Instituto Tecnológico de Buenos Aires

TEORIA DE CIRCUITOS

Trabajo Práctico de Laboratorio N^o1

Filtros Pasivos y Análisis Computacional

Grupo 6: Paulo Navarro 57.775 Benjamín Carlos Lin 57.242 Nicolas Lorenzo Mestanza 57.521 Facundo Nicolas Molina 60.526 German Carlos Bertachini 58.750

Responsables de la cátedra:
Daniel Andres Jacoby
Carlos Belaustegui Goitia

Presentado: Corrección:

Índice

1.	Cara 1.1.	acterización de Amplificadores Operacionales Introducción	2
2.	Med 2.1.	dición de Bias Introducción	3
3.	Circ	cuito Integradores y Derivadores	4
	3.1.	Circuito Derivador	4
	3.2.	Circuito Integrador	4
		3.2.1. Introducción	4
		3.2.2. Análisis de la Transferencia del Circuito Integrador - OPAMP ideal	4
		3.2.3. Análisis de la Transferencia del Circuito Integrador - OPAMP con A finito	6
		3.2.4. Análisis de la Transferencia del Circuito Integrador - OPAMP con $A_{vol}(w)$	8
		3.2.5. Análisis de Impedancia de Entrada al Circuito Integrador	
4.	Circ	cuito de Aplicación	11
		Introducción	11

- 1. Caracterización de Amplificadores Operacionales
- 1.1. Introducción

2. Medición de Bias

2.1. Introducción

dassadsad

3. Circuito Integradores y Derivadores

3.1. Circuito Derivador

3.2. Circuito Integrador

3.2.1. Introducción

Se realizó el análisis de un circuito integrador ideal, utilizando en este caso tres componentes, una Resistencia R, un capacitor C y un amplificador operacional. Cabe destacar que se considera un integrador ideal ya que a diferencia del circuito RC analizado en el primer trabajo práctico de laboratorio, éste funcionará como integrador para cualquier frecuencia y no solo a frecuencias altas.

Los valores nominales utilizados para la experiencia fueron:

 $\quad \blacksquare \ R:5.1K\Omega$

• C:20nF

 \bullet OPAMP: LM833

Figura 1: Diagrama del circuito integrador ideal empleado

A continuación se procederá a calcular teóricamente el valor de las funciones transferencias para los casos en donde el amplificador operacional tiene un comportamiento ideal, con A_{vol} finito y $A_{vol}(w)$ con polo dominante.

3.2.2. Análisis de la Transferencia del Circuito Integrador - OPAMP ideal

Para obtener la función transferencia en este caso, $H(S) = \frac{V_{out}(S)}{V_{in}(S)}$, partiremos de las siguientes condiciones iniciales para el amplificador operacional:

- $\blacksquare A_{vol} : \infty$
- $\blacksquare Z_{in} : \infty$
- $\blacksquare Z_{out}:0$

Figura 2: Diagrama del circuito integrador ideal empleado

Podemos observar a simple vista que:

- i1 = -i2
- \bullet $i1 = \frac{V_{in} V^-}{R}$
- $i2 = \frac{V_{out} V^-}{X_c}$
- $V_{out} = A_{vol}(V^+ V^-)$

Como $A_{vol} \to \infty$ y V_{out} es finito, $(V^+ - V^-) \to 0$ y como V^+ está conectado a tierra, $(V^-$ representa tierra virtual, por lo cual su valor es de 0V.

Entonces, redefiniendo las ecuaciones anteriores:

- \bullet $i1 = \frac{V_{in}}{B}$
- \bullet $i2 = \frac{V_{out}}{X_c}$

Siendo entonces:

$$\frac{V_{in}}{R} = -(\frac{V_{out}}{X_c}) \Longrightarrow \frac{V_{out}}{V_{in}} = -\frac{X_c}{R} = -\frac{1}{SRC}$$

$$H(S) = -\frac{1}{SRC}$$

Claramente se puede apreciar que este circuito se comportará como un integrador, ya que si antitransformamos la función de transferencia obtenida implicará que para obtener $v_{out}(t)$ habrá que integrar $v_{in}(t)$ en el dominio del tiempo.

En las siguientes figuras, se puede apreciar el Diagrama de Bode para este caso.

Figura 3: Diagrama de BODE de Amplitud para OPAMP ideal

Figura 4: Diagrama de BODE de Fase para OPAMP ideal

3.2.3. Análisis de la Transferencia del Circuito Integrador - OPAMP con A finito

A diferencia del caso anterior, aquí la diferencia en el cálculo de la función transferencia, $H(S) = \frac{V_{out}(S)}{V_{in}(S)}$, entre el amplificador operaciones ideal y éste será:

• $A_{vol}: finito$

Utilizando las mismas relaciones mencionadas en el apartado anterior, podemos observar ahora que:

$$V_{out} = -A_{vol}.V^{-} \Longrightarrow V^{-} = \frac{-V_{out}}{A_{vol}}$$

Por lo tanto:

$$11 = \frac{V_{in} - V^-}{R} = \frac{V_{in} + \frac{V_{out}}{A_{vol}}}{R}$$

$$12 = \frac{V_{out} - V^-}{X_c} = \frac{V_{out} + \frac{V_{out}}{A_{vol}}}{X_c}$$

Siendo entonces:

$$\frac{V_{in} + \frac{V_{out}}{A_{vol}}}{R} = -(\frac{V_{out} + \frac{V_{out}}{A_{vol}}}{X_c}) \Longrightarrow \frac{V_{out}}{V_{in}} = \frac{1}{SCR(1 + \frac{1}{A_{vol}} + \frac{1}{A_{vol}SRC})}$$

Finalmente:

$$H(S) = \frac{1}{SCR(1 + \frac{1}{A_{vol}}) + \frac{1}{A_{vol}}}$$

Es importante notar que siendo la ganancia para el caso ideal (GI) $-\frac{1}{SRC}$, la funcion transferencia se puede representar como $H(S) = GI.\frac{1}{SCR(1+\frac{1}{A_{vol}})+\frac{1}{A_{vol}}}$ Si A_{vol} es lo suficientemente grande, tendremos una función transferencia ideal nuevamente.

Figura 5: Diagrama de BODE de Amplitud para OPAMP con A_{vol} finito

Figura 6: Diagrama de BODE de Fase para OPAMP con ${\cal A}_{vol}$ finito

3.2.4. Análisis de la Transferencia del Circuito Integrador - OPAMP con $A_{vol}(w)$

En este ultimo caso de analisis, A_{vol} no es constante sino que es función de la frecuencia según:

$$A_{vol} = \frac{A_0}{1 + \frac{S}{w_b}}$$

Por lo cual la expresion para la funcion transferencia calculada en el caso anterior, quedara denominada por:

$$H(S) = \frac{1}{SCR(1 + \frac{1 + \frac{1}{SCR}}{A_{vol}})} \Longrightarrow H(S) = \frac{1}{SCR(1 + \frac{1 + \frac{1}{SCR}}{\frac{A_0}{1 + \frac{N}{w_b}}})}$$

Reacomodando algebraicamente:

$$H(S) = -\frac{1}{S^2 \frac{CR}{A_o W_b} + SCR(1 + \frac{1}{A_o} + \frac{1}{W_b A_o CR}) + \frac{1}{A_0}}$$

Podemos observar que si A_o es muy grande, nuevamente estaremos en el caso donde la ganancia que obtendremos será la ideal para este circuito.

Figura 7: Diagrama de BODE de Amplitud para OPAMP con ${\cal A}_{vol}(w)$ finito

Figura 8: Diagrama de BODE de Fase para OPAMP con ${\cal A}_{vol}(w)$

Comparando los tres casos, podemos observar que en determinadas frecuencias el comportamiento es identico:

Figura 9: Diagrama de BODE de Amplitud para OPAMP comparativo

Figura 10: Diagrama de BODE de Fase para OPAMP comparativo

3.2.5. Análisis de Impedancia de Entrada al Circuito Integrador

Para poder calcular teoricamente, la impedancia de entrada, Z_{in} , se utilizó el teorema de Miller tal que:

4. Circuito de Aplicación

4.1. Introducción