Sardar Vallabhbhai Patel Institute of Technology, Vasad B. E. First Sem (Mathematics 1)

Tutorial: 01

1 For given ε , find $\delta > 0$ such that for all (x, y), $\sqrt{x^2 + y^2} < \delta \implies f(x, y) - f(0, 0) < \varepsilon$

$$\sqrt{x^2 + y^2} < \delta \implies f(x, y) - f(0, 0) < \varepsilon$$
where $f(x, y) - (x + y)/(x^2 + 1)$, $\psi = 0.01$

2 Find limit for the following functions as (x, y)→(0,0), if exists.

(1)
$$f(x,y) = \frac{x+y}{x+2y}$$

(1)
$$f(x,y) = \frac{x+y}{x+2y}$$
 (2) $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$ (3) $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$

(3)
$$f(x,y) = \frac{x^2 - xy^2}{x^2 + y^2}$$

Show that

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x' + y'}} : (x,y) \neq 0 \\ 0 : (x,y) \neq 0 \end{cases}$$
 is continuous at origin.

- 4 Find all the second order partial derivatives
 - (i) $g(x, y) = x^2 y \cos y + y \sin x$

(ii)
$$h(x, y) = \tan^{-1} \left(\frac{y}{x} \right)$$

- 5 If u = x'y + y''z + z''x prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = (x + y + z)^2$
- If $u = x^3y + e^{xy^3}$ then prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial y}$
- ⁷ If $u = \log(x^2 + y^2) + \tan^{-1}(\frac{y}{x})$ then prove that u satisfies Laplace's equation $u_{x} + u_{y} = 0$
- If $u = \log(x^3 + y^3 + z^4 3xyz)$ then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x + y + z)^2}$

- 9 Let w = f(x, y, z) be a function of three independent variables, write the formal definition of the partial derivative for $\frac{\partial f}{\partial z}$ at (1,2,3) for $f(x, y, z) = x^2 y z^2$.
- Write chain rule for dw/dt where w=f(x, y, z), $x=g_1(t)$, $y=g_2(t)$, $z=g_3(t)$ & Find dw/dt at given value of t.

(i)
$$w = \frac{x}{z} + \frac{y}{z}$$
, $x = \cos^2 t$, $y = \sin^2 t$, $z = 1/t$; $t = 3$.

(ii)
$$w = 2ye^x - \ln z$$
, $x = \ln(t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$;

- Find the value of $\frac{\partial z}{\partial x}$ at the point (1,1,1,) if the equation $xy + z^3x 2yz = 0$ defines z as a function of the two independent variables x and y and the partial derivatives exists.
- 12 If z = f(x,y), $x = e^{u} + e^{-v}$, $y = e^{-u} e^{v}$ then prove that $\frac{\partial f}{\partial u} \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial v}$.
- By using partial derivatives find the value of $\frac{dy}{dx}$ for $xe^y + \sin(xy) + y \log 2 = 0$ at $(0,\log 2)$.