3 A uniform plank AB of length 5.0 m and weight 200 N is placed across a stream, as shown in Fig. 3.1.

Fig. 3.1

A man of weight 880 N stands a distance x from end A. The ground exerts a vertical force $F_{\rm A}$ on the plank at end A and a vertical force $F_{\rm B}$ on the plank at end B. As the man moves along the plank, the plank is always in equilibrium.

(a) (i) Explain why the sum of the forces $F_{\rm A}$ and $F_{\rm B}$ is constant no matter where the man stands

	on the plank.	
		[2]
		[=]
(ii)	The man stands a distance $x = 0.50 \mathrm{m}$ from end A.	the principle of moments to

calculate the magnitude of $F_{\rm B}$.

(b) The variation with distance x of force F_A is shown in Fig. 3.2.

Fig. 3.2

On the axes of Fig. 3.2, sketch a graph to show the variation with x of force $F_{\rm B}$.

[3]