SIMETRÍAS EN LÓGICAS DE DESCRIPCIÓN (TBOX)

November 15, 2016

- 1. Intro
 - (a) Qué vamos a hacer en esta tesis
 - (b) Por qué
 - (c) Antecedentes similares, la estructura de esta tesis
 - (d) sobre simetrías en AR
- 2. Sobre DL y Ontologías
 - (a) Su relación con Lógicas Modales
- 3. Simetrías en Ontologías
 - (a) La versión abstracta DL2ML
- 4. Herramientas [4-5 Hojas] (Implementación)
 - (a) Scripts
 - (b) Bliss
 - (c) Manual de Uso
 - (d) Pipelne
- 5. Análisis de simetrías en Ontologías existentes [5 Hojas]
 - (a) Descripción de las ontologías utilizadas
 - i. Por lo menos cuantitativamente
 - ii. Si hay datos, cualitativamente [de qué se trata la ontología]
 - (b) Tabla de datos
 - (c) Análisis de datos
 - (d) Conclusión: Anda
- 6. Conclusiones & Future Work [3 Hojas]

- (a) Resumen de lo hecho (dar los límites del trabajo)
- (b) "Opiniones"
- (c) Qué más se puede hacer a partir de acá
- 7. Conclusiones personales sobre el trabajo (Optativa)

1 Intro

1.1 Qué vamos a hacer en esta tesis

En esta tesis vamos a trabajar con un tipo de bases de datos muy particulares, llamadas bases de conocimiento. Y como en cualquier base de datos, el objetivo es poder hacer consultas y obtener de la manera mas rapida posible, una respuesta correcta. Nos concentraremos en buscar métodos para agilizar cómo se realizan las consultas a nuestra base de conocimientos.

```
CONSULTA DE USUARIO \downarrow ALGORITMO DE EFICIENCIA \leftarrow TRABAJAREMOS AQUÍ \downarrow BASE DE CONOCIMIENTO
```

1.2 Por qué

1.3 Antecedentes similares, la estructura de esta tesis

Trabajos similares[1] han sido desarrollados en el marco de lógicas modales. Trabajo en el cual esta tesis se apoya fuertemente ya que usa herramientas implementadas para dicho trabajo.

1.4 Sobre simetrías en AR

?

2 Sobre DL y Ontologías

Empezaremos con una definición informal de las lógicas de descripción y su relación con las ontologías

2.1 Lógicas de Descripción

Como sabemos la lógica de primer orden es una lógica en la cual la satisfacibilidad es indecidible, cuando no se aplica ninguna restricción. Las lógicas de descripción son fragmentos decidibles de la lógica de primer orden.

Más precisamente, las lógicas de descripción son una familia de la formalización de la Representación de Conocimiento basado en lógica. Describe dominios en términos de conceptos, roles e individuos. Los sistemas de representación basados en Lógicas de Descripción (DL) consisten en dos componentes: una TBox y una ABox. La TBox describe terminologías, ie, la ontología en la forma de the conceptos y definiciones de roles, mientras que la ABox contiene aserciones acerca de los individuos. Los conceptos describen conjuntos de individuos, mientras que los roles describen relaciones entre los individuos.

En esta tesis el trabajo se enfocará en la TBox.

- <SINTAXIS Y SEMÁNTICA>
- <EJEMPLOS>

2.2 Ontologías

Habiendo ya dado una formalización de las lógicas de descripción y cómo construir sus fórmulas, tenemos las herramientas para poder definir algún sistema de interés. Y una ontología es una especificación explícita de dicho sistema o conceptualización (http://www.obitko.com/tutorials/ontologies-semantic-web/ontologies.html).

2.3 Su relación con lógicas modales

Mismos modelos.

3 Simetrías en ontologías (Approach)

3.1 La versión abstracta - DL2ML

Abstract

In the eagerness of finding symmetries on Description Logics (\mathcal{DL}) , a set of tools for finding symmetries in Modal Logics (\mathcal{ML}) are to be used. But first, a bridge between the two logis needs to be build: the translations are the approach to build such bridge.

Translations

Let \mathcal{R} be a relation and \mathcal{C}_i a concept.

$\Psi: D_{\Psi} \subseteq \mathcal{F}_{\mathcal{DL}} \to \mathcal{F}_{\mathcal{ML}}$

$$\begin{split} &\Psi(\mathcal{R} \, someValuesFrom\, \mathcal{C}) \doteq \langle \mathcal{R} \rangle \Psi(\mathcal{C}) \\ &\Psi(\mathcal{R} \, allValuesFrom\, \mathcal{C}) \doteq [\mathcal{R}] \Psi(\mathcal{C}) \\ &\Psi(\mathcal{R} \, hasValue\, \mathcal{C}) \doteq [\mathcal{R}] \Psi(\mathcal{C}) \wedge \langle \mathcal{R} \rangle \Psi(\mathcal{C}) \\ &\Psi(\mathcal{R}^- someValuesFrom\, \mathcal{C}) \doteq \langle \mathcal{R}^- \rangle \Psi(\mathcal{C}) \\ &\Psi(\mathcal{C}_1 \sqsubseteq \mathcal{C}_2) \doteq \forall (\Psi(\mathcal{C}_1) \implies \Psi(\mathcal{C}_2)) \\ &\Psi(\mathcal{C}_1 \sqsubseteq \mathcal{C}_2) \doteq \Psi(\mathcal{C}_1 \sqsubseteq \mathcal{C}_2) \wedge \Psi(\mathcal{C}_2 \sqsubseteq \mathcal{C}_1) \\ &\Psi(\mathcal{C}_1 \cup \mathcal{C}_2) \doteq \Psi(\mathcal{C}_1) \vee \Psi(\mathcal{C}_2) \\ &\Psi(\mathcal{C}_1 \cap \mathcal{C}_2) \doteq \Psi(\mathcal{C}_1) \wedge \Psi(\mathcal{C}_2) \\ &\Psi(\mathcal{R} \, ObjectDomain\, \mathcal{C}) \doteq \forall (\langle \mathcal{R} \rangle \top \implies \Psi(\mathcal{C})) \\ &\Psi(\mathcal{R} \, ObjectRange\, \mathcal{C}) \doteq \forall (\langle \mathcal{R} \rangle \top \implies \Psi(\mathcal{C})) \\ &\Psi(\mathcal{R} \, ObjectRange\, \mathcal{C}) \doteq \forall (\langle \mathcal{R} \rangle \top \implies [\mathcal{R}] \top) \\ &\Psi(\mathit{functional}\, \mathcal{R}) \doteq \forall (\langle \mathcal{R} \rangle \top \implies [\mathcal{R}] \top) \\ &\Psi(\mathit{inverseFunctional}\, \mathcal{R}) \doteq \forall (\langle \mathcal{R}^- \rangle \top \implies [\mathcal{R}^-] \top) \\ &\Psi(\mathcal{C}_1 \, Disjoint\, \mathcal{C}_2) \doteq \forall (\Psi(\mathcal{C}_1) \Leftrightarrow \neg \Psi(\mathcal{C}_2)) \\ &\Psi(\mathit{Complement}\, \mathcal{C}) \doteq \neg \Psi(\mathcal{C}) \\ &\Psi(\mathit{Cardinality}\, type\, \mathcal{N}\, \mathcal{C}) \doteq \langle \mathit{str}(type\, \mathcal{N}\, \mathcal{C}) \rangle \Psi(\mathcal{C}) \end{split}$$

4 Herramientas [4-5 Hojas] (Implementación)

4.1 Scripts

Managers.

4.2 Bliss

Aprender.

4.3 Manual de Uso

Readme.

4.4 Pipeline

Worflow de trabajo

5 Análisis de simetrías en ontologías existentes [5 Hojas]

5.1 Descripción de las ontologías utilizadas

- 5.1.1 Por lo menos cuantitativamente
- 5.1.2 Si hay datos, cualitativamente (de qué se tratan las ontologías)

5.2 Tabla de datos

NAME	SIZE(MB)	LOAD_TIME	AXIOM_COUNT	TBOX_COUNT	
ged_p2.owl	74,243	7,779	772665	50488	
9d-new.owl	9,917	2,015	74773	46940	
go.owl	166,432	14,428	565615	104783	
termbd.owl	9,151	0,716	92285	30374	
protege.owl	14,666	2,309	63329	36205	
1055.owl	20,114	7,296	63329	36205	
module.owl	10,764	1,288	112920	22547	
cton.owl	20,055	2,289	144210	33160	
gina.owl	38,737	4,327	104012	86025	
fbbt_xp.owl	12,39	2,391	126585	16014	
uberon.owl	40,671	3,331	133573	25683	
galen.owl	1,461	0,365	7364	4069	
1401.owl	9,454	1,928	31992	11858	
dolce.owl	0,237	0,131	1828	780	
vicodi_4.owl	16,023	2,582	268692	213	
semintec_4.owl	16,72	4,824	326495	216	
lubm_4.owl	32,199	5,193	478027	85	
modlubm_4.owl	32,2	4,779	478037	90	
wine_10.owl	8,679	1,903	178209	209	
pizza.owl	0,092	0,045	940	692	
family_example.owl	0,017	0,029	92	20	

ABOX_COUNT	TRANSLATED_AXIOM_COUNT	[RENDER_TRANSLATE]_TIME		
179984	50488	0,501		
0	46940	0,345		
0	104783	0,572		
0	30374	0,166		
0	36205	0,361		
0	36205	1,748		
21	22543	0,134		
0	33160 0,232			
0	80150	0,906		

22079	16014	0,124
0	25683	0,141
0	4069	0,063
0	11858	0,105
2	780	0,032
268265	213	0,465
326200	216	0,558
477784	85	0,441
477784	90	0,44
177834	209	0,503
11	691	0,006
43	20	0,003

DL2ML_TOTAL_TIME	To KCNF	Sy5ncl	Bliss	Bliss proc	Mappings
8,466	3,506	1,913	1129,738	258,847	7,099
2,4	4,055	1,973	27,037	86,957	7,091
15,067	12,053	5,144	29,09	434,769	6,878
0,903	1,999	1,157	4,749	35,181	6,514
2,695	8,348	3,135	13,095	113,992	6,554
9,081	8,344	3,121	13,008	115,158	12,246
1,433	0,926	0,354	1,249	5,047	6,35
2,545	2,601	1,2	1,805	13,875	6,65
5,366	11,508	2,698	7,767	23,103	6,413
2,538	2,241	0,833	1,028	7,328	6,404
3,491	3,304	1,296	0,865	3,382	6,218
0,43	0,836	0,33	0,245	1,085	6,306
2,043	1,445	0,789	0,595	8,96	6,893
0,165	0,197	0,11	0,063	0,246	6,265
3,246	0,024	0,031	0,011	0,042	6,347
5,634	0,034	0,026	0,01	0,038	6,26
5,987	0,031	0,019	0,009	0,034	6,107
5,566	0,034	0,02	0,01	0,046	6,121
2,552	0,063	0,036	0,01	0,04	6,186
0,052	0,086	0,065	0,013	0,033	6,032
0,032	0,021	0,022	0,01	0,031	6,131

NAME	Generators	Total time
ged_p2.owl	18180	1409,569
9d-new.owl	10364	129,513
go.owl	8498	503,001
termbd.owl	6316	50,503

protege.owl	6131	147,819
1055.owl	6131	160,958
module.owl	3194	15,359
cton.owl	2282	28,676
gina.owl	2036	56,855
fbbt_xp.owl	1776	20,372
uberon.owl	1042	18,556
galen.owl	969	9,232
1401.owl	713	20,725
dolce.owl	432	7,046
vicodi_4.owl	115	9,701
semintec_4.owl	51	12,002
lubm_4.owl	33	12,187
modlubm_4.owl	33	11,797
wine_10.owl	23	8,887
pizza.owl	10	6,281
family_example.owl	5	6,247

- 5.3 Análisis de datos
- 5.4 Conclusión: Anda
- 6 Conclusiones & Future Work [5 Hojas]
- 6.1 Resumen de lo hecho (dar los límites del trabajo)
- 6.2 "Opiniones"
- 6.3 Qué mas se puede hacer a partir de acá
- 7 Conclusiones personales sobre el trabajo (Optativa)

References

[1] Tesis de Ezequiel