Organisatorisches Alphabete Aussagenlogik Relationen Prädikatenlogik Wörter /ollständige Induktion

GBI Tutorium NR: 31

Richard Feistenauer

31.10.2014

Inhaltsverzeichnis

- Organisatorisches
- 2 Alphabete
- 3 Aussagenlogik
- 4 Relationen
 - Kartesisches Produkt
 - Relationen
 - Funktionen/Abbildungen
- Prädikatenlogik
- Wörter
 - Das leere Wort
 - Konkatenation
- 🕜 Vollständige Induktion
 - Einführung
 - Aufgaben

Organisatorisches

Tutorium ist

- kurze Wiederholung der Vorlesung
- Anlaufstelle für Fragen
- Übungsbereich für aktuellem Vorlesungsstoff
- Ausgabestelle der Übungsblätter
- Freiwillig

Tutorium ist nicht

- Vorlesungs ersatz
- Lösungsstelle für kommendes Übungsblatt

Organisatorisches

Übungsblatt

- Übungsblatt einzeln handschriftlich bearbeiten
- Abgabe Freitag 12:30 Uhr im Briefkasten im Keller
- Offensichtlich abgeschrieben ⇒ 0 Punkte
- Ab Hälfte der Punkte bestanden (Voraussichtlich 120)
- Übungsschein zum Bestehen des Moduls notwendig

Organisatorisches

Prüfung

- 4. März 2015 (14 Uhr)
- Nachprüfung im September. (Achtung Mathe Klausuren sind da auch!)
- Prüfung Notwendig für Orientierungsprüfung.

Kontakt / Information

- gbi.tutorium@googlemail.com
- https://github.com/Richard-GBI/GBI-Folien
- http://gbi.ira.uka.de/

Alphabete

Definition

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

- N₊ ?
- $M = \{\phi, 3, \psi, a\}$?

Alphabete

Definition

Ein Alphabet ist eine endliche, nichtleere Menge von Zeichen.

Aufgaben

- N₊ ?
- $M = \{\phi, 3, \psi, a\}$?

Notation

- $\mathbb{N}_+ = \{1, 2, 3, \dots\}$ (positive ganze Zahlen)
- $\mathbb{N}_0 = \{0, 1, 2, 3, \dots\}$ (nichtnegative ganze Zahlen)

Aussagenlogik

- Eine Aussage ist ein Satz, der (objektiv) entweder wahr oder falsch sein kann
- Aussagen sind äquivalent (⇔), wenn sie die gleichen Wahrheitswerte besitzen

Aussagenlogik

Logisches UND und ODER

Α	В	$A \wedge B$
wahr	wahr	wahr
wahr	falsch	falsch
falsch	wahr	falsch
falsch	falsch	falsch

Α	В	$A \vee B$
wahr	wahr	wahr
wahr	falsch	wahr
falsch	wahr	wahr
falsch	falsch	falsch

Aussagenlogik

Logisches UND und ODER

Α	В	$A \wedge B$
wahr	wahr	wahr
wahr	falsch	falsch
falsch	wahr	falsch
falsch	falsch	falsch

Α	В	$A \vee B$
wahr	wahr	wahr
wahr	falsch	wahr
falsch	wahr	wahr
falsch	falsch	falsch

Aufgabe

Stelle eine Wahrheitstabelle für den Ausdruck $(A \land B) \lor A$ auf.

Implikation

А	В	\Rightarrow
wahr	wahr	wahr
wahr	falsch	falsch
falsch	wahr	wahr
falsch	falsch	wahr

Wichtig!

- A \Rightarrow B ist äquivalent zu $\neg A \lor B$
- D.h. man muss nur etwas tun, wenn A wahr ist. (Beweise)

Implikation

Α	В	\Rightarrow
wahr	wahr	wahr
wahr	falsch	falsch
falsch	wahr	wahr
falsch	falsch	wahr

Aufgabe

Finde für F einen äquivalenten Ausdruck, in dem A und B jeweils höchstens einmal vorkommen.

$$F = (A \Rightarrow B) \Rightarrow ((B \Rightarrow A) \Rightarrow B)$$

Definition

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

Definition

$$A \times B = \{(a,b)|a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

- Berechne $\{a, b\} \times \{1, 2, 3\}$.
- Wieviele Elemente hat $\{\alpha, \beta, \gamma, \delta\} \times \{42, 43, 44\}$?
- Was ist $\emptyset \times M$?

Definition

$$A \times B = \{(a,b)|a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

- Berechne $\{a, b\} \times \{1, 2, 3\}$. $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- Wieviele Elemente hat $\{\alpha, \beta, \gamma, \delta\} \times \{42, 43, 44\}$?
- Was ist ∅ × M?

Definition

$$A \times B = \{(a,b)|a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

- Berechne $\{a, b\} \times \{1, 2, 3\}$. $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- Wieviele Elemente hat $\{\alpha, \beta, \gamma, \delta\} \times \{42, 43, 44\}$? 12
- Was ist ∅ × M?

Definition

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Die Menge aller geordneten Paare (a,b) mit a aus A und b aus B

- Berechne $\{a, b\} \times \{1, 2, 3\}$. $\{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- Wieviele Elemente hat $\{\alpha,\beta,\gamma,\delta\} \times \{42,43,44\}$? 12
- Was ist ∅ × M?
 ∅

Relationen

Definition

- Eine Teilmenge $R \subseteq A \times B$ heißt (binäre) Relation von A in B.
- Wenn A = B, spricht man von einer Relation auf der Menge A.
- Statt $(a,b) \in R$ kann man auch a R b schreiben bzw. statt $(a,b) \in R_{\geq}$ auch $a \geq b$.

Relationen

Definition

- Eine Teilmenge $R \subseteq A \times B$ heißt (binäre) Relation von A in B.
- Wenn A = B, spricht man von einer Relation auf der Menge A.
- Statt $(a,b) \in R$ kann man auch a R b schreiben bzw. statt $(a,b) \in R_{\geq}$ auch $a \geq b$.

Aufgabe

Wie ist die Kleiner-Gleich-Relation R_{\leq} auf der Menge M = $\{1,2,3\}$ formell definiert?

Relationen

Definition

- Eine Teilmenge $R \subseteq A \times B$ heißt (binäre) Relation von A in B.
- Wenn A = B, spricht man von einer Relation auf der Menge A.
- Statt $(a,b) \in R$ kann man auch a R b schreiben bzw. statt $(a,b) \in R_{\geq}$ auch $a \geq b$.

Aufgabe

Wie ist die Kleiner-Gleich-Relation R_{\leq} auf der Menge M = $\{1,2,3\}$ formell definiert?

$$R_{\leq} = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

Eigenschaften von Relationen

linkstotal

eine Relation $R \subseteq A \times B$ ist linkstotal wenn gilt:

 \forall a \in A, \exists b \in B : (a , b) \in R

rechtseindeutig

eine Relation $R \subseteq A \times B$ ist rechtseindeutig wenn gil $\forall a \in A$. $\forall b . c \in B$:

(a , b) \in R \land (a , c) \in R \Rightarrow b = c

rechtstotal

eine Relation $R \subseteq A \times B$ ist rechtstotal wenn gilt:

 $\forall \ b \in B, \ \exists \ a \in A : (\ a \ , \ b \) \in R$

linkseindeutig

eine Relation $R \subseteq A \times B$ ist linkseindeutig wenn gilt:

 \forall a , c \in A, \forall b \in B :

$$(a,b) \in R \land (c,b) \in R \Rightarrow a = c$$

Eigenschaften von Relationen

linkstotal Jedes Element aus A hat mindestens einen Partner

in B

rechtseindeutig Jedes Element aus A hat höchstens einen Partner

in B

rechtstotal Jedes Element aus B hat mindestens einen Partner

in A

linkseindeutig Jedes Element aus B hat höchstens einen Partner

in A

Eigenschaften von Relationen

Aufgaben

Sind folgende Relationen links-/rechtstotal, links-/rechtseindeutig?

- Die Gleichheitsrelation $R_{=}$ auf \mathbb{R}
- Die Kleinerrelation $R_{<}$ auf $\mathbb R$

Funktionen/Abbildungen

Definition

Eine Relation, die linkstotal und rechtseindeutig ist, nennt man Funktion oder Abbildung.

Sei f: $A \rightarrow B$ eine Funktion. Dann ist:

- A der Definitionsbereich
- B der Zielbereich
- f(A) der Bildbereich von f

Aufgabe

Was bedeutet es wenn der Bildbereich gleich dem Zielbereich ist?

Eigenschaften von Funktionen/Abbildungen

- linkseindeutig → injektiv
- rechtstotal → surjektiv
- injektiv + surjektiv = bijektiv

Aufgaben

Sind folgende Funktionen injektiv, surjektiv oder bijektiv?

- $f: \mathbb{R} \to \mathbb{R}, x \mapsto x$
- $g: \mathbb{N}_0 \to \mathbb{N}_0, x \mapsto 2x$

Organisatorisches Alphabete Aussagenlogik Relationen Prädikatenlogik Wörter Ilständige Induktion

Prädikatenlogik

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

 $\heartsuit \subseteq S \times W$ beschreibt "Student liebt das Wetter"

• $\neg \exists s \in S : \forall w \in W : s \heartsuit w$

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

 $\heartsuit \subseteq S \times W$ beschreibt "Student liebt das Wetter"

• $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$ Es existiert eine Wetterform, die jeder Student liebt.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$ Es existiert eine Wetterform, die jeder Student liebt.
- $\forall s \in S : \exists w \in W : s \heartsuit w$

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$ Es existiert eine Wetterform, die jeder Student liebt.
- $\forall s \in S : \exists w \in W : s \heartsuit w$ Für alle Studenten existiert eine Wetterform, die er liebt.

Wörter

Vorbemerkung

•
$$\mathbb{G}_n =$$

Wörter

Vorbemerkung

- $\bullet \ \mathbb{G}_n = \{ \ i \in \mathbb{N}_0 \mid 0 \le i \land i < n \ \}$
- ullet $\mathbb{G}_0 =$

Wörter

Vorbemerkung

- $\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \leq i \wedge i < n \}$
- $\mathbb{G}_0 = \{\}$

In Worten

Wörter sind eine Surjektive Abbildung mit w: $\mathbb{G}_n \to \mathsf{B} \subset \mathsf{A}$

Example

Das Wort w = hallo ist eine Abbildung

w:
$$\mathbb{G}_5 \to \{ a,h,l,o \}$$
 mit

$$w(0) = h w(1) = a w(2) = l w(3) = l w(4) = o$$

Das leere Wort

Das Wort

- Das leere Wort wird mit dem ϵ dargestellt, und ist eine Abbildung von $\{\} \to \{\}$
- $\{\} \times \{\} = \{\}$
- \bullet ϵ hat die Länge 0 ist aber dennoch ein Element.
- wenn $M = \{\epsilon\}$ dann ist $M \neq \emptyset$
- |M| = 1

Konkatenation von Wörtern

Konkatenation von Wörtern

- eine Konkatenation ist eine Verknüpfung mehrerer Zeichen(ketten) und wird als · dargestellt
- ullet z.B. kann man hallo als $h \cdot a \cdot l \cdot l \cdot o$ dargestellt werden.
- der Punkt ist allerding nicht notwendig, er kann wie das Malzeichen bei der Multiplikation weggelassen werden.
- mehrere Wörter können auch zu einem weiteren konkateniert werden.

Vollständige Induktion

Was ist die vollständige Induktion?

Eine oft benutzte sehr mächtige Beweistechnik

Vorgehen?

- 1 Die Behauptung für einen ersten Wert beweisen
- Annehmen dass die Behauptung für "irgendeinen" Wert gilt
- Behauptung ausgehend von dem bliebigen Wert für den nächsten Wert beweisen

So sollte es aussehen

Induktionsanfang

Beweis der Behauptung für einen (manchmal auch mehrere)
 "Startwerte"

So sollte es aussehen

Induktionsanfang

Beweis der Behauptung für einen (manchmal auch mehrere)
 "Startwerte"

Induktionsannahme

- Für ein beliebiges aber festes x/k/n gelte: . . .
- Wird im Induktionsschritt benutzt

So sollte es aussehen

Induktionsanfang

Beweis der Behauptung für einen (manchmal auch mehrere)
 "Startwerte"

Induktionsannahme

- Für ein beliebiges aber festes x/k/n gelte: . . .
- Wird im Induktionsschritt benutzt

Induktionsschritt

• Ausgehend von x die Behauptung für x+1 beweisen

Ein erstes Beispiel

Die Gaußsche Summenformel

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \ldots + n = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1$$
:
$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1:$$

$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1:$$

$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsvorraussetzung

Für ein beliebiges aber festes n gelte:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1$$
:
$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsvorraussetzung

Für ein beliebiges aber festes n gelte:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Induktionsschluss

$$n=1:$$

$$\sum_{k=1}^{n+1} k = (n+1) + \sum_{k=1}^{n} k \stackrel{\text{I.V.}}{=} (n+1) + \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1$$
:
$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsvorraussetzung

Für ein beliebiges aber festes n gelte:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Induktionsschluss

$$n = 1: \sum_{k=1}^{n+1} k = (n+1) + \sum_{k=1}^{n} k \stackrel{\text{I.V.}}{=} (n+1) + \frac{n(n+1)}{2}$$
Richard Feistenauer GBI Tutorium NR: 31

Jetzt seid ihr dran

Eine Reihe

•
$$a_0 = 0$$

•
$$a_{n+1} = a_n + 2n + 1$$

Jetzt seid ihr dran

Eine Reihe

•
$$a_0 = 0$$

$$a_{n+1} = a_n + 2n + 1$$

Zeige
$$a_n = n^2$$

Weiter gehts

Noch ne Reihe

- $a_0 = 3$
- $a_{n+1} = a_n + 3$

Weiter gehts

Noch ne Reihe

- $a_0 = 3$
- $a_{n+1} = a_n + 3$

Zeige

• Ideen?

Weiter gehts

Noch ne Reihe

- $a_0 = 3$
- $a_{n+1} = a_n + 3$

Zeige

- Ideen?
- $a_n = 3(n+1)$

Und jetzt mal was schweres

Aufgabe

- $x_0 = 0$
- $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + (n+1)(n+2)$
- Tipp: x_1, x_2, x_3, x_4 ausrechnen

Und jetzt mal was schweres

Aufgabe

- $x_0 = 0$
- $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + (n+1)(n+2)$
- Tipp: x_1, x_2, x_3, x_4 ausrechnen
- Wenn keine Idee: $\frac{x(x+1)(x+2)}{3}$

Unnützes Wissen

Anatidaephobia ist die Angst von einer Ente beobachtet zu werden.