Maximum Entropy Classifiers

Dr. Demetrios Glinos University of Central Florida

CAP6640 – Computer Understanding of Natural Language

Today

- Discriminative Models
- Features for Discriminative Models
- Feature-Based Linear Classifiers
- Building a Maxent Model
- Bidirectionality
- POS Tagging for Other Languages
- POS Tagging Performance

Discriminative Probabilistic Models

- So far, we have examined "generative" models
 - language modeling
 - Naïve Bayes
 - HMM

- Increasing use of conditional or "discriminative" probabilistic models
 - in NLP, speech processing, IR (and machine learning generally)
 - give high accuracy performance
 - easy to incorporate lots of linguistically important features
 - support automatic building of language-independent NLP components

Generative Models

- Given some data { (d,c) } of paired observations d and hidden classes c
- Generative models compute joint probabilities over both the observed and the hidden variables

- which are used to generate the observed data from the hidden
- examples: n-gram models, NB, HMM, PCFG

Discriminative Models

- Given some data { (d,c) } of paired observations d and hidden classes c
- Discriminative models compute *conditional* probabilities over the hidden variables given the data

- which are used to generate the observed data from the hidden
- examples:
 - logistic regression, conditional loglinear or maximum entropy models, conditional random fields
 - also (although not directly probabilistic): perceptrons, NNs, SVMs

Bayes Nets

- Bayes net diagrams draw circles for random variables and lines for direct dependincies
- Some variables are observed; some are hidden
- Each node is a CPT over the incoming arcs
 - CPT serves as a small classifier

 d_1 d_2 d_3

Discriminative

Joint vs. Conditional Likelihood

Joint model

- computes joint probabilities P(d, c)
- tries to maximize joint likelihood
- trivial to choose weights: just use relative frequencies

Conditional model

- computes conditional probabilities P(c | d)
- given the data, models only the conditional probability of the class
- tries to maximize the conditional likelihood
 - this is more difficult to do, as we shall see
 - but we do it to get increased accuracy

Usefulness of Discriminative Modeling

 Klein and Manning 2002, using Senseval-1 Data on a word sense disambiguation task:

Training Set		
Objective	Accuracy	
Joint likelihood	86.8	
Conditional likelihood	98.5	

Test Set		
Objective	Accuracy	
Joint likelihood	73.6	
Conditional likelihood	76.1	

Comparison tests used the same word/class features and same smoothing

Today

- Discriminative Models
- Features for Discriminative Models
- Feature-Based Linear Classifiers
- Building a Maxent Model
- Bidirectionality
- POS Tagging for Other Languages
- POS Tagging Performance

Features

Now, we could build a MEMM based on just the current word and previous tag

$$\widehat{T} = \underset{T}{\operatorname{argmax}} \prod_{i} P(t_i | w_i, t_{i-1})$$

 But this would be no more accurate than the generative HMM model, and could even be worse

- The attraction of MEMMs is that we can use this formulation to incorporate additional, linguistically relevant features
 - The current word and previous tag are just 2 features
 - Many others features of the context are also possible

Incorporating More Features

- Typical features used in MEMMs
 - current word
 - neighboring words
 - previous tags
 - combinations of the above
 - plus additional features

Feature Templates

• Feature templates are used to specify combinations of features

Example templates

$$< t_{i}, w_{i-2} > < t_{i}, w_{i-1} > < t_{i}, w_{i} > < t_{i}, w_{i+1} > < t_{i}, w_{i+1} >$$
 $< t_{i}, t_{i-1} > < t_{i}, t_{i-2}, t_{i-1} >$
 $< t_{i}, t_{i-1}, w_{i} > < t_{i}, w_{i-1}, w_{i} > < t_{i}, w_{i}, w_{i+1} >$

← word-based

← token-based

← combined

Example: Features generated

Given

sentence "<s> Janet will back the bill"

Janet tagged NNP
will tagged MD
index i points to word "back"

Features generated

 $t_i = VB$ and $w_{i-2} = Janet$

 $t_i = VB$ and $w_{i-1} = will$

 $t_i = VB$ and $w_i = back$

 $t_i = VB$ and $w_{i+1} = the$

 $t_i = VB$ and $w_{i+2} = bill$

 $t_i = VB$ and $t_{i-1} = MD$

 t_i = VB and t_{i-1} = MD and t_{i-2} = NNP

 $t_i = VB$ and $w_{i-1} = will$ and $w_i = back$

 $t_i = VB$ and $w_i = back$ and $w_{i+1} = the$

Word Signature Features

- MEMMs also typically use word signature features for unknown words
 - word-spelling properties
 - word shape

Examples

 w_i contains a particular prefix (from all prefixes of length ≤ 4)

 w_i contains a particular suffix (from all suffixes of length ≤ 4)

w_i contains a number

w_i contains an upper case letter

w_i contains a hyphen

w_i is all upper case

w_i's word shape

w_i's short word shape

w_i is upper case and has a digit following a hyphen (e.g., CRC-12)

w_i is upper case and is followed within 3 words by Co., Inc., etc.

Word Shape Features

- Similar to regular expressions
- Basic word shape characteristics
 - map lower case letters to 'x', upper case to 'X', and digits to 'd'
 - examples
 - X.X.X. would match I.M.F.
 - XXdd-dd would match DC10-30
- Short word shape
 - same as above, but remove consecutive duplicate specification characters
 - examples
 - Xd-d would match DC10-30 and also B747-300

Feature Space

- MEMMs compute
 - Template features for every word seen in the training data set
 - Unknown word features for
 - all words in training set
 - or, just the low frequency ones (below some threshold)
- This produces a very large set of features
- Feature cutoff
 - features are not computed if they have a count < 5 in training set

Today

- Discriminative Models
- Features for Discriminative Models
- Feature-Based Linear Classifiers
- Building a Maxent Model
- Bidirectionality
- POS Tagging for Other Languages
- POS Tagging Performance

Feature-Based Linear Classifiers

Linear classifiers

- Linear function from feature sets { f_i } to classes { c_i }
- Assign a weight λ_i to each feature f_i
- We consider each class for an observed datum d (feature set)
- For the pair (c, d), the features vote with their weights

$$vote(c_j) = \sum_i \lambda_i f_i(c_j, d)$$

the winner is the class with the highest score

$$c^* = \operatorname*{argmax}_{c_j} \sum_{i} \lambda_i f_i(c_j, d)$$

Methods for Choosing the Weights

- Perceptron
 - find a currently misclassified example, and nudge the weights in the dorection of the correct classification
- Margin-based methods
 - e.g., Support Vector Machines
- Exponential methods
 - e.g., log-linear, maxent, logistic, Gibbs models
 - make a probabilistic model from the linear voting combination

$$P(c|d,\lambda) = \frac{exp\sum_{i}\lambda_{i}f_{i}(c,d)}{\sum_{c'}exp\sum_{i}\lambda_{i}f_{i}(c',d)} \leftarrow \text{makes votes positive}$$

$$\leftarrow \text{normalizes votes}$$

the weights are the parameters of the probability model

Example: Exponential Model

Given

$$P(c|d,\lambda) = \frac{exp \sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{c'} exp \sum_{i} \lambda_{i} f_{i}(c',d)}$$

Then

P(LOC | in Boulder,
$$\lambda$$
) = $e^{1.8}$ / ($e^{1.8}$ + $e^{-0.6}$ + $e^{0.3}$) = 0.586
P(PER | in Boulder, λ) = $e^{-0.6}$ / ($e^{1.8}$ + $e^{-0.6}$ + $e^{0.3}$) = 0.176
P(ORG | in Boulder, λ) = $e^{0.3}$ / ($e^{1.8}$ + $e^{-0.6}$ + $e^{0.3}$) = 0.238

→ relative ordering of vote results is preserved, but normalized to [0,1]

Note on Logistic Regression

Exponential models

- Goal of training is to choose the set of parameters $\{\lambda_i\}$ that maximizes the conditional likelihood of the data
- To do this, we must construct not only classifications, but probability distributions over classifications

Related to logistic regression

- Maxent models in NLP are essentially the same as multiclass logistic regression models in statics or machine learning
- parameterization is slightly different in a way that is useful for NLP-style models that have tons of sparse features
- features are more general in that a feature is also a function of the class

Today

- Discriminative Models
- Features for Discriminative Models
- Feature-Based Linear Classifiers
- Building a Maxent Model
- Bidirectionality
- POS Tagging for Other Languages
- POS Tagging Performance

Features in NLP

- In NLP, a *feature* usually specifies
 - 1. an indicator function a yes/no boolean matching function of properties of the input
 - 2. and a particular class

Each feature selects a data subset and suggests a label for it

Feature Expectations

- We will make use of two kinds of expectations
 - Empirical (actual) expectation of a feature

$$E(f_i, C) = \sum_{(c,d) \in observed(C,D)} f_i(c,d)$$

Model (predicted) expectation of a feature

$$E(f_i, \lambda) = \sum_{(c,d) \in (C,D)} P(c,d) f_i(c,d)$$

 Goal of training a maxent model: to have the model expectations match the observed (empirical) expectations

Building a Maxent Model

- Features are often added during model development to target errors
 - Often, the easiest features to think of are the ones that indicate bad combinations
- Then, for any given feature weights, we wish to calculate
 - Data conditional likelihood
 - Derivative of the likelihood with respect to each feature weight
- We can then find the optimum feature weights (discussed later)

Exponential Model Likelihood

- Maximum (conditional) likelihood models
 - Given a model form, choose values of the parameters to maximize the (conditional) likelihood of the data

$$\log P(C|D,\lambda) = \sum_{(c,d)\in(C,D)} logP(c|d,\lambda) = \sum_{(c,d)\in(C,D)} log \frac{exp\sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{c'} exp\sum_{i} \lambda_{i} f_{i}(c',d)}$$

The Likelihood Value

• The (log) conditional likelihood of iid (independent, identically-distributed data) data (C, D) according to a maxent model is a function of the data and the parameters λ

$$\log P(C|D,\lambda) = \log \prod_{(c,d)\in(C,D)} P(c|d,\lambda) = \sum_{(c,d)\in(C,D)} \log P(c|d,\lambda)$$

If there aren't many values of c (i.e., data is sparse), it is easy to calculate

$$\log P(C|D,\lambda) = \sum_{(c,d)\in(C,D)} \log \frac{exp\sum_{i} \lambda_{i} f_{i}(c,d)}{\sum_{c'} exp\sum_{i} \lambda_{i} f_{i}(c',d)}$$

The Likelihood Value

• We can separate the last equation into two components

$$\log P(C|D,\lambda) = \sum_{(c,d)\in(C,D)} \log \exp \sum_{i} \lambda_{i} f_{i}(c,d)$$
$$- \sum_{(c,d)\in(C,D)} \log \sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)$$

Which is in the form

$$\log P(C|D,\lambda) = N(\lambda) - M(\lambda)$$

• The derivative is the difference between the derivatives of each component

Derivative (Part 1): Numerator

$$\frac{\partial N(\lambda)}{\partial \lambda_i} = \frac{\partial}{\partial \lambda_i} \left(\sum_{(c,d) \in (C,D)} \log \exp \sum_i \lambda_i f_i(c,d) \right)$$

$$= \frac{\partial}{\partial \lambda_i} \left(\sum_{(c,d) \in (C,D)} \sum_i \lambda_i f_i(c,d) \right)$$

$$= \sum_{(c,d) \in (C,D)} \frac{\partial}{\partial \lambda_i} \sum_i \lambda_i f_i(c,d)$$

$$= \sum_{(c,d) \in (C,D)} f_i(c,d)$$

Thus, the derivative of the numerator is the empirical count(f_i , C)

Derivative (Part 2): Denominator

$$\frac{\partial M(\lambda)}{\partial \lambda_i} = \frac{\partial}{\partial \lambda_i} \left(\sum_{(c,d) \in (C,D)} \log \sum_{c'} exp \sum_i \lambda_i f_i(c',d) \right)$$

$$= \sum_{(c,d)\in(C,D)} \frac{1}{\sum_{c''} exp\sum_{i} \lambda_{i} f_{i}(c'',d)} \frac{\partial}{\partial \lambda_{i}} \left(\sum_{c'} exp\sum_{i} \lambda_{i} f_{i}(c',d) \right)$$

$$= \sum_{(c,d)\in(C,D)} \frac{1}{\sum_{c''} exp\sum_{i} \lambda_{i} f_{i}(c'',d)} \sum_{c'} exp\sum_{i} \lambda_{i} f_{i}(c',d) \frac{\partial}{\partial \lambda_{i}} \left(\sum_{i} \lambda_{i} f_{i}(c',d)\right)$$

$$= \sum_{(c,d)\in(C,D)} \sum_{c'} \frac{1}{\sum_{c''} exp\sum_{i} \lambda_{i} f_{i}(c'',d)} exp\sum_{i} \lambda_{i} f_{i}(c',d) \frac{\partial}{\partial \lambda_{i}} \left(\sum_{i} \lambda_{i} f_{i}(c',d)\right)$$

$$= \sum_{(c,d)\in(C,D)} \sum_{c'} P(c'|d,\lambda) f_i(c',d)$$

Thus, the derivative of the denominator is the predicted count(f_i , λ)

Derivative (Part 3): Log Likelihood

Combining the ptrvious results, we have

$$\frac{\partial}{\partial \lambda_i}(\log P(C|D,\lambda) = actual\ count(f_i,C) - predicted\ count(f_i,\lambda))$$

- The optimum parameters will be the ones for which each feature's predicted expectation equals its empirical expectation
- Optimal distribution
 - Always exists if feature counts are from actual data
 - Will always be unique (but parameters may not be unique)
- Such models are called maximum entropy models because the optimal parameters correspond to a model with maximum entropy
 - recall Shannon's definition of information entropy: $E(x) = -ln\left(\frac{1}{P(x)}\right)$

Finding the Optimal Parameters

• We wish to choose parameters λ_1 , λ_2 , λ_3 , .. that maximize the conditional log-likelihood of the training data

$$CLogLik(D) = \log P(C|D, \lambda)$$

- To be able to find the maximum, we have worked out how to calculate
 - the function value
 - and its partial derivatives (gradients) with respect to each model parameter

Finding the Optimal Parameters

- Use your favorite numerical optimization package
 - typically, one must minimize the negative of CLogLik

- 1. Gradient descent (GD); stochastic gradient descent (SGD)
- 2. Generalized iterative scaling (GIS) and improved iterative scaling (IIS)
- 3. Conjugate gradient (CG), maybe with preconditioning
- Quasi-Newton methods: limited variable metric (LMVM) methods, e.g.,
 L BFGS

Most Likely Sequence

• Most likely sequence computed based on words within $\pm\,\ell$ words and the previous k tags

$$\widehat{T} = \underset{T}{\operatorname{argmax}} \prod_{i} P(t_i | w_{i-l}^{i+l}, t_{i-k}^{i-1})$$

- Given the model (developed from a corpus)
 - Can use greedy algorithm
 - make a hard classification on the first word in the sentence, then on the second word, and so on
 - Can use the Viterbi algorithm
 - same approach as for HMM

Today

- Discriminative Models
- Features for Discriminative Models
- Feature-Based Linear Classifiers
- Building a Maxent Model
- Bidirectionality
- POS Tagging for Other Languages
- POS Tagging Performance

Bidirectionality

- Both HMM and MEMM work essentially left-to-right
 - even though Viterbi allows some influence on current tag by subsequent ones
- Conditional Random Fields (CRF)
 - allow explicit dependence on subsequent tags
 - more powerful
 - but at substantion computational cost
- Other approaches
 - Stanford tagger uses a bidirectional version of MEMM called a cyclic dependency network
 - can also turn any sequence model into a bidirectional model by performing multiple passes (e.g., first pass use only preceding tags, second pass, use tags on right as well)

Today

- Discriminative Models
- Features for Discriminative Models
- Feature-Based Linear Classifiers
- Building a Maxent Model
- Bidirectionality
- POS Tagging for Other Languages
- POS Tagging Performance

Morphologically Rich Languages

- Languages similar to English
 - HMM and MEMM tagger accuracies comparable to English
- Morphologically rich languages
 - e.g., Czech, Hungarian, Turkish
 - for comparable size dictionary
 - Hungarian contains 2x word types as English
 - Turkish contains 4x word types as English
 - larger vocabularies mean more unknown word types and result in degraded performance
 - word morphology also encodes more information, like case and gender, so
 POS taggers need to label these features as well
 - tagsets can be 4 to 10 times larger than the 50-100 we use for English

Non-Segmented Languages

- Languages like Chinese do not segment written words
 - word segmentation generally applied before tagging
 - but some methods perform segmentation and tagging jointly
 - unknown words are a significant problem
 - despite short (~2.4 characters/unknown ~7.7 char/unk for English)
 - in English, unknown words tend to be proper nouns
 - in Chinese, unknowns tend to be common nouns and verbs
 - features for unknowns
 - use prefixes and suffixes (same as in English)
 - but also use radicals (not used in English)

Today

- Discriminative Models
- Features for Discriminative Models
- Feature-Based Linear Classifiers
- Building a Maxent Model
- Bidirectionality
- POS Tagging for Other Languages
- POS Tagging Performance

Baseline Tagging Performance

- Performance metric: Tag accuracy
 - how many tags are correct
 - about 97% currently
- Baseline method
 - tag every word with its most frequent tag
 - tag unknown words as common nouns
- Baseline performance is 90%
 - reason is many words are unambiguous
 - unambiguous words (like "the", "a", etc.) and for punctuation marks are included in the accuracy calculation

Comparison of POS Tagging Methods

- Rough accuracies for various POS tagging methods
 - on all words
 - on unknown words

Method	Accuracy (total)	Accuracy (unknowns)
Most frequent tag	~90%	~50%
Trigram HMM	~95%	~55%
Maxent P(t w)	93.7%	82.6%
MEMM tagger	96.9%	86.9%
Bidirectional dependencies	97.2%	90%
Upper bound	~98% (human agreement)	