# 3) Classification

- "Error rate" is basically 1 sklearn.metrics.accuracy\_score
- StratifiedShuffleSplit: It basically just ensures that the distribution of different classes is the same in the training nd test se. So for eg, suppose our dataset has 20% data of class1 and 80% of class2, stratified shuffle split ill ensure that our training and test set will both also have 20% data of class1 and 80% data of class2

### **Error Metrics**

Accuracy is not a good metric for classification, especially binary classification. For example, suppose we have a dataset where 99% of patients are healthy and 1% have cancer. Even a useless model which would predict "healthy" all the time will get a 99% accuracy. Choosing the right approach depends on the use case

- ROC Curve: Generally better for data with balanced classes
- Precision-Recall Curve: Generally better for data with imbalanced classes

## **Binary Class**

#### **Confusion Matrix**

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

FP is also called a type I error and FN is called a type II error

In here, accuracy = (TP+TN) / (TP+FN+FP+TN) (ie all n of all our samples)

This is the most popular error metric but isn't good for the example we gave above, ie cases where the population is skewed

Also, recall (aka sensitivity) = TP / (TP+FN)

And precision = TP / (TP+FP)

Specificity = TN / (TN+FP)

F1 (aka harmonic mean) = 2 \* [ (Precision\*Recall) / (Precision+Recall) ]

Accuracy = 
$$\frac{TP + TN}{TP + FN + FP + TN}$$

$$F1 = 2 \frac{Precision * Recall}{Precision + Recall}$$

**Receiver Operating Characteristic Curve (ROC Curve)** 



False Positive Rate (1 – Specificity)

**Precision-Recall Curve** 



Multi-class



Accuracy = (TP1+TP2+TP3) / Total

For ROC curve and Precision-recall curve, we use a one-vs-all approach

### Code

(also accuracy\_score)