Euclidean Geometry: An Introduction to Mathematical Work

Math 3600

Fall 2016

Circles, Coming 'Round Again

One of the most useful results about circles is Proposition III.20 which relates an *inscribed* angle in a circle to a *central* angle in that circle. Let us try to see what happens when the angle does not sit on the circumference of the circle.

10.2 Question. Consider the situation from the last conjecture, but instead assume that X lies outside Γ . What happens here? Formulate a conjecture.

10.3 Conjecture. If two chords of a circle subtend different acute angles at points of a circle, then the smaller angle belongs to the shorter chord.

10.4 Conjecture. If a triangle has two different angles, then the smaller angle has the longer angle bisector (measured from the vertex to the opposite side).

10.5 Conjecture (Steiner-Lehmus). If a triangle has two angle bisectors which are congruent (measured from the vertex to the opposite side), then the triangle is isosceles.

10.6 Conjecture. Let BC be a chord of circle \mathscr{C} , let \widehat{BC} be the arc of \mathscr{C} which is bounded by B and C and does not contain the center of \mathscr{C} . Let M be the midpoint of \widehat{BC} . For a point A on the arc \widehat{BC} , show that as A moves along the arc from B to M, the sums AB + AC increase.

The next theorem is very pretty, and is commonly attributed to Archimedes.

10.7 Conjecture (Archimedes' Theorem of the Broken Chord). Let AB and BC be two chords of a circle \mathscr{C} , where BC is greater than AB. (Such a configuration is sometimes called a "broken chord.") Let M be the midpoint of arc ABC and F the foot of the perpendicular from M to chord BC. Then F is the midpoint of the broken chord, that is, AB and BF taken together are congruent to FC.

