```
In [2]:
                 root path = 'C:/Users/rodri/Dropbox/Malawi/SIEG2021 (1)/2022 July'
                 folder_fig = root_path+'/Figures'
                 import numpy as np
                 import pandas as pd
                 import os
                 import warnings
                 # Suppress warnings in the entire notebook
                 warnings.filterwarnings("ignore")
                 pd.options.display.max_columns = None
                 pd.options.display.max_rows = None
                 os.chdir('C:/Users/rodri/Dropbox/JMP/python')
                 from data_functions_albert import remove_outliers, gini
                 os.chdir(root_path)
                 save=False
                 dollar MWK = 1030.36
                 pd.options.display.float_format = '{:,.2f}'.format
                 percentiles=[0.5]
                 #income
                 inc = pd.read_csv(root_path+'/Data/Clean data/Phase 3 - Consumption, Transfers, Inco
                 #consumption
                 cons = pd.read_csv(root_path+'/Data/Clean data/Phase 3 - Consumption, Transfers, Inc
                 roster = pd.read csv(root path+'/Data/Clean data/Phase 1 - Roster/roster 22.csv')
                 foodtra = pd.read_csv(root_path+'/Data/Clean data/Phase 3 - Consumption, Transfers,
                 data = pd.merge( inc, roster, on='hhid', how='left')
                 data = pd.merge(data, cons, on='hhid', how='inner')
                 data = pd.merge(data, foodtra, on='hhid', how='left')
                 del data['cashtrans yes.1'], data['k farm.1']
                 data.rename(columns={'hh_area_plots': 'land_area', 'hh_value_plots': 'land_value'},
                 data['inctotal_cap'] = data['inctotal']/data['hh_size'].replace(0,np.mean(data['hh_s
                 data['ctotal_cap'] = data['ctotal']/data['hh_size'].replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_size']).replace(0,np.mean(data['hh_si
                 data['inctotal_trans_cap'] = data['inctotal_trans']/data['hh_size'].replace(0,np.mea
                 data['land area cap'] = data['land area']/data['hh size'].replace(0,np.mean(data['hh
                 data['y_net_cap'] = data['y_net']/data['hh_size'].replace(0,np.mean(data['hh_size'])
                 data['ln inc'] = np.log(data['inctotal']).replace([-np.inf, np.inf], np.nan)
                 data['ln_c'] = np.log(data['ctotal']).replace([-np.inf, np.inf], np.nan)
                 data['ln_land'] = np.log(data['land_area']).replace([-np.inf, np.inf], np.nan)
                 data['ln inctrans'] = np.log(data['inctotal trans']).replace([-np.inf, np.inf], np.
                 data['ln_agric'] = np.log(data['y_net']).replace([-np.inf, np.inf], np.nan)
                 data['ln_inc_cap'] = np.log(data['inctotal_cap']).replace([-np.inf, np.inf], np.nan
                 data['ln_c_cap'] = np.log(data['ctotal_cap']).replace([-np.inf, np.inf], np.nan)
                 data['ln_land_cap'] = np.log(data['land_area_cap']).replace([-np.inf, np.inf], np.na
                 data['ln_inctrans_cap'] = np.log(data['inctotal_trans_cap']).replace([-np.inf, np.i
```

```
data['ln_agric_cap'] = np.log(data['y_net_cap']).replace([-np.inf, np.inf], np.nan)
data['rank_inctotal'] = data['inctotal'].rank(pct=True)
data['rank_landarea'] = data['land_area'].rank(pct=True)
data['rank_landvalue'] = data['land_value'].rank(pct=True)
data['rank_ctotal'] = data['ctotal'].rank(pct=True)
data['rank_wtotal'] = data['wtotal'].rank(pct=True)
data['wtotal_cap'] = data['wtotal']/data['hh_size']
data['ln_w'] = np.log(data['wtotal']+np.abs(np.min(data['wtotal']))).replace([-np.in
data['ln_w_cap'] = np.log(data['wtotal_cap']+np.abs(np.min(data['wtotal']))).replace
print( '
print('======:')
print( 'HOUSEHOLD DATASET WAVE JULY 2022')
print('merges roster, income_weath, consumption, and hhtransfers datasets')
print('======')
if save==True:
   data.to_csv(root_path+'/Data/Clean data/hhdata22.csv', index=False)
print('Data saved: hhdata22.csv')
print('Dataset contains the following variables:')
print(data.columns.tolist())
### SUMMARY
print( '
print('======:')
print(' SOCIODEMOGRAPHIC CHARACTERISTICS')
print('======')
print( '
print(data[['hh_size', 'head_gender', 'head_marital', 'head_age','interviewed_19','h
## Summary CIW 2019
data[['inctotal']] = data[['inctotal']].replace([0, 0.00], np.nan)
data_sum = data[['ctotal','inctotal','wtotal','land_area','ctotal_cap','inctotal_cap
data_sum[['ctotal','inctotal','wtotal','ctotal_cap','inctotal_cap','wtotal_cap']] =
sum_cwi = pd.DataFrame((data_sum[['ctotal','inctotal','wtotal','land_area']]).mean(a
sum_cwi = sum_cwi.append(pd.DataFrame((data_sum[['ctotal','inctotal','wtotal','land_
varlog df = pd.DataFrame(((data sum[['ln c','ln inc','ln w','ln land']]).var(axis=0)
sum_cwi = sum_cwi.append(dict(zip(sum_cwi.columns, np.array(varlog_df.iloc[:,0]).T))
print( '
                     ')
print('======')
print(' CONSUMPTION. INCOME, AND WEALTH')
print('======')
print( '
print(sum_cwi)
sum_cwi_cap = pd.DataFrame((data_sum[['ctotal_cap','inctotal_cap','wtotal_cap','land
sum_cwi_cap = sum_cwi_cap.append(pd.DataFrame((data_sum[['ctotal_cap','inctotal_cap'
varlog_df = pd.DataFrame(((data_sum[['ln_c_cap','ln_inc_cap','ln_w_cap','ln_land_cap
```

```
sum_cwi_cap = sum_cwi_cap.append(dict(zip(sum_cwi_cap.columns, np.array(varlog_df.il
print(sum_cwi_cap)
print('Mean, median, and log-variance')
# In per capita terms
### Summary I
income = data[['inctotal','y_net', 'wlabor_inc', 'ganyu_inc', 'business_profits', 'o
sum_inc = (income.loc[:, income.columns !='hhid']/dollar_MWK).describe(percentiles=[
obs_inc = sum_inc.iloc[0,:]
shares_employ = obs_inc/238
shares_gdp = data[['inctotal','y_net', 'wlabor_inc', 'ganyu_inc', 'business_profits'
shares_gdp = shares_gdp/shares_gdp[0]
shares = pd.concat([shares_gdp, shares_employ], axis=1).T
print( '
print('-----')
print(' INCOME AND EMPLOYMENT SHARES')
print('-----')
print( '
print(shares)
## no one grew: cassava, sugarcane, pearlmillet
sum_agric = ((data[['y_agric','y_maize', 'y_groundnut', 'y_groundbean', 'y_sweetpot
obs_agric = sum_agric.iloc[0,:]
shares_crops = obs_agric/238
shares_agric = data[['y_agric','y_maize', 'y_groundnut', 'y_groundbean', 'y_sweetpot
shares_agric = shares_agric/shares_agric[0]
shares = pd.concat([shares_agric, shares_crops], axis=1).T
print( '
                   ')
print('========')
print(' AGRICULTURAL SHARES')
print('======')
print( '
print(shares)
###Summary C
                   ')
print( '
print('======')
print(' CONSUMPTION')
print('========')
print(
```

```
c_summary = ((data[['ctotal','c_food','c_food_purch','c_food_ownprod', 'c_nonfood',
print(c_summary)
print( '
print('=======')
print(' WEALTH')
print('-----')
print( '
### Summary W
wealth = data[['wtotal','land_value','k_farm', 'hhlivestock', 'housing', 'hh_assets'
sum_w = wealth.describe(percentiles=[0.5])
var_list = ['wtotal','land_value','k_farm', 'hhlivestock', 'housing', 'hh_assets']
gini_stat= np.empty((1, len(var_list)))
for i,state in enumerate(var_list):
   gini_stat[:,i] = gini(wealth[state].dropna().values)
data_gini = pd.DataFrame(gini_stat, columns=var_list)
data_gini.reset_index(inplace=True)
data_gini['index'] = 'gini'
sum_w.reset_index(inplace=True)
sum_w = sum_w.append(data_gini, ignore_index=True)
print(sum_w)
```

HOUSEHOLD DATASET WAVE JULY 2022

merges roster, income_weath, consumption, and hhtransfers datasets

Data saved: hhdata22.csv

Dataset contains the following variables:

['hhid', 'rightsellland', 'chiefpreventsell', 'chiefpreventbequeat', 'cashtrans_ye s', 'govcoupon', 'inctotal', 'inctotal_trans', 'y_net', 'y_agric', 'y_maize', 'y_gro undnut', 'y_pigeonpeas', 'total_kg_maize', 'total_kg_groundnut', 'total_kg_pigeonpea s', 'y_cassava', 'y_soyabean', 'y_sorghum', 'y_fingermillet', 'y_cotton', 'y_tanapos i', 'y_groundbean', 'y_nkhwani', 'y_sugarcane', 'y_sweetpotatoe', 'sold_agric', 'sold_insiders_agric', 'store_agric', 'land_area', 'hh_ratio_value_rent', 'hh_p_acre_plo ts', 'area_cultivated', 'k_farm', 'labor_N', 'labor_h', 'hh_labor_hours', 'hired_men_L', 'hired_kids_L', 'interm', 'fertilizerkg', 'p_fert', 'value_fer tilizer', 'spendseeds', 'spendpesticides', 'wlabor_inc', 'wlabor_supply', 'ganyu_ye s', 'ganyu_inc', 'ganyu_supply', 'business_revenue', 'business_costs', 'business_profits', 'business_profits2', 'NGO_yes', 'gov_yes', 'remittances_yes', 'other_inc', 'c ashtrans_value', 'NGO_trans', 'gov_trans', 'remittances', 'wtotal', 'housing', 'hh_a ssets', 'land_value', 'hhlivestock', 'shocks', 'shock_flood', 'shock_drought', 'shock_lndslide', 'shock_covid', 'shock_adultill', 'shock_kidill', 'shock_death_earner', 'shock_theft', 'shock_theft_agric', 'shock_business', 'shock_unemp', 'shock_usage_dec r', 'shock_other', 'wave', 'invillage_19', 'interviewed_19', 'oldhhid', 'interviewee name', 'head_name', 'village', 'subvillage', 'key_landmark', 'mosque_church', 'hh_si ze', 'hh_phone', 'head_gender', 'head_marital', 'head_age', 'head_married_poly', 'head_educ', 'head_noeduc', 'spouse_educ', 'head_married_mono', 'head_married_poly', 'head_elowprimary4', 'head_married_mono', 'head_married_poly', 'head_elowprimary4', 'head_belowprimary7', 'head_belowsecond3', 'head_second ary', 'head_educ_countin', 'gps_lat', 'gps_long', 'c_food', 'c_food_purch', 'c_food_ownprod', 'c_nonfood', 'c_housing', 'c_clothes', 'c_education', 'c_health', 'c_funer alout', 'c_meddingout', 'c_weddingin', 'ctotal_cap', 'inctotal_trans_cap', 'land_area_cap', 'y_net_cap', 'ln_land_cap', 'ln_land', 'ln_inctrans', 'ln_

```
ank_inctotal', 'rank_landarea', 'rank_landvalue', 'rank_ctotal', 'rank_wtotal', 'wto
tal_cap', 'ln_w', 'ln_w_cap']
______
SOCIODEMOGRAPHIC CHARACTERISTICS
______
     hh_size head_gender head_marital head_age head_married_mono
           272.00
                     272.00
                               272.00
count
    272.00
                                               272.00
                          2.06
mean
       4.47
               1.35
                                 43.51
                                                0.62
       1.87
                0.48
                          1.56
                                 17.58
                                                0.49
std
       1.00
                1.00
                          1.00
                                 10.00
                                                0.00
min
25%
       3.00
                1.00
                           1.00
                                 29.00
                                                0.00
50%
       4.00
                1.00
                           1.00
                                 40.50
                                                1.00
75%
      6.00
                2.00
                           4.00
                                 53.25
                                                1.00
      11.00
                2.00
                           6.00
                                 90.00
                                                1.00
max
     head_married_poly head_divorced head_belowprimary4 \
             272.00
                       272.00
                                       272.00
count
              0.09
                         0.19
mean
                                        0.18
              0.28
                         0.40
                                        0.39
std
                         0.00
                                        0.00
min
              0.00
25%
              0.00
                         0.00
                                        0.00
50%
              0.00
                         0.00
                                        0.00
75%
              0.00
                         0.00
                                        0.00
              1.00
                         1.00
                                        1.00
max
     head_belowprimary7
count
             272.00
               0 28
mean
               0.45
std
               0.00
min
25%
               0.00
50%
               0.00
               1.00
75%
               1.00
max
______
CONSUMPTION. INCOME, AND WEALTH
______
  ctotal inctotal wtotal land_area
0 872.61
       297.89 1,160.30 2.21
         148.93 863.29
1
 764.34
                         1.50
2
   0.43
          1.48
                0.55
                         0.53
  ctotal_cap inctotal_cap wtotal_cap land_area_cap
0
     214.02
                76.45
                       301.22
                                    0.57
1
     173.88
                34.80
                        186.83
                                    0.38
2
      0.40
                1.51
                         0.38
                                    0.57
Mean, median, and log-variance
______
INCOME AND EMPLOYMENT SHARES
_____
     inctotal y_net wlabor_inc ganyu_inc business_profits other_inc
a
        1.00
             0.30
                      0.05
                              0.42
                                           0.22
                                                   0.22
count
        1.12
             1.06
                      0.03
                              0.43
                                           0.26
                                                   0.55
______
AGRICULTURAL SHARES
_____
     y_agric y_maize y_groundnut y_groundbean y_sweetpotatoe
a
       1.00
             0.74
                       0.15
                                 0.01
                                             0.00
count
       1.06
             1.06
                       0.40
                                 0.05
                                             0.02
     y_pigeonpeas y_nkhwani
0
           0.05
                   0.01
```

count 0.62 0.03

CONSUMPTION

	ctotal	c_food	c_food_purch	c_food_ownprod	c_nonfood	c_housing	,
count	272.00	272.00	272.00	258.00	272.00	270.00	
mean	872.61	656.71	389.03	208.61	215.91	143.97	
std	541.11	386.61	268.96	254.75	271.36	172.86	
min	109.45	98.38	21.01	1.73	0.78	2.91	
50%	764.34	598.87	322.04	117.07	120.54	78.03	
max	3,531,70	2,460,22	1.682.23	1.639.92	2.042.00	931.71	

	c_clotnes	c_eaucation	c_neaitn
count	141.00	149.00	202.00
mean	61.51	33.68	23.33
std	117.53	83.72	42.41
min	0.78	0.39	0.19
50%	19.41	13.59	7.96
may	870 76	854 07	388 21

WEALTH

	index	wtotal	land_value	k_farm	hhlivestock	housing	hh_assets
0	count	272.00	272.00	272.00	272.00	272.00	272.00
1	mean	1,160.30	446.36	13.49	40.31	607.88	52.26
2	std	1,641.60	622.76	26.61	73.35	1,339.76	100.31
3	min	67.94	0.00	0.00	0.00	0.00	0.00
4	50%	863.29	291.16	7.28	6.79	291.16	19.41
5	max	18,872.04	5,726.15	284.85	510.02	14,558.02	732.75
6	gini	0.46	0.52	0.60	0.75	0.59	0.72

In []: