# Appendix (For Online Publication Only)

# A Theoretical Justification: Consistency of $\hat{p}$

This subsection presents a theoretical justification of choosing p on the basis of estimated AMSE. The justification parallels previous results on bandwidth selection, e.g. Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014b) who prove the consistency of the bandwidth selector  $\hat{h}(p)$  for  $h_{opt}(p)$ . There are two alternative asymptotic frameworks employed in the literature, and we show the consistency of  $\hat{p}$  in both. The first asymptotic framework adopts bandwidths that shrink at the MSE-optimal rates. This is the framework that has been used to argue for the use of p=1 over p=0, as mentioned at the beginning of section 2; it is also the framework for the discussion about Figure 1. In the second framework, which Calonico, Cattaneo and Titiunik (2014b) use to derive their key inference results, we assume that bandwidths for polynomial estimators of different orders shrink at the same rate.

We first define

$$p_{opt} \equiv \underset{p \in \Omega}{\operatorname{arg\,minAMSE}}_{\hat{\tau}_p}(h(p))$$

as the MSE-optimal polynomial order in the candidate set  $\Omega$ , where h(p) denotes the bandwidth choice for the pth order local regression estimator. In general,  $p_{opt}$  is a function of n, and consistency means  $\hat{p}/p_{opt} \stackrel{\mathbb{P}}{\to} 1$ . Using  $p_{max}$  to denote the largest candidate polynomial order  $(p_{max} \equiv \max\{p|p \in \Omega\})$ —which can be as low as 1 if a researcher is choosing between local constant and local linear specifications—we state our assumptions.

**Assumption 1.**  $p_{max}$  is constant.

**Assumption 2.** a) Assumptions 1 and 2 in Calonico, Cattaneo and Titiunik (2014b) hold with  $S = p_{max} + 1$ ; b) for all  $p \in \Omega$ ,  $\hat{B}_p$  and  $\hat{V}_p$  in equation (4) are consistent estimators for  $B_p$  and  $V_p$  in equation (3).

<sup>&</sup>lt;sup>1</sup>Assumption 1 in Calonico, Cattaneo and Titiunik (2014b) consists of regularity conditions for the fourth moment

**Assumption 3.** 
$$h(p) = H_p \cdot n^{-\frac{1}{2p+3}}$$
 with  $H_p > 0$ , and  $\hat{h}(p)/h(p) \stackrel{\mathbb{P}}{\to} 1$  for all  $p \in \Omega$ .

Assumption 1 states that  $p_{max}$  does not change with n. This is consistent with the standard approach in other contexts, such as choosing the order of a time series autoregression from a fixed candidate set by the Akaike or Bayesian Information Criterion that penalizes model complexity (Stock and Watson, 2011), or selecting from a fixed set of covariate polynomial terms in propensity score matching or LASSO (the candidate set in Imbens and Rubin, 2015 for propensity score matching and Chernozhukov et al., 2018 for LASSO consists of linear, linear interactions and quadratic terms). In addition, Assumption 1 is not restrictive by itself as the researcher may always pick a large enough  $p_{max}$  a priori regardless of n. However, care is needed as Calonico, Cattaneo and Titiunik (2015) and Gelman and Imbens (2019) express concerns regarding high-order global RD polynomial estimators related to the Runge phenomenon. The Runge phenomenon arises in the polynomial interpolation of a function f(x) over an interval [a,b]: using a polynomial of order n to interpolate a function through n+1 equispaced knots when n is large does not imply uniform convergence to f. In fact, large departures from the function may result outside the interpolation knots, especially toward the edge of [a,b]. One textbook remedy (Ch. 4 of Dahlquist and Björck, 2008 and Ch. 8 of Björck, 1996) to guard against the Runge phenomenon is to employ least squares regression as opposed to interpolation. As a rule of thumb, the textbooks recommend using a polynomial order no larger than  $2\sqrt{n}$  where n is the number of (equispaced) observations. However, this rule of thumb does not cater to local RD estimators, and researchers typically choose polynomial orders from a set with a much smaller  $p_{max}$ . The Stata package rdrobust (Calonico, Cattaneo and Titiunik, 2014a and Calonico et al., 2017) caps the polynomial order at 8, and 107 of the 110 RD papers we surveyed use local orders no larger than 5. Given the concerns voiced by Calonico, Cattaneo and Titiunik (2015) and Gelman and Imbens (2019) and the status quo of the econometric and applied literature, it is advisable to always limit  $p_{max}$  to be at or below 8 and in

of Y given X, the density of X, and the conditional expectation and variance functions of the potential outcomes given X. In particular, the conditional expectation functions of the potential outcomes are assumed to be S-times differentiable in a neighborhood around zero. Assumption 2 in Calonico, Cattaneo and Titiunik (2014b) requires the kernel function  $K(\cdot)$  in the minimization problem (2) to have compact support, be nonnegative, and be continuous.

most cases at or below 5.2

Part a) of Assumption 2 consists of standard regularity conditions that allow for the asymptotic approximation of MSE, and part b) encompasses the estimators  $\hat{B}_p$  and  $\hat{V}_p$  in Imbens and Kalyanaraman (2012) for p=1 and Calonico, Cattaneo and Titiunik (2014*b*) as special cases. Note that a larger  $p_{max}$  translates to a higher degree of smoothness in Assumption 2, which may seem undesirable ostensibly. But it is also arbitrary to assume, for example, that the conditional expectation functions  $E[Y_1|X=x]$  and  $E[Y_0|X=x]$  have continuous second derivatives (S=2) but not continuous third derivatives (S=3). The technicality of Assumption 2 notwithstanding, for all practical purposes, we treat these conditional expectation functions as infinitely smooth.

Assumption 3 is the key assumption of the first asymptotic framework we consider. It states that the theoretical bandwidth for each p shrinks at the MSE-optimal rate and that the bandwidth selector is consistent. The CCT bandwidth selector, for example, satisfies this property.

**Proposition 1.** Under Assumptions 1, 2 and 3,  $p_{opt} \rightarrow p_{max}$  and  $\hat{p}/p_{opt} \stackrel{\mathbb{P}}{\rightarrow} 1$ .

*Proof.* First we show that  $p_{opt} \rightarrow p_{max}$ . As mentioned in section 2, Assumption 3 implies that

$$AMSE_{\hat{\tau}_p}(h(p)) = C_p \cdot n^{-\frac{2p+2}{2p+3}},$$
(A1)

where  $C_p$  is a constant for each p and does not depend on n. It follows that for any  $p \neq p_{max}$ 

$$\frac{\mathsf{AMSE}_{\hat{\tau}_{p_{max}}}(h(p_{max}))}{\mathsf{AMSE}_{\hat{\tau}_p}(h(p))} \to 0$$

as  $n \to \infty$ . In other words, the AMSE of  $\hat{\tau}_{p_{max}}$  is asymptotically smaller than a lower-order polynomial estimator, when the bandwidths shrink at the MSE-optimal rate. Therefore,  $p_{opt} \to p_{max}$ .

Next we show that  $\hat{p} \stackrel{\mathbb{P}}{\to} p_{max}$ . Under part b) of Assumption 2, Lemma A1 of Calonico, Cattaneo

Another practical consideration is multicollinearity. As the polynomial order increases, multicollinearity is more likely when executing the regression. Using the Lee (2008) data, for example, rdrobust reports issues in bandwidth computation when p = 7.

and Titiunik (2014b) shows that

$$\frac{\widehat{\mathsf{AMSE}}_{\hat{\tau}_p}(h(p))}{\mathsf{AMSE}_{\hat{\tau}_p}(h(p))} \stackrel{\mathbb{P}}{\to} 1$$

for each  $p \in \Omega$ . It follows that

$$\frac{\widehat{\mathsf{AMSE}}_{\widehat{\tau}_{p_{max}}}(h(p_{max}))}{\mathsf{AMSE}_{\widehat{\tau}_p}(h(p))} \stackrel{\mathbb{P}}{\to} 0$$

for any  $p \neq p_{max}$ , which implies  $\hat{p} \stackrel{\mathbb{P}}{\to} p_{max}$ . Since  $p_{opt} \to p_{max}$ ,  $\hat{p} \stackrel{\mathbb{P}}{\to} p_{opt}$  as  $n \to \infty$ .

*Remark.* We can calculate the rate at which  $p_{opt}$  converges to  $p_{max}$  based on equation (A1). For example, if a researcher is choosing between local linear and quadratic i.e.  $\Omega = \{1,2\}$  as in Figure 1, quadratic is MSE-optimal when

$$n^{2/35} > C_2/C_1$$
.

In this case,  $|p_{opt} - p_{max}| = |p_{opt} - 2| < (C_2/C_1)n^{-2/35}$ . Similarly, we can derive that for a general  $\Omega$  where  $\tilde{p}$  is the highest order in the set other than  $p_{max}$ ,  $|p_{opt} - p_{max}| = O(n^{-2(p_{max} - \tilde{p})/(2p_{max} + 3)(2\tilde{p} + 3)})$ .

Proposition 1 says that under standard asymptotics as provided by Assumption 3, a) the optimal polynomial order is the "corner solution"  $p_{max}$  when the sample size is large; b) the order we select will also converge to  $p_{max}$  in probability. Point a) echos the insight from Porter (2003) and our discussion above that a higher order estimator will dominate in a sufficiently large sample when using optimal bandwidths. However, to reiterate our point made at the beginning of section 2, which we illustrate again in section 4 using the RKD example, the "corner solution" here reflects the theoretical property that AMSE $\hat{\tau}_p$  decreases at a higher rate as a function of the sample size when p is larger.

It is clear from Figure 1 and the remark above that although  $p_{opt}$  converges to  $p_{max}$  asymptotically,  $p_{opt}$  may not coincide with  $p_{max}$  in any finite sample. This is true even in sample sizes conventionally considered to be large, as is the case with our RKD example in section 4. It is worth emphasizing that this is not a statement about the finite sample performance of  $\hat{p}$ — $p_{opt}$  is not subject to sampling variation; instead, as discussed in section 2, it is about the important role of the constants ( $B_p$  and  $V_p$  for  $p \in \Omega$ ) in determining  $p_{opt}$ , beyond the asymptotic rates in the

remark above that push  $p_{opt}$  toward  $p_{max}$ .

To highlight the role of these constants, we consider a second, alternative, asymptotic framework used in the literature, in which  $p_{opt}$  can be an "interior solution". That is, even in the limit as the sample size tends to infinity, we can still have  $p_{opt} < p_{max}$ . The key assumption of this alternative asymptotic framework is:

**Assumption 4.** 
$$h(p) = H_p \cdot n^{-\alpha}$$
 with  $H_p > 0$  and  $\alpha \in (0,1)$  for all  $p \in \Omega$ .

Unlike in Assumption 3, all bandwidths shrink at the same rate in Assumption 4 regardless of the polynomial order p. It is analogous to the defining assumption of the asymptotic framework in Calonico, Cattaneo and Titiunik (2014b): for their inference result, Calonico, Cattaneo and Titiunik (2014b) assume that the bandwidth for estimating the bias and the bandwidth for estimating the treatment effect shrink at the same rate. Calonico, Cattaneo and Titiunik (2014b) maintain this assumption even though the bias term contains higher order derivatives of the conditional expectation functions than the treatment effect and that their corresponding bandwidth selectors in Calonico, Cattaneo and Titiunik (2014b) shrink at different rates as the sample size increases.

We now establish the consistency of  $\hat{p}$  in this alternative asymptotic framework.

**Proposition 2.** Under Assumptions 1, 2 and 4 and provided that  $p_{opt}$  is unique asymptotically,  $\hat{p}/p_{opt} \stackrel{\mathbb{P}}{\to} 1$ .

*Proof.* We show that the probability  $Pr(\hat{p}/p_{opt} \neq 1)$  is arbitrarily small as  $n \to \infty$ .

$$\Pr\left(\frac{\hat{p}}{p_{opt}} \neq 1\right)$$

$$= \Pr\left(\frac{\widehat{AMSE}_{\hat{\tau}_{\hat{p}}}(h(\hat{p}))}{\widehat{AMSE}_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))} < 1\right)$$

$$\leq \sum_{p \neq p_{opt}} \Pr\left(\frac{\widehat{AMSE}_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))}{\widehat{AMSE}_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))} < 1\right)$$

$$= \sum_{p \neq p_{opt}} \Pr\left(\frac{\widehat{AMSE}_{\hat{\tau}_{p_{opt}}}(h(p))}{\widehat{AMSE}_{\hat{\tau}_{p}}(h(p))} \frac{AMSE_{\hat{\tau}_{p_{opt}}}(h(p))}{AMSE_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))} \frac{AMSE_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))}{\widehat{AMSE}_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))} < 1\right)$$
(A2)

Now we examine the three fractions inside the probability statement of (A2) one by one. For the first fraction, Lemma A1 of Calonico, Cattaneo and Titiunik (2014b) again implies that

$$\frac{\widehat{\mathsf{AMSE}}_{\hat{\tau}_p}(h(p))}{\mathsf{AMSE}_{\hat{\tau}_p}(h(p))} \stackrel{\mathbb{P}}{\to} 1 \tag{A3}$$

for all p. The second fraction

$$\frac{\text{AMSE}_{\hat{\tau}_p}(h(p))}{\text{AMSE}_{\hat{\tau}_{nest}}(h(p_{opt}))} > 1$$

for all p by the definition and uniqueness of  $p_{opt}$ . For the third fraction, notice that for any  $\varepsilon > 0$ 

$$\Pr\left(\left|\frac{\text{AMSE}_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))}{\widehat{\text{AMSE}}_{\hat{\tau}_{p_{opt}}}(h(p_{opt}))} - 1\right| > \varepsilon\right) \leqslant \sum_{p \in \Omega} \Pr\left(\left|\frac{\text{AMSE}_{\hat{\tau}_{p}}(h(p))}{\widehat{\text{AMSE}}_{\hat{\tau}_{p}}(h(p))} - 1\right| > \varepsilon\right). \tag{A4}$$

By Assumption 1 and condition (A3), the right hand side of (A4) can be made arbitrarily small by choosing a large enough sample size. It follows that

$$\frac{\widehat{\mathsf{AMSE}}_{\widehat{\tau}_{p_{opt}}}(h(p_{opt}))}{\mathsf{AMSE}_{\widehat{\tau}_{p_{opt}}}(h(p_{opt}))} \overset{\mathbb{P}}{\to} 1.$$

Putting all three fractions together, we know that, for each p,

$$\Pr\left(\frac{\widehat{\mathsf{AMSE}}_{\hat{\tau}_p}(h(p))}{\mathsf{AMSE}_{\hat{\tau}_p}(h(p))} \frac{\mathsf{AMSE}_{\hat{\tau}_p}(h(p))}{\mathsf{AMSE}_{\hat{\tau}_{popt}}(h(p_{opt}))} \frac{\mathsf{AMSE}_{\hat{\tau}_{popt}}(h(p_{opt}))}{\widehat{\mathsf{AMSE}}_{\hat{\tau}_{popt}}(h(p_{opt}))} < 1\right)$$

can be made arbitrarily small by choosing a large enough sample size. It follows that  $\Pr(\hat{p}/p_{opt} \neq 1) \to 0$  as  $n \to \infty$  and that  $\hat{p}/p_{opt} \stackrel{\mathbb{P}}{\to} 1$ .

Under Assumption 4, AMSE  $\hat{\tau}_p$  shrinks at the same rate for all p. Therefore, the limit of  $p_{opt}$  is generally not  $p_{max}$ , and the AMSE of  $\hat{\tau}_{p_{max}}$  does not always dominate that of alternative polynomial orders as is the case under Assumption 3. Instead, the optimal polynomial order depends on the magnitudes of the constants  $B_p$  and  $V_p$  from equation (3) even asymptotically. In another contrast with Assumption 3, under which  $p_{opt}$  is unique as  $n \to \infty$ , there exist DGPs for which the AMSEs

are the same for different p. We therefore assume the uniqueness of  $p_{opt}$  in Proposition 2, but even if the uniqueness assumption is relaxed,  $\hat{p}$  still has the desirable asymptotic no-regret per Li (1987) and Imbens and Kalyanaraman (2012). Namely, there is no loss asymptotically by using  $\hat{p}$ , as compared to any of the optimal orders that deliver the lowest MSE.

In summary, Propositions 1 and 2 establish the consistency of our polynomial order selection procedure in two asymptotic frameworks that have been invoked in the literature. In the first and more conventional framework,  $p_{opt}$  converges asymptotically to  $p_{max}$ , the largest polynomial order in the candidate set. But even in a sample typically considered large,  $p_{opt}$  may not coincide with  $p_{max}$  depending on the bias and variance constants ( $B_p$  and  $V_p$  for  $p \in \Omega$ ). Our second asymptotic framework, which is analogous to that of Calonico, Cattaneo and Titiunik (2014*b*), further emphasizes the role of the constants, which justifies  $\hat{p}$  as consistent for  $p_{opt}$  when  $p_{opt}$  is distinct from  $p_{max}$ .

## **B** Specifications of Data Generating Processes

### **B.1** Lee and Ludwig-Miller DGPs

To obtain the conditional expectation functions in the Lee and Ludwig-Miller DGPs, Imbens and Kalyanaraman (2012) and Calonico, Cattaneo and Titiunik (2014b) first discard the outliers in the empirical data (i.e. observations for which the absolute value of the running variable is very large) and then fit a separate quintic function on each side of the cutoff to the remaining observations. The conditional expectation functions are

Lee: 
$$E[Y|X=x] = \begin{cases} 0.48 + 1.27x + 7.18x^2 + 20.21x^3 + 21.54x^4 + 7.33x^5 & \text{if } x < 0\\ 0.52 + 0.84x - 3.00x^2 + 7.99x^3 - 9.01x^4 + 3.56x^5 & \text{if } x \geqslant 0 \end{cases}$$
 (A5)

Ludwig-Miller: 
$$E[Y|X=x] = \begin{cases} 3.71 + 2.30x + 3.28x^2 + 1.45x^3 + 0.23x^4 + 0.03x^5 & \text{if } x < 0 \\ 0.26 + 18.49x - 54.81x^2 + 74.30x^3 - 45.02x^4 + 9.83x^5 & \text{if } x \ge 0. \end{cases}$$
(A6)

Equations (A5) and (A6) are graphed in Appendix Figure A.1. The assignment variable X is specified as following the distribution  $2\mathcal{B}(2,4)-1$ , where  $\mathcal{B}(a,b)$  denotes a beta distribution with shape parameters a and b. The outcome variable is given by  $Y = E[Y|X = x] + \varepsilon$ , where  $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$  with  $\sigma_{\varepsilon} = 0.1295$ .

#### **B.2** Card-Lee-Pei-Weber DGPs

The process of specifying the Card-Lee-Pei-Weber DGPs are described in section 4.4.3 of Card et al. (2017). In both the bottom- and top-kink DGPs, the first-stage and reduced-form conditional expectation functions are specified as

First-stage: 
$$E[B|X=x] = \begin{cases} \beta_0 + \beta_1^+ x + \beta_2^+ x^2 + \beta_3^+ x^3 + \beta_4^+ x^4 + \beta_5^+ x^5 & \text{if } x < 0 \\ \beta_0 + \beta_1^- x + \beta_2^- x^2 + \beta_3^- x^3 + \beta_4^- x^4 + \beta_5^- x^5 & \text{if } x \geqslant 0 \end{cases}$$
 (A7)

Reduced-form: 
$$E[Y|X=x] = \begin{cases} \gamma_0 + \gamma_1^+ x + \gamma_2^+ x^2 + \gamma_3^+ x^3 + \gamma_4^+ x^4 + \gamma_5^+ x^5 & \text{if } x < 0 \\ \gamma_0 + \gamma_1^- x + \gamma_2^- x^2 + \gamma_3^- x^3 + \gamma_4^- x^4 + \gamma_5^- x^5 & \text{if } x \geqslant 0. \end{cases}$$
(A8)

We also specify  $\sigma_B^2(0^+)$ ,  $\sigma_B^2(0^-)$ ,  $\sigma_Y^2(0^+)$ , and  $\sigma_Y^2(0^-)$ , which are the conditional variances of B and Y given X just above and below the cutoff. Finally, we specify  $f_X(0)$ , the density of X at the cutoff. The values of these parameters are provided in Appendix Table B.5.

### **C** AMSE Calculation and Estimation

#### **C.1** Theoretical AMSE Calculation

After the full specification of a data generating process, we can calculate AMSE $_{\hat{\tau}_p}(h)$  by applying Lemma 1 of Calonico, Cattaneo and Titiunik (2014*b*) in a sharp design and Lemma 2 in a fuzzy design. The lemmas provide the expressions for the constants in the squared-bias and variance terms,  $B_p^2$  and  $V_p$ , that make up AMSE $_{\hat{\tau}_p}(h)$  according to equation (3). Specifically,  $B_p^2$  depends on the (p+1)th derivatives on both sides of the cutoff, and  $V_p$  depends on the conditional variances on both sides of the cutoff as well as the density of the running variable at the cutoff. With  $B_p^2$  and  $V_p$  computed, we can calculate the infeasible optimal bandwidth  $h_{opt}$  for a given sample size, which is simply a function of  $B_p^2$  and  $V_p$ . Finally, plugging  $h_{opt}$  back into AMSE $_{\hat{\tau}_p}(h)$  yields the AMSE for that given sample size, and Figure 1 is the graphical representation of this mapping across different sample sizes.

#### C.2 AMSE Estimation

To estimate AMSE $_{\hat{\tau}_p}$ , we rely on the proposed procedure in Calonico, Cattaneo and Titiunik (2014a,b). Our program rdmse\_cct2014 takes user-specified bandwidths as inputs and estimates  $\hat{B}_p^2$  and  $\hat{V}_p$  for the conventional estimator in the same way as Calonico, Cattaneo and Titiunik (2014b). The correspondences between  $\hat{B}_p$  and  $\hat{V}_p$  in this paper and their notations in Calonico, Cattaneo and Titiunik (2014b) are laid out in Table C.1. We also provide another program rdmse, which speeds up the computation in rdmse\_cct2014 by modifying variance estimations. As with Calonico, Cattaneo and Titiunik (2014b), rdmse implements a nearest-neighbor estimator as per Abadie and Imbens (2006) and sets the number of neighbors to three. However, in the event of a tie, while Calonico, Cattaneo and Titiunik (2014b) selects all of the closest neighbors, we randomly select three neighbors. We adopt the same modification in Card et al. (2015).

Additionally, rdmse estimates the AMSE of the bias-corrected RD or RK estimator  $\hat{\tau}_p^{bc}$ :

$$\widehat{\mathrm{AMSE}}_{\widehat{\tau}^{bc}_p}(h,b) = \left(\tilde{\mathrm{B}}^{bc}_p(h,b)\right)^2 + \tilde{\mathrm{V}}^{bc}_p(h,b),$$

where b is the pilot bandwidth used in Calonico, Cattaneo and Titiunik (2014b) to estimate the bias of  $\hat{\tau}_p$ . According to Theorems A.1 and A.2 of Calonico, Cattaneo and Titiunik (2014b), the bias of  $\hat{\tau}_p^{bc}$  has two terms: the first term is the higher-order approximation error post bias-correction, and the second term captures the bias in estimating the bias of  $\hat{\tau}_p$ . These two terms involve the (p+2)th derivatives of the conditional expectation function on both sides of the cutoff, which are estimated via local polynomial regressions in the CCT bandwidth selection procedure for the sharp design, and in the "fuzzy CCT" bandwidth selection procedure of Card et al. (2015). We follow the same algorithm to arrive at  $\tilde{B}_p^{bc}$ .  $\tilde{V}_p^{bc}$  is simply the estimated variance of  $\hat{\tau}_p^{bc}$ , and its computation is covered in detail in Calonico, Cattaneo and Titiunik (2014b). In Table C.1, we provide details on the AMSE calculations in our software implementation by presenting the correspondence between the expressions in this paper to those in Calonico, Cattaneo and Titiunik (2014a,b).

Finally, as mentioned in Appendix A, our AMSE estimator is consistent for the true MSE in a sharp design. Consistency in the fuzzy design and for  $\widehat{AMSE}_{\hat{\tau}_p^{bc}}(h,b)$  can be similarly established.

#### References

**Abadie, Alberto, and Guido W. Imbens.** 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects." *Econometrica*, 74(1): 235–267.

Björck, Åke. 1996. Numerical Methods for Least Squares Problems. Philadelphia: SIAM.

Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. 2014a. "Robust Data-Driven Inference in the Regression-Discontinuity Design." *Stata Journal*, 14(4): 909–946.

Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. 2014b. "Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs." *Econometrica*, 82(6): 2295–2326.

**Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik.** 2015. "Optimal Data-Driven Regression Discontinuity Plots." *Journal of the American Statistical Association*, 110(512): 1753–1769.

- Calonico, Sebastian, Matias D. Cattaneo, Max H. Farrell, and Rocío Titiunik. 2017. "rdrobust: Software for Regression Discontinuity Designs." *Stata Journal*, 17: 372–404.
- Card, David, David S. Lee, Zhuan Pei, and Andrea Weber. 2015. "Inference on Causal Effects in a Generalized Regression Kink Design." *Econometrica*, 83(6): 2453–2483.
- Card, David, David S. Lee, Zhuan Pei, and Andrea Weber. 2017. "Regression Kink Design: Theory and Practice." In *Regression Discontinuity Designs: Theory and Applications*. Vol. 38 of *Advances in Econometrics*, , ed. Matias D. Cattaneo and Juan Carlos Escanciano, Chapter 5, 341–382.
- Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2018. "Double/Debiased Machine Learning for Treatment and Structural Parameters." *Econometrics Journal*, 21(1): C1–C68.
- **Dahlquist, Germund, and Åke Björck.** 2008. *Numerical Methods in Scientific Computing, Volume I.* Society for Industrial and Applied Mathematics.
- **Gelman, Andrew, and Guido W. Imbens.** 2019. "Why High-order Polynomials Should Not Be Used in Regression Discontinuity Designs." *Journal of Business & Economic Statistics*, 37(3): 447–456.
- **Imbens, Guido W., and Donald B. Rubin.** 2015. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press.
- **Imbens, Guido W., and Karthik Kalyanaraman.** 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator." *Review of Economic Studies*, 79(3): 933 959.
- **Lee, David S.** 2008. "Randomized Experiments from Non-random Selection in U.S. House Elections." *Journal of Econometrics*, 142(2): 675–697.
- **Li, Ker-Chau.** 1987. "Asymptotic Optimality for  $C_p$ ,  $C_L$ , Cross-Validation and Generalized Cross-Validation: Discrete Index Set." *The Annals of Statistics*, 15(3): 958–975.
- Porter, Jack. 2003. "Estimation in the Regression Discontinuity Model." mimeographed.
- Stock, James H., and Mark W. Watson. 2011. Introduction to Econometrics. . 3rd ed., Pearson.

Figure A.1: Conditional Expectation Functions in RDD DGPs



Figure A.2: Conditional Expectation Functions in RKD DGPs



Table A.1: Main Specification of RD Papers Published in Leading Journals

| Main Specification                              | Number of Papers | 1999-2010 | 2011-2017 |
|-------------------------------------------------|------------------|-----------|-----------|
| Local constant                                  | 11               | 8         | 3         |
| Local linear                                    | 45               | 9         | 36        |
| Local quadratic                                 | 6                | 1         | 5         |
| Local cubic                                     | 5                | 4         | 1         |
| Local quartic                                   | 2                | 2         | 0         |
| Local 7th-order                                 | 1                | 1         | 0         |
| Local 8th-order                                 | 1                | 0         | 1         |
| Local but did not mention preferred polynomial  | 5                | 0         | 5         |
| Total local                                     | 76               | 25        | 51        |
| Global linear                                   | 4                | 1         | 3         |
| Global quadratic                                | 4                | 0         | 4         |
| Global cubic                                    | 11               | 5         | 6         |
| Global quartic                                  | 4                | 2         | 2         |
| Global 5th-order                                | 1                | 0         | 1         |
| Global 8th-order                                | 1                | 0         | 1         |
| Global but did not mention preferred polynomial | 1                | 0         | 1         |
| Total global                                    | 26               | 8         | 18        |
| Did not mention preferred specification         | 8                | 2         | 6         |
| Total                                           | 110              | 35        | 75        |

Note: Our survey includes empirical RD papers published between 1999 and 2017 in the following journals: *American Economic Review, American Economic Journals, Econometrica, Journal of Political Economy, Journal of Business and Economic Statistics, Quarterly Journal of Economics, Review of Economic Studies*, and Review of Economics and Statistics.

Table B.1: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Lee DGP, Actual and Large Sample Sizes

| (b): Simulation Statistics for the Local Linear Estimator (p=1)  (1) (2) (3) (4) (5) (6) (7)  (1) (2) (3) (4) (5) (6) (7)  (1) (2) (3) (4) (5) (6) (7)  (1) (2) (3) (4) (5) (6) (7)  (2) (3) (4) (5) (6) (7)  (3) (4) (5) (6) (7)  (4) (5) (6) (7)  (5) (4) (5) (6) (7)  (6) (7) (8) (9) (9) (9) (9) (10.24)  (7) (8) (9) (9) (9) (9) (9) (1.24)  (8) (9) (1) (1) (2) (3) (4) (5) (6) (7) (9) (1.24)  (8) (1) (1) (1) (1) (2) (3) (4) (5) (6) (7) (9) (9) (1.24)  (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |         | Panel A:    | Actual :  | Sample 5     | Panel A: Actual Sample Size (n=6,558) | 58)        |                              |               |         | Panel B:    | Large S                    | ample Si     | Panel B: Large Sample Size (n=60,000)                                | (00               |                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|-------------|-----------|--------------|---------------------------------------|------------|------------------------------|---------------|---------|-------------|----------------------------|--------------|----------------------------------------------------------------------|-------------------|------------------------------|
| (1) (2) (3) (4) (5) (6) (7)     MSE   Coverage   Avg. CI   Avg. Size-width   P   Avg. n ×1000   Rate   Length   adj. CI length   The Coptimal   0.099   811   0.483   0.947   0.085   0.086   The I   0.139   1140   0.481   0.906   0.077   0.089   CC     Optimal   0.0139   1140   0.481   0.906   0.077   0.089   CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (a): S        | imulat  | ion Stati   | stics for | the Loc      | al Linear Es                          | timator (p | )=1)                         | (a): Si       | imula   | ion Stati   | stics for                  | the Loca     | ıl Linear Es                                                         | timator (p        | =1)                          |
| width p Avg. h Avg. n ×1000 Rate Length adj. CI length Date . Optimal 1 0.099 811 0.483 0.947 0.085 0.086 The . Optimal 1 0.099 811 0.483 0.947 0.085 0.089 CC . Optimal 1 0.139 1140 0.481 0.906 0.077 0.089 CC . Optimal 0 0.022 183 1.298 0.945 1.132 1.145 The . Optimal 0 0.022 183 1.298 0.945 1.132 1.145 The . Optimal 0 0.022 183 1.298 0.945 1.132 1.145 The . Optimal 0 0.032 0.310 0.905 0.904 0.887     Fraction of time p=(0.1,2,3,4): (0, 0, 0, 607, .392)     Fraction of time p=(0.1,2,3,4): (0, 0, 0, 607, .392)     D 0.344 2808 1.141 0.946 1.166 1.018     Exercise Avg. CI Size-adj. CI The . Optimal 0 0.032 266 1.056 0.909 1.034 1.025 CC . Optimal 0 0.032 266 1.056 0.909 1.034 1.182     Exercise Avg. Brate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | (1)     | (2)         | (3)       | (4)          | (5)                                   | (9)        | (7)                          |               | (1)     | (2)         | (3)                        | (4)          | (5)                                                                  | (9)               | (7)                          |
| Optimal       1       0.099       811       0.481       0.947       0.085       0.086         1): Simulation Statistics for Other Polynomial Orders as Compared to p=1       Ratio       Ratio of Ratio of Avg.       CC         O: Simulation Statistics for Other Polynomial Orders as Compared to p=1       Ratio       Ratio of Ratio of Avg.       CC         O: Simulation Statistics for Other Polynomial Orders as Compared to p=1       Ratio       Ratio of Ratio of Avg.       CC         O: O: Order Polynomial Orders as Compared to p=1       Ratio of Ratio of Avg.       Ratio of Ratio of Avg.       Date of Coverage Avg. CI       Size-adj. CI         Width       p       Avg. h Avg. n MSE's Rate Lengths lengths       Langths       Langths       Ban         C Optimal       0       0.022       183       1.298       0.949       0.959       0.951       The         C Optimal       0       0.022       183       1.298       0.949       0.959       0.951       The         P       0       0.022       183       0.770       0.952       0.890       0.873       0.898         P       0       0.032       266       1.056       0.909       1.034       1.018         P       0       0.032       266       1.056 <t< td=""><td>Bandwidth</td><td>۵</td><td>Avg. h</td><td>Avg. n</td><td>MSE<br/>×1000</td><td>Coverage<br/>Rate</td><td></td><td>Avg. Size-<br/>adj. CI length</td><td>Bandwidth</td><td>đ</td><td>Avg. h</td><td>MSE<br/>Avg. h Avg. n ×1000</td><td>MSE<br/>×1000</td><td>Coverage<br/>Rate</td><td>Avg. CI<br/>Length</td><td>Avg. Size-<br/>adj. CI length</td></t<> | Bandwidth     | ۵       | Avg. h      | Avg. n    | MSE<br>×1000 | Coverage<br>Rate                      |            | Avg. Size-<br>adj. CI length | Bandwidth     | đ       | Avg. h      | MSE<br>Avg. h Avg. n ×1000 | MSE<br>×1000 | Coverage<br>Rate                                                     | Avg. CI<br>Length | Avg. Size-<br>adj. CI length |
| 1): Simulation Statistics for Other Polynomial Orders as Compared to p=1  Ratio of Ratio of Ratio of Avg.  of Coverage Avg. CI Size-adj. CI  width p Avg. h Avg. n MSE's Rate Lengths lengths  2 0.216 1766 0.905 0.945 1.132 1.145  3 0.407 3321 0.800 0.952 0.904 0.887  4 0.747 5739 0.770 0.952 0.809 0.873  p 0.814 0.948 0.898  Fraction of time p=(0,1,2,3,4): (0, 0, 0, 0.67, .392)  CC  2 0.248 2030 0.980 0.945 1.166 1.018  3 0.344 2808 1.141 0.946 1.166 1.018  4 0.390 3180 1.503 0.993 0.993  Fraction of time f=(0,1,2,3,4): (0, 0, 0, 0.993 0.993)  Fraction of time f=(0,1,2,3,4): (0, 0, 0, 0.993 0.993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Theo. Optimal | 1       | 0.099       | 811       | 0.483        | 0.947                                 | 0.085      | 0.086                        | Theo. Optimal | 1       | 0.064       | 4766                       | 0.080        | 0.945                                                                | 0.034             | 0.035                        |
| tion Statistics for Other Polynomial Orders as Compared to p=1  Ratio Ratio of Ratio of Avg.  Ratio Ratio of Ratio of Avg.  of Coverage Avg. CI Size-adj. CI  p Avg. h Avg. n MSE's Rate Lengths lengths  0 0.022 183 1.298 0.945 1.132 1.145 The  2 0.216 1766 0.905 0.949 0.959 0.951  3 0.407 3321 0.800 0.952 0.904 0.887  4 0.747 5739 0.770 0.952 0.890 0.873  p 0.814 0.948 0.898  Fraction of time p=(0,1,2,3,4): (0, 0, 0, .607, .392)  0 0.032 266 1.056 0.909 1.034 1.025  2 0.248 2030 0.980 0.938 1.061 0.953  3 0.344 2808 1.141 0.946 1.166 1.018  p 1.009 0.903 0.993  Braction of time \$\hat{\text{p}} = (0.1,2,3,4): (2.10,6,8,101,012,0)  Braction of time \$\hat{\text{p}} = (0.1,2,3,4): (2.10,6,8,101,012,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCT           | 1       | 0.139       |           | 0.481        | 906.0                                 | 0.077      | 0.089                        | CCT           | 1       | 0.080       | 6020                       | 0.075        | 0.931                                                                | 0.032             | 0.034                        |
| p         Avg. h         Ratio         Ratio of Ratio of Ratio of Avg. CI         Size-adj. CI           p         Avg. h         Avg. cI         Size-adj. CI         Bandwidth           0         0.022         183         1.298         0.945         1.132         1.145         Theo. Optimal           2         0.216         1766         0.905         0.949         0.959         0.951         Theo. Optimal           3         0.407         3321         0.800         0.952         0.904         0.887         Theo. Optimal           \$         0.407         5321         0.800         0.952         0.890         0.873         Theo. Optimal           \$         0.407         5739         0.770         0.952         0.890         0.873         CCT           \$         0.747         5739         0.770         0.952         0.890         0.873         CCT           \$         0.032         266         1.056         0.909         1.061         0.953         CCT           \$         0.248         2030         0.980         0.945         1.182         A         0.953         1.182         B           \$         0.390         3180         1.                                                                                                                                                                                                                                                                                                                                                                                                                              | (b): Simulat  | ion St  | atistics fo | or Other  | Polynor      | nial Orders                           | as Compa   | red to p=1                   | (b): Simulati | ion St  | atistics fc | or Other                   | Polynon      | nial Orders                                                          | as Compa          | red to p=1                   |
| p         Avg. h         Avg. n                                                                                                                                                                                                                                                                                                             |               |         |             |           | Ratio        |                                       |            | Ratio of Avg.                |               |         |             |                            |              |                                                                      | Ratio of          | Ratio of Avg.                |
| p         Avg. h         Avg. n         MSE's         Rate         Lengths         lengths         Bandwidth           0         0.022         183         1.298         0.945         1.132         1.145         Theo. Optimal           2         0.216         1766         0.905         0.949         0.959         0.951         Theo. Optimal           3         0.407         3321         0.800         0.952         0.890         0.887         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.060         0.873         1.061         0.953         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018         1.018<                                                                                                                                                                                                                                                                                                                                                                   |               |         |             |           | Jo           | Coverage                              | Avg. CI    | Size-adj. CI                 |               |         |             |                            | Ratio of     | Ratio of Coverage Avg. CI                                            | Avg. CI           | Size-adj. CI                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bandwidth     | d       | Avg. h      | Avg. n    | MSE's        | Rate                                  | Lengths    | lengths                      | Bandwidth     | þ       | Avg. h      | Avg. h Avg. n MSE's        | MSE's        | Rate                                                                 | Lengths           | lengths                      |
| 2 $0.216$ $1766$ $0.905$ $0.949$ $0.959$ $0.951$ 3 $0.407$ $3321$ $0.800$ $0.952$ $0.904$ $0.887$ 4 $0.747$ $5739$ $0.770$ $0.952$ $0.890$ $0.873$ Fraction of time $\hat{p}=(0,1,2,3,4)$ : $(0,0,0,.607,.392)$ 0 $0.032$ $266$ $1.056$ $0.909$ $1.034$ $1.025$ $CCT$ 2 $0.248$ $2030$ $0.980$ $0.938$ $1.061$ $0.953$ 3 $0.344$ $2808$ $1.141$ $0.946$ $1.166$ $1.018$ 4 $0.390$ $3180$ $1.503$ $0.945$ $1.337$ $1.182$ Fraction of time $\hat{p}=(0.12.3.4)$ : $(0.009.3.009.3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Theo. Optimal | 0       | 0.022       | 183       | 1.298        | 0.945                                 | 1.132      | 1.145                        | Theo. Optimal | 0       | 0.011       | 862                        | 1.624        | 0.948                                                                | 1.290             | 1.283                        |
| 3 $0.407$ 3321 $0.800$ $0.952$ $0.904$ $0.887$ 4 $0.747$ 5739 $0.770$ $0.952$ $0.890$ $0.873$ $\hat{p}$ Fraction of time $\hat{p}=(0,1,2,3,4)$ : $(0,0,0,.607,.392)$ 0 $0.032$ 266 $1.056$ $0.909$ $1.034$ $1.025$ CCT  2 $0.248$ 2030 $0.980$ $0.938$ $1.061$ $0.953$ 3 $0.344$ 2808 $1.141$ $0.946$ $1.166$ $1.018$ 4 $0.390$ 3180 $1.503$ $0.945$ $1.337$ $1.182$ Fraction of time $\hat{p}=(0.12,3.47,7.210,668,101,012,0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 7       | 0.216       |           | 0.905        | 0.949                                 | 0.959      | 0.951                        |               | 7       | 0.157       | 11782                      | 0.815        | 0.950                                                                | 0.909             | 0.894                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 3       | 0.407       | 3321      | 0.800        | 0.952                                 | 0.904      | 0.887                        |               | 3       | 0.319       | 23847                      | 0.677        | 0.948                                                                | 0.829             | 0.822                        |
| Fraction of time $\hat{p}=(0,1,2,3,4)$ : $(0,0,0,.607,.392)$<br>0 0.032 266 1.056 0.909 1.034 1.025 CCT<br>2 0.248 2030 0.980 0.938 1.061 0.953<br>3 0.344 2808 1.141 0.946 1.166 1.018<br>4 0.390 3180 1.503 0.945 1.337 1.182<br>$\hat{p}$ Fraction of time $\hat{n}=(0.12.3.4)$ : $(0.248.101.012.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 4       | 0.747       | 5739      | 0.770        | 0.952                                 | 0.890      | 0.873                        |               | 4       | 0.610       | 44516                      | 0.568        | 0.947                                                                | 0.763             | 0.757                        |
| Fraction of time $\hat{p}$ =(0,1,2,3,4): (0, 0, 0, .607, .392)<br>0 0.032 266 1.056 0.909 1.034 1.025 CCT<br>2 0.248 2030 0.980 0.938 1.061 0.953<br>3 0.344 2808 1.141 0.946 1.166 1.018<br>4 0.390 3180 1.503 0.945 1.337 1.182<br>$\hat{p}$ 1.009 0.903 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | ŷ       |             |           | 0.814        | 0.948                                 | 868.0      |                              |               | ŷ       |             |                            | 0.596        | 0.944                                                                | 0.766             |                              |
| 0 0.032 266 1.056 0.909 1.034 1.025 CCT 2 0.248 2030 0.980 0.938 1.061 0.953 3 0.344 2808 1.141 0.946 1.166 1.018 4 0.390 3180 1.503 0.945 1.337 1.182  p 1.009 0.903 0.993  Fraction of time \$\hat{g} = (0.12.3.4) \cdot (210.648 101.012.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Fractic | on of tim   | e p=(0,1  | ,2,3,4): (   | (0, 0, 0, .60                         | 7, .392)   |                              | Ŧ             | Fractic | n of time   | e p=(0,1                   | ,2,3,4): (   | Fraction of time $\hat{p}$ =(0,1,2,3,4): (0, 0, 0, .054, .946)       | 1, .946)          |                              |
| 38 1.061 0.953<br>46 1.166 1.018<br>45 1.337 1.182<br>03 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCT           | 0       | 0.032       | 566       | 1.056        | 0.909                                 | 1.034      | 1.025                        | CCT           | 0       | 0.013       | 983                        | 1.493        | 0.935                                                                | 1.248             | 1.237                        |
| 46 1.166 1.018<br>45 1.337 1.182<br>03 0.993<br>668 101 012 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 7       | 0.248       | 2030      | 0.980        |                                       | 1.061      | 0.953                        |               | 2       | 0.181       | 13539                      | 0.883        | 0.942                                                                | 0.964             | 0.936                        |
| 45 1.337 1.182<br>03 0.993<br>668 101 012 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 3       | 0.344       | 2808      | 1.141        | 0.946                                 | 1.166      | 1.018                        |               | 3       | 0.323       | 24147                      | 0.827        | 0.946                                                                | 0.941             | 0.893                        |
| 03 0.993<br>668 101 012 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 4       | 0.390       | 3180      | 1.503        | 0.945                                 | 1.337      | 1.182                        |               | 4       | 0.400       | 29856                      | 1.021        | 0.950                                                                | 1.047             | 926.0                        |
| 668 101 012 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | ŷ       |             |           | 1.009        | 0.903                                 | 0.993      |                              |               | ŷ       |             |                            | 0.832        | 0.942                                                                | 0.934             |                              |
| .006, .101, .012, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Fractic | on of tim   | e p=(0,1  | ,2,3,4): (   |                                       | .101, .012 | ., 0)                        | ŀ             | Fractic | of time     | e p=(0,1                   | ,2,3,4): (   | Fraction of time $\hat{p}$ =(0,1,2,3,4): (0, .002, .196, .780, .023) | 6, .780, .0       | 23)                          |

Table B.2: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Ludwig-Miller DGP, Actual and Large Sample Sizes

| <u>എ</u>                                                                  | Panel A: Actual Sample Size (n=3,105)<br>tion Statistics for the Local Linear Estir | ual Sa<br>for th        | npie si<br>e Local | Fanel A: Actual Sample Size (n=5,102)  (a): Simulation Statistics for the Local Linear Estimator (p=1) | ə)<br>imator (p   | =1)                     | (a): S                                                                    | imula   | Panel B:<br>ion Stati | Large S<br>stics for | ample Si<br>the Loca       | Fanel B: Large Sample Size (n=50,000)  (a): Simulation Statistics for the Local Linear Estimator (p=1) | 100)<br>stimator ( <sub>1</sub> | =1)                          |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------|-------------------|-------------------------|---------------------------------------------------------------------------|---------|-----------------------|----------------------|----------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|
| (2) (3) (4) (5)                                                           | 3) (4) (5)                                                                          | (4) (5)                 | (5)                |                                                                                                        | (9)               | (7)                     |                                                                           | (1)     | (2)                   | (3)                  | (4)                        | (5)                                                                                                    | (9)                             | (7)                          |
| Avg. h Avg. n ×1000 Rate Length                                           |                                                                                     |                         | Coverag<br>Rate    | o o                                                                                                    | Avg. CI<br>Length | Avg. Sizeadj. CI length | Bandwidth                                                                 | d       | Avg. h                | Avg. n               | MSE<br>Avg. h Avg. n ×1000 | Coverage Avg. CI<br>Rate Length                                                                        | Avg. CI<br>Length               | Avg. Size-<br>adj. CI length |
| 0.057 222 1.617 0.939                                                     |                                                                                     |                         | 0.939              |                                                                                                        | 0.155             | 0.164                   | Theo. Optimal                                                             | -       | 0.036 1364            | 1364                 | 0.251                      | 0.947                                                                                                  | 0.062                           | 0.063                        |
| 0.064 247 1.562 0.935                                                     | 1.562 0.93                                                                          | 0.93                    | 0.935              |                                                                                                        | 0.151             | 0.162                   | CCT                                                                       | 1       | 0.039                 | 1469                 | 0.244                      | 0.945                                                                                                  | 0.061                           | 0.062                        |
| (b): Simulation Statistics for Other Polynomial Orders as Compared to p=1 | ther Polynomial Orders as                                                           | olynomial Orders as     | ial Orders as      | 35                                                                                                     | ; Compa           | red to p=1              | (b): Simulation Statistics for Other Polynomial Orders as Compared to p=1 | tion St | atistics fo           | or Other             | Polynon                    | nial Orders                                                                                            | as Compa                        | red to p=1                   |
| Ratio R                                                                   |                                                                                     |                         | R                  | $\simeq$                                                                                               | atio of           | Ratio of Ratio of Avg.  |                                                                           |         |                       |                      |                            |                                                                                                        | Ratio of                        | Ratio of Ratio of Avg.       |
| of Coverage Avg. CI                                                       |                                                                                     |                         | Coverage ⊿         | ⋖                                                                                                      | vvg. CI           | Size-adj. CI            |                                                                           |         |                       |                      | Ratio of                   | Ratio of Coverage Avg. CI                                                                              | Avg. CI                         | Size-adj. CI                 |
| Avg. h Avg. n MSE's Rate Lo                                               | Rate                                                                                | Rate                    |                    | ĭ                                                                                                      | Lengths           | lengths                 | Bandwidth                                                                 | р       | Avg. h                | Avg. n               | Avg. h Avg. n MSE's        | Rate                                                                                                   | Lengths                         | lengths                      |
| 0.181 702 0.665 0.940 0                                                   | 0.940                                                                               | 0.940                   |                    | 0                                                                                                      | 0.819             | 0.815                   | Theo. Optimal                                                             | 0       | 0.003                 | 109                  | 3.456                      | 0.943                                                                                                  | 1.849                           | 1.871                        |
| 0.406 1566 0.507 0.945 0.7                                                | 0.945                                                                               | 0.945                   | 2                  | 0.                                                                                                     | 0.720             | 669.0                   |                                                                           | 7       | 0.131                 | 4904                 | 0.590                      | 0.951                                                                                                  | 0.771                           | 0.759                        |
| 0.814  2881  0.484  0.946  0.709                                          | 0.946                                                                               | 0.946                   | 9                  | 0.70                                                                                                   | 6(                | 0.684                   |                                                                           | 3       | 0.315                 | 11802                | 0.422                      | 0.950                                                                                                  | 0.652                           | 0.644                        |
| 0.515 0.941 0.715                                                         | 0.941                                                                               | 0.941                   | 1                  | 0.71                                                                                                   | S                 |                         |                                                                           | 4       | 0.662                 | 23874                | 0.340                      | 0.951                                                                                                  | 0.588                           | 0.576                        |
| Fraction of time $\hat{p}$ =(1,2,3,4): (0, 0, .700, .300)                 | =(1,2,3,4):(0,0,.700,.300)                                                          | ,4): (0, 0, .700, .300) | 0, .700, .300)     | 0                                                                                                      |                   |                         |                                                                           | ŷ       |                       |                      | 0.373                      | 0.944                                                                                                  | 0.594                           |                              |
|                                                                           |                                                                                     |                         |                    |                                                                                                        |                   |                         |                                                                           | Fractic | n of time             | è p̂=(0,1            | ,2,3,4): (                 | Fraction of time $\hat{p}$ =(0,1,2,3,4): (0, 0, 0, .105, .896)                                         | (2, .896)                       |                              |
| 0.198 770 0.692 0.938 0.                                                  | 0.938                                                                               | 0.938                   | ∞                  | 0                                                                                                      | 0.836             | 0.819                   | CCT                                                                       | 0       | 0.003                 | 115                  | 3.425                      | 0.943                                                                                                  | 1.849                           | 1.859                        |
| 0.337 1304 0.769 0.941 0.                                                 | 0.769 0.941                                                                         | 0.941                   | 1                  | 0                                                                                                      | 0.870             | 0.848                   |                                                                           | 7       | 0.141                 | 5301                 | 0.602                      | 0.948                                                                                                  | 0.776                           | 0.766                        |
| 0.384 1484 1.011 0.939 0.9                                                | 0.939                                                                               | 0.939                   | 6                  | 0                                                                                                      | 0.998             | 0.978                   |                                                                           | 3       | 0.315                 | 11785                | 0.499                      | 0.949                                                                                                  | 0.702                           | 0.691                        |
| 0.685 0.939 0.3                                                           | 0.939                                                                               | 0.939                   | 6                  | 0                                                                                                      | 0.828             |                         |                                                                           | 4       | 0.399                 | 14892                | 0.627                      | 0.947                                                                                                  | 0.781                           | 0.773                        |
| Fraction of time $\hat{p}$ =(1,2,3,4): (0, .706, .294, .001)              |                                                                                     |                         |                    | Ö.                                                                                                     | 01)               |                         |                                                                           | ŷ       |                       |                      | 0.499                      | 0.948                                                                                                  | 0.701                           |                              |
|                                                                           |                                                                                     |                         |                    |                                                                                                        |                   |                         | I                                                                         | Fractic | on of time            | $\hat{p}=(0,1)$      | ,2,3,4): (                 | Fraction of time $\hat{p}$ =(0,1,2,3,4): (0, 0, .010, .961, .029)                                      | .961, .029                      |                              |

Table B.3: Simulation Statistics for the Conventional Estimator of Various Polynomial Orders: Lee and Ludwig-Miller DGP, Small Sample Size

| (0) $(-1)$                                                                                                            | (7) | Avg. Size-            | 0.419         | 0.430 | red to p=1                                                                | Ratio of Ratio of Avg. | Size-adj. CI     | lengths             | 0.762         | 0.664 | 0.618 |       |                                                                 |                                                 | 0.764 | 0.856 | 1.046 |       |                                                                 |                                                 |
|-----------------------------------------------------------------------------------------------------------------------|-----|-----------------------|---------------|-------|---------------------------------------------------------------------------|------------------------|------------------|---------------------|---------------|-------|-------|-------|-----------------------------------------------------------------|-------------------------------------------------|-------|-------|-------|-------|-----------------------------------------------------------------|-------------------------------------------------|
| Panel B: Ludwig-Miller DGP, Small Sample Size (n=500) (a): Simulation Statistics for the Local Linear Estimator (p=1) | (9) |                       | 0.354         | 0.319 | s as Compa                                                                | Ratio of               | Coverage Avg. CI | Lengths             | 0.843         | 0.762 | 0.733 | 0.741 | 519, .473)                                                      |                                                 | 0.904 | 1.062 | 1.287 | 0.903 | 072, .001)                                                      |                                                 |
| ll Sample<br>al Linear E                                                                                              | (5) | Coverage Avg. CI      | 0.910         | 0.869 | nial Orders                                                               |                        | Coverage         | Rate                | 0.933         | 0.944 | 0.951 | 0.940 | Fraction of time $\hat{p}$ =(1,2,3,4): (.004, .005, .519, .473) |                                                 | 0.915 | 0.933 | 0.930 | 0.912 | Fraction of time $\hat{p}$ =(1,2,3,4): (.014, .913, .072, .001) |                                                 |
| OGP, Sma<br>r the Loca                                                                                                | (4) | MSE Ava h Ava n ×1000 | 8.618         | 9.377 | r Polynor                                                                 | Ratio                  | Jo               | Avg. h Avg. n MSE's | 0.658         | 0.521 | 0.463 | 0.519 | 2,3,4): (.0                                                     |                                                 | 0.660 | 0.798 | 1.141 | 0.677 | 2,3,4): (.0                                                     |                                                 |
| Miller I<br>istics fo                                                                                                 | (3) | Δνατ                  | 51            | 09    | or Othe                                                                   |                        |                  | Avg. 1              | 147           | 307   | 498   |       | ie $\hat{p}=(1,$                                                |                                                 | 154   | 201   | 222   |       | le $\hat{p}=(1,$                                                |                                                 |
| .udwig-]<br>ion Stati                                                                                                 | (2) | Δ v/α                 | 0.082         | 0.097 | atistics f                                                                |                        |                  | Avg. h              | 0.235         | 0.497 | 0.961 |       | on of tim                                                       |                                                 | 0.246 | 0.323 | 0.357 |       | on of tim                                                       |                                                 |
| nel B: I<br>Simulat                                                                                                   | (1) | 5                     | - L           | 1     | tion St                                                                   |                        |                  | р                   | 2             | 3     | 4     | ģ     | Fraction                                                        |                                                 | 7     | 3     | 4     | ŷ     | Fraction                                                        |                                                 |
| Par<br>(a): S                                                                                                         |     | Randwidth             | Theo. Optimal | CCT   | (b): Simulation Statistics for Other Polynomial Orders as Compared to p=1 |                        |                  | Bandwidth           | Theo. Optimal |       |       |       |                                                                 |                                                 | CCT   |       |       |       |                                                                 |                                                 |
| p=1)                                                                                                                  | (7) | Avg. Size-            | 0.250         | 0.246 | rders as Compared to p=1                                                  | Ratio of Ratio of Avg. | Size-adj. CI     | lengths             | 1.077         | 1.050 | 1.056 | 1.066 |                                                                 | 8, .015)                                        | 1.123 | 1.194 | 1.457 | 1.729 |                                                                 | ((                                              |
| n=500)<br>stimator (J                                                                                                 | (9) | Avg. CI               | 0.222         | 0.202 | as Compa                                                                  | Ratio of               | Avg. CI          | Lengths             | 0.929         | 1.076 | 1.087 | 1.092 | 0.954                                                           | .430, .013, .018, .015)                         | 0.811 | 1.269 | 1.551 | 1.848 | 0.831                                                           | .269, .001, 0, 0)                               |
| Panel A: Lee DGP, Small Sample Size (n=500) (a): Simulation Statistics for the Local Linear Estimator (p=1)           | (5) | Coverage Avg. CI      | 0.922         | 0.893 | nial Orders                                                               |                        | Coverage Avg. CI | Rate                | 0.878         | 0.927 | 0.928 | 0.928 | 0.871                                                           |                                                 | 0.729 | 0.919 | 0.920 | 0.918 | 0.742                                                           |                                                 |
| Small Sar<br>the Loca                                                                                                 | (4) | MSE Avg h x1000       | 3.692         | 3.901 | Polynon                                                                   | Ratio                  | Jo               | Avg. h Avg. n MSE's | 1.101         | 1.121 | 1.137 | 1.150 | 1.187                                                           | 1,2,3,4): (                                     | 1.162 | 1.386 | 1.977 | 2.778 | 1.138                                                           | 1,2,3,4): (                                     |
| DGP, Stics for                                                                                                        | (3) | Δναη                  | 103           | 128   | or Other                                                                  |                        |                  | Avg. n              | 33            | 194   | 333   | 496   |                                                                 | e p=(0,                                         | 52    | 169   | 198   | 219   |                                                                 | e p=(0,                                         |
| el A: Lee<br>tion Statis                                                                                              | (2) | Δyα                   | 0.166         | 0.205 | atistics fc                                                               |                        |                  | Avg. h              | 0.053         | 0.311 | 0.542 | 0.943 |                                                                 | Fraction of time $\hat{p}$ =(0,1,2,3,4): (.525, | 0.084 | 0.271 | 0.318 | 0.351 |                                                                 | Fraction of time $\hat{p}=(0,1,2,3,4)$ : (.731, |
| Pane<br>Simula                                                                                                        | (1) | ۶                     | - L           | -     | tion St                                                                   |                        |                  | d                   | 0             | 7     | 3     | 4     | ŷ                                                               | Fraction                                        | 0     | 7     | 3     | 4     | ŷ                                                               | Fraction                                        |
| (a): 5                                                                                                                |     | Randwidth             | Theo. Optimal | CCT   | (b): Simulation Statistics for Other Polynomial O                         |                        |                  | Bandwidth           | Theo. Optimal |       |       |       |                                                                 |                                                 | CCT   |       |       |       |                                                                 |                                                 |

Table B.4: Simulation Statistics for the Bias-corrected Estimator of Various Polynomial Orders: Lee and Ludwig-Miller DGP, Small Sample Size

|                                                                                                                       | (7) | Avg. Sizeadj. CI length         | 0.401         | 0.385 | t to p=1                                                                  | tio of Avg.            | Size-adj. CI                  | lengths             | 0.802         | 0.712 | 0.801 |       |                                                                 |                                                                      | 0.873 | 1.044 | 1.272 |       |                                                              |                                                                |
|-----------------------------------------------------------------------------------------------------------------------|-----|---------------------------------|---------------|-------|---------------------------------------------------------------------------|------------------------|-------------------------------|---------------------|---------------|-------|-------|-------|-----------------------------------------------------------------|----------------------------------------------------------------------|-------|-------|-------|-------|--------------------------------------------------------------|----------------------------------------------------------------|
| Panel B: Ludwig-Miller DGP, Small Sample Size (n=500) (a): Simulation Statistics for the Local Linear Estimator (p=1) | (9) |                                 | 0.372         | 0.346 | as Compare                                                                | Ratio of Ratio of Avg. |                               | Lengths             | 0.835         | 0.757 | 0.846 | 0.762 | 43, .012)                                                       |                                                                      | 0.928 | 1.096 | 1.315 | 0.919 | 21, 0)                                                       |                                                                |
| Il Sample S<br>I Linear Es                                                                                            | (5) | Coverage Avg. CI<br>Rate Length | 0.933         | 0.928 | ial Orders                                                                |                        | Coverage Avg. CI              | Rate                | 0.942         | 0.947 | 0.946 | 0.940 | Fraction of time $\hat{p}$ =(1,2,3,4): (.021, .124, .843, .012) |                                                                      | 0.939 | 0.937 | 0.934 | 0.932 | Fraction of time $\hat{p}$ =(1,2,3,4): (.186, .793, .021, 0) |                                                                |
| GP, Smal                                                                                                              | (4) | MSE<br>×1000                    | 8.026         | 7.562 | Polynom                                                                   | Ratio                  | ) Jo                          |                     | 0.708         | 0.586 | 0.716 | 0.630 | 3,4): (.02                                                      |                                                                      | 0.862 | 1.188 | 1.681 | 998.0 | 3,4): (18                                                    |                                                                |
| Ailler D<br>stics for                                                                                                 | (3) | Avg. h Avg. n                   | 51            | 09    | or Other                                                                  |                        |                               | Avg. n              | 147           | 307   | 498   |       | $\hat{p}=(1,2)$                                                 |                                                                      | 154   | 201   | 222   |       | $\hat{p}=(1,2)$                                              |                                                                |
| udwig-Nion Stati                                                                                                      | (2) | Avg. h                          | 0.082         | 0.097 | tistics fo                                                                |                        |                               | Avg. h Avg. n MSE's | 0.235         | 0.497 | 0.961 |       | n of time                                                       |                                                                      | 0.246 | 0.323 | 0.357 |       | n of time                                                    |                                                                |
| el B: I<br>imulat                                                                                                     | (1) | Ф                               | 1             | 1     | ion Sta                                                                   |                        |                               | d                   | 2             | 3     | 4     | ŷ     | Fractio                                                         |                                                                      | 7     | 3     | 4     | φ     | Fractio                                                      |                                                                |
| Pan (a): S                                                                                                            |     | Bandwidth                       | Theo. Optimal | CCT   | (b): Simulation Statistics for Other Polynomial Orders as Compared to p=1 |                        |                               | Bandwidth           | Theo. Optimal |       |       |       | I                                                               |                                                                      | CCT   |       |       |       | I                                                            |                                                                |
| )=1)                                                                                                                  | (7) | Avg. Sizeadj. CI length         | 0.277         | 0.274 | red to p=1                                                                | Ratio of Ratio of Avg. | Coverage Avg. CI Size-adj. CI | lengths             | 1.018         | 1.003 | 0.995 | 1.128 |                                                                 | ·, 0)                                                                | 0.859 | 1.182 | 1.416 | 1.689 |                                                              |                                                                |
| n=500)<br>stimator (p                                                                                                 | (9) |                                 | 0.252         | 0.239 | as Compa                                                                  | Ratio of               | Avg. CI                       | Lengths             | 0.985         | 1.017 | 1.013 | 1.139 | 0.971                                                           | .032, .115                                                           | 0.825 | 1.219 | 1.461 | 1.720 | 0.825                                                        | 0,0,0)                                                         |
| Panel A: Lee DGP, Small Sample Size (n=500) (a): Simulation Statistics for the Local Linear Estimator (p=1)           | (5) | Coverage Avg. CI<br>Rate Length | 0.928         | 0.913 | nial Orders                                                               |                        | Coverage                      | Rate                | 0.921         | 0.932 | 0.932 | 0.933 | 0.920                                                           | Fraction of time $\hat{p}$ =(0,1,2,3,4): (.626, .227, .032, .115, 0) | 0.900 | 0.928 | 0.925 | 0.924 | 0.899                                                        | Fraction of time $\hat{p}$ =(0,1,2,3,4): (.977, .023, 0, 0, 0) |
| Small San<br>r the Loca                                                                                               | (4) | MSE<br>Avg. h Avg. n ×1000      | 4.514         | 4.831 | r Polynon                                                                 | Ratio                  | Jo                            | Avg. h Avg. n MSE's | 0.987         | 1.026 | 1.013 | 1.282 | 0.999                                                           | 1,2,3,4): (                                                          | 0.725 | 1.354 | 1.895 | 2.628 | 0.729                                                        | 1,2,3,4): (                                                    |
| DGP, Stics for                                                                                                        | (3) | Avg. n                          | 103           | 128   | r Other                                                                   |                        |                               | Avg. n              | 33            | 194   | 333   | 496   |                                                                 | ; p=(0,1                                                             | 52    | 169   | 198   | 219   |                                                              | è p̂=(0,1                                                      |
| el A: Lee<br>tion Statis                                                                                              | (2) | Avg. h                          | 0.166         | 0.205 | atistics fc                                                               |                        |                               | Avg. h              | 0.053         | 0.311 | 0.542 | 0.943 |                                                                 | on of time                                                           | 0.084 | 0.271 | 0.318 | 0.351 |                                                              | on of time                                                     |
| Pane<br>imulai                                                                                                        | (1) | d                               | 1             | 1     | ion St                                                                    |                        |                               | d                   | 0             | 7     | 3     | 4     | ŷ                                                               | Fractio                                                              | 0     | 7     | 3     | 4     | ŷ                                                            | Fraction                                                       |
| (a): S                                                                                                                |     | Bandwidth                       | Theo. Optimal | CCT   | (b): Simulation Statistics for Other Polynomial Orders as Compared to p=1 |                        |                               | Bandwidth           | Theo. Optimal |       |       |       |                                                                 |                                                                      | CCT   |       |       |       |                                                              |                                                                |

| Weber DGPs<br>Ton-Kink DGP                                                 | Below Cutoff | 3.65      | $1.03\times10^{-5}$    | $-3.18 \times 10^{-9}$ | $-5.72 \times 10^{-13}$ | $-4.83 \times 10^{-17}$ | $-1.42 \times 10^{-21}$ | 4.65 | $1.51\times10^{-5}$    | $-5.69 \times 10^{-9}$ | $-1.07 \times 10^{-12}$ | $-8.49 \times 10^{-17}$ | $-2.65 \times 10^{-21}$ | $9.60\times10^{-4}$ | 1.63         | $2.35\times10^{-5}$ |
|----------------------------------------------------------------------------|--------------|-----------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|---------------------|--------------|---------------------|
| <u>rd-Lee-Pei-Webe</u><br>Ton-F                                            | Above Cutoff | 3.65      | $-3.70 \times 10^{-6}$ | $1.25\times10^{-8}$    | $-6.17 \times 10^{-12}$ | $1.16 \times 10^{-15}$  | $-7.43 \times 10^{-20}$ | 4.65 | $-1.29 \times 10^{-5}$ | $2.35\times10^{-8}$    | $-1.42 \times 10^{-11}$ | $3.04\times10^{-15}$    | $-2.06\times10^{-19}$   | $1.20\times10^{-3}$ | 1.62         | $2.35\times10^{-5}$ |
| Parameter Values in the Ca                                                 | Below Cutoff | 3.17      | $8.40\times10^{-6}$    | $-1.21\times10^{-8}$   | $-1.01 \times 10^{-11}$ | $-7.56 \times 10^{-16}$ | $7.89\times10^{-19}$    | 4.51 | $-4.75 \times 10^{-5}$ | $1.64\times10^{-7}$    | $3.04\times10^{-10}$    | $1.82\times10^{-13}$    | $3.53\times10^{-17}$    | $2.07\times10^{-4}$ | 1.49         | $1.53\times10^{-4}$ |
| Table B.5: Parameter Values in the Card-Lee-Pei-Weber DGPs Rottom-Kink DGP | Above Cutoff | 3.17      | $3.14\times10^{-5}$    | $5.30\times10^{-9}$    | $-3.82 \times 10^{-12}$ | $9.54\times10^{-16}$    | $-8.00 \times 10^{-20}$ | 4.51 | $-1.76 \times 10^{-5}$ | $7.00 \times 10^{-9}$  | $-5.00 \times 10^{-12}$ | $1.00\times10^{-15}$    | $-2.00 \times 10^{-19}$ | $2.05\times10^{-4}$ | 1.51         | $1.53\times10^{-4}$ |
| Ta                                                                         | Parameter    | $\beta_0$ | $eta_1$                | $eta_2$                | $eta_3$                 | $eta_4$                 | $eta_5$                 | %    | $\gamma_1$             | 72                     | 73                      | 74                      | 75                      | $\sigma_B^2$        | $\sigma_Y^2$ | $f_X$               |

Note: For  $j=1,\ldots,5$ , the values of  $\beta_j$ ,  $\gamma_j$ ,  $\sigma_B^2$ , and  $\sigma_Y^2$  above the cutoff correspond, respectively, to those of  $\beta_j^+$ ,  $\gamma_j^+$ ,  $\sigma_B^2(0^+)$ , and  $\sigma_Y^2(0^+)$ , which are defined in Appendix B.2. The values of  $\beta_j$ ,  $\gamma_j$ ,  $\sigma_B^2$ , and  $\sigma_Y^2$  below the cutoff correspond, respectively, to those of  $\beta_j^-$ ,  $\gamma_j^-$ ,  $\sigma_B^2(0^-)$ , and  $\sigma_Y^2(0^-)$ . By construction, the values of  $\beta_0$ ,  $\gamma_0$ , and  $\gamma_0$  are the same on both sides of the cutoff.

Table C.1: Correspondence to the Expressions in Calonico, Cattaneo and Titiunik (2014a,b)

| Expression in Calonico, Cattaneo and Titiunik (2014a,b) for the case of | Fuzzy RD ( $v = 0$ )/RK ( $v = 1$ )     | $B_{F,v,p,p+1}[SAp.39]$   | $V_{F,v,p}[SAp.39]$ | $\hat{B}_{n,p,q}[\mathrm{SJp.920}]$ | $\hat{V}_p[\mathrm{SJp.920}]$ | Estimator of                                                                                                                                                 | $\hat{V}_{n,p,q}^{\mathrm{bc}}[\mathrm{SJp.922}]$ |
|-------------------------------------------------------------------------|-----------------------------------------|---------------------------|---------------------|-------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                         | Sharp RD ( $\nu = 0$ )/RK ( $\nu = 1$ ) | $B_{\nu,p,p+1,0}[SAp.38]$ | $V_{\nu,p}[SAp.38]$ | $\hat{B}_{n,p,q}[\mathrm{SJp.920}]$ | $\hat{V}_p[\mathrm{SJp.920}]$ | Estimator of $h_n^{p+2-\nu} \mathbf{B}_{\mathbf{v},p,p+1}(h_n) - h_n^{p+1-\nu} b_n^{q-p} \mathbf{B}_{\mathbf{v},p,q}^{\mathrm{bc}}(h_n,b_n) [\mathrm{p.}23]$ | $\hat{V}^{\mathrm{bc}}_{n,p,q}[\mathrm{SJp.922}]$ |
| Expression in this paper                                                |                                         | $B_p$                     | $V_p$               | $\hat{\mathbf{B}}_{p}$              | $\hat{\mathbf{V}}_p$          | $\tilde{\mathbf{B}}^{bc}_p(h,b)$                                                                                                                             | $\tilde{\nabla}^{bc}_p(h,b)$                      |

Note: The number after "p." and "SAp." refers to the page on which the particular expression appears in the main article or the Supplemental Appendix of Calonico, Cattaneo and Titiunik (2014b), respectively. The number after "SJp." refers to the page on which the particular expression appears in Calonico, Cattaneo and Titiunik (2014b). We set q = p + 1 for all of our estimators, which is the default used by Calonico, Cattaneo and Titiunik (2014b).