CS 6023 - GPU Programming Adv. Memory Tiling, CUDA Events

29/08/2018

Agenda

- Tiling
 - o Tile size,
 - Irregular matrices,
 - Control divergence,
 - Memory access patterns
- CUDA events

Acknowledgement: Nvidia teaching kit

Announcement

Quiz on 5th Sept Wed at 4:50pm. Any concerns with scheduling?

Objective questions (25 questions for 40 mins)

Syllabus: Topics till this lecture (Lec 6)

Slides will be up by today

The CUDA kernel for tiled matrix multiplication

```
__qlobal__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
 __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
 __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 int Row = by * blockDim.y + ty;
 int Col = bx * blockDim.x + tx:
 float Pvalue = 0:
// Loop over the M and N tiles required to compute the P element
 for (int p = 0; p < Width/TILE_WIDTH; ++p) {</pre>
   // Collaborative loading of M and N tiles into shared memory
   ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
   ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
   __syncthreads();
   for (int i = 0; i < TILE_WIDTH; ++i)</pre>
        Pvalue += ds_M[ty][i] * ds_N[i][tx];
   __synchthreads();
 P[Row*Width+Col] = Pvalue:
```

- We have seen how to choose the block, threads based on number of threads / SM, blocks / SM and threads / warp. Now we have an additional parameter tile size
- For tile of size 16 x 16

• For tile of size 32 x 32

- We have seen how to choose the block, threads based on number of threads / SM, blocks / SM and threads / warp. Now we have an additional parameter tile size
- For tile of size 16 x 16
 Number of loads from global memory in each phase = 2 x 16 x 16 = 512 floats
 Number of addition / multiplication operations in each phase = 256 x 16 x 2 = 8,192 ops
 Computational intensity = 8,192 / 512 = 16 ops/float
- For tile of size 32 x 32

- We have seen how to choose the block, threads based on number of threads / SM, blocks / SM and threads / warp. Now we have an additional parameter tile size
- For tile of size 16 x 16

Number of loads from global memory in each phase = $2 \times 16 \times 16 = 512$ floats Number of addition / multiplication operations in each phase = $256 \times 16 \times 2 = 8,192$ ops Computational intensity = 8,192 / 512 = 16 ops/float

For tile of size 32 x 32

Number of loads from global memory in each phase = $2 \times 32 \times 32 = 2,048$ floats Number of addition / multiplication operations in each phase = $1024 \times 32 \times 2 = 65,536$ ops Computational intensity = 65,536 / 2048 = 32 ops/float

- We have seen how to choose the block, threads based on number of threads / SM, blocks / SM and threads / warp. Now we have an additional parameter tile size
- For tile of size 16 x 16
 Number of loads from global memory in each phase = 2 x 16 x 16 = 512 floats
 Number of addition / multiplication operations in each phase = 256 x 16 x 2 = 8,192 ops
 Computational intensity = 8,192 / 512 = 16 ops/float
- For tile of size 32 x 32
 Number of loads from global memory in each phase = 2 x 32 x 32 = 2,048 floats
 Number of addition / multiplication operations in each phase = 1024 x 32 x 2 = 65,536 ops
 Computational intensity = 65,536 / 2048 = 32 ops/float
- Easy to show that for T x T tile, the computational intensity is T ops/float

But, the full picture is much more complicated

- But, the full picture is much more complicated
- Already seen, that 32x32 tile requires 1,024 threads and if we have 1,536 max.
 threads per core then we can have only 1 block! For 16x16 tile we can have 6
 blocks covering the full 1,536 threads
- Why do we want more threads in an SM?

But could we want less threads in a block?

- But, the full picture is much more complicated
- Already seen, that 32x32 tile requires 1,024 threads and if we have 1,536 max.
 threads per core then we can have only 1 block! For 16x16 tile we can have 6
 blocks covering the full 1,536 threads
- Why do we want more threads in an SM?
 - o In the load stage of any phase, each thread wants to read two floats
 - Thus, for an SM we have 2 * 256 * 6 = 3,072 pending loads => Hide latency
- But could we want less threads in a block?

- But, the full picture is much more complicated
- Already seen, that 32x32 tile requires 1,024 threads and if we have 1,536 max.
 threads per core then we can have only 1 block! For 16x16 tile we can have 6
 blocks covering the full 1,536 threads
- Why do we want more threads in an SM?
 - In the load stage of any phase, each thread wants to read two floats
 - Thus, for an SM we have 2 * 256 * 6 = 3,072 pending loads => Hide latency
- But could we want less threads in a block?
 - -_syncthreads() adds synchronization which suffers from Amdahl's law
 Fewer threads means lesser chance of threads waiting

Working with arbitrary matrix sizes

- So far, looked at square matrices, where tile size (= block size) is a divisor of the matrix dimension
- In general, these will not be true
- Easy extension to rectangular matrices (you will work on it in the assignment)
- Let's look at non-divisor tile size
- One option: Pad matrix with zeros to make its size a multiple of the tiles
 - Actually not a bad option
 - Main downside is memory bandwidth
- We will look at modifying the compute kernels instead

Tiling with arbitrary size

Tiling with arbitrary size

Different corner cases

Two classes of threads in corner cases:

- Threads that do not calculate valid P elements but still need to participate in loading the input tiles
 - Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent
 P[3,2] but needs to participate in loading tile element N[1,2]
- Threads that calculate valid P elements may attempt to load non-existing input elements when loading input tiles
 - Phase 1 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but attempts to load non-existing N[3,0]

An easy solution that works for matrix multiplication

- When loading a value, check if the range is valid
 - If not, simply load 0
 - For reading M[Row][p*TILE_WIDTH+tx] need to test:

```
(Row < Width) && (p*TILE_WIDTH+tx < Width)
```

For reading N[p*TILE_WIDTH+ty][Col] need to test:

```
(p*TILE_WIDTH+ty < Width) && (Col < Width)</pre>
```

- When writing a value to product, check if the range is valid
 - If not, don't write
 - For writing P[Row][Col] need to test: Row < Width && Col < Width
- Different conditions for loading M, N, and for writing P => Code in assignment

Control divergence with irregular sizes

- The if conditions introduced will lead to control divergence of warps
- Useful exercise to compute the maximum cost of such divergence
- Let us just consider the case of loading M
- Define two types of blocks
 - Type 1: Blocks whose tiles have valid range until the last phase
 - Type 2: Blocks whose tiles never have valid range

Sample calculation

Consider a matrix of size 100x100, tiles and blocks of size 16x16

- There are a total of 49 (= square(ceil(100/16))) thread blocks
- Each block has 256 (=16x16) threads and 8 (=256/32) warps
- Each thread goes through 7 (= ceil(100/16)) phases

- How many Type 1 and Type 2 blocks?
- How many of these have warp phases with divergence?

How are warps organized?

and controlling thread divergence

- Each block is split in to warps of size 32, but in what order?
- The thread blocks are linearized into one-dimensional order in row-major order
- First x, then y, and finally z dimension $T_{0,1}$ $T_{0.3}$ Then, the threads are partitioned into T_{1,2} $T_{1,0} \mid T_{1,1} \mid$ $T_{1,3}$ logical 2-D warps in consecutive portions for 32 organization $T_{2,2}V$ $T_{2,0} | T_{2,1} |$ This partitioning scheme is $T_{3,0}$ $T_{3,1}$ $T_{3,2}$ T_{3} consistent though the number of threads / warp may change $T_{0,2} \mid T_{0,3} \mid T_{1,0} \mid T_{1,1} \mid T_{1,2} \mid T1_{1,3} \mid T_{2,0} \mid$ $T_{2,1} \mid T_{2,2} \mid T_{2,3} \mid T_{3,0} \mid T_{3,1} \mid T_{3,2} \mid T_{3,3}$ Useful in understanding

linear order

Sample calculation

- Type 1 blocks are 42 (=6 x 7), with 336 (=42x8) warps, with 2,352 (=336x7) phases
- Control divergence only in the last phase = 336 warp phases

Sample calculation

- Type 1 blocks are 42 (=6 x 7), with 336 (=42x8) warps, with 2,352 (=336x7) phases
- Control divergence only in the last phase = 336 warp phases

- Type 2 blocks are 7 with 56 (=7x8) warps, with 392 (=56x7) phases
- The last 6 warps have no divergence. The first two have divergence only for the last phase
- So, only 2 x 7 = 14 warp phases have divergence
- Total performance impact = (336+14)/(2,352+392)= 12.7 %

Insight

- Even if there are conditional statements, we may not have performance overhead with control divergence, due to the way the warps are assigned
- Arrange your threads with control divergence in mind

- Control divergence from boundary conditions are typically insignificant (due to large matrix sizes)
- We will see some examples of problems where control divergence is more natural and optimizing that will give significant improvement in performance

DRAM

- DRAM stores bits in tiny capacitors arranged in rows and columns
- They are slow!
- DDR3/GDDR4 has 1/8th
 clock of the bus => Need to
 read 8 x bus_width bits
 from the same row to
 internal buffer

Access timing

 Need to be able to read multiple values from same row to benefit from burst timing

Multiple DRAM banks

 Second optimization is to have banked memories and access

Burst sections

- Address space is partitioned into burst sections
- In these examples we will use a 16 byte address space with burst sections which are 4 bytes
- In real cases, we have address spaces in order of GBs and burst sections in orders of hundreds of KBs

Coalesced loads

Matrix multiplication

- Toy example of mapping a 4x4 matrix to our address space and burst sections
- Matrix is stored in row major order

Non-tiled matrix multiplication

- Let's say we are computing A x B
- A is accessed row wise and B in column wise
- Which access pattern benefits from memory coalescing?

Access pattern of A

Notice here the difference between locality in serial programs vs a GPU kernel

Access pattern of B

Accessing B has coalesced loads

What happens with tiling?

- Reading A is uncoalesced and B is coalesced
- How can we improve this?
- Turns out tiling (which had other benefits) also solves this problem for us with no additional change

What happens with tiling

- When we load tiles to the shared memory, threads of the same warp are accessing contiguous memory locations (modulo boundaries)
- Thus we benefit from burst accesses
- Again, this benefit increases with tile size

Tiling as a memory pattern

- In most applications, need to increase computational intensity. One option is to employ shared memory in case of data reuse
- Tiling as a memory pattern works if threads have matching temporal and spatial requirements in their memory accesses
- Share the task of loading data across threads and cooperatively work on loaded data
- Several considerations in choosing the right tile size
- Multiplicative effect on performance due to both increase computational intensity and DRAM coalesced load pattern

CUDA Events

```
cudaMemcpy(d_m, m, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_n, n, N*N*sizeof(float), cudaMemcpyHostToDevice);
... // Region A
matrix_multiply<<<..., ...>>>(..., ...);
... // Region B
cudaMemcpy(p, d_p, N*N*sizeof(float), cudaMemcpyDeviceToHost);
... // Region C
```

- The cudaMemcpy functions are blocking
 - Kernel invocation does not happen until m and n have been sent to device
 - Similarly for copying p to host
- Thus, region B gets executed concurrently with the kernel execution, whereas region C waits for the memCpy

```
cudaMemcpy(d_m, m, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_n, n, N*N*sizeof(float), cudaMemcpyHostToDevice);
t1 = myCPUTimer();
matrix_multiply<<<..., ...>>>(..., ...);
t2 = myCPUTimer();
cudaMemcpy(p, d_p, N*N*sizeof(float), cudaMemcpyDeviceToHost);
```

- Example cpu timers: gettimeofday or clock_gettime
- Will this work for measuring the time taken by the kernel?

```
t1 = myCPUTimer();
cudaMemcpy(d_m, m, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_n, n, N*N*sizeof(float), cudaMemcpyHostToDevice);
matrix_multiply<<<..., ...>>>(..., ...);
cudaMemcpy(p, d_p, N*N*sizeof(float), cudaMemcpyDeviceToHost);
t2 = myCPUTimer();
```

Will this work for measuring the time taken by the kernel and memcopy?

```
cudaMemcpy(d_m, m, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_n, n, N*N*sizeof(float), cudaMemcpyHostToDevice);
t1 = myCPUTimer();
matrix_multiply<<<..., ...>>>(..., ...);
cudaDeviceSynchronize();
t2 = myCPUTimer();
cudaMemcpy(p, d_p, N*N*sizeof(float), cudaMemcpyDeviceToHost);
```

- Explicit synchronization between host and device
- cudaDeviceSynchronize blocks all CPU execution until all pending device commands have been executed
- Limitation => stalls GPU execution

CUDA events

- CUDA events API provides a lightweight alternative to CPU timers
- Allows creation, destruction, recording, and computation of elapsed time
- CUDA events are based on a concept called CUDA streams which we will study later in the course (~ mid Sept)
- Provides resolution with errors of about half a micro-second

Timing CUDA program with CUDA events

```
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaMemcpy(d_m, m, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_n, n, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaEventRecord(start);
matrix_multiply<<<..., ...>>>(..., ...);
                                                         Will this work?
cudaEventRecord(stop);
cudaMemcpy(p, d_p, N*N*sizeof(float), cudaMemcpyDeviceToHost);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);
```

Timing CUDA program with CUDA events

```
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaMemcpy(d_m, m, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_n, n, N*N*sizeof(float), cudaMemcpyHostToDevice);
cudaEventRecord(start);
matrix_multiply<<<..., ...>>(..., ...);
cudaEventRecord(stop);
cudaMemcpy(p, d_p, N*N*sizeof(float), cudaMemcpyDeviceToHost);
cudaEventSynchronize(stop);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, stop);
```