Exercice 1 : (4points)

1.
$$\sqrt{105 - \sqrt{29 - \sqrt{13 + \sqrt{|1 - 10|}}}}$$
 est égale à :

a. 10

b. 12

c. 20

2. ABC un triangle rectangle en A, alors

a.
$$\sin(\hat{B}) = \sin(\hat{C})$$

b. $sin(\hat{B}) = cos(\hat{B})$

c. $\sin(\hat{B}) = \cos(\hat{C})$

3. $5^n + 5^n + 5^n + 5^n + 5^n$ est égale à :

a.
$$5^{n+4}$$

b. 5^{n+1}

c. 5^{5n}

4. $|1 - \sqrt{2}| + 1 - \sqrt{2}$ est égale à :

b. 0

c. $-2\sqrt{2}$

Exercice 2: (7points)

1.on donne A = $x^3 - 27 - (x - 3)(x^2 + 2x + 10)$

- a. Factoriser $x^3 27$.
- b. Déduire que A = (x-3)(x-1).
- 2. On donne $x \in]-3$; -1[et B = $|1-x| + x + \sqrt{x^4} + 2\sqrt{x^2}$
 - a. Donner un encadrement de (1-x) et 2x.
 - b. Montrer que B = $(x 1)^2$
 - c. Factoriser (A-B) puis comparer A et B.

Exercice 3: (5points)

Soit ABC un triangle rectangle en A tel que : \widehat{ABC} =60° et AB = 4

- 1. Calculer BC et AC
- 2. Placer le point D sur [AC] tel que AD = AB puis calculer CD.
- 3. Soit E le projeté orthogonal de C sur (BD)
 - a. Donner la valeur de l'angle \widehat{EDC} puis déduire que $EC = 2\sqrt{6} 2\sqrt{2}$
 - b. Donner la valeur exacte de l'angle \widehat{ECB} puis déduire la valeur exacte de $\cos(75^\circ)$

Exercice 4: (4points)

Soit x un angle aigu

- 1. Montrer que : $(1-\sin(x))(1+\sin(x)) = \cos^2(x)$
- 2. Montrer que : $(\cos(x) + \sin(x))^2 2\sin(x)\cos(x) = 1$
- 3. a. Montrer que $1 + tan^2(x) = \frac{1}{cos^2(x)}$
 - b. On donne $tan(x) = \frac{1}{2}$. Déterminer cos(x).

