Competitive Analysis for Service Migration in VNets

M.Bienkowski¹, A.Feldmann², D.Jurca³, W.Kellerer³, G.Schaffrath², S.Schmid², J.Widmer³

¹University of Wroclaw, ²Deutsche Telekom Laboratories/TUB, ³Docomo Labs Europe

September 1, 2010

Motivation

Potential for Flexibility

- VNet/Substrate resource decoupling facilitates...
 - Core network evolution
 - Sandboxing
 - Dynamic resource allocation

Motivation

Potential for Flexibility

- VNet/Substrate resource decoupling facilitates...
 - Core network evolution
 - Sandboxing
 - Dynamic resource allocation
- ⇒ Flexibility may be used for new dynamic service management schemes... e.g., Server migration

Problem

Management

- To migrate, or not to migrate...? (Online?)
- How to compare?

Problem

Management

- To migrate, or not to migrate...? (Online?)
- How to compare?

Competitive Analysis

- ALGorithm to compare
- Criteria (e.g., cost function)
- OPTimal Value (or algorithm)

Formally, or empirically analyse ratio $ho = rac{ALG}{OPT}$

Introduction Competitive Analysis Simulation Conclusion

Scenario

Details

- Server migration
- Access costs, migration costs
- Multiple mgmt. roles
- Communication about requirements

Scenario

Formal model

- Substrate graph G = (V, E)
- Servers S, AccessPoints A
- Request multi-set $R_t \subset AxS$, Request source sequence σ

Scenario

Formal model

- Substrate graph G = (V, E)
- Servers S, AccessPoints A
- Request multi-set R_t ⊂ AxS, Request source sequence σ
- Computational capacity c(v), Edge latency $\lambda(e)$
- $Cost_{acc}(v, t) = \sum_{w \in A|r_t = (w, v) \in R_t} f(v, latency(r_t), load(v))$

Scenario

Formal model

- Substrate graph G = (V, E)
- Servers S, AccessPoints A
- Request multi-set R_t ⊂ AxS, Request source sequence σ
- Computational capacity c(v), Edge latency $\lambda(e)$
- $Cost_{acc}(v, t) = \sum_{w \in A|r_t = (w, v) \in R_t} f(v, latency(r_t), load(v))$
- Migration path p, No. of Transit Providers k
- Constant path bandwidth $\omega(p)$
- $Cost_{mig}(p, t) = \sum_{s \in S} f(\omega(p), size(s), k)$

Approach

Strike balance between Cost^{MIG}_{acc} and Cost^{MIG}_{mig}

Approach

- Strike balance between Cost^{MIG}_{acc} and Cost^{MIG}_{mig}
- Let $\beta = max_p\{Cost_{mig}(p, t)\}$
- Count $L_v = \sum_t Cost_{acc}(v, t) \ \forall v \in V$

Approach

- Strike balance between Cost^{MIG}_{acc} and Cost^{MIG}_{mig}
- Let $\beta = max_p\{Cost_{mig}(p, t)\}$
- Count $L_v = \sum_t Cost_{acc}(v, t) \ \forall v \in V$
- When $L_{\nu} \geq \beta$ for server location, end phase, and migrate to ν' with $L_{\nu'} < \beta$

Approach

- Strike balance between Cost^{MIG}_{acc} and Cost^{MIG}_{mia}
- Let $\beta = max_p\{Cost_{mig}(p, t)\}$
- Count $L_v = \sum_t Cost_{acc}(v, t) \ \forall v \in V$
- When $L_{\nu} > \beta$ for server location, end phase, and migrate to v' with $L_{v'} < \beta$
- When $L_{\nu} > \beta \ \forall \nu \in V$. end epoch ε , and reset $L_v \forall v \in V$

$$t_0: size(S) = 100, \sigma_0 = \{B, D\}, v_0 = A$$
 $A \quad B \quad C \quad D \quad E \quad MIG$
 $(1^{*1})+(1^{*6}) \quad 0+5 \quad 3+2 \quad 5+0 \quad 7+2 \quad 0+7 \quad 7 \quad (A)$

 t_2 : size(S) = 100, $\sigma_2 = \{C, D\}$, $v_2 = C$ MIG Α В C D Е (1*1)+(1*6)7+2 0+7 0+53+2 5+0 5 5 5 9 7 (A) 7+10+4 7+4+8 5+10 5+4 5+4 9+49 19 15 9 13 21 (C) +10 +8 +2 +2 +2 +6 11 23 (C) 29 23 11 27

Server positions: $C \leftarrow A \leftarrow A$

Α	В	С	D	Е	MIG
(1*1)+(1*6)	0+5	3+2	5+0	7+2	0+7
7	5	5	5	9	7 (A)
7+4+8	5+10	5+4	5+4	9+4	7+10+4
19	15	9	9	13	21 (C)
+10	+8	+2	+2	+6	+2
29	23	11	11	27	23 (C)
0	0	0	0	0	23 (C)

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1 T_0 : No migration anymore

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1

 T_0 : No migration anymore

 $T_{j>0}$: j migration destinations $(T_{j-1} \dots T_0)$ $\frac{1}{l} \sum_{k=0}^{j-1} T_k$ migrations expected

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1

 T_0 : No migration anymore

 $T_{j>0}$: j migration destinations $(T_{j-1} \dots T_0)$ $\frac{1}{i} \sum_{k=0}^{j-1} T_k$ migrations expected

$$T_0 = T_0 = 0$$

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1

T₀: No migration anymore

 $T_{j>0}$: j migration destinations $(T_{j-1} \dots T_0)$ $\frac{1}{i} \sum_{k=0}^{j-1} T_k$ migrations expected

$$T_0 = T_0 = 0$$

$$T_{j-1} \to T_j = 1 + \frac{1}{j}((j-1)\frac{1}{1} + (j-2)\frac{1}{2} + \dots + (j-k)\frac{1}{k} + \dots + (j-j)\frac{1}{j})$$

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1

T₀: No migration anymore

 $T_{j>0}$: j migration destinations $(T_{j-1} \dots T_0)$ $\frac{1}{i} \sum_{k=0}^{j-1} T_k$ migrations expected

$$T_0 = T_0 = 0$$

$$T_{j-1} \to T_j = 1 + \frac{1}{j}((j-1)\frac{1}{1} + (j-2)\frac{1}{2} + \dots + (j-k)\frac{1}{k} + \dots + (j-j)\frac{1}{j})$$

$$= 1 + \frac{1}{j}(\frac{j}{2} + \dots + \frac{j}{k} + \dots + \frac{j}{j} + j - 1 - \frac{2}{2} - \dots - \frac{k}{k} - \dots - \frac{j}{j})$$

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1

T₀: No migration anymore

$$T_{j>0}$$
: j migration destinations $(T_{j-1} \dots T_0)$
 $\frac{1}{j} \sum_{k=0}^{j-1} T_k$ migrations expected

$$T_0 = T_0 = 0$$

$$T_{j-1} \to T_{j} = 1 + \frac{1}{j}((j-1)\frac{1}{1} + (j-2)\frac{1}{2} + \dots + (j-k)\frac{1}{k} + \dots + (j-j)\frac{1}{j})$$

$$= 1 + \frac{1}{j}(\frac{j}{2} + \dots + \frac{j}{k} + \dots + \frac{j}{j} + j - 1 - \frac{2}{2} - \dots - \frac{k}{k} - \dots - \frac{j}{j})$$

$$= 1 + \frac{1}{2} + \dots + \frac{1}{k} + \dots + \frac{1}{j} + \frac{1}{j}(j-j)$$

H_n Expected Number of Migrations

Let $\{v_i\}_{i=1}^n$ sequence in order of L_v reaching β ; j = i - 1

T₀: No migration anymore

$$T_{j>0}$$
: j migration destinations $(T_{j-1} \dots T_0)$
 $\frac{1}{i} \sum_{k=0}^{j-1} T_k$ migrations expected

$$T_0 = T_0 = 0$$

$$T_{j-1} \to T_{j} = 1 + \frac{1}{j} ((j-1)\frac{1}{1} + (j-2)\frac{1}{2} + \dots + (j-k)\frac{1}{k} + \dots + (j-j)\frac{1}{j})$$

$$= 1 + \frac{1}{j} (\frac{j}{2} + \dots + \frac{j}{k} + \dots + \frac{j}{j} + j - 1 - \frac{2}{2} - \dots - \frac{k}{k} - \dots - \frac{j}{j})$$

$$= 1 + \frac{1}{2} + \dots + \frac{1}{k} + \dots + \frac{1}{j} + \frac{1}{j} (j-j)$$

$$= 1 + \frac{1}{2} + \dots + \frac{1}{k} + \dots + \frac{1}{j} \quad \square$$

Proof

1 Def.(ε), Def.(β) $\Rightarrow \forall \varepsilon_i : OPT(\varepsilon_i) \geq \beta$

Proof

- **1** Def.(ε), Def.(β) $\Rightarrow \forall \varepsilon_i : OPT(\varepsilon_i) \geq \beta$
- 2 $H_n + 1$ phases $\Rightarrow MIG(\varepsilon_i) \leq \beta H_n + \beta (H_n + 1) = \beta O(\log n)$

Proof

- **1** Def.(ε), Def.(β) $\Rightarrow \forall \varepsilon_i : OPT(\varepsilon_i) \geq \beta$
- ② $H_n + 1$ phases $\Rightarrow MIG(\varepsilon_i) \leq \beta H_n + \beta (H_n + 1) = \beta O(\log n)$
- (1), (2) \Rightarrow Ratio $\rho \leq \frac{\beta O(\log n)}{\beta} = O(\log n)$

OPT (offline)

Approach: Dynamic Programming

- opt[t][v] matrix with minimal cost
- remember predecessor $v_{t-1} \in V$
- Optimal substructure property

OPT (offline)

Approach: Dynamic Programming

- opt[t][v] matrix with minimal cost
- remember predecessor $v_{t-1} \in V$
- Optimal substructure property

Cost Matrix

$$opt[0][v] = Cost_{mig}(v_0, v) + \sum_{w \in \sigma_0} Cost_{acc}(w, v)$$

$$opt[t][v] = min_{v,v_{t-1} \in V}(opt[t-1][v_{t-1}] + Cost_{mig}(v_{t-1}, v) + \sum_{w \in \sigma_t} Cost_{acc}(w, v))$$

$$t_0$$
: $size(S) = 100$, $\sigma_0 = \{A, A, E, E, E, E, E\}$, $v_0 = A$

A	В	C	D	E
0+(2*0)+(5*8)	5+37	10+28	20+22	20+16
40 (A)	42 (A)	38 (A)	44 (A)	36 (A)

$$t_1$$
: $size(S) = 100$, $\sigma_1 = \{D, D, D, D, D, D, D\}$

A	В	С	D	E
0+(2*0)+(5*8)	5+37	10+28	20+22	20+16
40 (A)	42 (A)	38 (A)	44 (A)	36 (A)
[40+0 47 48 64 56]	[45 42 48 64 56]	[50 52 38 64 56]	[60 62 58 44 46]	[60 62 58 54 36]
+42	+35	+14	+0	+14
82 (A)	77 (B)	52 (C)	44 (D)	50 (E)

 t_2 : size(S) = 100, $\sigma_2 = \{A, A, B, B, B, B, C\}$

+16
(A)
58 54 36]
-14
(E)
120 102 98]
(E)

Server positions: $B \leftarrow C \leftarrow C \leftarrow A$

Α	В	С	D	E
0+(2*0)+(5*8)	5+37	10+28	20+22	20+16 2C (A)
40 (A)	42 (A)	38 (A)	44 (A)	36 (A)
[40+0 47 48 64 56]	[45 42 48 64 56]	[50 52 38 64 56]	[60 62 58 44 46]	[60 62 58 54 36]
+42	+35	+14	+0	+14
82 (A)	77 (B)	52 (C)	44 (D)	50 (E)
[90 90 70 72 78]	[92 82 67 69 75]	[112 107 72 84 90]	[136 131 98 78 94]	[150 145 120 102 98]
70 (C)	67 (C)	72 (C)	78 (D)	98 (E)

Simulation

Scenario

- Linear topology
- Uniform constant bandwidth
- Uniform request distribution with exponential stayover time

Simulation

Conclusion

Summary

- "Virtual Network mapping and competitive analysis are a perfect match!"—S.Schmid.2010
- O(log n) competitive online algorithm
- Optimal offline algorithm

Conclusion

Summary

- "Virtual Network mapping and competitive analysis are a perfect match!"—S. Schmid 2010
- O(log n) competitive online algorithm
- Optimal offline algorithm

Outlook

- Extending the cost models
- Considering variable bandwidth scenarios

Questions?

Thank you for your attention!

