Data Science Dojo

Agenda

- Fundamentals
 - Tokenization
 - Stemming and Lemmatization
 - Document Vectors
- Term Frequency (TF) and Inverse Document Frequency (IDF)
 - Creating and inverted index and retrieving documents from a query

Structured vs. Unstructured Data

- Structured Tabular data
- Semi-structured Non-tabular data with some meta-data
 - Ex: JSON, XML
- Unstructured Non-tabular data with no meta-data

FUNDAMENTALS

- Information Retrieval (IR)
 - Find documents which match a query
 - Can support binary or full text queries
- Sentiment Analysis
 - Determine "emotion" of document
 - Classification task
- Recommendation Engines

- How do we turn unstructured data into structured data?
 - Create columns based on document content
 - Each term in document creates a column
 - Column types: binary, word count, TF-IDF
 - Do we want to count every word?
 - Stop words

- **Token:** A specific word in the document
- Term: The version of a word set that is in the dictionary
- What do we do about word variations?
 - is, are, am, be
 - run, running, ran, runs

Stemming & Lemmatization

- Stemming: Convert tokens to terms by removing letters via heuristic
 - Both simple (Levins) and complex (Porter)
- Lemmatization: Classify tokens into terms using a linguistic analysis
 - Lemma: the base (dictionary) form of a word
 - Can be done using machine learning

Stemming Example

Rules

- am, are, is => be
- car, cars, car's, cars' => car

Sentence

The boy's cars are different colors.

=> the boy car be differ color

Document Vectors

- Each document becomes a vector
- Store in an "inverted index"
- Allows use of numeric analysis

	Team	Coach	Play	Ball	Score	Game	Win	Lost	Timeout	Season	
d_1	3	0	5	0	2	6	0	2	0	2	
d_2	0	7	0	2	1	0	0	3	0	0	
d_3	0	1	0	0	1	2	2	0	3	0	

Document Vectorization

Binary approach

 Each document has a 1 if the word occurs in the document and a 0 if not

	Team	Coach	Play	Ball	Score	Game	Win	Lost	Timeout	Season
d_1	1	0	1	0	1	1	0	1	0	1
d_2	0	1	0	1	1	0	0	1	0	0
d_3	0	1	0	0	1	1	1	0	1	0

Binary approach: drawbacks

- Not every word has similar importance
- Longer documents have a higher chance to have random unimportant words

TF-IDF

TF-IDF

- Common Solution: TF-IDF
 - **Term Frequency:** Measures how often a term appears (density in a document)
 - Assumes important terms appear more often
 - Normalized to account for document length
 - Inverse Document Frequency: Aims to reduce the weight of terms that appear in all documents
 - Assumes terms that appear in many documents are less important

Term Frequency

Term frequency (TF)

- Let freq(t,d) number of occurrences of keyword t in document d
- Let max{freq(w,d)} denote the highest number of occurrences of another keyword of d

•
$$TF(t,d) = \frac{freq(t,d)}{\max\{freq(w,d): w \in d\}}$$

Inverse Document Frequency

Inverse Document Frequency (IDF)

- N: number of all recommendable documents
- n(t): number of documents in which keyword t appears

•
$$IDF(t) = log \frac{N}{n(t)}$$

TF-IDF

- Compute the overall importance of keywords
 - Given a keyword t and a document d

$$TF$$
- $IDF(t,d) = TF(t,d) * IDF(t)$

TF-IDF Exercise

- **D1** = "If it walks like a duck and quacks like a duck, it must be a duck."
- **D2** = "Beijing Duck is mostly prized for the thin, crispy duck skin with authentic versions of the dish serving mostly the skin."
- **D3** = "Bugs' ascension to stardom also prompted the Warner animators to recast Daffy Duck as the rabbit's rival, intensely jealous and determined to steal back the spotlight while Bugs remained indifferent to the duck's jealousy, or used it to his advantage. This turned out to be the recipe for the success of the duo."
- **D4** = "6:25 PM 1/7/2007 blog entry: I found this great recipe for Rabbit Braised in Wine on cookingforengineers.com."
- **D5** = "Last week Li has shown you how to make the Sechuan duck. Today we'll be making Chinese dumplings (Jiaozi), a popular dish that I had a chance to try last summer in Beijing. There are many recipies for Jiaozi."
- Dictionary: {beijing, dish, duck, rabbit, recipe}

Creating the TF Matrix

	Beijing	Dish	Duck	Rabbit	Recipe
D1	0	0	3	0	0
D2	1	1	2	0	0
D3	0	0	2	1	1
D4	0	0	0	1	1
D5	1	1	1	0	1

Step 1: Count the word frequency per document.

Creating the TF Matrix

	Beijing	Dish	Duck	Rabbit	Recipe
D1	0/3	0/3	3/3	0/3	0/3
D2	1/2	1/2	2/2	0/2	0/2
D3	0/2	0/2	2/2	1/2	1/2
D4	0/1	0/1	0/1	1/1	1/1
D5	1/1	1/1	1/1	0/1	1/1

Step 2: Normalize the counts by the most frequency word.

Normalized Frequency:
$$TF(t,d) = \frac{freq(t,d)}{\max\{freq(w,d): w \in d\}}$$

Creating the IDF Vector

	Beijing	Dish	Duck	Rabbit	Recipe
D1	0	0	1	0	0
D2	0.5	0.5	1	0	0
D3	0	0	1	0.5	0.5
D4	0	0	0	1	1
D5	1	1	1	0	1

Word	IDF
Beijing	log(5/2)
Dish	log(5/2)
Duck	log(5/4)
Rabbit	log(5/2)
Recipe	log(5/3)

TF-IDF Matrix

	Beijing	Dish	Duck	Rabbit	Recipe
D1	0	0	0.097	0	0
D2	0.199	0.199	0.097	0	0
D3	0	0	0.097	0.199	0.111
D4	0	0	0	0.398	0.222
D5	0.398	0.398	0.097	0	0.222

TF-IDF Search Example

- User searches our document set
- Query: "Beijing duck recipe"
- Calculate TF-IDF of query

	Beijing	Dish	Duck	Rabbit	Recipe
Query	0.398	0	0.097	0	0.222

Word	IDF			
Beijing	log(5/2)			
Dish	log(5/2)			
Duck	log(5/4)			
Rabbit	log(5/2)			
Recipe	log(5/3)			

TF-IDF Search Exercise

- Cosine similarity of query and each doc
- D1 = [0, 0, 0.097, 0, 0]
- Q = [0.398, 0, 0.097, 0, 0.222]

$$cos(D1, Q) = \frac{0*0.398+0*0+0.097*0.097+0*0+0*0.222}{\sqrt{0.097^2}*\sqrt{0.398^2+0.097^2+0.222^2}}$$

$$-\cos(D1,Q) = \frac{0.00941}{0.0452} = 0.208$$

Cosine similarities

	Beijing	Dish	Duck	Rabbit	Recipe	Cos(D,Q)
D1	0	0	0.097	0	0	0.208
D2	0.199	0.199	0.097	0	0	0.639
D3	0	0	0.097	0.199	0.111	0.256
D4	0	0	0	0.398	0.222	0.232
D5	0.398	0.398	0.097	0	0.222	0.760
Query	.398	0	.097	0	.222	1

Final ordered list

- **D5** = "Last week Li has shown you how to make the Sechuan duck. Today we'll be making Chinese dumplings (Jiaozi), a popular dish that I had a chance to try last summer in Beijing. There are many recipies for Jiaozi."
- **D2** = "Beijing Duck is mostly prized for the thin, crispy duck skin with authentic versions of the dish serving mostly the skin."
- **D3** = "Bugs' ascension to stardom also prompted the Warner animators to recast Daffy Duck as the rabbit's rival, intensely jealous and determined to steal back the spotlight while Bugs remained indifferent to the duck's jealousy, or used it to his advantage. This turned out to be the recipe for the success of the duo."
- **D4** = "6:25 PM 1/7/2007 blog entry: I found this great recipe for Rabbit Braised in Wine on cookingforengineers.com."
- **D1** = "If it walks like a duck and quacks like a duck, it must be a duck."

N-grams

- Our representations so far have been single terms.
- These are known as unigrams or 1-grams.
- Not surprisingly, there are also bigrams, trigrams, 4-grams, 5-grams, etc.
- N-grams allow us to extend the bags-of-words model to include word ordering!

data science for everyone

N-grams

- Take the sample document:
 - "If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck."
- A standard data pre-processing pipeline (stop word removal, stemming, etc.) would transform the above into something like:
 - "look like duck swim like duck quack like duck probabl duck"
- Which we could represent as a document-term frequency matrix:

look	like	duck	swim	quack	probabl
1	3	4	1	1	1

Bigrams

- Given the processed document:
 - "look like duck swim like duck quack like duck probabl duck"
- The bigrams for the processed data would be:

look_like	like_duck	duck_swim	swim_like	duck_quack	quack_like	duck_probabl	probabl_duck
1	3	1	1	1	1	1	1

NOTE – We've more than doubled the total size of our matrix!!!

Text Analytics Tools

- R tm, Rstem, openNLP
- Python NLTK
- Azure Feature Hashing module

QUESTIONS

