

THE NORMAL DISTRIBUTION, Z-SCORES, AND CONFIDENCE INTERVALS

FREQUENCY DISTRIBUTIONS

The histogram or distribution based on our real data

PROBABILITY DISTRIBUTIONS

Ideal/Theoretical

- Like frequency distribution except that its based on probability theory (not real data)
 - as if researcher (hypothetically) collected all possible scores

PROBABILITY THEORY

```
Probability of an event = \frac{number of times this event (object) appears}{total number of possible events (objects)}
```

PROBABILITY THEORY

Probability (P) varies from 0 to 1.0

- \cdot 0.0 = impossible
- 1.0 = certain
- Can be extremely unlikely (.01) to very probable (0.95)

DISTRIBUTIONS AND PROBABILITY

DIFFERENCES B/W PROBABILITY AND FREQUENCY DISTRIBUTIONS

Probability distribution is theoretical ideal

- If we flipped one coin an infinite number of times
- Things would even out to expected probability (.50 probability of heads)
- We can calculate the <u>empirical</u> probability (those based on trials)
 - Take the mean of the trials: heads == 1, tails == 0

ESTIMATES IN FREQUENCY AND PROBABILITY DISTRIBUTIONS

Probability we expect for a given event with (nearly) infinite numbers of any event

Frequency Distribution	Probability Distribution
$ar{X}$	μ
SD or s	σ
SD^2	σ^2

NORMAL CURVE AS A PROBABILITY DISTRIBUTION

Normal Curve used to

- Demonstrate spread of scores (using Standard Deviation)
- Making statements of probability

CHARACTERISTICS OF THE NORMAL CURVE

Symmetrical (no skew)

Mesokurtic

Unimodal

Mean, median, mode all at center

Theoretical (probability distribution)

Probability Distribution	
μ	
σ	
σ^2	

AREA UNDER THE NORMAL CURVE

We know that 100% of all cases that exist fall under the curve

Normal curve has a mean of μ and a standard deviation of σ .

We can use the mean (μ) and standard deviation (σ) to break up normal curve

STANDARD DEVIATION AND AREA UNDER THE NORMAL CURVE

STANDARD DEVIATION AND AREA UNDER THE NORMAL CURVE

STANDARD DEVIATION (BAND) AS A CONFIDENCE LEVEL

68.26% confident that the true population mean (μ) falls between -1 σ to +1 σ

95.44% confident that the true population mean (\mathcal{V}) falls between -2σ to $+2\sigma$

99.74% confident that the true population mean (µ) falls between -3 σ to +3 σ

CONFIDENCE LEVELS AND THEIR CONFIDENCE INTERVALS

- Percentage of cases, around the mean, that are covered
- How confident that your CI range includes the population mean

Confidence Intervals

 Range, in <u>standard deviation units</u>, around the mean, that include the percentage of cases as defined by the Confidence Level

CONFIDENCE LEVELS AND THEIR CONFIDENCE INTERVALS

68.26% Confidence Level

- Confidence Interval: -1σ to $+1\sigma$
 - CI Lower bound: $\mu-1\sigma$
 - CI Upper bound: $\mu + 1\sigma$

95.44% Confidence Level

- Confidence Interval: -2σ to $+2\sigma$
 - CI Lower bound: $\mu 2\sigma$
 - CI Upper bound: $\mu + 2\sigma$

99.74% Confidence Level

- Confidence Interval: -3σ to $+3\sigma$
 - CI Lower bound: $\mu 3\sigma$
 - CI Upper bound: $\mu + 3\sigma$

CALCULATING CONFIDENCE INTERVALS FROM CONFIDENCE LEVELS

If you know the mean (μ) and standard deviation (σ) , you can calculate actual values for

- the Confidence Interval (the Upper Bound and Lower Bound)
 - based on your **Confidence Level**

Both men and women have mean IQ scores of 100, but men have more variability.

- Men have more low-IQ individuals and more high-IQ individuals
- Women have more individuals located toward the average
- Men $\sigma = 15$ points
- Women $\sigma = 10$ points

68.26% of all male's IQ scores fall between which scores?

68.26% of all women's IQ scores fall between which scores?

95.44% of all male's IQ scores fall between which scores?

95.44% of all women's IQ scores fall between which scores?

99.74% of all male's IQ scores fall between which scores?

99.74% of all women's IQ scores fall between which scores?

68.26% of cases (68.26% Confidence Level)

- Lower bound: $\mu-1\sigma$
- Upper bound: $\mu + 1\sigma$

95.44% of cases (95.44% Confidence Level)

- Lower bound: $\mu 2\sigma$
- Upper bound: $\mu + 2\sigma$

99.74% of cases (99.74% Confidence Level)

- Lower bound: $\mu 3\sigma$
- Upper bound: $\mu + 3\sigma$

$$\mu = 100$$
 $\sigma_{Male} = 15$
 $\sigma_{Female} = 10$

CALCULATING CONFIDENCE INTERVALS FROM CONFIDENCE LEVELS

We can calculate confidence interval because we are using a <u>standardized</u> (standard deviation unit) <u>score</u>

CONFIDENCE LEVELS, CONFIDENCE INTERVALS, AND Z-SCORES

Z-score

• The number of Standard Deviation units (σ) a raw score (X) is from the mean (μ)

$$Z = \frac{X - \mu}{\sigma}$$

CONFIDENCE LEVELS, CONFIDENCE INTERVALS, AND Z-SCORES

68.26% Confidence Level (Z = 1)

- CI Lower bound: $\mu 1\sigma$
- CI Upper bound: $\mu + 1\sigma$

95.44% Confidence Level (Z = 2)

- CI Lower bound: $\mu-2\sigma$
- CI Upper bound: $\mu + 2\sigma$

99.74% Confidence Level (Z = 3)

- CI Lower bound: $\mu 3\sigma$
- CI Upper bound: $\mu + 3\sigma$

$$Z = \frac{X - \mu}{\sigma}$$

CONFIDENCE LEVELS, CONFIDENCE INTERVALS, AND Z-SCORES

Calculate Confidence Intervals

Use Z associated with Confidence Level

$$\mu \pm Z\sigma$$

$$Z = \frac{X - \mu}{\sigma}$$

<u>68.26%</u> of all male's IQ scores fall between which scores?

<u>68.26%</u> of all women's IQ scores fall between which scores?

95.44% of all male's IQ scores fall between which scores?

• 7?

95.44% of all women's IQ scores fall between which scores?
- Z?

99.74% of all male's IQ scores fall between which scores?

72

99.74% of all women's IQ scores fall between which scores?

72.

$$\mu = 100$$
 $\sigma_{Male} = 15$
 $\sigma_{Female} = 10$

Often, we don't have data on the full population, so we won't have a probability distribution... so we don't know...

- *\mu*
- σ

Instead, we have data on a sample, so we know...

- \bar{X} (not μ)
- SD (not σ)

So we change our Z-Score formula to:

$$Z_i = \frac{X_i - \bar{X}}{SD}$$
 (instead of $Z = \frac{X - \mu}{\sigma}$)

Where Z_i is a Z score calculated for a specific raw score (X_i)

We also change our CI formula to:

$$\bar{X} \pm Z\sigma_{\bar{X}}$$
 (instead of $\mu \pm Z\sigma$)

Where $\sigma_{\bar{X}}$ (<u>standard error of the mean of the sampling distribution</u>), or Standard Error (SE) is an estimate of the population standard deviation (σ), and is calculated as such:

$$\sigma_{ar{X}} = \mathtt{SE} = rac{SD}{\sqrt{N}}$$

MORE ON CONFIDENCE INTERVALS (FOR SAMPLES)

However, 68.26% confident isn't that confident. We're only going to be right 68.26% of the time.

To have a <u>better probability</u> of finding the true population mean, we need a <u>wider</u> and <u>less precise interval</u>

- 95% confidence interval (only wrong 5% of the time)
- 99% confidence interval (only wrong 1% of the time)

MORE ON CONFIDENCE INTERVALS (FOR SAMPLES)

Confidence Interval for 95% Confidence Level is $\mu \pm 2\sigma$, not exactly 2σ exact Confidence Level is 95.44%

Confidence Interval for 99% Confidence Level is $\mu \pm 3\sigma$, not exactly 3σ exact Confidence Level is 99.74%

MORE ON CONFIDENCE INTERVALS (FOR SAMPLES)

CI for 95% Confidence Level

- Within $1.96\sigma_{ar{X}}$ of mean
 - $\bar{X} \pm 1.96 \sigma_{\bar{X}}$
- 95% confident that true population mean falls within this range

CI for 99% Confidence Level

- Within $2.58\sigma_{ar{X}}$ of mean
 - $\bar{X} \pm 2.58 \sigma_{\bar{X}}$
- 99% confident that true population mean falls within this range