abaisero.sty

Andrea Baisero

August 14, 2024

1 Options

Options are processes left-to-right. If no options are provided, or none are enabled by the end of the processing, then by default they are all considered to be enabled.

Option	Description
all	Enable all commands
(no-)math	Disable/enable mathematical commands
(no-)linalg	Disable/enable linear algebra commands
(no-)optim	Disable/enable optimization commands
(no-)stats	Disable/enable statistics commands
(no-)dists	Disable/enable distributions commands
(no-)ml	Disable/enable machine learning commands
(no-)rl	Disable/enable reinforcement learning commands
(no-)marl	Disable/enable multi-agent reinforcement learning commands
(no-)theorem	Disable/enable theorem commands
(no-)misc	Disable/enable miscellanea commands

2 Commands

Option [math]

Symbol	Command	Description	Example
\mathbb{N}	\naturalset	the set of natural numbers	$\mathbb{N} \doteq \{1, 2, 3, \ldots\}$
${\mathbb Z}$	integerset	the set of integer numbers	$\mathbb{Z} \doteq \{0, 1, -1, 2, -3, \ldots\}$
\mathbb{R}	$\backslash { t realset}$	the set of real numbers	$\sqrt{2} \in \mathbb{R}$
*	\kstar	the Kleene star operator	$\mathcal{X}^* \doteq igcup_{k=0}^\infty \mathcal{X}^k$
+	kplus	the Kleene plus operator	$\mathcal{X}^+ \doteq \bigcup_{k=1}^{\infty} \mathcal{X}^k$
$\operatorname{softmax}$	$\setminus \mathtt{softmax}$	a.k.a. logsumexp, realsoftmax ¹	$\operatorname{softmax}(x_1,\ldots,x_n) \doteq \log \sum_i \exp(x_i)$
$\operatorname{softmin}$	$\setminus \mathtt{softmin}$		$\operatorname{softmin}(x_1,\ldots,x_n) \doteq -\log \sum_i \exp(-x_i)$
$\operatorname{softargmax}$	$\backslash \mathtt{softargmax}$	$a.k.a. softmax^1$	$\operatorname{softargmax}(x_1, \dots, x_n)_i \doteq \frac{\exp(x_i)}{\sum_k \exp(x_k)}$
sign	$\setminus \mathtt{sign}$		$x = \operatorname{sign} x \cdot x $
supp	\supp	support operator	$\operatorname{supp}(f) \doteq \{x \mid f(x) \neq 0\}$

¹The functions that in this document are called "softmax" and "softargmax" are poorly and inaccurately named in the broader math and ML fields (see https://en.wikipedia.org/wiki/Softmax_function and https://en.wikipedia.org/wiki/LogSumExp). Rather than stick to the more common naming conventions, I opt to rename the functions more accurately to appropriately reflect their actual properties. In any document where I would use these functions, I would need to define them anyway, so the risk of misunderstandings are minimal.

Option [linalg]

Symbol	Command	Description	Example
diag	\diag		
rank	$\backslash \mathtt{rank}$		
tr	$ackslash ag{trace}$		$\operatorname{tr}(M) \doteq \sum_{i=1}^{n} M_{ii}$
col	ackslashcolspace		
ker	νll space	Nullspace (a.k.a kernel) of a linear mapping	
span	\setminus spanspace		
Т	$\backslash \mathtt{T}$	Transpose superscript	symmetric $M \implies M = M^{\top}$
-1	\I	Inverse superscript	invertible $M \implies MM^{-1} = I$
+	\PI	Pseudo-inverse superscript	$MM^+M=M$
− T	\IT	Inverse transpose superscript	$M^{-\top} = (M^{-1})^{\top} = (M^{\top})^{-1}$
+ T	\PIT	Pseudo-inverse transpose superscript	$M^{+\top} = (M^+)^{\top} = (M^{\top})^{+}$

Option [optim]

Symbol	Command	Description	Example
argmax argmin *	\argmax \argmin \opt	Optimality superscript	$\begin{aligned} & \operatorname{argmax}_{a} Q^{\pi}(s, a) \\ & \theta^{*} \doteq \operatorname{argmin}_{\theta} \mathcal{L}(\theta) \\ & \pi^{*}(s) = \operatorname{argmax}_{a} Q^{*}(s, a) \end{aligned}$

Option [stats]

Symbol	Command	Description	Example
	\indep	Independence	$X \perp Y \mid Z$
do	\causaldo	Pearl's do operator	$\Pr(Y \mid \operatorname{do}(X = x)) \neq \Pr(Y \mid X = s)$
\mathbb{C}	\Cov	Covariance	$\mathbb{C}(x,y) = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$
\mathbb{H}	\Ent	Entropy	$\mathbb{H}[x] = -\mathbb{E}\left[\log \Pr(x)\right]$
\mathbb{E}	\Exp	Expectation	$\mathbb{E}\left[f(x)\right] = \sum_{x} \Pr(x) f(x)$
I	\Ind	Indicator function	$\Pr(x=0) = \mathbb{E}\left[\mathbb{I}\left[x=0\right]\right]$
KL	\KL	KL-divergence	$\mathrm{KL}\left(p\mid\mid q\right) \doteq \mathbb{E}_{x\sim p}\left[\log p(x) - \log q(x)\right]$
$\mathrm{D_{KL}}$	$\backslash \mathtt{DKL}$	KL-divergence (alternative)	-
\mathbb{I}	\MI	Mutual Information	
\mathbb{B}	ackslashBias	Bias	$\mathbb{B}\left[\hat{f}(x)\right]$ is the bias of estimator \hat{f}
\mathbb{V}	$ackslash exttt{Var}$	Variance	$\mathbb{V}\left[\hat{f}(x)\right] = \mathbb{E}\left[\hat{f}(x)^2\right] - \mathbb{E}\left[\hat{f}(x)\right]^2$

${\bf Option}~[{\bf dists}]$

Symbol	Command	Description
Categorical	Categorical	Categorical
Dirichlet	$ackslash exttt{Dirichlet}$	Dirichlet
Geometric	$\setminus \texttt{Geometric}$	Geometric
Normal	$\backslash exttt{Normal}$	Normal
Uniform	$\setminus \mathtt{Uniform}$	Uniform

Option [ml]

Symbol	Command	Description	Example
\mathcal{D} \mathcal{L} nll	\data \loss \nll	Data set Loss function Neg-log-likelihood	$\mathcal{D} \doteq \{(x_i, y_i)\}_{i=1}^N$ $\mathcal{L}(\theta; x, y) = \frac{1}{2} y - f(x; \theta) ^2$ $\text{nll}(x) \doteq -\log \Pr(x)$
MSE	$\backslash \mathtt{mse}$	Mean-squared-error	

Option [rl]

Symbol	Command	Description
\mathcal{A}	\aset	Action set
${\cal B}$	bset	Belief set
${\cal H}$	hset	History set
\mathcal{O}	$\setminus \mathtt{oset}$	Observation set
${\cal R}$	$ackslash ext{rset}$	Reward set
$\mathcal S$	\setminus sset	State set
D	\dfn	Dynamics function
G	\gfn	Generative function
O	$\backslash exttt{ofn}$	Observation function
R	$\backslash exttt{rfn}$	Reward function
${ m T}$	$\backslash exttt{tfn}$	Transition function
ε	\n nohistory	Empty history
π	$ackslash ext{policy}$	policy
Q^{π}	\qpolicy	Q policy values
\hat{Q}	\qmodel	Parametric model
V^{π}	\vpolicy	V policy values
\hat{V}	\vmodel	Parametric model
A^{π}	\apolicy	A policy values
\hat{A}	\amodel	Parametric model
U^{π}	\upolicy	U policy values
\hat{U}	$\backslash \mathtt{umodel}$	Parametric model

Option [marl]

Symbol	Command	Description
$ar{\mathcal{H}}$	\hsset	Joint history set
$ar{\mathcal{A}}$	$\setminus \mathtt{asset}$	Joint action set
$\bar{\mathcal{O}}$	osset	Joint observation set
$ar{h}$	\hs	Joint history
$ar{a}$	\setminus as	Joint action
\bar{o}	\os	Joint observation
$ar{\pi}$	$\backslash { t policies}$	Joint policy
$Q^{\bar{\pi}}$	\qpolicies	Q joint-policy values
$V^{ar{\pi}}$	\vpolicies	V joint-policy values
$A^{ar{\pi}}$	\apolicies	A joint-policy values
$U^{\bar{\pi}}$	\upolicies	U joint-policy values

Option [theorem]

Symbol	Command	Description
	\begin{definition} \begin{example}	
	<pre>\begin{axiom} \begin{conjecture} \begin{proposition} \begin{lemma} \begin{theorem} \begin{corollary} \begin{generalization}</pre>	

Option [misc]

Symbol	Command	Description
† (k)	$\begin{tabular}{ll} $\backslash D$ \\ $\backslash iter\{k\}$ \end{tabular}$	Dagger superscript Superscript indicating iteration