

M1.2 Datos Faltantes y Outliers

Integrantes

A01068244 - Jared Andrés Silva Villa A00227869 - Paola Félix Torres

Fecha: 15 de Agosto del 2024

Índice

1.Identificar el porcentaje de datos faltantes.	3
2.Identificar el mecanismo que ocasiona datos faltantes (MCAR, MAR, NMAR)}	3
3.Obtener estadísticas descriptivas de los datos (histograma, media, desviación estándar, mediana, moda, etc).	4
4.Utilizar el método de imputación adecuado para cada una de las variables con da faltantes.	atos 5
5.Realizar un boxplot e interpretarlo.	7

1. Identificar el porcentaje de datos faltantes.

El porcentaje de datos faltantes en la variable de **absences** es de **7.05%**, mientras que en la variable de **traveltime** es de **5.61%**.

2.Identificar el mecanismo que ocasiona datos faltantes (MCAR, MAR, NMAR)}

Concluimos que, como no hay muchos datos faltantes, lo más probable es que el mecanismo sea **MCAR.** También hicimos un análisis de correlación y vimos que las variables que más se relacionan con absences son age y walc, y para traveltime son salc y walc. Sin embargo, al ver las gráficas de dispersión, no encontramos nada raro que nos haga pensar en otro tipo de mecanismo distinto a MCAR.

Correlaciones

	age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	goout
Medu	-0.164								
Fedu	-0.169	0.631							
traveltime	0.112	-0.141	-0.114						
studytime	0.044	0.051	0.053	-0.040					
failures	0.244	-0.237	-0.255	0.093	-0.114				
famrel	0.054	-0.004	-0.037	0.032	0.006	-0.044			
freetime	0.016	0.031	-0.027	-0.014	-0.181	0.092	0.151		
goout	0.127	0.064	0.024	0.008	-0.050	0.125	0.065	0.285	
Dalc	0.338	-0.037	-0.044	0.118	-0.063	0.172	-0.059	0.176	0.206
Walc	0.117	-0.047	-0.017	0.121	-0.154	0.142	-0.113	0.148	0.420
health	-0.062	-0.047	0.034	-0.004	-0.049	0.066	0.094	0.076	-0.010
absences	0.173	0.103	0.030	-0.040	-0.064	0.013	-0.044	-0.062	0.023

Dalc "..alc ..ealth

Medu Fedu traveltime studytime failures famrel freetime goout Dalc

Walc 0.598 health 0.057 0.092 absences 0.077 0.117 -0.020

3. Obtener estadísticas descriptivas de los datos (histograma, media, desviación estándar, mediana, moda, etc).

Estadísticas

Error estándar de la

Variable	Conteo total	N	N*	Media	media	Desv.Est.	Mínimo	Q1	Mediana
absences	395	374	21	5.543	0.418	8.089	0.000	0.000	3.500
traveltime	395	369	26	1.5285	0.0470	0.9028	1.0000	1.0000	1.0000

 Variable
 Q3
 Máximo

 absences
 8.000
 75.000

 traveltime
 2.0000
 8.0000

Estadísticas

Error estándar de la

					ue ia				
Variable	Conteo total	Ν	N*	Media	media	Desv.Est.	Mínimo	Q1	Mediana
age	395	395	0	16.696	0.0642	1.276	15.000	16.000	17.000
Medu	395	395	0	2.7494	0.0551	1.0947	0.0000	2.0000	3.0000
Fedu	395	363	32	2.5207	0.0578	1.1007	0.0000	2.0000	2.0000
traveltime	395	369	26	1.5285	0.0470	0.9028	1.0000	1.0000	1.0000
studytime	395	395	0	2.1595	0.0634	1.2594	1.0000	1.0000	2.0000
failures	395	395	0	0.3342	0.0374	0.7437	0.0000	0.0000	0.0000
famrel	395	395	0	3.9443	0.0451	0.8967	1.0000	4.0000	4.0000
freete	395	395	0	3.2354	0.0503	0.9989	1.0000	3.0000	3.0000
g ut	395	395	0	3.1089	0.0560	1.1133	1.0000	2.0000	3.0000
D; -l-	395	324	71	1.3580	0.0446	0.8034	1.0000	1.0000	1.0000
Walr	395	395	0	2.2911	0.0648	1.2879	1.0000	1.0000	2.0000
health	395	395	0	3.5544	0.0700	1.3903	1.0000	3.0000	4.0000
a' sences	395	374	21	5.543	0.418	8.089	0.000	0.000	3.500

Variable	Q۵	Ma. imo	rvi1do	Nitra inoua
age	18.000	22.000	16	104
Medu	4.0000	4.0000	4	131
Fedu	3.0000	4.0000	2	102
traveltime	2.0000	8.0000	1	237
studytime	2.0000	12.0000	2	193
failures	0.0000	3.0000	0	312
famrel	5.0000	5.0000	4	195
freetime	4.0000	5.0000	3	157
goout	4.0000	5.0000	3	130
Dalc	1.0000	5.0000	1	253
Walc	3.0000	5.0000	1	151
health	5.0000	5.0000	5	146
absences	8.000	75.000	0	115

4. Utilizar el método de imputación adecuado para cada una de las variables con datos faltantes.

Al analizar las estadísticas descriptivas podemos darnos cuenta que existen varias variables que contiene valores N > 0, lo que sugiere la necesidad de una imputación.

Tomando el cuenta el valor de asimetría, podemos darnos cuenta que las dos variables son asimétricas, segadas hacías la derecha, por lo que la imputación simple adecuada sería utilizar la **Mediana** en ambos casos.

Valor de asimetría

Absences = 3.78

Traveltime = 2.61

La variable con alta varianza **absences** con desviación estándar de 8.09 requieren un enfoque cuidadoso en la imputación, ya que los valores faltantes podrían estar distribuidos de forma muy distinta a los valores observados.

Estadísticas

Error estándar de la										
Variable	Contec	total	Νſ	٧*	Media	media	Desv.Est.	Mínimo	Q1	Mediana
absences		395	374	21	5.543	0.418	8.089	0.000	0.000	3.500
traveltime		395	369	26	1.5285	0.0470	0.9028	1.0000	1.0000	1.0000
Variable	Q3	Máxim	ю М	od	o N pai	ra moda <i>l</i>	Asimetría			
absences	8.000	75.00	00		0	115	3.78			
traveltime	2.0000	8.000	00		1	237	2.61			

La variable **absences**, es del tipo **numérica**, podemos observar en ella una distribución con asimetría y algunos valores atípicos, lo que podría ser un indicador para imputar por la media.

Mientras que **travel time** es una variable ordinal, clasifica valores entre 1-4, esta variable es categorizada en niveles discretos, dado que es una variable ordinal, no es adecuado la imputación por métodos como la media o mediana, para esta variable se debe usar la **moda** como método de imputación.

5. Realizar un boxplot e interpretarlo.

Ambos boxplots muestran que la mayoría de los estudiantes tienen un tiempo de transporte corto y pocas ausencias. En el boxplot de traveltime, la mediana está en el nivel 1, con la mayoría de los estudiantes en un rango de 1 a 2, pero hay outliers que muestran tiempos de transporte significativamente más largos, alcanzando el nivel 8 (lo cual técnicamente no debería ser posible). En el boxplot de absences, la mediana es de 4 días de ausencia, con la mayoría de los estudiantes faltando entre 0 y 10 días. Sin embargo, también hay outliers que muestran estudiantes con un número mucho mayor de ausencias, algunos superando los 70 días.