Digital Signal Processing

Lab 6 Introduction

Lab 6 Objectives

- Filter signals with different FIR filters on a microprocessor
- Demonstrate the choice of different datatypes for these filters

This is a 2-week lab

Lab 6 Steps

- Create a model of real breathing data for use throughout the lab
 - Use your own data if appropriate or the file "Real_Breathing_Data.mat" on myCourses if in lab

Drift
Sinusoidal variation
Noise

Lab 6 Steps

- Investigate using Fixed Point Numbers to represent numbers with fractions
 - Use different scaling factors
 - E.g scale 33.45 by 100 to get 3345 integer value
 - Compare results for different scaling factors

Lab 6 Steps

- Experiment with several filter types and data type combinations
 - Moving Average Filter (MAV)
 - Windowed SINC filter
 - Filter kernels are generated in the C-Code for you
- Investigate the differences in filters and the impact of datatypes.

Moving Average Filters

You saw the moving average filter in Lab 05

- The filter computes the average of N samples. That is the filter output for that sample
- Example: For an input x[n] and N = 5

$$y[10] = \frac{x[6] + x[7] + x[8] + x[9] + x[10]}{5}$$

Moving Average Filters

 The impulse response or kernel of the filter with N samples is:

$$h[n] = \left[\frac{1}{N}, \frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N}\right]$$

The moving average filter is good at smoothing signals with noise

We'll investigate the impact of the changing length of the filter

Windowed SINC Filter

The filter has an impulse response as shown

It can provide a sharper response than a MAV filter

Convolution

Both filters can be implemented using convolution

The code will compute the convolution sum for each point entering the filter

Lab 6 - FIR Filtering

Backup

Representing Fractions with **Fixed Point Numbers**

An INT can represent integers from -32768 to 32767

- How can we represent a fraction?
- What if we scale the fraction then truncate to an integer?

Representing Fractions with **Fixed Point Numbers**

Example: Represent the value 0.34789 using fixed point

- If we just cast it as an INT it becomes 0
- If we first multiply by 10,000 then cast as an INT it becomes 3478

Use LONG for even more resolution

What to Expect

 Filter this signal with a moving average filter and an FIR filter

- Use various datatypes for the impulse response
- Learn how to scale fixed point numbers to represent floating point values
- Experiment with execution times for different operations and data types