- Multi-carrier modulations
- Channel coding. The Viterbi algorithm
- MIMO

Signal propagation in the air

Initials	Frequency Range	Characteristics				
ELF	< 300 Hz					
ILF	300 Hz - 3 kHz	Ground wave				
VLF	3 kHz - 30 kHz					
LF	30 kHz - 300 kHz					
MF	300 kHz - 3 MHz	Ground/Sky wave				
HF	3 MHz - 30 MHz	Sky wave				
VHF	30 MHz - 300 MHz	Space wave				
UHF	300 MHz - 3 GHz					
SHF	3 GHz - 30 GHz					
	ILF VLF LF MF HF VHF	ILF 300 Hz - 3 kHz VLF 3 kHz - 30 kHz LF 30 kHz - 300 kHz MF 300 kHz - 3 MHz HF 3 MHz - 30 MHz VHF 30 MHz - 300 MHz UHF 300 MHz - 3 GHz				

The wireless propagation channel (space wave)

- Because, mobile services are mostly in the bandwidth 30MHz-30 GHz, spacewave is the most important wave propagation mechanism we need to consider.
- Most wireless radio systems operate in urban areas: No direct line-of-sight (los) between transmitter and receiver.
- The main physical phenomena are: reflection, diffraction, scattering.
- Can be categorized into two types:
 - · Large-scale propagation models
 - · Small-scale propagation models

Reflection (R), diffraction (D) and scattering (S).

Propagation phenomena

- · Three major propagation mechanisms:
 - Reflection

Signal impinges on very large (w.r.t. to signal wavelength) objects. When a wave meets a boundary, it can be either reflected or transmitted.

Diffraction

Signal is obstructed by objects that have sharp irregularities. Diffraction depends on the size of the object relative to the wavelength of the wave.

Scattering

Propagation medium populated by small (wrt to signal wavelength) objects or rough surfaces (e.g. foliage, street signs).

Large-scale fading

- Large-scale fading: propagation models that characterize signal strengths over Tx-Rx separation distance.
- Accounts for average received power, changes over distances > 1 m.

Large-scale fading can be modelled as the combination of path-loss and

shadowing.

Large-scale fading: path-loss

- Path-loss models simplify Maxwell's equations.
- Models vary in complexity and accuracy but, in general, mean power falloff w.r.t. the tx-rx distance d is proportional to d² in free space and to dⁿ in other environments.
- Considering only path-loss, the average received signal power is

$$P_{Rx} \propto P_{Tx} \Gamma(f_0, d_0) \left(\frac{d_0}{d}\right)^n \quad d > d_0$$

- Near field term $\Gamma(f_0, d_0) \approx \left(\frac{\lambda}{4\pi d_0}\right)^2$
- Path-loss A_{PL} is $A_{PL} = \frac{P_{Tx}}{P_{Rx}} = \Gamma(f_0, d_0) \left(\frac{d_0}{d}\right)^n$

Environment	Path Loss Exponent, n
Free space	2
Urban area cellular radio	2.7 – 3.5
Urban area cellular (obstructed)	3-5
In-building line-of- sight	1.6 – 1.8
Obstructed in- building	4 – 6
Obstructed in- factories	2-3

Path-loss in cellular systems

- Path-loss: Signal attenuation defined as the ratio between the transmitted power and the average received power.
- The path-loss in a cellular system can be up to 100 dB for cell-edge users and represents the major impairment in any wireless cellular system

Large-scale fading: shadowing

- Two points with the same distance from the transmitter have theoretically the same path-loss, nevertheless their average attenuation may still greatly differ.
- Shadowing accounts for the random variations of the average channel attenuation.
- Shadowing fading A_S is a random variable log-normally distributed with parameters $\mu=0$ and σ_S expressed in dB.
- The pdf in dB of A_S is

$$p(A_S) = \frac{1}{\sqrt{2\pi}\sigma_S}e^{-\frac{A_S^2}{2\sigma_S^2}}$$

where σ_S is the standard deviation in decibels (typical values 0-9 dB)

Large-scale fading: shadowing

PR = Ptx . APL

• Let's consider a channel with path-loss and shadowing ($\sigma_S=3$ dB) only. The received power P_{RX} is

• Assume that $P_{TX}A_{PL} = (-100 \text{ dBm}) = (-130 \text{ dBW}) = 10^{-13} \text{ W}$.

Because of shadowing, P_{RX} is a random variable and its distribution in dBm and linear scale is linear scale is

odBm ≥ 10 W

o d	ВW	1	1 U	/	0	JBu	/= 30	odB	m				
o d	od:	Вм	<u>-</u>	10	13 W	1							