Some terms

Machine translation - predicting which word is used is more frequent

Improvement in perplexity often correlates with improvement in speech recognition performance

Edit distance

Do row by row if letter is different, add substitution cost min edit distance at any cell is the cost + 1 from the left cell if letter is same take no cost from i-1, j-1 (diagonal)

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	or "
POS	possessive ending	's	,,	right quote	, or ,,
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

	word	POS tag		word	POS tag
(a)	Mary	NNP	(f)	Mr.	NNP
(b)	also	RB	(g)	resolved	PP
(c)	bought	VBD	(h)	must	MD
(d)	10	CD	(i)	not	RB
(e)	apples	NNS	(j)	Every	DT

0 Personal pronoun

PRP - He

Determiners (DT)

the, a, some

E.g. Does that

particles (RP) can appear after object prepositions (IN) can appear only after verb E.g. of, off, on

I thought that/IN

adjectives (JJ)

E.g. other, grand, already married/JJ

\mathbf{Verbs}

VBD - commented

VBP - do, have

VBZ - is

There/EX are 70 children there/RB

Modal

MD - could

Personal Pronouns

PRP - you

PRP\$ - your

Binary classification

sign(x) = 1 for $x \ge 0$, -1 for x < 0 Feature extraction so that there is a good mapping of x

Softmax

$$[2 -1 5]$$

 $\frac{e^2}{e^2+e^{-1}+e^5}$ into another vector of 3 numbers where it sum to 1

Loss functions

$$L_{cross-entropy}(\hat{y}, y) = -\sum_{i} y log(\hat{y})$$

or $-log(\hat{y}) for hard classification$

 \hat{y} is 1 then it can minimize the loss function

 \hat{y} requires softmax for transformation

Ranking loss

$$L_{ranking}(x, x') = max(0, 1 - (f(x) - f(x')))$$

Gradient descent

$$w_i \leftarrow w_i - \alpha \frac{\partial_L}{\partial_{w_i}} \text{ for } \alpha > 0$$

Successive iterative approximation, can't plug in a value like $w_{1,1}$

if L(w) is convex (single min point), then it will converge to global minimum

Expected number of bits

 $\sum bits * P(bits) = 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} \dots = 2$ Entropy is the number of bits needed to encode

Per word cross entropy

Entropy rate
$$=\frac{1}{n}H(w_1)=-\frac{1}{n}(\sum p(W)log(p(W)))$$

Smoothing

$$P(w|c_i) = \frac{\text{\#times } w \text{ occur in texts of class } c_i}{\sum \text{\#times } w \text{ occurs in texts of class } c_i}$$

$$P(w|c_i) = \frac{\text{\#times } w \text{ occur in texts of class } c_i + 1}{\sum \text{\#times } w \text{ occurs in texts of class} c_i + 1}$$

$$C^*(w_0w) = \{C(w_0w) + 1\} \times \frac{C(w_0)}{C(w_0) + V}$$

Witten Bell

If
$$C^*(w_x w_i) > 0$$
, $C(w_x) \times \frac{C(w_x w_i)}{C(w_x) + T(w_x)}$
If $C^*(w_x w_i) = 0$, $\frac{c(w_x)T(w_x)}{Z(w_x)(c(w_x) + T(w_x))}$

Stochastic POS tagging

$$P(T,W) = P(\langle s \rangle, t_1, w_1, t_2, w_2... \langle s \rangle)$$

= $P(\langle s \rangle) \cdot P(t_1 | \langle s \rangle) \cdot P(w_1 | \langle s \rangle, t_1)$
$$P(T|W) = \frac{P(T,W)}{P(W)} = P(T,W)$$

Markov assumption

 w_k only depends on the previous n - 1 words $P(w_k|w_1,...,w_{k-1}) \approx P(w_k|w_{k-1})$

Vertibi

$$v(tag, word) = P(w_i|t_i) \times P(t_i|t_{i-1}) \times P(t_{i-1})$$

$$Trigram P(t_i|t_{i-1}t_{i-2}) = P(t_i|t_{i-1}t_{i-2}) + P(t_i|t_{i-1}) + P(t_i)$$

Forward computation

- 1. Look at the number of input nodes
- 2. Compute the s node which is the value before there is actually h_1 (non-linear activation function)

$$s_i = w_x i_i + w_{x+1} i_{i+1} \dots + w_k i_k + \dots b_i$$

For the hidden layers i_i will be h_i

$$h_i = \frac{1}{1 + e^{-s_i}}$$

Final value h_i will be o_i

$$L = \frac{1}{2}[(o_1 - t_1)^2 + (o_2 - t_2)^2]$$

Backward computation

Base case

- 1. Take the s values previously computed
- 2. Calculate $\frac{\partial_L}{\partial_{w_m}} = \frac{\partial_L}{\partial_{s_1}} \frac{\partial_{s_1}}{\partial_{w_m}}$ E.g. $\frac{\partial_L}{\partial_{w_6}}$

E.g.
$$\frac{\partial_L}{\partial_{w_\ell}}$$

$$\frac{\partial_L}{\partial_{s_3}} = (o_1 - t_1) \times o_1(1 - o_1)$$
$$\frac{\partial_{s_3}}{\partial_{w_6}} = h_1$$

Recursive case

E.g.
$$\frac{\partial L}{\partial w_2}$$

$$\frac{\partial_L}{\partial_{w_2}} = \frac{\partial_L}{\partial_{s_1}} \times i_2$$

$$\frac{\partial_L}{\partial_{s_1}} = \left[\frac{\partial_L}{\partial_{s_3}} \times w_5 + \frac{\partial_L}{\partial_{s_4}} \times w_7\right] \times h_1(1 - h_1)$$

Backpropagation Algorithm

Answer to Question 4:

$$\begin{split} v(V, \text{water}) &= v_i(1) = P(\text{water} \mid V) \times P(V \mid ~~) \times P(~~) = \frac{1}{20} \times \frac{2}{4} \times 1 = \frac{2}{80} \\ v(N, \text{water}) &= v_i(2) = P(\text{water} \mid N) \times P(N \mid ~~) \times P(~~) = \frac{1}{50} \times \frac{1}{4} \times 1 = \frac{1}{200} \\ \text{Since} \\ v(V, \text{plants}) &= v_i(1) \\ &= \frac{P(\text{plants} \mid V) \times \max\{P(V \mid V) \times v1(1), P(V \mid N) \times v1(2))\}}{50} \\ &= \frac{1}{50} \times \max\{\frac{2}{5} \times \frac{3}{80}, \frac{1}{6} \times \frac{1}{200}\} \\ &= \frac{2}{10000} \end{split}~~~~~~~~$$

Therefore, edge from V_1 and V_2 is chosen.

Since

$$\begin{split} v(N, \, plants) &= v_2(2) \\ &= \underline{P}(plants \mid N) \; x \; max \{ P(N \mid V) \; x \; v1(1), \, P(N \mid N) \; x \; v1(2)) \} \\ &= \frac{1}{10} \; x \; max \{ \frac{1}{5} \; x \; \frac{3}{80}, \frac{2}{3} \; x \; \frac{1}{200} \} \\ &= \frac{3}{4000} \end{split}$$

Therefore, edge from V_1 and N_2 is chosen.

$$\max\{P(<\!\!/s\!\!>\mid V) \ge v_3(1), P(<\!\!/s\!\!>\mid N) \ge v_3(2)\} \\ = \max\{\frac{2}{5}\ge \frac{3}{10000}\ge 1, \frac{1}{6}\ge \frac{3}{4000}\ge 1\} \\ = \frac{1}{0000}$$

Therefore, edge between N2 and </s> is chosen.

Hence, path: $\langle s \rangle \rightarrow V_1 \rightarrow N_2 \rightarrow \langle s \rangle$ is the chosen path.

Therefore, the optimal sequence of part-of-speech tags is <s>, V, N, </s>