Explication de manière fun

DSS:

Le DSSS, c'est l'abréviation de Direct Sequence Spread Spectrum, ou en français étalement de spectre à séquence directe. C'est une technique d'étalement de spectre utilisée pour rendre les transmissions plus robustes, sécurisées et résistantes aux interf

• En DSSS, ce bit est remplacé par une séquence comme +1 -1 +1 +1 -1 -1 +1 -1 (chips). Ce signal ressemble à du **bruit** pour quelqu'un qui ne connaît pas la séquence, mais le récepteur, lui, peut le décoder.

FHSS

• FHSS(Frequency Hopping Spread Spectrum) En français : étalement de spectre par saut de fréquence

C'est quoi le FHSS?

Au lieu d'envoyer le signal sur une seule fréquence, on le **fait sauter rapidement d'une fréquence à une autre**, selon une **séquence pseudo-aléatoire** connue à la fois par l'émetteur et le récepteur.

→ □ Résultat : le signal est **réparti dans le temps** sur plusieurs fréquences, ce qui le rend **plus résistant au brouillage**, **plus sécurisé**, et **moins détectable**.

FHSS, version karaoké:

- 1. Z Tu prends un **micro** (fréquence £1) et tu chantes un mot.
- 2. Ensuite tu cours vers un **autre micro** (£7) pour le mot suivant.
- 3. \square Tu suis une **liste secrète de micros** que seul ton pote (le récepteur) connaît aussi.
- 4. ▲□ Les espions entendent juste des mots coupés ou du silence, parce qu'ils ne connaissent pas l'ordre des micros!
- 5. A à la fin, ton pote recolle les morceaux et comprend la chanson entière.

CDMA:

Imagine une salle pleine de gens qui parlent en même temps...

- Chacun parle une **langue différente** (c'est le code).
- Tu n'entends que **ceux qui parlent ta langue**, les autres, c'est du bruit.
 - →□ Voilà le principe du CDMA.
- FDMA (frequence division multiple acces): Chaque utilisateur a sa propre voie sur l'autoroute.

- TDMA (time division multiple access): Tous partagent la même voie, mais chacun a son tour.
- CDMA (code division multiple access) : Tous sur la même voie, en parlant une langue différente.

1. Les codes de Walsh

⊘ Définition :

Les **codes de Walsh** sont une famille de **codes orthogonaux**, obtenus à partir de la matrice de Hadamard.

Chaque code est une **séquence binaire** composée de +1 et -1 (ou 0/1), utilisée pour étaler les bits dans un système **DSSS/CDMA**.

ℰ Avantages:

- Orthogonaux entre eux → pas d'interférence entre utilisateurs si parfaitement synchronisés.
- Faciles à générer.

X Limites:

- Ne restent orthogonaux que si les signaux sont parfaitement synchrones.
- Peu robustes au **canal bruité** ou **asynchrone** (ex : en liaison montante UL).
- Pas utilisables si les utilisateurs arrivent à des **moments différents**.

\square Application :

Utilisés surtout **en liaison descendante** (**DL**) dans les réseaux CDMA (ex. 3G UMTS), où les signaux sont synchronisés depuis la station de base.

⊘ Définition :

Les **codes OVSF** sont une **extension des codes de Walsh**, utilisés pour **adapter le débit utilisateur** dans les réseaux 3G.

- Ils forment un **arbre** (chaîne hiérarchique)
- Chaque niveau représente un facteur d'étalement (débit plus ou moins élevé)

Avantages:

- Permettent **plusieurs débits simultanément** pour différents utilisateurs.
- Conservent l'**orthogonalité** si on choisit les codes correctement (sans collisions dans l'arbre).

X Limites:

- Nécessitent une gestion rigoureuse de l'arbre pour éviter des conflits.
- L'orthogonalité est **facilement rompue** si les utilisateurs ne sont pas bien synchronisés (comme en UL).
- Complexité de gestion côté réseau.

☐ Application :

Utilisés dans la **liaison descendante (DL)** de la **3G**, pour permettre à chaque utilisateur un **débit adapté** (streaming, voix, etc.).

♦ 3. Les codes de Gold

⊘ Définition :

Les **codes de Gold** sont des **séquences pseudo-aléatoires**, obtenues en combinant deux registres à décalage (LFSR).

Ils ne sont pas orthogonaux, mais ont de bonnes propriétés de corrélation.

Avantages:

- Fonctionnent bien même sans synchronisation stricte
- Bonnes propriétés d'auto-corrélation et de corrélation croisée
- Beaucoup de séquences disponibles (grande famille)

X Limites:

- Pas parfaitement orthogonaux → interférences possibles
- Pas adaptés à des liaisons très bruyantes ou très exigeantes

\square Application :

Utilisés surtout en liaison montante (UL) dans les réseaux CDMA, où les terminaux n'arrivent pas tous au même moment et où la synchronisation parfaite est difficile.

Pourquoi ces codes et pourquoi on les abandonne peu à peu ?

♥ Pourquoi utiliser ces codes ?

- Pour que plusieurs utilisateurs puissent partager la même fréquence en même temps (CDMA)
- Pour étaler le signal avec une bonne séparation entre utilisateurs
- Pour assurer une certaine sécurité du signal

X Pourquoi on les abandonne :

- L'orthogonalité n'est **pas maintenue en pratique** (canal bruité, propagation multitrajets...)
- La **complexité** de synchronisation augmente avec le nombre d'utilisateurs
- Ils ne sont pas adaptés aux très hauts débits (comme en 4G/5G)

♥ Transition vers d'autres techniques : OFDM / OFDMA

- En 4G et 5G, on n'utilise plus de codes CDMA
- On utilise l'**OFDMA** (Orthogonal Frequency Division Multiple Access) :
 - → chaque utilisateur a sa propre sous-porteuse en fréquence
 - → plus simple à gérer, plus efficace, et adapté au haut débit

* Résumé comparatif

Code	Avantages	Limites	Utilisation typique
Walsh	Parfaitement orthogonaux	Nécessitent synchro parfaite	CDMA DL (3G)
OVSF	Adaptent le débit par étalement	Complexité de gestion	CDMA DL (3G, HSPA)
Gold	Bonnes corrélations, robustes	Pas orthogonaux	CDMA UL (3G), GPS satellites