

Discrete Mathematics BCSC1010

Module 1

Recurrence Relations (Lecture 10)

Methods of solving RR

- Iteration
- Characteristic Roots
- Generating Functions

Iteration Method

• Solve the recurrence relation $a_n = a_{n-1} + 2$, $n \ge 2$ subject to initial condition $a_1 = 3$.

• Given
$$a_n = a_{n-1} + 2$$
(1)
then $a_{n-1} = a_{n-2} + 2$
from(1) $a_n = (a_{n-2} + 2) + 2 = a_{n-2} + 2*2$ (2)
also $a_{n-2} = a_{n-3} + 2$
from(2) $a_n = (a_{n-3} + 2) + 2*2 = a_{n-3} + 3*2$
In general, $a_n = a_{n-k} + k*2$
put k = n-1; $a_n = a_1 + (n-1)*2 = 3 + 2n - 2$

therefore,
$$a_n = 2n + 1$$

Lecture Notes by Dr. Praveen Mitta

Characteristic Roots Method

• In this method, we assume that solution to homogeneous recurrence relation $C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \dots + C_ka_{n-k} = 0$ is of the form $a_n = Ar^n$.

Then, putting this in given recurrence relation

$$C_0 Ar^n + C_1 Ar^{n-1} + C_2 Ar^{n-2} + \dots + C_k Ar^{n-k} = 0$$

or, $Ar^{n-k} [C_0 r^k + C_1 r^{k-1} + C_2 r^{k-2} + \dots + C_k] = 0$
or, $C_0 r^k + C_1 r^{k-1} + C_2 r^{k-2} + \dots + C_k = 0$

This is called as characteristic equation of the recurrence relation and solutions to this are called as characteristic roots.

Characteristic Roots Method

- A characteristic equation of degree k has k characteristic roots.
- If these roots (e.g. r_1 , r_2 , r_3 ,, r_k) are all distinct and real, then general form of the solutions for homogeneous recurrence relation is:

$$a_n = A_1 r_1^n + A_2 r_2^n + A_3 r_3^n + \dots + A_k r_k^n$$

where A_1 , A_2 , A_3 ,, A_k are constants which may be chosen to satisfy any initial conditions.

Solve the recurrence relation $a_n = a_{n-1} + 2 a_{n-2}$, $n \ge 2$ with the initial conditions $a_0 = 0$, $a_1 = 1$.

Given
$$a_n = a_{n-1} + 2 a_{n-2}$$

i.e. $a_n - a_{n-1} - 2 a_{n-2} = 0$
Then the characteristic eqn. is $r^2 - r - 2 = 0$
or, $(r-2)(r+1) = 0$
or, $r = 2, -1$

Therefore, the general solution is

$$a_n = A_1 (2)^n + A_2 (-1)^n$$

Given
$$a_0 = 0$$
 then $A_1 + A_2 = 0$ (1)

and
$$a_1 = 1$$
 then $2A_1 - A_2 = 1$ (2)

Solving (1) and (2) we get
$$A_1 = \frac{1}{3}$$
 and $A_2 = -\frac{1}{3}$

Hence the solution to the given homogeneous RR is:

$$a_n = \frac{1}{3} (2)^n - \frac{1}{3} (-1)^n$$

Next Topic

How to solve Recurrence Relations(Contd.)