Konwersatorium (5 czerwca 2017

Zadanie 1 (właściwości filtrów minimalnofazowych)

Dane są dwa filtry SOI o następujących transmitancjach:

 $H_1(z) = 1 - \frac{1}{2}z^{-1}$ oraz $H_2(z) = z^{-1} - \frac{1}{2}$. Naszkicować rozkład zer. Porównać charakterystyki amplitudowe, fazowe i opóźnienia grupowego obu filtrów.

Zadanie 2

Dany jest rozkład zer i biegunów transmitancji H(z) pewnego stacjonarnego i przyczynowego układu liniowego. Transmitancję tę zrealizowano jako kaskadowe połączenie układu minimalnofazowego i układu wszechprzepustowego. Naszkicować rozkład zer i biegunów dla części minimalnofazowej i części wszechprzepustowej

• - zera:
$$z_1 = \frac{2}{3}e^{j3\pi/4}$$
, $z_2 = \frac{2}{3}e^{-j3\pi/4}$, $z_3 = \frac{3}{2}$

$$\times$$
 - bieguny: $p_1 = \frac{2}{3}e^{j\pi/4}$, $p_2 = \frac{2}{3}e^{-j\pi/4}$, $p_3 = -\frac{2}{3}$

Zadanie 3

Dana jest odpowied \acute{z} impulsowa h[n] filtru, jak na rysunku.

Filtr ten posiada również charakterystykę częstotliwościową $H(e^{j\theta})$. Naszkicować odpowiedzi impulsowe $h_1[n]$ i $h_2[n]$ filtrów, których charakterystyki częstotliwościowe są określone następująco: $H_1(e^{j\theta}) = H(e^{j\theta})e^{j3\theta}$, $H_2(e^{j\theta}) = H(e^{j\theta})e^{-j3\theta}$. Który z tych dwóch filtrów jest przyczynowy (i dlaczego?) oraz który ma liniową charakterystykę fazową (również wskazać dlaczego)?

Zadanie 4

Dana jest transmitancja układu liniowego:

$$H(z) = \frac{\left(1 - 0.5z^{-1}\right)\left(1 + 4z^{-2}\right)}{\left(1 - 0.64z^{-2}\right)}$$

Znaleźć transmitancję $H_{\min}(z)$ układu minimalnofazowego oraz transmitancję $H_{\lim}(z)$ układu o liniowej fazie, które spełniają warunek:

$$H(z) = H_{\min}(z)H_{\lim}(z)$$

Który z dwóch układów tej kaskady jest układem SOI? Wyznaczyć jego odpowiedź impulsową.

Zadanie 5

Dany jest przyczynowy układ liniowy o transmitancji

$$H(z) = \frac{1 - 3z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{2}z^{-1}\right)}$$

Wyznaczyć dla tego układu stabilny i przyczynowy układ odwrotny $H_i(z)$, tak aby charakterystyka amplitudowa kaskadowego połączenia obu filtrów $H(z)H_i(z)$ była stała w funkcji częstotliwości.

-1 <u>-</u>

0.2

0.4

0.6

8.0

Normalized Frequency (×π rad/sample)

1.2

1.6

1.8