Sistemas de Información y Telemedicina. *

Marta Girones Sanguesa Ignacio Amat Hernández Silvia Marset Gomis Sofía Gutiérrez Santamaría

December 30, 2019

Contents

Sección		Página	
1	Preámbulo	. 4	
2	Histogramas	. 5	
3	Kernel Density	. 7	
4	Boxplot	. 10	
5	QQplot	. 12	
6	Corrplot	. 13	
7	Filter Methods	. 15	
8	Wrapper Methods	. 16	
9	PCA	. 17	
	9.1 Pareto	. 17	
	9.2 Biplot	. 18	
10	Modelos de Clasificación	. 19	
	10.1 Clasificación Lineal	. 19	
	10.2 Clasificación Cuadrática	. 20	
	10.3 Clasificación KNN	91	

^{*}Grado en Ingeniería Biomédica, Escuela Técnica Superior de Ingenieros Industriales, Valencia, España.

List of Figures

1	Histogramas Python para datos con y sin anomalias	5
2	Histogramas R para datos con anomalias	6
3	Kernel Density para datos con y sin anomalias	7
4	Gráficos de densidad R	8
5	Boxplots Python para datos con y sin anomalias	10
6	Boxplots R para datos con anomalias	11
7	QQplots para datos con y sin anomalias	12
8	Corrplot para datos con anomalias	13
9	Corrplot para datos sin anomalias	14
10	Diagrama de Pareto	17
11	Biplot	18
12	Rendimineto decreciente según aumenta el número de vecinos	22

Listings

1	Importaciones iniciales y preparacion de datos	4
2	Código Python generador de los histogramas con datos anómalos	5
3	Código R generador de los histrogramas con datos anómalos	6
4	Código Python generador de los kernel density plots con datos anómalos	7
5	Código R generador de los density plots	8
6	Código Python generador de los boxplots con datos anómalos	10
7	Código R generador de los boxplots con datos anómalos	11
8	Código generador de los QQplots con datos anómalos	12
9	Código generador de los corrplots con datos anómalos	13
10	Aplicación métodos $filter$ de selección características	15
11	Ranking de variables según los métodos filter	15
12	Aplicación métodos wrapper de selección características	16
13	Resultados del filtrado mediante wrappers	16
14	Principal Component Analysis	17
15	Varianza explicada por componente y suma acumulada	17
16	Código generador del diagrama de Pareto	17
17	Código generador del Biplot	18
18	Validación del modelo lineal	19
19	Validación según distintos métodos	19
20	Validación del modelo cuadrático	20
21	Validación según distintos métodos	20
22	Validación del modelo KNN	21
23	Validación según distintos métodos	21
24	Evolución de puntuación según número de vecinos	22

1 Preámbulo

```
import numpy as np
2
          scipy import stats
3
   # names of variables
4
   labels = ['age', 'leptin', 'bmi', 'adiponectin', 'glucose',
5
           'resistin', 'insulin', 'MCP1', 'HOMA']
6
7
   # loads data
8
   data = np.loadtxt (open (r'../../data.csv', 'rb'), delimiter = ',', skiprows = 1)
9
10
   # rewrites data as all the rows of data w/out nan cells
11
   data = data [~np.isnan (data).any (axis=1)]
12
13
     separates parameters into matrix x
14
        = np.array ([list (data [x][:-1]) for x in range (len (data))])
15
16
      and class (1, 2) into vector y
17
        = np.array ([int (data [x][ -1])
                                            for x in range (len (data))])
18
   у
19
20
   # removes outliers
   data_no = data [(np.abs (stats.zscore (data)) < 3).all (axis = 1)]</pre>
21
22
       \uparrow = No Outliers
23
24
   x_no = np.array ([list (data_no [x][:-1]) for x in range (len (data_no))])
25
   y_no = np.array ([int (data_no [x][ -1]) for x in range (len (data_no))])
```

Listing 1: Importaciones iniciales y preparacion de datos.

2 Histogramas

En este apartado dibujamos los histogramas comparativos.

Fig. 1: Histogramas Python para datos con y sin anomalias.

```
import matplotlib as mpl
1
2
   import matplotlib.pyplot as plt
3
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
4
   from preprocessing import x, y, x_no, y_no, labels
5
6
7
   # colours for the histograms
   fc = [(), (0, 1, 0, 0.6), (0, 0, 1, 0.6)]
8
              (R, G, B, \alpha) \leftarrow transparency
9
10
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
11
   ax = ax.flatten ()
12
13
   # draws each of the histograms, two for each variable
14
   for i in range (0, 9):
15
       for j in [1, 2]:
16
            ax[i].hist (x [y == j, i], bins = 15, fc = fc [j], label = labels [i] + str <math>\sqrt{ }
17
                (j))
            ax[i].legend (loc = 1, prop={'size': 15})
18
19
   fig.suptitle ('con anómalos', fontsize = 30)
20
   fig.savefig ('../images/hist.pdf', bbox_inches = 'tight', pad_inches = 0)
21
```

Listing 2: Código Python generador de los histogramas con datos anómalos.

Fig. 2: Histogramas R para datos con anomalias.

```
for (i in 1:10){
1
   pdf (file = paste ('../images/hist', i, '.pdf', sep = ''), width = 6, height = 3)
2
   print (ggplot (datos, aes (x = datos[,i], fill = as.factor (clase))) +
3
                   labs (x = NULL, y = NULL, title = names (datos)[i], fill = 'Clase') +
4
                   geom_histogram (bins = 20, alpha = 0.6) +
5
6
                   theme_classic
                                   (base\_size = 20) +
                   scale_fill_manual(values = c ('green', 'blue')) +
7
8
                   theme
                           (legend.position = c (0.8, 1))
9
   dev.off ()
10
   }
```

Listing 3: Código R generador de los histrogramas con datos anómalos.

3 Kernel Density

Fig. 3: Kernel Density para datos con y sin anomalias.

```
import matplotlib as mpl
1
   import matplotlib.pyplot as plt
   import numpy as np
4
   from scipy.stats import gaussian_kde
5
6
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
7
   from preprocessing import x, y, x_no, y_no, labels
   # colours
9
   fc = ['', 'green', 'blue']
10
11
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
12
   ax = ax.flatten ()
13
14
15
   # same loop in principle as before
   for i in range (0, 9):
16
17
       for j in [1, 2]:
           kde = gaussian_kde (x_ := x [y == j, i])
18
           xs = np.linspace(np.min (x_) - 10, np.max (x_), num=len (x_))
19
20
           ax[i].plot (xs, kde(xs), c = fc[j], label = labels [i] + str (j))
           ax[i].legend (loc = 1, prop={'size': 15})
21
22
   fig.suptitle ('con anómalos', fontsize = 30)
23
   fig.savefig ('../images/kden.pdf', bbox_inches = 'tight', pad_inches = 0)
24
```

Listing 4: Código Python generador de los kernel density plots con datos anómalos.

Fig. 4: Gráficos de densidad R.

```
for (i in 1:10){
1
   pdf (file = paste ('../images/dens', i, '.pdf', sep = ''), width = 6, height = 3)
2
   print (ggplot (datos, aes (x = datos[,i], colour = as.factor (clase))) +
3
                   labs (x = NULL, y = NULL,
4
                         title = names (datos)[i], colour = 'Clase') +
5
6
                   geom_density () + theme_classic (base_size = 20) +
                   scale_colour_manual (values = c ('green', 'blue')) +
7
                           (legend.position = c (0.8, 1))
8
                   theme
9
   dev.off ()
10
```

Listing 5: Código R generador de los density plots.

4 Boxplot

Fig. 5: Boxplots Python para datos con y sin anomalias.

```
1
   import matplotlib as mpl
2
   import matplotlib.pyplot as plt
3
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
4
   from preprocessing import x, y, x_no, y_no, labels
5
6
7
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
   ax = ax.flatten ()
8
9
   for i in range (0, 9):
10
       ax[i].boxplot ([x [y == 1, i], x [y == 2, i]])
11
       ax[i].title.set_text (labels [i])
12
13
   fig.suptitle ('con anómalos', fontsize = 30)
14
15
   fig.savefig ('../images/boxp.pdf', bbox_inches = 'tight', pad_inches = 0)
```

Listing 6: Código Python generador de los boxplots con datos anómalos.

Fig. 6: Boxplots R para datos con anomalias.

```
1
   for (i in 1:10){
   pdf (file = paste ('../images/box', i, '.pdf', sep = ''), width = 6, height = 3)
2
   print (ggplot (datos, aes (x = clase,
3
                               y = datos[,i],
4
                               group = clase)) +
5
6
                   labs (x = NULL, y = NULL, title = names (datos)[i]) +
7
                   geom_boxplot
                                 () +
                   theme_classic (base_size = 20))
8
9
   dev.off ()
10
   }
```

Listing 7: Código R generador de los boxplots con datos anómalos.

5 QQplot

Fig. 7: QQplots para datos con y sin anomalias.

```
import matplotlib as mpl
1
2
   import matplotlib.pyplot as plt
3
   \# load preprocessed data, x and y are raw, x_no and y_no contain no outliers
4
   from preprocessing import x, y, x_no, y_no, labels
5
6
   import statsmodels.api as sm
7
8
   fc = [(), (0, 1, 0, 0.6), (0, 0, 1, 0.6)]
9
   fig, ax = plt.subplots (nrows = 5, ncols = 2, figsize = (13, 10))
10
   ax = ax.flatten ()
11
12
   for i in range (0, 9):
13
       for j in [1, 2]:
14
           sm.qqplot (x [y == j, i], ax = ax[i], c = fc[j],
15
                    line = 's', label = labels [i] + str (j))
16
           ax[i].legend (loc = 2, prop={'size': 15})
17
18
   fig.suptitle ('con anómalos', fontsize = 30)
19
   fig.savefig ('../images/qqp.pdf', bbox_inches = 'tight', pad_inches = 0)
20
```

Listing 8: Código generador de los QQplots con datos anómalos.

6 Corrplot

Fig. 8: Corrplot para datos con anomalias.

```
import pandas as pd
import seaborn as sns
dataframe = pd.DataFrame.from_records(x)
sns.pairplot (dataframe, kind = 'reg')
plt.suptitle ('con anómalos', fontsize = 30)
plt.savefig ('../images/corrp.pdf', bbox_inches = 'tight', pad_inches = 0)
```

Listing 9: Código generador de los corrplots con datos anómalos.

Fig. 9: Corrplot para datos sin anomalias.

7 Filter Methods

```
Filter Methods
1
2
   import sklearn.feature_selection as sk
3
   Fscore, pval = sk.f_classif (x_no, y_no)
4
   r1 = Fscore.argsort().argsort() # fscore rank
   print (r1+1)
6
8
   import ReliefF as rl
9
   r2 = rl.ReliefF (n_neighbors = 1) # relieff rank
10
   r2.fit(x_no, y_no)
11
12
   r2 = r2.top_features
   print (r2+1)
13
14
15
   diferencias = abs (r1-r2)
16
   media = np.mean (diferencias)
```

Listing 10: Aplicación métodos filter de selección características.

```
1 [4 5 9 6 7 3 1 8 2] -> fscore
2 [1 9 8 7 6 5 4 2 3] -> relieff
3 [3 4 1 1 1 2 3 6 1] -> diferencias
4 2.44444444444446 -> media
```

Listing 11: Ranking de variables según los métodos filter.

8 Wrapper Methods

```
from sklearn.neighbors import KNeighborsClassifier
1
2
   from mlxtend.feature_selection import SequentialFeatureSelector
3
   knn = KNeighborsClassifier (n_neighbors = 50)
4
   sfs = SequentialFeatureSelector (knn,
6
7
                    k_features = 4,
                    forward = True,
8
                    scoring = 'accuracy',
9
                    cv = 10)
10
11
   sfs.fit (x_no, y_no, custom_feature_names = labels)
12
   print (sfs.k_score_)
13
14
   print ('Sequential Forward Selection', sfs.k_feature_names_, end = '\n\n')
15
16
   sfs.forward = False
17
18
   sfs.fit (x_no, y_no, custom_feature_names = labels)
   print (sfs.k_score_)
19
20
   print ('Sequential Backward Selection', sfs.k_feature_names_, end = '\n\n')
```

Listing 12: Aplicación métodos wrapper de selección características.

```
1  0.70545454545454
2  Sequential Forward Selection ('leptin', 'bmi', 'glucose', 'MCP1')
3  
4  0.70949494949495
5  Sequential Backward Selection ('leptin', 'bmi', 'glucose', 'insulin')
```

Listing 13: Resultados del filtrado mediante wrappers.

9 PCA

```
from sklearn.preprocessing import StandardScaler
  x_no = StandardScaler ().fit_transform (x_no) # typify
from sklearn.decomposition import PCA

pca = PCA (n_components = 9)

principalComponents = pca.fit_transform(x_no)
evr = pca.explained_variance_ratio_
```

Listing 14: Principal Component Analysis

```
1 [0.29146865 0.18490568 0.14125105 0.11727276 0.08486126 0.07999359
2 0.06636991 0.03254865 0.00132847]
3 [0.29146865 0.47637432 0.61762537 0.73489813 0.81975939 0.89975298
4 0.96612289 0.99867153 1. ]
```

Listing 15: Varianza explicada por componente y suma acumulada.

9.1 Pareto

Fig. 10: Diagrama de Pareto.

```
ax.bar (range (len (evr)), evr)
ax.set_ylim (top=1)
ax1 = ax.twinx ()
ax1.set_ylim (top=100)
ax1.plot (range (len (evr)), np.cumsum (evr)*100, marker = '.', color = 'red')
fig.suptitle ('Pareto', fontsize = 20)
fig.savefig ('../images/pareto.pdf', bbox_inches = 'tight', pad_inches = 0)
```

Listing 16: Código generador del diagrama de Pareto

9.2 Biplot

Biplot 1.00 0.75 0.50 0.25 Var7 Var3 0.00 -0.25-0.50-0.75Var8 -1.00 --1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 PC1

Fig. 11: Biplot.

```
def biplot(score, coeff, pcax, pcay, labels = None):
2
       pca1=pcax-1; pca2=pcay-1
3
       xs = score[:,pca1]; ys = score[:,pca2]
4
       n=score.shape[1]
       scalex = 1.0/(xs.max() - xs.min()); scaley = 1.0/(ys.max() - ys.min())
5
6
       plt.scatter(xs*scalex,ys*scaley)
       for i in range(n):
8
           plt.arrow(0, 0, coeff[i,pca1], coeff[i,pca2],color='r',alpha=0.5)
           if labels is None:
9
              plt.text(coeff[i,pca1] * 1.15, coeff[i,pca2] * 1.15, "Var"+str(i+1), \searrow
10
                  color='g', ha='center', va='center')
11
           else:
              12
                  , ha='center', va='center')
13
       plt.xlim(-1,1); plt.ylim(-1,1)
       plt.xlabel("PC{}".format(pcax)); plt.ylabel("PC{}".format(pcay))
14
15
       return plt
   bp = biplot (pca.fit_transform (x_no), pca.components_,1,2)
16
   bp.suptitle ('Biplot', fontsize = 20)
17
   bp.savefig ('../images/biplotpca.pdf', bbox_inches = 'tight', pad_inches = 0)
18
```

Listing 17: Código generador del Biplot.

10 Modelos de Clasificación

10.1 Clasificación Lineal

```
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
2
3
   lda = LDA ()
   score = cross_val_score (lda, x, y, cv = 10)
4
   print ('Linear puntuación CV media: %.2f std: %.2f'
5
           %(np.mean (score), np.std (score)))
6
7
   score = cross_val_score (lda, x, y, cv = KFold (n_splits = 10, shuffle = True))
8
   print ('Linear puntuación KF media: %.2f std: %.2f'
9
           %(np.mean (score), np.std (score)))
10
11
   score = cross_val_score (lda, x, y, cv = ShuffleSplit (n_splits = 10))
12
13
   print ('Linear puntuación SS media: %.2f std: %.2f'
14
           %(np.mean (score), np.std (score)))
15
   score = cross_val_score (lda, x, y, cv = LeaveOneOut ())
16
   print ('Linear puntuación LO media: %.2f std: %.2f'
17
18
           %(np.mean (score), np.std (score)))
```

Listing 18: Validación del modelo lineal.

```
Linear puntuacion CV media: 0.75 std: 0.13
Linear puntuacion KF media: 0.75 std: 0.10
Linear puntuacion SS media: 0.71 std: 0.14
Linear puntuacion LO media: 0.76 std: 0.43
```

Listing 19: Validación según distintos métodos.

10.2 Clasificación Cuadrática

```
{	t from sklearn.discriminant\_analysis import QuadraticDiscriminantAnalysis as QDA}
2
   qda = QDA ()
3
   score = cross_val_score (qda, x, y, cv = 10)
4
   print ('Quadratic puntuación CV media: %.2f std: %.2f'
5
           %(np.mean (score), np.std (score)))
6
7
   score = cross_val_score (qda, x, y, cv = KFold (n_splits = 10, shuffle = True))
8
   print ('Quadratic puntuación KF media: %.2f std: %.2f'
9
           %(np.mean (score), np.std (score)))
10
11
   score = cross_val_score (qda, x, y, cv = ShuffleSplit (n_splits = 10))
12
   print ('Quadratic puntuación SS media: %.2f std: %.2f'
13
14
           %(np.mean (score), np.std (score)))
15
16
   score = cross_val_score (qda, x, y, cv = LeaveOneOut ())
   print ('Quadratic puntuación LO media: %.2f std: %.2f'
17
18
           %(np.mean (score), np.std (score)))
```

Listing 20: Validación del modelo cuadrático.

```
Quadratic puntuacion CV media: 0.66 std: 0.19
Quadratic puntuacion KF media: 0.76 std: 0.09
Quadratic puntuacion SS media: 0.76 std: 0.14
Quadratic puntuacion LO media: 0.73 std: 0.44
```

Listing 21: Validación según distintos métodos.

10.3 Clasificación KNN

```
from sklearn.neighbors import KNeighborsClassifier
2
   knn = KNeighborsClassifier (n_neighbors = 9)
3
   score = cross_val_score (knn, x, y, cv = 10)
4
   print ('KNN puntuación CV media: %.2f std: %.2f'
5
           %(np.mean (score), np.std (score)))
6
7
8
   score = cross_val_score (knn, x, y, cv = KFold (n_splits = 10, shuffle = True))
   print ('KNN puntuación KF media: %.2f std: %.2f'
9
           %(np.mean (score), np.std (score)))
10
11
   score = cross_val_score (knn, x, y, cv = ShuffleSplit (n_splits = 10))
12
   print ('KNN puntuación SS media: %.2f std: %.2f'
13
14
           %(np.mean (score), np.std (score)))
15
16
   score = cross_val_score (knn, x, y, cv = LeaveOneOut ())
   print ('KNN puntuación LO media: %.2f std: %.2f'
17
18
           %(np.mean (score), np.std (score)))
```

Listing 22: Validación del modelo KNN.

```
KNN puntuacion CV media: 0.47 std: 0.12
KNN puntuacion KF media: 0.47 std: 0.15
KNN puntuacion SS media: 0.47 std: 0.13
KNN puntuacion LO media: 0.43 std: 0.50
```

Listing 23: Validación según distintos métodos.

Fig. 12: Rendimineto decreciente según aumenta el número de vecinos.

```
score = [None]*(vecinos)
1
2
   for i in range (2, vecinos):
3
       print ('n_neighbors = %i'% (i), end = '\r')
4
       iteraciones = 1000
       error = [None]*iteraciones
5
6
       for j in range (0, iteraciones):
7
           X_train, X_test, y_train, y_test = train_test_split (x, y, test_size = 0.3)
           knn = KNeighborsClassifier (n_neighbors = i, n_jobs = -1)
8
9
           knn.fit (X_train, y_train)
           error[j] = np.sum (abs (knn.predict (X_test) - y_test))/ len (y_test)
10
       score[i] = np.mean (error)
11
12
13
   plt.plot (range (2, vecinos+2), score)
14
15
   plt.suptitle ('Puntuación vs. Vecinos', fontsize = 10)
   plt.suptitle ('puntuación vs. vecinos', fontsize = 10)
16
   plt.xlabel ('vecinos')
17
   plt.ylabel ('puntuación')
18
   plt.show ()
19
```

Listing 24: Evolución de puntuación según número de vecinos.