Name:

Tutorial time:

1. Find an equation for the line tangent to the graph of the given function f at the point (a, f(a)):

(a)
$$f(x) = (3x^2 + 2)\tan(x), a = 0.$$

(b)
$$f(x) = \frac{x^2 - 2x + 3}{x^2 + 4}$$
, $a = 1$.

(c)
$$f(x) = (x^4 + 2x)^5$$
, $a = -1$

- 2. Compute the derivative of $f(x) = \sin(2x)$:
 - (a) Using the Chain Rule.
 - (b) Using the identity $\sin(2x) = 2\sin(x)\cos(x)$.

Do your answers in parts (a) and (b) agree?

3. Given $f(x) = \tan(x)$, compute f''(x) (also denoted $\frac{d^2}{dx^2}(\tan(x))$).

 $4.\,$ Discuss with your class mates, but don't hand in:

Determine values of A and B such that the derivative of

$$f(x) = \begin{cases} Ax^2 + Bx + 2, & \text{if } x \le 2, \\ Bx^2 - A, & \text{if } x > 2 \end{cases}$$

is everywhere continuous. (Hint: note that if f'(x) exists, f(x) itself must be continuous.)