1. Transitorio de primer orden

1.1. FM 4.2

Calcular la corriente i(t) para t > 0.

Datos:

$$\begin{aligned} & \epsilon = 24 \, \mathrm{V} \\ & R_1 = 8 \, \Omega \\ & R_2 = 4 \, \Omega \\ & R_3 = 4 \, \Omega \\ & L = 15 \, \mathrm{H} \end{aligned}$$

1.2. FM 4.3

Calcular la tensión en bornes del condensador para t > 0.

Datos:

$$\epsilon = 20 \,\mathrm{V}$$
 $I_g = 4 \,\mathrm{A}$
 $R_1 = 6 \,\Omega$
 $R_2 = 4 \,\Omega$
 $R_3 = 12 \,\Omega$
 $C = 1/16 \,\mathrm{F}$

1.3. HKD 8.4

Determina las corrientes $i_L(t)$ e $i_1(t)$ para t > 0.

2. Transitorio de segundo orden

2.1. FM 4.8

El circuito de la figura ha alcanzado el régimen permanente con el interruptor cerrado. El interruptor se abre en t=0. Calcula las expresiones de la tensión en bornes del condensador y de la corriente por la bobina para t>0.

Datos:

$$\epsilon_g = 10 \, \mathrm{V}$$
 $R_1 = 10 \, \Omega$
 $R_2 = 5 \, \Omega$
 $L = 2.5 \, \mathrm{H}$
 $C = 0.2 \, \mathrm{F}$

2.2. FM 4.9

En el circuito de la figura, calcula la tensión $u_c(t)$ para t > 0.

Datos:

$$\epsilon_g = 4 \, \mathrm{V}$$
 $R_1 = 2 \, \Omega$
 $R_2 = 2 \, \Omega$
 $L = 2 \, \mathrm{H}$
 $C = 0.25 \, \mathrm{F}$