

Índice

Introducción

Análisis exploratorio de las tasaciones de vivienda

Modelo Automatizado de Valoración (AVM)

Aplicación empírica

Conclusiones, limitaciones y trabajo futuro

Introducción

Análisis exploratorio de las tasaciones de vivienda

Importe de tasaciones de viviendas

Número de tasaciones de viviendas

Análisis exploratorio de las tasaciones de vivienda

Estimación del coste medio de viviendas

Distribución de tasaciones de viviendas

Modelo Automatizado de Valoración AVM

Los modelos automatizados de valoración, son métodos de valoración de inmuebles, mediante el desarrollo de modelos estadísticos, con una base matemática, realizados mediante programas informáticos, y desarrollados a partir de una amplia base de datos.

Permiten realizar valoraciones de forma masiva y a bajo coste, pero asumiendo un determinado grado de error de los resultados

Estructura aplicación empírica

Clustering

Número óptimo de clusters y validación interna

Caracterización

http://shiny.uclm.es/apps/tfg/rocio/

Base de datos aportada por CoHispania

Obtenida a través de web scraping de portales inmobiliarios 1.064.983 observaciones año 2018

Metodología basada en Machine Learning

Sesgo hace referencia a cuánto se alejan en promedio las predicciones de un modelo respecto a los valores reales

Varianza hace referencia a cuánto varía el modelo dependiendo de la muestra empleada en el entrenamiento

Modelo Bagging

MAPE	RMSE	MedianRE	MedianRatio
23.69	305.15	15.62	1.03

Modelo Random Forest

MAPE	RMSE	MedianRE	MedianRatio
23.28	299.27	15.31	1.03

Modelo Stochastic Gradient Boosting

MAPE	RMSE	MedianRE	MedianRatio
26.20	312.71	18.15	1.03

Median Absolute error

MAPE

Conclusiones

Clusters con marcada caracterización

Resultados de Random Forest similares a entornos de producción

Aplicación del algoritmo Random Forest para la creación de un AVM.

- Este algoritmo es capaz de trabajar con grandes volúmenes de datos y con entornos de gran dimensionalidad
- Controla los valores perdidos y es capaz de mantener la precisión cuando existen estos en la base de datos
- Se puede incrementar el número de árboles en el "bosque", tanto como se quiera, sin llegar a generar overfitting
- Capacidad de manejar cientos de variables predictoras sin excluir ninguna

Trabajo Futuro

- Aplicar Random Forest a los 4 clusters restantes
- Análisis de los clusters elaborados aplicados al proyecto en su estado actual
- Elaboración de artículo para revista científica
- ☑ Elaboración de una nueva segmentación con respecto al censo del año 2021

Limitaciones

Extensión de un Trabajo de Fin de Grado

Clustering en base a secciones censales

Base de datos con Outliers

Base de datos con mayor número de variables

Falta de testigos en algunas localidades

