Density functional theory

Morten Hjorth-Jensen

Department of Physics and Center for Computing in Science Education University of Oslo, N-0316 Oslo, Norway

October 23 and 24, 2025

Litterature I

- R. van Leeuwen: Density functional approach to the many-body problem: key concepts and exact functionals, Adv. Quant. Chem. 43, 25 (2003).
 (Mathematical foundations of DFT)
- R. M. Dreizler and E. K. U. Gross: Density functional theory: An approach to the quantum many-body problem. (Introductory book)
- W. Koch and M. C. Holthausen: A chemist's guide to density functional theory. (Introductory book, less formal than Dreizler/Gross)
- E. H. Lieb: Density functionals for Coulomb systems, Int. J. Quant. Chem. 24, 243-277 (1983). (Mathematical analysis of DFT)

Litterature II

- J. P. Perdew and S. Kurth: In A Primer in Density Functional Theory: Density Functionals for Non-relativistic Coulomb Systems in the New Century, ed. C.
 Fiolhais et al. (Introductory course, partly difficult, but interesting points of view)
- E. Engel: In A Primer in Density Functional Theory: Orbital-Dependent Functionals for the Exchange-Correlation Energy, ed. C. Fiolhais et al. (Introductory lectures, only about orbital-dependent functionals)

Density Functional Theory

The electronic energy E is said to be a *functional* of the electronic density, E[n], in the sense that for a given function n(r), there is a single corresponding energy. The *Hohenberg-Kohn theorem* confirms that such a functional exists, but does not tell us the form of the functional. As shown by Kohn and Sham, the exact ground-state energy E of an N-electron system can be written as

$$E[n] = -\frac{1}{2} \sum_{i=1}^{N} \int \Psi_{i}^{*}(\mathbf{r_{1}}) \nabla_{1}^{2} \Psi_{i}(\mathbf{r_{1}}) d\mathbf{r_{1}} - \int \frac{Z}{r_{1}} n(\mathbf{r_{1}}) d\mathbf{r_{1}} + \frac{1}{2} \int \frac{n(\mathbf{r_{1}}) n(\mathbf{r_{2}})}{r_{12}} d\mathbf{r_{1}} d\mathbf{r_{2}} + E_{XC}[n]$$

with Ψ_i the Kohn-Sham (KS) orbitals. Note that we have limited ourselves to atomic physics here.

How do we arrive at the above equation?

Density Functional Theory

The ground-state charge density is given by

$$n(\mathbf{r}) = \sum_{i=1}^{N} |\Psi_i(\mathbf{r})|^2,$$

where the sum is over the occupied Kohn-Sham orbitals. The last term, $E_{XC}[n]$, is the *exchange-correlation energy* which in theory takes into account all non-classical electron-electron interaction. However, we do not know how to obtain this term exactly, and are forced to approximate it. The KS orbitals are found by solving the *Kohn-Sham equations*, which can be found by applying a variational principle to the electronic energy E[n]. This approach is similar to the one used for obtaining the HF equation.

The Hohenberg-Kohn theorems

Assume we have a given Hamiltonian for a many-fermion system

$$\hat{H} = \hat{T} + \hat{V}_{\text{ext}} + \hat{V}.$$

Theorem I

We assume that there is a $\mathcal{V}_{ext} = set$ of external single-particle potentials ν so that

$$\hat{H}|\phi\rangle = \left(\hat{T} + \hat{V}_{\mathrm{ext}} + \hat{V}\right) = E|\phi\rangle, \qquad \hat{V}_{\mathrm{ext}} \in \mathcal{V}_{\mathrm{ext}},$$

gives a non-degenerate N-particle ground state $|\Psi\rangle_0$. For any system of interacting particles in an external potential \mathcal{V}_{ext} , the potential \mathcal{V}_{ext} is uniquely determined (by a near constant) by the ground state density n_0 . There is a corollary to this statement which states that since \hat{H} is determined, the many-body functions for all states are also determined. All properties of the system are determined via n_0 .

Theorem II

The density (assuming normalized state vectors)

$$n(\mathbf{r}) = \sum_{i} \int dx_2 \cdots \int dx_N |\Psi(\mathbf{r}, x_2, \dots, x_N)|^2$$

Theorem II states that a universal functional for the energy E[n] (function of n) can be defined for every external potential \mathcal{U}_{ext} . For a given external potential, the exact ground state energy of the system is a global minimum of this functional. The density which minimizes this functional is n_0 .

Proof I.

Let us prove $C: \mathcal{V}(C) \longrightarrow \Psi$ injective:

$$\hat{V} \neq \hat{V}' + \text{constant} \qquad \stackrel{?}{\Longrightarrow} \qquad |\Psi\rangle \neq |\Psi'\rangle,$$

where $\hat{V}, \hat{V}' \in \mathcal{V}$

Reductio ad absurdum:

Assume $|\Psi\rangle = |\Psi'\rangle$ for some $\hat{V} \neq \hat{V}' + \text{const}, \ \hat{V}, \ \hat{V}' \in \mathcal{V}$ $\hat{T} \neq \hat{T}[V], \ \hat{W} \neq \hat{W}[V] \implies^{1}$

$$\left(\hat{\textit{V}} - \hat{\textit{V}}' \right) |\Psi\rangle = \left(\textit{E}_{\textit{gs}} - \textit{E}_{\textit{gs}}' \right) |\Psi\rangle. \label{eq:power_power_power_power}$$

$$\implies \hat{V} - \hat{V}' = E_{gs} - E'_{gs}$$

$$\implies \hat{V} = \hat{V}' + \text{constant} \qquad \text{Contradiction!}$$

¹Unique continuation theorem: $|\Psi\rangle \neq 0$ on a set of positive measure

Proof II.

Let us prove $D: \Psi \longrightarrow \mathcal{N}$ injective:

$$|\Psi\rangle \neq |\Psi'\rangle$$
 $\stackrel{?}{\Longrightarrow}$ $n(\mathbf{r}) \neq n'(\mathbf{r})$

Reductio ad absurdum:

Assume $n(\mathbf{r}) = n'(\mathbf{r})$ for some $|\Psi\rangle \neq |\Psi'\rangle$

Ritz principle \implies

$$E_{gs} = \langle \Psi | \hat{H} | \Psi \rangle < \langle \Psi' | \hat{H} | \Psi' \rangle$$

$$\langle \Psi' | \hat{H} | \Psi' \rangle = \langle \Psi' | \hat{H}' + \hat{V} - \hat{V}' | \Psi' \rangle = E'_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 r$$

$$\implies E'_{gs} < E_{gs} + \int n'(\mathbf{r}) [v(\mathbf{r}) - v'(\mathbf{r})] d^3 r \tag{1}$$

By symmetry

$$\implies E_{gs} < E'_{gs} + \int n'(\mathbf{r})[\nu'(\mathbf{r}) - \nu(\mathbf{r})]d^3r$$
 (2)

$$E_{gs} + E'_{as} < E_{gs} + E'_{as}$$
 Contradiction!

Define

$$E_{\nu_0}[n] := \langle \Psi[n] | \hat{T} + \hat{W} + \hat{V_0} | \Psi[n] \rangle$$

 $\hat{V_0}=$ external potential, $n_0(\mathbf{r})=$ corresponding GS density, $E_0=$ GS energy

Rayleigh-Ritz principle \implies second statement of H-K theorem:

$$E_0 = \min_{n \in \mathcal{N}} E_{\nu_0}[n]$$

Last satement of H-K theorem:

$$F_{HK}[n] \equiv \langle \Psi[n] | \hat{T} + \hat{W} | \Psi[n] \rangle$$

is universal $(F_{HK} \neq F_{HK}[\hat{V_0}])$

The Kohn-Sham scheme

The classic Kohn-Sham scheme:

$$\left(-\frac{\hbar^2}{2m}\nabla^2+\nu_{s,0}(\mathbf{r})\right)\phi_{i,0}(\mathbf{r})=\varepsilon_i\phi_{i,0}(\mathbf{r}), \qquad \varepsilon_1\geq\varepsilon_2\geq\ldots\,,$$

where

$$v_{s,0}(\mathbf{r}) = v_0(\mathbf{r}) + \int d^3r' w(\mathbf{r}, \mathbf{r}') n_0(\mathbf{r}') + v_{XC}([n_0]; \mathbf{r})$$

The density calculated as

$$n_0(\mathbf{r}) = \sum_{i=1}^N |\phi_{i,0}(\mathbf{r})|^2,$$

Equation solved selfconsistently Total energy:

$$E = \sum_{i=1}^{N} \varepsilon_i - \frac{1}{2} \int d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + E_{XC}[n] - \int d^3r v_{XC}([n]; \mathbf{r}) n(\mathbf{r})$$

Exchange Energy and Correlation Energy

Hartree-Fock equation:

$$\begin{split} \left(-\frac{\hbar^2}{2m}\nabla^2 + v_0(\mathbf{r}) + \int d^3r'w(\mathbf{r},\mathbf{r}')n(\mathbf{r}')\right)\phi_k(\mathbf{r}) \\ - \underbrace{\sum_{l=1}^N \int d^3r'\phi_l^*(\mathbf{r}')w(\mathbf{r},\mathbf{r}')\phi_k(\mathbf{r}')\phi_l(\mathbf{r})}_{\text{exchange term}} = \varepsilon_k\phi_k(\mathbf{r}), \end{split}$$

Non-local exchange term (Pauli exclusion principle)

Kohn-Sham equation:

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_0(\mathbf{r}) + \int d^3r' w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + \underbrace{v_{\text{XC}}([n]; \mathbf{r})}_{\text{exchange + correlation}}\right) \phi_k(\mathbf{r}) = \varepsilon_k \phi_k(\mathbf{r}),$$

Local exchange-correlation term

 $\label{eq:exchange-correlation} \textit{Exchange-correlation energy} = \textit{Exchange-energy} + \textit{Correlation energy}$

$$E_{XC}[n] = E_X[n] + E_C[n]$$

From earlier:

$$E_{\mathrm{XC}}[n] = F_L[n] - T_s[n] - \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}')$$

We want to show: $E_c[n] \leq 0$

Here we have (assume $F_L[n] = F_{LL}[n]$)

$$F_{L}[n] \equiv \inf_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W} | \Psi \rangle$$
$$= \langle \Psi_{n}^{min} | \hat{T} + \hat{W} | \Psi_{n}^{min} \rangle,$$

and

$$T_{\mathcal{S}}[n] \equiv \inf_{\Psi \to n} \langle \Psi | \hat{T} | \Psi \rangle = \langle \Phi_n^{min} | \hat{T} | \Phi_n^{min} \rangle,$$

 $\Psi=$ normalized, antisymm. *N*-particle wavefunction, Φ_n^{min} lin. komb. of Slater determinants of single-particle orbitals $\psi_i(r_i)$

Eq. (4.35) in J. M. Thijssen: Computational Physics:

$$\begin{split} \langle \Phi_n^{min} | \hat{W} | \Phi_n^{min} \rangle &= \frac{1}{2} \sum_{k,l} \left[\iint d^3 r d^3 r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') \right. \\ &- \iint d^3 r d^3 r' \psi_l^*(\mathbf{r}) \psi_l(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \psi_k^*(\mathbf{r}') \psi_k(\mathbf{r}) \right] \end{split}$$

By definition,

$$E_{x}[n] \equiv -\frac{1}{2} \sum_{k,l} \iint d^{3}r d^{3}r' \psi_{l}^{*}(\mathbf{r}) \psi_{l}(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \psi_{k}^{*}(\mathbf{r}') \psi_{k}(\mathbf{r})$$

$$\begin{split} E_{c}[n] &= E_{\mathrm{XC}}[n] - E_{x}[n] \\ &= F_{L}[n] - T_{s}[n] - \frac{1}{2} \iint d^{3}r d^{3}r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') \\ &+ \frac{1}{2} \sum_{k,l} \iint d^{3}r d^{3}r' \psi_{l}^{*}(\mathbf{r}) \psi_{l}(\mathbf{r}') w(\mathbf{r}, \mathbf{r}') \psi_{k}^{*}(\mathbf{r}') \psi_{k}(\mathbf{r}) \\ &= \langle \Psi_{n}^{min} | \hat{T} + \hat{W} | \Psi_{n}^{min} \rangle - \langle \Phi_{n}^{min} | \hat{T} + \hat{W} | \Phi_{n}^{min} \rangle \\ &\langle \Psi_{n}^{min} | \hat{T} + \hat{W} | \Psi_{n}^{min} \rangle = \inf_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W} | \Psi \rangle, \\ &E_{c}[n] \leq 0 \end{split}$$

Since

we see that

$$E_c[n] \leq 0$$

Question: can we compute the 'exact' E_{XC} that enters DFT calculations? Yes! Let us define a continuous variable λ and a Hamiltonian which depends on this variable

$$\hat{H}_{\lambda} = \hat{T} + \lambda \hat{V} + \hat{V}_{\text{ext}},$$

where \hat{T} is the kinetic energy, \hat{V} is in our case the Coulomb interaction between two electrons an \hat{v}_{ext} is our external potential, here the two-dimensional harmonic oscillator potential.

For $\lambda=0$ we have the non-interacting system, whose solution in our case is a single Slater determinant for the ground state (non-degenerate case). For $\lambda=1$ we have the full interacting case.

The standard variational principle is to find the minimum of

$$E_{\lambda}[\hat{\mathbf{v}}_{\mathrm{ext}}] = \inf_{\Psi} \langle \Psi_{\lambda} | \hat{H}_{\lambda} | \Psi_{\lambda} \rangle,$$

with respect to the wave function Ψ_{λ} . If a maximizing potential $\hat{v}_{\rm ext}^{\lambda}$ exists, then according to the Hohenberg and Kohn, it is the one which has the density n as the ground state density and we have a functional

$$F_{\lambda}[n] = E_{\lambda}[\hat{v}_{\text{ext}}^{\lambda}] - \int d\mathbf{r} n(\mathbf{r}) \hat{v}_{\text{ext}}^{\lambda}(\mathbf{r}).$$

Which leads to the Lieb variational principle

$$F_{\lambda}[n] = \sup_{\hat{v}_{\text{ext}}} \left(E_{\lambda}[\hat{v}_{\text{ext}}^{\lambda}] - \int d\mathbf{r} n(\mathbf{r}) \hat{v}_{\text{ext}}^{\lambda}(\mathbf{r}) \right).$$

We define

$$F_{\lambda}[n] = \langle \Psi_{\lambda} | \hat{T} + \lambda \hat{V} | \Psi_{\lambda} \rangle,$$

which we rewrite as

$$F_{\lambda}[n] = \langle \Psi_{\lambda} | \hat{T} | \Psi_{\lambda} \rangle + \lambda J[n] + E_{XC}[n],$$

with the standard Hartree term

$$J = \frac{1}{2} \int d\mathbf{r}_1 d\mathbf{r}_2 n(\mathbf{r}_1) n(\mathbf{r}_2) V(r_{12}).$$

We want to find $E_{XC}[n]$ in

$$F_{\lambda}[n] = \langle \Psi_{\lambda} | \hat{T} | \Psi_{\lambda} \rangle + \lambda J[n] + E_{XC}[n].$$

To do this, since we use a variational method, we can employ the Hellmann-Feynman theorem, which states that

$$\Delta E = \int_{\lambda_1}^{\lambda_2} d\lambda \frac{\partial E_{\lambda}}{\partial \lambda} = \int_{\lambda_1}^{\lambda_2} d\lambda \langle \Psi_{\lambda} | \frac{\partial \hat{H}_{\lambda}}{\partial \lambda} | \Psi_{\lambda} \rangle.$$

Setting $\lambda_1 = 0$ and $\lambda_2 = 1$ we arrive at

$$\Delta E = \int_0^1 d\lambda \langle \Psi_\lambda | \hat{V} | \Psi_\lambda \rangle,$$

where the wave function at $\lambda=0$ is our single Slater determinant for the reference state. In the case of a VMC caclulation there would be no Jastrow factor. For $\lambda=1$ we can use our best variational Monte Carlo function. Note that \hat{V} is the full interaction at $\lambda=1$!

We wish to relate

$$\Delta E = \int_0^1 d\lambda \langle \Psi_\lambda | \hat{V} | \Psi_\lambda
angle,$$

to E_{XC} . Recalling that we defined

$$\langle \Psi_{\lambda} | \lambda \hat{V} | \Psi_{\lambda} \rangle = \lambda J[n] + E_{XC}[n],$$

we rewrite our equation as

$$E_{XC} = \int_0^1 d\lambda \langle \Psi_\lambda | \hat{W}_\lambda | \Psi_\lambda \rangle,$$

where

$$W_{\lambda} = \langle \Psi_{\lambda} | \lambda \hat{V} | \Psi_{\lambda} \rangle - J.$$

Using the fundamental theorem of calculus we have then

$$E_{XC} = \langle \Psi_1 | \hat{V} | \Psi_1 \rangle - \langle \Psi_0 | \hat{V} | \Psi_0 \rangle.$$

We need thus simply to compute the expectation value of \hat{V} for the single Slater determinant $\lambda=0$ and the fully correlated wave function with, if we do a VMC calculation, the Jastrow factor as well for the $\lambda=1$ case.

The total correlation energy, including kinetic energy is then (computed at a fixed density) equal to

$$E_C = \langle \Psi_1 | \hat{T} + \hat{V} | \Psi_1 \rangle - \langle \Psi_0 | \hat{T} + \hat{V} | \Psi_0 \rangle. \label{eq:ecc}$$

Define

$$E_{\nu_0}[n] := \langle \Psi[n] | \hat{T} + \hat{W} + \hat{V_0} | \Psi[n] \rangle$$

 $\hat{V_0}=$ external potential, $n_0(\mathbf{r})=$ corresponding GS density, $E_0=$ GS energy

Rayleigh-Ritz principle \implies second statement of H-K theorem:

$$E_0 = \min_{n \in \mathcal{N}} E_{\nu_0}[n]$$

Last satement of H-K theorem:

$$F_{HK}[n] \equiv \langle \Psi[n] | \hat{T} + \hat{W} | \Psi[n] \rangle$$

is universal $(F_{HK} \neq F_{HK}[\hat{V_0}])$

The Basic Kohn-Sham Equations

► So far:

H-K variational principle \implies exact GS density of many-particle system Practically intractable !!

Next step:

Kohn and Sham (1965): single-particle picture

→ equations solved selfconsistently (iterative scheme)

Hamiltonian of *N non-interacting* particles:

$$\hat{H}_{s}=\hat{T}+\hat{V}_{s}$$

Hohenberg and Kohn \implies \exists unique energy functional

$$E_s[n] = T_s[n] + \int v_s(\mathbf{r}) n(\mathbf{r}) d^3r$$

s. t. $\delta E_s[n] = 0$ gives GS density $n_s(\mathbf{r})$ corresp. to \hat{H}_s

Theorem

Let

- $v_s(\mathbf{r}) = local single-particle pot.,$
- $n(\mathbf{r}) = GS$ density of interacting system,
- $n_s(\mathbf{r}) = GS$ density of non-interacting system

→ for any interacting system,

$$\exists a v_s(\mathbf{r}) s. t. n_s(\mathbf{r}) = n(\mathbf{r})$$

Proof in book by Dreizler/Gross, Sec. 4.2

Assume nondegenerate GS. Then

$$n(\mathbf{r}) = n_s(\mathbf{r}) = \sum_{i=1}^N |\phi_i(\mathbf{r})|^2$$
,

where $\phi_i(\mathbf{r})$ are determined by

$$\left(-\frac{\hbar^2}{2m}\nabla^2+\nu_s(\mathbf{r})\right)\phi_i(\mathbf{r})=\varepsilon_i\phi_i(\mathbf{r}), \qquad \varepsilon_1\leq \varepsilon_2\leq \dots.$$

If $\exists v_s(\mathbf{r})$, then H-K theorem gives *uniqueness* of $v_s(\mathbf{r})$ Consequently, we may write

$$\phi_i(\mathbf{r}) = \phi_i([n(\mathbf{r})])$$

Assume

$$v_0(\mathbf{r}) = \text{ext. potential}$$

 $n_0(\mathbf{r}) = \text{GS density}$

of interacting system

ightharpoonup Wanted: single-particle potential $v_s(\mathbf{r})$ of non-interacting system

Exchange-correlation functional

Many-particle energy functional:

$$E_{v_0}[n] = F_L[n] + \int d^3v_0(\mathbf{r})n(\mathbf{r})$$

$$= \left(T_s[n] + \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r})w(\mathbf{r}, \mathbf{r}')n(\mathbf{r}') + E_{XC}[n]\right) + \int d^3r v_0(\mathbf{r})n(\mathbf{r})$$

Here exchange-correlation functional defined:

$$E_{\text{XC}}[n] = F_L[n] - \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') - T_s[n]$$

The exchange-correlation functional defined:

$$E_{\mathrm{XC}}[n] = F_L[n] - \frac{1}{2} \iint d^3r d^3r' n(\mathbf{r}) w(\mathbf{r},\mathbf{r}') n(\mathbf{r}') - T_s[n]$$

Explicit form of $F_L[n]$ as functional of n unknown

 E_{XC}[n] unknown functional, must be approximated Otherwise, Kohn-Sham scheme exact

Definition

Let $F: B \to \mathbb{R}$ be a *functional* from normed function space B to real numbers \mathbb{R} .

The functional derivative (Gâteaux derivative) $\delta F[n] \equiv \delta F[n]/\delta n(\mathbf{r})$ is defined as

$$\frac{\delta F}{\delta n}[\varphi] = \lim_{\varepsilon \to 0} \frac{F[n + \varepsilon \varphi] - F[n]}{\varepsilon}$$

Another useful definition of $\delta F[n]$:

$$\langle \delta F[n], \varphi \rangle = \left. \frac{d}{d\varepsilon} F[n + \varepsilon \phi] \right|_{\varepsilon = 0},$$

where

$$\langle \delta F[n], \varphi \rangle \equiv \int d\mathbf{r} (\delta F[n(\mathbf{r})]) \varphi(\mathbf{r}),$$

 $\varphi = {\sf test} \ {\sf function}$

Gradient expansion

The gradient expansion approximation (GEA) – a natural extension of LDA ??

Taylor expansion of $E_{\rm XC}[n]$ around homogeneous electron gas (HEG) density $n_0 \quad ((n-n_0)/n_0 \ll 1)$:

$$E_{\mathrm{XC}}[n] = E_{\mathrm{XC}}[n_0] + \sum_{m=1}^{\infty} \frac{1}{m!} \int d^{3m} r \frac{\delta^m E_{\mathrm{XC}}}{\delta n(\mathbf{r}_1) \dots \delta n(\mathbf{r}_m)} \Bigg|_{n=n_0} \delta n(\mathbf{r}_1) \dots \delta n(\mathbf{r}_m)$$

Gradient expansion

Shown in article by van Leeuwen:

Expansion can be written

$$E_{\text{XC}}[n] = E_{\text{XC}}^{LDA}[n] + \int d^3r g_1(n(\mathbf{r}))(\nabla n(\mathbf{r}))^2$$
$$+ \int d^3r g_2(n(\mathbf{r}))(\nabla^2 n(\mathbf{r}))^2 + \dots,$$

 $g_i(n)$ uniquely determined by the density response functions of a HEG

Gradient expansion in principle exact, provided series converges

Metallic systems: good convergence lnsulators: bad convergence bad convergence bad convergece

Caution!

Numerical tests show: Inclusion of second-order gradient term may give a considerably worse $E_{\rm XC}[n]$ than $E_{\rm XC}^{LDA}[n]$

Why?

 $E_{\mathrm{XC}}^{LDA}[n]$ provides rather realistic results for atoms, molecules, and solids

But: second-order term (next systematic correction

for slowly-varying densities) makes $E_{\rm XC}$ worse

Why does gradient expansion fail?

- 1. Realistic electron densities not very close to slowly-varying limit
- 2. LDA: xc hole is the hole of a possible physical system ⇒ satisfies exact constraints
 - GEA: xc hole not physical
 - ⇒ does not satisfy constraints

Example of constraints:

Physical constraint	LDA	GEA
$E_c < 0$	< 0	> 0
$E_{x} < 0$	< 0	not restricted
$\int h_{\rm XC}(\mathbf{r}_1;\mathbf{r}_2)d\mathbf{r}_2 = -1$	-1	not restricted

⇒ Wrong behaviour of GEA

The Generalized Gradient Approximation

Method: Enforce physical restrictions for the xc hole ⇒ Generalized gradient approximation (GGA):

$$E_{\mathrm{XC}}^{GGA}[n_{\uparrow},n_{\downarrow}] = \int d^3r f(n_{\uparrow},n_{\downarrow},\nabla n_{\uparrow},\nabla n_{\downarrow})$$

- ► $f(n_{\uparrow}, n_{\downarrow}, \nabla n_{\uparrow}, \nabla n_{\downarrow})$ not unique, but formal features of LDA \implies constraints
- GGA-functionals with/without semiempirical parameters
- Successful in quantum chemistry
- No systematic approach to improve GGA-functionals

Typical errors for atoms, molecules, and solids (Perdew/Kurth):

Property	LDA	GGA
E _x	5% (not negative enough)	0.5%
E_c	100% (too negative)	5%
bond length	1% (too short)	1% (too long)
structure	overly favours close packing	more correct
energy barrier	100% (too low)	30% (too low)

- GGA in most cases better than LDA
- ▶ Typically cancellation of errors between E_x and E_c
- "Energy barrier" = barrier to a chemical reaction

Situations where GGA fails:

Unaccurate results for heavy elements

Does not predict existence of **negative ions**

Fails to reproduce **dispersion forces** (\approx van der Waals forces)

Can not describe properly strongly correlated systems

GGA gives unaccurate results for **heavy elements**:

Gold (Au):

	Canadilla di ma	0-1
$E_{\rm XC}[n]$	Equilibrium	Cohesive
	lattice constant	energy
LDA	7.68	4.12
relativistic LDA	7.68	4.09
GGA	7.87	2.91
relativistic GGA	7.88	2.89
experiment	7.67	3.78

- Here: LDA better than GGA
- Problem not due to relativistic effects
- ▶ GGA: problems with high angular momenta (higher ion charge ⇒ higher electron angular momentum)

GGA does not predict existence of negative ions:

For neutral atoms exactly:

$$v_s(\mathbf{r}) \xrightarrow[r \to \infty]{} -\frac{1}{r}$$

⇒ additional electron feels a Coulomb-like potential

⇒ Rydberg series of excited states

 \implies necessary criterion for negative ion state fulfilled

In LDA:

$$v_s(\mathbf{r}) \xrightarrow[r \to \infty]{} \exp(-\alpha r)$$

→ not able to bind additional electron (negative ion)

Same problem with GGA