CLRS Exercise

Tongda Xu

November 11, 2018

1 7

1.1 7.3

1.1.1 a

This is certain concerning the Randomized procedure, the probability of any index i is chosen from [0, n-1] is:

$$\begin{aligned} & Pr(pivot=i) = \frac{1}{n} \\ & E(X_i) = 1 * Pr(pivot=i) + 0 * Pr(pivot \neq i) = \frac{1}{n} \end{aligned}$$

1.1.2 b

It is certain that if ith element is chosen as pivot, Random-Parition cost $\Theta(n)$ time, and it will call QuickSort[1,q-1], QuickSort[q+1,n] recursively. Concerning only the first Parition, this would be the result: $E(T(n)) = \sum_{i=1}^n Pr(pivot=i)(T(i-1)+T(n-i)+\Theta(n)) = \sum_{i=1}^n X_i(T(i-1)+T(n-i)+\Theta(n))$

1.1.3 c

Concerning
$$X_i = \frac{1}{n}$$

 $E(T(n)) = \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i) + \Theta(n))$
 $= \sum_{i=1}^{n} \frac{1}{n} T(i-1) + \sum_{i=1}^{n} \frac{1}{n} T(n-i) + \sum_{i=1}^{n} \frac{1}{n} \Theta(n)$
 $= \frac{2}{n} \sum_{i=1}^{n-1} T(i) + \Theta(n)$

1.1.4 d

$$\begin{split} & \Sigma_{k=2}^{n-1} k l g k \\ & \leq l g \frac{n}{2} \Sigma_{k=2}^{\frac{n}{2}} k + l g n \Sigma_{k=\frac{n}{2}}^{n-1} k \\ & = l g n \Sigma_{k=2}^{n-1} k - l g 2 \Sigma_{k=2}^{\frac{n}{2}} k \\ & = l g n \frac{(n+1)(n-2)}{2} - \frac{(\frac{n}{2}+2)(\frac{n}{2}-1)}{2} \\ & \leq l g n \frac{n^2}{2} - \frac{n^2}{8} \\ & \text{by Calculus, we have:} \\ & (\frac{1}{2} x^2 l g x - \frac{1}{4} x^2)|_1^{n-1} \leq E(T(n)) \leq (\frac{1}{2} x^2 l g x - \frac{1}{4} x^2)|_2^n \end{split}$$

1.1.5 e

Proof of E(T(n)) = O(nlgn): Assume that $\forall k \in [1, n-1], \exists c, E(T(k)) \leq cklgk - \Theta(k)$ For $k = n, E(T(n)) \leq \frac{n}{2}c(lgn\frac{n^2}{2} - \frac{n^2}{4} - \Theta(n^2)) + \Theta(n) \leq cnlgn - \Theta(n)$ Proof of $E(T(n)) = \Omega(nlgn)$: Assume that $\forall k \in [1, n-1], \exists c, E(T(k)) \geq cklgk + \Theta(k)$ For $k = n, E(T(n)) \geq \frac{n}{2}c(lgn\frac{(n-1)^2}{2} - \frac{(n-1)^2}{4} + \Theta(n^2)) + \Theta(n) \geq cnlgn + \Theta(n)$ $\rightarrow E(T(n)) = \Theta(nlgn)$

1.2 7.5

1.2.1 a

From counting Theorem, it could be noticed that: $p_i=\frac{(i-1)(n-i)}{C_n^3}=\frac{6(i-1)(n-i)}{n(n-1)(n-2)}$

1.2.2 b

$$\begin{split} ⪻(i=medium)(normal) = \frac{1}{n} \\ ⪻(i=medium)(3part) = \frac{6(\frac{1}{2}n-1)(n-\frac{1}{2}n)}{n(n-1)(n-2)} = \frac{3}{2}\frac{1}{n} \\ ⪻(3part) - Pr(normal) = \frac{1}{2}\frac{1}{n} \end{split}$$

1.2.3 c

Consider
$$f_{diff} = \int_{\frac{3}{n}}^{\frac{2}{3}n} \left(\frac{6(i-1)(n-i)}{n(n-1)(n-2)} - \frac{1}{n} \right) di$$

$$= \frac{(-2i^3 + 3(n+1)i^2 - 6ni - (n-1)(n-2)i)|_{i=\frac{1}{3}n}^{i=\frac{2}{3}n}}{n(n-1)(n-2)}$$

$$\lim_{n \to \infty} f_{diff} = \frac{4}{27}$$

1.2.4 d

Consider we are so lucky that each partition we choose the median: In the Iteration tree, we have:

$$T(n) = \begin{cases} c & n = 1\\ 2T(\frac{1}{2}n) + n & n > 1 \end{cases}$$
 The $\Omega(nlgn)$ is kept even in best case.

$\mathbf{2}$ 8

2.1 8.1-1

n-1 times, since we need n elements to formulate

2.2 8.1-2

$$\Sigma_1^n lgk < \int_1^{n+1} lgk dk = (klgk - k)_1^n = (nlgn - n) - (0 - 1) = nlgn - n + 1$$

2.3 8.1-3

 \leftrightarrow proof at least half of branch is longer than h

Consider a decision tree with n!/2 elements

 \leftrightarrow proof at least half of branch is longer than h

Consider a decision tree with n!/n elements

 \leftrightarrow proof at least half of branch is longer than h

Consider a decision tree with $n!/2^n$ elements, this is not significant enough and could leave only $\Omega(lg\frac{n!}{2^n}) = \Omega(nlgn-n) = \Omega(nlgn)$ elements

2.4 8.2-4

Consider a trim version of counting sort, build the C map up and query directly:

```
Counting-sort-trim(A, k)
```

```
\begin{array}{lll} 1 & C[] \\ 2 & \mbox{for } i=0 \mbox{ to } k \\ 3 & C[i]=0 \\ 4 & \mbox{for } j=1 \mbox{ to } A.length \\ 5 & C[A[j]]++ \\ 6 & \mbox{for } m=1 \mbox{ to } k \\ 7 & C[m]+=C[m-1] \\ 8 & \mbox{return } C[m] \end{array}
```

DIRECT-QUERT(A, k, a, b)

 $\begin{array}{ll} 1 & C = \text{Counting-sort-trim}(A,k) \\ 2 & \textbf{if} \ a < 1 \\ 3 & \textbf{return} \ C[b] \end{array}$

else return C[b] - C[a-1]

2.5 8.3-2

Heapsort is not stable

The scheme would be very similar to counting sort and takes $\Theta(n)$ time

2.6 8.3-4

First, with O(n) time: convert n numbers k_{10} into k_n which has 3 digits. Second, with O(d(n+n)) time (Lemma 8.3): Radix sort n 3-digit numbers with each digits take up to n possible values.

```
\begin{array}{ll} \operatorname{DIGITSCONVERT}(X) \\ 1 & \operatorname{result}[] \\ 2 & \mathbf{for} \ i = 2 \ \mathbf{downto} \ 0 \\ 3 & \operatorname{result}[i] = X/n^i \\ 4 & X = X \ \operatorname{mod} n^i \\ 5 & \mathbf{return} \ \operatorname{result} \\ \\ \operatorname{SORT}(A, x) \\ 1 & \operatorname{result}[] \\ 2 & \mathbf{for} \ \operatorname{each} \ S \ \operatorname{in} \ A \\ 3 & S = \operatorname{DIGITSCONVERT}(S) \\ 4 & \operatorname{RADIX-SORT}(A, x) \\ \end{array}
```

3 9

3.1 9.2-1

once p == r, the function return and recursion end.

3.2 9.2-2

It is because $\forall k, X_k = \frac{1}{n}$, giving information on which k would not effect observation

3.3 9.2-3

```
RANDOMIZED-SELECT-ITER(A, p, r, i)
   while 1
1
2
        if i == k
3
             return A[i]
4
        else
             q = \text{RANDOM-PARTITION}(A, p, r)
5
6
             if i < k
7
                 r = q - 1
             else p = q + 1, i = i - k
8
```

3.4 9.2-4

The worst case is reverse side: pivot = 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

3.5 9.1

3.5.1 a

Sorting: MERGE-SORT(A) in worst case O(nlgn)Query: CALL-BY-RANK(A, k) i times in worst case O(i), here we assume manip-

```
ulating O(n) space cost O(n) time.
```

3.5.2 b

```
Building: BUILD-MAP-HEAP(A) in worst case O(n)
Query: calling EXTRA-MAX(A,k) i times in worst case O(ilgn)
```

3.5.3 c

Selecting: SELECT(A, i) in worst case O(n)Sorting: MERGE-SORT(A') in worst case O(ilgi)

3.6 9.2

3.6.1 a

$$\begin{array}{l} \Sigma_1^{k-1} w_i = \Sigma_1^{k-1} \frac{1}{n} = \frac{k-1}{n} < \frac{1}{2} \\ \Sigma_{k+1}^n = \frac{n-k}{n} \leq \frac{1}{2} \end{array}$$

3.6.2 b

```
WEIGHT-MEDIAN(A)

1 w[] = SORT(A).weight

2 n = w.length

3 for i = 1 to n

4 w[i] = w[i] + w[i-1]

5 return FIND(w[], \frac{1}{2})
```

3.6.3 c

```
\begin{array}{ll} \text{SUM}(w_1, w_i, lasti, lastsum) \\ 1 & \text{if } i > lasti \\ 2 & \text{return } lastsum + \text{ NORMAL-SUM}( \ w_{lasti,i} \ ) \\ 3 & \text{else return } lastsum - \text{ NORMAL-SUM}( \ w_{i,lasti}) \end{array}
```

WEIGHT-MEDIAN-LINEAR (A)

```
1 while 1
2 if sum[w_1, w_i, lasti, lastsum] < \frac{1}{2}, sum[w_1, w_{i+1}, lasti, lastsum] > \frac{1}{2}
3 return i
4 else
5 lastsum = sum[w_1, w_i, lasti, lastsum], lasti = i
6 if sum[w_1, w_i] < \frac{1}{2}
7 i = \text{MEDIAN}(A, i, r)
8 else i = \text{MEDIAN}(A, p, i)
```

We will experience logn literation, but the load is decreasing logarithmically, so the result is linear. Notice the sum is special here, calculating the difference only.

3.7 9.4

3.7.1 a

$$\begin{array}{l} k \leq i \text{ or } k \geq j:0 \\ i < k < j: \frac{2}{j-i+i} \end{array}$$

- 3.7.2 b
- 3.7.3 c
- 3.7.4 d

4 11

4.1 11.1-2

Consider vector < bool > A, a.size() = m, just store the bool value of key = m exist or not.

SEARCH(A, key)

- 1 **if** A(key)
- 2 return key
- 3 else return NIL

INSERT(A, key)

$$1 \quad A(key) = 1$$

DELETE(A, key)

$$1 \quad A(key) = 0$$

4.2 11.2

4.2.1 a

Consider for a ball i fall into a specific bucket $Pr(i) = \frac{1}{n}$. Then consider Binomial Distribution, $Pr(k) = C_n^k Pr(i)^k (1 - Pr(i))^{n-k}$.

4.2.2 b

Consider random picking a slot, the probability of that slot is maximum is $Pr_{max} = \frac{1}{n}$, and it contains k elements Q_k . for conditional probability, we have:

have.
$$P_k = Pr_{i=k|max} = \frac{Pr(i=k \cap max)}{Pr_{max}} \le \frac{Pr(i=k)}{Pr_{max}} = nQ_k$$

4.2.3 c

Proof:

Proof:
$$Q_{k} = \left(\frac{1}{n}\right)^{k} \left(\frac{n-1}{n}\right)^{n-k} C_{n}^{k}$$

$$= \frac{(n-1)^{n-k}}{n^{n}} \frac{\prod_{0}^{k-1} n - k}{k!}$$

$$\leq \frac{n^{n}}{n^{n}} \frac{1}{k!}$$

$$= \frac{e^{k}}{k^{k}} \frac{1}{k^{\frac{1}{2}} (1 + \Theta(\frac{1}{n}))}$$

$$\leq \frac{e^{k}}{k^{k}}$$

4.2.4 d

Proof for Q_{k_0} :

$$\begin{split} Q_{k_0} &= \frac{e^{(\frac{clgn}{lglgn})}}{(\frac{clgn}{lglgn})^{\frac{clgn}{lglgn}}} \\ &= \frac{\frac{clg\frac{e}{c}}{n^{\frac{lglgn}{lglgn}}}}{\frac{clglgn}{n^{\frac{lglgn}{lglgn}}}} = n^{\frac{clg\frac{e}{c} + clglglgn}{lglgn} - c} \end{split}$$

It would not take effort to notice that since $\lim_{n\to\infty}\frac{clg\frac{e}{e}+clglglgn}{lglgn}=0$

$$\begin{array}{l} \forall c>3+\epsilon, Q_{k_0}=O(\frac{1}{n^3})\\ \text{And } P_k\leq nQ_k\to P_k=O(\frac{1}{n^2}) \end{array}$$

4.2.5 e

$$\begin{split} E(M) &= \Sigma_{M=1}^n MPr(M) < nPr(M > \frac{clgn}{lglgn}) + \frac{clgn}{lglgn}Pr(M \leq \frac{clgn}{lglgn}) \\ \text{A stronger conclusion to note:} \\ E(M) &= \Sigma_{M=1}^n MPr(M) < MPr(M > \frac{clgn}{lglgn}) + \frac{clgn}{lglgn}Pr(M \leq \frac{clgn}{lglgn}) \\ &\leq \int_{\frac{clgn}{lglgn}}^{\infty} \frac{1}{n} dn + 1 * \frac{clgn}{lglgn} \\ &= lg(\frac{clgn}{lglgn}) + \frac{clgn}{lglgn} \\ &= O(\frac{clgn}{lglgn}) \end{split}$$

5 15

5.1 15.1-1

$$2^n - 1 = \sum_{j=0}^{n-1} 2^j$$

5.215.1-2

Do not know how!

5.3 15.1-3

 ${\tt BOTTOM\text{-}UP\text{-}CUT\text{-}ROD}(p,n,c)$

```
\begin{array}{lll} 1 & r[] = c \\ 2 & \textbf{for } j = 1 \textbf{ to } n \\ 3 & \textbf{for } i = 1 \textbf{ to } j \\ 4 & r[i] = max(p[i] + r[j-i] - c) \\ 5 & \textbf{return } r[n] \end{array}
```

5.4 15.1-4

MEMOIZED-CUT-ROD(p, n, m, s)

```
\begin{array}{lll} 1 & \textbf{if} \ m[n] > -1 \\ 2 & \textbf{return} \ m[n] \\ 3 & \textbf{else} \\ 4 & \textbf{for} \ i = 1 \ \textbf{to} \ n \\ 5 & m[n] = max(p[i] + r[n-i]) \\ 6 & s[n] = i \\ 7 & \textbf{return} \ m[n] \end{array}
```

5.5 15.1-5

See Code

5.6 15.2-1

See Code

5.7 15.2-2

See Code

5.8 15.2-3

```
Assume that \forall k \leq n-1, T(k) \geq c2^k
Then T(n) = \sum_{k=1}^{n-1} T(k) T(n-k) = (n-1)c^22^n > c2^n
So T(n) = \Omega(n), \omega(n)
```

5.9 15.2-4

See Figure 1

5.10 15.2-5

```
For each level h(i) = i(n-i)
For tree T(n) = 2\sum_{i=1}^{n-1} i(n-i)
```

Ex 15.2.4

Figure 1: 15.2-4

$$= \frac{3n^3 + 3n^2}{3} - \frac{2n^3 + 3n^2 + n}{3}$$
$$= \frac{n^3 - n}{3}$$

$5.11 \quad 15.2-6$

Assume that
$$\forall k \leq n-1, N(k) = k-1$$

Then $N(n) = N(n-1) + 1$
So $N(n) = n-1$

$5.12 \quad 15.3-1$

running through: $T(n)=n*P_n^n=n*n!>4^n$ running recursion: $T(n)=2\Sigma_{i=1}^{n-1}4^i+n=\frac{8}{3}4^{n-1}+n\leq 4^n$ running through takes longer

5.13 15.3-2

no overlapping subproblem call

5.14 15.3-3

Yes

5.15 15.3-4

Do not know how!

5.16 15.4-1

See code

5.17 15.4-2

See code

5.18 15.4-3

See code

5.19 15.5-1

A Preorder Traverse of BST

5.20 15.5-3

Asymptotically there would be no change to the running time, just the constant cn^3 increase

Time spent on w would increase from $\Theta(n^2)$ to $\Theta(n^3)$

5.21 15.1

```
\begin{split} & \operatorname{LSP}(s,t,G) \\ & 1 \quad r = G, size() \\ & 2 \quad DPs[r] = 0 \\ & 3 \quad DPr[r] = path(s,t) \\ & 4 \quad max = -\infty \\ & 5 \quad \text{for } i = 1 \text{ to } r \\ & 6 \quad max(DPs[j] + DPr[r-j] + what) \\ & 7 \quad \text{return } max \end{split}
```

5.22 15.1

5.23 22.1-1

for both out-degree and in-degree $\Theta(V+E)$ time both take $\Theta(V)$ memory

5.24 22.1-2

```
\begin{array}{l} 1 \rightarrow 2 \rightarrow 3 \rightarrow NIL \\ 2 \rightarrow 1 \rightarrow 4 \rightarrow 5 \rightarrow NIL \\ 3 \rightarrow 1 \rightarrow 6 \rightarrow 7 \rightarrow NIL \\ 4 \rightarrow 2 \rightarrow NIL \\ 5 \rightarrow 2 \rightarrow NIL \\ 6 \rightarrow 3 \rightarrow NIL \\ 7 \rightarrow 3 \rightarrow NIL \\ 0 - 1 - 1 - 0 - 0 - 0 - 0 \\ 1 - 0 - 0 - 1 - 1 - 0 - 0 \\ 1 - 0 - 0 - 0 - 0 - 1 - 1 \\ 0 - 1 - 0 - 0 - 0 - 0 - 0 \\ 0 - 1 - 0 - 0 - 0 - 0 - 0 \\ 0 - 0 - 1 - 0 - 0 - 0 - 0 \\ 0 - 0 - 1 - 0 - 0 - 0 - 0 \\ 0 - 0 - 1 - 0 - 0 - 0 - 0 \end{array}
```

5.25 22.1-3

```
\begin{array}{ll} \operatorname{Transpose}(Adjlist) \\ 1 & \operatorname{new}\ AdjlistPrime \\ 2 & \textbf{for}\ \operatorname{each}\ node\ \operatorname{in}\ Adjlist \\ 3 & \textbf{for}\ \operatorname{each}\ subnode\ \operatorname{in}\ Adjlist(node) \\ 4 & AdjlistPrime(subnode).insert(node) \\ 5 & Adjlist = AdjlistPrime \end{array}
```

For adjacent list: just traverse every node and rebuild one $\Theta(E+V)$ for time and space complexity, hard to do it inplace

```
{\tt Transpose}(Adjmatrix)
```

```
\begin{array}{ll} 1 & \textbf{for } \operatorname{each} \ pair(i,j) \ \operatorname{in} \ \operatorname{upper} \ \operatorname{left} \ \operatorname{Adjmatrix} \\ 2 & \operatorname{SWAP}(Adjmatrix[i,j], Adjmatrix[j,i]) \end{array}
```

For adjacent matrix: just transpose the matrix $\Theta(V^2)$ for time and $\Theta(1)$ for space

5.26 22.1-4

use an adjacent matrix as aid.

$5.27 \quad 22.1-5$

For adjacent list, it is hard. We should regard it as a Breadth-first-search(G) end at d=2:

```
SQUARE(G)
   for each u in G.vertices
2
         G.reset()
3
         list = \emptyset
         u.adjlist' = BFS-Aid(G, u, list, 0)
4
BFS-AID(G, u, list, dist)
   for each v in u.adjlist
2
         if v.color = white and dist \leq 2
3
              list.insert(u)
4
              BFS-Aid(G, v, list, dist + 1) =
   \mathbf{return}\ list
```

This could cost $\Theta(V^2 + VE)$ time and $\Theta(V + E)$ space (if optimized).

For adjacent matrix, the square process would be simple. for each index m of matrix row, if matrix[m][n] exist, calculate bool union of matrix[m] and matrix[n]:

```
SQUARE(G)
```

```
 \begin{array}{ll} \textbf{for each } m \text{ in } G.adjMatrix \\ 2 & \textbf{for each } n \text{ } G.adjMatrix[m] \\ 3 & \textbf{if } G.adjMatrix[m][n] == 1 \\ 4 & G'.adjMatrix[m] = \text{And}(G.adjMatrix[m], G.adjMatrix[n]) \\ 5 & \textbf{return } G' \end{array}
```

The SQUARE(G) cost $\Theta(V^3)$ time and $\Theta(V)$ space (if optimize)

5.28 22.2-3

```
line 2 \rightarrow u.ifgrey = 0
line 5 \rightarrow s.ifgrey = 1
line 14 \rightarrow v.ifgrey = 1
```

5.29 22.2-4

take $\Theta(V^2)$ time and $\Theta(V^2)$ space, since we need to search every column to find adjacent list.

```
line 12 \rightarrow \mathbf{for} : each \quad v \in M[u]
line 13 \rightarrow \mathbf{if} : v == \mathbf{true} \quad \mathbf{and} \quad v.color == white
```

$5.30 \quad 22.2-5$

```
SQUARE(AdjList)

1 for each u in vertices

2 for each v in AdjList(u)

3 AdjList(u).append(AdjList(v))
```

For adjacent list, for each vertex u, append the adjacent list of each adjacent vertex v to adjacent list of u.

line3 would be execute $\Theta(E)$ times in total,

```
SQUARE(Adjmatrix)

1 for each pair(i, j) in upper left Adjmatrix

2 SWAP(Adjmatrix[i, j], Adjmatrix[j, i])
```

5.31 Edge traverse of undirected graph

According to Theorem 22.10, all edges are either tree edge or back edge. Modify the DFS-Visit(G, u), add a print-path(G, u) would do it. Assume a root = u is selected:

```
DFS-VISIT(G, u)
  u.color = grey
   dict[(Vertex, Vertex), edgeType] = \emptyset
3
   for each v in u.adjList
4
        if v.color == white
             dict(u, v) = treeEdge
5
6
             DFS-VISIT(G, v)
7
        else dict(u, v) = backEgde
   PRINT-PATH(G, u)
PRINT-PATH(G, u)
1
   PRINT ("u")
2
   for each v in u.adjList
3
        if (u,v) == treeedge
             PRINT (" \rightarrow ")
4
5
             PRINT-PATH(G, v)
        else Print (" \rightarrow v")
6
```

line 4,6 cost same level of time as the comparison in line 3, would not change the $\Theta(V+E)$ time complexity of DFS(G)

the print path function as:

This procedure cost $\Theta(V+E)$ as well

Figure 2: 22.2-6

5.32 22.2-6

```
Consider the following condition in Figure 2: E_{\pi} = < s, u1 >, < u1, v1 >, < s, u2 >, < u2, v2 > In BFS Tree, \delta(s, v1), \delta(s, v2) is either < s, u1, v1 >, < s, u1, v2 > or < s, u2, v1 >, < s, u2, v2 >
```

5.33 22-3.12

Tweak the DFS-VISIT(G, u) and DFS(G) would be enough:

```
DFS(G)
1 for each u in G.V
       u.color = white
  c = 1
4
  for each u in G.V
5
       if u.color = white
            DFS-VISIT(G, u, c)
6
7
            c++
DFS-VISIT(G, u, c)
1
  u.color = grey
  u.cc = c
   for each v in u.adjList
       if v.color == white
4
5
            DFS-VISIT(G, v)
```

 $\mathrm{DFS}(G)$ could be tweaked to do it as well

5.34 22.4-1

```
\begin{array}{l} p[27:28] \rightarrow n[21:26] \rightarrow o[22:25] \rightarrow s[23:24] \rightarrow \\ m[1:20] \rightarrow r[6:19] \rightarrow y[9:18] \rightarrow v[10:17] \rightarrow x[15:16] \rightarrow \\ w[11:14] \rightarrow z[12:13] \rightarrow u[7:8] \rightarrow q[2:5] \rightarrow t[3:4] \end{array}
```

5.35 22.4-3

A DFS(G)/BFS(G) returns false when a back edge is found, easy to proof it is $\Theta(V)$

5.36 22.1

5.36.1 a-1

Suppose (v, u) is a backedge. u is ancestor elder than parent of v. This means (s, u) + forwardEdge is shorter than (s, v) produced by BFS which is $\delta(s, v)$ by **Theorem 22.5**. Same reason for forward edge.

5.36.2 a-2

By **Theorem 22.5** $\delta(s,u) = u.d = u.level$ and $\delta(s,v) = v.d = vv.level$, so v.d = u.d + 1

5.36.3 a-3

Same as a-1, if v.d > u.d+1, $\delta(s,v) = (s,u) + cross$ instead of (s,v). if v.d < u.d

5.36.4 b-1

Same as a-1, the (s, u) + backEdge would be shorter than (s, v)

5.36.5 b-2

By **Theorem 22.5** $\delta(s,u)=u.d=u.level$ and $\delta(s,v)=v.d=vv.level$, so v.d=u.d+1

5.36.6 b-3

Still consider that BFS always generate shortest path. $\delta(s,u)+1<(s,v)$ is not allowed

5.36.7 b-4

By Corollary 22.4 we know that $parenr.d \leq child.d$, so for backedge $v.d \leq u.d$