Practical Introduction to Neural Network Potentials Day 2:

Neural networks

Exercise #1 Review: Modeling energies with linear regression

 ${\rm MAE} \approx 19\,{\rm kcal}\,{\rm mol}^{-1}$

Transferable! ~Uniform errors over 130K systems

What was the main weakness of our linear regression model?

$$\hat{y} = \overrightarrow{w}_0 \cdot \overrightarrow{x} + b$$
 : Linear regression

$$\hat{y} = \overrightarrow{w}_0 \cdot \overrightarrow{x} + b$$
 : Linear regression

In other words, \hat{y} must be a linear combination of features \vec{x}

$$\hat{y} = \mathbf{w}_1 \sigma(\mathbf{w_0} \overrightarrow{x} + \overrightarrow{b})$$
 : Feed-forward neural network with one hidden layer

What are neural networks? Universal approximation theorem

Any continuous function can be approximated to arbitrary accuracy by a neural network with a single, sufficiently large hidden layer.

How do we set Weight 1 to the optimal value?

Reverse-mode differentiation (backpropagation) allows efficient computation of gradients of the loss function with respect to weights

- 1. Randomly initialize weights
- 2. Feed all input data $\{\overrightarrow{x}_i\}$ to get estimates $\{\hat{y}_i\}$
- 3. Compute mean error $\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$
- 4. Backpropagate to obtain derivatives $\frac{d\mathcal{L}}{d\mathbf{w}}$
- 5. Update weights
- 6. Repeat

- 1. Randomly initialize weights
- 2. Feed all input data $\{\overrightarrow{x}_i\}$ to get estimates $\{\hat{y}_i\}$
- 3. Compute mean error $\mathcal{L} = \frac{1}{N} \sum_{i}^{N} (y_i \hat{y}_i)^2$
- 4. Backpropagate to obtain derivatives $\frac{d\mathcal{L}}{d\mathbf{w}}$
- 5. Update weights
- 6. Repeat

1 "Epoch," a pass through all the data

- 1. Randomly initialize weights
- 2. Feed all a batch of input data $\{\overrightarrow{x}_i\}$ to get estimates $\{\hat{y}_i\}$
- 3. Compute mean error $\mathcal{L} = \frac{1}{N} \sum_{i}^{N} (y_i \hat{y}_i)^2$
- 4. Backpropagate to obtain derivatives $\frac{d\mathcal{L}}{d\mathbf{w}}$
- 5. Update weights
- 6. Repeat for $\frac{N}{n}$ batches
- 7. Repeat for k epochs

1 "Epoch," a pass through all the data

1 "Batch," a small subset of all data n (~8-64 samples)

- 1. Randomly initialize weights
- 2. Feed all a batch of input data $\{\overrightarrow{x}_i\}$ to get estimates $\{\hat{y}_i\}$
- 3. Compute mean error $\mathcal{L} = \frac{1}{N} \sum_{i}^{N} (y_i \hat{y}_i)^2$
- 4. Backpropagate to obtain derivatives $\frac{d\mathcal{L}}{d\mathbf{w}}$
- 5. Update weights
- 6. Repeat for $\frac{N}{n}$ batches
- 7. Repeat for k epochs

- l "Epoch," a pass through all the data
- 1 "Batch," a small subset of all data n (~8-64 samples)

Batching speeds up training ($\frac{N}{n}$ gradient updates per epoch vs. 1) and requires less memory

```
def train_one_epoch(epoch_index, tb_writer):
                          running_loss = 0.
                          last_loss = 0.
Training
                          # Here, we use enumerate(training_loader) instead of
blueprint
                          # iter(training loader) so that we can track the batch
                          # index and do some intra-epoch reporting
                          for i, data in enumerate(training_loader):
(PyTorch)
                              # Every data instance is an input + label pair
                              inputs, labels = data
                              # Zero your gradients for every batch!
                              optimizer.zero_grad()
                              # Make predictions for this batch
                              outputs = model(inputs)
                              # Compute the loss and its gradients
                              loss = loss_fn(outputs, labels)
                              loss.backward()
                              # Adjust learning weights
                              optimizer.step()
                              # Gather data and report
                              running_loss += loss.item()
                              if i % 1000 == 999:
                                  last_loss = running_loss / 1000 # loss per batch
                                  print(' batch {} loss: {}'.format(i + 1, last_loss))
                                  tb_x = epoch_index * len(training_loader) + i + 1
                                  tb_writer.add_scalar('Loss/train', last_loss, tb_x)
                                  running_loss = 0.
                                                                                https://pytorch.org/tutorials/
                          return last_loss
                                                                                beginner/introyt/trainingyt.html
```

 $\{\overrightarrow{x}_i\}, \{y_i\}$

```
running_loss = 0.
                          last_loss = 0.
Training
                           # Here, we use enumerate(training_loader) instead of
blueprint
                           # iter(training loader) so that we can track the batch
                           # index and do some intra-epoch reporting
                           for i, data in enumerate(training_loader):
(PyTorch)
                               # Every data instance is an input + label pair
                              inputs, labels = data
                               # Zero your gradients for every batch!
                              optimizer.zero_grad() 
                               # Make predictions for this batch
                              outputs = model(inputs)
                               # Compute the loss and its gradients
                              loss = loss_fn(outputs, labels)
                              loss.backward()
                               # Adjust learning weights
                              optimizer.step()
                               # Gather data and report
                              running_loss += loss.item()
                              if i % 1000 == 999:
                                  last_loss = running_loss / 1000 # loss per batch
                                  print(' batch {} loss: {}'.format(i + 1, last_loss))
                                  tb_x = epoch_index * len(training_loader) + i + 1
                                  tb_writer.add_scalar('Loss/train', last_loss, tb_x)
                                  running_loss = 0.
                                                                                https://pytorch.org/tutorials/
                          return last_loss
                                                                                beginner/introyt/trainingyt.html
```

```
running_loss = 0.
                          last_loss = 0.
Training
                           # Here, we use enumerate(training_loader) instead of
blueprint
                           # iter(training loader) so that we can track the batch
                           # index and do some intra-epoch reporting
                           for i, data in enumerate(training_loader):
(PyTorch)
                               # Every data instance is an input + label pair
                              inputs, labels = data
                               # Zero your gradients for every batch!
                               optimizer.zero_grad()
                               # Make predictions for this batch
                                                                                                                   \{\hat{y}\} = \{NN(\overrightarrow{x}_i)\}
                               outputs = model(inputs) 
                               # Compute the loss and its gradients
                              loss = loss_fn(outputs, labels)
                              loss.backward()
                               # Adjust learning weights
                               optimizer.step()
                               # Gather data and report
                               running_loss += loss.item()
                               if i % 1000 == 999:
                                  last_loss = running_loss / 1000 # loss per batch
                                   print(' batch {} loss: {}'.format(i + 1, last_loss))
                                  tb_x = epoch_index * len(training_loader) + i + 1
                                  tb_writer.add_scalar('Loss/train', last_loss, tb_x)
                                  running_loss = 0.
                                                                                https://pytorch.org/tutorials/
                          return last_loss
                                                                                beginner/introyt/trainingyt.html
```

```
running_loss = 0.
                          last_loss = 0.
Training
                           # Here, we use enumerate(training_loader) instead of
blueprint
                           # iter(training loader) so that we can track the batch
                           # index and do some intra-epoch reporting
                           for i, data in enumerate(training_loader):
(PyTorch)
                               # Every data instance is an input + label pair
                              inputs, labels = data
                               # Zero your gradients for every batch!
                               optimizer.zero_grad()
                               # Make predictions for this batch
                               outputs = model(inputs)
                               # Compute the loss and its gradients
                              loss = loss_fn(outputs, labels) <</pre>
                               loss.backward()
                               # Adjust learning weights
                               optimizer.step()
                               # Gather data and report
                               running_loss += loss.item()
                               if i % 1000 == 999:
                                  last_loss = running_loss / 1000 # loss per batch
                                   print(' batch {} loss: {}'.format(i + 1, last_loss))
                                  tb_x = epoch_index * len(training_loader) + i + 1
                                  tb_writer.add_scalar('Loss/train', last_loss, tb_x)
                                  running_loss = 0.
                                                                                https://pytorch.org/tutorials/
                          return last_loss
                                                                                beginner/introyt/trainingyt.html
```

 $\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

```
def train_one_epoch(epoch_index, tb_writer):
                           running_loss = 0.
                          last_loss = 0.
Training
                           # Here, we use enumerate(training_loader) instead of
blueprint
                           # iter(training loader) so that we can track the batch
                           # index and do some intra-epoch reporting
                           for i, data in enumerate(training_loader):
(PyTorch)
                               # Every data instance is an input + label pair
                               inputs, labels = data
                               # Zero your gradients for every batch!
                               optimizer.zero_grad()
                               # Make predictions for this batch
                               outputs = model(inputs)
                               # Compute the loss and its gradients
                                                                                                                          d\mathscr{L}
                               loss = loss_fn(outputs, labels)
                               loss.backward()
                               # Adjust learning weights
                               optimizer.step()
                               # Gather data and report
                               running_loss += loss.item()
                               if i % 1000 == 999:
                                   last_loss = running_loss / 1000 # loss per batch
                                   print(' batch {} loss: {}'.format(i + 1, last_loss))
                                   tb_x = epoch_index * len(training_loader) + i + 1
                                   tb_writer.add_scalar('Loss/train', last_loss, tb_x)
                                   running_loss = 0.
                                                                                 https://pytorch.org/tutorials/
                           return last_loss
                                                                                 beginner/introyt/trainingyt.html
```

```
running_loss = 0.
                          last_loss = 0.
Training
                           # Here, we use enumerate(training_loader) instead of
blueprint
                           # iter(training loader) so that we can track the batch
                           # index and do some intra-epoch reporting
(PyTorch)
                           for i, data in enumerate(training_loader):
                               # Every data instance is an input + label pair
                              inputs, labels = data
                               # Zero your gradients for every batch!
                              optimizer.zero_grad()
                               # Make predictions for this batch
                              outputs = model(inputs)
                               # Compute the loss and its gradients
                              loss = loss_fn(outputs, labels)
                              loss.backward()
                               # Adjust learning weights
                              optimizer.step() <
                               # Gather data and report
                              running_loss += loss.item()
                              if i % 1000 == 999:
                                  last_loss = running_loss / 1000 # loss per batch
                                  print(' batch {} loss: {}'.format(i + 1, last_loss))
                                  tb_x = epoch_index * len(training_loader) + i + 1
                                  tb_writer.add_scalar('Loss/train', last_loss, tb_x)
                                  running_loss = 0.
                                                                                https://pytorch.org/tutorials/
                          return last_loss
                                                                                beginner/introyt/trainingyt.html
```


"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

- John von Neumann, prolific mathematician & physicist

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

- John von Neumann, prolific mathematician & physicist

"and with fifty thousand I can approximate the solution to the Schrödinger equation on a small subset of organic molecules in vacuum"

- Derek Metcalf, equally prolific "chemist"

An infinite number of curves perfectly fit this data

Which is a better model of the data?

Train, Validation

Instead, we can reserve a small fraction of the data to validate the models we produce

$$\mathcal{L}_t = 0.00$$

$$\mathcal{L}_t = 0.00$$

$$\mathcal{L}_v = 0.80$$

$$\mathcal{L}_t = 0.00$$

$$\mathcal{L}_t = 0.00$$

$$\mathcal{L}_v = 4.60$$

Train, Validation

$$\mathcal{L}_t = 0.00$$

$$\mathcal{L}_t = 0.00$$

$$\mathcal{L}_v = 0.80$$

Even though this model doesn't perfectly match all of the data, it is likely to perform reasonably on new x

$$\mathcal{L}_t = 0.00$$

$$\mathcal{L}_{v} = 4.60$$

Overfitting Detecting overfitting in practice

Overfitting Detecting overfitting in practice

Overfitting Detecting overfitting in practice

Overfitting Detecting overfitting in practice

^{*} This is a cartoon, the validation curve is not always a "U" shape. However, the general rule that you choose the model that minimizes the val. loss holds.

Parameters that don't change by gradient descent

Parameters that don't change by gradient descent

"Batch," a small subset of all data n (~1-64 samples, say)

Parameters that don't change by gradient descent

Hyperparameter optimization is generally a very hard problem. As hyperparameters are coupled, the dimensionality of this search is high.

What *n* to choose?

How many hidden layers?

How wide? (n_h)

"Batch," a small subset of all data n (~8-64 samples)

Hyperparameter optimization blueprint

1. For each model hyperparameter, choose a set of possible values, e.g.

Hyperparameter	Possible values
Network depth	[2, 3, 4]
Network width	[32, 64, 128]
Learning rate (LR)	[1e-5, 5e-5, 1e-4, 5e-4, 1e-3]

= 3 * 3 * 5 = 45 possible hyperparameter combinations

Hyperparameter optimization blueprint

1. For each model hyperparameter, choose a set of possible values, e.g.

Hyperparameter	Possible values
Network depth	[2, 3, 4]
Network width	[32, 64, 128]
Learning rate (LR)	[1e-5, 5e-5, 1e-4, 5e-4, 1e-3]

= 3 * 3 * 5 = 45 possible hyperparameter combinations

- 2. Train a neural network for each combination
- 3. Choose the model with the lowest validation error

Since hyperparameters don't change while training a model, we need a third data split in addition to training and validation: a "test set"

and biases with gradient descent

^{*} There is no "standard" data amount for each split, you just need to have enough val and test that model quality can be evaluated without too much noise

^{*} There is no "standard" data amount for each split, you just need to have enough val and test that model quality can be evaluated without too much noise

Cross-validation

^{*} There is no "standard" data amount for each split, you just need to have enough val and test that model quality can be evaluated without too much noise

Practical, NN potential-centric advice*

Hyperparameter	Strategy
Optimizer	Use "Adam"
Network depth	Performance is usually convergent with size, start with 3 hidden layers
Network width	Performance is usually convergent with size, start with 32 nodes / layer
Learning rate (LR)	Sensitive — sample several factors of 5 or 10 around the default
Batch size	Tightly coupled to LR — choose one (8-32) and vary the LR
Activation functions	Use "SELU" (or "ReLU," a bit cheaper but worse properties)
Loss function	Use "MSE" for regression
Variable width	Usually equal width is fine, but can play with this

^{*} These are not gospel and are subject to change as the field evolves. There are arguments for and against every one of these recommendations on the internet. Use with caution.

^{*} If a common hyperparameter is unlisted, I either forgot it or you should use the default.

Data efficiency & learning curves

SCIK

- Fine-grained control over training and architecture
- Fast
- Relatively easy to write

- Coarse control over neural network parameters
- Very easy to write and iterate on simple models
- Very hard to incorporate into complex or nonstandard workflows

- General linear algebra library
- Best logo
- Fast & parallelizable
- Small, research-centric community

2 0 1 0

Your choice of features should reflect what you think impacts the output quantity *y*

Notice that, like with linear regression, the number of input features must match for every datapoint.

Recall, this model produces the following potential energy surface (PES) for hydrogen dissociation:

Exercise

Today, we'll bring back coordinates as we know those contain all of the info to get the energy.

Exercise

Today, we'll bring back coordinates as we know those contain all of the info to get the energy.

