Mechanical behaviours in MFront

MFront training course

(1) CEA, DES, IRESNE, DEC, SESC, LSC, Cadarache, France

Thomas Helfer(1)

Outline

Mechanical behaviours

An overview of MFront

Conclusions and perspectives

Sommaire

Mechanical behaviours

An overview of MFront

Conclusions and perspectives

■ Mechanical equilibrium: find $\Delta \vec{\mathbb{U}}$ such as:

$$\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{O}} \quad \text{ avec } \quad \vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{F}}_{\textit{i}}\left(\Delta\vec{\mathbb{U}}\right) - \vec{\mathbb{F}}_{\textit{e}}$$

■ Mechanical equilibrium: find $\Delta \vec{\mathbb{U}}$ such as:

$$\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{O}} \quad \text{ avec } \quad \vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{F}}_{\textit{i}}\left(\Delta\vec{\mathbb{U}}\right) - \vec{\mathbb{F}}_{\textit{e}}$$

element contribution to inner forces:

$$\begin{split} \vec{\mathbb{F}}_{i}^{e} &= \int_{V^{e}} \underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{to}, \Delta t \right) : \underline{\mathbf{B}} \, \mathrm{d}V \\ &= \sum_{i=1}^{N^{G}} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{to} \left(\vec{\eta}_{i} \right), \Delta t \right) : \underline{\underline{\mathbf{B}}} \left(\vec{\eta}_{i} \right) \right) w_{i} \end{split}$$

where $\underline{\mathbf{B}}$ gives the relationship between $\Delta\,\underline{\epsilon}^{to}$ and $\Delta\,\vec{\mathbb{U}}$

■ Mechanical equilibrium: find \(\Delta\vec{U}\) such as:

$$\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{O}} \quad \text{ avec } \quad \vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{F}}_{\textit{i}}\left(\Delta\vec{\mathbb{U}}\right) - \vec{\mathbb{F}}_{\textit{e}}$$

element contribution to inner forces:

$$\vec{\mathbb{F}}_{i}^{e} = \sum_{i=1}^{N^{G}} \left(\underline{\sigma}_{t+\Delta \, t} \left(\Delta \underline{\epsilon}^{to} \left(\vec{\eta}_{i}\right), \Delta \, t\right) : \underline{\underline{\textbf{B}}} \left(\vec{\eta}_{i}\right)\right) w_{i}$$

Resolution using the Newton-Raphson algorithm:

$$\Delta \vec{\mathbb{U}}^{n+1} = \Delta \vec{\mathbb{U}}^n - \left(\left. \frac{\partial \vec{\mathbb{R}}}{\partial \Delta \vec{\mathbb{U}}} \right|_{\Delta \vec{\mathbb{U}}^n} \right)^{-1} . \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}}^n \right) = \Delta \vec{\mathbb{U}}^n - \underline{\underline{\mathbb{K}}}^{-1} . \vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}}^n \right)$$

■ Mechanical equilibrium: find $\Delta \vec{\mathbb{U}}$ such as:

$$\vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{O}} \quad \text{ avec } \quad \vec{\mathbb{R}}\left(\Delta\vec{\mathbb{U}}\right) = \vec{\mathbb{F}}_{\textit{i}}\left(\Delta\vec{\mathbb{U}}\right) - \vec{\mathbb{F}}_{\textit{e}}$$

element contribution to inner forces:

$$\vec{\mathbb{F}}_{i}^{e} = \sum_{i=1}^{N^{G}} \left(\underline{\sigma}_{t+\Delta t} \left(\Delta \underline{\epsilon}^{to} \left(\vec{\eta}_{i} \right), \Delta t \right) : \underline{\underline{\mathbf{B}}} \left(\vec{\eta}_{i} \right) \right) w_{i}$$

Resolution using the Newton-Raphson algorithm:

$$\Delta \vec{\mathbb{U}}^{n+1} = \Delta \vec{\mathbb{U}}^n - \underline{\underline{\mathbb{K}}}^{-1}.\vec{\mathbb{R}} \left(\Delta \vec{\mathbb{U}}^n\right)$$

element contribution to the stiffness:

$$\underline{\underline{\mathbb{E}}}^{e} = \sum_{i=1}^{N^{G}} {}^{t}\underline{\underline{\mathbf{B}}}(\vec{\eta}_{i}) : \frac{\partial \underline{\Delta}_{\underline{\sigma}}}{\partial \underline{\Delta}_{\underline{\epsilon}^{(b)}}}(\vec{\eta}_{i}) : \underline{\underline{\mathbf{B}}}(\vec{\eta}_{i}) w_{i}$$

 $\frac{\partial \Delta\underline{\sigma}}{\partial \Delta\epsilon^{\text{lo}}}$ is the consistent tangent operator

w M

Main functions of the mechanical behaviour

$$\left(\underline{\epsilon}^{to}\big|_t\;,\; \overrightarrow{Y}\Big|_t\;, \Delta\underline{\epsilon}^{to}\;, \Delta\;t\right) \underset{\text{behaviour}}{\Longrightarrow} \left(\underline{\sigma}|_{t+\Delta\;t}\;,\; \overrightarrow{Y}\Big|_{t+\Delta\;t}\;, \frac{\partial\Delta\,\underline{\sigma}}{\partial\Delta\,\underline{\epsilon}^{to}}\right)$$

- Given a strain increment $\Delta \underline{\epsilon}^{to}$ over a time step Δt , the mechanical behaviour must compute:
 - The value of the stress $\underline{\sigma}|_{t+\Delta t}$ at the end of the time step.
 - The value of internal state variables, noted $\vec{Y}\Big|_{t+\Delta t}$ at the end of the time step.
 - The consistent tangent operator: $\frac{\partial \Delta \underline{\sigma}}{\partial \Delta \epsilon^{to}}$
- For specific cases, the mechanical behaviour shall also provide:
 - a prediction operator
 - the elastic operator (Abagus-Explicit, Europlexus)
 - estimation of the stored and dissipated energies (Abagus-Explicit)

Other functions of the mechanical behaviour

- Provide a estimation of the next time step for time step automatic adaptation
- Check bounds:
 - Physical bounds
 - Standard bounds
- Clear error messages
- Parameters
 - It is all about Quality Assurance!
 - Parametric studies, identification, etc...
- Generate 'MTest' files on integration failures
- Generated example of usage:
 - Generation of MODELISER/MATERIAU instructions (Cast3M)
 - Input file for Abagus, Ansys
- Provide information for dynamic resolution of inputs (MTest/Aster/Europlexus):
 - Numbers Types (scalar, tensors, symmetric tensors)
 - Entry names /Glossary names...

Sommaire

Mechanical behaviours

An overview of MFront

Conclusions and perspectives

MFront goals

- MFront is a code generation tool dedicated to material knowledge (material properties, mechanical behaviours, point-wise models):
 - Support for small and finite strain behaviours, cohesive zone models, generalised behaviours (non local and or multiphysics).
- Main goals:
 - Numerical efficiency (see various benchmarks on the website).
 - Portability (Cast3M, Cyrano, code_aster, Europlexus, TMFTT, AMITEX_FFTP, Abaqus, CalculiX, MTest).
 - Ease of use: Longum iter est per praecepta, breve et efficax per exempla (It's a long way by the rules, but short and efficient with examples).

m M

An example of the StandardElasticityVicoPlasticity

```
@DSL Implicit:
@Behaviour MohrCoulomAbboSloan3;
@Epsilon 1.e-14:
@Theta 1:
@Brick StandardElastoViscoPlasticity{
  stress_potential : "Hooke" {
   young_modulus: 150.e3,
   poisson_ratio : 0.3
  inelastic_flow : "Plastic" {
    criterion: "MohrCoulomb" +
     c: 3.e1.
                   // cohesion
     phi: 0.523598775598299, // friction angle or dilatancy angle
     lodeT: 0.506145483078356, // transition angle as defined by Abbo and Sloan
                  // tension cuff-off parameter
    flow_criterion : "MohrCoulomb" {
     c: 3.e1,
                   // cohesion
     phi: 0.174532925199433. // friction angle or dilatancy angle
     lodeT: 0.506145483078356, // transition angle as defined by Abbo and Sloan
                  // tension cuff-off parameter
     a: 3e1
   isotropic_hardening: "Linear" {R0: "0"}
```

The StandardElasticityVicoPlasticity brick allows to implement complex visco-plastic behaviours with a declarative syntax using predefined components.

An simple example with the Implicit DSL and the Stan

```
@DSL Implicit:
@Behaviour Norton;
@Brick StandardElasticity:
@MaterialProperty stress E:
E.setGlossarvName("YoungModulus"):
@MaterialProperty real v. A. nn:
V.setGlossarvName("PoissonRatio"):
A.setEntryName("NortonCoefficient"):
nn.setEntryName("NortonExponent"):
@StateVariable real
p.setGlossaryName("EquivalentViscoplasticStrain");
@Integrator{
  constexpr const auto Me = Stensor4::M();
  const auto \mu = computeMu(E, \nu);
  const auto \sigma^e = sigmaeq(\sigma);
  const auto i\sigma^e = 1 / (max(\sigma^e, real(1,e-12) \cdot E));
  const auto v^p = A \cdot pow(\sigma^e, nn);
  const auto \partial v^p / \partial \sigma^e = nn \cdot v^p \cdot i\sigma^e:
  const auto n = 3 \cdot deviator(\sigma) \cdot (i\sigma^e / 2):
  // Implicit system
  f \epsilon^{el} += \Delta p \cdot n:
  fp -= v<sup>p</sup> · Δt:
  // jacobian
  \partial f \epsilon^{el} / \partial \Delta \epsilon^{el} += 2 \quad \mu \quad \theta \quad dp \quad i \sigma^{e} \quad (M^{e} - (n \otimes n));
  \partial f \epsilon^{el} / \partial \Delta p = n:
  \partial f p / \partial \Delta \epsilon^{el} = -2 \cdot \mu \cdot \theta \cdot \partial v^p / \partial \sigma^e \cdot \Delta t \cdot n:
} // end of @Integrator
```

- Implicit integration.
- Implicit system:

$$\begin{cases} f_{\underline{\epsilon}el} = \Delta \, \underline{\epsilon}^{el} - \Delta \, \underline{\epsilon}^{to} + \Delta \, p \, \underline{\mathbf{n}} \\ f_p = \Delta \, p - A \, \sigma_{eq}^n \end{cases}$$

Jacobian:

$$\begin{cases} \frac{\partial f_{\underline{\varepsilon}}e^{l}}{\partial \Delta_{\underline{\varepsilon}}e^{l}} = \underline{\underline{I}} + \frac{2 \mu \theta \Delta p}{\sigma_{eq}} \left(\underline{\underline{\underline{M}}} - \underline{\underline{n}} \otimes \underline{\underline{n}}\right) \\ \frac{\partial f_{\underline{\varepsilon}}e^{l}}{\partial \Delta p} = \underline{\underline{n}} \\ \frac{\partial f_{p}}{\partial \Delta_{\underline{\varepsilon}}e^{l}} = -2 \mu \theta A n \sigma_{eq}^{n-1} \Delta t \underline{\underline{n}} \end{cases}$$

 All programming and numerical details are hidden (by default).

Support for quantities in MFront

```
@Parameter strainrate A = 8.e-67;
@Parameter real E = 8.2:
@Parameter stress K = 1;
@Parameter stress R0 = 20e6;
@Parameter stress Rinf = 40e6:
@Parameter real byp = 10:
@Integrator {
 const auto seg = sigmaeg(sig);
                                                       // seg has the unit of a stress
 const auto iseg = 1 / max(seps, seg);
                                                       // iseg has the unit of the inverse of a stress
 const auto n = 3 * deviator(sig) * (iseg / 2):
                                                       // normal has no unit
 const auto exp\_bvp = exp(-bvp * (p + theta * dp));
                                                     // exp_byp has no unit
 Rvp = R0 + (Rinf - R0) * (1 - exp_bvp);
                                                       // Rvp has the unit of a stress
  if (sea > Rvp) {
   const auto vp = A * pow((seq - Rvp) / K. E):
                                                       // vp has the unit of a strainrate
   fp = vp * dt;
                                                       // fp has the unit a a strain
   // fp = pow((seg = Rvp) / K, E) * dt:
                                                       // This would not compile!
    // fp -= A * pow(seq - Rvp. E) * dt:
                                                       // This would not compile!
  feel += dp * n;
```

- The UseQt keyword actives the use of quantities.
- Dedicated documentation of the declaration of variables in MFront
- Quantities are supported in DSLs associated with material properties and behaviours.

An example of the StandardElasticityVicoPlasticity

```
@DSL Implicit:
@Behaviour MohrCoulomAbboSloan3:
@Epsilon 1.e-14:
@Theta 1:
@Brick StandardElastoViscoPlasticity {
  stress_potential : "Hooke" {
   young_modulus: 150.e3,
    poisson_ratio: 0.3
  inelastic_flow : "Plastic" {
    criterion: "MohrCoulomb" {
     c: 3.e1.
                   // cohesion
     phi: 0.523598775598299, // friction angle or dilatancy angle
     lodeT: 0.506145483078356, // transition angle as defined by Abbo and Sloan
                   // tension cuff-off parameter
      a: 1e1
    flow_criterion : "MohrCoulomb" {
     c: 3.e1.
                   // cohesion
     phi: 0.174532925199433, // friction angle or dilatancy angle
     lodeT: 0.506145483078356, // transition angle as defined by Abbo and Sloan
                  // tension cuff-off parameter
      a · 3e1
   isotropic_hardening: "Linear" {R0: "0"}
```

The StandardElasticityVicoPlasticity brick allows a declarative syntax using predefined components.

An simple example with the Implicit DSL and the Stan

```
@DSL Implicit:
@Behaviour Norton;
@Brick StandardElasticity:
@MaterialProperty stress E:
E.setGlossarvName("YoungModulus"):
@MaterialProperty real v. A. nn:
V.setGlossarvName("PoissonRatio"):
A.setEntryName("NortonCoefficient"):
nn.setEntryName("NortonExponent"):
@StateVariable real
p.setGlossaryName("EquivalentViscoplasticStrain");
@Integrator{
  constexpr const auto Me = Stensor4::M();
  const auto \mu = computeMu(E, \nu);
  const auto \sigma^e = sigmaeq(\sigma);
  const auto i\sigma^e = 1 / (max(\sigma^e, real(1,e-12) \cdot E));
  const auto v^p = A \cdot pow(\sigma^e, nn);
  const auto \partial v^p / \partial \sigma^e = nn \cdot v^p \cdot i\sigma^e:
  const auto n = 3 \cdot deviator(\sigma) \cdot (i\sigma^e / 2):
  // Implicit system
  f \epsilon^{el} += \Delta p \cdot n:
  fp -= v<sup>p</sup> · Δt:
  // jacobian
  \partial f \epsilon^{el} / \partial \Delta \epsilon^{el} += 2 \quad \mu \quad \theta \quad dp \quad i \sigma^{e} \quad (M^{e} - (n \otimes n));
  \partial f \epsilon^{el} / \partial \Delta p = n:
  \partial f p / \partial \Delta \epsilon^{el} = -2 \cdot \mu \cdot \theta \cdot \partial v^p / \partial \sigma^e \cdot \Delta t \cdot n:
} // end of @Integrator
```

- Implicit integration.
- Implicit system:

$$\begin{cases} f_{\underline{\epsilon}el} = \Delta \, \underline{\epsilon}^{el} - \Delta \, \underline{\epsilon}^{to} + \Delta \, \rho \, \underline{\mathbf{n}} \\ f_p = \Delta \, p - A \, \sigma_{eq}^n \end{cases}$$

Jacobian:

$$\begin{cases} \frac{\partial f_{\underline{\varepsilon}}e^{l}}{\partial \Delta_{\underline{\varepsilon}}e^{l}} = \underline{\underline{I}} + \frac{2 \mu \theta \Delta p}{\sigma_{eq}} \left(\underline{\underline{\underline{M}}} - \underline{\underline{n}} \otimes \underline{\underline{n}}\right) \\ \frac{\partial f_{\underline{\varepsilon}}e^{l}}{\partial \Delta p} = \underline{\underline{n}} \\ \frac{\partial f_{p}}{\partial \Delta_{\underline{\varepsilon}}e^{l}} = -2 \mu \theta A n \sigma_{eq}^{n-1} \Delta t \underline{\underline{n}} \end{cases}$$

 All programming and numerical details are hidden (by default).

Generic behaviours

Standard small strain mechanical behaviours:

$$\Delta \varepsilon, \boldsymbol{\sigma}_n, \boldsymbol{Y}_n
ightarrow \overline{\mathsf{MFront}}
ightarrow \boldsymbol{\sigma}_{n+1}, \boldsymbol{Y}_{n+1}, rac{\partial \boldsymbol{\sigma}}{\partial \Delta \varepsilon}$$

Generalized behaviours:

$$(\Delta \boldsymbol{g}^1, \dots \Delta \boldsymbol{g}^p)_n, (\boldsymbol{\sigma}^1, \dots, \boldsymbol{\sigma}^p)_n, \boldsymbol{Y}_n \to \boxed{\mathsf{MFront}} \to (\boldsymbol{\sigma}^1, \dots, \boldsymbol{\sigma}^p)_{n+1}, \boldsymbol{Y}_{n+1}, \frac{\partial \boldsymbol{\sigma}^f}{\partial \Delta \boldsymbol{g}^k}$$

- gⁱ are gradients (temp. gradient, strain, etc.) depending on the FE unknowns u
- σ^j are associated **fluxes** or **thermodynamic forces** (heat flux, stress, etc.)
- lacksquare $\frac{\partial \pmb{\sigma}^j}{\partial \Delta \pmb{g}^k}$ are so-called **tangent blocks**
- Work of internal forces density: $\delta w_{\text{int}} = \sum_{i=1}^{p} \sigma^{i} \cdot \delta g^{i}$