FLIP01 MIDTERM PRESENTATION

Zebin Ju Xi'an Shiyou University

January 13, 2020

Overview

Problem Description
Problem Analysis

Text Feature Extraction

Methods

The Ending

Problem Description
Problem Analysis
Text Feature Extraction
Methods
The Ending

Description

Problem Analysis

Text Feature Extraction

Methods

The Ending

Problem Description

Description

Problem Description

Description

Problem Analysis

Text Feature Extraction

Methods

The Ending

Rotten tomato movie review data set is a movie review corpus for emotional analysis. It is an opportunity for us to build your idea of Emotional Analysis on rotten tomato data set. It is required to mark phrases with five levels of values: negative, some negative, neutral, some positive, positive. Negative sentences, satire, conciseness, language ambiguity and other obstacles make this task very challenging.

Problem Analysis

Data Analysis

Data Glance

Type Of Review

Text Feature Extraction

Methods

The Ending

Problem Analysis

Data Analysis

Problem Description

Problem Analysis

Data Analysis

Data Glance
Type Of Review

Text Feature Extraction

Methods

The Ending

The dataset consists of tab delimited files and phrases in the rotten tomatoes dataset. Each phrase has a phraseid. Each sentence has a sentenceid.

- 0 for negative
- 1 for somewhat negative
- 2 for neutral
- 3 for somewhat positive
- 4 for positive

Data Glance

Problem Description

Problem Analysis

Data Analysis

Data Glance

Type Of Review

Text Feature Extraction

Methods

The Ending

The following table shows the data characteristics.

	Phraseld	Sentenceld	Phrase	Sentiment
0	1	1	A series of escapades demonstrating the adage	1
1	2	1	A series of escapades demonstrating the adage	2
2	3	1	A series	2
3	4	1	A	2
4	5	1	series	2

Figure 1: data characteristics table

Type Of Review

Problem Description

Problem Analysis

Data Analysis

Data Glance

Type Of Review

Text Feature Extraction

Methods

The Ending

Next, we can see the category distribution of comments. From the figure, we can see that emotion tag 2, that is, the most neutral comments.

Figure 2: type of review

Problem Analysis

Text Feature Extraction

Methods

The Ending

Text Feature Extraction

Text Feature Extraction

Problem Description
Problem Analysis

Text Feature Extraction

Methods

The Ending

It is the process of transforming text data into feature vector. Machine learning algorithm often can't directly process text data, so it needs to transform text data into numerical data.

- CountVectorizer
- TfidfVectorizer

Problem Analysis

Text Feature Extraction

Methods

The Ending

Methods

Naive Bayes

Problem Description
Problem Analysis
Text Feature Extraction
Methods

The Ending

Naive Bayes is a classification algorithm based on probability theory, which can predict classification by considering feature probability.

- CountVectorizer:0.6715045495322312
- TfidfVectorizer:0.6308070613866461

	Phraseld	Sentiment		Phraseld	Sentiment
66287	222348	1	66287	222348	1
66288	222349	1	66288	222349	1
66289	222350	1	66289	222350	1
66290	222351	1	66290	222351	1
66291	222352	1	66291	222352	2

Figure 3: naive bayes

Logistic Regression

Problem Description
Problem Analysis

Text Feature Extraction

Methods

The Ending

Logical regression can solve the problem of two categories, but it can also solve the problem of multiple categories.

- CountVectorizer:0.7002354863514033
- TfidfVectorizer:0.6662581699346405

	Phraseld	Sentiment			Phraseld	Sentiment
66287	222348	1	66	6287	222348	1
66288	222349	1	66	6288	222349	1
66289	222350	1	66	6289	222350	2
66290	222351	1	66	6290	222351	2
66291	222352	2	66	6291	222352	1

Figure 4: logistic regression

Problem Analysis

Text Feature Extraction

Methods

The Ending

The Ending

