

Chapter Summary

- Relations and Their Properties
- *n*-ary Relations and Their Applications (*not currently included in overheads*)
- Representing Relations
- Closures of Relations (not currently included in overheads)
- Equivalence Relations
- Partial Orderings

Section Summary

- Relations and Functions
- Properties of Relations
 - Reflexive Relations
 - Symmetric and Antisymmetric Relations
 - Transitive Relations
- Combining Relations

Announcements

- HW7 is due now
- HW8 has been posted

Relational Databases

- Relational databases standard organizing structure for large databases
 - Simple design
 - Powerful functionality
 - Allows for efficient algorithms
- Not all databases are relational
 - Ancient database systems
 - XML –tree based data structure
 - Modern database must: easy conversion to relational

Example 1

A relational database with schema:

1	Name
2	Favorite Soap
3	Favorite Color
4	Occupation

1	Kate Winslet	Leonardo DiCaprio	
2	Dove	Dial	oto
3	Purple	Green	etc.
4	Movie star	Movie star	

Example 2

The table for **mod** 2 addition:

+	0	1
0	0	1
1	1	0

Example 3

Example of a pigeon to crumb pairing where pigeons may share a crumb:

,	/ Crumb 1
Pigeon 1	Crumb 2
Pigeon 2	Crumb 3
Pigeon 3	Crumb 4
	Crumb 5

Example 4

The concept of "siblinghood".

Relations: Generalizing Functions

Some of the examples were function-like (e.g. **mod** 2 addition, or crumbs to pigeons) but violations of definition of function were allowed (not well-defined, or multiple values defined).

All of the 4 examples had a common thread: They relate elements or properties with each other.

Relations: Represented as Subsets of Cartesian Products

In more rigorous terms, all 4 examples could be represented as subsets of certain Cartesian products.

Q: How is this done for examples 1, 2, 3 and 4?

Relations: Represented as Subsets of Cartesian Products

The 4 examples:

- 1) Database ⊆
- 2) **mod** 2 addition ⊆
- 3) Pigeon-Crumb feeding ⊆
- 4) Siblinghood ⊆

Relations: Represented as Subsets of Cartesian Products

```
A:
```

- 1) Database ⊆
 {Names}×{Soaps}×{Colors}×{Jobs}
- 2) **mod** 2 addition \subseteq {0,1}×{0,1}×{0,1}
- 3) Pigeon-Crumb feeding ⊆ {pigeons}×{crumbs}
- 4) Siblinghood ⊆ {people} × {people}
- Q: What is the actual subset for **mod** 2 addition?

Relations as Subsets of Cartesian Products

A: The subset for **mod** 2 addition: $\{ (0,0,0), (0,1,1), (1,0,1), (1,1,0) \}$

Binary Relations

Definition: A *binary relation* R from a set A to a set B is a subset $R \subseteq A \times B$.

Example:

- Let $A = \{0,1,2\}$ and $B = \{a,b\}$
- {(0, *a*), (0, *b*), (1,*a*), (2, *b*)} is a relation from *A* to *B*.
- We can represent relations from a set *A* to a set *B* graphically or using a table:

Relations are more general than functions. A function is a relation where exactly one element of *B* is related to each element of *A*.

Binary Relation on a Set

Definition: A binary relation R on a set A is a subset of $A \times A$ or a relation from A to A.

Example:

- Suppose that $A = \{a,b,c\}$. Then $R = \{(a,a),(a,b),(a,c)\}$ is a relation on A.
- Let A = {1, 2, 3, 4}. The ordered pairs in the relation R = {(a,b) | a divides b} are
 (1,1), (1, 2), (1,3), (1, 4), (2, 2), (2, 4), (3, 3), and (4, 4).

Binary Relation on a Set (cont.)

Question: How many relations are there on a set *A*?

Solution: Because a relation on A is the same thing as a subset of $A \times A$, we count the subsets of $A \times A$. Since $A \times A$ has n^2 elements when A has n elements, and a set with m elements has 2^m subsets, there are $2^{|A|^2}$ subsets of $A \times A$. Therefore, there are $2^{|A|^2}$ relations on a set A.

Binary Relations on a Set (cont.)

Example: Consider these relations on the set of integers:

$$\begin{array}{ll} R_1 = \{(a,b) \mid a \leq b\}, & R_4 = \{(a,b) \mid a = b\}, \\ R_2 = \{(a,b) \mid a > b\}, & R_5 = \{(a,b) \mid a = b + 1\}, \\ R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}, & R_6 = \{(a,b) \mid a + b \leq 3\}. \end{array}$$

Note that these relations are on an infinite set and each of these relations is an infinite set.

Which of these relations contain each of the pairs

$$(1,1)$$
, $(1,2)$, $(2,1)$, $(1,-1)$, and $(2,2)$?

Solution: Checking the conditions that define each relation, we see that the pair (1,1) is in R_1 , R_3 , R_4 , and R_6 : (1,2) is in R_1 and R_6 : (2,1) is in R_2 , R_5 , and R_6 : (1,-1) is in R_2 , R_3 , and R_6 : (2,2) is in R_1 , R_3 , and R_4 .

Reflexive Relations

Definition: R is *reflexive* iff $(a,a) \in R$ for every element $a \in A$. Written symbolically, R is reflexive if and only if

$$\forall x[x \in U \longrightarrow (x,x) \in R]$$

Example: The following relations on the integers are reflexive:

If $A = \emptyset$ then the empty relation is

reflexive vacuously. That is the empty relation on an empty set is reflexive!

$$R_1 = \{(a,b) \mid a \le b\},\$$

 $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\$

 $R_4 = \{(a,b) \mid a = b\}.$

The following relations are not reflexive:

$$R_2 = \{(a,b) \mid a > b\}$$
 (note that $3 \ge 3$),

$$R_5 = \{(a,b) \mid a = b+1\}$$
 (note that $3 \neq 3+1$),

$$R_6 = \{(a,b) \mid a+b \le 3\}$$
 (note that $4 + 4 \le 3$).

Symmetric Relations

Definition: R is symmetric iff $(b,a) \in R$ whenever $(a,b) \in R$ for all $a,b \in A$. Written symbolically, R is symmetric if and only if

$$\forall x \forall y [(x,y) \in R \longrightarrow (y,x) \in R]$$

Example: The following relations on the integers are symmetric:

```
R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\ R_4 = \{(a,b) \mid a = b\},\ R_6 = \{(a,b) \mid a + b \le 3\}. The following are not symmetric: R_1 = \{(a,b) \mid a \le b\} (note that 3 \le 4, but 4 \le 3), R_2 = \{(a,b) \mid a > b\} (note that 4 > 3, but 3 \ne 4), R_5 = \{(a,b) \mid a = b+1\} (note that 4 = 3+1, but 3 \ne 4+1).
```

Antisymmetric Relations

Definition:A relation R on a set A such that for all $a,b \in A$ if $(a,b) \in R$ and $(b,a) \in R$, then a = b is called *antisymmetric*. Written symbolically, R is antisymmetric if and only if $\forall x \forall y \ [(x,y) \in R \land (y,x) \in R \rightarrow x = y]$

• **Example**: The following relations on the integers are antisymmetric:

 $R_1 = \{(a,b) \mid a \le b\}, \leftarrow$

```
R_2 = \{(a,b) \mid a > b\}, \qquad a \leq b \text{, then } a = b.
R_4 = \{(a,b) \mid a = b\}, \qquad a \leq b \text{, then } a = b.
R_5 = \{(a,b) \mid a = b + 1\}.
The following relations are not antisymmetric:
R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}
\text{(note that both } (1,-1) \text{ and } (-1,1) \text{ belong to } R_3),
R_6 = \{(a,b) \mid a + b \leq 3\} \text{ (note that both } (1,2) \text{ and } (2,1) \text{ belong to } R_6).
```

For any integer, if a $a \le b$ and

Transitive Relations

Definition: A relation R on a set A is called transitive if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$. Written symbolically, R is transitive if and only if

 $\forall x \forall y \ \forall z [(x,y) \in R \land (y,z) \in R \longrightarrow (x,z) \in R]$

• **Example**: The following relations on the integers are transitive:

```
R_1 = \{(a,b) \mid a \le b\}, For every integer, a \le b and b \le c, then b \le c.

R_2 = \{(a,b) \mid a > b\}, For every integer, a \le b and b \le c, then b \le c.
```

 $R_4 = \{(a,b) \mid a = b\}.$

The following are not transitive:

 $R_5 = \{(a,b) \mid a = b+1\}$ (note that both (4,3) and (3,2) belong to R_5 , but not (4,2)),

 $R_6 = \{(a,b) \mid a+b \le 3\}$ (note that both (2,1) and (1,2) belong to R_6 , but not (2,2)).

Combining Relations

- Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, and $R_2 R_1$.
- **Example**: Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined using basic set operations to form new relations:

$$R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$$

$$R_1 \cap R_2 = \{(1,1)\}$$
 $R_1 - R_2 = \{(2,2),(3,3)\}$

$$R_2 - R_1 = \{(1,2), (1,3), (1,4)\}$$

Composition

Definition: Suppose

- R_1 is a relation from a set A to a set B.
- R_2 is a relation from B to a set C.

Then the *composition* (or *composite*) of R_2 with R_1 , is a relation from A to C where

• if (x,y) is a member of R_1 and (y,z) is a member of R_2 , then (x,z) is a member of R_2 • R_1 .

Powers of a Relation

Definition: Let R be a binary relation on A. Then the powers R^n of the relation R can be defined inductively by:

- Basis Step: $R^1 = R$
- Inductive Step: $R^{n+1} = R^n \circ R$

(see the slides for Section 9.3 for further insights)

The powers of a transitive relation are subsets of the relation. This is established by the following theorem:

Theorem 1: The relation R on a set A is transitive iff $R^n \subseteq R$ for n = 1,2,3...

(see the text for a proof via mathematical induction)

Representing Relations

Section 9.3

Section Summary

- Representing Relations using Matrices
- Representing Relations using Digraphs

Representing Relations Using Matrices

- A relation between finite sets can be represented using a zero-one matrix.
- Suppose *R* is a relation from $A = \{a_1, a_2, ..., a_m\}$ to $B = \{b_1, b_2, ..., b_n\}$.
 - The elements of the two sets can be listed in any particular arbitrary order. When A = B, we use the same ordering.
- The relation R is represented by the matrix $M_R = [m_{ii}]$, where

$$m_{ij} = \begin{cases} 1 \text{ if } (a_i, b_j) \in R, \\ 0 \text{ if } (a_i, b_j) \notin R. \end{cases}$$

• The matrix representing R has a 1 as its (i,j) entry when a_i is related to b_j and a 0 if a_i is not related to b_j .

Examples of Representing Relations Using Matrices

Example 1: Suppose that $A = \{1,2,3\}$ and $B = \{1,2\}$. Let R be the relation from A to B containing (a,b) if $a \in A$, $b \in B$, and a > b. What is the matrix representing R (assuming the ordering of elements is the same as the increasing numerical order)?

Solution: Because $R = \{(2,1), (3,1), (3,2)\}$, the matrix is

$$M_R = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} \right].$$

Examples of Representing Relations Using Matrices (cont.)

Example 2: Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation R represented by the matrix

$$M_R = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array} \right]?$$

Solution: Because R consists of those ordered pairs (a_i,b_j) with $m_{ij}=1$, it follows that:

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), \{(a_3, b_3), (a_3, b_5)\}.$$

Matrices of Relations on Sets

- If R is a reflexive relation, all the elements on the main diagonal of M_R are equal to 1.
- R is a symmetric relation, if and only if $m_{ij} = 1$ whenever $m_{ji} = 1$. R is an antisymmetric relation, if and only if $m_{ii} = 0$ or $m_{ii} = 0$ when $i \neq j$.

Example of a Relation on a Set

Example 3: Suppose that the relation *R* on a set is represented by the matrix

$$M_R = \left[egin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}
ight].$$

Is R reflexive, symmetric, and/or antisymmetric? **Solution**: Because all the diagonal elements are equal to 1, R is reflexive. Because M_R is symmetric, R is symmetric and not antisymmetric because both $m_{1,2}$ and $m_{2,1}$ are 1.