

What happens when you add random variables?

Sum of Independent Binomials

- Let X and Y be independent random variables
 - $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$
 - $X + Y \sim Bin(n_1 + n_2, p)$
- Intuition:
 - X has n₁ trials and Y has n₂ trials
 - Each trial has same "success" probability p
 - Define Z to be $n_1 + n_2$ trials, each with success prob. p
 - $Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y

If only it were always that simple

The Insight to Convolution Proofs

$$P(X + Y = n)?$$

What is the probability that X + Y = n?

X	Y	k	
0	n	0	P(X

1
$$n-1$$
 1 $P(X = 1, Y = n-1)$

= 0, Y = n

2
$$n-2$$
 $2 P(X = 2, Y = n-2)$

• • •

n 0
$$p(X = n, Y = 0)$$

The Insight to Convolution Proofs

$$P(X + Y = n)?$$

What is the probability that X + Y = n?

Since this is the OR or mutually exclusive events
$$P(X+Y=n) = \sum_{k=0}^n P(X=k,Y=n-k)$$

If the random variables are independent
$$= \sum_{k=0}^{n} P(X=k)P(Y=n-k)$$

Sum of Independent Poissons

Recall the Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Sum of Independent Poissons

- Let X and Y be independent random variables
 - $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$
 - $X + Y \sim Poi(\lambda_1 + \lambda_2)$
- Proof: (just for reference)
 - Rewrite (X + Y = n) as (X = k, Y = n k) where $0 \le k \le n$

$$P(X+Y=n) = \sum_{k=0}^{n} P(X=k, Y=n-k) = \sum_{k=0}^{n} P(X=k)P(Y=n-k)$$

$$=\sum_{k=0}^{n}e^{-\lambda_{1}}\frac{\lambda_{1}^{k}}{k!}e^{-\lambda_{2}}\frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-(\lambda_{1}+\lambda_{2})}\sum_{k=0}^{n}\frac{\lambda_{1}^{k}\lambda_{2}^{n-k}}{k!(n-k)!}=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}\lambda_{1}^{k}\lambda_{2}^{n-k}$$

- Noting Binomial theorem: $(\lambda_1 + \lambda_2)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$ $P(X+Y=n) = \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} (\lambda_1 + \lambda_2)^n$ so, $X+Y=n \sim \text{Poi}(\lambda_1 + \lambda_2)$

Reference: Sum of Independent RVs

- Let X and Y be independent Binomial RVs
 - $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$
 - $X + Y \sim Bin(n_1 + n_2, p)$
 - More generally, let $X_i \sim Bin(n_i, p)$ for $1 \le i \le N$, then

$$\left(\sum_{i=1}^{N} X_i\right) \sim \operatorname{Bin}\left(\sum_{i=1}^{N} n_i, p\right)$$

- Let X and Y be independent Poisson RVs
 - $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$
 - $X + Y \sim Poi(\lambda_1 + \lambda_2)$
 - More generally, let $X_i \sim Poi(\lambda_i)$ for $1 \le i \le N$, then

$$\left(\sum_{i=1}^{N} X_{i}\right) \sim \operatorname{Poi}\left(\sum_{i=1}^{N} \lambda_{i}\right)$$

Convolution of Probability Distributions

We talked about sum of Binomial and Poisson...who's missing from this party?

Uniform.

Summation: not just for the 1%

Dance, Dance Convolution

Let X and Y be independent random variables

Probability Density Function (PDF) of X + Y:

$$f_{X+Y}(a) = \int_{y=-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

• In discrete case, replace $\int_{y=-\infty}^{\infty}$ with \sum_{y} , and f(y) with p(y)

Integration with Constraint

$$\iint_{x^2+y^2<1} f_{x,y} dy dx = \int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f_{x,y} dy dx$$

Dance, Dance Convolution

Let X and Y be independent random variables

Cumulative Distribution Function (CDF) of X + Y:

$$F_{X+Y}(a) = P(X+Y \le a)$$

$$+ = \iint_{x+y \le a} f_X(x) f_Y(y) dx dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{a-y} f_X(x) dx f_Y(y) dy$$

$$= \int_{y=-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$
PDF of Y

• In discrete case, replace $\int_{y=-\infty}^{\infty}$ with \sum_{y} , and f(y) with p(y)

- Let X and Y be independent random variables
 - X ~ Uni(0, 1) and Y ~ Uni(0, 1) $\rightarrow f(x) = 1$ for $0 \le x \le 1$

For both X and Y

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$
 - What is PDF of X + Y?

$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$

When a = 0.5:

$$f_{X+Y}(0.5) = \int_{y=?}^{y=?} f_X(0.5 - y) dy \qquad f_{X+Y}(a)$$

$$= \int_0^{0.5} f_X(0.5 - y) dy$$

$$= \int_0^{0.5} 1 dy$$

$$= 0.5$$

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$
 - What is PDF of X + Y?

$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$

When a = 1.5:

- Let X and Y be independent random variables
 - X ~ Uni(0, 1) and Y ~ Uni(0, 1) $\rightarrow f(x) = 1$ for $0 \le x \le 1$
 - What is PDF of X + Y?

$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$

When a = 1:

Then
$$a = 1$$
:
$$f_{X+Y}(1) = \int_{y=?}^{y=?} f_X(1-y) dy$$

$$= \int_0^1 f_X(1-y) dy$$

$$= \int_0^1 1 dy$$

$$= 1$$

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$
 - What is PDF of X + Y?

$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$
• When $0 \le a \le 1$ and $0 \le y \le a$, $0 \le a-y \le 1 \rightarrow f_X(a-y) = 1$

■ When $0 \le a \le 1$ and $0 \le y \le a$, $0 \le a - y \le 1 \Rightarrow f_X(a - y) = 1$ $f_{X+Y}(a) = \int_{y=0}^{a} dy = a$

• When $1 \le a \le 2$ and $a-1 \le y \le 1$, $0 \le a-y \le 1 \rightarrow f_X(a-y) = 1$

$$f_{X+Y}(a) = \int_{y=a-1}^{1} dy = 2-a \qquad f_{X+Y}(a)$$
• Combining: $f_{X+Y}(a) = \begin{cases} a & 0 \le a \le 1 \\ 2-a & 1 < a \le 2 \\ 0 & \text{otherwise} \end{cases}$

Sum of Independent Normals

- Let X and Y be independent random variables
 - $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$
 - $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Generally, have n independent random variables
 X_i ~ N(μ_i, σ_i²) for i = 1, 2, ..., n:

$$\left(\sum_{i=1}^{n} X_{i}\right) \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$$

Virus Infections

- Say you are working with the WHO to plan a response to a the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with p = 0.1
 - P2: 100 people, each independently infected with p = 0.4
 - Question: Probability of more than 40 infections?

Sanity check: Should we use the Binomial Sum-of-RVs shortcut?

- A. YES!
- B. NO!
- C. Other/none/more

Virus Infections

- Say you are working with the WHO to plan a response to a the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with p = 0.1
 - P2: 100 people, each independently infected with p = 0.4
 - A = # infected in P1 A ~ Bin(50, 0.1) \approx X ~ N(5, 4.5)
 - B = # infected in P2 B ~ Bin(100, 0.4) \approx Y ~ N(40, 24)
 - What is P(≥ 40 people infected)?
 - $P(A + B \ge 40) \approx P(X + Y \ge 39.5)$
 - $X + Y = W \sim N(5 + 40 = 45, 4.5 + 24 = 28.5)$

$$P(W \ge 39.5) = P\left(\frac{W - 45}{\sqrt{28.5}} > \frac{39.5 - 45}{\sqrt{28.5}}\right) = 1 - \Phi(-1.03) \approx 0.8485$$

Linear Transform

$$X \sim N(\mu, \sigma^2)$$

$$Y = X + X = 2 \cdot X$$

$$Y \sim N(2\mu, 4\sigma^2)$$

$$Y = X + X = 2 \cdot X$$

$$X + X \sim N(\mu + \mu, \sigma^2 + \sigma^2)$$

$$Y \sim N(2\mu, 2\sigma^2)$$
 x is

X is not independent of X

End sum of independent vars