1 反走样 1

1 反走样

1.1 反走样的理论基础

根据 Fourier 变换的性质, 可以得出: 对连续函数 $f_0(x)$ 以频率 f_s 进行采样, 最终得到的离散函数 $f_1(x)$ 的频谱 $F_1(f)$ 是把原函数的频谱 $F_0(f)$ 以 f_s 为周期进行周期延拓的结果.

记 $f_0(x)$ 的截止频率为 f_0 (即其频域 $F_0(f)$ 在 $f > f_0$ 的区域上均为 0), 如果 $f_s > 2f_0$, 那么将 $F_0(f)$ 按照 f_s 为周期平移时就不会出现重叠, 也就可以准确地复现 $f_0(x)$. 否则, 当 $F_1(f)$ 中出现重叠时, 就出现了错误的 频率信号, **走样 (Aliasing)** 就发生了.

定理 1.1 Nyquist-Shannon 采样定理 对于一个截止频率为 f 的连续信号, 如果以大于 2f 的采样频率对 其进行采样, 则可以准确重建该信号. 否则, 会发生混叠现象, 无法准确重建信号.

因此,一切走样几乎都是因为采样频率 f_s 不足导致的. 除去简单地增高采样频率外, 我们需要考虑如何在有限的采样频率下减轻或避免走样的发生.

1.1.1 低通滤波

将采样前的信号去除高频成分 (即大于 $f_s/2$ 的部分) 即可避免走样的发生. 这步骤就是**低通滤波 (Low-pass Filtering)**.

定义 1.2 低通滤波 低通滤波是指通过滤波器去除信号中的高频成分,只保留低频成分的过程.

1.1.2 MIPmap