CORSO DI OTTIMIZZAZIONE

Prova scritta del 24 Giugno 2013

Tempo a disposizione: ore 2:30.

Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 3, la risposta occupi al massimo 15 righe)

Quanti e quali algoritmi abbiamo affrontato, durante questo corso, relativamente al problema del flusso di costo minimo? Se ne discutano brevemente le caratteristiche.

Esercizio 2. (Punti 8)

Un'azienda ha bisogno, per portare a termine la produzione, di una soluzione contenente i tre componenti chimici $A, B \in C$. Il composto deve contenere almeno il 20% di A, almeno il 15% di B e almeno il 30% di C. L'azienda è in contatto con tre fornitori: Alfa, Beta e Gamma. Alfa vende essa stessa un composto contente per metà la sostanza A e per metà la sostanza B; il prezzo è di 120 euro al litro. Beta vende invece un composto contenente per un terzo A e per due terzi C, il cui prezzo è 140 euro al litro. Gamma vende invece i tre componenti chimici separatamente, rispettivamente a 100, 140 e 160 euro al litro. Si formuli il problema di determinare il costo minimo di un litro di soluzione come problema di programmazione lineare.

Esercizio 3. (Punti 8)

Si risolva tramite l'algoritmo del simplesso primale, il seguente problema di programmazione lineare:

$$\min x_1 + x_2$$

$$x_1 \ge -1$$

$$x_2 \ge x_1 - 1$$

$$x_2 \le x_1 + 1$$

$$x_1 \le 3$$

$$x_2 \le 4$$

$$x_2 \ge -1$$

Si parta dalla base ammissimile $B = \{4, 5\}.$

Esercizio 4. (Punti 8)

Si determini il flusso massimo tra s e t nel seguente grafo, utilizzando l'Algoritmo di Edmonds e Karp.

Esercizio 5. (Punti 3, la risposta occupi al massimo 15 righe)

Si enunci il Lemma di Farkas. Perché questo risultato è importante per la programmazione lineare?