Monte Carlo Simulation of Two-dimensional Ising model

Tong Li

Department of Physics & Astronomy Michigan State University

May 3, 2018

Outline

Introduction

Properties of 2D Ising model from its analytical solution

The solution of 2×2 Ising model

Properties of phase transition in 2D Ising model

Monte Carlo methods for Ising model

Results and discussion

Results of 2×2 case

Convergence and probability distribution

Phase transition

Ising model is a simple but important model for the explanation of ferromagnetism.

- Ising model is a simple but important model for the explanation of ferromagnetism.
- Assumption 1: Atomic spins are located on a *N*-dimensional lattice grid, and these spins only have two discrete states, up $(\sigma = 1)$ or down $(\sigma = -1)$.

- Ising model is a simple but important model for the explanation of ferromagnetism.
- Assumption 1: Atomic spins are located on a *N*-dimensional lattice grid, and these spins only have two discrete states, up $(\sigma = 1)$ or down $(\sigma = -1)$.
- Assumption 2:
 Only neighboring spins can interact with each other, and thus its Hamiltonian can be written as

$$H = -J \sum_{\langle kl \rangle}^{N} \sigma_k \sigma_l \,, \tag{1}$$

where J > 0 and $\langle kl \rangle$ indicates that we only sum over nearest neighbors.

- Only one- and two-dimensional cases has been solved analytically and they show several interesting properties of phase transition.
- Therefore, it is necessary to develop a numerical method for the simulation of Ising model.

- Only one- and two-dimensional cases has been solved analytically and they show several interesting properties of phase transition.
- Therefore, it is necessary to develop a numerical method for the simulation of Ising model.
- ▶ In this work we focus on the Monte Carlo simulation of 2D Ising model, which can be benchmarked with analytical solution.

- Only one- and two-dimensional cases has been solved analytically and they show several interesting properties of phase transition.
- Therefore, it is necessary to develop a numerical method for the simulation of Ising model.
- ▶ In this work we focus on the Monte Carlo simulation of 2D Ising model, which can be benchmarked with analytical solution.
- Our numerical framework can also be easily extended to higher dimensions.

Outline

Introduction

Properties of 2D Ising model from its analytical solution The solution of 2×2 Ising model Properties of phase transition in 2D Ising model

Monte Carlo methods for Ising model

Results and discussion

Results of 2 imes 2 case Convergence and probability distribution Phase transition

Properties of 2D Ising model from its analytical solution

To be filled.

Properties of phase transition in 2D Ising model

To be filled.

Outline

Introduction

Properties of 2D Ising model from its analytical solution The solution of 2×2 Ising model Properties of phase transition in 2D Ising model

Monte Carlo methods for Ising model

Results and discussion

Results of 2×2 case Convergence and probability distribution Phase transition

Monte Carlo methods for Ising model

To be filled.

Outline

Introduction

Properties of 2D Ising model from its analytical solution. The solution of 2×2 Ising model. Properties of phase transition in 2D Ising model.

Monte Carlo methods for Ising model

Results and discussion

Results of 2×2 case Convergence and probability distribution Phase transition

Results of 2×2 case

Table 1: Results for 2×2 case with temperature T = 1.0. Analytical results are provided for benchmark. Energy is in the unit of J.

MC	10	100	1000	10000	Analytical
$\langle E \rangle$	-7.2	-7.92	-7.986	-7.988	-7.98393
$\langle M \rangle$	3.75	3.975	3.9955	3.99625	3.99263
$\langle E^2 angle$	57.6	63.36	63.888	63.904	63.8714
$\langle M^2 angle$	14.7	15.87	15.977	15.9805	15.9732
C_V	5.76	0.6336	0.111804	0.095856	0.128329
<u> </u>	0.6375	0.069375	0.0129798	0.0104859	0.0320873

Figure 1: Energy as a function of the number of Monte Carlo cycles for $T=1.0,\ L=20.$

Figure 2: Magnetization as a function of the number of Monte Carlo cycles for $T=1.0,\ L=20.$

Figure 3: Energy as a function of the number of Monte Carlo cycles for $T=2.4,\ L=20.$

Figure 4: Magnetization as a function of the number of Monte Carlo cycles for $T=2.4,\ L=20.$

Figure 5: Distribution of energy for T=1.0, L=20.

Figure 6: Distribution of magnetization for T=1.0, L=20.

Figure 7: Distribution of energy for T=2.4, L=20.

Figure 8: Distribution of magnetization for T=2.4, L=20.

Figure 9: Magnetization per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

Figure 10: Energy per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

Figure 11: Heat capacity per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

Figure 12: Susceptibility per spin as a function of temperature. Temperature step is 0.02 and the number of Monte Carlo cycles is 10^6 .

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu},$$
 (2)

where a is a constant and $\nu=1$, we can estimate T_C for an infinitely large system from the results with finite L.

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu}, \qquad (2)$$

where a is a constant and $\nu=1$, we can estimate T_C for an infinitely large system from the results with finite L.

▶ It is quite difficult to determine the critical temperature from previous figures because our resolution is not small enough.

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu}, \qquad (2)$$

where a is a constant and $\nu = 1$, we can estimate T_C for an infinitely large system from the results with finite L.

- ▶ It is quite difficult to determine the critical temperature from previous figures because our resolution is not small enough.
- From the peaks of χ we estimate that $T_C(L=60)=2.3$ and $T_C(L=140)=2.28$. Then we obtain

$$\begin{cases} a = 2.1, \\ T_C(L = \infty) = 2.265. \end{cases}$$
 (3)

By the following equation

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu}, \qquad (2)$$

where a is a constant and $\nu=1$, we can estimate T_C for an infinitely large system from the results with finite L.

- ▶ It is quite difficult to determine the critical temperature from previous figures because our resolution is not small enough.
- From the peaks of χ we estimate that $T_C(L=60)=2.3$ and $T_C(L=140)=2.28$. Then we obtain

$$\begin{cases} a = 2.1, \\ T_C(L = \infty) = 2.265. \end{cases}$$
 (3)

Our estimation is close to the analytical result 2.269.

Outline

Introduction

Properties of 2D Ising model from its analytical solution. The solution of 2×2 Ising model. Properties of phase transition in 2D Ising model.

Monte Carlo methods for Ising model

Results and discussion

Results of 2 imes 2 case Convergence and probability distribution Phase transition

▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- ▶ As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.
- ▶ In phase transition, the behaviors of different physical quantities agree well with the analytical solution.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.
- ▶ In phase transition, the behaviors of different physical quantities agree well with the analytical solution.
- ▶ From the peak of susceptibility we estimate that the critical temperature for infinitely large lattice is 2.265, which is close to the analytical value 2.269.

- ▶ Our numerical results of L=2 case agrees well with the analytical values, and calculations of L=20 case to confirm that the system converges fast to equilibrium in the simulation.
- As expected the energy distribution centers around the mean value and a higher temperature leads to a broader distribution.
- ▶ In phase transition, the behaviors of different physical quantities agree well with the analytical solution.
- ▶ From the peak of susceptibility we estimate that the critical temperature for infinitely large lattice is 2.265, which is close to the analytical value 2.269.
- ► This work provides a powerful tool for the simulation of 2D Ising model, which can be extended to three-dimensional case.

Acknowledgment

I am grateful for the sincere guidance from Prof. Morten Hjorth-Jensen.

Thanks for your attention! Any question?