ÁLGEBRA LINEAR

Primeiro Semestre de 2020

Atividade 4

1. (3,4 pontos) Considere os subespaços vetoriais de \mathbb{R}^4 , dados por

$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 2z\}$$

е

$$V = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - 3y = t\}.$$

- (a) (2,0 pontos) Encontre uma base de U e uma base de V.
- (b) (1,4 ponto) Determine $\dim(U \cap V)$ e $\dim(U + V)$.
- 2. (3,0 pontos) Seja o conjunto $S = \{1, 1+x, 1-x^2, 1-x-x^2-x^3\} \subset \mathcal{P}_3(\mathbb{R})$.
 - (a) (2,0 pontos) Mostre que S é uma base de $\mathcal{P}_3(\mathbb{R})$.
 - (b) (1,0 ponto) Encontre a matriz de coordenadas do polinômio $p(x) = x^3$ em relação à base \mathcal{S} .
- 3. (3,6 pontos) Seja $\mathcal{B}=\{u_1,\,\ldots,\,u_n\}$ uma base de um espaço vetorial V .
 - (a) (2,4 pontos) Mostre que o conjunto

$$\mathcal{C} = \{u_1, u_1 - u_2, u_1 - u_3, \dots, u_1 - u_n\}$$

também é uma base de V .

(b) (1,2 ponto) Se
$$u \in V$$
 e $[u]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$, encontre $[u]_{\mathcal{C}}$.