Assignment 1: Object-Oriented Data Cleaning and Preprocessing

Deadline: Friday, May 30th 2025

Objective

In this assignment, you will:

- Implement preprocessing methods in a provided Python script (data_preprocessor.py) to clean and preprocess a messy dataset.
- Import the completed script into a Jupyter notebook to test your preprocessing methods and evaluate the impact on model performance.
- Use your GitHub repository to organize and submit your work.
- Answer reflection questions to demonstrate your understanding of the preprocessing pipeline and its implications.

Assignment Instructions

Part 1: Set Up Your GitHub Repository

1. Create a **public** GitHub repository with the following structure:

YourClassRepositoryName/YourAssignmentFolderName

- ├── README.md

 ├── Scripts ← Python files

 ├── Data ← Spreadsheets
 - 2. Include the Following:
 - Data/messy_data.csv: The provided messy dataset for preprocessing.
 - Scripts/data_preprocessor.py: Your implementation of the DataPreprocessor script.
 - Scripts/main.ipynb: A notebook to test your preprocessing methods, apply it to messy_data.csv, and generate cleaned_data.csv.
 - README.md: Brief documentation describing your project and instructions for running your code.

Assignment 1: Object-Oriented Data Cleaning and Preprocessing

Deadline: Friday, May 30th 2025

Part 2: Complete the methods in data_preprocessor.py

1. Review the Skeleton Code:

Open the provided template (data_Preprocessor.py) and examine the placeholder methods. Understand each method's purpose based on the comments.

2. Fill in the Methods:

Use the descriptions to implement each method.

3. Test Each Method:

Create a copy of the data to test and verify the output of each method before moving to the next.

4. Document Your Code:

Add comments explaining any new logic you implement, ensuring readability for your peers or future reference.

Part 3: Dataset for Preprocessing

Load the Dataset:

Download messy_data.csv from Blackboard and load into your workspace in main.ipynb.

1. Examine the Dataset:

- Display the first few rows using .head() to understand the structure.
- Use .info() and .describe() to check data types, missing values, and basic statistics.

2. Identify Issues:

- Look for missing values, redundant columns, outliers, inconsistent formatting, or categorical features that need encoding.
- Use visualizations (e.g., histograms or scatter plots) to identify potential outliers.

3. Apply the DataPreprocessor Class:

• Apply each method step-by-step and print outputs to monitor changes.

4. Save the Cleaned Data:

After preprocessing, save the cleaned dataset for analysis.

Part 4: Short-Answer Questions (Separate file)

Assignment 1: Object-Oriented Data Cleaning and Preprocessing Deadline: Friday, May 30th 2025

Deliverables

Submission Component	Requirement	
GitHub Repository	 Your implementation of the data_preprocessor.py script; Your implementation of the main.ipynb notebook; Final, cleaned dataset as cleaned_data.csv. 	
Short-Answer Responses	Submit your answers to the short-answer questions (Part 4) to Blackboard in a .pdf format.	

Grading Criteria

Assessment Criteria	Weight	Description
Code Functionality	40%	Completeness and correctness of the data_preprocessor and main implementation.
Cleaned Dataset	10%	Appropriateness and quality of the cleaned dataset produced after applying the class methods.
Short-Answer Responses	40%	Depth, clarity, and correctness of written answers to provided questions or prompts.
Code Quality	10%	Readability, logical structure, and effective use of comments to document the code.