

Lecture 03:

Propositional Logic

Logistics: Lecture Participation

Lecture Participation

- Starting Wednesday, we will be using the website PollEV to ask questions in lecture for attendance credit.
- If you answer these questions in lecture, you'll get attendance credit for the day.
 - You don't need to have the right answers you just need to respond to the questions.
- CGOE students: We automatically opt you out of participation, since we assume you aren't physically here.
- If you'd prefer not to attend lectures, that's okay! You can opt to count your final exam in place of participation.
 - We'll send out a form where you can opt-out of participation in Week 4.

Do not miss this deadline!

Lecture Participation

- We'll dry-run PollEV questions today.
- Let's start with the following warm-up:

Make a music recommendation!

Answer at https://cs103.stanford.edu/pollev

Click "Register"
and enter your
Stanford e-mail to
get to the SUNet
login page.

• Here are a few music recs of our own:

- Jami Sieber Timeless.
- Aaron Parks Little Big and Little Big II.
- Arthur Moon NPR Music Tiny Desk Concert.
- Shakey Graves *Roll the Bones* (check out *Audiotree Live* version).

Propositional Logic

Question: How do we formalize the definitions and reasoning we use in our proofs?

Where We're Going

- **Propositional Logic** (Today)
 - Reasoning about Boolean values.
- First-Order Logic (Wednesday/Friday)
 - Reasoning about properties of multiple objects.

Outline for Today

- Propositional Variables
 - Booleans, math edition!
- Propositional Connectives
 - Linking things together.
- Truth Tables
 - Rigorously defining connectives.
- Simplifying Negations
 - Mechanically computing negations.

Propositional Logic

 $\neg FirstSucceed \rightarrow TryAgain$

IsCardinal \(\Lambda \) IsWhite

 $\neg FirstSucceed \rightarrow TryAgain$

IsCardinal \(\Lambda \) IsWhite

 $\neg FirstSucceed \rightarrow TryAgain$

IsCardinal \(\) IsWhite

These are *propositional*variables. Each propositional

variable stands for a

proposition, something that is

either true or false.

 $\neg FirstSucceed \rightarrow TryAgain$

IsCardinal \(\ \ IsWhite

These are *propositional* connectives, which link propositions into larger propositions

Propositional Variables

• In propositional logic, individual propositions are represented by *propositional variables*.

• Each variable can take one one of two values: true or false. You can think of them as **bool** values.

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- First, there's the logical "NOT" operation:

- You'd read this out loud as "not p."
- The fancy name for this operation is *logical* negation.

Truth Tables

- A *truth table* is a table showing the truth value of a propositional logic formula as a function of its inputs.
- Let's examine the truth tables for the connectives we're exploring today!

LoveCupcakes: I love cupcakes.

LoveCupcakes: I love cupcakes.

¬LoveCupcakes

Propositional Variables

- In propositional logic, individual propositions are represented by *propositional variables*.
- Each variable can take one one of two values: true or false. You can think of them as **bool** values.
- In a move that contravenes programming style conventions, propositional variables are usually represented as lower-case letters, such as p, q, r, s, etc.
 - That said, there's nothing stopping you from using multiletter names!

LoveCupcakes: I love cupcakes.

¬LoveCupcakes

c: I love cupcakes.

¬LoveCupcakes

c: I love cupcakes.

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Next, there's the logical "AND" operation:

$p \wedge q$

- You'd read this out loud as "p and q."
- The fancy name for this operation is *logical* conjunction.

IsCardinal: It's cardinal.

IsCardinal: It's cardinal.

IsWhite: It's white.

IsCardinal: It's cardinal.

IsWhite: It's white.

IsCardinal \land **IsWhite**

p: It's cardinal.

q: It's white.

IsCardinal A IsWhite

p: It's cardinal.

q: It's white.

 $\mathbf{p} \wedge \mathbf{q}$

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Then, there's the logical "OR" operation:

p v q

- You'd read this out loud as "p or q."
- The fancy name for this operation is logical disjunction. This is an inclusive or.

TakeMath51: You must take Math 51.

TakeMath51: You must take Math 51.

TakeCME100: You must take CME 100.

TakeMath51: You must take Math 51.

TakeCME100: You must take CME 100.

TakeMath51 v TakeCME100

TakeMath51: You must take Math 51.

TakeCME100: You must take CME 100.

TakeMath51 v TakeCME100

These are *propositional*variables. Each propositional

variable stands for a

proposition, something that is

either true or false.

TakeMath51: You must take Math 51.

TakeCME100: You must take CME 100.

TakeMath51 v TakeCME100

This is a *propositional* connective, which links propositions into larger propositions

TakeMath51: You must take Math 51.

TakeCME100: You must take CME 100.

TakeMath51 v TakeCME100

p: You must take Math 51.

q: You must take CME 100.

TakeMath51 v TakeCME100

p: You must take Math 51.

q: You must take CME 100.

p V q

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- There's also the "truth" connective:

Т

- You'd read this out loud as "true."
- Although this is technically considered a connective, it "connects" zero things and behaves like a variable that's always true.

Propositional Connectives

- There are seven propositional connectives, five of which will be familiar from programming.
- Finally, there's the "false" connective.

丄

- You'd read this out loud as "false."
- Like T, this is technically a connective, but acts like a variable that's always false.

Inclusive and Exclusive OR

- The v connective is an *inclusive* "or." It's true if at least one of the operands is true.
 - It's similar to the || operator in C, C++, Java, etc. and the or operator in Python.
- Sometimes we need an *exclusive* "or," which isn't true if both inputs are true.
- We can build this out of what we already have.

Write a propositional logic formula for the exclusive OR of p and q.

Answer at https://cs103.stanford.edu/pollev

Quick Question:

What would I have to show you to convince you that the statement $p \land q$ is false?

Quick Question:

What would I have to show you to convince you that the statement $p \ v \ q$ is false?

de Morgan's Laws

$$\neg(p \land q)$$
 is equivalent to $\neg p \lor \neg q$

$$\neg(p \lor q)$$
 is equivalent to $\neg p \land \neg q$

de Morgan's Laws in Code

• **Pro tip:** Don't write this:

```
if (!(p() && q())) {
    /* ... */
}
```

• Write this instead:

```
if (!p() || !q()) {
    /* ... */
}
```

 (This even short-circuits correctly: if p() returns false, q() is never evaluated.) Mathematical Implication

Implication

 We can represent implications using this connective:

$$p \rightarrow q$$

- You'd read this out loud as "p implies q."
 - The fancy name for this is the *material* conditional.
- *Question:* What should the truth table for $p \rightarrow q$ look like?

p	q	$p \rightarrow q$
F	F	
F	T	
Т	F	
Т	T	

How should we fill in these blanks?

Answer at https://cs103.stanford.edu/pollev

p	\boldsymbol{q}	$p \rightarrow q$
F	F	Т
F	T	T
T	F	F
T	T	T
	1	

An implication is false only when the antecedent is true and the consequent is false.

Every formula is either true or false, so these other entries have to be true.

q	$p \rightarrow q$
F	T
T	T
F	F
T	T
	F T F

Important observation:

The statement $p \rightarrow q$ is true whenever $p \land \neg q$ is false.

An implication with a false antecedent is called *vacuously true*.

An implication with a true consequent is called *trivially true*.

Please commit this table to memory. We're going to need it, extensively, over the next couple of weeks.

FirstSucceed: You succeed at first.

FirstSucceed: You succeed at first.

TryAgain: You ought to try again.

FirstSucceed: You succeed at first.

TryAgain: You ought to try again.

¬FirstSucceed → TryAgain

p: You succeed at first.

q: You ought to try again.

¬FirstSucceed → TryAgain

p: You succeed at first.

q: You ought to try again.

$$\neg p \rightarrow q$$

FreshlySliced: It's freshly sliced.

FreshlySliced: It's freshly sliced.

 $\neg FreshlySliced \rightarrow \neg JerseyMikes$

FreshlySliced: It's freshly sliced.

¬FreshlySliced → ¬JerseyMikes

JerseyMikes → FreshlySliced

An Important Equivalence

• The truth table for for $p \rightarrow q$ is chosen so that the following is true:

$$p \rightarrow q$$
 is equivalent to $\neg (p \land \neg q)$

• Later on, this equivalence will be incredibly useful:

```
\neg (p \rightarrow q) is equivalent to p \land \neg q
```

Side Note: Contrapositive

We can use truth tables to demonstrate the equivalence of $p \rightarrow q$ and $\neg q \rightarrow \neg p$.

p	q	$p \rightarrow q$	$\neg p$	$\neg q$
F	F	${f T}$	T	T
F	T	T	T	F
T	F	F	F	T
T	T	T	F	F

Side Note: Contrapositive

We can use truth tables to demonstrate the equivalence of $p \rightarrow q$ and $\neg q \rightarrow \neg p$.

p	q		\rightarrow	q	$\neg q$	$\neg p$	$q \rightarrow 0$	$\neg p$
F	F		T		T	Т	Τ	
F	T		T		F	T	Т	
T	F		F		Τ	F	F	
T	T		Т		F	F	Т	
same:)								

The Biconditional Connective

The Biconditional Connective

- In our previous lecture, we saw that the statement "p if and only if q" means both that $p \rightarrow q$ and $q \rightarrow p$.
- We can write this in propositional logic using the biconditional connective:

$p \leftrightarrow q$

- This connective's truth table has the same meaning as "p implies q and q implies p."
- Based on that, what should its truth table look like?

p	\boldsymbol{q}	$p \leftrightarrow q$
F	F	
F	T	
T	F	
T	$\mid T \mid$	

How should we fill in these blanks?

Answer at https://cs103.stanford.edu/pollev

Biconditionals

- The biconditional connective $p \leftrightarrow q$ has the same truth table as $(p \rightarrow q) \land (q \rightarrow p)$.
- Here's what that looks like:

p	q	$p \leftrightarrow q$
F	F	T
F	T	F
T	F	F
Τ	T	T

Biconditionals

- The biconditional connective $p \leftrightarrow q$ has the same truth table as $(p \rightarrow q) \land (q \rightarrow p)$.
- Here's what that looks like:

Negating a Biconditional

How do we simplify

$$\neg (p \leftrightarrow q)$$

using the tools we've seen so far?

 There are many options, but here are our two favorites:

$$p \leftrightarrow \neg q$$

$$\neg p \leftrightarrow q$$

Question to ponder: what is the truth table for these statements, and where have you seen it before?

How do we parse this statement?

$$\neg x \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$\neg x \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor y \land z$$

Operator precedence for propositional logic:

 $\begin{array}{c} \color{red} \color{red} \color{blue} \color$

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$

Operator precedence for propositional logic:

 $\begin{array}{c} \color{red} \color{red} \color{blue} \color$

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow y \lor z \rightarrow x \lor (y \land z)$$

Operator precedence for propositional logic:

 $\begin{array}{c} \land \\ \blacktriangledown \\ \rightarrow \\ \leftrightarrow \end{array}$

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow (y \lor z) \rightarrow (x \lor (y \land z))$$

Operator precedence for propositional logic:

 $\begin{array}{c} \land \\ \blacktriangledown \\ \rightarrow \\ \leftrightarrow \end{array}$

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \rightarrow (y \lor z) \rightarrow (x \lor (y \land z))$$

Operator precedence for propositional logic:

^ ∨ → ↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

Operator precedence for propositional logic:

∧
 ∨
 →
 ↔

- All operators are right-associative.
- We can use parentheses to disambiguate.

How do we parse this statement?

$$(\neg x) \to ((y \lor z) \to (x \lor (y \land z)))$$

Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

- The main points to remember:
 - ¬ binds to whatever immediately follows it.
 - Λ and V bind more tightly than \rightarrow .
- We will commonly write expressions like $p \land q \rightarrow r$ without adding parentheses.
- For more complex expressions, we'll try to add parentheses.
- Confused? Please ask!

The Big Table

Connective	nective Read Aloud As C++ Version		Fancy Name	Negation
$\neg p$	"not"	!	Negation	р
<i>p</i> ∧ <i>q</i>	"and"	&&	Conjunction	$\neg p \lor \neg q$ $p \to \neg q$
p v q	"or"	П	Disjunction	$\neg p \land \neg q$
Т	"true"	true	Truth	Т
上	"false"	false	Falsity	Τ
$p \rightarrow q$	"implies"	see PS2!	Implication	<i>p</i> ∧ ¬ <i>q</i>
$p \leftrightarrow q$	"if and only if"	see PS2!	Biconditional	$ \begin{array}{c} p \leftrightarrow \neg q \\ \neg p \leftrightarrow q \end{array} $

Time-Out for Announcements!

Submitting Work

- All assignments should be submitted through GradeScope.
 - The programming portion of the assignment is submitted separately from the written component.
 - The written component *must* be typed; handwritten solutions don't scan well and get mangled in GradeScope.
- All assignments are due at 1:00PM. You have three "late days" you can use throughout the quarter. Each automagically extends assignment deadlines from Friday at 1:00PM to Saturday at 1:00PM; at most one late day can be used per assignment.
 - *Very good idea:* Leave at least two hours buffer time for your first assignment submission, just in case something goes wrong.
 - Very bad idea: Wait until the last minute to submit.
- Your score on the problem sets is the square root of your raw score. So an 81% maps to a 90%, a 50% maps to a 71%, etc. This gives a huge boost even if you need to turn something in that isn't done.

Office Hours

- Office hours have started (as of Sunday)! Think of them as "drop-in help hours" where you can ask questions on problem sets, lecture topics, etc.
 - Check the Guide to Office Hours on the course website for the schedule.
- TA office hours are held in person in the Huang basement. Sean's are in Durand 331-B.
- Once you arrive, sign up through the CS Office Hours Queue so that we can help people in the order they arrived:

https://queue.cs.stanford.edu/

• Office hours are *much* less crowded earlier in the week than later. Stop by on Sunday, Monday, and Tuesday!

Back to CS103!

Recap So Far

- A *propositional variable* is a variable that is either true or false.
- The propositional connectives are
 - Negation: $\neg p$
 - Conjunction: $p \land q$
 - Disjunction: p v q
 - Truth: T
 - Falsity: ⊥
 - Implication: $p \rightarrow q$
 - Biconditional: $p \leftrightarrow q$

 Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \rightarrow x \ge 8 \ \forall \ y \ge 8$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \rightarrow x \ge 8 \quad \forall y \ge 8$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \to \neg(x + y = 16)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \to \neg(x + y = 16)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \to \neg(x + y = 16)$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \lor y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \ \lor \ y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \lor y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8) \land \neg(y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8) \land \neg(y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$\neg (x \ge 8) \land \neg (y \ge 8) \rightarrow x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \to x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \to x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \to x + y \ne 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

 Suppose we want to prove the following statement:

"If
$$x + y = 16$$
, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

"If x < 8 and y < 8, then $x + y \ne 16$ "

Theorem: If x + y = 16, then $x \ge 8$ or $y \ge 8$.

Proof: We will prove the contrapositive, namely, that if x < 8 and y < 8, then $x + y \ne 16$.

Pick x and y where x < 8 and y < 8. We want to show that $x + y \ne 16$. To see this, note that

$$x + y < 8 + y$$

 $< 8 + 8$
 $= 16.$

This means that x + y < 16, so $x + y \ne 16$, which is what we needed to show.

Why This Matters

- Propositional logic lets us symbolically manipulate statements and theorems.
 - This can help us better understand what a theorem says or what a definition means.
- It's also very useful for proofs by contradiction and contrapositive.
- Being able to negate statements mechanically can reduce the likelihood of taking an negation of contrapositive wrong.

$$\neg (p \land q \rightarrow r \lor s)$$

$$\neg (p \land q \rightarrow r \lor s)$$

$$p \land q \land \neg (r \lor s)$$

$$p \land q \land \neg(r \lor s)$$

$$p \land q \land \neg (r \lor s)$$

$$p \land q \land \neg (r \lor s)$$

$$p \land q \land \neg r \land \neg s$$

$$p \land q \land \neg r \land \neg s$$

$$\neg((p \lor (q \land r)) \leftrightarrow (a \land b \land c \rightarrow d))$$

$$\neg((p \lor (q \land r)) \leftrightarrow (a \land b \land c \rightarrow d))$$

$$(p \lor (q \land r)) \leftrightarrow \neg (a \land b \land c \rightarrow d)$$

$$(p \lor (q \land r)) \leftrightarrow \neg(a \land b \land c \rightarrow d)$$

$$(p \lor (q \land r)) \leftrightarrow \neg (a \land b \land c \rightarrow d)$$

$$(p \lor (q \land r)) \leftrightarrow (a \land b \land c \land \neg d)$$

 Here's a propositional formula that contains some negations. Simplify it as much as possible:

 $(p \lor (q \land r)) \leftrightarrow (a \land b \land c \land \neg d)$

Next Time

- First-Order Logic
 - Reasoning about groups of objects.
- First-Order Translations
 - Expressing yourself in symbolic math!