頁/行	訂正前	訂正後	更新日
10/5	任意の反復列	反復列	2023.07.05
9/3,4	もし, $x_N=arphi(x_N)$ が成り立つと仮定すると, $a=x_N=arphi(x_{N-1})$ と不動点の一意性により,	もし、 φ が単射であり、 $x_N = \varphi(x_N)$ が成り立つと仮定すると、不動点の一意性により $a = \varphi(x_N) = x_N = \varphi(x_{N-1})$ となるので、(柏木雅英先生から指摘を頂きました、ありがとうございます。)	2024.08.22
26/1	アーバスの方法	アバースの方法	2023.07.05
46/2	$\frac{1}{2k}$	$\frac{1}{2k^2}$ (読者の方から指摘を頂きました. ありがとうございます.)	2019.01.28
61/2	ψ_n	$\psi_{m k}$ (読者の方から指摘を頂きました)	2019.01.28
77/-8	A_m O	A_m *	2025.04.24
79/8, 9	正值性	正定値性	2017.04.01
80/9	$\sum_{j \neq i} (2 箇所)$	$\sum_{j eq k}$ (読者の方から指摘を頂きました)	2019.01.28
88/1	$0 \le m \le k - 1$	$1 \le m \le k - 1$ (読者の方から指摘を頂きました)	2019.01.28
88/2	$Aoldsymbol{p}_k$	$\langle r_m, Ap_k angle$ (読者の方から指摘を頂きました)	2019.01.28
88/6	一方で,	同様に、 $\langle r_0, r_{k+1} \rangle = 0$ もわかる.一方で、(読者の方から指摘を頂きました)	2019.01.28
88/13, 14	Ap^{k-1}	Ap_{k-1} (読者の方から指摘を頂きました)	2019.01.28
105/6	(1-a-b)	(1-a-b)f(読者の方から指摘を頂きました)	2017.06.26
124/7	(1-x)	(L-x)(読者の方から指摘を頂きました)	2019.01.28
133/4	$g(t) = \frac{t}{\sqrt{1 - t^2}} - 1 + t^2$	$g(t) = \frac{-t}{\sqrt{1-t^2}} - 1 + t^2$ (読者の方から 指摘を頂きました)	2017.07.19
133/7	$u(t) = 0.1t - 0.001 + 10.01e^{-10t}$	$u(t) = 0.1t - 0.01 + 10.01e^{-10t}$ (読者の方から指摘を頂きました)	2017.07.19
157/-11	渡辺善隆	渡 <mark>部善隆</mark> (渡部先生, 申し訳ありません でした)	2017.04.01
193/-6	ともに, $(x,y) = (0.50001, 0.49999)$ となる.	(x,y)=(1,0.49999)(行交換なし), $(x,y)=(0.50001,0.49999)$ (ピボット選択あり)となる.(読者の方から指摘を頂きました)	2018.12.17
196 索引	アーバスの方法	アバースの方法	2025.04.24

コメント

- 1. 修正後の注意 1.3 (p.9) について,このような説明をわざわざ加えた意図について補足説明をします. $f(x) = x^2 1 = 0$ の解 a = 1 を求めるために,ニュートン法 $x_{k+1} = \varphi(x_k) = x_k (x_k^2 1)/(2x_k) = \frac{1}{2}(x_k + \frac{1}{x_k})$ を適用しましょう.x > 1 ならば $\varphi'(x) > 0$,すなわち,x > 1 で $\varphi(x)$ は単調増加です.したがって, $x_0 > 1$ ととれば,(図を書いてみれば明らかですが) $1 < \dots < x_k < x_{k-1} < \dots < x_2 < x_1 < x_0$ となります.しかし, $x_0 > 1$ である限りは,あくまで, $x_k \to 1$ であり, $x_N = 1$ となる N は存在しません.すなわち,(因数分解のできる)2 次方程式の解を求める場合ですら,反復法を使う限りは,解を得るためには"無限回の反復"が必要です.
 - 一方で,一般の方程式 f(x)=0 にニュートン法を適用する場合, <u>もし求めるべき解 a が既知である</u>ならば,例 えば, $x_3=a$ として, $x_k=x_{k-1}-f(x_{k-1})/f'(x_{k-1})$ (k=3,2,1) で, x_2,x_1,x_0 を求めれば,「ニュートン 法が有限回で収束する例」を作ることができます. [2024.08.22]
- 2. p.36 の下から 6 行目に「t は、x と ξ の間にある適当な数である」とあります。すなわち、t は、x の関数 t=t(x) です。しかしながら、どんな関数であるのかは、これだけの情報からは、よくわかりません。その意味で、(2.12) にある $\int_{x_{j-1}}^{x_j} f''(t)(x-\xi)^2 dx$ は、本当は、 $\int_{x_{j-1}}^{x_j} f''(t(x))(x-\xi)^2 dx$ はと書くべきで、また、t(x) がどのような関数か全くわからないので(可測関数かどうかも不明)、この積分自体、きちんと定義されていいません。すなわち、(2.12) に始まり、定理 2.2 を述べるまでの議論の中では、f''(t) が x の関数として [a,b] で連続であることが、暗に仮定されています。このような仮定を避けるためには、(2.11) の代わりに、

$$f(x) = f(\xi) + f'(\xi)(x - \xi) + \underbrace{\int_0^1 (1 - s)(x - \xi)^2 f''(\xi + s(x - \xi)) \, ds}_{=\varphi(x)}$$
(2.11')

を用いれば大丈夫です (例えば、[1] の命題 4.1.2). 実際, $\xi = x_{i-1}$ とすると、

$$\left| \int_{x_{j-1}}^{x_j} \varphi(x) \ dx \right| \le \frac{h^3}{6} L_j$$

と評価できます.

p.43 の 4 行目に出てくる r についても, $f^{(4)}(r)$ が x の関数として [a,b] で連続であることが,暗に仮定されています.回避方法は,上と同じです.

なお,定理 2.2,定理 2.6,および定理 2.7 については, Taylor の定理を用いない証明も可能です. これについては, [1] の定理 7.4.8 を見て下さい. [2023.10.26]

— 以上 —