A Data Warehousing and Business Intelligence Tutorial

Welcome!

Matt Casters
Chief Data Integration, Pentaho
http://www.ibridge.be/
@mattcasters

Roland Bouman Software Engineer, Pentaho http://rpbouman.blogspot.com/ @rolandbouman

Starring Sakila

- Commercial Open Source Business Intelligence
 - Full BI suite since 2005
- Projects: Kettle (DI & ETL), Jfree (Reporting), Mondrian (OLAP), Weka (Data Mining)
- Community: CDF (Dashboarding), Saiku (OLAP)
- Recent: Focus on "Big Data", esp. Hadoop
- http://www.pentaho.com
- http://sourceforge.net/projects/pentaho/

Pentaho

- Business Intelligence
- Data Warehousing
- Anatomy of a Data Warehouse
- Physical Implementation
- Sakila a Star is Born
- Filling the Data Warehouse
- Presenting the Data BI Applications

Agenda

Part I:

Business Intelligence

Starring Sakila

- Skills, technologies, applications and practices to acquire a better understanding of the commercial context of your business
- Turning data into information useful for business users
 - Management Information
 - Decision Support

Business Intelligence

Business Intelligence Scope

- Front end Applications:
 Back end Infrastructure
 - Reports
 - Charts and Graphs
 - OLAP Pivot tables
 - Data Mining
 - Dashboards

- Data Integration
- Data Warehouse
- Data Mart
- Metadata
- (ROLAP) Cube

Functional Parts of a Business Intelligence Solution

High Level BI Architecture

Part II:

Data Warehousing

Starring Sakila

- A database designed to support Business Intelligence Applications
- Different requirements as compared to Operational Applications
- Analytic Database Systems (ADBMS)
 - MySQL: Infobright, InfiniDB
 - LucidDB, MonetDB

What is a Data Warehouse?

- Ultimately, it's just a Relational Database
 - Tables, Columns, ...
- Designed for Business Intelligence applications
 - Ease of use
 - Performance
- Data from various source systems
 - Integration, Standardization, Data cleaning
- Add and maintain history
 - Corporate memory

What is a Data Warehouse?

- A database designed to support BI applications
- BI applications (OLAP) differ from Operational applications (OLTP)
 - OLTP: Online Transaction Processing
 - OLAP: Online Analytical Processing
- Differences:
 - Applications, Data Processing, Data Model

What is a Data Warehouse?

OLTP

- Operational
- 'Always' on
- All kinds of users
- Many users
- Directly supports business process
- Keep a Record of Current status

OLAP

- Tactical, Strategic
- Periodically Available
- Managers, Directors
- Few(er) users
- Redesign BusinessProcess
- Decision support,
 long-term planning
- Maintains a history

OLTP vs OLAP: Application Characterization

OLTP

- Transactions
- Subject Oriented
- Add, Modify, Remove single rows
- Human data entry
- Queries for small sets of rows with all their details
- Standard queries

OLAP

- Groups
- Aspect Oriented
- Bulk load, rarely modify, never remove
- Automated ETL jobs
- Scan large sets to return aggregates over arbitrary groups
- Ad-hoc queries

OLTP vs OLAP: Data Processing

OLTP

- Entity-Relationship model
- Entities, Attributes,Relationships
- Foreign key constraints
- Indexes to increase performance
- Normalized to 3NF or BCNF

OLAP

- Dimensional model
- Facts, Dimensions,
 Hierarchies
- Ref. integrity ensured in loading process
- Scans on Fact table obliterates indexes
- DenormalizedDimensions (<= 1NF)

OLTP vs OLAP: Data Model

High Level BI Architecture

Part III:

Dimensional Model

Starring Sakila

- An aspect-oriented logical data model optimized for querying and data presentation
- Divides data in two kinds:
 - Facts
 - Dimensions

What is the Dimensional Model?

- Facts
 - Measures/Metrics of a Business Process
 - Examples: Cost, Units Sold, Profit
- Dimensions
 - Context of Business Process
 - Who? What? Where? When? Why?
 - Navigate Facts: Selection, Rollup, Drilldown
 - Provide and maintain history

The Dimensional Model

Date Dim	ension	2008 Q4			
Location Dimension		All Months	October	November	December
All locations		\$ 3850	\$ 1000	\$ 1350	\$ 1500
America	All America	\$ 2050	\$ 500	\$ 750	\$ 800
	North	\$ 1275	\$ 300	\$ 500	\$ 475
	South	\$ 775	\$ 200	\$ 250	\$ 325
Europe	All Europe	\$ 1800	\$ 500	\$ 600	\$ 700
	East	\$ 800	\$ 250	\$ 250	\$ 300
	West	\$ 1000	\$ 250	\$ 350	\$ 400

Dimensional Data Presentation

- Fact table structure:
 - Several measures
 - Keys to dimension tables
- Measures:
 - Usually numeric, Additive, Semi-additive
 - Sometimes pre-calculated
- Rapidly growing!
 - Millions, Billions of rows (Terabytes)

The Dimensional Model: Facts

- Dimension table structure:
 - Surrogate key and descriptive text attributes
- Relatively few rows
 - Exception: Customer 'Monster' dimension
- Relatively static
 - Exception: Slowly changing dimensions
- Used to navigate through fact data
 - Hierarchies

The Dimensional Model: Dimensions

- Selection (Filter)
- Navigation: Attributes organized in Hierarchies
 - Date dimension examples:
 - Year, Quarter, Month, Day
 - Year, Week, Day
- Groupings for Aggregation
 - 'Roll up', 'Drill Down'
 - 'Slice and Dice'

The Dimensional Model: Navigating data with Dimensions

- Fact table usually links to a date dimension
- Dimensions maintain their own history
 - Slowly changing dimensions
- Type I Overwrite (no history)
- Type II
 - History kept in rows (versioning)
- Type III
 - History kept in columns

The Dimensional Model: Maintaining History

Part V:

Physical Implementation

Starring Sakila

- Related metrics stored in a Fact table
- Fact table references relevant dimensions
- Each Dimension stored in a Dimension Table
- Dimension tables shared by multiple fact tables

Dimensional Model Implementation: Star Schema

Star Schema example: Sakila Rentals

Star Schema example: Sakila Rentals

- Star schema is 'just' an implementation
 - Optimized for simplicity
 - Optimized for performance (?)
 - Heavily denormalized dimensions
- There is an alternative: Snowflake
 - Normalized dimensions

Stars versus Snowflakes

Snow Flake example: Sakila Rentals

Part V:

A Star is Born

- MySQL Sample Database
 - http://dev.mysql.com/doc/sakila/en/sakila.html
- DVD rental business
 - Overly simplified database schema
- Typical OLTP database

Dimensional Model example

3NF Source schema: Sakila Rentals

Target Star Schema

- Select Business Process
 - Sales, Purchase, Storage, ...
- Define Facts and Key Metrics
 - Facts: Key Event in Business Process
 - Metrics (Fact Attributes): Count or Amount
- Choose Dimensions and Hierarchies
 - What? When? Where?
 - Who? Why?

Dimensional Design

- Select Business Process
 - Rentals
- Identify Facts
 - Count (number of rentals)
 - Rental Duration
- Choose Dimensions
 - What: Films
 - When: Rental, Return
- Who: Customer, Staff
- Where: Store

Example Business Process: Rentals

A star is born: Rentals 3NF

A star is born: Rentals 3NF

A star is born

A star is born: Rental Snowflake

A star is born: Rental Star Schema

- Something is missing....
 - Who? (Customer, Staff)
 - What ? (Film)
 - Where ? (Store)
 -?

Dimensional Design

A star is born: Rental Date and Time

Role Playing: Date/Time for both Rentals and Returns

Rental Star Schema

Part IV:

Filling the Data Warehouse

Starring Sakila

High Level Data Warehouse Architecture

- Physical Design
- Source to Target Mapping
 - Define how data in the data warehouse is derived from data in the source system(s)
 - Specification for designing the ETL process
- Column-level mapping
 - Source system, schema, table, column, data type
 - Target dimension/fact, column, defaults
 - Transformation rules, cleansing, lookup, calculation

Planning the ETL Process

- Staging?
- Changed Data Capture / Extraction
- Denormalization
- Derived data / Enrichment
- Cleansing / Conforming
- History policy (dimensions)
- Granularity
- Dimension Lookup (facts)

Designing the ETL Process

- Flow ETL Engine
- Transformations
 - Data flow and processing
- Jobs
 - Workflow of ETL tasks
- Tools
 - Spoon
 - Kitchen
 - Pan

Designing ETL with Kettle

- Load Dimension Tables
- Load Fact table

Loading a Fact Table

- Get Customers source data
- Lookup Address (Denormalize)
- Update Dimension

Loading a Dimension Table

Loading a Fact Table

Part V:

Presenting the Data: BI Applications

Starring Sakila

Business Intelligence Scope

Reporting

Reporting

- Mostly Operational
- Lists and Grouping
- Typically standardized
- Typically no or limited interactivity
 - Subreporting

Scope of Reporting

Reporting

Analysis

Analysis

- Tactical, Strategic
- OLAP
 - Online Analytical Processing
- Pivot tables
- Typically Interactive
 - Slice and Dice
 - Drilldown
- Typically Ad-hoc

Scope of OLAP & Analysis

Analysis Interactive Pivot table

Data Mining

EXCELLENT. WE CAN
USE NON-LINEAR
MATH AND DATA
MINING TECHNOLOGY
TO OPTIMIZE OUR
RETAIL CHANNELS!

Data Mining

- Strategic, Tactical
- Discover hidden patterns in data
- Machine learning
- Statistic analysis
- Typically not interactive, long running
- Expert matter
- Not readily consumable by end-users
 - Characteristics of back-end processing

Scope of Data Mining

Data Mining

Charts and Graphs

Charts and Graphs

- Operational, Tactical, Strategic
- Summarize large dataset
- Not a separate class but a presentation
 - Data Visualization
- Standardized or ad-hoc
- Can be interactive
 - Drive a subreport
 - Drive drilldown

Dashboarding

Dashboarding

- Operational, Tactical, Strategic
- Not a separate class but a presentation
- Bundle:
 - key metrics for a particular role or perspective
 - different views on the same metrics
- Can contain reports, pivot tables, charts, graphs
- Typically interactive

Dashboard

Customers of Website: World Class Movies

Top 100 Customer Locations for this Website

