Contents

0.1	Plain text	1
0.2	Explanation	1
0.3	Table	2
0.4	Figure	2
0.5	Math	2

0.1 Plain text

Here is some plain text.

Now we add some python code with output:

```
total = 0
for number in range(10):
    total = total + (number + 1)
print(total)

55

Let us check the type:
print(type(total))

<class 'int'>
```

This code has an error but we will allow it to explain it.

```
total = 0
for number in range(10):
   total = total + (number + )
print(total)
```

```
File "/var/folders/h_/8_ykfhqd7m7_63xgf17pqgv00000gn/T/ipykernel_43588/3111529630.py", line 3 total = total + (number + )
```

SyntaxError: invalid syntax

0.2 Explanation

```
Let's explain some of this code (setting the code to be unexecutable):
```

```
The for loop:
```

```
for number in range(10):
   total = total + (number + 1)
```

Goes through numbers 0 to 9 and adds 1 more than each number to the total variable.

0.3 Table

The data on exponential growth can be found in the table below.

time	count
60	10000
90	25587
120	76327
150	212715
180	619511
210	1940838
240	4240760
270	13993730
300	38971086
330	105614040

0.4 Figure

See figure 1 for an illustration that explains the python dictionary concept. The figure was taken from Wikimedia Commons.

0.5 Math

Now we add some mathematical formula:

$$K_n = rwTK_{n-1}\left(1 - \frac{K_{n-1}}{H}\right) - K_{n-1}.$$

Figure 1: Data structure concept of a dictionary in python.