Functional Analysis - Spring 2024

Paul Carmody Assignment #7– May 16, 2024

- p. 290 #6, 7
- 6. Let X and Y be Banach spaces and $T: X \to Y$ an injective bounded linear operator. Show that $T^{-1}: \mathcal{R}(T) \to X$ is bounded if and only if $\mathcal{R}(T)$ is closed in Y.
 - (\Rightarrow) $T^{-1}: \mathcal{R}(T) \to X$ is bounded. Given any Cauchy sequence $(x_n) \in X$ we know that $||x_n x_m|| \to 0$ as $n, m \to \infty$. Further, we know that $||Tx_n Tx_m|| \le ||T|| ||x_n x_m||$ which implies that $||Tx_n Tx_m|| \to 0$ as $n, m \to \infty$. Let x be such that $Tx_n \to x$ as $n \to \infty$. Clearly, $x \in X$ because X is complete and $Tx \in \mathcal{R}(T)$ and $||Tx_n Tx|| \le ||T|| ||x_n x|| \to 0$ as $n \to \infty$. Thus, $\mathcal{R}(T)$ is closed.
 - (\Leftarrow) $\mathcal{R}(T)$ is closed. Given any sequence $(y_n) \in \mathcal{R}(T)$ we know that it converges. Let y be such that $y_n \to y$ as $n \to \infty$. Since T is injective then $T^{-1} : \mathcal{R}(T) \to X$ is a function. Let $x_i = T^{-1}(y_i)$ for all $i \in \mathbb{N}$ and $x = T^{-1}y$. $||y_n y|| \to 0$ thus $||T^{-1}(y_n y)|| = ||T^{-1}(y_n) T^{-1}(y)|| = ||x_n x|| \le ||T^{-1}|| ||y_n y|| \to 0$ as $n \to \infty$.

$$||T^{-1}(y_n - y)|| = ||T^{-1}(y_n) - T^{-1}(y)||$$

$$= ||x_n - x||$$

$$\leq ||T^{-1}|| ||y_n - y||$$

$$\leq ||T^{-1}|| ||T|| ||x_n - x|| \to 0 \text{ as } n \to \infty$$

T is bounded.

7. Let $T: X \to Y$ be a bounded linear operator, where X and Y are Banach spaces. If T is bijective, show that there are positive real numbers a and b such that $a \|x\| \le \|Tx\| \le b \|x\|$ for all $x \in X$.

T bounded means that there exists b such that $||Tx|| \le b ||x||$ for all $x \in X$.. T^{-1} bounded means that there exists positive number c such that $||T^{-1}y|| \le c ||y||$ for all $y \in Y$. Let x be such that Tx = y. Then $||T^{-1}y|| = ||x|| \le c ||Tx||$. Let a = 1/c then $a ||x|| \le ||Tx|| \le b ||x||$.

- p. 296 # 8, 9, 10
- 8. Let X and Y be normed spaces and let $T: X \to Y$ be a closed linear operator.
 - (a) Show that the image A of a compact subset $C \subset X$ is closed in Y. Let $(x_n) \in C$. Since C is compact, let α be the ordered set of integers such that $(x_i)_{i \in \alpha}$ converges and let $x_{\alpha_i} \to x$ as $i \to \infty$. Then $T(x_{\alpha_i}) \in A$ for all $i \in \mathbb{N}$. Since T is a closed linear operator and C is compact (hence closed) the set $\mathcal{G}(T) = \{(x,y) \mid x \in C, y \in A\}$ must also be closed. Therefore $((x_{\alpha_i}, Tx_{\alpha_i})) \in \mathcal{G}(T)$ as $i \to \infty$ so must $(x, Tx) \in \mathcal{G}(T)$ which means that $Tx \in A$. Hence A is closed in Y.
 - (b) Show that the inverse image B of a compact subset $K \subset Y$ is closed in X. (Cf. Def. 2.5-1) Let $(y_n) \in K$ and let $\alpha \subset \mathbb{N}$ be an ordered set of indices such that (y_{α_n}) converges and let $y = (y_{\alpha_n})$. Then $\|(y_{\alpha_n}) y\| \to 0$ as $n \to \infty$. Thus, $\|T^{-1}y_{\alpha_n} T^{-1}y\| = \|T^{-1}(y_{\alpha_n} y)\| \le \|T^{-1}\| \|y_{\alpha_n} y\| \to 0$ as $n \to \infty$. Sine T^{-1} is closed $T^{-1}y \in B$ and B is closed.
- 9. If $T: X \to Y$ is a closed linear opearator, where X and Y are normed spaces and Y is compact, show that T is bounded.
 - Let (x_n) be a sequence in X then since Y is compact (Tx_n) converges and let $y = Tx_n$ as $n \to \infty$ and let x be such that Tx = y. Thus $||Tx_n y|| = ||Tx_n Tx|| \le M ||x_n x|| \to 0$. Thus, T is bounded.
- 10. Let X and Y be normed spaces and X compact. If $T: X \to Y$ is a bijective closed linear operator, show that T^{-1} is bounded.
 - Let $A \subset X$ be closed and bounded. T is bijective implies that $T^{-1}TA = A$ thus $(T^{-1})^{-1}(C) = T(C) \subset Y$ which is compact, that implies that T^{-1} is continuous and hence, bounded.

- p. 246 #2, 3, 4
- 2. Give a simpler proof of Lemma 4.6-7 for the case that X is a Hilbert space. Let $\tilde{f}(x) = \delta \langle x, x_0 \rangle / \|x_0\|$. When $x \in Y$, $\tilde{f}(x) = 0$ and when $x = x_0$, $\tilde{f}(x_0) = \delta$.
- 3. If a normed space X is reflexive, show that X' is reflexive.

X reflexive implies that $C_X: X \to X''$ defined as $x \mapsto g_x(f) = f(x)$ is isomorphic. Let $C_{X'}: X' \to X^{(3)}$ where $X^{(3)}$ is the dual-dual of X'. Let $h \in X^{(3)}$ and define $\tilde{h} \in X'$ by $\tilde{h}(f) = h(C_X(f))$ for all $f \in X$. Then, for all $g \in X''$, we have $C_{X'}(\tilde{h})(g) = g(\tilde{h}) = \tilde{h}(C_X^{-1}(g)) = h(g)$. That is, $C_{X'}(\tilde{h}) = h$ which implies that $C_{X'}$ is surjective and hence bijective, thus an isomorphism.

- 4. Show that a Banach space X is reflexive if and only if its dual space X' is reflexive. (*Hint.* It can be shown that a closed subspace fo a reflexive Banach space is reflexive. Use this fact, without proving it.)
 - (\Rightarrow) see exercise 3
 - (\Leftarrow) X' is reflexive. Then the cannoncial embedded mapping, $C: X \to X''$, maps all of X onto X'', that is C(X) is a subspace of X'' ismorphic to X. Hence, C(X) is a Banach Space and closed. Thus, by the Hint, C(X) is reflexive and, being isomorphic, makes X reflexive.

p. 268 #4, 7

- 4. Show that weak convergence in footnote 6 implies weak* convergence. Show that the converse holds if X is reflexive. Let $(f_n) = f$ be a weak* convergent sequence of functions in X' and let X be reflexive. Therefore $||f_n(x) f(x)|| \to 0$ for each $x \in X$. If we choose $g_x \in X''$ be associated with x. Then we can say $||g_x(f_n(x) f(x))|| = ||g_x(f_n)(x) g_x(f)(x)|| \to ||g_x(0)(x)||$ which is true for all $x \in X$. Thus $||g_x(f_n) g_x(f)|| \to 0$ which is strongly convergent.
- 7. Let $T_n \in B(X,Y)$, where X is a Banach space. If (T_n) is strongly operator convergent, show that $(\|T_n\|)$ is bounded

Let x be any fixed member or X. Then, $||T_nx - Tx|| \to 0$ as $n \to \infty$.

$$||T_n x - Tx|| \le ||T_n x|| - ||Tx||$$

$$\le ||T_n|| ||x|| - ||T|| ||x||$$

$$\le (||T_n|| - ||T||) ||x||$$

$$\therefore ||T_n|| - ||T|| \to 0$$

hence bounded.