Problem abstrakcyjny

Problem abstrakcyjny Q – relacja na zbiorze I egzemplarzy problemu i zbiorze S rozwiązań problemu. Np. Shortest-path – problem najkrótszej ścieżki w grafie między parą wierzchołków:

- egzemplarz trójka: graf, dwa wierzchołki
- rozwiązanie ścieżka ciąg wierzchołków (ciąg pusty brak ścieżki)
- problem relacja wiążąca każdy egzemplarz z rozwiązaniem – najkrótszą ścieżką w danym grafie między daną parą wierzchołków.

Problemy decyzyjne / optymalizacyjne

Problem decyzyjny – rozwiązanie stanowi odpowiedź: NIE lub TAK ($\{0,1\}$).

Np. PATH: Dany jest graf G=(V,E), dwa wierzchołki $u,w\in V$ i nieujemna liczba całkowita k. Czy istnieje w G ścieżka od u do v o długości $\leq k$?

Jeśli $i=\langle G,u,v,k\rangle$ jest egzemplarzem, to PATH(i)=1, jeśli najkrótsza ścieżka od u do v w G ma długość $\leq k$, a w p.p. PATH(i)=0.

Problem optymalizacyjny – znaleźć rozwiązanie o najmniejszej lub największej wartości pewnego parametru (np. ścieżkę o najmniejszej długości).

Algorytm rozwiązujący problem optymalizacyjny można wykorzystać do rozwiązania odpowiedniego problemu decyzyjnego (np. znaleźć najkrótszą ścieżkę i sprawdzić czy jest dłuższa niż k.)

Kodowanie

Egzemplarze problemu muszą być kodowane w sposób zrozumiały dla programu – kodowanie binarne. Liczby naturalne kodujemy w systemie o ustalonej podstawie > 1. (długość reprezentacji – logarytmiczna wzgl. wartości liczby) Cyfry – n.p. w kodzie ASCII. Można również ustalić "zwarte" sposoby kodowania obiektów złożonych (zbiory, grafy, ciągi). Np. zbiory – wyliczenie zakodowanych elementów oddzielonych kodami znaku',' między kodami znaków '{' i'}'. Problem konkretny – problem, którego zbiór egzemplarzy jest zakodowany. (Kod egzemplarza i oznaczamy < i >.) Algorytm *rozwiązuje* konkretny problem w czasie O(T(n)), jeśli dla egzemplarza problemu o długości kodu n wyznacza rozwiązanie w czasie O(T(n)).

Problemy jako języki formalne

```
Alfabet: \Sigma = \{0, 1\}. Język zbiór napisów z \Sigma^*.
Problem decyzyjny Q identyfikujemy ze zbiorem (kodów)
egzemplarzy: L = \{x \in \Sigma^* : Q(x) = 1\}
Np. PATH= \{ < G, u, v, k > : G = (V, E) \text{ jest grafem, } u, v \in V, \}
k \geq 0 jest liczbą całkowitą
oraz istn. ścieżka od u do v w G o dł. \leq k
Algorytm A akceptuje słowo x \in \Sigma^* jeśli dla x oblicza
A(x) = 1. A odrzuca x, jeśli A(x) = 0.
Język L jest rozpoznawalny w czasie wielomianowym przez A, jeśli
istn. stała k, taka, że dla każdego x \in \Sigma^* A akceptuje x w
czasie O(n^k) jeśli x \in L, i A nie akceptuje x jeśli x \notin L.
Język L jest rozstrzygalny w czasie wielomianowym przez A, jeśli
istn. stała k, taka, że dla każdego x \in \Sigma^* a akceptuje x w
czasie O(n^k) jeśli x \in L, i A odrzuca x w czasie O(n^k) jeśli
x \not\in L.
```

Klasa złożoności

 ${\it Klasa\ złożoności}$ – zbiór języków L, dla których istnieje algorytm o danej złożoności rozstrzygający czy dane słowo należy do L.

Np. $P = \{L \subseteq \{0,1\}^* : \text{ istnieje algorytm } A$ rozstrzygający o L w czasie wielomianowym $\}$ Tw. $P = \{L : L \text{ jest akceptowalny w czasie wielomianowym}\}$ **D-d.** Jeśli L – akceptowalny w czasie wielomianowym, to istnieje algorytm A, który każde słowo z L długości nakceptuje w czasie $\leq c \cdot n^k$, dla pewnych stałych c, k. Można skonstruować algorytm A', który w czasie wielomianowym rozstrzyga czy słowo x należy do L: A' wyznacza długość nsłowa x a następnie "symuluje i mierzy czas działania" algorytmu A. Jeśli w czasie $cn^k A$ nie zaakceptuje x, to A'odrzuca x. \square

Algorytmy weryfikacji

Przykład:

 $\texttt{HAM-CYCLE} = \{ < G >: G \text{ jest grafem hamiltonowskim} \}$

Graf G = (V, E) jest hamiltonowski, jeśli zawiera cykl (cykl Hamiltona), w którym każdy wierzchołek z V występuje dokładnie raz.

Nie jest znany algorytm, który w czasie wielomianowym rozstrzyga, czy graf jest hamiltonowski.

Natomiast łatwo skonstruować algorytm wielomianowy, który dla danego grafu G i cyklu c, sprawdza czy c jest cyklem Hamiltona w G.

Algorytm weryfikacji — algorytm dwuparametrowy A. A weryfikuje x, jeśli istnieje y (świadectwo), takie, że A(x,y)=1. Język weryfikowany przez A: $L=\{x\in\{0,1\}^*:\exists_{y\in\{0,1\}^*}A(x,y)=1\}$

Klasa NP

L należy do klasy NP (nondeterministic polynomial time) jeśli istnieje dwuparametrowy wielomianowy algorytm A i stała c takie, że:

$$L=\{x\in\{0,1\}^*:\exists_{y\in\{0,1\}^*}\ |y|=O(|x|^c)\land A(x,y)=1\}$$
 Niech $\bar{L}=\{0,1\}^*\setminus L$. Wtedy co-NP= $\{L\subseteq\{0,1\}^*:\bar{L}\in \text{NP}\}$. Ponieważ $L\in P$ implikuje $\bar{L}\in P$ oraz P $\subseteq NP\cap Co-NP$. Zachodzi jedna z możliwości:

- ▶ P=NP=co-NP
- ▶ P⊊NP=co-NP
- P=NP∩co-NP oraz NP≠co-NP
- ▶ P⊊NP∩co-NP oraz NP≠co-NP

Redukowalność

Język L_1 jest *redukowalny w czasie wielomianowym* do L_2 $(L_1 \leq_P L_2)$, jeśli istnieje obliczalna w czasie wielomianowym funkcja $f: \{0,1\}^* \to \{0,1\}^*$ taka, że

$$(x \in L_1) \equiv (f(x) \in L_2)$$

f – funkcja redukcji, algorytm F liczący f – algorytm redukcji. Lemat. Jeśli $L_1 \leq_P L_2$ i $L_2 \in \mathbb{P}$, to $L_1 \in \mathbb{P}$.

D-d. Czas działania algorytmu liczącego f(x), a zatem i rozmiar wyniku jest wielomianowy wzgl. |x|. Stąd wielomianowy algorytm A_2 rozstrzygający o L_2 , uruchomiony na f(x) też działa w czasie wielomianowym wzgl. |x|. (Suma i złożenie wielomianów jest wielomianem.)

NP-zupełność

Język L jest NP-trudny, jeśli $L' \leq_P L$ dla każdego $L' \in$ NP. Język L jest NP-zupełny, jeśli L jest NP-trudny oraz $L \in$ NP.

NPC - klasa języków NP-zupełnych.

Tw. Jeśli jakiś problem NP-zupełny jest w P, to P=NP. Jeśli jakikolwiek problem z NP nie jest w P, to żaden problem NP-zupełny nie jest w P.

D-d. Jeśli $L \in P$ i $L \in NPC$, to dla każdego $L' \in NP$ zachodzi $L' \leq_P L$ i (z Lematu) $L' \in P$.

Niech $L \in \mathbb{NP} \setminus \mathbb{P}$ i $L' \in \mathbb{NPC} \cap \mathbb{P}$. Wtedy $L \leq_P L'$ i (z Lematu) $L \in \mathbb{P}$. Sprzeczność. \square

Problem SAT

Egzemplarz problemu SAT: formuła logiczna ϕ złożona ze zmiennych x_1, x_2, \ldots , i spójników logicznych \wedge , \vee , \neg , \rightarrow , \leftrightarrow . *Wartościowanie* – przypisanie każdej zmiennej wartości 0 albo 1.

Wartościowanie spełniające – takie wartościowanie, że ϕ przybiera wartość 1.

Jeśli dla ϕ istnieje wartościowanie spełniające, to ϕ jest spełnialna.

SAT= $\{<\phi>: \phi \text{ jest spełnialną formułą logiczną} \}$ Tw. SAT jest NP-zupełny.

D-d. Dowód – na wykładzie ze złożoności obliczeniowej. \square Lemat. Jeśli $L' \leq_P L$, dla pewnego $L' \in \mathbb{NPC}$, to L jest \mathbb{NP} -trudny. Jeśli dodatkowo $L \in \mathbb{NP}$, to $L \in \mathbb{NPC}$. \square

3-CNF-SAT

Formuła jest w koniunkcyjnej postaci normalnej (CNF) jeśli jest zapisana jako koniunkcja klauzul, z których każda jest alternatywą jednego lub więcej literałów (*literał* – zmienna lub negacja zmiennej).

Formuła jest w postaci 3-CNF, jeśli jest w postaci CNF i każda klauzula zawiera dokładnie 3 literały.

3-CNF-SAT jest zbiorem spełnialnych formuł w postaci 3-CNF.

Tw. 3-CNF-SAT jest problemem NP-zupełnym.

D-d. Dowód – na *Złożoności* Obliczeniowej. (Dla danego wartościowania łatwo zweryfikować w czasie wielomianowym, że spełnia formułę 3-CNF, czyli $3-\text{CNF}-\text{SAT} \in NP$. Ponadto pokazuje się jak w czasie wielomianowym przekształcić dowolną formułę logiczną w formułę 3-CNF, czyli – że $\text{SAT} \leq_P 3-\text{CNF}-\text{SAT}$.) \square

Problem kliki

Klika w grafie G = (V, E) – podzbiór $V' \subseteq V$ taki, że każda para wierzchołków z V' jest połączona krawędzią. CLIQUE= $\{ < G, k > : G - \text{graf zawierający klikę rozmiaru } k \}$ Tw. CLIQUE jest problemem NP-zupełnym. **D-d** CLIQUE \in NP — mając dane V' łatwo zweryfikować w czasie wielomianowym czy V' jest kliką w G i |V'|=k. 3-CNF-SAT $<_P$ CLIQUE: Niech $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ formuła 3-CNF, o k klauzulach, gdzie $C_r = (l_1^r \vee l_2^r \vee l_3^r)$. Konstruujemy graf G, gdzie każdej C_r odpowiada grupa trzech wierzchołków v_1^r , v_2^r , v_3^r . Wierzchołki v_i^r , v_i^s łączymy krawędzią jeśli:

- $r \neq s$ (v_i^r , v_j^s są w różnych grupach), oraz
- ullet l_i^r nie jest negacją l_j^s

Problem kliki

Jeśli G zawiera klikę V' rozmiaru k, to każda grupa C_r jest reprezentowana w V' przez jeden wierzchołek $v^r_{i_r}$. Żadne dwa wierzchołki w V' nie odpowiadają sprzecznym literałom. Stąd istnieje wartościowanie (przypisujące 1 literałom odp. wierzchołkom V'), takie że ϕ jest spełniona. Z drugiej strony: jeśli ϕ jest spełnialne, to wartościowanie spełniające ϕ przypisuje 1 k literałom w różnych grupach. Literały te są niesprzeczne, więc stanowią klikę rozmiaru k w G.

Konstrukcja G z ϕ – w czasie wielomianowym. \square

Pokrycie wierzchołkowe

Pokrycie wierzchołkowe grafu G=< V, E> – zbiór $V'\subseteq V$, taki, że jeśli $(u,v)\in E$, to $u\in V'$ lub $v\in V'$.

VERTEX-COVER= $\{ < G, k >: G - \text{graf zawierający pokrycie}$ wierzchołkowe rozmiaru $k \}$

Tw. VERTEX-COVER jest NP-zupełny.

D-d. $VERTEX-COVER \in NP$: Łatwo zweryfikować w czasie wielomianowym, że dany zbiór wierzchołków jest pokryciem danego grafu rozmiaru k.

CLIQUE \leq_P VERTEX-COVER: Redukcja w czasie wielomianowym: przekształcamy dane < G, k > na $< \bar{G}, |V| - k >$, gdzie $\bar{G} = (V, \bar{E})$ dopełnienie grafu G = (V, E) (t.j. $\bar{E} = V \times V \setminus E$).

Fakt: G ma klikę rozmiaru k wtedy i tylko wtedy gdy \bar{G} ma pokrycie wierzchołkowe rozmiaru |V|-k.

- - -

Pokrycie wierzchołkowe

D-d Faktu:

Niech G zawiera klikę V', |V'| = k. Niech $(u, v) \in E$, czyli $(u, v) \notin E$. Stąd $u \notin V'$ lub $v \notin V'$, czyli u lub v jest w $V \setminus V'$. Zatem $V \setminus V'$ jest pokryciem (rozmiaru |V| - k) w \bar{G} . Niech \bar{G} zawiera pokrycie V' rozmiaru |V| - k. Jeśli $(u, v) \in \bar{E}$, to u lub v jest w V'. Równoważnie: Jeśli $u \notin V'$ i $v \notin V'$, to $(u, v) \notin \bar{E}$. Inaczej: Jeśli $u \in V \setminus V'$ i $v \in V \setminus V'$, to $(u, v) \in E$. $V \setminus V'$ jest kliką (rozmiaru k) w G. \Box

Problem sumy podzbioru

SUBSET-SUM= $\{ \langle S, t \rangle : \text{ istnieje } S' \subseteq S \text{ taki, że} \}$ $t = \sum_{s \in S'} s$ Tw. SUBSET-SUM jest NP-zupełny. D-d. SUBSET-SUMENP: Można w czasie wielomianowym zweryfikować, że $S' \subseteq S$ oraz $t = \sum_{s \in S'} s$. VERTEX-COVER \leq_P SUBSET-SUM: Przekształcamy < G, k >w < S, t >. Niech G = (V, E), gdzie $V = \{v_0, \dots, v_{n-1}\}$ i $E = \{e_0, \dots, e_{m-1}\}$. Tworzymy $t = k4^m + \sum_{i=0}^{m-1} 2 \cdot 4^j$ i zbiór $S = \{x_0, \dots, x_{n-1}\} \cup \{y_0, \dots, y_{m-1}\}, \text{ gdzie } y_i = 4^j,$ $x_i = 4^m + \sum_{j=0}^{m-1} b_{ij} 4^j$, dla

$$b_{ij} = \begin{cases} 1, & \text{jeśli } v_i \text{ jest końcem } e_j \\ 0, & \text{w przeciwnym razie} \end{cases}$$

Problem sumy podzbioru

```
Fakt: \langle G, k \rangle \in \text{VERTEX-COVER} \equiv \langle S, t \rangle \in \text{SUBSET-SUM.} Załóżmy, że V' = \{v_{i_1}, \dots, v_{i_k}\} – pokrycie wierzchołkowe G i |V'| = k. Niech X' = \{x_{i_1}, \dots, x_{i_k}\}, Y' = \{y_j : \text{tylko jeden koniec } e_j \text{ należy do } V'\} i S' = X' \cup Y'. Wtedy: \sum_{s \in S'} s = t. (Dodajemy liczby z S' w systemie czwórkowym: każdej pozycji j, 0 \le j \le m-1 odpowiadają dwie jedynki:
```

- ullet obie w liczbach z X' jeśli oba końce e_j są w V'
- ullet jedna zX' i jedna zY' jeśli jeden koniec e_j jest wV'

Zatem na pozycjach $0,\ldots,m-1$ nie ma przeniesień i są same dwójki. Na pozycjach wyższych $\geq m$ jest zapisana liczba |X'|=|V'|=k. Zatem uzyskujemy zapis t z systemie czwórkowym.)

. . .

Problem sumy podzbioru

Załóżmy, że w S isnieje podzbiór S' o sumie t. Niech $S' = \{x_{i_1}, \dots, x_{i_r}\} \cup \{y_{j_1}, \dots, y_{j_p}\}$. Ponownie przyjmujemy system czwórkowy. Zauważmy, że dla $0 \le j \le m-1$ w S'mogą być co najwyżej 3 liczby z jedynką na pozycji j: dwie typu x_* odpowiadające końcom e_i i jedna y_i . Zatem na pozycjach $0, \ldots, m-1$ nie ma przeniesień. Ponieważ t ma w zapisie czwórkowym na pozycji j cyfry '2', więc w S' muszą być 2 liczby z jedynką na pozycji j z czego \geq jedna jest typu x_* . Zatem $\{v_{i_1}, \ldots, v_{i_r}\}$ jest pokryciem G. Ponieważ na pozycjach $\geq m$ liczby t jest ilość dodanych liczb typu x_* , więc r=k.

Problem cyklu Hamiltona

 $\label{eq:ham-cycle} \mbox{HAM-CYCLE} = \{ < G >: G \mbox{ jest grafem hamiltonowskim} \} \\ \mbox{Tw. HAM-CYCLE jest NP-zupełny}$

D-d. HAM-CYCLE \in NP: Dla danego grafu G i ciągu wierzchołków c można zweryfikować w czasie wielomianowym, że c jest cyklem Hamiltona grafu G. Pokażemy, że można zredukować w czasie wielomianowym 3-CNF-SAT do HAM-CYCLE.

Dla danego wyrażenia w postaci 3-CNF konstruujemy graf, który zawiera cykl Hamiltona wtedy i tylko wtedy gdy to wyrażenie jest spełnialne.

Gadżet A

Gadżet A dla między krawędziami.

Z resztą grafu są połączone tylko okrągłe wierzchołki.

Gadżet A

Połączenie jednej krawędzi wieloma gadżetami A z innymi krawędziami:

Gadżet B

Tylko górny i dolny wierzchołek połączony z resztą grafu. Cykl Hamiltona może zawierać dowolny podzbiór lewych (wolnych) krawędzi z wyjątkiem wszystkich trzech.

Gadżet B

Przykład: $(\bar{x} \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \land (x \lor y \lor \bar{z})$

W ogólnym przypadku:

- 1. Dla każdej zmiennej x_i tworzymy podgraf z dwóch wierzchołków, połączonych parą krawędzi (dolna krawędź etykieta x_i , górna krawędź etykieta \bar{x}_i). Łączymy je jak w przykładzie (w górnym rzędzie).
- 2. Dla każdej klauzuli C_j tworzymy gadżet B B_j . Łączymy je jak w przykładzie (w dolnym rzędzie).
 - Jeśli na k-tej pozycji C_j jest x_i , to wstawiamy gadżet A między k-tą wolną krawędzią gadżetu B_j a krawędzią o etykiecie x_i .
 - Jeśli na k-tej pozycji C_j jest \bar{x}_i , to wstawiamy gadżet A między k-tą wolną krawędzią gadżetu B_j a krawędzią o etykiecie \bar{x}_i .
- 3. Łączymy górny i dolny rząd jak w przykładzie.

Fakt: W tak skonstruowanym grafie jest cykl Hamiltona wtedy i tylko wtedy gdy formuła jest spełnialna. Jeśli w grafie jest cykl Hamiltona c, to wyznacza wartościowanie spełniające formułę: Jeśli w tym cyklu "użyta" była krawędź o etykiecie x_i to wartościujemy $x_i = 1$. W przeciwnym wypadku była "użyta" krawędź \bar{x}_i i wartościujemy $x_i = 0$. Weźmy gadżet B dla klauzuli C_i . Cykl c "omija" jedną z wolnych krawędzi B. c musi zatem "użyć" krawędzi połączonej z nią gadżetem A – czyli literał C_i odpowiadający tej wolnej krawędzi ma wartość 1 i C_i jest spełniona. To samo zachodzi dla pozostałych klauzul.

Jeśli istnieje wartościowanie s spełniające formułę, to wyznacza ono cykl Hamiltona: Jeśli w s $x_i = 1$ to wybieramy krawędź x_i . W przeciwnym wypadku – wybieramy \bar{x}_i . Ponieważ s – spełniające, więc dla każdej klauzuli C_i przynajmniej jedna z wolnych krawędzi jej gadżetu B jest połączona gadżetem A z wybraną krawędzią. Można zatem poprowadzić cykl Hamiltona, który "omija" te wolne krawędzie i "używa" wybrane. Redukcia formuły 3-CNF do grafu – w czasie wielomianowym (Gadżety stałych rozmiarów; po jednym gadżecie B na klauzulę i po jednym gadżecie A na literał klauzuli.)

Problem Komiwojażera

 $\text{TSP=}\{<G,c,k>:G=(V,V\times V) \text{ - graf pełny,} \\ c-\text{f-cja kosztu } V\times V\to Z,$

 $k \in \mathbb{Z}$, oraz w G istnieje cykl Hamiltona o koszcie $\leq k$ } Tw. TSP jest NP-zupełny.

D-d. TSPENP: Dla danego ciągu wierzchołków, łatwo sprawdzić w czasie wielomianowym czy jest cyklem Hamiltona o koszcie $\leq k$.

HAM-CYCLE \leq_P TSP: Dla danego grafu G=(V,E) tworzymy funkcję kosztu:

$$c(i,j) = \begin{cases} 0, & \mathsf{jeśli}\ (i,j) \in E \\ 1, & \mathsf{jeśli}\ (i,j) \not\in E \end{cases}$$

Fakt: W G jest cykl Hamiltona $\equiv \langle (V, V \times V), c, 0 \rangle \in \texttt{TSP}$.