DPENCLASSROOMS

Kevin

Parcours Data Scientist

Rappel du sujet/problématique

Neutralité carbone en 2050

Emission des batiments non destinés à l'habitation

Relevés de consommation en 2015 et 2016

Couteux à obtenir

Objectifs

- Prédire les émissions de CO2
- Prédire la consommation énergétique
- Réduire les coûts
- Variable « ENERGYSTARSCORE »

2015 – 2016

Nombre de batiments différents :

3340 - 3376

Variables différentes :

Address ou City (2016), introuvable en 2015

Extraire les variables

{'latitude': '47.61219025', 'longitude': '-122.33799744', 'human_address': '{"address": "405 OLIVE WAY", "city": "SEATTLE", "state": "WA", "zip": "981 01"}'}

Noms différents:

GHGEmissions(MetricTonCO2e) – TotalGHGEmissions

Types de variables :

Types différents

0.2 0.8 Comments ZipCode 6716 State City 6716 Address 6716 Longitude 6716 Latitude 3340 Zip Codes 3338 SPD Beats 213 City Council Districts 3338 Seattle Police Department Micro Community Policing Plan Areas 224 2010 Census Tracts 116 Outlier 6716 ComplianceStatus 13 Comment 6715 DefaultData 6697 GHGEmissionsIntensity 6697 TotalGHGEmissions 3330 OtherFuelUse(kBtu) 6697 NaturalGas(kBtu) 6697 NaturalGas(therms) 6697 Electricity(kBtu) 6697 Electricity(kWh) 6697 SteamUse(kBtu) 6700 SiteEnergyUseWN(kBtu) SiteEnergyUse(kBtu) 6701 SourceEUIWN(kBtu/sf) 6697 SourceEUI(kBtu/sf) 6697 SiteEUIWN(kBtu/sf) 6700 SiteEUI(kBtu/sf) 6699 ENERGYSTARScore 5093 YearsENERGYSTARCertified ____ 229 ThirdLargestPropertyUseTypeGFA 1156 ThirdLargestPropertyUseType 1156 SecondLargestPropertyUseTypeGFA 3238 SecondLargestPropertyUseType 3238 LargestPropertyUseTypeGFA 6560 LargestPropertyUseType 6560 ListOfAllPropertyUseTypes 6580 PropertyGFABuilding(s) 6716 PropertyGFAParking PropertyGFATotal 6716 NumberofFloors 6708 NumberofBuildings 6708 YearBuilt 6716 Neighborhood CouncilDistrictCode TaxParcelldentificationNumber 6714 PropertyName | 6716 PrimaryPropertyType 6716 BuildingType 6716 DataYear 6716 OSEBuildingID 6716 6716 1343 5372 2686 4029

Analyse exploratoire

Données manquantes

Suppression des colonnes avec plus de 70% de données manquantes

Doublons

Même batiment en 2015 et 2016 : 3300

Analyse exploratoire

Données manquantes

Suppression des colonnes avec plus de 70% de données manquantes

Doublons

Même batiment en 2015 et 2016 : 3300

Réflexion sur la problématique

Prédire les émissions

Réflexion sur la problématique

Analyse exploratoire

Données manquantes

Suppression des colonnes avec plus de 70% de données manquantes

Doublons

Même batiment en 2015 et 2016 : 3300

Réflexion sur la problématique

Te mel movet equidem vivendum

Outliers

Etude des outliers

Nombre de batiments/etages

Valeurs negatives, nulls ou NAN

Identification des cas particuliers

Analyse des écarts...

PropertyGFATotal et Emission

Valeurs négatives

Dataset

- Seconde et troisième type de surface les plus larges
- Regrouper les variables 2015-2016
- Variables écarts 2015/2016

 Ecart de consommation énergétique, émission carbone et superficie
- Simplification des variables de surface Superficie en % du total
- Simplification des types de batiment Regroupement dans des thématiques
- 6 Age des batiments

Distinction de deux datasets

One Column

Sans EnergyStarScore

Avec EnergyStarScore

Identification des cas particuliers

Caractéristiques Batiment

Consommation énergétique et émission de carbone

SiteEnergyUse(kBtu)

Consommation énergétique et émission de carbone

SiteEnergyUse(kBtu)

BuildingType

- NonResidential
- Nonresidential COS
- SPS-District K-12
- Campus
- Nonresidential WA

NumberofFloors - 0.02 PropertyGFATotal_avg - 0.24 PropertyGFAParking_avg - - 0.03 PropertyGFABuilding(s)_avg - 0.29 0.98 LargestPropertyUseTypeGFA_avg - 033 0.95 SiteEnergyUse(kBtu) avg -0.33 0.22 TotalGHGEmissions_avg -0.46 0.14 0.41 0.06 ENERGYSTARScore - - 0.05 0.11 40.08 PropertyGFABuilding(s)_% - 0.04 -0.01 PropertyGFAParking % - 0.04 -1.00 0.12 0.25 0.01 Dureedevie - - 0.04 0.37 0.03 0.37 PropertyGFABuilding(s)_

Corrélation

Fortes correlations entre:

- PropertyGFATotal / PropertyGFABuilding / LargestProperty
- TotalGHGEmissions / SiteEnergyUse

scikit-learn classification algorithm cheat-sheet **START** Ensemble Classifiers more SGD KNeighbors Classifier Classifier data regression <100K Lasso SGD Regressor ElasticNet predicting a category SVR(kernel='rbf') EnsembleRegressors do you have labeled NOT WORKING Spectral Clustering <100K should be data KMeans GMM RidgeRegression quantity number of SVR(kernel='linear' categories known clustering Randomized PCA looking <10K Spectral LLE MiniBatch KMeans MeanShift <10K dimensionality VBGMM approximation tough reduction structure luck

Machine Learning

Régression

Split de la data

T Ridge

Grouper les variables corrélés

Solution unique

Elastic Net

Regroupe Ridge et Lasso

Régression linéaire

Trouver une fonction linéaire pour trouver y en fonction de x

Limites : Instable avec Corrélation

Annule le coefficient des variables inutiles

Limites : Selection aléatoire

SVR

Espace à plusieurs dimensions

Se focalise sur la marge d'erreur, plutôt qu'à la réduire

Modèles ensemblistes

- Créer plusieurs copies avec une partie aléatoire du dataset
- Création d'un ensemble de modèles
- Exemple : RandomForest
- Processus parallèle

- Entrainer des modèles faibles successivement
- Combiner les modèles pour en obtenir un meilleur
- Exemple : XGBoosting
- Processus en série

Test des algorithmes

Résultat

XGBRegressor

Score entrainement: 0.7052837776110792

Cross: 0.680862695326796

MAE: 0.5433318175982714

MSE: 0.5542381524503868

RMSE: 0.7444717270994157

		Score training	Cross Validation	MAE	MSE	RMSE
	Model					
l	LinearRegression	-4693778974802968576000.0	-5536524415656781676544.0	7954665586.506675	8827038314749600202752.0	93952319368.654221
	Lasso	-0.000986	-0.001383	1.078563	1.882437	1.372019
	Ridge	-0.887509	0.496017	0.781481	3.549616	1.884043
	ElasticNet	0.003046	0.007333	1.077122	1.874854	1.369253
RandomForestRegressor		0.693399	0.658051	0.550178	0.576588	0.759334
	XGBRegressor	0.705284	0.680863	0.543332	0.554238	0.744472
	SVR	0.65869	0.623746	0.59383	0.641861	0.801162

	Score training	Cross Validation	MAE	MSE	RMSE		
Model							
LinearRegression	-4220373226575075213312.0	-9933369119509288321024.0	8018020645.294805	8968204414529112637440.0	94700604087.456131		
Lasso	-0.000231	-0.004947	1.145639	2.12547	1.457899		
Ridge	-1.032397	0.381262	0.949412	4.3188	2.078172		
ElasticNet	-0.000231	-0.004947	1.145639	2.12547	1.457899		
RandomForestRegressor	0.532993	0.494586	0.77685	0.992381	0.996183		
XGBRegressor	0.528401	0.495126	0.787816	1.002138	1.001068		
SVR	0.485482	0.46662	0.809052	1.093341	1.045629		

Energy

GHG

Optimisation des paramètres

Paramètres

N_estimators: 100 – 2000

Learning rate: 0,01 - 0,3

Max_depth : 5 - 10

N_jobs:-1

Energie: 0,681 -> 0,684

GHG: 0,496

Paramètres

N_estimators : 100 – 2000

Max_depth: 5 – 10

N_jobs:-1

Energie: 0,656

GHG: 0,492 -> 0,504

Paramètres

Gamma: Auto/Scale

C: 0,1-1

Epsilon: 0,01 – 1

Kernel: Linear, Poly, RBF

Max_inter: 100-1000

Energie: 0,62

GHG: 0,467

Features Importance

Energy

GHG

Comparaison reel / prédiction

Comparaison reels / prediction

Des differences notables...

Scoring avec Energystarscore

	Score training	Cross Validation	MAE	MSE	RMSE
Model					
LinearRegression	0.695837	0.610591	0.546249	0.471367	0.686562
Lasso	-0.012123	-0.030673	1.003819	1.568506	1.2524
Ridge	0.690576	0.610967	0.548206	0.479521	0.692474
ElasticNet	0.235596	0.201093	0.884094	1.184611	1.088398
RandomForestRegressor	0.834737	0.810588	0.347975	0.256111	0.506074
XGBRegressor	0.853892	0.844447	0.335249	0.226426	0.475843
SVR	0.789656	0.750229	0.401018	0.325974	0.570942

		Score training	Cross Validation	MAE	MSE	RMSE
	Model					
	LinearRegression	0.528562	0.417705	0.77189	0.926478	0.962537
	Lasso	-0.008682	-0.030533	1.107271	1.982278	1.407934
	Ridge	0.524627	0.421336	0.77455	0.93421	0.966545
	ElasticNet	0.131206	0.099447	1.03333	1.707367	1.306663
	RandomForestRegressor	0.64888	0.602874	0.654122	0.690028	0.830679
	XGBRegressor	0.632104	0.595027	0.671448	0.722994	0.850291
	SVR	0.565771	0.524265	0.706768	0.853354	0.923772

Energy

Cross validation (sans):

RF: 0,66

XGB: 0,68

SVR: 0,62

GHG

RF: 0,491

XGB: 0,495

SVR: 0,46

Features Importance (energystarscore)

Energy

Comparaison reel / prediction (energystarscore)

Comparaison reels / prediction

Des differences notables...

Conclusion

Valeurs extrêmes

Variable Energystarscore

Très couteuse.

N'apporte pas suffisamment.

