Il gruppo delle permutazioni

di Gabriel Antonio Videtta

Nota. Nel corso del documento con X_n si indicherà l'insieme $\{1, \ldots, n\}$ e con G un qualsiasi gruppo.

Si definisce brevemente il gruppo delle permutazioni S_n come il gruppo delle bigezioni su G, ossia $S(X_n)$. Si deduce facilmente che $|S_n| = n!$ dal momento che vi sono esattamente n! scelte possibili per costruire una bigezione da X_n in X_n stesso.

Come è noto, ogni $\sigma \in S_n$ può scriversi come prodotto di cicli disgiunti. Di seguito si introduce un modo formale per descrivere questi cicli.

Si consideri l'azione di $\langle \sigma \rangle$ su X_n univocamente determinata da $\sigma \cdot x = \sigma(x)$. Allora i cicli di σ sono esattamente le orbite di σ ordinate nel seguente modo:

$$Orb(x) = \{x, \sigma(x), \dots, \sigma^m(x)\}.$$

Si osserva che in effetti tutti gli elementi di X sono considerati nella scrittura delle orbite dal momento che tali orbite inducono una partizione di X (infatti sono classi di equivalenza). Si definisce inoltre una permutazione ciclo se esiste al più un'unica orbita di cardinalità diversa da 1 e si dice lunghezza del ciclo la cardinalità di tale orbita (o se non esiste, si dice che ha lunghezza unitaria). Due cicli si dicono disgiunti se almeno uno dei due è l'identità o se le loro uniche orbite non banali hanno intersezione nulla (e in entrambi i casi, commutano). Per ogni k-ciclo esistono esattamente k scritture distinte (in funzione dell'elemento iniziale del ciclo).

Pertanto si deduce facilmente che ogni permutazione σ è prodotto di cicli disgiunti in modo unico (a meno della scelta del primo elemento dell'orbita). Poiché allora ogni n-ciclo è generato dalla composizione di n-1 trasposizioni (2-cicli) e ogni permutazione è prodotto di cicli, S_n è generato dalle trasposizioni. Infatti:

$$(a_1,\ldots,a_i)=(a_1,a_i)\circ(a_1,a_{i-1})\circ\cdots\circ(a_1,a_2),$$

o altrimenti:

$$(a_1,\ldots,a_i)=(a_1,a_2)\circ(a_2,a_3)\circ\cdots\circ(a_{i-1},a_i),$$

da cui si deduce che la scrittura come prodotto di trasposizioni non è unica. Ciononostante viene sempre mantenuta la parità del numero di trasposizioni impiegate. Per questo motivo la mappa sgn : $S_n \to \{\pm 1\}$ che vale 1 sulle permutazioni con numero pari di trasposizioni impiegabili e -1 sul resto è ben definita. Inoltre questa mappa è un omomorfismo di gruppi, e si definisce $\mathcal{A}_n := \text{Ker sgn come il sottogruppo di } S_n$ delle permutazioni pari, detto anche gruppo alterno. La classe laterale $(1,2) \mathcal{A}_n$ rappresenta invece le permutazioni dispari.

In particolare, se σ_k è un k-ciclo, $\operatorname{sgn}(\sigma_k) = (-1)^{k-1}$ e $\operatorname{ord}(\sigma_k) = k$. Si osserva inoltre che vi sono esattamente $\binom{n}{k} \frac{k!}{k} = \binom{n}{k} (k-1)!$ k-cicli in S_n e che in generale l'ordine di una permutazione è il minimo comune multiplo degli ordini dei suoi cicli. In particolare vale la seguente identità¹:

$$\operatorname{sgn}(\sigma) = \prod_{1 \le i \le j \le n} \frac{\sigma(i) - \sigma(j)}{i - j}.$$

Si definisce tipo di una permutazione σ la sua decomposizione in cicli disgiunti a meno degli elementi presenti nei cicli. Sia σ tale per cui:

$$\sigma = (a_1, a_2, \dots, a_{k_1})(b_1, \dots, b_{k_2}) \cdots (c_1, \dots, c_{k_i}),$$

allora vale la seguente relazione sul coniugio:

$$\tau \sigma \tau^{-1} = (\tau(a_1), \tau(a_2), \dots, \tau(a_{k-1}))(\tau(b_1), \dots, \tau(b_{k_2})) \cdots (\tau(c_1), \dots, \tau(c_{k_i})).$$

A partire da ciò vale il seguente risultato:

Proposizione. Due permutazioni σ_1 , σ_2 sono *coniugabili* (ossia appartengono alla stessa classe di coniugio) se e solo se hanno lo stesso tipo.

Dimostrazione. Dalla seguente identità, se σ_1 è coniugata rispetto a σ_2 , sicuramente le due permutazioni dovranno avere lo stesso tipo. Analogamente, se le due permutazioni hanno lo stesso tipo, si può costruire τ che associ ogni elemento di un ciclo di σ_1 a un elemento nella stessa posizione in un ciclo di σ_2 della stessa lunghezza in modo tale che τ rimanga una permutazione di S_n e che valga $\sigma_2 = \tau \sigma_1 \tau^{-1}$.

Come corollario di questo risultato, se m_1 rappresenta il numero di 1-cicli di σ , m_2 quello dei suoi 2-cicli, fino a m_k , vale il seguente risultato:

$$|\mathrm{Cl}(\sigma)| = \frac{n!}{m_1! \, 1^{m_1} \, m_2! \, 2^{m_2} \cdots m_k! \, k^{m_k}},$$

e in particolare esistono tante classi di coniugio quante partizioni di n. Come conseguenza di questo risultato, per il Teorema orbita-stabilizzatore, vale che:

$$|Z_{S_n}(\sigma)| = m_1! \, 1^{m_1} \, m_2! \, 2^{m_2} \cdots m_k! \, k^{m_k},$$

¹Si verifica facilmente che il prodotto a destra fornisce un omomorfismo. Allora è sufficiente mostrare che è ben definito e che vale -1 sulle trasposizioni. Se si considera $\sigma = (a, b)$, per i e j tali per cui $\{i, j\} \cap \{a, b\} = \emptyset$ il termine della produttoria è unitario; per $\{i, j\} = \{a, b\}$ il termine è -1 e per un'intersezione di un solo termine si osserva che vi sono due termini del prodotto che valgono -1 e che moltiplicati si annullano nell'unità. Poiché sgn vale anch'esso -1 sulle trasposizioni, i due omomorfismi coincidono (infatti le trasposizioni generano S_n).

dove si ricorda² che due permutazioni coniugano σ nella stessa permutazione ρ se queste due permutazioni fanno parte della stessa classe in $G/Z_{S_n}(\sigma)$. Infine, sempre come corollario dello stesso risultato, se $H \leq S_n$, H è normale in S_n se e solo se per ogni tipo di permutazione H contiene tutte le permutazioni di quel tipo o nessuna.

 $^{^2}$ Infatti $Z_{S_n}(\sigma)$ è lo stabilizzatore di σ nell'azione di coniugio.