

Dados da Proposta

Nome do Projeto: Home-o-tron Continuação do projeto 2015? Não

Professor responsável: Herbert Oliveira Rocha

Email: herbert.rocha@ufrr.br

Instituição: Universidade Federal de Roraima

Data: 01/04/2016

E_{Ω}	TI	T	D	Б
E/Q	U	П	Г	Ľ

ÁREA DO CONCURSO

(x) Carros / Casas / Cidades Inteligentes	
() Saúde	
() Automação Industrial	
() Wearables	
() Segurança	
() Varejo	
() Robótica	

IDENTIFICAÇÃO E HISTÓRICO DA EQUIPE

A equipe é composta por dois alunos e um professor do curso de Ciência da Computação da Universidade Federal de Roraima.

Herbert Oliveira Rocha

Professor efetivo da Universidade Federal de Roraima. Fez doutorado e mestrado na Universidade Federal do Amazonas com foco em sistemas embarcados. Seus trabalhos são principalmente na área de verificação formal utilizando Bounded Modl Checking

Rafael Sá Menezes

Aluno do quinto perído de Ciência da Computação da Universidade Federal de Roraima. Desenvolveu em conjunto do Rodrigo dos Santos Tavares e sob a orientação do Prof. Dr. Herbert Oliveira Rocha o Lock-o-tron, um sistema de reconhecimento facial que abria uma fechadura utilizando um Intel Galileo.

Rodrigo dos Santos Tavares

Aluno do quinto perído de Ciência da Computação da Universidade Federal de Roraima. Desenvolveu em conjunto do Rafael Sá Menezes e sob a orientação do Prof. Dr. Herbert Oliveira Rocha o Lock-o-tron, um sistema de reconhecimento facial que abria uma fechadura utilizando um Intel Galileo.

Descrição do sistema embarcado a ser desenvolvido

O Home-o-tron é um sistema de automação residencial que utiliza o reconhecimento facial para detectar usuário e ativar e configurar os equipamentos na casa. Essas configurações serão definidas anteriormente pelos usuários através de um aplicativo Android e/ou utilizando uma interface Web. O Intel Galileo seria utilizado para efetuar o reconhecimento e controlar os equipamentos (além de poder cadastrar novos usuários).

O sistema poderá controlar portas, luzes e outros equipamentos eletrônicos utilizando o Intel Galileo para isso. A vantagem disso é que será possível controlar tudo utilizando a IoT (mesmo que o usuário não esteja em casa), o sistema somente controlorá equipamentos definidos para cada usuário. Utilizando o aplicativo Android ou uma página web, o usuário poderá logar na sua conta e acionar dispositivos no seu lar.

O aplicativo Android e a interface web, serão formas simples de modificar o sistema e acionar/verificar o estado dos equipamentos. Para a utilização, o usuário deverá entrar com um login e senha, ao logar o usuário poderá escolher entre ver estatísticas de uso e controle. Caso o usuário seja um administrador, será capaz de adicionar/remover novos usuários e definir quais usuários terão acesso a cada equipamento.

Figure 1: Big Picture

JUSTIFICATIVA E ÁREAS DE APLICAÇÃO

Com a evolução da tecnologia, está cada vez mais acessível automatizar ambientes. O Homeo-tron é uma proposta que utilizará o Intel Galileo para automatizar ambientes residenciais. Utilizando o reconhecimento facial, Android ou web ficaria muito mais simples de controlar o lar.

O sistema pode ser aplicado para muitas áreas e tem diversas possibilidades de expansão como:

- Utilização das estatísticas de uso para descobrir padrões de uso;
- Reduzir o custo de energia, pois o sistema pode avisar o usuário caso algum equipamento esteja sendo utilizado desnecessariamente;
- Auxiliar portadores de alguma deficiência, de forma que fiquem mais idempendentes;
- Regular o uso de equipamentos em um ambiente, podendo limitar horários de uso.

Cronograma de implementação do sistema embarcado a ser desenvolvido

- (03/04) Envio da proposta
- (03/04 10/04) Levantamento de requisitos
- (10/04 20/04) Desenvolvimento do webservice
- (20/04 10/05) Desenvolvimento do aplicativo Android
- (10/05 20/05) Verificações e correções
- (20/05) Recebimento da placa
- (20/05 30/06) Estudo das capacidades da placa
- (30/06) Início do desenvolvimento do software embarcado
- (30/06 03/07) Embarcar o sistema operacional
- (03/07 07/07) Implementação do algoritmo de reconhecimento facial
- (07/07 20/07) Desenvolvimento de um protótipo de automação
- (20/07 30/07) Verificações e correções no protótipo
- (30/07 10/08) Implementação da comunicação entre a placa e o webservice
- (10/08 20/08) Verificação se o sistema está bem integrado
- (20/08) Conclusão do protótipo de automação
- (20/08 10/09) Implementação da interface web
- (10/09) Início da criação do relatório parcial
- (20/09) Entrega do relatório parcial
- (20/09 10/10) Verificação e correção de bugs do sistema
- (10/10 20/10) Desenvolvimento do relatório final
- (20/10 30/10) Preparo da apresentação
- (30/10) Entrega do relatório final
- (03/11 06/11) Apresentação