IN THE CLAIMS

Kindly amend the claims to read as follows.

1. (previously presented) Compound of formula

(1)
$$\begin{bmatrix} OH & O & A \\ R_1 & R_2 \end{bmatrix}$$
, wherein

R₁ and R₂ independently from each other are; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is a number from 1 to 4;

when $n_1 = 1$,

R₃ is a saturated or unsaturated heterocyclic radical;

when n_1 is 2,

R₃ is an alkylen-, cycloalkylene, alkenylene or phenylene radical which is optionally substituted by a carbonyl- or carboxy group; or a radical of formula ·-ch₂-c≡c-ch₂-· ; or R₃ together with A forms

a bivalent radical of the formula (1a)
$$-A \xrightarrow{(CH_2)_{n_2}} A -$$
; wherein

 n_2 is a number from 1 to 3;

when n₁ is 3,

R₃ is an alkantriyl radical;

when n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

2. (currently amended) Compound according to claim 1, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is a number from 1 to 4;

when n₁ is 1,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₅alkyl; or Cyclohoxyl substitutedwith one or more C₁-C₅alkyl;

when n₁ is 2,

R₃ is an alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by a carbonyl- or carboxy group;

when n_1 is 3,

R₃ is an alkantriyl radical;

when n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

 R_5 is hydrogen; C_1 - C_5 alkyl; or hydroxy- C_1 - C_5 alkyl.

3. (previously presented) Compound according to claim 1, wherein

 R_1 and R_2 are C_1 - C_{20} alkyl.

4. (previously presented) Compound according to claim 1, wherein

 R_1 and R_2 independently from each other are C_1 - C_5 alkyl.

5. (previously presented) Compound according to claim 1, wherein

 R_1 and R_2 in formula (1) have the same definition.

6. (cancelled)

7. (previously presented) Compound according to claim 1, wherein if n₁ is 1,

R₃ is a saturated heterocyclic radical.

8. (original) Compound according to claim 7, wherein

R₃ is a monocyclic radical of 5, 6 or 7 ring members with one or more hetero atoms.

9. (previously presented) Compound according to claim 8, wherein

R₃ is morpholinyl; piperazinyl; piperidyl; pyrazolidinyl; imadazolidinyl; or pyrrolidinyl.

10. (previously presented) Compound according to claim 1, wherein

R₃ is an unsaturated heterocyclic radical.

11. (original) Compound according to claim 10, wherein

R₃ a polycyclic radical.

12. (previously presented) Compound according to claim 1, wherein

R₃ is a radical of formula (1a)

$$R_s$$
 , and

 $\,R_{\scriptscriptstyle 5}\,\,$ is polycyclic heteroaromatic radical with one or 2 heteroatoms.

13. (original) Compound according to claim 12, wherein

R₃ is a radical of formula (1b)

$$R_6$$
 , wherein

 R_6 is hydrogen; or C_1 - C_5 alkyl.

14. (previously presented) Compound according to claim 1, wherein,

. if n₁ is 2,

 R_3 is a C_1 - C_{12} alkylene radical.

15. (original) Compound according to claim 14, wherein

 R_3 is a radical of formula $\star - CH_2 - (CH_2)_m - CH_2 - \star$; $\star - CH_2 - \star$;

$$\star - CH_{2} \xrightarrow{CH_{3}} CH_{2} \star ; \star CH_{2} \xrightarrow{CH_{2}} CH_{2} \star ; \star - CH_{2} \xrightarrow{CH_{3}} \begin{bmatrix} O \\ I \\ CH_{3} \end{bmatrix} \xrightarrow{CH_{2}} (CH_{2})_{q} \xrightarrow{CH_{2} - \star} ;$$

r is 0 or 1; and

q = is a number from 0 to 5.

16. (previously presented) Compound according to claim 1, wherein, when n_1 is 3;

$$R_3$$
 is a radical of formula (1a) *-CH₂-CH-(CH₂)_p-CH₂-* or (1b) *-CH₂-CH and

p is a number from 0 to 3; and

 R_1 , R_2 and A are defined as in formula (1).

17. (previously presented) Compound according to claim 1, wherein, when n_1 is 4,

 R_1 , R_2 and A are defined as in formula (1).

18. (currently amended) Compound according to claim 1, which corresponds to formula

(2)
$$R_1$$
 N, wherein

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

R₃ is a saturated or unsaturated heterocyclic radical.

19. (currently amended) Compound according to claim 1, which corresponds to formula

(3)
$$R_1$$
 R_2 R_3 R_4 R_3 R_4 R_5 R_5 , wherein

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

 R_3 is a C_1 - C_{12} alkylene radical.

20. (currently amended) Compound according to claim 1, which corresponds to formula

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

$$R_3$$
 is *-CH₂—CH-(CH₂)_p-CH₂-* or *-CH₂—CH -; and

p is a number from 0 to 3.

21. (original) Compound according to claim 1, which corresponds to formula

$$R_3$$
 is a radical of formula $*-\overset{\overset{\star}{\mathsf{C}}}{\overset{-}{\mathsf{C}}}-*$; or $*-\mathsf{CH}_2\overset{\overset{\dagger}{\mathsf{C}}}{\overset{-}{\mathsf{C}}}-\mathsf{CH}_2-*$; and

 R_1 , R_2 and A are defined as in formula (1).

22. (previously presented) A process for the preparation of the compounds of formula (1), which comprises, dehydrating

(a) the compound formula (6a)
$$R_1$$
 to the compound of formula

(6b)
$$R_2$$
 N and

(b) reacting the anhydride with the compound of formula (6c₁) H-N(R₅)-R₃ or (6c₂) H-O-R₃ to the compound of formula

(1')
$$\begin{bmatrix} R_1 & OH & O & A & R_3 \\ R_2 & N & & & & \\ \end{bmatrix}_{n_1}$$
, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is 1 to 4;

if n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-cyclohexyl not substituted or substituted with one or more C₁-C₅alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y is C₁-C₁₂alkylen;

Z is C₁-C₅alkyl;

p is a number from 1 to 20;

if n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by carbonyl- or carboxy group;

if n₁ is 3,

R₃ is an alkantriyl radical;

if n_1 is 4,

R₃ is a alkantetrayl radical;

A is -O-; or $-N(R_5)$ -;

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

10/537,940 - 9 - HU/1-22812/A/PCT

23. (previously presented) Process according to claim 22, wherein the process refers to compounds of formula

(7)
$$R_2$$
 N , wherein

 R_1 and R_2 independently from each other are C_1 - C_{12} alkyl; and R_5 is hydrogen; C_1 - C_{12} alkyl; or C_3 - C_6 -cycloalkyl.

- 24. (canceled)
- 25. (canceled)
- **26. (original)** A cosmetic preparation comprising at least one or more compounds of formula (1) according to claim **1** with cosmetically acceptable carriers or adjuvants.
- 27. (previously presented) Compounds of formula

(6b')
$$R'_{1} N_{R''_{2}}$$
, wherein

R₁' and R₂" independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring.

- 28. (canceled)
- 29. (currently amended) UV-Absorber-dispersion, comprising

(a) a micronised UV absorber of formula

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

when n_1 is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀eyclohexyl not substituted or substituted with one or more C₁-C₅alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y C₁-C₁₂alkylen;

Z C₁-C₅alkyl;

p is a number from 1 to 20;

when n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylen- radical optionally interrupted by a carbonyl- or carboxy group;

if n₁ is 3,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or $-N(R_5)$ -; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl;

having a particle size from 0.02 to 2 µm, and

(b) a suitable dispersing agent.

30. (previously presented) A cosmetic preparation according to claim **26**, wherein the compounds of formula (1) are present in micronized form.