HW10

December 18, 2024

In the first two problems, we consider a nearest neighbor random walk on \mathbb{Z} :

$$P[X_{n+1} = X_n + 1 \mid X_n] = p_n, \quad P[X_{n+1} = X_n - 1 \mid X_n] = q_n, \tag{0.1}$$

where $p_n, q_n \ge 0$ and $p_n + q_n = 1$. Recall that $(\mu_n)_{n \in \mathbb{Z}}$ is an invariant measure if $\mu P = P$, that is,

$$\mu_n = p_{n-1}\mu_{n-1} + q_{n+1}\mu_{n+1}, \quad \forall n \in \mathbb{Z}.$$
 (0.2)

Exercise 1 Let μ be an invariant measure. We define the "flux" between n and n+1 by $j_n = p_n \mu_n - q_{n+1} \mu_{n+1}$.

- 1. Show that j_n is constant.
- 2. Show that if μ is an invariant distribution, then $q_n \equiv 0$.
- 3. Shwo that if $q_{n_0} = 0$ for some $n_0 \in \mathbb{Z}$ (that is, the random walk cannot cross the site n_0 from the right to the left), then $q_n = 0$ for $n \ge n_0$.

Remark: the condition $j_n = 0$ implies that

$$p_n \mu_n = q_{n+1} \mu_{n+1}. \tag{0.3}$$

This is the "detailed balance" condition.

Exercise 2 Let $q_0 = 0$ and $p_n = \frac{1}{2} - \frac{1}{2n^{\alpha}}$, $n \ge 1$ for some $\alpha > 0$.

- 1. Use the detailed balance condition to determine all invariant measures μ .
- 2. Find the sufficient and necessary condition in terms of α for an invariant distribution to exist.

In the next two problems, we assume that X_n is a simple random walk on \mathbb{Z}^d , that is,

$$P[X_{n+1} = X_n \pm e_i \,|\, X_n] = \frac{1}{2d}, \quad i \in \{1, 2, \dots, n\}, \ e_i \text{ unit vectors in } \mathbb{Z}^d.$$
 (0.4)

Exercise 3 Let μ be an invariant measure.

1. Show that

$$\mu_m = \frac{1}{2d} \Big[\mu_{m+e_1} + \mu_{m-e_1} + \dots + \mu_{m+e_d} + \mu_{m-e_d} \Big]. \tag{0.5}$$

2. Use the first part to deduce that if

$$\mu_{m_*} = K = \sup_{m \in \mathbb{Z}^d} \mu_m,\tag{0.6}$$

then $\mu_m = K$ for all $m \in \mathbb{Z}$.

3. Show that μ cannot be an invariant distribution.

Exercise 4 We change notation and write $f(m) = \mu_m$ for μ satisfying (0.5). Assume in addition that f is bounded.

- 1. Show that $f(X_n)$ is a martingale.
- 2. Show that $f(X_n)$ converges P^x -a.s. and in $L^1(P^x)$, if $X_0 = x$.
- 3. We know that $\lim_{n\to\infty} f(X_n)$ is measurable to the exchangable σ -algebra, and thus is a constant. Show that this constant is f(x).
- 4. Let $\xi_n = X_n X_{n-1}$. Almost surely we have

$$\lim_{n \to \infty} f(x + \xi_1 + \xi_2 + \dots + \xi_n) = f(x). \tag{0.7}$$

Show that for all $k \geq 1$,

$$f(x + \xi_1 + \dots + \xi_k) = f(x).$$
 (0.8)

5. Conclude that f is a constant.

Remark: This means that the invariant measure of the simple random walk on \mathbb{Z}^d is unique up to a factor.