化工原理

化工原理 第一章 流体流动

流体的压力

流体静力学

流体的压力

流体的密度

静力学基本方程式

管内流体流动的基本方程式

流量与流速

连续性方程与伯努利方程式

管内流体流动现象

第四章 传热

热传导

傅里叶定律

热导率

平壁的稳态热传导

单层平壁的稳态热传导

多层平壁的稳态热传导

圆筒壁的稳态热传导

单层圆筒壁的稳态热传导

多层圆筒壁的稳态热传导

对流传热

对流传热方程

影响对流传热系数的因素

对流传热的特征数关系式

流体无相变时对流传热系数的经验关系式

流体在管内强制对流传热

圆形直管强制湍流时的对流传热系数 圆形直管内过渡区时的对流传热系数

圆形直管内强制层流时的对流传热系数

在非圆形管内强制对流传热系数

流体在管外强制对流传热

大空间自然对流传热

流体有相变时的对流传热

蒸汽在水平管外膜状冷凝时的对流传热系数

两流体间传热过程的计算

热量衡算

传热平均温度差

变温传热平均温度差

总传热系数

热辐射

两固体间的辐射传热

辐射传热速率的计算

第一章 流体流动

流体静力学

流体的压力

$$egin{aligned} p_{_{\! ext{orange}}} &= p_{_{\! ext{orange}, \gamma}} + p_{_{\! ext{orange}}} \ p_{_{\! ext{orange}}} &= p_{_{\! ext{orange}, \gamma}} - p_{_{\! ext{orange}}} \end{aligned}$$

流体的密度

$$\rho = \frac{m}{V}, \rho - kg/m^3$$

$$\rho = \frac{pM_m}{RT}, R = 8.314$$

静力学基本方程式

$$p=p_0+
ho gh \ h=rac{p-p_0}{
ho g}$$

管内流体流动的基本方程式

流量与流速

$$q_V=Au, u=rac{q_V}{A}, A=rac{\pi d^2}{4}, d=\sqrt{rac{q_V}{0.785u}}$$
 $q_m=
ho q_V=
ho Au$ $\omega=rac{q_m}{A}=rac{
ho Au}{A}=
ho u, \omega-kg/(m^2\cdot s)$

连续性方程与伯努利方程式

管内流体流动现象

第四章 传热

热传导

傅里叶定律

$$Q = -\lambda A \frac{dt}{dx}$$

Q(W): 导热速率

 $A(m^2)$:

 $\lambda(W/m\cdot K)$:

 $\frac{dt}{dx}(K/m)$:

热导率

$$\lambda = -rac{Q}{Arac{dt}{dx}}$$

热导率:数值上等于温度梯度为 $1^{\circ}C/m$,单位时间通过单位传热面积的热量

平壁的稳态热传导

单层平壁的稳态热传导

传热速率方程式

$$Q=rac{\lambda}{b}A(t_1-t_2)=rac{t_1-t_2}{rac{b}{\lambda A}}=rac{\Delta t}{R}=rac{6$$
 热推动力

 Δt :传热推动力

 $R = \frac{b}{\lambda A}$:热阻

单位面积的传热速率(W/m^2)

$$q=rac{Q}{A}=rac{\lambda}{b}(t_1-t_2)$$

多层平壁的稳态热传导

$$Q=rac{\Delta t}{rac{b_1}{\lambda_1 A}+rac{b_2}{\lambda_2 A}+rac{b_3}{\lambda_3 A}}=rac{\Delta t}{\sum_{i=0}^m R_i}=rac{$$
总推动力总热阻

多层平壁稳态热传导的总推动力等于各层推动力之和,总热阻等于各层热阻之和。

并且,因各层的传热速率相等,所以各层的传热推动力与其热阻之比值都相等,也等于总推动力与总热阻之比值。

在多层平壁中,热阻大的壁层,其温度差也大。

圆筒壁的稳态热传导

单层圆筒壁的稳态热传导

$$Q=2\pi l\lambdarac{t_1-t_2}{\lnrac{r_2}{r_1}}=rac{\Delta t}{R}$$

单层平壁类似形式计算式

$$egin{aligned} Q &= rac{\lambda}{b} A_m (t_1 - t_2) = rac{t_1 - t_2}{rac{b}{\lambda A_m}} \ A_m &= rac{A_2 - A_1}{\ln rac{A_2}{A_1}} \quad A_m = 2 \pi r_m l \quad r_m = rac{r_2 - r_1}{\ln rac{r_2}{r_1}} \end{aligned}$$

近似计算

$$if \quad A_2/A_1 < 2, A_m = rac{A_2 + A_1}{2}; \ if \quad r_2/r_1 < 2, r_m = rac{r_1 + r_2}{2}$$

热流密度

$$q_l = rac{Q}{l} = 2\pi\lambdarac{t_1-t_2}{\lnrac{r_2}{r_1}}$$

多层圆筒壁的稳态热传导

$$Q = 2\pi l rac{t_1 - t_4}{rac{b_1}{\lambda_1 A_{m1}} + rac{b_2}{\lambda_2 A_{m2}} + rac{b_3}{\lambda_3 A_{m3}}} (\Xi \, \overline{\Bbb R} \,)$$

对流传热

对流传热方程

$$Q = lpha A \Delta t = \Delta t / (rac{1}{lpha A})$$
 $\Delta t = rac{Q}{lpha A}$

影响对流传热系数的因素

对流传热的特征数关系式

流体无相变时对流传热系数的经验关系式

流体在管内强制对流传热

圆形直管强制湍流时的对流传热系数

 $Re > 10^4$

对低黏度流体

$$lpha=0.023rac{\lambda}{d}Re^{0.8}Pr^n \ Re=rac{du
ho}{\mu} \ Pr=rac{c_p\mu}{
ho}$$

圆形直管内过渡区时的对流传热系数

Re = 2300 - 10000, 流体流动处于过渡区

$$lpha=0.023rac{\lambda}{d}Re^{0.8}Pr^nf$$
 $Re=rac{du
ho}{\mu}$ $Pr=rac{c_p\mu}{
ho}$ 校正系数 $f=1-rac{6 imes10^5}{Re^{1.8}}$

圆形直管内强制层流时的对流传热系数

 $Re < 2300, RePr^{\frac{d}{l}} > 10$,流体流动处于强制层流

$$lpha=1.86rac{\lambda}{d}(RePrrac{d}{l})^{rac{1}{3}}(rac{\mu}{\mu_w})^{0.14}$$

当 $Gr > 2.5 \times 10^4$ 时,需乘以校正系数

$$f=0.8(1+0.015Gr^{1/3})$$
 $Gr=rac{eta g\Delta td^3
ho^2}{\mu^2}$

在非圆形管内强制对流传热系数

特征尺寸改为当量直径de

$$d_e = 4 imes rac{$$
流体流动截面积 $}{$ 润湿周边

流体在管外强制对流传热

大空间自然对流传热

流体有相变时的对流传热

蒸汽在水平管外膜状冷凝时的对流传热系数

$$lpha = 0.725(rac{
ho^2 g \lambda^3 r}{n^{2/3} \mu d_0 \Delta t})$$

两流体间传热过程的计算

热量衡算

$$Q = q_{m1}(H_1 - H_2) = q_{m2}(h_1 - h_2) \ Q = q_{m1}c_{p1}(T_1 - T_2) = q_{m2}c_{p2}(t_1 - t_2)$$

传热平均温度差

变温传热平均温度差

$$egin{align} \Delta t_m &= rac{\Delta t_1 - \Delta t_2}{\lnrac{t_1}{t_2}} \ if &rac{\Delta t_1}{\Delta t_2} < 2, \Delta t_m = rac{\Delta t_1 + \Delta t_2}{2} \ \end{dcases}$$

传热面积

$$A=rac{Q}{K\Delta t_m}$$

总传热系数

平壁与薄壁管的总传热系数计算

$$rac{1}{K}=rac{1}{lpha_1}+R_{d1}+rac{b}{\lambda}+R_{d2}+rac{1}{lpha_2}$$

忽略热阻

$$rac{1}{K} = rac{1}{lpha_1} + rac{1}{lpha_2} \ K = rac{lpha_1 lpha_2}{lpha_1 + lpha_2}$$

热辐射

两固体间的辐射传热

辐射传热速率的计算

$$Q_{1-2} = C_{1-2} arphi A [(rac{T_1}{100})^4 - (rac{T_2}{100})^4]$$

总辐射传热系数:

一物体被另一物体包围

$$C_{1-2}=rac{C_b}{rac{1}{arepsilon_1}+rac{A_1}{A_2}(rac{1}{arepsilon_2}-1)}$$