1/13/2021 Week 1 Module 1 Interactive Exercise for Gibbs sampling HMC

- In this module, you will learn how to run Robosample using its Python interface
- Run a short rigid body dynamics HMC simulation on your desktop machine

Preparing a script to run Gibbs sampling HMC with Robosample

<u>Github</u>

Robosample setup

- Robosample is a molecular simulation program that uses algorithms designed primarily for robot mechanics
 - ideal for implementing reduced coordinates constrained dynamics
- Initial setup:
 - conda install -c conda-forge mdtraj
 - cd ~/Apps/Robosample
 - git pull
 - add lines indicated on the right to ~/.bashrc
 - source ~/.bashrc

Why write a script?

- Molecular dynamics simulations require a lot of information about
 - Input data
 - coordinates
 - topology
 - which atoms are included in energy terms
 - parameters for functions in energy terms
 - System description
 - periodicity
 - constraints
 - Integrators

- algorithms to propagate forward in time
- adjust box size
- adjust kinetic energy (temperature)
- Simulation
 - how long to run
 - how much output data to store
- Robosample can be run from widelyused computer programming languages, python and C++, facilitating extension and combination with other code

Robosample script

- Robosample simulations require even more information due to Gibbs sampling
 - How many sets of constraints (worlds or blocks)
 - Constraint specifications for every world:
 - what coordinates are frozen
 - what type of joints are used
- This is the script generated by Robosample GUI or Python interface:
- Let's go through what the parameters mean, and I'll give you values for a simple simulation of deca-alanine


```
MOLECULES robots/bot0
PRMTOP bot.prmtop bot.prmtop
FLEXFILE bot.all.flex bot.hinges.flex #
ROOT MOBILITY Cartesian Free #
OUTPUT_DIR robots robots
RUN_TYPE Normal Normal # normal HMC or Non-Eq HMC
ROUNDS 50
ROUNDS TILL REBLOCK 10 10
RANDOM WORLD ORDER FALSE FALSE
SAMPLER HMC HMC
TIMESTEPS 0.001 0.009
BOOST MDSTEPS 1 1
SAMPLES_PER_ROUND 1 3 # Number of acc-rej steps within a mixing round
REPRODUCIBLE FALSE FALSE
SEED 999 999
 THERMOSTAT Andersen Andersen
TEMPERATURE INI 300 300
TEMPERATURE FIN 300 300
BOOST TEMPERATURE 1 1
FIXMAN_POTENTIAL TRUE TRUE # Use Fixman potential
FIXMAN_TORQUE TRUE TRUE # Use Fixman torque
VISUAL TRUE TRUE
PRINT FREQ 1 1
WRITEPDBS 1 0
GEOMETRY FALSE FALSE
DISTANCE 1 2
DIHEDRAL 1 2 3 4 1 2 3 4
THREADS 0 0
OPENMM TRUE TRUE
 "inp.test" 48L, 1435C
```

Robosample script builder

🔞 🖨 💷 Parameters Overview

- Robosample GUI allows the user to group the parameters by:
 - constraints (blue) and
 - further by type

			<u> </u>	
١	Ø			
i	Experiment 0			
ı	World Type:	TD	IC	IC
1	Run Type:	Normal	Normal	Normal
ı	Flex Type:	From File	From File	From File
1	Flex File:	aking_a_GUI/peptide.flex	aking_a_GUI/peptide.flex	aking_a_GUI/peptide.flex
1	Rigid Bodies File:	making_a_GUI/peptide.rb	making_a_GUI/peptide.rb	making_a_GUI/peptide.rb
ı	Reblock Frequency:	0	0	0
ł	Roots:	0	0	0
ı	Sampler:	HMC	HMC	HMC
1	Timestep:	0.007	0.005	0.002
ł	MD Steps:	200	200	200
ł	Boost MD Steps:	200	200	200
ł	Samples Per Round:	0	10	10
ł	Seed:	0	1	2
ł	Use Fixman Potential:	True	True	True
	Use Fixman Torque:	True	True	True
J	Root Mobility:	Weld	Free	Cartesian

Robosample Python interface

- Let's go through what the parameters mean and I'll give you values for a simple simulation of deca-alanine
- Let's create a directory called "Robosample" on the Desktop.
- Copy "ala10" directory from "~/Apps/Robosample/tools/demo/" directory. The directory can also be <u>found</u> <u>on github</u>.
- Let's start editing a file, ex. "simulate.py".

```
from robosample import *
# Load Amber files
prmtop = AmberPrmtopFile("ala10/ligand.prmtop")
inpcrd = AmberInpcrdFile("ala10/ligand.rst7")
# Hardware platform
platform = Platform.getPlatformByName('CPU')
properties={'nofThreads': 2}
# Create a Robosample system by calling createSystem on prmtop
system = prmtop.createSystem(createDirs = False,
        nonbondedMethod = "CutoffPeriodic",
        nonbondedCutoff = 1.44*nanometer,
        constraints = None,
        rigidWater = True,
        implicitSolvent = True,
        soluteDielectric = 1.0,
        solventDielectric = 78.5,
        removeCMMotion = False
integrator = HMCIntegrator(300*kelvin, # Temperature of head bath
                           0.006*picoseconds) # Time step
simulation = Simulation(prmtop.topology, system, integrator, platform, properties)
simulation.reporters.append(PDBReporter('robots/', 10))
simulation.context.setPositions(inpcrd.positions)
# run simulation
simulation.step(5)
```

- For input files enter "ala10/ligand.prmtop" and "ala10/ligand.inpcrd"
- "Platform" describes the version of the code and the hardware it will run on
 - "CUDA" and "OpenCL" are meant for GPUs, which make MD simulations much faster. "CUDA" only works with Nvidia GPUs and "OpenCL" on others
 - "CPU" is a faster version of Reference.
 - Since VirtualBox machine don't usually have GPUs, let's use "CPU"
- The properties dictionary indicates the number of threads to be used
- "Forcefield" is the set of parameters and functions that describes the energy of a system. Currently, Robosample only supports Amber functional form.

```
from robosample import *

# Load Amber files
prmtop = AmberPrmtopFile("ala10/ligand.prmtop")
inpcrd = AmberInpcrdFile("ala10/ligand.rst7")

# Hardware platform
platform = Platform.getPlatformByName('CPU')
properties={'nofThreads': 2}
```

- "Nonbonded method" describes how long-range interactions are treated. The more interactions that need to be computed, the slower an MD simulation will be.
 - Cutoffs don't perform calculations if two particles are beyond a certain distance apart.
 - Ewald methods calculate long-range interaction energies between a system and its periodic images. It assumes the system repeats indefinitely.
 - Since we are using implicit solvent, we don't need periodicity.
 - Let's use "CutoffNonPeriodic".
- "Constraints"
 - force a degree of freedom to be a certain value
- Let's keep the other "System" parameters as is

- "Integrator" is the algorithm that goes from one configuration to the next
 - Verlet is completely deterministic
 - Langevin adds some random noise to the motion. The level of noise maintains the system at a certain temperature.
 - Brownian is so random that there is no momentum
 - Variable methods use different time steps and depend on an error tolerance
 - Robosample Hybrid Monte Carlo uses Velocity Verlet

- Thermostat
 - allow the kinetic energy of the system to change by modifying velocities
 - Andersen
 - Berendsen
 - Nose Hoover
 - Robosample uses Andersen
- Barostats keep the system at a certain pressure
 - allows the volume of the system to change
 - Hoover
 - Rahman
 - Parrinello
 - since we are using implicit water, let's not use a barostat

- "Reporters" store data about the simulation
 - "PDB" structure files are saved in the specified output directory
 - "DCD" is a binary file format for molecular dynamics trajectories
- "Report Interval" is how often the data are stored

```
simulation = Simulation(prmtop.topology, system, integrator, platform, properties) simulation.reporters.append(PDBReporter('robots/', 10)) simulation.context.setPositions(inpcrd.positions)
```

- Let's return to constraints, which are the heart of Robosample
 - the script generated by the Python interface consists of a series of KEYWORDS in uppercase each with a list of values corresponding to it
 - why a list of values: we can have however many worlds we want
- Our simulation has two worlds


```
MOLECULES robots/bot0
PRMTOP bot.prmtop bot.prmtop
INPCRD bot.rst7 bot.rst7
RBFILE bot.rb bot.rb
FLEXFILE bot.all.flex bot.hinges.flex # Flexibility definition file
ROOT_MOBILITY Cartesian Free # Ground to Compound mobilizer
OUTPUT_DIR robots robots
RUN_TYPE Normal Normal # normal HMC or Non-Eq HMC
ROUNDS 50
ROUNDS_TILL_REBLOCK 10 10
RANDOM_WORLD_ORDER FALSE FALSE
 WORLDS R0 R1
ROOTS 0 0
TIMESTEPS 0.001 0.009
MDSTEPS 30 30
BOOST MDSTEPS 1 1
SAMPLES_PER_ROUND 1 3 # Number of acc-rej steps within a mixing round
REPRODUCIBLE FALSE FALSE
SEED 999 999
THERMOSTAT Andersen Andersen # Thermostat
TEMPERATURE INI 300 300
TEMPERATURE FIN 300 300
BOOST TEMPERATURE 1 1
FFSCALE AMBER AMBER
GBSA 0 0
FIXMAN_POTENTIAL TRUE TRUE # Use Fixman potential
FIXMAN_TORQUE TRUE TRUE # Use Fixman torque
VISUAL TRUE TRUE
PRINT_FREQ 1 1
WRITEPDBS 1 0
_GEOMETRY FALSE FALSE
DISTANCE 1 2
DIHEDRAL 1 2 3 4 1 2 3 4
THREADS 0 0
OPENMM TRUE TRUE
```

- Flexibility files contain information about the bonds to be considered flexible
- Flexibility file can be modified manually to change:
 - bonds allowed to move
 - type of joints between them
- Let's try to allow less bonds to move
- Let's try to change joint type from Pin to BallM

Additional Resources

In preparation