Beam and Ball Controller Design

Simulating and Controlling a Ball-and-Beam System Using State Feedback Controller

Alexander Brown

EE486 - Final Project

December 2, 2024

Project Overview

Problem Statement: The ball-and-beam system is inherently unstable, requiring a controller to manage coupled dynamics, stabilize the system, and minimize error and control effort.

Objective:

- Design & implement feedback controller for a ball-and-beam system.
 - Adjust the beam angle to return the ball to center position.
- Simulate the system using a 3D model in Simscape Multibody.

Technical Approach:

- Derive system dynamics using Newtonian and Lagrangian methods.
- Linearize nonlinear dynamics for control design.
- Use state-space methods to design and implement feedback control.

Challenges and Control Goals

System Challenges:

- Amplifies small angular changes into large ball displacements.
- Coupled ball and beam dynamics complicate control.

Control Goals:

- Stabilize the ball at the beam's center position.
- Minimize overshoot, settling time, and steady-state error.

Figure: Ball-and-Beam Dynamics. Source: Wikipedia

Degrees of Freedom and Modeling Approach

Degrees of Freedom:

- Ball position (x) along the beam axis.
- Beam angle (θ) relative to the horizontal.

Modeling Approach:

- Newtonian Mechanics used to derive equations of motion:
 - F = ma: Describes the translational motion of the ball.
 - $\tau = I\alpha$: Describes the rotational motion of the beam.
- Lagrangian Mechanics used to formulate system dynamics:
 - **Kinetic Energy** (*T*): The energy due to motion.
 - **Potential Energy (***V***):** The energy due to the ball's position in a gravitational field.

System Parameters and State-Space Representation

Assumed Parameters:

- Beam:
 - Length: L = 1.0 m
 - Width: w = 0.05 m
 - Height: *h* = 0.1 m
- Ball:
 - Mass: m = 0.5 kg
 - Radius: r = 0.05 m
 - Moment of inertia: $I = 0.02 \text{ kg} \cdot \text{m}^2$
- Gravitational acceleration: $g = 9.81 \text{ m/s}^2$

State-Space Representation:

- Expressed as $\dot{x} = Ax + Bu$, y = Cx + Du.
- System matrices:

$$A = egin{bmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & rac{g}{L} & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & -rac{mgr}{I} & 0 \ \end{bmatrix}, \quad B = egin{bmatrix} 0 \ 0 \ 0 \ rac{1}{I} \ \end{bmatrix}.$$

Controller Design

Objective: Minimize the cost function to balance performance and control effort:

$$J = \int_0^\infty \left(x^T Q x + u^T R u \right) dt$$

Design Parameters:

- Q = diag([200, 10, 10, 10]): Penalizes state deviations.
 - Prioritizes ball position (x) and beam angle (θ) .
- R = 1: Penalizes excessive control effort.

Result: The feedback gain *K* is computed in MATLAB using:

$$K = lqr(A, B, Q, R);$$

Control Law: The control law uses K to stabilize the ball-and-beam system and minimize deviations in state variables. The control input is calculated as

$$u = -Kx$$
.

MATLAB Integration

Purpose: Use MATLAB for controller design and performance evaluation.

MATLAB Script Features:

- Defines system parameters and state-space matrices.
- Controller Design.
- Performance Metrics:
 - IAE: Measures overall error magnitude for control precision.
 - ISE: Emphasizes large errors for stability assessment.
 - ITAE: Penalizes sustained errors for improved settling time.
 - Overshoot and settling time: Assess transient response behavior.

Output: Plots system states (ball position, beam angle) and control effort over time.

Simulation Results

State Trajectories and Control Input:

- Ball position (x) and beam angle (θ) stabilize within 5 seconds.
- Control input (u) is smooth and free of oscillations, ensuring stability.

Performance Metrics:

- Integral Absolute Error (IAE): 0.06657.
- Integral Square Error (ISE): 0.00494.
- Integral Time-weighted Absolute Error (ITAE): 0.02813.

Simulink System Diagram

Purpose: Simulate real-world dynamics of the ball-and-beam system using MATLAB's Simscape library.

Key Features:

- Models system dynamics with realistic physics (ball and beam motion).
- Includes key components:
 - System Dynamics: Ball and beam subsystems.
 - Integral Compensation: Corrects steady-state errors.
 - LQR Controller: Stabilizes the system.

3D Model Simulation Results

Figure: Control input - simulation scope.

Figure: State trajectories - simulation scope.

- Red: x (Ball position)
- Blue: x (Ball velocity)
- lacktriangle Orange: heta (Beam angle)
- Green: $\dot{\theta}$ (Beam angular velocity)

Insights:

- The system stabilizes within 5 seconds with minimal oscillations.
- The control input indicates energy efficiency.

Challenges and Future Work

Challenges:

- Sensitivity to parameter changes: ball mass (m) and beam length (L).
- Limitations of linearization for large beam angles (θ) .
- Initial controller design using pole placement was ineffective:
 - Resulted in excessive oscillations, reducing stability.
 - Required high control input, impractical for physical systems.
 - LQR was chosen for its ability to balance control effort and system stability.

Potential Improvements:

- Model external disturbances (e.g., friction) to test system robustness.
- Integrate filtering for noise reduction and state estimation.
- Develop dynamic reference tracking for moving target positions.
- Investigate nonlinear control strategies for large-angle behaviors.

Conclusion

Key Achievements:

- Successfully modeled the ball-and-beam system dynamics using Newtonian and Lagrangian mechanics.
- Designed an LQR controller to stabilize the system, achieving:
 - Minimal overshoot and short settling time.
 - Smooth and stable control input (u).
- Validated the system through MATLAB analysis and Simulink simulations.

Outcomes:

- Visualized results through 2D plots and 3D animations, providing insights into system performance.
- Identified limitations (e.g., sensitivity to parameter variations, large-angle behaviors) for future exploration.

Thank You

Questions or Comments?

Contact Information:

Alexander Brown ajb0083@uah.edu EE486 - Final Project