北京三帆中学 2015-2016 学年度第一学期期中考试试卷

初二 数学

班级______ 分层班级_____ 姓名_____ 学号___ 成绩____

一、 选择题(本题共 30 分, 每小题 3 分) 1. 下列等式成立的是().
A. $\left(-\frac{2}{3}\right)^{-2} = \frac{4}{9}$ B. $\frac{-a+b}{c} = -\frac{a+b}{c}$
C. $0.00061 = 6.1 \times 10^{-5}$ D. $\frac{-a-b}{-a+b} = \frac{a+b}{a-b}$
2. 化简 $\frac{m^2 - 3m}{9 - m^2}$ 的结果是().
A. $\frac{m}{m+3}$ B. $-\frac{m}{m+3}$ C. $\frac{m}{m-3}$ D. $\frac{m}{3-m}$ 3. 根据下列已知条件,能唯一画出 $\triangle ABC$ 的是().
A. $AB=3$, $BC=4$, $AC=8$ B. $AB=4$, $BC=3$, $\angle A=30^{\circ}$
C. $\angle A=60^{\circ}$, $\angle B=45^{\circ}$, $AB=4$ D. $\angle C=90^{\circ}$, $AB=6$
4. 把多项式 $x^2 + mx - 35$ 分解因式为 $(x-5)(x+7)$,则 m 的值是 ()
A. 2 B2 C. 12 D12
A. 2 B. -2 C. 12 D. -12 5. 若分式方程 $\frac{3x}{x+1} = \frac{m}{x+1} + 2$ 无解,则 m 的值为() . A. -1 B. -3 C. 0 D. -2
A. -1 B. -3 C. 0 D. -2
6. 已知三角形的两边长分别为 5 和 7,则第三边上的中线长 x 的范围是 ().
A. 2 < x < 12 B. 5 < x < 7 C. 1 < x < 6 D. 无法确定
7. 甲、乙两班学生植树造林,已知甲班每天比乙班多植 5 棵树,甲班植 80
初二数学试题 第 1 页 共 错误:未指定书签。 页

棵树所用的天数与乙班植 70 棵树所用的天数相等, 若设乙班每天植树 x 棵, 则根据题意列出方程是().

A.
$$\frac{80}{x-5} = \frac{70}{x}$$

B.
$$\frac{80}{x} = \frac{70}{x+5}$$

C.
$$\frac{80}{x+5} = \frac{70}{x}$$

A.
$$\frac{80}{x-5} = \frac{70}{x}$$
 B. $\frac{80}{x} = \frac{70}{x+5}$ C. $\frac{80}{x+5} = \frac{70}{x}$ D. $\frac{80}{x} = \frac{70}{x-5}$

- 8. 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长 方形直尺就可以作出一个角的平分线. 如图 1: 一把直尺压住射线 OB,
- 另一把直尺压住射线 OA 并且与第一把直尺交于点 P, 小明说: "射线 OP 就 是 $\angle BOA$ 的角平分线."他这样做的依据是().
- A. 角的内部到角的两边的距离相等的点在角的平分线上
- B. 角平分线上的点到这个角两边的距离相等
- C. 三角形三条角平分线的交点到三条边的距离相等
- D. 以上均不正确

9. 如图 2, $\triangle ABC$ 中, $AB \perp BC$, $BE \perp AC$, $\angle 1 = \angle 2$, AD = AB, 则下列结 论不正确的是().

A. BF = DF B. $\angle 1 = \angle EFD$ C. BF > EF D. FD // BC

10. 已知 $x = a^2 + b^2 + 20$, y = 4(2b-a), x、y的大小关系是 ().

A. x < y B. x > y C. $x \le y$ D. $x \ge y$

二、填空题(本题共16分. 每题2分)

初二数学试题 第 2 页 共 错误!未指定书签。 页

- 12. 当 x=____时,分式 $\frac{4-x}{x-3}$ 无意义;当 x=____时,分式 $\frac{|x|-9}{x+9}$ 的值等于零.
- 13. 计算: 2014+2014²-2015² = _____.

分层班级 姓名 学号

- 14. 轮船在静水中的速度是 *a* 千米/时,水流速度是 *b* 千米/时,则逆流航行 10 千米所用时间为______小时.
- 15. 已知: $\frac{1}{a} + \frac{1}{b} = 3$,则 $\frac{ab}{3a ab + 3b} =$ ______.
- 16. 如图 4, AE=AF, AB=AC, $\angle A=60$ °, $\angle B=24$ °, 则 $\angle AEC=$ _____°.
- 17. 如图 5,在 $\triangle ABC$ 中,点 D 为 BC 上一点,E、F 两点分别在边 AB、AC 上,若 BE=CD,BD=CF, $\angle B=\angle C$, $\angle A=50^\circ$,则

图 4

18. 如图 6, 四边形 ABCD 中, AB//CD, 点 E 是边 AD 上的点, BE 平分 $\angle ABC$,

初二数学试题 图 5 共 错误!未指定书签

CE 平分∠BCD, 有下列结论: ①AD=AB+CD, ②E 为AD 的中点,

③ BC=AB+CD, ④ $BE\perp CE$, 其中正确的有 . (填序号)

三、分解因式(本题共16分,每小题4分)

19.
$$a^4 - a^2b^2$$

20.
$$4x^3 + 4x^2y + xy^2$$

21.
$$x^2 + 4x - 21$$

$$22. \quad x^2 - y^2 + 2y - 1$$

四、(本题共8分,每小题4分)

23. 计算
$$\left(-\frac{a}{b}\right)^2 \cdot \left(\frac{b}{a^2}\right)^2 \div \left(-2ab\right)^2$$

24. 解方程
$$\frac{3}{2x-2} - \frac{1}{x-1} = 3$$

解:

五、解答题(本题共30分,第25-27题每题5分,28题7分,29题8分)

25. 已知: 如图, 点 $A \setminus E \setminus F \setminus C$ 在同一条直线上, DF = BE, $\angle B = \angle D$, AD // BC.

求证: AE=CF.

证明:

26. 先化简再求值: 已知 $a^2 + 2a - 1 = 0$,求 $\left(\frac{a-2}{a^2 + 2a} - \frac{a-1}{a^2 + 4a + 4}\right) \div \frac{a-4}{a+2}$ 的值.

解:

27. 请看下面的问题: 把 x⁴+4 分解因式

初二数学试题 第 5 页 共 错误!未指定书签。 页

分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢? 19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和 $\left(x^2\right)^2+\left(2\right)^2$ 的形式,要使用公式就必须添一项 $4x^2$,随即将此项 $4x^2$ 减去,即可得 $x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)$ 人们为了纪念苏菲•热门给出这一解法,就把它叫做"热门定理",请你依照 苏菲•热门的做法,将下列各式因式分解.

$$(1)$$
 $x^4 + 4y^4$

(2)
$$x^2 - 2ax - b^2 - 2ab$$

28. 如图,在 $\triangle ABC$ 中, $AD \bot BC$ 于 D, CE 平分 $\angle ACB$ 分别交 AB、AD 于 E、F 两点,且 BD=FD,AB=CF. 求证: (1) $CE \bot AB$; (2) AE=BE. 证明: (1)

(2)

分层班级 姓名 学号

- 29. 己知:如图,在 $\triangle ABC$ 中,AB = 3AC,AD 平分 $\angle BAC$, $BE \perp AD$ 交 AD 的延长线于点 E. 设 $\triangle ACD$ 的面积是 S.
 - (1) 求△*ABD* 的面积:
 - (2) 求证: *AD=DE*;
 - (3) 探究 BE AC 和 BD CD 之间的大小关系并证明你的结论.

附加卷 (本卷共 10 分, 第 1、2 题每题 2 分, 第 3 题 6 分)

初二数学试题 第 7 页 共 错误!未指定书签。 页

- 1. 已知 $a \times b \times c$ 满足 a-b=8, $ab+c^2+16=0$,则 2a+b+c 的值等于_____.
- 2. 已知 $a + x^2 = 2013$, $b + x^2 = 2014$, $c + x^2 = 2015$, 且 abc = 6048, 则

$$\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} - \frac{1}{a} - \frac{1}{b} - \frac{1}{c}$$
的值等于______

- 3. 如图所示,在平面直角坐标系 xoy 中, $\triangle ABC$ 的顶点 B 是 y 轴正半轴上一个定点,D 是 BO 的中点.点 C 在 x 轴上,A 在第一象限,且满足 AB=AO,N 是 x 轴负半轴上一点, $\angle BCN=\angle BAO=\alpha$.
 - (1) 当点 C 在 x 轴正半轴上移动时,求 $\angle BCA$; (结果用含 α 的式子表示)
 - (2) 当某一时刻 A(20,17)时, 求 OC+BC 的值;
 - (3) 当点 C 沿 x 轴负方向移动且与点 O 重合时, $\alpha = _____$ °, 此时 以 AO 为斜边在坐标平面内作一个 $Rt\triangle AOE$ (E 不与 D 重合),则 $\angle AED$ 的度数的所有可能值有______. (直接写出结果)

解:

北京三帆中学 2015-2016 学年度第一学期期中考试试卷

初二 数学 参考答案

- 冼择斯(木斯共 30 分 每小斯 3 分)

1. 下列等式成立的是 (D).	0
A. $\left(-\frac{2}{3}\right)^{-2} = \frac{4}{9}$ B. $\frac{-a}{c}$	$+\frac{b}{c} = -\frac{a+b}{c}$
C. $0.00061 = 6.1 \times 10^{-5}$ D. $\frac{-a-b}{-a+b} = \frac{a+b}{a-b}$	
2. 化简 $\frac{m^2 - 3m}{9 - m^2}$ 的结果是(B).	
A. $\frac{m}{m+3}$ B. $-\frac{m}{m+3}$ C. $\frac{m}{m-3}$ D. $\frac{m}{3-m}$	
3. 根据下列已知条件,能唯一画出 $\triangle ABC$ 的是(C).	
A. $AB=3$, $BC=4$, $AC=8$ B. $AB=4$, $BC=3$, $\angle A=30^{\circ}$	
C. $\angle A = 60^{\circ}$, $\angle B = 45^{\circ}$, $AB = 4$	
C. $\angle A = 60^{\circ}$, $\angle B = 43^{\circ}$, $AB = 4^{\circ}$ D. $\angle C = 90^{\circ}$, $AB = 6^{\circ}$	
_ / \/ /	
4. 把多项式 $x^2 + mx - 35$ 分解因式为 $(x-5)(x+7)$,则 m 的值是	(A).
A. 2 B. –2 C. 12 D. –12	
5. 若分式方程 $\frac{3x}{x+1} = \frac{m}{x+1} + 2$ 无解,则 <i>m</i> 的值为(B).	
A1 $B3$ C. 0 D2	
6. 已知三角形的两边长分别为 5 和 7,则第三边上的中线长	x 的范围是
(C).	
A. $2 < x < 12$ B. $5 < x < 7$ C. $1 < x < 6$ D. 无法	・備定
7.甲、乙两班学生植树造林,已知甲班每天比乙班多植 5 棵树,	甲班植 80

初二数学试题 第 9 页 共 错误!未指定书签。 页

棵树所用的天数与 $\overline{\text{乙班植 70}}$ 棵树所用的天数相等, 若设 $\overline{\text{乙班每天植树 }}$ x 棵, 则根据题意列出方程是(C).

A.
$$\frac{80}{x-5} = \frac{70}{x}$$

A.
$$\frac{80}{x-5} = \frac{70}{x}$$
 B. $\frac{80}{x} = \frac{70}{x+5}$ C. $\frac{80}{x+5} = \frac{70}{x}$ D. $\frac{80}{x} = \frac{70}{x-5}$

C.
$$\frac{80}{x+5} = \frac{70}{x}$$

D.
$$\frac{80}{x} = \frac{70}{x-5}$$

8.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长 方形直尺就可以作出一个角的平分线. 如图 1: 一把直尺压住射线 OB, 另一把直尺压住射线 OA 并且与第一把直尺交干点 P, 小明说: "射线 OP 就 是 $\angle BOA$ 的角平分线."他这样做的依据是(\mathbf{A}).

- A. 角的内部到角的两边的距离相等的点在角的平分线上
- B. 角平分线上的点到这个角两边的距离相等
- C. 三角形三条角平分线的交点到三条边的距离相等
- D. 以上均不正确

9. 如图 2, $\triangle ABC$ 中, $AB \perp BC$, $BE \perp AC$, $\angle 1 = \angle 2$, AD = AB, 则下列结 论不正确的是(B).

A. BF = DF B. $\angle 1 = \angle EFD$ C. BF > EF D. FD // BC

10. 已知 $x = a^2 + b^2 + 20$, y = 4(2b - a), x, y 的 大小关系是 (**D**).

A. x < y B. x > y C. $x \le y$ D. $x \ge y$

二、填空题(本题共16分,每小题2分)

11. 如图,已知 $AB \perp BD$, AB // ED, AB = ED,要证明

初二数学试题

第 10 页 共 **错误!未指定书**

- 12. 当 $x = _{3}$ 时,分式 $\frac{4-x}{x-3}$ 无意义;当 $x = _{9}$ 时,分式 $\frac{|x|-9}{x+9}$ 的值等于零.
- 13. 计算: 2014+2014²-2015² = ___-2015____.
- 14. 轮船在静水中的速度是 a 千米/时,水流速度是 b 千米/时,则逆流航行 10 千米所用时间为 $-\frac{10}{a-b}$ —小时.
- 15.已知: $\frac{1}{a} + \frac{1}{b} = 3$,则 $\frac{ab}{3a ab + 3b} = \frac{1}{8}$ _____.
- 16. 如图 4, AE=AF, AB=AC, ∠A=60°, ∠B=24°, 则∠AEC=__96__°.
- 17. 如图 5, 在 $\triangle ABC$ 中, 点 D为 BC上一点, E、F两点分别在边 AB、AC
- 上, 若 BE=CD, BD=CF, ∠B=∠C, ∠A=50°, 则∠EDF=<u>65</u>°.

- 18. 如图 6, 四边形 ABCD 中, AB//CD, 点 E 是边 AD 上的点, BE 平分 $\angle ABC$, CE 平分 $\angle BCD$,有下列结论: ①AD=AB+CD,②E 为AD 的中点,
- ③ *BC=AB+CD*, ④*BE*⊥*CE*, 其中正确的有__②_③_④____.(填序号)

三、分解因式(本题共16分,每小题4分)

初二数学试题 第 11 页 共 错误!未指定书签。 页

19.
$$a^4 - a^2b^2$$

20.
$$4x^3 + 4x^2y + xy^2$$

$$=a^{2}(a^{2}-b^{2})......2$$

$$=x(4x^2+4xy+y^2)......2/x$$

$$=a^{2}(a+b)(a-b).....4$$
 $\Rightarrow =x(2x+y)^{2}.....4$

$$=x(2x+y)^2.....4$$
分

21.
$$x^2 + 4x - 21$$

22.
$$x^2 - y^2 + 2y - 1$$

$$=(x+7)(x-3).....4$$

$$=x^{2}-(y-1)^{2}......2$$
 $\%$
= $(x+y-1)(x-y+1)......4$ $\%$

四、(本题共8分,每小题4分)

23. 计算
$$\left(-\frac{a}{b}\right)^2 \cdot \left(\frac{b}{a^2}\right)^2 \div \left(-2ab\right)^2$$
 24. 解方程 $\frac{3}{2x-2} - \frac{1}{x-1} = 3$

解: 原式=
$$\frac{a^2}{b^2} \cdot \frac{b^2}{a^4} \div (4a^2b^2) \dots$$

= $\frac{a^2}{b^2} \cdot \frac{b^2}{a^4} \cdot \frac{1}{4a^2b^2}$
= $\frac{1}{4a^4b^2} \dots \dots \dots \dots \dots 4$ 分

$$x = \frac{7}{6}$$
......3 $\%$

检验: 当
$$x = \frac{7}{6}$$
 时, $2(x-1) \neq 0$,

$$::原方程的解为x = \frac{7}{6} \dots 4分$$

五、解答题(本题共30分,第25-27题每题5分,28题7分,29题8分)

25. 已知: 如图, 点 $A \setminus E \setminus F \setminus C$ 在同一条直线上, DF = BE, $\angle B = \angle D$, AD // BC. 求证: AE=CF.

初二数学试题

第 12 页 共 错误!未指定书签。 证明:∵AD//BC ∴∠A=∠C1分

在ΔADF和ΔCBE中,

$$\begin{cases} \angle A = \angle C \\ \angle D = \angle B \\ DF = BE \end{cases}$$

- ∴AF=CE4 分
- ∴AF-EF=CE-EF 即 AE=CF5 分

26. 先化简再求值: 已知 $a^2 + 2a - 1 = 0$,求 $\left(\frac{a-2}{a^2 + 2a} - \frac{a-1}{a^2 + 4a + 4}\right) \div \frac{a-4}{a+2}$ 的值.

解: 原式 =
$$\left[\frac{a-2}{a(a+2)} - \frac{a-1}{(a+2)^2}\right] \cdot \frac{a+2}{a-4}$$

= $\frac{a^2 - 4 - a(a-1)}{a(a+2)^2} \cdot \frac{a+2}{a-4} \dots 1$ 分
= $\frac{1}{a(a+2)} \dots 3$ 分
= $\frac{1}{a^2 + 2a}$

- $a^2 + 2a 1 = 0$, $a^2 + 2a = 1$
- ::原式=1.....5分
- 27. 请看下面的问题: 把 x⁴+4 分解因式

初二数学试题 第 13 页 共 错误!未指定书签。 页

分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢? 19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和 $(x^2)^2 + (2)^2$ 的形式,要使用公式就必须添一项 $4x^2$,随即将此项 $4x^2$ 减去,即可得 $x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 = (x^2 + 2x + 2)(x^2 - 2x + 2)$ 人们为了纪念苏菲•热门给出这一解法,就把它叫做"热门定理",请你依照苏菲•热门的做法,将下列各式因式分解。 $x^4 + 4y^4$;(2) $x^2 - 2ax - b^2 - 2ab$,

28. 如图,在 $\triangle ABC$ 中, $AD \bot BC$ 于 D, CE 平分 $\angle ACB$ 分别交 AB、AD 于 E、F 两点,且 BD=FD,AB=CF. 求证: (1) $CE \bot AB$; (2) AE=BE.

证明: (1) : AD \(BC \) \(\text{T} \) D

∴ ∠ADB=∠CDF=90°1 分 在 Rt△ADB 和 Rt△CDF 中,

$$\begin{cases} AB = CF \\ BD = DF \end{cases}$$

∴ ∠BAD=∠DCF......3 分

在 $\triangle AEF$ 和 $\triangle CDF$ 中,

 $\angle EAF = \angle DCF$, $\angle AFE = \angle CFD$,

- $\therefore \angle AEC = \angle CDF = 90^{\circ}$
- ∴CE ⊥AB......4 分
- (2) :*CE 平分∠ACB

初二数学试题 第 14 页 共 错误!未指定书签。 页

∴ ∠ACE=∠BCE.....5 分

 \mathbb{Z} : $CE \perp AB$

 $\therefore \angle AEC = \angle BEC = 90^{\circ}$

在 ΔACE 和 ΔBCE 中,

$$\begin{cases} \angle ACE = \angle BCE \\ CE = CE \\ \angle AEC = \angle BEC \end{cases}$$

- **∴**△ACE≌△BCE (ASA)6 分
- ∴ AE=BE...... 7 分

- 29. 已知:如图,在 $\triangle ABC$ 中,AB = 3AC,AD 平分 $\angle BAC$, $BE \perp AD$ 交 AD 的延长线于点 E. 设 $\triangle ACD$ 的面积是 S.
 - (1) 求△ABD 的面积;
 - (2) 求证: *AD=DE*;
 - (3) 探究 BE AC 和 BD CD 之间的大小关系并证明你的结论.
- 解: (1)过 D作 $DM \perp AB$ 于 M, $DN \perp AC$ 于 N.
- :'AD 平分 ∠BAC
 - ∴DM=DN1 分

$$:: S_{\triangle ABD} = \frac{1}{2} AB \cdot DM, S_{\triangle ACD} = \frac{1}{2} AC \cdot DN$$

AB = 3AC

$$\therefore S_{\Delta ABD} = 3S_{\Delta ACD} = 3S_{\Delta ACD} = 3S_{\Delta ACD}$$

(2)延长 AC、BE 交于点 F 可证得:

初二数学试题 第 15 页 共 错误!未指定书签。 页

$\therefore AB=AF=3AC$, BE=EF

$$\therefore S_{\Lambda ABF} = 3S_{\Lambda ABC}$$

$$S_{AABD} = 3S : S_{AABC} = 4S : S_{AABE} = 12S$$

X :: BE = EF

$$\therefore S_{\Delta ABE} = S_{\Delta AEF} = \frac{12S}{2} = 6S \dots 4$$

$$\therefore S_{\Delta BDE} = S_{\Delta ABE} - S_{\Delta ABD} = 3S = S_{\Delta ABD}$$

(3) 在 BD 上截取 DH=CD,

 $\therefore AC=EH$

在△BEH 中. BE-EH< BH

 $\therefore BE-AC < BD-DH$

即 BE-AC< BD-CD.....8 分

附加卷

(本卷共10分,第1、2题每题2分,第3题6分)

- 1. 已知 a、b、c 满足 a-b=8,ab+ c^2 +16=0,则 2a+b+c 的值等于____4___.
- 2. 己知 $a + x^2 = 2013$, $b + x^2 = 2014$, $c + x^2 = 2015$, 且 abc = 6048, 则

- 3. 如图所示, 在平面直角坐标系 xoy 中, $\triangle ABC$ 的顶点 B 是 y 轴正半轴上一个定点, D 是 BO 的中点.点 C 在 x 轴上, A 在第一象限,且满足 AB=AO, N 是 x 轴负半轴上一点, $\angle BCN=\angle BAO=\alpha$.
 - (1) 当点 C 在 x 轴正半轴上移动时,求 $\angle BCA$; (结果用含 α 的式子表示)
 - (2) 当某一时刻 A(20,17)时, 求 OC+BC 的值;
 - (3) 当点 C 沿 x 轴负方向移动且与点 O 重合时, $\alpha = _____$ °, 此时 以 AO 为斜边在坐标平面内作一个 $Rt\triangle AOE$ (E 不与 D 重合),则 $\angle AED$ 的度数的所有可能值有_______.(直接写出结果)
- 解: (1) 过 A 分别作 $AM \perp BC$ 于 E, $AF \perp x$ 轴于 F, 则 $\angle AMB = \angle AFO = 90^{\circ}$

初二数学试题 第 16 页 共 错误!未指定书签。 页

设 AO 与 BC 交于点 P,在 $\triangle ABP$ 和 $\triangle COP$ 中, $\angle BAO = \angle BCN$, $\angle BPA = \angle CPO$.

∴ $\angle ABP = \angle COP$ 即 $\angle ABM = \angle AOF$ 1 分

在 ΔABM 和 ΔAOF 中,

$$\begin{cases} \angle AMB = \angle AFO \\ \angle ABM = \angle AOF \\ AB = AO \end{cases} \quad \therefore \triangle ABM \cong \triangle AOF \ (AAS)$$

∴AM=AF ∴CA 平分∠BCF......2 分

$$\therefore \angle BCA = \frac{1}{2} \angle BCF$$

 $\therefore \angle BCN = \alpha$, $\therefore \angle BCM = 180^{\circ} - \alpha \therefore \angle BCA = 90^{\circ}$

N

- (2) $:: \triangle ABM \cong \triangle AOF, \triangle ACM \cong \triangle ACF :: BM = OF, CM = CF$
- :OC+BC=OC+BM+CM :OC+BC=OC+OF+CF=2OF

