Volume Measurement and Concentration Measurement

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Lecture - Outline

- Volume
 - Electrical Impedance
 - Optical Absorption
- Optical density measurement
 - Absorption by chemicals
- Characteristics of Spatial Sensors
 - Spatial Transmission/Reception Pattern
- Chromatic measurement spectrometry
 - Electrical
 - Optical
- Spectrophotometric oximetry

Electrical Impedance Plethysmography

$$\Delta Z_b = \frac{\rho_b L}{\Delta A}$$

$$\Delta V = L \Delta A = \frac{\rho_b L^2}{\Delta Z_b}$$

Impedance Measurement – 2 electrode, 4 electrode

- Constant current source
- Voltage measurement across electrodes
- 2 electrode method
 - Electrode-tissue impedance is included
- 4 electrode method
 - Inject current across outer 2 electrodes
 - Measure voltage across inner 2 electrodes
 - If amplifier has high input impedance
 - Electrode impedance is excluded

Optical Emitters, Filters, Detectors

- Intensity is a function of frequency
 - Spectrum
- Spatial radiation, reception pattern
 - Angle dependent
 - Lenses and collimators
- Light transmission:
 - Incident energy = Transmitted+Scattered/reflected
- Transmission through multiple media
 - Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Spectral characterisitics of Photodiode (SFH2270)

Directional Characteristics

Directional Characteristics 1) page 11

 $S_{rel} = f(\phi)$

Spectrophotometry for Blood Oximetry

Electrical Impedance Spectrometry

End of Lecture