COM S 230 HW01

Charles Yang

February 4, 2021

1. Translations from english to logic

F: Passing the final; A: Attending class regularly; P: Pass the class.

- a) The thing that is sufficient is first in implication $F \lor A \to P$
- b) if P is true, then A is necessarily true $P \to A$
- c) This is a straightforward translation $P \iff (A \land F)$
- 2. Implication is not associative; $((p \to q) \to r) \iff (p \to (q \to r))$ is not a tautology.

p	q	r	$p \rightarrow q$	$(p \to q) \to r$	$q \rightarrow r$	$p \to (q \to r)$	$ \mid ((p \to q) \to r) \iff (p \to (q \to r)) \mid $
0	0	0	1	0	1	1	0
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

3. Prove $(p \to \neg q) \land (q \to \neg r) \equiv (p \lor r) \to \neg q$

- $(\neg p \lor \neg q) \land (\neg q \lor \neg r)$ Implication 1 x 2
- $\neg\neg((\neg p \vee \neg q) \wedge (\neg q \vee \neg r))$ Double Negation
- $\neg((p \land q) \lor (q \land r))$ De Morgan's x 2
- $\neg(((p \land q) \lor q) \land ((p \land q) \lor r))$ Distribution
- $\neg (q \land ((p \land q) \lor r))$ Absorption
- $\neg (q \land ((p \lor r) \land (q \lor r)))$ Distributive
- $\neg (q \land (q \lor r) \land (p \lor r))$ Associative
- $\neg((p \lor r) \land q)$ Absorption & Commutative

- $\neg (p \lor r) \lor \neg q$ De Morgan's
- $(p \lor r) \to \neg q$ Implication 1
- 4. Who's lying? T is Tom's claim, and S is Sue's claim. C: $T \oplus S \equiv TRUE$
 - 1) Suppose T is true.
 - 2) Then S is also true.
 - 3) (1) and (2) Contradicts C. T cannot be true.
 - 4) If Tom is the SE Major, and Sue is the CS Major, then T is false and S remains true.
 - 5) (4) Satisfies C. Tom is SE and Sue is CS.
- 5. Prove any compound proposition is logically equivalent to some proposition in CNF
 - For all compound propositions, there exists 2^n combinations of basic propositions, where n is the number of basic propositions.
 - For all combinations, the compound proposition is either true or false.
 - CNF can be written as "as long as none of the variable combinations that make the proposition false are satisfied, then the compound proposition is true."
 - Basically, $\neg((a_1 \land a_2 \land ... \land a_n) \lor (b_1 \land b_2 \land ... \land b_n) \lor ...)$ where a, b, ... are combinations of basic propositions that make the proposition false.
 - Applying De Morgan's, we get $\neg(a_1 \land a_2 \land ... \land a_n) \land \neg(b_1 \land b_2 \land ... \land b_n)...$
 - Again. $(\neg a_1 \lor \neg a_2 \lor ... \lor \neg a_n) \land (\neg b_1 \lor \neg b_2 \lor ... \lor \neg b_n) \land ...$
 - This is CNF. All conjugated clauses are the disjunction of the negation of basic propositions which make the compound proposition false.
- 6. Prove \oplus , \wedge , TRUE is functionally complete
 - \bullet \land is already present
 - $(p \oplus TRUE) \equiv \neg p$
 - 1) $(p \land \neg TRUE) \lor (\neg p \land TRUE)$ Definition of \oplus
 - 2) $(p \land FALSE) \lor \neg p$ Identity
 - 3) $FALSE \lor \neg p$ Domination
 - **4)** $\neg p$ Identity
 - \vee is constructed by \neg and \wedge via De Morgan's. \neg is implemented by previous proof.
 - 1) $p \vee q$
 - **2)** $\neg \neg (p \lor q)$ Double negation
 - 3) $\neg(\neg p \land \neg q)$ De Morgan's; All necessary components for this definition are present
 - \neg, \land, \lor functionally complete, so $\oplus, \land, TRUE$ is complete as well.