

United International University (UIU)

Department of Computer Science and Engineering CSE 225: DIGITAL LOGIC DESIGN, Final Summer 2019

Total Marks: 40

Duration: 2 hour

Section A: Answer both of the Questions, 1 and 2.

1.	Using J-K flip-flops , design a synchronous counter that	(a) JK Flip-Flop			[3+	
		Q (t)	Q(t + 1)	J	ĸ	
	goes through the sequence 1, 4, 3, 6, 7, 0, 5 and repeat.	0	0	0	·x	3+
	You have to show (a) the flip-flops' input table, (b)	0 1 1	1 0 1	1 X X	X 1 0	2]
	equations and (c) the logic diagram.				_	
2.	Using D flip-flops, design a sequence recognizer that can recognize the sequence, [1					
	"0110". You have to show (a) state diagram, (b) the flip-flops' input table, (c) equations and (d) the logic diagram.					
	equations and (a) the logic diagram.					

Section B: Answer <u>any two</u> of the Questions from 3, 4 and 5.

3.	(a) Implement a 3-to-8 decoder using two 2-to-4 decoders and a single NOT gate.				
	Label the decoder pin names and their inputs/outputs carefully.				
	(b) Consider a digital system with four binary bits as input and a single bit as output.				
	The binary output is 1 if the number of 1s in the input is less than the number of 0s,				
	otherwise the output is 0. Implement this system using a 8x1 MUX and a single NOT				
	gate only.				
4.	(a) Design a 16x1 multiplexer using 4x1 multiplexers only. Draw the logic diagram	[4+4]			
	and show the working principle with an example.				
	(b) A combinational circuit is defined by the following Boolean function:				
	$F = \overline{x + z} + xyz$				
	Design the circuit with a 2x1 MUX and a decoder (you can not use any other gates).				
5.	Consider a UIU alarm system with five inputs: fire (F-011), water-tank-full (W-001),	[8]			
	burglary (B-100), smoke (S-111) and dust(D-010). For this alarm system an alarm				
	signal (A) is on if any of these events occur a three bit code is shown to denote the				
	incident. In case of multiple events, a priority is followed as: F>B>S>D>W. For this				
	alarm system, find out the simplified expression of the alarm signal (A) and the				
1					

Section C: Answer <u>any one</u> Question from 6 and 7.

6.	A sequential circuit with two <i>D</i> flip-flops <i>A</i> and <i>B</i> , two inputs <i>X</i> and <i>Y</i> , and one	[3+2+2]
	output Z is specified by the following input equations:	
	$D_A = BY + \bar{A}Y, D_B = \bar{Y}, Z = \overline{AB}$	
	(a) Draw the logic diagram of the circuit.	
	(b) Derive the state table.	
	(c) Derive the state diagram.	
7.	(a) Design a 3-bit ripple up counter using negative edge triggered D-flipflops. You	[3+3+2]
	have to draw a neat logic diagram and label all the pins accordingly.	
	(b) Design a 4-bit shift left register using any type of flip-flop. You have to draw a	
	neat logic diagram and label all the pins accordingly.	
	(c) There are four types of flip-flops: S-R, J-K, D and T. Which do you prefer to use	
	in your designs and why?	