Homework 7

1. Addition and Mutilplication of matrices.

(a) Multiply the following matrices.

i.
$$F = \mathbb{R}$$
. $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$, $A \cdot B = ?$ and $B \cdot A = ?$.

ii.
$$F = \mathbb{R}$$
. $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $A \cdot A = ?$.

iii.
$$F = \mathbb{R}$$
. $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $A \cdot A = ?$, $A \cdot A \cdot A = ?$, $A \cdot A \cdot A \cdot A = ?$.

In general $A^{N} = ?$

iv.
$$F = \mathbb{Z}_3$$
. $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, $A^N = ?$

v.
$$F = \mathbb{Z}_5$$
. $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $A \cdot B = ?$ and $B \cdot A = ?$

vi.
$$F = \mathbb{Z}_2$$
. $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $A \cdot B = ?$.

vii.
$$F = \mathbb{R}$$
. $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0.5 & 1 \\ 1.5 & 1 \\ 2.5 & 1 \end{pmatrix}$, $A \cdot B = ?$. Can you multiply $B \cdot A$?

- (b) In a. i-vi write the addition of the corresponding matrices, that is compute A + B = ?.
- (c) Consider the set $M_{2\times 2}(\mathbb{R})$ with the operation of multiplication, is it true that for every $A, B \in M_{2\times 2}(\mathbb{R})$ we have

$$A \cdot B = B \cdot A$$
.

If the statement is correct, prove it. If not exhibit a counter example.

(d) The same like in c. but for $M_{1\times 1}(\mathbb{R})$.

2. Multiplication of a vector by a matrix.

(a) Let F be a field. Consider the vector space $M_{n\times 1}(F)$ of n coloumn vectors.

i. Let $A \in M_{n \times n}(F)$ be a square n by n matrix. The matrix A defines a map $A: M_{n \times 1}(F) \to M_{n \times 1}(F)$ given by matrix multiplication

$$v \longrightarrow A \cdot v$$
,

show the map A is linear.

ii. More generally, Let $A \in M_{m \times n}(F)$ be a m by n matrix. The matrix A defines a map $A: M_{n \times 1}(F) \to M_{m \times 1}(F)$ given by matrix multiplication

$$v \longrightarrow A \cdot v$$
.

show the map A is linear.

(b) Apply the following multiplications.

i.
$$F = \mathbb{R}$$
. $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

ii.
$$F = \mathbb{R}$$
. $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

iii.
$$F = \mathbb{Z}_5$$
. $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

- (c) Same as a. but for $F = \mathbb{Z}_3$.
- 3. Ordered basis. Let V be a f.d vector space over a field F. Let $S = (v_1, ..., v_N)$ be an ordered basis. Consider the coordinate map

$$\varphi_S:V\to F^N,$$

defined by $v \mapsto (\alpha_1, ..., \alpha_N)$ where the N-tuple $(\alpha_1, ..., \alpha_N)$ is defined uniquely by $v = \sum_{i=1}^{N} \alpha_i v_i$.

- (a) Show that φ_S is a linear map.
- (b) Show that φ_S is an isomorphism. Hint: since the dimension of V and F^N is the same, it is enough to show $Ker(\varphi_S)=\{0\}$, that is φ_S is injective.
- (c) Compute the inverse map $\varphi_S^{-1}: F^N \longrightarrow V$.
- (d) Let $V = \mathbb{R}^3$. Consider the following ordered bases:

$$S = (e_1, e_2, e_3)$$
 the standard basis.

$$T = (u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (1, 0, 1)).$$

i. Compute $\varphi_S : \mathbb{R}^3 \to \mathbb{R}^3$ and $\varphi_T : \mathbb{R}^3 \to \mathbb{R}^3$.

- ii. Compute $\varphi_T \circ \varphi_S^{-1} : \mathbb{R}^3 \to \mathbb{R}^3$.
- 4. **Matrices in** \mathbb{R}^N . Recall the standard ordered basis of \mathbb{R}^N is $S = (e_1, e_2, ..., e_N)$, where $e_i = (0, 0, ..., 1, 0, ..., 0)$. Write the corresponding matrices, in terms of the standard basis of \mathbb{R}^N , of the following operators.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+y, x-y).
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (x, 0).
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x,x).
 - (d) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x, x, y).
 - (e) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x y, x + y, z + x + y).
 - (f) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x, y, z, t) = (x + y, x + z, y + t, a + y + z + t).
 - (g) $T: \mathbb{R}^N \to \mathbb{R}^N$, $T(x_1, ..., x_N) = (x_1 x_N, x_2 x_N,, x_{N-1} x_N, x_N)$.
- 5. **Matrices continue.** Write the corresponding matrices of the following operators.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+y,x-y) in terms of the ordered basis S = ((1,1),(0,1))
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + y, x y, x + y + z), in terms of the ordered basis S = ((1, 1, 0), (0, 1, 1), (1, 0, 1)).
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x,y) = (x+y, x-y, x+y+z), in terms of the ordered basis S = ((1,1,1), (0,1,1), (1,0,1)).
 - (d) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x,y,z,t) = (x+y,x+z,y+t,a+y+z+t), in terms of the ordered basis S = ((1,1,1,1),(1,-1,1,1),(1,1,-1,1),(1,1,1,-1)). In each case, prove that the set S is indeed a basis, that is linear independent and spanning.
- 6. Associativity of matrix multiplication.
 - (a) Let $A, B, C \in Mat_{n \times n}(F)$. Prove that $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
 - (b) Let $A \in Mat_{m \times n}(F)$, $B \in Mat_{n \times k}(F)$, $C \in Mat_{k \times l}(F)$. Prove that $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
 - (c) Consider the set $Mat_{n\times n}(F)$ equipped with the operations of addition and multiplication of matrices. Prove it is a ring: in your answer exhibit units with respect to addition and multiplication. Is it a commutative ring, that is, a ring where multiplication is commutative?