Algebra Review: Radical Expressions

The symbol $\sqrt{}$ always indicates the positive square root of a number. The radical $\sqrt{64}$ can be simplified.

Simplify.

Example 1 a.
$$\sqrt{56}$$

a.
$$\sqrt{56}$$

b.
$$\sqrt{\frac{16}{3}}$$

b.
$$\sqrt{\frac{16}{3}}$$
 c. $(3\sqrt{7})^2$

Solution

a.
$$\sqrt{56} = \sqrt{4 \cdot 14} = \sqrt{4} \cdot \sqrt{14} = 2\sqrt{14}$$

a.
$$\sqrt{56} = \sqrt{4 \cdot 14} = \sqrt{4} \cdot \sqrt{14} = 2\sqrt{14}$$

b. $\sqrt{\frac{16}{3}} = \frac{\sqrt{16}}{\sqrt{3}} = \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$

c.
$$(3\sqrt{7})^2 = 3\sqrt{7} \cdot 3\sqrt{7} = 3 \cdot 3 \cdot \sqrt{7} \cdot \sqrt{7} = 9 \cdot 7 = 63$$

1.
$$\sqrt{36}$$

2.
$$\sqrt{81}$$

3.
$$\sqrt{24}$$

4.
$$\sqrt{98}$$

5.
$$\sqrt{300}$$

6.
$$\sqrt{\frac{1}{4}}$$

7.
$$\frac{\sqrt{5}}{\sqrt{3}}$$

8.
$$\sqrt{\frac{80}{25}}$$

9.
$$\frac{2\sqrt{3}}{\sqrt{12}}$$

10.
$$\sqrt{\frac{250}{48}}$$

11.
$$\sqrt{13^2}$$
16. $5\sqrt{18}$

12.
$$(\sqrt{17})^2$$
17. $4\sqrt{27}$

13.
$$(2\sqrt{3})^2$$
18. $6\sqrt{24}$

14.
$$(3\sqrt{8})^2$$
19. $5\sqrt{8}$

15.
$$(9\sqrt{2})^2$$
20. $9\sqrt{40}$

Solve for x. Assume x represents a positive number.

Example 2
$$2^2 + x^2 = 4^2$$

Example 3
$$x^2 + (3\sqrt{2})^2 = 9^2$$

Solution

$$4 + x^{2} = 16$$

$$x^{2} = 12$$

$$x = \sqrt{12}$$

$$x = 2\sqrt{3}$$

Solution
$$x^{2} + 18 = 81$$

 $x^{2} = 63$
 $x = \sqrt{63}$
 $x = 3\sqrt{7}$

21.
$$3^2 + 4^2 = x^2$$

22.
$$x^2 + 4^2 = 5^2$$

23.
$$5^2 + x^2 = 13^2$$

24.
$$x^2 + 3^2 = 4^2$$

24.
$$x^2 + 3^2 = 4^2$$
 25. $4^2 + 7^2 = x^2$

26.
$$x^2 + 5^2 = 10^2$$

27.
$$1^2 + x^2 = 3^2$$

27.
$$1^2 + x^2 = 3^2$$
 28. $x^2 + 5^2 = (5\sqrt{2})^2$

29.
$$(x)^2 + (7\sqrt{3})^2 = (2x)^2$$

Challenge

Given regular hexagon ABCDEF, with center O and sides of length 12. Let G be the midpoint of \overline{BC} . Let H be the midpoint of \overline{DE} . \overline{AH} intersects \overline{EB} at J and \overline{FG} intersects EB at K.

Find JK.

(Hint: Draw auxiliary lines \overline{HG} and \overline{DA} .)

