

Lecture Outlines

■ IPv4

■ IPv6

- Subnetting
- Supernetting
- Routing

IP Hierarchical Addressing

IP Version 4; Address: 32 bits

4,294,967,296

Possible Addresses = 2³²

IP Version 6; Address: 128 bits

340282366920938463463374607431768211456

Possible Addresses = 2^{128}

Hierarchical addressing

2 Parts: Network, Host

Subnet Mask

IP version 4 (IPv4)

- The Internet Protocol version 4 (IPv4) is the delivery mechanism used by the TCP/IP protocols.
- IPv4 address length is 32 bits (4 byte), written in dotted-decimal notation
- Hierarchical: consisting of two parts, network part and host part

Position of IPv4 in TCP/IP protocol suite

IP Packet Format

Datagram Format

- 4-bit version (4 for IPv4, 6 for IPv6)
- 4-bit header length (in words, minimum of 5)
- 8-bit type of service (TOS); more or less unused
- 16-bit datagram length (in bytes)
- 8-bit protocol (e.g., TCP=6 or UDP=17)

Datagram Format

- Fragmentation support
 - 16-bit packet ID (identifies packet fragments)
 - □ 3-bit flags; one bit marks last fragment
 - □ 13-bit fragment offset into packet (in 8-byte words)
- 8-bit "time-to-live" (TTL); a hop count until forced destruction of packet

Datagram Format

- 16-bit IP checksum on header
- 32-bit source IP address
- 32-bit destination IP address
- Options and padding (variable length)
 - Source-based routing (typically disabled)
 - Record route
 - Several others

Class-based and Classless Addressing

Class-based IP Addresses

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			
	First byte	Second byte	Third byte	Fourth byte
Class A	0 to 127			Touringte
Class B	128 to 191			
Class C	192 to 223			
Class D	224 to 239			
Class E	240 to 255			

Class-based IP Addresses

How to get IP Address

How to know IP Address

http://www.ipligence.com/geolocation

IP Geolocator

Find the city and country location of IP Addresses, hostnames or web addresses.

Subnetting and Supernetting

Subnetting

202.125.138.0/24

202. 125. 138. 0 - 202. 125. 138. 255

202.125.138.0/25

202. 125. 138. 0 - 202. 125. 138. 127

202.125.138.128/25

202. 125. 138. 128 - 202. 125. 138. 255

Borrowing one host bit provides two subnetworks

Subnetting

202.125.138.0/24

202. 125. 138. 0 - 202. 125. 138. 255

202.125.138.0/26

202. 125. 138. 0 - 202. 125. 138. 63

202.125.138.192/26

202. 125. 138. 192 - 202. 125. 138. 255

202.125.138.64/26

202. 125. 138. 64 - 202. 125. 138. 127

202.125.138.128/26

202. 125. 138. 128 - 202. 125. 138. 191

Borrowing two host bits provide four subnetworks

Subnetting – General Definition

Network number	Host	Host number			
Class B address					
111111111111111111111111111111111111111		00000000			
Subnet mask (255.255.25)					
Network number	Subnet ID	Host ID			
Subnetted address					

In general, for a network with m possible hosts, borrowing n bits provides 2ⁿ subnetworks of m/n hosts

Subnetting – Example

Supernetting – Route Aggregation

CIDR

192.4.16.0/20

Contains 2⁶ (20 bit: /20) prefixes including the two prefixes on RHS

To only advertise the two /20 prefixes on RHS, use 192.4.0.0/19

192.4.0.0/20

CIDR

CIDR uses both subnetting and supernetting

Subnetting – efficient usage of IP addresses

Supernetting – allows more efficient routing

Growth of Routing Table

Source: http://potaroo.net

CIDR

P CIDR Calculator			
IP Address	CIDR Netmask		
202 . 125 . 38 . 0	255.255.255.0	~	
Mask Bits	Wildcard Mask		
24	0.0.0.255		
Maximum Subnets	Maximum Addresses	8	
256	254	v	
CIDR Network (Route)	Net: CIDR Notation		
202.125.38.0	202.125.38.0/24		
CIDR Address Range			
202.125.38.0 - 202.125.38.1	255		

http://www.subnet-calculator.com/cidr.php

Practical Networking Overview

Crossover Cable

In back-to-back connected computers, the data-link technology should be same.

Also, both machines should be on same network

Let's allocate an IP address to A

Assume, we choose an address 192.168.0.1/16

Typically, private addressing class is used: 10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16

For communication, B has to be given IP belonging to the same network class (i.e., 192.168.0.0/16)

An example IP address that will allow communication is: 192.168.15.2/16

Only the first two octets have to be same since the network bits are the first 16 bits (/16)

Connect for more than two Computers

Intermediate Devices

SOHO Router – Cicso 172°

Gigabit Ethernet Router Module

Intermediate Devices

Console Port in Router

Switch – Cisco Catalyst 3560