

"macroscopic wavefunction"

(i)
$$i\hbar \frac{\partial}{\partial t} \psi_i = E_i \psi_i + \alpha \psi_2$$

(2)
$$th \frac{\partial}{\partial t} \psi_2 = E_2 \psi_2 + \propto \psi_1$$

one and the same quantum phase $\psi_{i}(r,t) = \sqrt{n_{i}(t)} e^{iS_{i}(r,t)}$ $\psi_{i}(r,t) = \sqrt{n_{i}(r,t)}$ $\psi_{i}(r,t)$

real part:
$$-t_i \sqrt{n_j} \dot{S}_j = E_j \sqrt{n_j} + \propto \sqrt{n_j} \cos(S_j - S_j)$$

If we have same type of SC for $j=1,2$, then

 $-t_i \dot{S}_j = E_j + \propto \cos(S_j - S_j)$

two equations: one for $j=1$, one for $j=2$
 $-t_i (\dot{S}_2 - \dot{S}_i) = E_2 - E_j$

the cosine for $j=1$, one for $j=2$
 $-t_i (\dot{S}_2 - \dot{S}_i) = E_2 - E_j$
 $= (2e) \sqrt{s_d}$

taking the difference

2. JOSEPHSON RELATION: PHASE EVOLUTION EQ.

inaginary part:
$$\frac{1}{2}\sqrt{n_j}$$
 $\frac{1}{n_j}$ + $\sqrt{n_j}$ $\frac{1}{2}\frac{1}{n_j}$ $\frac{1}{n_j}$ = $\frac{1}{2}\sqrt{n_j}$ $\frac{1}{n_j}$ = $\frac{1}{2}\sqrt{n_j}$ = $\frac{1}{2}\sqrt{n_j$

1. JOSEPHSON RELATION: CURRENT-PHASE RELATION

CONCLUSION 1: DC Josephson effect If we take two superconductors with phases S, and S2, there will be a DC (constant) current without any voltage! $I = I_c \sin(S_2 - S_1)$ what we call 9! CONCLUSION 2: At Josephson effect Now: If we switch on a constant (DC) voltage, we get an AC current: $t(S_2 - S_1) = (2e)V_{sol}$ (from 2. TR) $\Rightarrow \varphi = S_2 - S_1 = \frac{2e}{\hbar} V_{sd} \cdot t$ \hookrightarrow into 1. TR: $I = I_c sin (\varphi) = I_c sin (\frac{2e}{\pi} V_{sd} t)$