Calculation of maximum system utilization

Parameters:

- $\triangle D$ number of data bits in a packet/frame
- $\triangle H$ number of bits in a packet header
- $\triangle F$ total number of bits in a packet/frame; F=D+H
- $\triangle C$ channel capacity [bps]
- $\triangle A$ number of bits in an ACK

Wireless Networks Laboratory Copyright ©by Zygmunt J. Haas, 2017

Analysis of a simple communication system (con't)

☆ Parameters (con't)

- $\triangle E$ probability of a bit being in error
- $\triangle I$ processing + queueing + propagation delays
- $\triangle L$ probability that a packet or its ACK is lost
- $\triangle P_{l}$ probability that a data packet is lost
- $\triangle P_2$ probability that an ACK is lost
- $\triangle R$ mean number of retransmission per data packet
- △ *T* Timeout interval
- $\triangle U$ channel utilization

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

First assume no errors.

High utilization is achieved when H and A are small and IC is small.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

3

Analysis of a simple communication system (con't)

- ₩ Now assume transmission errors.
- \mathbb{H} The effect of errors: for each damaged frame, the sender times out T [sec] after the transmission was completed and retransmits the lost frame.
- \mathbb{H} Therefore, each unsuccessful transmission "uses" F+CT [bits] of link capacity.
- \mathbb{H} If the number of retransmissions is R, the channel capacity used until successful transmission is: R(F+CT)+(F+A+2CI)
- \mathbb{H} To calculate the mean number of retransmissions, note that both, the data packet and its ACK, have to be correctly received; i.e., probability of success is: $(1-P_1)(1-P_2)$.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

- ## The probability of failure is: $L=1-(1-P_1)(1-P_2)$ and the probability of k attempts is: $(1-L)L^{k-1}$.
- # Expected number of transmissions per packet is: $\frac{1}{1-L}$ and the expected number of retransmissions is:

 $R = \frac{1}{1 - L} - 1 = \frac{L}{1 - L}.$

Thus,

$$U_{errors} = \frac{D}{\left(\frac{L}{1-L}\right)(F+CT) + (F+2CI+A)}.$$

Assuming low variance in *I*, set T=A/C+2I, then

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

F

Analysis of a simple communication system (con't)

X Assuming low variance in

Ing low variance in
$$U_{errors} = \left(\frac{D}{D+H}\right) (1-P_1)(1-P_2) \cdot \frac{1}{1+\frac{CT}{H+D}}.$$

$$\begin{array}{c} header & loss due & loss due \\ overhead & to packet & to ACK & loss due to \\ errors & errors & partially \\ filled pipe \end{array}$$

 $\text{ If we call } a = 2\frac{I}{F/C} \text{ and } A \approx 0 \text{ , then }$ $U_{errors} = \left(\frac{D}{F}\right) (1 - P_1) (1 - P_2) \cdot \frac{1}{1 + a} \, .$

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

- **Note that *a* is the *round trip time* in units of frame transmission time. It is a very important parameter in data link performance evaluation.
- # Assuming independent errors,

$$U_{errors} = \left(\frac{D}{F}\right) (1 - E)^{F+A} \cdot \frac{1}{1+a}.$$

- \sharp Short frames \rightarrow low efficiency due to header overhead

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

Analysis of a simple communication system (con't)

₩ Optimal packet size:

$$\begin{split} \frac{dU_{errors}}{dD} &= 0 \Rightarrow D^2. + D(H + CT) + \frac{H + CT}{\ln(1 - E)} = 0; \\ D_{opt} &= \frac{H + CT}{2} \left[\sqrt{1 - \frac{4}{(H + CT)\ln(1 - E)}} - 1 \right]; \\ E &<< 1 \Rightarrow \ln(1 - E) \approx -E \\ E &<< 1 \Rightarrow \sqrt{1 + \frac{x}{E}} - 1 \approx \sqrt{\frac{x}{E}}; \\ D_{opt} &= \sqrt{\frac{H + CT}{E}} \approx \sqrt{\frac{CT}{E}}. \end{split}$$

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

- \mathbb{X} Note that $\lim_{E\to 0} D_{opt} = \infty$.
- **#** Errors are not random. Experimentally, $P_1 = k(H+D)^{\alpha}$ provides a better fit than $P_1 = 1 (1-E)^{H+D}$.

$$C = 1.5[Mbps]$$

$$T = 10[m \sec]$$

$$E = 10^{-6}$$

$$D_{opt} = \sqrt{\frac{1.5 \cdot 10^6 \cdot 10 \cdot 10^{-3}}{10^{-6}}} = 120[Kb] = 15[KByte].$$

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017

0

The choice of packet size

- Reasons for large packet size:

 Reasons for large pack
 - ○lower "per bit" overhead
 - smaller packet processing rate
- ★ Reasons for large packet size:
 - smaller effect of errors
 - ≤ smaller delay jitter

 - △smaller acquisition delay (ATM; need for echo cancellers)
 - ≤ smaller "fill"

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2017