Государственное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э.Баумана"

Дисциплина: Анализ алгоритмов

Лабораторная работа № 1 Алгоритм Левенштейна

Бутолин Александр Алексеевич Студент группы ИУ7-52

Введение

В настоящее время каждый день пользователи компьютеров сталкиваются с вводом текста: поисковые запросы, сообщения в социальных сетях, написание отчетов и докладов. Пользователи могут ошибаться в словах, и компьютер должен подсказать, как исправить ошибку. Данная задача решается с использованием алгоритмов, определяющих степень различия двух строк. Для этой цели математик Владимир Иосифович Левенштейн ввел понятие расстояния между двумя строками и разработал алгоритм нахождения этого расстояния.

В лабораторной работе рассматривается задача нахождения расстояния Левенштейна и Дамерау-Левенштейна между двумя строками..

Цель работы: изучение метода динамического программирования на материале алгоритмов Левенштейна и Дамерау-Левенштейна.

Задачи работы:

- 1. Изучение алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками;
- 2. Сравнение матричной и рекурсивной реализаций выбранного алгоритма определения расстояния между строками по затрачиваемым ресурсам (времени и памяти);
- 3. Экспериментальное подтверждение различий во временной эффективности рекурсивной и нерекурсивной реализаций выбранного алгоритма определения расстояния между строками при помощи разработанного программного обеспечения на материале замеров процессорного времени выполнения реализации на варьирующихся длинах строк;
- 4. Описание и обоснование полученных результатов в отчете о выполненной лабораторной работе, выполненного как расчётно-пояснительная записка к работе.

1 Аналитический раздел

Термин «редакционное расстояние» (или «расстояние Левенштейна») был введен советским математиком Владимиром Иосифовичем Левенштейном в начале второй половины 20 века.

Расстояние Левенштейна между двумя строками - это минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую. При этом все три операции обладают так называемым штрафом или ценой, которая может варьироваться в зависимости от различных факторов

Если к списку разрешённых операций добавить транспозицию (два соседних символа меняются местами), получается расстояние Дамерау — Левенштейна.

В этих методах нахождения расстояния Левенштейна и Дамерау-Левенштейна стоимость операций замены, вставки и удаления принята за единицу, однако последний учитывает транспозицию двух символов как еще одну операцию стоимостью 1. Ниже приведено более подробное описание этих алгоритмов с указанием формул для вычисления расстояния.

1.1 Описание алгоритмов

Пусть S1 и S2 — строки длины і и ј соответственно, для которых необходимо найти расстояние Левенштейна. Здесь и далее полагается, что символы в строках нумеруются начиная с 1. Тогда алгоритм можно описать формулой (1).

$$D(S1[i..1],S2[1..j]) = \begin{cases} i, \text{ если } j = 0 \\ j, \text{ если } i = 0 \\ \min(D(S1[1..i-1],S2[1..j]) + 1, \\ D(S1[1..i],S2[1..j-1]) + 1, \\ D(S1[1..i-1],S2[1..j-1]) + m(S1[i-1],S2[j-1])), \text{ иначе} \end{cases}$$

где т находится из формулы (2), как:

$$m(S1[i-1],S2[j-1] = egin{cases} 0, \ ext{если} \ S1[i-1] = S2[j-1] \ 1, \ ext{иначе} \end{cases}$$

Алгоритм Дамерау-Левенштейна является модификацией исходного алгоритма Левенштейна. В отличии от исходного алгоритма, он учитывает перестановку двух соседних символов местами — транспозицию, которая также имеет стоимость 1.

Расстояние Дамерау-Левенштейна для строк S1 и S2 можно найти по формуле (3).

```
D(S1[1..i],S2[1..j]) = \begin{cases} i, \text{ если } j = 0 \\ j, \text{ если } i = 0 \\ \min(D(S1[1..i-1],S2[1..j]) + 1, \\ D(S1[1..i],S2[1..j-1]) + 1, \\ D(S1[1..i-1],S2[1..j-1]) + m(S1[i-1],S2[j-1]), \\ D(S1[1..i-2],S2[1..j-2]), \text{ если } i,j > 1 \text{ и } S1[i-1] = S2[j] \text{ и } S1[i] = S2[j-1] \\ \min(D(S1[1..i-1],S2[1..j]) + 1, \\ D(S1[1..i],S2[1..j-1]) + 1, \\ D(S1[1..i-1],S2[1..j-1]) + m(S1[i-1],S2[j-1])), \text{ иначе} \end{cases}
```

где т вычисляется по формуле (2).

2 Конструкторская часть

Алгоритмы Левенштейна и Дамерау-Левенштейна можно реализовать как рекурсивно, так и нерекурсивно. Ниже представлены три схемы для этих алгоритмов, также для расстояния Левенштейна представлены как рекурсивная, так и нерекурсивная реализации и приведен их сравнительный анализ

2.1 Разработка Алгоритмов

В соответствии с описанием методов поиска расстояния Левенштейна и Дамерау-Левенштейна, представленным в аналитическом разделе данной работы, были построены схемы трех выбранных реализаций указанных алгоритмов.

На рисунках 2.1.1., 2.1.2. и 2.1.3. представлены нерекурсивная и рекурсивная реализации алгоритма Левенштейна и нерекурсивная реализация алгоритма Дамерау-Левенштейна соответственно.

Рисунок 2.1.1. – схема нерекурсивного алгоритма поиска расстояния Левенштейна

Рисунок 2.1.2. - схема рекурсивного алгоритма поиска расстояния Левенштейна

Рисунок 2.1.3. – схема нерекурсивного алгоритма поиска расстояния Дамерау-Левенштейна

2.2 Вывод

В данном разделе в соответствии с формулами алгоритмов Левенштейна и Дамерау-Левенштейна, приведенными в аналитической части работы, были разработаны схемы для итерационных реализаций указанных алгоритмов и рекурсивной реализации алгоритма Левенштейна. Для последнего также было приведено сравнение рекурсивной и итеративной реализации, из которого можно заключить, что рекурсивная реализация алгоритма Левенштейна должна сильно уступать нерекурсивной по количеству вычислений и числу хранимых во время выполнения данных, а, следовательно, и по памяти, и по времени.

3 Технологическая часть

В технологическом разделе представлены требования к разрабатываемому программному обеспечению, средства, использованные в процессе разработки для реализации поставленных задач, а также листинг кода программы.

3.1 Требования к программному обеспечению

Программное обеспечение должно реализовывать два алгоритма нахождения расстояния между двумя строками — алгоритм Левенштейна и алгоритм Дамерау-Левенштейна, причем алгоритм Левенштейна должен быть реализован как рекурсивным, так и нерекурсивным способом. Пользователь должен иметь возможность проводить как единичный замер расстояния для выбранной пары строк, так и возможность сравнить скорость работы этих алгоритмов.

Разработанное ПО должно предоставлять возможность замеров процессорного времени выполнения реализации каждого алгоритма. Требуется провести замеры для варьирующихся длин строк (длины сравниваемых строк полагать одинаковыми): не менее чем от 100 до 1000 с шагом 100. Один эксперимент ставится не менее 100 раз, результат одного эксперимента рассчитывается как средний из результатов проведенных испытаний с одинаковыми входными данными.

3.2 Средства реализации

Для реализации поставленной задачи был использован язык программирования C++. Для измерения процессорного времени была использована ассемблерная команда rdtsc.

3.3 Листинг кода

Ниже приведен листинг кода для трех реализованных алгоритмов — итерационного и рекурсивного алгоритма Левенштейна и нерекурсивного алгоритма Дамерау-Левенштейна.

Листинг 1. Код нерекурсивной реализации алгоритма Левенштейна:

```
int levenshtein_distance(const string & src, const string & dst)
       const int m = src.size();
       const int n = dst.size();
       if (m == 0)
             return n;
       if (n == 0)
             return m;
       vector <vector <int>> matrix(m + 1);
       for (int i = 0; i <= m; i++)
             matrix[i].resize(n + 1);
             matrix[i][0] = i;
       }
       for (int i = 0; i <= n; i++)
             matrix[0][i] = i;
       }
       int above_cell, left_cell, diagonal_cell, cost;
       for (int i = 1; i <= m; i++)
            for (int j = 1; j \le n; j++)
                   cost = src[i - 1] == dst[j - 1] ? 0 : 1;
                   above_cell = matrix[i - 1][j];
                   left_cell = matrix[i][j - 1];
                   diagonal_cell = matrix[i - 1][j - 1];
                   matrix[i][j] = min_3(above_cell + 1, left_cell + 1,
                                                           diagonal_cell + cost);
             }
        }
     return matrix[m][n];
}
```

Листинг 2. Код нерекурсивной реализации алгоритма Дамерау - Левенштейна:

```
int damerau_levenshtein_distance(const string & src, const string & dst)
{
      const int m = src.size();
      const int n = dst.size();
      if (m == 0)
             return n;
      if (n == 0)
             return m;
      vector <vector <int>> matrix(m + 1);
      for (int i = 0; i <= m; i++)
             matrix[i].resize(n + 1);
             matrix[i][0] = i;
      }
     for (int i = 0; i <= n; i++)
             matrix[0][i] = i;
      }
      int above_cell, left_cell, diagonal_cell, cost_replacement;
      int cost_transposition, transposition_cell, dem_len;
     for (int i = 1; i <= m; i++)
             for (int j = 1; j \le n; j++)
                   cost\_replacement = src[i - 1] == dst[j - 1] ? 0 : 1;
                   above_cell = matrix[i - 1][j];
                   left_cell = matrix[i][j - 1];
                   diagonal_cell = matrix[i - 1][j - 1];
                   cost_transposition = 2;
                   if (i \ge 2 \text{ and } j \ge 2)
                          transposition_cell = matrix[i - 2][j - 2];
                          cost_transposition = src[i - 1] == dst[j - 2] and
                                                    src[i - 2] == dst[j - 1] ? 1 : 2;
                   }
```

Листинг 3. Код рекурсивной реализации алгоритма Левенштейна:

```
int recur_Lev(const string& src, const string& dst)
      int m = src.length();
      int n = dst.length();
      if (m == 1 \&\& n == 1)
      {
             if (src == dst)
                   return 0;
             else
                   return 1;
      }
      else
      {
            if (m > n \&\& n == 1)
                  if (src.find_first_of(dst) == -1)
                         return abs(m - n) + 1;
                  else
                        return abs(m - n);
            else if (n > m \&\& m == 1)
                  if (src.find_first_of(dst) == -1)
                         return abs(m - n) + 1;
                  else
                        return abs(m - n);
      }
      int t;
      if (src[src.size() - 1] != dst[dst.size() - 1])
            t = 1;
      else
            t = 0;
       return min_3(recur_Lev(src.substr(0, m - 1), dst) + 1,
            recur_Lev(src, dst.substr(0, n - 1)) + 1,
                 recur_Lev(src.substr(0, m - 1),
                      dst.substr(0, n - 1)) + t);
}
```

3.4 Вывод

На основе схем алгоритмов, представленных в конструкторском разделе, в соответствии с указанными требованиями к реализации с использованием средств языка C++ было разработано программное обеспечение, содержащее реализации выбранных алгоритмов.

4 Экспериментальная часть

В экспериментальном разделе представлены примеры работы разработанного программного обеспечения, а также подробный сравнительный анализ реализованных алгоритмов на основе экспериментальных данных, полученных при тестировании реализованных алгоритмов. При сравнении учитываются как временные характеристики реализованных алгоритмов, так и оценка потребления ими памяти.

4.1 Постановка эксперимента

Для проведения сравнительного анализа времени работы алгоритмов Левенштейна и Дамерау-Левенштейна были проведены замеры для строк в диапазоне длин от 100 до 1000 символов с шагом в 100 символов. Для каждой длины строки было проведено по 100 замеров с использованием обоих алгоритмов с целью получения более достоверного результата для среднего времени выполнения. Все измерения представлены в таблице ниже.

Для сравнения нерекурсивных алгоритмов с рекурсивной реализацией были проведены замеры для строк с длиной от 1 до 10 символов с шагом 1, для каждого значения длины было выполнено 100 замеров.

Все замеры проводились на следующем оборудовании:

- 1. Процессор Intel Core i5-8250U, 1.60 ГГц 1.80ГГц;
- 2. Оперативная память DDR3 1600 МГц, 8 Гб;
- 3. Операционная система Windows 10 Домашняя x64

4.2 Постановка эксперимента

Результаты сравнительного анализа нерекурсивных реализаций алгоритмов Левенштейна и Дамерау-Левенштейна по времени на длинах строк от 100 до 1000 символов с шагом в 100 символов представлены в таблице 4.3.1. Сравнение процессорного времени для рекурсивной и нерекурсивных реализаций указанных алгоритмов на длинах строк от 1 до 10 символов с шагом в 1 символ приведены в таблице 4.3.2.

Сравнение времени работы нерекурсивных реализаций алгоритмов Левенштейна и Дамерау-Левенштейна в тактах процессора Таблица 4.3.1.

na n Zamepay viebenmienna b rantan npodececepa raccinda 1.5.1.				
Длина строки	Алг. Левенштейна	Алг. Дамерау- Левенштейна		
100	33462366	44921800		
200	132849725	175235443		
300	298832519	394570164		
400	522998391	696580483		
500	823159004	1119671794		
600	1204232928	1610433672		
700	1631994933	2135675485		
800	2100181055	2789785291		
900	2666876607	3538673613		
1000	3298101438	4401537907		

Сравнение времени работы нерекурсивных реализаций алгоритмов Левенштейна и Дамерау-Левенштейна с рекурсивным алгоритмом Левенштейна в тактах процессора Таблица 4.3.2.

процессора таолица 4.5.2.							
Длина строки	Алг. Левенштейна	Алг. Дамерау- Левенштейна	Рек. Алг. Левенштейна				
1	29579	29214	14097				
2	48879	49200	17695				
3	73701	77783	99461				
4	104903	114417	506637				
5	143467	161325	2638459				
6	187990	214285	13943652				
7	243829	279481	78050343				
8	297015	354722	428640867				
9	361049	428205	2261908580				
10	430374	516260	12405080970				
	,	l	1				

Рисунок 4.3.1. – график зависимости времени работы нерекурсивных алгоритмов Левенштейна и Дамерау-Левенштейна от длины входных строк

Рисунок 4.3.2. – график зависимости времени выполнения от длины входных строк для рекурсивного алгоритма Левенштейна

Потребление памяти программным обеспечением при выполнении рекурсивной и итеративной реализаций алгоритма Левенштейна представлено в таблице 4.2.3. На рисунках 4.2.3. и 4.2.4. представлены те же данные, но уже в виде графиков зависимостей затрачиваемой памяти от длины входных строк для нерекурсивного и рекурсивного алгоритмов соответственно.

Длина строки	Алг. Левенштейна	Рекурсивный Алг. Дамерау
1	95821	94819
2	95981	95966
3	96041	96539
4	96129	98583
5	96185	114633
6	96282	201625
7	96371	669153
8	96501	3250189
9	96589	17605379
1	96635	97776683

Рисунок 4.3.3. – график зависимости памяти от длины входных строк для рекурсивного и итеративного алгоритмов Левенштейна

4.3 Вывод

На основе приведенных выше экспериментальных данных можно сделать вывод, что рекурсивная реализация алгоритма Левенштейна значительно медленнее итеративной, а их разница во времени выполнения растет вместе с ростом длины входных строк.

5 Заключение

В процессе выполнения лабораторной работы было проведено исследование алгоритмов Левенштейна и Дамерау-Левенштейна нахождения расстояния между строками. Во время разработки программного обеспечения в соответствии с поставленными требованиями были получены практические навыки реализации указанных алгоритмов: алгоритмов Левенштейна и Дамерау-Левенштейна в матричной версии и алгоритма Левенштейна в рекурсивной версии. При помощи разработанного программного обеспечения на материале замеров процессорного времени выполнения реализации на варьирующихся длинах строк были экспериментально подтверждены различия во временной эффективности рекурсивной и нерекурсивной версий выбранного алгоритма определения расстояния между строками.

Список литературы

- [1] . В. И. Левенштейн. «Двоичные коды с исправлением выпадений, вставок и замещений символов» М.: Доклады Академий Наук СССР, 1965.
- [2] . Д. С. Карахтанов. «Программная реализация алгоритма Левенштейна для устранения опечаток в записях баз данных» [Электронный ресурс] / Молодой ученый. Режим доступа: https://moluch.ru/archive/19/1966/, свободный. (Дата обращения: 10.09.2018 г.)
- [3] . «Метод динамического программирования Вагнера и Фишера» [Электронный ресурс] / Алгоритмы, методы, исходники. Режим доступа: http://algolist.manual.ru/search/lcs/vagner.php, свободный. (Дата обращения: 29.10.2018 г.)
- [4] . «Стандарт С11» Режим доступа: http://www.open-std.org (Дата обращения: 29.10.2018 г.)