

GB04/4762

INVESTOR IN PEOPLE

PCT

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office Concept House Cardiff Road Newport

South Wales

NP 1858 O 7 DEC 2004

WIPO

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

7 November 2004

BEST AVAILABLE COPY

Patents Act 1977
(Rule 16)

Request for grant of a patent
(See the notes on the back of this flats You can also get the an explanatory leaflet from the Patent Office in well you will in

resulted from an entitlement dispute (see note f)

inventorship and of right to grant of a patent)

a) any applicant named in part 3 is not an inventor, orb) there is an inventor who is not named as an

8. Is a Patents Form 7/77 (Statement of

Answer YES if:

applicant, or

required in support of this request?

any named applicant is a corporate body.

Otherwise answer NO (See note d)

this form)

The Patent Office

Cardiff Road Newport South Wales NP10 8QQ

1. Your reference P018661GB ZCW 1 2 NOV 2003 2. Patent application number 0326396.9 (The Patent Office will fill this part in) Cyclacel Limited 3. Full name, address and postcode of the or of 12 St James's Square each applicant (underline all surnames) London SW1Y 4RB Patents ADP number (if you know it) 7316292004 If the applicant is a corporate body, give the United Kingdom country/state of its incorporation Title of the invention Method D Young & Co Name of your agent (if you have one) "Address for service" in the United Kingdom 21 New Fetter Lane to which all correspondence should be sent London (including the postcode) EC4A 1DA 59006 Patents ADP number (if you know it) Priority application number Date of filing Priority: Complete this section if you are Country (day / montb / year) (if you know it) declaring priority from one or more earlier patent applications, filed in the last 12 months. Date of filing Number of earlier UK application Divisionals, etc: Complete this section only if (day / month / year) this application is a divisional application or

Patents Form 1/77

nts Form 1/77

 Accompanying documents: A patent application must include a description of the invention.
 Not counting duplicates, please enter the number of pages of each item accompanying this form:

Continuation sheets of this form -

Description 148

Claim(s) 9

Abstract 1

Drawing(s) 7 + 7

If you are also filing any of the following, state how many against each item.

Priority documents -

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for a preliminary examination and search (Patents Form 9/77)

Request for a substantive examination (Patents Form 10/77)

Any other documents (please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature(s)

Dyang & Co

Date

12 November 2003

12. Name, daytime telephone number and e-mail address, if any, of person to contact in the United Kingdom

Zöe Clyde-Watson

D Young & Co (Agents for the Applicants)

020 7353 4343

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

a). If you need help to fill in this formor you have any our more, preservontate the Forest C File on 00 150 500505

- .

.

The present invention relates to polo-like kinases (PLKs) and small molecule inhibitors thereof. More specifically, the invention relates to a method for designing and identifying small molecule inhibitors using a homology model for PLK.

BACKGROUND TO THE INVENTION

5

10

15

20

25

30

The Polo-like kinase family consists of key cell cycle regulatory enzymes with integral roles in controlling entry into and progression through mitosis. Many tumour cells express high levels of PLK1 and are responsive to antisense oligonucleotides targeting this protein.

Initiation of mitosis requires activation of M-phase promoting factor (MPF), *i.e.* the complex between CDK1 and B-type cyclins [1]. The latter accumulate during the S and G2 phases of the cell cycle and promote the inhibitory phosphorylation of the MPF complex by WEE1, MIK1, and MYT1 kinases. At the end of the G2 phase, corresponding dephosphorylation by the dual-specificity phosphatase CDC25C triggers the activation of MPF [2]. In interphase, cyclin B localizes to the cytoplasm and becomes phosphorylated during prophase, followed by nuclear translocation. The nuclear accumulation of active MPF during prophase is thought to be important for initiating M-phase events [3]. However, nuclear MPF is kept inactive by WEE1 unless counteracted by CDC25C. The phosphatase CDC25C itself, localized to the cytoplasm during interphase, accumulates in the nucleus in prophase. The nuclear entry of both cyclin B and CDC25C are promoted through phosphorylation by PLK1 [4]. This kinase is thus an important regulator of M-phase initiation.

In humans, there exist three closely related polo-like kinases (PLKs) [5]. They contain a highly homologous N-terminal catalytic kinase domain and their C-termini contain two or three conserved regions, the polo boxes. The function of the polo boxes remains incompletely understood but polo box-dependent PLK1 activity is required for proper metaphase/anaphase transition and cytokinesis [6]. Of the three PLKs, PLK1 is the best characterized; it regulates a number of cell division cycle effects, including the onset of

mitosis, DNA-damage checkpoint activation, regulation of the anaphase promoting complex, phosphorylation of the proteasome, and centrosome duplication and maturation. Mammalian PLK2 (also known as SNK) and PLK3 (also known as PRK and FNK) were originally shown to be immediate early gene products. PLK3 kinase activity appears to peak during late S and G2 phase. It is also activated during DNA damage checkpoint activation and severe oxidative stress. PLK3 also plays an important role in the regulation of microtubule dynamics and centrosome function in the cell and deregulated PLK3 expression results in cell cycle arrest and apoptosis [7]. PLK2 is the least-well understood homologue of the three PLKs. Both PLK2 and PLK3 may have additional important post-mitotic functions [8].

5

10

15

25

...

The fact that human PLKs regulate some fundamental aspects of mitosis was shown by anti-PLK1 antibody microinjection of human tumour cells [9]. This treatment had no effect on DNA replication but impaired cell division. Cells were arrested in mitosis and showed abnormal distribution of condensed chromatin and monoastral microtubules nucleated from duplicated but unseparated centrosomes. By contrast, non-immortalized human cells arrested as single, mononucleated cells in G2. Moreover, when PLK1 function was blocked through adenovirus-mediated delivery of a dominant-negative gene, tumour-selective apoptosis in many tumour cell lines was observed, whereas again normal epithelial cells, although arrested in mitosis, escaped the mitotic catastrophe seen in tumour cells [10]. PLK1 activity is thus necessary for the functional maturation of centrosomes in late G2/early prophase and subsequent establishment of a bipolar spindle. Furthermore, these results suggest the presence in normal cells of a centrosome-maturation checkpoint that is sensitive to PLK1 impairment. Depletion of cellular PLK1 through the small interfering RNA (siRNA) technique also confirmed that this protein is required for multiple mitotic processes and completion of cytokinesis [11]. A potential therapeutic rationale for PLE inhibition is also suggested by work vide PIII-cosside amister eliganolistides مرادر و مرادور المرادور المرادور و مردور و مر

PLK1 expression is of prognostic value for patients suffering from various types of tumours [14-16].

Although the therapeutic potential of pharmacological PLK inhibition has been appreciated [17], very little has been reported to date concerning small-molecule PLK inhibitors that may be useful as drugs. The only characterized biochemical PLK1 inhibitor is scytonemin, a symmetric indolic marine natural product [18,19]. Scytonemin inhibits phosphorylation of CDC25C by recombinant PLK1 with an IC₅₀ value of about 2 μM (at an ATP concentration of 10 μM). Inhibition is apparently reversible and the mechanism with respect to ATP of mixed-competitive mode. Similar potency against other protein serine/threonine- and dual specificity cell-cycle kinases, including MYT1, CHK1, CDK1/cyclin B, and PKC, was observed. Scytonemin showed pronounced anti-proliferative effects on various human cell lines in vitro.

. .;

15 The present invention seeks to elucidate small molecule PLK inhibitors, and in particular, provides a method for designing and identifying such inhibitors. The invention also seeks to elucidate further information on the 3-dimensional structure of the PLK binding domain and the nature of the binding interactions between PLK and such small molecule inhibitors.

20

5

10

STATEMENT OF INVENTION

The present invention relates to a homology model for PLK, and the use thereof in the indentification of small molecule PLK inhibitors.

25 As used herein, the term "model" refers to a structural model such as a three dimensional (3D) structural model (or representation thereof) comprising PLK. Preferably, the model comprising PLK is built from all or a portion of the structure co-ordinates presented in Table 2. The homology model of the invention enables candidate compounds to be identified that bind spatially and preferentially to PLK, particularly to the active site of PLK.

30

Aspects of the invention are presented in the accompanying claims and are further described in the following paragraphs.

DETAILED DESCRIPTION

5

20

25

ASSAYS BASED ON THE PLK1 HOMOLOGY MODEL

A first aspect of the invention relates to a method of screening for a modulator of PLK, wherein the method comprises using the structure co-ordinates of Table 2

Since no experimental three-dimensional structures of PLK kinase domains are known, 10 a PLK1 kinase domain homology model was constructed (Example 1) [31]. This model provides a plausible complex with the natural ligand ATP in the active site (Figure 2), as well as with two non-selective ATP-competitive kinase inhibitors, which were also found to inhibit PLK1, namely staurosporine [32] (IC₅₀ w.r.t. PLK1 = 0.4 µM) and 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol 15 w.r.t. PLK1 = $4 \mu M$) (Figure 7).

Of particular interest in the PLK1 kinase domain structure are Cys⁶⁷ and Cys¹³³, both of which line the ATP binding site. Cys¹³³ is located in the so-called hinge region, which is present in many kinases, and connects the N- and C-terminal lobes of the kinase domain. Its side chain projects away from the ATP-binding pocket, although its backbone NH and CO functions are probably involved in H-bonding with the purine system of ATP. The side chain of Cys⁶⁷ on the PLK1 N-terminal lobe, on the other hand, points into the ATP-binding pocket and probably contributes directly to ATP binding via contacts with the ribose and/or triphosphate moieties. The position occupied by Cys⁶⁷ in PLK1 is usually occupied by valine in other kinases and there contributes van der Waals contacts to ATP binding. A record unusual residue Phallis.

which is commonly leading in this viewer. In these similar

As discussed above, Cys^{67} of PLK1 is of particular interest, since in the modelled PLK1-ATP complex structure it is positioned closely to the ribose ring of ATP (Figure 4a). This situation is reminiscent of the HER-2 case as described above. More specifically, a close contact between the Cys^{67} thiol group and the 5'-O of the ribose portion of ATP is observed. A suitable adenosine-derived covalent inhibitor would thus be 5'-thioadenosine. Modelling (Figure 4b) of this compound into the active site of PLK1 suggests that a simple rotation of the C^{α} - C^{β} bond of Cys^{67} should accommodate this inhibitor in such a way as to bring the sulfur atoms of Cys^{67} and 5'-thioadenosine into disulfide-bonding distance without large perturbations of the bound adenine portion.

5

10

15

20

25

30

In order to test the hypothesis that Cys⁶⁷ may indeed be involved in ATP binding by PLK1, the effect of non-specific thiol modifying agents such as thimerosal [34], Nethylmaleimide, and iodoacetamide on PLK1 enzymatic activity was studied. All these reagents were found to inhibit CDC25C phosphorylation by PLK1 to some extent, indicating the involvement of Cys residues in enzymatic activity. The fact that such inhibition could be abolished in the presence of an excess of the reducing agent dithiothreitol, which specifically reduces disulfide bonds and competes with Cys thiol groups for thiol modifying agents [35], is consistent with this notion (Example 6). Adenosine derivatives were studied next (Figure 5). Unmodified adenosine did not inhibit PLK1 function at concentrations up to 0.2 mM, whereas 2'- and 5'thioadenosines did. 5-Thioadenosine was about 3-fold more potent than its analogue 2'thioadenosine, supporting the hypothesis that the 5'-OH of the ribose ring is better oriented to react with Cys⁶⁷. Again a lack of inhibition was observed in the presence of DTT. Kinetic analysis of PLK1 inhibition (Example 7) showed that with e.g. 5'thioadenosine (Figure 6) this was dependent on ATP concentration but not competitive with ATP as would be the case for a reversible competitive ATP antagonist. The effects of the above thiol modifying reagents on a closely related serine/threonine kinase were also studied. Casein kinase II (CKII) was selected based on its sensitivity to certain inhibitors [36], e.g. wortmannin and LY294002 [37], which were also found to be capable of inhibiting PLK1 (IC₅₀ with respect to PLK1 of < 0.1 µM and < 5 µM, respectively). No significant inhibition of CKII enzymatic activity was observed at

concentrations up to 0.2 mM with thimerosal, N-ethylmaleimide, iodoacetamide, adenosine, 2'-thioadenosine, or 5'-thioadenosine using the assay described in *Example* 4.

- In summary, these results suggest that PLK-specific ATP antagonists can be developed that derive their potency and PLK selectivity from a combination of non-covalent binding to the unique ATP-binding pocket of PLK1 and covalent binding to the Cys⁶⁷ thiol group.
- 10 Preferred embodiments of the invention will now be described.

15

-20

25

In one preferred embodiment of the invention, the method comprises the steps of:

- (a) providing at least a portion of the structure co-ordinates of Table 2;
- (b) employing at least a portion of the structure co-ordinates of Table 2 to design or select or synthesise a putative modulator of PLK;
- (c) contacting the putative modulator of PLK with PLK or a mutant, variant, homologue, derivative or fragment thereof, in the presence of a substrate of PLK; and
- (d) determining whether said putative modulator of PLK modulates PLK.

In a preferred embodiment, at least a portion of the structure co-ordinates of Table 2 and/or the putative modulator of PLK and/or the substrate are provided on a machine-readable data storage medium comprising a data storage material encoded with machine readable data.

In a preferred embodiment, the putative modulator of PLK is selected from a library of commounds. Preferably, the library is an *in silico* library. Suitable in silico libraries will be

In another preferred embodiment, the putative modulator of PLK is selected from a database.

In another preferred embodiment, the putative modulator of PLK is designed de novo.

In yet another preferred embodiment, the putative modulator of PLK is designed from a known PLK modulator.

Preferably, the design or selection of the putative modulator of PLK is performed in conjunction with computer modelling.

In one particularly preferred embodiment, the putative modulator of PLK inhibits PLK activity.

15 More preferably, the PLK is PLK1.

In a further preferred embodiment, the putative modulator of PLK is useful in the prevention and/or treatment of a PLK related disorder.

20 Even more preferably, the PLK related disorder is a proliferative disorder.

More preferably still, the proliferative disorder is selected from cancer, leukemia, glomerulonephritis, rheumatoid arthritis, psoriasis and chronic obstructive pulmonary disorder.

25

5

A second aspect of the invention relates to an assay for a candidate compound capable of modulating PLK, said assay comprising the steps of:

- (a) contacting said candidate compound with PLK;
- (b) detecting whether said candidate compound forms associations with one or more amino acid residues corresponding to PLK amino acid residues L59, G60, C67, A80, K82, L130, C133, R135, F183 and D194.

In one preferred embodiment, said candidate compound is selected by performing rational drug design with a 3-dimensional model of PLK in conjunction with computer modelling.

In an even more preferred embodiment, the assay comprises detecting whether said candidate compound forms an association with the amino acid residue corresponding to PLK amino acid residue C67.

A third aspect of the invention relates to the use of a compound selected from the following:

- 10 (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol; 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;
- or a pharmaceutically acceptable salt thereof, in an assay for identifying candidate compounds capable of modulating PLK.

Preferably, the assay is a competitive binding assay.

- 20 More preferably, the assay comprises contacting a candidate compound with PLK in the presence of a compound selected from:
 - (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and

- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-25 (2,4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;
 - or a pharmaceutically acceptable calt thereof, and detecting any change in the

- (a) a computer-readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprises the structure co-ordinates of Table 2;
- (b) a working memory for storing instructions for processing said computerreadable data;
 - (c) a central-processing unit coupled to said working memory and to said computerreadable data storage medium for processing said computer-machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said threedimensional representation.

Another aspect of the invention relates to a machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data is defined by at least a portion of the structure co-ordinates of Table 2.

A further aspect of the invention relates to the use of the above-described computer or machine readable data storage medium to predict the structure and/or function of potential modulators of PLK.

Another aspect relates to the use of at least a portion of the structure co-ordinates of Table 2 to screen for modulators of PLK.

A further aspect relates to the use of at least a portion of the structure co-ordinates of Table 2 to solve the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK.

Preferably, the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK is solved using molecular replacement.

25

5

10

15

Yet another aspect of the invention relates to the use of at least a portion of the structure co-ordinates of Table 2 in molecular design techniques to design, select and synthesise modulators of PLK.

- A further aspect of the invention relates to the use of at least a portion of the structure co-ordinates of Table 2 in the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that binds to PLK.
- Another aspect of the invention relates to the use of at least a portion of the structure co-ordinates of Table 2 to screen small molecule databases for chemical entities or compounds that modulate PLK.

PLK MODULATORS

A further aspect of the invention relates to a PLK modulator identified by the above-described method, or a candidate compound identified by the above-described assay.

Preferably, the PLK modulator or candidate compound of the invention inhibits PLK activity.

20

(

More preferably, the PLK modulator or candidate compound of the invention is capable of forming a covalent bond with the amino acid residue corresponding to PLK amino acid residue C67.

More preferably still, the PLK modulator or candidate compound of the invention is capable of forming a disulfide bond with the thiol group of the amino acid residue corresponding to PLK amino acid residue C67.

The present invention permits the use of molecular design techniques to design, select and synthesise chemical entities and compounds, including PLK modulating compounds, capable of binding to PLK, in whole or in part.

By way of example, the structure co-ordinates of Table 2 may be used to design compounds that bind to PLK and may alter the physical properties of the compounds (eg. solubility) or PLK itself. This invention may be used to design compounds that act as modulators, such as competitive inhibitors - of PLK by binding to all or a portion of the active site of PLK. Compounds may also be designed that act as non-competitive inhibitors of PLK. These non-competitive inhibitors may bind to all or a portion of PLK already bound to its substrate and may be more potent and specific than known PLK inhibitors that compete only for the PLK active site. Similarly, non-competitive inhibitors that bind to and inhibit PLK whether or not it is bound to another chemical entity may be designed using the structure co-ordinates of PLK described herein.

. 27

15

20

25

30

10

5

The present invention may also allow the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that binds to PLK. Thus, the time-dependent analysis of structural changes in PLK during its interaction with other molecules may be performed. The reaction intermediates of PLK may also be deduced from the reaction product in co-complex with PLK. Such information is especially useful to design improved analogues of known PLK modulators or to design new PLK modulators based on the reaction intermediates of the PLK enzyme and PLK-modulator complex. This may provide a new route for designing PLK modulators with high specificity and stability. Preferably, this provides a new route for designing PLK modulators with high specificity, high stability and low toxicity.

Small molecule databases or candidate compounds may be screened for chemical entities or compounds that can bind in whole, or in part, to PLK. Thus, in a preferred embodiment, the putative PLK modulator is from a library of compounds or a database. In this screening, the quality of fit of such entities or compounds to the binding site

may be judged by various methods – such as shape complementarity or estimated interaction energy (Meng, E. C. et al., J. Comp. Chem., 13, pp. 505-524 (1992)).

The structure co-ordinates of Table 2, or portions thereof, may also be useful in solving the structure of crystal forms of PLK. They may also be used to solve the structure of PLK mutants, PLK variants, PLK homologues, PLK derivatives, PLK fragments and PLK complexes.

5

10

15

Preferably, the structure co-ordinates of Table 2 may be used to solve the structure of the crystalline form of proteins having significant amino acid sequence homology to any functional domain of PLK. By way of example, molecular replacement may be used. In this method, the unknown crystal structure, whether it is a crystal form of PLK, a PLK mutant, a PLK variant, a PLK homologue (eg. another protein with significant amino acid sequence homology to any functional domain of PLK), a PLK derivative, a PLK fragment or a PLK co-complex may be determined using the PLK structure co-ordinates of the present invention. This method will provide a more accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information *ab initio*.

20. In a preferred embodiment of the present invention, the PLK crystal of unknown structure further comprises an entity bound to the PLK protein or a portion thereof, for example, an entity that is an inhibitor of PLK.

The crystal structures of such complexes may be solved by molecular replacement or in combination with MAD (Multiwavelength Anomalous Dispersion) and/or MIRAS (Multiple Isomorphous Replacement with Anomalous Scattering) procedures - and compared with that of wild-type FLK. Potential sites for modification within the

The structures and complexes of PLK may be refined using computer software - such as X-PLOR (Meth. Enzymol., vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)), MLPHARE (Collaborative computational project Number 4. The CCP4 Suite: Programs for Protein Crystallography (1994) Acta Crystallogr. D 50, 760-763) and SHARP [De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameters refinement in the MIR and MAD methods (1997) Methods Enzymol. 276, 472-494). Preferably, the complexes are refined using the program CNS (Brünger et al. (1998) Acta Crystallogr. D 54, 905-921). During the final stages of refinement water molecules, ions and inhibitor molecules may be inserted in the structure. This information may thus be used to optimise known classes of PLK modulators, eg. PLK modulators, and more importantly, to design and synthesise novel classes of PLK modulators.

The overall figure of merit may be improved by iterative solvent flattening, phase combination and phase extension with the program SOLOMON [Abrahams, J. P. & Leslie, A. G. W. Methods used in structure determination of bovine mitochondrial F1 ATPase. (1996) Acta Crystallogr. D 52, 110-119].

The structure co-ordinates of the homology model of the present invention may also facilitate the identification of related proteins or enzymes analogous to PLK in function, structure or both, thereby further leading to novel therapeutic modes for treating or preventing PLK related diseases.

The design of compounds that bind to or modulate PLK according to the present invention generally involves consideration of two factors. Firstly, the compound must be capable of physically and structurally associating with PLK. Non-covalent molecular interactions important in the association of PLK with its substrate may include hydrogen bonding, van der Waals and hydrophobic interactions. Secondly, the compound must be able to assume a conformation that allows it to associate with PLK. Although certain portions of the compound may not directly participate in the association with PLK, those portions may still influence the overall conformation of the molecule. This may have a significant impact on potency. Such conformational

requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of a binding site of PLK, or the spacing between functional groups of a compound comprising several chemical entities that directly interact with PLK.

5

The potential modulating or binding effect of a chemical compound on PLK may be analysed prior to its actual synthesis and testing by the use of computer modelling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association with PLK, then synthesis and testing of the compound may be obviated. However, if computer modelling indicates a strong interaction, the molecule may be synthesised and tested for its ability to bind to PLK and modulate (eg. inhibit) using the fluorescent substrate assay of Thornberry et al. (2000) Methods Enzymol. 322, pp 100-110. In this manner, synthesis of inactive compounds may be avoided.

15

10

A modulating or other binding compound of PLK may be computationally evaluated and designed by means of a series of steps in which chemical entities or candidate compounds are screened and selected for their ability to associate with PLK.

A person skilled in the art may use one of several methods to screen chemical entities or candidate compounds for their ability to associate with PLK and more particularly with the individual binding sites of PLK. This process may begin by visual inspection of, for example, the active site on the computer screen based on the PLK co-ordinates of the present invention. Selected chemical entities or candidate compounds may then be positioned in a variety of orientations, or docked, with PLK. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimisation and molecular dynamics with standard molecular mechanics force fields -

(Goodford (1985) J. Med. Chem., 28, pp. 849-857) and AUTODOCK (Goodsell and Olsen (1990), Proteins: Structure. Function, and Genetics, 8, pp. 195-202.

Once suitable chemical entities or candidate compounds have been selected, they may be assembled into a single compound, such as a PLK modulator. Assembly may proceed by visual inspection of the relationship of the chemical entities or candidate compounds in relation to the structure co-ordinates of PLK. This may be followed by manual model building using software - such as Quanta, Sybyl, O, HOOK or CAVEAT [Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A 47, 110-119].

5

10

15

20

25

Refinement of the model may be carried out using the program CNS [Brünger, A. T. et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. (1998) Acta Crystallogr. D 54, 905-921].

Various programs may be used by a skilled person to connect the individual chemical entities or candidate compounds, such as 3D Database systems (Martin (1992) *J. Med. Chem.*, 35, pp. 2145-2154) and CAVEAT (Bartlett *et al.* (1989) *Royal Chem. Soc.* 78, pp. 182-196).

Rather than build a PLK inhibitor one chemical entity at a time, modulating or other PLK binding compounds may be designed as a whole or *de novo* using either an empty binding site or optionally including some portion(s) of a known inhibitor(s). Such compounds may be designed using programs that may include but are not limited to LEGEND (Nishibata and Itai (1991) Tetrahedron, 47, p. 8985) and LUDI (Bohm (1992) *J. Comp. Aid. Molec. Design*, 6, pp. 61-78).

Other molecular modelling techniques may also be employed in accordance with this invention – such as those described by Cohen et al., J. Med. Chem., 33, pp. 883-894 (1990); Navia and Murcko (1992) Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to PLK may be computationally evaluated. Specific computer software may be used to evaluate the efficiency of binding (eg. to evaluate compound deformation energy and electrostatic interaction), such as QUANTA/CHARMM (Accelrys Inc., USA) and Insight II/Discover (Biosym Technologies Inc., San Diego, Calif., USA). These programs may be implemented, for instance, using a suitable workstation. Other hardware systems and software packages will be known to those persons skilled in the art.

Once a PLK-modulating compound has been selected or designed, as described above, substitutions may be made (eg. in atoms or side groups) to improve or modify the binding properties. The substitutions may be conservative ie. the replacement group may have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analysed for efficiency of binding to PLK by the same computer methods described above.

Candidate compounds and modulators of PLK etc. which are identified using the methods of the present invention may be screened in assays. Screening can be, for example in vitro, in cell culture, and/or in vivo. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity.

25

5

Current screening technologies are described in Handbook of Drug Screening, edited by Ramakrishna Seethala, Prabhavathi B. Fernandes. New York, NY, Marcel Deltker, 2001.

The term "PLK modulator" may refer to a single entity or a combination of entities.

The PLK modulator may be an antagonist or an agonist of PLK.

As used herein, the term "agonist" means any entity, which is capable of interacting (eg. binding) with PLK and which is capable of increasing a proportion of the PLK that is in an active form, resulting in an increased biological response.

As used herein, the term "antagonist" means any entity, which is capable of interacting (eg. binding) with PLK and which is capable of decreasing (eg. inhibiting) a proportion of the PLK that is in an active form, resulting in a decreased biological response.

12

Preferably, the PLK modulators of the present invention are antagonists of PLK.

The modulator of PLK may be an organic compound or other chemical. The modulator of PLK may be a compound, which is obtainable from or produced by any suitable source, whether natural or artificial. The modulator of PLK may be an amino acid molecule, a polypeptide, or a chemical derivative thereof, or a combination thereof. The modulator of PLK may even be a polynucleotide molecule, which may be a sense or an anti-sense molecule. The modulator of PLK may even be an antibody.

The modulator of PLK may be designed or obtained from a library of compounds, which may comprise peptides, as well as other compounds, such as small organic molecules.

25

30

10

By way of example, the modulator of PLK may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic agent, a semi-synthetic agent, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised agent, a peptide cleaved from a whole protein, or a peptide synthesised synthetically (such as, by way of example, either using a peptide synthesiser or by recombinant techniques or combinations thereof, a recombinant agent,

an antibody, a natural or a non-natural agent, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof).

5

10

15

20

25

Typically, the modulator of PLK will be an organic compound. Typically, the organic compounds will comprise two or more hydrocarbyl groups. Here, the term "hydrocarbyl group" means a group comprising at least C and H and may optionally comprise one or more other suitable substituents. Examples of such substituents may include halo-, alkoxy-, nitro-, an alkyl group, a cyclic group etc. In addition to the possibility of the substituents being a cyclic group, a combination of substituents may form a cyclic group. If the hydrocarbyl group comprises more than one C then those carbons need not necessarily be linked to each other. For example, at least two of the carbons may be linked via a suitable element or group. Thus, the hydrocarbyl group may contain hetero atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for instance, sulphur, nitrogen and oxygen. For some applications, preferably the modulator of PLK comprises at least one cyclic group. The cyclic group may be a polycyclic group, such as a non-fused polycyclic group. For some applications, the modulator of PLK comprises at least the one of said cyclic groups linked to another hydrocarbyl group.

The modulator of PLK may contain halo groups, for example, fluoro, chloro, bromo or iodo groups, or one or more of alkyl, alkoxy, alkenyl, alkylene and alkenylene groups, each of which may be branched or unbranched.

The modulator of PLK may be a structurally novel modulator of PLK, or may be an analogue of a known modulator of PLK.

Preferably, the PLE modulators have improved properties over those previously

The modulator of PLK may be used in combination with one or more other pharmaceutically active agents. If combinations of active agents are administered, then they may be administered simultaneously, separately or sequentially.

5 CANDIDATE COMPOUNDS

As used herein, the term "candidate compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not.

The candidate compound may be designed or obtained from a library of compounds, 10 which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the candidate compound may be a natural substance, a biological macromolecule, or an extract made from biological materials - such as bacteria, fungi, or animal (particularly mammalian) 15 cells or tissues, an organic or an inorganic molecule, a synthetic candidate compound, a semi-synthetic candidate compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised candidate compound, a peptide cleaved from a whole protein, or a peptide synthesised synthetically, for example, either using a peptide synthesiser or by recombinant techniques or combinations thereof, a recombinant 20 candidate compound, a natural or a non-natural candidate compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof. The candidate compound may even be a compound that is a modulator of PLK, such as a known inhibitor of PLK, that has been modified in some way eg. by recombinant DNA techniques or chemical synthesis techniques.

25

Typically, the candidate compound will be prepared by recombinant DNA techniques and/or chemical synthesis techniques.

Once a candidate compound capable of interacting PLK has been identified, further steps may be carried out to select and/or to modify the candidate compounds and/or to modify existing compounds, such that they are able to modulate PLK.

In one aspect, the modulator of PLK may act as a model (for example, a template) for the development of other compounds.

A further aspect relates to the use of candidate compounds or PLK modulators identified by the assays and methods of the invention in one or more model systems, for example, in a biological model, a disease model, or a model for PLK inhibition. Such models may be used for research purposes and for elucidating further details of the biological, physicochemical, pharmacological and/or pharmacokinetic activity of a particular candidate compound. By way of example, the candidate compounds or PLK modulators of the present invention may be used in biological models or systems in which the cell cycle is known to be of particular significance, e.g. in models relating to cell fertilization, especially in animals.

MIMETIC

1

5

10

25

As used herein, the term "mimetic" relates to any chemical which includes, but is not limited to, a peptide, polypeptide, antibody or other organic chemical which has the same qualitative activity or effect as a known compound. That is, the mimetic is a functional equivalent of a known compound.

20 - CHEMICAL SYNTHESIS METHODS

Preferably, the modulator of PLK of the present invention may be prepared by chemical synthesis techniques.

It will be apparent to those skilled in the art that sensitive functional groups may need to be protected and deprotected during synthesis of a compound of the invention. This may be achieved by conventional techniques, for example as described in "Protective Groups in Organic Synthesis" by T W Greene and P G M Wuts. John Wiley and Sons Inc. (1991),

possible during e.g. a guanylation step. It should be possible to circumvent potential problems such as this by choice of reaction sequence, conditions, reagents, protection/deprotection regimes, etc. as is well-known in the art.

5 The compounds and salts may be separated and purified by conventional methods.

10

Separation of diastereomers may be achieved by conventional techniques, e.g. by fractional crystallisation, chromatography or H.P.L.C. of a stereoisomeric mixture of a compounds or suitable salts or derivatives thereof. An individual enantiomer of a compound may also be prepared from a corresponding optically pure intermediate or by resolution, such as by H.P.L.C. of the corresponding racemate using a suitable chiral support or by fractional crystallisation of the diastereomeric salts formed by reaction of the corresponding racemate with a suitably optically active acid or base.

PLK, modulators of PLK or variants, homologues, derivatives, fragments or mimetics thereof may be produced using chemical methods to synthesise the PLK or the modulator of PLK in whole or in part. For example, a PLK peptide or a modulator of PLK that is a peptide can be synthesised by solid phase techniques, cleaved from the resin, and purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures And Molecular Principles, WH Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra).

Synthesis of peptides (or variants, homologues, derivatives, fragments or mimetics thereof) may be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences comprising the modulator of PLK, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant modulator of PLK.

CHEMICAL MODIFICATION

In one embodiment, the modulator of PLK may be a chemically modified modulator of PLK. The chemical modification of a modulator of PLK may either enhance or reduce interactions between the modulator of PLK and the target, such as hydrogen bonding interactions, charge interactions, hydrophobic interactions, van der Waals interactions or dipole interactions.

PROCESS

5

Another aspect of the invention relates to a process comprising the steps of:

- 10 (a) performing the method according to the invention, or an assay according to the invention;
 - (b) identifying one or more modulators of PLK; and
 - (c) preparing a quantity of said one or more PLK modulators.
- 15 A further aspect of the invention relates to a process comprising the steps of:
 - (a) performing the method according to the invention, or an assay according to the invention;
 - (b) identifying one or more PLK modulators; and
 - (c) preparing a pharmaceutical composition comprising said one or more identified

20 PLK modulators.

A further aspect relates to a process comprising the steps of:

- (a) performing the method according to the invention, or an assay according to the invention;
- 25 (b) identifying one or more PLK modulators;
 - (c) modifying said one or more PLK modulators; and
 - (d) optionally preparing a pharmaceutical composition comprising said one or more

acceptable carrier, diluent, excipient or adjuvant or any combination thereof. Even though the PLK modulators or candidate compounds (including their pharmaceutically acceptable salts, esters and pharmaceutically acceptable solvates) can be administered alone, they will generally be administered in admixture with a pharmaceutical carrier, excipient or diluent, particularly for human therapy. The pharmaceutical compositions may be for human or animal usage in human and veterinary medicine.

Examples of such suitable excipients for the various different forms of pharmaceutical compositions described herein may be found in the "Handbook of Pharmaceutical Excipients, 2nd Edition, (1994), Edited by A Wade and PJ Weller.

Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985).

15

10

5

Examples of suitable carriers include lactose, starch, glucose, methyl cellulose, magnesium stearate, mannitol, sorbitol and the like. Examples of suitable diluents include ethanol, glycerol and water.

20

The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as, or in addition to, the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).

25

Examples of suitable binders include starch, gelatin, natural sugars such as glucose, anhydrous lactose, free-flow lactose, beta-lactose, corn sweeteners, natural and synthetic gums, such as acacia, tragacanth or sodium alginate, carboxymethyl cellulose and polyethylene glycol.

30

Examples of suitable lubricants include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium PLKtate, sodium chloride and the like.

Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may be also used.

5

10

15

20

25

SALTS/ESTERS

The PLK modulators or candidate compounds of the present invention can be present as salts or esters, in particular pharmaceutically acceptable salts or esters.

Pharmaceutically acceptable salts of the PLK modulators or candidate compounds of the invention include suitable acid addition or base salts thereof. A review of suitable pharmaceutical salts may be found in Berge et al, J Pharm Sci, 66, 1-19 (1977). Salts are formed, for example with strong inorganic acids such as mineral acids, e.g. sulphuric acid, phosphoric acid or hydrohalic acids; with strong organic carboxylic acids, such as alkanecarboxylic acids of 1 to 4 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as (C₁-C₄)-alkyl- or aryl-sulfonic acids which are unsubstituted or substituted (for example, by a halogen) such as methane- or p-toluene sulfonic acid.

Esters are formed either using organic acids or alcohols/hydroxides, depending on the functional group being esterified. Organic acids include carboxylic acids, such as alkanecarpoxylic acids of 1 to 12 carbon atoms which are unsubstituted or substituted (e.g. by halogen), such as accerts acid; with contrated or uncontrated discrepancies acid.

sulfonic acid. Suitable hydroxides include inorganic hydroxides, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminium hydroxide. Alcohols include alkanealcohols of 1-12 carbon atoms which may be unsubstituted or substituted, e.g. by a halogen).

5

10

15

20

25

30

ENANTIOMERS/TAUTOMERS

In all aspects of the present invention previously discussed, the invention includes, where appropriate all enantiomers and tautomers of the PLK modulators or candidate compounds of the invention. The man skilled in the art will recognise compounds that possess an optical properties (one or more chiral carbon atoms) or tautomeric characteristics. The corresponding enantiomers and/or tautomers may be isolated/prepared by methods known in the art.

STEREO AND GEOMETRIC ISOMERS

Some of the PLK modulators or candidate compounds of the invention may exist as stereoisomers and/or geometric isomers, e.g. they may possess one or more asymmetric and/or geometric centres and so may exist in two or more stereoisomeric and/or geometric forms. The present invention contemplates the use of all the individual stereoisomers and geometric isomers of those agents, and mixtures thereof. The terms used in the claims encompass these forms, provided said forms retain the appropriate functional activity (though not necessarily to the same degree).

The present invention also includes all suitable isotopic variations of the PLK modulators or candidate compounds, or pharmaceutically acceptable salts thereof. An isotopic variation of a PLK modulator or candidate compound of the present invention or a pharmaceutically acceptable salt thereof is defined as one in which at least one atom is replaced by an atom having the same atomic number but an atomic mass different from the atomic mass usually found in nature. Examples of isotopes that can be incorporated into the agent and pharmaceutically acceptable salts thereof include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulphur, fluorine and chlorine such as ²H, ³H, ¹³C, ¹⁴C, ¹⁵N, ¹⁷O, ¹⁸O, ³¹P, ³²P, ³⁵S, ¹⁸F and ³⁶Cl, respectively. Certain isotopic variations of the agent and pharmaceutically acceptable salts thereof,

for example, those in which a radioactive isotope such as ³H or ¹⁴C is incorporated, are useful in drug and/or substrate tissue distribution studies. Tritiated, i.e., ³H, and carbon-14, i.e., ¹⁴C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with isotopes such as deuterium, i.e., ²H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased *in vivo* half-life or reduced dosage requirements and hence may be preferred in some circumstances. Isotopic variations of the PLK modulators or candidate compounds of the present invention can generally be prepared by conventional procedures using appropriate isotopic variations of suitable reagents.

10

20

25

5

SOLVATES

The present invention also includes solvate forms of the PLK modulators or candidate compounds. The terms used in the claims encompass these forms.

15 POLYMORPHS

The invention furthermore relates to PLK modulators or candidate compounds of the present invention in their various crystalline forms, polymorphic forms and (an)hydrous forms. It is well established within the pharmaceutical industry that chemical compounds may be isolated in any of such forms by slightly varying the method of purification and or isolation form the solvents used in the synthetic preparation of such compounds.

PRODRUGS

The invention further includes PLK modulators or candidate compounds of the present invention in prodrug form. Such prodrugs are generally compounds of the invention wherein one or more appropriate groups have been modified such that the modification may be revereely upon administration to a formation or manuscripton subject. Onch

THERAPEUTIC USE

5

20

25

The PLK modulators or candidate compounds of the present invention have been found to possess anti-proliferative activity and are therefore believed to be of use in the treatment of proliferative disorders, such as cancers, leukaemias or other disorders associated with uncontrolled cellular proliferation such as psoriasis and restenosis.

A further aspect of the invention therefore relates to a method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a compound selected from the following:

- 10 (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethylthiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;
- or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK such that said proliferative disorder is treated.

Another aspect relates to a method of treating a proliferative disorder comprising inhibiting PLK by administering to a subject in need thereof, a therapeutically effective amount of a compound selected from the following:

- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that treatment of the proliferative disorder occurs.

Another aspect of the invention relates to a method of preventing and/or treating a PLK related disorder comprising administering a PLK modulator or candidate compound of the invention and/or a pharmaceutical composition according to the invention, wherein said

PLK modulator, said candidate compound or said pharmaceutical, is capable of causing a beneficial preventative and/or therapeutic effect.

Preferably, for this aspect, the PLK modulator or candidate compound is selected from the following:

(i) 5'-thioadenosine, or a derivative thereof:

5

10

15

- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof.

A further aspect of the invention relates to the use of a PLK modulator or candidate compound according to the invention in the preparation of a medicament for treating a PLK related disorder. Preferably, the PLK related disorder is a proliferative disorder, more preferably cancer.

As used herein the phrase "preparation of a medicament" includes the use of the compound directly as the medicament in addition to its use in a screening programme for further therapeutic agents or in any stage of the manufacture of such a medicament.

Another aspect relates to a method of treating a PLK dependent disorder in a subject in need thereof, said method comprising administering to said subject a compound selected from the following:

- 25 (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothicael-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-; 1.4-lizzah 4-kitzaa - 5-ylyzanitin-1-ylyzanitykazza ez- 4-5-1-kanza-4-

Preferably, the PLK dependent disorder is a disorder associated with increased PLK activity. Even more preferably, the disorder is cancer.

The term "proliferative disorder" is used herein in a broad sense to include any disorder that requires control of the cell cycle, for example cardiovascular disorders such as restenosis and cardiomyopathy, auto-immune disorders such as glomerulonephritis and rheumatoid arthritis, dermatological disorders such as psoriasis, anti-inflammatory, anti-fungal, antiparasitic disorders such as malaria, emphysema and alopecia. In these disorders, the compounds of the present invention may induce apoptosis or maintain stasis within the desired cells as required.

Preferably, the proliferative disorder is a cancer or leukaemia.

In another preferred embodiment, the proliferative disorder is psoriasis.

15

20

25

10

5

The compounds of the invention may inhibit any of the steps or stages in the cell cycle, for example, formation of the nuclear envelope, exit from the quiescent phase of the cell cycle (G0), G1 progression, chromosome decondensation, nuclear envelope breakdown, START, initiation of DNA replication, progression of DNA replication, termination of DNA replication, centrosome duplication, G2 progression, activation of mitotic or meiotic functions, chromosome condensation, centrosome separation, microtubule nucleation, spindle formation and function, interactions with microtubule motor proteins, chromatid separation and segregation, inactivation of mitotic functions, formation of contractile ring, and cytokinesis functions. In particular, the compounds of the invention may influence certain gene functions such as chromatin binding, formation of replication complexes, replication licensing, phosphorylation or other secondary modification activity, proteolytic degradation, microtubule binding, actin binding, septin binding, microtubule organising centre nucleation activity and binding to components of cell cycle signalling pathways.

30

As defined herein, an anti-proliferative effect within the scope of the present invention may be demonstrated by the ability to inhibit cell proliferation in an *in vitro* whole cell

assay, for example using any of the cell lines A549, HeLa, HT-29, MCF7, Saos-2, CCRF-CEM, HL-60 and K-562, or by showing kinase inhibition in an appropriate assay. These assays, including methods for their performance, are described in more detail in the accompanying Examples. Using such assays it may be determined whether a compound is anti-proliferative in the context of the present invention.

In one preferred embodiment, the compound of the invention is administered orally.

5

10

20

25

In one embodiment of the invention, the compound of the invention is administered in an amount sufficient to inhibit at least one PLK enzyme.

In a more preferred embodiment of the invention, the compound of the invention is administered in an amount sufficient to inhibit PLK1.

In one particularly preferred embodiment, the compounds of the invention are ATP-antagonistic inhibitors of PLK1.

In the present context ATP antagonism refers to the ability of an inhibitor compound to diminish or prevent PLK catalytic activity, i.e. phosphotransfer from ATP to a macromolecular PLK substrate, by virtue of reversibly or irreversibly binding at the enzyme's active site in such a manner as to impair or abolish ATP binding.

In another preferred embodiment, the compound of the invention is administered in an amount sufficient to inhibit PLK2 and/or PLK3.

Yet another aspect relates to a method of inhibiting PLK in a cell comprising contacting said cell with an amount of a compound selected from the following:

f dimension of the state of the state of

or a pharmaceutically acceptable salt thereof, such that PLK is inhibited in said cell.

Preferably, the cell is a cancer cell.

5 ADMINISTRATION

The pharmaceutical compositions of the present invention may be adapted for oral, rectal, vaginal, parenteral, intramuscular, intraperitoneal, intraarterial, intrathecal, intrabronchial, subcutaneous, intradermal, intravenous, nasal, buccal or sublingual routes of administration.

10

25

30

For oral administration, particular use is made of compressed tablets, pills, tablets, gellules, drops, and capsules. Preferably, these compositions contain from 1 to 250 mg and more preferably from 10-100 mg, of active ingredient per dose.

د, بي

Other forms of administration comprise solutions or emulsions which may be injected intravenously, intraarterially, intrathecally, subcutaneously, intradermally, intraperitoneally or intramuscularly, and which are prepared from sterile or sterilisable solutions. The pharmaceutical compositions of the present invention may also be in form of suppositories, pessaries, suspensions, emulsions, lotions, ointments, creams, gels, sprays, solutions or dusting powders.

An alternative means of transdermal administration is by use of a skin patch. For example, the active ingredient can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin. The active ingredient can also be incorporated, at a concentration of between 1 and 10% by weight, into an ointment consisting of a white wax or white soft paraffin base together with such stabilisers and preservatives as may be required.

Injectable forms may contain between 10 - 1000 mg, preferably between 10 - 250 mg, of active ingredient per dose.

Compositions may be formulated in unit dosage form, i.e., in the form of discrete portions containing a unit dose, or a multiple or sub-unit of a unit dose.

DOSAGE

A person of ordinary skill in the art can easily determine an appropriate dose of one of the instant compositions to administer to a subject without undue experimentation. Typically, a physician will determine the actual dosage which will be most suitable for an individual patient and it will depend on a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy. The dosages disclosed herein are exemplary of the average case. There can of course be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

Depending upon the need, the agent may be administered at a dose of from 0.01 to 30 mg/kg body weight, such as from 0.1 to 10 mg/kg, more preferably from 0.1 to 1 mg/kg body weight.

20

In an exemplary embodiment, one or more doses of 10 to 150 mg/day will be administered to the patient for the treatment of malignancy.

PLK FRAGMENT

Another aspect of the invention relates to a fragment of PLK, or a homologue, mutant, or derivative thereof, comprising a ligand binding domain, said ligand binding domain being defined by the amina acid residue structural coordinates selected from one or

As used herein, the term "portion thereof" means the structural co-ordinates corresponding to a sufficient number of amino acid residues of the PLK sequence (or homologue thereof) that are capable of interacting with a candidate compound capable of binding to the LBD. This term includes ligand binding domain amino acid residues having amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural co-ordinates provided in the homology model may contain a subset of the amino acid residues in the LBD which may be useful in the modelling and design of compounds that bind to the LBD.

5

15

In one preferred embodiment, the fragment of PLK, or a homologue, mutant or derivative thereof, corresponds to a portion of the structure co-ordinates of Table 2.

Another aspect of the invention relates to the use of the above-described fragment of PLK, or a homologue, mutant, or derivative thereof, in an assay for identifying candidate compounds capable of modulating PLK.

The PLK proteins produced by a host recombinant cell may be secreted or may be contained intracellularly depending on the nucleotide sequence and/or the vector used.

- As will be understood by those skilled in the art, expression vectors containing a PLK encoding nucleotide sequence or a mutant, variant, homologue, derivative or fragment thereof, may be designed with signal sequences which direct secretion of the PLK coding sequences through a particular prokaryotic or eukaryotic cell membrane.
- The PLK encoding sequence may be fused (eg. ligated) to nucleotide sequences encoding a polypeptide domain which will facilitate purification of soluble proteins (Kroll *DJ et al* (1993) DNA Cell Biol 12:441-53). Preferably, the polypeptide domain which facilitates purification of soluble proteins is fused in frame with the PLK encoding sequence. Such purification facilitating domains include, but are not limited to, metal chelating peptides—such as histidine-tryptophan modules that allow purification on immobilised metals (Porath J (1992) Protein Expr Purif 3, 263-281), protein A domains that allow purification on immobilised immunoglobulin, and the domain utilised in the FLAGS extension/affinity

purification system (Immunex Corp, Seattle, WA). The inclusion of a cleavable linker sequence such as Factor XA or enterokinase (Invitrogen, San Diego, CA) between the purification domain and PLK is useful to facilitate purification.

5 NUCLEOTIDE SEQUENCES

As used herein, the term "nucleotide sequence" refers to nucleotide sequences, oligonucleotide sequences, polynucleotide sequences and variants, homologues, fragments and derivatives thereof (such as portions thereof) which comprise the nucleotide sequences encoding PLK.

10

15

20

25

The nucleotide sequence may be DNA or RNA of genomic or synthetic or recombinant origin, which may be double-stranded or single-stranded whether representing the sense or antisense strand or combinations thereof.

Preferably, the term nucleotide sequence is prepared by use of recombinant DNA techniques (e.g. recombinant DNA). The nucleotide sequences may include within them synthetic or modified nucleotides. A number of different types of modification to oligonucleotides are known in the art. These include methylphosphonate and phosphorothicate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the nucleotide sequences described herein may be modified by any method available in the art.

It will be understood by a skilled person that numerous different nucleotide sequences can encode the same protein as a result of the degeneracy of the genetic code. In addition, it is to be understood that skilled persons may, using routine techniques, make nucleotide substitutions that do not substantially affect the activity encoded by the

a functional protein according to the present invention (or even a modulator of PLK according to the present invention if said modulator comprises a nucleotide sequence or an amino acid sequence).

5 AMINO ACID SEQUENCES

15

25

As used herein, the term "amino acid sequence" is synonymous with the term "polypeptide" and/or the term "protein". In some instances, the term "amino acid sequence" is synonymous with the term "peptide".

The amino acid sequence may be isolated from a suitable source, or it may be made synthetically or it may be prepared by use of recombinant DNA techniques.

VARIANTS/HOMOLOGUES/DERIVATIVES/FRAGMENTS

The PLK described herein is intended to include any polypeptide, which has the activity of the naturally occurring PLK and includes all vertebrate and mammalian forms. Such terms also include polypeptides that differ from naturally occurring forms of PLK by having amino acid deletions, substitutions, and additions, but which retain the activity of PLK.

47.7

The term "variant" is used to mean a naturally occurring polypeptide or nucleotide sequences which differs from a wild-type or a native sequence.

The term "fragment" indicates that a polypeptide or nucleotide sequence comprises a fraction of a wild-type or a native sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. The sequence may also comprise other elements of sequence, for example, it may be a fusion protein with another protein. Preferably the sequence comprises at least 50%, more preferably at least 65%, more preferably at least 80%, most preferably at least 90% of the wild-type sequence.

The present invention also encompasses the use of variants, homologues and derivatives of nucleotide and amino acid sequences. Here, the term "homologue" means an entity

having a certain homology with amino acid sequences or nucleotide sequences. Here, the term "homology" can be equated with "identity".

In the present context, an homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), it is preferred to express homology in terms of sequence identity.

5

15

25

An homologous sequence is taken to include a nucleotide sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence.

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

% homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Bestfit package the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

5

10

15

20

25

30

Calculation of maximum % homology therefore firstly requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid — Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8)

di Car

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default

values or a custom symbol comparison table if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62. Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

5

10

15

The sequences may also have deletions, insertions or substitutions of amino acid residues, which produce a silent change and result in a functionally equivalent substance. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

Conservative substitutions may be made, for example according to the Table below.

20- Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	GAP
		ILV
	Polar - uncharged	CSTM
		иÓ
	D-lor eherged	D.E.
	,	

occur i.e. like-for-like substitution such as basic for basic, acidic for acidic, polar for polar etc. Non-homologous substitution may also occur i.e. from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.

5

10

15

20

25

30

Replacements may also be made by unnatural amino acids include; alpha* and alpha-disubstituted* amino acids, N-alkyl amino acids*, lactic acid*, halide derivatives of natural amino acids such as trifluorotyrosine*, p-Cl-phenylalanine*, p-Br-phenylalanine*, p-I-phenylalanine*, L-allyl-glycine*, β-alanine*, L-α-amino butyric acid*, L-γ-amino butyric acid*, L-α-amino isobutyric acid*, L-ε-amino caproic acid*, 7-amino heptanoic acid*, L-methionine sulfone*, L-norleucine*, L-norvaline*, p-nitro-L-phenylalanine*, L-hydroxyproline*, L-thioproline*, methyl derivatives of phenylalanine (Phe) such as 4-methyl-Phe*, pentamethyl-Phe*, L-Phe (4-amino)*, L-Tyr (methyl)*, L-Phe (4-isopropyl)*, L-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxyl acid)*, L-diaminopropionic acid * and L-Phe (4-benzyl)*. The notation * has been utilised for the purpose of the discussion above (relating to homologous or non-homologous substitution), to indicate the hydrophobic nature of the derivative whereas * has been utilised to indicate the hydrophilic nature of the derivative, * indicates amphipathic characteristics.

The term "derivative" or "derivatised" as used herein includes chemical modification of an entity, such as candidate compound or a PLK modulator. Illustrative of such chemical modifications would be replacement of hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or β -alanine residues. A further form of variation, involves the presence of one or more amino acid residues in peptoid form, will be well understood by those skilled in the art. For the avoidance of doubt, "the peptoid form" is used to refer to variant amino acid

residues wherein the α -carbon substituent group is on the residue's nitrogen atom rather than the α -carbon. Processes for preparing peptides in the peptoid form are known in the art, for example Simon RJ et al., PNAS (1992) 89(20), 9367-9371 and Horwell DC, Trends Biotechnol. (1995) 13(4), 132-134.

5

15

20

25

MUTANT

As used herein, the term "mutant" refers to PLK comprising one or more changes in the wild-type PLK sequence.

The term "mutant" is not limited to amino acid substitutions of the amino acid residues in PLK, but also includes deletions or insertions of nucleotides which may result in changes in the amino acid residues in the amino acid sequence of PLK.

The present invention also enables the solving of the crystal structure of PLK mutants. More particularly, by virtue of the present invention, the location of the active site of PLK based on the structural coordinates of Table 2 permits the identification of desirable sites for mutation. For example, one or more mutations may be directed to a particular site - such as the active site - or combination of sites of PLK. Similarly, only a location on, at or near the enzyme surface may be replaced, resulting in an altered surface charge of one or more charge units, as compared to the wild-type enzyme. Alternatively, an amino acid residue in PLK may be chosen for replacement based on its hydrophilic or hydrophobic characteristics.

Such mutants may be characterised by any one of several different properties as compared with wild-type PLK. For example, such mutants may have altered surface charge of one or more charge units. or have an increased stability to subunit dissociation or an altered substrate specificity in comparison with, or a higher specific

may be generated by site specific replacement of a particular amino acid with an unnaturally occurring amino acid. This may be achieved by growing a host organism capable of expressing either the wild-type or mutant polypeptide on a growth medium depleted of one or more natural amino acids but enriched in one or more corresponding unnaturally occurring amino acids.

HOST CELLS

5

10

15

20

30

As used herein, the term "host cell" refers to any cell that comprises nucleotide sequences that are of use in the present invention, for example, nucleotide sequences encoding PLK.

Host cells may be transformed or transfected with a nucleotide sequence contained in a vector e.g. a cloning vector. Preferably, said nucleotide sequence is carried in a vector for the replication and/or expression of the nucleotide sequence. The cells will be chosen to be compatible with the said vector and may for example be prokaryotic (for example bacterial), fungal, yeast or plant cells.

wast.

The gram-negative bacterium E. coli is widely used as a host for cloning nucleotide sequences. This organism is also widely used for heterologous nucleotide sequence expression. However, large amounts of heterologous protein tend to accumulate inside the cell. Subsequent purification of the desired protein from the bulk of E. coli intracellular proteins can sometimes be difficult.

In contrast to *E. coli*, bacteria from the genus Bacillus are very suitable as heterologous hosts because of their capability to secrete proteins into the culture medium. Other bacteria suitable as hosts are those from the genera Streptomyces and Pseudomonas.

Depending on the nature of the polynucleotide and/or the desirability for further processing of the expressed protein, eukaryotic hosts including yeasts or other fungi may be preferred. In general, yeast cells are preferred over fungal cells because yeast cells are easier to manipulate. However, some proteins are either poorly secreted from

the yeast cell, or in some cases are not processed properly (e.g. hyperglycosylation in yeast). In these instances, a different fungal host organism should be selected.

Examples of expression hosts are fungi - such as Aspergillus species (such as those described in EP-A-0184438 and EP-A-0284603) and Trichoderma species; bacteria - such as Bacillus species (such as those described in EP-A-0134048 and EP-A-0253455), Streptomyces species and Pseudomonas species; yeasts - such as Kluyveromyces species (such as those described in EP-A-0096430 and EP-A-0301670) and Saccharomyces species; and mammalian cells - such as CHO-K1 cells.

10

5

The use of host cells may provide for post-translational modifications as may be needed to confer optimal biological activity on recombinant expression products of the present invention.

Aspects of the present invention also relate to host cells comprising the PLK constructs of the present invention. The PLK constructs may comprise a nucleotide sequence for replication and expression of the sequence. The cells will be chosen to be compatible with the vector and may for example be prokaryotic (for example bacterial), fungal, yeast or plant cells.

20

25

In a preferred embodiment, the host cells are mammalian cells, such as CHO-K1 cells.

VECTOR

Aspects of the present invention relate to a vector comprising a nucleotide sequence, such as a nucleotide sequence encoding PLK or a modulator of PLK, administered to a subject.

yreferiold TITU, ylis modellam of FIII lawernes traffic followed using a general and

and by way of example, some vectors used in recombinant DNA techniques allow entities, such as a segment of DNA (such as a heterologous DNA segment, such as a heterologous cDNA segment), to be transferred into a host and/or a target cell for the purpose of replicating the vectors comprising nucleotide sequences and/or expressing the proteins encoded by the nucleotide sequences. Examples of vectors used in recombinant DNA techniques include, but are not limited to, plasmids, chromosomes, artificial chromosomes or viruses.

The term "vector" includes expression vectors and/or transformation vectors.

10

20

25

The term "expression vector" means a construct capable of in vivo or in vitrolex vivo expression.

The term "transformation vector" means a construct capable of being transferred from one species to another.

REGULATORY SEQUENCES

In some applications, nucleotide sequences are operably linked to a regulatory sequence which is capable of providing for the expression of the nucleotide sequence, such as by a chosen host cell. By way of example, a vector comprising the PLK nucleotide sequence is operably linked to such a regulatory sequence i.e. the vector is an expression vector.

The term "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.

30 The term "regulatory sequences" includes promoters and enhancers and other expression regulation signals.

The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site.

Enhanced expression of a nucleotide sequence, for example, a nucleotide sequence encoding PLK, may also be achieved by the selection of heterologous regulatory regions, e.g. promoter, secretion leader and terminator regions, which serve to increase expression and, if desired, secretion levels of the protein of interest from the chosen expression host and/or to provide for the inducible control of the expression of PLK. In eukaryotes, polyadenylation sequences may be operably connected to the PLK nucleotide sequence.

Preferably, the PLK nucleotide sequence is operably linked to at least a promoter.

10

15

20

25

Aside from the promoter native to the gene encoding the PLK nucleotide sequence, other promoters may be used to direct expression of the PLK polypeptide. The promoter may be selected for its efficiency in directing the expression of the PLK nucleotide sequence in the desired expression host.

In another embodiment, a constitutive promoter may be selected to direct the expression of the PLK-nucleotide sequence. Such an expression construct may provide additional advantages since it circumvents the need to culture the expression hosts on a medium containing an inducing substrate.

Hybrid promoters may also be used to improve inducible regulation of the expression construct.

The promoter can additionally include features to encure or to increase expression in a

light or stress inducible elements. Also, suitable elements to enhance transcription or translation may be present.

EXPRESSION VECTOR

(

15

30

- Preferably, nucleotide sequences, such as nucleotide sequences encoding PLK or modulators of PLK, are inserted into a vector that is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell.
- Nucleotide sequences produced by a host recombinant cell may be secreted or may be contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors can be designed with signal sequences, which direct secretion of the nucleotide sequence through a particular prokaryotic or eukaryotic cell membrane.

Preferably, the expression vectors are stably expressed in CHO cells as described previously (Ehlers *et al.* (1996) *Biochemistry 35*, 9549-9559). More preferably, the expression vectors are pLEN- tACEΔ36g(1, 2, 3, 4) and pLEN- tACEΔ36g(1,3).

20 FUSION PROTEINS

PLK or a modulator of PLK may be expressed as a fusion protein to aid extraction and purification and/or delivery of the modulator of PLK or the PLK protein to an individual and/or to facilitate the development of a screen for modulators of PLK.

25 Examples of fusion protein partners include glutathione-S-transferase (GST), 6xHis, GAL4 (DNA binding and/or transcriptional activation domains) and β-galactosidase.

It may also be convenient to include a proteolytic cleavage site between the fusion protein partner and the protein sequence of interest to allow removal of fusion protein sequences. Preferably, the fusion protein will not hinder the activity of the protein of interest.

The fusion protein may comprise an antigen or an antigenic determinant fused to the substance of the present invention. In this embodiment, the fusion protein may be a non-naturally occurring fusion protein comprising a substance, which may act as an adjuvant in the sense of providing a generalised stimulation of the immune system. The antigen or antigenic determinant may be attached to either the amino or carboxy terminus of the substance.

ORGANISM

5

10

20

25

The term "organism" in relation to the present invention includes any organism that could comprise PLK and/or modulators of PLK. Examples of organisms may include mammals, fungi, yeast or plants.

Preferably, the organism is a mammal. More preferably, the organism is a human.

15 TRANSFORMATION

As indicated earlier, the host organism can be a prokaryotic or a eukaryotic organism. Examples of suitable prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Teachings on the transformation of prokaryotic hosts are well documented in the art, for example see Sambrook et al (Molecular Cloning: A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory Press) and Ausubel *et al.*, Current Protocols in Molecular Biology (1995), John Wiley & Sons, Inc. Examples of suitable eukaryotic hosts include mammalian cells.

If a prokaryotic host is used then the nucleotide sequence, such as the PLK nucleotide sequence, may need to be suitably modified before transformation - such as by removal of introns.

Their fire treatest invanion also relates to the transformation of a heat call with a

sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing coding sequences can be designed with signal sequences which direct secretion of the coding sequences through a particular prokaryotic or eukaryotic cell membrane. Other recombinant constructions may join the coding sequence to nucleotide sequence encoding a polypeptide domain, which will facilitate purification of soluble proteins (Kroll *DJ et al* (1993) DNA Cell Biol 12:441-53) e.g. 6-His or Glutathione-S-transferase.

TRANSFECTION

Vectors comprising for example, the PLK nucleotide sequence, may be introduced into host cells, for example, mammalian cells, using a variety of methods.

Typical transfection methods include electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection, liposomes, immunoliposomes, lipofectin, cationic agent-mediated, cationic facial amphiphiles (CFAs) (*Nature Biotech*. (1996) 14, 556), multivalent cations such as spermine, cationic lipids or polylysine, 1, 2,-bis (oleoyloxy)-3-(trimethylammonio) propane (DOTAP)-cholesterol complexes (Wolff and Trubetskoy 1998 Nature Biotechnology 16: 421) and combinations thereof.

主張,看三流出

20

25

30

15

5

Uptake of nucleic acid constructs by mammalian cells is enhanced by several known transfection techniques for example those including the use of transfection agents. Example of these agents include cationic agents (for example calcium phosphate and DEAE-dextran) and lipofectants (for example lipofectamTM and transfectamTM). Typically, nucleic acid constructs are mixed with the transfection agent to produce a composition.

Such methods are described in many standard laboratory manuals - such as Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

The present invention is further described by way of example, and with reference to the following figures wherein:

Figure 1 shows multiple sequence alignment (Clustal W) of human PLK1 (P53350), PLK2 (Q9NYY3), and PLK3 (Q9H4B4).

Figure 2 shows a schematic view of PLK1 homology model in complex with ATP (stick model, labelled). The protein structure is indicated with a ribbon (loops, thin; helices, thick; sheets, arrows). The Cys residues are shown with space-filled atoms and are labelled.

Figure 3 shows sequence alignment of PLK1 and PKA kinase domains.

Figure 4 shows modelled complex between PLK1 and ATP (a) and 5'-thioadenosine (b). The positions of the thiol groups (SH) of Cys⁶⁷ and 5'thioadenosine are indicated.

Figure 5 shows dose response curves of PLK1 activity inhibition by various adenosine derivatives in the absence or presence of the reducing agent dithiothreitol (+DTT or – DTT).

Figure 6 shows kinetic analysis of PLK1 inhibition by 5'-thioadenosine.

Figure 7 shows modelled PLK1-bound conformations of ATP (a); 5'-thioadenosine (b); staurosporine (c); and 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol (d). Non-H atoms are labelled.

RYARDLES

10

15

20

Such techniques are explained in the literature. See, for example, J. Sambrook, E. F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Books 1-3, Cold Spring Harbor Laboratory Press; Ausubel, F. M. et al. (1995) and periodic supplements; Current Protocols in Molecular Biology, ch. 9, 13, and 16, John Wiley & Sons, New York, N.Y.); B. Roe, J. Crabtree, and A. Kahn, 1996, DNA Isolation and Sequencing: Essential Techniques, John Wiley & Sons; J. M. Polak and James O'D. McGee, 1990, In Situ Hybridization: Principles and Practice; Oxford University Press; M. J. Gait (Editor), 1984, Oligonucleotide Synthesis: A Practical Approach, Irl Press; D. M. J. Lilley and J. E. Dahlberg, 1992, Methods of Enzymology: DNA Structure Part A: Synthesis and Physical Analysis of DNA Methods in Enzymology, Academic Press; Using Antibodies: A Laboratory Manual: Portable Protocol NO. I by Edward Harlow, David Lane, Ed Harlow (1999, Cold Spring Harbor Laboratory Press, ISBN 0-87969-544-7); Antibodies: A Laboratory Manual by Ed Harlow (Editor), David Lane (Editor) (1988, Cold Spring Harbor Laboratory Press, ISBN 0-87969-314-2), 1855. Handbook of Drug Screening, edited by Ramakrishna Seethala, Prabhavathi B. Fernandes (2001, New York, NY, Marcel Dekker, ISBN 0-8247-0562-9); and Lab Ref: A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench, Edited Jane Roskams and Linda Rodgers, 2002, Cold Spring Harbor Laboratory, ISBN 0-87969-630-3. Each of these general texts is herein incorporated by reference.

* 610

Example 1

5

10

15

20

25

30

Construction of PLK1 homology model

The homology model for PLK1 kinase domain was generated using the program module Homology within the molecular modelling package Insight II (Accelrys, San Diego, CA) [38]. The sequence containing the kinase domain of PLK1 (residues 1 – 356) was employed in a FASTA sequence and structural search [39] in order to find the closest sequence-related kinase for which experimental structural information was available. For this search, the BLOSUM 50 scoring matrix [40] and a specific residue string value of 2 was employed. The closest match of known structure proved to be that of cAMP-dependent protein kinase (protein kinase A, PKA) with a sequence identity of

30 % and similarity of close to 50 % (Figure 3). Although these values are typically low for homology model building, the structural conservation of protein kinases was thought to allow a valid structure to be generated. Sequence alignment of PLK1 kinase domain with PKA in addition to CDK2 and ERK2 (which also were among the most homologous structures) indicated that the minimal kinase domain included residues 52 -308. For the sequence alignment, the PAM 120 multiple scoring matrix [41] was used with a dimension block of 0.6, a high significance p value of 0.0001, a not significant p value of 0.1, and a pair-wise threshold of 60. Using a combination of the three structures to generate coordinates for the regions that had the highest identity in each kinase (Table 1), a model structure for the kinase domain was constructed. The strategy generally involved using PKA to define the structurally conserved regions (SCRs) from which the coordinates were subsequently transferred. This was then followed by loop construction where the non-SCRs were generated by de-novo building and subsequent evaluation of the most realistic coordinates (in terms of energetics of the loop itself and the exclusion of loops leading to overlapping atoms). After loop building was completed for missing coordinates, the raw coordinates were then refined using successive rounds of end repair splice repairing using an omega force constant of 50, energy minimization (100 steps of steepest descent to a derivative of 5). The model was then completed through using a further minimisation and 1 ps of molecular dynamics to more fully explore the conformational space of the loop regions. The final model structure was then checked against databases of protein structures for bond length and dihedral angle violations. The results indicated that these as a whole were within acceptable limits with > 80 % of residues having phi-psi plots with the allowed region in Ramachandran space [42]. The coordinate file for the final PLK1 homology model -ATP complex in Brookhaven Protein Databank (PDB) format [43] is shown in Table 2.

Framale?

1

5

10

15

5

10

15

20

25

30

downstream of the ORF, by inclusion in the antisense PCR primer. The PCR product generated was cloned into pCR4-Topo (Invitrogen), and sequenced. The ORF was then sub-cloned as an Nhe I / Eco RI fragment into pSSP1, a derivative of bacmid transfer vector pFastBac HTa (Invitrogen). The PLK1 ORF was cloned into pSSP1 such that the resulting PLK1 translation product would have a 19 amino acid N-terminal tag (MSYYHHHHHHGMASDDDDK) containing a hexahistidine tag and an enterokinase cleavage site. The pSSP1-Plk1 expression cassette was transferred into bacmid DNA by transposition in E. coli DH10Bac (Invitrogen). Purified recombinant bacmid DNA was transfected into Sf9 cells, to produce an infective stock of recombinant baculovirus. Following subsequent amplification and titering of the baculoviral stock, this was used to infect Sf9 cells at a multiplicity of infection of approximately 3. His-tagged PLK1 was expressed by incubating the infected cells at 27 °C, with shaking. Two days after infection, the cells were collected by centrifugation. Prior to purification, PLK1 expression was confirmed by Western blotting. To the cell pellet from 150 mL Sf9 insect cell culture 10 mL lysis buffer [10 mM Tris-HCl pH 8.0, 150 ml NaCl, 20 mM βmercaptoethanol, 1 mM PMSF, 1 mM benzamidine, protease inhibitor cocktail (Sigma; 1: 1,000 diluted), 20 mM imidazolel, supplemented with 2 mM NaF and 1 mM Na₃VO₄, was added; the mixture was sonicated (6 × 20 s) on ice and centrifuged for 15 min at 15,000 r.p.m. The supernatant was filtered (0.45 µm filter) and the filtrate was applied to a pre-equilibrated (with 20 mL lysis buffer) 1.2-mL Ni-NTA agarose column (Qiagen). After incubation for 2 h at 4 °C, the non-bound fraction was eluted with was buffer (as lysis buffer but 300 mM NaCl and without imidazole). Protein was eluted with elution buffer (as lysis buffer but 100 mM NaCl, 250 mM imidazole, 0.02 % Nonidet P-40). Pooled fractions containing target protein were applied to an equilibrated (with dialysis buffer) 5-mL HiTrapTM desalting column (Amersham Biosciences) and eluted with dialysis buffer (25 mM Tris/MES pH 7.6, 1 mM βmercaptoethanol, 0.01 % Tween-20, 10 mM MgCl₂, 50 μM ATP, 100 mM NaCl, 1 mM PMSF, 1 mM benzamidine, 10 % glycerol). Pooled fractions containing pure target protein were centrifuged 15,000 r.p.m. for 15 min. The supernatant PLK1 stock solution was stored at -70 °C.

Example 3

PLK1 assay

5

10

20

25

PLK1 kinase activity was assayed using human CDC25C phosphatase as a substrate [4]. The assays were carried out using 96-well microtitre plates by incubating CDC25C (2 μ g/well) with 1 μ g/well of purified human recombinant PLK1 and varying concentrations of the candidate compound in a total volume of 25 μ L of 20 mM Tris/HCl buffer pH 7.5, supplemented with 25 mM β -glycerophosphate, 5 mM EGTA, 1 mM DTT, and 1 mM NaVO₃. Reaction was initiated by the addition of 100 μ M ATP and 0.5 μ Ci of [γ -³²P]-ATP. The reaction mixture was incubated at 30 °C for 1 h, then stopped with 75 mM aq orthophosphoric acid, transferred onto a 96-well P81 filter plate (Whatman), dried, and the extent of CDC25C phosphorylation was assessed by scintillation counting using a Packard TopCount plate reader.

المنافض والمنافض والمنافي والمنافي والمناف والمنافي والمنافض والمن

Example 4

15 Casein kinase II (CKII) assay

Human recombinant CKII activity was assayed using the peptide H-Arg-Arg-Arg-Glu-Glu-Glu-Glu-Glu-Glu-Glu-OH as a substrate. The assays were carried out using 96-well microtitre plates by incubating the peptide substrate (10 μM) with 20 Units/well of CKII (New England Biolabs) and varying concentrations of the candidate compound in a total volume of 25 μL of 25 mM MOPS buffer pH 7.0, supplemented with 25 mM β-glycerophosphate, 5 mM EGTA, 1 mM DTT, and 1 mM NaVO₃. Reaction was initiated by the addition of 100 μM ATP and 0.25 μCi of [γ-³²P]-ATP. The reaction mixture was incubated at 30 °C for 15 minutes, then stopped with 75 mM aq orthophosphoric acid, transferred onto a 96-well P81 filter plate (Whatman), dried, and the extent of peptide phosphorylation was assessed by scintillation counting using a Packard TopCount plate

thiazol-5-yl)-pyrimidin-2-ylamino]-phenol were synthesised in accordance with the methodology described in WO 01/72745. Staurosporine and derivatives thereof (such as CGP 41251 and UCN-01) are described in the literature [see for example, Gescher A., Gen Pharmacol. 1998, 31, p721-8].

5

Synthesis of 5'-deoxy-5-thio-adenosine (4)

5'-Deoxy-5-thio-adenosine (4) is a known compound [45] and it can be prepared readily from commercially available 2',3'-isopropylideneadenosine 1 as shown in Scheme 1 [46].

10

15

20

25

Scheme 1

5'-Deoxy-5'-acetylthio-2',3'-O-isopropylideneadenosine (2)

Diethyl azodicarboxyl-ate (3.4 mL, 21.73 mmol) was added drop-wise over 5 min to an ice-cold solution of triphenylphosphine (5.7 g, 21.73 mmol). The solution was stirred for 30 min at 0 °C prior to the addition of 2',3'-O-isopropylideneadenosine (1; 3.0 g, 9.76 mmol) and stirring was then continued for a further 10 min to produce a yellow suspension. To the suspension a solution of thioacetic acid (1.6 mL, 21.73 mmol) in absol tetrahydrofuran (5 mL) was added drop-wise and stirring was then continued for a further 1 h at 0 °C. During this time the yellow suspension became a darker yellow solution. After stirring for 1 h the solvent was removed under reduced pressure and the resulting yellowish residue was purified by flash chromatography on silica gel [350 g, CHCl₃/THF (4:1 v/v) and then CHCl₃/CH₃OH (9:1 v/v)]. The fractions containing the product were combined and the solvent removed under reduced pressure. The residue was dried *in vacuo* (0.5 mbar) to furnish pure protected thionucleoside 2 (3.2 g, 90 %) as a white foam; TLC R_f (CH₂Cl₂/CH₃OH, 9:1 v/v) = 0.6, mp = 56-57 °C; ¹H-NMR (CDCl₃): δ 1.39 (s, 6H, CH₃), 2.34 (s, 3H, COCH₃), 3.18 and 3.29 (AB part of ABX

spectrum, $J_{5'a\text{-H},4'\text{-H}} = J_{5'b\text{-H},4'\text{-H}} = 6.5 \text{ Hz}$, $J_{\text{gem}} = 13.5 \text{ Hz}$, 2H, 5'a-H, 5'b-H), $4.34 \text{ (dt, } J_{4'\text{-H},3'\text{-H}} = 3 \text{ Hz}$, $J_{4'a\text{-H},5a'\text{-H}} = J_{4'\text{-H},5'b\text{-H}} = 7 \text{ Hz}$, 1H, 4'-H), $4.97 \text{ (dd, } J_{3'\text{-H},4'\text{-H}} = 3 \text{ Hz}$, $J_{3'\text{-H},2'\text{-H}} = 6.5 \text{ Hz}$, 1H, 3' H), $5.51 \text{ (dd, } J_{2'\text{-H},1'\text{-H}} = 2 \text{ Hz}$, $J_{2'\text{-H},3'\text{-H}} = 6.5 \text{ Hz}$, 1H, 2'-H), $6.07 \text{ (d, } J_{1'\text{-H},2'\text{-H}} = \text{Hz}$, 1H, 1'-H), 5.9 (s, br., 2H, $N\text{H}_2$), 7.90 (s, 1H, 8-H) and 8.36 (s, 1H, 2-H); $^{13}\text{C-NMR}$ (CDCl₃): $\delta 25.56 \text{ (q, CH}_3$), 27.33 (q, CH_3), 30.79 (q, COCH_3), 31.60 (t, C-5'), 84.24 (d, C-3'), 84.43 (d, C-2'), 86.47 (d, C-4'), 91.07 (d, C-1'), $114.75 \text{ (s, } C(\text{CH}_3)_2)$, 120.53 (s, C-5), 140.09 (d, C-8), 149.42 (s, C-4), 153.45 (d, C-2), 155.92 (s, C-6) and 194.79 (s, CO); ESMS; m/z: $366.0 \text{ [M + H}^{+}]$; $\lceil \alpha \rceil_D \text{ (CDCl}_3 \rangle = -13.2$.

10 <u>5'-Deoxy-5'acetyl-thioadenosine (3)</u>

5

15

25

A solution of compound 2 (200 mg, 0.54 mmol) was stirred in a mixture of formic acid and water (10 ml, 1:1) at room temperature. The progress of the reaction was monitored by reversed-phase HPLC. After 50 h reaction time the solvent was evaporated under reduced pressure. Traces of formic acid were removed by co-evaporating 5 times with absolute ethanol to produce an off-white powder, which was purified by silica gel flash chromatography [30 g, CH₂Cl₂/CH₃OH (4:1 v/v)]. The fractions containing the product were combined, the solvent removed under reduced pressure and the product further dried *in vacuo* (0.5 mbar) to title compound 3 (150 mg, 86 %); TLC R_f (CH₂Cl₂:CH₃. OH, 9:1 v/v) = 0.24; ¹H-NMR (CDCl₃): δ 2.32 (s, 3H, COCH₃), 3.15 and 3.34 (AB part of ABX spectrum, $J_{5'-H, 4'-H} = 5.5$ Hz, $J_{5'b-H, 4'-H} = 7$ Hz, $J_{gem} = 14$ Hz, 2H, 5'a-H, 5'b-H), 3.9 (ddd, $J_{4'-H, 3'-H} = 3.5$ Hz, $J_{5'a-H, 4'-H} = 6$ Hz, $J_{5'b-H, 4'-H} = 7.5$ Hz, 1H, 4'-H), 4.08 (m, 1H, 3'-H), 4.76 (t, $J_{2'-H, 1'-H} = J_{2'-H, 3'-H} = J_{2'-H, 2'-OH} = 6$ Hz, 1H, 2'-H), 5.37 (s, 1H, D₂0 exchangeable, 3'-OH), 5.51 (s, 1H, D₂0 exchangeable, 2'-OH), 5.85 (d, $J_{1'-H, 2'-H} = 6$ Hz, 1H, 1'-H), 7.28 (s, br., 2H, D₂0 exchangeable, 6-NH₂), 8.14 (s, 1H, 2-H) and 8.53 (s, 1H, 8-H); ESMS; m/z: 326.5 [M + H[†]].

5'-Deorry-5'-thioadenosine (4)

vacuo to afford title compound 4 (25 mg, 55 %); TLC R_f (CH₂Cl₂/CH₃OH, 7:1 v/v) = 0.85; mp = 109-110 °C, ¹H-NMR [(D₆ DMSO)]: δ 2.57 (s, br., 1H, 5'-SH), 2.75-2.80 (m, 2H, 5'a-H, 5'b-H), 3.98 (dt, $J_{4'-H, 3'-H} = 3$ Hz, $J_{4'-H, 5'a-H} = J_{4'-H, 5'b-H} = 6$ Hz, 1H, 4'-H), 4.18 (q, $J_{3'-H, 2'-H} = J_{3'-H, 4'-H} = J_{3'-H, 3'-OH} = 4$ Hz, 1H, 3'-H), 4.78 (q, $J_{2'-H, 1'-H} = J_{2'-H, 3'-H} = J_{2'-H, 2'-OH} = 5$ Hz, 1H, 2'-H), 5.28 (d, $J_{3'-OH, 3'-OH} = 5$ Hz, 1H, 3'-OH), 5.48 (d, $J_{2'-OH, 2'-H} = 6$ Hz, 1H, 2'-OH), 5.88 (d, $J_{1'-H, 2'-H} = 6$ Hz, 1H, 1'-H), 7.28 (s, br., 2H, 6-NH₂), 8.14 (s, 1H, 2-H) and 8.35 (s, 1H, 8-H); ESMS; m/z: 283.92 [M + H⁺]; [α]_D (DMSO) = -29.3.

10 Example 6

5

15

20

<u>Inhibition of PLK1 enzymatic activity by adenosine, thioadenosines, and thiol-reactive compounds</u>

Adenosine, N-ethylmaleimide, iodoacetamide, and thimerosal were obtained from Sigma Chemical Co. 2'-Thioadenosine was obtained from Calbiochem. 5'-Thioadenosine was prepared as described in *Example 5*. All compounds were made up as 10 mM stocks in neat dimethylsulfoxide and fresh dilutions to the desired concentrations were made in assay buffer prior to the assay. The candidate compounds were incubated with the enzyme in the kinase assay buffer for the duration of the assay, usually 1 hour at 30 °C (refer *Example 3*). For each compound duplicate samples, one of which contained dithiothreitol (DTT) at 1 mM final concentration, were assayed. The results are summarized in *Table 3* and *Figure 5*.

Example 7

ATP-dependence of PLK1 inhibition by 5'-thioadenosine

The kinase assay described in Example 3 was used. ATP dependence of the effects of adenosine, 2'-thioadenosine, 5-'thioadenosine, and thimerosal was investigated at 12.5, 25, 50, and 100 μM ATP. The results showed that none of these compounds were classical competitive inhibitors with respect to ATP, as would be expected from a covalent inhibitor. Results of the kinetic analysis with 5'-thioadenosine are shown in

30 *Figure* 6.

Example 8

(

5

10

15

Contact models of PLK1 kinase domain with bound ligands

The homology model described in Example 1 was used as the basis for the docking of ATP, 5'-thioadenosine, and two additional ATP-competitive kinase inhibitors we have found to inhibit PLK1. The conformations of these ligands in the PLK1 ATP-binding pocket are depicted in Figure 7. Descriptions of the PLK1-ligand complex structures in the form of interatomic distances between the residues lining the ATP-binding pocket of PLK1 and the ligands were obtained using the molecular modelling programs Quanta2000 (Accelrys, CA, USA) and Maestro (Schrodinger Inc., Oregon, USA). The output from the former lists all contacts between PLK1 and ligands that are less than 3.5 Å. In the latter case a listing of all PLK1-ligand contacts not involving H atoms is given, together with the interatomic distances. Also given is a measure of the quality of the contacts. Only favourable contacts are listed and the closer the value of the contact cut-off ratio to 1.3, the better the contact. Results are summarized in Table 4 (Maestro) & Table 5 (Quanta) for ATP, in Table 6 (Maestro) & Table 7 (Quanta) for 5'thioadenosine, in Table 8 (Maestro) & Table 9 (Quanta) for staurosporine, and in Table 10 (Maestro) & Table 11 (Quanta) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)pyrimidin-2-ylamino]-phenol. The ligand atom numbering is shown in *Figure 7*.

20

25

Various modifications and variations of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the relevant fields are intended to be covered by the present invention.

REFERENCES

- [1] Nurse, P. (1990) Nature, 344, 503-508.
- [2] Nigg, E.A. (2001) Nat. Rev. Mol. Cell Biol., 2, 21-32.
- [3] Takizawa, C.G. and Morgan, D.O. (2000) Curr. Opin. Cell Biol., 12, 658-665.
- [4] Roshak, A.K., Capper, E.A., Imburgia, C., Fornwald, J., Scott, G. and Marshall, L.A. (2000) Cell. Signalling, 12, 405-411.
- [5] Glover, D.M., Hagan, I.M. and Tavares, A.A. (1998) Genes Dev., 12, 3777-3787.
- [6] Seong, Y.-S., Kamijo, K., Lee, J.-S., Fernandez, E., Kuriyama, R., Miki, T. and Lee, K.S. (2002) J. Biol. Chem., 277, 32282 -32293.
- [7] Wang, Q., Xie, S., Chen, J., Fukusawa, K., Naik, U., Traganos, F., Darzynkiewicz, Z., Jhanwar-Uniyal, M. and Dai, W. (2002) Mol. Cell. Biol., 22, 3450-3459.
- [8] Kauselmann, G., Weiler, M., Wulff, P., Jessberger, S., Konietzko, U., Scafidi, J., Staubli, U., Bereiter-Hahn, J., Strebhardt, K. and Kuhl, D. (1999) EMBO J., 18, 5528-5539.
- [9] Lane, H.A. and Nigg, E.A. (1996) J. Cell. Biol., 135, 1701-1713.
- [10] Cogswell, J.P., Brown, C.E., Bisi, J.E. and Neill, S.D. (2000) Cell Growth Differ., 11, 615-623.
- [11] Liu, X. and Erikson, R.L. (2003) Proc. Natl. Acad. Sci. USA, 100, 5789-5794.
- [12] Spankuch-Schmitt, B., Wolf, G., Solbach, C., Loibl, S., Knecht, R., Stegmuller, M., von Minckwitz, G., Kaufmann, M. and Strebhardt, K. (2002) Oncogene, 21, 3162-3171.
- [13] Smith, M.R., Wilson, M.L., Hamanaka, R., Chase, D., Kung, H., Longo, D.L. and Ferris, D.K. (1997) Biochem. Biophys. Res. Commun., 234, 397-405.

- [14] Takahashi, T., Sano, B., Nagata, T., Kato, H., Sugiyama, Y., Kunieda, K., Kimura, M., Okano, Y. and Saji, S. (2003) Cancer Science, 94, 148-152.
- [15] Tokumitsu, Y., Mori, M., Tanaka, S., Akazawa, K., Nakano, S. and Niho, Y. (1999) Int. J. Oncol., 15, 687-692.
- [16] Wolf, G., Elez, R., Doermer, A., Holtrich, U., Ackermann, H., Stutte, H.J., Altmannsberger, H.-M., Rübsamen-Waigmann, H. and Strebhardt, K. (1997) *Oncogene*, 14, 543-549.
- [17] Kraker, A.J. and Booher, R.N. (1999) In Annual Reports in Medicinal Chemistry (Vol. 34) (Doherty, A.M., ed.), pp. 247-256, Academic Press.
- [18] Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Eichman, C., Jackson, J.R., Mattern, M., Gerwick, W.H., Jacobs, R.S. and Marshall, L.A. (2002) J. Pharmacol. Exp. Ther., 303, 858-866.
- [19] Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Grace, K., Gerwick, W.H., Jacobs, R.S. and Marshall, L.A. (2002) Inflammation Research, 51, 112-114.
- [20] Singh, J. (1994) Protein Engineering, 7, 849-858.
- [21] Singh, J., Dobrusin, E.M., Fry, D.W., Haske, T., Whitty, A. and McNamara, D.J. (1997) J. Med. Chem., 40, 1130-1135.
- [22] Fry, D.W., Bridges, A.J., Denny, W.A., Doherty, A., Greis, K.D., Hicks, J.L., Hook, K.E., Keller, P.R., Leopold, W.R., Loo, J.A., McNamara, D.J., Nelson, J.M., Sherwood, V., Smaill, J.B., Trumpp-Kallmeyer, S. and Dobrusin, E.M. (1993) Proc. Natl. Acad. Sci. USA, 95, 12022-12027.

- [24] Tsou, H.-R., Mamuya, N., Johnson, B.D., Reich, M.F., Gruber, B.C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F.E., Greenberger, L.M., Wang, Y.-F. and Wissner, A. (2001) J. Med. Chem., 44, 2719-2734.
- [25] Denny, W.A. (2002) Pharmacology & Therapeutics, 93, 253-261.
- [26] Smaill, J.B., Rewcastle, G.W., Loo, J.A., Greis, K.D., Chan, O.H., Reyner, E.L., Lipka, E., Showalter, H.D.H., Vincent, P.W., Elliott, W.L. and Denny, W.A. (2000) J. Med. Chem., 43, 1380-1397.
- [27] Allen, L.F., Lenehan, P.F., Eiseman, I.A., Elliott, W.L. and Fry, D.W. (2002) Seminars in Oncology, 29 (3, Suppl. 11), 11-21.
- [28] Torrance, C.J., Jackson, P.E., Montgomery, E., Kinzler, K.W., Vogelstein, B., Wissner, A., Nunes, M., Frost, P. and Discafani, C.M. (2000) Nat. Med., 6(9), 1024-1028.
- [29] Wissner, A., Overbeek, E., Reich, M.F., Floyd, M.B., Johnson, B.D., Mamuya, N., Rosfjord, E.C., Discafani, C., Davis, R., Shi, X., Rabindran, S.K., Gruber, B.C., Ye, F., Hallett, W.A., Nilakantan, R., Shen, R., Wang, Y.-F., Greenberger, L.M. and Tsou, H.-R. (2003) J. Med. Chem., 46, 49-63.
- [30] Stamos, J., Sliwkowski, M.X. and Eigenbrot, C. (2002) J. Biol. Chem., 277, 46265-46272.
- [31] Brenner, S.E. (2001) Nat. Rev. Genet., 2, 801-809.
- [32] Gescher, A. (1998) General Pharmacology, 31, 721-728.
- [33] Fischer, P.M. and Wang, S. (2001) In PCT Intl. Patent Appl. WO 2001072745, Cyclacel Limited, UK.
- [34] Elferink, J.G.R. (1999) Gen. Pharmacol., 33, 1-6.
- [35] Cleland, W.W. (1964) Biochemistry, 4, 480-485.

- [36] Davies, S.P., Reddy, H., Caivano, M. and Cohen, P. (2000) Biochem. J., 351, 95-105.
- [37] Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P. and Williams, R.L. (2000) Mol. Cell, 6, 909-919.
- [38] Greer, J. (1990) Proteins, 7, 317-334.

(

- [39] Pearson, W.R. (2000) Methods Mol. Biol., 132, 185-219.
- [40] Henikoff, S. and Henikoff, J.G. (1992) Proc. Natl. Acad. Sci. USA, 89, 10915-10919.
- [41] Altschul, S.F. (1991) J. Mol. Biol., 219, 555-565.
- [42] Venkatachalam, C.M. and Ramachandran, G.N. (1973) Ann. Rev. Biochem., 38, 45-77.
- [43] Westbrook, J.D. and Fitzgerald, P.M.D. (2003) Methods Biochem. Anal., 44, 161-179.
- [44] Hamanaka, R., Maloid, S., Smith, M.R., O'Connell, C.D., Longo, D.L. and Ferris, D.K. (1994) Cell Growth Differ., 5, 249-257.
- [45] Marriott, J.H., Mottahedeh, M. and Reese, C.B. (1990) *Tetrahedron Lett.*, 31, 7485-7488.
- [46] Pignot, M., Pljevaljcic, G. and Weinhold, E. (2000) Eur. J. Org. Chem., 549-555.

Table 1. Sequence comparison between PLK1 and CDK2, ERK-2, or PKA kinase domains, respectively.

DI I/I common commont	Sequence identity (%)					
PLK1 sequence segment	CDK2	ERK-2	PKA			
1-50	0	8	12			
51-100	14	20	28			
101-150	18	8	20			
. 151-200	44	48	44			
201-250	30	30	42			
251-306	18	20	22			

Table 2. PDB coordinate file of PLK1-ATP homology model

MOTA	1	N	ARG	52	108.414	117.322	91.897	1.00	0.00	N
ATOM	2	CA	ARG	52	109.182	116.827	90.698	1.00	0.00	С
ATOM	3	C	ARG	52	108.390	116.045	89.578	1.00	0.00	C
MOTA	4	0	ARG	52	108.985	115.798	88.530	1.00	0.00	0
MOTA	5	CB	ARG	52	110.589	116.233	91.053	1.00	0.00	C
ATOM	6	CG	ARG	52	110.801	114.702	91.020	1.00	0.00	C
MOTA	. 7	CD	ARG	52	112,287	114.328	91.157	1.00	0.00	C
MOTA	8	NE	ARG	52	112.450	112.916	90.739	1.00	0.00	N
ATOM	9	CZ	ARG	52	113.551	112.190	90.870	1.00	0.00	C
MOTA	10	NHl	ARG	52	114.666	112.630	91.370	1.00	0.00	N
ATOM	11	NH2	ARG	52	113.501	110.971	90.474	1.00	0.00	N
MOTA	12	1H	ARG	52	107.626	116.687	92.087	1.00	0.00	H
ATOM	13	2H	ARG	52	109.037	117.350	92.717	1.00	0.00	н
ATOM	14	HE	ARG	52	111.635	112.458	90.308	1.00	0.00	н
ATOM	15	HA	ARG	52	109.432	117.749	90.134	1.00	0.00	H
ATOM	16	1HB	ARG	52	111.303	116.678	90.331	1.00	.0.00	H
ATOM	17	2HB	ARG	52	110.945	116.616	92.029	1.00	0.00	H
ATOM	18	1HG	ARG	52	110.209	114.203	91.813	1.00	0.00	H
ATOM	19	2HG	ARG	52	110.408	114.292	90.070	1.00	0.00	H
ATOM	20	1HD	ARG	52	112.925	114.977	90.524	1.00	0.00	H
ATOM	21	2HD	ARG	. 52	112.620	114.481	92.204	1.00	0.00	H
ATOM	22	2HH1		52		113.601	91.675	1.00	0.00	н
ATOM	23	1HH1		52	115.438	111.966	91.428	1.00	0.00	н
ATOM	24	1HH2		52		110.717	90.120	1.00	0.00	H
MOTA	25	2HH2	ARG	52		110.391	90.596	1.00	0.00	н
ATOM	26	N	TYR	53	107.105	115.659	89.725	1.00	0.00	N
ATOM	27	CA	TYR	53	106.360	114.857	88.698	1.00	0.00	С
ATOM	28	C	TYR	53	104.944	115.448	88.356	1.00	0.00	С
ATOM	29	ō	TYR	53	104.213	115.917	89.234	1.00	0.00	0
ATOM	30	CB	TYR	53		113.387	89.193	1.00	0.00	С
ATOM	31	CG	TYR	53		112.506	89.105	1.00	0.00	С
ATOM	32	CD1	TYR	53	108.238	112.270	90.254	1.00	0.00	С
ATOM	33		TYR	53		111.902	87.899	1.00	0.00	С
MOTA	34	CE1	TYR	53	109.362	111.450	90.197	1.00	0.00	С
ATOM	35	CE2	TYR	53		111.069	87.849	1.00	0.00	С
ATOM	36	CZ	TYR	53		110.848	89.000	1.00	0.00	С
ATOM	37	OH	TYR	53	110.838	110.047	88.972	1.00	0.00	0
MOTA	38	H	TYR	53	106.610	115.929	90.587	1.00	0.00	H
ATOM	39	HA	TYR	53	106.932	114.835	87.749	1.00	0.00	H
ATOM	40	1HB	TYR	53	105.807	113.374	90.220	1.00	0.00	·H
ATOM	41	2HB	TYR	53		112.881	88.609	1.00	0.00	H
ATOM	42	HD1	TYR	53	107.971	112.729	91.194	1.00	0.00	H
ATOM	43	HD2	TYR	53	107.294	112.078	86.995	1.00	0.00	H
ATOM	44		TYR	53	109.966	111.296	91.080	1.00	0.00	H
ATOM	45	HE2	TYR	53		110.610	86.916	1.00	0.00	H
ATOM	46	НН	TYR	53		109.782	88.067	1.00	0.00	н
ATOM	47	N	VAL	54		115.358	87.076	1.00	0.00	. N
ATOM	48	CA	VAL	54		115.765	86.588	1.00	0.00	c
ATOM	49	C	VAL			114.515	85.933	1.00	0.00	С
ATOM	50	ō	VAL	54		113.950	84.954	1.00	0.00	0
-										

ATOM	51 C	B VAL	54	103.294 11	6.991 85.608	1.00	0.00		С
MOTA	52 C	G1 VAL	54	101.959 11			0.00		Č
ATOM	53 C	G2 VAL	54	103.822 11			0.00		Č
ATOM	54 H	VAL	54	105.247 11			0.00		н
ATOM	55 H	A VAL	54	102.552 11		1.00	0.00		н
ATOM	56 H	R <u>VAL</u>	54	104.004 11		1.00	0.00		н
MOTA	57 1H	G1 VAL	54	101.183 11			0.00		н
MOTA	58 2H0	G1 VAL	54	102.083 11		1.00	0.00		н
ATOM	59 3H0	G1 VAL	54	101.536 11		1.00	0.00		н
ATOM		32 VAL	54	104.802 11		1.00	0.00		H
ATOM		32 VAL	54	103.964 119	-	1.00	0.00		
ATOM		32 VAL	54	103.140 11		1.00			H
ATOM	63 N	ARG	55	101.311 114		0.00	0.00		H
ATOM	64 C2		55	100.503 11:			0.00		N
ATOM	65 C	ARG	55	99.683 11:		0.00	0.00		C
ATOM	66 0	ARG	55	98.913 114		0.00	0.00		C
ATOM	67 CI		55	99.533 112		0.00	0.00		0
MOTA	68 CG		55	100.151 11		0.00	0.00		c
ATOM	69 CI		55		_	0.00	0.00		c
ATOM	70 NE	-	55 55	99.092 113		0.00	0.00		C
ATOM	70 N			99.641 110		0.00	0.00		И
MOTA			55	98.978 110		0.00	0.00		С
		Il ARG	55	97.772 109		0.00	0.00		N
MOTA		12 ARG	55	99.572 110		0.00	0.00		N
ATOM	74 HE		55	100.615 111		1.00	0.00		H
MOTA	75 H	ARG	55	100.954 114		0.00	0.00		H
ATOM	76 HA		55	101.187 112		0.00	0.00		H
ATOM	77 1HE		55	98.926 111		0.00	0.00		H
ATOM	78 2HE		55	98.793 113		0.00	0.00		H
MOTA	79 1HG		55	100.628 112		0.00	0.00		H
ATOM	80 2HG		55	100.970 111		0.00	0.00		H
ATOM	· 81 1HD			98.785 110		0.00	.0.00	•	H
ATOM	82 2HD		55	98.176 111		0.00	0.00		H
MOTA	83 1HH		55	97.371 109	9.276 92.070	0.00	0.00		H
ATOM		I ARG	55	97.378 109		0.00	0.00		H
MOTA	85 1HH		55	99.060 109	.677 93.250	0.00	0.00		H
MOTA		2 ARG	55	100.498 110	.524 92.448	0.00	0.00		H
ATOM	87 N	GLY	56	99.823 112	2.791 83.436	1.00	0.00		N
ATOM	88 CA	GLY	56	99.062 113	1.119 82.194	1.00	0.00		C
ATOM	89 C	GLY	56	97.780 112	.295 81.942	1.00	0.00		C
ATOM	90 O	GLY	56	96.678 112	.843 81.956	1.00	0.00		0
ATOM	91 H	GLY	56	100.528 112	.039 83.459	1.00	0.00		H
MOTA	92 1HA	GLY	56	98.786 114	.192 82.166	1.00	0.00		H
ATOM	93 2HA	GLY	56	99.729 112	.995 81.322	1.00	0.00		H
ATOM	94 N	ARG	57	97.923 110	.991 81.655	1.00	0.00		N
- ATOM-	- 95 CA	···ARG-	. 57 .	-96:765 110	.087 81:374	1.00	0.00	· · · ·	-C
ATOM	96 C	ARG	57	97.000 108	.655 81.967	1.00	0.00		C
MOTA	97 O	ARG	57	98.134 108	.174 82.064	1.00	0.00		0
ATOM	98 CB	ARG	57	96.526 110	.079 79.834	1.00	0.00		C
MOTA	99 CG	ARG	57	95.213 109	.398 79.373	1.00	0.00		C
ATOM	100 CD	ARG	57	94.996 109	.479 77.856	1.00	0.00		C
ATOM	101 NE	ARG	57	93.701 108	.821 77.548	1.00	0.00		N
MOTA	102 CZ	ARG	57	93.241 108		1.00	0.00		C
ATOM	103 NH	1 ARG	57	93.863 108		1.00	0.00		N
ATOM	104 NH	2 ARG	57	92.101 107		1.00	0.00		N
ATOM	105 HE	ARG	57	93.108 108		1.00	0.00		H
ATOM	106 H	ARG	57	98.881 110		1.00	0.00		H
MOTA	107 HA		57	95.857 110		1.00	0.00		н
MOTA	108 1HB	ARG	57	96.511 111		1.00	0.00		H
ATOM	109 2HB	ARG	57	97.390 109		1.00	0.00		H
ATOM	110 1HC	ARG	57	95.204 108		1.00	0.00		H
ATOM	111 2MG	ARG	57	94.345 109		1.00	0.00		Ħ
a Tori	THE THE	1116	57	91.201 110		1.50	0.00		H
				-E.SII 110	.375525	113	1.33		: <u>*</u>
	132 700		,	#8.455 100		. 13			
			-		•				•
-							•		

ATOM	124	CD1	PHE	58	92.925	104.888	82.221	1.00	0.00		С
MOTA	125	CE1	PHE	58	91.712	104.847	81.539	1.00	0.00		C
MOTA	126	CZ	PHE	58	90.924	105.992	81.449	1.00	0.00		C
MOTA	127	CE2	PHE	58 ·	91.347	107.179	82.043	1.00	0.00		С
MOTA	128	CD2	PHE	58	92.561	107.221	82.725	1.00	0.00		С
ATOM	129	H	PHE	58	95.026	108.372	82.064	1.00	0.00		H
ATOM	130	HA	PHE	58	96.818	106.419	83.454	1.00	0.00		H
MOTA	131	1HB	PHE	58	94.904	105.145	84.019	1.00	0.00		H
ATOM	132	2HB	PHE	58	94.636	106.807	84.415	1.00	0.00		H
ATOM	133	HD1		58		103.999	82.262	1.00	0.00		H
ATOM	134	HE1		58		103.929	81.068	1.00	0.00		H
MOTA	135	HZ	PHE	58		105.961	80.913	1.00	0.00		H
ATOM	136	HE2		58		108.067	81.966	1.00	0.00		H
ATOM	137	HD2		58		108.149	83.179	1.00	0.00		H
ATOM	138	N	LEU	59		104.662	81.698	0.00	0.00		И
ATOM	139	CA	LEU	59		103.546	80.752	0.00	0.00		C
ATOM	140	C	LEU	59		102.327	81.038	0.00	0.00		. C
ATOM	141	0	LEU	59 50		102.031	80.211	0.00	0.00		0
ATOM ATOM	142 143	CB CG	LEU	59 59		103.309	80.853	0.00	0.00		c
ATOM	144		LEU	59		100.925	79.817 79.926	0.00	0.00		c
MOTA	145	CD2		59		102.897	78.369	0.00	0.00		c
ATOM	146	H	LEU	59		104.671	82.627	0.00	0.00		н
ATOM	147	HA	LEU	59		103.877	79.716	0.00	0.00		H
ATOM	148	1HB	LEU	59		102.939	81.865	0.00	0.00		H
ATOM	149	2HB	LEU	59		104.291	80.798	0.00	0.00		H
ATOM	150	HG	LEU	59		102.501	80.047	0.00	0.00		н
ATOM		1HD1		59		100.542	80.956	0.00	0.00		H
ATOM	152	2HD1		59		100.688	79.606	0.00	0.00		H
MOTA	153	3HD1	LEU	59		100.321	79.304	0.00	0.00		H
MOTA	154	1HD2		59		102.327	77.675	0.00	0.00	•	H.
MOTA	155	2HD2	LEU	59	98.592	102.786	78.012	0.00	0.00		H
MOTA	156	3HD2	LEU	59 ·	99.915	103.961	78.256	0.00	0.00		H
MOTA	157	N	GLY	60	96.676	101.691	82.223	0.00	0.00		N
MOTA	158	CA	GLY	60	95.847	100.505	82.595	0.00	0.00		C
MOTA	159	C	GLY	60	95.373	100.470	84.075	0.00	0.00		C
MOTA	160	0	GLY	60	95.769	101.287	84.920	0.00	0.00		0
MOTA	161	H	GLY	60	97.447	102.031	82.805	0.00	0.00		H
MOTA	162	1HA	GLY	60	96.432	99.582	82.395	0.00	0.00		H
MOTA	163	2HA	GLY	60		100.400	81.931	0.00	0.00		H
ATOM	164	N	LYS	61	94.466	99.529	84.393	1.00	0.00		N
MOTA	165	CA	LYS	61	93.868	99.405	85.758	1.00	0.00		C
ATOM	166	C	LYS	61	93.299	97.972	86.042	1.00	0.00		C
ATOM	167	0	LYS	61	92.266	97.584	85.486	1.00	0.00		0
ATOM	168	CB	LYS	61		100.472	85.958	1.00	0.00		, C
ATOM	169	CG	LYS	61 63		100.597	87.406 87.529	1.00	0.00		c
ATOM ATOM	170 171	CE	LYS	61 61		101.703	88.958	1.00	0.00		c
ATOM	172	NZ	LYS	61		102.910	89.003	1.00	0.00		N
ATOM	173	1HZ	LYS	61		102.999	89.961	1.00	0.00		H
ATOM	174	2HZ	LYS	61		103.799	88.719	1.00	0.00		H
ATOM	175	3HZ	LYS	61		102.687	88.359	1.00	0.00		H
ATOM	176	н	LYS	61	94.523	98.723	83.745	1.00	0.00		н
ATOM	177	HA	LYS	61	94.668	99.606	86.500	1.00	0.00		H
ATOM	178		LYS	61		101.471	85.646	1.00	0.00		H
ATOM	179	2HB	LYS	61	91.900	100.252	85.275	1.00	0.00		H
ATOM	180	1HG	LYS	61	91.791	99.629	87.739	1.00	0.00		H
ATOM	181	2HG	LYS	61	93.058	100.804	88.098	1.00	0.00		H
ATOM	182	1HD	LYS	61	91.583	102.672	87.205	1.00	0.00		H
MOTA	183	2HD	LYS	61	90.322	101.497	86.825	1.00	0.00		H
MOTA	184	IHE	LYS	61	90.160	100.873	89.292	1.00	0.00		H
ATOM	185		LYS	61		102.052	89.669	1.00	0.00		H
MOTA	186	N	GLY	. 62		97.257	87.026	0.00.			N
ATOM	187	CA	GLY	62	93.338	95.929	87.443	0.00	0.00		С
ATOM	188	C	GLY	62	93.782	95.448	88.844	0.00	0.00		C
ATOM	189	0	GLY	62	93.881	96.219	89.801	0.00	0.00		0
ATOM	190	H	GLY	62	94.799	97.595	87.296	0.00	0.00		H
MOTA	191		GLY	62	93.630	95.190	86.668	0.00	0.00		H
ATOM	192		GLY	62 63	92.228	95.918	87.437	0.00	0.00		H
ATOM	193 194	N CA	GLY GLY	63 63	94.055	94.138 93.510	88.968 90.288	1.00	0.00		N C
ATOM ATOM	195	CA	GLY	63 63	94.411 95.817	93.707	90.286	1.00	0.00		c
ATOM ATOM	196	0	GLY	63	96.231	92.889	91.746	1.00	0.00		0
· · · · · · · · · · · · · · · · · · ·	~>0	-		0.3	JU. 231	J J				-	0

William State of the Control of

						04					
ATOM	197	H	GLY	63	.93.953	93.598	88.103	1.00	0.00		H
MOTA	198		GLY	63	93.677	93.819	91.056	1.00	0.00		H
MOTA	199	2HA	GLY	63	94.259	92.418	90.203	1.00	0.00		H
ATOM ATOM	200 201	N CA	PHE	64 64	96.503	94.806 95.340	90.594 91.383	0.00	0.00		N C
ATOM	202	C	PHE	64	97.650 97.219	96.766	91.673	0.00	0.00		c
ATOM	203	ŏ	PHE	64	96.780	96.906	93.017	0.00	0.00		ō
ATOM	204	CB	PHE	64	98.957	95.211	90.531	0.00	0.00		C
MOTA	205	CG	PHE	64	100.322	95.180	91.262	0.00	0.00		C
ATOM	206	CD1	PHE	64	101.339	94.374	90.729	0.00	0.00		C
ATOM	207		PHE	64	102.589	94.313	91.339	0.00	0.00		С
MOTA	208	CZ	PHE	64	102.844	95.070	92.476	0.00	0.00		C
MOTA	209		PHE	64	101.849	95.880	93.015	0.00	0.00		C
ATOM ATOM	210 211	H	PHE	64 64	100.597 96.013	95.943 95.366	92.407 89.888	0.00	0.00		н
ATOM	212	HA	PHE	64	97.815	94.744	92.306	0.00	0.00		н
ATOM		1HB	PHE	64	98.995	95.988	89.745	0.00	0.00		H
ATOM	214	2HB	PHE	64	98.885	94.272	89.943	0.00	0.00		H
ATOM	215	HD1	PHE	64	101.175	93.786	89.834	0.00	0.00		H
ATOM	216	HE1		64	103.371	93.687	90.923	0.00	0.00		H
ATOM	217	HZ	PHE	64	103.822	95.022	92.935	0.00	0.00		H
ATOM ATOM	218 219	HE2 HD2		64 64	102.058	96.458	93.903	0.00	0.00		H H
ATOM	220	N N	ALA	65	99.845 97.243	96.585 97.795	92.839 90.990	1.00	0.00		N
ATOM	221	CA	ALA	65	96.401	99.013	91.144	1.00	0.00		Ċ
ATOM	222	C	ALA	65	96.155	99.807	89.814	1.00	0.00		C
ATOM	223	0	ALA	65	95.088	99.660	89.208	1.00	0.00		0
MOTA	224	CB	ALA	65	96.915	99.890	92.311	1.00	0.00		C
ATOM	225	H	ALA	65	97.644	97.519	90.086	1.00	0.00	٠.	H
ATOM	226	HA	ALA	65	95.375	98.686	91.416	1.00	0.00		H H-,
ATOM ATOM	227 228	2HB 3HB	ALA ALA	65 65	96.805	99.369 100.139	93.278, 92.197	1.00.	0.00	•	H
ATOM	229	1HB	ALA	65		100.841	92.391	1.00	0.00		н
ATOM	230	N	LYS	66		100.720	89.405	1.00	0.00		N
ATOM	231	CA	LYS	66	96.846	101.620	88.233	1.00	0.00		C
MOTA	232	C	LYS	66		102.188	87.702	1.00	0.00		C
ATOM	233	0	LYS	66		102.808	88.469	1.00	0.00		0
ATOM ATOM	234 235	CB CG	LYS LYS	66 66		102.752 103.839	88.564 89.590	1.00	0.00		C
ATOM	236	CD	LYS	66		103.039	89.991	1.00	0.00		Ċ
ATOM	237	CE	LYS	66		105.928	90.862	1.00	0.00		C
ATOM	238	NZ	LYS	66	94.373	106.785	91.189	1.00	0.00		N
ATOM	239		LYS	66	94.684		91.773	1.00	0.00		Н
ATOM	240		LYS	66	93.956		90.319	1.00	0.00		H
ATOM	241		LYS	. 66 .			91.702	1.00			-н— н
ATOM ATOM	242 243	H HA	LYS LYS	66 66	97.952 96.407		89.906 87.418	1.00 1.00	0.00		H
ATOM	244		LYS	66	95.539		87.615	1.00	0.00		H
ATOM	245		LYS	66	94.875		88.900	1.00	0.00		H
ATOM		1HG	LYS	66	96.657		90.497	1.00	0.00		H
MOTA	247		LYS	66	97.055		89.163	1.00	0.00		H
ATOM	248		LYS	66	94.549		89.086	1.00	0.00		H
MOTA	249		LYS	66	94.294	104.158	90.526 91.789	1.00 1.00	0.00		H H
ATOM ATOM	250 251		LYS LYS	66 66	96.299		90.330	1.00	0.00		H
ATOM	252	N	CYS	67	98.478		86.400	1.00	0.00		N
ATOM	253	CA	CYS	67	99.654		85.746	1.00	0.00		С
ATOM	254	С	CYS	67	99.278	103.971	84.964	1.00	0.00		C
ATOM	255	0	CYS	67		104.09L		1.00	0.00		0
MOTA	256	CB	CYS	67	100.379		84.922	1.00	0.00		C
ATOM	257	£G	CYS	67 67	99.311	100.211 101.262	83.659	1.00	0.00		ਤ ਜ਼
7.2011	252 252	所 7.1.	7.3 7.7	67 77 _		101-202 13 	5.622	1.00	0.00		': =
				•					: :::		
-=					12.272	··: : . · ·		= =			
7.7001		-									
	-		=								
	-		Ξ.		<u>.</u>						
- :											

		•			05					
ATOM	270 CE1	PHE	68	96.435	109.246	85.843	1.00	0.00		.C
MOTA	271 CZ	PHE	68	95.682	108.371	86.620	1.00	0.00		C
ATOM	272 CE2	PHE	68	96.228	107.159	87.035	1.00	0.00		С
ATOM	273 CD2	PHÉ	68	97.532	106.823	86.682	1.00	0.00		C
ATOM	274 H	DHE .	68	101.038	104.758	85.528	1.00	0.00		H
ATOM	275 HA	PHE	68		106.312	83.764	1.00	0.00		Ħ
ATOM	276 1HB	PHE	68	100.300		86.470	1.00 -	0.00		H
MOTA	277 · 2HB	PHE	68		108.312	85.283	1.00	0.00		H
ATOM	278 HD1		68		109.598	84.877	1.00	0.00		H
	279 HE1		68		110.183	85.512	1.00	0.00		H
ATOM					108.628	86.896	1.00	0.00		H
MOTA	280 HZ	PHE	68			87.633	1.00	0.00		H
MOTA	281 HE2		68		106.480		1.00	0.00		H
ATOM	282 HD2		68		105.882	87.013				N
ATOM	283 N	GLU .	69		107.502	82.456	1.00	0.00		
MOTA	284 CA	GLU	69		108.317	81.744	1.00	0.00		C
MOTA	285 C	GLU	69		109.587	82.591	1.00	0.00		C
MOTA	286 O	GLU	69		110.527	82.695	1.00	0.00		0
MOTA	287 CB	GLU	69		108.631	80.346	1.00	0.00		c
ATOM	288 CG	GLU	69		109.425	79.404	1.00	0.00		C
ATOM	289 CD	GLU	69	101.724	109.581	77.983	1.00	0.00		C
MOTA	290 OE1	GLU	69		108.612	77.239	1.00	0.00		0
MOTA	291 OE2	GLU	69	101.433	110.872	77.674	1.00	0.00		0
ATOM	292 H	GLU	69	99.870	107.688	82.316	1.00	0.00		H
ATOM	293 HA	GLU	69	102.816	107.705	81.581	1.00	0.00		H
ATOM	294 1HB	GLU	69	101.047	107.679	79.841	1.00	0.00		H
ATOM	295 2HB	GLU	69	100.356	109.179	80.447	1.00	0.00		H
ATOM	296 1HG	GLŲ	69	102.471	110.425	79.828	1.00	0.00		H
ATOM	297 2HG	GLU	69	103.236	108.929	79.306	1.00	0.00		H
ATOM	298 N		. 70	103.448	109.579	83.229	1.00	0.00		N
MOTA	299 CA		70		110.642	84.193	1.00	0.00		C
ATOM	300 C	IFE .	70 .		111.309	83.637	1.00	0.00		C
ATOM	301 0	ILE		106.208		83.454	1.00	0.00		0
		ILE	70		110.093	85.662	1.00	0.00		C
ATOM					109.225	86.195	1.00	0.00		C
MOTA		ILE	70·			86.658	1.00	0.00		Č
ATOM		ILE	70		111.255		1.00	0.00		Č
MOTA		ILE	70		108.633	87.611		0.00		н
MOTA	306 H	ILE	70		108.715	83.099	1.00			н
ATOM	307 HA	IFE	70		111.422	84.256	1.00	0.00		H
MOTA	308 HB	ILE	70		109.444	85.657	1.00	0.00		
MOTA	309 1HG1		70		109.795	86.130	1.00	0.00		H
ATOM	310 2HG1		70		108.371	85.507	1.00	0.00		H
MOTA	311 2HG2	ILE	70		111.947	86.313	1.00	0.00		H
MOTA	312 3HG2	ILE	70	103.412	111.865	86.831	1.00	0.00		H
ATOM	313 1HG2	ILE	70	104.649	110.880	87.643	1.00	0.00		H
ATOM	314 2HD1	ILE	70	104.015	108.167	87.762	1.00	0.00		H
MOTA	315 3HD1	ILE	70	102.906	109.405	88.395	1.00	0.00		H
MOTA	316 1HD1	ILE	70	102.263	107.858	87.810	1.00	0.00		H
ATOM	317 N	SER	71	105.152	112.631	83.413	1.00	0.00		N
ATOM	318 CA	SER	71	106.376	113.412	83.098	1.00	0.00		C
ATOM	319 C	SER	71	107.154	113.834	84.385	1.00	0.00		C
ATOM	320 0	SER	71		114.421	85.309	1.00	0.00		0
ATOM	321 CB	SER	71		114.645	82.265	1.00	0.00		С
	322 OG	SER	71		115.366	81.807	1.00	0.00		0
ATOM ATOM	323 H	SER	71		113.093	83.746	1.00	0.00		H
ATOM	324 HA	SER	71		112.810	82.450	1.00	0.00		H
		SER	71		114.332	81.383	1.00	0.00		H
ATOM	325 1HB	SER			115.316	82.847	1.00	0.00		H
ATOM	326 2HB		71			82.578	1.00	0.00		н
ATOM	327 HG	SER	71		115.699		1.00	0.00		N
MOTA	328 N	ASP	72		113.631	84.406		0.00		c
ATOM	329 CA	ASP	72		114.350	85.338	1.00			
MOTA	330 C	ASP	72		115.878	84.976	1.00	0.00		C
ATOM	331 0	ASP	72		116.245	83.851	1.00	0.00		0
ATOM	332 CB	ASP	72		113.684		1.00	0.00	*-	G.
ATOM	333 CG	ASP	72		113.276	86.597	1.00	0.00		C
ATOM	334 OD1	ASP	72		112.171	86.785	1.00	0.00		0
ATOM		ASP	72		114.257	87.53 <i>9</i>	1.00	0.00		0
ATOM	336 H	ASP	72		113.054	83.626	1.00	0.00		H
ATOM	337 HA	ASP	72		114.230	86.367	1.00	0.00		H
ATOM	338 1HB	ASP	72		112.765	84.660	1.00	0.00		H
ATOM	339 2HB	ASP	72		114.326	84.736	1.00	0.00		H
ATOM	340 N	ALA	73		116.750	85.893	1.00	0.00		N
ATOM	341 CA	ALA	73		118.199	85.618	1.00	0.00		C
ATOM	342 C	ALA	73		119.067	85.378	1.00	0.00		C
ALOP	J10 0									

一年 の一年 を日本 の

ATOM	343	0	ALA	73	110.112	119.894	84.466	1.00	0.00		0
ATOM	344	CB	ALA	73	107.957	118.712	86.796	1.00	0.00		C
ATOM	345	H	ALA	73	108.846	116.340	86.825	1.00	0.00		H
MOTA	346	HA	ALA	73	108.197	118.298	84.699	1.00	0.00		H
MOTA	347	2HB	ALA	73	107.046	118.105	86.956	1.00	0.00		H
MOTA	348	знв	ALA	73	108.520	118.720	87.749	1.00	0.00		H
ATOM	349	1HB	ALA	73	107.622	119.748	86.618	1.00	0.00		H
MOTA	350	N	ASP	74	111.144	118.878	86.187	1.00	0.00		N
ATOM	351	CA	ASP	74	112.426	119.637	86.060	1.00	0.00		C
ATOM	352	C	ASP	74	113.439	119.098	84.983	1.00	0.00		C
MOTA	353	0	ASP	74	114.168	119.901	84.399	1.00	0.00		0
MOTA	354	CB	ASP	74	113.039	119.767	87.483	1.00	0.00		C
MOTA	355	CG	ASP	74	112.259	120.707	88.409	1.00	0.00		C
ATOM	356	OD1	ASP	74	112.543	121.888	88.568	1.00	0.00		0
ATOM	357	OD2	ASP	74	111.176	120.106	88.975	1.00	0.00		0
MOTA	358	H	ASP	74	110.954	118.227	86.954	1.00	0.00		н
MOTA	359	HA	ASP	74	112.196	120.667	85.713	1.00	0.00		H
MOTA	360	1HB	ASP	74	113.155	118.780	87.967	1.00	0.00		H
ATOM	361	2HB	ASP	74	114.063	120.175	87.408	1.00	0.00		H
ATOM	362	N	THR	75	113.491	117.782	84.701	0.00	0.00		N
MOTA	363	CA	THR	75	114.274	117.208	83.552	0.00	0.00		C
ATOM	364	C	THR	75	113.505	117.002	82.190	0.00	0.00		C
MOTA	365	0	THR	75		116.797	81.167	0.00	0.00		0
-MOTA	366	CB	THR	75		115.866	83.972	0.00	0.00		C
ATOM	367	OG1		75	114.001	114.890	84.377	0.00	0.00		0
ATOM	368	CG2	THR	75		115.964	85.096	0.00	0.00		c
MOTA	369	H	THR	75		117.204	85.264	0.00	0.00		H
ATOM	370	HA	THR	75		117.901	83.291	0.00	0.00		H
ATOM	371	HB	THR	75		115.471	83.084	0.00	0.00		H
ATOM	372		THR	75		114.041	84.362	0.00	0.00		H
ATOM		'1HG2	THR	75	116.485		85.288	0.00	0.00	•	·H
ATOM	374	2HG2	THR	75		116.685	84.847	0.00	0.00		H
ATOM	375		THR	75 75		116.296	86.048	0.00	0.00		H
ATOM	376	N	LYS	76 76	112.156		82.157	1.00	0.00		N
ATOM	377	CA	LYS	76	111.326		80.966	1.00	0.00		C
ATOM	378	C	LYS	76		115.147	80.454	1.00	0.00		C
ATOM ATOM	379	O CB	LYS	76 76		114.899		1.00	0.00		C O.
ATOM	380 381	CG	LYS LYS	76 76	111.377 110.215		79.890 78.869	1.00 1.00	0.00		c
ATOM	382	CD	LYS	76 76	110.269		77.878	1.00	0.00		C
ATOM	383	CE	LYS	76	109.083		76.902	1.00	0.00		C
ATOM	384	NZ	LYS	76	109.178		75.991	1.00	0.00		и
ATOM		1HZ	LYS	76	108.383		75.336	1.00	0.00	¥.	H
ATOM		2HZ	LYS	76	109.156		76.540	1.00	0.00		H
ATOM"		3HZ	LYS	76		119.982	75.461	1:00	.0:00		- H.
ATOM	388	H	LYS	76	111.732		83.060	1.00	0.00		H
ATOM	389	HA	LYS	76	110.283		81.335	1.00	0.00		н
MOTA	390		LYS	76	111.373		80.390	1.00	0.00		H
ATOM	391		LYS	76	112.350		79.362	1.00	0.00		H
ATOM	392		LYS	76	110.236		78.310	1.00	0.00		H
MOTA	393	2HG	LYS	76	109.246		79.405	1.00	0.00	•	H
MOTA	394	1HD	LYS	76	110.276	119.850	78.439	1.00	0.00		H
ATOM	395	2HD	LYS	76	111.226		77.323	1.00	0.00		н
ATOM	396	1HE	LYS	76	109.072	117.929	76.323	1.00	0.00	-	Ħ
MOTA	397	2HE	LYS	76	108.124	118.910	77.455	1.00	0.00		H
ATOM	398	N	GLU	77	111.182	114.160	81.304	1.00	0.00		N
ATOM	399	CA	GLU	77	111.388	112.710	81.010	1.00	0.00		C
MOTA	400	C	GLU	77	110.056	111.924	81.242	1.00	0.00		C
MOTA	401		GTN	77	109.498		82.341	1 00	0.00		0
MOTA	402		GLU	77	112.526		81.907	1.00	0.00		C
RIOH	103		GLU.	77	113_952		01.620	1.00	0.00		C
7 .T.D 0.3	-04	T	JLU	7~	115.00E		10.E39	1.00	0.00		<u>_</u>
	_ 2F		<u> </u>		قِيْدَ يَدَ:	111113	. <u> </u>		• • • • • •		
 :							1-11	::	- •		
	-		<u>-</u> -				-				
	-										

.....

						07					
MOTA	416	0	VAL	78	109.020		80.129	1.00	0.00		0
MOTA	417	CB	VAL	78	107.372		78.964	1.00	0.00		C
ATOM	418	CG1		78	106.959		78.749	1.00	0.00		C
ATOM	419	CG2	VAL	78 78	108.015		77.661 79.345	1.00	0.00		н
ATOM ATOM	420 421	H HA.	VAL	78	107.598		81.062	1.00	0.00		H
ATOM	422	HB	VAL	78	106.424		79.103	1.00	0.00		H
ATOM		1HG1		78	107.833		78.578	1.00	0.00		H .
ATOM		2HG1		78	106.287	112.382	77.879	1.00	0.00		H
ATOM	425	3HG1		78	106.421	112.669	79.625	1.00	0.00		H
MOTA	426	2HG2	VAL	78	108.267		77.736	1.00	0.00		H
MOTA	427	3HG2	VAL	78	107.338		76.794	1.00	0.00		H
ATOM	428	1HG2		78	108.950		77.408	1.00	0.00		H N
ATOM	429	N	PHE	79 70	107.458		81.701 82.387	1.00 1.00	0.00		C
MOTA	430 431	CA C	PHE	79 79	107.559		82.583	1.00	0.00		Č
ATOM ATOM	432	ō	PHE	79	105.163		82.943	1.00	0.00		0
ATOM	433	СВ	PHE	79	108.193		83.793	1.00	0.00		C
ATOM	434	CG	PHE	79	109.667		83.837	1.00	0.00		C
MOTA	435	CD1	PHB	79	110.007	109.280	84.244	1.00	0.00		C
MOTA	436	CE1	PHE	79	111.344		84.309	1.00	0.00		C
MOTA	437	CZ	PHE	79	112.347		83.948	1.00	0.00		C
ATOM	438		PHE	79	112.018		83.544	1.00	0.00		C
ATOM	439		PHE	79 70	110.684		83.496 82.183	1.00 1.00	0.00		н
ATOM	440	H HA	PHE	79 79	106.996 108.209		81.810	1.00	0.00		H
MOTA MOTA	441 442		PHE	79 79	107.558		84.363	1.00	0.00		н
ATOM	443		PHE	79	108.124		84.368	1.00	0.00		H
ATOM	444		PHE	79	109.236	109.992	84.503	1.00	0.00		H
MOTA	445	HE1	PHE	. 79	111.609	110.656	84.642	1.00	0.00	. : . •	Ħ.
MOTA	446	HZ	PHE	79	113.384		84.006	1.00	0.00		H
MOTA	447		PHE	79	112.798		83.282	1.00	0.00		H H
MOTA	448		PHE	79	110.445		83.177	1.00	0.00		Ŋ
MOTA	449	N	ALA	80 80		105.319 104.508	82.471 83.001	0.00	0.00		Ĉ
ATOM ATOM	450 451	CA C	ALA ALA	80		104.272	84.547	0.00	0.00		Č
ATOM	452	Ö	ALA	80		103.428	85.035	0.00	0.00		0
ATOM	453	CB	ALA	80		103.194	82.218	0.00	0.00		C
ATOM	454	H	ALA	80	107.042	104.891	82.358	0.00-	0.00		H
ATOM	455	HA	ALA	80		105.000	82.765	0.00	0.00		H
MOTA	456	1HB	ALA	80		102.506	82.564	0.00	0.00		H
MOTA	457	2HB	ALA	80		103.354	81.136	0.00	0.00		H H
MOTA	458	знв	ALA	80		102.656	82.325 85.329	0.00 1.00	0.00		N
MOTA	459 460	N CA	GPX GPA	81 81		105.047 105.001	86.811	1.00	0.00		Ĉ
MOTA MOTA	461	C	GLY	81		104.300	87.487	1.00	0.00		C
ATOM	462	õ	GLY	81		104.747	87.385	1.00	0.00		0
ATOM	463	H	GLY	81	103.838	105.767	84.788	1.00	0.00		H
ATOM	464	1.HA	GLY	81	105.375	104.556	87.150	1.00	0.00		H
MOTA	465	2HA	GLY	81		106.029	87.189	1.00	0.00		H
ATOM	466	N	LYS	82		103.207	88.205 88.951	0.00	0.00		N C
ATOM	467	CA	LYS	82		102.410 102.984	90.404	0.00	0.00		Č
ATOM	468	C	LYS	82 82	102.243	102.982	91.231	0.00	0.00		ō
ATOM ATOM	469 470	O CB	LYS	82		100.916	88.804	0.00	0.00		C
ATOM	471	CG	LYS	82	102.310	99.855	89.746	0.00	0.00		C
ATOM	472	CD	LYS	82	102.506	98.366	89.344	0.00	0.00		C
MOTA	473	CE	LYS	82	103.964	97.854	89.290	0.00	0.00		C
ATOM	474	NZ	LYS	82	104.023		88.932	0.00	0.00		N
ATOM		1HZ	LYS	82	103.258		89.258	1.00	0.00		H
MOTA		2HZ	LYS	82	104.049		87.906	1.00	0.00		H H
MOTA		3HZ	LYS	82 82	104.877	95.915 102.956	89.296 88.189	1.00	0.00		, H
MOTA	478	H HA	LYS	82 82		102.956	88.412	0.00	0.00		н
ATOM ATOM	479 480	1HB	LYS	82		100.839	88.899	0.00	0.00		H
MOTA		2HB	LYS	82		100.609	87.752	0.00	0.00		H
ATOM		1HG	LYS	82		100.047	89.831	0.00	0.00		H
ATOM		2HG	LYS	82		100.010	90.766	0.00	0.00		H
MOTA	484	1HD	LYS	82	102.006		88.371	0.00	0.00		H
MOTA		2HD	LYS	82	101.939		90.057	0.00	0.00	•	H
MOTA		THE	LYS	82	104.477		90.265	0.00	0.00		H
ATOM		2HB	LYS	82 83	104.562		88.556	0.00	0.00		N
MOTA	488	N	ILE	83	101.013	103.425	90.715	0.00	0.00		

(*·

						08					
MOTA	489		ILE	83	100.653	103.996	92.050	0.00	0.00		C
ATOM	490	С	ILE	83		102.861	92.910	0.00	0.00		C
ATOM	491		ILE	83		102.450	92.636	0.00	0.00		0
MOTA	492	CB	ILE	83		105.267	91.908	0.00	0.00		C
MOTA	493		ILE	. 83		105.908	93.291	0.00	0.00		C
ATOM ATOM	494 495		ILE	83 83		106.395	90.972 89.513	0.00	0.00		C
ATOM	496	H	ILE	83		106.303	89.944	0.00	0.00		н
ATOM	497	HA	ILE	83		103.362	92.566	0.00	0.00		Н
ATOM	498	HB	ILE	83		104.929	91.502	0.00	0.00		н
ATOM		1HG2		83		106.771	93.207	0.00	0.00		Н
ATOM	500	2HG2	ILE	· 83	98.949	105.197	93.985	0.00	0.00		Н
MOTA	501	3HG2	ITR	83	100.356	106.268	93.788	0.00	0.00		H
ATOM		1HG1		· 83	101.381	106.416	91.000	0.00	0.00		H
MOTA		2HG1		83		107.399	91.330	0.00	0.00		H
ATOM		1HD1		83		107.159	88.919	0.00	0.00		H
ATOM		2HD1		83		105.386	89.003	0.00	0.00		H
ATOM ATOM	505	3HD1	VAL	83 84		106.323	89.443 93.944	0.00 1.00	0.00		H N
ATOM	508	CA	VAL	84		102.300	94.755	1.00	0.00		C
ATOM	509	C.	VAL	84		101.685	96.168	1.00	0.00		C
ATOM	510	ō	VAL	84		101.985	97.027	1.00	0.00		ō
ATOM	511	CB	VAL	84		100.119	94.872	1.00	0.00		С
ATOM	51.2	CG1	VAL	84	100.985	98.872	95.691	1.00	0.00		C
MOTA	513	CG2	VAL	84	101.915	99.594	93.519	1.00	0.00		C
ATOM	514	H	VAL	84		102.693	93.997	1.00	0.00		H
ATOM	515	HA	VAL	84		100.666	94.236	1.00	0.00		H
MOTA	516	HB 1HG1	VAL	84		100.600	95.394	1.00	0.00		H
MOTA	517 518			84 84 .	100.133	98.329 98.152	95.239 95.783	1.00 1.00	0.00		Н
ATOM	519			84	100.689	99.129	96.724	1.00	0.00		H
MOTA		2HG2		84		100.415	92.933	1.00	0.00		Н
MOTA	521	3HG2	VAL	84	102.707	98.831	93.635	1.00	0.00		H
MOTA	522	1HG2		84	101.112	99.150	92.899	1.00	0.00		H
MOTA	523	N	PRO	85		101.783	96.473	1.00	0.00		N
ATOM	524	CA	PRO	85		102.296	97.780	1.00	0.00		C
MOTA MOTA	525 526	C C	PRO PRO	85 85		101.264	98.958 98.822	1.00 1.00	0.00		0
ATOM	527	СВ	PRO	85		102.731	97.410	1.00	0.00		č
ATOM	528	CG	PRO	85		101.769	96.303	1.00	0.00		C
ATOM	529	CD	PRO	85	97.312	101.509	95.509	1.00	0.00		C
MOTA	530	HA	PRO	85	98.468	103.206	98.052	1.00	0.00		H
MOTA		1HB	PRO	85		102.729	98.270	1.00	0.00		H
ATOM		2HB	PRO			103.769	97.020	1.00	0.00		Н
ATOM		1HG	PRO	85		100.819	96.743 95.675	1.00	0.00		H
ATOM ATOM	534 535	2HG 1HD	PRO PRO	85 85		102.164 100.464	95.147	1.00 1.00	0.00		H
ATOM	536		PRO	85		102.183	94.633	1.00	0.00		н
ATOM	537	N	LYS	86		101.742		0.00	0.00	-	N
ATOM	538	CA	LYS	86	98.662	100.888	101.331	0.00	0.00		C
ATOM	539	C	LYS	86	97.517		101.889	0.00	0.00		C
MOTA	540	0	LYS	86		98.781		0.00	0.00		0
ATOM	541		LYS	86		101.795		0.00	0.00		C
ATOM ATOM	542 543	CG CD	LYS	86 86		102.960	102.985	0.00	0.00		C
ATOM	544	CE	LYS	86		105.160		0.00	0.00		č
MOTA	545	NZ	LYS	86		106.049		0.00	0.00		N
MOTA		1HZ	LYS	86			105.341	1.00	0.00		H
2001		2333	LIC	SC		105.550		2.00	6 65		ų
ATOM.		SHZ				106.335		1.00	0.00		H
FTOIL	<u> </u>		LVS	86		102.718		0.00			H
ATCH	170	.E.	712	\$ 3 7 3		1111111	101_021.	0.00	1.00		<u>-1</u>
				•				😌 🖷	• • •		!
					٠.:		~ · · -				
	•				-		1				

•

. --

			0,	^
ATOM	562 O SER	87	94.403 97.411 101.905 1.00 0.00	0
	563 CB SER	87	94.007 100.572 103.026 1.00 0.00	C
MOTA		87	92.956 99.832 103.653 1.00 0.00	0
MOTA			96.215 101.475 101.887 1.00 0.00	н
ATOM	565 H SER	87	96.215 101.475 101.887 1.00 0.00	H
ATOM	SGG HA SER	97	95.461 99.059 103.431 1.00 0.00	
ATOM	567 1HB SER	87	94.402 101.305 103.758 1.00 0.00	н
		87	93.596 101.174 102.191 1.00 0.00	H
ATOM				H
MOTA	569 HG SER	87	32.302	N
ATOM	570 N LEU	88	J=14=7	
ATOM	571 CA LEU	88	94.175 97.890 99.154 1.00 0.00	C
	- · -	88	95.362 96.936 98.752 1.00 0.00	С
ATOM			7.00	0
MOTA	573 O LEU	88	33.100	C
ATOM	574 CB LEU	88	33.307 30.002	č
MOTA	575 CG LEU	88	92.166 99.261 98.079 1.00 0.00	
	576 CD1 LEU	88	91.833 100.106 96.839 1.00 0.00	С
ATOM	- · · ·		91.053 98.218 98.282 1.00 0.00	С
MOTA	577 CD2 LEU	88	51.055	н
ATOM	578 H LEU	88	34.77	H
ATOM	579 HA LEU	88	93.404 97.191 99.529 1.00 0.00	
	580 1HB LEU	88	94.292 99.365 97.570 1.00 0.00	H
ATOM			93.512 97.889 97.075 1.00 0.00	H
ATOM	581 2HB LEU	88	33.322	H
ATOM	582 HG LEU	88	J2.175 JJ.J24 P.	H
ATOM	583 2HD1 LEU	88	92.580 100.904 96.672 1.00 0.00	
ATOM	584 3HD1 LEU	88	91.798 99.496 95.915 1.00 0.00	H
			90.851 100.605 96.935 1.00 0.00	H
MOTA	585 1HD1 LEU	88	30.032 200.000	H
ATOM	586 2HD2 LEU	88	52.00	н
ATOM	587 3HD2 LEU	88	91.192 97.637 99.211 1.00 0.00	
	588 1HD2 LEU	88	90.055 98.690 98.359 1.00 0.00	H
MOTA	_		96.626 97.224 99.109 1.00 0.00	N
MOTA	589 N LEU	89	70.00	С
MOTA	590 CA LEU	89	37.033	C
ATOM	591 C LEU	89	97.562 95.227 100.455 1.00 0.00	
ATOM	592 O LEU	89	97.664 94.008 100.298 1.00 0.00	0
		89	99.055 96.960 99.166 1.00 0.00	С
ATOM	593 CB LEU		200 000	С
MOTA	594 CG LEU	89	100.527	C ·
MOTA	595 CD1 LEU	89	100.467 95.560 97.558 1.00 0.00	
ATOM	596 CD2 LEU	89	101.587 96.896 99.355 1.00 0.00	С
		89	96.766 98.189 99.426 1.00 0.00	H
MOTA			30.00	H
MOTA	598 HA LEU	89	7,1043	H
ATOM	599 1HB LEU	89	33.000 37.7720 22.22	H
ATOM	600 2HB LEU	89	99.142 97.561 100.093 1.00 0.00	
		89	100.270 95.225 99.684 1.00 0.00	H
MOTA				H
MOTA	602 2HD1 LEU	89	33.330	H
ATOM	603 3HD1 LEU	89	100.725	H
MOTA	604 1HD1 LEU	89	101.247 94.781 97.489 1.00 0.00	
	605 2HD2 LEU	89	101.702 97.797 98.723 1.00 0.00	H
MOTA			100 000	H
ATOM	606 3HD2 LEU	89	101.302 37.207	H
ATOM	607 1HD2 LEU	89	102.307 30.225 00.225	N
ATOM	608 N LEU	90	97.330 95.750 101.676 1.00 0.00	
		90	97.169 94.928 102.915 1.00 0.00	C.
MOTA	-		95.928 93.965 102.973 1.00 0.00	C
MOTA	610 C LEU	90	33.323	0
MOTA	611 O LEU	90		Ċ
MOTA	612 CB LEU	90	97.194 95.890 104.141 1.00 0.00	
	613 CG LEU	90	98.552 96.556 104.496 1.00 0.00	C
ATOM	020 0	90	98.334 97.715 105.480 1.00 0.00	С
ATOM	614 CD1 LEU			C
MOTA	615 CD2 LEU	90	JJ.5.5	н
ATOM	616 H LEU	90		
ATOM	617 HA LEU	90	98.046 94.258 102.994 1.00 0.00	H
		90	96.424 96.670 103.982 1.00 0.00	H
MOTA			96.838 95.348 105.041 1.00 0.00	H
MOTA	619 2HB LEU	90	30.000	H
MOTA	620 HG LEU	90		н
MOTA	621 2HD1 LEU	90	97.669 98.489 105.053 1.00 0.00	
	622 3HD1 LEU	90	97.880 97.378 106.432 1.00 0.00	H
MOTA			99.284 98.222 105.733 1.00 0.00	H
ATOM	623 1HD1 LEU	90		н
ATOM	624 2HD2 LEU	90	33.237	н
ATOM	625 3HD2 LEU	90	99.817 94.752 104.408 1.00 0.00	
	626 1HD2 LEU		100.488 96.050 105.410 1.00 0.00	H
MOTA.		91	94.703 94.420 102.640 0.00 0.00	N.
MOTA	627 N LYS		34.703	C
ATOM	628 CA LYS	, 91	55.475 55.005 =	c
ATOM	629 C LYS	´ 91	33.300 32.200	
	630 O LYS	91	93.266 91.185 102.376 0.00 0.00	0
ATOM		91	92.218 94.452 102.398 0.00 0.00	С
MOTA	631 CB LYS		32.21	С
ATOM	632 CG LYS	91	74.542 35.052 E00100	C
MOTA	633 CD LYS	91	52.550 50.255 E01.00	č
ATOM	634 CE LYS	91	91.582 96.846 105.488 0.00 0.00	C
ATOM	034 00 210			

(

ATOM	635	NZ	LYS	91	92.386	97.929	106.087	0.00	0.00	N
ATOM	636	1HZ	LYS	91	91.873	98.339	106.881	1.00	0.00	н
ATOM	637		LYS	91	93.283		106.419	1.00	0.00	H
	638		LYS	91				1.00	0.00	H
ATOM					92.562		105.380			
ATOM	639	H	LYS	91	94.687		102.350	0.00	0.00	H
MOTA	640	HA	LYS	91	93.377	93.183	103.699	0.00	0.00	Н
ATOM	641	1HB	LYS	91	91.440	93.828	101.916	0.00	0.00	H
ATOM	642	2HB	LYS	91	92.435	95.229	101.637	0.00	0.00	Н
ATOM	643	1HG	LYS	91	91.314	94.304	104.382	0.00	0.00	H
ATOM		2HG	LYŚ	91	90.551		103.331	0.00	0.00	н
ATOM		1HD	LYS	91	92.559		103.551	0.00	0.00	н
ATOM		2HD	LYS	91	93.322	•	104.640	0.00	0.00	H
ATOM		1HE	LYS	91	91.361		106.256	0.00	0.00	H
ATOM	648	2HE	LYS	91	90.598	97.243	105.168	0.00	0.00	Н
ATOM	649	N	PRO	92	93.817	92.198	100.453	1.00	0.00	N
MOTA	650	CA	PRO	92	94.036	90.912	99.718	1.00	0.00	C
ATOM	651	C	PRO	92	95.423	90.180	99.890	1.00	0.00	C
ATOM	652	ŏ	PRO	92	95.793	89.369	99.038	1.00	0.00	ō
										c
ATOM	653	CB	PRO	92	93.768	91.398	98.277	1.00	0.00	
ATOM	654	CG	PRO	92	94.319	92.824	98.235	1.00	0.00	C
MOTA	655	CD	PRO	92	93.992	93.397	99.612	1.00	0.00	C
ATOM	656	HA	PRO	92	93.260	90.170	99.994	1.00	0.00	Н
MOTA	657	1.HB	PRO	92	94.220	90.748	97.504	1.00	0.00	Н
ATOM	658	2HB	PRO	92	92.679	91.403	98.076	1.00	0.00	H
ATOM	659	1HG	PRO	92	95.417	92.815	98.087	1.00	0.00	H
ATOM		2HG	PRO	92	93.897	93.431	97.411	1.00	0.00	H
ATOM		1HD	PRO	92	94.812	94.049	99.968	1.00	0.00	н
ATOM	662		PRO	92	93.067	94.003	99.577	1.00	0.00	H
ATOM	663	N	HIS	93	96.172		100.981	1.00	0.00	N
MOTA	664	CA	HIS	93	97.474	89.747	101.304	1.00	0.00	C
ATOM	665	C	HIS	93	98.649	89.921	100.264	1.00	0.00	C
MOTA	666	0	HIS	93	99.418	88.994	99.993	1.00	0.00	0
ATOM	667	CB	HIS	93	97.234	88.275	101.763	1.00	0.00	С
ATOM	668	CG	HIS	93	96.378		103.018	1.00	0.00	C
ATOM	669		HIS	93	96.872		104.307	1.00	0.00	N
								1.00	0.00	C
ATOM	670		HIS	93	95.697		105.005			
MOTA	671		HIS	93	94.519		104.337	1.00	0.00	N
ATOM	672		HIS	93	94.985		103.034	1.00	0.00	С
MOTA	673	H	HIS	93	95.706		101.647	1.00	0.00	Н
ATOM	674	HA	HIS	93	97.865	90.269	102.198	1.00	0.00	Н
ATOM	675	1HB	HTS	93	96.801	87.691	100.929	1.00	0.00	H
ATOM	676	2HB	HIS	93	98.208	87.786	101.958	1.00	0.00	H
ATOM	677	HE1	HIS	93	95.706	88.228	106.083	1.00	0.00	Н
ATOM	678	_HE2			93.557		104.690	1.00	0.00	H
ATOM	679	HD2		93	94.367		102.148	1.00	0.00	 н
									0.00	N
MOTA	680	N	GLN	94	98.823	91.137	99.720	0.00		
ATOM	681	CA	GLN	94	99.797	91.412	98.619	0.00	0.00	C
ATOM	682	C	GLN	94	101.180	92.046	99.017	0.00	0.00	C
ATOM	683	0	GLN	94	102.059	92.109	98.155	0.00	0.00	0
ATOM	684	CB	GLN	94	99.060	92.295	97.574	0.00	0.00	С
ATOM	685	CG	GLN	94	97.975	91.596	96.709	0.00	0.00	G.
ATOM	686	CD	GLN	94	97.355	92.477	95.614	0.00	0.00	C
ATOM	687	OE1		94	97.667	93.647	95.421	0.00	0.00	0
ATOM	688	NE2		94	96.472	91.924	94.827	0.00	0.00	N
ATOM		Н	GLN	94	98.058	91.789	99.942	0.00	0.00	H
	689									
ATOM	690	HA	GLN	94	100.067	90.467	98.106	0.00	0.00	H
ATOM	691		GLN	94	99.805	92.722	96.876	0.00	0.00	H
ATOM	692		GIM	94	98.619	93.181	98.071	0.00	0.00	H
on's Cirk	223	15G	الالتات	7 %	97.106	71.517	≥7.36 س	ų.ùu	ů.vů	17
ATOM	€94	CHC	GIM	9.1	98.111	90.700	96.231	0.00	0.00	H
	89 5 .	1357	GIT	- 91	96.679	30_570	S 1.S 1.	2.00	0.00	<u>1.7</u>
1761	20		GLAT	_ 2'_	<u> </u>	22.332	25.032.		1.00	(
	-:-	• :	·=	-	3111	7. 27.	102.212	1.42		1
	٠.		• • •	-	:				- -	
_			_		•		-			

•							71				
	ATOM	708	HE	ARG	95	105.252	95.916	103.996	1.00	0.00	H
	ATOM	709	H	ARG	95	100.593	92.395	100.878	1.00	0.00	Ħ
	ATOM	710	HA	ARG	95	102.788		100.097	1.00	0.00	н
	ATOM	711		ARG	95	101.543		102.272	1.00	0.00	H
	ΜŲΨ̈́	•	2HB	ARG	95	102.374 104.606		102.810 102.667	1.00 1.00	0.00	H
	MOTA	713 714		ARG ARG	95 95	104.606		102.867	1.00	0.00	н
	MOTA MOTA	715	1HD	ARG	95	102.448		104.319	1.00	0.00	н
	ATOM	716		ARG	95	103.278		104.835	1.00	0.00	H
	ATOM		2HH1		95	103.101		106.651	1.00	0.00	н
	ATOM	718	11111		95	104.170	96.209	107.835	1.00	0.00	H
	MOTA	719	1HH2	ARG	95	106.362		105.340	1.00	0.00	H
	ATOM	720	2HH2		95	105.945		107.131	1.00	0.00	H
	MOTA	721	N	GLU	96	104.096		100.833	0.00	0.00	N
	ATOM	722	CA	GLU	96	105.189		100.412	0.00	0.00	C
	ATOM	723	C	GLU	96 96	104.931 105.894	89.350 88.989	99.079 98.402	0.00	0.00	0
	ATOM ATOM	724 725	O CB	GLU GLU	96	105.463		101.587	0.00	0.00	· c
	ATOM	726	CG	GLU	96	106.066		102.872	0.00	0.00	С
	ATOM	727	CD	GLU	96	106.233		104.017	0.00	0.00	С
	MOTA	728	OE1	GLU	96	105.377		104.869	0.00	0.00	0
	MOTA	729	OE2	GLU	96	107.438		103.990	0.00	0.00	0
	MOTA	730	H	GLU	96	103.250		101.306	0.00	0.00	H
	ATOM	731	HA	GLU	96	106.124		100.229	0.00	0.00	H H
	ATOM	732		GLU	96 06	106.166		101.235	0.00	0.00	н
	ATOM	733 734	2HB 1HG	GLU	96 96	104.534 105.426		103.237	0.00	0.00	н
	MOTA MOTA	735	2HG	GLU	96	107.044		102.651	0.00	0.00	н
	ATOM	736	N	LYS	97	103.671	89.057	98.688	0.00	0.00	N
	ATOM	737	CA	LYS	. 97 .	103.353		97.488	.0.00	0.00	C
	ATOM	738	C	LYS	97	103.443	88.919	96.085	0.00	0.00	С
	ATOM	739	0	LYS	97	104.022	88.356	95.154	0.00	0.00	0
	ATOM	740	CB	LYS	97	,101.948	87.561	_97.656	0.00	0.00	C
	MOTA	741	CG	LYS	97	101.708	86.653	98.883	0.00	0.00	c c
	MOTA	742	CD	LYS	97 97	100.329 99.974	85.964	98.808 100.102	0.00	0.00	č
	MOTA MOTA	743 744	CE NZ	LYS	97 97	98.655	84.577	99.947	0.00	0.00	N
	ATOM		1HZ	LYS	97	98.413		100.815	1.00	0.00	н
	ATOM		2HZ	LYS	97	97.942	85.294	99.755	1.00	0.00	н
	ATOM		3HZ	LYS	97	98.690	83.908	99.164	1.00	0.00	H
	ATOM	748	H	LYS	97	102.948	89.411	99.318	0.00	0.00	H
	ATOM	749		LYS	97	104.088	87.389	97.445	0.00	0.00	H
	ATOM		1HB	LYS	97	101.171	88.351	97.642	0.00	0.00	· H
	ATOM		2HB	LYS	97 07	101.748	86.960 85.895	96.746 98.965	0.00	0.00	н
	ATOM ATOM	752 753		LYS LYS	97 97	102.512 101.772	87.260	99.808	0.00	0.00	H
	ATOM		1HD	LYS	97	99.549	86.725	98.598	0.00	0.00	н
	ATOM	755		LYS	97	100.312	85.270	97.945	0.00	0.00	, н
	ATOM	756		LYS	97	100.743	84.464	100.353	0.00	0.00	H
	ATOM	757		LYS	97	99.946		100.959	0.00	0.00	н
	ATOM	758	N	MET	98	102.791	90.083	95.914	0.00	0.00	N
	ATOM	759		MET	98	102.786	90.853	94.632	0.00	0.00	C
	MOTA	760		MET	98	103.722	92.109 92.313	94.646 93.699	0.00	0.00	ō
	ATOM	761		MET MET	98 98	104.487 101.318	91.226	94.282	0.00	0.00	Ċ
	MOTA MOTA	762 763		MET	98	100.475	90.087	93.674	0.00	0.00	Ċ
	ATOM	764		MET	98	98.916	90.757	93.075	0.00	0.00	s
	ATOM	765		MET	98	98.221	89.275	92.335	0.00	0.00	c
	ATOM	766		MET	98	102.511	90.501	96.807	0.00	0.00	H
	ATOM	767	HA	MET	98	103.171	90.224	93.803	0.00	0.00	H
	ATOM		1HB	MET	98	100.800	91.647		0.00	0.00	H
	MOTA		2HB	MET	98	101.318	92.056	93.554	0.00	0.00	. н
	MOTA		1HG	MET	98 98	101.006 100.289	89.617 89.287	92.825 94.414	0.00	0.00	н
	ATOM ATOM		2HG 1HE	MET MET	98 98	98.818	88.972	91.457	0.00	0.00	н
	ATOM		2HE	MET	98	97.185	89.464	92.000	0.00	0.00	н
	ATOM		3HE	MET	98	98.208	88.439	93.057	0.00	0.00	H
	ATOM	775		SER	99	103.680	92.944		0.00	0.00	Ŋ
	MOTA	776		SER	99	104.779	93.904		0.00	0.00	C
		. 777		SER	99	106.098	93.204	96.500	0.00	0.00	C
	MOTA	778		SER	99 .	106.170	91.989		0.00	0.00	0 C
	ATOM	779		SER	99 99	104.199 105.102	94.965 96.061	96.962 97.138	0.00	0.00	o
	ATOM	780	OG	SER	33		001	J	3.00	3.00	J

				•			•			
						72				
ATOM	781	H	SER	99	103.120				0.00	
MOTA	782	HA	SER	99	105.037				0.00	
ATOM ATOM		1HB	SER	99	103.243				0.00	
ATOM	785	2HB HG	SER SER	99	103.965				0.00	
ATOM	786	N	MET	99 100	104.767 107.175				0.00	
ATOM	787	CA	MET	100	107.175				0.00	
ATOM	788	c	MET	100	109.244			1.00	0.00	
ATOM	789	ō	MET	100	110.469			1.00	0.00	
ATOM	790	СВ	MET	100	108.921				0.00	
ATOM	791	CG	MET	100	108.700			1.00	0.00	
ATOM	792	SD	MET	100	109.201		100.548		0.00	
ATOM	793	CE	MET	100	108.896		101.971	1.00	0.00	
MOTA	794	H	MET	100	106.918				0.00	
ATOM	795	HA	MET	100	109.184	94.413		1.00	0.00	
ATOM	796		MET	100	108.342	91.636	97.792	1.00	0.00	
ATOM	797		MET	100	109.979		97.800	1.00	0.00	
ATOM	798		MET	100	109.273			1.00	0.00	
ATOM	799		MET	100	107.633			1.00	0.00	
ATOM	800		MET	100	109.507		101.915	1.00	0.00	
MOTA MOTA	801 802		MET	100		93.435		1.00	0.00	
ATOM	803	N	MET GLU	100 101	109.152		102.907	1.00	0.00	
ATOM	804	CA	GLU	101	108.496 109.067			0.00	0.00	
ATOM	805	c.	GLU	101	110.071			0.00	0.00	
ATOM	806	ō	GLU	101	110.931	93.963		0.00	0.00	
ATOM	807	СВ	GLU	101	107.894			0.00	0.00	
ATOM	808	CG	GLU	101	106.842	94.060	91.838	0.00	0.00	
ATOM	809	CD	GLU	101	106.279			0.00	0.00	
MOTA	810		GLU	. 101	105.843	94.086			0.00	
MOTA	811		.GTA	101	106.170	95.980	90.633	0.00	0.00	:
ATOM	812	H	GLU	101	107.491	92.835	94.351	0.00	0.00	
ATOM	813	HA	GLU	101	109.663	92.066	92.653	0.00	0.00	
ATOM	814		GLU	101	107.339	91.952	91.938	0.00	0.00	
ATOM	815		GLU	101	108.294	92.806	90.725	0.00	0.00	
ATOM	816		GLU	101	107.241	94.883	92.455	0.00	0.00	
ATOM ATOM	817 818	ZNG N	GLU ILE	101	105.963	93.712	92.397	0.00	0.00	
ATOM	819	CA	ILE	102 102	110.011	95.307		0.00	0.00	
ATOM	820	C	ILE	102	111.117 112.564	96.324 95.800	93.126 93.464	0.00	0.00	
ATOM	821	ŏ	ILE	102	113.523	96.238	92.831	0.00	0.00 0.00	
ATOM	822	CB	ILE	102	110.710	97.558	94.018	0.00	0.00	
ATOM	823	CG2	ILE	102	109.536	98.355	93.396	0.00	0.00	
ATOM	824	CG1	ILE	102	110.409	97.228	95.514	0.00	0.00	
ATOM	825	CD1	ILE	102	110.410	98.432	96.472		0.00	
ATOM	826	H	ILE	102	109.270	95.297	93.797	0.00	0.00	
ATOM	827	HA	ILE	102	111.220	96.704	92.090	0.00	0.00	
MOTA	828	HB	ILE	102	111.585	98.242	94.004	0.00	0.00	
ATOM	829			102	109.385	99.330	93.894	0.00	0.00	
ATOM	830 2 831 3			102	109.710	98.570	92.327	0.00	0.00	
ATOM ATOM	832			102	108.578	97.804	93.456	0.00	0.00	٠
ATOM	833 2			102 102	111.165 109.448	96.515	95.895	0.00	0.00	
ATOM	834 1			102	110.241	96.687 98.116	95.601 97.517	0.00	0.00	
ATOM	835 2			102	111.381	98.963	96.454	0.00	0.00	
ATOM	836 3			102	109.623	99.168	96.227	0.00	0.00	
ATOM	837	N	SER	103	112.731	94.840	94.395	1.00	0.00	
ATOM	838		SER	103	114.010	94.078	94.548	1.00	0.00	
₽ŒŌM	530	~	655	103	314.207	20.001	93.292	1.60	0.00	
ATOM	840		SER	103	115.580	92.714	93.302	1.00	0.00	
RTOM	841		SER.	103	13.2 . 94.6	93 317	95_903_	1.00	0.00	
TODE	117		EEE	101.	175.232	13.715	95.223	1.00	0.00	
.===	· .=		- ===	_0 <u>_</u>	· - ·	1111	<i>?*.</i>	7 23	7 (72	
		. · 	~	•			• -		-	
. :::		·Ξ	<u>**</u>	-	Ī				-	

					13				
MOTA	854 CG1	ILE	104	112.175	89.917	92.006	0.00	0.00	С
MOTA	855 CD1	ILE	104	110.818	89.209	91.806	0.00	0.00	С
ATOM	856 H	ILE	104	112.552	93.098	92.676	0.00	0.00	H
ATOM	857 HA	ILE	104	114.641	91.231	91.467	0.00	0.00	H
ATOM	858 HB	ILE	104	111.688	91.577	90.702	0.00	0.00	H
ATOM.	859 1HG2		104	112.044	89.477	89.301	0.00	0.00	H
	860 2HG2		104	112.997	90.835	88.724	0.00	0.00	H
ATOM					89.541	89.662	0.00	0.00	н
MOTA	861 3HG2		104	113.784			0.00	0.00	H
MOTA	862 1HG1		104	112.122	90.432	92.984			
MOTA	863 2HG1		104	112.976	89.162	92.138	0.00	0.00	H
MOTA	864 1HD1		104	110.546	88.603	92.691	0.00	0.00	H
MOTA	865 2HD1	ILE	104	109.990	89.923	91.641	0.00	0.00	H
MOTA	866 3HD1	ILE	104	110.825	88.518	90.944	0.00	0.00	H
MOTA	867 N	HIS	105	113.344	93.746	89.616	1.00	0.00	N
MOTA	868 CA	HIS	105	113.695	94.702	88.517	1.00	0.00	С
ATOM	869 C	HIS	105	114.587	95.965	88.831	1.00	0.00	С
ATOM	870 O	HIS	105	114.998	96.646	87.890	1.00	0.00	0
ATOM	871 CB	HIS	105	112.403	95.005	87.708	1.00	0.00	C
ATQM	872 CG	HIS	105	111.208	95.654	88.402	1.00	0.00	C
ATOM		HIS	105	109.950	95.079	88.433	1.00	0.400	N
ATOM		HIS	105	109.254	96.094	89.029	1.00	0.00	С
		HIS	105	109.900	97.248	89.378	1.00	0.00	N
MOTA					96.940	88.946	1.00	0.00	C
ATOM		HIS	105	111.175		90.011	1.00	0.00	н
ATOM	877 H	HIS	105	112.395	93.691			0.00	H
MOTA	878 HA	HIS	105	114.335	94.144	87.803	1.00		H
MOTA	879 1HB	HIS	105	112.660	95.634	86.835	1.00	0.00	
MOTA	880 2HB	HIS	105	112.066	94.058	87.248	1.00	0.00	H
MOTA		HIS	105	108.185	95.999	89.157	1.00	0.00	H
MOTA	882 HE2	HIS	105	109.511	98.124	89.737	1.00	0.00	H
MOTA	883 · HD2	HIS	105	112.024	97.602	88.960	1.00	0.00	. н
MOTA	884 N	ARG	106	114.967	96.248	90.091	1.00	0.00	N
ATOM	885 CA	ARG	106	116.188	97.062	90.403	1.00	0.00	C
MOTA	886 C	ARG	106	117.561	96.302	90.234	1.00	0.00	C
ATOM	887 O	ARG	106	118.534	96.905	89.777	1.00	0.00	0
MOTA	888 CB	ARG	106	116.016	97.669	91.825	1.00	0.00	С
ATOM	889 CG	ARG	106	116.944	98.849	92.215	1.00	0.00	С
ATOM	890 CD	ARG	106		100.176	91.548	1.00	0.00	С
ATOM	891 NE	ARG	106		101.306	92.139	1.00	0.00	N
ATOM	892 CZ	ARG	106		102.573	91.754	1.00	0.00	С
ATOM		ARG	106		102.985	90.782	1.00	0.00	N
		ARG	106		103.444	92.389	1.00	0.00	N
MOTA			106		101.093	92.904	1.00	0.00	н
ATOM	895 HE	ARG			95.669	90.799	1.00	0.00	н
ATOM	896 H	ARG	106	114.499			1.00	0.00	H
ATOM	897 HA	ARG	106	116.232	97.909	89.690		0.00	H
MOTA	898 1HB	ARG	106	114.973	98.014	91.962	1.00		н
MOTA	899 2HB	ARG	106	116.131	96.860	92.572	1.00	0.00	
MOTA	900 1HG	ARG	106	116.907		93.315	1.00	0.00	H
MOTA	901 2HG	ARG	106	118.005	98.616	91.995	1.00	0.00	H
ATOM	902 1HD	ARG	106		100.122	90.454	1.00	0.00	H
MOTA	903 2HD	ARG	106		100.362	91.693	1.00	0.00	H
MOTA	904 2HH1	ARG	`106		102.231	90.280	1.00	0.00	H
MOTA	905 1HH1	ARG	106	116.449	103.981	90.557		0.00	H
ATOM	906 1HH2		106	118.476	103.015	93.111	1.00	0.00	H
ATOM	907 2HH2		106	117.837	104.410	92.071	1.00	0.00	H
ATOM	908 N	SER	107	117.656	95.006	90.591	1.00	0.00	N
ATOM	909 CA	SER	107	118.898		90.412	1.00	0.00 -	C
ATOM	910 C	SER	107	119.231		88.983	1.00	0.00	C
ATOM	911 0	SER	107	120.313		88.811	1.00	0.00	0
	912 CB	SER	107	118.801		91.457	1.00	0.00	C
ATOM			107	120.020		91.515	1.00	0.00	ō
ATOM	913 OG	SER		116.758		90.835	1.00	0.00	H
ATOM	914 H	SER	107			90.692	1.00	0.00	н
MOTA	915 HA	SER	107	119.773	94.811		1.00	0.00	H
MOTA	916 1HB	SER	107	118.583		92.468			H
MOTA	917 2HB	SER	107	117.956	92.371	91.219	1.00	0.00	
ATOM	918 HG	SER	107	120.314		90.601	1.00	0.00	H
ATOM	919 N	LEU	108	118.339		87.985	1.00	0.00	И
ATOM	920 CA	LEU	108	118.502	93.046	86.658	1.00	0.00	C
ATOM	921 C	LEU	108	119.119		85.584	1.00	0.00	C
ATOM	922 O	LEU	108	118.409		84.814	1.00	0.00	0
ATOM	923 CB	LEU	108	117.098	92.487	86.259	1.00	0.00	С
ATOM	924 CG	LEU	108	116.686	91.054	86.710	1.00	0.00	С
ATOM		LEU	108	117.204	90.574	88.077	1.00	0.00	C
ATOM		LEU	108	115.152	90.965	86.708	1.00	0.00	С

一方 とうといけんしまいいけん

_		•			•				٠		
-											
		•			•						
	•					74					
	ATOM	927 H 928 H		108	117.463	94.155	88.273	1.00	0.00		H
	ATOM ATOM	928 R		108 . 108	. 119.184 116.324	92.174 93.229	86.733 86.542	1.00	0.00		H
	ATOM	930 2H		108	117.022	92.480	85.156	1.00	0.00	•	н
	ATOM	931 H		108	117.076	90.334	85.960	1.00	0.00		H
	ATOM		D1 LETT	108	119.307	90.517	98.100	1.00	0.00		H
	ATOM ATOM .		D1 LEU D1 LEU	108 108	116.898	91.239 89.558	88.903 88.321	1.00	0.00		H
	ATOM .		D2 LEU	108	116.842 114.700	91.680	87.419	1.00	0.00		H
	ATOM	936 3H	D2 LEU	108	114.728	91.191	85.712	1.00	0.00		H
	ATOM		D2 LEU	108	114.791	89.961	86.993	1.00	0.00		H
	ATOM ATOM	938 N 939 C		109 109	120.459	94.046	85.502	1.00	0.00		N C
	ATOM	940 C		109	121.181 121.276	94.809 94.026	84.450 83.092	1.00	0.00		c
	ATOM	941 0		109	122.205	93.242	82.864	1.00	0.00		ō
	MOTA	942 C		109	122.549	95.166	85.065	1.00	0.00		C
	MOTA	943 H		109	120.937	93.517	86.238	1.00	0.00		H
-	ATOM ATOM	944 H 945 2H		109 109	120.661 122.442	95.770 95.760	84.261 85.993	1.00 1.00	0.00		H
	ATOM	946 3H		109	123.147	94.269	85.313	1.00	0.00		н
	MOTA	947 1H	B ALA	109	123.155	95.773	84.367	1.00	0.00		H
	ATOM	948 N		110	120.281	94.224	82.211	0.00	0.00		N
	ATOM ATOM	949 C 950 C		110 110	120.183 119.536	93.522 94.431	80.899 79.796	0.00	0.00		C
	ATOM	950 C		110	118.774	95.359	80.081	0.00	0.00		0
	ATOM	952 C		110	119.385	92.201	81.129	0.00	0.00		C
	ATOM	953 C		110	119.470	91.154	80.018	0.00	0.00		C
	ATOM ATOM		D1 HIS E1 HIS	110 110	118.360 118.990	90.593 89.661	79.403 78.619	0.00	0.00		С И
	ATOM		E1 HIS	110	120.356	89.578	78.616	0.00	0.00		N
•	ATOM.		D2 HIS	110	120.651	90.545	79.559	0.00	0.00	• . • •	C
	MOTA	958 H		110	119.499	94.777	82.586	0.00	0.00		H
	ATOM ATOM	959 H		110 110	121.208 118.324	93.272 92.438	80.555 81.344	0.00	0.00		H H
	ATOM	961 2H		110	119.738	91.705	82.050	0.00	0.00		H
	ATOM		E1 HIS	110	118.402	88.948	78.058	0.00	0.00		H
	ATOM		E2 HIS	110	120.958	88.868	78.185	0.00	0.00		H
	ATOM ATOM	964 H	D2 HIS GLN	110 111	121.637 119.796	90.755 94.124	79.950 78.511	0.00	0.00		H N
	ATOM	966 C		111	119.073	94.767	77.370	1.00	0.00		c
•	MOTA	967 C		111	117.522	94.518	77.294	1.00	0.00	•	C
	ATOM	968 O		111	116.783	95.452	76.977	1.00	0.00		0
	ATOM ATOM	969 CI 970 C		111 111	119.814 119.352	94.355 95.115	76.065 74.789	1.00 1.00	0.00		C
	···ATOM	-971 · C		- 111·-	-120.079		73.503-				G
	ATOM		E1 GLN	111	119.676	93.832	72.768	1.00	0.00	•	ō
	ATOM		E2 GLN	111	121.156	95.386	73.167	1.00	0.00		N
	MOTA MOTA	974 H 975 H		111 111	120.352 119.191	93.273	78.391 77.481	1.00	0.00		H
	ATOM	976 1HI		111	120.904	95.864 94.513	76.190	1.00	0.00		н
	MOTA	977 2HI		111	119.695	93.264	75.901	1.00	0.00		H
	ATOM	978 1H		111	118.276	94.920	74.613	1.00	0.00		H
	ATOM ATOM	979 2H0		111 111	119.413 121.424	96.208 96.166	74.943 73.769	1.00	0.00		H H
	ATOM	981 2H		111	121.540	95.113	72.259	1.00	0.00		H
	ATOM	982 N	HIS	112	117.029	93.294	77.559	1.00	0.00		N
	ATOM	983 CZ		112	115.593	92.928	77.334	1.00	0.00		C
	atom atom	984 C 985 O	HIS HIS	112 112	114.665 113.745	93.099 92.309	78.602 78.828	1.00	0.00		0
	atom atom	985 O 986 CI		112	113.745	92.309	78.828	1.00 1.00	0.00 0.00		C
	ATOM	987 00		112	118.435	21.110	75.527	1.00	0.00		c
	ΔIOH	788 KI	OL HIS	FT7	111.759	93.031	11.500	1.30	0.00		9
				112	17.721	51.11T	77.631	. 25	• 73		-
		, î	- · - · - ·	. 	12.377	10.111		-			
				-	-						
	•			<u>-</u>	17. 177	. 2:2	7.732		:		
		-					•				

						13					
MOTA	1000	CA	VAL	113	114.177	94.363	80.732	1.00	0.00		С
ATOM	1001	С	VAL	113	113.876	95.899	80.839	1.00	0.00		C
MOTA	1002	0	VAL	113	114.762	96.727	80.603	1.00	0.00		0
MOTA	1003	CB	VAL	113	115.031	93.822	81.942	1.00	0.00		C
MOTA	1004	CG1		113	114.422	94.136	83.330	1:00	0.00		C.
MOTA	1005	CG2		113	115.264	92.290	81.916	1.00	0.00		C
ATOM	1006	H	VAL	113	115.671	94.731	79.141	1.00	0.00		H
ATOM	1007	HA_{\star}	VAL	113	113.208	93.826	80.741	1.00	0.00		H
MOTA	1008	HB	VAL	113	116.025	94.314	81.899	1.00	0.00		H
MOTA	1009			113	113.405	93.722	83.446	1.00	0.00		H
ATOM	1010			113	115.039	93.742	84.161	1.00	0.00		H
MOTA	1011			113	114.345	95.227	83.509	1.00	0.00		H
MOTA	1012			113	115.809	91.975	81.008	1.00	0.00		H H
MOTA		3HG2		113	115.874	91.945	82.773	1.00	0.00		H
MOTA		1HG2		113	114.314	91.724	81.936 81.208	1.00	0.00		n
MOTA	1015	И	VAL	114	112.642	96.296 97.744	81.262	0.00	0.00		Ĉ
ATOM	1016	CA	VAL	114	112.230	98.550	82.289	0.00	0.00		č
MOTA	1017	C	VAL	114 114	113.120 113.304	98.124	83.436	0.00	0.00		ō
MOTA	1018	O CB	VAL VAL	114	110.701	97.852	81.615	0.00	0.00		Ċ
MOTA	1019 1020		VAL	114	110.200	99.308	81.734	0.00	0.00		C
ATOM ATOM	1020		VAL	114	109.717	97.185	80.624	0.00	0.00		C
ATOM	1021	H	VAL	114	112.016	95.535	81.503	0.00	0.00		H
ATOM	1022	HA	VAL	114	112.370	98.187	80.256	0.00	0.00		H
ATOM	1024	HB	VAL	114	110.557	97.367	82.602	0.00	0.00		H
ATOM		1HG1		114	110.767		82.479	0.00	0.00		H
MOTA		2HG1		114	110.258	99.866	80.780	0.00	0.00		H
ATOM		3HG1		114	109.150	99.339	82.069	0.00	0.00		H
ATOM		1HG2		114	109.688	97.697	79.644	0.00	0.00		H
ATOM		2HG2		114	109.962	96.125	80.438	0.00	0.00	. •:	. ң
ATOM		3HG2		114	108.678	97.192	81.006	0.00	0.00		H
MOTA	1031	N	GLY	115	113.677	99.701	81.873	1.00	0.00		N
ATOM	1032	CA	GLY	115	114.555	100.527	82.744	1.00	0.00		C
ATOM	1033	C	GLY	115	113.860	101.190	83.956	1.00	0.00		C
ATOM	1034	0	GLY	115		101.999	83.811	1.00	0.00		0
ATOM	1035	H	GLY	115		100.067	80.961	1.00	0.00		H
MOTA	1036	1HA	GLY	115	115.441	99.941	83.061	1.00	0.00		H
MOTA	1037	2HA	GLY	115		101.342	82.130	1.00	0.00		H
MOTA	1038	N	PHE	116		100.805	85.163	1.00	0.00		И
MOTA	1039	CA	PHE	116		101.270		1.00	0.00		C
MOTA	1040	С	PHE	116		102.526	87.030	1.00	0.00		0
ATOM	1041	0	PHE	116		102.470	87.485	1.00	0.00		c
MOTA	1042	CB	PHE	116		100.040	87.373 88.671	1.00	0.00		Č
ATOM	1043	CG	PHE	116		100.237	88.644	1.00	0.00		č
ATOM	1044		PHE	116		100.777 100.954	89.820	1.00	0.00		č
ATOM	1045		PHE	116		100.551	91.030	1.00	0.00		c
MOTA	1046	CZ	PHE	116 116	112.610	99.980	91.072	1.00	0.00		C
ATOM ATOM	1047 1048		PHE	116	113.338	99.830	89.893	1.00	0.00		C
ATOM	1048	H	PHE	116	114.915	99.996	85.144	1.00	0.00		H
ATOM	1050	HA	PHE	116		101.542	86.204	1.00	0.00		H
MOTA	1051		PHE	116		99.173		1.00	0.00		H
ATOM	1052		PHE	116	114.633	99.711	87.601	1.00	0.00		H
ATOM	1053		PHE	116		101.070	87.714	1.00	0.00		H
ATOM	1054		PHE	116		101.392	89.786	1.00	0.00		H
ATOM	1055		PHE	116	110.760	100.687	91.925	1.00	0.00		н
ATOM	1056		PHE	116	113.026	99.647	92.013	1.00	0.00		H
ATOM	1057		PHE	116	114.313	99.368	89.922	1.00	0.00		H
MOTA	1058	N	HIS	117		103.657	87.050	1.00	0.00		N
MOTA	1059	CA	HIS	117		104.947	87.595	1.00	0.00		C
MOTA	1060	C	HIS	117		105.098	89.160	1.00	0.00		C
MOTA	1061	0	HIS	117		105.637	89.731	1.00	0.00		0
MOTA	1062		HIS	117			86.836	1.00	0.00		G
ATOM	1063		HIS	117		107.481	87.004	1.00	0.00		C N
MOTA	1064		HIS	117		108.504	87.493	1.00	0.00		C
ATOM	1065		HIS	117		109.556	87.340	1.00	0.00		
MOTA	1066		HIS	117		109.346	86.812	1.00	0.00		С И
MOTA	1067		HIS	117		107.982	86.595	1.00	0.00		н
MOTA	1068		HIS	117		103.548	86.734	1.00	0.00		н
MOTA	1069		HIS	117		105.053	87.312	1.00	0.00		H
ATOM	1070		HIS	117		105.837	85.749 87.128	1.00	0.00		н
MOTA	1071		HIS	117		105.988 110.546	87.128	1.00	0.00		н
MOTA	1072	urr	HIS	117	113.600	110.340	07.030				

					, •
MOTA	1073		2 HIS	117	115.907 110.015 86.667 1.00 0.00
MOTA	1074		2 HIS	117	115.869 107.380 86.162 1.00 0.00
MOTA	1075	N	GLY	118	113.030 104.664 89.853 1.00 0.00
MOTA	1076	CA	GLY	118	112.920 104.847 91.324 1.00 0.00
MOTA	1077	C	GLY	118	111.772 104.081 92.021 1.00 0.00
ATOM	1078	O	GLY	118	110.634 104.043 91.544 1.00 0.00
MOTA	1079	H	GLY		110 770 104 100 70 707
MOTA	1080	1HA	GLY		110 001 104 600 01 000
ATOM		2HA	GLY		110 800 105 000 00 000
ATOM	1082		PHE	119	110 000 100 000 00 000
ATOM	1083		PHE	119	
ATOM	1084		PHE	119	
ATOM	1085		PHE	119	114 704 444 444
ATOM	1086		PHE		111.701 104.312 96.160 1.00 0.00
ATOM	1087		PHE	119	111.485 101.633 94.732 1.00 0.00
ATOM	1088		PHE	119	112.841 101.449 95.447 1.00 0.00
ATOM	1089			119	112.914 101.471 96.843 1.00 0.00
ATOM			. PHE	119	114.134 101.278 97.487 1.00 0.00
	1090		PHE	119	115.288 101.058 96.739 1.00 0.00
ATOM	1091		PHE	119	115.225 101.031 95.348 1.00 0.00
ATOM	1092		PHE	119	114.005 101.220 94.704 1.00 0.00
ATOM	1093	H	PHE	119	113.071 103.618 93.465 1.00 0.00 H
ATOM	1094	HA	PHE	119	110.110 102.870 93.664 1.00 0.00 H
ATOM	1095		PHE	119	110.676 101.288 95.402 1.00 0.00 H
ATOM	1096		PHE	119	111.447 100.900 93.913 1.00 0.00 H
ATOM	1097		PHE	119	112.028 101.651 97.436 1.00 0.00 H
MOTA	1098	HE1	PHE	119	114.185 101.302 98.566 1.00 0.00 H
MOTA	1099	HZ	PHE	119	116.236 100.912 97.237 1.00 0.00 H
MOTA	1100		PHE	119	116.122 100.869 94.767 1.00 0.00 H
MOTA	1101	HD2	PHE	119	113.975 101.198 93.624 1.00 0.00 H
ATOM	1102	N	PHE	120	109.682 104.788 95.304 1.00 0.00 N
ATOM	1103	CA.	PHE	120.	109.403 105.868 96:300 1.00 0.00 C
ATOM	1104	С	PHE	120	108.310 105.392 97.306 1.00 0.00 C
ATOM	1105	0	PHE	120	107.118 105.356 96.981 1.00 0.00
MOTA	1106	CB	PHE	120	109.042 107.233 95.639 1.00 0.00 C
ATOM	1107	CG	PHE	120	_
MOTA	1108		PHE	120	***
MOTA	1109		PHE	120	109.235 108.097 93.260 1.00 0.00 C 109.976 108.511 92.159 1.00 0.00 C
MOTA	1110	CZ	PHE	120	
ATOM	1111		PHE	120	_
ATOM	1112		PHE	120	
ATOM	1113	H	PHE	120	700 0mm 001 000 000 000 000 000 000 000 0
ATOM	1114	HA.	PHE	120	***
ATOM	1115		PHE	120	
ATOM	1116		PHE	120	107.971 107.235 95.375 1.00 0.00 H
 ATOM	1117		PHE	120	109.108 108.011 96.421 1.00 0.00 H
ATOM	1118	HEL			108.157 108.067 93.183 1.00 0.00 H
ATOM	1119	HZ	PHE	120	109.473 108.812 91.255 1.00 0.00 H
ATOM	1120	HE2		120	111,928 108.856 91.355 1.00 0.00 H
ATOM	1121	HD2		120	113.096 108.229 93.448 1.00 0.00 H
ATOM	1122			120	111.798 107.499 95.411 1.00 0.00 H
ATOM	1123		GLU	121	108.716 105.034 98.534 1.00 0.00 N
ATOM			GLU	121	107.772 104.624 99.617 1.00 0.00 . C
	1124		GLU	121	107.252 105.878 100.408 1.00 0.00 C
ATOM	1125		GLU	121	107.704 106.199 101.511 1.00 0.00 0
ATOM	1126		GLU	121	108.493 103.563 100.497 1.00 0.00 C
ATOM	1127		GLU	121	108.826 102.219 99.790 1.00 0.00 C
ATOM	1128		GLU	121	109.594 101.222 100.647 1.00 0.00 C
ATOM	1129	OE1		121	110.803 101.042 100.568 1.00 0.00 O
ATOM	1130	OE2		121	108.785 100.544 101.503 1.00 0.00 0
MOTA	1131		GLU	121	109.733 105 042 98 566 1.00 0.00
ATCM			GLU	121	105.880 104.122 99.185 1.00 0.00 H
ATOM	1133 1		CLU.	121	109.116 101.005 100.925 1.00 0.00 H
RT0:1	1431 1	HE.	760	1.21	107.557 100.000 101.070 1,00 0.00 H
- T .	1222	-== :	===		117.700 A.A.TSS PR.CEG 1.11 (135
				==	
	:				
-:-			-= .		
	==				

							11					
	MOTA	1146	HA	ASP	122	106.761	108.465	100.784	1.00	0.00		Ħ
	MOTA	1147		ASP	122		108.341	98.348	1.00	0.00		H
	MOTA	1148		ASP	122		109.796	99.277	1.00	0.00		H
	MOTA	1149 1150	N CA	asn asn	123 123			102.515	1.00	0.00		C N
	ATOM ATOM	1151	C	ASN	123			103.557	1.00 1.00	0.00		c
	ATOM	1152	ō	ASN	123		105.962		1.00	0.00		ō
	ATOM	1153	CB	ASN	123		108.748		1.00	0.00		Ċ
	ATOM	1154	CG	ASN	123			103.819	1.00	0.00		С
	ATOM	1155	OD1	ASN	123	103.643	110.586	104.886	1.00	0.00		0
	MOTA	1156	ND2	asn	123	103.070	111.034	102.823	1.00	0.00		N
	ATOM	1157	H	ASN	123			102.740	1.00	0.00		H
	ATOM	1158	HA	ASN	123		107.744		1.00	0.00		H
	ATOM	1159		ASN	123			102.700	1.00	0.00		H
	MOTA	1160		ASN	123			104.435	1.00	0.00		H
	ATOM ATOM		1HD2 2HD2		123 123			103.025	1.00 1.00	0.00		н
	ATOM	1163	N	ASP	124			103.438	1.00	0.00		N
	ATOM	1164	CA	ASP	124			103.266	1.00	0.00		C
	MOTA	1165	С	ASP	124			101.859	1.00	0.00		C
	MOTA	1166	0	ASP	124	103.606	102.112	101.488	1.00	0.00		0
	ATOM	1167	CB	ASP	124	103.058	103.142	104.444	1.00	0.00		C
	ATOM	1168	CG	ASP	124			105.818	1.00	0.00		C
	ATOM	1169		ASP	124			106.119	1.00	0.00		0
	ATOM	1170		ASP	124			106.677	1.00	0.00		0
	MOTA	1171 1172	H HA	ASP	124			103.305	1.00	0.00		H
	MOTA MOTA	1173		ASP ASP	124 124			104.486	1.00	0.00		н
	ATOM	1174		ASP	124			104.258	1.00	0.00		Н
	ATOM	1175	N	PHE	125			101.077	1.00	0.00		N
•	ATOM	1176	CA	PHE	125		103.745	99.679	1.00	0.00		Ċ
	ATOM	1177	C	PHE	125	103.367	103.892	98.614	1.006	0.00		C
	ATOM	1178	0	PHE	125		104.757	98.716	1.00	0.00		0
	ATOM	1179	CB	PHE	125		104.492	99.325	1.00	0.00		C
	ATOM	1180	CG	PHE	125		106.028	99.414	1.00	0.00		C
	ATOM	1181		PHE	125			100.570	1.00	0.00		C
	MOTA MOTA	1182 1183	CEI	PHE	125 125		108.019	100.631 99.539	1.00 1.00	0.00		C
	ATOM	1184		PHE	125		108.208	98.386	1.00	0.00		c
	ATOM	1185		PHE	125		106.824	98.323	1.00	0.00		Ċ
•	ATOM	1186	Н	PHE	125			101.444	1.00	0.00		Н
	MOTA	1187	HA	PHE	125	101.938	102.672	99.674	1.00	0.00		H
	ATOM	1188	1HB	PHE	125	100.599	104.191	98.304	1.00	0.00	•	H
	MOTA	1189		PHE	125		104.073	99.960	1.00	0.00		H
	ATOM	1190		PHE	125			101.426	1.00	0.00		H
	ATOM	1191		PHE	125			101.528	1.00	0.00		H
	ATOM ATOM	1192	HZ	DHE	125	100.441		99.588 97.541	1.00	0.00		H
	ATOM	1193 1194		PHE	125 125		108.821	97.423	1.00 1.00	0.00		Н
	ATOM	1195	N	VAL	126	103.404		97.623	1.00	0.00		N
	MOTA	1196	CA	VAL	126	104.648		96.843	1.00	0.00		C
	MOTA	1197		VAL	126		103.180		1.00	0.00		C
	ATOM	1198	0	VAL	126		102.708	94.614	1.00	0.00		0
	MOTA	1199		VAL	126		101.163		1.00	0.00		C
	MOTA	1200		VAL	126		100.850		1.00	0.00		C
	ATOM	1201		VAL	126		100.582		1.00	0.00		C
	ATOM	1202	H	VAL	126		102.412		1.00	0.00		H
	ATOM ATOM	1203 1204	HA HB	VAL	126 126		103.229		1.00 1.00	0.00		н
	ATOM		1HG1		126		101.379		1.00	0.00		Н
	ATOM		2HG1		126		99.769		1.00	0.00		H
	ATOM		3HG1		126		101.147		1.00	0.00		H
	ATOM		2HG2		126	104.092	100.624	98.86 <i>6</i>	1.00	0.00	•	H
	MOTA		3HG2		126		99.521		1.00	0.00		H
	MOTA		1HG2		126		101.142		1.00	0.00		Н
	MOTA	1211	N	PHE	127		104.087		1.00	0.00		N
	MOTA	1212	CA	PHE	127		104.515		1.00	0.00		C
	MOTA	1213		PHE	127 127		103.719 103.756		1.00	0.00		C
	MOTA MOTA	1214 1215	O CB	PHE	127		106.036		1.00 1.00	0.00		C
	ATOM	1216	CG	PHE	127		106.036		1.00	0.00		c
	ATOM	1217	CD1		127		107.434		1.00	0.00		c
	ATOM	1218	CE1		127		108.284		1.00	0.00		Č

	•			•	70					
					78					
	OM 121:		HE 12'		7 108.658		1.00	0.00		С
	OM 122				108.186		1.00	0.00		C
AT AT					107.337		1.00	0.00		C
AT			HE 12: HE 12:	·	104.480		1.00	0.00		H
ጥል			HE 12		104.346 106.262		1.00	0.00		H
AT			HE 127		106.202	93.988 92.376	1.00 1.00	0.00		H H
AT					107.144		1.00	0.00		H
AT					108.655	96.551	1.00	0.00		H
AT	OM 122	B HZ P	HE 127		109.317		1.00	0.00		H
,AT					108.475	92.583	1.00	0.00		H
TA					106.974	91.905	1.00	0.00		H
AT			AL 128		103.025	91.663	1.00	0.00		N
AT AT			AL 128 AL 128		102.171	90.872	1.00	0.00		C
AT			AL 128 AL 128		102.863 102.756	89.474	1.00	0.00		. C
AT			AL 128		102.756	88.615 90.814	1.00	0.00		0
AT						89.999	1.00	0.00		c
AT					100.039	92.194	1.00	0.00		č
, AT	OM 1238	3 H V	AL 128		103.006	91.501	1.00	0.00		н
AT			AL 128		102.117	91.363	1.00	0.00		H
ATY			AL 128		100.748	90.316	1.00	0.00		H
AT		L 1HG1 V			100.079	88.969	1.00	0.00		н
TA TA		2 2HG1 V				90.475	1.00	0.00		н
ATC		3 3HG1 V 1 2HG2 V				89.899	1.00	0.00		H
ATO		3 HG2 V			100.584 98.990	92.771 92.117	1.00	0.00		H
ATC		1HG2 V	-		100.036	92.811	1.00	0.00		H H
ATC			AL 129		103.608	89.266	0.00	0.00		N
ATC	OM 1248		AL 129		104.444	88.036	0.00	0.00		Ĉ
TA			AL 129	109.469	103.667	86.957	0.00	0.00	·· .	, .c .
ATO			AL 129		103.484	87.095	0.00	0.00		0
ATO					105.842	88.417	0.00	0.00		C
ATO					106.777	87.201	0.00	0.00		C
ATC ATC			\L 129 \L 129		106.644	89.410	0.00	0.00		C
ATO					103.732 104.677	90.098 87.586	0.00	0.00		H H
ATO					105.683	88.887	0.00	0.00		н
ATO		1HG1 V			107.717	87.483	0.00	0.00		H
ATC	M 1258	2HG1 V	L 129		106.319	86.415	0.00	0.00		н
ATO		3HG1 V			107.059	86.723	0.00	0.00		H
ATC		1HG2 VA			107.665	89.571	0,00	0.00		H
ATC		2HG2 VA			106.749	89.057	0.00	0.00		H
ATC		3HG2 VA			106.161	90.404	0.00	0.00		H
ATO					103.224	85.886 ` 84.746	1.00	0.00		C
ATC					103.300	83.403	1.00	0.00		C
ATO					104.257	83.303	1.00	0.00		0
ATO	M 1267	CB LE	T 130	108.620	101.133	84.676	1.00	0.00	•	ď
ATO				108.913	100.080	85.784	1.00	0.00		С
ATO				107.776		85.901	1.00	0.00		С
ATO					99.320	85.529	1.00	0.00		С
ATO ATO				107.802		85.837	1.00	0.00		H
ATO					102.267	84.925 84.647	1.00	0.00		H
ATO				108.787		83.694	1.00	0.00		H H
ATO				108.983		86.758	1.00	0.00		H
ATO		2HD1 LE		107.947		86.729	1.00	0.00		н
ATO		3HD1 LE		106.801		86.090	1.00	0.00		H
ATO		11D1 LE		107.665		84.978	1.00	0.00		Ħ
ATO		CHOC LE		110.487		86.373	1.00	9.00		H
.010		THEE LE				83.626	1.00	0.00		7.7
		<u> </u>			131.111	(F 17)	• ::			7
		-	E :=							•
			-	-			• •			
			-							
:	: :			-						

· ·

						17					
ATOM	1292	HA	GLU	131	110.247	104.702	§1.185	0.00	0.00		H
ATOM	1293	1HB	GLU	131	111.036	103.469	79.097	0.00	0.00		H
MOTA	1294	2HB	GLU	131	111.040	101.969	79.995	0.00	0.00		H
ATOM	1295	1HG	GLU	131	112.861	102.929	81.533	0.00	0.00		H
MOTA	1296	2HG	GLU	131	112.727	104.481	80.717	0.00	0.00		H
ATOM	1297	N	LEU	132	108.277	104.581	79.443	1.00	0.00		Ñ
MOTA	1298	CA	LEU	132		104.705	78.848	1.00	0.00		С
MOTA	1299	С	LEU	132		103.852	77.552	1.00	0.00	•	C
MOTA	1300	0	LEU	132		104.373	76.440	1.00	0.00		0
MOTA	1301	CB	LEU	132		106.229	78.718	1.00	0.00		С
ATOM	1302	CG	LEU	132		106.739	78.479	1.00	0.00		C
ATOM	1303		LEU	132		106.724	77.008	1.00	0.00		C
ATOM	1304		LEU	132		106.043	79.333	1.00	0.00		C
ATOM	1305	H	LEU	132		105.267	79.254	1.00	0.00		H
MOTA	1306	HA	LEU	132		104.329	79.594	1.00	0.00		H
ATOM	1307		LEU	132		106.718	79.651	1.00	0.00		H
ATOM	1308		LEU	132		106.664	77.950	1.00	0.00		H H
MOTA	1309	HG	FEA	132		107.808	78.772	1.00	0.00		H
ATOM		2HD1 3HD1		132 132		107.316 107.156	76.851 76.347	1.00	0.00		н
ATOM ATOM	1312			132		107.136	76.637	1.00	0.00		н
ATOM		2HD2		132		106.495	79.174	1.00	0.00		н
ATOM		3HD2		132		104.969	79.087	1.00	0.00		н
ATOM		1HD2		132		106.123	80.410	1.00	0.00		H
ATOM	1316	N	CYS	133		102.527	77.702	1.00	0.00		N
ATOM	1317	CA	CYS	133		101.589	76.542	1.00	0.00		C
ATOM	1318	c	CYS	133		100.892	76.285	1.00	0.00		C
ATOM	1319	ō	CYS	133		100.720	77.177	1.00	0.00		0
ATOM	1320	CB	CYS	133		100.603	76.742	1.00	0.00		С
ATOM	1321	SG	CYS	133	109.201	101.492	76.858	1.00	0.00		s
ATOM	1322	H	CYS	133	106.732	102.222	78.648	1.00	0.00		H
ATOM	1323	HA	CYS	133	106.666	102.141	75.607	1.00	0.00		H
ATOM	1324	1HB	CYS	133	107.458	99.988	77.648	1.00	0.00		H
MOTA	1325	2HB	CYS	133	107.663	99.900	75.893	1.00	0.00		H ,
ATOM	1326	HG	CYS	133	109.042	102.358	75.852	1.00	0.00		H
ATOM	1327	N	ARG	134		100.465	75.033	1.00	0.00		N
ATOM	1328	CA	ARG	134	103.490	99.798	74.659	1.00	0.00		C
MOTA	1329	С	ARG	134	103.590	98.225	74.735	1.00	0.00		C
ATOM	1330	0	ARG	134	104.065	97.571	73.813	1.00	0.00		0 .
ATOM	1331	CB	ARG	134		100.221	73.216	1.00	0.00		C .
ATOM	1332	CG	ARG	134		101.619	73.038	1.00	0.00		C ,
ATOM	1333	CD NE	ARG ARG	134 134		101.772 103.064	71.607 71.452	1.00	0.00 0.00		N
ATOM ATOM	1334 1335	CZ	ARG	134		103.419	70.376	1.00	0.00		c
ATOM	1336		ARG	134		102.699	69.293	1.00	0.00		N
ATOM	1337		ARG	134		104.556	70.389	1.00	0.00		N
ATOM	1338	HE	ARG	134		103.752	72.213	1.00	0.00		H
ATOM	1339	н	ARG	134		100.514	74.405	1.00	0.00		H
ATOM .	1340	HA	ARG	134		100.125	75.335	1.00	0.00		H
ATOM	1341		ARG	134		100.113	72.542	1.00	0.00		H
ATOM	1342		ARG	134	102.359	99.472	72.836	1.00	0.00		H
MOTA	1343	1HG	ARG	134	101.637	101.756	73.785	1.00	0.00		H
ATOM	1344	2HG	ARG	134	103.197	102.403	73.263	1.00	0.00		H
ATOM	1345	1HD	ARG	134	102.727	101.701	70.882	1.00	0.00		H
ATOM	1346		ARG	134		100.921	71.383	1.00	0.00		H
ATOM		2HH1		134		101.836	69.356	1.00	0.00		н
MOTA		1HH1		134		103.155	68.477	1.00	0.00		H
ATOM		1HH2		134		105.082	71.261	1.00	0.00		H
ATOM		2HH2		134		104.761	69.596	1.00	0.00		H
ATOM	1351	N	ARG	135	103.087	97.624	75.813	1.00	0.00		N
ATOM	1352	CA	ARG	135	102.444	96.259	75.882	1.00	0.00		C
ATOM	1353	C	ARG	135	102.227	95.298	74.626	1.00	0.00		o
ATOM	1354	0	ARG	135	102.193	95.768	73.496	1.00 1.00	0.00		c
ATOM	1355 1356	CB CG	ARG	135 135	101.170 100.249	96.500 97.756	76.763 76.533	1.00	0.00		C
ATOM		CG	ARG ARG	135 135	99.239	98.054	76.533	1.00	0.00		C
ATOM ATOM	1357 1358	CD NE	ARG	135	98.236	96.968	77.722	1.00	0.00		N
ATOM	1359	CZ	ARG	135	98.273	96.032	78.641	1.00	0.00		Ĉ
ATOM	1360	NH1		135	98.483	96.230	79.894	1.00	0.00		N
ATOM	1361	NH2		135	98.048	94.829	78.294	1.00	0.00		N
ATOM	1362	HE	ARG	135	97.982	96.480	76.853	1.00	0.00		H
ATOM	1363	H	ARG	135	102.981	98.280	76.595	1.00	0.00		H
ATOM	1364	HA	ARG	135	103.127	95.662	76.520	1.00	0.00		H

													•
										•			
					•	80		•					
MOTA	1365	1HB	ARG	135	100.547	95.585	76.749	1.00	0.00		н		
MOTA	1366		ARG	135	101.503	96.524	77.819	1.00	0.00		H		
MOTA	1367		ARG	135	100.861	98.670	76.445	1.00	0.00		H		
MOTA MOTA	1368 1369		ARG ARG	135 135	99.741 99.775	97.682 98.187	75.554 78.627	1.00	0.00		H H		
MOTA	.1370		ARG	135	98.722	99.018	77.487	1.00	0.00		H		
MOTA	1371		ARG	135	97.841	96.966	80.275	1.00	0.00		H		
MOTA	1372			135	98.325	95.288	80.351	1.00	0.00		H		
MOTA MOTA	1373 1374			135 135	97.606	94.599	77.401	1.00	0.00		H		
ATOM	1375	N N	ARG	136	97.832 102.093	94.231 93.951	79.153 74.777	1.00	0.00		H N		
ATOM	1376	CA	ARG	136	102.057	92.967	73.624	1.00	0.00		c		
MOTA	1377	C	ARG	136	100.688	92.376	73.061	1.00	0.00		С		
ATOM	1378	0	ARG	136	100.739	91.506	72.193	1.00	0.00		0		
ATOM ATOM	1379 1380	CB CG	ARG ARG	136 136	103.087 104.158	91.811 91.580	73.900 72.810	1.00	0.00 0.00		C		
ATOM	1381	æ	ARG	136	105.251	92.657	72.832	1.00	0.00		C		
ATOM	1382	NE	ARG	.136	106.206	92.383	71.732	1.00	0.00		N		
MOTA	1383	CZ	ARG	136	107.389	92.960	71.582	1.00	0.00		С		
ATOM ATOM	1384 1385		ARG ARG	136 136	107.878	93.831	72.403	1.00	0.00		N		
MOTA	1386	HE	ARG	136	108.094 105.927	92.643 91.687	70.557 71.026	1.00	0.00		N H		•
ATOM	1387	H	ARG	136	102.248	93.616	75.740	1.00	0.00		н		
MOTA	1388	HA	ARG	136	102.443	93.480	72.718	1.00	0.00		H		
ATOM	1389		ARG	136	103.582	91.925	74.880	1.00	0.00		H		
ATOM ATOM	1390 1391		ARG ARG	136 136	102.546 104.633	90.859 90.591	74.040 72.959	1.00	0.00		H H		
ATOM	1392		ARG	136	103.686	91.522	71.809	1.00	0.00		н		
MOTA	1393	1HD	ARG	136	104.817	93.671	72.717	1.00	0.00		H	_	
ATOM	1394		ARG	136 .	105.766	92.652	73.815	1.00	0.00		H	•	
MOTA MOTA	1395 · 1396			136 136	107.240 108.786	94.080 94.233		1.00	0.00	. i .	H H	•	
ATOM	1397			136	107.610	91.983	72.170 69.942	1.00	0.00		H		
ATOM	1398			136	108.989	93.111	70.433	1.00	0.00		H		
ATOM	1399	N	SER	137	99.408	92.748	73.311	1.00	0.00		N		
ATOM ATOM	1400 1401	CA C	SER SER	137 137	98.894 98.599	93.583 95.136	74.450	1.00	0.00		C		
ATOM	1402	0	SER	137	98.196	95.769	74.259 75.225	1.00	0.00 0.00		ō		
ATOM	1403	CB	SER	137	97.668	92.796	75.047	1.00	0.00		Č		
ATOM	1404	OG	SER	137	96.959	93.495	76.093	1.00	0.00		0		
MOTA MOTA	1405 1406	H HA	SER SER	137	98.778 99.623	92.393	72.582	1.00	0.00		H H		
ATOM	1407		SER	137 137	96.937	93.559 92.555	75.279 74.252	1.00	0.00 0.00		н		
ATOM	1408		SER	137	97.996	91.822	75.453	1.00	0.00		H		
ATOM	1409		SER		96.783	92.949		1.00-			Ħ.		
ATOM ATOM	1410 1411	N CA	LEU	138	98.732	96.006	73.240	1.00	0.00		N		
ATOM	1412		LEU	138 138	98.781 97.517		71.777 71.295		0.00		C		
ATOM	1413		LEU	138	97.528						õ		
MOTA	1414		LEU	138	100.246				0.00		C		
ATOM	1415		LEU	138	100.687				0.00		C		
ATOM ATOM	1416 1417	CD2		138 138	102.198 100.015			1.00 1.00	0.00 0.00		C		
ATOM	1418		LEU	138	98.550				0.00		н		
ATOM	1419		LEU	138	98.653	96.705	71.281	1.00	0.00		H		
ATOM	1420		LEU	138	100.846				0.00		H		
ATOM ATOM	1421 1422		LEU	138 138	100.635 100.492				0.00		H		
ATOM	1423			138	102.762				0.00		Ħ		
MOTA	1424	3HD1	LEU	138	102.447	93.835	70.362	1.00	0.00		H		
ATOH				138							E		
3.7 0 .4	le25			156. 123	100.043 T:11.00				0.00 6 68		#7. ;-		
7.20		===		122		1.311	:2.516.						
: ::					.:=				_				
						- 		-					
			-==		•								
	-												
-		-											
-													

						01				
ATOM	1438		LEU	139	95.105	94.027	70.683	1.00	0.00	H
ATOM		1HB	LEU		95.156	95.360	73.209	1.00	0.00	H
ATOM	1440	2HB	LEU		93.707	96.006	72.523	1.00	0.00	H
MOTA	1441		LEU		94.301	92.982	72.746	1.00	0.00	H
ATOM		2HD1			94.379	94.064	75.041	1.00	0.00	H
ATOM	1443				92.776	94.796	74.748	1.00	0.00	H
ATOM	1444		. LEU		92.958	93.031	74.876	1.00	0.00	Ħ
MOTA		2HD2			91.625	94.498	72.380	1.00	0.00	H
MOTA		3HD2			92.420	93.425	71.210	1.00	0.00	H
MOTA		1HD2			91.766	92.749	72.704	1.00	0.00	Ħ
MOTA	1448		GLU		94.311	96.661	68.919	1.00	0.00	N
MOTA	1449		GLU		95.583	97.311	68.479	1.00	0.00	C
MOTA	1450		GLU		96.622	96.377	67.752	1.00	0.00	C
MOTA	1451		GLU		96.907	95.279	68.222	1.00	0.00	0
ATOM	1452		GLU		96.197	98.284	69.534	1.00	0.00	C
ATOM	1453		GLU		96.556	99.716	69.056	1.00	0.00	C
ATOM	1454		GLU			100.407	69.926	1.00	0.00	C
ATOM	1455		GLU		98.716	99.888	70.184	1.00	0.00	0
ATOM ATOM	1456		GLU GLU			101.695	70.221	1.00	0.00	0
ATOM	1457 1458		GLU		93.439 95.204	96.792	68.391	1.00	0.00	H
MOTA	1459		GLU		95.535	97.973	67.674	1.00	0.00	H H
ATOM		2HB	GLU		97.116	98.373 97.812	70.417	1.00	0.00	H
ATOM		1HG	GLU		96.948	99.703	69.926 68.025	1.00	0.00	H
ATOM	1462		GLU			100.338	69.008	1.00	0.00	н
ATOM	1463		LEU		97.189	96.813	66.605	1.00	0.00	N
ATOM	1464		LEU		98.215	96.059	65.806	1.00	0.00	C
ATOM	1465		LEU		97.869	94.561	65.465	1.00	0.00	c
ATOM	1466		LEU		97.231	94.319	64.446	1.00	0.00	ŏ
ATOM	1467		LEU		99.684	96.288	66.287	1.00	0.00	č
ATOM	1468		LEU		100.294	97.716	66.239	1.00	0.00	C*v &
ATOM	1469		LEU		99.949	98.559	67.478	1.00	0.00	C
ATOM	1470		LEU	141	101.828	97.644	66.150	1.00	0.00	C .:
ATOM	1471		LEU	141	96.894	97.753	66.330	1.00	0.00	H
ATOM	1472	HA	LEU	141	98.193	96.531	64.805	1.00	0.00	н :
MOTA	1473	1HB	LEU	141	99.800	95.860	67.293	1.00	0.00	H.
ATOM	1474	2HB	LEU	141	100.316	95.635	65.650	1.00	0.00	H .
ATOM	1475	HG	LEU	141	99.924	98.234	65.331	1.00	0.00	н
MOTA	1476	2HD1	LEU	141	98.865	98.650	67.627	1.00	0.00	H :
ATOM	1477	3HD1	LEU	141	100.359	98.128	68.411	1.00	0.00	H,
MOTA	1478	1HD1	LEU	141	100.344	99.590	67.401	1.00	0.00	H . 🛴
MOTA	1479	2HD2	LEU	141	102.277	97.137	67.025	1.00	0.00	H
MOTA	1480	3HD2	LEU	141	102.157	97.089	65.253	1.00	0.00	H :
MOTA		1HD2		141	102.288	98.647	66.082	1.00	0.00	H
MOTA	1482	N	HIS	142	98.239	93.574	66.305	1.00	0.00	N
ATOM	1483	CA	HIS	142	97.890	92.130	66.120	1.00	0.00	C
ATOM	1484	C	HIS	142	96.376	91.786	65.867	1.00	0.00	C
ATOM	1485	<u> </u>	HIS	142	96.077	91.082	64.902	1.00	0.00	0
ATOM	1486	CB	HIS	142	98.520	91.384	67.333	1.00	0.00	C
MOTA	1487	CG	HIS	142	98.401	89.863	67.314	1.00	0.00	C
ATOM	1488		HIS	142	99.032	89.064	66.378	1.00	0.00	N
ATOM	1489 1490		HIS	142	98.517	87.850	66.743	1.00	0.00	C
ATOM ATOM	1491		HIS HIS	142	97.673	87.762	67.818	1.00	0.00	N
ATOM	1492	H H	HIS	142 142	97.591 98.568	89.095 93.935	68.166 67.207	1.00	0.00	C H
ATOM	1493	HA	HIS	142	98.425	91.776	65.215	1.00	0.00	н
ATOM	1494		HIS	142	99.601	91.610	67.390	1.00	0.00	н
ATOM	1495		HIS	142	98.095	91.771	68.280	1.00	0.00	н
ATOM	1496		HIS	142	98.758	86.968	66.161	1.00	0.00	н
ATOM	1497		HIS	142	97.139	86.941	68.140	1.00	0.00	H
ATOM	1498		HIS	142	96.957	89.499	68.943	1.00	0.00	н
ATOM	1499	N	LYS	143	95.427	92.296	66.675	1.00	0.00	N
ATOM	1500	CA	LYS	143	93.966	92.168		·1.00	0.00	Ĉ
ATOM	1501	C.	LYS	143	93.456	92.911	65.071	1.00	0.00	C
ATOM	1502	õ	LYS	143	92.547	92.416	64.401	1.00	0.00	0
ATOM	1503	СВ	LYS	143	93.182	92.544	67.652	1.00	0.00	c
ATOM	1504	CG	LYS	143	91.694	92.119	67.639	1.00	0.00	Č
ATOM	1505	CD	LYS	143	90.996	92.400	68.981	1.00	0.00	č
ATOM	1506	CE	LYS	143	89.522	91.976	68.981	1.00	0.00	Ċ
ATOM	1507	NZ	LYS	143	88.936	92.262	70.305	1.00	0.00	N
ATOM	1508		LYS	143	87.946	91.979	70.312	1.00	0.00	H
ATOM	1509		LYS	143	89.448	91.737	71.029	1.00	0.00	H
ATOM	1510		LYS	143	89.005	93.271	70.501	1.00	0.00	н

						02					
MOTA	1511	Ħ	LYS	143	95.796	92.914	67.405	1.00	0.00		н
MOTA	1512	HA	LYS	143	93.768	91.094	66.174	1.00	0.00		H
ATOM		1HB	LYS	143	93.663	92.071	68.532	1.00	0.00		н
ATOM	1514		LYS	143	93.260	93.634	67.831	1.00			
ATOM		1HG	LYS	143	91.157				0.00		H
ATOM		2HG	LYS			92.643	66.822	1.00	0.00		H
				143	91.612	91.041	67.399	1.00	0.00		н
ATOM	1517		LYS	143	91.533	91.864	69.788	1.00	0.00		Ħ
ATOM		2HD	LYS	143	91.083	93.480	69.220	1.00	0.00		H
MOTA	1519		LYS	143	88.963	92.511	68.187	1.00	0.00		н
MOTA	1520		LYS	143	89.428	90.895	68.753	1.00	0.00		H
MOTA	1521	N	ARG	144	94.052	94.055	64.693	0.00	0.00		N
ATOM	1522	CA	ARG	144	93.818	94.707	63.364	0.00	0.00		С
ATOM	1523	C	ARG	144	94.430	93.932	62.133	0.00	0.00		Ċ
ATOM	1524	0	ARG	144	93.771	93.765	61.107	0.00	0.00		ō
ATOM	1525	CB	ARG	144	94.325	96.187	63.398	0.00	0.00		Č
ATOM	1526	CG	ARG	144	94.048	97.079	64.638	0.00	0.00		č
ATOM	1527	CD	ARG	144	92.575	97.236	65.036	0.00			C
ATOM	1528	NE	ARG	144		98.058			0.00		
ATOM	1529	CZ			92.517		66.275	0.00	0.00		N
			ARG	144	91.428	98.276	67.001	0.00	0.00		C
ATOM	1530		ARG	144	90.254	97.796	66.722	0.00	0.00		N
ATOM	1531		ARG	144	91.551	99.010	68.049	0.00	0.00		N
ATOM	1532	HE	ARG	144	93.394	98.494	66.595	1.00	0.00		H
ATOM	1533	H	ARG	144	94.877	94.270	65.261	0.00	0.00		H
MOTA	1534	HA	ARG	144	92.724	94.742	63.188	0.00	0.00		H
ATOM	1535	1HB	ARG	144	93.934	96.702	62.499	0.00	0.00		H
MOTA	1536	2HB	ARG	144	95.422	96.182	63.249	0.00	0.00		H
ATOM	1537	1HG	ARG	144	94.490	98.081	64.473	0.00	0.00		H
ATOM	1538	2HG	ARG	144	94.603	96.661	65.499	0.00	0.00		. н
ATOM	1539	1HD	ARG	144	92.121	96.238	65.209	0.00	0.00		H
ATOM	1540		ARG	144	91.997	97.713	64.219	0.00	0.00		н
ATOM		1HH1		144	89.492		67.359		0.00		H
ATOM		2HH1		144	90.243	97.220	65.880				
ATOM		1HH2		144				0.00	0.00		H
ATOM	1544	2HH2			90.714	99.175	68.606	0.00	0.00		H
				144	92.504	99.350	68.179	0.00	0.00		H
ATOM	1545	N	ARG	145	95.685	93.464	62.247	1.00	0.00		N
ATOM	1546	CA	ARG	145	96.370	92.597	61.243	1.00	0.00		C
MOTA	1547	С	ARG	145	95.872	91.111	61.094	1.00	0.00		C
ATOM	1548	0	ARG	145	96.228	90.473	60.101	1.00	0.00		0
MOTA	1549	CB	ARG	145	97.877	92.563	61.650	1.00	0.00		C
ATOM	1550	CG	ARG	145	98.679	93.889	61.575	1.00	0.00		С
ATOM	1551	CD	ARG	145	100.051	93.757	62.256	1.00	0.00		С
ATOM	1552	NE	ARG	145	100.752	95.066	62.215	1.00	0.00		N
ATOM	1553	\mathbf{cz}	ARG	145	102.002	95.278	62.604	1.00	0.00		C
ATOM	1554	NH1	ARG	145	102.785	94.365	63.098	1.00	0.00		N
ATOM .	1555		ARG		102.465		62.475	1.00			Ŋ
ATOM	1556	HE	ARG	145	100.224	95.874	61.856	1.00	0.00	•	H
ATOM	1557	н	ARG	145	96.135	93.688	63.146	1.00			
ATOM	1558	HA	ARG	145					0.00		H
	1559				96.281	93.057	60.240	1.00	0.00		H
ATOM	1560		ARG	145	97.951	92.141	62.674	1.00	0.00		H
ATOM			ARG	145	98.410	91.821	61.021	1.00	0.00		H
ATOM	1561		ARG	145	98.805	94.204	60.520	1.00	0.00		H
ATOM	1562		ARG	145	98.115	94.711	62.056	1.00	0.00		H
ATOM	1563		ARG	145	99.923	93.427	63.309	1.00	0.00		H
ATOM	1564	2HD	ARG	145	100.648	92.971	61.751	1.00	0.00		H
ATOM	1565	2HH1	ARG	145	102.341	93.449	63.156	1.00	0.00		H
ATOM	1566	1HH1	ARG	145	103.735	94.640	63.347	1.00	0.00		н
ATOM	1567	1HH2	ARG	145	101.776	97.099	62.057	1.00	0.00		H
MOTA	1568	2HH2	ARG	145	103.434	96.635	62.741	1.00	0.00		H
ATOM	1569		LYS	146	95.154	90.529	62.082	1.00	0.00		Ŋ
A'I ÛM	1570		ட். க	7#p	تىد. يەز دىد. يەز	87.056	63.315	1.00	U.ÚÚ		
ATOM	1571		LYS	146	96.148	88.227	62.721	1.00	0.00		Č
reci.	1572							1.32			C
ATILL.	:::::			. <u> </u>	92.377	87.EET	83.77E		3.62		S
·			 		<u> </u>	20.122	00.000	1.39	a.ee.		(2
177	271	::	- -	·	::::=	:::::		1.55	1 10		:
	. [:		· -	- ** *	. · · · · · · · · · · · · · · · · · · ·			-		
		:				: :		• -	. ::.		
~				-							=
:: <u>:</u>											
								-			
: -	_	-									
						_					

					03					**
MOTA	1584 2HB	LYS	146		_	60.112		0.00		H H
MOTA	1585 1HG		146			61.489		0.00		H
MOTA	1586 2HG	LYS	146		87.000	62.003	_	0.00		H
MOTA	1587 1HD	LYS	146		87.145	59.582	1.00	0.00		H
ATOM	1588 2HD		146	-	86.549	59.054	1.00	0.00		H
MOTA	1589 1HE	LYS	146		84.375	60.333	1.00.			H
MOTA	1590 2HE	LYS	146		84.972	60.836	1.00	0.00		N
MOTA	1591 N	ALA	147		88.196	61.950	1.00	0.00		Ċ
ATOM	1592 .CF	ALA	147		87.294	62.187	1.00	0.00		Č
ATOM	1593 C	ALA	147		87.983	61.895	1.00	0.00		ō
MOTA	1594 O	ALA	147		88.722	60.915	1.00 1.00	0.00		Ċ
MOTA	1595 CI		147		86.085	61.256	1.00	0.00		H
ATOM	1596 H	ALA	147	97.178	88.800	61.122	1.00	0.00		н
MOTA	1597 H		147	98.408	86.934	63.237 61.536	1.00	0.00		H
MOTA	1598 2H		147	97.255	85.528	60.195	1.00	0.00		H
MOTA	1599 3H		147	98.071	86.380 85.368	61.308	1.00	0.00		H
MOTA	1600 1H		147	99.006	87.700	62.716	1.00	0.00		N
MOTA	1601 N		148	100.806 102.207	88.129	62.439	1.00	0.00		С
MOTA	1602 C		148	102.207	87.003	61.680	1.00	0.00		C
MOTA	1603 C		148	103.014	85.843	62.105	1.00	0.00		0
MOTA	1604 0		148	102.939	88.519	63.757	1.00	0.00		С
ATOM	1605 C		148	102.326	89.637	64.641	1.00	0.00		С
MOTA	1606 C		148 148	103.212	89.891	65.868	1.00	0.00		C
MOTA		D1 LEU	148	102.098	90.967	63.907	1.00	0.00		C
MOTA		D2 LEU	148	100.590	87.057	63.490	1.00	0.00		H
MOTA	1609 H		148	102.200	89.037	61.803	1.00	0.00		H
ATOM			148	103.042	87.607	64.378	1.00	0.00		H
MOTA	1611 1H 1612 2H		148	103.981	88.795	63.509	1.00	0.00		H
MOTA		G LEU	148		89.275	65.004	1.00	0.00		H
MOTA	1614 2H		148	103.436	88.954	66.407	1.00	0.00	-	**
MOTA MOTA	1615 3H		148	104.185	90.351	65.609	1.00	0.00		H
ATOM	1616 1H		148	102.720	90.564	66.595	1.00	0.00		H
MOTA	1617 2H		148	103.034	91.381	63.491	1.00	0.00		H
MOTA	1618 3E		148	101.382	90.848	63.072	1.00	0.00		H
ATOM	1619 1H		148	101.664	91.730	64.580	1.00	0.00		· · · · · · · · · · · · · · · · · · ·
MOTA	1620 N		149	103.648	87.338	60.563	1.00	0.00		C
MOTA		A THR	149	104.435	86.350	59.754	1.00	0.00		G.
ATOM	1622		149	105.682	85.746	60.498	1.00	0.00		0 ":
ATOM		THR	149	106.190	86.324	61.461	1.00	0.00		٠.
MOTA		CB THR	149	104.837	86.961	58.370	1.00	0.00		Cynÿ O
ATOM		OG1 THR	149	105.679	88.098	58.524	1.00	0.00		č.
ATOM	1626 (CG2 THR	149	103.673	87.383	57.459	1.00	0.00		н
ATOM	1627 F	H THR	149	103.553	88.318	60.285	1.00	0.00		H
ATOM	1628	HA THR	149	103.758	85.496	59.545	1.00	0.00		H
MOTA	1629 I	HB THR	149	105.407	86.192	57.810	1.00	0.00		н
MOTA		HG1 THR	149	105.422	88.711	57.831	1.00	0.00		H
MOTA	1631 1	HG2 THR	149	104.024	87.738	56.472	1.00	0.00		H.
ATOM		HG2 THR	149	102.982	86.539	57.266 57.904	1.00	0.00		н
MOTA	1633 3	HG2 THR	149	103.065	88.194	60.038	0.00	0.00		N
ATOM	1634	M Gra	150	106.193	84.586 83.885		0.00	0.00	•	C
MOTA		CA GLU	150	107.355	84.748		0.00	0.00		С
ATOM		C GLU	150	108.671	84.675			0.00		0
ATOM		O GLU	150	109.164 107.587	82.517			0.00		C
ATOM		CB GLU	150	106.402	81.503			0.00		C
ATOM		CG GLU	150	106.402	80.210			0.00		C
ATOM		CD GLU	150	107.099	79.207			0.00		0
ATOM		OE1 GLU	150	105.835	80.283			0.00		0
ATOM	=	OE2 GLU	150	105.612	84.128			0.00		H
ATOM		H GLU	150	107.022	83.624	_				H
ATOM		HA GLU	150	108.487				0.00	•	H
ATOM			150	107.856	82.703			0.00		H
ATOM			150 [.]	105.461						H.
ATOM	1647 1		150	106.235	81.212					H
MOTA			151	109.214	85.621			0.00		N
ATOM		N PRO	151	110.199						C
ATOM		CA PRO CD PRO	151	108.872						C
ATOM	-		151	109.855				0.00		C
ATON		C PRO O PRO	_	110.743			_			0
ATON		CB PRO		110.413						C
ATON		CG PRO		109.986			0.00			C
ATON ATON		HA PRO		111.150			0.00	0.00		H
ATON	. 1636	LAL ENO								

ATOM	1657	7 1HD	PRO	151	107.885	86.088	58.412	0.00	0.00		н
ATOM	1658	3 2HD	PRO	151	108.856	84.598	58.157	0.00	0.00		H
ATOM	1659	1HB	PRO	151	111.462	87.754	58.917	0.00	0.00		н
MOTA	1660	2HB	PRO	151	109.787	88.335	58.968	0.00	0.00		н
ATOM	1661	. 1HG	PRO		110.834	85.785	57.690	0.00	0.00		
ATOM		2HG	PRO		109.669	06.944					H
ATOM	1663		GLU				57.018	0.00	0.00		H
ATOM	1664		GLU		108.587	88.146	61.648	1.00	0.00		N
					108.117	89.007	62.775	1.00	0.00		С
MOTA	1665		GLU		107.904	88.238	64.129	1.00	0.00		C
ATOM	1666		GLU		108.439	88.657	65.158	1.00	0.00		0
ATOM	1667		GLU		106.855	89.756	62.250	1.00	0.00		C
ATOM	1668		GLU		106.211	90.800	63.203	1.00	0.00		C
MOTA	1669		GLU	152	106.987	92.086	63.492	1.00	0.00		С
ATOM	1670	OE1	. GLU	152	108.200	92.220	63.370	1.00	0.00		0
ATOM	1671	OE2	GLU	152	106.172	93.078	63.939	1.00	0.00		0
MOTA	1672	H	GLU	152	107.932	87.605	61.072	1.00	0.00		н
ATOM	1673	HA	GLU	152	108.892	89.773	62.981	1.00	0.00		H
ATOM	1674	1HB	GLU	152	107.096	90.261	61.293	1.00	0.00		H
ATOM	1675	2HB	GLU	152	106.081	89.009	61.984	1.00	0.00		H
ATOM	1676	1HG	GLU	152	105.230	91.093	62.786	1.00	0.00		
ATOM		2HG	GLU	152	105.977	90.333	64.176				H
ATOM	1678		ALA	153	107.158			1.00	0.00		H
ATOM	1679		ALA	153		87.116	64.137	0.00	0.00		Ŋ
ATOM	1680				107.037	86.226	65.325	0.00	0.00		C
ATOM			ALA	153	. 108.359	85.596	65.902	0.00	0.00		C
ATOM	1681		ALA	153	108.492	85.516	67.125	0.00	0.00		0
	1682		ALA	153	105.982	85.168	64.944	0.00	0.00		C
ATOM	1683		ALA	153	106.793	86.850	63.212	0.00	0.00		H
ATOM	1684		ALA	153	106.608	86.829	66.151	0.00	0.00		H
ATOM	1685		ALA	153	105.751	84.502	65.795	0.00	0.00		H
	_ 1686				105.021	-85-624-	64 - -636-	000-	000-		H
MOTA	1687		ALA	153	106.317	84.525	64.108	0.00	0.00	• • • •	H
MOTA	1688	N	ARG	154	109.343	85.199	65.066	0.00	0.00		N
MOTA	1689	CA	ARG	154	110.722	84.852	65.539	0.00	0.00		C
ATOM	1690	C	ARG	154	111.530	85.995	66.258	0.00	0.00		C
ATOM	1691	0	ARG	154	112.158	85.741	67.286	0.00	0.00		0
MOTA	1692	CB	ARG	154	111.503	84.146	64.390	0.00	0.00		Ċ
ATOM	1693	CG	ARG	154	112.107	85.065	63.296	0.00	0.00		Č
ATOM	1694	CD	ARG	154	113.543	85.528	63.593	0.00	0.00		č
ATOM	1695	NE	ARG	154	113.880	86.656	62.687	0.00	0.00		N
MOTA	1696	CZ	ARG	154	114.866	87.527	62.870	0.00	0.00		ç
ATOM	1697		ARG	154	115.740	87.459	63.831	0.00	0.00	•	И
ATOM	1698		ARG	154	114.962	88.493	62.030	0.00	0.00		
ATOM	1699	HE	ARG	154	113.299	86.772	61.844				N
ATOM	1700	H	ARG	154				1.00	0.00		H
ATOM-	-1701			- 154	109.127	85.334	64.069	0.00	0.00		H
ATOM	1702				-110.592		66.310	0.00	0700		H
ATOM	1702		ARG	154	110.836	83.409	63.904	0.00	0.00		H
ATOM			ARG	154	112.305	83.522	64.828	0.00	0.00		H
	1704		ARG	154	111.443	85.935	63.149	0.00	0.00		H
ATOM	1705		ARG	154	112.090	84.564	62.315	0.00	0.00		H
ATOM	1706		ARG	154	114.240	84.680	63.473	0.00	0.00		H
ATOM '	1707		ARG	154	113.654	85.843	64.648	0.00	0.00		H
ATOM		1HH1		154	116.480	88.160	63.838	0.00	0.00		H
ATOM	1709			154	115.646	86.618	64.402	0.00	0.00		H
MOTA	1710			154	115.697	89.181	62.187	0.00	0.00		H
ATOM	1711	2HH2	ARG	154	114.203	88.476	61.347	0.00	0.00		H
MOTA	1712	N	TYR	155	111.514	87.235	65.733	1.00	0.00		N
MOTA	1713	CA	TYR	155	112.066	88.440	66.422	1.00	0.00		C
MOTA	1714	C	TYR	155	111.457	88.734	67.843	1.00	0.00		č
MOTA	1715	٥	TYR	155	112.186	89.051	68.764	1.00	0.00		ñ
MOTA	1716		TYR	155	111.395	89.611	65.411	1.00	0.00		Ċ
ATON	1717		TLR	155	112.698	90.878	65.739	1.00	0.00		Ċ
r.TOM	1715	CPI		122	372.5.2			1.00	0.00		ç
7.22	1011	72-5				22.572	SS.EEE	1.33	0.56		٠.
			~~ ~	. 22			. 3 . 2 . 3				:
						·					
		-	- -		•				-		
	-			-							

ATOM	1730	HEL	TYR	155	115.698	92.323	65.073	1.00	0.00		H
MOTA	1731	HE2	TYR	155	112.486	93.787	67.484	1.00	0.00		H
MOTA	1732	HH	TYR	155	114.330	94.967	66.971	1.00	0.00		H
MOTA	1733	N	TYR	156	110.132	88.574	67.992	0.00	0.00		N
	1734	CA	TYR	156	109.433	88.599	69.304	0.00	0.00		C
ATOM		C	TYR	156	109.852	87.428	70.275	0.00	0.00		С
ATOM	1735					87.710	71.422	0.00	0.00	•	0
ATOM	1736	0_	TYR	156	110.195			0.00	0.00		C
MOTA	1737	CB	TYR	156	107.898	88.642	69.018				Č
MOTA	1738	ÇG	TYR	156	107.223	89.943	68.497	0.00	0.00		
MOTA	1739	CD1	TYR	156	107.798	90.774	67.520	0.00	0.00	•	c
MOTA	1740	CE1	TYR	156	107.141	91.923	67.090	0.00	0.00		С
ATOM	1741	CZ	TYR	156	105.895	92.247	67.606	0.00	0.00		С
	1742	OH	TYR	156	105.263	93.392	67.205	0.00	0.00		0
ATOM		CE2	TYR	156	105.296	91.425	68.555	0.00	0.00		C
ATOM	1743					90.281	68.997	0.00	0.00		C
ATOM	1744		TYR	156	105.959		67.145	1.00	0.00		H
MOTA	1745	H	TYR	156	109.565	88.424					H
MOTA	1746	HA	TYR	156	109.702	89.539	69.829	0.00	0.00		
MOTA	1747	1HB	TYR	156	107.396	88.358	69.964	0.00	0.00		H
MOTA	1748	2HB	TYR	156	107.629	87.819	68.330	0.00	0.00		H
ATOM	1749	HD1	TYR	156	108.758	90.552	67.084	0.00	0.00		H
MOTA	1750	HE1		156	107.610	92.568	66.361	0.00	0.00		H
	1751	HH	TYR	156	104.508	93.523	67.781	0.00	0.00		H
ATOM					104.337	91.683	68.977	0.00	0.00		H
MOTA	1752		TYR	156			69.760	0.00	0.00		H
MOTA	1753		TYR	156	105.486	89.679			0.00		N
ATOM	1754	N	FEU	157	109.860	86.143	69.853	1.00			Ċ.
ATOM	1755	CA	LEU	157	110.345	85.012	70.711	1.00	0.00		
MOTA	1756	С	LEU	157	111.873	84.971	71.073	1.00	0.00		C
MOTA	1757	0	LEU	157	112.208	84.574	72.191	1.00	0.00		0
ATOM	1758	CB	LEU	157	109.771	83.662	70.181	1.00	0.00		С
	1759	CG	LEU	157	110.541	.82.934	69.039	1.00	0.00		C, .,,
MOTA			LEU	157	111.558	81.907	69.572	1.00	0.00	•	∵c \
ATOM	1760				109.575	82.206	68.098	1.00	0.00		C ·
MOTA	1761		LEU	157			68.870	1.00	0.00		·H
ATOM	1762	Н	LEU	157	109.582	86.019			0.00		н
MOTA	1763	HA	LEU	157	109.856	85.147	71.693	1.00			н
MOTA	1764	1HB	LEU	157	109.664	82.968	71.037	1.00	0.00		• .
MOTA	1765	2HB	LEU	157	108.718	83.834	69.881	1.00	0.00		H
ATOM	1766	HG	LEU	157	111.088	83.689	68.443	1.00	0.00		
ATOM		2HD1		157	112.317	82.369	70.227	1.00	0.00		H
	1768	3HD1		157	111.074	81.105	70.159	1.00	0.00		H ·
ATOM					112.116	81.418	68.750	1.00	0.00		н "
ATOM		1HD1		157		81.441	68.635	1.00	0.00	•	H 77.2
MOTA		2HD2		157	108.993			1.00	0.00		H 17
ATOM		3HD2		157	108.848	82.902	67.638				H
MOTA	1772	1HD2	LEU	157	110.101	81.700	67.267	1.00	0.00		N
MOTA	1773	N	ARG	158	112.794	85.339	70.162	1.00	0.00		
ATOM	1774	CA	ARG	158	114.267	85.286	70.417	1.00	0.00		C
MOTA	1775	С	ARG	158	114.818	86.178	71.582	1.00	0.00		C
ATOM	1776	0	ARG	158	115.619	85.706	72.392	. 1.00	0.00		0
ATOM	1777	СB	ARG	158	115.007	85.449	69.057	1.00	0.00		C
	1778	CG	ARG	158	115.175	86.874	68.458	1.00	0.00		С
MOTA				158	116.540	87.524	68.779	1.00	0.00		С
ATOM	1779	CD	ARG			89.000	68.662	1.00	0.00		N
ATOM	1780	NE	ARG	158	116.446	89.775	67.769	1.00	0.00		С
MOTA	1781	CZ	ARG	158	117.045			1.00	0.00		N
MOTA	1782		ARG	158	117.835	89.356	66.828				N
ATOM	1783	NH2	ARG	158	116.819	91.036	67.853	1.00	0.00		
MOTA	1784	HE	ARG	158	115.849	89.477	69.353	1.00	0.00		H
ATOM	1785	H	ARG	158	112.401	85.649	69.259	1.00	0.00		H
ATOM	1786		ARG	158	114.482	84.249	70.742	1.00	0.00		H
ATOM	1787		ARG	158	115.999	84.986	69.177	1.00	0.00		H
	1788		ARG	158	114.521	84.802	68.299	1.00	0.00		H
MOTA					115.054	86.841	67.357	1.00	0.00		H
MOTA	1789		ARG	158	114.337	87.520	68.789	1.00			H
MOTA	1790		ARG	158							H
ATOM	1791		ARG	158	116.836	87.294	69.821	1.00		-	·H
MOTA	1792		ARG		. 117:337	87.084	68.149	1.00		•	
ATOM	1793	2HH1	ARG	158	117.958	88.343	66.791	1.00			H
MOTA		1HH1		158	118.205	90.060	66.191	1.00			H
ATOM		1HH2		158	116.085	91.238	68.536	1.00			H
ATOM		2HH2		158	117.170	91.627	67.101	1.00	0.00		H
ATOM	1797		GLN	159	114.342	87.426	71.705	0.00	0.00		N
				159	114.561	88.275	72.911	0.00			С
ATOM	1798		GLN		113.899	87.764	74.246				C
MOTA	1799		GLN	159			75.318	0.00			ō
MOTA	1800		GLN	159	114.458	87.994					č
ATOM	1801		GLN	159	114.096	89.718	72.581	0.00			c
MOTA	1802	CG	GLN	159	114.776	90.433	71.381	0.00	0.00		C C

ATOM 1804 OEJ GIN 159 113.474 91.912 71.236 0.00 0.00 ATOM 1804 OEJ GIN 159 113.474 92.320 70.582 0.00 0.00 ATOM 1805 NEZ GIN 159 113.474 92.782 71.861 0.00 0.00 ATOM 1807 HB GIN 159 113.734 87.719 70.929 0.00 0.00 ATOM 1807 HB GIN 159 113.734 87.719 70.929 0.00 0.00 ATOM 1807 HB GIN 159 114.249 90.337 73.487 0.00 0.00 ATOM 1809 ZHB GIN 159 114.249 90.337 73.487 0.00 0.00 ATOM 1801 JH GIN 159 114.249 90.337 73.487 0.00 0.00 ATOM 1801 JH GIN 159 114.249 90.337 73.487 0.00 0.00 0.00 ATOM 1801 JH GIN 159 114.249 90.337 73.241 10.00 0.00 0.00 ATOM 1811 ZHB GIN 159 114.249 90.337 73.27 17.792 0.00 0.00 0.00 ATOM 1812 ZHB GIN 159 114.475 89.793 70.482 0.00 0.00 0.00 ATOM 1814 N GIN 159 114.409 93.782 71.792 0.00 0.00 0.00 ATOM 1814 N GIN 159 114.409 93.782 71.792 0.00 0.00 0.00 ATOM 1815 CA ILE 160 112.278 84.959 77.811 0.00 0.00 0.00 ATOM 1816 C ILE 160 112.278 84.959 77.811 0.00 0.00 0.00 ATOM 1818 CB ILE 160 110.633 85.000 75.382 0.00 0.00 0.00 ATOM 1818 CB ILE 160 110.633 85.314 76.441 0.00 0.00 0.00 ATOM 1812 CGI ILE 160 110.633 85.314 76.441 0.00 0.00 0.00 ATOM 1820 CGI ILE 160 110.633 85.314 76.440 0.00 0.00 0.00 ATOM 1821 CH ILE 160 10.808 86.622 74.645 0.00 0.00 0.00 ATOM 1822 H ILE 160 110.808 86.622 74.645 0.00 0.00 0.00 ATOM 1823 HB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1824 HB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1825 HBGI ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1828 HBGI ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1828 HBGI ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 84.418 76.788 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 88.898 77.207 0.00 0.00 0.00 ATOM 1838 CB ILE 160 110.898 88.418 77.7											
ATOM 1804 NBC GIAN 159	ATOM	1803	·CD	GLM	159	114.427	91.912	71.236	0.00	0.00	С
ATOM 1805 NB2 GIN 159	MOTA	1804	OE1	GLN	159	113.474	92.320	70.582	0.00		ō
ATOM 1806 H GLN 159 113.534 87.719 70.929 0.00 0.00 ATOM 1807 HA GLN 159 115.550 88.322 73.109 0.00 0.00 ATOM 1809 2HB GLN 159 114.249 90.337 73.487 0.00 0.00 ATOM 1810 1HG GLN 159 113.003 89.711 72.411 0.00 0.00 ATOM 1811 2HG GLN 159 113.003 89.711 72.411 0.00 0.00 ATOM 1812 1HE2 GLN 159 115.571 92.400 72.632 0.00 0.00 ATOM 1812 1HE2 GLN 159 115.731 92.400 72.632 0.00 0.00 ATOM 1813 2HE2 GLN 159 114.805 93.732 71.420 0.00 0.00 ATOM 1814 N ILLS 160 112.749 87.059 74.203 0.00 0.00 ATOM 1815 CA ILLS 160 112.749 87.059 74.203 0.00 0.00 ATOM 1816 C ILLS 160 112.749 87.059 74.203 0.00 0.00 ATOM 1816 C ILLS 160 112.749 86.320 75.322 0.00 0.00 ATOM 1816 C ILLS 160 113.349 86.320 75.322 0.00 0.00 ATOM 1818 CB ILLS 160 113.349 86.320 75.322 0.00 0.00 ATOM 1818 CB ILLS 160 110.665 85.993 75.161 0.00 0.00 ATOM 1818 CB ILLS 160 110.665 85.993 75.161 0.00 0.00 ATOM 1818 CB ILLS 160 110.665 85.993 75.161 0.00 0.00 ATOM 1818 CB ILLS 160 110.665 85.993 75.161 0.00 0.00 ATOM 1818 CB ILLS 160 110.665 85.993 75.161 0.00 0.00 ATOM 1820 CC1 ILLS 160 10.808 86.662 74.403 0.00 0.00 ATOM 1821 CD1 ILLS 160 10.808 86.662 74.033 0.00 0.00 ATOM 1822 H ILLS 160 112.195 86.927 73.248 0.00 0.00 ATOM 1823 HA ILLS 160 112.195 87.020 76.422 0.00 0.00 ATOM 1824 HB ILLS 160 112.195 87.020 76.422 0.00 0.00 ATOM 1825 IHC2 ILLS 160 110.808 84.488 77.236 0.00 0.00 ATOM 1826 IHC2 ILLS 160 110.808 84.488 77.326 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.326 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.326 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.326 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.326 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.326 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.325 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.326 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.226 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.226 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.227 0.00 0.00 ATOM 1828 IHC1 ILLS 160 110.808 84.488 77.228 0.00 0.00 ATOM 1830 CD ILLS 160 0.00	ATOM	1805	NE2	GIN			•				
ATOM 1807 HA GLN 159 116.550 88.322 73.109 0.00											N
ATOM 1809 2HB GLN 159 113.003 89.711 72.411 0.00 0.00 ATOM 1810 1HG GLN 159 113.003 89.711 72.411 0.00 0.00 ATOM 1810 1HG GLN 159 113.003 89.711 72.411 0.00 0.00 ATOM 1811 2HG GLN 159 115.875 89.939 70.438 0.00 0.00 ATOM 1812 1HE2 GLN 159 115.875 89.939 70.438 0.00 0.00 ATOM 1812 1HE2 GLN 159 115.875 89.939 70.438 0.00 0.00 ATOM 1813 2HE2 GLN 159 115.875 90.305 71.420 0.00 0.00 ATOM 1814 N ILS 160 112.749 87.059 74.203 0.00 0.00 ATOM 1814 N ILS 160 112.749 87.059 74.203 0.00 0.00 ATOM 1815 CA ILE 160 112.178 86.320 75.322 0.00 0.00 ATOM 1816 C ILE 160 113.065 85.090 75.820 0.00 0.00 ATOM 1816 C ILE 160 113.349 84.959 77.011 0.00 0.00 ATOM 1818 CB ILE 160 110.665 85.933 75.161 0.00 0.00 ATOM 1818 CB ILE 160 110.665 85.933 75.161 0.00 0.00 ATOM 1818 CB ILE 160 110.665 85.933 75.161 0.00 0.00 ATOM 1820 CCI ILE 160 10.933 85.314 76.441 0.00 0.00 ATOM 1821 CDI ILE 160 10.933 85.314 76.441 0.00 0.00 ATOM 1820 CCI ILE 160 10.808 86.662 74.033 0.00 0.00 ATOM 1821 CDI ILE 160 112.195 86.927 73.248 0.00 0.00 ATOM 1823 HA ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1824 HB ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1825 IHG2 ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1826 ILG ILE 160 110.808 84.988 77.020 76.242 0.00 0.00 ATOM 1826 ILG ILE 160 110.808 84.988 77.020 76.242 0.00 0.00 ATOM 1827 SHG2 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1828 IHG ILE 160 110.259 87.724 73.936 0.00 0.00 ATOM 1828 IHG ILE 160 110.850 84.488 77.808 79.808 70.00 0.00 ATOM 1828 IHG ILE 160 110.850 84.488 77.808 79.808 70.00 0.00 ATOM 1828 IHG ILE 160 110.850 84.488 77.808 79.808 70.00 0.00 ATOM 1828 IHG ILE 160 110.850 84.488 77.808 70.788 0.00 0.00 ATOM 1828 IHG ILE 160 110.850 84.488 77.808 70.788 0.00 0.00 ATOM 1829 CHU ILE 160 110.808 84.988 70.00 0.00 0.00 ATOM 1820 CU ILE 160 110.808 84.988 70.00 0.00 0.00 ATOM 1821 CHU ILE 160 10.850 84.488 77.900 0.00 0.00 ATOM 1822 CU ILE 160 110.808 84.988 70.00 0.00 0.00 ATOM 1823 CU ILE 160 110.808 84.988 70.00 0.00 0.00 ATOM 1824 CU ILE 160 0.00 0.00 0.00 0.00 0.00 0.00 0.00								70.929	0.00	0.00	H
ATOM 1809 2HB GIN 159						115.650	88.322	73.109	0.00	0.00	Ħ
ATOM 1809 2HB GLN 159	ATOM	1808	IHB	GLN	159	114.249	90.337	73.487	0.00	0.00	H
ATOM 1810 1RG GIN 159 114.475 89.939 70.438 0.00 0.00 ATOM 1811 2RG GIN 159 115.731 92.400 71.420 0.00 0.00 ATOM 1812 1RE2 GIN 159 115.731 92.400 72.632 0.00 0.00 ATOM 1813 2RE2 GIN 159 114.739 87.053 74.203 0.00 0.00 ATOM 1814 N ILE 160 112.749 87.053 74.203 0.00 0.00 ATOM 1816 C ILE 160 112.749 87.053 74.203 0.00 0.00 ATOM 1816 C ILE 160 113.365 85.090 75.820 0.00 0.00 ATOM 1816 C ILE 160 113.365 85.090 75.820 0.00 0.00 ATOM 1818 CB ILE 160 110.665 85.933 75.161 0.00 0.00 ATOM 1819 CGZ ILE 160 110.033 85.314 76.441 0.00 0.00 ATOM 1820 CG3 ILE 160 109.741 87.100 74.696 0.00 0.00 ATOM 1821 CD1 ILE 160 108.408 86.662 74.063 0.00 0.00 ATOM 1822 H ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HA ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1824 HB ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1825 IHGZ ILE 160 110.68.989 84.988 76.278 0.00 0.00 ATOM 1826 CHGZ ILE 160 110.920 86.029 77.284 0.00 0.00 ATOM 1827 3HGZ ILE 160 110.920 86.029 77.284 0.00 0.00 ATOM 1828 IHGI ILE 160 110.920 86.029 77.284 0.00 0.00 ATOM 1829 2HGI ILE 160 110.920 87.587 73.570 0.00 0.00 ATOM 1821 HILE 160 108.545 87.807 75.550 0.00 0.00 ATOM 1823 IHGI ILE 160 110.595 87.714 73.936 0.00 0.00 ATOM 1829 2HGI ILE 160 110.595 87.714 73.936 0.00 0.00 ATOM 1829 2HGI ILE 160 110.595 87.714 73.936 0.00 0.00 ATOM 1830 N VAL 161 11.5507 83.685 75.750 0.00 0.00 ATOM 1831 CVAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1831 CVAL 161 114.681 82.153 73.994 0.00 0.00 ATOM 1834 CA VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1836 O VAL 161 113.568 80.327 77.8126 0.00 0.00 ATOM 1837 GB VAL 161 113.568 80.327 77.8126 0.00 0.00 ATOM 1837 GB VAL 161 113.568 80.327 77.8126 0.00 0.00 ATOM 1838 CG1 VAL 161 115.680 80.337 77.72.500 0.00 0.00 ATOM 1837 CB VAL 161 115.580 80.337 77.72.500 0.00 0.00 ATOM 1836 C VAL 161 115.580 80.337 77.72.500 0.00 0.00 ATOM 1837 CB VAL 161 115.680 80.337 77.72.500 0.00 0.00 ATOM 1840 HW VAL 161 115.580 80.337 77.72.500 0.00 0.00 ATOM 1841 HW VAL 161 115.580 80.337 77.72.500 0.00 0.00 ATOM 1842 CB LEU 162 116.258 85.237 77.8280 0.00	ATOM	1809	2HB	GLN	159						
ATOM 1811 2HC GIN 159											H
ATOM 1812 1HE2 GIN 159								70.438	0.00	0.00	H
ATOM 1812 1HE2 GIN 159						115.875	90.305	71.420	0.00	0.00	H
ATOM 1813 ZHEZ GLN 159 114.805 93.732 71.792 0.00 0.00 ATOM 1815 CA LIR 160 112.748 86.320 75.382 0.00 0.00 ATOM 1816 C LIR 160 112.178 86.320 75.382 0.00 0.00 ATOM 1817 O LIR 160 113.369 84.959 77.011 0.00 0.00 ATOM 1818 CB LIR 160 110.665 85.090 75.820 0.00 0.00 ATOM 1819 CGZ ILE 160 110.665 85.090 77.011 0.00 0.00 ATOM 1819 CGZ ILE 160 110.665 85.090 77.011 0.00 0.00 ATOM 1820 CG3 LIR 160 110.665 86.933 75.161 0.00 0.00 ATOM 1821 CD1 LIR 160 120.9741 87.100 74.696 0.00 0.00 ATOM 1822 H LIR 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HA LIR 160 112.391 86.927 73.248 0.00 0.00 ATOM 1824 HB LIR 160 112.395 87.020 76.242 0.00 0.00 ATOM 1825 HGZ ILE 160 110.651 87.163 74.364 0.00 0.00 ATOM 1827 HGZ ILE 160 110.651 87.163 74.364 0.00 0.00 ATOM 1828 HGZ ILE 160 110.651 87.163 74.364 0.00 0.00 ATOM 1827 HGZ ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1828 HGG ILE 160 110.050 86.029 77.284 0.00 0.00 ATOM 1828 HGG ILE 160 110.050 86.029 77.284 0.00 0.00 ATOM 1829 HGI ILE 160 110.059 87.714 73.936 0.00 0.00 ATOM 1830 HDI ILE 160 110.7902 87.513 73.570 0.00 0.00 ATOM 1831 HDI ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 HDI ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1832 HGZ ILE 160 108.848 88.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.681 82.153 73.944 0.00 0.00 ATOM 1836 C VAL 161 113.363 81.477 75.205 0.00 0.00 ATOM 1837 C B VAL 161 114.681 82.153 73.944 0.00 0.00 ATOM 1838 C LIR VAL 161 113.528 83.137 75.205 0.00 0.00 ATOM 1837 C B VAL 161 115.804 83.167 76.752 0.00 0.00 ATOM 1838 C LIR VAL 161 115.804 83.167 77.798 0.00 0.00 ATOM 1837 C B VAL 161 115.804 87.305 77.3136 0.00 0.00 ATOM 1837 C B VAL 161 115.804 87.305 77.3136 0.00 0.00 ATOM 1838 C LIR VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1851 C LIR VAL 161 113.508 82.747 73.940 0.00 0.00 ATOM 1852 C LIR VAL 162 113.608 88.807 73.426 0.00 0.00 ATOM 1853 C B LIR VAL 162 113.608 88.807 73.426 0.00	ATOM	1812	1HE2	GLN	159	115.731	92.400	72.632	0.00		H
ATOM 1815 CA LIB 160 112.749 87.059 74.203 0.00 0.00 ATOM 1816 C ILB 160 112.178 86.320 75.382 0.00 0.00 ATOM 1816 C ILB 160 113.369 85.090 75.820 0.00 0.00 ATOM 1816 C ILB 160 113.349 84.959 77.011 0.00 0.00 ATOM 1818 CB ILB 160 110.665 85.939 77.011 0.00 0.00 ATOM 1819 CGZ ILB 160 110.033 85.314 76.441 0.00 0.00 ATOM 1820 CGJ ILB 160 109.741 87.100 74.696 0.00 0.00 ATOM 1820 CGJ ILB 160 109.741 87.100 74.696 0.00 0.00 ATOM 1821 CDJ ILB 160 109.741 87.100 74.696 0.00 0.00 ATOM 1822 H ILB 160 112.391 86.927 73.248 0.00 0.00 ATOM 1822 H ILB 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HA ILB 160 112.195 87.020 76.242 0.00 0.00 ATOM 1824 HB ILB 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 HGZ ILB 160 110.651 85.163 74.364 0.00 0.00 ATOM 1826 EGZ ILB 160 110.650 84.188 76.278 0.00 0.00 ATOM 1827 HGZ ILB 160 110.599 84.988 76.278 0.00 0.00 ATOM 1828 HGJ ILB 160 110.599 87.714 73.956 0.00 0.00 ATOM 1829 HGJ ILB 160 110.599 87.714 73.956 0.00 0.00 ATOM 1831 2HDJ ILB 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 2HDJ ILB 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 2HDJ ILB 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 2HDJ ILB 160 109.574 87.809 73.285 0.00 0.00 ATOM 1831 2HDJ ILB 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HDJ ILB 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 CDJ ILB 160 111.599 83.137 75.500 0.00 0.00 ATOM 1831 CDJ ILB 160 111.599 83.137 75.500 0.00 0.00 ATOM 1831 CDJ ILB 160 111.599 83.137 75.500 0.00 0.00 ATOM 1831 CDJ ILB 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 CDJ ILB 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 CDJ ILB 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 CDJ ILB 160 109.554 87.333 0.00 0.00 0.00 ATOM 1831 CDJ ILB 160 109.554 87.333 0.00 0.00 0.00 ATOM 1834 CDJ AND 161 115.691 80.899 74.226 0.00 0.00 ATOM 1835 CDJ AND 161 115.691 80.999 74.226 0.00 0.00 ATOM 1836 CDJ AND 161 115.691 80.999 74.226 0.00 0.00 ATOM 1837 CB WL 161 115.600 82.747 73.126 0.00 0.00 ATOM 1844 HBQJ VAL 161 115.600 82.747 73.126 0.00 0.00 ATOM 1853 CDJ LBU 162 115.500 88.500 77.333 0.00 0.00 ATOM 18	ATOM	1813	2HE2	GLN							
ATOM 1815 CA ILE 160											H
ATOM 1816 C ILE 160 113.365 85.090 75.825 0.00 0.00 ATOM 1818 CB ILE 160 110.365 85.933 75.161 0.00 0.00 ATOM 1819 CG2 ILE 160 110.033 85.314 76.441 0.00 0.00 ATOM 1820 CG1 ILE 160 110.033 85.314 76.441 0.00 0.00 ATOM 1821 CD1 ILE 160 109.741 87.100 74.696 0.00 0.00 ATOM 1822 H ILE 160 108.408 86.662 74.063 0.00 0.00 ATOM 1822 H ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1822 H ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1824 HB ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1824 HB ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1826 2HG2 ILE 160 110.658 84.418 76.788 0.00 0.00 ATOM 1826 2HG2 ILE 160 110.620 86.029 77.284 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.620 86.029 77.284 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.599 87.714 73.936 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.599 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1833 CC VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 CG VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1838 CG VAL 161 115.5681 80.993 74.226 0.00 0.00 ATOM 1838 CG VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1844 HB VAL 161 113.308 84.416 73.940 0.00 0.00 ATOM 1845 3HG1 VAL 161 113.508 84.416 73.940 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.508 80.355 75.750 0.00 0.00 ATOM 1847 HB2 ILE 161 115.608 82.747 73.125 0.00 0.00 ATOM 1848 1HG1 VAL 161 115.608 80.993 74.226 0.00 0.00 ATOM 1848 1HG1 VAL 161 113.508 80.993 74.226 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.608 80.993 74.226 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.608 80.993 74.226 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.608 80.993 74.226 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.608 80.355 75.750 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.508 80.355 75.750 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.508 80.350 73.333 0.00 0.00 ATOM 1850 CA LEU 162 116.609 81.876 77.752 0.00 0.00 ATOM 1851 C LEU 162 116.504 86.207 77.393 0.00 0									0.00	0.00	N
ATOM 1818 CB ILE 160 113.349 84.959 77.011 0.00 0.00 ATOM 1819 CG2 ILE 160 110.665 85.933 75.161 0.00 0.00 ATOM 1819 CG2 ILE 160 110.633 85.314 76.441 0.00 0.00 ATOM 1820 CG1 ILE 160 109.741 87.100 74.696 0.00 0.00 ATOM 1821 CD1 ILE 160 108.408 86.662 74.063 0.00 0.00 ATOM 1823 HB ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HB ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HB ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HB ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1824 BILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1825 INGZ ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1826 ZRG2 ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1827 38G2 ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1827 38G2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1828 28G2 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1828 28G1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1829 ZHG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 ZHG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 ZHG1 ILE 160 107.708 86:253 73.855 0.00 0.00 ATOM 1833 N VAL ATOM 1833 CVAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1833 CVAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1836 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1838 CG1 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1844 ZHG1 VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1842 HB VAL 161 113.203 84.416 73.940 0.00 0.00 ATOM 1844 ZHG1 VAL 161 113.568 80.335 75.059 0.00 0.00 0.00 ATOM 1844 ZHG1 VAL 161 113.508 81.358 74.477 0.00 0.00 0.00 ATOM 1848 SHG2 VAL 161 113.508 81.358 74.477 0.00 0.00 0.00 ATOM 1848 SHG2 VAL 161 113.508 81.358 74.477 70.00 0.00 0.00 ATOM 1848 SHG2 VAL 161 113.508 88.358 75.550 0.00 0.00 0.00 ATOM 1846 IHG2 VAL 161 113.508 88.358 75.059 0.00 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 77.753 0.00 0.00 0.00 ATOM 1850 CA LEU 162 117.358 86.980 72.393 0.00 0.00 0.0					160	112.178	86.320	75.382	0.00	0.00	C
ATOM 1818 CB ILE 160	ATOM	1816	C	ILE	160	113.065	85.090	75.820	0.00	0.00	C
ATOM 1818 CB ILE 160 110.665 85.933 75.161 0.00 0.00 ATOM 1819 CG2 ILE 160 110.033 85.314 76.441 0.00 0.00 ATOM 1820 CG1 ILE 160 109.741 87.100 74.696 0.00 0.00 ATOM 1821 CD1 ILE 160 108.408 86.662 74.063 0.00 0.00 ATOM 1822 H ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HA ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1824 HB ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1824 HB ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 IRG2 ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1826 IRG2 ILE 160 110.8989 84.988 76.278 0.00 0.00 ATOM 1826 IRG2 ILE 160 110.898 84.988 76.278 0.00 0.00 ATOM 1827 38G2 ILE 160 110.598 84.418 76.788 0.00 0.00 ATOM 1828 IRG1 ILE 160 110.598 84.418 76.788 0.00 0.00 ATOM 1828 IRG1 ILE 160 110.598 87.714 73.936 0.00 0.00 ATOM 1830 IRD1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 IRD1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 IRD1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 IRD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 IRD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 NVL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1833 NVL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 CG VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 CG VAL 161 114.590 83.167 76.752 0.00 0.00 ATOM 1836 CG VAL 161 114.590 83.167 76.752 0.00 0.00 ATOM 1838 CG1 VAL 161 114.608 83.167 76.752 0.00 0.00 ATOM 1838 CG1 VAL 161 115.608 80.350 73.333 0.00 0.00 ATOM 1841 HA VAL 161 114.158 82.533 76.037 0.00 0.00 ATOM 1843 HG1 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1844 HA VAL 161 114.158 82.533 76.037 0.00 0.00 ATOM 1845 HG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1845 HG2 VAL 161 113.363 81.472 73.541 0.00 0.00 0.00 ATOM 1845 HG2 VAL 161 113.368 80.335 75.059 0.00 0.00 0.00 ATOM 1845 HG2 VAL 161 113.368 80.335 75.059 0.00 0.00 0.00 ATOM 1845 HG2 VAL 161 113.504 80.335 75.059 0.00 0.00 0.00 ATOM 1845 HG2 VAL 161 113.504 80.335 75.059 0.00 0.00 0.00 ATOM 1845 HG2 VAL 161 115.804 80.355 73.333 0.00 0.00 0.00 ATOM 1845 HG2 VAL 161 115.804 80.355 73.333 0.00 0.00 0.00 ATOM 1845 HG2 VAL 16	ATOM	1817	0	ILE	1.60						
ATOM 1819 CG2 ILE 160 11.0.033 85.314 76.441 0.00 0.00 ATOM 1820 CG1 ILE 160 109.741 87.100 74.695 0.00 0.00 ATOM 1821 CD1 ILE 160 108.408 86.662 74.063 0.00 0.00 ATOM 1823 HA ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HA ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1826 HB ILE 160 112.991 86.927 73.248 0.00 0.00 ATOM 1826 LHG ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1826 LHG ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1827 3HG2 ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.598 87.714 73.936 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1832 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 C VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1841 HA VAL 161 113.303 81.472 73.541 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 HG1 VAL 161 113.508 80.357 75.050 0.00 0.00 ATOM 1844 2HG1 VAL 161 113.508 80.357 75.050 0.00 0.00 ATOM 1844 2HG1 VAL 161 113.508 80.357 75.050 0.00 0.00 ATOM 1845 3HG1 VAL 161 113.508 80.357 75.050 0.00 0.00 ATOM 1846 1HG2 VAL 161 114.689 82.153 77.3940 0.00 0.00 ATOM 1846 HG2 VAL 161 114.118 82.533 76.037 0.00 0.00 ATOM 1846 HG2 VAL 161 114.118 82.533 76.037 0.00 0.00 ATOM 1846 HG2 VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1846 HG2 VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1846 HG2 VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1848 SHG2 VAL 161 115.506 80.277 77 79.80 0.00 0.00 ATOM 1850 CA LEU 162 116.698 85.886 77.7127 0.00 0.00 ATOM 1851 C LEU 162 116.598 85.481 74.690 0.00 0.00 ATOM 1858 HA LEU 162 116.898 85.887 77.127 0.											0
ATOM 1821 CDI ILE 160 109.741 87.200 74.636 0.00 0.00 ATOM 1821 CDI ILE 160 1108.408 86.662 74.063 0.00 0.00 ATOM 1822 H ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1824 HB ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1824 HB ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 1HG2 ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1826 2HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1826 2HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.580 87.714 73.936 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.59 87.714 73.936 0.00 0.00 ATOM 1828 1HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1832 2HG1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1832 2HG1 ILE 161 10.508 87.714 73.936 0.00 0.00 ATOM 1832 2HG1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1832 2HG1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1832 2HG1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 NOAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1837 C VAL 161 115.681 80.993 74.225 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.225 0.00 0.00 ATOM 1840 H VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1841 HA VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1842 HE VAL 161 113.568 80.335 75.059 0.00 0.00 ATOM 1843 HB VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 1HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 CD LEU 162 116.93 81.358 74.477 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.988 80.207 77.2653 0.00 0.00 ATOM 1850 CA LEU 162 116.93 81.358 74.477 0.00 0.00 ATOM 1851 C LEU 162 117.649 85.886 73.488 0.00 0.00 0.00 ATOM 1855 CD LEU 162 118.906 85.886 73.499 0.00 0.00 ATOM 1856 CD LEU 162 118.906 85.886 73.499 0.00 0.00 ATOM 1856 CD LEU 162 118.906 85.886 73.499 0.00 0.00 ATOM 1858 HB LEU 162 118.906 85.886 73.499 0.00 0.00 0.											C
ATOM 1821 CDL ILE 160 108.408 86.662 74.063 0.00 0.00 ATOM 1822 H ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HA ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1825 HGZ ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 HGZ ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1825 HGZ ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HGZ ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HGZ ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1828 HGI ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1828 HGI ILE 160 110.598 87.808 75.526 0.00 0.00 ATOM 1829 2HGI ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 2HDI ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HDI ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1832 CD ATOM 1832 HGI ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1834 CD VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 C VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1838 CGI VAL 161 116.481 82.153 73.944 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1844 2HGI VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1844 2HGI VAL 161 115.804 80.350 73.333 0.00 0.00 0.00 ATOM 1845 3HGI VAL 161 115.804 80.350 73.333 0.00 0.00 0.00 ATOM 1845 1HGI VAL 161 115.804 80.350 77.750 0.00 0.00 0.00 ATOM 1846 1HGI VAL 161 115.804 80.350 77.750 0.00 0.00 0.00 ATOM 1845 BLU VAL 161 115.804 80.350 77.750 0.00 0.00 0.00 ATOM 1845 1HGI VAL 161 115.804 80.350 77.750 0.00 0.00 0.00 ATOM 1846 1HGI VAL 161 115.804 80.350 77.750 0.00 0.00 0.00 ATOM 1846 1HGI VAL 161 115.804 80.350 77.750 0.00 0.00 0.00 ATOM 1850 CA LEU 162 118.906 85.807 77.7988 0.00 0.00 0.00 ATOM 1850 CA LEU 162 118.906 85.808 73.488 0.00 0.00 0.00 ATOM 1850 CA LEU 162 118.906 85.808 73.488 0.00 0.00 0.00 ATOM 1851 CA LEU 162 118.906 85.808 73						110.033		76.441	0.00	0.00	С
ATOM 1821 CD1 ILE 160 108.408 86.662 74.063 0.00 0.00 ATOM 1823 HA ILE 160 112.191 88.27 73.248 0.00 0.00 ATOM 1823 HA ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 1HG2 ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1825 2HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.20 86.029 77.244 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.265 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.265 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 114.608 83.167 76.752 0.00 0.00 ATOM 1838 CG1 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1841 HA VAL 161 113.506 82.747 73.126 0.00 0.00 ATOM 1842 HB VAL 161 113.508 82.153 76.990 0.00 0.00 ATOM 1843 INCU VAL 161 115.804 80.355 73.333 0.00 0.00 ATOM 1844 BH VAL 161 115.804 80.355 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.804 80.357 72.553 0.00 0.00 ATOM 1846 INGU VAL 161 115.804 80.357 72.553 0.00 0.00 ATOM 1847 YERG2 VAL 161 115.506 82.747 73.126 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.508 82.217 77.7988 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.806 85.882 77.7597 0.00 0.00 ATOM 1853 CB LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1854 HB2 VAL 161 115.506 85.757 79.00 0.00 0.00 ATOM 1855 CB LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 CD LEU 162 118.806 85.850 73.488 0.00 0.00 0.00 ATOM 1853 CB LEU 162 118.894 87.185 77.797 0.00 0.00	ATOM	1820	CG1	ILE	160	109.741	87.100	74.696	0.00	0.00	С
ATOM 1822 H ILE 160 112.391 86.927 73.248 0.00 0.00 ATOM 1823 HA ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1823 HA ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 IHG2 ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1826 ZHC2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1828 HG1 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1829 2HG1 ILE 160 110.580 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 110.529 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1832 3HD1 ILE 160 107.708 86:253 74.812 0.00 0.00 ATOM 1832 AHD1 ILE 160 107.708 86:253 74.812 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 O VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CGI VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1841 HA VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1842 HB VAL 161 113.363 81.472 73.545 0.00 0.00 ATOM 1843 INGI VAL 161 113.363 81.472 73.256 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1844 1HG2 VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1845 SHG1 VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1846 HC2 VAL 161 113.504 80.335 75.559 0.00 0.00 ATOM 1846 HC2 VAL 161 113.504 80.335 75.559 0.00 0.00 ATOM 1846 HC2 VAL 161 113.504 80.355 73.333 0.00 0.00 ATOM 1856 CD2 LEU 162 118.90 85.887 72.653 0.00 0.00 ATOM 1856 CD2 LEU 162 118.90 85.887 72.653 0.00 0.00 ATOM 1856 CD2 LEU 162 118.90 85.481 74.479 0.00 0.00 ATOM 1856 CD2 LEU 162 118.90 85.886 73.448 0.00 0.00 ATOM 1859 HB LEU 162 118.90 85.886 73.448 0.00 0.00 0.00 ATOM 1859 CD2 LEU 162 118.90 85.886 73.488 0.00 0.00 0.00 ATOM 1859 LBU LEU 162 118.90 85.886 73.488 0.00	ATOM	1821	CD1	ILE	160	108.408					č
ATOM 1823 HA ILE 160 112.195 87.020 76.242 0.00 0.00 ATOM 1824 HB ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 IHG2 ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1826 2HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.20 86.029 77.244 0.00 0.00 ATOM 1828 HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1828 HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1835 C VAL 161 115.29 83.137 75.205 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.665 75.750 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.506 82.747 73.126 0.00 0.00 ATOM 1841 HA VAL 161 114.15 82.533 76.374 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 HG1 VAL 161 115.868 80.933 74.226 0.00 0.00 ATOM 1844 HB VAL 161 115.868 80.355 75.590 0.00 0.00 ATOM 1845 BH3 HG1 VAL 161 115.868 80.355 77.590 0.00 0.00 ATOM 1840 H VAL 161 115.868 80.935 74.260 0.00 0.00 ATOM 1841 HA VAL 161 117.586 82.747 73.126 0.00 0.00 ATOM 1843 HG2 VAL 161 115.868 80.335 75.059 0.00 0.00 ATOM 1844 HB VAL 161 117.588 82.210 73.260 0.00 0.00 ATOM 1845 BH2 VAL 161 115.988 82.210 73.260 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.906 85.886 73.489 0.00 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 CD LEU 162 118.906 85.886 73.489 0.00 0.00 0.00 ATOM 1853 CB LEU 162 118.906 85.886 73.489 0.00 0.00 0.00 ATOM 1854 HB LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1855 CB LEU 162 118.906 85.856 77.79.98 0.00 0.00	ATOM										
ATOM 1824 HB ILE 160 110.651 85.163 74.364 0.00 0.00 ATOM 1825 1HG2 ILE 160 110.580 84.988 76.278 0.00 0.00 ATOM 1826 2HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 0.00 ATOM 1830 1HD1 ILE 160 109.554 87.808 75.526 0.00 0.00 0.00 ATOM 1831 2HD1 ILE 160 107.702 87.513 73.570 0.00 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 0.00 ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.685 75.750 0.00 0.00 0.00 ATOM 1836 C9 VAL 161 115.601 83.167 76.752 0.00 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.303 81.472 73.541 0.00 0.00 ATOM 1841 HA VAL 161 113.303 81.472 73.541 0.00 0.00 ATOM 1842 HB VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 HG VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.368 80.350 73.333 0.00 0.00 ATOM 1845 HG1 VAL 161 115.368 80.350 73.333 0.00 0.00 ATOM 1846 HG2 VAL 161 115.368 80.350 73.333 0.00 0.00 ATOM 1846 HG2 VAL 161 115.368 80.350 73.333 0.00 0.00 ATOM 1846 HG2 VAL 161 115.368 80.350 73.233 0.00 0.00 ATOM 1847 2HG2 VAL 161 113.506 80.2747 73.126 0.00 0.00 ATOM 1848 BH2 VAL 161 113.506 80.807 72.653 0.00 0.00 ATOM 1848 BH2 VAL 161 113.508 80.807 72.3260 0.00 0.00 ATOM 1849 N LEU 162 116.504 80.707 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 80.707 73.260 0.00 0.00 ATOM 1850 CA LEU 162 118.906 85.886 73.448 0.00 0.00 0.00 ATOM 1850 CA LEU 162 118.906 85.886 73.448 0.00 0.00 0.00 ATOM 1850 CD LEU 162 118.906 85.886 73.448 0.00 0.00 0.00 ATOM 1850 LEU 162 118.906 85.886 73.448 0.00 0.00											H
ATOM 1825 LHG2 ILE 160 108.989 84.988 76.278 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.020 86.029 77.284 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1837 CB VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1838 CG1 VAL 161 116.6400 83.167 76.752 0.00 0.00 ATOM 1839 CG2 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.422 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.608 82.747 73.126 0.00 0.00 ATOM 1843 HG1 VAL 161 115.608 80.350 73.333 0.00 0.00 ATOM 1843 HG1 VAL 161 115.608 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.668 80.350 73.333 0.00 0.00 ATOM 1843 SG1 VAL 161 115.668 80.350 73.333 0.00 0.00 ATOM 1843 SG1 VAL 161 115.668 80.350 73.333 0.00 0.00 ATOM 1843 SG1 VAL 161 115.668 80.350 73.333 0.00 0.00 ATOM 1843 SG1 VAL 161 115.668 80.350 73.333 0.00 0.00 ATOM 1844 SG2 VAL 161 115.864 80.350 73.333 0.00 0.00 ATOM 1843 SG1 VAL 161 115.868 80.350 73.333 0.00 0.00 0.00 ATOM 1843 SG1 VAL 161 115.868 80.350 73.333 0.00 0.00 0.00 ATOM 1843 SG1 VAL 161 115.868 80.350 73.333 0.00 0.00 0.00 ATOM 1848 SG2 VAL 161 112.588 80.335 75.059 0.00 0.00 0.00 ATOM 1850 CA LEU 162 116.504 84.730 75.145 0.00 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 0.00 ATOM 1850 CA LEU 162 118.193 86.481 74.690 0.00 0.00 0.00 ATOM 1850 CD LEU 162 118.193 86.481 74.690 0.00 0.00 0.00 ATOM 1855 CD LEU 162 118.894 87.187 77.88 0.00 0.00 0.00 ATOM 1855 CD LE							87.020	76.242	0.00	0.00	H
ATOM 1826 2HG2 ILE 160 110.580 84.418 76.788 0.00 0.00 ATOM 1827 3HG2 ILE 160 110.020 86.029 77.284 0.00 0.00 ATOM 1828 1HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1828 1HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1836 O VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1841 HA VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1842 HB VAL 161 114.155 82.533 76.037 0.00 0.00 ATOM 1843 HG1 VAL 161 115.804 80.355 73.333 0.00 0.00 ATOM 1844 HB VAL 161 115.804 80.355 73.333 0.00 0.00 ATOM 1845 HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1847 2HG2 VAL 161 113.504 80.355 73.333 0.00 0.00 ATOM 1848 HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1848 HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1848 HG2 VAL 161 113.504 80.827 77.2653 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1850 C LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1855 CD LEU 162 116.504 87.730 75.145 0.00 0.00 ATOM 1850 C LEU 162 118.998 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.998 86.507 73.393 0.00 0.00 0.00 ATOM 1850 C LEU 162 118.998 86.507 73.488 0.00 0.00 0.00 ATOM 1855 CD LEU 162 118.998 87.120 73.999 0.00 0.00 0.00 ATOM 1855 HB LEU 162 119.558 85.717 73.757 0.00 0.00 0.0		1824	HB	ILE	160	110.651	85.163	74.364	0.00	0.00	H
ATOM 1826 2RG2 ILE 160	ATOM	1825	1HG2	ILE	160	108.989	84.988	76.278			H
ATOM 1827 3HG2 LLB 160 110.020 86.029 77.284 0.00 0.00 ATOM 1828 1HG1 ILB 160 110.259 87.714 73.936 0.00 0.00 ATOM 1829 2HG1 ILB 160 107.902 87.513 73.570 0.00 0.00 ATOM 1830 1HD1 ILB 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILB 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILB 160 107.708 86.253 74.812 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 0.00 ATOM 1836 O VAL 161 116.400 83.167 76.752 0.00 0.00 0.00 ATOM 1836 C VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 115.661 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1841 HA VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.335 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1846 3HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 0.00 ATOM 1849 N LEU 162 116.894 87.876 75.145 0.00 0.00 0.00 ATOM 1850 CA LEU 162 118.193 86.841 74.690 0.00 0.00 0.00 ATOM 1855 CD LEU 162 118.906 85.866 77.757 0.00 0.00 0.00 A	ATOM										H
ATOM 1828 1HG1 ILE 160 110.259 87.714 73.936 0.00 0.00 ATOM 1830 1HD1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1833 N VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1833 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1835 C VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.302 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1842 HB VAL 161 115.608 82.747 73.126 0.00 0.00 ATOM 1843 HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1843 HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 BWAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1846 HG2 VAL 161 115.588 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.506 82.747 73.126 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.938 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.938 82.210 73.260 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.884 75.753 0.00 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 0.00 ATOM 1852 CD LEU 162 118.906 85.886 73.488 0.00 0.00 0.00 ATOM 1855 CDL LEU 162 118.906 85.886 73.488 0.00 0.00 0.00 ATOM 1855 CDL LEU 162 118.906 85.886 73.488 0.00 0.00 0.00 ATOM 1858 HA LEU 162 118.906 85.886 73.488 0.00 0.00 0.00 ATOM 1856 CDL LEU 162 118.906 85.886 73.488 0.00 0.00 0.00 ATOM 1858 HA LEU 162 118.906 85.886 73.489 0.00 0.00 0.00 ATOM 1858 H											
ATOM 1829 2HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1831 2HD1 ILE 160 107.708 85.253 74.812 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1833 N VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1837 CB VAL 161 115.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 HA VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1841 HA VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1842 HB VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG2 VAL 161 115.588 80.335 75.059 0.00 0.00 ATOM 1845 3HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.508 80.335 75.059 0.00 0.00 ATOM 1846 3HG2 VAL 161 115.508 80.827 77.2653 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.508 80.827 77.9559 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 117.649 85.886 73.488 0.00 0.00 0.00 ATOM 1852 O LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.908 85.886 75.759 0.00 0.00 0.00 ATOM 1855 CD1 LEU 162 118.908 85.886 75.759 0.00 0.00 0.00 ATOM 1857 H LEU 162 118.908 85.886 75.759 0.00 0.00 0.00 ATOM 1856 CD2 LEU 162 118.193 86.481 74.690 0.00 0.00 0.00 ATOM 1857 H LEU 162 118.908 85.886 77.127 0.00 0.00 0.00 ATOM 1856 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 0.00 ATOM 1856 H LEU 162 119.596 85.571 77.176 0.00 0.00 0.00 ATOM 1856 H LEU 1											H
ATOM 1829 2HG1 ILE 160 109.554 87.808 75.526 0.00 0.00 ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 113.521 86.253 74.812 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1834 CA VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1837 CB VAL 161 115.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1841 HA VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1842 HB VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1843 HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 3HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 1HG2 VAL 161 115.588 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.588 80.335 75.059 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.508 80.827 77.7988 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.508 80.827 77.998 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.988 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.807 73.380 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CB LEU 162 118.894 87.188 75.753 0.00 0.00 ATOM 1854 CB LEU 162 118.894 87.188 75.753 0.00 0.00 ATOM 1854 CB LEU 162 118.894 87.188 75.759 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 75.779 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.759 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.188 75.759 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.759 0.00 0.00 ATOM 1856 CD3 LEU 162 118.894 87.188 75.759 0.00 0.00 ATOM 1856 CD3 LEU 162 118.894 87.188 75.759 0.00 0.00								73.936	0.00	0.00	H
ATOM 1830 1HD1 ILE 160 107.902 87.513 73.570 0.00 0.00 ATOM 1831 2HD1 ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1832 3HD1 ILE 160 107.708 86:253 74:812 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1834 CA VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1837 CB VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1842 HB VAL 161 115.681 80.350 73.333 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 3HG2 VAL 161 112.586 80.335 75.059 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.586 80.335 75.059 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 80.335 75.059 0.00 0.00 ATOM 1848 5HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 5HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 5HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 5HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1855 CD LEU 162 118.993 86.481 74.690 0.00 0.00 ATOM 1856 CD LEU 162 118.993 86.481 74.690 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HB LEU 162 118.894 87.188 75.757 0.00 0.00 ATOM 1859 HB LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1859 HB LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1861 HG LEU 162		1829	2HG1	ILE	160	109.554	87.808	75.526	0.00	0.00	H
ATOM 1831 2HDI ILE 160 108.545 85.892 73.285 0.00 0.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1834 CA VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1837 CB VAL 161 115.801 83.167 76.752 0.00 0.00 ATOM 1838 CGI VAL 161 115.881 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.302 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.15 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1844 3HG1 VAL 161 115.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 115.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.193 86.481 75.753 0.00 0.00 ATOM 1851 C LEU 162 118.193 86.481 75.753 0.00 0.00 ATOM 1852 C LEU 162 118.193 86.481 75.753 0.00 0.00 ATOM 1853 CB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 CD LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1868 HA LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1868 AB LEU 162 119.596 86.571 71.476	MOTA	1830	1HD1	ILE	160	107.902	87.513	73.570			н
ATOM 1832 3 HD1 ILE 160 107.708 86:253 74:812 0.00 0.00 1.00 ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 0.00 ATOM 1835 C VAL 161 114.529 83.137 75.205 0.00 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.685 75.750 0.00 0.00 0.00 ATOM 1837 CB VAL 161 116.400 83.167 76.752 0.00 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 HG1 VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1844 HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 HG2 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 HG2 VAL 161 115.804 80.355 75.059 0.00 0.00 ATOM 1846 HG2 VAL 161 115.804 80.355 75.059 0.00 0.00 ATOM 1846 HG2 VAL 161 115.506 82.747 73.126 0.00 0.00 ATOM 1846 HG2 VAL 161 115.506 80.355 75.059 0.00 0.00 ATOM 1846 HG2 VAL 161 115.506 80.355 75.059 0.00 0.00 ATOM 1846 HG2 VAL 161 112.588 80.335 75.059 0.00 0.00 ATOM 1846 HG2 VAL 161 112.588 80.335 75.059 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1855 CD1 LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1855 CD1 LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1855 CD1 LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1855 CD1 LEU 162 118.260 86.217 77.988 0.00 0.00 0.00 ATOM 1855 HB LEU 162 118.896 85.886 73.4488 0.00 0.00 0.00 ATOM 1855 LD1 LEU 162 118.260 86.217 77.989 0.00 0.00 ATOM 1855 LD1 LEU 162 118.896 85.886 73.4488 0.00 0.00 0.00 ATOM 1858 HA LEU 162 118.896 85.856 73.4289 0.00 0.00 0.00 ATOM 1858 HA LEU 162 118.896 85.557 71.277 0.00 0.00 0.00 ATOM 1859 HB LEU 162 118.896 85.571 71.276 0.00 0.00 0.00 ATOM 1859 HB LEU 162 118.996 85.571 71.276 0.00 0.00 0.00 ATOM 1860 LBU 162 118.996 85.6571 71.276 0.00 0.00 0.0	ATOM	1831	2HD1	ILE							
ATOM 1833 N VAL 161 113.521 84.213 74.899 0.00 0.00 ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1837 CB VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.606 82.747 73.126 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.604 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.604 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1844 1HG2 VAL 161 115.368 80.335 74.477 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 113.504 80.827 77.653 0.00 0.00 ATOM 1849 N LEU 162 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 CD LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1855 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1856 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.956 86.571 71.476 0.00 0.00 ATOM 1858 HA LEU 162 118.958 86.571 71.476 0.00 0.00 ATOM 1858 HA LEU 162 118.950 86.571 71.476 0.00 0.00 ATOM 1858 HA LEU 162 119.958 86.571 71.475 0.00 0.00 ATOM 1858 HA LEU 162 119.959 86.571 71.475 0.00 0.00 ATOM 1858 HA LEU 162 119.959 86.571 71.475 0.00 0.00 ATOM 1861 HG LEU 162 119.959 86.571 71.475 0.00 0.00 ATOM 1862 HDI LEU 162 1								73.205			H
ATOM 1834 CA VAL 161 114.529 83.137 75.205 0.00 0.00 ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 113.506 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.804 80.355 73.633 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.804 80.355 73.633 0.00 0.00 ATOM 1846 3HG2 VAL 161 115.804 80.827 72.653 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 117.7649 85.484 75.753 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1855 CD1 LEU 162 118.908 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.908 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.908 85.886 73.448 0.00 0.00 ATOM 1855 CD2 LEU 162 118.908 85.886 73.448 0.00 0.00 ATOM 1857 H LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1858 HA LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1859 HB LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1857 H LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1858 HA LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1858 HA LEU 162 118.93 86.571 77.127 0.00 0.00 ATOM 1858 HA LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1858 HA LEU 162 119.35 86.980 72.393 0.00 0.00 ATOM 1858 HA LEU 162 119.35 86.980 72.393 0.00 0.00 ATOM 1858 HA LEU 162 119.35 86.971 77.988 0.00 0.00 ATOM 1858 HA LEU 162 119.35 86.971 77.988 0.00 0.00 ATOM 1858 HA LEU 162 119.35 86.571 77.972 0.00 0.00 ATOM 1859 HB LEU 162 119.996 86.887 73.444 0.00 0.00 0.00 ATOM 1860 2HB LEU 162						107.708	86.253	74.812		_	 н
ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1839 CG2 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1849 N LEU 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.980 72.393 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.980 72.393 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.980 72.393 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 118.996 85.886 73.448 0.00 0.00 ATOM 1856 CD2 LEU 162 118.996 85.886 73.448 0.00 0.00 ATOM 1856 CD2 LEU 162 118.996 85.886 73.448 0.00 0.00 ATOM 1856 HB LEU 162 117.350 87.187 77.872 0.00 0.00 ATOM 1856 HB LEU 162 118.996 85.886 73.448 0.00 0.00 ATOM 1856 HB LEU 162 118.996 85.886 73.448 0.00 0.00 ATOM 1856 HB LEU 162 118.996 85.886 73.448 0.00 0.00 ATOM 1856 HB LEU 162 119.996 86.571 71.476 0.00 0.00 ATOM 1859 HB LEU 162 119.996 86.571 71.476 0.00 0.00 ATOM 1856 HB LEU 162 119.996 86.571 71.476 0.00 0.00 0.00 ATOM 1860 HB LEU 162 119.996 86.571 71.476 0.00 0.00 0.00 ATOM 1861 HB LEU 162 119.996 86.571 71.476 0.00 0.00 0.00 ATOM							· 84.213	74.899	0.00	0.00	N
ATOM 1835 C VAL 161 115.907 83.685 75.750 0.00 0.00 ATOM 1836 O VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CGI VAL 161 113.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.368 80.355 75.059 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.355 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.355 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 112.928 80.835 75.059 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1851 C LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1852 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.428 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.428 0.00 0.00 ATOM 1855 HB LEU 162 118.913 86.481 74.690 0.00 0.00 ATOM 1855 HB LEU 162 118.906 85.8243 73.811 0.00 0.00 ATOM 1855 HB LEU 162 118.894 87.185 75.759 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.185 75.759 0.00 0.00 ATOM 1857 HB LEU 162 118.894 87.185 75.175 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.185 75.759 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.185 75.759 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.185 75.759 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.185 75.759 0.00 0.00 0.00 ATOM 1857 HB LEU 162 118.894 87.185 75.759 0.00 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.185 75.759 0.00 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.185 75.759 0.00 0.00 0.00 ATOM 1856 HB LEU 162 118.956 86.577 77.1.476 0.	ATOM	1834	CA	VAL	161	114.529	83.137	75.205	0.00	0.00	C .
ATOM 1836 O VAL 161 116.400 83.167 76.752 0.00 0.00 ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.15 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 CHG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.355 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.355 75.059 0.00 0.00 ATOM 1847 2HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.488 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.980 72.393 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.488 0.00 0.00 ATOM 1856 CD2 LEU 162 118.193 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.186 75.757 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.187 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.187 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 119.195 86.571 71.476 0.00 0.00 ATOM 1850 2HB LEU 162 119.596 86.577 71.476 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.577 71.476 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.577 71.476 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.577 71.476 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.577 71.476 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.577 71.476 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.577 71.476 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.577 71.476 0.00 0.00 0.00	ATOM	1835	C	VAL	161	115.907	83.685				c
ATOM 1837 CB VAL 161 114.681 82.153 73.984 0.00 0.00 ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1841 HA VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 HHG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.366 80.355 75.059 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.355 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1847 2HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1856 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1856 HB LEU 162 119.155 86.980 72.393 0.00 0.00 ATOM 1857 HB LEU 162 119.155 86.980 72.393 0.00 0.00 0.00 ATOM 1856 HB LEU 162 119.155 86.980 72.393 0.00 0.00 0.00 ATOM 1857 HB LEU 162 119.155 86.980 72.393 0.00 0.00 0.00 ATOM 1859 HB LEU 162 119.155 86.980 72.393 0.00 0.00 0.00 ATOM 1859 HB LEU 162 119.155 86.980 72.393 0.00 0.00 0.00 ATOM 1859 HB LEU 162 119.956 86.571 71.276 0.00 0.00 0.00 ATOM 1865 HB LEU 162 119.996 86.571 71.276 0.00 0.00 0.00 ATOM 1865 HB LEU 162 119.996 86	ATOM	1836	0	VAL	1.61						
ATOM 1838 CG1 VAL 161 115.681 80.993 74.226 0.00 0.00 ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1842 HB VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1847 2HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD LEU 162 118.193 86.5217 77.988 0.00 0.00 ATOM 1855 CD LEU 162 118.596 85.243 73.811 0.00 0.00 ATOM 1855 CD LEU 162 118.596 85.856 73.448 0.00 0.00 ATOM 1855 CD LEU 162 118.596 85.8572 74.289 0.00 0.00 ATOM 1856 CD LEU 162 118.596 85.524 73.811 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HHB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HHB LEU 162 118.894 87.186 75.972 0.00 0.00 ATOM 1859 HHB LEU 162 118.894 87.187 75.2080 0.00 0.00 ATOM 1859 HHB LEU 162 118.894 87.187 75.2080 0.00 0.00 ATOM 1859 HHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1859 HHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1869 HHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1869 HHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1865 HHB LEU 162 119.596 86.571 71.4											0
ATOM 1839 CG2 VAL 161 113.363 81.472 73.541 0.00 0.00 ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.3126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1845 3HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1845 3HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.808 80.355 75.059 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.808 80.827 72.653 0.00 0.00 ATOM 1846 1HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1850 CD2 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1850 CD2 LEU 162 118.906 86.571 71.476 0.00 0.00 ATOM 1850 CD2 LEU 162 118.906 86.571 71.476 0.00 0.00 ATOM 1850 CD2 LEU 162 118.906 86.571 71.476 0.00 0.00 ATOM 1850 CD2 LEU 162 118.906 86.571 71.476 0.00 0.00 ATOM 1850 CD2 LEU 162 118.906 86.571 71.476 0.00 0.00 0.00 ATOM 1850 HB LEU 162 118.894 87.188 75.175 0.00 0.00 0.00 ATOM 1850 CD2 LEU 162 118.906 86.571 71.476 0.00 0.00 0.00 ATOM 1850 CD2 LEU 162 118.906 86.571 71.476 0.00 0.00 0.00 DD2 ATOM 1860 CD2 LEU 162 118.906 86.571 71.476 0									0.00	0.00	С
ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.806 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 75.059 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1847 2HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1856 CD2 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1856 CD2 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1856 CD2 LEU 162 118.193 86.586 73.488 0.00 0.00 ATOM 1856 CD2 LEU 162 118.193 86.586 75.7972 0.00 0.00 ATOM 1856 CD2 LEU 162 118.968 85.586 75.972 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1856 CD2 LEU 162 118.956 86.571 71.476 0.00 0.00 ATOM 1853 CHB LEU 162 118.956 86.571 71.476 0.00 0.00 ATOM 1862 LHD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 CHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 CHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 CHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 CHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 CD2 ATOM 1863 CHB LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 CD2 ATOM 1863 CHB			_		161	115.681	80.993	74.226	0.00	0.00	С
ATOM 1840 H VAL 161 113.202 84.416 73.940 0.00 0.00 ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1847 2HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1855 CB LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CB LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1856 CD2 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1856 CD2 LEU 162 118.906 85.886 75.3448 0.00 0.00 ATOM 1856 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 118.948 85.052 74.289 0.00 0.00 ATOM 1856 CD2 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1850 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1851 HB LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1862 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 0.00 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 0.00 HBD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 0.00 HBD LEU 162 HBD LEU 16	ATOM	1839	CG2	VAL	161	113.363	81.472	73.541	0.00	0.00	C
ATOM 1841 HA VAL 161 114.115 82.533 76.037 0.00 0.00 ATOM 1842 HB VAL 161 115.060 82.747 73.126 0.00 0.00 ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1847 2HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.980 73.448 0.00 0.00 ATOM 1856 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1850 LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1851 HB LEU 162 118.996 85.851 74.289 0.00 0.00 ATOM 1852 1HB LEU 162 118.996 85.571 71.476 0.00 0.00 ATOM 1853 2HD LEU 162 119.996 85.571 71.476 0.00 0.00 ATOM 1853 2HD LEU 162 119.996 85.571 71.476 0.00 0.00 ATOM 1862 1HD LEU 162 119.996 85.571 71.476 0.00 0.00 ATOM 1863 2HD LEU 162 119.996 85.571 71.476 0.00 0.00 ATOM 1863 2HD LEU 162 119.996 85.571 71.476 0.00 0.00 ATOM 1863 2HD LEU 162 119.996 85.571 71.476 0.00 0.00 ATOM 1863 2HD LEU 162 119.996 85.571 71.476 0.00 0.00 ATOM 1863 2HD LEU 162 119.996 85.571 71.476 0.00 0.00	ATOM	1840	H	VAL	161						н
ATOM 1842 HB VAL 161 115.860 82.747 73.126 0.00 0.00 ATOM 1844 2HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1849 N LEU 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1856 CD2 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1857 H LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 118.956 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 0.00	ATOM		НΔ								
ATOM 1843 1HG1 VAL 161 115.804 80.350 73.333 0.00 0.00 ATOM 1844 2HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 115.368 80.835 75.059 0.00 0.00 ATOM 1847 2HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1853 CB LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1858 HA LEU 162 118.481 84.756 75.972 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.703 72 75 70 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1865 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1860 2HB LEU 162 119.596 86.571 71											H
ATOM 1844 2HG1 VAL 161 116.693 81.358 74.477 0.00 0.00 ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 118.252 85.114 77.991 0.00 0.00 ATOM 1861 HG LEU 162 118.252 85.114 77.991 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD LEU 162 119.596 86.571 71.476 0.00 0.00								73.126	0.00	0.00	н
ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1847 2HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.481 74.690 0.00 0.00 ATOM 1856 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1858 HA LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1858 HA LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 3HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.705 70.700 0.00 COUNTY 1521 2HD1 LEU 162 119.301 07.70					161	115.804	80.350	73.333	0.00	0.00	H
ATOM 1845 3HG1 VAL 161 115.368 80.335 75.059 0.00 0.00 ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1847 2HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.93 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1858 HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 3HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 3HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1865 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1865 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1865 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00	ATOM	1844	2HG1	VAL	161	116.693	81.358	74.477	0.00	0.00	н
ATOM 1846 1HG2 VAL 161 113.504 80.827 72.653 0.00 0.00 ATOM 1847 2HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571	ATOM	1845	3HG1	VAL	161						H
ATOM 1847 2HG2 VAL 161 112.928 80.840 74.338 0.00 0.00 ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 77.991 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 77.991 0.00 0.00 ATOM 1862 1HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1864											
ATOM 1848 3HG2 VAL 161 112.588 82.210 73.260 0.00 0.00 ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1864 ATOM 186											H
ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1855 CD1 LEU 162 118.193 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 HD1 LEU 162 119.596 86.571 71.376 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.376 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 72.57 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 72.57 72.080 0.00 0.00					161	112.928	80.840	74.338	0.00	0.00	 H
ATOM 1849 N LEU 162 116.504 84.730 75.145 0.00 0.00 ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1864 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1864 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1864 2HD1 LEU 162 119.596 86.571 71.	ATOM	1848	3HG2	VAL	161	112.588	82.210	73.260	0.00	0.00	H
ATOM 1850 CA LEU 162 117.649 85.484 75.753 0.00 0.00 ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.705 72 757 0.63 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.705 72 757 0.63 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.705 72 757 0.63 0.00	ATOM	1849	N	LEU	162	116.504	84.730	75.145			N
ATOM 1851 C LEU 162 117.378 86.204 77.127 0.00 0.00 ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 1HD1 LEU 162 119.301 07.705 72 757 0.63 0.00 ATOM 1864 1HD1 LEU 162 119.301 07.705 72 757 0.63 0.00 ATOM 1865 1HD1 LEU 162 119.301 07.705 72 757 0.63 0.00	ATOM	1850									
ATOM 1852 O LEU 162 118.260 86.217 77.988 0.00 0.00 ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 CHD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 CHD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 CHD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 77.705 72 757 0.03 0.00 ATOM 1862 1HD1 LEU 162 119.596 77.705 72 757 0.03 0.00											C
ATOM 1853 CB LEU 162 118.193 86.481 74.690 0.00 0.00 ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 77 991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 72.080 0.00 0.00 ATOM 1862 1HD1 LEU 163 119.596 87.151 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 87.152 72.080 0.00 0.00 ATOM 1864 THO 1864 THO 1865 119.596 87.154 72.080 0.00 0.00 ATOM 1865 2HD1 LEU 163 119.596 87.154 72.080 0.00 0.00 ATOM 1865 2HD1 LEU 163 119.596 87.154 72.080 0.00 0.00										0.00	C
ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1860 2HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 72 991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 87.151 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.705 72 757 0.03 0.00					162	118.260	86.217	77.988	0.00	0.00	0
ATOM 1854 CG LEU 162 118.906 85.886 73.448 0.00 0.00 ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 77 991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 87.151 72.080 0.00 0.00 ATOM 1861 HG LEU 163 119.596 87.151 72.080 0.00 0.00 ATOM 1862 1HD1 LEU 163 119.596 87.152 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 87.152 72.080 0.00 0.00 ATOM 1864 1521 2HD1 LEU 163 119.301 07.705 73 757 0.03 0.00	ATOM	1853	CB	LEU	162	118.193	86.481	74.690	0.00	0.00	C
ATOM 1855 CD1 LEU 162 119.135 86.980 72.393 0.00 0.00 ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.703 72 757 0.03 0.00 ATOM 1863 2HD1 LEU 163 119.301 07.703 72 757 0.03 0.00	ATOM	1854	CG	LEU	162	118,906	85.886				Ċ
ATOM 1856 CD2 LEU 162 120.255 85.243 73.811 0.00 0.00 ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 72 991 0.00 0.00 ATOM 1862 1HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 163 119.301 07.705 72 757 0.03 0.00 ATOM 1864 140 140 140 140 140 140 140 140 140 14	ATOM	1855									_
ATOM 1857 H LEU 162 116.028 85.052 74.289 0.00 0.00 ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1862 1HD1 LEU 162 118.252 85.114 72 991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1853 2HD1 LEU 162 119.596 86.571 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 119.301 87.452 72.080 0.00 0.00 ATOM 1521 2HD1 LEU 162 119.301 87.452 72.080 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 72 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163 119.301 87.755 73 757 0.63 0.00 0.00 ATOM 1521 2HD1 LEU 163											C
ATOM 1858 HA LEU 162 118.451 84.756 75.972 0.00 0.00 ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 162 118.252 85.114 72 991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 86.571 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.596 87.352 72.080 0.00 0.00 ATOM 1561 2HD1 LEU 162 119.596 87.352 72.080 0.00 0.00 ATOM 1561 2HD1 LEU 162 119.596 87.352 72.080 0.00 0.00 ATOM 1561 2HD1 LEU 162 119.596 87.352 72.080 0.00 0.00 ATOM 1561 2HD1 LEU 163 119.301 07.705 73 757 0.03 0.00											C
ATOM 1859 1HB LEU 162 118.894 87.188 75.175 0.00 0.00 ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 77.991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1853 2HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1853 2HD1 LEU 162 119.596 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.151 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 87.152 72.080 0.00 0.00 ATOM 1853 2HD1 LEU 162 112.105 ATOM 18						116.028	85.052	74.289	0.00	0.00	H
ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 162 118.252 85.114 72 991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 112.105 87.454 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 112.105 87.454 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 112.105 87.454 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 112.105 87.454 72.080 0.00 0.00	ATOM	1858	HA :	LEU	162	118.451	84.756	75.972	0.00	0.00	H
ATOM 1860 2HB LEU 162 117.350 87.120 74.357 0.00 0.00 ATOM 1861 HG LEU 163 118.252 85.114 72 991 0.00 0.00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.105 87.454 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.705 72 757 0.03 0.00 ATOM 1561 2HD1 LU 163 119.301 07.705 72 757 0.03 0.00	ATOM	1859	LHB :	LEU	162	118.894	87.188	75.175	0.00	0.00	H
ATOM 1861 HG LEU 162 118.252 85.114 77 991 0 00 0 00 ATOM 1862 1HD1 LEU 162 119.596 86.571 71.476 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.105 87.452 72.080 0.00 0.00 ATOM 1863 2HD1 LEU 162 119.301 07.705 72 757 0.03 0.00 ATOM 1551 2HD1 LEU 162 119.301 07.705 72 757 0.03 0.00 ATOM 1551 2HD1 LEU 163 119.301 07.705 72 757 0.00 ATOM 1551 2HD1 LEU 163 119.301 07.705 72 757 0.00 ATOM 1551 2HD1 LEU 163 119.301 07.705 ATOM 1551 2HD1 LEU 163 119.301 07.705 AT											
ATOM 1862 1HDL LEU 162 119.596 86.571 71.276 0.00 0.00 ATOM 1863 2HDL LEU 162 119.105 87.452 72.080 0.00 0.00 ATOM 1551 2HDL LEU 162 119.301 07.705 72 757 0.03 0.00 ATOM 1551 2HDL LEU 162 119.301 07.705 72 757 0.03 0.00 ATOM 1551 2HDL LEU 163 119.301 07.705 72 757 0.00 ATOM 1551 2HDL LEU 163 119.301 07.705 ATOM 155											H
RTON 1863 2HDL LEU 162 112.135 87.452 72.080 0.00 0.00 0.00 ETGE 1551 2HDL LEU 162 119.301 07.705 72 757 0.63 (.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											'n
TOTAL 156: 28D1 LEG 162 119.301 07.705 72 757 0.63 (.00						119.596	86.571	71.476	0.00	0.00	H
NTOTS 1551 2801 100 150 119.301 07.705 70.757 0.63 0.60	R TOM	1863	HDI 1	LEU	162	110.105	87.353	72.080	0.00	0.00	H
	nton										H
					· • =		4-4-1		2		12
					-	=	-			•	
					<u>-</u>						
	- -						_				
	·						_		_		
	:-			- .			_	. — -	-		
		-:									
	•			•		•					

					01					
ATOM	1876 CA	CYS	164	114.876	83.737	80.335	1.00	0.00		C
ATOM	1877 C	CYS	164	116.266	83.039	80.567	1.00	0.00		č
ATOM	1878 O	CYS	164	116.521				0.00		ŏ
ATOM	1879 CB	CYS	164	113.829				0.00		c
MOTA :	1880 SG	CYS	164	112.154						ŝ
ATOM		CYS	164	114.400						
ATOM	1882 HA		164	114.518				0.00		H
ATOM	1883 1HB		164	114.081				0.00		H
ATOM	1884 2HB		164		82.520			0.00		H
ATOM	1885 HG			113.813	81.822	80.285		0.00		H
ATOM	•		164	112.078	83.650	81.109		0.00		H
	1886 N	GLN	165	117.185		79.584		0.00		Ŋ
MOTA	1887 CA		165	118.630	82.717	79.812		0.00		C
MOTA	1888 C	GLN	165	119.377		80.884	1.00	0.00		C
MOTA	1889 0	GLN	165	120.137		81.686	1.00	0.00		0
ATOM	1890 CB		165	119.305	82.732	78.409	1.00	0.00		C
ATOM	1891 CG		165	120:812	82.361	78.337	1.00	0.00		C
ATOM	1892 CD		165	121.171	80.925	78.714	1.00	0.00		C
ATOM	1893 OE:	1 GLN	165	121.176	80.021	77.889	1.00	0.00		0
ATOM	1894 NE:	2 GLN	165	121.483	80.662	79.958	1.00	0.00		N
MOTA	1895 H	GLN	165	116.831	83.380	78.683	1.00	0.00		H-
ATOM	1896 HA	GLN	165	118.685	81.679	80.192		0.00		H
MOTA	1897 1HB	GLN	165	118.748	82.064	77.721	1.00	0.00		H
MOTA	1898 2HB	GLN	165	119.186	83.742	77.971		0.00		H
MOTA	1899 1HG	GLN	165	121.163	B2.514	77.300	1.00	0.00		H
MOTA	1900 2HG	GLN	165	121.416	83.072	78.933	1.00	0.00		
MOTA	1901 1HE		165	121.348	81.425	80.632	1.00			H
ATOM	1902 2HE2		165	121.686	79.679	80.146		0.00		H
ATOM	1903 N	TYR	166	119.158	84.923		1.00	0.00		H
ATOM	1904 CA	TYR	166			80.915	0.00	0.00		N
ATOM	1905 . C	TYR		119.568	85.789	82.059	0.00	0.00	•	c
ATOM	1906 0	TYR	166	. 118.771	85.539	83.393	0.00	.0.00		C
ATOM		TYR	166	119.399	85.300	84.425	0.00	0.00		0 '
			166	119.502	87.256	81.545	0.00	0.00		C
ATOM	1908 CG	TYR	166	120.132	88.308	82.473	0.00	0.00		С
ATOM		TYR	166	121.487	88.633	82.352	0.00	0.00		C
ATOM		TYR	166	122.045	89.626	83.155	0.00	0.00		С
ATOM	1911 CZ	TYR	166	121.259	90.279	84.099	0.00	0.00	•	C
ATOM	1912 OH	TYR	166	121.795	91.289	84.845	0.00	0.00		0
ATOM		TYR	166	119.916	89.950	84.239	0.00	0.00		c
ATOM		TYR	166	119.349	88.973	83.422	0.00	0.00		C
ATOM	1915 H	TYR	166	118.685	85.361	80.112	1.00	0.00		H
MOTA	1916 HA	TYR	166	120.631	85.572	82.293	0.00	0.00		H
MOTA	1917 1HB	TYR	166	118.451	87.533	81.332	0.00	0.00		H
ATOM	1918 2HB	TYR	166	119.994	87.330	80.555	0.00	0.00		H
MOTA	1919 HD1	TYR	166	122.106	88.133	81.622	0.00	0.00		H
MOTA	1920 HE1	TYR	166	123.087	89.891	83.046	0.00	0.00		H
MOTA	1921 HH	TYR	166	122.244	91.892	84.240	0.00	0.00		H
MOTA	1922 HE2	TYR	166	119.310	90.457	84.974	0.00	0.00		H.
ATOM		TYR	166	118.302	88.727	83.543	0.00	0.00		
ATOM	1924 N	LEU	167	117.424	85.573	83.383	0.00	0.00		H
ATOM	1925 CA	LEU	167	116.580	85.358		0.00			N
ATOM	1926 C	LEU	167			84.599 85.326		0.00		C
ATOM	1927 0	LEU	167	116.762 116.969	83.982 83.963		0.00	0.00		C
ATOM	1928 CB	LEU	167	115.969				0.00		0
ATOM	1929 CG	LEU			85.622	84.256	0.00	0.00		C
ATOM		PEA .	167	114.679	87.034	83.757	0.00	0.00		С
			167	113.194	87.063	83.364	0.00	0.00		С
ATOM		LEU	167	114.939	88.119	84.808	0.00	0.00		С
ATOM	1932 H	LEU	167	117.014	85.798	82.466	0.00	0.00		H
ATOM	1933 HA	LEU	167	116.884	86.113	85.350	0.00	0.00		Ħ
MOTA	1934 1HB	LEU	167	114.473	85.389	85.151	0.00	0.00		H
MOTA	1935 2HB	LEU	167	114.764	84.870	83.510	0.00	0.00	•	H
ATOM	1936 HG	LEU	167	115.274	87.289	82.858	0.00	0.00		H
ATOM	1937 1HD1		167	112.894	88.053	82.971	0.00	0.00		H.
MOTA	1938 2HD1	LEU	167	112.964	86.327	82.572	0.00	0:00		H ·
ATOM	1939 3HD1		167	112.532	86.847	84.222	0.00	0.00		H
MOTA	1940 1HD2	LEU	167	114.642	89.118	84.443	0.00	0.00		H
MOTA	1941 2HD2	LEU	167	114.388	87.929	85.748	0.00	0.00		H
MOTA	1942 3HD2		167	116.011	88.196	85.072	0.00	0.00		H
ATOM	1943 N	HIS	168	116.757	82.845	84.609	0.00	0.00		N
ATOM	1944 CA	HIS	168	117.105	81.512	85.190	0.00	0.00		C
ATOM	1945 C	HIS	168	. 118.576	81.396	85.749	0.00	0.00		c
ATOM	1946 0	HIS	168	118.773	80.818	86.819	0.00	0.00		
ATOM	1947 CB	HIS	168	116.788	80.395	84.153	0.00			0
ATOM	1948 CG	HIS	168	115.353	80.235			0.00		C
				240.333		83.617	0.00	0.00		C

ATO:	M 1949	37753			00			•		
				114.19	9 80.80	9 84.14	3 0.0	0 0.00		
ATO			S 168	113.27						N
ATO	M 1951		S 168					0.00		С
ATO			_			7 82.23	9 0.0	0.00		N
			S 168	115.03	4 79.453	L 82.49				
ATO	4 1953	H HI	S 168	116.57						C
ATON	1 1954						3 0.0	0.00		H
ATO				116.44	81.34	86.0 <i>6</i> :	2 0.00	0.00		
			S 168	117.074	79.422					H
ATOTA	1 1956	2HB HI	S 168	117.46						H
ATOM	1 1957	HE1 HI					9 0.00	0.00		H
ATOM				112.235		83.39	2 0.00	0.00		
		HE2 HI	S 168	113.102	78.947					H
ATOM	1959	HD2 HI	S 168	115.756						H
ATOM	1960	N AR					0.00	0.00		H
ATOM		_		119.587	81.991	85.080	1.00	0.00		N
		CA AR	3 169	120.937	82.244			_		
ATOM	1962	C AR	3 169	120.977						C
ATOM	1963	O AR	_				1.00	0.00	,	· c
ATOM				121.743		87.888	1.00			
		CB AR	3 169	121.828	82.766					0
ATOM	1965	CG ARC	3 169	123.343	_					C
ATOM	1966	CD ARC				84.825	1.00	0.00		C
ATOM				124.142	83.372	83.619	1.00	0.00		
		NE ARO	169	125.581	83.393	83.981				С
ATOM	1968	CZ ARC	169					0.00		N
ATOM		NH1 ARC		126.573	83.759	83.183	1.00	0.00		С
ATOM				126.421	84.150	81.954		0.00		
	1970	NH2 ARC	169	127.763	83.721	83.667				N
ATOM	1971	HE ARG	169				_	0.00		N
ATOM	1972			125.830	83.099	84.936	1.00	0.00		H
ATOM				119.258	82.535	84.276		0.00		
	1973	HA ARG	169	121.348	81.266					H
MOTA	1974	1HB ARG				86.002	1.00	0.00		H
ATOM	1975 :			121.700	82.114	83.635	1.00	0.00		H
ATOM				121.462	83.761	84.197	1.00	0.00		
	1976 :		169	123.525	83.511	85.698				H
ATOM	1977 :	2HG ARG	169	123.729			1.00	0.00		H
MOTA	1978				81.859	85.131	1.00	0.00		H
ATOM			_169	123.973	.82.723	82.737	1.00	0.00		
	1979	2HD ARG	7169	123.797	84.390	83.344				H
MOTA	1980 2	HH1 ARG	169	125.445			1.00	0.00		H
MOTA	1981 1	HH1 ARG			84.158	81.655	1.00	0.00		H
	1000	THIL ARG	169	127.263	84.410	81.442	1.00	0.00		
ATOM	1982 1	HH2 ARG	169	127.763	83.411	84.641				H
ATOM	1983 2	HH2 ARG	169				1.00	0.00		H
ATOM				128.535	84.007	83.067	1.00	0.00		H
			170	120.138	84.208	87.078	1.00	0.00		
ATOM	1985	CA ASN	170	119.868	84.914	88.374				N
MOTA	1986	C ASN	170	119.114			1.00	0.00		· C
ATOM		O ASN			84.109	89.511	1.00	0.00		C
			170	118.897	84.666	90.590	1.00	0.00		
ATOM	1988	CB ASN	170	. 119.043	86.208	88.075				, 0
ATOM	1989	CG ASN	170		•		1.00	0.00		С
ATOM		OD1 ASN		119.476	87.253	87.043	1.00	0.00		С.
		ODI ASN	170	118.647	87.828	86.350	1.00	0.00		
MOTA		ND2 ASN	170	120.734	87.585	86.923				0
ATOM	1992	H ASN	170	119.600			1.00	0.00		N
ATOM		HA ASN			84.408	86.222	1.00	0.00		H
MOTA"			170	120.836	.85216	88.819	100	0.00		H
	1994 11		170	118.016	85.911	87.792				
ATOM	1995 21	HB ASN	170	118.903			1.00	0.00		H
ATOM		ID2 ASN				89.016	1.00	0.00		H
ATOM	1000 0	TO ASI	170	120.898	88.227	86.142	1.00	0.00		н
	1997 2F	UZ ASN	170	121.406		87.382				
ATOM	1998 N	I ARG	171	118.659			1.00	0.00		H
ATOM		'A ARG				89.280	1.00	0.00		N
ATOM			171		82.151	90.127	1.00	0.00		C
	2000 C		171	116.210						_
ATOM	2001 C	ARG	171	115.514	02 724	03 00-		0.00		С
ATOM		B ARG					1.00	0.00		0
ATOM	-	-	171		81.706	91.497	1.00	0.00		č
		G ARG	171	119.399						
ATOM	2004 C	D ARG	171					0.00		C
ATOM		E ARG					1.00	0.00		С
ATOM			171		79.272 9	92.633	1.00	0.00		
		Z ARG	171	121.728	7A 7A9 9	3 607				N
ATOM	2007 M	H1 ARG	171	121.590	70 027 -	2.007		0.00		C
ATOM		בתנה בש	171		79.037		1.00 (0.00		N
	-			122.653	7.900 9	3.271	1.00 (0.00		Ρí
		E ARG.	271	121.194 7	0.955 9					
ATCM	COTO H		171	115.558	~			0.00		H
	1.14 £		7-5	,		್ದಿ.3೯೬)		ı ûû		17
				<u> </u>	1.515	T.Ffs '	-	::		
·		<u></u> .		<u> : </u>		1.::1		: :		-
			-	-						-
·		• '=								
7.				-						
		_			•					
•					-					
				_						

						02					
MOTA	2022	N	VAL	172	115.741	83.442	89.110	1.00	0.00		N
MOTA	2023	CA	VAL	172	114.438	84.169	89.046	1.00	0.00		С
MOTA	2024	С	VAL	172	113.496	83.370	88.083	1.00	0.00		C
MOTA	2025	0	VAL	172	113.552	83.505	86.855	1.00	0.00		0
atom	2026	CE	VAL	172	114.661	85.671	88.631	i.ûú	0.00		C
ATOM	2027		VAL	172	113.351	86.468	88.415	1.00	0.00		C
MOTA	2028		VAL	172	115.491	86.480	89.657	1.00	0.00		C
MOTA	2029	H	VAL	172	116.426	83.513	88.344	1.00	0.00		H
ATOM	2030	HA	VAL	172	113.959	84.202	90.047	1.00	0.00		H
ATOM	2031	HB	VAL	172	115.214	85.677	87.669	1.00	0.00		H
ATOM		1HG1		172	112.732	86.513	89.332	1.00	0.00		H
ATOM		2HG1		172	113.547	87.510	88.101	1.00	0.00		H H
ATOM		3HG1		172	112.721	86.025	87.621	1.00	0.00		Н
MOTA		2HG2		172	116.478	86.016	89.846	1.00	0.00		H
ATOM		3HG2		172	115.697	87.510 86.556,	89.309 90.638	1.00	0.00		H
ATOM ATOM	2037 2038	1HG2 N	ILE	172 173	114.986 112.575	82.575	88.653	0.00	0.00		N
ATOM	2039	CA	ILE	173	111.447	81.954	87.886	0.00	0.00		c
ATOM	2040	C	ILE	173	110.383	83.074	87.611	0.00	0.00		Č
MOTA	2041	õ	ILE	173	109.709	83.512	88.544	0.00	0.00		ō
ATOM	2042	СВ	ILE	173	110.844	80.716	88.658	0.00	0.00		c
ATOM	2043		ILE	173	109.635	80.078	87.912	0.00	0.00		С
ATOM	2044		ILE	173	111.881	79.595	88.975	0.00	0.00		С
ATOM	2045		ILE	173	111.442	78.565	90.033	0.00	0.00		C
ATOM	2046	H	ILE	173	112.632	82.538	89.675	0.00	0.00		H
MOTA	2047	HA	ILE	173	111.836	81.577	86.918	0.00	0.00		H
MOTA	2048	HB	ILE	173	110.467	81.102	89.627	0.00	0.00		H
MOTA	2049	1HG2	ILE	173	109.151	79.289	88.517	0.00	0.00	•	H
MOTA	2050	2HG2	ILE	173	108.838	80.813	87.695	0.00	0.00		H
MOTA	2051	3HG2	ILE	173	109.929	79.606	86.958	0.00	0.00		H
MOTA	2052	1HG1	ILE	173	112.824	80.045	89.341	0.00	0.00	•	Н
ATOM	2053	2HG1	ILE	173	112.172	79.077	88.044	0.00	0.00		H
ATOM		1HD1		173	112.255	77.853	90.265	0.00	0.00		H
MOTA		2HD1		173 .	111.160	79.050	90.988	0.00	0.00		H
MOTA		3HD1		173	110.575	77.962	89.706	0.00	0.00		H
MOTA	2057	N	HIS	174	110.237	83.550	86.361	1.00	0.00		N
MOTA	2058	CA	HIS	174	109.317	84.693	86.059	1.00	0.00		C
ATOM	2059	C	HIS	174	107.793	84.449	86.376	1.00	0.00		Ö
MOTA	2060	0	HIS	174	107.197	85.215	87.138 84.608	1.00	0.00		c
ATOM	2061 2062	CB CG	HIS HIS	174 174	109.621 108.991	.85.167 86.510	84.245	1.00	0.00		č
ATOM ATOM	2063		HIS	174	109.547	87.720	84.610	1.00	0.00		N
ATOM	2064		HIS	174	108.528	88.561	84.240	1.00	0.00		C
ATOM	2065		HIS	174	107.408	88.047	83.646	1.00	0.00	•	N
MOTA	2066		HIS	174	107.722	86.700	83.677	1.00	0.00		C
MOTA	2067	н	HIS	174	111.089	83.401	85.808	1.00	0.00		н
MOTA	2068	HA	HIS	174	109.616	85.530	86.728	1.00	0.00		H
ATOM		1HB	HIS	174	110.714	85.272	84.465	1.00	0.00		H
ATOM	2070	2HB	HIS	174	109.312	84.405	83.873	1.00	0.00	•	H
MOTA	2071	HEL	HIS	174	108.594	89.618	84.467	1.00	0.00		H
MOTA	2072	HE2	HIS	174	106.492	88.497	83.525	1.00	0.00		H
MOTA	2073	HD2	HIS	174	107.043	85.901	83.421	1.00	0.00		Н
MOTA	2074	N	ARG	175	107.160	83.405	85.801	0.00	0.00		N
MOTA	2075	CA	ARG	175	105.738	83.015	86.076	0.00	0.00		c
MOTA	2076	C	ARG	175	104.626	83.935	85.455	0.00	0.00		C
MOTA	2077	0	ARG	175	103.710	83.427	84.802	0.00	0.00		0
MOTA	2078	CB	ARG	175	105.530	82.631	87.571	0.00	0.00		C
MOTA	2079	CG	ARG	175	104.378	81.637	87.838	0.00	0.00		c
ATOM	2080	CD .	ARG	175	104.296	81.222	89.315 89.415	0.00	0.00		N
MOTA	2081	NE	ARG	175	103.290	80.140 79.593	90.531	0.00	0.00		C
MOTA	2082	CZ	ARG	175	102.838	79.931	91.729	0.00	0.00		N
MOTA MOTA	2083 2084	NH1 NH2		175 · 175	101.966	78.668	90.400	0.00	0.00		N
ATOM	2085	HE	ARG	175	102.905	79.778	88.530	1.00	0.00		н
ATOM	2086	н	ARG	175	107.738	82.919	85.104	0.00	0.00		Н
ATOM	2087	HA	ARG	175	105.622	82.068	85.513	0.00	0.00		н
MOTA	2088		ARG	175	105.397	83.551	88.171	0.00	0.00		H
MOTA	2089		ARG	175	106.465	82.177	87.958	0.00	0.00		H
ATOM	2090		ARG	175	104.517	80.733	87.210	0.00	0.00		Н
ATOM	2091		ARG	175	103.406	82.064	87.515	0.00	0.00		Н
ATOM	2092		ARG	175	104.009	82.089	89.943	0.00	0.00		H
MOTA	2093		ARG	175	105.280	80.863	89.681	0.00	0.00		Ħ
MOTA	2094	1441	ARG	175	102.744	79.451	92.498	0.00	0.00		H

						90					
ATOM		2HH1		175	103.889	80.695	91.751	0.00	0.00		H
ATOM		1HH2		175	101.643	78.167	91.237	0.00	0.00		H
MOTA		2HH2		175	101.804	78.446	89.417	0.00	0.00		H
ATOM ATOM	2098 2099	n Ca	asp asp	176	104.702	85.268	85.615	0.00	0.00	•	N C
ATOM	2100	C	ASP	176 176	103.764 104.080	86.234 86.497	84.968 83.442	0.00	0.00 0.00		c
ATOM	2101	ō	ASP	176	104.454	87.605	83.049	0.00	0.00		õ
ATOM	2102	CB	ASP	176	103.818	87.483	85.894	0.00	0.00		č
ATOM	2103	CG	ASP	176	102.699	88.484	85.653	0.00	0.00		C
ATOM	2104	OD1	ASP	176	101.504	88.205	85.698	0.00	0.00		0
ATOM	2105		ASP	176	103.054	89.672	85.637	0.00	0.00		0
ATOM	2106	H	ASP	176	105.525	85.562	86.163	0.00	0.00		H
ATOM	2107	HA	ASP	176	102.735	85.823	85.015	0.00	0.00		H
ATOM ATOM	2108 2109		ASP ASP	176 176	104.797 103.748	87.993 87.209	85.798 86.962	0.00	0.00		н н
MOTA	2110	N	LEU	177	103.748	85.481	82.572	0.00	0.00		Ŋ
ATOM	2111	CA	LEU	177	104.341	85.556	81.137	0.00	0.00		c
ATOM	2112	С	LEU	177	103.112	85.411	80.177	0.00	0.00		С
ATOM	2113	0	LEU	177	102.648	84.308	79.872	0.00	0.00		0
MOTA	2114	CB	LEU	177	105.476	84.511	80.915	0.00	0.00		C
ATOM	2115	CG	LEU	177	106.235	84.562	79.560	0.00	0.00		C
ATOM	2116		LEU	177	106.906	85.921	79.284	0.00	0.00		C
MOTA MOTA	2117 2118	H	LEU	177 177	107.333 103.702	83.485 84.587	79.529 83.030	0.00	0.00		С Н
MOTA	2119	HA	LEU	177	104.805	86.542	80.937	0.00	0.00		H
ATOM	2120		LEU	177	105.054	83.496	81.051	0.00	0.00		H
ATOM	2121		LEU	177	106.224	84.609	81.725	0.00	0.00		H
ATOM	2122	HG	LEU	177	105.517	84.348	78.741	0.00	0.00		H
MOTA		1HD1		177	107.505	85.902	78.353	0.00	0.00		Ĥ
ATOM		2HD1		177	106.167		79.150		0.00		H
ATOM		3HD1		177	107.586	86.228	80.101	0.00	0.00		Н.
ATOM ATOM		1HD2 2HD2		177 177	107.855 108.102	83.463 83.646	78.556 80.307	0.00	0.00		H H
MOTA	2128			177	106.926	82.471	79.685	0.00	0.00		H
ATOM	2129	N	LYS	178	102.583	86.554	79.709	0.00	0.00		N
ATOM	2130	CA	LYS	178	101.463	86.610	78.722	0.00	0.00		С
ATOM	2131	С	LYS	178	101.689	87.771	77.676	0.00	0.00		C
MOTA	2132	0	LYS	178	102.744	88.413	77.632	0.00	0.00		0
MOTA	2133	CB	LYS	178	100.114	86.647	79.527	0.00	0.00		C
ATOM ATOM	2134 2135	CD	LYS LYS	178 178	99.771 98.457	88.005 88.773	80.244 79.928	0.00	0.00		C
MOTA	2136	CE	LYS	178	98.363	90.078	80.774	0.00	0.00		c
MOTA	2137	NZ	LYS	178	97.371	91.082	80.284	0.00	0.00		Ŋ
ATOM	2138	1HZ	LYS	178	96.334	90.864	80.118	1.00	0.00		Н
ATOM	2139	2HZ	LYS	.178 -	- 97:-357	92.061	80.681	1.00	0.00		H
ATOM	2140		LYS	178	97.360	91.463	79.301	1.00	0.00		H
MOTA	2141	H	LYS	178	103.132	87.388	79.934	0.00	0.00		H
ATOM ATOM	2142 2143	HA	LYS LYS	178 178	101.469 100.182	85.678 85.941	78.119 80.379	0.00	0.00 0.00		H H
ATOM	2144		LYS	178	99.318	86.209	78.895	0.00	0.00		H
ATOM	2145		LYS	178	100.614	88.710	80.085	0.00	0.00		н
MOTA	2146		LYS	178	99.828	87.850	81.343	0.00	0.00		H
ATOM	2147		LYS	178	97.563	88.150	80.119	0.00	0.00		H
ATOM	2148		LYS	178	98.407	89.015	78.850	0.00	0.00		H
ATOM	2149			.178	99.353	90.577	80.849	0.00	0.00		H
MOTA MOTA	2150 2151		LYS LEU	178 179	98.140 100.665	89.833 88.092	81.834 76.867	0.00 1.00	0.00		H
ATOM	2151		PEA	179	100.661	89.288	75.979	1.00	0.00 0.00		C.
ATOM	2153		LEU	179	100.758	90.666	76.713	1 00	0.00		ų.
يس∕سُ و	215 (LÈÚ	179	101.659	91.433	76.379	1.00	0.00		e
ATOM	2155	œ	PEN	179	99.451	39.1228	75.007	1.00	0.00		ξ
ATOM	2155.		<u> </u>	175	유출. 25년	99.355		2.60	ϕ , $\phi\phi$		÷
	.137	72.			:: ' '	- 4 - 7 - 7 - 7	- 211	- .	:: :		
.:: 1.1	1127	ΞΞ	-	;							

_

--

						7.1					TT.
T COM	2168 3	HD2 I	BU	179	98.936	89.497	72.259	1.00	0.00		H
MOTA				179	98.605	87.800	71.899	1.00	0.00		H
MOTA	2169 1						77.712	1.00	0.00		N
ATOM	2170		FLY	180	99.916	90.992		1.00	0.00		С
ATOM	2171	CA G	FLY	180	100.099	92.232	78.527				c
ATOM		c c	3LY	180	101.529	92.588	79.036	1.00	0.00		
			PT.X	180	102.069	93.647	78.710	<u>1</u> .00	0.00		0
ATOM					99.039	90.461	77.744	1.00	0.00		H
MOTA			3LY	180				1.00	0.00		H
MOTA.	2175 1	HA (JLY	180	99.812	93.071	77.875				н
ATOM	2176 2	HA (3LY	180	99.394	92.319	79.36 7	1.00	0.00		
			ASN	181	102.174	91.645	79.727	0.00	0.00		N
MOTA				181	103.474	91.871	80.434	0.00	0.00		C
MOTA	2178		ASN			91.922	79.623	0.00	0.00		C
MOTA	2179		ASN	181	104.829			0.00	0.00		0
MOTA	2180	0	ASN	181	105.920	91.917	80.207				C
MOTA	2181	CB 2	ASN	181	103.567	90.754	81.519	0.00	0.00		
	2182	-	ASN	181	102.405	90.641	82.505	0.00	0.00		C
ATOM		OD1		181	101.450	89.904	82.283	0.00	0.00		0
ATOM	2183					91.382		.0.00	0.00		N
ATOM	2184	ND2		181	102.429			0.00	0.00		H
MOTA	2185	H.	asn	181	101.561	90.881	80.025				H
ATOM	2186	HA.	ASN	181	103.420	92.840	80.969	0.00	0.00		
	2187		ASN	181	104.500	90.872	82.106	0.00	0.00		H
ATOM				181	103.685	89.766	81.039	0.00	0.00		H
ATOM			ASN			90.827	84.338	0.00	0.00		H
MOTA	2189	LHD2	ASN	181	102.021			0.00	0.00		H
ATOM	2190	2HD2	asn	181	103.337	91.837	83.699				N
ATOM	2191		LEU	182	104.794	92.001	78.289	0.00	0.00		
ATOM	2192		LEU	182	106.015	92.163	77.449	0.00	0.00		C
				182	105.850	93.462	76.595	0.00	0.00		C
MOTA	2193		LEU			93.643	75.902	0.00	0.00		0
MOTA	2194		LEU	182	104.848			0.00	0.00		C
ATOM	2195	CB	LEU	182	106.188	90.902	76.560				С
MOTA	2196	CG	LEU	182	106.477	89.531	77.242	0.00	0.00		
	2197	CD1		182	106.212	88.418	76.223	0.00	0.00		C
ATOM		CD2		``182	107.914	89.431	77.773	0.00	υ.00		C.
MOTA	2198				103.841	92.184	77.945	0.00	0.00		H
ATOM	2199	H	LEU	182			78.072	0.00	0.00		H
MOTA	2200	HA	PEA	182	106.927	92.272					H
ATOM	2201	1HB	LEU	182	106.998	91.117	75.844	0.00	0.00		
ATOM	2202		LEU	182	105.275	90.809	75.941	0.00	0.00		H
				182	105.775	89.389	78.091	0.00	0.00		H
ATOM	2203	HG	PEA			87.416	76.624	0.00	0.00		н
MOTA	2204			182	106.449			0.00	0.00		H
MOTA	2205	2HD1	LEU	182	105.148	88.392	75.917				H
ATOM	2206	3HD1	LEU	182	. 106.808	88.561	75.304	0.00	0.00		н
ATOM	2207			182	108.125	88.438	78.211	0.00	0.00		
	2208			182	108.666	89.603	76.980	0.00	0.00		H
MOTA					108.102	90.172	78.570	0.00	0.00		H
MOTA	2209			182			76.619	1.00	0.00		N
ATOM	2210	N	PHE	183	106.816	94.384			0.00		C
MOTA	2211	CA	PHE	183	106.566	95.801	76.213				Č
ATOM	2212	C	PHE	183	107.378	96.162	74.934		0.00		
	2213	ō	PHE	183	108.602	96.004	74.910	1.00	0.00		0
MOTA				183	106.879	96.721	77.437	1.00	0.00		C
MOTA	2214	CB	PHE			96.583	78.598		0.00		C
MOTA	2215	CG	PHE	183	105.873						C
MOTA	2216	CD1	PHE	183	104.710	97.353	78.601				C
MOTA	2217	CE1	PHE	183	103.664	97.046	79.467		0.00		ă
	2218	CZ	PHE	183	103.797	96.002	80.375	1.00	0.00		C
ATOM					104.987	95.288	80.441	1.00	0.00		С
ATOM	2219		PHE	183	106.024	95.575			0.00		С
MOTA	2220		PHE	183							H
MOTA	2221	H	$_{ m PHE}$	183	107.542						H
MOTA	2222	HA	PHE	183	105.494						н
ATOM	2223		PHE	183	107.909	96.554	77.805	1.00			
	2224		PHE	183	106.890		77.103	1.00	0.00		H
MOTA					104.614	•			0.00		H
ATOM	2225		PHE	183							H
MOTA	2226	HE1	. PHE	183	102.761			_			H
MOTA	2227	HZ	PHE	183	102.988	95.770					
ATOM	2228		PHE	183	105.094	94.496	81.163	1.00			H
				183	106.917		79.579	1.00	0.00		H
MOTA	2229		PHE		106.730		73.873				N
ATOM	2230		LEU	184							C
ATOM	2231	CA	LEU	184	107.416						C
ATOM	2232	C	LEU	184	108.064						
	2233		LEU	184			73.283				0
ATOM				184	106.409			1.00	0.00		C
ATOM	2234		LEU		106.138						C
ATOM	2235		LEU	184							С
ATOM	2236	CD1	TEA.	184	105.052						C
ATOM	2237	CD2	LEU	184	107.372						
ATOM	2238		LEU	184	105.739	96.918					H
				184	108.217			1.00			H
MOTA	2239	HA	LEU								H
MOTA	2240	1HB	PEA	184	105.456	, ,,,,,,,,					

(

ATO	M 2241 2F	B LEU								
					98.394	70.898	1.00	0.00		H
ATO		ig Leu		105.777	7 95.497	71.059				
ATO	4 2243 2H	D1 LEU	184	104.139						H
ATO										H
ATON		mi ron	•		97.690		1.00	0.00		H
				104.757		68.831	1.00	0.00		H
ATOM				307,705	95.837	69.013				
ATON	1 2247 3H	D2 LEU	184	108.239				•		H
ATON		ווש.ז כת	184					0.00		H
ATOM				107.163		69.011	1.00	0.00		H
			185	109.403	98.774	73.058	1.00	0.00		
ATOM	2250 C	a asn	185	110.706	100.086	73.132				N
ATOM	2251 C	ASN	185	110.040	200.000			0.00		C
ATOM				110.042	100.930	71.806	1.00	0.00		C
			185	109.564	100.485	70.758	1.00	0.00		ō
ATOM		B ASN	185	111.522		73.732				
ATOM	2254 C	G ASN	185	112.608				0.00		C
ATOM						72.837	1.00	0.00		С
		D1 ASN	185	112.593	99.298	71.615	1.00	0.00		0
ATOM		D2 ASN	185	113.632	98.680	73.422	1.00			
ATOM	2257 H	ASN	185	109.889				0.00		Ŋ
ATOM						72.930	1.00	0.00		H
			185	109.576	100.716	73.879	1.00	0.00		H
ATOM			185	111.919	100.816	74.083	1.00	0.00		
MOTA	2260 2HI	3 ASN	185	111.419	99.249					H
ATOM	2261 1HI	32 A CNT	185			74.657	1.00	0.00		H
ATOM				114.326	98.305	72.770	1.00	0.00		Ħ
	2262 2HI		185	113.566	98.525	74.431	1.00	0.00		H
ATOM	2263 N	GLU	186	110.562		71.853				
ATOM	2264 CA	L GLU	186				1.00	0.00		N
ATOM	2265 C			110.544		70.696	1.00	0.00		C
		GLU	186	111.399	102.718	69.427	1.00	0.00		C
ATOM	2266 O	GLU	186	111.099	103.204	68.337	1.00	0.00		
ATOM	2267 CB	GLU	186	110.887	104 E10					0
ATOM	2268 CG		186	100.007	104.310	71.262	1.00	0.00		C
ATOM				109.836	105.203	72.195	1.00	0.00		C
			186	109.642	104.655	73.619	1.00	0.00		Ċ
ATOM		1 GLU	. 186	110.476	103.990	74 228	1.00			
ATOM	2271 OE	2 GLU	186		104.880	74 1220	1,00	0.00		-0
ATOM	2272 H	GLU	186	100.515	104.000		1.00	0.00		·· o
ATOM				110.799	102.491	72.797	1.00	0.00		H
	2273 HA	_	186	109.504	103.157	70.315	1.00	0.00		
MOTA	2274 1HB	GLU	186	111.880						H
ATOM	2275 2HB	GLU	186	111 014	107.301	71.757	1.00	0.00		H
ATOM	2276 1HG			111.034	105.199	70.400	1.00	0.00 -		H
		GLU	186	110.104	106.268	72.311	1.00	0.00		н
ATOM	2277 2HG	GLU	186	108.852		71.690	1.00			
ATOM	2278 N	ASP	187	112.403	101 005			0.00		H
ATOM	2279 CA	ASP			101.825	69.536	1.00	0.00		N
			187	112.999	101.111	68.358	1.00	0.00		C
ATOM	2280 C	ASP	187	112.360	99.707	67.989	1.00	0.00		
ATOM	2281 O	ASP	187	112.928	98.972	67.305				С
ATOM	2282 CB	ASP	187		30.312		1.00	0.00		0
ATOM	_			114.526		68.633	1.00	0.00		C
		ASP	187	115.313]		68.593	1.00	0.00		Ċ
ATOM		. ASP	187	115.655 1	02.860	67.559	1.00			
ATOM	2285 OD2	ASP	187	115.596-1	02.774	57.333		0.00		0
ATOM	2286 H	ASP			.02.1/4	03.635-	1.00	0.00		0.
ATOM			187	112.486 1	.01.438	70.483	1.00	0.00		Н
	2287 HA	ASP	187	112.875 1	.01.719	67.437		0.00		H
ATOM	2288 1HB	ASP	187	114.712 1						
ATOM	2289 2HB	ASP	187					0.00		H
ATOM	2290 N	LEU		114.992 1			1.00	0.00		H
			188	111.182	99.345 (58.536	1.00	0.00		N
MOTA	2291 CA	LEU	188	110.435	98.074 6		_	0.00		
ATOM	2292 C	LEU	188							C
ATOM	2293 O	LEU	188					0.00		C
ATOM					95.685 <i>6</i>	8.210	1.00 (0.00		0
	2294 CB	TEA	188	109.963	97.964 6	6.770	1.00 (0.00		c
ATOM	2295 CG	LEU	188	109.099						
ATOM	2296 CD1	LEU	188					0.00		C
ATOM							1.00 (0.00		C
			188	107.720	99.221 6	6.860	L.00 (00.0		c
ATOM	2298 H	LEU	188	110.807 10	00.045 6			.00		
ATOM	2299 <u>HA</u>	LEU	188							H
BECH	2222 200		T02					.00	1	H
ATOM						6.144	1.00 0	.00	1	H.
			188		97.014 6	6.64D 1		.00		Ĥ
PIOT:	2262 87		188	105.838 20						
:.= :::	TOGO DESER	:::			1.225					
	:		12	· · · · · · · · · · · · · · · · · · ·			:: .	. = =		<u>:</u>
	- :			11.5-5			- :			
· -					-	-				
_										-

						93					
ATOM	2314	CG	GLU	189	114.656	95.681	69.821	1.00	0.00		C
ATOM	2315	CD	GLU	189	114.692	96.837	68.832	1.00	0.00		C
MOTA	2316		GLU	189	115.281	97.892	69.046	1.00	0.00		0
MOTA MOTA	2317 2318	H H	GLU GLU	189 189	113.970 111.640	96.585 97.704	67.707 70.480	1.00	0.00		ä
ATOM	2319	HA	GLU	189	112.131	94.686	70.400	1.00	0.00		H
ATOM	2320		GLU	189	113.790	96.916	71.405	1.00	0.00		Н
ATOM	2321		GLU	189	114.042	95.267	71.843	1.00	0.00		H
ATOM	2322	lhg	GLU	189	115.685	95.563	70.206	1.00	0.00		H
ATOM	2323		GLU	189	114.440	94.731	69.294	1.00	0.00		Н
ATOM	2324	N	VAL	190	111.664	93.866	72.489	1.00	0.00		N
MOTA	2325	CA	VAL	190	111.100	93.293	73.754	1.00	0.00		C
MOTA MOTA	2326 2327	С 0	VAL VAL	190 190	111.790 112.974	93.877 93.637	75.036 75.298	1.00 1.00	0.00		Ö
ATOM	2328	CB	VAL	190	111.177	91.721	73.750	1.00	0.00		c
ATOM	2329		VAL	190	110.578	91.047	75.010	1.00	0.00		c
ATOM	2330	CG2	VAL	190	110.495	91.026	72.548	1.00	0.00	•	C
ATOM	2331	H	VAL	190	112.242	93.298	71.855	1.00	0.00		H
ATOM	2332	HA	VAL	190	110.025	93.542	73.801	1.00	0.00		H
ATOM	2333	HB	VAL	190	112.252	91.463	73.722	1.00	0.00		H H
ATOM ATOM		1HG1 2HG1		190 190	109.496 110.706	91.252 89.949	75.118 74.991	1.00	0.00		H
ATOM		3HG1		190	111.068	91.390	75.941	1.00	0.00		H
ATOM		2HG2		190	110.881	91.382	71.576	1.00	0.00		H
ATOM		3HG2		190	110.658	89.933	72.556	1.00	0.00		H
ATOM	2339	1HG2	VAL	190	109.401	91.178	72.544	1.00	0.00		H
ATOM	2340	N	LYS	191	110.996	94.554	75.872	1.00	0.00		N
ATOM	2341	CA	LYS	191	111.369	94.885	77.269	1.00	0.00		C
MOTA	2342	C	LYS	191	110.423	94.113	78.258	1.00	0.00		0
ATOM ATOM	2343 2344	O CB	LYS	191 191	109.215 111.259	94.364 96.423	78.306 77.448	1.00 1.00	0.00 0.00		c.
ATOM	2345	CG	LYS	191	112.257	97.343	76.706	1.00	0.00		c
ATOM	2346	CD	LYS	191	113.703	97.231	77.229	1.00	0.00		C
ATOM	2347	CE	LYS	191	114.545	98.495	76.998	1.00	0.00		C
ATOM	2348	NZ	LYS	191	115.860	98.307	77.636	1.00	0.00		N
ATOM	2349		LYS	191	116.437	99.148	77.489	1.00	0.00		H
ATOM	2350		LYS	191	115.733	98.151	78.646	1.00	0.00		H H
MOTA MOTA	2351 2352	H H	LYS LYS	191 191	116.331 110.119	97.491 94.893	77.220 75.451	1.00 1.00	0.00		H
ATOM	2353	HA	LYS	191	112.417	94.601	77.489	1.00	0.00		н
ATOM	2354		LYS	191	110.229	96.745	77.190	1.00	0.00		Н
ATOM	2355		LYS	191	111.347	96.649	78.525	1.00	0.00		н
ATOM	2356		LYS	191	112.222	97.146	75.616	1.00	0.00		H
ATOM	2357		LYS	191	111.899	98.383	76.832	1.00	0.00		H
MOTA	2358		LYS	191	113.684	97.025	78.314	1.00	0.00		H
MOTA MOTA	2359 2360		LYS LYS	191 191	114.192 114.675	96.343 98.701	76.780 75.921	1.00	0.00		Н
ATOM	2361		LYS	191	114.048	99.385	77.436	1.00	0.00		H
MOTA	2362	N	ILE	192	110.954	93.189	79.078		0.00	:	N
MOTA	2363	CA	ILE	192	110.156	92.448	80.114	1.00	0.00		С
MOTA	2364	C	ILE	192	109.807	93.417	81.306	1.00	0.00		C
ATOM	2365	0	ILE	192	110.706	93.999	81.924	1.00	0.00		0
ATOM ATOM	2366	CB CC1	ILE ILE	192 192	110.905 111.266	91.140 90.151	80.577 79.424	1.00 1.00	0.00		C
ATOM	2367 2368		ILE	192	110.090	90.351	81.640	1.00	0.00		c
ATOM	2369		ILE	192	112.362	89.124	79.760	1.00	0.00		c
MOTA	2370	H	ILE	192	111.953	92.986	78.923	1.00	0.00	:	H
MOTA	2371	HА	ILE	192	109.209	92.115	79.643	1.00	0.00		H
ATOM	2372	HB	ILE	192	111.853	91.469	81.050	1.00	0.00		H.
ATOM		1HG1		192	110.364	89.623	79.069	1.00	0.00		H H
ATOM ATOM		2HG1 2HG2		192 192	111.620 109.842	90.711 90.969	78.536 82.524	1.00 1.00	0.00 0.00		H
MOTA		3HG2		192	109.133 -		81.241	1.00	0.00	•	
ATOM		1HG2		192	110.648	89.485	82.042	1.00	0.00		H
MOTA	2378	2HD1	ILE	192	113.309	89.619	80.049	1.00	0.00	;	Н
MOTA		3HD1		192	112.073	88.451	80.588	1.00	0.00		H
MOTA		1HD1		192	112.580	88.482	78.887	1.00	0.00		H
ATOM	2381	N	GLY	193	108.501	93.593	81.560	1.00	0.00		C
ATOM ATOM	2382 2383	CA C	GTA GTA	193 193	107.981 106.797	94.465 93.807	82.644 83.394	1.00	0.00		C
ATOM	2384	Ö	GLY	193	106.757	92.963	82.867	1.00	0.00		ŏ
ATOM	2385	H	GLY	193	107.857	92.935	81.093	1.00	0.00		H
MOTA	2386		GLY	193	108.780	94.742	83.361	1.00	0.00		H

17、1十五人の日本の日本日本

MOTA	2387	2HA	GLY	193		107.620	95.417	82.214	1.00	0.00		H
ATOM	2388	N	ASP	194		106.620	94.204	84.651	0.00	0.00		N
ATOM	2389	CA	ASP	194		105.779	93.470	85.637	0.00	0.00		C
MOTA	2390	С	ASP	194		106.338	92.050	86.040	0.00	0.00		C
ATOM	2391	. 0	asp	194		106.262	91.059	85.311	0.00	0.00		ō
MOTA	2392	CB	ASP	194		104.243	93.694	85.490	0.00	0.00		Č
ATOM	2393	CG	ASP	194		103.710	94.969	86.165	0.00	0.00		C
ATOM	2394	ODI	ASP	194		102.591	94.994	86.709	0.00	0.00		ō
ATOM	2395	OD2	ASP	194		104.420	95.994	86.207	0.00	0.00		ō
MOTA	2396		ASP	194		107.243	94.956	84.952	0.00	0.00		н
MOTA	2397	HA	ASP	194		106.000	94.081	86.538	0.00	0.00		H
ATOM	2398	1HB	ASP	194		103.702	92.835	85.929	0.00	0.00		H
ATOM	2399	2HB	ASP	194		103.950	93.706	84.427	0.00	0.00		H
ATOM	2400		PHE	195		106.971	92.028	87.220	0.00	0.00		N
MOTA	2401		PHE	195		107.659	90.844	87.809	0.00	0.00		Ĉ
MOTA	2402		PHE	195		106.955	90.346	89.118	0.00	0.00		c
MOTA	2403	0	PHE	195		107.603	89.677	89.928	0.00	0.00		٥
ATOM	2404	CB	PHE	195		109.123	91.329	88.053	0.00	0.00		c
ATOM	2405	CG	PHE	195		110.056	91.346	86.828	0.00	0.00		c
MOTA	2406		PHE	195		110.856	90.237	86.538	0.00	0.00		
ATOM	2407		PHE	195		111.733	90.267	85.457	0.00			C
ATOM	2408	CZ	PHE	195		111.821	91.406	84.661	0.00	0.00		c
ATOM	2409		PHE	195		111.028	92.514	84.943	0.00	0.00		
ATOM	2410		PHE	195		110.140	92.480			0.00		C
MOTA	2411	н	PHE	195		106.824	92.881	86.015	0.00	0.00		C
MOTA	2412	HA	PHE	195		107.709	89.937	87.779	0.00	0.00		H
ATOM	2413		PHE	195		109.585	90.688	87.162	0.00	0.00		H
ATOM	2414		PHE	195		109.136		88.817	0.00	0.00		H
ATOM	2415		PHE	195		110.792	92.321 89.343	88.548	0.00	0.00		H
ATOM	2416	HEL						87.141	0.00	0.00	 	н
MOTA	2417	HZ	PHE	195	-=	112.500		85.231		0.00		H
ATOM	2418	HE2		195		111.092		83.821	0.00	0.00		H
ATOM	2419	HD2		195		109.522	93.402 93.343	84.334	0.00	0.00		H
ATOM	2420	N	GLY	196				86.222	0.00	0.00		H
ATOM	2421	CA	GLY	196		105.650	90.587	89.364	0.00	0.00		N
MOTA	2422	c	GLY	196		105.014 104.105	90.327	90.689	0.00	0.00		C
MOTA	2423	ō	GLY	196		102.957	89.088	90.820	0.00	0.00		C
ATOM	2424	н	GLY	196		105.226	89.227 91.180	91.239	0.00	0.00		0
ATOM	2425		GLY	196		104.419	91.219	88.638 90.959	0.00	0.00		H
ATOM	2426	2HA	GLY	196		105.762	90.262	91.504	0.00	0.00		H
ATOM	2427	N	LEU	197		104.634	87.889	90.543	0.00	0.00		H
ATOM	2428	CA	LEU	197		104.034			1.00	0.00		N
ATOM	2429	c	LEU	197		105.151	86.603 85.715	91.006	1.00	0.00		C
ATOM	2430		LEU	197		105.867		91.663	1.00	0.00		C
ATOM	2431		L'EA	197-		103.184	86.202 85.943	92.541	1.00	0.00	 	_0
ATOM	2432		LEU	197		101.879	86.642	89.85 <i>6</i> 89.386	1.00	0.00		C
MOTA	2433	CD1		197		101.258	85.871	88.209	1.00	0.00		C
MOTA	2434	CD2		197		100.819			1.00	0.00		C
ATOM	2435		LEU	197		105.635	86.751 87.961	90.496 90.323	1.00	0.00		C
ATOM	2436		LEU	197		103.337	86.799		1.00	0.00		H
ATOM	2437		LEU	197		103.851	85.796	91.855		0.00		H
ATOM			LEU	197		102.903	84.921	88.985 90.170	1.00	0.00		H
ATOM	2439		LEU	197		102.303	87.665	89.038		0.00		H
MOTA	2440			197		101.973	85.727	87.381	1.00	0.00		H
ATOM	2441			197		100.903						H
ATOM	2442			197		100.303	84.864	88.502 87.783	1.00	0.00		H
ATOM	2443			197 197		100.391	86.412		1.00	0.00		H
ATOM	2444			197		100.543	85.768	90.917 91.337	1.00	0.00		H
ATOM	2445			197		99.890	87.379		1.00	0.00		Ħ
FIOM	2445 .	_				105.281	67.224	90 300	1.00	2.55		H
ATOM	3447		LA	758 758			84.400	91.365	0.00	0.00 0.00		12
ATON	2338		7.7.	128		106.009	CZ.495	91.934	0.00	9.00		€
	2443	• .				70E 882	32.7-	13 13	2.00	3.77		0
	2.22	<u> </u>		::		- :		· ·	:	-		
	= :	-				•						
			** -				_					

						93					
ATOM	2460	CB	THR	199	104.846	84.607	96.453	0.00	0.00		C
ATOM	2461	OG1	THR	199	105.108	85.041	97.781	0.00	0.00		0
ATOM	2462	CG2	THR	199	103.621 104.928	83.679 83.743	96.562	0.00	0.00		C
ATOM ATOM	2463 2464	H HA	THR	199 199	104.928	84.891	94.023 95.797	0.00	0.00		н
ATOM	2465	нв	THR	199	104.555	85.498	95.858	0.00	0.00		H
ATOM	2466		THR	199	105.389	84.253	98.258	0.00	0.00		H
ATOM		1HG2	THR	199	103.274	83.329	95.574	0.00	0.00		H
ATOM	2468	2HG2	THR	199	103.828	82.784	97.176	0.00	0.00		H
ATOM	2469	3HG2	THR	199	102.768	84.204	97.033	0.00	0.00		H
ATOM	2470	N	LYS	200	108.191	82.708	96.444	0.00	0.00		И
ATOM	2471	CA	LYS	200	109.045	81.751	97.211	0.00	0.00		C
ATOM ATOM	2472	С 0	LYS	200 200	110.269 110.965	82.493 83.267	97.854 97.191	0.00	0.00		0
ATOM	2473 2474	СВ	LYS	200	109.511	80.590	96.281	0.00	0.00		c
ATOM	2475	CG	LYS	200	108.392	79.733	95.634	0.00	0.00		C
ATOM	2476	CD	LYS	200	108.929	78.488	94.901	0.00	0.00		С
MOTA	2477	CE	LYS	200	107.840	77.788	94.074	0.00	0.00		C
ATOM	2478	NZ	LYS	200	108.399	76.594	93.408	0.00	0.00		N
ATOM	2479		LYS	200	107.662	76.132	92.856	1.00	0.00		H
MOTA	2480		LYS	200	109.168	76.877	92.784	1.00	0.00		H
ATOM ATOM	2481 2482	H	LYS	200 200	108.757 108.518	75.940 83.167	94.118 95.581	1.00	0.00		Н
ATOM	2483	HA	LYS	200	108.457	81.285	98.030	0.00	0.00		H
ATOM	2484		LYS	200	110.160	81.001	95.481	0.00	0.00		H
MOTA	2485		LYS	200	110.174	79.924	96.865	0.00	0.00	•	H
MOTA	2486	1HG	LYS	200	107.653	79.425	96.400	0.00	0.00		H
ATOM	2487		LYS	200	107.826	80.368	94.923	0.00	0.00		H
ATOM	2488		LYS	200	109.766	78.777	94.234	0.00	0.00		H H
MOTA	2489 2490		LYS LYS	200 200	109.366 106.978	77.785 77.501	95.637 94.711	0.00 0.00	0.00		Н
ATOM ATOM	2491		LYS	200	107.440	78.483	93.308	0.00	0.00		н
ATOM	2492	N	VAL	201	110.533	82.262	99.151	0.00	0.00		N
MOTA	2493	CA	VAL	201	111.582	83.002	99.926	0.00	0.00		С
MOTA	2494	C	VAL	201	112.931	82.205	100.056	0.00	0.00		C
MOTA	2495	0	VAL	201	112.932		100.172	0.00	0.00		0
ATOM	2496	CB	VAL		110.952		101.300	0.00	0.00		C
ATOM	2497		VAL	201	110.769		102.349	0.00	0.00		C
ATOM ATOM	2498 2499	H H	VAL VAL	201 201	111.719 109.948	81.547	101.969 99.591	0.00	0.00		н
ATOM	2500	HA	VAL	201	111.822	83.938	99.379	0.00	0.00		H
ATOM	2501	HB	VAL	201	109.942		101.080	0.00	0.00		H
MOTA	2502	1HG1	VAL	201	111.738	81.929	102.713	0.00	0.00		H
MOTA		2HG1		201	110.206		103.235	0.00	0.00		H
MOTA		3HG1		201	110.214		101.938	0.00	0.00		H
ATOM		1HG2		201	112.741		102.280	0.00	0.00		H H
ATOM ATOM		2HG2 3HG2		201 201	111.820 111.200		102.874	0.00	0.00		H
MOTA	2508	N	GLU	202	114.083		100.125	0.00	0.00		N
ATOM	2509	CA	GLU	202	115.425		100.286	0.00	0.00		C
ATOM	2510	C	GLU	202	115.779		101.739	0.00	0.00		С
MOTA	2511	0	GLU	202	116.881		102.253	0.00	0.00	•	0
ATOM	2512	CB	GLU	202	116.504	83.217		0.00	0.00		C
ATOM	2513	CG	GLU	202	116.458 115.676	83.535 84.788	98.184 97.775	0.00	0.00		C
ATOM ATOM	2514 2515	CD	GLU	202 202	114.539	85.053	98.156	0.00	0.00		ō
ATOM	2516		GLU	202	116.386	85.585	96.932	0.00	0.00		0
MOTA	2517	H	GLU	202	114.001	83.871	99.795	0.00	0.00		H
ATOM	2518	HA	GLU	202	115.455	81.342	99.651	0.00	0.00		H
ATOM	251,9		GLU	202	116.534		100.302	0.00	0.00		H
MOTA	2520		GLU	202	117.493	82.758	99.902	0.00	0.00		H
MOTA	2521 2522		GLU	202	117.496	83.646 82.676	97.815 97.616	0.00	0.00		H
ATOM ATOM	2523	N N	GLU TYR	202 ·	116.054 114.863		102.354	0.00	0.00		N
ATOM	2524	CA	TYR	203	115.139		103.556	0.00	0.00		c
MOTA	2525	c	TYR	203	114.495		103.433	0.00	0.00		Č
MOTA	2526	0	TYR	203	115.206	77.708	103.643	0.00	0.00		0
ATOM	2527	CB	TYR	203	114.729		104.875	0.00	0.00		C
ATOM	2528	CG	TYR	203	115.716		105.398	0.00	0.00		C
MOTA	2529		TYR	203	116.989		105.840	0.00	0.00		C
MOTA MOTA	2530 2531	CEL	TYR TYR	203 203	117.875 117.489		106.344	0.00	0.00		C
ATOM ATOM	2532	OH	TYR	203 203	118.352		106.929	0.00	0.00		õ
				-03					-		-

· 有一个的原子为建

						96				
ATOM	2533		TYR	203	116.225		105.991	0.00	0.00	С
MOTA	2534		TYR	203	115.340		105.477	0.00	0.00	C
MOTA	2535	H	TYR	203	113.907		101.972	1.00	0.00	H
ATOM ATOM	2536 2537	HA	TYR TYR	203 203	116.228 113.711		103.608	0.00	0.00	H
ATOM	2538		TYR	203	114.617		104.769	0.00	0.00	H
ATOM	2539		TYR	203	117.300		105.787	0.00	0.00	H
MOTA	2540		TYR	203	118.858		106.672	0.00	0.00	H
MOTA	2541	HH	TYR	203	119.183		107.133	0.00	0.00	H
MOTA	2542	HE2	TYR	203	115.933	85.231	106.059	0.00	0.00	H
MOTA	2543	HD2		203	114.361		105.145	0.00	0.00	H
ATOM	2544	N	ASP	204	113.189		103.110	0.00	0.00	N
MOTA	2545	CA	ASP	204	112.574		102.817	0.00	0.00	C
atom atom	2546 2547	C O	ASP ASP	204 204	111.617 110.886		101.364	0.00	0.00	C
ATOM	2548	CB	ASP	204	111.973		104.114	0.00	0.00	č
ATOM	2549	CG	ASP	204	110.524		104.462	0.00	0.00	č
ATOM	2550		ASP	204	110.164		105.017	0.00	0.00	ō
MOTA	2551	OD2	ASP	204	109.676		104.080	0.00	0.00	0
ATOM	2552	H	ASP	204	112.693	79.423	102.920	0.00	0.00	H
ATOM	2553	HA	ASP	204	113.401		102.528	0.00	0.00	H
ATOM	2554	1HB	ASP	204	112.050		104.043	0.00	0.00	H
ATOM	2555		ASP	204	112.599		104.991	0.00	0.00	H
ATOM ATOM	2556 2557	N CA	GLY	205	111.602		100.783	0.00	0.00	N
ATOM	2558	C	GLY	205 205	110.724 109.511	76.006 75.068	99.584 99.784	0.00	0.00	C
ATOM	2559	ō	GLY	205	109.682		100.024	0.00	0.00	ō
ATOM	2560	H	GLY	205	112.181		101.128	0.00	0.00	H
MOTA	2561	1HA	GLY	205	110.407	76.994	99.196		_0.00	 H-
MOTA	2562	2HA	GLY-	·. 205 · · · -	111.323	75.579	98.760	0.00	0.00	 H
ATOM	2563	N	GLU	206	108.290	75.605	99,660	0.00	0.00	Ñ
ATOM	2564	CA.	GLU	206	107.034	74.858	99.972	0.00	0.00	C
ATOM	2565	C	GLU	206	105.858	75.267	99.020	0.00	0.00	C
ATOM ATOM	2566 2567	O CB	GLU GLU	206 206	105.527 106.695	76.451	98.906 101.487	0.00	0.00	0
ATOM	2568	CG	GLU	206	106.381		101.985	0.00	0.00	c
ATOM	2569	CD	GLU	206	106.297		103.499	0.00	0.00	č
ATOM	2570		GLÜ	206	107.039		104.309	0.00	0.00	0
ATOM	2571	OE2	GLU	206	105.335	77.567	103.853	0.00	0.00	0
MOTA	. 2572	H	GLU	206	108.289	76.621	99.527	0.00	0.00	H
ATOM.	2573	HA	GLU	206	107.213	73.774	99.821	0.00	0.00	H
ATOM	2574		GLU	206	105.848		101.750	0.00	0.00	H
ATOM	2575		GLU	206	107.545		102.075	0.00	0.00	H
ATOM ATOM	2576 25 <i>7</i> 7-		GLU	206 206	107.156 105.439		101.629 101.526	0.00	_ 0.00 <u>-</u> 0.00	 H H
ATOM	2578	N	ARG	207	105.178	74.299	98.371	0.00	0.00	N
ATOM	2579	CA	ARG	207	103.984	74.593	97.511	0.00	0.00	C
ATOM	2580	C	ARG	207	102.644	74.622	98.338	0.00	0.00	C
MOTA	2581	0	ARG	207	101.731	73.817	98.148	0.00	0.00	0
ATOM	2582	CB	ARG	207	103.948	73.615	96.295	0.00	0.00	C
MOTA	2583	CG	ARG	207	105.115	73.695	95.268	0.00	0.00	C
ATOM	2584 2585		ARG	207	106.268	72.718		0.00	0.00	C
ATOM ATOM	2586	ne Cz	ARG ARG	207 207	107.373 103.655	72.962 73.134	94.591 94.889	0.00	0.00	C N
ATOM	2587	MHI		207	109.140	73.144	96.096	0.00	0.00	И
ATOM	2588	NH2		207	109.474	73.306	93.911	0.00	0.00	N
MOTA	2589		ARG	207	107.118	73.002	93.594	1.00	0.00	H
ATOM	2590		ARG	207	105.521	73.344	98.513	0.00	0.00	<u>??</u>
MOTA	2591		ARG	267	104 ብርሳ	75.500	57.633		v. v o	<u>11</u>
ALOM	2593		ARC	307	103.801	73.574	96.640	0.00	0.00	Ħ
aton Atom	2592		ARG	207	103.015	73.828			J.55	
	2554		: 1886 - 77	-4	10: 772	[د ـ . 15.	.4.23T1	9.13 ::		
. 2::				- 				• •		
					• •					

						97					
ATOM	2606	св	LYS	208	102.023	76.067	101.541	0.00	0.00		c
MOTA	2607		LYS	208	101.078	76.180	102.758	0.00			C
MOTA	2608		LYS	208	101.870	76.109	104.081	0.00	0.00		C
MOTA	2609		LYS	208	101.036	76.510	105.304	0.00	0.00		C
ATOM	2610		LYS	208	101.838	76.307	106.527	0.00	0.00		N
ATOM		. 1HZ	LYS	208	101.282	76.576	107.351	1.00	0.00		H
ATOM		2HZ	LYS	208	102.106		106.602		0.00		Ħ
MOTA		3HZ	LYS	208	102.687	76.889	106.482	1.00	0.00		Ħ
MOTA	2614		LYS	208	103.435				0.00		H
ATOM	2615		LYS	208	100.792		100.241		0.00		H
ATOM		1HB	LYS	208	102.739		101.756		0.00		H
MOTA		2HB	LYS	208	102.644		101.497		0.00		H
ATOM		1HG	LYS	208	100.505		102.695		0.00		H
ATOM		2HG	LYS	208	100.318		102.740		0.00		H
ATOM ATOM		1HD 2HD	LYS	208	102.260		104.211		0.00		H
ATOM		1HE	LYS LYS	208	102.765		104.020		0.00		H
ATOM		2HE	LYS	208 208	100.722		105.221		0.00		H
ATOM	2624		LYS	209	100.104 100.659	77.740	105.360		0.00	,	H
ATOM	2625		LYS	209	99.705	78.666	98.691 97.997		0.00		N
ATOM	2626		LYS	209	99.374	78.284	96.498	0.00	0.00		C
ATOM	2627		LYS	209	98.226	78.420	96.065	0.00	0.00		. 0
ATOM	2628		LYS	209	100.265	80.104	98.203	0.00	0.00		· c
ATOM	2629		LYS	209	99.332	81,261	97.765	0.00	0.00		c
ATOM	2630	CD	LYS	209	99.630	81.806	96.350	0.00	0.00		Č
ATOM	2631	CE	LYS	209	98.518	82.713	95.793	0.00	0.00		c
MOTA	2632	NZ	LYS	209	97.422	81.903	95.221	0.00	0.00		N
ATOM	2633	1HZ	LYS	209	96.689	82.527	94.854	1.00	0.00		H
MOTA	2634	2HZ	LYS	209	97.789	81.319	94.457	1.00	0.00		H
MOTA	2635		LYS	209	97.023	81 299	95.954	1.00	0.00		H
ATOM	2636		LYS	209	101.624	77.598	98.384	0.00	0.00	,	H
ATOM	2637		LYS	209	98.723	78.635	98.513	0.00	0.00		H
ATOM	2638		LYS	209	100.457	80.245	99.286	0.00	, 0.00		н
MOTA	2639		LYS	209	101.263	80.211	97.735	0.00	0.00		H
MOTA	2640		LYS	209	98.273	80.948	97.853	0.00	0.00		H
ATOM	2641		LYS	209	99.430	82.095	98.485	0.00	0.00		H
ATOM ATOM	2642 2643		LYS	209	100.572	82.388	96.396	0.00	0.00	•	H
ATOM	2644		LYS LYS	209	99.846	80.986	95.638	0.00	0.00		H
ATOM	2645		LYS	209 209	98.125	83.390	96.578	0.00	0.00		H
ATOM	2646	N	THR	210	98.924 100.341	83.383	95.009	0.00	0.00		H
ATOM	2647	CA	THR	210	100.077	77.767 76.742	95.710	0.00	0.00		N
ATOM	2648	c c	THR	210	99.851	77.267	94.640 93.177	0.00	0.00		C
ATOM	2649	ō	THR	210	100.677	76.956	92.318	0.00	0.00		0
ATOM	2650	СВ	THR	210	99.149	75.559	95.084	0.00	0.00		c
MOTA	2651	OG1		210	99.601	75.041	96.330	0.00	0.00		ő
ATOM	2652	CG2	THR	210	99.114	74.344	94.145	0.00	0.00		č
ATOM	2653	H	THR	210	101.215	77.717	96.237	0.00	0.00		H
ATOM	2654	HA	THR	210	101.060	76.239	94.553	0.00	0.00		H
ATOM	2655	HB	THR	210	98.116	75.943	95.207	0.00	0.00		H
MOTA	2656		THR	210	99.191	74.178	96.440	0.00	0.00		н
ATOM	2657			210	98.450	73.553	94.537	0.00	0.00		H
MOTA	2658			210	98.737	74.606	93.138	0.00	0.00		H
ATOM	2659			210	100.117	73.895	94.010	0.00	0.00		H
ATOM	2660	N	LEU	211	98.760	77.989	92.859	0.00	0.00		N
ATOM	2661	CA	LEU	211	98.390	78.383	91.462	0.00	0.00		С
ATOM ATOM	2662 2663	C O		211	98.152	79.921	91.268	0.00	0.00		С
ATOM	2664	CB	PEA PEA	211	97.299	80.524	91.926	0.00	0.00		0
ATOM	2665	CG	LEU	211 211	97.152 96.653	77.525 77.648	91.055	0.00	0.00		C
ATOM	2666		LEU	211	97.684	77.137	89.589	0.00	0.00		C
ATOM	2667		LEU	211	95.344	76.862	88.570 89.403	0.00	0.00		C C
ATOM	2668	H	LEU	211	98.174	78.215	93.673	1.00	0.00		н
MOTA	2669	HA	LEU	211	99.205	78.082	90.775	0.00	0.00		H
ATOM	2670	lHB	LEU	211	96.317	77.777		0.00	0.00		н
ATOM	2671		LEU	211	97.367	76.457	91.258	0.00	0.00		н
MOTA	2672	HG	LEU	211	96.437	78.714	89.370	0.00	0.00		H
ATOM	2673	1HD1		211	97.305	77.209	87.538	0.00	0.00		н
MOTA	2674			211	98.623	77.717	88.593	0.00	0.00		H
MOTA	2675			211	97.946	76.077	88.745	0.00	0.00		H
MOTA	2676			211	94.944	76.959	88.377	0.00	0.00		Ħ
MOTA	2677			211	95.475	75.781	89.600	0.00	0.00		н
ATOM	2678	3HD2	FEA	211	94.551	77.222	90.084	0.00	0.00		H

The second of th

ATOM	2679	N	CAS	212	98.844	80.530	90.287	0.00	0.00		N
MOTA	2680	CA	CYS	212	98.480	81.859	89.721	0.00	0.00		C
MOTA	2681	C	CYS	212	98.878	82.007	88.209	0.00	0.00		C
ATOM	2682	0	CYS	212	99.672	81.234	87.662	0.00	0.00		0
ATOM	2683	CB	CYS	212	99.121	82.952	90.615	0.00	0,00		С
ATOM	2684	SG	CYS	212	100.943	82.953	90.479	0.00	0.00		S
MOTA	2685	H	CYS	212	99.566	79.952	89.843	0.00	0.00		H
MOTA	2686	HA	CYS	212	97.378	81.976	89.772	0.00	0.00		H
ATOM	2687	1HB	CYS	212	98.834	82.823	91.677	0.00	0.00		H
ATOM	2688	2HB	CYS	212	98.750	83.954	90.330	0.00	0.00		н
MOTA	2689	HG	CYS	212	101.154	81.796	91.094	1.00	0.00		н
MOTA	2690	N	GLY	213	98.337	83.037	87.535	0.00	0.00		N
ATOM	2691	CA	GLY	213	98.800	83.453	86.181	0.00	0.00		c
ATOM	2692	c	GLY	213	97.663	83.738	85.183	0.00	0.00		Č
MOTA	2693	ō	GLY	213	96.866	84.657	85.383	0.00	0.00		ő
MOTA	2694	н	GLY	213	97.707	83.619	88.099	0.00	0.00		H
ATOM	2695		GLY	213	99.534	82.740	85.752	0.00	0.00		H
ATOM	2696		GLY	213	99.374	84.392	86.282	0.00	0.00		H
ATOM	2697	N	THR								
MOTA		CA.		214	97.627	82.972	84.088	0.00	0.00		N
MOTA	2698		THR	214	96.718	83.237	82.933	0.00	0.00		C
	2699	C	THR	214	96.128	81.867	82.441	0.00	0.00		C
MOTA	2700	0	THR	214	96.917	81.060	81.936	0.00	0.00		0
ATOM	2701	CB	THR	214	97.505	83.999	81.819	0.00	0.00		C
ATOM	2702		THR	214	97.923	85.263	82.313	0.00	0.00		0
MOTA	2703	CG2		214	96.715	84.308	80.537	0.00	0.00		C
ATOM	2704	H	THR	214	98.341	82.239	84.062	0.00	0.00		H
ATOM	2705	HA	THR	214	95.895	83.90 <i>9</i>	83.235	0.00	0.00		H
MOTA	2706	HB	THR	214	98.407	83.413	81.557	0.00	0.00		H
MOTA	2707		THR	214	98.390	85.696	81.594	0.00	0.00		H
MOTA		1HG2		214	97.329	84-855	:-79 <i>-</i> -799		0.00		H
ATOM		2HG2	THR	214	96.367	83.38 <i>6</i>	80.03 <i>6</i>	0.00	0.00.	•	- H
ATOM	2710	3HG2	THR	214	95.823	84.928	80.747	0.00	0.00		H
MOTA	2711	n	PRO	215	94.799	81.546	82.525	0.00	0.00		N
MOTA	2712	CA	PRO	215	94.254	80.205	82.148	0.00	0.00		C
ATOM	2713	CD	PRO	215	93.794	82.405	83.185	0.00	0.00		C
ATOM	2714	C	PRO	215	94.668	79.504	80.814	0.00	0.00		C
ATOM	2715	0	PRO	215	94.961	78.311	80.835	0.00	0.00		0
MOTA	2716	CB	PRO	215	92.735	80.418	B2.290	0.00	0.00		C
MOTA	2717	CG	PRO	215	92.599	81.474	83.388	0.00	0.00		C
ATOM	2718	HA	PRO	215	94.580	79.510	82.945	0.00	0.00		H
ATOM	2719	1HD	PRO	215	93.527	83.261	82.535	0.00	0.00		H
ATOM	2720	2HD	PRO	215	94.140	82.814	84.156	0.00	0.00		H
MOTA	2721	1HB	PRO	215	92.203	79.478	82.536	0.00	0.00		H
ATOM	2722	2HB	PRO	215	92.296	80.791	81.344	0.00	0.00		_H.
ATOM	2723		PRO		92.652 -		84.386	0.00	0.00		н
ATOM -	2724		PRO	215	91.637	82.017	83.344	0.00	0.00		H
MOTA	2725	N	ASN	216	94.745	80.230	79.689	1.00	0.00		N
ATOM	2726	CA	ASN	216	95.298	79.690	78.401	1.00	0.00		C
ATOM	2727	C	ASN	216	96.866	79.462	78.324	1.00	0.00		c
ATOM	2728	ō	ASN	216	97.340	78.817	77.387	1.00	0.00		ō
ATOM	2729	СB	ASN	216	94.840	80.631	77.244	1.00	0.00		č
MOTA	2730	CG	ASN	216	93.338	80.908	77.057	1.00	0.00		Ċ
ATOM	2731	OD1		216	92.446	80.174	77.461	1.00	0.00		ō
ATOM	2732	ND2		216	92.998	82.007	76.437	1.00	0.00		N
ATOM	2733		ASN	216	94.425	81.195	79.805	1.00	0.00		н
ATOM	2734		asn	216	94.848	78.695	78.209	1.00	0.00		н
ATOM	2735		asn	216	95.381	81.591	77.334	1.00	0.00		H.
ATOM	2736		asn	216	95.186	80.193	76.288	1.00	0.00		н
ATOM	2737			216		82.076	76.264	1.00	0.00		
ATOM	2737				91.991 93.751	82.52 <u>1</u>					iz ur
			TVD.	216 217			75.978	1.00	0.00		H.
ATON TOO	2739	Ν) .~	TIL	217	97.665	86.01E	70.251 775 205	0.00	6 60		27
ATOM		-		22.7	remij.57			11 60			<u>ن</u>
· T.	1	-		115	-5.12	73.55		: -	:		
	·			117	. <u>.</u>	-					

							99					
	ATOM	2752	HA.	TYR	217	99.528	79.534	78.286	0.00	0.00		H
	MOTA	2753	1HB	TYR	217	100.632	81.524	79.806	0.00	0.00		H
	MOTA	2754	2HB	TYR	217	99.005	82.062	79.960	0.00	0.00		H
	MOTA	2755	HD:	l TYR	217	101.934	82.173	77.953	0.00	0.00		H
	MOTA	2756		l TYR	217	102.158	83.101	75.707	0.00	0.00		н
	MOTA	2757	HH	TYR	217	101.054	83.350	73.772	0.00	0.00		H
	MOTA	2758		2 TYR	217	97.896	83.266	75.315	0.00	0.00		H
	ATOM	2759		2 TYR	217	97.654	82.353	77.596	0.00	0.00		H
	ATOM	2760		ILE	218	99.176	78.544	81.339	1.00	0.00		И
	ATOM	2761		ILE	218	99.789	77.778	82.473	1.00	0.00		C
	ATOM	2762		ILE	218	100.234	76.315		1.00	0.00		C
	ATOM	2763		ILE	218	99.593	75.634		1.00	0.00		, 0
	ATOM	2764		ILE	218	98.852	77.782	83.741	1.00	0.00		C
	ATOM	2765		LILE	218	97.441	77.159		1.00	0.00		С
	MOTA	2766		: ILE	218	98.755	79.177	84.408	1.00	0.00		C
	MOTA	2767		LILE	218	96.717	76.713	84.792	1.00	0.00		, C
	MOTA	2768		ILE	218	98.162	78.681	81.261	1.00	0.00		H
	ATOM	2769		ILE	218	100.713	78.317	82.768	1.00	0.00		H
	MOTA MOTA	2770	HB 1HG1	ILE	218	99.357	77.140	84.489	1.00	0.00		H
	ATOM		2HG1		218	96.797	77.850	82.931	1.00	0.00		H
	MOTA		2HG2		218	97.535	76.264	82.866	1.00	0.00		H
	ATOM		3HG2		218	99.752	79.601	84.631	1.00	0.00		H
	MOTA		1HG2		218 218	98.227 98.211	79.903	83.765	1.00	0.00		H
	ATOM		2HD1		218	97.360	79.141 76.074	85.371	1.00	0.00		H
	ATOM		3HD1		218	96.388	77.571	85.427 85.404	1.00	0.00		H
	ATOM		1HD1		218	95.818	76.116	84.556	1.00	0.00		H H
	ATOM	2779		ALA	219	101.320	75.825	82.731	0.00	0.00		N
	ATOM	2780		ALA	219	101.841	74.455	82.485	0.00	0.00		Č
	ATOM	2781		ALA.		101.206		83.368	0.00	0.00		
•	ATOM	2782		ALA	219	100.817		84.511	0.00	0.00	•	C.O
	ATOM	2783		ALA	219	103.364	74.552	82.711	0.00	0.00		Ċ
	ATOM	2784		ALA	219	101.770	76.471	83.382	0.00	0.00		H
	ATOM	2785	HA	ALA	219	101.687	74.215	81.416	0.00	0.00		H
	ATOM	2786	1HB	ALA	219	103.872	73.623	82.397	0.00	0.00		H
	ATOM	2787	2HB	ALA	219	103.825	75.369	82.126	0.00	0.00		H
	MOTA	2788	3HB	ALA	219	103.616	74.720	83.775	0.00	0.00		H
	MOTA	2789	N	PRO	220	101.158	72.005	82.943	0.00	0.00		N
	MOTA	2790	CA	PRO	220	100.659	70.877	83.791	0.00	0.00		С
	MOTA	2791	CD	PRO	220	101.394	71.597	81.543	0.00	0.00		C
	ATOM	2792	С	PRO	220	101.187	70.651	85.247	0.00	0.00		С
	MOTA	2793	0	PRO	220	100.407	70.199	86.082	0.00	0.00		٥
	MOTA	2794	CB	PRO	220	100.904	69.656	82.883	0.00	0.00		C
	MOTA	2795	CG	PRO	220	100.785	70.200	81.462	0.00	0.00		С
	ATOM	2796	HA	PRO	220	99.562	71.009	83.886	0.00	0.00		H
	ATOM	2797		PRO	220	102.476	71.581	81.306	0.00	0.00		H
	ATOM	2798		PRO	220	100.898	72.264	80.814	0.00	0.00		H
	ATOM	2799		PRO	220	100.186	68.836	83.080	0.00	0.00		H
	ATOM	2800		PRO	220	101.916	69.231	83.038	0.00	0.00		H
	MOTA MOTA	2801		PRO	220	99.721	70.265	81.158	0.00	0.00		H
	ATOM	2802 2803		PRO GLU	220	101.288	69.563	80.711	0.00	0.00		H
	ATOM	2804	CA	GLU	221 221	102.455 102.945	70.966 70.910	85.580 86.995		0.00		И
	MOTA	2805	C	GLU	221	102.260	71.890	88.015	0.00	0.00		C
	ATOM	2806	Ö	GLU	221	101.936	71.471	89.129	0.00	0.00		C
	ATOM	2807	CB	GLU	221	104.487	71.081	87.071	0.00	0.00		0
	ATOM	2808	CG	GLU	221	105.359	69.952	86.464	0.00	0.00		c
	ATOM	2809	CD	Grn	221	106.798	70.025	86.972	0.00	0.00		c
	MOTA	2810		GLU	221	107.633	70.826	86.560	0.00	0.00		ŏ
	ATOM	2811		GLU	221	107.020	69.153	87.992	0.00	0.00		ŏ
	MOTA	2812	н	GLU	221	102.987	71.365	84.803	0.00	0.00		н
	ATOM	2813	HA	GLU	221	102.712	69.898	87.380	0.00	0.00		н
	ATOM	2814	1HB	GLU	221	104.749	71.155	88.147	0.00	0.00		н.
•	ATOM	2815	2HB	GLU	221	104.783	72.059	86.645	0.00	0.00		н
	ATOM	2816		GLU	221	105.363	70.002	85.361	0.00	00.0	•	H
	ATOM	2817	2HG	GLU	221 -	104.941	68.959	86.717	0.00	0.00		H
	ATOM	2818	N	VAL	222	102.046	73.170	87.658	1.00	0.00		N
	ATOM	2819	CA	VAL	222	101.206	74.108	88.480	1.00	0.00		Ċ
	MOTA	2820	C	VAL	222	99.684	73.725	88.570	1.00	0.00		Č
	MOTA	2821	0	VAL	222	99.093	73.815	89.649	1.00	0.00		ō
	MOTA	2822	CB	VAL	222	101.425	75.616	88.090	1.00	0.00		С
	ATOM	2823	CG1		222	102.863	76.109	88.353	1.00	0.00		C
	ATOM	2824	CG2	VAL	222	101.043	76.020	86.649	1.00	0.00		C

明明 これのできるというのはないのと

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2829 2830 2831	CA C C CB CCD CD1 CD2 H HA	VAL VAL VAL VAL VAL	222 222 222 222 222 222 222 222 222 22	102.203 101.561 100.774 103.609 102.997 103.135 100.005 101.111 101.699 99.058 97.660 97.419 96.535 97.223 95.728	73.339 74.024 76.205 75.553 77.182 75.982 75.734 77.114 75.546 73.284 72.767 71.428 71.382 72.719 72.282 73.218	86.661 89.528 88.767 87.759 99.122 89.416 86.400 86.497 85.896 87.463 87.463 87.463 87.463 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		н н н н н н и с с с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2827 2828 2829 2830 2832 2833 2835 2835 2837 2839 2840 2841 2842 2844	HB 1HG1 2HG1 3HG1 2HG2 3HG2 1HG2 CA C C CB CG CD1 CD2 H HA	VAL VAL VAL VAL VAL LEU LEU LEU LEU LEU LEU LEU LEU LEU LE	222 222 222 222 222 222 223 223 223 223	100.774 103.609 102.997 103.135 100.005 101.111 101.699 99.058 97.660 97.419 96.535 97.223 95.765 94.728	76.205 75.553 77.183 75.982 75.734 77.114 75.546 73.284 72.767 71.428 71.382 72.719 72.282	88.767 87.759 98.122 89.416 86.400 86.497 85.896 87.463 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		ннннисоо
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2828 2829 2830 2831 2832 2834 2835 2836 2837 2838 2849 2841 2844 2844	1HG1 2HG1 3HG1 2HG2 3HG2 1HG2 N CA C O CB CG CD1 CD2 H	VAL VAL VAL VAL LEU LEU LEU LEU LEU LEU LEU LEU LEU LE	222 222 222 222 222 223 223 223 223 223	103.609 102.997 103.135 100.005 101.111 101.699 99.058 97.660 97.419 96.535 97.223 95.765 94.728	75.553 77.183 75.982 75.734 77.114 75.546 73.284 72.767 71.428 71.382 72.719 72.282	87.759 98.122 89.416 86.400 86.497 85.896 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		н н н н о о
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2829 2830 2831 2832 2833 2835 2836 2837 2838 2839 2840 2842 2843 2844	2HG1 3HG1 2HG2 3HG2 1HG2 N CA C O CB CG CD1 CD2 H	VAL VAL VAL LEU LEU LEU LEU LEU LEU LEU LEU LEU LE	222 222 222 222 223 223 223 223 223 223	102.997 103.135 100.005 101.111 101.699 99.058 97.660 97.419 96.535 97.223 95.765 94.728	77.183 75.982 75.734 77.114 75.546 73.284 72.767 71.428 71.382 72.719 72.282	99.122 89.416 86.400 86.497 85.896 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		н н н о о
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2830 2831 2832 2833 2835 2836 2837 2838 2839 2841 2841 2843 2844	3HG1 2HG2 3HG2 1HG2 N CA C O CB CG CD1 CD2 H	VAL VAL LEU LEU LEU LEU LEU LEU LEU LEU	222 222 222 223 223 223 223 223 223 223	103.135 100.005 101.111 101.699 99.058 97.660 97.419 96.535 97.223 95.765 94.728	75.982 75.734 77.114 75.546 73.284 72.767 71.428 71.382 72.719 72.282	89.416 86.400 86.497 85.896 87.463 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		н н н с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2831 2832 2833 2834 2835 2836 2837 2838 2849 2841 2844 2843	2HG2 3HG2 1HG2 N CA C O CB CG CD1 CD2 H HA	VAL VAL LEU LEU LEU LEU LEU LEU LEU LEU	222 222 223 223 223 223 223 223 223 223	100.005 101.111 101.699 99.058 97.660 97.419 96.535 97.223 95.765 94.728	75.734 77.114 75.546 73.284 72.767 71.428 71.382 72.719 72.282	86.400 86.497 85.896 87.463 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		H H N C C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2832 2833 2834 2835 2836 2837 2839 2849 2841 2842 2843	3HG2 1HG2 N CA C O CB CG CD1 CD2 H HA	VAL LEU LEU LEU LEU LEU LEU LEU LEU LEU LE	222 223 223 223 223 223 223 223 223 223	101.111 101.699 99.058 97.660 97.419 96.535 97.223 95.765 94.728	77.114 75.546 73.284 72.767 71.428 71.382 72.719 72.282	86.497 85.896 87.463 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00		н и с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2833 2834 2835 2836 2837 2838 2849 2841 2842 2843 2844	N CA C C CB CG CD1 CD2 H HA	VAL LEU LEU LEU LEU LEU LEU LEU LEU LEU LE	222 223 223 223 223 223 223 223 223 223	101.699 99.058 97.660 97.419 96.535 97.223 95.765 94.728	75.546 73.284 72.767 71.428 71.382 72.719 72.282	85.896 87.463 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00		н С С
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2834 2835 2836 2837 2838 2849 2841 2842 2843 2844	CA C C CB CCD CD1 CD2 H HA	ren ren ren ren ren ren	223 223 223 223 223 223 223 223	99.058 97.660 97.419 96.535 97.223 95.765 94.728	73.284 72.767 71.428 71.382 72.719 72.282	87.463 87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00		N C C
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2835 2836 2837 2838 2839 2840 2841 2842 2843	CA C O CB CG CD1 CD2 H HA	ren ren ren ren ren ren	223 223 223 223 223 223 223	97.660 97.419 96.535 97.223 95.765 94.728	72.767 71.428 71.382 72.719 72.282	87.463 88.252 89.110 85.970 85.690	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00		C C
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2836 2837 2838 2839 2840 2841 2842 2843 2844	C O CB CG CD1 CD2 H HA	ren ren ren ren ren ren	223 223 223 223 223 223 223	97.419 96.535 97.223 95.765 94.728	71.428 71.382 72.719 72.282	88.252 89.110 85.970 85.690	1.00 1.00 1.00	0.00 0.00 0.00		С 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2837 2838 2839 2840 2841 2842 2843 2844	O CB CG CD1 CD2 H HA	ren ren ren ren ren	223 223 223 223 223	96.535 97.223 95.765 94.728	71.382 72.719 72.282	89.110 85.970 85.690	1.00 1.00	0.00 0.00		0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2838 2839 2840 2841 2842 2843 2844	CB CG CD1 CD2 H HA	rea rea rea rea	223 223 223 223	97.223 95.765 94.728	72.719 72.282	85.970 85.690	1.00	0.00		
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2839 2840 2841 2842 2843 2844	CG CD1 CD2 H HA	TEA TEA TEA	223 223 223	95.765 94.728	72.282	85.690				С
MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2840 2841 2842 2843 2844	CD1 CD2 H HA	ren ren ren	223 223	94.728			1.00	0.00		
MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2841 2842 2843 2844	CD2 H HA	LEU LEU	223		73.218					C
MOTA MOTA MOTA MOTA MOTA MOTA	2842 2843 2844	H HA	LEU		GE E3V		86.333	1.00	0.00		С
ATOM ATOM ATOM ATOM ATOM	2843 2844	HA		223	JJ. JJU	72.202	84.175	1.00	0.00		C
MOTA MOTA MOTA	2844		T.ETT		99.671	73.215	86.643	1.00	0.00		H
MOTA MOTA MOTA		1HB		223	97.031	73.525	87.968	1.00	0.00		H
ATOM ATOM	2845		LEU	223	97.391	73.708	85.502	1.00	0.00		H
ATOM		2HB	LEU	223	97.903	72.033	85.428	1.00	0.00		н
	2846	HG	LEU	223	95.616	71.263	86.104	1.00	0.00		H
MOTA	2847	2HD1	LEU	223	94.851	73.284	87.429	1.00	0.00		H
	2848	3HD1	LEU	223	94.782	74.249	85.935	1.00	0.00		H
ATOM	2849	1HD1	LEU	223	93.699	72.854	86.179	1.00	0.00		H
ATOM		2HD2		223	95.604	73.188	83.680	1.00	0.00		H
ATOM	2851	3HD2	LEU	223	96.256	71.532	83.677	1.00	0.00		H
ATOM	2852			223	94.532	71.792	83.951	1.00	0.00		H
ATOM	2853	N	SER	224	98.187	70.356	87.989	1.00	0.00		N
ATOM	2854	CA	SER	224			88 -73 6-		-0.00		
-ÀTOM	2855	<u></u>	SER		98.658	68.999	90.199	1.00	0.00	. :	- Q
ATOM	2856	0	SER	224	98.658	67.921	90.799	1.00	0.00		0
ATOM	2857	CB	SER	224	98.741	67.985	87.840	1.00	0.00		С
ATOM	2858	OG	SER	224	98.135	67.870	86.550	1.00	0.00		0
MOTA	2859	H	SER	224	98.879	70.476	87.238	1.00	0.00		H
ATOM	2860	HA	SER	224	97.005	68.795	88.832	1.00	0.00		H
MOTA	2861	1HB	SER	224	99.820	68.204	87.720	1.00	0.00		H
MOTA	2862	2HB	SER	224	98.702	66.998	88.340	1.00	0.00		H
MOTA	2863	HG	SER	224	97.378	67.267	86.625	1.00	0.00		H
MOTA	2864	N	LYS	225	99.135	70.118	90.782	1.00	0.00		N
MOTA	2865	CA	LYS	225	99.694	70.188	92.172	1.00	0.00		C
ATOM	2866	C	LYS	225	101.005	69.347	92.400	1.00	0.00		C
ATOM	2867	0	LYS	225	101.078	68.465	93.259	1.00	0.00		0
MOTA	2868	CB	LYS	225	98.586	69.988	93.255	1.00	0.00		C
MOTA	2869	.CG	ĻYS .	225	_ 97.368	70940	-93.162°	1.00	0.00		C
ATOM	2870	CD	LYS	225	96.400	70.792	94.350	1.00	0.00		C
AIOM	2071	CE	LYS	225	95.179	71.713	94.203	1.00	0.00		C
ATOM	2871	-23	DIO		04 205	71 E20	95.364	1.00	0.00		••
	2872	NZ	LYS	225	94.285	71.539	23.304	1.00			N
ATOM		NZ		225 225	94.285	72.156	95.264	1.00	0.00		H
ATOM ATOM	2872	NZ 1HZ	LYS								
ATOM ATOM ATOM	2872 2873	NZ 1HZ 2HZ	LYS LYS	225	93.467	72.156	95.264	1.00	0.00		H
ATOM ATOM ATOM ATOM	2872 2873 2874	NZ 1HZ 2HZ 3HZ	LYS LYS LYS	225 225	93.467 93.970	72.156 70.559	95.264 95.412	1.00	0.00		H H
ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875	NZ 1HZ 2HZ 3HZ H	ras Pas Pas Pas	225 225 225	93.467 93.970 94.792	72.156 70.559 71.779	95.264 95.412 96.228	1.00 1.00 1.00	0.00 0.00 0.00		H H
ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876	NZ 1HZ 2HZ 3HZ H HA	LYS LYS LYS LYS	225 225 225 225	93.467 93.970 94.792 98.995	72.156 70.559 71.779 70.950	95.264 95.412 96.228 90.199	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00		н н н
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877	NZ 1HZ 2HZ 3HZ H HA	LYS LYS LYS LYS LYS	225 225 225 225 225	93.467 93.970 94.792 98.995 100.027	72.156 70.559 71.779 70.950 71.236	95.264 95.412 96.228 90.199 92.303	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00		н н н
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878	NZ 1HZ 2HZ 3HZ H HA 1HB	ras ras ras ras ras ras	225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236	72.156 70.559 71.779 70.950 71.236 68.938	95.264 95.412 96.228 90.199 92.303 93.219	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00		н н н н н
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878 2879	NZ 1HZ 2HZ 3HZ H HA 2HB	LYS LYS LYS LYS LYS LYS	225 225 225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236 99.054	72.156 70.559 71.779 70.950 71.236 68.938 70.093	95.264 95.412 96.228 90.199 92.303 93.219 94.253	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00		н н н н н
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882	NZ 1HZ 2HZ 3HZ H HA 1HB 2HB 1HG 2HG 1HD	LYS LYS LYS LYS LYS LYS	225 225 225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236 99.054 97.711	72.156 70.559 71.779 70.950 71.236 68.938 70.093 71.987	95.264 95.412 96.228 90.199 92.303 93.219 94.253 93.077	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		H H H H H H H H H H H H H H H
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883	NZ 1HZ 2HZ 3HZ H HA 2HB 1HG 2HG 1HD 2HD	LYS	225 225 225 225 225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236 99.054 97.711 96.821 96.066 96.931	72.156 70.559 71.779 70.950 71.236 68.938 70.093 71.987 70.743 69.738 71.007	95.264 95.412 96.228 90.199 92.303 93.219 94.253 93.077 92.216	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		H H H H H H H H H H H H H H H H H H H
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883	NZ 1HZ 2HZ 3HZ H HA 1HB 2HB 1HG 2HG 1HD	LYS	225 225 225 225 225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236 99.054 97.711 96.821 96.931 95.494	72.156 70.559 71.779 70.950 71.236 68.938 70.093 71.987 70.743 69.738 71.007	95.264 95.412 96.228 90.199 92.303 93.219 94.253 93.077 92.216 94.425 95.295 94.114	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00		H H H H H H H H H H H H H H H H H H H
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2001	NZ 1HZ 2HZ 3HZ H HA 1HB 2HB 1HG 2HG 1HD 2HD	TAS	225 225 225 225 225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236 99.054 97.711 96.821 96.066 96.931 95.494 94.630	72.156 70.559 71.779 70.950 71.236 68.938 70.093 71.987 70.743 69.738 71.007 72.775	95.264 95.412 96.228 90.199 92.303 93.219 94.253 93.077 92.216 94.425 95.295 95.111	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		нинининин
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2001 2885	NZ 1HZ 2HZ 3HZ H HA 1HB 2HB 1HG 2HG 1HD 2HD	LYS	225 225 225 225 225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236 99.054 97.711 96.821 96.066 96.931 95.494 96.630	72.156 70.559 71.779 70.950 71.236 68.938 70.093 71.987 70.743 69.738 71.077 72.777 72.777	95.264 95.412 96.228 90.199 92.303 93.219 94.253 93.077 92.216 94.425 95.295 95.111 95.258	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		нинининания
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2001	NZ 1HZ 2HZ 3HZ H HA 1HB 2HB 1HG 2HG 1HD 2HD	TAS	225 225 225 225 225 225 225 225 225 225	93.467 93.970 94.792 98.995 100.027 98.236 99.054 97.711 96.821 96.066 96.931 95.494 94.630	72.156 70.559 71.779 70.950 71.236 68.938 70.093 71.987 70.743 69.738 71.007 72.775	95.264 95.412 96.228 90.199 92.303 93.219 94.253 93.077 92.216 94.425 95.295 95.111	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		нинининин

••

						101					
ATOM	2898	H	LYS	226	101.835	70.349	90.892	0.00	0.00		H
ATOM	2899	HA	LYS	226	103.295	68.031	92.309	0.00	0.00		H
ATOM	2900	LHB	LYS	226	104.478	67.911	89.973	0.00	0.00		E
ATOM	2901	2HB	LYS	226	103.337	69.102	89.410	0.00	0.00		E
ATOM	2902	1.HG	LYS	226	101.442	67.407	90.074	0.00	0.00		Ē
MOTA	2903	2HG	LYS	226	102.712	66.247	90.442	0.00	0.00		F
MOTA	2904	1HD	LYS	226	103.564	66.527	88.001	0.00	0.00		F
MOTA	2905	2HD	LYS	226	102.191	67.603	87.712	0.00	0.00		F
MOTA	2906	1HE	LYS	226	100.625	65.645	88.456	0.00	0.00		I
MOTA	2907	2HE	LYS	226	102.050	64.607	88.504	0.00	0.00		1
MOTA	2908	N	GLY	227	105.779	69.164	92.013	0.00	0.00		-
ATOM	2909	CA	GLY	227	107.043	69.942	92.196	0.00	0.00		
ATOM	2910	С	GLY	227	107.474	70.781	90.969	0.00	0.00		
ATOM	2911	0	GLY	227	108.252	70.317	90.129	0.00	0.00		1
ATOM	2912	H	GLY	227	105.763	68.170	91.767 92.430	0.00	0.00		1
ATOM	2913		GLY	227 ·	107.867	69.245 70.593	93.090	0.00	0.00		1
ATOM	2914		GLY	227	106.975	72.001	90.862	1.00	0.00		1
ATOM	2915	N	HIS	228	106.938	72.882	89.682	1.00	0.00		
MOTA	2916	CA	HIS	228	107.134 108.488	73.673	89.671	1.00	0.00		
MOTA	2917	C	HIS	228	109.488	73.931	90.713	1.00	0.00		
ATOM	2918	0	HIS	228	105.849	73.745	89.522	1.00	0.00		1
ATOM	2919	CB	HIS	228	105.638	74.923	90.476	1.00	0.00		
MOTA	2920	CG	HIS	228	104.839	74.852	91.605	1.00	0.00		
ATOM	2921		HİS	228	104.822	76.176	91.952	1.00	0.00		
ATOM	2922		HIS	228 228	105.504	77.090	91.195	1.00	0.00		
MOTA	2923		HIS	228	106.028	76.252	90.228	1.00	0.00		
MOTA	2924		HIS HIS	228	106.269	72.229	91.611	1.00	0.00		
MOTA	2925	H HA	HIS	228	107.156	72.227	88.789	1.00	0.00		
MOTA	2926 2927		HIS	228	105.814	74.126	88.490	1.90	0.00	•	
MOTA	2928		HIS	228	104.952	73.095	89.578	1.00	0.00		
ATOM	2929		HIS	228	104.223	76.496	92.796	1.00	0.00		
ATOM	2930		HIS	228	105.433	78.113	91.204	1.00	0.00		•
MOTA MOTA	2931		HIS	228	106.583	76.576	89.357	1.00	0.00		
MOTA	2932	N	SER	229	108.982	74.034	88.477	1.00	0.00		
MOTA	2933	CA	SER	229	110.344	74.627	88.307	1.00	0.00		
ATOM	2934	C	SER	229	110.413	75.767	87.228	1.00	0.00		
MOTA	2935	ō	SER	229	109.414	76.160	86.618	1.00	0.00		
ATOM	2936	CB	SER	229	111.307	73.436	88.019	1.00	0.00		
ATOM	2937	OG	SER	229	111.082	72.858	86.728	1.00	0.00		
ATOM	2938	H	SER	229	108.401	73.777	87.675	1.00	0.00		
ATOM	2939	HA	SER	229	110.667	75.107	89.254	1.00			
ATOM	2940	1HB	SER	229	112.359	73.774	88.078	1.00			
MOTA	2941	2HB	SER	229	111.226	72.659	88.807	1.00	_		
ATOM	2942	HG	SER	229	110.404	72.178	86.829	1.00			
ATOM	2943	N	PHE	230	111.629	76.267		1.00			
MOTA	2944	CA	PHE	230	111.937	77.099		1.00			
ATOM	2945	C	PHE	230	111.471	76.593		1.00			
MOTA	2946	0	PHE	230	111.222	77.406		1.00			
ATOM	2947		PHE	230	113.452	77.459		1.00			
MOTA	2948		PHE	230	114.486	76.333	- · - · -				
MOTA	2949		L PHE	230	114.974	76.051		1.00			
MOTA	2950		PHE	230	115.897	75.025 74.284	•.				
MOTA	2951		PHE	230	116.347 115.881	74.568		1.00			
MOTA	2952		2 PHE	230		75.593					
MOTA	2953		2 PHE	230	114.956 112.386	75.821					
ATOM	2954		PHE	230	111.391						
ATOM	2955		PHE	230 230	113.651						
MOTA		1HB	PHE	230	113.669						
ATOM	2957		PHE	230	114.632				••		
ATOM	2958		1 PHE	230	116.265		_	_			
ATOM	2955		1 PHE	230	117.066						
ATOM	2960		2 PHE	230	116.243						
MOTA	2961		2 PHE	230	114.613				_		
MOTA	2962		GLU	231	111.292						
MOTA	2963			231	110.562						
MOTA	2964 2965	_	GLU	231	109.060				0.00		
MOTA	2966		GTO	231	108.584						
MOTA	2961			231	110.656						
MOTA	2968			231	112.078				0.00		
ATOM	2969			231	112.065						
MOTA	2963		1 GLU	231	112.137						
MOTA	23/	, 05									

1.

102

::--

					300 706	70.451	77.675	0.00	0.00	н
MOTA	3044	HH2		235		70.431 72.617			0.00	н
MOTA	3045		TRP	235		78.574			0.00	N
MOTA	3046	N	SER	236		79.951			0.00	С
MOTA	3047	CA	SER	236 236		80.630	76.859		0.00	С
MOTA	3048	C	SER	236		81.37Ž	76.112	1.00	0.00	Ō
MOTA	3049	0	SER	236		80.831	79.347	1.00	0.00	С
MOTA	3050	CB	SER	236		80.340	80.418	1.00	0.00	0
MOTA	3051	OG	SER	236		78.388	79.317	1.00	0.00	н
ATOM	3052	H	ser ser	236		79.893	77.768	1.00	0.00	Ħ
MOTA	3053	HA	SER	236	105.351	80.918	79.709	1.00	0.00	H
MOTA	3054 3055	2HB	SER	236	103.998	81.867	79.110	1.00	0.00	H
MOTA	3055	HG	SER	236	102.778	79.795	80.055	1.00	0.00	н
MOTA	3057	N	ILE	237	106.309	80.357	76.616	1.00	0.00	И
MOTA MOTA	3058	CA	ILE	237	107.003	80.705	75.321	1.00	0.00	c c
ATOM	3059	C	ILE	237	106.456	79.903	74.072	1.00	0.00	0
ATOM	3060	ō	ILE	237	106.248	80.500	73.014	1.00	0.00	Ċ
ATOM	3061	CB	ILE	237	108.578	80.663	75.438	1.00	0.00	Ċ
ATOM	3062		ILE	237	109.157	81.505	76.618	1.00	0.00	č
ATOM	3063	CG2	ILE	237	109.275	81.142	74.129	1.00	0.00	Č
ATOM	3064	CD1	ILE	237	110.646	81.287	76.949	1.00 1.00	0.00	н
MOTA	3065	H	ILE	237	106.740	79.761	77.333	1.00	0.00	H
MOTA	3066	HA	ILE	237	106.758	81.763	75.117	1.00	0.00	H
ATOM	3067	HB	ILE	237	108.860	79.603	75.604 76.437	1.00	0.00	H
MOTA	3068	1HG1	ILE	237	108.966	82.579	77.540	1.00	0.00	H
MOTA	3069			237	108.591	81.285	73.244	1.00	0.00	H
MOTA	3070	2HG2	ILE	237	108.960	80.560 _. 82.205	73.906	1.00	0.00	н
MOTA	3071	3HG2	ILE	237	109.062 110.374	81.034	74.173	1.00	0.00	H
ATOM	3072	1HG2	ILE	237		80.218	77.100	1.00	0.00	H
ATOM	3073	2HD1	. 11/K	237	110.884 111.312	81.668	76.152	1.00	0.00	H
MOTA	3074	3HD1	. 1115	237 237	110.933	81.818	77.875	1.00	0.00	H
ATOM		1HD1	GLY	238	106.200	78.583	74.167	0.00	0.00	Ŋ
MOTA	3076	N CA	GLY	238	105.387	77.841	73.149	0.00	0.00	c
ATOM	3077	CA	GLY	238	103.976	78.385	72.795	0.00	0.00	C
MOTA	3078		GLY	238	103.633	78.481	71.615	0.00	0.00	0
MOTA	3079 3080		GLY	238	106.452	78.180	75.081	0.00	0.00	н
MOTA	3081		GLY	238	105.261	76.799	73.491	0.00	0.00	н
MOTA MOTA	3082		GLY	238	105.967	77.757	72.212	0.00	0.00	Н
ATOM	3083		CYS	239	103.189	78.784	73.803	1.00	0.00	n C
ATOM	3084		CYS	239	101.955	79.588	73.598	1.00	0.00	c
ATOM	3085		CYS	239	102.130	81.037	73.017	1.00	0.00	ŏ
ATOM	3086		CYS	239	101.320	81.424	72.177	1.00	0.00	č
MOTA	3087	CB	CYS	239	101.175	79.555	74.929	1.00 1.00	0.00	s
ATOM	3088	SG	CYS	239	100.684	77.847	75.353	1.00	0.00	H
ATOM	3089	H	CYS	239	103.559	78.560	74.737 72.854	1.00	0.00	H
MOTA	3090			239	101.333	79.056 79.984		1.00	0.00	H
MOTA		. 1HB		239	101.770	80.168			0.00	H
ATOM		2HB		239	100.257	78.149			0.00	H
MOTA	3093			239	99.879 103.144	81.846			0.00	N
MOTA	3094		ILE	240	103.446				0.00	C
ATOM	3095			240 240	103.857	83.041			0.00	C
MOTA	3096		ILE	240	103.322	83.776		1.00		0
ATOM				240	104.363			1.00		C
MOTA			1 ILE	240	104.030		73.537			C
MOTA MOTA			2 ILE	240	105.884					c c
ATOM			1 ILE	240	102.718					н
ATOM			ILE	240	103.768	81.425				н
MOTA				240	102.475	83.683				H
ATOM				240	104.204					H
ATOM	310	5 1HG	31 ILE	240	104.839					· · H
ATOM	310	6 2HG	31 ILE	240	104.027					H
ATOM	310	7 2HC	32 ILE	240	106.194	82.878				H
ATOM	310	8 3HC	32 ILE	240	106.204					H
ATOM	310	9 1HC	32 ILE	240	106.480					н
ATOM	311	0 2HI	Ol ILE	240	101.825					н
ATOM	311	1 3HI	O1 ILE	240	102.667			_		H
ATOM			O1 ILE		102.619 104.735					N
ATOM			MET	241	104.735		-			C
ATOM					103.699					С
ATOM					103.509					0
MOTA	311	6 0	MET	241	103.303					

大学 一年は一日は日本の

						107					
ATOM	3117		MET	241	106.015	80.527	69.488	1.00	0.00		C
MOTA	3118		MET	241	106.567	80.031		1.00	0.00		C
ATOM	3119		MET	241	107.621	78.555		1.00	0.00	•	s
MOTA	3120		MET	241	108.499	78.673		1.00	0.00		C
ATOM	3121		MET	241	105.091	81.530		1.00	0.00		H
ATOM ATOM	3122		MET	241	105.453	82.535		1.00	0.00		H
MOTA		1HB 2HB	MET	241 241	106.874 105.577	80.850 79.664		1.00	0.00		H
ATOM		1HG	MET	241	105.77	79.564		1.00	0.00		H
MOTA		2HG	MET	241	107.116	80.834		1.00	0.00		H H
ATOM		THE	MET	241	109.111	79.588		1.00	0.00		H
MOTA	3128		MET	241	107.793	78.671		1.00	0.00		H
ATOM	3129		MET	241	109.169	77.807		1.00	0.00		H
MOTA	3130		TYR	242	102.832	80.420		0.00	0.00		N
MOTA	3131	CA	TYR	242	101.524	80.095		0.00	0.00		c
MOTA	3132	C	TYR	242	100.518	81.301		0.00	0.00		C
MOTA	3133	0	TYR	242	100.074	81.616	67.254	0.00	0.00		0
MOTA	3134	CB	TYR	242	100.977	78.843	69.192	0.00	0.00		C
ATOM	3135	CG	TYR	242	99.848	78.067	68.487	0.00	0.00		C
ATOM	3136		TYR	242	98.549	78.587		0.00	0.00		C
MOTA	3137		TYR	242	97.505	77.821		0.00	0.00		C
ATOM	3138	CZ	TYR	242	97.747	76.525		0.00	0.00		C
ATOM ATOM	3139	OH	TYR	242	96.709	75.742		0.00	0.00		0
ATOM	3140 3141		TYR	242 242	99.037	76.005	67.506	0.00	0.00		C
ATOM	3141	H	TYR	242	100.086 103.082	76.773		0.00	0.00		C
ATOM	3143	HA	TYR	242	101.733	79.937 79.791	69.961 67.401	1.00 0.00	0.00	_	H
ATOM	3144		TYR	242	100.640	79.136	70.204	0.00	0.00		H H
MOTA	3145		TYR	242	101.809		69399_				
ATOM		HD1			98,325	79.574			0.00.		- H
ATOM	3147		TYR	242	96.504	78.227	67.911	0.00	0.00		н
MOTA	3148	HH	TYR	242	95.880	76.166	67.285	0.00	0.00		H
ATOM	3149	HE2	TYR	242	99.213	74.992	67.173	0.00	0.00		H
MOTA	3150	HD2	TYR	242	101.076	76.342	68.058	0.00	0.00		H
MOTA	3151	N	THR	243	100.184	81.981	69.478	1.00	0.00		N
ATOM	3152	CA	THR	243	99.285	83.185	69.481	1.00	0.00		С
MOTA	3153	C	THR	243 .	99.713	84.342	68.514	1.00	0.00		C
ATOM ATOM	3154	O	THR	243	98.888	84.807	67.726	1.00	0.00		0
ATOM	3155 3156	CB OG1	THR THR	243	99.090	83.743	70.932	1.00	0.00		C
MOTA	3157	CG2	THR	243 243	98.832 97.910	82.718 84.721	71.884	1.00	0.00		0
ATOM	3158	H	THR	243	100.655	81.660	71.059 70.333	1.00 1.00	0.00 0.00		C H
ATOM	3159	HA	THR	243	98.293	82.839	69.129	1.00	0.00		н
ATOM	3160	HB	THR	243	100.024		_71.236-			S	<mark>н</mark>
ATOM				243	99.139	83.061	72.734	1.00	0.00		н
ATOM	3162	1HG2	THR	243	97.704	85.005	72.105	1.00	0.00		H
ATOM	3163	2HG2	THR	243	98.085	85.655	70.491	1.00	0.00		H
ATOM	3164	3HG2	THR	243	96.979	84.281	70.658	1.00	0.00		н
ATOM	3165	N	LEU	244	100.985	84.781	68.545	1.00	0.00		N
ATOM	3166	CA	LEU	244	101.545	85.737	67.545	1.00	0.00		C
ATOM	3167	C	LEU	244	101.478	85.258	66.049	1.00	0.00		C
ATOM	3168	0	LEU	244	101.053	86.030	65.189	1.00	0.00		0
ATOM ATOM	3169	CB	LEU	244	102.996	86.108	67.971	1.00	0.00		C
ATOM	3170 3171	CD1	LEU	244	103.197	86.828	69.336	1.00	0.00		C
ATOM	3172	CD2		244 244	104.693 102.634	86.857	69.681	1.00	0.00		C
ATOM	3173	H	LEU	244	102.634	88.258 84.257	69.3 <i>6</i> 4 69.185	1.00 1.00	0.00		C H
ATOM	3174		LEU	244	100.944	86.664	67.581	1.00	0.00 0.00		T.
ATOM	3175		LEU	511	100.565	05.47	67.962	1.00	0.00		H
ATOM	3176		PEO	244	103.453	86.722	67.179	1.00	0.00		H
RTOM	3177		LEU	211	102-597	22.247	70.237	1 JUL			
ATTA	1270	TILI		1 1	.00.105	12127	75 - 57		•		
					27 212	• • • • • • •					
					-						

_

		CD 1		245	400 044	00 000	c= 000				~
MOTA	3190		LEU	245	103.344	82.362	61.820	1.00	0.00		C
MOTA	3191	CD2	LEU	245	103.963	80.340	63.152	1.00	0.00		C
MOTA	3192	H	LEU	245	102.133	83.433	66.548	1.00	0.00		H
MOTA	3193	HA	LEU	245	102.271	84.194	63.697	1.00	0.00		H
	3194		LEU	245	103.730	82.513	64.700	1.00	0.00		н
ATOM											
MOTA	3195	2HB	PRA	245	102.371	81.475	65.084	1.00	0.00		H
MOTA	3196	HG	LEU	245	101.953	80.980	62.714	1.00	0.00		H
MOTA	3197	2HD1	LEU	245	102.592	83.146	61.614	1.00	0.00		H
ATOM		3HD1		245	104.301	82.881	62.016	1.00	0.00		H
MOTA		1HD1		245	103.446	81.789	60.880	1.00	0.00		H
ATOM	3200	2HD2	LEU	245	104.967	80.740	63.387	1.00	0.00		H
ATOM	3201	3HD2	LEU	245	103.690	79.650	63.972	1.00	0.00		H
ATOM	3202	1HD2	LEU	245	104.055	79.729	62.234	1.00	0.00		H
ATOM	3203	N	VAL	246			64.412	1.00			N
					99.420	82.532			0.00		
MOTA	3204	CA	VAL	246	98.018	82.373	63.887	1.00	0.00		C
ATOM	3205	С	VAL	246	97.012	83.542	64.197	1.00	0.00		C
ATOM	3206	0	VAL	246	96.113	83.787	63.387	1.00	0.00		0
MOTA	3207	CB	VAL	246	97.466	80.939	64.220	1.00	0.00		С
			VAL						0.00		Č
ATOM	3208			-246	97.060	80.705	65.691	1.00			
MOTA	3209		VAL	246	96.256	80.541	63.340	1.00	0.00		С
MOTA	3210	H	VAL	246	99.698	82.253	65.364	1.00	0.00		H
ATOM	3211	HA	VAL	246	98.082	82.391	62.781	1.00	0.00		H
ATOM	3212	HB	VAL	246	98.274	80.217	63.987	1.00	0.00		Ħ
							66.008				
ATOM		1HG1		246	96.219	81.348		1.00	0.00		H
MOTA		2HG1		246	96.751	79.661	65.873	1.00	0.00		H
ATOM	3215	3HG1	VAL	246	97.889	80.912	66.389	1.00	0.00		H
ATOM	3216	2HG2	VAL	246	96.503	80.566	62.265	1.00	0.00		H
MOTA		3HG2		246	95.894	79.519	63.559	1.00	0.00		H
		1HG2									
ATOM				246	95.393	81.219	63.488	1.00	0.00		H
MOTA	3219	. N .	GLY	247	97.099	84.206	65.360	0.00	0.00		N
ATOM '	3220	· CA	GLY	` 247	96.020	85.100	65.871	0.00	0.00		С
ATOM	3221	C	GLY	247	95.492	84.695	67.263	0.00	0.00		С
ATOM	3222	ō	GLY	247	95.697	85.401	68.254	0.00	0.00		ō
MOTA	3223	H	GLY	247	97.934	83.977	65.917	0.00	0.00		H
ATOM	3224	1HA	GLY	247	95.163	85.180	65.173	0.00	0.00		H
ATOM	3225	2HA	GLY	247	96.403	86.132	65.927	0.00	0.00		H
MOTA	3226	N	LYS	248	94.784	83.561	67.320	1.00	0.00		N
ATOM	3227	CA	LYS	248	94.201	83.016	68.579	1.00	0.00		Ĉ
ATOM	3228	С	LYS	248	95.191	82.099	69.402	1.00	0.00		C
MOTA	3229.	. 0	LYS	248	95.994	81.382	68.791	1.00	0.00		0
MOTA	3230	CB	LYS	248	92.912	82.231	68.204	1.00	0.00		C
ATOM	3231	CG	LYS	248	91.705	83.103	67.777	1.00	0.00		C
		CD	LYS								č
ATOM	3232			248	90.498	82.257	67.331	1.00	0.00		
ATOM	3233	CE	LYS	248	89.278	83.127	66.999	1.00	0.00		C
ATOM	3234	NZ	LYS	248	88.159	82.262	66.577	1.00	0.00		N
MOTA	3235	1HZ	LYS	248	87.339	82.845	66.354	1.00	0.00		H
ATOM	3236	2HZ	LYS	248	88.436	81.725	65.743	1.00	0.00		н
ATOM							67.339				
_	3237	3HZ	LYS	248	87.920	81.612		1.00	0.00		H
ATOM `	3238	H	LYS	248	94.798	83.034	66.443	1.00	0.00		H
ATOM	3239	HA	LYS	248	93.904	83.868	69.219	1.00	0.00	-	H
ATOM	3240	1HB	LYS	248	93.145	81.487	67.415	1.00	0.00		H
ATOM	3241		LYS	248	92.596	81.613	69.067	1.00	0.00		н
MOTA	3242			248	91.419	83.774	68.610	1.00	0.00		н
			LYS								
ATOM	3243		LYS	248	92.002	83.776	66.948	1.00	0.00		H
MOTA	3244	1HD	LYS	248	90.780	81.656	66.443	1.00	0.00		H
MOTA	3245	2HD	LYS	248	90.239	81.516	68.112	1.00	0.00		H
ATOM	3246	1HE	LYS	248	88.979	83.741	67.873	1.00	0.00		H
ATOM	3247		LYS	248	89.524	83.843	66.188	1.00	0.00		н
ATOM	3248	N ·	PRO	249	95.154	82.039	70.771	0.00	0.00		N
MOTA	3249	CA	PRO	249	96.020	81.112	71.555	0.00	0.00		C
ATOM	3250	CD	PRO	249	94.324	82.923	71.609	0.00	0.00		. С
ATOM	3251	С	PRO	249	95.717	79.571	71.421	0.00	0.00		C
ATOM	3252	ō	PRO	249	94.594	79.206	71.051	0.00	0.00	• •	ō
ATOM	3253	CB	PRO	249	95.856	81.670	72.986	0.00	0.00		c
MOTA	3254	CG	PRO	249	94.475	82.324	73.005	0.00	0.00		C
ATOM	3255	HA	PRO	249	97.059	81.260	71.214	0.00	0.00		H
MOTA	3256		PRO ·		93.266	82.947	71.289	0.00	0.00	•	H
ATOM	3257		PRO	249	94.709	83.962	71.575	0.00	0.00		H
						82.431					
MOTA	3258		PRO	249	96.635		73.179	0.00	0.00		H
ATOM	3259		PRO	249	95.969	80.898	73.772	0.00	0.00		H
ATOM	3260	1HG	PRO	249	94.358	83.079	73.801	0.00	0.00		H
MOTA	3261	2HG	PRO	249	93.697	81.554	73.164	0.00	0.00		. H
ATOM	3262	N	PRO	250	96.669	78.630	71.710	0.00	0.00		N
							· · - ·				

•	_	•
7	,,	-
•	١,	13

						100				
MOTA	3263	CA	PRO	250	96.501	77.190	71.345	0.00	0.00	C
MOTA	3264	CD	PRO	250	98.027	78.957	72.199	0.00	0.00	C
MOTA	3265	С	PRO	250	95.405	76.338	72.063	0.00	0.00	C
ATOM	3266	0	PRO	250	94.769	75.510	71.408	0.00	0.00	0
ATOM	3267	CB	PRO	250	97.937	76.661	71.500	0.00	0.00	C
ATOM	3268	CG	PRO	250	98.615	77.582	72.511	0.00	0.00	С
ATOM	3269	HА	PRO	250	96.236	77.132	70.273	0.00	0.00	H
MOTA	3270		PRO	250	98.022	79.609	73.093	0.00	0.00	н .
ATOM	3271	2HD	PRO	250	98.612	79.473	71.412	0.00	0.00	H
ATOM	3272	1HB	PRO	250	98.465	76.713	70.531	0.00	0.00	H
ATOM	3273	2HB	PRO	250	97.983	75.602	71.782	0.00	0.00	H
ATOM	3274	1HG	PRO	250	99.717	77.552	72.427	0.00	0.00	H
MOTA	3275	2HG	PRO	250	98.359	77.276	73.544	0.00	0.00	H
MOTA	3276	N	PHE	251	95.171	76.536	73.369	0.00	0.00	N
ATOM	3277	CA	PHE	251	93.963	75.999	74.056	0.00	0.00	С
ATOM	3278	C	PHE	251	93.134	77.170	74.676	0.00	0.00	С
MOTA	3279	0	PHE	251	93.535	77.784	75.669	0.00	0.00	0
MOTA	3280	CB	PHE	251	94.359	74.924	75.110	0.00	0.00	С
MOTA	3281	CG	PHE	251	94.855	73.539	74.627	0.00	0.00	C
ATOM	3282		PHE	251	94.370	72.914	73.468	0.00	0.00	C
ATOM	3283		PHE	251	94.778	71.624	73.136	0.00	0.00	C
ATOM	3284	CZ	PHE	251	95.658	70.940	73.966	0.00	0.00	C
MOTA	3285		PHE	251	96.139	71.542	75.122	0.00	0.00	C
MOTA	3286		PHE	251	95.739	72.836	75.452	0.00	0.00	C
ATOM	3287	H	PHE	251	95.711	77.322	73.743	0.00	0.00	H
ATOM	3288	HA	PHE	251	93.295	75.495	73.329	0.00	0.00	H
ATOM	3289		PHE	251	93.478	74.727	75.750	0.00	0.00	H
ATOM	3290		PHE	251	95.092	75.375	75.806	0.00	0.00	H
ATOM	3291		PHE	251	93.671	73.410	72.814	0.00	_0.00_	H
MOTA_	3292 _				94.410	71.151		0.00	.0.00	
MOTA	3293		PHE	251	95.972	69.941	73.707	0.00	0.00	H
ATOM	3294		PHE	251	96.825	71.005	75.763	0.00	0.00	H
MOTA	3295			251	96.115	73.283	76.358	0.00	0.00	н
ATOM	3296	N	GLU	252	91.963	77.457	74.083	1.00	0.00	N
MOTA	3297	CA	GLU	252	90.978	78.433	74.629	1.00	0.00	c
ATOM ATOM	3298 3299	С 0	GLU	252 252	89.511	77.887	74.512	1.00	0.00	С 0
ATOM	3300	CB	GLU	252 252	88.77 <u>4</u> 91.191	78.205 79.843	73.573 74.006	1.00	0.00	. c .
ATOM	3300	CG	GTO	252	91.191	79.990	72.457	1.00	0.00	. c .
ATOM	3301	CD	GLU	252	90.880	81.410	71.943	1.00	0.00	c ·
ATOM	. 3303		GLU	252	91.116	82.435	72.575	1.00	0.00	. 0
ATOM	3304		GLU	252	90.369	81.410	70.683	1.00	0.00	ŏ
ATOM	3305	н	GLU	252	91.798	76.958	73.202	1.00	0.00	н
ATOM	3306	АH	GLU	252	91.157	78.567	75.716		. 0000	
ATOM _	. 3307 -		GLU-	. 252		80.523	74.472	1.00	0.00	H
ATOM	3308		GLU	252	92.170	80.226	74.346	1.00	0.00	. н
ATOM	3309		GLU	252	92.052	79,611	71.998	1.00	0.00	H
ATOM	3310		GLU	252	90.319	79.351	72.044	1.00	0.00	H
ATOM	3311	N .	THR	253	89.078	77.064	75.479	1.00	0.00	N
ATOM	3312			253	87.671					
	J J J J J	CA	THR	433	0/.0/1	/0.333	75.551	1.00	0.00	C
MOTA	3313	CA	THR THR	253 253		76.555 77.456	75.551 76.525	1.00	0.00	c c
	3313	С	THR	253	86.821	76.355 77.456 78.092	76.525	1.00	0.00 0.00 0.00	C
ATOM MOTA		c o	THR THR	253 253	86.821 87.348	77.456 78.092	76.525 77.442	1.00 1.00	0.00	С 0
MOTA	3313 3314	C O CB	THR THR THR	253	86.821 87.348 87.705	77.456 78.092 75.025	76.525 77.442 75.879	1.00 1.00 1.00	0.00 0.00 0.00	C
MOTA MOTA	3313 3314 3315	C O CB OG1	THR THR THR THR	253 253 253 253	86.821 87.348 87.705 88.536	77.456 78.092 75.025 74.338	76.525 77.442 75.879 74.942	1.00 1.00 1.00	0.00 0.00 0.00 0.00	с 0 с
ATOM ATOM ATOM	3313 3314 3315 3316	C O CB OG1 CG2	THR THR THR THR	253 253 253 253	86.821 87.348 87.705 88.536 86.347	77.456 78.092 75.025 74.338	76.525 77.442 75.879 74.942 75.773	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00	с о с о
ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318	C O CB OG1 CG2 H	THR THR THR THR THR	253 253 253 253 253	86.821 87.348 87.705 89.536 86.347 89.751	77.456 78.092 75.025 74.338 74.314	76.525 77.442 75.879 74.942 75.773 76.233	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00	с о с о с
MOTA MOTA MOTA MOTA	3313 3314 3315 3316 3317 3318	C O CB OG1 CG2 H HA	THR THR THR THR THR THR	253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883	76.525 77.442 75.879 74.942 75.773 76.233 74.548	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	с с с т
MOTA MOTA MOTA MOTA MOTA	3313 3314 3315 3316 3317 3318 3319	C O CB OG1 CG2 H HA HB	THR THR THR THR THR THR THR THR	253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	С О С О Н Н
MOTA MOTA MOTA MOTA MOTA MOTA	3313 3314 3315 3316 3317 3318 3319 3320	C O CB OG1 CG2 H HA HB	THR THR THR THR THR THR THR THR THR	253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	С О С Н Н Н
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318 3319 3320 3321	C O CB OG1 CG2 H HA HB EC1	THR THR THR THR THR THR THR THR THR THR	253 253 253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122 88.565 86.243 82.601	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883 72.225 73.225	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277 76.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	и о с н н с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318 3319 3320 3321 3433 5323	C CB OG1 CG2 H HA HB HC1 1162	THE	253 253 253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122 88.565 86.243 82.601	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883 72.225 73.225	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277 76.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и и и с с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318 3319 3320 3321 3433 3533 3533	C O CB OG1 CG2 H HA HB HC1 1HG2 CGC	THE	253 253 253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122 88.566 86.242 03.601	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883 72.225 73.225	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277 76.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и и и с с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318 3319 3320 3321 3433 5323	C CB OG1 CG2 H HA HB HC1 1162	THR	253 253 253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122 88.565 86.243 82.601	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883 73.200	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277 76.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и и и с с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318 3319 3320 3321 3433 3533 3533	C O CB OG1 CG2 H HA HB HC1 1HG2 CGC	THE	253 253 253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122 88.566 86.242 03.601	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883 72.225 73.225	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277 76.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и и и с с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318 3319 3320 3321 3233 3203 3203 3203	C O CB OG1 CG2 H HA HB HC1 1HG2 CGC	THR	253 253 253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122 88.565 86.242 03.601	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883 72.225 73.225	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277 76.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и и и с с с
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3313 3314 3315 3316 3317 3318 3319 3320 3321 3433 5533 5533	C O CB OG1 CG2 H HA HB HC1 1HG2 CGC	THR	253 253 253 253 253 253 253 253 253 253	86.821 87.348 87.705 88.536 86.347 89.751 87.207 88.122 88.565 86.242 03.601	77.456 78.092 75.025 74.338 74.314 76.885 76.633 74.883	76.525 77.442 75.879 74.942 75.773 76.233 74.548 76.897 75.277 76.002	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	и и и с с с

						107					
ATOM	3336	N	CYS	255	85.100	78.129	79.298	1.00	0.00		N
ATOM	3337	CA	CYS	255	85.274	78.483	80.735	1.00	0.00		C
ATOM	3338	С	CYS	255	86.653	77.980	81.291	1.00	0.00		C
MOTA	3339	0	CYS	255	87.287	77.081	80.727	1.00	0.00	-	0
MOTA	3340	CB	CYS	255	84.059	77.949	81.532	1.00 1.00	0.00		s
ATOM		. SG	CYS	255	83.991	76.125	81.530 78.829	1.00	0.00		н
ATOM	3342	H	CYS	255	85.801 85.285	77.541 79.588	80.834	1.00	0.00		H
MOTA	3343	HA	CYS CYS	255 255 ·	84.098	78.298	82.579	1.00	0.00		Ħ
MOTA MOTA	3344 3345		CYS	255	83.111	78.350	81.122	1.00	0.00		H
ATOM	3345	HG	CYS	255	83.576	75.982	80.275	1.00	0.00		H
ATOM	3347		LEU	256	87.110	78.539	82.429	1.00	0.00		N
ATOM	3348	CA	LEU	256	88.437	78.204	83.043	1.00	0.00		C
ATOM	3349	С	LEU	256	88.717	76.678	83.289	1.00	0.00		C
ATOM	3350	0	LEU	256	89.732	,76.166	82.819	1.00	0.00		0 C
ATOM	3351	CB	LEU	256	88.641	79.036	84.347	1.00	0.00		c
MOTA	3352	CG	LEU	256	88.951	80.551	84.214	1.00 1.00	0.00 0.00		Ċ
MOTA	3353		LEU	256	87.723	81.413	83.867 85.533	1.00	0.00		Ċ
MOTA	3354		LEU	256 256	89.546 86.525	81.077 79.294	82.798	1.00	0.00		H
MOTA	3355 3356	H HA	TEA TEA	256	89.222	78.522	82.328	1.00	0.00		H
ATOM ATOM	3357		LEU	256	87.794	78.878	85.043	1.00	0.00		H
MOTA	3358		LEU	256	89.502	78.580	84.880	1.00	0.00		H
ATOM	3359	HG	LEU	256	89.710	80.687	83.419	1.00	0.00		H
MOTA	3360			256	87.335	81.198	82.857	1.00	0.00		H
ATOM	3361			256	86.893	81.266	84.584	1.00	0.00		H
ATOM	3362			256	87.965	82.492	83.872	1.00	0.00		H
ATOM	3363			256	88.839	80.978	86.380	1.00	0.00		H H
MOTA	3364			256	90.465	80.530	85.818	1.00	0.00		Ħ.
MOTA	3365			256	89.825	82.144	85.467	1.00 [.] 1.00	0.00 00.0	•	N
MOTA	3366	N .	LYS	257	87.800	75.951	83.953 84.089	1.00	0.00		c
MOTA	3367	CA	LYS	257 257	87.873 87.861	74.462 73.614	82.764	1.00	0.00		Č
MOTA	3368	C C	Lys Lys	257 257	88.490	72.555	82.727	1.00	0.00		0
MOTA MOTA	3369 3370	CB	LYS	257	86.754	74.003	85.066	1.00	0.00		C
ATOM		CG	LYS	257	86.922	74.460	86.537	1.00	0.00		С
ATOM	3372	CD	LYS	257	85.765	73.981	87.434	1.00	0.00		С
ATOM	3373	CE		257	85.926	74.466	88.881	1.00	0.00		C
ATOM	3374	NZ	LYS	257	84.781	73.996	89.685	1.00	0.00		N
ATOM	3375	1HZ	LYS	257	84.887	74.321	90.657	1.00	0.00		H
MOTA	3376		LYS	257	83.906	74.372	89.292	1.00	0.00		H
ATOM	3377		LYS	257	84.749	72.967	89.670	1.00	0.00		H
MOTA	3378	H	LYS	257	86.991	76.492 74.217	84.272 84.568	1.00 1.00	0.00		H
ATOM	3379	HA	LYS	257	88.840 85.766	74.319	84.678	1.00	0.00	•	H
ATOM	3380 3381		LYS LYS	257 257	86.711	72.897	85.064	1.00	0.00		H
ATOM ATOM	3382		LYS	257	87.885	74.087	86.937	1.00	0.00		H
ATOM	3383		LYS	257	86.992	75.564	86.588	1.00	0.00		H
ATOM	3384		LYS	257	84.800	74.343	87.025	1.00	0.00		H
ATOM	3385	2HD	LYS	257	85.706	72.875	87.407	1.00	0.00		H
ATOM	3386	1HE	LYS	257	86.877	74.097	89.316	1.00	0.00		H H
ATOM	3387		LYS	257	85.978	75.573	88.918	1.00	0.00		N
MOTA	3388		GLU	258	87.189	74.064	81.686 80.332	1.00	0.00		Č
ATOM			GLU	258	87.332	73.448 73.711	79.619	1.00	0.00		č
ATOM	3390		GLU	258	88.705 89.293	72.754	79.114	1.00	0.00		Ō
MOTA	3391 3392		GLU	258 258	86.118	73.847	79.451	1.00	0.00		C
MOTA MOTA			GLU	258	84.750	73.213	79.823	1.00	0.00		С
ATOM	3394		GLU	258	84.645	71.709	79.571	1.00	0.00		С
ATOM	3395		L GLU	258	84.362	71.217	78.485	1.00	0.00		0
ATOM			GLU	258	84.899	70.977	80.687	1.00	0.00		0
ATOM	3397	H	GLU	258	86.861	75.028	81.801	1.00	0.00		H
MOTA	3398		GLU	258	87.289	72.346	80.451	1.00	0.00		H
MOTA	3399	1HB	GLU	258	86.027		79.425	1.00	0.00		H H
MOTA		2HB	GLU	258	86.339	73.566	78.406	1.00	0.00		H
ATOM		1HG	GLU	258	84.495	73.423	80.877 79.230	1.00 1.00	0.00		H
ATOM		2HG	GLU	258	83.951	73.695 74.941	79.230	1.00	0.00		N
MOTA			THR	259	89.256 90.700	75.186	79.255	1.00	0.00		C
MOTA			THR THR	259 259	91.743	74.348	80.089		0.00		Ċ
mota mota			THR	259 259	92.662	73.765		1.00	0.00		0
ATOM			THR	259	90.988	76.720			0.00		C
ATOM			1 THR	259	90.192	77.414	78.352	1.00	0.00		0
			,								

, '

The state of the state of the state of

MOTA	3409	CG2	THR	259	92.425	77.133	78.955	1.00	0.00		С	
MOTA	3410	H	THR	259	88.665	75.681	80.011	1.00	0.00		H	
ATOM	3411	AH .	THR	259	90.841	74.870	78.203	1.00	0.00		H	
MOTA	3412	HB	THR	259	90.750	77.097	80.320	1.00	0.00		ä	
ATOM	3413	HG1	THR	259	90.577	78.292	78.280	1.00	0.00		H	
MOTA	3414	1HG2	THR	259	92.562	78.226	79.020	1.00	0.00		н	
ATOM		2HG2		259	93.166	76.690	79.646	1.00	0.00		H	
ATOM		3HG2		259	92.711	76.823	77.933	1.00	0.00		H	
ATOM	3417		TYR	260	91.586	74.262	81.423	0.00	0.00			
ATOM	3418		TYR	260	92.363	73.330	82.294	0.00	0.00		N	
MOTA	3419		TYR	260	92.279	71.804	81.919				C	
ATOM	3420		TYR	260	93.315	71.004		0.00	0.00		C	
ATOM	3421		TYR	260	91.924	73.570	81.844 83.770	0.00	0.00		0	
MOTA	3422		TYR	260	92.128	74.943		0.00	0.00		C	
ATOM	3423			260	92.126	75.934	84.457	0.00	0.00		c	
ATOM	3424					-	83.963	0.00	0.00		C	
ATOM	3425		TYR	260	93.105	77.157	84.618	0.00	0.00		C	
ATOM	3425		TYR	260	92.370	77.402	85.772	0.00	0.00		C	
ATOM				260	92.494	78.601	86.417	0.00	0.00		0	
	3427		TYR	260	91.523	76.424	86.280	0.00	0.00		C	
ATOM	3428		TYR	260	91.408	75.196	85.631	0.00	0.00		C	
MOTA	3429		TYR	260	90.890	74.876	81.869	1.00	0.00		H	
ATOM	3430		TYR	260	93.435	73.594	82.207	0.00	0.00		H	
MOTA	3431		TYR	260	92.431	72.818	84.399	0.00	0.00		H	
ATOM	3432		TYR	260	90.856	73.289	83.848	0.00	0.00		H	
ATOM	3433		TYR	260	93.564	75.768	83,063	0.00	0.00		H	
MOTA	3434	HE1		260	93.777	77.903	84.231	0.00	0.00		H	
ATOM	3435	HH	TYR	260	93.285	79.038	86.094	0.00	0.00		H	
MOTA	3436		TYR	260	90.964	76.616	87.184	0.00	0.00		H	
ATOM	3437		TYR	260	90.752	74.444	86.046	0.00	_0.0.0_		H	•
ATOM	3438		LEU	261	- 91:-0,75-	71.265	81.640	1.00	0.00	· ·	N	
MOTA		`CA	LEU	261	90.897	69.932	80.984	1.00	0.00		C.	
ATOM	3440	C	PEA	261	91.694	69.702	79.646	1.00	0.00		C	
MOTA	3441	0	LEU	261	92.322	68.652	79.497	1.00	.0.00		0	
ATOM	3442	CB	LEU	261	89.358	69.723	80.849	1.00	0.00		C	
ATOM	3443	CG	LEU	261	88.856	68.354	80.325	1.00	0.00		C	
MOTA	3444		LEU	261	89.165	67.203	81.298	1.00	0.00		С	
ATOM	3445		PEA	261	87.340	68.412	80.075	1.00	0.00		C	
MOTA	3446	H	LEU	261	90.292	71.922	81.746	1.00	0.00		H	
ATOM	3447	HA	LEU	<u>2</u> 61	91.277	69.171	81.692	1.00	0.00		H	
ATOM	3448	1HB	LEU	261	88.869	69.924	81.824	1.00	0.00		H	
MOTA	3449	2HB	LEU	261	88.967	70.510	80.178	1.00	0.00		H	
ATOM	3450	HG	Leu	261	89.350	68.138	79.355	1.00	0.00		H	
MOTA	3451	2HD1	LEU	261	90.254	67.069	81.437	1.00	0.00		H	
ATOM	3452	3HD1	LEU	261	88.721	67.367	82.298	1.00.	0.00-		H	
ATOM	3453	·1HD1	Leu-	261	88.781	66.236	80.922	1.00	0.00		H	
MOTA	3454	2HD2	LEU	261	86.774	68.623	81.001	1.00	0.00		Ħ	
ATOM	3455	3HD2	LEU	261	87.082	69.198	79.340	1.00	0.00		H	
MOTA	3456	1HD2	LEU	261	86.959	67.459	79.664	1.00	0.00		H	
MOTA	3457	N	ARG	262	91.731	70.679	78.720	1.00	0.00		N	
ATOM	3458	CA	ARG	262	92.648	70.647	77.542	1.00	0.00		С	
MOTA	3459	C	ARG	262	94.188	70.612	77.880	1.00	0.00		Ċ	
ATOM	3460	0	ARG	262	94.905	69.763	77.348	1.00	0.00		ō	
ATOM	3461	CB	ARG	262	92.340	71.831	76.577	1.00	0.00		Ċ	
ATOM	3462	CG	ARG	263	90.899	72.128	76.094	1.00	0.00		č	
ATOM	3463		ARG	262	90.194	70.966	75.385	1.00	0.00		č	
ATOM	3464		ARG	262	88.899	71.458	74.845	1.00	0.00		N	
ATOM	3465		ARG	262	88.061	70.748	74.099	1.00	0.00		Ĉ	
ATOM	3466	NHL		262	88.245	69.501	73.778	1.00	0.00		N	
ATOM	3467	WH2		262	87.005	71 327	70.552	7.00	0.00		N	
1227	3408		ARG	262	88.631	72.428	75 067	1.00	0.00		ä	
ATOM	3469		NF.G	262	91.153	73.197	70 057		6.66		Ę	
STITE	5.75		AF.62		77.344	19.711	78 8-	15			-	
ATTT.	77				1 1						•	
		===		-								
			-									

ATOM 3483 C ILE 263 96.852 70.322 79.595 0.00 0.00 ATOM 3484 O ILE 263 97.919 69.961 79.089 0.00 0.00 ATOM 3485 CB ILE 263 96.358 72.915 79.998 0.00 0.00 ATOM 3486 CG2 ILE 263 96.180 74.229 79.176 0.00 0.00 ATOM 3487 CG1 ILE 263 96.180 74.229 79.176 0.00 0.00 ATOM 3488 CD1 ILE 263 96.033 75.524 79.988 0.00 0.00 ATOM 3489 H ILE 263 93.987 72.147 79.138 0.00 0.00 ATOM 3490 HA ILE 263 93.987 72.147 79.138 0.00 0.00 ATOM 3491 HB ILE 263 95.570 72.886 80.779 0.00 0.00 ATOM 3492 1HG2 ILE 263 97.758 73.841 81.453 0.00 0.00 ATOM 3493 2HG2 ILE 263 97.888 72.090 81.391 0.00 0.00 ATOM 3494 3HG2 ILE 263 97.888 72.090 81.391 0.00 0.00 ATOM 3495 1HG1 ILE 263 95.276 74.150 78.541 0.00 0.00 ATOM 3495 1HG1 ILE 263 95.825 76.385 79.327 0.00 0.00 ATOM 3498 2HD1 ILE 263 95.825 76.385 79.327 0.00 0.00 ATOM 3499 3HD1 ILE 263 95.825 76.385 79.327 0.00 0.00 ATOM 3499 3HD1 ILE 263 95.825 76.385 79.327 0.00 0.00 ATOM 3499 3HD1 ILE 263 95.825 76.385 79.327 0.00 0.00 ATOM 3490 3HD1 ILE 263 95.825 76.385 79.327 0.00 0.00 ATOM 3500 N LYS 264 96.248 69.602 80.554 1.00 0.00 ATOM 3500 C LYS 264 96.726 68.247 80.970 1.00 0.00 ATOM 3500 C LYS 264 96.726 68.247 80.970 1.00 0.00 ATOM 3503 O LYS 264 95.936 67.915 82.266 1.00 0.00 ATOM 3500 C LYS 264 96.507 66.746 83.102 1.00 0.00 ATOM 3500 N LYS 264 96.507 66.746 83.102 1.00 0.00 ATOM 3500 N LYS 264 96.507 66.746 83.102 1.00 0.00 ATOM 3500 C LYS 264 96.555 65.540 85.352 1.00 0.00 ATOM 3500 N LYS 264 96.507 66.746 83.102 1.00 0.00 ATOM 3500 N LYS 264 96.507 66.746 83.102 1.00 0.00 ATOM 3500 N LYS 264 96.555 65.540 85.352 1.00 0.00 ATOM 3500 N LYS 264 96.555 65.540 85.352 1.00 0.00 ATOM 3500 N LYS 264 96.507 66.746 83.102 1.00 0.00 ATOM 3500 N LYS 264 96.507 66.746 83.102 1.00 0.00 ATOM 3500 HZ LYS 264 96.555 65.540 85.352 1.00 0.00 ATOM 3500 HZ LYS 264 96.507 86.665 86.747 1.00 0.00 ATOM 3500 HZ LYS 264 96.507 86.565 86.747 1.00 0.00 ATOM 3500 HZ LYS 264 96.507 86.565 86.7575 1.00 0.00											
NETON 3483 C ILE 263 96.852 70.322 79.595 0.00 0.00 0.00 NETON 3485 CB ILE 263 97.919 69.919 79.089 0.00 0.00 0.00 NETON 3485 CB ILE 263 97.713 72.915 79.998 0.00 0.00 0.00 NETON 3487 CB ILE 263 96.358 72.915 79.998 0.00 0.00 0.00 NETON 3487 CB ILE 263 96.180 74.229 79.176 0.00 0.00 0.00 NETON 3487 CB ILE 263 96.180 74.229 79.176 0.00 0.00 0.00 NETON 3487 MB ILE 263 95.03 75.264 79.988 0.00 0.00 0.00 NETON 3489 H ILE 263 95.00 72.147 79.137 0.00 0.00 0.00 NETON 3491 HB ILE 263 95.70 72.147 79.133 0.00 0.00 0.00 NETON 3491 HB ILE 263 95.70 72.867 72.147 79.133 0.00 0.00 0.00 NETON 3491 HB ILE 263 95.70 72.867 72.147 79.133 0.00 0.00 0.00 NETON 3491 HB ILE 263 95.70 72.867 72.147 79.133 0.00 0.00 0.00 NETON 3491 HB ILE 263 95.77 78 73.841 81.453 0.00 0.00 0.00 NETON 3491 HB ILE 263 95.276 74.150 78.541 0.00 0.00 0.00 NETON 3491 HB ILE 263 95.276 74.150 78.541 0.00 0.00 0.00 NETON 3497 HB ILE 263 95.276 74.150 78.541 0.00 0.00 0.00 NETON 3497 HB ILE 263 95.276 74.150 78.541 0.00 0.00 0.00 NETON 3498 2HB ILE 263 95.261 75.466 80.716 0.00 0.00 0.00 NETON 3498 2HB ILE 263 95.201 75.466 80.716 0.00 0.00 0.00 NETON 3498 2HB ILE 263 95.201 75.466 80.716 0.00 0.00 0.00 NETON 3498 2HB ILE 263 95.201 75.466 80.716 0.00 0.00 0.00 NETON 3498 2HB ILE 263 95.201 75.466 80.000 0.00 0.00 NETON 3498 2HB ILE 263 95.201 75.466 80.000 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.970 1.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 1.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 1.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 1.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 0.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 0.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 0.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 0.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 0.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.247 80.950 0.00 0.00 0.00 NETON 3500 N LVS 264 96.726 86.529 N NETON 3500 N LVS 264 96.726 86.529 N NETON 3500 N LVS 264 96.726 86.529 N NETON 3500 N LVS 264	MOTA	3482	CA	ILE	263	96.162	71.638	79.087	0.00	0.00	С
NITON 1485 C ILLE 263 97.919 69.961 79.089 0.00 0.00 100 100 100 100 100				ILE	263	96.852	70.322	79.595	0.00	0.00	C
NEON 1485 CB ILE 263 96.358 72.915 79.998 0.00 0.00 0.00 NITON 3487 CG1 LIE 263 97.713 72.91 97.998 0.00 0.00 0.00 NITON 3487 CG1 LIE 263 96.180 74.229 79.176 0.00 0.00 NITON 3488 CB ILE 263 96.033 75.234 79.988 0.00 0.00 NITON 3489 H ILE 263 93.987 72.147 79.138 0.00 0.00 NITON 3489 H ILE 263 95.570 72.886 0.079 0.00 0.00 NITON 3491 HB ILE 263 97.788 73.841 87.143 0.00 0.00 NITON 3492 HG2 LIE 263 97.788 73.841 81.453 0.00 0.00 NITON 3493 HG2 LIE 263 97.888 72.090 81.391 0.00 0.00 NITON 3493 HG2 LIE 263 97.888 72.090 81.391 0.00 0.00 NITON 3492 HG2 LIE 263 97.888 72.090 81.091 0.00 0.00 NITON 3493 HG2 LIE 263 95.276 74.150 78.300 0.00 0.00 NITON 3493 HG2 LIE 263 95.276 74.150 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.276 74.150 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3495 HG1 LIE 263 95.825 76.385 78.300 0.00 0.00 NITON 3500 CA LIVS 264 96.756 67.106 79.876 1.00 0.00 NITON 3500 CA LIVS 264 96.756 67.106 79.876 1.00 0.00 NITON 3500 CA LIVS 264 96.756 67.106 79.876 1.00 0.00 NITON 3500 CA LIVS 264 96.756 67.106 79.876 1.00 0.00 NITON 3500 CA LIVS 264 96.756 67.106 79.876 1.00 0.00 NITON 3500 CA LIVS 264 96.756 67.106 79.8776 1.00 0.00 NITON 3500 CA LIVS 264 96.756 67.106 79.876 1.00 0.00 NITON 3500 CA LIVS 264 96.856 65.978 87.118 1.00 0.00 NITON 3500 CA LIVS 264 96.856 67.915 82.266 1.00 0.00 NITON 3500 CA LIVS 264 96.856 67.915 82.366 1.00 0.00 NITON 3500 CA LIVS 264 96.856 67.915 82.366 1.00 0.00 NITON 3500 CA LIVS 264 96.856 67.915 82.360 80.30 1.00 0.00 NITON 3500 CA LIVS 264 96.856 67.915 82.300 80.30 0.00 0.00 NITON 3500 CA LIVS 264 96.856 86.856 77.718 80.300 0.					263	97.919	69.961	79.089	0.00	0.00	0
NETON 1485 CAI LIE 263 97,713 72,981 80.760 0.00 0.00								79.998	0.00	0.00	С
NECON 3487 COI LILE 263 96.180 74.229 79.176 0.00 0.00									0.00	0.00	C
NEON 3488 CDL LIE 263 96.032 75.524 79.988 0.00 0.00									0.00	0.00	C
NENDN 3489 H. LIE 263 93.987 72.147 79.138 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0											С
NATION 3499 IN ILE 263 95.570 73.886 80.779 0.00 0.00											H
ATOM 3493 HRS LIE 263 95.570 72.886 80.779 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0											н
APPLICATION A											H
1470 1472	ATOM										H
ATOM 3494 3882 ILLE 263 98.576 73.073 80.078 0.00 0.00 ATOM 3495 1881 ILLE 263 95.276 73.073 80.078 0.00 0.00 ATOM 3495 1881 ILLE 263 95.236 74.150 78.541 0.00 0.00 ATOM 3496 2881 ILLE 263 95.235 76.385 79.327 0.00 0.00 ATOM 3497 1881 ILLE 263 95.235 76.385 79.327 0.00 0.00 ATOM 3498 2881 ILLE 263 95.235 76.385 79.327 0.00 0.00 ATOM 3499 3881 ILLE 263 95.205 75.777 80.549 0.00 0.00 ATOM 3501 N LYS 264 96.226 68.247 80.970 1.00 0.00 ATOM 3501 N LYS 264 96.226 68.247 80.970 1.00 0.00 ATOM 3501 LYS 264 96.726 68.247 80.970 1.00 0.00 ATOM 3501 LYS 264 95.706 67.105 79.876 1.00 0.00 ATOM 3501 LYS 264 95.507 66.746 83.102 1.00 0.00 ATOM 3505 C LYS 264 95.507 66.746 83.102 1.00 0.00 ATOM 3505 C LYS 264 95.859 66.668 84.497 1.00 0.00 ATOM 3506 CD LYS 264 95.859 66.668 84.497 1.00 0.00 ATOM 3507 C LYS 264 96.455 65.540 85.352 1.00 0.00 ATOM 3508 NZ LYS 264 96.385 65.686 86.747 1.00 0.00 ATOM 3501 ZEE LYS 264 96.385 66.597 87.118 1.00 0.00 ATOM 3501 ZEE LYS 264 96.256 65.597 87.118 1.00 0.00 ATOM 3501 ZEE LYS 264 95.332 67.917 82.251 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3513 HA LYS 264 97.603 66.873 81.256 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3514 HIB LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3515 LHS LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3512 HE LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3513 HA LYS 264 97.760 66.873 87.717 80.000 0.00 ATOM 3512 LHS LYS 264 97.760 66.873 87.717 80.000 0.00 ATOM 3512 LHS LYS 265 99.801 66.873 87.717 80.000 0.00 ATOM 3512 LHS LYS 264 97.760 66.873 87.717 80.000 0.00 ATOM 3512 LHS LYS 264 97.603 66.873 87.717 80.000 0.00 ATOM 3521 CHS LYS 265 99.810 66.383 87.700 0.00 ATOM 3521 CHS LYS 265 99.810 66.383 87.700 0.00 ATOM 3522 NE LYS 265 99.810 66.380 87.700 0.00 ATOM 3533 HA LYS 265 99.810 66.385 77.699 1.00 0.00 ATOM 3534 NE LYS 26	MOTA										н
ATOM 3495 BIBL TUB 263	ATOM				263						
ATOM 3496 ZHIGH THE 263 97.018 74.342 78.460 0.00 0.00 0.00 ATOM 3497 IHIS ZES 95.255 75.385 79.327 0.00 0.00 0.00 ATOM 3497 IHIS ZES 95.201 75.466 80.716 0.00 0.00 0.00 ATOM 3498 ZHIDI THE 263 95.201 75.466 80.716 0.00 0.00 0.00 ATOM 3498 ZHIDI THE 263 95.201 75.466 80.716 0.00 0.00 0.00 ATOM 3499 ZHIDI THE 263 95.201 75.466 80.716 0.00 0.00 0.00 ATOM 3500 N LYS ZES 96.248 69.602 80.554 1.00 0.00 0.00 ATOM 3501 C LYS ZES 96.248 69.602 79.970 1.00 0.00 0.00 ATOM 3502 C LYS ZES 96.706 67.106 79.876 1.00 0.00 0.00 ATOM 3503 C LYS ZES 264 95.507 667.106 79.978 1.00 0.00 0.00 ATOM 3503 C LYS ZES 264 95.507 667.468 83.102 1.00 0.00 0.00 ATOM 3503 C LYS ZES 264 95.507 667.915 82.266 1.00 0.00 0.00 ATOM 3505 C LYS ZES 264 95.507 66.746 83.102 1.00 0.00 0.00 ATOM 3506 CD LYS ZES 264 95.859 66.668 84.497 1.00 0.00 ATOM 3508 NZ LYS ZES 264 95.859 66.668 84.497 1.00 0.00 0.00 ATOM 3508 NZ LYS ZES 264 96.256 66.6597 87.128 1.00 0.00 0.00 ATOM 3509 LYZ LYS ZES 264 96.256 66.597 87.128 1.00 0.00 0.00 ATOM 3501 ZHZ LYS ZES 264 96.256 66.597 87.118 1.00 0.00 0.00 ATOM 3501 ZHZ LYS ZES 264 95.332 66.597 87.118 1.00 0.00 0.00 ATOM 3513 HA LYS ZES 264 95.332 69.978 80.830 1.00 0.00 0.00 ATOM 3513 HA LYS ZES 264 95.935 66.597 87.118 1.00 0.00 0.00 ATOM 3513 HA LYS ZES 264 97.781 68.352 81.256 1.00 0.00 0.00 ATOM 3513 HA LYS ZES 264 97.781 68.352 81.256 1.00 0.00 0.00 ATOM 3515 ZHB LYS ZES 264 97.636 68.811 82.251 1.00 0.00 0.00 ATOM 3515 ZHB LYS ZES 264 97.636 68.811 82.251 1.00 0.00 0.00 ATOM 3515 ZHB LYS ZES 264 97.636 68.811 82.251 1.00 0.00 0.00 ATOM 3515 ZHB LYS ZES 264 97.636 66.873 87.717 82.021 1.00 0.00 0.00 ATOM 3515 ZHB LYS ZES 264 97.636 66.873 87.717 82.021 1.00 0.00 0.00 ATOM 3515 ZHB LYS ZES 264 97.636 66.873 87.717 82.021 1.00 0.00 0.00 ATOM 3512 ZHB LYS ZES 265 99.808 66.873 87.717 82.021 1.00 0.00 0.00 ATOM 3512 ZHB LYS ZES 99.808 66.873 87.717 82.021 1.00 0.00 0.00 ATOM 3523 CH LYS ZES 99.808 66.873 77.699 1.00 0.00 0.00 ATOM 3523 CH LYS ZES 99.808 67.718 77.899 1.00 0.00 0.00 ATOM 3523 CH LYS ZES 99.808 66.808	ATOM	3494	3HG2	ILE	263						н
ATOM 3497 INDI TILE 263 95.825 76.385 79.327 0.00 0.00 ATOM 3498 JUL ILE 263 95.201 75.466 80.716 0.00 0.00 ATOM 3499 JUL ILE 263 95.201 75.466 80.716 0.00 0.00 ATOM 3501 N LYS 264 96.226 80.554 1.00 0.00 ATOM 3501 CA LYS 264 96.726 68.247 80.970 1.00 0.00 ATOM 3501 CA LYS 264 96.706 67.106 79.876 1.00 0.00 ATOM 3503 O LYS 264 95.706 67.106 79.876 1.00 0.00 ATOM 3505 CC LYS 264 95.936 67.915 82.266 1.00 0.00 ATOM 3505 CC LYS 264 95.936 67.915 82.266 1.00 0.00 ATOM 3505 CC LYS 264 95.896 66.747 81.02 0.00 ATOM 3506 CD LYS 264 95.896 66.746 81.02 1.00 0.00 ATOM 3506 CD LYS 264 95.896 66.746 81.02 1.00 0.00 ATOM 3506 CD LYS 264 95.896 66.746 81.02 1.00 0.00 ATOM 3508 NZ LYS 264 95.899 66.668 84.497 1.00 0.00 ATOM 3509 HZ LYS 264 95.890 65.540 85.352 1.00 0.00 ATOM 3509 HZ LYS 264 96.389 66.668 86.747 1.00 0.00 ATOM 3501 ZHZ LYS 264 96.389 67.915 80.830 1.00 0.00 ATOM 3510 ZHZ LYS 264 96.389 67.915 80.830 1.00 0.00 ATOM 3513 HA LYS 264 95.956 65.551 80.875 1.00 0.00 ATOM 3513 HA LYS 264 95.956 66.597 87.118 1.00 0.00 ATOM 3512 H LYS 264 95.951 68.811 82.921 1.00 0.00 ATOM 3515 ZHB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3515 ZHB LYS 264 96.877 87.717 82.021 1.00 0.00 ATOM 3512 HL LYS 264 96.877 87.717 82.201 1.00 0.00 ATOM 3512 HL LYS 264 96.875 66.797 80.831 1.00 0.00 ATOM 3512 HL LYS 264 96.875 66.875 10.00 0.00 ATOM 3512 HL LYS 264 96.875 66.875 10.00 0.00 ATOM 3520 LHE LYS 264 96.875 66.875 10.00 0.00 ATOM 3521 LHE LYS 264 96.875 66.875 10.00 0.00 ATOM 3521 LHE LYS 264 96.875 66.875 10.00 0.00 ATOM 3521 LHE LYS 264 96.875 66.875 10.00 0.00 ATOM 3520 LHE LYS 264 96.875 66.875 10.00 0.00 ATOM 3521 LHE LYS 264 96.875 66.875 10.00 0.00 ATOM 3521 LHE LYS 264 96.875 66.875 10.00 0.00 ATOM 3521 LHE LYS 265 96.890 66.837 87.100 0.00 ATOM 3521 LHE LYS 265 96.940 66.835 81.200 0.00 ATOM 3522 N LYS 265 99.800 66.800 77.899 1.00 0.00 ATOM 3523 CH LYS 265 99.800 66.800 77.899 1.00 0.00 ATOM 3524 C LYS 265 99.400 66.320 77.686 1.00 0.00 ATOM 3525 HA LYS 265 99.400 66.320 77.699 1.00	MOTA	3495	1HG1	ILE	263						H
ATCHOM 3499 ZINDI IIIE 263 96.952 75.777 80.549 0.00 0.00 ATCHOM 3499 ZINDI IIIE 263 96.952 75.777 80.549 0.00 0.00 ATCHOM 3500 N LYS 264 96.226 68.247 80.970 1.00 0.00 ATCHOM 3501 C LYS 264 96.726 68.247 80.970 1.00 0.00 ATCHOM 3501 C LYS 264 96.706 67.105 79.876 1.00 0.00 ATCHOM 3501 C LYS 264 97.548 66.207 79.928 1.00 0.00 ATCHOM 3503 0 LYS 264 95.936 67.915 82.266 1.00 0.00 ATCHOM 3505 CC LYS 264 96.507 66.746 83.102 1.00 0.00 ATCHOM 3505 CC LYS 264 96.507 66.746 83.102 1.00 0.00 ATCHOM 3505 CC LYS 264 96.5507 66.746 83.102 1.00 0.00 ATCHOM 3505 CC LYS 264 96.855 65.688 86.747 1.00 0.00 ATCHOM 3505 NZ LYS 264 96.855 65.568 86.747 1.00 0.00 ATCHOM 3505 NZ LYS 264 96.859 66.688 84.497 1.00 0.00 ATCHOM 3501 ZHZ LYS 264 96.389 64.930 87.323 1.00 0.00 ATCHOM 3501 ZHZ LYS 264 96.296 66.597 87.118 1.00 0.00 ATCHOM 3501 ZHZ LYS 264 96.296 66.597 87.118 1.00 0.00 ATCHOM 3513 HA LYS 264 95.332 99.978 80.830 1.00 0.00 ATCHOM 3513 HA LYS 264 95.332 69.978 80.830 1.00 0.00 ATCHOM 3513 HA LYS 264 95.332 69.978 80.830 1.00 0.00 ATCHOM 3513 LHB LYS 264 95.915 68.811 82.291 1.00 0.00 ATCHOM 3515 ZHB LYS 264 97.603 66.872 83.258 1.00 0.00 ATCHOM 3516 HB LYS 264 97.603 66.872 83.258 1.00 0.00 ATCHOM 3517 ZHG LYS 264 96.366 66.374 80.00 0.00 ATCHOM 3518 LHB LYS 264 97.603 66.872 83.218 1.00 0.00 ATCHOM 3519 ZHB LYS 264 96.564 96.357 67.664 80.00 0.00 ATCHOM 3510 ZHB LYS 264 97.603 66.872 83.258 1.00 0.00 ATCHOM 3512 ZHB LYS 264 96.366 67.94 87.959 1.00 0.00 ATCHOM 3512 ZHB LYS 264 96.565 96.99 87.800 80.800 1.00 0.00 ATCHOM 3512 ZHB LYS 264 96.565 96.99 87.800 80.800 1.00 0.00 ATCHOM 3520 ZHB LYS 265 95.801 66.335 77.769 1.00 0.00 ATCHOM 3521 ZHB LYS 264 96.164 64.551 84.904 1.00 0.00 ATCHOM 3522 N LYS 265 96.99 66.325 77.699 1.00 0.00 ATCHOM 3522 N LYS 265 96.99 66.325 77.699 1.00 0.00 ATCHOM 3524 C LYS 265 96.99 66.325 77.699 1.00 0.00 ATCHOM 3520 C LYS 265 96.99 66.325 77.699 1.00 0.00 ATCHOM 3520 C LYS 265 96.99 66.325 77.699 1.00 0.00 ATCHOM 3530 ZHZ LYS 265 99.402 66.325 77.699 1.00 0.00 ATCHOM 3531 ZHB LYS 265 99.670 66	ATOM	3496	2HG1	ILE	263	97.018	74.342				н
ATOM 3499 3ED1 ILE 263 96.952 75.777 80.549 0.00 0.00 ATOM 3501 CA LYS 264 96.286 69.602 80.554 1.00 0.00 ATOM 3501 CA LYS 264 96.706 67.106 79.876 1.00 0.00 ATOM 3502 C LYS 264 96.706 67.106 79.876 1.00 0.00 ATOM 3503 O LYS 264 95.706 67.106 79.876 1.00 0.00 ATOM 3503 O LYS 264 95.506 66.207 79.828 1.00 0.00 ATOM 3504 CB LYS 264 95.536 67.915 82.266 1.00 0.00 ATOM 3505 CG LYS 264 95.556 66.746 83.102 1.00 0.00 ATOM 3507 CE LYS 264 95.559 66.668 84.497 1.00 0.00 ATOM 3508 NZ LYS 264 95.859 66.668 84.497 1.00 0.00 ATOM 3509 HZ LYS 264 95.859 66.568 84.497 1.00 0.00 ATOM 3509 HZ LYS 264 95.859 64.930 87.323 1.00 0.00 ATOM 3509 HZ LYS 264 95.859 64.930 87.323 1.00 0.00 ATOM 3501 LYS 264 95.859 65.568 86.735 1.00 0.00 ATOM 3510 2HZ LYS 264 95.859 64.930 87.321 1.00 0.00 ATOM 3513 HZ LYS 264 95.859 64.930 87.323 1.00 0.00 ATOM 3513 HZ LYS 264 95.859 15.868 86.775 1.00 0.00 ATOM 3513 HZ LYS 264 95.859 16.8352 1.00 0.00 ATOM 3513 HZ LYS 264 95.95 18.352 1.00 0.00 ATOM 3515 HB LYS 264 95.95 18.352 1.00 0.00 ATOM 3515 LHB LYS 264 95.95 18.352 1.00 0.00 ATOM 3515 LHB LYS 264 95.95 18.832 19.256 1.00 0.00 ATOM 3515 LHB LYS 264 95.95 18.832 19.256 1.00 0.00 ATOM 3515 LHB LYS 264 95.95 18.832 19.256 1.00 0.00 ATOM 3515 LHB LYS 264 95.95 66.811 82.921 1.00 0.00 ATOM 3516 LHB LYS 264 95.95 66.831 82.959 1.00 0.00 ATOM 3520 LHB LYS 264 95.95 66.831 82.959 1.00 0.00 ATOM 3520 LHB LYS 264 95.95 66.831 82.959 1.00 0.00 ATOM 3520 LHB LYS 264 95.95 66.831 82.959 1.00 0.00 ATOM 3520 LHB LYS 264 95.95 66.831 82.959 1.00 0.00 ATOM 3520 LHB LYS 264 95.95 67.96 88.005 1.00 0.00 ATOM 3520 LHB LYS 264 95.95 67.96 88.005 1.00 0.00 ATOM 3520 LHB LYS 265 95.96 66.830 77.899 1.00 0.00 ATOM 3520 LHB LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3520 LHB LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3520 CD LYS 265 95.96 96.64 89.005 1.00 0.00 ATOM 3520 CD LYS 265 95.96 96.64 89.005 1.00 0.00 ATOM 3520 CD LYS 265 95.96 96.64 97.979 77.895 1.00 0.00 ATOM 3520 CD LYS 265 95.96 96.64 97.997 77.895 1.00 0.00 ATOM 3520 LHB LYS 265 96.96 96.937 66.930 77	MOTA	3497	1HD1	ILE	263	95.825	76.385	79.327			H
ATOM 3499 3HD1 ILE 263 96.952 75.777 80.549 0.00 0.00 ATOM 3501 CA LYS 264 96.268 69.602 80.554 1.00 0.00 ATOM 3502 C LYS 264 96.726 68.247 80.970 1.00 0.00 ATOM 3503 O LYS 264 95.726 67.106 79.876 1.00 0.00 ATOM 3503 O LYS 264 95.756 67.106 79.928 1.00 0.00 ATOM 3504 CB LYS 264 95.756 67.915 22.266 1.00 0.00 ATOM 3505 CG LYS 264 95.957 66.746 83.102 1.00 0.00 ATOM 3506 CD LYS 264 95.895 66.668 84.497 1.00 0.00 ATOM 3506 CD LYS 264 95.895 66.668 84.497 1.00 0.00 ATOM 3507 CE LYS 264 96.857 66.668 85.352 1.00 0.00 ATOM 3509 HZ LYS 264 96.859 66.668 86.747 1.00 0.00 ATOM 3509 HZ LYS 264 96.896 66.896 85.775 1.00 0.00 ATOM 3513 HZ LYS 264 95.930 65.686 86.747 1.00 0.00 ATOM 3513 HZ LYS 264 95.930 65.686 86.747 1.00 0.00 ATOM 3513 HZ LYS 264 95.832 69.978 80.830 1.00 0.00 ATOM 3512 H LYS 264 95.832 69.978 80.830 1.00 0.00 ATOM 3512 H LYS 264 95.832 69.978 80.830 1.00 0.00 ATOM 3515 LHB LYS 264 97.791 68.352 H.256 1.00 0.00 ATOM 3515 LHB LYS 264 97.791 68.352 H.256 1.00 0.00 ATOM 3516 HG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3512 HB LYS 264 97.691 68.811 82.921 1.00 0.00 ATOM 3512 HB LYS 264 97.691 68.318 1.256 1.00 0.00 ATOM 3512 HB LYS 264 97.691 68.318 1.256 1.00 0.00 ATOM 3512 HB LYS 264 97.606 66.872 81.255 1.00 0.00 ATOM 3521 HB LYS 264 97.606 66.872 81.255 1.00 0.00 ATOM 3522 NB LYS 264 97.606 86.877 88.300 1.00 0.00 ATOM 3521 HB LYS 264 97.606 86.877 88.300 1.00 0.00 ATOM 3522 NB LYS 264 97.606 86.877 88.300 1.00 0.00 ATOM 3522 NB LYS 264 97.606 86.877 88.300 1.00 0.00 ATOM 3522 NB LYS 264 97.606 86.877 88.300 1.00 0.00 ATOM 3522 NB LYS 264 97.606 86.877 88.300 1.00 0.00 ATOM 3522 NB LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 NB LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 CB LYS 265 95.801 66.255 77.699 1.00 0.00 ATOM 3526 CB LYS 265 96.809 66.400 77.666 1.00 0.00 ATOM 3526 CB LYS 265 99.806 66.897 77.899 1.00 0.00 ATOM 3527 CB LYS 265 99.806 66.897 77.899 1.00 0.00 ATOM 3528 CB LYS 265 99.806 66.897 77.899 1.00 0.00 ATOM 3528 LB LYS 265 99.806 66.897 77.899 1.00 0.00 ATOM 3528 LB LYS 265 99	ATOM	3498	2HD1	ILE	263	95.201	75.466	80.716	0.00	0.00	H
AROM 3500 N LYS 264 96.248 69.602 80.554 1.00 0.00 AROM 3501 CA LYS 264 96.766 68.247 80.970 1.00 0.00 AROM 3502 C LYS 264 96.706 67.106 79.876 1.00 0.00 AROM 3503 O LYS 264 97.548 66.207 79.828 1.00 0.00 AROM 3504 CB LYS 264 97.548 66.207 79.828 1.00 0.00 AROM 3506 CD LYS 264 95.859 66.668 84.977 1.00 0.00 AROM 3506 CD LYS 264 95.859 66.668 84.977 1.00 0.00 AROM 3506 CD LYS 264 95.859 66.668 84.977 1.00 0.00 AROM 3508 NZ LYS 264 95.859 66.668 84.977 1.00 0.00 AROM 3508 NZ LYS 264 95.889 64.930 87.323 1.00 0.00 AROM 3509 1HZ LYS 264 96.389 64.930 87.323 1.00 0.00 AROM 3501 2HZ LYS 264 96.389 66.597 87.118 1.00 0.00 AROM 3510 2HZ LYS 264 95.895 66.597 87.118 1.00 0.00 AROM 3513 HA LYS 264 95.895 66.597 87.118 1.00 0.00 AROM 3513 HA LYS 264 95.936 66.997 87.318 1.00 0.00 AROM 3514 HB LYS 264 95.936 66.997 80.830 1.00 0.00 AROM 3515 2HB LYS 264 95.915 68.811 82.921 1.00 0.00 AROM 3515 2HB LYS 264 95.915 68.811 82.921 1.00 0.00 AROM 3515 2HB LYS 264 95.915 68.811 82.921 1.00 0.00 AROM 3515 2HB LYS 264 95.915 68.811 82.921 1.00 0.00 AROM 3515 1HD LYS 264 96.375 65.990 81.255 1.00 0.00 AROM 3512 HU LYS 264 97.63 66.812 83.218 1.00 0.00 AROM 3513 HA LYS 264 97.63 66.812 83.218 1.00 0.00 AROM 3519 2HD LYS 264 97.63 66.852 83.218 1.00 0.00 AROM 3519 2HD LYS 264 97.63 66.653 84.944 1.00 0.00 AROM 3519 2HD LYS 264 97.63 66.648 80.005 1.00 0.00 AROM 3519 2HD LYS 264 97.63 66.648 80.005 1.00 0.00 AROM 3519 2HD LYS 264 97.63 66.648 80.005 1.00 0.00 AROM 3519 2HD LYS 264 97.63 66.649 80.005 1.00 0.00 AROM 3519 2HD LYS 265 95.810 67.669 80.005 1.00 0.00 AROM 3519 2HD LYS 265 95.810 67.656 80.005 1.00 0.00 AROM 3519 2HD LYS 265 95.810 67.669 80.005 1.00 0.00 AROM 3520 C LYS 265 95.800 67.646 80.005 1.00 0.00 AROM 3521 2HE LYS 265 95.800 66.235 77.809 1.00 0.00 AROM 3520 C LYS 265 95.800 66.235 77.809 1.00 0.00 AROM 3521 C LYS 265 95.800 66.235 77.809 1.00 0.00 AROM 3524 C LYS 265 95.800 66.300 77.005 1.00 0.00 AROM 3524 C LYS 265 95.800 66.300 77.005 1.00 0.00 AROM 3530 HR LYS 265 95.800 66.230 77.005 1.00 0.00 AROM 3531 HR LYS		3499	3HD1	ILE	263	96.952	75.777	80.549	0.00	0.00	н
AROM 3501 CA LYS 264 95.726 68.247 80.970 1.00 0.00 AROM 3502 C LYS 264 95.766 67.106 79.876 1.00 0.00 AROM 3503 O LYS 264 95.756 67.106 79.876 1.00 0.00 AROM 3505 CG LYS 264 95.859 67.915 82.266 1.00 0.00 AROM 3505 CG LYS 264 95.859 66.668 84.497 1.00 0.00 AROM 3506 CL LYS 264 95.859 66.668 84.497 1.00 0.00 AROM 3506 CL LYS 264 95.859 66.668 84.497 1.00 0.00 AROM 3509 LYS 264 95.859 65.540 85.352 1.00 0.00 AROM 3509 LY LYS 264 95.859 66.668 86.747 1.00 0.00 AROM 3509 LY LYS 264 95.890 65.685 86.747 1.00 0.00 AROM 3509 LY LYS 264 95.896 66.597 87.318 1.00 0.00 AROM 3509 LY LYS 264 96.396 64.930 87.323 1.00 0.00 AROM 3513 HA LYS 264 95.896 66.597 87.318 1.00 0.00 AROM 3513 HA LYS 264 95.896 66.597 87.318 1.00 0.00 AROM 3513 HA LYS 264 95.896 66.597 87.318 1.00 0.00 AROM 3514 LHB LYS 264 95.915 68.811 82.921 1.00 0.00 AROM 3515 LHB LYS 264 95.915 68.811 82.921 1.00 0.00 AROM 3516 LHG LYS 264 96.876 67.790 82.559 1.00 0.00 AROM 3516 LHG LYS 264 96.876 66.879 82.255 1.00 0.00 AROM 3518 HD LYS 264 96.876 66.872 83.218 1.00 0.00 AROM 3518 LHD LYS 264 96.876 66.871 83.218 1.00 0.00 AROM 3518 LHD LYS 264 96.876 66.872 83.218 1.00 0.00 AROM 3518 LHD LYS 264 97.791 68.852 81.256 1.00 0.00 AROM 3518 LHD LYS 264 97.791 68.852 81.256 1.00 0.00 AROM 3512 LHE LYS 264 97.791 68.852 81.250 1.00 0.00 AROM 3512 LHE LYS 264 97.793 66.877 82.251 1.00 0.00 AROM 3512 LHE LYS 264 97.793 66.877 82.201 1.00 0.00 AROM 3520 LHB LYS 264 97.793 66.877 82.201 1.00 0.00 AROM 3521 CHB LYS 264 97.793 66.877 82.201 1.00 0.00 AROM 3522 LH LYS 264 97.794 66.523 77.699 1.00 0.00 AROM 3522 LH LYS 265 95.810 66.877 80.941 1.00 0.00 AROM 3521 LHB LYS 264 97.795 66.878 87.99 1.00 0.00 AROM 3522 LHB LYS 265 95.80 66.6877 77.095 1.00 0.00 AROM 3521 LHB LYS 265 95.80 66.879 77.899 1.00 0.00 AROM 3522 LHB LYS 265 95.80 66.879 77.899 1.00 0.00 AROM 3524 C LYS 265 93.80 65.90 77.899 1.00 0.00 AROM 3524 C LYS 265 93.80 66.80 77.497 78.061 1.00 0.00 AROM 3528 LHB LYS 265 93.49 66.30 77.899 1.00 0.00 AROM 3528 LHB LYS 265 93.49 66.40 77.705 1.00 0.00 AROM 3528					264	96.248	69.602	80.554	1.00	0.00	N
AROM 3502 C LYS 264 95.706 67.106 79.876 1.00 0.00 AROM 3503 O LYS 264 97.548 66.207 79.928 1.00 0.00 AROM 3505 CG LYS 264 95.859 66.268 81.00 0.00 AROM 3506 CD LYS 264 95.859 66.668 84.497 1.00 0.00 AROM 3506 CD LYS 264 95.859 66.668 84.497 1.00 0.00 AROM 3507 CE LYS 264 95.859 65.686 86.747 1.00 0.00 AROM 3507 CE LYS 264 95.859 65.686 86.747 1.00 0.00 AROM 3508 NZ LYS 264 95.890 65.886 86.747 1.00 0.00 AROM 3509 LEZ LYS 264 95.890 66.597 87.118 1.00 0.00 AROM 3501 LYS 264 95.890 66.597 87.118 1.00 0.00 AROM 3502 LYL LYS 264 95.890 66.597 87.118 1.00 0.00 AROM 3512 LH LYS 264 95.892 66.597 87.118 1.00 0.00 AROM 3512 LH LYS 264 95.950 66.597 80.830 1.00 0.00 AROM 3513 LH LYS 264 95.325 69.788 80.830 1.00 0.00 AROM 3514 LHB LYS 264 95.915 68.811 82.921 1.00 0.00 AROM 3515 LHB LYS 264 97.791 68.352 81.256 1.00 0.00 AROM 3515 LHB LYS 264 97.791 68.352 81.256 1.00 0.00 AROM 3516 LHB LYS 264 97.693 66.872 81.259 1.00 0.00 AROM 3517 2HB LYS 264 97.693 66.872 81.259 1.00 0.00 AROM 3518 LHD LYS 264 97.693 66.872 81.259 1.00 0.00 AROM 3519 2HB LYS 264 97.603 66.872 81.259 1.00 0.00 AROM 3519 2HB LYS 264 97.603 66.872 81.259 1.00 0.00 AROM 3512 LH LYS 264 97.603 66.872 81.259 1.00 0.00 AROM 3512 LH LYS 264 97.603 66.872 81.250 1.00 0.00 AROM 3521 LHE LYS 264 97.603 66.872 81.250 1.00 0.00 AROM 3522 LHE LYS 264 96.164 66.551 88.900 1.00 0.00 AROM 3522 LHE LYS 265 95.801 67.366 85.304 1.00 0.00 AROM 3524 C LYS 265 95.801 67.356 77.699 1.00 0.00 AROM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 AROM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 AROM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 AROM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 AROM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 AROM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 AROM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 AROM 3524 LHE LYS 265 96.404 66.500 77.899 1.00 0.00 AROM 3524 LHE LYS 265 96.404 66.300 77.809 1.00 0.00 AROM 3525 LHE LYS 265 96.404 66.300 66.301 1.00 0.00 AROM 3526 LH LYS 265 96.406 66.302 377 80.901 1.00 0.00 AROM 3527 CG LYS					264	96.726	68.247	80.970	1.00	0.00	C
ATCOM 3503 O LYS 264 95.936 67.915 82.266 1.00 0.00						96.706	67.106	79.876	1.00	0.00	С
ATOM 3504 CB LYS 264 95.936 67.915 82.266 1.00 0.00								79.928	1.00	0.00	0
ATOM 3505 CG LYS 264 95.507 66.746 83.102 1.00 0.00 ATOM 3506 CG LYS 264 95.859 66.668 84.497 1.00 0.00 ATOM 3507 CE LYS 264 95.859 66.668 84.497 1.00 0.00 ATOM 3508 NZ LYS 264 96.455 65.540 85.352 1.00 0.00 ATOM 3509 HEZ LYS 264 96.389 64.930 87.323 1.00 0.00 ATOM 3510 ZHZ LYS 264 96.389 64.930 87.323 1.00 0.00 ATOM 3511 SHZ LYS 264 96.296 66.597 87.118 1.00 0.00 ATOM 3511 SHZ LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3512 H LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3514 HB LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3515 ZHB LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3516 LHG LYS 264 95.375 65.790 82.559 1.00 0.00 ATOM 3517 ZHG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 HID LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3517 ZHG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 ZHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 ZHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 ZHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3520 LHE LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3521 ZHE LYS 264 99.564 65.563 85.324 1.00 0.00 ATOM 3522 N LYS 265 95.810 67.364 65.563 86.304 1.00 0.00 ATOM 3521 ZHE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3522 N LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3524 C LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3526 CB LYS 265 95.810 66.320 77.603 1.00 0.00 ATOM 3527 CG LYS 265 99.499 66.440 76.629 1.00 0.00 ATOM 3528 CD LYS 265 99.499 66.440 76.629 1.00 0.00 ATOM 3529 CE LYS 265 99.676 66.40 76.629 1.00 0.00 ATOM 3531 HEZ LYS 265 99.810 66.320 77.696 1.00 0.00 ATOM 3531 HEZ LYS 265 99.810 66.320 77.696 1.00 0.00 ATOM 3532 HE LYS 265 99.810 66.320 77.696 1.00 0.00 ATOM 3531 HEZ LYS 265 99.810 66.320 77.697 1.00 0.00 ATOM 3531 HEZ LYS 265 99.810 66.320 77.697 1.00 0.00 ATOM 3531 HEZ LYS 265 99.806 65.70 77.889 1.00 0.00 ATOM 3532 HE LYS 265 99.806 65.70 77.899 1.00 0.00 ATOM 3533 HA LYS 265 99.806 65.70 77.89 1.00 0.00 ATOM 3534 H LYS 265 99.806 66.402 77.686 1.00 0.00 ATOM 3536 HE LYS 265 99.806 67.606 77.056 1.00 0.00 ATOM 3537 HE LYS 265 99.806 67.607 77.597 1.00 0.00 A									1.00	0.00	С
ATOM 3506 CD LYS 264 95.859 66.668 84.497. 1.00 0.00 ATOM 3507 CE LYS 264 95.990 65.686 86.747 1.00 0.00 ATOM 3508 NZ LYS 264 95.990 65.686 86.747 1.00 0.00 ATOM 3509 HZ LYS 264 96.389 66.597 87.118 1.00 0.00 ATOM 3510 ZHZ LYS 264 96.296 66.597 87.118 1.00 0.00 ATOM 3511 ZHZ LYS 264 94.962 66.597 87.118 1.00 0.00 ATOM 3511 ZHZ LYS 264 95.322 69.978 80.830 1.00 0.00 ATOM 3513 HZ LYS 264 95.322 69.978 80.830 1.00 0.00 ATOM 3513 HZ LYS 264 95.322 69.978 80.830 1.00 0.00 ATOM 3514 LHB LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3515 ZHB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3516 LHG LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3516 LHG LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3516 LHG LYS 264 95.936 66.597 82.559 1.00 0.00 ATOM 3518 HD LYS 264 97.630 66.872 83.218 1.00 0.00 ATOM 3519 ZHD LYS 264 97.630 66.833 84.400 1.00 0.00 ATOM 3519 ZHD LYS 264 97.630 66.833 84.400 1.00 0.00 ATOM 3519 ZHD LYS 264 97.564 66.553 84.404 1.00 0.00 ATOM 3521 ZHE LYS 264 97.564 66.553 84.404 1.00 0.00 ATOM 3521 ZHE LYS 264 97.564 66.553 84.944 1.00 0.00 ATOM 3522 N LYS 265 95.810 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.810 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 95.810 67.156 78.879 1.00 0.00 ATOM 3525 C LYS 265 95.810 67.557 77.809 1.00 0.00 ATOM 3526 CD LYS 265 93.209 65.755 77.809 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.775 77.809 1.00 0.00 ATOM 3530 NZ LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 93.406 66.320 77.003 1.00 0.00 ATOM 3531 HZ LYS 265 93.406 66.320 77.003 1.00 0.00 ATOM 3531 HZ LYS 265 93.406 66.320 77.003 1.00 0.00 ATOM 3532 NZ LYS 265 93.406 66.794 76.995 1.00 0.00 ATOM 3531 HZ LYS 265 93.406 66.794 76.905 1.00 0.00 ATOM 3531 HZ LYS 265 93.406 66.794 76.905 1.00 0.00 ATOM 3531 HZ LYS 265 93.406 66.794 76.905 1.00 0.00 ATOM 3532 HZ LYS 265 93.406 66.794 76.905 1.00 0.00 ATOM 3533 AH LYS 265 93.406 66.311 78.789 1.00 0.00 ATOM 3534 H LYS 265 93.406 66.90 77.889 1.00 0.00 ATOM 3534 H LYS 265 93.406 66.90 77.889 1.00 0.00 ATOM 3534 H LYS 265 93.406 66.90 77.897 77.891 1.00 0.00 ATOM 3											С
ATOM 3507 CE LYS 264 95.930 65.686 86.747 1.00 0.00 ATOM 3508 NZ LYS 264 95.990 66.586 86.747 1.00 0.00 ATOM 3509 HZ LYS 264 96.389 64.930 87.323 1.00 0.00 ATOM 3510 ZEZ LYS 264 96.389 64.930 87.323 1.00 0.00 ATOM 3511 SHZ LYS 264 96.389 64.930 87.323 1.00 0.00 ATOM 3512 H LYS 264 95.931 66.597 87.118 1.00 0.00 ATOM 3512 H LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3513 HA LYS 264 95.931 68.975 87.128 1.00 0.00 ATOM 3514 HH LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3515 ZHB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3516 LHG LYS 264 95.976 65.790 82.559 1.00 0.00 ATOM 3517 ZHG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3517 ZHG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 ZHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 ZHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 ZHD LYS 264 97.603 66.873 84.400 1.00 0.00 ATOM 3520 HH LYS 264 97.564 65.563 85.304 1.00 0.00 ATOM 3521 ZHE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3521 ZHE LYS 265 95.801 67.664 64.551 84.944 1.00 0.00 ATOM 3522 N LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3522 N LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3526 CB LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 99.809 67.664 67.88 99 1.00 0.00 ATOM 3527 CG LYS 265 99.296 65.400 76.629 1.00 0.00 ATOM 3528 CD LYS 265 99.801 66.320 77.003 1.00 0.00 ATOM 3529 CD LYS 265 99.801 66.320 77.609 1.00 0.00 ATOM 3530 NZ LYS 265 99.809 65.795 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 99.679 65.479 77.686 1.00 0.00 ATOM 3531 HZ LYS 265 99.809 67.766 6.300 77.686 1.00 0.00 ATOM 3531 HZ LYS 265 99.809 67.766 6.300 77.88 91 0.00 0.00 ATOM 3531 HZ LYS 265 99.809 67.797 78.8091 1.00 0.00 ATOM 3531 HZ LYS 265 99.809 67.797 77.058 1.00 0.00 ATOM 3531 HZ LYS 265 99.809 67.797 77.058 1.00 0.00 ATOM 3531 HZ LYS 265 99.809 67.797 77.568 1.00 0.00 ATOM 3532 HZ LYS 265 99.809 67.797 77.568 1.00 0.00 ATOM 3534 H LYS 265 99.809 67.797 77.686 1.00 0.00 ATOM 3536 HB LYS 265 99.809 67.797 77.891 1.00 0.00 ATOM 3537 HB LYS 2											C
ATOM 3508 NZ LYS 264 95.990 65.686 86.747 1.00 0.00 ATOM 3509 1HZ LYS 264 96.389 66.930 87.323 1.000 0.00 ATOM 3510 2HZ LYS 264 96.296 66.597 87.118 1.00 0.00 ATOM 3511 3HZ LYS 264 94.962 66.597 87.118 1.00 0.00 ATOM 3512 H LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3513 HA LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3513 HA LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3515 1HB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3515 2HB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3516 1HG LYS 264 96.375 66.790 82.559 1.00 0.00 ATOM 3516 1HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3517 2HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 1HD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 97.603 66.873 83.428 1.00 0.00 ATOM 3510 1HE LYS 264 97.603 66.873 83.400 1.00 0.00 ATOM 3512 1HE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3520 1HE LYS 264 97.564 65.563 84.400 1.00 0.00 ATOM 3521 2HE LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 96.99 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 96.99 66.440 76.629 1.00 0.00 ATOM 3526 CB LYS 265 96.99 66.400 77.699 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 93.806 66.794 76.905 1.00 0.00 ATOM 3530 NZ LYS 265 93.806 66.794 76.905 1.00 0.00 ATOM 3531 HZ LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3531 HZ LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3534 H LYS 265 95.878 67.977 77.809 1.00 0.00 ATOM 3535 HA LYS 265 95.878 67.977 78.066 1.00 0.00 ATOM 3536 HZ LYS 265 95.988 66.794 76.905											C
ATOM 3509 1HZ LYS 264 96.286 66.597 87.118 1.00 0.00 ATOM 3510 2HZ LYS 264 94.962 66.597 80.830 1.00 0.00 ATOM 3511 3HZ LYS 264 94.962 65.631 86.775 1.00 0.00 ATOM 3512 H LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3512 H LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3514 HB LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3514 HB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3515 2HB LYS 264 96.976 66.811 82.921 1.00 0.00 ATOM 3516 1HG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3516 1HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3517 2HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3519 2HD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3519 2HD LYS 264 97.503 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 97.564 66.553 84.400 1.00 0.00 ATOM 3519 2HD LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3520 1HB LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3520 1HB LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 95.801 66.323 77.699 1.00 0.00 ATOM 3526 CB LYS 265 95.801 66.323 77.699 1.00 0.00 ATOM 3526 CB LYS 265 95.801 66.323 77.699 1.00 0.00 ATOM 3527 CG LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 91.816 66.006 77.056 1.00 0.00 ATOM 3528 CD LYS 265 91.816 66.006 77.056 1.00 0.00 ATOM 3531 1HZ LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3531 1HZ LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3531 1HZ LYS 265 93.406 65.507 77.899 1.00 0.00 ATOM 3531 1HZ LYS 265 93.406 65.791 77.125 1.00 0.00 ATOM 3531 1HZ LYS 265 93.406 65.791 77.125 1.00 0.00 ATOM 3531 1HZ LYS 265 93.406 65.791 77.125 1.00 0.00 ATOM 3531 1HZ LYS 265 93.406 65.797 77.899 1.00 0.00 ATOM 3531 1HZ LYS 265 93.406 65.797 77.899 1.00 0.00 ATOM 3534 1H LYS 265 93.406 65.797 77.899 1.00 0.00 ATOM 3534 1H LYS 265 93.406 66.317 77.799 1.00 0.00 ATOM 3534 1H LYS 265 93.406 66.797 77.586 1.00 0.00 ATOM 3534 1H LYS 265 93.406 66.797 77.707 76.601 1.0											N
ATOM 3510 2Hz LYS 264 94.962 66.597 87.118 1.00 0.00 ATOM 3511 3Hz LYS 264 94.962 66.597 87.118 1.00 0.00 ATOM 3512 H LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3513 HA LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3514 HB LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3515 LHB LYS 264 95.955 68.811 82.921 1.00 0.00 ATOM 3516 LHB LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3516 LHG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3517 2HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 LHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 LHD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3519 2HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3520 LHE LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 84.944 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 96.99 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.966.440 76.629 1.00 0.00 ATOM 3527 CG LYS 265 94.966.705 77.809 1.00 0.00 ATOM 3528 CD LYS 265 94.966.705 77.809 1.00 0.00 ATOM 3529 CE LYS 265 94.966.705 77.809 1.00 0.00 ATOM 3520 CB LYS 265 95.810 66.705 77.809 1.00 0.00 ATOM 3521 LYS 265 95.801 67.75 77.809 1.00 0.00 ATOM 3528 CD LYS 265 95.806 77.809 1.00 0.00 ATOM 3530 NZ LYS 265 95.816 66.705 77.809 1.00 0.00 ATOM 3531 LYS 265 95.816 66.705 77.809 1.00 0.00 ATOM 3531 LYS 265 95.817 67.975 77.809 1.00 0.00 ATOM 3531 LYS 265 95.817 67.975 77.809 1.00 0.00 ATOM 3531 LYS 265 95.817 67.975 77.809 1.00 0.00 ATOM 3531 LYS 265 95.817 67.975 77.809 1.00 0.00 ATOM 3531 LYS 265 95.817 67.975 77.809 1.00 0.00 ATOM 3531 LYS 265 95.817 67.975 77.809 1.00 0.00 ATOM 3531 LYS 265 95.837 67.975 77.809 1.00 0.00 ATOM 3534 LYS 265 95.837 67.975 77.809 1.00 0.00 ATOM 3535 HA LYS 265 95.837 67.975 77.809 1.00 0.00 ATOM 3536 LYB LYS 265 95.937 66.737 77.999 1.00 0.00 ATOM 3537 LYB LYS 265 95.937 67.937 7											н
ATOM 3511 3HZ LYS 264 94.962 65.631 86.775 1.00 0.00 ATOM 3512 H LYS 264 95.332 69.978 80.830 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.852 81.256 1.00 0.00 ATOM 3514 LHB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3516 LHG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3516 LHG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3516 LHG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3516 LHG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 HD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 HD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 LHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3519 2HD LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 ZHE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3527 CG LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3528 CD LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3528 CD LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3529 CE LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3531 LHZ LYS 265 89.806 67.91 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.409 66.400 77.056 1.00 0.00 ATOM 3531 LYS 265 95.816 67.91 77.125 1.00 0.00 ATOM 3531 LYS 265 95.178 67.991 7.003 1.00 0.00 ATOM 3531 LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3531 LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3531 LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3531 LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3534 LH LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 LHB LYS 265 93.460 65.492 77.686 1.00 0.00 ATOM 3536 LHB LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3537 LHB LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3538 LHB LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3534 LHB LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3535 LHB LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3536 LHB LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3537 LHB LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3538 LHB LYS 265											H
ATOM 3512 H LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3514 HB LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3515 LHB LYS 264 94.873 67.717 82.021 1.00 0.00 ATOM 3516 LHG LYS 264 94.873 67.717 82.021 1.00 0.00 ATOM 3517 2HG LYS 264 97.603 66.871 82.559 1.00 0.00 ATOM 3518 LHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 LHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 LHD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3519 2HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3521 2HE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2HE LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.99 66.400 76.629 1.00 0.00 ATOM 3527 CG LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3528 CD LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.899 1.00 0.00 ATOM 3520 LYS 265 90.672 65.560 77.899 1.00 0.00 ATOM 3521 LYS 265 90.672 65.560 77.899 1.00 0.00 ATOM 3523 LYS 265 90.672 65.760 77.899 1.00 0.00 ATOM 3524 LYS 265 90.672 65.760 77.899 1.00 0.00 ATOM 3525 LYS 265 90.672 65.760 77.899 1.00 0.00 ATOM 3521 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.436 66.794 76.095 1.00 0.00 ATOM 3531 LHZ LYS 265 89.436 66.794 76.095 1.00 0.00 ATOM 3534 L LYS 265 99.460 66.287 77.686 1.00 0.00 ATOM 3535 LHB LYS 265 99.460 66.128 78.842 1.00 0.00 ATOM 3537 LHB LYS 265 99.486 67.973 78.066 1.00 0.00 ATOM 3538 LHG LYS 265 99.486 67.94 76.095 1.00 0.00 ATOM 3537 LHB LYS 265 99.496 66.20 77.589 1.00 0.00 ATOM 3538 LHG LYS 265 99.496 66.128 78.842 1.00 0.00 ATOM 3537 LHB LYS 265 99.496 66.10 60.311 78.789 1.00 0.00 ATOM 3540 LHD LYS 265 99.496 66.20 77.797 78.861 1.00 0.00 ATOM 3540 L											. н
ATOM 3513 HA LYS 264 97.791 68.352 81.256 1.00 0.00 ATOM 3514 LHB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3516 LHB LYS 264 94.873 67.717 82.021 1.00 0.00 ATOM 3516 LHG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3517 2HG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3518 HD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 HD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3518 HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3519 2HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3522 LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 93.806 65.791 77.125 1.00 0.00 ATOM 3533 LL LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3534 H LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3534 H LYS 265 95.976 65.500 76.249 1.00 0.00 ATOM 3533 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3534 H LYS 265 95.977 65.197 78.991 1.00 0.00 ATOM 3535 HA LYS 265 95.977 65.197 78.891 1.00 0.00 ATOM 3537 LHB LYS 265 95.977 65.197 78.911 1.00 0.00 ATOM 3538 LHB LYS 265 95.978 65.197 78.921 1.00 0.00 ATOM 3537 LHB LYS 265 95.979 65.479 77.889 1.00 0.00 ATOM 3538 LHB LYS 265 95.979 65.479 77.889 1.00 0.00 ATOM 3537 LHB LYS 265 95.970 67.979 78.921 1.00 0.00 ATOM 3538 LHB LYS 265 95.970 67.979 78.921 1.00 0.00 ATOM 3538 LHB LYS 265 95.970 67.064 79.770 76.801 1.00 0.00 ATOM 3540 LHD LYS 265 91.986 67.995 77.899 1.00 0.00 ATOM 3541 LHD LYS 265 91.986 67.997 78.454 1.00 0.00 ATOM 3542 LHB	ATOM										н
ATOM 3514 1HB LYS 264 95.915 68.811 82.921 1.00 0.00 ATOM 3515 2HB LYS 264 94.873 67.717 82.021 1.00 0.00 ATOM 3516 1HG LYS 264 94.873 67.717 82.021 1.00 0.00 ATOM 3516 1HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3517 2HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3520 1HR LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3521 2HE LYS 264 97.504 66.533 84.400 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3528 CD LYS 265 93.801 67.70.703 1.00 0.00 ATOM 3529 CE LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 93.801 65.795 77.809 1.00 0.00 ATOM 3521 LYS 265 93.804 66.794 77.003 0.00 ATOM 3529 CE LYS 265 99.439 66.72 65.560 77.056 1.00 0.00 ATOM 3533 1HZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 66.794 76.905 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 66.794 76.905 1.00 0.00 ATOM 3533 HZ LYS 265 89.430 66.794 76.905 1.00 0.00 ATOM 3533 HZ LYS 265 89.436 66.794 76.905 1.00 0.00 ATOM 3534 H LYS 265 89.436 66.794 76.905 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.991 1.00 0.00 ATOM 3536 HB LYS 265 95.178 67.973 78.991 1.00 0.00 ATOM 3537 2HB LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3534 H LYS 265 99.466 66.311 78.899 1.00 0.00 ATOM 3534 H LYS 265 99.476 66.311 78.899 1.00 0.00 ATOM 3534 LYS 265 99.486 67.973 78.991 1.00 0.00 ATOM 3540 LHB LYS 265 99.476 67.6793 78.991 1.00 0.00 ATOM 3541 LHB LYS 265 99.486 67.973 78.049 1.00 0.00 ATOM 3540 LHB LYS 265 99.486 69.795 75.950 1.00 0.00 ATOM 3541 CH LYS 265 99.486 69.525 77.597 75.946 1.00 0.00 ATOM 3540 DASH 24	MOTA	3512	H								н
ATOM 3515 2HB LYS 264 94.873 67.717 82.021 1.00 0.00 ATOM 3516 1HG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3517 2HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2HD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3520 1HB LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3520 1HB LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3521 2HE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3521 LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3521 CH LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3522 N LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3529 C LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3521 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 1HE LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3532 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 BL LYS 265 89.440 65.250 76.624 1.00 0.00 ATOM 3533 HL LYS 265 89.460 65.250 76.624 1.00 0.00 ATOM 3534 H LYS 265 89.460 65.250 76.624 1.00 0.00 ATOM 3535 HA LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 HB LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 HB LYS 265 93.348 64.723 78.041 1.00 0.00 ATOM 3537 2HB LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3538 HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3534 LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3534 LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3534 LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3540 LYB 266 99.918 67.497 67.595 1.00 0.00 ATOM 3541 LYB 265 91.706 64.492 78.170 1.00 0.00 ATOM 3542 LYB LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3543 LYB LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3540 C ASN 266 98.354 67.797 75.554 1.00 0.00 ATOM 3540 C ASN 266 99.918 67.198 75.952 1.00	MOTA	3513	HA	LYS	264						
ATOM 3516 LBG LYS 264 96.375 65.790 82.559 1.00 0.00 ATOM 3517 2BG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2BD LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3519 2BD LYS 264 94.763 66.873 84.400 1.00 0.00 ATOM 3519 2BD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3520 LBE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2BE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3521 2BE LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3524 C LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.491 66.320 77.003 1.00 0.00 ATOM 3526 CB LYS 265 94.491 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3530 NZ LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3531 LBZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LBZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LBZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 JHZ LYS 265 89.430 65.791 77.686 1.00 0.00 ATOM 3533 LBZ LYS 265 89.430 65.791 77.686 1.00 0.00 ATOM 3534 LB LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3535 HA LYS 265 95.976 65.197 78.891 1.00 0.00 ATOM 3535 HA LYS 265 95.976 65.197 78.891 1.00 0.00 ATOM 3536 LBB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.891 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.891 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3536 LBB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3537 2BB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3537 2BB LYS 265 90.600 66.311 78.789 1.00 0.00 ATOM 3537 2BB LYS 265 90.600 66.311 78.789 1.00 0.00 ATOM 3540 LB LYS 265 90.600 66.311 78.789 1.00 0.00 ATOM 3540 A AND 266 90.600 90.600 90.600 90.600 9	MOTA	3514	1HB	LYS	264	95.915					н
ATOM 3517 2HG LYS 264 97.603 66.872 83.218 1.00 0.00 ATOM 3518 1HD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3518 1HD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3519 2HD LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3520 1HE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2HE LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3527 CG LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 1HZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 HZ LYS 265 89.430 65.794 76.905 1.00 0.00 ATOM 3533 LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3531 HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3531 HZ LYS 265 95.97 66.51.97 78.066 1.00 0.00 ATOM 3531 HZ LYS 265 95.97 67.367 76.691 1.00 0.00 ATOM 3531 HZ LYS 265 95.97 67.367 76.691 1.00 0.00 ATOM 3531 HZ LYS 265 95.97 67.367 76.691 1.00 0.00 ATOM 3531 HZ LYS 265 95.97 67.367 76.691 1.00 0.00 ATOM 3531 HB LYS 265 95.97 67.367 76.691 1.00 0.00 ATOM 3534 H LYS 265 95.97 67.367 76.691 1.00 0.00 ATOM 3534 H LYS 265 95.97 67.367 76.691 1.00 0.00 ATOM 3534 LYB 265 96.40 66.311 78.789 1.00 0.00 ATOM 3534 LYB 265 96.40 66.311 78.789 1.00 0.00 ATOM 3534 LYB 265 97.476 77.575 76.001 1.00 0.00 ATOM 3540 HD LYS 265 91.98 65.447 77.35 76.691 1.00 0.00 ATOM 3541 LYB 265 91.98 65.467 77.35 76.001 1.00 0.00 ATOM 3542 HB LYS 265 90.660 66.311 78.789 1.00 0.00 ATOM 3543 HA LYS 265 90.660 66.311 78.789 1.00 0.00 ATOM 3540 HD LYS 265 90.660 66.311 78.789 1.00 0.00 ATOM 3540 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3540 C ASN 266 98.622 67.927	ATOM	3515	2HB	LYS	264	94.873	67.717				. н
ATOM 3518 LHD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3519 2HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3520 LHE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3521 2HE LYS 265 95.810 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3526 CB LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3529 CE LYS 265 93.810 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 98.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3532 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 3HZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3532 LHZ LYS 265 89.430 65.791 77.892 1.00 0.00 ATOM 3533 HHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3532 HLZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 HHZ LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3531 LHZ LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3532 HLZ LYS 265 99.348 66.794 76.905 1.00 0.00 ATOM 3534 H LYS 265 95.376 65.197 78.066 1.00 0.00 ATOM 3535 HA LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3536 HB LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3537 2HB LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3540 LHD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.900 1.00 0.00 ATOM 3542 HE LYS 265 91.908 67.797 76.801 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3540 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3540 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3540 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 354	ATOM	3516	1HG	LYS	264	96.375	65.790	82.559			н
ATOM 3518 1HD LYS 264 95.990 67.646 85.005 1.00 0.00 ATOM 3519 2HD LYS 264 94.763 66.533 84.400 1.00 0.00 ATOM 3520 1HE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3521 2HE LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 HZ LYS 265 89.430 65.791 77.696 1.00 0.00 ATOM 3533 HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 HZ LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 HB LYS 265 95.37 65.197 78.066 1.00 0.00 ATOM 3537 2HB LYS 265 95.346 65.750 76.053 1.00 0.00 ATOM 3538 LHG LYS 265 93.348 64.723 78.901 1.00 0.00 ATOM 3539 LHZ LYS 265 93.348 64.723 78.901 1.00 0.00 ATOM 3534 H LYS 265 93.348 64.723 78.066 1.00 0.00 ATOM 3535 HA LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3536 LHB LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3537 2HB LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3540 LHD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3541 LHD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 LHE LYS 265 90.670 64.492 78.170 1.00 0.00 ATOM 3540 LHD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3541 AND ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3542 HB LYS 265 90.660 68.351 73.900 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3540 AND ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3541 AND ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3545 CA ASN 266 99.918 67.198 75.955 1.00 0.00 ATOM	ATOM	3517	2HG	LYS	· 264	97.603	66.872	83.218	1.00		H
ATOM 3519 2HD LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3520 1HE LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3525 O LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3526 CB LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3527 CG LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 1HZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 3HZ LYS 265 89.430 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3535 HA LYS 265 95.976 65.197 78.091 1.00 0.00 ATOM 3536 1HB LYS 265 95.976 65.197 78.091 1.00 0.00 ATOM 3537 2HB LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3538 1HC LYS 265 95.976 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3537 2HB LYS 265 93.466 65.250 76.691 1.00 0.00 ATOM 3538 HG LYS 265 93.466 65.250 76.691 1.00 0.00 ATOM 3536 1HB LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3537 2HB LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3534 1HC LYS 265 93.160 66.312 78.049 1.00 0.00 ATOM 3534 1HC LYS 265 93.160 66.312 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3541 2HD LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3542 AN ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3543 2HC LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3540 AN ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 AN ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 AN ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 AN ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 AN ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 AN ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 AN ASN 266 99.262 68.052 73.108 1.00 0.00				LYS	264	95.990	67.646	85.005	1.00	0.00	H
ATOM 3520 1HB LYS 264 96.164 64.551 84.944 1.00 0.00 ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 99.672 65.560 77.889 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 3HZ LYS 265 89.430 66.794 76.905 1.00 0.00 ATOM 3533 1HZ LYS 265 89.460 65.250 76.649 1.00 0.00 ATOM 3533 HL LYS 265 89.460 65.250 76.649 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 HB LYS 265 94.423 66.794 76.905 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.651 1.00 0.00 ATOM 3538 HG LYS 265 94.456 65.750 76.651 1.00 0.00 ATOM 3539 LHZ LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3539 LHG LYS 265 94.456 65.750 76.651 1.00 0.00 ATOM 3534 H LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3535 LH LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LHD LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LHD LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LHD LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3534 LHD LYS 265 93.766 64.492 78.784 1.00 0.00 ATOM 3542 LHE LYS 265 90.660 66.228 78.842 1.00 0.00 ATOM 3542 LHE LYS 265 90.660 66.238 78.842 1.00 0.00 ATOM 3540 LHD LYS 265 90.660 66.238 78.842 1.00 0.00 ATOM 3540 LHD LYS 265 90.660 66.276 75.555 1.00 0.00 ATOM 3540 LHD LYS 265 90.660 66.276 75.555 1.00 0.00 ATOM 3540 RD LYS 265 90.660 66.276 75.555 1.00 0.00 ATOM 3540 RD LYS 265 90.660 66.276 75.555 1.00 0.00 ATOM 3540 RD LYS 265 90.660 66.276 75.555 1.00 0.00 ATOM 3540 RD LYS 265 90.660 66.276 75.555 1.00 0.00 ATOM 3540 RD LYS 265 90.660 66.276 75.555 1.00 0.00 ATOM 3540 RD LY					264	94.763	66.533	84.400	1.00	0.00	H
ATOM 3521 2HE LYS 264 97.564 65.563 85.324 1.00 0.00 ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.801 66.235 77.699 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3529 CE LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3532 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 HZ LYS 265 89.430 65.791 77.866 1.00 0.00 ATOM 3534 H LYS 265 89.430 65.794 76.905 1.00 0.00 ATOM 3535 HA LYS 265 89.440 65.250 76.249 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 LHB LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 LHB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3538 HG LYS 265 94.456 65.750 76.695 1.00 0.00 ATOM 3539 2HG LYS 265 93.146 64.723 78.049 1.00 0.00 ATOM 3534 H LYS 265 93.146 66.311 78.789 1.00 0.00 ATOM 3535 LYB LYS 265 93.146 66.311 78.789 1.00 0.00 ATOM 3534 LHB LYS 265 93.146 66.311 78.789 1.00 0.00 ATOM 3535 LYB LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3541 LHD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3541 LHD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 LHE LYS 265 90.660 66.128 78.842 1.00 0.00 ATOM 3543 LHB LYS 265 90.660 66.128 78.842 1.00 0.00 ATOM 3545 CA ASN 266 99.262 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 99.262 67.927 75.454 1.00 0.00 ATOM 3547 O ASN 266 99.262 67.927 75.454 1.00 0.00 ATOM 3548 CB ASN 266 99.262 67.927 75.454 1.00 0.00 ATOM 3549 CB ASN 266 99.262 67.927 75.454 1.00 0.00 ATOM 3540 LHD LYS 265 90.660 99.316 67.325 77.555 1.00 0.00 ATOM 3541 AND 266 99.316 67.935 77.555 1.00 0.00 ATOM 3545 CA ASN 266 99.366 99.360 67.367 75.550 1.00 0.00 ATOM 3545 CA ASN 266 99.366 97.476 67.935 75.950 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836				LYS	264	96.164	64.551	84.944	1.00	0.00	н
ATOM 3522 N LYS 265 95.801 67.156 78.879 1.00 0.00 ATOM 3523 CA LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3524 C LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 88.620 65.492 77.686 1.00 0.00 ATOM 3532 LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3535 HA LYS 265 95.97 65.197 78.061 1.00 0.00 ATOM 3536 LB LYS 265 95.97 65.197 78.066 1.00 0.00 ATOM 3537 LB LYS 265 95.97 65.197 78.066 1.00 0.00 ATOM 3538 HG LYS 265 94.436 65.750 76.691 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 LHD LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3541 LHD LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3541 LHD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3542 LHE LYS 265 91.792 67.079 76.801 1.00 0.00 ATOM 3543 PHE LYS 265 91.792 67.079 76.801 1.00 0.00 ATOM 3540 CH LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3541 CH LYS 265 90.660 64.492 78.170 1.00 0.00 ATOM 3542 CA ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3545 CA ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3546 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3547 O ASN 266 99.364 67.785 73.900 1.00 0.00 ATOM 3548 CB ASN 266 99.18 67.987 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND ASN 266 99.18 67.198 75.952 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00						97.564	65.563	85.324	1.00	0.00	H
ATOM 3523 CA LYS 265 95.810 66.235 77.699 1.00 0.00 ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 NZ LYS 265 89.430 65.792 77.686 1.00 0.00 ATOM 3533 NZ LYS 265 89.440 65.250 76.249 1.00 0.00 ATOM 3533 HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 LHB LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 LHB LYS 265 95.37 65.197 76.661 1.00 0.00 ATOM 3537 LHB LYS 265 94.432 67.367 76.691 1.00 0.00 ATOM 3538 HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 ZHG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 ZHG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 ZHG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LHE LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3534 LHE LYS 265 91.792 67.079 76.801 1.00 0.00 ATOM 3540 LHD LYS 265 91.792 67.079 76.801 1.00 0.00 ATOM 3541 LHE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3542 LHE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3540 LHD LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3540 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3541 C ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3542 C ASN 266 99.266 68.052 73.108 1.00 0.00 ATOM 3545 C A ASN 266 99.266 68.052 73.108 1.00 0.00 ATOM 3540 C ASN 266 99.18 67.198 75.555 1.00 0.00 ATOM 3540 C ASN 266 99.18 67.198 75.555 1.00 0.00 ATOM 3551 ND 2 ASN 266 101.533 68.726 77.5570 1.00 0.00							67.156	78.879	1.00	0.00	N
ATOM 3524 C LYS 265 96.949 66.440 76.629 1.00 0.00 ATOM 3525 O LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 88.620 65.492 77.686 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 HA LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3536 LHB LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3537 2HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3538 LHG LYS 265 93.348 64.723 78.066 1.00 0.00 ATOM 3538 LHG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 LHD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3542 LHE LYS 265 91.908 65.464 76.990 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3549 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3549 CB ASN 266 99.918 67.785 73.900 1.00 0.00 ATOM 3549 CB ASN 266 99.9262 68.052 73.108 1.00 0.00 ATOM 3549 CB ASN 266 99.9262 68.052 73.108 1.00 0.00 ATOM 3549 CB ASN 266 99.9262 68.052 73.108 1.00 0.00 ATOM 3549 CB ASN 266 99.9262 68.052 73.108 1.00 0.00 ATOM 3549 CB ASN 266 99.9262 68.052 73.108 1.00 0.00 ATOM 3549 CB ASN 266 99.9262 74.985 75.955 1.00 0.00 ATOM 3549 CB ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3551 ND2 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00									1.00	0.00	С
ATOM 3526 CB LYS 265 97.292 65.473 75.946 1.00 0.00 ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 88.620 65.492 77.686 1.00 0.00 ATOM 3533 3HZ LYS 265 89.436 65.791 77.125 1.00 0.00 ATOM 3533 3HZ LYS 265 89.446 65.250 76.249 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 HB LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.691 1.00 0.00 ATOM 3538 HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3538 LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3544 N ASN 266 99.918 65.464 76.090 1.00 0.00 ATOM 3545 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3540 CA ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3540 CA ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3540 CA ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3540 CA ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3540 CA ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3551 ND2 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00									1.00	0.00	С
ATOM 3526 CB LYS 265 94.419 66.320 77.003 1.00 0.00 ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3532 2HZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3533 HL LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 HL LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 HB LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3540 1HD LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 99.620 67.927 75.454 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3547 O ASN 266 99.640 66.128 78.842 1.00 0.00 ATOM 3548 CB ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3549 CG ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3540 CASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3541 CASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3542 CASN 266 99.866 101.331 67.657 75.554 1.00 0.00 ATOM 3543 CB ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3545 CA ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3540 CB ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3541 CB ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3545 CB ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3540 CB ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3540 CB ASN 266 99.862 67.927 75.454 1.00 0.00 ATOM 3540 CB ASN 266 99.862 67.927 75.454 1.00 0.00									1.00	0.00	0
ATOM 3527 CG LYS 265 93.209 65.795 77.809 1.00 0.00 ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 88.620 65.492 77.686 1.00 0.00 ATOM 3531 LHZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3532 2HZ LYS 265 89.430 65.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 HG LYS 265 93.460 66.311 78.789 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3542 1HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 35540 ND ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3545 CA ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3545 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3545 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3545 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3545 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3545 ND ASN 266 99.918 67.957 75.554 1.00 0.00 ATOM 3551 ND ASN 266 99.918 67.957 75.554 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00											С
ATOM 3528 CD LYS 265 91.881 66.006 77.056 1.00 0.00 ATOM 3529 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 1HZ LYS 265 88.430 65.791 77.125 1.00 0.00 ATOM 3532 2HZ LYS 265 88.430 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3549 CG ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.785 73.900 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.795 75.554 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 ND ASN 266 99.18 67.198 75.952 1.00 0.00 ATOM 3554 CA ASN 266 99.18 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 99.18 67.198 75.952 1.00 0.00 ATOM 3551 ND ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00											c
ATOM 3528 CE LYS 265 90.672 65.560 77.889 1.00 0.00 ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 LHZ LYS 265 88.620 65.492 77.686 1.00 0.00 ATOM 3532 2HZ LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 LHB LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 LHB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 LHD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3547 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3549 CG ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3549 CG ASN 266 99.262 78.554 1.00 0.00 ATOM 3550 OD1 ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3551 ND2 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00											c
ATOM 3530 NZ LYS 265 89.430 65.791 77.125 1.00 0.00 ATOM 3531 1HZ LYS 265 88.620 65.492 77.686 1.00 0.00 ATOM 3532 2HZ LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3533 3HZ LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.956 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00											Ċ
ATOM 3531 1HZ LYS 265 88.620 65.492 77.686 1.00 0.00 ATOM 3532 2HZ LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3536 1HB LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.702 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00											N
ATOM 3532 2HZ LYS 265 89.343 66.794 76.905 1.00 0.00 ATOM 3533 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00											н
ATOM 3532 3HZ LYS 265 89.460 65.250 76.249 1.00 0.00 ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3530 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3540 1HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.760 66.125 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 101.331 67.657 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00											н
ATOM 3534 H LYS 265 95.178 67.973 78.921 1.00 0.00 ATOM 3535 HA LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00	ATOM										н
ATOM 3535 HA LYS 265 95.937 65.197 78.066 1.00 0.00 ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.785 73.900 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00	MOTA	3533	3HZ								
ATOM 3536 1HB LYS 265 94.232 67.367 76.691 1.00 0.00 ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.18 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3551 ND2 ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 97.146 68.365 77.079 1.00 0.00	ATOM	3534	H	LYS	265						H
ATOM 3537 2HB LYS 265 94.456 65.750 76.053 1.00 0.00 ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.18 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3551 ND2 ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00	MOTA	3535	HA	Päs	265						н
ATOM 3537 2HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3538 1HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 102.317 67.635 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00	MOTA	3536	1HB	LYS	265	94.232					н
ATOM 3538 1HG LYS 265 93.348 64.723 78.049 1.00 0.00 ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.18 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00	ATOM	3537	2HB	LYS	265	94.456	65.750	76.053			H
ATOM 3539 2HG LYS 265 93.160 66.311 78.789 1.00 0.00 ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3547 O ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3548 CB ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3549 CG ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3550 OD1 ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 102.317 67.657 75.554 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00				LYS	265	93.348	64.723	78.049			H
ATOM 3540 1HD LYS 265 91.772 67.079 76.801 1.00 0.00 ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.673 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00				LYS	265	93.160	66.311	78.789			H
ATOM 3541 2HD LYS 265 91.908 65.464 76.090 1.00 0.00 ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.575 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.052 77.079 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00					265	91.772	67.079	76.801	1.00	0.00	H
ATOM 3542 1HE LYS 265 90.760 64.492 78.170 1.00 0.00 ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.622 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00						91.908	65.464	76.090	1.00	0.00	H
ATOM 3543 2HE LYS 265 90.640 66.128 78.842 1.00 0.00 ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00						90.760	64.492	78.170	1.00	0.00	H
ATOM 3544 N ASN 266 97.497 67.659 76.420 1.00 0.00 ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00							66.128	78.842	1.00	0.00	Ħ
ATOM 3545 CA ASN 266 98.622 67.927 75.454 1.00 0.00 ATOM 3546 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.635 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00									1.00	0.00	Ŋ
ATOM 3545 C ASN 266 98.354 67.785 73.900 1.00 0.00 ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											C
ATOM 3547 O ASN 266 99.262 68.052 73.108 1.00 0.00 ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											C
ATOM 3548 CB ASN 266 99.918 67.198 75.952 1.00 0.00 ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											Ġ
ATOM 3549 CG ASN 266 101.331 67.657 75.554 1.00 0.00 ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											Č
ATOM 3550 OD1 ASN 266 102.317 67.035 75.926 1.00 0.00 ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											Č
ATOM 3551 ND2 ASN 266 101.533 68.726 74.836 1.00 0.00 ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											
ATOM 3552 H ASN 266 97.146 68.365 77.079 1.00 0.00 ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											IN
ATOM 3553 HA ASN 266 98.819 69.010 75.570 1.00 0.00											E E
ATOM 3555 III IIII											
ATOM 3554 1HB ASN 266 99.928 67.201 77.057 1.00 0.00											H
	ATOM	3554	1HB	ASN	266	99.928	67.201	77.057	1.00	0.00	E

MOTA	3555	2HB	asn	266	99.845	66.127	75.691	1.00	0.00		H
MOTA		1HD2		266	102.525	68.892	74.616	1.00	0.00		н
MOTA		2HD2		266	100.737	68.989	74.248	1.00	0.00		H
MOTA	3558	N	GLU	267	97.150	67.411	73.431	1.00	0.00		N
МОТА	3559	CĀ	GIM	267	96.876	67.153	71.985	1.00	0,00		С
ATOM	3560	C	GLU	267	96.696	68.462	71.129	1.00	0.00		C
ATOM	3561	o	GLU	267	95.588	68.985	70.971	1.00	0.00		0
ATOM	3562	CB	GLU	267	95.662	66.183	71.946	1.00	0.00		C
ATOM	3563	CG	GLU	267	95.357	65.583	70.549	1.00	0.00		C
ATOM	3564	CD	GLU	267	94.191	64.600	70.541	1.00	0.00		С
ATOM	3565	OE1	GLU	267	94.308	63.397	70.740	1.00	0.00		0
ATOM	3566		GLU	267	93.002	65.207	70.284	1.00	0.00		Ó
ATOM		н	GLU								
	3567			267	96.511	67.122	74.178	1.00	0.00		H
ATOM	3568	HA	GTA	267	97.734	66.589	71.560	1.00	0.00		H
ATOM	3569	1HB	GLU	267	95.833	65.341	72.650	1.00	-0.00		H
ATOM	3570	2HB	GLU	267	94.761	66.704	72.329	1.00	0.00		H
ATOM	3571		GLU	267	95.145	66.387	69.818	1.00	0.00		H
MOTA	3572		GLU								H
				267	96.246	65.055	70.155	1.00	0.00		
MOTA	3573	N	TYR	268	97.801	68.977	70.566	1.00	0.00		N
MOTA	3574	CA	TYR	268	97.809	70.263	69.810	1.00	0.00		С
MOTA	3575	С	TYR	268	97.716	70.049	68.260	1.00	0.00		С
MOTA	3576	0	TYR	268	98.681	69.627	67.613	1.00	0.00		0
			TYR								č
ATOM	3577	CB		268	99.087	71.069	70,197	1.00	0.00		
ATOM	3578	CG	TYR	268	99.105	71.681	71.610	1.00	0.00		С
ATOM	3579	CD1	TYR	268	99.934	71.160	72.610	1.00	0.00		C
ATOM	3580	CD2	TYR	268	98.293	72.781	71.901	1.00	0.00		C
ATOM	3581	CE1	TYR	268	99.936	71.723	73.886	1.00	0.00		C
ATOM	3582	CE2		268	98.311						č
						73.348	73.172	1.00	0.00		
MOTA	3583	CZ	TYR	268	99.135	72.824	74.159	1.00	0.00		<u>C</u>
ATOM	3584	OH	TYR	_268_	99.,129	73384~	75 - 404	-1-00	00.0_		0
- ATOM -	3585	H	TYR '	268	98.686	68.459	70.662	1:00	0.00	• •	H.
ATOM	3586	HA	TYR	268	96.943	70.887	70.118	1.00	0.00		H
ATOM	3587		TYR	268	99.988	70.447	70.028	1.00	0.00		H
ATOM	3588		TYR	268	99.218	71.902	69.480	1.00	0.00		H
ATOM	3589		TYR	268	100.574	70.315	72.401	1.00	0.00		H
MOTA	3590	HD2	TYR	268	97.630	73.189	71.151	1.00	0.00		H
MOTA	3591	HE1	TYR	268	100.564	71.324	74.667	1.00	0.00		H
MOTA	3592	HE2	TYR	268	97.647	74.166	73.408	1.00	0.00		н
MOTA	3593	HH	TYR	268	98.543	74.141	75.387	1.00	0.00		H
MOTA	3594	N	SER	269	96.568	70.395	67,653	1.00	0.00	, .	N
MOTA	3595	CA	SER	269	96.405	70.397	66.171	1.00	0.00		C
ATOM	3596	С	SER	269	96.971	71.702	65.513	1.00	0.00		C
ATOM	3597	0	SER	269	96.390	72.782	65.646	1.00	0.00		0
ATOM	3598	CB	SER	269	94.904	70.187	65.869	1.00	0.00		C
ATOM	3599	OG	SER	269_		- 70:101-			0.00		0
ATOM	3600	H	SER	269	95.820	70.687	68.289	1.00	0.00		H
ATOM	3601	HA	SER	269	96.930	69.519	65.741	1.00	0.00		H
ATOM	3602	1HB	SER	269	94.538	69.257	66.349	1.00	0.00		H
ATOM	3603	2HB	SER	269	94.294	71.008	66.298	1.00	0.00		H
ATOM	3604	HG							0.00		H
			SER	269	94.931	70.946	64.075	1.00			
ATOM	3605	N	ILE	270	98.101	71.600	64.796	1.00	0.00		N
ATOM	3606	CA	ILE	270	98.790	72.785	64.192	1.00	0.00		С
ATOM	3607	C	ILE	270	98.061	73.392	62.921	1.00	0.00		C
ATOM	3608	0	ILE	270	97.670	72.619	62.038	1.00	0.00		0
ATOM	3609	CB	ILE	270	100.313	72.516	63.902	1.00	0.00		Ċ
MOTA	3610	CG1		270	100.607	71.347	62.913	1.00	0.00		С
MOTA	3611	CG2	ILE	270	101.142	72.357	65.205	1.00	0.00		С
MOTA	3612	CD1	ILE	270	101.972	71.429	62.207	1.00	0.00		С
MOTA	3613	Ħ	ILE	270	98.550	70.680	64.833	6.00	0.00		<u> </u>
يوفر آران بر	2623	1	TLE	ن ز نہ	98.791	73.563	64.976	1.00	0.00		H
											13 14
TOM	3615	HB.	ILE.	270	100.693	701.441	63.419	1.00	0.00		
LTOM	3613	1 277	===	275	100.50%	· " . 2 ~ 2	521115	(11)			H
-11-11	7. F 3. T		111	577	7 # x 50 4	11-	· · · · ·		2.2		-
						· -	· · ·	_			•
	-1	==				_					
-			<u></u>				-	~-			
							-				
				_							
		-		-							
			_								

									0.00
MOTA	3628	0	PRO	271	99.637	75.076	60.365	0.00	
ATOM	3629	CB	PRO	271	97.285	76.826	61.795	0.00	0.00
ATOM	3630	CG	PRO	271	97.187	76.890	63.320	0.00	0.00
ATOM	3631	HA	PRO	271	96.457	74.900	61.214	0.00	0.00
	3632		PRO	271	99.104	76.028	63.948	0.00	0.00
MOTA					97.663	75.374	64.789	0.00	0.00
ATOM	3633		PRO	271			61.302	0.00	0.00
ATOM	3634		PRO	271	96.401	77.273		0.00	0.00
ATOM	3635	2HB	PRO	271	98.155	77.425	61.460		
MOTA	3636	1HG	PRO	271	96.138	76.747	63.647	0.00	0.00
MOTA	3637	2HG	PRO	271	97.527	77.855	63.736	0.00	0.00
MOTA	3638	N	LYS	272	97.848	75.012	59.012	1.00	0.00
	3639	CA	LYS	272	98.620	74.638	57.781	1.00	0.00
ATOM				272	99.753	75.604	57.258	1.00	0.00
MOTA	3640	C	LYS			75.181	56.429	1.00	0.00
MOTA	3641	0	LYS	272	100.562		56.660	1.00	0.00
MOTA	3642	CB	LYS	272	97.590	74.311			0.00
MOTA	3643	CG	LYS	272	96.728	73.042	56.890	1.00	
ATOM	3644	CD	LYS	272	95.734	72.788	55.741	1.00	0.00
MOTA	3645	CE	LYS	272	94.875	71.542	55.996	1.00	
ATOM	3646	NZ	LYS	272	93.936	71.353	54.873	1.00	0.00
	3647		LYS	272	93.359	70.516	55.044	1.00	0.00
MOTA					93.326	72.179	54.792	1.00	0.00
MOTA	3648		LYS	272			53.998	1.00	0.00
MOTA	3649		LYS	272	94.465	71.231			0.00
ATOM	3650	H	LYS	272	96.826	74.945	59.037	1.00	
ATOM	3651	HA	LYS	272	99.166	73.697	58.001	1.00	0.00
ATOM		1HB	LYS	272	96.940	75.189	56.482	1.00	0.00
ATOM	3653		LYS	272	98.135	74.172	55.706	1.00	0.00
	3654		LYS	272	97.390	72.162	57.013	1.00	0.00
ATOM					96.173	73.124	57.844	1.00	0.00
ATOM	3655		LYS	272			55.612	1.00	0.00
MOTA	3656		LYS	272	95.079	73.673			0.00
ATOM	3657	2HD	LYS	272	96.288	72.683	54.786	1.00	•
ATOM	3658	1HE	LYS	272	95.515	70.644	56.117	1.00	0.00
ATOM	3659	2HE	LYS	272	94.310	71.646	56.944	1.00	0.00
ATOM	3660	N	HIS	273	99.852	76.859	57.732	0.00	0.00
		CA	HIS	273	101.068	77.716	57.532	0.00	0.00
MOTA	3661				102.303	77.505	58.495	0.00	0.00
MOTA	3662	C	HIS	273			58.261	0.00	0.00
ATOM	3663	o	HIS	273	103.356	78.106		0.00	0.00
MOTA	3664	CB	HIS	273	100.609	79.199	57.426		
ATOM	3665	CG	HIS	273	100.004	79.854	58.670	0.00	0.00
MOTA	3666	ND1	HIS	273	100.759	80.491	59.641	0.00	0.00
ATOM	3667		HIS	273	99.745	80.966	60.435	0.00	0.00
	3668		HIS	273	98.441	80.711	60.103	0.00	0.00
MOTA			HIS	273	98.631	79.995	58.934	0.00	0.00
ATOM	3669				99.200	77.027	58.504	0.00	0.00
ATOM	3670	H	HIS	273			56.535	0.00	0.00
MOTA	3671	HA	HIS	273	101.491	77.482			
MOTA	3672	1HB	\mathtt{HIS}	273	99.904	79.300	56.580	0.00	0.00
ATOM	3673	2HB	HIS	273	101.478	79.808	57.111	0.00	0.00
ATOM	3674		HIS	273	99.988	81.567	61.300	0.00	0.00
ATOM	3675		HIS	273	97.590	81.135	60.489	0.00	0.00
	3676		HIS	273	97.843	79.641	58.283	0.00	0.00
ATOM			ILE	274	102.221	76.650	59.534	1.00	0.00
ATOM	3677				103.380	76.285	60.408	1.00	0.00
MOTA	3678		ILE	274	104.287	75.247	59.646	1.00	0.00
MOTA	3679		ILE	274				1.00	0.00
ATOM	3680	0	ILE	274	103.846	74.144	59.306		
ATOM	3681	CB	ILE	274	102.859	75.786	61.818	1.00	0.00
ATOM	3682		ILE	274	102.352	76.893	62.794	1.00	0.00
ATOM	3683		ILE	274	103.914	74.996	62.640	1.00	0.00
	3684		ILE	274	101.144	77.724	62.340	1.00	0.00
MOTA				274	101.319	76.162	59.609	1.00	0.00
MOTA	3685		ILE		103.981	77.196	60.601	1.00	0.00
MOTA	3686		ILE	274				1.00	
ATOM	3687		ILE	274	102.021	75.081	61.635		
ATOM		1HG1		274	102.069	76.430	63.760	1.00	
ATOM		2HG1		274	103.185	77.575	63.045	1.00	
ATOM		2HG2		274	104.283	74.114	62.088	1.00	
ATOM	3601	3HG2	11.12	274	104.802	75.606	62.892	1.00	0.00
		1HG2		274	103.506	74.600	63.590		
ATOM					101.395	78.386			
ATOM		2HD1		274					
MOTA		3HD1		274	100.312	77.074		_	
MOTA	3699	1HD1	ILE	274	100.765	78.375	63.149		
ATOM	3696	N	asn	275	105.570	75.583			
MOTA	3697		asn	275	106.556	74.631			
ATOM	3698		ASN	275	107.024	73.470	59.801	1.00	
	3699		ASN		106.988	73.680		100	0.00
ATOM					107.707	75.475			
MOTA	3700	CB	ASN	275	,				

MOTA	3701	CG	ASN	275	108.908	75.847	59.075	1.00	0.00		C
MOTA	3702		asn	275	109.770	75.027	59.362	1.00	0.00		. 0
ATOM	3703		ASN	275	109.051	77.070	59.501	1.00	0.00		N
ATOM	3704	H	ASN	275	105.796	76.553	59.657	1.00	0.00		H
ATOM	3705	HA	ASN	275	T06.038	74.137	57.980	1.00	0.00		H
ATOM	3706		ASN	275	108.130	74.902	57.357	1.00	0.00		H
ATOM	3707		ASN	275	107.304	76.377	57.702	1.00	0.00		H
ATOM		1HD2		275	109.868	77.196	60.104	1.00	0.00		H
ATOM ATOM	3709			275	108.261	77.716	59.370	1.00	0.00		H
ATOM	3710	CA CA	PRO PRO	276 276	107.529	72.281	59.351	1.00	0.00		И
ATOM	3711 3712	C.	PRO	276 276	108.012 109.169	71.204 71.505	60.272 61.293	1.00	0.00		c
ATOM	3713	õ	PRO	276	109.175	70.916	62.375	1.00	0.00		0
ATOM	3714	CB	PRO	276	108.317	70.048	59.295	1.00	0.00		Č
ATOM	3715	CG	PRO	276	108.521	70.705	57.929	1.00	0.00		č
MOTA	3716	CD	PRO	276	107.552	71.883	57.930	1.00	0.00		č
MOTA	3717	HA	PRO	276	107.154	70.888	60.894	1.00	0.00		н
MOTA	3718		PRO	276	109.183	69.429	59.600	1.00	0.00		H
MOTA	3719		PRO	276	107.450	69.360	59.253	1.00	0.00		H
MOTA	3720	1HG	PRO	276	109.564	71.066	57.829	1.00	0.00		H
ATOM	3721	2HG	PRO	276	108.334	70.011	57.088	1.00	0.00		H
ATOM	3722	1HD	PRO	276	107.894	72.676	57.242	1.00	0.00		H
ATOM	3723	2HD	PRO	276	106.538	71.571	57.604	1.00	0.00		H
ATOM	3724	N	VAL	277	110.109	72.418	60.991	1.00	0.00		N
ATOM	3725	CA	VAL	277	111.112	72.927	61.992	1.00	0.00		C
ATOM	3726	C	VAL	277	110.471	73.844	63.108	1.00	0.00		С
ATOM	3727	0_	VAL	277	110.775	73.669	64.292	1.00	0.00		0
ATOM	3728	CB	VAL	277	112.343	73.601	61.275	1.00	0.00		c
ATOM	3729		VAL	277	113.500	73.923	62.250	1.00	0.00		c_
ATOM ATOM	3730 3731	H'	VAL.	277 277	112.986-		-60-130 60.110	1.00	0.00	٠.	C H
ATOM	3732	HA	VAL	277	109.923 111.515	72.910	62.533	1.00	0.00		H
ATOM	3733	нв	VAL	277	111.989	74.556	60.836	1.00	0.00		н
ATOM		1HG1		277	113.946	73.012	62.689	1.00	0.00		н
ATOM		2HG1		277	114.317	74.489	61.763	1.00	0.00		H
ATOM		3HG1		277	113.158	74.543	63.096		0.00		H
MOTA	3737	2HG2	VAL	277	112.267	72.588	59.312	1.00	0.00		· H
MOTA	3738	3HG2	VAL	277	113.844	73.303	59.667	1.00	0.00		H
MOTA	3739	1HG2	VAL	277	113.347	71.793	60.477	1.00	0.00		H
ATOM	3740	N	ALA	278	109.573	74.787	62.751	1.00	0.00		N
ATOM	3741	CA	ALA	278	108.679	75.464	63.733	1.00	0.00		C
ATOM	3742	С	ALA	278	107.712	74.540	64.557	1.00	0.00		C
ATOM	3743	0	ALA	278	107.630	74.703	65.775	1.00	0.00		0
ATOM	3744	CB	ALA	278	107.921	76.556	62.955	1.00	0.00		C .
ATOM	3745		ALA			74.738	61.754	1.00	0.00		H
ATOM	3746	HA	ALA	278	109.320	75.978	64.478	1.00	0.00		H
ATOM ATOM	3747 3748		ALA ALA	278 278	108.606 107.273	77.275	62.472	1.00	0.00		H
ATOM	3749	1HB	ALA	278	107.267	76.132 77.145	62.163 63.624	1.00	0.00		H H
ATOM	3750	и	ALA	279	107.026	73.560	63.934	1.00	0.00		И
ATOM	3751	CA	ALA	279	106.300	72.479	64.659	1.00	0.00		c
ATOM	3752		ALA	279	107.139	71.631	65.676	1.00	0.00		č
MOTA	3753		ALA	279	106.714	71.487	66.822	1.00	0.00		ō
ATOM	3754		ALA	279	105.640	71.588	63.591	1.00	0.00		č
MOTA	3755		ALA	279	107.144	73.548	62.910	1.00	0.00		н
MOTA	3756		ALA	279	105.486	72.953	65.245	1.00	0.00		н
MOTA	3757	2HB	ALA	279	105.033	72.162	62.868	1.00	0.00		H
MOTA	3758	3HB	ALA	279	106.390	71.021	63.011	1.00	0.00		H
ATOM	3759		ALA	279	104.968	70.841	64 053	1 00	0.20		π
IIICII	3750		>£k	280	108.235	71.141	65.295	1.00	0.00		M
s LOL	37 61		ger	280	100.313	70.528	66.236	1.00	0.00		C
<u> </u>	2.7.52		.3ET.	150	1021777	TETTE	· = 4.66	2.13	2.00		:1"
-TIII		·		::		77.	_ £5.£		- ~		
						• . • •					

						113				
ATOM	3774	0	LEU	281	109.153	74.008	70.512	0.00	0.00	
MOTA	3775	CB	LEU	281	110.916	74.971	67.767	0.00	0.00	
MOTA	3776	CG	LEU	281	111.466	76.022	68.769 69.510	0.00	0.00	
MOTA	3777	CD1		281	112.724 111.794	75.538 77.333	68.038	0.00	0.00	
ATOM	3778	CD2	LEU	281 281	110.044	73.008	66.280	0.00	0.00	
ATOM	3779	H HA	LEU	281	111.034	73.249	69.067	0.00	0.00	
ATOM ATOM	3780 3781		LEU	281	110.155	75.447	67.118	0.00	0.00	
ATOM	3782	2HB	PEA	281	111.735	74.695	67.073	0.00	0.00	
ATOM	3783	HG	LEU	281	110.686	76.238	69.526	0.00	0.00	
ATOM	3784	1HD1	TEA	281	113.118	76.305	70.202	0.00	0.00	
MOTA	3785	2HD1	LEU	281	112.523	74.639	70.123	0.00	0.00	
MOTA	3786			281	113.541	75.285	68.812	0.00	0.00	
MOTA	3787			281	112.150	78.116 77.195	68.736 67.273	0.00	0.00	
ATOM		2HD2		281 281	112.581 110.909	77.749	67.522	0.00	0.00	
ATOM	3789	3HD2 N	ILE	282	107.811	74.141	68.710	1.00	0.00	
ATOM ATOM	3791	CA	ILE	282	106.519	74.183	69.481	1.00	0.00	
MOTA	3792	C	ILE	282	106.240	72.868	70.311	1.00	0.00	
ATOM	3793	ō	ILE	282	105.937	72.968	71.499	1.00	0.00	
MOTA	3794	CB	ILE	282	105.333	74.624	68.532	1.00	0.00	
MOTA	3795	CG1	ILE	282	105.508	76.060	67.944	1.00	0.00	
MOTA	3796		ILE	282	103.939	74.566	69.215	1.00	0.00 0.00	
MOTA	3797		ILE	282	104.640	76.398	66.716	1.00	0.00	
MOTA	3798	H	ILE	282	107.829	74.102 74.980	67.681 70.244	1.00	0.00	
ATOM	3799	HA	ILE	282	106.618 105.319	73.908	67.686	1.00	0.00	
MOTA	3800	HB 1HG1	ILE	282 282	105.354	76.820	68.735	1.00	0.00	
MOTA MOTA		2HG1		282	106.559	76.201	67.631	1.00	0.00	
MOTA		2HG2		282	103.703	73.553	69.590	1.00	0.00	
MOTA		3HG2		282	103.874	75.257	70.076	1.00	0.00	
ATOM	3805	1HG2	ILE	282	103.116	74.826	68.525	1.00	0.00	
ATOM		2HD1		282	104.804	75.679	65.892	1.00	0.00	
MOTA		3HD1		282	103.559	76.401	66.950	1.00	0.00	
MOTA		1HD1		282	104.881	77.403 71.662	66.322 69.727	1.00	0.00	•
ATOM	3809	N	GLN	283	106.365 106.324	70.366	70.478	1.00	0.00	
ATOM	3810 3811		GLN GLN	283 283	107.407	70.164	71.602	1.00	0.00	
MOTA MOTA	3812		GLN	283	107.077	69.647	72.669	1.00	0.00	
ATOM	3813		GLN	283	106.371	69.207	69.441	1.00	0.00	
ATOM	3814		GLN	283	105.123	69.066	68.524	1.00	0.00	
MOTA	3815	CD	GLN	283	105.263	67.998	67.437	1.00	0.00	
MOTA	3816	OE1	GLN	283	105.841	68.208	66.378	1.00	0.00	
MOTA	3817			283	104.736	66.821 71.701	67.648 68.728	1.00 1.00	0.00	
ATOM	3818		GLN	283	106.619 105.351	70.309	71.006	1.00	0.00	
ATOM	3819		GLN GLN	283 283	107.284	69.312	68.820	1.00	0.00	
ATOM ATOM	3820 3821		GIM	283	106.509	68.248	69.979	1.00	0.00	
ATOM	3822		GLN	283	104.215	68.892	69.130	1.00	0.00	
ATOM	3823		GLN	283	104.931	70.020	68.000	1.00	0.00	
ATOM	3824	1HE2	GLN	283	104.316	66.660	68.566	1.00	0.00	
ATOM	3825	2HE2		283	104.911	66.152	66.894	1.00	0.00	
MOTA	3826		LYS	284	108.670	70.582 70.663	71.395 ·72.477	1.00	0.00	
MOTA	3827		LYS	284	109.702 109.350	71.603	73.689	1.00	0.00	
ATOM	3828		LYS	284	109.330	71.189	74.843	1.00	0.00	
MOTA	3829 3830		LYS LYS	284 284	111.052	71.077	71.820	1.00	0.00	
MOTA MOTA	3831		LYS	284	111.752	69.995	70.965	1.00	0.00	
ATOM	3832		LYS	284	112.939	70.569	70.164	1.00	0.00	
MOTA	3833		LYS	284	113.574	69.518	69.246	1.00	0.00	
ATOM	3834		LYS	284	114.669	70.131	68.468	1.00	0.00	
MOTA	3835	1HZ	LYS	284	115.093	69.421	67.853	1.00	0.00	•
ATOM		2HZ	LYS	284	114.295	70.901	67.895	1:00	0.00	
ATOM		3HZ	LYS	284	115.385	70.498 70.927	69.111 70.442	1.00 1.00	0.00	
ATOM	3838		LYS	284	108.845 109.825	69.652	70.442	1.00		
MOTA	3839		LYS	284 284	110.891	71.994	71.217	1.00		
MOTA		1HB	LYS	284	111.762	71.394	72,606	1.00		
MOTA MOTA		2 1HG	LYS	284	112.088	69.161	71.612	1.00		
ATOM		2HG	LYS	284	111.023	69.541	70.266	1.00		
ATOM		1HD	LYS	284	112.585	71.426	69.555	1.00		
ATOM		2HD	LYS	284	113.695	70.985	70.860	1.00		
MOTA	3846	1HB	LYS	284	113.956	68.663	69.840	1.00	0.00	

.

....

ATOM		7 2HE	LYS	284	112.813	69.091	68.562	1.00	0.00		н
MOTA	3848	3 N	MET	285	108.903	72.845	73.438	1.00	0.00		N
MOTA	3849	CA.	MET	285	108.343	73.747	74.490	1.00			C
MOTA	3850	C	MET	285	107.007	73.268	75.172	1.00	0.00		C
MOTA	3851		MET	285	106.880	73.356	76.396	1.00	0.00		0
ATOM	3852		MET	285	108.192	75.163	73.863	1.00	0.00		С
ATOM	3853		MET	285	109.509	75.909	73.553	1.00	0.00		C
ATOM	3854		MET	285	109.147	77.567	72.955	1.00	0.00		S
ATOM	3855		MET	285	110.808	78.115	72.529	1.00	0.00		С
ATOM	3856		MET	285	108.820	73.061	72.436	1.00	0.00		H
MOTA	3857		MET	285	109.080	73.822	75.315	1.00	0.00		H
MOTA		1HB	MET	285	107.573	75.105	72.945	1.00	0.00		H
MOTA		2HB	MET	285	107.603	75.796	74.550	1.00	0.00		H
MOTA	3860		MET	285	110.149	75.976	74.452	1.00	0.00		H
MOTA		2HG	MET	285	110.091	75.364	72.785	1.00	0.00		H
MOTA MOTA		1HE	MET	285	111.438	78.200	73.430	1.00	0.00		H
ATOM	3863		MET	285	111.288	77.407	71.829	1.00	0.00		H
ATOM	3865	2HB N	MET	285	110.774	79.105	72.043	1.00	0.00		H
ATOM	3866		Leu Leu	286	106.023	72.769	74.403	0.00	0.00		N
ATOM	3867		LEU	286 286	104.734	72.249	74.938	0.00	0.00		C
ATOM	3868		LEU	286	104.765	70.689	75.136	0.00	0.00		C ·
ATOM	3869		LEU	286	104.191 103.593	69.933	74.344	0.00	0.00		0
ATOM	3870		LEU	286	103.350	72.713 74.234	73.979	0.00	0.00		C
ATOM	3871		LEU	286	102.345	74.488	73.781 72.647	0.00	0.00		C
ATOM	3872		LEU	286	102.828	74.911	75.053	0.00	0.00		C
ATOM	3873		LEU	286	106.248	72.721	73.399	0.00	0.00		C H
ATOM	3874		LEU	286	104.520	72.696	75.927	0.00	0.00		H
ATOM	3875		LEU	286	102.649	72.257	74.326	0.00	0.00		H
ATOM		_2HB	LEU-		- 103-772			0.00	0.00		н
MOTA	3877	HG	LEU	286	104.310	74.702	73.489	0.00	0.00		н
MOTA	3878	1HD1	LEU	286	102.251	75.564	72.415	0.00	0.00		H
MOTA	3879	2HD1	LEU	286	102.649	73.981	71.715	0.00	0.00		H
MOTA	3880	3HD1	LEU	286	101.334	74.117	72.893	0.00	0.00		H
ATOM	3881	1HD2		286	102.662	75.994	74.907	0.00	0.00		H
ATOM	3882			286	101.871	74.475	75.399	0.00	0.00		н
ATOM	3883			286	103.544	74.819	75.886	0.00	0.00	•	Ħ
MOTA	3884	N	GLN	287	105.413	70.203	76.211	0.00	0.00		N
ATOM	3885	CA	GLN	287	105.589	68.743	76.475	0.00	0.00		C
ATOM	3886	C	GLN	287	105.173	68.375	77.939	0.00	0.00		C
ATOM	3887	0	GLN	287	105.882	68.685	78.895	0.00	0.00		0
ATOM ATOM	3888	CB	GLN	287	107.068	68.397	76.131	0.00	0.00		C
ATOM	3889 3890	CC	GLN GLN	287	107.540	66.935	76.360	0.00	0.00		C
ATOM	3891		GLN -	287 287	106.894	65.837	75.513	0.00	_0.00		<u>C</u> :
ATOM	3892		GLN	287	107.388	65.437 65.276	74.467	0.00	0.00		0
ATOM	3893	н	GLN	287	105.978	70.908	75.937 76.702	0.00	0.00		N
ATOM	3894	HA	GLN	287	104.957	68.147	75.785	0.00	0.00		H H
ATOM	3895		GLN	287	107.737	69.060	76.715	0.00	0.00		н
MOTA		2HB	GLN	287	107.271	68.671	75.076	0.00	0.00		н
MOTA	3897		GLN	287	107.477	66.675	77.433	0.00	0.00		н
ATOM	3898	2HG	GLN	287	108.623	66.896	76.145	0.00	0.00		н
MOTA	3899	1HE2	GLN	287	105.310	65.754	76.700	0.00	0.00		H
MOTA	3900	2HE2	GLN	287	105.393	64.634	75.247	0.00	0.00		H
MOTA	3901	N	THR	288	104.048	67.664	78.139	1.00	0.00		N
ATOM	3902	CA	THR	288	103.543	67.291	79.511	1.00	0.00		C
MOTA	3903	C	THR	288	104.436	66.358	80.418	1.00	0.00		Ċ
ATOM	3904	0	THR	288	104.234	66.308	81.634	1.00	0.00		Õ
ATOM	3905		THE	268	102.058	88.833	70.222	2.00	ũ. 3ũ		Ĉ
er Old	3905	CGI		268	101.424	66.260	80.66 0 .	1.00	0.00		Q.
ATOH	3907	CGI		288	101.822.		TEL815	1.00	0.00		7
77	3545	7	152	10.61	101.175		77.200	1.13			77
-72-1	7.7.7	17.	3		1.01.	-1.21 2	3.325				
				: :	11.51.		-				

		•				115				
ATOM	3920	CG :	ASP	289	105.899	62.579	79.992	0.00	0.00	
ATOM	3921	OD1		289	105.743	61.857	80.970	0.00	0.00	
ATOM	3922	OD2		289	105.173	62.469	78.848	0.00	0.00	
ATOM	3923		ASP	289	105.566	65.931	78.873	0.00	0.00	
	3924		ASP	289	106.183	64.747	81.643	0.00	0.00	
MOTA			ASP	289	107.856	63.302	80.382	0.00	0.00	
ATOM			ASP	289	107.206	63.884	78.866	0.00	0.00	
ATOM			PRO	290	108.009	66.769	81.862	1.00	0.00	
ATOM	3927				109.137	67.754	81.926	1.00	0.00	
ATOM	3928		PRO	290		67.241	81.787	1.00	0.00	
ATOM	3929		PRO	290	110.615		81.382	1.00	0.00	
ATOM	3930		PRO	290	111.483	68.016		1.00	0.00	
MOTA	3931		PRO	290	108.847	68.505	83.240	1.00	0.00	
ATOM	3932	CG	PRO	290	107.998	67.547	84.076			
MOTA	3933	CD	PRO	290	107.135	66.813	83.051	1.00	0.00	
MOTA	3934	HA	PRO	290	109.003	68.477	81.096	1.00	0.00	
ATOM	3935	1HB	PRO	290	109.761	68.838	83.770	1.00	0.00	
MOTA	3936	2HB	PRO	290	108.273	69.427	83.016	1.00	0.00	
ATOM	3937	1HG	PRO	290	108.650	66.830	84.612	1.00	0.00	
ATOM	3938	2HG	PRO	290	107.394	68.066	84.842	1.00	0.00	
ATOM		1HD	PRO	290	106.837	65.816	83.426	1.00	0.00	
ATOM		2HD	PRO	290	106.212	67.384	82.828	1.00	0.00	
ATOM	3941	N	THR	291	110.902	65.954	82.033	0.00	0.00	
ATOM	3942	CA	THR	291	112.170	65.287	81.572	0.00	0.00	
ATOM	3943	C	THR	291	112.443	65.277	80.021	0.00	0.00	
MOTA	3944	ō	THR	291	113.599	65.396	79.608	0.00	0.00	
MOTA	3945	СВ	THR	291	112.272	63.838	82.150	0.00	0.00	
MOTA	3946	OG1	THR	291	111.144	63.050	81.782	0.00	0.00	
ATOM	3947	CG2	THR	291	112.401	63.745	83.679	0.00	0.00	
		H	THR	291	110.076	65.407	82.290	0.00	0.00	
ATOM	3948			291	113.018	65.861	81.998	0.00	0.00	
MOTA	3949	HA	TḤR		113.182	63.366	81.723	0.00	0.00	
ATOM	3950	HB	THR	291	111.255	62.203	82.220	0.00	0.00	
ATOM	3951		THR	291	112.536	62.702	84.020	0.00	0.00	
MOTA		1HG2	THR	291			84.048	0.00	0.00	
MOTA		2HG2	THR	291	113.270	64.321	84.192	0.00	0.00	
ATOM		3HG2	THR	291	111.506	64.145		1.00	0.00	
MOTA	3955	N	ALA	. 292	111.407	65.155	79.170		0.00	
ATOM	3956	CA	ALA	292	111.517	65.430	77.707	1.00		
MOTA	3957	С	ALA	292	111.351	66.921	77.217	1.00	0.00	
MOTA	3958	0	ALA	292	111.419	67.163	76.008	1.00	0.00	
ATOM	3959	CB	ALA	292	110.464	64.496	77.075	1.00	0.00	
MOTA	3960	H	ALA	292	110.496	65.160	79.642	1.00	0.00	
MOTA	3961	HA	ALA	292	112.511	65.107	77.339	1.00	0.00	
ATOM		2HB	ALA	292	110.646	63.432	77.318	1.00	0.00	
ATOM	3963	3HB	ALA	292	109.436	64.743	77.400	1.00	0.00	
ATOM	3964		ALA	292	110.472	64.572	75.971	1.00	0.00	
ATOM	3965	N	ARG	293	111.155	67.913	78.102	0.00	0.00	
MOTA	3966	CA	ARG	293	111.035	69.349	77.730	0.00	0.00	
	3967	c.	ARG	293	112.431	70.079	77.848	0.00	0.00	
MOTA	3968	ō	ARG	293	112.874	70.307	78.980	0.00	0.00	
MOTA		CB	ARG	293	109.945	69.948	78.668	0.00	0.00	
MOTA	3969	CG	ARG	293	109.355	71.322	78.250	0.00	0.00	
MOTA	3970				108.545	72.043	79.350	0.00	0.00	
ATOM	3971	CD	ARG	293	107.377	71.246	79.800	0.00	0.00	
MOTA	3972	NE	ARG	293	107.377	71.500	80.849	0.00	0.00	
MOTA	3973	CZ	ARG	293		72.531	81.627	0.00	0.00	
MOTA	3974		ARG	293	106.746			0.00	0.00	
ATOM	3975		ARG	293	105.679	70.655	81.106	1.00	0.00	
ATOM	3976	HE	ARG	293	107.138	70.414	79.242		0.00	
ATOM	3977	H	ARG	293	111.190	67.608	79.081	0.00		
MOTA	3978	HA	ARG	293	110.638	69.440	76.702	0.00	0.00	
ATOM	3979	1HB	ARG	293	110.346	70.018	79.696	0.00	0.00	
ATOM	3980		ARG	293	109.087	69.250	78.757	0.00	0.00	
ATOM	3981		ARG	293	108.717	71.197	77.352	0.00	0.00	
MOTA	3982		ARG	293	110.172	71.994	77:921	0.00	0.00	
ATOM	3983		ARG	293	108.180	73.013	78.961	0.00	0.00	
ATOM	3984		ARG	293	109.216	72.282	80.197	0.00	0.00	
ATOM	3985	11111		293	106.110	72.599	82.417	0.00	0.00	
ATOM	3986			293	107.501	73.161	81.338		0.00	
	3987			293	105.098	70.793	81.925		0.00	
ATOM	3988	2002	APG	293	105.711	69.884	80.425		0.00	
ATOM	3989	Znnz N	PRO	294	113.176	70.471	76.769		0.00	
MOTA	•	CA	PRO	294	114.485	71.175	76.914		0.00	
MOTA	3990		PRO	294	114.392	72.639	77.466		0.00	
MOTA	3991	C		294 294	113.468	73.393	77.453		0.00	
MOTA	3992	0	PRO	474						

MOTA	3993	CB	PRO	294	115.049	71.081	75.481	1.00	0.00	C
MOTA	3994	CG	PRO	294	113.832	70.955	74.566	1.00	0.00	C
ATOM	3995	CD	PRO	294	112.832	70.136	75.375	1.00	0.00	С
'ATOM	3996	HA	PRO	294	115.134	70.581	77.588	1.00	0.00	H
ΣΥΓΟΜ	3997	1HB	PRO	294	115.680	71.944	75.202	1.00	0.00	Ħ
ATOM	3998	2HB	PRO	294	115.686	70.180	75.389	1.00	0.00	H
ATOM	3999	1HG	PRO	294	113.411	71.958	74.363	1.00	0.00	H
MOTA	4000	2HG	PRO	294	114.067	70.495	73.588	1.00	0.00	H
MOTA	4001	1HD	PRO	294	111.795	70.403	75.105	1.00	0.00	H
ATOM	4002	2HD	PRO	294	112.957	69.050	75.192	1.00	0.00	Ħ
ATOM	4003	N	THR	295	115.339	73.037	78.328	1.00	0.00	N
ATOM	4004	CA	THR	295	115.353	74.386	78.981	1.00	0.00	С
ATOM	4005	C	THR	295	116.817	74.695	79.466	1.00	0.00	С
ATOM	4006	0	THR	295	117.387	73.917	80.231	1.00	0.00	0
MOTA	4007	CB	THR	295	114.333	74.468	80.166	1.00	0.00	С
MOTA	4008		THR	295	113.010	74.194	79.725	1.00	0.00	0
MOTA	4009	CG2	THR	295	114.231	75.846	80.832	1.00	0.00	С
MOTA	4010	H	THR	295	116.015	72.303	78.578	1.00	0.00	Ħ
MOTA	4011	HA	THR	295	115.040	75.133	78.232	1.00	0.00	H
MOTA	4012	HB	THR	295	114.610	73.714	80.932	1.00	0.00	н
MOTA	4013		THR	295	113.092	73.632	78.939	1.00	0.00	H
ATOM		1HG2		295	113.968	76.636	80.108	1.00	0.00	H
MOTA	4015			295	113.451	75.851	81.616	1.00	0.00	Ħ
MOTA	4016	3HG2		295	115.181	76.140	81.311	1.00	0.00	H
MOTA	4017	N	ILE	296	117.571	75.760	.79.174	1.00	0.00	n
ATOM	4018	CA	ILE	296	117.200	76.943	78.320	1.00	0.00	С
ATOM	4019	C	ILE	296	118.198	77.193	77.130	1.00	0.00	С
ATOM	4020	0	ILE	296	117.754	77.424	76.002	1.00	0.00	0
ATOM	4021	CB	ILE	296	116.909	78.203	79.219	1.00	0.00	C
ATOM	4022			296			78-478		0.00	С
MOTA	4023	CG2		296	110.123			1.00	0.00	· · · · · · · · · · · · · · · · · · ·
ATOM	4024		ILE	296	114.886	79.182	77.886	1.00	0.00	C
ATOM	4025	H	ILE	296	118.460	75.689	79.683	1.00	0.00	H
MOTA	4026	HA	ILE	296	116.253	76.730	77.797	1.00	0.00	H
MOTA	4027	HB	ILE	296	116.153	77.880	79.960	1.00	0.00	- H
MOTA		1HG1		296	116.200	80.276	79.177	1.00	0.00	н
MOTA		2HG1		296	116.970	79.783	77.684	1.00	.0.00	H
MOTA		2HG2		296	118.571	77.916	80.662	1.00	0.00	H
ATOM		3HG2		296	118.925	79.109	79.388	1.00	0.00	H
ATOM		1HG2		296	117.843	79.526	80.735	1.00	0.00	н.
ATOM		2HD1		296	114.897	78.440	77.066	1.00	0.00	н
ATOM		3HD1		296	114.170	78.831	78.652	1.00	0.00	н
ATOM		1HD1		296	114.472	80.115	77.461	1.00	0.00	H
ATOM	4036	N	ASN	297	119.524	77.082	77.342	1.00	0.00	
ATOM	4037		ASN.		- 120-539-		76.244	1.00	0.00	c
ATOM ATOM	4038	C	ASN	297	120.318	75.865	75.137	1.00	0.00	o
	4039	O	ASN	297	120.720	76.074	73.993	1.00		Č
ATOM	4040	CB	ASN	297	121.955	76.877	76.885	1.00	0.00	c
ATOM ATOM	4041 4042	CG	asn asn	297	122.271	75.635	77.728	1.00	0.00	o
ATOM	4042	MD3		297 297	121.591 123.300	75.318 74.896	78.696 77.410	1.00	0.00	и
ATOM	4044	H	ASN	297	119.777	76.885	78.316	1.00	0.00	н
MOTA	4045	HA	ASN	297	120.509	77.926	75.696	1.00	0.00	H
ATOM	4046		ASN	297	122.710	77.007	76.087	1.00	0.00	H
ATOM	4047		ASN	297	122.116	77.751	77.540	1.00	0.00	H
ATOM		1HD2		297	123.467	74.122	78.059	1.00	0.00	н
ATOM		2HD2		297	123.883	75.208	76.631	1.00	0.00	н
ATOM	4050	II	GLU	298	119.665	74.735	75.458	1.00	0.00	n
MOTA	4051	CA.	GIM	298	119.131	73.759	74 458	1 00	0.00	ت
ZZC	4052	r r	نائك	298	118.095	74.333	73.317	1.00	0.00	č
TOIS	1053	Č	GTO	298	113.093	74.070	72.223	1.00	0.00	ë
<u> </u>	4054		320	128-	110,500	757275	77.51	1.30	0.00	
-777	135	32		115.	7.2 2		<u> </u>		7.7	-
	: <u>:</u> :	-=				7			• •	
	• -	-								

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

67.769

66.736

68.555

68.388

67.810

69.403

68.168

65.272

63.789

63.272

62.311

63.143

61.594

61.008

60.934

60.580

73.274 65.704

117

116.186

116.861

116.532

114.977

113.984

113.061

113.127

117.153

115.798

115.370

114.398

114.545

113.638

112.472

112.342

112.564

113.738

112.380

117.800

118.689

119.619

119.696

119.475

120,146

119.115

121.191

117.959

118.035

120.243

118.821

120.669

119.592

118.343

118.589

121.695

120.746

121,988

120.297

121.104

120.227

120,271

122.318

123.381

124.255

123.349

120.089

121.521

121.973

122.841

124.007

122.480

119.431

118.470

118.558

118.888

117.068

115.930

115.315

115.684

119.450

118.713

117.108

116.784

118.186

118.106

117.247

117.653

117.698

117.791

119.196

120.002

119.453

117.932

74.205

74.453

73.122

76.657

73.724

74.932

76.131

74.166

74.393

75.612

76.272

73.037

72.950

73.093

72.174

74.358

LEU

LEU CD1

LEU

ASN

ASP

GLU

GLU

GLU

GLU

GLU

GLU

GLU

GLU

GLU

CA

С

0

CB

CG

CD1 LEU

CD2

H

1HB

2HB

HG

4078 2HD1

4079 3HD1

4080 1HD1

4081 2HD2

4082 3HD2

4083 1HD2

N

CA

C

0

CB

ÇG

CD2

Н

HA

1HB

2HB

HG

1HD1

3HD1

1HD2

2HD2

3HD2

CA

С

0

CB

CG

OD1 ASN

ND2 ASN

н

1HB

2HB

1HD2

2HD2

CA

C

٥

CB

CG

OD1 ASP

OD2

Ħ

HA

2HB

N

CA

C

0

CB

CG

œ

OEl GLU

OE2

H

N

HA

N

2HD1 LEU

HA

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127 1HB

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

MOTA

MOTA

MOTA

ATOM

MOTA

ATOM

MOTA

MOTA

ATOM

ATOM

ATOM

ATOM

ATOM

MOTA

ATOM

ATOM

MOTA

ATOM

ATOM

MOTA

ATOM

ATOM

MOTA

MOTA

ATOM

ATOM

ATOM

MOTA

ATOM

ATOM

ATOM

ATOM

ATOM

ATOM

MOTA

ATOM

MOTA

MOTA

ATOM

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

ATOM

MOTA

ATOM

ATOM

ATOM

MOTA

MOTA

ATOM

299

299

299

299

299

299

299

299

299

299

299

299

299

299

299

299

299

299

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

300

301

301

301

301

301

301

301

301

301

301

301

301

301

301

302

302

302

302

302

302

302

302

302

302

302

302

303

303

303

303

303

303

303

303

303

303

н H H н H н Н н н н N C C 0 С C C C H Н Н н н н H н H H H C C 0 C C O N H Н H н H H N C C 0 C C 0 0 н H Н Н N C C 0 C C C 0 0

ATOM	4139	HA	GLU	303	119.138	74.609	63.453	1.00	0.00			H
ATOM		1HB	GLU	303	118.319	72.218	63.562	1.00	0.00			H
ATOM		2HB	GLU	303	116.662	72.789	63.449	1.00	0.00			H
ATOM		1HG	GLU									
				303	117.397	71.974	61.259	1.00	0.00			H
ATOM	4143		GLU	303	117.126	73.698	61.122	1.00	0.00			H
ATOM	4144		PHE	304	116.123	75.957	63.930	1.00	0.00			N
MOTA	4145		PHE	304	115.408	77.255	63.706	1.00	0.00			C
MOTA	4146	С	PHE	304	116.187	78.601	64.004	1.00	0.00			C
ATOM	4147	0	PHE	304	115.678	79.671	63.666	1.00	0.00			0
ATOM	4148	CB	PHE	304	114.086	77.155	64.532	1.00	0.00			C
ATOM	4149	CG	PHE	304	112.952	78.103	64.094	1.00	0.00			С
MOTA	4150	CD1	PHE	304	112.209	77.828	62.941	1.00	0.00			С
MOTA	4151			304	111.199	78.696	62.531	1.00	0.00			C
MOTA	4152		PHE	304	110.911	79.832	63.280	1.00	0.00			Č
ATOM	4153		PHE	304	111.637	80.110	64.436	1.00	0.00			C.
ATOM	4154		PHE	304	112.654	79.248	64.842	1.00	0.00			C
ATOM	4155		PHE	304	115.943	75.378	64.761	1.00	0.00			H
ATOM	4156		PHE	304	115.142	77.303	62.631	1.00	0.00			H
ATOM	4157		PHE	304	113.671	76.131	64.512	1.00	0.00			H
ATOM	4158		PHE	304	114.322	77.303	65.605		0.00			H
ATOM	4159		PHE	304				1.00				
ATOM					112.421	76.945	62.353	1.00	0.00			H
	4160		PHE	304	110.639	78.489	61.632	1.00	0.00			H
ATOM	4161	HZ	PHE	304	110.124	80.503	62.962	1.00	0.00			H
ATOM	4162		PHE	304	111.414	80.993	65.017	1.00	0.00			H
ATOM	4163		PHE	304	113.223	79.482	65.731	1.00	0.00			H
ATOM	4164	N	PHE	305	117.381	78.573	64.630	1.00	0.00			N
ATOM	4165		PHE	305	118,152	79.787	65.016	1.00	0.00			C
ATOM	4166	C	PHE	305	119.662	79.644	64.585	1.00	0.00			C
ATOM	4167	0	PHE	305	120.540	79.402	65.413	1.00	0.00_			_0_
MOTA	4168	CB		305	-117-850			1.00	0.00	-		Ċ
MOTA	4169	CG	PHE	305	118.007	81.423	67.095	1.00	0.00		•	Ċ
MOTA	4170		PHE	305	117.364	82.517	66.501	1.00	0.00			С
MOTA	4171		PHE	305	117.504	83.793	67.039	1.00	0.00			C
MOTA	4172	CZ	PHE	305	118.254	83.979	68.198	1.00	0.00			C
ATOM	4173		PHE	305	118.865	82.894	68.816	1.00	0.00			C
ATOM	4174	CD2	PHE	305	118.748	81.623	68.264	1.00	0.00			C
ATOM	4175	H	PHE	305	117.712	77.629	64.875	1.00	0.00			H
ATOM	4176	HA	PHE	305	117.765	80.671	64.481	1.00	0.00			H
ATOM	4177	1HB	PHE	305	116.802	79.722	66.766	1.00	0.00			H
ATOM	4178	2HB	PHE	305	118.447	79.271	67.120	1.00	0.00			H
ATOM	4179	HD1	PHE	305	116.765	82.390	65.609	1.00	0.00			H
ATOM	4180	HE1	PHE	305	117.030	84.635	66.552	1.00	0.00			H
ATOM	4181	HZ	PHE	305	118.367	84.968	68.618	1.00	0.00			H
ATOM	4182	HE2	PHE	305	119.442	83.036	69.715	100	0.00			H ~
ATOM.	4183	HD2 -	PHE	·305 ÷	119.245	80.795	68.747	1.00	0.00			H
ATOM	4184	N	THR	306	119.955	79.784	63.270	1.00	0.00			N
ATOM	4185	CA	THR	306	121.282	79.388	62.661	1.00	0.00			C
MOTA	4186	С	THR	306	122.021	80.408	61.698	1.00	0.00			C
MOTA	4187	0	THR	306	123.248	80.336	61.626	1.00	0.00			0
MOTA	4188	CB	THR	306	121.171	77.981	61.978	1.00	0.00			C
MOTA	4189	OG1	THR	306	120.041	77.881	61.114	1.00	0.00			Ō
MOTA	4190	CG2	THR	306	121.072	76.801	62.954	1.00	0.00			Ċ
MOTA	4191		THR	306		79.752						H
MOTA	4192	HA	THR	306	122.024	79.272	63.477	1.00	0.00			H
ATOM	4193	HB	THR	306	122.083	77.809	61.368		0.00			H
MOTA	4194	HG1		306	119.374	77.379	61.601	1.00	0.00			H
ATOM		1HG2		306	121.035	75.832	62.425		0.00			H
MOTA		2HG2		306	121.942	76.765	63.637		0.00			H
MOTA		3HC2		306	120.171	76.703	12.521	1.55	υ.υυ ύ.υυ			H
aiúm	4198	M	SER	307	121.351	81.322	50.959	7.00	0.00			74. TI
ATO:	199	Œ.	SEA	307"	122.002	83.279	00.00S	1 30	0.00			•=
	4200	C.	SEA	10-	123.227	11.763	23.003	iċ				-
:====	- 515		==			11.111		- ::				-
		· <u>~</u>	-	-1	7.2.				•			
		_										

						117					_
ATOM	4212	oc	GLY	308	121.218	87.503	62.866	1.00	0.00		0
MOTA	4213		GLY	308	122.904	87.719	61.299	0.00	0.00		н
ATOM	4214	HC	GLY	308	120.660	86.703	63.195	1.00	0.00		H
MOTA	4215	н	GLY	308	122.592	84.429	61.338	1.00	0.00		
A'I'OM		1HA	GLY	308	121.270	86.515	59.672	0.00	0.00		H
ATOM	4217		GLY	308	120.155	86.006	60.912	0.00	0.00		H
TER	101,										_
ATOM	4218	PG	ATP	400H	94.957	91.733	84.664	1.00			P
MOTA	4219	OlG		400H	94.187	90.944	83.509	1.00			0
ATOM	4220	PB	ATP	400H	95.915	93.870	83.671		53.17		P
MOTA	4221		ATP	400H	96.089	93.010	82.330		54.96		0
ATOM	4222		ATP	400H	96.187	97.690	82.708		34.47		0
ATOM	4223	PA	ATP	400H	96.566	96.129	82.542		45.52		P
ATOM	4224		ATP	400H	98.142	95.970	82.935.		43.48		0
ATOM	4225		ATP	400H	94.875	93.256	84.560		53.99		0
ATOM	4226		ATP	400H	. 96.437	91.126	84.983		57.35		0
ATOM	4227		ATP	400H	94.312	91.481	86.097		57.62		0
MOTA	4228		ATP	400H	96.428	95.839	80.960		42.48		0
ATOM	4229		ATP	400H	95.542	95.326	83.388		50.69		0
ATOM	4230		ATP	400H	97.232	93.930	84.606		58.07		0
ATOM	4231		ATP	400H	99.030	97.140	83.056		39.42		C
ATOM	4232	C5	ATP	400H	105.482	98.998	81.874		22.15		C
ATOM	4233	02	ATP	400H	102.885	98.017	86.127	1.00	41.77		0
ATOM	4234		ATP	400H	102.084	98.131	84.952		38.93		C
ATOM	4235	CZ	ATP	400H	103.750	100.569	80.504		24.73		C
	4236	04	ATP	400H	101.513	97.285	82.879	1.00	32.13		0
MOTA	4237		ATP	400H	102.647	97.361	83.759		30.56		C
ATOM	4238		ATP	400H	103.870	98.006	83.189	1.00	23.28		N
MOTA	4239		ATP	400H	105.187	97.588	83.362	1.00	19.33		С
ATOM	.4240		ATP	400H	106.229	98.104	82.631		24 .44	•	N
MOTA	4241		ATP	400H	104.058	98.982	82.211	1.00	23.86		C
ATOM ATOM	4242		ATP	400H	105.895	99.858	80.790		20.25		С
ATOM	4243		ATP	400H	107.148	99.906	80.376		24.16		N
ATOM	4244		ATP	400H		100.612	80.163	1.00	22.35		N
ATOM	4245		ATP	400H	103.170	99.872	81.450		25.23		N
ATOM	4246		ATP	400H	100.578	96.609	86.178		49.35		0
ATOM	4247		ATP	400H	100.670	97.532	85.088		39.09		c
ATOM	4248		ATP	400H	100.405	96.839	B3.718		36.99		C
ATOM		2H5	ATP	400H	99.210	97.562	82.051	1.00			H
ATOM		1H5	ATP	400H	98.505	97.953	83.587	1.00			H
ATOM	4251		ATP		102.013	99.195	84.663	1.00			H
MOTA	4252	-	ATP	400H		101.207	79.921	1.00			H
ATOM	4253		ATP		102.912		84.052	1.00			H
ATOM	4254		ATP	400H	105.406		84.057	1.00			H
ATOM		1H6	ATP		107.816		80.926	1.00			H
		2H6	ATP			100.761	79.847	1.00			H
ATOM	4257		2 ATP		103.375			1.00			H
MOTA MOTA	4258		3 ATP		101.361		86.141	1.00			H
ATOM	4259		ATP		99.958		85.265				H
ATOM	425				100.487		_	1.00	0.00		H
END	4200	, 11-3									
DIND											

Table 3. Inhibition of PLK1 enzymatic activity by adenosine, thioadenosines, and various thiol-reactive compounds in the presence or absence of dithiothreitol (+DTT or -DTT); IC₅₀; concentration with half-maximal inhibition.

Compound	IC ₅₀ (μM)		
	+DTT	-DTT	
Thimerosal	> 200	22	
N-ethylmaleimide	> 200	55	
Iodoacetamide	> 200	83	
Adenosine	> 200	> 200	
2'-Thioadenosine	> 200	120	
5'-Thioadenosine	> 200	39	

Table 4. PLK1 contact model (Maestro) for ATP.

<u> </u>			(0) 101 2111.
PL	K1			
Residue	Atom	ATP	Distance (Å)	Contact cut-off ratio
K178	NZ	O1B	3.1	1.0
K178	CE	O1B	4.0	1.2
R135	NH1	O1A	3.9	1.2
K61	CA	O1A	4.2	1.3
K61-	N	O1A	3.0	1.0
G60	N	O1A	4.1	1.3
G60	C	O1A	3.2	- 1.0
R135	NH1	PA	3.3	1.0
R135	CZ	PA	4.3	1.2
G60	3HD2	PA	4.4	1.3
R135	NH1	O5	3.1	1.0
G63	N	O3G	3.9	1.2
R135	NE	O2A	3.9	1.2
F135	NH2	O2A	3.3	1.0
R136	CZ	O2A	3.0	0.9
F136	NH1	C5A	3.3	1.0
C67	$\mathcal{E}\mathbf{G}$	C5A	3.7	1.1
F(33-)	OF:	0.5	2.3	1
,			-	
	-			

		14	·	
D194	CG	O2	3.2	1.0
K82	NZ	O2	3.4	1.1
K82	CE	O2	3.3	1.0
K82	CD	O2	3.3	1.0
K82	CG	O2	4.1	1.3
K82	CB	O2	3.9	1.2
C67	SG	C2A	4.1	1.2
D194	OD2	C2A	3.4	1.1
D194	OD1	C2A	3.6	1.1
D194	CG	C2A	3.8	1.1
K82	CD	C2A	4.4	1.3
C67	CB	C2A	3.9	1.1
F183	CZ	C2	4.6	1.3
F183	CE1	C2	3.7	1.0
F183	CD1	C2	3.9	1.1
C133	0	C2	3.4	1.0
C133	C	C2	4.4	1.3
A80	CB	C2	3.4	1.0
L59	CD1	C2	4.3	1.2
L59	CG	C2	4.4	1.3
C67	SG	O4	4.2	1.3
F183	CZ	04	3.6	1.1
F183	CE1	04	4.0	1.2
D194	CB	C1	4.4	1.3
F183	CZ	· C1	3.8	1.1
F183	CE1	C1	4.4	1.3
D194	OD2	C1	3.3	1.0
D194	OD1	C1	3.8	1.1
D194	CG	C1	3.6	1.0
F183	CE2	N9	4.0	1.2
F183	CZ	N9	3.5	1.0
F183	CE1	N9	3.8	1.2
D194	OD2	N9	3.7	1.2
D194	CG	N9	4.3	1.3
D194	CB	C8	4.5	1.3
F183	CE2	C8	3.7	1.1
F183	CZ	C8	3.7	1.0
F183	CE1	C8	4.2	1.2
D194	OD2	C8	3.4	1.0
D194	CG	C8	4.1	1.2
G193	C	C8	4.1	1.2
G193	$\frac{c}{c}$	C8	4.3	1.2
D194	N	C8	3.9	1.2
F183	CD2	C8	4.4	1.2
L130	CD1	C8	3.9	1.1
F183	CE2	N7	3.8	1.1
7.103	1 222	1 11/		

· 医丁基二次四十二次十二次

	771	-	T			12	-			
	F18			Z	N		3.9		1.1	
	F18				N'		4.2		1.2	
	F18		CI		N'		4.4		1.3	
	G19			<u>; </u>	N'		4.4		1.3	
	G19		C		N′		4.0		1.2	
	F18		CI		N7		4.0		1.2	
	F18		CO		N7		4.3		1.3	
	V11		CG		N7		4.1		1.2	
- 1	V11		CG		N7		4.2		1.2	
H	L130		CD		N7		3.7		1.1	
-	L130		_CE		N7		4.4		1.3	
-	F183		CE:		<u>C4</u>		4.2		1.2	
ŀ	F183	-	_CZ	_	<u>C4</u>		3.5		1.0	
-	F183		CE		<u>C4</u>		3.4		1.0	
-	F183		CD:		_C4		4.0		1.1	
\vdash	A80		CB		C4		4.3		1.2	
-	F183	-	_CZ		C6		4.4		1.3	
\vdash	F183		CE1		<u>C6</u>	\perp	3.8		1.1	
-	F183		CD1	1			3.5	· -	1.0	
-	C133	4	0	\bot	<u>C6</u>		4.1	T	1.2	
\vdash	A80	+	CB	+	<u>C6</u>		3.7		1.1	
\vdash	F183	+	CD2		<u>C6</u>		4.5		1.3	
\vdash	F183	+	CG	4_	C6		. 3.9		1.1	
├	V114 C133	+	CG1	+	C6	_	4.4		1.3	
\vdash	C133	+	<u>CB</u>	+	C6	\perp	4.5	\bot	1.3	·
_	E131	+-	$\frac{N}{\Omega}$	+	C6	ـــــــ	4.1	.	1.2	
	F183	+-,	0	╄	<u>C6</u>		3.4		1.0	\neg
	F183	_	CD1	_	N6	· ·- ·	-4.0		1.2-	
	V114	_	CG	_	N6	╀	_4.0		1.2	\neg
	V114		CG2	_	N6	 	3.8		1.1	
	V114		CG1 CB		N6	 	3.4	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	1.0	
	C133	_	<u>∵B</u> SG		N6	 	4.3		1.3	7
	133		מר		N6	<u> </u>	4.4		1.3	
	2133		CB	_	N6		3.7	 	1.1]
	2133	-	AT AT	_	V6		4.2	↓	1.3]
	131	<u></u>			16		3.8	<u> </u>	1.2]
	131		CA N O		16		2.8	<u> </u>	0.0	J
<u>.</u> ;	183		=		<u> 16</u>		4.0	<u> </u>	1.1	1
<u> </u>					71		0.0	<u> </u>	1.1	!
			 ·				 -			_

N	N1	3.4	1.1
	N1	3.5	1.1
	N3	4.5	1.3
	N3	4.1	1.2
	N3	3.5	1.0
	N3	4.1	1.2
	N3	3.9	1.1
	N3	4.1	1.2
		3.9	1.3
		3.5	1.1
		4.1	1.3
		3.8	1.1
		3.6	1.1
		4.1	1.2
	C3	4.1	1.2
	C4A	4.1	1.2
OD1	C4A	4.1	1.2
	N O SG CZ CE1 CD1 CD1 CD1 CD2 CG CD SG OD1 CG SG OD1 CG CB	O N1 SG N3 CZ N3 CE1 N3 CD1 N3 CD1 N3 CD1 N3 CD1 N3 CD1 O3 CG O3 CG O3 CD O3 SG C3 OD1 C3 CG C3 CG C3 CG C3 CG C3 CG C3	O N1 3.5 SG N3 4.5 CZ N3 4.1 CE1 N3 3.5 CD1 N3 4.1 CD1 N3 4.1 CD1 N3 4.1 OD2 O3 3.9 CG O3 3.5 CD O3 4.1 SG C3 3.8 OD1 C3 3.6 CG C3 4.1 CB C3 4.1 SG C4A 4.1

Table 5. PLK1 contact model (Quanta) for ATP.

	70	Protein –
PLK1	Residue	ligand atom
residue	atom	distance (Å)
L59	HG	3.5
L59	HD11	3.2
L59	HG	2.6
L59	HD13	3.1
G60	CA	2.8
G60	C	3.2
G60	HA1	1.9
G60	HA2	3.1
G60	HA1	3.5
G60	HA1	3.5
G60	HA1	2.9
K61	N	3.0
K61	H	2.2
G62	HA1	3.1
G63 ·	H	2.9
C67	HG	3.1
C67	HB2	3.0
C67	HG	3.2
C67	HG	3.0
C67	HG	3.4
C67	- HB2	3-3
C67	HG	3.2
C67	HG	3.2

		~ ==				
		C67		Ì	2.9	
	<u>C6′</u>		SG		3.0	
	C67		HG		2.7	
	C67		CB		2.9	_
	C67		SG		3.3	_
	C67		HB1		2.9	_
	C67		HB2		2.2	
	C67		HG		2.5	
	C67		CB		3.3	
	C67	\dashv	SG		3.0	
	C67		HB2	I	2.6	_
	C67		HG		2.7	_
	A80		CB		3.4	_
	A80		HB1		2.9	_
	A80		HB2		3.1	_
	A80	\bot	HB3		3.2	
	A80		CB		3.3	
	A80		HB1		3.2	
	A80-		-HB2-	-7-	2.9	ᄏ
	A80		HB3		3.1	7
	A80		HB1	T	3.0	7
	A80		HB1	T	3.2	7
ŀ	A80		HB2		3.0	1
ŀ	A80		HB3		3.4	1
L	K82	\perp	CD	\top	3.3	1
L	K82		CE	T	3.3	1
_	K82		NZ	\top	3.4	1
	K82		HZ2		2.8	1
	K82		HB2		3.1	1
_	K82		HD1		2.4	
_	K82		HE2		3.0	
_	K82		HD1		3.4	
	K82		HD1		3.1	
	K82]	HB2		3.5	
	K82		CE		3.4	
	K82		NZ		3.1	
_	K82	F	HZ1		3.5	
_	K32	J.	NZ 121 122		3.4 3.1 3.5 2.2 1.2	
_	TT52]			1.5	
_					-	-
	· • ·					

7744 A TT		
V114 H	G13	2.7
V114 H	G21	3.4
	G23	3.2
	CB	3.3
	CG1	2.5
	CG2	2.9
	G11	3.4
· ·	G12	2.5
1 '	G13	1.8
	G21	2.8
	[G23	2.3
1 1 1	IG12	3.2
	IG13	3.2
	ID11	3.1
	ID11	2.8
L130 H	ID11	3.0
	HB2	3.2
E131	0	3.4
E131	0	2.8 3.5
E131	0	3.5
E131	0	3.3
E131	С	3.1
E131	0	2.0
C133	0	3.4
C133	H	3.3
C133	H	2.9
C133	HB1	2.7
C133	N	3.4
C133	0	3.1
C133	H	2.8
C133	0	3.0
C133	HB1	3.4
C133	N	2.9
· C133 ·	CB	3.1
C133	H	2.0
C133	HB1	2.3
R135	HH12	3.0
R135	NH1	3.3
R135	HH12	2.7
R135	HH11	2.9
R135	NH1	3.1
R135	HH12	2.9
R135	HH11	2.7
R135	CZ	3.0
R135	NH1	2.3
R135	NH2	3.3

			O .
	R135	HH12	1.9
	R135	HH11	2.1
	R135	HH22	
	R135	NHI	3.3
	R135	HH12	3.0
	R135	HH11	3.4
ı	R135	NH1	2.6
	R135	HH12	2.3
	R135	HH11	3.0
	K178	NZ	3.1
	K178	HZ1	3.1
	K178	HZ2	2.3
L	F183	HE1	3.3
L	F183	HZ	2.8
L	F183	HZ	3.2
L	F183	CZ	3.5
L	F183	HZ	3.2
L	F183	CE1	3.4
L	F183	HE1	3:3
L	F183	HD1	3.3
L	F183	CE1	3.5
L	F183	HE1	3.0
	F183	HZ	3.1
	G193	HA2	3.5
	G193	HA2	3.1
	G193	· C	3.4
	G193	HA2	3.2
	D194	CG	3.2
	D194	OD1	3.1
	D194	OD2	2.5
	D194	OD2	3.4
	D194	OD2	3.3
	D194	OD2	3.4
	D194	OD1	2.6
	D194	CB	3.3
	D194	CG	2.6
_	D194	OD1	3.0
	D193	QD2	2.7
	[1 <u>1</u> 91	HE?	2.9
	7707	<u> </u>	
		_	

OD2	1.6
CG	2.6
OD1	1.7
OD2	3.1
	CG OD1

Table 6. PLK1 contact model (Maestro) for 5'-thioadenosine.

PLK1		5'-Thio-	Distance	Contact
Residue	Atom	adenosine atom	(Å)	cut-off ratio
G60	CA	S5	4.0	1.1
C67	N	S5	3.3	1.0
	C	S5	3.9	1.1
K66 K66	CA	S5	4.1	1.2
	CA	S5	4.3	1.2
K61	N	S5	3.9	1.2
K61	0	S5	3.4	1.0
G60	$\frac{0}{c}$	S5	3.5	1.0
G60	SG	S5	3.3	0.9
C67	CB	<u>55</u> S5	3.6	1.0
C67	CA	S5	4.1	1.2
C67		C5A	3.7	1.2
R135	NH2	C5A	4.0	1.2
R135	CZ	C5A	3.6	1.1
R135	NH2	C5A	3.6	1.0
C67	SG	C5A	4.2	1.2
C67	CB	C5A C5	3.5	1.0
F183	CZ	C5	3.5	1.0
F183	CE1	C5	4.1	1.2
F183	CD1	C5	3.8	1.1
A80	CB	C5	4.0	1.2
F183	CE2	O2	3.6	1.2
D194	OD1		3.3	1.0
D194	CG	O2	3.1	1.0
K82	NZ	O2	3.8	1.2
K82	CB	O2	3.1	1.0
K82	CE	O2	3.2	1.0
K82	CD1	O2	4.0	1.3
K82	CG	O2	3.4	1.0
D194	OD2	C2A	3.6	1.1
D194	OD1	C2A	3.8	1.1
D194	CG	C2A	4.1	1.2
K82	CB	C2A	3.9	1.2
C67	CB	C2A		1.2
K82	CE	C2A	4.2	1.1
K82	CD	C2A	3.9	1.2
F183	CZ	C2	4.2	1.2

				12	28				
	C133		_	C2		3.5		1.1	
	F183		_	C2		3.5		1.0	_
	F183		_	C2		4.0		1.2	_
	R135			C2		4.1		1.3	_
	L59			C2		3.8		1.1	_
	L59			C2		4.2		1.2	_
	A80			C2		3.4		1.0	
	R135			O4		3.0	\neg	1.0	
	R135			04		3.3		1.0	_
	D194		L	04		3.8	\neg	1.3	_
	R135			O4		2.8	\exists	0.9	_
	C67	SG		O4		3.6	7	1.1	
	C67	CB	floor	O4	1	3.9	7	1.2	
	F183	CZ	\int	C1	1	4.2	\top	1.2	_
	R135	NH2		C1	1	3.7	十	1.2	_
	R135	CZ		C1	T	4.3	\top	1.3	_
	D194	OD2	\perp	C1	\top	3.6	+	1.1	
1	D194	OD1	I	C1		3.3	\top	1.0	_
-	_D194_	CG_	Ŀ	C1	-	3.7	\top	1.1	
	R135	NH2	\int	C1	7	3.9	_	1.2	-
1	C67	CB		C1	\top	4.4	+	1.3	ㅓ
L	F183	CZ		N9	T	3.7	十	1.1	┪
L	F183	CE1		N9	T	4.2	1	1.3	٦
L	F183	CZ	L	C8	T	3.8	\top	1.1	\dashv
L	D194	OD2		· C8		4.3	\top	1.2	1
L	F183	CE2	L	C8		4.1	\top	1.2	7
L	L130	CD1	L	C8		3.6	1	1.1	7
L	F183	CZ		N7		3.8	1	1.1	1
L	F183	CE1	L	N7		4.2		1.3	1
L	F183	CE2	L	N7		3.9		1.2	1
_	L130	CD1		N7		3.6		1.1	1
_	L130	CB	_	N7		3.9		1.2	1
	F183	CZ		C4		3.5		1.0	1
_	F183 .	CE1		C4		3.6		1.0	1
_	R135	NH2		C4		4.1		1.2	1
	A80	CB		C4		4.0		1.2	
	F183	CE2		C4		4.4		1.3	
	F185	ĈŽ.		ĊĠ		3.9		1.1	
	<u>(7133</u> 171 <u>22</u> .	0		Cā		4.4		7 =	-
	<u> </u>								
									-

E131	0	C6	3.5	1.1
F183	CE1	N6	4.0	1.2
F183	CD1	N6	3.7	1.1
A80	CB	N6	4.1	1.3
F183	CG	N6	3.9	1.2
C133	SG	N6	4.3	1.3
C133	SB	N6	3.6	1.1
F183	CE1	N6	4.1	1.3
C133	N	N6	3.7	1.2
E131	0	N6	2.9	1.0
V114	CG2	N6 ·	4.1	1.3
V114	CG1	N6	3.7	1.1
F125	CE2	N6	4.0	1.2
F183	CZ	N1	4.3	1.3
C133	0	N1	3.1	1.0
C133	C	N1	3.8	1.2
F183	CE1	N1	3.4	1.0
F183	CD1	N1	3.6	1.1
A80	CB	N1	⁻ 3.3	1.0
C133	CA	N1	4.1	1.2
C133	N	N1	3.6	1.1
E131	0	N1	3.8	1.2
F183	CZ	N3	4.0	1.2
F183	CE1	N3	3.6	1.1
R135	NH2	N3	3.4	1.1
C67	SG	N3	4.0	1.2
L59	CD1	N3	3.8	1.2
A80	CB	N3	3.8	1.1
D194	OD2	O3	3.0	0.9
D194	CG	O3	3.2	1.0
K82	NZ.	O3	3.7	1.2
K82	CE	. O3	4.1	1.3
K82	CD	O3	3.5	1.1
D194	OD2	C3	3.7	1.1
D194	OD1	C3	3.3	1.0
D194	CG	C3	3.9	1.2
C67	SG	C3	4.5	1.3
C67	CB	C3	4.1	1.2
K82	CD	C3	3.8	1.1
R135	NH2	C4A	3.4	1.0
R135	CZ	C4A	3.9	1.1
D194	OD2	C4A	4.4	1.3
D194	OD1	C4A	3.3	1.0
D194	CG	C4A	4.2	1.2
R135	NH2	C4A	3.6	1.1
C67	SG	C4A	4.0	1.1

1 C67	\Box	α	4.0	
C0/	ן עט	LC4A	4.2	12 1
				1.2

Table 7. PLK1 contact model (Quanta) for 5'-thioadenosine.

PLK1 residue	Residue atom	Protein – ligand atom distance (Å)
L59	HG	3.4
L59	HD11	3.5
L59	HD13	3.3
L59	HD11	3.2
L59	CG	3.2
L59	CD1	3.0
L59	HG	2.5
L59	HD11	2.9
L59	HD13	2.5
G60	C	3.2
G60	0	3.2
~G60	HA1	3.1
G60	HA1	3.3
C67	N	3.1
C67	CB	3.1
C67	SG	2.0
C67	H	2.7
C67	HB2	3.0
C67	SG	3.2
C67	HB2	3.0
C67	- SG	3.4
C67	HB2	3.4
C67	HB2	3.1
C67	SG	3.4
C67	CB	3.1
C67	HB1	3.2
C67	HB2	2.1
C67	CB	3.5
C67	HB2	2.6
A80	HE1	3.4
A.G)	HE3	3.2
1.13		T

		2.4
A80	HB3	3.4
A80	СВ	3.3
A80	HB1	3.1
A80	HB2	2.9
A80	HB3	3.2
A80	HB1	2.9
A80	HB1	3.3
A80	HB2	3.3
K82	CD	3.2
K82	CE	3.1
K82	NZ	3.1
K82	HZ2	2.5
K82	HB2	3.0
K82	HD1	2.5
K82	HE2	2.6
K82	HB2	3.1
K82	HD1	2.9
K82	HZ2	3.1
K82	HD1	2.5
K82	HD1	2.7
K82	CB ·	3.5
K82	HB2	2.4
K82	HD1	3.1
K82	CE	3.3
K82	NZ	2.9
K82	HZ2	2.0
K82	HD1	2.9
K82	HE2	3.1
K82	HZ2	2.9
K82	HD1	3.2
	HB2	3.3
K82	HD1	2.6
K82	HG13	3.3
V114	HG13	2.9
V114	HG23	3.5
V114	CG1	2.8
V114	CG2	3.3
V114		2.8
V114	HG12	1.9
V114	HG13	3.2
V114	HG21	2.7
V114	HG23	3.5
V114	HG13	3.2
L130	HD13	
L130	HD11	3.0
L130	HB1	3.4
L130	HB2	3.4

				_		
	L130 L130		HD13	}	3.5	_
			HD11		2.8	_
	L130		CD1		3.2	_
	L130		HD13		2.9	-
	L130		HD11		2.6	_
	L130		HB2		3.2	_
	E131		0		3.5	-
	E131		0		2.9	-
ı	E131		0		3.2	_
L	E131		0		2.5	_
	C133		H		3.2	_
	C133		H	7	2.9	-
	C133		HB1	\neg	2.7	_
	C133		0	\dashv	3.1	-
L	C133	\top	H	7	2.7	_
	C133	7	0	\dashv	3.1	-
	C133	T	HB1	\forall	3.2	-
L	C133	T	N	\top	2.7	_
L	C133	1	CA	\top	3.2	-
Ŀ	C133	7	СВ		2.8	7
L	C133	T	SG	+	3.4	1
	C133	T	H	7	2.0	1
	C133	T	HB1	十	2.0	1
L	R135	T	HH11	十	3.1	1
	R135	T	HH22		3.2	1
	R135	T	CZ	\top	3.3	l
	R135	Γ	NH1	T	. 2.8	l
	R135	Г	NH2	\top	3.0	
-	R135		HH11	Ť	1.8	
	R135	Τ	HH22	T^-	2.1	
	R135		HH11	T	3.0	
	R135		HH22		2.7	
	R135		HH11	1	3.4	
	R135		HH11	\vdash	3.3	
	R135		NH1		3.4	
	R135		HH11		2.8	
	R135		NH2		3.4	
	F-155		нііі		2.6	
	<u> 137</u>		ינטנו		2.5	
		_			· · · · · · · · · · · · · · · · · · ·	

HH11	3.4
HH22	2.5
NH2	2.9
HH11	3.2
HH21	3.5
HH22	2.1
CE1	3.5
HE1	2.9
HZ	3.3
HZ	3.1
HZ	3.5
HE1	3.4
HZ	3.2
CE1	3.4
CE1	3.4
HD1	3.4
HE1	3.2
HE1	2.9
HE1	3.2
HZ	2.9
CG	3.3
OD2	2.5
OD2	3.4
OD1	3.3
CG	3.2
OD1	2.6
OD2	3.0
OD1	3.3
OD1	3.3
CG	2.7
OD1	2.4
OD2	2.9
OD2	3.4
H	3.3
CG	2.4
OD1	2.8
OD2	1.5
	2.3
	1.7
	2.3
OD1	2.4
	HH22 NH2 HH11 HH21 HH22 CE1 HE1 HZ CE1 CE1 HD1 HE1 HE1 HE1 HE1 HE1 HZ CG OD2 OD1 CG OD1 OD2 OD2 CG OD1 OD2 OD2 OD2 OD1 CG OD1 OD2 OD2 OD2 OD1 OD1 CG OD1 OD1 OD1 CG OD1 OD2 OD2 OD2 OD1 OD1 OD2 OD2 OD2 OD3 OD1 OD1 OD3 OD3

and the second of the second s

Table 8. PLK1 contact model (Maestro) for staurosporine.

		DY YZ4							
f	I	PLK1		C4			Contac		
	Resid	ue Ato	om	Staurosporii atom	ie	Distan (Å)	ce	cut-off ratio	
1	C67	' C	В	04		3.5		1.1	
L	D194	4 OI)2	C21		4.1		1.1	_
	C67	C	3	C23	\neg	4.2	\dashv	1.2	
L	C67	SC	}	C18	7	3.7	\dashv	1.0	_
	C67	CI	3	C18	\dashv	3.9	\dashv	1.1	_
L	C67	SC	}	C19	7	4.3	-+	1.2	_
L	C67	CE	3	C19	十	4.2	\dashv	1.2	
L	D194	OD	1	C16	十	3.4	\dashv	1.0	
L	D194	CC	}	C16-	\dashv	4.0	\dashv	1.0	
L	G193	0		C16	\top	3.7		1.1	
L	G193	C	T	C16	+	4.3	\dashv	1.3	_
L	L130	CD	1	C16	\top	4.3	-	1.3	
L	F183	CE		C14	十	3.3	_	1.0	_
	F183	CZ		C14		3.7	+	1.1	
L	F183	CD1		C14	\top	4.1	+	1.2	4
L	L130	CD2	: T	C14	\top	4.3	\dashv	1.3	\dashv
L	L130	CD1		C14	十	3.9	+	1.1	\dashv
\perp	L130	CG		C14	\top	4.2	\dashv	1.2	\dashv
	L130	CB		C14		3.8		1.1	\dashv
<u>_</u>	A80	CB	Ŀ	C14	1	4.2	+-	1.2	\dashv
_	D194	OD1	上	C15	7	3.9	\top	1.2	1
_	G193	0	_	C15	\top	3.6	1	1.1	1
}	G193	C	1.	C15	T	4.1	1		1
	F183	CE1		C15		3.8	1	1.1	1
_	L130	CD2	1_	C15	Γ	3.9	\top	1.2	1
_	L130	CD1	L	C15		3.6		1.1	1
	_130	CG	L	C15		4.1		1.2	1
_	_130	CB	L	C15		4.3		1.2	1
	7183	CE1	_	C13		3.8		1.1	
	7183	_CZ		C13		4.3		1.2	
	183	CD1		C13		4.2		1.2	
	C67	SG		C13		4.6		1,3	
	130	CB		C13		3.4		1.0	
	7-7	3:3		512.		2.0		1.0	
		=							
				•		_			-

L59	CB	C7	3.8	1.1
C67	SG	C10	4.1	1.2
A80	CB	C10	4.3	1.3
L59	CD1	C10	3.9	1.1
C67	SG	C11	3.6	1.0
C67	СВ	C11	4.4	1.3
A80	CB	C11	4.4	1.3
R135	CG	C6	4.0	1.2
L59	C	C6	4.4	1.3
L59	CB	C6	3.8	1.1
G60	CA	N3	4.2	1.3
G60	CA	C20	3.8	1.1
G60	N	C20	4.2	1.3
L59	C	C20	4.3	1.2
L59	ō	C20	4.1	1.3
R135	CG	C5	3.7	1.1
G60	CA	C5	4.3	1.3
G60		C5	4.2	1.3
L59	N C	C5	3.9	1.1
	СВ	C5	4.1	1.2
L59	О	C5	3.7	1.1
L59	CG	C4	3.5	1.0
R135		C4	3.7	1.1
R135	NE	C4	4.0	1.2
R135	CD	C4	3.8	1.1
L59	C	C4	4.4	1.3
L59	CB		3.2	1.0
L59	0	C4	4.1	1.2
R135	CG	C3	4.4	1.3
R135	CD	C3	4.1	1.2
L59	C	C3	3.2	1.0
L59	0	C3	4.1	1.2
G60	CA	C2	3.8	1.2
L59	0	C2		1.1
G60	CA	<u>C1</u>	3.7	1.3
L59	0	C1	4.2	1.3
C67	СВ	C25	4.4	1.3
G60	CA	C25	4.3	1.2
D194	OD2	C23	4.0	1.2
D194	CG	C22	3.5	1.0
D194	OD2	C22	3.5	1.0
D194	OD1	C26		1.2
D194	CG	C26	4.0	1.0
D194	OD2	C26	3.4	1.0
K82	CE	C26	4.2	1.1
K82	CD	C26	3.9	
K82	CG	C26	4.4	1.3

e alternative and experience and alternative and experience and the alternative and the second

	CC	7 7							
	G18		B	C26		4.2		1.2	
	N18		<u> </u>	O6		3.7		1.2	
	N18		<u></u>	C27		3.8		1.2	
	N18	`		C27		4.2		1.2	
	G18		Ā	C27		3.8		1.1	
	G18			C27		3.6		1.1	
				C27		4.2	$\Box \top$	1.2	
	D194			C27		4.4		1.3	
	D194			C27		3.9		1.2	
	G193			C27		3.1		1.0	
	G193			C27		4.0		1.2	
	G180		-	N4		3.6	\neg	1.2	
	D194			N4		4.2	\neg	1.3	
	N181			C28		4.1	\top	1.3	
	K178			C28		3.7		1.1	
	D176		$\overline{}$	C28		4.4	\top	1.3	
	D194			C28	T	4.1	\neg	1.2	
	D194	CB		C28	\top	4.1	\top	1.2	\neg
	D194	OD:	2	C28		3.3	\top	1.0	\dashv
	C133	0		C9		3.5	十-	1.1	
	C133	C	\bot	C9		3.8	\top	1.1	ᅱ
	C133	N	\perp	C9		3.9	\top	1.2	\dashv
	A80	CB		C9		3.9	T	1.2	\dashv
	L59	CD1	\perp	C9	\top	3.9		1.1	\dashv
ŀ	R134	CA	\bot	N1	T	4.0	\top	1.2	\exists
-	R134	N	1_	N1	T	4.0	†	1.3	\dashv
ŀ	C133	10		N1		2.8	1	0.9	\dashv
F	C133	C	1_	N1	T	3.4		1.0	\dashv
ŀ	L59	CD2		N1		4.2		1.3	\dashv
ŀ	L59	CD1		N1	T	3.8	 	1.2	\dashv
L	R135	CG	_	O5		3.8		1.2	\dashv
L	R135	NH2		O5		3.1		1.0	\dashv
_	R135	CZ	L	O5		3.4		1.1	1
	R135	CD	L	O5		3.8		1.2	1
_	L59	CD2		O5		3.6		1.1	┪
	L59	CG		O5		4.1		1.3	1
_	Ľ59	CB		O5		3.9		1.2	1
_	R105	CG		Cŝ		3.9		1.1	t
	<u>C133</u>	<u> </u>		C2		3.6		1,5	
_						-, - ,			<u>-</u>

Table 9. PLK1 contact model (Quanta) for staurosporine.

PLK1	Residue atom	Protein – ligand atom
residue	atom	distance (Å)
L59	HB1	2.8
L59 L59	HD13	3.1
L59	HD13	3.0
L59	HB1	2.9
L59	HB1	3.2
L59	0	3.2
L59	HB1	3.4
L59 L59	0	3.2
L59	HD13	2.8
L59	HD13	2.7
L59	HD22	3.3
L59	HB1	3.0
1.59	HD22	2.6
L59 L59	HB1	2.9
L59	HD13	2.9
L59	HD22	2.9
L59 L59	0	3.4
L59	HB1	3.1
L59	0	3.5
L59	CD1	3.3
L59	HD13	2.4
L59	HD13	3.1
L59	HD22	3.2
G60	HA1	3.2
G60	HA1	2.8
G60	HA1	3.5
G60	HA1	3.3
G60	HA1	2.7
G60	HA1	3.3
G60	HA1	2.9
G60	CA	3.4
G60	C	3.4
G60	HA1	2.5
C67	HB1	3.4 2.5 2.8 3.3
C67	HB2	3.3
C67	HB1	3.3 3.4 3.1
C67	HB1	3.4
C67	HB1	3.1
C67	HB1	3.5
C67	СВ	3.4

	C67		HB1		2.3	
	C67		HG		3.5	
	A80		HB2		3.5	
	A80		CB		3.4	
	A80		HB2		3.0	
	A80		HB3		2.9	
	A80		HB3		3.1	
	A80		HB3		3.4	
	A80		HB1		3.3	
	A80		HB2		3.4	
-	A80		CB		3.0	
ŀ	A80	_	HB1	\perp	3.0	
-	A80		HB2	\perp	2.6	
ŀ	A80	┵	HB3	\bot	2.7	
ŀ	A80		CB	\perp	2.9	
}	A80	4	HB1		2.2	
-	A80		HB2		3.3	
-	A80	_	HB3		2.7	
\vdash	K82		HD2		3.0	
\vdash	K82	_	HD2	\bot	3.4	
\vdash	K82		HD2	\perp	3.3	
\vdash	K82		HE1	\perp	3.1	
\vdash	K82		CD	\perp	3.5	
\vdash	K82		HZ3		2.9	
⊦	K82		HD2	\perp	2.5	7
H	K82		IE1	1	3.3	7
⊢	K82		IB2	L	3.1	7
-	K82	_	IG1	\perp	3.3	7
	K82		ID2	L	2.7	7
	L130		D12	<u>L</u> _	3.3	7
	L130		HB1		3.0	
	L130		D12		2.9	1
	L130		D22	L	3.5	1
	L130		012		2.6	
	L130		D22		3.1	
	L130	<u>C</u>	D1		3.4	
	L130		CD2		3.1	
	Liàū)12	2.6		
	130	班	122			_
					-	
		-	_			-

	139	
L132	HA	3.5
L132	С	3.4
C133	0 C 0	2.8
C133	C	3.4
C133	0	3.5
C133	H	3.4
C133	HB1	3.1
C133	N	3.5
C133	H	3.4
C133	С	2.7
C133	0	1.8
C133	0	1.8
R134	HA	3.1
R134	HA	3.4
R134	HA	3.4
R134	HA	2.8
R135	HG2	3.0
R135	HG2	3.3
R135	HG1	3.0
R135	HG2	3.3
R135	CG	3.5
R135	HE	3.2
R135	HG1	2.7
R135	HG2	3.3
R135	HG1	3.1
R135	HE	3.4
R135	NE NE	2.8
R135	CZ	3.4
R135	NH2	3.1
R135	HE	1.7
R135	HG2	3.0
R135	HH21	2.2
	HE	2.6
R135	HG2	2.9
R135	HH21	3.4
R135	CG	3.5
R135	NE NE	3.0
R135	HE	2.4
R135		3.0
R135	HG1 HG2	3.2
R135		3.2
R135	HH21	3.3.
R135	H	3.5
R135	HE	1.7
R135	HE TIZ1	3.5
K178	HZ1	2.7
K178	HZ1	2.1

	K178		HZ1		3.2	
	K178		NZ		3.5	-
	K178		HZ1		2.5	
	K178		NZ		2.9	-
	K178		HZ1		2.0	-
	K178		HZ2		3.2	-
	K178		HZ3		3.5	-
	K178		HZ1		2.0	-
	G180		0		3.5	-
	G180		0		3.3	
	G180		0		2.6	-
	N181	I	HA		2.8	-
	N181		CA		3.4	-
1	N181	T	OD1		3.2	-
	N181	$oxed{T}$	HA		2.3	-
L	N181		CA		3.2	-
L	N181		C		3.5	-
L	N181		0		3.2	-
	N181		HA		2.3	-
L	N181	\perp	OD1		3.2	•
L	F183		CE1		3.3	-
L	F183		HE1		2.8	1
L	F183		HE1	T	2.9	1
L	F183	L	HE1		2.9	I
L	F183	L	CE1	T	3.0	I
L	F183		CZ		3.0	ı
┖	F183		HE1		2.6	i
L	F183		HZ	T	2.7	
L	G193		0		3.1	
	G193		HA2		3.4	
	G193		0		3.0	
_	G193		0		3.3	
	G193		0		2.5	
	D194		OD1		3.4	
	D194		OD2		3.4	
	D194		<u>H</u>	L	3.0	
	D194		OD2	<u> </u>	3.0 3.3 3.3	
	D194		HB2		3.3	
:	D101		CG	!	िर्दे	
				· 		

D194	CG	3.0
D194	OD1	2.8
D194	OD2	2.6
D194	N	3.2
D194	H	2.2
D194	HB2	2.8
D194	H	3.5
D194	H	3.0
D194	OD2	2.7
D194	СВ	3.2
D194	CG	3.3
D194	OD2	2.9
D194	HB1	3.5
D194	HB2	2.3
D194	H	2.2

Table 10. PLK1 contact model (Maestro) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol.

PLK1		Ligand	Distance	Contact
Residue	Residue Atom		(Å)	cut-off ratio
D194	OD2	NM1	3.8	1.2
K82	CD	NM1	4.1	1.3
D194	CG	CM12	4.0	1.2
D194	OD2	CM12	3.6	1.1
F64	CG	CM12	4.0	1.2
D194	OD1	CM12	3.5	1.1
K82	NZ	CM12	4.2	1.3
K82	CD	CM12	3.9	1.1
F64	CD1	CM12	4.1	1.2
F64	CB	CM12	3.8	1.1
D194	CG	C	4.0	1.2
D194	OD2	С	3.5	1.0
D194	OD1	С	3.8	1.2
K82	CD	С	4.1	1.2
C67	CB	С	4.0	1.2
D194	CG	N	3.5	1.1
D194	OD2	N	3.4	1.0
D194	OD1	N	3.1	1.0
K82	NZ	N	3.4	1.1
K82	CE	N	3.4	1.0
K82	CD	N	3.5	1.1
K82	CB	N	4.2	1.3
D194	CG	C1	3.9	1.1

						74		
	D194 O		$\overline{}$	C1		3.8		1.1
	D194			C1		3.7		1.2
	K82			<u>C1</u>		4.1		1.2
	K82			C1		4.1		1.2
	L130			C1		4.1		1.2
	D194			CM2		3.7		1.1
	D194		_	CM2		4.3		1.3
	D194			CM2		4.1		1.2
	D194			CM2		4.0		1.2
	D194			CM2		3.6		1.1
	D194	OD1		CM2		3.5	\exists	1.1
	K82	NZ		CM2		3.9	\exists	1.2
	K82	CE		CM2	-	4.1	\dashv	1.2
	L130		_	CM2		3.9	\top	1.2
	L130	CD1	$_{ m J}$	CM2	\top	3.8	7	1.1
Ì	D194	OD2		S	T	4.2	十	1.2
	C67	SG	\perp	S	\top	3.5	十	1.0
1	C67	CB	\perp	S	\top	3.3	T	0.9
	D194	OD2		C2	T	4.3	1	1.3
Į	F183	CZ		C2	T	4.1	1	1.2
L	C67	SG		C2	7	3.9	\top	1.1
L	C67	CB		C2	T	4.3	\top	1.3
L	F183	CZ		N1	T	4.0	\top	1.2
L	F183	CG		N1	T	4.2	1	1.3
L	F183	CE1	L	N1	T	3.5	十	1.1
L	F183	CD1		N1	T	3.6	\top	1.1
L	C133	N		N1		3.8	1	1.2
L	E131	0	_	N1	Г	3.6		1,2
L	A80	CB		N1	Г	3.3		1.0
L	C133	0		N1	Г	3.4		1.1
L	C133	C		N1		4.2		1.3
	F183	CD2		C3		4.3		1.3
	F183	CE2		C3		4.2		1.2
	F183	CZ		C3		4.0		1.2
	F183	CG		C3		4.3		1.3
	F183	CE1		C3		4.0		1.2
	F183	CD1		<u>C3</u>		4.1		1.2
_	Ēišī	ני		C3		3.5		1.1
	490	CE		<u>.</u> 23		3.5		1.0
_	7					•		-

F183	CZ	C5	3.6	1.0
F183	CE1	C5	4.0	1.2
C67	SG	C5	3.9	1.1
A80	CB	C5	4.1	1.2
F183	CZ	N6	3.6	1.1
F183	CE1	N6	3.5	1.1
C67	SG	N6	3.5	1.0
A80	CB	N6	3.9	1.2
F183	CZ	C7	3.8	1.1
F183	CE1	C7	3.3	1.0
F183	CD1	C7	3.8	1.1
C67	SG	C7	4.2	1.2
A80	CB	C7	3.5	1.0
C133	0		3.6	1.1
F183	CE1	N2	3.4	1.0
F183	CD1	N2	3.8	1.2
A80	CB	N2	4.2	1.3
C133	0	N2	2.8	0.9
C133	С	N2	4.0	1.2
L59	CD2	N2	3.9	1.2
F183	CE1	C8	3.9	1.1
C133	0	C8	3.6	1.1
L59	CD2	C8	3.8	1.1
L59	CG	C8	4.2	1.2
L59	CB	C8	4.1	1.2
R135	CB	C9	4.4	1.3
R135	N	C9	4.1	1.3
R134	CA	C9	4.2	1.2
C133	0	C9	3.4	1.0
C133	C	C9	4.4	1.3
L59	CD2	C9 ·	3.9	1.1
L59	CG	C9	4.0	1.2
L59	CB	C9	4.3	1.2
R135	NH2	011	2.9	1.0
R135	NH1	011	3.4	1.1
R135	CZ	011	3.5	1.1
L59	C	011	3.5	1.1
R135	NH2	C10	4.1	1.3
R135	CZ	C10	4.4	1.3
L59	CG	C10	4.1	1.2
L59	СВ	C10	4.2	1.2
R135	NH2	C11	3.4	1.1
R135	NH1	C11	3.5	1.1
R135	CZ	C11	3.6	1.1
L59	C	C11	3.7	1.1
L59	CG	C11	4.4	1.3

			τ	44	
	L59	CB	C11	4.0	1.2
	L59	0	C11	3.2	1.0
	L59	CA	C11	4.3	1.2
į	R135	NII1	C12	4.2	1.3
	F183	CE1	C12	4.3	1.2
	C67	SG	C12	4.3	1.2
	L59	C	C12	4.4	1.3
	L59	CD2	C12	4.4	1.3
L	L59	CG	C12	4.4	1.3
	L59	CB	C12	3.8	1.1
	R135	NH2	C13	4.0	1.2
L	R135	NH1	C13	3.3	1.0
	R135	CZ	C13	3.8	1.1
L	G60	CA	C13	4.3	1.2
L	G60	N	C13	3.8	1.2
L	L59	C	C13	3.5	1.0
L	L59	CB	C13	3.8	1.1
	L59	0	C13	3.4	1.1
L	L59	CA	C13	4.2	1.2
	•				

Table 11. PLK1 contact model (Quanta) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol.

PLK1 residue	Residue atom	Protein – ligand atom distance (Å)
L59	0	1.7
L59	HD23	2.9
L59	HB1	3.1
L59	HD23	2.9
L59	HB1	3.5
L59	HG	3.3
L59	HD23	3.2
L59	0	2.7
L59	HG	3.3
L59	0	3.2
L59	HB1	3.2
L59	Hii	2.7
	- . :	
- 		

L59	HA	3.4
L59	HB1	3.1
L59	С	3.2
L59	0	3.2
L59	HB1	3.1
G60	N	3.2
G60	CA	3.4
G60	HA1	2.6
F64	HB2	2.9
F64	HB2	3.5
F64	CB	3.4
F64	HB2	2.4
F64	HD1	2.4 3.2
F64	CB	3.2
F64	HB1	3.0
F64	HB2	2.5
C67	HB1	2.5 3.3
C67	HB1	3.0
	CB	3.3
C67	HB1	2.6
C67	HB2	3.4
C67	SG	3.5
C67	HB1	3.0
C67		3.3
C67	HB2	3.3
A80	CB	3.0
A80	HB1	3.1
A80	HB2	3.0
A80	HB3	
A80	CB	3.5
A80	HB1	3.3
A80	HB3	2.9
A80	HB1	3.4
A80	HB3	3.4
A80	HB1	3.3
A80	HB1	3.0
A80	HB1	2.9
A80	HB2	3.4
- A80	HB3	3.0
K82	HD1	3.0
K82	HD1	2.9
K82	HD1	3.1
K82	CD	3.5
K82	CE	3.4
K82	NZ	3.4
K82	HZ2	2.7
K82	HB2	3.4

		•	
K82	HD1	2.7	
K82	HE2	3.0	
K82	HE2	3.3	
K82	IIZ2	3.4	
K82	HE2	3.3	
K82	HZ2	3.0	
K82	HD1	3.4	
K82	CD	3.0	
K82	HZ2	3.2	
K82	HD1	2.2	
K82	HD2	2.9	
K82	HE2	3.0	
K82	NZ	3.1	
K82	HZ2	2.6	
K82	HZ3	2.9	
K82	HE2	3.1	
V114	HG12	2.9	
V114	HG12	3.5	
L130	HD13	3.3	
L130	HD13	3.1	
L130	HD22	3.2	
L130	HB1	3.5	
L130	HB1	3.3	
L130	HD13	3.0	
L130	HD22	3.1	
L130	CG	3.4	
L130	CD1	2.8	
L130	CD2	2.9	
L130	HD13	2.3	
L130	HD11	2.6	
L130	HD22	2.3	
L130	HD21	2.8	
L130	HB1	3.1	
L130	CD1	3.3	
L130	HB1	2.8	
L130	HD13	2.4	
L130	HD22	2.8	
Ei5i	0 1	3.5	
E131	0	2.0	
	·		
<u></u>			

C133	0	1.8
C133	0	2.6
R134	HA	3.2
R134	CA	3.3
R134	HA	2.3
R135	HH22	2.0
R135	Н	3.2
R135	HB1	3.4
R135	CZ	3.5
R135	NH1	3.4
R135	NH2	2.9
R135	HH11	2.8
R135	HH22	2.0
R135	H	. 3.5
R135	NH2	3.4
R135	HH11	3.1
R135	HH22	2.8
R135	NH1	3.3
R135	HH11	2.9
R135	H	2.9
R135	H	3.5
R135	HH11	3.3
R135	HH22	2.8
R135	NH1	2.9
R135	HH12	3.2
R135	HH11	2.4
F183	HZ	3.5
F183	HZ	. 3.3
F183	HE1	3.2
F183	HZ	3.4
F183	CE1	3.3
F183	HE1	3.0
F183	CE1	3.4
F183	HE1	2.8
F183	HE1	2.9
F183	HE1	3.3
F183	HE2	3.1
F183	HD1	3.3
F183	HE1	3.2
F183	HE1	3.4
G193	HA2	3.3
D194	OD2	3.5
D194	OD1	3.1
D194	OD2	3.4
D194	H	3.2
D194	CG	2.9

OD1	2.5
OD2	2.6
N	3.0
H	2.7
H	3.4
N	3.1
CA	3.3
CG	3.0
OD1	2.6
H	2.7
HA	2.7
	OD2 N H H N CA CG OD1 H

CLAIMS

- 1. A method of screening for a modulator of PLK, wherein the method comprises using the structure co-ordinates of Table 2.
- 2. A method according to claim 1 comprising the steps of:
- (a) providing at least a portion of the structure co-ordinates of Table 2;
- (b) employing at least a portion of the structure co-ordinates of Table 2 to design or select or synthesise a putative modulator of PLK;
- (c) contacting the putative modulator of PLK with PLK or a mutant, variant, homologue, derivative or fragment thereof, in the presence of a substrate of PLK; and
- (d) determining whether said putative modulator of PLK modulates PLK.
- 3. A method according to claim 1 or claim 2 wherein at least a portion of the structure co-ordinates of Table 2 and/or the putative modulator of PLK and/or the substrate are provided on a machine-readable data storage medium comprising a data; storage material encoded with machine readable data.
- 4. A method according to claim 2 or claim 3 wherein the putative modulator of PLK is selected from a library of compounds.
- 5. A method according claim 2 or claim 3 wherein the putative modulator of PLK is selected from a database.
- 6. A method according to claim 2 or claim 3 wherein the putative modulator of PLK is designed *de novo*.
- 7. A method according to claim 2 or claim 3 wherein the putative modulator of PLK is designed from a known PLK modulator.
- 8. A method according to claim 2 or claim 3 wherein the design or selection of the putative modulator of PLK is performed in conjunction with computer modelling.

- 9. A method according to any preceding claim wherein the putative modulator of PLK inhibits PLK activity.
- 10. A method according to any preceding claim wherein the PLK is PLK1.
- 11. A method according to any preceding claim wherein the putative modulator of PLK is useful in the prevention and/or treatment of a PLK related disorder.
- 12. A method according to claim 11 wherein the PLK related disorder is a proliferative disorder.
- 13. A method according to claim 12 wherein the proliferative disorder is selected from cancer, leukemia, glomerulonephritis, rheumatoid arthritis, psoriasis and chronic obstructive pulmonary disorder.
- 14. An assay for a candidate compound capable of modulating PLK, said assay comprising the steps of:
- (a) contacting said candidate compound with PLK;
- (b) detecting whether said candidate compound forms associations with one or more amino acid residues corresponding to PLK amino acid residues L59, G60, C67, A80, K82, L130, C133, R135, F183 and D194.
- 15. An assay according to claim 14 wherein said candidate compound is selected by performing rational drug design with a 3-dimensional model of PLK in conjunction with computer modelling.

får – An eller e<mark>llettere</mark> to blåre og til filmler blættere lædeter formatiske ellettere formatiske ellettere ellette
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol; 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an assay for identifying candidate compounds capable of modulating PLK.

- 18. Use according to claim 17 wherein the assay is a competitive binding assay.
- 19. Use according to claim 17 or claim 18 wherein the assay comprises contacting a candidate compound with PLK in the presence of a compound selected from:
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, and detecting any change in the interaction between (i), (ii) or (iii) and PLK.

- 20. A PLK modulator identified by the method of any one of claims 1 to 13, or a candidate compound identified by an assay according to any one of claims 14 to 19.
- 21. A PLK modulator or candidate compound according to claim 20 wherein the PLK modulator inhibits PLK activity.
- 22. A PLK modulator or candidate compound according to claim 20 or claim 21 which is capable of forming a covalent bond with the amino acid residue corresponding to PLK amino acid residue C67.

- 23. A PLK modulator or candidate compound according to claim 22 which is capable of forming a disulfide bond with the thiol group of the amino acid residue corresponding to PLK amino acid residue C67.
- 24. A PLK modulator or candidate compound according to claim 20 which is an irreversible antagonist.
- 25. A pharmaceutical composition comprising a PLK modulator or candidate compound according to any one of claims 20 to 24 and a pharmaceutically acceptable carrier, diluent, excipient or adjuvant or any combination thereof.
- 26. A method of preventing and/or treating a PLK related disorder comprising administering a PLK modulator or candidate compound according to any one of claims 20 to 24 and/or a pharmaceutical composition according to claim 25 wherein said PLK modulator, said candidate compound or said pharmaceutical, is capable of causing a beneficial preventative and/or therapeutic effect.
- 27. A method according to claim 26 wherein the PLK modulator or candidate compound is selected from the following:
- (i) 5'-thioadenosine, or a derivative thereof:
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof.

22. Use of a PLE modulator according to any one of claims 20 to 24 in the presention of a matter section of a matter section.

- 30. A process comprising the steps of:
- (a) performing the method according to any of claims 1 to 13, or an assay according to any one of claims 14 to 19;
- (b) identifying one or more modulators of PLK; and
- (d) preparing a quantity of said one or more PLK modulators.
- 31. A process comprising the steps of:
- (a) performing the method according to any of claims 1 to 13, or an assay according to any one of claims 14 to 19;
- (b) identifying one or more PLK modulators; and
- (c) preparing a pharmaceutical composition comprising said one or more identified PLK modulators.
- 32. A process comprising the steps of:
- (a) performing the method according to any of claims 1 to 13, or an assay according to any one of claims 14 to 19;
- (b) identifying one or more PLK modulators;
- (c) modifying said one or more PLK modulators; and
- (d) optionally preparing a pharmaceutical composition comprising said one or more PLK modulators.
- 33. A computer for producing a three-dimensional representation of PLK wherein said computer comprises:
- (a) a computer-readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprises the structure co-ordinates of Table 2;
- (b) a working memory for storing instructions for processing said computerreadable data;
- (c) a central-processing unit coupled to said working memory and to said computerreadable data storage medium for processing said computer-machine readable data into said three-dimensional representation; and

- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.
- 34. A machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data is defined by at least a portion of the structure co-ordinates of Table 2.
- 35. Use of the computer of claim 33 or the machine readable data storage medium of claim 34 to predict the structure and/or function of potential modulators of PLK.
- 36. Use of at least a portion of the structure co-ordinates of Table 2 to screen for modulators of PLK.
- 37. Use of at least a portion of the structure co-ordinates of Table 2 to solve the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK.
- 38. Use according to claim 37 wherein the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK is solved using molecular replacement.
- 39. Use of at least a portion of the structure co-ordinates of Table 2 in molecular design techniques to design, select and synthesise modulators of PLK.
- 40. Use of at least a portion of the structure co-ordinates of Table 2 in the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that binds to PLE.

- 42. A method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a compound selected from the following:
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethylthiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK such that said proliferative disorder is treated.

- 43. A method of treating a proliferative disorder comprising inhibiting PLK by administering to a subject in need thereof, a therapeutically effective amount of a compound selected from the following:
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that treatment of the proliferative disorder occurs.

- 44. A method of treating a PLK dependent disorder in a subject in need thereof, said method comprising administering to said subject a compound selected from the following:
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK.

- 45. A method according to claim 45 wherein the PLK dependent disorder is a disorder associated with increased PLK activity.
- 46. A method according to claim 44 or claim 45 wherein the disorder is cancer.
- 47. A method of inhibiting PLK in a cell comprising contacting said cell with an amount of a compound selected from the following:
- 5'-thioadenosine, or a derivative thereof;

1

- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that PLK is inhibited in said cell.

- 48. A method according to claim 47 wherein the cell is a cancer cell.
- 49. A fragment of PLK, or a homologue, mutant, or derivative thereof, comprising a ligand binding domain, said ligand binding domain being defined by the amino acid residue structural coordinates selected from one or more of the following: L59, G60, C67, A80, K82, L130, C133, R135, F183 and D194.
- 50. A fragment of PLK, or a homologue, mutant or derivative thereof, according to claim 49 which corresponds to a portion of the structure co-ordinates of Table 2.
- 51. Use of a fragment of PLK, or a homologue, mutant, or derivative thereof, according to claim 50 or 51 in an assay for identifying candidate compounds capable of modulating PLF.

- 53. An assay substantially as described herein, and with reference to the accompanying drawings.
- 54. A PLK modulator substantially as described herein, and with reference to the accompanying drawings.
- 55. A process substantially as described herein, and with reference to the accompanying drawings.

158 ABSTRACT

METHOD

The present invention relates to a homology model for PLK, and the use thereof in assays for the indentification of small molecule PLK modulators.

The invention further relates to PLK modulators identified by said assays, and their use in the treatment of PLK-related disorders such as proliferative disorders.

```
-----ms-aavtagklara----padpgkagvpgvaapg---apaaap
sp|P53350
         MELLRTITYQPAASTKMCEQALGKGCGADSKKKRPPQPPEESQPPQSQAQVPPAAPHHHH
sp Q9NYY3
         -----PPAGPG---PPPSALRGPELEMLAGL
sp Q9H4B4
         PAKEIP----EVLVDPRSRRRYVRGRFLGKGGFAKCFEISDADTKEVFAGKIVPKSLLLK
sp | P53350 |
          HHSHSGPEISRIIVDPTTGKRYCRGKVLGKGGFAKCYEMTDLTNNKVYAAKIIPHSRVAK
sp Q9NYY3
         PTSDPG----RLITDPRSGRTYLKGRLLGKGGFARCYEATDTETGSAYAVKVIPQSRVVK
sp Q9H4B4
                   .::.** : : * :*:.******:*:*
sp | P53350 | PHQREKMSMEISIHRSLAHQHVVGFHGFFEDNDFVFVVLELCRRRSLLELHKRRKALTEP
          PHOREKIDKEIELHRILHHKHVVQFYHYFEDKENIYILLEYCSRRSMAHILKARKVLTEP
sp Q9NYY3
         PHQREKILNEIELHRDLQHRHIVRFSHHFEDADNIYIFLELCSRKSLAHIWKARHTLLEP
sp Q9H4B4
          sp|P53350| EARYYLRQIVLGCQYLHRNRVIHRDLKLGNLFLNEDLEVKIGDFGLATKVEYDGERKKTL
          EVRYYLRQIVSGLKYLHEQEILHRDLKLGNFFINEAMELKVGDFGLAARLEPLEHRRRTI
sp Q9NYY3
         EVRYYLRQILSGLKYLHQRGILHRDLKLGNFFITENMELKVGDFGLAARLEPPEQRKKTI
sp Q9H4B4
          sp|P53350| CGTPNYIAPEVLSKKGHSFEVDVWSIGCIMYTLLVGKPPFETSCLKETYLRIKKNEYSIP
         CGTPNYLSPEVLNKQGHGCESDIWALGCVMYTMLLGRPPFETTNLKETYRCIREARYTMP
sp Q9NYY3
sp | Q9H4B4 | CGTPNYVAPEVLLRQGHGPEADVWSLGCVMYTLLCGSPPFETADLKETYRCIKQVHYTLP
          *****::*** ::**. * *:*::**:* * *****: ***** *:: .*::*
sp|P53350| KHINPVAASLIQKMLQTDPTARPTINELLNDEFFTSGYIPARLPIT-CLTIP-----PR
          SSLLAPAKHLIASMLSKNPEDRPSLDDIIRHDFFLQGFTPDRLSSSCCHTVPDFHLSSPA
sp Q9NYY3
sp Q9H4B4 | ASLSLPARQLLAAILRASPRDRPSIDQILRHDFFTKGYTPDRLPISSCVTVPDLTPPNPA
               * *: :* .* **:::::..:** .*: * **. : * *:*
          ---FSIAPSSLDPSNRK-------P----LTVLNKGLENP----LPER-----
sp | P53350 |
          KNFFKKAAAALFGGKKDKARYIDTHNRVSKEDEDIYKLRHDLKKTSITQQPSKHRTDEEL
sp Q9NYY3
         RSLFAKVTKSLFVRKKK-----SKNHAQERDE-VSGLVSGLMRTSVGHQDAR-----
sp Q9H4B4
               .. :*
          --PRE----KEEPVVR-ET------GEVVDCHLSDMLQQLHSVNASKPSERGLVR
sp | P53350 |
sp Q9NYY3 | QPPTTTVARSGTPAVENKQQIGDAIRMIVRGTLGSCSSSECLEDSTMGSVADTVARVLR
sp Q9H4B4 --PEAPAASGPAPVSLVETAPEDSS---PRGTLASSGHG--FEEGLTVATVVESALCALR
                                       * : .. .
sp|P53350| --QEEAEDPACIP-----IFWVSKWVDYSDKYGLGYQLCDNSVGVLFNDSTRLILYN
          GCLENMPEADCIPKEQLSTS-FQWVTKWVDYSNKYGFGYQLSDHTVGVLFNNGAHMSLLP
sp Q9NYY3
sp Q9H4B4 NCIAFMPPAEQNPAPLAQPEPLVWFSEWVGFSNKFGFGYQLSSRRVAVLFNDGTHMALSA
                              Bp|P53350| DGDSLQYIERDGTESYLTVSSHPNSLMKKITLLKYFRNYMSEHLLKAGANITPREGDELA
BP Q9NYY3 DKKTVHYYAELGQCSVFPATDAPEQFISQVTVLKYFSHYMEENLMDGG-DLPSVTDIRRP SP Q9H4B4 NRKTVHYNPTSTKHFSFSVGAVRRALQPQLGILRYFASYMEQHLMKGG-DLPSVEEVEVP
                                . : :::*:** **.::*:..* ::..
          : .:::*
sp|P53350| RLPYLRTWFRTRSAIILHLSNGSVQINFFQDHTKLILCP--LMAAVTYIDEKRDFRTYRL
          R-LYLLQWLKSDKALMMLFNDGTFQVNFYHDHTKIIICSQNEEYLLTYINEDRISTTFRL
sp | Q9NYY3 |
sp|Q9H4B4| APPLLLQWVKTDQALLMLFSDGTVQVNFYGDHTKLILSG-WEPLLVTFVARNRSACTYLA
                                                     :*::. *
              SLLEEYGCCKELASRLRYARTMVDKLLSSRSASNRLKAS
sp P53350
          TTLLMSGCSSELKNRMEYA----LNMLLQRCN-----
sp Q9NYY3
sp Q9H4B4 | SHLRQLGCSPDLRQRLRYA----LRLLRDRSPA-----
                                 .:* .*.
               **. :* .*:.**
```


FIGURE 2

			l
1	MGAAVIAGKI.ARADADDGKAGVPGVAADAAADDAKEIDEVI.VDD	47	bī.Kī
1	MGNAAAAKKGSEQESVKEFLAKA	23	PKA
48	RSRRRYVRCRFLGKGGFAKCFEISDADIKEVFAGK	· 82	PLK1
24	:::. .:. . . .::: KEDFLKKWESPAQNIAHI.DQFERIKTLGIGSFGRVMLVKHKEIGNHYAMK	73	PKA
83	IVPKSILLKPHQREKMSMEISIHRSLAHQHVVGFHGFFEDNDFVFVVLEL	132	PLK1
74	IIDKQKVVKLKQIEHIINEKRIIQAVNFPFLVKLEFSFKDNSNLYMVMEY	123	PKA ·
133	CRRSILELHKRRKALTEPEARYYLRQIVLGCQYLHRNRVIHRDLKLGNL	182	PLKI
124	VPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENL	173	PKA.
183	FINEDIEVKIGDEGLATKVEYDGERKKTLOGIPNYIAPEVLSKKGHSFEV	232	PLK1
174	LIDQQGYIQVIDFGFAKRVKGRIWILGGIPEYLAPEIILSKGYNKAV	220	PKA 🎎 🕆
233	DVWSIGCIMYTLLVGKPPFETSCLKETYLRIKKNEYSIPKHINPVAASLI	282	PLK1
221	. . : . : . .	270	PKA
283	QKMLQTDPTARPTINETLINDEFF-TSGYIPARLPITCLTIPPRFS	326	PLK1
271	::: :: ::: ::: :::	320	PKA .

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.