Learning by Doing Model with Melitz (2003) which should have been "Learning by Exporting"

Wooyong Park Yonsei University

Link to the Latest version

Last updated June 2, 2025

1 Motivation

• Motivating example: Liang et al. (2024)

- Melitz (2003) assumes that productivity determines export behavior.
- Empirical evidence that export also affects productivity
- How to accommodate the increasing productivity after export in Melitz (2003)

2 In this report I pin down

- LbE-FEC (learning by doing free entry condition)
- LbE-ZCP (learning by doing zero cutoff profit)

3 Set up

- 1. CES Demand as usual
- 2. Monopolistic competition at each variety ω
- 3. Firm technology:

$$l_{ij} = f_{ij} + \frac{\tau_{ij}}{\phi} q_{ij}$$

4. The distribution of productiviy ϕ follows

$$\begin{cases} \phi & \sim G(\gamma) \\ \phi^* & \sim K(\phi^* | \phi; \gamma^*) \quad (\phi^* > \phi) \end{cases}$$
 (1)

where G and K are both Pareto distributions with different values of shape parameter: γ, γ^*

- ϕ^* is not observed by the firm even after entry. Rather, it draws again after the entry, because the firm's productivity changes after its production activity. (\rightarrow Limitation: no explanation of the exact mechanism of learning)
- Melitz (2003) is a special case of (1) where $\gamma^* \to \infty$.

4 Zero-Cutoff Profit

In Melitz (2003), ZCP was determined by ϕ_0 :

$$\pi(\phi_0) = 0$$

where

$$\pi_{ij}(\phi) = \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1 - \sigma} \mathbb{P}_j^{\sigma - 1} Y_j \phi^{\sigma - 1} - w_i f_{ij}$$
 (2)

4.1 Key Difference

• Uncertainty still remains after entry, so ZCP is determined by the 'average' profit:

$$\mathbb{E}_{\phi^* \sim K} \left[\frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1 - \sigma} \mathbb{P}^{\sigma - 1} Y_j \phi^{*\sigma - 1} \right] = w_i f_{ij}$$

• Let $\Psi \equiv \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1 - \sigma} \mathbb{P}^{\sigma - 1} Y_j$. Then,

$$w_{i}f_{ij} = \Psi \cdot \mathbb{E}_{\phi^{*} \sim K} \left[\phi^{*\sigma-1} \right]$$

$$= \Psi \cdot \int_{\phi}^{\infty} \phi^{*\sigma-1} \frac{\gamma^{*} \phi^{\gamma^{*}}}{\phi^{*\gamma^{*}+1}} d\phi^{*}$$

$$= \Psi \cdot \int_{\phi}^{\infty} \frac{\phi^{\gamma^{*}-\sigma+1}}{\phi^{*\gamma^{*}-\sigma+2}} \frac{\gamma^{*}}{\phi^{1-\sigma}} d\phi^{*}$$

$$= \Psi \cdot \frac{\gamma^{*}}{\gamma^{*}-\sigma+1} \cdot \frac{1}{\phi^{1-\sigma}} \underbrace{\int_{\phi}^{\infty} (\gamma^{*}-\sigma+1) \frac{\phi^{\gamma^{*}-\sigma+1}}{\phi^{\gamma^{*}-\sigma+2}} d\phi^{*}}_{=1}$$

$$= \Psi \cdot \frac{\gamma^{*}}{\gamma^{*}-\sigma+1} \cdot \frac{1}{\phi^{1-\sigma}}$$

• Thus, LbE-ZCP is determined by

$$\frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1 - \sigma} \mathbb{P}^{\sigma - 1} Y_j \frac{\gamma^*}{\gamma^* - \sigma + 1} \cdot \phi^{\sigma - 1} = w_i f_{ij}$$
 (3)

• Compare this to the Melitz (2003) 's ZCP:

$$\frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1 - \sigma} \mathbb{P}_j^{\sigma - 1} Y_j \phi^{\sigma - 1} = w_i f_{ij}$$

• Since $\frac{\gamma^*}{\gamma^* - \sigma + 1} > 1$, the possibility of learning - and that firms expecting such learning - lowers the ZCP and more firms get to export.

4.2 Comparative statics

- 1. Increase of γ^* inverse: Learning Rate
- γ^* is the measure of firm homogeneity. Because γ^* determines how firms shift from initial productivity ϕ to post-learing productivity ϕ^* , higher γ^* means less possibility of productivity jump.
- $\gamma^* \to \infty$: degenerate K and no learning, same as Melitz (2003)
- $\gamma^* \to \sigma 1$: The first moment mean of K goes to ∞ , every firm will export.

Proposition 4.1 (Learning and Export Behavior). *If* $\gamma^* \to \sigma - 1$, that is the learning rate reaches its maximum, all firms export regardless of its intial productivity level ϕ .

5 Free Entry Condition (Sketch)

5.1 Melitz (2003)

How is FEC determined?

$$w_{i}f^{e} = \mathbb{E}_{\phi \sim G} \left[\sum_{j \in S} \max\{\pi_{ij}(\phi), 0\} \right]$$

$$= \int \sum_{j \in S} \max\{\pi_{ij}(\phi), 0\} dG_{\gamma}(\phi)$$

$$= \int \sum_{j \in S} \max\{\pi_{ij}(\phi), 0\} \gamma \phi^{-\gamma - 1} d\phi$$
(4)

The LbE-FEC, the term $\max\{\pi_{ij}(\phi), 0\}$ is different from Melitz (2003) because the profit relies on ϕ^* , not ϕ . Therefore, LbE-FEC has to be summed over the joint density of ϕ^* and ϕ :

$$w_{i}f^{e} = \int_{\phi} \int_{\phi^{*} > \phi} \sum_{j \in S} \max\{\pi_{ij}(\phi^{*}), 0\} \underbrace{\frac{\gamma^{*}\phi^{\gamma^{*}}}{\phi^{*\gamma^{*}+1}}}_{\text{cpdf of }\phi^{*}} d\phi^{*} \underbrace{\gamma\phi^{-\gamma-1}}_{\text{pdf of }\phi} d\phi \tag{5}$$

We expand Equation 5 as follows:

$$\int_{\phi} \left(\underbrace{\int_{0}^{\infty} \sum_{j \in S} \max\{\pi_{ij}(\phi^*), 0\} \frac{\gamma^*}{\phi^{*\gamma^* + 1}} d\phi^*}_{\text{similar to Melitz}} - \underbrace{\int_{0}^{\phi} \sum_{j \in S} \max\{\pi_{ij}(\phi^*), 0\} \frac{\gamma^*}{\phi^{*\gamma^* + 1}} d\phi^*}_{\text{Suppose} \approx 0} \right) \gamma \phi^{\gamma^* - \gamma - 1} d\phi$$

"Suppose ≈ 0 " is a simplifying assumption.

Assume that the learning rate is not too large - i.e., γ^* has a lower bound, γ . Then, since $\gamma < \gamma^*$,

$$\int \sum_{j \in S} \max \{ \pi_{ij}(\phi), 0 \} \gamma \phi^{-\gamma - 1} d\phi > \int_0^\infty \sum_{j \in S} \max \{ \pi_{ij}(\phi^*), 0 \} \frac{\gamma^*}{\phi^{*\gamma^* + 1}} d\phi^*$$

and from Melitz (2003)

$$(w_i f^e)_{\text{Melitz}} = \int \sum_{j \in S} \max \{ \pi_{ij}(\phi), 0 \} \gamma \phi^{-\gamma - 1} d\phi$$

Equation 5 becomes

$$\int_{\phi} \left(\int_{0}^{\infty} \sum_{j \in S} \max\{\pi_{ij}(\phi^{*}), 0\} \frac{\gamma^{*}}{\phi^{*\gamma^{*}+1}} d\phi^{*} \right) \gamma \phi^{\gamma^{*}-\gamma-1} d\phi < (w_{i}f^{e})_{\text{Melitz}} \int_{\phi} \gamma \phi^{\gamma^{*}-\gamma-1} d\phi
= (w_{i}f^{e})_{\text{Melitz}} \frac{\gamma - \gamma^{*}}{\gamma} \int_{\phi} \frac{1}{\gamma - \gamma^{*}} \phi^{\gamma^{*}-\gamma-1} d\phi
= (w_{i}f^{e})_{\text{Melitz}} \left(1 - \frac{\gamma^{*}}{\gamma} \right)
< (w_{i}f^{e})_{\text{Melitz}}$$

Therefore, the cutoff for entry falls as well.

6 Remarks

- This model actually depicts how the expectation of learning affects entry decision, not how firms learn per se.
 - Distribution K can differ across individual firms, and $1/\gamma^*$ captures how firms are optimistic of future productivity increase.
 - Unless $\gamma^* \to \infty$, Melitz (2003) overestimates the cutoff prodictivities for ZCP and FEC.

7 Limitations

- Technically, this is "learning by doing", not "learning by exporting".
- It is also different from the lbe mechanism Liang et al. (2024) illustrates f_{ij} decrease

8 Data Implications

8.1 Backing γ_i^* out

As mentioned above, distribution K can differ across individual firms, which imply $\gamma_i^* \neq \gamma_j^*$. In this Bayesian world, we can predict individual inverse learning rate γ_i^* by constructing posterior-prior.

8.1.1 Data Requirements

- $w_i, \sigma, \tau_{ij}, \mathbb{P}, Y_j, \phi, f_{ij}$
- ϕ , in my opinion, does not have to be observed but it does help pin down γ_i^* .
- If we do not have ϕ , having the export status data might help.

8.1.2 Set-up

Prior

$$\gamma_i^* \sim H(\cdot)$$
 (prior) (6)

• Posterior is denoted by λ , and likelihood is denoted by L.

8.1.3 Results

 $\lambda(\gamma_i^*|\text{export status} = 1|\gamma_i^*) \propto L(\text{export status} = 1) \cdot H(\cdot)$

$$= Pr \left[\frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1} w_i \tau_{ij} \right)^{1 - \sigma} \mathbb{P}^{\sigma - 1} Y_j \frac{\gamma^*}{\gamma^* - \sigma + 1} \cdot \phi^{\sigma - 1} > w_i f_{ij} \right] \cdot H(\cdot)$$

- The prior, $H(\cdot)$, can be obtained by the usual Bayesian methods(e.g., strict prior, empirical bayes, heirachical bayes)
- The Bayes estimate for γ_i^* can be obtained as either the posterior mean or the mode(MaP estimate).

8.2 Using Athey et al. (2025)

Consider the following relation in an RCT:

$$Z \longrightarrow Y_1 \longrightarrow \underbrace{Y_2 = \phi^*}_{\text{unobs. in the RCT}}$$

- *Z*: Government support(that is targeted for productivity increase)
- Y_1 : Immediately observable outcome of the RCT (e.g., test scores, patent application)
- Requirements:
 - 1. The RCT with (Z, Y_1)
 - 2. Observational (nonRCT) dataset with $(Z, Y_1, Y_2) \longrightarrow SIMS$ dataset
 - 3. Latent Unconfoundedness: Endogeneity pattern betweem (Z, Y_1) is the same as (Z, Y_2)

References

Athey, Susan, Raj Chetty, and Guido Imbens (2025) "The Experimental Selection Correction Estimator: Using Experiments to Remove Biases in Observational Estimates," Technical report, National Bureau of Economic Research.

Liang, Yousha, Kang Shi, Hanyi Tao, and Juanyi Xu (2024) "Learning by exporting: Evidence from patent citations in China," 150, 103933.

Melitz, Marc J. (2003) "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," 71 (6), 1695–1725.