Эффект Джоуля-Томсона

Цель работы

1) Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры. 2) Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

Оборудование

Термостат, трубка с пористой перегородкой, труба Дьюара, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

Экспериментальная установка

Теоретическая часть

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой. Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными се- чениями I и II трубки (до перегородки и после нее). Пусть, для опре- деленности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2$ V_2 . Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2\right)$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля-Томсона в чистом виде осуществляется лишь в том

случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется. Рассмотрим выражение:

$$\mu_{\text{A-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_n} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

то есть газ при расширении охлаждается ($\Delta t < 0$ так как всегда $\Delta P < 0$). В обратном случае (малые а):

$$\frac{\Delta T}{\Delta P} < 0,$$

то есть газ нагревается ($\Delta t < 0$ так как по-прежнему $\Delta P < 0$). Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших a велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формул, при температуре T_i коэффициент $\mu_{\text{д-т}}$ обращается в нуль. Используя связь между коэффици- ентами

а и b и критической температурой, найдем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny KP}} \tag{4}$$

:

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}}>0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{д-т}}<0$, газ нагревается).

Обработка результатов измерений

Включим термостат и вольтметр. Проведем измерения напряжения на термопаре и разности давлений с учетом поправочного напряженияв:

ΔP , atm	3.0	2.6	2.2	1.8	1.4	1.0
$U-U_0$, мкВ	138	120	102	85	68	55
ΔT , K	3.47	3.02	2.56	2.14	1.71	1.38

Таблица 1: T=291K

ΔP , атм	3.0	2.6	2.2	1.8	1.4	1.0
$U-U_0$, мкВ	115	98	82	66	51	40
ΔT , K	2.76	2.36	1.97	1.59	1.23	0.96

Таблица 2: Т=308К

ΔP , atm	3.0	2.6	2.2	1.8	1.4	1.0
$U-U_0$, мкВ	91	80	68	55	41	28
ΔT , K	2.10	1.85	1.57	1.27	0.95	0.65

Таблица 3: Т=333К

Построим графики зависимости $\Delta T(\Delta P)$ и определим коэффициент Джоуля-Томпсона для каждой температуры:

$$\mu = \frac{\Delta T}{\Delta P}$$

Рис. 1: T = 291 K

Рис. 2: T = 308 K

Рис. 3: T = 333 K

Угловые коэффициенты графиков:

k_1	k_2	k_3
1.06 ± 0.01	0.91 ± 0.01	0.73 ± 0.01

	$\mathrm{T}=291~\mathrm{K}$	$T=308~\mathrm{K}$	$T=333~\mathrm{K}$
$\mu_{ extsf{Д-T}}$	1.06	0.91	0.73
$\sigma_{\mu\pi_{\text{-T}}}$	0.01	0.01	0.01

Таблица 4: Коэффициенты Джоуля-Томсона

Построим график зависимости μ от 1/T:

Рис. 4: Зависимость μ от 1/T

Параметры графика: K=0.0076; $B=-1.555\cdot 10^{-5}$ Найдём коэффициенты Ван-дер-Ваальса и температуру инверсии по коэффициенту наклона с предыдущего графика:

$$C_p = 41 \frac{\text{Дж}}{\text{моль} \cdot \text{K}}$$
 $a = \frac{KRC_p}{2} = 1.30 \pm 0.04 \frac{\text{H} \cdot \text{м}^4}{\text{моль}^2}$ $b = -BC_p = (6.4 \pm 0.2) \cdot 10^{-4} \frac{\text{M}^3}{\text{моль}}.$ $T_i = \frac{2a}{Rb} = 487 \pm 22K$

Табличное значение:

$$T_{i_{\text{TRAGIT}}} = 2027K$$

Вывод

Полученные экспериментальным путем значения разнятся с табличными потому, что для расчётов была использоава модель газа Ван-дер-Ваальса. Отсюда можно сделать вывод, что модель газа Ван-дер-Ваальса хорошо приближена к модели реального газа в количественном соотношении только в небольшом диапазоне.