Exercises week 5.

1. Use the following data

	X	С	Y	n
1	0	0	0	80
2	0	0	1	20
3	0	1	0	20
4	0	1	1	10
5	1	0	0	80
6	1	0	1	20
7	1	1	0	80
8	1	1	1	40

- a. Calculate the probability to be treated for those with C=1 and those with C=0.
 - P(X=1 | C=c) for c=0,1

What are these probabilities?

The propensity score values for those with C=0 and C=1 are

- b. Suppose you want to adjust for confounding by calculating propensity score weights. Calculate the weights for X=1,0 and C=1,0
 - The weights for X=0,1, C=0,1

X=1, C=1: 1/0.8=1.25 X=0, C=1: 1/(1-0.8) = 5

X=1, C=0: 1/0.5=2 X=0, C=0: 1/0.5=2

	X	С	weight	Y	n
1	0	0	2	0	80
2	0	0	2	1	20
3	0	1	5	0	20
4	0	1	5	1	10
5	1	0	2	0	80
6	1	0	2	1	20
7	1	1	1.25	0	80
8	1	1	1.25	1	40

• Estimate E(Y(x)), for x=0,1

$$\widehat{E}[Y(1)] = \frac{80*0*2+20*1*2+80*0*1.25+40*1*1.25}{80*2+20*2+80*1.25+40*1.25} = 90/350 = 0.26$$

$$\widehat{E}[Y(0)] = \frac{20*2+10*5}{80*2+20*2+20*5+10*5} = 90/350$$

• Estimate the ATE (risk difference)

Again the ATE= 0.

•

b. Try to derive what the weights would be if you would want to estimate the treatment effect in the treated .

The treated will all get weight 1 because interest is in the subgroup of treated.

For the untreated, the standard weights are multiplied by the probability to be treated. That is

$$\frac{P(X=1|C)}{P(X=0|C)}$$