

Organização e arquitetura de computadores

Entradas e Saídas

Carlos Neto
Pablo Cavalcante
Isabela de Queiroz

Módulos de E/S

- Interface com o barramento
- Controle de periféricos

Por que utilizar?

- Diversidade de periféricos
- Taxa de transferência de dados incompatível
- Formato de palavras incompatível

Funções

- Interface com o processador e a memória
- Interface com periféricos

Dispositivos Externos (periféricos)

- Sinais de controle
- Dados
- Sinais de estado

Classificações

- Inteligíveis ao ser humano
- Inteligíveis à máquina
- Comunicação

Funções dos módulos de E/S

- Controle e temporização: fluxo de tráfego
- Comunicação com o processador
 - Decodificação de comando
 - Dados
 - Informação de estado
 - Reconhecimento de endereço
- Comunicação como dispositivo
- Buffering de dados
- Detecção de erro

Estrutura do módulo de E/S

E/S programada

- Dados trocados entre o processador e o módulo
- Processador controla a operação de E/S
- Processador verifica o estado do módulo de E/S
 Para realizar a instrução, emite um comando e um endereço

Comando de E/S

Controle

Teste

Leitura

Escrita

E/S programada

Instruções de E/S

Cada dispositivo possui um endereço exclusivo

Mapeada na memória: único espaço para memória e dispositivos de E/S

Independente: espaço para E/S independente da memória

A E/S mapeada na memória tem a vantagem de possuir um conjunto vasto de instruções, porém, o espaço é ocupado na memória

E/S controlada por interrupção

- Processador está executando o programa principal
- Processador emite um comando para o dispositivo externo
- Enquanto o dispositivo n\u00e3o est\u00e1 pronto, o processador executa outras tarefas
- Quando o dispositivo está pronto, emite um sinal de interrupção
- O processador executa a troca de dados com o dispositivo
- O processador volta para o programa principal

E/S controlada por interrupção

- E/S programada e E/S controlada por interrupção
 - Desvantagens
- E/S programada simples
- E/S por interrupção
- Grande volume de dados usar acesso direto à memória (DMA *Direct memory access*)
- uso do barramento
- processador leitura e escrita

Tempo

- Configurações para o módulo DMA
 - Todos os módulos compartilhando o mesmo barramento do sistema

Função de DMA e E/S interligadas

Módulos de E/S conectados a um módulo de DMA

- Controlador de DMA Intel 8737A
 - processador 80x86 + memória DRAM
 - Controlador de DMA flutuante
 - Transferência

- Funcionamento
 - Sinal HOLD
 - Sinal HLDA
- Exemplo: DMA transferindo dados da memória até o disco
 - Dispositivo periférico sinal DREQ requisição de DMA
 - o DMA sinaliza CPU linha HRQ requisição de HOLD
 - o CPU fim do ciclo linha HDLA confirmação de HOLD
 - DMA linha DACK confirmação de DMA

- DMA transferência de dados
 - Endereço do primeiro byte
 - Ativa a MEMR
 - DMA decrementa contador incrementa ponteiro de endereçoDMA
- o desativa HRQ O CPU volta ao controle

• Estrutura:

- 4 canais de DMA
- 5 registradores de controle/comando
- 8 registradores de dados

Bit	Comando	Estado	Modo	Máscara única	Máscara total
D0	H/D memória para memória	Canal 0 atingiu TC	Seleção de canal	Seleção de canal	Limpa/define em 1 o bit de máscara do canal 0
D1	H/D manutenção de endereço do canal 0	Canal 1 atingiu TC			Limpa/define em 1 o bit de máscara do canal 1
D2	H/D controlador	Canal 2 atingiu TC	Verificar/escrever/ler transferência	Limpa/define em 1 o bit de máscara	Limpa/define em 1 o bit de máscara do canal 2
D3	Temporização normal/ comprimida	Canal 3 atingiu TC		Não usado	Limpa/define em 1 o bit de máscara do canal 3
D4	Prioridade fixa/ rotativa	Requisição do canal 0	H/D de autoinicialização		Não usado
D5	Seleção de gravação adiada/ estendida	Requisição do canal 1	Seleção de incremento/ decremento de endereço		
D6	Percepção de DREQ ativo alto/ baixo	Requisição do canal 2			
D7	Percepção de DACK ativo alto/ baixo	Requisição do canal 3	Seleção de modo demanda/único/bloco/ cascata		

Acesso direto à Cache

- O DMA é muito bom, mas não é eficiente em contextos de aumentos significativos de dados para E/S em redes.
 - Switches Ethernet: Grandes quantidades de transferência de dados dos servidores de banco de dados e outros sistemas de alto desempenho
 - Os dispositivos de rede WiFi que lidam com 3,2
 Gbps e 6,76 Gbps
- Solução: Acesso direto à Cache

Modo Tradicional

Acesso direto à Cache: Protótipo Xeon - Intel

- Forma mais simples de DCA;
- Protótipo Xeon da Intel (2006-2010);
- É aplicada apenas em tráfego proveniente de rede;
- Passo a passo:

miro

- Resultado: Evita falhas na Cache
- Evita desperdícios relacionados à Core

Acesso direto à Cache: Injeção de Cache

- Usa cache ao invès da memória principal para buffer dos pacotes
- DCA verdadeiro

Acesso direto à Cache: E/S de dados diretos

Versão mais completa de DCA
Implementada em toda a família Xeon E5 de

processadores

• "A estratégia de DDIO é efetivamente para a aplicação do protocolo de rede, porque os dados de entrada não precisam ser retidos para uso futuro. A aplicação do protocolo vai gravar os dados em um buffer de aplicação, e não há necessidade de armazenar temporariamente em um buffer de sistema."

Acesso direto à Cache: E/S de dados diretos

(a) Transferência normal de DMA à memória

(b) Transferência de DDIO à cache

Canais e processadores de E/S

- Motivação: Exemplo da placa gráfica 3D
- A CPU instrui o controlador de E/S para que o mesmo faça a transferência
- O controlador faz toda a transferência, incluindo processamento/ pré processamento do sinal e verificação de erros.
- Mais rápido, pois:
 - Deixa a CPU livre para realizar outras tarefas (já que temos dados em altas quantidades). Se deixássemos tudo isso ser processado ia ser inviável.

Módulo de E/S aprimorado: Processamento *(Canal de E/S)*

- Instruções ficam armazenadas na memória principal
- CPU (programa/ processo em execução) instrui o módulo de E/S

Módulo de E/S aprimorado: Tipos de (Canal de E/S)

Canal seletor

Módulo de E/S aprimorado: Tipos de (Canal de E/S)

Canal multiplexador

Módulo de E/S com memória (Processador de E/S)

- O módulo passa a ser um computador independente
- Instruções não mais ficam armazenadas na memória principal, e sim na memória do módulo de E/S.
- Envolvimento mínimo da CPU

Virtualização de E/S

Definição visual de Virtualização

ANDRÉ NOVELLO - WORDPRESS

Virtualização de E/S

- Emulação (virtualização completa): Simulação completa do hardware, e o sistema operacional cliente acredita que tem controle exclusivo dos dispositivos de entrada e saída.
- I/O through: O E/S é diretamente conectado na máquina virtual.

Questões

- 1) Sobre o acesso direto à cache, responda:
- a) Quais são as três técnicas principais de acesso direto à cache e suas características?
- b) Fale sobre a importância do acesso direto à cache e sua relevância no contexto em que surgiu.
- 2) Liste e defina brevemente três técnicas para realizar E/S.

Questões

- 3) Assinale a(s) alternativa(s) correta(s):
- I. O Acesso Direto à Memória ou DMA (do inglês, *Direct Memory Access*) permite que certos dispositivos de hardware num computador acessem a memória do sistema para leitura e escrita, independentemente da CPU.
- II. Os canais de DMA são utilizados apenas por dispositivos que requerem alto desempenho e altas taxas de transferência de dados diretamente para a memória RAM, reduzindo dessa forma a utilização do processador.
- III. Na configuração "Função de DMA e E/S interligadas" e "Módulos de E/S conectados a um módulo de DMA" o DMA utiliza o barramento do sistema apenas para a realização de troca de dados com a memória.
- IV. Por serem muito lentos, os canais de DMA caíram em desuso desde a década de 1990 e continuaram sendo utilizados apenas por periféricos de legado, como drives de disquete, placas de som ISA e portas paralelas padrão ECP.

