Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\mathfrak{r}_{1^{-}}^{\#1}\alpha$	0	0	0	0	0 - 1	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}\!$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
•	$r_{1}^{#1} + \alpha \beta$	$r_{1}^{#2} + \alpha \beta$	$_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

Quadratic (Tree) Lagrangian density	$-t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$rac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{\kappa}\partial^{eta}\omega_{lphaeta}^{\kappa}-rac{1}{3}r_2\partial_{eta}\omega_{lphaeta}^{\kappa}\partial_{\kappa}\omega^{lphaetaeta}-rac{2}{3}r_2\partial_{eta}\omega_{lphaeta}^{\kappa}\partial_{\kappa}\omega^{etalphaeta}-$	$r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$	$rac{1}{2}t_1\partial^{lpha}\!f_{ heta\kappa}\partial^{\kappa}\!f_{lpha}^{$	$t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f'_{\;\;\prime} + 2t_1\partial^lpha f_{\;\kappalpha}\;\partial^\kappa f'_{\;\;\prime} - t_1\partial_\kappa f^\lambda_{\;\;\lambda}\partial^\kappa f'_{\;\;\prime} + 2t_1\;\omega_{\;\kappa heta}\;\partial^\kappa f'^{ heta} -$	$t_1\;{\omega_{,\alpha}}^{\alpha}\;{\partial^{\kappa}}{f'}_{\kappa}-t_1\;{\omega_{,\lambda}}^{\lambda}\;{\partial^{\kappa}}{f'}_{\kappa}+\frac{1}{2}\;t_1\;{\partial^{\alpha}}{f^{\lambda}}_{\kappa}\;{\partial^{\kappa}}{f_{\lambda\alpha}}+\frac{1}{2}\;t_1\;{\partial_{\kappa}}{f_{\beta}}^{\lambda}\;{\partial^{\kappa}}{f_{\lambda}}^{\lambda}+$	$rac{1}{2}t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta}-t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa}^{\kappa}+rac{1}{3}r_2\partial_\kappa\omega^{lphaeta heta}\partial^\kappa\omega_{lphaeta heta}^{\theta}+rac{2}{3}r_2\partial_\kappa\omega^{etalpha}\partial^\kappa\omega_{lphaeta heta}^{\theta}$	$\frac{2}{3} r_2 \partial^\beta \omega_{\alpha}^{\ \alpha \lambda} \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} + \frac{2}{3} r_2 \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} + r_5 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega_{\kappa}^{\theta \kappa} - r_5 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\kappa}$	
-------------------------------------	--	--	--	--	---	---	--	--	--

	<i>#</i> 1			# 1		4	2		
($\sigma_{0}^{\#1}$			$\tau_{0}^{\#_{1}}$		$\tau_0^{\#_2}$	/	σ	7 <mark>#1</mark>
- (1+	$\frac{1}{2k^2)^2t}$	_ ‡1		$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$		0			0
$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$			$-\frac{2k^2}{(1+2k^2)^2t_1}$			0			0
	0			0		0			0
	0			0		0		$\frac{1}{k^2}$	$\frac{1}{r_2-t_1}$
0	0		0	$i k t_1$	C	>	(0	0
0	0		0	0	c	5	(o	0
0	0		0	$\frac{t_1}{\sqrt{2}}$	c	>	(o	0
	- (1+ - i) (1+	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{1}{(1+2k^2)^2 t_1}$ $-\frac{i\sqrt{2}k}{(1+2k^2)^2 t_1}$ 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

$f_{1}^{#2}$	0	0	0	ūkt ₁	0	0	0
$f_{1^-}^{\# 1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{\it l}kt_1$
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#_+^2} _{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$o_1^{\#1} + \alpha^{\beta}$	$o_1^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha_{1}}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} + \alpha_{1}^{\alpha_{1}}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta}$	0	0	$\frac{2}{t_1}$

Source constraints/gauge generators SO(3) irreps Multiplicities

$\omega_2^{\#1}_{+lphaeta}f_2^{\#1}_{+lphaeta}\omega_2^{\#1}_{2^-lphaeta}$	0	0	$\frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}{}_+\alpha\beta$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} +^{lphaeta}$	$f_{2+}^{#1} +^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 - t_1$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$i\sqrt{2}\ kt_1$	$-2 k^2 t_1$	0	0
$\omega_{0^+}^{\#1}$	<i>-t</i> ₁	$-i \sqrt{2} kt_1$	0	0
	$\omega_0^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1}$ †

 $\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$ Total constraints:

 $\tau_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta == 0$

 $t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$

 $_{0}^{-#1} - 2ik\sigma_{0}^{#1} = 0$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$