NACA

RESEARCH MEMORANDUM

OF AN AIRPLANE CONFIGURATION HAVING

A WING OF TRAPEZOIDAL PLAN FORM

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS

By Robert W. Dunning and Edward F. Ulmann

Langley Aeronautical Laboratory
Langley Field, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

April 28, 1955
Declassified September 1, 1961

NACA RM L55B28

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

EXPLORATORY INVESTIGATION AT MACH NUMBER 4.06

OF AN AIRPLANE CONFIGURATION HAVING
A WING OF TRAPEZOIDAL PLAN FORM

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS

By Robert W. Dunning and Edward F. Ulmann

SUMMARY

An investigation to determine the longitudinal and lateral control characteristics of an airplane configuration having a trapezoidal wing with modified hexagonal airfoil section and a cruciform tail with 5° semiangle wedge section has been carried out in the Langley 9- by 9-inch Mach number 4 blowdown jet. Tests on the complete model and on the model with either the upper or lower vertical tail removed were made at a Mach number of 4.06 and a Reynolds number of 2.7×10^{6} , based on wing mean aerodynamic chord. Data were obtained for angles of attack from 0° up to 12° at angles of sideslip from 0° up to 8° . The incidence angles of the allmovable tails were varied from 6° to -8° , which permitted obtaining effective downwash angle as well as control effectiveness. The data are presented with respect to the body axes.

INTRODUCTION

The aircraft configurations previously investigated experimentally at high supersonic and hypersonic speeds have been restricted to missile types which were not required to land, and which therefore had relatively small wings or wings of very low aspect ratio. The purpose of the present investigation was to determine the characteristics of a configuration conforming more closely to a piloted aircraft having a wing area sufficient for conventional landing. Of the various possible configurations, one was selected for this exploratory study which was expected to have satisfactory low-speed characteristics and satisfactory transonic characteristics. This configuration (fig. 1) employs a trapezoidal wing and the arrangement, in general, is similar to conventional airplanes. Two particular features were incorporated which are believed to be desirable

for high supersonic and hypersonic operation - relatively large leading-edge radii for both wing and tails, and wedge-shaped sections for the tails. The wing and tail sections were designed with large leading-edge radii because of heat-transfer considerations at high Mach numbers. The wing leading-edge radius, for example, would be approximately 1.5 inches at the wing-fuselage intersection for a full-size airplane having a wing span of about 28 feet. Inasmuch as the effectiveness of lifting surfaces having flat-plate or conventional supersonic airfoil sections decreases considerably with Mach number at high supersonic speeds (ref. 1), the effectiveness of tail surfaces of conventional size utilizing these airfoil sections would be marginal or insufficient at the Mach number of the present tests. Several types of tail airfoil sections therefore are being considered and the present results were obtained with a 5° semiangle wedge section.

In references 2, 3, and 4, longitudinal and lateral stability data were presented for this airplane configuration and various combinations of its components at Mach numbers of 4.06 and 6.86. Reference 5 presents longitudinal and lateral control data at Mach number 6.86. This report presents the longitudinal and lateral control characteristics at Mach number 4.06 of the complete configuration and of the configuration with either the upper or lower vertical tail removed. The data have been analyzed only to the extent that effective downwash angle and some stability determinants have been obtained.

SYMBOLS

The results of the tests are presented as standard NACA coefficients of forces and moments. The data are referred to the body axes (fig. 2) with the reference center of gravity at 54 percent of the wing mean aerodynamic chord (52.66 percent of the body length from the body nose).

$^{\rm C}{}_{ m N}$	normal-force coefficient, $-Z_{\rm B}/{\rm qS}$
$C_{\underline{Y}}$	lateral-force coefficient, Y/qS
C_{m}	pitching-moment coefficient about center of gravity, $M'/qS\bar{c}$
C _n	yawing-moment coefficient about center of gravity, N/qSb
Cl	rolling-moment coefficient, L/qSb
z_{B}	force along $\mathbf{Z}_{\mathbf{B}}$ axis

Y	force along Y-axis
M '	moment about Y-axis
N	moment about Z _B -axis
L .	moment about X _B -axis
q	free-stream dynamic pressure
S	total wing area, including area submerged in fuselage
С	wing chord
ē	wing mean aerodynamic chord
c _t	tail root chord
ъ	wing span
R	Reynolds number based on c
М	Mach number
α	angle of attack of fuselage center line, deg
β	angle of sideslip, deg
i _H	angle of incidence of horizontal tail relative to fuselage center line, deg
i _V	angle of incidence of vertical tail relative to fuselage center line, deg
€	effective angle of downwash, deg
c_{m_t}	increment of pitching-moment coefficient provided by the tail
np	neutral-point location, percent of body length
$\frac{9c^{\text{N}}}{9c^{\text{m}}}$	rate of change of pitching-moment coefficient with normal-force coefficient

$\frac{9i^{H}}{9c^{m}}$	rate of change of pitching-moment coefficient with horizontal- tail incidence angle
$\frac{\partial \epsilon}{\partial \alpha}$	rate of change of effective downwash angle with angle of attack
$\mathtt{C}_{Y_{\beta}}$	rate of change of lateral-force coefficient with angle of sideslip
$^{\text{C}}_{\text{n}_{\beta}}$	rate of change of yawing-moment coefficient with angle of sideslip
$c_{i_{\beta}}$	rate of change of rolling-moment coefficient with angle of of sideslip

Model designations:

B body

W wing

T_H horizontal tail

T_{VII} upper vertical tail

 $T_{
m VI}$ lower vertical tail

APPARATUS

The tests were conducted in the Langley 9- by 9-inch Mach number 4 blowdown jet, which is described and for which a calibration is given in reference 6. The settling-chamber pressure, which was held constant by a pressure-regulating valve, and the corresponding air temperature were continuously recorded during each run. A sting-mounted internal strain-gage balance which measured normal force, pitching moment, side force, yawing moment, and rolling moment was used to obtain the data.

MODELS

The model configurations used for the present tests consisted of a complete model (figs. 1 and 3) and the model with either the upper or

lower vertical tail removed. Details concerning the geometric characteristics of the model and the wing and tail sections are given in table I and figures 3 and 4. The model designations used throughout the report are graphically illustrated in figure 5. The wing has a trapezoidal plan form with a hexagonal section that has been modified by rounding the leading edge to a 1-percent-chord radius and blunting the trailing edge to a 2-percent-chord thickness. The wing has a maximum thickness of 4 percent, and the quarter chord is swept back 29°. The tails have a trapezoidal plan form, 5° semiangle wedge section, and 0.007-inch leading-edge radius. The all-movable tails pivot about axes through the $53\frac{1}{2}$ percent root-chord station of the tail (fig. 3). A

photograph of the complete airplane configuration installed in the Langley 9- by 9-inch Mach number 4 blowdown jet is presented in figure 6.

TESTS

The settling-chamber stagnation temperature during any single run varied from approximately 80° to 40° F, and the settling-chamber stagnation pressure was held at approximately 186 lb/sq in. abs. These conditions correspond approximately to a Reynolds number of 2.7×10^{6} , based on the wing mean aerodynamic chord. The tests were run at humidities below 5×10^{-6} pounds of water vapor per pound of dry air, which is believed to be low enough to eliminate water-condensation effects. The test-section static temperature and pressure did not reach the point where liquefaction of air would take place. Data were obtained for angles of attack from 0° up to 12° at angles of sideslip from 0° up to 8° . The tail incidence angle was varied from 6° to -8° . The tests with varying horizontal-tail incidence were made only at zero vertical-tail incidence and the tests with varying vertical-tail incidence were made only at zero horizontal-tail incidence.

PRECISION OF DATA

The probable uncertainties in the test data due to the accuracy limitations of the balances and the recording equipment and the ability of the system to repeat data points are listed in the table below. The accuracy of the rolling-moment coefficients is low relative to the maximum rolling moment encountered. This is because rolling-moment gages were added to an existing balance which was not originally designed to measure rolling moment.

$\mathbf{c}_{\mathbf{N}}$		•					•				•		•				•	•	•				•			±0.001
$C_{\mathbf{Y}}$									•								•			•	•				•	±0.0003
C_{m}				•										•								•				±0.0004
C_n																										
C_{l}	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	±0.0009
α,	de	eg																								±0.1
β,	de	eg																								±0.1

RESULTS

The experimental longitudinal and lateral control characteristics of the configurations are given for all angles of attack and sideslip tested in table II, and representative portions of the data are presented in the figures. Equations for transferring these coefficients from the body axes to the stability axes are presented in the appendix.

The longitudinal control characteristics of the models are presented in figures 7 and 8. Trim longitudinal stability determinants and trim longitudinal characteristics for the complete model are presented in figures 9 to 11. The effective downwash angle was obtained by means of the relation

$$\epsilon = \alpha + i_{\rm H} - \frac{c_{\rm m_t}}{\partial c_{\rm m}/\partial i_{\rm H}}$$

The effects of sideslip angle on the lateral and longitudinal characteristics of the models are presented in figures 12 to 14. Figure 15 presents some lateral stability parameters. The variations of the lateral characteristics with normal-force coefficient are presented in figure 16, and in figure 17 the effect on the yawing-moment coefficient of varying the vertical tail incidence angle is presented.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., February 16, 1955.

APPENDIX

The equations for the transfer of force and moment coefficients from the body-axis system to the stability-axis system are as follows:

Inasmuch as longitudinal forces were not measured, the axis-transfer equations for lift and drag coefficients are not given here.

REFERENCES

- 1. McLellan, Charles H.: A Method for Increasing the Effectiveness of Stabilizing Surfaces at High Supersonic Mach Numbers. NACA RM L54F21, 1954.
- 2. Dunning, Robert W., and Ulmann, Edward F.: Static Longitudinal and Lateral Stability Data From an Exploratory Investigation at Mach Number 4.06 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form. NACA RM L55A21, 1955.
- 3. Penland, Jim A., Ridyard, Herbert W., and Fetterman, David E., Jr.: Lift, Drag, and Static Longitudinal Stability Data From an Exploratory Investigation at a Mach Number of 6.86 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form. NACA RM L54L03b, 1955.
- 4. Ridyard, Herbert W., Fetterman, David E., Jr., and Penland, Jim A.: Static Lateral Stability Data From an Exploratory Investigation at a Mach Number of 6.86 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form. NACA RM L55A2la, 1955.
- 5. Fetterman, David E., Jr., Penland, Jim A., and Ridyard, Herbert W.: Static Longitudinal and Lateral Stability and Control Data From an Exploratory Investigation at a Mach Number of 6.86 of an Airplane Configuration Having a Wing of Trapezoidal Plan Form. NACA RM L55CO4, 1955.
- 6. Ulmann, Edward F., and Lord, Douglas R.: An Investigation of Flow Characteristics at Mach Number 4.04 Over 6- and 9-Percent-Thick Symmetrical Circular-Arc Airfoils Having 30-Percent-Chord Trailing-Edge Flaps. NACA RM L51D30, 1951.

TABLE I.- GEOMETRIC CHARACTERISTICS OF COMPLETE MODEL

Wing:				
Area (including area submerge	ed in	fuselage).	sa in	6.24
Span, in.		- , ,	-	
Mean aerodynamic chord, in.				
Root chord, in				
Tip chord, in.				
Airfoil section				
Taper ratio				
Aspect ratio				
Sweep of leading edge, deg				
Sweep of quarter-chord line,	_			
Incidence at fuselage center				
Dihedral, deg				
Geometric twist, deg				
TT- 1 - 1 - 2 - 11 - 2 1 - 13 -				
Horizontal and vertical tails:		2 7		2 06
Area (including area submerge				
Span, in				
Mean aerodynamic chord, in.				1
Root chord, in				
Tip chord, in				
Airfoil section				
Taper ratio				
Aspect ratio				
Sweep of leading edge, deg .				
Dihedral, deg				0
Fuselage:				
Length, in				7.50
Maximum diameter, in				0.790
Fineness ratio				
Base diameter, in				
Distance from nose to moment				
Ogive nose length, in				
Ogive radius, in				/ 0
OBTAC I CONTON, TILL.				

TABLE II $\mbox{LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF } \mbox{MODELS BWT}_{\mbox{H}}\mbox{T}_{\mbox{UU}}\mbox{T}_{\mbox{V}}\mbox{L}, \mbox{ BWT}_{\mbox{H}}\mbox{T}_{\mbox{UU}}\mbox{, AND BWT}_{\mbox{H}}\mbox{T}_{\mbox{U}}\mbox{L} \mbox{} \mbox{}$

i _H	i _V	α	β	C _N	C _m	c _Y	C _n	C ₁
n	1 0			(a)	BWTHTVUTVL	Association (CCS)	AND THE PROPERTY OF THE PROPER	THE REAL PROPERTY OF THE PARTY
4	0	0	0 1 2 3 4 5	0.01.15 .01.62 .01.51 .01.42 .01.27 .01.29	-0.0219 0231 0231 0230 0228 0230	-0.0007 0117 0231 0344 0460 0573	-0.0001 .0025 .0050 .0075 .0099	0.0006 .0012 .0012 .0009 0 0001
		2	0 1 2 3 4 5	.0599 .0673 .0674 .0654 .0656	0367 0389 0387 0388 0387 0388	.0002 0111 0226 0336 0453 0564	0002 .002l4 .0050 .0073 .0098	.0006 .0010 .0011 .0010 0001
¥	1	4	0 1 2	.1189 .1205 .1220	0526 0532 0533	.0011 0103 0220	0002 .0021 .0047	.0008 .0007 .0008
2	0	0	001122334455	.0068 .0094 .0092 .0084 .0081 .0062 .0075 .0052 .0075 .0058	0106 0104 0103 0104 0098 0107 0100 0110 0105 0113 0104	00010001010701180225023203440347045604670589	0 0001 .0025 .0025 .0049 .0051 .0074 .0075 .0099 .0100 .0122	.0002 .00014 0005 .00014 0005 .0006 0005 .0006 00014 .0008 0002
\	V	2	0123455	.0568 .0581 .0582 .0585 .0593 .0595	0252 0250 0251 0257 0259 0262 0259	.0006 0103 0217 0336 0449 0566 0580	0001 .0023 .0049 .0074 .0097 .0120	.000l ₄ 0 .000l 000l .0002 0

TABLE II .- Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS $\text{BWT}_{\text{H}}^{\text{T}}_{\text{VU}}$, $\text{BWT}_{\text{H}}^{\text{T}}_{\text{VU}}$, AND $\text{BWT}_{\text{H}}^{\text{T}}_{\text{VL}}$ [Body-axis data; M = 4.06; R = 2.7 × 10⁶]

i _H	i _V	α	β	CN	C _m	CY	Cn	Cl
				(a) BWT _B	TvuTvL - Cor	ntinued		
2	0	Т	0 1 2 3 4	0.1143 .1125 .1125 .1127	-0.0394 0386 0387 0386 0388	0.0014 0093 0216 0328 0149	-0.0002 .0021 .0048 .0071 .0097	0.0003 .0003 .0003 .0001
1	-	6	0 1 2	.1677 .1675 .1678	0530 0526 0523	.0024 0091 0211	0002 .0021 .0047	.0005 .0003 .0004
0		0	0011223345678	0032 0007 0027 0007 0005 0001 0016 0012 0011 0021 0021 0021	.0025 .0011 .0022 .0012 .0016 .0012 .0011 .0011 .0010 .0011 .0012	.0174 .0177 .0055 .0060 0058 0054 0173 0283 0401 0527 0663 0798	0114 0118 0087 0091 0061 0036 0039 00114 .00114 .0036 .0062 .0086	.0002 .0011 .0001 .0010 .0001 .0007 .0001 .0005 .0002 .0001 .0000 000l
		2	1 2 3 4 5 6 7	.0487 .0505 .0484 .0515 .0487 .0511	0120 0122 0118 0127 0128 0128 0130	.0060 0053 0170 0286 0416 0546 0684	0089 0063 0037 0012 .0016 .0039 .0066	.0008 .0008 .0005 .0003 .0006 .0002

TABLE II. - Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}$, ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}$, AND ${\tt BWT}_{\tt H}{\tt T}_{\tt VL}$ [Body-axis data; M = 4.06; R = 2.7 \times 10⁶]

							2	
i _H	i _V	α	β	CN	C _m	CY	Cn	C ₁
				(a) BWI _H I	TVUTVL - Cont	inued		
0	0 1	4 	1 2 3 4 5 6 7	0.1050 1054 .1044 .1043 .1036 .1058 .1087	-0.0247 0245 0245 0242 0248 0250 0254	0.0075 0045 0163 0284 0414 0554 0693	-0.0091 .0064 0039 0014 .0039 .0066	0.0005 .0005 .0003 .0001 .0002 .0004
		6	2 3 4 5 6 7 8	.1596 .1588 .1588 .1570 .1618 .1610	0376 0366 0366 0364 0366 0359	0039 0161 0293 0426 0565 0699 0837	0068 0012 0011 .0013 .0039 .0067 .0090	.0002 .0000 0003 .0003 0003 0009
1		8 ∀	4 5	.2192 .2188	O497 O497	0291 0440	0017 .0014	0006 0006
0	2	0	0 1 2 3 4 5 6 7 8	0033 0034 0023 0018 0029 0023 0012 0012	.0018 .0017 .0014 .0011 .0012 .0012 .0013 .0013	.008100330114602620380014990626076140887	0056 0029 0005 .0018 .0014 .0069 .0093 .0118 .0139	.0011 .00114 .0013 .0012 .00114 .0013 .0010 .0007
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*	2	0 1 2 3 4 5 6 7	.0513 .0513 .0514 .0512 .0515 .0519 .0522 .0526	012l ₄ 0125 0128 0133 0131 0136 0138	.0093 0020 0136 0249 0367 0491 0619 0757	0057 0032 000l ₄ .0017 .00l ₄ 2 .0066 .0091 .0118	.0003 .0005 .0006 .0006 .0005 .0005 .0004

TABLE II. - Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS BWT_HT_{VU}T_{VL}, BWT_HT_{VU}, AND BWT_HT_{VL} $\left[\text{Body-axis data; M} = 4.06; \text{R} = 2.7 \times 10^{6}\right]$

i _H	iv	α	β	c _N	C _m	CY	Cn	Cı
				(a) BWTH	r _{VU} T _{VL} - Con	tinued		
0 2		4	01234567	0.1039 .1039 .1039 .1044 .1049 .1049 .1054 .1064	-0.0246 0248 0247 0249 0250 0252 0254 0253	0.0100 0015 0136 0250 0377 0495 0633 0771	-0.0059 003l4 0007 .0017 .00l42 .0067 .0093 .0120	-0.0001 .0000 .0000 .0000 .0000 0001 0001
		6	0123456	.1553 .1553 .1587 .1592 .1594 .1589	0371 0369 0374 0371 0371 0367 0366	.0109 0010 0130 0255 0381 0506 0635	0059 0034 0010 .0016 .0042 .0068 .0094	0005 0005 0007 0005 0006 0006
+	1	8	2 3 4	.2157 .2148 .2150	0501 0496 0493	0130 0251 0379	0011 .0014 .0041	0017 0014 0012
0	0	Tab]	le II ((a) ref. 2				
0	-2	0	0 1 2 3 3	0018 0002 0002 0007 0037	.0011 .0011 .0009 .0006	0100 0211 0325 0443 0140	.0058 .0084 .0108 .0133 .0133	.0011 .0013 .0012 .0013 .0003
1		2	0 1 2 3	•0499 •0525 •0527 •0495	0127 0130 0131 0131	0087 0197 0313 0433	.0058 .0082 .0107 .0132	.0013 .0005 .0006 .0005

TABLE II. - Continued

i _H	i _V	α	β	CN	C _m	CY	C _n	CZ
				(a) BWT _H T _{VV}	T _{VL} - Conti	nued		-
0	- 2	<u>+</u>	0 1 2 3	0.1050 .1057 .1053 .1034	-0.0258 0257 0255 0255	-0.0078 0188 0308 0429	0.0057 .0081 .0107 .0130	0.0010 .0005 .0005 .0005
V	V	6	0 1 2	.1584 .1586 .1585	0387 0387 0380	0073 0187 0305	.0057 .0082 .0106	.0011 .0007 .0005
0	7-	0	0	0037	.0019	0192	.0120	.0003
		2	0	.0507	0125	0181	.0120	•0006
*	\	4	0	.1074	0261	0172	.0119	.0008
-2	0	0	0 0 1 2 2 3 3 4 4 5	0065 0075 0039 0080 0059 0080 0080 0080 0085 0085	.0114 .0116 .0112 .0116 .0115 .0117 .0120 .0115 .0114 .0113	0006 0 0120 0113 0228 0231 0340 0343 0472 0461 0576	.0001 0 .0026 .0025 .0050 .0050 .0073 .0074 .0100 .0100 .0123	.0008 0 .0015 0002 .0003 .0001 .0005 0 .0007 0001
Y	Y	2	0 1 2 3 4 5	.0436 .0430 .0428 .0400 .0410 .0435	0010 0016 0011 0006 0016	.0003 0112 0222 0336 0464 0575	.0001 .0025 .0050 .0072 .0099	.0009 .0010 .0007 .00014 .0008

TABLE II .- Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS BWT $_{\rm H}$ T $_{\rm VU}$ T $_{\rm VL}$, BWT $_{\rm H}$ T $_{\rm VU}$, AND BWT $_{\rm H}$ T $_{\rm VL}$ [Body-axis data; M = 4.06; R = 2.7 \times 106]

i _H	i _V	α	β	c _N	C _m	CY	Cn	Cl
			(8	.) BWTHTVUT	VL - Contin	ued		
-2	0	4	0 1 2 3 4 5	0.0979 .0958 .0974 .0964 .0968 .0979	-0.0131 0132 0131 0126 0134 0133	0.0009 0099 0217 0327 0463 0573	0 .0023 .0050 .0070 .0099 .0123	0.0011 .0011 .0006 .0004 .0010
		6	0 1 2 3 4 5	.1518 .1491 .1507 .1501 .1507 .1496	0257 0257 0254 0241 0250 0241	.0018 0095 0219 0327 0474 0592	0001 .0023 .0048 .0070 .0100	.0010 .0009 .0004 .0004 .0010
V		8	0 1 2 3	.2078 .2085 .2083 .2062	0381 0394 0383 0372	.0035 0090 0219 0331	0002 .0024 .0050 .0071	.0005 .0009 .0006
1	0	0	0 1 2 3 4 5	0138 0101 0128 0149 0160 0160	.0240 .0229 .0238 .0248 .0252 .0264	0007 0120 0234 0347 0467 0579	.0026 .0051 .0076 .0100	.0010 .0009 .0011 .0009 .0009
\ \		2	0 1 2 3 4 5	.0330 .0365 .0365 .0359 .0348	.0117 .0114 .0112 .0114 .0120 .0123	0003 0108 0226 0339 0456 0574	0001 .002h .0050 .007h .0099 .0122	.0011 .0006 .0005 .0006 .0008

TABLE II.- Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS BWT $_{\rm H}$ T $_{\rm VU}$ T $_{\rm VL}$, BWT $_{\rm H}$ T $_{\rm VU}$, AND BWT $_{\rm H}$ T $_{\rm VL}$ [Body-axis data; M = 4.06; R = 2.7 \times 10⁶]

i _H	iy	α	β	CN	Cm	СҮ	Cn	Cı
				(a) BWTHTV	T _{VL} - Cont	inued		
-14	0	14	012345	0.0888 .0894 .0896 .0899 .0876	-0.0005 0003 0004 0001 .0004	0.0007 0099 0219 0332 0454 0569	-0.0001 .0022 .0049 .0073 .0098 .0121	0.0014 .0003 .00014 .0002 .0003
		6	012345	.1l,15 .1l,22 .1l,16 .1l,10 .1l,12 .1l,17	0123 0125 0123 0114 0109 0104	.0017 0097 0223 0344 0473 0597	0001 .0023 .0048 .0073 .0100	.0016 .0004 .0006 .0010 .0010
		8	0 1 2 3 4 5	.1986 .1994 .1994 .2001 .2006 .2008	0260 0259 0253 0250 0245 0240	.0027 0090 0224 0348 0479 0609	0002 .0023 .0051 .0075 .0102	.001h 0001 .0002 .0006 .0008
	1	10 Y	0	.2693 .2669	0455 0445	.0038 0101	0002 .0026	.0017
-6	0	0	0 1 1 2 2 3 3 4 5 5 6	0237 0180 0209 0206 02114 0207 0223 0207 0227 0213 0209 0211	.0380 .0365 .0372 .0372 .0374 .0373 .0374 .0378 .0374 .0382 .0375	0010 0113 0113 0226 0231 0338 0344 0453 0462 0567 0579 0659	0 .0027 .0025 .0051 .0051 .0076 .0075 .0100 .0100 .0123 .0123 .0133	.0006 .0003 .0003 0001 .0002 0002 .0003 0003 0005 .0003 0008

TABLE II. - Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}{\tt T}_{\tt VL}$, ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}$, and ${\tt BWT}_{\tt H}{\tt T}_{\tt VL}$ [Body-axis data; M = 4.06; R = 2.7 × 10⁶]

i _H	iy	α	β	CN	C _m	CY	Cn	Cl
				(a) BWT _H T	T _{VU} T _{VL} - Cor	ntinued		
-6	0	2	0 1 2 3 4 5	0.0240 .0272 .0268 .0269 .0287 .0253	0.0245 .0240 .0248 .0248 .0248 .0250	-0.0002 0115 0228 0342 0148 0576	0.0001 .0026 .0052 .0076 .0097 .0123	0.0008 .0003 .0002 .0001 00014
		4	0 1 2 3 4 5	.0793 .0803 .0811 .0806 .0806	.0132 .0127 .0132 .0137 .0113 .0110	.0007 0103 0224 0336 0446 0577	0 .002l4 .0051 .007l4 .0097 .0123	.0008 .0005 .0004 .0002 .0001
		6	0 1 2 3 4 5	.1325 .1329 .1352 .1339 .1330 .1318	.0017 .0010 .0017 .0027 .0036	.0016 0101 0221 0335 0462 0593	0001 .0024 .0049 .0074 .0098 .0125	.0007 .0001 .0003 .0001 0002
		8	0 1 2 3 4 5	.1868 .1876 .1905 .1898 .1937 .1908	0121 0124 0118 0110 0110	.0027 0096 0226 0342 0468 0610	0002 .0025 .0052 .0076 .0101	.0007 .0005 .0005 0
	V	10	0 1 2 3	.2588 .2561 .2589 .2608	0320 0316 0309 0306	.0039 0106 0232 0352	0003 .0028 .0053 .0076	.0002 0002 .0003 0001

TABLE II. - Continued

MODELS BWTHTVUTVL, BWTHTVU, AND BWTHTVL

iH	iγ	а	β	CN	Cm	Сұ	Cn	Cı
				(a) BWT _H T _{VU}	extstyle ext	inued		
8	0	0	0 1 2 3 3 4 5 6	-0.0332 0316 0279 0290 0330 0290 0279 0259	0.051h .0513 .0503 .0508 .0509 .0513 .0h86 .0h53	-0.0011 0122 0236 0350 0353 0468 0559 0641	0.0001 .0026 .0052 .0076 .0078 .0102 .0114 .0118	0.0003 0001 0002 0002 .0012 0005 0008
		2	0 1 2 3 4 5	.0184 .0168 .0188 .0161 .0178 .0168	.0368 .0371 .0377 .0373 .0384 .0390	0005 0114 0227 0349 0464 0575	.0002 .0026 .0051 .0077 .0101	.0001 .0003 0001 .0012 .0008
		A	0 1 2 3 4 5	.0721 .0720 .0721 .0692 .0722	.0264 .0259 .0268 .0268 .0279	.0007 0105 0223 03144 01465 0579	0 .0025 .0051 .0075 .0100	.0002 .0002 0002 .0016 .0012
		6	0 1 2 3 4 5	.1247 .1253 .1261 .1231 .1254 .1238	.0147 .0144 .0155 .0159 .0171	.0013 0103 0219 0348 0472 0586	0 .002l ₄ .0050 .0075 .0101	.0001 .0002 0002 .0017 .0014 .0012
		8	0 1 2 3 4 5	.1869 .1808 .1831 .1811 .1840 .1837	0021 0003 .0008 .0012 .0022 .0033	.0024 0095 0222 0354 0485 0607	0 .0025 .0052 .0077 .0103 .0130	0 .0001 .0002 .0017 .0014

TABLE II .- Continued

MODELS $BWT_HT_{VU}^TV_L$, BWT_HT_{VU} , AND BWT_HT_{VL} [Body-axis data; M = 4.06; R = 2.7 × 10⁶]

	-							
i _H	ių	α	β	C _N	Cm	CY	Cn	CZ
				(a) BWT _H T	$_{ m VU}^{ m T}_{ m VL}$ - Con	cluded		
8	0	10	0 1 2 3 4	0.2532 .2519 .2530 .2522 .2521	-0.0206 0200 0194 0185 0172	0.0035 0107 0226 0363 0502	-0.0001 .0028 .0053 .0078	-0.0001 .0001 0003 .0020
Y	V	12	0 1 2	•3185 •3162 •3177	0352 0349 0342	.0052 0099 0232	0003 .0028 .0053	0001 0001 0001
Home				(b) BWT _H T _{VU}			
0	6	0	0 1 2 3 4 6 8	0041 0035 0034 0061 0065 0063 0061	.0081 .0079 .0076 .0080 .0081 .0082	.0129 .0049 0033 0115 0209 0399 0620	0088 0082 0077 0073 0069 0053 00314	.0027 .0019 .0012 .0002 .0010 0003
		2	0 1 2 3 4 6 8	.0479 .0466 .0480 .0462 .0462 .0465 .0478	0051 0040 0052 0040 00514 0017 0016	.0126 .0048 0032 0107 0203 0385 0611	0080 0078 0076 0073 0071 0059 0040	.0025 .0016 .0005 0003 .0006 0009 0019
	*	1	0 1 2 3 4 6 8	.1027 .1020 .1020 .1004 .0993 .1008	0177 0174 0173 0167 0165 0162 0152	.0126 .0051 0029 0105 0194 0382 0607	0074 0075 0075 0074 0064 0045	.0021 .0012 .0005 0007 .0001 0010 0025

TABLE II .- Continued

 $\text{MODELS} \quad \text{BWT}_{\text{H}} \text{T}_{\text{VU}} \text{T}_{\text{VL}}, \quad \text{BWT}_{\text{H}} \text{T}_{\text{VU}}, \quad \text{AND} \quad \text{BWT}_{\text{H}} \text{T}_{\text{VL}}$

i _H	ių	α	β	C _N	C _m	CY	Cn	Cl
	L			(b) BW	T _H T _{VU} - Cont	inued	acamus acm enum tacamen (1995) com a second (1995)	
0 6	6	6	0 1 2 3 4 6 8	0.1553 .1572 .1556 .1543 .1540 .1537	-0.0303 0303 0295 0286 0283 0265 0255	0.0127 .0052 0025 0107 0201 0391 0612	-0.0069 0071 0074 0075 0076 0067 0049	0.0016 .0010 0002 0012 .0000 0018 0037
1	1	8	6 8	.2112 .2115	0383 0363	0404 0626	0068 0053	0023 0039
0	1	0	0 1 2 3 4 6 8	0009 0029 0034 0088 0041 0066 0065	.0066 .0069 .0071 .0087 .0072 .0085	.0080 .0002 0077 0159 0251 0440 0668	0058 0052 0048 0044 0040 0025 0005	.0024 .0016 .0011 .0000 0006 0016
		2	0 1 2 3 4 6 8	.0453 .0474 .0476 .0452 .0465 .0495	0041 0042 0042 0041 0038 0034	.0080 .0007 0069 011,7 021,3 01,28 0656	0053 0051 0049 0047 0045 0035 0015	.0022 .0012 .0005 0004 0010 0020 0033
*		7	0 1 2 3 4 6 8	.1038 .1019 .1012 .0997 .1020 .1035 .1060	0180 0174 0174 0173 0164 0164 0153	.0085 .0015 0062 0143 0229 0425 0646	0050 0050 0051 0050 0050 0041 0023	.0018 .0012 .0006 0006 0010 0020 0038

TABLE II. - Continued

MODELS $\text{BWT}_{\text{H}}\text{T}_{\text{VU}}\text{T}_{\text{VL}}$, $\text{BWT}_{\text{H}}\text{T}_{\text{VU}}$, AND $\text{BWT}_{\text{H}}\text{T}_{\text{VL}}$

i _H	i _V	a.	β	C _N	C _m	СХ	Cn	Cı
				(b) BV	VIHIVU - Cont	tinued		
0	1	6	0 1 2 3 4 6 8	0.1588 .1556 .1559 .1538 .1565 .1563 .1581	-0.0310 0301 0297 0284 0287 0269 0257	0.0092 .00114 0057 01142 0235 01425 0650	-0.0046 0049 0052 0054 0054 0046	0.0017 .0008 0001 0011 0016 0028 0043
V	1	8	2 3 4 6 8	.2117 .2114 .2135 .2145 .2159	0416 0410 0407 0389 0367	0069 0161 0241 0436 0655	0053 0056 0056 0049 0034	0008 0014 0018 0028 0048
0	2	0	0 1 2 3 4 5 6 7 7 8 8	0038 0038 0042 0063 0061 0066 0070 0064 0049 0058 0048	.0073 .0073 .0073 .0081 .0082 .0085 .0089 .0094 .0087 .0096	.0036 0043 0123 0139 0293 0384 0486 0599 0597 0709 0710	0029 002h 0021 0017 0013 0006 .0001 .0011 .0008 .0021	.0010 .0005 0002 0003 0011 0016 0022 0028 0024 0034 0028
Y	\ \ \ \	2	0 1 2 3 4 5 6 7 8	.0496 .0451 .0474 .0476 .0468 .0466 .0467 .0485	0057 0034 0040 0040 0038 0038 0041 0038 0043	.0046 0032 0108 0190 0267 0361 0467 0574 0688	0027 0026 0024 0023 0020 0016 0010 0002 .0007	.0005 .0007 .0001 0006 0014 0020 0022 0028 0033

TABLE II .- Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}{\tt T}_{\tt VL}, \ {\tt BWT}_{\tt H}{\tt T}_{\tt VU}, \ {\tt AND} \ {\tt BWT}_{\tt H}{\tt T}_{\tt VL}$

i _H	iy	a	β	c_{N}	Cm	CY	Cn	Cl
				(p) B	VT _H T _{VU} - Con	tinued		
0 2	2	<u>ئ</u>	0 1 2 3 4 5 6 7 8	0.1016 .1002 .1023 .1005 .1006 .1014 .1004 .1028 .1040	-0.0175 0173 0176 0168 0164 0159 0157 0150 0147	0.0053 0024 0101 0177 0259 0348 0458 0563 0678	-0.0025 0027 0028 0028 0027 0024 0018 0012 0001	0.0002 .0004 0002 0016 0024 0029 0036
		6	0 1 2 3 4 5 6 7 8	.1577 .1555 .1550 .1560 .1545 .1545 .1558 .1545	0307 0302 0295 0291 0279 0273 0264 0256 0252	.005800160091017502600343045605610672	002l ₄ 0027003000330030002600190010	0004 .0000 0007 0015 0020 0027 0029 0034 0041
+		8	0 1 2 3 4 5 6 7 8	.2155 .2119 .2118 .2109 .2114 .2124 .2127 .2110 .2134	0448 0427 0417 0407 0399 0392 0382 0364 0358	.0069 0009 0097 0172 0260 0350 0463 0571 0682	0022 0027 0033 0036 0037 0035 0030 0024 0016	0008 .0001 0007 0011 ₄ 0022 0030 0031 0037 0048

TABLE II. - Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS $BWT_HT_{VU}T_{VL}$, BWT_HT_{VU} , AND BWT_HT_{VL} [Body-axis data; M = 4.06; R = 2.7 × 10⁶]

i _H	iy	a	β	CN	C _m	CY	Cn	Cl
				(b) B	VT _H T _{VU} - Cor	ntinued		
	0	0 1 2 3 4 5 6 7 8	-0.0016 0052 0051 0056 0065 0075 0069 0062	0.0063 .0073 .0075 .0077 .0081 .0085 .0092 .0097	-0.0009 0088 0170 0253 0337 0428 0534 0649 0760	0.0000 .0004 .0008 .0012 .0017 .0023 .0031 .0040	-0.0001 0006 0010 0014 0019 0025 0033 0039 0043	
		2	0 1 2 3 4 5 6 7 8	. O488 . O486 . O476 . O476 . O477 . O477 . O477 . O483 . O489	0056 0057 0057 0058 0056 0051 0038 0037 00314	.0003 0072 0149 0231 0313 0402 0504 0619 0733	.0000 .0001 .0003 .0004 .0006 .0011 .0016 .0026	0008 0011 0016 0022 0027 0032 0038 0043 0047
+	Y	4	012345678	.1023 .1018 .1007 .1008 .1019 .1020 .1005 .1017	0181 0181 0178 0174 0170 0166 0158 0149 0141	.0013 0062 0140 0218 0301 0393 0497 0611 0722	.0000 0003 0003 0003 0001 .0006 .0011,	.0012 .0007 0001 0005 0009 0015 0020 0029 0037

TABLE II. - Continued

 $\text{MODELS} \quad \text{BWT}_\text{H}\text{T}_\text{VU}\text{T}_\text{VL}, \quad \text{BWT}_\text{H}\text{T}_\text{VU}, \quad \text{AND} \quad \text{BWT}_\text{H}\text{T}_\text{VL}$

i _H	i _V	æ	β	c _N	C _m	CY	Cn	Cl			
	(b) BWT _H T _{VU} - Continued										
0	0	6	0 1 2 3 4 5 6 7 8	0.1580 .1582 .1579 .1559 .1562 .1549 .1563 .1570 .1580	-0.0314 0311 0305 0292 0287 0273 0263 0257 0245	0.0022 0051 0126 0207 0293 0383 0483 0591 0700	-0.0001 0005 0008 0010 0010 0008 0004 .0003	0.000l ₄ 0003 0007 0013 0017 002l ₄ 0031 00l ₄ l ₄ 0051			
\		8	0 1 2 3 4 5 6 7 8	.2104 .2107 .2103 .2097 .2108 .2121 .2108 .2124 .2144	0424 0421 0414 0403 0396 0387 0375 0364 0355	.0037 0035 0120 0199 0282 0372 0483 0596 0710	0001 0006 0013 0017 0019 0017 0012 0005	0003 0008 0013 0020 0024 0028 0035 0041 0049			
0	-2 	0	0 1 2 3 4 5 6 7 8	0037 0036 0046 0061 0060 0059 0058 0063	.0071 .0072 .0077 .0082 .0084 .0088 .0095 .0104	0051 0132 0217 0298 0382 0473 0577 0688 0805	.0029 .0033 .0037 .0041 .0046 .0051 .0059 .0069	.0002 0003 0008 0014 0019 0025 0033 0037 0043			

TABLE II .- Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}{\tt T}_{\tt VL}$, ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}$, AND ${\tt BWT}_{\tt H}{\tt T}_{\tt VL}$ [Body-axis data; M = 4.06; R = 2.7 \times 10⁶]

i _H	iy	a	β	CN	C _m	CY	Cn	CZ
				(b) BW	T _H T _{VU} - Cont	inued		
0 -2	-2	2	0 1 2 3 4 5 6 7 8	0.0474 .0475 .0475 .0469 .0469 .0470 .0475 .0481	-0.005l ₄ 005l ₄ 005l ₄ 005l ₄ 00l ₄ 600l ₄ 10036003l ₄ 0028	-0.0035 0122 0192 0272 0358 0445 0546 0655 0768	0.0026 .0028 .0029 .0030 .0033 .0037 .0042 .0051 .0062	-0.0002 0011 0017 0020 0025 0031 0041 0045
		\ T	0 1 2 3 4 5 6 7 8	.1013 .1022 .1017 .1019 .1010 .1003 .1010 .1017 .1025	0179 0178 0175 0169 0163 0154 0146 0137 0127	0024 0095 0173 0251 0335 0427 0533 0640 0755	.0024 .0022 .0022 .0021 .0022 .0025 .0030 .0037 .0047	0003 0012 0018 0026 0030 0034 0040 0046
		6	0 1 2 3 4 5 6 7 8	.1559 .1557 .1553 .1552 .1554 .1545 .1551 .1557 .1563	0304 0300 0295 0286 0279 0266 0257 0252 0234	0010 008l ₄ 0160 02l ₄ 3 0333 0l ₄ 18 0522 0629 07l ₄ 2	.0021 .0018 .0014 .0012 .0011 .0014 .0018 .0025	0005 0008 0016 0024 0036 0042 0048 0053 0057
+	Y	8	0 1 2 3 4 5 6 7 8	.2108 .2134 .2130 .2121 .2122 .2129 .2138 .2113 .2114	0425 0426 0417 0410 0399 0390 0381 0361 0348	.0002 0071 0153 0238 0321 0116 05214 0629 07148	.0019 .0015 .0009 .0001 .0004 .0006 .0010 .0017	0005 0014 0021 0026 0032 0038 0046 0054 0060

TABLE II .- Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}{\tt T}_{\tt VL}$, ${\tt BWT}_{\tt H}{\tt T}_{\tt VU}$, and ${\tt BWT}_{\tt H}{\tt T}_{\tt VL}$

i _H	iv	α	β	C _N	C _m	CY	Cn	Cl
	1			(b) BW	THTVU - Con-	tinued		
0	14	0	0 1 2 3 4 6 8	-0.0046 0056 0055 0054 0053 0077 0060	0.0077 .0082 .0085 .0086 .0079 .0126 .0133	-0.0097 0179 0259 0340 0421 0625 0853	0.0058 .0063 .0066 .0069 .00714 .0089 .0110	-0.0006 001l ₄ 0021 003l ₄ 0038 00l ₄ 3 0055
		2	0 1 2 3 4 6	.01,60 .01,73 .01,86 .01,62 .01,60 .01,59	0043 0044 0047 0043 0042 0028 0013	0085 0158 0238 0311 0404 0597 0810	.0052 .0053 .0055 .0058 .0059 .0069	0007 0011 0020 0033 0039 0042 0056
		4	0 1 2 3 4 6	.1014 .1028 .1017 .1017 .1010 .1018	0177 0177 0174 0164 0156 0148 0121	0063 0134 0220 0287 0372 0577 0796	.0048 .0046 .0046 .0046 .0046 .0054 .0071	0007 0009 0022 0035 0045 0045 0062
		6	0 1 2 3 4 6 8	.1579 .1568 .1575 .1554 .1545 .1552 .1548	0309 0303 0298 0283 0271 0257 0234	0050 012l ₄ 0201 0272 0360 0563 0777	.0043 .0041 .0037 .0035 .0033 .0041 .0057	0006 0011 0030 0035 0044 0049 0061
Y		8	0 1 2 3 4 6 8	.2123 .2098 .2148 .2120 .2137 .2142 .2137	0449 0421 0421 0403 0394 0377 0346	0036 0113 0189 0266 0345 0562 0783	.0040 .0037 .0030 .0025 .0020 .0030 .00144	0008 0014 0024 0033 0044 0045 0061

TABLE II .- Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS $BWT_HT_{VU}T_{VL}$, BWT_HT_{VU} , AND BWT_HT_{VL} $\begin{bmatrix} Body-axis data; M = 4.06; R = 2.7 \times 10^6 \end{bmatrix}$

i _H	iy	a	β	CN	Cm	CY	Cn	Cı
				(b) BW	THTVU - Co	ntinued		
0	-6	0	0 1 2 3 4 6	-0.0050 0019 0018 0010 0067 0075 0063	0.0081 .0085 .0090 .0094 .0101 .0130 .0129	-0.0142 0224 0303 0387 0481 0669 0874	0.0088 .0092 .0097 .0101 .0107 .0119	-0.0016 0025 0030 0042 0013 0059 0069
		2	0 1 2 3 4 6 8	.0471 .0490 .0466 .0451 .0454 .0474	0051 0050 0013 0035 0032 0019 0003	0123 0191 0277 0356 0451 0634	.0080 .0081 .0084 .0086 .0089 .0097 .0117	0014 0020 0031 0040 0059 0071
		4	0 1 2 3 4 6 8	.1019 .1015 .1034 .1010 .1002 .1017	0178 0171 0175 0158 0150 0134 0113	0104 0179 0257 0333 0424 0611 0825	.0073 .0072 .0072 .0073 .0074 .0081	0012 0024 0035 0043 0047 0055 0073
	V	6	0 1 2 3 4 6 8	.1551 .1547 .1570 .1546 .1544 .1554	0304 0296 0292 0276 0266 0253 0225	0088 0161 0241 0313 0409 0598 0802	.0067 .0065 .0061 .0059 .0059 .0066	0012 0026 0033 0040 0043 0059 0071

TABLE II .- Continued

 $\label{eq:models} \text{MODELS} \quad \text{BWT}_{\text{H}}\text{T}_{\text{VU}}\text{T}_{\text{VL}}, \quad \text{BWT}_{\text{H}}\text{T}_{\text{VU}}, \quad \text{AND} \quad \text{BWT}_{\text{H}}\text{T}_{\text{VL}}$

i _H	iy	α	β	C _N	Cm	CY	Cn	Cı
				(b) BWT	H ^T VU - Concl	uded		
0	-6	8	0 1 2 3 4 6 8	0.2157 .2132 .2117 .2111 .2097 .2128 .2135	-0.0451 0426 0411 0400 0382 0361 0334	-0.0066 0111 0223 0295 0391 0586 0806	0.0063 .0058 .0052 .0047 .0046 .0052	-0.0010 0016 00314 0011 0014 0059 00714
					(c) BWT _H T _V	L		
0	6	0	0 1 2 3 4 6 8	.0050 .0016 .0019 .0039 .0028 .0031 .0016	0068 0052 0061; 001,8 0051; 0050 0061	.0139 .0051 .0055 0029 0112 0202 0380 0603	0093 0086 0088 0080 0076 0072 0059 0040	0019 0036 0010 0013 0006 .0007 .0009 .0015
		2	0 1 2 3 4 6 8	.0540 .0543 .0530 .0532 .0512 .0560 .0557	0206 0196 0195 0188 0184 0198 0191 0187	.0152 .0068 .0067 0019 0100 0194 0385 0605	0101 0093 0094 0086 0079 0074 0058 0038	0021 0019 0010 0015 0015 .0000 .0003
		4	1 2 3 4 6 8	.1068 .1086 .1055 .1072 .1092 .1106	0320 0316 0306 0307 0306 0295	.0091 0004 0095 0193 0397 0619	0100 0090 0081 0074 0054 0033	0012 0023 0022 0001 0001

TABLE II. - Continued

 $\label{eq:models} \text{MODELS} \quad \text{BWT}_{\text{H}} \text{T}_{\text{VU}} \text{T}_{\text{VL}}, \quad \text{BWT}_{\text{H}} \text{T}_{\text{VU}}, \quad \text{AND} \quad \text{BWT}_{\text{H}} \text{T}_{\text{VL}}$

i _H	ių	α	β	CN	Cm	CY	Cn	Cı
				(c) BW	THTVL - Cont	tinued		
0	6	6	4 6 8	0.1612 .1611 .1625	-0.0425 0411 0394	-0.0202 0409 0631	-0.0075 0053 0029	-0.0010 0008 0007
0	0 4	0	0 1 2 3 4 6	.003l4 .00l13 .00l3 .0033 .003l4 .0018	0062 0060 0060 0055 0064 0070	.0090 .0010 0071 0154 0246 0437 0659	0061 0056 0050 0047 0043 0029 0009	0012 0008 0003 0002 .0016 .0022 .0032
		2	0 1 2 3 4 6	.0513 .0526 .0520 .0517 .0511 .0552 .0552	0190 0189 0187 0186 0192 0197 0198	.0101 .0021 0066 0149 0244 0443 0670	0066 0060 0053 0047 0041 0025 0005	0014 0008 0006 0005 .0011 .0018
		1 1	0 1 2 3 4 6	.1076 .1060 .1060 .1084 .1067 .1071 .1082 .1104	0318 0313 0313 0315 0315 0315 0320	.0122 .0018 .0029 0061 0145 0246 0461 0691	0071 0062 0062 0055 0046 0038 0018	0018 0016 0016 0012 0008 .0007 .0015 .0020
V		6	2 3 4 6 8	.1615 .1613 .1605 .1623 .1626	0437 0429 0427 0427 0422	0052 0151 0259 0477 0715	0058 0047 0036 0013 .0013	0018 0020 .0003 .0006 .00114

TABLE II .- Continued

 $\label{eq:models} \text{MODELS} \quad \text{BWT}_{\text{H}} \text{T}_{\text{VU}} \text{T}_{\text{VL}}, \quad \text{BWT}_{\text{H}} \text{T}_{\text{VU}}, \quad \text{AND} \quad \text{BWT}_{\text{H}} \text{T}_{\text{VL}}$

$\mathtt{i}_{\mathtt{H}}$	i _V	α	β	CN	Cm	CY	Cn	Cl
				(c) BW	THTVL - Con	tinued		
	2	0	0 1 2 3 4 4 6 6 8	0.0010 .0025 .0024 .0008 .0007 .0019 .0001 .0028	-0.0050 00514 0053 0058 0066 0062 0073 0077	0.00\1 0037 0122 0198 0279 0283 0\158 0\175 0703	-0.0032 0028 0023 0021 0017 0016 0006 0003 .0016	0.0005 .0011 .0016 .0016 .0021 .0015 .0028 .0026
		2	0 1 2 3 4 6 8	.0473 .0542 .0522 .0518 .0540 .0536	0178 0194 0189 0190 0195 0195 0208	.0052 0029 011/4 0199 0281 0471 0716	0035 0028 0023 0018 0013 .0002	.000l ₄ .0010 .0012 .0015 .0017 .0022 .0031
		1	0 1 2 3 4 6 8	.1064 .1059 .1072 .1080 .1075 .1063	0313 0314 0315 0315 0314 0307 0324	.0068 0022 0108 0202 0289 0491 0737	0038 0030 0023 0015 0008 .0011 .0038	0 .0008 .0010 .0012 .0015 .0020
		6	0 1 2 3 4 6 8	.1612 .1588 .1601 .1608 .1602 .1608 .1638	Ol. 140 Ol. 314 Ol. 35 Ol. 314 Ol. 22 Ol. 18 Ol. 33	.0083 0013 0110 0207 0306 0511 0765	00\u00e42 0032 0023 0013 000\u00e4 .0018 .00\u00e49	0001 0003 .0007 .0010 .0005 .0017

TABLE II .- Continued

MODELS BWTHTVUTVL, BWTHTVU, AND BWTHTVL

i _H	iy	α	β	cN	Cm	CY	Cn	Cı
		-		(c) BW	T _H T _{VL} - Con	tinued		
0	0	0	0 0 1 1 2 2 3 3 4 4 5 6 6 7 8	0.0026 .0021 .0046 .0021 .0050 .0025 .0019 .0023 .0018 .0022 .0022 .0029 .0021 .0025 .001/4	-0.005l400590059005l400600060006600660072007600690080008140088	-0.0003 .0002 0082 0076 0163 0161 0240 0245 0319 0324 0418 0502 0518 0633 0749	-0.000l ₄ 000l ₄ 000l000l000l .000l ₄ .0007 .0007 .0011 .0011 .0017 .0023 .002l ₄ .0033 .00l ₄ l ₄	0.0005 .0001 .0012 .0007 .0017 .0014 .0014 .0021 .0019 .0027 .0032 .0024 .0033 .0041
		2	0 1 2 3 4 6 8	.0527 .0538 .0559 .0539 .0525 .0540	0189 0191 0196 0193 0194 0192 0218	.0005 0075 0163 0240 0325 0517 0768	0004 .0002 .0007 .0012 .0018 .00314	.0004 .0012 .0014 .0014 .0016 .0019
V		4	0 1 2 3 4 6 8	.1061 .1073 .1078 .1070 .1057 .1099 .1113	0317 0315 0312 0310 0305 0303 0331	.0014 0072 0163 0246 0335 0546 0796	000l ₄ . 0003 . 0009 . 0016 . 0025 . 0017	.0003 .0010 .0013 .0014 .0014 .0019

TABLE II .- Continued

 $\label{eq:models} \text{MODELS} \quad \text{BWT}_{\text{H}}\text{T}_{\text{VU}}\text{T}_{\text{VL}}, \quad \text{BWT}_{\text{H}}\text{T}_{\text{VU}}, \quad \text{AND} \quad \text{BWT}_{\text{H}}\text{T}_{\text{VL}}$

i _H	iy	G	β	CN	Cm	CY	Cn	Cı
				(c) BW	T _H T _{VL} - Con	tinued		
0	0	6	0 1 2 3 4 6	0.1610 .1617 .1638 .1590 .1630 .1607	-0.0439 0443 0440 0427 0422 0408	0.0024 0074 0164 0259 0361 0564	-0.0005 .0004 .0011 .0021 .0033 .0056	0.0003 .0007 .0007 .0009 .0009
0	-2	0	0 1 2 3 4 6 8	.0023 .0022 .0027 .0022 .0010 .0015 .0018	0059 0058 0063 0072 0073 0081 0099	0051 0127 0209 0291 0373 0547 0795	.0026 .0030 .0034 .0038 .0041 .0050 .0074	.0019 .0026 .0031 .0030 .0038 .0041
		2	0 1 2 3 4 6 8	.0502 .0550 .05144 .0535 .0535 .0530	0186 0198 0200 0201 0206 0210 0234	0042 0132 0209 0296 0382 0583 0817	.0029 .0035 .0041 .0047 .0051 .0064	.0017 .0024 .0029 .0029 .0033 .0039 .0052
	The second secon	\ 	0 1 2 3 4 6	.1076 .1067 .1066 .1090 .1073 .1095	0318 0318 0319 0324 0323 0329 0347	0038 0131 0217 0307 01,00 0602 0858	.0028 .0037 .0046 .0054 .0061 .0080	.0016 .002l4 .0028 .0030 .0033 .0022 .0053
Y	\	6	0 1 2 3 4	.1575 .1603 .1636 .1623 .1617	0435 0442 0445 0553 0439	0038 0141 0222 0319 0426	.003l ₄ .00l ₄ 2 .0051 .0060 .0071	.0017 .0020 .002h .0023 .0031

TABLE II. - Continued

LONGITUDINAL AND LATERAL CONTROL CHARACTERISTICS OF MODELS $BWT_HT_{VU}T_{VL}$, BWT_HT_{VU} , AND BWT_HT_{VL} [Body-axis data; M = 4.06; R = 2.7 \times 10⁶]

i _H	iy	α	β	CN	C _m	CY	Cn	Cı
				(c) E	BWT _H T _{VI} , - Co	ontinued		
0	74	0	0 1 2 3 4 6 7 8	0.0022 .0037 .0015 .00014 .0003 .0029 .0035 .0035	-0.0076 0085 0081 0085 0092 0101 0100 0106	-0.0093 0172 0256 0329 0417 0610 0715 0827	0.0055 .0060 .006l .0067 .0071 .0083 .0091 .0103	0.0028 .0034 .0040 .0041 .0045 .0050 .0054
		2	0 1 2 3 4 6 7 8	.0500 .0539 .0539 .0540 .0536 .0547 .0557	0200 0212 0223 0221 0226 0228 0236 0241	0091 0180 0261 0347 0436 0634 0746 0850	.0060 .0067 .0072 .0079 .0086 .0099 .0111	.0026 .0033 .0037 .0038 .0045 .0051 .0053
		4	0 1 2 3 4 6	.1075 .1072 .1063 .1069 .1081 .1094	0332 0334 0335 0337 0342 0345	0090 0179 0267 0366 0453 0667	.0065 .0072 .0080 .0088 .0096	.0027 .0034 .0036 .0040 .0041 .0048
V	+	6	0 1 2	.1605 .1614 .1629	0456 0461 0462	0092 0188 0278	.0070 .0079 .0089	.0026 .0036 .0035
0	-6	0	0 1 2 3 4 5 6	.0016 .0053 .0052 .0042 .0041 .0025	0055 0078 0079 0081 0087 0087	0140 0219 0301 0378 0460 0544 0640	.0086 .0090 .0094 .0098 .0102 .0107	.0029 .0036 .0041 .0039 .0042 .0046

TABLE II. - Continued

Body-axis data;
$$M = 4.06$$
; $R = 2.7 \times 10^6$

i _H	iγ	a	β	CN	Cm	Сү	Cn	Cł				
	(c) BWT _H T _{VL} - Concluded											
0	φ	2	0 1 2 3 4	0.0534 .0556 .0565 .0535 .0537	-0.0206 0210 0216 0211 0218	-0.0142 0226 0312 0389 0479	0.0093 .0099 .0104 .0109 .0116	0.0032 .0036 .0039 .0041 .0043				
		4	0 1 2	.1089 .1100 .1096	0330 0335 0331	0147 0233 0324	.0100 .0108 .0114	.0032 .0037 .0042				
Y	*	6	0	-1644	0461	0152	.0109	.0036				

Figure 1.- Photograph of complete model. $i_{\rm H} = -8^{\circ}$; $i_{\rm V} = 0^{\circ}$.

L-88040

Figure 2.- Systems of reference axes; arrows indicate positive direction. Subscript B indicates body axes; subscript S indicates stability axes.

Figure 3.- Wind-tunnel model; all dimensions in inches.

(b) Horizontal and vertical tails.

Figure 4.- Wing and tail airfoil sections used on model.

Figure 5.- Model designations.

L-87425

Figure 6.- Installation of the complete model in the Langley 9- by 9-inch Mach number 4 blowdown jet.

Figure 7.- Variation of the pitching-moment coefficient and angle of attack with normal-force coefficient at various horizontal-tail incidence angles for models $BWT_HT_{VU}T_{VL}$, BWT_HT_{VU} , and BWT_HT_{VL} . M = 4.06; $R = 2.7 \times 10^6$.

Figure 8.- Variation of pitching-moment coefficient with horizontal-tail incidence angle at various angles of attack for model $BWT_HT_{VU}T_{VL}$. M = 4.06; $R = 2.7 \times 10^6$.

10

Figure 9.- Variation with angle of attack of the downwash angle and the stabilizer effectiveness parameter $\partial C_m/\partial i_H$ for model $BWT_HT_{VU}T_{VL}$ at trim conditions. M = 4.06; $R = 2.7 \times 10^6$.

Angle of attack, α , deg

2

Figure 10.- Variation with normal-force coefficient of the downwash angle and the longitudinal stability parameters $\partial C_m/\partial C_N$, $\partial C_m/\partial i_H$, and $\partial \varepsilon/\partial \alpha$ for model BWTHTVUTVL at trim conditions. M = 4.06; R = 2.7 × 106.

Figure 11.- Variation with normal-force coefficient of the neutral point, horizontal-tail incidence angle, and angle of attack for model $BWI_HI_{VU}I_{VL}$ at trim conditions. M = 4.06; $R = 2.7 \times 10^6$.

(a) Lateral characteristics.

Figure 12.- Variation with sideslip angle of the lateral and longitudinal characteristics of model ${\tt BWT}_H {\tt T}_{VU} {\tt T}_{VL}$ at various vertical-tail incidence angles.

(b) Longitudinal characteristics.

Figure 12.- Concluded.

(a) Lateral characteristics.

Figure 13.- Variation with sideslip angle of the lateral and longitudinal characteristics of model ${\tt BWT}_{\rm H}{\tt T}_{\rm VU}$ at various vertical-tail incidence angles.

NACA RM L55B28

(b) Longitudinal characteristics.

Figure 13.- Concluded.

(a) Lateral characteristics.

Figure 14.- Variation with sideslip angle of the lateral and longitudinal characteristics of model ${\tt BWT}_{\tt H}{\tt T}_{\tt VL}$ at various vertical-tail incidence angles.

(b) Longitudinal characteristics.

Figure 14.- Concluded.

Figure 15.- Variation with normal-force coefficient of the lateral stability parameters $C_{n_{\beta}}$, $C_{l_{\beta}}$, and $C_{Y_{\beta}}$ for models $BWT_{H}T_{VU}T_{VL}$, $BWT_{H}T_{VU}$, $BWT_{H}T_{VL}$, and BW. M = 4.06; $R = 2.7 \times 10^6$.

Normal-force coefficient, C_N

(a) Model BWTHTVUTVL.

Figure 16.- Variation with normal-force coefficient of the lateral characteristics of models $BWT_HT_{VU}T_{VL}$, BWT_HT_{VU} , BWT_HT_{VL} , and BW at various vertical-tail incidence angles. M = 4.04; $R = 2.7 \times 10^6$.

Normal-force coefficient, $C_{
m N}$

(b) Model BWT_H^TVU .

Figure 16.- Continued.

(c) Model BWTHTVL.

Figure 16.- Concluded.

Figure 17.- Variation of yawing-moment coefficient with vertical-tail incidence angle for models $BWT_HT_{VU}T_{VL}$, BWT_HT_{VU} , and BWT_HT_{VL} . M = 4.06; $R = 2.7 \times 10^6$.