

Lattice agreement

- N processes.
- Each process starts with an input value $u_i \in (L, \leq, V)$ a finite join semi lattice.
 - ≤ is partial order
 - For any two elements a, $b \in L$. a v b exists.
- Every non-faulty process outputs a value vi
 - $-v_i$ is join of input values including its own.
 - Any two output values v_i and v_j are comparable i.e. either $v_i \le v_i$ or $v_i \le v_i$
 - Every correct process eventually outputs a value.

Lattice agreement

Distributed Asynchronous failure-prone system

Generalized lattice agreement

- Generalization of lattice agreement
 - Process receives sequence of values u_i^j
 - Process outputs sequence of values v_i^j
 - Any two values are comparable.
 - Every value received by correct process is eventually included in an output value.
- Fault-tolerant model.
- Wait-free algorithm. O(n) message delays.

Application of GLA

- Strong consistencies
 - Sequential consistency
 - Serializability and program order of client operations is maintained.
 - Linearizability
 - Operations appear to execute instantaneously.
- GLA can be used to implement specific-class of state machines
 - Two kind of operations (a) void update (b) read
 - All updates commute

SM with GLA

Replica 1

Replica 2

Replica 3

Commutative operations

updates commute => convergence

- Convergence ≠> Consistent Queries!
- GLA learns chain of values

Observed Remove set

Inconsistent states

Consistent states

Translator

- Mathematically, operations are functions (on some set of values).
- The translator
 - Ordering of non-overlapping operations is preserved.
 - Maps every op on set S into op' on a set S'.
 - Op' on set S' are commutative.
- Correctness
 - partially-ordered set X of operations on S should be mapped to set Y of operations on S'
 - Such that the state produced by Y corresponds to the state produced by some linear execution of X (consistent with its partial order).

Big-picture

Translator

- Translated-operations (commutative)
- Statically orders non-commutative ops

PO1

GLA

Partial order 1

PO2

- Partial ordering of operations.
- Convergent States
- Consistent Reads

Partial order 2

What if PO1 != PO2 ?

Problem!

- Op1 and Op2 don't commute. Let Op2 < Op1 in static ordering.
- Effect:
 - State(Op2, Op1) exposes the effect of Op₂ followed by effect of Op1.
 - State(Op1) reflects effect of Op1
 - To guarantee consistency State(Op1) must reflect effect of Op2.
- Extra conditions needed?

Nullifying semantics

- Nullifying operations:
 - Op1(Op2(s)) = Op1(s) where s is the state.
 - Op1 is said to nullify Op2.
- In set Add(x), Remove(x) have nullifying property.
 - Add(x, Remove(x, s)) = Add(x, s)
 - Remove(x, Add(x, s)) = Remove(x,s)
- Sequence doesn't have this.
 - {AddRight(e,x), AddRight(e,y)} != {AddRight(e,y)}

Partial nullifying order

- For every pair of non-commutative operations op₁, op₂ there can be two kind of nullifying semantics.
 - State(op₁, op₂) = State(op₂)
 - State(op₂, op₁) = State(op₁)
- But is not necessary for two operations to mutually nullify each other always.
- Sufficient condition: There exist a partial order < St.
 - (a) If op1 < op2, then op2 nullifies op1, and
 - (b) If op1 and op2 are incomparable in the ordering, then they commute with each other.
- Use this partial-order to give consistency

- Assume all non-commutative operations have nullifying semantics
- Consider graph, where nodes are operations
 - Edge from op₁ to op₂ if op₂ nullifies op₁
 - If no edge between op₁ and op₂ then they commute.
- **Sufficient condition** There should exist partial ordering of nullifying operations.

Some Data-Structures

OR-Set (Valid)

AddRight(e, b)

AddRight(e, a)

Sequence (Not Valid)

Reset-Register (Valid)

Why partial nullifying order works

- Let $S = \{op_1, op_2, ...op_n\}$. There exists partial order in S.
- Let $S' = \{op_{i1}, op_{i2}...\} \subseteq S$
- To Show value(S') is consistent with value(S)

- $S' = \{op1, op2, op4\}$
- S = {op1, op2, op3, op4, op5}
- S' ⊆ S
- •Define dc(S, S') := downward closure of set S with respect to S'.

$$dc(S,S')=\{op1,op2,op3,op4\}$$

- Value(S') = Value(dc(S, S'))
- Nullifying semantics guarantee this.

Classification

Consensus

- n processes
- Each process proposes value and they have to agree on common value, one of proposed value.
- CAP theorem: Impossible for distributed systems to have following three guarantees simultaneously
 - Consistency (all nodes see same data at same time)
 - Availability (response for every request)
 - Partition tolerance (fault-tolerant)
- two-consensus: two process have to decide on common value. Un-decidable Problem!

Possible states

- Consider Op₁, Op₂ as only operations proposed to GLA by two processes
 - Possible states:

Op₁

• Op₂

Op₁, Op₁

• Op₂, Op₂

• Op₁, Op₂

• Op₂, Op₁

- If Op₁ is proposed, Linearisability guarantee gives
 - Possible reads:

• Op₁

• Op₁, Op₂

• Op₁, Op₁

• Op₂, Op₁

- If Op₂ is proposed, Linearisability guarantee gives
 - Possible reads:

• Op₂

Op₂, Op₂

• Op₂, Op₁

• Op₁, Op₂

Reduction of consensus to GLA

```
C Propose(value v)
       • If(v == 1)
              GLA Propose(op<sub>1</sub>)
              S = GLA read()
              If S \in \{\text{state}(op_1), \text{state}(op_1, op_2), \text{state}(op_1, op_1)\}
                      C Learn(1);
              Else
                                                   //{state(op2,op1)}
                      C learn(0);
       • Else if (v == 0)
              GLA Propose(op<sub>2</sub>)
              S = GLA read()
              If S \in \{\text{state}(op_2), \text{state}(op_2, op_1), \text{state}(op_2, op_2)\}
                      C_Learn(0);
              Else
                                                   //\{\text{state}(\text{op}_1,\text{op}_2)\}
                      C learn(1);
```

Process proposing op1

State Read

Possible States

State(op ₁)	Sate(op ₁ , op ₂), State(op ₁ , op ₁)
State(op _{1,} op ₂) SET A	Sate(op ₁)
State(op _{1,} op ₁)	Sate(op ₁)

State(op ₂ , op ₁)	SET B	State(op ₂)
---	-------	-------------------------

```
State(op2)
                               State(op1)
                                                     #Initial conditions
                     !=
                     <u>|</u>=
                                State(op1, op2)
                                                     #Non-nullifying
                                State(op1, op1)
                                                     #Not possible
                     <u>|</u>=
State(op2, op1)
                                                     #Non-nullifying
                                State(op1)
                     !=
                                State(op1, op2)
                     <u>|</u>=
                                                     #Non-commutative e
                                                     #Additional constraints
                                State(op1, op1)
                     !=
```

- Set A and B don't have any common value provided
 - Operations are non-commutative and non-nullifying.
 - (Extra Assumption) There exists state where all previous inequalities hold.
- So given a state we can find out its set.
- Knowing set => unique value can be chosen.
 - SET A: value 1
 - SET B: value 0
- Thus we are able to solve 2-consensus using GLA instance.
- As 2-consensus is non-wait free => GLA can't be non-wait free

Summary

- GLA is computational model to get strong consistency guarantees in distributed systems
- For data-structures to work with GLA:
 - Necessary condition: Every pair of noncommutative operations should have nullifying semantics.
 - There should exist partial nullifying order

Thanks!

References:

- Generalized lattice agreement by Jose, Sriram, Kaushik, Rama, Kapil
- GLA and Data-Structures implementation Hari, Sagar, Kapil
- Kapil's slides for MSR-summer school talk.
- Windows Fabric(Cover slide design)