Computer Graphics, Lab Assignment 8

Handed out: May 22, 2019

Recommended due: 15:00, May 22, 2019

Hard due: 23:59, May 22, 2019 (NO SCORE for late submissions!)

Submit your assignment only through the lecture home at git address.

- 1. Write a program that draws a color-changing cube.
 - A. Set the window title to **[studentID]-[assignment#]-[prob#]** and the window size to (480,480).
 - B. Start from the code in 6-Lighting&Shading slides. Draw a flat-shaded cube. Make sure camera manipulation shortcuts '1', '3', '2', 'w' work.
 - C. Use the following light setting:

```
lightPos = (3.,4.,5.,1.)
glLightfv(GL_LIGHTO, GL_POSITION, lightPos)

ambientLightColor = (.1,.1,.1,1.)
glLightfv(GL_LIGHTO, GL_AMBIENT, ambientLightColor)

specularObjectColor = (1.,1.,1.,1.)
glMaterialfv(GL_FRONT, GL_SPECULAR, specularObjectColor)

glMaterialfv(GL_FRONT, GL_SHININESS, 10)
```

D. If you press or repeat a key, the diffuse & specular color of the light and the ambient & diffuse color of the object should be changed as shown in the Table:

Key	Action		
Α	Change the light color to red		
S	Change the light color to green		
D	Change the light color to blue		
F	Change the light color to white		
Z	Change the object color to red		
Χ	Change the object color to green		
C	Change the object color to blue		
V	Change the object color to white		

E. Submit a single .py file - [studentID]-[assignment#]-[prob#].py

- 2. Write a program that draws a smooth-shaded cube.
 - A. Set the window title to **[studentID]-[assignment#]-[prob#]** and the window size to (480,480).
 - B. Start from the code in 7-Lighting&Shading slides. Make sure camera manipulation shortcuts '1', '3', '2', 'w' work.
 - C. Use **glDrawElements()**, not glDrawArray(). Refer the code in 6-Hierarchy&Mesh slides.
 - i. Hint: In Gouraud shading, one vertex has only one normal. This makes using glDrawElements() easier.
 - D. Use the following normal vector data:

vertex index	position	normal
0	(-1,1,1)	(-0.5773502691896258, 0.5773502691896258, 0.5773502691896258)
1	(1,1,1)	(0.8164965809277261 , 0.4082482904638631 , 0.4082482904638631)
2	(1,-1,1)	(0.4082482904638631 , -0.4082482904638631 , 0.8164965809277261)
3	(-1,-1,1)	(-0.4082482904638631,-0.8164965809277261,0.4082482904638631)
4	(-1,1,-1)	(-0.4082482904638631, 0.4082482904638631, -0.8164965809277261)
5	(1,1,-1)	(0.4082482904638631 , 0.8164965809277261 , -0.4082482904638631)
6	(1,-1,-1)	(0.5773502691896258 , -0.5773502691896258 , -0.5773502691896258)
7	(-1,-1,-1)	(-0.8164965809277261,-0.4082482904638631,-0.4082482904638631)

E. Expected result:

F. Submit a single .py file - [studentID]-[assignment#]-[prob#].py