



CS 329P: Practical Machine Learning (2021 Fall)

# 1.1 Course Introduction

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

## Machine Learning (ML) in Industry





- A decade ago ML was mainly used by "Big Tech"
- It's common for companies using ML to drive revenues
  - Top segments are: high-tech, automotive, manufacturing, retail, finance, healthcare
  - Covid-19 accelerated this process





### Industrial ML Applications





Manufacturing



Predictive maintenance, quality control

Retail



Recommendation, chatbot, demand forecasting

Healthcare



Alerts from real-time patient data, disease identification

Finance



Fraud detection, application processing





Breakdown prediction, self-driving



#### **House Sales Prediction**





The goal is to predict the bid price for the winning buyer



#### **ML Workflow**

8,873 Square Feet 2239 Wellesley St, Palo Alto, CA 94306





### Industrial ML Applications



Manufacturing



Predictive maintenance, quality control

Retail



Recommendation, chatbot, demand forecasting

Healthcare



Alerts from real-time patient data, disease

identification

Finance



Fraud detection, application processing

Automobile



Breakdown prediction, self-driving

## Challenges at ML stages



 Formulate problem: focus on the most impactful industrial problems



- Data: high-quality data is scarce, privacy issues
- <u>Train models:</u> ML models are more and more complex, data-hungry, expensive
- Deploy models: heavy computation is not suitable for real-time inference
- Monitor: data distributions shifts, fairness issues



#### Course Topics



 Techniques a data scientist needs but often not taught in university ML/stats/programming courses



- Collect/ preprocess data
- Covariate/ concepts/label shifts
- Data beyond IID



- Model validation/ combinations/ tuning
- Transfer learning
- Multi-modality



- Model deployment
- Distillation



- Fairness
- Explainability

#### Roles





- Domain exerts: have business insights, know what data is important and where to find it, identify the real impact of a ML model
- Data scientis: full stack on data mining, model training and deployment
- ML experts: customize SOTA ML models
- SDE: develop/maintain data pipelines, model training and serving pipelines





How data scientists spent their time (source: Anaconda survey 2020)



#### Summary





- ML has become a staple of modern business.
- A ML workflow includes: formulating the problem, preparing data, training and deploying ML models, monitoring
- This course will teach technologies a data scientist needs in each ML workflow stage