

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 081 771 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

07.03.2001 Bulletin 2001/10

(51) Int Cl.7: H01L 33/00, H01L 25/075,
F21K 7/00

(21) Application number: 00307565.2

(22) Date of filing: 01.09.2000

BEST AVAILABLE COPY

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SEDesignated Extension States:
AL LT LV MK RO SI

(30) Priority: 03.09.1999 US 390006

(71) Applicant: Hewlett-Packard Company
Palo Alto, California 94304-1112 (US)(72) Inventor: Lowery, Christopher H.
Fremont, CA 94539 (US)(74) Representative: Jehan, Robert et al
Williams, Powell & Associates,
4 St Paul's Churchyard
London EC4M 8AY (GB)

(54) Light emitting device

(57) An LED package and a method of fabricating the LED package utilize a prefabricated fluorescent member (52, 64) that contains a fluorescent material that can be separately tested for optical properties before assembly to ensure the proper performance of the LED package with respect to the color of the output light. The LED package includes one or more LED (22-28) dies that operate as the light source of the package. Preferably, the fluorescent material included in the prefabricated fluorescent member (52, 64) and the LED (22-28) dies of the LED package are selectively chosen, so that output light generated by the LED package duplicates natural white light. In a first embodiment of the invention, the prefabricated fluorescent member (52) is a substantially planar plate having a disk-like shape. In a second embodiment, the prefabricated fluorescent member (64) is a non-planar disk that conforms to and is attached to the inner surface of a concave lens (62). In this embodiment, the optical properties of the fluorescent member (64) are tested by examining an integrated unit formed by the concave lens (62) and the attached fluorescent member (64). In both embodiments, the LED package includes a layer (50) of encapsulant material that is deposited between the LED dies and the fluorescent member. In a preferred embodiment, the encapsulant material is an optical grade silicone gel, which has a high thermal stability and a desired refractive index for an efficient light extraction.

FIG. 2

EP 1 081 771 A2

Printed by Jouve, 75001 PARIS (FR)

Description

[0001] The invention relates generally to a light emitting device, for example a lightbulb package that utilizes a phosphor light emitting diode as the light source.

[0002] Common lightbulb packages utilize a light source that includes an incandescent filament within a glass enclosure. However, these glass enclosures are fragile and, as such, can easily break even when subjected to only a moderate impact. In addition, the incandescent filaments themselves are fragile and tend to gradually degrade during use, such that the useful light output generated by the filaments decreases over time. The increasing fragility of the filament with age eventually leads to breakage. Typical incandescent lightbulbs have a mean life of 500 to 4,000 hours, which means that half of a population of lightbulbs will fail in that time because of filament breakage.

[0003] With reference to Fig. 1, a conventional halogen lightbulb package 10 of MR-16 outline type is shown. The halogen lightbulb package includes a halogen bulb 12 positioned in the center of a reflector 14, which functions to direct the light produced by the halogen bulb in a generally uniform direction. The package further includes a pair of output terminals 16 and 18 to receive electrical power. The front open face of the package may be protected with a dust cover (not shown). A disadvantage of the package of Fig. 1 is the use of the halogen bulb as the light source. As previously described, the fragility of the glass enclosure and the incandescent filament limits the operating life of the halogen bulb.

[0004] Confronted with the above disadvantage, the use of light emitting diodes as a potential light source in a lightbulb package has been examined. Light emitting diodes (LEDs) are well-known solid state devices that can generate light having a peak wavelength in a specific region of the light spectrum. Traditionally, the most efficient LEDs emit light having a peak wavelength in the red region of the light spectrum, i.e., red light. However, a type of LED based on Gallium Nitride (GaN) has recently been developed that can efficiently emit light having a peak wavelength in the blue region of the spectrum, i.e., blue light. This new type of LED can provide significantly brighter output light than traditional LEDs.

[0005] In addition, since blue light has a shorter peak wavelength than red light, the blue light generated by the GaN-based LEDs can be more readily converted to produce light having a longer peak wavelength. It is well known in the art that light having a first peak wavelength (the "primary light") can be converted into light having a longer peak wavelength (the "secondary light") using a process known as fluorescence. The fluorescent process involves absorbing the primary light by a photoluminescent phosphor material, which excites the atoms of the phosphor material, and emitting the secondary light. An LED that utilizes the fluorescent process is defined herein as a "phosphor LED." The peak wavelength of

the secondary light will depend on the phosphor material. The combined light of unconverted primary light and the secondary light produces the output light of the phosphor LED. Thus, the particular color of the output light will depend on the spectral distributions of the primary and second lights. Consequently, a lightbulb package can be configured to generate white output light by selecting an appropriate phosphor material for the GaN-based LED.

[0006] U.S. Pat. No. 5,813,753 to Vriens et al. describes a light emitting device having an LED as the light source that utilizes phosphor grains dispersed in an epoxy layer to transform the color of the light emitted by the LED into a desired color. The phosphor grains are described as a single type of phosphor material or a mixture of different phosphor materials, depending on the desired color of the output light. A concern with the use of an epoxy layer that includes phosphor grains as described in Vriens et al. is the difficulty in dispensing the phosphor grains in a repeatable and uniform manner. Such difficulty leads to a population of finished devices having variable performances, i.e., the color of the output light may vary from one finished device to another.

[0007] The present invention seeks to provide an improved light emitting device.

[0008] According to an aspect of the present invention, there is provided a method of fabricating a light emitting device as specified in claim 1.

[0009] According to another aspect of the present invention there is provided a light emitting device as specified in claim 7.

[0010] The preferred embodiment can provide a lightbulb package having a phosphor LED as the light source that can generate output light of a prescribed color and a method of fabricating such a lightbulb package.

[0011] In an embodiment, an LED package and a method of fabricating the LED package utilize a prefabricated fluorescent member that contains a fluorescent material that can be separately tested for optical properties before assembly to ensure the proper performance of the LED package with respect to the color of the output light. The LED package includes one or more LED dies that operate as the light source of the package. Preferably, the fluorescent material included in the prefabricated fluorescent member and the LED dies of the LED package are selectively chosen, so that output light generated by the LED package duplicates natural white light.

[0012] In a first embodiment of the invention, the LED package includes four 3 volt gallium nitride-based LED dies that are individually mounted on separate reflector cups, which are attached to a leadframe. In this embodiment, the LED package is configured to be interchangeable with an industry standard MR-16 halogen outline package. However, the LED package may be configured to resemble other industry standard packages, such as MRC-11, MRC-16, PAR-36, PAR-38, PAR-56 and PAR-64. In fact, the LED package may be config-

ured in a completely different lightbulb outline package. [0013] Also attached to the leadframe are output terminals that provide electrical power to the LED dies. The LED dies are electrically connected to the terminals in a specific configuration. In one exemplary configuration, the LED dies are connected in series, so that the overall forward voltage of the package is 12 volts. In an alternative exemplary configuration, the LED dies are connected in series and parallel to create a 6 volt device. The exact electrical configuration of the LED dies, as well as the voltage of the LED dies, are not critical. Furthermore, the number of LED dies included in the LED package is not critical.

[0014] Preferably, deposited over the LED dies is an encapsulant material. The encapsulant material may be epoxy or other suitable transparent material. Preferably, the encapsulant material is an optical grade silicone gel, since silicone gel can withstand exposure to high temperatures without degradation. In addition, silicone gel having a refractive index of 1.5 is currently available, which results in an efficient extraction of light generated by the LED dies.

[0015] The prefabricated fluorescent member of the LED package is affixed over the encapsulant material. In this embodiment, the prefabricated fluorescent member is a substantially planar disk that is optically transparent. However, the fluorescent member may be configured in another shape, such as a square or a rectangle, depending on the specification of the LED package. As previously noted, the fluorescent material contained in the prefabricated fluorescent member can be chosen to produce white light. As an example, the fluorescent material may include gadolinium doped, cerium activated yttrium aluminum garnet phosphor grains.

[0016] The LED package may also include a lens that is attached to the prefabricated fluorescent member and a reflector that is positioned over the lens. The lens and the reflector ensure that most of the light energy generated by the LED package is output generally along a common direction.

[0017] In a second embodiment of the invention, the lens of the LED package is a concave lens and the prefabricated fluorescent member is formed in the inner surface of the concave lens. As such, the prefabricated fluorescent member conforms to the contour of the inner surface of the concave lens. In this embodiment, the optical properties of the fluorescent member can be tested by examining the lens and the attached fluorescent member as a single component.

[0018] The preferred method of fabricating the LED package includes forming a number of transparent fluorescent members.

[0019] In a first embodiment, the fluorescent members may be substantially planar plates, such as disks. These plates may be formed by cutting sheets of silicone rubber into the desired shapes. In a second embodiment, the fluorescent members may be non-planar disks that conform to the inner surface of a concave

lens. These non-planar disks may be formed by allowing an optically transparent material, such as silicone, polycarbonate or acrylic, to be molded onto the inner surface of a concave lens. Next, the fluorescent members are

5 tested for optical properties. As an example, the fluorescent members may be tested using a monochromatic standard source to activate the phosphor and then measuring the characteristics of the output from the fluorescent members. The tested fluorescent members
10 can then be categorized for a set of optical properties.
[0020] Preferably, after the fluorescent members are tested, one or more GaN-based LED dies are mounted onto a leadframe. Next, a transparent encapsulant material is deposited over the mounted LED dies. Preferably,
15 the encapsulant material is an optical grade silicone gel, which has a high thermal stability and has a desired refractive index for an efficient light extraction. A fluorescent member having a predefine set of optical properties is then placed over the encapsulant material.
20 Next, a lens is attached to the fluorescent member. This step is not applicable for the second embodiment. A reflector is then mounted over the lens. After the reflector has been mounted, a dust cover may be attached to the rim of the reflector to complete the LED package.

25 [0021] According to another aspect of the present invention there is provided a light source package comprising: a light source that generates primary light having a first spectral distribution; a layer of transparent material over the light source that encapsulates the light source;
30 and a prefabricated wavelength converter attached to the layer of transparent material, the prefabricated wavelength converter being optically coupled to the light source to receive the primary light, the prefabricated wavelength converter containing a fluorescent material that emits secondary light in response to absorption of said primary light to produce a composite output light.

[0022] The prefabricated wavelength converter may be shaped as a substantially planar rate. There may be
40 provided a concave lens that is integrated with the prefabricated wavelength converter, the prefabricated wavelength converter having a non-planar disk shape that conforms to an inner surface of the concave lens. The transparent material of the layer that encapsulates
45 the light source is preferably an optical grade silicone gel..

[0023] Components of the package, preferably define a light source package that is compatible to an industry standard package selected from a group consisting of
50 MRC-11, MR-16, MRC-16, PAR-36, PAR-38, PAR-56 and PAR-64.

[0024] An advantage of the preferred embodiments of the invention is that the fluorescent member can be tested prior to assembly which ensures that the finished device will have specific optical properties, thereby reducing production costs that are associated to fabrication of unwanted devices, i.e., devices that do not meet the desired specifications.

[0025] An embodiment of the present invention is described below, by way of example only, with reference to the accompanying drawings, in which:

[0026] Fig. 1 is a perspective view of a conventional halogen lightbulb package of MR-16 outline type.

[0027] Fig. 2 is a cross-sectional diagram of an LED package in accordance with a first embodiment of the present invention.

[0028] Fig. 3 is a top view of a leadframe of the LED package of Fig. 2 in which mounted LED dies are electrically connected in a 12 volt configuration.

[0029] Fig. 4 is a top view of the leadframe of the LED package of Fig. in which mounted LED dies are electrically connected in a 6 volt configuration.

[0030] Fig. 5 is a cross-sectional diagram of an LED package in accordance with a second embodiment of the invention.

[0031] Fig. 6 is a flow diagram of a preferred method of fabricating an LED package.

[0032] With reference to Fig. 2, an exemplary LED package 20 in accordance with a first embodiment is shown. Fig. 2 is a schematic cross-sectional view of the LED package. The LED package is structurally configured to resemble a conventional MR-16 halogen package, such that the LED package is interchangeable with the MR-16 package. However, the LED package utilizes four LED dies (only dies 22 and 24 are exposed in the view of Fig. 2) as the light source for the package, instead of a halogen light bulb, as is the case in the conventional MR-16 package. The LED package has an operating life of 10,000 hours or more, as compared to a halogen package which has a mean operating life of 500 to 4,000 hours. Furthermore, unlike halogen packages which fail by filament breakage, the LED package degrades by a gradual reduction in light output. Typically, at the end of the operating life of 10,000 hours, the LED package would still generate 50% of the original light output.

[0033] The LED package 20 includes a leadframe 30 that is attached to the bottom of a cylindrical casing 32. As an example, the leadframe may be composed of steel or copper. Also attached to the casing is a specular reflector 34 that directs the light generated by the LED package. Referring now to Figs. 2 and 3, four LED dies 22, 24, 26 and 28 of the package are affixed to the leadframe via reflector cups 36, 38, 40 and 42, respectively. Preferably, the LED dies are gallium nitride-based LEDs (indium doped, gallium nitride on sapphire) that emit blue light when activated by an applied electrical signal. The configuration of the LED dies and the reflector cups on the leadframe is best illustrated in Fig. 3, which is a top view of the leadframe. The LED dies are mounted into the cavities of the reflector cups, as most clearly shown in Fig. 2. Preferably, the reflector cups are made of a material having a coefficient of thermal expansion (CTE) that matches the LED dies. As an example, the reflector cups may be made of silver plated molybdenum. The reflector cups are swaged into the leadframe,

thereby affixing the LED dies to the leadframe. In an alternative embodiment, a molybdenum disk (not shown) is attached underneath each LED die, for example, by solder. The molybdenum disk with the attached LED die is then mounted on the leadframe. This method also achieves the desired CTE matching. The LED dies are electrically connected to an anode terminal 44 and a cathode terminal 46 that are also attached to the leadframe.

[0034] The LED dies 22, 24, 26 and 28 selected to be included in the LED package 20 can be of the type that enables activation at a low forward voltage of less than 3 volts each, at their maximum rated drive current, such that the four LED dies wired in series result in an overall forward voltage of a nominal 12 volts. The series connection is illustrated in Fig. 3. This would make the package conform to 12 volt incandescent packages. However, if a different series voltage is required, other arrangements of LED dies could be implemented. For example,

three 4 volt LED dies could be selected and wired in series to achieve the same overall forward voltage of 12 volts. The exact type and number of LED dies included in the package and the configuration by which the LED dies are connected can vary, depending on the desired device to be fabricated. As an example, four 3 volt LED dies can be wired in series/parallel, as shown in Fig. 4, to achieve a 6 volt device. The LED dies may be electrically connected by wirebonds, as illustrated in Figs. 2, 3 and 4. As shown in Fig. 3, more than one wire may be used in order to carry the drive currents between terminals and the LED dies. Although the electrical connections shown in Figs. 2, 3 and 4 are provided by wirebonds, other electrical connection techniques common in the semiconductor industry may instead be utilized,

such as flip chip solder bumping.

[0035] Preferably, the size of the LED dies 22, 24, 26 and 28 is such that the photometric power is of a useful range. This may require the size of the LED die to be 2.89 square millimeter, which would result in a current density on the die greater than 70 amps per square centimeter. For example, if the photometric power of these LED dies is 5 lumens (per watt of input power) and the input power to an assembly of four dies is 24 watts (12 volts at 2 amps), then the total optical output power is 5

$45 \times 24 = 120$ lumens of blue light. When this is modified into white light, a typical output in white light is raised by a factor of 1.9, which results in a final white light output of $120 \times 1.9 = 228$ lumens.

[0036] Turning back to Fig. 2, the LED package 20 further includes a region 50 of encapsulant material over the LED dies. To extract the maximum amount of light from the LED dies 22, 24, 26 and 28, an optical grade material of similar refractive index must be in contact with the LED dies. Sapphire LED substrates commonly have a refractive index of 2.5. Such LEDs are commonly encapsulated with a material with a refractive index of 1.5. Application of Snell's Law shows that only light emitted from the active region with an angle θ of about 0.644

radians (36.9 degrees) to the normal of the interface with the encapsulant will escape the LED. In such case, a fraction of $1 - \cos \theta$ or 20% of the internally generated light will escape. An equal amount of light is emitted from the horizontal edges of the LED die. The edge light from the LED die 22, 24, 26 or 28 is reflected and directed forward by the reflective cavity of the reflector cup 36, 38, 40 or 42 in which the LED die is mounted.

[0037] In addition to the refractive index issue, the encapsulant material of the region 50 must also be able to withstand the great heat generated by the LED dies 22, 24, 26 and 28 during their operation. The surface temperature of the LED dies may easily reach 200 degrees Centigrade. Under such circumstances, epoxy would rapidly undergo thermal degradation during use, becoming progressively more yellow and absorbing much of the radiation from the LED dies, which would render the device useless. For the above reasons, the encapsulant used for the region is preferably made of an optical grade silicone gel material, although other less desirable transparent materials may be used, such as epoxy. Silicones have excellent thermal stability. In addition, a silicone gel material having a refractive index of 1.5 is available to maximize light extraction. However, the encapsulating silicone material must be extremely soft, so that it does not exert stress on the bond wires 48 or die and break them during operation of the device 20. This would occur due to differential expansion between the silicone and the body of the device (or the molybdenum reflector 36, 38, 40 or 42). Typically, the CTE of these silicone materials is 80 parts per million per unit length per degree Centigrade. The metal body (for example copper) has a CTE of 10 to 12 parts per million per unit length per degree Centigrade, so the difference in expansion from the device being on and off is a factor of 8 and this difference can create sufficient movement of the encapsulant to damage the bond wires or die.

[0038] Positioned adjacent to the region 50 of encapsulant material is a fluorescent plate 52 that contains a phosphor material. The fluorescent plate is a prefabricated component that can be tested for optical properties, prior to the assembly of the LED package. The testing of the fluorescent plate relates to homogeneity of the phosphor contained within the plate and relates to the correct phosphor concentration. As an example, the fluorescent plate can be made of soft, optically clear, silicone rubber. However, the plate can be made of other optically transparent materials, such as polycarbonate or acrylic, that is dispersed with phosphor. The phosphor contained in the fluorescent plate will depend on the desired wavelength characteristics of the output light generated by the LED package 20. As an example, the plate may contain gadolinium (Gd) doped, cerium (Ce) activated yttrium aluminum garnet (YAG) phosphor grains ("Ce:YAG phosphor grains") to convert some of the blue radiation (wavelength of 460-480 nm) emitted by the LED dies 22, 24, 26 and 28 to a longer wavelength ra-

diation. The use of Ce:YAG phosphor grains will allow the fluorescent plate to absorb the emitted blue light and upshift the optical energy to a mean wavelength of approximately 520 nm. This resulting emission is a broad-band light stretching from 480 to 620 nm. The combination of this emission with the remaining blue light, i.e., the unconverted emitted blue light, creates a final emission with color rendering that duplicates natural white light.

[0039] In the above example, the fluorescent plate 52 may be modified by the inclusion of several other rare earth metals, such as samarium, praseodymium or other similar materials, to improve color rendering of the LED package 20. In addition, other phosphors may be

15 added to create emissions in other wavelengths to modify the spectral distribution of the output light generated by the LED package. The exact types of fluorescent material contained within the plate are not critical to the invention.

[0040] In the illustrated embodiment, the fluorescent plate 52 is a substantially planar disk that resembles the shape of leadframe 30, as shown in Figs. 3 and 4. However, in other embodiments where the LED dies 22, 24, 26 and 28 are arranged in a different configuration such

25 that the leadframe is non-circular, the fluorescent plate can be shaped to correspond to the leadframe and the configuration of the mounted LED dies. For example, the fluorescent plate may be a substantially planar rectangular plate, if the LED dies of the package are arranged in a rectangular configuration on a rectangular leadframe.

[0041] The LED package 20 further includes a lens 54 that is attached to the fluorescent plate 52 to collimate the light emitted from the device and distribute the light uniformly into the reflector 34. The radiation pattern from the lens is designed to fill the reflector, which is situated above the lens. As an example, the lens may be made of silicone. Alternatively, the lens may be made of a polycarbonate or an acrylic material. Situated above

40 the lens and attached to the rim of the reflector is a dust cover 56, which serves to protect the finished device.

[0042] Turning now to Fig. 5, an exemplary LED package 60 in accordance with a second embodiment is shown. The LED package of Fig. 5 includes most of the

45 components of the LED package of Fig. 2. The only significant difference is that the lens 54 and the fluorescent plate 52 included in the LED package 20 are replaced with a concave lens 62 and a molded fluorescent non-planar disk 64. The fluorescent non-planar disk is formed on the inside surface of the concave lens. Thus, the lens and the molded non-planar disk are a single prefabricated component of the LED package. That is, the lens and the non-planar disk become an integrated member that can be tested for optical properties as a

50 unit, separately from other components of the package. Therefore, in this embodiment, the optical properties of the fluorescent non-planar disk are tested after the fluorescent non-planar disk has been formed on the inner

surface of the concave lens.

[0043] Although the LED packages 20 and 60 of Figs. 2 and 5 have been illustrated and described as being configured as an MR-16 type outline package, these LED packages may be configured in other types of industry standard outline packages, such as MRC-11, MRC-16, PAR-36, PAR-38, PAT-56 and PAR-64. In fact, the LED packages may be configured in a completely different outline with any number of LED dies that are arranged in any configuration.

[0044] A method of fabricating an LED package, such as the LED packages 20 and 60 of Figs. 2 and 5, will be described with reference to Fig. 6. At step 66, a number of fluorescent members that are optically transparent are formed. The fluorescent members contain a phosphor material that is distributed within the fluorescent members. Preferably, the fluorescent members are made of silicone rubber and contain Ce:YAG phosphor grains. In a first embodiment, the fluorescent members are shaped plates that are formed by cutting sheets of optically clear material that contains the phosphor material into a shape that corresponds to the axial configuration of the LED packages to be fabricated. For example, the finished plates may be formed in the shape of disks. In a second embodiment, the fluorescent members are shaped as non-planar disks that conform to the inner surfaces of concave lenses. In this embodiment, the fluorescent members are formed by molding an optically transparent material, such as polycarbonate or acrylic, that has been dispersed with a fluorescent material into the non-planar disk shape using the contours of the concave lens. During step 68, the fluorescent members are tested for optical properties. As an example, the fluorescent members may be tested using a monochromatic standard source to activate the phosphor and then measuring the output from the fluorescent members. The tested fluorescent members can then be "binned" or categorized for a set of optical properties. Those fluorescent members exhibiting similar properties can be used to produce finished devices of very similar optical properties. Thus, devices can be produced to meet specific customer needs with respect to color temperature and output spectrum. Since the optical properties are known prior to the production of the devices, unwanted devices with optical characteristics that do not meet the desired specifications are avoided, thereby reducing production costs.

[0045] At step 70, one or more GaN-based LED dies are mounted onto a leadframe. During step 72, a transparent encapsulant material is deposited over the LED dies. Preferably, a silicone gel material is used as the encapsulant, since the silicone gel material has excellent thermal characteristics and also has a desired refractive index. Next, a tested fluorescent member having specific optical properties is attached above the encapsulant material, during step 74. Clear silicone adhesives may be used to attach the fluorescent member to the encapsulant material. Alternatively, the fluorescent

member may simply be pressed firmly against the encapsulant material. Next, during step 76, a lens is attached to the fluorescent member. Similar to the attachment of the fluorescent member to the encapsulant material, the lens may be attached to the fluorescent member using silicone adhesives or by pressing the lens firmly against the fluorescent member. In the second embodiment, where the lens and the fluorescent member is a single prefabricated component, this step is not applicable. During step 78, a reflector is mounted over the lens. After the reflector has been mounted, a dust cover may be attached to the rim of the reflector, during step 80.

[0046] The disclosures in United States patent application No. 09/390,006, from which this application claims priority, and in the abstract accompanying this application are incorporated herein by reference.

20 Claims

1. A method of fabricating a light emitting device, including the steps of:

25 forming (66) an optical member that contains a fluorescent material;
 testing (66) said formed optical member for optical properties before assembling said optical member with other components of said light emitting device; and
 30 affixing (70-80) said optical member onto an assembly that includes a light emitting diode (22-28), said optical member being positioned with respect to said light emitting diode to generate a secondary emission by converting a portion of light emitted from said light emitting diode to produce a composite output light, said composite output light being composed of the unconverted portion of said light emitted from said light emitting diode and said secondary emission.
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415<br

step of attaching (76) a lens onto said assembly to collimate said light emitted from said light emitting diode of said assembly.

5. A method as in any preceding claim, comprising the step of attaching (78) a reflector onto said assembly after said step of affixing said optical member onto said assembly.

6. A method as in any preceding claim, wherein a plurality of light emitting diodes are mounted onto said assembly, and are electrically connected such that an overall forward voltage of the device is one of six volts and twelve volts.

10

7. A light emitting device comprising:

light-generating means (22-28) for emitting primary light having a first spectral distribution in response to an applied electrical signal; a fluorescent member (52, 64) optically coupled to said light-generating means, said fluorescent member being optically transparent and containing a phosphor material such that secondary light having a second spectral distribution is emitted when a portion of said primary light is absorbed by said phosphor material, said primary light and said secondary light defining a spectral distribution of output light generated by said device; and connecting means (50) for connecting said fluorescent member to said light-generating means.

15

8. A device as in claim 7, wherein said fluorescent member (52) is a substantially planar plate (52) that is positioned with respect to said light-generating means (22-28) such that a face of said plate is generally perpendicular to a direction of said primary light emitted from said light-generating means.

20

9. A device as in claim 7 or 8, comprising a lens (54, 62) integrally attached to said fluorescent member (52, 64) said fluorescent member conforming to a surface of said lens such that said fluorescent member and said lens are an integrated unit.

25

10. A device as in claim 7, 8 or 9, wherein said phosphor material contained in said fluorescent member (54, 64) includes gadolinium doped, cerium activated yttrium aluminum garnet phosphor grains that are dispersed within said fluorescent member.

30

11. A device as in any one of claims 7 to 10, wherein said connecting means (50) includes an optical grade silicone gel that encapsulates said light-generating means, said optical grade silicone gel being positioned between said prefabricated transparent

35

40

45

50

55

member and said light-generating means.

12. A device as in any one of claims 7 to 11, wherein said light-generating means (22-28) includes a gallium nitride-based light emitting diode on a plurality of gallium nitride-based light emitting diodes (22-28) electrically connected such that a forward voltage of said device is one of six volts and twelve volts.

13. A device as in any one of claims 7 to 12, comprising a reflector (34) optically coupled to said fluorescent member.

FIG. 1
(PRIOR ART)

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

THIS PAGE BLANK (USPTO)

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 081 771 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
13.03.2002 Bulletin 2002/11

(51) Int Cl.7: H01L 33/00, H01L 25/075,
F21K 7/00

(43) Date of publication A2:
07.03.2001 Bulletin 2001/10

(21) Application number: 00307565.2

(22) Date of filing: 01.09.2000

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 03.09.1999 US 390006

(72) Inventor: Lowery, Christopher H.
Fremont, CA 94539 (US)

(74) Representative: Jehan, Robert et al
Williams, Powell & Associates,
4 St Paul's Churchyard
London EC4M 8AY (GB)

(71) Applicant: Hewlett-Packard Company,
A Delaware Corporation
Palo Alto, CA 94304 (US)

(54) Light emitting device

(57) An LED package and a method of fabricating the LED package utilize a prefabricated fluorescent member (52, 64) that contains a fluorescent material that can be separately tested for optical properties before assembly to ensure the proper performance of the LED package with respect to the color of the output light. The LED package includes one or more LED (22-28) dies that operate as the light source of the package. Preferably, the fluorescent material included in the prefabricated fluorescent member (52, 64) and the LED (22-28) dies of the LED package are selectively chosen, so that output light generated by the LED package duplicates natural white light. In a first embodiment of the invention, the prefabricated fluorescent member (52) is a substantially planar plate having a disk-like shape. In a second embodiment, the prefabricated fluorescent member (64) is a non-planar disk that conforms to and is attached to the inner surface of a concave lens (62). In this embodiment, the optical properties of the fluorescent member (64) are tested by examining an integrated unit formed by the concave lens (62) and the attached fluorescent member (64). In both embodiments, the LED package includes a layer (50) of encapsulant material that is deposited between the LED dies and the fluorescent member. In a preferred embodiment, the encapsulant material is an optical grade silicone gel, which has a high thermal stability and a desired refractive index for an efficient light extraction.

FIG. 2

EP 1 081 771 A3

Printed by Jouve, 75001 PARIS (FR)

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 00 30 7565

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
X	EP 0 883 195 A (BARR & STROUD LTD) 9 December 1998 (1998-12-09) * column 4, line 38 - column 5, line 14 *	7-13	H01L33/00 H01L25/075 F21K7/00
A	---	1	
X	EP 0 890 996 A (ASAHI RUBBER INC) 13 January 1999 (1999-01-13) * the whole document *	7-13	
A	---	1	
X	WO 97 50132 A (SIEMENS AG) 31 December 1997 (1997-12-31) A * page 16, line 19 - page 20, line 11 *	7-13	
A	---	1	
X	DE 298 04 149 U (CHEN H) 18 June 1998 (1998-06-18) A * the whole document *	7,9-13	
A	---	1,8	
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05, 31 May 1999 (1999-05-31) -& JP 11 039917 A (HEWLETT PACKARD CO), 12 February 1999 (1999-02-12) A * paragraphs '0012!-'0019!, '0023! *	7,8,10, 13	
A	---	1	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
X	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 12, 31 October 1998 (1998-10-31) -& JP 10 190065 A (NICHIA CHEM IND), 21 July 1998 (1998-07-21) * paragraphs '0012!-'0014!, '0040!, '0049!-'0054! *	7,8, 10-13	H01L
X	EP 0 855 751 A (IBM) 29 July 1998 (1998-07-29) * column 5, line 25 - column 6, line 2 *	7,8,12	
X	US 3 932 881 A (MITA Y ET AL) 13 January 1976 (1976-01-13) * column 4, line 25-50 *	7-9,13	
	---	-/-	
The present search report has been drawn up for all claims			
Place of search	Date of compilation of the search	Examiner	
THE HAGUE	17 January 2002	van der Linden, J.E.	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 00 30 7565

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	DE 38 04 293 A (PHILIPS PATENTVERWALTUNG) 24 August 1989 (1989-08-24) * the whole document *	7-9	
X	US 5 208 462 A (O'CONNOR J ET AL) 4 May 1993 (1993-05-04) * column 1, line 66 - column 2, line 11 *	7-9	
A	US 4 168 102 A (CHIDA T ET AL) 18 September 1979 (1979-09-18) * the whole document *	7,8,13	
P,X	US 5 966 393 A (DENBAARS S ET AL) 12 October 1999 (1999-10-12) * column 7, line 63 - column 8, line 18 *	7-13	
P,X	EP 1 024 539 A (HEWLETT PACKARD CO) 2 August 2000 (2000-08-02) * paragraph '0018! *	7,8	
P,X	GB 2 341 274 A (HEWLETT PACKARD CO) 8 March 2000 (2000-03-08) * the whole document *	7,10,12, 13	TECHNICAL FIELDS SEARCHED (Int.Cl.7) ...
<p>The present search report has been drawn up for all claims</p>			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	17 January 2002	van der Linden, J.E.	
CATEGORY OF CITED DOCUMENTS			
X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons S: member of the same patent family, corresponding document	

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 00 30 7565

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17-01-2002

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0883195	A	09-12-1998	US	6061916 A	16-05-2000
			EP	0883195 A1	09-12-1998
			ZA	9804350 A	30-11-1998
EP 0890996	A	13-01-1999	EP	0890996 A2	13-01-1999
			JP	11087784 A	30-03-1999
			US	6319425 B1	20-11-2001
WO 9750132	A	31-12-1997	DE	19625622 A1	02-01-1998
			DE	19638667 A1	02-04-1998
			BR	9709998 A	10-08-1999
			CN	1228873 A	15-09-1999
			WO	9750132 A1	31-12-1997
			EP	0907969 A1	14-04-1999
			JP	2000512806 T	26-09-2000
			US	200100622 A1	03-05-2001
			US	2001002049 A1	31-05-2001
			US	2001030326 A1	18-10-2001
			BR	9706787 A	13-04-1999
			WO	9812757 A1	26-03-1998
			DE	29724284 U1	21-09-2000
			DE	29724382 U1	21-12-2000
			EP	0862794 A1	09-09-1998
			JP	11500584 T	12-01-1999
			JP	2000236112 A	29-08-2000
			US	6277301 B1	21-08-2001
			US	6245259 B1	12-06-2001
			US	2001045647 A1	29-11-2001
			US	2001028053 A1	11-10-2001
DE 29804149	U	18-06-1998	DE	29804149 U1	18-06-1998
JP 11039917	A	12-02-1999	NONE		
JP 10190065	A	21-07-1998	JP	3065263 B2	17-07-2000
EP 0855751	A	29-07-1998	US	5898185 A	27-04-1999
			US	5895932 A	20-04-1999
			EP	0855751 A2	29-07-1998
			JP	10214992 A	11-08-1998
US 3932881	A	13-01-1976	JP	49046382 A	02-05-1974
			JP	49075082 A	19-07-1974
DE 3804293	A	24-08-1989	DE	3804293 A1	24-08-1989

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 00 30 7565

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EOP file on.
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17-01-2002

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5208462	A	04-05-1993	NONE		
US 4168102	A	18-09-1979	GB MY	1560010 A 31481 A	30-01-1980 31-12-1981
US 5966393	A	12-10-1999	NONE		
EP 1024539	A	02-08-2000	US EP JP US	6273589 B1 1024539 A2 2000221597 A 2001036083 A1	14-08-2001 02-08-2000 11-08-2000 01-11-2001
GB 2341274	A	08-03-2000	US DE JP	5959316 A 19919381 A1 2000077723 A	28-09-1999 09-03-2000 14-03-2000

EPO FORM RP459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

THIS PAGE BLANK (USPTO)