Optimizasyona Giriș

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

Kontrol Anabilim Dalı

Dr. Öğr. Üyesi Işık İlber Sırmatel

sirmatel.github.io/teaching/EEE126/

Konu listesi

- 1. Temel kavramlar
- 2. Önemli problem sınıfları
- 3. Yöntemlerin sınıflandırılması
- 4. Algoritmalar
- 5. Uygulamalar

Bölüm 1

Temel kavramlar

Optimizasyonun tanımı

kısıtlı seçenekler arasından en iyisini seçmek

optimizasyonun unsurları:

- ▶ modelleme (problemleri kurmak)
- ► teori (yöntemlerin analizi)
- ► algoritmalar (problemleri çözmek)

Optimizasyon problemi (bir standart form)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ & \text{bağlı} & g(x) \leq 0 \\ & h(x) = 0 \end{array}$$

- $ightharpoonup x \in \mathbb{R}^n$ (optimizasyon değişkenleri vektörü)
- $lackbox f: \mathbb{R}^n o \mathbb{R}$ (amaç fonksiyonu)
- $lackbox{} g:\mathbb{R}^n
 ightarrow \mathbb{R}^m$ (eşitsizlik kısıtları fonksiyonu)
- $ightharpoonup h: \mathbb{R}^n o \mathbb{R}^p$ (eşitlik kısıtları fonksiyonu)

Optimizasyon problemlerinin unsurları

- ▶ Amaç fonksiyonu f(x) optimizasyonun amacını bir niceliği minimize/maksimize etmek olarak ifade eder.
- ▶ Optimizasyon değişkenleri vektörü $x \in \mathbb{R}^n$ optimizasyon ile sayısal değerini bulmak istediğimiz değişkenlerden oluşan vektördür.
- ▶ Olanaklı küme Ω , x vektörünün elemanı olmak üzere kısıtlandığı kümeyi belirtir. Bu küme x'in sağlaması gereken kısıtları belirler ve genellikle $g(x) \leq 0$ (eşitsizlik kısıtları) ve h(x) = 0 (eşitlik kısıtları) ile ifade edilir.

$$\Omega = \{ x \in \mathbb{R}^n \, | \, f(x) \le 0, \, h(x) = 0 \}$$

Örnek

eşitsizlik kısıtlı, bir boyutlu optimizasyon problemi

Örnek

eşitlik ve eşitsizlik kısıtlı, iki boyutlu optimizasyon problemi

$$\begin{array}{ll} \underset{x \in \mathbb{R}^2}{\text{minimize}} & x_1^2 + x_2^2 \\ & \text{bağlı} & 1 + x_1^2 \leq x_2 \\ & 1 \leq x_1 \\ & x_2 + 2x_1 = 6 \end{array}$$

Önemli problem sınıfları

Bölüm 2

Doğrusal program (LP)

Karesel program (QP)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & x^TQx + c^Tx \\ \text{bağlı} & Ax \leq b \\ & Ex = e \end{array}$$

Dışbükey program (convex program)

$$\begin{array}{c|c} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{bağlı} & x \in \Omega \\ \end{array}$$

(f dışbükey fonksiyon, Ω dışbükey küme)

Doğrusal-olmayan program (NLP)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{bağl} & g(x) \leq 0 \\ & h(x) = 0 \\ \end{array}$$

(f, g ve h türevlenebilir)

Karma-tamsayılı program (MIP)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n, z \in \mathbb{Z}^m}{\text{minimize}} & f(x,z) \\ \text{ba\"{gli}} & g(x,z) \leq 0 \\ & h(x,z) = 0 \end{array}$$

Bölüm 3

Yöntemlerin sınıflandırılması

Optimizasyon prosedürü

Optimizasyon problemi çeşitleri

Kaynak: https://neos-guide.org/guide/types/

Optimizasyon algoritması çeşitleri

kesin (exact) algoritmalar (sınırlı sürede çözümü bulma garantisi vardır)

- ► birinci-derece yöntemler
 - gradyan iniş
 - momentum
- ► ikinci-derece yöntemler
 - Newton yöntemi
 - yarı-Newton yöntemleri
- ► kısıtlı optimizasyon
 - aktif küme yöntemi
 - ardışık karesel optimizasyon
 - iç nokta yöntemleri
- ▶ ..

buluşsal (heuristic) algoritmalar

(sınırlı sürede çözümü bulma garantisi yoktur)

- ▶ genetik algoritmalar
- ▶ benzetilmiş tavlama
- ► parçacık sürü opt.
- ▶ ...

fuzuli algoritmalar

- ► grey wolf optimizer
- ► harmony search algorithm
- ► firefly algorithm

kaynak:

https://doi.org/10.1111/itor.13176

Sürekli/ayrık optimizasyon

sürekli program

$\overline{ \begin{array}{c} minimize \\ x \in \mathbb{R}^n \end{array} }$	f(x)
bağlı	$g(x) \le 0$
	h(x) = 0

x reel vektör

ayrık program

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n, z \in \mathbb{Z}^q}{\text{minimize}} & f(x,z) \\ \text{bağlı} & g(x,z) \leq 0 \\ & h(x,z) = 0 \end{array}$$

x reel, z tamsayılı vektör

Kısıtsız/kısıtlı optimizasyon

kısıtsız program

$$\begin{array}{cc}
\text{minimize} & f(x) \\
x \in \mathbb{R}^n
\end{array}$$

kısıtlı program

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ & \text{ba\"{gli}} & g(x) \leq 0 \\ & h(x) = 0 \end{array}$$

Belirsizlik içermeyen/içeren optimizasyon

deterministik (belirsizlik içermeyen) program

dayanıklı (robust) program

$$\min_{x \in \mathbb{R}^n} \quad \max_{p \in P} f(x,p)$$
 bağlı $x \in \Omega_p$

stokastik program

Dışbükey/dışbükey-olmayan optimizasyon

dışbükey program

$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{bağlı} & x \in \Omega \end{array}$

f dışbükey fonksiyon ve Ω dışbükey küme

dışbükey-olmayan program

$\underset{x \in \mathbb{R}^n}{minimize}$	f(x)
bağlı	$x \in \Omega$

f dışbükey olmayan fonks. veya Ω dışbükey olmayan küme

Bölüm 4

Algoritmalar

Gradyan iniş (gradient descent)

kısıtsız optimizasyon problemi ($\nabla f(x)$ mevcut)

$$\min_{x \in \mathbb{R}^n} \int f(x) dx$$

verilenler: başlangıç noktası $x_0 \in \mathbb{R}^n$

tolerans $\epsilon>0$

tekrarla: k = 0, 1, 2, ... için:

- 1) $\Delta x_k = -\nabla f(x_k)$
- $2) \ {\rm adım \ boyu \ } \gamma '{\rm yı \ seç}$
- $3) x_{k+1} = x_k + \gamma \Delta x_k$

dur: $\|\nabla f(x_k)\| \le \epsilon$ ise

Newton yöntemi

kısıtsız optimizasyon problemi ($\nabla f(x)$ ve $\nabla^2 f(x)$ mevcut)

$$\underset{x \in \mathbb{R}^n}{\mathsf{minimize}} \quad f(x)$$

verilenler: başlangıç noktası $x_0 \in \mathbb{R}^n$

 $\text{tolerans } \epsilon > 0$

tekrarla: k = 0, 1, 2, ... için:

1)
$$\Delta x_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

2)
$$\lambda^2 = \nabla f(x_k)^T \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

3) adım boyu γ 'yı seç

$$4) x_{k+1} = x_k + \gamma \Delta x_k$$

dur: $\lambda^2/2 \le \epsilon$ ise

Uygulamalar

Bölüm 5

Üretim planlama (LP)

maksimize kazanç bağlı üretim \leq hammadde sipariş \leq üretim

Optimal güç akışı (QP)

minimize üretim	maliyet
bağlı	$\ddot{u}retim = talep$
	$iletim \leq limitler$

Birim taahhüt problemi (MIQP)

 $\begin{array}{ll} \underset{\text{operasyon}}{\text{minimize}} & \text{maliyet} \\ & \text{bağlı} & \text{operasyon süresince:} \\ & \text{operasyon} \leq \text{güç limitleri} \\ & \text{talep} \leq \text{operasyon} \end{array}$

Devre tasarımı (GP)

minimize zaman gecikmesi bağlı elemanlar \leq güç limiti elemanlar \leq alan limiti

Lojistik planlama (LP)


```
\begin{array}{ll} \underset{\text{nakliye}}{\mathsf{minimize}} & \mathsf{maliyet} \\ & \mathsf{bagli} & \mathsf{nakliye} \leq \mathsf{üretim} & \mathsf{kapasitesi} \\ & \mathsf{talep} \leq \mathsf{nakliye} \end{array}
```

Sera iklim kontrolü (QP, NLP)


```
minimize maliyet girişler bağlı operasyon süresince: yörünge \leftrightarrow sera dinamiği girişler \leq giriş limitleri yörünge \in iklim limitleri
```

Kimyasal proses kontrol (NLP)

maksimize girişler	kazanç
bağlı	operasyon süresince:
	yörünge \leftrightarrow proses dinamiği
	girişler \leq giriş limitleri

Roket indirme (SOCP)


```
minimize
           yakıt tüketimi
  girişler
    bağlı seyir süresince:
              yörünge ↔ roket dinamiği
              girişler < giriş limitleri
              yörünge ∈ güvenli zarf
           son konum = hedef
```

Otonom sürüş (QP, NLP)


```
maksimize katedilen mesafe
bağlı seyir süresince:
yörünge ↔ araç dinamiği
girişler ≤ giriş limitleri
yörünge ∈ pist
```