| biner 0                                                                        |
|--------------------------------------------------------------------------------|
| 2. m = 50 (6 = 7)                                                              |
| a) 1-ce nep to resonueba: YE P(X) E) = E                                       |
| 7                                                                              |
| Popularing zagary.                                                             |
| Nyer X - U. ber, your gram, palme men sumol, X 30 has parmer U. crypeniol      |
| Soun MX2 m250                                                                  |
| DX 25 249                                                                      |
| 1) Um. 1 - ee veg. 60 Xe5:                                                     |
| ¥ε 70 P{X>ε]≤ m/E                                                              |
| $P(X > 60) \le \frac{50}{60} = \frac{5}{6} \approx 0.83$                       |
| o 0.83 1                                                                       |
| 2) Non. 2-00 ver. 60 Mes:                                                      |
| 4€70 P{ [X-m   7 €] ≤ 0× €1                                                    |
| $P\{X7/60\} = P\{X-507/10\} \leq P\{ X-MX  \gg 10\} \leq \frac{49}{100} = 0.4$ |
| 10 X-MX 0 0.41 1                                                               |

-10

10

$$(X \cap N(m, 6^2))$$
 =)  $g(X, m) = \frac{m - X}{s(X)} (n - st (n - 1))$ 

Ofamen Novepour gobernoum unreplan yo. 7-0.36 (1271, 72-9.54, 54) - 1.11



\$ 0.0078 p. en 0.975

pourpey. St(n-1)

$$P = \frac{1}{10.975} = \frac{10.975}{10.975} = \frac{10.$$

Namm gel mr,
1) h-1=20

a)  $l_{0.975} = 2.086$ 

3)  $\frac{S(\vec{x}) + \frac{100}{0.001}}{\sqrt{n}} \approx \frac{1.21 \cdot 2.006}{\sqrt{21}} \approx 0.5$ 

y) 
$$m = -2.34 - 0.5 = 2.84$$
  
 $m = -2.34 + 0.6 = -1.84$   
Orber:  $(-2.64, -1.84)$ 



Dower 11 (offline) Tyron X-ar ber, rymmunawyan gn. v, palam muny copperable cyalums cecurs der poek, re many greexal No youdure : molognos h 2100 um. no brane to. clep. 200 ynesa Mr p20.1 (821-p20.9) 'ymeso" = { coppers copa} K-rum ynexel Ploose = 20.2) 2P{ 5 < k < 20} = \$ 14 M - 1) 2 Pyron "yenex" Layer you weren sy moen) Poyer mologues n 2100 mms motor & cheparo mise pro. 1 (g z 1-p = 0.9) Myros k-runs guesol Porga naga navin P(0,05 < n < 0,2) = 2 5) Ploor = 100 con/21/52 kindz/th M-1/2 = Po (k2-np) - Po (41-np) = Po (20-100.0.1) -- Po (20-10 000) 2 Po (20-10) 2 2 70 (3) - 70 (3) = 90 (3) + 90 (3) EMINAMINO © 90(3.33) +90(1.62)≈ 0.499 + 0.453 = 0.95 L Offis: 0.952

Pyro X - W. ber, your su-e, polon many yours Porga X~B(n,p) - Sumon, a. ben (n 2100, p2 0.1)

MX2np2 100,0,12 10

DX2 npg = 100 no. 1.0.92 g

Pd 105 ch 2 101 2 Pd 5 6 h 6 20) = Pd-5 6 h- MX = 101> > P(1x-Mx (= 10) 7 / 2 nep-60 nex (3) 1- \frac{9}{100} = 1-0.09 = \$\frac{9}{100}\$

> 0 0.4111 0.95 Eall 1504.

offline. Pyra X= 1/2 Xi - W. bev., och area X, EZIH Pru soon Diois 20, 2 2 2 W/2 mi zm Tonya JMX 4 JDX -> YE P( |X-MX | EE)> 1- DX P{ |X-MX| € 0.01} > 0.9973 MAN = X2 1 Z Xi MX = M[ 1 Z Xi] = 1 D MXi ~ m DX2 DC ( もこ Xi) ~ かごりXi ~ 60 X- regola P { | X-MX | = P / | X-MX) = 0.01 | 2 / X; - ne volum ogni, pom 2) kate mouto (X), (h)-JM X, ~m, DDX; ~D2' X, Melling Me 2) gul XI, X, X, ... LI No LINO EM = Y= X-m Y= 0/5h

2 P ( | Y | < 0.01 | = | T.n bon. a UM (2) | 2 | My Loo (1) | 2 | My Nood 2 290 (0.01) > 0.997) Po (5/6) 7,049865 0.01 7/3 0.01 (h 7/7 0.01 Fn 7/10 3/5 Mysos 7 2/28 not 9.5 100 00 4 7, 450000

bull 15 Pyro X w bed , up. gr, pol m pouro son X~ (xp() I z Y W N250 The Poya DX 2 1/2 => 6 = 1/3 - (KO  $X \sim Exp(1)$   $\lambda - nearl$   $\lambda - nearl$   $\gamma = 1$   $\gamma = 2 \ln X \sim \chi^2(2n)$   $\gamma = 2 \ln X \sim \chi^2(2n)$ 110 h\_ - Warren y d vins. 1 X2(24) P (hoos < 2) n X < hogr | 209 P ( hoor < \$ < \frac{hoor \ 2 n \over \}{2 n \over \} 2 0.9  $P\left\{\frac{2n\overline{X}}{h_{ogr}} \neq \frac{1}{1} \leq \frac{2n\overline{X}}{h_{oor}}\right\} = 0$ a) n 2 50 8) \$\text{\$0.000} = \frac{900}{77.15} = 10/20 5.13 8) 2n 2 100 1) X = 4 am 0,64, (643,10,17)

6 mer 17 a - bourna langqua, pereper her. 1) Pyros E - We lev, of 3, palme ounder lamore espe 4 ~ N10,62), ye 5 20,5.10 Ma the south Yza+& - W. bev, rpm. zn. e, poline pes-ry uzuep emir.  $X = \alpha + 4$   $(m_x, \sigma_x^2)$ DUT. N(0,5) mx z MX z M[a+4] z Ma a+Me = a 5x2 DX2 P(a-19)2 P920  $7 \sim N(a,6^{\circ})$   $5 \sim 0.95 \sim 1.960$   $5 \sim 0.5.0^{\circ}$   $1.960 \sim 0.5.0^{\circ}$   $1.960 \sim 0.5.0^{\circ}$   $1.960 \sim 0.5.0^{\circ}$  $X \sim N(0,0^2)$  (0,1) (0,1) (0,1)p 20.95 upit n 20,95 in the marks Ove 10 copo un you. for a-X P ( Wogn 2 a-x In 2 40.49 r) 20.95  $P\{-\frac{u_{0.975}.6}{\ln 2a-X} \ge \frac{u_{0.975}\sigma}{\ln 70.97}$ 

| buietzr off.                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Myro X - u. ben, nom zu-e palme bonore nogren                                                                                             |
| X~ N(m,6')                                                                                                                                |
| MX=m - Flor zname Pomora de grande                                                                                                        |
| DY 202<br>DY = 11 heure m mp. 8, = Gentle pe Barone                                                                                       |
| Nym X: - W. ben-m, np. 8, = home pe banone<br>nogsen i-on grang nexponent                                                                 |
| X; ~ X, [ 21,5                                                                                                                            |
| M X; = m, DX; 25                                                                                                                          |
| Xn = 1 ZX- gegne lorwry rogsen wor.                                                                                                       |
| Tred our                                                                                                                                  |
| (red.o.m) = 0.56 }=                                                                                                                       |
| P (Xn-m > 0.50) = 12 Th                                                                                                                   |
| 2 (X1, X2, noce-r myalm<br>a. byun. pris =) be noce-r X1, X1, Yn 2 Th<br>a. byun. pris =) bun-a UNT  [MX; 2M JOX; 202)  JMX; 2M JOX; 202) |
|                                                                                                                                           |
| = P{ My /n > = 1 - P{ /n = 5n /=                                                                                                          |
|                                                                                                                                           |
|                                                                                                                                           |
| = 2/19 1- 9 (1950) = 1-9 (250) = 1-9 (200)=<br>= nuclersamman = 1-000 mass = 0                                                            |
| = natelersharmana = 1- one state = 0                                                                                                      |

boner 24 = furaque saigon 1 p20.7 (9~1-p20.3 £ 2 0.10 Maron. Dynn PL Nyon X - W. bed. , rym. pa. a Myso k- mus gress P{ | k - p| = 2 | -? Oyena P{| h P | < 0.15 } + P (0.15 / - 10.2 < 0.15) =  $-9\{-0.08 \leq \frac{k}{30} \leq 0.56\} = \left|\frac{1}{10} + \frac{1}{10}\right|$  $= 90 \left(\frac{k_3 - np}{npq}\right) - 90 \left(\frac{k_3 - np}{npq}\right) = 90 \left(\frac{8 - 21}{2.5}\right) - 90 \left(\frac{3 - 21}{2.5}\right)^2$ 29.(48)-10(6)/20 P ( | | - p | \le \) = p ( | k - np | \le n \) = p ( -n \le k - np \le h \le \) = 2 8 1 - ne + np = k = ne + np) 2 ( 14 M-1) 2  $\frac{1}{2} q_{0} \left( \frac{n_{\xi-1} n_{\xi} - \alpha \rho}{\ln \rho \eta} \right) - \frac{1}{2} \left( \frac{-n_{\xi-1} n_{\xi} - n_{\xi}}{\ln \rho \eta} \right) = 2 q_{0} \left( \frac{h_{\xi}}{\ln \rho \eta} \right)^{2}$   $\frac{1}{2} q_{0} \left( \frac{30 \cdot 0.1r}{30 \cdot 0.7 \cdot 0.3} \right) = 2 q_{0} \left( \frac{1.79}{1.79} \right) = 2 q_{0} \left( \frac{h_{\xi}}{\ln \rho \eta} \right)^{2}$ 2 0.92 654

PK 19-20 burer 40 Jy/y) = 2x , y 7, h , h > 0 3(Y) = 2n-1 min (Yn) 7 - al. los us ren col Y a) Dynn newey, en MES(T) - NOWA M[] (7) 2 M[2n-1 min (Yx)] = 100 ont 2 min (Yu) 2 2 2 n -1 MX E Mari pun MX MXz Ja f(n),da 1x = d Falix 1) Fx (x) = P{X < x} = P{min{Yh} < x} = 1 - P{min{Yh} > x} = 1 = 1 - P{ Y, 7,72, Y, 7,72, Y, 7,72) z 1 - [21 p{ Y, 7,72] z 21-1-(1-P(Yn < xi)) 2 1-17 (1-Fx 60) = 1-17 (1-Fx 60)= 2)  $F_{y}(x)^{2}$  f(t) f(t

$$F_{x}(x) \approx MA(M+\frac{1}{2})^{\frac{1}{N}} = 1 - (M+\frac{1}{2})^{\frac{1}{N}} = 1 - \frac{1^{2N}}{2^{2N}} = 1 - \frac{1^{2N$$

Form 
$$f(x) = \frac{5x^4}{0(1+x^5)^{\frac{1}{2}+1}}$$
,  $x > 0$ ,  $\theta > 0$ 

$$\frac{1}{2} (x) = \frac{1}{2} \sum_{i=1}^{n} \ln(1+x_i^5)$$

$$M(\theta(x)) = M[\frac{1}{2} \sum_{i=1}^{n} \ln(1+x_i^5)] = \frac{1}{2} \ln(1+x_i^5) = \frac{1}{2} \ln(1+x_i^$$

$$g^{2} - \frac{\theta}{t^{\frac{1}{6}}} f^{2} lnt$$

$$= \frac{1}{\theta} \left( lnt \cdot -\frac{\theta}{t^{\frac{1}{6}}} \right) + \frac{\theta}{t^{\frac{1}{6}}} dlnt \right) =$$

$$= \frac{1}{\theta} \left( lnt \cdot -\frac{\theta}{t^{\frac{1}{6}}} \right) + \frac{1}{\theta} \left( lnt \right) + \frac{1}{\theta} \left($$

P \( -4 \c Y \c 14 \)

P \( \) -4 \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \(