Session 7: Practical Exercise

Question 1

In Inference 4 (section 4.2) we showed that for the Normal mean parameter, with known variance,

$$llr(\mu|\underline{x}) = l(\mu|\underline{x}) = -\frac{1}{2} \left(\frac{\bar{x} - \mu}{\sigma/\sqrt{n}}\right)^2$$

$$\Rightarrow -2llr(\mu|\underline{x}) = -2l(\mu|\underline{x}) = \left(\frac{\bar{x} - \mu}{\sigma/\sqrt{n}}\right)^2$$

Suppose $X_1, ..., X_n$ represents a random sample from a Normal distribution with unknown mean μ but known variance 1. Obtain the likelihood ratio test and Wald test statistics for the hypothesis test $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$, and confirm they are identical. Now derive the score statistic for this hypothesis test and show that it is identical to the others. Do you understand why?

Question 2

Based on previous experience, patients with a certain type of cancer have survival times which are exponentially distributed with mean survival time $1/\beta_0$. It is thought that a new treatment will still give exponentially distributed survival times, but with a different mean survival time. Recall that the exponential density is $f(x|\beta) = \beta \exp(-\beta x)$, where $\beta, x > 0$.

(a) [optional] Show that the mean of the exponential distribution is $1/\beta$. Hint: you will have to use integration by parts:

$$\int_{a}^{b} u \frac{dv}{dx} dx = [uv]_{a}^{b} - \int_{a}^{b} v \frac{du}{dx} dx$$

- (b) Write down the model and null hypothesis, when survival times are random variables $X_1, ..., X_n$.
- (c) Derive the maximum likelihood estimator for β , and a log-likelihood ratio test statistic to assess whether there is an effect of the new treatment on survival time.
- (d) Derive the score and Wald test statistics for evaluating the same issue. Compare them with the log-likelihood ratio test statistic.
- (e) Given the following survival times, in years, for five patients: 0.5, 1, 1.25, 1.5, 0.75, test the null hypothesis H_0 : $\beta = 0.5$ against the alternative H_0 : $\beta \neq 0.5$, by computing all three test statistics, and the resulting p-values. What do you conclude?

Question 3

The random variables $X_1, ..., X_n$ are independent and have identical uniform distributions on the range $[0, \alpha]$. Derive and sketch the likelihood function for the parameter α . Without performing any calculations, would you envisage any problem with testing hypotheses about α ?