Histogram Processing

P.Mirunalini

WHAT IS A HISTOGRAM?

Number of pixel with intensity value 0 [h(r0)] = 8Similarly for 1 h(r1) = 4

WHAT IS A HISTOGRAM?

Histogram plots the number of pixels for each intensity value

WHAT IS A HISTOGRAM?

r	0	1	2	3	4	5	6	7
h(r)	8	4	3	2	2	0	1	5
p(r) h(r)/(5*5)	8/25	4/25	3/25	2/25	2/25	0/25	1/25	5/25

HISTOGRAM - h(r) - Y axis - number of intensities $NORMALIZED \ HISTOGRAM - p(r) - Y axis - probability$ of intensities

HISTOGRAM

- Histogram: of a digital image with gray levels 0 to L-1 is a discrete function of $\mathbf{h}(\mathbf{r}_k) = \mathbf{n}_k$
 - $r_k k$ th gray level
 - n_k number of pixels having gray levels r_k
- Normalized histogram $p(r_k) = n_k/n$
 - n total number of pixels in the image
- Normalized histogram gives an estimate of probability of occurrence of each gray level.
- Sum of all the components in an normalized histogram is 1.
- Useful in compression, segmentation

HISTOGRAM

- Horizontal axis- gray level values r_k
- Vertical axis- $h(r_k) = n_k$ or $p(r_k) = n_k/n$
- Dark image-> components of the histogram on the lowside of gray level
- Bright image-> high side
- Low contrast-> centered towards middle
- High contrast-> board range of gray scale
- Image whose pixels tends to be distrubuted uniformly will have apperance of high contrast.
- Possible to develop a transformation function to achieve uniform distribution of pixels

HISTOGRAM Processing

To achieve the contrast enhancement two different histogram processing can be done:

- Histogram Equalization
- Histogram Matching

Histogram Equalization

- The goal of histogram equalization to obtain uniform histogram for the output image
- To transform the gray levels of the image so that the histogram of the resultant image has histogram equalized or uniformly distributed.
- Used for modifying the contrast

THEORY BEHIND HISTOGRAM EQUALIZATION

TRANSFORMATION FUNCTION THAT MAPS THE INPUT INTENSITY TO ALL AVAILABLE INTENSITIES.

THEORY BEHIND HISTOGRAM EQUALIZATION

Histogram Equalization

- Assuming the pixel values are continuous functions
 - p(s) ds = p(r) dr
- That is probability density of the transformed variable 's' is determined by the gray level distribution of the input image and by the chosen transformation function
 - s = T(r)
- T should satisfies the following conditions
 - T(r) is single valued and monotonically increasing where
 r is in the range [0,1]
 - T(r) also varies in the range [0,1]

- The first requirement is to ensure that inverse transformation exist and monotonicity ensures the order of increasing intensities (black to white)
- The second requirement is to ensure that resulting gray levels are in the same range as input levels (onto)
- The inverse transformation from s back to r is denoted by r = T -1 (s)

- The gray levels in an image can be viewed as random variables in the interval [0, 1] and their pdf calculated
- If $\mathbf{p_r}$ and $\mathbf{p_s}$ are two different probability distributions on r and s (of input and transformed image) respectively,

Then the probability theory says if $\mathbf{p_r}(\mathbf{r})$ and $T(\mathbf{r})$ is known then PDF $\mathbf{p_s}(\mathbf{s})$ of the transformed image at gray level s obtained using

- $p_s(s) = p_r(r)|dr/ds|$
- So the pdf of s depends on pdf of r and the transformation function.

Consider the CDF to be the transformation function. i.e.

$$s = T(r) = \int_{0}^{r} pr(w) dw$$

 W is dummy variable. This T(r) is single valued and monotonically increasing also the integration of a pdf is a pdf in the same range. So both constraints are statisfied.

$$\int pr(w) dw = p_r(r)$$

Substitting the value of ds/dr we get

$$p_s(s) = p_r(r) |dr/ds| = p_r(r) |1/p_r(r)| = 1$$

- $p_s(s)$ is a pdf that is 0 outside the interval [0,1] and 1 in the interval [0,1] :- a uniform density.
- Thus the transformation T(r) yields a random variable s characterized by a uniform pdf.
- T(r) depends on $p_r(r)$ but always $p_s(s)$ is always a uniform pdf.
- In discrete case r takes discrete values r_k , k=0,1...L-1 and probability of occurrence of a gray level r_k in an image is approximated by:

•
$$p_r(r_k) = n_k/n$$
 where $k = 0,1...L - 1$

GLOBAL HISTOGRAM EQUALIZATION

Histogram equalization

Steps involved:

- Find the number of pixels in each gray level and total number of pixels
- Find the probability mass function of all the pixels in the image
- Find the cumulative distribution function
- Multiply the cumulative distribution function by L-1, L being the maximum gray level, to obtain new gray levels
- Map the new gray level values to the pixels with old gray levels.

Mapping each pixel with level r_k in the input image into
 the corresponding pixel with level s_k in the output image

Gray level values	Number of pixels	Probability mass function	Cumulative distribution function
0	790	0.19	0.19
1	1023	0.25	0.44
2	850	0.21	0.65
3	656	0.16	0.81
4	329	0.08	0.89
5	245	0.06	0.95
6	122	0.03	0.98
7	81	0.02	1.00

$$s_k = T(r_k) = \sum_{j=0}^k p(r_j)$$

 $p(r_j) = \frac{n_j}{n} \text{ k} = 0,1,2....L-1$

Gray level values	Number of pixels	Probability mass function	Cumulative distribution function	CDF * L-1	
0	790	0.19	0.19	1.33 = 1)
1	1023	0.25	0.44	3.08 = 3	1
2	850	0.21	0.65	4.55 = 5	
3	656	0.16	0.81	5.67 = 6	
4	329	0.08	0.89	6.23 = 6	
5	245	0.06	0.95	6.65 = 7	
6	122	0.03	0.98	6.86 = 7	
7	81	0.02	1.00	7 = 7	

Mapping

Mapping:

Old gray level values	New gray level values	Frequency of occurrence
0	1	790
1	3	1023
2	5	850
3	6	656
4	6	329
5	7	245
6	7	122
7	7	81

Histogram equalization

Histogram matching or specification

- Specify the shape of the histogram we wish the processed image should have
- The method used to generate a processed image that has a specified histogram is called histogram matching or histogram specification
- Steps involved:
 - Equalize the histogram of the input image
 - Equalize the specified histogram
 - Relate the two equalized histograms

Histogram matching

$$s_k = T(r_k) = \sum_{j=0}^k p(r_j)$$

$$Min(s_k - v_k)$$

$$Z = G^{-1}(s_k)$$

$$v_k = G(z_k) = \sum_{j=0}^k p(z_j) = s_k$$

Matching

Steps involved:

Find histogram and CDF of input image

$$s_k = T(r_k) = \sum_{j=0}^k p(r_j)$$

$$p(r_j) = \frac{n_j}{n} k = 0,1,2....L-1$$

$$v_k = T(z_k) = \sum_{j=0}^k p(z_j)$$

- Specify the desired histogram, find its cumulative and CDF
- Relate the two mapping function and to build a look up table and for overall mapping
- For each input level find the out put level

Example

Example

Gray level values	Number of pixels	Probability mass function	Cumulative distribution function	Gray level values	Probability mass function	Cumulative distribution function
0	790	0.19	0.19	0	0	0
1	1023	0.25	0.44	1	0	0
2	850	0.21	0.65	2	0	0
3	656	0.16	0.81	3	0.15	0.15
4	329	0.08	0.89	4	0.2	0.35
5	245	0.06	0.95	5	0.3	0.65
6	122	0.03	0.98	6	0.2	0.85
7	81	0.02	1.00	7	0.15	1.0

Example

Input gray level	Cumulative distribution function	Cumulative distribution function	Output gray level
0	0.19	0.0	3
1	0.44	0.0	4
2	0.65	0.0	5
3	0.81	0.15	6
4	0.89	0.35	6
5	0.95	0.65	7
6	0.98	0.85	7
7	1.0	1.0	7

i	0	1	2	3	4	5	6	7
j	3	4	5	6	6	7	7	7