Computer Architecture (EE204)

Instructor: Dr. Hassan Jamil Syed Email: hassan.jamil@nu.edu.pk

Year and Semester: Fall 2019 Course code: EE 204

Course Title: Computer Architecture Credits: 3 hrs

Course Objectives:

- Get a working knowledge of architecture of subsystems and the general principles that affect their performance
- Get knowledge about advanced architectural features that boost the performance of computers with pipelining and superscalar architecture
- Analyze the performance of systems and quantify the performance measurements
- Study the major trends towards parallelism with respect to a single processor and multicore architecture

Course Status:

Core course for BS (CS)

Pre-requisites:

Digital Logic Design, Computer Organization & Assembly Language

Text book

Computer Architecture : A Quantitative Approach

John L. Hennessy & David A. Patterson 6th Edition

Reference Books

- 1. Computer Organization & Design : The Hardware/ Software Interface
 By Patterson & Hennessy
- 2. Computer Organization and Architecture, Designing for Performance by William Stallings, 9th Edition
- 3. Computer Architecture and Organization By
- 4. Computer Architecture By Morris Mano

Grading Scheme

30%
8%
7%
5%
50%

Course Outline(Tentative):

Week	Lecture Topics	Chapter
1	Introduction to Computer Architecture	Ch1
	Computer Classes	
2	Performance Metrics of a System	Ch1
	Measuring and Reporting Performance	
3	Amdahl Law, CPU Performance Equation	Ch1
	Chapter related fallacies and pitfalls	
4	Principles of ISA, internal storage, Memory	Appendix
	addressing, Addressing Modes, Control Flow	A
	instructions, role of Compilers, instruction set	
	encoding, register allocation	
5	MIPS architecture, Instruction usage, Chapter related	Appendix
	fallacies and pitfalls	A
6	Midterm 1	Appendix
	Pipelining Overview, basic concepts, limitations,	C
	Major hazards of pipelining, Internal forwarding	
7	Control hazards, branch prediction schemes, static and	Appendix
	dynamic branch prediction, implementation of simple	C
	MIPS pipeline	
8	Exception in pipeline, precise exceptions, Floating-	Appendix
	point pipeline	C
9	MIPS R4000 pipeline, superscalar and VLIW	Appendix
10	architecture, Chapter related fallacies and pitfalls	C
10	Instruction level parallelism, data and name	Ch3
1.1	dependence, loop unrolling,	CI 2 0
11	Dynamic Scheduling - Scoreboarding technique and	Ch3 &
10	Tomasulo's approach	App. C
12	Midterm II	Appendix B
12	Basics of Caches, Caches miss, hits & Organizations	A D
13	Four memory hierarchy questions, Six basic cache	Appendix B
1.4	optimizations, chapter related fallacies and pitfalls	Ch2
14	Advanced cache optimizations, details of some	Ch2
	advanced optimizations, Virtual memory, DRAM optimizations	
15	Simultaneous Multithreading (SMT), Multiprocessors	Ch 5
13	Thread-level parallelism	
16	Symmetric multiprocessors, UMA and NUMA	Ch 5
10	architecture	
	architecture	L

Office Timings
Monday, Tuesday, Thursday 2:00 - 3:30 P.M

Contact Information

Email Address: hassan.jamil@nu.edu.pk

CS Block ,Room No. 16

Department of Computer Science, FAST NUCES, Karachi.