Ioannis Vardas

VIENNA UNIVERSITY OF TECHNOLOGY - FACULTY OF INFORMATICS

LinkedIn | Google Scholar | Charles | Charles

Education _

Vienna University of Technology

Austria

DOCTORAL PROGRAMME IN ENGINEERING SCIENCES AND COMPUTER SCIENCE

October 2021 - Present

- PhD Thesis: TBD, Advisor: Prof. Jesper Larsson Träff
- Coursework: High Performance Computing; Scientific Programming with Python; Software Testing: From Basic Concepts to Advanced Topics; Fundamental research methods for doctoral students; Philosophy of Science; Research and Career Planning for doctoral students;

University of Crete Greece

M.Sc. in Computer Science and Engineering, gpa: 8.79/10

November 2019

- MSc Thesis: Process Placement Optimizations and Heterogeneity Extensions to the Slurm Resource Manager[4]. Advisor: Prof. Manolis G.H. Katevenis, Co-Advisor: Dr. Manolis Marazakis
- Graduate Coursework: Embedded Systems Lab; Principles of Distributed Computing; Internet Systems and Technologies; Computer Architecture; Parallel Computer Architecture; Managed Runtime Systems; Digital Circuits Design Lab Using EDA Tools;

University of Crete Greece

B.Sc. in Computer Science, GPA: 7.03/10

March 2016

• Graduate Thesis: Memory Testing through an FPGA with an embedded Processor

Stanford Online Coursera

MACHINE LEARNING April 2022

• Machine Learning Certificate

Research _

VIENNA UNIVERSITY OF TECHNOLOGY

- Performance analysis and optimization of HPC applications
- Exploring Mapping Strategies for Co-allocated HPC Applications [12]
- mpisee: MPI Profiling for Communication and Communicator Structure [1]
- Mapping of parallel (MPI) applications to HPC system topologies and the role MPI communicators [8, 5]
- In-depth analysis of the overhead of MPI profiling and tracing tools [6]

ICS-FORTH

- Improving the resilience of parallel applications via fault-aware mappings [3], [2].
- Process Placement Optimizations and Heterogeneity Extensions to Slurm RJMS [4]
- Simulating the behavior of Accurate congestion control for RDMA Transfers [9]

PROJECTS

- High Performance Molecular Screening at Massive Scale, 2022-2023, Austrian Research Promotion Agency (FFG)
- Algorithm Engineering for Process Mapping, 2019 2024, Austrian Science Fund (FWF)
- ExaNeSt European Exascale System Interconnect and Storage, European Horizon 2020

Skills ___

Development and Design Skills Parallel Programming, Machine Learning, Linux Device Drivers/Modules, Hardware design

Programming Languages C, C++, Python, Bash, Octave, System-Verilog, ARM and MIPS Assembly, Java

Frameworks and Libraries MPI, OpenMP, CUDA, NumPy, Pytorch, Pandas

Operating Systems Linux(RHEL, Debian, Gentoo, Arch), FreeBSD, MacOS, Microsoft Windows

Virtualization Platforms QEMU, Virtual Box, Microsoft Hyper-V Languages besides native(Greek)

English C2 level. German A2 level

Employment history _____

Vienna University of Technology - Faculty of Informatics

Austria

PRE-DOCTORAL RESEARCHER

June 2021 - Present

• Pre-Doctoral Researcher, Parallel Computing Group

ICS-FORTH Greece

RESEARCH ENGINEER Dec. 2019 - May 2021

• Research staff, Computer Architecture and VLSI Systems (CARV) Laboratory

ICS-FORTH Greece

GRADUATE RESEARCH ASSISTANT Sept 2017 - Nov 2019

Master's degree Scholarship, Computer Architecture and VLSI Systems (CARV) Laboratory

Hellenic Army Greece

SERVED IN THE HELLENIC ARMED FORCES Dec. 2016 - Aug 2017

• Served in the Hellenic Army, Research and Informatics Corps

ICS-FORTH Greece

RESEARCH SCHOLARSHIP Aug. 2016 - Nov. 2016

Research Scholarship, Computer Architecture and VLSI Systems (CARV) Laboratory

Teaching Experience _____

Teaching Assistant

CSD, University of Crete, Greece

COMPUTER ORGANIZATION (CS-225)

Spring 2018, 2019

• Developed YAC Simulator, a cache simulator written in C/C++ for a simple cache scheme

DIGITAL DESIGN (CS-120) Fall 2018, 2019

PACKET SWITCH ARCHITECTURE (CS-534)

Spring 2016

Attended Summer Schools _

ACM Europe Summer School on HPC Computer Architectures for AI and **Dedicated Applications**

Barcelona, Spain

COURSEWORK August-September 2022

• Program Schedule

COURSEWORK

HiPEAC Summer School - ACACES

Fiuggi, Italy

July 2018

Memory Systems and Memory-Centric Computing Systems: Challenges and Opportunities by Onur Mutlu

- Distributed memory programming and algorithms by Johannes Langguth
- GPU Architectures: From Basic to Advanced Concepts by Adwait Jog
- Architectural Support for Virtual Memory by Abhishek Bhattacharjee

PRESENTED POSTER

• Extending Slurm to support Running Workloads in Virtual Machines or VINO-Slurm: Virtual NOdes in Slurm

Side Project ____

DESIGN OF A RISC-V CORE IN SYSTEM VERILOG

- Implementation of RV32IC standard with support for stream instructions
- Developed using Synopsys EDA tools for the purposes of Digital Circuits Design Lab Using EDA Tools

List of Publications

- [1] Ioannis Vardas et al. "mpisee: MPI Profiling for Communication and Communicator Structure". In: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 2022, pp. 520–529. doi: 10.1109/IPDPSW55747.2022.00092.
- [2] Ioannis Vardas, Manolis Ploumidis, and Manolis Marazakis. "Exploring the Impact of Node Failures on the Resource Allocation for Parallel Jobs". In: *Euro-Par 2021: Parallel Processing Workshops*. 2022, pp. 298–309.
- [3] I. Vardas, M. Ploumidis, and M. Marazakis. "Towards Communication Profile, Topology and Node Failure Aware Process Placement". In: 2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). 2020, pp. 241–248. doi: 10.1109/SBAC-PAD49847.2020.00041.
- [4] Ioannis Vardas. "Process Placement Optimizations and Heterogeneity Extensions to the Slurm Resource Manager". 2019. URL: https://tinyurl.com/mwujn46s.
- [5] Jesper Larsson Träff and Ioannis Vardas. "Library Development with MPI: Attributes, Request Objects, Group Communicator Creation, Local Reductions, and Datatypes". In: *Proceedings of the 30th European MPI Users' Group Meeting*. EuroMPI '23. Association for Computing Machinery, 2023. poi: 10.1145/3615318.3615323.
- [6] Sascha Hunold et al. "An Overhead Analysis of MPI Profiling and Tracing Tools". In: New York, NY, USA: Association for Computing Machinery, 2022. doi: 10.1145/3526063.3535353.
- [7] Jesper Larsson Träff et al. "Uniform Algorithms for Reduce-scatter and (most) other Collectives for MPI". In: 2023 IEEE International Conference on Cluster Computing (CLUSTER). 2023, pp. 284–294. DOI: 10.1109/CLUSTER52292.2023.00031.
- [8] Philippe Swartvagher et al. "Using Mixed-Radix Decomposition to Enumerate Computational Resources of Deeply Hierarchical Architectures". In: *Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis.* SC-W '23. Association for Computing Machinery, 2023, pp. 405–415. DOI: 10.1145/3624062.3624109.
- [9] Dimitris Giannopoulos et al. "Accurate Congestion Control for RDMA Transfers". In: *Proceedings of the Twelfth IEEE/ACM International Symposium on Networks-on-Chip*. NOCS '18. Torino, Italy: IEEE Press, 2018. ISBN: 9781538648933. DOI: 10.1109/NOCS.2018.8512155.
- [10] Ioannis Vardas, Manolis Ploumidis, and Manolis Marazakis. "Exploring the Impact of Node Failures on the Resource Allocation for Parallel Jobs". In: *Euro-Par 2021: Parallel Processing Workshops*. Springer International Publishing, 2022, pp. 298–309. DOI: 10.1007/978-3-031-06156-1_24.
- [11] Jesper Larsson Träff and Ioannis Vardas. "Library Development with MPI: Attributes, Request Objects, Group Communicator Creation, Local Reductions, and Datatypes". In: *Proceedings of the 30th European MPI Users' Group Meeting*. EuroMPI '23. Association for Computing Machinery, 2023. poi: 10.1145/3615318.3615323.
- [12] Ioannis Vardas et al. "Exploring Mapping Strategies for Co-allocated HPC Applications". In: *Euro-Par 2023: Parallel Processing Workshops*. Springer Nature Switzerland, 2024, pp. 271–276. DOI: 10.1007/978-3-031-48803-0_31.