

WHAT IS CLAIMED IS:

1 1. A data processor comprising:

2 C execution clusters, each of said C execution clusters
3 comprising an instruction execution pipeline having N processing
4 stages capable of executing instruction bundles comprising from one
5 to S syllables, wherein each said instruction execution pipelines
6 is L lanes wide, each of said L lanes capable of receiving one of
7 said one to S syllables of said instruction bundles;

8 an instruction cache capable of storing a plurality of
9 cache lines, each of said cache lines comprising C*L syllables;

10 an instruction issue unit capable of receiving fetched
11 ones of said plurality of cache lines and issuing complete
12 instruction bundles toward said C execution clusters; and

13 alignment and dispersal circuitry capable of receiving
14 said complete instruction bundles from said instruction issue unit
15 and routing each said received complete instruction bundles to a
16 correct one of said C execution clusters as a function of at least
17 one address bit associated with each of said complete instruction
18 bundles.

1 2. The data processor as set forth in Claim 1 wherein said
2 alignment and dispersal circuitry routs each said received complete
3 instruction bundles to said correct execution cluster as a function
4 of at least one address bit associated with at least one syllable
5 in said each complete instruction bundle.

1 3. The data processor as set forth in Claim 1 wherein said
2 alignment and dispersal circuitry routes each received complete
3 instruction bundles to said correct execution cluster as a function
4 of a cluster bit associated with each complete instruction bundle.

1 4. The data processor as set forth in Claim 1 wherein said
2 alignment and dispersal circuitry routs each said received complete
3 instruction bundles to said correct execution cluster as a function
4 of a stop bit associated with at least one syllable in said each
5 complete instruction bundle.

1 5. The data processor as set forth in Claim 1 wherein said
2 alignment and dispersal circuitry comprises multiplexer circuitry
3 capable of routing said each received complete instruction bundle
4 to any one of said C execution clusters.

1 6. The data processor as set forth in Claim 5 wherein said
2 alignment and dispersal circuitry comprises control logic circuitry
3 capable of controlling said multiplexer circuitry.

1 7. The data processor as set forth in Claim 6 wherein said
2 control logic circuitry controls said multiplexer circuitry as a
3 function of at least one of:

4 1) said at least one address bit associated with said
each complete instruction bundle;

5 2) at least one address bit associated with at least one
syllable in said each complete instruction bundle; and

6 3) a cluster bit associated with said each complete
instruction bundle.

7 8. The data processor as set forth in Claim 1 wherein L=4.

8 9. The data processor as set forth in Claim 1 wherein C=3.

1 10. A processing system comprising:
2 a data processor;
3 a memory coupled to said data processor;
4 a plurality of memory-mapped peripheral circuits coupled
5 to said data processor for performing selected functions in
6 association with said data processor, wherein said data processor
7 comprises:

8 C execution clusters, each of said C execution
9 clusters comprising an instruction execution pipeline having
10 N processing stages capable of executing instruction bundles
11 comprising from one to S syllables, wherein each said
12 instruction execution pipelines is L lanes wide, each of said
13 L lanes capable of receiving one of said one to S syllables of
14 said instruction bundles;

15 an instruction cache capable of storing a plurality
16 of cache lines, each of said cache lines comprising C*L
17 syllables;

18 an instruction issue unit capable of receiving
19 fetched ones of said plurality of cache lines and issuing
20 complete instruction bundles toward said C execution clusters;
21 and

22 alignment and dispersal circuitry capable of

23 receiving said complete instruction bundles from said
24 instruction issue unit and routing each said received complete
25 instruction bundles to a correct one of said C execution
26 clusters as a function of at least one address bit associated
27 with each of said complete instruction bundles.

1 11. The processing system as set forth in Claim 10 wherein
2 said alignment and dispersal circuitry routs each said received
3 complete instruction bundles to said correct execution cluster as
4 a function of at least one address bit associated with at least one
5 syllable in said each complete instruction bundle.

1 12. The processing system as set forth in Claim 10 wherein
2 said alignment and dispersal circuitry routs each said received
3 complete instruction bundles to said correct execution cluster as
4 a function of a cluster bit associated with said each complete
5 instruction bundle.

1 13. The processing system as set forth in Claim 10 wherein
2 said alignment and dispersal circuitry routs each said received
3 complete instruction bundles to said correct execution cluster as
4 a function of a stop bit associated with at least one syllable in
5 said each complete instruction bundle.

1 14. The processing system as set forth in Claim 10 wherein
2 said alignment and dispersal circuitry comprises multiplexer
3 circuitry capable of routing said each received complete
4 instruction bundle to any one of said C execution clusters.

1 15. The processing system as set forth in Claim 14 wherein
2 said alignment and dispersal circuitry comprises control logic
3 circuitry capable of controlling said multiplexer circuitry.

1 16. The processing system as set forth in Claim 15 wherein
2 said control logic circuitry controls said multiplexer circuitry as
3 a function of at least one of:

- 4 1) said at least one address bit associated with said
5 each complete instruction bundle;
- 6 2) at least one address bit associated with at least one
7 syllable in said each complete instruction bundle; and
- 8 3) a cluster bit associated with said each complete
9 instruction bundle.

1 17. The processing system as set forth in Claim 10 wherein
2 L=4 .

1 18. The processing system as set forth in Claim 10 wherein
2 C=3 .

1 19. For use in a data processor comprising C execution
2 clusters, each of the C execution clusters comprising an
3 instruction execution pipeline having N processing stages capable
4 of executing instruction bundles comprising from one to S
5 syllables, wherein each the instruction execution pipelines is L
6 lanes wide, each of the L lanes capable of receiving one of the one
7 to S syllables of the instruction bundles, a method of routing
8 instruction bundles into the L lanes in the C execution clusters
9 comprising the steps of:

10 fetching cache lines from an instruction cache, each of
11 the cache lines comprising $C*L$ syllables;

12 issuing complete ones of the instruction bundles toward
13 the C execution clusters; and

14 routing each the received complete instruction bundles to
15 a correct one of the C execution clusters as a function of at least
16 one of:

17 1) the at least one address bit associated with the
18 each complete instruction bundle;

19 2) at least one address bit associated with at least
20 one syllable in the each complete instruction bundle; and

21 3) a cluster bit associated with the each complete
22 instruction bundle.

1 20. The method as set forth in Claim 19 wherein L=4 and C=3.