Surgical-MambaLLM: Mamba2-enhanced Multimodal Large Language Model for VQLA in Robotic Surgery

Pengfei Hao¹, Hongqiu Wang¹, Shuaibo Li¹, Zhaohu Xing¹, Guang Yang³, Kaishun Wu¹,and Lei Zhu¹,² (☞)

¹ The Hong Kong University of Science and Technology (Guangzhou)

leizhu@ust.hk ² The Hong Kong University of Science and Technology ³ Imperial College London

Paper Link:

Motivation

- Current methods primarily use Transformer-based approaches for cross-modal fusion, emphasizing global features and neglecting local details. This makes it difficult to capture visual specifics and establish dependencies with the text.
- LLMs still face significant challenges in understanding surgical scenes, particularly in perceiving spatial information due to the complexity of laparoscopic environments.

Contribution

- Surgical-MambaLLM is the first method to integrate Mamba2 with a Large Language Model for the surgical domain.
- The CBMI module explores strategies to effectively merge visual and textual data within Mamba2.
- · The SIP mode improves Mamba2's ability to comprehend spatial aspects of surgical images.
- Experiments reveal that Surgical-MambaLLM outperforms SOTA models.

Method

Overview of our Surgical-MambaLLM framework:

- · Questions are input into the tokenizer to obtain the question embedding, while surgical images are processed by the vision encoder to extract the visual features.
- These features are integrated within the CBMI module, which utilizes our SIP scanning mode to scan the vision features and employs modified bidirectional Mamba2 blocks for multimodal feature fusion.
- The fused features are then projected into the LLM to generate answer and location predictions.
- · The training process involves two stages: initially training the vision encoder, CBMI, and projector with frozen LLM parameters, followed by fine-tuning LLM using LoRA.

Surgical Instrument Perception (SIP) Scanning Mode:

 We propose the Surgical Instrument Perception (SIP) scanning mode for the Mamba2 model, which performs a radial scan from the center towards four directions, ultimately scanning the entire image to obtain a global representation. The trajectory can be described by the following formula:

rmula:
$$(x_{n+1}, y_{n+1}) = \begin{cases} (0, y_n - k_n) & \text{if } y_n = N, x_n \neq N \\ (x_n - k_n, 0) & \text{if } x_n = N \end{cases},$$

$$(x_n + 1, y_n + 1)$$

$$k_n = \begin{cases} x_n + 1 & \text{if } y_n > x_n \\ y_n - 1 & \text{if } y_n \le x_n \end{cases},$$

surgical images; C represents the geometric modeling of the surgical scene; D is the Surgical Instrument Perception (SIP) scanning mode we proposed. The 28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025.

Method

Cross-modal Bidirectional Mamba2:

· We propose the Cross-modal Bidirectional Mamba2, which performs bidirectional scanning of visual features and textual features through the SIP scanning mode to achieve efficient feature fusion and improve the model's spatial understanding of surgical scenes. The formula is as follows: $F_t = l_t(t), F_v = l_v(v),$

 $S_{\text{forward}} = \text{SIP-Mamba2}_{\text{forward}}(F_t, F_v), \qquad S = S_{\text{forward}} \cdot \sigma(F_v) + S_{\text{backward}} \cdot \sigma(F_v),$

Experimental Results

Comparison experiments between our Surgical-MambaLLM and other methods on EndoVis-18 and EndoVis-17 datasets.

	Er	ndoVis -	18	EndoVis - 17			
Models	Acc	F-Score	mloU	Acc	F-Score	mloU	
	0.6234	0.3269	0.7336	0.4516	0.2698	0.7268	
Visualbent [20]		0.2027	0.7463	0.4622	0.2865	0.1997	
ViewalRERT RM [26] (MICCAI 22)		0 2072	0.7541	0.4614	0.5520	The Earle	
MFH [35]		n nock	0.7631	10.4552	USMAA	MARK TO A TO	
Rlock Dicker 10		0 9970	0.7714	D: 4754	ULDERY	Mar Com W	
MUTAN [0]	0.6512	0.3365	0.7739	0.4565	0.2015	0.7621	
GVLE-LViT [4] (ICRA'23)	0.6436	0.3365	0.7712	0.4765	0.3465	0.7764	
CAT-Vil DeiT [3] (MICCAI 25)	0.6573	0.3203	0.7956	0.4983	0.4300	0.7438	
GVLE-LViT [4] (ICRA 23) CAT-ViL DeiT [3] (MICCAI'23) Surgical-VQLA++ [5] (INFORM FUSION'25) Surgical-VQLA++ [5] (INFORM FUSION'25)	0.6723	0.3826	0.7894	0.4180	0.4106	0.7648	
Envir-Li ito ja-jo	0.6964	0.3826	0.8027	0.5191	0.4400	0.10	
Currical-MambaLLM (our)	And the second			STATE OF THE STATE	- 1-16	- 18	

Ablation study on different variants of our approach on the EndoVis-18

Abiation	FindoVis-18 FredoVis-18							
Models Baseline M1 M2 M3 M4 M5	Scanning Mode X Simple 1D Scan Bi-Scan [15] Cross-Scan [19] SIP X SIP	CBMI CBMI CBMI	Acc 0.6537 0.6644 0.6615 0.6834 0.6833	F-Score 0.3595 0.3335 0.3663 0.3420 0.3795	0.7742 0.7951 0.7915 0.7965 0.7847	0.4826 0.4256 0.4675 0.4778	0.3116 0.3774 0.3669 0.4011 0.3947	0.7315 0.7434 0.7611 0.7348 0.7506 0.7559 0.7648
a -rical-Mambaille								

Surgical Instrument