



Fig. 60 Conducted Spurious Emission (802.11ac-HT40, Ch151, 1 GHz -12 GHz)



Fig. 61 Conducted Spurious Emission (802.11ac-HT40, Ch151, 12 GHz-25 GHz)





Fig. 62 Conducted Spurious Emission (802.11ac-HT40, Ch151, 25 GHz-40 GHz)



Fig. 63 Conducted Spurious Emission (802.11ac-HT40, Ch159, 30 MHz-1 GHz)





Fig. 64 Conducted Spurious Emission (802.11ac-HT40, Ch159, 1 GHz -12 GHz)



Fig. 65 Conducted Spurious Emission (802.11ac-HT40, Ch159, 12 GHz-25 GHz)





Fig. 66 Conducted Spurious Emission (802.11ac-HT40, Ch159, 25 GHz-40 GHz)



Fig. 67 Conducted Spurious Emission (802.11ac-HT80, Ch155, 30 MHz-1 GHz)





Fig. 68 Conducted Spurious Emission (802.11ac-HT80, Ch155, 1 GHz -12 GHz)



Fig. 69 Conducted Spurious Emission (802.11ac-HT80, Ch155, 12 GHz-25 GHz)





Fig. 70 Conducted Spurious Emission (802.11ac-HT80, Ch155, 25 GHz-40 GHz)



# A.5.2 Transmitter Spurious Emission - Radiated

# **Measurement Uncertainty:**

| Frequency Range | Uncertainty(dB) |
|-----------------|-----------------|
| f≤1GHz          | 3.9             |
| f>1GHz          | 4.3             |

#### Note:

A "reference path loss" is established and the  $A_{Rpl}$  is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 $\ensuremath{P_{\text{Mea}}}$  is the field strength recorded from the instrument.

# 802.11a

#### Ch149

| Fraguenov/MHz) | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5724.900       | 39.4     | -33.0    | 34.9    | 37.47            | V            |
| 5692.800       | 38.7     | -32.7    | 34.9    | 36.50            | Н            |
| 11489.600      | 34.1     | -30.4    | 38.7    | 25.80            | V            |
| 17235.200      | 37.5     | -25.8    | 41.2    | 22.10            | Н            |
| 17806.400      | 40.4     | -23.0    | 41.0    | 22.49            | V            |
| 17810.400      | 40.3     | -23.0    | 41.0    | 22.36            | Н            |

#### Ch157

| Fraguenov/MHz) | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5736.000       | 39.0     | -32.9    | 34.9    | 37.05            | Н            |
| 5824.400       | 38.2     | -32.3    | 35.0    | 35.53            | Н            |
| 11570.400      | 33.9     | -30.5    | 38.8    | 25.58            | V            |
| 17355.200      | 37.7     | -25.6    | 41.2    | 22.14            | V            |
| 17803.200      | 40.3     | -23.1    | 41.0    | 22.44            | Н            |
| 17807.200      | 40.4     | -23.0    | 41.0    | 22.47            | V            |

#### Ch165

| Fraguenov/MHz) | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5850.000       | 48.5     | -32.2    | 35.1    | 45.62            | V            |
| 5853.200       | 45.3     | -32.2    | 35.1    | 42.41            | V            |
| 11650.400      | 34.0     | -30.2    | 38.9    | 25.27            | Н            |
| 17475.200      | 38.0     | -25.2    | 41.2    | 22.05            | Н            |
| 17803.200      | 40.4     | -23.1    | 41.0    | 22.54            | V            |
| 17810.400      | 40.3     | -23.0    | 41.0    | 22.36            | V            |



# 802.11n-HT20

# Ch149

| Fraguenov/MHz) | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5724.800       | 60.9     | -33.0    | 34.9    | 58.97            | Н            |
| 5724.400       | 60.1     | -33.0    | 34.9    | 58.17            | V            |
| 11490.400      | 34.2     | -30.4    | 38.7    | 25.90            | Н            |
| 17235.200      | 37.4     | -25.8    | 41.2    | 22.00            | V            |
| 17803.200      | 40.3     | -23.1    | 41.0    | 22.44            | Н            |
| 17812.000      | 40.4     | -23.0    | 41.0    | 22.48            | Н            |

# Ch157

| Fragues ov (MHz) | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|------------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz)   | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5724.800         | 39.0     | -33.0    | 34.9    | 37.07            | V            |
| 5827.600         | 38.0     | -32.3    | 35.0    | 35.29            | V            |
| 11570.400        | 33.8     | -30.5    | 38.8    | 25.48            | Н            |
| 17354.400        | 37.7     | -25.6    | 41.2    | 22.14            | Н            |
| 17806.400        | 40.3     | -23.0    | 41.0    | 22.39            | V            |
| 17808.800        | 40.3     | -23.0    | 41.0    | 22.35            | Н            |

# Ch165

| Fraguenov/MHz) | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5850.000       | 46.7     | -32.2    | 35.1    | 43.82            | Н            |
| 5850.400       | 46.0     | -32.2    | 35.1    | 43.12            | V            |
| 11650.400      | 33.9     | -30.2    | 38.9    | 25.17            | П            |
| 17474.400      | 38.2     | -25.2    | 41.2    | 22.24            | V            |
| 17803.200      | 40.4     | -23.1    | 41.0    | 22.54            | Н            |
| 17808.800      | 40.4     | -23.0    | 41.0    | 22.45            | V            |



# 802.11n-HT40

# Ch151

| Frequency(MHz) | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHZ) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5724.800       | 63.0     | -33.0    | 34.9    | 61.07            | Н            |
| 5724.000       | 62.8     | -33.0    | 34.9    | 60.86            | V            |
| 11510.400      | 34.2     | -30.4    | 38.7    | 25.90            | Н            |
| 17265.600      | 37.7     | -25.9    | 41.2    | 22.40            | V            |
| 17802.400      | 40.4     | -23.1    | 41.0    | 22.55            | Н            |
| 17808.000      | 40.4     | -23.0    | 41.0    | 22.46            | V            |

# Ch159

| Fragues (MHz)  | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5850.000       | 39.5     | -32.2    | 35.1    | 36.62            | V            |
| 5852.800       | 39.1     | -32.2    | 35.1    | 36.21            | Н            |
| 11590.400      | 33.7     | -30.5    | 38.8    | 25.38            | V            |
| 17384.800      | 37.9     | -25.5    | 41.2    | 22.21            | Н            |
| 17802.400      | 40.4     | -23.1    | 41.0    | 22.55            | V            |
| 17809.600      | 40.4     | -23.0    | 41.0    | 22.45            | Н            |

# 802.11ac-HT80

# Ch155

| Fragues (MHz)  | Result   | Cable    | Antenna | P <sub>Mea</sub> | Polarization |
|----------------|----------|----------|---------|------------------|--------------|
| Frequency(MHz) | (dBuV/m) | Loss(dB) | Factor  | (dBuV/m)         |              |
| 5964.820       | 37.5     | -32.6    | 34.8    | 35.29            | Н            |
| 6143.650       | 37.9     | -32.1    | 35.2    | 34.82            | V            |
| 11550.400      | 34.3     | -30.5    | 38.8    | 25.99            | Н            |
| 17324.800      | 37.5     | -25.8    | 41.2    | 22.08            | Н            |
| 17800.800      | 40.3     | -23.1    | 41.0    | 22.47            | V            |
| 17808.800      | 40.4     | -23.0    | 41.0    | 22.45            | Н            |



# A.6. Band Edges Compliance

# A6.1 Band Edges - conducted

# **Measurement Limit:**

| Standard                       | Frequency (MHz)             | Limit (dBm/MHz) |
|--------------------------------|-----------------------------|-----------------|
| FCC 47 CFR Part 15 407 (b) (4) | 5715MHz~5860MHz             | < -17           |
| FCC 47 CFR Part 15.407 (b) (4) | Below 5715MHz, Above5860MHz | < -27           |

The measurement is made according to KDB 789033 D02

# **Measurement Uncertainty:**

| Measurement Uncertainty | 0.75dB |
|-------------------------|--------|
|-------------------------|--------|

#### **Measurement Result:**

| Mode          | Channel  | Test Results | Conclusion |
|---------------|----------|--------------|------------|
| 000 110       | 5745 MHz | Fig.71       | Р          |
| 802.11a       | 5825 MHz | Fig.72       | Р          |
| 802.11n       | 5745 MHz | Fig.73       | Р          |
| HT20          | 5825 MHz | Fig.74       | Р          |
| 802.11n       | 5745 MHz | Fig.75       | Р          |
| HT20          | 5825 MHz | Fig.76       | Р          |
| 802.11n       | 5755 MHz | Fig.77       | Р          |
| HT40          | 5795 MHz | Fig.78       | Р          |
| 802.11n       | 5755 MHz | Fig.79       | Р          |
| HT40          | 5795 MHz | Fig.80       | Р          |
| 802.11ac HT80 | 5775 MHz | Fig.81       | Р          |
| 002.11dC H100 | 5775 MHz | Fig.82       | Р          |

Conclusion: PASS
Test graphs as below:





Fig. 71 Band Edges (802.11a, 5745MHz)



Fig. 72 Band Edges (802.11a, 5825MHz)





Fig. 73 Band Edges (802.11n-HT20, 5745MHz)







Fig. 74 Band Edges (802.11n-HT20, 5825MHz)

Fig. 75 Band Edges (802.11ac-HT20, 5745MHz)







Fig. 76 Band Edges (802.11ac-HT20, 5825MHz)









Fig. 78 Band Edges (802.11n-HT40, 5795MHz)

Fig. 79 Band Edges (802.11ac-HT40, 5755MHz)



Fig. 80 Band Edges (802.11ac-HT40, 5795MHz)





Fig. 81 Band Edges (802.11ac-HT80, 5775MHz)



Fig. 82 Band Edges (802.11ac-HT80, 5855MHz)



# A6.2 Band Edges - Radiated Measurement Limit:

| Standard               | Frequency(MHz) | Limit (dBµV/m) |
|------------------------|----------------|----------------|
|                        | 5650-5700      | 68.2-105.2     |
|                        | 5700-5720      | 105.2-110.8    |
| FCC 47 CFR Part 15.407 | 5720-5725      | 110.8-122.2    |
|                        | 5850-5855      | 122.2-110.8    |
|                        | 5855-5875      | 110.8-105.2    |
|                        | 5875-5925      | 105.2-68.2     |

The measurement is made according to KDB 789033 D02 In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

#### **Measurement Result:**

| Mode    | Channel  | Test Results | Conclusion |
|---------|----------|--------------|------------|
| 802.11a | 5745 MHz | Fig.83       | Р          |
| 002.11d | 5825 MHz | Fig.84       | Р          |
| 802.11n | 5745 MHz | Fig.85       | Р          |
| HT20    | 5825 MHz | Fig.86       | Р          |
| 802.11n | 5755 MHz | Fig.87       | Р          |
| HT40    | 5795 MHz | Fig.88       | Р          |

**Conclusion: PASS** 



#### Test graphs as below:

RE - Power-5.650GHz-5.765GHz



Fig. 83 Band Edges (802.11a, 5745MHz)





Fig. 84 Band Edges (802.11a, 5825MHz)







Fig. 85 Band Edges (802.11n-HT20, 5745MHz)



RE-Power-5.810GHz-5.925GHz

Fig. 86 Band Edges (802.11n-HT20, 5825MHz)







Fig. 87 Band Edges (802.11n-HT40, 5755MHz)



RE - Power-5.810GHz-5.925GHz

Fig. 88 Band Edges (802.11n-HT40, 5795MHz)



#### A.7. AC Powerline Conducted Emission

#### **Test Condition:**

| Voltage (V) | Frequency (Hz) |
|-------------|----------------|
| 110         | 60             |

#### **Measurement uncertainty:**

Expanded measurement uncertainty for this test item is U =3.2dB, k=2.

#### **Measurement Result and limit:**

WLAN (Quasi-peak Limit)

| Frequency range (MHz) | Quasi-peak<br>Limit (dBμV) | Result (dBμV)<br>With charger |        | Conclusion |  |
|-----------------------|----------------------------|-------------------------------|--------|------------|--|
| (141112)              | Еши (авру)                 | 802.11a                       | ldle   |            |  |
| 0.15 to 0.5           | 66 to 56                   |                               |        |            |  |
| 0.5 to 5              | 56                         | Fig.89                        | Fig.89 | Р          |  |
| 5 to 30               | 60                         |                               |        |            |  |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

# WLAN (Average Limit)

| Frequency range | Average Limit | Result (dB <sub>µ</sub> V) With charger |        | • • • • • • • • • • • • • • • • • • • • |  | Conclusion |
|-----------------|---------------|-----------------------------------------|--------|-----------------------------------------|--|------------|
| (MHz)           | (dBμV)        | 802.11a                                 | ldle   |                                         |  |            |
| 0.15 to 0.5     | 56 to 46      |                                         |        |                                         |  |            |
| 0.5 to 5        | 46            | Fig.90                                  | Fig.90 | Р                                       |  |            |
| 5 to 30         | 50            |                                         |        |                                         |  |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

The measurement is made according to ANSI C63.10.

Conclusion: PASS
Test graphs as below:





Fig. 89 AC Powerline Conducted Emission-802.11a

# Final Result 1:

| Frequency | QuasiPeak | PE  | Line | Corr. | Margin | Limit  |
|-----------|-----------|-----|------|-------|--------|--------|
| (MHz)     | (dBµV)    |     |      | (dB)  | (dB)   | (dBµV) |
|           |           |     |      |       |        |        |
| 0.586500  | 51.6      | GND | L1   | 10.7  | 4.4    | 56.0   |
| 0.672000  | 52.2      | GND | L1   | 10.7  | 3.8    | 56.0   |
| 0.730500  | 52.9      | GND | L1   | 10.7  | 3.1    | 56.0   |
| 0.739500  | 53.3      | GND | L1   | 10.7  | 2.7    | 56.0   |
| 1.801500  | 46.3      | GND | L1   | 10.7  | 9.7    | 56.0   |
| 4.128000  | 45.4      | GND | L1   | 10.8  | 10.6   | 56.0   |

# Final Result 2:

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|-----|------|---------------|----------------|-----------------|
| 0.586500           | 34.6                | GND | L1   | 10.7          | 11.4           | 46.0            |
| 0.672000           | 41.1                | GND | L1   | 10.7          | 4.9            | 46.0            |
| 0.739500           | 39.8                | GND | L1   | 10.7          | 6.2            | 46.0            |
| 1.095000           | 32.2                | GND | L1   | 10.7          | 13.8           | 46.0            |
| 1.185000           | 33.1                | GND | L1   | 10.7          | 12.9           | 46.0            |
| 13.560000          | 30.2                | GND | L1   | 11.1          | 19.8           | 50.0            |





Fig. 90 AC Powerline Conducted Emission-Idle

#### Final Result 1:

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|-----|------|---------------|----------------|-----------------|
| 0.532500           | 48.3                | GND | L1   | 10.7          | 7.7            | 56.0            |
| 0.739500           | 53.8                | GND | L1   | 10.7          | 2.2            | 56.0            |
| 1.806000           | 48.5                | GND | L1   | 10.7          | 7.5            | 56.0            |
| 2.283000           | 48.6                | GND | L1   | 10.8          | 7.4            | 56.0            |
| 2.431500           | 46.8                | GND | L1   | 10.8          | 9.2            | 56.0            |
| 3.075000           | 47.4                | GND | L1   | 10.8          | 8.6            | 56.0            |

# Final Result 2:

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | PE  | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) |
|--------------------|---------------------|-----|------|---------------|----------------|-----------------|
| 0.321000           | 44.6                | GND | L1   | 10.7          | 5.1            | 49.7            |
| 0.429000           | 36.6                | GND | L1   | 10.7          | 10.7           | 47.3            |
| 0.532500           | 37.1                | GND | L1   | 10.7          | 8.9            | 46.0            |
| 0.744000           | 38.5                | GND | L1   | 10.7          | 7.5            | 46.0            |
| 1.711500           | 35.5                | GND | L1   | 10.7          | 10.5           | 46.0            |
| 1.806000           | 34.4                | GND | L1   | 10.7          | 11.6           | 46.0            |



# **ANNEX B: Accreditation Certificate**





# China National Accreditation Service for Conformity Assessment LABORATORY ACCREDITATION CERTIFICATE (Registration No. CNAS L0570)

Telecommunication Technology Labs,
Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China

No.51, Xueyuan Road, Haidian District, Beijing, China

TCL International E City, No. 1001 Zhongshanyuan Road, Nanshan

District, Shenzhen, Guangdong Province

is accredited in accordance with ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence to undertake testing and calibration service as described in the schedule attached to this certificate.

The scope of accreditation is detailed in the attached schedule bearing the same registration number as above. The schedule form an integral part of this certificate.

Date of Issue: 2015-11-13 Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment



China National Accreditation Service for Conformity Assessment(CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is a signatory of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and the Asia Pacific Laboratory Accreditation Cooperation Mutual Recognition Arrangement (APLAC MRA). The validity of the certificate can be checked on CNAS website at http://www.cnas.org.cn/english/findanaccreditedbody/index.shtml