ESTIMATING CONNECTIVITY: DCM FOR FMRI - THEORY

Hanneke den Ouden

Radboud University Nijmegen

h.denouden@donders.ru.nl

Jakob Heinzle

University and ETH Zürich

heinzle@biomed.ee.ethz.ch

Translational Neuromodeling Unit

Outline

- 1. Basics (Jakob)
- 2. Applications and Examples (Hanneke)
- 3. Demo (Hanneke & Jakob)

Please feel free to ask questions throughout!

Outline

- 1. Basics (Jakob)
 - what is connectivity?
 - introducing DCM
 - o under the hood

- 2. Applications and Examples (Hanneke)
- 3. Demo (Hanneke & Jakob)

Introduction

Functional Specialisation

Functional Integration

Structural, functional & effective connectivity

Sporns 2007, Scholarpedia

anatomical/structural connectivity

- presence of physical connections
- DWI, tractography, tracer studies (monkeys)

Context-independent

functional connectivity

- statisticaldependency betweenregional time series
- correlations, ICA

Mechanism - free

effective connectivity

- causal (directed)
 influences between
 neuronal populations
- DCM

Mechanistic

Dynamic Causal Modelling (DCM)

DCM approach to effective connectivity

A simple model of a neural network

. . .

 $x_i(t)$ Neural node

Connections

... described as a dynamical system

. . .

$$\dot{x} = f(x, u, \theta_x)$$

$$y = g(x, \theta_y) + \varepsilon$$

Let the system run with input (u) and parameters (θ_x, θ_y) , and you will get a BOLD signal time course y that you can compare to the measured data.

The neural model for DCM for fMRI

 $x_i(t)$ Neural node

 \leftarrow Driving input (u_1)

Connections

 \longrightarrow Modulatory input (u_2)

Parameter sets...

A - fixed connectivity

B - modulation of connectivity

C - weight of driving inputs

... determine dynamics!

From neural activity to the BOLD signal

BOLD signal is a **direct function** of ν and q

$$y = \frac{\Delta S}{S_0} = g(v, q) + \varepsilon$$

Summary – the full model

Summary – the full model

Summary – parameters of interest

Under the hood 1: The neural state equation

So what are these 'neural parameters'?

Neural parameters are 'rate constants':

if $a_{11} < 0$, then $\exp(a_{11}t) < 1$, so x will decay over time

Decay function

If x1→x2 is 0.10 s⁻¹ this means that, per unit time, the increase in activity in x2 corresponds to 10% of the current activity in x1

Example dynamics 1: Single node

context u_2

$$\dot{x}_1 = a_{11}x_1 + c_{11}u_1$$

Example dynamics 2: Connected nodes

context u_2

$$\dot{x}_1 = a_{11}x_1 + c_{11}u_1$$
$$\dot{x}_2 = a_{22}x_2 + a_{21}x_1$$

$$\boldsymbol{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ a_{21} & \sigma \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} c_{11} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Example dynamics 3: Modulation of connection

$$\dot{x}_1 = a_{11}x_1 + c_{11}u_1$$

$$\dot{x}_2 = a_{22}x_2 + a_{21}x_1 + u_2b_{21}^{(2)}x_1$$

$$\boldsymbol{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} + u_2 \begin{bmatrix} 0 & 0 \\ b_{21}^{(2)} & 0 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} c_{11} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Example dynamics 3: Modulation of connection

$$\dot{x} = \left(\mathbf{A} + \sum_{j=1}^{m} u_j \mathbf{B}^{(j)}\right) x + \mathbf{C}u$$

$$\mathbf{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} + u_2 \begin{bmatrix} 0 & 0 \\ b_{21}^{(2)} & 0 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} c_{11} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Neural State equation

Under the hood 2: from modelled BOLD to estimated parameters

Likelihood Function: What is a good fit?

Bayesian inference - forward and inverse problem

Model estimation: combining priors and data

Likelihood = Probability of data

- Derived from dynamical system
 - Gaussian noise

Priors (constraints):

- Hemodynamic parameters
 - empirical
- Neural parameters
 - self connections: principled
 - other parameters (inputs, connections): shrinkage

$$p(\theta|y,m) = \frac{p(y|\theta,m) \cdot p(\theta|m)}{p(y|m)}$$

Parameter estimation: Bayesian inversion

AIM (cf. manual)

Estimate neural & hemodynamic parameters such that the modelled and measured BOLD signals are similar (i.e. model evidence is optimised).

Model estimation: running the machinery

• Goal: Find posterior of parameters $p(\theta|y,m)$ that maximises model evidence p(y|m) given data and priors.

Model estimation: running the machinery

DCM Roadmap

Outline

1. Basics (Jakob)

- 2. Applications and Examples (Hanneke)
 - understanding perception in synesthesia
 - psychopharmacology
 - psychiatry

3. Demo (Hanneke & Jakob)

What questions can we answer using DCM?

Model comparison

using model evidence

Parameter inference

using posterior parameter estimates

Example 1: Brain Connectivity in Synesthesia

- Specific sensory stimuli lead to unusual, additional experiences
- Grapheme-color synesthesia: color
- Involuntary, automatic; stable over time, prevalence ~4%
- Potential cause: aberrant cross-activation/coupling between brain areas
 - grapheme encoding area
 - color area V4
 - superior parietal lobule (SPL)

Bottom-up or Top-down "cross-activation"?

Model evidence predicts sensory experience

Projector-associator difference score (P-A)

What questions can we answer using DCM?

Model comparison

Parameter inference

What is the functional architecture of a network of brain regions?

bottom-up vs. top-down drive of V4 in color-grapheme synesthesia

Are optimal models different between groups?

optimal model predicts sensory experience in color-grapheme synesthesia

how does dopamine modulate striatal architecture?

How does dopamine modulate striatal architecture?

roi definition → model comparison → parameter evaluation

DA manipulation: agonist (bromocriptine) & antagonist (sulpiride) resting state fMRI + dynamic causal modelling

How does dopamine modulate striatal architecture?

roi definition → model comparison → parameter evaluation

inputs

x = +15

roi definition → model comparison → parameter evaluation

inputs :(ant)agonists have opposite effects

x = +15

roi definition → model comparison → parameter evaluation

- inputs: (ant)agonists have opposite effects
- connections

roi definition → model comparison → parameter evaluation

- inputs: (ant)agonists have opposite effects
- connections: dopamine modulation follows striatal hierarchy

roi definition -> model comparison -> parameter evaluation

dopamine manipulation on average not different from 0?

roi definition -> model comparison -> parameter evaluation

dopamine manipulation on average not different from 0?

Treadway ea. (2010) Science

roi definition → model comparison → parameter evaluation

- dopamine manipulation on average not different from 0?
- trait impulsivity predicts DA modulation of connectivity

What questions can we answer using DCM?

Model comparison

What is the functional architecture of a network of brain regions?

bottom-up vs. top-down drive of V4 in color-grapheme synesthesia

Are optimal models different between groups?

optimal model predicts sensory experience in color-grapheme synesthesia

Which connections are modulated by experimental manipulations?

dopaminergic modulation follows striatal hierarchy

Parameter inference

Are parameters different between individuals?

Trait impulsivity predicts degree of dopaminergic modulation of striatal coupling

measurements from an individual subject

time series in regions of interest

subject-specific generative model

representation in model-based feature space

Detecting subgroups of patients in schizophrenia

- DCM of working memory task
- clustering three distinct subgroups (N=41)
- validation: clinical score subgroups differ (p < 0.05) wrt. negative symptoms on the positive and negative symptom scale (PANSS)
- future: assess differential prognosis, treatment prediction etc. of subclusters

Optimal cluster solution

What questions can we answer using DCM?

Model comparison

What is the functional architecture of a network of brain regions?

bottom-up vs. top-down drive of V4 in color-grapheme synesthesia

Are optimal models different between groups?

optimal model predicts sensory experience in color-grapheme synesthesia

Which connections are modulated by experimental manipulations?

dopaminergic modulation follows striatal hierarchy

Parameter inference

Are parameters different between individuals?

Trait impulsivity predicts degree of dopaminergic modulation of striatal coupling

Clustering of WM DCM differentiates clinical scores in schizophrenia

Parameters as physiologically informed summary statistics

- Simple classical or Bayesian statistics on parameters
- Clustering analysis
- Mediation analysis

... and many more!

Discussion questions

Why is this DCM useful?

Allows for mechanistic explanation of fMRI data and to compare this between groups.

Where can we use DCM?

For example in the settings discussed.

Where can't we use DCM?

It is not optimal for data mining / 'data-driven' analyses

What do you like about DCM?

 Forces to make hypotheses explicit and mechanistic and, if successful, provides "close" link to physiology

What are the most common mistakes made?

- No careful specification of model space (demo)
 - missing models, inclusion of nodes with no activation
- Trying to build an entire brain!
- Interpretation of results (often due to not understanding the DCM)
- Fixed effects model comparison when not warranted
- Lack of quality checking of models

ESTIMATING CONNECTIVITY: DCM for FMRI - Demo

Hanneke den Ouden

Radboud University Nijmegen

h.denouden@donders.ru.nl

Jakob Heinzle

University and ETH Zürich

heinzle@biomed.ee.ethz.ch

Translational Neuromodeling Unit

Attention to motion in the visual system

Paradigm

Parameters

Stimuli radially moving dots

Pre-Scanning

5 x 30s trials with 5 speed changes Task - detect change in radial velocity

Scanning (no speed changes)

FAFNFAFNS....

F - fixation

S - observe static dots + photic

N - observe moving dots + motion

A - attend moving dots + attention

- blocks of 10 scans
- 360 scans total
- TR = 3.22 seconds

Attention to motion in the visual system

Paradigm

Results

Attention – No attention Büchel & Friston 1997, Cereb. Cortex Büchel et al. 1998, Brain

- fixation onlyobserve stat
- observe static dots+ photic
- observe moving dots + motion
- task on moving dots

- → V1
- → V5

+ attention → V5 + parietal cortex

Quiz: can this DCM explain the data?

Attention to motion in the visual system

Paradigm

Ingredients for a DCM

Specific hypothesis/question

Model: based on hypothesis

Timeseries: from the SPM

Inputs: from design matrix

Attention to motion in the visual system

DCM - GUI basic steps

- 1 Extract the time series (from all regions of interest)
- 2 Specify the model
- 3 Estimate the model
- 4 Repeat steps 2 and 3 for all models in model space
- 5 Compare models
- 6 OPTIONAL: do parameter inference on optimal model (potentially after model averaging)

Quiz: can this DCM explain the data?

Additional information - references

Literature: To get started...

- 10 Simple Rules for DCM (2010). Stephan et al. Neurolmage 52
- Understanding DCM: ten simple rules for the clinician (2012). Kahan & Foltynie. Neuroimage 83
- The first DCM paper: Dynamic Causal Modelling (2003). Friston et al. Neurolmage 19:1273-1302.
- Physiological validation of DCM for fMRI: Identifying neural drivers with functional MRI: an electrophysiological validation (2008). David et al. PLoS Biol. 6 2683–2697
- Hemodynamic model: Comparing hemodynamic models with DCM (2007). Stephan et al. Neurolmage 38:387-401
- Nonlinear DCM:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan et al. Neurolmage 42:649-662
- Two-state DCM: Dynamic causal modelling for fMRI: A two-state model (2008). Marreiros et al. Neurolmage 39:269-278
- Stochastic DCM: Generalised filtering and stochastic DCM for fMRI (2011). Li et al. Neurolmage 58:442-457
- Bayesian model comparison: Comparing families of dynamic causal models (2010). Penny et al. *PLoS Comput Biol.* 6(3):e1000709

Literature: Validation studies of DCM

reliability (reproducibilty)

- parameter estimates are highly reliable across sessions (Schuyler et al. 2010)
- model selection results are highly reliable across sessions (Rowe et al. 2010)

face validity

simulations and empirical studies (Stephan et al. 2007, 2008)

construct validity

- comparison with SEM (Penny et al. 2004)
- comparison with large-scale spiking neuron models (Lee et al. 2006)

predictive validity:

- infer correct site of seizure origin (David et al. 2008)
- infer primary recipient of vagal nerve stimulation (Reyt et al. 2010)
- infer synaptic changes as predicted from microdialysis (Moran et al. 2008)
- infer conditioning-induced plasticity in amygdala (Moran et al. 2009)
- track anaesthesia levels (Moran et al. 2011)
- predict sensory stimulation (Brodersen et al. 2010)
- infer DA induced changes in AMPA/NMDA ratio from MEG (Moran et al. 2011)
- predict presence/absence of remote lesion (Brodersen et al. 2011)

Literature: Advanced DCM tools

- Nonlinear DCM for fMRI: Could connectivity changes be mediated by another region? (Stephan et al. 2008, Neuroimage)
- Embedding computational models in DCMs: DCM can be used to make inferences on parametric designs like SPM (den Ouden et al. 2010, J Neurosci.)
- DCM as a summary statistic: clustering and classification: Classify patients, or even find new sub-categories (Brodersen et al. 2011, Neuroimage)
- Integrating tractography and DCM: Prior variance is a good way to embed other forms of information, test validity (Stephan et al. 2009, NeuroImage)
- Stochastic / spectral DCM: Model resting state studies / background fluctuations (Li et al. 2011, Neuroimage; Daunizeau et al. 2009, Physica D; Friston et al. 2014, Neuroimage)
- DCM for Layered fMRI: Model high resolution fMRI data of cortical layers (Heinzle et al. 2014, Neuroimage)
- MPDCM toolbox: Use Markov chain Monte Carlo methods to invert DCMs (Aponte et al. 2016, J Neurosci Methods)
- Hierarchical Generative Embedding for DCM: Use a hierarchical Bayesian model for unsupervised clustering of DCM (Raman et al. 2016, J Neurosci Methods)
- Empirical Bayes for DCM: Use empirical Bayes for DCM group studies (Friston et al. 2016, Neuroimage)

Additional information - equations

The neural equations – non-linear model

Parameters A, B, C and D define connectivity!

Example traces 4: Modulation of self-connection

$$\dot{x}_1 = a_{11}x_1 + c_{11}u_1$$

$$\dot{x}_2 = a_{22}x_2 + a_{21}x_1 + u_2b_{22}^{(2)}x_2$$

$$\boldsymbol{x} = A\boldsymbol{x} + C\boldsymbol{u} = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u_2 \begin{bmatrix} 0 & 0 \\ 0 & b_{22}^{(2)} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} c_{11} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Hemodynamic model and BOLD signal equation

BOLD signal change equation

$$y = \frac{\Delta S}{S_0} \approx V_0 \left[k_1 (1 - q) + k_2 \left(1 - \frac{q}{\nu} \right) + k_3 (1 - \nu) \right]$$

Summary – the full model

Summary – the full model

Summary – parameters of interest

