On a Class of Permutation Polynomials over Finite Fields

November 21, 2013

Abstract

1 Results

Definition 1.1. Sea $a=\alpha^i, b=\alpha^j$ y \sim la relacion definida por $(a,b)\sim(a',b')$ $<=>a'=\alpha^{i+h(\frac{p-1}{d_1}-\frac{p-1}{d_2})}, b'=\alpha^{j+h(\frac{p-1}{d_1})}$

Proposition 1.2. \sim definida arriba es una relación de equivalencia.

Proof. Pendiente

Proposition 1.3. Sea [a,b] la clase de equivalencia de (a,b). Si $(a',b') \in [a,b]$, entonces $|V_{a',b'}| = |V_{a,b}|$

Proof. Sea α la raiz primitiva del cuerpo finito.

$$\begin{split} F_{a',b'}(\alpha^{k+1}) &= \alpha^{k+1} ((\alpha^{k+1})^{\frac{p-1}{d_1}} + \alpha^{i + \frac{p-1}{d_1} - \frac{p-1}{d_2}} (\alpha^{k+1})^{\frac{p-1}{d_2}} + \alpha^{j + \frac{p-1}{d_1}}) \\ &= \alpha^{k+1} ((\alpha^k)^{\frac{p-1}{d_1}} \cdot \alpha^{\frac{p-1}{d_1}} + \alpha^i \cdot \frac{\alpha^{\frac{p-1}{d_1}}}{\alpha^{\frac{p-1}{d_2}}} (\alpha^k)^{\frac{p-1}{d_2}} \cdot \alpha^{\frac{p-1}{d_2}} + \alpha^j \cdot \alpha^{\frac{p-1}{d_1}}) \\ &= \alpha^{\frac{p-1}{d_1} + 1} \cdot \alpha^k ((\alpha^k)^{\frac{p-1}{d_1}} + \alpha^i (\alpha^k)^{\frac{p-1}{d_2}} + \alpha^j) \\ &= C \cdot F_{a,b}(\alpha^k), \text{donde } C = \alpha^{\frac{p-1}{d_1} + 1} \end{split}$$

En general para cada termino de $F_{a,b}(\alpha^k)$ va a haber un termino correspondiente de $F_{a',b'}(\alpha^{k+1})$ donde $a'=\alpha^{i+h(\frac{p-1}{d_1}-\frac{p-1}{d_2})}$ y $b'=\alpha^{j+h(\frac{p-1}{d_1})}$. Por otra parte, debe ser el caso de que $\left|V_{F_{a,b}}\right|=\left|V_{F_{a',b'}}\right|$.

Sea $f: V_{a',b'} \to \alpha^{\frac{p-1}{d_1}} V_{a,b}$ dada por $f(F_{a',b'}(\alpha^{k+1})) = \alpha^{\frac{p-1}{d_1}+1} F_{a,b}(\alpha^k)$. Suponga que $f(F_{a',b'}(\alpha^{k_1+1})) = f(F_{a',b'}(\alpha^{k_2+1}))$ donde $k_1, k_2 \in \mathbb{F}_q$.

Considere
$$f(F_{a',b'}(\alpha^{k_1+1}))$$

$$= f(\alpha^{k_1+1}((\alpha^{k_1+1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_1+1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{\frac{p-1}{d_1}+1}(\alpha^{k_1}((\alpha^{k_1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_1+1}(\alpha^{\frac{p-1}{d_1}}((\alpha^{k_1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_1+1}((\alpha^{k_1+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}} + \frac{p-1}{d_2}(\alpha^{k_1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= \alpha^{k_1+1}((\alpha^{k_1+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}}(\alpha^{k_1+1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= F_{a',b'}(\alpha^{k_1+1})$$

Luego considere $f(F_{a'.b'}(\alpha^{k_2+1}))$

$$= f(\alpha^{k_2+1}((\alpha^{k_2+1})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_2+1})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{\frac{p-1}{d_1}+1}(\alpha^{k_2}((\alpha^{k_2})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_2})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_2+1}(\alpha^{\frac{p-1}{d_1}}((\alpha^{k_2})^{\frac{p-1}{d_1}} + \alpha^i(\alpha^{k_2})^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k_2+1}((\alpha^{k_2+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}} + \frac{p-1}{d_2}}(\alpha^{k_2})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= \alpha^{k_2+1}((\alpha^{k_2+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}}(\alpha^{k_2+1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= F_{a'b'}(\alpha^{k_2+1})$$

En conclusión $F_{a',b'}(\alpha^{k_1+1})=F_{a',b'}(\alpha^{k_2+1})$ por lo tanto f es una función 1-1

Considere un elemento en el campo de valores dado por $\alpha^{\frac{p-1}{d_1}} F_{a,b}(\alpha^k)$

$$\alpha^{\frac{p-1}{d_1}} F_{a,b}(\alpha^k) = \alpha^{\frac{p-1}{d_1}+1} (\alpha^k ((\alpha^k)^{\frac{p-1}{d_1}} + \alpha^i (\alpha^k)^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k+1} (\alpha^{\frac{p-1}{d_1}} ((\alpha^k)^{\frac{p-1}{d_1}} + \alpha^i (\alpha^k)^{\frac{p-1}{d_2}} + \alpha^j))$$

$$= \alpha^{k+1} ((\alpha^{k+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}} + \frac{p-1}{d_2}} (\alpha^k)^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= \alpha^{k+1} ((\alpha^{k+1})^{\frac{p-1}{d_1}} + \alpha^{i+\frac{p-1}{d_1} - \frac{p-1}{d_2}} (\alpha^{k+1})^{\frac{p-1}{d_2}} + \alpha^{j+\frac{p-1}{d_1}})$$

$$= F_{a',b'}(\alpha^{k+1})$$

En conclusión para cada elemento en el campo de valores, $\alpha^{\frac{p-1}{d_1}}F_{a,b}(\alpha^k)$, existe un elemento en el dominio, $F_{a',b'}(\alpha^{k+1})$. Por lo tanto f es una función sobre.

Proposition 1.4. Si $d_2 = d_1 \cdot h$, entonces $|[a, b]| = d_2$

Proof. Note that we can repeat this process using $a'' = a' \cdot \alpha^{(d+2)(\frac{q-1}{2d})}$, $b'' = b' \cdot \alpha^{(\frac{q-1}{2})}$. We argue that this process can be repeated at most d-1 times when d is even, and 2d-1 times when d is odd.

Proposition 1.5. Suponga que $d_2=d_1\cdot h+r,\, 1\leq r\geq d_1.$ Entonces, $|[a,b]|=\frac{d_1\cdot d_2}{?}$

Proposition 1.6. El número de polinomios $F_{a',b'}(x)$ con $|V_{a,b}|$ es un múltiplo de |[a,b]|