

Intro

- ► We've now seen cross validation as a way of predicting the true MSE of a model.
- We previously largely ignored all the estimated models during the cross-validation process: we were only seeking an estimate of the long-run MSE of the model.
- ► The "jackknife" approach can actually use additional information gained from those CV fits to provide insights into the parameter estimates.

Jackknife

- Essentially LOOCV applied to estimating the bias and variance of parameter estimates. Here it is algorithmically:
 - 1. Let i = 1 be the index of the first observation
 - 2. Remove observation *i* from the data
 - 3. Estimate your assumed model, report any parameter estimates, say $\hat{\alpha}_i$
 - 4. Set i = i + 1, return to 2 if $i \le n$.
 - 5. Now we have n estimates of parameter α . We can estimate the standard error and bias of an estimator $\hat{\alpha}$ by

$$\hat{SE}(\hat{lpha}) = \sqrt{rac{(n-1)}{n}\sum_{i=1}^{n}(\hat{lpha}_{i}-ar{\hat{lpha}})^{2}} \qquad \hat{Bias}(\hat{lpha}) = (n-1)(ar{\hat{lpha}}-\hat{lpha})$$

where
$$\bar{\hat{\alpha}} = \sum_{i=1}^{n} \hat{\alpha}_i / n$$

- ► Before applying the jackknife in a modelling scenario, let's look at it from a simple, intro-stats-type example
- ightharpoonup Estimating μ from a normal distribution!
- We generate a sample of size 25 from the normal distribution with the following (known) parameters $\mu=0$ and $\sigma=10$
- $ightharpoonup ar{X}$ is a traditional estimator for μ (among infinitely many estimators)

- ► So, what is $SE(\bar{X})$? ... 2
- We know this because X and \bar{X} are especially neatly intertwined when X is normal.
- ▶ But suppose we lived in a world void of nice statistical theory (note that this is the case for several estimators)...the jackknife provides us a way of estimating $SE(\bar{X})$


```
> set.seed(5141)
> x <- rnorm(25, 0, 10)
> xbarfull <- mean(x)
> xbarjack <- NA
> for(i in 1:25) xbarjack[i] <- mean(x[-i])</pre>
> sqrt((25-1)/(25)*sum((xbarjack-mean(xbarjack))^2))
[1] 1.873911
> set.seed(511)
> x <- rnorm(25, 0, 10)
> xbarfull <- mean(x)</pre>
> xbarjack <- NA
> for(i in 1:25) xbarjack[i] <- mean(x[-i])</pre>
> sqrt((25-1)/(25)*sum((xbarjack-mean(xbarjack))^2))
[1] 2.314983
```


- ▶ What about the bias of \bar{X} ? ...0
- ightharpoonup Part of the reason \bar{X} is considered a good estimator for μ is that it's unbiased.
- ightharpoonup Again, supposing we didn't know that \bar{X} was unbiased, we could estimate its bias using the jackknife...


```
> set.seed(5141)
> x <- rnorm(25, 0, 10)
> xbarfull <- mean(x)
> xbarjack <- NA
> for(i in 1:25) xbarjack[i] <- mean(x[-i])</pre>
> (25-1)*(mean(xbarjack) - mean(x))
[1] 0
> set.seed(511)
> x <- rnorm(25, 0, 10)
> xbarfull <- mean(x)</pre>
> xbarjack <- NA
> for(i in 1:25) xbarjack[i] <- mean(x[-i])</pre>
> (25-1)*(mean(xbarjack) - mean(x))
[1] -1.332268e-15
```

Traditional Example — Faster...


```
> set.seed(5141)
> x <- rnorm(25, 0, 10)
> xbarfull <- mean(x)</pre>
> xbarjack <- NA
> for(i in 1:25) xbarjack[i] <- mean(x[-i])</pre>
> (25-1)*(mean(xbarjack) - mean(x))
[1] 0
> sqrt((25-1)/(25)*sum((xbarjack-mean(xbarjack))^2))
[1] 1.873911
> library(bootstrap)
> jfit <- jackknife(x, mean)</pre>
> jfit$jack.bias
[1] 0
> jfit$jack.se
[1] 1.873911
```

Modelling Example

- Bringing this back around to machine learning, we can use the jackknife to investigate the bias and variance of our estimators within any particular model
- ► For example, $\hat{\beta}_0$ and $\hat{\beta}_1$ from SLR
- ▶ We simulate 30 observations from

$$Y = 2X + \epsilon$$

where $\epsilon \sim N(0, 0.25)$

SLR Example


```
> set.seed(311532)
> x <- runif(30, 0, 1)
> y <- 2*x + rnorm(30, sd=0.25)
> fullfit <- lm(y~x)</pre>
> jlist <- matrix(NA, nrow=30, ncol=2)</pre>
> for(i in 1:length(x)){
    jlist[i,] \leftarrow lm(y[-i]^x[-i])$coef
+ }
> (30-1)*(mean(jlist[,1])-fullfit$coefficients[1])
  (Intercept)
-0.0005130173
> (30-1)*(mean(jlist[,2])-fullfit$coefficients[2])
            X
0.0008851131
```

SLR Example


```
> sqrt(((30-1)/30)*sum((jlist[,1]-mean(jlist[,1]))^2))
[1] 0.1042806
> #true se(hat beta0)
> .25*sqrt(1/30+(.5^2)/(sum((x-mean(x))^2)))
[1] 0.08246102
> sqrt(((30-1)/30)*sum((jlist[,2]-mean(jlist[,2]))^2))
[1] 0.1358563
> #true se(hat beta1)
> .25/sqrt(sum((x-mean(x))^2))
[1] 0.1373534
```

Modelling Example

- Again, traditional estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased...so it's good to see the jackknife bias estimates near 0.
- ► We also see that the jackknife estimates for the SEs of both estimators appear reasonably close to the known SEs
- ▶ With some additional work, we could use these SEs to provide jackknife versions of confidence intervals...but we'll leave that aside, as we're about to learn a 'simpler' option.

Notes

- ► We considered LOO jackknife...it is generalizable to 'leave *j* out', just as CV was.
- ► While the jackknife is a nonparametric method for estimating things like bias and variance of an estimator, that does not mean that it is void of assumptions, or rigorous statistical theory
- ► It has been shown consistent (essentially asymptotically 'good') for many common estimators, but not the median.
- ► The biggest assumption is that observations are iid independent and identically distributed.

Bootstrap

- ► The (nonparametric) bootstrap is a tremendously versatile method for estimating the standard errors and bias of parameter estimates and has largely supplaced the jackknife.
- ► Instead of simulating new data from a known model (which will be impossible in real scenarios), we can randomly sample with replacement from our observed sampe of data!
- ▶ Oddly enough, with a bit of work, this provides good estimates of the bias and standard error of our estimators.

Bootstrap

- Here's the process:
 - 1. Set i = 1 as index for bootstrap sample number
 - 2. Take the i^{th} random sample of size n from your observations x_1, x_2, \dots, x_n with replacement
 - 3. Fit model, estimate parameter α with $\hat{\alpha}_i$ (for example)
 - 4. Set j = j + 1, and if $j \leq B$ return to step 2 (B = 1000, 5000 are standard amounts)
 - 5. Estimate the standard error and/or bias of the estimator

$$\hat{SE}(\hat{lpha}) = \sqrt{rac{\sum_{j=1}^{B}(\hat{lpha}_{j} - ar{\hat{lpha}})^{2}}{B-1}} \qquad \hat{Bias}(\hat{lpha}) = ar{\hat{lpha}} - \hat{lpha}$$

where
$$\bar{\hat{lpha}} = \sum_{j=1}^{B} \hat{lpha}_j/B$$

Bootstrap

► Visually, from your textbook

FIGURE 5.11. A graphical illustration of the bootstrap approach on a small sample containing n=3 observations. Each bootstrap data set contains n observations, sampled with replacement from the original data set. Each bootstrap data set is used to obtain an estimate of α .

► We simulate 30 observations from

$$Y = 2X + \epsilon$$

where $\epsilon \sim N(0, 0.25)$

- In a simulation, we can simply continue generating data to investigate things like the distribution of $\hat{\beta}_1$
- ▶ So we do it...but to keep it simple, we'll hold X fixed...


```
newx <- list()
newy <- list()
modnew <- list()
coefs <- NA
for(i in 1:1000){
   newx[[i]] <- x
   newy[[i]] <- 2*newx[[i]] + rnorm(30, sd=0.25)
   modnew[[i]] <- lm(newy[[i]]~newx[[i]])
   coefs[i] <- modnew[[i]]$coefficients[2]
}</pre>
```


- Now we have fit 1000 linear models to 1000 new simulations (of size 30)
- \blacktriangleright We stored all $\hat{\beta}_1$ in "coefs"
- ightharpoonup sd(coefs) = 0.1325

▶ BUT with real data, you will never have the option to just simulate a bunch more of it.

► Enter the bootstrap...


```
newboots <- list()
bootsmod <- list()
bootcoef <- NA
xy <- cbind(x,y)
for(i in 1:1000){
  newboots[[i]] <- xy[sample(1:30, 30, replace=TRUE),]
  bootsmod[[i]] <- lm(newboots[[i]][,2]~newboots[[i]][,1])
  bootcoef[i] <- bootsmod[[i]]$coefficient[2]
}</pre>
```


- ► Now we have fit 1000 linear models to 1000 bootstrapped samples (of size 30)
- ▶ We stored all $\hat{\beta}_1$ in "bootcoef"
- ► sd(bootcoef) = 0.1323 (!!!!)

► At this point, we can compare a few things

Method	$SE(\hat{eta}_1)$
Truth	0.1374
1000 Simulations	0.1325
Inferential summary(Im)	0.1294
Jackknife*	0.1359
Bootstrap*	0.1323

- ▶ * Emphasis here is that for these methods, we made no assumptions about the underlying distribution of the error terms (though iid is assumed, and there are some conditions on $\hat{\beta}_1$).
- ► For summary(lm), we need to assume normal iid error
- ▶ For both the truth and 1000 simulations, we need the full form of $f(x) + \epsilon$...AKA, never feasible in practice

► Change to uniform error?

Method	$SE(\hat{eta}_1)$
Truth	0.0624
1000 Simulations	0.0628
Inferential summary(lm)	0.0560
Jackknife*	0.0601
Bootstrap*	0.0598

- ▶ * Emphasis here is that for these methods, we made no assumptions about the underlying distribution of the error terms (though iid is assumed, and there are some conditions on $\hat{\beta}_1$).
- ► For summary(Im), we need to assume normal iid error (AKA, wrong in this case)
- ▶ For both the truth and 1000 simulations, we need the full form of $f(x) + \epsilon$...AKA, never feasible in practice

Comments

- ► This should give you some confidence in the power of bootstrapping!
- Bootstrap and jackknife are used for the same general purposes, but jackknife is older and was primarily used at a time when computing resources were limited.
- ► As such, bootstrapping is the predominant nonparametric method used for bias and standard error calculations.

Taking it Further

- We alluded to the potential of computing confidence intervals with the jackknife, but with the bootstrap one option for doing so is quite straightforward.
- ▶ The *B* bootstrap estimates of parameter α provide an empirical estimate of the distribution of estimator $\hat{\alpha}$.
- ▶ So, for example, we can look at a histogram of bootstrapped $\hat{\beta}_1$ from our previous example...

Bootstrap CI

► hist(bootcoef)

lacktriangle contains 1000 bootstrap \hat{eta}_1 estimates...

Bootstrap CI

► The simplest method for providing a CI is to take percentiles. Suppose I want a 95% bootstrap CI for β_1 ...

Bootstrap CI

30 / 33

```
> quantile(bootcoef, .025)
    2.5%
1.76697
```

- > quantile(bootcoef, .975)
 97.5%
- 2.296553
 - So we have \overline{a} 95% CI for true β_1 lying within the interval (1.77, 2.30)

Modern Bootstrapping

► While the bootstrap originated in the 70's, novel uses are still being developed:

Bootstrap Acclaim

Statistical 'rock star' wins coveted international prize Nature.com - Nov. 12, 2018 Bradley Efron, at Stanford University, has won the US\$80,000 ... 2018 International

Stats world's version of the Nobel Prize

Bootstrap methods: another look at the jackknife

B Efron - Breakthroughs in statistics, 1992 - Springer

We discuss the following problem given a random sample X=(X 1, X 2,..., X n) from an unknown probability distribution F, estimate the sampling distribution of some prespecified random variable R (X, F), on the basis of the observed data x.(Standard jackknife theory ...

гвоокі An introduction to the bootstrap B Efron, RJ Tibshirani - 1994 - books.google.com

Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms ... ☆ 99 Cited by 38703 Related articles All 10 versions

[BOOK] The jackknife, the **bootstrap**, and other resampling plans B Efron - 1982 - books.google.com

The jackknife and the bootstrap are nonparametric methods for assessing the errors in a statistical estimation problem. They provide several advantages over the traditional parametric approach: the methods are easy to describe and they apply to arbitrarily ... \[\frac{1}{2} \]
 \[\text{99} \]
 Cited by 9533 Related articles All 14 versions

► Actual cite counts should be much higher, bootstrapped SE/CIs are ubiquitous in applied papers across the natural sciences

