Aufgabe 2

a)

Für ein festes $n \in \mathbb{N}$ und $s \in (0, \infty)$ sei die Abbildung

$$F_s: B_R(0) \to \mathbb{R}^n, x \mapsto (s \cdot \mathbb{1}_n) \cdot x.$$

Für jedes $x \in B_R(0)$ gilt $||x|| \le R$, also folgt für $F_s(x) = s \cdot \mathbb{1}_n \cdot x = s \cdot x$, dass $||s \cdot x|| = s \cdot ||x|| \le s \cdot R$, und somit $F_s(x) \in B_{s \cdot R}(0)$. Da $\det(s \cdot \mathbb{1}_n) = s^n \ne 0$, ist F_s bijektiv. Also ist $F_s(B_R(0)) = B_{s \cdot R}(0)$ und es gilt:

$$\operatorname{vol}(B_{s \cdot R}(0)) = \operatorname{vol}((s \cdot \mathbb{1}_n) \cdot B_R(0)) = |\det(s \cdot \mathbb{1}_n)| \cdot \operatorname{vol}(B_R(0)) = s^n \cdot \operatorname{vol}(B_R(0))$$

Sei nun $s = \frac{19}{20}$. Wir berechnen

$$n = 3: \qquad \frac{\text{vol}(B_{s \cdot R}(0))}{\text{vol}(B_R(0))} = s^n = \left(\frac{19}{20}\right)^3 \approx 0.86$$

$$n = 10: \qquad \frac{\text{vol}(B_{s \cdot R}(0))}{\text{vol}(B_R(0))} = s^n = \left(\frac{19}{20}\right)^{10} \approx 0.60$$

$$n = 25: \qquad \frac{\text{vol}(B_{s \cdot R}(0))}{\text{vol}(B_R(0))} = s^n = \left(\frac{19}{20}\right)^{25} \approx 0.28$$

b)

Wir bestimmen das kleinste $n \in \mathbb{N}$ mit einem Schalenanteil von über $\frac{999999}{1000000}$:

$$1 - \frac{\text{vol}(B_{s \cdot R}(0))}{\text{vol}(B_R(0))} = 1 - \left(\frac{19}{20}\right)^n \ge \frac{999999}{1000000}$$

$$\Leftrightarrow \qquad \left(\frac{19}{20}\right)^n \le \frac{1}{1000000}$$

$$\Leftrightarrow \qquad n \ge \log_{\frac{19}{20}}\left(\frac{1}{1000000}\right) \approx 269.34$$

$$\Rightarrow \qquad n = \lceil 269.34 \rceil = 270.$$