USER'S MANUAL

ANALOG TEST UNIT REF. AT 106

AT-106 ANALOG LAB

AT-106 Analog Lab is designed in order to accommodate the analog circuits equivalence. The main purpose of this Lab is to enable the users to acquire conveniently the DC power supply, signal generator, currentmeter, voltagemeter, potentiometer and switches which are used very often but not easily installed.

To meet the human body operation, the solderless bread board is fixed on the lower part and four point tip/banana socket/BNC socket exchange adapters on the right part of this Lab, in order to make the peripheral instruments and experimental circuits be connected to the interface for application.

The details are as follows:

- 1. POWER SWITCH WITH INDICATOR.
- 2. F.G. OUTPUT AMPLITUDE ADJUSTER.
- 3. F.G. OUTPUT FREQUENCY RANGE SELECTOR.
- 4. FINE TUNE OF F.G. OUTPUT FREQUENCY.
- 5. F.G. OUTPUT WAVE FORM SELECTOR.
- 6. POTENTIOMETER (VR2 = 100K Ω).
- 7. POTENTIOMETER (VR1 = 1K Ω).
- 8. DC 0 to +15 ADJUSTER.
- 9. DC 0 to -15 ADJUSTER.
- 10. BI-STATE SLIDE SWITCHES.
- 11. TRI-STATE SLIDE SWITCHES.
- 12. ROTATION SW.
- 13. 1896 TIE POINTS SOLDERLESS BREADBOARD.
- 14. POINT TIP/BANANA SOCKET/BNC SOCKET EXCHANGE ADAPTERS.
- 15. VOLTAGEMETER AND CURRENTMETER INPUT POINT TIPS.
- 16. SPEAKER INPUT (2.25" 8 Ω).
- 17. VOLTAGEMETER (30 VDC 320K Ω).
- 18. CURRENTMETER (100uA 1K Ω).

SPECIFICATION

1. SOLDERLESS BREADBOARD:

Interconnected nickel plated with a total of 1896 tiepoints, fitting all DIP size components with lead and solid wire in diameter 0.3-0.8mm.

This Bread Board is removeable type.

2. DC POWER SUPPLY:

Variable DC power:

Positive output voltage 0 to +15V.

Negative output voltage 0 to -15V.

Maximum output current 300mA.

Line regulation < 0.05%/V (Ta=25 C).

Load regulation < 30 mV.

Fixed power supply:

Positive output voltage 5V +/- 0.25V. Maximum output current 1 Amp. Line regulation < 50 mV. Load regulation < 100 mV.

Negative output voltage -5V +/- 0.25V. Maximum output current 100 mA. Line regulation < 25 mV. Load regulation < 30 mV.

All DC power supplies equipped with short-circuit protection.

3. FUNCTION GENERATOR:

Frequency ranges 1HZ - 10HZ

10 HZ - 100 HZ

100 HZ - 1K HZ

1KHZ - 10KHZ

10K HZ - 100KHZ

Sine wave output: 0 to 8 Vp-p variable. Triangle wave output: 0 to 6 Vp-p variable. Square wave output: 0 to 8 Vp-p variable.

PARTS LIST

PARTS LIST DC POWER SUPPLY P. C. B.

SYMBOL	MODEL	QUANTITY
R107, R108	100 Ω 1/4W	2
R101, R102	330 Ω 1/4W	2
R105, R106	3. 3K Ω 1/4W	2
R103, R104	3.9K Ω 1/4W	2
SVR1, SVR2	502	2
C108	0. luF Mylar	1
C105, C106, C107	10u/50V Electro	3
C102, C103, C104	1000u/35V Electro	3
C101	4700u/16V Electro	1
D1 - D6	Diode 1N4148	6
BRD1, BRD2, BRD3	Bridge R. D: RB153	3
IC1	LM7805(T)	1
IC2	LM7905(T)	1
IC3	LM317(T)	1
IC4	LM337(T)	1
13	Jump Wire: 0.4"	1
J1, J2	Jump Wire: 0.9"	2

PARTS LIST

PARTS LIST FUNCTION GENERATOR P. C. B.

SYMBOL	MODEL	QUANTITY
R318	47 Ω 1/4W	1
R315	56 Ω 1/4W	1
R314	100 Ω 1/4W	1
R313	820 Ω 1/4W	1
R310	1K Ω 1/4W	1
R307	1.2K Ω 1/4W	1
R321	5.1K Ω 1/4W	1
R320	2. 2K Ω 1.4W	ī
R301, R302, R312	3. 3K Ω 1/4W	3
R311	3. 6K Ω 1/4W	1
R305, R306	5. 6K Ω 1.4W	2
R303, R308, R309, R316, R317	10K Ω 1/4W	5
R319	22K Ω 1/4W	1
R304	9. 1M Ω 1/4W	ī
SVR3	SVR501 (5x5)	î
SVR7	SVR102 (5x5)	î
SVR4, SVR8 - SVR11	SVR332 (5x5)	5
VR3	VR 5K Ω	1
VR4	VR 500 Ω	ī
2309	420 PF	1
C308	0.0047uF Mylar	ī
2307	0.047uF Mylar	ī
C306	0. 47uF Tantalum	1
C304	100uF/16V Elec	ī
C305	4. 7uF Tantalum	1
C301, C302	0. 01uF Mylar	2
C303	0. luF Mylar	1
ZD9, ZD10	Zener Diode 12V	2
Q1, Q3	Transister 9013	2
Q2	Transister 9012	1
Q4	Transister 5551	î
	3 Bound Switch	ī
	5 Bound Switch	ī
IC10	8038	1
IC11	TL071	i
SVR5, SVR6	SVR104 (5x5)	2

Fig. 1 Circuit Diagram of Power Supply

Fig. 2 Circuit Diagram of Function Generator

Circuit Diagram of Power Supply for LVD design