BASLINE

June 8, 2024

```
[1]: # It may take several minutes to install those libraries in Watson Studio
     install.packages("rlang")
    Updating HTML index of packages in '.Library'
    Making 'packages.html' ... done
[2]: # It may take several minutes to install those libraries in Watson Studio
     library("tidymodels")
     library("tidyverse")
     library("stringr")
    Warning message:
    "replacing previous import 'lifecycle::last_warnings' by 'rlang::last_warnings'
    when loading 'tibble' "Warning message:
    "replacing previous import 'ellipsis::check_dots_unnamed' by
    'rlang::check_dots_unnamed' when loading 'tibble'"Warning message:
    "replacing previous import 'ellipsis::check_dots_used' by
    'rlang::check_dots_used' when loading 'tibble' "Warning message:
    "replacing previous import 'ellipsis::check_dots_empty' by
    'rlang::check_dots_empty' when loading 'tibble'" Attaching packages
                          tidymodels 0.1.0
     broom
                0.5.6
                            recipes
                                      0.1.12
      dials
                0.0.6
                            rsample
                                      0.0.5
     dplyr
               0.8.5
                            tibble
                                      3.0.1
               3.3.0
                            tune
                                       0.1.0
     ggplot2
      infer
               0.5.1
                            workflows 0.1.1
               0.1.0
                            yardstick 0.0.6
     parsnip
               0.3.4
     purrr
      Conflicts
                                       tidymodels_conflicts()
     purrr::discard() masks scales::discard()
      dplyr::filter()
                        masks stats::filter()
     dplyr::lag()
                        masks stats::lag()
     ggplot2::margin() masks dials::margin()
     recipes::step()
                        masks stats::step()
      Attaching packages
                                               tidyverse 1.3.0
     readr
              1.3.1
                         forcats 0.5.0
      stringr 1.4.0
      Conflicts
                                        tidyverse_conflicts()
```

```
readr::col_factor() masks scales::col_factor()
     purrr::discard()
                          masks scales::discard()
     dplyr::filter()
                          masks stats::filter()
      stringr::fixed()
                          masks recipes::fixed()
      dplyr::lag()
                          masks stats::lag()
     ggplot2::margin()
                          masks dials::margin()
     readr::spec()
                          masks yardstick::spec()
[3]: # Dataset URL
     dataset url <- "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.</pre>
      Good/IBMDeveloperSkillsNetwork-RP0321EN-SkillsNetwork/labs/datasets/
      ⇒seoul_bike_sharing_converted_normalized.csv"
     bike_sharing_df <- read_csv(dataset_url)</pre>
     spec(bike_sharing_df)
    Parsed with column specification:
    cols(
      .default = col_double(),
      DATE = col_character(),
      FUNCTIONING_DAY = col_character()
    See spec(...) for full column specifications.
    cols(
      DATE = col_character(),
      RENTED_BIKE_COUNT = col_double(),
      TEMPERATURE = col_double(),
      HUMIDITY = col_double(),
      WIND_SPEED = col_double(),
      VISIBILITY = col_double(),
      DEW_POINT_TEMPERATURE = col_double(),
      SOLAR_RADIATION = col_double(),
      RAINFALL = col_double(),
      SNOWFALL = col double(),
      FUNCTIONING_DAY = col_character(),
      `0` = col double(),
      `1` = col_double(),
      `10` = col_double(),
      `11` = col_double(),
      `12` = col_double(),
      13 = col_double(),
      `14` = col_double(),
      `15` = col_double(),
      `16` = col_double(),
      17 = col_double(),
      18 = col_double(),
      19 = col_double(),
```

`2` = col_double(),

```
20 = col_double(),
      21 = col_double(),
      22 = col_double(),
      23 = col_double(),
      `3` = col double(),
      `4` = col_double(),
      `5` = col double(),
      `6` = col_double(),
      `7` = col_double(),
      `8` = col_double(),
      `9` = col_double(),
      AUTUMN = col_double(),
      SPRING = col_double(),
      SUMMER = col_double(),
      WINTER = col_double(),
      HOLIDAY = col_double(),
      NO_HOLIDAY = col_double()
    )
[4]: bike_sharing_df <- bike_sharing_df %>%
                        select(-DATE, -FUNCTIONING_DAY)
[5]: lm_spec <- linear_reg() %>%
       set_engine("lm") %>%
       set_mode("regression")
[6]: set.seed(1234)
     data_split <- initial_split(bike_sharing_df, prop = 4/5)</pre>
     train_data <- training(data_split)</pre>
     test_data <- testing(data_split)</pre>
[7]: ###TASK: Add polynomial terms
     ggplot(data = train_data, aes(RENTED_BIKE_COUNT, TEMPERATURE)) +
         geom_point()
```



```
[8]: # Plot the higher order polynomial fits
ggplot(data=train_data, aes(RENTED_BIKE_COUNT, TEMPERATURE)) +
    geom_point() +
    geom_smooth(method = "lm", formula = y ~ x, color="red") +
    geom_smooth(method = "lm", formula = y ~ poly(x, 2), color="yellow") +
    geom_smooth(method = "lm", formula = y ~ poly(x, 4), color="green") +
    geom_smooth(method = "lm", formula = y ~ poly(x, 6), color="blue")
```


Min. 1st Qu. Median Mean 3rd Qu. Max. -714.7 354.7 745.4 732.2 1135.3 1467.7

[10]: lm_poly_pred <- predict(lm_poly, newdata = test_data) #predict
test_results_poly = data.frame(PREDICTION = lm_poly_pred, TRUTH =

→test_data\$RENTED_BIKE_COUNT) #create df for test results

```
#convert all negative prediction to 0 (RENTED BIKE COUNT can't be negative)
      test_results_poly <- test_results_poly %>%
        mutate(PREDICTION = ifelse(PREDICTION <0, 0, PREDICTION))</pre>
[11]: # Calculate R-squared and RMSE from the test results
      mse <- mean(lm_poly$residuals^2)</pre>
      mse
     213625.473794737
[12]: rmse <- sqrt(mse)
      rmse
     462.196358482774
[13]: rmse poly <- sqrt(mean ( (test results poly$TRUTH -
       rmse_poly
     450.449931337093
[14]: summary(lm_poly)$r.squared
     0.486041988782648
[15]: model_1<- c( (lm_poly)$r.squared, rmse_poly)</pre>
      model 1
     450.449931337093
[16]: ##TASK: Add interaction terms
      # Add interaction terms to the poly regression built in previous step
      # HINT: You could use `*` operator to create interaction terms such as __
       →HUMIDITY*TEMPERATURE and make the formula look like:
      # RENTED_BIKE_COUNT ~ RAINFALL*HUMIDITY ...
      lm_poly_interaction <- lm(RENTED_BIKE_COUNT ~ poly(TEMPERATURE, 6) +_</pre>
       →poly(HUMIDITY, 4)+poly(RAINFALL,2)+
                                RAINFALL*HUMIDITY + TEMPERATURE*HUMIDITY,
                                data = train_data)
      summary(lm_poly_interaction)
     Call:
     lm(formula = RENTED BIKE COUNT ~ poly(TEMPERATURE, 6) + poly(HUMIDITY,
         4) + poly(RAINFALL, 2) + RAINFALL * HUMIDITY + TEMPERATURE *
         HUMIDITY, data = train data)
     Residuals:
```

```
-1323.50 -250.09
                         -65.22
                                  168.49
                                          2215.00
     Coefficients: (3 not defined because of singularities)
                            Estimate Std. Error t value Pr(>|t|)
     (Intercept)
                             1572.85
                                          60.77 25.881 < 2e-16 ***
     poly(TEMPERATURE, 6)1 58733.17
                                        1588.09 36.983 < 2e-16 ***
     poly(TEMPERATURE, 6)2 -5223.35
                                         481.14 -10.856 < 2e-16 ***
     poly(TEMPERATURE, 6)3 -12742.10
                                         484.48 -26.301 < 2e-16 ***
     poly(TEMPERATURE, 6)4 -4427.89
                                         461.62 -9.592 < 2e-16 ***
     poly(TEMPERATURE, 6)5
                                         457.24 -1.684 0.0923 .
                             -769.85
     poly(TEMPERATURE, 6)6
                                         458.80 1.370
                                                          0.1706
                              628.73
     poly(HUMIDITY, 4)1
                             8120.71
                                        1540.42 5.272 1.39e-07 ***
     poly(HUMIDITY, 4)2
                                         499.44 -15.806 < 2e-16 ***
                            -7894.02
     poly(HUMIDITY, 4)3
                              397.04
                                         484.91
                                                  0.819
                                                          0.4129
     poly(HUMIDITY, 4)4
                            -2849.57
                                         479.23 -5.946 2.88e-09 ***
     poly(RAINFALL, 2)1
                           -46450.19
                                       20924.49 -2.220
                                                          0.0265 *
     poly(RAINFALL, 2)2
                             1329.92
                                         533.63
                                                  2.492
                                                           0.0127 *
     RAINFALL
                                  NA
                                             NA
                                                      NA
                                                               NA
     HUMIDITY
                                  NA
                                             NA
                                                      NA
                                                               NA
     TEMPERATURE
                                  NA
                                             NA
                                                      NA
                                                               NA
                                        7571.09
                                                  2.115
                                                           0.0344 *
     RAINFALL: HUMIDITY
                            16016.54
     HUMIDITY: TEMPERATURE
                            -2806.97
                                         161.41 -17.391 < 2e-16 ***
     Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
     Residual standard error: 452.6 on 6758 degrees of freedom
     Multiple R-squared: 0.5082,
                                         Adjusted R-squared: 0.5072
     F-statistic: 498.8 on 14 and 6758 DF, p-value: < 2.2e-16
[17]: # Calculate R-squared and RMSE for the new model to see if performance has
       \hookrightarrow improved
      lm_poly_interaction_pred <- predict(lm_poly_interaction, newdata = test_data)_u
       ⇔#predict
      test_results_poly_interaction = data.frame(PREDICTION =_
       _{\circ}lm_poly_interaction_pred, TRUTH = test_data$RENTED_BIKE_COUNT) #create df_{\sqcup}
       ⇔for test results
      #convert all negative prediction to O (RENTED BIKE COUNT can't be negative)
```

Median

3Q

Max

1Q

Min

Warning message in predict.lm(lm_poly_interaction, newdata = test_data):
"prediction from a rank-deficient fit may be misleading"

test_results_poly_interaction <- test_results_poly_interaction %>%

mutate(PREDICTION = ifelse(PREDICTION <0, 0, PREDICTION))</pre>

```
[18]: mse <- mean(lm_poly_interaction$residuals^2)</pre>
     mse
     204422.882763984
[19]: rmse <- sqrt(mse)
     rmse
     452.131488357075
[20]: rmse_poly_interaction <- sqrt(mean ( (test_results_poly_interaction$TRUTH -_
      stest_results_poly_interaction$PREDICTION)^2) )
     rmse_poly_interaction
     440.007344459465
[21]: summary(lm_poly_interaction)$r.squared
     0.50818235107276
[22]: model_2<-c( (lm_poly_interaction) r.squared, rmse_poly_interaction)
     model_2
     440.007344459465
[23]: ##TASK: Add regularization
     #TODO: Define a linear regression model specification glmnet spec using glmnet ⊔
     # HINT: Use linear req() function with two parameters: penalty and mixture
     # - penalty controls the intensity of model regularization
     # - mixture controls the tradeoff between L1 and L2 regularizations
     ⇔find optimal combinations
[24]: install.packages('glmnet')
     Warning message:
     "package 'glmnet' is not available (for R version 3.5.1)"
[25]: library('glmnet')
     Loading required package: Matrix
     Attaching package: 'Matrix'
     The following objects are masked from 'package:tidyr':
         expand, pack, unpack
     Loading required package: foreach
```

Attaching package: 'foreach' The following objects are masked from 'package:purrr': accumulate, when Loaded glmnet 2.0-18 [26]: | lm_g|mnet <- lm(RENTED_BIKE_COUNT ~ RAINFALL*HUMIDITY*TEMPERATURE +_ →SPRING*SUMMER + poly(RAINFALL, 8) + poly(HUMIDITY, 5) + poly(TEMPERATURE, 5) + →poly(DEW_POINT_TEMPERATURE, 5) + poly(SOLAR_RADIATION, 5) + poly(SNOWFALL,5)_ SPRING + SUMMER + HOLIDAY + WIND_SPEED + VISIBILITY data = train_data) summary(lm_glmnet) Call: lm(formula = RENTED_BIKE_COUNT ~ RAINFALL * HUMIDITY * TEMPERATURE + SPRING * SUMMER + poly(RAINFALL, 8) + poly(HUMIDITY, 5) + poly(TEMPERATURE, 5) + poly(DEW_POINT_TEMPERATURE, 5) + poly(SOLAR_RADIATION, 5) + poly(SNOWFALL, 5) + SPRING + SUMMER + HOLIDAY + WIND_SPEED + VISIBILITY, data = train_data) Residuals: Min 1Q Median 3Q Max -1521.2 -230.7 -38.6 181.6 1926.2 Coefficients: (4 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) -1544.64 387.76 -3.984 6.86e-05 *** 29015.16 -0.440 0.660159 RAINFALL -12758.35 466.54 5.465 4.78e-08 *** HUMIDITY 2549.84 578.55 10.051 < 2e-16 *** TEMPERATURE 5814.77 14.31 -5.511 3.69e-08 *** SPRING -78.89 -116.7922.01 -5.305 1.16e-07 *** SUMMER poly(RAINFALL, 8)1 NANA NA NA poly(RAINFALL, 8)2 2929.30 565.90 5.176 2.33e-07 *** poly(RAINFALL, 8)3 -2233.48477.67 -4.676 2.99e-06 *** poly(RAINFALL, 8)4 439.41 3.723 0.000198 ***

432.00 -4.111 3.98e-05 ***

425.91 4.257 2.10e-05 ***

438.80 -2.751 0.005953 **

424.61 3.025 0.002492 **

1636.14

-1776.17

-1207.23

1284.62

1813.11

poly(RAINFALL, 8)5

poly(RAINFALL, 8)6

poly(RAINFALL, 8)7

poly(RAINFALL, 8)8

```
poly(HUMIDITY, 5)1
                                                  NΑ
                                       NΑ
                                                          NΑ
                                                                   NA
poly(HUMIDITY, 5)2
                                             1027.89 -6.865 7.24e-12 ***
                                 -7056.55
poly(HUMIDITY, 5)3
                                 3497.18
                                              639.55
                                                      5.468 4.71e-08 ***
poly(HUMIDITY, 5)4
                                              681.51 -4.057 5.03e-05 ***
                                 -2764.91
                                              650.31
poly(HUMIDITY, 5)5
                                                       0.426 0.670055
                                   277.09
poly(TEMPERATURE, 5)1
                                       NΑ
                                                  NA
                                                          NA
poly(TEMPERATURE, 5)2
                                -14339.51
                                             3453.18 -4.153 3.33e-05 ***
poly(TEMPERATURE, 5)3
                                -13326.04
                                              630.87 -21.123 < 2e-16 ***
poly(TEMPERATURE, 5)4
                                 -5839.59
                                              556.00 -10.503 < 2e-16 ***
poly(TEMPERATURE, 5)5
                                    57.08
                                              502.72 0.114 0.909604
poly(DEW_POINT_TEMPERATURE, 5)1
                                                       0.871 0.383533
                                  8480.99
                                             9731.91
poly(DEW_POINT_TEMPERATURE, 5)2
                                             4850.64
                                                       3.349 0.000817 ***
                                 16242.63
poly(DEW_POINT_TEMPERATURE, 5)3
                                 -1314.24
                                              611.24 -2.150 0.031583 *
poly(DEW POINT TEMPERATURE, 5)4
                                                       3.888 0.000102 ***
                                  2169.14
                                              557.89
poly(DEW_POINT_TEMPERATURE, 5)5
                                   654.11
                                              466.49
                                                       1.402 0.160903
poly(SOLAR_RADIATION, 5)1
                                              614.92 -18.034 < 2e-16 ***
                                -11089.68
poly(SOLAR_RADIATION, 5)2
                                 -7146.94
                                              444.56 -16.076 < 2e-16 ***
poly(SOLAR_RADIATION, 5)3
                                              423.86 14.234 < 2e-16 ***
                                  6033.41
poly(SOLAR_RADIATION, 5)4
                                              419.76 -8.456 < 2e-16 ***
                                 -3549.73
poly(SOLAR RADIATION, 5)5
                                  3302.24
                                              419.76
                                                      7.867 4.21e-15 ***
                                              483.43 -2.744 0.006078 **
poly(SNOWFALL, 5)1
                                 -1326.72
poly(SNOWFALL, 5)2
                                                      1.006 0.314634
                                   441.23
                                              438.76
poly(SNOWFALL, 5)3
                                 -371.01
                                              445.06 -0.834 0.404534
poly(SNOWFALL, 5)4
                                              447.23 0.633 0.526844
                                  283.04
poly(SNOWFALL, 5)5
                                 -200.26
                                              438.58 -0.457 0.647970
                                               24.33 -5.472 4.61e-08 ***
HOLIDAY
                                 -133.15
WIND_SPEED
                                               41.54 10.079 < 2e-16 ***
                                   418.67
                                               22.06 0.554 0.579559
VISIBILITY
                                    12.22
                                 15178.23
                                            30509.23
                                                      0.497 0.618855
RAINFALL: HUMIDITY
RAINFALL: TEMPERATURE
                                 1925.03
                                            44867.56 0.043 0.965779
HUMIDITY: TEMPERATURE
                                 -7368.54
                                              956.30 -7.705 1.49e-14 ***
SPRING: SUMMER
                                       NA
                                                 NA
                                                          NΑ
RAINFALL: HUMIDITY: TEMPERATURE
                                 -7118.67
                                            46995.42 -0.151 0.879605
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 416.6 on 6730 degrees of freedom
Multiple R-squared: 0.585,
                                   Adjusted R-squared: 0.5824
```

[27]: # Calculate R-squared and RMSE for the new model to see if performance has—
improved

lm_glmnet_pred <- predict(lm_glmnet, newdata = test_data) #predict

test_results_lm_glmnet = data.frame(PREDICTION = lm_glmnet_pred, TRUTH =
test_data\$RENTED_BIKE_COUNT) #create df for test results

F-statistic: 225.9 on 42 and 6730 DF, p-value: < 2.2e-16

```
#convert all negative prediction to 0 (RENTED BIKE COUNT can't be negative)
      test_results_lm_glmnet <- test_results_lm_glmnet %>%
        mutate(PREDICTION = ifelse(PREDICTION <0, 0, PREDICTION))</pre>
     Warning message in predict.lm(lm_glmnet, newdata = test_data):
     "prediction from a rank-deficient fit may be misleading"
[28]: mse <- mean(lm_glmnet$residuals^2)</pre>
      mse
     172486.797554475
[29]: rmse_lm_glmnet <- sqrt(mse)
      rmse_lm_glmnet
     415.315298965106
[30]: summary(lm_glmnet)$r.squared
     0.585016852823794
[31]: rsq_lm_glmnet <- summary(lm_glmnet)$r.squared
      rsq_lm_glmnet
     0.585016852823794
[32]: model_3<-c( rsq_lm_glmnet, rmse_lm_glmnet)
      model 3
     1. 0.585016852823794 2. 415.315298965106
[33]: penalty_value <- 10^{seq}(-4,4, by = 0.5) #penalty values ranging from 10^{-4} to
      x = as.matrix(train_data[,-1]) #define a matrix for CV
      y= train_data$RENTED_BIKE_COUNT
[34]: cv_ridge <- cv.glmnet(x,y, alpha = 0, lambda = penalty_value, nfolds = 10)
      cv_lasso <- cv.glmnet(x,y, alpha = 1, lambda = penalty_value, nfolds = 10)</pre>
      cv_elasticnet <- cv.glmnet(x,y, alpha = 0.5, lambda = penalty_value, nfolds =__
       →10)
[35]: model_prediction <- function(lm_model, test_data) {
        results <- lm_model %>%
          predict(new_data=test_data) %>%
          mutate(TRUTH=test_data$RENTED_BIKE_COUNT)
        results[results<0] <-0
        return(results)
```

```
[36]: #model evaluation function
      model_evaluation <- function(results) {</pre>
        rmse = rmse(results, truth=TRUTH, estimate=.pred)
        rsq = rsq(results, truth=TRUTH, estimate=.pred)
        print(rmse)
        print(rsq)
      }
[37]: glmnet_spec <- linear_reg(penalty = 0.3, mixture=0.5) %>%
        set_engine("glmnet") %>%
        set_mode("regression")
[38]: #Ridge (L2) regularization
      glmnet <- glmnet_spec %>%
        fit(RENTED_BIKE_COUNT ~ . + poly(TEMPERATURE, 6) + WINTER * `18` +_
       →poly(DEW_POINT_TEMPERATURE, 6) + poly(SOLAR_RADIATION, 6) + SUMMER * `18` + 
       →TEMPERATURE * HUMIDITY + poly(HUMIDITY, 6) , data = train_data)
      summary(glmnet)
             Length Class
                                Mode
     lvl
              0
                    -none-
                                NULL
     spec
              6
                    linear_reg list
     fit
             12
                    elnet
                                list
     preproc 5
                    -none-
                                list
     elapsed 5
                    proc_time numeric
[39]: glmnet_pred <- model_prediction(glmnet, test_data)
      model evaluation(glmnet pred)
     # A tibble: 1 x 3
       .metric .estimator .estimate
       <chr> <chr>
                               <dbl>
     1 rmse
               standard
                                310.
     # A tibble: 1 x 3
       .metric .estimator .estimate
                               <dbl>
       <chr>
               <chr>
     1 rsq
               standard
                               0.760
[40]: glmnet_rsq = rsq(glmnet_pred, truth = TRUTH, estimate = .pred)
      glmnet_rsq
      glmnet_rmse = rmse(glmnet_pred, truth = TRUTH, estimate = .pred)
      glmnet_rmse
                    .metric
                            .estimator
                                       .estimate
     A tibble: 1 \times 3 <chr>
                                       <dbl>
                            <chr>
                            standard
                                       0.7598974
                    rsq
```

```
A tibble: 1 \times 3 <chr>
                                        <dbl>
                             <chr>
                                        310.3593
                    rmse
                             standard
[41]: model_4<-c( glmnet_rsq, glmnet_rmse)
      model_4
     $.metric 'rsq'
     $.estimator 'standard'
     $.estimate 0.759897410578074
     $.metric 'rmse'
     $.estimator 'standard'
     $.estimate 310.359286091261
[42]: bike_recipe <-
      recipe(RENTED_BIKE_COUNT ~ ., data = train_data)
[43]: ridge_spec <- linear_reg(penalty = 0.1, mixture = 0) %>%
      set_engine("glmnet")
[44]: ridge_wf <- workflow() %>%
      add_recipe(bike_recipe)
[45]: ridge_fit <- ridge_wf %>%
      add_model(ridge_spec) %>%
      fit(data = train_data)
[46]: ridge_fit %>%
      pull_workflow_fit() %>%
      tidy()
```

.metric .estimator .estimate

	term	step	estimate	lambda	dev.ratio
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-	(Intercept)	1	7.321896e + 02	360429.6	2.697382e-36
	TEMPERATURE	1	1.723584e-33	360429.6	2.697382e-36
	HUMIDITY	1	-6.211420e-34	360429.6	2.697382e-36
	WIND SPEED	1	5.866815e-34	360429.6	2.697382e-36
	VISIBILITY	1	4.424783e-34	360429.6	2.697382e-36
	DEW POINT TEMPERATURE		1.132251e-33	360429.6	2.697382e-36
	SOLAR_RADIATION	1	7.082231e-34	360429.6	2.697382e-36
	RAINFALL	1	-2.418017e-33	360429.6	2.697382e-36
	SNOWFALL	1	-2.418017e-33 -2.013842e-33	360429.6	2.697382e-36
	0	1	-1.908464e-34	360429.6	2.697382e-36
	1	1	-3.015741e-34	360429.6	2.697382e-36
		1			
	10		-1.825679e-34	360429.6	2.697382e-36
	11	1	-1.253324e-34	360429.6	2.697382e-36
	12	1	5.270027e-36	360429.6	2.697382e-36
	13	1	1.713391e-35	360429.6	2.697382e-36
	14	1	5.638035e-35	360429.6	2.697382e-36
	15	1	1.259089e-34	360429.6	2.697382e-36
	16	1	2.603201e-34	360429.6	2.697382e-36
	17	1	4.714521e-34	360429.6	2.697382e-36
	18	1	8.759100e-34	360429.6	2.697382e-36
	19	1	5.544040e-34	360429.6	2.697382e-36
	2	1	-4.276538e-34	360429.6	2.697382e-36
	20	1	3.259183e-34	360429.6	2.697382e-36
	21	1	3.725101e-34	360429.6	2.697382e-36
	22	1	2.157686e-34	360429.6	2.697382e-36
	23	1	-3.045241e-35	360429.6	2.697382e-36
	3	1	-5.512708e-34	360429.6	2.697382e-36
	4	1	-6.306256e-34	360429.6	2.697382e-36
	5	1	-6.229421e-34	360429.6	2.697382e-36
A tibble: 3900×5	6	1	-4.578700e-34	360429.6	2.697382e-36
	0	100	-53.33714	36.04296	0.660746
	1	100	-159.56285	36.04296	0.660746
	10	100	-233.72935	36.04296	0.660746
	11	100	-237.74294	36.04296	0.660746
	12	100	-193.71213	36.04296	0.660746
	13	100	-185.18691	36.04296	0.660746
	14	100	-183.16812	36.04296	0.660746
	15	100	-107.12601	36.04296	0.660746
	16	100	28.41071	36.04296	0.660746
	17	100	277.81890	36.04296	0.660746
	18	100	712.16005	36.04296	0.660746
	19	100	471.91020	36.04296	0.660746
	2	100	-282.50051	36.04296	0.660746
	20	100	338.33928	36.04296	0.660746
	21	100	386.00317	36.04296	0.660746
	21 22	100	263.44637	36.04296 36.04296	0.660746
	00	100	49.12452	36.04296 36.04296	0.660746
	3 14	100	-347.25625	36.04296 36.04296	0.660746
	4	100	-409.55655 400.85388	36.04296	0.660746
	5	100	-400.85388	36.04296	0.660746

```
[47]: ridge_fit_pred <- model_prediction(ridge_fit, test_data)
      model_evaluation(ridge_fit_pred)
     # A tibble: 1 x 3
       .metric .estimator .estimate
       <chr>
                <chr>
                               <dbl>
                                362.
     1 rmse
                standard
     # A tibble: 1 x 3
       .metric .estimator .estimate
                <chr>
       <chr>
                               <dbl>
     1 rsq
                standard
                               0.676
[48]: ridge_rsq = rsq(ridge_fit_pred, truth = TRUTH, estimate = .pred)
      ridge rsq
      ridge_rmse = rmse(ridge_fit_pred, truth = TRUTH, estimate = .pred)
      ridge_rmse
                    .metric .estimator .estimate
     A tibble: 1 \times 3 <chr>
                             <chr>
                                        <dbl>
                                       0.6762273
                    rsq
                             standard
                    .metric .estimator
                                       .estimate
     A tibble: 1 \times 3 <chr>
                            <chr>
                                       <dbl>
                    rmse
                             standard
                                       362.4059
[49]: model_5<-c( ridge_rsq, ridge_rmse)
      model 5
     $.metric 'rsq'
     $.estimator 'standard'
     $.estimate 0.676227319666284
     $.metric 'rmse'
     $.estimator 'standard'
     $.estimate 362.405922372514
[50]: #Lasso (L1) regularization
      lasso_spec <- linear_reg(penalty = 0.1, mixture = 1) %>%
      set_engine("glmnet")
[51]: lasso_wf <- workflow() %>%
      add_recipe(bike_recipe)
[52]: lasso_fit <- lasso_wf %>%
      add model(lasso spec) %>%
      fit(data = train_data)
```

```
[53]: lasso_fit %>%
   pull_workflow_fit() %>%
   tidy()
```

	.	-4	4:4-	11-1-	1
	term	step	estimate	lambda	dev.ratio
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	(Intercept)	1	732.189576	360.4296	0.00000000
	(Intercept)	2	651.034639	328.4100	0.05306502
	TEMPERATURE	2	151.587235	328.4100	0.05306502
	(Intercept)	3	577.089283	299.2350	0.09712052
	TEMPERATURE	3	289.707878	299.2350	0.09712052
	(Intercept)	4	509.713029	272.6518	0.13369618
	TEMPERATURE	4	415.558263	272.6518	0.13369618
	(Intercept)	5	448.322295	248.4302	0.16406193
	TEMPERATURE	5	530.228447	248.4302	0.16406193
	(Intercept)	6	392.385345	226.3603	0.18927211
	TEMPERATURE	6	634.711648	226.3603	0.18927211
	(Intercept)	7	341.417680	206.2511	0.21020205
	TEMPERATURE	7	729.912850	206.2511	0.21020205
	(Intercept)	8	294.977841	187.9283	0.22757845
	TEMPERATURE	8	816.656639	187.9283	0.22757845
	(Intercept)	9	252.663589	171.2333	0.24200464
	TEMPERATURE	9	895.694349	171.2333	0.24200464
	(Intercept)	10	228.279759	156.0214	0.24200404 0.26649123
	TEMPERATURE	10	970.894738	156.0214 156.0214	0.26649123
	HUMIDITY	10	-30.125273	156.0214 156.0214	0.26649123
	18	10	46.159676	156.0214 156.0214	0.26649123
		10			
	(Intercept)		229.807470	142.1609	0.29794699
	TEMPERATURE	11	1046.718179	142.1609	0.29794699
	HUMIDITY	11	-105.603742	142.1609	0.29794699
	18	11	106.303536	142.1609	0.29794699
	(Intercept)	12	235.946076	129.5317	0.32455931
	TEMPERATURE	12	1109.929902	129.5317	0.32455931
	HUMIDITY	12	-175.317166	129.5317	0.32455931
	18	12	161.273590	129.5317	0.32455931
A tibble: 1879×5	WINTER	12	-4.141401	129.5317	0.32455931
	RAINFALL	77	-2053.67578	0.3062763	0.6624083
	SNOWFALL	77	209.52983	0.3062763	0.6624083
	0	77	28.71639	0.3062763	0.6624083
	1	77	-79.24627	0.3062763	0.6624083
	10	77	-176.69948	0.3062763	0.6624083
	11	77	-187.40316	0.3062763	0.6624083
	12	77	-147.08766	0.3062763	0.6624083
	13	77	-139.58122	0.3062763	0.6624083
	14	77	-140.63063	0.3062763	0.6624083
	15	77	-58.85878	0.3062763	0.6624083
	16	77	82.34617	0.3062763	0.6624083
	17	77	350.76622	0.3062763	0.6624083
	18	77	814.20083	0.3062763	0.6624083
	19	77	567.70456	0.3062763	0.6624083
	2	77	-209.18700	0.3062763	0.6624083
	20	77	432.12483	0.3062763	0.6624083
	21		100 55000	0.3062763	0.6624083
	22	77	$17 \frac{483.77962}{358.06191}$	0.3062763	0.6624083
	23	77	133.70291	0.3062763	0.6624083
	3	77	-275.17982	0.3062763	0.6624083
	J	1.1	-210.11902	0.0004700	0.0024000

```
[54]: lasso_fit_pred <- model_prediction(lasso_fit, test_data)
      model_evaluation(lasso_fit_pred)
     # A tibble: 1 x 3
       .metric .estimator .estimate
       <chr>
                <chr>
                               <dbl>
     1 rmse
                standard
                                361.
     # A tibble: 1 x 3
       .metric .estimator .estimate
                <chr>
       <chr>
                               <dbl>
     1 rsq
                standard
                               0.677
[55]: lasso_rsq = rsq(lasso_fit_pred, truth = TRUTH, estimate = .pred)
      lasso rsq
      lasso_rmse = rmse(lasso_fit_pred, truth = TRUTH, estimate = .pred)
      lasso_rmse
                    .metric .estimator .estimate
                             <chr>
                                        <dbl>
     A tibble: 1 \times 3 <chr>
                                        0.6773537
                             standard
                    rsq
                    .metric .estimator
                                        .estimate
                                        <dbl>
     A tibble: 1 \times 3 <chr>
                             <chr>
                             standard
                                        360.5281
                    rmse
[56]: model_6 <- c( lasso_rsq, lasso_rmse)</pre>
      model 6
     $.metric 'rsq'
     $.estimator 'standard'
     $.estimate 0.677353737578952
     $.metric 'rmse'
     $.estimator 'standard'
     $.estimate 360.528080394777
[57]: #Elastic Net (L1 and L2) Regularization
      elasticnet_spec <- linear_reg(penalty = 0.1, mixture = 0.3) %>%
      set_engine("glmnet")
[58]: elasticnet_wf <- workflow() %>%
      add_recipe(bike_recipe)
[59]: elasticnet_fit <- elasticnet_wf %>%
      add_model(elasticnet_spec) %>%
      fit(data = train_data)
```

```
[60]: elasticnet_fit %>%
   pull_workflow_fit() %>%
   tidy()
```

	term	step	estimate	lambda	dev.ratio
	<chr></chr>	<dbl></dbl>	estimate <dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	(Intercept)	1	732.189576	1201.4321	0.000000000
	(Intercept)	2	695.108581	1094.7001	0.02485834
	TEMPERATURE	$\frac{2}{2}$	69.262644	1094.7001	0.02485834 0.02485834
	(Intercept)	3	657.729345	997.4500	0.02485634 0.04887422
	TEMPERATURE	3	139.082364	997.4500	0.04887422 0.04887422
	(Intercept)	3 4	620.211394	908.8393	0.04887422 0.07192683
	TEMPERATURE	4	209.161189	908.8393	0.07192083 0.07192683
		5	586.134311	828.1005	0.07192083 0.09532994
	(Intercept) TEMPERATURE	5 5	275.195574	828.1005	0.09532994 0.09532994
	WINTER	5 5	-5.023071	828.1005	0.09532994 0.09532994
	(Intercept)	6	561.014883	754.5343	0.09332994 0.12045688
	TEMPERATURE	6	330.306588	754.5343	0.12045688
	WINTER	6	-22.291224	754.5343	0.12045688
		7	-22.291224 536.190397	687.5036	0.12043088 0.14333091
	(Intercept) TEMPERATURE	7	384.413700	687.5036	0.14333091 0.14333091
	WINTER	7	-38.604405	687.5036	0.14333091 0.14333091
		8	-58.004405 511.716667	626.4277	0.14555091 0.16404458
	(Intercept) TEMPERATURE	8	437.391024	626.4277	0.16404458 0.16404458
	WINTER	8	-53.917006	626.4277	0.16404458 0.16404458
	(Intercept)	9	-55.917000 487.640743	570.7776	0.10404458 0.18270864
	TEMPERATURE	9	489.134537	570.7776	0.18270804 0.18270864
	WINTER	9	-68.195005	570.7776	0.18270804 0.18270864
	(Intercept)	10	463.008704	520.0713	0.10270004 0.20608548
	TEMPERATURE	10	538.171642	520.0713	0.20608548
	18	10	42.824102	520.0713	0.20608548
	WINTER	10	-81.698334	520.0713	0.20608548
	(Intercept)	10	468.360688	473.8696	0.2000348 0.23662972
	TEMPERATURE	11	587.986387	473.8696	0.23662972
	HUMIDITY	11	-50.439772	473.8696	0.23662972
A tibble: 1974×5	18	11	85.840139	473.8696	0.23662972
A tibble, 1974 × 9	10	11	09.040199	410.0000	0.23002312
	SNOWFALL	77	206.921714	1.020921	0.6624009
	1	77	-108.770288	1.020921	0.6624009
	10	77	-205.670100	1.020921	0.6624009
	11	77	-216.227214	1.020921	0.6624009
	12	77	-175.844534	1.020921	0.6624009
	13	77	-168.337199	1.020921	0.6624009
	14	77	-169.341271	1.020921	0.6624009
	15	77	-87.702272	1.020921	0.6624009
	16	77	53.309911	1.020921	0.6624009
	17	77	321.344812	1.020921	0.6624009
	18	77	784.180683	1.020921	0.6624009
	19	77	537.811959	1.020921	0.6624009
	2	77	-238.575058	1.020921	0.6624009
	20	77	402.278845	1.020921	0.6624009
	21	77	453.854354	1.020921	0.6624009
	22	77	328.193591	1.020921	0.6624009
	23	77	0 104.033526	1.020921	0.6624009
	3	77	-304.538695	1.020921	0.6624009
	4	77	-368.955001	1.020921	0.6624009
	5	77	-358.811118	1.020921	0.6624009

```
[61]: elasticnet_fit_pred <- model_prediction(elasticnet_fit, test_data)
      model_evaluation(elasticnet_fit_pred)
     # A tibble: 1 x 3
        .metric .estimator .estimate
       <chr>
                <chr>
                                <dbl>
     1 rmse
                standard
                                361.
     # A tibble: 1 x 3
        .metric .estimator .estimate
                <chr>
     1 rsq
                standard
                               0.677
[62]: elasticnet_rsq = rsq(elasticnet_fit_pred, truth = TRUTH, estimate = .pred)
      elasticnet rsq
      elasticnet_rmse = rmse(elasticnet_fit_pred, truth = TRUTH, estimate = .pred)
      elasticnet_rmse
                    .metric .estimator .estimate
                             <chr>
                                        <dbl>
     A tibble: 1 \times 3 <chr>
                             standard
                                        0.6773348
                    rsq
                    .metric .estimator
                                        .estimate
                                        <dbl>
     A tibble: 1 \times 3 <chr>
                             <chr>
                             standard
                                        360.56
                    rmse
[63]: model_7 <- c( elasticnet_rsq, elasticnet_rmse)
      model 7
     $.metric 'rsq'
     $.estimator 'standard'
     $.estimate 0.677334783941434
     $.metric 'rmse'
     $.estimator 'standard'
     $.estimate 360.559981536539
[64]: #Comparing Regularization Types
      #Lasso (L1)
      #Ridge (L2)
      #Elastic net (L1/L2)
      tune_spec <- linear_reg(penalty = tune(), mixture = 1) %>%
      set_engine("glmnet")
      lasso_wf <- workflow() %>%
      add_recipe(bike_recipe)
[65]: | bike_cvfolds <- vfold_cv(train_data)</pre>
```

```
[66]: lambda_grid <- grid_regular(levels = 50,
penalty(range = c(-3, 0.3)))</pre>
```

```
[67]: lasso_grid <- tune_grid(
  lasso_wf %>% add_model(tune_spec),
  resamples = bike_cvfolds,
  grid = lambda_grid)
```

```
[68]: lasso_grid %>%
    collect_metrics() %>%
    filter(.metric == "rmse") %>%
    ggplot(aes(penalty, mean)) +
    geom_line(size=1, color="red") +
    scale_x_log10() +
    ggtitle("RMSE")
```

RMSE


```
[69]: lasso_grid %>%
    collect_metrics() %>%
    filter(.metric == "rsq") %>%
    ggplot(aes(penalty, mean)) +
    geom_line(size=1, color="red") +
    scale_x_log10() +
    ggtitle("RSQ")
```



```
[70]: tune_spec <- linear_reg(
    penalty = tune(),</pre>
```

```
mixture = 0) %>%
     set_engine("glmnet")
     ridge_grid <- tune_grid(ridge_wf %>%
     add_model(tune_spec),
     resamples = bike_cvfolds,
     grid = lambda_grid)
[71]: show_best(ridge_grid, metric = "rmse")
                   penalty
                               metric estimator mean
                                                                 std err
                                                          n
                   <dbl>
                               \langle chr \rangle
                                      <chr>
                                                                 <dbl>
                                                 <dbl>
                                                          <int>
                   0.001000000
                               rmse
                                      standard
                                                 377.0972
                                                          10
                                                                 5.042446
     A tibble: 5 \times 6 0.001167742 rmse
                                      standard
                                                 377.0972
                                                         10
                                                                 5.042446
                   0.001363622 rmse
                                      standard
                                                 377.0972 10
                                                                 5.042446
                                      standard
                                                 377.0972 10
                   0.001592358 rmse
                                                                 5.042446
                   0.001859464 rmse
                                      standard
                                                 377.0972 10
                                                                 5.042446
[72]: #rsq
              rmse
      #0.486
               450.4
     #0.508
               440.0
      #0.585
               415.3
      #0.759
               310.3
      #0.676
               362.4
      #0.677
               360.5
[74]: | ##TODO: Visualize the saved RMSE and R-squared values using a grouped barchart
     # HINT: Use ggplot() + geom_bar()
     ⇔"model 6")
     rsq <- c("0.486", "0.508", "0.585", "0.759", "0.676", "0.677")
     rsme <- c( "450.4", "440.0", "415.3", "310.3", "362.4", "360.5" )
     comparison_df <- data.frame(model_names, rsq, rsme)</pre>
[75]: print(comparison_df)
       model names
                    rsq rsme
           model_1 0.486 450.4
     1
     2
           model 2 0.508 440.0
     3
          model_3 0.585 415.3
     4
          model_4 0.759 310.3
     5
          model_5 0.676 362.4
     6
          model_6 0.677 360.5
[76]: | ##TODO: Visualize the saved RMSE and R-squared values using a grouped barchart
      # HINT: Use ggplot() + geom_bar()
     comparison_df %>%
       pivot_longer(!model_names) %>%
```

```
ggplot(aes(x = model_names, y = value, fill = name)) +
geom_bar(stat = "identity", position = "dodge") +
labs(title = "RSME & RSQ", fill = "Metric")
```

RSME & RSQ

[]: