

Nonparametric Bayesian Statistics: Part III

Tamara Broderick

ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

Part of Dirichlet Process mixture model

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho)$$

- Part of Dirichlet Process mixture model
- Finite representation for inference?

• Chinese restaurant process

• Chinese restaurant process

- Chinese restaurant process
- Each customer walks into the restaurant

- Chinese restaurant process
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there

- Chinese restaurant process
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α

- Chinese restaurant process
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- "Partition" $\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}$

- Chinese restaurant process
- Each customer walks into the restaurant
 - Sits at existing table with prob proportional to # people there
 - Forms new table with prob proportional to α
- "Partition" $\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}$
- Partition from a GEM(α) with categorical draws = same distribution as partition from a CRP(α)

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)}$$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• Prob doesn't depend on customer order: exchangeable

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• Prob doesn't depend on customer order: exchangeable

$$\mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})$$

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• Prob doesn't depend on customer order: exchangeable

$$\mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})$$

Can always pretend n is the last customer

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

• Prob doesn't depend on customer order: exchangeable

$$\mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})$$

Can always pretend n is the last customer

• e.g.
$$\Pi_{8,-5} = \{\{1,2,7,8\},\{3,6\},\{4\}\}$$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- Prob doesn't depend on customer order: *exchangeable* $\mathbb{P}(\Pi_8 = \{\{1, 2, 7, 8\}, \{3, 5, 6\}, \{4\}\}) = \mathbb{P}(\Pi_8 = \{\{2, 3, 8, 1\}, \{4, 6, 7\}, \{5\}\})$
- Can always pretend n is the last customer and calculate $p(\Pi_N|\Pi_{N,-n})$
 - e.g. $\Pi_{8,-5} = \{\{1,2,7,8\},\{3,6\},\{4\}\}$

$$\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)}=\mathbb{P}(\Pi_N=\pi_N)$$
 So:
$$p(\Pi_N|\Pi_{N,-n})=$$

$$p(\Pi_N | \Pi_{N,-n}) =$$

$$\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)}=\mathbb{P}(\Pi_N=\pi_N)$$
• So:
$$p(\Pi_N|\Pi_{N,-n})=\left\{\right.$$

Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)}=\mathbb{P}(\Pi_N=\pi_N)$$
• So:
$$p(\Pi_N|\Pi_{N,-n})=\left\{\begin{array}{c} \text{if } n \text{ if } n \text{$$

if *n* joins cluster *C* if *n* starts a new cluster

• Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{l} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \text{if n starts a new cluster} \end{array}\right.$

• Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review:

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

- $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$
- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$
 - t^{th} step: $v_1^{(t)} \sim p(v_1|v_2^{(t-1)}, v_3^{(t-1)})$

• Probability of N customers (K_N tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$

- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - Start: $v_1^{(0)}, v_2^{(0)}, v_3^{(0)}$ $v_2^{(t)} \sim p(v_2|v_1^{(t)}, v_3^{(t-1)})$ t^{th} step: $v_1^{(t)} \sim p(v_1|v_2^{(t-1)}, v_3^{(t-1)})$

• Probability of N customers (K_N) tables, #C at table C):

$$\frac{\alpha^{K_N} \prod_{C \in \Pi_N} (\#C - 1)!}{\alpha \cdots (\alpha + N - 1)} = \mathbb{P}(\Pi_N = \pi_N)$$

 $\frac{\alpha^{K_N}\prod_{C\in\Pi_N}(\#C-1)!}{\alpha\cdots(\alpha+N-1)} = \mathbb{P}(\Pi_N=\pi_N)$ • So: $p(\Pi_N|\Pi_{N,-n}) = \left\{\begin{array}{ll} \frac{\#C}{\alpha+N-1} & \text{if n joins cluster C}\\ \frac{\alpha}{\alpha+N-1} & \text{if n starts a new cluster} \end{array}\right.$

- Gibbs sampling review: target distribution $p(v_1, v_2, v_3)$
 - $\begin{array}{lll} \bullet & \text{Start: } v_1^{(0)}, v_2^{(0)}, v_3^{(0)} & v_2^{(t)} \sim p(v_2|v_1^{(t)}, v_3^{(t-1)}) \\ \bullet & t \text{ th step: } v_1^{(t)} \sim p(v_1|v_2^{(t-1)}, v_3^{(t-1)}) & v_3^{(t)} \sim p(v_3|v_1^{(t)}, v_2^{(t)}) \end{array}$

CRP mixture model: inference

• Data $x_{1:N}$

Data $x_{1:N}$ • Generative model $\Pi_N \sim \mathrm{CRP}(N,\alpha)$

• Generative model $\Pi_N \sim \operatorname{CRP}(N, \alpha)$

Want: posterior

• Want: posterior $p(\Pi_N|x_{1:N})$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

- Data $x_{1:N}$ Generative model $\Pi_N \sim \mathrm{CRP}(N,\alpha)$ $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \right.$$

$$\Pi_N \sim \mathrm{CRP}(N, \alpha)$$

• Generative model
$$\Pi_N \sim \operatorname{CRP}(N,\alpha)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\uparrow 0$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N | \Pi_{N,-n}, x) = \left\{ \right.$$

if *n* joins cluster *C*

- Generative model $\Pi_N \sim \mathrm{CRP}(N,\alpha)$ $2 \frac{1}{\mu_1} \frac{7}{\mu_2} \frac{5}{\mu_3} \frac{4}{\mu_3}$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N | \Pi_{N,-n}, x) = \left\{ \right.$$

if *n* joins cluster *C* if *n* starts a new cluster

- Data $x_{1:N}$ Generative model $\Pi_N \sim \operatorname{CRP}(N,\alpha)$ $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \begin{cases} \frac{\#C}{\alpha+N-1}p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C\\ & \text{if } n \text{ starts a new cluster} \end{cases}$$

- Data $x_{1:N}$ Generative model $\Pi_N \sim \operatorname{CRP}(N,\alpha)$ $\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$ $\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$
- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) =$

$$\Pi_N \sim \mathrm{CRP}(N, \alpha)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iia}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\Pi_N \sim \mathrm{CRP}(N, \alpha)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \begin{cases} \frac{\#C}{\alpha+N-1}p(x_{C\cup\{n\}}|x_C) & \text{if } n \text{ joins cluster } C\\ \frac{\alpha}{\alpha+N-1}p(x_{\{n\}}) & \text{if } n \text{ starts a new cluster} \end{cases}$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iia}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$$

[MacEachern 1994; Neal 1992; Neal 2000]

Data $x_{1:N}$ • Generative model

$$\Pi_{N} \sim \operatorname{CRP}(N, \alpha)$$

$$\forall C \in \Pi_{N}, \phi_{C} \stackrel{iid}{\sim} G_{0}$$

$$\forall C \in \Pi_{N}, \forall n \in C, x_{n} \stackrel{indep}{\sim} \mathcal{N}(\mu_{C}, \Sigma)$$

$$\forall C \in \Pi_N, \overline{\forall n \in C, x_n}^{in}$$

$$\overset{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$ $\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$ $\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$

[MacEachern 1994; Neal 1992; Neal 2000]

Data $x_{1:N}$ • Generative model

$$\Pi_N \sim \operatorname{CRP}(N, \alpha)$$
 $\forall C \in \Pi_N, \phi_C \stackrel{iid}{\sim} G_0$

$$\forall C \in \Pi_N, \forall n \in C, x_n$$

• Want: posterior
$$p(\Pi_N|x_{1:N})$$

Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$ $\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$ $\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right)$

[MacEachern 1994; Neal 1992; Neal 2000]

$$\Pi_N \sim \operatorname{CRP}(N, \alpha)$$
 $\forall C \in \Pi_N, \phi_C \stackrel{iid}{\sim} G_0$

$$\forall C \in \Pi_N, \forall n \in C, x_n$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

$$\forall C \in \Pi_N, \mu_C \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$\forall C \in \Pi_N, \forall n \in C, x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_C, \Sigma)$$

- Want: posterior $p(\Pi_N|x_{1:N})$
- Gibbs sampler:

$$p(\Pi_N|\Pi_{N,-n},x) = \left\{ \begin{array}{l} \frac{\#C}{\alpha+N-1} p(x_{C\cup\{n\}}|x_C) & \text{if n joins cluster C} \\ \frac{\alpha}{\alpha+N-1} p(x_{\{n\}}) & \text{if n starts a new cluster} \end{array} \right.$$

• For completeness: $p(x_{C \cup \{n\}}|x_C) = \mathcal{N}(\tilde{m}, \tilde{\Sigma} + \Sigma)$

$$\tilde{\Sigma}^{-1} := \Sigma_0^{-1} + (\#C)\Sigma^{-1}$$

$$\tilde{m} := \tilde{\Sigma} \left(\Sigma^{-1} \sum_{m \in C} x_m + \Sigma_0^{-1} \mu_0 \right) \qquad [demo]$$

Code a CRP mixture model simulator

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive $p(x_{C \cup \{n\}}|x_C)$ explicitly for a Gaussian mixture

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive $p(x_{C \cup \{n\}}|x_C)$ explicitly for a Gaussian mixture
- Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive $p(x_{C \cup \{n\}}|x_C)$ explicitly for a Gaussian mixture
- Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well
- Read Neal 2000 and try out other samplers

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive $p(x_{C \cup \{n\}}|x_C)$ explicitly for a Gaussian mixture
- Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well

Data $x_{1:N}$

- Read Neal 2000 and try out other samplers
- Further: Read Walker 2007; Kalli, Griffin, Walker 2011 and code a DPMM slice sampler; Read Wang, Blei 2012 and code a variational inference algorithm

- Code a CRP mixture model simulator
- Derive the CRP mixture model Gibbs sampler in the slides; derive $p(x_{C \cup \{n\}}|x_C)$ explicitly for a Gaussian mixture
- Extend the CRP mixture model Gibbs sampler in the slides to sample the cluster-specific parameters as well

Data $x_{1:N}$

- Read Neal 2000 and try out other samplers
- Further: Read Walker 2007; Kalli, Griffin, Walker 2011 and code a DPMM slice sampler; Read Wang, Blei 2012 and code a variational inference algorithm
- Read Broderick, Jordan, Pitman 2013 "Cluster and feature modeling [...]" for more background/extensions

Clustering

 Indian buffet process

 Indian buffet process

- Indian buffet process
- Beta process

- Indian buffet process
- Beta process

- Indian buffet process
- Beta process

Kingman coalescent

 Kingman coalescent

- Kingman coalescent
- Fragmentation
- Coagulation

- Kingman coalescent
- Fragmentation
- Coagulation

[Kingman 1982, Bertoin 2006, Teh et al 2011

- Kingman coalescent
- Fragmentation
- Coagulation
- Dirichlet diffusion tree

[Kingman 1982, Bertoin 2006, Teh et al 2011

- Kingman coalescent
- Fragmentation
- Coagulation
- Dirichlet diffusion tree

[Kingman 1982, Bertoin 2006, Teh et al 2011, Neal 2003]

K_N := # clusters
 occupied by N data
 points

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim \alpha N^{\sigma}$$
 w.p. 1

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim \alpha N^{\sigma}$$
 w.p. 1
 $\Leftrightarrow \rho_j^{\downarrow} \sim C(\sigma)j^{-\sigma}, j \to \infty, \text{ w.p. } 1$

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim \alpha N^{\sigma}$$
 w.p. 1
 $\Leftrightarrow \rho_j^{\downarrow} \sim C(\sigma) j^{-\sigma}, j \to \infty, \text{ w.p. } 1$

Zipf's law

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim \alpha N^{\sigma}$$
 w.p. 1
 $\Leftrightarrow \rho_j^{\downarrow} \sim C(\sigma) j^{-\sigma}, j \to \infty, \text{ w.p. } 1$

Zipf's law

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim \alpha N^{\sigma}$$
 w.p. 1
 $\Leftrightarrow \rho_j^{\downarrow} \sim C(\sigma)j^{-\sigma}, j \to \infty, \text{ w.p. } 1$

Zipf's law

 Hierarchical Dirichlet process

Hierarchical
 Dirichlet process

- Hierarchical Dirichlet process
- Chinese restaurant franchise

[Teh et al 2006]

- Hierarchical
 Dirichlet process
- Chinese restaurant franchise

[Teh et al 2006]

- Hierarchical
 Dirichlet process
- Chinese restaurant franchise
- Hierarchical beta process

[Teh et al 2006]

- Hierarchical
 Dirichlet process
- Chinese restaurant franchise
- Hierarchical beta process

Clustering: Kingman paintbox

Clustering: Kingman paintbox

Clustering: Kingman paintbox

Feature allocation: Feature paintbox

De Finetti mixing measures

Clustering: Kingman paintbox

Feature allocation: Feature paintbox

De Finetti mixing measures

Clustering: Kingman paintbox

Feature allocation: Feature paintbox

Graphs/networks: Aldous-Hoover theorem

[Kingman 1978, Broderick, Pitman, Jordan 2013

De Finetti mixing measures

Clustering: Kingman paintbox

Feature allocation: Feature paintbox

Graphs/networks: Aldous-Hoover theorem

[Kingman 1978, Broderick, Pitman, Jordan 2013, Aldous 1983, Orbanz, Roy 2015]

Beta process, Bernoulli process (Indian buffet)

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

 Posteriors, conjugacy, and exponential families for completely random measures

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

 Posteriors, conjugacy, and exponential families for completely random measures

Bayesian statistics that is not parametric

- Bayesian statistics that is not parametric
- Bayesian

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian
 - $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$
- Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

References (Part III), page 1

DJ Aldous. Exchangeability and related topics. Springer, 1983.

T Broderick, MI Jordan, and J Pitman. Beta processes, stick-breaking, and power laws. Bayesian Analysis. *Bayesian Analysis*, 2012.

T Broderick, MI Jordan, and J Pitman. Cluster and feature modeling from combinatorial stochastic processes. *Statistical Science*, 2013.

T Broderick, J Pitman, and MI Jordan. Feature allocations, probability functions, and paintboxes. *Bayesian Analysis*, 2013.

T Broderick, AC Wilson, and MI Jordan. Posteriors, conjugacy, and exponential families for completely random measures. arXiv preprint arXiv:1410.6843, 2014

J Bertoin. Random Fragmentation and Coagulation Processes. Cambridge University Press, 2006.

S Goldwater, TL Griffiths, and M Johnson. Interpolating between types and tokens by estimating power-law generators. *NIPS*, 2005.

A Gnedin, B Hansen, and J Pitman. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws. *Probability Surveys*, 2007.

TL Griffiths and Z Ghahramani. Infinite latent feature models and the Indian buffet process. NIPS, 2005.

NL Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. *The Annals of Statistics*, 1990.

L James. Poisson latent feature calculus for generalized Indian buffet processes. arXiv preprint arXiv:1411.2936, 2014.

Y Kim. Nonparametric Bayesian estimators for counting processes. *The Annals of Statistics*, 1999.

JFC Kingman. The representation of partition structures. Journal of the London Mathematical Society, 1978.

References (Part III), page 2

JFC Kingman. On the genealogy of large populations. Journal of Applied Probability, 1982.

JFC Kingman. Poisson processes, 1992.

JR Lloyd, P Orbanz, Z Ghahramani, and DM Roy. Random function priors for exchangeable arrays with applications to graphs and relational data. *NIPS*, 2012.

RM Neal. Density modeling and clustering using Dirichlet diffusion trees. Bayesian Statistics, 2003.

P Orbanz. Construction of nonparametric Bayesian models from parametric Bayes equations. NIPS, 2009.

P Orbanz, DM Roy. Bayesian models of graphs, arrays and other exchangeable random structures. IEEE TPAMI, 2015.

J Pitman and M Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. *The Annals of Probability*, 1997.

A Rodríguez, DB Dunson & AE Gelfand. The nested Dirichlet process. *Journal of the American Statistical Association*, 2008.

YW Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. ACL, 2006.

YW Teh, C Blundell, and L Elliott. Modelling genetic variations using fragmentation-coagulation processes. NIPS, 2011.

YW Teh, MI Jordan, MJ Beal, and DM Blei. Hierarchical Dirichlet processes. *Journal of the American Statistical Association*, 2006.

R Thibaux and MI Jordan. Hierarchical beta processes and the Indian buffet process. ICML, 2007.

J Wakeley. Coalescent Theory: An Introduction, Chapter 3, 2008.