Ackermann's Function

_ Bib July

The Ackermann's function is defined by the following recurrence relation:

$$A(1,j) = 2^j$$
 for $j \ge 1$

$$A(i, 1) = A(i - 1, 2)$$
 for $i > 3$

$$A(1,j) = 2^{j}$$
 for $j \ge 1$
 $A(i,1) = A(i-1,2)$ for $i \ge 2$
 $A(i,j) = A(i-1,A(i,j-1))$ for $i,j \ge 2$

Use the recurrence relation to fill up as many values as you can in the table below. Start with Row 1 and work your way up to larger values of i and j.

Ackermann Table					
i/j	1	2	3	4	
1	Y	+	^	19	
2	4.	19.	419	rrrr	
3.	19				

What pattern emerges in Row 27

rlen: i=1;1: t yt
else: ryg=x