Adv Graphics 1999 p7 Mod Ans. (a) a circle in the xy plane is: $x^2+y^2=r^2$ page 1 a torus aligned so that the z-axis passes through the hole is: $(12310)^2$ -2 -2 $(\sqrt{x^2+y^2}-R)^2+Z^2=\Gamma^2$ where I is the radius of the toroidal cross-section and R is the distance from the origin to the centre line of the torus (b) given the ray R(t) = Q + tP, ost, where R, Q, and P are 3D vectors we put R(t) into the torus equation and solve for t $(\sqrt{(x_0+tx_p)^2+(y_0+ty_p)^2}-R)^2+(z_0+tz_p)^2-r^2=0$ $\Rightarrow (x_0 + tx_p)^2 + (y_0 + ty_p)^2 + (z_0 + tz_p)^2 + R^2 - r^2 = 2R \sqrt{(x_0 + tx_p)^2 + (y_0 + ty_p)^2}$ Squaring both sides and rearranging terms will lead to $At^4 + Bt^3 + Ct^2 + Dt + E = 0$ for example A = xp4 + yp4 + Zp4 Putting this into the Quartic root finder (provided) will give the four roots of the equation. The smallest real non-negative value, if it exists is the desired intersection point.

If it does not exist then there is no lintersection point.

AG 1999/7/p2 (c) Construct the eight fonts shown:

Pt. Ps., Po P. 1 P, P, P, P, P, are, the vertices of a square Po, P2, P4, P6, P8 are the midpoints of the sides o P____ Pg . Po = Ps P5 P4 Use a quadratic B-spline basis. Use the knot vector [000112233444] Use the homogeneous co-ordinate vector [12/2/2] where $\propto = \sqrt{2}$ $P_{o} = \frac{(1-t)^{2}P_{o} + 2 \times t(1-t)P_{o} + t^{2}P_{o}}{P_{o} + 2 \times t(1-t)P_{o} + t^{2}P_{o}}$ $(1-t)^2 + 2 \times t(1-t) + t^2$ P_2 (1,0) to fit a circle require |P(t)| = 1, $0 \le t \le 1$ $\Rightarrow \frac{((1-t)^2 + 2 + t(1-t))^2 + (2 + t(1-t) + t^2)^2}{((1-t)^2 + 2 + t(1-t) + t^2)^2} = 1, \quad 0 \le t \le 1$ Let this be: $\frac{N}{D} = 1$; $N = a_N t^4 + b_N t^3 + c_N t^2 + d_N t + e_N$ D= a, t4+b, t3+c, t2+d, t+e, this is $(x(t))^{2} + (y(t))^{2} = 1$

	AG 1999/7/p3
	NAD
oo we require $a_N = a_D$, $b_N - b_D$, $c_N = c_D$, d_N	=d, e,=e,
Taking just the first of this we can quice of co-efficients of the by inspection:	Jan Jan
$a_N = 1 + 4\alpha^2 - 4\alpha + 4\alpha^2 - 4\alpha + 1 =$	2-82+822
$a_{N} = 1 + 4\alpha^{2} - 4\alpha + 4\alpha^{2} - 4\alpha + 1 = $ $a_{D} = 1 + 4\alpha^{2} + 1 + 2 - 4\alpha - 4\alpha = $	4-80 + 402
setting $a_N = a_D$ gives $\alpha = \frac{1}{\sqrt{2}}$ as	required
The equations for b & c give the same resu	It; in those for
The equations for b to c give the same result ont giving the	équation 10=0.
basis and the Circle definition to	position & control
d) To make a tonus you would use a br- basis and the circle definition to points in space:	<i>) , , ,</i>
	at each control
	circle we place
	a copy of the control pol-to for
	the smaller circle
	oriented as shown
	in this plan view.
	this set of 64 points controls the biguadratic surface
	points controls the
	biguadratic svrface
$1 + 1 + (20) \cdot 0(1) - \sum_{i=1}^{n} D_{i}(i)$	J
Instead of (2D): $P(t) = \sum_{i=0}^{n} P_i N_{i,3}(t)$	
we get (3D): $P(s,t) = \sum_{i=0}^{m} \sum_{j=0}^{n} P_{i,j} M_{i,3}(s)$	$N_{c3}(t)$
(i=0,j=0)	- tul
where Pivis homogeneous co-ordinate -	for the define points
4 Pij.	, , ,