Bevezetés a számításelméletbe

12. előadás

NP-köztes jelöltek

• Gráfizomorfizmus = $\{\langle G_1, G_2 \rangle | G_1 \text{ \'es } G_2 \text{ ir\'any\'itatlan izomorf gr\'afok} \}.$

Példa:

izomorfak

Egy új eredmény: Babai László, magyar matematikus 2017-es eredménye: GRÁFIZOMORFIZMUS E QP, ahol

$$QP = \bigcup_{c \in \mathbb{N}} TIME(2^{(\log n)^c})$$

- a "kvázipolinom időben" megoldható problémák osztálya.
- Prímfaktorizáció: adjuk meg egy egész szám prímtényezős felbontását! [számítási feladat]

A probléma eldöntési változata:

Prímfaktorizáció =

 $\{\langle n, k \rangle \mid n$ -nek van k-nál kisebb prímtényezője $\}$

NP lehetséges szerkezete

Definíció

L NP-köztes, ha L ∈ NP, L \notin P és L nem NP-teljes.

Ladner tétele

Ha P ≠ NP, akkor létezik NP-köztes nyelv.

(biz. nélkül)

Mivel nem tudjuk, hogy P $\stackrel{?}{=}$ NP, ezért nem tudjuk, hogy léteznek-e NP-köztes nyelvek. Valószínűleg igen, hiszen azt gondoljuk, hogy P \neq NP.

Vannak azonban olyan nyelvek, amelyeknek se a P-beliségét, se az NP-teljességét nem sikerült eddig igazolni, így erős NP-köztes jelölteknek számítanak.

coC bonyolutsági osztályok

Definíció

Ha \mathcal{C} egy bonyolultsági osztály $\operatorname{co}\mathcal{C} := \{L \mid \overline{L} \in \mathcal{C}\}.$

Definíció

 \mathcal{C} zárt a polinomidejű visszavezetésre nézve, ha minden esetben ha $L_2 \in \mathcal{C}$ és $L_1 \leqslant_{\mathcal{P}} L_2$ teljesül következik, hogy $L_1 \in \mathcal{C}$.

Volt: P és NP zártak a polinomidejű visszavezetésre nézve.

Tétel

Ha $\mathcal C$ zárt a polinomidejű visszavezetésre nézve, akkor co $\mathcal C$ is.

Bizonyítás: Legyen $L_2 \in \operatorname{co}\mathcal{C}$ és L_1 tetszőleges nyelvek, melyekre $L_1 \leqslant_{p} L_2$. Utóbbiból következik, hogy $\overline{L}_1 \leqslant_{p} \overline{L}_2$ (ugyananaz a visszavezetés jó!). Mivel $\overline{L}_2 \in \mathcal{C}$, ezért a tétel feltétele miatt $\overline{L}_1 \in \mathcal{C}$. Azaz $L_1 \in \operatorname{co}\mathcal{C}$.

coC bonyolutsági osztályok

Következmény

coNP zárt a polinom idejű visszavezetésre nézve.

Igaz-e, hogy P = coP? Igen. (L-et polinom időben eldöntő TG q_i és q_n állapotát megcseréljük: \overline{L} -t polinom időben eldöntő TG.) Igaz-e, hogy NP = coNP? A fenti konstrukció NTG-re nem feltétlen \overline{L} -t dönti el. Valójában azt sejtjük, hogy NP \neq coNP.

Tétel

L C-teljes $\iff \overline{L} \operatorname{co}C$ -teljes.

Bizonyítás:

- ▶ Ha $L \in \mathcal{C}$, akkor $\overline{L} \in co\mathcal{C}$.
- ▶ Legyen $L' \in \mathcal{C}$, melyre $L' \leq_p L$. Ekkor $\overline{L'} \leq_p \overline{L}$. Ha L' befutja \mathcal{C} -t akkor $\overline{L'}$ befutja co \mathcal{C} -t. Azaz minden co \mathcal{C} -beli nyelv polinom időben visszavezethető \overline{L} -re.

Tehát \overline{L} co \mathcal{C} -beli és co \mathcal{C} -nehéz, így co \mathcal{C} -teljes.

A tárbonyolultság mérésének problémája

Első megközelítésben a tárigény a működés során felhasznált, pontosabban a fejek által meglátogatott cellák száma.

Probléma: Hiába "takarékoskodik" a felhasznált cellákkal a gép, az input hossza így mindig alsó korlát lesz a tárigényre.

Egy megoldási javaslat: Bevezethetjük az többlet tárigény fogalmát, ami az **input tárolására használt cellákon felül** igénybevett cellák száma.

Vannak olyan TG-ek, melyek csak az input területét használják, ám azt akár többször is átírják. Ezt beszámítsuk?

Eldöntési problémáknál beszámítjuk.

Számítási problémáknál viszont ne számítsanak bele a tárigénybe a csak a kimenet előállításához felhasznált cellák.

Példák coNP teljes nyelvekre

Unsat := $\{\langle \varphi \rangle | \varphi \text{ kielégíthetetlen nulladrendű formula} \}$.

Taut := $\{\langle \varphi \rangle | a \varphi \text{ nulladrendű formula tautológia} \}$.

Tétel

UNSAT és TAUT coNP-teljesek.

Bizonyítás: ÁLTSAT = $\{\langle \varphi \rangle | \varphi \text{ kielégíthető nulladrendű formula} \}$ is NP-teljes (NP-beli és SAT speciális esete neki.)

ÁLTSAT := UNSAT, az előző tétel alapján UNSAT coNP-teljes. UNSAT \leq_p TAUT, hiszen $\varphi \mapsto \neg \varphi$ polinom idejű visszavezetés.

Informálisan: coNP tartalmazza a polinom időben **cáfolható** problémákat.

Megjegyzések: Sejtés, hogy NP \neq coNP. Egy érdekes osztály ekkor az NP \cap coNP. Nyilván P \subseteq NP \cap coNP. Sejtés: P \neq NP \cap coNP. Bizonyított, hogy ha egy coNP-teljes problémáról kiderülne, hogy NP-beli, akkor NP = coNP.

Az offline Turing gép

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Megjegyzés: Egy k munkaszalaggal rendelkező OTG állapotátmenetfüggvénye tehát $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^{k+1} \to Q \times \Gamma^k \times \{L, S, R\}^{k+1}.$

Tétel

Minden TG-hez megadható vele ekvivalens offline TG.

Bizonyítás: Legyen M tetszőleges k szalagos TG. Az M' OTG-nak legyen k+1 szalagja. M' másolja át az inputját a k+1. szalagra és utána működjön úgy a 2-(k+1). szalagján, mint M. A k+1. szalag felel meg M 1. szalagjának. Ekkor nyilván L(M') = L(M).

Megjegyzés: Fordítva is igaz, az offline TG-ek speciális TG-ek.

Offline Turing gép verziók

Definíció

A nemdeterminisztikus offline Turing gép (NOTG) egy nemdeterminisztikusan működő offline Turing gép.

Definíció

A számító offline Turing gép olyan legalább 2 szalagos számító Turing gép, amelynek az első szalagja csak olvasható, az utolsó szalagja csak írható. Az első szalagot bemeneti szalagnak, utolsó szalagot kimeneti szalagnak, a többi szalagot munkaszalagnak nevezzük.

Megjegyzés: Egy k+2 szalagos, azaz k munkaszalaggal rendelkező OTG állaptotátmenetfüggvénye tehát $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^{k+1} \to Q \times \Gamma^{k+1} \times \{L, S, R\}^{k+2}$.

A bal oldalon a Γ^{k+1} az 1-(k+1). szalagoknak, a jobboldalon 2-(k+2). szalagoknak felel meg.

Determinisztikus és nemdeterminisztikus tárbonyolultsági osztályok

- $\mathsf{SPACE}\left(f(n)\right) := \{L \,|\, L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos} \\ \text{determinisztikus offline TG-pel} \}$
- ▶ NSPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ többlet}$ tárkorlátos nemdeterminisztikus offline TG-pel}
- ▶ PSPACE:= $\bigcup_{k>1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k \ge 1}$ NSPACE (n^k) .
- ▶ L:=SPACE (log *n*).
- ▶ NL:=NSPACE (log n).

Megjegyzés: Így tehát az offline TG-pel szublineáris (lineáris alatti) tárbonyolultságot is mérhetünk. Legalább lineáris tárigények esetén nem lenne szükség az offline TG fogalmára, használhattuk volna az eredeti TG fogalmat is.

Az offline Turing gépek tárigénye

Definíció

Egy offline TG **többlet tárigénye** egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) a többlet tárigénye.

Számító OTG-re hasonlóan.

Definíció

Egy nemdeterminisztikus offline TG **többlet tárigénye** egy adott inputra a legnagyobb többlet tárigényű számításának az többlet tárigénye.

Egy nemdeterminisztikus offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) az többlet tárigénye.

Elér determinisztikus tárbonyolultsága

ELÉR = $\{\langle G, s, t \rangle \mid A G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ Algo 2-ből, tudjuk, hogy ELÉR P-ben van (szélességi bejárás).

Tétel

ELÉR \in TIME (n^2) .

Tétel

 $\text{EL\'{E}R} \in \text{SPACE}(\log^2 n).$

Bizonyítás:

- Rögzítsük a csúcsok egy tetszőleges sorrendjét.
- ÚT(x,y,i) := igaz, ha $\exists x$ -ből y-ba legfeljebb 2^i hosszú út.
- s-ből van t-be út $G\text{-ben} \Longleftrightarrow \operatorname{\acute{U}T}(s,t,\lceil \log_2 n \rceil) = \mathrm{igaz}.$
- $\begin{array}{c} \bullet \ \ \mathrm{\acute{U}T}(x,y,i) = \mathrm{igaz} \Longleftrightarrow \exists z (\ \mathrm{\acute{U}T}(x,z,i-1) = \mathrm{igaz} \ \land \\ \ \ \mathrm{\acute{U}T}(z,y,i-1) = \mathrm{igaz} \). \end{array}$
- \blacktriangleright Ez alapján egy rekurzív algoritmust készítünk, melynek persze munkaszalagján tárolnia kell, hogy a felsőbb szinteken milyen (x,y,i)-kre létezik folyamatban lévő hívás.

Elér determinisztikus tárbonyolultsága

- ha i=0, akkor $2^0=1$ hosszú út kéne: ez az input alapján megválaszolható
- A munkaszalagon (x, y, i) típusú hármasok egy legfeljebb [log₂ n] hosszú sorozata áll. A hármasok 3. attribútuma 1-esével csökkenő sorozatot alkot [log₂ n]-től.
- Az ÚT(x,y,i) függvény meghívásakor az utolsó hármas (x,y,i) a munkaszalagon. Az algoritmus felírja az (x,z,i-1) hármast a munkaszalagra az (x,y,i) utáni helyre majd kiszámítja ÚT(x,z,i-1) értékét.
- ▶ Ha hamis, akkor kitörli (x, z, i 1)-et és z értékét növeli.
- ▶ Ha igaz, akkor is kitörli (x, z, i 1)-et és (z, y, i 1)-et írja a helyére (y-t tudja az előző (x, y, i) hármasból).
- Ha ÚT(z, y, i-1) igaz, akkor ÚT(x, y, i) igaz (ezt (x, y, i) és (z, y, i-1) 2. argumentumának egyezéséből látja)
- Ha ÚT(z, y, i-1) hamis akkor kitörli a (z, y, i-1)-t és z értékét eggyel növelve ÚT(x, z, i-1)-en dolgozik tovább.
- ▶ Ha egyik z se volt jó, akkor ÚT(x, y, i) hamis.

Konfigurációs gráf, elérhetőségi módszer

Definíció

Egy M NTG G_M konfigurációs gráfjának csúcsai M konfigurációi és $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Elérhetőségi módszer: az $\text{Elér}\in \text{TIME}(n^2)$ vagy $\text{Elér}\in \text{SPACE}(\log^2 n)$ tételek valamelyikét alkalmazva a konfigurációs gráfra (vagy annak egy részgráfjára) bonyolultsági osztályok közötti összefüggéseket lehet bizonyítani.

Lássunk erre egy példát!

Elér determinisztikus tárbonyolultsága

A főprogram, tehát $(s, t, \lceil \log_2 n \rceil)$ feírásából és az ÚT $(s, t, \lceil \log n \rceil)$ függvény meghívásából áll. Pontosan akkor lesz igaz a kimenet, ha t elérhető s-ből.

Az algoritmus a munkaszalagján végig legfeljebb $\lceil \log_2 n \rceil$ darab rendezett hármast tárol.

Egy szám tárolásához legfeljebb a szám adott számrendszer alapú logaritmusa +1 darab számjegy szükséges.

Így a rendezett hármasokból mindvégig $O(\log n)$ van és egyenként $O(\log n)$ hosszúak, így $\text{EL\'er} \in \text{SPACE}(\log^2 n)$.

Savitch tétele

Savitch tétele

Ha $f(n) \ge \log n$, akkor $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Bizonyítás: Legyen M egy f(n) tárigényű NOTG és w az M egy n hosszú bemenete. Kell egy vele ekvivalens, $O(f^2(n))$ táras OTG. M egy konfigurációját $O(f(n) + \log n)$ tárral eltárolhatjuk (aktuális állapot, a munkaszalagok tartalma, fejek pozíciója, az első szalag fejének pozíciója n féle lehet, ezért $\geq \log n$ tár kell ennek eltárolásához). Ha $f(n) \geq \log n$, akkor $O(f(n) + \log n) = O(f(n))$. Feltehető, hogy M-nek csak egyetlen C_{elf} elfogadó konfigurációja van. (Törölje le a TG a munkaszalagjait, mielőtt q_i -be lép!) A legfeljebb O(f(n)) méretű konfigurációkat tartalmazó konfigurációs gráf mérete $2^{d \cdot f(n)}$ valamely d > 0 konstansra. Így az előző tétel szerint van olyan M' determinisztikus OTG, ami $O(\log^2(2^{df(n)})) = O(f^2(n))$ tárral el tudja dönteni, hogy a kezdőkonfigurációból elérhető-e C_{elf} . M' lépjen pontosan ekkor az elfogadó állapotába, így L(M') = L(M).

Determinisztikus/nemdeterminisztikus polinom tár

Következmény

PSPACE = NPSPACE

Bizonyítás: $L \in \mathsf{NSPACE}(n^k) \stackrel{\mathsf{Savitch}}{\Longrightarrow} L \in \mathsf{SPACE}(n^{2k})$.

Tétel

 $NL \subseteq P$

Bizonyítás

Legyen $L \in \operatorname{NL}$ és M L-et $f(n) = O(\log n)$ tárral eldöntő NOTG. Meggondolható, hogy egy n méretű inputra M legfeljebb f(n) méretű szalagtartalmakat tartalmazó konfigurációinak a száma legfeljebb $cnd^{\log n}$ alkalmas c,d konstansokkal, ami egy p(n) polinommal felülről becsülhető. Így a G konfigurációs gráfnak legfeljebb p(n) csúcsa van. G polinom időben megkonstruálható. Feltehető, hogy G-ben egyetlen elfogadó konfiguráció van. G-ben a kezdőkonfigurációból az elfogadó konfiguráció elérhetősége $O(p^2(n))$ idejű determinisztikus TG-pel eldönthető, azaz $L \in P$.

Logaritmikus táras visszavezetés, NL-teljesség

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_{\ell} L_2$.

Definíció

Egy L nyelv NL-nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$. Ha ezen felül $L \in NL$ is teljesül, akkor L NL-teljes (a log. táras visszavezetésre nézve)

Tétel

Az L osztály zárt a logaritmikus tárral való visszavezetésre nézve.

Bizonyítás: Tegyük fel, hogy $L_1 \leq_{\ell} L_2$ és $L_2 \in L$. Legyen M_2 az L_2 -t eldöntő, M pedig a visszavezetésben használt f függvényt kiszámoló logaritmikus táras determinisztikus OTG.

Elér eldöntése nemdeterminisztikus log. tárral

ELÉR fontos szerepet tölt be az L[?]NL kérdés vizsgálatában is.

Tétel

 $\mathrm{El\acute{e}r} \in \, \mathrm{NL}$

Bizonyítás: Az M 3-szalagos NOTG a (G, s, t) inputra (n = |V(G)|) a következőt teszi:

- \blacktriangleright ráírja s--ta második szalagra
- ráírja a 0-t a harmadik szalagra
- ▶ Amíg a harmadik szalagon *n*-nél kisebb szám áll
 - Legyen \boldsymbol{u} a második szalagon lévő csúcs
- Nemdeterminisztikusan kiválasztja v egy ki-szomszédját és felírja u helyére a második szalagra
- Ha v=t, akkor elfogadja a bemenetet, egyébként növeli a harmadik szalagon lévő számot (binárisan) eggyel
- \blacktriangleright Han-nél nagyobb szám áll a 3. szalagon, akkor elutasítja a bemenetet.

Mindkét szalag tartalmát $O(\log n)$ bittel kódolhatjuk.

L logaritmikus táras visszavezetésre való zártsága

Az M_1 OTG egy tetszőleges u szóra a következőképpen működik

- A második szalagján egy bináris számlálóval nyomon követi, hogy M_2 feje hányadik betűjét olvassa az f(u) szónak; legyen ez a szám i (kezdetben 1)
- Amikor M_2 lépne egyet, akkor M_1 az M-et szimulálva előállítja a harmadik szalagon f(u) i-ik betűjét (de csak ezt a betűt!!!)
- Ezután M_1 szimulálja M_2 aktuális lépését a harmadik szalagon lévő betű felhasználásával és aktualizálja a második szalagon M_2 fejének újabb pozícióját
- ▶ Ha M_2 elfogadó vagy elutasító állapotba lép, akkor M_1 lépjen a saját elfogadó vagy elutasító állapotába, egyébként folytassa a szimulációt a következő lépéssel

Belátható, hogy M_1 L_1 -et dönti el és a működése során csak logaritmikus méretű tárat használ, azaz $L_1 \in L$.

Elér NL-teljessége

Következmény

Ha egy L nyelv NL-teljes és $L \in L$, akkor L = NL.

Bizonyítás: Legyen $L' \in \mathbb{NL}$ tetszőleges, ekkor L NL-teljessége miatt $L' \leq_{\ell} L$. $L \in L$, így L logaritmikus tárral való visszavezetésre való zártsága miatt $L' \in L$. Tehát $\mathbb{NL} \subseteq L$. A másik irány a definíciókból következik.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Bizonyítás:

- ▶ Korábban láttuk, hogy ELÉR ∈ NL
- ▶ Legyen $L \in NL$, megmutatjuk, hogy $L \leq_{\ell} ELÉR$
- Legyen M egy L-et eldöntő $O(\log n)$ táras NOTG és |u|=n
- Az $O(\log n)$ tárat használó konfigurációk $\leq c \cdot \log n$ hosszúak (alkalmas c-re)

Hierarchia tétel

 $\mathsf{EXPTIME} := \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(k^n).$

Hierarchia tétel

- (I) $NL \subset PSPACE$ és $P \subset EXPTIME$.
- (II) $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq NPSPACE = PSPACE \subseteq EXPTIME$

Sejtés: A fenti tartalmazási lánc minden tartalmazása valódi.

ELÉR NL-teljessége; Immerman-Szelepcsényi

• A G_M konfigurációs gráfban akkor és csak akkor lehet a kezdőkonfigurációból az elfogadóba jutni (feltehető, hogy csak egy ilyen van), ha $u \in L(M)$. Így $L \leq \text{ELÉR}$.

Kell még, hogy a visszavezetés log. tárat használ, azaz G_M megkonstruálható egy log. táras N determinisztikus OTG-pel:

- N sorolja fel a hossz-lexikografikus rendezés szerint az összes legfeljebb c · log n hosszú szót az egyik szalagján, majd tesztelje, hogy az legális konfigurációja-e M-nek, ha igen, akkor a szót írja ki a kimenetre
- Az élek (konfiguráció párok) hasonlóképpen felsorolhatók, tesztelhetők és a kimenetre írhatók

Immerman-Szelepcsényi tétel

NL = coNL

(biz. nélkül)

Hierarchia tétel

- (I)-et nem bizonyítjuk.
- (II) bizonyítása:

$$\mathsf{L} \overset{(1)}{\subset} \mathsf{NL} \overset{(2)}{\subset} \mathsf{coNL} \overset{(3)}{\subset} \mathsf{P} \overset{(4)}{\subset} \mathsf{NP} \overset{(5)}{\subset} \mathsf{NPSPACE} \overset{(6)}{=} \mathsf{PSPACE} \overset{(7)}{\subset} \mathsf{EXPTIME}$$

- (1) és (4): a nemdeterminisztikusság definíciójából következik
- (2): Immerman- Szelepcsényi
- (3),(6): előbb bizonyítottuk
- (5): Ha egy NTG egy számítására adott egy időkorlát, akkor ennél a korlátnál több új cellát nincs ideje egyik fejnek sem felfedezni. Így ez az időkorlát egyben tárkorlát is.
- (7): Elérhetőségi módszerrel: a használt tár méretének exponenciális függvénye a konfigurációs gráf mérete. A konfigurációs gráf méretében négyzetes (azaz összességében a tár méretében exponenciális) időben tudja egy determinisztikus TG az elérhetőséget tesztelni a kezdőkonfigurációból az elfogadó konfigurációba.

R szerkezete

R szerkezete (a tartalmazások valódisága nem mindenütt bizonyított)

[ábra: Gazdag Zs. e-jegyzet]