

Imitating Human Play: A brief introduction The workshop	IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP
THE MARKOV DECISION PROCESS	Goals (a bit more formally)
 The primary abstraction we are going to work with is the Markov Decision Process (MDP) Very rarely made explicit, though always there implicitly MDPs capture the dynamics of a mini-world/universe/environment/game An MDP is defined as a tuple < S, A, T, R, γ > where: S, s ∈ S is a set of states A, a ∈ A is a set of actions R: S × A, R(s, a) is a function that maps state-actions to rewards T: S × S × A, with T(s' s, a) being the probability of an agent landing from state s to state s' after taking a γ is a discount factor - the impact of time on rewards 	 Learn π(s, a), a mapping between states and actions, called the policy Intuitively: "How should I act under this and this condition"? If we have logs from past games we can try to learn this mapping We have just restated our goal in more formal fashion - let's discuss a bit more
7 / 22 IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP	8 / 22 IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP
	Inverse Reinforcement Learning
 Real games often have a very large action and state spaces ▶ We can keep track of what players are doing ▶ but even for the simplest of cases learning a direct mapping is impossible ▶ Hence, the need to approximate (more on this later) ▶ We will explore Linear Functions and Neural Networks in this workshop, but many more options are available 	 ► "Given that a player is acting optimally, can we copy her behaviour?" ► We are not going to cover this here, but it's worth discussing it ► Why does it even make sense? ► Is it more concise to learn R* compared with π? ► Need for assumptions over the possible class of policies
IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP	IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP
Behavioural/Supervised learning • Learn the sequences of actions using supervised learning • Much simpler approach • Obviously you have observed some sequence of (s_0, a_1s_n, a_n) • Learn a policy π from these actions directly • This is what we are going to discuss in this workshop	 PREFERENCE LEARNING ► Supervised Learning ► One can learn to rank actions ► Is action a₀ better than action a₁ under state s? ► Multiple methods of doing this, not to be covered here
11/22	12/22

IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORK	HOP IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP
Reinforcement Learning	The workshop
 Not covered 	 Clone this repo: https://github.com/aigamedev/nuclai15 Run train.py Make sure you you can run everything We now essentially have a supervised learning problem
13 IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORK	/ 22 HOP IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP
The Data pipeline	Problem definition
 ▶ Define the problem ▶ Data collection ▶ Data munging ▶ Metric selection ▶ Algorithm selection ▶ Post-processing (not covered) ▶ Deployment (not covered) ▶ Experimental Evaluation (not covered) ▶ (Above according to Microsoft research) 	 Everything we discussed until now find what the agent is going to go next Define 3 actions per axis Concentrate ONLY on movement, i.e. where am I going to move next? Re-create the Markov Property using 10 past (x,y) observations Use other player positions Let's see some code
IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORK	/ 22 16 / 22 HOP IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKSHOP
Data collection	Data Munging (1)
 You will need some kind of in-game probe Sensors on a player Logs from some source For DOTA there are online matches 	 ▶ Key tools: Pandas, numpy, scipy ▶ Create CSV for further pre-processing ▶ extract_data_vectors.py ▶ You can run it, but it requires a game log .dem file
17	/22
	· · · · · · · · · · · · · · · · · · ·

IMITATING HUMAN PLAY: A BRIEF INTRODUCTION	The workshop	IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKS	SHOP
METRIC SELECTION - ALGORITHM SELE	CTION	From Linear Regressors to Neural Networks	IS
 ▶ Inside train.py ▶ Let's have a look ▶ Mean Squared Error is our selected metric - be optimal 	at it's not the	► Regressor in the form $y_w(\theta) = w_0\theta_0 + w_1\theta_1 + + w_k\theta_k + b$ ► Equivalently $y_w(\theta) = w\theta + b$ ► Learn w ► Nested $y_w(\theta) = w^n(\max(0, w^{n-1}(\max(0,) + b^{n-1})) + b^n$ ► Learn w	
	19 / 22	20	0 / 22
IMITATING HUMAN PLAY: A BRIEF INTRODUCTION	THE WORKSHOP	IMITATING HUMAN PLAY: A BRIEF INTRODUCTION THE WORKS	SHOP
Modern tricks of the trade		Workshop Tasks	
► Better initialisation methods (e.g., unsupervisor			
Glorot initialisation) Better training methods (e.g., ADAM, RMSPI) Better activation functions/units (e.g., Rectific) Better regularisation methods (e.g., Dropout) Better weight sharing/convolutional layers (e.g., Max-pooling) Better hardware (GPUs) Most of these have equivalents in sklearn-neur	ROP) ars, Maxout) a., Fractional	 Run experiments using a dummy classifier Run experiments using a Linear Classifier Run experiments using a Neural network Change the metric to "accuracy score" Each run should get you progressively better results Move some of the pre-processing to a different CSV file and load this (e.g., past examples) Change network architecture (e.g., number of neurons) and re-run the experiments Change train.py to save the classifier to a file (using python pickle) 	