Math 110AH Homework 1

Nathan Solomon

October 11, 2023

Assignment due October 11th at 11:59 pm

1. Let $f: X \to Y$ and $g: Y \to Z$ be two maps. Prove that if f and g are injective (resp. surjective), then so is the composition $g \circ f$.

If f and g are both injective, then for any distinct elements $x_1, x_2 \in X$, $f(x_1) \neq f(x_2)$ because f is injective. Since g is also injective, $g(f(x_1)) \neq g(f(x_2))$, therefore $g \circ f$ is injective.

If f and g are both surjective, then for any element $z \in Z$, there exists an element $y \in Y$ such that g(y) = z, and there exists an element $x \in X$ such that f(x) = y. Since g(f(x)) = z, $g \circ f$ is surjective.

2. Prove that
$$(1+2+\cdots+n)^2 = 1^3+2^2+\cdots+n^3$$
.

First, I'll prove that $1+2+\cdots+n=(n^2+n)/2$. This is obvious in the base case (n=1). If it's true for some positive integer n, then it must also be true for the n+1 case, because

$$1 + 2 + \dots + n + (n+1) = \frac{n^2 + n}{2} + (n+1)$$
$$= \frac{n^2}{2} + \frac{n}{2} + \frac{1}{2}$$
$$= \frac{(n+1)^2 + (n+1)}{2}$$

By induction, this implies the statement " $1+2+\cdots+n=(n^2+n)/2$ " is true for any positive integer n.

The statement " $(1+2+\cdots+n)^2=1^3+2^2+\cdots+n^3$ " is also obviously true in the base case (n=1). If that statement is true for some positive integer n, it must also be true for n+1, because

$$(1+2+\cdots+n+(n+1))^2 = \left(\frac{n^2+n}{2}+(n+1)\right)^2$$

$$= \left(\frac{n^2+n}{2}\right)^2 + 2\cdot(n+1)\cdot\left(\frac{n^2+n}{2}\right) + (n+1)^2$$

$$= \left(\frac{n^4+2n^3+n^2}{4}\right) + (n^3+2n^2+n) + (n^2+2n+1)$$

$$= \frac{n^4}{4} + \frac{3n^3}{2} + \frac{13n^2}{4} + 3n + 1$$

$$= \left(\frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}\right) + (n^3+3n^2+3n+1)$$

$$= \left(\frac{n^2+n}{2}\right)^2 + (n+1)^3$$

$$= 1^3 + 2^3 + \dots + n^3 + (n+1)^3$$

So by induction, the statement $(1+2+\cdots+n)^2=1^3+2^2+\cdots+n^3$ must be true for any positive integer n.

Note that this whole proof works just as well if we choose n=0 to be the base case instead of n=1. Although the notation " $1+2+\cdots+n$ " implies $n\geq 3$, the formula works for any $n\geq 0$.

3. Prove that 13 divides $14^n - 1$ for any $n \in \mathbb{N}$.

This is true in the base case (n=1), because $14^1-1=13$. If that statement is true for a natural number n, then there exists an integer z such that $13z=14^n-1$. Since $14^{n+1}-1=14\cdot 14^n-1=(13\cdot 14^n)+(14^n-1)=13\cdot (14^n+z)$, 13 must also divide $14^{n+1}-1$. By induction, 13 divides 14^n-1 for any $n\in\mathbb{N}$.

Just like with the last question, this still works if we consider \mathbb{N} to include zero.

4. Show that if $a^n - 1$ is prime and n > 1, then a = 2 and n is prime. If $2^n + 1$ is prime, what can you say about n?

For this question I will use [x] to mean the equivalence class of x in $\mathbb{Z}/(a-1)\mathbb{Z}$.

Note that a cannot be zero or one, because if it were, $a^n - 1$ wouldn't be prime for any n. Since all prime numbers are positive, $a^n > 0$. If n is odd, that would not work when a is negative, and if n is even, $a^n = (-a)^n$, so we can assume without loss of generality that a is positive.

First, note that since a = 1 + (a - 1), a = [1], which implies $a^n = [1]$, or equivalently, $a^n - 1 = [0]$.

 a^n-1 is prime, but now it also has to be divisible by a-1. The only factors of a prime are \pm itself and ± 1 , so

$$a-1 \in \{a^n-1, 1-a^n, 1, -1\}$$

We already ruled out the possibility that $a \le 1$, which rules out the first option. If $a - 1 = 1 - a^n$, then $a^n - 1 = 1 - a$ is prime, but a is positive, so we can rule out the second option as well. The fourth option would imply a = 0, which we also already showed is not true, so we're left with the third option.

$$a=2$$

Suppose there exists positive integers x, y such that xy = n. Then

$$(2^{x} - 1) \times (1 + 2^{x} + 2^{2x} + \dots + 2x(y - 1)) =$$

$$(2^{x} + 2^{2y} + 2^{3x} + \dots + 2^{xy}) - (1 + 2^{x} + 2^{2x} + \dots + 2^{x(y-1)}) =$$

$$2^{xy} - 1 = 2^{n} - 1$$

Therefore, if n is composite, then $2^n - 1$ has to be composite as well. Since that's not the case, n must be prime.

We can use a similar method to show that if $2^n + 1$ is prime, then n has to be a power of two. Suppose n is not a power of 2 – then there exist positive integers a and b such that b is odd, b > 1, and $n = b \times 2^a$. Let $x = 2^{(2^a)}$. Then

$$(1+x) \times (1+(-x)+(-x)^2+\dots+(-x)^{b-1}) =$$

$$(1+(-x)+(-x)^2+\dots+(-x)^{b-1}) - ((-x)+(-x)^2+\dots+(-x)^b) =$$

$$1-(-x)^b =$$

$$1+x^b =$$

$$1+(2^{(2^a)})^b = 2^n + 1$$

Therefore, if n is not a power of two, then $2^n + 1$ has to be composite. Since that's not the case, n must be a power of two.

5. Find all integer solutions of 93x + 39y = -6.

Let $a = 93, b = 39, c = -6, d := (a, b) = 3, x_0 = -3, y_0 = 7$. Then using the results from question 6, the general solution is

$$(x,y) \in \{(-3+13k,7-31k) : k \in \mathbb{Z}\} = \{\dots, (-16,38), (-3,7), (10,-24), \dots\}$$

6. Let a,b,c be non-zero integers and let $d=\gcd(a,b)$. Prove that the equation ax+by=c has a solution x,y in integers if and only if d|c. Moreover, if d|c and x_0,y_0 is a solution in integers then the general solution in integers is $x=x_0+\frac{b}{d}k,y=y_0-\frac{a}{d}k$ for all integers k.

Since ax + by is a linear combination of a and b, which are both divisible by d, ax + by must also be divisible by d, which is not possible unless d divides c.

We proved in class that a and b are coprime if and only if ax + by = 1 has a solution. Since a/d and b/d are coprime, we can let x' and y' be integer solutions to ax'/d + by'/d = 1. Then x := x'cd and y := y'cd are solutions to ax + by = c.

We have now proven that ax + by = c has at least one solution $x, y \in \mathbb{Z}^2$ if and only if d divides c.

Suppose (x_0, y_0) and (x, y) are both solutions (not necessarily distinct). Then the difference between $ax_0 + by_0$ and ax + by has to be zero, meaning that $a(x - x_0) = -b(y - y_0)$. Conversely, if $ax_0 + by_0 = c$ and $a(x - x_0) = -b(y - y_0)$ than it is obvious that ax + by = c. If we let $k = b(x - x_0)/d$, then substitute and rearrange, we get the following equations:

$$x = x_0 + \frac{bk}{d}$$
$$y = y_0 - \frac{ak}{d}$$

However, the only way x and y can both be integers is if k is an integer, so (x, y) is an integer solution to ax + by = c if and only if there is exists an integer k that the two equations above are true for some pair of integers x_0, y_0 which already solve $ax_0 + by_0 = c$.

7. Show that if $a, b \in \mathbb{N}$, ab is the square of an integer, and (a, b) = 1, then a and b are squares.

Let p be any prime number that divides a, and let $d := p^n$ be the highest power of p that divides a. Then d is also the highest power of p that divides ab, because if it weren't, b would divide p, so the GCD of a and b would be at least p.

Let $p^{n'}$ be the highest power of p that divides \sqrt{ab} . Since $(p^{n'})^2 = p^{2n'} = p^n$, we know that n must be an even number.

Let $a_1^{n_1}a_2^{n_2}\ldots a_m^{n_m}$ be the prime factorization of a, where $a_1 < a_2 < \cdots < a_m$. Repeating the above process for $p = a_1, a_2, \ldots, a_m$ will show that all of the exponents (n_1, n_2, \ldots, n_m) are even.

Let $\sqrt{a} := a_1^{n_1/2} a_2^{n_2/2} \dots a_m^{n_m/2}$. Then \sqrt{a} is an integer and $a = \sqrt{a}^2$, so a is a square. Repeating the entire process above but with a replaced by b shows that b is also a square.

8. Prove that if (a, n) = 1 and (b, n) = 1, then (ab, n) = 1.

Suppose there is an integer d > 1 which divides both ab and n. Then since d divides ab, it must divide a or b. That means (ab, n) > 1 (or equivalently, $(ab, n) \neq 1$, since the GCD is always a positive integer) implies that $(a, n) \neq 1$ or $(b, n) \neq 1$. Conversely, if (a, n) = 1 and (b, n) = 1, then (ab, n) = 1.

9. Is
$$2^{10} + 5^{12}$$
 a prime? (Hint: use the identity $4x^4 + y^4 = (2x^2 + y^2)^2 - (2xy)^2$.)

Another way to see that $2^{10} + 5^{12}$ is not prime is to let x = 4 and let $y = 5^3$. Then

$$2^{10} + 5^{12} = 4x^4 + y^4$$

$$= (2x^2 + y^2)^2 - (2xy)^2$$

$$= (2x^2 + y^2 - 2xy) \cdot (2x^2 + y^2 + 2xy)$$

$$= (32 + 15625 - 1000) \cdot (32 + 15625 + 1000)$$

$$= 14657 \cdot 16657$$

which is actually the prime factorization of $2^{10} + 5^{12}$.

Question for the grader: If I had answered with just "No, because $2^{10}+5^{12}=244141649=14657\cdot 16657$ ", would I still get full points?

10. Show that there are infinitely many primes $p \equiv 2 \pmod{3}$. (Hint: consider $3p_1p_2 \dots p_n - 1$.)

For this question I will use [n] to mean the equivalence class of n in $\mathbb{Z}/3\mathbb{Z}$, and \mathbb{P} to mean the set of all prime numbers.

Suppose $P = \{p_1, p_2, \dots, p_n\} = \mathbb{P} \cap [2]$ is a finite set of all the primes that are congruent to 2 (modulo 3). Then let $N = 3p_1p_2\cdots p_n - 1$. For any $p_i \in P$, we know that p_i and N are coprime, because p_i is greater than one and N is one less than an integer multiple of p_i . Therefore N is coprime to every element of P.

Now consider the prime factorization of N. Every prime number in [2] is in P, and N is not divisible by any element of P. Therefore N is the product of elements of [0] and [1], that is, there exists nonnegative integers a and b such that $[0]^a \times [1]^b = [2]$.

However, $[0] \times [0] = [0]$, $[1] \times [1] = [1]$, and $[0] \times [1] = [0]$. We have reached a contradiction, so there must be infinitely many primes in $\mathbb{P} \cap [2]$.