STT 380

In-Class Assignment 23

- 1. For the sampregdata dataset,
 - a. Create a plot with ggpairs (no color needed). Evaluate potential multicollinearity issues with multiple x's.
 - i. library(GGally)
 - ii. ggpairs(sampregdata)

- b. Split the data into training and test datasets, using a 60/40 split.
 - i. split_pct <- 0.6
 - ii. n <- length(sampregdata\$y)*split_pct # train size</pre>
 - iii. row_samp <- sample(1:length(sampregdata\$y), n, replace = FALSE)</pre>
 - iv. train <- sampregdata[row_samp,]</pre>
 - v. test <- sampregdata[-row_samp,]
 - vi. length(train\$y) = 3236
 - vii. length(test\$y) = 2158
- c. Build a linear regression model for price on the training dataset, based on the variable with the strongest correlation.
 - i. sampregdata_mod <- lm(data = train, y ~ x4)
 - ii. sampregdata_mod
- d. Build the prediction for the test dataset. How does the test RMSE compare to that for the training model?
 - i. test_pred <- predict(sampregdata_mod,test)</pre>

```
ii. rmse_train <- sqrt(mean(sampregdata_mod$residuals^2))</pre>
```

- iii. summary(test_pred)
- iv. Min. 1st Qu. Median Mean 3rd Qu. Max.
- v. -25.315 -1.433 4.610 4.562 10.885 40.197
- vi. summary(rmse_train)
- vii. Min. 1st Qu. Median Mean 3rd Qu. Max.
- viii. 5.353 5.353 5.353 5.353 5.353
- ix. So the train is a constant and the test is a range of 60 ish values.
- 2. Next, create a model with all four x's, again using the same 60/40 split. Evaluate the model in terms of the fit of parameters and the errors. Is the x with the strongest fit the same as the one with the highest correlation?
 - a. split_pct <- 0.6
 - b. n <- length(sampregdata\$y)*split_pct # train size
 - c. row_samp <- sample(1:length(sampregdata\$y), n, replace = FALSE)</p>
 - d. train <- sampregdata[row_samp,]</pre>
 - e. test <- sampregdata[-row_samp,]
 - f. sampregdata_mod <- $Im(data = train, y \sim x1 + x2 + x3 + x4)$
 - g. test_pred <- predict(sampregdata_mod,test)</pre>
 - h. test_error <- test\$y test_pred
 - i. rmse_train <- sqrt(mean(sampregdata_mod\$residuals^2))
 - j. rmse_test <- sqrt(mean(test_error^2))</pre>
 - k. rmse_train
 - rmse_test
 - m. [1] 5.352711
 - n. [1] 5.376122
 - ο.