F19

- Inlämningsuppgift
- · Fabricering av analytiska lösningar
- · Normer for functioner: If II = ?
- · Konvergenstudies
- Fragestund: Uppgift 7.2

* Inlamning

- 10 bevis + 7.1 elles 7.2

- 7.1 Advektions-diffusionsekvationen

 $u + (- E \triangle u + (5 - \nabla u = f))$

E=K Diffusion "

- 1.2 Schrödinger-ekvation

 $-\frac{1}{2}\Delta u + \nabla u = 2u$ $4(U = \lambda U)$

* Fabricening av analytiska lösninger L'exalt lösning Un 2 U C numerisk lösning Vill kontrollera att koden stämmer Bestan u=u(x,y,z) Stoppa in i ekvationen s. Bestam högerledet f 4. Beräkna lösning uh 5. Jámför u och uh $A(u) = \sharp$

 $-\Delta u = f$ (Poissons etvation)

Exempel: Poissons etvation

$$S = \Delta u = f \quad \Omega = [0,1]^{2}$$

$$U = U \quad pa \quad \partial \Omega$$

$$V = U \quad pa \quad \partial \Omega$$

$$V = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = \left(\frac{\partial u}{\partial x},$$

Note ra:
$$J = 8\pi^2 \sin(z\pi x) \sin(z\pi y)$$

$$= 8\pi^2 n$$

$$-\Delta u = 8\pi^2 u$$

$$A = 8\pi^2$$

$$-\Delta u = 8\pi^2 u$$

i. u = Sin(ZITX) sin(ZITy) är en egenfunltion med egenvärde $\lambda = 8TT^2$

* Normer för funktioner

Maxnormen:

$$||f||_{\alpha} = \sup_{x \in \mathcal{N}} |f(x)|$$

Austand i maxnorm:

$$\frac{L^{p}-norm}{\|f\|_{p}=\left(\int |f|^{p}dx\right)^{p}}$$

$$\frac{P=1}{m} \quad ||f||_1 = \int |f| dx \qquad \left(\frac{1}{norm} \right)$$

$$\frac{P=2}{\|f\|_{2}} = \left(\int |f| dx\right) \left(\frac{2}{L-norm}\right)$$

Skalarprodukt:

$$\langle f, 5 \rangle = \int f g dx$$

 $\langle f, f \rangle = \int |f|^2 dx$
 $||f||_2 = \sqrt{\langle f, f \rangle}$

Felet:
$$||u-u_{1}||_{2} = \left(\int (u-u_{1})^{2} dx\right)$$
Felet i L'-normen

* Konvergensstudier

För devivatan tappar vi en konvergensordning:

 $\|\nabla u - \nabla u_h\| \le C.h^r$ On r = 1 (styckvis linjära polynom): $\|u - u_h\|_2 \le C.h^2 \text{ (kvadratisk)}$

(In e = In (Ch2) en C + 2 (len h) |y=kx+m| (rät linje) k=2 (konvergewordning)

Bestäms n.h.a polyfit ()

P = polyfit (log(h), log(e), 1) $P = [k, m] \times pat$ k = p [o1]

* FEM och egenvärdesproblem)*v)*v $-\frac{1}{2}\Delta u + \nabla u = \lambda u$ $\int_{-\frac{1}{2}} \sin v \, dx + \int \nabla u \, v \, dx = \lambda \int u \, v \, dx$ lu tegrera $\int \frac{1}{z} \nabla u \cdot \nabla v \, dx + \int \nabla u v \, dx = \lambda \int u v \, dx$ Ansats: $u_n = \sum_{i=1}^{n} u_i e_i$ $\sum_{j=1}^{N} U_{j} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \nabla e_{j} \cdot \nabla e_{i} dx + \int \nabla e_{j} e_{i} dx \right)$ $= \lambda ij = \lambda \sum_{j=1}^{N} U_{j} \int e_{j} e_{j} dx$ AU = 2 MU