

Genomics in the NHS Today

Best Practice

Matthew Parker, Ph. D Lead Bioinformatician Sheffield Diagnostic Genetics Service

Introduction

- NHS has around 40 full time bioinformaticians and trainees
- Most labs are sequencing around 3000 patients a year
- Around 10 labs 30,000 patients a year
- Panels or exomes: Targeted panels introduced into NHS 2010 sequencing
- Disparate pipelines
- NHS model where labs compete for work
- Historically: Bioinformatics substitute for poor IT support & infra

Types of Sequencing in the NHS

Targeted Panels or Exomes (GEL doing genomes)

Current NHS Pipeline

Typical Bioinformatics Pipeline

This omits QC steps like: Low Level Read Stats, Coverage, Contamination etc...

Reproducibility

How would you ensure that your analysis can be reproduced in say 3 years time?

http://www.acgs.uk.com/committees/quality-committee/best-practice-guidelines/

- 2 sets of guidelines:
 - Bioinformatics
 - Next Gen Sequencing
- 2 sets of statements:
 - Shall: Requirement
 - Should: Recommendation

Bioinformatics Best Practice Guidelines

Guidelines for development and validation of software, with particular focus on bioinformatics pipelines for processing NGS data.

Nicola Whiffin^{1,2}, Kim Brugger³, Joo Wook Ahn⁴

¹ NIHR Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London

² National Heart and Lung Institute, Imperial College, London

³ Department of Molecular Genetics, Addenbrooke's Hospital, Cambridge

⁴ Genetics Laboratories, Guy's and St Thomas' NHS Foundation Trust, London

Requirements ("Shall")

- Development
 - Write codes for humans not machines
 - House style ok but should be enforced
 - Annotation in code
 - Contingency planning & other risk assessments for all software critical for diagnostic testing
 - Version control
 - Used to record all changes
 - Informative commit messages
 - Record versions of ancillary files (Ref genome etc)
 - Include releases/milestones
 - Multiuser
 - Peer-review of code

Requirements ("Shall")

External Software

- A system for regularly checking for updates and big fixes
- Versions of any software used for diagnostic purposes recorded
- Key software version included on clinical report
- Recording of ancillary files

False Positives & False Negatives

- False Positives:
 - Variants detected by NGS that are not present in the individual
 - Sequencing Artefacts
 - Poor Alignment (Pseudogenes?)
 - Poly-Tracts
- False Negatives:
 - Variants present in the patient but not present in the NGS variant calls
 - Low coverage
 - Variant caller errors
 - Poor alignment?

Requirements ("Shall")

- Validation
 - Extensive
 - Initial validation:
 - Dry truth data
 - Determine sensitivity with sanger truth set
 - 95% > 0.95 Pipeline detects all 60/60 sanger variants with no false negatives. 300/300 gives 95% > 0.99
 - Should be different individuals
 - Further validation:
 - Validation performed as above maintain a validation dataset
 - Validation following substantive changes to a pipeline
 - Assess test dataset for relevance

Development Lifecycle

Bioinformatics Guidelines

Do these guidelines go far enough? What else could we do?

Sequencing Best Practice Guidelines

Practice guidelines for Targeted Next Generation Sequencing Analysis and Interpretation.

Prepared and edited by Zandra Deans¹, Christopher M Watson², Ruth Charlton², Sian Ellard^{3,4}, Yvonne Wallis⁵, Chris Mattocks⁶, and Stephen Abbs⁷.

- UK NEQAS for Molecular Genetics, UK NEQAS [Edinburgh], Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
- Yorkshire Regional DNA Laboratory, St James's University Hospital, Leeds LS9 7TF, UK.
- 3. Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, EX2 5DW, UK.
- 4. University of Exeter Medical School, Exeter, EX2 5DW, UK.
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham, B15 2TG, UK
- 6. Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, SP2 8BJ, UK
- 7. East Anglian Medical Genetics Service, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.

Requirements

- Validation
 - Targeting method, sequencing process & data analysis
- Derive information on reproducibility and robustness

- Comparison to gold standard (i.e. Sanger, SNPArrays)
- Power related to determine related to number of unique variants
- Required sensitivity depends on application
- 95% confidence that the error rate for het/hom mutation detection is no more than 5%
 - Minimum of 60 unique variants
 - 150 variants 2%
- Use commercial standards GIAB
- Should test on representative samples i.e. not all cell lines

Quality Aspects

- Consider difficult regions of the genome
 - Pseudogenes
 - GC/AT rich regions
 - Repetitive elements
- Barcoding checks in place

- Quality measures at multiple stages of the process
- Record of data quality markers as part of audit trail:
 - Average base call quality scores
 - Mapping quality scores
 - Number of reads mapped and the percentage of target covered at the minimum coverage required
 - The alignment algorithm and alignment settings

- Analysis Pipeline to Identify Variants
 - Software for data analysis may be supplied commercially or be open source
 - Accurate versioning is essential and each software upgrade requires revalidation
- Annotation
 - Human Genome Variation Society (HGVS) recommendations
- Filtering
 - Likely mode of inheritance
 - Polys
- Data Storage
 - It is essential to store the output file from the variant annotation step

UKAS Accreditation

ISO 15189

Medical Laboratories – Requirements for Quality and Competence

Reporting

- Negative results sometimes as important as positive ones
- Must know coverage have we covered all regions of interest
- Gap Fills

- The NHS, through the Scientists Training Program (STP) is building a workforce of bioinformaticians for the future
- We have 3x trainees in Sheffield and another due to start in the new year
- Registered clinical scientists

STP Program: Modernising Scientific Careers

- NHS already carries out significant amounts of diagnostic sequencing
- Growing bioinformatics workforce
- Genomics in healthcare is tightly regulated
- Standards and Accreditation protects patients and families from poor practice
- Bioinformatics, through a robust, version controlled pipeline, should provide high quality and relevant variants to clinical scientists