DELTA TopGun (20) Automaty

Luboš Zápotočný

2024

Obsah

Konečný automat

Příklady konečných automatů

Flashback z OOP

Končný automat je uspořádaná pětice $M = (Q, \Sigma, \delta, q_0, F)$, kde

Q je konečná množina stavů,

- Q je konečná množina stavů,
- Σ je konečná množina symbolů (abeceda),

- Q je konečná množina stavů,
- Σ je konečná množina symbolů (abeceda),
- ▶ δ je přechodová funkce, δ : Q × Σ → Q,

- Q je konečná množina stavů,
- Σ je konečná množina symbolů (abeceda),
- \blacktriangleright δ je přechodová funkce, $\delta: Q \times \Sigma \rightarrow Q$,
- ▶ q_0 je počáteční stav, $q_0 \in Q$,

- Q je konečná množina stavů,
- Σ je konečná množina symbolů (abeceda),
- \blacktriangleright δ je přechodová funkce, $\delta: Q \times \Sigma \rightarrow Q$,
- $ightharpoonup q_0$ je počáteční stav, $q_0 \in Q$,
- ▶ F je množina koncových stavů, $F \subseteq Q$.

- Q je konečná množina stavů,
- Σ je konečná množina symbolů (abeceda),
- \blacktriangleright δ je přechodová funkce, $\delta: Q \times \Sigma \rightarrow Q$,
- $ightharpoonup q_0$ je počáteční stav, $q_0 \in Q$,
- ▶ F je množina koncových stavů, $F \subseteq Q$.

►
$$L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \},$$

- ► $L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \},$
- **b** kde δ^* je rozšíření přechodové funkce δ na slova:

- ▶ $L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \},$
- **b** kde δ^* je rozšíření přechodové funkce δ na slova:

- ▶ $L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \},$
- lacktriangle kde δ^* je rozšíření přechodové funkce δ na slova:
- $ightharpoonup \delta^*(q,\varepsilon) = q$

- ► $L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \},$
- ightharpoonup kde δ^* je rozšíření přechodové funkce δ na slova:
- $\delta^*(q,\varepsilon)=q$
- ▶ pro všechna $q \in Q$, $w \in \Sigma^*$, $a \in \Sigma$.

- ► $L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \},$
- ightharpoonup kde δ^* je rozšíření přechodové funkce δ na slova:
- $\delta^*(q,\varepsilon)=q$
- ▶ pro všechna $q \in Q$, $w \in \Sigma^*$, $a \in \Sigma$.

Mějme konečný automat $M=(\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$, kde

- Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}),$ kde

- Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}),$ kde
- ▶ $\delta(q_0, a) = q_1$,

- Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}),$ kde
- ▶ $\delta(q_0, a) = q_1$,

- Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}),$ kde

- Jaký jazyk tento automat přijímá?

- Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}),$ kde
- ▶ $\delta(q_0, a) = q_1$,

- Jaký jazyk tento automat přijímá?
- $\blacktriangleright L(M) = \{aba\}$

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}),$ kde
- ▶ $\delta(q_0, a) = q_1$,

- Jaký jazyk tento automat přijímá?
- $ightharpoonup L(M) = \{aba\}$

▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2, q_3\})$, kde

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2, q_3\})$, kde

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2, q_3\})$, kde
- ▶ $\delta(q_0, a) = q_1$,

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2, q_3\})$, kde
- ▶ $\delta(q_0, a) = q_1$,

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2, q_3\})$, kde

- Jaký jazyk tento automat přijímá?

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2, q_3\})$, kde

- Jaký jazyk tento automat přijímá?
- $\blacktriangleright L(M) = \{aba, ab\}$

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_2, q_3\})$, kde

- Jaký jazyk tento automat přijímá?
- $ightharpoonup L(M) = \{aba, ab\}$

Úmyslně vynecháno.

lacktriangle Mějme konečný automat $M=(\{q_0\},\{\{,\}\},\delta,q_0,\emptyset)$, kde

- lacktriangle Mějme konečný automat $M=(\{q_0\},\{\{,\}\},\delta,q_0,\emptyset)$, kde
- $\delta(q_0, \{) = q_0, \, \delta(q_0, \}) = q_0$

- lacktriangle Mějme konečný automat $M=(\{q_0\},\{\{,\}\},\delta,q_0,\emptyset)$, kde
- $\delta(q_0, \{) = q_0, \, \delta(q_0, \}) = q_0$
- Jaký jazyk tento automat přijímá?

- lacktriangle Mějme konečný automat $M=(\{q_0\},\{\{,\}\},\delta,q_0,\emptyset)$, kde
- $\delta(q_0, \{) = q_0, \ \delta(q_0, \}) = q_0$
- Jaký jazyk tento automat přijímá?
- $ightharpoonup L(M) = \emptyset$

- lacktriangle Mějme konečný automat $M=(\{q_0\},\{\{,\}\},\delta,q_0,\emptyset)$, kde
- $\delta(q_0, \{) = q_0, \, \delta(q_0, \}) = q_0$
- Jaký jazyk tento automat přijímá?
- $L(M) = \emptyset$ $\{,\}$ q_0

Úmyslně vynecháno.

▶ Mějme konečný automat $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, kde

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, kde
- $\delta(q_0,0) = q_1, \ \delta(q_0,1) = q_1,$

- Mějme konečný automat $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}),$ kde
- $\delta(q_0,0) = q_1, \ \delta(q_0,1) = q_1,$

- ► Mějme konečný automat $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}),$ kde
- $\delta(q_0,0) = q_1, \ \delta(q_0,1) = q_1,$
- $\delta(q_1,0) = q_2, \ \delta(q_1,1) = q_1,$
- $\delta(q_2,0) = q_2, \ \delta(q_2,1) = q_1.$

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}),$ kde
- $\delta(q_0,0) = q_1, \ \delta(q_0,1) = q_1,$
- $\delta(q_1,0) = q_2, \ \delta(q_1,1) = q_1,$
- $\delta(q_2,0) = q_2, \ \delta(q_2,1) = q_1.$
- Jaký jazyk tento automat přijímá?

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}),$ kde
- $\delta(q_0,0) = q_1, \ \delta(q_0,1) = q_1,$
- $\delta(q_1,0) = q_2, \ \delta(q_1,1) = q_1,$
- $\delta(q_2,0) = q_2, \ \delta(q_2,1) = q_1.$
- Jaký jazyk tento automat přijímá?
- ► $L(M) = \{w \in \{0,1\}^* | w \text{ končí na } 0, |w| \ge 2\}$

- ▶ Mějme konečný automat $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, kde
- $\delta(q_0,0) = q_1, \ \delta(q_0,1) = q_1,$
- $\delta(q_1,0) = q_2, \ \delta(q_1,1) = q_1,$
- $\delta(q_2,0) = q_2, \ \delta(q_2,1) = q_1.$
- Jaký jazyk tento automat přijímá?
- ► $L(M) = \{w \in \{0,1\}^* | w \text{ končí na } 0, |w| \ge 2\}$

Příklad 7 - JSON

→ JSON - diagram

Stavy jsou reprezentovány jako objekty

- Stavy jsou reprezentovány jako objekty
- Každý stav má metody pro přechod do dalšího stavu

- Stavy jsou reprezentovány jako objekty
- Každý stav má metody pro přechod do dalšího stavu
- lacktriangle Přechází se podle δ přechodové funkce

- Stavy jsou reprezentovány jako objekty
- Každý stav má metody pro přechod do dalšího stavu
- ightharpoonup Přechází se podle δ přechodové funkce
- Přechází se na aktuálního stavu a následujícího vstupu

- Stavy jsou reprezentovány jako objekty
- Každý stav má metody pro přechod do dalšího stavu
- ightharpoonup Přechází se podle δ přechodové funkce
- Přechází se na aktuálního stavu a následujícího vstupu