NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 27/00/2022
PERSONAL CODE	

ACA2022_FORM2_29June2022_SILVANO

ACA Course -- Prof. SILVANO

FORM2 is composed of 6 QUESTIONS to get UP TO 12 POINTS

Duration is 24 minutes!

Question 1 (complete table format) 2 points

Let's consider the following access patterns on a **4-processor** system with a direct-mapped, write-back cache with one cache block per processor and a two-cache block memory.

Assume the MESI protocol is used, with write-back caches, write-allocate, and write-invalidate of other caches.

Please COMPLETE the following table:

Cycle	After Operation	P0 cache block state	P1 cache block state	P2 cache block state	P3 cache block state	Memory at bl. 0 up to date?	Memory at bl. 1 up to date?
0	Initial state	Invalid	Invalid	Invalid	Invalid	Yes	Yes
1	P0: Read Bl. 1	Excl (1)	Invalid	Invalid	Invalid	Yes	Yes
2	P2: Read Bl. 0	Excl (1)	Invalid	Excl (0)	Invalid	Yes	Yes
3	P1: Read Bl. 0						
4	P3: Write Bl. 0						
5	P0: Write Bl. 1						
6	P2: Write Bl. 1						
7	P1: Read Bl. 0						

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 27/00/2022
PERSONAL CODE	

Feedback

Cycle	After Operation	P0 cache block state	P1 cache block state	P2 cache block state	P3 cache block state	Memory at bl. 0 up to date?	Memory at bl. 1 up to date?
0	Initial state	Invalid	Invalid	Invalid	Invalid	Yes	Yes
1	P0: Read Bl. 1	Excl (1)	Invalid	Invalid	Invalid	Yes	Yes
2	P2: Read Bl. 0	Excl (1)	Invalid	Excl (0)	Invalid	Yes	Yes
3	P1: Read Bl. 0	Excl (1)	Shared (0)	Shared (0)	Invalid	Yes	Yes
4	P3: Write Bl. 0	Excl (1)	Invalid	Invalid	Mod (0)	No	Yes
5	P0: Write Bl. 1	Mod (1)	Invalid	Invalid	Mod (0)	No	No
6	P2: Write Bl. 1	Invalid	Invalid	Mod (1)	Mod (0)	No	No
7	P1: Read Bl. 0	Invalid	Shared (0)	Mod (1)	Shared (0)	Yes	No

See MESI protocols on the slides on L13: Multiprocessors.

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 27/00/2022
PERSONAL CODE	

Question 2 (complete table format) 2 points

Given the following assembly code:

FOR:LD \$F2, A(\$R1)

LD \$F4, B(\$R1)

LD \$F6, C(\$R1)

FADD \$F2,\$F2,\$F2

SD \$F2,B(\$R1)

FADD \$F4,\$F2,\$F4

SD \$F4,C(\$R1)

FADD \$F6,\$F4,\$F6

SD \$F6,D(\$R1)

ADDUI \$R1,\$R1,4

BNE \$R1,\$R2, FOR

Given a **3-issue VLIW** machine with fully pipelined functional units:

- 1 Integer ALU with 1 cycle latency to next Int/FP & 2 cycle latency to next Branch
- 1 Memory Unit with 2 cycle latency
- 1 FP ALU with 3 cycle latency

The branch is completed with 1 cycle delay slot (branch solved in ID stage).

In the Register File, it is possible to read and write at the same address at the same clock cycle. Complete the following table with the list-based scheduling on the 3-issue VLIW machine including the BRANCH DELAY SLOT (NOPs are not written).

	Integer ALU	Mem Unit	FP ADD
C1		LD F2, A(R1)	
C2			
С3			
C4			
C5			
C6			
C7			
C8			
С9			
C10			
C11			
C12			
C13	·		
C14			
C15			

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 27/00/2022
PERSONAL CODE	

Feedback

	Integer ALU	Mem Unit	FP ADDER
C1		LD F2, A(R1)	
C2		LD F4, B(R1)	
C3		LD F6, B(R1)	FADD F2, F0, F2
C4			
C5			
C6		SD F2, B(R1)	FADD F4, F2, F4
C7			
C8			
C9		SD \$F4,C(\$R1)	FADD F6, F4, F6
C10			
C11			
C12	ADD R1,R1,4	SD \$F6,D(\$R1)	
C13		_	
C14	BNE \$R1,\$R2, FOR		
C15	Br. delay slot		

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 25/00/2022
PERSONAL CODE	

Question 3 (format open text) 2 points

1.	How 1	ong is the critical path?
2.	What 1	performance did you achieve in CPIas?
3.	How n	nuch is the code efficiency?
4.	charac	assume the same code to be rescheduled on a 4-issue VLIW with the same teristics as before but with 2 Memory Units instead of 1 Memory Unit: How much has the critical path been improved?
	0	Has the code efficiency been improved?

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 27/00/2022
PERSONAL CODE	

Feedback

1. How long is the critical path? 15 cycles

2. What performance did you achieve in CPIas?

$$CPIas = (# cycles) / IC = 15 / 11 = 1,14$$

3. How much is the code efficiency?

Code_eff = IC/ (# cycles * # issues) =
$$11 / (15 * 3) = 0.24$$

Given a **4-issue VLIW** machine with with the same characteristics as before but with **2 Memory Units** instead of 1 Memory Unit we have had the following schedule:

	Integer ALU	Mem Unit	Mem Unit	FP ADDER
C1		LD F2, A(R1)	LD F4, B(R1)	
C2		LD F6, B(R1)		
C3				FADD F2, F0, F2
C4				
C5				
C6		SD F2, B(R1)		FADD F4, F2, F4
C7				
C8				
C9		SD \$F4,C(\$R1)		FADD F6, F4, F6
C10				
C11				
C12	ADD R1,R1,4	SD \$F6,D(\$R1)		
C13				
C14	BNE \$R1,\$R2, FOR			
C15	Br. delay slot			

• How much has the critical path been improved?

The critical path is the same as before

• Has the code efficiency been improved?

No, it hasn't: the Code efficient is worse than before:

Code_eff = IC/ (# cycles * # issues) =
$$11 / (15 * 4) = 0.18$$

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 25/00/2022
PERSONAL CODE	

Question 4 (format complete table and open text) 2 points

Let's consider the following assembly code:

I1 :	lw \$f0,0(\$r1)
12:	fadd \$f0,\$f0,\$f0
I3 :	sw \$f0,0(\$r1)
I4 :	lw \$f1,4(\$r1)
I5 :	lw \$f2,8(\$r1)
16:	fadd \$f1,\$f1,\$f2
I7:	sw \$f1,4(\$r1)
I8:	sw \$f2,C(\$r1)

to be executed on a CPU with dynamic scheduling based on **TOMASULO algorithm** with all cache HITS, a single Common Data Bus and:

- 2 RESERVATION STATIONS (RS1, RS2) for the LOAD/STORE unit (LDU1) with latency 4
- 2 RESERVATION STATION (RS3, RS4) for the ALU/BR FUs (ALU1) with latency 2

Please complete the following table:

INSTRUCTION	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT
I1: lw \$f0,0(\$r1)	1	2	6	None	RS1	LDU1
I2: fadd \$f0,\$f0,\$f0	2	7	9	RAW \$f0	RS3	ALU1
I3: sw \$f0,0(\$r1)						
I4: lw \$f1,4(\$r1)						
I5: lw \$f2,8(\$r1)						
I6: fadd \$f1,\$f1,\$f2						
I7: sw \$f1,4(\$r1)						
I8: sw \$f2,C(\$r1)						

C_{α}	اردا	lata	the	CD	ı
ı.aı		IATA	TNP	(.P	1 -

CPI =			

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 29/00/2022
PERSONAL CODE	

Feedback:

INSTRUCTION	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT
I1: lw \$f0,0(\$r1)	1	2	6		RS1	LDU1
I2: fadd \$f0,\$f0,\$f0	2	7	9	RAW \$f0	RS3	ALU1
I3: sw \$f0,0(\$r1)	3	10	14	RAW \$f0 (STRUCT LDU1)	RS2	LDU1
I4: lw \$f1,4(\$r1)	7	15	19	STRUCT RS1 + STRUCT LDU1	RS1	LDU1
I5: lw \$f2,8(\$r1)	15	20	24	STRUCT RS2 + STRUCT LDU1	RS2	LDU1
I6: fadd \$f1,\$f1,\$f2	16	25	27	RAW \$f2 (RAW \$f1)	RS3	ALU1
I7: sw \$f1,4(\$r1)	20	28	32	STRUCT RS1 + (STRUCT LDU1) + RAW \$f1	RS1	LDU1
I8: sw \$f2,C(\$r1)	25	33	37	STRUCT RS2 + STRUCT LDU1 + (RAW \$f2)	RS2	LDU1

 $CPI = \# \ clock \ cycles / IC = 37 / 8 = 4.625$

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 27/00/2022
PERSONAL CODE	

Question 5 (format open text) 2 points

Let's consider the following assembly code:

```
LOOP: LD $F0, 0 ($R1)
LD $F2, 0 ($R2)
ADDD $F4, $F0, $F0
ADDD $F6, $F2, $F2
SD $F4, 0 ($R1)
SD $F6, 0 ($R2)
ADDDUI $R1, $R1, 8
ADDDUI $R2, $R2, 8
BNE $R1, $R3, LOOP
```

Write a software-pipelined version of this loop by omitting the start-up and finish up code

Open text answer (max 15 rows)

Feedback:

See slides on L09 VLIW Code Scheduling

NAME	ACA2022_EXAM_FORM2 Data: 29/06/2022
SURNAME	Data. 25/100/2022
PERSONAL CODE	

Question 6 (complete table format) 2 points

Let's consider the following assembly code:

Assembly Code:

LOOP: LD \$F0, 0 (\$R1)
LD \$F2, 0 (\$R2)
ADDD \$F4, \$F0, \$F0
ADDD \$F6, \$F2, \$F2
SD \$F4, 0 (\$R1)
SD \$F6, 0 (\$R2)
ADDDUI \$R1, \$R1, 8
ADDDUI \$R2, \$R2, 8
BNE \$R1, \$R3, LOOP

For each statement of the assembly code, the following table reports data dependencies (corresponding to RAW hazards) and name dependencies (corresponding to WAR/WAW hazards):

Please complete the following table with dependencies (hazards):

Assembly Code:		Data dependencies (RAW Hazards)	Name depend. (WAR / WAW hazards)
LOOP: LD \$F0, 0 (\$R1)	#S1	None	None
LD \$F2, 0 (\$R2)	#S2	None	None
ADDD \$F4, \$F0, \$F0	#s3	RAW \$F0 w. S1	None
ADDD \$F6, \$F2, \$F2	#S4	RAW \$F2 w. S2	None
SD \$F4, 0 (\$R1)	#S5		
SD \$F6, 0 (\$R2)	#s6		
ADDDUI \$R1, \$R1, 8	#s7		
ADDDUI \$R2, \$R2, 8	#S8		
BNE \$R1, \$R3, LOOP	#S9		

Feedback

Assembly Code:		Data dependencies (RAW Hazards)	Name dependencies (WAR / WAW hazards)
LOOP: LD \$F0, 0 (\$R1)	#S1	None	None
LD \$F2, 0 (\$R2)	#S2	None	None
ADDD \$F4, \$F0, \$F0	#s3	RAW \$F0 w. S1	None
ADDD \$F6, \$F2, \$F2	#S4	RAW \$F2 w. S2	None
SD \$F4, 0 (\$R1)	#S5	RAW \$F4 w. S3	None
SD \$F6, 0 (\$R2)	#s6	RAW \$F6 w. S4	None
ADDDUI \$R1, \$R1, 8	#s7	None	WAR \$R1 w.S5, S1
ADDDUI \$R2, \$R2, 8	#s8	None	WAR \$R2 w.S6, S2
BNE \$R1, \$R3, LOOP	#s9	RAW \$R1 w. S7	None