ZESTAW ZADAŃ V

Powtórzenie przed sprawdzianem 1 (Zad. 1 – Zad. 3):

Zadanie 1 Oblicz pochodne:

(a)
$$\left(4x^5 - \frac{2}{x^3} + \frac{3}{\sqrt[3]{x^2}}\right)'$$
, (b) $\left(\frac{x \operatorname{tg} x}{2^x + \arcsin x}\right)'$, (c) $\left(\cos^3(2x) \cdot \ln(x^2 + 1)\right)'$.

Zadanie 2 Zapisz wzór Taylora dla funkcji $f(x) = \frac{2x+3}{3x+2}$ z dokładnością do dwóch wyrazów w okolicy $x_0 = -1$; wykorzystaj otrzymany wzór do przybliżenia wartości funkcji dla x = -0.9.

Zadanie 3 W oparciu o regule de l'Hospitala oblicz ponizsze granice:

(a)
$$\lim_{x\to 0} \frac{\sin(5x)}{e^{3x}-1}$$
, (b) $\lim_{x\to 0} \frac{\operatorname{tg}^2 x}{\cos(2x)-1}$.

Zadanie 4

Wyznacz przedziały monotoniczności i ekstrema lokalne podanych funkcji:

(a)
$$y = -2x^3 + 4x^2 + 8x + 10$$
, (b) $y = -3x^4 + 20x^3 - 24x^2 - 72x + 11$, (c) $y = 3x + \frac{1}{x^3}$, (d) $y = x^5 + (1-x)^5$, (e) $y = x^4(2x-3)^6$, (f) $y = \frac{x}{x^2+4}$, (g) $y = \frac{2x^2 - 5x + 2}{3x^2 - 10x + 3}$, (h) $y = x^2 \ln x$, (i) $y = x^3 e^{-2x}$.

(d)
$$y = x^5 + (1-x)^5$$
, (e) $y = x^4(2x-3)^6$, (f) $y = \frac{x}{x^2+4}$,

(g)
$$y = \frac{2x^2 - 5x + 2}{3x^2 - 10x + 3}$$
, (h) $y = x^2 \ln x$, (i) $y = x^3 e^{-2x}$.