Notion de complexité

Algorithmique

NSI1

25 février 2022

- on veut résoudre un problème;

- on veut résoudre un problème;
- celui-ci a une taille $n \in \mathbb{N}$;

- on veut résoudre un problème;
- celui-ci a une taille $n \in \mathbb{N}$;
- on met au point un (ou des) algorithme(s) donnant la solution du problème;

- on veut résoudre un problème;
- celui-ci a une taille $n \in \mathbb{N}$;
- on met au point un (ou des) algorithme(s) donnant la solution du problème;
- on se pose la question suivante :

- on veut résoudre un problème;
- celui-ci a une taille $n \in \mathbb{N}$;
- on met au point un (ou des) algorithme(s) donnant la solution du problème;
- on se pose la question suivante :

Mon algorithme est-il efficace?

- on veut résoudre un problème;
- celui-ci a une taille $n \in \mathbb{N}$;
- on met au point un (ou des) algorithme(s) donnant la solution du problème;
- on se pose la question suivante :

Mon algorithme est-il efficace?

S'il y a plusieurs algorithmes, y en a-t-il un plus efficace que les autres?

Exemple

 on dispose d'une liste d'entiers et on veut savoir s'ils sont tous pairs ou non;

Exemple

- on dispose d'une liste d'entiers et on veut savoir s'ils sont tous pairs ou non;
- notons n la longueur de la liste, c'est la taille du problème;

Exemple

- on dispose d'une liste d'entiers et on veut savoir s'ils sont tous pairs ou non;
- notons n la longueur de la liste, c'est la taille du problème;
- · intéressons-nous à 3 algorithmes écrits en Рүтном.

Algorithme 1

```
def tous_pairs1(lst: list) -> bool:
  resultat = True
  for x in lst:
      if x % 2 == 1:
          resultat = False
  return resultat
```

Algorithme 2

```
def tous_pairs2(lst: list) -> bool:
  for x in lst:
      if x % 2 == 1:
          return False
  return True
```

```
def tous_pairs1(lst: list) -> bool:
resultat = True
for x in lst:
if x % 2 == 1:
resultat = False
return resultat
```

Questions

Quel programme semble le plus efficace / inefficace ...

Questions

Quel programme semble le plus efficace / inefficace ...

- en termes d'opérations?

Questions

Quel programme semble le plus efficace / inefficace ...

- en termes d'opérations?
- en termes de mémoire?

Il n'y a pas de réponse « absolue » :

Il n'y a pas de réponse « absolue » :

Qu'est-ce qu'on considère comme une « opération »?

Il n'y a pas de réponse « absolue » :

- Qu'est-ce qu'on considère comme une « opération »?
- Comment fonctionne concrètement PYTHON?

Il n'y a pas de réponse « absolue » :

- Qu'est-ce qu'on considère comme une « opération »?
- Comment fonctionne *concrètement* PYTHON? (gestion de la mémoire / procédés de calculs)

La complexité temporelle

Pour évaluer l'efficacité en terme de nombre d'opérations :

Pour évaluer l'efficacité en terme de nombre d'opérations :

 On se met d'accord sur ce qu'on considère comme opération élémentaire (OPEL).

Pour évaluer l'efficacité en terme de nombre d'opérations :

- On se met d'accord sur ce qu'on considère comme opération élémentaire (OPEL).
- On estime approximativement le temps que prend une OPEL en machine.

Pour évaluer l'efficacité en terme de nombre d'opérations :

- On se met d'accord sur ce qu'on considère comme opération élémentaire (OPEL).
- On estime approximativement le temps que prend une OPFL en machine.
- Seules les OPEL sont considérées comme coûteuses en temps et sont comptabilisées.

Pour évaluer l'efficacité en terme de nombre d'opérations :

- On se met d'accord sur ce qu'on considère comme opération élémentaire (OPEL).
- On estime approximativement le temps que prend une OPEL en machine.
- Seules les OPEL sont considérées comme coûteuses en temps et sont comptabilisées.
- Les autres opérations sont négligées.

On peut « imaginer » une fonction c_M (au sens mathématique du terme) qui

On peut « imaginer » une fonction c_M (au sens mathématique du terme) qui

· serait définie pour toute taille *n* du problème;

On peut « imaginer » une fonction c_M (au sens mathématique du terme) qui

- · serait définie pour toute taille *n* du problème;
- donnerait le nombre moyen d'OPEL nécessaires pour résoudre un problème de taille n.

On peut « imaginer » une fonction c_M (au sens mathématique du terme) qui

- · serait définie pour toute taille n du problème;
- donnerait le nombre moyen d'OPEL nécessaires pour résoudre un problème de taille n.

Cette *complexité moyenne* est très rarement calculable (calculs trop compliqués).

Complexité dans le pire des cas

Plus simple mais tout aussi utile que c_M .

Complexité dans le pire des cas

Plus simple mais tout aussi utile que c_M .

On cherche pour une taille n donnée le nombre maximal c(n) d'OPEL pour résoudre un problème de cette taille.

Ordre de grandeur

Quand n augmente, en général, c(n) augmente.

Ordre de grandeur

Quand n augmente, en général, c(n) augmente.

Mais à quelle vitesse?

Vitesses de croissance : graphique

Vitesses de croissance : tableau

Dans la première ligne on a indiqué différentes valeurs de *n*.

complexité	5	10	20	50	250	1 000	10 000	1 000 000
constante	10 ns	10 ns	10 ns	10 ns	10 ns	10 ns	10 ns	10 ns
logarithmique	10 ns	10 ns	10 ns	20 ns	30 ns	30 ns	40 ns	60 ns
racinaire	22 ns	32 ns	45 ns	71 ns	158 ns	316 ns	1 μs	10 μs
linéaire	50 ns	100 ns	200 ns	500 ns	2,5 μs	10 μs	100 μs	10 ms
quadratique	250 ns	1 μs	4 μs	25 μs	625 µs	10 ms	1 s	2,8 h
cubique	1,25 µs	10 µs	80 µs	1.25 ms	156 ms	10 s	2,7 h	316 ans
exponentielle	320 ns	10 µs	10 ms	130 jours	10 ⁵⁹ ans			

La complexité, c'est important!

Retour sur nos algorithmes

Convention

On décide qu'une OPEL est un accès à un élément d'une liste, ou bien une multiplication.

```
def tous_pairs1(lst: list) -> bool:
  resultat = True
  for x in lst:
      if x % 2 == 1:
          resultat = False
  return resultat
```

```
def tous_pairs1(lst: list) -> bool:
  resultat = True
  for x in lst:
      if x % 2 == 1:
          resultat = False
  return resultat
```

Quand **lst** est de taille *n*, il faut *n* OPEL.

```
def tous_pairs1(lst: list) -> bool:
  resultat = True
  for x in lst:
      if x % 2 == 1:
          resultat = False
  return resultat
```

Quand **lst** est de taille *n*, il faut *n* OPEL. L'algorithme est de complexité linéaire.

```
def tous_pairs2(lst: list) -> bool:
  for x in lst:
      if x % 2 == 1:
          return False
  return True
```

```
def tous_pairs2(lst: list) -> bool:
  for x in lst:
      if x % 2 == 1:
          return False
  return True
```

Dans le meilleur des cas il faut 1 OPEL, n dans le pire des cas.

```
def tous_pairs2(lst: list) -> bool:
  for x in lst:
      if x % 2 == 1:
          return False
  return True
```

Dans le meilleur des cas il faut 1 OPEL, *n* dans le pire des cas.

En moyenne il en faut environ 2.

```
def tous_pairs3(lst: list) -> bool:
  produit = 1
  for x in lst:
      produit *= x
  if produit % 2 == 1:
      return False
  else:
      return True
```

```
def tous pairs3(lst: list) -> bool:
  produit = 1
  for x in lst:
      produit *= x
  if produit % 2 == 1:
      return False
  else:
      return True
```

Puisqu'on parcourt toute la liste, il faut n OPEL...

```
def tous_pairs3(lst: list) -> bool:
  produit = 1
  for x in lst:
      produit *= x
  if produit % 2 == 1:
      return False
  else:
      return True
```

Puisqu'on parcourt toute la liste, il faut *n* OPEL... On en rajoute *n* pour les multiplications...

```
def tous_pairs3(lst: list) -> bool:
  produit = 1
  for x in lst:
      produit *= x
  if produit % 2 == 1:
      return False
  else:
      return True
```

Puisqu'on parcourt toute la liste, il faut *n* OPEL... On en rajoute *n* pour les multiplications... C'est encore un peu « léger » : plus *n* augmentent plus les multiplications prennent du temps...

```
def tous_pairs3(lst: list) -> bool:
  produit = 1
  for x in lst:
      produit *= x
  if produit % 2 == 1:
      return False
  else:
      return True
```

Puisqu'on parcourt toute la liste, il faut *n* OPEL... On en rajoute *n* pour les multiplications... C'est encore un peu « léger » : plus *n* augmentent plus les multiplications prennent du temps...et de la mémoire!

Exemple: la fonction maximum

```
def maximum(lst: list) -> int:
  n = len(lst)
  result = lst[0]
  for i in range(n):
      if lst[i] > result:
          result = lst[i]
  return result
```

OPEL

On convient qu'une OPEL est

- une affectation;
- une comparaison.

Comptabilisation des OPEL

```
def maximum(lst : list) -> int:
  n = len(lst) # 1 OPEL
  result = lst[0] # 1 OPEL
  for i in range(n): # 1 OPEL
      if lst[i] > result: # 1 OPEL
          result = lst[i] # 1 OPEL
      return result
```

Comptabilisation des OPEL

```
def maximum(lst : list) -> int:
  n = len(lst) # 1 OPEL
  result = lst[0] # 1 OPEL
  for i in range(n): # 1 OPEL
      if lst[i] > result: # 1 OPEL
          result = lst[i] # 1 OPEL
      return result
```

Dans la boucle **for**, qui est itérée *n* fois, il y a 3 OPEL.

Comptabilisation des OPEL

```
def maximum(lst : list) -> int:
  n = len(lst) # 1 OPEL
  result = lst[0] # 1 OPEL
  for i in range(n): # 1 OPEL
      if lst[i] > result: # 1 OPEL
          result = lst[i] # 1 OPEL
  return result
```

Dans la boucle **for**, qui est itérée n fois, il y a 3 OPEL. Ainsi, la complexité temporelle de la fonction est 3n + 2.

Conclusion

Quand n est grand, le « +2 » n'a guère d'importance et donc cette complexité est presque proportionnelle à n.

Conclusion

Quand n est grand, le « +2 » n'a guère d'importance et donc cette complexité est presque proportionnelle à n.

On dira donc qu'elle est *de l'ordre de n*, ou encore *linéaire*.

22 / 22