)$.
- В регистре частного получено значение частного, в регистре остатков n-разрядный остаток (в первом способе в старших разрядах, во втором в младших).

Алгоритм деления с восстановлением остатков Примечания

 В регистр остатков и регистр делителя добавлены знаковые разряды.

Деление с восстановлением остатков І-й способ $46 \div 5$

Частное q, \leftarrow	дел-е, ∆ ←	дел-ль, <i>d</i>	прим.
	., 101110	.,101	операнды;
	.,1 01110.		сдвиг;
0	,1 01110.		$\Delta_1 < 0$;
0	1,111011		$\Delta_1 \subset 0$,
	1,111100 01110.		
0	1,111100 01110.		Восст. Д1;
0	<u>.,101</u>		\square
	.,1 01110.		

Деление с восстановлением остатков І-й способ (2) $46 \div 5$

_Частное q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.
0	.,1 01110.	.,101	↑
0.	.,10 1110		сдвиг;
00	+ .,10 1110		$\Delta_2 < 0;$
	1,111101 1110		
00	+ 1,111101 1110 101 10 1110		Восст. Δ_2 ;
00.	.,101 110		сдвиг;
001	+ .,101 110 1,111011 ,, 110		$\Delta_3 \geq 0;$
001.	.,1 10		сдвиг;

Деление с восстановлением остатков І-й способ (3) $46 \div 5$

Частное q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.
001.	.,1 10	.,101	↑
0010	+ ·,····1 10···· 1,111011 ····· 1,111100 10····		$\Delta_4 < 0;$
0010	+ 1,111100 10 - ,101 - ,1 10		Восст. Д4;
.0010.	.,11 0		сдвиг;
.00100	+ .,11 0 1,111011 1,111111 0		$\Delta_5 < 0;$
.00100	+ 1,111111 0 +101 .,11 0		Восст. Δ_5 ;

Деление с восстановлением остатков І-й способ (4) $46 \div 5 = 9 \text{ rem } 1$

Частное q,\leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.
.00100	.,11 0	.,101	†
00100.	.,110		сдвиг;
001001	+ .,110 1,111011 ,000001		$\Delta_6 > 0$;

$$q = (001001)_2 = 9$$

$$\Delta=(000001)_2=1$$

Деление с восстановлением остатков II-й способ $153 \div 5$

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
	., 110101	.,101	операнды;
	., 110101	.,10 1	сдвиг;
0	, 110101		$\Delta_1 < 0$;
	1,111101 1		$\Delta_1 < 0$,
	1,111110 010101		
	1,111110 010101		Восст. Д1;
0	[†] .,10 1		Δ_1
	., 110101		

Деление с восстановлением остатков II-й способ (2) $53 \div 5$

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
0	., 110101	.,10 1	↑
0.	., 110101	.,1 01	сдвиг;
00			$\Delta_2 < 0$:
00	1,111110 11		$\Delta_2 \setminus 0$,
	1,111111 100101		
00	1,111111 100101		Восст. Δ2;
00	T.,1 01		Δ_2 ,
	., 110101		
00.	., 110101	., 101	сдвиг;
001	, 110101		$\Delta_3 > 0$;
001	1,111111 011		$\Delta_3 \geq 0$,
	.,1101		
001.	.,1101	.,	сдвиг;

Деление с восстановлением остатков II-й способ (3) $53 \div 5$

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
001.	.,1101	.,	↑
0010			$\Delta_4 < 0$:
0010	1,111111 1011		$\Delta 4 < 0$,
	1,111111 111001		
0010	1,111111 111001		Восст. Да;
0010	' .,		Восст. Д4,
	.,1101		
.0010.	.,1101	.,101.	сдвиг;
.00101	,1101		$\Delta_5 > 0$;
.00101	1,111111 11011.		$\Delta_5 \geq 0$,
	.,11		
00101.	.,11	.,101	сдвиг;

Деление с восстановлением остатков II-й способ (4) $53 \div 5 = 10$ rem 3

_	Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
	00101.	.,11	.,101	↑
	001010	+ .,11 + 1,111111 111011		$\Delta_6 < 0;$
		1,111111 111110		
	001010	+ 1,111111 111110 +101 .,000011		Восст. Δ_6 ;

$$q = (001010)_2 = 10$$

 $\Delta = (000011)_2 = 3$

Деление без восстановления остатков

Если новый остаток Δ получается отрицательным, то к нему прибавляется делитель, чтобы восстановить старое (положительное) значение остатка. Чтобы не тратить на это время — проследим, что происходит к моменту получения следующего остатка Δ' .

• В первом способе:

$$\Delta' = egin{cases} 2 \cdot \Delta + d, & ext{ если } \Delta < 0 : \ 2 \cdot (\underbrace{\Delta + d}_{ ext{B.O.}}) - d = 2 \cdot \Delta + d, \ 2 \cdot \Delta - d, & ext{ если } \Delta \geq 0. \end{cases}$$

• Во втором способе:

$$\Delta' = egin{cases} \Delta + d/2, & ext{ если } \Delta < 0 \colon (\underbrace{\Delta + d}) - d/2 = \Delta + d/2, \ \Delta - d/2, & ext{ если } \Delta \geq 0. \end{cases}$$

Алгоритм деления без восстановления остатков

п-разрядные беззнаковые целые

- ① $i \leftarrow 1$; В младшую часть регистра остатков заносится делимое, в старшую часть регистра делителя делитель. Далее состояние регистра остатков остаток (Δ), регистра делителя делитель (d), регистра частного (q) частное.
- ② Выполнить сдвиги: частное q влево, остаток Δ влево (в первом способе), делитель d вправо (во втором способе).
- ullet Если $\Delta < 0$, то $\Delta \leftarrow (\Delta + d)$, иначе $\Delta \leftarrow (\Delta d)$;
- ullet Если $\Delta < 0$, то в младший разряд частного занести 0, иначе 1.
- **⑤** $i \leftarrow (i+1)$. Если ≤ n, то к шагу 2.
- lacktriangle Восстановим остаток. Если $\Delta < 0$, то $\Delta \leftarrow (\Delta + d)$.
- \odot В регистре частного получено значение частного, в регистре остатков n-разрядный остаток (в первом способе в старших разрядах, во втором в младших).

Алгоритм деления без восстановления остатков Примечания

 В первом способе в регистре остатка добавлено два разряда под знак: по младшему знаковому разряду судят о знаке полученного остатка, а по старшему судят о знаке остатка до его сдвига вправо.

Деление без восстановления остатков І-й способ $46 \div 5$

Частное q,\leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.	
	00, 101110	,101	операнды;	
	00,1 01110.		сдвиг;	
0	_ 00,1 01110.		$-d, \Delta_1 < 0;$	
	11,111011		$-\alpha, \Delta_1 < 0,$	
	11,111100 01110.			
0.	11,111000 1110		сдвиг;	
00	11,111000 1110		$+d, \Delta_2 < 0;$	
00	,101		$+u, \Delta_2 < 0,$	
	11,111101 1110			
00.	11,111011 110		сдвиг;	
001	11,111011 110		$+d, \Delta_3 \geq 0;$	
001	,101		$+u, \Delta_3 \geq 0,$	
	00,000000 110			
001.	00,000001 10		сдвиг;	

Деление без восстановления остатков І-й способ (2) $46 \div 5 = 9 \text{ rem } 1$

Частное q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.
001.	00,000001 10		↑
0010	00,000001 10		d A < 0.
0010	11,111011		$-d, \Delta_4 < 0;$
	11,111100 10		
.0010.	11,111001 0		сдвиг;
.00100	11,111001 0		$+d$, $\Delta_5 < 0$;
.00100	,101		$ +u, \Delta_5 < 0,$
	11,111110 0		
00100.	11,111100		сдвиг;
001001	11,111100		$+d, \Delta_6 \geq 0;$
001001	,101		$ 10, \Delta_6 \geq 0,$
	00,000001		
(001001)	0 4 (00001)	1	

 $q = (001001)_2 = 9$; $\Delta = (000001)_2 = 1$.

Деление без восстановления остатков II-й способ $53 \div 5$

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
	., 110101	.,101	операнды;
		.,10 1	сдвиг;
	10101		$-d, \Delta_1 < 0;$
0	1,111101 1		$-u, \Delta_1 < 0,$
	1,111110 010101		
0.		.,1 01	сдвиг;
00	1,111110 010101		$+d, \Delta_2 < 0;$
00	' .,1 01		$+u, \Delta_2 < 0,$
	1,111111 100101		
00.		., 101	сдвиг;
001	1,111111 100101		$+d$, $\Delta_3 > 0$;
001	101		$+u, \Delta_3 \geq 0,$
	.,1101		
001.		.,	сдвиг;

Деление без восстановления остатков II-й способ (2) $53 \div 5$

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d o$	прим.
001.	.,1101	.,	1
0010	+ .,1101		$-d, \Delta_4 < 0;$
0010	1,111111 1011		$-u, \Delta_4 < 0,$
	1,111111 111001		
.0010.		.,101.	сдвиг;
.00101	1,111111 111001		$+d$, $\Delta_5 > 0$;
.00101	· .,101.		$+u, \Delta_5 \geq 0,$
	.,11		
00101.		.,101	сдвиг;
001010	1		d A < 0:
001010	1,111111 111011		$-d, \Delta_6 < 0;$
	1,111111 111110		

Деление без восстановления остатков II-й способ (3) $53 \div 5 = 10$ rem 3

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
001010	1,111111 111110	.,101	↑
001010	+ 1,111111 111110 + .,101		Восст. остатка
	., 000011		

$$q = (001010)_2 = 10$$

 $\Delta = (000011)_2 = 3$

Деление чисел со знаком

Неоднозначность результатов, см. подробнее в [1]

Пример		Отсечение	Модуль $\Delta \geq 0$	Округление <i>q</i> к меньшему зна-чению
7 ÷ 3	=	2 rem 1	2 rem 1	2 rem 1
$(-7) \div 3$	=	-2 rem -1	-3 rem 2	-3 rem 2
$7 \div (-3)$	=	-2 rem 1	-2 rem 1	-3 rem -2
$(-7) \div (-3)$	=	2 rem -1	3 rem 2	2 rem -1

Остановимся на варианте «Отсечение».

Определение разряда частного q_0

Пусть S(x) — функция возвращающая знак x. Исходное правило:

- ullet Если знаки делимого A и текущего остатка Δ совпадают, то разряд частного (модуля) $q_0 \leftarrow 1$, иначе $q_0 \leftarrow 0$.
- ② Если знаки делимого A и делителя d различны, то $q_0 \leftarrow (\neg q_0)$. (Т.е. инверсия модуля частного обратный код!)

Так как $(x = y) \Leftrightarrow \neg(x \oplus y) \Leftrightarrow (1 \oplus x \oplus y)$, то исходное правило можно выразить одной формулой и упростить:

$$q_0 \leftarrow \neg(S(A) = S(\Delta)) \oplus (S(A) \oplus S(d)) \Leftrightarrow \Leftrightarrow (1 \oplus S(A) \oplus S(\Delta)) \oplus (S(A) \oplus S(d)) \Leftrightarrow (1 \oplus S(d) \oplus S(\Delta)) \Leftrightarrow \neg(S(d) \oplus S(\Delta)).$$

$\neg (S(d) \oplus S(\Delta))$

Если знаки d и Δ совпадают, то $q_0 \leftarrow 1$, иначе $q_0 \leftarrow 0$.

Алгоритм деления в ДК без восстановления остатков п-разрядные знаковые целые в ДК

- ② Выполняются сдвиги: q влево, Δ влево (I сп.), d вправо (II сп., с учётом знака).
- ullet Если знаки Δ и d совпадают, то $\Delta \leftarrow (\Delta d)$, иначе $\Delta \leftarrow (\Delta + d)$.
- $oldsymbol{0}$ $q_0 \leftarrow \neg(S(d) \oplus S(\Delta))$. Т.е. если знаки d и Δ совпадают, то $q_0 \leftarrow 1$, иначе $q_0 \leftarrow 0$. Обр. код!
- Выполняется процедура коррекции остатка и частного (см. следующий слайд).

Процедура коррекции остатка и частного (отсечение)

Вход: A — делимое, d — делитель, q — частное, Δ — остаток. Выход: q, Δ

	<i>d</i> > 0	d < 0
A > 0	$q \leftarrow q,$ $\Delta \leftarrow egin{cases} (\Delta + d), & \Delta < 0, \ \Delta, & ext{иначе,} \end{cases}$	$q \leftarrow (q+1),$ $\Delta \leftarrow egin{cases} (\Delta-d), & \Delta < 0, \ \Delta, & ext{иначе,} \end{cases}$
A < 0	$q \leftarrow egin{cases} q, & (\Delta=0) \lor (\Delta=-d) \ (q+1), & ext{иначе,} \ \ \Delta \leftarrow egin{cases} 0, & (\Delta=0) \lor (\Delta=-d), \ (\Delta-d), & \Delta>0, \ \Delta, & ext{иначе,} \end{cases}$	$q \leftarrow egin{cases} q+1, & (\Delta=0) \lor (\Delta=d), \ q, & ext{иначе,} \ \ \Delta \leftarrow egin{cases} 0, & (\Delta=0) \lor (\Delta=d), \ \Delta+d, & \Delta>0, \ \Delta, & ext{иначе.} $

Деление без ВО в ДК І-й способ $27 \div (-5)$

Частное q, \leftarrow	дел-е, △ ←	дел-ль, <i>d</i>	прим.
	0, 011011	1,111011	операнды;
	0,0 11011.		сдвиг;
1	0,0 11011.		$+d, \Delta_1 < 0;$
	1,111011		$ U, \Delta_1 \setminus U,$
	1,111011 11011.		
1.	1,110111 1011		сдвиг;
11	1,110111 1011		$-d, \Delta_2 < 0;$
11	· .,101		$-u, \Delta_2 < 0,$
	1,111100 1011		
11.	1,111001 011		сдвиг;
111	1,111001 011		$-d, \Delta_3 < 0;$
111	· .,101		$-u, \Delta_3 < 0,$
	1,111110 011		
111.	1,111100 11		сдвиг;

Деление без ВО в ДК І-й способ (2) $^{27 \div (-5)}$

Частное q, \leftarrow	дел-е, ∆ ←	дел-ль, <i>d</i>	прим.
111.	1,111100 11		↑
1110	+ 1,111100 11 + 0,000101		$-d, \Delta_4 \geq 0;$
.1110.	0,000001 11 0,000011 1		сдвиг;
.11101	+ 0,000011 1 1,111011 1,111110 1		$+d, \Delta_5 < 0;$
11101.	1,111101		сдвиг;
111010	+ 1,111101 +101 0,000010		$-d, \Delta_6 \geq 0;$

Деление без ВО в ДК І-й способ (3) $27 \div (-5) = -5$ rem 2

Частное q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.
111010	0,000010		↑
111010	0,000010		$q \leftarrow (q+1);$
000001	0,000010		$ q \setminus (q + 1),$
111011			

$$ДK(q) = (111011)_2 \Rightarrow -5$$
 $ДK(\Delta) = (000010)_2 \Rightarrow 2$

Деление без восстановления остатков II-й способ $(-25) \div 6$

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
	1,111111 100111	.,110	операнды;
		.,11 0	сдвиг;
1	1,111111 100111		$+d$, $\Delta_1 > 0$;
			$ \mathbf{u}, \Delta_1 \geq 0,$
	0,10 100111		
1.		.,1 10	сдвиг;
11	0,10 100111		$-d, \Delta_2 > 0;$
11	1,111110 10		$-u, \Delta_2 \geq 0,$
	0,1 000111		
11.		., 110	сдвиг;
111	0,1 000111		$-d, \Delta_3 > 0;$
111	1,111111 010		$-u, \Delta_3 \geq 0,$
	0,10111		
111.		.,	сдвиг;

Деление без восстановления остатков II-й способ (2) $(-25) \div 6$

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
111.	0,	.,	1
1110	0,10111		$-d, \Delta_4 \geq 0;$
1110	1,111111 1010		$-u, \Delta_4 \geq 0,$
	1,111111 111111		
.1110.		.,110.	сдвиг;
.11101	1,111111 111111		$+d, \Delta_5 \geq 0;$
.11101	<u>.,110.</u>		$+u, \Delta_5 \geq 0,$
	0,1011		
11101.		.,110	сдвиг;
111011	0,1011		$-d, \Delta_6 \geq 0;$
111011	1,111111 111010		$-u, \Delta_6 \geq 0,$
	0,101		

Деление без восстановления остатков II-й способ (3) $(-25) \div 6 = -4$ rem -1

Частное q, \leftarrow	дел-е, Δ	дел-ль, $d ightarrow$	прим.
111011	0,101	.,110	↑
111011	+ .,101 + 1,111111 111010 1,111111 111111		Восст. остатка, -d
+ 111011 + 000001 111100	1,111111 <u>111111</u>		$q \leftarrow (q+1)$

$$ДK(q) = (111100)_2 \Rightarrow -4$$
 $ДK(\Delta) = (111111)_2 \Rightarrow -1$

1)

Выполнить беззнаковое деление чисел:

2)

Выполнить целочисленное деление в дополнительном коде чисел со знаком:

- 122 ÷ 22, первым и вторым способами;
- 122 ÷ 19, первым способом;
- $(-119) \div 11$, первым способом;
- **4** $(-118) \div (-11)$, вторым способом;
- **5** $123 \div (-12)$, вторым способом.

Выполнить целочисленное деление в дополнительном коде в 8-и разрядной сетке чисел со знаком (любым способом):

- $(-128) \div (-127);$
- $(-128) \div 127;$
- \bullet 127 \div (-128);
- $0 \div (127)$.

Советы самоучке

Подробно об особенностях целочисленного деления см. в [1]. «Длинные» алгоритмы умножения и деления, см. в четвертой главе «Арифметика» [2]

Библиография I

Г. Уоррен-мл. Алгоритмические трюки для программистов / Г. Уоррен-мл. — 2 изд. — М.: Издательский дом «Вильямс», 2014.

🗐 Д.Э.Кнут. Искусство программирования, получисленные алгоритмы / Д.Э.Кнут. — 3 изд. —

М.: Вильямс, 2005. — T. 2.

