Collection of Problems that I think are Cool

Benjamin Chu

July 26, 2019

1 Math

Problem 1.1

Let $\mathbf{X} = \mathbb{R}^{n \times n}$ random matrix. Show that probability that $\det(\mathbf{X}) = 0$ is 0. That is, almost all $n \times n$ random matrices are invertible.

2 Statistics

Problem 2.1

Consider a multiple regression where n > p and $rank(\mathbf{X}) = p$. Let

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2$$

where $\mathbf{e} = (e_1, ..., e_n)^t = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ are the regression residuals and $\hat{\boldsymbol{\beta}}$ is the best linear unbiased estimator of $\boldsymbol{\beta}$. Show that $\hat{\boldsymbol{\sigma}}^2$ is an unibased estimator of $\boldsymbol{\sigma}^2$.

Proof. We have

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2 = \frac{1}{n-p} (\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}}).$$

Also, $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y}$. Repeatedly applying cyclic permuation and linearity of trace

operator, we have

$$\begin{split} & E\left((\mathbf{y} - \mathbf{H}\mathbf{y})^T(\mathbf{y} - \mathbf{H}\mathbf{y})\right) = E(\mathbf{y}^T(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})\mathbf{y}) = E(\mathbf{y}^T(\mathbf{I} - \mathbf{H})\mathbf{y}) \\ & = \operatorname{tr}\left(E(\mathbf{y}^T(\mathbf{I} - \mathbf{H})\mathbf{y})\right) = E\left(\operatorname{tr}((\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})^T(\mathbf{I} - \mathbf{H})(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}))\right) \\ & = E\left(\operatorname{tr}((\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})^T(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} - \mathbf{H}\mathbf{X}\boldsymbol{\beta} - \mathbf{H}\boldsymbol{\varepsilon}))\right) = E\left(\operatorname{tr}((\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})^T(\mathbf{I} - \mathbf{H})\boldsymbol{\varepsilon})\right) \\ & = E\left(\operatorname{tr}(\boldsymbol{\varepsilon}^T(\mathbf{I} - \mathbf{H})\boldsymbol{\varepsilon})\right) = \operatorname{tr}\left((\mathbf{I} - \mathbf{H})E(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T)\right) = \operatorname{tr}\left((\mathbf{I} - \mathbf{H})\operatorname{Var}(\boldsymbol{\varepsilon})\right) \\ & = \sigma^2\operatorname{tr}(\mathbf{I} - \mathbf{H}) = \sigma^2\left(\operatorname{tr}(\mathbf{I}_{n \times n}) - \operatorname{tr}(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)\right) = \sigma^2(n - p). \end{split}$$

Problem 2.2

Show that sample mean and sample variance are 2 independent statistics.

3 Useful Tricks and Identities

Problem 3.1

[Dobson and Barnett, 2008, Chapter 3.4]

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\lambda_i \in \mathbb{R}$, and $\mathbf{x}_i^T \in \mathbb{R}^p$ be a row of \mathbf{X} . Show that

$$egin{aligned} \sum_{i=1}^n \lambda_i \mathbf{x}_i \mathbf{x}_i^T &= \mathbf{X}^T egin{bmatrix} \lambda_1 && \mathbf{0} \ & \ddots & \ \mathbf{0} && \lambda_n \end{bmatrix} \mathbf{X} \end{aligned}$$

Proof. This is a definition problem. By definition we have

$$\mathbf{X}^T\mathbf{X} = \begin{bmatrix} | & & | \\ \mathbf{x}_1 & - & \mathbf{x}_n \\ | & & | \end{bmatrix} \begin{bmatrix} - & \mathbf{x}_1^T & - \\ & | & \\ - & \mathbf{x}_n^T & - \end{bmatrix} \equiv \begin{bmatrix} c_{11} & \cdots & c_{ij} \\ \vdots & & \vdots \\ & & c_{nn} \end{bmatrix}$$

Therefore $c_{11} = x_{11}x_{11} + x_{21}x_{21} + ... + x_{n1}x_{n1}$. Similarly,

$$\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \begin{bmatrix} d_{11} & \cdots & d_{ij} \\ \vdots & & \vdots \\ & & d_{nn} \end{bmatrix} \iff d_{11} = (\mathbf{x}_{1} \mathbf{x}_{1}^{T})_{11} + (\mathbf{x}_{2} \mathbf{x}_{2}^{T})_{11} \dots + (\mathbf{x}_{n} \mathbf{x}_{n}^{T})_{11} = c_{11}.$$

Therefore the entries match up judiciously.

Problem 3.2 Exact 2nd order Taylor's expansion

Suppose $f \in C^2(\mathbb{R})$. Show that there exists $y \in (x_0, x)$ such that:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(y)(x - x_0)^2.$$

This motivates the quadratic upper bound principle, which is used ubiquitously in MM algorithms.

Proof. Applying fundamental theorem of calculus twice, we have

$$f(x) = f(x_0) + \int_{x_0}^{x} f'(x_1) dx_1$$

$$= f(x_0) + \int_{x_0}^{x} \left(f'(x_0) + \int_{x_0}^{x_1} f''(x_2) dx_2 \right) dx_1$$

$$= f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^{x} \int_{x_0}^{x_1} f''(x_2) dx_2 dx_1.$$

By mean value theorem, there exists $y \in (x_0, x_1)$ such that $\int_{x_0}^{x_1} f''(x_2) dx_2 = f''(y)(x_1 - x_0)$. Thus

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \int_{x_0}^x f''(y)(x_1 - x_0) dx_1$$

= $f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(y)(x - x_0).$

Problem 3.3 Clever use of Cauchy-Schwarz

[Lange, 2016, Exercise 1.4.18]

Prove the majorization

$$(x+y-z)^{2} \le -(x_{n}+y_{n}-z_{n})^{2} + 2(x_{n}+y_{n}-z_{n})(x+y-z) + 3[(x-x_{n})^{2} + (y-y_{n})^{2} + (z-z_{n})^{2}]$$

which separtes the variables x, y, and z. In examples 1.3.6 and 1.3.7 this would facilitate penalizing parameter curvature rather than changes in parameter values.

Proof. First, move the first two terms on the right to the left:

$$(x+y-z)^2 - 2(x_n+y_n-z_n)(x+y-z) + (x_n+y_n-z_n)^2 \le 3[(x-x_n)^2 + (y-y_n)^2 + (z-z_n)^2]$$

The left can be factored cleanly as

$$((x+y-z)-(x_n+y_n-z_n))^2 \le 3[(x-x_n)^2+(y-y_n)^2+(z-z_n)^2]$$

$$\iff (a+b+c)^2 \le 3a^2+3b^2+3c^2$$

where $a = x - x_n$, $b = y - y_n$, $c = z - z_n$. Now define v = (1, 1, 1), u = (a, b, c). By Cauchy-Schwarz, we obtain the desired result:

$$(a+b+c)^2 \le 3(a^2+b^2+c^2).$$

4 Real worl Application Problems

Problem 4.1

Suppose we wish to fit a large n small p linear regression problem. Every day millions of new sample points are generated. How would one obtain $\hat{\beta}$ without saving larger and larger matrices?

Proof. Let \mathbf{y}_i and \mathbf{X}_i denote the samples and corresponding data of day i. Then up to day n, the concatenated full design matrix \mathbf{X} and full sample vector \mathbf{y} is

$$[\mathbf{X}\mathbf{y}] = egin{bmatrix} [\mathbf{X}_1\mathbf{y}_1] \ dots \ [\mathbf{X}_n\mathbf{y}_n] \end{bmatrix}.$$

Of course we do not want to store this entire matrix because it gets bigger each day. Fortunately, the gram matrix of [Xy] is readily computed:

$$\begin{aligned} [\mathbf{X}\mathbf{y}]^t [\mathbf{X}\mathbf{y}] &= [\mathbf{X}_1 \mathbf{y}_1]^t [\mathbf{X}_1 \mathbf{y}_1] + \dots + [\mathbf{X}_n \mathbf{y}_n]^t [\mathbf{X}_n \mathbf{y}_n] \\ &= \begin{bmatrix} \mathbf{X}_1^t \mathbf{X}_1 & \mathbf{X}_1^t \mathbf{y} \\ \mathbf{y}_1^t \mathbf{X}_1 & \mathbf{y}_1^t \mathbf{y}_1 \end{bmatrix} + \dots + \begin{bmatrix} \mathbf{X}_n^t \mathbf{X}_1 & \mathbf{X}_n^t \mathbf{y} \\ \mathbf{y}_n^t \mathbf{X}_1 & \mathbf{y}_n^t \mathbf{y}_1 \end{bmatrix}. \end{aligned}$$

By property of the sweep operator, we know that sweeping on this full gram matrix have the property:

sweep
$$([\mathbf{X}\mathbf{y}]^t[\mathbf{X}\mathbf{y}]) = \begin{bmatrix} -(\mathbf{X}^t\mathbf{X})^{-1} & (\mathbf{X}^t\mathbf{X})\mathbf{X}^t\mathbf{y} \\ \mathbf{y}^t\mathbf{X}(\mathbf{X}^t\mathbf{X}) & \mathbf{y}^t\mathbf{y} - \mathbf{y}^t\mathbf{X}(\mathbf{X}^t\mathbf{X})^y\mathbf{X}^t\mathbf{y} \end{bmatrix}$$

$$= \begin{bmatrix} -\sigma^{-2}\operatorname{Cov}(\hat{\boldsymbol{\beta}}) & \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\beta}}^t & ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 \end{bmatrix}$$

Therefore, we store the *sum* of all preceding days of data in the form of a gram matrix. When new data arrives, we add the new data's gram matrix to the previous sum and sweep until the 2nd to last entry. Then the fitted model $\hat{\beta}$ will be on the top right column. Since $n \gg p$, the gram matrix is small and thus easy to store.

Problem 4.2 Modeling count data

[Dobson and Barnett, 2008, 3.5.b]

To model count data, one can choose among Poisson, Negative Binomial, and Binomial distributions. Given a set of observations y_i and assuming a common rate parameter, how would one decide which of these distribution are more appropriate?

Proof. The 3 different models under consideration are:

```
y_i \sim \text{Poisson}(\lambda_i)

y_i \sim \text{NegBin}(r, p)

y_i \sim \text{Binomial}(n, p).
```

The simplest way is to use the relationship between mean and variance of y. For Poisson, E(by) = Var(by). For negative binomial, Var(y) > E(y). And for Binomial, E(y) > Var(y).

References

[Dobson and Barnett, 2008] Dobson, A. J. and Barnett, A. G. (2008). *An introduction to generalized linear models*. Chapman and Hall/CRC.

[Lange, 2016] Lange, K. (2016). MM optimization algorithms, volume 147. SIAM.