

A卷

2019-2020 学年第 1 学期

(2019 秋季)

《编译原理与技术》期末考试卷

班级	_学号
姓名	成绩

2020年1月2日

《编译原理与技术》 期末考试卷

注意事项: 1. 所有答案请直接写在题目中, 另附纸无效。

2. 交卷时请以班为单位交卷。

晒旦	_		=		四				总分
题号		_	-	1	2	3	4	5	心分
成绩									
阅卷人 签字									
任课教师签字									

题目:

一、	填空题	(9	分)
_,	判断题	(10	分)
三、	单选题	(21	分)
四、	综合题		
	1	(10	分)
	2	(6	分)
	3	(14	分)
	4	(16	分)
	5	(14	分)

一、填空题(每空1分,共9分)

1.	在编译过程的五个阶段中,	_的输出是 token 序列,	
	输出是抽象语法树。		
2.	根据乔姆斯基对文法的分类,正则文法是	型文法,它可以被	接受。
3.	算符优先分析过程每次规约的是	0	
4.	向输入文法插入动作符号后得到的文法是_	文法,这个	文法推导所产生的终
	结符号串称为序列。		
5.	根据能否在编译阶段确定所需数据空间]大小,可将运行时;	的存储分配方式分

二、判断题(每题1分,共10分)

为。

1. 整个编译过程中只对源代码做一次从头到尾扫描的编译器,就是"一遍扫描的编译器"。

和。

- 2. 文法 G 所描述的语言,就是文法 G 的终结符集合 Vt 的闭包 Vt*。
- 3. NFA 的接受状态可以多于一个,但 DFA 只能有一个。
- 4. 算符优先分析过程中, 栈顶运算符优先级小于栈外输入运算符时, 执行入栈操作; 栈顶运算符优先级大于栈外输入运算符时, 执行出栈规约操作; 其他情况说明遇到了错误。
- 5. 属性翻译文法中综合属性的求值是自下向上的;而继承属性的求值是自上向下的。
- 6. First 集合可以包含ε, Follow 集中不可以包含ε。
- 7. 规范句型的活前缀不一定是唯一的。
- 8. LL(1) 文法和 SLR(1) 文法都一定是无二义性的。
- 9. 与机器有关的优化一般是在中间代码上进行的。
- 10. 对于右侧的代码块:语句 return j+1 等价于 return 1,

int fun(int i) {
 int j = i;
 if (j == 0) return j+1;
 else return j-1;
}

语句 return j-1 等价于 return i-1; 因此可以在优化时应用复写传播改为:

```
if (i == 0) return 1;
  else return i-1;
```

三、单选题(每题3分,共21分)

- 1. 已知语言 $L = \{a^n bc^n \mid n \geq 0, m > 0\}$,下列文法中____产生的语言不等于L。
 - A. Z := AbC A := Aa | ϵ C := Cc | c
 - B. Z := AC $A ::= aA \mid b$ $C ::= Cc \mid c$
 - C. $Z := bC \mid aZ \quad C := cC \mid c$
 - D. $Z := aZc \mid B \quad B := b$
- 2. 对于文法 G[S]:

 $S := \underline{lic}SE \mid a$

ic icics ELE

 $\underline{\underline{E}} := eS \mid \epsilon$

下列符号串中能证明该文法有二义性的是

- C. icicaeaea B. <u>icicic</u>aea
- D. icaeaea

3. 对于算符优先文法G[Z]:

A. Kicita

Z := E? E: E

 $E := T \mid E + T$

 $T := F \mid -F$

 $F ::= i \mid (Z)$

其中出现的运算符的优先关系,下列正确的有_

① ?等于:

② 辛等于+ ③ (小于- ④ (小于:

E=(E) E=E+E E=E+E

D. 456

4. 对于文法G[I]:

 $I := PBBB \mid D$

(P) := 0b

B := 0 | 1

D::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

- A. 它是一个算符优先文法
- B. 它是一个 LL(1)文法
- C. 它是一个 2 型文法
- D. 它的句子集合是无限的

- 5. 记正则表达式 r 定义的语言为 L(r) ,下列选项中正确的是____。
 - A. $L(\underline{a})L(a^*) = L(a^*)$
 - B. L(a|b) = L(a)L(b)
 - C. $L(b(ab)^*) = L((ba)^*b)$
 - D. L(ab|c) = L(a)L(b|c)
- 6. 算术表达式 a + b * (c d)/e 的后缀表示为 C

A.
$$abcd-*e/+$$
 $abcd-e/*$

B. b c d - e/* a +

+*62/

- C. a b c d e/* +
- D. c d b * e/a +
- 7. 如下是某函数的中间代码表示。

下列中间代码序列中, ____是一个基本块。

- A. (1) (2) (3) (4) B. (4) (5) (6) (7) (8) (9) C. (5) (6) (7) (8) D. (10) (11)

四、综合题(共60分)

$$T ::= FF'$$

$$T' ::= \varepsilon \mid +TT'$$

$$F := v \mid i$$

$$F' ::= \varepsilon \mid * FF'$$

对于句型 v + v * i:

- (1) 写出它的最左推导过程。(3分)
- (2) 画出它的语法树。(3分)
- (3) 写出它的所有短语、简单短语和句柄(4分)

2. (6分) n 维数组某元素绝对地址 ADDR 的计算公式为

$$ADDR = LOC + RC + E\sum_{i=1}^{n} V(i)P(i) , \qquad RC = -E\sum_{i=1}^{n} L(i)P(i)$$

其中 LOC 是分配给数组的连续内存空间的开始地址; RC 是相对不变部分; E 是数组中每个元素占用的内存大小。V(i) 是指定元素第 i 维下标的值; P(i) 是

$$P(i) = \begin{cases} 1 & \text{\frac{1}{3}} i = n \\ \prod_{j=i+1}^{n} [U(j) - L(j) + 1] & \text{\frac{1}{3}} 1 \le i < n \end{cases}$$

U(i) 是数组第 i 维下标的最大值; L(i) 是数组第 i 维下标的最小值。

假设 E=4 且程序中声明了数组 arr(1:5, -1:2, 0:3)。

- (1) 计算数组 arr 的 RC 值。(3分)
- (2) 若对于数组 arr 有 LOC = x, 求数组元素 arr(2,2,2) 的绝对地址。(3分)

(1)
$$P(1) = 4 \times 4 = 1b$$

 $P(2) = 4$
 $P(3) = 1$
 $Pc = -4 \times (1 \times 1b + -1 \times 4 + 0 \times 1)$
 $= -4 \times (1b - 4)$
 $= -48$

(2)
$$ADDR = \chi - 48 + 4\chi (2x | b + 2x 4 + 2x 1)$$

 $= \chi - 48 + 4\chi (32 + 8 + 2)$
 $= \chi - 48 + 4\chi (42)$
 $= \chi - 48 + 168$
 $= \chi + 120$

- 3. (14 分) 记正则表达式 a(a(bc)*|a(b|c)*a)*a 对应的最小化的 DFA 为 M1。
- (1) 求 M1。(12 分)
- (2) 右图所示的 DFA 已经最小化,记为 M2。判断 M1 和 M2 是否等价,并证明你的结论。(2分)

	L	Ia	Ib	Ic
	0.1.23	1 2 2) 1 , 1 ,	### ##################################	Φ I Φ I • 4 I • 5 IV • 4 V
R		-	3	4

	I	Ia	I6	Ic
D	ا ال	12 4	Υ	Y
1	124	72,3,4.69	Ψ	Ψ
2	{2,3,4,69	{ 2, 3, 4, 69	४ ५. ३ ५	734
3	33.54	12 }	339	13,4,29
4	337	{	137	₹37
5	3.4,29	32, 3, 4, 69	1 3. 5 4	<i>የ </i>

4. (16分)给定对于文法G[E]:

$$E \to TE \mid ε$$
 $T \to \underline{aFP}$ $P \to bF \mid ε$ $F \to i; F \mid ;$ H 表示输入串的结尾。

(1) 求各候选式的 FIRST 集,以及各非终结符的 FIRST 集和 FOLLOW 集。请直接以集 合的形式填写下面的表格,空集合写Φ。(6分)

候选式	FIRST	候选式	FIRST
3	८ ६१	bF	764
TE	rah	i;F	s i 'Y
aFP	3a4	;	} ; 9

非终结符	FIRST	FOLLOW
E	3a. e 4	}#
T	1 a h	<pre>{#.a1</pre>
P	16.€9	〈井、Q 勺
F	۲i، ۶ ۹	16, 4, a9

(2) 此文法是否适合使用自顶向下的方法分析?说明理由。(2分)

恩	
•	۰

(3) 尝试构造该文法的 LL(1) 分析表。请直接填写下面的表格,如果有表项被多次填入, 在该处标记×。(8分)

	a	b	i	;	#
E					
T					
P					
F					

- 5. (14分) 文法 G[S] 的拓广文法 G[S'] 如下:
 - $(0) S' \rightarrow S$
 - (1) $S \rightarrow AB$
 - (2) $A \rightarrow aB$
 - (3) $B \rightarrow Ab$
 - (4) $B \rightarrow b$

该文法的 LR(1) 项目集如下图所示。

- (1) 指出对该 LR(1) 项目规范族合并同心集时,哪些项目集会被合并。(3分)
- (2) 构造 LALR(1) 分析表。请直接填写下面的表格。(8分)
- (3)利用 LALR(1)分析表,分析输入串 aabbabb。请直接填写下面的表格。(3分)注意:合并同心集后的编号取原项目集的最小值,比如将 I₃、I₄与 I₆合并,得到的新项目集为 I₃,因此得到的新项目族的编号可能是不连续的。填写分析表和推导过程时,可能不会用到表格的所有行。

(2) LALR(1) 分析表:

- 1 -41/		ACTION			GOTO		
状态	a	b	#	S	A	В	

(3) 分析输入串 aabbabb 的 过程:

步骤	状态栈 (栈底在左)	已识别符号	待输入串
0	0	#	aabbabb#
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			