18. Ferilheildi

Stærðfræðigreining IIB, STÆ205G, 4. mars 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

18.1

Heildi falls yfir feril

Skilgreining 18.1

Látum \mathcal{C} vera feril í \mathbb{R}^2 stikaðan af samfellt diffranlegum stikaferli $\mathbf{r}:[a,b]\to\mathbb{R}^2$. Ritum $\mathbf{r}(t)=(x(t),y(t))$. Heildi falls f(x,y) yfir ferilinn \mathcal{C} með tilliti til bogalengdar er skilgreint sem

$$\int_{\mathcal{C}} f(x,y) ds = \int_{a}^{b} f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$
$$= \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt.$$

Sama aðferð notuð til að skilgreina heildi falls yfir feril í \mathbb{R}^3 .

18.2

Setning 18.2

Látum \mathcal{C} vera feril í \mathbb{R}^2 . Gerum ráð fyrir að \mathbf{r}_1 og \mathbf{r}_2 séu tveir samfellt diffranlegir stikaferlar sem báðir stika ferilinn \mathcal{C} . Ef fall f(x,y) er heildað yfir \mathcal{C} þá fæst sama útkoma hvort sem stikunin \mathbf{r}_1 eða stikunin \mathbf{r}_2 er notuð við útreikningana.

18.3

Skilgreining 18.3

Ferill \mathcal{C} í plani er sagður samfellt diffranlegur á köflum ef til er stikun $\mathbf{r}:[a,b]\to\mathbb{R}^2$ á \mathcal{C} þannig að til eru punktar $a=t_0< t_1< t_2< \cdots < t_n< t_{n+1}=b$ þannig að á hverju bili (t_i,t_{i+1}) er \mathbf{r} samfellt diffranlegur ferill og markgildin

$$\lim_{t \to t_i^+} \mathbf{r}'(t) \qquad \text{og} \qquad \lim_{t \to t_{i+1}^-} \mathbf{r}'(t)$$

eru bæði til.

Líka sagt að stikaferillinn **r** sé samfellt diffranlegur á köflum.

18.4

Heildi vigursviðs eftir ferli

Skilgreining 18.4

Látum $\mathbf{F}(x,y)$ vera vigursvið og $\mathbf{r}:[a,b]\to\mathbb{R}^2$ stikun á ferli \mathcal{C} og gerum ráð fyrir að stikaferillinn \mathbf{r} sé samfellt diffranlegur á köflum. Heildi vigursviðsins $\mathbf{F}(x,y)$ eftir ferlinum \mathcal{C} er skilgreint sem

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt.$$

18.5

Skilgreining 18.5

Ritum $\mathbf{F}(x,y) = F_1(x,y)\mathbf{i} + F_2(x,y)\mathbf{j}$. Ritum líka $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$. Pá má rita dx = x'(t) dt, dy = y'(t) dt. Með því að nota þennan rithátt fæst að

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} (F_1(x, y) \, \mathbf{i} + F_2(x(t), y(t)) \, \mathbf{j}) \cdot (x'(t) \, \mathbf{i} + y'(t) \, \mathbf{j}) \, dt$$

$$= \int_{a}^{b} F_1(x(t), y(t)) x'(t) \, dt + F_2(x(t), y(t)) y'(t) \, dt$$

$$= \int_{\mathcal{C}} F_1(x, y) \, dx + F_2(x, y) \, dy.$$

18.6

Athugasemd 18.6

Látum \mathcal{C} vera feril í \mathbb{R}^2 . Gerum ráð fyrir að $\mathbf{r}_1 : [a,b] \to \mathbb{R}^2$ og $\mathbf{r}_2 : [a',b'] \to \mathbb{R}^2$ séu tveir samfellt diffranlegir á köflum stikaferlar sem stika \mathcal{C} . Gerum ennfremur ráð fyrir að $\mathbf{r}_1(a) = \mathbf{r}_2(b')$ og $\mathbf{r}_1(b) = \mathbf{r}_2(a')$ (þ.e.a.s. stikaferlarnir fara í sitthvora áttina eftir \mathcal{C}). Þá gildir ef $\mathbf{F}(x,y)$ er vigursvið að

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}_1 = -\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}_2.$$

(Ef breytt er um stefnu á stikun á breytist formerki þegar vigursvið heildað eftir ferlinum.)

18.7