APPENDIX A

THE KKT TRANSFORMATION WITH LINEARIZATION PROCESS For $G_T \in \Omega_T$, the Lagrangian function for the lower-level problem (25)-(30) is:

$$L = \sum_{i \in V} \Delta P d_i^T - \sum_{l_y \in L_T} \mu_{ij}^T \left(p_{ij}^T - v_{ij}^T \cdot \frac{1}{x_{ij}} \cdot \sum_{i \in V} A_{nl} \cdot \delta_n \right)$$

$$- \sum_{i \in V} \lambda_i \left(\sum_{k \in V_G(i)} g_k^T - \sum_{l_y \in L_T} A_{ij}^T \cdot p_{ij}^T + \Delta P d_i^T - P d_i \right)$$

$$- \sum_{l_y \in L_T} \underline{\omega}_{ij}^T \left(p_{ij}^T + \overline{p_{ij}} \right) - \sum_{l_y \in L_T} \overline{\omega}_{ij}^T \left(\overline{p_{ij}} - p_{ij}^T \right)$$

$$- \sum_{k \in V_G} \underline{\theta}_k^T \left(g_k^T - \underline{g}_k \right) - \sum_{k \in V_G} \overline{\theta}_k^T \left(\overline{g}_k - g_k^T \right)$$

$$- \sum_{l \in V} \underline{\alpha}_i^T \left(\Delta P d_i^T \right) - \sum_{i \in V} \overline{\alpha}_i^T \left(P d_i - \Delta P d_i^T \right)$$

where μ_{ij}^T , λ_i^T , $\overline{\omega}_{ij}^T$, $\underline{\omega}_{ij}^T$, $\overline{\theta}_k^T$, $\overline{\theta}_k^T$, $\overline{\alpha}_k^T$, $\overline{\alpha}_k^T$ are the Lagrangian multipliers associated with the DC power flow constraints (26) - (30), respectively. The optimality conditions for the original problem KKT of these constraints are:

$$\frac{\partial L}{\partial \delta_i} = \sum_{l_{ij} \in L_T} \frac{1}{x_{ij}} \cdot A_{ij}^T \cdot \mu_{ij}^T \cdot \nu_{ij}^T = 0, \qquad i \in V \quad (A2)$$

$$\frac{\partial L}{\partial \mathbf{g}_{L}} = -\lambda_{i}^{T} \Big|_{k \in V_{G(i)}} - \underline{\theta}_{k} + \overline{\theta}_{k} = 0, \quad k \in V_{G} \quad (A3)$$

$$\frac{\partial L}{\partial p_{ij}^T} = \sum_{y \in V} A_{ij}^T \lambda_y^T - \mu_{ij}^T - \underline{\omega}_{ij}^T + \overline{\omega}_{ij}^T = 0, \ l_{ij} \in \boldsymbol{L_T} \ (A4)$$

$$\frac{\partial L}{\partial \Delta P d_i^T} = 1 - \lambda_i^T - \underline{\alpha}_i^T + \overline{\alpha}_i^T = 0, \qquad i \in V \quad (A5)$$

$$\underline{\omega}_{ij}^{T} > 0, \qquad l_{ij} \in \mathbf{L}_{T} \quad (A6)$$

$$\frac{-T}{\omega_{ij}} > 0, \qquad l_{ii} \in L_T \quad (A7)$$

$$\theta_{k}^{T} > 0, \qquad k \in V_{G}$$
 (A8)

$$\overline{\theta}_{k}^{T} > 0, \qquad k \in V_{G} \quad (A9)$$

$$\underline{\alpha}_i^T \ge 0, \qquad i \in V \quad (A10)$$

$$\frac{-T}{\alpha_i} \ge 0, \qquad i \in V \quad (A11)$$

$$\underline{\boldsymbol{\omega}}_{ij}^{T} \left(\boldsymbol{p}_{ij}^{T} + \overline{\boldsymbol{p}_{ij}} \right) = 0, \qquad l_{ij} \in \boldsymbol{L_{T}} \text{ (A12)}$$

$$\overline{\omega_{ij}}^{T} \left(\overline{p_{ij}} - p_{ij}^{T} \right) = 0, \qquad l_{ij} \in \boldsymbol{L}_{T}$$
 (A13)

$$\underline{\theta}_{k}^{T}\left(g_{k}^{T}-g_{k}\right)=0, \qquad k \in V_{G} \text{ (A14)}$$

$$\overline{\theta}_{k}^{T}\left(\overline{g}_{k}-g_{k}^{T}\right)=0, \qquad k \in V_{G} \text{ (A15)}$$

$$\alpha_i^T \left(\Delta P d_i^T \right) = 0, \qquad i \in V \quad (A16)$$

$$\overline{\alpha}_{i}^{T} \left(P d_{i} - \Delta P d_{i}^{T} \right) = 0, \qquad i \in V \quad (A17)$$

where (A2) - (A11) denotes the original lower-level problem dual constraints and (A12) - (A17) denotes the complementary slackness constraints.

It can be seen that the original lower-level problem line flow formulation (33), dual constraints (A2) and complementary slackness constraints (A12) - (A17) are all non-linear terms. The above constraints are linearized by the following method:

(1) For the linearization of formulation (33)

In function (33), there are two non-linear terms- v_{ij}^T multiplied by the phase angle δ_i^T at the beginning of the line and v_{ij}^T multiplied by the phase angle δ_j^T at the end of the line, so continuous variables s_i^T and s_j^T are introduced to represent $v_{ij}^T \delta_i^T$ and $v_{ij}^T \delta_j^T$ respectively. Further intermediate variables z_i^T and z_j^T are introduced to equate the non-linear term (33) with the following linear terms:

$$p_{ij}^{T} = \frac{1}{x_i} \cdot \left(z_i^{T} - z_j^{T} \right), \qquad l_{ij} \in \boldsymbol{L_T} \quad (A18)$$

$$z_i^T = \delta_i^T - \delta_i^T, \qquad l_{ij} \in L_T \quad (A19)$$

$$z_j^T = \delta_j^T - \delta_j^T, \qquad l_{ij} \in L_T \quad (A20)$$

$$\underline{\delta} \cdot v_{ij}^T \le z_i^T \le \overline{\delta} \cdot v_{ij}^T, \qquad l_{ij} \in \boldsymbol{L_T} \quad (A21)$$

$$\underline{\delta} \cdot v_{ii}^T \le z_i^T \le \overline{\delta} \cdot v_{ii}^T, \qquad l_{ii} \in \boldsymbol{L}_T \quad (A22)$$

$$\underline{\delta} \cdot (1 - v_{ii}^T) \le z_i^T \le \overline{\delta} \cdot (1 - v_{ii}^T), \quad l_{ii} \in \mathbf{L}_T \quad (A23)$$

$$\underline{\delta} \cdot (1 - v_{ii}^T) \le z_i^T \le \overline{\delta} \cdot (1 - v_{ii}^T), \quad l_{ii} \in \mathbf{L}_T \quad (A24)$$

The formulations (A18)-(A24) represents the linearized expression for the calculation of the line DC power flow, if line l_{ij} is destroyed (v_{ij} =0), then according to the formulations (A21), (A22) can be obtained: z_i^T =0, z_j^T =0, so the line power flow p_{ij}^T =0, s_i^T = δ_i^T , s_j^T = δ_j^T ; if l_{ij} is not destroyed (v_{ij}^T =1), then according to the functions (A23), (A24) can be obtained: s_i^T =0, s_j^T =0, so z_i^T = δ_i^T , z_j^T = δ_j^T , the line plow flow p_{ij}^T is determined by the phase angle difference between the two ends of the line.

(2) Linearization for the dual constraint (A2)

Similarly, by introducing the continuous variables t_l and h_l , the nonlinear dual constraint (A2) is equivalently represented by the following set of linearization constraints:

$$\sum_{l_{ij} \in I_{cT}} \frac{1}{x_{ij}} \cdot A_{ij}^{T} \cdot t_{ij}^{T} = 0 , \qquad l_{ij} \in L_{T} \quad (A25)$$

$$t_{ii}^T = u_{ii}^T - h_{ii}^T, \qquad l_{ii} \in \mathbf{L}_T \quad (A26)$$

$$u_{ij} \cdot v_{ij}^T \le t_{ij}^T \le \overline{u_{ij}} \cdot v_{ij}^T, \qquad l_{ij} \in \boldsymbol{L_T}$$
 (A27)

$$u_{ij} \cdot (1 - v_{ij}^T) \le z_i^T \le \overline{u_{ij}} \cdot (1 - v_{ij}^T), \ l_{ij} \in \boldsymbol{L_T}$$
 (A28)

(3) Linearization for the complementary slackness constraints (A12) - (A17)

The nonlinear complementary slackness constraints (A12) - (A17) are equivalently represented by the following set of linearization constraints by introducing the 0-1 variables $\omega_{ij}^{\underline{a}T}$, $\omega_{ij}^{\overline{a}\overline{b}T}$, $\omega_{k}^{\underline{\theta}T}$, $\omega_{k}^{\underline{a}T}$, $\omega_{i}^{\underline{a}T}$.

$$\underline{\omega}_{ij}^T \le M \cdot \omega_{ij}^{\underline{\omega}T}, \qquad l_{ij} \in \mathbf{L}_T \quad (A29)$$

$$p_{ij}^T + \overline{p}_{ij} \le M \cdot \left(1 - \omega_{ij}^{\omega T}\right), \qquad l_{ij} \in \boldsymbol{L_T} \quad (A30)$$

$$\overline{\omega}_{ij}^{T} \leq M \cdot \omega_{ij}^{\overline{\omega}T}, \qquad l_{ij} \in L_{T}$$
 (A31)

		_	
$\underline{p}_{ij} - p_{ij}^T \leq M \cdot \left(1 - \omega_{ij}^{\overline{\omega T}}\right),$	$l_{ij} \in \boldsymbol{L_T}$	(A32)	6-13
$\underline{\theta}_{k}^{T} \leq M \cdot \omega_{k}^{\underline{\theta}T},$	$k \in V_G$	(A33)	7-8 7-11
$g_k^T - \underline{g}_k \le M \cdot (1 - \omega_k^{\theta T}),$	$k\in V_G$	(A34)	8-10
$\overline{\theta}_k^T \leq M \cdot \omega_k^{\overline{\theta}T}$,	$k \in V_G$	(A35)	8-30 9-13
$\overline{g}_k - g_k^T \le M \cdot (1 - \omega_k^{\overline{\theta}T}),$	$k \in V_G$	(C36)	9-16
$\underline{\alpha}_{i}^{T} \leq M \cdot \omega_{k}^{\underline{\alpha}T},$	$i \in V$	(A37)	9-49
$Pd_i \leq M \cdot (1 - \omega_i^{\underline{\alpha}T}),$		(A38)	10-16 11-17
$\overline{\alpha}_{i}^{T} \leq M \cdot \omega_{i}^{\overline{\alpha}T},$	$i \in V$		11-30
$Pd_i - \Delta Pd_i^T \leq M \cdot \left(1 - \omega_i^{\overline{\alpha}T}\right),$		(A40)	12-13 12-52
$\omega_{ii}^{\underline{\omega}T} + \omega_{ii}^{\overline{\omega}T} < 1,$			13-15
3 3	$l_{ij} \in L_T$		14-32
$\omega_{\overline{k}}^{\underline{\theta}T} + \omega_{\overline{k}}^{\overline{\theta}T} < 1,$	$k \in V_G$		14-50 15-49
$\omega_i^{\underline{\alpha}T} + \omega_i^{\overline{\alpha}T} < 1,$	$i \in V$		15-49
(A30), (A31) - (A32), (A33) - (A38) and (A39) - (A40)		16-31	
esentations of the constraints			16-50

1.5

1.3

1.3 1.32

1.2

1.5

1.5

1.6

1.6

1.3

1.1

1.3

1.8

1.5

1

1

1.3

1.27

1.2

1.12

0.9

1

1.28

1.22

1.12

1.15

1.3

1.35

1.4

1.39

1.29

1.23

2.1

1.4

1.6

17-18

18-19

18-21

18-30

19-20

19-22

20-23

20-24

21-22

21-31

21-33

22-29

23-25

24-25

24-26

2

2

4

3

3

3

2

2

3

0

3

0

0

2

0

0

3

3

2

1

4

0

3

2

3

1

4

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0.78

0.87

0.95

0.97

0.92

0.83

0.84

0.86

0.97

0

0.96

0.6

0

0.75

0

0

0.97

0.98

0.9

0.97

0.36

0

0.55

0

0

0.57

0

0

0.63

0.92

0.92

0

0

0

0

where (A29) - (A (A36), (A37) equivalent representations of the constraints (A12), (A13), (A14), (A15), (A16) and (A17) respectively. The intermediate variables introduced satisfies formulations (A41) - (A43).

In summary, the original lower-level problem after transformation by KKT is expressed as formulations (A18)-(A24), formulations (33)- (37), (A25) - (A28), (A3) - (A11) and (A29) - (A43). Therefore, the transformed vulnerability identification problem is as follows:

$$\max_{a} \sum_{T \in \mathbf{\Omega}_{\mathbf{T}}} \pi_{T} \left(\sum_{i \in V} \Delta P d_{i}^{T} \right)$$
 (A44)

s.t. (26) - (29), (A18) - (A43).

APPENDIX B

PARAMETERS OF UTN AND ROAD NETWORK

Table IV contains information of the road lengths and cable signs, Table V contains the node parameters of the case study, the number of cables on the roads, and E_{ij} for each road in the case study are shown in Figure B1.

TABLE IV

TABLE IV					25-27	1.5	0	0	0	0	
ROAD N	ROAD NETWORK CONNECTION RELATION AND PARAMETER				26-27	1.57	0	0	2	0.76	
l_{ij}	d _{ij} (km)	mraij	mrb_{ij}	mrc_{ij}	E_{ij}	26-29	1.05	4	0	0	0.75
1-2	1.8	0	0	0	0	26-37	4	3	0	0	0
1-3	1.6	0	0	0	0	27-28	1.9	0	0	0	0
2-51	1.7	0	0	0	0	28-37	3	0	0	0	0
2-52	1.7	0	0	0	0	28-38	3.5	0	0	0	0
3-4	1.3	0	0	0	0	29-35	2	0	0	0	0.93
3-12	1.9	0	0	0	0	30-31	2.3	3	0	0	0.95
4-5	1.7	0	0	0	0	31-32	1.8	3	0	0	0.93
4-12	1.7	0	0	1	0.43	32-33	2	5	0	0	0.93
5-6	1.8	0	0	0	0	32-45	2.2	0	0	0	0
6-9	1.5	3	0	0	0.93	33-34	1.7	3	0	0	0.89
6-10	1.5	2	0	0	0.95	34-35	1.82	4	0	0	0.89

34-44	2	2	0	0	0.68	64-87	1.3	0	0	0	0	
35-36	1.5	2	0	0	0.89	65-84	1.7	0	0	0	0	
36-37	1.4	3	0	0	0.9	66-67	1.02	0	0	0	0	
36-41	2.7	0	0	0	0	66-69	1.02	0	1	0	0.7	
36-44	1.7	2	0	0	0.87	67-68	1.9	0	0	0	0	
37-40	3.7	0	0	0	0	68-76	1.79	0	0	0	0	
38-39	1.9	0	0	0	0	69-70	1.76	0	0	2	0.67	
39-40	1.7	1	0	0	0.56	69-71	1.69	0	0	0	0	
39-85	2.1	0	0	0	0	69-75	1.95	4	0	0	0.89	
40-41	1.82	1	0	0	0.6	70-72	1.05	0	1	0	0.78	
40-65	1.95	0	0	0	0	71-73	2.3	0	0	0	0	
41-42	1.67	3	0	0	0.96	72-73	1.21	0	2	0	0.74	
41-43	1.32	2	0	0	0.87	73-74	1.25	0	0	1	0.32	
42-61	1.65	4	0	0	0.95	74-75	2.52	0	0	0	0	
42-65	0.89	0	0	0	0	74-77	2.1	0	0	2	0.56	
43-44	1.32	3	0	0	0.93	74-80	2.9	0	0	3	0.67	
44-46	1.35	2	0	0	0.89	75-77	1.92	4	0	0	0.97	
45-46	1.4	0	0	0	0	76-77	1.68	0	0	0	0	
45-47	1.6	3	0	0	0.79	77-78	2.6	4	0	0	0.96	
46-61	1.62	4	0	0	0.95	78-81	2	2	0	0	0.92	
47-48	1.45	3	0	0	0.9	79-80	1.97	0	2	0	0.59	
47-50	1.7	0	0	0	0	80-81	2.01	4	0	0	0.95	
47-60	1.89	0	0	0	0	81-82	2	4	0	0	0.94	
48-49	1.43	4	0	0	0.97	81-83	2.32	4	0	0	0.96	
48-58	1.05	3	0	0	0.89	82-83	1.87	3	0	0	0.89	
49-50	0.89	2	0	0	0.88	83-87	1.62	0	0	0	0	
51-55	1.97	0	0	0	0	84-85	1.82	0	0	0	0	
52-53	1.9	2	0	0	0.89	84-86	1.3	0	0	0	0	
52-54	1.9	2	0	0	0.93	86-87	2.05	0	0	0	0	
53-55	1.82	0	0	0	0		2.00		BLE V			
53-56	1.89	4	0	0	0.94		Node Parameters					
54-56	2.2	2	0	0	0.9	Node Number			e Output/MV			
54-57	0.93	4	0	0	0.92				0			
55-66	1.1	0	0	1	0.5	1	pq		0		0	
56-66	1.25	0	0	0	0	2	pq		342		0	
56-70	1.19	0	0	0	0	3	pq				0	
57-58	0.65	2	0	0	0.78	4	pq		385		0	
57-70	1.8	0	0	0	0	5	pq		0		0	
58-59	1.1	0	1	0	0.78	6	pq		0		0	
58-72	1.4	0	2	0	0.57	7	pq		233.8		0	
59-60	1.4	0	0	0	0.57	8	pq		268.5		0	
59-79	1.62	0	0	3	0.78	9	pq		0		0	
60-61	1.63	0	0	0	0.78	10	pq		0		0	
60-62	1.63	0	0	0	0	11	pq		0		0	
	1.4		0		0	12	pq		287.5		0	
62-63		0		0		13	pq		0		0	
62-80	1.6	0	2	0	0.76	14	pq		0		0	
63-64	1	0	0	0	0	15	pq		220		0	
64-65	0.9	0	0	0	0	16	pq		329		0	
64-82	1.2	2	0	0	0.9	17	pq		0		0	

Fig. B1 The coupling network between UPN and the road network of the case.