認知負荷の最適化戦略としての自由語順と項省略

梶川康平1,2 磯野真之介1,2 窪田悠介2 大関洋平1

1東京大学 2国立国語研究所 kohei.kajikawa1223@gmail.com

- じ言語横断的な「規則」はなぜ存在するのか? (←言語学・認知科学のBig Question)
 - ₹ 言語は「使いやすい」ように形作られているから!?
- ⇔ 語順が自由ならば省略できがち (逆も然り) という言語横断的特徴の存在を、「使いやすさ」の観点から説明

背景:自由語順と項省略の相関関係

- 自由語順と項省略の存在には相関関係がある [Hale, 1980; Oku, 1998; Saito, 2002; Takahashi, 2008]
- こうした相関は**なぜ**存在するのか?
- 領域固有のパラメータ?
- それとも、領域一般の認知能力から説明可能?

自由語順(かき混ぜ)

花子が 太郎を ほめた (主語—目的語—動詞) ほめた(目的語—主語—動詞) 太郎を一花子が

項省略

花子が 太郎を ほめた (主語の省略) 花子が 太郎をほめた(目的語の省略)

仮説:記憶と予測の処理負荷低減が 文法相関を形作る?

• 記憶と予測が文の処理負荷の要因 [Gibson, 2000; Lewis & Vasishth, 2005; Isono, 2024; Hale, 2001; Levy, 2008; Futrell et al., 2020]

記憶に関する理論:Dependency Locality Theory [Gibson, 2000]

- 依存関係の距離が遠いほど、作業記憶での手続きで負荷が生じる
- "long-before-short"語順 [Hawkins, 1994; Yamashita & Chang, 2001]の選好も 説明可能:

予測に関する理論:Surprisal Theory [Hale, 2001; Levy, 2008]

- 単語の処理負荷は、その予測のしにくさに比例する: difficulty(w) $\propto -\log P(w | \text{Context})$
- 項省略は、後続動詞のsurprisalが大きくならないように行われる [石月ら, 2022]
- 記憶と予測にはトレードオフ関係がある

[Futrell et al., 2020; Hahn et al., 2021]

- 自然言語の語順は、このトレードオフのもとで、効率的な ように形作られている [Gildea & Jaeger, 2015; Hahn et al., 2021; Hahn & Xu, 2022
- 自由語順と項省略は、記憶と予測の処理負荷に 大きな影響を与える
- 自由語順と項省略の相関関係は、
 - 記憶と予測のトレードオフにより説明できる?

実験:文法相関がある/ない日本語を作ってみる

	項省略あり	項省略なし
自由語順あり	Id	$Id_{no-omission}$
	Swap	Swap _{no-omission}
自由語順なし	Subj>Obj	Subj>Obj _{no-omission}
	Obj>Subj	Obj>Subj _{no-omission}

- UD_Japanese-BCCWJ (v2.10, 長単位分割) [Asahara et al., 2018]と JAOJ [Ishizuki et al., 2024]を用いて、
- (i) 依存構造と、(ii) どこでどのような項が省略されているか の情報を獲得
- 3,428文、67,088単語+2,895単語分の項が省略
- ld: 語順をそのまま、Subj>Obj: 語順をS—Oに固定、Obj>Subj: 語順をO—Sに固 定、Swap: S—OとO—Sの関係を逆転、に加え、項省略あり/なしの仮想日本語 コーパスを作成
- ベースラインとして、語順規則をランダムに再構築した文法×500を設計し、項省 略あり/なしの合わせて1,000の言語を作成(仮想言語群の妥当な分布を推定するため)
 - 記憶および予測の処理負荷を、平均依存関係長と平均5-gramサプライザルで測る

結果:文法相関は処理負荷低減の最適解

記憶と予測における処理負荷の分布。青い分布は、ベースライン言語での 処理負荷の推定値(カーネル密度推定)を表す

		_
最も効率的な言語L*	λの範囲	$\Omega_L(\lambda) := \lambda \cdot deplen_L$
Subj>Obj no-omission	[0.00, 0.11]	$(0 \le \lambda \le 1)$
ld no-omission	[0.12, 0.52]	` `
ld	[0.53, 0.97]	$L^* = \arg\min_{L \in \mathcal{L}} \Omega_L$
Obj>Subj	[0.98, 1.00]	

 $(1 - \lambda) \cdot \mathsf{surp}_I$ $\mathbf{Q}_L(\lambda)$

- 「現行日本語」は、**記憶**の処理負荷を減らす方を重視した 最適化の結果
- **予測**を減らす方を重視した場合、項省略なし・語順固定の 方向へ
- LLMのような「予測偏重」型モデルが普及すると、
- 項省略はなくなる!?固定語順へ!?