of the vertex by finding $w(-\frac{9}{4}) = 1(-\frac{9}{4})^2 + 9(-\frac{9}{4}) + 16 = \frac{81}{4} - \frac{81}{4} + 16 = -\frac{17}{4}$ Minimum = $-\frac{17}{4}$

Salution Quadratic function: is a function that can be written in the form:

w(v)=av2+bv+c where a, b, and c are real numbers and a+0

we have $w(v) = v^2 + 9v + 16$, note: $v^2 + 9v + 16$ is in vw-plane

Since a>0 , we know that the w-coordinate of the vertex is a minimum. However, to find the w-coordinate of our vertex we first need to find the y-coordinate of the vertex by using $y = -\frac{b}{b} = -\frac{0}{b} = -\frac{0}{b}$. Now that we have the y-coordinate, we can find the w-coordinate of our vertex we first need to find the y-coordinate of the vertex by using $y = -\frac{b}{b} = -\frac{0}{b} = -\frac{0}{b}$. Now that we have the y-coordinate, we can find the w-coordinate of the vertex by using $y = -\frac{b}{b} = -\frac{0}{b} = -\frac{0}{b}$.

Here, we know that a=1, b=9, c=16