Assignment 2 MAT 257

Q6:

Let $A \subset \mathbb{R}^n$, not closed. Let x be a point such that $x \in \mathbb{R}^n \setminus A$ and $x \notin \operatorname{int} \mathbb{R}^n \setminus A$. Consider $f(y) = \frac{1}{\|y-x\|}$. We want to show that this function is unbounded and continuous. We being by showing that f is continuous. Notice that if $g(y) = \|x - y\|$ and $h(z) = \frac{1}{z}$, then $f = h \circ g$. It is sufficient to show that g is continuous and never 0. We will use the following fact to prove that g is continuous

Claim: $||x|| - ||y|| | \le ||x - y||$

pf: since both quantities are positive we can square them

$$(\|x\| - \|y\|)^{2} \leq \|x - y\|^{2}$$

$$\iff \|x\|^{2} - 2\|x\| \|y\| + \|y\|^{2} \leq \langle x, x \rangle - 2\langle x, y \rangle + \langle y, y \rangle$$

$$\iff -2\|x\| \|y\| \leq -2\langle x, y \rangle$$

$$\iff \langle x, y \rangle \leq \|x\| \|y\| \text{ which is true by cauchy- shwartz} \quad \blacksquare$$

Now we show that g is continuous. Let $\epsilon > 0$. Let $\delta = \epsilon$. Take $y, z \in A$. Then,

$$\begin{split} &\|z-y\| < \epsilon \\ &\implies \|z-x-y+x\| < \epsilon \\ &\implies \|(z-x)-(y-x)\| < \epsilon \\ &\implies \|\|z-x\|-\|y-x\|\| \le \|(z-x)-(y-x)\| < \epsilon \text{ (by claim)} \end{split}$$

Therefore g is continous. Now h will be continous since g will never be 0, since $g(y) = 0 \iff ||y - x|| = 0 \iff y = x$, but x is not in A. As the composition of two continous functions, f is continous as well. Now we show that f is unbounded. First, note that the point x must be in the boundary of A, since it is not in the exteriour of A, and is not in A so it can not be in the interiour. Therefore, for all $\epsilon > 0$, $B_{\epsilon}(x)$ will contain at least one point $z \in A$. Choose $\epsilon > 0$. Suppose that this f is bounded. There must exist some M with $f(y) \leq |M|$ for all $y \in A$. So we see that

$$\begin{split} f(y) & \leq |M| \\ \iff \frac{1}{\|y-x\|} & \leq |M| \\ \iff \frac{1}{|M|} & \leq \|y-x\| \,, \text{ for all } y \in A \end{split}$$

However, we can choose any $\epsilon > 0$ and find a $y \in A$ where $||y - x|| < \epsilon$. Choosing $\epsilon = \frac{2}{|M|}$ implies that $\frac{1}{|M|} \le ||y - x|| < \frac{2}{|M|}$. This is a contradiction, since no such positive number M exists where $\frac{1}{|M|} < \frac{2}{|M|}$. Thus f is not bounded on A.