ESTADÍSTICA (Q)

Simulación - Teorema Central del L?mite - Clase 10

Antes de empezar, los invitamos a visitar el sitio Point of Significance, una publicación de Nature dedicada a la divulgaci?n de la estad?stica dentro de las ciencias naturales. En particular, los invitamos a que miren el trabajo Importance of being uncertain, considerando que vamos a querer replicar parte de los resultados presentados en la Figura 3.

A lo largo de esta Gu?a estudiaremos emp?ricamente la distribución del promedio de variables aleatorias independientes e idénticamente distribuidas. A través de los histogramas correspondientes, analizaremos el comportamiento de la distribuci?n del promedio a medida que aumentamos n, la cantidad de variables a promediar.

Para ello generaremos un conjunto de n datos con una distribución dada y luego calcularemos su promedio. Replicaremos ésto mil veces, es decir, generaremos Nrep = 1000 realizaciones de la variable aleatoria \overline{X}_n , para diferentes valores de n. Observemos que, en principio, desconocemos la distribución de \overline{X}_n . Utilizando las Nrep = 1000 realizaciones del promedio realizaremos un histograma de los promedios generados para obtener una aproximación de la densidad o la función de probabilidad de \overline{X}_n .

1 Teorema Central del L?mite: El Teorema

Antes de empezar con nuestras simulaciones, recordemos el Teorema Central del L?mite. Sea $(W_i)_{i\geq 1}$ una sucesión de v.a.i.i.d. con $\mathbb{E}(W_i) = \mu$ y $\mathbb{V}(X_i) = \sigma^2$.

Una de las maneras de ver el TCL en t?rminos del promedio es la siguiente:

$$\overline{W}_n \stackrel{a}{\approx} \mathcal{N}(\mu, \sqrt{\sigma^2/n})$$
 (1)

Si estandarizamos al promedio, obtenemos esta otra posible presentaci?n:

$$\frac{W_n - \mu}{\sqrt{\sigma^2/n}} \stackrel{a}{\approx} \mathcal{N}(0, 1) \ . \tag{2}$$

2 Teorema Central del L?mite: Simulaciones

2.1 Distribuci?n Bernoulli

Sean $X_i \sim \mathcal{B}e(p)$ siendo p = 0, 2. Utilizaremos X para denotar de manera gen?rica una variable con esta misma distribuci?n.

1. ¿Cu?nto vale $\mathbb{E}(X)$? ¿Cu?nto vale $\mathbb{V}(X)$?

2. Guardar en el vector ber_N_infty= 10000 datos correspondientes a 10.000 realizaciones $\mathcal{B}e(p)$ con p=0,2 y calcular la frecuencia relativa de cada posible valor. Explorar el comando table().

La distribuci?n emp?rica del promedio

- 3. Guardar en el vector promedios_bernoullies, Nrep = 1000 promedios utilizando n = 5 datos con distribuci?n $\mathcal{B}e(p)$ siendo p = 0, 2. Recordar el comando rbinom(), teniendo precauci?n con los par?metros que utiliza esta funci?n (ver help(rbinom)).
- 4. Realizar un histograma con los promedios guardados en promedios_bernoullies.
- 5. Repetir los ?tems 2 y 3 con n = 30 y con n = 100. Comparar los tres histogramas obtenidos, notar la diferencia en las escalas.

La distribuci?n emp?rica del Promedio estandarizado

- 6. Realizar ahora histogramas de promedios_bernoullies_est donde a los valores guardados en promedios_bernoullies se les resta μ y se los divide por $\sqrt{\sigma^2/n}$. Utilizar $n \in \{5, 30, 100\}$, ¿Qu? se observa?
- 7. Repetir todos los ?tems anteriores con p = 0.5.

2.2 Distribuci?n Uniforme

Sean $X_i \sim \mathcal{U}(a, b)$ siendo a = 67, b = 73. Utilizaremos X para denotar de manera gen?rica una variable con esta misma distribuci?n.

- 1. ¿Cu?nto vale $\mathbb{E}(X)$? ¿Cu?nto vale $\mathbb{V}(X)$?
- 2. Guardar en el vector unif_N_infty= 10000 datos correspondientes a 10.000 realizaciones $\mathcal{U}(a,b)$ siendo $a=67,\ b=73$ y realizar un histograma.

La distribuci?n emp?rica del promedio

- 3. Guardar en el vector promedios_uniformes, Nrep = 1000 promedios utilizando n = 5 datos con distribuci?n $\mathcal{U}(a, b)$ siendo a = 67, b = 73. Recordar el comando runif().
- 4. Realizar un histograma con los promedios guardados en promedios_uniformes.

5. Repetir los ?tems 2 y 3 con n = 30 y con n = 100. Comparar los tres histogramas obtenidos, notar la diferencia en las escalas.

La distribuci?n emp?rica del Promedio estandarizado

6. Realizar ahora histogramas de promedios_uniformes_est donde a los valores guardados en promedios_uniformes se les resta μ y se los divide por $\sqrt{\sigma^2/n}$. Utilizar $n \in \{5, 30, 100\}$, ¿Qu? se observa?

2.3 Distribuci?n Exponencial

Sean $X_i \sim \mathcal{E}(\lambda)$ siendo $\lambda = 1/10$. Utilizaremos X para denotar de manera gen?rica una variable con esta misma distribuci?n.

- 1. ¿Cu?nto vale $\mathbb{E}(X)$? ¿Cu?nto vale $\mathbb{V}(X)$?
- 2. Guardar en el vector exp_N_infty= 10000 datos con distribuci?n $\mathcal{E}(\lambda)$ siendo $\lambda = 0, 1$ y realizar un histograma de ellos.

La distribuci?n emp?rica del promedio

- 3. Guardar en el vector promedios_exponenciales, Nrep = 1000 promedios utilizando n = 5 datos con distribuci?n $\mathcal{E}(\lambda)$ siendo $\lambda = 0, 1$. Recordar el comando rexp().
- 4. Realizar un histograma con los promedios guardados en promedios_exponenciales.
- 5. Repetir los ?tems 2 y 3 con n = 30 y con n = 100. Comparar los tres histogramas obtenidos, notar la diferencia en las escalas.

La distribuci?n emp?rica del Promedio estandarizado

- 6. Realizar ahora histogramas de promedios_exponenciales_est donde a los valores guardados en promedios_exponenciales se les resta μ y se los divide por $\sqrt{\sigma^2/n}$. Utilizar $n \in \{5, 30, 100\}$, ¿Qu? se observa?
- 7. Realizar ahora histogramas de promedios_exponenciales con $n \in \{5, 30, 100\}$ donde a los valores guardados en promedios_exponenciales se les resta μ y se los divide por $\sqrt{\sigma^2/n}$. ¿Qu? se observa?

3 Simulaciones de promedios de variables aleatorias Normales

Sean $X_i \sim \mathcal{N}(\mu, \sigma^2)$ siendo $\mu = 70$ y $\sigma^2 = 1.2$. Utilizaremos X para denotar de manera gen?rica una variable con esta misma distribuci?n.

- 1. ¿Cu?nto vale $\mathbb{E}(X)$? ¿Cu?nto vale $\mathbb{V}(X)$?
- 2. Guardar en el vector norm_N_infty= 10000 datos con distribuci?n $\mathcal{N}(\mu, \sigma^2)$ siendo $\mu = 70$ y $\sigma^2 = 1.2$ y realizar un histograma de ellos.

La distribuci?n emp?rica del promedio

- 3. Guardar en el vector promedios normales, Nrep = 1000 promedios utilizando n = 5 datos con distribuci? n $\mathcal{N}(\mu, \sigma^2)$ siendo $\mu = 70$ y $\sigma^2 = 1.2$. Recordar el comando rnorm().
- 4. Realizar un histograma con los promedios guardados en promedios_normales.
- 5. Repetir los ?tems 2 y 3 con n = 30 y con n = 100. Comparar los tres histogramas obtenidos, notar la diferencia en las escalas.

La distribuci?n emp?rica del Promedio estandarizado

6. Realizar ahora histogramas de promedios_normales_est donde a los valores guardados en promedios_normales se les resta μ y se los divide por $\sqrt{\sigma^2/n}$. Utilizar $n \in \{5, 30, 100\}$, ¿Qu? se observa?