Teoria da Computação

Autômatos de Pilha e LLCs

Aula 08

Prof. Felipe A. Louza

Roteiro

- Não-determinismo
- 2 Equivalência entre APs e GLCs
 - De GLCs para APs
 - De APs para GLCs
- 3 Lema do Bombeamento para as LLCs
- 4 Referências

Na aula anterior

Vimos um AP para a linguagem $L_1 = \{wcw^R \mid w \in \{a, b\}^*\}$

Esse é um AP determinístico

Na aula anterior

Vimos um AP para a linguagem $L_1 = \{wcw^R \mid w \in \{a, b\}^*\}$

- Esse é um AP determinístico.
 - \bullet $\delta(q_i, a, X)$ tem no máximo 1 elemento $\{(q_j, \gamma)\}$, para $a \in (\Sigma \cup \mathcal{E})$.
 - ② Se $\delta(q_i, a, X)$ é <u>não vazio</u> para $a \in \Sigma$, então $\delta(q_i, \mathcal{E}, X)$ deve ser vazio.

Na aula anterior

Vimos um AP para a linguagem $L_1 = \{wcw^R \mid w \in \{a, b\}^*\}$

- Esse é um AP determinístico.
 - **1** $\delta(q_i, a, X)$ tem no máximo 1 elemento $\{(q_j, \gamma)\}$, para $a \in (\Sigma \cup \mathcal{E})$.
 - ② Se $\delta(q_i, a, X)$ é <u>não vazio</u> para $a \in \Sigma$, então $\delta(q_i, \mathcal{E}, X)$ deve ser vazio.

3

Outra forma de identificar um AP determinístico:

wi	a			Ь			c			ε	
pilha	Z_0	Α	В	Z_0	Α	В	Z_0	Α	В	Z_0	AB
90	$\{(q_0, AZ_0)\}$	$\{(q_0,AA)\}$	$\{(q_0, AB)\}$	$\{(q_0, A)\}$	$\{(q_0, BA)\}$	$\{(q_0, BB)\}$	$\{(q_1, Z_0)\}$	$\{(q_1, A)\}$	$\{(q_1, B)\}$	Ø	ØØ
q_1	Ø	$\{(q_1,\mathcal{E})\}$	Ø	Ø	Ø	$\{(q_1,\mathcal{E})\}$	Ø	Ø	Ø	$\{(q_2, Z_0)\}$	ØØ
q_2	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	ØØ

Figura: Tabela de transições

As células correspondentes às colunas ${\cal E}$ nunca sobrepõem o que foi definido nas células das colunas dos outros símbolos de entrada.

Relembrando...

Para **AFs** o não-determinismo não adiciona poder de reconhecimento aos autômatos, ou seja:

- AFDs reconhecem as mesmas linguagens que AFNs, que são as Linguagens Regulares.

Não-determinismo

O mesmo não é verdade para os APs:

- O não-determinismo é importante e necessário, pois aumenta o poder de reconhecimento dos APs.
- Existem linguagens¹ que podem ser aceitas por AP
 não-determinísticos e não podem por AP determinísticos

¹Vamos ver que essas são as LLCs.

Não-determinismo

O mesmo não é verdade para os APs:

- O não-determinismo é importante e necessário, pois aumenta o poder de reconhecimento dos APs.
- Existem linguagens¹ que podem ser aceitas por AP
 não-determinísticos e não podem por AP determinísticos.

¹Vamos ver que essas são as LLCs.

A linguagem $L_2 = \{ww^R \mid w \in \{a, b\}^*\}$ só pode ser reconhecida por uma AP (não determinístico).

- O AP "advinha" quando chegou no meio da cadeia w, e passa a desempilhar os símbolos.
 - Na verdade, todas as possibilidades de transição, a partir de (q_0, w, Z_0) são testadas.

A linguagem $L_2 = \{ww^R \mid w \in \{a, b\}^*\}$ só pode ser reconhecida por uma AP (não determinístico).

- O AP "advinha" quando chegou no meio da cadeia w, e passa a desempilhar os símbolos.
 - Na verdade, todas as possibilidades de transição, a partir de (q_0, w, Z_0) são testadas.

A linguagem $L_2 = \{ww^R \mid w \in \{a, b\}^*\}$ só pode ser reconhecida por uma AP (não determinístico).

- O AP "advinha" quando chegou no meio da cadeia w, e passa a desempilhar os símbolos.
 - Na verdade, todas as possibilidades de transição, a partir de (q_0, w, Z_0) são testadas.

7

Considere $L_2 = \{ww^R \mid w \in \{a, b\}^*\}$ e w = baab:

Pelo menos um caminho assume um estado final, com pilha Z_0 , ao processar w.

Nesse exemplo:

wi	_ a				Ь	_	\mathcal{E}			
pilha	Ζ ₀	A	В	Z ₀	A	В	Z ₀	A	В	
<i>q</i> ₀	$\{(q_0,AZ_0)\}$	$\{(q_0, AA)\}$	$\{(q_0, AB)\}$	$\{(q_0,A)\}$	$\{(q_0, BA)\}$	$\{(q_0, BB)\}$	$\{(q_1, Z_0)\}$	$\{(q_1,A)\}$	$\{(q_1,B)\}$	
q_1	Ø	$\{(q_1,\mathcal{E})\}$	Ø	Ø	Ø	$\{(q_1,\mathcal{E})\}$	$\{(q_2, Z_0)\}$	Ø	Ø	
q_2	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	

Figura: Tabela de transições

n

As células correspondentes às colunas ${\cal E}$ sobrepõem o que foi definido nas células das colunas das entradas.

Não determinismo

A **prova** de que a linguagem L_2 e outras **não podem** ser aceitas por nenhum AP determinístico é complexa, mas a intuição é transparente.

$$L_2 = \{ww^R \mid w \in \{a, b\}^*\}$$

AP determinísticos (APD) são importantes em muitas aplicações².

- Isso porque todas as linguagens aceitas por APD têm Gramáticas Não-Ambiguas.
 - As derivações (mais à esquerda) que levam a cadeias da linguagem são únicas.

Mas nem todas as linguagens não-inerentemente ambíguas podem ser aceitas pelos APD.

²Ex: Compiladores (análise sintática)

AP determinísticos (APD) são importantes em muitas aplicações².

- Isso porque todas as linguagens aceitas por APD têm Gramáticas Não-Ambiguas.
 - As derivações (mais à esquerda) que levam a cadeias da linguagem são únicas.

Mas nem todas as linguagens não-inerentemente ambíguas podem ser aceitas pelos APD.

²Ex: Compiladores (análise sintática)

Além disso, é fácil ver que o conjunto das linguagens aceitas pelos APD incluí as Linguagens Regulares.

Teorema

Se L é uma LR, então L = L(P) para algum APD P.

Além disso, é fácil ver que o conjunto das linguagens aceitas pelos APD incluí as **Linguagens Regulares**.

Teorema

Se L é uma LR, então L = L(P) para algum APD P.

Prova:

- Em essência, um APD pode "simular" um Autômato Finito Determinístico (AFD) ignorando a sua pilha.
 - Considere $M = (Q, \Sigma, \delta, F)$, então:

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

- $-\delta_p(q,a,Z_0)=(p,Z_0)$, para todo $p,q\in Q$ e $\delta(q,a)=p$
- Portanto,

$$(q_0, w, Z_0) \Rightarrow^* (p, \mathcal{E}, Z_0) \iff \delta^*(q, w) = p$$

• Ou seja, o APD utiliza apenas o controle de estados finitos

A prova em ambos os sentidos são induções fáceis sobre |w|.

Prova:

- Em essência, um APD pode "simular" um Autômato Finito Determinístico (AFD) ignorando a sua pilha.
 - Considere $M = (Q, \Sigma, \delta, F)$, então:

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

- $-\delta_p(q,a,Z_0)=(p,Z_0)$, para todo $p,q\in Q$ e $\delta(q,a)=p$
- Portanto,

$$(q_0, w, Z_0) \Rightarrow^* (p, \mathcal{E}, Z_0) \iff \delta^*(q, w) = p$$

• Ou seja, o APD utiliza apenas o controle de estados finitos

A prova em ambos os sentidos são induções fáceis sobre |w|.

Prova:

- Em essência, um APD pode "simular" um Autômato Finito Determinístico (AFD) ignorando a sua pilha.
 - Considere $M = (Q, \Sigma, \delta, F)$, então:

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

$$-\delta_p(q,a,Z_0)=(p,Z_0)$$
, para todo $p,q\in Q$ e $\delta(q,a)=p$

Portanto

$$(q_0, w, Z_0) \Rightarrow^* (p, \mathcal{E}, Z_0) \iff \delta^*(q, w) = p$$

• Ou seja, o APD utiliza apenas o controle de estados finitos

A prova em ambos os sentidos são induções fáceis sobre |w|.

Prova:

- Em essência, um APD pode "simular" um Autômato Finito Determinístico (AFD) ignorando a sua pilha.
 - Considere $M = (Q, \Sigma, \delta, F)$, então:

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

- $-\delta_p(q,a,Z_0)=(p,Z_0)$, para todo $p,q\in Q$ e $\delta(q,a)=p$
- Portanto,

$$(q_0, w, Z_0) \Rightarrow^* (p, \mathcal{E}, Z_0) \iff \delta^*(q, w) = p$$

• Ou seja, o APD utiliza apenas o controle de estados finitos

1

A prova em ambos os sentidos são induções fáceis sobre |w|.

Prova:

- Em essência, um APD pode "simular" um Autômato Finito Determinístico (AFD) ignorando a sua pilha.
 - Considere $M = (Q, \Sigma, \delta, F)$, então:

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

- $-\delta_p(q,a,Z_0)=(p,Z_0)$, para todo $p,q\in Q$ e $\delta(q,a)=p$
- Portanto,

$$(q_0, w, Z_0) \Rightarrow^* (p, \mathcal{E}, Z_0) \iff \delta^*(q, w) = p$$

Ou seja, o APD utiliza apenas o controle de estados finitos.

1

A prova em ambos os sentidos são induções fáceis sobre |w|.

A linguagem $L_3 = \{w \mid w \text{ termina com } 1 \text{ e } w \in \{0,1\}^*\}$ pode ser reconhecida pelo seguinte uma APD.

• O APD "simula" o AF ignorando a sua pilha.

A linguagem $L_3 = \{w \mid w \text{ termina com } 1 \text{ e } w \in \{0,1\}^*\}$ pode ser reconhecida pelo seguinte uma APD.

• O APD "simula" o AF ignorando a sua pilha.

Qual é a classe de linguagens aceitas pelos APD?

Qual é a classe de linguagens aceitas pelos APD?

- Linguagens Regulares ✓
- Vimos também Linguagens Não-Regulares que podem ser aceitas por APDs
- Por outro lado, existem LLC como L₂ = {ww^R | w ∈ {a, b}*} que não podem ser aceitas por um APD.

15

Podemos mostrar que $L_1 = \{wcw^R \mid w \in \{a,b\}^*\}$ não é regular pelo lema do bombemanto p/LRs.

Qual é a classe de linguagens aceitas pelos APD?

- Linguagens Regulares ✓
- Vimos também Linguagens Não-Regulares que podem ser aceitas por APDs
- Por outro lado, existem LLC como L₂ = {ww^R | w ∈ {a, b}*} que não podem ser aceitas por um APD.

15

Podemos mostrar que $L_1 = \{wcw^R \mid w \in \{a,b\}^*\}$ não é regular pelo lema do bombemanto p/ LRs.

Qual é a classe de linguagens aceitas pelos APD?

- Linguagens Regulares ✓
- Vimos também Linguagens Não-Regulares que podem ser aceitas por APDs
- Por outro lado, existem LLC como $L_2 = \{ww^R \mid w \in \{a,b\}^*\}$ que não podem ser aceitas por um APD.

Podemos mostrar que $L_1 = \{wcw^R \mid w \in \{a,b\}^*\}$ não é regular pelo lema do bombemanto p/ LRs.

Dessa forma, podemos dizer que a classe de linguagens aceitas pelos APD incluem as LRs, mas não todas as LLCs:

• Agora, vamos ver que L(AP) = LLCs.

Dessa forma, podemos dizer que a classe de linguagens aceitas pelos APD incluem as LRs, mas não todas as LLCs:

• Agora, vamos ver que L(AP) = LLCs.

Roteiro

- Não-determinismo
- Equivalência entre APs e GLCs
 - De GLCs para APs
 - De APs para GLCs
- 3 Lema do Bombeamento para as LLCs
- 4 Referências

Equivalência entre APs e GLCs

Vamos ver que os APs e as GLCs são equivalentes em poder.

• Ambos são capazes de reconhecer/descrever as LLCs.

Equivalência entre APs e GLCs

GLC: restrições nas regras de produção menores do que nas GR.

Roteiro

- Não-determinismo
- Equivalência entre APs e GLCs
 - De GLCs para APs
 - De APs para GLCs
- 3 Lema do Bombeamento para as LLCs
- 4 Referências

$\mathsf{GLCs} \to \mathsf{APs}$

Teorema

Se L é uma linguagem gerada por uma **GLC** G, então existe um **AP** P_F que reconhece L, ou seja,

$$L(P_F) = L$$

Vamos ver um procedimento para converter uma GLC G em um AP.

$\mathsf{GLCs} \to \mathsf{APs}$

Teorema

Se L é uma linguagem gerada por uma **GLC** G, então existe um **AP** P_F que reconhece L, ou seja,

$$L(P_F) = L$$

Vamos ver um procedimento para converter uma GLC G em um AP:

21

Teorema

Se L é uma linguagem gerada por uma **GLC** G, então existe um **AP** P_F que reconhece L, ou seja,

$$L(P_F) = L$$

Vamos ver um procedimento para converter uma GLC G em um AP:

• Vamos assumir que G está na Forma Normal de Greibach (FNG)³.

2

³Sempre existe uma GLC equivalente na FNG

Relembrando...

Definição

Uma GLC $G = (V, \Sigma, P, S)$ está na Forma Normal de Greibach (FNG) quando todas as regras de produção são da forma:

$$A \rightarrow a\alpha$$

para $A \in V$, $a \in \Sigma$ e $\alpha \in V^*$

Caso particular:

• Quando $\mathcal{E} \in L(G)$ permite-se $S \to \mathcal{E}$, e $S \notin \alpha$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S) \qquad G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P : S \to aSb \mid ab \qquad P : S \to aSB \mid aB$$

$$B \to b$$

$$S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB \Rightarrow aaabbb$$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b}$$

$$B \rightarrow \mathbf{b}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

Derivações: aaabbb

 $S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S) \qquad G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P : S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b} \qquad P : S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

Derivações: aaabbb

 $S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB \Rightarrow aaabbb$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b}$$

$$B \rightarrow \mathbf{b}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB \Rightarrow aaabbb$$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b}$$

$$B \rightarrow \mathbf{b}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB \Rightarrow aaabbb$$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S) \qquad G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P : S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b} \qquad P : S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

$$S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB$$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b}$$

$$B \rightarrow \mathbf{b}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$${\color{red} S}\Rightarrow {\color{blue} aSB}\Rightarrow {\color{blue} aaa}{\color{blue} BBB}\Rightarrow {\color{blue} aaabBB}\Rightarrow {\color{blue} aaabbB}\Rightarrow {\color{blue} aaabbb}$$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b}$$

$$B \rightarrow \mathbf{b}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$${\color{red} S}\Rightarrow {\color{blue} aSB}\Rightarrow {\color{blue} aaa}{\color{blue} BB}\Rightarrow {\color{blue} aaabbB}\Rightarrow {\color{blue} aaabbB}\Rightarrow {\color{blue} aaabbB}$$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G = (\{S\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}S\mathbf{b} \mid \mathbf{a}\mathbf{b}$$

$$B \rightarrow \mathbf{b}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$${\color{red} S} \Rightarrow {\color{blue} aS}B \Rightarrow {\color{blue} aaa}{\color{blue} B}B \Rightarrow {\color{blue} aaab}{\color{blue} B}B \Rightarrow {\color{blue} aaabbb}$$

Ideia do procedimento:

Ideia do procedimento:

- Para cada produção $A \rightarrow a\alpha$, o AP:
 - ler o símbolo a em w
 - ler o símbolo A da pilha; e
 - \bigcirc empilhar a palavra α .

Ideia do procedimento:

- Para cada produção $A \rightarrow a\alpha$, o AP:
 - ler o símbolo a em w;
 - ler o símbolo A da pilha; e
 - \bigcirc empilhar a palavra α .

Ideia do procedimento:

- Para cada produção $A \rightarrow a\alpha$, o AP:
 - ler o símbolo a em w;
 - 2 ler o símbolo A da pilha; e
 - empilhar a palavra o

Ideia do procedimento:

- Para cada produção $A \rightarrow a\alpha$, o AP:
 - ler o símbolo a em w;
 - 2 ler o símbolo A da pilha; e
 - \odot empilhar a palavra α .

Procedimento:

Procedimento:

- Definimos $P_F = (\{q_0, q_1, q_f\}, \Sigma, V \cup \{Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - 9 para cada $A \rightarrow a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$

Ou seja, ao ler a, desempilha A, e empilha o a

Procedimento:

- Definimos $P_F = (\{q_0, q_1, q_f\}, \Sigma, V \cup \{Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:
 - **1** $\delta(q_0, \mathcal{E}, Z_0) = \{(q_1, SZ_0)\}$
 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots \}$

Ou seja, ao ler a, desempilha A, e empilha o α

Procedimento:

- Definimos $P_F = (\{q_0, q_1, q_f\}, \Sigma, V \cup \{Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$
 - $\delta(q_1, \mathcal{E}, Z_0) = \{(q_f, Z_0)\}$

$\mathsf{GLCs} \to \mathsf{APs}$

Procedimento:

- Definimos $P_F = (\{q_0, q_1, q_f\}, \Sigma, V \cup \{Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:
 - **1** $\delta(q_0, \mathcal{E}, Z_0) = \{(q_1, SZ_0)\}$
 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$
 - $\delta(q_1, \mathcal{E}, Z_0) = \{(q_f, Z_0)\}$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

- Definimos $P_F = (\{q_0, q_1, q_2\}, \Sigma, \{S, B, Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - 9 para cada $A \rightarrow a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

- Definimos $P_F = (\{q_0, q_1, q_2\}, \Sigma, \{S, B, Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots \}$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

- Definimos $P_F = (\{q_0, q_1, q_2\}, \Sigma, \{S, B, Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - $oldsymbol{2}$ para cada A o alpha em P, definimos: $\delta(q_1,a,A)=\{(q_1,lpha),\dots\}$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

- Definimos $P_F = (\{q_0, q_1, q_2\}, \Sigma, \{S, B, Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

- Definimos $P_F = (\{q_0, q_1, q_2\}, \Sigma, \{S, B, Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

- Definimos $P_F = (\{q_0, q_1, q_2\}, \Sigma, \{S, B, Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

$$G_{FNG} = (\{S, B\}, \{a, b\}, P, S)$$

$$P: S \rightarrow \mathbf{a}SB \mid \mathbf{a}B$$

$$B \rightarrow \mathbf{b}$$

- Definimos $P_F = (\{q_0, q_1, q_2\}, \Sigma, \{S, B, Z_0\}, \delta, q_0, Z_0, \{q_f\}), \text{ com } \delta$:

 - ② para cada $A \to a\alpha$ em P, definimos: $\delta(q_1, a, A) = \{(q_1, \alpha), \dots\}$

Considere: $L(G) = \{a^n b^n \mid n > 0\}$

 $\underline{\mathsf{Dls}} \; \mathsf{para} \; w = \mathsf{aaabbb}$

$$\begin{array}{ll} (q_0, aaabbb, Z_0) & \Rightarrow (q_1, aaabbb, SZ_0) \\ & \Rightarrow (q_1, aabbb, SBZ_0) \\ & \Rightarrow (q_1, abbb, SBBZ_0) \\ & \Rightarrow (q_1, bbb, BBBZ_0) \end{array}$$

Considere: $L(G) = \{a^n b^n \mid n > 0\}$

 $\underline{\mathsf{Dls}}$ para w = aaabbb

$$(q_0, aaabbb, Z_0)$$
 \Rightarrow $(q_1, aaabbb, SZ_0)$ \Rightarrow $(q_1, aabbb, SBZ_0)$ \Rightarrow $(q_1, abbb, SBBZ_0)$ \Rightarrow $(q_1, bbb, BBBZ_0)$

Considere:
$$L(G) = \{a^n b^n \mid n > 0\}$$

 $\underline{\mathsf{Dls}}$ para w = aaabbb

$$egin{aligned} (q_0, aaabbb, Z_0) &\Rightarrow (q_1, aaabbb, SZ_0) \ &\Rightarrow (q_1, aabbb, SBZ_0) \ &\Rightarrow (q_1, abbb, SBBZ_0) \end{aligned}$$

Considere: $L(G) = \{a^n b^n \mid n > 0\}$

 $\underline{\mathsf{Dls}} \; \mathsf{para} \; w = \mathsf{aaabbb}$

$$(q_0, aaabbb, Z_0)$$
 \Rightarrow $(q_1, aaabbb, SZ_0)$
 \Rightarrow $(q_1, aabbb, SBZ_0)$
 \Rightarrow $(q_1, abbb, SBBZ_0)$
 \Rightarrow $(q_1, bbb, BBBZ_0)$

A prova de corretude é feita por indução no número de movimentos do AP P_F e será omitida.

Roteiro

- Não-determinismo
- Equivalência entre APs e GLCs
 - De GLCs para APs
 - De APs para GLCs
- 3 Lema do Bombeamento para as LLCs
- 4 Referências

Agora, vamos ver um procedimento na outra direção: converter um ${\sf AP}$ em uma ${\sf GLC}$ ${\sf G}$

Teorema

Se L é uma linguagem reconhecida por um AP, então existe uma GLC G que gera L, ou seja, L é uma LLC

Procedimento:

- P_N reconhece a linguagem por pilha vazia;
- $Q = \{q_0\}$
- ullet δ possui apenas transições do tipo:

Não vamos provar, mas todo AP pode ser convertido para outro equivalente com transições nas formas (1) e (2).

Procedimento:

- P_N reconhece a linguagem por pilha vazia;
- $Q = \{q_0\}$
- ullet δ possui apenas transições do tipo:

 - $δ(q_0, a, A) = (q_0, BC) com a ∈ (Σ ∪ {Ε}) e A, B, C ∈ Γ.$

Não vamos provar, mas todo AP pode ser convertido para outro equivalente com transições nas formas (1) e (2).

Procedimento:

- P_N reconhece a linguagem por pilha vazia;
- $Q = \{q_0\}$
- δ possui apenas transições do tipo:
 - **1** $\delta(q_0, a, A) = (q_0, \mathcal{E})$

Não vamos provar, mas todo AP pode ser convertido para outro equivalente com transições nas formas (1) e (2).

Procedimento:

- P_N reconhece a linguagem por pilha vazia;
- $Q = \{q_0\}$
- ullet δ possui apenas transições do tipo:

Não vamos provar, mas todo AP pode ser convertido para outro equivalente com transições nas formas (1) e (2).

$\mathsf{APs} \to \mathsf{GLCs}$

Procedimento:

- P_N reconhece a linguagem por pilha vazia;
- $Q = \{q_0\}$
- ullet δ possui apenas transições do tipo:

Não vamos provar, mas todo AP pode ser convertido para outro equivalente com transições nas formas (1) e (2). 32

Procedimento (continuação):

- $V = \Gamma$, o conteúdo da pilha torna-se variáveis em G
- $S = Z_0$
- Para cada transição do tipo:
 - ① $\delta(q_0, a, X) = \{(q_0, \mathcal{E})\}$, adicionamos: $X \to a$
 - ② $\delta(q_0, a, X) = \{(q_0, BC)\}$, adicionamos: $X \to aBC$
- Além disso, adicionamos: $Z_0 o \mathcal{E}$

Esse procedimento pode gerar produções inúteis, não alcançaveis a partir de Z_0

Procedimento (continuação):

- $V = \Gamma$, o conteúdo da pilha torna-se variáveis em G
- $S = Z_0$
- Para cada transição do tipo:
 - \bullet $\delta(q_0, a, X) = \{(q_0, \mathcal{E})\}$, adicionamos: $X \to a$
 - $\delta(q_0, a, X) = \{(q_0, BC)\}, \text{ adicionamos: } X \rightarrow aBC$
- ullet Além disso, adicionamos: $Z_0 o {\mathcal E}$

Procedimento (continuação):

- $V = \Gamma$, o conteúdo da pilha torna-se variáveis em G
- $S = Z_0$
- Para cada transição do tipo:
 - $\delta(q_0, a, X) = \{(q_0, \mathcal{E})\}$, adicionamos: $X \to a$
- Além disso, adicionamos: $Z_0 \to \mathcal{E}$

Procedimento (continuação):

- $V = \Gamma$, o conteúdo da pilha torna-se variáveis em G
- $S = Z_0$
- Para cada transição do tipo:
 - $\delta(q_0, a, X) = \{(q_0, \mathcal{E})\}, \text{ adicionamos: } X \to a$
 - ② $\delta(q_0, a, X) = \{(q_0, BC)\}$, adicionamos: $X \to aBC$
- Além disso, adicionamos: $Z_0 \to \mathcal{E}$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

 $a, A/\mathcal{E}$ a, B/BB $a, Z_0/BZ_0$ 0 $b, Z_0/AZ_0$ b, A/AA $b, B/\mathcal{E}$ $\mathcal{E}, Z_0/\mathcal{E}$

Procedimento:

• Definimos $G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

Procedimento:

• Definimos $G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

$$a, A/\mathcal{E}$$

$$a, B/BB$$

$$a, Z_0/BZ_0$$

$$b, Z_0/AZ_0$$

$$b, A/AA$$

$$b, B/\mathcal{E}$$

$$\mathcal{E}, Z_0/\mathcal{E}$$

Procedimento:

- Para cada transição do tipo:
 - \bullet $\delta(q_0, a, X) = \{(q_0, \mathcal{E})\}, \text{ adicionamos: } X \to a$

A
ightarrow a B
ightarrow b $Z_0
ightarrow \mathcal{E}$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

- Para cada transição do tipo:
 - $\delta(q_0, a, X) = \{(q_0, \mathcal{E})\}, \text{ adicionamos: } X \to a$ $A \to a \qquad \beta \to b \qquad \mathbb{Z}_0 \to \mathcal{E}$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

Procedimento:

Para cada transição do tipo:

$$\delta(q_0, a, X) = \{(q_0, \mathcal{E})\}, \text{ adicionamos: } X \to a$$

$$A \to a \quad B \to b \quad \mathbb{Z}_0 \to \mathcal{E}$$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

Procedimento:

Para cada transição do tipo:

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

Procedimento:

- Para cada transição do tipo:
 - ② $\delta(q_0, a, X) = \{(q_0, BC)\}$, adicionamos: $X \to aBC$

B
ightarrow aBB $Z_0
ightarrow aBZ_0$ A
ightarrow bAA $Z_0
ightarrow bAZ_0$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

- Para cada transição do tipo:
 - $\delta(q_0, a, X) = \{(q_0, BC)\}, \text{ adicionamos: } X \to aBC$ $B \to aBB \qquad Z_0 \to aBZ_0 \qquad A \to bAA \qquad Z_0 \to bAZ_0$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

- Para cada transição do tipo:
 - $\delta(q_0, a, X) = \{(q_0, BC)\}, \text{ adicionamos: } X \to aBC$ $B \to aBB \qquad Z_0 \to aBZ_0 \qquad A \to bAA \qquad Z_0 \to bAZ_0$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

- Para cada transição do tipo:
 - $\delta(q_0, a, X) = \{(q_0, BC)\}, \text{ adicionamos: } X \to aBC$ $B \to aBB \qquad Z_0 \to aBZ_0 \qquad A \to bAA \qquad Z_0 \to bAZ_0$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

Procedimento:

Para cada transição do tipo:

$$\delta(q_0, a, X) = \{(q_0, BC)\}, \text{ adicionamos: } X \to aBC$$

$$B \to aBB \qquad Z_0 \to aBZ_0 \qquad A \to bAA \qquad Z_0 \to bAZ_0$$

Considere: $N(N_P) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$

Procedimento:

Por último, adicionamos:

$$Z_0 \to \mathcal{E}$$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

 $Z_0 \Rightarrow aBZ_0 \Rightarrow abBAZ_0 \Rightarrow abbbaAZ_0 \Rightarrow abbb$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{ Z_0, A, B \}, \{ a, b \}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

 $Z_0 \Rightarrow aBZ_0 \Rightarrow abZ_0 \Rightarrow abbAZ_0 \Rightarrow abbbaAZ_0 \Rightarrow abbbAZ_0 \Rightarrow abbbAZ_$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

 $\textit{Z}_{0} \Rightarrow \textit{aBZ}_{0} \Rightarrow \textit{abZ}_{0} \Rightarrow \textit{abbbAZ}_{0} \Rightarrow \textit{abbbaAZ}_{0} \Rightarrow \textit{abbbAZ}_{0} \Rightarrow \textit{abbbaAZ}_{0} \Rightarrow \textit{abbbAZ}_{0} \Rightarrow \textit{abbb$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

 $Z_0 \Rightarrow aBZ_0 \Rightarrow abZ_0 \Rightarrow abbAZ_0 \Rightarrow abbbAAZ_0 \Rightarrow abbbAZ_0 \Rightarrow ab$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

 $Z_0 \Rightarrow aBZ_0 \Rightarrow abZ_0 \Rightarrow abbbAZ_0 \Rightarrow abbbAAZ_0 \Rightarrow abbbAZ_0 \Rightarrow$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{ Z_0, A, B \}, \{ a, b \}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

 $Z_0 \Rightarrow aBZ_0 \Rightarrow abbAZ_0 \Rightarrow abbbAAZ_0 \Rightarrow abbb$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

$$Z_0 \Rightarrow aBZ_0 \Rightarrow abbAZ_0 \Rightarrow abbbAAZ_0 \Rightarrow abbb$$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{ Z_0, A, B \}, \{ a, b \}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

$$Z_0 \Rightarrow aBZ_0 \Rightarrow abbAZ_0 \Rightarrow abbbAAZ_0 \Rightarrow abbbAZ_0 \Rightarrow abbbAZ_0$$

Resultado:
$$L(G) = \{ w \mid w \text{ possui o mesmo número de a's e b's} \}$$

$$G = (\{Z_0, A, B\}, \{a, b\}, P, Z_0)$$

$$P : \quad Z_0 \to \mathbf{a}BZ_0 \mid \mathbf{b}AZ_0 \mid \mathcal{E}$$

$$A \to \mathbf{b}AA \mid \mathbf{a}$$

$$B \to \mathbf{a}BB \mid \mathbf{b}$$

Considere w = abbbaa:

$$\textit{Z}_0 \Rightarrow \textit{aBZ}_0 \Rightarrow \textit{abbAZ}_0 \Rightarrow \textit{abbbAAZ}_0 \Rightarrow \textit{abbbaAZ}_0 \Rightarrow \textit{abbbaaZ}_0 \Rightarrow \textit{abbbaaZ}_0 \Rightarrow \textit{abbbaaZ}_0$$

A prova de corretude desse procedimento não é simples, e será omitida.

Com isso, mostramos que os APs são equivalentes às GLCs, portanto reconhecem a clase das LLCs

Equivalência entre APs e GLCs

Teorema

Se *L* é uma linguagem reconhecida por um **AP** *P*, então *L* é uma **Linguagem Livre de Contexto** (ou **Tipo 2**).

Roteiro

- Não-determinismo
- 2 Equivalência entre APs e GLCs
 - De GLCs para APs
 - De APs para GLCs
- 3 Lema do Bombeamento para as LLCs
- 4 Referências

Embora as LLCs sejam mais gerais do que as LRs, elas ainda são relativamente restritas.

• É fácil definir linguagens que não são Livres de Contexto:

$$L_1 = \{ ww \mid w \in \{a, b\}^* \}$$
$$L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$$

Embora as LLCs sejam mais gerais do que as LRs, elas ainda são relativamente restritas.

• É fácil definir linguagens que **não** são Livres de Contexto:

$$L_1 = \{ ww \mid w \in \{a, b\}^* \}$$
$$L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$$

Para mostrar que *L* é uma **LLCs**:

• É suficiente apresentar um dos formalismos para reconhecer/gerar a linguagem:

Para provar que L não é uma LLC:

Vamos utilizar o Lema do Bombeamento para LLCs

Para mostrar que *L* é uma **LLCs**:

• É suficiente apresentar um dos formalismos para reconhecer/gerar a linguagem:

Para provar que L não é uma LLC:

Vamos utilizar o Lema do Bombeamento para LLCs.

Uso do Lema do Bombeamento:

Lema L é uma **LLC** $\rightarrow \exists$ propriedades do bombeamento

Uso \nexists propriedades do bombeamento $\to L$ não é uma LLC

Para cada caso, iremos construir uma prova por absurdo.

Relembrando: Se P o Q então $\neg Q o \neg P$ (Contrapositiva)

Uso do Lema do Bombeamento:

Lema L é uma **LLC** $\rightarrow \exists$ propriedades do bombeamento

Uso \nexists propriedades do bombeamento $\rightarrow L$ não é uma **LLC**

Para cada caso, iremos construir uma prova por absurdo.

Uso do Lema do Bombeamento:

Lema L é uma **LLC** $\rightarrow \exists$ propriedades do bombeamento

Uso \nexists propriedades do bombeamento $\rightarrow L$ não é uma **LLC**

Para cada caso, iremos construir uma prova por absurdo.

Teorema

Se L é uma **LLC**, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, se $w \in L$, com $|w| \ge p$, então w pode ser dividida em cinco partes w = uvxyz, satisfazendo:

- para $i \ge 0$, a palavra $w' = uv'xy'z \in L$;
- |vy| > 0; e
- $|vxy| \leq p$.

- Pela condição 2 temos que $v \neq \mathcal{E}$ ou $y \neq \mathcal{E}$. Caso contrário, o lema seria trivialmente verdadeiro.
- Pela condição 3: |vxy| tem tamanho máximo p

Considere $w = u\mathcal{E} \times \mathcal{E} z$

Teorema

Se L é uma **LLC**, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, se $w \in L$, com $|w| \ge p$, então w pode ser dividida em cinco partes w = uvxyz, satisfazendo:

- para $i \ge 0$, a palavra $w' = \underline{uv^i xy^i z} \in L$;
- |vy| > 0; e
- $|vxy| \leq p$.

- Pela condição 2 temos que $v \neq \mathcal{E}$ ou $y \neq \mathcal{E}$. Caso contrário, o lema seria trivialmente verdadeiro
- Pela condição 3: |vxy| tem tamanho máximo p

Considere $w = u\mathcal{E} \times \mathcal{E} z$.

Teorema

Se L é uma **LLC**, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, se $w \in L$, com $|w| \ge p$, então w pode ser dividida em cinco partes w = uvxyz, satisfazendo:

- **1** para $i \ge 0$, a palavra $w' = \underline{uv^i x y^i z} \in L$;
- |vy| > 0; e
- $|vxy| \leq p$.

- Pela condição 2 temos que $v \neq \mathcal{E}$ ou $y \neq \mathcal{E}$. Caso contrário, o lema seria trivialmente verdadeiro
- Pela condição 3: |vxy| tem tamanho máximo p

Considere $w = u\mathcal{E} \times \mathcal{E} z$.

Teorema

Se L é uma **LLC**, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, se $w \in L$, com $|w| \ge p$, então w pode ser dividida em cinco partes w = uvxyz, satisfazendo:

- **1** para $i \ge 0$, a palavra $w' = \underline{uv^i x y^i z} \in L$;
- |vy| > 0; e
- $|vxy| \leq p.$

- Pela condição 2 temos que $v \neq \mathcal{E}$ ou $y \neq \mathcal{E}$. Caso contrário, o lema seria trivialmente verdadeiro
- Pela condição 3: |vxy| tem tamanho máximo p

Considere $w = u \mathcal{E} \times \mathcal{E} z$.

Teorema

Se L é uma **LLC**, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, se $w \in L$, com $|w| \ge p$, então w pode ser dividida em cinco partes w = uvxyz, satisfazendo:

- **1** para $i \ge 0$, a palavra $w' = uv^i xy^i z \in L$;
- |vy| > 0; e
- $|vxy| \leq p.$

- Pela condição 2 temos que $v \neq \mathcal{E}$ ou $y \neq \mathcal{E}$. Caso contrário, o lema seria trivialmente verdadeiro
- Pela condição 3: |vxy| tem tamanho máximo p

Considere $w = u\mathcal{E} \times \mathcal{E} z$

Teorema

Se L é uma **LLC**, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, se $w \in L$, com $|w| \ge p$, então w pode ser dividida em cinco partes w = uvxyz, satisfazendo:

- **1** para $i \ge 0$, a palavra $w' = uv^i xy^i z \in L$;
- **2** |vy| > 0; e
- $|vxy| \leq p.$

Observações:

- Pela condição 2 temos que $v \neq \mathcal{E}$ ou $y \neq \mathcal{E}$. Caso contrário, o lema seria trivialmente verdadeiro.
- Pela condição 3: |vxy| tem tamanho máximo p

Considere $w = u \mathcal{E} \times \mathcal{E} z$.

Teorema

Se L é uma **LLC**, então existe um <u>número p</u>, chamado de comprimento do bombeamento, tal que, se $w \in L$, com $|w| \ge p$, então w pode ser dividida em cinco partes w = uvxyz, satisfazendo:

- **1** para $i \ge 0$, a palavra $w' = uv^i x y^i z \in L$;
- |vy| > 0; e
- $|vxy| \leq p.$

- Pela condição 2 temos que $v \neq \mathcal{E}$ ou $y \neq \mathcal{E}$. Caso contrário, o lema seria trivialmente verdadeiro.
- Pela condição 3: |vxy| tem tamanho máximo p.

Em outras palavras, $w \in L$ pode ser dividida em

$$w = uvxyz$$

tal que, v e y podem ser repetidas (bombeadas) qualquer número de vezes e a cadeia

$$w' = \underline{uv^i x y^i z}$$

para $i \ge 0$ pertence à L.

Ideia da prova: Seja L uma LLC e suponha que a GLC G gere L.

- Considere w = uvxyz ∈ L uma cadeia longa e que T é a árvore de derivação que gera w.
- No caminho entre a variável inicial (raiz de T) e os símbolos terminais (folhas) temos uma variável $R \in V$:

Ideia da prova: Seja L uma **LLC** e suponha que a GLC G gere L.

- Considere w = uvxyz ∈ L uma cadeia longa e que T é a árvore de derivação que gera w.
- No caminho entre a variável inicial (raiz de T) e os símbolos terminais (folhas) temos uma variável R ∈ V:
 - Pelo princípio da casa dos pombos, a variável R deve se repetir no caminho.

Ideia da prova: Seja L uma **LLC** e suponha que a GLC G gere L.

- Considere $w = uvxyz \in L$ uma cadeia longa e que T é a árvore de derivação que gera w.
- No caminho entre a variável inicial (raiz de T) e os símbolos terminais (folhas) temos uma variável R ∈ V:
 - Pelo princípio da casa dos pombos, a variável R deve se repetir no caminho.

Ideia da prova (continuação):

• Essa repetição nos permite substituir a subárvore sob a segunda ocorrência de *R*, pela subárvore da primeira.

- A árvore obtida lé válidal, ou seja, a palavra gerada também

Ideia da prova (continuação):

- Essa repetição nos permite substituir a subárvore sob a segunda ocorrência de *R*, pela subárvore da primeira.
 - A árvore obtida é válida , ou seja, a palavra gerada também.

Ideia da prova (continuação):

- Essa repetição nos permite substituir a subárvore sob a segunda ocorrência de *R*, pela subárvore da primeira.
 - A árvore obtida é válida , ou seja, a palavra gerada também.

Não vamos ver a prova formal do lema.

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Suponha que L é uma **LLC**, e p o comprimento de bombeamento, vamos considerar $w = a^p b^p c^p \in L$, com $|w| \ge p$.

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - ① $w' = uv^i \times y^i z \in L$, qualquer para $i \ge 0$
 - ② |vy| > 0; e
- Pela condição (3), temos as seguintes possibilidades

Vamos supor que y e y contêm dois tipos de símbolos: vvy = a⁰b⁰ ou vvy = 10⁶c⁶

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - ① $w' = uv^i \times y^i z \in L$, qualquer para $i \ge 0$;
 - |vy| > 0; e
 - $|vxy| \leq p.$
- Pela condição (3), temos as seguintes possibilidades

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - $w' = uv^i x y^i z \in L, \text{ qualquer para } i \ge 0;$
 - |vy| > 0; e
 - $|vxy| \leq p.$
- Pela condição (3), temos as seguintes possibilidades

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - $w' = uv^i x y^i z \in L, \text{ qualquer para } i \ge 0;$
 - |vy| > 0; e
 - $|vxy| \leq p.$
- Pela condição (3), temos as seguintes possibilidades:
 - Vamos supor que v e y contém um mesmo símbolo: a's, b's ou c's Neste caso, un'ay a tem mais de um símbolo do que do outro, e un'ay a la la Contradicaci.
 - Wamos supor que \underline{v} e \underline{y} contém dois tipos de símbolos: $vxy = \mathbf{a}^{\ell}\mathbf{b}^{k}$ ou $vxy = \mathbf{b}^{\ell}\mathbf{c}^{k}$

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - $w' = uv^i x y^i z \in L, \text{ qualquer para } i \ge 0;$
 - |vy| > 0; e
 - $|vxy| \leq p.$
- Pela condição (3), temos as seguintes possibilidades:
 - 1 Vamos supor que \underline{v} e \underline{y} contém um mesmo símbolo: \mathbf{a} 's, \mathbf{b} 's ou \mathbf{c} 's
 - Neste caso, <u>uv²xy²z</u> tem mais de um símbolo do que do outro, e <u>uv²xy²z</u> ∉ L ← Contradição!
 - ② Vamos supor que \underline{v} e \underline{y} contém dois tipos de símbolos: $vxy = \mathbf{a}^{\ell}\mathbf{b}^{k}$ ou $vxy = \mathbf{b}^{\ell}\mathbf{c}^{k}$

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Suponha que L é uma **LLC**, e p o comprimento de bombeamento, vamos considerar $w = \underline{a^p b^p c^p} \in L$, com $|w| \ge p$.

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - $w' = uv^i x y^i z \in L, \text{ qualquer para } i \ge 0;$
 - 2 |vy| > 0; e
 - $|vxy| \leq p.$
- Pela condição (3), temos as seguintes possibilidades:
 - Vamos supor que \underline{v} e \underline{y} contém um mesmo símbolo: \mathbf{a} 's, \mathbf{b} 's ou \mathbf{c} 's
 - Neste caso, <u>uv²xy²z</u> tem mais de um símbolo do que do outro, e <u>uv²xy²z</u> ∉ L ← Contradição!
 - ② Vamos supor que \underline{v} e \underline{y} contém dois tipos de símbolos: $vxy = \mathbf{a}^{\ell}\mathbf{b}^{k}$ ou $vxy = \mathbf{b}^{\ell}\mathbf{c}^{k}$
 - $-\frac{uv^2xy^2z}{v^2}$ pode ter quantidade iguais de a's, b's ou c's, mas não na mesma ordem, então $uv^2xy^2z \notin L$. ← Contradição!

propriedades do bombeamento $\to L$ não é uma **LLC**

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Suponha que L é uma **LLC**, e p o comprimento de bombeamento, vamos considerar $w = \underline{a}^p \underline{b}^p \underline{c}^p \in L$, com $|w| \ge p$.

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - $w' = uv^i x y^i z \in L, \text{ qualquer para } i \ge 0;$
 - 2 |vy| > 0; e
 - $|vxy| \leq p.$
- Pela condição (3), temos as seguintes possibilidades:
 - 1 Vamos supor que \underline{v} e \underline{y} contém um mesmo símbolo: \mathbf{a} 's, \mathbf{b} 's ou \mathbf{c} 's
 - Neste caso, <u>uv²xy²z</u> tem mais de um símbolo do que do outro, e <u>uv²xy²z</u> ∉ L ← Contradição!
 - ② Vamos supor que \underline{v} e \underline{y} contém dois tipos de símbolos: $vxy = \mathbf{a}^{\ell}\mathbf{b}^{k}$ ou $vxy = \mathbf{b}^{\ell}\mathbf{c}^{k}$
 - <u>uv²xy²z</u> pode ter quantidade iguais de a's, b's ou c's, mas não na mesma ordem, então <u>uv²xy²z</u> ∉ L. ← Contradição!

propriedades do bombeamento $\to L$ não é uma **LLC**

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Suponha que L é uma **LLC**, e p o comprimento de bombeamento, vamos considerar $w = \underline{a}^p \underline{b}^p \underline{c}^p \in L$, com $|w| \ge p$.

- Pelo Lema do bombeamento reescrevemos w = uvxyz, tal que:
 - $w' = uv^i x y^i z \in L, \text{ qualquer para } i \ge 0;$
 - |vy| > 0; e
 - $|vxy| \leq p.$
- Pela condição (3), temos as seguintes possibilidades:
 - Vamos supor que \underline{v} e y contém um mesmo símbolo: **a**'s, **b**'s ou **c**'s
 - Neste caso, <u>uv²xy²z</u> tem mais de um símbolo do que do outro, e <u>uv²xy²z</u> ∉ L ← Contradição!
 - ② Vamos supor que \underline{v} e \underline{y} contém dois tipos de símbolos: $vxy = \mathbf{a}^{\ell}\mathbf{b}^{k}$ ou $vxy = \mathbf{b}^{\ell}\mathbf{c}^{k}$
 - $\underline{uv^2xy^2z}$ pode ter quantidade iguais de **a**'s, **b**'s ou **c**'s, mas não na mesma ordem, então $uv^2xy^2z \notin L$. ← Contradição!

 \nexists propriedades do bombeamento \rightarrow L não é uma LLC

Portanto existem linguagens que não são do **Tipo 2**:

Na próxima aula veremos essas linguagens.

Fim

Dúvidas?

Roteiro

- Não-determinismo
- 2 Equivalência entre APs e GLCs
 - De GLCs para APs
 - De APs para GLCs
- 3 Lema do Bombeamento para as LLCs
- 4 Referências

Referências

Referências:

- 1 "Introdução à Teoria da Computação" de M. Sipser, 2007.
- ² "Linguagens formais e autômatos" de Paulo F. B. Menezes, 2002.
- Materiais adaptados dos slides do Prof. Evandro E. S. Ruiz, da USP.