Zero-Knowledge Proofs Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabanci University

December 12, 2023

The Basic Setup

- There are circumstances where one party is to prove to the other party that she is in possession of certain secret information without revealing the actual secret.
- The zero-knowledge proofs take the form of interactive protocols.
 - Victor (the verifier) asks Peggy (the prover) a series of questions.
 - If Peggy knows the secret, she can answer all the questions correctly.
 - If she does not, then she has some chance say $\varepsilon\%$ of answering each question correctly.

• Due to Jean-Jacques Quisquater & Louis Guillou

- Peggy claims that she can go through the door between C and D.
- She wants to prove this to Victor.
 - But she does not want anyone else to know she can do it or how she can do it.
- The Method
 - 1 Victor stands at point A.
 - Peggy walks all the way into the cave, either to point C or point D (she chooses which way to go at random)
 - After Peggy has disappeared into the cave, Victor walks to point B.

- The Method (cont.)
 - Victor shouts to Peggy asking her either to:
 - come out of the left passage or
 - · come out of the right passage
 - Peggy complies, using the magic word to open the secret door if she has to.
 - **1** They repeat steps (1) through (5) t times.

- What are the odds that Peggy comes out of the correct passage if she cannot really go through the door?
 - Victor chooses left or right passage randomly,
 - Peggy can guess this choice of Victor beforehand correctly with possibility of 50% or $\frac{1}{2}$.
- They repeat the protocol $\{t\}$ times,
 - the possibility that Peggy can deceive Victor every time successfully is only 2^{-t} .
 - Victor is probably convinced after sufficiently large number of trials.

- Can Victor convince Carol, too?
 - Victor records everything he sees and shows the recording to Carol
 - Carol might be convinced if she trusts Victor
 - But she might also think that Victor and Peggy had agreed ahead of time what side Victor shout out each time.
 - It is impossible to prove what Victor is convinced of to a third party.

Mathematical ZK System

- ullet Hardness of computing a square root of number modulo a composite number, n
 - Given y and n; find an integer s such that $y = s^2 \mod n$
 - Furthermore, such s may not exist
 - It may be even hard to say whether s exists or not
- ullet If factoring n is hard, then computing square root is also hard
 - If you know the factors of n, you can compute square roots if they exist.
 - If you know all square roots of $y \mod n$, then you can factor n.

Mathematical ZK System

- Setting
 - Let $n = p \cdot q$ is a product of two large primes.
 - Let y be a square mod n with gcd(y, n) = 1.
 - Peggy claims to know a square root s of y.
 - Victor wants to verify this, but Peggy does not want to reveal s.
- Protocol
 - ① Peggy chooses two random numbers r_0 and r_1 with $s = r_0 r_1 \mod n$
 - ② She computes $x_0 = r_0^2 \mod n$ and $x_1 = r_1^2 \mod n$ and sends x_0 and x_1 to Victor.

- The protocol (cont.)
 - 3 Victor checks that $y = x_0 x_1 \mod n$,
 - lacktriangle He then picks either x_0 or x_1 at random and
 - asks Peggy to supply the square root of it.
 - He checks if it is an actual square root.
 - **1** The first two steps are repeated until Victor is convinced.
- If Peggy knows s, everything proceeds without any problem.
- What if she does not know it, can she still supply the correct numbers?

- If she does not know the square root of y, she can still send two numbers x_0 and x_1 with $x_0x_1 \equiv y \mod n$.
- She picks a random r_i and computes $x_i = r_i^2 \mod n$, where $i \in \{0, 1\}$.
 - She, then, computes $x_{1-i} = y \cdot x_i^{-1} \mod n$
 - If $x_i^{-1} \mod n$ does not exist, she picks another r_i .
- She knows only one of the square roots
- Half the time, on average, Victor will ask her for a square root she doesn't know.
 - Peggy can correctly predict which square root Victor will ask her to send with a probability of $\frac{1}{2}$.

- Therefore, she has 50% chance of fooling Victor on any given round.
- Victor verifies that Peggy knows the square root; but he obtains no information about the square root.
- Peggy shouldn't use the same random numbers more than once.
- Eve sees only the square roots of random numbers.

Properties of ZK Protocols

Completeness:

 Given honest verifier and prover, the protocol succeeds with overwhelming probability (i.e., the verifier accepts the prover's claim)

Soundness:

 No cheating prover can convince the honest verifier that it has the secret, except with some small probability.

Zero-knowledge:

- No cheating verifier learns anything.
- Every cheating verifier has some simulator which, can produce a transcript that "looks like" an interaction between the honest prover and the cheating verifier.

Schnorr Identification Scheme

- Setting
 - p is a large prime, q is a smaller prime, g is a generator in G_q^*
 - $\{s\}$ is known to Peggy
 - $-h=g^s \bmod p$ is public
- Protocol

Peggy

- $y = k sr \bmod q$ (response)

Victor

- 2 random $r, 1 \le r < q$ (challenge)

<u>Victor</u>

Peggy <u>Victor</u>

<u>Simulator</u>

<u>Victor</u>

<u>Simulator</u>

Victor Simulator
1)
$$y' \in_R G_q$$
 and $r' \in_R \mathbb{Z}_q$

Victor Simulator
1)
$$y' \in_R G_q$$
 and $r' \in_R \mathbb{Z}_q$
2) $\gamma' = q^{y'}h^{r'} \mod p$

Victor Simulator

1)
$$y' \in_R G_q$$
 and $r' \in_R \mathbb{Z}_q$
2) $\gamma' = g^{y'}h^{r'} \bmod p$

Victor Simulator 1) $y' \in_R G_q$ and $r' \in_R \mathbb{Z}_q$ 2) $\gamma' = g^{y'}h^{r'} \mod p$ γ' r'

Signatures from ZK Protocols

- Shamir's heuristic
 - use the message (or its representative) as the "challenge"
- Protocol
 - Signature generation
 - $\bullet \ \gamma = g^k \mod p, 1 \le k < q$
 - $c = H(m||\gamma)$
 - $y = k sc \mod q$
 - signature for m is (c, y)
 - Signature verification

 - $\tilde{c} = H(m||\gamma)$
 - ullet Accept the signature if $ilde{c}=c$