

BITS Pilani Deep Learning

Dr. Sugata Ghosal sugata.ghosal@pilani.bits-pilani.ac.in

BITSPilani

lead

Pilani Campus

Lecture No. 2 | Deep Networks

Time: 11 AM - 1 PM

Date: 05/09/2020

These slides are assembled by the instructor with grateful acknowledgement of the many others who made their course materials freely available online.

How to Specify/Design Perceptron Parameters

x1 OR x2 with Perceptron (Step Threshold)

Perceptron with hard/step threshold

Output = 0 if input w1*x1 + w2*x2 < threshold T

= 1 if input >= T

```
From OR truth table,

w1*0 + w2*0 < T implies T > 0

w1*1+w2*0 >= T implies w1 >= T

w1*0+w2*1 >= T implies w2 >= T

w1*1+w2*1 >= T implies w1+w2>= T
```

Choose, T =1 (you can choose any T > 0)	0
Then w1 =1 (you can choose any value >= T)	1
Similarly choose w2 = 1 (you can choose any value >= T)	
w1+w2 >=T is automatically satisfied for w1=w2=1 and T=	1

X1 AND x2 Truth Table

x1	x2	Output
0	0	0
1	0	1
0	1	1
1	1	1

Thus, AND can be realized with w1=1, w2=1, T=1. Important to note that other values of w1, w2, and T can also implement OR, as long as the about 4 inequalities are satisfied

achiev

Specify: Perceptron Parameters for Classification

- Note: Different Choices of weights and bias are possible.
- Left hidden node implements x1=1 line
- Right hidden node implements x1=5 line
- 2^{nd} node from left implements x2=x1+3 and 3^{rd} from left implements x1+x2=9
- For + class, output of left hidden node = +1, for other nodes output = -1

Example: Functional Approximation in 1-D

Given the function values (x_i, y_i) design an MLP

Example: Functional Approximation in 1-D

Given the function values (x_i, y_i) design an MLP

x	у
0	1
2	2
3	4.5
5	12.5

- First consider one data point, say (3, 4.5)
 and hidden nodes with hard threshold T=3
 and T=5 (output = 1 if input >=T else 0)
- Output node uses a ReLU activation, i.e., y = sum of all weighted outputs from hidden nodes
- With choice of weights in the above figure,
 y = 4.5 for 3<=x<5, and 0 otherwise.
- Note that choice of T=5 is by design, given the set of discrete data points. Any T>=3 up to next data point for the right hidden node would work.

Example: Functional Approximation in 1-D

Given the function values (x_i, y_i) design an MLP

Agenda

- Soft Perceptron
- Multilayer Perceptron as
 - Universal Boolean Function
 - Universal Classifier
 - Universal Function Approximation
- Error Minimization for training
- Optimization Refresher
- Computational Graph

Recap: Perceptron

$$z = \sum_{i} w \times + T$$

$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{else} \end{cases}$$

- A threshold unit
 - "Fires" if the weighted sum of inputs and the "bias" T is positive

The "soft" perceptron

$$z = \sum_{i} w \times \tau T$$

$$y = \frac{1}{1 + exp(-z)}$$

- A "squashing" function instead of a threshold at the output
 - The sigmoid "activation" replaces the threshold
 - Activation: The function that acts on the weighted combination of inputs (and threshold)

Other "activations"

- Does not always have to be a squashing function
 - We will hear more about activations later
- We will continue to assume a "threshold" activation in this lecture

Neural Networks: What can a network represent

The multi-layer perceptron

Deep neural network

- A network of perceptrons
 - Generally "layered"

Defining "depth"

Deep neural network

 What is a "deep" network

Deep Structures

 In any directed network of computational elements with input source nodes and output sink nodes, "depth" is the length of the longest path from a source to a sink

• Left: Depth = 2.

Right: Depth = 3

Deep Structures

• Layered deep structure

• "Deep" = Depth greater than 2

The multi-layer perceptron

- Inputs are real or Boolean stimuli
- Outputs are real or Boolean values
 - Can have multiple outputs for a single input
- What can this network compute?
 - What kinds of input/output relationships can it model?

The MLP as a Boolean function

 How well do MLPs model Boolean functions?

Т	rι	ıt	h	T	a	b	le

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input form by hingthicans to put is 1

• A Boolean function is just a truth table

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input form by hingtic anstput is 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input form by hingtic anstput is 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input form by hingthicans to put is 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations to 1

Truth Table X₁ X₂ X₃ X₄ X₅ Y 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1

Truth table shows all input combinations to 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input form by hingthicans to put is 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input form by hingtic anstput is 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input form by hingthicans to put is 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations to 1

- Any truth table can be expressed in this manner!
- A one-hidden-layer MLP is a Universal Boolean Function

Truth

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input formulations to 1

- Any truth table can be expressed in this manner!
- A one-hidden-layer MLP is a Universal Boolean Function

But what is the largest number of perceptrons required in the single hidden layer for an N-input-variable function?

This is a "Karnaugh Map"

It represents a truth table as a grid Filled boxes represent input combinations for which output is 1; blank boxes have output 0

Adjacent boxes can be "grouped" to reduce the complexity of the DNF formula for the table

- DNF form:
 - Find groups
 - Express as reduced DNF

Basic DNF formula will require 7 terms

$$O = \bar{Y}\bar{Z} + \bar{W}X\bar{Y} + \bar{X}Y\bar{Z}$$

- Reduced DNF form:
 - Find groups
 - Express as reduced DNF

$$O = \bar{Y}\bar{Z} + \bar{W}X\bar{Y} + \bar{X}Y\bar{Z}$$

- *Reduced* DNF form:
 - Find groups
 - Express as reduced DNF
 - Boolean network for this function needs only 3 hidden units
 - Reduction of the DNF reduces the size of the one-hidden-layer network

Largest irreducible DNF?

 What arrangement of ones and zeros simply cannot be reduced further?

Largest irreducible DNF?

• What arrangement of ones and zeros simply cannot be reduced further?

Largest irreducible DNF?

 What arrangement of ones and zeros simply cannot be reduced further?

How many neurons in a DNFY(Zne-hidden-layer) MLP for this Boolean function of 6 variables?

• How many neurons in a DNFZ (one-hidden for this Boolean function

How many units if we use multiple layers?

(one-hidden layer) MLP for this Boolean function

$$O = W \oplus X \oplus Y \oplus Z$$

$$O = U \oplus V \oplus W \oplus X \oplus Y \oplus Z$$

Multi-layer perceptron XOR

An XOR takes three perceptrons

Multi-layer perceptron XOR

- With 2 neurons
 - 5 weights and two thresholds

- An XOR needs 3 perceptrons
- This network will require 3x3 = 9 perceptrons

- An XOR needs 3 perceptrons
- This network will require 3x5 = 15 perceptrons

$$O = U \oplus V \oplus W \oplus X \oplus Y \oplus Z$$

More generally, the XOR of N variables will require 3(N-1) perceptrons!!

- An XOR needs 3 perceptrons
- This network will require 3x5 = 15 perceptrons

Will require 3(N-1) perceptrons in a deep network

Linear in N!!!

Can be arranged in only $2\log_2(N)$ layers

Boolean tunction

A better representation

$$O = X_1 \oplus X_2 \oplus \cdots \oplus X_N$$

- Only 2 log₂ N layers
 - By pairing terms
 - 2 layers per XOR

$$O = (((((X_1 \oplus X_2) \oplus (X_3 \oplus X_4)) \oplus ((X_5 \oplus X_6) \oplus (X_7 \oplus X_8))) \oplus (((\cdots$$

Recap: The need for depth

- Deep Boolean MLPs that scale linearly with the number of inputs ...
- ... can become exponentially large if recast using only one layer

It gets worse..

Network size: summary

- An MLP is a universal Boolean function
- But can represent a given function only if
 - It is sufficiently wide
 - It is sufficiently deep
 - Depth can be traded off for (sometimes) exponential growth of the width of the network
- Optimal width and depth depend on the number of variables and the complexity of the Boolean function
 - Complexity: minimal number of terms in DNF formula to represent it

Story so far

- Multi-layer perceptrons are Universal Boolean Machines
 - Even a network with a single hidden layer is a universal Boolean machine
- Multi-layer perceptrons are Universal Classification Functions
 - Even a network with a single hidden layer is a universal classifier
- But a single-layer network may require an exponentially large number of perceptrons than a deep one
- Deeper networks may require far fewer neurons than shallower networks to express the same function
 - Could be exponentially smaller
 - Deeper networks are more expressive