2323-MA378: Class Test in Week 7 (Friday, 24 Feb)

.....

The following fact (Cauchy's theorem) may be useful in answering some of these questions. Let p_n be the polynomial of degree n that interpolates f at the n+1 points $a=x_0< x_1< \cdots < x_n=b$. Then, for any $x\in [a,b]$ there is a $\tau\in (a,b)$ such that

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\tau)}{(n+1)!} \pi_{n+1}(x), \tag{1}$$

where $\pi_{n+1}(x) = \prod_{i=0}^n (x-x_i)$ denotes the nodal polynomial. In addition, if S is the cubic spline interpolant the function f at N equally spaced points $\{a=x_0 < x_1 < \cdots < x_N=b\}$ with $x_i-x_{i-1}=(b-a)/N=:h$, then

$$||f - S||_{\infty} := \max_{a \le x \le b} |f(x) - S(x)| \le \frac{5h^4}{384} \max_{a \le x \le b} |f^{(4)}(x)|.$$
 (2)

In all the questions below, the function f is $f(x) = (x^2 - 1)e^x$.

Q1. (40 marks)

- (a) Write down the Lagrange form for the polynomial, $p_2(x)$, that interpolates f at the points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$.
- (b) Evaluate $p_2(1/2)$. What is the exact value of $|f(1/2) p_2(1/2)|$?
- (c) What bound does (1) give for $|f(1/2) p_2(1/2)|$?
- (d) How do you account for the discrepency between the answers in Parts (b) and (c)?

Q2. (40 marks)

- (a) Give a formula for the piecewise linear interpolant, l(x), that interpolates f, at the points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$.
- (b) Evaluate l(1/2). What is the exact value of |f(x) l(x)| for x = 1/2?
- (c) Use (1) to give an upper bound for |f(x) l(x)| at x = 1/2.
- (d) How do you account for the discrepency between the answers in Parts (b) and (c)?
- Q3. (20 marks) Suppose that S is the cubic spline interpolant the function f at the N+1 equally spaced points $\{x_0=-1 < x_1 < \cdots < x_N=1\}$. What value of N should one take to ensure that $\|f-S\|_{\infty}$ is no more than 10^{-6} ?