

Appendix B. Maximum Permissible Exposure

FCC ID: Z3WAIR4920 Page No. : B1 of B3

Report No.: FR490527-03

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	·		Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	, -		Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or \$ (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: Z3WAIR4920 Page No. : B2 of B3

Report No.: FR490527-03

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For UNII:

For 5GHz Band 1 \sim Band 3: Antenna Type : PCB Antenna

Conducted Power for IEEE 802.11acVHT20: 25.93 dBm

Distance (m)	Directional Gain	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S)	Limit of Power	Test Result
(11)			(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	'
0.2	4.77	3.0000	25.9284	391.5972	0.233836	1	Complies

Note: $DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$

For DTS:

For 5GHz Band 4:

Antenna Type: PCB Antenna

Conducted Power for IEEE 802.11ac VHT20: 27.10 dBm

	Distance	Directional	Antenna Gain	The maximum Average O	m combined utput Power	Power Density (S)	Limit of Power	Test Result
	(m) Gain	Gain	(numeric)	(dBm)	(mW)	(mW/cm²) Den	Density (S) (mW/cm²)	loor Rodaii
	0.2	4.77	3.0000	27.0995	512.8031	0.306212	1	Complies

Note: $DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{col}} \left\{ \sum_{k=1}^{N_{col}} g_{j,k} \right\}^2}{N_{ANT}} \right]$

For 2.4GHz Band:

Antenna Type: PCB Antenna

Conducted Power for IEEE 802.11b: 24.50 dBm

	Distance	Antenna	Antenna Gain	Average O	utput Power	Power Density (S)	Limit of Power	Test Result
	(m)	Gain (dBi)	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	iou kodan
	0.2	2.50	1.7783	24.5000	281.8383	0.099759	1	Complies

Conclusion:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.099759 / 1 + 0.306212 / 1 = 0.405971, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

FCC ID: Z3WAIR4920 Page No. : B3 of B3