

Maze Discovery using Multiple Robots via Federated Learning

Kalpana Ranasinghe,H.P.Madushanka, Rafaela Scaciota, Sumudu Samarakoon and Mehdi Bennis

Centre of Wireless Communications, University of Oulu, Finland

Introduction

Robotic navigation in complex environments requires accurate perception and understanding of surroundings. **Federated learning (FL)** enables multiple robots to collaboratively train machine learning models without sharing raw data. This demo illustrates FL's effectiveness in **maze discovery** using **autonomous robots** in two distinct maze environments.

Implementation Steps

Data Collection • Predefined paths and manual variations to enhance dataset diversity.

Model Training

- Baseline: Local Training Model
- Proposed Method: Federated Learning Model
- Model Architecture: Feed-forward Neural Network

Navigation

• Vision-based line following system using cameras.

Evaluation

• Evaluation of locally trained models and FL models in both mazes.

Hardware

■ Robot: Waveshare "JetBot ROS AI Kit", including a Nvidia Jetson Nano developer module.

Sensors:

- RPLiDAR A1
- Inertial measurement unit (IMU) sensor
- motor encoder sensors
- Servers: Lenovo Thinkpad and Jetson Nano for visualization and monitoring.

Results

- Local Training: High accuracy (99%) on local data, but poor adaptation to unseen mazes.
- Federated Learning: High accuracy (99%) on both mazes, demonstrating FL's effectiveness in adapting to new environments.

ULU VERGE

CRUISE

SCAN ME

own

maze

other

maze

References

- [1] H. B. McMahan et al., "Communication-efficient learning of deep net-works from decentralized data.arxiv," arXiv preprint arXiv:1602.05629,2016.
- [2] Waveshare, "Jetbot ros ai robot," Available at https://www.waveshare.com/jetbot-ros-ai-kit.htm (2023/07/10).
 [3] OpenCV, "Contours in opency," Available at https://docs.opencv.org/4.0.0/dd/d49/tutorial py contour features.html (2023/07/12).
- [4] S. Bennett, "Development of the PID controller," IEEE Control Systems Magazine, vol. 13, no. 6, pp. 58–62, 1993.