Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Лабораторна робота

із Криптографії №4

Побудова регістрів зсуву з лінійним зворотним зв'язком та дослідження їх властивостей

Виконали:
Студенти групи ФБ-74
Стурчак Максим та Харламова Катерина
Перевірено

КРИПТОГРАФІЯ

КОМП'ЮТЕРНИЙ ПРАКТИКУМ №4

Побудова регістрів зсуву з лінійним зворотним зв'язком та дослідження їх властивостей

Мета роботи

Ознайомлення з принципами побудови регістрів зсуву з лінійним зворотним зв'язком; практичне освоєння їх програмної реалізації; дослідження властивостей лінійних рекурентних послідовностей та їх залежності від властивостей характеристичного полінома регістра.

Порядок виконання роботи

- 0. Уважно прочитати методичні вказівки до виконання комп'ютерного практикуму.
- 1. Вибрати свій варіант завдання згідно зі списком. Варіанти завдань містяться у файлі Crypto CP4 LFSR Var.
- 2. За даними характеристичними многочленами $p_1(x)$, $p_2(x)$ скласти лінійні рекурентні співвідношення для ЛРЗ, що задаються цими характеристичними многочленами.
- 3. Написати програми роботи кожного з ЛРЗ L1 , L2 .
- 4. За допомогою цих програм згенерувати імпульсні функції для кожного з ЛРЗ і підрахувати їх періоди.
- 5. За отриманими результатами зробити висновки щодо влавстивостей кожного з характеристичних многочленів $p_1(x)$, $p_2(x)$: многочлен примітивний над F_2 ; не примітивний, але може бути незвідним; звідний.
- 6. Для кожної з двох імпульсних функцій обчислити розподіл k-грам на періоді, $k \le n_i$, де n_i степінь полінома $f_i(x)$, i=1,2 а також значення функції автокореляції A(d) для $0 \le d \le 10$. За результатами зробити висновки.

Варіант 19:

$$P1(X) = X22 + X18 + X16 + X13 + X12 + X11 + X10 + X5 + X3 + X2 + 1$$

 $P2(X) = X20 + X17 + X16 + X15 + X10 + X8 + X6 + X5 + X3 + X + 1$

Довжини періодів:

 L_1 : 4194303 => $P_1(x)$ – примітивний

 L_2 : 15015 => $P_2(x)$ – не прімитивний, звідний

Кількість К-грам полінома Р1:

2-грами:	3-грами	4-грами	5-грами
2-грами: 00 524515 01 524002 10 524119 11 524515	3-грами 000 174421 001 174592 010 175104 011 174592 100 175104 101 174592 110 175104 111 174592	4-грами 0000 65802 0001 65388 0010 65823 0011 65267 0100 65154 0101 65462 0110 65424 0111 65850 1000 65426 1001 65421 1010 65555 1011 65411 1100 65853 1101 65841 1110 65503 1111 65395	00000 26361 00001 26136 00010 26069 00011 26195 00100 25923 00101 26478 00110 26337 00111 26031 01000 26033 01001 26215 01010 26122 01011 26284 01100 25920 01101 26173 01110 26368 01111 26368 01111 26399 10000 26582 10001 26350 10010 26358 10101 26358 10100 10100 10101 26109
		1110 65503	01110 26368 01111 26399 10000 26582 10001 26350 10010 26339 10011 26358 10100 10100
			11010 26316 11011 26161 11100 26269 11101 26337 11110 26077 11111 26132

Кількість К-грам полінома Р2:

2-грами	3-грами	4-грами	5-грами
00 1855	000 616	0000 232	00000 91
01 1918	001 616	0001 268	00001 82
10 1855	010 623	0010 224	00010 86
11 1879	011 630	0011 238	00011 99
	100 630	0100 224	00100 83
	101 623	0101 0101	00101 119
	110 644	0110 213	00110 78
	111 623	0111 255	00111 86
		1000 224	01000 119
		1001 263	01001 107
		1010 230	01010 91
		1011 260	01011 102
		1100 213	01100 78
		1101 247	01101 106
		1110 211	01110 98
		1111 227	01111 94
			10000 96
			10001 100
			10010 85
			10011 105
			10100 88
			10101 90
			10110 76
			10111 71
			11000 99
			11001 94
			11010 82
			11011 109
			11100 90
			11101 105
			11110 95
			11111 99

Значення автокореляції:

L ₁ :	L ₂ :
d = 1 : 2097152	d = 1:7518
d = 2 : 2097152	d = 2:7532
d = 3 : 2097152	d = 3:7504
d = 4 : 2097152	d = 4:7518
d = 5 : 2097152	d = 5:7476
d = 6: 2097152	d = 6:7518
d = 7 : 2097152	d = 7:7518
d = 8: 2097152	d = 8:7490
d = 9: 2097152	d = 9:7490
d = 10: 2097152	d = 10:7490

Висновок:

В лабораторній роботі було набуто навичок програмної реалізації з лінійними регістрами зсуву, дослідження властивостей характеристичного полінома регістра. Також було досліджено властивості лінійних рекурентних послідовностей

Код програми:

```
package com.company;
import java.io.FileOutputStream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.io.IOException;
import java.util.List;
public class Main {
  public static void main(String[] args) throws IOException {
    String string = arr().toString().replaceAll("[^0-1]", "");
    fillMap(string);
    corelation(arr());
  }
  public static String smaller(int i) {
    StringBuilder s = new StringBuilder();
    s.append("(?<=\\G");
    for (int j = 0; j < i; j++)
      s.append(".");
    s.append(")");
    return s.toString();
  }
  static void fillMap(String string) throws IOException {
    String[] nGramms;
    HashMap<String, Float> map = new HashMap<>();
    for (int i = 1; i < 6; i++) {
      nGramms = string.split(smaller(i));
      for (String symb : nGramms) {
         if (!symb.isEmpty())
           if (map.containsKey(symb)) {
```

```
map.put(symb, map.get(symb) + 1);
        } else {
           map.put(symb, (float) 1);
        }
    }
    String mString = map.toString();
    FileOutputStream fos = new FileOutputStream("file" + i + ".txt");
    System.out.println("Pasmep " + i + " rpamm = " + map.size());
    fos.write(mString.getBytes());
    fos.flush();
    fos.close();
    map.clear();
  //System.out.println(map);
public static ArrayList arr() {
 // int[] arr1 = {1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0};
  int[] arr1 = {1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0};
  int[] a2 = Arrays.copyOf(arr2, arr2.length);
  int period = 0;
  ArrayList<Integer> arrResult = new ArrayList<>();
  int sum;
  do {
    period++;
    sum = sumOfMas(arr1, arr2);
    arrResult.add(arr2[0]);
    moveLeftTheArray(arr2, sum);
    //System.out.println(Arrays.toString(arr2));
  } while (!ifArr1EgArr2(a2, arr2));
  System.out.println("Период = " + period);
  return arrResult;
public static boolean ifArr1EqArr2(int[] arr1, int[] arr2) {
  return Arrays.equals(arr1, arr2);
public static int[] moveLeftTheArray(int arr[], int lastNumber) {
  int size = arr.length;
  for (int j = 0; j < size - 1; j++) {
    arr[j] = arr[j + 1];
  arr[size - 1] = lastNumber;
  return arr;
```

```
}
  public static int sumOfMas(int arr1[], int arr2[]) {
    int sum = 0;
    int multiply;
    for (int i = 0; i < arr1.length; i++) {
       multiply = arr1[i] * arr2[i];
       sum += multiply;
    }
    return sum % 2;
  }
  public static void corelation(ArrayList arrayList) {
    int mainSum = 0;
    int result;
    List<Integer> newArrList = new ArrayList<>();
    for (int i = 1; i < 11; i++) {
       for (int j = 0; j < arrayList.size(); j++) {</pre>
         result = (arrayList.get(j % arrayList.size()) == arrayList.get((j + i) % arrayList.size())) ? 0 : 1;
         newArrList.add(result);
         //j++;
       }
       for (int j = 0; j < newArrList.size(); j++) {
         mainSum += newArrList.get(j);
       }
       System.out.println("Cymma " + i + " = " + mainSum);
       newArrList.clear();
       mainSum = 0;
    }
  }
}
```