Author: [Your Name]

Table of Contents

- 1. Introduction
- 2. Problem Statement
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion
- 7. Recommendations

1. Introduction

This project implements a bidirectional translator between simple English quantifier statements and first-order predicate logic. The tool parses natural-language sentences of the form "All X are Y," "Some X are (not) Y," and "No X are Y," converting them into corresponding logical formulas, and vice versa.

2. Problem Statement

Users often need to formalize or interpret statements involving universal (\forall) and existential (\exists) quantification. Manual translation is error-prone. This script automates:

- English → Predicate Logic: Handle quantifiers all, every, each, some, a, an, no, none, including negation.
- Predicate Logic → English: Support formulas in the form ∀x (is_X(x) → [¬]is_Y(x)) and ∃x (is_X(x) ∧ [¬]is_Y(x)).

The translator must correctly identify the quantifier, subject class, property, and negation to produce accurate conversions.

3. Methodology

1. Parsing English:

- Tokenize and lowercase input.
- Locate quantifier and subject (word[0], word[1]).
- Detect are not vs. are to determine negation.
- Map to predicate syntax: subject \rightarrow is_subject(x), property \rightarrow is_property(x).
- Assemble:
 - Universal: ∀x (is_subject(x) → [¬]is_property(x)).
 - Existential: ∃x (is_subject(x) ∧ [¬]is_property(x)).

2. Parsing Logic:

- Identify leading ∀x or ∃x.
- Split inner formula on → (universal) or ∧ (existential).
- Extract subject and property predicates, detect ¬ prefix for negation.
- Reconstruct English phrase: e.g., "all dinosaurs are extinct" or "some animals are not endangered."

3. Testing:

Three test cases validate both directions:

English Input
All dinosaurs are extinct
Some animals are endangered
No dinosaurs are alive

• Reverse translations compare against lowercase originals.

4. Results

All predefined test cases passed as expected:

Direction	Input	Expected	Result	Pass
English → Logic	All dinosaurs are extinct	∀x (is_dinosaur(x) → is_extinct(x))	∀x (is_dinosaur(x) → is_extinct(x))	✓
	Some animals are endangered	∃x (is_animal(x) ∧ is_endangered(x))	∃x (is_animal(x) ∧ is_endangered(x))	✓
	No dinosaurs are alive	∀x (is_dinosaur(x) → ¬is_alive(x))	∀x (is_dinosaur(x) → ¬is_alive(x))	✓
Logic → English	∀x (is_dinosaur(x) → is_extinct(x))	all dinosaurs are extinct	all dinosaurs are extinct	✓
	∃x (is_animal(x) ∧ is_endangered(x))	some animals are endangered	some animals are endangered	✓

Direction	Input	Expected	Result	Pass
	∀x (is_dinosaur(x) → ¬is_alive(x))	no dinosaurs are alive	no dinosaurs are alive	✓

5. Discussion

- **Robustness:** Works for standard quantifiers and simple negation but does not support compound English phrases (e.g., "not all").
- **Limitations:** Subject and property names must be single words. Plurals handled by stripping trailing s, which may mis-handle irregular plurals.
- **Error Handling:** Returns informative messages for missing keywords (are), malformed logic, or unsupported quantifiers.

6. Conclusion

The predicate translator successfully automates routine English–logic conversions for basic quantifier statements. All tests passed, demonstrating correct parsing and generation for a representative sample.

7. Recommendations

- Extend Vocabulary: Handle multi-word subjects/properties (e.g., large mammals).
- Support Complex Logic: Incorporate nested quantifiers and additional logical connectives (∨ , ↔).
- Internationalization: Allow different natural languages by modularizing parsing rules.