İNŞAAT MÜHENDİSLİĞİ FİZİK 2 DERSİ ÖDEV SORULARI

(Not:Soruların cevapları yeterince açıklama içerecek şekilde detaylı olmalı; yapılan işlemler adım adım gösterilmelidir.)

1) Yalıtkan bir çubuk bükülerek, şekildeki gibi 4R yarıçaplı bir halka haline getiriliyor. A noktası, bu halkanın merkezinden geçen eksen üzerinde, halkanın merkezinden 3R uzaklıktadır. q₁=+q, q₂=+q ve q₃=+5q noktasal yükleri de şekilde görüldüğü gibi A noktasına sırasıyla r₁=4R, r₂=4R ve r₃=5R uzaklıktadır. (a) Şekildeki sistemde

A noktasındaki elektrik alan $\vec{E} = k \frac{2q}{25R^2}(-\hat{i})$ olduğuna göre;

çubuk için λ çizgisel yük yoğunluğunu q, π ve R cinsinden bulunuz. (b) Şekildeki sistemde A noktasından, çemberin merkezine doğru bir ilk hızla fırlatılan m kütleli +q noktasal yükü, çemberin merkezine geldiğinde kinetik enerjisi ne kadar değişir, k,q, R cinsinden bulunuz.

2) 3R yarıçaplı yalıtkan kürede yük kürenin hacminde düzgün dağılmıştır. Bu kürenin merkezinden 2R kadar uzaklıkta elektrik alanın büyüklüğü $\left| \vec{E} \right| = k \frac{q}{R^2}$ olduğuna göre; (a) Kürenin hacimsel yük yoğunluğu p'yu q ve R cinsinden bulunuz (π =3 alınız). (b) Kürenin merkezinden 4R uzaklıktaki A noktasındaki elektrik alanın büyüklüğünü k,q ve R cinsinden bulunuz. (c) A noktasına -2q noktasal yükü konulursa, bu yüke etki edecek elektriksel kuvveti k,q, R cinsinden bulunuz, çevabınızı birim vektörleri kullanarak yazınız.

3) Pozitif (+) yüklü R yarıçaplı yarı çember şeklinde bükülmüş yalıtkan çubuk sabit λ_1 çizgisel yük yoğunluğuna, negatif (-) yüklü 2R uzunluklu yalıtkan çubuk da sabit λ_2 çizgisel yük yoğunluğuna sahiptir. Şekildeki P noktası yarım çemberin merkezinde ve çubuğun ekseni üzerinde çubuğun sol ucundan R kadar uzaktadır. P noktasındaki toplam elektriksel potansiyel sıfır olduğuna göre λ_1/λ_2 'yi bulunuz.

- 4) Sığası $C_0 = 2 \mu F$ olan paralel plakalı (düzlem) kondansatörde, kenarları ℓ olan kare şeklindeki iletken yüzeyler arasındaki mesafe d olup, iletken yüzeyler arasında dielektrik malzeme yoktur.
- C_1 sığalı paralel plakalı kondansatörde, kenarları 2ℓ ve 3ℓ olan dikdörtgen şeklindeki iletken yüzeyler arasındaki mesafe 2d olup, iletken yüzeyler arasında dielektrik malzeme yoktur.
- C_2 sığalı paralel plakalı kondansatörde, kenarları ℓ ve 2ℓ olan dikdörtgen şeklindeki iletken yüzeyler arasındaki mesafe d/2 olup, iletken yüzeyler arasında K_2 =3 dielektrik sabitli malzeme yerleştirilmiştir.
- C_3 sığalı paralel plakalı kondansatörde, kenarları ℓ ve 2ℓ olan dikdörtgen şeklindeki iletken yüzeyler arasındaki mesafe 2d olup, iletken yüzeyler arasına 2d kalınlığında $\ell/3$ eninde K_3 =6 dielektrik sabitli malzeme ile, 2d kalınlığında $2\ell/3$ eninde K_4 =12 dielektrik sabitli malzeme şekildeki gibi yerleştirilmiştir.
- C_4 sığalı paralel plakalı kondansatörde, kenarları ℓ ve 2ℓ olan dikdörtgen şeklindeki iletken yüzeyler arasındaki mesafe 2d olup, iletken yüzeyler arasına 4d/3 kalınlığında ℓ eninde K_5 =2 dielektrik sabitli malzeme ile, 2d/3 kalınlığında ℓ eninde K_6 =5 dielektrik sabitli malzeme şekildeki gibi yerleştirilmiştir.
- (a) Buna göre (a) C₁, C₂, C₃, C₄ kondansatörlerinin sığalarını hesaplayınız. Bu kondansatörler aşağıdaki şekilde (Şekil-2) bağlanıyorsa;
- (b) S_1 anahtarı kapatılıp kondansatörler doldurulunca C_2 kondansatörü üzerindeki yük Q_2 =40 μ C olduğuna göre; bu esnada C_3 kondansatörü üzerindeki yük Q_3 'ü bulunuz.
- (c) Sonra S_1 anahtarı açılıp S_2 anahtarı kapatılıyor. Son durumda C_4 kondansatörü üzerindeki yükü Q_4 'ü bulunuz.

