APPENDIX

A.1 Overview

The instruction set architecture (ISA) of the LC-3 is defined as follows:

Memory address space 16 bits, corresponding to 2¹⁶ locations, each containing one word (16 bits). Addresses are numbered from 0 (i.e., x0000) to 65,535 (i.e., xFFFF). Addresses are used to identify memory locations and memory-mapped I/O device registers. Certain regions of memory are reserved for special uses, as described in Figure A.1.

Locations x0000 to x2FFF comprise privileged memory and are only accessible if the process is executing in Supervisor mode (PSR[15]=0). Locations x3000 to xFDFF comprise memory available to User mode and

Figure A.1 Memory map of the LC-3

Table A.1 Device Register Assignments				
Address	I/O Register Name	I/O Register Function		
xFE00	Keyboard status register (KBSR)	The ready bit (bit [15]) indicates if the keyboard has received a new character.		
xFE02	Keyboard data register (KBDR)	Bits [7:0] contain the last character typed on the keyboard.		
xFE04	Display status register (DSR)	The ready bit (bit [15]) indicates if the display device is ready to receive another character to print on the screen.		
xFE06	Display data register (DDR)	A character written in bits [7:0] will be displayed on the screen.		
xFFFC	Processor Status Register (PSR)	Contains privilege mode, priority level and condition codes of the currently executing process.		
xFFFE	Machine control register (MCR)	Bit [15] is the clock enable bit. When cleared, instruction processing stops.		

data. Addresses xFE00 to xFFFF specify input and output device registers and special internal processor registers that are also only accessible if the process is executing in Supervisor mode (PSR[15]=0). For purposes of controlling access to these device registers, their addresses are also considered part of privileged memory.

Memory-mapped I/O Input and output are handled by load/store (LD/ST, LDI/STI, LDR/STR) instructions using memory addresses from xFE00 to xFFFF to designate each device register. Table A.1 lists the input and output device registers and internal processor registers that have been specified for the LC-3 thus far, along with their corresponding assigned addresses from the memory address space.

Bit numbering Bits of all quantities are numbered, from right to left, starting with bit 0. The leftmost bit of the contents of a memory location is bit 15.

Instructions Instructions are 16 bits wide. Bits [15:12] specify the opcode (operation to be performed); bits [11:0] provide further information that is needed to execute the instruction. The specific operation of each LC-3 instruction is described in Section A.2.

Illegal opcode exception Bits [15:12] = 1101 has not been specified. If an instruction contains 1101 in bits [15:12], an illegal opcode exception occurs. Section A.3 explains what happens.

Program counter A 16-bit register containing the address of the next instruction to be processed.

General purpose registers Eight 16-bit registers, numbered from 000 to 111 (R0 to R7).

Condition codes Three 1-bit registers: N (negative), Z (zero), and P (positive). Load instructions (LD, LDI, and LDR) and operate instructions (ADD, AND, and NOT) each load a result into one of the eight general purpose registers. The condition codes are set, based on whether that result, taken as a 16-bit 2's complement integer, is negative (N = 1; Z, P = 0), zero (Z = 1; N, P = 0), or positive (P = 1; N, Z = 0). All other LC-3 instructions leave the condition codes unchanged.

Interrupt processing I/O devices have the capability of interrupting the processor. Section A.3 describes the mechanism.

Priority level The LC-3 supports eight levels of priority. Priority level 7 (PL7) is the highest, PL0 is the lowest. The priority level of the currently executing process is specified in bits PSR[10:8].

Processor status register (PSR) A 16-bit register, containing status information about the currently executing process. Seven bits of the PSR have been defined thus far. PSR[15] specifies the privilege mode of the executing process. PSR[10:8] specifies the priority level of the currently executing process. PSR[2:0] contains the condition codes. PSR[2] is N, PSR[1] is Z, and PSR[0] is P.

Supervisor mode The LC-3 specifies two modes of operation, Supervisor mode (privileged) and User mode (unprivileged). Interrupt service routines and trap service routines (i.e., system calls) execute in Supervisor mode. The privilege mode is specified by PSR[15]. PSR[15]=0 indicates Supervisor mode; PSR[15]=1 indicates User mode.

Privilege mode exception The RTI instruction executes in Supervisor mode. If the processor attempts to execute the RTI instruction while in User mode, a privilege mode exception occurs. Section A.3 explains what happens.

Access Control Violation (ACV) exception An ACV exception occurs if a process attempts to access a location in privileged memory (either a location in system space or a device register having an address from xFE00 to xFFFF) while operating in User mode. Section A.3 explains what happens.

Supervisor stack A region of memory in system space accessible via the Supervisor Stack Pointer (SSP). When PSR[15]=0, the stack pointer (R6) is SSP. When the processor is operating in User mode (PSR[15]=1), the SSP is stored in Saved_SSP.

User stack A region of memory in user space accessible via the User Stack Pointer (USP). When PSR[15]=1, the stack pointer (R6) is USP. When the processor is operating in Supervisor mode (PSR[15]=0), the USP is stored in Saved_USP.

A.2 The Instruction Set

The LC-3 supports a rich, but lean, instruction set. Each 16-bit instruction consists of an opcode (bits[15:12]) plus 12 additional bits to specify the other information that is needed to carry out that instruction. Figure A.2 summarizes the 15 different opcodes in the LC-3 and the specification of the remaining bits of each instruction. The 16th four-bit opcode is not specified but is reserved for future use.

In the following pages, the instructions will be described in greater detail. Table A.2 is provided to help you to understand those descriptions. For each instruction, we show the assembly language representation, the format of the 16-bit instruction, the operation of the instruction, an English-language description of its operation, and one or more examples of the instruction. Where relevant, additional notes about the instruction are also provided.

Figure A.2 Format of the entire LC-3 instruction set. *Note:* + indicates instructions that modify condition codes

Table A.2	Notational Conventions	
Notation	Meaning	
xNumber	The number in hexadecimal notation. Example: xF2A1	
#Number	The number in decimal notation. Example #793	
bNumber A[l:r]	The number in binary. Example b10011 The field delimited by bit [1] on the left and bit [r] on the right, of the datum A. For example, if PC	
A[iii]	contains 0011001110111111, then PC[15:9] is 0011001. PC[2:2] is 1. If I and r are the same bit number, we generally write PC[2].	
BaseR	Base Register; one of R0R7, specified by bits [8:6] of the instruction, used in conjunction with a six-bit offset to compute Base+offset addresses (LDR and STR), or alone to identify the target address of a control instruction (JMP and JSRR).	
DR	Destination Register, one of ROR7, which specifies the register a result should be written to.	
imm5	A five-bit immediate value (bits [4:0] of an instruction), when used as a literal (immediate) value. Taken as a five-bit, 2's complement integer, it is sign-extended to 16 bits before it is used. Range: -1615.	
INTV	An eight-bit value, supplied along with an interrupting event; used to determine the starting address of an interrupt service routine. The eight bits form an offset from the starting address of the interrupt vector table. The corresponding location in the interrupt vector table contains the starting address of the corresponding interrupt service routine. Range 0255.	
LABEL	An assembly language construct that identifies a location symbolically (i.e., by means of a name, rather than its 16-bit address).	
mem[address]	Denotes the contents of memory at the given address.	
offset6	A six-bit signed 2's complement integer (bits [5:0] of an instruction), used with the Base+offset	
	addressing mode. Bits [5:0] are sign-extended to 16 bits and then added to the Base Register to form an address. Range: —3231.	
PC	Program Counter; 16-bit register that contains the memory address of the next instruction to be fetched. For example, if the instruction at address A is not a control instruction, during its execution, the PC contains the address $A + 1$, indicating that the next instruction to be executed is contained in memory location $A + 1$.	
PCoffset9	A nine-bit signed 2's complement integer (bits [8:0] of an instruction), used with the PC+offset addressing mode. Bits [8:0] are sign-extended to 16 bits and then added to the incremented PC to form an address. Range –256255.	
PCoffset11	An eleven-bit signed 2's complement integer (bits [10:0] of an instruction), used with the JSR opcode to compute the target address of a subroutine call. Bits [10:0] are sign-extended to 16 bits and then added to the incremented PC to form the target address. Range –10241023.	
PSR	Processor Status Register. A 16-bit register that contains status information of the process that is executing. Seven bits of the PSR have been specified. PSR[15] = privilege mode. PSR[10:8] = Priority Level. PSR[2:0] contains the condition codes. PSR[2] = N, PSR[1] = Z, PSR[0] = P.	
Saved_SSP	Saved Supervisor Stack Pointer. The processor is executing in either Supervisor mode or User mode. If in User mode, R6, the stack pointer, is the User Stack Pointer (USP). The Supervisor Stack Pointer (SSP) is stored in Saved_SSP. When the privilege mode changes from User mode to Supervisor mode, Saved_USP is loaded with R6 and R6 is loaded with Saved_SSP.	
Saved_USP	Saved User Stack Pointer. The User Stack Pointer is stored in Saved_USP when the processor is executing in Supervisor mode. See Saved_SSP.	
setcc() SEXT(A)	Indicates that condition codes N, Z, and P are set based on the value of the result written to DR. Sign-extend A. The most significant bit of A is replicated as many times as necessary to extend A to	
SP	16 bits. For example, if $A = 110000$, then SEXT(A) = 1111 1111 1111 0000. The current stack pointer. R6 is the current stack pointer. There are two stacks, one for each privilege	
SR, SR1, SR2	mode. SP is SSP if PSR[15] = 0; SP is USP if PSR[15] = 1. Source register; one of ROR7 that specifies the register from which a source operand is obtained.	
SSP	The Supervisor Stack Pointer.	
trapvect8	An eight-bit value (bits [7:0] of an instruction), used with the TRAP opcode to determine the starting address of a trap service routine. Bits [7:0] are taken as an unsigned integer and zero-extended to 16 bits. This is the address of the memory location containing the starting address of the corresponding service routine. Range 0255.	
USP	The User Stack Pointer.	
ZEXT(A)	Zero-extend A. Zeros are appended to the leftmost bit of A to extend it to 16 bits. For example, if $A = 110000$, then $ZEXT(A) = 0000\ 0000\ 0011\ 0000$.	

ADD

Addition

Assembler Formats

```
ADD DR, SR1, SR2
ADD DR, SR1, imm5
```

Encodings

Operation

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the second source operand is obtained by sign-extending the imm5 field to 16 bits. In both cases, the second source operand is added to the contents of SR1 and the result stored in DR. The condition codes are set, based on whether the result is negative, zero, or positive.

```
ADD R2, R3, R4 ; R2 \leftarrow R3 + R4
ADD R2, R3, #7 ; R2 \leftarrow R3 + 7
```

AND

Bit-wise Logical AND

Assembler Formats

```
AND DR, SR1, SR2
AND DR, SR1, imm5
```

Encodings

1	15 12	11 9	8 6	5	4 0
	0101	DR	SR1	1	imm5

Operation

Description

If bit [5] is 0, the second source operand is obtained from SR2. If bit [5] is 1, the second source operand is obtained by sign-extending the imm5 field to 16 bits. In either case, the second source operand and the contents of SR1 are bitwise ANDed and the result stored in DR. The condition codes are set, based on whether the binary value produced, taken as a 2's complement integer, is negative, zero, or positive.

```
AND R2, R3, R4 ;R2 \leftarrow R3 AND R4
AND R2, R3, #7 ;R2 \leftarrow R3 AND 7
```

BR

Conditional Branch

Assembler Formats

BRn	LABEL	BRzp	LABEL
BRz	LABEL	BRnp	LABEL
BRp	LABEL	BRnz	LABEL
BR^{\dagger}	LABEL	BRnzp	LABEL

Encoding

Operation

```
if ((n AND N) OR (z AND Z) OR (p AND P))
PC=PC*+ SEXT(PCoffset9);
```

Description

The condition codes specified by bits [11:9] are tested. If bit [11] is 1, N is tested; if bit [11] is 0, N is not tested. If bit [10] is 1, Z is tested, etc. If any of the condition codes tested is 1, the program branches to the memory location specified by adding the sign-extended PCoffset9 field to the incremented PC.

Examples

BRzp LOOP ; Branch to LOOP if the last result was zero or positive.

BR[†] NEXT ; Unconditionally branch to NEXT.

 $^{^{\}dagger}$ The assembly language opcode BR is interpreted the same as BRnzp; that is, always branch to the target address.

[‡]This is the incremented PC.

JMP RET

Jump

Return from Subroutine

Assembler Formats

JMP BaseR RET

Encoding

Operation

PC = BaseR:

Description

The program unconditionally jumps to the location specified by the contents of the base register. Bits [8:6] identify the base register.

Examples

JMP R2 ; PC \leftarrow R2 RET ; PC \leftarrow R7

Note

The RET instruction is a special case of the JMP instruction, normally used in the return from a subroutine. The PC is loaded with the contents of R7, which contains the linkage back to the instruction following the subroutine call instruction.

Jump to Subroutine

JSR JSRR

Assembler Formats

JSR LABEL JSRR BaseR

Encoding

Operation

```
TEMP = PC;<sup>†</sup>
if (bit[11] == 0)
    PC = BaseR;
else
    PC = PC<sup>†</sup> + SEXT(PCoffset11);
R7 = TEMP;
```

Description

First, the incremented PC is saved in a temporary location. Then the PC is loaded with the address of the first instruction of the subroutine, which will cause an unconditional jump to that address after the current instruction completes execution. The address of the subroutine is obtained from the base register (if bit [11] is 0), or the address is computed by sign-extending bits [10:0] and adding this value to the incremented PC (if bit [11] is 1). Finally, R7 is loaded with the value stored in the temporary location. This is the linkage back to the calling routine.

Examples

JSR QUEUE; Put the address of the instruction following JSR into R7;

; Jump to QUEUE.

JSRR R3; Put the address of the instruction following JSRR into R7;

; Jump to the address contained in R3.

[†]This is the incremented PC.

LD Load

Assembler Format

LD DR, LABEL

Encoding

Operation

```
if (computed address is in privileged memory AND PSR[15] == 1) Initiate ACV exception; else  DR = mem[PC^{\dagger} + SEXT(PCoffset9)]; \\ setcc();
```

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this value to the incremented PC. If the address is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the contents of memory at this address is loaded into DR. The condition codes are set, based on whether the value loaded is negative, zero, or positive.

```
LD R4, VALUE ; R4 \leftarrow mem[VALUE]
```

[†]This is the incremented PC.

LD]

Load Indirect

Assembler Format

LDI DR, LABEL

Encoding

Operation

```
if (either computed address is in privileged memory AND PSR[15] == 1)
    Initiate ACV exception;
else
    DR = mem[mem[PC<sup>†</sup> + SEXT(PCoffset9)]];
    setcc();
```

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this value to the incremented PC. What is stored in memory at this address is the address of the data to be loaded into DR. If either address is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the data is loaded and the condition codes are set, based on whether the value loaded is negative, zero, or positive.

```
LDI R4, ONEMORE ; R4 \leftarrow mem[mem[ONEMORE]]
```

[†]This is the incremented PC.

Load Base+offset

Assembler Format

LDR DR, BaseR, offset6

Encoding

Operation

```
If (computed address is in privileged memory AND PSR[15] == 1)
    Initiate ACV exception;
else
    DR = mem[BaseR + SEXT(offset6)];
    setcc();
```

Description

An address is computed by sign-extending bits [5:0] to 16 bits and adding this value to the contents of the register specified by bits [8:6]. If the computed address is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the contents of memory at this address is loaded into DR. The condition codes are set, based on whether the value loaded is negative, zero, or positive.

```
LDR R4, R2, \#-5; R4 \leftarrow mem[R2 - 5]
```

LEA

Load Effective Address

Assembler Format

LEA DR, LABEL

Encoding

Operation

 $DR = PC^{\dagger} + SEXT(PCoffset9);$

Description

An address is computed by sign-extending bits [8:0] to 16 bits and adding this value to the incremented PC. This address is loaded into DR.[‡]

Example

LEA R4, TARGET ; R4 \leftarrow address of TARGET.

[†]This is the incremented PC.

 $^{^\}ddagger$ The LEA instruction computes an address but does NOT read memory. Instead, the address itself is loaded into DR.

NOT

Bit-Wise Complement

Assembler Format

NOT DR, SR

Encoding

Operation

```
DR = NOT(SR);
setcc();
```

Description

The bit-wise complement of the contents of SR is stored in DR. The condition codes are set, based on whether the binary value produced, taken as a 2's complement integer, is negative, zero, or positive.

```
NOT R4, R2 ; R4 \leftarrow NOT(R2)
```

RET

Return from Subroutine

Assembler Format

 RET^{\dagger}

Encoding

Operation

PC = R7;

Description

The PC is loaded with the value in R7. Its normal use is to cause a return from a previous JSR(R) instruction.

Example

RET ; $PC \leftarrow R7$

[†]The RET instruction is a specific encoding of the JMP instruction. See also JMP.

RTI

Return from Trap or Interrupt

Assembler Format

Operation

```
if (PSR[15] == 1)
    Initiate a privilege mode exception;
else
    PC = mem[R6]; R6 is the SSP, PC is restored
    R6 = R6+1;
    TEMP = mem[R6];
    R6 = R6+1; system stack completes POP before saved PSR is restored
    PSR = TEMP; PSR is restored
    if (PSR[15] == 1)
        Saved_SSP=R6 and R6=Saved_USP;
```

Description

If the processor is running in User mode, a privilege mode exception occurs. If in Supervisor mode, the top two elements on the system stack are popped and loaded into PC, PSR. After PSR is restored, if the processor is running in User mode, the SSP is saved in Saved_SSP, and R6 is loaded with Saved_USP.

Example

RTI ; PC, PSR \leftarrow top two values popped off stack.

Note

RTI is the last instruction in both interrupt and trap service routines and returns control to the program that was running. In both cases, the relevant service routine is initiated by first pushing the PSR and PC of the program that is running onto the system stack. Then the starting address of the appropriate service routine is loaded into the PC, and the service routine executes with supervisor privilege. The last instruction in the service routine is RTI, which returns control to the interrupted program by popping two values off the supervisor stack to restore the PC and PSR. In the case of an interrupt, the PC is restored to the address of the instruction that was about to be processed when the interrupt was initiated. In the case of an exception, the PC is restored to either the address of the instruction that caused the exception or the address of the following instruction, depending on whether the instruction that caused the exception is to be re-executed. In the case of a TRAP service routine, the PC is restored to the instruction following the TRAP instruction in the calling routine. In the case of an interrupt or TRAP, the PSR is restored to the value it had when the interrupt was initiated. In the case of an exception, the PSR is restored to the value it had when the exception occurred or to some modified value, depending on the exception. See also Section A.3.

Store

Assembler Format

ST SR, LABEL

Encoding

Operation

```
if (computed address is in privileged memory AND PSR[15] == 1)
   Initiate ACV exception;
else
   mem[PC<sup>†</sup> + SEXT(PCoffset9)] = SR;
```

Description

If the computed address is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the contents of the register specified by SR is stored in the memory location whose address is computed by sign-extending bits [8:0] to 16 bits and adding this value to the incremented PC.

```
ST R4, HERE ; mem[HERE] \leftarrow R4
```

[†]This is the incremented PC.

STI Store Indirect

Assembler Format

STI SR, LABEL

Encoding

Operation

```
if (either computed address is in privileged memory AND PSR[15] == 1) Initiate ACV exception; else mem[mem[PC^{\dagger} + SEXT(PCoffset9)]] = SR;
```

Description

If either computed address is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the contents of the register specified by SR is stored in the memory location whose address is obtained as follows: Bits [8:0] are sign-extended to 16 bits and added to the incremented PC. What is in memory at this address is the address of the location to which the data in SR is stored.

```
STI R4, NOT_HERE ; mem[mem[NOT\_HERE]] \leftarrow R4
```

[†]This is the incremented PC.

Store Base+offset

Assembler Format

STR SR, BaseR, offset6

Encoding

Operation

```
if (computed address is in privileged memory AND PSR[15] == 1)
   Initiate ACV exception;
else
   mem[BaseR + SEXT(offset6)] = SR;
```

Description

If the computed address is to privileged memory and PSR[15]=1, initiate ACV exception. If not, the contents of the register specified by SR is stored in the memory location whose address is computed by sign-extending bits [5:0] to 16 bits and adding this value to the contents of the register specified by bits [8:6].

```
STR R4, R2, #5; mem[R2+5] \leftarrow R4
```

TRAP

System Call

Assembler Format

TRAP trapvector8

Encoding

Operation

```
TEMP=PSR;
if (PSR[15] == 1)
    Saved_USP=R6 and R6=Saved_SSP;
    PSR[15]=0;
Push TEMP,PC<sup>†</sup> on the system stack
PC=mem[ZEXT(trapvect8)];
```

Description

If the the program is executing in User mode, the User Stack Pointer must be saved and the System Stack Pointer loaded. Then the PSR and PC are pushed on the system stack. (This enables a return to the instruction physically following the TRAP instruction in the original program after the last instruction in the service routine (RTI) has completed execution.) Then the PC is loaded with the starting address of the system call specified by trapvector8. The starting address is contained in the memory location whose address is obtained by zero-extending trapvector8 to 16 bits.

Example

```
TRAP x23; Directs the operating system to execute the IN system call.; The starting address of this system call is contained in; memory location x0023.
```

Note:

Memory locations x0000 through x00FF, 256 in all, are available to contain starting addresses for system calls specified by their corresponding trap vectors. This region of memory is called the Trap Vector Table. Table A.3 describes the functions performed by the service routines corresponding to trap vectors x20 to x25.

[†]This is the incremented PC.

Unused Opcode

Assembler Format

none

Encoding

Operation

Initiate an illegal opcode exception.

Description

If an illegal opcode is encountered, an illegal opcode exception occurs.

Note:

The opcode 1101 has been reserved for future use. It is currently not defined. If the instruction currently executing has bits [15:12] = 1101, an illegal opcode exception occurs. Section A.3 describes what happens.

Table A.3	Trap Service Routines		
Trap Vector	Assembler Name	Description	
x20	GETC	Read a single character from the keyboard. The character is not echoed onto the console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.	
x21	OUT	Write a character in R0[7:0] to the console display.	
x22	PUTS	Write a string of ASCII characters to the console display. The characters are contained in consecutive memory locations, one character per memory location, starting with the address specified in R0. Writing terminates with the occurrence of x0000 in a memory location.	
x23	IN	Print a prompt on the screen and read a single character from the keyboard. The character is echoed onto the console monitor, and its ASCII code is copied into RO. The high eight bits of RO are cleared.	
x24	PUTSP	Write a string of ASCII characters to the console. The characters are contained in consecutive memory locations, two characters per memory location, starting with the address specified in R0. The ASCII code contained in bits [7:0] of a memory location is written to the console first. Then the ASCII code contained in bits [15:8] of that memory location is written to the console. (A character string consisting of an odd number of characters to be written will have x00 in bits [15:8] of the memory location containing the last character to be written.) Writing terminates with the occurrence of x0000 in a memory location.	
x25	HALT	Halt execution and print a message on the console.	

A.3 Interrupt and Exception Processing

As has been discussed in detail in Chapter 9, events external to the program that is running can interrupt the processor. A common example of an external event is interrupt-driven I/O. It is also the case that the processor can be interrupted by exceptional events that occur while the program is running that are caused by the program itself. An example of such an "internal" event is the presence of an unused opcode in the computer program that is running.

Associated with each event that can interrupt the processor is an eight-bit vector that provides an entry point into a 256-entry *interrupt vector table*. The starting address of the interrupt vector table is x0100. That is, the interrupt vector table occupies memory locations x0100 to x01FF. Each entry in the interrupt vector table contains the starting address of the service routine that handles the needs of the corresponding event. These service routines execute in Supervisor mode.

Half (128) of these entries, locations x0100 to x017F, provide the starting addresses of routines that service events caused by the running program itself. These routines are called *exception service routines* because they handle exceptional events, that is, events that prevent the program from executing normally. The other half of the entries, locations x0180 to x01FF, provide the starting addresses of routines that service events that are external to the program that is running, such as requests from I/O devices. These routines are called *interrupt service routines*.

A.3.1 Interrupts

At this time, an LC-3 computer system provides only one I/O device that can interrupt the processor. That device is the keyboard. It interrupts at priority level PL4 and supplies the interrupt vector x80.

An I/O device can interrupt the processor if it wants service, if its interrupt enable (IE) bit is set, and if the priority of its request is greater than the priority of any other event that wants to interrupt and greater than the priority of the program that is running.

Assume a program is running at a priority level less than 4, and someone strikes a key on the keyboard. If the IE bit of the KBSR is 1, the currently executing program is interrupted at the end of the current instruction cycle. The interrupt service routine is **initiated** as follows:

- 1. The PSR of the interrupted process is saved in TEMP.
- 2. The processor sets the privilege mode to Supervisor mode (PSR[15]=0).
- 3. The processor sets the priority level to PL4, the priority level of the interrupting device (PSR[10:8]=100).
- 4. If the interrupted process is in User mode, R6 is saved in Saved_USP and R6 is loaded with the Supervisor Stack Pointer (SSP).
- TEMP and the PC of the interrupted process are pushed onto the supervisor stack.
- 6. The keyboard supplies its eight-bit interrupt vector, in this case x80.
- 7. The processor expands that vector to x0180, the corresponding 16-bit address in the interrupt vector table.
- 8. The PC is loaded with the contents of memory location x0180, the address of the first instruction in the keyboard interrupt service routine.

The processor then begins execution of the interrupt service routine.

The last instruction executed in an interrupt service routine is RTI. The top two elements of the supervisor stack are popped and loaded into the PC and PSR registers. R6 is loaded with the appropriate stack pointer, depending on the new value of PSR[15]. Processing then continues where the interrupted program left off.

A.3.2 Exceptions

At this time, the LC-3 ISA specifies three exception conditions: privilege mode violation, illegal opcode, and access control violation (ACV). The privilege mode violation occurs if the processor attempts to execute the RTI instruction while running in User mode. The illegal opcode exception occurs if the processor attempts to execute an instruction having the unused opcode (bits [15:12] = 1101). The ACV exception occurs if the processor attempts to access privileged memory (i.e., a memory location in system space or a device register having an address from xFE00 to xFFFF while running in User mode).

Exceptions are handled as soon as they are detected. They are *initiated* very much like interrupts are initiated, that is:

1. The PSR of the process causing the exception is saved in TEMP.

- 2. The processor sets the privilege mode to Supervisor mode (PSR[15]=0).
- 3. If the process causing the exception is in User mode, R6 is saved in Saved_USP and R6 is loaded with the SSP.
- 4. TEMP and the PC of the process causing the exception are pushed onto the supervisor stack.
- 5. The exception supplies its eight-bit vector. In the case of the privilege mode violation, that vector is x00. In the case of the illegal opcode, that vector is x01. In the case of the ACV exception, that vector is x02.
- 6. The processor expands that vector to x0100, x0101, or x0102, the corresponding 16-bit address in the interrupt vector table.
- 7. The PC is loaded with the contents of memory location x0100, x0101, or x0102, the address of the first instruction in the corresponding exception service routine.

The processor then begins execution of the exception service routine.

The details of the exception service routine depend on the exception and the way in which the operating system wishes to handle that exception.

In many cases, the exception service routine can correct any problem caused by the exceptional event and then continue processing the original program. In those cases, the last instruction in the exception service routine is RTI, which pops the top two elements from the supervisor stack and loads them into the PC and PSR registers. The program then resumes execution with the problem corrected.

In some cases, the cause of the exceptional event is sufficiently catastrophic that the exception service routine removes the program from further processing.

Another difference between the handling of interrupts and the handling of exceptions is the priority level of the processor during the execution of the service routine. In the case of exceptions, we normally do not change the priority level when we service the exception. The priority level of a program is the urgency with which it needs to be executed. In the case of the exceptions specified by the LC-3 ISA, the urgency of a program is not changed by the fact that a privilege mode violation occurred or there was an illegal opcode in the program or the program attempted to access privileged memory while it was in User mode.