Support vector machines

Tasks (Lab 5):

- 1. Generate 2 synthetic datasets (**scored task**):
 - (a) Dataset 1:
 - Consider two classes y = 1 and y = 0. For each class, there are 500 observations.
 - Consider p = 2 features: x_1 and x_2 .
 - Let x_1 and x_2 in class y = 0 be generated independently from N(0,1).
 - Let x_1 and x_2 in class y = 1 be generated independently from N(m, 1), where m is a parameter. Consider e.g. m = 0.5, 1, 2, 3. The larger the m, the easier is the classification problem.

Example data (for m = 2):

(b) Dataset 2:

Generate artificial data as follows:

- Consider two classes y = 1 and y = 0. For each class, there are 500 observations.
- Consider p = 2 features: x_1 and x_2 .
- Let $x_1^2 + x_2^2 = 1$, in class y = 1, where $x_1 \sim U[-1, 1]$. Let $x_1^2 + x_2^2 = 4$, in class y = 0, where $x_1 \sim U[-2, 2]$.
- Add some noise to make a classification problem more difficult.

Example data:

2. Perform the following steps (scored task)

- Run SVM method on the Dataset 1 and Dataset 2 using different kernel functions: linear, radial, polynomial.
- Visualize the results. Use e.g. different colours or symbols for predictions.
- \bullet Investigate the influence of parameter m (in the case of Dataset 1) and variance of the noise (in the case of Dataset 2). Try 4 different values of the variance of the noise.