# Analisi A modulo 2

Martino Papa

January 18, 2022

# Contents

| 1        | Spa | zi                                                    | 2  |
|----------|-----|-------------------------------------------------------|----|
|          | 1.1 | Spazi Vettoriali                                      | 2  |
|          |     | 1.1.1 introduzione                                    | 2  |
|          |     | 1.1.2 spazi normati                                   | 2  |
|          |     | 1.1.3 spazi pre-hilbertiani                           | 3  |
|          | 1.2 | Spazi Metrici                                         | 4  |
|          |     | 1.2.1 introduzione                                    | 4  |
|          |     | 1.2.2 intorni sferici                                 | 5  |
|          | 1.3 | Elementi base di topologia                            | 5  |
|          |     | 1.3.1 chiusura di E                                   | 6  |
|          |     |                                                       |    |
| <b>2</b> | Suc | cessioni                                              | 8  |
|          | 2.1 | limite di una successione                             | 9  |
|          |     | 2.1.1 limiti sottosuccessioni                         | 9  |
| _        | _   |                                                       | _  |
| 3        |     | 1                                                     | .1 |
|          | 3.1 |                                                       |    |
|          |     | 3.1.1 limite                                          |    |
|          |     | 3.1.2 continuità                                      |    |
|          |     | 3.1.3 definizioni                                     |    |
|          | 3.2 | calcolo differenziale                                 |    |
|          |     | 3.2.1 differenziabilità                               |    |
|          |     | 3.2.2 teoremi in $\mathbb{R}^n$                       |    |
|          |     | 3.2.3 integrali                                       |    |
|          |     | 3.2.4 derivate di ordine superiore                    |    |
|          |     | 3.2.5 foruma di taylor in più variabili               |    |
|          |     | 3.2.6 forme quadratiche                               |    |
|          |     | 3.2.7 massimi e minimi                                |    |
|          | 3.3 | funzioni a valori vettoriali                          |    |
|          |     | 3.3.1 coordinate                                      |    |
|          |     | 3.3.2 differenziabilità per funzioni in più variabili |    |
|          |     | 3.3.3 rette e piani tangenti                          |    |
|          |     | 3.3.4 teorema di Dini                                 | 21 |
|          |     | 3.3.5 invertibilità                                   | 22 |
|          |     | 3.3.6 moltiplicatori di Lagrange                      | 22 |

# Chapter 1

# Spazi

## 1.1 Spazi Vettoriali

### 1.1.1 introduzione

Sia  $(\mathbb{K}, +, \cdot)$  un campo. Si chiama K-spazio vettoriale ad un insieme V munito di due operazioni:

• un'operazione di composizione interna

$$+: V \times V \longrightarrow V$$

tale che (V, +) sia un gruppo abeliano;

• un'operazione di composizione esterna, chiamata prodotto per scalari

$$ullet$$
:  $\mathbb{K} \times V \longrightarrow V$ 

tale che si soddisfano le seguenti proprietà:

- (D1) (distributiva)  $k(v_1 + v_2) = kv_1 + kv_2, \forall k \in \mathbb{K}, \forall v_1, v_2 \in V$ ;
- (D2) (distributiva)  $(k_1 + k_2)v = k_1v + k_2v, \forall k_1, \forall k_2 \in \mathbb{K}, \forall v \in V$ ;
- (P) (pseudo-associativa)  $k_1(k_2v) = (k_1k_2)v, \forall k_1, k_2 \in \mathbb{K}, \forall v \in V;$
- (U) (unità)  $1v = v, 1 \in \mathbb{K}, \forall v \in V$

### 1.1.2 spazi normati

### definizione di norma

sia V uno spazio  $\mathbb{R}$  – vettoriale (o  $\mathbb{C}$ -vettoriale), si dice **norma** su V una funzione

$$|| \bullet || : V \longrightarrow [0, +\infty[$$

che soddifa le seguenti poprietà:

- $||x|| \ge 0$ ,  $||x|| = 0 \Leftrightarrow x = 0$
- $||\lambda x|| = |\lambda| ||x||$
- $||x + y|| \le ||x|| + ||y||$

#### definizione spazio normato

Uno spazio vettoriale normato è uno spazio vettoriale munito di una  $\mathbf{norma}\left(V,\mid\mid\bullet\mid\mid\right)$ 

osservazione la norma di un vettore può essere pensata come la sua lunghezza (intensità)

#### esempi

•  $V = \mathbb{R}^n$  le norme principali sono:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$
  
 $||x||_{\infty} = \max |X_i|, i \in [1, n]$ 

•  $V = \mathbb{R}^2$  è detta norma euclidea:

$$||x||_2 = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$$

•  $V = \mathbb{C}^0([a,b])$ , lo spazio delle funzioni continue in [a,b]

$$||f||_2 = (\int_a^b f(x)^2 dx)^{1/2}$$
  
 $||f||_{\infty} = \max |f(x)|, x \in [a, b]^{-1}$ 

### definizione di palla

sia  $(V, ||\cdot||)$  uno spazio normato, una palla (aperta) di centro  $X_0$  e raggio r > 0 è l'insieme:

$$B_r(X_0) = \{ x \in Vt.c. ||x|| < r \}$$
(1.1)

 $B_r(X_0)$  è un **insieme convesso**  $\subset V$ , cioè:

$$\forall x, y \in B_r(X_0), \forall \lambda \in [0, 1] \ \lambda x + (1 - \lambda)y \in B_r(X_0) \Leftrightarrow \forall x, y \in B_r(X_0) \ [x, y] \subset B_r(X_0)$$

$$(1.2)$$

### norme equivalenti

sia V uno spazio vettoriale su  $\mathbb{R}(o\mathbb{C}$  con norme  $||x_1||, ||x_2||$ ; esse di dicono equivalenti se:

$$\exists \alpha, \beta \ t.c \ 0 < \alpha < \beta \land \alpha ||x||_1 \le ||x||_2 \le \beta ||x||_1 \tag{1.3}$$

### 1.1.3 spazi pre-hilbertiani

### definizione prodotto scalare

sia V uno spazio vettoriale su  $\mathbb R$  chiameremo **prodotto scalare** su V una funzione

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

che soddisfi  $\forall x, y, z \in V, \ \forall \lambda \in \mathbb{R}$ :

- $\bullet$   $\langle x, x \rangle \ge 0, \langle x, x \rangle = 0 \Leftrightarrow x = 0$
- $\bullet$   $\langle x, y \rangle = \langle y, x \rangle$
- $\bullet$  < x + y, z > = < x, z > + < y, z >
- $\bullet$   $< \lambda x, y >= \lambda < x, y >$

definizione si chiama spazio pre-hilbertiano uno spazio vettoriale dotato di prodotto scalare.

osservazione ogni spazio pre-hilbertiano diventa uno spazio normato definendo:

$$||x|| \doteq \sqrt{\langle x, x \rangle} \tag{1.4}$$

dimostrazione:  $||\mathbf{x}||$  deve soddisfare le prorpietà della norma:

- $||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$  (segue dalla definzizione di prodotto vettoriale)
- $||\lambda x|| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda|||x||$
- la disuguaglianza triangolare segue dal teorema successivo

<sup>&</sup>lt;sup>1</sup>il massimo esiste sempre per il teorema weierstrass

prodotto scalare euclideo  $\langle x_1,...,x_n,y_1,...,y_n \rangle = \sum_{i=1}^n x_i y_i$ 

**teorema** sia  $(V, <\cdot, \cdot>)$  uno spazio vettoriale su  $\mathbb R$  con prodotto scalare. Sia  $||x|| = \sqrt{< x, y>} \ \forall x \in V$   $\Rightarrow \forall x, y \in V$  vale

- $|\langle x, y \rangle| \le ||x|| ||y||$  (disuguaglianza di Cauchy-Schwartz)
- $||x + y|| \le ||x|| + ||y||$  (disuguaglianza di Minkowski)

dimostrazione disuguaglianza di Cauchy-Schwartz:

caso x=0 oppure y=0 (banali); supponiamo 
$$x \neq 0, \ \lambda \in \mathbb{R}$$
, segue:  $0 \leq <\lambda x - y \ , \ \lambda x - y > = \ \lambda^2 < x, x > -2\lambda < x, y > + < y, y > = \ \lambda^2 ||x||^2 - 2\lambda < x, y > + ||y||^2 \Rightarrow < x, y >^2 - ||x||^2 ||y||^2 \leq 0 \Rightarrow < x, y >^2 \leq ||x||^2 ||y||^2 \Rightarrow |< x, y > | \leq ||x|| \ ||y||$ 

dimostrazione disuguaglianza di Minkovski:

$$\forall x,y \in V \\ ||x+y||^2 = < x+y, x+y> = < x, x> +2 < x, y> + < y, y> = ||x||^2 +2 < x, y> +||y||^2 \\ (utilizzo\ Cauchy-Shwarz) \leq ||x||^2 +2||x||\ ||y|| +||y||^2 = (||x||+||y||)^2 \\ \Rightarrow ||x+y|| \leq ||x||+||y||$$

**angolo** dato V spazio vettoriale dotato di  $<\cdot$ ,  $\cdot>$  possiamo introdurre l'angolo  $\theta$  compreso tra due vettori non nulli:

$$\cos \theta = \frac{\langle x, y \rangle}{||x|| ||y||} \operatorname{con} 0 \le \theta \le \pi$$
(1.5)

vettori ortogonali due vettori x, y si dicono ortogonali se  $\langle x, y \rangle = 0$  infatti:  $\cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$ 

teorema di pitagora

sia 
$$V = \mathbb{R}^2$$
,  $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ ,  $\langle x, y \rangle = 0 \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$ 

base canonica 
$$\langle e_i, e_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$
  $\delta_{ij}$  è detto simbolo di Kronecker

### identità del parallelogramma

sia  $V, \langle \cdot, \cdot \rangle$  uno spazio vettoriale (reale),  $||x|| = \sqrt{\langle x, x \rangle} \Rightarrow$ 

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
(1.6)

dimostrazione:

$$< x + y, x + y > + < x - y, x - y >$$
 
$$= < x + x > +2 < x, y > + < y, y > + < x, x > -2 < x, y > + < y, y >$$
 
$$= 2 < x, x > +2 < y, y > = 2||x||^2 + 2||y||^2$$

### 1.2 Spazi Metrici

### 1.2.1 introduzione

distanza sia X un insieme qualunque, chiamaremo distanza (o metrica) su X la funzione

$$d: X \times X \to [0, +\infty] \tag{1.7}$$

che soddisfa  $\forall x, y, z \in X$ :

• 
$$d(x,y) \ge 0, d(x,y) = 0 \Leftrightarrow x = y$$
 (positività)

• 
$$d(x,y) = d(y,x)$$
 (simmetria)

• 
$$d(x,y) \le d(x,z) + d(z,y)$$
 (disuguaglianza triangolare)

definizione se d è una distanza sull'insieme  $X \Rightarrow (X,d)$  si dice spazio metrico

**proprietà in**  $\mathbb{R}$  le distanze in  $\mathbb{R}$  (o  $\mathbb{C}$ ) soddisfano  $\forall x, y, z \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}$  due ulteriori proprietà:

• d(x+z, y+z) = d(x, y)

(invarianza per traslazione)

•  $d(\lambda x, \lambda y) = \lambda d(x, y)$ 

(omogeneità)

osservazione se  $(X, ||\cdot||)$  è uno spazio normato  $\Rightarrow d(x, y) \doteq ||x - y||$ 

sottospazio metrico  $\Rightarrow \forall X_1 \subset X(X_1, d)$  è sottospazio metrico

metrica discreta 
$$d(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$$

**metriche equivalenti** sia X un insieme  $\neq \emptyset$ ,  $d_1, d_2$  due metriche assegnate in X. Diremo che due metriche sono equivalenti se:

$$\exists 0 < \alpha < \beta \text{ t.c. } \alpha d_1(x,y) \leq d_2(x,y) \leq \beta d_1(x,y) \ \forall x,y \in X$$

### 1.2.2 intorni sferici

sia (X, d) uno spazio metrico. Fissando  $x_0 \in X$  e r > 0 si dice intorno sferico (**palla aperta**) di centro  $x_0$  e raggio r l'insieme:

$$B_{r,d}(x_0) = \{ x \in X \mid d(x, x_0) < r \}$$
(1.8)

sarà invece definita palla chiusa l'insieme:

$$\overline{B}_{r,d}(x_0) = \{ x \in X \mid d(x, x_0) \le r \}$$
(1.9)

più in generale è definito intorno di  $x_0$  ogni sottoinsieme X contenente un intorno sferico di centro  $x_0$ 

### convergenza

sia (X,d) uno spazio metrico,  $(X_n)_n \subset X$  diremo che  $(X_n)_n$  converge ad  $x \in X \Leftrightarrow$ 

$$\lim_{n \to +\infty} d(x_n, x) = 0 \tag{1.10}$$

ovvero:

- $\forall \varepsilon > 0 \ \exists \overline{n}_{\varepsilon} \in \mathbb{N} \mid \forall n \geq \overline{n}_{\varepsilon}, \ d(x_n, x) < \varepsilon$
- $\forall \varepsilon > 0 \ \exists \overline{n}_{\varepsilon} \in \mathbb{N} \mid \forall n \geq \overline{n}_{\varepsilon}, \ x_n \in B_{\varepsilon}(x)$
- $\forall$  intorno U di  $X \exists \overline{n} \in \mathbb{N} \mid \forall n \geq \overline{n} \ x_n \in U$

in particolare se una successione  $(X_n)_n \subset \mathbb{R}^n$  converge ad  $x \in \mathbb{R}$  scriveremo  $\lim_{x \to +\infty} x_n = n$ 

### 1.3 Elementi base di topologia

sia  $E \subseteq \mathbb{R}^n$ ,  $E^c = \mathbb{R}^n \setminus E$  il suo complementare,  $\overline{x_0} \in \mathbb{R}^n$ 

- il punto  $\overline{x_0}$  si dice interno ad  $E \Leftrightarrow \exists \ r > 0 \mid B_r(\overline{x_0}) \subseteq E$ .  $\stackrel{\circ}{E}$  è detto insieme dei punti interni
- il punto  $\overline{x_0}$  si dice **esterno** ad  $E \Leftrightarrow x_0$  è interno a  $E^c$
- il punto  $\overline{x_0}$  si dice **punto di frontiera** per  $E \Leftrightarrow \forall r > 0$  in  $B_r(\overline{x_0})$  cadono sia punti appartenenti ad E che punti del suo complementare  $E^c$ .  $\delta E$  è detto **insieme dei punti di frontiera**
- il punto  $\overline{x_0}$  si dice **punto di accumulazione** per  $E \Leftrightarrow \forall r > 0$  in  $B_r(\overline{x_0})$  cadono punti di  $E \neq x_0$
- il punto  $\overline{x_0}$  si dice **punto isolato** per  $E \Leftrightarrow \text{non } \hat{e}$  punto di accumulazione per  $E \Leftrightarrow \exists B_r(\overline{x_0}) \mid E \cap B_r(\overline{x_0}) = \{\overline{x_0}\}$

osservazione  $\overline{x_0}$  punto interno  $\Rightarrow \overline{x_0} \in E$ ,  $\overline{x_0}$  punto esterno  $\Rightarrow \overline{x_0} \notin E$ 

proprietà generali

- $(\mathring{E})^{\circ} = \mathring{E}$
- $\delta E = \delta(E^c)$
- $\mathbb{R}^n = \mathring{E} \cup \delta E \cup (\mathring{E}^c)$
- i punti  $\in \mathring{E}$  sono di accumulazione per E, quelli di  $E^c$  non lo sono
- se  $x_0 \in \delta E \setminus E \Rightarrow x_0$  è punto di accumulazione per E

**insieme aperto** sia  $E \subseteq \mathbb{R}^n$  E è definito aperto  $\Leftrightarrow \forall \overline{x} \in E, \ \overline{x}$  è un punto interno ad  $E \Leftrightarrow E = \mathring{E}$ 

insieme chiuso sia  $E \subseteq \mathbb{R}^n$  E è definito chiuso  $\Leftrightarrow E^c$  è aperto

### teorema di unione ed interezione di aperti e chiusi

- L'unione qualunque di aperti è aperta; l'intersezione finita di aperti è aperta
- l'intersezione qualunque di chiusi è chiusa; l'unione finita di chiusi è chiusa

teorema (2) sia  $E \subseteq \mathbb{R}^m$  E è chiuso  $\Leftrightarrow \forall$  successione  $(x_n)_n \subseteq E$  convergente ad un punto  $\overline{x} \in \mathbb{R}^m$ ,  $\overline{x} \in E^2$ 

teorema (3) sia  $E \subseteq \mathbb{R}^m$  le seguenti soluzioni sono equivalenti:

- E è chiuso
- $\delta E \subseteq E$
- ogni punto di accumulazione di E appartiene ad E

### 1.3.1 chiusura di E

sia  $E\subseteq\mathbb{R}^n$  è denotata  $\overline{E}$  la chiusura di E definita:  $\overline{E}=E\cup\delta E$ 

proprietà della chiusura <sup>3</sup>

- $\mathring{E} \subseteq E \subseteq \overline{E}$
- $\overline{E} = \mathring{E} \cup \delta E$
- $\bullet$   $\overline{E}$  è l'insieme dei punti  $\underline{x_0}$  t.c. in ogni intorno di  $\underline{x_0}$  cadono punti di E
- $\overline{E}$  è chiuso
- E è chiuso  $\Leftrightarrow E = \overline{E}$
- $E \subseteq F \Rightarrow \overline{E} \subseteq \overline{F}$  (F un insieme qualunque)

teorema aperti (o chiusi)  $^4$  sia  $f: \mathbb{R}^n \to \mathbb{R}^m$  (equivalentemente per chiusi)

f è continua in  $\mathbb{R}^n \Leftrightarrow$  la controimmagine di ogni aperto di  $\mathbb{R}^m$  è un aperto di  $\mathbb{R}^n$  (1.11)

**proposizione** sia  $E \subseteq \mathbb{R}^n$ 

- $\overline{E}$  è il più piccolo chiuso contenente E.  $(E \subseteq F) \land (F \text{ chiuso}) \Rightarrow \overline{E} \subseteq F$
- $\overline{E} = \bigcap_{E \subseteq C} C$  (C chiuso)

<sup>&</sup>lt;sup>2</sup>dimostrazione nella Lezione 3 (pag 30)

<sup>&</sup>lt;sup>3</sup>dimostrazioni nella lezione 4 (pag 33)

<sup>&</sup>lt;sup>4</sup>dimostrazione nella lezione 9

**insieme denso** sia  $A\subseteq E\subseteq \mathbb{R}^n,$  se  $\overline{A}=E$  diremo che A è denso in E

**insieme limitato** sia (X,d) uno spazio metrico.  $E\subseteq X$  si dice limitato  $\Leftrightarrow \exists \ x_0\in X, r>0 \mid E\subseteq B_r(x_0)$ NB: se  $E\subseteq B_r(x_0) \Rightarrow \forall x\in X \ E\subseteq B_{\overline{r}}(x)$ , scegliendo  $\overline{r}=r+d(x_0,x)$ 

### $\operatorname{diametro}$

- se E non limitato  $\Rightarrow diam(E) = +\infty$
- se E limitato  $\Rightarrow diam(E) = sup\{d(x,y) \mid x,y \in E\}$

## Chapter 2

## Successioni

**definizione** una successione dato un insieme  $\mathbb{A}$  è una funzione  $f: \mathbb{N} \to \mathbb{A}$ ,  $a_n \doteq f(n)$ 

**convergenza** sia (X, d) uno spazio metrico,  $(x_n)$  una successioni a valori in X; essa si dirà convergente ad X se vale una delle seguenti affermazioni tra loro equivalenti

- 1. fissato un qualunque intorno V di x, per  $n \to +\infty$ ,  $x_n$  appartiene definitivamente a V
- 2.  $\forall \epsilon > 0$ , esiste un intero positivo N tale per cui  $n > N \Rightarrow d(x_n, x) < \epsilon$
- 3.  $\lim_{n \to +\infty} d(x_n, x) = 0$

sottosuccesione sia  $(a_n)_n \subset \mathbb{R}$  una successione, si dice sottosuccessione di  $(a_n)_n$  una successione ottenuta per composizione

$$: \mathbb{N} \xrightarrow{\sigma} \mathbb{N} \xrightarrow{a} \mathbb{R}, \ (\sigma(n) \text{ strettamente crescente})$$
 (2.1)

teorema Bolzano-Weierstrass ogni successione limitata in  $\mathbb{R}^m$  ammette una sottosuccessione convergente dimostrazione:

- 1. supponiamo m=1,  $(x_n)_n$  assuma infiniti valori.  $(x_n)_n$  limitata  $\Rightarrow \exists a_0, b_0 \in \mathbb{R} \mid x_n \in [a_0, b_0] \ \forall n$  Sia  $c = \frac{a_0 + b_0}{2}$  pt. medio di  $[a_0, b_0]$ , siccome  $[a_0, b_0]$  contiene tutti gli elementi di  $x_n$   $\Rightarrow [a_0, c] \lor [c, b_0]$  contiene degli  $x_n$  per infiniti indici n (supponiamo  $[a_1, b_1]$ )  $\Rightarrow b_1 a_1 = \frac{b_0 a_0}{2}$  Procedendo in questo modo costruiamo una successione di intervalli contenuti ciascuno nel precedente:  $[a_{k+1}, b_{k+1}] \subset [a_k, b_k] \subset \ldots \subset [a_0, b_0], \ b_k a_k = \frac{b_0 a_0}{2^k} \ \forall k \geq 0$   $\Rightarrow$  per costruzione abbiamo  $a_0 \leq a_1 \leq \ldots \leq a_{k+1} < b_{k+1} \leq b_K \leq \ldots \leq b_0$   $\Rightarrow a_k, b_k$  convergono perchè monotone e limitate.  $\lim_{k \to +\infty} a_k = \sup a_k = l_1$ ,  $\lim_{k \to +\infty} b_k = \inf b_k = l_2$   $0 \leq l_2 l_1 \leq \frac{b_0 a_0}{2^{k+1}}, \frac{b_0 a_0}{2^{k+1}} \stackrel{+\infty}{\to} 0 \Rightarrow l_2 = l_1 \doteq l$  scegliamo  $(x_{n_k})_k \mid x_{n_k} \in [a_k, b_k] \ k \geq 0, \ n_0 = 0 \ \text{e} \ x_{n_0} \in [a_0, b_0], \text{ siccome} \ [a_1, b_1] \text{ contiene termini} \ x_n \text{ per infiniti indici di } n \Rightarrow \exists n_1 > n_0 \mid x_{n_1} \in [a_1, b_1], \text{ procedendo per induzione otteniamo} 0 = n_0 < n_1 < n_2 < \ldots < n_k < \ldots \mid x_{n_k} \in [a_k, b_K] \ \forall k \in \mathbb{N}, \text{ quindi per il teorema del confronto anche} \ (x_{n_k}) \text{ converge allo stesso limite } l.$
- 2. supponiamo m=1,  $\exists \gamma \in \mathbb{R} \mid a_n = \gamma$  per infiniti valori dell'indice n in questo caso basta estrarre la successione convergente a  $\gamma$ .
- 3. supponiamo m>1,  $(x_n)_n\subset\mathbb{R}^n$  limitata e costituita da punti distinti (altrimenti come nel passo 2)  $(x_n)_n$  limitata  $\Rightarrow (x_n^1)_n, (x_n^2)_n, ..., (x_n^m)_n$  sono limitate. (per il caso m=1)  $\exists (\underline{x}_{n_k})_k\subseteq (\underline{x}_n)_n$   $t.c. (\underline{x}_{n_k}^1)_k$  converge ad un limite  $x^1\in\mathbb{R}$ , continuando ad estrarre ulteriori successioni avremo una sottosuccessione di tutte le precedit (indichiamola  $x_{n_k}$ )  $x_{n_k}$  t.c.  $x_{n_k}^1\to x^1, x_{n_k}^2\to x^2, ..., x_{n_k}^m\to x^m$  in  $\mathbb{R}$  posto  $\underline{x}=(x^1,...,x^m)$  la successione  $(x_{n_k})_k$  è una sottosuccessione di  $(x_n)_n$  e converge a  $\underline{x}\in\mathbb{R}^m$

 $f corollario 1 f ogni sottoinsieme limitato e infinito in <math>\Bbb R^m$  ammette almeno un punto di accumulazione

corollario 2 i punti di accumulazione di un insieme  $E \subseteq \mathbb{R}^m$  sono i limiti delle successioni di E che non sono definitivamente costanti

**corollario 3** sia  $(\underline{x}_n)_n$  è una successione contenuta in un "plurirettangolo" chiuso e limitato  $[a_1,b_1] \times [a_2,b_2] \times ... \times [a_m,b_m]$ , allora esiste una sottosuccessione  $(\underline{x}_{n_k})_k$  convergente ad un certo limite  $\overline{x} \in \mathbb{R}^m$ 

**insieme compatto** <sup>1</sup> Un insieme  $K \subseteq \mathbb{R}^n$  tale che ogni successione in K abbia una sottosuccessione convergente ad un elemento di K si dice sequenzialmente compatto (o compatto per successioni)

teorema di Heine-Borel  $^{-2}$  sia  $E\subseteq\mathbb{R}^m,$  le seguenti condizioni sono equivalenti

E compatto 
$$\Leftrightarrow$$
 E è chiuso e limitato (2.2)

osservazione gli insieme chiusi e limitati possiedono minimo e massimo in  $\mathbb{R}$ 

successione di Cauchy sia  $(\underline{x}_n)_n$  una successione a valori in  $\mathbb{R}^N$ , diciamo che  $(\underline{x}_n)_n$  è una successione di Cauchy se

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} \ t.c. \ \forall m, n > \overline{n} \Rightarrow ||\underline{x}_n - \underline{x}_m|| < \epsilon$$
 (2.3)

criterio di convergenza di Cauchy una successione  $(x_n) \subset \mathbb{R}$  è convergente  $\Leftrightarrow$  è di Cauchy

### 2.1 limite di una successione

sia  $(x_n)_n \subset \mathbb{R}$ , definiamo il massimo limite ed il minimo limite di  $(x_n)_n$ 

- $l_+ \doteq \lim_{n \to +\infty} \sup_{x_n} \doteq \inf_{n \in \mathbb{N}} \sup_{k > n} x_k$
- $l_- \doteq \lim_{n \to +\infty} \inf x_n \doteq \sup_{n \in \mathbb{N}} \inf_{k \ge n} x_k$

#### corollario 1

- $(x_n)_n$  illimitato superiorimente  $\Rightarrow l_+ < +\infty$
- $(x_n)_n$  illimitato inferiormente  $\Rightarrow l_- > -\infty$

**corollario 2** sia  $(x_n)_n \subset \mathbb{R}$  limitato  $\Rightarrow$  esistono finiti  $l_-, l_+$  e  $l_- \leq l_+$ 

**proposizione** sia  $(x_n)_n \subset \mathbb{R}$  e sia  $l_+ = \inf_{n \in \mathbb{N}} \sup_{k \ge n} x_k \in \mathbb{R}$ 

- $\forall \epsilon > 0 \ \exists n_{\epsilon} \ t.c. \ x_n < l_+ + \epsilon \ \forall n \geq n_{\epsilon}$
- $\forall \epsilon > 0$  esistono infiniti indici in n t.c.  $x_n > l_+ \epsilon$

sia  $(x_n)_n \subset \mathbb{R}$  e sia  $l_- = \sup n \in \mathbb{N} \inf_{k \geq n} x_k \in \mathbb{R}$ 

- $\forall \epsilon > 0 \ \exists n_{\epsilon} \ t.c. \ x_n > l_{-} \epsilon \ \forall n \geq n_{\epsilon}$
- $\forall \epsilon > 0$  esistono infiniti indici in n t.c.  $x_n < l_- + \epsilon$

osservazione sul massimo limite sia  $(x_n)_n \subset \mathbb{R}$   $L \in \mathbb{R}$  sarà il massimo limite di  $(x_n)_n$  se

- $\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ t.c. \ x_n < L + \epsilon \ \forall n \ge n_{\epsilon}$
- $\forall \epsilon > 0$  esistono infiniti indici di n tale che  $x_n > L \epsilon$

### 2.1.1 limiti sottosuccessioni

teorema 1 sia  $(x_{n_j})_j$  una sottosuccesione di  $(x_n)_n \subset \mathbb{R}$  che converge ad un limite  $l \in \mathbb{R}$  o  $\pm \infty$ ) allora

$$\liminf_{n \to +\infty} x_n \le \lim_{j \to +\infty} x_{n_j} \le \limsup_{n \to +\infty} x_n \tag{2.4}$$

teorema 2 (analogo per  $\limsup_{n\to +\infty} x_n$ )Esiste una sottosuccessione  $(x_{n_j})_j$  di  $(x_n)_n$  che ammette limite e t.c.

$$\lim_{j \to +\infty} x_{n_j} = \liminf_{n \to +\infty} x_n \tag{2.5}$$

<sup>&</sup>lt;sup>1</sup>pagina 128 analisi 1

<sup>&</sup>lt;sup>2</sup>dimostrazioni nella Lezione 5

**corollario 1**  $\lim_{n\to+\infty} x_n$  e  $\lim_{n\to+\infty} x_n$  sono rispettivamente il più piccolo ed il più grande limite sottosuccessionale di  $(x_n)_n$  in  $\overline{\mathbb{R}}$ 

teorema 3 la successione  $(x_n)_n$  ammette limite  $l \in \overline{\mathbb{R}}$  se e solo se

$$\liminf_{n \to +\infty} x_n = \limsup_{n \to +\infty} x_n = l$$
(2.6)

classe limite di una successione  $(x_n)_n \subset \mathbb{R}$  è il sottoinsieme di  $\overline{\mathbb{R}}$  di tutti i suoi limiti sottosuccessionali

**lemma** sia 
$$(x_n)_n \subset \mathbb{R}$$
 limitata  $\Rightarrow \limsup_{n \to +\infty} x_n = \inf(E)$  (analogo per  $\liminf_{n \to +\infty} x_n$ )

# Chapter 3

# Funzioni reali in più variabili

## 3.1 introduzione

$$f: A \subseteq \mathbb{R}^n \to \mathbb{R} \tag{3.1}$$

**grafico di f** sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ 

$$\operatorname{graf}(f) = G_f = \{(\underline{x}, \underline{z}) \in \mathbb{R}^{n+1} \mid \underline{x} \in A, \underline{z} \in f(x)\}$$
(3.2)

esempi



•  $f(x,y) = xy * e^{(-x^2 - y^2)}$ 



 $f(x,y) = x^2 + y^2$ 



•  $f(x,y) = x^2 - y^2$ 

**curve di livello**  $E_c = \{(x, y) \in \text{dom}(f) \mid f(x, y) = c\}, c \in \mathbb{R}$ 

### 3.1.1 limite

sia  $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m,\ x_0\in\mathbb{R}^n$  punto di accumulazione per A, sia  $l\in\mathbb{R}^m.$  Diremo che l è limite di f(x), per  $x\to x_0$  e scriviamo

$$\lim_{x \to x_0} f(x) = l \tag{3.3}$$

se si verificano queste due condizioni equivalenti:

- $\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon, x_0) > 0 \ t.c \ \forall x \in A, \ 0 < ||x x_0|| < \delta \Rightarrow ||f(x) l|| < \epsilon$
- $\forall$  intorno V di  $l \exists$  un intorno U di  $x_0$  t.c.  $\forall x \in (U \cap A) \setminus \{x_0\} \Rightarrow f(x) \in V$

#### proprietà

- il limite di una funzione (se esiste) è unico
- $\lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha l_f + \beta l_g, \ (\alpha, \beta \in \mathbb{R})$

### 3.1.2 continuità

<sup>1</sup> sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ , sia  $x_0 \in A$ 

- se  $x_0$  è un punto isolato allora f si dice continua in  $x_0$
- $\bullet\,$ se  $x_0$  è punto di accumulazione per A allora f<br/> si dice continua in  $x_0$   $\Leftrightarrow$

$$\lim_{x \to x_0} f(x) = f(x_0) \tag{3.4}$$

• f si dice continua in  $A \Leftrightarrow$ è continua in tutti i punti di A

teorema di composizione sia  $f:A\subseteq\mathbb{R}^n\to\mathbb{R}^m,\ x_0$  punto di accumulazione per A,  $g:\mathbb{R}^m\to\mathbb{R}^s,$   $\lim_{x\to x_0}f(x)=l$  e g continua in  $l\Rightarrow$ 

$$\lim_{x \to x_0} g(f(x)) = g(l) \tag{3.5}$$

### corollario

- La somma di funzioni continue è una funzione continua
- La composizione di funzioni continue è una funzione continua

limite delle restrizioni sia  $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ , sia  $T \subset A$  avente  $x_0$  come punto di accumulazione allora

$$\lim_{x \to x_0} f(x) = l \Rightarrow \lim_{x \to x_0} f|_T(x) = l \tag{3.6}$$

<sup>&</sup>lt;sup>1</sup>pagina 199 libro analisi 1

teorema ponte  $^2$ sia  $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ ,  $x_0$  punto di accumulazione per A allora

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow (\forall \text{ successione } (x_h)_h \subset A \setminus \{x_0\}, x_h \to x_0 \Rightarrow \lim_{h \to +\infty} f(x_h) = l)$$
 (3.7)

**corollario** sia  $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ , sia  $x_0 \in A$  allora

f è continua in 
$$x_0 \Leftrightarrow \forall$$
 successione  $(x_h) \subseteq A, x_h \to x_0$  si ha  $\lim_{x \to +\infty} f(x_h) = f(x_0)$  (3.8)

teoremi continuità sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$  continua in  $x_0 \in A$ , avendo osservato

- f è continua in  $x_0 \Leftrightarrow f_i : A \subseteq \mathbb{R}^n \to \mathbb{R}$  è continua in  $x_0 \ \forall i=1,...,m$
- le proiezioni  $\pi_i:A\subseteq\mathbb{R}^n\to\mathbb{R}$   $\pi_i(x)=x_i$  sono funzioni continue
- la composizione di funzioni continue è una funzione continua

dalle prorprietà del limite per funzioni  $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$  seguono

• teorema di permanenza del segno sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$  continua,  $x_0 \in A, f(x_0) > 0$  allora

$$\exists \text{un intorno } U \text{ di } x_0 \mid f(x) > 0 \ \forall x \in U$$
 (3.9)

• continuità delle operazioni algebriche siano  $f,g:A\subseteq\mathbb{R}^n\to\mathbb{R}$  continue in  $x_0\in A$  allora anche

$$f \pm g, \ fg, \ \frac{f}{g} \ (g(x_0) \neq 0), \ |f|, \ min\{f, g\}, \ max\{f, g\} \ sono \ continue \ in \ x_0$$
 (3.10)

### 3.1.3 definizioni

**intorno** sia  $E \subseteq \mathbb{R}^n$ ,  $\underline{x_0} \in E$ , U intorno di  $\underline{x_0}$  in  $\mathbb{R}^n$ , chiameremo intorno di  $x_0$  in E ogni  $V \subseteq E$  t.c.

$$V = E \cap U \tag{3.11}$$

**segmento** dati  $\underline{x},y\in\mathbb{R}^n$  ricordiamo che il segmento  $[\underline{x},y]$  in  $\mathbb{R}^n$  di esterni  $\underline{x}$  e y è l'insieme

$$[\underline{x}, y] = \{\lambda y + (1 - \lambda)\underline{x} \mid \lambda \in [0, 1]\} = \{\underline{x} + \lambda(y - \underline{x}) \mid \lambda \in [0, 1]\}$$

$$(3.12)$$

**poligonale** siano  $\underline{x}^1,...,\underline{x}^k,\ k\geq 2$  punti di  $\mathbb{R}^n$  con  $\underline{x}^i\neq\underline{x}^{i+1}\ \forall i=1,...,k-1$ , chiameremo poligonale di  $\mathbb{R}^n$  con vertici  $\underline{x}^1,...,\underline{x}^k$  l'unione dei segmenti  $[\underline{x}^i,\underline{x}^{i+1}]$  per i=1,...,k-1

$$\bigcup_{i=1}^{k-1} [\underline{x}^i, \underline{x}^{i+1}] \tag{3.13}$$

definizione: i punti  $x^1, x^k$  sono detti estremi

insieme connesso per poligonali sia  $A \subseteq \mathbb{R}^n$ , diremo che *A connesso per poligonali*  $\Leftrightarrow$  per ogni coppia di punti di *A* esiste una poligonale di estremi nei due punti tutta contenuta in A

osservazione A convesso  $\Rightarrow A$  connessso per poligonali

teorema dell'esistenza dei valori intermedi  $^3$  sia  $A \subseteq \mathbb{R}^n$  un insieme connesso per poligonali,  $f:A \to \mathbb{R}$  una funzione continuta su  $A \Rightarrow f$  assume tutti i valori compresi tra  $\inf_A f$  e  $\sup_A f$  ovvero

$$\forall l \in \mathbb{R}, \inf_{A} f < l < \sup_{A} f \; \exists \underline{x} \in A \mid f(\underline{x}) = l$$
(3.14)

**teorema** sia  $K \subseteq \mathbb{R}^n$  compatto,  $f: K \to \mathbb{R}^m$ , continua,  $m \ge 1 \Rightarrow f(K)$  è compatto

teorema di weierstrass sia  $K \subseteq \mathbb{R}^n$  compatto,  $f: K \to \mathbb{R}$  continua  $\Rightarrow f$  ammette massimo e minimo ovvero

$$\exists x_0, x_1 \in K \mid f(x_0) = \min_{x \in K} f(x), \ f(x_1) = \max_{x \in K} f(x)$$
(3.15)

 $<sup>^2</sup>$ dimostrazione nella lezione 8

 $<sup>^3</sup>$ dimostrazione lezione 9 pagina 100

teorema continuità sia  $K \subseteq \mathbb{R}^n$  compatto,  $f: K \to \mathbb{R}^m$  iniettiva, continua allora

$$f^{-1}: f(K) \to K$$
 è continua (3.16)

uniformemente continua  $^4$  sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ , f si dice uniformemente continua in A  $\Leftrightarrow$ 

$$\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 \ | \ \forall x, x_0 \in A, ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \epsilon \tag{3.17}$$

teorema limitatezza sia  $f:A\subseteq\mathbb{R}\to\mathbb{R}, A$  limitato e f uniformemente continua  $\Rightarrow f$  è limitata

teorema di Heine-Cantor sia  $K \subseteq \mathbb{R}^n$  compatto,  $f: K \to \mathbb{R}^m$  continua  $\Rightarrow$ 

$$f 
ilde{e} uniformamente continua su K$$
 (3.18)

### 3.2 calcolo differenziale

**direzione** si chiama direzione in  $\mathbb{R}^n$  un vettore  $\underline{v} \in \mathbb{R}^n$  t.c.  $||\underline{v}|| = 1$  (versore)

rapporto incrementale di f nella direzione v $^{-5}$ 

$$\frac{f(x+tv) - f(x)}{t} = \frac{g_v(t) - g_v(0)}{t} \tag{3.19}$$

posto  $g_v(t) \doteq f(x+tv)$  definita in un intorno di 0

derivata nella direzione v se esiste finito il

$$\lim_{t \to 0} \frac{f(x+tv) - f(x)}{t} \tag{3.20}$$

si chiama derivata nella direzione v di f nel punto x e si denota  $D_v f(x)$ 

**corollario** sia  $g_v(t)$  come nella definizione (3.19)

$$D_v f(x) = g_v'(0) (3.21)$$

**definizione** sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ ,  $x \in A$ , se esiste la derivata nella direzione  $e_i$  di f in  $x \Rightarrow$  tale derivata si dice derivata parziale rispetto ad  $x_i$  di f in x e si denota

$$D_{e_i}f(x), f_{x_i}(x), \frac{\partial f(x)}{\partial x_i}$$
 (3.22)

se esistono tutte le n derivate parziali di f in  $x \Rightarrow f$  è derivabile in x

**gradiente** se una funzione  $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$  ammette n derivate parziali in un punto  $x\in A$  è definito un vettore chiamato **gradiente di** f in x le cui componenti sono le n derivate parziali

$$\nabla f(x) \doteq (f_{x_1}(x), ..., f_{x_n}(x)) \tag{3.23}$$

proprietà

$$\nabla(\alpha f + \beta g)(x_0) = \alpha \nabla f(x_0) + \beta \nabla g(x_0)$$
(3.24)

$$\nabla(fg)(x_0) = g(x_0)\nabla f(x_0) + f(x_0)\nabla g(x_0)$$
(3.25)

$$\nabla(\frac{f}{g})(x_0) = \frac{g(x_0)\nabla f(x_0) - f(x_0)\nabla g(x_0)}{g^2(x_0)} \text{ se } g(x_0) \neq 0$$
(3.26)

<sup>&</sup>lt;sup>4</sup>analisi 1 pag 207

<sup>&</sup>lt;sup>5</sup>pagina 313 analisi 1

### regolarità

- n=1 f derivabile  $\Rightarrow$ 
  - -f continua
  - in un intorno di  $x_0$  il grafico di f è ben approssimato da una retta tangente:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0), \ x \to x_0$$
(3.27)

•  $n \ge 2$  l'esistenza di tutte le derivate parziali o perfino di tutte le derivate direzionali in  $x_0$  non implica la continuità di f in  $x_0$ 

è necessario introdurre il concetto di differenziabilità

### 3.2.1 differenziabilità

<sup>6</sup> sia  $f:A\subseteq\mathbb{R}^n\to\mathbb{R},\,A$  aperto, diciamo che f è differenziabile in  $x_0\in A$  se  $\exists$  un vettore  $a\in\mathbb{R}^n$  t.c.

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - \langle a, h \rangle}{||h||} = 0$$
(3.28)

**differenziale** l'applicazione lineare  $L(h) = \langle a, h \rangle$  si chiama differenziale di f in  $x_0$  e si denota  $df_{x_0}$ 

**teorema** sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$  differenziabile, A aperto, allora

- f è continua in  $x_0$
- f derivabile in  $x_0$  lungo ogni direzione v
- $D_v f(x_0) = \langle \nabla f(x_0), v \rangle$

**nota** se f è differenziabile in  $x_0$  possiamo scrivere

$$df_{x_0}(h) = \langle \nabla f(x_0), h \rangle = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x)h_i \ \forall h \in \mathbb{R}^n$$
(3.29)

**funzioni composte** se f, g differenziabili in  $x_0$  allora  $\alpha f + \beta g$ , fg,  $\frac{f}{g}(g(x_0) \neq 0)$  sono differenziabili in  $x_0$  e continuano a valere le proprietà del gradiente

osservazione  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$  differenziabile in  $x_0, g: I \subseteq \mathbb{R} \to \mathbb{R}$  derivabile in  $f(x_0) \Rightarrow g \circ f$  è differenziabile in  $x_0$  e

$$\nabla(g \circ f)(x_0) = g'(f(x_0))\nabla f(x_0) \tag{3.30}$$

derivata funzioni composte  $\,$  siano g e f differenziabili

$$(g \circ f)'(t) = \langle \nabla g(f(t)), f'(t) \rangle \tag{3.31}$$

teorema differenziale totale <sup>7</sup> sia  $A \subseteq \mathbb{R}^n$  aperto,  $f: A \to \mathbb{R}$  se in un intorno U di  $x \in A$ 

- f è derivabile in U
- $\bullet\,$ tutte le derivate parziali $\frac{\partial f}{\partial x_i}$ sono continue in x
- $\Rightarrow f$  è differenziabile in x

### 3.2.2 teoremi in $\mathbb{R}^n$

teorema di Rolle <sup>8</sup> sia  $A \subseteq \mathbb{R}^n$  aperto e limitato  $(\neq \emptyset)$ , sia  $f : \overline{A} \to \mathbb{R}$  continua su  $\overline{A}$ , differenziabile su A

$$f \text{ costante su } \partial A \Rightarrow \exists x_0 \in A \mid \nabla f(x_0) = \underline{0}$$
 (3.32)

 $<sup>^6</sup>$ pagina 317 analisi 1

 $<sup>^7\</sup>mathrm{pag}$ 320 analisi 1

<sup>&</sup>lt;sup>8</sup>dimostrazione lezione 13 pag 143

teorema di Lagrange  $^9$  sia  $A \subseteq \mathbb{R}^n$  aperto, siano  $x, y \in A, \ x \neq y \mid [x, y] \subseteq A$ . Sia  $f : A \to \mathbb{R}$  continua su [x, y] e differenziabile su [x, y] allora

$$\exists \ \xi \in ]x, y[\ t.c.\ f(y) - f(x) = < \nabla f(\xi), y - x > = D_v f(\xi) ||y - x||$$
(3.33)

corollario sia  $A\subseteq \mathbb{R}^n$ aperto, connesso per poligonali. Sia  $f:A\to \mathbb{R}$  differenziabile

$$\nabla f(x) = 0 \ \forall x \in A \Rightarrow f \text{ costante su } A$$
 (3.34)

teorema derivazione funzioni composte sia  $f: I \subseteq \mathbb{R} \to \mathbb{R}^n$  è derivabile in  $x_0$  (ogni  $f_i$  lo è), se  $g: A \subseteq \mathbb{R}^n \to \mathbb{R}$  è differenziabile in  $y_0 = f(x_0)$  allora  $f \cdot g$  è derivabile in  $x_0$  e

$$(g \cdot f)'(x_0) = \sum_{i=1}^n \frac{\partial g}{\partial f}(f(x_0))f_i'(x_0) = \langle \nabla g(f(x_0)), f'(x_0) \rangle$$
(3.35)

### 3.2.3 integrali

integrali dipendenti da un parametro sia  $f:[a,b]\times[c,d]\to\mathbb{R}$  continua

$$g(y) = \int_{a}^{b} f(x, y)dx, \ g: [c, d] \to \mathbb{R}$$

$$(3.36)$$

**continuità** sia  $f \in C([a,b] \times [c,d]), g:[c,d] \to \mathbb{R}$  definita come sopra (3.36)  $\Rightarrow g$  continua su [c,d]

**derivabilità** siano f, g come nella proposizione precedente, se f ammette derivata parziale  $\frac{\partial f}{\partial y}(x, y)$  continua in  $[a, b] \times [c, d] \Rightarrow g$  è derivabile su [c, d] e

$$g'(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y)dx \tag{3.37}$$

### 3.2.4 derivate di ordine superiore

sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ , A un aperto, f derivabile in  $A \Rightarrow$  in A esistiono  $\frac{\partial f}{\partial x_i} \, \forall i = 1, ..., n, \, \forall x \in A$  se per qualche  $i, \, \frac{\partial f}{\partial x_i}$  è a sua volta derivabile, chiameremo derivate seconde di f:

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(x) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right) \,\forall j = 1, ..., n \tag{3.38}$$

classe  $C^k$  scriviamo  $f \in C^k(A)$  se f possiede tutte le derivate parziali fino all'ordine k (incluso) inoltre

$$C^{\infty}(A) = \bigcap_{k=0}^{\infty} C^k(A) \tag{3.39}$$

teorema di Schwarz <sup>10</sup> sia  $A \subseteq \mathbb{R}^2$  aperto, sia  $\underline{x_0} = (x_0, y_0) \in A$ , sia  $f: A \to \mathbb{R}$  t.c.

- esistono  $\frac{\partial f}{\partial x}$ ,  $\frac{\partial f}{\partial y}$ ,  $\frac{\partial^2 f}{\partial y \partial x}$ ,  $\frac{\partial^2 f}{\partial x \partial y}$  in un intorno U di  $\underline{x_0}$
- $\frac{\partial^2 f}{\partial y \partial x}$ ,  $\frac{\partial^2 f}{\partial x \partial y}$  sono continue in  $\underline{x_0}$

allora

$$\frac{\partial^2 f}{\partial u \partial x}(\underline{x_0}) = \frac{\partial^2 f}{\partial x \partial u}(\underline{x_0}) \tag{3.40}$$

observazione il teorema di Schwarz si estende a n variabili e ad ordini superiori

**matrice hessiana** sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$  definiamo

$$H_{f}(\underline{x}) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\underline{x}) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\underline{x}) & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\underline{x}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\underline{x}) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(\underline{x}) & \dots & \frac{\partial^{2} f}{\partial x^{2}}(\underline{x}) \end{pmatrix} \in M_{n \times n}$$

$$(3.41)$$

<sup>&</sup>lt;sup>9</sup>dimostrazione lezione 13 pag 147

 $<sup>^{10}</sup>$ lezione 15 pag 157

**corollario** sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}, f \in C^2(A) \Rightarrow H_f(\underline{x})$  è simmetrica

operatore di laplace si dice operatore di laplace

$$\triangle: C^2(A) \to \mathbb{R}, \triangle = \nabla^2 = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$$
 (3.42)

funzione armonica una funzione f si dice armonica su  $A \Leftrightarrow \triangle f = 0$  su A

### 3.2.5 foruma di taylor in più variabili

polinomio di taylor <sup>11</sup> sia  $\underline{x_0} = (x_0, y_0), \underline{h} = (h, k)$ 

$$P_{n,\underline{x_0}}(\underline{h}) = \sum_{k=0}^{n} \frac{1}{k!} \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^k \Big|_{(x_0,y_0)} f$$
(3.43)

$$= f(x_0, y_0) + \left( \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right) \Big|_{(x_0, y_0)} f \right) + \frac{1}{2!} \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^2 \Big|_{(x_0, y_0)} f + \dots + \frac{1}{n!} \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^n \Big|_{(x_0, y_0)} f$$
(3.44)

teorema resto di Lagrange sia  $A \subseteq \mathbb{R}^2$  aperto,  $f \in C^n(A)$ ,  $\underline{x_0} = (x_0, y_0)$ ,  $\underline{h} = (h, k) \in A$  tali che  $[\underline{x_0}, \underline{x_0} + \underline{h}] \subset A \Rightarrow \exists \vartheta \in ]0,1[t.c.$ 

$$f(x_0 + \underline{h}) = P_{n-1,x_0}(\underline{h}) + R_n(\underline{h})$$
(3.45)

dove

$$R_n(\underline{h}) = \frac{1}{n!} \left( h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^n \bigg|_{(x_0 + \vartheta h, y_0 + \vartheta k)} f$$
(3.46)

proposizione nelle stesse ipotesi del teorema sopra abbiamo

$$\lim_{\substack{(h,k)\to(0,0)}} \frac{R_n(\underline{h})}{||h||^{n-1}} = 0 \tag{3.47}$$

teorema resto di Peano sia  $A \subseteq \mathbb{R}^2$  aperto,  $f \in C^n(A)$ ,  $\underline{x_0} \in A$ ,  $\underline{x_0} + \underline{h} \in A$  t.c.  $[\underline{x_0}, \underline{x_0} + \underline{h}] \subset A$  allora

$$f(x_0 + \underline{h}) = P_{n,x_0}(\underline{h}) + o(||\underline{h}||^n) \text{ per } \underline{h} \to \underline{0}$$
(3.48)

### 3.2.6 forme quadratiche

 $^{12}$ una forma quadratica in  $\mathbb{R}^n$  è un polinomio omogeneo di grado 2 della forma

$$Q(\underline{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j, \ a_{ij} \in \mathbb{R}, \ \underline{h} \in \mathbb{R}^n$$
(3.49)

NB: si può sempre supporre  $a_{ij} = a_{ji}$ 

matrice associata ad ogni forma quadratica è associata una matrice simmetrica  $A = (a_{ij})_{ij} \in M_{n \times n}$  t.c.

$$Q(h) = h^t A h (3.50)$$

$$Q(\underline{h}) = \langle A\underline{h}, \underline{h} \rangle \tag{3.51}$$

**definizioni** una forma quadratica  $Q(\underline{h})$  si dice

- definita positiva (negativa)  $\Leftrightarrow Q(\underline{h}) > 0 \ \forall \underline{h} \neq 0 \ (Q(\underline{h}) < 0)$ )
- semidefinita positiva (negativa)  $\Leftrightarrow Q(\underline{h}) \geq 0 \ \forall \underline{h} \in \mathbb{R}^n \ (Q(\underline{h}) \leq 0) \land \exists h \neq 0 \ t.c. \ Q(\underline{h}) = 0$
- indefinita  $\Leftrightarrow \exists \underline{h}^+, \underline{h}^- \in \mathbb{R}^n \ t.c. \ Q(\underline{h}^+) > 0 \land Q(\underline{h}^-) < 0$

<sup>&</sup>lt;sup>11</sup>lezione 16

<sup>&</sup>lt;sup>12</sup>nota lezione 17

### teorema caratterizzazione forme quadratiche

- una forma quadratica è definita positiva  $\Leftrightarrow \exists m > 0 \ t.c. \ \sum_{i,j=1}^n a_{ij} h_i h_j \ge m ||\underline{h}||^2 \ \forall \underline{h} \in \mathbb{R}^n$
- una forma quadratica è definita negativa  $\Leftrightarrow \exists m > 0 \ t.c. \ \sum_{i,j=1}^n a_{ij} h_i h_j \leq -m ||\underline{h}||^2 \ \forall \underline{h} \in \mathbb{R}^n$

**proposizione**  $n=2, Q(\underline{h})=ah_1^2+2bh_1h_2+ch_2^2$  è

- definita positiva (negativa)  $\Leftrightarrow det(A) > 0 \land a > 0 \ (a < 0)$
- semi definita positiva (negativa)  $\Leftrightarrow det(A) = 0 \land a > 0 \ (a < 0)$
- indefinita  $\Leftrightarrow det(A) < 0$

criterio di Sylvester  $n \geq 2$ ,  $Q(\underline{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j$ ,  $\underline{h} \in \mathbb{R}^n$  è

- definita positiva  $\Leftrightarrow det(A_k) > 0 \ \forall k \ 1, \dots, n$
- definita negativa  $\Leftrightarrow (-1)^k \det(A_k) > 0 \ \forall k \ 1, \ldots, n$

corollario  $n \geq 2, \ Q(\underline{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j, \ \underline{h} \in \mathbb{R}^n$  è

- semidefinita positiva  $\Leftrightarrow det(A_k) \geq 0 \ \forall k \ 1, \dots, n$
- semidefinita negativa  $\Leftrightarrow (-1)^k \det(A_k) \ge 0 \ \forall k \ 1, \dots, n$

autovalori  $Q(\underline{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j, \ \underline{h} \in \mathbb{R}^n$ 

- definita positiva (negativa) ⇔ tutti gli autovalori sono positivi (negativi)
- semidefinita positiva (negativa)  $\Leftrightarrow$  tutti gli autovalori sono  $\geq 0 \ (\leq 0)$  ed almeno uno di essi è nullo
- $\bullet\,$ indefinita  $\Leftrightarrow \exists$  due autovalori di segno opposto

### 3.2.7 massimi e minimi

punto di estremo i punti di massimo o minimo sono detti punti di estremo

**proposizione** sia  $x_0$  un punto di estremo per f in  $A \subseteq \mathbb{R}^n$  allora si verifica uno dei seguenti casi

- (punto critico)  $\underline{x_0}$  è un punto interno ad A,  $\exists \nabla f(\underline{x_0}), \nabla f(\underline{x_0} = \underline{0})$
- (punto singolare)  $x_0$  è un punto interno ad A,  $\nexists \nabla f(x_0)$
- $\underline{x_0} \in \delta A$

**punto di sella**  $\underline{x_0} \in A$  punto di sella  $\Leftrightarrow \underline{x_0}$  punto critico nè di massimo nè di minimo locale per f

$$x_0$$
 punto di sella  $\Leftrightarrow \forall$  intorno  $U$  di  $x_0 \exists \underline{x_1}, \underline{x_2} \in U$   $t.c.$   $f(\underline{x_1}) > f(\underline{x_0}) \land f(\underline{x_2}) < f(\underline{x_0})$  (3.52)

teorema (condizione necessaria) sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}, \ f \in C^2$  in un intorno di  $B_r(\underline{x_0}), \ \underline{x_0} \in \mathring{A}, \ Q(\underline{h}) = \underline{h}^t H_f(x_0)\underline{h}$ 

$$\underline{x_0}$$
 punto di minimo  $\Rightarrow Q(\underline{h}) \ge 0$  (3.53)

$$x_0$$
 punto di massimo  $\Rightarrow Q(\underline{h}) \le 0$  (3.54)

teorema (condizione sufficente) <sup>13</sup> sia  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}, \ f \in C^2$  in un intorno di  $\underline{x_0} \in \overset{\circ}{A}, \underline{x_0}$  punto critico per f, se  $Q(\underline{h}) = \underline{h}^t H_f(\underline{x_0})\underline{h}$  è

- $\bullet\,$ definita positiva (negativa)  $\Rightarrow \underline{x_0}$  è un punto di minimo (massimo) locale stretto
- $\bullet\,$ indefinita  $\Rightarrow \underline{x_0}$  è un punto di sella

<sup>&</sup>lt;sup>13</sup>dimostrazione lezione 18 pag 181

condizione sufficente in n=2 sia  $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}, f \in C^2$  in un intorno di  $\underline{x_0} \in A$ , supponiamo  $\underline{x_0}$  punto critico per  $f, H_f(x_0, y_0)$  la matrice Hessiana definita

$$H_f(x_0, y_0) = \begin{pmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{pmatrix}$$
(3.55)

•  $det(H_f(x_0, y_0)) > 0$  allora

$$f_{xx}(x_0, y_0) > 0$$
 [equivalentemente  $f_{yy}(x_0, y_0) > 0$ ]  $\Rightarrow (x_0, y_0)$  punto di minimo locale stretto (3.56)

$$f_{xx}(x_0, y_0) < 0$$
 [equivalentemente  $f_{yy}(x_0, y_0) < 0$ ]  $\Rightarrow (x_0, y_0)$  punto di massimo locale stretto (3.57)

- $det(H_f(x_0, y_0)) < 0 \Rightarrow (x_0, y_0)$  punto di sella
- se  $det(H_f(x_0, y_0)) = 0$  non possiamo concludere nulla

### 3.3 funzioni a valori vettoriali

$$\underline{f}: A \subseteq \mathbb{R}^n \to \mathbb{R}^m, \ \underline{f}(\underline{x}) = \begin{pmatrix} f_1(\underline{x}) \\ \vdots \\ f_m(\underline{x}) \end{pmatrix}, \ n, m \ge 1$$
 (3.58)

precedentemente abbiamo già visto la definizione di limite e di continuità

osservazioni sia  $x_0 \in \mathbb{R}^n$  punto di accumulazione per A, sia  $\underline{l} \in \mathbb{R}^m$  allora

$$\lim_{\underline{x} \to \underline{x_0}} \underline{f}(\underline{x}) = \underline{l} \Leftrightarrow \lim_{\underline{x} \to \underline{x_0}} f_i(\underline{x}) = l_i \ \forall i = 1, \dots, m$$
(3.59)

$$\underline{f}$$
 continua in  $\underline{x_0} \Leftrightarrow \lim_{\underline{x} \to x_0} \underline{f}(\underline{x}) = \underline{f}(\underline{x_0}) \Leftrightarrow \lim_{\underline{x} \to x_0} f_i(\underline{x}) = f_i(\underline{x_0}) \ \forall i = 1, \dots, m$  (3.60)

$$f$$
 continua in  $A \Leftrightarrow f_i : A \to \mathbb{R}$  continua in  $A \forall i = 1, \dots, m$  (3.61)

**curva** definiamo curva in  $\mathbb{R}^m$  ogni funzione continua  $\underline{r}:I\to\mathbb{R}^m$  con I intervallo contenuto in  $\mathbb{R}$ 

arco di curva se I è chiuso e limitato (I = [a, b])  $\underline{r}$  è definito arco di curva

sostegno della curva sia  $\underline{r}:I\to\mathbb{R}^m$  una curva, si dice sostegno della curva l'immagine di  $\underline{r}$ 

$$r(I) = \{r(t) \mid t \in I\} \subset \mathbb{R}^m\} \tag{3.62}$$

curva cartesiana sia  $f: A \subseteq \mathbb{R} \to \mathbb{R}$  si dice curva cartesiana

$$r(t) = (t, f(t)) \ t \in [a, b] \tag{3.63}$$

**derivata** sia  $\underline{r}:I\to\mathbb{R}^m$  una curva, sia  $t_0\in I$  chiamiamo derivata di  $\underline{r}$  in  $t_0$ 

$$\underline{r}'(t_0) = \lim_{t \to t_0} \frac{\underline{r}(t) - \underline{r}(t_0)}{t - t_0} \in \mathbb{R}^m$$
(3.64)

osservazione

$$\underline{r}(t) = \begin{pmatrix} r_1(t) \\ \vdots \\ r_m(t) \end{pmatrix} \Rightarrow \underline{r}'(t_0) = \begin{pmatrix} r_1'(t_0) \\ \vdots \\ r_m'(t_0) \end{pmatrix}$$
(3.65)

interpretazione geometrica la derivata  $\underline{r}'(t_0)$  è interpretabile come vettore tangente alla curva nel punto  $\underline{r}(t_0)$ 

retta tangente l'equazione della retta tangente alla curva  $\underline{r}$  in  $\underline{r}(t_0)$  ha l'equazione

$$\xi(s) = \underline{r}(t_0) + \underline{r}'(t_0)(s - t_0), \ s \in \mathbb{R}$$

$$(3.66)$$

**campi di vettori** un campo di vettori in una regione  $A \subseteq \mathbb{R}^n$  è una funzione  $\varphi : A \to \mathbb{R}^n$ 

superfici parametriche chiamiamo superficie parametrica in  $\mathbb{R}^3$  una funzione  $\underline{\phi}:A\to\mathbb{R}^3$  tale che  $A\subseteq\mathbb{R}^2$  aperto, l'immagine di  $\phi$  è detta sostegno di  $\phi$  definito come  $\underline{\sum}=\underline{\phi}(A)$ . Ogni  $\phi$  avente sostegno  $\underline{\sum}$  è detta rappresentazione parametrica di  $\underline{\sum}$ 

### 3.3.1 coordinate

coordinate polari 14

$$\phi: [0, +\infty[\times[0, 2\pi] \to \mathbb{R}^2, \ \phi(\rho, \theta) = (\rho\cos\theta, \rho\sin\theta)$$
(3.67)

coordinate sferiche (polari nello spazio)

$$\underline{\phi}: [0, +\infty[\times[0, 2\pi[\times[0, \pi] \to \mathbb{R}^3, \ \underline{\phi}(\rho, \theta, \gamma) = \begin{pmatrix} \rho \sin \gamma \cos \theta \\ \rho \sin \gamma \sin \theta \\ \rho \cos \gamma \end{pmatrix}$$
 (3.68)

coordinate cilindriche

$$\underline{\phi}: [0, +\infty[\times[0, 2\pi[\times\mathbb{R} \to \mathbb{R}^3, \ \underline{\phi}(\rho, \theta, z) = \begin{pmatrix} \rho\cos\theta\\ \rho\sin\theta\\ z \end{pmatrix}$$
 (3.69)

### 3.3.2 differenziabilità per funzioni in più variabili

sia  $\underline{f}:A\subseteq\mathbb{R}^n\to\mathbb{R}^m$ , sia  $\underline{x_0}\in \overset{\circ}{A},\,\underline{f}$  si dice differenziabile in  $\underline{x_0}$  se  $\exists$  una applicazione lineare  $\underline{L}:\mathbb{R}^n\to\mathbb{R}^m$  tale che

$$\lim_{\underline{h} \to \underline{0}} \frac{\underline{f}(\underline{x}_{\underline{0}} + \underline{h}) - \underline{f}(\underline{x}_{\underline{0}}) - \underline{L}(\underline{h})}{||\underline{h}||} = \underline{0}$$
(3.70)

NB: posto  $f = (f_1, \ldots, f_m), \ \underline{L} = (L_1, \ldots, L_m)$  la 3.70 equivale a

$$\lim_{\underline{h}\to\underline{0}} \frac{f_i(\underline{x}_{\underline{0}} + \underline{h}) - f_i(\underline{x}_{\underline{0}}) - L_i(\underline{h})}{||\underline{h}||} = 0 \ \forall i = 1,\dots, m$$
(3.71)

sappiamo  $L_i(\underline{h}) = df_i(x_0)(\underline{h}) = \langle \nabla f_i(x_0), \underline{h} \rangle$ , chiamiamo J la matrice associata ad  $\underline{L}$ 

$$J = \begin{pmatrix} \nabla f_1(\underline{x_0}) \\ \vdots \\ \nabla f_m(\underline{x_0}) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\underline{x_0}) & \frac{\partial f_1}{\partial x_2}(\underline{x_0}) & \dots & \frac{\partial f_1}{\partial x_n}(\underline{x_0}) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\underline{x_0}) & \frac{\partial f_m}{\partial x_2}(\underline{x_0}) & \dots & \frac{\partial f_m}{\partial x_n}(\underline{x_0}) \end{pmatrix}$$
(3.72)

**J** è detta matrice Jacobiana di f in  $x_0$  e si indica con  $J_f(x_0)$ ,  $Df(x_0)$ ,  $Jf(x_0)$  inoltre,

$$\langle df(x_0), \underline{h} \rangle = J_f(x_0)\underline{h}$$
 (3.73)

**proposizione** la matrice Jacobiana si dice **singolare**  $\Leftrightarrow$  det(J) = 0

**funzioni composte** sia  $\underline{f}: E \subseteq \mathbb{R}^n \to \mathbb{R}^m$ ,  $\underline{g}: F \subseteq \mathbb{R}^m \to \mathbb{R}^k$ ,  $\underline{f}(E) \subseteq F$ , siano  $\underline{x_0} \in \overset{\circ}{E}$ ,  $\underline{y_0} = \underline{f}(\underline{x_0}) \in \overset{\circ}{F}$  differenziabile in  $\underline{x_0}$ ,  $\underline{g}$  differenziabile in  $\underline{y_0} \Rightarrow \underline{g} \circ \underline{f}$  è differenziabile in  $x_0$  inoltre,

$$d(\underline{g} \circ \underline{f})_{\underline{x_0}} = (d\underline{g})_{\underline{f}(\underline{x_0})} \circ d\underline{f}_{x_0} \tag{3.74}$$

sostituendo in questa equazione le matrici associate otteniamo:

$$J_{g \circ f}(\underline{x_0}) = J_g(f(\underline{x_0})) \cdot J_f(\underline{x_0}) \tag{3.75}$$

### 3.3.3 rette e piani tangenti

retta tangente ad una curva di livello sia  $g:A\subseteq\mathbb{R}^2\to\mathbb{R}$ , A aperto,  $g\in C^1(A)$ , sia C una curva di livello di  $g,C:g(x,y)=c, \underline{x_0}=(x_0,y_0)\in C, \ \nabla g(x_0,y_0)\neq 0$ , la retta tangente a C in  $\underline{x_0}$  è data dall'equazione

$$g_x(\underline{x_0})(x - x_0) + g_y(\underline{x_0})(y - y_0) = 0$$
(3.76)

 $<sup>^{14}</sup>$ lezione 21 pag 209

piano tangente ad una superficie di livello sia  $g:A\subseteq\mathbb{R}^3\to\mathbb{R}$ , A aperto,  $g\in C^1(A)$ , sia C una curva di livello di  $g,\Sigma_c:g(x,y,z)=c,\underline{x_0}=(x_0,y_0,z_0)\in C,\ \nabla g(\underline{x_0})\neq 0$ , il piano tangente a C in  $\underline{x_0}$  è dato dall'equazione

$$g_x(x_0)(x-x_0) + g_y(x_0)(y-y_0) + g_z(x_0)(z-z_0) = 0$$
(3.77)

spazio tangente sia  $A \subseteq \mathbb{R}^3$  aperto, sia  $\Sigma_c$  la superficie di livello di g, sia  $\underline{x_0} = (x_0, y_0, z_0) \in \Sigma_c$ , sia g differenziabile in  $\underline{x_0}$  allora chiamiamo  $(T_{\underline{x_0}}\Sigma_c)$  spazio tangente a  $\Sigma_c$  in  $\underline{x_0}$  l'insieme dei vettori tangenti a curve su  $\Sigma_c$  passanti per  $x_0$ 

### 3.3.4 teorema di Dini

<sup>15</sup> sia  $A \subseteq \mathbb{R}^2$  aperto,  $g: A \to \mathbb{R}$ , supponiamo

- $g \in \frac{\partial g}{\partial y}$  continue in A
- $(x_0, y_0) \in A$ ,  $g(x_0, y_0) = 0$ ,  $\frac{\partial g}{\partial y}(x_0, y_0) \neq 0$

 $\Rightarrow \exists~U$ intorno di  $x_0$  e Vintorno di  $y_0$  con  $U\times V\subseteq A$  e  $\exists !~\varphi:U\to V$  continua t.c.

$$y_0 = \varphi(x_0), \ g(x, \varphi(x)) = 0 \ \forall x \in U$$
(3.78)

inoltre  $\frac{\partial g}{\partial x}$  è continua in  $A \Rightarrow$ 

$$\varphi \in C^{1}(U) \land \varphi'(x) = -\frac{\frac{\partial g}{\partial x}(x, \varphi(x))}{\frac{\partial g}{\partial y}(x, \varphi(x))} \forall x \in U$$
(3.79)

infine si nota  $g \in C^k(A) \Rightarrow \varphi \in C^k(U), k \in \mathbb{N}$ 

definizione la funzione  $\varphi:U\to\mathbb{R}$  si dice funzione implicita (funzione definita implicitamente) in U dall'equazione g(x,y)=0

teorema (estensione Dini  $\mathbb{R}^3$ ) sia  $A \subseteq \mathbb{R}^3$ , sia  $g: A \to \mathbb{R}$  continua e  $\frac{\partial g}{\partial z}$  continua su A supponiamo

•  $g(x_0, y_0, z_0) = 0$ ,  $\frac{\partial g}{\partial z}(x_0, y_0, z_0) \neq 0$ 

 $\Rightarrow \exists \ U$ intorno di  $x_0,y_0$ e Vintorno di  $z_0$ e  $\exists ! \ \varphi : U \to V$ t.c.

$$\forall (x, y, z) \in U \times V \ g(x, y, z) = 0 \Leftrightarrow z = \varphi(x, y)$$
(3.80)

inoltre  $q \in C^1(A) \Rightarrow \forall (x, y) \in U$ 

$$\varphi_x(x,y) = -\frac{\frac{\partial g}{\partial x}(x,y,\varphi(x,y))}{\frac{\partial g}{\partial z}(x,y,\varphi(x,y))} \wedge \varphi_y(x,y) = -\frac{\frac{\partial g}{\partial y}(x,y,\varphi(x,y))}{\frac{\partial g}{\partial z}(x,y,\varphi(x,y))}$$
(3.81)

infine  $g \in C^k(A) \Rightarrow \varphi \in C^k(U), k \in \mathbb{N}$ 

teorema (estensione Dini funzioni vettoriali) sia  $\underline{g} \in C^1(A, \mathbb{R}^2)$ ,  $A \subseteq \mathbb{R}^4$  aperto,  $\underline{g}(\underline{x_0}, \underline{y_0}) = 0$ ,  $rk(J_{\underline{g}}^{\underline{y}}(\underline{x_0}, \underline{y_0})) = 2$  allora

 $\exists U$  intorno di  $x_0, V$  intorno di  $y_0$  e  $\exists ! \varphi : U \to V$  continua t.c.  $U \times V \subseteq A$  e  $\forall (\underline{x}, y) \in U \times V$ 

$$g(\underline{x}, y) = 0 \Leftrightarrow y = \varphi(\underline{x}) \tag{3.82}$$

inoltre  $g \in C^1(A; \mathbb{R}^2) \Rightarrow \varphi \in C^1(U)$  e

$$J_{\underline{\varphi}}(\underline{x}) = -[J_{\underline{g}}^{\underline{y}}(\underline{x}, \underline{\varphi}(\underline{x}))]^{-1}J_{\underline{g}}^{\underline{x}}(\underline{x}, \underline{\varphi}(\underline{x})), \ \forall x \in U \tag{3.83}$$

teorema di Dini generale sia  $g: A \subseteq \mathbb{R}^{n+m} \to \mathbb{R}^m$ , A aperto, supponiamo

- $g \in C^1(A; \mathbb{R}^m)$
- $\underline{g}(\underline{x_0}, \underline{y_0}) = 0$  e  $rk(J_{\underline{g}}^{\underline{y}}(\underline{x_0}, \underline{y_0})) = m$

 $\Rightarrow \exists U$  intorno di  $\underline{x_0} = (x_{01}, \dots, x_{0n}), V$  intorno di  $\underline{y_0} = (y_{01}, \dots, y_{0m})$  e  $\exists ! \underline{\varphi} : U \to V$  continua t.c.  $U \times V \subseteq A$  e  $\forall (\underline{x}, y) \in U \times V$ 

$$g(\underline{x}, y) = 0 \Leftrightarrow y = \varphi(\underline{x}) \tag{3.84}$$

inoltre vale

$$J_{\underline{\varphi}}(\underline{x}) = -\left[J_{\underline{g}}^{\underline{y}}(\underline{x}, \underline{\varphi}(\underline{x}))\right]^{-1} J_{\underline{g}}^{\underline{x}}(\underline{x}, \underline{\varphi}(\underline{x})), \ \forall x \in U$$
(3.85)

 $<sup>^{15}</sup>$ dimostrazione nella lezione 24

### 3.3.5 invertibilità

teorema di invertibilità locale (n=1) sia  $f \in C^1(]a, b[), x_0 \in ]a, b[, f'(x_0 \neq 0 \Rightarrow \exists W \subset ]a, b[$  intorno di  $x_0, V$  intorno di  $y_0 = f(x_0)$  t.c.

$$f: W \to V$$
 è biunivoca t.c.  $f^{-1} \in C^1(V) \land (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \forall y \in V$  (3.86)

**diffeomorfismo locale** f si dice diffeomorfismo locale in  $x_0 \Leftrightarrow f$  biunivoca  $\land f \in C^1 \land f^{-1} \in C^1$ 

osservazione si dice omomorfismo locale se si ha solo continuità

teorema invertibilità globale n=1 sia I intervallo,  $f \in C(I)$ , f localmente invertibile in un intorno di  $x_0 \ \forall x_0 \in I \Rightarrow$ 

$$f: I \to f(I)$$
 è biunivoca  $\Rightarrow f$  globalmente invertibile (3.87)

teorema di Cramer (invertibilità globale) sia  $A \in M^{n \times n}$ ,  $L : \mathbb{R}^n \to \mathbb{R}^n$  t.c.  $L\underline{x} = A\underline{x} \Rightarrow$ 

$$L \text{ biunivoca } \Leftrightarrow det(A) \neq 0$$
 (3.88)

ed in questo caso  $L^{-1}y = A^{-1}y$ 

teorema inversione locale n=2 sia  $\underline{f} \in C^1(A, \mathbb{R}^2)$ ,  $A \subseteq \mathbb{R}^2$  aperto,  $\underline{x_0} \in A$ ,  $\underline{y_0} = \underline{f}(\underline{x_0})$ ,  $rk(J_{\underline{f}}(\underline{x_0})) = 2 \Rightarrow \exists W$  intorno di  $\underline{x_0}$ , V intorno di  $\underline{y_0}$  t.c.

$$f: W \to V$$
è biunivoca (3.89)

inoltre  $f^{-1} \in C^1(V, W)$  e

$$J_{f^{-1}}(\underline{y}) = [J_{\underline{f}}(\underline{f}^{-1}(\underline{y}))]^{-1} \ \forall \underline{y} \in V$$
(3.90)

(il teorema si può estendere ad un qualunque numero di variabili)

### 3.3.6 moltiplicatori di Lagrange

sia  $A \subseteq \mathbb{R}^n$  aperto,  $f: A \to \mathbb{R}, f \in C^1, g: A \to \mathbb{R}, g \in C^1, M = \{\underline{x} \in A: g(\underline{x}) = 0\}$ 

**punto stazionario (critico)** sia  $\underline{x_0} \in M = \{\underline{x} \in A : g(\underline{x}) = 0\}$ , diciamo  $\underline{x_0}$  punto stazionario (o critico) per f su M se comunque presa una curva  $\underline{r}$  di classe  $C^1$  su M passante per  $\underline{x_0}$ 

$$\underline{r}:]a,b[\to M,t_0\in]a,b[,\underline{r}(t_0)=\underline{x_0}\Rightarrow\frac{d}{dt}f(\underline{r}(t))|_{t=t_0}=0$$
(3.91)

**teorema** siano  $f,g:A\to\mathbb{R},\,A$  aperto  $\subseteq\mathbb{R}^n\ (n=2,3)$  di classe  $C^1,$  sia  $\underline{x_0}$  un punto regoalre di  $M\ (\nabla\underline{g}(\underline{x_0})\neq0)$  allora

$$x_0$$
 punto estremo di  $f$  su  $M \Rightarrow x_0$  è un punto stazionario per  $f$  su  $M$  (3.92)

teorema moltiplicatore di Lagrange siano  $f, g: A \subseteq \mathbb{R}^n \to \mathbb{R}$  (n=2,3) di classe  $C^1$ , A aperto, sia  $\underline{x_0} \in M$  con  $g(\underline{x_0}) \neq 0$  il punto  $\underline{x_0}$  è punto stazionario per f su  $M \Leftrightarrow \exists \lambda \in \mathbb{R}$  t.c.

$$\nabla f(x_0) = \lambda \nabla g(x_0) \tag{3.93}$$