Elaborar el siguiente ejercicio en Python, usando La función de línea implementada por ustedes en la clase pasada.

Nota: Tenga en cuenta que el ejercicio esta Implementado para un plano cartesiano (x,y) y para Graficarlo en el computador debe pasarlo a la Forma como se manejan las coordenadas en el El en un monitor de pc (la pantalla es de 800 x 600 pixeles)

Un automovilista sale de una estación, avanza 10 km a 20º al norte del este, luego 12 km a 36º norte del este, después toma un rumbo a 30º al norte del oeste y recorre 8 km, luego avanza a 18 km al oeste, y finalmente recorre 24

km a 26º al oeste del sur. Use el método de componentes para determinar la magnitud y dirección del vector resultante, dibuje el diagrama de la suma vectorial.

Solución:

Sea A = 10 km; componentes del vector \vec{A} :

 $A_x = (10 \text{km})(\cos 20^\circ) = 9.40 \text{ km}, A_y = (10 \text{km})(\sin 20^\circ) = 3.42 \text{ km},$

Sea B = 12 km; componentes del vector \vec{B} a 36°

 $B_x = (12 \text{km})(\cos 36^{\circ}) = 9.71 \text{ km}; B_y = (12 \text{km})(\sin 36^{\circ}) = 7.05 \text{ km}.$

Sea C = 8 km; componentes del vector \vec{C} a 30 $^{\circ}$

 $C_x = (-8 \text{km})(\cos 30^{\circ}) = -6.93 \text{ km}; C_y = (8 \text{km})(\sin 30^{\circ}) = 4.00 \text{ km}.$

Sea D = 18 km; componentes del vector \vec{D} a 180°

 $D_x = (18 \text{km})(\cos 180^{\circ}) = -18.00 \text{ km}; D_y = 0$

Sea E = 24 km; componentes del vector \vec{E} a 26° al oeste del sur:

 $E_x = (-24 \text{km})(\text{sen26}^{\circ}) = -10.5 \text{ km}; E_y = (-24 \text{km})(\text{cos26}^{\circ}) = -21.6 \text{ km}.$

Entonces las componentes de la resultante: R

 $R_x = 9.40 \text{ km} + 9.71 \text{ km} - 6.93 \text{ km} - 18.00 \text{ km} - 10.5 \text{ km} = -16.3 \text{ km}$.

 $R_y = 3.42 \text{ km} + 7.05 \text{ km} + 4.00 \text{ km} + 0 - 21.6 \text{ km} = -7.13 \text{ km}$

La magnitud del vector resultante es:

$$R = \sqrt{(-16.3km)^2 + (-7.13km)^2} = 17.8km$$

y la dirección: $\theta = tan^{-1}(\frac{-7.13}{-16.3}) \approx 23.6^{\circ}$ al sur del oeste, ó 203° medido sobre el eje

Figura 2.7