FIRST LINE OF TITLE SECOND LINE OF TITLE

THIS IS A TEMPORARY TITLE PAGE
It will be replaced for the final print by a version provided by the service academique.

Thèse n. 1234 2011
présenté le 12 Mars 2011
à la Faculté des Sciences de Base
laboratoire SuperScience
programme doctoral en SuperScience
École Polytechnique Fédérale de Lausanne

pour l'obtention du grade de Docteur ès Sciences par

Paolino Paperino

acceptée sur proposition du jury:

Prof Name Surname, président du jury Prof Name Surname, directeur de thèse Prof Name Surname, rapporteur Prof Name Surname, rapporteur

Prof Name Surname, rapporteur

Lausanne, EPFL, 2011

Contents

Li	st of	figures	ii
Li	st of	tables	v
1	Intr	oduction]
Ι	Tor	sion	Ę
2	Geo	metry of smooth and discret curves	7
	2.1	Introduction	7
	2.2	Parametric Curves	7
	2.3	Frenet's Trihedron	Ć
	2.4	Curvature	10
	2.5	Torsion	1.
	2.6	Curve Framing	12
	2.7	Discrete Curvature	18
3	Elas	tic rod : variational approch	25
Ŭ	3.1	Introduction	25
	3.2	Kirchhoff rod	26
	3.3	Curve-angle representation	27
	3.4	Strains	28
	3.5	Elastic energy	29
	3.6	Quasistatic assumption	30
	3.7	Energy gradient with respect to θ : moment of torsion	30
	3.8	Energy gradient with respect to x : internal forces	32
	3.9	Numerical Model	41
		Discretization	41
		Connection	41
4	151.	the second state of the IZ's the Constitution	46
4		tic rod: a novel element from Kirchhoff equations	43
	4.1	Introduction	43
	4.2	Kirchhoff's law	43

${\bf Contents}$

	4.3	Constitutive equations
	4.4	Internal forces and moments
	4.5	Equations for the dynamic of rods
	4.6	Main hypothesis
II	Co	onnection 49
5	Cal	culus of variations 51
	5.1	Introduction
	5.2	Spaces
	5.3	<u>Derivative</u>
	5.4	Gradient vector
	5.5	Jacobian matrix
	5.6	Hessian
	5.7	Functional
6	Ben	ch for HPC 59
	6.1	<u>Introduction</u>
	6.2	Languages
	6.3	From syntax to processor
	6.4	Benchmark

List of Figures

2.1	Different osculating circles for a spiral	11
2.2	Differential definition of Frenet's trihedron at given point P_0	12
2.3	Geometric torsion and rotation of the osculating plane	13
2.4	Adapted moving frame $F(s) = \{e_3(s), e_1(s), e_2(s)\}$ where $e_3(s) = t(s)$	14
2.5	Geometric interpretation of the Darboux vector of a moving frame	15
2.7	Variation of the vertex-based discrete curvature	19
2.8	Variation of the edge-based discrete curvature	19
2.9	Definition of the osculating circle for discrete curves	20
2.10	Another definition of the osculating circle for arc-length parametrized curves.	20
2.11	Discrete curvature comparison for $\alpha \in [0.5, 2]$	21
2.12	Another definition of the osculating circle for arc-length parametrized curves.	22
2.13	Discrete curvature comparison for $\alpha \in [0.5, 2]$	23
2.14	Another definition of the osculating circle for arc-length parametrized curves.	23
2.15	Another definition of the osculating circle for arc-length parametrized curves.	24
3.1	Repères de Frenet attachés à γ	34
3.2	$ ilde{F}$ is obtained by rotating $ ilde{F}_{\epsilon}$ around $m{t}$ of an angle Ψ_{ϵ}	35
3.3	\tilde{F}_{ϵ} is obtained by parallel transporting F_{ϵ} from t_{ϵ} to t . This operation	90
0.0	could be seen as a rotation around $t_{\epsilon} \times t$ of an angle α_{ϵ}	35
6.1	Each operator is evaluated on a vector of Float64 of size $n=10^6$ for about	
	10s. Results are given relatively to MKL performance (MKL = 1)	60

List of Tables

Torsion Part I

Connection Part II

6 Bench for HPC

6.1 Introduction

In this section aims at providing basic but reliable guidlines to produce fast and mannagable code for our algorithms

Most compilers with which you are probably familiar are standalone programs which take as input some source code text and compile it into machine code (or some other target representation).

[AMR02]

6.2 Languages

- Csharp - Julia - C++ - Intel MKL - OpenBLAS

6.3 From syntax to processor

A short story about how a code is translated to get machin instructions

6.4 Benchmark

Bibliography

[AMR02] Ralph Abraham, Jerrold E. Marsde, and Tudor Ratiu. Manifolds, Tensor Analysis, and Applications (Ralph Abraham, Jerrold E. Marsden and Tudor Ratiu). 2002.

Figure 6.1 – Each operator is evaluated on a vector of Float64 of size $n = 10^6$ for about 10s. Results are given relatively to MKL performance (MKL = 1).