МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика» Магистерская программа: «Вычислительные методы и суперкомпьютерные технологии»

Образовательный курс «Глубокое обучение»

ОТЧЕТ

по лабораторной работе №5

Применение переноса обучения глубоких нейронных сетей

Выполнили:

студенты группы 381703-3м Гладкова Татьяна Крутоборежская Ирина Крюкова Полина Подчищаева Мария

Содержание

Цели	3
Задачи	4
Решаемая задача	
Выбор библиотеки	6
Метрика качества решения задачи	6
Тренировочные и тестовые наборы данных	6
Конфигурации нейронных сетей	7
Результаты экспериментов	8
Выволы	8

Цели

Цель настоящей работы состоит в том, чтобы исследовать возможности переноса обучения для решения целевой задачи, выбранной изначально для выполнения практических работ.

Задачи

Выполнение лабораторной работы предполагает решение следующих задач:

- 1. Поиск исходной задачи (близкой по смыслу к целевой задаче) и поиск натренированной модели для решения исходной задачи.
- 2. Выполнение трех типов экспериментов по переносу знаний (типы экспериментов описаны в лекции).
- 3. Сбор результатов экспериментов.

Решаемая задача

Была выбрана задача бинарной классификации: «кошки» - «собаки». Были использованы картинки из наборов данных https://www.kaggle.com/tongpython/cat-and-dog и https://www.kaggle.com/c/dogs-vs-cats/data. Получившийся набор состоит из 35029 изображений.

Рис. 2 Пример изображения из класса «собаки»

С помощью скрипта на python данные были преобразованы к размеру 128×128. С помощью скрипта im2rec.py, который входит в библиотеку MXNet, изображения были сконвертированы в формат .rec.

Выбор библиотеки

Для выполнения лабораторных работ выбрана библиотека MXNet для языка программирования Python.

На этапе проверки корректности установки библиотеки выполнена разработка и запуск тестового примера сети для решения задачи классификации рукописных цифр набора данных MNIST. Достигнута точность 0.9225.

Метрика качества решения задачи

В качестве метрики точности решения используется отношение угаданных животных ко всем в тестовой выборке:

$$Accuracy = \frac{Correctly \ answers \ count}{Images \ count}$$

Тренировочные и тестовые наборы данных

В качестве тренировочной выборки используем тренировочную выборку первого и второго наборов данных, всего 16500 изображений котов и 16505 изображений собак. В качестве тестовой выборки используем тестовую выборку только из первого набора данных, т.к. во втором наборе данных тестовая выборка не разбита на изображения котов и собак. Всего в тестовой выборке 2042 изображения, котов и собак поровну.

Тестовые конфигурации нейронных сетей

В качестве исходной задачи была выбрана задача классификации изображений на основе базы данных ImageNet, которая содержит 1000 классов различных изображений. В качестве натренированной модели была выбрана нейронная сеть resnext-50, которая содержит 52 сверточных слоя, 49 слоев с функцией активации relu, 2 слоя с пространственным объединением и 1 полносвязный слой на 1000 нейронов с функцией активации softmax.

В данной лабораторной работе были проведены следующие эксперименты:

- 1. Использовались модели без изменений, но с полным ее переобучением. Веса инициализировались случайным образом.
- 2. Замена классификатора в исходной модели. Веса в нем инициализируются случайным образом. Оставшаяся часть модели используется как метод выделения признаков и данная часть модели не переобучается. В качестве нового классификатора был выбран классификатор с одним полносвязным скрытым слоем на 500 нейронов и функцией активации tanh и еще одним полносвязным слоем с функцией активации softmax.

3. Тонкая настройка параметров модели. В данном эксперименте обучается вся нейронная сеть. При этом классификатор заменяется на новый со случайными весами. А оставшаяся часть модели инициализируется весами из натренированной модели. В качестве нового классификатора был выбрал классификатор с одним полносвязным слоем на 10 нейронов с функцией активации softmax.

Результаты экспериментов

Эксперименты проводились при следующих параметрах обучения: batch_size = 8, optimizer = 'sgd', learning rate = 0.01

Nº	Количество	Результат		
эксперимента	эпох	Точность на тренировочном	Точность на тестовом	Время, с
		множестве	множестве	
1	5	0.74	0.81	293.29
2	5	0.98	0.99	2.58
3	2	0.99	0.99	302.53

Выводы

Наилучшую точность показал третий эксперимент. Значит, обучающих данных хватило для тонкой настройки модели.