Quantum++ v0.1

Generated by Doxygen 1.8.7

Fri Dec 5 2014 22:23:08

Contents

1	Qua	ntum++														1
2	Nam	nespace	Index													5
	2.1	Names	space List					 	 	 	 	 	 		 	 5
3	Hier	archica	l Index													7
	3.1	Class I	Hierarchy					 	 	 	 	 	 		 	 7
4	Clas	ss Index														9
	4.1	Class I	List					 	 	 	 	 	 		 	 9
5	File	Index														11
	5.1	File Lis	st					 	 	 	 	 	 		 	 11
6	Nam	nespace	Docume	ntatio	on											13
	6.1	qpp Na	amespace	Refe	rence			 	 	 	 	 	 		 	 13
		6.1.1	Detailed	Desc	cription	١.		 	 23							
		6.1.2	Typedef	Docu	menta	ation		 	 23							
			6.1.2.1													
			6.1.2.2	cma	at			 	 	 	 	 	 		 	 23
			6.1.2.3	cpl	x			 	 23							
			6.1.2.4	dma	at			 	 23							
			6.1.2.5	dyn	ı col ı	vect		 	 	 	 	 	 		 	 23
			6.1.2.6	dyn	_mat			 	 23							
			6.1.2.7	dyn	_row_	vect		 	 24							
			6.1.2.8	idx				 	 	 	 	 	 		 	 24
			6.1.2.9	ket				 	 24							
		6.1.3	Function	n Doci	ument	atior	١.	 	 24							
			6.1.3.1	abs	sm			 	 24							
			6.1.3.2	abs	sq			 	 	 	 	 	 		 	 24
			6.1.3.3		sq											
			6.1.3.4		oint .											
			6105	onti	ioomm											26

iv CONTENTS

6.1.3.6	apply	26
6.1.3.7	apply	26
6.1.3.8	apply	27
6.1.3.9	apply	27
6.1.3.10	apply	27
6.1.3.11	applyCTRL	28
6.1.3.12	applyCTRL	28
6.1.3.13	choi	29
6.1.3.14	choi2kraus	29
6.1.3.15	comm	29
6.1.3.16	compperm	29
6.1.3.17	concurrence	30
6.1.3.18	conjugate	30
6.1.3.19	contfrac2x	30
6.1.3.20	contfrac2x	30
6.1.3.21	cosm	31
6.1.3.22	cwise	31
6.1.3.23	det	31
6.1.3.24	disp	31
6.1.3.25	disp	32
6.1.3.26	disp	32
6.1.3.27	disp	32
6.1.3.28	disp	33
6.1.3.29	eig	34
6.1.3.30	entanglement	34
6.1.3.31	entropy	34
6.1.3.32	evals	35
6.1.3.33	evects	35
6.1.3.34	expm	35
6.1.3.35	funm	35
6.1.3.36	gcd	36
6.1.3.37	gcd	37
6.1.3.38	gconcurrence	37
6.1.3.39	grams	37
6.1.3.40	grams	38
6.1.3.41	grams	39
6.1.3.42	heig	39
6.1.3.43	hevals	39
6.1.3.44	hevects	39
6.1.3.45	inverse	40

CONTENTS

6.1.3.46	invperm	40
6.1.3.47	kron	40
6.1.3.48	kron	40
6.1.3.49	kron	41
6.1.3.50	kron	41
6.1.3.51	kronpow	41
6.1.3.52	lcm	41
6.1.3.53	lcm	42
6.1.3.54	load	42
6.1.3.55	loadMATLABmatrix	42
6.1.3.56	loadMATLABmatrix	42
6.1.3.57	loadMATLABmatrix	43
6.1.3.58	logdet	43
6.1.3.59	logm	43
6.1.3.60	lognegativity	44
6.1.3.61	measure	44
6.1.3.62	measure	44
6.1.3.63	measure	45
6.1.3.64	measure	45
6.1.3.65	measure	46
6.1.3.66	measure	46
6.1.3.67	measure	46
6.1.3.68	measure	47
6.1.3.69	measure	48
6.1.3.70	mket	48
6.1.3.71	mket	48
6.1.3.72	mprj	49
6.1.3.73	mprj	49
6.1.3.74	multiidx2n	49
6.1.3.75	n2multiidx	49
6.1.3.76	negativity	50
6.1.3.77	norm	50
6.1.3.78	omega	50
6.1.3.79	operator"""_i	50
6.1.3.80	operator"""_i	51
6.1.3.81	powm	51
6.1.3.82	prj	51
6.1.3.83	prod	51
6.1.3.84	prod	51
6.1.3.85	ptrace	52

vi CONTENTS

6.1.3.86 ptrace	52
6.1.3.87 ptrace1	52
6.1.3.88 ptrace2	53
6.1.3.89 ptranspose	53
6.1.3.90 ptranspose	53
6.1.3.91 qmutualinfo	54
6.1.3.92 qmutualinfo	55
6.1.3.93 rand	55
6.1.3.94 rand	55
6.1.3.95 rand	56
6.1.3.96 rand	56
6.1.3.97 randH	56
6.1.3.98 randidx	56
6.1.3.99 randket	57
6.1.3.100 randkraus	57
6.1.3.101 randn	57
6.1.3.102 randn	57
6.1.3.103 randn	58
6.1.3.104 randn	58
6.1.3.105 randperm	58
6.1.3.106 randrho	59
6.1.3.107 randU	59
6.1.3.108 randV	59
6.1.3.109 renyi	59
6.1.3.110 reshape	60
6.1.3.111 rho2pure	60
6.1.3.112 save	60
6.1.3.113 saveMATLABmatrix	61
6.1.3.114 saveMATLABmatrix	61
6.1.3.115 saveMATLABmatrix	61
6.1.3.116 schatten	61
6.1.3.117 schmidtA	61
6.1.3.118 schmidtB	62
6.1.3.119 schmidtcoeff	62
6.1.3.120 schmidtprob	62
6.1.3.121 sinm	63
6.1.3.122 spectralpowm	63
6.1.3.123 sqrtm	63
6.1.3.124 sum	63
6.1.3.125 sum	64

CONTENTS vii

		6.1.3.126	super	. 64
		6.1.3.127	svals	. 64
		6.1.3.128	svd	. 64
		6.1.3.129	svdU	. 65
		6.1.3.130	svdV	. 65
		6.1.3.131	syspermute	. 65
		6.1.3.132	syspermute	. 65
		6.1.3.133	trace	. 66
		6.1.3.134	transpose	. 66
		6.1.3.135	i tsallis	. 66
		6.1.3.136	x2contfrac	. 66
	6.1.4	Variable [Documentation	. 67
		6.1.4.1	chop	. 67
		6.1.4.2	codes	. 67
		6.1.4.3	ee	. 67
		6.1.4.4	eps	. 67
		6.1.4.5	gt	. 67
		6.1.4.6	$infty \ldots \ldots \ldots \ldots \ldots \ldots$. 67
		6.1.4.7	init	. 67
		6.1.4.8	maxn	. 67
		6.1.4.9	pi	. 68
		6.1.4.10	rdevs	. 68
		6.1.4.11	st	. 68
5.2	qpp::ex	perimenta	ll Namespace Reference	. 68
	6.2.1	Detailed [Description	. 68
3.3	qpp::in	ternal Nam	nespace Reference	. 68
	6.3.1	Detailed [Description	. 69
	6.3.2	Function	Documentation	. 69
		6.3.2.1	_check_col_vector	. 69
		6.3.2.2	_check_dims	. 69
		6.3.2.3	_check_dims_match_cvect	. 69
		6.3.2.4	_check_dims_match_mat	. 69
		6.3.2.5	_check_dims_match_rvect	. 69
		6.3.2.6	_check_eq_dims	. 69
		6.3.2.7	_check_nonzero_size	. 69
		6.3.2.8	_check_perm	. 69
		6.3.2.9	_check_row_vector	. 69
		6.3.2.10	_check_square_mat	. 69
		6.3.2.11	_check_subsys_match_dims	. 69
		6.3.2.12	_check_vector	. 69

viii CONTENTS

			6.3.2.13 _kron2	39
			6.3.2.14 _multiidx2n	70
			6.3.2.15 _n2multiidx	70
			6.3.2.16 variadic_vector_emplace	70
			6.3.2.17 variadic_vector_emplace	70
7	Clas	s Docu	mentation 7	71
	7.1	qpp::C	odes Class Reference	71
		7.1.1	Detailed Description	72
		7.1.2	Member Enumeration Documentation	72
			7.1.2.1 Type	72
		7.1.3	Constructor & Destructor Documentation	72
			7.1.3.1 Codes	72
		7.1.4	Member Function Documentation	72
			7.1.4.1 codeword	72
		7.1.5	Friends And Related Function Documentation	73
			7.1.5.1 internal::Singleton < const Codes >	73
	7.2	qpp::E	xception Class Reference	73
		7.2.1	Detailed Description	75
		7.2.2	Member Enumeration Documentation	75
			7.2.2.1 Type	75
		7.2.3	Constructor & Destructor Documentation	76
			7.2.3.1 Exception	76
			7.2.3.2 Exception	76
		7.2.4	Member Function Documentation	76
			7.2.4.1 _construct_exception_msg	76
			7.2.4.2 what	76
		7.2.5	Member Data Documentation	76
			7.2.5.1 _custom	76
			7.2.5.2 _msg	77
			7.2.5.3 _type	77
			7.2.5.4 _where	77
	7.3	qpp::G	ates Class Reference	77
		7.3.1	Detailed Description	79
		7.3.2	Constructor & Destructor Documentation	79
			7.3.2.1 Gates	79
		7.3.3	Member Function Documentation	79
			7.3.3.1 CTRL	79
			7.3.3.2 expandout	79
			7.3.3.3 Fd	30

CONTENTS

		7.3.3.4 ld	30
		7.3.3.5 Rn	30
		7.3.3.6 Xd	31
		7.3.3.7 Zd	31
	7.3.4	Friends And Related Function Documentation	31
		7.3.4.1 internal::Singleton < const Gates >	31
	7.3.5	Member Data Documentation	31
		7.3.5.1 CNOT	31
		7.3.5.2 CNOTba	31
		7.3.5.3 CZ	31
		7.3.5.4 FRED	31
		7.3.5.5 H	32
		7.3.5.6 ld2	32
		7.3.5.7 S	32
		7.3.5.8 SWAP	32
		7.3.5.9 T	32
		7.3.5.10 TOF	32
		7.3.5.11 X	32
		7.3.5.12 Y	32
		7.3.5.13 Z	32
7.4	qpp::In	it Class Reference	32
	7.4.1	Detailed Description	33
	7.4.2	Constructor & Destructor Documentation	34
		7.4.2.1 Init	34
		7.4.2.2 ~Init	34
	7.4.3	Friends And Related Function Documentation	34
		7.4.3.1 internal::Singleton < const Init >	34
7.5	qpp::in	ternal::IOManipEigen Class Reference	34
	7.5.1	Constructor & Destructor Documentation	34
		7.5.1.1 IOManipEigen	34
		7.5.1.2 IOManipEigen	34
	7.5.2	Friends And Related Function Documentation	34
		7.5.2.1 operator<<	35
	7.5.3	Member Data Documentation	35
		7.5.3.1 _A	35
		7.5.3.2 _chop	35
7.6	qpp::in	ternal::IOManipPointer< PointerType > Class Template Reference	35
	7.6.1	Constructor & Destructor Documentation	36
		•	36
		7.6.1.2 IOManipPointer	36

X CONTENTS

	7.6.2	Member Function Documentation
		7.6.2.1 operator=
	7.6.3	Friends And Related Function Documentation
		7.6.3.1 operator <<
	7.6.4	Member Data Documentation
		7.6.4.1 _end
		7.6.4.2 _n
		7.6.4.3 _p
		7.6.4.4 _separator
		7.6.4.5 _start
7.7	qpp::int	ternal::IOManipRange< InputIterator > Class Template Reference
	7.7.1	Constructor & Destructor Documentation
		7.7.1.1 IOManipRange
	7.7.2	Friends And Related Function Documentation
		7.7.2.1 operator<< 8
	7.7.3	Member Data Documentation
		7.7.3.1 _end
		7.7.3.2 _first
		7.7.3.3 _last
		7.7.3.4 _separator
		7.7.3.5 _start
7.8	qpp::Ra	andomDevices Class Reference
	7.8.1	Detailed Description
	7.8.2	Constructor & Destructor Documentation
		7.8.2.1 RandomDevices
	7.8.3	Friends And Related Function Documentation
		7.8.3.1 internal::Singleton< RandomDevices >
	7.8.4	Member Data Documentation
		7.8.4.1 _rd
		7.8.4.2 _rng
7.9	qpp::int	ternal::Singleton< T > Class Template Reference
	7.9.1	Detailed Description
	7.9.2	Constructor & Destructor Documentation
		7.9.2.1 Singleton
		7.9.2.2 ~Singleton
		7.9.2.3 Singleton
	7.9.3	Member Function Documentation
		7.9.3.1 get_instance
		7.9.3.2 operator=
7.10	qpp::St	ates Class Reference

CONTENTS xi

	7.10.1	Detailed Description
	7.10.2	Constructor & Destructor Documentation
		7.10.2.1 States
	7.10.3	Friends And Related Function Documentation
		7.10.3.1 internal::Singleton < const States >
	7.10.4	Member Data Documentation
		7.10.4.1 b00
		7.10.4.2 b01
		7.10.4.3 b10
		7.10.4.4 b11
		7.10.4.5 GHZ
		7.10.4.6 pb00
		7.10.4.7 pb01
		7.10.4.8 pb10
		7.10.4.9 pb11
		7.10.4.10 pGHZ
		7.10.4.11 pW
		7.10.4.12 px0
		7.10.4.13 px1
		7.10.4.14 py0
		7.10.4.15 py1
		7.10.4.16 pz0
		7.10.4.17 pz1
		7.10.4.18 W
		7.10.4.19 x0
		7.10.4.20 x1
		7.10.4.21 y0
		7.10.4.22 y1
		7.10.4.23 z0
		7.10.4.24 z1
7.11	qpp::Tii	mer Class Reference
	7.11.1	Detailed Description
	7.11.2	Constructor & Destructor Documentation
		7.11.2.1 Timer
	7.11.3	Member Function Documentation
		7.11.3.1 seconds
		7.11.3.2 tic
		7.11.3.3 toc
	7.11.4	Friends And Related Function Documentation
		7.11.4.1 operator<< 97

xii CONTENTS

		7.11.5 Member Data Documentation	97
		7.11.5.1 _end	97
		7.11.5.2 _start	97
8	File I	Documentation	99
	8.1	classes/codes.h File Reference	99
		8.1.1 Detailed Description	99
	8.2	classes/exception.h File Reference	99
		8.2.1 Detailed Description	00
	8.3	classes/gates.h File Reference	00
		8.3.1 Detailed Description	01
	8.4	classes/init.h File Reference	01
		8.4.1 Detailed Description	01
	8.5	classes/random_devices.h File Reference	02
		8.5.1 Detailed Description	02
	8.6	classes/states.h File Reference	02
		8.6.1 Detailed Description	03
	8.7	classes/timer.h File Reference	03
		8.7.1 Detailed Description	03
	8.8	constants.h File Reference	04
		8.8.1 Detailed Description	04
	8.9	entanglement.h File Reference	05
		8.9.1 Detailed Description	06
	8.10	entropies.h File Reference	06
		8.10.1 Detailed Description	07
	8.11	experimental/test.h File Reference	07
		8.11.1 Detailed Description	07
	8.12	functions.h File Reference	07
		8.12.1 Detailed Description	11
	8.13	input_output.h File Reference	11
		8.13.1 Detailed Description	12
	8.14	instruments.h File Reference	12
		8.14.1 Detailed Description	13
	8.15	internal/classes/iomanip.h File Reference	13
		8.15.1 Detailed Description	14
	8.16	internal/classes/singleton.h File Reference	14
		8.16.1 Detailed Description	15
	8.17	internal/util.h File Reference	15
		8.17.1 Detailed Description	16
	8.18	MATLAB/matlab.h File Reference	16

CONTENTS xiii

Index		125
8.24	/Users/vlad/Dropbox/programming/cpp/qpp_clion/README.md File Reference	124
	8.23.1 Detailed Description	124
8.23	types.h File Reference	123
	8.22.1 Detailed Description	123
8.22	random.h File Reference	122
	8.21.1 Detailed Description	122
8.21	qpp.h File Reference	120
	8.20.1 Detailed Description	120
8.20	operations.h File Reference	118
	8.19.1 Detailed Description	118
8.19	number_theory.h File Reference	117
	8.18.1 Detailed Description	117

Chapter 1

Quantum++

Quantum++ is a C++11 general purpose quantum computing library, composed solely of template header files. It uses the Eigen 3 linear algebra library and, if available, the OpenMP multi-processing library. For additional Eigen 3 documentation see http://eigen.tuxfamily.org/dox/. For a simple Eigen 3 quick ASCII reference see http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt.

Copyright (c) 2013 - 2014 Vlad Gheorghiu, vgheorgh AT gmail DOT com.

If you are interesting in contributing, please let me know. There is still work left to be done, and I can provide you with more details about what I have in mind. To contribute, you need to have a decent knowledge of C++ (preferably C++11), including templates and the standard library, a basic knowledge of quantum computing and linear algebra, and some working experience with Eigen 3.

The ultimate goal of this project is to build a universal quantum simulator, applicable to a vast majority of problems in quantum information/computation. The simulator should be fast but nevertheless user-friendly for anyone with a basic knowledge of C/C++.

Quantum++ is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Quantum++ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Quantum++. If not, see http-://www.gnu.org/licenses/.

Building instructions

Configuration:

- Compiler: $g++ \ge 4.8$ (for good C++11 support)
- Eigen 3 library located in \$HOME/eigen
- Quantum++ library located in \$HOME/qpp
- MATLAB compiler include header files: /Applications/MATLAB_R2014b.app/extern/include
- MATLAB compiler shared library files: /Applications/MATLAB_R2014b.app/bin/maci64

Building without a build system

- Example file: \$HOME/qpp/examples/example.cpp
- Output executable: \$HOME/qpp/examples/example

2 Quantum++

Must run the commands below from inside the directory \$HOME/qpp/examples

Release version (without MATLAB support):

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -03 -DNDEBUG -DEIGEN_NO_DEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    example.cpp -o example
```

Debug version (without MATLAB support):

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -g3 -DDEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    example.cpp -o example
```

Release version (with MATLAB support):

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -03 -DNDEBUG -DEIGEN_NO_DEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    -I/Applications/MATLAB_R2014b.app/extern/include \
    -L/Applications/MATLAB_R2014b.app/bin/maci64 \
    -lmx -lmat example.cpp -o example
```

Debug version (with MATLAB support):

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -g3 -DDEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    -I /Applications/MATLAB_R2014b.app/extern/include \
    -L /Applications/MATLAB_R2014b.app/bin/maci64 \
    -lmx -lmat example.cpp -o example
```

Building using cmake

The current version of the repository has a CMakeLists.txt configuration file for building examples using cmake (cmake needs to be installed). To build an example using cmake, I recommend an out-of-source build, i.e., from the root of the project (where ./include is located), type

```
mkdir ./build
cd ./build
cmake ..
make
```

The above commands build the relase version (default) executable qpp, from the source file ./examples/example.cpp, without MATLAB support (default), inside the directory ./build. To build a different configuration, e.g. debug version with MATLAB support, type from the root of the project

```
cd ./build  \begin{tabular}{ll} $\sf cd ./build \\ $\sf rm -rf * \\ $\sf cmake -DCMAKE\_BUILD\_TYPE=Debug -DWITH\_MATLAB=ON .. \\ $\sf make \\ \end{tabular}
```

Or, to disable OpenMP support (enabled by default), type

```
cd ./build
rm -rf *
cmake -DWITH_OPENMP=OFF ..
make
```

To change the name of the example file, the location of the Eigen 3 library or the location of MATLAB installation, edit the CMakeLists.txt file. See also CMakeLists.txt for additional options. Do not forget to remove everything from the ./build directory before a fresh build!

Additional remarks

- The C++ compiler must be C++11 compliant.
- If your compiler does not support OpenMP (as it is the case e.g with clang++), disable OpenMP in your build, as otherwise the linker may not find the gomp library.
- If you run the program on OS X with MATLAB support, make sure that the environment variable DYLD_L← IBRARY_PATH is set to point to the MATLAB compiler library location, see the run_OSX_MATLAB script. Otherwise, you will get a runtime error like dyld: Library not loaded: @rpath/libmat.← dylib.

 \star I recommend running via a script, as otherwise setting the

- 'DYLD_LIBRARY_PATH' globally may interfere with Macports' 'cmake' installation (in case you use 'cmake' from 'macports'). If you use a script, then the environment variable is local to the script and does not interfere with the rest of the system.

 * Example of running script, run from inside the directory where the executable 'qpp' is located:

 #!/bin/sh # Run Quantum++ under OS X with MATLAB support
- If you build a debug version with g++ under OS X and use gdb to step inside template functions you may want to add -fno-weak compiler flag. See http://stackoverflow.← com/questions/23330641/gnu-gdb-can-not-step-into-template-functions-os-x-mavericks for more details about this problem.

export DYLD_LIBRARY_PATH=\$DYLD_LIBRARY_PATH:"/Applications/MATLAB_R2014b.app/bin/maci64"

Quantum++

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

qpp		
	Quantum++'s main namespace	13
qpp::ex	perimental	
	Experimental/test functions/classes, do not use or modify	68
qpp::int	ternal	
	Internal utility functions, do not use/modify	68

6 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

std::exception	
qpp::Exception	73
qpp::internal::IOManipEigen	84
qpp::internal::IOManipPointer< PointerType >	85
qpp::internal::IOManipRange< InputIterator >	86
$qpp::internal::Singleton < T > \dots \dots$	90
qpp::internal::Singleton < const Codes >	90
qpp::Codes	71
qpp::internal::Singleton < const Gates >	90
qpp::Gates	77
$qpp :: internal :: Singleton < const \; Init > \dots $	90
qpp::Init	82
qpp::internal::Singleton < const States >	90
qpp::States	91
qpp::internal::Singleton< RandomDevices >	90
qpp::RandomDevices	88
gpp: Timer	95

8 **Hierarchical Index**

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::Codes	
Const Singleton class that defines quantum error correcting codes	71
qpp::Exception	
Generates custom exceptions, used when validating function parameters	73
qpp::Gates	
Const Singleton class that implements most commonly used gates	77
qpp::Init	
Const Singleton class that performs additional initializations/cleanups	82
qpp::internal::IOManipEigen	84
qpp::internal::IOManipPointer< PointerType >	85
${\sf qpp::internal::IOManipRange} < {\sf InputIterator} > \dots $	86
qpp::RandomDevices	
Singeleton class that manages the source of randomness in the library	88
qpp::internal::Singleton< T >	
Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously	
recurring template pattern)	90
qpp::States	
Const Singleton class that implements most commonly used states	91
qpp::Timer	
Measures time	95

10 Class Index

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

12 File Index

ternal/util.h	
Internal utility functions	115
ternal/classes/iomanip.h	
Input/output manipulators	113
ternal/classes/singleton.h	
Singleton pattern via CRTP	114
ATLAB/matlab.h	
Input/output interfacing with MATLAB	116

Chapter 6

Namespace Documentation

6.1 qpp Namespace Reference

Quantum++'s main namespace.

Namespaces

· experimental

Experimental/test functions/classes, do not use or modify.

internal

Internal utility functions, do not use/modify.

Classes

· class Codes

const Singleton class that defines quantum error correcting codes

class Exception

Generates custom exceptions, used when validating function parameters.

· class Gates

const Singleton class that implements most commonly used gates

class Init

const Singleton class that performs additional initializations/cleanups

· class RandomDevices

Singeleton class that manages the source of randomness in the library.

class States

const Singleton class that implements most commonly used states

class Timer

Measures time.

Typedefs

```
    using cplx = std::complex < double >
        Complex number in double precision.
```

```
    template<typename Scalar >
        using dyn_mat = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >
        Dynamic Eigen matrix over the field specified by Scalar.
```

```
• template<typename Scalar >
      using dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
          Dynamic Eigen column vector over the field specified by Scalar.

    template<typename Scalar >

      using dyn_row_vect = Eigen::Matrix < Scalar, 1, Eigen::Dynamic >
          Dynamic Eigen row vector over the field specified by Scalar.
    using ket = dyn_col_vect< cplx >
          Complex (double precision) dynamic Eigen column vector.
    using bra = dyn_row_vect< cplx >
          Complex (double precision) dynamic Eigen row vector.
    using cmat = dyn mat < cplx >
          Complex (double precision) dynamic Eigen matrix.
    using dmat = dyn mat< double >
          Real (double precision) dynamic Eigen matrix.
    using idx = std::size t
          Non-negative integer index.
Functions

    constexpr cplx operator" i (unsigned long long int x)

          User-defined literal for complex i = \sqrt{-1} (integer overload)

    constexpr cplx operator""_i (long double x)

          User-defined literal for complex i = \sqrt{-1} (real overload)

    cplx omega (idx D)

          D-th root of unity.

    template<typename Derived >

      dyn col vect< cplx > schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< idx >
      &dims)
          Schmidt coefficients of the bi-partite pure state A.

    template<typename Derived >

      cmat schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
          Schmidt basis on Alice's side.

    template<typename Derived >

      cmat schmidtB (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
          Schmidt basis on Bob's side.
    • template<typename Derived >
      dyn_col_vect< double > schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< idx >
      &dims)
          Schmidt probabilities of the bi-partite pure state A.

    template<typename Derived >

      double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
          Entanglement of the bi-partite pure state A.
    • template<typename Derived >
      double gconcurrence (const Eigen::MatrixBase< Derived > &A)
          G-concurrence of the bi-partite pure state A.

    template<typename Derived >

      double negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
          Negativity of the bi-partite mixed state A.

    template<typename Derived >

      double lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
          Logarithmic negativity of the bi-partite mixed state A.
```

```
• template<typename Derived >
  double concurrence (const Eigen::MatrixBase< Derived > &A)
      Wootters concurrence of the bi-partite qubit mixed state A.

    template<typename Derived >

  double entropy (const Eigen::MatrixBase< Derived > &A)
      Shannon/von-Neumann entropy of the probability distribution/density matrix A.
• template<typename Derived >
  double renyi (const Eigen::MatrixBase< Derived > &A, double alpha)
     Renyi- \alpha entropy of the probability distribution/density matrix A, for \alpha > 0.

    template<typename Derived >

  double tsallis (const Eigen::MatrixBase< Derived > &A, double alpha)
      Tsallis- \alpha entropy of the probability distribution/density matrix A, for \alpha \geq 0.

    template<typename Derived >

  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const
  std::vector< idx > &subsysB, const std::vector< idx > &dims)
      Quantum mutual information between 2 subsystems of a composite system.

    template<typename Derived >

  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const
  std::vector < idx > &subsysB, idx d=2)
     Quantum mutual information between 2 subsystems of a composite system.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > adjoint (const Eigen::MatrixBase< Derived > &A)
     Adjoint.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > inverse (const Eigen::MatrixBase< Derived > &A)
      Inverse.

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar det (const Eigen::MatrixBase< Derived > &A)
     Determinant.

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)
      Element-wise sum of A.

    template<typename Derived >

  Derived::Scalar prod (const Eigen::MatrixBase< Derived > &A)
      Element-wise product of A.
• template<typename Derived >
  double norm (const Eigen::MatrixBase< Derived > &A)
     Frobenius norm.

    template<typename Derived >

  std::pair < dyn_col_vect < cplx >
  , cmat > eig (const Eigen::MatrixBase< Derived > &A)
```

```
Full eigen decomposition.
• template<typename Derived >
  dyn_col_vect< cplx > evals (const Eigen::MatrixBase< Derived > &A)
     Eigenvalues.

    template<typename Derived >

  cmat evects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors.

    template<typename Derived >

  std::pair< dyn col vect
  < double >, cmat > heig (const Eigen::MatrixBase< Derived > &A)
     Full eigen decomposition of Hermitian expression.

    template<typename Derived >

  dyn_col_vect< double > hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.

    template<typename Derived >

  cmat hevects (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvectors.

    template<typename Derived >

  std::tuple < cmat, dyn mat
  < double >, cmat > svd (const Eigen::MatrixBase< Derived > &A)
     Full singular value decomposition.
• template<typename Derived >
  dyn_col_vect< double > svals (const Eigen::MatrixBase< Derived > &A)
     Singular values.

    template<typename Derived >

  cmat svdU (const Eigen::MatrixBase< Derived > &A)
     Left singular vectors.

    template<typename Derived >

  cmat svdV (const Eigen::MatrixBase< Derived > &A)
     Right singular vectors.
• template<typename Derived >
  cmat funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)

    template<typename Derived >

  cmat sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.

    template<typename Derived >

  cmat absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolut value.

    template<typename Derived >

  cmat expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.

    template<typename Derived >

  cmat logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.

    template<typename Derived >

  cmat cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.

    template<typename Derived >

  cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
```

Matrix power. template<typename Derived > dyn_mat< typename Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, idx n) Matrix power. template<typename Derived > double schatten (const Eigen::MatrixBase< Derived > &A, idx p) Schatten norm. • template<typename OutputScalar , typename Derived > dyn_mat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const typename Derived::Scalar &)) Functor. template<typename T > dyn_mat< typename T::Scalar > kron (const T &head) Kronecker product. • template<typename T , typename... Args> dyn_mat< typename T::Scalar > kron (const T &head, const Args &...tail) Kronecker product. template<typename Derived > dyn mat< typename Derived::Scalar > kron (const std::vector< Derived > &As) Kronecker product. template<typename Derived > dyn mat< typename Derived::Scalar > kron (const std::initializer list< Derived > &As) Kronecker product. • template<typename Derived > dyn_mat< typename Derived::Scalar > kronpow (const Eigen::MatrixBase< Derived > &A, idx n) Kronecker power. template<typename Derived > dyn_mat< typename Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, idx rows, idx cols) Reshape. • template<typename Derived1 , typename Derived2 >dyn mat< typename Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B) Commutator. • template<typename Derived1 , typename Derived2 > dyn mat< typename Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B) Anti-commutator. • template<typename Derived > dyn_mat< typename Derived::Scalar > prj (const Eigen::MatrixBase< Derived > &V) Projector. template<typename Derived > dyn_mat< typename Derived::Scalar > grams (const std::vector< Derived > &Vs) Gram-Schmidt orthogonalization. template<typename Derived > dyn_mat< typename Derived::Scalar > grams (const std::initializer_list< Derived > &Vs) Gram-Schmidt orthogonalization.

dyn mat< typename Derived::Scalar > grams (const Eigen::MatrixBase< Derived > &A)

std::vector< idx > n2multiidx (idx n, const std::vector< idx > &dims)

Gram-Schmidt orthogonalization.

template<typename Derived >

Non-negative integer index to multi-index.

idx multiidx2n (const std::vector < idx > &midx, const std::vector < idx > &dims)

Multi-index to non-negative integer index.

ket mket (const std::vector< idx > &mask, const std::vector< idx > &dims)

Multi-partite qudit ket.

ket mket (const std::vector< idx > &mask, idx d=2)

Multi-partite qudit ket.

cmat mprj (const std::vector < idx > &mask, const std::vector < idx > &dims)

Projector onto multi-partite qudit ket.

cmat mprj (const std::vector < idx > &mask, idx d=2)

Projector onto multi-partite qudit ket.

template<typename InputIterator >

std::vector< double > abssq (InputIterator first, InputIterator last)

Computes the absolut values squared of a range of complex numbers.

• template<typename Derived >

std::vector< double > abssq (const Eigen::MatrixBase< Derived > &V)

Computes the absolut values squared of a column vector.

• template<typename InputIterator >

InputIterator::value_type sum (InputIterator first, InputIterator last)

Element-wise sum of a range.

template<typename InputIterator >

InputIterator::value_type prod (InputIterator first, InputIterator last)

Element-wise product of a range.

template<typename Derived >

dyn col vect< typename

Derived::Scalar > rho2pure (const Eigen::MatrixBase < Derived > &A)

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

• template<typename Derived >

internal::IOManipEigen disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)

Eigen expression ostream manipulator.

internal::IOManipEigen disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

 $\bullet \ \ template {<} typename \ Input Iterator >$

internal::IOManipRange

< InputIterator > disp (const InputIterator &first, const InputIterator &last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

template<typename Container >

internal::IOManipRange

< typename

Container::const_iterator > disp (const Container &c, const std::string &separator, const std::string &start="[", const std::string &end="]")

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

template<typename PointerType >

internal::IOManipPointer

< PointerType > disp (const PointerType *p, idx n, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

template<typename Derived >

void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

 $\bullet \ \ {\sf template}{<} {\sf typename \ Derived} >$

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, const idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std↔ ::initializer_list< cmat > &Ks, const std::vector< idx > &subsys, const idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

template<typename Derived >

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U, const std::vector< idx > &subsys, const idx d=2)

Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

template<typename Derived >

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat >> measure (const Eigen::MatrixBase< Derived > &A, const std \leftarrow ::initializer_list< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

• template<typename Derived >

```
std::tuple < idx, std::vector
```

< double >, std::vector< cmat >> measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)

Measures the state A in the orthonormal basis specified by the unitary matrix \boldsymbol{U} .

• template<typename Derived >

Derived loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

Loads an Eigen dynamic matrix from a MATLAB .mat file, generic version.

template<>

dmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for double matrices (qpp::dmat)

• template<>

cmat loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

• template<typename Derived >

void saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std
::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, generic version.

template<>

void saveMATLABmatrix (const Eigen::MatrixBase < dmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for double matrices (qpp::dmat)

template<>

void saveMATLABmatrix (const Eigen::MatrixBase< cmat > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

std::vector< long long int > x2contfrac (double x, idx n, idx cut=1e5)

Simple continued fraction expansion.

double contfrac2x (const std::vector< int > &cf, idx n)

Real representation of a simple continued fraction.

double contfrac2x (const std::vector< int > &cf)

Real representation of a simple continued fraction.

idx gcd (idx m, idx n)

Greatest common divisor of two non-negative integers.

idx gcd (const std::vector < idx > &ns)

Greatest common divisor of a list of non-negative integers.

• idx lcm (idx m, idx n)

Least common multiple of two positive integers.

idx lcm (const std::vector < idx > &ns)

Least common multiple of a list of positive integers.

std::vector< idx > invperm (const std::vector< idx > &perm)

Inverse permutation.

std::vector< idx > compperm (const std::vector< idx > &perm, const std::vector< idx > &sigma)

Compose permutations.

template<typename Derived1, typename Derived2 >

dyn_mat< typename

Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn mat< typename

Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys, idx d=2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >

dyn mat< typename

Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename

Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, idx d=2)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived >

 ${\color{blue} cmat\ apply\ (const\ Eigen::MatrixBase< Derived>\& rho,\ const\ std::vector< cmat>\& Ks)}$

Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

• template<typename Derived >

cmat apply (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std::vector<
idx > &subsys, const std::vector< idx > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho.

 $\bullet \ \ \mathsf{template}{<}\mathsf{typename} \ \mathsf{Derived} >$

cmat apply (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std::vector<
idx > &subsys, idx d=2)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho

cmat super (const std::vector< cmat > &Ks)

Superoperator matrix representation.

cmat choi (const std::vector < cmat > &Ks)

Choi matrix representation.

std::vector< cmat > choi2kraus (const cmat &A)

Extracts orthogonal Kraus operators from Choi matrix.

template<typename Derived >

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, const std← ::vector< idx > &dims)

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector<
idx > &subsys, const std::vector< idx > &dims)

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector
idx > &subsys, idx d=2)

Partial trace.

template<typename Derived >

Partial transpose.

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptranspose (const Eigen::MatrixBase< Derived > &A, const std ← ::vector < idx > &subsys, idx d=2)

Partial transpose.

template<typename Derived >

 $\frac{\text{dyn_mat} < \text{typename Derived::Scalar} > \text{syspermute (const Eigen::MatrixBase} < \text{Derived} > \&A, \text{ const std} \\ \text{::vector} < \frac{\text{idx}}{\text{idx}} > \&\text{perm, const std::vector} < \frac{\text{idx}}{\text{idx}} > \&\text{dims})$

System permutation.

• template<typename Derived >

System permutation.

 $\bullet \ \ {\sf template}{<} {\sf typename \ Derived} >$

Derived rand (idx rows, idx cols, double a=0, double b=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

template<>

dmat rand (idx rows, idx cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (gpp::dmat)

• template<>

cmat rand (idx rows, idx cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

• double rand (double a=0, double b=1)

Generates a random real number uniformly distributed in the interval [a, b)

idx randidx (idx a=std::numeric limits < idx >::min(), idx b=std::numeric limits < idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived randn (idx rows, idx cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<>

dmat randn (idx rows, idx cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

• template<>

cmat randn (idx rows, idx cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

· cmat randU (idx D)

Generates a random unitary matrix.

cmat randV (idx Din, idx Dout)

Generates a random isometry matrix.

std::vector< cmat > randkraus (idx N, idx D)

Generates a set of random Kraus operators.

• cmat randH (idx D)

Generates a random Hermitian matrix.

ket randket (idx D)

Generates a random normalized ket (pure state vector)

cmat randrho (idx D)

Generates a random density matrix.

std::vector< idx > randperm (idx n)

Generates a random uniformly distributed permutation.

Variables

• constexpr double chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr double eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

• constexpr idx maxn = 64

Maximum number of qubits.

• constexpr double pi = 3.141592653589793238462643383279502884

π

constexpr double ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr idx infty = -1

Used to denote infinity.

```
6.1 qpp Namespace Reference
    const Init & init = Init::get_instance()
         qpp::Init const Singleton
    • const Codes & codes = Codes::get_instance()
         app::Codes const Singleton
    const Gates & gt = Gates::get_instance()
         qpp::Gates const Singleton
    const States & st = States::get_instance()
         qpp::States const Singleton
    • RandomDevices & rdevs = RandomDevices::get_instance()
         gpp::RandomDevices Singleton
       Detailed Description
6.1.1
Quantum++'s main namespace.
6.1.2 Typedef Documentation
6.1.2.1 using qpp::bra = typedef dyn_row_vect<cplx>
Complex (double precision) dynamic Eigen row vector.
6.1.2.2 using qpp::cmat = typedef dyn mat < cplx >
Complex (double precision) dynamic Eigen matrix.
6.1.2.3 using qpp::cplx = typedef std::complex < double >
Complex number in double precision.
6.1.2.4 using qpp::dmat = typedef dyn_mat<double>
Real (double precision) dynamic Eigen matrix.
6.1.2.5 template < typename Scalar > using qpp::dyn_col_vect = typedef Eigen::Matrix < Scalar, Eigen::Dynamic, 1>
Dynamic Eigen column vector over the field specified by Scalar.
Example:
// type of colvect is Eigen::Matrix<float, Eigen::Dynamic, 1>
```

```
auto colvect = dyn_col_vect<float>(2);
```

6.1.2.6 template < typename Scalar > using qpp::dyn_mat = typedef Eigen::Matrix < Scalar, Eigen::Dynamic, Eigen::Dynamic>

Dynamic Eigen matrix over the field specified by Scalar.

Example:

```
// type of mat is Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
auto mat = dyn_mat<float>(2,3);
```

6.1.2.7 template < typename Scalar > using qpp::dyn_row_vect = typedef Eigen::Matrix < Scalar, 1, Eigen::Dynamic >

Dynamic Eigen row vector over the field specified by Scalar.

Example:

```
// type of rowvect is Eigen::Matrix<float, 1, Eigen::Dynamic>
auto rowvect = dyn_row_vect<float>(3);
```

6.1.2.8 using qpp::idx = typedef std::size_t

Non-negative integer index.

6.1.2.9 using qpp::ket = typedef dyn_col_vect < cplx >

Complex (double precision) dynamic Eigen column vector.

6.1.3 Function Documentation

6.1.3.1 template < typename Derived > cmat qpp::absm (const Eigen::MatrixBase < Derived > & A)

Matrix absolut value.

Parameters

Α	Eigen expression
---	------------------

Returns

Matrix absolut value of A

6.1.3.2 template<typename InputIterator > std::vector<double> qpp::abssq (InputIterator first, InputIterator last)

Computes the absolut values squared of a range of complex numbers.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Real vector consisting of the range's absolut values squared

6.1.3.3 template<typename Derived > std::vector<double> qpp::abssq (const Eigen::MatrixBase< Derived > & V)

Computes the absolut values squared of a column vector.

Parameters

V	Eigen expression

Returns

Real vector consisting of the absolut values squared

6.1.3.4 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::adjoint (const Eigen::MatrixBase < Derived > & A)

Adjoint.

Α	Eigen expression
---	------------------

Returns

Adjoint (Hermitian conjugate) of A, as a dynamic matrix over the same scalar field as A

6.1.3.5 template<typename Derived1 , typename Derived2 > dyn_mat <typename Derived1::Scalar> derived2 > derived3 | Eigen::MatrixBase< Derived1 > derived3 | Derived2 > derived3 | Derived2 > derived3 | Derive3 | Deri

Anti-commutator.

Anti-commutator $\{A,B\} = AB + BA$. Both A and B must be Eigen expressions over the same scalar field.

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Anti-commutator AB + BA, as a dynamic matrix over the same scalar field as A

6.1.3.6 template < typename Derived1 , typename Derived2 > dyn_mat < typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase < Derived1 > & state, const Eigen::MatrixBase < Derived2 > & A, const std::vector < idx > & subsys, const std::vector < idx > & dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

Gate A applied to the part subsys of state

6.1.3.7 template < typename Derived1 , typename Derived2 > dyn_mat < typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase < Derived1 > & state, const Eigen::MatrixBase < Derived2 > & A, const std::vector < idx > & subsys, idx d = 2)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

Gate A applied to the part subsys of state

6.1.3.8 template<typename Derived > cmat qpp::apply (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks)

Applies the channel specified by the set of Kraus operators *Ks* to the density matrix *rho*.

Parameters

rho	Eigen expression
Ks	Set of Kraus operators

Returns

Output density matrix after the action of the channel

6.1.3.9 template<typename Derived > cmat qpp::apply (const Eigen::MatrixBase< Derived > & rho, const std::vector< cmat > & Ks, const std::vector< idx > & subsys, const std::vector< idx > & dims)

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *rho*.

Parameters

rho	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes where the Kraus operators Ks are applied
dims	Dimensions of the multi-partite system

Returns

Output density matrix after the action of the channel

6.1.3.10 template < typename Derived > cmat qpp::apply (const Eigen::MatrixBase < Derived > & rho, const std::vector < cmat > & Ks, const std::vector < idx > & subsys, idx d = 2)

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *rho*

Parameters

rho	Eigen expression
Ks	Set of Kraus operators

subsys	Subsystem indexes where the Kraus operators Ks are applied
d	Subsystem dimensions

Returns

Output density matrix after the action of the channel

6.1.3.11 template<typename Derived1 , typename Derived2 > dyn_mat<typename Derived1::Scalar> qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< idx > & ctrl, const std::vector< idx > & subsys, const std::vector< idx > & dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of *subsys*. Also, all control subsystems in *ctrl* must have the same dimension.

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

CTRL-A gate applied to the part subsys of state

6.1.3.12 template<typename Derived1 , typename Derived2 > dyn_mat<typename Derived1::Scalar> qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< idx > & ctrl, const std::vector< idx > & subsys, idx d = 2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

CTRL-A gate applied to the part subsys of state

6.1.3.13 cmat qpp::choi (const std::vector < cmat > & Ks)

Choi matrix representation.

Constructs the Choi matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Note

The superoperator matrix S and the Choi matrix C are related by $S_{ab,mn} = C_{ma,nb}$

Parameters

Ks	Set of Kraus operators

Returns

Choi matrix representation

6.1.3.14 std::vector<cmat> qpp::choi2kraus (const cmat & A)

Extracts orthogonal Kraus operators from Choi matrix.

Extracts a set of orthogonal (under Hilbert-Schmidt operator norm) Kraus operators from the Choi representation A of the channel

Note

The Kraus operators satisfy $Tr(K_i^{\dagger}K_i) = \delta_{ij}$ for all $i \neq j$

Parameters

	Choi matrix
--	-------------

Returns

Set of Kraus operators

6.1.3.15 template<typename Derived1 , typename Derived2 > dyn_mat<typename Derived1::Scalar> qpp::comm (const Eigen::MatrixBase< Derived1 > & A, const Eigen::MatrixBase< Derived2 > & B)

Commutator.

Commutator [A, B] = AB - BA. Both A and B must be Eigen expressions over the same scalar field.

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Commutator AB - BA, as a dynamic matrix over the same scalar field as A

6.1.3.16 std::vector<idx> qpp::compperm (const std::vector< idx > & perm, const std::vector< idx > & sigma)

Compose permutations.

perm	Permutation
sigma	Permutation

Returns

Composition of the permutations *perm* o *sigma* = perm(sigma)

6.1.3.17 template < typename Derived > double qpp::concurrence (const Eigen::MatrixBase < Derived > & A)

Wootters concurrence of the bi-partite qubit mixed state A.

Parameters

A	Eigen expression
---	------------------

Returns

Wootters concurrence

6.1.3.18 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::conjugate (const Eigen::MatrixBase< Derived > & A)

Complex conjugate.

Parameters

A E	Eigen expression
-------	------------------

Returns

Complex conjugate of A, as a dynamic matrix over the same scalar field as A

6.1.3.19 double qpp::contfrac2x (const std::vector < int > & cf, idx n)

Real representation of a simple continued fraction.

Parameters

cf	Integer vector containing the simple continued fraction expansion
n	Number of terms considered in the continued fraction expansion. If <i>n</i> is greater than the size
	of cf,then all terms in cf are considered.

Returns

Real representation of the simple continued fraction

6.1.3.20 double qpp::contfrac2x (const std::vector< int > & cf)

Real representation of a simple continued fraction.

cf Integer vector containing the simple continued fraction expansion

Returns

Real representation of the simple continued fraction

6.1.3.21 template < typename Derived > cmat qpp::cosm (const Eigen::MatrixBase < Derived > & A)

Matrix cos.

Parameters

Α	Eigen expression

Returns

Matrix cosine of A

6.1.3.22 template<typename OutputScalar , typename Derived > dyn_mat<OutputScalar> qpp::cwise (const Eigen::MatrixBase< Derived > & A, OutputScalar(*)(const typename Derived::Scalar &) f)

Functor.

Parameters

Α	Eigen expression
f	Pointer-to-function from scalars of A to OutputScalar

Returns

Component-wise f(A), as a dynamic matrix over the *OutputScalar* scalar field

6.1.3.23 template < typename Derived > Derived::Scalar qpp::det (const Eigen::MatrixBase < Derived > & A)

Determinant.

Parameters

Α	Eigen expression

Returns

Determinant of A, as a scalar in the same scalar field as A. Returns $\pm \infty$ when the determinant overflows/underflows.

6.1.3.24 template<typename Derived > internal::IOManipEigen qpp::disp (const Eigen::MatrixBase< Derived > & A, double chop = qpp::chop)

Eigen expression ostream manipulator.

Α	Eigen expression
chop	Set to zero the elements smaller in absolute value than <i>chop</i>

Returns

Instance of qpp::internal::internal::IOManipEigen

6.1.3.25 internal::IOManipEigen qpp::disp (cplx z, double chop = qpp::chop)

Complex number ostream manipulator.

Parameters

Z	Complex number (or any other type implicitly cast-able to std::complex <double>)</double>
chop	Set to zero the elements smaller in absolute value than <i>chop</i>

Returns

Instance of qpp::internal::internal::IOManipEigen

6.1.3.26 template<typename InputIterator > internal::IOManipRange<InputIterator> qpp::disp (const InputIterator & first, const InputIterator & last, const std::string & separator, const std::string & start = " [", const std::string & end = "] ")

Range ostream manipulator.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::internal::IOManipRange

 $Standard\ container\ ostream\ manipulator.\ The\ container\ must\ support\ std::begin(),\ std::end()\ and\ forward\ iteration.$

Parameters

X	Container
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::internal::IOManipRange

6.1.3.28 template<typename PointerType > internal::IOManipPointer<PointerType> qpp::disp (const PointerType * p, idx n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ")

C-style pointer ostream manipulator.

X	Pointer to the first element
n	Number of elements to be displayed
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipPointer

6.1.3.29 template<typename Derived > std::pair<dyn_col_vect<cplx>, cmat> qpp::eig (const Eigen::MatrixBase< Derived > & A)

Full eigen decomposition.

Parameters

Λ	Figure expression
A	Eigen expression

Returns

Pair of: 1. Eigenvalues of *A*, as a complex dynamic column vector, and 2. Eigenvectors of *A*, as columns of a complex dynamic matrix

6.1.3.30 template < typename Derived > double qpp::entanglement (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & dims)

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

qpp::entropy()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Entanglement, with the logarithm in base 2

6.1.3.31 template < typename Derived > double qpp::entropy (const Eigen::MatrixBase < Derived > & A)

Shannon/von-Neumann entropy of the probability distribution/density matrix A.

Parameters

Generated on Fri Dec 5 2014 22:23:08 for Quantum++ by Doxygen

A Eigen expression, representing a probability distribution (real dynamic column vector) or a density matrix (complex dynamic matrix)

Returns

Shannon/von-Neumann entropy, with the logarithm in base 2

6.1.3.32 template<typename Derived > dyn_col_vect<cplx> qpp::evals (const Eigen::MatrixBase< Derived > & A)

Eigenvalues.

Parameters

Α	Eigen expression
---	------------------

Returns

Eigenvalues of A, as a complex dynamic column vector

6.1.3.33 template < typename Derived > cmat qpp::evects (const Eigen::MatrixBase < Derived > & A)

Eigenvectors.

Parameters

Α	Eigen expression
---	------------------

Returns

Eigenvectors of A, as columns of a complex dynamic matrix

6.1.3.34 template < typename Derived > cmat qpp::expm (const Eigen::MatrixBase < Derived > & A)

Matrix exponential.

Parameters

Α	Eigen expression

Returns

Matrix exponential of A

6.1.3.35 template < typename Derived > cmat qpp::funm (const Eigen::MatrixBase < Derived > & A, cplx(*)(const cplx &) f)

Functional calculus f(A)

Parameters

Α	Eigen expression
f	Pointer-to-function from complex to complex

Returns

f(A)

6.1.3.36 idx qpp::gcd (idx m, idx n)

Greatest common divisor of two non-negative integers.

m	Non-negative integer
n	Non-negative integer

Returns

Greatest common divisor of m and n

6.1.3.37 idx qpp::gcd (const std::vector < idx > & ns)

Greatest common divisor of a list of non-negative integers.

Parameters

ns	List of non-negative integers
----	-------------------------------

Returns

Greatest common divisor of all numbers in ns

6.1.3.38 template < typename Derived > double qpp::gconcurrence (const Eigen::MatrixBase < Derived > & A)

G-concurrence of the bi-partite pure state A.

Note

Both local dimensions must be equal

Uses qpp::logdet() to avoid overflows

See also

qpp::logdet()

Parameters

Α	Eigen expression

Returns

G-concurrence

6.1.3.39 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::grams (const std::vector< Derived > & Vs)

Gram-Schmidt orthogonalization.

Parameters

Vs	std::vector of Eigen expressions as column vectors

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field as its arguments

6.1.3.40 template < typename Derived > dyn_mat < typename Derived::Scalar > qpp::grams (const std::initializer_list < Derived > & Vs)

Gram-Schmidt orthogonalization.

Vs std::initializer_list of Eigen expressions as column vectors

Returns

Gram-Schmidt vectors of Vs as columns of a dynamic matrix over the same scalar field as its arguments

6.1.3.41 template < typename Derived > dyn_mat < typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase < Derived > & A)

Gram-Schmidt orthogonalization.

Parameters

A Eigen expression, the input vectors are the columns of A

Returns

Gram-Schmidt vectors of the columns of A, as columns of a dynamic matrix over the same scalar field as A

6.1.3.42 template<typename Derived > std::pair<dyn_col_vect<double>, cmat> qpp::heig (const Eigen::MatrixBase< Derived > & A)

Full eigen decomposition of Hermitian expression.

Parameters

A Eigen expression

Returns

Pair of: 1. Eigenvalues of A, as a real dynamic column vector, and 2. Eigenvectors of A, as columns of a complex dynamic matrix

 $6.1.3.43 \quad template < typename \ Derived > dyn_col_vect < double > qpp::hevals \ (\ const \ Eigen::MatrixBase < Derived > \& \ A \)$

Hermitian eigenvalues.

Parameters

A Eigen expression

Returns

Eigenvalues of Hermitian A, as a real dynamic column vector

6.1.3.44 template < typename Derived > cmat qpp::hevects (const Eigen::MatrixBase < Derived > & A)

Hermitian eigenvectors.

A Eigen expression

Returns

Eigenvectors of Hermitian A, as columns of a complex matrix

6.1.3.45 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::inverse (const Eigen::MatrixBase< Derived > & A)

Inverse.

Parameters

A Eigen expression

Returns

Inverse of A, as a dynamic matrix over the same scalar field as A

6.1.3.46 std::vector<idx> qpp::invperm (const std::vector< idx > & perm)

Inverse permutation.

Parameters

perm	Permutation

Returns

Inverse of the permutation perm

6.1.3.47 template<typename T > dyn_mat<typename T::Scalar> qpp::kron (const T & head)

Kronecker product.

Used to stop the recursion for the variadic template version of qpp::kron())

Parameters

head Eigen expression

Returns

Its argument head

6.1.3.48 template<typename T , typename... Args> dyn_mat<typename T::Scalar> qpp::kron (const T & head, const Args &... tail)

Kronecker product.

head	Eigen expression
tail	Variadic Eigen expression (zero or more parameters)

Returns

Kronecker product of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.3.49 template < typename Derived > dyn_mat < typename Derived::Scalar > qpp::kron (const std::vector < Derived > & As)

Kronecker product.

Parameters

As	std::vector of Eigen expressions

Returns

Kronecker product of all elements in *As*, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.3.50 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::kron (const std::initializer_list< Derived > & As)

Kronecker product.

Parameters

As	std::initializer_list of Eigen expressions, such as {A1, A2,, Ak}

Returns

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.3.51 template < typename Derived > dyn_mat < typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase < Derived > & A, idx n)

Kronecker power.

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Kronecker product of A with itself n times $A^{\otimes n}$, as a dynamic matrix over the same scalar field as A

6.1.3.52 idx qpp::lcm (idx m, idx n)

Least common multiple of two positive integers.

m	Positive integer
n	Positive integer

Returns

Least common multiple of m and n

6.1.3.53 idx qpp::lcm (const std::vector< idx > & ns)

Least common multiple of a list of positive integers.

Parameters

ns	List of positive integers

Returns

Least common multiple of all numbers in ns

6.1.3.54 template < typename Derived > dyn_mat < typename Derived::Scalar > qpp::load (const std::string & fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

The template parameter cannot be automatically deduced and must be explicitly provided, depending on the scalar field of the matrix that is being loaded.

Example:

```
// loads a previously saved Eigen dynamic complex matrix from "input.bin"
auto mat = load<cmat>("input.bin");
```

See also

qpp::loadMATLABmatrix()

Parameters

Α	Eigen expression
fname	Output file name

6.1.3.55 template<typename Derived > Derived qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)

Loads an Eigen dynamic matrix from a MATLAB .mat file, generic version.

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat (the only matrix types that can be loaded)

6.1.3.56 template <> dmat qpp::loadMATLABmatrix (const std::string & mat_file, const std::string & var_name)
[inline]

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen dynamic double matrix from the
MATLAB file "input.mat"
auto mat = loadMATLABmatrix<dmat>("input.mat");
```

Note

If var name is a complex matrix, only the real part is loaded

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen double dynamic matrix (qpp::dmat)

```
6.1.3.57 template<> cmat qpp::loadMATLABmatrix ( const std::string & mat_file, const std::string & var_name )
[inline]
```

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen dynamic complex matrix from the
MATLAB file "input.mat"
auto mat = loadMATLABmatrix<cmat>("input.mat");
```

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen complex dynamic matrix (qpp::cmat)

6.1.3.58 template<typename Derived > Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > & A)

Logarithm of the determinant.

Useful when the determinant overflows/underflows

Parameters

Α	Eigen expression

Returns

Logarithm of the determinant of A, as a scalar in the same scalar field as A

6.1.3.59 template<typename Derived > cmat qpp::logm (const Eigen::MatrixBase< Derived > & A)

Matrix logarithm.

Α	Eigen expression
---	------------------

Returns

Matrix logarithm of A

6.1.3.60 template < typename Derived > double qpp::lognegativity (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & dims)

Logarithmic negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Logarithmic negativity, with the logarithm in base 2

6.1.3.61 template < typename Derived > std::tuple < idx, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const std::vector < cmat > & Ks, const std::vector < idx > & subsys, const std::vector < idx > & dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

Note

The dimension of all Ks must match the dimension of subsys.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple consisiting of 1. Result of the measurement, 2. Vector of outcome probabilities and 3. Vector of post-measurement normalized states

6.1.3.62 template < typename Derived > std::tuple < idx, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const std::initializer_list < cmat > & Ks, const std::vector < idx > & subsys, const std::vector < idx > & dims)

Measures the part *subsys* of the multi-partite state vector or density matrix *A* using the set of Kraus operators *Ks*.

Note

The dimension of all Ks must match the dimension of subsys.

Α	Eigen expression
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system
Ks	Set of Kraus operators

Returns

Tuple consisiting of 1. Result of the measurement,

- 1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states
- 6.1.3.63 template < typename Derived > std::tuple < idx, std::vector < double > , std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const std::vector < cmat > & Ks, const std::vector < idx > & subsys, const idx d = 2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

Note

The dimension of all Ks must match the dimension of subsys.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions
Ks	Set of Kraus operators

Returns

Tuple consisiting of 1. Result of the measurement,

- 1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states
- 6.1.3.64 template < typename Derived > std::tuple < idx, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const std::initializer_list < cmat > & Ks, const std::vector < idx > & subsys, const idx d = 2)

Measures the part *subsys* of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

Note

The dimension of all Ks must match the dimension of subsys.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions
Ks	Set of Kraus operators

Returns

Tuple consisiting of 1. Result of the measurement,

1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states

6.1.3.65 template<typename Derived > std::tuple<idx, std::vector<double>, std::vector<cmat> > qpp::measure (const Eigen::MatrixBase< Derived > & A, const cmat & U, const std::vector< idx > & subsys, const std::vector< idx > & dims)

Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

Note

The dimension of *U* must match the dimension of *subsys*.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system
U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple consisiting of 1. Result of the measurement,

- 1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states
- 6.1.3.66 template < typename Derived > std::tuple < idx, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const cmat & U, const std::vector < idx > & subsys, const idx d = 2)

Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

Note

The dimension of *U* must match the dimension of *subsys*.

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions
U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple consisiting of 1. Result of the measurement,

- 1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states
- $6.1.3.67 \quad template < typename \ Derived > std::tuple < idx, std::vector < double >, std::vector < cmat > > qpp::measure (\ const \ Eigen::MatrixBase < Derived > & \textit{A}, \ const \ std::vector < cmat > & \textit{Ks} \)$

Measures the state A using the set of Kraus operators Ks.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple consisiting of 1. Result of the measurement,

1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states

 $\label{lem:const} \textbf{6.1.3.68} \quad \text{template} < \text{typename Derived} > \text{std::tuple} < \text{idx, std::vector} < \text{double} > \text{, std::vector} < \text{cmat} > > \text{qpp::measure (const Eigen::MatrixBase} < \text{Derived} > \& \textit{A, const std::initializer_list} < \text{cmat} > \& \textit{Ks)} \\$

Measures the state A using the set of Kraus operators Ks.

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple consisiting of 1. Result of the measurement,

1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states

6.1.3.69 template < typename Derived > std::tuple < idx, std::vector < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > & A, const cmat & U)

Measures the state A in the orthonormal basis specified by the unitary matrix U.

Parameters

Α	Eigen expression
U	Unitary matrix whose columns represent the measurement basis vectors

Returns

Tuple consisiting of 1. Result of the measurement,

1. Vector of outcome probabilities and 3. Vector of post-measurement normalized states

6.1.3.70 ket qpp::mket (const std::vector< idx > & mask, const std::vector< idx > & dims)

Multi-partite qudit ket.

Constructs the multi-partite qudit ket $|mask\rangle$, where mask is a std::vector of non-negative integers. Each element in mask has to be smaller than the corresponding element in dims.

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

6.1.3.71 ket qpp::mket (const std::vector $\langle idx \rangle \& mask$, idx d = 2)

Multi-partite qudit ket.

Constructs the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension d. mask is a std::vector of non-negative integers, and each element in mask has to be strictly smaller than d.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

6.1.3.72 cmat qpp::mprj (const std::vector< idx > & mask, const std::vector< idx > & dims)

Projector onto multi-partite qudit ket.

Constructs the projector onto the multi-partite qudit ket $|mask\rangle$, where mask is a std::vector of non-negative integers. Each element in mask has to be smaller than the corresponding element in dims.

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

6.1.3.73 cmat qpp::mprj (const std::vector < idx > & mask, idx d = 2)

Projector onto multi-partite qudit ket.

Constructs the projector onto the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension *d. mask* is a std::vector of non-negative integers, and each element in *mask* has to be strictly smaller than *d*.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Returns

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

6.1.3.74 idx qpp::multiidx2n (const std::vector < idx > & midx, const std::vector < idx > & dims)

Multi-index to non-negative integer index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

midx	Multi-index
dims	Dimensions of the multi-partite system

Returns

Non-negative integer index

6.1.3.75 std::vector<idx> qpp::n2multiidx (idx n, const std::vector< idx> & dims)

Non-negative integer index to multi-index.

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

n	Non-negative integer index
dims	Dimensions of the multi-partite system

Returns

Multi-index of the same size as dims

6.1.3.76 template < typename Derived > double qpp::negativity (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & dims)

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Negativity

6.1.3.77 template < typename Derived > double qpp::norm (const Eigen::MatrixBase < Derived > & A)

Frobenius norm.

Parameters

	Α	Eigen expression	
--	---	------------------	--

Returns

Frobenius norm of A, as a real number

6.1.3.78 cplx qpp::omega (idx D) [inline]

D-th root of unity.

Parameters

D Non-negative integer	D N	Non-negative integer
--------------------------	-----	----------------------

Returns

D-th root of unity $\exp(2\pi i/D)$

6.1.3.79 constexpr cplx qpp::operator""_i (unsigned long long int x)

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

Example:

```
auto z = 4_i; // type of z is std::complex<double>
```

6.1.3.80 constexpr cplx qpp::operator""_i (long double x)

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

Example:

```
auto z = 4.5_i; // type of z is std::complex<double>
```

6.1.3.81 template < typename Derived > dyn_mat < typename Derived::Scalar > dyn_mat < typename Derived > dyn_mat < ty

Matrix power.

Explicitly multiplies the matrix A with itself n times. By convention $A^0 = I$.

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Matrix power A^n , as a dynamic matrix over the same scalar field as A

6.1.3.82 template < typename Derived > dyn_mat < typename Derived::Scalar > qpp::prj (const Eigen::MatrixBase < Derived > & V)

Projector.

Normalized projector onto state vector

Parameters

V	Eigen expression

Returns

Projector onto the state vector V, or the matrix Zero if V has norm zero (i.e. smaller than qpp::eps), as a dynamic matrix over the same scalar field as A

6.1.3.83 template < typename Derived > Derived::Scalar qpp::prod (const Eigen::MatrixBase < Derived > & A)

Element-wise product of A.

Parameters

Α	Eigen expression
---	------------------

Returns

Element-wise product of A, as a scalar in the same scalar field as A

 $\textbf{6.1.3.84} \quad template < typename\ lnput lterator > lnput lterator :: value_type\ qpp::prod\ (\ lnput lterator\ \textit{first},\ lnput lterator\ \textit{last}\)$

Element-wise product of a range.

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Element-wise product of the range, as a scalar in the same scalar field as the range

6.1.3.85 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::ptrace (const Eigen::MatrixBase< Derived > & A, const std::vector< idx > & subsys, const std::vector< idx > & dims)

Partial trace.

Partial trace of the multi-partite density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.86 template < typename Derived > dyn_mat < typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & subsys, idx d = 2)

Partial trace.

Partial trace of the multi-partite density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
d	Subsystem dimensions

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems subsys in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.87 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::ptrace1 (const Eigen::MatrixBase< Derived > & A, const std::vector< idx > & dims)

Partial trace.

Partial trace of density matrix over the first subsystem in a bi-partite system

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system (must be a std::vector with 2 elements)

Returns

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

Partial trace.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system (must be a std::vector with 2 elements)

Returns

Partial trace $Tr_B(\cdot)$ over the second subsytem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.89 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::ptranspose (const Eigen::MatrixBase< Derived > & A, const std::vector< idx > & subsys, const std::vector< idx > & dims)

Partial transpose.

Partial transpose of the multi-partite density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.90 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::ptranspose (const Eigen::MatrixBase< Derived > & A, const std::vector< idx > & subsys, idx d = 2)

Partial transpose.

Partial transpose of the multi-partite density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
d	Subsystem dimensions

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.91 template < typename Derived > double qpp::qmutualinfo (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & subsysA, const std::vector < idx > & subsysB, const std::vector < idx > & dims)

Quantum mutual information between 2 subsystems of a composite system.

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
dims	Dimensions of the multi-partite system

Returns

Mutual information between the 2 subsystems

```
6.1.3.92 template<typename Derived > double qpp::qmutualinfo ( const Eigen::MatrixBase< Derived > & A, const std::vector< idx > & subsysA, const std::vector< idx > & subsysB, idx d = 2)
```

Quantum mutual information between 2 subsystems of a composite system.

Parameters

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
d	Subsystem dimensions

Returns

Mutual information between the 2 subsystems

```
6.1.3.93 template < typename Derived > Derived qpp::rand ( idx rows, idx cols, double a = 0, double b = 1 )
```

Generates a random matrix with entries uniformly distributed in the interval [a, b)

If complex, then both real and imaginary parts are uniformly distributed in [a, b)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

```
6.1.3.94 template <> dmat qpp::rand ( idx rows, idx cols, double a, double b ) [inline]
```

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries uniformly distributed in [-1,1)
auto mat = rand<dmat>(3, 3, -1, 1);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it

b	End of the interval, does not belong to it

Returns

Random real matrix

```
6.1.3.95 template <> cmat qpp::rand (idx rows, idx cols, double a, double b) [inline]
```

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd, 
// with entries (both real and imaginary) uniformly distributed in [-1,1) auto mat = rand<cmat>(3, 3, -1, 1);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random complex matrix

```
6.1.3.96 double qpp::rand ( double a = 0, double b = 1 )
```

Generates a random real number uniformly distributed in the interval [a, b)

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random real number (double) uniformly distributed in the interval [a, b)

```
6.1.3.97 cmat qpp::randH ( idx D )
```

Generates a random Hermitian matrix.

Parameters

	D	Dimension of the Hilbert space
--	---	--------------------------------

Returns

Random Hermitian matrix

Generates a random index (idx) uniformly distributed in the interval [a, b].

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it

Returns

Random index (idx) uniformly distributed in the interval [a, b]

6.1.3.99 ket qpp::randket (idx D)

Generates a random normalized ket (pure state vector)

Parameters

D	Dimension of the Hilbert space

Returns

Random normalized ket

6.1.3.100 std::vector<cmat> qpp::randkraus (idx N, idx D)

Generates a set of random Kraus operators.

Note

The set of Kraus operators satisfy the closure condition $\sum_i K_i^\dagger K_i = I$

Parameters

N	Number of Kraus operators
D	Dimension of the Hilbert space

Returns

Set of N Kraus operators satisfying the closure condition

6.1.3.101 template < typename Derived > Derived qpp::randn (idx rows, idx cols, double mean = 0, double sigma = 1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

If complex, then both real and imaginary parts are normally distributed in N(mean, sigma)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

6.1.3.102 template <> dmat qpp::randn (idx rows, idx cols, double mean, double sigma) [inline]

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries normally distributed in N(0,2)
auto mat = randn<dmat>(3, 3, 0, 2);
```

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random real matrix

```
6.1.3.103 template<> cmat qpp::randn ( idx rows, idx cols, double mean, double sigma ) [inline]
```

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd, // with entries (both real and imaginary) normally distributed in N(0,2) auto mat = randn<cmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random complex matrix

6.1.3.104 double qpp::randn (double mean = 0, double sigma = 1)

Generates a random real number (double) normally distributed in N(mean, sigma)

Parameters

mean	Mean
sigma	Standard deviation

Returns

Random real number normally distributed in N(mean, sigma)

```
6.1.3.105 std::vector<idx> qpp::randperm ( idx n )
```

Generates a random uniformly distributed permutation.

Uses Knuth's shuffle method (as implemented by std::shuffle), so that all permutations are equally probable

n	Size of the permutation
---	-------------------------

Returns

Random permutation of size n

6.1.3.106 cmat qpp::randrho (idx D)

Generates a random density matrix.

Parameters

D Dimension of the Hilbert space

Returns

Random density matrix

6.1.3.107 cmat qpp::randU (idx D)

Generates a random unitary matrix.

Parameters

D	Dimension of the Hilbert space
---	--------------------------------

Returns

Random unitary

6.1.3.108 cmat qpp::randV (idx Din, idx Dout)

Generates a random isometry matrix.

Parameters

Din	Size of the input Hilbert space
Dout	Size of the output Hilbert space

Returns

Random isometry matrix

6.1.3.109 template < typename Derived > double qpp::renyi (const Eigen::MatrixBase < Derived > & A, double alpha)

Renyi- α entropy of the probability distribution/density matrix ${\it A}$, for $\alpha \geq 0$.

Parameters

Α	Eigen expression, representing a probability distribution (real dynamic column vector) or a
	density matrix (complex dynamic matrix)

alpha	Non-negative real number, use qpp::infty for $\alpha=\infty$
-------	--

Returns

Renyi- α entropy, with the logarithm in base 2

6.1.3.110 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::reshape (const Eigen::MatrixBase< Derived > & A, idx rows, idx cols)

Reshape.

Uses column-major order when reshaping (same as MATLAB)

Parameters

Α	Eigen expression
rows	Number of rows of the reshaped matrix
cols	Number of columns of the reshaped matrix

Returns

Reshaped matrix with rows rows and cols columns, as a dynamic matrix over the same scalar field as A

6.1.3.111 template < typename Derived > dyn_col_vect < typename Derived::Scalar > qpp::rho2pure (const Eigen::MatrixBase < Derived > & A)

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

Note

No purity check is done, the input state *A* must have rank one, otherwise the function returs the first non-zero eigenvector of *A*

Parameters

Α	Eigen expression, assumed to be proportional to a projector onto a pure state, i.e. A is
	assumed to have rank one

Returns

The unique non-zero eigenvector of A, as a dynamic column vector over the same scalar field as A

6.1.3.112 template<typename Derived > void qpp::save (const Eigen::MatrixBase< Derived > & A, const std::string & fname)

Saves Eigen expression to a binary file (internal format) in double precision.

See also

qpp::saveMATLABmatrix()

Α	Eigen expression
fname	Output file name

6.1.3.113 template<typename Derived > void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, generic version.

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat (the only matrix types that can be saved)

6.1.3.114 template<> void qpp::saveMATLABmatrix (const Eigen::MatrixBase< dmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode) [inline]

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for double matrices (qpp::dmat)

Parameters

Α	Eigen expression over the complex field
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB's matOpen() documentation for details

6.1.3.115 template <> void qpp::saveMATLABmatrix (const Eigen::MatrixBase < cmat > & A, const std::string & mat_file, const std::string & var_name, const std::string & mode) [inline]

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

Parameters

Α	Eigen expression over the complex field
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB's matOpen() documentation for details

6.1.3.116 template < typename Derived > double qpp::schatten (const Eigen::MatrixBase < Derived > & A, idx p)

Schatten norm.

Parameters

Α	Eigen expression
р	Integer, greater or equal to 1

Returns

Schatten-p norm of A, as a real number

6.1.3.117 template < typename Derived > cmat qpp::schmidtA (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & dims)

Schmidt basis on Alice's side.

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix *U* whose columns represent the Schmidt basis vectors on Alice's side.

6.1.3.118 template < typename Derived > cmat qpp::schmidtB (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & dims)

Schmidt basis on Bob's side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix V whose columns represent the Schmidt basis vectors on Bob's side.

6.1.3.119 template<typename Derived > dyn_col_vect<cplx> qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > & A, const std::vector< idx > & dims)

Schmidt coefficients of the bi-partite pure state A.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprob()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Schmidt coefficients of A, as a complex dynamic column vector

6.1.3.120 template < typename Derived > $dyn_col_vect < double > qpp::schmidtprob (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & dims)$

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeff()

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Schmidt probabilites of A, as a real dynamic column vector

6.1.3.121 template < typename Derived > cmat qpp::sinm (const Eigen::MatrixBase < Derived > & A)

Matrix sin.

Parameters

Α	Eigen expression

Returns

Matrix sine of A

6.1.3.122 template < typename Derived > cmat qpp::spectralpowm (const Eigen::MatrixBase < Derived > & A, const cplx z)

Matrix power.

Uses the spectral decomposition of A to compute the matrix power. By convention $A^0 = I$.

Parameters

Α	Eigen expression
Z	Complex number

Returns

Matrix power A^z

6.1.3.123 template<typename Derived > cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > & A)

Matrix square root.

Parameters

Α	Eigen expression

Returns

Matrix square root of A

6.1.3.124 template<typename Derived > Derived::Scalar qpp::sum (const Eigen::MatrixBase< Derived > & A)

Element-wise sum of A.

Α	Eigen expression
---	------------------

Returns

Element-wise sum of A, as a scalar in the same scalar field as A

6.1.3.125 template < typename InputIterator > InputIterator::value_type qpp::sum (InputIterator first, InputIterator last)

Element-wise sum of a range.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Element-wise sum of the range, as a scalar in the same scalar field as the range

6.1.3.126 cmat qpp::super (const std::vector < cmat > & Ks)

Superoperator matrix representation.

Constructs the superoperator matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Parameters

Ks	Set of Kraus operators

Returns

Superoperator matrix representation

6.1.3.127 template < typename Derived > dyn_col_vect < double > qpp::svals (const Eigen::MatrixBase < Derived > & A)

Singular values.

Parameters

Α	Eigen expression

Returns

Singular values of \emph{A} , ordered in decreasing order, as a real dynamic column vector

6.1.3.128 template < typename Derived > std::tuple < cmat, dyn_mat < double >, cmat > qpp::svd (const Eigen::MatrixBase < Derived > & A)

Full singular value decomposition.

Α	Eigen expression
---	------------------

Returns

Tuple of: 1. Left sigular vectors of *A*, as columns of a complex dynamic matrix, 2. Singular values of *A*, ordered in decreasing order, as a real dynamic column vector, and 3. Right singular vectors of *A*, as columns of a complex dynamic matrix

6.1.3.129 template<typename Derived > cmat qpp::svdU (const Eigen::MatrixBase< Derived > & A)

Left singular vectors.

Parameters

Α	Eigen expression

Returns

Complex dynamic matrix, whose columns are the left singular vectors of A

6.1.3.130 template < typename Derived > cmat qpp::svdV (const Eigen::MatrixBase < Derived > & A)

Right singular vectors.

Parameters

Α	Eigen expression

Returns

Complex dynamic matrix, whose columns are the right singular vectors of A

6.1.3.131 template < typename Derived > $dyn_mat < typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & perm, const std::vector < idx > & dims)$

System permutation.

Permutes the subsystems in a state vector or density matrix. The qubit perm[i] is permuted to the location i.

Parameters

Α	Eigen expression
perm	Permutation
dims	Dimensions of the multi-partite system

Returns

Permuted system, as a dynamic matrix over the same scalar field as A

6.1.3.132 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::syspermute (const Eigen::MatrixBase< Derived > & A, const std::vector< idx > & perm, idx d = 2)

System permutation.

Permutes the subsystems in a state vector or density matrix. The qubit *perm[i]* is permuted to the location *i*.

Α	Eigen expression
perm	Permutation
d	Subsystem dimensions

Returns

Permuted system, as a dynamic matrix over the same scalar field as A

6.1.3.133 template < typename Derived > Derived::Scalar qpp::trace (const Eigen::MatrixBase < Derived > & A)

Trace.

Parameters

Α	Eigen expression

Returns

Trace of A, as a scalar in the same scalar field as A

6.1.3.134 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::transpose (const Eigen::MatrixBase< Derived > & A)

Transpose.

Parameters

A Ei	Eigen expression
------	------------------

Returns

Transpose of A, as a dynamic matrix over the same scalar field as A

 $\textbf{6.1.3.135} \quad \textbf{template} < \textbf{typename Derived} > \textbf{double qpp::tsallis (const Eigen::MatrixBase} < \textbf{Derived} > \textbf{\& A, double alpha)}$

Tsallis- α entropy of the probability distribution/density matrix A, for $\alpha \geq 0$.

When lpha
ightarrow 1 the Tsallis entropy converges to the Shannon/von-Neumann entropy, with the logarithm in base e

Parameters

Α	Eigen expression, representing a probability distribution (real dynamic column vector) or a
	density matrix (complex dynamic matrix)
alpha	Non-negative real number

Returns

Renyi- α entropy, with the logarithm in base 2

6.1.3.136 std::vector<long long int> qpp::x2contfrac (double x, idx n, idx cut = 1e5)

Simple continued fraction expansion.

X	Real number
n	Number of terms in the expansion
cut	Stop the expansion when the next term is greater than <i>cut</i>

Returns

Integer vector containing the simple continued fraction expansion of x. If there are m less than n terms in the expansion, a shorter vector with m components is returned.

6.1.4 Variable Documentation

6.1.4.1 constexpr double qpp::chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

6.1.4.2 const Codes& qpp::codes = Codes::get instance()

qpp::Codes const Singleton

Initializes the codes, see the class qpp::Codes

6.1.4.3 constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

6.1.4.4 constexpr double qpp::eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

Example:

```
if(std::abs(x) < qpp::eps) // x is zero</pre>
```

6.1.4.5 const Gates& qpp::gt = Gates::get_instance()

qpp::Gates const Singleton

Initializes the gates, see the class qpp::Gates

6.1.4.6 constexpr idx qpp::infty = -1

Used to denote infinity.

6.1.4.7 const Init& qpp::init = Init::get_instance()

qpp::Init const Singleton

Additional initializations/cleanups

6.1.4.8 constexpr idx qpp::maxn = 64

Maximum number of qubits.

Used internally to allocate arrays on the stack (for speed reasons)

6.1.4.9 constexpr double qpp::pi = 3.141592653589793238462643383279502884

 π

6.1.4.10 RandomDevices& qpp::rdevs = RandomDevices::get_instance()

qpp::RandomDevices Singleton

Initializes the random devices, see the class qpp::RandomDevices

6.1.4.11 const States& qpp::st = States::get_instance()

qpp::States const Singleton

Initializes the states, see the class qpp::States

6.2 qpp::experimental Namespace Reference

Experimental/test functions/classes, do not use or modify.

6.2.1 Detailed Description

Experimental/test functions/classes, do not use or modify.

6.3 qpp::internal Namespace Reference

Internal utility functions, do not use/modify.

Classes

- class IOManipEigen
- class IOManipPointer
- · class IOManipRange
- class Singleton

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Functions

- void _n2multiidx (idx n, idx numdims, const idx *dims, idx *result)
- idx _multiidx2n (const idx *midx, idx numdims, const idx *dims)
- $\bullet \ \ \mathsf{template}{<} \mathsf{typename} \ \mathsf{Derived} >$

 $bool_check_square_mat~(const~Eigen::MatrixBase < Derived > \&A)$

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

bool <u>check_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

 $bool_check_row_vector \ (const\ Eigen::MatrixBase < Derived > \&A)$

 $\bullet \ \ \text{template}{<} \text{typename Derived}>$

bool <u>_check_col_vector</u> (const Eigen::MatrixBase< Derived > &A)

• template<typename T >

bool _check_nonzero_size (const T &x)

- bool <u>_check_dims</u> (const std::vector< idx > &dims)
- template<typename Derived >

bool _check_dims_match_mat (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool <u>_check_dims_match_cvect</u> (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &V)

- template<typename Derived >
 - bool check dims match rvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &V)
- bool <u>_check_eq_dims</u> (const std::vector< idx > &dims, idx dim)
- bool _check_subsys_match_dims (const std::vector < idx > &subsys, const std::vector < idx > &dims)
- bool <u>_check_perm</u> (const std::vector < idx > &perm)
- template<typename Derived1 , typename Derived2 >

dyn_mat< typename</pre>

Derived1::Scalar > _kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< Derived2 > &B)

template<typename T >

void variadic vector emplace (std::vector< T > &)

template<typename T, typename First, typename... Args>
 void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)

6.3.1 Detailed Description

Internal utility functions, do not use/modify.

6.3.2 Function Documentation

- 6.3.2.1 template < typename Derived > bool qpp::internal::_check_col_vector (const Eigen::MatrixBase < Derived > & A)
- 6.3.2.2 bool qpp::internal::_check_dims (const std::vector < idx > & dims)
- 6.3.2.3 template<typename Derived > bool qpp::internal::_check_dims_match_cvect (const std::vector< idx > & dims, const Eigen::MatrixBase< Derived > & V)
- $6.3.2.4 \quad template < typename \ Derived > bool \ qpp::internal::_check_dims_match_mat \ (\ const \ std::vector < idx > \& \ dims, \ const \ Eigen::MatrixBase < Derived > \& \ A \)$
- $\label{lem:const} \textbf{6.3.2.5} \quad \text{template} < \text{typename Derived} > \text{bool qpp::internal::_check_dims_match_rvect} \ (\ \text{const std::vector} < \text{idx} > \& \ \textit{dims}, \\ \text{const Eigen::MatrixBase} < \text{Derived} > \& \ \textit{V} \)$
- 6.3.2.6 bool qpp::internal::_check_eq_dims (const std::vector < idx > & dims, idx dim)
- 6.3.2.7 template<typename T > bool qpp::internal::_check_nonzero_size (const T & x)
- 6.3.2.8 bool qpp::internal::_check_perm (const std::vector < idx > & perm)
- 6.3.2.9 template<typename Derived > bool qpp::internal::_check_row_vector (const Eigen::MatrixBase< Derived > & A)
- 6.3.2.10 template < typename Derived > bool qpp::internal::_check_square_mat (const Eigen::MatrixBase < Derived > & A)
- 6.3.2.11 bool qpp::internal::_check_subsys_match_dims (const std::vector< idx > & subsys, const std::vector< idx > & dims)
- 6.3.2.12 template<typename Derived > bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > & A)

6.3.2.14 idx qpp::internal::_multiidx2n (const idx * midx, idx numdims, const idx * dims) [inline]
6.3.2.15 void qpp::internal::_n2multiidx (idx n, idx numdims, const idx * dims, idx * result) [inline]
6.3.2.16 template<typename T > void qpp::internal::variadic_vector_emplace (std::vector< T > &)
6.3.2.17 template<typename T, typename First, typename... Args> void qpp::internal::variadic_vector_emplace (

std::vector < T > & v, First && first, Args &&... args)

Chapter 7

Class Documentation

7.1 qpp::Codes Class Reference

const Singleton class that defines quantum error correcting codes

#include <classes/codes.h>

Inheritance diagram for qpp::Codes:

Collaboration diagram for qpp::Codes:

Public Types

enum Type { Type::FIVE_QUBIT = 1, Type::SEVEN_QUBIT_STEANE, Type::NINE_QUBIT_SHOR }
 Code types, add more codes here if needed.

Public Member Functions

ket codeword (Type type, idx i) const
 Returns the codeword of the specified code.

Private Member Functions

• Codes ()

Default constructor.

Friends

class internal::Singleton < const Codes >

Additional Inherited Members

7.1.1 Detailed Description

const Singleton class that defines quantum error correcting codes

7.1.2 Member Enumeration Documentation

```
7.1.2.1 enum qpp::Codes::Type [strong]
```

Code types, add more codes here if needed.

See also

```
qpp::Codes::codeword()
```

Enumerator

```
FIVE_QUBIT [[5,1,3]] qubit code
SEVEN_QUBIT_STEANE [[7,1,3]] Steane qubit code
NINE_QUBIT_SHOR [[9,1,3]] Shor qubit code
```

7.1.3 Constructor & Destructor Documentation

```
7.1.3.1 qpp::Codes::Codes( ) [inline],[private]
```

Default constructor.

7.1.4 Member Function Documentation

7.1.4.1 ket qpp::Codes::codeword (Type type, idx i) const [inline]

Returns the codeword of the specified code.

type	Code type, defined in the enum qpp::Codes::Types
i	Codeword index

Returns

i-th codeword of the code type

7.1.5 Friends And Related Function Documentation

7.1.5.1 friend class internal::Singleton< **const Codes** > [friend]

The documentation for this class was generated from the following file:

· classes/codes.h

7.2 qpp::Exception Class Reference

Generates custom exceptions, used when validating function parameters.

#include <classes/exception.h>

Inheritance diagram for qpp::Exception:

Collaboration diagram for qpp::Exception:

Public Types

• enum Type {

Type::UNKNOWN_EXCEPTION = 1, Type::ZERO_SIZE, Type::MATRIX_NOT_SQUARE, Type::MATRIX_← NOT_CVECTOR,

Type::MATRIX_NOT_RVECTOR, Type::MATRIX_NOT_VECTOR, Type::MATRIX_NOT_SQUARE_OR_C↔ VECTOR, Type::MATRIX_NOT_SQUARE_OR_RVECTOR,

Type::MATRIX_NOT_SQUARE_OR_VECTOR, Type::MATRIX_MISMATCH_SUBSYS, Type::DIMS_INVA← LID, Type::DIMS_NOT_EQUAL,

Type::DIMS_MISMATCH_MATRIX, Type::DIMS_MISMATCH_CVECTOR, Type::DIMS_MISMATCH_RVE← CTOR, Type::DIMS MISMATCH VECTOR,

Type::SUBSYS_MISMATCH_DIMS, Type::NOT_QUBIT_GATE, Type::NOT_QUBIT_SUBSYS, Type::NOT← _BIPARTITE,

Type::NO_CODEWORD, Type::PERM_INVALID, Type::OUT_OF_RANGE, Type::TYPE_MISMATCH, Type::UNDEFINED_TYPE, Type::CUSTOM_EXCEPTION }

Exception types, add more exceptions here if needed.

Public Member Functions

• Exception (const std::string &where, const Type &type)

Constructs an exception.

• Exception (const std::string &where, const std::string &custom)

Constructs an exception.

• virtual const char * what () const noexceptoverride

Overrides std::exception::what()

Private Member Functions

• std::string _construct_exception_msg ()

Constructs the exception's description from its type.

Private Attributes

- · std::string _where
- std::string _msg
- Type _type
- std::string _custom

7.2.1 Detailed Description

Generates custom exceptions, used when validating function parameters.

Customize this class if more exceptions are needed

7.2.2 Member Enumeration Documentation

```
7.2.2.1 enum qpp::Exception::Type [strong]
```

Exception types, add more exceptions here if needed.

See also

```
qpp:Exception::_construct_exception_msg()
```

Enumerator

UNKNOWN EXCEPTION Unknown exception

ZERO_SIZE Zero sized object, e.g. empty Eigen::Matrix or std::vector with no elements

MATRIX_NOT_SQUARE Eigen::Matrix is not square

MATRIX_NOT_CVECTOR Eigen::Matrix is not a column vector

MATRIX_NOT_RVECTOR Eigen::Matrix is not a row vector

MATRIX_NOT_VECTOR Eigen::Matrix is not a row/column vector

MATRIX_NOT_SQUARE_OR_CVECTOR Eigen::Matrix is not square nor a column vector

MATRIX_NOT_SQUARE_OR_RVECTOR Eigen::Matrix is not square nor a row vector

MATRIX_NOT_SQUARE_OR_VECTOR Eigen::Matrix is not square nor a row/column vector

MATRIX_MISMATCH_SUBSYS Matrix size mismatch subsystem sizes (e.g. in qpp::apply(), or qpp← ::channel())

DIMS_INVALID std::vector<idx> representing the dimensions has zero size or contains zeros

DIMS_NOT_EQUAL std::vector<idx> representing the dimensions contains non-equal elements

DIMS_MISMATCH_MATRIX Product of the dimensions of std::vector<idx> is not equal to the number of rows of Eigen::Matrix (assumed to be square)

DIMS_MISMATCH_CVECTOR Product of the dimensions of std::vector<idx> is not equal to the number of columns of Eigen::Matrix (assumed to be a column vector)

DIMS_MISMATCH_RVECTOR Product of the dimensions of std::vector<idx> is not equal to the number of columns of Eigen::Matrix (assumed to be a row vector)

DIMS_MISMATCH_VECTOR Product of the dimensions of std::vector<idx> is not equal to the number of columns of Eigen::Matrix (assumed to be a row/column vector)

SUBSYS_MISMATCH_DIMS std::vector<idx> representing the subsystem labels has duplicatates, or has entries that are larger than the size of the std::vector<idx> representing the dimensions

NOT_QUBIT_GATE Eigen::Matrix is not 2 x 2

NOT QUBIT SUBSYS Subsystems are not 2-dimensional

NOT_BIPARTITE std::vector<idx> representing the dimensions has size different from 2

NO_CODEWORD Codeword does not exist, thrown when calling qpp::Codes::codeword() with invalid i

PERM_INVALID Invalid std::vector<idx> permutation

OUT_OF_RANGE Parameter out of range

TYPE_MISMATCH Types do not match (i.e. Matrix<double> vs Matrix<cplx>)

UNDEFINED_TYPE Templated function not defined for this type

CUSTOM_EXCEPTION Custom exception, user must provide a custom message

7.2.3 Constructor & Destructor Documentation

7.2.3.1 qpp::Exception::Exception (const std::string & where, const Type & type) [inline]

Constructs an exception.

Parameters

where	Text representing where the exception occured
type	Exception's type, see the strong enumeration qpp::Exception::Type

7.2.3.2 qpp::Exception::Exception (const std::string & where, const std::string & custom) [inline]

Constructs an exception.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters

where	Text representing where the exception occured
custom	Exception's description

7.2.4 Member Function Documentation

7.2.4.1 std::string qpp::Exception::_construct_exception_msg() [inline], [private]

Constructs the exception's description from its type.

Must modify the code of this function if more exceptions are added

Returns

Exception's description

7.2.4.2 virtual const char* qpp::Exception::what() const [inline], [override], [virtual], [noexcept]

Overrides std::exception::what()

Returns

Exception's description

7.2.5 Member Data Documentation

7.2.5.1 std::string qpp::Exception::_custom [private]

- **7.2.5.2 std::string qpp::Exception::_msg** [private]
- 7.2.5.3 Type qpp::Exception::_type [private]
- **7.2.5.4 std::string qpp::Exception::_where** [private]

The documentation for this class was generated from the following file:

· classes/exception.h

7.3 qpp::Gates Class Reference

const Singleton class that implements most commonly used gates

#include <classes/gates.h>

Inheritance diagram for qpp::Gates:

Collaboration diagram for qpp::Gates:

Public Member Functions

cmat Rn (double theta, std::vector< double > n) const
 Rotation of theta about the 3-dimensional real unit vector n.

```
• cmat Zd (idx D) const
          Generalized Z gate for qudits.
    • cmat Fd (idx D) const
          Fourier transform gate for qudits.

    cmat Xd (idx D) const

          Generalized X gate for qudits.
    • template<typename Derived = Eigen::MatrixXcd>
      Derived Id (idx D) const
          Identity gate.
    • template<typename Derived >
      dyn_mat< typename Derived::Scalar > CTRL (const Eigen::MatrixBase< Derived > &A, const std::vector<
      idx > &ctrl, const std::vector < idx > &subsys, idx n, idx d=2) const
          Generates the multi-partite multiple-controlled-A gate in matrix form.

    template<typename Derived >

      dyn mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, const
      std::vector < idx > &dims) const
          Expands out.
Public Attributes
    • cmat Id2 {cmat::Identity(2, 2)}
          Identity gate.
    cmat H {cmat::Zero(2, 2)}
          Hadamard gate.

    cmat X {cmat::Zero(2, 2)}

          Pauli Sigma-X gate.

    cmat Y {cmat::Zero(2, 2)}

          Pauli Sigma-Y gate.

    cmat Z {cmat::Zero(2, 2)}

          Pauli Sigma-Z gate.
    • cmat S {cmat::Zero(2, 2)}
          S gate.
    cmat T {cmat::Zero(2, 2)}
          T gate.

    cmat CNOT {cmat::Identity(4, 4)}

          Controlled-NOT control target gate.

    cmat CZ {cmat::Identity(4, 4)}

          Controlled-Phase gate.
    cmat CNOTba {cmat::Zero(4, 4)}
          Controlled-NOT target control gate.

    cmat SWAP {cmat::Identity(4, 4)}

          SWAP gate.

    cmat TOF {cmat::Identity(8, 8)}

          Toffoli gate.

    cmat FRED {cmat::ldentity(8, 8)}

          Fredkin gate.
```

Private Member Functions

· Gates ()

Initializes the gates.

Friends

class internal::Singleton < const Gates >

Additional Inherited Members

7.3.1 Detailed Description

const Singleton class that implements most commonly used gates

7.3.2 Constructor & Destructor Documentation

```
7.3.2.1 qpp::Gates::Gates() [inline], [private]
```

Initializes the gates.

7.3.3 Member Function Documentation

7.3.3.1 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::Gates::CTRL (const Eigen::MatrixBase < Derived > & A, const std::vector < idx > & ctrl, const std::vector < idx > & subsys, idx n, idx d = 2) const [inline]

Generates the multi-partite multiple-controlled-A gate in matrix form.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
n	Total number of subsystes
d	Subsystem dimensions

Returns

CTRL-A gate, as a matrix over the same scalar field as A

7.3.3.2 template<typename Derived > dyn_mat<typename Derived::Scalar> qpp::Gates::expandout (const Eigen::MatrixBase< Derived > & A, idx pos, const std::vector< idx > & dims) const [inline]

Expands out.

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position

dims Dimensions of the multi-partite system

Returns

Tensor product $I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.3.3.3 cmat qpp::Gates::Fd(idx D) const [inline]

Fourier transform gate for qudits.

Note

Defined as $F = \sum_{jk} \exp(2\pi i j k/D) |j\rangle\langle k|$

Parameters

D Dimension of the Hilbert space

Returns

Fourier transform gate for qudits

7.3.3.4 template<typename Derived = Eigen::MatrixXcd> Derived qpp::Gates::Id (idx D) const [inline]

Identity gate.

Note

Can change the return type from complex matrix (default) by explicitly specifying the template parameter

Parameters

D	Dimension of the Hilbert space
---	--------------------------------

Returns

Identity gate

7.3.3.5 cmat qpp::Gates::Rn (double theta, std::vector < double > n) const [inline]

Rotation of theta about the 3-dimensional real unit vector n.

Parameters

theta	Rotation angle
n	3-dimensional real unit vector

Returns

Rotation gate

7.3.3.6 cmat qpp::Gates::Xd(idx D) const [inline]

Generalized X gate for qudits.

Note

```
Defined as X = \sum_j |j \oplus 1\rangle\langle j|
```

Parameters

```
D Dimension of the Hilbert space
```

Returns

Generalized X gate for qudits

7.3.3.7 cmat qpp::Gates::Zd(idx D) const [inline]

Generalized Z gate for qudits.

Note

Defined as
$$Z = \sum_{j} \exp(2\pi i j/D) |j\rangle\langle j|$$

Parameters

D Dimension of the Hilbert space

Returns

Generalized Z gate for qudits

7.3.4 Friends And Related Function Documentation

7.3.4.1 friend class internal::Singleton < const Gates > [friend]

7.3.5 Member Data Documentation

7.3.5.1 cmat qpp::Gates::CNOT {cmat::Identity(4, 4)}

Controlled-NOT control target gate.

7.3.5.2 cmat qpp::Gates::CNOTba {cmat::Zero(4, 4)}

Controlled-NOT target control gate.

7.3.5.3 cmat qpp::Gates::CZ {cmat::Identity(4, 4)}

Controlled-Phase gate.

7.3.5.4 cmat qpp::Gates::FRED {cmat::Identity(8, 8)}

Fredkin gate.

```
7.3.5.5 cmat qpp::Gates::H {cmat::Zero(2, 2)}
Hadamard gate.
7.3.5.6 cmat qpp::Gates::ld2 {cmat::ldentity(2, 2)}
Identity gate.
7.3.5.7 cmat qpp::Gates::S {cmat::Zero(2, 2)}
S gate.
7.3.5.8 cmat qpp::Gates::SWAP {cmat::Identity(4, 4)}
SWAP gate.
7.3.5.9 cmat qpp::Gates::T {cmat::Zero(2, 2)}
T gate.
7.3.5.10 cmat qpp::Gates::TOF {cmat::Identity(8, 8)}
Toffoli gate.
7.3.5.11 cmat qpp::Gates::X {cmat::Zero(2, 2)}
Pauli Sigma-X gate.
7.3.5.12 cmat qpp::Gates::Y {cmat::Zero(2, 2)}
Pauli Sigma-Y gate.
7.3.5.13 cmat qpp::Gates::Z {cmat::Zero(2, 2)}
Pauli Sigma-Z gate.
The documentation for this class was generated from the following file:
    · classes/gates.h
```

7.4 qpp::Init Class Reference

const Singleton class that performs additional initializations/cleanups

#include <classes/init.h>

Inheritance diagram for qpp::Init:

Collaboration diagram for qpp::Init:

Public Member Functions

• Init ()

Additional initializations.

Private Member Functions

• ∼Init ()

Cleanups.

Friends

- class internal::Singleton < const Init >

Additional Inherited Members

7.4.1 Detailed Description

const Singleton class that performs additional initializations/cleanups

7.4.2 Constructor & Destructor Documentation

```
7.4.2.1 qpp::Init::Init() [inline]
```

Additional initializations.

```
7.4.2.2 qpp::Init::~Init() [inline], [private]
```

Cleanups.

7.4.3 Friends And Related Function Documentation

```
7.4.3.1 friend class internal::Singleton< const Init > [friend]
```

The documentation for this class was generated from the following file:

· classes/init.h

7.5 qpp::internal::IOManipEigen Class Reference

```
#include <internal/classes/iomanip.h>
```

Public Member Functions

- template<typename Derived >
 IOManipEigen (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
- IOManipEigen (const cplx z, double chop=qpp::chop)

Private Attributes

- cmat _A
- · double _chop

Friends

```
    template<typename charT, typename traits >
    std::basic_ostream< charT,
    traits > & operator<< (std::basic_ostream< charT, traits > &os, const IOManipEigen &rhs)
```

7.5.1 Constructor & Destructor Documentation

- 7.5.1.1 template<typename Derived > qpp::internal::IOManipEigen::IOManipEigen (const Eigen::MatrixBase< Derived > & A, double chop = qpp::chop) [inline], [explicit]
- 7.5.1.2 qpp::internal::IOManipEigen::IOManipEigen (const cplx z, double chop = qpp::chop) [inline], [explicit]

7.5.2 Friends And Related Function Documentation

- 7.5.2.1 template<typename charT, typename traits > std::basic_ostream<charT, traits>& operator<< (
 std::basic_ostream< charT, traits > & os, const IOManipEigen & rhs) [friend]
- 7.5.3 Member Data Documentation
- 7.5.3.1 cmat qpp::internal::IOManipEigen::_A [private]
- **7.5.3.2** double qpp::internal::IOManipEigen::_chop [private]

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.6 qpp::internal::IOManipPointer < PointerType > Class Template Reference

#include <internal/classes/iomanip.h>

Collaboration diagram for qpp::internal::IOManipPointer< PointerType >:

Public Member Functions

- IOManipPointer (const PointerType *p, const idx n, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipPointer (const IOManipPointer &)=default
- IOManipPointer & operator= (const IOManipPointer &)=default

Private Attributes

- const PointerType * _p
- idx _n

- · std::string _separator
- std::string _start
- · std::string end

Friends

```
    template < typename charT , typename traits >
    std::basic_ostream < charT,
    traits > & operator << (std::basic_ostream < charT, traits > &os, const IOManipPointer &rhs)
```

7.6.1 Constructor & Destructor Documentation

- 7.6.1.1 template < typename PointerType > qpp::internal::IOManipPointer < PointerType >::IOManipPointer (const PointerType * p, const idx n, const std::string & separator, const std::string & start = " [", const std::string & end = "] ") [inline], [explicit]
- 7.6.1.2 template<typename PointerType> qpp::internal::IOManipPointer< PointerType>::IOManipPointer(const IOManipPointer<< PointerType> &) [default]
- 7.6.2 Member Function Documentation
- 7.6.2.1 template<typename PointerType> IOManipPointer& qpp::internal::IOManipPointer< PointerType
 >::operator=(const IOManipPointer< PointerType > &) [default]
- 7.6.3 Friends And Related Function Documentation
- 7.6.3.1 template < typename PointerType > template < typename charT , typename traits > std::basic_ostream < charT, traits > & operator << (std::basic_ostream < charT, traits > & os, const IOManipPointer < PointerType > & rhs) [friend]
- 7.6.4 Member Data Documentation
- 7.6.4.1 template<typename PointerType> std::string qpp::internal::IOManipPointer< PointerType>::_end [private]
- 7.6.4.2 template<typename PointerType>idx qpp::internal::IOManipPointer< PointerType>::_n [private]
- 7.6.4.3 template<typename PointerType> const PointerType* qpp::internal::IOManipPointer< PointerType >::_p [private]
- 7.6.4.4 template<typename PointerType> std::string qpp::internal::IOManipPointer< PointerType>::_separator [private]
- 7.6.4.5 template<typename PointerType> std::string qpp::internal::IOManipPointer< PointerType >::_start [private]

The documentation for this class was generated from the following file:

· internal/classes/iomanip.h

7.7 qpp::internal::IOManipRange | InputIterator | Class Template Reference

#include <internal/classes/iomanip.h>

Collaboration diagram for qpp::internal::IOManipRange< InputIterator >:

Public Member Functions

• IOManipRange (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Private Attributes

- · InputIterator_first
- InputIterator _last
- std::string _separator
- std::string _start
- std::string _end

Friends

```
    template<typename charT, typename traits >
    std::basic_ostream< charT,
    traits > & operator<< (std::basic_ostream< charT, traits > &os, const IOManipRange &rhs)
```

7.7.1 Constructor & Destructor Documentation

7.7.2 Friends And Related Function Documentation

7.7.2.1 template < typename InputIterator > template < typename charT , typename traits > std::basic_ostream < charT, traits > & os, const IOManipRange < InputIterator > & rhs) [friend]

7.7.3 Member Data Documentation

- 7.7.3.1 template<typename InputIterator > std::string qpp::internal::IOManipRange< InputIterator >::_end [private]
- 7.7.3.2 template<typename InputIterator > InputIterator qpp::internal::IOManipRange< InputIterator >::_first [private]
- 7.7.3.3 template<typename InputIterator > InputIterator qpp::internal::IOManipRange< InputIterator >::_last [private]
- 7.7.3.4 template<typename InputIterator > std::string qpp::internal::IOManipRange< InputIterator >::_separator [private]
- 7.7.3.5 template<typename InputIterator > std::string qpp::internal::IOManipRange< InputIterator >::_start [private]

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.8 qpp::RandomDevices Class Reference

Singeleton class that manages the source of randomness in the library.

#include <classes/random_devices.h>

Inheritance diagram for qpp::RandomDevices:

Collaboration diagram for qpp::RandomDevices:

Public Attributes

std::mt19937 _rng
 Mersenne twister random number generator.

Private Member Functions

· RandomDevices ()

Initializes and seeds the random number generators.

Private Attributes

std::random_device _rd
 used to seed std::mt19937 _rng

Friends

class internal::Singleton < RandomDevices >

Additional Inherited Members

7.8.1 Detailed Description

Singeleton class that manages the source of randomness in the library.

It consists of a wrapper around an std::mt19937 Mersenne twister random number generator engine and an std⇔ ::random_device engine. The latter is used to seed the Mersenne twister. The class also seeds the standard std::srand C number generator, as it is used by Eigen.

7.8.2 Constructor & Destructor Documentation

7.8.2.1 qpp::RandomDevices::RandomDevices() [inline], [private]

Initializes and seeds the random number generators.

7.8.3 Friends And Related Function Documentation

```
7.8.3.1 friend class internal::Singleton < RandomDevices > [friend]
```

7.8.4 Member Data Documentation

```
7.8.4.1 std::random_device qpp::RandomDevices::_rd [private]
used to seed std::mt19937_rng
```

```
7.8.4.2 std::mt19937 qpp::RandomDevices::_rng
```

Mersenne twister random number generator.

The documentation for this class was generated from the following file:

• classes/random_devices.h

7.9 qpp::internal::Singleton < T > Class Template Reference

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

```
#include <internal/classes/singleton.h>
```

Static Public Member Functions

• static T & get_instance ()

Protected Member Functions

- Singleton ()
- virtual ∼Singleton ()
- Singleton (const Singleton &)=delete
- Singleton & operator= (const Singleton &)=delete

7.9.1 Detailed Description

```
template<typename T>class qpp::internal::Singleton< T>
```

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

To implement a singleton, derive your class from qpp::internal::Singleton, make qpp::internal::Singleton a friend of your class, then declare the constructor of your class as private. To get an instance, use the static member function qpp::internal::Singleton::get_instance(), which returns a reference to your newly created singleton (thread-safe in C++11).

Example:

```
class MySingleton: public qpp::internal::Singleton<MySingleton>{
         friend class qpp::internal::Singleton<MySingleton>;
public:
         // Declare all public members here
private:
         MySingleton()
```

```
{
      // Implement the constructor here
   }
};

MySingleton& mySingleton = MySingleton::get_instance(); // Get an instance
```

See also

Code of qpp::Codes, qpp::Gates, qpp::RandomDevices, qpp::States or qpp.h for real world examples of usage.

- 7.9.2 Constructor & Destructor Documentation
- **7.9.2.1** template<typename T> qpp::internal::Singleton<T>::Singleton() [inline], [protected]
- 7.9.2.2 template<typename T> virtual qpp::internal::Singleton< T>::~Singleton() [inline], [protected], [virtual]
- 7.9.2.3 template<typename T> qpp::internal::Singleton < T >::Singleton (const Singleton < T > &) [protected], [delete]
- 7.9.3 Member Function Documentation
- 7.9.3.1 template < typename T > static T& qpp::internal::Singleton < T >::get_instance() [inline], [static]
- 7.9.3.2 template<typename T> Singleton& qpp::internal::Singleton< T>::operator=(const Singleton< T>&) [protected], [delete]

The documentation for this class was generated from the following file:

· internal/classes/singleton.h

7.10 qpp::States Class Reference

const Singleton class that implements most commonly used states

```
#include <classes/states.h>
```

Inheritance diagram for qpp::States:

Collaboration diagram for qpp::States:

Public Attributes

```
    ket x0 {ket::Zero(2)}
        Pauli Sigma-X 0-eigenstate |+>

    ket x1 {ket::Zero(2)}
        Pauli Sigma-X 1-eigenstate |->
```

ket y0 {ket::Zero(2)}

Pauli Sigma-Y 0-eigenstate | y+>

ket y1 {ket::Zero(2)}

Pauli Sigma-Y 1-eigenstate |y->

ket z0 {ket::Zero(2)}

Pauli Sigma-Z 0-eigenstate | 0>

ket z1 {ket::Zero(2)}

Pauli Sigma-Z 1-eigenstate | 1>

cmat px0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.

• cmat px1 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-X 1-eigenstate $\mid -><-\mid$.

cmat py0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Y 0-eigenstate $|y+\rangle < y+|$.

cmat py1 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Y 1-eigenstate |y->< y-|.

cmat pz0 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.

cmat pz1 {cmat::Zero(2, 2)}

Projector onto the Pauli Sigma-Z 1-eigenstate | 1><1|.

ket b00 {ket::Zero(4)}

Bell-00 state (following the convention in Nielsen and Chuang)

ket b01 {ket::Zero(4)}

Bell-01 state (following the convention in Nielsen and Chuang)

ket b10 {ket::Zero(4)}

Bell-10 state (following the convention in Nielsen and Chuang)

ket b11 {ket::Zero(4)}

Bell-11 state (following the convention in Nielsen and Chuang)

cmat pb00 {cmat::Zero(4, 4)}

Projector onto the Bell-00 state.

• cmat pb01 {cmat::Zero(4, 4)}

Projector onto the Bell-01 state.

cmat pb10 {cmat::Zero(4, 4)}

Projector onto the Bell-10 state.

cmat pb11 {cmat::Zero(4, 4)}

Projector onto the Bell-11 state.

ket GHZ {ket::Zero(8)}

GHZ state.

ket W {ket::Zero(8)}

W state.

cmat pGHZ {cmat::Zero(8, 8)}

Projector onto the GHZ state.

cmat pW {cmat::Zero(8, 8)}

Projector onto the W state.

Private Member Functions

• States ()

Friends

class internal::Singleton < const States >

Additional Inherited Members

7.10.1 Detailed Description

const Singleton class that implements most commonly used states

7.10.2 Constructor & Destructor Documentation

```
7.10.2.1 qpp::States::States( ) [inline],[private]
```

Initialize the states

7.10.3 Friends And Related Function Documentation

 $\textbf{7.10.3.1} \quad \textbf{friend class internal::Singleton} < \textbf{const States} > \quad \texttt{[friend]}$

7.10.4 Member Data Documentation

7.10.4.1 ket qpp::States::b00 {ket::Zero(4)}

Bell-00 state (following the convention in Nielsen and Chuang)

7.10.4.2 ket qpp::States::b01 {ket::Zero(4)}

Bell-01 state (following the convention in Nielsen and Chuang)

```
7.10.4.3 ket qpp::States::b10 {ket::Zero(4)}
Bell-10 state (following the convention in Nielsen and Chuang)
7.10.4.4 ket qpp::States::b11 {ket::Zero(4)}
Bell-11 state (following the convention in Nielsen and Chuang)
7.10.4.5 ket qpp::States::GHZ {ket::Zero(8)}
GHZ state.
7.10.4.6 cmat qpp::States::pb00 {cmat::Zero(4, 4)}
Projector onto the Bell-00 state.
7.10.4.7 cmat qpp::States::pb01 {cmat::Zero(4, 4)}
Projector onto the Bell-01 state.
7.10.4.8 cmat qpp::States::pb10 {cmat::Zero(4, 4)}
Projector onto the Bell-10 state.
7.10.4.9 cmat qpp::States::pb11 {cmat::Zero(4, 4)}
Projector onto the Bell-11 state.
7.10.4.10 cmat qpp::States::pGHZ {cmat::Zero(8, 8)}
Projector onto the GHZ state.
7.10.4.11 cmat qpp::States::pW {cmat::Zero(8, 8)}
Projector onto the W state.
7.10.4.12 cmat qpp::States::px0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.
7.10.4.13 cmat qpp::States::px1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.
7.10.4.14 cmat qpp::States::py0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 0-eigenstate |y+><y+|.
```

```
7.10.4.15 cmat qpp::States::py1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 1-eigenstate |y-><y-|.
7.10.4.16 cmat qpp::States::pz0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.
7.10.4.17 cmat qpp::States::pz1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 1-eigenstate |1><1|.
7.10.4.18 ket qpp::States::W {ket::Zero(8)}
W state.
7.10.4.19 ket qpp::States::x0 {ket::Zero(2)}
Pauli Sigma-X 0-eigenstate |+>
7.10.4.20 ket qpp::States::x1 {ket::Zero(2)}
Pauli Sigma-X 1-eigenstate |->
7.10.4.21 ket qpp::States::y0 {ket::Zero(2)}
Pauli Sigma-Y 0-eigenstate |y+>
7.10.4.22 ket qpp::States::y1 {ket::Zero(2)}
Pauli Sigma-Y 1-eigenstate |y->
7.10.4.23 ket qpp::States::z0 {ket::Zero(2)}
Pauli Sigma-Z 0-eigenstate |0>
7.10.4.24 ket qpp::States::z1 {ket::Zero(2)}
Pauli Sigma-Z 1-eigenstate |1>
The documentation for this class was generated from the following file:

    classes/states.h
```

7.11 qpp::Timer Class Reference

Measures time.

#include <classes/timer.h>

96 Class Documentation

Public Member Functions

• Timer ()

Constructs an instance with the current time as the starting point.

• void tic ()

Resets the chronometer.

• const Timer & toc ()

Stops the chronometer.

• double seconds () const

Time passed in seconds.

Protected Attributes

```
• std::chrono::steady_clock::time_point _start
```

```
• std::chrono::steady_clock::time_point _end
```

Friends

```
    template<typename charT, typename traits >
    std::basic_ostream< charT,
    traits > & operator<< (std::basic_ostream< charT, traits > &os, const Timer &rhs)
    Overload for std::ostream operators.
```

7.11.1 Detailed Description

Measures time.

Uses a std::chrono::steady_clock. It is not affected by wall clock changes during runtime.

7.11.2 Constructor & Destructor Documentation

```
7.11.2.1 qpp::Timer::Timer() [inline]
```

Constructs an instance with the current time as the starting point.

7.11.3 Member Function Documentation

```
7.11.3.1 double qpp::Timer::seconds ( ) const [inline]
```

Time passed in seconds.

Returns

Number of seconds that passed between the instantiation/reset and invocation of qpp::Timer::toc()

```
7.11.3.2 void qpp::Timer::tic() [inline]
```

Resets the chronometer.

Resets the starting/ending point to the current time

7.11.3.3 const Timer& qpp::Timer::toc() [inline]

Stops the chronometer.

Set the current time as the ending point

Returns

Current instance

7.11.4 Friends And Related Function Documentation

```
7.11.4.1 template<typename charT , typename traits > std::basic_ostream<charT, traits>& operator<<< (std::basic_ostream< charT, traits>& os, const Timer & rhs) [friend]
```

Overload for std::ostream operators.

Parameters

OS	Output stream
rhs	Timer instance

Returns

Writes to the output stream the number of seconds that passed between the instantiation/reset and invocation of qpp::Timer::toc().

7.11.5 Member Data Documentation

```
7.11.5.1 std::chrono::steady_clock::time_point qpp::Timer::_end [protected]
```

7.11.5.2 std::chrono::steady_clock::time_point qpp::Timer::_start [protected]

The documentation for this class was generated from the following file:

· classes/timer.h

98 **Class Documentation**

Chapter 8

File Documentation

8.1 classes/codes.h File Reference

Quantum error correcting codes.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Codes

const Singleton class that defines quantum error correcting codes

Namespaces

• qpp

Quantum++'s main namespace.

8.1.1 Detailed Description

Quantum error correcting codes.

8.2 classes/exception.h File Reference

Exceptions.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Exception

Generates custom exceptions, used when validating function parameters.

Namespaces

• qpp

Quantum++'s main namespace.

8.2.1 Detailed Description

Exceptions.

8.3 classes/gates.h File Reference

Quantum gates.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Gates

const Singleton class that implements most commonly used gates

Namespaces

qpp

Quantum++'s main namespace.

8.3.1 Detailed Description

Quantum gates.

8.4 classes/init.h File Reference

Initialization.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Init

const Singleton class that performs additional initializations/cleanups

Namespaces

• qpp

Quantum++'s main namespace.

8.4.1 Detailed Description

Initialization.

8.5 classes/random_devices.h File Reference

Random devices.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Singeleton class that manages the source of randomness in the library.

Namespaces

• qpp

Quantum++'s main namespace.

8.5.1 Detailed Description

Random devices.

8.6 classes/states.h File Reference

Quantum states.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::States

const Singleton class that implements most commonly used states

Namespaces

qpp

Quantum++'s main namespace.

8.6.1 Detailed Description

Quantum states.

8.7 classes/timer.h File Reference

Timing.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Timer

Measures time.

Namespaces

• qpp

Quantum++'s main namespace.

8.7.1 Detailed Description

Timing.

8.8 constants.h File Reference

Constants.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Functions

• constexpr cplx qpp::operator""_i (unsigned long long int x)

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

• constexpr cplx qpp::operator""_i (long double x)

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

• cplx qpp::omega (idx D)

D-th root of unity.

Variables

• constexpr double qpp::chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr double qpp::eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

• constexpr idx qpp::maxn = 64

Maximum number of qubits.

• constexpr double qpp::pi = 3.141592653589793238462643383279502884

π

constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

• constexpr idx qpp::infty = -1

Used to denote infinity.

8.8.1 Detailed Description

Constants.

8.9 entanglement.h File Reference

Entanglement functions.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++'s main namespace.

Functions

template<typename Derived >
 dyn_col_vect< cplx > qpp::schmidtcoeff (const Eigen::MatrixBase< Derived > &A, const std::vector< idx >
 &dims)

Schmidt coefficients of the bi-partite pure state A.

• template<typename Derived >

cmat qpp::schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Schmidt basis on Alice's side.

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

cmat qpp::schmidtB (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Schmidt basis on Bob's side.

• template<typename Derived >

dyn_col_vect< double > qpp::schmidtprob (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Schmidt probabilities of the bi-partite pure state A.

 $\bullet \ \ \text{template}{<} \text{typename Derived}>$

double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Entanglement of the bi-partite pure state A.

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

double qpp::gconcurrence (const Eigen::MatrixBase Derived > &A)

G-concurrence of the bi-partite pure state A.

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

double qpp::negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Negativity of the bi-partite mixed state A.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

double qpp::lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Logarithmic negativity of the bi-partite mixed state A.

template<typename Derived >
 double qpp::concurrence (const Eigen::MatrixBase< Derived > &A)
 Wootters concurrence of the bi-partite qubit mixed state A.

8.9.1 Detailed Description

Entanglement functions.

8.10 entropies.h File Reference

Entropy functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Functions

 template < typename Derived > double qpp::entropy (const Eigen::MatrixBase < Derived > &A)

Shannon/von-Neumann entropy of the probability distribution/density matrix A.

 $\bullet \ \ \text{template}{<} \text{typename Derived}>$

double qpp::renyi (const Eigen::MatrixBase< Derived > &A, double alpha)

Renyi- α entropy of the probability distribution/density matrix A, for $\alpha \geq 0$.

• template<typename Derived >

double qpp::tsallis (const Eigen::MatrixBase< Derived > &A, double alpha)

Tsallis- α entropy of the probability distribution/density matrix A, for $\alpha > 0$.

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, const std::vector< idx > &dims)

Quantum mutual information between 2 subsystems of a composite system.

• template<typename Derived >

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, idx d=2)

Quantum mutual information between 2 subsystems of a composite system.

8.10.1 Detailed Description

Entropy functions.

8.11 experimental/test.h File Reference

Experimental/test functions/classes.

Namespaces

• qpp

Quantum++'s main namespace.

qpp::experimental

Experimental/test functions/classes, do not use or modify.

8.11.1 Detailed Description

Experimental/test functions/classes.

8.12 functions.h File Reference

Generic quantum computing functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Functions

 template<typename Derived >
 dyn_mat< typename Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
 Transpose.

```
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
      Adjoint.
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
      Inverse.

    template<typename Derived >

  Derived::Scalar qpp::trace (const Eigen::MatrixBase< Derived > &A)
      Trace.

    template<typename Derived >

  Derived::Scalar <a href="mailto:qpp::det">qpp::det</a> (const Eigen::MatrixBase</a> Derived > &A)
      Determinant.
template<typename Derived >
  Derived::Scalar <a href="mailto:qpp::logdet">qpp::logdet</a> (const Eigen::MatrixBase</a> Derived > &A)
      Logarithm of the determinant.
• template<typename Derived >
  Derived::Scalar <a href="mailto:qpp::sum">qpp::sum</a> (const Eigen::MatrixBase< Derived > &A)
     Element-wise sum of A.

    template<typename Derived >

  Derived::Scalar qpp::prod (const Eigen::MatrixBase< Derived > &A)
      Element-wise product of A.
• template<typename Derived >
  double <a href="mailto:qpp::norm">qpp::norm</a> (const Eigen::MatrixBase</a> Derived > &A)
      Frobenius norm.

    template<typename Derived >

  std::pair< dyn_col_vect< cplx >
  , cmat > qpp::eig (const Eigen::MatrixBase< Derived > &A)
      Full eigen decomposition.

    template<typename Derived >

  dyn_col_vect< cplx > qpp::evals (const Eigen::MatrixBase< Derived > &A)
      Eigenvalues.

    template<typename Derived >

  cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
      Eigenvectors.

    template<typename Derived >

  std::pair< dyn col vect
  < double >, cmat > qpp::heig (const Eigen::MatrixBase< Derived > &A)
      Full eigen decomposition of Hermitian expression.
\bullet \ \ \text{template}{<} \text{typename Derived} >
  dyn_col_vect< double > qpp::hevals (const Eigen::MatrixBase< Derived > &A)
      Hermitian eigenvalues.

    template<typename Derived >

  cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvectors.
• template<typename Derived >
  std::tuple < cmat, dyn_mat
  < double >, cmat > qpp::svd (const Eigen::MatrixBase< Derived > &A)
      Full singular value decomposition.

    template<typename Derived >

  dyn_col_vect< double > qpp::svals (const Eigen::MatrixBase< Derived > &A)
```

```
Singular values.
• template<typename Derived >
  cmat qpp::svdU (const Eigen::MatrixBase< Derived > &A)
     Left singular vectors.

    template<typename Derived >

  cmat qpp::svdV (const Eigen::MatrixBase< Derived > &A)
      Right singular vectors.
• template<typename Derived >
  cmat <a href="mailto:qpp::funm">qpp::funm</a> (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
      Functional calculus f(A)

    template<typename Derived >

  cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.

    template<typename Derived >

  cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolut value.
• template<typename Derived >
  cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
      Matrix exponential.

    template<typename Derived >

  cmat qpp::logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat <a href="mailto:qpp::sinm">qpp::sinm</a> (const Eigen::MatrixBase</a> Derived > &A)
• template<typename Derived >
  cmat qpp::cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.

    template<typename Derived >

  cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
      Matrix power.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase< Derived > &A, idx n)
      Matrix power.
• template<typename Derived >
  double <a href="mailto:qpp::schatten">qpp::schatten</a> (const Eigen::MatrixBase</a> Derived > &A, idx p)
• template<typename OutputScalar , typename Derived >
  dyn_mat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const
  typename Derived::Scalar &))
     Functor.
template<typename T >
  dyn_mat< typename T::Scalar > qpp::kron (const T &head)
      Kronecker product.
• template<typename T , typename... Args>
  dyn_mat< typename T::Scalar > qpp::kron (const T &head, const Args &...tail)
     Kronecker product.
template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::kron (const std::vector< Derived > &As)
      Kronecker product.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::kron (const std::initializer list< Derived > &As)
     Kronecker product.
```

```
    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, idx n)
     Kronecker power.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::reshape (const Eigen::MatrixBase< Derived > &A, idx rows,
  idx cols)
     Reshape.
• template<typename Derived1 , typename Derived2 >
  dyn mat< typename
  Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase< De-
  rived2 > &B)
      Commutator.

    template<typename Derived1 , typename Derived2 >

  dyn mat< typename
  Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::MatrixBase<
  Derived2 > &B)
     Anti-commutator.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::prj (const Eigen::MatrixBase< Derived > &V)
     Projector.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::grams (const std::vector< Derived > &Vs)
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::grams (const std::initializer_list< Derived > &Vs)
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase< Derived > &A)
      Gram-Schmidt orthogonalization.
• std::vector< idx > qpp::n2multiidx (idx n, const std::vector< idx > &dims)
     Non-negative integer index to multi-index.

    idx qpp::multiidx2n (const std::vector< idx > &midx, const std::vector< idx > &dims)

     Multi-index to non-negative integer index.

    ket qpp::mket (const std::vector< idx > &mask, const std::vector< idx > &dims)

     Multi-partite qudit ket.

    ket qpp::mket (const std::vector< idx > &mask, idx d=2)

     Multi-partite qudit ket.
• cmat qpp::mprj (const std::vector< idx > &mask, const std::vector< idx > &dims)
     Projector onto multi-partite qudit ket.

    cmat qpp::mprj (const std::vector< idx > &mask, idx d=2)

     Projector onto multi-partite qudit ket.
• template<typename InputIterator >
  std::vector< double > qpp::abssq (InputIterator first, InputIterator last)
      Computes the absolut values squared of a range of complex numbers.

    template<typename Derived >

  std::vector< double > qpp::abssq (const Eigen::MatrixBase< Derived > &V)
      Computes the absolut values squared of a column vector.

    template<typename InputIterator >

  InputIterator::value_type qpp::sum (InputIterator first, InputIterator last)
     Element-wise sum of a range.

    template<typename InputIterator >

  InputIterator::value type <a href="mailto:qpp::prod">qpp::prod</a> (InputIterator first, InputIterator last)
```

Element-wise product of a range.

template<typename Derived >
 dyn_col_vect< typename
 Derived::Scalar > qpp::rho2pure (const Eigen::MatrixBase< Derived > &A)

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

8.12.1 Detailed Description

Generic quantum computing functions.

8.13 input_output.h File Reference

Input/output functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Functions

template < typename Derived >
 internal::IOManipEigen qpp::disp (const Eigen::MatrixBase < Derived > &A, double chop=qpp::chop)
 Eigen expression ostream manipulator.

• internal::IOManipEigen qpp::disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

 $\bullet \ \ \text{template}{<} \text{typename InputIterator} >$

internal::IOManipRange

< InputIterator > qpp::disp (const InputIterator &first, const InputIterator &last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

• template<typename Container >

internal::IOManipRange

< typename

 $\label{lem:const_iterator} Container::const_iterator > \frac{disp}{disp} \ (const \ Container \ \&c, \ const \ std::string \ \&separator, \ const \ std::string \ \ const \ std::s$

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

template<typename PointerType >
 internal::IOManipPointer
 PointerType > qpp::disp (const PointerType *p, idx n, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

template<typename Derived >

void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

8.13.1 Detailed Description

Input/output functions.

8.14 instruments.h File Reference

Measurement functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Functions

template<typename Derived >
 std::tuple < idx, std::vector
 < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const std
 ::vector < cmat > &Ks, const std::vector < idx > &subsys, const std::vector < idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple< idx, std::vector
 < double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std
 ::initializer_list< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple< idx, std::vector
 < double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std
 ::vector< cmat > &Ks, const std::vector< idx > &subsys, const idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple < idx, std::vector
 < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const std
 ::initializer list < cmat > &Ks, const std::vector < idx > &subsys, const idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple < idx, std::vector
 < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const cmat &U, const std::vector < idx > &subsys, const std::vector < idx > &dims)

Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

template<typename Derived >
 std::tuple < idx, std::vector
 < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const cmat &U, const std::vector < idx > &subsys, const idx d=2)

Measures the part subsys of the multi-partite state A in the orthonormal basis specified by the unitary matrix U.

template<typename Derived >
 std::tuple < idx, std::vector
 < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const std
 ::vector < cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple< idx, std::vector
 < double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std
 ::initializer_list< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple < idx, std::vector
 < double >, std::vector < cmat > > qpp::measure (const Eigen::MatrixBase < Derived > &A, const cmat &U)

Measures the state A in the orthonormal basis specified by the unitary matrix U.

8.14.1 Detailed Description

Measurement functions.

8.15 internal/classes/iomanip.h File Reference

Input/output manipulators.

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::internal::IOManipRange< InputIterator >
- class qpp::internal::IOManipPointer< PointerType >
- class qpp::internal::IOManipEigen

Namespaces

• qpp

Quantum++'s main namespace.

• qpp::internal

Internal utility functions, do not use/modify.

8.15.1 Detailed Description

Input/output manipulators.

8.16 internal/classes/singleton.h File Reference

Singleton pattern via CRTP.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::internal::Singleton< T >

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Namespaces

• qpp

Quantum++'s main namespace.

· qpp::internal

Internal utility functions, do not use/modify.

8.16.1 Detailed Description

Singleton pattern via CRTP.

8.17 internal/util.h File Reference

Internal utility functions.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++'s main namespace.

• qpp::internal

Internal utility functions, do not use/modify.

Functions

- void qpp::internal::_n2multiidx (idx n, idx numdims, const idx *dims, idx *result)
- idx qpp::internal::_multiidx2n (const idx *midx, idx numdims, const idx *dims)
- template<typename Derived >
 bool qpp::internal::_check_square_mat (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::_check_vector (const Eigen::MatrixBase< Derived > &A)

```
• template<typename Derived >
  bool <a href="mailto:check_row_vector">pp::internal::_check_row_vector</a> (const Eigen::MatrixBase</a> Derived > &A)
• template<typename Derived >
  bool qpp::internal::_check_col_vector (const Eigen::MatrixBase< Derived > &A)
• template<typename T >
  bool qpp::internal:: check nonzero size (const T &x)

    bool qpp::internal::_check_dims (const std::vector< idx > &dims)

    template<typename Derived >

  bool qpp::internal::_check_dims_match_mat (const std::vector< idx > &dims, const Eigen::MatrixBase< De-
  rived > &A)
• template<typename Derived >
  bool qpp::internal:: check dims match cvect (const std::vector< idx > &dims, const Eigen::MatrixBase<
  Derived > &V)
• template<typename Derived >
  bool qpp::internal::_check_dims_match_rvect (const std::vector< idx > &dims, const Eigen::MatrixBase<
  Derived > \&V)

    bool qpp::internal::_check_eq_dims (const std::vector< idx > &dims, idx dim)

    bool qpp::internal::_check_subsys_match_dims (const std::vector < idx > &subsys, const std::vector < idx >

  &dims)

    bool qpp::internal::_check_perm (const std::vector< idx > &perm)

• template<typename Derived1 , typename Derived2 >
  dyn mat< typename
  Derived1::Scalar > qpp::internal::_kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::Matrix←
  Base < Derived2 > &B)
\bullet \ \ template{<} typename \ T>
  void qpp::internal::variadic_vector_emplace (std::vector< T > &)
• template<typename T , typename First , typename... Args>
  void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&...args)
```

8.17.1 Detailed Description

Internal utility functions.

8.18 MATLAB/matlab.h File Reference

Input/output interfacing with MATLAB.

```
#include "mat.h"
#include "mex.h"
```

Namespaces

• qpp

Quantum++'s main namespace.

Functions

template < typename Derived >
 Derived qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)
 Loads an Eigen dynamic matrix from a MATLAB .mat file, generic version.

template<>
 dmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for double matrices (qpp::dmat)

template<>

cmat qpp::loadMATLABmatrix (const std::string &mat_file, const std::string &var_name)

Loads an Eigen dynamic matrix from a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

• template<typename Derived >

void qpp::saveMATLABmatrix (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, generic version.

template<>

void qpp::saveMATLABmatrix (const Eigen::MatrixBase< dmat > &A, const std::string &mat_file, const std ::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for double matrices (qpp::dmat)

template<>

void qpp::saveMATLABmatrix (const Eigen::MatrixBase< cmat > &A, const std::string &mat_file, const std
::string &var_name, const std::string &mode)

Saves an Eigen dynamic matrix to a MATLAB .mat file, specialization for complex matrices (qpp::cmat)

8.18.1 Detailed Description

Input/output interfacing with MATLAB.

8.19 number_theory.h File Reference

Number theory functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Functions

- std::vector < long long int > qpp::x2contfrac (double x, idx n, idx cut=1e5)
 Simple continued fraction expansion.
- double qpp::contfrac2x (const std::vector< int > &cf, idx n)

Real representation of a simple continued fraction.

double qpp::contfrac2x (const std::vector< int > &cf)

Real representation of a simple continued fraction.

• idx qpp::gcd (idx m, idx n)

Greatest common divisor of two non-negative integers.

idx qpp::gcd (const std::vector< idx > &ns)

Greatest common divisor of a list of non-negative integers.

• idx qpp::lcm (idx m, idx n)

Least common multiple of two positive integers.

idx qpp::lcm (const std::vector< idx > &ns)

Least common multiple of a list of positive integers.

- std::vector< idx > qpp::invperm (const std::vector< idx > &perm)
 Inverse permutation.
- std::vector< idx > qpp::compperm (const std::vector< idx > &perm, const std::vector< idx > &sigma)
 Compose permutations.

8.19.1 Detailed Description

Number theory functions.

8.20 operations.h File Reference

Quantum operation functions.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++'s main namespace.

Functions

template<typename Derived1, typename Derived2 >
 dyn_mat< typename
 Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const Eigen::Matrix
 Base< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename

 $\label{lem:def:def:def:def:Derived1::Scalar > qpp::applyCTRL} (const \ Eigen::MatrixBase < Derived1 > \&state, \ const \ Eigen::MatrixBase < Derived2 > \&A, \ const \ std::vector < idx > \&ctrl, \ const \ std::vector < idx > \&subsys, \ idx \ d=2)$

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename

Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename

Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, idx d=2)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks)

Applies the channel specified by the set of Kraus operators Ks to the density matrix rho.

template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std ::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho.

template<typename Derived >

cmat qpp::apply (const Eigen::MatrixBase< Derived > &rho, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, idx d=2)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix rho.

cmat qpp::super (const std::vector< cmat > &Ks)

Superoperator matrix representation.

cmat qpp::choi (const std::vector< cmat > &Ks)

Choi matrix representation.

std::vector< cmat > qpp::choi2kraus (const cmat &A)

Extracts orthogonal Kraus operators from Choi matrix.

 $\bullet \ \ \text{template}{<} \text{typename Derived} >$

dyn_mat< typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, const std← ::vector< idx > &dims)

Partial trace.

• template<typename Derived >

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std
::vector< idx > &subsys, const std::vector< idx > &dims)

Partial trace.

• template<typename Derived >

Partial trace.

template<typename Derived >

 $dyn_mat < typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase < Derived > &A, const std::vector < idx > &subsys, const std::vector < idx > &dims)$

8.21 qpp.h File Reference

Quantum++'s main header file, includes all other necessary headers.

```
#include <algorithm>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <exception>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <numeric>
#include <ostream>
#include <random>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "types.h"
#include "constants.h"
#include "classes/exception.h"
#include "internal/util.h"
#include "internal/classes/iomanip.h"
#include "input_output.h"
#include "internal/classes/singleton.h"
#include "classes/init.h"
#include "functions.h"
#include "classes/codes.h"
#include "classes/gates.h"
#include "classes/states.h"
#include "classes/random_devices.h"
#include "operations.h"
#include "entropies.h"
#include "entanglement.h"
#include "random.h"
#include "classes/timer.h"
#include "instruments.h"
#include "number_theory.h"
```

Namespaces

qpp

Quantum++'s main namespace.

Variables

const Init & qpp::init = Init::get_instance()

```
qpp::Init const Singleton
```

const Codes & qpp::codes = Codes::get_instance()

qpp::Codes const Singleton

const Gates & qpp::gt = Gates::get_instance()

qpp::Gates const Singleton

const States & qpp::st = States::get_instance()

qpp::States const Singleton

RandomDevices & qpp::rdevs = RandomDevices::get_instance()

qpp::RandomDevices Singleton

8.21.1 Detailed Description

Quantum++'s main header file, includes all other necessary headers.

8.22 random.h File Reference

Randomness-related functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Functions

• template<typename Derived >

Derived qpp::rand (idx rows, idx cols, double a=0, double b=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

• template<>

dmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

• double qpp::rand (double a=0, double b=1)

Generates a random real number uniformly distributed in the interval [a, b)

idx qpp::randidx (idx a=std::numeric_limits < idx >::min(), idx b=std::numeric_limits < idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived qpp::randn (idx rows, idx cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<>

dmat gpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

double qpp::randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat qpp::randU (idx D)

Generates a random unitary matrix.

• cmat qpp::randV (idx Din, idx Dout)

Generates a random isometry matrix.

std::vector< cmat > qpp::randkraus (idx N, idx D)

Generates a set of random Kraus operators.

cmat qpp::randH (idx D)

Generates a random Hermitian matrix.

ket qpp::randket (idx D)

Generates a random normalized ket (pure state vector)

• cmat qpp::randrho (idx D)

Generates a random density matrix.

std::vector< idx > qpp::randperm (idx n)

Generates a random uniformly distributed permutation.

8.22.1 Detailed Description

Randomness-related functions.

8.23 types.h File Reference

Type aliases.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++'s main namespace.

Typedefs

```
using qpp::cplx = std::complex < double >
```

Complex number in double precision.

```
template<typename Scalar >
```

```
using <a href="mailto:qpp::dyn_mat">qpp::dyn_mat</a> = Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic >
```

Dynamic Eigen matrix over the field specified by Scalar.

• template<typename Scalar >

```
using qpp::dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
```

Dynamic Eigen column vector over the field specified by Scalar.

 $\bullet \ \ \text{template}{<} \text{typename Scalar} >$

```
using qpp::dyn_row_vect = Eigen::Matrix< Scalar, 1, Eigen::Dynamic >
```

Dynamic Eigen row vector over the field specified by Scalar.

using qpp::ket = dyn_col_vect< cplx >

Complex (double precision) dynamic Eigen column vector.

using qpp::bra = dyn_row_vect< cplx >

Complex (double precision) dynamic Eigen row vector.

• using qpp::cmat = dyn_mat < cplx >

Complex (double precision) dynamic Eigen matrix.

using qpp::dmat = dyn_mat< double >

Real (double precision) dynamic Eigen matrix.

• using qpp::idx = std::size_t

Non-negative integer index.

8.23.1 Detailed Description

Type aliases.

8.24 /Users/vlad/Dropbox/programming/cpp/qpp_clion/README.md File Reference

Index

absm	qpp::Exception, 75
qpp, <mark>24</mark>	DIMS_MISMATCH_VECTOR
abssq	qpp::Exception, 75
qpp, 24	DIMS_NOT_EQUAL
adjoint	qpp::Exception, 75
qpp, 24	det
anticomm	qpp, 31
qpp, 26	disp
apply	qpp, 31, 32
qpp, 26, 27	dmat
	qpp, 23
bra	
qpp, 23	ee
	qpp, <mark>67</mark>
CUSTOM_EXCEPTION	eig
qpp::Exception, 76	qpp, 34
choi	entanglement
qpp, 28	qpp, 34
choi2kraus	entropy
qpp, 29	qpp, 34
chop	eps
qpp, 67	qpp, 67
cmat	evals
qpp, 23	qpp, <mark>35</mark>
codes	evects
qpp, 67	qpp, 35
comm	expm
qpp, 29	qpp, 35
compperm	41-1-7
qpp, 29	FIVE_QUBIT
concurrence	qpp::Codes, 72
	funm
qpp, 30 conjugate	qpp, <mark>35</mark>
qpp, 30 contfrac2x	gcd
	qpp, 35, 37
qpp, 30	gconcurrence
cosm	qpp, <mark>37</mark>
qpp, 31	grams
cplx	qpp, 37, 39
qpp, 23	gt
cwise	qpp, 67
qpp, 31	
DIMO INIVALID	heig
DIMS_INVALID	qpp, 39
qpp::Exception, 75	hevals
DIMS_MISMATCH_CVECTOR	qpp, 39
qpp::Exception, 75	hevects
DIMS_MISMATCH_MATRIX	qpp, 39
qpp::Exception, 75	
DIMS_MISMATCH_RVECTOR	idx

126 INDEX

qpp, 24 infty	NO_CODEWORD app::Exception, 75
qpp, 67	NOT_BIPARTITE qpp::Exception, 75
qpp, 67	NOT_QUBIT_GATE
inverse	qpp::Exception, 75 NOT QUBIT SUBSYS
qpp, 40 invperm	qpp::Exception, 75
qpp, 40	negativity
la	qpp, 50
ket qpp, 24	norm qpp, 50
kron	чрр, эо
qpp, 40, 41	OUT_OF_RANGE
kronpow	qpp::Exception, 76
qpp, 41	omega qpp, 50
lcm	
qpp, 41, 42	PERM_INVALID
load qpp, 42	qpp::Exception, 76
logdet	qpp, 67
qpp, 43	powm
logm	qpp, 51
qpp, 43 lognegativity	prj qpp, 51
qpp, 44	prod
	qpp, 51
MATRIX_MISMATCH_SUBSYS	ptrace
qpp::Exception, 75 MATRIX NOT CVECTOR	qpp, 52 ptrace1
qpp::Exception, 75	qpp, 52
MATRIX_NOT_RVECTOR	ptrace2
qpp::Exception, 75	qpp, 53
MATRIX_NOT_SQUARE qpp::Exception, 75	ptranspose qpp, 53
MATRIX_NOT_SQUARE_OR_CVECTOR	чрр, оо
qpp::Exception, 75	qmutualinfo
MATRIX_NOT_SQUARE_OR_RVECTOR	qpp, 53, 55
qpp::Exception, 75 MATRIX NOT SQUARE OR VECTOR	qpp, 13 absm, 24
qpp::Exception, 75	abssq, 24
MATRIX_NOT_VECTOR	adjoint, 24
qpp::Exception, 75	anticomm, 26
maxn qpp, 67	apply, 26, 27 bra, 23
measure	choi, 28
qpp, 44–46, 48	choi2kraus, 29
mket	chop, 67
qpp, 48	cmat, 23 codes, 67
mprj qpp, 48, 49	comm, 29
multiidx2n	compperm, 29
qpp, 49	concurrence, 30
n2multiidx	conjugate, 30 contfrac2x, 30
qpp, 49	cosm, 31
NINE_QUBIT_SHOR	cplx, 23
qpp::Codes, 72	cwise, 31

INDEX 127

det, 31	renyi, 59
disp, 31, 32	reshape, 60
dmat, 23	rho2pure, 60
ee, 67	save, 60
eig, 34	schatten, 61
entanglement, 34	schmidtcoeff, 62
entropy, 34	schmidtprob, 62
eps, 67	sinm, 63
evals, 35	spectralpowm, 63
evects, 35	sqrtm, 63
expm, 35	st, 68
funm, 35	sum, 63, 64
gcd, 35, 37	super, 64
gconcurrence, 37	svals, 64 svd, 64
grams, 37, 39	syspermute, 65
gt, 67	trace, 66
heig, 39	transpose, 66
hevals, 39	tsallis, 66
hevects, 39	x2contfrac, 66
idx, 24	qpp::Codes
infty, 67	FIVE_QUBIT, 72
init, 67	NINE_QUBIT_SHOR, 72
inverse, 40	SEVEN_QUBIT_STEANE, 72
invperm, 40	qpp::Exception
ket, 24	CUSTOM_EXCEPTION, 76
kron, 40, 41	DIMS_INVALID, 75
kronpow, 41 lcm, 41, 42	DIMS_MISMATCH_CVECTOR, 75
load, 42	DIMS_MISMATCH_MATRIX, 75
logdet, 43	DIMS_MISMATCH_RVECTOR, 75
logm, 43	DIMS_MISMATCH_VECTOR, 75
lognegativity, 44	DIMS_NOT_EQUAL, 75
maxn, 67	MATRIX_MISMATCH_SUBSYS, 75
measure, 44–46, 48	MATRIX_NOT_CVECTOR, 75
mket, 48	MATRIX_NOT_RVECTOR, 75
mprj, 48, 49	MATRIX_NOT_SQUARE, 75
multiidx2n, 49	MATRIX_NOT_SQUARE_OR_CVECTOR, 75
n2multiidx, 49	MATRIX_NOT_SQUARE_OR_RVECTOR, 75
negativity, 50	MATRIX_NOT_SQUARE_OR_VECTOR, 75
norm, 50	MATRIX_NOT_VECTOR, 75
omega, 50	NO_CODEWORD, 75
pi, 67	NOT_BIPARTITE, 75 NOT_QUBIT_GATE, 75
powm, 51	NOT_QUBIT_GATE, 75
prj, 51	OUT OF RANGE, 76
prod, 51	PERM INVALID, 76
ptrace, 52	SUBSYS MISMATCH DIMS, 75
ptrace1, 52	TYPE MISMATCH, 76
ptrace2, 53	UNDEFINED TYPE, 76
ptranspose, 53	UNKNOWN_EXCEPTION, 75
qmutualinfo, 53, 55	ZERO_SIZE, 75
rand, 55, 56	
randidx, 56	rand
randket, 57	qpp, 55, 56
randkraus, 57	randidx
randn, 57, 58	qpp, 56
randperm, 58	randket
randrho, 59	qpp, 57
rdevs, 68	randkraus

128 INDEX

```
qpp, 57
                                                             qpp::Exception, 75
randn
                                                        x2contfrac
    qpp, 57, 58
                                                             qpp, 66
randperm
    qpp, 58
                                                        ZERO_SIZE
randrho
                                                             qpp::Exception, 75
    qpp, <mark>59</mark>
rdevs
    qpp, 68
renyi
    qpp, <mark>59</mark>
reshape
    qpp, 60
rho2pure
    qpp, 60
SEVEN_QUBIT_STEANE
    qpp::Codes, 72
SUBSYS MISMATCH DIMS
    qpp::Exception, 75
save
    qpp, 60
schatten
    qpp, 61
schmidtcoeff
    qpp, 62
schmidtprob
    qpp, 62
sinm
    qpp, 63
spectralpowm
    qpp, 63
sqrtm
    qpp, <mark>63</mark>
st
     qpp, 68
sum
    qpp, 63, 64
super
    qpp, 64
svals
     qpp, 64
svd
    qpp, 64
syspermute
    qpp, 65
TYPE_MISMATCH
    qpp::Exception, 76
trace
    qpp, 66
transpose
     qpp, 66
tsallis
    qpp, 66
UNDEFINED_TYPE
     qpp::Exception, 76
```

UNKNOWN_EXCEPTION