BEZPIECZEŃSTWO SYSTEMÓW KOMPUTEROWYCH

Wykład 5

5.1. Wstęp

Pvtania:

- Jaki zasób w systemach komputerowych jest najważniejszy (najcenniejszy)?
- Jaki jest najczęstszy powód ataków na systemy komputerowe?
- Jaki jest najskuteczniejszy sposób dzięki któremu możemy zapobiegać ujawnieniu lub modyfikacji informacji? Jak nazywa się dziedzina wiedzy dająca nam narzędzia ochrony?
- Co jest (powinno byé) standardowym elementem współczesnych aplikacji?
- Co jest (powinno byé) standardowym elementem współczesnych sieci teleinformatycznych?

5. Techniki ochrony kryptograficznej
(wybrane zagadnienia)

- 1. Wste
- 2. Klucze kryptograficzne
- 3. Algorytmy szyfrowania
 - 1. Szyfrowanie kluczem symetrycznym
 - 2. Szyfrowanie kluczem asymetrycznym

2

5.1.1. trochę faktów z historii

Ważne daty

- Ok. 1900 p.n.e pierwsze odkryte w inskrypcjach grobowych przykłady przekształceń kryptograficznych
- Ok. 475 r p.n.e pierwsze zastosowanie szyfrowania w celach przekazania informacji (łączność w Sparcie)
- Ok. 60 p.n.e pierwsze wzmianki o zastosowaniu tzw. "szyfru Cezara"
- 1412 pierwszy znany traktat o kryptologii napisany przez egipskiego prawnika i uczonego Kalkashandi
- 1971 firma IBM stworzyła system szyfrowania Lucifer
- 1975 opracowanie przez IBM standardu DES na zlecenie Narodowego Biura Standardów USA (obecnie NIST)
- 1976 Diffie i Hellman koncepcja szyfrowania asymetrycznego
- 1978 Rivest, Shamir, Adelman algorytm RSA
- 1991 James L.Massey i Xuejia Lai algorytm IDEA
- 1997 Vincent Rijmen i Joan Daemen opracowali AES (Rijandael).

5.1.2 Podstawowe pojęcia

kryptologia:

(z języka greckiego - *kryptos* - "ukryty" i logos - "słowo") - jest to dziedzina wiedzy traktująca o sposobach przekazywania informacji zabezpieczonej przed niepowołanym dostępem.

5

5.1.2 Podstawowe pojęcia kryptologia kryptografia kryptoanaliza

5.1.2 Podstawowe pojęcia

kryptografia:

- sztuka zabezpieczania wiadomości
- wiedza o budowie i działaniu systemów kryptograficznych

7

5.1.2 Podstawowe pojęcia

kryptoanaliza:

 dziedzina wiedzy zajmująca się łamaniem szyfrów (odczytywaniem zaszyfrowanych wiadomości bez znajomości kluczy rozszyfrowujących)

5.1.2 Podstawowe pojęcia

kryptogram:

- jest to zaszyfrowana postać czytelnej wiadomości
- zwany jest także szyfrogramem

9

5.1.2 Podstawowe pojęcia

klucz szyfrujący:

 ciąg znaków służących do zaszyfrowania wiadomości czytelnej w kryptogram za pomocą algorytmu szyfrowania

klucz deszyfrujący:

 ciąg znaków służących do rozszyfrowania kryptogramu do wiadomości czytelnej, przy wykorzystaniu algorytmu deszyfrowania

11

5.1.2 Podstawowe pojęcia

szyfrowanie:

 proces, podczas którego wiadomość jawna jest przekształcana w tekst zaszyfrowany (kryptogram) przy pomocy funkcji matematycznych oraz klucza

klucz kryptograficzny:

• ciąg symboli (hasło) od którego zależy wynik przekształcenia kryptograficznego

10

5.1.2 Podstawowe pojęcia

Przestrzeń kluczy kryptograficznych:

 Jest to zbiór wszystkich kluczy kryptograficznych o zadanej długości

Jaka jest zależność ilości możliwych kombinacji od długości klucza?

5.1.2 Podstawowe pojęcia

Jaka jest zależność ilości możliwych kombinacji od długości klucza?

Długość klucza w bitach	Ilość kombinacji
40	$2^{40} = 1,1 * 10^{12}$
56	$2^{56} = 7,2 * 10^{16}$
128	$2^{128} = 3.4 * 10^{38}$
512	$2^{512} = 1.3 * 10^{154}$
1024	$2^{1024} = 1.8 * 10^{308}$

13

5.2 Klucze kryptograficzne

Historyczne metody kryptograficzne:

- tajny współdzielony algorytm przekształcania
- tajny współdzielony klucz

Współczesne metody kryptograficzne:

- jawność algorytmu przekształcania
- tajny klucz kryptograficzny (lepszy dłuższy)
- odporność na atak ze spreparowanym tekstem jawnym

15

5.1.3 Zastosowanie kryptografii

- ochrona informacji przechowywanych w systemach komputerowych
- ochrona informacji przesyłanych w i pomiędzy systemami komputerowymi
- potwierdzanie tożsamości użytkownika systemu
- potwierdzanie tożsamości aplikacji (procesu) żądającego obsługi
- ochrona przed nieautoryzowaną modyfikacją
- wiele innych...

14

5.2 Klucze kryptograficzne

Liczba N wszystkich sprawdzeń niezbędnych do odgadnięcia właściwego klucza, to liczba wszystkich możliwych kluczy o długości M:

$$N = B^M$$

* (B - podstawa, dla dwójkowego B = 2, dla systemu dziesiętnego B = 10 itd.)

Wydłużenie klucza o jedną pozycję zwiększa pulę możliwych kluczy B-krotnie (liczba ta rośnie wykładniczo).

5.2 Klucze kryptograficzne

Zależność pomiędzy długością klucza M a liczbą wszystkich kluczy N w systemie binarnym:

Długość klucza (M)	Liczba kluczy (N)	Długość klucza (M)	Liczba kluczy (N)
1	2	16	65 536
2	4	32	4 294 967 296
3	8	64	1,84467 E+19
4	16	128	3,40282 E+38
8	256	256	1,15792 E+77

17

5.2 Klucze kryptograficzne

Teoretycznie tyle czasu potrzebujemy na złamanie klucza:

Długość klucza (M)	Oczekiwany czas odgadnięcia: jeden komputer z zegarem 4GHz	Oczekiwany czas odgadnięcia: milion komputerów z zegarem 4GHz
8	0,000064 s	0,000000000064 s
32	1,19 h	0,004 s
56	571 lat	5 h
64	146 235 lat	53 dni
96	2,5 E15 lat	2 512 308 552 lat
128	1,8 E25 lat	1,08 E19 lat
256	3,67 E63 lat	3,67 E57 lat

5.2 Klucze kryptograficzne

Szacowanie czasu potrzebnego do poznania klucza:

- Zakładamy, że atakujący trafi na właściwy klucz już po N/2 sprawdzeń
- czas sprawdzenia to suma:
 - czasu wykonania pełnego algorytmu dla sprawdzanego klucza
 - czasu na analizę uzyskanego wyniku
- sprawdzenie klucza i analiza wyników to od kilku do kilkunastu tysięcy taktów zegara (przyjmijmy tysiąc)

Ile czasu potrzebujemy na złamanie klucza?

18

5.2 Klucze kryptograficzne

Jeśli policzymy, że od początku istnienia wszechświata do dnia dzisiejszego upłynęło w przybliżeniu około 5 E17 sekund, to możemy mieć dość dokładne wyobrażenie o tym, jaki jest poziom bezpieczeństwa zapewnianego przez stosowane współcześnie algorytmy ochrony danych.

By lepiej to widzieć załóżmy, że od początku świata milion komputerów z procesorami 4 GHz próbuje odgadnąć klucz kryptograficzny - do chwili obecnej zadanie to zostałoby rozwiązane jedynie dla przypadku kluczy o długości nie większej niż 96 bitów.

5.2 Klucze kryptograficzne

Czy jest możliwe, że jedna osoba (instytucja) będzie dysponować milionem (lub więcej) komputerów?

Czy to zadanie jest zadaniem prostym?

21

5.2 Klucze kryptograficzne

Podstawowym celem ataku na szyfr jest odgadnięcie używanego do ochrony informacji klucza.

W kryptografii mówi się o trzech rodzajach takich ataków:

- atak bez tekstu jawnego
- atak z tekstem jawnym
- atak ze spreparowanym tekstem jawnym

23

5.2 Klucze kryptograficzne

Pomysł (już wykorzystany):

- napiszmy program, który pełni powszechnie pożądane i pożyteczne funkcje
- umieśćmy w tym programie działającą w tle, ukryta funkcję sprawdzania kluczy
- rozpowszechnijmy za darmo ww. program w internecie

22

5.2 Klucze kryptograficzne

Jednym z najważniejszych założeń współczesnych technik kryptograficznych była konieczność zapewnienia odporności na atak ze spreparowanym tekstem jawnym.

5.3 Algorytmy szyfrowania

Przyjęty został podział na dwie podstawowe grupy algorytmów szyfrowania:

- z kluczem symetrycznym
- z kluczem asymetrycznym

25

5.3.1 Szyfr z kluczem symetrycznym

 $E_K[M]=S \rightarrow D_K[S]=M$

obydwie strony są w posiadaniu tej samej tajnej informacji – klucza K

M – wiadomość jawna

E – szyfrowanie (encrypt)

S - szyfrogram

D – rozszyfrowanie (decrypt)

27

5.3.1 Szyfr z kluczem symetrycznym

klucz używany do zaszyfrowania danych jest identyczny jak klucz wymagany do ich odszyfrowania

obydwie strony są w posiadaniu tej samej tajnej informacji

26

5.3.1 Szyfr z kluczem symetrycznym

zamiana tekstu jawnego w tekst tajny (kryptogram) następuje w wyniku stosowania:

podstawień - zamiany znaków tekstu jawnego na inne znaki według określonej zasady

przestawień - zamiany kolejności znaków tekstu jawnego według określonego schematu

obecnie używane szyfry symetryczne wykorzystują najczęściej kombinację obydwu ww. technik

5.3.1 Szyfr z kluczem symetrycznym

zamiana tekstu jawnego w tekst tajny w wyniku stosowania podstawień według określonej zasady:

Jest to tzw. "szyfr Cezara" z przesunięciem o pozycji.

Tajną i współdzielonym informacją pomiędzy stroną szyfrującą a odbiorcą wiadomości jest w szyfrze Cezara wartość przesunięcia ciągu znaków.

CJOHLGYJSXAS TWVRA FS WYRSEAFAW

* obydwie strony są w posiadaniu tej samej tajnej informacji

5.3.1 Szyfr z kluczem symetrycznym

Omówione na dwóch poprzednich slajdach metody da się złamać wykorzystując charakterystyczna cechę każdego języka

Częstość z jaką w danym alfabecie występują kolejne znaki. Np. w języku polskim:

- litera A występuje średnio w 7,3% tekstu
- litera I występuje średnio w 6,9% tekstu
- litera E występuje średnio w 6,4% tekstu

31

5.3.1 Szyfr z kluczem symetrycznym

zamiana tekstu jawnego w tekst tajny w wyniku stosowania podstawień przy pomocy tabliczek kodowania:

kluczem jest WYKLADBSK

* obydwie strony są w posiadaniu tej samej tajnej informacji

5.3.1 Szyfr z kluczem symetrycznym

Omówione na dwóch poprzednich slajdach metody opierały się o fakt, że każdemu znakowi tekstu jawnego była przyporządkowana wyłącznie jedna litera kryptogramu:

to szyfr podstawieniowy monoalfabetyczny

By zapobiec łamaniu szyfru na podstawie analizy częstości, wymyślono szyfry, gdzie jednemu znakowi wiadomości można było przypisać wiele różnych wartości:

• to szyfry podstawieniowe polialfabetyczne

5.3.1 Szyfr z kluczem symetrycznym

W szyfrach polialfabetycznych klucz jest zbiorem informacji o sposobie kodowania kolejnych liter szyfrowanego tekstu – kolejne litery szyfrowanego tekstu są zastępowane w sposób zależny od kolejnych liter klucza:

- jeżeli pierwszą literą klucza jest A (pierwsza litera alfabetu), odpowiadający jej znak kodowanego tekstu będzie zastępowany literą położoną o jedną pozycję dalej (jeżeli w tekście było S, zostanie ono zastąpione przez T)
- jeżeli drugą literą klucza jest C, to drugi znak szyfrowanego tekstu jest zastępowany literą o trzy pozycje dalszą (zamiast I bedzie L) itd.

* obydwie strony są w posiadaniu tej samej tajnej informacji

5.3.1 Szyfr z kluczem symetrycznym

Przykład:

Jeżeli do zaszyfrowania tekstu ALA użyjemy klucza BAT, uzyskamy w wyniku tekst CMU, powstały z:

- przesunięcia litery A o dwa znaki
- litery L o jeden znak
- litery A o dwadzieścia znaków

Jak widać ta sama litera wiadomości (czyli A) jest w otrzymanym kryptogramie kodowana różnymi znakami.

* obydwie strony są w posiadaniu tej samej tajnej informacji

3.

5.3.1 Szyfr z kluczem symetrycznym

- jeżeli pierwszą literą klucza jest A (pierwsza litera alfabetu), odpowiadający jej znak kodowanego tekstu będzie zastępowany literą położoną o jedną pozycję dalej (jeżeli w tekście było S, zostanie ono zastapione przez T)
- jeżeli drugą literą klucza jest C, to drugi znak szyfrowanego tekstu jest zastępowany literą o trzy pozycje dalszą (zamiast I będzie L) itd.

* obydwie strony są w posiadaniu tej samej tajnej informacji

34

5.3.1 Szyfr z kluczem symetrycznym

Teoretycznie do uzyskania szyfru niemożliwego do złamania, muszą być spełnione dwa warunki:

- 1) klucz musi być dłuższy od szyfrowanej wiadomości (każda z liter wiadomości jest wtedy zakodowana według innej zasady)
- 2) klucz powinien być ciągiem zupełnie przypadkowych znaków

* obydwie strony są w posiadaniu tej samej tajnej informacji

5.3.1 Szyfr z kluczem symetrycznym

Wszystkie stosowane obecnie szyfry symetryczne to kombinacja szyfrów przestawieniowych i podstawieniowych. Pierwszym przyjętym powszechnie standardem był szyfr DES. Tekst podlegający szyfrowaniu przy użyciu algorytmu DES jest dzielony na ośmiobajtowe bloki danych, które są argumentem operacji przestawień i podstawień, zależnych od wykorzystywanego klucza szyfrowania. Klucze szyfrowania w algorytmie DES mają długość 56 bitów, co przy mocach obliczeniowych ówczesnych komputerów teoretycznie zapewniało bezpieczeństwo i odporność szyfru na ataki.

* obydwie strony są w posiadaniu tej samej tajnej informacji

5.3.1 Szyfr z kluczem symetrycznym

Obecnie jako standard szyfrowania symetrycznego przyjęty jest szyfr o nazwie **AES** (nazywany roboczo Rijndael) opracowany przez Vincent Rijmen i Joan Daemen. Możliwe jest w nim użycie kluczy o długościach 128, 192 i 256 bitów i operuje on na blokach danych o długości 128 bitów (oryginalna specyfikacja *Rijndael* dopuszczała również bloki 192- i 256-bitowe). W związku z licznie pojawiającymi się (lecz mało prawdopodobnymi) atakami na AES, Vincent Rijmen opublikował w 2010 roku ironiczny artykuł opisujący "atak nazwany praktycznym".

- http://eprint.iacr.org/2010/337.pdf

5.3.1 Szyfr z kluczem symetrycznym

Następcą algorytmu DES stał się algorytm 3DES. Stanowi on odmianę algorytmu DES używającą trzech kluczy 56 bitowych - różnica polega na trzykrotnym użyciu algorytmu DES w stosunku do każdego bloku. Wydłużenie długości klucza sprawiło, że 3DES może być nadal bezpiecznie stosowany.

Szacunkowy czas potrzebny na złamanie klucza 3DES wynosi dzisiaj około tysiąca lat.

38

* obydwie strony są w posiadaniu tej samej tajnej informac

5.3.1 Szyfr z kluczem symetrycznym

Problemy związane ze stosowaniem kluczy symetrycznych:

- problem tajności klucza wiadomość jest bezpieczna do czasu gdy ktoś niepowołany nie pozna tajnego klucza K
- problem dystrybucji klucza np. jak bez pośrednictwa strony trzeciej uzgodnić wspólny klucz (np. jeśli jesteśmy daleko od siebie)
- skalowalność 2 osoby 1 klucz, 3 3 klucze, 10 45 ...
- autentyczność skąd pewność, że tajność klucza zapewnia autentyczność?

5.3.2 Szyfr z kluczem asymetrycznym ... to już na następnym wykładzie ☺

