9th-place-modeling-kernel

January 11, 2020

This kernel is used for training our models. In the end, we went with an ensemble of 15 models similar to the one trained here.

Their CV are all above 0.86 and 5-folds LB varies between 0.71 and 0.72

For our solution writeup, please check : https://www.kaggle.com/c/freesound-audio-tagging-2019/discussion/95409#latest-551352

1 Initialization

1.1 Imports

```
[1]: import re
     import gc
     import os
     import time
     import pywt
     import pickle
     import random
     import operator
     import warnings
     import numpy as np
     import pandas as pd
     import seaborn as sns
     import tensorflow as tf
     import IPython.display as ipd
     import matplotlib.pyplot as plt
     from PIL import Image
     from sklearn.metrics import *
     from collections import Counter
     from sklearn.model_selection import *
     from tqdm import tqdm_notebook as tqdm
     from keras.utils import to categorical
     from multiprocessing import Pool, cpu_count
     from collections import OrderedDict
```

```
import torch
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
import torchvision.models as models
from torch.autograd import Variable
from torch.optim.lr_scheduler import *
from torchvision.transforms import transforms
from torch.utils.data import Dataset, DataLoader
import librosa
import librosa.display
begin = time.time()
sns.set_style('white')
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=UserWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
print("Number of available cpu cores: {}".format(cpu_count()))
```

Using TensorFlow backend.

Number of available cpu cores: 2

1.2 Seeding

```
[2]: def seed_everything(seed):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    tf.set_random_seed(seed)
```

```
[3]: seed = 2019 seed_everything(seed)
```

```
[4]: N_JOBS = cpu_count()
    os.environ['MKL_NUM_THREADS'] = str(N_JOBS)
    os.environ['OMP_NUM_THREADS'] = str(N_JOBS)
    DataLoader = partial(DataLoader, num_workers=N_JOBS)
```

1.3 Load Data

```
[5]: DATA_PATH = '../input/freesound-audio-tagging-2019/'
     TRAIN_CURATED_PATH = DATA_PATH + 'train_curated/'
     TRAIN_NOISY_PATH = DATA_PATH + 'train_noisy/'
     TEST_PATH = DATA_PATH + 'test/'
[6]: df_train = pd.read_csv(DATA_PATH + 'train_curated.csv')
     df_noisy = pd.read_csv(DATA_PATH + 'train_noisy.csv')
     df_test = pd.read_csv(DATA_PATH + 'sample_submission.csv')
     df_train.head()
[6]:
               fname
                               labels
     0 0006ae4e.wav
                                 Bark
     1 0019ef41.wav
                             Raindrop
     2 001ec0ad.wav Finger_snapping
     3 0026c7cb.wav
     4 0026f116.wav Finger_snapping
[7]: labels = list(df_test.columns[1:])
     num_classes = len(labels)
     print("Number of classes :", num_classes)
    Number of classes: 80
    Removing "corrupted" files
[8]: to_remove = ["f76181c4.wav", "77b925c2.wav", "6a1f682a.wav", "c7db12aa.wav",

¬"7752cc8a.wav", "1d44b0bd.wav"]

     for i in df_train.copy().index:
         if df_train['fname'][i] in to_remove:
             df_train.drop(i, inplace=True)
     df_train = df_train.reset_index(drop=True)
    Restraining noisy data to samples with only one label
[9]: df_noisy["nb_labels"] = df_noisy["labels"].apply(lambda x: len(x.split(',')))
     df_noisy = df_noisy[df_noisy["nb_labels"] == 1].copy().reset_index(drop=True)
```

2 Signal Processing

2.1 Config

```
class config:
    sampling_rate = 44100  # 44.1 kHz
    duration = 4 #2 # Minimum length for short samples (seconds)
    samples = sampling_rate * duration # Minimum sample size

top_db = 60 # Noise filtering, default = 60

# Frequencies kept in spectrograms
fmin = 20
fmax = sampling_rate // 2 # Shannon theorem

# Spectrogram parameters
    n_mels = 64 # = spec_height
    n_fft = n_mels * 30 # Size of fft window - smooths the spectrogram
    spec_min_width = 256 #128
    x_mean,x_std = -35.7, 21.6
    hop_length = duration * sampling_rate // spec_min_width + 1 # Number of_

samples between each frame - impacts y size of spectrogram
```

2.2 Read Audio

```
[11]: def read_audio(pathname, conf, trim_long_data):
    y, sr = librosa.load(pathname, sr=conf.sampling_rate)
    # trim silence
    if len(y) > 0: # workaround: 0 length causes error
        y, _ = librosa.effects.trim(y) # trim, top_db=default(60)
    # make it unified length to conf.samples
    if len(y) > conf.samples: # long enough
        if trim_long_data: y = y[0:0+conf.samples]
    else: # pad blank
        padding = conf.samples - len(y) # add padding at both ends
        offset = padding // 2
        y = np.pad(y, (offset, conf.samples - len(y) - offset), 'constant')
    return y
```

2.3 MEL Spectrogram

The three chanel mode adds first and second or delta to the data. It did not improve the results.

2.4 Normalize

We can either use individual image statistics or statistics computed on train data.

```
[13]: def normalize(X, mean=None, std=None):
    mean = mean or X.mean()
    std = std or (X-X.mean()).std()
    return ((X - mean)/std).astype(np.float16)
```

3 Labels

```
def get_labels(df, labels):
    mapping = {label:i for i, label in enumerate(labels)}
    y = np.zeros((len(df), len(labels)))
    all_labels = df['labels'].apply(lambda x: x.split(','))
    for i, label in enumerate(all_labels):
        for l in label:
            y[i, mapping[l]] = 1
    return y.astype(int)
```

```
[15]: y_train = get_labels(df_train, labels)
```

3.1 Select best noisy samples

We load predictions that were computed using a model that was trained only on curated data. The idea is to keep the ones that were the most correctly predicted, using the log loss as metric. As

some class were better predicted than others, we restrict the number of added samples to 50 per class.

[16]: | scores_noisy = np.load("../input/fat-cp/scores.npy")

```
y_noisy = get_labels(df_noisy, labels)
[17]: def sort_by_loss(y_noisy, scores_noisy):
          losses_dic = {i : log_loss(y_noisy[i], scores_noisy[i]) for i in_
       →range(scores_noisy.shape[0])}
          sorted_dic = sorted(losses_dic.items(), key=operator.itemgetter(1))
          return sorted_dic
[18]: sorted_by_loss = sort_by_loss(y_noisy, scores_noisy)
[19]: def select_noisy(sorted_by_loss, nb_noisy, max_per_class=50):
          selected = np.array(sorted by loss)[:nb noisy, 0].astype(int)
          to keep = []
          counts = {}
          for s in selected:
              l = df noisy["labels"][s]
              try:
                  counts[1] += 1
              except:
                  counts[1] = 0
              if counts[1] < max_per_class:</pre>
                  to_keep.append(s)
          return df_noisy.iloc[to_keep].reset_index(drop=True)
          df_noisy_selected
[20]: nb_noisy = 5000
[21]: df noisy selected = select noisy(sorted by loss, nb noisy, max per class=50)
      y_noisy = get_labels(df_noisy_selected, labels)
     3.2 Input data
[22]: three_chanels = False
      crop = False
[23]: def process(df, path, config, crop=False, three_chanels=False):
```

signal = read_audio(path + df['fname'][i], config, crop)

X = []

for i in df.index:

```
X.append(normalize(audio_to_melspectrogram(signal, config), config.

→x_mean, config.x_std)) #normalize based on global statistics

#X.append(normalize(audio_to_melspectrogram(signal, config)))

→#normalize based on individual statistics

return X
```

```
[24]: # df_train = df_train.head(100)
# df_test = df_test.head(100)
# df_noisy_selected = df_noisy_selected.head(100)
```

```
CPU times: user 10min 3s, sys: 8min 7s, total: 18min 11s Wall time: 9min 48s
```


3.3 Datasets

3.3.1 Augmentation

We augment spectrograms by hiding random time & frequency intervals

```
[27]: def spec_augment(spec: np.ndarray, num_mask=2, freq_masking_max_percentage=0.

→15, time_masking_max_percentage=0.3):
    spec = spec.copy()
    for i in range(num_mask):
        num_freqs, num_frames = spec.shape
        freq_percentage = random.uniform(0.0, freq_masking_max_percentage)
        time_percentage = random.uniform(0.0, time_masking_max_percentage)
```

```
[28]: plt.matshow(spec_augment(X_train[0].astype(np.float32)))
plt.show()
```


3.3.2 Usual transforms

Only the conversion to tensor is kept, we also tried flipping and resized cropping.

3.3.3 Train

```
[30]: class FATDatasetTrain(Dataset):
    def __init__(self, mels, transforms, y, apply_spec_aug=False):
        super().__init__()
        self.mels = mels
```

```
self.labels = y
    self.transforms = transforms
    self.apply_spec_aug = apply_spec_aug
def __len__(self):
    return len(self.mels)
def __getitem__(self, idx):
    data = self.mels[idx].astype(np.float32)
    base_dim,time_dim = data.shape
    crop = random.randint(0, max(time_dim - config.spec_min_width,0))
    data = data[0:base_dim,crop:crop + config.spec_min_width]
    if self.apply_spec_aug:
        data = spec_augment(data)
    data = np.expand_dims(data, axis=2)
    data = self.transforms(data)
    label = self.labels[idx]
    label = torch.from_numpy(label).float()
    return data, label
```

3.3.4 Test + TTA

TTA helped to fight instability, it worked well for us.

```
[31]: class FATDatasetTest(Dataset):
          def __init__(self, mels, transforms, y=None, nb_tta=5):
              super().__init__()
              self.mels = mels
              self.transforms = transforms
              self.tta = nb_tta
              if y is None:
                  self.y = np.zeros(len(self.mels))
              else:
                  self.y = y
          def __len__(self):
              return len(self.mels) * self.tta
          def __getitem__(self, idx):
              new_idx = idx % len(self.mels)
              data = self.mels[new_idx].astype(np.float32)#/255.0
              base_dim,time_dim = data.shape
```

```
crop = random.randint(0, max(time_dim - config.spec_min_width,0))
data = data[0:base_dim,crop:crop + config.spec_min_width]
data = np.expand_dims(data, axis=2)
data = self.transforms(data)
return data, self.y[new_idx]
```

Input shape : (64, 256)

4 Modeling

4.1 Tools

4.1.1 Adaptative Pooling

```
[33]: def adaptive_concat_pool2d(x, sz=(1,1)):
    out1 = F.adaptive_avg_pool2d(x, sz).view(x.size(0), -1)
    out2 = F.adaptive_max_pool2d(x, sz).view(x.size(0), -1)
    return torch.cat([out1, out2], 1)
```

4.1.2 ConvBlock

Adapted from https://www.kaggle.com/mhiro2/simple-2d-cnn-classifier-with-pytorch

```
[34]: class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, pool=True):
```

```
super().__init__()
       padding = kernel_size // 2
       self.pool = pool
       self.conv1 = nn.Sequential(
           nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,_
→stride=1, padding=padding),
           nn.BatchNorm2d(out_channels),
           nn.ReLU(),
       )
       self.conv2 = nn.Sequential(
           nn.Conv2d(out_channels + in_channels, out_channels,
→kernel_size=kernel_size, stride=1, padding=padding),
           nn.BatchNorm2d(out_channels),
           nn.ReLU(),
       )
       self._init_weights()
   def _init_weights(self):
       for m in self.modules():
           if isinstance(m, nn.Conv2d):
               nn.init.kaiming_normal_(m.weight)
               if m.bias is not None:
                   nn.init.zeros_(m.bias)
           elif isinstance(m, nn.BatchNorm2d):
               nn.init.constant_(m.weight, 1)
               nn.init.zeros_(m.bias)
   def forward(self, x): # x.shape = [batch_size, in_channels, a, b]
       x1 = self.conv1(x)
       x = self.conv2(torch.cat([x, x1],1))
       if(self.pool): x = F.avg_pool2d(x, 2)
                 \# x.shape = [batch\_size, out\_channels, a//2, b//2]
```

4.2 Models

```
self.fc = nn.Sequential(
                  nn.BatchNorm1d(512*2),
                  nn.Linear(512*2, 128),
                  nn.PReLU(),
                  nn.BatchNorm1d(128),
                  nn.Linear(128, num_classes),
              )
          def forward(self, x): # batch_size, 3, a, b
              x = self.conv(x) # batch_size, 512, a//16, b//16
              x = self.fc(adaptive_concat_pool2d(x))
              return x
[36]: class Classifier_M2(nn.Module):
          def __init__(self, num_classes=num_classes):
              super().__init__()
              self.conv1 = ConvBlock(1,64)
              self.conv2 = ConvBlock(64,128)
              self.conv3 = ConvBlock(128,256)
              self.conv4 = ConvBlock(256,512,pool=False)
              self.fc = nn.Sequential(
                  nn.BatchNorm1d(1792),
                  nn.Linear(1792, 256),
                  nn.PReLU(),
                  nn.BatchNorm1d(256),
                  nn.Linear(256, num_classes),
              )
          def forward(self, x): # batch size, 3, a, b
              x1 = self.conv1(x)
              x2 = self.conv2(x1)
              x3 = self.conv3(x2)
              x4 = self.conv4(x3)
              #pyramid pooling
              x = torch.cat([adaptive_concat_pool2d(x2), adaptive_concat_pool2d(x3),
                             adaptive_concat_pool2d(x4)], 1)
              x = self.fc(x)
              return x
[37]: class Classifier M3(nn.Module):
          def __init__(self, num_classes=num_classes):
              super(). init ()
              self.conv1 = ConvBlock(1,64)
```

self.conv2 = ConvBlock(64,128)

```
self.conv3 = ConvBlock(128,256)
       self.conv4 = ConvBlock(256,512)
       self.conv5 = ConvBlock(512,1024,pool=False)
       self.fc = nn.Sequential(
           nn.BatchNorm1d(3840),
           nn.Linear(3840, 256),
           nn.PReLU(),
           nn.BatchNorm1d(256),
           nn.Linear(256, num_classes),
       )
   def forward(self, x): # batch_size, 3, a, b
       x1 = self.conv1(x)
       x2 = self.conv2(x1)
       x3 = self.conv3(x2)
       x4 = self.conv4(x3)
       x5 = self.conv5(x4)
       #pyramid pooling
       x = torch.cat([adaptive_concat_pool2d(x2), adaptive_concat_pool2d(x3),
                      adaptive_concat_pool2d(x4),adaptive_concat_pool2d(x5)],u
→1)
       x = self.fc(x)
       return x
```

5 Tools

5.1 LwLRAP

```
[38]: def _one_sample_positive_class_precisions(scores, truth):
    num_classes = scores.shape[0]
    pos_class_indices = np.flatnonzero(truth > 0)

if not len(pos_class_indices):
    return pos_class_indices, np.zeros(0)

retrieved_classes = np.argsort(scores)[::-1]

class_rankings = np.zeros(num_classes, dtype=np.int)
    class_rankings[retrieved_classes] = range(num_classes)

retrieved_class_true = np.zeros(num_classes, dtype=np.bool)
    retrieved_class_true[class_rankings[pos_class_indices]] = True

retrieved_cumulative_hits = np.cumsum(retrieved_class_true)
```

5.2 Mixup

Facebook's implementation is used for Mixup. With its default parameters.

```
[40]: alpha_ = 0.4
sns.distplot(np.random.beta(alpha_, alpha_, 100000))
plt.xlim(0, 1)
plt.title(f'Distribution used for Mixup (alpha = {alpha_})', size=15)
plt.show()
```



```
[41]: def mixup_data(x, y, alpha=alpha_, use_cuda=True):
    if alpha > 0:
        lam = np.random.beta(alpha, alpha)
    else:
        lam = 1

    batch_size = x.size()[0]
    if use_cuda:
        index = torch.randperm(batch_size).cuda()
    else:
        index = torch.randperm(batch_size)

    mixed_x = lam * x + (1 - lam) * x[index, :]
    y_a, y_b = y, y[index]
    return mixed_x, y_a, y_b, lam
```

```
[42]: def mixup_criterion(criterion, pred, y_a, y_b, lam):
    return lam * criterion(pred.float().cuda(), y_a.float().cuda()) + (1 - lam)

→* criterion(pred.float().cuda(), y_b.float().cuda())
```

5.3 Label Smoothing

We tried this as well, without any success. I do believe that clever use of label smoothing & noisy data can improve results

```
[43]: def smooth(y, eps=0.4):
    a = 1 - eps * (1 + 1/y.shape[1])
    b = eps / y.shape[1]
    return a * y + b
```

5.4 Learning Rate

I reimplemented a custom Scheduler, that does Cosine Annealing and warmup. We found out that warmup played a quite important role

```
[45]: lr_max = 0.001
      lr_min = 1e-5
      warmup_prop = 0.1
      nb_epochs = 80
      epochs = [i for i in range(nb_epochs)]
      lrs_warmup = [lr_max * i / (warmup_prop * nb_epochs) for i in range(1,__
       →int(warmup_prop * nb_epochs) + 1)]
      lrs\_scheduler = [lr\_min + 0.5 * (lr\_max - lr\_min) * (1 + np.cos(np.pi * i / ((1_u)))]
      → warmup_prop) * nb_epochs))) for i in range(int((1 - warmup_prop) * ...
       →nb_epochs))]
      plt.figure(figsize=(15, 5))
      plt.axhline(lr min, label='lr min', c='skyblue', linestyle='--')
      plt.axhline(lr_max, label='lr_max', c='orangered', linestyle='--')
      plt.plot(epochs, lrs_warmup + lrs_scheduler[:len(epochs)])
      plt.grid(True)
      plt.legend()
      plt.title('Learning Rate Scheduling Policy', size=15)
      plt.show()
```


5.5 Sigmoid

```
[46]: def sigmoid(x): return 1 / (1 + np.exp(-x))
```

5.6 Save & Load

```
[47]: def save_model_weights(model, filename, verbose=1):
    if verbose:
        print(f'Saving weights to {filename}\n')
        torch.save(model.state_dict(), filename)
[48]: def load_model_weights(model, filename, verbose=1):
    if verbose:
```

```
if verbose:
    print(f'Loading weights from {filename}\n')
model.load_state_dict(torch.load(filename))
return model
```

5.7 Predict

5.8 Fit.

Code is a bit ugly, you might not want to dive into it. It's PyTorch. Here are the main points:

- Weight decay (0.001)
- Gradient clipping (1)
- Binary Cross Entropy loss
- Adam is used here, Adabound was also tried
- Custom lr scheduler (see above), with a warmup proportion 0.1 usually.
- Apply mixup with a probability mixup (chosen at 1)
- Checkpointing is used

```
[50]: def fit(model, train_dataset, val_dataset, epochs=50, batch_size=128, nb_tta=5,__
       →mixup=False, warmup_prop=0.1,
              verbose=1, cp=False, model_name='model', lr=0.001):
         avg_val_loss = 1000
         best_score = 0
         clip_value = 1.0
         model.cuda()
         opt params = [
              {'params': [p for n, p in list(model.named_parameters()) if not any(nd∟
       → in n for nd in ['bias', 'LayerNorm.bias', 'LayerNorm.weight'])], __
       {'params': [p for n, p in list(model.named parameters()) if any(nd in n_

→for nd in ['bias', 'LayerNorm.bias', 'LayerNorm.weight'])], 'weight_decay':
□
       \rightarrow 0.0
         ]
         for p in model.parameters():
             p.register_hook(lambda grad: torch.clamp(grad, -clip_value, clip_value))
         optimizer = torch.optim.Adam(opt_params, lr=lr)
          scheduler = CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-7)
         loss_fn = nn.BCEWithLogitsLoss(reduction='sum')
         train_loader = torch.utils.data.DataLoader(train_dataset,_
       →batch_size=batch_size, shuffle=True)
          val loader = torch.utils.data.DataLoader(val dataset,__
       ⇒batch_size=batch_size, shuffle=False)
         if warmup_prop >= 1:
```

```
warmup_prop = warmup_prop / epochs
   for epoch in range(epochs):
       model.train()
       avg_loss = 0
       start_time = time.time()
       if epoch < epochs * warmup_prop:</pre>
           lr = 5e-5 + 0.001 * epoch / (epochs * warmup_prop)
           for param_group in optimizer.param_groups:
               param_group['lr'] = lr
       else:
           scheduler.step()
           lr = np.mean([param_group['lr'] for param_group in optimizer.
→param_groups])
       for x, y_batch in train_loader:
           optimizer.zero_grad()
           dice = np.random.random() < mixup</pre>
           if dice:
               x, y_a, y_b, lam = mixup_data(x, y_batch.float())
               x, y_a, y_b = map(Variable, (x, y_a, y_b))
           y_pred = model(x.cuda()).view(-1, num_classes)
           if dice:
               loss = mixup_criterion(loss_fn, y_pred, y_a, y_b, lam)
           else:
               loss = loss_fn(y_pred.float(), y_batch.float().cuda())
           loss.backward()
           avg_loss += loss.item() / len(train_dataset)
           optimizer.step()
       model.eval()
       avg_val_loss = 0.
       pred_val = np.array([[]]*num_classes).T
       for x, y_batch in val_loader:
           y_pred = model(x.cuda()).view(-1, num_classes).detach()
           avg_val_loss += loss_fn(y_pred.float(), y_batch.float().cuda()).
→item() / len(val_dataset)
           pred_val = np.concatenate((pred_val, sigmoid(y_pred.cpu().numpy())))
       pred_val = np.mean(pred_val.reshape((nb_tta, -1, num_classes,)), axis=0)
       score_class, weight = lwlrap(val_dataset.y, pred_val)
```

```
score = (score_class * weight).sum()

elapsed_time = time.time() - start_time

if cp:
    if score > best_score:
        save_model_weights(model, f"{model_name}.pt", verbose=0)
        best_score = score

if (epoch + 1) % verbose == 0:
    elapsed_time = elapsed_time * verbose
    print(f'Epoch {epoch+1}/{epochs} lr={lr:.1e} lwlrap={score:.

-5f} ', end='')
    print(f'loss={avg_loss:.2f} val_loss={avg_val_loss:.2f} ut={elapsed_time:.0f}s')

return best_score
```

5.9 Refit

- Same thing as the previous function, but:
- We change the scheduler to reduce _lr_on_plateau, starting from $0.001\,$
- Used with curated data only

```
[51]: def refit(model, train_dataset, val_dataset, epochs=10, batch_size=128,__
      →nb_tta=5, mixup=False,
               verbose=1, cp=False, model_name='model', best_score=0, lr=0.001):
         avg_val_loss = 1000
         clip value = 1.0
         model.cuda()
         opt params = [
             {'params': [p for n, p in list(model.named_parameters()) if not any(ndu
      →in n for nd in ['bias', 'LayerNorm.bias', 'LayerNorm.weight'])], □
       {'params': [p for n, p in list(model.named parameters()) if any(nd in n_
      →for nd in ['bias', 'LayerNorm.bias', 'LayerNorm.weight'])], 'weight_decay':
      →0.0}
         1
         for p in model.parameters():
             p.register_hook(lambda grad: torch.clamp(grad, -clip_value, clip_value))
         optimizer = torch.optim.Adam(opt_params, lr)
```

```
scheduler = ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.
\rightarrow 1, verbose=0)
   loss_fn = nn.BCEWithLogitsLoss(reduction='sum')
   train_loader = torch.utils.data.DataLoader(train_dataset,_
⇒batch size=batch size, shuffle=True)
   val_loader = torch.utils.data.DataLoader(val_dataset,__
⇒batch_size=batch_size, shuffle=False)
   for epoch in range(epochs):
       model.train()
       avg loss = 0
       start_time = time.time()
       scheduler.step(avg_val_loss)
       lr = np.mean([param_group['lr'] for param_group in optimizer.
→param_groups])
       for x, y_batch in train_loader:
           optimizer.zero grad()
           dice = np.random.random() < mixup</pre>
           if dice:
               x, y_a, y_b, lam = mixup_data(x, y_batch.float())
               x, y_a, y_b = map(Variable, (x, y_a, y_b))
           y_pred = model(x.cuda()).view(-1, num_classes)
           if dice:
               loss = mixup_criterion(loss_fn, y_pred, y_a, y_b, lam)
           else:
               loss = loss_fn(y_pred.float(), y_batch.float().cuda())
           loss.backward()
           avg_loss += loss.item() / len(train_dataset)
           optimizer.step()
       model.eval()
       avg_val_loss = 0.
       pred_val = np.array([[]]*num_classes).T
       for x, y_batch in val_loader:
           y_pred = model(x.cuda()).view(-1, num_classes).detach()
           avg_val_loss += loss_fn(y_pred.float(), y_batch.float().cuda()).
→item() / len(val_dataset)
           pred_val = np.concatenate((pred_val, sigmoid(y_pred.cpu().numpy())))
```

```
pred_val = np.mean(pred_val.reshape((nb_tta, -1, num_classes,)), axis=0)
       score_class, weight = lwlrap(val_dataset.y, pred_val)
       score = (score_class * weight).sum()
       elapsed_time = time.time() - start_time
       if cp:
           if score > best_score:
               save model weights(model, f"{model name}.pt", verbose=0)
               best score = score
       if (epoch + 1) \% verbose == 0:
           elapsed_time = elapsed_time * verbose
           print(f'Epoch {epoch+1}/{epochs}
                                            lr={lr:.1e} lwlrap={score:.
→5f}
         ', end='')
          print(f'loss={avg_loss:.2f} val_loss={avg_val_loss:.2f}
→t={elapsed time:.0f}s')
       if lr <= 1e-6:
          break
   return best_score
```

5.10 k-folds

- 5 folds Stratified, using one of the labels if there are more. Only curated data is kept.
- Fit for 65 (approx.) epochs on curated + selected noisy (optional)
- Refit twice for a few epochs on curated only

```
model = model_class(num_classes=num_classes)
       if len(pretrained_path):
           load_model_weights(model, pretrained_path)
       train_dataset = FATDatasetTrain([X[i] for i in train_idx] + X_noisy,__
→transforms=transform_dic['train'],
                                       y=np.concatenate((y[train_idx],__
→y_noisy)),apply_spec_aug=True)
       val_dataset = FATDatasetTest([X[i] for i in val_idx],__
→transforms=transform_dic['test'], y=y[val_idx], nb_tta=nb_tta)
       test_dataset = FATDatasetTest(X_test, transforms=transform_dic['test'],u
→nb_tta=tta_eval)
       print('\n - Fitting \n')
       best_score = fit(model, train_dataset, val_dataset, epochs=epochs,_
→batch_size=batch_size, nb_tta=nb_tta, mixup=mixup,
                        warmup_prop=warmup_prop, verbose=verbose, cp=cp,__
→model_name=f'{model_name}_{i+1}', lr=1e-3)
       print('\n - Re-fitting with curated data only (1/2)\n')
       retrain_dataset = FATDatasetTrain([X[i] for i in train_idx],__
→transforms=transform_dic['train'], y=y[train_idx])
       best_score = refit(model, retrain_dataset, val_dataset, epochs=epochs,_u
→batch_size=batch_size, nb_tta=nb_tta, mixup=mixup,
                          verbose=verbose, cp=cp,
→model_name=f'{model_name}_{i+1}', best_score=best_score, lr=1e-4)
       if cp:
           load_model_weights(model, f"{model_name}_{i+1}.pt", verbose=1)
       elif save:
           save_model_weights(model, f"{model_name}_{i+1}.pt", verbose=1)
       print('\n - Re-fitting with curated data only (2/2)\n')
       best_score = refit(model, retrain_dataset, val_dataset, epochs=epochs,__
⇒batch_size=batch_size, nb_tta=nb_tta, mixup=mixup,
                          verbose=verbose, cp=cp,_
→model_name=f'{model_name} {i+1}', best_score=best_score, lr=1e-4)
       if cp:
           load_model_weights(model, f"{model_name}_{i+1}.pt", verbose=1)
       elif save:
```

```
save_model_weights(model, f"{model_name}_{i+1}.pt", verbose=1)
       print(f'\n - Predicting with {tta_eval} TTA \n')
       val_dataset = FATDatasetTest([X[i] for i in val_idx],__
→transforms=transform_dic['test'], y=y[val_idx], nb_tta=tta_eval)
       pred_val = np.mean(predict(val_dataset, model).reshape((tta_eval, -1,__
→num_classes,)), axis=0)
       pred_oof[val_idx, :] = pred_val
       score_class, weight = lwlrap(y[val_idx], pred_val)
       score = (score_class * weight).sum()
       pred_test += np.mean(predict(test_dataset, model).reshape((tta_eval,_
\rightarrow-1, num_classes,)), axis=0)
       print(f"\n lwlrap : Scored {score :.4f} on validation data")
                     Done in {(time.time() - start_time) / 60 :.1f} minutes_
       print(f"\n
\hookrightarrow \n''
   return pred_test, pred_oof
```

6 Training

6.0.1 Parameters

```
[53]: model_name = "model"
k = 5
epochs = 65
batch_size = 64
nb_tta = 5
mixup = 1
cp = True
warmup_prop = 0.1
```

```
[54]: model = Classifier_M3
transforms_ = transforms_dict
```

6.0.2 Weights pretrained on noisy data

In case we want to use weights pretrained on noisy, we specify weights to load.

```
[55]: # cp_path = "../input/fat-cp/new_default_65.pt" cp_path = ''
```

6.0.3 Fitting

t=50s

Fold 1 ------ Fitting lr=5.0e-05 lwlrap=0.26018 loss=55.27 val_loss=55.02 Epoch 1/65 t=51sEpoch 2/65 lr=2.0e-04 lwlrap=0.32222 loss=52.35 $val_loss=47.70$ t=51s Epoch 3/65 lr=3.6e-04 lwlrap=0.26679 loss = 34.57val_loss=20.81 t=50s Epoch 4/65 lr=5.1e-04 lwlrap=0.31297 loss=10.67 val_loss=5.44 t=50s Epoch 5/65 lr=6.7e-04 lwlrap=0.36285 loss=5.08 val loss=5.00 t=50s Epoch 6/65 lr=8.2e-04 lwlrap=0.37723 loss=4.69val loss=4.69 t=50s Epoch 7/65 lr=9.7e-04 lwlrap=0.43856 loss=4.48val_loss=4.38 t=50s Epoch 8/65 lr=1.0e-03 lwlrap=0.54052 loss=4.26val_loss=3.80 t=50slr=1.0e-03 lwlrap=0.60203 loss=4.01Epoch 9/65 val_loss=3.60 t=50s lwlrap=0.50895 Epoch 10/65 lr=1.0e-03 loss=3.93 $val_loss=4.25$ t=50sEpoch 11/65 lr=9.9e-04 lwlrap=0.61065 loss=3.86 val_loss=3.43 t=50sEpoch 12/65 lr=9.9e-04 lwlrap=0.68352 loss=3.68 val_loss=3.00 t=51s Epoch 13/65 lr=9.9e-04 lwlrap=0.66243 loss=3.74val_loss=3.14 t=51s Epoch 14/65 lr=9.8e-04 lwlrap=0.66513 loss=3.65 val_loss=3.08 t=50s Epoch 15/65 lr=9.7e-04 lwlrap=0.69114 loss=3.68 val_loss=2.97

Epoch :	16/65	lr=9.6e-04	lwlrap=0.67038	loss=3.59	val_loss=3.05
Epoch :	17/65	lr=9.5e-04	lwlrap=0.74167	loss=3.55	val_loss=2.65
t=50s Epoch	18/65	lr=9.4e-04	lwlrap=0.73690	loss=3.45	val_loss=2.61
t=51s Epoch	19/65	lr=9.3e-04	lwlrap=0.73952	loss=3.38	val_loss=2.56
t=51s Epoch	20/65	lr=9.2e-04	lwlrap=0.76187	loss=3.31	val_loss=2.55
t=50s Epoch	21/65	lr=9.0e-04	lwlrap=0.73961	loss=3.37	val_loss=2.65
t=51s Epoch	22/65	lr=8.9e-04	lwlrap=0.75324	loss=3.26	val_loss=2.45
t=50s Epoch	23/65	lr=8.7e-04	lwlrap=0.75069	loss=3.30	val_loss=2.48
t=51s Epoch : t=50s	24/65	lr=8.6e-04	lwlrap=0.69725	loss=3.04	val_loss=2.94
Epoch :	25/65	lr=8.4e-04	lwlrap=0.76349	loss=3.24	val_loss=2.56
Epoch :	26/65	lr=8.2e-04	lwlrap=0.78099	loss=3.13	val_loss=2.32
Epoch :	27/65	lr=8.0e-04	lwlrap=0.76385	loss=3.30	val_loss=2.36
Epoch :	28/65	lr=7.8e-04	lwlrap=0.77796	loss=3.14	val_loss=2.37
Epoch :	29/65	lr=7.6e-04	lwlrap=0.78999	loss=3.08	val_loss=2.23
Epoch 3	30/65	lr=7.4e-04	lwlrap=0.77614	loss=3.11	val_loss=2.27
Epoch 3	31/65	lr=7.2e-04	lwlrap=0.79385	loss=2.93	val_loss=2.14
Epoch 3	32/65	lr=7.0e-04	lwlrap=0.80254	loss=2.91	val_loss=2.08
Epoch 3	33/65	lr=6.8e-04	lwlrap=0.82031	loss=2.95	val_loss=2.03
Epoch 3	34/65	lr=6.5e-04	lwlrap=0.81929	loss=2.93	val_loss=2.02
Epoch 3	35/65	lr=6.3e-04	lwlrap=0.82256	loss=2.82	val_loss=2.01
Epoch 3	36/65	lr=6.1e-04	lwlrap=0.82071	loss=2.86	val_loss=1.95
Epoch 3	37/65	lr=5.8e-04	lwlrap=0.82696	loss=2.78	val_loss=1.86
Epoch 3	38/65	lr=5.6e-04	lwlrap=0.83216	loss=2.59	val_loss=1.93
Epoch 3	39/65	lr=5.4e-04	lwlrap=0.83329	loss=2.78	val_loss=1.89

Epoch	40/65	lr=5.1e-04	lwlrap=0.82690	loss=2.74	val_loss=1.91
Epoch	41/65	lr=4.9e-04	lwlrap=0.82497	loss=2.55	val_loss=1.96
t=50s Epoch	42/65	lr=4.6e-04	lwlrap=0.81964	loss=2.60	val_loss=1.95
t=50s Epoch	43/65	lr=4.4e-04	lwlrap=0.82881	loss=2.66	val_loss=1.94
t=50s Epoch	44/65	lr=4.2e-04	lwlrap=0.84151	loss=2.56	val_loss=1.82
t=51s Epoch	45/65	lr=3.9e-04	lwlrap=0.83742	loss=2.42	val_loss=1.82
t=50s Epoch	46/65	lr=3.7e-04	lwlrap=0.85139	loss=2.27	val_loss=1.72
t=50s Epoch	47/65	lr=3.5e-04	lwlrap=0.83361	loss=2.42	val_loss=1.89
t=50s Epoch	48/65	lr=3.2e-04	lwlrap=0.84908	loss=2.34	val_loss=1.76
t=50s Epoch t=50s	49/65	lr=3.0e-04	lwlrap=0.85275	loss=2.42	val_loss=1.72
Epoch	50/65	lr=2.8e-04	lwlrap=0.84569	loss=2.29	val_loss=1.75
t=51s Epoch t=50s	51/65	lr=2.6e-04	lwlrap=0.85379	loss=2.30	val_loss=1.72
	52/65	lr=2.4e-04	lwlrap=0.85505	loss=2.17	val_loss=1.66
Epoch t=50s	53/65	lr=2.2e-04	lwlrap=0.85766	loss=2.19	val_loss=1.72
Epoch t=50s	54/65	lr=2.0e-04	lwlrap=0.85389	loss=2.11	val_loss=1.71
Epoch t=50s	55/65	lr=1.8e-04	lwlrap=0.86408	loss=2.08	val_loss=1.64
Epoch t=50s	56/65	lr=1.6e-04	lwlrap=0.85847	loss=2.11	val_loss=1.68
Epoch t=50s	57/65	lr=1.4e-04	lwlrap=0.86186	loss=2.16	val_loss=1.64
	58/65	lr=1.3e-04	lwlrap=0.85690	loss=2.12	val_loss=1.71
Epoch t=50s	59/65	lr=1.1e-04	lwlrap=0.86328	loss=2.12	val_loss=1.62
Epoch t=50s	60/65	lr=9.6e-05	lwlrap=0.86328	loss=2.15	val_loss=1.64
Epoch t=50s	61/65	lr=8.2e-05	lwlrap=0.85629	loss=2.10	val_loss=1.72
	62/65	lr=6.9e-05	lwlrap=0.86327	loss=2.09	val_loss=1.63
Epoch t=50s	63/65	lr=5.7e-05	lwlrap=0.86837	loss=1.95	val_loss=1.61

Epoch 64/65	lr=4.7e-05	lwlrap=0.86044	loss=1.99	val_loss=1.64
t=50s Epoch 65/65	lr=3.7e-05	lwlrap=0.86022	loss=2.02	val_loss=1.63
t=50s				
- Re-fitting	with curated d	ata only (1/2)		
Epoch 1/65 t=34s	lr=1.0e-04	lwlrap=0.86119	loss=1.81	val_loss=1.66
Epoch 2/65 t=34s	lr=1.0e-04	lwlrap=0.87080	loss=1.71	val_loss=1.63
Epoch 3/65 t=34s	lr=1.0e-04	lwlrap=0.86493	loss=1.70	val_loss=1.60
Epoch 4/65 t=34s	lr=1.0e-04	lwlrap=0.87125	loss=1.57	val_loss=1.61
Epoch 5/65 t=34s	lr=1.0e-04	lwlrap=0.86143	loss=1.68	val_loss=1.66
Epoch 6/65 t=34s	lr=1.0e-04	lwlrap=0.86141	loss=1.56	val_loss=1.67
Epoch 7/65 t=34s	lr=1.0e-04	lwlrap=0.86181	loss=1.64	val_loss=1.68
Epoch 8/65 t=34s	lr=1.0e-05	lwlrap=0.86455	loss=1.71	val_loss=1.66
Epoch 9/65 t=34s	lr=1.0e-05	lwlrap=0.86781	loss=1.69	val_loss=1.65
Epoch 10/65 t=34s	lr=1.0e-05	lwlrap=0.86688	loss=1.64	val_loss=1.66
Epoch 11/65 t=34s	lr=1.0e-05	lwlrap=0.86353	loss=1.54	val_loss=1.67
Epoch 12/65 t=34s	lr=1.0e-06	lwlrap=0.86722	loss=1.54	val_loss=1.65
Epoch 13/65 t=34s	lr=1.0e-06	lwlrap=0.86256	loss=1.68	val_loss=1.66
Epoch 14/65 t=34s	lr=1.0e-06	lwlrap=0.86433	loss=1.69	val_loss=1.64
Epoch 15/65 t=34s	lr=1.0e-06	lwlrap=0.87051	loss=1.69	val_loss=1.60
Epoch 16/65 t=34s	lr=1.0e-07	lwlrap=0.86571	loss=1.89	val_loss=1.64
	ts from model_1	.pt		
- Re-fitting	with curated d	ata only (2/2)		
Epoch 1/65 t=34s	lr=1.0e-04	lwlrap=0.86580	loss=1.79	val_loss=1.63
Epoch 2/65 t=34s	lr=1.0e-04	lwlrap=0.85720	loss=1.90	val_loss=1.68

Epo	ch 3/65	lr=1.0e-04	lwlrap=0.86975	loss=1.65	val_loss=1.63
t=3		7 4 9 94			7 7 4 00
Epo	ch 4/65 4s	lr=1.0e-04	lwlrap=0.86020	loss=1.85	val_loss=1.69
	ch 5/65	lr=1.0e-04	lwlrap=0.85750	loss=1.50	val_loss=1.66
	ch 6/65	lr=1.0e-04	lwlrap=0.86362	loss=1.67	val_loss=1.64
Epo	ch 7/65 4s	lr=1.0e-04	lwlrap=0.87108	loss=1.37	val_loss=1.58
Epo	ch 8/65 4s	lr=1.0e-04	lwlrap=0.87157	loss=1.63	val_loss=1.63
Epo	ch 9/65 4s	lr=1.0e-04	lwlrap=0.86306	loss=1.86	val_loss=1.70
Epo	ch 10/65 4s	lr=1.0e-04	lwlrap=0.86813	loss=1.57	val_loss=1.68
Epo	ch 11/65 4s	lr=1.0e-04	lwlrap=0.85985	loss=1.70	val_loss=1.66
Epo	ch 12/65 4s	lr=1.0e-05	lwlrap=0.86882	loss=1.59	val_loss=1.63
	ch 13/65	lr=1.0e-05	lwlrap=0.86365	loss=1.61	val_loss=1.64
Epo	ch 14/65 4s	lr=1.0e-05	lwlrap=0.86310	loss=1.55	val_loss=1.66
	ch 15/65	lr=1.0e-05	lwlrap=0.86480	loss=1.73	val_loss=1.66
	ch 16/65	lr=1.0e-06	lwlrap=0.85833	loss=1.82	val_loss=1.69
	ch 17/65	lr=1.0e-06	lwlrap=0.87328	loss=1.50	val_loss=1.62
	ch 18/65	lr=1.0e-06	lwlrap=0.86849	loss=1.57	val_loss=1.64
	ch 19/65	lr=1.0e-06	lwlrap=0.86565	loss=1.51	val_loss=1.66
	ch 20/65	lr=1.0e-07	lwlrap=0.86396	loss=1.62	val_loss=1.67

Loading weights from model_1.pt

- Predicting with 25 TTA

 ${\tt lwlrap} \; : \; {\tt Scored} \; \; {\tt 0.8720} \; \; {\tt on} \; \; {\tt validation} \; \; {\tt data} \; \;$

Done in 79.2 minutes

----- Fold 2 -----

-	F	'n	t	t	i	n	g
---	---	----	---	---	---	---	---

Epoch 1/65	lr=5.0e-05	lwlrap=0.25902	loss=55.37	val_loss=55.17
t=50s Epoch 2/65	lr=2.0e-04	lwlrap=0.32307	loss=52.38	val_loss=48.82
t=50s Epoch 3/65	lr=3.6e-04	lwlrap=0.25209	loss=34.42	val_loss=18.35
t=50s Epoch 4/65 t=50s	lr=5.1e-04	lwlrap=0.33309	loss=10.60	val_loss=6.06
Epoch 5/65 t=50s	lr=6.7e-04	lwlrap=0.40691	loss=5.06	val_loss=4.67
Epoch 6/65 t=50s	lr=8.2e-04	lwlrap=0.38906	loss=4.66	val_loss=4.56
Epoch 7/65 t=50s	lr=9.7e-04	lwlrap=0.48700	loss=4.38	val_loss=4.36
Epoch 8/65 t=50s	lr=1.0e-03	lwlrap=0.52742	loss=4.40	val_loss=3.99
Epoch 9/65 t=50s	lr=1.0e-03	lwlrap=0.62530	loss=4.10	val_loss=3.44
Epoch 10/6 t=50s	5 lr=1.0e-03	lwlrap=0.64406	loss=4.03	val_loss=3.24
Epoch 11/6 t=50s	5 lr=9.9e-04	lwlrap=0.65728	loss=3.90	val_loss=3.18
Epoch 12/6 t=50s	5 lr=9.9e-04	lwlrap=0.64846	loss=3.93	val_loss=3.13
Epoch 13/6 t=50s	5 lr=9.9e-04	lwlrap=0.68736	loss=3.70	val_loss=2.98
Epoch 14/6 t=50s	5 lr=9.8e-04	lwlrap=0.66574	loss=3.65	val_loss=3.13
Epoch 15/6 t=50s	5 lr=9.7e-04	lwlrap=0.71426	loss=3.61	val_loss=2.76
Epoch 16/6 t=50s	5 lr=9.6e-04	lwlrap=0.68025	loss=3.63	val_loss=2.97
Epoch 17/6 t=50s	5 lr=9.5e-04	lwlrap=0.71947	loss=3.52	val_loss=2.78
Epoch 18/6 t=50s	5 lr=9.4e-04	lwlrap=0.74868	loss=3.42	val_loss=2.53
Epoch 19/6 t=50s	5 lr=9.3e-04	lwlrap=0.71231	loss=3.41	val_loss=2.79
Epoch 20/6 t=50s	5 lr=9.2e-04	lwlrap=0.73408	loss=3.55	val_loss=2.73
Epoch 21/6 t=50s	5 lr=9.0e-04	lwlrap=0.73509	loss=3.31	val_loss=2.62
Epoch 22/6 t=50s	5 lr=8.9e-04	lwlrap=0.75465	loss=3.25	val_loss=2.52
Epoch 23/6 t=50s	5 lr=8.7e-04	lwlrap=0.74000	loss=3.39	val_loss=2.49

Epoch	24/65	lr=8.6e-04	lwlrap=0.75720	loss=3.28	val_loss=2.49
Epoch	25/65	lr=8.4e-04	lwlrap=0.80292	loss=3.23	val_loss=2.22
t=50s Epoch	26/65	lr=8.2e-04	lwlrap=0.77969	loss=3.08	val_loss=2.29
t=50s Epoch	27/65	lr=8.0e-04	lwlrap=0.80895	loss=3.03	val_loss=2.17
t=50s Epoch	28/65	lr=7.8e-04	lwlrap=0.76786	loss=3.14	val_loss=2.39
t=50s Epoch	29/65	lr=7.6e-04	lwlrap=0.79010	loss=3.04	val_loss=2.28
t=50s Epoch	30/65	lr=7.4e-04	lwlrap=0.79507	loss=3.06	val_loss=2.26
t=50s Epoch	31/65	lr=7.2e-04	lwlrap=0.81043	loss=2.89	val_loss=2.05
t=50s Epoch t=50s	32/65	lr=7.0e-04	lwlrap=0.79879	loss=3.04	val_loss=2.18
Epoch t=50s	33/65	lr=6.8e-04	lwlrap=0.82446	loss=2.90	val_loss=1.98
Epoch t=50s	34/65	lr=6.5e-04	lwlrap=0.81679	loss=2.73	val_loss=1.97
Epoch t=50s	35/65	lr=6.3e-04	lwlrap=0.81098	loss=2.80	val_loss=2.14
Epoch t=50s	36/65	lr=6.1e-04	lwlrap=0.83682	loss=2.79	val_loss=1.92
Epoch t=50s	37/65	lr=5.8e-04	lwlrap=0.83089	loss=2.77	val_loss=1.87
Epoch t=50s	38/65	lr=5.6e-04	lwlrap=0.82411	loss=2.64	val_loss=1.92
Epoch t=50s	39/65	lr=5.4e-04	lwlrap=0.82888	loss=2.62	val_loss=1.90
Epoch t=50s	40/65	lr=5.1e-04	lwlrap=0.83106	loss=2.65	val_loss=1.89
Epoch t=50s	41/65	lr=4.9e-04	lwlrap=0.82978	loss=2.68	val_loss=1.87
Epoch t=50s	42/65	lr=4.6e-04	lwlrap=0.83332	loss=2.75	val_loss=1.85
Epoch t=50s	43/65	lr=4.4e-04	lwlrap=0.82566	loss=2.55	val_loss=1.94
Epoch t=50s	44/65	lr=4.2e-04	lwlrap=0.85103	loss=2.45	val_loss=1.74
Epoch t=50s	45/65	lr=3.9e-04	lwlrap=0.85199	loss=2.39	val_loss=1.71
Epoch t=50s	46/65	lr=3.7e-04	lwlrap=0.83055	loss=2.42	val_loss=1.83
Epoch t=50s	47/65	lr=3.5e-04	lwlrap=0.84993	loss=2.41	val_loss=1.72

9/65	lr=3.2e-04 lr=3.0e-04	lwlrap=0.85309 lwlrap=0.83150	loss=2.16	val_loss=1.68
	lr=3.0e-04	lwlrap=0.83150	1099=2.35	
)/65]			TO99-7.30	val_loss=1.90
0/65]				
	lr=2.8e-04	lwlrap=0.84976	loss=2.37	val_loss=1.74
1/65	lr=2.6e-04	lwlrap=0.85226	loss=2.23	val_loss=1.69
. / 0.5			7 0 00	
2/65	lr=2.4e-04	lw1rap=0.85748	loss=2.32	val_loss=1.64
3/65	lr=2.2e-04	lwlrap=0.86178	loss=2.19	val_loss=1.63
. / 0.5				7 7 4 00
1/65	lr=2.0e-04	lw1rap=0.85680	loss=2.24	val_loss=1.66
5/65	lr=1.8e-04	lwlrap=0.86760	loss=2.22	val_loss=1.58
2./25				
5/65	Lr=1.6e-04	lw1rap=0.86286	loss=2.23	val_loss=1.59
7/65	lr=1.4e-04	lwlrap=0.86606	loss=1.92	val_loss=1.60
2/05		3 3 0 00074	7 0 10	
3/65	lr=1.3e-04	IW1rap=0.869/1	loss=2.10	val_loss=1.57
9/65	lr=1.1e-04	lwlrap=0.86235	loss=2.11	val_loss=1.60
)/65 I	1 ~- 0 60-05	1::1ron=0 96509	logg=2 01	val_loss=1.57
7/05	11-9.0e-05	1w11ap-0.00590	1055-2.01	VaI_1055-1.57
1/65	lr=8.2e-05	lwlrap=0.86078	loss=1.91	val_loss=1.59
2/65 1	lr=6 9e-05	lwlran=0 86622	loss=2 07	val_loss=1.59
2,00	11-0. <i>5</i> e 05	IWII ap-0.00022	1055-2.07	var_1055-1:00
3/65	lr=5.7e-05	lwlrap=0.86156	loss=2.20	val_loss=1.58
1/65]	lr=4 7e-05	lwlran=0 86164	1099=2 06	val_loss=1.59
1,00	1.70 00	Iwilap 0.00101	1055 2.00	Var_1055 1.00
5/65	lr=3.7e-05	lwlrap=0.87069	loss=2.04	val_loss=1.55
itting wit	th curated data	a only (1/2)		
/65 lı	r=1.0e-04	lwlrap=0.86663	loss=1.89	val_loss=1.66
/05 3	4.0.04	0.0000	1 4 00	
705 II	r-1.0e-04	twirap=0.86828	TOSS=1.0U	val_loss=1.63
/65 lı	r=1.0e-04	Lwlrap=0.86489	loss=1.68	val_loss=1.62
/of 3	4.0.04	0.00040	7 4 24	1 1 4 22
/05 II	r=1.0e-04	.w⊥rap=0.86348	1088=1.61	val_loss=1.62
/65 lı	r=1.0e-04	lwlrap=0.86184	loss=1.66	val_loss=1.66
	2/65	2/65	2/65	2/65

t=34s					
Epoch t=34s	6/65	lr=1.0e-04	lwlrap=0.86053	loss=1.73	val_loss=1.63
Epoch	7/65	lr=1.0e-04	lwlrap=0.86825	loss=1.82	val_loss=1.64
t=34s Epoch	8/65	lr=1.0e-04	lwlrap=0.86474	loss=1.60	val_loss=1.58
t=34s Epoch	9/65	lr=1.0e-04	lwlrap=0.85932	loss=2.03	val_loss=1.69
-	10/65	lr=1.0e-04	lwlrap=0.86314	loss=1.70	val_loss=1.66
-	11/65	lr=1.0e-04	lwlrap=0.86507	loss=1.48	val_loss=1.63
-	12/65	lr=1.0e-04	lwlrap=0.85898	loss=1.68	val_loss=1.60
-	13/65	lr=1.0e-05	lwlrap=0.86231	loss=1.74	val_loss=1.63
-	14/65	lr=1.0e-05	lwlrap=0.86461	loss=1.56	val_loss=1.60
_	15/65	lr=1.0e-05	lwlrap=0.86098	loss=1.62	val_loss=1.64
-	16/65	lr=1.0e-05	lwlrap=0.86423	loss=1.71	val_loss=1.62
-	17/65	lr=1.0e-06	lwlrap=0.86734	loss=1.71	val_loss=1.60
t=34s Epoch	18/65	lr=1.0e-06	lwlrap=0.86453	loss=1.60	val_loss=1.63
t=34s Epoch	19/65	lr=1.0e-06	lwlrap=0.86644	loss=1.60	val_loss=1.60
t=34s Epoch	20/65	lr=1.0e-06	lwlrap=0.86256	loss=1.87	val_loss=1.62
t=34s Epoch	21/65	lr=1.0e-07	lwlrap=0.86764	loss=1.49	val_loss=1.60
t=34s		- f 1-1 O	-1		

Loading weights from model_2.pt

- Re-fitting with curated data only (2/2)

Epoch t=34s	1/65	lr=1.0e-04	lwlrap=0.86222	loss=1.44	val_loss=1.60
Epoch	2/65	lr=1.0e-04	lwlrap=0.85909	loss=1.77	val_loss=1.65
t=34s Epoch	2/65	lr=1.0e-04	lwlrap=0.85946	loss=1.73	val_loss=1.70
t=34s	3/05	11-1.0e-04	Twirap-0.05946	1088-1.73	Val_10SS-1.70
Epoch	4/65	lr=1.0e-04	lwlrap=0.86801	loss=1.85	val_loss=1.60
t=34s	_				
Epoch t=34s	5/65	lr=1.0e-04	lwlrap=0.86079	loss=1.68	val_loss=1.63

Epoch 6/65	lr=1.0e-05	lwlrap=0.85941	loss=1.58	val_loss=1.65
t=34s Epoch 7/65	lr=1.0e-05	lwlrap=0.86306	loss=1.48	val_loss=1.59
t=34s Epoch 8/65	lr=1.0e-05	lwlrap=0.86403	loss=1.71	val_loss=1.62
t=34s Epoch 9/65	lr=1.0e-05	lwlrap=0.86150	loss=1.60	val_loss=1.62
t=34s Epoch 10/65	lr=1.0e-05	lwlrap=0.86144	loss=1.48	val_loss=1.59
t=34s Epoch 11/65	lr=1.0e-05	lwlrap=0.86447	loss=1.66	val_loss=1.63
t=34s Epoch 12/65	lr=1.0e-05	lwlrap=0.86403	loss=1.72	val_loss=1.63
t=34s Epoch 13/65	lr=1.0e-05	lwlrap=0.86341	loss=1.71	val_loss=1.64
t=34s Epoch 14/65	lr=1.0e-05	lwlrap=0.86714	loss=1.67	val_loss=1.60
t=34s Epoch 15/65	lr=1.0e-06	lwlrap=0.86530	loss=1.47	val_loss=1.60
t=34s Epoch 16/65	lr=1.0e-06	lwlrap=0.86637	loss=1.69	val_loss=1.62
t=34s Epoch 17/65	lr=1.0e-06	lwlrap=0.86267	loss=1.68	val_loss=1.65
t=34s Epoch 18/65	lr=1.0e-06	lwlrap=0.86653	loss=1.80	val_loss=1.62
t=34s Epoch 19/65 t=34s	lr=1.0e-07	lwlrap=0.86404	loss=1.66	val_loss=1.62
Loading weights	s from model_2.	pt		

- Predicting with 25 TTA

 ${\tt lwlrap} \; : \; {\tt Scored} \; \; {\tt 0.8733} \; \; {\tt on} \; \; {\tt validation} \; \; {\tt data} \; \;$

Done in 81.1 minutes

 Fold 3	

- Fitting

Epoch 1/65 t=50s	lr=5.0e-05	lwlrap=0.24414	loss=55.44	val_loss=55.32
	7 0 0 04	7 7 0 00400		7 7 45 40
Epoch 2/65	lr=2.0e-04	lwlrap=0.30122	loss=52.45	val_loss=47.40
t=50s				
Epoch 3/65	lr=3.6e-04	lwlrap=0.27746	loss=34.35	val_loss=21.69
t=50s				

Epoch	4/65	lr=5.1e-04	lwlrap=0.35608	loss=10.50	val_loss=5.62
t=50s Epoch	5/65	lr=6.7e-04	lwlrap=0.36117	loss=5.11	val_loss=5.15
t=50s Epoch	6/65	lr=8.2e-04	lwlrap=0.42873	loss=4.66	val_loss=4.71
t=50s Epoch	7/65	lr=9.7e-04	lwlrap=0.53984	loss=4.51	val_loss=3.84
t=50s Epoch 8	8/65	lr=1.0e-03	lwlrap=0.46399	loss=4.30	val_loss=4.12
t=50s Epoch	9/65	lr=1.0e-03	lwlrap=0.57711	loss=4.20	val_loss=3.63
t=50s Epoch	10/65	lr=1.0e-03	lwlrap=0.53918	loss=3.95	val_loss=3.81
t=50s Epoch	11/65	lr=9.9e-04	lwlrap=0.61374	loss=4.00	val_loss=3.40
t=50s Epoch	12/65	lr=9.9e-04	lwlrap=0.56248	loss=3.86	val_loss=3.63
t=50s Epoch	13/65	lr=9.9e-04	lwlrap=0.69307	loss=3.69	val_loss=2.90
t=50s Epoch	14/65	lr=9.8e-04	lwlrap=0.72925	loss=3.73	val_loss=2.77
t=50s Epoch	15/65	lr=9.7e-04	lwlrap=0.69479	loss=3.73	val_loss=2.92
t=50s Epoch	16/65	lr=9.6e-04	lwlrap=0.69144	loss=3.63	val_loss=2.95
t=50s Epoch	17/65	lr=9.5e-04	lwlrap=0.66020	loss=3.49	val_loss=3.14
t=50s Epoch	18/65	lr=9.4e-04	lwlrap=0.71340	loss=3.61	val_loss=2.81
t=50s Epoch	19/65	lr=9.3e-04	lwlrap=0.72814	loss=3.39	val_loss=2.66
t=50s Epoch	20/65	lr=9.2e-04	lwlrap=0.71464	loss=3.40	val_loss=2.79
t=50s Epoch	21/65	lr=9.0e-04	lwlrap=0.73708	loss=3.38	val_loss=2.64
t=50s Epoch	22/65	lr=8.9e-04	lwlrap=0.78120	loss=3.20	val_loss=2.41
t=50s Epoch	23/65	lr=8.7e-04	lwlrap=0.74806	loss=3.23	val_loss=2.52
t=50s Epoch	24/65	lr=8.6e-04	lwlrap=0.75222	loss=3.29	val_loss=2.50
t=50s Epoch 2	25/65	lr=8.4e-04	lwlrap=0.73320	loss=3.18	val_loss=2.63
t=50s Epoch 2	26/65	lr=8.2e-04	lwlrap=0.77417	loss=3.21	val_loss=2.33
t=50s Epoch 2 t=50s	27/65	lr=8.0e-04	lwlrap=0.79568	loss=3.09	val_loss=2.23

Epoch	28/65	lr=7.8e-04	lwlrap=0.74394	loss=3.08	val_loss=2.56
t=50s Epoch	29/65	lr=7.6e-04	lwlrap=0.80027	loss=3.17	val_loss=2.15
t=50s Epoch	30/65	lr=7.4e-04	lwlrap=0.79424	loss=2.97	val_loss=2.22
t=50s Epoch	31/65	lr=7.2e-04	lwlrap=0.80583	loss=2.95	val_loss=2.13
t=50s Epoch	32/65	lr=7.0e-04	lwlrap=0.79787	loss=3.06	val_loss=2.25
t=50s Epoch	33/65	lr=6.8e-04	lwlrap=0.80842	loss=2.92	val_loss=2.12
t=50s Epoch	34/65	lr=6.5e-04	lwlrap=0.79978	loss=2.72	val_loss=2.19
t=50s Epoch	35/65	lr=6.3e-04	lwlrap=0.80208	loss=2.93	val_loss=2.15
t=50s Epoch	36/65	lr=6.1e-04	lwlrap=0.80972	loss=2.73	val_loss=2.07
t=50s Epoch	37/65	lr=5.8e-04	lwlrap=0.82559	loss=2.95	val_loss=1.99
t=50s Epoch	38/65	lr=5.6e-04	lwlrap=0.82783	loss=2.75	val_loss=1.90
t=50s Epoch	39/65	lr=5.4e-04	lwlrap=0.82657	loss=2.79	val_loss=1.94
t=50s Epoch t=50s	40/65	lr=5.1e-04	lwlrap=0.83205	loss=2.69	val_loss=1.91
Epoch t=50s	41/65	lr=4.9e-04	lwlrap=0.83138	loss=2.64	val_loss=1.92
Epoch t=50s	42/65	lr=4.6e-04	lwlrap=0.83177	loss=2.48	val_loss=1.95
Epoch t=50s	43/65	lr=4.4e-04	lwlrap=0.83187	loss=2.53	val_loss=1.90
Epoch t=50s	44/65	lr=4.2e-04	lwlrap=0.84055	loss=2.56	val_loss=1.81
Epoch t=50s	45/65	lr=3.9e-04	lwlrap=0.83422	loss=2.58	val_loss=1.88
Epoch t=50s	46/65	lr=3.7e-04	lwlrap=0.84742	loss=2.46	val_loss=1.77
Epoch t=50s	47/65	lr=3.5e-04	lwlrap=0.84145	loss=2.29	val_loss=1.80
Epoch t=50s	48/65	lr=3.2e-04	lwlrap=0.85495	loss=2.43	val_loss=1.70
Epoch t=50s	49/65	lr=3.0e-04	lwlrap=0.84674	loss=2.39	val_loss=1.75
Epoch t=50s	50/65	lr=2.8e-04	lwlrap=0.85250	loss=2.14	val_loss=1.67
Epoch t=50s	51/65	lr=2.6e-04	lwlrap=0.84839	loss=2.42	val_loss=1.70

Epoch t=50s	52/65	lr=2.4e-04	lwlrap=0.84246	loss=2.26	val_loss=1.72
	53/65	lr=2.2e-04	lwlrap=0.84758	loss=2.17	val_loss=1.73
	54/65	lr=2.0e-04	lwlrap=0.85836	loss=2.10	val_loss=1.68
	55/65	lr=1.8e-04	lwlrap=0.85988	loss=2.25	val_loss=1.62
	56/65	lr=1.6e-04	lwlrap=0.86222	loss=2.20	val_loss=1.66
	57/65	lr=1.4e-04	lwlrap=0.86285	loss=2.17	val_loss=1.64
	58/65	lr=1.3e-04	lwlrap=0.85746	loss=2.18	val_loss=1.63
	59/65	lr=1.1e-04	lwlrap=0.86874	loss=1.87	val_loss=1.59
	60/65	lr=9.6e-05	lwlrap=0.86401	loss=2.15	val_loss=1.59
	61/65	lr=8.2e-05	lwlrap=0.86070	loss=2.03	val_loss=1.61
	62/65	lr=6.9e-05	lwlrap=0.85960	loss=2.10	val_loss=1.64
	63/65	lr=5.7e-05	lwlrap=0.86222	loss=2.00	val_loss=1.60
	64/65	lr=4.7e-05	lwlrap=0.86746	loss=1.96	val_loss=1.56
	65/65	lr=3.7e-05	lwlrap=0.86102	loss=2.04	val_loss=1.65
- Re-	-fitting v	with curated da	ta only (1/2)		
Epoch	1/65	lr=1.0e-04	lwlrap=0.85773	loss=1.65	val_loss=1.70
Epoch t=34s	2/65	lr=1.0e-04	lwlrap=0.86105	loss=1.70	val_loss=1.66
Epoch	3/65	lr=1.0e-04	lwlrap=0.86759	loss=1.65	val_loss=1.62
t=34s Epoch t=34s	4/65	lr=1.0e-04	lwlrap=0.86566	loss=1.71	val_loss=1.61
Epoch t=34s	5/65	lr=1.0e-04	lwlrap=0.86776	loss=1.70	val_loss=1.61
Epoch	6/65	lr=1.0e-04	lwlrap=0.86389	loss=1.62	val_loss=1.66
t=34s Epoch	7/65	lr=1.0e-04	lwlrap=0.86537	loss=1.59	val_loss=1.63
t=34s Epoch t=34s	8/65	lr=1.0e-04	lwlrap=0.85872	loss=2.01	val_loss=1.62
t=34s Epoch	9/65	lr=1.0e-04	lwlrap=0.86514	loss=1.93	val_loss=1.67

t=34s				
Epoch 10/65	lr=1.0e-05	lwlrap=0.86215	loss=1.88	val_loss=1.70
t=34s				
Epoch 11/65	lr=1.0e-05	lwlrap=0.86664	loss=1.60	val_loss=1.61
t=34s				
Epoch 12/65	lr=1.0e-05	lwlrap=0.86899	loss=1.58	val_loss=1.62
t=34s	3 4 0 05	1 1 0 00007	1 4 60	1 1 4 60
Epoch 13/65 t=34s	lr=1.0e-05	lwlrap=0.86687	loss=1.68	val_loss=1.63
t-348 Epoch 14/65	lr=1.0e-06	lwlrap=0.86990	loss=1.61	val_loss=1.59
t=34s	11-1.0e-00	1w11ap-0.00990	1055-1.01	Val_1055-1.09
Epoch 15/65	lr=1.0e-06	lwlrap=0.86878	loss=1.60	val_loss=1.61
t=34s		p		
Epoch 16/65	lr=1.0e-06	lwlrap=0.86478	loss=1.40	val_loss=1.60
t=34s		-		
Epoch 17/65	lr=1.0e-06	lwlrap=0.86378	loss=1.35	val_loss=1.59
t=34s				
Epoch 18/65	lr=1.0e-06	lwlrap=0.86469	loss=1.50	val_loss=1.63
t=34s				
Epoch 19/65	lr=1.0e-07	lwlrap=0.87557	loss=1.50	val_loss=1.58
t=34s				
I anding mainhta	trom model 2 r	· +		

Loading weights from model_3.pt

- Re-fitting with curated data only (2/2)

Epoch 1/65 t=34s	lr=1.0e-04	lwlrap=0.86746	loss=1.58	val_loss=1.58
Epoch 2/65 t=34s	lr=1.0e-04	lwlrap=0.86260	loss=1.87	val_loss=1.64
Epoch 3/65 t=34s	lr=1.0e-04	lwlrap=0.86753	loss=1.76	val_loss=1.62
Epoch 4/65 t=34s	lr=1.0e-04	lwlrap=0.85922	loss=1.76	val_loss=1.72
Epoch 5/65 t=34s	lr=1.0e-04	lwlrap=0.86343	loss=1.67	val_loss=1.63
Epoch 6/65 t=34s	lr=1.0e-05	lwlrap=0.86529	loss=1.55	val_loss=1.63
Epoch 7/65 t=34s	lr=1.0e-05	lwlrap=0.87115	loss=1.62	val_loss=1.56
Epoch 8/65 t=34s	lr=1.0e-05	lwlrap=0.86554	loss=1.43	val_loss=1.64
Epoch 9/65 t=34s	lr=1.0e-05	lwlrap=0.86417	loss=1.53	val_loss=1.61
Epoch 10/65 t=34s	lr=1.0e-05	lwlrap=0.86943	loss=1.85	val_loss=1.64
Epoch 11/65 t=34s	lr=1.0e-05	lwlrap=0.87077	loss=1.56	val_loss=1.60

Epoch 12 t=34s	2/65	lr=1.0e-06	lwlrap=0.86846	loss=1.49	val_loss=1.61
Epoch 13 t=34s	3/65	lr=1.0e-06	lwlrap=0.86334	loss=1.58	val_loss=1.64
Epoch 14 t=34s	./65	lr=1.0e-06	lwlrap=0.86422	loss=1.68	val_loss=1.62
Epoch 15 t=34s	6/65	lr=1.0e-06	lwlrap=0.86728	loss=1.60	val_loss=1.63
Epoch 16 t=34s	5/65	lr=1.0e-07	lwlrap=0.86321	loss=1.45	val_loss=1.64

Loading weights from model_3.pt

- Predicting with 25 TTA

lwlrap : Scored 0.8722 on validation data

Done in 78.0 minutes

----- Fold 4 -----

- Fitting

Epoch 1/65 t=50s	lr=5.0e-05	lwlrap=0.29778	loss=55.13	val_loss=54.73
Epoch 2/65 t=50s	lr=2.0e-04	lwlrap=0.31540	loss=52.07	val_loss=47.28
Epoch 3/65 t=50s	lr=3.6e-04	lwlrap=0.34737	loss=33.77	val_loss=19.99
Epoch 4/65	lr=5.1e-04	lwlrap=0.35495	loss=10.24	val_loss=5.97
t=50s Epoch 5/65	lr=6.7e-04	lwlrap=0.42731	loss=5.06	val_loss=4.36
t=50s Epoch 6/65	lr=8.2e-04	lwlrap=0.40044	loss=4.62	val_loss=4.49
t=50s Epoch 7/65	lr=9.7e-04	lwlrap=0.52729	loss=4.48	val_loss=3.93
t=50s Epoch 8/65	lr=1.0e-03	lwlrap=0.55094	loss=4.28	val_loss=3.75
t=50s Epoch 9/65	lr=1.0e-03	lwlrap=0.50160	loss=4.12	val_loss=4.12
t=50s Epoch 10/65	lr=1.0e-03	lwlrap=0.64308	loss=3.95	val_loss=3.25
t=50s Epoch 11/65	lr=9.9e-04	lwlrap=0.61630	loss=3.76	val_loss=3.34
t=50s Epoch 12/65	lr=9.9e-04	lwlrap=0.64073	loss=3.78	val_loss=3.21
t=50s				

Epoch t=50s	13/65	lr=9.9e-04	lwlrap=0.67801	loss=3.68	val_loss=2.93
Epoch	14/65	lr=9.8e-04	lwlrap=0.69722	loss=3.62	val_loss=2.85
t=50s Epoch	15/65	lr=9.7e-04	lwlrap=0.73045	loss=3.52	val_loss=2.69
t=50s Epoch	16/65	lr=9.6e-04	lwlrap=0.70490	loss=3.63	val_loss=2.77
t=50s Epoch t=50s	17/65	lr=9.5e-04	lwlrap=0.75872	loss=3.37	val_loss=2.47
Epoch	18/65	lr=9.4e-04	lwlrap=0.72439	loss=3.49	val_loss=2.72
t=50s Epoch	19/65	lr=9.3e-04	lwlrap=0.76779	loss=3.50	val_loss=2.47
t=50s Epoch	20/65	lr=9.2e-04	lwlrap=0.74829	loss=3.34	val_loss=2.57
t=50s Epoch	21/65	lr=9.0e-04	lwlrap=0.73985	loss=3.43	val_loss=2.63
t=50s Epoch	22/65	lr=8.9e-04	lwlrap=0.77689	loss=3.30	val_loss=2.33
t=50s Epoch	23/65	lr=8.7e-04	lwlrap=0.78717	loss=3.30	val_loss=2.31
t=50s Epoch	24/65	lr=8.6e-04	lwlrap=0.75625	loss=3.15	val_loss=2.49
t=50s Epoch t=50s	25/65	lr=8.4e-04	lwlrap=0.76155	loss=3.25	val_loss=2.47
Epoch t=50s	26/65	lr=8.2e-04	lwlrap=0.76212	loss=3.10	val_loss=2.34
Epoch t=50s	27/65	lr=8.0e-04	lwlrap=0.80013	loss=3.08	val_loss=2.14
Epoch t=50s	28/65	lr=7.8e-04	lwlrap=0.78997	loss=3.10	val_loss=2.26
Epoch t=50s	29/65	lr=7.6e-04	lwlrap=0.80464	loss=3.08	val_loss=2.15
Epoch t=50s	30/65	lr=7.4e-04	lwlrap=0.77194	loss=3.07	val_loss=2.36
Epoch t=50s	31/65	lr=7.2e-04	lwlrap=0.81336	loss=3.07	val_loss=2.11
Epoch t=50s	32/65	lr=7.0e-04	lwlrap=0.80988	loss=2.96	val_loss=2.05
Epoch t=50s	33/65	lr=6.8e-04	lwlrap=0.82385	loss=2.99	val_loss=2.00
Epoch t=50s	34/65	lr=6.5e-04	lwlrap=0.80126	loss=2.86	val_loss=2.12
Epoch t=50s	35/65	lr=6.3e-04	lwlrap=0.80687	loss=2.74	val_loss=2.12
Epoch t=50s	36/65	lr=6.1e-04	lwlrap=0.81401	loss=2.74	val_loss=2.10

Epoch t=50s	37/65	lr=5.8e-04	lwlrap=0.81070	loss=2.61	val_loss=2.06
Epoch	38/65	lr=5.6e-04	lwlrap=0.82920	loss=2.83	val_loss=1.90
t=50s Epoch	39/65	lr=5.4e-04	lwlrap=0.82754	loss=2.71	val_loss=1.91
t=50s Epoch	40/65	lr=5.1e-04	lwlrap=0.84746	loss=2.67	val_loss=1.73
t=50s Epoch	41/65	lr=4.9e-04	lwlrap=0.83863	loss=2.54	val_loss=1.81
t=50s Epoch t=50s	42/65	lr=4.6e-04	lwlrap=0.84833	loss=2.69	val_loss=1.79
Epoch t=50s	43/65	lr=4.4e-04	lwlrap=0.84437	loss=2.55	val_loss=1.77
Epoch t=50s	44/65	lr=4.2e-04	lwlrap=0.84532	loss=2.72	val_loss=1.76
Epoch t=50s	45/65	lr=3.9e-04	lwlrap=0.82494	loss=2.59	val_loss=1.96
Epoch t=50s	46/65	lr=3.7e-04	lwlrap=0.85755	loss=2.41	val_loss=1.74
Epoch t=50s	47/65	lr=3.5e-04	lwlrap=0.85326	loss=2.56	val_loss=1.71
Epoch t=50s	48/65	lr=3.2e-04	lwlrap=0.85765	loss=2.30	val_loss=1.67
Epoch t=50s	49/65	lr=3.0e-04	lwlrap=0.85991	loss=2.40	val_loss=1.67
Epoch t=50s	50/65	lr=2.8e-04	lwlrap=0.85265	loss=2.56	val_loss=1.67
Epoch t=50s	51/65	lr=2.6e-04	lwlrap=0.85622	loss=2.28	val_loss=1.68
Epoch t=50s	52/65	lr=2.4e-04	lwlrap=0.85404	loss=2.36	val_loss=1.70
Epoch t=50s	53/65	lr=2.2e-04	lwlrap=0.87021	loss=2.22	val_loss=1.60
Epoch t=50s	54/65	lr=2.0e-04	lwlrap=0.86594	loss=2.19	val_loss=1.62
Epoch t=50s	55/65	lr=1.8e-04	lwlrap=0.86740	loss=2.14	val_loss=1.56
Epoch t=50s	56/65	lr=1.6e-04	lwlrap=0.86882	loss=2.16	val_loss=1.56
Epoch t=50s	57/65	lr=1.4e-04	lwlrap=0.86947	loss=2.00	val_loss=1.55
Epoch t=50s	58/65	lr=1.3e-04	lwlrap=0.86948	loss=2.19	val_loss=1.56
Epoch t=50s	59/65	lr=1.1e-04	lwlrap=0.87085	loss=2.00	val_loss=1.55
Epoch t=50s	60/65	lr=9.6e-05	lwlrap=0.87223	loss=2.21	val_loss=1.56

-	61/65	lr=8.2e-05	lwlrap=0.87082	loss=2.07	val_loss=1.55
-	62/65	lr=6.9e-05	lwlrap=0.86583	loss=2.05	val_loss=1.54
-	63/65	lr=5.7e-05	lwlrap=0.86745	loss=2.05	val_loss=1.59
t=50s Epoch t=50s	64/65	lr=4.7e-05	lwlrap=0.86983	loss=2.00	val_loss=1.54
	65/65	lr=3.7e-05	lwlrap=0.86802	loss=2.05	val_loss=1.60
- Re	-fitting	with curated da	ata only (1/2)		
Epoch t=34s	1/65	lr=1.0e-04	lwlrap=0.87000	loss=1.69	val_loss=1.58
Epoch t=34s	2/65	lr=1.0e-04	lwlrap=0.86720	loss=1.75	val_loss=1.60
Epoch t=34s	3/65	lr=1.0e-04	lwlrap=0.86865	loss=1.63	val_loss=1.58
Epoch t=34s	4/65	lr=1.0e-04	lwlrap=0.86356	loss=1.75	val_loss=1.64
Epoch t=34s	5/65	lr=1.0e-04	lwlrap=0.86371	loss=1.85	val_loss=1.61
Epoch t=34s	6/65	lr=1.0e-05	lwlrap=0.86565	loss=1.59	val_loss=1.60
Epoch t=34s	7/65	lr=1.0e-05	lwlrap=0.86302	loss=1.68	val_loss=1.61
Epoch t=34s	8/65	lr=1.0e-05	lwlrap=0.87480	loss=1.79	val_loss=1.56
Epoch t=34s	9/65	lr=1.0e-05	lwlrap=0.86982	loss=1.48	val_loss=1.57
Epoch t=34s	10/65	lr=1.0e-05	lwlrap=0.86446	loss=1.49	val_loss=1.60
Epoch t=34s	11/65	lr=1.0e-05	lwlrap=0.86673	loss=1.79	val_loss=1.64
Epoch t=34s	12/65	lr=1.0e-05	lwlrap=0.86619	loss=1.62	val_loss=1.60
t=34s	13/65	lr=1.0e-06	lwlrap=0.86983	loss=1.47	val_loss=1.56
Epoch t=34s	14/65	lr=1.0e-06	lwlrap=0.86619	loss=1.64	val_loss=1.60
t=34s	15/65	lr=1.0e-06	lwlrap=0.86529	loss=1.96	val_loss=1.65
t=34s	16/65	lr=1.0e-06	lwlrap=0.86539	loss=1.48	val_loss=1.58
t=34s	17/65	lr=1.0e-06	lwlrap=0.85853	loss=1.97	val_loss=1.66
Epoch	18/65	lr=1.0e-07	lwlrap=0.86285	loss=1.57	val_loss=1.62

t=34s
Loading weights from model_4.pt

- Re-fitting with curated data only (2/2)

Epoch t=34s	1/65	lr=1.0e-04	lwlrap=0.86174	loss=1.67	val_loss=1.63
Epoch t=34s	2/65	lr=1.0e-04	lwlrap=0.87102	loss=1.48	val_loss=1.59
Epoch	3/65	lr=1.0e-04	lwlrap=0.87003	loss=1.57	val_loss=1.60
t=34s Epoch	4/65	lr=1.0e-04	lwlrap=0.86408	loss=1.66	val_loss=1.66
t=34s Epoch	5/65	lr=1.0e-04	lwlrap=0.86615	loss=1.71	val_loss=1.65
t=34s Epoch	6/65	lr=1.0e-04	lwlrap=0.87117	loss=1.73	val_loss=1.63
t=34s Epoch	7/65	lr=1.0e-05	lwlrap=0.87320	loss=1.60	val_loss=1.60
t=34s Epoch	8/65	lr=1.0e-05	lwlrap=0.86905	loss=1.50	val_loss=1.65
t=34s Epoch	9/65	lr=1.0e-05	lwlrap=0.86685	loss=1.75	val_loss=1.66
-	10/65	lr=1.0e-05	lwlrap=0.87011	loss=1.52	val_loss=1.61
-	11/65	lr=1.0e-06	lwlrap=0.87083	loss=1.52	val_loss=1.62
-	12/65	lr=1.0e-06	lwlrap=0.87009	loss=1.67	val_loss=1.64
-	13/65	lr=1.0e-06	lwlrap=0.87265	loss=1.39	val_loss=1.57
-	14/65	lr=1.0e-06	lwlrap=0.86978	loss=1.36	val_loss=1.58
-	15/65	lr=1.0e-06	lwlrap=0.86828	loss=1.52	val_loss=1.64
-	16/65	lr=1.0e-06	lwlrap=0.87776	loss=1.54	val_loss=1.58
_	17/65	lr=1.0e-06	lwlrap=0.86879	loss=1.66	val_loss=1.62
-	18/65	lr=1.0e-07	lwlrap=0.87019	loss=1.40	val_loss=1.60
t=34s					

Loading weights from model_4.pt

⁻ Predicting with 25 TTA

 ${\tt lwlrap} \ : \ {\tt Scored} \ {\tt 0.8784} \ {\tt on} \ {\tt validation} \ {\tt data}$

Done in 78.8 minutes

----- Fold 5 -----

_	Fitting
	ritting

Epoch t=50s	1/65	lr=5.0e-05	lwlrap=0.25448	loss=55.14	val_loss=54.92
Epoch t=50s	2/65	lr=2.0e-04	lwlrap=0.30980	loss=52.22	val_loss=47.82
Epoch	3/65	lr=3.6e-04	lwlrap=0.27796	loss=34.42	val_loss=21.34
t=50s Epoch	4/65	lr=5.1e-04	lwlrap=0.32000	loss=10.62	val_loss=5.56
t=50s Epoch	5/65	lr=6.7e-04	lwlrap=0.33746	loss=5.05	val_loss=4.93
t=50s Epoch	6/65	lr=8.2e-04	lwlrap=0.47756	loss=4.68	val_loss=4.30
t=50s Epoch	7/65	lr=9.7e-04	lwlrap=0.51861	loss=4.43	val_loss=4.03
t=50s Epoch	8/65	lr=1.0e-03	lwlrap=0.44956	loss=4.23	val_loss=4.27
t=50s Epoch	9/65	lr=1.0e-03	lwlrap=0.45506	loss=4.16	val_loss=4.38
-	10/65	lr=1.0e-03	lwlrap=0.56731	loss=4.08	val_loss=3.59
t=50s Epoch	11/65	lr=9.9e-04	lwlrap=0.60904	loss=3.86	val_loss=3.40
-	12/65	lr=9.9e-04	lwlrap=0.65139	loss=3.75	val_loss=3.13
t=50s Epoch	13/65	lr=9.9e-04	lwlrap=0.64167	loss=3.78	val_loss=3.19
t=50s Epoch	14/65	lr=9.8e-04	lwlrap=0.65755	loss=3.65	val_loss=3.10
t=50s Epoch	15/65	lr=9.7e-04	lwlrap=0.68737	loss=3.68	val_loss=2.89
t=50s Epoch	16/65	lr=9.6e-04	lwlrap=0.64564	loss=3.56	val_loss=3.13
t=50s	17/65	lr=9.5e-04	lwlrap=0.70171	loss=3.48	val_loss=2.76
t=50s			-		
t=50s	18/65	lr=9.4e-04	lwlrap=0.71702	loss=3.48	val_loss=2.74
t=50s	19/65	lr=9.3e-04	lwlrap=0.67062	loss=3.49	val_loss=2.92
Epoch t=50s	20/65	lr=9.2e-04	lwlrap=0.71658	loss=3.40	val_loss=2.69

Epoch	21/65	lr=9.0e-04	lwlrap=0.73064	loss=3.35	val_loss=2.58
t=50s Epoch	22/65	lr=8.9e-04	lwlrap=0.73799	loss=3.29	val_loss=2.51
t=50s Epoch	23/65	lr=8.7e-04	lwlrap=0.75789	loss=3.28	val_loss=2.38
t=50s Epoch	24/65	lr=8.6e-04	lwlrap=0.75757	loss=3.21	val_loss=2.42
t=50s Epoch	25/65	lr=8.4e-04	lwlrap=0.73907	loss=3.42	val_loss=2.47
t=50s Epoch	26/65	lr=8.2e-04	lwlrap=0.73268	loss=3.13	val_loss=2.57
t=50s Epoch	27/65	lr=8.0e-04	lwlrap=0.77122	loss=3.05	val_loss=2.35
t=50s Epoch	28/65	lr=7.8e-04	lwlrap=0.72806	loss=3.04	val_loss=2.52
t=50s Epoch	29/65	lr=7.6e-04	lwlrap=0.77886	loss=3.11	val_loss=2.30
t=50s Epoch	30/65	lr=7.4e-04	lwlrap=0.79369	loss=2.93	val_loss=2.17
t=50s Epoch	31/65	lr=7.2e-04	lwlrap=0.78362	loss=2.85	val_loss=2.18
t=50s Epoch	32/65	lr=7.0e-04	lwlrap=0.77815	loss=2.88	val_loss=2.25
t=50s Epoch t=50s	33/65	lr=6.8e-04	lwlrap=0.79891	loss=2.84	val_loss=2.10
Epoch t=50s	34/65	lr=6.5e-04	lwlrap=0.79023	loss=2.80	val_loss=2.20
Epoch t=50s	35/65	lr=6.3e-04	lwlrap=0.78654	loss=3.01	val_loss=2.22
Epoch t=50s	36/65	lr=6.1e-04	lwlrap=0.79897	loss=2.84	val_loss=2.11
Epoch t=50s	37/65	lr=5.8e-04	lwlrap=0.78560	loss=2.74	val_loss=2.18
Epoch t=50s	38/65	lr=5.6e-04	lwlrap=0.80790	loss=2.81	val_loss=2.01
Epoch t=50s	39/65	lr=5.4e-04	lwlrap=0.81328	loss=2.71	val_loss=2.01
Epoch t=50s	40/65	lr=5.1e-04	lwlrap=0.82248	loss=2.67	val_loss=1.92
Epoch t=50s	41/65	lr=4.9e-04	lwlrap=0.81284	loss=2.42	val_loss=1.93
Epoch t=50s	42/65	lr=4.6e-04	lwlrap=0.81495	loss=2.60	val_loss=2.05
Epoch t=50s	43/65	lr=4.4e-04	lwlrap=0.82048	loss=2.53	val_loss=1.89
Epoch t=50s	44/65	lr=4.2e-04	lwlrap=0.80833	loss=2.43	val_loss=2.02

Epoch t=50s	45/65	lr=3.9e-04	lwlrap=0.81206	loss=2.49	val_loss=1.96
	46/65	lr=3.7e-04	lwlrap=0.82150	loss=2.51	val_loss=1.90
	47/65	lr=3.5e-04	lwlrap=0.81518	loss=2.43	val_loss=1.90
	48/65	lr=3.2e-04	lwlrap=0.83123	loss=2.30	val_loss=1.84
Epoch t=50s	49/65	lr=3.0e-04	lwlrap=0.82540	loss=2.54	val_loss=1.85
Epoch t=50s	50/65	lr=2.8e-04	lwlrap=0.83077	loss=2.26	val_loss=1.77
Epoch t=50s	51/65	lr=2.6e-04	lwlrap=0.84408	loss=2.06	val_loss=1.71
Epoch t=50s	52/65	lr=2.4e-04	lwlrap=0.83360	loss=2.19	val_loss=1.78
Epoch t=50s	53/65	lr=2.2e-04	lwlrap=0.83359	loss=2.28	val_loss=1.79
Epoch t=50s	54/65	lr=2.0e-04	lwlrap=0.84448	loss=2.12	val_loss=1.71
Epoch t=50s	55/65	lr=1.8e-04	lwlrap=0.84334	loss=2.15	val_loss=1.70
Epoch t=50s	56/65	lr=1.6e-04	lwlrap=0.83961	loss=2.07	val_loss=1.74
	57/65	lr=1.4e-04	lwlrap=0.85070	loss=2.09	val_loss=1.70
	58/65	lr=1.3e-04	lwlrap=0.84274	loss=2.07	val_loss=1.71
	59/65	lr=1.1e-04	lwlrap=0.84327	loss=1.93	val_loss=1.71
	60/65	lr=9.6e-05	lwlrap=0.85504	loss=1.73	val_loss=1.65
	61/65	lr=8.2e-05	lwlrap=0.84435	loss=2.03	val_loss=1.71
	62/65	lr=6.9e-05	lwlrap=0.84088	loss=1.98	val_loss=1.74
	63/65	lr=5.7e-05	lwlrap=0.84461	loss=1.99	val_loss=1.71
	64/65	lr=4.7e-05	lwlrap=0.84903	loss=2.02	val_loss=1.67
	65/65	lr=3.7e-05	lwlrap=0.84859	loss=2.06	val_loss=1.68
- Re-fitting with curated data only (1/2)					
Epoch	1/65	lr=1.0e-04	lwlrap=0.84777	loss=1.78	val_loss=1.70
t=34s Epoch	2/65	lr=1.0e-04	lwlrap=0.85251	loss=1.99	val_loss=1.73

+-04-				
-	lr=1.0e-04	lwlrap=0.85258	loss=1.79	val_loss=1.69
t=34s Epoch 4/65	lr=1.0e-04	lwlrap=0.85211	loss=2.04	val_loss=1.74
t=34s		-		_
Epoch 5/65 t=34s	lr=1.0e-04	lwlrap=0.83904	loss=1.69	val_loss=1.77
Epoch 6/65 t=34s	lr=1.0e-04	lwlrap=0.84374	loss=1.56	val_loss=1.74
	lr=1.0e-04	lwlrap=0.84986	loss=1.58	val_loss=1.71
	lr=1.0e-05	lwlrap=0.84990	loss=1.73	val_loss=1.72
	lr=1.0e-05	lwlrap=0.85124	loss=1.52	val_loss=1.70
Epoch 10/65 t=34s	lr=1.0e-05	lwlrap=0.84645	loss=1.55	val_loss=1.74
Epoch 11/65	lr=1.0e-05	lwlrap=0.84482	loss=1.75	val_loss=1.75
t=34s Epoch 12/65	lr=1.0e-06	lwlrap=0.85043	loss=1.58	val_loss=1.72
t=34s Epoch 13/65	lr=1.0e-06	lwlrap=0.85628	loss=1.75	val_loss=1.69
t=34s Epoch 14/65	lr=1.0e-06	lwlrap=0.84924	loss=1.58	val_loss=1.74
t=34s Epoch 15/65	lr=1.0e-06	lwlrap=0.84901	loss=1.70	val_loss=1.72
t=34s Epoch 16/65	lr=1.0e-06	lwlrap=0.84862	loss=1.74	val_loss=1.76
t=34s Epoch 17/65	lr=1.0e-06	lwlrap=0.85307	loss=1.77	val_loss=1.71
t=34s Epoch 18/65	lr=1.0e-07	lwlrap=0.85125	loss=1.55	val_loss=1.71
t=34s	from model 5 r	ot.		

Loading weights from model_5.pt

- Re-fitting with curated data only (2/2)

Epoch 1/65 t=34s	lr=1.0e-04	lwlrap=0.85309	loss=1.68	val_loss=1.71
Epoch 2/65 t=34s	lr=1.0e-04	lwlrap=0.85129	loss=1.68	val_loss=1.72
Epoch 3/65 t=34s	lr=1.0e-04	lwlrap=0.84475	loss=1.66	val_loss=1.73
Epoch 4/65 t=34s	lr=1.0e-04	lwlrap=0.84503	loss=1.63	val_loss=1.73
Epoch 5/65 t=34s	lr=1.0e-04	lwlrap=0.84878	loss=1.65	val_loss=1.75

Epoch 6/65	lr=1.0e-05	lwlrap=0.85322	loss=1.42	val_loss=1.68
t=34s				
Epoch 7/65	lr=1.0e-05	lwlrap=0.85235	loss=1.69	val_loss=1.73
t=34s				
Epoch 8/65	lr=1.0e-05	lwlrap=0.85302	loss=1.27	val_loss=1.69
t=34s				
Epoch 9/65	lr=1.0e-05	lwlrap=0.85209	loss=1.89	val_loss=1.72
t=34s				
Epoch 10/65	lr=1.0e-05	lwlrap=0.85469	loss=1.89	val_loss=1.72
t=34s				
Epoch 11/65	lr=1.0e-06	lwlrap=0.84940	loss=1.72	val_loss=1.73
t=34s				
Epoch 12/65	lr=1.0e-06	lwlrap=0.84937	loss=1.53	val_loss=1.74
t=34s				
Epoch 13/65	lr=1.0e-06	lwlrap=0.85159	loss=1.41	val_loss=1.70
t=34s	7 4 0 00	3 3 0 04505		
Epoch 14/65	lr=1.0e-06	lwlrap=0.84585	loss=1.57	val_loss=1.73
t=34s	1 1 0 07	3 3 0 05445	7 4 00	7 7 4 00
Epoch 15/65	lr=1.0e-07	lwlrap=0.85115	loss=1.66	val_loss=1.69
t=34s				
Loading weight	s irom model_5.	.pt		

- Predicting with 25 TTA

lwlrap : Scored 0.8551 on validation data

Done in 76.9 minutes

```
[59]: Score Weight
Label
Walk_and_footsteps 0.61816 0.01305
Squeak 0.66539 0.01305
```

Fill_(with_liquid)	0.685	0.0087
Buzz	0.7367	
Yell	0.73886	
Sink_(filling_or_washing)	0.74065	
Traffic_noise_and_roadway_noise	0.74117	0.01305
Water_tap_and_faucet	0.74604	0.01305
Mechanical_fan	0.76589	0.00853
Hiss	0.76768	0.01305
Tap	0.77258	0.01305
Cutlery_and_silverware	0.77369	0.01305
Microwave_oven	0.77416	0.01305
Bus	0.78029	0.01305
Motorcycle	0.7861	0.01305
Trickle_and_dribble	0.79233	0.00922
Gasp	0.79252	0.00835
Chink_and_clink	0.80138	0.01305
Dishes_and_pots_and_pans	0.81386	0.01305
<pre>Bathtub_(filling_or_washing)</pre>	0.81556	0.01305
Drip	0.81887	0.01305
Cupboard_open_or_close	0.82087	0.01305
Frying_(food)	0.82089	0.01096
Accelerating_and_revving_and_vroom	0.82391	0.01305
Run	0.82789	0.01305
Slam	0.83424	0.01305
Stream	0.83956	0.01288
Chewing_and_mastication	0.84337	0.01305
Crowd	0.85428	0.01305
Printer	0.86122	0.01305
•••	•••	•••
Raindrop	0.90862	
Toilet_flush	0.90946	
Keys_jangling	0.91089	0.01305
Child_speech_and_kid_speaking	0.9148	
Shatter	0.91578	
Race_car_and_auto_racing	0.91667	
Writing	0.91689	0.01305
Gong	0.91689	
<pre>Zipper_(clothing)</pre>	0.91949	
Meow	0.92131	
Church_bell	0.92703	
Screaming	0.92722	
Sigh	0.93567	
Acoustic_guitar	0.94529	
Bark	0.94714	
Bass_drum	0.94768	
Fart	0.952	
Whispering	0.95833	0.01288

```
0.96003 0.01305
Harmonica
Accordion
                                    0.96099 0.00818
Glockenspiel
                                    0.96429 0.00975
Burping_and_eructation
                                    0.96468 0.01305
Bass_guitar
                                    0.96487 0.01305
Purr
                                    0.97692 0.01131
Bicycle_bell
                                    0.97811 0.01166
Finger_snapping
                                    0.98444 0.01305
Hi-hat
                                    0.98444 0.01305
Marimba_and_xylophone
                                   0.98444 0.01305
Skateboard
                                   0.98444 0.01305
Strum
                                    0.99556 0.01305
```

[80 rows x 2 columns]

7 Submission

```
[60]: df_test[df_test.columns[1:]] = pred_test
[61]: df_test.to_csv('submission.csv', index=False)
```