цифровой 7 сезон: ии

ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗАТОР ОБРАТНОЙ СВЯЗИ СТУДЕНТОВ

Команда: random.randname()

Аминев Роман Белоусов Максим Левитская Диана Серов Иван Строкова Анастасия

СОДЕРЖАНИЕ

Постановка задачи	3
Схема базы данных	4
МL-решение	7
Telegram-бот	8
Модуль отчетов	9
UML-диаграммы	12

ПОСТАНОВКА ЗАДАЧИ

Условие задачи

Для повышения эффективности обучения и улучшения качества программ требуется обрабатывать большой объем обратной связи. Для этого необходимо разработать прототип системы для интеллектуального анализа обратной связи студентов. Система должна включать в себя чат-бота для сбора данных от студентов и алгоритмы искусственного интеллекта для обработки и классификации полученной информации. Чат-бот задает студентам открытые вопросы после вебинаров и сессий, собирая ответы в текстовом формате. Далее алгоритмы ИИ анализируют собранные ответы, выделяя ключевые моменты и классифицируя их на информативные и неинформативные, а также на положительные и отрицательные отзывы.

Общая идея решения

Чат-бот OpnioMate, предназначенный для анализа преподавателем или автором курса обратной связи студентов по вебинарам. Бот использует технологии искусственного интеллекта для классификации ответов студентов по нескольким категориям для более удобной обработки и извлечения полезной информации. Главной технической особенностью бота является качество его классификации и больше количество визуальных интерпретаций фидбека, что делает его идеальным инструментом для выявления точек роста образовательных курсов. Бот предоставляет уникальную методику создания визуальных и текстовых отчетов, подготовленных для анализа.

Преимущества решения

- *Ролевая модель* (преподаватель + студент): модель позволяет использовать программное обеспечение как студентам, предоставляющих ответы на открытые вопросы, так и преподавателям, получающим рекомендации по проведению вебинаров.
- Внесение информации о новых вебинарах: пользователь с ролью «Преподаватель» может самостоятельно через Telegram-бот занести информацию о наименовании и дате планируемого вебинара. Это позволяет повысить гибкость управления программным обеспечением (nocode).
- Точность и эффективность моделей: в процессе разработки были проведены несколько экспериментов с нейронными сетями, позволившие получить высокие метрики качества (в том числе благодаря обогащению датасета).
- *Легкость интерпретации данных:* разнообразие графиков позволяют визуально понять сильные стороны, а также точки роста.
- Использование широко распространенного мессенджера для работы:
 Telegram на сегодняшний день в России обгоняет по популярности Whats
 App и Viber, что говорит о легкости использования бота (нет потребности в дополнительной установке программ на мобильное устройство).

сезон: ии

СХЕМА БАЗЫ ДАННЫХ

STUDENT

Студент

Атрибут	Тип данных	Комментарий
ID_STUDENT (PK)	Integer	Уникальный идентификатор
FIRST_NAME	String	Имя
SECOND_NAME	String	Фамилия
LAST_NAME	String	Отчество
EMAIL	String	Электронная почта

TEACHER

Преподаватель

Атрибут	Тип данных	Комментарий
ID_TEACHER (PK)	Integer	Уникальный идентификатор
FIRST_NAME	String	Имя
SECOND_NAME	String	Фамилия
LAST_NAME	String	Отчество
EMAIL	String	Электронная почта

WEBINAR

Вебинар

Атрибут	Тип данных	Комментарий
ID_WEBINAR (PK)	Integer	Уникальный идентификатор
NAME_WEBINAR	String	Наименование
DATE_WEBINAR	Date Time	Дата
ID_RESULT (FK)	String	Связь с таблицей с рекомендациями

STUDENT_WEBINAR

Устранение связи многие-ко-многим (студент может принимать участие во многих вебинарах, на вебинаре могут присутствовать несколько студентов)

Атрибут	Тип данных	Комментарий
ID_STUDENT_WEBINAR	Integer	Уникальный идентификатор
(PK)		
ID_STUDENT (FK)	Integer	Уникальный идентификатор
ID_WEBINAR (FK)	Integer	Уникальный идентификатор

TEACHER_WEBINAR

Устранение связи многие-ко-многим (один преподаватель может вести много вебинаров, в одном и том же вебинаре могут обучать несколько преподавателей-спикеров)

Атрибут	Тип данных	Комментарий
ID_TEACHER_WEBINAR	Integer	Уникальный идентификатор
(PK)	_	, ,
ID_TEACHER (FK)	Integer	Уникальный идентификатор
ID_WEBINAR (FK)	Integer	Уникальный идентификатор

SURVEY

Анкета студента и столбцы, которые мы будем выводить в submission

Атрибут	Тип данных	Комментарий
ID_SURVEY (PK)	Integer	Уникальный идентификатор
ID_WEBINAR (FK)	Integer	Уникальный идентификатор
ID_STUDENT (FK)	Integer	Уникальный идентификатор
IS_READY	Integer	Балл от 1 до 10 о готовности к
		прохождению опроса
TIMESTAMP	Date Time	Время из train
QUESTION1	String	Первый вопрос
QUESTION2	String	Второй вопрос
QUESTION3	String	Третий вопрос
QUESTION4	String	Четвертый вопрос
QUESTION5	String	Пятый вопрос
HASH	Integer	Хэш
IS_RELEVANT	Boolean	Релевантность ответа (1 – да, 0 – нет)
OBJECT	Integer	
IS_POSITIVE	Boolean	Окраска отзыва (1 – положительный,
		0 – отрицательный)

RESULTS

Обработанные результаты анкеты (текстовые рекомендации о вебинаре, возможно потребуется корректировка БД в этой части после выборов алгоритмов ИИ)

Атрибут	Тип данных	Комментарий
ID_RESULTS (PK)	Integer	Уникальный идентификатор
CONTENT_RECOMMEND	String	Рекомендации о наполненности
		курса, контенте
TEACHER_RECOMMEND	String	Рекомендации о преподавателе
ORGANIZATION_RECOM	String	Рекомендации об организации
MEND		
POSITIVE_MOMENT	String	Общие положительные моменты
NEGATIVE_MOMENT	String	Общие негативные моменты

ML-РЕШЕНИЕ

Классификация отзывов на информативные/неинформативные и позитивные/негативные

Инструментарий:

- RuBERT адаптация популярной языковой модели BERT для русского языка, использована для классификации текста (определение тональности, релевантности, тематики);
- AutoTokenizer предобработка текста, обеспечение согласованности и совместимости между токенизацией и предварительно обученной моделью;
- AutoModelForSequenceClassification решение задачи определения категории или метки для входной последовательности текста.

Разработаны следующие функции:

- classificate классифицирует с помощью переданного классификатора (path: str путь к модели, return: int предсказанная метка)
- classificate_relevant классифицирует по информативности (answers: list[str] - ответы студента на вопросы, return: int - метка класса по релевантности)
- classificate_positive классифицирует по сантименту (answers: list[str] ответы студента на вопросы, return: int метка класса по сантименту)
- classificate_object классифицирует по объекту отзыва (answers: list[str] ответы студента на вопросы, return: int метка класса по объекту отзыва)

Демонстрация работы модели:

	Reviews	is_relevant	is_positive	object
5714	доступно и понятно все	0	1	1
5715	шикарнейший курс, во многом помог подготовитьс	1	1	1
5716	Курс хороший, но есть местами недочеты.	0	0	1
5717	хороший курс	0	1	1
5718	444	0	1	1

TELEGRAM-БОТ

Telegram-бот

Инструментарий:

- pyTelegramBotAPI создание ботов Telegram с различными функциями, такими как отправка и получение сообщений, обработка команд, inline-клавиатур, файлов и др.
- AudioSegment работа со звуковыми данными для распознавания голосовых сообщений, если студент предоставляет обратную связь с помощью этой функции.
- mysql.connector работа с базами данных MySQL в Python.

Классы:

- User хранение информации о пользователе (имя, фамилия, email, роль)
 - process_firstname_step получает и сохраняет имя пользователя
 - process_secondname_step получает и сохраняет фамилию пользователя
 - process_lastname_step получает и сохраняет отчество пользователя
 - process_email_step получает и сохраняет email пользователя
 - process_role_step получает и сохраняет роль пользователя (студент или преподаватель)
- Webinar хранение информации о вебинаре (название, дата)
 - add_webinar_info проверяет, является ли пользователь преподавателем
 - process_webinar_step создание новых вебинаров.

Демонстрация работы:

модуль отчетов

Разработанная визуализация

 График числа участвовавших студентов в опросе после конкретного вебинара survey_statictics

• Круговая диаграмма по соотношению релевантности отзывов к вебинарам relevance_of_reviews

Круговая диаграмма по соотношению положительных/отрицательных отзывов positive_or_negative

 Распределение длины комментариев по каждому вопросу distribution_of_response_lengths

Объекты негативных моментов negative_reviews_of_the_objects

Также были выведены облака слов и биграммы по каждому из вопросов. Пример тем, которые хотят дополнительно изучить студенты (question_5)

UML-ДИАГРАММЫ

Диаграмма прецедентов

Во взаимодействии с Telegram-ботом участвуют два актора: Студент (авторизуется и предоставляет обратную связь) и Преподаватель (авторизуется, создает новые вебинары, просматривает обратную связь и выгружает отчеты).

Диаграмма активности

Возможно предусмотреть три варианты работы: работа Студента, работа Преподавателя, работа МL-инженера. В первом случае Студент только авторизуется и предоставляет обратную связь. Во втором случае Преподаватель может добавлять, как новые вебинары, так и получать агрегированную обратную связь от студентов, а также скачивать визуализации в Excel-формате. В третьем случае через какое-то время накопится новый пул данных, на основании которых ML-инженеру потребуется дообучить модель, чтобы метрики качества продолжали находиться на определенном уровне.

Диаграмма компонентов

Решение состоит из базы данных MySQL, ML-модуля (предобработка текста, обучение нейронных сетей решению задачи классификации текстов, визуализация), а также непосредственно модуль Telegram-бота.

Диаграмма развертывания

Для демонстрации результатов будет арендован сервер, где будет запущен Telegram—от. В рамках MVP не предусмотрено автоматическое дообучение моделей, однако в рамках масштабирования проекта возможна настройка CI/CD процесса дообучения моделей на GitHub Actions при достижении определенного количества новых опросов в базе данных.