

硬件标准化概述

- > 工程定位
- > 设计思路
- > 接口定义

硬件标准化概述·工程定位

- 为了解决机器人队硬件迭代和技术传承问题而提出的解决方案
- 机器人通用的硬件解决方案
- 提高硬件系统稳定性作为重要研发目的

硬件标准化概述·工程定位

为了解决机器人队硬件迭代和技术传承问题而提出的解决方案

- 硬件迭代
 - 形式:
 - 硬件接口更变
 - 硬件资源更变
 - 来源:
 - 机器人迭代
 - 比赛规则更变

硬件需求更变

硬件标准化概述 · 工程定位

为了解决机器人队硬件迭代和技术传承问题而提出的解决方案

- 技术传承
 - 内容:
 - PCB layout 优化
 - 原理图模块设计
 - 阻力:
 - 机器人需求差异
 - 工程设计理念

设计案例快速转化为解决方案

硬件标准化概述·工程定位

- 机器人通用的硬件方案,是硬件标准化最直观的理解
 - 主控板+扩展板模式
 - 管脚复用改变接口定义
 - 硬件接口复用

- ✓ 提高硬件方案通用性
- ✓ 快速构建硬件方案

硬件标准化概述 · 工程定位

- 提高硬件系统稳定性,是硬件标准化一个重要的研发目的
 - 硬件系统稳定性
 - 板级稳定性: 电路板层面电源信号电磁问题
 - 连接稳定性: 电路板与被控组件之间连接问题
 - 板级稳定性
 - 元器件参数
 - PCB layout
 - 连接稳定性
 - 电气稳定性
 - 可操作性

硬件标准化概述·设计思路

- > 统一接口为基础,以模块化的方法,实现硬件标准化
- 通过定义硬件接口功能、线序等属性
- 将所需外设模块从主控板中分离
- 设计扩展板
- 提取主控板核心功能
- 简化主控板设计
- 降低外设与主控的耦合度
- 最大限度避免不必要硬件迭代
- 基于标准化主控板进行后续改进工作

硬件标准化概述 · 接口定义

> 硬件标准化接口定义表&概念图

接口\线序	1	2	3	4	5	6	数量
6Pin IO扩展接口	5V	IO1	IO2	IO3	104	GND	4
4Pin CAN扩展接口	L	L	Н	Н			2
4Pin SWD调试接口	CLK	DIO	GND	3V3			1
4Pin 串行通信接口	5V	TX	RX	GND			2
3Pin 串行通信接口	TX	RX	GND				3
3Pin 舵机接口	PWM	5V	GND				1
2Pin CAN电机接口	L	Н					2

主控板设计分析

- > 硬件框图
- > 原理图
- > PCB

主控板设计分析·硬件框图

- 各功能模块选用元器件型号
- 各功能模块之间的连接关系
- 各功能模块的空间布局
- 接口对应的主控芯片Pin
- PowerTree供电网络
- 版本信息

主控板设计分析·原理图

- 功能区划分
- 功能区布局
- ■解释性标注
- 器件封装
- 网络标号
- **■** MCU功能区示例

主控板设计分析·PCB

- 板载资源
- 器件布局
- 接口线序
- 布线细节
- 丝印标注

标准化系统设计

- > 硬件体系
- > 设计流程
- > 设计案例

标准化系统设计·硬件体系

■ 硬件标准化体系由1块主控板+6块扩展板构成

Main Control	CAN Station	IO Expansion	Steering Engine	Solenoid Valve	Linear Actuator
主控板	CAN扩展板	IO扩展板	舵机扩展板	电磁阀扩展板	电动推杆扩展板

标准化系统设计·设计流程

■ 常规硬件设计流程

- 硬件标准化设计流程
- 硬件标准化将硬件框图绘制、原理图设计、PCB设计、可行性验证 四个步骤抽象并简化为选择硬件接口。

- ➤ RM2020哨兵
- 确定需求和物资清单

结构	物资	数量	物资	数量	物资清单	物资	数量	物资	数量
底盘	3508电机	2	C620电调	2	电机类	3508电机	6	C620电调	6
	主控板	1	CAN扩展板	3		2006电机	2	C610电调	2
	NUC	1	24V转19V降压模块	1		6020电机	4		
	24V电池	1					4		
云台	3508电机	4	C620电调	4	PCB类	主控板	1	CAN扩展板	3
	2006电机	2	C610电调	2	电源类	24V电池	1	24V转19V降压模块	1
	6020电机	4	激光	2	视觉类	NUC	1	摄像头	2
	摄像头	2				激光	2		

- 哨兵总共需要12个电机,无其他执行器
- 1*主控板 + 3 * CAN扩展板即可实现基本功能

- ➤ RM2020哨兵
- 绘制电路框图

- ➤ RM2020哨兵
- 选择硬件接口
- 哨兵的执行器全部是CAN通信
- 因此只需要连接CAN1和CAN2 两个扩展接口。

- ➤ RM2020哨兵
- 确定硬件位置

- 硬件位置确定后,即可评估走线长度,进行布线优化
- 标准化接口定义了Pin数,使得对应连接线能够批量定制
- 一方面有效降低连接线定制成本
- 另一方面相比于自制连接线的连接稳定性有很好的提升

硬件标准化与系统设计.pdf

