ÜBUNGEN ZUR KLASSISCHEN PHYSIK 1

WS 2023/24

3. Übungsblatt

20.11.2023

Aufgabenweise Abgabe in Gruppen von 2 bis 3 Personen bis **20.11.2023/12 Uhr** über WueCampus. Bei jeder Aufgabe die Gruppennamen auf die erste Seite der Abgabe **und** in den Dateinamen schreiben!

Ergebnisse als Funktion der gegebenen Größen angeben!

- (2 P) a) Leiten Sie mit Hilfe geeigneter Erhaltungssätze die x-Komponenten der Geschwindigkeiten $u_{1,x}$ und $u_{2,x}$ der Massen nach dem Stoß her.
- (2 P) b) Bestimmen Sie jeweils die Bedingungen für $\frac{v_{1,x}}{v_{2,x}}$, so dass sich beide Massen nach dem Stoß in die gleiche Richtung beziehungsweise in entgegengesetzte Richtung bewegen. Betrachten Sie die beiden Fälle
 - i. $v_{1,x} > v_{2,x} > 0$: Beide Massen bewegen sich vor dem Stoß in die gleiche Richtung. Masse m_1 läuft Masse m_2 nach.
 - ii. $v_{1,x} > 0$, $v_{2,x} < 0$: Die Massen bewegen sich vor dem Stoß in entgegengesetzte Richtung.
- (1 P) c) Für welchen Wert von $\frac{v_{1,x}}{v_{2,x}}$ entspricht das System dem Schwerpunktsystem? Berechnen Sie für diesen Spezialfall, die x-Komponenten der Geschwindigkeiten der Massen nach dem Stoß. Was fällt Ihnen auf?

Eine Kugel der Masse m fällt aus einer Höhe h auf eine geneigte, feste Platte. Für den Betrag der senkrechten Komponenten (zur Platte) der Geschwindigkeiten nach dem Stoß gelte $|\vec{u}_1^\perp| = k|\vec{v}_1^\perp|$ mit \vec{v}_1^\perp der Geschwindigkeitskomponente vor dem Stoß. Der Luftwiderstand ist zu vernachlässigen.

- (1 P) a) Es herrscht keine Reibung zwischen der Platte und der Kugel. Was können Sie über die parallele Komponente (zur Platte) der Geschwindigkeit nach dem Stoß aussagen. Begründung!
- (2 P) b) Bestimmen Sie die Entfernung w, in der die Kugel die Platte zum zweiten Mal erreicht, und die dortige Auftreffgeschwindigkeit $\vec{v}_{\rm A}$.

ÜBUNGEN ZUR KLASSISCHEN PHYSIK 1

WS 2023/24

3. Übungsblatt

20.11.2023

Aufgabe 3.3: Mit Schwung in den Wagen(4 Punkte)

Ein Körper der Masse m rutscht reibungsfrei eine schiefe Ebene mit dem Winkel α zur Horizontalen hinunter und landet in einem ruhenden Wagen, der mit Sand gefüllt ist. Der Körper startet aus der Ruhe aus der Höhe h. Der Wagen hat die Masse M und rollt reibungsfrei. Der Körper kommt innerhalb von Δt im Wagen zur Ruhe.

- (1 P) a) Bestimmen Sie das Tempo des Wagens v_W , nachdem der Körper hineingefallen ist.
- (1 P) b) Welchen Kraftbetrag F_1 übt der Erdboden auf den Wagen aus während der Körper landet?

Die schiefe Ebene sei nun mit dem Wagen fest verbunden.

- (1 P) c) Bestimmen Sie die x- und die y-Komponente der Schwerpunktsgeschwindigkeit $\vec{v}_{\text{SP,r}}(t)$ des Systems solange die Masse noch auf der Schräge rutscht. Zum Zeitpunkt t=0 ist das System in Ruhe und die Masse beginnt zu rutschen. Reibungseffekte sind zu vernachlässigen.
- (1 P) d) Bestimmen Sie die Schwerpunktsgeschwindigkeit $\vec{v}_{\rm SP,n}$ des Systems nachdem die Masse im Wagen gelandet ist.

- (1 P) a) Welche horizontale Kraft muss der Junge vor Beginn des Schneefalls aufwenden, um mit konstantem Tempo den Schlitten zu schieben?
- (1 P) b) Welche horizontale Kraft muss der Junge nach Beginn des Schneefalls aufwenden, um trotz Schneefalls seinen Weg mit einem konstanten Tempo fortzusetzen?
- (1 P) c) Welche Arbeit muss der Junge ab dem Zeitpunkt t=0s aufbringen, um mit konstantem Tempo an sein Ziel zu gelangen?