

Aufgaben zu Riemannsche Flächen - WS 2025/26

13. Blatt

Aufgabe 42: Sei $\Delta:=\{z\in\mathbb{C}\mid |z|<1\}$ und $\Delta^\times=\Delta\setminus\{0\}$. In der Vorlesung wurde gezeigt, dass es zu jeder C^∞ -Abbildung $g\in\mathcal{E}(\Delta)$ eine Lösung $f\in\mathcal{E}(\Delta)$ von

$$\frac{\partial f}{\partial \bar{z}} = g$$

existiert. Variieren Sie den Beweis so, dass die Behauptung auch für Δ^{\times} gilt. 1

Aufgabe 43: Folgern Sie aus der vorherigen Aufgabe:

$$\check{H}^1(\Delta^{\times}, \mathcal{O}) = 0$$

Aufgabe 44: Sei X ein topologischer Raum und

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

eine kurze exakte Sequenz von Garben auf X. Zeigen Sie, dass für jedes offene $U \subset X$ die Sequenz

$$0 \longrightarrow \mathcal{F}(U) \longrightarrow \mathcal{G}(U) \longrightarrow \mathcal{H}(U)$$

(ohne die Null am rechten Ende) immer noch exakt ist.

Aufgabe 45:

i) Zeigen Sie, dass der kanonische Divisor auf \mathbb{CP}^1 durch

$$K = -2 \cdot \infty$$

gegeben ist (was heißt das eigentlich?).

ii) Zeigen Sie, dass jeder Divisor vom Grad 0 auf \mathbb{CP}^1 ein Hauptdivisor ist.

¹Dazu könnte man an einer entsprechenden Stelle Laurent-Polynome $\sum_{k=-N}^{M} c_k z^k$ anstelle von herkömmlichen Polynomen verwenden.