DEFINITE INTEGRAL DEFINITION

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \Delta x$$

where $\Delta x = \frac{b-a}{n}$ and $x_k = a + k\Delta x$

FUNDAMENTAL THEOREM OF CALCULUS

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

where f is continuous on [a,b] and F' = f

INTEGRATION PROPERTIES

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x) \pm g(x)dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

$$\int_{a}^{a} f(x)dx = 0 \text{ and } \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

COMMON INTEGRALS

$$\int k \, dx = kx + C$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C, \ n \neq -1$$

$$\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \ln|x| + C$$

$$\int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + C$$

$$\int \ln(x) \, dx = x \ln(x) - x + C$$

$$\int e^x \, dx = e^x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \sec x \tan x \, dx = \sec x + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\sec x| + C$$

$$\int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1} \left(\frac{u}{a}\right) + C$$

$$\int \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1} \left(\frac{u}{a}\right) + C$$

APPROXIMATING DEFINITE INTEGRALS

Left-hand and right-hand rectangle approximations

$$L_n = \Delta x \sum_{k=0}^{n-1} f(x_k)$$
 $R_n = \Delta x \sum_{k=1}^{n} f(x_k)$

Midpoint Rule

$$M_n = \Delta x \sum_{k=0}^{n-1} f(\frac{x_k + x_{k+1}}{2})$$

Trapezoid Rule

$$T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + f(x_n))$$

TRIGNOMETRIC SUBSTITUTION

	EXPRESSION	SUBSTITUTION	EXPRESSION EVALUATION	IDENTITY USED
	$\sqrt{a^2-x^2}$	$x = a\sin\theta$ $dx = a\cos\thetad\theta$	$\sqrt{a^2 - a^2 \sin^2 \theta}$ $= a \cos \theta$	$1 - \sin^2 \theta$ $= \cos^2 \theta$
	$\sqrt{x^2-a^2}$	$x = a \sec \theta$ $dx = a \sec \theta \tan \theta d\theta$	$\sqrt{a^2 \sec^2 \theta - a^2}$ $= a \tan \theta$	$\sec^2 \theta - 1$ $= \tan^2 \theta$
	$\sqrt{a^2+x^2}$	$x = a \tan \theta$ $dx = a \sec^2 \theta d\theta$	$\sqrt{a^2 + a^2 \tan^2 \theta}$ $= a \sec \theta$	$1 + \tan^2 \theta$ $= \sec^2 \theta$

APPROXIMATION BY SIMPSON RULE FOR EVEN N

$$S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))$$

INTEGRATION BY SUBSTITUTION

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$
where $u = g(x)$ and $du = g'(x)dx$

INTEGRATION BY PARTS

$$\int u \, dv = uv - \int v \, du \text{ where } v = \int dv$$
or
$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x) \, dx$$

CALCULUS

DERIVATIVES AND LIMITS

DERIVATIVE DEFINITION

$\frac{d}{dx}f(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

BASIC PROPERTIES

$$(cf(x))' = c(f'(x))$$
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$
$$\frac{d}{dx}(c) = 0$$

MEAN VALUE THEOREM

If f is differentiable on the interval (a,b) and continuous at the end points there exists a c in (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

PRODUCT RULE

$$(f(x)g(x))' = f(x)'g(x) + f(x)g(x)'$$

QUOTIENT RULE

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$

POWER RULE

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

CHAIN RULE

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

COMMON DERIVATIVES

$$\frac{d}{dx}(x) = 1$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(a^x) = a^x \ln(a)$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln(x)) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

$$\frac{d}{dx}(\log_a(x)) = \frac{1}{x \ln(a)}$$

LIMIT EVALUATION METHOD - FACTOR AND CANCEL

$$\lim_{x \to -3} \frac{x^2 - x - 12}{x^2 + 3x} = \lim_{x \to -3} \frac{(x+3)(x-4)}{x(x+3)} = \lim_{x \to -3} \frac{(x-4)}{x} = \frac{7}{3}$$

L'HOPITAL'S RULE

If
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\pm \infty}{\pm \infty}$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

MATH CENTER

CHAIN RULE AND OTHER EXAMPLES

$$\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'(x)$$

$$\frac{d}{dx}(e^{f(x)}) = f'(x)e^{f(x)}$$

$$\frac{d}{dx}(\ln[f(x)]) = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx}(\sin[f(x)]) = f'(x)\cos[f(x)]$$

$$\frac{d}{dx}(\cos[f(x)]) = -f'(x)\sin[f(x)]$$

$$\frac{d}{dx}(\tan[f(x)]) = f'(x)\sec^2[f(x)]$$

$$\frac{d}{dx}(\sec[f(x)]) = f'(x)\sec[f(x)]\tan[f(x)]$$

$$\frac{d}{dx}(\tan^{-1}[f(x)]) = \frac{f'(x)}{1+[f(x)]^2}$$

$$\frac{d}{dx}(f(x)^{g(x)}) = f(x)^{g(x)} \left(\frac{g(x)f'(x)}{f(x)} + \ln(f(x))g'(x)\right)$$

PROPERTIES OF LIMITS

These properties require that the limit of f(x) and g(x) exist

$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$

LIMIT EVALUATION AT $\pm \infty$

$$\lim_{x\to\infty} e^x = \infty$$
 and $\lim_{x\to-\infty} e^x = 0$

$$\lim_{x \to \infty} \ln(x) = \infty \text{ and } \lim_{x \to 0^+} \ln(x) = -\infty$$

If
$$r > 0$$
 then $\lim_{x \to \infty} \frac{c}{r} = 0$

If
$$r > 0$$
 & x^r is real for $x < 0$ then $\lim_{x \to -\infty} \frac{c}{x^r} = 0$

$$\lim_{n \to +\infty} x^r = \infty \text{ for even } r$$

$$\lim_{x \to \infty} x^r = \infty \& \lim_{x \to -\infty} x^r = -\infty \text{ for odd } r$$