Ex 1 - Simplifier:

$$A = |-5 + 10|$$

$$B = |-3 - (-2)|$$

$$G = \left| -\frac{1}{9} + \frac{1}{2} \right|$$

$$C = |-2\sqrt{2} + \sqrt{12}|$$

$$H = \left| -0.5 + \frac{1}{5} \right|$$

$$D = |-3\pi + 9|$$

$$I = |5\sqrt{5} - 7\sqrt{7}|$$

 $J = |-2\sqrt{2} + 1|$

$$E = |-2 - 10^{-2}|$$

 $F = \left| (3 - \sqrt{2})^2 \right|$

$$(I_4):|x+5|>1$$

$$(I_{12}):|x+5|>-9$$

 $(I_{10}):|x-1|>10$

 $(I_{11}):|x+5| \ge 2$

$$E = \begin{bmatrix} 2 & 10^{-2} \end{bmatrix}$$

$$(I_3):|x+1| \le 4$$

 $(I_1):|x| \leq 2$

 $(I_2):|x+4|<1$

$$(I_4):|x+5|>1$$

$$(I_{13}): |-x+2| \ge 5$$

$$(I_5):|-x+3|>3$$

$$(I_{14}): \left| -x + \frac{\pi}{3} \right| > \pi$$

$$(I_6):|x-6| \le 3$$

$$(I_{14}): \left| -x + \frac{\pi}{3} \right| > \pi$$

$$(I_7):|x+2|<4$$

$$(I_{15}): 2 < |x+1| < 3$$

$$(I_{s}):|x+3| \leq -1$$

$$(I_{16}): \frac{1}{2} \le |x-3| < 4$$

$$(\mathbf{I}_9): |x - \sqrt{2}| \leq 3\sqrt{2}$$

Ex 2 - Recopier le tableau ci-dessous puis comparer $|x| \times |v|$ et $|x \times v|$:

L	1	1	1 12	1 1 1 2 1	
x	у	x	y	$ x \times y $	$ x \times y $
2	– 3				
-4	5				
3	6				
-4	-6				

Ex 3 - Recopier le tableau ci-dessous puis comparer |x| + |y| et |x + y|:

 $x \mid + \mid y \mid$ x + y1 -5-62 2 6 - 3 **–** 3

Ex 4 - Résoudre dans $\mathbb R$ les équations suivantes en vous aidant d'une représentation graphique :

$$(E_1):|x|=3$$

$$(E_5):|x-7|=2$$

$$(E_2):|x-4|=1$$

$$(E_6):|x+7|=3$$

$$(E_3):|x+2|=5$$

$$(E_7):|5-x|=-2$$

$$(E_4): |-x+1|=4$$

$$(E_8):|5-x|=|5-7|$$

Ex 6 - Aurélien et Camille habitent la même rue. Aurélien est à 100 m du début de la rue et Camille est 400 m après Aurélien.

Ex 5 - Résoudre dans $\mathbb R$ les inéquations suivantes en vous aidant d'une représentation graphique :

Les parents d'Aurélien lui demandent de ne pas s'éloigner de plus de 300 m de la maison et ceux de Camille de plus de 200 m.

On représente la rue par une demi-droite graduée d'unité 1 m.

Traduire l'énoncé par un système d'inéquations permettant de trouver la position de la rue où Aurélien et Camille peuvent jouer ensemble, puis résoudre ce système à l'aide d'une droite graduée.

Ex 7 - Sur une droite graduée, on place les points A et B d'abscisses respectives –3 et 1. M est le point dont l'abscisse x est telle que : |x+3| = |x-1|. Interpréter cette égalité en termes de distances, puis en déduire l'abscisse de M.

Ex 8 - Compléter le tableau ci-dessous :

Encadrement	Intervalle	Centre	Rayon	Distance	Valeur absolue
3 < x < 9	$x \in [3; 9[$	6	3	d(x; 6) < 3	x-6 < 3
-3 < x < 7					
				$d(x;-1) \le 0,1$	
					$ x+2 < \frac{1}{2}$
				d(x; 2) > 4	
	$x \in [-1; 5]$				
$x \le -2$ ou $x > 6$					
					$ -x-1 \ge 2$