Creating Your First Ultra96V2 Application

Course Workbook

Table of Contents

About this Workbook	Page 3

Pre-Lab: Workshop Pre-requisites Page 4

Lab 1: Understanding Project creation & Flow Page 7

About this Workbook

The contents of this workbook are created by Adiuvo Engineering & Training, Ltd.

If you have any questions about the contents, or need assistance, please contact Adam Taylor at adam@adiuvoengineering.com.

Pre-LabWorkshop Pre-requisites

Required Hardware

Ultra96V2 JTAG / USB Pod Ultra96V2 Power Supply

Downloads and Installations

Step 1 – Download and install the following at least 1 day prior to the workshop. This may take a significant amount of time and drive space.

Watch the video available <u>here</u> to show how to configure the installation

Vitis 2021.1	Download

Lab 1 Project creation & Flow

Step 1 – Open Vivado 2021.1 – Click Create New Project

Step 2 – Click Next

Step 3 – Enter a project name and location to save the project, click next

Step 3 – Select RTL project and check do not include sources, click next

Step 4 – Select Vendor Avnet and Ultra96V2, click next

Step 5 – Click Finish

Step 6 - Click on Create Block Diagram - This will open IP editor

Step 7 – Leave the settings as default and click OK

Step 8 – Click on the + button to open the IP list

Step 9 – In the search bar, type Ultra and select the Zynq UltraScale+ MPSoC block. Double click on this to insert the IP block.

Step 10 – Select Run Block Automation – This will configure the Processing System for the ULTRA96V2 setting e.g. DDR timing, Clocking etc.

Step 11 – Click on the OK button, the automation will run and configure the processing block for the Ultra96V2.

Step 12 - Click on the + Symbol

Step 13 - Type in BRAM and double click on AXI BRAM Controller to add the IP

Step 14 - Double click on the AXI BRAM Controller

Step 15 – Change the Number of BRAM Interfaces to 1, click OK

Step 16 – Click on Run Connection Automation

Step 17 – Check all the boxes, click OK

Step 18 – Click on the Regenerate Layout – This will mage the diagram more logical

Step 19 – Double Click on the BRAM Block

Step 20 – Change the mode to Standalone, make sure check use 32 bit addressing is set

Step 21 - Check load Init File, click on edit and when prompted check create

Step 22 - Click Yes

Step 23 – Select a location inside the project to save the file and select OK

Step 24 – Enter the following

Memory Initialization Radix = 16 Memory Initialization Vector = 4841434b, 53544552, 20554c54, 52413936, 20545554, 4f524941, 0000004c,

Click Save, then Validate before closing

Step 25 – Click OK

Step 26 - Connect MAXIHPM0_FPD_ACLK to MAXIHPM1_FPD_ACLK

Step 27 – Click on Validate the design

Step 28 - Click On OK the warning is due to the change from AXI BRAM control

Step 29 – In the sources tab, right click on the block diagram and select create HDL Wrapper

Step 30 – leave the options as set and let Vivado manage the wrapper, click OK

Step 31 – Click on Generate Bit Stream

Step 32 – Wait until the bit stream is complete

Step 33 – From the File Menu select Export->Export Hardware

Step 34 - Click on Next

Step 35 – Ensure Include Bitstream is selected and click OK

Step 36 – Leave the defaults as is and click on Next

Step 37 - Click Finish

Step 38 – From the Tools menu select Launch Vitis IDE

Step 39 – At the dialog, create a new folder in your project directory and select launch

Step 40 – Click on Create Application Project

Step 41 - Click on next

Step 42 - Click on Create a New Platform from Hardware (XSA) and select browse

Step 43 – Select the exported XSA and Click Open

Step 44 - Click on OK

Step 45 – Enter a project name and select Next

Step 46 - Click Next

Step 47 - Select Hello World and click finish

Step 48 - From the application / src folder double click and open the helloworld.c

Step 49 - Click CNTRL-A to select all the code in the file and delete it

Step 50 - Copy and paste in the code from the Github repo session one lab

Step 51 - Click on the Hammer to Build the project

Step 52 - It will take a few minutes to compile. Successful completion will show as below

Step 53 - Connect the JTAG Pod to the Ultra96V2, connect the USB and Power Cable. Check the book Mode is JTAG. Power on the board.

Copyright 2020 Adiuvo Engineering & Training, Ltd.

Step 54 - From the assistant view, right click on debug and select debug-> launch on Hardware. This will configure the Ultra96V2, download the PL and the application.

Copyright 2020 Adiuvo Engineering & Training, Ltd.

Step 55 - The application will pause at the first instruction on the Ultra96V2. Click the Run Arrow and check the lights on the Ultra96V2.

Step 56 - Check the LEDs if the secret code is read from the BRAM the LEDS will flash on and off alternatively. If the word fails all four LEDs will flash on and off together.

Copyright 2020 Adiuvo Engineering & Training, Ltd.