

Evolutionary Algorithms

TCTI-VKAAI-17: Applied Artificial Intelligence

Huib Aldewereld

Leerdoelen

- Na deze les kan de student:
 - Concepten van evolutionaire algoritmen, bijv. crossover, mutation, selection, uitleggen en toepassen.
 - Een selectie van machine learning technieken toepassen en beperkingen daarvan uitleggen.

Inhoudsopgave

- Herhaling
- Evolving parameters & structure
- Evolving weights
- Opdracht

3

Herhaling

- Optimalisatie geïnspireerd op biologische evolutie
- Standaard procedure:

Maar hoe passen we dit nu toe op deep learning?

Inhoudsopgave

- Herhaling
- Evolving parameters & structure
- Evolving weights
- Opdracht

5

Neuro-evolutie: structuur

- Zoekruimte:
 - # neuronen, # lagen, gebruikte activatiefuncties, verbindingen

Chromosome:

Gěne

Inhoudsopgave

- Herhaling
- Evolving parameters & structure
- Evolving weights
- Opdracht

Neuro-evolution: weights

- Verander de gewichten (bijv. d.m.v. mutatie) en bepaal of je netwerk beter wordt (hogere fitness)
- Bepaal fitness d.m.v. Cost function

- Crossover vaak te destructief
 - Wat doet crossover eigenlijk in dit geval?
- Backpropagation vaak beter
 - Minder parameters om optima te vinden
 - Sneller op grotere netwerken
- GA's beter op zoekruimtes met veel lokale minima

9

Inhoudsopgave

- Herhaling
- Evolving parameters & structure
- Evolving weights
- Opdracht

Neuro-evolution

"Herken de TI docent"

- A. Schrijf een evolutionair algoritme om de structuur van een NN te bepalen
- B. Implementeer de NNs met een library
 - Bijv. TensorFlow, Theano, PyTorch

Dataset:

etc.

Wie is dit?