

A Hybrid Estimation of Distribution Algorithm with Differential Evolution for Global Optimization

Bing Dong, Aimin Zhou, Guixu Zhang

East China Normal University, Shanghai, China

December 2016

Outline

- Background
- Our algorithm
- 3 Experiment results
- 4 Conclusions and future work

1 Background

- 2 Our algorithm
- 3 Experiment results

4 Conclusions and future work

Definition

The box-constrained continuous global optimization can be stated in the following:

- $x = (x_1, x_2, \dots, x_n)^T \in R^n$ is a decision vector
- $[a_i, b_i]^n$ is the search space
- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function

Differential Evolution(DE)

DE is a simple but powerful optimization algorithm. Classical DE algorithm consists of three steps:

- mutation: Utilize mutation operator to generate mutant vector.
- crossover: Utilize crossover operator to generate trial vector.
- selection: Target vector and trial vector competes to enter the next generation.

Estimation of Distribution Algorithm(EDA)

EDA is a recent stochastic optimization algorithm which mainly includes three steps:

- modeling: Build a probabilistic model.
- sampling: Generate individuals according to the built probabilistic model.
- selection: Select individuals from the generated individuals and parent population to the next generation.

1 Background

- Our algorithm
- 3 Experiment results
- 4 Conclusions and future work

DE-EIG

DE-EIG is novel DE which utilize eigenvector to rotate the original coordinate system. It is significant to extract the statistical information form the population.

Crucial work:

- crossover in a rotated coordinate system
- utilize a appropriate parameter to control the crossover in the original coordinate system or the rotated coordinate system

DE/EDA

DE/EDA is a algorithm combining DE and EDA. Its main work:

- combine the differential information from DE and global information from EDA
- make a parameter to control the sampling of EDA

EDA/DE-EIG

Based on the framework of DE/EDA, we propose EDA/DE-EIG. Our thoughts:

- 1 Import DE-EIG to improve the sampling of EDA.
- 2 Utilize a random parameter to control the resource allocations of DE-EIG and EDA.
- **3** Expensive local search is applied to refine the solutions further more.

Algorithm Framework


```
Algorithm 5: EDA/DE-EIG
1 Initial the population Pop(t) = \{x_1, x_2, x_3, \dots, x_N\} (N
   is the size of the population)
 2 while not terminate do
       Construct the probabilistic model:
       p(x) = \prod_{i=1}^{n} \mathcal{N}(x_i; \mu_i, \sigma_i)
       Generate a trial solution u_{i,C} as follows:
5
       if rand() < CRP then
           u_{i,G} is produced by DE-EIG.
 8
       else
           u_{i,G} is sampled from the probabilistic model
0
           p(x).
       end
10
       if f(u_{i,G}) < f(x_{i,G}) then
11
12
           x_{i,G+1} = u_{i,G}
13
       else
           x_{i,G+1} = x_{i,G}
14
15
       end
       if Converge(\theta, G, G<sub>o</sub>) then
           Operate the expensive local search.
17
18
       end
       t = t + 1
20 end
```

Figure 1: The algorithm framework of EDA/DE-EIG

- 1 Background
- 2 Our algorithm
- 3 Experiment results
- 4 Conclusions and future work

Compared algorithms and experimental setting

In this paper, EDA/DE-EIG is compared with JADE and DE/EDA on the first 13 test instances form YYL test instances.

- The dimension of the population is 30. All algorithms are run independently 50 times and stopped after 450,000 function evaluations.
- JADE: N = 150, p = 0.05, c = 0.1, F = 0.5 and CR = 0.9.
- DE/EDA: N = 150, F = 0.5 and CRP = 0.9.
- EDA/DE-EIG: N = 150, CRP = 0.5, f = 0.5, CR = 0.6, P = 0.5, $\theta = 0.1$.

All the algorithms are implemented by Matlab and executed at the same computer.

 $\begin{tabular}{l} {\sf TABLE~I} \\ {\sf STATISTICAL~RESULTS~(} \end{tabular} \begin{tabular}{l} {\sf EAGORITHMS~ON~INSTANCES~f1-f13.} \\ {\it EAGORITMS~ON~INSTANCES~f1-f13.} \\ {\it EAGORITMS~ON~INSTANCES~f1-f13.} \\ {\it EAGORITMS~ON~INSTANCES~f1-f13.} \\ {\it E$

instances	EDA/DE EIG	JADE	DE/EDA
f1	1.54e-159 ± 5.11e-159	$3.90e - 127 \pm 2.74e - 126(+)$	$1.39e - 59 \pm 2.58e - 59(+)$
f2	1.02e-75 ± 7.46e-76	$2.60e - 35 \pm 1.64e - 34(+)$	$5.15e - 28 \pm 4.68e - 28(+)$
f3	4.01e-35 ± 8.47e-35	$7.79e - 35 \pm 2.51e - 34(\sim)$	$1.23e - 12 \pm 1.20e - 12(+)$
f4	5.01e-20 ± 3.06e-19	$3.15e - 14 \pm 6.42e - 14(+)$	$9.90e - 12 \pm 2.69e - 11(+)$
f5	$1.46e - 29 \pm 2.62e - 29$	$3.85\text{e-}30 \pm 9.58\text{e-}30(-)$	$3.37e - 21 \pm 8.66e - 21 (+$
f6	$0.00\mathrm{e}{+00}\pm0.00\mathrm{e}{+00}$	$0.00e\text{+}00 \pm 0.00e\text{+}00(\sim)$	$0.00e\text{+}00 \pm 0.00e\text{+}00(\sim)$
f7	$3.60e - 03 \pm 1.00e - 03$	$6.01\text{e-}04 \pm 2.23\text{e-}04(-)$	$2.20e - 03 \pm 5.59e - 04 (-$
f8	$2.79e + 03 \pm 5.02e + 02$	$4.74e + 00 \pm 2.34e + 01(-)$	$1.82e + 03 \pm 6.72e + 02(-$
f9	$6.23e + 00 \pm 2.21e + 00$	$0.00e\text{+}00 \pm 0.00e\text{+}00(-)$	$1.54e + 02 \pm 1.96e + 01(+$
f10	$4.44\text{e-}15 \pm 0.00\text{e+}00$	$4.44\text{e-}15 \pm 0.00\text{e+}00(\sim)$	$4.44\text{e-}15 \pm 0.00\text{e+}00(\sim)$
f11	$0.00\mathrm{e}$ + $00 \pm 0.00\mathrm{e}$ + 00	$1.48e-04\pm 1.05e-03 (\sim)$	$2.96e-04\pm1.46e-03(\sim$
f12	1.57e-32 ± 5.53e-48	$1.57e\text{-}32 \pm 5.53e\text{-}48 (\sim)$	1.57e-32 \pm 5.53e-48(\sim)
f13	$1.35\text{e-}32 \pm 1.11\text{e-}47$	$1.35e-32 \pm 1.11e-47(\sim)$ $3(+)6(\sim)4(-)$	$1.35e-32 \pm 1.11e-47(\sim)$ $6(+)5(\sim)2(-)$

The bold ones mean the best.

 $\begin{tabular}{l} {\sf TABLE\ I} \\ {\sf STATISTICAL\ RESULTS\ }(mean\pm std)\ {\sf FOR\ THE\ THREE\ ALGORITHMS\ ON\ INSTANCES\ }f1-f13. \\ \end{tabular}$

instances	EDA/DE EIG	JADE	DE/EDA
f1	1.54e-159 ± 5.11e-159	$3.90e - 127 \pm 2.74e - 126(+)$	$1.39e - 59 \pm 2.58e - 59(+)$
f2	$1.02\text{e-}75 \pm 7.46\text{e-}76$	$2.60e - 35 \pm 1.64e - 34(+)$	$5.15e - 28 \pm 4.68e - 28(+)$
f3	$4.01\text{e-}35 \pm 8.47\text{e-}35$	$7.79e - 35 \pm 2.51e - 34(\sim)$	$1.23e - 12 \pm 1.20e - 12(+)$
f4	$5.01\text{e-}20 \pm 3.06\text{e-}19$	$3.15e - 14 \pm 6.42e - 14(+)$	$9.90e - 12 \pm 2.69e - 11(+)$
f5	$1.46e-29\pm 2.62e-29$	$3.85\text{e-}30 \pm 9.58\text{e-}30 (-)$	$3.37e - 21 \pm 8.66e - 21(+)$
f6	$0.00\mathrm{e}{+00}\pm0.00\mathrm{e}{+00}$	$0.00e\text{+}00 \pm 0.00e\text{+}00(\sim)$	$0.00e{+00} \pm 0.00e{+00} (\sim)$
f7	$3.60e - 03 \pm 1.00e - 03$	$6.01\text{e-}04 \pm 2.23\text{e-}04(-)$	$2.20e - 03 \pm 5.59e - 04(-)$
f8	$2.79e + 03 \pm 5.02e + 02$	$4.74e + 00 \pm 2.34e + 01(-)$	$1.82e + 03 \pm 6.72e + 02(-)$
f9	$6.23e + 00 \pm 2.21e + 00$	$0.00e\text{+}00 \pm 0.00e\text{+}00(-)$	$1.54e + 02 \pm 1.96e + 01(+)$
f10	$4.44\text{e-}15 \pm 0.00\text{e+}00$	$4.44\text{e-}15 \pm 0.00\text{e+}00(\sim)$	$4.44\text{e-}15 \pm 0.00\text{e+}00(\sim)$
f11	$0.00\text{e}{+00} \pm 0.00\text{e}{+00}$	$1.48e-04\pm 1.05e-03 (\sim)$	$2.96e - 04 \pm 1.46e - 03(\sim)$
f12	1.57e-32 ± 5.53e-48	$1.57e\text{-}32 \pm 5.53e\text{-}48(\sim)$	1.57e-32 ± 5.53e-48(∼)
f13	$1.35\text{e-}32 \pm 1.11\text{e-}47$	$1.35e-32 \pm 1.11e-47(\sim)$ $3(+)6(\sim)4(-)$	$1.35e-32 \pm 1.11e-47(\sim)$ $6(+)5(\sim)2(-)$

¹ The bold ones mean the best.

 $\begin{tabular}{l} {\sf TABLE\ I} \\ {\sf STATISTICAL\ RESULTS\ }(mean\pm std)\ {\sf FOR\ THE\ THREE\ ALGORITHMS\ ON\ INSTANCES\ }f1-f13. \\ \end{tabular}$

instances	EDA/DE EIG	JADE	DE/EDA
f1	1.54e-159 ± 5.11e-159	$3.90e - 127 \pm 2.74e - 126(+)$	$1.39e - 59 \pm 2.58e - 59(+$
f2	$1.02\text{e-}75 \pm 7.46\text{e-}76$	$2.60e - 35 \pm 1.64e - 34(+)$	$5.15e - 28 \pm 4.68e - 28(+$
f3	$4.01\text{e-}35 \pm 8.47\text{e-}35$	$7.79e - 35 \pm 2.51e - 34(\sim)$	$1.23e - 12 \pm 1.20e - 12(+$
f4	$5.01\text{e-}20 \pm 3.06\text{e-}19$	$3.15e - 14 \pm 6.42e - 14(+)$	$9.90e - 12 \pm 2.69e - 11(+$
f5	$1.46e-29\pm 2.62e-29$	$3.85\text{e-}30 \pm 9.58\text{e-}30 (-)$	$3.37e - 21 \pm 8.66e - 21(+$
f6	$0.00\mathrm{e}{+00}\pm0.00\mathrm{e}{+00}$	$0.00e\text{+}00 \pm 0.00e\text{+}00(\sim)$	$0.00\text{e+}00 \pm 0.00\text{e+}00 (\sim)$
f7	$3.60e - 03 \pm 1.00e - 03$	$6.01\text{e-}04 \pm 2.23\text{e-}04(-)$	$2.20e - 03 \pm 5.59e - 04(-$
f8	$2.79e + 03 \pm 5.02e + 02$	$4.74e + 00 \pm 2.34e + 01(-)$	$1.82e + 03 \pm 6.72e + 02(-$
f9	$6.23e + 00 \pm 2.21e + 00$	$0.00e\text{+}00 \pm 0.00e\text{+}00(-)$	$1.54e + 02 \pm 1.96e + 01(+$
f10	$4.44\text{e-}15 \pm 0.00\text{e+}00$	$4.44\text{e-}15 \pm 0.00\text{e+}00(\sim)$	$4.44\text{e-}15 \pm 0.00\text{e+}00(\sim)$
f11	$0.00\text{e}{+00} \pm 0.00\text{e}{+00}$	$1.48e-04\pm 1.05e-03 (\sim)$	$2.96e - 04 \pm 1.46e - 03(\sim$
f12	1.57e-32 ± 5.53e-48	$1.57\text{e-}32 \pm 5.53\text{e-}48(\sim)$	1.57e-32 ± 5.53e-48(∼)
f13	$1.35\text{e-}32 \pm 1.11\text{e-}47$	1.35e 32 \pm 1.11e 47(\sim) 3(+)6(\sim)4(-)	$1.359.32 \pm 1.116-47(\sim)$ $6(+)5(\sim)2(-)$

The bold ones mean the best.

Figure 2: The mean function value versus on f1 - f7 except f6.

Figure 3: The mean function value versus on f8 - f13

According to figure 2 and figure 3, the following conclusions are obtained:

- 1 obtain best results on 8 out of 12 test instances
- 2 better than DE/EDA except f7 and f8
- 3 has a similar performance in comparison with JADE

1 Background

- 2 Our algorithm
- 3 Experiment results
- 4 Conclusions and future work

Conclusions

- DE/EDA is a promising algorithm framework utilizing global and local information.
- DE-EIG is significant to improve the sampling.
- 3 EDA/DE-EIG has a impressive performance comparing with JADE and DE/EDA.

Future work

The results reported in this paper is preliminary and there are several ways to improve the algorithm performance. The future work includes:

- simplify the algorithm framework of EDA/DE-EIG
- investigate the resources allocation of DE-EIG and EDA

Thanks!

 B. Dong, A. Zhou, and G. Zhang, A Hybrid Estimation of Distribution Algorithm with Differential Evolution for Global Optimization, 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016.