

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/78, 14/47, C12N 15/63, A01K 67/027, C07K 16/18, C12Q 1/68, A61K 38/17, G01N 33/68		A2	(11) International Publication Number: WO 00/68380 (43) International Publication Date: 16 November 2000 (16.11.00)
(21) International Application Number: PCT/US00/12811 (22) International Filing Date: 10 May 2000 (10.05.00)			
(30) Priority Data: 60/133,643 11 May 1999 (11.05.99) 60/150,409 23 August 1999 (23.08.99)		US	[CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94086 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US).
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications US 60/133,643 (CIP) Filed on 11 May 1999 (11.05.99) US 60/150,409 (CIP) Filed on 23 August 1999 (23.08.99)			
(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).		(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc.. 3160 Porter Drive, Palo Alto, CA 94304 (US).	
(72) Inventors; and (75) Inventors/Applicants (for US only): BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive, #12, Mountain View, CA 94040 (US). TANG, Y., Tom		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: EXTRACELLULAR MATRIX AND ADHESION-ASSOCIATED PROTEINS

(57) Abstract.

The invention provides human extracellular matrix and adhesion-associated proteins (EXMAD) and polynucleotides which identify and encode EXMAD. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of EXMAD.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

EXTRACELLULAR MATRIX AND ADHESION-ASSOCIATED PROTEINS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of extracellular matrix and adhesion-associated proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, immune, reproductive, neuronal, and genetic disorders.

BACKGROUND OF THE INVENTION

Extracellular Matrix Proteins

The extracellular matrix (ECM) is a complex network of glycoproteins, polysaccharides, proteoglycans, and other macromolecules that are secreted from the cell into the extracellular space. The ECM remains in close association with the cell surface and provides a supportive meshwork that profoundly influences cell shape, motility, strength, flexibility, and adhesion. In fact, adhesion of a cell to its surrounding matrix is required for cell survival except in the case of metastatic tumor cells, which have overcome the need for cell-ECM anchorage. This phenomenon suggests that the ECM plays a critical role in the molecular mechanisms of growth control and metastasis. (Reviewed in Ruoslahti, E. (1996) *Sci. Am.* 275:72-77.) Furthermore, the ECM determines the structure and physical properties of connective tissue and is particularly important for morphogenesis and other processes associated with embryonic development and pattern formation.

20

Collagens

The collagens comprise a family of ECM proteins that provide structure to bone, teeth, skin, ligaments, tendons, cartilage, blood vessels, and basement membranes. Multiple collagen proteins have been identified. Three collagen molecules fold together in a triple helix stabilized by interchain disulfide bonds. Bundles of these triple helices then associate to form fibrils. Collagen primary structure consists of hundreds of (Gly-X-Y) repeats where about a third of the X and Y residues are Pro. Glycines are crucial to helix formation as the bulkier amino acid side chains cannot fold into the triple helical conformation. Because of these strict sequence requirements, mutations in collagen genes have severe consequences. Osteogenesis imperfecta patients have brittle bones that fracture easily; in severe cases patients die in utero or at birth. Ehler-Danlos syndrome patients have hyperelastic skin, hypermobile joints, and susceptibility to aortic and intestinal rupture. Chondrodysplasia patients have short stature and ocular disorders. Alport syndrome patients have hematuria, sensorineural deafness, and eye lens deformation. (See Isselbacher, K.J., et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, Inc., New York, NY, pp. 2105-2117; and Creighton, T.E. (1984) Proteins,

Structures and Molecular Principles, W.H. Freeman and Company, New York, NY, pp. 191-197.)

Collectins are extracellular proteins with collagen tails and globular lectin domains that play an important role in the first line immune response to microorganisms. The peripheral lectin domain permits binding to sugar residues on microorganisms, while the collagen tail interacts with phagocyte receptors or the complement system. Examples of collectins are the pulmonary surfactant proteins SP-A and SP-D (Kuroki, S.D. et al. (1998) J. Biol. Chem. 273:4783-4789).

Elastin

Elastin and related proteins confer elasticity to tissues such as skin, blood vessels, and lungs.

10 Elastin is a highly hydrophobic protein of about 750 amino acids that is rich in proline and glycine residues. Elastin molecules are highly cross-linked, forming an extensive extracellular network of fibers and sheets. Elastin fibers are surrounded by a sheath of microfibrils which are composed of a number of glycoproteins, including fibrillin. Mutations in the gene encoding fibrillin are responsible for Marfan's syndrome, a genetic disorder characterized by defects in connective tissue. In severe cases, 15 the aortas of afflicted individuals are prone to rupture. (Reviewed in Alberts, B., et al. (1994) Molecular Biology of the Cell, Garland Publishing, New York, NY, pp. 984-986.)

Fibronectin

Fibronectin is a large ECM glycoprotein found in all vertebrates. Fibronectin exists as a dimer 20 of two subunits, each containing about 2,500 amino acids. Each subunit folds into a rod-like structure containing multiple domains. The domains each contain multiple repeated modules, the most common of which is the type III fibronectin repeat. The type III fibronectin repeat is about 90 amino acids in length and is also found in other ECM proteins and in some plasma membrane and cytoplasmic proteins. Furthermore, some type III fibronectin repeats contain a characteristic tripeptide consisting of 25 Arginine-Glycine-Aspartic acid (RGD). The RGD sequence is recognized by the integrin family of cell surface receptors and is also found in other ECM proteins. Disruption of both copies of the gene encoding fibronectin causes early embryonic lethality in mice. The mutant embryos display extensive morphological defects, including defects in the formation of the notochord, somites, heart, blood vessels, neural tube, and extraembryonic structures. (Reviewed in Alberts, supra, pp. 986-987.)

30

Laminin

Laminin is a major glycoprotein component of the basal lamina which underlies and supports epithelial cell sheets. Laminin is one of the first ECM proteins synthesized in the developing embryo. Laminin is an 850 kilodalton protein composed of three polypeptide chains joined in the shape of a

cross by disulfide bonds. Laminin is especially important for angiogenesis and, in particular, for guiding the formation of capillaries. (Reviewed in Alberts, *supra*, pp. 990-991.)

Proteoglycans

5 There are many other types of proteinaceous ECM components, most of which can be classified as proteoglycans. Proteoglycans are composed of unbranched polysaccharide chains (glycosaminoglycans) attached to protein cores. Common proteoglycans include aggrecan, betaglycan, decorin, perlecan, serglycin, and syndecan-1. Some of these molecules not only provide mechanical support, but also bind to extracellular signaling molecules, such as fibroblast growth factor and transforming growth factor β , suggesting a role for proteoglycans in cell-cell communication.

10 (Reviewed in Alberts, *supra*, pp. 973-978.) Likewise, the glycoproteins tenascin-C and tenascin-R are expressed in developing and lesioned neural tissue and provide stimulatory and anti-adhesive (inhibitory) properties, respectively, for axonal growth (Faissner, A. (1997) *Cell Tissue Res.* 290:331-341).

15 Dentin phosphorin (DPP) is a major component of the dentin ECM. DPP is a proteoglycan that is synthesized and expressed by odontoblasts (Gu, K., et al. (1998) *Eur. J. Oral Sci.* 106:1043-1047). DPP is believed to nucleate or modulate the formation of hydroxyapatite crystals. The gene encoding DPP has been mapped to human chromosome 4. Chromosome 4 contains the gene loci for two dentin genetic diseases, dentinogenesis imperfecta type II and dentin dysplasia type II (Feng, J.Q., et al. (1998) *J. Biol. Chem.* 273:9457-9464).

20

Mucins

Mucins are highly glycosylated glycoproteins that are the major structural component of the mucus gel. The physiological functions of mucins are cytoprotection, mechanical protection, maintenance of viscosity in secretions, and cellular recognition. MUC6 is a human gastric mucin that is also found in gall bladder, pancreas, seminal vesicles, and female reproductive tract (Toribara, N.W., et al. (1997) *J. Biol. Chem.* 272:16398-16403). The MUC6 gene has been mapped to human chromosome 11 (Toribara, N.W., et al. (1993) *J. Biol. Chem.* 268:5879-5885). Hemomucin is a novel Drosophila surface mucin that may be involved in the induction of antibacterial effector molecules (Theopold, U., et al. (1996) *J. Biol. Chem.* 271:12708-12715).

25

30

Link Protein

Link protein binds to both cartilage proteoglycan and hyaluronan in cartilage ECM. This binding stabilizes the aggregation of these cartilage ECM proteins and produces supramolecular

assemblies. Link protein has been detected in other connective tissues, where it may bind proteoglycans and hyaluronan. Link protein contains a signal peptide, an immunoglobulin repeat, and link repeats (Ayad, S., et al. (1994) The Extracellular Matrix Facts Book, Academic Press, Inc., San Diego, CA, pp. 120-121).

5

Adhesion-Associated Proteins

The surface of a cell is rich in transmembrane proteoglycans, glycoproteins, glycolipids, and receptors. These macromolecules mediate adhesion with other cells and with components of the ECM. The interaction of the cell with its surroundings profoundly influences cell shape, strength, flexibility, 10 motility, and adhesion. These dynamic properties are intimately associated with signal transduction pathways controlling cell proliferation and differentiation, tissue construction, and embryonic development.

Cadherins

15 Cadherins comprise a family of calcium-dependent glycoproteins that function in mediating cell-cell adhesion in virtually all solid tissues of multicellular organisms. These proteins share multiple repeats of a cadherin-specific motif, and the repeats form the folding units of the cadherin ECM. Cadherin molecules cooperate to form focal contacts, or adhesion plaques, between adjacent epithelial cells. The cadherin family includes the classical cadherins and protocadherins. Classical cadherins 20 include the E-cadherin, N-cadherin, and P-cadherin subfamilies. E-cadherin is present on many types of epithelial cells and is especially important for embryonic development. P-cadherin is present on cells of the placenta and epidermis. Recent studies report that protocadherins are involved in a variety of cell-cell interactions (Suzuki, S. T. (1996) J. Cell Sci. 109:2609-2611). The intracellular anchorage of cadherins is regulated by their dynamic association with catenins, a family of cytoplasmic signal 25 transduction proteins associated with the actin cytoskeleton. The anchorage of cadherins to the actin cytoskeleton appears to be regulated by protein tyrosine phosphorylation, and the cadherins are the target of phosphorylation-induced junctional disassembly (Aberle, H., et al. (1996) J. Cell. Biochem. 61:514-523).

Integrins

30 Integrins are ubiquitous transmembrane adhesion molecules that link the ECM to the internal cytoskeleton. Integrins are composed of two noncovalently associated transmembrane glycoprotein subunits called α and β . Integrins function as receptors that play a role in signal transduction. For example, binding of integrin to its extracellular ligand may stimulate changes in intracellular calcium

levels or protein kinase activity (Sjaastad, M.D. and Nelson, W.J. (1997) BioEssays 19:47-55). At least ten cell surface receptors of the integrin family recognize the ECM component fibronectin, which is involved in many different biological processes including cell migration and embryogenesis (Johansson, S., et al. (1997) Front. Biosci. 2:D126-D146).

5

Lectins

Lectins comprise a ubiquitous family of extracellular glycoproteins which bind cell surface carbohydrates specifically and reversibly, resulting in the agglutination of cells. (Reviewed in Drickamer, K. and Taylor, M.E. (1993) Annu. Rev. Cell Biol. 9:237-264.) This function is particularly important for activation of the immune response. Lectins mediate the agglutination and mitogenic stimulation of lymphocytes at sites of inflammation (Lasky, L.A. (1991) J. Cell. Biochem. 45:139-146; Paietta, E., et al. (1989) J. Immunol. 143:2850-2857).

Lectins are further classified into subfamilies based on carbohydrate-binding specificity and other criteria. The galectin subfamily, in particular, includes lectins that bind β -galactoside carbohydrate moieties in a thiol-dependent manner. (Reviewed in Hadari, Y.R., et al. (1998) J. Biol. Chem. 270:3447-3453.) Galectins are widely expressed and developmentally regulated. Because all galectins lack an N-terminal signal peptide, it is suggested that galectins are externalized through an atypical secretory mechanism. Two classes of galectins have been defined based on molecular weight and oligomerization properties. Small galectins form homodimers and are about 14-16 kilodaltons in mass, while large galectins are monomeric and about 29-37 kilodaltons.

Galectins contain a characteristic carbohydrate recognition domain (CRD). The CRD is about 140 amino acids and contains several stretches of about 1-10 amino acids which are highly conserved among all galectins. A particular 6-amino acid motif within the CRD contains conserved tryptophan and arginine residues which are critical for carbohydrate binding. The CRD of some galectins also contains cysteine residues which may be important for disulfide bond formation. Secondary structure predictions indicate that the CRD forms several β -sheets.

Galectins play a number of roles in diseases and conditions associated with cell-cell and cell-matrix interactions. For example, certain galectins associate with sites of inflammation and bind to cell surface immunoglobulin E molecules. In addition, galectins may play an important role in cancer metastasis. Galectin overexpression is correlated with the metastatic potential of cancers in humans and mice. Moreover, anti-galectin antibodies inhibit processes associated with cell transformation, such as cell aggregation and anchorage-independent growth. (See, for example, Su, Z.-Z., et al. (1996) Proc. Natl. Acad. Sci. USA 93:7252-7257.)

Selectins

Selectins, or LEC-CAMs, comprise a specialized lectin subfamily involved primarily in inflammation and leukocyte adhesion. (Reviewed in Lasky; *supra*.) Selectins, which mediate the recruitment of leukocytes from the circulation to sites of acute inflammation, are expressed on the 5 surface of vascular endothelial cells in response to cytokine signaling. Selectins bind to specific ligands on the leukocyte cell membrane and enable the leukocyte to adhere to and migrate along the endothelial surface. Binding of selectin to its ligand leads to polarized rearrangement of the actin cytoskeleton and stimulates signal transduction within the leukocyte (Brenner, B., et al. (1997) *Biochem. Biophys. Res. Commun.* 231:802-807; Hidari, K.I., et al. (1997) *J. Biol. Chem.* 272:28750-28756). Members of the 10 selectin family possess three characteristic motifs: a lectin or carbohydrate recognition domain; an epidermal growth factor (EGF)-like domain; and a variable number of short consensus repeats (scr or "sushi" repeats) which are also present in complement regulatory proteins. The selectins include lymphocyte adhesion molecule-1 (LAM-1 or L-selectin), endothelial leukocyte adhesion molecule-1 (ELAM-1 or E-selectin), and granule membrane protein-140 (GMP-140 or P-selectin) (Johnston, G.I., 15 et al. (1989) *Cell* 56:1033-1044).

Attractin

Attractin is a 134 kilodalton glycoprotein found in the serum. It is a member of the CUB family of cell adhesion proteins and binds directly to leukocytes. Attractin has a CUB domain, an EGF 20 domain, and C-type lectin protein domains. This serum protein mediates the interaction between T lymphocytes and monocytes and leads to the adherence and spreading of monocytes that become the foci for T cell clustering. (See, Duke-Cohan, J.S., et al. (1998) *Proc. Natl. Acad. Sci. USA* 95:11336-11341.)

25 Proteins Containing Leucine Rich Repeats (LRRs)

LRRs are sequence motifs, approximately 22-28 amino acids in length, found in proteins with a large variety of functions and cellular locations. Proteins containing LRRs are all thought to be involved in protein-protein interactions. The crystal structure of LRRs has been studied and found to correspond to beta-alpha structural units. These structural units form a parallel beta sheet with one 30 surface exposed to solvent. In this way an LRR-containing protein acquires a nonglobular shape (Kobe, B. and Deisenhofer, J. (1994) *Trends Biochem. Sci.* 19:415-421). There is evidence to suggest LRRs function in signal transduction and cellular adhesion as well as in protein-protein interactions (Gay, N.J., et al. (1991) *FEBS Lett.* 29:87-91). For example, LLR proteins such as connectin and chaoptin are important cell adhesion molecules in neuronal development in Drosophila melanogaster,

WO 00/68380

and mammalian homologs are found in mouse (Taguchi, et al. (1996) *Brain Res.Mol. Brain Res.* 1-2:31-40).

Proteins Containing Armadillo/β-Catenin-like Repeats

5 Various proteins such as those encoded by the *Drosophila* armadillo gene and the human APC gene contain amino acid repeats that interact with β-catenins. The armadillo gene is required for pattern formation within the embryonic segments and imaginal discs and is highly conserved. It is 63% identical to a human protein, plakoglobin, which is involved in adhesive junctions joining epithelial and other cells (Peifer, M. and Wieschaus, E. (1990) *Cell* 63:1167-1176). APC gene mutations appear to 10 initiate inherited forms of human colorectal cancer and sporadic forms of colorectal and gastric cancer (Rubinfeld, B., et al. (1993) *Science* 262:1731-1734). The fact that the protein encoded by APC interacts with catenin suggests a link between tumor initiation and cell adhesion (Su, L.K., et al. (1993) *Science* 262:1734-1737).

15 Proteins Containing C-type Lectin Domains

C-type lectin domains are found in a variety of proteins, including selectins and lecticans. Lecticans are a family of chondroitin sulfate proteoglycans that include aggrecan, versican, neurocan, and brevican. All C-type lectin proteins are involved in protein-protein interactions (Aspberg, A., et al. (1997) *Proc. Natl. Acad. Sci. USA* 94:10116-10121). A novel macrophage-restricted C-type lectin 20 protein has been cloned from mouse tissue. It is a type II transmembrane protein with one extracellular C-type lectin domain (Balch, S.G., et al. (1998) *J. Biol. Chem.* 273:18656-18664).

Bystin

Bystin is a cytoplasmic protein that binds directly to trophinin, a cell adhesion molecule, and 25 tastin. The three molecules form a complex that is involved in cell adhesion. Bystin, tastin, and trophinin are strongly expressed in cells involved in the implantation of embryos, specifically in cells at human implantation sites and in intermediate trophoblasts at the invasion front of the placenta in early pregnancy. Bystin also binds to cytokeratins. During early embryogenesis cytokeratins 8 and 18 are expressed in the trophectoderm of blastocysts. It is possible that the molecular complex formed by 30 bystandin, tastin, and trophinin interacts with the cytokeratins of trophectoderm cells at the time of implantation. A key component of embryo implantation is the unique cell adhesion to endometrial epithelium that occurs and the subsequent invasion of the maternal tissue by the trophoblast. Bystin may have an important role in the signal transduction that links cell adhesion to proliferation (Suzuki, N., et al. (1998) *Proc. Natl. Acad. Sci.* 95:5027-5032).

Src-homology 3 (SH3) Domain-Containing Proteins

SH3 is a 60-70 amino acid motif found in a variety of signal transduction and cytoskeletal proteins. The SH3 domain is involved in mediating protein-protein interactions. Evidence suggests that the SH3 domains recognize a family of related domains or proteins in a variety of different tissues and species. One novel SH3 domain-containing protein is the 52 kilodalton focal adhesion protein (FAP52 or p52). FAP52 is localized to focal adhesions, specialized membrane domains in cultured cells that mediate the attachment of cells to the growth substratum and ECM. Focal adhesions consist of structural proteins, integrins, regulatory molecules, and signaling molecules and are involved in cell signaling. FAP52 may form part of this multimolecular complex that comprises focal adhesion sites

10 (Merilainen, J., et al. (1997) *J. Biol. Chem.* 272:23278-23284).

The ECM plays an important role in cell invasive processes such as angiogenesis and tumor metastasis (Ruoslathi, *supra*). In particular, the glycoproteins laminin and fibronectin are implicated in the migration of tumor cells through the ECM (chemotaxis) in the course of metastasis of tumors to other tissues. The same process, chemotaxis, also promotes the migration of vascular endothelial cells

15 to form new microvascular networks to support these tumors (tumor angiogenesis).

The discovery of new extracellular matrix and adhesion-associated proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, immune, reproductive, neuronal, and genetic disorders.

20

SUMMARY OF THE INVENTION

The invention features purified polypeptides, extracellular matrix and adhesion-associated proteins, referred to collectively as "EXMAD" and individually as "EXMAD-1," "EXMAD-2," "EXMAD-3," "EXMAD-4," "EXMAD-5," "EXMAD-6," "EXMAD-7," "EXMAD-8," "EXMAD-9," "EXMAD-10," "EXMAD-11," "EXMAD-12," "EXMAD-13," "EXMAD-14," "EXMAD-15," "EXMAD-16," "EXMAD-17," "EXMAD-18," "EXMAD-19," "EXMAD-20," "EXMAD-21," "EXMAD-22," "EXMAD-23," "EXMAD-24," and "EXMAD-25." In one aspect, the invention provides an isolated polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-25.

The invention further provides an isolated polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. In one alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:26-50.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. In one alternative, the invention 10 provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention 15 provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group 20 consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide 25 encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment 30 of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25.

The invention further provides an isolated polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:26-50, b) a naturally occurring

polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected, from the group consisting of SEQ ID NO:26-50, c) a polynucleotide sequence complementary to a), or d) a polynucleotide sequence complementary to b). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

5 Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide comprising a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:26-50, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:26-50, c) a polynucleotide sequence complementary to a), or
10 d) a polynucleotide sequence complementary to b). The method comprises a) hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and
15 optionally, if present, the amount thereof. In one alternative, the probe comprises at least 30 contiguous nucleotides. In another alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an
20 amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, and a pharmaceutically acceptable excipient. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional EXMAD, comprising
25 administering to a patient in need of such treatment the pharmaceutical composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically
30 active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a

pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional EXMAD, comprising administering to a patient in need of such treatment the pharmaceutical composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, or d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional EXMAD, comprising administering to a patient in need of such treatment the pharmaceutical composition.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:26-50, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding EXMAD.

Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of EXMAD.

Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding EXMAD were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze EXMAD, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing 5 particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a 10 reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to 15 practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

20 DEFINITIONS

"EXMAD" refers to the amino acid sequences of substantially purified EXMAD obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of 25 EXMAD. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of EXMAD either by directly interacting with EXMAD or by acting on components of the biological pathway in which EXMAD participates.

An "allelic variant" is an alternative form of the gene encoding EXMAD. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in 30 polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding EXMAD include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as EXMAD or a polypeptide with at least one functional characteristic of EXMAD. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding EXMAD, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding EXMAD. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent EXMAD. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of EXMAD is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.

15 Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

20 "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

25 The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of EXMAD. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of EXMAD either by directly interacting with EXMAD or by acting on components of the biological pathway in which EXMAD participates.

30 The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind EXMAD polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the 35 translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired.

Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that

5 makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

10 The term "antisense" refers to any composition capable of base-pairing with the "sense" strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5'-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can

15 refer to the sense strand of a reference DNA molecule.

20

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic EXMAD, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

25 The terms "complementary" and "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid

30 strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acid strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or

amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding EXMAD or fragments of EXMAD may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be 5 deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

“Consensus sequence” refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using the XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of one or 10 more Incyte Clones and, in some cases, one or more public domain ESTs, using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

“Conservative amino acid substitutions” are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is 15 conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
20	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
25	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
30	Leu	Ile, Val
	Lys	Arg, Gln, Glu
	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
35	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, 40 (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the

side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a 5 polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from 10 which it was derived.

A "fragment" is a unique portion of EXMAD or the polynucleotide encoding EXMAD which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A 15 fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown 20 in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:26-50 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:26-50, for example, as distinct from any other sequence in the 25 same genome. A fragment of SEQ ID NO:26-50 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:26-50 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:26-50 and the region of SEQ ID NO:26-50 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

30 A fragment of SEQ ID NO:1-25 is encoded by a fragment of SEQ ID NO:26-50. A fragment of SEQ ID NO:1-25 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-25. For example, a fragment of SEQ ID NO:1-25 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-25. The precise length of a fragment of SEQ ID NO:1-25 and the region of SEQ ID NO:1-25 to which the fragment 35 corresponds are routinely determinable by one of ordinary skill in the art based on the intended

purpose for the fragment.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis

programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The
5 "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

10 *Reward for match: 1*

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

15 *Word Size: 11*

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at
20 least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode
25 similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a
30 standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameter

WO 00/68380

of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with 5 polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:

10 *Matrix: BLOSUM62*

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 3

15 *Filter: on*

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

20 "Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for 25 stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

30 "Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding

between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune

disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of EXMAD which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of EXMAD which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate. The terms "element" and "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term "modulate" refers to a change in the activity of EXMAD. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of EXMAD.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Probe" refers to nucleic acid sequences encoding EXMAD, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid

sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 5 or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold 10 Spring Harbor Press, Plainview NY; Ausubel et al., 1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

15 Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU 20 primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as prime 25 binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that 30 hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary

polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.

5 This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, *supra*. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.

10 Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

15

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding EXMAD, or fragments thereof, or EXMAD itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

20

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

25

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

30

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

5 "Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, 10 heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to 15 animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in 20 vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, and plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention 25 into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) 30 set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides 35 due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may

possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the 10 polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

15 The invention is based on the discovery of new human extracellular matrix and adhesion-associated proteins (EXMAD), the polynucleotides encoding EXMAD, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, immune, reproductive, neuronal, and genetic disorders.

20 Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding EXMAD. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each EXMAD were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries.

25 In some cases, GenBank sequence identifiers are also shown in column 5. The Incyte clones and GenBank cDNA sequences, where indicated, in column 5 were used to assemble the consensus nucleotide sequence of each EXMAD and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each 30 polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.

35 The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions

associated with nucleotide sequences encoding EXMAD. The first column of Table 3 lists the nucleotide SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:26-50 and to distinguish between SEQ ID NO:26-50 and related polynucleotide sequences. The 5 polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express EXMAD as a fraction of total tissues expressing EXMAD. Column 4 lists diseases, disorders, or conditions associated with those tissues expressing EXMAD as a fraction of total tissues expressing EXMAD. Column 5 lists the vectors used to subclone each cDNA library.

10 The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding EXMAD were isolated. Column 1 references the nucleotide SEQ ID NOs, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

SEQ ID NO:42 maps to chromosome 8 within the interval from 64.60 to 90.20 centiMorgans.

15 SEQ ID NO:48 maps to chromosome 2 within the interval from 193.60 to 197.60 centiMorgans.

The invention also encompasses EXMAD variants. A preferred EXMAD variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the EXMAD amino acid sequence, and which contains at least one functional or structural characteristic of EXMAD.

20 The invention also encompasses polynucleotides which encode EXMAD. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:26-50, which encodes EXMAD. The polynucleotide sequences of SEQ ID NO:26-50, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone 25 is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding EXMAD. In particular, such a variant polynucleotide sequence will have at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding EXMAD. A particular aspect of the invention encompasses a variant of a polynucleotide 30 sequence comprising a sequence selected from the group consisting of SEQ ID NO:26-50 which has at least about 80%, or alternatively at least about 90%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:26-50. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of EXMAD.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding EXMAD, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made 5 by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring EXMAD, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode EXMAD and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring EXMAD under appropriately selected 10 conditions of stringency, it may be advantageous to produce nucleotide sequences encoding EXMAD or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide 15 sequence encoding EXMAD and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode EXMAD and EXMAD derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the 20 synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding EXMAD or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID 25 NO:26-50 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the 30 embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with

machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Perkin-Elmer). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Perkin-Elmer), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or 5 other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding EXMAD may be extended utilizing a partial nucleotide 10 sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) *PCR Methods Applic.* 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown 15 sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) *Nucleic Acids Res.* 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) *PCR Methods Applic.* 1:111-119.) In this method, multiple restriction enzyme digestions and 20 ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) *Nucleic Acids Res.* 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in 25 finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been 30 size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary elecrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode EXMAD may be cloned in recombinant DNA molecules that direct expression of EXMAD, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express EXMAD.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter EXMAD-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of EXMAD, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby

maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding EXMAD may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, EXMAD itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of EXMAD, or any part thereof, 10 may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. 15 (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active EXMAD, the nucleotide sequences encoding EXMAD or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding 20 sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding EXMAD. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding EXMAD. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak 25 sequence. In cases where sequences encoding EXMAD and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation 30 codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding EXMAD and appropriate transcriptional and translational

WO 00/68380

control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

5 16.)
A variety of expression vector/host systems may be utilized to contain and express sequences
encoding EXMAD. These include, but are not limited to, microorganisms such as bacteria transformed
with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with
yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus);
10 plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or
tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or
animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending
upon the use intended for polynucleotide sequences encoding EXMAD. For example, routine cloning,
15 subcloning, and propagation of polynucleotide sequences encoding EXMAD can be achieved using a
multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid
(Life Technologies). Ligation of sequences encoding EXMAD into the vector's multiple cloning site
disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed
bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro
20 transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested
deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.*
264:5503-5509.) When large quantities of EXMAD are needed, e.g. for the production of antibodies,
vectors which direct high level expression of EXMAD may be used. For example, vectors containing
the strong, inducible T5 or T7 bacteriophage promoter may be used.

25 Yeast expression systems may be used for production of EXMAD. A number of vectors
containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH
promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such
vectors direct either the secretion or intracellular retention of expressed proteins and enable integration
of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra;
30 Bitter, G.A. et al. (1987) *Methods Enzymol.* 153:516-544; and Scorer, C.A. et al. (1994)
Bio/Technology 12:181-184.)

Plant systems may also be used for expression of EXMAD. Transcription of sequences
encoding EXMAD may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used
alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) *EMBO J.*

6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding EXMAD may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses EXMAD in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of EXMAD in cell lines is preferred. For example, sequences encoding EXMAD can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980)

WO 00/68380

Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β -glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. 5 These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is 10 also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding EXMAD is inserted within a marker gene sequence, transformed cells containing sequences encoding EXMAD can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding EXMAD under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates 15 expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding EXMAD and that express EXMAD may be identified by a variety of procedures known to those of skill in the art. These 20 procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of EXMAD using either 25 specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on EXMAD is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

30 A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding EXMAD include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding EXMAD, or any fragments thereof, may be cloned into a vector

for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega 5 (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding EXMAD may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein 10 produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode EXMAD may be designed to contain signal sequences which direct secretion of EXMAD through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the 15 inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities 20 (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding EXMAD may be ligated to a heterologous sequence resulting in translation of a 25 fusion protein in any of the aforementioned host systems. For example, a chimeric EXMAD protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of EXMAD activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose 30 binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize

WO 00/68380

these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the EXMAD encoding sequence and the heterologous protein sequence, so that EXMAD may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled EXMAD may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ^{35}S -methionine.

10 Fragments of EXMAD may be produced not only by recombinant means, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra*, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A peptide synthesizer (Perkin-Elmer). Various fragments of 15 EXMAD may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of EXMAD and extracellular matrix and adhesion-associated proteins. In addition, the expression of EXMAD is closely associated with cancerous, proliferating, inflamed, nervous, 20 reproductive, urologic, hematopoietic/immune, cardiovascular, musculoskeletal, developmental, and gastrointestinal tissues, and with cell proliferative disorders, including cancer, inflammation and the immune response. Therefore, EXMAD appears to play a role in cell proliferative, immune, reproductive, neuronal, and genetic disorders. In the treatment of disorders associated with increased 25 EXMAD expression or activity, it is desirable to decrease the expression or activity of EXMAD. In the treatment of disorders associated with decreased EXMAD expression or activity, it is desirable to increase the expression or activity of EXMAD.

Therefore, in one embodiment, EXMAD or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of EXMAD. Examples of such disorders include, but are not limited to, a cell proliferative 30 disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, 35 gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate,

salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder, such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis,

5 5 autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome,

10 10 episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis,

15 15 Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; a reproductive disorder, such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian

20 20 hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a neuronal disorder, such as akathesia, Alzheimer's disease,

25 25 amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder; and a genetic disorder, such as adrenoleukodystrophy, Alport's syndrome, choroideremia, Duchenne and

30 30 Becker muscular dystrophy, Down's syndrome, cystic fibrosis, chronic granulomatous disease, dentinogenesis imperfecta type II, dentin dysplasia type II, Gaucher's disease, Huntington's chorea, Marfan's syndrome, muscular dystrophy, myotonic dystrophy, pycnodynatosi, Refsum's syndrome retinoblastoma, sickle cell anemia, thalassemia, Werner syndrome, von Willebrand's disease, Wilms tumor, Zellweger syndrome, peroxisomal acyl-CoA oxidase deficiency, peroxisomal thiolase

35 35 deficiency, peroxisomal bifunctional protein deficiency, mitochondrial carnitine palmitoyl transferase

WO 00/68380

and carnitine deficiency, mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency, mitochondrial medium-chain acyl-CoA dehydrogenase deficiency, mitochondrial short-chain acyl-CoA dehydrogenase deficiency, mitochondrial electron transport flavoprotein and electron transport flavoprotein:ubiquinone oxidoreductase deficiency, mitochondrial trifunctional protein deficiency, 5 and mitochondrial short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency.

In another embodiment, a vector capable of expressing EXMAD or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of EXMAD including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified 10 EXMAD in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of EXMAD including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of EXMAD may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity 15 of EXMAD including, but not limited to, those listed above.

In a further embodiment, an antagonist of EXMAD may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of EXMAD. Examples of such disorders include, but are not limited to, those cell proliferative, immune, reproductive, neuronal, and genetic disorders described above. In one aspect, an antibody which specifically binds EXMAD may be 20 used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express EXMAD.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding EXMAD may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of EXMAD including, but not limited to, those described above.

25 In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various 30 disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of EXMAD may be produced using methods which are generally known in the art. In particular, purified EXMAD may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind EXMAD. Antibodies to EXMAD may 35 also be generated using methods that are well known in the art. Such antibodies may include, but are

not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, 5 and others may be immunized by injection with EXMAD or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG 10 (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to EXMAD have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the 15 entire amino acid sequence of a small, naturally occurring molecule. Short stretches of EXMAD amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to EXMAD may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not 20 limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the 25 splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce EXMAD-specific single 30 chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in

WO 00/68380

the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for EXMAD may also be generated. For example, such fragments include, but are not limited to, $F(ab')_2$ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the $F(ab')_2$ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between EXMAD and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering EXMAD epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for EXMAD. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of EXMAD-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple EXMAD epitopes, represents the average affinity, or avidity, of the antibodies for EXMAD. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular EXMAD epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the EXMAD-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of EXMAD, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J.E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of EXMAD-antibody

complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding EXMAD, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding EXMAD may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding EXMAD. Thus, complementary molecules or fragments may be used to modulate EXMAD activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding EXMAD.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding EXMAD. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding EXMAD can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding EXMAD. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding EXMAD. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may be employed. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze 5 endonucleolytic cleavage of sequences encoding EXMAD.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for 10 secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for 15 chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding EXMAD. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that 20 synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterate linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be 25 extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken 30 from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such

therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of EXMAD, antibodies to EXMAD, and mimetics, agonists, antagonists, or inhibitors of EXMAD. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene

WO 00/68380

glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

10 Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily 15 injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

20 For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

25 The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acids. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 30 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of EXMAD, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the

active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, or pigs.

5 An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example EXMAD or fragments thereof, antibodies of EXMAD, and agonists, antagonists or inhibitors of 10 EXMAD, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which 15 exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

20 The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. 25 Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.

30 Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind EXMAD may be used for the

diagnosis of disorders characterized by expression of EXMAD, or in assays to monitor patients being treated with EXMAD or agonists, antagonists, or inhibitors of EXMAD. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for EXMAD include methods which utilize the antibody and a label to detect EXMAD in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring EXMAD, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of EXMAD expression. Normal or standard values for EXMAD expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to EXMAD under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of EXMAD expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding EXMAD may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of EXMAD may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of EXMAD, and to monitor regulation of EXMAD levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding EXMAD or closely related molecules may be used to identify nucleic acid sequences which encode EXMAD. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding EXMAD, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the EXMAD encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:26-50 or from genomic sequences including promoters, enhancers, and introns of the EXMAD gene.

Means for producing specific hybridization probes for DNAs encoding EXMAD include the

cloning of polynucleotide sequences encoding EXMAD or EXMAD derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding EXMAD may be used for the diagnosis of disorders associated with expression of EXMAD. Examples of such disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis 5 hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall 10 bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an immune disorder, such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's 15 disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, bursitis, 20 cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, 25 episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, 30 systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, trauma, and hematopoietic cancer 35 including lymphoma, leukemia, and myeloma; a reproductive disorder, such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis; cancer of the breast, fibrocystic breast disease, a

galactorrhea; a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; a neuronal disorder, such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder; and a genetic disorder, such as adrenoleukodystrophy, Alport's syndrome, choroideremia, Duchenne and Becker muscular dystrophy, Down's syndrome, cystic fibrosis, chronic granulomatous disease, dentinogenesis imperfecta type II, dentin dysplasia type II, Gaucher's disease, Huntington's chorea, Marfan's syndrome, muscular dystrophy, myotonic dystrophy, pycnodysostosis, Refsum's syndrome, retinoblastoma, sickle cell anemia, thalassemia, Werner syndrome, von Willebrand's disease, Wilms' tumor, Zellweger syndrome, peroxisomal acyl-CoA oxidase deficiency, peroxisomal thiolase deficiency, peroxisomal bifunctional protein deficiency, mitochondrial carnitine palmitoyl transferase and carnitine deficiency, mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency, mitochondrial medium-chain acyl-CoA dehydrogenase deficiency, mitochondrial short-chain acyl-CoA dehydrogenase deficiency, mitochondrial electron transport flavoprotein and electron transport flavoprotein:ubiquinone oxidoreductase deficiency, mitochondrial trifunctional protein deficiency, and mitochondrial short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The polynucleotide sequences encoding EXMAD may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered EXMAD expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding EXMAD may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding EXMAD may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding EXMAD in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of EXMAD, a normal or standard profile for expression is established. This may be accomplished by

combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding EXMAD, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding EXMAD may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding EXMAD, or a fragment of a polynucleotide complementary to the polynucleotide encoding EXMAD, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

Methods which may also be used to quantify the expression of EXMAD include radiolabeling or biotinylation nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer of interest is present in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genes

WO 00/68380

variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., 5 Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding EXMAD may be used, 10 to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, 15 C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent *in situ* hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, *supra*, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the 20 gene encoding EXMAD on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. 25 Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery 30 techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or

affected individuals.

In another embodiment of the invention, EXMAD, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a
5 solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between EXMAD and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are
10 synthesized on a solid substrate. The test compounds are reacted with EXMAD, or fragments thereof, and washed. Bound EXMAD is then detected by methods well known in the art. Purified EXMAD can also be coated directly onto plates for use in the aforementioned drug screening techniques.
Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
15 In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding EXMAD specifically compete with a test compound for binding EXMAD. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with EXMAD.

In additional embodiments, the nucleotide sequences which encode EXMAD may be used in
20 any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific
25 embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No.60/133,643 and U.S. Ser. No.60/150,409 are hereby expressly incorporated by reference.

30

EXAMPLES

I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissue were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed
35 in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic

solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-

well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

5 cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Perkin-Elmer) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as

10 the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Perkin-Elmer) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the

15 cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions,

20 references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between

25 two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

30 The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation

WO 00/68380

using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)

10 The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:26-50. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

15 Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel, 1995, supra, ch. 4 and 16.)

20 Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

25 The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may 30 identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding EXMAD occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous,

reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 5 3.

V. Chromosomal Mapping of EXMAD Encoding Polynucleotides

The cDNA sequences which were used to assemble SEQ ID NO:40-50 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:40-50 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

The genetic map locations of SEQ ID NO:42 and SEQ ID NO:48 are described in The Invention as ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.

VI. Extension of EXMAD Encoding Polynucleotides

The full length nucleic acid sequences of SEQ ID NO:26-50 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR

WO 00/68380

was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE

Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:26-50 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

5 **VII. Labeling and Use of Individual Hybridization Probes**

Hybridization probes derived from SEQ ID NO:26-50 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 1.6 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

VIII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements 25 on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of 30 fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or

fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) *Science* 270:467-470; Shalon, D. et al. (1996) *Genome Res.* 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

IX. Complementary Polynucleotides

Sequences complementary to the EXMAD-encoding sequences, or any parts thereof, are used 5 to detect, decrease, or inhibit expression of naturally occurring EXMAD. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed 10 using OLIGO 4.06 software (National Biosciences) and the coding sequence of EXMAD. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used 15 to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the EXMAD-encoding transcript.

X. Expression of EXMAD

Expression and purification of EXMAD is achieved using bacterial or virus-based expression systems. For expression of EXMAD in bacteria, cDNA is subcloned into an appropriate vector 20 containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express EXMAD upon induction with isopropyl beta-D- 25 thiogalactopyranoside (IPTG). Expression of EXMAD in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding EXMAD by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong 30 polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:3224-3227; Sandig, V. et al. (1996) *Hum. Gene Ther.* 7:1937-1945.)

In most expression systems, EXMAD is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from EXMAD at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10 and 16). Purified EXMAD obtained by these methods can be used directly in the following activity assay.

XI. Demonstration of EXMAD Activity

An assay for EXMAD activity measures the disruption of cytoskeletal filament networks upon overexpression of EXMAD in cultured cell lines. (Reznicek, G. A. et al. (1998) *J. Cell Biol.* 141:209-225.) cDNA encoding EXMAD is subcloned into a mammalian expression vector that drives high levels of cDNA expression. This construct is transfected into cultured cells, such as rat kangaroo PtK2 or rat bladder carcinoma 804G cells. Actin filaments and intermediate filaments such as keratin and vimentin are visualized by immunofluorescence microscopy using antibodies and techniques well known in the art. The configuration and abundance of cytoskeletal filaments can be assessed and quantified using confocal imaging techniques. In particular, the bundling and collapse of cytoskeletal filament networks are indicative of EXMAD activity.

Alternatively, an assay for EXMAD activity measures the amount of cell aggregation induced by overexpression of EXMAD. In this assay, cultured cells such as NIH3T3 are transfected with cDNA encoding EXMAD contained within a suitable mammalian expression vector under control of a strong promoter. Cotransfection with cDNA encoding a fluorescent marker protein, such as Green Fluorescent Protein (Clontech), is useful for identifying stable transfectants. The amount of cell agglutination, or clumping, associated with transfected cells is compared with that associated with untransfected cells. The amount of cell agglutination is a direct measure of EXMAD activity.

Alternatively, cell adhesion activity in EXMAD is measured in a 96-well plate assay in which wells are first coated with EXMAD by adding solutions of EXMAD of varying concentrations to the wells. Excess EXMAD is washed off with saline, and the wells incubated with a solution of 1% bovine serum albumin to block non-specific cell binding. Aliquots of a cell suspension of a suitable cell type are then added to the wells and incubated for a period of time at 37 °C. Non-adhered cells are washed

off with saline and the cells stained with a suitable cell stain such as Coomassie blue. The intensity of staining is measured using a variable wavelength 96-well plate reader and compared to a standard curve to determine the number of cells adhering to the EXMAD coated plates. The degree of cell staining is proportional to the cell adhesion activity of EXMAD in the sample.

5 Alternatively, EXMAD activity is also measured by the interaction of EXMAD with other molecules. EXMAD, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled EXMAD, washed, and any wells with labeled EXMAD complex are assayed. Data obtained using different concentrations of EXMAD are used to calculate values for the number, affinity, and association of EXMAD with the candidate molecules.

10

XII. Functional Assays

EXMAD function is assessed by expressing the sequences encoding EXMAD at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a 15 mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 µg of an additional plasmid containing 20 sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64- 25 GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in 30 bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of EXMAD on gene expression can be assessed using highly purified

populations of cells transfected with sequences encoding EXMAD and either CD64 or CD64-GFP.

CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success

5 NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding EXMAD and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIII. Production of EXMAD Specific Antibodies

EXMAD substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g.,

10 Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the EXMAD amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for 15 selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase 20 immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-EXMAD activity by, for example, binding the peptide or EXMAD to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIV. Purification of Naturally Occurring EXMAD Using Specific Antibodies

25 Naturally occurring or recombinant EXMAD is substantially purified by immunoaffinity chromatography using antibodies specific for EXMAD. An immunoaffinity column is constructed by covalently coupling anti-EXMAD antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

30 Media containing EXMAD are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of EXMAD (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/EXMAD binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and EXMAD is collected.

XV. Identification of Molecules Which Interact with EXMAD

EXMAD, or biologically active fragments thereof, are labeled with ^{125}I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled EXMAD, washed, 5 and any wells with labeled EXMAD complex are assayed. Data obtained using different concentrations of EXMAD are used to calculate values for the number, affinity, and association of EXMAD with the candidate molecules.

Alternatively, molecules interacting with EXMAD are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, Nature 340:245-246), or using commercially 10 available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. 15 Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table I

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments	
				ITUNNOT02	ITUNNOT02
1	26	398269	PITUNNOT02	265928H1 (HNT2AGT01), 398269H1 and 398269R6 (PITUNNOT02), 516201R6 (MMLR1DT01), 822473R6 (KERANCT02), 1265919F1 (BRAINOT09), 1356244F6 (LUNGNOT09), 1379344T6 (LUNGNOT10), 3586102H1 (293TF4T01), SBLA02091F1, SBLA01281F1	
2	27	1258888	MENITUT03	1258888H1 (MENITUT03), 1373184H1 (UTRSNOT12), 290569T6 (KIDNFET02), SCORNON02), 2697827F3 (UTRSNOT12), 290569T6 (KIDNFET02), SBCA02402F1, SBCA05599F1, SBCA01330F1, SBGA07058F3	2420735R6
3	28	1375891	LUNGNOT10	1375891H1 (LUNGNOT10), 2251462R6 (OVARTUT01), 4542640H1 (THYRTMT01), SAXA00188F1, SAXA00819F1, SAXA00256F1,	
4	29	1524355	UCMCL5T01	008503T6 (HMC1NOT01), 425033R6 (BLADNOT01), 1299403T6 (BRSTNOT07), 1524355H1 (UCMCL5T01), 2480893F6 (SMCANOT01), 3072568F6 (UTRSNR01), 307770H1 (BONEUNTO1), 3521659H1 (LUNGNON03), 3810130H1 (CONTTUT01), 4187444H1 (BRSTNOT31)	
5	30	1598937	BLADNOT03	307298R6 (HEARNOT01), 637901F1 (BRSTNOT03), 872833R1 (LUNGAST01), 1360462F1 (LUNGNOT12), 1598937H1 (BLADNOT03), 1688334H1 (PROSTUT10), 2048691F6 (LIVRFET02), (LUNGNOT30)	
6	31	1725801	PROSNOT14	359107F1 and 359107R1 (SYNORAB01), 1725801H1 and 1725801X18C1 (PROSNOT14), 2853280H1 (CONNNOT02), SBWA02129V1	
7	32	1730482	BRSTTUT08	1261313R1 (SYNORAT05), 1321141F1 (BLADNOT04), 1484641F1 (CORPNOT02), 1730482H1 (BRSTTUT08), 1848053F6 (OVARNOT07), 2208990F6 (SINTFET03), 2691973F6 (LUNGNOT23), (OVARNOT10), 3097712H1 (CERVNOT03), 3110665H1 (BRSTNOT17), 3738668H1 (MENTNOT01)	2811183H1
8	33	1810058	PROSTUT12	571697H1 (OVARNON01), 1704596F6 (DUODNOT02), 1810058H1, 1810548F6, and 1810548T6 (PROSTUT12)	
9	34	2040679	HIPONON02	2040679H1 and 2040679R6 (HIPONON02), 2380160F6 (ISLTNOT01), 2621171T6 (KERANOT02), 2869976F6 (THYRNOT10)	
10	35	2960051	ADRENOT09	2960051H1 (ADRENOT09), SBVA05142V1, SBVA03774V1, SBVA03935V1	

Table 1 (cont.)

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments	
11	36	3117318	LUNGUT13	393775H1 (TMLR2DT01), 486988H1 (HNT2AGT01), 3117318F6 and 3117318H1 (LUNGUT13), 3293662F6 (TLYJINT01), SBMA01131F1	
12	37	3486992	EPIGNOT01	2615184H1 (GBLANOT01), 3486992H1 (EPIGNOT01), SBKA01303F1.comp, SBKA03723F1.comp, SBKA02206F1, SBKA01625F1.comp, SBKA02769F1, SBKA03712F1, SBKA02365F1, SBKA01975F1	
13	38	4568384	HELATXT01	080350F1 (SYNORAB01), 320872H1 (EOSIHBET02), 1418995F1 (KIDNNNOT09), 1473647T1 (LUDNGTUT03), 1664971F6 (BRSTNOT09), 1738547F6 (COLMNOT22), 2367046F6 (ADRENOT07), 4568384F6 and 4568384H1 (HELATXT01)	
14	39	4586187	OVARNOT13	306792F1 and 306792X11R1 (HEARNNOT01), 632244F1 (KIDNNNOT05), 876626R1 (LUNGAST01), 2451238F6 (ENDANOT01), 2881494F6 (UTRSTUT05), 4586187H1 (OVARNOT13), 5852878H1 (FIBAUNT02), SZZZ01051R1	
15	40	401801	TMLR3DT01	401801T6 and 401801H1 (TMLR3DT01), 938106H1 (CERVNOT01), 2603123T6 (UTRSNOT10), 2607556H1 (LUNGUT07)	
16	41	1721842	BLADNOT06	1721842H1, 1721842F6 and 1721842T6 (BLADNOT06), 2010387R6 (TESTNOT03), 4884119H1 (LUNLTMT01)	
17	42	1833221	BRAINON01	001593H1 (U937NOT01), 389513R1 (THYMNNOT02), 428370R6 (BLADNOT01), 493657H1 (HNT2NOT01), 1263824R1 (SYNOFAT05), 1833221H1 (BRAINON01), 1907733F6, (CONNTUT01), 1997529R6 (BRSTTUT03), 2174658F6 (ENDCMNOT03), 3114306H1 (BRSTNOT17), 3233178H1 (COLNUCT03), 4788994F6 (EPIBUNT01), 5541215H1	
18	43	2041168	HIPONON02	849897R1 (NGANNNOT01), 908128R2 (COLNNNOT09), 999830R6 (KIDNTUT01), 1639572T6 (UTRSMNOT06), 1686825F6 (PROSNOT15), 2041168H1 (HIFONON02), 2582551H1 (KIDNTUT13), 2867048H1 (KIDNNNOT20), 3226063F6 (TLYJINT01), 3226063H1 (TLYJINT01), 346603H1 (293TF2T01), 4662252H2 (BRSTTUT20), SBIA03151D1	
19	44	2365794	ADRENOT07	874804H1 (LUNGAST01), 1318960T1 (BLADNOT04)	

Table 1 (cont.)

Polypeptide SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments	
				(SEMVNNOT01), 222528F6 (SEMVNNOT01), 2225720F6 (SEMVNOT01), 2618452H1 (GBLANOT01), 2618457F6 (GBLANOT01), 3248134H1 (SEMVNNOT03), 3250560H1 (SEMVNNOT03), 3538176F6 (SEMVNNOT04), 4068913H1 (SEMVNNOT05)	
20	45	2618452	GBLANOT01	1730514F6 (BRSTTUT08), 2618452F6 and 2618452H1 (GBLANOT01), 3248134H1 (SEMVNNOT03), 3250560H1 (SEMVNNOT03), 3538176F6 (SEMVNNOT04), 4068913H1 (SEMVNNOT05)	
21	46	26222288	KERANOT02	223636F1 (PANCNOT01), 490914R6 (HNT2AGT01), 530368R6 (BRAINOT03), 850583R1 (NGANNNOT01), 898618R1 (BRSTTUT03), 932484R6 (CERVNOT01), 1302418F1 (PLACNOT02), 1368735R1 (SCORNON02), 1486177F6 (CORPNOT02), 1726367F6 (PROSNOT14), 2516869H1 (LIVRTUT04), 26222288R6 and 26222288H2 (KERANOT02), 3043955H1 (HEAANOT01), 3398316H1 (UTRSNOT16), 3938796H1 (SKINBIT01), 4043471H1 (LUNGNOT35)	
22	47	2806595	BLADTUT08	643445R6 (BRSTTUT02), 2806595F6 and 2806595H1 (BLADTUT08), SBRA04014D1, SBRA03510D1	
23	48	2850987	BRSTTUT13	1300925F1 (BRSTNOT07), 1339833F1 (COLNTUT03), 1347463F6 (PROSNOT11), 1347463T6 (PROSNOT11), 1899642F6 (BLADTUT06), 2715093F6 (THYRNOT09), 2726463F6 (OVERTUT05), 2850987H1 (BRSTTUT13), 2893008H1 (LUNGFEET04), 3336701F6 (SPLNNNOT10), 3341661H1 (SPLNNNOT09), SXAF00652V1, SXAF03272V1	
24	49	3557211	LUNGNOT31	958552H1 (KIDNNNOT05), 2953281F6 and 2953281T6 (KIDNFET01), 3557211F6 and 3557211H1 (LUNGNOT31), 4306204H1 (GBLADIT01), 4420950F6 (LIVRDIT02) g2188176, g1424165	
25	50	4675668	NOSEDIT02	1519431T6 (BLADTUT04), 2447058F6 (THP1NOT03), 2759306R6 (THP1AZS08), 2758306T6 (THP1AZS08), 3589494H1 (293TF5T01), 3813434H1 (TONSNOT03), 4675668H1 (NOSEDIT02), 5175727H1 (EPIBTXT01), 5313381H1 (KIDETX02)	

Table 2

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous Sequence	Analytical Methods
1 309	T153 S29 S140 T153 S162 T168 S233 S258 T285 S290 T87 T159 T265	N108 N305	Signal peptide: M1-A31	similar to B. Subtilis surfactin (SFP) protein g3880360	BLAST SPSCAN	
2 554	S57 S146 S265 T275 S389 T495 T496 S497 S551 S25 S34 T87 S115 S180 S212 S242 S289 T308 S361 T388 T504	N398	EGF-like domain: C98-C132 C138-C172 C178-C217 C223-C258 Cell adhesion: R363-D365 Signal peptide: M1-G21	fibulin-2 [Mus musculus] g437047	BLAST PRINTS BLOCKS PFAM MOTIFS SPSCAN HMM	
3 482	S87 T37 T108 T131 S133 S148 T165 T246 S254 T256 S269 S283 S333 S404 T414 T431 S28 T29 S65 T335 T431 S446 S460 T464	N252 N445 N451	Signal peptide: M1-G22	gastric mucin [Sus scrofa] g915208	BLAST MOTIFS SPSCAN HMM	
4 735	S506 S153 S243 T259 S304 T317 T378 S414 T502 S575 S670 S688 S698 S44 T116 S258 S324 S350 S356 S396 T437 T515 S610 S620 Y53	N70 N97 N144 N188 N412	Kelch motif: T284-K330 C469-G513	muskelin [Mus musculus] g3493462	BLAST PFAM	

Table 2 (cont.)

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous Sequence	Analytical Methods
5 424	T209 S256 S276 T86 S311 S319 T347 S15 S354 S394 S107 Y53 S153 T217 S258 S408 T306 S358 S383		SH3 domain: V366-V422	Focal adhesion protein (FAP52) [Gallus gallus] g2217964	BLAST PFAM PRINTS BLOCKS	
6 420	S293 T63 T73 S99 S101 S222 T359 T48 T63 S138 T159 S406 S409 Y53	N7.9 N205	Signal peptide: M1-L29 EGF-like domain: T174-C192 Cysteine-rich pattern: C181-C192	HT protein [Cricetulus griseus] g1216486	BLAST PRINTS SPSCAN MOTIFS HMM	
7 795	S41 T94 S145 S243 T297 S442 S451 T687 S103 T111 T129 S184 T428 S647	N383 N387	Cell adhesion: R606-D608 von Willebrand factor type A domain: D31-I204 transmembrane domain: I50-T77	collagen type XIV [Homo sapiens] g2065167	BLAST MOTIFS PFAM PRINTS HMM	
8 306	T69 T133 S255 T279 T22		Signal peptide: M1-S19 C1q domain: G149-P175 A203-I226 H227-L302	saccular collagen [Lepomis macrochirus] g687606	BLAST PFAM PRINTS BLOCKS SPSCAN HMM	

Table 2 (cont.)

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous Sequence	Analytical Methods
9	338	S5 S53 S66 T119 T246 S23 T65 S102 S151 S251 T277	N217 N332	Signal peptide: M1-S22 Leucine-rich repeats domain: S102-T147 S151-I196 N197-A243	LRR47 [Drosophila melanogaster] g415947	BLAST PFAM PRINTS SPSCAN HMM
10	164	S42 S75 T160 S44 S49		Signal peptide: M1-G20 von Willebrand factor C-type domain: C103-C157	extracellular matrix protein [Homo sapiens] g3786312	BLAST PFAM BLOCKS SPSCAN HMM
11	327	S292 S30 S35 S63 T92 T14 T102 T179 S198 T285	N54 N61 N75 N85 N100 N189 N196 N213 N218 N322	Signal peptide: M1-P29 Ig domain: P81-F144 G173-A239 Transmembrane domain: V254-A276	embigin protein [Rattus norvegicus] g3355709	BLAST PFAM SPSCAN HMM
12	716	S21 T49 T54 T87 T98 S245 T315 T471 T519 T590 S624 S692 T705 S176 S384 S473 S494 T513 S542 T560 T571 T605 T613 S664 T709 Y581	N69 N96 N106 N117 N385 N517 N582 N611	Signal peptide: M1-S25 Leucine-rich repeats domain: N96-S143 N192-D239 S240-L287 R288-P337 A338-N385 Transmembrane domain: M639-F656	leucine-rich- repeat protein [Mus musculus] g1228052	BLAST PFAM PRINTS SPSCAN HMM

Table 2 (cont.)

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous Sequence	Analytical Methods
13 665	T147 S45 S86 S110 S121 T147 S160 T200 S205 S225 S247 S299 S301 S309 S335 S336 S341 S343 T386 S388 T400 T448 S506 S534 S545 S580 S581 S582 S597 S602 S615 S23 S82 S100 S162 S183 T199 S217 S221 S329 S347 T429 T501 T558 T563 T608 Y445 Y559	N119 N242 N424 N427 N634		50kDa lectin [Bombyx mori] g500858	BLAST	
14 547	T60 S31 T87 T175 S213 T357 T452 T474 S476 T488 S203 T420 Y424	N15 N76 N85 N104 N128 N154 N191 N221 N242 N418	Lectin C-type domain: L473-C535 T488-L547 Cell adhesion: R256-D258	CSR1 (cellular stress response protein) [Homo sapiens] g6230372	BLAST; PFAM BLOCKS MOTIFS PROFILESCAN	
15 109	S85 S38	N22		Actinin; DPPL [Homo sapiens] g3676347	BLAST-GenBank MOTIFS	
16 192	S10 S87 T92 T157 T165 T170 S19 S46	N8 N103	Leucine Rich Repeat Domain: L81-I94 L126-M139	BLIMPS-PRINTS MOTIFS		

Table 2 (cont.)

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous Sequence	Analytical Methods
17	575	T150 S171 S299 S85 S98 S117 S118 S126 S142 S170 S203 S237 S239 S333 S415 S467 T473 S524 T557 S558 S562 S32 S92 S104 S128 S134 T149 T150 S167 S188 S260 S270 S280 S289 S389 S536	N68 N96 N234 N366 N569		axotrophin [Mus musculus] g5052031	BLAST-GenBank MOTIFS
18	342	S73 S24 S82 S207 S315 S96 T176	N31 N152 N180 N193	Armadillo/beta- catenin-like repeats: A104-A113		BLIMPS-FFAM MOTIFS
19	110	S80		Signal Peptide: M1-G45 Transmembrane Domain: G48-G71 G91-Y110 Legume lectins signature: V4-F54	SPSCAN HMMER PROFILESCAN MOTIFS	
20	571	S482 T502 T11 T40 S88 T180 S231 T339 T383 T402 T409 T436 T447 S482 T491	N66 N229 N434 N498	Mucin domain: P101 - S430 Cystine knot domain: C481-C569	mucin [Homo sapiens] g292046	BLAST-GenBank BLAST-DOMO HMMER-FFAM MOTIFS

Table 2 (cont.)

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous Sequence	Analytical Methods
21 262	S69 S146 T54 T107	S172 S41 T59 Y170	T101 T102	Signal Peptide: M1-G25	single-pass transmembrane protein [Rattus norvegicus] g6978944	SPSCAN HMMER MOTIFS BLAST-GenBank
22 172	S29 T53 Y144	S111 T53	S80	Signal Peptide: M1-G17	antigen [Homo sapiens] g188543	link protein [Mus musculus] g4218976
23 571	S16 S403 S445 S487	T36 T294 S396 S23	T176 N100 N567	Protein proteoglycan core glycoprotein precursor cartilage repeat lectin Ig fold G63-I149	Mitochondrial energy transfer proteins signature: P404-F412	BLAST-GenBank, HMMER-PPAM HMMER MOTIFS
				Transmembrane domains: T94-K116 F520-F539 L58-I78 I341-W362 I375-M393 I453-F472 Laminin b: Y538-K558	cell adhesion regulator [Rattus norvegicus] g4098299	

Table 2 (cont.)

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Homologous Sequence	Analytical Methods
24	455	S18 S23 S143 S270 S81 T186 S196 T208 S230 T240 T256 S418 S452 Y223	N138 N217 N288	Signal peptidases I signature: G43-F50 Lectin c-type: C329-S452 Cell attachment sequence: R183-D185	lectin BRA-3 [Megabalanus rosa] g407227	BLAST-GenBank BLAST-DOMO HMMER-PFAM MOTIFS
25	437	S98 T146 T160 S211 T220 T301 S55 T86 T156 S197 T369 Y265 Y334 Y350		ENP1 protein nuclear protein: E157-D431	bystin [Mus musculus] g2738509	BLAST-GenBank BLAST-PRODOM MOTIFS

Table 3

Nucleotide SEQ ID NO:	Unique Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
26	242-286	Nervous (0.264) Reproductive (0.198)	Cancer (0.462) Cell proliferation (0.242) Inflammation (0.176)	PSPORT
27	272-316	Nervous (0.438) Reproductive (0.188) Developmental (0.188)	Cancer (0.438) Cell proliferation (0.250) Inflammation (0.188)	PINCY
28	218-262	Gastrointestinal (0.244) Nervous (0.195) Reproductive (0.171)	Cancer (0.488) Inflammation (0.195) Cell proliferation (0.146)	PINCY
29	488-532 1082-1126	Reproductive (0.265) Nervous (0.206) Hematopoietic/immune (0.147)	Cancer (0.500) Cell proliferation (0.324) Inflammation (0.235)	PBLUESCRIPT
30	542-586	Reproductive (0.321) Cardiovascular (0.143) Musculoskeletal (0.143)	Cancer (0.500) Inflammation (0.107) Cell proliferation (0.107)	PINCY
31	217-261	Nervous (0.265) Reproductive (0.253) Cardiovascular (0.108)	Cancer (0.482) Inflammation (0.145) Cell proliferation (0.145)	PINCY
32	36-80	Reproductive (0.333) Gastrointestinal (0.154) Developmental (0.115)	Cancer (0.462) Inflammation (0.167) Cell proliferation (0.145)	PINCY
33	218-262	Reproductive (0.571) Gastrointestinal (0.286) Cardiovascular (0.143)	Trauma (0.286) Cancer (0.143) Inflammation (0.143)	PINCY
34	111-155	Gastrointestinal (0.364) Nervous (0.182) Cardiovascular (0.091)	Trauma (0.364) Cancer (0.273) Cell proliferation (0.182)	PSPORT
35	271-315	Musculoskeletal (0.286) Reproductive (0.286) Cardiovascular (0.143)	Cancer (0.286) Inflammation (0.143) Neurological (0.143)	PINCY

Table 3 (cont.)

Nucleotide SEQ ID NO:	Unique Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
36	542-586 866-910	Hematopoietic/Immune (0.526) Reproductive (0.158) Nervous (0.105)	Cancer (0.368) Inflammation (0.474) Cell proliferation (0.158)	PINCY
37	811-855	Nervous (0.267) Reproductive (0.267) Musculoskeletal (0.133)	Cancer (0.600) Inflammation (0.200) Cell proliferation (0.133)	PINCY
38	380-424 974-1018	Reproductive (0.200) Gastrointestinal (0.164) Nervous (0.145)	Cancer (0.436) Cell proliferation (0.309) Inflammation (0.200)	PINCY
39	434-479 975-1019	Reproductive (0.296) Cardiovascular (0.259) Hematopoietic/Immune (0.111)	Cancer (0.315) Inflammation (0.204) Trauma (0.204)	PINCY
40	555-614	Cardiovascular (0.333) Hematopoietic/Immune (0.333) Reproductive (0.333)	Inflammation (0.667) Cancer (0.333)	PBLUESCRIPT
41	743-802	Nervous (0.353) Reproductive (0.176) Urologic (0.176)	Cancer (0.471) Inflammation (0.411) Cell Proliferation (0.118)	PINCY
42	429-488 1029-1088	Reproductive (0.213) Nervous (0.191) Cardiovascular (0.169)	Cancer (0.472) Inflammation (0.394) Cell Proliferation (0.180)	PSPORT1
43	967-1026	Nervous (0.228) Reproductive (0.213) Gastrointestinal (0.110)	Cancer (0.504) Inflammation (0.291) Cell Proliferation (0.197)	PSPORT1
44	164-223	Reproductive (0.241) Cardiovascular (0.167) Gastrointestinal (0.148)	Cancer (0.481) Inflammation (0.315) Cell Proliferation (-)	PINCY
45	110-169	Gastrointestinal (0.562) Reproductive (0.312) Nervous (0.062) Urologic (0.062)	Cancer (0.500) Inflammation (0.312) Cell Proliferation (0.062)	PINCY

Table 3 (cont.)

Nucleotide SEQ ID NO:	Unique Fragment	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
46	273-332	Nervous (0.347)	Cancer (0.430)	PSPORT1
	759-818	Reproductive (0.223)	Inflammation (0.364)	
		Cardiovascular (0.132)	Cell Proliferation (0.124)	
47	218-277	Gastrointestinal (0.200)	Cancer (0.533)	PINCY
		Nervous (0.200)	Inflammation (0.334)	
		Reproductive (0.200)	Cell Proliferation (0.133)	
48	341-400	Reproductive (0.294)	Cancer (0.476)	PINCY
		Gastrointestinal (0.168)	Inflammation (0.329)	
		Cardiovascular (0.126)	Cell Proliferation (0.168)	
49	266-325	Developmental (0.277)	Cell Proliferation (0.444)	PINCY
	542-601	Gastrointestinal (0.222)	Inflammation (0.444)	
		Nervous (0.167) Urologic (0.167)	Cancer (0.167)	
50	165-224	Hematopoietic/Immune (0.216)	Cancer (0.568)	PINCY
		Reproductive (0.216)	Cell Proliferation (0.324)	
		Gastrointestinal (0.135)	Inflammation (0.297)	

Table 4

Nucleotide SEQ ID NO:	Library	Library Description
26	PITUNOT02	The library was constructed using RNA obtained from Clontech. The RNA was isolated from the pituitary glands removed from a pool of 87 male and female donors, 15 to 75 years old.
27	MENITUT03	The library was constructed using RNA isolated from brain meningioma tissue removed from a 35-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a benign neoplasm in the right cerebellopontine angle of the brain. Patient history included hypothyroidism. Family history included myocardial infarction and breast cancer.
28	LUNGNOT10	The library was constructed using RNA isolated from the lung tissue of a Caucasian male fetus, who died at 23 weeks' gestation.
29	UCMCL5T01	The UCMCL5T01 library was constructed using RNA isolated from mononuclear cells obtained from the umbilical cord blood of 12 individuals. The cells were cultured for 12 days with IL-5 before RNA was obtained from the pooled lysates.
30	BLADNOT03	The library was constructed using RNA isolated from the bladder tissue removed from an 80-year-old Caucasian female during a radical cystectomy and lymph node excision. Pathology for the associated tumor tissue indicated grade 3 invasive transitional cell carcinoma. Patient history included malignant neoplasm of the uterus, atherosclerosis, and atrial fibrillation. Family history included acute renal failure, osteoarthritis, and atherosclerosis.
31	PROSNOT14	The library was constructed using RNA isolated from diseased prostate tissue removed from a 60-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+4). The patient presented with elevated prostate specific antigen (PSA). Patient history included a kidney cyst and hematuria. Family history included benign hypertension, cerebrovascular disease, and arteriosclerotic coronary artery disease.

Table 4 (cont.)

Nucleotide SEQ ID NO:	Library	Library Description
32	BRSTTUT08	The library was constructed using RNA isolated from breast tumor tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology indicated invasive nuclear grade 2-3 adenocarcinoma, ductal type, with 3 of 23 lymph nodes positive for metastatic disease. Greater than 50% of the tumor volume was <i>in situ</i> , both comedo and non-comedo types. Immunostains were positive for estrogen/progesterone receptors, and uninvolved tissue showed proliferative changes. The patient concurrently underwent a total abdominal hysterectomy. Patient history included valvuloplasty of mitral valve without replacement, rheumatic mitral insufficiency, and rheumatic heart disease. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
33	PROSTUT12	The library was constructed using RNA isolated from prostate tumor tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated an adenocarcinoma (Gleason grade 2+2). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA).
34	HIPONON02	This normalized hippocampus library was constructed from 1.13M independent clones from a normal hippocampus library. RNA was isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. The normalization and hybridization conditions were adapted from Soares et al. (Proc. Natl. Acad. Sci. USA (1994) 91:9228).
35	ADRENTO9	The library was constructed using RNA isolated from left adrenal gland tissue removed from a 43-year-old Caucasian male during nephroureterectomy, regional lymph node excision, and unilateral left adrenalectomy. Pathology for the associated tumor tissue indicated a grade 2 renal cell carcinoma mass in the posterior lower pole of the left kidney with invasion into the renal pelvis.
36	LUNGTRUT13	The library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes.

Table 4 (cont.)

Nucleotide SEQ ID NO:	Library	Library Description
37	EPIGN0T01	The library was constructed using RNA isolated from epiglottic tissue removed from a 71-year-old male during laryngectomy with right parathyroid biopsy. Pathology for the associated tumor tissue indicated recurrent grade 1 papillary thyroid carcinoma.
38	HELATXT01	The library was constructed using RNA isolated from HeLa cells treated with TNF-a and IL-1b, 10ng/ml each for 20 hours. The HeLa cell line is derived from cervical adenocarcinoma removed from a 31-year-old Black female.
39	OVARNOT13	The library was constructed using RNA isolated from left ovary tissue removed from a 47-year-old Caucasian female during a vaginal hysterectomy with bilateral salpingo-oophorectomy, and dilation and curettage. Pathology for the associated tumor tissue indicated a single intramural leiomyoma. The endometrium was in the secretory phase. The patient presented with metrorrhagia. Patient history included hyperlipidemia and benign hypertension. Family history included colon cancer, benign hypertension, atherosclerotic coronary artery disease, and breast cancer.
40	TMLR3DT01	Library was constructed using RNA isolated from non-adherent and adherent peripheral blood mononuclear cells collected from two unrelated Caucasian male donors (25 and 29 years old). Cells from each donor were purified on Ficoll Hypaque, then cultured for 96 hours in medium containing normal human serum at a cell density of 2x10 ⁶ cells/ml. The non-adherent and adherent cell populations were pooled, washed once in PBS, lysed in a buffer containing GusCN, and spun through CsCl to obtain RNA.
41	BLADNOT06	Library was constructed using RNA isolated from the posterior wall bladder tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy and urinary diversion. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma on the anterior wall of the bladder and urothelium. Patient history included lung neoplasm, and tobacco abuse in remission. Family history included a malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer.

Table 4 (cont.)

Nucleotide SEQ ID NO:	Library	Library Description
42	BRAIN01	Library was constructed and normalized from 4.88 million independent clones from a brain library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.
43	HIPON02	This normalized hippocampus library was constructed from 1.13 million independent clones from a hippocampal library. RNA was isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91:9928).
44	ADREN07	Library was constructed using RNA isolated from adrenal tissue removed from a 61-year-old female during a bilateral adrenalectomy. Patient history included an unspecified disorder of the adrenal glands.
45	GBLANT01	Library was constructed using RNA isolated from diseased gallbladder tissue removed from a 53-year-old Caucasian female during a cholecystectomy. Pathology indicated mild chronic cholecystitis and cholelithiasis with approximately 150 mixed gallstones. Family history included benign hypertension.
46	KERAN02	Library was constructed using RNA isolated from epidermal breast keratinocytes (NHEK). NHEK (Clontech #CC-2501) is human breast keratinocyte cell line derived from a 30-year-old black female during breast-reduction surgery.
47	BLADTUT08	Library was constructed using RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma in the right bladder base. Patient history included pure hypercholesterolemia and tobacco abuse. Family history included myocardial infarction, cerebrovascular disease, brain cancer, and myocardial infarction.
48	BRSTTUT13	Library was constructed using RNA isolated from breast tumor tissue removed from the right breast of a 46-year-old Caucasian female during a unilateral extended simple mastectomy with breast reconstruction. Pathology indicated an invasive grade 3 adenocarcinoma, ductal type with apocrine features and greater than 50% intraductal component. Patient history included breast cancer.

Table 4 (cont.)

Nucleotide SEQ ID NO:	Library	Library Description
49	LUNGNOT31	Library was constructed using RNA isolated from right middle lobe lung tissue removed from a 63-year-old Caucasian male. Pathology for the associated tumor indicated grade 3 adenocarcinoma. Patient history included an abdominal aortic aneurysm, cardiac dysrhythmia, atherosclerotic coronary artery disease, hiatal hernia, chronic sinusitis, and lupus. Family history included acute myocardial infarction and atherosclerotic coronary artery disease.
50	NOSEDIT02	The library was constructed using RNA isolated from nasal polyp tissue.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	<i>ESTs:</i> Probability value= 1.0E-8 or less <i>Assembled ESTs:</i> fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value= 1.0E-8 or less <i>Full Length sequences:</i> Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, fastx, fastx, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	<i>ESTs:</i> fasta E value= 1.0E-6 <i>Assembled ESTs:</i> fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value= 1.0E-8 or less <i>Full Length sequences:</i> fastx score=100 or greater
BLIMPS	A BLOCKs IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Normalized quality score \geq GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	Score= 120 or greater; Match length= 56 or greater
Phrap	A Phred Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	Score=3.5 or greater
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <u>supra</u> , Wisconsin Package Program Manual, version 9, page M51-39, Genetics Computer Group, Madison, WI.	Score=3.5 or greater

What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
 - 5 a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-25,
 - b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-25,
 - c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25, and
- 10 d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-25.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-25.
- 15 3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide of claim 3 selected from the group consisting of SEQ ID NO:26-50.
- 20 5. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
6. A cell transformed with a recombinant polynucleotide of claim 5.
- 25 7. A transgenic organism comprising a recombinant polynucleotide of claim 5.
8. A method for producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said
- 30 cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
 - b) recovering the polypeptide so expressed.
- 35 9. An isolated antibody which specifically binds to a polypeptide of claim 1.

WO 00/68380

10. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- a polynucleotide sequence selected from the group consisting of SEQ ID NO:26-50,
- a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:26-50,
- a polynucleotide sequence complementary to a),
- a polynucleotide sequence complementary to b), and
- an RNA equivalent of a)-d).

10 11. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 10.

12. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:

- hybridizing the sample with a probe comprising at least 16 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and
- detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

13. A method of claim 12, wherein the probe comprises at least 30 contiguous nucleotides.

14. A method of claim 12, wherein the probe comprises at least 60 contiguous nucleotides.

25 15. A pharmaceutical composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

16. A method for treating a disease or condition associated with decreased expression of functional EXMAD, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 15.

30 17. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

- exposing a sample comprising a polypeptide of claim 1 to a compound, and

b) detecting agonist activity in the sample.

18. A pharmaceutical composition comprising an agonist compound identified by a method of claim 17 and a pharmaceutically acceptable excipient.

5

19. A method for treating a disease or condition associated with decreased expression of functional EXMAD, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 18.

10 20. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
- b) detecting antagonist activity in the sample.

15 21. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.

22. A method for treating a disease or condition associated with overexpression of functional EXMAD, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 21.

25 23. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 4, the method comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, and
- b) detecting altered expression of the target polynucleotide.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
 BANDMAN, Olga
 HILLMAN, Jennifer L.
 TANG, Y. Tom
 LAL, Preeti
 YUE, Henry
 BAUGHN, Mariah R.
 LU, Dyung Aina M.
 AZIMZAI, Yalda

<120> EXTRACELLULAR MATRIX AND ADHESION-ASSOCIATED PROTEINS

<130> PF-0693 PCT

<140> To Be Assigned
 <141> Herewith

<150> 60/133,643; 60/150,409
 <151> 1999-05-11; 1999-08-23

<160> 50

<170> PERL Program

<210> 1

<211> 309

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 398269CD1

<400> 1

Met	Val	Phe	Pro	Ala	Lys	Arg	Phe	Cys	Leu	Val	Pro	Ser	Met	Glu
1									10				15	
Gly	Val	Arg	Trp	Ala	Phe	Ser	Cys	Gly	Thr	Trp	Leu	Pro	Ser	Arg
									25				30	
Ala	Glu	Trp	Leu	Leu	Ala	Val	Arg	Ser	Ile	Gln	Pro	Glu	Glu	Lys
									40				45	
Glu	Arg	Ile	Gly	Gln	Phe	Val	Phe	Ala	Arg	Asp	Ala	Lys	Ala	Ala
									55				60	
Met	Ala	Gly	Arg	Leu	Met	Ile	Arg	Lys	Leu	Val	Ala	Glu	Lys	Leu
									70				75	
Asn	Ile	Pro	Trp	Asn	His	Ile	Arg	Leu	Gln	Arg	Thr	Ala	Lys	Gly
									85				90	
Lys	Pro	Val	Leu	Ala	Lys	Asp	Ser	Ser	Asn	Pro	Tyr	Pro	Asn	Phe
									100				105	
Asn	Phe	Asn	Ile	Ser	His	Gln	Gly	Asp	Tyr	Ala	Val	Leu	Ala	Ala
									115				120	
Glu	Pro	Glu	Leu	Gln	Val	Gly	Ile	Asp	Ile	Met	Lys	Thr	Ser	Phe
									130				135	
Pro	Gly	Arg	Gly	Ser	Ile	Pro	Glu	Phe	Phe	His	Ile	Met	Lys	Arg
									145				150	
Lys	Phe	Thr	Asn	Lys	Glu	Trp	Glu	Thr	Ile	Arg	Ser	Phe	Lys	Asp
									160				165	
Glu	Trp	Thr	Gln	Leu	Asp	Met	Phe	Tyr	Arg	Asn	Trp	Ala	Leu	Lys
									175				180	
Glu	Ser	Phe	Ile	Lys	Ala	Ile	Gly	Val	Gly	Leu	Gly	Phe	Glu	Leu
									190				195	
Gln	Arg	Leu	Glu	Phe	Asp	Leu	Ser	Pro	Leu	Asn	Leu	Asp	Ile	Gly
									205				210	
Gln	Val	Tyr	Lys	Glu	Thr	Arg	Leu	Phe	Leu	Asp	Gly	Glu	Glu	
									220				225	
Lys	Glu	Trp	Ala	Phe	Glu	Glu	Ser	Lys	Ile	Asp	Glu	His	His	Phe

Val Ala Val Ala	Leu Arg Lys Pro Asp	Gly Ser Arg His Gln	Asp
230	245	235	240
Val Pro Ser Gln Asp	Asp Ser Lys Pro	Thr Gln Arg Gln Phe	Thr
245	260	250	255
Ile Leu Asn Phe Asn Asp	Leu Met Ser	Ser Ala Val Pro Met	Thr
260	275	265	270
Pro Glu Asp Pro Ser	Phe Trp Asp Cys	Phe Cys Phe Thr Glu	Glu
275	290	280	285
Ile Pro Ile Arg Asn Gly	Thr Lys Ser	295	300
305			

<210> 2

<211> 554

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1258888CD1

<400> 2

Met Pro Leu Pro Trp	Ser Leu Ala Leu	Pro Leu Leu Leu	Ser Trp
1	5	10	15
Val Ala Gly Gly Phe	Gly Asn Ala Ala	Ser Ala Arg His His	Gly
20	25	30	
Leu Leu Ala Ser Ala	Arg Gln Pro Gly	Val Cys His Tyr Gly	Thr
35	40	45	
Lys Leu Ala Cys Cys	Tyr Gly Trp Arg	Arg Asn Ser Lys Gly	Val
50	55	60	
Cys Glu Ala Thr Cys	Glu Pro Gly Cys	Lys Phe Gly Glu Cys	Val
65	70	75	
Gly Pro Asn Lys Cys	Arg Cys Phe Pro	Gly Tyr Thr Gly Lys	Thr
80	85	90	
Cys Ser Gln Asp Val	Asn Glu Cys Gly	Met Lys Pro Arg Pro	Cys
95	100	105	
Gln His Arg Cys Val	Asn Thr His Gly	Ser Tyr Lys Cys Phe	Cys
110	115	120	
Leu Ser Gly His Met	Leu Met Pro Asp	Ala Thr Cys Val Asn	Ser
125	130	135	
Arg Thr Cys Ala Met	Ile Asn Cys Gln	Tyr Ser Cys Glu Asp	Thr
140	145	150	
Glu Glu Gly Pro Gln	Cys Leu Cys Pro	Ser Ser Gly Leu Arg	Leu
155	160	165	
Ala Pro Asn Gly Arg	Asp Cys Leu Asp	Ile Asp Glu Cys Ala	Ser
170	175	180	
Gly Lys Val Ile Cys	Pro Tyr Asn Arg	Arg Cys Val Asn Thr	Phe
185	190	195	
Gly Ser Tyr Tyr Cys	Lys Cys His Ile	Gly Phe Glu Leu Gln	Tyr
200	205	210	
Ile Ser Gly Arg Tyr	Asp Cys Ile Asp	Ile Asn Glu Cys Thr	Met
215	220	225	
Asp Ser His Thr Cys	Ser His His Ala	Asn Cys Phe Asn Thr	Gln
230	235	240	
Gly Ser Phe Lys Cys	Lys Cys Lys Gln	Gly Tyr Lys Gly Asn	Gly
245	250	255	
Leu Arg Cys Ser Ala	Ile Pro Glu Asn	Ser Val Lys Glu Val	Leu
260	265	270	
Arg Ala Pro Gly Thr	Ile Lys Asp Arg	Ile Lys Lys Leu Leu	Ala
275	280	285	
His Lys Asn Ser Met	Lys Lys Lys Ala	Ile Lys Asn Val	Thr
290	295	300	
Pro Glu Pro Thr Arg	Thr Pro Thr Pro	Lys Val Asn Leu Gln	Pro
305	310	315	
Phe Asn Tyr Glu Glu	Ile Val Ser Arg	Gly Gly Asn Ser His	Gly
320	325	330	
Gly Lys Lys Gly Asn	Glu Glu Lys Met	Lys Glu Gly Leu Glu	Asp
335	340	345	

WO 00/68380

Glu Lys Arg Glu Glu Lys Ala Leu Lys Asn Asp Ile Glu Glu Arg
 350 355 360
 Ser Leu Arg Gly Asp Val Phe Phe Pro Lys Val Asn Glu Ala Gly
 365 370 375
 Glu Phe Gly Leu Ile Leu Val Gln Arg Lys Ala Leu Thr Ser Lys
 380 385 390
 Leu Glu His Lys Ala Asp Leu Asn Ile Ser Val Asp Cys Ser Phe
 395 400 405
 Asn His Gly Ile Cys Asp Trp Lys Gln Asp Arg Glu Asp Asp Phe
 410 415 420
 Asp Trp Asn Pro Ala Asp Arg Asp Asn Ala Ile Gly Phe Tyr Met
 425 430 435
 Ala Val Pro Ala Leu Ala Gly His Lys Lys Asp Ile Gly Arg Leu
 440 445 450
 Lys Leu Leu Leu Pro Asp Leu Gln Pro Gln Ser Asn Phe Cys Leu
 455 460 465
 Leu Phe Asp Tyr Arg Leu Ala Gly Asp Lys Val Gly Lys Leu Arg
 470 475 480
 Val Phe Val Lys Asn Ser Asn Asn Ala Leu Ala Trp Glu Lys Thr
 485 490 495
 Thr Ser Glu Asp Glu Lys Trp Lys Thr Gly Lys Ile Gln Leu Tyr
 500 505 510
 Gln Gly Thr Asp Ala Thr Lys Ser Ile Ile Phe Glu Ala Glu Arg
 515 520 525
 Gly Lys Gly Lys Thr Gly Glu Ile Ala Val Asp Gly Val Leu Leu
 530 535 540
 Val Ser Gly Leu Cys Pro Asp Ser Leu Leu Ser Val Asp Asp
 545 550

<210> 3

<211> 482

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1375891CD1

<400> 3
 Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Phe Cys
 1 5 10 15
 Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg
 20 25 30
 Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala
 35 40 45
 Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu
 50 55 60
 Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro Ala Gly Pro Ile
 65 70 75
 Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg
 80 85 90
 Glu Thr Arg Ser Phe Thr Lys Thr Ser Pro Asn Phe Met Val Leu
 95 100 105
 Ile Ala Thr Ser Val Glu Thr Ser Ala Ala Ser Gly Ser Pro Glu
 110 115 120
 Gly Ala Gly Met Thr Thr Val Gln Thr Ile Thr Gly Ser Asp Pro
 125 130 135
 Glu Glu Ala Ile Phe Asp Thr Leu Cys Thr Asp Asp Ser Ser Glu
 140 145 150
 Glu Ala Lys Thr Leu Thr Met Asp Ile Leu Thr Leu Ala His Thr
 155 160 165
 Ser Thr Glu Ala Lys Gly Leu Ser Ser Glu Ser Ser Ala Ser Ser
 170 175 180
 Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser
 185 190 195
 Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg
 200 205 210
 Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile

215	220	225
Thr Pro Ser Trp Ser Pro Gly Ser Asp Val	Thr Leu Leu Ala Glu	
230	235	240
Ala Leu Val Thr Val Thr Asn Ile Glu Val	Ile Asn Cys Ser Ile	
245	250	255
Thr Glu Ile Glu Thr Thr Ser Ser Ile	Pro Gly Ala Ser Asp	
260	265	270
Ile Asp Leu Ile Pro Thr Glu Gly Val	Lys Ala Ser Ser Thr Ser	
275	280	285
Asp Pro Pro Ala Leu Pro Asp Ser Thr	Glu Ala Lys Pro His Ile	
290	295	300
Thr Glu Val Thr Ala Ser Ala Glu Thr	Leu Ser Thr Ala Gly Thr	
305	310	315
Thr Glu Ser Ala Ala Pro His Ala Thr	Val Gly Thr Pro Leu Pro	
320	325	330
Thr Asn Ser Ala Thr Glu Arg Glu Val	Thr Ala Pro Gly Ala Thr	
335	340	345
Thr Leu Ser Gly Ala Leu Val Thr Val	Ser Arg Asn Pro Leu Glu	
350	355	360
Glu Thr Ser Ala Leu Ser Val Glu Thr	Pro Ser Tyr Val Lys Val	
365	370	375
Ser Gly Ala Ala Pro Val Ser Ile Glu	Ala Gly Ser Ala Val Gly	
380	385	390
Lys Thr Thr Ser Phe Ala Gly Ser Ser	Ala Ser Ser Tyr Ser Pro	
395	400	405
Ser Glu Ala Ala Leu Lys Asn Phe Thr	Pro Ser Glu Thr Pro Thr	
410	415	420
Met Asp Ile Ala Thr Lys Gly Pro Phe	Pro Thr Ser Arg Asp Pro	
425	430	435
Leu Pro Ser Val Pro Pro Thr Thr Thr	Asn Ser Ser Arg Gly Thr	
440	445	450
Asn Ser Thr Leu Ala Lys Ile Thr Thr	Ser Ala Lys Thr Thr Met	
455	460	465
Lys Pro Gln Gln Pro Arg Pro Arg Leu	Pro Gly Arg Gly Arg Pro	
470	475	480
Gln Thr		

<210> 4
<211> 735
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1524355CD1

<400> 4		
Met Ala Ala Gly Gly Ala Val Ala Ala Ala Pro Glu Cys Arg Leu		
1 5 10 15		
Leu Pro Tyr Ala Leu His Lys Trp Ser Ser Phe Ser Ser Thr Tyr		
20 25 30		
Leu Pro Glu Asn Ile Leu Val Asp Lys Pro Asn Asp Gln Ser Ser		
35 40 45		
Arg Trp Ser Ser Glu Ser Asn Tyr Pro Pro Gln Tyr Leu Ile Leu		
50 55 60		
Lys Leu Glu Arg Pro Ala Ile Val Gln Asn Ile Thr Phe Gly Lys		
65 70 75		
Tyr Glu Lys Thr His Val Cys Asn Leu Lys Lys Phe Lys Val Phe		
80 85 90		
Gly Gly Met Asn Glu Glu Asn Met Thr Glu Leu Leu Ser Ser Gly		
95 100 105		
Leu Lys Asn Asp Tyr Asn Lys Glu Thr Phe Thr Leu Lys His Lys		
110 115 120		
Ile Asp Glu Gln Met Phe Pro Cys Arg Phe Ile Lys Ile Val Pro		
125 130 135		
Leu Leu Ser Trp Gly Pro Ser Phe Asn Phe Ser Ile Trp Tyr Val		
140 145 150		

WO 00/68380

Glu	Leu	Ser	Gly	Ile	Asp	Asp	Pro	Asp	Ile	Val	Gln	Pro	Cys	Leu
				155					160					165
Asn	Trp	Tyr	Ser	Lys	Tyr	Arg	Glu	Gln	Glu	Ala	Ile	Arg	Leu	Cys
				170					175					180
Leu	Lys	His	Phe	Arg	Gln	His	Asn	Tyr	Thr	Glu	Ala	Phe	Glu	Ser
				185					190					195
Leu	Gln	Lys	Lys	Thr	Lys	Ile	Ala	Leu	Glu	His	Pro	Met	Leu	Thr
				200					205					210
Asp	Ile	His	Asp	Lys	Leu	Val	Leu	Lys	Gly	Asp	Phe	Asp	Ala	Cys
				215					220					225
Glu	Glu	Leu	Ile	Glu	Lys	Ala	Val	Asn	Asp	Gly	Leu	Phe	Asn	Gln
				230					235					240
Tyr	Ile	Ser	Gln	Gln	Glu	Tyr	Lys	Pro	Arg	Trp	Ser	Gln	Ile	
				245					250					255
Pro	Lys	Ser	Thr	Lys	Gly	Asp	Gly	Glu	Asp	Asn	Arg	Pro	Gly	Met
				260					265					270
Arg	Gly	Gly	His	Gln	Met	Val	Ile	Asp	Val	Gln	Thr	Glu	Thr	Val
				275					280					285
Tyr	Leu	Phe	Gly	Gly	Trp	Asp	Gly	Thr	Gln	Asp	Leu	Ala	Asp	Phe
				290					295					300
Trp	Ala	Tyr	Ser	Val	Lys	Glu	Asn	Gln	Trp	Thr	Cys	Ile	Ser	Arg
				305					310					315
Asp	Thr	Glu	Lys	Glu	Asn	Gly	Pro	Ser	Ala	Arg	Ser	Cys	His	Lys
				320					325					330
Met	Cys	Ile	Asp	Ile	Gln	Arg	Arg	Gln	Ile	Tyr	Thr	Leu	Gly	Arg
				335					340					345
Tyr	Leu	Asp	Ser	Ser	Val	Arg	Asn	Ser	Lys	Ser	Leu	Lys	Ser	Asp
				350					355					360
Phe	Tyr	Arg	Tyr	Asp	Ile	Asp	Thr	Asn	Thr	Trp	Met	Leu	Leu	Ser
				365					370					375
Glu	Asp	Thr	Ala	Ala	Asp	Gly	Gly	Pro	Lys	Leu	Val	Phe	Asp	His
				380					385					390
Gln	Met	Cys	Met	Asp	Ser	Glu	Lys	His	Met	Ile	Tyr	Thr	Phe	Gly
				395					400					405
Gly	Arg	Ile	Leu	Thr	Cys	Asn	Gly	Ser	Val	Asp	Asp	Ser	Arg	Ala
				410					415					420
Ser	Glu	Pro	Gln	Phe	Ser	Gly	Leu	Phe	Ala	Phe	Asn	Cys	Gln	Cys
				425					430					435
Gln	Thr	Trp	Lys	Leu	Leu	Arg	Glu	Asp	Ser	Cys	Asn	Ala	Gly	Pro
				440					445					450
Glu	Asp	Ile	Gln	Ser	Arg	Ile	Gly	His	Cys	Met	Leu	Phe	His	Ser
				455					460					465
Lys	Asn	Arg	Cys	Leu	Tyr	Val	Phe	Gly	Gly	Gln	Arg	Ser	Lys	Thr
				470					475					480
Tyr	Leu	Asn	Asp	Phe	Phe	Ser	Tyr	Asp	Val	Asp	Ser	Asp	His	Val
				485					490					495
Asp	Ile	Ile	Ser	Asp	Gly	Thr	Lys	Lys	Asp	Ser	Gly	Met	Val	Pro
				500					505					510
Met	Thr	Gly	Phe	Thr	Gln	Arg	Ala	Thr	Ile	Asp	Pro	Glu	Leu	Asn
				515					520					525
Glu	Ile	His	Val	Leu	Ser	Gly	Leu	Ser	Lys	Asp	Lys	Glu	Lys	Arg
				530					535					540
Glu	Glu	Asn	Val	Arg	Asn	Ser	Phe	Trp	Ile	Tyr	Asp	Ile	Val	Arg
				545					550					555
Asn	Ser	Trp	Ser	Cys	Val	Tyr	Lys	Asn	Asp	Gln	Ala	Ala	Lys	Asp
				560					565					570
Asn	Pro	Thr	Lys	Ser	Leu	Gln	Glu	Glu	Pro	Cys	Pro	Arg	Phe	
				575					580					585
Ala	His	Gln	Leu	Val	Tyr	Asp	Glu	Leu	His	Lys	Val	His	Tyr	Leu
				590					595					600
Phe	Gly	Gly	Asn	Pro	Gly	Lys	Ser	Cys	Ser	Pro	Lys	Met	Arg	Leu
				605					610					615
Asp	Asp	Phe	Trp	Ser	Leu	Lys	Leu	Cys	Arg	Pro	Ser	Lys	Asp	Tyr
				620					625					630
Leu	Leu	Arg	His	Cys	Lys	Tyr	Leu	Ile	Arg	Lys	His	Arg	Phe	Glu
				635					640					645
Glu	Lys	Ala	Gln	Val	Asp	Pro	Leu	Ser	Ala	Leu	Lys	Tyr	Leu	Gln

Asn Asp Leu Tyr Ile Thr Val Asp His	650	Ser Asp Pro Glu Glu	655	660
665	670	Thr	675	
Lys Glu Phe Gln Leu Leu Ala Ser Ala	680	Leu Phe Lys Ser Gly	685	690
Asp Phe Thr Ala Leu Gly Phe Ser Asp	695	Val Asp His Thr Tyr	700	705
Gln Arg Thr Gln Leu Phe Asp Thr Leu	710	Ala Val Asn Phe Phe Pro	715	720
Ser Met Thr Pro Pro Lys Gly Asn Leu	725	Asp Leu Ile Thr Leu	730	735

<210> 5

<211> 424

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1598937CD1

<400> 5

Met Ala Pro Glu Glu Asp Ala Gly Gly	1	Glu Ala Leu Gly Gly Ser	5	10	15
Phe Trp Glu Ala Gly Asn Tyr Arg Arg	20	Thr Val Gln Arg Val Glu	25	30	
Asp Gly His Arg Leu Cys Gly Asp Leu	35	Val Ser Cys Phe Gln Glu	40	45	
Arg Ala Arg Ile Glu Lys Ala Tyr Ala	50	Gln Leu Ala Asp Trp	55	60	
Ala Arg Lys Trp Arg Gly Thr Val Glu	65	Lys Gly Pro Gln Tyr Gly	70	75	
Thr Leu Glu Lys Ala Trp His Ala Phe	80	Thr Ala Ala Glu Arg	85	90	
Leu Ser Ala Leu His Leu Glu Val Arg	95	Glu Lys Leu Gln Gly Gln	100	105	
Asp Ser Glu Arg Val Arg Ala Trp Gln	110	Arg Gly Ala Phe His Arg	115	120	
Pro Val Leu Gly Gly Phe Arg Glu Ser	125	Arg Ala Ala Glu Asp Gly	130	135	
Phe Arg Lys Ala Gln Lys Pro Trp Leu	140	Lys Arg Leu Lys Glu Val	145	150	
Glu Ala Ser Lys Lys Ser Tyr His Ala	155	Ala Arg Lys Asp Glu Lys	160	165	
Thr Ala Gln Thr Arg Glu Ser His Ala	170	Thr Ala Asp Ser Ala Val	175	180	
Ser Gln Glu Gln Leu Arg Lys Leu Gln	185	190	195		
Ala Lys Glu Ala Glu Lys Thr Lys Ala	200	Gln Tyr Glu Gln Thr Leu	205	210	
Ala Glu Leu His Arg Tyr Thr Pro Arg	215	220	225		
Gln Ala Phe Glu Thr Cys Gln Ala Ala	230	Glu Arg Gln Arg Leu Leu	235	240	
Phe Phe Lys Asp Met Leu Leu Thr Leu	245	His Gln His Leu Asp Leu	250	255	
Ser Ser Ser Glu Lys Phe His Glu Leu	260	255			
Gly Ile Glu Ala Ala Ser Asp Glu Glu	275	His Arg Asp Leu His Gln	265	270	
Ser Thr His Gly Pro Gly Met Ala Met	290	280	285		
Glu Trp Ser Leu Asp Thr Gln Arg Thr	305	Asn Trp Pro Gln Phe Glu	295	300	
Gly Gly Arg Ser Pro Asp Glu Val Thr	320	Ile Ser Arg Lys Glu Lys	310	315	
Thr Arg Asp Gly Thr Ala Pro Pro Pro	335	Leu Thr Ser Ile Val Pro	325	330	
		Gln Ser Pro Gly Ser Pro	340	345	

WO 00/68380

Gly	Thr	Gly	Gln	Asp	Glu	Glu	Trp	Ser	Asp	Glu	Glu	Ser	Pro	Arg
				350					355					360
Lys	Ala	Ala	Thr	Gly	Val	Arg	Val	Arg	Ala	Leu	Tyr	Asp	Tyr	Ala
				365					370					375
Gly	Gln	Glu	Ala	Asp	Glu	Leu	Ser	Phe	Arg	Ala	Gly	Glu	Leu	
				380					385					390
Leu	Lys	Met	Ser	Glu	Glu	Asp	Glu	Gln	Gly	Trp	Cys	Gln	Gly	Gln
				395					400					405
Leu	Gln	Ser	Gly	Arg	Ile	Gly	Leu	Tyr	Pro	Ala	Asn	Tyr	Val	Glu
				410					415					420

Cys Val Gly Ala

<210> 6

<211> 420

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1725801CD1

<400> 6

Met	Ala	Pro	Trp	Pro	Pro	Lys	Gly	Leu	Val	Pro	Ala	Val	Leu	Trp
										10				15
1														
Gly	Leu	Ser	Leu	Phe	Leu	Asn	Leu	Pro	Gly	Pro	Ile	Trp	Leu	Gln
										25				30
				20										
Pro	Ser	Pro	Pro	Pro	Gln	Ser	Ser	Pro	Pro	Pro	Gln	Pro	His	Pro
														45
35														
Cys	His	Thr	Cys	Arg	Gly	Leu	Val	Asp	Ser	Phe	Asn	Lys	Gly	Leu
											55			60
				50										
Glu	Arg	Thr	Ile	Arg	Asp	Asn	Phe	Gly	Gly	Gly	Asn	Thr	Ala	Trp
											70			75
65														
Glu	Glu	Glu	Asn	Leu	Ser	Lys	Tyr	Lys	Asp	Ser	Glu	Thr	Arg	Leu
											85			90
				80										
Val	Glu	Val	Leu	Glu	Gly	Val	Cys	Ser	Lys	Ser	Asp	Phe	Glu	Cys
											100			105
				95										
His	Arg	Leu	Leu	Glu	Leu	Ser	Glu	Glu	Leu	Val	Glu	Ser	Trp	Trp
											115			120
				110										
Phe	His	Lys	Gln	Gln	Glu	Ala	Pro	Asp	Leu	Phe	Gln	Trp	Leu	Cys
											130			135
				125										
Ser	Asp	Ser	Leu	Lys	Leu	Cys	Cys	Pro	Ala	Gly	Thr	Phe	Gly	Pro
											145			150
				140										
Ser	Cys	Leu	Pro	Cys	Pro	Gly	Gly	Thr	Glu	Arg	Pro	Cys	Gly	Gly
											160			165
				155										
Tyr	Gly	Gln	Cys	Glu	Gly	Glu	Gly	Thr	Arg	Gly	Gly	Ser	Gly	His
											175			180
				170										
Cys	Asp	Cys	Gln	Ala	Gly	Tyr	Gly	Gly	Glu	Ala	Cys	Gly	Gln	Cys
											190			195
				185										
Gly	Leu	Gly	Tyr	Phe	Glu	Ala	Glu	Arg	Asn	Ala	Ser	His	Leu	Val
											205			210
				200										
Cys	Ser	Ala	Cys	Phe	Gly	Pro	Cys	Ala	Arg	Cys	Ser	Gly	Pro	Glu
											220			225
				215										
Glu	Ser	Asn	Cys	Leu	Gln	Cys	Lys	Lys	Gly	Trp	Ala	Leu	His	His
											235			240
				230										
Leu	Lys	Cys	Val	Asp	Ile	Asp	Glu	Cys	Gly	Thr	Glu	Gly	Ala	Asn
											250			255
				245										
Cys	Gly	Ala	Asp	Gln	Phe	Cys	Val	Asn	Thr	Glu	Gly	Ser	Tyr	Glu
											265			270
				260										
Cys	Arg	Asp	Cys	Ala	Lys	Ala	Cys	Leu	Gly	Cys	Met	Gly	Ala	Gly
											280			285
				275										
Pro	Gly	Arg	Cys	Lys	Lys	Cys	Ser	Pro	Gly	Tyr	Gln	Gln	Val	Gly
											295			300
				290										
Ser	Lys	Cys	Leu	Asp	Val	Asp	Glu	Cys	Glu	Thr	Glu	Val	Cys	Pro
											310			315
				305										
Gly	Glu	Asn	Lys	Gln	Cys	Glu	Asn	Thr	Glu	Gly	Gly	Tyr	Arg	Cys
											325			330
				320										
Ile	Cys	Ala	Glu	Gly	Tyr	Lys	Gln	Met	Glu	Gly	Ile	Cys	Val	Lys

Glu Gln Ile Pro	335	Glu Ser Ala Gly Phe	340	Phe Ser Glu Met Thr	345
	350		355	Glu	
Asp Glu Leu Val	350	Leu Gln Gln Met	360	Phe Phe Gly Ile Ile	360
	365		370	Ile	375
Cys Ala Leu Ala	365	Thr Leu Ala Ala Lys	380	Gly Asp Leu Val Phe	385
	380		385	Thr	390
Ala Ile Phe Ile	380	Gly Ala Val Ala Ala	395	Met Thr Gly Tyr Trp	390
	395		400	Leu	405
Ser Glu Arg Ser	395	Asp Arg Val Leu Glu	410	Gly Phe Ile Lys Gly	415
	410			Arg	420

<210> 7

<211> 795

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1730482CD1

<400> 7

Met Glu Lys Thr Gln Ser Leu Pro Thr Arg	1	Pro Pro Thr Phe Pro	15
	5		
Pro Thr Ile Pro Pro Ala Lys Glu Val Cys	20	Lys Ala Ala Lys Ala	30
	25		
Asp Leu Val Phe Met Val Asp Gly Ser Trp	35	Ser Ile Gly Asp Glu	45
	40		
Asn Phe Asn Lys Ile Ile Ser Phe Leu Tyr	50	Ser Thr Val Gly Ala	60
	55		
Leu Asn Lys Ile Gly Thr Asp Gly Thr Gln	65	Val Ala Met Val Gln	75
	70		
Phe Thr Asp Asp Pro Arg Thr Glu Phe Lys	80	Leu Asn Ala Tyr Lys	90
	85		
Thr Lys Glu Thr Leu Leu Asp Ala Ile Lys	95	His Ile Ser Tyr Lys	105
	100		
Gly Gly Asn Thr Lys Thr Gly Lys Ala Ile	110	Lys Tyr Val Arg Asp	120
	115		
Thr Leu Phe Thr Ala Glu Ser Gly Thr Arg	125	Arg Gly Ile Pro Lys	135
	130		
Val Ile Val Val Ile Thr Asp Gly Arg Ser	140	Gln Asp Asp Val Asn	150
	145		
Lys Ile Ser Arg Glu Met Gln Leu Asp	155	Gly Tyr Ser Ile Phe Ala	165
	160		
Ile Gly Val Ala Asp Ala Asp Tyr Ser	170	Glu Leu Val Ser Ile Gly	180
	175		
Ser Lys Pro Ser Ala Arg His Val Phe	185	Phe Val Asp Asp Phe Asp	195
	190		
Ala Phe Lys Lys Ile Glu Asp Glu Leu	200	Ile Thr Phe Val Cys Glu	210
	205		
Thr Ala Ser Ala Thr Cys Pro Val Val	215	His Lys Asp Gly Ile Asp	225
	220		
Leu Ala Gly Phe Lys Met Met Glu Met	230	Phe Gly Leu Val Glu Lys	240
	235		
Asp Phe Ser Ser Val Glu Gly Val Ser	245	Met Glu Pro Gly Thr Phe	255
	250		
Asn Val Phe Pro Cys Tyr Gln Leu His	260	Lys Asp Ala Leu Val Ser	270
	265		
Gln Pro Thr Arg Tyr Leu His Pro Glu	275	Gly Leu Pro Ser Asp Tyr	285
	280		
Thr Ile Ser Phe Leu Phe Arg Ile Leu	290	Pro Asp Thr Pro Gln Glu	300
	295		
Pro Phe Ala Leu Trp Glu Ile Leu Asn	305	Lys Asn Ser Asp Pro Leu	315
	310		
Val Gly Val Ile Leu Asp Asn Gly Gly	320	Lys Thr Leu Thr Tyr Phe	330
	325		
Asn Tyr Asp Gln Ser Gly Asp Phe Gln	335	Thr Val Thr Phe Glu Gly	345
	340		

WO 00/68380

Pro	Glu	Ile	Arg	Lys	Ile	Phe	Tyr	Gly	Ser	Phe	His	Lys	Leu	His
				350					355					360
Ile	Val	Val	Ser	Glu	Thr	Leu	Val	Lys	Val	Val	Ile	Asp	Cys	Lys
				365					370					375
Gln	Val	Gly	Glu	Lys	Ala	Met	Asn	Ala	Ser	Ala	Asn	Ile	Thr	Ser
				380					385					390
Asp	Gly	Val	Glu	Val	Leu	Gly	Lys	Met	Val	Arg	Ser	Arg	Gly	Pro
				395					400					405
Gly	Gly	Asn	Ser	Ala	Pro	Phe	Gln	Leu	Gln	Met	Phe	Asp	Ile	Val
				410					415					420
Cys	Ser	Thr	Ser	Trp	Ala	Asn	Thr	Asp	Lys	Cys	Cys	Glu	Leu	Pro
				425					430					435
Gly	Leu	Arg	Asp	Asp	Glu	Ser	Cys	Pro	Asp	Leu	Pro	His	Ser	Cys
				440					445					450
Ser	Cys	Ser	Glu	Thr	Asn	Glu	Val	Ala	Leu	Gly	Pro	Ala	Gly	Pro
				455					460					465
Pro	Gly	Gly	Pro	Gly	Leu	Arg	Gly	Pro	Lys	Gly	Gln	Gln	Gly	Glu
				470					475					480
Pro	Gly	Pro	Lys	Gly	Pro	Asp	Gly	Pro	Arg	Gly	Glu	Ile	Gly	Leu
				485					490					495
Pro	Gly	Pro	Gln	Gly	Pro	Pro	Gly	Pro	Gln	Gly	Pro	Ser	Gly	Leu
				500					505					510
Ser	Ile	Gln	Gly	Met	Pro	Gly	Met	Pro	Gly	Glu	Lys	Gly	Glu	Lys
				515					520					525
Gly	Asp	Thr	Gly	Leu	Pro	Gly	Pro	Gln	Gly	Ile	Pro	Gly	Gly	Val
				530					535					540
Gly	Ser	Pro	Gly	Arg	Asp	Gly	Ser	Pro	Gly	Gln	Arg	Gly	Leu	Pro
				545					550					555
Gly	Lys	Asp	Gly	Ser	Ser	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Pro	Ile
				560					565					570
Gly	Ile	Pro	Gly	Thr	Pro	Gly	Val	Pro	Gly	Ile	Thr	Gly	Ser	Met
				575					580					585
Gly	Pro	Gln	Gly	Ala	Leu	Gly	Pro	Pro	Gly	Val	Pro	Gly	Ala	Lys
				590					595					600
Gly	Glu	Arg	Gly	Glu	Arg	Gly	Asp	Leu	Gln	Ser	Gln	Ala	Met	Val
				605					610					615
Arg	Ser	Val	Ala	Arg	Gln	Val	Cys	Glu	Gln	Leu	Ile	Gln	Ser	His
				620					625					630
Met	Ala	Arg	Tyr	Thr	Ala	Ile	Leu	Asn	Gln	Ile	Pro	Ser	His	Ser
				635					640					645
Ser	Ser	Ile	Arg	Thr	Val	Gln	Gly	Pro	Pro	Gly	Glu	Pro	Gly	Arg
				650					655					660
Pro	Gly	Ser	Pro	Gly	Ala	Pro	Gly	Glu	Gln	Gly	Pro	Pro	Gly	Thr
				665					670					675
Pro	Gly	Phe	Pro	Gly	Asn	Ala	Gly	Val	Pro	Gly	Thr	Pro	Gly	Glu
				680					685					690
Arg	Gly	Leu	Thr	Gly	Ile	Lys	Gly	Glu	Lys	Gly	Asn	Pro	Gly	Val
				695					700					705
Gly	Thr	Gln	Gly	Pro	Arg	Gly	Pro	Pro	Gly	Pro	Ala	Gly	Pro	Ser
				710					715					720
Gly	Glu	Ser	Arg	Pro	Gly	Ser	Pro	Gly	Pro	Pro	Gly	Ser	Pro	Gly
				725					730					735
Pro	Arg	Gly	Pro	Pro	Gly	His	Leu	Gly	Val	Pro	Gly	Pro	Gln	Gly
				740					745					750
Pro	Ser	Gly	Gln	Pro	Gly	Tyr	Cys	Asp	Pro	Ser	Ser	Cys	Ser	Ala
				755					760					765
Tyr	Gly	Val	Arg	Ala	Pro	His	Pro	Asp	Gln	Pro	Glu	Phe	Thr	Pro
				770					775					780
Val	Gln	Asp	Glu	Leu	Glu	Ala	Met	Glu	Leu	Trp	Gly	Pro	Gly	Val
				785					790					795

<210> 8
<211> 306
<212> PRT
<213> *Homo sapiens*

<220>
<221> misc_feature

<223> Incyte ID No: 1810058CD1

<400> 8

Met	Arg	Ile	Trp	Trp	Leu	Leu	Leu	Ala	Ile	Glu	Ile	Cys	Thr	Gly
1					5				10					15
Asn	Ile	Asn	Ser	Gln	Asp	Thr	Cys	Arg	Gln	Gly	His	Pro	Gly	Ile
					20				25					30
Pro	Gly	Asn	Pro	Gly	His	Asn	Gly	Leu	Pro	Gly	Arg	Asp	Gly	Arg
					35				40					45
Asp	Gly	Ala	Lys	Gly	Asp	Lys	Gly	Asp	Ala	Gly	Glu	Pro	Gly	Arg
					50				55					60
Pro	Gly	Ser	Pro	Gly	Lys	Asp	Gly	Thr	Ser	Gly	Glu	Lys	Gly	Glu
					65				70					75
Arg	Gly	Ala	Asp	Gly	Lys	Val	Glu	Ala	Lys	Gly	Ile	Lys	Gly	Asp
					80				85					90
Gln	Gly	Ser	Arg	Gly	Ser	Pro	Gly	Lys	His	Gly	Pro	Lys	Gly	Leu
					95				100					105
Ala	Gly	Pro	Met	Gly	Glu	Lys	Gly	Leu	Arg	Gly	Glu	Thr	Gly	Pro
					110				115					120
Gln	Gly	Gln	Lys	Gly	Asn	Lys	Gly	Asp	Val	Gly	Pro	Thr	Gly	Pro
					125				130					135
Glu	Gly	Pro	Arg	Gly	Asn	Ile	Gly	Pro	Leu	Gly	Pro	Thr	Gly	Leu
					140				145					150
Pro	Gly	Pro	Met	Gly	Pro	Ile	Gly	Lys	Pro	Gly	Pro	Lys	Gly	Glu
					155				160					165
Ala	Gly	Pro	Thr	Gly	Pro	Gln	Gly	Glu	Pro	Gly	Val	Arg	Gly	Ile
					170				175					180
Arg	Gly	Trp	Lys	Gly	Asp	Arg	Gly	Glu	Lys	Gly	Lys	Ile	Gly	Glu
					185				190					195
Thr	Leu	Val	Leu	Pro	Lys	Ser	Ala	Phe	Thr	Val	Gly	Leu	Thr	Val
					200				205					210
Leu	Ser	Lys	Phe	Pro	Ser	Ser	Asp	Val	Pro	Ile	Lys	Phe	Asp	Lys
					215				220					225
Ile	His	Ile	Thr	Val	Phe	Ser	Arg	Asn	Val	Gln	Val	Ser	Leu	Val
					230				235					240
Lys	Asn	Gly	Val	Lys	Ile	Leu	His	Thr	Arg	Asp	Ala	Tyr	Val	Ser
					245				250					255
Ser	Glu	Asp	Gln	Ala	Ser	Gly	Ser	Ile	Val	Leu	Gln	Leu	Lys	Leu
					260				265					270
Gly	Asp	Glu	Met	Trp	Leu	Gln	Val	Thr	Gly	Gly	Glu	Arg	Phe	Asn
					275				280					285
Gly	Leu	Phe	Ala	Asp	Glu	Asp	Asp	Asp	Thr	Thr	Phe	Thr	Gly	Phe
					290				295					300
Leu	Leu	Phe	Ser	Ser	Gln									
					305									

<210> 9

<211> 338

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2040679CD1

<400> 9

Met	Tyr	Val	Leu	Ser	Pro	Val	Glu	Phe	Ile	Ile	Leu	Gln	Leu	Leu
1					5				10					15
Phe	Ile	Gln	Ala	Ile	Ser	Ser	Ser	Leu	Lys	Gly	Phe	Leu	Ser	Ala
					20				25					30
Met	Arg	Leu	Ala	His	Arg	Gly	Cys	Asn	Val	Asp	Thr	Pro	Val	Ser
					35				40					45
Thr	Leu	Thr	Pro	Val	Lys	Thr	Ser	Glu	Phe	Glu	Asn	Phe	Lys	Thr
					50				55					60
Lys	Met	Val	Ile	Thr	Ser	Lys	Lys	Asp	Tyr	Pro	Leu	Ser	Lys	Asn
					65				70					75
Phe	Pro	Tyr	Ser	Leu	Glu	His	Leu	Gln	Thr	Ser	Tyr	Cys	Gly	Leu
					80				85					90

WO 00/68380

Val	Arg	Val	Asp	Met	Arg	Met	Leu	Cys	Leu	Lys	Ser	Leu	Arg	Lys
				95					100					105
Leu	Asp	Leu	Ser	His	Asn	His	Ile	Lys	Lys	Leu	Pro	Ala	Thr	Ile
				110					115					120
Gly	Asp	Leu	Ile	His	Leu	Gln	Glu	Leu	Asn	Leu	Asn	Asp	Asn	His
				125					130					135
Leu	Glu	Ser	Phe	Ser	Val	Ala	Leu	Cys	His	Ser	Thr	Leu	Gln	Lys
				140					145					150
Ser	Leu	Arg	Ser	Leu	Asp	Leu	Ser	Lys	Asn	Lys	Ile	Lys	Ala	Leu
				155					160					165
Pro	Val	Gln	Phe	Cys	Gln	Leu	Gln	Glu	Leu	Lys	Asn	Leu	Lys	Leu
				170					175					180
Asp	Asp	Asn	Glu	Leu	Ile	Gln	Phe	Pro	Cys	Lys	Ile	Gly	Gln	Leu
				185					190					195
Ile	Asn	Leu	Arg	Phe	Leu	Ser	Ala	Ala	Arg	Asn	Lys	Leu	Pro	Phe
				200					205					210
Leu	Pro	Ser	Glu	Phe	Arg	Asn	Leu	Ser	Leu	Glu	Tyr	Leu	Asp	Leu
				215					220					225
Phe	Gly	Asn	Thr	Phe	Glu	Gln	Pro	Lys	Val	Leu	Pro	Val	Ile	Lys
				230					235					240
Leu	Gln	Ala	Pro	Leu	Thr	Leu	Leu	Glu	Ser	Ser	Ala	Arg	Thr	Ile
				245					250					255
Leu	His	Asn	Arg	Ile	Pro	Tyr	Gly	Ser	His	Ile	Ile	Pro	Phe	His
				260					265					270
Leu	Cys	Gln	Asp	Leu	Asp	Thr	Ala	Lys	Ile	Cys	Val	Cys	Gly	Arg
				275					280					285
Phe	Cys	Leu	Asn	Ser	Phe	Ile	Gln	Gly	Thr	Thr	Thr	Met	Asn	Leu
				290					295					300
His	Ser	Val	Ala	His	Thr	Val	Val	Leu	Val	Asp	Asn	Leu	Gly	Gly
				305					310					315
Thr	Glu	Ala	Pro	Ile	Ile	Ser	Tyr	Phe	Cys	Ser	Leu	Gly	Cys	Tyr
				320					325					330
Val	Asn	Ser	Ser	Asp	Met	Leu	Lys							
				335										

<210> 10

<211> 164

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2960051CD1

<400> 10

Met	Lys	Ile	Ala	Val	Leu	Phe	Cys	Phe	Phe	Leu	Ile	Ile	Phe	
				5					10				15	
1														
Gln	Thr	Asp	Phe	Gly	Lys	Asn	Glu	Glu	Ile	Pro	Arg	Lys	Gln	Arg
				20					25					30
Arg	Lys	Ile	Tyr	His	Arg	Arg	Leu	Arg	Lys	Ser	Ser	Thr	Ser	His
				35					40					45
Lys	His	Arg	Ser	Asn	Arg	Gln	Leu	Gly	Ile	Pro	Gln	Thr	Thr	Val
				50					55					60
Phe	Thr	Pro	Val	Ala	Arg	Leu	Pro	Ile	Val	Asn	Phe	Tyr	Ser	
				65					70					75
Met	Glu	Glu	Lys	Phe	Glu	Ser	Phe	Ser	Phe	Pro	Gly	Val	Glu	
				80					85					90
Ser	Ser	Tyr	Asn	Val	Leu	Pro	Gly	Lys	Gly	His	Cys	Leu	Val	
				95					100					105
Lys	Gly	Ile	Thr	Met	Tyr	Asn	Lys	Ala	Val	Trp	Ser	Pro	Glu	Pro
				110					115					120
Cys	Thr	Thr	Cys	Leu	Cys	Ser	Asp	Gly	Arg	Val	Leu	Cys	Asp	Glu
				125					130					135
Thr	Met	Cys	His	Pro	Gln	Arg	Cys	Pro	Gln	Thr	Val	Ile	Pro	Glu
				140					145					150
Gly	Glu	Cys	Cys	Pro	Val	Cys	Ser	Ala	Thr	Gly	Thr	Glu	Ile	
				155					160					

<210> 11

WO 00/08360
 <211> 327
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3117318CD1

<400> 11
 Met Arg Ala Leu Pro Gly Leu Leu Glu Ala Arg Ala Arg Thr Pro
 1 5 10 15
 Arg Leu Leu Leu Gln Cys Leu Leu Ala Ala Ala Arg Pro Ser
 20 25 30
 Ser Ala Asp Gly Ser Ala Pro Asp Ser Ala Phe Thr Ser Pro Pro
 35 40 45
 Leu Arg Glu Glu Ile Met Ala Asn Asn Phe Ser Leu Glu Ser His
 50 55 60
 Asn Ile Ser Leu Thr Glu His Ser Ser Met Pro Val Glu Lys Asn
 65 70 75
 Ile Thr Leu Glu Arg Pro Ser Asn Val Asn Leu Thr Cys Gln Phe
 80 85 90
 Thr Thr Ser Gly Asp Leu Asn Ala Val Asn Val Thr Trp Lys Lys
 95 100 105
 Asp Gly Glu Gln Leu Glu Asn Asn Tyr Leu Val Ser Ala Thr Gly
 110 115 120
 Ser Thr Leu Tyr Thr Gln Tyr Arg Phe Thr Ile Ile Asn Ser Lys
 125 130 135
 Gln Met Gly Ser Tyr Ser Cys Phe Phe Arg Glu Glu Lys Glu Gln
 140 145 150
 Arg Gly Thr Phe Asn Phe Lys Val Pro Glu Leu His Gly Lys Asn
 155 160 165
 Lys Pro Leu Ile Ser Tyr Val Gly Asp Ser Thr Val Leu Thr Cys
 170 175 180
 Lys Cys Gln Asn Cys Phe Pro Leu Asn Trp Thr Trp Tyr Ser Ser
 185 190 195
 Asn Gly Ser Val Lys Val Pro Val Gly Val Gln Met Asn Lys Tyr
 200 205 210
 Val Ile Asn Gly Thr Tyr Ala Asn Glu Thr Lys Leu Lys Ile Thr
 215 220 225
 Gln Leu Leu Glu Glu Asp Gly Glu Ser Tyr Trp Cys Arg Ala Leu
 230 235 240
 Phe Gln Leu Gly Glu Ser Glu Glu His Ile Glu Leu Val Val Leu
 245 250 255
 Ser Tyr Leu Val Pro Leu Lys Pro Phe Leu Val Ile Val Ala Glu
 260 265 270
 Val Ile Leu Leu Val Ala Thr Ile Leu Leu Cys Glu Lys Tyr Thr
 275 280 285
 Gln Lys Lys Lys Lys His Ser Asp Glu Gly Lys Glu Phe Glu Gln
 290 295 300
 Ile Glu Gln Leu Lys Ser Asp Asp Ser Asn Gly Ile Glu Asn Asn
 305 310 315
 Val Pro Arg His Arg Lys Asn Glu Ser Leu Gly Gln
 320 325

<210> 12
 <211> 716
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3486992CD1

<400> 12
 Met Ala Arg Met Ser Phe Val Ile Ala Ala Cys Gln Leu Val Leu
 1 5 10 15
 Gly Leu Leu Met Thr Ser Leu Thr Glu Ser Ser Ile Gln Asn Ser
 20 25 30

WO 00/68380

Glu	Cys	Pro	Gln	Leu	Cys	Val	Cys	Glu	Ile	Arg	Pro	Trp	Phe	Thr
35								40						45
Pro	Gln	Ser	Thr	Tyr	Arg	Glu	Ala	Thr	Thr	Val	Asp	Cys	Asn	Asp
50									55					60
Leu	Arg	Leu	Thr	Arg	Ile	Pro	Ser	Asn	Leu	Ser	Ser	Asp	Thr	Gln
65									70					75
Val	Leu	Leu	Leu	Gln	Ser	Asn	Asn	Ile	Ala	Lys	Thr	Val	Asp	Glu
80									85					90
Leu	Gln	Gln	Leu	Phe	Asn	Leu	Thr	Glu	Leu	Asp	Phe	Ser	Gln	Asn
95									100					105
Asn	Phe	Thr	Asn	Ile	Lys	Glu	Val	Gly	Leu	Ala	Asn	Leu	Thr	Gln
110									115					120
Leu	Thr	Thr	Leu	His	Leu	Glu	Glu	Asn	Gln	Ile	Thr	Glu	Met	Thr
125									130					135
Asp	Tyr	Cys	Leu	Gln	Asp	Leu	Ser	Asn	Leu	Gln	Glu	Leu	Tyr	Ile
140									145					150
Asn	His	Asn	Gln	Ile	Ser	Thr	Ile	Ser	Ala	His	Ala	Phe	Ala	Gly
155									160					165
Leu	Lys	Asn	Leu	Leu	Arg	Leu	His	Leu	Asn	Ser	Asn	Lys	Leu	Lys
170									175					180
Val	Ile	Asp	Ser	Arg	Trp	Phe	Asp	Ser	Thr	Pro	Asn	Leu	Glu	Ile
185									190					195
Leu	Met	Ile	Gly	Glu	Asn	Pro	Val	Ile	Gly	Ile	Leu	Asp	Met	Asn
200									205					210
Phe	Lys	Pro	Leu	Ala	Asn	Leu	Arg	Ser	Leu	Val	Leu	Ala	Gly	Met
215									220					225
Tyr	Leu	Thr	Asp	Ile	Pro	Gly	Asn	Ala	Leu	Val	Gly	Leu	Asp	Ser
230									235					240
Leu	Glu	Ser	Leu	Ser	Phe	Tyr	Asp	Asn	Lys	Leu	Val	Lys	Val	Pro
245									250					255
Gln	Leu	Ala	Leu	Gln	Lys	Val	Pro	Asn	Leu	Lys	Phe	Leu	Asp	Leu
260									265					270
Asn	Lys	Asn	Pro	Ile	His	Lys	Ile	Gln	Glu	Gly	Asp	Phe	Lys	Asn
275									280					285
Met	Leu	Arg	Leu	Lys	Glu	Leu	Gly	Ile	Asn	Asn	Met	Gly	Glu	Leu
290									295					300
Val	Ser	Val	Asp	Arg	Tyr	Ala	Leu	Asp	Asn	Leu	Pro	Glu	Leu	Thr
305									310					315
Lys	Leu	Glu	Ala	Thr	Asn	Asn	Pro	Lys	Leu	Ser	Tyr	Ile	His	Arg
320									325					330
Leu	Ala	Phe	Arg	Ser	Val	Pro	Ala	Leu	Glu	Ser	Leu	Met	Leu	Asn
335									340					345
Asn	Asn	Ala	Leu	Asn	Ala	Ile	Tyr	Gln	Lys	Thr	Val	Glu	Ser	Leu
350									355					360
Pro	Asn	Leu	Arg	Glu	Ile	Ser	Ile	His	Ser	Asn	Pro	Leu	Arg	Cys
365									370					375
Asp	Cys	Val	Ile	His	Trp	Ile	Asn	Ser	Asn	Lys	Thr	Asn	Ile	Arg
380									385					390
Phe	Met	Glu	Pro	Leu	Ser	Met	Phe	Cys	Ala	Met	Pro	Pro	Glu	Tyr
395									400					405
Lys	Gly	His	Gln	Val	Lys	Glu	Val	Leu	Ile	Gln	Asp	Ser	Ser	Glu
410									415					420
Gln	Cys	Leu	Pro	Met	Ile	Ser	His	Asp	Ser	Phe	Pro	Asn	Arg	Leu
425									430					435
Asn	Val	Asp	Ile	Gly	Thr	Thr	Val	Phe	Leu	Asp	Cys	Arg	Ala	Met
440									445					450
Ala	Glu	Pro	Glu	Pro	Glu	Ile	Tyr	Trp	Val	Thr	Pro	Ile	Gly	Asn
455									460					465
Lys	Ile	Thr	Val	Glu	Thr	Leu	Ser	Asp	Lys	Tyr	Lys	Leu	Ser	Ser
470									475					480
Glu	Gly	Thr	Leu	Glu	Ile	Ser	Asn	Ile	Gln	Ile	Glu	Asp	Ser	Gly
485									490					495
Arg	Tyr	Thr	Cys	Val	Ala	Gln	Asn	Val	Gln	Gly	Ala	Asp	Thr	Arg
500									505					510
Val	Ala	Thr	Ile	Lys	Val	Asn	Gly	Thr	Leu	Leu	Asp	Gly	Thr	Gln
515									520					525
Val	Leu	Lys	Ile	Tyr	Val	Lys	Gln	Thr	Glu	Ser	His	Ser	Ile	Leu

530	535	540
Val Ser Trp Lys Val Asn Ser Asn Val Met Thr Ser Asn Leu Lys		
545	550	555
Trp Ser Ser Ala Thr Met Lys Ile Asp Asn Pro His Ile Thr Tyr		
560	565	570
Thr Ala Arg Val Pro Val Asp Val His Glu Tyr Asn Leu Thr His		
575	580	585
Leu Gln Pro Ser Thr Asp Tyr Glu Val Cys Leu Thr Val Ser Asn		
590	595	600
Ile His Gln Gln Thr Gln Lys Ser Cys Val Asn Val Thr Thr Lys		
605	610	615
Asn Ala Ala Phe Ala Val Asp Ile Ser Asp Gln Glu Thr Ser Thr		
620	625	630
Ala Leu Ala Ala Val Met Gly Ser Met Phe Ala Val Ile Ser Leu		
635	640	645
Ala Ser Ile Ala Val Tyr Phe Ala Lys Arg Phe Lys Arg Lys Asn		
650	655	660
Tyr His His Ser Leu Lys Lys Tyr Met Gln Lys Thr Ser Ser Ile		
665	670	675
Pro Leu Asn Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Gly		
680	685	690
Asp Ser Glu Lys Asp Lys Asp Gly Ser Ala Asp Thr Lys Pro Thr		
695	700	705
Gln Val Asp Thr Ser Arg Ser Tyr Tyr Met Trp		
710	715	

<210> 13

<211> 665

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4568384CD1

<400> 13

Met Val Leu Val Phe His Lys Gly Glu Leu Gly His Pro Leu Glu			
1	5	10	15
Gln Ser Thr Asp Trp Pro Lys Ser Pro Lys Thr Pro Thr Gly Leu			
20	25	30	
Arg Arg Gly Arg Gln Cys Ile Arg Pro Ala Glu Ile Val Ala Ser			
35	40	45	
Leu Leu Glu Gly Glu Glu Asn Thr Cys Gly Lys Gln Lys Pro Lys			
50	55	60	
Glu Asn Asn Leu Lys Pro Lys Phe Gln Ala Phe Lys Gly Val Gly			
65	70	75	
Cys Leu Tyr Glu Lys Glu Ser Met Lys Lys Ser Leu Lys Asp Ser			
80	85	90	
Val Ala Ser Asn Asn Lys Asp Gln Asn Ser Met Lys His Glu Asp			
95	100	105	
Pro Ser Ile Ile Ser Met Glu Asp Gly Ser Pro Tyr Val Asn Gly			
110	115	120	
Ser Leu Gly Glu Val Thr Pro Cys Gln His Ala Lys Lys Ala Asn			
125	130	135	
Gly Pro Asn Tyr Ile Gln Pro Gln Lys Arg Gln Thr Thr Phe Glu			
140	145	150	
Ser Gln Asp Arg Lys Ala Val Ser Pro Ser Ser Ser Glu Lys Arg			
155	160	165	
Ser Lys Asn Pro Ile Ser Arg Pro Leu Glu Gly Lys Lys Ser Leu			
170	175	180	
Ser Leu Ser Ala Lys Thr His Asn Ile Gly Phe Asp Lys Asp Ser			
185	190	195	
Cys His Ser Thr Thr Lys Thr Glu Ala Ser Gln Glu Glu Arg Ser			
200	205	210	
Asp Ser Ser Gly Leu Thr Ser Leu Lys Lys Ser Pro Lys Val Ser			
215	220	225	
Ser Lys Asp Thr Arg Glu Ile Lys Thr Asp Phe Ser Leu Ser Ile			
230	235	240	

WO 00/68380

Ser	Asn	Ser	Ser	Asp	Val	Ser	Ala	Lys	Asp	Lys	His	Ala	Glu	Asp
					245				250					255
Asn	Glu	Lys	Arg	Leu	Ala	Ala	Leu	Glu	Ala	Arg	Gln	Lys	Ala	Lys
					260				265					270
Glu	Val	Gln	Lys	Lys	Leu	Val	His	Asn	Ala	Leu	Ala	Asn	Leu	Asp
					275				280					285
Gly	His	Pro	Glu	Asp	Lys	Pro	Thr	His	Ile	Ile	Phe	Gly	Ser	Asp
					290				295					300
Ser	Glu	Cys	Glu	Thr	Glu	Glu	Thr	Ser	Thr	Gln	Glu	Gln	Ser	His
					305				310					315
Pro	Gly	Glu	Glu	Trp	Val	Lys	Glu	Ser	Met	Gly	Lys	Thr	Ser	Gly
					320				325					330
Lys	Leu	Phe	Asp	Ser	Ser	Asp	Asp	Asp	Glu	Ser	Asp	Ser	Glu	Asp
					335				340					345
Asp	Ser	Asn	Arg	Phe	Lys	Ile	Lys	Pro	Gln	Phe	Glu	Gly	Arg	Ala
					350				355					360
Gly	Gln	Lys	Leu	Met	Asp	Leu	Gln	Ser	His	Phe	Gly	Thr	Asp	Asp
					365				370					375
Arg	Phe	Arg	Met	Asp	Ser	Arg	Phe	Leu	Glu	Thr	Asp	Ser	Glu	Glu
					380				385					390
Glu	Gln	Glu	Glu	Val	Asn	Glu	Lys	Lys	Thr	Ala	Glu	Glu	Glu	Glu
					395				400					405
Leu	Ala	Glu	Glu	Lys	Lys	Lys	Ala	Leu	Asn	Val	Val	Gln	Ser	Val
					410				415					420
Leu	Gln	Ile	Asn	Leu	Ser	Asn	Ser	Thr	Asn	Arg	Gly	Ser	Val	Ala
					425				430					435
Ala	Lys	Lys	Phe	Lys	Asp	Ile	Ile	His	Tyr	Asp	Pro	Thr	Lys	Gln
					440				445					450
Asp	His	Ala	Thr	Tyr	Glu	Arg	Lys	Arg	Asp	Asp	Lys	Pro	Lys	Glu
					455				460					465
Ser	Lys	Ala	Lys	Arg	Lys	Lys	Lys	Arg	Glu	Glu	Ala	Glu	Lys	Leu
					470				475					480
Pro	Glu	Val	Ser	Lys	Glu	Met	Tyr	Tyr	Asn	Ile	Ala	Met	Asp	Leu
					485				490					495
Lys	Glu	Ile	Phe	Gln	Thr	Thr	Lys	Tyr	Thr	Ser	Glu	Lys	Glu	Glu
					500				505					510
Gly	Thr	Pro	Trp	Asn	Glu	Asp	Cys	Gly	Lys	Glu	Lys	Pro	Glu	Glu
					515				520					525
Ile	Gln	Asp	Pro	Ala	Ala	Leu	Thr	Ser	Asp	Ala	Glu	Gln	Pro	Ser
					530				535					540
Gly	Phe	Thr	Phe	Ser	Phe	Phe	Asp	Ser	Asp	Thr	Lys	Asp	Ile	Lys
					545				550					555
Glu	Glu	Thr	Tyr	Arg	Val	Glu	Thr	Val	Lys	Pro	Gly	Lys	Ile	Val
					560				565					570
Trp	Gln	Glu	Asp	Pro	Arg	Leu	Gln	Asp	Ser	Ser	Ser	Glu	Glu	Glu
					575				580					585
Asp	Val	Thr	Glu	Glu	Thr	Asp	His	Arg	Asn	Ser	Ser	Pro	Gly	Glu
					590				595					600
Ala	Ser	Leu	Leu	Glu	Lys	Glu	Thr	Thr	Arg	Phe	Phe	Phe	Phe	Ser
					605				610					615
Lys	Asn	Asp	Glu	Arg	Leu	Gln	Gly	Ser	Asp	Leu	Phe	Trp	Arg	Gly
					620				625					630
Val	Gly	Ser	Asn	Met	Ser	Arg	Asn	Ser	Trp	Glu	Ala	Arg	Thr	Thr
					635				640					645
Asn	Leu	Arg	Met	Asp	Cys	Arg	Lys	Lys	His	Lys	Asp	Ala	Lys	Arg
					650				655					660
Lys	Met	Lys	Pro	Lys										
					665									

<210> 14
<211> 547
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4586187CD1

<400> 14

Met	Tyr	Ser	His	Asn	Val	Val	Ile	Met	Asn	Leu	Asn	Asn	Leu	Asn
1				5				10						15
Leu	Thr	Gln	Val	Gln	Gln	Arg	Asn	Leu	Ile	Thr	Asn	Leu	Gln	Arg
				20				25						30
Ser	Val	Asp	Asp	Thr	Ser	Gln	Ala	Ile	Gln	Arg	Ile	Lys	Asn	Asp
				35				40						45
Phe	Gln	Asn	Leu	Gln	Gln	Val	Phe	Leu	Gln	Ala	Lys	Lys	Asp	Thr
				50				55						60
Asp	Trp	Leu	Lys	Glu	Lys	Val	Gln	Ser	Leu	Gln	Thr	Leu	Ala	Ala
				65				70						75
Asn	Asn	Ser	Ala	Leu	Ala	Lys	Ala	Asn	Asn	Asp	Thr	Leu	Glu	Asp
				80				85						90
Met	Asn	Ser	Gln	Leu	Asn	Ser	Phe	Thr	Gly	Gln	Met	Glu	Asn	Ile
				95				100						105
Thr	Thr	Ile	Ser	Gln	Ala	Asn	Glu	Gln	Asn	Leu	Lys	Asp	Leu	Gln
				110				115						120
Asp	Leu	His	Lys	Asp	Ala	Glu	Asn	Arg	Thr	Ala	Ile	Lys	Phe	Asn
				125				130						135
Gln	Leu	Glu	Glu	Arg	Phe	Gln	Leu	Phe	Glu	Thr	Asp	Ile	Val	Asn
				140				145						150
Ile	Ile	Ser	Asn	Ile	Ser	Tyr	Thr	Ala	His	His	Leu	Arg	Thr	Leu
				155				160						165
Thr	Ser	Asn	Leu	Asn	Glu	Val	Arg	Thr	Thr	Cys	Thr	Asp	Thr	Leu
				170				175						180
Thr	Lys	His	Thr	Asp	Asp	Leu	Thr	Ser	Leu	Asn	Asn	Thr	Leu	Ala
				185				190						195
Asn	Ile	Arg	Leu	Asp	Ser	Val	Ser	Leu	Arg	Met	Gln	Gln	Asp	Leu
				200				205						210
Met	Arg	Ser	Arg	Leu	Asp	Thr	Glu	Val	Ala	Asn	Leu	Ser	Val	Ile
				215				220						225
Met	Glu	Glu	Met	Lys	Leu	Val	Asp	Ser	Lys	His	Gly	Gln	Leu	Ile
				230				235						240
Lys	Asn	Phe	Thr	Ile	Leu	Gln	Gly	Pro	Pro	Gly	Pro	Arg	Gly	Pro
				245				250						255
Arg	Gly	Asp	Arg	Gly	Ser	Gln	Gly	Pro	Pro	Gly	Pro	Thr	Gly	Asn
				260				265						270
Lys	Gly	Gln	Lys	Gly	Glu	Lys	Gly	Glu	Pro	Gly	Pro	Pro	Gly	Pro
				275				280						285
Ala	Gly	Glu	Arg	Gly	Pro	Ile	Gly	Pro	Ala	Gly	Pro	Pro	Gly	Glu
				290				295						300
Arg	Gly	Gly	Lys	Gly	Ser	Lys	Gly	Ser	Gln	Gly	Pro	Lys	Gly	Ser
				305				310						315
Arg	Gly	Ser	Pro	Gly	Lys	Pro	Gly	Pro	Gln	Gly	Pro	Ser	Gly	Asp
				320				325						330
Pro	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Lys	Glu	Gly	Leu	Pro	Gly	Pro
				335				340						345
Gln	Gly	Pro	Pro	Gly	Phe	Gln	Gly	Leu	Gln	Gly	Thr	Val	Gly	Glu
				350				355						360
Pro	Gly	Val	Pro	Gly	Pro	Arg	Gly	Leu	Pro	Gly	Leu	Pro	Gly	Val
				365				370						375
Pro	Gly	Met	Pro	Gly	Pro	Lys	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Pro
				380				385						390
Ser	Gly	Ala	Val	Val	Pro	Leu	Ala	Leu	Gln	Asn	Glu	Pro	Thr	Pro
				395				400						405
Ala	Pro	Glu	Asp	Asn	Ser	Cys	Pro	Pro	His	Trp	Lys	Asn	Phe	Thr
				410				415						420
Asp	Lys	Cys	Tyr	Tyr	Phe	Ser	Val	Glu	Lys	Glu	Ile	Phe	Glu	Asp
				425				430						435
Ala	Lys	Leu	Phe	Cys	Glu	Asp	Lys	Ser	Ser	His	Leu	Val	Phe	Ile
				440				445						450
Asn	Thr	Arg	Glu	Glu	Gln	Gln	Trp	Ile	Lys	Lys	Gln	Met	Val	Gly
				455				460						465
Arg	Glu	Ser	His	Trp	Ile	Gly	Leu	Thr	Asp	Ser	Glu	Arg	Glu	Asn
				470				475						480
Glu	Trp	Lys	Trp	Leu	Asp	Gly	Thr	Ser	Pro	Asp	Tyr	Lys	Asn	Trp
				485				490						495

WO 00/68380

Lys	Ala	Gly	Gln	Pro	Asp	Asn	Trp	Gly	His	Gly	His	Gly	Pro	Gly
				500				505					510	
Glu	Asp	Cys	Ala		Gly	Leu	Ile	Tyr	Ala	Gly	Gln	Trp	Asn	Phe
					515				520				525	
Gln	Cys	Glu	Asp	Val	Asn	Asn	Phe	Ile	Cys	Glu	Lys	Asp	Arg	Glu
				530				535					540	
Thr	Val	Leu	Ser	Ser	Ala	Leu								
				545										

<210> 15

<211> 109

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 401801CD1

<400> 15

Met	Tyr	Phe	Asn	Leu	Gln	Glu	Asn	Ile	Phe	Met	Tyr	Gly	Gly	Arg
1				5					10				15	
Ile	Glu	Thr	Asn	Asp	Gly	Asn	Val	Thr	Asp	Glu	Leu	Trp	Val	Phe
				20					25				30	
Asn	Ile	His	Ser	Gln	Ser	Trp	Ser	Thr	Lys	Thr	Pro	Thr	Val	Leu
				35					40				45	
Gly	His	Gly	Gln	Gln	Tyr	Ala	Val	Glu	Gly	His	Ser	Ala	His	Ile
				50					55				60	
Met	Glu	Leu	Asp	Ser	Arg	Asp	Val	Val	Met	Ile	Ile	Ile	Phe	Gly
				65					70				75	
Tyr	Ser	Ala	Ile	Tyr	Gly	Tyr	Thr	Ser	Ser	Ile	Gln	Glu	Tyr	His
				80					85				90	
Ile	Cys	Glu	Leu	Leu	Lys	Asn	Cys	Asn	Phe	Phe	Ile	Asp	Trp	Glu
				95					100				105	
Cys	Phe	Ser	Leu											

<210> 16

<211> 192

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1721842CD1

<400> 16

Met	Asn	Lys	Arg	Asp	Tyr	Met	Asn	Thr	Ser	Val	Gln	Glu	Pro	Pro
1				5					10				15	
Leu	Asp	Tyr	Ser	Phe	Arg	Ser	Ile	His	Val	Ile	Gln	Asp	Leu	Val
				20					25				30	
Asn	Glu	Glu	Pro	Arg	Thr	Gly	Leu	Arg	Pro	Leu	Lys	Arg	Ser	Lys
				35					40				45	
Ser	Gly	Lys	Ser	Leu	Thr	Gln	Ser	Leu	Trp	Leu	Asn	Asn	Asn	Val
				50					55				60	
Leu	Asn	Asp	Leu	Arg	Asp	Phe	Asn	Gln	Val	Ala	Ser	Gln	Leu	Leu
				65					70				75	
Glu	His	Pro	Glu	Asn	Leu	Ala	Trp	Ile	Asp	Leu	Ser	Phe	Asn	Asp
				80					85				90	
Leu	Thr	Ser	Ile	Asp	Pro	Val	Leu	Thr	Thr	Phe	Phe	Asn	Leu	Ser
				95					100				105	
Val	Leu	Tyr	Leu	His	Gly	Asn	Ser	Ile	Gln	Arg	Leu	Gly	Glu	Val
				110					115				120	
Asn	Lys	Leu	Ala	Val	Leu	Pro	Arg	Leu	Arg	Ser	Leu	Thr	Leu	His
				125					130				135	
Gly	Asn	Pro	Met	Glu	Glu	Glu	Lys	Gly	Tyr	Arg	Gln	Tyr	Val	Leu
				140					145				150	
Cys	Thr	Leu	Ser	Arg	Ile	Thr	Thr	Phe	Asp	Phe	Ser	Gly	Val	Thr
				155					160				165	
Lys	Ala	Asp	Arg	Thr	Thr	Ala	Glu	Val	Trp	Lys	Arg	Met	Asn	Ile

	170	175	180
Lys Pro Lys Lys Ala Trp Thr Lys Gln Asn Thr Leu	185	190	
<210> 17			
<211> 575			
<212> PRT			
<213> Homo sapiens			
<220>			
<221> misc_feature			
<223> Incyte ID No: 1833221CD1			
<400> 17			
Met Val Leu Gly Ser Phe Gly Thr Asp Leu Met Arg Glu Arg Arg			
1 5 10 15			
Asp Leu Glu Arg Arg Thr Asp Ser Ser Ile Ser Asn Leu Met Asp			
20 25 30			
Tyr Ser His Arg Ser Gly Asp Phe Thr Thr Ser Ser Tyr Val Gln			
35 40 45			
Asp Arg Val Pro Ser Tyr Ser Gln Gly Ala Arg Pro Lys Glu Asn			
50 55 60			
Ser Met Ser Thr Leu Gln Leu Asn Thr Ser Ser Thr Asn His Gln			
65 70 75			
Leu Pro Ser Glu His Gln Thr Ile Leu Ser Ser Arg Asp Ser Arg			
80 85 90			
Asn Ser Leu Arg Ser Asn Phe Ser Ser Arg Glu Ser Glu Ser Ser			
95 100 105			
Arg Ser Asn Thr Gln Pro Gly Phe Ser Tyr Ser Ser Ser Arg Asp			
110 115 120			
Glu Ala Pro Ile Ile Ser Asn Ser Glu Arg Val Val Ser Ser Gln			
125 130 135			
Arg Pro Phe Gln Glu Ser Ser Asp Asn Glu Gly Arg Arg Thr Thr			
140 145 150			
Arg Arg Leu Leu Ser Arg Ile Ala Ser Ser Met Ser Ser Thr Phe			
155 160 165			
Phe Ser Arg Arg Ser Ser Gln Asp Ser Leu Asn Thr Arg Ser Leu			
170 175 180			
Asn Ser Glu Asn Ser Tyr Val Ser Pro Arg Ile Leu Thr Ala Ser			
185 190 195			
Gln Ser Arg Ser Asn Val Pro Ser Ala Ser Glu Val Pro Asp Asn			
200 205 210			
Arg Ala Ser Glu Ala Ser Gln Gly Phe Arg Phe Leu Arg Arg Arg			
215 220 225			
Trp Gly Leu Ser Ser Leu Ser His Asn His Ser Ser Glu Ser Asp			
230 235 240			
Ser Glu Asn Phe Asn Gln Glu Ser Glu Gly Arg Asn Thr Gly Pro			
245 250 255			
Trp Leu Ser Ser Ser Leu Arg Asn Arg Cys Thr Pro Leu Phe Ser			
260 265 270			
Arg Arg Arg Arg Glu Gly Arg Asp Glu Ser Ser Arg Ile Pro Thr			
275 280 285			
Ser Asp Thr Ser Ser Arg Ser His Ile Phe Arg Arg Glu Ser Asn			
290 295 300			
Glu Val Val His Leu Glu Ala Gln Asn Asp Pro Leu Gly Ala Ala			
305 310 315			
Ala Asn Arg Pro Gln Ala Ser Ala Ala Ser Ser Ser Ala Thr Thr			
320 325 330			
Gly Gly Ser Thr Ser Asp Ser Ala Gln Gly Gly Arg Asn Thr Gly			
335 340 345			
Ile Ser Gly Ile Leu Pro Gly Ser Leu Phe Arg Phe Ala Val Pro			
350 355 360			
Pro Ala Leu Gly Ser Asn Leu Thr Asp Asn Val Met Ile Thr Val			
365 370 375			
Asp Ile Ile Pro Ser Gly Trp Asn Ser Ala Asp Gly Lys Ser Asp			
380 385 390			
Lys Thr Lys Ser Ala Pro Ser Arg Asp Pro Glu Arg Leu Gln Lys			
395 400 405			

WO 00/68380

Ile	Lys	Glu	Ser	Leu	Leu	Leu	Glu	Asp	Ser	Glu	Glu	Glu	Glu	Gly
				410					415					420
Asp	Leu	Cys	Arg	Ile	Cys	Gln	Met	Ala	Ala	Ala	Ser	Ser	Ser	Asn
				425					430					435
Leu	Leu	Ile	Glu	Pro	Cys	Lys	Cys	Thr	Gly	Ser	Leu	Gln	Tyr	Val
				440					445					450
His	Gln	Asp	Cys	Met	Lys	Lys	Trp	Leu	Gln	Ala	Lys	Ile	Asn	Ser
				455					460					465
Gly	Ser	Ser	Leu	Glu	Ala	Val	Thr	Cys	Glu	Leu	Cys	Lys	Glu	
				470				475						480
Lys	Leu	Glu	Leu	Asn	Leu	Glu	Asp	Phe	Asp	Ile	His	Glu	Leu	His
				485				490						495
Arg	Ala	His	Ala	Asn	Glu	Gln	Ala	Glu	Tyr	Glu	Phe	Ile	Ser	Ser
				500					505					510
Gly	Leu	Tyr	Leu	Val	Val	Leu	Leu	His	Leu	Cys	Glu	Gln	Ser	Phe
				515					520					525
Ser	Asp	Met	Met	Gly	Asn	Thr	Asn	Glu	Pro	Ser	Thr	Arg	Val	Arg
				530				535						540
Phe	Ile	Asn	Leu	Ala	Arg	Thr	Leu	Gln	Ala	His	Met	Glu	Asp	Leu
				545				550						555
Glu	Thr	Ser	Glu	Asp	Asp	Ser	Glu	Glu	Asp	Gly	Asp	His	Asn	Arg
				560					565					570
Thr	Phe	Asp	Ile	Ala										
				575										

<210> 18

<211> 342

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2041168CD1

<400> 18

Met	Ala	Glu	Gly	Gly	Ser	Gly	Asp	Val	Asp	Asp	Ala	Gly	Asp	Cys
				5					10					15
1														
Ser	Gly	Ala	Arg	Tyr	Asn	Asp	Trp	Ser	Asp	Asp	Asp	Asp	Ser	
				20				25						30
Asn	Glu	Ser	Lys	Ser	Ile	Val	Trp	Tyr	Pro	Pro	Trp	Ala	Arg	Ile
				35				40						45
Gly	Thr	Glu	Ala	Gly	Thr	Arg	Ala	Arg	Ala	Arg	Ala	Arg	Ala	Arg
				50				55						60
Ala	Thr	Arg	Ala	Arg	Arg	Ala	Val	Gln	Lys	Arg	Ala	Ser	Pro	Asn
				65				70						75
Ser	Asp	Asp	Thr	Val	Leu	Ser	Pro	Gln	Glu	Leu	Gln	Lys	Val	Leu
				80				85						90
Cys	Leu	Val	Glu	Met	Ser	Glu	Lys	Pro	Tyr	Ile	Leu	Glu	Ala	Ala
				95				100						105
Leu	Ile	Ala	Leu	Gly	Asn	Asn	Ala	Ala	Tyr	Ala	Phe	Asn	Arg	Asp
				110				115						120
Ile	Ile	Arg	Asp	Leu	Gly	Gly	Leu	Pro	Ile	Val	Ala	Lys	Ile	Leu
				125				130						135
Asn	Thr	Arg	Asp	Pro	Ile	Val	Lys	Glu	Lys	Ala	Leu	Ile	Val	Leu
				140				145						150
Asn	Asn	Leu	Ser	Val	Asn	Ala	Glu	Asn	Gln	Arg	Arg	Leu	Lys	Val
				155				160						165
Tyr	Met	Asn	Gln	Val	Cys	Asp	Asp	Thr	Ile	Thr	Ser	Arg	Leu	Asn
				170				175						180
Ser	Ser	Val	Gln	Leu	Ala	Gly	Leu	Arg	Leu	Leu	Thr	Asn	Met	Thr
				185				190						195
Val	Thr	Asn	Glu	Tyr	Gln	His	Met	Leu	Ala	Asn	Ser	Ile	Ser	Asp
				200				205						210
Phe	Phe	Arg	Leu	Phe	Ser	Ala	Gly	Asn	Glu	Glu	Thr	Lys	Leu	Gln
				215				220						225
Val	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ala	Glu	Asn	Pro	Ala	Met	Thr
				230				235						240
Arg	Glu	Leu	Leu	Arg	Ala	Gln	Val	Pro	Ser	Ser	Leu	Gly	Ser	Leu

Phe Asn Lys Lys	245	Glu Asn Lys Glu Val	250	Ile Leu Lys Leu Leu Val	255
	260		265		270
Ile Phe Glu Asn	275	Ile Asn Asp Asn Phe	Lys Trp Glu Glu Asn Glu		285
Pro Thr Gln Asn	290	Gln Phe Gly Glu Gly	Ser Leu Phe Phe Phe Leu		300
Lys Glu Phe Gln	295	Val Cys Ala Asp Lys	Val Leu Gly Ile Glu Ser		315
His His Asp Phe	305	Leu Val Lys Val Lys	310	Val Gly Lys Phe Met Ala	
Lys Leu Ala Glu	320	His Met Phe Pro Lys	325	330	
	335	Ser Gln Glu	340		

<210> 19
<211> 110
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2365794CD1

<400> 19					
Met Ala Ala Val Val	1	Ala Lys Arg Glu Gly	Pro Pro Phe Ile Ser		
	5		10		15
Glu Ala Ala Val Arg	20	Gly Asn Ala Ala Val	Leu Asp Tyr Cys Arg		
			25		30
Thr Ser Val Ser Ala	35	Leu Ser Gly Ala	Thr Ala Gly Ile Leu Gly		
			40		45
Leu Thr Gly Leu Tyr	50	Gly Phe Ile Phe Tyr	Leu Leu Ala Ser Val		
			55		60
Leu Leu Ser Leu Leu	65	Ile Leu Lys Ala	Gly Arg Arg Trp Asn		
			70		75
Lys Tyr Phe Lys Ser	80	Arg Arg Pro Leu Phe	Thr Gly Gly Leu Ile		
			85		90
Gly Gly Leu Phe Thr	95	Tyr Val Leu Phe Trp	Thr Phe Leu Tyr Gly		
			100		105
Met Val His Val Tyr					
	110				

<210> 20
<211> 571
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2618452CD1

<400> 20					
Met Pro Thr Gly Thr	1	Ile Pro Pro Pro Thr	Thr Leu Lys Ala Thr		
	5		10		15
Gly Ser Thr His Thr	20	Ala Pro Pro Met Met	Pro Thr Thr Ser Gly		
			25		30
Thr Ser Gln Ala Ser	35	Ser Ser Phe Asn	Thr Ala Lys Thr Ser Thr		
			40		45
Ser Leu His Ser His	50	Thr Ser Ser Thr His	His His Pro Glu Val Thr		
			55		60
Pro Thr Ser Ile Thr	65	Asn Ile Thr Leu Asn	Pro Thr Ser Ile Gly		
			70		75
Thr Trp Thr Pro Val	80	Ala His Thr Thr Ser	Ala Thr Ser Ser Arg		
			85		90
Leu Thr Thr Pro Phe	95	Thr His Ser Pro	Pro Pro Thr Gly Ser Ser		
			100		105
Pro Ile Ser Ser Thr	110	Gly Pro Met Thr	Ala Thr Ser Phe Gln Thr		
			115		120
Thr Thr Tyr Tyr Thr	125	Pro Pro Ser His	Pro Gln Thr Thr Leu Pro		
			130		135

WO 00/68380

Thr	His	Val	Pro	Pro	Phe	Ser	Thr	Ser	Leu	Val	Thr	Pro	Ser	Thr
					140				145					150
His	Thr	Val	Ile	Ile	Thr	Thr	His	Thr	Gln	Met	Ala	Thr	Ser	Ala
					155				160					165
Ser	Ile	His	Ser	Thr	Pro	Thr	Gly	Thr	Val	Pro	Pro	Pro	Thr	
					170				175					180
Leu	Lys	Ala	Thr	Gly	Ser	Thr	His	Thr	Ala	Pro	Pro	Met	Thr	Val
					185				190					195
Thr	Thr	Ser	Gly	Thr	Ser	Gln	Thr	His	Ser	Ser	Phe	Ser	Thr	Ala
					200				205					210
Thr	Ala	Ser	Ser	Ser	Phe	Ile	Ser	Ser	Ser	Ser	Trp	Ser	Ser	Trp
					215				220					225
Leu	Pro	Gln	Asn	Ser	Ser	Ser	Arg	Pro	Pro	Ser	Ser	Pro	Ile	Thr
					230				235					240
Thr	Gln	Leu	Pro	His	Leu	Ser	Ser	Ala	Thr	Thr	Pro	Val	Ser	Thr
					245				250					255
Thr	Asn	Gln	Leu	Ser	Ser	Ser	Phe	Ser	Pro	Ser	Pro	Ser	Ala	Pro
					260				265					270
Ser	Thr	Val	Ser	Ser	Tyr	Val	Pro	Ser	Ser	His	Ser	Ser	Pro	Gln
					275				280					285
Thr	Ser	Ser	Pro	Ser	Val	Gly	Thr	Ser	Ser	Ser	Phe	Val	Ser	Ala
					290				295					300
Pro	Val	His	Ser	Thr	Thr	Leu	Ser	Ser	Gly	Ser	His	Ser	Ser	Leu
					305				310					315
Ser	Thr	His	Pro	Thr	Thr	Ala	Ser	Val	Ser	Ala	Ser	Pro	Leu	Phe
					320				325					330
Pro	Ser	Ser	Pro	Ala	Ala	Ser	Thr	Thr	Ile	Arg	Ala	Thr	Leu	Pro
					335				340					345
His	Thr	Ile	Ser	Ser	Pro	Phe	Thr	Leu	Ser	Ala	Leu	Leu	Pro	Ile
					350				355					360
Ser	Thr	Val	Thr	Val	Ser	Pro	Thr	Pro	Ser	Ser	His	Leu	Ala	Ser
					365				370					375
Ser	Thr	Ile	Ala	Phe	Pro	Ser	Thr	Pro	Arg	Thr	Thr	Ala	Ser	Thr
					380				385					390
His	Thr	Ala	Pro	Ala	Phe	Ser	Ser	Gln	Ser	Thr	Thr	Ser	Arg	Ser
					395				400					405
Thr	Ser	Leu	Thr	Thr	Arg	Val	Pro	Thr	Ser	Gly	Phe	Val	Ser	Leu
					410				415					420
Thr	Ser	Gly	Val	Thr	Gly	Ile	Pro	Thr	Ser	Pro	Val	Thr	Asn	Leu
					425				430					435
Thr	Thr	Arg	His	Pro	Gly	Pro	Thr	Leu	Ser	Pro	Thr	Thr	Arg	Phe
					440				445					450
Leu	Thr	Ser	Ser	Leu	Thr	Ala	His	Gly	Ser	Thr	Pro	Ala	Ser	Ala
					455				460					465
Pro	Val	Ser	Ser	Leu	Gly	Thr	Pro	Thr	Pro	Thr	Ser	Pro	Gly	Val
					470				475					480
Cys	Ser	Val	Arg	Glu	Gln	Gln	Glu	Glu	Ile	Thr	Phe	Lys	Gly	Cys
					485				490					495
Met	Ala	Asn	Val	Thr	Val	Thr	Arg	Cys	Glu	Gly	Ala	Cys	Ile	Ser
					500				505					510
Ala	Ala	Ser	Phe	Asn	Ile	Ile	Thr	Gln	Gln	Val	Asp	Ala	Arg	Cys
					515				520					525
Ser	Cys	Cys	Arg	Pro	Leu	His	Ser	Tyr	Glu	Gln	Gln	Leu	Glu	Leu
					530				535					540
Pro	Cys	Pro	Asp	Pro	Ser	Thr	Pro	Gly	Arg	Arg	Leu	Val	Leu	Thr
					545				550					555
Leu	Gln	Val	Phe	Ser	His	Cys	Val	Cys	Ser	Ser	Val	Ala	Cys	Gly
					560				565					570

Asp

<210> 21

<211> 262

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2622288CD1

<400> 21

Met Val Ala Trp Arg Ser Ala Phe Leu Val Cys Leu Ala Phe Ser		
1 5 10 15		
Leu Ala Thr Leu Val Gln Arg Gly Ser Gly Asp Phe Asp Asp Phe		
20 25 30		
Asn Leu Glu Asp Ala Val Lys Glu Thr Ser Ser Val Lys Gln Pro		
35 40 45		
Trp Asp His Thr Thr Thr Thr Asn Arg Pro Gly Thr Thr		
50 55 60		
Arg Ala Pro Ala Lys Pro Pro Gly Ser Gly Leu Asp Leu Ala Asp		
65 70 75		
Ala Leu Asp Asp Gln Asp Asp Gly Arg Arg Lys Pro Gly Ile Gly		
80 85 90		
Gly Arg Glu Arg Trp Asn His Val Thr Thr Thr Lys Arg Pro		
95 100 105		
Val Thr Thr Arg Ala Pro Ala Asn Thr Leu Gly Asn Asp Phe Asp		
110 115 120		
Leu Ala Asp Ala Leu Asp Asp Arg Asn Asp Arg Asp Asp Gly Arg		
125 130 135		
Arg Lys Pro Ile Ala Gly Gly Gly Phe Ser Asp Lys Asp Leu		
140 145 150		
Glu Asp Ile Val Gly Gly Glu Tyr Lys Pro Asp Lys Gly Lys		
155 160 165		
Gly Asp Gly Arg Tyr Gly Ser Asn Asp Asp Pro Gly Ser Gly Met		
170 175 180		
Val Ala Glu Pro Gly Thr Ile Ala Gly Val Ala Ser Ala Leu Ala		
185 190 195		
Met Ala Leu Ile Gly Ala Val Ser Ser Tyr Ile Ser Tyr Gln Gln		
200 205 210		
Lys Lys Phe Cys Phe Ser Ile Gln Gln Gly Leu Asn Ala Asp Tyr		
215 220 225		
Val Lys Gly Glu Asn Leu Glu Ala Val Val Cys Glu Glu Pro Gln		
230 235 240		
Val Lys Tyr Ser Thr Leu His Thr Gln Ser Ala Glu Pro Pro Pro		
245 250 255		
Pro Pro Glu Pro Ala Arg Ile		
260		

<210> 22

<211> 172

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2806595CD1

<400> 22

Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser		
1 5 10 15		
Tyr Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala		
20 25 30		
Asn Asp Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn		
35 40 45		
Gly Val Lys Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr		
50 55 60		
Tyr Gln Gly Ala Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu		
65 70 75		
Pro Ala Leu Val Ser Pro Arg Arg Val Arg Val Lys Trp Trp Lys		
80 85 90		
Leu Ser Glu Asn Gly Ala Pro Glu Lys Asp Val Leu Val Ala Ile		
95 100 105		
Gly Leu Arg His Arg Ser Phe Gly Asp Tyr Gln Gly Arg Val His		
110 115 120		
Leu Arg Gln Asp Lys Glu His Asp Val Ser Leu Glu Ile Gln Asp		
125 130 135		
Leu Arg Leu Glu Asp Tyr Gly Arg Tyr Arg Cys Glu Val Ile Asp		
140 145 150		

WO 00/68380

Gly Leu Glu Asp Glu Ser Gly Leu Val Glu Leu Glu Leu Arg Gly
 155 160 165
 Glu Met Leu Thr Gly Thr Gly
 170
 <210> 23
 <211> 571
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2850987CD1

<400> 23
 Met Thr Arg Ala Gly Asp His Asn Arg Gln Arg Gly Cys Cys Gly
 1 5 10 15
 Ser Leu Ala Asp Tyr Leu Thr Ser Ala Lys Phe Leu Leu Tyr Leu
 20 25 30
 Gly His Ser Leu Ser Thr Trp Gly Asp Arg Met Trp His Phe Ala
 35 40 45
 Val Ser Val Phe Leu Val Glu Leu Tyr Gly Asn Ser Leu Leu Leu
 50 55 60
 Thr Ala Val Tyr Gly Leu Val Val Ala Gly Ser Val Leu Val Leu
 65 70 75
 Gly Ala Ile Ile Gly Asp Trp Val Asp Lys Asn Ala Arg Leu Lys
 80 85 90
 Val Ala Gln Thr Ser Leu Val Val Gln Asn Val Ser Val Ile Leu
 95 100 105
 Cys Gly Ile Ile Leu Met Met Val Phe Leu His Lys His Glu Leu
 110 115 120
 Leu Thr Met Tyr His Gly Trp Val Leu Thr Ser Cys Tyr Ile Leu
 125 130 135
 Ile Ile Thr Ile Ala Asn Ile Ala Asn Leu Ala Ser Thr Ala Thr
 140 145 150
 Ala Ile Thr Ile Gln Arg Asp Trp Ile Val Val Val Ala Gly Glu
 155 160 165
 Asp Arg Ser Lys Leu Ala Asn Met Asn Ala Thr Ile Arg Arg Ile
 170 175 180
 Asp Gln Leu Thr Asn Ile Leu Ala Pro Met Ala Val Gly Gln Ile
 185 190 195
 Met Thr Phe Gly Ser Pro Val Ile Gly Cys Gly Phe Ile Ser Gly
 200 205 210
 Trp Asn Leu Val Ser Met Cys Val Glu Tyr Val Leu Leu Trp Lys
 215 220 225
 Val Tyr Gln Lys Thr Pro Ala Leu Ala Val Lys Ala Gly Leu Lys
 230 235 240
 Glu Glu Glu Thr Glu Leu Lys Gln Leu Asn Leu His Lys Asp Thr
 245 250 255
 Glu Pro Lys Pro Leu Glu Gly Thr His Leu Met Gly Val Lys Asp
 260 265 270
 Ser Asn Ile His Glu Leu Glu His Glu Gln Glu Pro Thr Cys Ala
 275 280 285
 Ser Gln Met Ala Glu Pro Phe Arg Thr Phe Arg Asp Gly Trp Val
 290 295 300
 Ser Tyr Tyr Asn Gln Pro Val Phe Leu Ala Gly Met Gly Leu Ala
 305 310 315
 Phe Leu Tyr Met Thr Val Leu Gly Phe Asp Cys Ile Thr Thr Gly
 320 325 330
 Tyr Ala Tyr Thr Gln Gly Leu Ser Gly Ser Ile Leu Ser Ile Leu
 335 340 345
 Met Gly Ala Ser Ala Ile Thr Gly Ile Met Gly Thr Val Ala Phe
 350 355 360
 Thr Trp Leu Arg Arg Lys Cys Gly Leu Val Arg Thr Gly Leu Ile
 365 370 375
 Ser Gly Leu Ala Gln Leu Ser Cys Leu Ile Leu Cys Val Ile Ser
 380 385 390
 Val Phe Met Pro Gly Ser Pro Leu Asp Leu Ser Val Ser Pro Phe

Glu Asp Ile Arg Ser Arg Phe Ile Gln Gly Glu Ser Ile Thr Pro	395	400	405
410	415	420	
Thr Lys Ile Pro Glu Ile Thr Thr Glu Ile Tyr Met Ser Asn Gly	425	430	435
440	445	450	
Ser Asn Ser Ala Asn Ile Val Pro Glu Thr Ser Pro Glu Ser Val	455	460	465
470	475	480	
Pro Ile Ile Ser Val Ser Leu Leu Phe Ala Gly Val Ile Ala Ala	485	490	495
Arg Ile Gly Leu Trp Ser Phe Asp Leu Thr Val Thr Gin Leu Leu	500	505	510
Gln Glu Asn Val Ile Glu Ser Glu Arg Gly Ile Ile Asn Gly Val	515	520	525
Ile Ser Val Ser Phe Val Ala Met Gly His Ile Met Tyr Phe Arg	530	535	540
Phe Ala Gln Asn Thr Leu Gly Asn Lys Leu Phe Ala Cys Gly Pro	545	550	555
Asp Ala Lys Glu Val Arg Lys Glu Asn Gln Ala Asn Thr Ser Val	560	565	570

Val

<210> 24

<211> 455

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3557211CD1

<400> 24

Met Asp Pro Thr Gly Asn Ser Ala Thr Pro Gln Ile Leu Glu Leu	1	5	10	15
Lys Trp Ser His Ile Glu Trp Ser Gln Thr Glu Tyr Ile Cys Glu	20	25	30	
Asn Val Gly Leu Leu Pro Leu Glu Ile Ile Arg Arg Gly Tyr Ser	35	40	45	
Met Asp Ser Ala Phe Val Gly Ile Lys Val Asn Gln Val Ser Ala	50	55	60	
Ala Val Gly Lys Asp Phe Thr Val Ile Pro Ser Lys Leu Ile Gln	65	70	75	
Phe Asp Pro Gly Met Ser Thr Lys Met Trp Asn Ile Ala Ile Thr	80	85	90	
Tyr Asp Gly Leu Glu Glu Asp Asp Glu Val Phe Glu Val Ile Leu	95	100	105	
Asn Ser Pro Val Asn Ala Val Leu Gly Thr Lys Thr Lys Ala Ala	110	115	120	
Val Lys Ile Leu Asp Ser Lys Gly Gly Gln Cys His Pro Ser Tyr	125	130	135	
Ser Ser Asn Gln Ser Lys His Ser Thr Trp Glu Lys Gly Ile Trp	140	145	150	
His Leu Leu Pro Pro Gly Ser Ser Ser Ser Thr Thr Ser Gly Ser	155	160	165	
Phe His Leu Glu Arg Arg Pro Leu Pro Ser Ser Met Gln Leu Ala	170	175	180	
Val Ile Arg Gly Asp Thr Leu Arg Gly Phe Asp Ser Thr Asp Leu	185	190	195	
Ser Gln Arg Lys Leu Arg Thr Arg Gly Asn Gly Lys Thr Val Arg	200	205	210	
Pro Ser Ser Val Tyr Arg Asn Gly Thr Asp Ile Ile Tyr Asn Tyr	215	220	225	
His Gly Ile Val Ser Leu Lys Leu Glu Asp Asp Ser Phe Pro Thr	230	235	240	
His Lys Arg Lys Ala Lys Val Ser Ile Ile Ser Gln Pro Gln Lys				

WO 00/68380

	245	250	255
Thr Ile Lys Val	Ala Glu Leu Pro Gln	Ala Asp Lys Val Glu	Ser
	260	265	270
Thr Thr Asp Ser	His Phe Pro Arg Gln	Asp Gln Leu Pro Ser	Phe
	275	280	285
Pro Lys Asn Cys	Thr Leu Glu Leu Lys	Gly Leu Phe His Phe	Glu
	290	295	300
Glu Gly Ile Gln	Lys Leu Tyr Gln Cys	Asn Gly Ile Ala Trp	Lys
	305	310	315
Ala Trp Ser Pro	Gln Thr Lys Asp Val	Glu Asp Lys Ser Cys	Pro
	320	325	330
Ala Gly Trp His	Gln His Ser Gly Tyr	Cys His Ile Leu Ile	Thr
	335	340	345
Glu Gln Lys Gly	Thr Trp Asn Ala Ala	Ala Gln Ala Cys Arg	Glu
	350	355	360
Gln Tyr Leu Gly	Asn Leu Val Thr Val	Phe Ser Arg Gln His	Met
	365	370	375
Arg Trp Leu Trp	Asp Ile Gly Gly Arg	Lys Ser Phe Trp Ile	Gly
	380	385	390
Leu Asn Asp Gln	Val His Ala Gly His	Trp Glu Trp Ile Gly	Gly
	395	400	405
Glu Pro Val Ala	Phe Thr Asn Gly Arg	Arg Gly Pro Ser Pro	Arg
	410	415	420
Ser Lys Leu Gly	Lys Ser Cys Val Leu	Val Gln Arg Gln Gly	Lys
	425	430	435
Trp Gln Thr Lys	Asp Cys Arg Arg Ala	Lys Pro His Asn Tyr	Val
	440	445	450
Cys Ser Arg Lys	Leu		
	455		

<210> 25

<211> 437

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4675668CD1

<400> 25

Met Pro Lys Phe Lys	Ala Ala Arg Gly Val	Gly Gly Gln Glu Lys	
1	5	10	15
His Ala Pro Leu Ala	Asp Gln Ile Leu Ala	Gly Asn Ala Val Arg	
	20	25	30
Ala Gly Val Arg	Glu Lys Arg Arg Gly Arg	Gly Thr Gly Glu Ala	
	35	40	45
Glu Glu Glu Tyr Val	Gly Pro Arg Leu Ser	Arg Arg Ile Leu Gln	
	50	55	60
Gln Ala Arg Gln Gln	Gln Glu Glu Leu Glu	Ala Glu His Gly Thr	
	65	70	75
Gly Asp Lys Pro Ala	Ala Pro Arg Glu Arg	Thr Thr Arg Leu Gly	
	80	85	90
Pro Arg Met Pro Gln	Asp Gly Ser Asp Asp	Glu Asp Glu Glu Trp	
	95	100	105
Pro Thr Leu Glu Lys	Ala Ala Thr Met	Thr Ala Ala Gly His His	
	110	115	120
Ala Glu Val Val Val	Asp Pro Glu Asp Glu	Arg Ala Ile Glu Met	
	125	130	135
Phe Met Asn Lys Asn	Pro Pro Ala Arg Arg	Thr Leu Ala Asp Ile	
	140	145	150
Ile Met Glu Lys Leu	Thr Glu Lys Gln Thr	Glu Val Glu Thr Val	
	155	160	165
Met Ser Glu Val Ser	Gly Phe Pro Met Pro	Gln Leu Asp Pro Arg	
	170	175	180
Val Leu Glu Val Tyr	Arg Gly Val Arg	Glu Val Leu Ser Lys Tyr	
	185	190	195
Arg Ser Gly Lys Leu	Pro Lys Ala Phe Lys	Ile Ile Pro Ala Leu	
	200	205	210

Ser Asn Trp Glu Gln Ile Leu Tyr Val Thr Glu Pro Glu Ala Trp
 215 220 225
 Thr Ala Ala Ala Met Tyr Gln Ala Thr Arg Ile Phe Ala Ser Asn
 230 235 240
 Leu Lys Glu Arg Met Ala Gln Arg Phe Tyr Asn Leu Val Leu Leu
 245 250 255
 Pro Arg Val Arg Asp Asp Val Ala Glu Tyr Lys Arg Leu Asn Phe
 260 265 270
 His Leu Tyr Met Ala Leu Lys Lys Ala Leu Phe Lys Pro Gly Ala
 275 280 285
 Trp Phe Lys Gly Ile Leu Ile Pro Leu Cys Glu Ser Gly Thr Cys
 290 295 300
 Thr Leu Arg Glu Ala Ile Ile Val Gly Ser Ile Ile Thr Lys Cys
 305 310 315
 Ser Ile Pro Val Leu His Ser Ser Ala Ala Met Leu Lys Ile Ala
 320 325 330
 Glu Met Glu Tyr Ser Gly Ala Asn Ser Ile Phe Leu Arg Leu Leu
 335 340 345
 Leu Asp Lys Lys Tyr Ala Leu Pro Tyr Arg Val Leu Asp Ala Leu
 350 355 360
 Val Phe His Phe Leu Gly Phe Arg Thr Glu Lys Arg Glu Leu Pro
 365 370 375
 Val Leu Trp His Gln Cys Leu Leu Thr Leu Val Gln Arg Tyr Lys
 380 385 390
 Ala Asp Leu Ala Thr Asp Gln Lys Glu Ala Leu Leu Glu Leu Leu
 395 400 405
 Arg Leu Gln Pro His Pro Gln Leu Ser Pro Glu Ile Arg Arg Glu
 410 415 420
 Leu Gln Ser Ala Val Pro Arg Asp Val Glu Asp Val Pro Ile Thr
 425 430 435
 Val Glu

<210> 26
<211> 2893
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 398269CB1

<400> 26

```

agtggctgag tcggggcg  gctgggagg  ctgtcggtgg  gccagtcgc  gtacgacggc  60
ccgtccccctg  cgcacggacg  ccggaaagaa  ggggggtgggg  ccacgtttgc  gtccgcgc  120
tcaggcccga  gatagccg  aggtccgc  ttcaatgtatg  gtttccctg  ccaaacgg  180
ctgcttgg  ccatccatgg  agggcgtgc  ctggccctt  tcctgcggca  cttggctg  240
gagccgagcc  gaatggctgc  tggcgtgc  atcgattc  cccgaggaga  aggagcgc  300
tggccagttc  gtcttgccc  gggacgctaa  ggcacccatg  gctggctgc  tgatgata  360
gaaattagtt  gcagagaaat  tgaatatccc  ttggaaatcat  attcgtttgc  aaagaactgc  420
aaaaggaaaa  ccagttcttgc  caaaggactc  atcgaatc  taccgcattt  tcaacttt  480
catctctcat  caaggagact  atgcagtgc  tgctgctgaa  cctgagtc  aagttgg  540
tgatataatg  aagacttagt  ttccaggtcg  tggtcaatt  ccagaattct  ttcatatt  600
gaaaagaaag  ttaccaaca  aagaatgg  aacaatc  agcttaagg  atgagtgg  660
tcagctggat  atgtttata  ggaattgg  acttaagg  agcttcata  aagccattt  720
tgttggacta  ggatttgaat  tgcagcg  tgaatttgc  ctatctcc  taaacttgg  780
tataggccaa  gtttataaag  aaacacgtt  attccctgg  ggagagga  aaaaagaat  840
ggcatttgg  gaaagcaaaa  tagatgagc  ccattttgtt  gcagttgc  ttaggaaacc  900
cgatggatct  agacatc  atgttccatc  tcagatgat  tccaaaccc  cccagaggc  960
atttactatt  ctcaactt  atgat  ttcactt  gtcacttgc  gttcccatg  cacctga  1020
tccttcattt  tggactt  tttgc  ttcac  agaagaaatt  ccaatacg  atggtac  1080
gtcatgatga  ttccctg  agt  aacaaagg  aatgaaaact  gtttgc  ttccgtattc  1140
actgaaaaat  aaatg  ttgtatc  atttattt  acgaaagt  tttaaag  1200
cagaaactt  tccaatt  aaaaaaaagc  agacttctgg  ttcaagatag  ctcaacttgg  1260
tacatgtt  cctttttt  tcctaaattt  cattgaattt  ataggaag  tggcgg  1320
ttaaagtgt  acatg  tttttt  ttgtaaaaaa  aatgaaaat  gcacata  aaaagg  1380
attnaatgc  tat  tttt  agataact  tctt  ttgagttt  tttttttt  tggaaac  1440
ttttcttggc  aaatg  atatt  agataact  tctt  ttgagttt  tttttttt  tggaaac  1500

```

WO 00/68380

ctgttttgta	aattcttttt	aactgcacat	ctactgttca	taaatataacc	tctgttaacat	1560
aacttttgt	ggttctaatg	tactctgttg	tatagctaat	acaaggtagg	atgctttgg	1620
ccagaggtaa	cagtgtccaa	atataattgg	cctaagtaac	ctagggaaatt	gtttgacata	1680
acacagggtt	cagggggtgtc	attaaagaca	cactttttt	gccttgacct	cagttggttt	1740
gttttgccctt	aggctattcc	acctctcgat	cacaaggagct	gctgctataa	cttcaggat	1800
tacatctttg	taaaaattgt	tctcaaaggc	agaaaaggcc	atttcgtctc	tcattttgtt	1860
tatccatgag	gaagattttt	aacaaaagcc	tccagaagat	ttcccctca	tttcattga	1920
cttagatcag	gttacagaga	aaggaatgt	ctgacat	tgtctctgt	tagaagtga	1980
ctctgtgaa	aagaaaagaag	ctaagctagg	tgtgaagaat	ggaattggaa	gccccactg	2040
ttccccataag	aaaggtttac	cataatttac	tcactt	ctgtgttaga	cattttgatt	2100
atctgcagtt	tataactaca	agcagtggca	gagtgaatgt	ccttgcata	tttgagttac	2160
atgcttaatt	atgtccctga	gaaagttct	aaaagtggaa	tgatggttt	gactgg	2220
tagggctta	attataacaat	ttacccct	aatttagt	atatgtatgt	gactccctc	2280
ccccctgccag	aataactcctt	ggtaattgt	aggtattctt	tttggttttaa	ttttgcca	2340
tgttaattaa	aaatggtatg	tcattttaa	aatttgatt	tcttcatta	caaataagat	2400
tgttatgtca	gttattttat	tggctttcg	tattccctt	aacgtgaacc	gtctgttcat	2460
tgttttacc	tgttttcgtt	ttagcaagta	gtacttaatt	taaagtgtga	acttaatata	2520
taagatgcca	ggaccatcat	attgatgaca	aaaatctatt	atgtggttgt	agtgcattgc	2580
ttggagttaa	actcttaagt	atcaagaagt	aaaataattt	cattgtttct	gttactaaaca	2640
ttaaaagtgt	gcaaattgt	taaaattagg	tacttcgatt	agaaaaagaa	aaaaatttga	2700
atgtttttt	tttattttt	ttaagcatgc	ccagttatgc	caagcatagt	aaataaaggt	2760
caagtagcat	ttataataga	ggaagtattg	ttatccctag	catgagtgta	atggtgat	2820
aaaaaaactt	gtcttgtcat	tataataata	aaaaaaatgaa	catttattat	ggaatttcaa	2880
aaaaaaaaaa	aaa					2893

<210> 27
<211> 2276

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1258888CB1

<400> 27

gcgagttggag cggaggaccc gagcggctga ggagagagga ggcggccgtc tagcttctac .00
ggggtcggc cggcgccctc ccgagggggg ctcaggagga gaaaggagga cccgtgcgag 120
aatgcctctg ccctggagcc ttgcgtccc gtcgtctc tctgggtgg caggtggtt' 180
cgggAACCGC ggcagtgc aa ggcatacagg tcggcactat gtaaaaactaaac tggctgtc 240
ctgtgaagct acatgcgaac ctggatgtaa tcacggctgg agaagaaca gcaaggggagt 300
cagatgttt ccaggataca cggggaaaac gtttggtag gtcgtgggac caaacaaatg 360
gaaaccggg ccatgccaac acagatgtgt ctgcagtc gatgtgaat agtgttggaaat 420
cctcagtggc cacatgctca tgccagatgc gaatacacac ggaagctaca agtgctttt 480
gataaaactgt cagtacagct gtgaagacac tacgtgtgt aactctagga catgtgccat 540
ctcaggactc cgccctggccc caaatggaaag agaagaaggg ccacagtgcc tttgtccatc 600
tggtaaagtcc atctgtccct acaaatacgaag agactgtcta gatattgtat aatgtgcctc 660
caaatgtcac attgggttcg aactgcaata atgtgtgaac acattttggaa gctactactg 720
aaatgaatgt actatggata gccatacgtg tatcagtgga ccatatgact gtatagat 780
agggtcttc aagtgtaaaat gcaaggcaggg cagccacat gccaattgtc tcaatacc 840
tatccctgaa aattctgtga aggaagtctt atataaaaggc aatggacttc ggtttctgc 900
caagaatgtt cttgctcaca aaaacagcat cagagcacct ggtaccatca aagacagaat 960
cccagaaccc accaggactc ctacccctaa gaaaaagaag gcaaaaatta aaaatgttac 1020
gatagttcc agaggcgggaa acttcatgg ggtgaactt gagcccttca actatgaaga 1080
agaggggctt gaggatgaga aaagagaaga aggtaaaaaa ggaatgaag agaaaatgaa 1140
aagcctgcga ggagatgtgt tttccctaa gaaagccctg aagaatgaca tagaggagcg 1200
tctggtccaa aggaaagcgc taacctccaa ggtgaatgaa gcaggtgaat tcggcctgat 1260
ggttgaactgc agcttcaatc atggatctg actggaaacat aaagcagatt taaatatctc 1320
tgacttggaaat cctgctgtc gagataatgc tgactggaaa caggatagag aagatgattt 1380
ggcagggtcac aagaagaca ttggccgatt tattggctt tatatggcag ttccggcctt 1440
aagaacttc ttgttgcct ttgattaccg gaaacttctc ctacctgacc tgcaacc 1500
agtgttggtaaaaacagta acaatggccct gctggccgga gacaaagtgc ggaaacttcg 1560
aaagtggaaatc acaggggaaa ttcagttgtat ggcatgggag aagaccacga gtgaggatga 1620
tttggaaatc gaacgtggca agggcaaaac tcaaggaact gatgttacca aaagcatcat 1680
tgtttcaggc ttatgtccat atgcctttt cggcgaatc gcagttggat gcgtcttgc 1740
atatttgcact ttgtatgtca gttccctggt atctgtggat gactgaatgt tactatctt 1800
cattttagaa ttactagctg aaaaattgtat tttttgtata ttgcatcata ggacctctgg 1860
atgttaccaac agaaatattt atgttgaagatg 1920

WO 00/068380
 cctttcttgt ataagatatg ccaatatttgc tttaaatat catactactg tatcttc 1980
 gtcatttcg aatcttcca cattatatta taaaatatgg aaatgtcagt ttatctccc 2040
 tcctcagtat atctgatttg tataagtaag ttgatgagct tctctctaca acatttctag 2100
 aaaatagaaa aaaaagcaca gagaaatgtt taactgtttg actcttatga tacttctgg 2160
 aaactatgac atcaaagata gactttgcc taagtggctt agctgggtct ttcatagcca 2220
 aacttgtata tttaaattct ttgtataat aatatccaaa tcatcaaaaa aaaaaaa 2276

<210> 28
 <211> 2016
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1375891CB1

<400> 28
 gaaaaggta cccgagaga cagccagcag ttctgtggag cagcggtggc cggctaggat 60
 gggctgtctc tggggctgg ctctccccct tttcttcttc tgctgggagg ttggggcttc 120
 tggagctct gcaggccccca gcaccccgag agcagacact gcgatgacaa cggacgacac 180
 agaagtgcgc gctatgactc tagcaccggg ccaacggcgt ctggaaaactc aaacgcttag 240
 cgctgagacc tcttctaggg cctcaacccc agccggcccc attccagaag cagagaccag 300
 gggagccaag agaatttccc ctgcaagaga gaccaggagt ttcacaaaaa catctcccaa 360
 cticatggtg ctgatcgcca cctccgttga gacatcagcc gccagtggca gccccgaggg 420
 agctggaatg accacagtgc accacatcac aggcagtgtat cccgaggaag ccacatgttga 480
 caccctttgc accgatgaca gctctgaaga ggcaagaca ctcacaatgg acatatttgac 540
 attggctcac acctccacag aagctaaggg cctgtctca gagagcagtg cctcttccga 600
 cggccccat ccagtcatca ccccgctcactc ggcctcagag agcagcgct cttccgacgg 660
 ccccccattca gtcatcaccc cgtcacgggc ctcagagagc agcgctctt ccgacggccc 720
 ccatccagtc atcaccctgt catggtcccc gggatctgtat gtcactctec tcgctgaagc 780
 cctgggtact gtcacaaaca tcgaggttat taattgcagc atcacaagaaa tagaaacaac 840
 aacttccagc atccctgggg cctcagacat agatctcatc cccacggaaag gggtaaggg 900
 ctcgtccacc tccgatccac cagctctgtcc tgactccact gaagcaaaac cacacatcac 960
 tgaggtcaca gcctctgccc agacccctgtc cacagccggc accacagagt cagctgcacc 1020
 tcacatccacg gttgggaccc cactcccccac taacagtgcc acagaaagag aagtgaçagc 1080
 acccggggccc acgacccctca gtggagctc ggtcacagtt agcaggaatc cccttggaaaga 1140
 aacctcagcc ctctctgttg agacaccaag ttacgtcaaa gtcctcaggag cagctccgg 1200
 ctccatagag gctgggtcag cagtggccaa aacaacttcc tttgtgggaa gctctgttcc 1260
 ctccctacagc ccctcggaaag ccgcctctcaaa gaacttcacc ctttcagaga caccgaccat 1320
 ggacatcgca accaaggggc cttccccccac cagcaggagc cttcttccctt ctgtccctcc 1380
 gactacaacc aacagcagcc gagggacgaa cagcacctta gccaagatca caaacctcagc 1440
 gaagaccacg atgaagcccc aacagccacg cccacgactg cccggacgag gcccaccaca 1500
 gacgtgagtg caggtaaaaa tggaggtttc ctccctctgc ggctgagttt ggcctccccc 1560
 gaagacctca ctgacccctc agtggcagaa aggctgtatc agcagctcca ccggaaactc 1620
 cacccccacg cgcctctactt ccaggctctcc ttactgcgtg tcaggagagg ctaacggaca 1680
 tcagctgcag ccaggatgt cccgtatgtcc aaaagagggt gtcctcccta gcctggggccc 1740
 ccaccggacag actgcacgtc ctgttactgtc ctgagaggtt cccagaaggt tcccatgaag 1800
 ggcacatgtt ccaagccctt gacccctatgtt gtcacacag gaccctcgct cacatccacc 1860
 ggagtgtatg tggggggagg ggcttccactt gttcccttccagag gtccttccgg actcacctt 1920
 gcacatgttcc tgggtttccat taaagagaga cctgatcacc catctgtgtt cttccatctt 1980
 gcattaaaaat tcactcagtg tggcccaaaaa aaaaaaa 2016

<210> 29
 <211> 2520
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1524355CB1

<400> 29
 caagatggcg gctggccggag ctgtcgctgc ggcgcggcag tgcggcttc tcccctacgc 60
 gctacacaag tggagcttccct tttcttccac ctaccccttcc gagaacattt tagtggacaaa 120
 accaaatgac caatcttcaa gatggcttc agagagcaac tttccctccctt agtacttgc 180
 tctaaagctc gaaaggccctg ctatagttca gaatatcaca tttggaaaaat atgagaaaaac 240
 tcacatgttcc aatttgcac aatttgcac gtccttccgg actcacctt gtccttccgg 300

WO 00/68380

agagctgttg tccagtggct taaaagaatga ttataacaaa gaaacattca ctttgaagca 360
 taaaattgat gaacagatgt tcccttgcg attcataaaa atagttcac tcttgcctg 420
 gggaccgcg gtttgcgactt gcatctggta tggtgaacct agtggcatg atgatcctga 480
 tatagtacaa ctttgtctca actggtaga caagtaccgt gaacaggaa ctattgcct 540
 ttgcctaaaa cacttcagac aacacaacta tacagaagct ttgagtcac tgcaaaagaa 600
 aaccaagatt gcactggac atccccatgtt aacagatatt catgacaagc tgggttcaa 660
 ggggtatttt gatgttgcg aagagttgat tgaaaaggct gtaaatgtg gcttgcctg 720
 tcagtatatac agtcaacagg aatataagcc acgtggagt caaatcatc ccaaaaagtac 780
 caaagggtat ggggaagata accgtccagg aatgagagga ggccatcaga tggttattga 840
 tggcttgcgat gggcaacacaag atctgtctga 900
 tggctggat gggacatgt atctctagag acactgaaaa 960
 ctctggcg tacagtgtga aggagaacca gtggacatgt atctctagag acactgaaaa 1020
 agagaatggt cctagtgcg aatataagcc aatgagagga ggccatcaga tggttattga 1080
 aatctacaca ttggggcgat actggattc ctctgtgagg aacagcaat ctctgaaaa 1140
 tgacttctat cgttatgaca ttgataaaaa cacatggat tttactaagg aggatactgc 1200
 tgctgatggc gggccgaaat tgggttgc tttatcatgt tttatcatgt tttatcatgt 1260
 tatgatctac acttttgggt gtagatttt gacttgataat ggcagcgtat atgacagcag 1320
 agccagtggaa ccacaaattca gtggcttgc tttatcatgt tttatcatgt tttatcatgt 1380
 acttcttcgat gaggactct gtaatgctgg gcctgaggac atccagtctc gaataggaca 1440
 ctgcatttgc tttcactcaa aaaatcgat tttatcatgt tttatcatgt tttatcatgt 1500
 gacctatttgc aatgatttgc tttatcatgt tttatcatgt tttatcatgt tttatcatgt 1560
 agatggcacc aagaaagact ctgggatgg tttatcatgt tttatcatgt tttatcatgt 1620
 tttatcatgt tttatcatgt tttatcatgt tttatcatgt tttatcatgt tttatcatgt 1680
 gagggaaagaa aatgttagaa attcattctg gatttatgac attgtgaggat atgttggc 1740
 ttgtgtctat aagaatgatc aagctgcgg tttatcatgt tttatcatgt tttatcatgt 1800
 agaaccatgt ccaagggttgc cccatcagat tttatcatgt tttatcatgt tttatcatgt 1860
 ctatgttgc gggatccat gaaatcttgc tttatcatgt tttatcatgt tttatcatgt 1920
 gtcactgaaat ttgtgttagac tttatcatgt tttatcatgt tttatcatgt tttatcatgt 1980
 aagaaacacat aggttgcgg aaaaaggccc tttatcatgt tttatcatgt tttatcatgt 2040
 acaaaatgat ctttataatc ctgtggatc tttatcatgt tttatcatgt tttatcatgt 2100
 gtccttgcgat tttatcatgt tttatcatgt tttatcatgt tttatcatgt tttatcatgt 2160
 tgtggatcac acctatgttgc aaagaactca gtttgc tttatcatgt tttatcatgt 2220
 tgacagcatg actccttgc tttatcatgt tttatcatgt tttatcatgt tttatcatgt 2280
 tcactggaca cagaaatggc aacaggatg tttatcatgt tttatcatgt tttatcatgt 2340
 ctgactgaca gtaaagctgc agtggatttgc tttatcatgt tttatcatgt tttatcatgt 2400
 ccatcacaag ttttacccat tttatcatgt tttatcatgt tttatcatgt tttatcatgt 2460
 attcctaaat taggctaata aagtggaaat tttatcatgt tttatcatgt tttatcatgt 2520
 atatattttt tttatcatgt tttatcatgt tttatcatgt tttatcatgt tttatcatgt

<210> 30

<211> 1954

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1598937CB1

<400> 30

ccgagttatc cagctccggg cggcaagggg tcctgtcgag gggcgccgtc cataagggtt 60
 gaggccagat ggcgttacat ctggggccgg agctctggag tggaggctgg gtttgcctg 120
 gcttcatctg gaagcaggca ccccgccgg caggcagat cacgggttgc gcatggag 180
 ttggacaccc gggctcttgc agtgcatttc aggcggccgc cccaaatccg ccaccattcc 240
 gtgtcgccgg gacaccatgg ctccagaaga ggacgttgc gggaggct tagggggcag 300
 tttctggag gctggcaact acaggcgac ggtacagcg gtttgc ggcaccggct 360
 gtgcgggac ctggtcagat gtttgc ggcgcggcc atcgagaagg ctatgtccca 420
 gcagggttgc gactggggcc gaaagtggag ggggaccgtg gagaaggccccc 480
 cacactggag aaggccttgc atgcctttt caccggccgt gacggcttgc ggcgcgttgc 540
 cctggagggtg cgggagaagc tttatcatgt tttatcatgt tttatcatgt tttatcatgt 600
 ggggcttc caccggccgt tttatcatgt tttatcatgt tttatcatgt tttatcatgt 660
 cttcgcgaat gcccagaatc ctttgc tttatcatgt tttatcatgt tttatcatgt 720
 aagctaccatc gcaatggatgg aggtggatgg gtttgc tttatcatgt tttatcatgt 780
 ggcagacatc gccgttccatc agggcgttgc gtttgc tttatcatgt tttatcatgt 840
 tgccaaaggat gccgagaaga ctttgc tttatcatgt tttatcatgt tttatcatgt 900
 ctacacttca ctttgc tttatcatgt tttatcatgt tttatcatgt tttatcatgt 960
 ggcgcaggat ctttgc tttatcatgt tttatcatgt tttatcatgt tttatcatgt 1020
 ttccaggatc gagaaggatcc atgttgc tttatcatgt tttatcatgt tttatcatgt 1080
 cagtgcgaa gaggatctgc gtttgc tttatcatgt tttatcatgt tttatcatgt 1140

ctggccacag	tgcaggagt	ggtccttga	cacacagagg	acaatcagcc	gaaagagaa	1200
gggtggccgg	agccctgatg	aggttacacct	gaccagcatt	gtgcctacaa	gagatggcac	1260
cgcacccccca	ccccagtccc	cggggtcccc	aggcacgggg	caggatgagg	agtgttcaga	1320
tgaagagagt	ccccggaaagg	ctgccacccgg	gttgcgggtg	agggcactct	atgactacgc	1380
tggccaggaa	gctgtatgagc	ttagcttccg	agcaggggag	gagctgctga	agatgagtga	1440
ggaggacgag	cagggtcttgt	gc当地ggcca	gttgcagagt	gcccgcattt	gc当地taccc	1500
tgccaaactac	gtggagttgt	tgggccttgc	agtgtcttga	cagcccttct	gcaacgttta	1560
cccacccctgg	ttcagagccc	agcttcttct	ggagagccgg	accctcaggg	ccctgaaccg	1620
tgcgtctctg	gctgtcttctc	tgc当地tga	ggggaggaagt	cctgggaccc	agggagggga	1680
ggggcctttg	tctagggaaag	ggacttggtag	ggaagggacg	agtcttaggt	gagggcaaga	1740
tgggaggtca	gaggtgacag	aagcgttcag	gggtgccttgg	gc当地ccccag	gagctgttga	1800
ctcagttct	gacctctgt	ttggggttcc	ttggggtgggc	ttggggtgttgc	tgttagttctg	1860
gccttagcage	accctttgt	ggcttgttct	agcgtgtatt	aaaacttgac	acacacccac	1920
acacaaaaaac	aaaaacacca	aaaaaaaaaa	aaaa			1954

<210> 31
<211> 1817
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1725801CB1

<400>	31					
gacgcgggtga	ggagacggcc	cacggcgccc	gcgggctggg	gcggtcgctt	cttccttctc	60
cgtggcttac	gagggtcccc	agcctggta	aagatggccc	catggccccc	gaagggccta	120
gtcccagctg	tgcctctgggg	cctcagcctc	ttcctcaacc	tcccaggacc	tatctggctc	180
cagccctctc	cacctccccca	gtcttctccc	ccgcctcagc	cccatccgtg	tcataacctgc	240
cggggactgg	ttgacagctt	taacaaggc	ctggagagaa	ccatccggga	caactttgga	300
gttggaaaca	ctgcctggga	ggaagagaat	ttgtccaaat	acaaagacag	tgagaccgc	360
ctggtagagg	tgcggaggg	tgtgtcagc	aagtcaagact	tcgagtgcga	ccgcctgctg	420
gagctgatgt	aggagctgg	ggagagctgg	tggtttcaaca	agcagcagga	ggccccggac	480
ctcttccagt	ggctgtctc	agattccctg	aagctctgtt	gccccgcagg	caccttcggg	540
ccctctgtcc	ttccctgtcc	tggggaaaca	gagaggccct	gcggtggcta	cgggcagtgt	600
gaaggagaag	ggacacgagg	gggcagcggg	cactgtgact	gccaaggccgg	ctacgggggt	660
gaggcctgtg	gccagtgtgg	ccttgctac	tttggggcag	aacgcacacgc	cagccatctg	720
gtatgttccg	cttgggggg	ccctgtgcc	cgatgtctag	gaccgtggaga	atcaaactgt	780
ttgcaatgca	agaagggctg	ggccctgcat	cacctaagt	gtgtagacat	tgatgatgt	840
ggcacagagg	gagccaactg	tggagctgac	caattctgcg	tgaacactga	gggctcttat	900
gagtggccag	actgtgccaa	ggcctgccta	ggctgcatgg	gggcaggggcc	aggtcgctgt	960
aagaagtgt	gccctggcta	tcagcagggt	ggctccaagt	gtctcgatgt	ggatgatgt	1020
gagacagagg	tgtgtccggg	agagaacaag	cagtgtaaa	acaccgaggg	cggttatcgc	1080
tgcatctgt	ccgagggtca	caagcagatg	gaaggcatct	gtgtgaagga	gcagatccca	1140
gagtctcagc	gctcttcctc	agagatgaca	gaagacgagt	tggtggtgt	gcagcagatg	1200
ttctttggca	tcatcatctg	tgcactggc	acgctggctg	ctaaggcga	cttgggttcc	1260
accgcacatct	tcattggggc	tgtggggcc	atgactggct	actgtttgtc	agagcgcagt	1320
gaccgtgtgc	tggagggttt	catcaagggc	agataatctgc	ggcaccacc	tgttaggacct	1380
cctcccaccc	acgctggccc	cagagctgg	gctgccttcc	tgcgtggacac	tcaggacagc	1440
ttggtttatt	tttggagatgt	ggtaaagcac	ccctacactgc	tttacagac	agccccaggta	1500
cccaaggcccg	ggcagacaag	gccccctgggg	taaaaaatgt	cccttgaaggt	ggataccatg	1560
gctcttcac	ctggcgggga	ctggcaggct	tcacaatgt	tgaatttcaa	aagttttcc	1620
taatggtgg	ctgctagagc	tttggccct	gcttaggatt	agggtggtct	cacaggggtg	1680
ggccatcac	agctccctcc	tgccagctgc	atgctccag	ttccctgttct	gtgttaccca	1740
atccccaca	ccccattggcc	acttattttat	tcatctcagg	aaataaaagaa	aggcttggaa	1800
agttaaaaaa	aaaaaaaa					1817

<210> 32
<211> 2694
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1730482CB1

<400> 32

WO 00/68380

gacctagtgt gagcataatg gaaaaaacac aatcacttcc tacacgacca ccaactttc 60
 ctccaccat tccaccagca aaagaagtat gtaaggcgac caaggctgac ctggattta 120
 tggatggatgg atcctggagc attggagatg aaaattcaa taagatcatc agctttctat 180
 acagcactgt tggagccctg aacaagattg gcacagatgg aacccaagg gcaatggtc 240
 agttcactga tgatcccaga acagaattt aactaaatgc ttacaaaacc aaagagactc 300
 ttcttgatgc aattaaacac atttcataca aaggaggaaa tacaaaaaca gaaaaagcaa 360
 ttaagtagtgc tcgagatacc ttgttcaactg cagagtcagg tacaagaagg ggcattccaa 420
 aggttacgt gttataact gatggaaatg cacaagatg tggaaacaaa atctccagg 480
 agatgcaatt agatggctat agcattttg caattgggt ggccgatgca gattactcgg 540
 agttggtagt cattggcaatg aagcccagcg cacgcattgt ctctttgt gatgactttg 600
 acgccttaa gaaaatcgaa gatgaggtaa ttactttt gtcgaaaca gcatcagcaa 660
 cctgtcccaatg ggtacacaag gatggcattt atcttgcagg atttaagatg atggaaatgt 720
 ttggtttgg tggaaaatg ttttcatcag tggaaagggt ttctatggag cctggtagt 780
 tcaatgtgtt tccatgttac caactccata aagatgccct gttttccca gcaaccagg 840
 acttgcaccc agaaggattt ggcattccact acacaatcag ttttctattt cggattttc 900
 ctgacactcc acaggagcca tttgtctttt gggagatttt aaataaaaat tctgacccat 960
 tggttgggt tatttttagac aatggtgggaa aaactctaac atatttcaac tatgaccaga 1020
 gtggggattt tcaaactgtt actttcgaag gacctgaaaat tagggaaaatt ttttatggaa 1080
 gctttcacaa gctacacatt gttgtcagtg agactttgggt caaagtgggtt attgactgca 1140
 agcaagtggg tgagaaggca atgaacgcattt cagctaatat cacgtcagat ggtttagaaag 1200
 tgcttagggaa aatggttcga tcaagaggac cagggtggaa ctctgcacccg ttcagttac 1260
 agatgttga tatttttgc tccacatcat gggccaaatc agacaaaatgc tggtaacttc 1320
 caggcctgag agatgtatgg ttttgcggc accctccccca ctctgtctc tggctgaaa 1380
 ccaatgaaat ggctctggg ccaggccggc caccagggtgg tccaggactc cgaggaccaa 1440
 agggccagca aggtgaaccg ggtccaaagg gaccagatgg ccctcggggt gaaattggtc 1500
 tgccaggacc tcaagggttca cttggacccctc aaggaccaag tggctgtcc attcaaggaa 1560
 tgccggaaat gccaggagaa aaaggagaga aaggagatac tggccttcc ggtccacagg 1620
 gtatcccagg aggctttgtt tcaccaggac gtgtatggctc accaggccag agggcccttc 1680
 cggaaaagga tggatctcg ggacctccag gaccaccagg gccaataggc attcttggca 1740
 cccctggagt cccagggttca acaggaagca tgggaccgcg aggccacctg ggaccacactg 1800
 gtgtccctgg agcaaagggg gaacgaggag agcgggtga cctgcagttt caagccatgg 1860
 ttagatcagt ggcgcgtcaa gtatgcgaac agtcatcca gagtccatg gcaaggatca 1920
 ctgcacatctt caaccagatt cccagccactt cttcatccat ccggacttcc caaggccctc 1980
 ctggggagcc tgggaggccca ggctcacctg gagcccttgg tgaacaaaggc ccccccaggca 2040
 caccaggctt ccccgaaat gcaggcgttc caggccccc agggaaacga ggtctaactg 2100
 gtatcaaagg agaaaaaggaa aatccaggcg ttggaaacccca aggtccaaaga ggccccctg 2160
 gaccaggcgg accttcaggg gagatcgcc ctggcagcccc tgggccccctt ggctctctg 2220
 gaccaagagg cccaccaggat catctgggg ttcctggacc ccaaggcttcc tctggccagc 2280
 ctggatattt tgacccctca tcatgttctg cctatgggtt gagagctccc catccagatc 2340
 agccagagtt caccctgtc caagatgagg tggaaaggccat ggaactgtgg ggccttggag 2400
 tctgatagcc tcaggagaaa ttggaaagacc aactgcaga aactcttaagg aatcttggttt 2460
 gagaaaaatgt tggatgtgg ttgtatgtct acttttgggg ggcagggttc attcagcag 2520
 cctaaatctc ctccctggat aatgttaata ttattattat tattaacaaa aaatatataat 2580
 ttttaaaaag ttcccttaat ctatgacatg gtagcaatga ttccctttt gttcttaat 2640
 ggcatgtcag ataattttt ttccagaga agagagctca aagaggaatt ggg 2694

<210> 33
 <211> 1149
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1810058CB1

<400> 33
 cagtagtctgg gtccaggctg cagccttagg gtccagggtga ttgttaccgtg tgggtggccc 60
 ttcttcacag tggccctcta gaaaaacaag accctgactc aaagaacacc tctcactaca 120
 ttcagagtct gtcattctaa ccatgaggat ctggggctt ctgttgcctt ttgaaatctg 180
 cacaggaaac ataaactcac aggacacccctg caggcaaggcc caccctggaa tccctggaa 240
 ccccggtcac aatggcttcg ctggaaagaga tggacgagac ggagcgaagg gtgacaaagg 300
 cgatgcagga gaaccaggac gtcctggcag cccggggaaat gatggggacga gtggagagaa 360
 gggagaacga ggacccaggat gaaaagggttga agcaaaaggc atcaaaagggtt atcaaggctc 420
 aaggaggatcc ccaggaaaac atggcccca ggggcttgc gggcccatgg gagagaaaagg 480
 cctccgagga gagactggc ctcaggggca gaaggggaaat aagggtgacg tgggtcccac 540
 tggtccttag gggccaaagg gcaacatgg gccttggc ccaactgggtt taccggccccc 600
 catggccctt attggaaagc ctggtcccaa gggagaagct ggacccacgg gggcccaagg 660

ttagccagga	gtccggggaa	taagaggctg	gaaaggagat	cgaggagaga	aaggaaaaat	720
cggtgagact	ctagtcttc	caaaaagtgc	tttactgtg	ggctcacgg	tgctgagcaa	780
gtttcccttct	tcaagatgtc	ccattaaatt	tgataagatc	cacatcactg	ttttctccag	840
aatgttcag	gtgtctttgg	tcaaaaacgg	agtaaaaata	ctgcacacca	gagatgctta	900
cgtgagctct	gaggaccagg	cctctggcag	cattgtcctg	cagctgaagc	tcggggatga	960
atgtggctg	caggtgacag	gaggagagag	gttcaatggc	ttgtttgctg	atgaggacga	1020
tgacacaact	ttcacacagggt	tccttctgtt	cagcagccag	tgacagagga	gagttataa	1080
atctgccaga	ccatccatca	gaatcagctt	gggatgaact	tattcagatg	gtttacttt	1140
attaattca						1149

<210> 34

<211> 1215

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2040679CB1

<400> 34

gaagaactag	catgtatgta	ttatctccag	tggaaatttat	aattctacaa	cttttattta	60
ttcaggccat	ttccagcagt	ttaaaaggtt	tcctttcagc	tatgagactg	gtctcatagag	120
gctgtaatgt	tgatacacca	gttcaacgc	tcacaccagt	gaagacttca	gaatttggaaa	180
actttaaaac	taaaaatgggt	atcacatcca	aaaaagacta	tcctctaagt	aagaattttc	240
catattccctt	ggaacatctt	cagacttctt	actgtgggct	tgtccgagtt	gataatcgta	300
tgctttgcctt	aaaaagcctt	aggaaattag	acttgagtca	caaccatata	aaaaagcttc	360
cagctacaat	tggagacctc	atacacccctc	aagaacttaa	cctgaatgac	aatcaacttgg	420
agtcatcttag	tgtagcctt	tgtcattcta	cactccagaa	gtcacttcgg	agtttggacc	480
tcagcaagaa	caaaaatcaag	gcactccctg	tgcaagtttt	ccagctccag	gaacttaaga	540
atttaaaact	tgacgataat	gaattgttgc	aatttccttg	caagatagga	caactaataa	600
accttcgctt	tttgtcagca	gctcgaaata	agcttccatt	tttgccctagt	gaatttagaa	660
atttatccct	tgaataacttgc	gatcttttg	gaaatacttt	tgaacaaacca	aaagtccccc	720
cagtaataaaa	gctgcaagca	ccattaactt	tatttggaaatc	ttctgcacga	accatattac	780
ataataggat	tccatatggc	tctcatatca	ttccatttcca	tctctgccaa	gatttggata	840
ccgcaaaaat	tttgttttgc	ggaagattct	gtctgaactc	tttcatttcaa	ggaactacta	900
ccatgaatct	gcattctgtt	gcccacactg	tggtcttagt	agataatttg	ggtgtactg	960
aagcacctat	tatctcttta	ttctgttctc	taggctgtta	tgttaattcc	tctgtatgt	1020
taaagttaatg	ggtgagacca	aaaaaaagaaa	tttcaataaac	agatcagttt	gggggtgcatt	1080
tatgattttg	cagcgtcaaa	ttggagtaag	ggaagatttc	tgtataacttgc	ctggagaggg	1140
ggaatgtgt	tagttactca	tttagatgac	tccaaaactt	ttattaaaac	caattttagt	1200
tttaaaaaaaaaa	aaaaaa					1215

<210> 35

<211> 1300

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2960051CB1

<400> 35

WO 00/68380

atagttctag ctctatcaga ttcaagtaaac ttggatgaga ttacattcca catttgactc 960
 tcagctttag agatatgta acagaatttc tacaacagat cctgaattct tattgcatta 1020
 agggctctgc tttggcttat atgtcatta tcccacttaa tccagtgc当地 cggtgc当地 1080
 tcaccctgaa gccaggtaa acaaaggaa agtGattgc atctaaagag aacaaggccc 1140
 caaccctctg gctataccca accactcaa ggcagcacag gaaccacat cactgcttgg 1200
 ataatcccag gaaaatgcag aaaaagtgtaa gcctgaagca tgatttctc atgtggact 1260
 tctgtgtc当地 ggagatcaca gcgc当地 tttt gttgctgcca 1300

<210> 36

<211> 1562

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3117318CB1

<400> 36
 aaggccggc gcggttaagag cgtctcgggg agtagggcaa ggccggccggg ccctcccat 60
 tccgc当地 cttcagcgtc ctgccc当地 cactggctc ggggtccggg ccacctgc当地 120
 gtgtgc当地 ggactctgga caccggc当地 ggc当地 gactga gggagc当地 tccacgagga 180
 cccaggccga ccctctggcg ccatgc当地 cctccccggc ctgctggagg ccaggccg 240
 tacggccgg ctgctctcc tccagtgcc ttc当地 ctgc当地 ggc当地 cccaa gctc当地 300
 cggcactgcc ccagattcgg ctttacaag tccacctctc agagaagaaa taatggcaaa 360
 taactttcc ttggagagtc ataacatatac actgactgaa cattctagta tgccagtaga 420
 aaaaaatatac actttagaaa ggcc当地 tctaa tgtaaatctc acatgc当地 tcacaacatc 480
 tggggatttgc aatgc当地 atgtgactt gaaaaaagat ggtgaaaca ttgagaataaa 540
 ttatcttgc当地 agtgc当地 acag gaagcacctt gtataccatc tacaggctc当地 ccatcattaa 600
 tagcaaacaa atgggaagtt attcttgc当地 ctttc当地 gagag gaaaaggaa aaaggggaaac 660
 atttaatttcc aaagtc当地 cctg aacttcatgg gaaaaacaag ccattgatct ct当地 acgt 720
 ggatctact gtcttgc当地 acatgtca aaatttgc当地 cttt当地 aatttgggta 780
 cagtagtaat gggagtgtaa agttc当地 ctgt tggtgtcaaa atgaaataat atgtgatcaa 840
 tggAACATAT gctaacgaaa caaagctgaa gataacacaa cttt当地 gaggggaaac 900
 atcttactgg tgccgtglocal tattccaaatt aggccgagat gaagaacaca ttgagcttgc当地 960
 ggtgctgagc tatttggc当地 cc当地 caaaacc atttcttgc当地 atagtggctg aggtgattct 1020
 ttttagtggcc accattctgc tt当地 tgaaa gtacacacaa aagaaaaaaga agcactc当地 1080
 tgaggggaaa gaatttgc当地 agatttgc当地 gctgaaatca gatgatagca atggatata 1140
 aaataatgtc cccaggcata gaaaaaatga gtctc当地 ggcc cagtgaatac aaaacatcat 1200
 gtc当地 gagaatc atttggaaatc atacagatc cgtat当地 tttagtgc当地 cttt当地 ccttgc当地 1260
 aagagcctct gagtttttag tttaaaagg atgaaaaagat tatgc当地 acat gctc当地 gaggg 1320
 agcttcatca acatatac tcaatgc当地 aggtatattt tc当地 ttgc当地 attatgttac 1380
 ataaaagca tgtaatc当地 aataaataatg ttagaccaga atacaatattt attatattct 1440
 ggtcttcaa ggacacacag aacagatatc agcagaatca ct当地 aacttcatc当地 catagaacaa 1500
 aaatcactca aaacctgttt ataaccacaa aatttgc当地 aaagaaagcc tt当地 ggccatt 1560
 tg

<210> 37

<211> 2801

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 2793

<223> a, t, c, g, or other

<220>

<221> misc_feature

<223> Incyte ID No: 3486992CB1

<400> 37
 gactttgctt gaatgtttac attttctgct cgctgtccata catatcacaa tatagtgtt 60
 acgtttgtt aaaacttgg ggtgtc当地 gttgagctt ctc当地 agac cagcatggct 120
 aggtgagct ttgttatagc agcttgc当地 ttggctgctgg gc当地 tactaat gacttctt当地 180
 accggactt cc当地 acagaa tagtgatgtt ccacaactt gctatgtc当地 aattc当地 tccccc 240
 ttgtttaccc cacagtc当地 ttacagagaa gccaccactg ttgattgcaaa tgaccctccg 300
 ttaacaagga ttccc当地 agttaa cctctctagt gacacacacaag tgcttctt当地 acagagcaat 360

aacatcgca agactgtgga tgagctgcag cagctttca acttgactga actagatttc 420
 tcccaaaaca actttaactaa cattaaggag gtcgggctgg caaacctaac ccagctcaca 480
 acgctgcatt tggaggaaaa tcagattacc gagatgactg attactgtct acaagacctc 540
 agaacacctc aagaactcta catcaaccac aaccaaattt gcactatttc tgctcatgct 600
 tttcaggct taaaaaattt attaaggctc cacctgaact ccaacaaattt gaaagttattt 660
 gatacgctg gtttgattt tacacccaaac ctggaaattt tcatgatcg 720
 gtgattggaa ttctggat taaacttccaa cccctcgaa atttgagaag cttagtttg 780
 gcaggaatgt atctactga tattccttga aatgcttgg tgggtcttga tagccttgag 840
 agcctgtctt ttatgataa caaactggtt aaagtccctc aacttgcctt gaaaaaagtt 900
 ccaaatttga aatttttaga cctcaacaaa aacccattt acaaaatcca agaaggggac 960
 ttcaaaaata tgctcggtt aaaagaactg ggaatcaaca atatggcga gctcggttct 1020
 gtcgaccgct atgccttga taacttgcct gaactcacaa agctggaaagc caccataaac 1080
 cctaaactct cttacatcca cgcgttggct ttccgaagtg tccctgctct ggaaagctt 1140
 atgctgaaca acaatgcctt gaatgccatt taccaaaaga cagtcgaatc cctccccat 1200
 ctgcgtgaga tcagtatcca tagcaatccc ctcaggtgtg actgtgtat ccactggatt 1260
 aactccaaca aaaccaacat ccgcattcatg gagccccctgt ccatgttctg tgccatggcg 1320
 cccgaatata aaggccacca ggtgaaggaa gtttaatcc aggattcgag tgaacagtgc 1380
 ctcccaatga tatctcacga cagcttccca aatcgttaa acgtggatat cgacgacg 1440
 gttttcttag actgtcgagc catggctgag ccagaacctg aaatttactg ggtcactccc 1500
 atggaaata agataactgt gaaaaaccctt tcagataaat acaagctaag tagcgaaggt 1560
 accttggaaa tatctaacat acaaatttga gactcaggaa gatacacatg tgggtccag 1620
 aatgtccaaag gggcagacac tcgggtggca acaattaagg ttaacgggaat cttctgtat 1680
 ggtacccagg tgctaaaaat atacgtcaag cagacagaat cccatccat cttagtgcc 1740
 tggaaagtta attccaatgt catgacgtca aactttaaaat ggtcgctgc caccatgaag 1800
 attgataacc ctcacataac atatactgcc agggccctt ctcgatgttca tgaataacaac 1860
 ctaacgcattc tgcagccctt cacagattt gaagtggttc tcacagtgtc caatatttcat 1920
 cagcagactc aaaagtcatg cgtaaaatgtc acaacccaaa atgcccctt cgacgtggac 1980
 atctctgatc aagaaaccag tacagccctt getcagtaa tgggtctat gtttgcgtc 2040
 attagccttgc cgtccatttgc tttgtacttt gccaaaagat ttaagagaaa aaactaccac 2100
 cactcattaa aaaagtatat gcaaaaaacc tcttcaatcc cactaaatga gctgtaccca 2160
 ccactcattaa acctctggga aggtgacac gagaagaca aagatggttc tgcagacacc 2220
 aagccaaacc aggtcgacac atccagaacg tattacatgt ggttaactcag aggtatattt 2280
 gcttctggta gtaaggagca caaagacgtt tttgtttat tctgcaaaag tgaacaagtt 2340
 gaagactttt gtattttgtt ctttgcgtt ttgtggcaga gttggagagga cgggtggata 2400
 tttcaattttt ttttagata gctgtatcga agggtttgac acggctgcca ggcactctag 2460
 gcttccagtc tttttttttt atcattatta tgatttttat tatatttata 2520
 ttttattttta gtttgtgtc taaactcaat aatgtgttc taactacatg gctcaataaa 2580
 atgattaatg acaggatggg gttcccccgtt gcttttacca gtagcatgac cccttctgaa 2640
 gccatccgta gaaagtactt tttttttttt aagcaacata cgggttgaac agcatgaaac 2700
 tttttagcat cgggcttaaga cttaactca gagcaaggca gactgttacc tcgttaagat 2760
 ttagtgcactg cggatgttta cactgaatga agntgcttaa t 2801

<210> 38
 <211> 2597
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4568384CB1

<400> 38
 ccagaggcaa agaggccagt gaggactgct ctgtgcagtt gtccaggccct gaagaagggtg 60
 gcggtgattt gaatcagaag aggtggcatt ctcttcattt ggaggatatg gataatcaag 120
 acctaacaaa ttgggtctcg aaagataacct tcgtcatggg gaagagtggaa tggagagaag 180
 ataataataaa atgccaaacg tatataattt gaaagggaa aattgagaga acttgcgtatc 240
 catggcttgc tcttccata aaggggaaact gggacatcca ctggagcaga gcacagatgt 300
 gccaagaggc cccaaagactc ccactggctt ccgcagaggc cgacagtgtt ttcgtcctgc 360
 ggagattgtt gttccctgt tagaaggaga ggagaacacc ttggcaaaac agaaacccaaa 420
 gggaaaacaaat ttaaagccaa aatttcaggc ttcaaggga gtaggcgttc tatatgaaaa 480
 ggagtcaatg aaaaaatctt tgaaagacag tttgcctt aacaataaag atcagaattc 540
 catgaaacat gaggatccca gtatcatatc catggaaat gggccccat atgttaatgg 600
 ctcatatgtt gaaatgtactc catgccaaca tgcaaagaag gcaatggcc caaactatata 660
 tcagcctcaa aaaagacaga ccacttttga aagccaggat cgcaaggcg tttcccttag 720
 cagttctgaa aagagaagta agaattctat ttcttaggcca ttggaaatgta agaagtccctt 780
 aagtcttagt gcaaagactc acaacatagg ctggacaaa gacagctgcc atagtaccac 840
 aaagacagaa gtttcacagg aagagcggc tgattcaagc ggcctcacat ctctcaagaa 900

WO 00/68380

atcaccaaag	gtctcatcca	aggacactcg	ggaaatcaaa	actgatttct	cactttctat	960
tagtaattcg	tcagatgtga	gtgctaaaga	taagcatgt	gaagacaatg	agaagcgttt	1020
ggcaggcttg	gaagcgaggc	aaaaagcaaa	agaagtgcag	agaagctgg	tgcataatgc	1080
tctggcaaat	ttggatgtc	atccagagga	taagccaacg	cacatcatct	tcggttctga	1140
cagtgaatgt	gaaacagagg	agacatcgac	tcaggagcag	agccatccag	gagaggaatg	1200
ggtgaagag	tctatgggt	aaacatcagg	gaagctgtt	gatagcagt	atgatgacga	1260
atctgattct	aaagatgaca	gtaataggtt	caaaaattaaa	cctcagttt	agggcagagc	1320
tggacagaag	ctcatggatt	tacagtcgc	cttggcacc	gatgacagat	tccgcatgga	1380
ctctcgattt	ctagaaactg	acagtgaaga	ggaacaggaa	gaggtaaatg	aaaagaaaaac	1440
tgctgaggaa	gaagagctt	ctgaagaaaa	aaagaaagcc	ctgaatgtt	tacaaagtgt	1500
tttgc当地	aacttaagca	atttacaaa	cagaggatca	gtagctgta	agaaatttaa	1560
ggacatcata	cattatgatc	caacgaagca	agaccatgcc	acttacgaaa	gaaaaagaga	1620
tgataaacc	aaagaaagta	aagcaaaacg	aaaaaagaaa	agggaggaag	ctgagaaact	1680
acctgaggtg	tctaaagaaa	tgtattataa	tattgtat	gatctgaaag	aatattcca	1740
aactacaaaa	tataccagt	aaaaggaaga	gggcacaccc	tggatgagg	actgtggtaa	1800
agagaaaacct	gaggaaatcc	aggaccctgc	agctctgacc	agtgcacgt	agcagcccag	1860
cgggttcacg	ttctctttt	ttgattcaga	cactaaagac	ataaaaggaag	agacctacag	1920
agttgaaaca	gtgaaacctg	gaaagattgt	ctggcaggaa	gaccctcggt	tacaagacag	1980
cagttcagaa	gaggaagatg	ttactgaaga	aacagatcac	agaaaactcca	gtcctggaga	2040
agcatcatta	cttgagaaag	agaccactag	attttctt	ttctctaaga	atgatgacg	2100
acttcaaggt	tctgacttat	tctggagagg	agtaggaagt	aatatgagca	ggaactctt	2160
ggaggccaga	acaaccaacc	tgcgtatgg	ttgtcggaaag	aaacataaaag	acgaaaaaag	2220
gaaaatgaaa	caaaaataat	aaatgtcagc	tggtttgtat	actgaatgt	aacaaggctc	2280
acctaaggaa	actgaccctag	aaaacagttt	tagctgacaa	agaagaaatt	tcagagtgaa	2340
ggaattttaa	aaatctggct	gacggaatat	cattctgg	gccatcttt	tctgtggAAC	2400
tcctctgcat	ttttcccaa	gtaattactt	caaaaattaa	attcaacttc	ttataaagga	2460
agaacaagat	agtccctgaa	aatactttt	gtatataatc	tctttgcct	ctatcctgag	2520
taactaatgg	acatcttctc	atgcaaggtt	tatatgaagc	cttttaaat	aaatgagtca	2580
aagcaaaaaa	aaaaaaaaa					2597

<210> 39

<211> 2641

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4586187CB1

<400> 39

ctgggaagaa	agcttatcgc	accaactcag	aactctccac	cttcagatca	gacattctag	60
atctccgtca	gcaacttcgt	gagattacag	aaaaaaccag	caagaacaag	gatacgctgg	120
agaagttaca	ggcggcggg	gatgctctgg	tggacaggca	gagtcaattt	aaagaaaactt	180
tggagaataa	ctcttcctc	atcaccactg	taaacaaaac	cctccaggcg	tataatggct	240
atgtcagaa	tctgcagcaa	gataccagcg	tgctccaggg	caatctgcag	aaccaaatgt	300
atttcataa	tgtggtcatc	atgaacctca	acaacctgaa	cctgaccctag	gtgcagcaga	360
ggaacctcat	cacgaatctg	cagcggctctg	tggatgacac	aagccaggt	atccagcga	420
tcaagaacga	ctttcaaaat	ctgcagcagg	tttttcttca	agccaaagag	gacacggatt	480
ggctgaagga	gaaagtgcag	agcttgcaga	cgctggctgc	caacaactt	gcgttggcca	540
aagccaaacaa	cgacacccctg	gaggatatg	acaggacgt	caactcattt	acaggtcaga	600
tggagaacat	caccaactt	tctcaagcca	acgagcagaa	cctgaaaagac	ctgcaggact	660
tacacaaaga	tgcagagaat	agaaacagcca	tcaagttcaa	ccaaactggag	gaacgcttcc	720
agctcttga	gacggatatt	gtgaacatca	ttagcaatat	cagttacaca	gcccaccacc	780
tgcggacgt	gaccagcaat	ctaaatgaag	tcaggaccac	ttgcacagat	acccttacca	840
aacacacaga	tgatctgacc	tccttgaata	ataccctggc	caacatccgt	ttggattctg	900
tttctcttag	gatgcaacaa	gattttagt	ggtcgagg	agacactgaa	gtagccaact	960
tatcagtgt	tatggaaagaa	atgaagctag	tagactccaa	gcatggct	ctcatcaaga	1020
attttacaat	actacaaggt	ccacccggcc	ccaggggtcc	aagaggtgac	agaggatccc	1080
agggaccccc	tggcccaact	ggcaacaagg	gacagaaagg	agagaagggg	gaggcctggac	1140
cacctggccc	tgcgggtgag	agaggccccaa	ttggaccgc	tggccccccc	ggagagcgtg	1200
gccccaaagg	atctaaaggc	tcccaggggc	ccaaaggctc	ccgtggctcc	cctgggaagc	1260
ccggccctca	ggggcccaat	ggggaccccg	gccccccggg	cccaccaggc	aaagagggac	1320
tccccggccc	tcagggccct	cttggcttc	agggacttca	gggcaccgtt	ggggagcctg	1380
gggtgcctgg	acctcgggga	ctgcccaggct	tgcctgggg	accaggcatg	ccaggccccca	1440
agggaccccc	cgcccttcct	ggcccatcag	gagcggtggt	ccccctggcc	ctgcagaatg	1500
agccaaacccc	ggcacccggag	gacaatagct	gccccctca	ctggaaagaac	ttcacagaca	1560
aatgtacta	tttttcagtt	gagaaagaaa	tttttgagga	tgcaaagctt	ttctgtgaag	1620

acaaggcttc	acatcttgg	ttcataaaaca	ctagagagga	acagcaatgg	aaaaaaaaac	1680
agatggtagg	gagagagagc	cactggatcg	gcctcacaga	ctcagagcgt	aaaaatgaat	1740
ggaagtggct	ggatgggaca	tctccagact	acaaaaattg	gaaagctgga	cagccggata	1800
actggggtca	tggccatggg	ccaggagaag	actgtgctgg	gttgatttat	gtcgggcagt	1860
ggaacgattt	ccaatgtgaa	gacgtcaata	acttcatttg	cggaaaaagac	agggagacag	1920
tactgtcatac	tgcattataa	cggactgtga	tgggatcaca	tgagcaaatt	ttcagctctc	1980
aaaggccaaag	gacactcctt	tctaattgca	tcaccttctc	atcagattga	aaaaaaaaaa	2040
gcactgaaaa	ccaaattactg	aaaaaaaaatt	gacagctagt	gttttttacc	atccgtcatt	2100
acccaaagac	ttgggaacta	aaatgttccc	cagggtgata	tgctgatttt	catttgtcac	2160
atggactgaa	tcacatagat	tctccctcgt	cagtaaccgt	gcgattatac	aaattatgtc	2220
ttccaaagta	tgaaacactc	caatcagaaaa	aaggttatca	ttggtcgttg	agttatggga	2280
agaacttaag	catatactgt	gtaaacagtg	ccatacattt	ctaaaatccc	aagtgttagga	2340
aaaatatgca	gacatacaga	tatataggcc	aactattagt	aataatatga	aatatactta	2400
aagagctttt	aaaactttgt	atttttgtac	aaaatatttg	tcttttacaa	tttttttcct	2460
tttttttttt	ttgtcatttt	accgacataa	tacatggage	caaagaaaac	aataatggta	2520
ctaataaaaa	ctccctaggg	ttccctgtcag	atthaattct	acccagtggc	aaagaatttt	2580
ttaaatgtg	gctttaaaaa	aataattaaa	tatacatgta	tatataatata	aaaaaaaaaa	2640
a						2641

<210> 40
<211> 914
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 401801CB1

<400> 40

cagagggtgta	ctctacatga	tgcacaatg	tgatatgtct	ttttggtaa	gagcacgtga	60
tgaaaacagt	aataactga	gaatagcaca	aagctactag	ggactcagat	gattcaaata	120
ttgaagacta	ttagtaatat	taatcagcaa	cttagtttgt	tatcttcagt	tatatggag	180
gagttacatta	ttctttgtta	taggactacc	tcacccttaa	attgttaagtt	cttttattagc	240
tttattgcatt	ttccattctt	aaagcagtag	tttagtgttc	tcttactgtta	tgacaattaa	300
aagtataactt	aattgactac	ataatgttat	agttaaaaaa	tatatttaaa	gtagctttt	360
gaaagcttgc	ctgtttcccc	cccttttgc	atataaaagc	attagttgtc	attattcatg	420
tgttctcatt	actttttaca	aatgagaaca	atgccttag	catgttgtga	acaattacta	480
aaattttatg	taaattttaa	ctttatattt	aattaatatg	tgttaagata	taacattatt	540
tttatcttata	atatatgtat	ttaatttac	aggaaaaacat	ctttatgtat	ggagggcagaa	600
ttgaaacaaa	tgtatggcaat	gtcacagatg	aattatgggt	ttttaacata	catatgcgt	660
catggagtagc	aaaaactcct	actgttcttg	gacatggtca	gcagttatgt	gtggaggagc	720
attcagcaca	tattatggag	ttggatagta	gagatgttgt	catgtatcata	atattttggat	780
attctgcaat	atatggttat	acaaggcagca	tacaggaata	ccatatctgt	gagttactta	840
aaaattgtaa	tttctttattt	gattggaaat	gttttctct	ttaataaaaat	cttcataatga	900
atttaaaaaa	aaaa					914

<210> 41
<211> 1006
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 1721842CB1

```

<400> 41
ggcaaagaga actacaaaatc ccagcgtcac ccgcggcctt gaagccccgc ccctgacaaa 60
ctgaagggtcc cgtaaggcat cgcgtcagta ctatggcgc ctgcccgggtt gtggtgacga 120
aagcaggttgc catggagttg ctctgagtaa ccctgaggca gttggacgccc aagactggag 180
aggaagcgac tgcggggagt atttccattt taaccggaaa caatccctga acccacagga 240
atgaatgcct aatggtgaaat ttcagccat cagtgacagg ctgaacccag actcccaggg 300
cacctgcttgc cacctttgaa tgatggctg aactatgaac aaacgggact atatgaacac 360
ttcggtagacag gagcccccttc ttgactactc ttcaagaagc atccacgtca ttcaagatct 420
ggtaaatgag gagccaagga caggactacg accactgaag cgttcaaagt cggggaaatc 480
actgacccag tcctgtggc tgaataacaa tggatcgttcaat gatctgagag acttcaacca 540
ggggcttca cagctgttgg agcaccaggaa aaccttcttc aacctgagtg tccttatct 600
tgacctgact tcatttgacc ctgtcctaacc
```

WO 00/68380

tcacggcaac	agcatccagc	gcctggggga	ggtaataag	ctggctgtcc	ttcctcggt	720
ccgttagctg	acactccatg	gaaacccat	ggaggaagag	aaagggtata	ggcaatatgt	780
gctgtgcacc	ctgtcccgta	tcaccacgtt	cgacttca	gggtcacca	aagcagaccg	840
caccacagct	gaagtctgga	aacgcatgaa	catcaagccc	aagaaggcct	ggaccaagca	900
gaatacactt	tgaggctccc	acgaccctag	tagtcctaaa	ggcctaagca	tagacagcat	960
ggtttgacaa	taaataattt	gagctgttga	gcagaaaaaa	aaaaaa		1006

<210> 42
<211> 2582
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1833221CB1

<400> 42
 gttaaatcta gtactgaatg cagccttttgc ttgtttaaaa aaaaaaaaaa aactcacagt 60
 ctacatcagc atcagcatct gcgtcaccat ttcaatctgc atggtagt gaatctgaga 120
 taactcaggc agcagcgtca agatcgaga accagaacg ggatcatgt tcaaaaagac 180
 ctaaacttgc ctgtacaacat tgtaactacct cagctggag aaatgttgg aatggttaa 240
 acacattatc agattcatct tggaggcata gtcagttcc tagatcttca tcaatggtac 300
 ttggatcatt tggaaacagac ttaatgagag agaggagaga tttggagaga agaacagatt 360
 cctctattatc taatcttgc gattatgtc accgaagtgg tgatttcaca acttcatcat 420
 atgttcaaga cagagttcct tcatttcac aaggagcaag accaaaagaa aactcaatga 480
 gcactttaca gttgaataca tcattccacaa accaccaatt gccttctgaa catcagacca 540
 tactaagttc tagggactcc agaaaattctt taagatcaaa ttttcttca agagaatcag 600
 aatcttcccg aagcaatacg cagcctggat tttcttacag ttcaagttaga gatgaagccc 660
 caatcataag caattcagaa agggttgtt catctcaaag accatttcaa gaatcttctg 720
 acaatgaagg taggcggaca acgaggagat tgctgtcag catagttct aagatgtcat 780
 ctacttttt ttcacgaaga tctagtccagg atcccttgc tacaagatca ttgaattctg 840
 aaaattcttgc cgtttctcca agaatcttgc cagcttccaa gttccctgtat aatgttccat 900
 cagcttctga agttcccgat aataggccat ctgaagcttc tcagggattt cgatttctta 960
 ggcgaagatg ggggttgcg attttaacca agaatcttgc ggtagaaata acaatcatag ctctgagtc gattcagaaa 1020
 atatgttgc acctttgttc tctagaaggg aaggaccatg gttatcttcc tcacttagaa 1080
 atatgttgc acctttgttc tctagaaggg aagcggatgg aagagatgaa tcttcaagga 1140
 tacctacctc tgatacatca tctagatctc gagctgctgc caacagacca caagcatctg 1200
 ttcaccttgc agcacaagaat gatccttgc ctacatcaga ttcggctcaa ggttggagaaa 1260
 cagcatcaag cagtgcacaa acaggtggct ctttattccg gtttgcagtc cccccagcac 1320
 atacaggaat atcagggtt cttccttgcg tcaagatgaa tattttctc tcagggttgg 1380
 ttgggagttt tttgaccgac aatgtcatga aatgtcgcc ttcaagagat ccagaaaagat 1440
 attcagctga ttgtaaaatg gataaaaacta aggactcaga aagaagaagaa ggtgacttat 1500
 tgcagaaaat aaaagagagc ctcttttag catctaattt gctgatagag ccatgcaagt 1560
 gtagaattt tcaaatggca gtcgcattcat actgtatgaa aaagtggta caggccaaaa 1620
 gcacaggaat ttggcagttt gtcaccaag ccacctgtga actatgtaaa gagaagttgg 1680
 ttaactctgg ttcttcattt gaagctgtaa aactacatag agctcatgca aatgaacaag 1740
 agcttaaccc ggaggattt gatattcatg ttatttttttgc accttagtggt gttattgcac ttgtgcgaa 1800
 ctgagtttgc gtttatcagc tctggctctt atgaaccaag cacacgtgtc cgatttatta 1860
 aaagctttc tgatatgtt gggaaatacaa aacttcgtca aagatctcg aacttcagag gatgattccg 1920
 accttgcacaa aactcttgcg gcacatatgg atattgcctt acttcatata agacagatgg 1980
 aagaagacgg agaccataac aggacatttgc atggcaattt atataatttactt actttgtgg 2040
 atgatctgtt aacataagt gtttatttttttgc atggcaattt gtttcttgcg gactttttaa 2100
 gggatgcctt aataataatca ttgactatatttgc aataatgtaa aatttctgtc gactttttaa 2160
 cctgtatata tatatttgc ttcaggatgtt gctgaatttgc aatttctgtc gactttttaa 2220
 catagcaatc ccgtatgtt taaactggta atcaaaaagg tttttctt taggtgagtg 2280
 gggaaatattt acccttgc taaatatcta agcaatgcctt atcaaccctt ttttgttta 2340
 tgattactgt agtcatattt atgaaaaaaat gtttgc tttttctt gtttgc tttttctt 2400
 gtgggacaaa atataactttt gaaataaaaat gctatatggc acctaattt tttttctt 2460
 aaaatgcctt aagttgcgtt ctcattttga taatcatttgc cttccagttt tttttctt 2520
 aaaaagaat ggggagaagg ttatgagaag agcatttata agtttccaaa tttatatttga 2580
 at

<210> 43
<211> 2849
<212> DNA
<213> *Homo sapiens*

<220>
 <221> misc_feature
 <223> Incyte ID No: 2041168CB1

<400> 43

acgtgaccaa gagctgacgt gtgcagaagt ctttcttgc ctggcgttg ttcccgcttg 60
 agtaccagct ccccaactgcc ctgaggcg gcccgcctgc ggccggaggaa aaaaggaaaga 120
 ggagaagaa attgtcccga atccctgcag tcttcgtta gttgcggca caacgccagg 180
 caaaaagaaga ggaaggaatt taatcctaatt cggtggaggt cgatttggagg gtctgctgt 240
 gcaggtggct ccgcttgaag cgagggagga agtttctcc gatcagtaga gattggaaag 300
 attgttgga gtggcacacc actaggaaa agaagaaggg gcgaactgct tgtcttgagg 360
 aggtcaaccc ccagaatcag ctcttgc cttgaagtg ggatctggg atgtggatga tgctgggac 420
 caggcttgc cccagtcctt cagccttcc cccccagctt gatgactac tctattcctt 480
 ggtccctgtt attgtcgggg acgattgcat gggctacgccc agggaaatgt gctgggtgac 540
 cgcagcttgc tgattggggc tggcgcttgc tattgcattt atagactgac tagggaaaga 600
 aaacagaaca agggaaaaat ggctgagggt ggatctggg atgtggatga tgctgggac 660
 tggcttgggg ccaggtataa tgactggctt gatgatgt atgacagcaa tgagagcaag 720
 agtatagttat ggtacccacc ttgggcctgg attgggactg aagctggaaac cagagctagg 780
 gccaggccaa gggccaggcc tacccgggca cgtcgggctg tccagaaaacg ggctcccc 840
 aattcagat ataccgttt gtccttcaaa gagctacaaa aggcttctt gttgggtgag 900
 atgtctgaaa agccttataat tcttgc gctttaattt ctctgggttca caatgctgtt 960
 tatgcatttta acagagatatt tattcgat ctgggtggc tcccaatttgc tccaaagatt 1020
 ctcaataactc gggatcccat agttaaggaa aaggctttaa ttgtcctgaa taacttgagt 1080
 gtgaatgctg aaaatcagcg caggctaaa gtatacatga atcaagtgtg tgatgacaca 1140
 atcacttctc gcttgcactc atctgtcgat cttgtggac tgagattgt tacaatatg 1200
 actgttacta atgagtatca gcacatgctt gctaatttca ttttgcattt tttcggttta 1260
 ttttcagccg gaaatgaaga aaccaaaactt caggttctg aactctttt gaatttggct 1320
 gaaaatccag ccatgacttag ggaactgctc agggcccaag taccatctt actgggttcc 1380
 ctctttaata agaaggagaa caaagaagtt attcttaaac ttctggcat atttgagaac 1440
 ataaatgata atttcaaattt tcactttttt tcttttaaa agaatttcaat ggtgtgctg ataagttctt 1500
 agtcaccatg attttttgtt gaaagtaaaa gttggaaaat tcatggccaa acttgctgaa 1560
 catatgttcc caaagagcca ggaataaacac cttgattttt taatttagaa gcaacacaca 1620
 ttgttaaacta ttcatttctt ccacctgtt tataatggtaa aggaatcctt tcagctgcca 1680
 gttttgaata atgaatatca tattgtatca tcaatgctgta tatttaactg agttggctt 1740
 taggtttaag atggataaat gaaatattactt acttgcatttgc aacatgtt tttcggttta 1800
 tatctcgctg ccttagatttgc aatattttgc tatttcttgc gcataagtga cagtgaacca 1860
 attcatcatg agtaagctcc cttctgtcat ttcattgtat ttaattttgtg tattcatcaat 1920
 aaaatttgtt gttaatgctg gaaagaaaaa aagaagaaaag aaaaaaaacca tccctgtcct 1980
 tcagtttata atcttagttt gaaatattactt acttgcatttgc aacatgtt acagaatatc 2040
 tgaagcatgtt acttgcatttgc agatgtccc tctgagagca cagaggaggc aaaagcttct 2100
 gtgggatgtt ctatcggtt aaagcttccac agaggagggtt gcaattgaaa atgagtctgt 2160
 aatgggttagt ggtggtagg gaaatccatg agacaagaca agggggcat ggtgtgagaa 2220
 aggcatggaa gtaggaaccc tcttcctatg acaggagatc attctgctt ggtggagag 2280
 tggagatgtt gggagtagat aattttggaa agctgggtga agccagtgtt ggagaattgt 2340
 ttgaatattt tcccatgtt gaaatattactt tttttacta gaaatattttt gaaaataatt 2400
 ggggtccata tgaatgttcc tattactgtt tagtgcattt ggggtgtgg caaaatggag 2460
 ctttcacat cctatgtgtt gccattttgtt aatcacatgta taaggctttaa actatgtt 2520
 cccttgcctt aaggaatattt ttgaatattt gccaatggat tttatgtatg aggctgttca 2580
 tcccagcaat gtctaaatgtt gaaaaattt gaaatattt aatgtatctt cacattggat 2640
 tggttataaa gcaaggaatg ttccacatgtt agatattat aatgtatgtt atggaaatct 2700
 atattgcac gaaaagctat tcattatgtt gttgtggatc agaaagtaaa aaagggtaga 2760
 tagaagtattt cgaatgtatgtt ttccattttt 2820
 2849

<210> 44
 <211> 670
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2365794CB1

<400> 44

gaggcaagaa ttccggcacga gggcgccgc gggcattttct tccactgccc gtctgaggaa 60
 acgctaagta gtgtgtccgg cggcggttcc cagctccgcg ttgttccgcg agaaagcgag 120
 agcccgagcc cggcggttcc cagatggccgc ggtgtggcc aagcgggaag ggccgcgc 180

WO 00/68380

catcagcgag gccccgtgc ggggcaacgc cgccgtctg gattattgcc ggacctcggt 240
 gtcagcgctg tcggggcca cggccggcat ctcggcctc accggcctct acggcttcat 300
 ctcttacctg ctcgcctccg tcctgctctc cctgctctc attctcaagg cgggaaggag 360
 gtggAACAAA tatttcaaAT caGGAGACC tctttaca ggaggcctca tcggggccct 420
 ctTCACCTAC gtccTGTCT ggacGTTCT ctacGGCATG gtgcacGTCT actgaaATGG 480
 gggCCGGGG gactTTTA AAAAACCAGA tcGGGAGGAC tGtggccAGC aattaACACC 540
 attagACTT ctttagttct taagtggtg aattcgctgc ttgttctgtA acgttataAA 600
 taatttatAT ctGAAGACGG agAGCCTGTA atattcttca gattaaatGA agcgtgagac 660
 aaaaaaaaaaaa 670

<210> 45
 <211> 2364
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2618452CB1

<400> 45
 ctaatGCCAc aacGGCACCA ttccTCCAcc gacaACGCTG aaggCCACAG ggtCCACCCA 60
 cacAGCCCCA ccaatGATGC caaccACCCAG tggGACCAGC caAGCCTCAA gtcCCTTCAA 120
 cacAGCCAAA acCTCTACAT ccTACATTC acACACTTCC tccACACACCC atCCTGAAGT 180
 cacCCCAACT tcTATCACCA acATCACCTC caACCCACCC agTATAGGA cTGGACACC 240
 cgtGGCCAC ACCACCTCGG ccACCGAGCAG cAGGCTAACC ACACCCCTCA ccACACATTc 300
 cccACCTACA gggAGAGTC ccatCTCTC caAGGTCTC atGACTGCAA catCCTTCA 360
 gaccACCATC tatttACAC CACCATCACA CCCTCAGACC ACACCTCCCA cTCACGTTCC 420
 acCTTCTCC acCTCCTTGg tgACTCCAAg tacTcacACA gTCATCATCA ctACCCACAC 480
 acAGATGGCC acTTCTGCCT ccatCCACTC AACGCCAACA ggcACCGTTc ctCCACCAAC 540
 aacGCTCAAG gCCACAGGGT ccACCCACAC AGCCCCACCA atGACAGTGA ccACCAgTGG 600
 gaccAGCCAA ACCCACAGCT cATTcAGCAC AGCTACAGCC tCTTCTTCTC tCATATCCTC 660
 ctCGTCTTGG tcGtCTTGGC tgcCTCAGAA ctCTAGCTCA aggCCACCGT catCACCTAT 720
 caccACACAA ctCCCCACT tgAGTTCTGC aaccACTCT gttCCACAA ctATCAGT 780
 gtcCTCCTCA ttttCTCCCt gtcCTTCTGC ccCCTCTACT gttCTTCTT atGTGOCCTC 840
 ctCCCACTCC tctCCCCAGA ctTCATCGCC ttCTGTTGGC acATCTTCTC ctTTcGTGTC 900
 cgCCCCCGTG cactCCACAA ccCTGAGGTc gggTCACAC tCTCTATTGT ccACTCATCC 960
 cacGACTGCA tcAGTGTcG catCTCTCT tttCCTTCT tCTCCAGCTG cCTCTACTAC 1020
 cattAGGGCC acTCTCCCCC acACTATCTC ctCTCCTTc ACCCTCTCTG ctCTACTCCC 1080
 cAtATCCACT gttACCGTGT ctCCCAcCCcC AtCCAGCCAC cTAGCCTCCA GcACCATTGc 1140
 attTCCTGTC acGCCAGGA ccACGGCCAG cACCACACCC GcccCTGCT tCTCCTCTCA 1200
 gtcCACCACc tcGCGGTCCA ctTCTCTCAC cACCCGAGTT cCCACATCAG GCTTTGTGTC 1260
 actCACCTCg gggGTGACGG gtATCCACAC ctCTCCAGTC accAACCTTA ccACCAgGGA 1320
 ccCTGGTCCC acCTTGTcGc ctAccACACG gttCTGACC AgCTCCTCA ctGcccATGG 1380
 aAGCACCCCT gttCTGCCC CGGTATCTC tCTCGGGACA CCTACGCCA cCTCACCCGG 1440
 ggtCTGCAgT gtGCGGGAGC AGCAGGAGGA GATCACGTT AAGGGGTGCA tGGCGAACGT 1500
 gacGGTAACC CGCTGTGAGG GCGCTGCTAT tTCCTGTGc AGTTCACAAcA tCATCACCCA 1560
 gcaGGTGGAT GcccGTCGA GCTGCTGGC CCCCCCTCCAC tcCTATGAGC AGCAGCTGGA 1620
 gctGCCCTGc cCGATCCCA GcACGCCtGG CGGCGGGCTC GtACTCACCC TcAGGTT 1680
 cAGCCACTGc gtGTGAGCT ctGTGGCTG tGGAGACTAG cAGGGTCGCT GcCTGCTC 1740
 ctTGGGCTGA aggACTGAG ATGACAGACA gaaaaACACC cAccAGCCCC ctTCCCGCTT 1800
 gtGCCAGCA ctGCTTCTC ggtCACCAGG CCTGGCCCCC AAGTGCCCTG GcccGTGGCT 1860
 ccCTGGGGCA CGGTTGGAG AGGGGCTGCC AAGCAGGGGc TCAGACTACC acACTCTGC 1920
 agACCCtGAG ccAGCAGAGA GGGACTGAGG CGGACAGTGG TCACGGACCT CCCAGGCCA 1980
 cAGGGCACTC CGGACCCACCC ctGCCCACTG TCCAAACACCT CCCAGCCCC GAACTTGGCC 2040
 ccAGCCCTGC tGGGCCAGA ACCCTGCGAGA tGAAGCCACA GAGCAGGCGC TcGACCGAGC 2100
 cCATCAGGGG CGAGGAGGGC acGGAACCT GTGCCGAGAT GGGGGCAAGA GcccCAGGCA 2160
 GCCACCAgCA cAGAGAAGAG GAGATCCCCA GAGTCAGGGA GGGCAGAGGG TGGCAGCGAG 2220
 GGCAGGGCAg CGGCCCCCGC tcccAGCCAG GcAGAAGGCC CCCACCAgCA ccACACCCAT 2280
 ccccAGCAGC ctGTCTTGG gagAGGGCtGt cAccCGGTCA gagACTCCAA AtAAACCGGT 2340
 tCTTGTCAAG GcACAAAAAAA aaaa 2364

<210> 46
 <211> 3600
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte ID No: 2622288CB1

<400> 46

gcagaggccg cggggctcct cctcccgctc ctccctggcc tccccttcg ggcgtctcg 60
 gctaactgtg ctccctccggg gccctccgccc tgctcccaatg catggtgccc tggcgctcg 120
 cgttccctgt ctgcctcgct ttctcccttgg aagaaacttc ctcagtaaaag cagccatggg 180
 ttgatgattt taacctggag gatgcagtga accacaccac caccaccaca accaataggc 240
 caggttagtgg attggacttg gctgatgtt cagaaccac cagagctccg gaaaaacctc 300
 cgggtatagg aggaagagag agatggAAC ccaccagagc tcacagaaat actttaggaa atcgaaatga tcgagatgtt ggccgcagga acaaggatct tgaagacata gtaggggtg 360
 atggccgtt cggcagcaat gacgaccctg ttgcccgggtt ggcagcgcctt ctggccatgg 420
 cctaccagca gaagaagttc tgcttcagca agggagagaa ctggaaagcc gtggtatgtg 480
 acacgcgtc tgacagccg cgcgcgcgcatc catgcacaat ggtgccaccg 540
 cagctgcagg agctgtgtt ctgcctgtt ggtgagctc tgggtgttt tgagtttgg 600
 ttggacccgc agctgtgtt tgatggatgtt ttccatggccca aattcaagag ccacgtctga 660
 tgagccacca actcccaaag ccacgtctga ccaagatgtat gtcggccctt gatgcccgg 720
 ggactgtgac ccctgcacac tggagtggct ccctgacagt ggctcaagg agctgcagg 780
 cctgcaagga gcaaccggc cgcaccaag atggtttaccc ttcagcagggtt ggttccatgg 840
 gtccaaggcg aggctttcag tgatttaagt tgagagctt ggaatcttc ggtataagtt 900
 attccatagg gggctgggtg tggcccttcgg ttctgcaccc gagatggat ttatcctgtt 960
 gtcctgttt tggtagcaag agtgaccat gcttgggtt taaaaatgt aattggggc 1020
 gcttgggttta gtgaaacgca ggtgacttt tgagggagag tgctgtggga 1080
 cccctcacct ggctggagc tgcctggttt ttcccttggc ccacatatgg ttctgtccc 1140
 agaaccacat gctagggtct agggccctg ttctgttgc gagatggat ttatcctgtt 1200
 agcacttctg aaacgagata tgagtacca cccatgtcgat ttctgttgc 1260
 ctctttgtc tgcatgtatgg cccatgtcgat ttcataggct tccactgtg 1320
 tgctgagttt gatgagccaa ctccagttt ttaaggaaac cactggaaatc 1380
 acatgcacat gtctaaccgc tgccctgtt tgctgttgc aacatgcctg 1440
 tggtcaggatgg tagccctgtg cgtctcaagg ctgccttgcgg 1500
 ccttgcgtc cttaccacc ctttctgc tggccctt aatccctgac 1560
 tggtcggctg aagggggacc tgcaagact tcccatgtt ctttccagg 1620
 aaagaaaacct tggctggc tggacttgc tggacttgcgg 1680
 ggtggctgc aggattggcc tggacttgcgg 1740
 ctttgtcagg ctgtccctc cttgataccatc agtatgtcg 1800
 tggctggc tggccggag ctggacagcg tgacctcagg 1860
 ctaagtcctt gaaaccctag agctgtgac tagaatatgt gctgtctgt 1920
 cccaggagca ctgactgcag cccatgtcgat ttctgttgc 1980
 cccgggtgtc ttctgcacaa agcctagac ctggacttca 2040
 tagtgcattt acatgcctgg aagaccctc agccttgcgtt 2100
 gagcttctcc ttccacaga catcttacac ttgctcgaca 2160
 gccccgtctg gtccatgtt gtcacttgcgg 2220
 aagcgagagg ggagacacag tggactgaaa ggactgggtt 2280
 gcttaatttgc gcaaaaaaa ttgttaacaa ctctgagcac 2340
 tcaagggaaatg ataaagctgg gccaaggag gtgtcgatgg 2400
 ggggaggctc tggacaggg gctgggggtt aatccctgac 2460
 ctgatctcaa aattccagaa ttccctgttac atctgttca 2520
 cttgttaact gtctgttgc tgcattaaat aaaatggcac 2580
 cgagcagaaaaaaa 3000
 3060
 3120
 3180
 3240
 3300
 3360
 3420
 3480
 3540
 3600

<210> 47

<211> 1236

WO 00/68380

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2806595CB1

<400> 47

ttaatttccc	cgtaaatcaga	ctgctgcctt	ggaccgggac	agctcgccgc	ccccgagagc	60
tctagccgtc	gaggagactgc	ctggggacgt	ttgccttggg	gcccccagect	ggcccgggtc	120
accctggcat	gaggagatgg	gcctgttgc	cctggtccc	ttgtcttcgc	tgcccggctc	180
ctacggactg	cccttctaca	acggcttcta	ctactccaac	agcgccaacg	accagaacct	240
aggcaacggt	catggcaaag	acctccttaa	tggagtgaag	ctgggttgtgg	agacacccga	300
ggagacccgt	ttcacctacc	aaggggccag	tgtatccctg	ccctggcgct	accgctacga	360
gcccggccgt	gttccccgc	ggcgtgtgc	tgtcaaatgg	tggaaagctgt	cggagaacgg	420
ggcccccagag	aaggacgtgc	ttgtggccat	cgggctgagg	caccgtctt	ttggggacta	480
ccaaggccgc	gtgcacactgc	ggcaggacaa	agagcatgac	gtctcgctgg	agatccagga	540
tctgcggctg	gaggactatg	ggcgttaccg	ctgtgaggtc	atgtacgggc	tggaggatga	600
aagcggctg	gtggagctgg	agctggggg	ttagatgcta	acggggactg	gttgadactg	660
gjacctgaga	gcagagggga	gaggaccaga	aaaaacatcc	agacctctgt	gttttagaca	720
ttaaaaagta	cttaatttctc	aaaacaaccc	acatggaagc	tactttgtg	accccccattt	780
tacaggtgag	aaaactgagg	cacagagagg	tcaagtaact	tacctaaggt	cacacagctt	840
gtaaacgaca	gagctgggtt	ctgaacccaa	gcacccagcc	tctagaatct	gttcccctct	900
acccgctgta	attcacatct	cattcagaga	gaggaaaacc	agagctggtc	ccacagctta	960
ttagagacag	agctgagatt	taagcaaggt	tagcgggtaa	cacaagcga	tgagggcagcc	1020
cactgtgaga	cgatggagt	ggtggggact	gggcacactc	ctgagccctt	gtcctgtgcc	1080
cagggaggtc	ccacactact	caggcccg	tgtatgatgcc	acgcggagaat	gcagacccca	1140
ctgccaaatt	ttctggctt	acaagataag	cttatatttt	tatgtgagat	ctccagattt	1200
ttatgtaaaa	acctcctttt	taaaaaacaaa	acaaaa			1236

<210> 48

<211> 3081
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte ID No: 2850987CB1

<400> 48

gccccggccca	cgccggccggc	ggcggccggc	gagagagctg	gctcagggcg	tccgctaggc	60
tcggacgacc	tgctgagct	cccaaaccgc	ttccataagg	cttgcctt	ccaacttcag	120
ctacagtgtt	agctaagttt	ggaaagaagg	aaaaaagaaa	atccctgggc	ccctttttt	180
ttgttcttt	ccaaagtctgt	cgttgtagtc	tttttgc	aggctgttgc	gttttttagag	240
gtgctatctc	cagttcttg	cactcctgtt	aacaagcacc	tcagcgagag	cagcagcagc	300
gatagcagcc	gcagaagagc	cagcgggtc	gcctagtgtc	atgaccaggg	cgggagatca	360
caaccggccag	agaggatgt	gtggatcctt	ggccgactac	ctgacccctgc	caaaatttctt	420
tctctacett	ggtcattctc	tctctactt	gggagatcgg	atgtggact	ttgcgggtgc	480
tgtgtttctt	gtagagctct	atggaaacag	cctccttttgc	acagcgtct	acgggctgtt	540
gttggcaggg	tctgttctgg	tcctggagc	catcatcggt	gactgggtgg	acaagaatgc	600
tagacttaaa	gtggcccaga	cctcgcttgc	gttacagaat	gtttcagtca	tcctgtgtgg	660
aatcatctcg	atgtatgttt	tcttacataa	acatgagtt	ctgaccatgt	accatggatg	720
ggttctca	tcctgtctata	tcctgtatcat	cactatttgc	aatattgca	atttggccag	780
tactgtact	gcaatcacaa	tccaaaggga	ttggatttttgc	gttggcag	gagaagacag	840
aagcaaacta	gcaaataatga	atgccacaat	acgaaggatt	gaccagttaa	ccaacatctt	900
agccccccatg	gctgttggcc	agattatgac	atttggctcc	ccagtcatcg	gctgtggctt	960
tatttcggga	ttgaaacttgg	tatccatgtt	cgtggagtac	gtcctgtct	ggaaggttta	1020
ccagaaaaacc	ccagctctag	ctgtgaaagc	tgtctttaaa	gaagaggaaa	ctgaatttggaa	1080
acagctgaat	ttacacaaag	atactgagcc	aaaaccccttgc	gagggaactc	atctaatttggg	1140
tgtgaaagac	tctaacatcc	atgagcttgc	acatgagca	gagctactt	gtgcctccca	1200
gatggcttag	cccttccgt	ccttccgaga	tggatgggtc	tcctactaca	accagccctgt	1260
gtttctggct	ggcatgggtc	ttgttttctt	ttatatgact	gtcctgggt	ttactgtcat	1320
caccacagg	tacgcctaca	ctcaggact	gagtggttcc	atcctcgtt	ttttgatggg	1380
agcatcagct	ataactggaa	taatggaaac	tgtatgtttt	acttggctac	gtcgaaaatg	1440
tggtttgggtt	cgacacaggtc	tgatctcagg	attggcacag	ctttcctgtt	tgatcttgc	1500
tgtatgtctt	gtattcatgc	ctggaagccc	cctggacttgc	tccgtttctc	cttttgaaga	1560
tatccgatca	aggttcattt	aaggagagtc	aatttacaccc	accaagatac	ctgaaattac	1620

aactgaaata tacatgtcta atgggtctaa ttctgcta attgcccgg agacaagtcc 1680
 tgaatctgtg cccataatct ctgtcagtct gctgttgca ggcgtcattt ctgctagaat 1740
 cggctttgg tcctttgatt taactgtgac acagttgctg caagaaaatg taattgaatc 1800
 tgaaaagaggc attataaatg gtgtacagaa ctccatgaac tatcttctt atcttctgca 1860
 tttcatcatg gtcatcctgg ctccaaatcc tgaagcttt ggcttgctg tattgatttc 1920
 agtctccctt gtggcaatgg gccacattat gtatccga ttgccccaaa atactctggg 1980
 aaacaagctc ttgcttgcg gtcctgatgc aaaagaagtt aggaaggaaa atcaagcaa 2040
 tacatctgtt gtttgagaca gtttaactgt tgctatcctg ttactagatt atataagagca 2100
 catgtgcttta tttgtactg cagaattcca ataaatggct ggggttttgc ctctgtttt 2160
 accacagctg tgccttgaga actaaaagct gtttaggaaa cctaagtca cagaaattaa 2220
 ctgattaatt tccttatgt tgaggcatgg aaaaaaaattt gggaaaagaaa aactcagttt 2280
 aaatacggag actataatga taacactgaa ttcccctatt tctcatgagt agataacaatc 2340
 ttacgtaaaaa gagtggtag tcacgtaat tcagttatca tttgacagat tcttatctgt 2400
 actagaattc agatatgtca gtttctgca aaactcaactc ttgttcaaga ctgctaatt 2460
 tatttttttgc catcttagttt atttttaaaaa acaaatttctt caagtatgaa gactaaattt 2520
 tgataactaa tattatcctt attgatccta ttgatcttta ggtatttaca tgtatgtgga 2580
 aaaacaaaac acttaacttag aattctctaa taaggtttat ggttagctt aaagagcacc 2640
 tttgtatTTT tattatcaga tggggcaaca tattgtatga agcatatgtca gcacttcaca 2700
 gcatggttat catgtaaagct gcaggtagaa gcaaagctgt aaagtagattt tatcacacaa 2760
 tgactgcata cagacttcaa atatgtcaat agtttggta tagaacctag aagccaaaag 2820
 ccacacagaa gggcaagaat cccaaattaa ctcatgttat catcattagt gatctgtt 2880
 gtagaacatg agggtgtaa cttcagcct ggcagttac atgtagaaag cccacactt 2940
 tgaagggtttt gtttacaaa tcacttgatt taacacactc aggtagaata ttttattttt 3000
 tactgtttta taccctagaag ttatttctac attgttctac agcaagaata ttcataaaagg 3060
 tggaccttgc aagtgcgtat a 3081

<210> 49
 <211> 1825
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3557211CB1

<400> 49

cgtgttgaag gcatcagacc ctgacactga ggacgatcag ataatcttta aaattctaca 60
 aggccaaaaa catggacatc tggagaacac aacaacaggt gaatttataatc atgagaaaattt 120
 tagccaaag gacttaaaca gtaagactat tctttacatc ataaacccat ctttggaaatg 180
 aaattcagat accgtggaaat ttcaatcatc gaccccccaca gggaaactcgg ccactcctca 240
 aattttggaa ctgaagtggc ttcattatgaa atggtcacag accaatataa tctgtgagaa 300
 tgggtggttt tggcccttgg aaattatcag aaggggatatt tccatggact cggcctttgt 360
 gggtataaaag gtcaaccaag tgcagctgc agttggaaaaa gatttcaccc tgattccatc 420
 taaactgatt cagtttgacc caggaatgtc aactaagatg tggaaatataa caattaccta 480
 tgacggatttta gaggaaatg atgaggctt tgaagtaattt ctgaaactccc ctgtgaatgc 540
 agttcttggc acaaagacaa aagctgcagt gaaaattttg gactccaaag gaggacaatg 600
 ccatccttca tattccttca accaaagcaa gcacagcaca tgggagaagg gcatttggca 660
 tctgtgtccc ccagggttctt ctcattccac cacttctgtt tcctttcatc tggaaagaag 720
 acctcttcca tttccatgc agcttagcattt catcaggggaa gacaccctgc ggggctttga 780
 ttctacagat cttcttcaaa ggaagcttag gaccctggg aatggcaaaa cagttcgtcc 840
 atcctctgtt tatagaaatg gaacagacat catctataat tatcatggga tagtttctt 900
 gaaactggag gatgacagtt tcccaactca caaaaggaaag gccaaagttt ccatcattag 960
 tcagccacaa aagacaatca aagtggcaga actgcctcaa gcagataagg tggaaatccac 1020
 aactgactca cacttccca gacaggacca gttccctca tttccaaaga actgcactct 1080
 ggaattaaag ggactcttcc attttgaaga aggcatccag aagctgtatc atgcataatgg 1140
 gatcgcttgg aaagcttggaa gtccttccaaac caaggatgtg gaagacaaat cctgtccac 1200
 cgggtggcac cagcaactcgt gctactgtca catcttgcattc acagagcaga aaggcacctg 1260
 gaatgcggctt gcccaagttt cggggacca atacctggc aacccctgtaa ctgttatttcc 1320
 caggcagcac atgcgggtggc tctggacat tggggaga aagtcctttt ggataggttt 1380
 gaacgacccaa gtgcattgtg gcccacttgggaa gtggatcgtt ggtacaccc ttgccttcac 1440
 caatgggaga agagggccctt ctccacgttc caagcttggaa aagagctgtt ttttgggtca 1500
 aagacaaggaa aatggcaaa caaaagactg taggagagcc aaacccatata attatgtgt 1560
 ttccagaaaaa ctctaaatat aacagacccctt acagggggcc acctggagtt tgcacccat 1620
 ttattcatacag gatctgtgaa tattgttccaa tagaaaacaa attgttataa ttgagtggtt 1680
 ataccttgc gattctgttctt agtggaaaatg ggacatccat aatagtgcac gaaagattga 1740
 taaataaaata tttttacaa gataagatac aattttgcata tctcaataacc tttaaaata 1800
 aatgccagca gtattaaaaa aaaaa 1825

WO 00/68380

<210> 50
<211> 1712
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4675668CB1

<400> 50
ctttcttcag tccccacgtg cgatccttcc cggcaacttt ttcgagaaaa atgccccaaat 60
tcaaggcgcc ccgtggggtg gggggtcagg aaaaacatgc gcccctggcc gatcagatcc 120
tggctggaa tcgcgtgcgg gcgggggtcc gggagaagcg gcggggtcgc gggacaggag 180
aaggcgagga agagtatgtg gggccccggc tgagccgacg gattttgcag caagcacggc 240
agcaacagga ggaactcgag gccgagcatg ggactggga caagcccgcg ggcgcgcggg 300
aacgcaccac gcggctgggt ccaagaatgc ctcagatgg atcagatgac gaggacgagg 360
agtggcccac cctggagaag gctgccacaa tgacagcgc gggccatcat gcagaggtgg 420
ttgtggaccc tgaggatgag cgtgccatag agatgttcat gaacqagaac cctcctgcca 480
ggcgcacctt ggctgacatc atcatggaga agtgcactga gaagcagaca gaggttgaga 540
cagtcatgtc agaggtgtcg ggctccctta tgccccagct ggaccccccgg gtcttagaag 600
tgtacagggg ggtccggag gtattatcta agtaccgcag tggaaaactg cccaggcat 660
ttaagatcat ccctgcactc tccaactggg agcaaatctt ctacgtcaca gagccggagg 720
cctgactgc agtgcceatc taccaggcca ccaggatttt tgccctcta ac ctgaaggaac 780
gcatggcca ggccttctac aaccttgc tgcctcccg agtgcagat gacgttgctg 840
aatacaaacg actcaactc catctctaca tggctctcaa gaaggccctt ttcaaacctg 900
gagctgggtt caaagggatc ctgattccac tgcgcgcgtc tggcaactgtt accctccggg 960
aagccatcat tgtggtagc atcatcacca agtgcctcat ccctgtgtt cactccagt 1020
cggcatgct gaaaattgtc gagatggaaat acagcggtgc caacagcatc ttctctgcgac 1080
tgctgctgga taagaagtat gcactgcctt accgggtgtc ggatgcctt gtcttccact 1140
tcctgggtt cggacacag aagcgtgaac tgccctgtgtc gtggcaccag tgccctctga 1200
cttgggtcca ggcctacaag ggcgcacttg ccacagacca gaaagagggcc ctcttagaac 1260
tgctccggct gcaagcccat ccacagctat cggccggaaat caggcgtgag cttcagagt 1320
cagtcctcccg cgatgtggaa gatgttccca tcaccgtgga gtgagaaaa cagtcagctg 1380
tcctggccaa agggtttgg aaggacacca agaccccggt tgggtactga agatgacact 1440
gagcttaat ggctgaagac ccagatcagg gcagtgcac agtgcacccat catctgtggc 1500
tcccagtcca ggacagggaaat gactgagggt ctggctgggt ccctcttcca ttctaggccc 1560
ttatccctgt ttagttctga gagccaaactt gagataccat atgctagcat tcccagtccc 1620
cagctggggc ttgggtgtgag tacttttct atggctattt tgtcaggatca ctgtggataa 1680
aggcaagac agatatttat tggaaaaaaa aa 1712

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 November 2000 (16.11.2000)

PCT

(10) International Publication Number
WO 00/68380 A3

(51) International Patent Classification⁷: C12N 15/12,
C07K 14/78, 14/47, C12N 15/63, A01K 67/027, C07K
16/18, C12Q 1/68, A61K 38/17, G01N 33/68

(21) International Application Number: PCT/US00/12811

(22) International Filing Date: 10 May 2000 (10.05.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/133,643 11 May 1999 (11.05.1999) US
60/150,409 23 August 1999 (23.08.1999) US

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier applications:

US	60/133,643 (CIP)
Filed on	11 May 1999 (11.05.1999)
US	60/150,409 (CIP)
Filed on	23 August 1999 (23.08.1999)

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive, #12, Mountain View, CA 94040 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa

Clara, CA 95054 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94086 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). AZIMZAI, Yalda [US/US]; 2045 Rock Springs Drive, Hayward, CA 94545 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— With international search report.

(88) Date of publication of the international search report:
19 April 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3

WO 00/68380 A3

(54) Title: EXTRACELLULAR MATRIX AND ADHESION-ASSOCIATED PROTEINS

(57) Abstract: The invention provides human extracellular matrix and adhesion-associated proteins (EXMAD) and polynucleotides which identify and encode EXMAD. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of EXMAD.

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12N15/12	C07K14/78	C07K14/47	C12N15/63	A01K67/027
	C07K16/18	C12Q1/68	A61K38/17	G01N33/68	

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07K C12N A01K C12Q G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, EPO-Internal, WPI Data, BIOSIS, CHEM ABS Data, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE EMBL [Online] Accession number AI188216, 14 October 1998 (1998-10-14) ROBERT STRAUSBERG: "qd66g12.x1 Soares testis_NHT Homo sapiens cDNA clone" XP002146658 the whole document</p> <p>---</p>	3,5-8, 10-14
A	<p>WO 99 00410 A (INCYTE PHARMACEUTICALS, INC.) 7 January 1999 (1999-01-07) the whole document</p> <p>---</p> <p>-/-</p>	1-17, 20, 23

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
6 September 2000	22 12 2000
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-9016	MONTERO LOPEZ B.

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	<p>DATABASE EMBL [Online] Accession number AF151838, 1 June 1999 (1999-06-01) XP002146659 the whole document & LAI C.-H. ET AL.: "Identification of novel human genes evolutionarily conserved in <i>Caenorhabditis elegans</i> by comparative proteomics" GENOME RESEARCH, vol. 10, no. 5, May 2000 (2000-05), pages 703-713,</p> <p>-----</p>	1-17,20, 23

INTERNATIONAL SEARCH REPORT

national application No.
PCT/US 00/12811

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claim 16 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the composition.
2. Claims Nos.: **18, 19, 21, 22** because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-23 (partially)

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 18, 19, 21, 22

Present claims 18, 19, 21 and 22, directed to agonists and antagonists relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is not to be found, however, for any specific example of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, no search has been carried out for claims 18, 19, 21 and 22.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-23 partially

Polypeptide comprising SEQ ID NO:1, variants and fragments thereof, antibody binding to it; polynucleotide of SEQ ID NO:26, variants thereof, cell and transgenic organism comprising the same; probes derived from the polynucleotide and use thereof in a diagnostic method; pharmaceutical composition comprising the polypeptide and its therapeutic use; use of the polypeptide in screening assays for agonists, antagonists and compounds capable of altering the expression of the polynucleotide; therapeutic use of the agonists and antagonists.

2. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:2 and 27

3. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:3 and 28

4. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:4 and 29

5. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:5 and 30

6. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:6 and 31

7. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:7 and 32

8. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:8 and 33

9. Claims: 1-23 partially

Idem as subject 1 for SEQ ID NOS:9 and 34

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

10. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:10 and 35

11. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:11 and 36

12. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:12 and 37

13. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:13 and 38

14. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:14 and 39

15. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:15 and 40

16. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:16 and 41

17. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:17 and 42

18. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:18 and 43

19. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:19 and 44

20. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:20 and 45

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

21. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:21 and 46

22. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:22 and 47

23. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:23 and 48

24. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:24 and 49

25. Claims: 1-23 partially

Idem as subject 1 for SEQ ID N0s:25 and 50

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9900410 A	07-01-1999	US 5872234 A	AU 8160898 A	16-02-1999 19-01-1999

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)