Kalman Filter Theory and Applications Equation Drilldown

https://github.com/musicarroll/kalman_course

Michael L. Carroll

June 18, 2023

©2023 by Michael L. Carroll

Part I

The Five Basic Kalman Equations Topics

Part I The Five Basic Kalman Equations Topics

• Understanding the Equations: Heuristic Introduction

Part I The Five Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Part | The Five Basic Kalman Equations Topics

- Understanding the Equations: Heuristic Introduction
- Equation Drilldown: Taking the Equations Apart
- State Space Concepts

Mathematical Formulation of the Problem

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Constant Velocity Motion

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Constant Velocity Motion
- Exercises

- Mathematical Formulation of the Problem
- Drilldown on State Dynamics and Covariance Extrapolation Equations
- The Five Kalman Filter Equations
- Examples: Constant Velocity Motion
- Exercises

Non-accelerated, kinematic motion in 1 dimension

Non-accelerated, kinematic motion in 1 dimension

Number of states: 2
 x₁(k) is the position at time step k
 x₂(k) is the velocity at time step k

- Number of states: 2
 x₁(k) is the position at time step k
 x₂(k) is the velocity at time step k
- System Dynamics:

$$x_1(k) = x_1(k-1) + x_2(k-1)\Delta t$$

 $x_2(k) = x_2(k-1)$

- Number of states: 2
 x₁(k) is the position at time step k
 x₂(k) is the velocity at time step k
- System Dynamics:

$$x_1(k) = x_1(k-1) + x_2(k-1)\Delta t$$

 $x_2(k) = x_2(k-1)$

• Measurement Model: Position-only $z(k) = x_1(k) + v(k)$, where v(k) is zero mean, Gaussian white noise with variance σ^2

- Number of states: 2
 x₁(k) is the position at time step k
 x₂(k) is the velocity at time step k
- System Dynamics:

$$x_1(k) = x_1(k-1) + x_2(k-1)\Delta t$$

 $x_2(k) = x_2(k-1)$

- Measurement Model: Position-only $z(k) = x_1(k) + v(k)$, where v(k) is zero mean, Gaussian white noise with variance σ^2
- Thus, $\Phi=\begin{bmatrix}1&\Delta t\\0&1\end{bmatrix}$, $\Delta t=t_k-t_{k-1}$ (assumed constant), $H_k=\begin{bmatrix}1&0\end{bmatrix}$, $Q_k=0$, $R_k=\sigma^2$

- Number of states: 2
 x₁(k) is the position at time step k
 x₂(k) is the velocity at time step k
- System Dynamics:

$$x_1(k) = x_1(k-1) + x_2(k-1)\Delta t$$

 $x_2(k) = x_2(k-1)$

- Measurement Model: Position-only $z(k) = x_1(k) + v(k)$, where v(k) is zero mean, Gaussian white noise with variance σ^2
- Thus, $\Phi = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$, $\Delta t = t_k t_{k-1}$ (assumed constant), $H_k = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $Q_k = 0$, $R_k = \sigma^2$

Non-Accelerated Motion

• Note that we are assuming the acceleration is truly zero.

- Note that we are assuming the acceleration is truly zero.
 - Any uncertainty in that assumption could be dealt with by adding very small process noise to the velocity component

- Note that we are assuming the acceleration is truly zero.
 - Any uncertainty in that assumption could be dealt with by adding very small process noise to the velocity component
- We will start without any process noise (Q = 0)

- Note that we are assuming the acceleration is truly zero.
 - Any uncertainty in that assumption could be dealt with by adding very small process noise to the velocity component
- We will start without any process noise (Q = 0)
- Later we will add some process noise

- Note that we are assuming the acceleration is truly zero.
 - Any uncertainty in that assumption could be dealt with by adding very small process noise to the velocity component
- We will start without any process noise (Q = 0)
- Later we will add some process noise

Covariance Extrapolation

Covariance Extrapolation

•
$$P^{-}(k) = \Phi(k)P^{+}(k-1)\Phi(k)^{\top} + Q(k)$$
 becomes:

Covariance Extrapolation

$$P^{-}\left(k\right) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

Covariance Extrapolation

$$P^{-}(k) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$
$$= \begin{bmatrix} p_{11} + p_{21}\Delta t & p_{12} + p_{22}\Delta t \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

Covariance Extrapolation

$$P^{-}(k) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + p_{21}\Delta t & p_{12} + p_{22}\Delta t \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + (p_{12} + p_{21})\Delta t + p_{22}\Delta t^{2} + q_{11} & p_{12} + p_{22}\Delta t \\ p_{12} + p_{22}\Delta t & p_{22} + q_{22} \end{bmatrix}$$

• $P^{-}(k) = \Phi(k)P^{+}(k-1)\Phi(k)^{\top} + Q(k)$ becomes:

$$P^{-}(k) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + p_{21}\Delta t & p_{12} + p_{22}\Delta t \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + (p_{12} + p_{21})\Delta t + p_{22}\Delta t^{2} + q_{11} & p_{12} + p_{22}\Delta t \\ p_{12} + p_{22}\Delta t & p_{22} + q_{22} \end{bmatrix}$$

 Note that we've decluttered by suppressing the +/superscripts and k's on the right-hand sides

$$P^{-}(k) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + p_{21}\Delta t & p_{12} + p_{22}\Delta t \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + (p_{12} + p_{21})\Delta t + p_{22}\Delta t^{2} + q_{11} & p_{12} + p_{22}\Delta t \\ p_{12} + p_{22}\Delta t & p_{22} + q_{22} \end{bmatrix}$$

- Note that we've decluttered by suppressing the +/superscripts and k's on the right-hand sides
- The Kalman gain computation is left as an exercise!

Covariance Extrapolation

$$P^{-}(k) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + p_{21}\Delta t & p_{12} + p_{22}\Delta t \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} + \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} + (p_{12} + p_{21})\Delta t + p_{22}\Delta t^{2} + q_{11} & p_{12} + p_{22}\Delta t \\ p_{12} + p_{22}\Delta t & p_{22} + q_{22} \end{bmatrix}$$

- Note that we've decluttered by suppressing the +/superscripts and k's on the right-hand sides
- The Kalman gain computation is left as an exercise!

Filter Performance (without Process Noise)

Filter Performance (without Process Noise)

Filter Performance (without Process Noise)

Filter Sawtooth Plot

Filter Sawtooth Plot

$$P^{-}(k) = \Phi(k)P^{+}(k-1)\Phi(k)^{\top} + Q(k)$$

Filter Sawtooth Plot

$$P^{-}(k) = \Phi(k)P^{+}(k-1)\Phi(k)^{\top} + Q(k)$$

Filter Sawtooth Plot

$$P^{-}(k) = \Phi(k)P^{+}(k-1)\Phi(k)^{\top} + Q(k)$$

Filter Performance (with Process Noise)

Filter Performance (with Process Noise)

Filter Performance (with Process Noise)

Filter Sawtooth with Process Noise

Filter Sawtooth with Process Noise

Filter Performance (30 samples; large Process Noise)

Filter Performance (30 samples; large Process Noise)

Filter Performance (30 samples; large Process Noise)

Filter Sawtooth with Process Noise (30 samples; large Process Noise)

Filter Sawtooth with Process Noise (30 samples; large Process Noise)

Filter Sawtooth with Process Noise (30 samples; large Process Noise)

Filter Performance (30 samples; large Process Noise; large Measurement Noise)

Filter Performance (30 samples; large Process Noise; large Measurement Noise)

Filter Performance (30 samples; large Process Noise; large Measurement Noise)

Filter Sawtooth with Process Noise (30 samples; large Process Noise; large Measurement Noise)

Filter Sawtooth with Process Noise (30 samples; large Process Noise; large Measurement Noise)

Filter Sawtooth with Process Noise (30 samples; large Process Noise; large Measurement Noise)

Summary

Vector Check

Summary

Vector Check

• Where are we?

Summary

Vector Check

- Where are we?
 - We've examined the Constant Velocity model with 2 states and a single measurement

Summary Vector Check

- Where are we?
 - We've examined the Constant Velocity model with 2 states and a single measurement
 - We've shown how we can change the assumptions regarding the process in the truth vs. that in the Kalman model

Summary Vector Check

- Where are we?
 - We've examined the Constant Velocity model with 2 states and a single measurement
 - We've shown how we can change the assumptions regarding the process in the truth vs. that in the Kalman model
- What's next?

• Where are we?

- We've examined the Constant Velocity model with 2 states and a single measurement
- We've shown how we can change the assumptions regarding the process in the truth vs. that in the Kalman model
- What's next?
 - In the next video, we will present the third model, the damped harmonic oscillator

- Where are we?
 - We've examined the Constant Velocity model with 2 states and a single measurement
 - We've shown how we can change the assumptions regarding the process in the truth vs. that in the Kalman model
- What's next?
 - In the next video, we will present the third model, the damped harmonic oscillator