SLIDE 1

6 CARRY-LOOKAHEAD ADDERS AND VARIATIONS IN FAST ADDERS

Chapter Goals

Understand the carry-lookahead method and its many variations used in the design of fast adders

Study alternatives to the carry-lookahead method for designing fast adders

Chapter Highlights

Single- and multilevel carry lookahead Various designs for log-time adders Relating the carry determination problem to parallel prefix computation Implementing fast adders in VLSI

CARRY-LOOKAHEAD ADDERS AND VARIATIONS IN FAST ADDERS: TOPICS

Topics in This Chapter 6.1 Unrolling the Carry Recurrence 6.2 Carry-Lookahead Adder Design 6.4 Carry Determination as Prefix Computation 6.5 Alternative Parallel Prefix Networks 7.3 Carry-Select Adders 7.4 Analysis of Carry Propagation 7.6 Modular Two-Operand Adders

S

6.1 UNROLLING THE CARRY RECURRENCE

Recall the generate, propagate, annihilate (absorb), and transfer signals:

<u>Signal</u>	<u>Binary</u>
g_i	$x_i y_i$
p_i	$x_i \oplus y_i$
a_i	$x_i'y_i' = (x_i \vee y_i)'$
t_i	$X_i \vee Y_i$
s_i	$x_i \oplus y_i \oplus c_i$

The carry recurrence can be unrolled to obtain each carry signal directly from inputs, rather than through propagation

$$\begin{split} c_{i} &= g_{i-1} \vee c_{i-1} p_{i-1} \\ &= g_{i-1} \vee (g_{i-2} \vee c_{i-2} p_{i-2}) p_{i-1} \\ &= g_{i-1} \vee g_{i-2} p_{i-1} \vee c_{i-2} p_{i-2} p_{i-1} \\ &= g_{i-1} \vee g_{i-2} p_{i-1} \vee g_{i-3} p_{i-2} p_{i-1} \\ &= g_{i-1} \vee g_{i-2} p_{i-1} \vee g_{i-3} p_{i-2} p_{i-1} \vee c_{i-3} p_{i-3} p_{i-2} p_{i-1} \\ &= g_{i-1} \vee g_{i-2} p_{i-1} \vee g_{i-3} p_{i-2} p_{i-1} \vee g_{i-4} p_{i-3} p_{i-2} p_{i-1} \\ &= \dots \end{split}$$

FULL CARRY LOOKAHEAD

Theoretically, it is possible to derive each sum digit directly from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing the complexity of this ideal, but impractical, arrangement by hardware sharing among the various lookahead circuits

FOUR-BIT CARRY-LOOKAHEAD ADDER

Complexity reduced by deriving the carry-out indirectly

Full carry lookahead is quite practical for a 4-bit adder

$$c_{1} = g_{0} \vee c_{0}p_{0}$$

$$c_{2} = g_{1} \vee g_{0}p_{1} \vee c_{0}p_{0}p_{1}$$

$$c_{3} = g_{2} \vee g_{1}p_{2} \vee g_{0}p_{1}p_{2} \vee c_{0}p_{0}p_{1}p_{2}$$

$$c_{4} = g_{3} \vee g_{2}p_{3} \vee g_{1}p_{2}p_{3} \vee g_{0}p_{1}p_{2}p_{3}$$

$$\vee c_{0}p_{0}p_{1}p_{2}p_{3}$$

Fig. 6.1 Four-bit carry network with full lookahead.

CARRY LOOKAHEAD BEYOND 4 BITS

Consider a 32-bit adder

 $c_{1} = g_{0} \vee c_{0} p_{0}$ $c_{2} = g_{1} \vee g_{0} p_{1} \vee c_{0} p_{0} p_{1}$ $c_{3} = g_{2} \vee g_{1} p_{2} \vee g_{0} p_{1} p_{2} \vee c_{0} p_{0} p_{1} p_{2}$ \vdots

 $c_{31} = g_{30} \vee g_{29} p_{30} \vee g_{28} p_{29} p_{30} \vee g_{27} p_{28} p_{29} p_{30} \vee$

No circuit sharing: Repeated computations

32-input AND $c_0 p_0 p_1 p_2 p_3 ... p_{29}$

32-input OR

High fan-ins necessitate tree-structured circuits

 p_{30}

ONE SOLUTION TO THE FAN-IN PROBLEM

Multilevel lookahead

Example: 16-bit addition

Radix-16 (four digits)

Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c_4 , c_8 , and c_{12} are determined first

$$\mathbf{c}_{16}$$
 \mathbf{c}_{15} \mathbf{c}_{14} \mathbf{c}_{13} \mathbf{c}_{12} \mathbf{c}_{11} \mathbf{c}_{10} \mathbf{c}_{9} \mathbf{c}_{8} \mathbf{c}_{7} \mathbf{c}_{6} \mathbf{c}_{5} \mathbf{c}_{4} \mathbf{c}_{3} \mathbf{c}_{2} \mathbf{c}_{1} \mathbf{c}_{0} \mathbf{c}_{cont}

6.2 CARRY-LOOKAHEAD ADDER DESIGN

Block generate and propagate signals

$$g_{[i,i+3]} = g_{i+3} \vee g_{i+2} p_{i+3} \vee g_{i+1} p_{i+2} p_{i+3} \vee g_i p_{i+1} p_{i+2} p_{i+3}$$

$$p_{[i,i+3]} = p_i p_{i+1} p_{i+2} p_{i+3}$$

Fig. 6.2b Schematic diagram of a 4-bit lookahead carry generator.

Apr. 2012 Computer Arithmetic, Addition/Subtraction

A TWO-LEVEL CARRY-LOOKAHEAD ADDER

Fig. 6.4 Building a 64-bit carry-lookahead adder from 16 4-bit adders and 5 lookahead carry generators.

Carry-out:
$$c_{\text{out}} = g_{[0,k-1]} \vee c_0 p_{[0,k-1]} = x_{k-1} y_{k-1} \vee s_{k-1}' (x_{k-1} \vee y_{k-1})$$

 $p_{[0,63]}$

6.4 CARRY DETERMINATION AS PREFIX COMPUTATION

Fig. 6.5 Combining of g and p signals of two (contiguous or overlapping) blocks B' and B" of arbitrary widths into the g and p signals for block B.

FORMULATING THE PREFIX COMPUTATION PROBLEM

The problem of carry determination can be formulated as:

Carry-in can be viewed as an extra (-1) position: $(g_{-1}, p_{-1}) = (c_{in}, 0)$

The desired pairs are found by evaluating all prefixes of

$$(g_0, p_0) \notin (g_1, p_1) \notin \dots \notin (g_{k-2}, p_{k-2}) \notin (g_{k-1}, p_{k-1})$$

The carry operator ¢ is associative, but not commutative

$$[(g_1, p_1) \notin (g_2, p_2)] \notin (g_3, p_3) = (g_1, p_1) \notin [(g_2, p_2) \notin (g_3, p_3)]$$

Prefix sums analogy:

Given
$$x_0$$
 x_1 x_2 ... x_{k-1}
Find x_0 x_0+x_1 $x_0+x_1+x_2$... $x_0+x_1+...+x_{k-1}$

6.5 ALTERNATIVE PARALLEL PREFIX NETWORKS

Fig. 6.7 Ladner-Fischer parallel prefix sums network built of two k/2-input networks and k/2 adders.

Delay recurrence $D(k) = D(k/2) + 1 = \log_2 k$ Cost recurrence $C(k) = 2C(k/2) + k/2 = (k/2) \log_2 k$

LADNER-FISHER

DELAY=4

COST=32

COST x DELAY=128

THE BRENT-KUNG RECURSIVE CONSTRUCTION

Fig. 6.8 Parallel prefix sums network built of one k/2-input network and k-1 adders.

Delay recurrence Cost recurrence

$$D(k) = D(k/2) + 2 = 2 \log_2 k - 1$$
 (-2 really)
 $C(k) = C(k/2) + k - 1 = 2k - 2 - \log_2 k$

BRENT-KUNG CARRY NETWORK (8-BIT ADDER)

BRENT-KUNG CARRY NETWORK (16-BIT ADDER)

KOGGE-STONE CARRY NETWORK (16-BIT ADDER)

Cost formula

$$C(k) = (k-1)$$

$$+(k-2)$$

$$+(k-4)+...$$

$$+ (k - k/2)$$

$$= k \log_2 k - k + 1$$

 $log_2 k$ levels (minimum possible)

Fig. 6.10 Kogge-Stone parallel prefix graph for 16 inputs.

HYBRID B-K/K-S (HAN CARLSON) CARRY NETWORK (16-BIT)

Brent-Kung: 6 levels 26 cells

Kogge-Stone: 4 levels 49 cells

Fig. 6.11
A Hybrid
Brent-Kung/
Kogge-Stone
parallel prefix
graph for
16 inputs.

Hybrid: 5 levels 32 cells

SPEED-COST TRADEOFFS IN CARRY NETWORKS

Method	Delay	Cost
Ladner-Fischer	log ₂ k	$(k/2) \log_2 k$
Kogge-Stone	log ₂ k	$k \log_2 k - k + 1$
Brent-Kung	2 log ₂ k – 2	$2k-2-\log_2 k$
Han Carlson	Log ₂ k +1	$(k/2) \log_2 k$

k= 16-bits

Method	Delay	Cost
Ladner-Fischer	4	32
Kogge-Stone	4	49
Brent-Kung	6	26
Han Carlson	5	32

PROBLEMAS

Problema 6.1 Obtenha os gráficos para valores pares $n \in [4, 32]$ dos somadores Ladner-Fisher (LF), Brent-Kung (BK), Kogge-Stone (KS), e Han-Carlson (HC) para:

- a)Área.
- b)Atraso.
- c)Produto área atraso (AT)
- d)Produto área atraso quadrado (AT2).
- e)Fan-out.

Indique qual é a melhor opção para as diferentes figuras de mérito apresentadas acima.

7.3 CARRY-SELECT ADDERS

Fig. 7.9 Carry-select adder for *k*-bit numbers built from three *k*/2-bit adders.

$$C_{\text{select-add}}(k) = 3C_{\text{add}}(k/2) + k/2 + 1$$

 $T_{\text{select-add}}(k) = T_{\text{add}}(k/2) + 1$

SLIDE 22

MULTILEVEL CARRY-SELECT ADDERS

Fig. 7.10 Two-level carry-select adder built of k/4-bit adders.

PROBLEMAS

Problema 6.2 Faça uma optimização para um *Carry-Select-Adder* de 64-bits dividido em 4 somas e assumindo que a área e o atraso do somador está expressado como $n \times A_{adder}$, $n \times T_{adder}$, respectivamente, sendo n o número de bits. Considere a área e atraso do multiplexador 2:1 como uma unidade $(2/3) \times A_{adder}$, $(2/3) \times T_{adder}$.

7.4 ANALYSIS OF CARRY PROPAGATION

Fig. 7.11 Example addition and its carry propagation chains.

Given binary numbers with random bits, for each position *i* we have

```
Probability of carry generation = \frac{1}{4} (both 1s)
Probability of carry annihilation = \frac{1}{4} (both 0s)
Probability of carry propagation = \frac{1}{2} (different)
```

PROBLEMAS

Problema 6.3. Uma entrada fixa $A = 31727_{10}$ deve ser somada com entradas variáveis B e C, todas de 16-bits. Ditas entradas variáveis só podem ter os seguintes valores:

- B = $\{2638_{10}, 31439_{10}, 14923_{10}\}.$
- $C = \{3041_{10}, 15343_{10}, 3192_{10}\}.$

Qual das somas pode ser implementada com um atraso menor?

Problema 6.4. Dois vetores de 12 bits A e B precisam de ser somados, onde A é sempre múltiplo $100_{(10)}$ e B múltiplo de $48_{(10)}$. Considerando os tempos de atraso do problema 6.2, obtenha a soma dos vectores com um atraso máximo de $5 \times T_{adder}$.

SLIDE 26

7.6 MODULAR TWO-OPERAND ADDERS

 $\text{mod-}2^k$: Ignore carry out of position k-1

```
mod-(2^k-1): Use End-Around Carry (EAC)
```

 $mod-(2^k + 1)$: Use Inverted End-Around Carry (IEAC)

Number	
_	Std. binary
0	00000
1	00001
2	00010
	•
	•
2 ^k –1	-
	01111
2^k	10000

GENERAL MODULAR ADDERS

$$\frac{(x + y) \mod m}{\text{if } x + y \ge m}$$
then $x + y - m$
else $x + y$

Fig. 7.15 Fast modular addition.

 $(x + y) \mod m$

PROBLEMAS

Problema 6.5. Implemente os seguintes somadores modulares:

- a) $|A+B|_{29}$.
- b) $||A+B|_{27}+C|_{29}$.
- c) $||A+B|_{11}+C|_{13}$.
- d)|A+B|₅₉
- e)|A+B|₁₅