Изучение моделей стабилитронов

1. Математические модели компонентов радиоэлектронных устройств

В процессе автоматизированного проектирования электронных схем нельзя обойтись без использования моделей элементов схемотехники. Обычно под математической моделью (ММ) какого-либо объекта понимают математическое описание, отражающее с определённой точностью поведение этого объекта в определённых внешних условиях.

 (ΘP) MM Для электрорадио элементов представляют собой связей математические описания между токами И напряжениями, возникающими на электродах (выводах) данных элементов. При этом статические и динамические модели. В первом различают используются статические уравнения вольтамперных характеристик, во втором - дифференциальные уравнения, описывающие переходные процессы в ЭРЭ.

ММ ЭРЭ можно рассматривать как некий оператор, ставящий в соответствие совокупности внутренних параметров ЭРЭ множество функционально связанных между собой внешних параметров. Для ММ ЭРЕ внешними параметрами обычно являются токи и напряжения.

В общем случае различают две разновидности моделей: формальные и физические. Формальные модели подразумевают аппроксимацию характеристик ЭРЭ, когда физикоматематическое описание элементов недостаточно разработано, либо громоздко и его сложно использовать. Иногда для составления формальных ММ используется интерполяция таблично заданных характеристик. Физические ММ в той или иной степени отражают процессы, которые протекают в ЭРЭ и выводятся на основе теории работы элементов.

В качестве примера формальной модели рассмотрим ММ диода на прямой ветви его вольтамперной характеристики (ВАХ), рис. 1

Рис. 1 Аппроксимация ВАХ диода а - прямая ветвь ВАХ б - аппроксимация одной прямой в - аппроксимация двумя прямыми

При использовании одной прямой, рис 1.б.

$$I_{np} = egin{cases} 0, & npu \ U_{np} < U_1 \ ig(U_{np} - U_1ig) * an lpha$$
, $npu \ U_{np} \ge U_1$ где $lpha$ - угол наклона прямой 1 к оси U_{np} ($lpha < 90^o$).

$$I_{np} = \begin{cases} 0, & \textit{npu } U_{np} < U_1 \\ \left(U_{np} - U_1\right) * \tan \alpha_1 \text{, } \textit{npu } U_1 \leq U_{np} < U_2 \\ I_2 + \left(U_{np} - U_1\right) * \tan \alpha_2 \text{, } \textit{npu } U_{np} \geq U_2 \end{cases}$$
 где α_1 и α_2 - углы наклона прямых 1 и 2 к оси U_{np} .

2. Полупроводниковые стабилитроны. Общие сведения

Полупроводниковыми стабилитронами (в дальнейшем называемыми стабилитронами, так как устаревшие газоразрядные стабилитроны тлеющего

и коронного разряда в настоящей лабораторной работе не рассматриваются) называют двухполюсные полупроводниковые приборы, предназначенные для стабилизации или ограничения напряжений, рис. 2.

Рис. 2 Стабилитроны а - условно графическое изображение стабилитрона б - условно графическое изображение симметричного стабилитрона в - вольтамперная характеристика идеального стабилитрона г - вольтамперная характеристика реального стабилитрона

Типовая схема стабилизатора напряжения представлена на рис. 3

Рис. 3 Стабилизатор напряжения а - принципиальная схема

б - зависимость выходного напряжения схемы от входного напряжения для идеального стабилитрона

в - зависимость выходного напряжения схемы от входного напряжения для реального стабилитрона

Если входное напряжение меньше напряжения стабилизации U_{cm} , стабилитрон закрыт и $U_{eblx} = U_{ex}$, при $U_{ex} > U_{cm}$ выходное напряжение не изменяется $U_{eblx} = U_{cm}$ (в случае идеального стабилитрона) или слабо увеличивается (в случае реального стабилитрона), рис. 3.6 и рис. 3.в.

Балансный резистор R_{δ} выполняет две функции: задаёт величину тока стабилизации стабилитрона и «принимает» на себя разность напряжений $\Delta U = U_{ex} - U_{eыx}$.

Коэффициент стабилизации схемы $K_{cm} = \frac{\Delta U_{ex}}{\Delta U_{eblx}}$, рис. 3.в, зависит от крутизны обратной ветви ВАХ стабилитрона, рис. 2.г.

3. Параметры стабилитронов.

Основными параметрами стабилитронов являются:

1. Напряжение стабилизации U_{cm} . Обычно U_{cm} задаётся в виде интервала $U_{cm\,min}$... $U_{cm\,max}$. Например, для стабилитрона Д814А U_{cm} =

- $7 \dots 8,5 B$. То есть, если выбирать из упаковки стабилитронов отдельные приборы, то значения их напряжений стабилизации могут быть любыми в указанном диапазоне напряжений.
- 2. Ток стабилизации I_{cm} . Для стабилитрона I_{cm} задаётся в виде интервала $I_{cm\,min}$... $I_{cm\,max}$. Если $I_{cm} < I_{cm\,min}$, напряжение стабилизации становится нестабильным, у него появляется переменная составляющая (стабилитрон шумит). При $I_{cm} > I_{cm\,max}$ стабилитрон может выйти из строя вследствие необратимого теплового пробоя. Для стабилитрона Д814А $I_{cm} = 3 \dots 40 mA$.
- 3. Дифференциальное сопротивление R_{∂} . Дифференциальное сопротивление показывает, насколько изменится напряжение стабилизации при изменении тока стабилизации: $R_{\partial} = \frac{\Delta U_{cm}}{\Delta I_{cm}}$, рис. 2.г. Геометрический смысл R_{∂} угол наклона (крутизны) обратной ветви ВАХ, рис 2.г.
- 4. Температурный коэффициент напряжения стабилизации α . Коэффициент показывает, насколько изменяется напряжение стабилизации при изменении температуры, $\alpha = [\%/^{\circ}C]$.

4. Математическая модель стабилитрона.

Выходным параметром ММ является напряжение стабилизации U_{cm} . Входными параметрами модели являются:

- 1. Ток стабилизации I_{cm} ;
- 2. Дифференциальное сопротивление R_{∂} ;
- 3. Температурный коэффициент напряжения стабилизации α .

Следует отметить, что R_{∂} и α зависят также от I_{cm} . В качестве примера рассмотрим эти зависимости на примере стабилитрона Д810, рис. 4.

а - зависимость дифференциального сопротивления от температуры б - зависимость дифференциального сопротивления от тока стабилизации в - зависимость температурного коэффициента напряжения стабилизации от тока стабилизации в диапазоне от -60 °C до +30 °C.

г - зависимость температурного коэффициента напряжения стабилизации от тока стабилизации в диапазоне температур от +30 °C до +125 °C.

Структура ММ показаны на рис. 5

Рис. 5. Структура математической модели стабилитрона

 R_{∂} формируется на основе входных параметров (I_{cm} , t^{0} С) в соответствии с рис. 4 и 4 б. Температурный коэффициент α формируется аналогичным образом в соответствии с рис. 4 в п. 2.

Генератор напряжения стабилизации запускается однократно (для моделируемого стабилитрона). Повторный запуск генератора соответствует смене стабилитрона. Генератор выделяет значение напряжения стабилизации $U_{cm,o}$

 $U_{cm.0}$ принадлежит интервалу изменений напряжения стабилизации $U_{cm.min} \dots U_{cm.max}$ и генерируется случайным образом в соответствии с прямоугольным законом распределения.

Вычислитель U_{cm} рассчитывает результирующее значение напряжения стабилизации в соответствии с зависимостью.

 $U_{cm} = U_{cm.0} + \Delta U_{cm}^{R_{\partial}} + \Delta U_{cm}^{\alpha}$, где $\Delta U_{cm}^{R_{\partial}}$, ΔU_{cm}^{α} – приращение напряжения стабилизации, обусловленные изменением этого напряжения из-за наличия R_{∂} и α реального стабилитрона.

Как видно из рис. 5, $R_{\partial} = F_1(I_{cm}, t^0\mathrm{C})$ и $\alpha = F_2(I_{cm}, t^0\mathrm{C})$. Их значения определяются исходя из графиков или таблиц, приводимых в справочниках, например, на рис. 4 представлены графики зависимостей для R_{∂} и α , соответствующие стабилитрону D 810. Кроме этого могут быть учтены временные нестабильность U_{cm} , который также приводятся в справочниках.

5. Порядок выполнения работы

1. Получить у преподавателя вариант выполнения работы, табл. 1.

Таблица 1 Задание для выполнения лабораторной работы

№ задания	Стабилитрон	Ток	Температура,	Время работы	
		стабилизации,	°C.	стабилитрона,	
		мА		c.	
1.1	D811	5	+20+50	0	

1.2		15	+20+50	0
1.3		520	+40	0
1.4		520	-20	0
1.5		5	+20	0600
2.1	D814A	10	-10+40	0
2.2		30	-10+40	0
2.3		340	+30	0
2.4		340	-15	0
2.5		5	+20	030
3.1	D814D	15	-10+40	0
3.2		18	-10+40	0
3.3		520	+30	0
3.4		520	-15	0
3.5		10	+20	020
4.1	KC133A	10	+20+60	0
4.2		20	+20+60	0
4.3		2070	+30	0
4.4		2070	0	0
4.5		20	+20	0300
5.1	KC156A	5	+20+60	0
5.2		15	+20+60	0
5.3		515	+30	0
5.4		515	0	0
5.5		10	+20	0250
6.1	K168A	3	+20+60	0
6.2		10	+20+60	0
6.3		310	+30	0
6.4		310	0	0
6.5		5	+20	0300

2. Выполнить моделирование стабилитрона с помощью ПК (программное обеспечение содержит модели указанных в таблице 1 стабилитронов).

Например:

1. Задание 6.1. Определить зависимости напряжения стабилизации прибора КС168A от температуры при токе стабилизации 3 мA (шаг расчета должен быть выбран не более 5 °C).

Температура,	+20	+25	+30	+35	+40	+45	+50	+55	+60
°C.									
Напряжение									
стабилизации,									
B.									

- 2. Задание 6.2. Аналогично заданию 6.1., но моделирование производных при токе стабилизации 10 мА.
- 3. Задание 6.3. Определить зависимость напряжения стабилизации прибора КС168A от тока стабилизации при температуре +30 °C.

Таблица 3. Результаты моделирование для задания 6.3.

Ток	3	4	5	6	7	8	9	10
стабилизации,								
мА								
Напряжение								
стабилизации,								
B.								

- 4. Задание 6.4. Аналогично заданию 6.3., но моделирование производится при температуре 0 °C.
- 5. Задание 6.5. Определить временную стабильность напряжения стабилизации прибора КС168А.

Таблица 4. Результаты моделирования для задания 6.5.

Время, с	0	50	100	150	200	250	300
Напряжение							
стабилизации,							
B.							

По результатам моделирования необходимо построить графики полученных зависимостей.

- 6. Сделать выводы по результатам работы.
- 7. Составить отчет.

6. Требования, предъявляемые к отчету

Отчет должен содержать:

Цель работы, результаты моделирования, представленные в табличной и графической формах; выводы по результатам проведенных исследований.

7. Контрольные вопросы

- 1. Что понимается под мм ЭРЭ?
- 2. Какие виды мм ЭРЭ вы знаете?
- 3. Назначение полупроводниковых стабилитронов.
- 4. ВАХ стабилитрона.
- 5. Параметрический стабилизатор напряжения на стабилитроне.
- 6. Электрические параметры стабилитрона.
- 7. ММ стабилитроны, используемые в лабораторной работе.
- 8. Как влияет величина тока стабилизации на дифференциальное сопротивление стабилитрона?