CS 3240: Languages and Computation

Problem Set 3 Solutions

Problem 1

Show that the following languages are *not* regular.

• $L_1 = \{www : w \in \{a, b\}^*\}.$

Solution: We prove that L_1 is nonregular by the pumping lemma. Let p be any given positive integer, and let $s = 0^p 10^p 10^p 1$. Clearly $s \in L_1$ (with $w = 0^p 1$), and |s| = 3p + 3 > p. We show that no matter how s is decomposed into three parts, at least one of the three conditions in the pumping lemma fails to hold, thus the language is nonregular.

Write s = xyz, where $y \neq \varepsilon$ and $|xy| \leq p$. Since s starts with p 0's and $|xy| \leq p$, x and y can consists of only 0's; and since $y \neq \varepsilon$, y consists of at least one 0. Thus $xy^2z = 0^q 10^p 10^p 1$ where q > p, and hence $xy^2z \notin L_1$, contradicting the pumping lemma. Therefore L_1 is nonregular.

- The languages in Parts (a), (c) and (d) of Problem 1.46 on Page 90 of Sipser.
 - $-L_2 = \{0^n 1^m 0^n : m, n \ge 0\}.$

Solution: We prove that L_2 is nonregular by the pumping lemma. Let p be any given positive integer, and let $s = 0^p 10^p$. Clearly $s \in L_2$ (with n = p and m = 1), and |s| = 2p + 1 > p. Write s = xyz, where $y \neq \varepsilon$ and $|xy| \leq p$. Since s starts with p 0's and $|xy| \leq p$, just as above y consists of only 0's and at least one 0. Thus $xy^2z = 0^q 10^p$ where q > p, and hence $xy^2z \notin L_2$, contradicting the pumping lemma. Therefore L_2 is nonregular.

 $-L_3 = \{w \in \{0,1\}^* : w \text{ is } not \text{ a palindrome}\}.$

Solution: If L_3 were regular, then by the closure under complementation its complement $\overline{L_3}$ would also be regular. We show that $\overline{L_3}$ is nonregular, from which it follows that L_3 is nonregular.

We use the pumping lemma to show that $\overline{L_3}$, the language consisting of all palindromes over $\{0,1\}^*$, is nonregular. Let p be any given positive integer, and let $s=0^p110^p$. Clearly $s\in \overline{L_3}$ (as s is a palindrome), and |s|=2p+2>p. Write s=xyz, where $y\neq \varepsilon$ and $|xy|\leq p$. Since s starts with p 0's and $|xy|\leq p$, just as above y consists of only 0's and at least one 0. Thus $xy^2z=0^q110^p$ where q>p, and hence $xy^2z\notin \overline{L_3}$ (as it is not a palindrome), contradicting the pumping lemma. Therefore $\overline{L_3}$ is nonregular.

 $- L_4 = \{wtw : w, t \in \{0, 1\}^+\}.$

Solution: We prove that L_4 is nonregular by the pumping lemma. Let p be any given positive integer, and let $s = 0^p 110^p 1$. Clearly $s \in L_4$ (with $w = 0^p 1$ and t = 1), and |s| = 2p + 3 > p. Write s = xyz, where $y \neq \varepsilon$ and $|xy| \leq p$. Since s starts with p 0's and $|xy| \leq p$, just as above y consists of only 0's and at least one 0. Thus

 $xy^2z=0^q110^p1$ where q>p. We claim that xy^2z can not be written in the form wtw, where $w,t\in\{0,1\}^+$. Write $x^2z=utv$, where u,t,v are all nonempty. If the middle substring t contains the first 1 in xy^2z , then u would end with 0 and v would end with 1, thus $u\neq v$. If t does not contain the first 1 in xy^2z , then $|u|\geq q+1$ and $|v|\leq p+1$, and since q>p, |u|>|v| and hence $u\neq u$. Therefore $xy^2z\not\in L_4$, and thus L_4 is nonregular.

Problem 2

Problem 1.31 on Page 88 of Sipser. Show that regular languages are closed under reversal, that is, if A is regular then so is A^R .

Solution: Let A be any regular language, and let M be a DFA recognizing A. To show that A^R is regular, we construct an NFA N that recognizes A^R , which we describe as follows.

In N we keep all the states of M and reverse the direction of all the transition arrows in N. We set the accept state of N to be the start state of M. We also introduce a new state q_0 as the start state of N which goes to every accept state of M by an ε -transition.

Claim 1
$$A^R \subseteq L(N)$$
.

Proof: For every $w \in A = L(M)$, the path that w follows in M starts at the start state of M and ends at one of M's accept states. If we input w^R to N, it starts at the new start state q_0 and forks into different paths starting at each of the accept state of M. The computation can reach the accept state of N (that is, the start state of M) by following the same path as w in M but in the opposite direction. Thus $w^R \in L(N)$.

Claim 2
$$L(N) \subseteq A^R$$
.

Proof: For every $x \in L(N)$, there is a path P starting at q_0 , going through some accept state of M, say q_a , and stopping at the unique accept state of N (that is, the start state of M). If we input x^R to M, we can go from M's start state to q_a in M by following the path P in the opposite direction. Thus $x \in A^R$.

Therefore,
$$L(N) = A^R$$
 and A^R is regular.

Problem 3

Problem 1.48 on Page 90 of Sipser.

Solution: We observe that a string w over $\{0,1\}^*$ contains an even number of occurrences of 01 and 10 if and only if w starts and ends with the same symbol. (Prove this.) Therefore the language D is described by the regular expression $0\Sigma^*0 \cup 1\Sigma^*1$, and hence regular.

Problem 4

Give context-free grammars that generate the following languages.

- The languages in Parts (b) and (c) of Exercise 2.4 on Page 128 of Sipser.
 - $\{w : w \text{ starts and ends with the same symbol}\}.$ Solution:

$$\begin{array}{ccc} S & \rightarrow & 0R0 \mid 1R1 \mid \varepsilon \\ R & \rightarrow & 0R \mid 1R \mid \varepsilon \end{array}$$

 $- \{w : \text{the length of } w \text{ is odd}\}.$

Solution:

$$S \rightarrow 0 \mid 1 \mid 00S \mid 01S \mid 10S \mid 11S$$

• $\{ww^R : w \in \{0,1\}^*\}.$

Solution:

$$S \rightarrow 0S0 \mid 1S1 \mid \varepsilon$$

• The language in Problem 2.9 on Page 129 of Sipser.

$$\left\{a^ib^jc^k: i=j \text{ or } j=k\right\}.$$

Solution:

$$S \rightarrow E_{ab}C \mid AE_{bc}$$

$$E_{ab} \rightarrow aE_{ab}b \mid \varepsilon$$

$$E_{bc} \rightarrow bE_{bc}c \mid \varepsilon$$

$$A \rightarrow aA \mid \varepsilon$$

$$C \rightarrow cC \mid \varepsilon$$

• The language in Part (c) of Problem 2.28 on Page 129 of Sipser. $\{w : \text{the number of } a\text{'s is at least the number of } b\text{'s}\}.$

Solution:

$$S \ \to \ SS \mid aSb \mid bSa \mid a \mid \varepsilon$$

• The set of strings over {a, b} with twice as many a's as b's. Solution:

$$S \rightarrow SaSaSbS \mid SaSbSaS \mid SbSaSaS \mid \varepsilon$$

3

Problem 5

Problem 2.19 on Page 130 of Sipser. For extra credit, give a rigorous proof of your claims.

Solution: The given grammar G describes exactly the language consisting of all strings not of the form a^nb^n . (Prove this by induction.) Thus $\overline{L(G)} = \{a^nb^n : n \geq 0\}$, and is generated by the grammar

$$S \rightarrow aSb \mid \varepsilon$$
.

Problem 6 (Extra Credit)

Parts (b) and (d) of Problem 2.6 on Page 129 of Sipser.

- The complement of {aⁿbⁿ : n ≥ 0}.
 Solution: The grammar in Problem 5. (I meant to assign a different problem here but mistakenly assigned one.)
- $\left\{x_1 \# \cdots \# x_k : k \geq 1, x_i \in \{a, b\}^k, \text{ and } x_i = x_j^R \text{ for some } i \text{ and } j\right\}$. Solution: