A Hennessy-Milner Property for Many-Valued Modal Logics*

Michel Marti

Institute of Computer Science and Applied Mathematics University of Bern

In this work, we investigate and characterize underlying algebras of many-valued modal logics admitting an analogue of the Hennessy-Milner property (modal equivalence coincides with bisimilarity) for their image-finite models. Modal equivalence between two states means in this context that each formula takes the same value in both states; the definition of a bisimulation matches the classical notion except that variables must take the same value in bisimilar states. Informally, the goal is to determine whether the language of a many-valued modal logic is expressive enough to distinguish image-finite models.

We restrict our attention here to many-valued modal logics defined over a single *complete MTL-chain* (where MTL stands for monoidal t-norm logic), an algebraic structure $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \rightarrow, \bot, \top \rangle$ satisfying

- 1. $\langle A, \wedge, \vee, \perp, \top \rangle$ is a complete chain (where $a \leq b$ if and only if $a \wedge b = a$).
- 2. $\langle A, \cdot, \top \rangle$ is a commutative monoid.
- 3. $a \cdot b \leq c$ if and only if $a \leq b \rightarrow c$ for all $a, b, c \in A$.

In particular, if A is the real unit interval [0,1], then the monoidal operation \cdot is a left-continuous t-norm with unit 1 and residual \rightarrow , and **A** is called *standard*. Such algebras provide semantics for Lukasiewicz logic, Gödel logic, and product logic when \cdot is the Lukasiewicz t-norm $\max(0, x + y - 1)$, the minimum t-norm $\min(x, y)$, or the product t-norm xy (multiplication), respectively.

Given a fixed complete MTL-chain **A**, the many-valued modal logic $\mathsf{K}(\mathbf{A})^\mathsf{C}$ is defined for formulas $\mathsf{Fm}_{\Box\Diamond}$ built inductively using the operations of **A**, the modal operators \Box and \Diamond , and a countably infinite set of variables Var . A (crisp) frame is a pair $\langle W, R \rangle$ where W is a non-empty set of states and $R \subseteq W \times W$ is a binary accessibility relation on W. A $\mathsf{K}(\mathbf{A})^\mathsf{C}$ -model is a triple $\mathfrak{M} = \langle W, R, V \rangle$ where $\langle W, R \rangle$ is a frame and $V \colon \mathsf{Var} \times W \to \mathsf{A}$ is a mapping, called a valuation. The valuation V is extended to $V \colon \mathsf{Fm}_{\Box\Diamond} \times W \to \mathsf{A}$ by

$$\begin{split} V(\bot,w) &= \bot & V(\top,w) = \top \\ V(\varphi \land \psi,w) &= V(\varphi,w) \land V(\psi,w) & V(\varphi \lor \psi,w) = V(\varphi,w) \lor V(\psi,w) \\ V(\varphi \cdot \psi,w) &= V(\varphi,w) \cdot V(\psi,w) & V(\varphi \to \psi,w) = V(\varphi,w) \to V(\psi,w) \\ V(\Box \varphi,w) &= \bigwedge \{V(\varphi,v) : Rwv\} & V(\Diamond \varphi,w) = \bigvee \{V(\varphi,v) : Rwv\}. \end{split}$$

^{*} Based on: M. Marti and G. Metcalfe. A Hennessy-Milner Property for Many-Valued Modal Logics. *Proc. AiML 2014*, King's College Publications (2014), 407–420.

A formula $\varphi \in \operatorname{Fm}_{\square \Diamond}$ is valid in a $\mathsf{K}(\mathbf{A})^{\mathsf{C}}$ -model $\mathfrak{M} = \langle W, R, V \rangle$ if $V(\varphi, w) = 1$ for all $w \in W$, and $K(\mathbf{A})^{\mathsf{C}}$ -valid if it is valid in all $K(\mathbf{A})^{\mathsf{C}}$ -models.

For two $K(\mathbf{A})^{\mathsf{C}}$ -models $\mathfrak{M} = \langle W, R, V \rangle$ and $\mathfrak{M}' = \langle W', R', V' \rangle$, we will say that $w \in W$ and $w' \in W'$ are modally equivalent if $V(\varphi, w) = V'(\varphi, w')$ for all $\varphi \in \operatorname{Fm}_{\square \Diamond}$. A non-empty binary relation $Z \subseteq W \times W'$ will be called a bisimulation between \mathfrak{M} and \mathfrak{M}' if the following conditions are satisfied:

- 1. If wZw', then V(p, w) = V'(p, w') for all $p \in Var$.
- 2. If wZw' and Rwv, then there exists $v' \in W'$ such that vZv' and R'w'v' (the forth condition).
- 3. If wZw' and R'w'v', then there exists $v \in W$ such that vZv' and Rwv (the back condition).

We say that $w \in W$ and $w' \in W'$ are bisimilar if there exists a bisimulation Z between \mathfrak{M} and \mathfrak{M}' such that wZw'. A class \mathcal{K} of $\mathsf{K}(\mathbf{A})^\mathsf{C}$ -models has the Hennessy-Milner property if for any models $\mathfrak{M} = \langle W, R, V \rangle$ and $\mathfrak{M}' = \langle W', R', V' \rangle$ in \mathcal{K} , whenever the states $w \in W$ and $w' \in W'$ are modally equivalent, they are bisimilar.

We present a property of MTL-chains – the so-called distinguishing formula property – that characterizes precisely those complete MTL-chains ${\bf A}$ for which the class of image-finite $K(A)^{C}$ -models has the Hennessy-Milner property. This characterization can then be used to obtain a precise classification in the setting of finite and standard BL-chains (MTL-chains satisfying $a \cdot (a \to b) = a \wedge b$ for all $a, b \in A$). Let \mathbf{L}_{n+1} $(n \in \mathbb{N})$ and \mathbf{L} denote the n+1-element Lukasiewicz chain and the standard Łukasiewicz chain over [0,1], respectively, and let \mathbf{L}_{n+1}^{h} and $\mathbf{L^h}$ denote their hoop reducts. The operation \oplus denotes the ordinal sum construction for hoop reducts of BL-chains.

Theorem 1. The following are equivalent for any finite BL-chain **A**:

- The class of image-finite K(A)^C-models has the Hennessy-Milner property.
 A is isomorphic to L_{n+1} or L^h_{n+1} ⊕ L^h_{m+1} for some m, n ∈ N.

Theorem 2. The following are equivalent for any standard BL-chain **A**:

- (1) The class of image-finite $K(A)^{C}$ -models has the Hennessy-Milner property.
- (2) **A** is isomorphic to **L** or $\mathbf{L}^{\mathbf{h}} \oplus \mathbf{L}^{\mathbf{h}}$.