

Introdução Sistemas Embarcados

Bruno Prado

Departamento de Computação / UFS

▶ O que é um sistema embarcado?

- O que é um sistema embarcado?
 - ► É um sistema computacional de <u>função dedicada</u> que está incorporado em um sistema elétrico e/ou mecânico para <u>controle</u> de sua operação

- O que é um sistema embarcado?
 - É um sistema computacional de <u>função dedicada</u> que está incorporado em um sistema elétrico e/ou mecânico para controle de sua operação
 - <u>Automotivo</u>: airbag, injeção eletrônica e anti-travamento de freios (ABS)

- O que é um sistema embarcado?
 - É um sistema computacional de <u>função dedicada</u> que está incorporado em um sistema elétrico e/ou mecânico para controle de sua operação
 - <u>Automotivo</u>: airbag, injeção eletrônica e anti-travamento de freios (ABS)
 - <u>Aviação</u>: sistemas anti-colisão, de posicionamento global (GPS) e de vôo não tripulado (UAV)

- O que é um sistema embarcado?
 - É um sistema computacional de <u>função dedicada</u> que está incorporado em um sistema elétrico e/ou mecânico para controle de sua operação
 - <u>Automotivo</u>: airbag, injeção eletrônica e anti-travamento de freios (ABS)
 - <u>Aviação</u>: sistemas anti-colisão, de posicionamento global (GPS) e de vôo não tripulado (UAV)
 - Bens de consumo: celular, dispositivos vestíveis, eletrodomésticos e televisão inteligentes

- O que é um sistema embarcado?
 - ▶ É um sistema computacional de <u>função dedicada</u> que está incorporado em um sistema elétrico e/ou mecânico para controle de sua operação
 - <u>Automotivo</u>: airbag, injeção eletrônica e anti-travamento de freios (ABS)
 - Aviação: sistemas anti-colisão, de posicionamento global (GPS) e de vôo não tripulado (UAV)
 - Bens de consumo: celular, dispositivos vestíveis, eletrodomésticos e televisão inteligentes
 - Internet das Coisas (IoT): lâmpada, medidor de eletricidade e fechaduras conectadas à Internet

- O que é um sistema embarcado?
 - É um sistema computacional de <u>função dedicada</u> que está incorporado em um sistema elétrico e/ou mecânico para controle de sua operação
 - <u>Automotivo</u>: airbag, injeção eletrônica e anti-travamento de freios (ABS)
 - Aviação: sistemas anti-colisão, de posicionamento global (GPS) e de vôo não tripulado (UAV)
 - Bens de consumo: celular, dispositivos vestíveis, eletrodomésticos e televisão inteligentes
 - Internet das Coisas (IoT): lâmpada, medidor de eletricidade e fechaduras conectadas à Internet
 - Sistemas médicos: equipamento para exames de imagem, marcapasso e monitoramento de sinais vitais

- O que é um sistema embarcado?
 - É um sistema computacional de <u>função dedicada</u> que está incorporado em um sistema elétrico e/ou mecânico para <u>controle</u> de sua operação
 - <u>Automotivo</u>: airbag, injeção eletrônica e anti-travamento de freios (ABS)
 - Aviação: sistemas anti-colisão, de posicionamento global (GPS) e de vôo não tripulado (UAV)
 - Bens de consumo: celular, dispositivos vestíveis, eletrodomésticos e televisão inteligentes
 - Internet das Coisas (IoT): lâmpada, medidor de eletricidade e fechaduras conectadas à Internet
 - <u>Sistemas médicos</u>: equipamento para exames de imagem, marcapasso e monitoramento de sinais vitais

98% dos microprocessadores fabricados são usados em sistemas embarcados

▶ Microcontrolador × microprocessador

Microcontrolador

Como diferenciar um sistema embarcado de outros sistemas computacionais?

- Como diferenciar um sistema embarcado de outros sistemas computacionais?
 - Sistema ciber-físico (CPS): integra aplicações computacionais de múltiplo domínio (ciber) em um ambiente de atuação, comunicação e sensoriamento (físico)

Como diferenciar um sistema embarcado de outros sistemas computacionais?

- Como diferenciar um sistema embarcado de outros sistemas computacionais?
 - Sistema de tempo real (RTS): as operações devem ser realizadas em um determinado intervalo de tempo

 Suave (soff): o atraso no prazo não deixa o sistema inoperante (lentidão em sistema multimídia)

- Como diferenciar um sistema embarcado de outros sistemas computacionais?
 - Sistema de tempo real (RTS): as operações devem ser realizadas em um determinado intervalo de tempo

- Suave (soff): o atraso no prazo não deixa o sistema inoperante (lentidão em sistema multimídia)
- <u>Firme (firm)</u>: resultados não úteis após o deadline (avisar falta de combustível após falha)

- Como diferenciar um sistema embarcado de outros sistemas computacionais?
 - Sistema de tempo real (RTS): as operações devem ser realizadas em um determinado intervalo de tempo

- Suave (soff): o atraso no prazo não deixa o sistema inoperante (lentidão em sistema multimídia)
- <u>Firme (firm)</u>: resultados não úteis após o deadline (avisar falta de combustível após falha)
- <u>Rígida (hara)</u>: impacto catastrófico no sistema (não acionamento do airbag durante colisão)

Questões chave em sistemas embarcados

- Questões chave em sistemas embarcados
 - Como definir a arquiteturas mais adequada entre as várias disponíveis? ARM? AVR? RISC-V?

- Questões chave em sistemas embarcados
 - Como definir a arquiteturas mais adequada entre as várias disponíveis? ARM? AVR? RISC-V?
 - Qual será o custo efetivo de cada unidade? Onde será feita a sua fabricação (PCB + montagem)?

- Questões chave em sistemas embarcados
 - Como definir a arquiteturas mais adequada entre as várias disponíveis? ARM? AVR? RISC-V?
 - Qual será o custo efetivo de cada unidade? Onde será feita a sua fabricação (PCB + montagem)?
 - Existem restrições para funcionamento em tempo real ou com tolerância a falhas (redundância)?

- Questões chave em sistemas embarcados
 - Como definir a arquiteturas mais adequada entre as várias disponíveis? ARM? AVR? RISC-V?
 - Qual será o custo efetivo de cada unidade? Onde será feita a sua fabricação (PCB + montagem)?
 - Existem restrições para funcionamento em tempo real ou com tolerância a falhas (redundância)?
 - O sistema possui limitações de consumo de potência? Qual deve ser a autonomia com bateria?

- Questões chave em sistemas embarcados
 - Como definir a arquiteturas mais adequada entre as várias disponíveis? ARM? AVR? RISC-V?
 - Qual será o custo efetivo de cada unidade? Onde será feita a sua fabricação (PCB + montagem)?
 - Existem restrições para funcionamento em tempo real ou com tolerância a falhas (redundância)?
 - O sistema possui limitações de consumo de potência? Qual deve ser a autonomia com bateria?
 - Em que condições ambientais de temperatura, umidade e pressão o sistema será submetido?

- Questões chave em sistemas embarcados
 - Como definir a arquiteturas mais adequada entre as várias disponíveis? ARM? AVR? RISC-V?
 - Qual será o custo efetivo de cada unidade? Onde será feita a sua fabricação (PCB + montagem)?
 - Existem restrições para funcionamento em tempo real ou com tolerância a falhas (redundância)?
 - O sistema possui limitações de consumo de potência? Qual deve ser a autonomia com bateria?
 - Em que condições ambientais de temperatura, umidade e pressão o sistema será submetido?

Custo de desenvolvimento (*NRE*)

×

Diferencial competitivo

×

Time to market (TTM)

Requisitos de confiança

Requisitos de confiança

Probabilidade do sistema estar disponível (↑ Disponibilidade ←→ ↑ Consistência)

Requisitos de confiança

Facilidade de atualização, manutenção ou reparo/substituição de componentes

Requisitos de confiança

Capacidade de operar sem colocar em risco o ambiente e seres humanos

Requisitos de confiança

Probabilidade do sistema não falhar (tolerância a falhas)

Requisitos de confiança

Habilidade de proteger a si mesmo de ataques acidentais ou intencionais

Requisitos de confiança

Resiliência para manter o funcionamento sob ataque ou falha de componentes

Requisitos de confiança

Nenhum sistema é 100% confiável (falha dos componentes ou humana)

Requisitos de eficiência

► Requisitos de eficiência

Quanto menor o custo, maior a competitividade, desde que não comprometa a funcionalidade ou qualidade

Requisitos de eficiência

Com um peso menor e maior portabilidade, os custos associados à fabricação e ao transporte são reduzidos

Requisitos de eficiência

É a quantidade de eletricidade consumida na execução das operações, devendo sempre ser reduzida

Requisitos de eficiência

A quantidade memória interna utilizada é proporcional ao tamanho do código binário gerado

Requisitos de eficiência

É preciso utilizar a menor quantidade possível de tempo e de recursos para atender as restrições de tempo

Requisitos de eficiência

Não importa a complexidade do sistema embarcado, sua construção e operação deve ser sempre eficiente

Déficit de produtividade de software

Déficit de produtividade de software

Déficit de produtividade de software

Crescimento de 2x ao ano

Projeto baseado em plataforma

- Projeto baseado em plataforma
 - ▶ Baixo custo de desenvolvimento (*NRE*)

- Projeto baseado em plataforma
 - ▶ Baixo custo de desenvolvimento (*NRE*)
 - Componentes de prateleira (off-the-shelf)

- Projeto baseado em plataforma
 - ▶ Baixo custo de desenvolvimento (NRE)
 - Componentes de prateleira (off-the-shelf)
 - ► Interfaces padronizadas de comunicação

- Projeto baseado em plataforma
 - ▶ Baixo custo de desenvolvimento (*NRE*)
 - Componentes de prateleira (off-the-shelf)
 - Interfaces padronizadas de comunicação
 - Manutenção e validação pelo fabricante

- Projeto baseado em plataforma
 - Baixo custo de desenvolvimento (NRE)
 - Componentes de prateleira (off-the-shelf)
 - Interfaces padronizadas de comunicação
 - Manutenção e validação pelo fabricante
 - Volume baixo e médio de produção

- Projeto baseado em plataforma
 - ► PC/104
 - ▶ Dimensões compactas de 9,5 cm × 9,0 cm
 - ► Empilhamento por interfaces padronizadas
 - Robusto a condições extremas de uso

Fonte: https://www.rtdusa.com

- Projeto baseado em plataforma
 - System on Module (SOM)
 - Diversos fabricantes (Intel, Microchip, NI, TI, ...)
 - Conexões demandam uma placa base (baseboard)
 - Suporte de hardware e de software (biblioteca de componentes, drivers, ferramentas e RTOS)

► Projeto de *System-on-Chip* (*SoC*)

- ► Projeto de *System-on-Chip* (*SoC*)
 - ► Alto custo de desenvolvimento (NRE)

- ► Projeto de *System-on-Chip* (*SoC*)
 - ► Alto custo de desenvolvimento (NRE)
 - Componentes personalizados (IP)

- ► Projeto de *System-on-Chip* (*SoC*)
 - ► Alto custo de desenvolvimento (NRE)
 - Componentes personalizados (IP)
 - Interoperabilidade com outros sistemas

- Projeto de System-on-Chip (SoC)
 - Alto custo de desenvolvimento (NRE)
 - Componentes personalizados (IP)
 - Interoperabilidade com outros sistemas
 - Manutenção e validação interna

- Projeto de System-on-Chip (SoC)
 - Alto custo de desenvolvimento (NRE)
 - Componentes personalizados (IP)
 - Interoperabilidade com outros sistemas
 - Manutenção e validação interna
 - Volume baixo, médio ou alto de produção

- Projeto de System-on-Chip (SoC)
 - Field-Programmable Gate Array (FPGA)
 - Poucos fabricantes (Intel, Lattice, Microchip e Xilinx)
 - Hardware dedicado e programável (HDL)
 - Baixo risco, tempo e volume

Fonte: https://www.terasic.com.tw

- Projeto de System-on-Chip (SoC)
 - ► Application-Specific Integrated Circuit (ASIC)
 - Fabricantes de semicondutores (foundries)
 - Hardware específico e personalizado
 - Alto risco, tempo e volume

Fonte: https://wccftech.com

Propriedade intelectual

- Propriedade intelectual
 - Um software embarcado pode ser patenteado como parte de um produto inovador, não óbvio e com aplicação industrial com proteção de até 20 anos

- Propriedade intelectual
 - Um software embarcado pode ser patenteado como parte de um produto inovador, não óbvio e com aplicação industrial com proteção de até 20 anos
 - O projeto de uma placa de circuito impresso (PCB) pode ser protegido pelo registro de topografia de circuito integrado por até 10 anos