

Figure 7.1

- 1. See Figure 7.1; what is the total resistance Rτ as "seen" by the voltage source?
 - a. 2.4 ohms
 - (b) 3.2 ohms
 - c. 4.8 ohms
 - d. 6.4 ohms

$$P_{\tau} = \frac{16}{1211} \left[\frac{6113 + 4}{5113 + 4} \right] = \frac{3.2n}{1511}$$

- 2. See Figure 7.1. What is the current through the 6 ohm resistor?
 - (a.) 0.67 A
 - ъ. 3.00 A
 - c. 2.00 A
 - d. 1.33 A

$$I_{+} = \frac{12V}{RT} = \frac{12V}{3.2n} = \frac{3.75A}{3.2n}$$

$$I_{+} = \frac{12V}{6n} = \frac{2A}{6n}$$

$$I_{6n} = \frac{2A}{6n} \left(\frac{2n}{6n}\right) = \frac{10.66A}{7}$$

$$I_{+} = \frac{12V}{6n} = \frac{10.66A}{7}$$

- See Figure 7.7; Find the MESH currents (as assigned above): 3.
 - a. $I_1 = 14.67 \text{ A}$, $I_2 = 6.67 \text{ A}$, $I_3 = 4.67 \text{ A}$
 - (b) $I_1 = 6.67 \text{ A}$, $I_2 = 4.67 \text{ A}$, $I_3 = 14.67 \text{ A}$
 - c. $I_1 = 4.67 \text{ A}$, $I_2 = 14.67 \text{ A}$, $I_3 = 6.67 \text{ A}$
 - d. $I_1 = 6.67$ A, $I_2 = 14.67$ A, $I_3 = 4.67$ A

$$\mathbb{O}\left(I_3 - I_1\right) R_1 + 20 + (I_2 - I_1) R_2 = 0 \Rightarrow -35 I_1 + 30 I_2 + 5 I_3 = -20 (1)$$

3 50 +
$$(I, -I_3)R, -10 = \emptyset \Rightarrow 5I, +0I_2 -5I_3 = -40 (3)$$

SOLVING VIELDS: $I, = 6.67A$
 $I_2 = 4.67A$
 $I_3 = 14.67A$

IR2 = I2-I, = 1-2A

- See Figure 7.7; Determine "I," the current through R_2 (in the direction shown): 4.
 - (a) -2.0 A
 - b. 2.0 A
 - c. 10.0A
 - d. -10.0 A
- See Figure 7.7; Determine the power dissipated by R₁. 5. PR, = (I3-I,) R, = 1320W
 - a. 327 W
 - b) 320 W
 - c. 246 W
 - d. 60.0 W
- See Figure 7.7; Determine the current flowing through R3. 6.
 - (a.)4.67 A, down
 - b. 8 A, down
 - c. 4.67 A, up
 - d. 6.67 A. down

See Figure 8.7. Find V₁ and V₂ 7.

a.
$$V_1 = -24 \text{ V}, V_2 = 30 \text{ V}$$

(b)
$$V_1 = -12.9 \text{ V}$$
, $V_2 = 1.43 \text{ V}$

c.
$$V_1 = -8.01 \text{ V}, V_2 = 4.66 \text{ V}$$

d. $V_1 = -1.43 \text{ V}, V_2 = -17.6 \text{ V}$

$$\frac{1}{1} = \frac{3V}{2\ln n} = \frac{142.9 \, \text{m/s}}{1}$$

See Figure 8.7. Find the current through the 5 ohm resistor: 8.

$$I_{5n} = \frac{V_2 - V_1}{5_n} = \frac{14.29V}{5_n} = 2.86A$$

See Figure 8.7. Find the power delivered by the 3A source: 9.

$$P_{3A} = I(K-V_1)$$

= $3A(14.29V)$

- 10. For Figure 5.70: Find the Thevenin equivalent resistance (R_{TH}) looking back into the circuit from terminals a-b (the load has already been removed):
 - a. 50 ohms
 - (b.)12.5 ohms
 - c. 25 ohms
 - d. 0 ohms
- 11. For Figure 5.70: Find the Thevenin equivalent voltage (V_{TH}) looking back into the circuit from terminals a-b (the load has already been removed):
 - a. 150 V
 - b. 37.5 V
 - ©. ₹5 V
 - d. 50 V
- - a.113 W
 - b. 44.4 W
 - c. 38.5 W
 - d. 67.9 W

- $75V^{+} V_{TH} = \frac{3A}{25n} = \frac{3A}{25n}$ $= \frac{12.5n}{1/2.5m}$
- 13. See Figure 5.70. How much power would be delivered to a 100-ohm resistor placed between terminals a-b? \(\times / 100 \improces \tau 0A0 \)
 - (a. 44.4 W
 - b. 64.2 W
 - c. 62.1 W
 - d. 38.5 W

$$I = \frac{750}{112.5} = 666.7 \text{ mA}$$

Figure 2 - Circuit for Problems 14 and 15

- 14. See Figure 2 above. Find the current that flows through R₁ due only to the 18V source and the direction of this current:
 - a. 4 A, top to bottom
 - b. 2.23 A, bottom to top
 - c. 5 A, top to bottom
 - d 1 A, bottom to top
- 15. See Figure 2 above. Find the total current that flows through R₁ and the direction of this current:
 - (a)3 A, top to bottom
 - b. 2.23 A, bottom to top
 - c. 1 A, top to bottom
 - d. 6.77 A, top to bottom

$$R_{1}$$
 R_{2}
 8_{n}
 $18V = 18V$

18 V

TO

DUE

$$|I| = |I| = |I|$$

OR 3A Top To Bettoch