Отчёт по лабораторной работе №7

дисциплина: Операционные системы

Латаева Гюзелия Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	8
4	Выполнение лабораторной работы	10
5	Выводы	17
6	Контрольные вопросы	18
7	Список литературы	20

Список иллюстраций

4.1	Рисунок 1.																	10
4.2	Рисунок 2.																	11
4.3	Рисунок 3.																	12
4.4	Рисунок 4.																	12
4.5	Рисунок 5.																	12
4.6	Рисунок 6.																	13
4.7	Рисунок 7.																	13
4.8	Рисунок 8.	•																13
4.9	Рисунок 9.																	13
4.10	Рисунок 10	•																14
4.11	Рисунок 11											•	•					14
4.12	Рисунок 12														•	•		15
4.13	Рисунок 13	•																15
4 14	Рисунок 14																	16

Список таблиц

1 Цель работы

Ознакомление с инструментами поиска файлов и фильтрации текстовых данных. Приобретение практических навыков: по управлению процессами (и заданиями), по проверке использования диска и обслуживанию файловых систем.

2 Задание

- 1. Осуществить вход в систему, используя соответствующее имя пользователя.
- 2. Записать в файл file.txt названия файлов, содержащихся в каталоге /etc. Дописать в этот же файл названия файлов, содержащихся в домашнем каталоге.
- 3. Вывести имена всех файлов из file.txt, имеющих расширение .conf, после чего записать их в новый текстовой файл conf.txt.
- 4. Определить, какие файлы в домашнем каталоге имеют имена, начинавшиеся с символа с? Предложить несколько вариантов, как это сделать.
- 5. Вывести на экран (по странично) имена файлов из каталога /etc, начинающиеся с символа h.
- 6. Запустить в фоновом режиме процесс, который будет записывать в файл ~/logfile файлы, имена которых начинаются с log.
- 7. Удалить файл ~/logfile.
- 8. Запустить из консоли в фоновом режиме редактор gedit.
- 9. Определить идентификатор процесса gedit, используя команду ps, конвейер и фильтр grep. Можно ли определить этот идентификатор более простым способом?
- 10. Прочесть справку (man) команды kill, после чего использовать её для завершения процесса gedit.
- 11. Выполнить команды df и du, предварительно получив более подробную информацию об этих командах, с помощью команды man.
- 12. Воспользовавшись справкой команды find, вывести имена всех директорий,

имеющихся в домашнем каталоге.

3 Теоретическое введение

В системе по умолчанию открыто три специальных потока: –stdin — стандартный поток ввода (по умолчанию: клавиатура), файловый дескриптор 0; –stdout — стандартный поток вывода (по умолчанию: консоль), файловый дескриптор 1; –stderr — стандартный поток вывод сообщений об ошибках (по умолчанию: консоль), файловый дескриптор 2.

Большинство используемых в консоли команд и программ записывают результаты своей работы в стандартный поток вывода stdout. Например, команда ls выводит в стандартный поток вывода (консоль) список файлов в текущей директории. Потоки вывода и ввода можно перенаправлять на другие файлы или устройства. Проще всего это делается с помощью символов >, », <, «.

Конвейер (pipe) служит для объединения простых команд или утилит в цепочки, в которых результат работы предыдущей команды передаётся последующей. Синтаксис следующий: команда 1 | команда 2.

Команда find используется для поиска и отображения имён файлов, соответствующих заданной строке символов. Формат команды: find путь [-опции].

Найти в текстовом файле указанную строку символов позволяет команда grep. Формат команды: grep строка имя файла.

Команда df показывает размер каждого смонтированного раздела диска. Формат команды: df [-опции] [файловая_система].

Команда du показывает число килобайт, используемое каждым файлом или каталогом. Формат команды: du [-опции] [имя_файла...].

Любую выполняющуюся в консоли команду или внешнюю программу можно запустить в фоновом режиме. Для этого следует в конце имени команды указать знак амперсанда &.

Любой команде, выполняемой в системе, присваивается идентификатор процесса (process ID). Получить информацию о процессе и управлять им, пользуясь идентификатором процесса, можно из любого окна командного интерпретатора.

Команда рs используется для получения информации о процессах. Формат команды: ps [-опции].

4 Выполнение лабораторной работы

1. Записываю в файл file.txt названия файлов, содержащихся в каталоге /etc и дописываю в этот же файл названия файлов, содержащихся в домашнем каталоге (рис. 4.1):

```
galataeva@galataeva:~$ touch file
galataeva@galataeva:~$ find /etc -maxdepth 1 -type f >> file
galataeva@galataeva:~$ find ~ -maxdepth 1 -type f >> file
galataeva@galataeva:~$
```

Рис. 4.1: Рисунок 1

Результат (рис. 4.2):

Рис. 4.2: Рисунок 2

- 2. Вывожу имена всех файлов из file.txt, имеющих расширение ".conf" (рис.
 - 4.3), и записываю их в новый текстовой файл "conf.txt" (рис. 4.4):

```
galataeva@galataeva:~$ grep '.conf$' file
/etc/ca-certificates.conf
/etc/deluser.conf
/etc/mtools.conf
/etc/apg.conf
/etc/libaudit.conf
/etc/nsswitch.conf
/etc/appstream.conf
/etc/appstream.conf
/etc/rsyslog.conf
/etc/rsyslog.conf
/etc/gitweb.conf
/etc/libao.conf
/etc/libao.conf
/etc/libao.conf
/etc/libao.conf
```

Рис. 4.3: Рисунок 3

```
alataeva@galataeva:~$ grep '.conf$' file >> conf
alataeva@galataeva:~$
```

Рис. 4.4: Рисунок 4

3. Определяю, какие файлы в домашнем каталоге имеют имена, начинавшиеся с символа с (рис. 4.5):

```
galataeva@galataeva:~$ find ~ -maxdepth 1 -name "c*" -type f
/home/galataeva/conf
galataeva@galataeva:~$
```

Рис. 4.5: Рисунок 5

4. Вывожу на экран имена файлов из каталога /etc, начинающиеся с символа h (рис. 4.6):

```
galataeva@galataeva:~$ find /etc -maxdepth 1 -name "h*" -type f
/etc/hosts.deny
/etc/hostid
/etc/hddtemp.db
/etc/hdparm.conf
/etc/hostname
/etc/hosts
/etc/hosts.allow
/etc/host.conf
```

Рис. 4.6: Рисунок 6

5. Запускаю в фоновом режиме процесс, который будет записывать в файл ~/logfile файлы, имена которых начинаются с log (рис. 4.7):

```
galataeva@galataeva:~$ find / -name "log*" -print > logfile &
```

Рис. 4.7: Рисунок 7

6. Запускаю из консоли в фоновом режиме редактор gedit (рис. 4.8):

```
galataeva@galataeva:~$ gedit &
[1] 28496
```

Рис. 4.8: Рисунок 8

7. Определяю идентификатор процесса gedit (рис. 4.9):

```
galataeva@galataeva:~$ ps
PID TTY TIME CMD
28547 pts/1 00:00:00 bash
28605 pts/1 00:00:00 gedit
28611 pts/1 00:00:00 ps
```

Рис. 4.9: Рисунок 9

Можно определить этот идентификатор сразу, он отображется при запуске программы в фоновом режиме (см. выше).

8. Читаю справку (man) команды kill (рис. 4.10) и использую её для завершения процесса gedit (рис. 4.11):

Рис. 4.10: Рисунок 10

```
galataeva@galataeva:~$ kill 28605
```

Рис. 4.11: Рисунок 11

9. Запускаю команду df (рис. 4.12):

galataeva@gala	ataeva:~\$ di	f			
Файл.система	1К-блоков	Использовано	Доступно	Использовано%	Смонтировано в
udev	971260	0	971260	0%	/dev
tmpfs	202348	1408	200940	1%	/run
/dev/sda5	30268356	20974828	7730648	74%	/
tmpfs	1011740	0	1011740	0%	/dev/shm
tmpfs	5120	4	5116	1%	/run/lock
tmpfs	1011740	0	1011740	Θ%	/sys/fs/cgroup
/dev/loop0	56960	56960	Θ	100%	/snap/core18/27
/dev/loop2	128	128	0	100%	/snap/bare/5
/dev/loop4	64896	64896	0	100%	/snap/core20/18
/dev/loop3	64896	64896	0	100%	/snap/core20/18
/dev/loop6 04/77	224256	224256	0	100%	/snap/gnome-3-3
/dev/loop7 04/119	354688	354688	Θ	100%	/snap/gnome-3-3
/dev/loop9 emes/1515	66688	66688	0	100%	/snap/gtk-commo
/dev/loop8 7	52224	52224	0	100%	/snap/snap-stor
/dev/loop10 emes/1535	93952	93952	0	100%	/snap/gtk-commo

Рис. 4.12: Рисунок 12

И команду du (рис. 4.13):

```
galataeva@galataeva:~$ du

24     ./.ssh

4     ./.local/share/backgrounds

8     ./.local/share/gnome-shell

120     ./.local/share/xorg

4     ./.local/share/evolution/memos/trash

8     ./.local/share/evolution/memos

8     ./.local/share/evolution/calendar/system

4     ./.local/share/evolution/calendar/trash

16     ./.local/share/evolution/calendar

4     ./.local/share/evolution/tasks/system

4     ./.local/share/evolution/tasks/system
```

Рис. 4.13: Рисунок 13

10. Вывожу имена всех директорий, имеющихся в домашнем каталоге (рис. 4.14):

```
galataeva@galataeva:~$ find ~ [maxdepth 1 -type d
//home/galataeva/.ssh
//home/galataeva/.local
//home/galataeva/.gnupg
//home/galataeva/0бщедоступные
//home/galataeva/.texlive2022
//home/galataeva/.mozilla
//home/galataeva/Изображения
//home/galataeva/reports
//home/galataeva/.texlive2019
//home/galataeva/Загрузки
//home/galataeva/Музыка
//home/galataeva/Музыка
//home/galataeva/Шаблоны
```

Рис. 4.14: Рисунок 14

5 Выводы

Я ознакомилась с инструментами поиска файлов и фильтрации текстовых данных, приобрела навыки: по управлению процессами (и заданиями), по проверке использования диска и обслуживанию файловых систем.

6 Контрольные вопросы

- 1. Какие потоки ввода вывода вы знаете? stdin и stdout, stderr
- 2. Объясните разницу между операцией > и ».

Первый перенаправляет, а второй открывает в режиме добавления.

3. Что такое конвейер?

Конвейер (pipe) служит для объединения простых команд или утилит в цепочки, в которых результат работы предыдущей команды передаётся последующей.

4. Что такое процесс? Чем это понятие отличается от программы?

Программа сама по себе не является процессом. Программа - это пассивная сущность, такая как файл, который содержит список инструкций, хранящихся на диске, часто называемом исполняемым файлом.

Процесс - это исполняемая программа, и это нечто большее, чем программный код, называемый текстовым разделом, и эта концепция работает во всех операционных системах, потому что для выполнения всех задач, выполняемых операционной системой, требуется процесс для выполнения задачи

- 5. Что такое PID и GID?
- PID это айди процесса.
- GID Группы пользователей применяются для организации доступа нескольких пользователей к некоторым ресурсам.
 - 6. Что такое задачи и какая команда позволяет ими управлять?

Любую выполняющуюся в консоли команду или внешнюю программу можно запустить в фоновом режиме. Для этого следует в конце имени команды указать

знак амперсанда &. Например: gedit &.

7. Найдите информацию об утилитах top и htop. Каковы их функции?

Тор - отобразить запущенные процессы, используемые ими ресурсы и другую полезную информацию (с автоматическим обновлением данных)

Нtop - показывает динамический список системных процессов, список обычно выравнивается по использованию ЦПУ. В отличие от top, htop показывает все процессы в системе. Также показывает время непрерывной работы, использование процессоров и памяти. Нtop часто применяется в тех случаях, когда информации даваемой утилитой top недостаточно, например при поиске утечек памяти в процессах.

8. Назовите и дайте характеристику команде поиска файлов. Приведите примеры использования этой команды.

Команда find - это одна из наиболее важных и часто используемых утилит системы Linux. Это команда для поиска файлов и каталогов на основе специальных условий. Ее можно использовать в различных обстоятельствах, например, для поиска файлов по разрешениям, владельцам, группам, типу, размеру и другим подобным критериям. Пример (рис. 4.5).

- 9. Можно ли по контексту (содержанию) найти файл? Если да, то как? Да, через команду grep.
- 10. Как определить объем свободной памяти на жёстком диске?

Воспользоваться командой df, которая выведет на экран список всех файловых систем в соответствии с именами устройств, с указанием размера и точки монтирования.

11. Как определить объем вашего домашнего каталога?

Команда du показывает число килобайт, используемое каждым файлом или каталогом.

12. Как удалить зависший процесс?

Можно удалить через kill.

7 Список литературы

1. https://www.google.ru/