NOTATION AND BASIC EXAMPLES

- 3) Function
- 5) Not a function
- 7) Function
- 9) Not a function
- 11) Function
- 13) Function
- 15) Function
- 17) Not a function
- 19) Function

41)
$$f(x) = \frac{2(x+3)}{4}$$

43) $f(x) = \sqrt{2x+3}$
45) $f(x) = 2\sqrt{x+3}$

43)
$$f(x) = \sqrt{2x+3}$$

45)
$$f(x) = 2\sqrt{x+3}$$

51) f(x) = 3 - 4x

• f(1) = -1

41)
$$f(x) = \frac{2(x+3)}{4}$$

•
$$f(-3) = 15$$

•
$$4f(x) = 12 - 16x$$

•
$$f(x) - 4 = -1 - 4x$$

•
$$f(x^2) = 3 - 4x^2$$

$$-1 - 4x$$

21) Function

23) Function

25) Function

27) Function 29) Not a function

31) Function 33) Function

35) Function

37) Not a function 39) Not a function

47) $f(x) = \frac{4}{\sqrt{x-13}}$

49) $f(x) = \sqrt{\frac{4}{x}} - 13$

• $f(\frac{3}{2}) = -3$

• f(-x) = 3 + 4x

53)
$$f(x) = x^2 - 3x + 2$$

• f(x-4) = 19 - 4x

• f(4x) = 3 - 16x

•
$$f(1) = 0$$

•
$$f(-3) = 20$$

$$\bullet \ f\left(\frac{3}{2}\right) = -\frac{1}{4}$$

•
$$f(4x) = 16x^2 - 12x + 2$$
 • $4f(x) = 4x^2 - 12x + 8$

•
$$4f(x) = 4x^2 - 12x + 8$$

•
$$f(-x) = x^2 + 3x + 2$$

•
$$f(x-4) = x^2 - 11x + 30$$

•
$$f(x) - 4 = x^2 - 3x - 2$$

•
$$f(x^2) = x^4 - 3x^2 + 2$$

55)
$$f(x) = \frac{x}{x-1}$$

•
$$f(1)$$
 =undefined

•
$$f(-3) = \frac{3}{4}$$

•
$$f(\frac{3}{2}) = 3$$

•
$$f(4x) = \frac{4x}{4x - 1}$$
 • $4f(x) = \frac{4x}{x - 1}$

$$\bullet \ 4f(x) = \frac{4x}{x-1}$$

$$f(-x) = \frac{x}{x+1}$$

•
$$f(x-4) = \frac{x-4}{x-5}$$

•
$$f(x-4) = \frac{x-4}{x-5}$$
 • $f(x) - 4 = \frac{-3x+4}{x-1}$

•
$$f(x^2) = \frac{x^2}{x^2 - 1}$$

57)
$$f(x) = 0$$

•
$$f(1) = 0$$

$$f(-3) = 0$$

•
$$f\left(\frac{3}{2}\right) = 0$$

•
$$f(4x) = 0$$

•
$$4f(x) = 0$$

$$f(-x) = 0$$

•
$$f(x-4) = 0$$

•
$$f(x) - 4 = -4$$

•
$$f(x^2) = 0$$

59)
$$f(x) = 5 - 2x$$

•
$$f(2) = 1$$

•
$$f(-2) = 9$$

•
$$f(2a) = 5 - 4a$$

•
$$2f(a) = 10 - 4a$$

•
$$f(a+2) = 1 - 2a$$

•
$$f(a) + f(2) = 6 - 2a$$

•
$$f\left(\frac{2}{a}\right) = \frac{5a-4}{a}$$

•
$$\frac{f(a)}{2} = \frac{5}{2} - a$$

•
$$f(a+h) = 5 - 2a - 2h$$

61)
$$f(x) = 3x^2 + 3x - 2$$

•
$$f(2) = 16$$

•
$$f(-2) = 4$$

•
$$f(2a) = 12a^2 + 6a - 2$$

•
$$2f(a) = 6a^2 + 6a - 4$$

•
$$f(a+2) = 3a^2 + 15a + 16$$

•
$$f(a)+f(2) = 3a^2+3a+$$

$$\bullet \ f\left(\frac{2}{a}\right) = \frac{-2a^2 + 6a + 12}{a^2}$$

•
$$f(a+h) = 3a^2 + 6ah + 3h^2 + 3a + 3h - 2$$

63)
$$f(x) = 1$$

•
$$f(2) = 1$$

•
$$f(-2) = 1$$

•
$$f(2a) = 1$$

•
$$2f(a) = 2$$

•
$$f(a+2) = 1$$

•
$$f(a) + f(2) = 2$$

•
$$f\left(\frac{2}{a}\right) = 1$$

$$\bullet \quad \frac{f(a)}{2} = \frac{1}{2}$$

•
$$f(a+h) = 1$$

$$65) \ f(x) = \frac{2}{x}$$

•
$$f(2) = 1$$

•
$$f(-2) = -1$$

•
$$f(2a) = \frac{1}{a}$$

•
$$2f(a) = \frac{4}{a}$$

•
$$f(a+2) = \frac{2}{a+2}$$

$$f(a) + f(2) = \frac{2+a}{a}$$

•
$$f\left(\frac{2}{a}\right) = a$$

$$\bullet$$
 $\frac{f(a)}{2} = \frac{1}{a}$

•
$$f(a+h) = \frac{2}{a+h}$$

67)
$$f(0) = 3$$
 $f(x) = 0$ for $x = 15/2$

69)
$$f(0) = -12$$
 $f(x) = 0$ for $x = -3, 4$

71)
$$f(0) = 1$$
 $f(x) = 0$ for $x = 1/2$

73)
$$f(0) = 0$$
 $f(x) = 0$ for $x = 0, 4$

Domain and Range

1)
$$(-\infty, \infty)$$

3)
$$(-\infty, -1) \cup (-1, \infty)$$

5)
$$(-\infty, \infty)$$

7)
$$(-\infty, -6) \cup (-6, 6) \cup (6, \infty)$$

9)
$$(-\infty, 3]$$

9)
$$(-\infty, 3]$$

11) $[-3, \infty)$

13)
$$[1/3, \infty)$$

15)
$$(-\infty, \infty)$$

17)
$$[1/3,6) \cup (6,\infty)$$

$$19) \ (-\infty, 8) \cup (8, \infty)$$

21)
$$(8, \infty)$$

$$23) \ [0,5) \cup (5,\infty)$$

Combining Functions

1)
$$f(x) = 3x + 1$$
, $g(x) = 4 - x$

•
$$(f+g)(2) = 9$$
 • $(f-g)(-1) = -7$ • $(g-f)(1) = -1$

•
$$(fg)(\frac{1}{2}) = \frac{35}{4}$$
 • $(\frac{f}{g})(0) = \frac{1}{4}$ • $(\frac{g}{f})(-2) = -\frac{6}{5}$

3)
$$f(x) = x^2 - x$$
, $g(x) = 12 - x^2$

•
$$(f+g)(2) = 10$$
 • $(f-g)(-1) = -9$ • $(g-f)(1) = 11$

•
$$(fg)(\frac{1}{2}) = -\frac{47}{16}$$
 • $(\frac{f}{g})(0) = 0$ • $(\frac{g}{f})(-2) = \frac{4}{3}$

5)
$$f(x) = \sqrt{x+3}$$
, $g(x) = 2x - 1$

•
$$(f+g)(2) = 3 + \sqrt{5}$$
 • $(f-g)(-1) = 3 + \sqrt{2}$ • $(g-f)(1) = -1$

•
$$(fg)(\frac{1}{2}) = 0$$
 • $(\frac{f}{g})(0) = -\sqrt{3}$ • $(\frac{g}{f})(-2) = -5$

7)
$$f(x) = 2x$$
, $g(x) = \frac{1}{2x+1}$

•
$$(f+g)(2) = \frac{21}{5}$$
 • $(f-g)(-1) = -1$ • $(g-f)(1) = -\frac{5}{3}$

•
$$(fg)(\frac{1}{2}) = \frac{1}{2}$$
 • $(\frac{f}{g})(0) = 0$ • $(\frac{g}{f})(-2) = \frac{1}{12}$

9)
$$f(x) = x^2$$
, $g(x) = \frac{1}{x^2}$

•
$$(f+g)(2) = \frac{17}{4}$$
 • $(f-g)(-1) = 0$

•
$$(f+g)(2) = \frac{17}{4}$$
 • $(f-g)(-1) = 0$ • $(g-f)(1) = 0$ • $(f-g)(\frac{1}{2}) = 1$ • $(f-g)(-1) = 0$ • $(g-f)(1) = 0$ • $(g-f)(1) = 0$

11)
$$f(x) = 2x + 1$$
, $g(x) = x - 2$

•
$$(f+g)(x) = 3x - 1$$
, all reals • $(f-g)(x) = x + 3$, all reals

•
$$(fg)(x) = 2x^2 - 3x - 2$$
, all reals • $(\frac{f}{g})(x) = \frac{2x+1}{x-2}, \ x \neq 2$

13)
$$f(x) = x^2$$
, $g(x) = 3x - 1$

•
$$(f+g)(x) = x^2 + 3x - 1$$
, all reals • $(f-g)(x) = x^2 - 3x + 1$, all reals

•
$$(fg)(x) = 3x^3 - x^2$$
, all reals • $(\frac{f}{g})(x) = \frac{x^2}{3x-1}, \ x \neq \frac{1}{3}$

15)
$$f(x) = x^2 - 4$$
, $g(x) = 3x + 6$

- $(f+g)(x) = x^2 + 3x + 2$, all reals
- $(fg)(x) = 3x^3 + 6x^2 12x 24$, all reals
- $(f-g)(x) = x^2 3x 10$, all reals
 - $\left(\frac{f}{g}\right)(x) = \frac{x^2 4}{3x + 6}, \ x \neq -2$

17)
$$f(x) = \frac{x}{2}$$
, $g(x) = \frac{2}{x}$

- $(f+g)(x) = \frac{x^2+4}{2x}, \ x \neq 0$
- $(fg)(x) = 1, x \neq 0$
- $(f-g)(x) = \frac{x^2-4}{2x}, \ x \neq 0$
 - $\left(\frac{f}{g}\right)(x) = \frac{x^2}{4}, \ x \neq 0$

19)
$$f(x) = x$$
, $g(x) = \sqrt{x+1}$

- $(f+g)(x) = x + \sqrt{x+1}, \ x \ge -1$ $(f-g)(x) = x \sqrt{x+1}, \ x \ge -1$

- $(fg)(x) = x\sqrt{x+1}, \ x \ge -1$ $(\frac{f}{g})(x) = \frac{x}{\sqrt{x+1}}, \ x > -1$
- 21) 2

27) DNE

23) 0

29) 4

25) 3

31) -2

33)
$$f(x) = x^2$$
, $g(x) = 2x + 1$

- $(g \circ f)(0) = 1$ $(f \circ g)(-1) = 1$ $(f \circ f)(2) = 16$
- $(g \circ f)(-3) = 19$ $(f \circ g)(\frac{1}{2}) = 4$
- $(f \circ f)(-2) = 16$

35)
$$f(x) = 4 - 3x$$
, $g(x) = |x|$

- $(g \circ f)(0) = 4$ $(f \circ g)(-1) = 1$
- $(f \circ f)(2) = 10$

- $(g \circ f)(-3) = 13$ $(f \circ g)(\frac{1}{2}) = \frac{5}{2}$ $(f \circ f)(-2) = -26$

37)
$$f(x) = 4x + 5$$
, $g(x) = \sqrt{x}$

- $(g \circ f)(0) = \sqrt{5}$ $(f \circ g)(-1) = DNE$ $(f \circ f)(2) = 57$

- $(g \circ f)(-3) = \text{DNE}$ $(f \circ g)(\frac{1}{2}) = 4\sqrt{\frac{1}{2}} + 5$ $(f \circ f)(-2) = -7$

39)
$$f(x) = \frac{3}{1-x}$$
, $g(x) = \frac{4x}{x^2+1}$

•
$$(g \circ f)(0) = \frac{6}{5}$$

$$\bullet \quad (f \circ g)(-1) = 1$$

$$\bullet \ (f \circ f)(2) = \frac{3}{4}$$

•
$$(g \circ f)(-3) = \frac{48}{25}$$
 • $(f \circ g)(\frac{1}{2}) = -5$ • $(f \circ f)(-2) = \text{DNE}$

$$\bullet \quad (f \circ g)(\frac{1}{2}) = -5$$

•
$$(f \circ f)(-2) = DNE$$

41)
$$f(x) = 2x + 3$$
, $g(x) = x^2 - 9$

•
$$(g \circ f)(x) = 4x^2 + 12x$$

•
$$(g \circ f)(x) = 4x^2 + 12x$$
 • $(f \circ g)(x) = 2x^2 - 15$ • $(f \circ f)(x) = 4x = 9$

$$\bullet \quad (f \circ f)(x) = 4x = 9$$

43)
$$f(x) = x^2 - 4$$
, $g(x) = |x|$

$$\bullet \quad (g \circ f)(x) = |x^2 - 4|$$

$$\bullet \quad (f \circ g)(x) = x^2 - 4$$

•
$$(g \circ f)(x) = |x^2 - 4|$$
 • $(f \circ g)(x) = x^2 - 4$ • $(f \circ f)(x) = x^4 - 8x^2 + 12$

45)
$$f(x) = |x+1|, \quad g(x) = \sqrt{x}$$

•
$$(g \circ f)(x) = \sqrt{|x+1|}$$

$$\bullet \ (g\circ f)(x)=\sqrt{|x+1|} \qquad \qquad \bullet \ (f\circ g)(x)=|\sqrt{x}+1| \qquad \qquad \bullet \ (f\circ f)(x)=|x+1|+1$$

•
$$(f \circ f)(x) = |x+1| + 1$$

47)
$$f(x) = |x|, \quad g(x) = \sqrt{4-x}$$

•
$$(g \circ f)(x) = \sqrt{4 - |x|}$$
 • $(f \circ g)(x) = \sqrt{4 - x}$ • $(f \circ f)(x) = |x|$

•
$$(f \circ g)(x) = \sqrt{4-a}$$

•
$$(f \circ f)(x) = |x|$$

49)
$$f(x) = 3x - 1$$
, $g(x) = \frac{1}{x+3}$

•
$$(g \circ f)(x) = \frac{1}{3x+2}$$

$$\bullet (f \circ g)(x) = \frac{x}{x+3} \qquad \bullet (f \circ f)(x) = 9x - 4$$

$$\bullet \quad (f \circ f)(x) = 9x - 4$$

51)
$$f(x) = \frac{x}{2x+1}$$
, $g(x) = \frac{2x+1}{x}$

•
$$(g \circ f)(x) = \frac{4x+1}{x}$$

•
$$(g \circ f)(x) = \frac{4x+1}{x}$$
 • $(f \circ g)(x) = \frac{2x+1}{5x+2}$ • $(f \circ f)(x) = \frac{x}{4x+1}$

•
$$(f \circ f)(x) = \frac{x}{4x+1}$$

53)
$$f(x) = x^3$$
, $g(x) = 2x + 3$

53)
$$f(x) = x^3$$
, $g(x) = 2x + 3$ 59) $f(x) = \frac{x+1}{x-1}$, $g(x) = |x|$

55)
$$f(x) = \sqrt{x}, \quad g(x) = 2x - 1$$

55)
$$f(x) = \sqrt{x}$$
, $g(x) = 2x - 1$ 61) $f(x) = \frac{x+1}{3-2x}$, $g(x) = 2x$

57)
$$f(x) = \frac{2}{x}$$
, $g(x) = 5x + 1$ 63) $k \circ j \circ f \circ h \circ g$

63)
$$k \circ j \circ f \circ h \circ g$$

$$67)$$
 3 $71)$ 0 $75)$ 4 $79)$ 0

INVERSE FUNCTIONS

1)
$$f^{-1}(x) = \frac{x+2}{6}$$

13)
$$f^{-1}(x) = 3 - \sqrt{x+4}$$

3)
$$f^{-1}(x) = 3x - 10$$

15)
$$f^{-1}(x) = \frac{4x-3}{x}$$

5)
$$f^{-1}(x) = \frac{1}{3}(x-5)^2 + \frac{1}{3}, x \ge 5$$

7)
$$f^{-1}(x) = \frac{1}{9}(x+4)^2 + 1, x \ge -4$$
 17) $f^{-1}(x) = \frac{4x+1}{2-3x}$

17)
$$f^{-1}(x) = \frac{4x+1}{2-3x}$$

9)
$$f^{-1}(x) = \frac{1}{3}x^5 + \frac{1}{3}$$

11)
$$f^{-1}(x) = 5 + \sqrt{x+25}$$

19)
$$f^{-1}(x) = \frac{-3x - 2}{x + 3}$$

Transformations

1) $(2,0)$	11) (2, 13)
3) $(2, -4)$	13) $(2, -\frac{3}{2})$
5) (2,-9)	15) $(-1, -7)$
7) (2,3)	17) (1,1)
9) $(5,-2)$	

Each answer below describes the resulting transformation of the graph of f(x) = |x|.

- 19) Shift down 2 units
- 21) Shift right 2 units
- 23) Vertical stretch (or horizontal shrink) by a factor of 2
- 25) Shift right 2 units
- 27) (22) and (23) match up; (21) and (25) match up $|kx|=|k|\cdot|x|,$ where $k\in\mathbb{R}$

Each answer below describes the resulting transformation of the graph of $f(x) = \sqrt{9 - x^2}$.

- 29) Shift down 1/2 units
- 31) Shift left 4 units
- 33) Vertical shrink by a factor of 5/3
- 35) Horizontal stretch by a factor of 3/2
- 31) Shift right 3 units, vertical stretch by a factor of 4, shift up 6 units

$$39) \ g(x) = -2\sqrt[3]{x+3} - 1$$

43)
$$g(x) = \sqrt{x-2} - 3$$

45) $g(x) = -\sqrt{x} - 1$
47) $g(x) = \sqrt{-x-1} + 2$
49) $g(x) = 2\sqrt{x+3} - 8$
51) $g(x) = \sqrt{2x-6} + 1$

PIECEWISE-DEFINED AND ABSOLUTE VALUE FUNCTIONS

PIECEWISE-DEFINED FUNCTIONS

1)
$$f(x) = \begin{cases} x+5 & \text{if} & x \le -3\\ \sqrt{9-x^2} & \text{if} & -3 < x \le 3\\ -x+5 & \text{if} & x > 3 \end{cases}$$

(a)
$$f(-4) = 1$$

(b)
$$f(-3) = 2$$
 (c) $f(3) = 0$

(c)
$$f(3) = 0$$

(d)
$$f(3.1) = 1.9$$

(d)
$$f(3.1) = 1.9$$
 (e) $f(-3.01) = 1.99$ (f) $f(2) = \sqrt{5}$

(f)
$$f(2) = \sqrt{5}$$

3) D:
$$(-\infty, \infty)$$

$$10. [1, \infty)$$

3) D:
$$(-\infty, \infty)$$

5) D: $(-\infty, \infty)$
7) D: $(-\infty, \infty)$

R:
$$[1, \infty)$$
 No zeros
R: $[-3, 3]$ $x = 3/2$
R: $(-4, \infty)$ $x = -2, 0$

$$x = -2.0$$

9) D:
$$(-6, -1) \cup (-1, 1) \cup (1, 9)$$
 R: $(-1, 1) \cup (1, 3)$ $x = 0$

$$R: (-1, 1) \cup (1, 3) \quad x =$$

ABSOLUTE VALUE FUNCTIONS

11) No zeros y-int at (0,4) D: $(-\infty,\infty)$ R: $[4,\infty)$

$$f(x) = \begin{cases} x+4 & \text{if } x \ge 0 \\ -x+4 & \text{if } x < 0 \end{cases}$$

13) Zero at $x = \frac{5}{2}$ y-int at (0,5) D: $(-\infty, \infty)$ R: $[0, \infty)$

$$f(x) = \begin{cases} 2x - 5 & \text{if } x \ge \frac{5}{2} \\ -2x + 5 & \text{if } x < \frac{5}{2} \end{cases}$$

15) Zero at $x = \frac{5}{2}$ y-int at (0,5) D: $(-\infty, \infty)$ R: $[0, \infty)$

$$f(x) = \begin{cases} 2x - 5 & \text{if } x \ge \frac{5}{2} \\ -2x + 5 & \text{if } x < \frac{5}{2} \end{cases}$$

17) Zeros at $x = -\frac{16}{3}$, $-\frac{8}{3}$ y-int at (0,8) D: $(-\infty,\infty)$ R: $[-4,\infty)$

$$f(x) = \begin{cases} 3x + 8 & \text{if } x \ge -4 \\ -3x - 16 & \text{if } x < -4 \end{cases}$$