Introduction to Graph Theory Lecture 27

Menu

 Shortest path algorithm to determine the shortest path between two vertices of a weighted graph

Example 1

- The weighted graph shown below represents a communication network with weights indicating the delays associated with each edge.
- Find the minimum delay path from s to t.

Solution - Stage 1:

- Begin at the start vertex s. This is the <u>reference vertex</u> for stage 1.
- Label all the adjacent vertices with the lengths of the paths using only one edge.
- Mark all other vertices with a very large number (larger than the sum of all the weights in the graph). In this case we choose 100. This is shown in the diagram.
- At the same time, start to form a table as shown in Table 1.
- The lengths of paths using only 1 edge from s

Table 1

S

Solution - Stage 2:

- Choose as the reference vertex for stage 2 the vertex with the *smallest label* that has not already been a reference vertex. This is vertex *a*.
- Consider any vertex adjacent to the new reference vertex and mark it with the length of the path from s via a to this vertex if this is less than the current label on the vertex. This gives the labels shown right.
- We also add a new line to Table 1 to give Table 2, noting that as vertex a has been made a reference vertex the label of s becomes permanent and is marked with an underline in the table.
- The lengths of paths using up to 2 edges from s

Table 2

a

4	11	7	100	100	100	100
	11	7	12	100	14	100

Solution - Stage 3:

- Choose as the reference vertex the vertex with the smallest label that has not already been a reference vertex. From table 2 we see that c is the reference vertex for stage 3.
- Consider any vertex adjacent to c that does not have a permanent label and calculate the length of the path from s via c to this vertex. If it is less than the current label on the vertex mark the vertex with this length. This gives us the labels shown right.
- We also add a new line to Table 2 to give Table 3. Note that the third line of Table 3 does not have an entry for a as this has already been a reference vertex.
- The lengths of paths using up to 3 edges from s

Table 3

	а	b	c	d	e	f	t
S	<u>4</u>	11	7	100	100	100	100
a		11	<u>7</u>	12	100	14	100
c		11		11	10	14	100

Solution - Stage 4:

- Proceeding as before, the reference vertex for stage 4 is, by inspection of the third line of Table 3, vertex e.
- Again we calculate the lengths of the paths from s via e to any vertices adjacent to e that do not have permanent labels and replace the labels on those vertices with the relevant path lengths if this is less than the existing label.
- This gives the labels shown right and Table 4.

Table 4

 The lengths of paths using up to 4 edges from s

	a	b	\boldsymbol{c}	d	e	f	t
S	4	11	7	100	100	100	100
a		11	<u>7</u>	12	100	14	100
c		11		11	<u>10</u>	14	100
e		11		11		14	15

Solution - Stage 5:

- Choose b as the new reference vertex (we could have chosen d instead but this would make no difference to the final result).
- Compare paths from s via b to the labels on any adjacent vertices with temporary labels and re-label if the paths are found to be shorter.
- The result of stage 5 is that the labels remain as in stage 4, but that the label on b becomes permanent giving Table 5.

Table 5

•	The lengths of paths using up to 5 edges
	from s

	а	b	c	d	e	f	t
S	4	11	7	100	100	100	100
a		11	<u>7</u>	12	100	14	100
\boldsymbol{c}		11		11	<u>10</u>	14	100
e		<u>11</u>		11		14	15
b				11		14	15

Solution - Stage 6:

- Choose d as the new reference vertex.
- The only vertices left without permanent labels are now *f* and *t*.
- The path from s via d to t gives a smaller value than the current label of 15. Hence we change the label to 11+2=13.
- The new labels are shown right together with Table 6.

The lengths of paths using up to 6 edges from s

	Iable 0						
	а	b	c	d	e	f	t
S	4	11	7	100	100	100	100
a		11	<u>7</u>	12	100	14	100
c		11		11	<u>10</u>	14	100
e		<u>11</u>		11		14	15
b				<u>11</u>		14	15
d						14	13

Tahla 6

Solution - Stage 7:

- The remaining vertex with the smallest label is t.
- We therefore give t the permanent label of 13.
- As soon as t receives a permanent label the algorithm stops as this label is the length of the shortest path from s to t.
- To find the actual path with this length we move backwards from t looking for consistent labels.
- This gives t d c s. That is, the path is s c d t.

Dijkstra's Shortest Path Algorithm (SPA)

- Let the node at which we are starting be called the **initial node**. Let the **distance of node Y** be the distance from the **initial node** to **Y**. Dijkstra's algorithm will assign some initial distance values and will try to improve them step by step.
- Assign to every node a tentative distance value: set it to zero for our initial node and to infinity for all other nodes.
- Set the initial node as current. Mark all other nodes unvisited. Create a set of all the unvisited nodes called the unvisited set.
- For the current node, consider all of its unvisited neighbors and calculate their *tentative* distances. Compare the newly calculated *tentative* distance to the current assigned value and assign the smaller one. For example, if the current node *A* is marked with a distance of 9, and the edge connecting it with a neighbor *B* has length 4, then the distance to *B*(through *A*) will be 9 + 4 = 13. If B was previously marked with a distance greater than 13 then change it to 13. Otherwise, keep the current value.
- When we are done considering all of the neighbors of the current node, mark the current node as visited and remove it from the *unvisited set*. A visited node will never be checked again.
- If the destination node has been marked visited (when planning a route between two specific nodes) or if the smallest tentative distance among the nodes in the *unvisited set* is infinity (when planning a complete traversal; occurs when there is no connection between the initial node and remaining unvisited nodes), then stop. The algorithm has finished.
- Otherwise, select the unvisited node that is marked with the smallest tentative distance, set it as the new "current node", and go back to step 3.

Why is SPA optimal?

Why SPA gives us the shortest path?

What is the complexity of SPA?

 Can SPA be generalized for related shortest path problems?

Summary

 Demonstrated the algorithm to determine the shortest path between two vertices of a weighted graph

Readings

- [Mar07] Read 9.3
- [Mar13] Read 9.3