Advanced Time Series

Lecture 5: Time-to-event and PdM

Gleb Ivashkevich

Logistics

- +1 lecture Mar 22
 - **HW 4:** today, deadline is Mar 15
 - **HW 5:** Mar 8, deadline is Mar 22
 - transformers to be added

Today

Time series classification \rightarrow time-to-event and PdM:

- **InceptionTime** implementation
- dilated convolutions
- **other architectures** for t. s. classification
- **predictive maintenance**: setup
- **survival analysis** basics, TTE distributions

InceptionTime implementation

InceptionTime

Inception blocks:

- introduced in <u>Going Deeper with Convolutions</u>
- more efficient computationally
- nicely captures multiple (although close) spatial/time scales

Inception block for t. s.

Dilated and causal convolutions

Convolution

No padding

Padding

Dilated convolution

No padding

Padding

Causal convolution

No padding

Padding

Why dilated convolutions

- fast extension of receptive field
- no additional computational costs
- high resolution input is manageable (high-frequency t. s.)

Other architectures

ROCKET

"Single-layer" convolutional network:

- random kernels (size, dilation, etc.)
- linear classifier

ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

LSTM-FCN

Multivariate LSTM-FCNs for Time Series Classification

TTE and predictive maintenance

Typical scenario:

- equipment, vehicles, etc. fails from time to time
- **sensors** provide time series data (often used for other reasons)
- failures data is collected as well
- can we predict failures using sensors data?

Value: improved operational efficiency

Setup: probability

Predict probability of failure within operational horizon.

Setup: TTE

Predict time-to-failure.

Way more unstable if formulated naively.

Naive formulation:

- create some windowed features/use deep learning model
- train a classification model
- rolling predictions

When formulated naively:

- failure probability over a single o. h. may be not enough: no planning beyond o. h.
- hard to communicate
- no intrinsic **risk** concept

Solution:

- survival analysis
- well known in medicine and other domains
- has intrinsic **risk** concept
- can be married with deep learning

Survival analysis

Concept 1:

- **survival function:** probability of surviving past t

$$S(t) = P(T>t)$$

Survival analysis

Concept 2:

- hazard function: conditioned event rate

$$\lambda(t) = -rac{S'(t)}{S(t)}$$

Hazard function deciphered

Concept 2:

- hazard function: conditioned event rate

$$\lambda(t) = -rac{P(T>t+dt)-P(T>t)}{S(t)dt}$$

Hazard function deciphered

Concept 2:

- hazard function: conditioned event rate

$$\lambda(t) = -rac{P(T>t+dt)-P(T>t)}{S(t)dt}$$

Hazard function deciphered

Concept 3:

- **proportional** hazards model (Cox regression)

$$\lambda(t) = \lambda_0(t) \exp(a_i X_i)$$

Given the model:

- get **entire** survival function
- quantify how covariates influence the risk
- extend **beyond** linear model

TTE distributions

When doing PdM model:

- look at distribution of between/to event times

Weibull distribution:

$$P(au) = rac{k}{\lambda} ig(rac{ au}{\lambda}ig)^{k-1} e^{-ig(rac{x}{\lambda}ig)^k}, \, au \geq 0$$

TTE distributions

Weibull distribution:

- k < 1: failure decreases over time
- k > 1: failure increases over time
- k = 1: failure is constant over time exponential
 distribution

Turbofan dataset

NASA dataset for engine tests:

- well known
- download at NASA Prognostics Center of Excellence

Next time

- extension of survival analysis for deep learning
- transformers

questions?