Quiz 3 (Maximum Flow Problem)

Quiz

1) A network can have only one source and one sink. 2)Ford Fulkers in fact uses the idea of Naïve Greedy Algorithm.	son's Algorithm
1) is True ,2) is True.	
1) is True ,2) is False.	
1) is False ,2) is True.	
1) is False,2) is False.	
	Clear selection

The maximum flow for the given graph is (where the first value is the flow value and the second value is the capacity of the edge)?

- Eighteen
- Nineteen
- Twenty
- Twenty one
- None of the above

Clear selection

A given graph can have multiple minimum capacity cut. Let (A,B) be an s-t cut in a flow network G. The cut (A,B) may not be minimum capacity cut. fout(A) represents flow out of A and fin(A) represents flow into A. Which one holds true for the cut (A,B):

- $\bigcap fout(A) = fout(B)$
- \bigcap Fin(A) = Fin(B)
- Fout(A) =Fin(B)
- no such relation exists

You are given an undirected graph with each edge having a capacity of 1 unit (i.e., a maximum of one unit of water can flow in both directions). Suppose you ran the Ford-Fulkerson algorithm between a pair of vertices s and t on this graph and it terminated with a final flow of 1. Which of the following is the most general statement one can make about the original graph?

- There exists only one unique path from s to t in the graph.
- There exists one edge which can be removed to disconnect the graph into two pieces, one containing s and the other containing t.
- The graph is a tree, with s as the root and t as one of the leaves.
- None of the above, as network flow only works for directed graphs

Find the maximum flow in the following graph.

- Ten
- Five
- Seven
- Six

The first step in the naïve greedy algorithm is?

- adding flows with higher values
- reversing flow if required
- analyzing the zero flow
- calculating the maximum flow using trial and error

An efficient max-flow algorithm can be used to efficiently compute a maximum matching of a given bipartite graph.
F(flase)
T(true)
Can't be determined
may be false
Consider a flow network (graph) G(V,E) and some cut(A, B) such that s belongs
to A and t belongs to B and some flow value v(f) corresponding to some feasible flow f(follows capacity and conservation conditions). Which of the following holds true always
to A and t belongs to B and some flow value $v(f)$ corresponding to some feasible flow f(follows capacity and conservation conditions). Which of the following
to A and t belongs to B and some flow value v(f) corresponding to some feasible flow f(follows capacity and conservation conditions). Which of the following holds true always
to A and t belongs to B and some flow value $v(f)$ corresponding to some feasible flow f(follows capacity and conservation conditions). Which of the following holds true always $v(f) \le \text{capacity of cut}(A,B)$

- Nineteen
- Fifteen
- Seventeen
- Fourteen

Which algorithm is used to solve a maximum flow problem?

- Prim's Algorithm
- Kruskal's Algorithm
- O Dijkstra's Algorithm
- Ford Fulkerson Algorithm

Initially, the amount of flow carried by all the edges are
Variable in nature
Constant in nature
opositive rational values
opositive integer values
None of the above

Maximum possible number of iteration required for the termination of while loop from the Ford-Fulkerson Algorithm is C_e Option 1 Option 2 Option 3 Option 4

What is the runtime complexity of Ford Fulkerson algorithm for finding out maximum flow in a directed graph G where all edges are integers? Assume that number of edges is m, number of vertices is n and it terminates in at most C iterations.		
O(m*n*C)		
O(n*C)		
O(m*C)		
O(m+n)		
Lat If In a course to flow and (A. D.) course to cut. The course (f.)		
Let 'f' be any s-t flow ,and (A-B) any s-t cut . Then v(f) =		
fout(A) - fin(B)		
ofout(B) - fin(B)		
ofout(A) - fin(A)		
fout(B) - fin(A)		
For any flow network G and any maximum flow on G, there is always an edge e such that increasing the capacity of e increases the maximum flow of the network. Depends on the given graph.		
T(true)		
F(flase)		
Can't be determined.		

Consider the graph where the first value is the flow value and the second value is the capacity of the edge. What is the bottleneck capacity of the augmenting path s->C->D->t?

- Zero
- Two
- Eight
- Nine
- Ten

The time complexity of the Ford-Fulkerson algorithm for computing maximum flow in a graph where edge weights are positive real numbers (not necessarily integers) is:(m is the number of edges and C is upper bound on number of iterations of while loop)		
O(m*C)		
O(C) May be exponential in m and C		
Suppose that you run the Ford-Fulkerson algorithm (using the shortest augmenting path heuristic) to solve a bipartite matching problem with N students and N companies. How many augmenting paths are needed in the worst case? N N N ² 0.5 N ³ N ³		
What is the objective of a maximum flow problem?		
Maximize the amount flowing through a network		
Maximize the profit of the network		
Maximize the routes being used		
None of the above		

While augmenting path in a residual graph, If e is the backward edge then (where b is bottleneck and Ce is edge capacity)
Increase f(e) in G by Ce
Decrease f(e) in G by Ce
Increase f(e) in G by b
Decrease f(e) in G by b
G be given graph , Gf be residual graph of G , then
Gf has at most as many edges as G.
Gf has at most twice as many edges as G.
G has at most twice as many edges as Gf.
Gf has atleast twice as many edges as G.
Given a flow network, let f be any flow and let (A,B) be any cut. Then, the net flow across (A,B) is the value of f. less than greater than equal to not related to

An augmented path can be found in
C Linear time
Quadratic time
Exponential time
C Logarithmic time
What is the running time of an unweighted shortest path algorithm whose augmenting path is the path with the least number of edges?
O(E log V)
O(IEI)
O(E ^2 V)
O(E ^2 log V)

- Fourteen
- Eighteen
- Fifteen
- Twenty two

What is the source in the maximum flow problem?

- Vertex with no incoming edges
- Vertex with no leaving edges
- O Centre vertex
- Vertex with the least weight

Clear selection

Which of the following is true?
On augmentation, flow value increases then decrease
On augmentation, flow value decreases then increase
On augmentation, flow value strictly decreases
On augmentation, flow value strictly increases
The nature of the flow value can not be determined.
If e=(u,v) is a forward edge then its residual capacity is
Ce - f(e)
(e) - Ce
Ce+f(e)
○ Ce
Given an unweighted directed flow network G(V,E), the goal is to find the number of edge disjoint paths from s to t. This can be done by assign a weight of 'x' to each of the edge e in E and executing Ford-Fulkerson algorithm on the weighted graph G. The smallest value of 'x' can be: \[\textstyle{\textsty

How many constraints are there in the Maximum-Flow problem?

One
Two
Three
Four

Find the Maximum Flow for given graph. Twenty Twenty Three Twenty Five Eighteen

A given graph G(V,E) has a unique minimum cut. The number of edges in minimum cut(size of minimum cut) is k. The cardinality of set E is m and cardinality of set V is n. The number of edges in the final residual graph after the Ford-Fulkerson algorithm is finished is:		
at most m-n		
exactly 2*m-n		
at most 2*m-k		
exactly 2*m-k		
A simple acyclic path between source and sink which passes through only positive weighted edges of the residual graph is called?		
Augmenting path		
Critical path		
Residual path		
O Maximumpath		
Let 'C' be the upper bound on flow that can come out of 's' in a flow graph G. All capacities in the flow network G are multiple of log (n). Base of log is 2. The best upper bound on the time complexity of Ford- Fulkerson algorithm to find maximum flow in this flow network G is		
O(m*C)		
O(m*C*log (n))		
O(m*C/log(n))		
O(m*log(C))		

!

Under what condition can a vertex combine and distribute flow in any manner?
It should maintain flow conservation
It may violate edge capacities
The vertex should be a source vertex
The vertex should be a sink vertex
Let v be the number of nodes, e be number of edges and U be the capacity of the largest edge of a graph G. What is the time complexity when Ford Fulkerson algorithm is applied to find the maximum flow?
O(v*e^2)
O(v^3)
O(v^2*e*loge)
O(v*e*U)
Suppose you have a flow network G with integer capacities, and an integer maximum flow f. Suppose that, for some edge e, we increase the capacity of e by one.
An O(E) time algorithm is possible to find a maximum flow in the modified G.
An O(E) time algorithm is not possible to find a maximum flow in the modified G.
An O(V) E) time almosithms is massible to find a massimum flow in the madified C
An O(V+E) time algorithm is possible to find a maximum flow in the modified G.
None of these.

Consider the flow graph after few iterations of while loop of Ford-Fulkerson algorithm (each iteration finished completely) and the flow value is less than maximum possible flow. Then, the corresponding flow graph: Does not follow capacity condition		
represents a feasible flow		
implies non-existance of augmenting path		
How many edges does the residual graph have in the worst-case scenario? Where n is the number of nodes in G and m is the number of edges in G.		
O m + m*n		
O m*n		
m+m-2		
● m+m		
O m - 2		
Clear selection		
Ford-Fulkerson algorithm uses		
O Dynamic Programming		
Greedy approach		
Divide and Conquer		
Binary Search		
Clear selection		

Augmenting Path can be found in	
O(E log V)	
O(IEI)	
O(E^2)	
O(E ^2 log V)	
	Clear selection

Page 3 of 3

Back

Submit

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms