Charm physics at BESIII

Martin Tat, on behalf of the BESIII Collaboration

University of Oxford

FPCP Conference

30th May 2023

Outline

- 1 Charm physics at the BESIII experiment
- $2 D \rightarrow K^-\pi^+$
- 3 $D \to K^- \pi^+ \pi^- \pi^+$

The BESIII experiment

- BEPCII is a symmetric e^+e^- collider with a peak luminosity of $1\times 10^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ at $\sqrt{s}=3.773\,\mathrm{GeV}$
- Tracking: Helium-based multilayer drift chamber (MDC)
- \bullet PID: Plastic scintillator TOF system and $\frac{dE}{dx}$
- Magnet: 1.0 T superconducting solenoid
- Neutral particle tracking: CsI(TI) electromagnetic calorimeter (EMC)

Overview of (left) BEPCII and (right) BESIII

Recent charm results from BESIII

BESIII has a rich programme of charm physics:

- Strong-phase measurements
 - Measurement of $\delta_{K\pi}$ EPJC **82** 1009 (2022)
 - $D \rightarrow K^-\pi^+\pi^-\pi^+$ strong-phase measurement JHEP **5** (2021) 164
 - $D \rightarrow K^+K^-\pi^+\pi^ F_+$ measurement Phys. Rev. D **107** 032009
- Amplitude analysis
- Semileptonic charm decays
- Searches for rare decays
- Branching fraction measurements

No time to cover all topics in this talk! I will mainly focus on strong-phase measurements in charm decays

Double-tag analysis

Double-tag method

The *D* mesons are produced in a quantum correlated state:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|D^0\rangle |\bar{D^0}\rangle - |\bar{D^0}\rangle |D^0\rangle \right)$$

Double-tag analysis

Double-tag method

Equivalently, we can consider the CP even (odd) eigenstates D_+ (D_-): $|\psi\rangle=\frac{1}{\sqrt{2}}\big(|D_+\rangle|D_-\rangle-|D_-\rangle|D_+\rangle\big)$

Double-tag analysis

Double-tag analysis has many advantages:

- **1** $D\bar{D}$ pairs are quantum correlated, which provide direct access to the D^0 - D^0 strong-phase difference
- Measurement are, to first order, free from systematic uncertainties due to efficiencies and branching fractions
- Full reconstruction ensures that the environment is extremely clean

Only one minor drawback:

Lower statistics

$D o K^-\pi^+$

EPJC 82 1009 (2022)

Improved measurement of the strong-phase difference $\delta_D^{K\pi}$ in quantum-correlated $D\bar{D}$ decays

What is measured:

ullet Strong-phase difference between CF and DCS $D o K^\mp\pi^\pm$ decays

Analysis strategy:

- Extensive use of $D o K_L^0 X$ tags
- ullet Independent determinations of $D o K^0_L X$ branching fractions

Significance:

- \bullet Most precise measurement of $\delta_D^{K\pi}$ in quantum-correlated $D\bar{D}$ decays
- \bullet Complementary to γ and charm combination from LHCb

$$D \rightarrow K^-\pi^+\pi^-\pi^+$$

JHEP 5 (2021) 164

Measurement of the $D \to K^-\pi^+\pi^-\pi^-$ and $D \to K^-\pi^+\pi^0$ coherence factors and average strong-phase differences in quantum-correlated $D\bar{D}$ decays

What is measured:

- Strong-phase difference and coherence factors between CF and DCS $D \to K^{\mp} \pi^{\pm} \pi^{\mp} \pi^{\pm}$ decays in phase space bins
- Phase-space integrated analysis of $D o K^\mp \pi^\pm \pi^0$

Analysis strategy:

Binning of 5D phase space enhances the coherence factors

Significance:

ullet Crucial input to one of the most precise measurements of γ

$D o K^+K^-\pi^+\pi^{-1}$

Phys. Rev. D 107 032009

Measurement of the *CP*-even fraction of $D^0 \to K^+K^-\pi^+\pi^-$

What is measured:

ullet Phase-space integrated strong-phase analysis of $D o K^+K^-\pi^+\pi^-$

Analysis strategy:

- Uses a combination of CP and multi-body tags
- Novel partially reconstructed technique to mitigate low efficiencies

Significance:

- First model-independent study of the CP content of this decay
- Will complement the existing charm decay modes, both binned and phase-space integrated, that are used for γ and D^0 - $\bar{D^0}$ mixing studies