

Task

Group 28

Küpeli, Ahmet; Li, Chi Shing; Chavan, Vivek

Motivation and Aim

Project A1

Data Source: Smartphone 1

Sensor Signal: acc

Validation: 2, 5 and 10 fold subject-wise

Compare Error based on Number of folds in cross validation

Motivation:

- Everyone has a smartphone. Easy tracking and early indication of health problems
- Subject wise should be better than record wise in biomechanics. More subjects → better prediction for new subjects

Aim:

Carry out binary classification of normal walking and impaired walking based on data collected using smartphone app - Phyphox

Data pre-processing

3

Get Frequency Read data Filtering Noise Rotation Smartphone 1 ≈ 400Hz Smartphone 2 ≈ 200Hz بالمناسات فالمناسات والماران والمارا Smartphone 3 ≈ 250Hz Smartphone 4 ≈ 100Hz Extracting motion Check and remove Resample into same Segmentation malicious sequence time frame sequence (Not Used)

Neural Network Model

Parameters Studied:

- Number of Hidden Layers
 - 0, 1, 2, 3, 4, 5
- Number of Neurons in each layer
 - 4-303
- Activation functions in each layer
 - Sigmoid
 - ReLU
 - Tanh
 - Softmax/Sigmoid

Compiling & Fitting

- Optimizer: Adam
 - Varying Learning Rates
- Loss
 - Binary Crossentropy/ Sparse Categorical Crossentropy
- Epochs, Batch Size, Shuffle

Neural Network Model

Epochs=800/300/600
Learning Rate=0.001
Shuffled Data
Sparse Categorical
Crossentropy

++
Class weights
(Impaired>Normal)

Results

KFold comparison with various activation functions

Discussion and conclusion

KFold CV did **not improve** accuracy with bigger K

- Higher K decreases likelihood of bias, 2Fold not overfitting in the first place
- 2. If in Subject-wise CV bad Subject used for testing, incorrect prediction
- 3. Neuronal Network Model is not sufficient

Improving Neural Network:

- Increase number of hidden layers
- Change activation function
- Vary the number of neurons
- Optimize neural network model (eg. New optimizer, loss function, etc.)

Thank you for your attention!