Facial keypoint detection

Jordan Meyer
Sweta Bhattacharya
Aswin Thiruvengadam
Leon Rafael Gutierrez Angulo

Objective

Detect the location of 15 keypoints on face images¹

Practical applications:

- Tracking faces in images and video
- Analysing facial expressions
- Detecting dysmorphic facial signs for medical diagnosis
- Biometrics / face recognition

¹https://www.kaggle.com/c/facial-keypoints-detection/

Data summary²

Each example contains

- Single channel 96 x 96 pixel grayscale image
- 15 keypoint features
 - 30 X and Y locations
- 7,049 training samples
- 1,783 submission examples
- Coordinates are not available for all samples, the density of missing labels is shown on the right

Feature Pair (x , y)	Percent Missing	Dataset
right_eyebrow_inner_end	68%	Α
right_eyebrow_outer_end	69%	Α
left_eye_inner_corner	68%	Α
left_eye_outer_corner	68%	Α
right_eye_inner_corner	68%	Α
right_eye_outer_corner	68%	А
left_eyebrow_inner_end	68%	А
left_eyebrow_outer_end	68%	Α
mouth_left_corner	68%	А
mouth_right_corner	68%	Α
mouth_center_top_lip	68%	Α
mouth_center_bottom_lip	0.4%	В
right_eye_center	0.2%	В
left_eye_center	0.1%	В
nose_tip	0.0%	В

Characteristics

Search for unique images

Methodology:

- Fit & Transform PCA with 50 components
- Run DBSCAN clustering with minimum 100 samples per group
- Analyze ungroupable images → 3% of training data

Characteristics

continued...

Definitions of some landmarks 60 are different between datasets

"nose tip"

"mouth center bottom lip"

Is there a correct one?

Preprocessing

Face detection and centering

- Used MTCNN package to detect faces
- Generate and Crop bounding box
- Center image & pad

Preprocessing Challenges

- Parameters:
 - Resize cropped image?
 - Which image?
 - Largest? Closest to center?

Example 1: Closest to center, unscaled

Example 2: Largest area, unscaled

Example 3: Largest area, scaled

Augmentation

Transforming images

To augment original images, transformations of the images were added to increase the sample size of training. The transformations that were included were:

- Affine(shift, skew, rotate preserve relationships)
- Elastic (deform)³
- Edge detection

³ "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003.

Augmentation

Benefit to model

Cross validation RMSE reduces with increasing augmentation images

Some models benefit more than others

Training time increases with increasing samples, so we made a tradeoff of choosing

- 12 to 16 augmented samples/image for labels with low data points (Dataset A)
- 8 augmented samples/image for labels with high data points (Dataset B)

~training time 1.25hrs per model (15 models)

Cross validation RMSE reduces with increasing augmented samples

Modeling Architecture

Cascade of modules

Modeling Architecture

Dashboard

Model learning plots

Model structure

DNN (300X300) densely connected RELU activation for all layers

~10 min/model = ~2hrs for all models

CNN*

*Hands on Machine learning with Scikit-Learn, Keras & Tensorflow Aurelien Geron (O'Reilly)

500 X 500 Dense layers with ReLU activation

Convolutional pairs have a ReLu and a linear layer

 \sim 1 hrs/model = \sim 15 hrs for all models

Model performance

Through increasing complexity

Learning and experimentation

- Dense vs Convolution
- Semi-supervised Learning
- Pre-trained Models
- Augmentation
- Coordinate Auto-encoder (post-processing)
- Image Auto-encoder (pre-processing)
- PCA and Dimensionality Reduction

Thank you!

Backup

Agenda

Objective

Exploratory data analysis

Description

Characteristics

Data Augmentation

Data preprocessing

Modeling Architecture

Model Structure

Model Performance

Under evaluation

Improvements

Modeling strategy

Baseline Model

Cascade model

a. Phase 0: OLS

b. Phase 1: DNN

c. Phase 2: CNN

d. Phase 3: CNN with transfer learning

Loss: RMSE

Understanding data characteristics

Augmenting data with more samples

Creating more samples for misclassified images

Comparison of architectures

Model architecture optimization

Hyperparameter optimization

Model dashboard

Visualizing misclassifications

Root-cause analysis

Baseline - Location Means

Cascade model

Analysis of predictions (Stage 1: DNN)

Long tail region Core region

Data Augmentation

- 1. Affine(shift, skew, rotate preserve relationships)
- 2. Elastic (deform)*
- 3. Cartoon transformation

^{*&}quot;Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003.

Model architecture

Cascade of models

Data Augmentation

 Model performance improves with increased training data

 Challenge: Limited training data w.r.t. number of features to train.

 Solution: Create new training examples via data augmentation

original

Image Source: https://fairyonice.github.io/Achieving-top-5-in-Kaggles-facial-ke

Image Preprocessing

 Models perform better with less noise and features

 Challenge: Lots of unnecessary features assessed by each model

 Solution: Crop Images for each feature to reduce number of features to train

Transfer Learning

Model Parameters are Critical

 Challenge: Training each CNN is very time consuming

 Solution: Leverage pretrained existing models via transfer learning

Tasks

Data exploration

Sweta and Leon to look at

Operating model

- Final submission in notebook
 - Only add final(or working)
 version to the main
 submission notebook
- Create functions in your own notebook or import as a py file
- Store all work in Git (including your own work-in-progress code too)

Model

Model dashboard

Learning curves

Model architecture and hyperparameter optimization

Genetic algo optimization?

Transfer learning

Batch normalization

Dropout

Reference

Augmentation

 https://journalofbigdata.springeropen.c om/articles/10.1186/s40537-019-0197-0

 https://fairyonice.github.io/Data-augme ntation-for-facial-keypoint-detection.ht ml GANN for increasing training data on misclassified samples

•