CNN Redes Neurais Convolucionais

Prof. Luiz Bordignon

• Uma das áreas mais comuns de aplicação para CNN's é visão computacional.

• Identificação de objetos, reconhecimento fácil, robôs, carros, etc...

Quando usar CNN?

• Em problemas em que existam características complexas para diferenciar uma classe de outra.

• A CNN irá encontrar de forma automática, quais características são mais relevantes para resolução do problema.

- Uma Rede Neural Convolucional (Convolutional Neural Network CNN) é uma variação das redes de Perceptrons de Múltiplas Camadas.
- Uma rede convolucional utiliza além de uma rede neural densa, métodos de pré-processamento dos dados.
- Um desse processo é chamado de convolução, que é a aplicação de filtros/kernels nos dados.
- Outro processo utilizado é chamado de *polling*, que destaca os elementos mais significativos desse dados.

Exemplo visual de CNN

- Podemos separar a fase inicial de uma CNN em 3 partes principais
- Convolução
- Polling
- Flattening

- De forma bem simplificada, convolução é a multiplicação de uma matriz a um dado inicial.
- Podemos definir essa matriz como um filtro.

• Esse filtro pode ter seu tamanho definido, assim como a vizinhança

que ele irá atuar (stride).

Ι

 ${f K}$

I * K

0	0	0	0	0	0	0			
0	1	0	0	0	1	0			
0	0	0	0	0	0	0			
0	0	0	1	0	1	1			
0	1	0	1	1	0	0			
0	1	0	1	1	0	1			
0	1	0	0	0	1	1			
	Imagem								

3 X S

1	0	0
1	0	1
0	1	1

Detector de características (feature detector) 25

0		

Mapa de características (feature map)

X

0	0	0	0	0	0	0			
0	1	0	0	0	1	0			
0	0	0	0	0	0	0			
0	0	0	1	0	1	1			
0	1	0	1	1	0	0			
0	1	0	1	1	0	1			
0	1	0	0	0	1	1			
	Imagem								

1 0 0 = 1 0 1 = Detector de características

(feature detector)

0 1

Mapa de características (feature map)

$$0*1+0*0+0*0+1*1+0*0+0*1+0*0+0*1+0*1=1$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

	1	0	0
X	1	0	1
	0	1	1

Detector de características (feature detector)

0	1	0	

Mapa de características (feature map)

$$0*1+0*0+0*0+0*1+0*0+0*1+0*0+0*1+0*1=0$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

	1	0	0				
X	1	0	1				
	0	1	1				
Detector de características							

(feature detector)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

Mapa de características (feature map)

Aplicação de filtros

http://setosa.io/ev/image-kernels/

• Dependendo do tamanho da matriz do filtro aplicado a imagem (dados) pode ter sua dimensionalidade reduzida.

Facilita o processamento.

• Destaca características mais importantes, e elimina características menos significativas.

• É comum, logo após a convolução, aplicar uma função de ativação.

0	0	0	0	0	0	0											
0	1	0	0	0	1	0						0	1	0	1	0	
0	0	0	0	0	0	0		1	0	0		0	2	1	1	2	
0	0	0	1	0	1	1	X	1	0	1	=	1	2	2	3	1	/
0	1	0	1	1	0	0		0	1	1		1	3	3	3	2	
0	1	0	1	1	0	1	Det	ector	de car	acterí:	l sticas	_		1			
0	1	0	0	0	1	1		(feat	ure de	etector	r)	1	3	1	3	5	
		I	mager	n			ı					N	∕lapa d (fe	e carad ature		cas	

Camada de convolução

(feature maps)

Polling

- Outra camada muito importante comumente utilizada após as camadas de convolução e ativação, é a camada de agrupamento (pooling).
- A função dessa camada é reduzir a dimensionalidade dos dados na rede. Essa redução é importante por questão de agilidade no treinamento.
- A camada de pooling funciona agrupando um conjunto de dados, por exemplo: a entrada é dividida em janelas 4x4 e de cada uma é selecionado um valor para os representar.
- Essa escolha pode ser feita por diversas funções, porém a mais utilizada é a função de máximo.

Polling

Mapa de características (feature map)

Mapa de características (feature map)

3

1 3 5 e características

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5
	Mana d	o cara	torícti	cac

Mapa de características (feature map)

0	1	0	1	0	
0	2	1	1	2	
1	2	2	3	1	
1	3	3	3	2	
1	3	1	3	5	
14					

Mapa de características (feature map)

Mapa de características (feature map)

3

0

3

3

2	1	2	
3	3	2	
3	3	5	

Polling

- Seleciona as características mais relevantes (reduz overfitting e ruídos desnecessários)
- Max polling (mínimo, média): max foca nas características mais relevantes

Rede neural convolucional (polling)

As diferentes arquiteturas repetem e combinam essas e outras funções de transformações do sinal.

O resultado da repetição dessas camadas é um conjunto de *features* especializado na tarefa na qual ela foi treinada.

Flattening

Flattening -> Transformar uma matriz para um vetor

Flattening

• Antes de submeter a rede neural, uma etapa adicional se faz necessária, o *flattening*, que ajusta a matriz para um vetor para que cada neurônio da rede recebe um dado como característica.

fc 3 fc_4 **Fully-Connected Fully-Connected** Neural Network Neural Network Conv_1 Conv_2 ReLU activation Convolution Convolution (5 x 5) kernel (5 x 5) kernel Max-Pooling Max-Pooling (with valid padding valid padding (2×2) (2×2) dropout) n2 channels n2 channels 9 n1 channels n1 channels INPUT (4 x 4 x n2) (8 x 8 x n2) (24 x 24 x n1) (12 x 12 x n1) (28 x 28 x 1) OUTPUT n3 units

- Isso tudo parte do principio de extrair de uma imagens suas características, que são seus pixels.
- O que difere um mago qualquer do mestre dos magos?

Atividade

- Criar um banco de imagens (preferencia imagens pequenas) de no mínimo 2 personagens.
- Criar um dataset com os valores de características das imagens junto com sua classificação. Exemplo:

caracteristicas	classe
1,0,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,1	batman
0,0,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0	superman
1,0,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,0	flash
1,0,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,1	batman
0,0,0,1,0,1,1,1,0,1,0,1,1,0,1,0,0,1,1,1	aquaman

- Utilizar imagens em tons de cinza.
- Mínimo de 100 imagens.