Démonstrations des lois algébriques utilisées en C2QL

Santiago Bautista

Juin 2017

Structure des démonstrations

Puisque dans toutes les démonstrations qui suivent le but est de prouver, sous certaines conditions, l'égalité de deux fonctions f_1 et f_2 sur R (ou sur R² ou R³ selon le cas), la structure de toutes les démonstrations sera la même : on considérera r une relation (ou une paire ou un triplet de relations, selon le cas), on commencera par montrer que $f_1(r)$ et $f_2(r)$ ont le même schéma relationnel, puis, on montrera que $f_1(r) \subset f_2(r)$ et ensuite que $f_2(r) \subset f_1(r)$.

On aura ainsi démontré par double inclusion que $f_1(r) = f_2(r)$.

Lois de projection

Projection et projection

$$\pi_{\delta_1} \circ \dots \circ \pi_{\delta_n} = \pi_{\delta_1 \cap \dots \cap \delta_n} \tag{1}$$

Soit r une relation. On pose $r_1 = \pi_{\delta_1} \circ \cdots \circ \pi_{\delta_n}(r)$ et $r_2 = \pi_{\delta_1 \cap \cdots \cap \delta_n}(r)$

Schéma relationnel

On peut démontrer par récurrence sur n que le schéma relationnel de r_1 est

$$\operatorname{sch}(r_1) = \operatorname{sch}(r) \cap \bigcap_{i \in \{1, \dots, n\}} \delta_i$$

De même, par définition de la projection, on a

$$\operatorname{sch}(r_2) = \operatorname{sch}(r) \cap \bigcap_{i \in \{1, \dots, n\}} \delta_i$$

Donc $sch(r_1) = sch(r_2)$

Première inclusion

Soit l une ligne de r_1 .

Il existe l' une ligne de r telle que $l = ((l'|_{\delta_n \cup \{id\}})|_{\dots})|_{\delta_1 \cup \{id\}} = l'|_{(\delta_1 \cap \dots \cap \delta_n) \cup \{id\}}$. Or, par définition de la projection $\pi_{\delta_1 \cap \dots \cap \delta_n}$, on a $l'|_{(\delta_1 \cap \dots \cap \delta_n) \cup \{id\}} \in r_2$. Donc $l \in r_2$. Ainsi, $r_1 \subset r_2$.

Deuxième inclusion

De même, si l est un élément de r_2 , alors il existe une ligne l' de r telle que $l = l'|_{(\delta_1 \cap \cdots \cap \delta_n) \cup \{id\}} = ((l'|_{\delta_n \cup \{id\}})|_{\cdots})|_{\delta_1 \cup \{id\}}$ et, par définition de $\pi_{\delta_1} \circ \cdots \circ \pi_{\delta_n}$, on a $((l'|_{\delta_n \cup \{id\}})|_{\cdots})|_{\delta_1 \cup \{id\}} \in r_1$, d'où $l \in r_1$ et $r_2 \subset r_1$.

Projection et sélection

$$\pi_{\delta} \circ \sigma_p = \sigma_p \circ \pi_{\delta} \qquad \text{si dom}(p) \subset \delta \tag{2}$$

Soit δ un ensemble de noms d'attributs et p un prédicat sur les lignes tel que dom $(p) \subset \delta$. Soit r une relation. On pose $r_1 = \pi_\delta \circ \sigma_p(r)$ et $r_2 = \sigma_p \circ \pi_\delta(r)$

Schéma relationnel

Une sélection ne modifiant jamais le schéma relationnel d'une relation, la schéma relation de r_1 et de r_2 est $\mathrm{sch}(r) \cap \delta$.

Première inclusion

Soit l une ligne de r_1 .

Il existe une ligne l' de $\sigma_p(r_1)$ telle que $l = l'|_{(\operatorname{sch}(r) \cap \delta) \cup \{id\}}$.

Puisque l et l' coïncident sur δ et que $dom(p) \subset \delta$, on a p(l) = p(l') = true.

Or, par définition de π_{δ} , $l' \in \pi_{\delta}(r)$, donc $l' \in \sigma_{p}(\pi_{\delta}(r)) = r_{2}$.

Ainsi, $r_1 \subset r_2$.

Deuxième inclusion

De même, si l est un élément de r_2 , alors p(l) = true et $l \in \pi_{\delta}(r)$ donc il existe une ligne l' dans r telle que $l = l'|_{(\mathrm{sch}(r) \cap \delta) \cup \{id\}}$. l et l' coïncidant sur δ qui contient le domaine de p, l' vérifie le prédicat p donc $l' \in \sigma_p(r)$.

On en déduit par définition de π_{δ} que $l \in r_1$.

Ainsi, $r_2 \subset r_1$.

Projection et défragmentation (verticale)

 $\pi_{\delta} \circ \operatorname{defrag} = \operatorname{defrag} \circ (\pi_{\delta \cap \delta'}, \pi_{\delta \setminus \delta'})$ où δ' est le schéma relationnel du premier fragment (3)