DEFINIZIONI

- Dati n domini $D_1, D_2 \dots D_n$ non necessariamente distinti, una **relazione** r è un sottoinsieme del prodotto cartesiano $D_1 \times D_2 \times \dots \times D_n$.
- Uno schema di relazione è un insieme di attributi.
- Uno schema di base di dati relazionale è un insieme $\{R_1, R_2 \dots R_n\}$ di schemi di relazione.
- Una base di dati relazionale con schema $\{R_1, R_2 \dots R_n\}$ è un insieme $\{r_1, r_2 \dots r_n\}$ dove r_i è un'istanza di relazione con schema R_i . Un'anomalia è un comportamento inaspettato e indesiderato della base di dati. Può essere di inserimento, cancellazione, aggiornamento, o ridondanza.
- Una dipendenza funzionale su uno schema di relazione R è una coppia ordinata di sottoinsiemi non vuoti $X,Y,\in R$ e viene denotata come $X\to Y$.

 Un'istanza r di R soddisfa la dipendenza funzionale $X\to Y$ se $\forall (t1,t2)\in r, t_1[X]=t_2[X] \Rightarrow t_1[Y]=t_2[Y]$

- Un'istanza r di R è legale se soddisfa tutte le dipendenze di un insieme F su R. La **chiusura** F^+ di un insieme di dipendenze funzionali F, è l'insieme di dipendenze funzionali che sono soddisfatte da ogni istanza legale di R. Un sottoinsieme K di R è una **chiave** per R se $K \to R \in F^+$, e se $\forall K' \subset K, K' \to R \notin F^+$.
- Un'attributo di R è **primo** se appartiene a una chiave di R.

- Un sottoinsieme X di R è una **superchiave** se contiene una chiave di R.
 Una dipendenza $X \to A \in F^+$ si dice **parziale** se A non è primo e X è contenuto propriamente in una chiave di R.
 Una dipendenza $X \to A \in F^+$ si dice **transitiva** se A non è primo e se \forall chiave K si ha che X non è contenuto propriamente in K e $K X \neq \emptyset$
- Uno schema di relazione R è in 3FN se, $\forall (X \to A) \in F^+ \mid A \notin X$, si ha che A è primo oppure X è una superchiave.
- $Y \subseteq X \subseteq R$ - Assioma della riflessività:
- $\Rightarrow X \to Y \in F^A$ - Assioma dell'aumento:
- Assioma della transitività:
- La chiusura di X rispetto a F, X_F^+ , è definita nel modo seguente: $X_F^+ = \{A \mid X \to A \in F^A\}$
- Una **decomposizione** di R è una famiglia $\rho = \{R_1, R_2 \dots R_k\}$ di sottoinsiemi di R che ricopre R $(\cup_{i=1}^k R_i = R)$
- Due insiemi di dipendenze funzionali F e G si dicono **equivalenti** se $F^+ = G^+$ Una decomposizione ρ **preserva** F se $F \equiv \bigcup_{i=1}^k \pi_{R_i}(F)$, dove $\pi_{R_i}(F) = \{X \to Y \mid X \to Y \in F^+ \land XY \subseteq R_i\}$
- Una decomposizione ρ di R ha un **join senza perdita** se per ogni istanza legale di r di R si ha $r=\pi_{R_j}(F)\bowtie \pi_{R_2}(r)\bowtie \ldots\bowtie \pi_{R_k}(r)$
- Una copertura minimale di F è un insieme G di dipendenze equivalente a F tale che ogni dipendenza non è ridondante.

Teoremi

Teorema 1

Uno schema R è in 3FN se e solo se non esistono nè dipendene parziali nè dipendenze transitive in R.

Dim. $Parte\ solo\ se$: Banale. $Parte\ se$: Assurdo - R non è in 3FN; quindi esiste X o A tale che A non è primo e X non è superchiave. Ma X o A è perforza o parziale o transitiva

Regola dell'unione: $X \to Y \in F^A$ e $X \to Z \in F^A$ \Rightarrow $X \to YZ \in F^A$

Dim. $XY \to YZ$ per aumento; $X \to XZ$ per aumento; $X \to YZ$ per transitività. Regola della decomposizione: $X \to Y \in F^A$ e $Z \subseteq Y \implies X \to Z \in F^A$

Dim. $Y \to Z$ per riflessività; $X \to Z$ per transitività. Regola della pseudotransitività: $X \to Y \in F^A$ e $WY \to Z \in F^A$ \Rightarrow $WX \to Z \in F^A$

 $\textit{Dim. }WX \xrightarrow{} WY$ per aumento; $WX \rightarrow Z$ per transitività.

TEOREMA 3 $F^+ = F^A$

 $F^+ \subseteq F^A$: Sia $X \to Y \in F^A$. Dimostriamo $X \to Y \in F^+$ per induzione su Armstrong. Passo induttivo (i=0): $X \to Y \in F$, quindi $X \to Y \in F^+$. Induzione: per ipotesi, al passo i-1, la dipendenza ottenuta è in F^+ . Ora, con quale assioma abbiamo ottenuto $X \to Y$?: 1) Riflessività. $Y \subseteq X$; Se $t_1[X] = t_2[X]$, banalmente $t_1[Y] = t_2[Y]$. 2) Aumento. $X \to Y$ viene da $VZ \to WZ$. Presi t_1, t_2 tali che $t_1[X] = t_2[X]$, allora $t_1[V] = t_2[V]$ e $t_1[Z] = t_2[Z]$. Ma da V si ottiene $t_1[W] = t_2[W]$ per hp induttiva. E da W e da Z si ottiene $t_1[Y] = t_2[Y]$. 3) Transitiva. Ho che $X \to Z$ e $Z \to Y$. $t_1[X] = t_2[X]$ implica che $t_1[Z] = t_2[Z]$ che implica che $t_1[Y] = t_2[Y]$, per hp induttiva. $F^+ \subseteq F^A$. Assurdo. Diciamo che esiste $I(X) = \{ 2 \} Y \text{ in } F^+ \text{ ma non in } F^A. \text{ Mostriamo che esiste un'istanza legale di } R \text{ che non soddisfa } X \to Y. \text{ Tabella con due righe: alla prima tutti 1; nella seconda tutti 1 fino alla fine di <math>X^+$, poi tutti X^+ , contraddizione. Infine X^+ non soddisfa X^+ sella facesse, Y^- and Y^+ per forza, poichè ci sono solo due possibili tuple e devono avere tutto coincidente. Ma per Lemma 1, X^+ and X^+ sella facesse, X^+ contraddizione.

Teorema 4

L'Algoritmo 1 calcola correttamente la chiusura di un insieme di attributi X rispetto a un insieme F di dipendenze.

Dim. Si dimostrerà che, con j corrispondente a quando l'algoritmo termina, $A \in X^+ \Leftrightarrow A \in Z^j$ Parte solo se: Dimostriamo $\forall i \ Z^i \subseteq X^+$. Base induzione: $Z^0 = X$, $X \subseteq X^+$ per riflessione. Passo induttivo: $Z^{i-1} \subseteq X^+$ per hp induttiva; Prendiamo un attributo $A \in Z^i - Z^{i-1}$, che deve essere venuto da $Y \to V$ tale che $Y \subseteq Z^{i-1}$ e $A \in V$. $X \to Y$ per Lemma 1 poichè $Y\subseteq X^+$ per hp induttiva; X o V per transitività. Quindi $A\in X^+$. Quindi $Z^i\subseteq X^+$ Parte se: Prendiamo attributo $A\in X^+$. X o A deve essere soddisfatta in ogni istanza legale di R, per il Teorema 3. Prendiamo la stessa istanza r del Teorema 3, con gli 1 fino a $Z^{\bar{j}}$ e poi 0. r è legale poichè se ci fosse $V \to W$ non soddisfatta, allora $V \subseteq Z^{\bar{j}}$ e $W \cap (R - Z^{\bar{j}}) \neq \emptyset$, ma in tal caso si avrebbe $S^{\bar{j}} \not\subseteq Z^{\bar{j}}$, contraddizione. Ora, siccome deve essere soddisfatta anche $X \to A$, significa che $A \in Z^{\bar{j}}$, poichè $X = Z^0 \subseteq Z^{\bar{j}}$, cioè deve stare tra gli uni.

Teorema 5

 $L' \textbf{Algoritmo 3} \ calcola \ correttamente \ X_G^+, \ dove \ G = \cup_{j=1}^k \pi_{R_j}(F)$

 $extit{Dim.}$ Si dimostrerà che, con f corrispondente a quando l'algoritmo termina, $A \in Z^f \Leftrightarrow A \in X_G^+$. Parte solo se: Base induzione: $Z^0 = X, X \subseteq X^+$, quindi $Z^0 \subseteq X_G^+$. Passo induttivo: Sia $A \in Z^i - Z^{i-1}$, allora \exists un indice $j \mid A \in (Z^{i-1} \cap R_j)^+_F \cap R_j$. Si ha che $(Z^{i-1} \cap R_j) \to A \in F^+$ (per teorema 3). Per la definizione di G, e poichè $A \in R_j$ e $Z^{i-1} \cap R_j \subseteq R_j$, $(Z^{i-1}\cap R_j)\rightarrow A\in G. \text{ Per hp induttiva, } X\rightarrow (Z^{i-1}\in G^+, \text{ per decomposizione, } X\rightarrow (Z^{i-1}\cap R_j)\in G^+, \text{ per transitività } X\rightarrow A\in G^+, \text{ cioè } A\in X_G^+, \text{ quindi } Z^i\subseteq X_G^+.$ Useremo la proposizione che $X\subseteq Y\to X_F^+\subseteq Y_F^+$. Siccome $X=Z^0\subseteq Z^f$, dalla proposizione $X_G^+\subseteq (Z^f)_G^+$. Dimostreremo che $Z^f=(Z^f)_G^+$. Eseguiamo l'algoritmo 1, dando come input $Z^f=G$. Se per assurdo $Z^f\neq (Z^f)_G^+$, deve esistere $B\in S^0\not\in Z'^0$. Siccome si ha che $S^0=\{A\mid (Y\to V\in G)\land (A\in V)\land (Y\subseteq Z'^0)\}$, per la definizione di G, deve esistere $j\mid B\in \{A\mid (Y\rightarrow V\in F^+) \land (A\in V) \land (Y\subseteq Z'^0) \land (YV\subseteq R_j)\}. \text{ Da } Y\rightarrow V\in F^+, \text{ per il Lemma 1, } V\subseteq Y_F^+. \text{ Inoltre, siccome } Y\subseteq Z'^0 \land YV\subseteq R_j, Y\subseteq Z'^0\cap R_j=Z^f\cap R_j, \text{ since } Y\subseteq Z'^0 \land YY\subseteq R_j, Y\subseteq Z'^0\cap R_j=Z^f\cap R_j, \text{ since } Y\subseteq Z'^0\cap R_j=Z^f\cap R_j$ ha che $V\subseteq (Z^f\cap R_j)_F^+$, proprio per la proposizione. Infine, poichè $YV\subseteq R_j$, $V\subseteq (Z^f\cap R_j)_F^+\cap R_j$. Ma $B\in V$ e quindi $B\in (Z^f\cap R_j)_F^+\cap R_j$ e quindi $B\in S^f$. E siccome $B\not\in Z^f$, questo significa che Z^f non è il valore finale di Z (contraddizione).

Teorema 6

 $m_p(r) = \pi_{R_1}(r) \bowtie \ldots \bowtie \pi_{R_k}(r)$. Si ha che:

- $r \subseteq m_p(r)$ Dim. Sia t una tupla di r. $\forall i \in \{1\dots k\}, t[R_i] \in \pi_{R_i}(r)$, e quindi $t \in m_\rho(r)$

 $-\pi_{R_i}(m_p(r)) = \pi_{R_i}(r)$

 $\overrightarrow{Dim}. \quad \text{Per la precedente } r \subseteq m_{\rho}(r), \text{ quindi } \pi_{R_i}(r) \subseteq \pi_{R_i}(m_{\rho}(r)). \quad \text{Mostriamo che } \pi_{R_i}(r) \supseteq \pi_{R_i}(m_{\rho}(r)) \text{ poichè} \ \forall \text{ tupla } t \in m_{\rho}(r) \ \text{e} \ \forall i \in \{1 \dots k\}, \ \exists t' \mid \ t[R_i] = t'[R_i].$

 $-m_p(m_p(r))=m_p(r)$ $\text{Dim. Per la precedente }\pi_{R_i}(m_\rho(r))=\pi_{R_i}(r). \text{ Allora } m_\rho(m_\rho(r))=\pi_{R_1}(m_\rho(r))\bowtie\ldots\bowtie\pi_{R_k}(m_\omega(r))=\pi_{R_1}(r)\bowtie\ldots\bowtie\pi_{R_k}(r)=m_\rho(r).$

L'Algoritmo 4 decide correttamente se ρ ha un join senza perdita.

Dim. Bisogna dimostrare che ρ ha un join senza perdita \Leftrightarrow la tabella r ha una riga con tutte a. Parte solo se: La tabella r puù essere interpretata come un'istanza legale di R, poichè l'algoritmo termina quando non ci sono più violazioni delle dipendenze in F. Inoltre, non viene modificata nessuna a. Se per assurdo ρ ha un join senza perdita ma la tabella non ha una riga con tutte a, allora $\forall i \in \{1 \dots k\}, \ \pi_{R_i}(r)$ contiene una riga con tutte a; allora $m_{\rho}(r)$ contiene una riga con tutte a, e quindi $m_{\rho}(r) \neq r$ (contraddizione).

 $L'\pmb{Algoritmo~5}~permette~di~calcolare~in~tempo~polinomiale~una~decomposione~\rho~tale~che~ogni~schema~in~\rho~\grave{e}~in~3FN~e~che~\rho~preserva~F$

Dim. ρ preserva F: Sia $G = \cup_{i=1}^k \phi_{R_i}(F)$. Siccome $\forall X \to A \in F$ vale che $XA \in \rho$, si ha che $G \supseteq F$, e $G^+ \supseteq F^+$. Inoltre, $G^+ \supseteq F^+$ siccome per definizione $G \supseteq F^+$. Ogni schema in ρ è in 3FN: Prendiamo $S \in \rho$. Ogni attributo in S fa parte della chiave, e quindi S è in 3FN (Ricorda che S è l'insieme degli attributi non contenuti in nessuna dipendenza funzionale). Se $R \in \rho$ vuol dire che c'è una dipendenza funzionale che coinvolge tutti gli attributi di R. Sarà della forma R-A o A poichè F è una copertura minimale; e R-A è chiave in R. Sia $Y \stackrel{\cdot}{ o} B \in F^+$; se B=A allora Y=R-A, poichè F è copertura minimale, e quindi Y è superchiave; se $B\neq A$ allora $B\in R-A$ e quindi B è primo. Se $XA\in \rho$, non esiste $X'\to A\in F^+\mid X'\supset X$ poichè F è copertura minimale, e quindi X è chiave in XA. Sia $Y o B \in F^+ \mid YB \supseteq XA$; se B=A, allora Y=X, cioè Y è superchiave, poichè F è copertura minimale; se B
eq A, allora $B \in X$ e quindi B è primo.

Teorema 9

La decomposione $\sigma = \rho \cup \{K\}$, dove K è una chiave, è tale che ogni schema in σ è in 3FN, σ preserva F, e che σ ha un join senza perdita.

Dim. σ preserva F: Sia $\sigma = \{R_1 \dots R_{k+1}\}$ dove $\rho = \{R_1 \dots R_k\}$ è ottenuta con Algoritmo 5 e $R_{k+1} = K$. Sia $G' = \bigcup_{i=1}^{k+1} \{X \to Y \in F^+ \mid XY \in R_i\}$, e $G = \bigcup_{i=1}^k \{X \to Y \in F^+ \mid XY \in R_i\}$. Per Teorema 8 $F \equiv G$; $G \subseteq G'$ e quindi $G \subseteq G'^+$. Per definizione, $G' \subseteq F^+$, e $G' \subseteq G^+$ poichè $F^+ = G^+$. Per il lemma 2, siccome $G \subseteq G' \in G' \subseteq G^+$, allora $G \equiv G'$. Ogni schema in ρ è in 3FN: è sufficiente mostrare che K è in 3FN, poichè $\sigma = \rho \cup \{K\}$. Se K non fosse chiave di K, esisterebbe $K' \subset K \mid K' \to K \in F^+$. Ma $K \to R$ poichè K è chiave di K per definizione, e per transitività $K' \to K \in F^+$, che contraddice il fatto che K è chiave di K. σ ha un join senza perdita: Mostriamo che viene prodotta una tabella con tutte a dall'algoritmo 4. Supponiamo che l'algoritmo esamini le dipendenze $Y_1 \to A_1 \dots Y_n \to A_n$ dove A_i è l'i-esimo attributo esaminato dall'Algoritmo 1 per calcolare K^+ , mentre $Y_i\subseteq Z^{i-1}=KA_1,\ldots A_{i-1}\subseteq K^+$. Base induzione: Poichè $Y_1\subseteq Z^0=K$, sia nella riga dello schema Y_1A_1 che in quella di K ci sono tutte a in corrispondenza degli attributi di Y_1 , 'è una a in corrispondenza di A_1 nella riga Y_1A_1 . Allora l'algoritmo 4 mette una a nella riga di K in corrispondenza di A_1 . Induzione: Per hp induttiva, nella riga di K c'è una a $orall j \mid j \leq i-1$. Poichè $Y_i \subseteq KA_1 \ldots A_{i-1}$, nella riga di Y_iA_i e nella riga di K ci sono tutte a in corrispondenza degli attributi in Y_i ; inoltre nella riga di Y_iA_i c'è una a in corrispondenza di A_i . Allora l'algoritmo 4 mette una a in corrispondenza di A_i nella riga di K. Quindi alla fine nella riga di K ci saranno tutte a.

```
Lemma 1
                                   -Y \subseteq X^+ \Leftrightarrow X \to Y \in F^A
                                                                                             \overline{\textit{Dim. Sia } Y = A_1 \dots A_n; \textit{Parte se: } \forall iX \rightarrow A_i \; \text{poichè} \; Y \subseteq X^+; \; \text{per unione}, \; X \rightarrow Y. \; \textit{Parte solo se: } X \rightarrow Y; \; \text{per decomposizione} \; \forall iX \rightarrow A_i. \; \text{Quindi } A_1 \dots A_n \subseteq X^+ \; \text{e} \; Y \subseteq X^+; \; \text{per unione}, \; X \rightarrow Y. \; \text{Parte solo se: } X \rightarrow Y; \; \text{per decomposizione} \; \forall iX \rightarrow A_i. \; \text{Quindi } A_1 \dots A_n \subseteq X^+ \; \text{e} \; Y \subseteq X^+; \; \text{per unione}, \; X \rightarrow Y. \; \text{Parte solo se: } X \rightarrow Y; \; \text{per decomposizione} \; \forall iX \rightarrow A_i. \; \text{Quindi } A_1 \dots A_n \subseteq X^+ \; \text{e} \; Y \subseteq X^+; \; \text{per unione}, \; X \rightarrow Y; \; \text{Parte solo se: } X \rightarrow Y; \; \text{per decomposizione} \; \forall iX \rightarrow A_i. \; \text{Quindi } A_1 \dots A_n \subseteq X^+ \; \text{e} \; Y \subseteq X^+; \; \text{per unione}, \; X \rightarrow Y; \; \text{Parte solo se: } X \rightarrow Y; \; \text{per decomposizione} \; \forall iX \rightarrow A_i. \; \text{Quindi } A_1 \dots A_n \subseteq X^+ \; \text{e} \; Y \subseteq X^+; \; \text{per unione}, \; X \rightarrow Y; \; \text{Parte solo se: } X \rightarrow Y; \; \text{per decomposizione} \; \forall iX \rightarrow A_i. \; \text{Quindi } A_1 \dots A_n \subseteq X^+ \; \text{e} \; Y \subseteq X^+; \; \text{per unione}, \; X \rightarrow Y; \; \text{Parte solo se: } X \rightarrow Y; \; \text{Parte solo
   Lemma 2
                                   -F \subseteq G^+ \Rightarrow F^+ \subseteq G^+
```

Algoritmo 3

Z := X; $S := \emptyset;$ for j := 1 to k

 $S := S \cup [(Z \cap R_j)_F^+ \cap R_j];$

Algoritmi

Algoritmo 1

```
\begin{aligned} & \text{Algoritmo} & & 2 \\ & successo & = true; \\ & \text{for each } X \to Y \in F \\ & & \text{calcola } X_G^+; \\ & & \text{if } Y \subseteq X_G^+ \text{ then } successo = false; \end{aligned}
  \begin{aligned} &Z \coloneqq X \\ &Z \coloneqq X \\ &S \coloneqq \{A \mid (Y \to V \in F) \land (A \in V) \land (Y \subseteq Z)\}; \\ &\text{while } S \nsubseteq Z \\ &Z \coloneqq Z \cup S; \\ &S \coloneqq \{A \mid (Y \to V \in F) \land (A \in V) \land (Y \subseteq Z)\}; \end{aligned} 
                                                                                                                                                                                                                                                                                                                                                    while S \not\subseteq Z

Z := Z \cup S;
                                                                                                                                                                                                                                                                                                                                                                    for j := 1 to k
                                                                                                                                                                                                                                                                                                                                                                                    S := S \cup [(Z \cap R_j)_F^+ \cap R_j];
   Algoritmo 4
                                                                                                                                                                                                                                                                                             Algoritmo 5
  {\bf Algoritmo~4} Costruisci una tabella con |R| colonne e|\rho|righe. All'incrocio dell'i-esima riga e della j-esima colonna, si metta a_j se A_j\in R_i, altrimenti b_{i,j}
                                                                                                                                                                                                                                                                                             S:=\emptyset; for each A\in R tale che A non è in nessuna dipendenza in F
della j-esima colonna, si metta a_j se A_j \in A_i, ..............., repeat for each X \to Y \in F if \exists \{t1, t2\} \in r \mid t_1[X] = t_2[X] \land t_1[Y] \neq t_2[Y] then for each A_j \in Y if t_1[A_j] = "a_j" then t_2[A_j] := t_1[A_j]; else t_1[A_j] := t_2[A_j]; until r ha una riga con tutte "a" oppure r non è cambiato if r ha una riga con tutte "a", allora \rho ha un join senza perdita.
                                                                                                                                                                                                                                                                                            for each A \in R tale one A non e in nessuna dipendenza in F S := S \cup \{A\}; if S \neq \emptyset then R := R - S; \rho := \rho \cup \{S\}; if esiste una dipendenza in F che coinvolge tutti gli attributi in R then else for each X \to A \in F do \rho := \rho \cup \{XA\}; \rho := \rho \cup \{R\};
```

Algoritmo 2

Anomalie

Anomalie: anomalie di inserimento, di cancellazione, di aggiornamento. Ridondanza dei dati.

Da rivedere

Da rivedere la definizinoe della copertura minimale.

Organizzazione dei File

- FILE HEAP

 -Inserimento: 1 accesso in lettura (leggo l'ultimo blocco); 1 accesso scrittura (scrivi il blocco modificato, chiedine uno nuovo al fyle system se pieno)
 -Ricerca: sequenziale blocco per blocco. Da 1 a numblocchi accessi. Costo medio: (R+2R...+nR)/N = R/N*n(n+1)/2 = n/2 con N numero totale di record, R record per blocco.
 -Modifica: Ricerca + 1 accesso scrittura.
 -Cancellazione: Ricerca + 1 accesso lettura + 2 accessi scrittura (ultimo + modificato)

- FILE HASH

 -Ricerca: 1/B esimo della ricerca su un heap (assumendo una buona funzione hash, come esempio divido i bit della chiave in gruppi lunghi uguali, li sommi in binario e fai il modulo per B)

 FILE ISM (INDEXED SEQUENTIAL ACCESS METHOD)

 -Ci sono file indice e file principali

 -Ricerca: si cerca nel FI un record con valore K' che ricopre K, cioè che $K' \le K$. Costo: $\lceil log_2(numblocchi) \rceil + 1$.

 -Ricerca per interpolazione: serve una funzione f che presi K_1, K_2, K_3 , restituisce la frazione dell'intervallo fra K_2 e K_3 dove sta K_1 . Costo: $\lceil log_2 log_2(numblocchi) \rceil + 1$.

 -Inserimento: costo ricerca + 1 se sul blocco c'è spazio, altrimenti di più. Se sono pieni sia quello prima che quello dopo, bisogna chiederne uno nuovo e ripartire i record tra vecchio e nuovo.

 -Cancellazione: costo ricerca + 1 se la chiave non cambia, altrimenti costo cancellazione + 1 inserimento.

 FILE B TREE-Ricerca: h + 1, con h altezza dell'albero. Massimo valore di $h = log_d(N/e)$, con 2e 1 record per blocco FP, 2d 1 record per blocco FI, e N numero record di FP.

 -Inserimento: costo ricerca + 1 se c'è spazio, altrimenti costo ricerca + 1 s, con $s \le (2h + 1)$ (scrittura blocchi FI in risalita)

 -Cancellazione: costo ricerca + 1 se non cambia la chiave, altrimenti cancellazione + 1 inserimento.