Image Processing and Computer Vision Joachim Weickert, Summer Term 2019	N	A
Lecture 9:	1	2
Image Interpolation	3	4
	5	6
	7	8
Contents	9	10
1. Motivation	11	12
2. Basic Structure of Classical Interpolation	13	3 14
3. Synthesis Functions for Classical Interpolation	15	16
4. Generalised Interpolation	17	18
5. Experiments	19	20
	21	1 22
	23	3 24
	25	26
	27	7 28
© 2005–2019 Joachim Weickert	29	9 30

Motivation (1)	M		1
Motivation	1	7	2
	3	4	4
What is Interpolation?	5		6
 recovery of continuous data from exact discrete data inside the data interval 	7	8	8
 inverse step to sampling, where discrete data are created from continuous ones 	9	1	.0
(see Lectures 1 and 5)	11	1	2
◆ always involves assumptions on the data, e.g. smoothness or band limitation	13	1	4
(although these assumptions are not always stated explicitly)	15	1	6
 must be distinguished from 	17	1	8
• extrapolation: uses a model outside the given data interval;	19	2	0
example: weather forecast	21	2	2
 approximation: model does not reproduce the given discrete data exactly; example: regression curve through noisy data 	23	2	24
A improved the sign that is make twented adaptive to be made to the bank to the	25	2	26
 important topic that is not treated adequately in most text books 	27	2	28
	29	3	0

Motivation (2)

Where is Interpolation Necessary?

- rescaling, zooming:
 - increase the apparent resolution of images
 - examples: "digital zooms" in cameras, video upscaling
- reslicing:
 - display a (medical) 3-D data set along arbitrary planes that do not coincide with the measured planes along the axis directions
- all kinds of geometric transformations, e.g.
 - image translation with subpixel precision
 - image rotation
 - warping in order to compensate for motion in image sequences
 - registration of medical images
 - ultrasound scan conversion from polar to cartesian coordinates
 - compensation of pincushion and barrel lens distortions (kissen- und tonnenförmige Verzeichnungen)

Motivation (3)

Top: Original image. **Bottom left:** Optical zoom with a factor 10. **Bottom right:** "Digital zoom". Source: http://www.cambridgeincolour.com/tutorials/image-interpolation.htm.

27 28

Motivation (4)

Most optical lens systems – in particular so-called "super zooms" – suffer from pincushion or barrel distortions. Compensating these distortions in digital images requires interpolation methods. Modern cameras can correct this automatically with their interpolation firmware. Author: M. Mainberger.

Basic Structure of Classical Interpolation (1)

Basic Structure of Classical Interpolation

Classical Interpolation

- Consider an infinitely extended (e.g. by reflection) m-dimensional discrete signal (f_{k}) on an equidistant grid with $k = (k_{1}, k_{2}, ..., k_{m})^{\top} \in \mathbb{Z}^{m}$ (grid size 1). Example for m = 2: image $(f_{i,j})$ with $(i,j)^{\top} \in \mathbb{Z}^{2}$.
- Compute a continuous signal u(x) as a weighted average of the discrete samples $\{f_{\pmb{k}}\,|\, \pmb{k}\in\mathbb{Z}^m\}$:

$$u(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^m} f_{\boldsymbol{k}} \, \varphi_{\text{int}}(\boldsymbol{x} \! - \! \boldsymbol{k})$$

for all $\mathbf{x} = (x_1, x_2, ..., x_m)^{\top} \in \mathbb{R}^m$.

• The only remaining freedom lies in the *synthesis function* $\varphi_{int} : \mathbb{R}^m \to \mathbb{R}$. It determines the weights.

M I

1 2

5 6

3

7 8

9 10

11 12

13 14

15 16

17 18

1/ 16

19 20

21 | 22 |

23 24

25 26

27 28

Basic Structure of Classical Interpolation (2)

Different synthesis functions (red) and their interpolant (blue). The discrete data are drawn in black. **Top:** Nearest neighbour interpolation uses box functions as synthesis functions. **Middle:** Linear interpolation uses hat functions. **Bottom:** Interpolation with sinc functions. Author: M. Mainberger.

Basic Structure of Classical Interpolation (3)

A Popular Condition for Synthesis Functions

Interpolation Condition

With our interpolation formula

$$u(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^m} f_{\boldsymbol{k}} \, \varphi_{\text{int}}(\boldsymbol{x} - \boldsymbol{k})$$

the interpolation condition $u({m n})=f_{m n}$ for all ${m n}\in{\mathbb Z}^m$ is trivial to guarantee if

$$\varphi_{\mathrm{int}}(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & \text{for } \boldsymbol{x} = (0,...,0)^\top, \\ 0 & \text{for } \boldsymbol{x} \in \mathbb{Z}^m \setminus \{(0,...,0)^\top\}. \end{array} \right.$$

This condition fixes $\varphi_{\rm int}$ at integer arguments, but not inbetween. For non-integer arguments, $\varphi_{\rm int}(x)$ can be tuned to specific applications.

- This condition is sufficient for interpolation, but not necessary.
- Synthesis functions satisfying this interpolation condition are called interpolating synthesis functions.

5 6 7 8 10 1112 13 14 15 16 17 18 19|20 22 21 23 24 25 | 26 27 28 29 30 5 6 8 9 10 11|1213 14 15 16 17|18

19|20

21 | 22

23 24

25 26

Basic Structure of Classical Interpolation (4)

Desirable Properties of the Synthesis Function

Separability

$$arphi_{\mathrm{int}}(oldsymbol{x}) = \prod_{i=1}^m ilde{arphi}_{\mathrm{int}}(x_i) \qquad \text{for all } oldsymbol{x} = (x_1, x_2, ..., x_m)^{ op} \in \mathbb{R}^m$$

- ullet allows simple and efficient $m ext{-}D$ implementations using 1-D interpolations
- equal treatment of all axes

Symmetry

$$arphi_{\mathrm{int}}(oldsymbol{x}) = arphi_{\mathrm{int}}(-oldsymbol{x}) \qquad ext{for all } oldsymbol{x} \in \mathbb{R}^m$$

- equal treatment of opposite sides
- weaker requirement than rotation invariance

Partition of Unity

$$\sum_{{\boldsymbol k}\in\mathbb{Z}^m} \varphi_{\rm int}({\boldsymbol x}\!-\!{\boldsymbol k}) = 1 \qquad \text{for all } {\boldsymbol x}\in\mathbb{R}^m$$

• guarantees that a constant signal is reproduced exactly

Basic Structure of Classical Interpolation (5)

How Can One Judge the Quality of a Good Interpolant?

♦ Small Support Region of the Synthesis Function

- size of the region where φ_{int} does not vanish (support region) should be small
- allows fast computation involving only a few neighbours

♦ High Approximation Order

- Let us interpolate samples of a smooth function f. Let the grid size h go to 0. If the error between the interpolant u and f is $\mathcal{O}(h^p)$, then p is called approximation order.
- Larger p indicate better approximation qualities (faster error decay).
- ullet equivalent to the exact reproduction of all polynomials of degree $\leq p-1$

High Regularity

- The interpolant should be as smooth as possible, i.e. it should belong to the set C^k of k-times continuously differentiable functions with a large k.
- allows to compute higher order derivatives analytically, e.g. for feature detection

9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
M	
	A
1	2

3 | 4

5 | 6

9 10

11|12

13 14

15 16

17|18

19 20

21 22

23 24

25 26

27 28

8

3

5 | 6

Synthesis Functions for Classical Interpolation (1)

Synthesis Functions for Classical Interpolation (in 1-D)

◆ Nearest Neighbour Interpolation

$$\varphi_{\rm int}(x) = \begin{cases} 1 & \text{for } |x| < \frac{1}{2}, \\ \frac{1}{2} & \text{for } |x| = \frac{1}{2}, \\ 0 & \text{else.} \end{cases}$$

- very small support interval: $\left[-\frac{1}{2},\frac{1}{2}\right]$
- lowest approximation order: p=1 (reproduces constant functions)
- leads to a discontinuous interpolant

Synthesis function for nearest neighbour interpolation. Author: M. Mainberger.

Synthesis Functions for Classical Interpolation (2)

♦ Linear Interpolation

$$\varphi_{\rm int}(x) = \left\{ \begin{array}{ll} 1 - |x| & {\rm for} \ |x| < 1, \\ 0 & {\rm else} \end{array} \right.$$

- ullet small support interval: [-1,1]
- approximation order p=2 (reproduces linear functions)
- ullet gives a continuous (C^0) interpolant

Synthesis function for linear interpolation. Author: M. Mainberger.

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29|30

M I

1 2

3 4

5 6

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

Synthesis Functions for Classical Interpolation (3)

• Keys Interpolation (with $a = -\frac{1}{2}$)

$$\varphi_{\mathrm{int}}(x) = \begin{cases} \frac{3}{2}|x|^3 - \frac{5}{2}x^2 + 1 & \text{for } |x| < 1, \\ -\frac{1}{2}|x|^3 + \frac{5}{2}x^2 - 4|x| + 2 & \text{for } 1 \leq |x| < 2, \\ 0 & \text{else.} \end{cases}$$

- support interval [-2, 2]
- approximation order p=3 (reproduces quadratic functions)
- ullet creates a continuously differentiable (C^1) interpolant

Synthesis function for Keys interpolation. Author: M. Mainberger.

Synthesis Functions for Classical Interpolation (4)

♦ Sinc Interpolation

$$\varphi_{\text{int}}(x) = \text{sinc}(\pi x) = \frac{\sin(\pi x)}{\pi x}$$

- infinite (!) support interval $(-\infty, \infty)$
- gives the exact (!) reconstruction for a bandlimited signal that has been sampled according to the sampling theorem (cf. Lecture 5)
- ullet yields an infinitely times differentiable (C^∞) interpolant
- difficult to implement exactly due to its infinite support and its slow decay: usually approximated by truncated or windowed sinc functions

Synthesis function for sinc interpolation. Author: M. Mainberger.

7 | 8

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

MΙ

1 2

3 4

5 6

7 8

13 14

15 16

13 10

17 18

19 20

21 22

23 24

23 | 24

25 26

27 28

Synthesis Functions for Classical Interpolation (5)

♦ Truncated Sinc Interpolation

- truncates the sinc function outside some interval [-n, n], $n \in \mathbb{N}$
- gives the so-called *Dirichlet apodisation*

$$\varphi_{\rm int}(x) = \left\{ \begin{array}{ll} \frac{\sin(\pi x)}{\pi x} & \text{for } |x| \leq n, \\ 0 & \text{else.} \end{array} \right.$$

- Unfortunately, this leads only to a C^0 interpolant.
- This does not even satisfy the partition of unity!

 Thus, it may create severe shifts in the average grey level of the image.

Synthesis function for Dirichlet apodisation (n = 2). Author: M. Mainberger.

Synthesis Functions for Classical Interpolation (6)

♦ Windowed Sinc Interpolation

- ullet multiplies the sinc function with a smooth window of support [-n,n], $n\in\mathbb{N}$
- using e.g. a so-called *Hanning window* gives the *Hanning apodisation*

$$\varphi_{\rm int}(x) = \left\{ \begin{array}{ll} \frac{\sin(\pi x)}{\pi x} \left(\frac{1}{2} + \frac{1}{2}\cos\left(\frac{\pi x}{n}\right)\right) & \text{for } |x| \leq n, \\ 0 & \text{else.} \end{array} \right.$$

- ullet creates a C^1 interpolant
- violates partition of unity as well, leading to greyscale shifts

Synthesis function for Hanning apodisation (n=2). Author: M. Mainberger.

17|18

21|22

19|20

23 24

25 26

Generalised Interpolation (1)

Generalised Interpolation

Motivation

• So far we have considered classical interpolation methods, where a weighted average of the *function values* $\{f_{\mathbf{k}} | \mathbf{k} \in \mathbb{Z}^m\}$ is computed:

$$u(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^m} f_{\boldsymbol{k}} \, \varphi_{\mathrm{int}}(\boldsymbol{x} - \boldsymbol{k}).$$

◆ In practice, this restricts the choice of suitable synthesis functions:

We used interpolating synthesis functions that satisfy the *interpolation condition*

$$\varphi_{\mathrm{int}}(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & \text{for } \boldsymbol{x} = (0,...,0)^\top, \\ 0 & \text{for } \boldsymbol{x} \in \mathbb{Z}^m \setminus \{(0,...,0)^\top\}. \end{array} \right.$$

- It is possible to obtain novel, better methods when we
 - permit coefficients that do not coincide with the function values
 - and do not insist on the interpolation condition ?

Generalised Interpolation (2)

Basic Idea Behind Generalised Interpolation

◆ Consider the *generalised interpolation* formula

$$u(\boldsymbol{x}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^m} c_{\boldsymbol{k}} \, \varphi(\boldsymbol{x} - \boldsymbol{k}).$$

- The unknown coefficients $\{c_{\mathbf{k}} \mid \mathbf{k} \in \mathbb{Z}^m\}$ must be computed (details later): They depend on the function values $\{f_{\mathbf{k}} \mid \mathbf{k} \in \mathbb{Z}^m\}$ and the synthesis function φ .
- The synthesis function φ can be *noninterpolating*: It does not have to fullfil the interpolation condition (we write φ instead of φ_{int}).
- Generalised interpolation proceeds in two steps:
 - ullet compute the coefficients $\{c_{oldsymbol{k}}\,|\, oldsymbol{k} \in \mathbb{Z}^m\}$
 - interpolate with the preceding formula
- ◆ This two-step procedure can pay off in terms of interpolation quality: Noninterpolating synthesis functions with a finite support can be equivalent to interpolating synthesis functions with an infinite support.

21	22
23	24
25	26
27	28
29	30
M 1	
	A
1	2
3	4
5	6
7	8
9	10
11	12
11 13	12 14
13	14
13 15	14 16
13 15 17	14 16 18
13 15 17 19	14 16 18 20

25|26

28

5 | 6

7 8

11|12

13 14

15 16

17 18

19 20

Generalised Interpolation (3)

Desirable Properties of Noninterpolating Synthesis Functions

◆ Just as for interpolating synthesis functions, separability and symmetry are useful.

3

5 | 6

7 8

9 | 10

11|12

13 14

15 16

17 18

19 20

21 22

23|24

25 26

27 28

29 30

3

5 | 6

7 | 8

9 | 10

11|12

13 14

15 16

17|18

19 20

21 | 22

23 24

25 26

27 28

◆ Partition of unity must be modified: One can show that

$$\sum_{{\boldsymbol k}\in{\mathbb Z}^m}\varphi({\boldsymbol x}\!-\!{\boldsymbol k}) \;=\; \frac{1}{c_{\boldsymbol 0}} \qquad \text{for all } {\boldsymbol x}\in{\mathbb R}^m$$

guarantees that a constant signal is reproduced exactly.

Quality Criteria of a Good Generalised Interpolant

- ◆ We have the same criteria as for a classical interpolant:
 - small support region of the synthesis function
 - high approximation order
 - high regularity
- Moreover, it should be easy to compute the coefficients $\{c_{\mathbf{k}} \mid \mathbf{k} \in \mathbb{Z}^m\}$.

Generalised Interpolation (4)

How Are the Coefficients Computed?

- For the sake of simplicity, consider the 1-D case with *finitely* many equidistant interpolation data f_1 , f_2 ,..., f_N at the points $x_1 = 1$, $x_2 = 2$, ..., $x_N = N$.
- lacktriangle For a given synthesis function arphi, the conditions $u(i)=f_i$ for i=1,...,N yield

$$\sum_{k=1}^{N} c_k \, \varphi(i-k) = f_i \quad \text{for } i = 1, \dots, N.$$

lacktriangle This describes a linear system of N equations for the N unknowns c_1 , c_2 , ..., c_N :

$$\begin{pmatrix} \varphi(0) & \varphi(1) & \dots & \varphi(N-1) \\ \varphi(1) & \varphi(0) & \dots & \varphi(N-2) \\ \vdots & \vdots & \dots & \vdots \\ \varphi(N-1) & \varphi(N-2) & \dots & \varphi(0) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix}$$

where we have used the symmetry condition $\varphi(x)=\varphi(-x).$

lacktriangle If arphi has a small support, then we have a band matrix with a small band.

17 18

Which Synthesis Functions Are Used?

- The most popular synthesis functions are derived from so-called *B-splines*.
- We start with the box function for nearest neighbour interpolation. We define it as synthesis function β_0 :

$$\beta_0(x) = \begin{cases} 1 & \text{for } |x| < \frac{1}{2}, \\ \frac{1}{2} & \text{for } |x| = \frac{1}{2}, \\ 0 & \text{else.} \end{cases}$$

The synthesis functions β_n with n=1,2,... are derived iteratively by convolution with β_0 (see also Assignment H1, Problem 2):

$$\beta_1 = \beta_0 * \beta_0,$$

$$\beta_2 = \beta_1 * \beta_0 ,$$

$$\beta_3 = \beta_2 * \beta_0.$$

For $n \ge 1$, the synthesis function β_n is a piecewise polynomial of degree n. It is symmetric in 0, and n-1 times continuously differentiable.

Generalised Interpolation (6)

The first four synthesis functions derived from B-splines. **Top left:** β_0 . **Top right:** β_1 . **Bottom left:** β_2 . Bottom right: β_3 . Note that β_0 and β_1 satisfy the interpolation condition, while β_2 and β_3 are noninterpolating synthesis functions with $\beta_i(0) \neq 1$. Author: M. Mainberger.

25 26

Generalised Interpolation (7)

Explicit Formulas for the B-Spline Synthesis Functions

$$\beta_0(x) = \begin{cases} 1 & \text{for } |x| < \frac{1}{2}, \\ \frac{1}{2} & \text{for } |x| = \frac{1}{2}, \\ 0 & \text{else,} \end{cases}$$

$$eta_1(x) = \left\{ egin{array}{ll} 1-|x| & {
m for} \ |x|<1, \ 0 & {
m else,} \end{array}
ight.$$

$$\beta_2(x) = \begin{cases} \frac{3}{4} - x^2 & \text{for } |x| < \frac{1}{2}, \\ \frac{1}{2}(\frac{3}{2} - |x|)^2 & \text{for } \frac{1}{2} \le |x| < \frac{3}{2}, \\ 0 & \text{else,} \end{cases}$$

$$\beta_3(x) = \begin{cases} \frac{2}{3} - x^2 + \frac{1}{2}|x|^3 & \text{for } |x| < 1, \\ \frac{1}{6}(2 - |x|)^3 & \text{for } 1 \le |x| < 2, \\ 0 & \text{else.} \end{cases}$$

Generalised Interpolation (8)

Cubic B-Spline Interpolation

- most popular generalised interpolation
- uses synthesis function β_3
- support interval [-2, 2].
- can be shown to have approximation order p=4 (reproduces cubic functions)
- creates a twice continuously differentiable (C^2) interpolant
- one order better than Keys interpolation which has the same support interval
- offers good cost-performance ratio

6

3 5

7 8

11 12

10

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29|30

3

5

7 8

9 | 10

11 12

13 14

15 16

17 18

19|20

21 | 22

23 24

25 26

27|28

Generalised Interpolation (9)

Finding the Coefficients for Cubic B-Spline Interpolation

• synthesis function β_3 at integer values gives

$$\beta_3(k) \; = \; \left\{ \begin{array}{l} \frac{2}{3} \quad \text{for } k=0, \\ \frac{1}{6} \quad \text{for } k=\pm 1, \\ 0 \quad \text{for other integer values } k. \end{array} \right.$$

• leads to the following tridiagonal system for the interpolation coefficients:

$$\begin{pmatrix} \frac{2}{3} & \frac{1}{6} & 0 & \dots & 0 \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \ddots & \\ 0 & \dots & 0 & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ 0 & \dots & 0 & \frac{1}{6} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ \vdots \\ c_{N-1} \\ c_N \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_{N-1} \\ f_N \end{pmatrix}.$$

• can be solved efficiently with the so-called Thomas algorithm (Lecture 17)

Experiments (1)

Experiments

- Consider a rotationally invariant test image.
- Perform 15 rotations by $\frac{360}{15}$ degrees. The output of any step is used as input of the next step. Each rotation requires interpolation.
- For an ideal interpolant, the resulting image should be identical to the original one.

	13	14
	13 15	16
	17 19 21 23	18
	19	20
	21	22
	23	24
	25 27	242628
	27	28
	29	30
	IVI	1 A 2 4 6 8
	1	2
	3	4
	3 5 7 9	6
	7	8
	-	
	9	10
_	9 11	10 12
e.	9 11 13	12 14
e.	11	12
e.	11 13	12 14
e.	11 13	12 14 16
e.	11 13 15 17	12 14 16 18
e.	11 13 15 17	12 14 16 18 20
e.	11 13 15 17 19 21	14 16 18 20 22
e.	11 13 15 17 19 21 23	12 14 16 18 20 22 24

5 | 6

8

10

Experiments (2)

Left: Test image. Right: Central square. Authors: P. Thévenaz, T. Blu, M. Unser.

Experiments (3)

Comparison of different interpolants after 15 rotations with $\frac{360}{15}$ degrees. Note also the grey level shifts for truncated and windowed sinc interpolation. Authors: P. Thévenaz, T. Blu, M. Unser.

11|12

15 16

19|20

23 24

25 26

Summary	M	I A
Summary	1	2
	3	4
◆ Interpolation recovers continuous data from discrete samples.	5	6
◆ Classical interpolation involves	7	8
• the function values,	9	10
• a synthesis function that satisfies the interpolation condition.	11	12
• Examples: nearest neighbour, linear, Keys, sinc interpolation	13	14
 Generalised interpolation renounces the interpolation condition. 	15	16
It requires to compute the weight coefficients.	17	18
This extra effort can be rewarded by better quality.	19	20
	21	22
 Example: Cubic spline interpolation. It offers a favourable cost-performance ratio. 	23	24
	25	26
	27	20

References

References

When it comes to interpolation, you better forget about text books and consult the following articles instead:

3

5 | 6

7 8

9 | 10

11|12

13 14

15 16

17|18

19 20

21 | 22

23 24

25 26

27

- ◆ P. Thévenaz, T. Blu, M. Unser: Image interpolation and resampling. In I. N. Bankman (Ed.): Medical Imaging, Processing and Analysis. Academic Press, San Diego, pp. 393-420, 2000. (http://bigwww.epfl.ch/publications/thevenaz9901.pdf) (excellent paper that formed the basis of the current lecture)
- ◆ H. S. Hou, H. C. Andrews: Cubic splines for image interpolation and digital filtering. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, Vol. 26, No. 6, pp. 508–517, Dec. 1978. (one of the first papers on spline interpolation in image analysis)
- ◆ T. M. Lehmann, C. Gönner, K. Spitzer: Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging, Vol. 18, No. 11, pp. 1049–1075,Nov. 1999. (experimental evaluation of numerous methods)
- ◆ E. H. W. Meijering, W. J. Niessen, M. A. Viergever: Quantitative evaluation of convolution-based methods for medical image interpolation. *Medical Image Analysis*, Vol. 5, No. 2, pp. 111–126, 2001. (another detailed experimental evaluation)
- E. Meijering: A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE, Vol. 90, No. 3, pp. 319–342, March 2002.
 (provides interesting historical facts)