Evaluation of Elastomers for Use in Thermal Solar Collectors

William M. Alvino.* George M. Bower, Lawrence W. Frost, and Luciano C. Scala

Westinghouse Electric Corporation, Research and Development Center, Pittsburgh, Pennsylvania 15235

As part of a national program to develop sealant and gasketing materials for use in solar heating and cooling applications, work sponsored by DOE was begun at the Westinghouse Research Laboratories to identify improved materials through synthesis and/or reformulation of existing compounds. This paper will describe our evaluation of improved commercial materials covering six classes of polymers: silicones, fluoroelastomers, EPDM, acrylic, ethylene–acrylic, and chlorobutyl elastomers. Data will be presented on initial screening test results as well as on extended aging tests covering the following properties: tensile strength, tensile modulus, elongation, weight loss, compression set (–10 and 150 °C), and hardness. A total of 33 materials that cover the six polymer classes are being evaluated.

Introduction

As a result of a study performed at the National Bureau of Standards in 1977, a number of test methods and standards were developed for the evaluation and specification of rubber seals and gaskets used in solar energy systems (Stiehler et al., 1978). These standards were developed to ensure that the materials being used would perform adequately for extended periods of time in the hostile environment of solar thermal collectors. The maximum service temperature for flat plate solar collectors is estimated to be about 200 °C (Stiehler et al., 1978). The primary function of the rubber is to seal or weatherproof the joints between the components of the system. The types of seals include preformed gaskets and liquid sealants or caulks designated PS and SC, respectively. The key properties of concern for evaluation are tensile strength, elongation, tensile modulus, compression set (low and high temperature), hardness, and weight loss (Mendelsohn et al., 1980; Morris and Schubert, 1980).

In previous studies a survey was made to identify those materials currently available to meet the proposed specifications. Five classes of polymers were identified as possible candidates for use in solar collectors. They are fluoroelastomers, silicones, EPDM, acrylic and ethyleneacrylic materials. Selected materials in each of the above classes were evaluated under an earlier contract (Mendelsohn et al., 1980). Since that time new materials and improved formulations have been developed that could be used in solar collectors. This paper will describe our evaluation of these new materials in each of the five classes mentioned above. Data will be presented on compound formulations, curing conditions, screening tests, and extended aging tests. The approach taken to acquire materials and make formulation changes was to work closely with the manufacturer of each material to provide a continuity of information exchange regarding the performance of their materials under test.

Flat Plate Collectors. There are many designs for solar energy collectors. A few words about the flat plate collector would perhaps help the reader have a better understanding of the material problems involved. A flat plate collector transmits the sun's energy to a heat transfer medium which circulates to heat a variety of structures. The plate is contained in an insulated metal housing, usually aluminum to minimize weight, which is faced with an insulating glass cover. The absorber plate can be metal or plastic and is usually coated black for maximum radiation absorption. The heat transfer medium can be a

Table I. Screening Tests for Class PS Materials^a

property	suggested require- ments	method
ultimate elongation, % min	100-350 ^d	D412
compression set, % max after 70 h at 150 °C after 166 h at -10 °C	30 60	D395 ^b D1229 ^c
resistance to heating, 166 at 150 °C hardness change, max ultimate elongation change, % max tensile strength change, % max volatiles lost, % max	10 30 20 1	Shore A D412 D412

^a As suggested in NBSIR 77-1437. ^b Method B. ^c Measured 10 s after release of pressure. ^d Depending on the design of the solar collector.

Table II. Screening Tests for Class SC Materials^a

property	suggested require- ments	method
ultimate elongation, % min	100-200	D412
resistance to heating, 166 h at 125 °C		D865
hardness change, max	10	C661
ultimate elongation change, % max	30	D412
tensile strength change, % max	20	D412
volatiles lost, % max	1	

^a As suggested in NBSIR 77-1437.

silicone fluid, water, water-glycol mixtures, or air.

The primary purpose of the collector is to convert as much radiation as possible into heat and as a result the unit can become very hot. Under stagnant conditions, when the heat transfer medium is not circulating because there is no demand, the temperature can exceed 235 °C, and at night the temperature can drop substantially as a result of black body radiation. Thus a daily temperature differential of up to 260 °C is not uncommon during the winter in some climates.

Much swifter temperature cycling can also occur. For example, on a cold winter day, a cloud passing between the sun and the collector may cause a temperature change of as much as 40 °C within a few minutes.

The differential expansion and contraction of the materials of construction caused by these extreme temperature changes create a sealing problem, and flat plate col-

Table III. Solar Collector Materials

code	polymer class	material grade	supplier
PS-1	fluoroelastomer	Fluorel 2179	3M Co.
PS-2	fluoroelastomer	Viton AHV	Du Pont Co.
PS-3	EPDM	Epsyn 4506	Copolymer Co.
PS-4	EPDM	Royalene 580HT	Uniroyal Co.
PS-5	EPDM	Vistalon 404	Exxon Co.
PS-6	EPDM	Nordel 1070	Du Pont Co.
PS-7	EPDM	Epcar 545	B.F. Goodrich Co.
PS-8	EPDM	Epcar 585	B.F. Goodrich Co.
PS-9	silicone	Silastic 747U	Dow Corning Co.
PS-10	silicone	Silastic 745U	Dow Corning Co.
PS-11	silicone	Tufel 845	General Electric Co.
PS-12	silicone	SE-7603U	General Electric Co.
PS-13	silicone	SE-3715U	General Electric Co.
PS-14A	silicone	SWS-7162 Nat.	SWS Co.
PS-14B	silicone	SWS-7162 Red	SWS Co.
PS-15	acrylic	Cyanacryl R	American Cyanamid Co.
PS-16	acrylic	Hycar 4054	B.F. Goodrich Co.
PS-17	ethylene-acrylic	Vamac B-124	Du Pont Co.
PS-18	chlorobutyl	1066	Exxon Co.
PS-19	silicone	6002 Red	Groendyk Co.
PS-20	fluoroelastomer	Viton AHV Modified	Du Pont Co.
PS-21	fluoroelastomer	Viton B-70	Du Pont Co.
PS-1A	fluorosilicone	Fluorel 2460	3M Co.
SC-1	silicone RTV	1576LV Red	General Electric Co.
SC-2	silicone RTV	160-3-381 Black	General Electric Co.
SC-3	silicone RTV	1573 Black	General Electric Co.
SC-4	silicone RTV	3145	Dow Corning Co.
SC-5	silicone RTV	3140	Dow Corning Co.
SC-6	silicone RTV	795 Black	Dow Corning Co.
SC-7	silicone RTV	738	Dow Corning Co.
SC-8	silicone RTV	951	SWS Co.
SC-9	silicone RTV	934	SWS Co.
SC-10	silicone RTV	106 Red	General Electric Co.
PS-22	acrylic	Cyanacryl L	American Cyanamid Co.
PS-23	acrylic	Cyanacryl L	American Cyanamid Co.

lectors must be tightly sealed to avoid heat loss. Any condensation of moisture or condensation of volatile components of the sealant on the underside of the glass cover will reduce the transmittance of solar light and reduce the efficiency of the unit. Also, to be economical, solar collectors should operate trouble- and maintenance-free for tens of years. Moisture entering the unit can cause corrosion and damage to the insulation. The sealant must also remain flexible at subzero temperatures and not soften or degrade at the extremely high temperatures occasionally experienced by the collector. It must remain flexible despite exposure to ultraviolet radiation and ozone, the effects of which are magnified by the high service temperatures. And, of course, to seal effectively, the sealant must not absorb moisture after curing or give off any volatile components under any of these conditions. One design of a solar collector is shown in Figure 1.

Experimental Section

Material Section. Each of the major manufacturers of the six classes of polymers was contacted and asked to supply their best formulation that would meet the specifications shown in Tables I and II. The type, grade, and supplier of these materials are listed in Table III.

Compounding and Molding. Materials coded PS-1, 3, 4, 15, 19, and 1A were compounded and cured by the manufacturer; all the rest were compounded at the Westinghouse R&D Laboratories using a conventional two-roll rubber mill. The formulations are shown in Table IV. The compounded stock was compression molded into $6 \times 6 \times 0.090$ in. test slabs in a preheated four-cavity mold. The cure condition for each compound was established using the Monsanto oscillating disk rheometer Model 100. Information on the rheograph properties and cure con-

Figure 1. Assembly of a typical solar collector.

ditions for each compound is presented in Table V.

The SC materials were squeezed from their cartridges into an open face aluminum mold whose dimensions are $5.5 \times 1.125 \times 0.090$ in., and the material was spread with a razor blade to give a smooth surface. A Tedlar release sheet was used on one side of the mold. All SC materials were cured at room temperature and 50% relative humidity for a minimum of 14 days prior to testing. The type of cure system for each sealant is given in Table VI.

Testing. All PS and SC materials were evaluated as per the screening tests listed in Tables I and II according to ASTM procedures. Tensile modulus at 100 and 200% was also measured as per ASTM D1415. Extended aging tests were performed on the more promising materials in forced air circulating ovens at temperatures from 125 to 225 °C. Data from these aging studies will be used to construct Arrhenius curves to estimate the material's service life.

_
P
Ë
ē
ſa,
2
(PS
S
ü
ţi
ıla
Ē
Ħ
E
H
ĕ
5
z
豆
>
1
ē
ap

	mqd		mqd		mqd		wad
PS-1		PS-4		PS-9		PS-18	
Fliorel 2179	100	Royalene 580HT	100	Silastic 747U	100	Chlorobutyl 1066	100
MgO	က	zinc oxide	20	Varox	0.43	HAF-HS347 black	30
Ca(OH),	9	N-650 black	55	PS-10		FEF N-550 black	30
medium thermal black	10	Sunpar 2280	27	Silastic 74511	100	petrolatum	01 '
Austin Black	10	Nanguard 495	က	Varox	0.53	Sunpar 2280	
PS-1 A		zinc stearate	0.5			Ogw	Б
Fluorel 9460	08	Dri-Mix Tac 75	1.3	FS-11	ó	zinc oxide	o -
GE FSE 2080	88	DiCup 40KE	13	Tuiel SE-845		TWILDS	٠, ٥
Manico 297	20	dibenzo-p-quinone dioxime	1	CA-Z	1	MBIS	1
Aerosil R-972	0%	PS-5		PS-12		PS-20	
Carb-O-Sil HS-5	6.5	Vistalon 404	100	SE-7603U	100	Viton AHV	93.35
Ca(OH)		Agerite resin D	1.5	Varox	8.0	MT(N-908) Thermax black	10
Luperco 101XI.	1.3	N-787 SRF-HM	30	DG_13		Austin black 325	10
TAIC	1:1	N-330 HAF	30	SE-3715	100	Maglite D	က
		zinc oxide	က	Varox	· ·	Ca(OH) ₂	9,
FS-Z	001	MgO	က			VPA no. 1	T -
VICOR ARTV	100 19 5	Sartomer 350	2	PS-14A	001	curative no. 20	1.65
Austin Block 295	19.5	DiCup	2	SWS-71620	100	curative no. 30	4
Modito D	9 6	Petrolatum SR-172	2	Varox	0.0	PS-21	
Magnice D	9	9-8d		PS-14B		Viton B-70	93.8
VPA no. 1	 	Nordel 1070	100	SWS-7162U	100	MT(N-908) Thermax black	10
curative no. 20	, cc	zinc oxide	2	Varox	8.0	Austin black 325	10
curative no. 30	8.6	Nanguard 495	8	CM-100	63	Maglite D	က
	i	N-550 FEF black	09	PS-15		Ca(OH) ₂	9
FS-3	,	DuCup 40C	œ	Cyanacryl R	100	VPA no. 1	-
Epxyn 4506	001	HVA-2	73	Agerite white	67	curative no. 20	2.2
N-762 black	00 -	DS 12		N-550 FEF black	09	curative no. 30	4
Kicon 154	10	F.3-1 Droom F.4 E	100	stearic acid	1.5	PS-22	
Agerite MA	- F	Epcal 040 Nikko FFF blook	40	Curative C-50	7	Cvanacryl L	100
methyl incarate		Change 9980	, rc	spider sulfur	0.25	N-774 (SRF-HM)	20
Dicup 40C	*	zino ovide	o vo	DS-16 and 16 A		spider sulfur	0.3
PS-3A		Agerite resin D	(Urser 4054	100	TP-759	5.0
Epsyn 4506	20	DiCin 40C	7	A customer C	001	stearic acid	2.0
Epsyn 40A	20	Dicup 400	•	Acrawax C	4 C	Curatine C-50	7.0
N-762 black	09	PS-8		15-00 Dist 15-3- N 550	۵ ر <u>ه</u>		
Ricon 150	15	Epcar 585	100	With a adime atomete	8	PS-23	9
Agerite MA	_	N-550 FEF black	$\frac{40}{2}$	Wilco Soundin Stearage	+ 0	Cyanacryl L	100
methyl nicalate	П	Sunpar 2280	വ	poly, disp. 1(AL)D-13	٩	N-774 (SRF-HM)	4.2
DiCup 40C	4	zinc oxide	ი,	PS-17		N-326 (HAF-LS)	10
		Agerite resin D	⊣ :	Vamac B-124	124	Spider Suitur	9.0
		DiCup 40C	,	Armeen 18D	0.5	II-109) (
				Vanfre UN	01 F	Stearic actu NPS red oil soan	4 cc
				ISAF-N-220 black	23 7	drog no not of the)
				MDA	1.25		

Table V. Cure Data on Commercial PS Elastomers

	rheomet	er readings at c	ure temp	cure co	nditions	post	cure
	torque	e, inlb	T_2 ,	time,	temp,	time,	temp,
code	min a	max b	$\min^{\frac{1}{2}} c$	min	°C,	h	°C
PS-1				10	177	20	254
PS-2	28	114	3	17	168	24	171
PS-3	13.3	115	1.7	30	160	1	160
PS-4				30	166	0.5	151
PS-5	14	44	1.7	32	160	12	66
PS-6	31	119	1.1	32	160		
PS-7	9	109	1.0	16	177		
PS-8	9.5	134	1.2	18	177		
PS-9	8.5	84.5	1.1	10	171		
PS-10	3	56	1.5	10	171		
PS-11	4	39	1.5	22	154	4	204
PS-12	5	38	1.5	10	177	4	249
PS-13	7.5	96	1.5	18	160	4	204
PS-14A	6	63	1.6	15	171	••	
PS-14B	6	62	1.6	15	171		
PS-15	10	86	1.2	15	166	4	177
PS-16	6	20	6.4	7	170	8	175
PS-17	2	56	3.6	42	177	4	176
PS-18	9	30	3.4	24	160		
PS-19	**						
PS-20	12.5	62	3.6	14	169	24	171
PS-21	4.5	81	2.3	8	169	24	171
PS-1A			~				
PS-3A				30	160	1	160
PS-16A	4	16	7.8	8	170	16	175
PS-22		55.8	2.5	15	166	4	176
PS-23	**	43	4.9	20	166	4	176

^a A measure of the stiffness of the unvulcanized compound. ^b A measure of the stiffness (shear modulus) of the cured compound. ^c Time to incipient cure; a measure of processing safety.

Table VI. Identification of SC Materials

SC-1: a red RTV silicone with an octanoic acid cure
SC-2: a black RTV silicone with an acetic acid cure
SC-3: a black RTV silicone with an octanoic acid cure
SC-4: a clear RTV silicone with an alcohol cure
SC-5: a hazy RTV silicone with an alcohol cure
SC-6: a black RTV silicone with an acetic acid cure
SC-7: a white RTV silicone with an alcohol cure
SC-8: a translucent RTV silicone with an acetic acid cure
SC-9: a white RTV silicone with an acetic acid cure

Results and Discussion

Material Selection. Although the material list in Table III is quite large and contains many types of materials within a given polymer class, they do represent the manufacturers' recommendation on their best candidates for the initial screening tests. Because of variations in the base polymer and in compound formulations, it was imperative to test all possible candidates in order to choose the most promising materials for further evaluation. The screening test results and suggestions for improvements in compound formulations were passed on to the manufacturers for their review. Only a few compounds were suggested for reformulation. They were Viton AHV, Epsyn 4506, Cyanacryl R, and Fluorel 2179. All the other formulations were considered the best available at the time to meet the property requirements for solar collectors outlined in Tables I and II, and no recommendations were made by the manufacturer for reformulation.

Compounding and Curing. All materials were compounded on a conventional two-roll rubber mill. Every effort was made to ensure thorough mixing of the ingredients while minimizing mixing time to prevent temperature buildup and shear degradation of the rubber stock.

Stock temperatures were kept below 45 °C. Each time a compound was prepared the cure condition of that particular batch was determined in order to account for variations in compound processing and to ensure optimum cure. Table V presents the cure information. No difficulties were encountered in mixing any of the compounds on the mill.

Screening Tests on PS Materials. The results of the screening tests on all PS materials are summarized in Table VII.

Compression Set. This property gave the most distinguishable results among the six classes of polymers. Ten of the materials gave low-temperature compression set values higher than the maximum allowable limit of 60. These materials in order of decreasing compression set are PS-2, PS-15 > PS-1A > PS-18 > PS-1 > PS-5 > PS-3A> PS-21 > PS-3 > PS-17, and they represent the failure of at least one material from each of the six polymer classes evaluated. On the other hand, six of the materials failed the high-temperature compression set test (maximum allowable limit of 30). Ranked in order of decreasing compression set, they are PS-18 > PS-16A > PS-1A > PS-16 > PS-17 > PS-5. Of the 25 compounds tested, 16 failed the initial compression set screening test. The fact that not all of the compounds failed suggests that indeed there are formulations within each polymer class that can be made with improved compression set values. Let us rank the remaining materials in the order of the best compression set values. At the low-temperature end we have PS-10 > PS-11 > PS-14 > PS-16 > PS-14A,B > PS-12 > PS-19 > PS-8 > PS-7 > PS-4 > PS-6 > PS-20 > PS-22 > PS-16A > PS-23. At the high-temperature end of the scale they are ranked as follows: PS-10 > PS-1 > PS-9, PS-13 > PS-14A > PS-7, PS-8, PS-11 > PS-6, PS-14B > PS-2, PS-20 > PS-21, PS-12 > PS-3A > PS-3, PS-15 > PS-4 > PS-23 > PS-22. The silicone elastomers exhibit the best overall compression set values at both low

Table VII. Status of Materials in the Solar Program. Results of Screening Tests^a

					ession , %	el	ongation	, %
code	polymer class	material grade	supplier	high temp ⁶	low temp ^c	I	F	% chgd
PS-1	fluoro	Fluorel 2179	3M Co.	7	73	157	161	+ 3
PS-2	fluoro	Viton AHV	Du Pont Co.	17	84	268	257	-4
PS-3	EPDM	Epsyn 4506	Copolymer Co.	25	66	217	178	-18
PS-4	EPDM	Royalene 580HT	Uniroyal	26	38	350	317	-9
PS-5	EPDM	Vistalon 404	Exxon	29	72	870	448	>-7
PS-6	EPDM	Nordel 1070	Du Pont	15	43	202	222	+10
PS-7	EPDM	Epcar 545	Goodrich	14	30	290	272	-6
PS-8	EPDM	Epcar 585	Goodrich	14	28	247	203	-18
PS-9	silicone	Silastic 747U	Dow Corning	13	14	167	141	-16
PS-10	silicone	Silastic 745U	Dow Corning	4	9	250	225	-10
PS-11	silicone	Tufel 845	G.E.	14	12	450	417	-7
PS-12	silicone	SE-7603U	G.E.	18	21	475	475	C
PS-13	silicone	SE-3715U	G.E.	13	16	129	122	-5
PS-14A	silicone	SWS-7162 Nat.	SWS Co.	15	20	302	329	+ 9
PS-14B	silicone	SWS-7162 Red	SWS Co.	10	20	337	311	-8
PS-15	acrylic	Cyanacryl R	Amer, Cyan.	25	84	157	127	-20
PS-16	acrylic	Hycar 4054	Goodrich	40	53			
PS-17	ethylene-acrylic	Vamac B-124	Du Pont	38	65	390	305	-22
PS-18	chlorobutyl	1066	Exxon	88	75			
PS-19	silicone	6002 Red	Groendyk	28	24	770	783	+ 2
PS-20	fluoro	Viton AHV + cure conc. increase	Du Pont	17	48	215	200	-7
PS-21	fluoro	Viton B-70	Du Pont	18	67	218	182	-13
PS-1A	fluorosilicone	Fluorel 2460	3M Co.	44	80	370	320	-14
PS-3A	EPDM	4416-30		19	68	292	205	-30
PS-16A	acrylic	PS-16 with more cure		51	53	174	158	8
PS-22	acrylic	Cyanacryl L	Amer. Cyan.	29	49			
PS-23	acrylic	Cyanacryl L	Amer, Cyan.	25	76			

tens	ile strength,	psi	tens	ile modulus,	psi	wt lo	ss ^e	hard	dness, Sh	ore A
I	F	% chg	I	F	% chg	normal cure	post- cure	I	F	% chg ^f
1604	1635	+ 2	1002	1089	+6	0	······	79	79	0
1423	1588	+12	723	839	+16			76	78	+ 2
2253	2100	-7	669	866	+ 29	0.9		74	77	+ 3
1630	1767	+8	411	542	+32	1.2	0.9	65	66	+1
1597	1564	-2	212	256	+ 21	0.6		65	68	+ 3
1463	1952	+33	433	508	+17	2.2	0.6	72	74	+ 2
2010	2208	+10	365	498	+36	1.4	0	68	69	+1
2287	2348	+ 3	476	599	+ 26	1.4	0	69	71	+ 2
1067	1107	+4	720	804	+12	1.0	0.45	73	76	+3
781	828	+6	273	304	+11	1.5	0.75	59	57	-2
915	991	+8	212	216	+ 2	0.3		56	54	-2
917	1028	+12	206	324	+ 57	0.1		64	63	-1
1132	1127	0	394	931	+4	0.2		79	79	0
953	1066	+12	330	363	+10	1.7	0.54	63	67	+4
1050	1049	0	329	378	+15	1.7		68	72	+4
1770	1668	-6	1070	1189	+11	0.4		78	79	+1
						1.3		68	72	+4
2305	2323	+1	458	641	+39	1.8		74	71	-3
						1.5		64	71	+7
1000	1076	+8	107	97	-9	1.1		46	49	+ 3
1337	1445	+8	713	734	+6	0.2		76	76	0
1248	1076	-14	662	739	+12	0.2		74	75	+1
1984	1939	-2	596	676	+13					
2274	1741	-23	416	552	+33					
928	1110	+ 20	407	619	+ 52	1.2		73	71	-2
							1.2	64	65	+1
							1.1	66	68	+ 2

 $[^]a$ See Table IX for aging conditions. b 70 h, 150 °C; maximum acceptable = 30%. c 166 h, -10 °C; maximum acceptable = 60%. d Maximum acceptable = 30%. e Maximum acceptable = 10.

Fable VIII. Screening Test Results for SC Materials

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ota	ongation	0, 10	rensi	ensile strengtii, psi	ui, psi	rensur	censue modulus, psi	s, psi	Wt 1088, 70	0, 10	horda	dS 330	2,0
material grade supplier I F chg ^b I F chg ^c I I G I I I I A 295 334 +13 1.7 I I I A 295 334 +13 255 289 +13 I I 1 A 295 334 +13 1.7 1.4 1.7 1.4	polyme					%			%			%	normal	post	nai ar	C39, DI	210
silicone 1576LV Red G.E. 241 44 +25 296 339 +14 1.7 1.6 61 63 silicone 160-3-381 blk. G.E. 241 259 +7 318 404 +27 150 169 +13 0.9 0.8 48 48 silicone 1573 blk. G.E. 134 140 +4 295 334 +13 255 289 +13 1.7 1.4 61 63 silicone 3145 Dow Corning 262 266 +1 258 267 +3 100 98 -2 0.9 0.7 45 42 silicone 795 blk. Dow Corning 376 337 -10 118 110 -7 70 65 -9 50.9 -9 60.9 0.7 45 silicone 738 Dow Corning 423 420 -1 255 209 -18 65 59		_	supplier	Ι	H	$^{chg}^{b}$	I	Œ	$^{ m chg}^c$	—	F.	$^{\mathrm{chg}}$	cure	cure a	1	<u> </u>	chg^f
silicone 160-3-381 blk, G.E. 134 140 +4 295 334 +13 255 289 +13 1.7 1.4 61 63 silicone 1573 blk, G.E. 134 140 +4 295 334 +13 255 289 +13 1.7 1.4 61 63 silicone 3145 Dow Corning 262 266 +1 258 267 +3 100 98 -2 0.9 0.7 45 42 silicone 795 blk, Dow Corning 376 337 -10 118 110 -7 70 65 -7 0.8 0.7 38 33 silicone 738 Dow Corning 423 420 -1 255 209 -18 65 59 -9 5.1 3.4 39 40 silicone 951 SWS Corp. 98 108 +10 478 495 +4 171 161 -6 0.9 0.7 50 49 silicone 934 SWS Corp. 98 108 +10 478 495 +4 171 161 -6 0.9 0.7 64 63			G.E.	130	140	8+	353	444	+ 25	296	339	+14	1.7	1.6	61	63	+2
silicone 1573 blk. G.E. 134 140 +4 295 334 +13 255 289 +13 1.7 1.4 61 63 silicone 3145 Dow Corning 527 500 -5 652 558 +14 144 135 -6 1.3 1.1 49 49 silicone 795 blk. Dow Corning 376 337 -10 118 110 -7 70 65 -7 0.8 0.7 45 42 silicone 738 Dow Corning 423 420 -1 255 209 -18 65 59 -9 5.1 3.4 39 40 silicone 951 SWS Corp. 276 282 +2 528 549 +4 171 161 -6 0.9 0.7 50 49 silicone 934 8 108 +10 478 495 +10 460 0.9	-		G.E.	241	259	+7	318	404	+27	150	169	+13	0.0	8.0	48	48	0
silicone 3145 Dow Corning 527 500 -5 652 558 +14 144 135 -6 1.3 1.1 49 49 silicone 3140 Dow Corning 262 266 +1 258 267 +3 100 98 -2 0.9 0.7 45 42 silicone 795 blk. Dow Corning 376 337 -10 118 110 -7 70 65 -7 0.8 0.7 38 33 silicone 738 Dow Corning 423 420 -1 255 209 -18 65 59 -9 5.1 3.4 39 40 silicone 951 SWS Corp. 98 108 +10 478 495 <100 460 0.9 0.7 64 63			G.E.	134	140	+4	295	334	+13	255	289	+13	1.7	1.4	61	63	+2
silicone 3140 Dow Corning 262 266 +1 258 267 +3 100 98 -2 0.9 0.7 45 42 silicone 795 blk. Dow Corning 423 420 -1 118 110 -7 70 65 -7 0.8 0.7 38 33 silicone 738 Dow Corning 423 420 -1 255 209 -18 65 59 -9 5.1 3.4 39 40 silicone 951 SWS Corp. 98 108 +10 478 495 <100 460 0.9 0.7 64 63			Dow Corning	527	200	-5	652	558	+14	144	135	9	1.3	1.1	49	49	0
silicone 795 blk. Dow Corning 376 337 -10 118 110 -7 70 65 -7 0.8 0.7 38 33 silicone 738 Dow Corning 423 420 -1 255 209 -18 65 59 -9 5.1 3.4 39 40 silicone 951 SWS Corp. 276 282 +2 528 549 +4 171 161 -6 0.9 0.7 50 49 silicone 934 SWS Corp. 98 108 +10 478 495 <100 460 0.4 60.9 6.7 64 63	-		Dow Corning	262	266	+1	258	267	+3	100	98	-2	6.0	0.7	45	42	.3
silicone 738 Dow Corning 423 420 -1 255 209 -18 65 59 -9 5.1 3.4 39 40 silicone 951 SWS Corp. 276 282 +2 528 549 +4 171 161 -6 0.9 0.7 50 49 silicone 934 SWS Corp. 98 108 +10 478 495 <100 460 0.4 664 63			Dow Corning	376	337	-10	118	110	L-	70	65	<u>L</u> -	8.0	0.7	38	33	-5
silicone 951 SWS Corp. 276 282 $+2$ 528 549 $+4$ 171 161 -6 0.9 0.7 50 49 silicone 934 SWS Corp. 98 108 $+10$ 478 495 <100 460 0.4 64 63			Dow Corning	423	420	Ţ	255	209	-18	65	59	6-	5.1	3.4	39	40	+1
silicone 934 SWS Corp. 98 108 +10 478 495 <100 460 0.4 64			SWS Corp.	276	282	+2	528	549	+4	171	161	9-	0.0	0.7	20	49	Т
			SWS Corp.	86	108	+10	478	495		<100	460		0.4		64	63	-

and high temperature. The EPDM materials are ranked next followed by the fluoroelastomers and the acrylics. The best silicones are PS-10 and 11, the best EPDM are PS-7 and 8, the best fluoroelastomer is PS-20, and the best acrylic is PS-22. The chlorobutyl material performed very poorly and was eliminated from further testing. A couple of the compounds were reformulated based on manufacturers' recommendations. For example, in PS-20 the concentration of curatives no. 20 and 30 was increased and the compression set value at low temperature improved considerably (84 decreased to 48). Viton B-70 was recommended as an alternative to Viton AHV for improved low-temperature compression set. Some improvement was obtained (84 decreased to 67). Compare PS-2 with PS-21. The addition of a silicon into the fluoroelastomer did not improve the low-temperature compression set (compare PS-1 and PS-1A). Reformulation of PS-3, and EPDM elastomer, did not improve its compression set (compare PS-3 with PS-3A). Recommendations by the manufacturer to increase the post cure of PS-16 did not improve the compression set values (see PS-16A). However, when the acrylic elastomer Cyanacryl R was replaced with Cyanacryl L, the low-temperature compression set improved from a value of 40 (PS-16) to 25 and 29 (PS-22 and 23).

Tensile Properties. These properties include tensile strength, modulus, and elongation. Although changes occurred in these properties, they were all within the acceptable limit and all 27 materials passed the initial screening test with respect to these properties.

With the exception of PS-1, PS-6, PS-14A, and PS-19, all the other materials exhibited a decrease in elongation after the screening test. In general the order of increasing percent change in elongation is fluoroelastomer < silicone < EPDM < acrylic < ethylene-acrylic. Six of the materials exhibited a decrease (-2 to -23%) in tensile strength; all the rest showed an increase (+2 to +33%). Although tensile modulus is not part of the recommended screening tests, it was included in this study to aid in characterizing changes in the aging behavior of the materials. It is significant to note that all the materials except PS-19 showed an increase in their tensile modulus (+2 to +57%). Within each polymer class some compounds were better than others. In general, the order of increasing percent change in modulus is as follows: fluoroelastomer < silicone < fluorosilicone < EPDM < acrylic < ethylene-acrylic.

Weight Loss and Hardness. Volatile material evolved from the rubber components could adversely affect the efficiency of the solar collector if these volatiles collected on the cover plate to cause a reduction in transmittance of the solar radiation. Therefore it is important to minimize or eliminate material that would be fugitive under the operating conditions of solar thermal collectors. Weight loss values of 0 for PS-1 to 2.2% for PS-6 were obtained in the initial screening tests. However, these values can be reduced below the 1% allowable limit by post-curing the rubber compositions. The post-cure operation also serves to optimize the other properties of the rubber. The fluoroelastomers and silicones tested exhibited the lowest weight loss. These materials were followed by EPDM and the acrylic compositions. After post-curing, the weight loss of all the materials was reduced to below 1%.

Only slight changes in hardness were observed after the screening test and these changes were within the 10% allowable limit. It is expected that significant changes in hardness would occur only on those materials that are rapidly degraded under the test conditions as was the case for the chlorobutyl compound.

Table IX. Compression Set Aging Data

able IX.	Compres	ssion	Set Ag	ging Da	ata										
	aging						com	pression	set	, % after	aging time	e (days)			
code	temp, °C	1	2	3	5	6-7	9	13-14	16	27-30	42-45	56	70	97-102	149-154
PS-1	225 200 175	6 2	8 4 4		13 7 5		17 9 6		21 16 7	28 17 9	32 22 11	36	44 24 13	45 14	30 17
PS-2	175 150		21	14	27	17	31	21	36	40 26	43 29		49	52	
PS-4	150			26		39		49		51					
PS-6	175 150 125		16	15	22	20 12	26	25 15	30	57 35 21	45 28	47 32(62)	52		
PS-7	175 150		18	14	24	21	29	28	48	64 37	44	49	50		
PS-8	175 150 125		17	14 11	24	18 14	30	24 18	52	32 26	40 30	44 34	53	42	
PS-9	225 200 175 150	31 15 11	42	59 26 17 13		36 22 15		31 21		42 26	$60(48)^a$				
PS-10	225 200 175 150	31 15 8	39	55 26 14 4		36 19 8		27 12		40 17	52(48) 21	24(51)	27	31(84)	50(164
PS-11	175 150			23 20		$\begin{array}{c} 26 \\ 24 \end{array}$		$\begin{array}{c} 36 \\ 27 \end{array}$		45 31		55 40	44	50	
PS-12	150			18		31		41		53					
PS-13	225 200 150	52 25	69	48 13		65 18		22		30	36	41	44	49	
PS-14A				15		25		27		35		49	52		
PS-14B		75 40 27	86	55 34 10		71 39 11		49 19		72 19	29	35	39	48	
PS-20	200 175 150	31 20		39 28 17		46 37 19		49 36 23		40	30	45			

^a Numbers in parentheses are days of aging.

Table X. Weight Loss and Hardness after Aging Fluoroelastomers

	aging					aging t	time, days			
code	temp, °C	property	0	2	6	10	16	30	60	102
PS-2	225	wt loss, % hardness	76	0.6 92	1.3 80	1.9 80	3.0 79	4.9 78	10.0 78	17.7 82
PS-2	200	wt loss, % hardness	77	0.2 80	0.4 78	0.7 80	1.1 78	1.8 76	$\begin{array}{c} 3.2 \\ 79 \end{array}$	4.5 79

Screening Test Results for SC Materials. While the requirements for the sealant materials are not as stringent as for the PS materials, these must at least function as a vapor barrier to prevent the ingress of moisture at the seal locations. Furthermore, they must not absorb moisture nor give off a substantial amount of volatile components that could adversely affect the collector. The results of the screening tests are summarized in Table VIII. In contrast to the PS materials, the sealants show a higher weight loss. This was expected due to the nature of the curing mechanism of these types of materials. Post-curing does reduce the amount of volatile material but not significantly. Excessive weight loss occurred with SC-7 which was eliminated from further testing. The remaining materials are ranked in decreasing order with respect to their overall change in properties: SC-9 > SC-8 > SC-5 > SC-6> SC-2.

Long-Term Aging of PS Materials. Compression Set. Long-term aging data are presented in Table IX for selected elastomer compositions which include the fluoroelastomers, EPDM's, and silicones. The acrylic and ethylene-acrylic elastomers were not placed on extended aging tests because of poor performance in the screening

Of the fluoroelastomers, the composition containing Fluorel 2179 (PS-1) provided the best hot compression set values after aging. After 100 days at 175 °C the compression set for PS-1 was 14 vs. 52 for the other fluoroelastomer composition designated PS-2. Even though the percent increase in compression set is 250% for PS-1 vs. 147% for PS-2, the absolute value for PS-1 is three times lower than for PS-2.

In the silicone class the composition containing Silastic 745 (PS-10) is superior to all the other silicones evaluated.

Table XI. Weight Loss and Hardness after Aging EPDM Elastomers

	aging temp,								aging t	íme, d	ays					
code	°C,	property	0	2	4	7	8	12	15	25	29	42	50	57	114	148
PS-6	225	wt loss, % hardness	71	4.5 89										**************************************		
PS-7	225	wt loss, % hardness	69	$\frac{4.2}{90}$												
PS-8	225	wt loss, % hardness	71	3.1 86												
PS-6	175	wt loss, % hardness	71		0.8 73		1.0 70		2.2 84		$\begin{array}{c} 5.6 \\ 94 \end{array}$			7.6 95		
PS-7	175	wt loss, % hardness	69		$\begin{array}{c} 0.7 \\ 71 \end{array}$		0.8 71		3.2 93		$\begin{array}{c} 5.4 \\ 94 \end{array}$			7.0 90		
PS-8	175	wt loss, % hardness	71		0.5 73		0.5 85		$\frac{2.1}{94}$		$\frac{2.9}{94}$			4.4 95		
PS-6	150	wt loss, % hardness	71			$\begin{array}{c} 0.6 \\ 74 \end{array}$			0.6 75		0.7 76	0.6 76		$\begin{array}{c} 0.7 \\ 76 \end{array}$	$\frac{2.6}{90}$	
PS-7	150	wt loss, % hardness	67			0 70			0 71		0 73	0 74		0 77	5.2 96	
PS-8	150	wt loss, % hardness	71			0 75			0 75		0 79	0 83		0 90	1.6 97	
PS-6	125	wt loss, % hardness	70					0.3 73		$\begin{array}{c} 0.3 \\ 72 \end{array}$			$\begin{array}{c} 0.4 \\ 75 \end{array}$			0.5 75
PS-8	125	wt loss, % hardness	71					$0.5 \\ 74$		$\begin{array}{c} 0.5 \\ 72 \end{array}$			$\frac{0.5}{75}$			0.5 78

After 84 days at 150 °C the compression set is 31. Next in line is SWS-7162 Red (PS-14B) with a compression set of 39 after 70 days at 150 °C. This is followed by SE-3715U (PS-13) with a compression set value of 44 after 70 days at 150 °C.

Turning to the EPDM elastomers, the compositions containing Nordel 1020 (PS-6) and Epcar 585 (PS-8) offer the best compression set resistance after aging. For example, after 70 days at 150 °C, the compression set values for the two materials are equal (50-53).

Based on the preliminary aging data, the fluoroelastomers are the materials of choice for elevated temperature (175–200 °C) performance. The silicone materials appear to be useful in the temperature range 150–175 °C while the EPDM materials would be satisfactory below temperatures of 150 °C.

Hardness and Weight Loss. Data on the effects of long-term aging at various temperatures on the weight loss and hardness for selected elastomers are shown in Tables X-XII. The order of increasing resistance to weight loss is as follows: silicones > fluoroelastomers > EPDM's. After about 100 days aging at 225 °C the fluoroelastomer (PS-2) showed an 18% weight loss compared to only 8% weight loss for the silicone elastomers. In general the silicones exhibit a lower weight loss than the fluoroelastomers at 225 °C. However, at 200 °C the weight loss for both materials after 100 days is about the same (5%). Of the five silicone compositions evaluated, PS-9 shows the least weight loss at 225 °C; PS-11 shows the least weight loss at 200, 175, and 150 °C. As expected, the EPDM materials are not thermally stable at or above 175 °C. The sample designated PS-8 is the most stable. All the elastomers increased in hardness with aging time with the EPDM exhibiting the most change followed by the fluoroelastomers and silicones. PS-10 and 11 are softer (initial hardness of 56-58) elastomers than PS-9, 13, and 14 (initial hardness of 68-78). The changes in hardness become more discernible after aging at temperatures above 175 °C for the silicones and above 125 °C for the EPDM elastomers.

Tensile Properties. The tensile properties after aging are summarized in Table XIII. No significant deterioration in properties occurred for the fluoroelastomer composition designated PS-1 after 13 days at 225 °C. However, the silicones begin to deteriorate after three days at this temperature. Compositions PS-9 and 10 are the most stable while PS-11 deteriorates very rapidly and loses half its strength after six days at 225 °C. In general, elongation deteriorates more rapidly than tensile strength for all the elastomers.

The Nordel EPDM composition (PS-6) is more stable than Epcar 585 composition (PS-8) in terms of retention of tensile properties after 28 days aging at 150 °C.

Long-Term Aging of SC Materials. Weight loss and hardness data as a function of temperature and time are presented in Table XIV. Material designated SC-8 (SW-S-951) is the best material with respect to weight loss and hardness at all three temperatures studied (125, 150, and 175 °C). It lost only 3.9% of its weight after 100 days at 175 °C, 2.3% after 100 days at 150 °C, and 1.5% after 93 days at 125 °C. Its nearest competitor is sample SC-2 which lost 4.7, 3.1, and 1.5% of its weight after 100 days at 175, 150, and 125 °C, respectively. All the remaining SC materials showed weight losses of >10% at 175 °C, >5% at 150 °C, and >3% at 125 °C. The change in hardness after aging of SC-2 and SC-8 is negligible at all temperatures.

The actual hardness values (45–51) are equivalent for both materials. The hardness of SC-1 and 3 seem to be affected the most by thermal aging at all temperatures since the greatest change occurred with these two materials. The tensile properties of some of the SC materials after aging are shown in Table XV. Insufficient data have been obtained on the materials at this point to draw any definitive conclusions concerning long term performance.

Conclusions

The fluoroelastomers and silicones still appear to be the most resistant materials to the degradative effects of the solar collector environment. The silicone elastomers ex-

able XII.	Weigh	t Loss aı	nd Hardnes	s aft	er Agir	ng Silic	one El	astom	ers								
	aging temp,								agir	ng time	, days						
code	°C	proper	rty 0	2	4	5	8	15	23	29	37	57	68	91	104	128	150
PS-9	225	wt loss hardne		1.2 78		1.4 77	1.5 75	1.8 80	2.0 83		2.5 81	· · · ·	3.5 83		4.6 83	$\frac{5.4}{84}$	5.7 85
PS-10	225	wt loss hardne		1.6 58		1.7 57	1.8 55	2.1 56	2.4 56		2.9 58		4.2 60		6.1 61	$\frac{7.9}{64}$	9.0 65
PS-11	225	wt loss hardne		0.9 56		$\frac{1.2}{50}$	$\begin{array}{c} 1.3 \\ 45 \end{array}$	$\begin{array}{c} 1.8 \\ 52 \end{array}$	$\frac{2.1}{50}$		3.4 59		8.0 83		$\begin{array}{c} 12 \\ 90 \end{array}$		
PS-13	225	wt loss hardne		1.1 81		1.5 81	1.8 81	2.4 84	2.9 82		3.9 84		6.0 87		8.1 90		
PS-14B	225	wt loss hardne		1.5 73		1.9 73	$\begin{array}{c} 2.0 \\ 72 \end{array}$	2.5 76	3.1 75		5.0 80		12 87		16 90		
PS-9	200	wt loss hardne		$\frac{1.2}{77}$	$\frac{1.2}{77}$		1.2 78	1.5 78		1.8 80		3.3 80		5.3 80			8.1 86
PS-10	200	wt loss hardne		1.3 60	1.5 57		1.7 58	1.8 59		2.0 59		3.7 6.0		6.4 60			11 65
PS-11	200	wt loss hardne		0.6 59	$0.9 \\ 54$		1.0 55	1.1 55		1.3 55		$\frac{1.5}{54}$		1.9 53			$\frac{2.5}{54}$
PS-14B	200	wt loss hardne		1.1 71	$\frac{1.5}{72}$		1.6 75	1.9 74		$\frac{2.4}{75}$		6.6 77		10 84			
PS-9	175	wt loss hardne		0.7 77	0.9 77		1.0 76	1.1 78		1.3 79		1.7 79			2.8 80		3.3 82
PS-10	175	wt loss hardne		1.1 58	$\begin{array}{c} 1.4 \\ 60 \end{array}$		1.4 61	1.8 61		$\frac{2.1}{62}$		2.2 60			$\begin{array}{c} 3.4 \\ 61 \end{array}$		4.0 62
PS-11	175	wt loss hardne		0.3 55	0.6 56		0.6 55	0.7 55		0.8 56		1.0 54			1.3 55		1.5
PS-13	175	wt loss hardne		0.4 80	0.6 80		0.8	1.0 81		1.5 83		3.1 84					
PS-14B	175	wt loss hardne		$\begin{array}{c} 0.7 \\ 72 \end{array}$	$\begin{array}{c} 1.1 \\ 72 \end{array}$		$\begin{array}{c} 1.2 \\ 72 \end{array}$	1.3 75		1.5 75		$\frac{2.1}{74}$			5.0 79		
	0.	ging								aging ti	ime, da	ys					
code	ten	np, °C	property		0	3	7		14	28	42		56	92	114	4 1	51
PS-9]	150	wt loss, % hardness		73		0.5 75).5 76	0.6 77	0.7 78).7 79		1.0 77		
PS-10	1	150	wt loss, % hardness		57		0.8 60).8 59	1.0 59	1.0 59		1 59		1.3 59		
PS-11	-	150	urt loss %				0.3	() 3	0.4	0.5	(1.5		0.6	3	

	aging						aging of	ine, days	•				
code	temp, °C	property	0	3	7	14	28	42	56	92	114	151	
 PS-9	150	wt loss, % hardness	73		0.5 75	0.5 76	0.6 77	0.7 78	0.7 79		1.0 77		
PS-10	150	wt loss, % hardness	57		0.8 60	0.8 59	1.0 59	1.0 59	1. 1 59		1.3 59		
PS-11	150	wt loss, % hardness	56		0.3 53	0.3 55	0.4 54	0.5 53	$\begin{array}{c} 0.5 \\ 54 \end{array}$		0.6 51		
PS-13	150	wt loss, % hardness	79		0.2 79	0.2 80	0.4 80	0.5 81	0.5 81		0.8 81		
PS-14B	150	wt loss, % hardness	70	0.6 73	0.6 73	$\begin{array}{c} 0.7 \\ 72 \end{array}$	0.9 75		1.1 75	$\frac{1.2}{74}$		1.6 76	

Table XIII. Tensile Properties of PS Materials after Thermal Aging

	aging						day	s aged				
code	temp, °C	property	0	1	2	3	6	13	27	41	48	62
PS-1	225	tensile str., psi % retention elongation, % % retention 100% mod., psi	1604 157 1022	1657 103 173 110 1058		1814 113 178 113 1102	1774 111 170 108 1124	1775 111 168 107 1178				
PS-9	225	tensile str., psi % retention elongation, % % retention 100% mod., psi	1067 167 720	1080 102 160 96 736	1052 99 151 90 715	1033 97 148 89 723	887 82 123 74 724	856 80 138 80 680	693 65 93 57			
PS-10	225	tensile str., psi % retention elongation, % % retention 100% mod., psi	781 250 273	809 104 255 102 257	844 108 244 97 266	720 92 227 91 269	737 94 237 95 262	680 87 229 91 238	563 72 196 79 251			
PS-11	225	tensile str., psi % retention elongation, %	1009 489	786 78 370		607 60 293	485 48 268		371 37 0			

Table XIII (Continued)

	aging						day	s aged				n-2-n-1	
code	temp, °C	property	0	1	2	3	6	13	27	41	4	8	62
		% retention 100% mod., psi	218	76 226		60 209	55 177		0				***************************************
PS-13	225	tensile str., psi % retention elongation, % % retention 100% mod., psi	1132 129 984	1014 90 126 98 840	1034 91 124 96 876	881 78 104 81 877	900 80 104 81 840	734 65 91 72	757 67 63 49				
PS-14B	225	tensile str., psi % retention elongation, % % retention 100% mod., psi	1050 337	1116 106 330 98 337	896 85 316 94 343	877 84 315 94 333	805 77 296 88 339	739 70 250 74 391	576 55 133 39 517				
PS-1	200	tensile str., psi % retention elongation, % % retention 100% mod., psi	1604 157			1741 109 167 106 1167	1743 109 170 108 1136	1735 108 170 108 1131					
PS-9	200	tensile str., psi % retention elongation, % % retention 100% mod., psi	1067 167 720	1081 101 165 99 708		1003 94 140 84 730	1026 96 143 86 739	962 90 137 82 699	705 66 98 59 720		701 66 85 51		599 56 83 50
PS-10	200	tensile str., psi % retention elongation, % % elongation 100% mod., psi	781 250 273	780 100 250 100 256		874 112 270 108 265	827 106 249 100 278	790 101 243 97 257	556 71 188 74 260		559 72 185 74 278		
PS-11	200	tensile str., psi % retention elongation, % % retention 100% mod., psi	1009 489 218	966 96 461 96 213			761 75 305 84 215	536 53 277 57 184					
PS-13	200	tensile str., psi % retention elongation, % % retention 100% mod., psi	1132 129	1054 93 133 103 851		1098 97 122 95 1189	927 88 121 94 1135	854 75 181 140 586	715(5 62 68 53	23)	577 51 36 35		536 47 27 19
PS-14B	200	tensile str., psi % retention elongation, % % retention 100% mod., psi	1056 337 329	1023 97 351 104 332		984 94 342 102 331	933 89 317 94 351	865 82 269 80 335	721 69 215 64 417	618 59 147 44 494	517(49 115 34 484	55)	
	aş	ging					da	ays age	d				
		np, °C prope		0	1	3	6		13	27	41	48	
PS-	·8 1	.75 tensile st % retent elongatio % retent 100% mo	ion on, % ion	2287 247 476	2184 95 200 81 670	102' 45 124 50 68'	5 4 0	36 16 29 12					
PS-	.9 1	.75 tensile st % retent elongatio % retent 100% mo	ion on, % ion	1067 167 720	1097 103 166 100 705	1120 108 124 74	5 10 4 18 4 9	83 02 55 93 22	1081 102 153 92 744	1038 97 145 88 733		965 90 137 82 736	
PS-	10 1	75 tensile st % retent elongatio % retent 100% mo	ion on, % ion	781 250 273	1021 131 266 107 264	845 108 260 104 275	8 11 0 26 4 10	37	824 106 255 102 263	778 100 238 95 259		852 109 245 98 303	
PS-	11 1	75 tensile st % retent elongation % retent 100% mo	ion on, % ion	1009 489 218	968 96 480 98 216	1019 101 519 106 282	1 9 9 46 3 9	37 93 33 95 31	851 84 365 75 240	777 77 333 68 242			
PS-	13 1	75 tensile st % retent elongatio % retent 100% me	ion on, % ion	1132 129 894	1112 98 138 107 826	1110 97 142 111 849	0 111 7 9 2 13 1 10		1069 96 110 79 964	974 88 108 79 869		737 66 62 48	

177

aging time, days

775 165

PS-6

	aging					days a	ged			
code	temp, °C	property	0	1	3	6	13	27	41	48
PS-14B	175	tensile str., psi % retention	1050	1051 100	1066 102	1051 100	984 94	870 83	921 88	
		elongation, % % retention 100% mod., psi	337 329	363 108 325	360 107 340	361 107 339	329 98 342	293 87 363	291 87 394	
		100% mod., psi			0.0		aged			
code	aging temp, °C	property	0		1	3	6	13-14		27-28
PS-6	150	tensile str., psi % retention	1468	3				1831 125		1576 109
		elongation, % % retention 100% mod., psi	202	2				163 81 856		147 73 1105
PS-8	150	tensile str., psi % retention	2287	7	2335 102	2243 98	2338 102	2123 93		934 41
		elongation, % % retention	247		234 95	213 86	200 81	192 78		97 39
		100% mod., psi	476	3	564	607	689	661		

Table XIV. Weight Loss and Hardness (Shore A) of SC Materials after Aging

tensile str., psi % retention elongation, %

100% mod., psi

% retention

	aging				~ 6 b	mie, aajs			
code	temp, °C	property	0	7	15	29	58		93
SC-1	125	wt loss, % hardness	59-60	1.6 60-65	1.7 63	1.9 63-66	2.4 64 - 67		2.9 65-68
SC-2	125	wt loss, % hardness	46-50	$\substack{0.8\\44-51}$	0.9 46-50	1.0 47-49	1.3 50-52		1.5 48-52
SC-3	125	wt loss, % hardness	60-62	1.4 62-66	1.7 63-64	2.3 60-65	3.2 64-70		4.0 66-70
SC-4	125	wt loss, % hardness	49-50	1.1 49-50	1.3 49-50	2.0 50	3.0 50-52		4.1 52-55
SC-5	125	wt loss, % hardness	42-48	$0.7 \\ 43-46$	0.9 40-43	1.5 40-45	2.2 43-47	,	3.3 45-48
SC-6	125	wt loss, % hardness	34-41	$0.7 \\ 38-40$	0.8 32-33	1.5 34-37	2.6 35-40		3.5 36-40
SC-8	125	wt loss, % hardness	47-52	0.7 48-50	0.9 47-50	1.1 45-50	1.3 46-52	}	1.5 50-52
	aging				aging	time, days			
code	temp, °C	property	0	3	7	14	46	73	100
SC-1	150	wt loss, % hardness	66	1.4 64	1.6 64	2.0 64	3.1 64	4.0 65	5.2 68
SC-2	150	wt loss, % hardness	46	$\begin{array}{c} 1.2 \\ 49 \end{array}$	1.5 49	1.8 50	2.4 51	$\frac{2.8}{49}$	3.1 50
SC-3	150	wt loss, % hardness	61	1.5 63	2.0 60	2.7 63	4.7 64	6.1 68	7.3 69
SC-4	150	wt loss, % hardness	46	1.6 51	2.1 52	2.6 51	$\begin{array}{c} 4.8 \\ 52 \end{array}$	6.5 50	7.8 57
SC-5	150	wt loss, % hardness	36	1.1 37	$\begin{array}{c} 1.7 \\ 34 \end{array}$	2.4 32	4.9 32	6.9 31	8.6 33
SC-6	150	wt loss, % hardness	40-42	1.2 41-46	1.7 40-45	2.2 40-45	4.6 40-45		
SC-7	150	wt loss, % hardness			Samples s	stuck to pan.			
SC-8	150	wt loss, % hardness	47	1.2 50	1.4 48	1.5 50	1.9 50	$\frac{2.1}{49}$	2.3 50

Table XIV (Continued)

	aging					aging tim	e, days			
code	temp, °C	property	0	3	7	14	28	42	63	100
SC-1	175	wt loss, % hardness	61	2.1 64	2.4 65	3.2 64	4.6 66	5.7 68	7.6 70	10.3
SC-2	175	wt loss, % hardness	46	2.3 49	$\begin{array}{c} 2.7 \\ 49 \end{array}$	2.9 49	$\begin{array}{c} 3.4 \\ 51 \end{array}$	3.7 51	4.1 49	4.7 51
SC-3	175	wt loss, % hardness	53-61	2.6 60-65	3.7 63-67	4.9 64-68	7.5 64-72	9.9 68-72	13.4 69-74	
SC-4	175	wt loss, % hardness	46	$\frac{2.1}{50}$	3.0 49	4.0 49	6.2 51	7.9 50	10.2 51	$\begin{array}{c} 12.7 \\ 54 \end{array}$
SC-5	175	wt loss, % hardness	34-38	1.7 32-35	2.8 28-30	4.2 25-31	7.2 28-30	10.6 30	15.9 42-49	
SC-6	175	wt loss, % hardness	41	$\begin{array}{c} 1.7 \\ 42 \end{array}$	$\begin{array}{c} 2.6 \\ 42 \end{array}$	3.6 43	$6.0 \\ 44$	$\begin{array}{c} 8.0 \\ 42 \end{array}$	10.3 40	$\begin{array}{c} 12.7 \\ 42 \end{array}$
SC-7	175	wt loss, % hardness	33-36	7.8 30-32	12.4 22-33	17.1 34-35	26 37-40	33 40-45		
SC-8	175	wt loss, % hardness	49	1.6 50	1.9 50	2.1 50	2.6 50	3.0 51	$\begin{array}{c} 3.4 \\ 52 \end{array}$	$\frac{3.9}{52}$

Table XV. Tensile Properties of SC Materials after Aging

	aging			days aged	
code	temp, °C	property	0	1	6
SC-1	225	tensile str., psi	353	438	374
		% retention		124	106
		elongation, %	130	202	165
		% retention		155	127
		100% mod., psi	296	250	246
		· · · · · · · · · · · · · · · · · · ·	0	1	3
SC-1	200	tensile str., psi	353	497	396
		% retention		141	112
		elongation, %	130	210	162
		% retention		161	124
		100% mod., psi	296	271	277
			0	2	4
SC-3	200	tensile str., psi	295	350	411
		% retention		119	139
		elongation, %	134	150	161
		% retention		112	120
		100% mod., psi	255	269	306

	aging				days	aged		
code	temp, °C	property	0	1	3	6	13	27
SC-4	200	tensile str., psi	652	511	371		316	
		% retention		78	57		48	
		elongation, %	527	447	355		312	
		% retention		85	67		59	
		100% mod., psi	144	122	119		127	
SC-5	200	tensile str., psi	258	210	211	203	185	131
		% retention		80	81	77	71	50
		elongation, %	262	248	272	270	282	207
		% retention		96	105	105	109	80
		100% mod., psi	100	85	80	88	75	64
SC-6	200	tensile str., psi	118	114	79			
		% retention		97	67			
		elongation, %	376	357	2 87			
		% retention		95	76			
		100% mod., psi	70	52	37			

	aging			days		
code	temp, °C	property	0	3	6	28
SC-1	175	tensile str., psi	353	314	296	287
		% retention		89	84	81
		elongation, %	130	140	120	138
		% retention		108	92	106
		100% mod., psi	296	269	281	287

Table XV (Continued)

	aging					days	aged	
code	temp, °	C proper	ty		0		4	7
SC-3	175	tensile str. % retentio			295		96 00	349 118
		elongation	ı, %		134	1	30	145
		% retentio 100% mod			255		97 55	$\frac{108}{273}$
		100 % 11100	ı., psi		200			210
code	aging temp, °C	property	0		3	days aged	13-14	27-2
SC-4								
SC-4	175	tensile str., psi % retention	652		553 85		423 65	
		elongation, %	527		503		368	
		% retention	444		96		68	
~~ -		100% mod., psi	144		121		130	a. =
SC-5	175	tensile str., psi % retention	258		265 101	212 81	203 78	$\begin{array}{c} 217 \\ 84 \end{array}$
		elongation, %	262		297	268	286	260
		% retention			113	102	107	99
		100% mod., psi	100		92	82	69	70
			0		3	6	13	27-2
SC-6	175	tensile str., psi % retention	118		122	97	83	
		elongation, %	376		104 443	82 320	$\begin{matrix} 70 \\ 412 \end{matrix}$	167
			, , , ,, , , , , , , , , , , , , , , ,			days aged		
code	aging temp, °C	property	0		3	6	13	27-2
	, -	% retention			118	85	110	44
		100% mod., psi	70		46	46	70	
	aging					days age	ed	
code	temp, °C	property		0		13	28	56
SC-1	150	tensile str., psi		353			492	
		% retention		190			139	
		elongation, % % retention		130			190 146	
		100% mod., psi		296			283	
SC-3	150	tensile str., psi		295		333	365	
		% retention				112	124	
		elongation, % % retention		134		132 99	158 118	
		100% mod., psi		255		280	270	
SC-4	150	tensile str., psi		652		518		
		% retention				79		
		elongation, % % retention		527		489 93		
		100% mod., psi		144		131		
SC-5	150	tensile str., psi		258		233	262	265
		% retention				90	101	103
		elongation, % % retention		262		278	297	312
		% retention 100% mod., psi		100		106 81	$\begin{array}{c} 113 \\ 72 \end{array}$	119 69
SC-6	150	tensile str., psi		118		100	111	
~~ 0	200	% retention				85	94	
		elongation, %		376		318	423	
		% retention 100% mod., psi		70		85 46	$\begin{array}{c} 113 \\ 34 \end{array}$	

hibit the best overall compression set at both high and low temperature followed by the fluoroelastomers, EPDM, acrylics, and chlorobutyl materials. Of the fluoroelastomers tested, formulation PS-1 had the best lowtemperature compression set. For the silicones, PS-10 is superior to all the rest in compression set, while the EPDM elastomers designated PS-6 and PS-8 offer the best compression set in their class.

With respect to weight loss, the silicones are superior to the fluoroelastomers followed by the EPDM rubbers. PS-9 silicone shows the least weight loss at 225 °C while PS-11 silicone is superior at 200, 175, and 150 °C. PS-8, an EPDM material, shows the least weight loss. All elastomers increased in hardness with aging with the EPDM exhibiting the most change followed by the fluoroelastomers and silicones. Overall, these materials that had the best combination of properties and exhibited the best stability are PS-20, PS-6, PS-8, PS-9, and PS-10. The two sealant materials that exhibited the best combination of properties are SC-2 and SC-8.

Acknowledgment

This work was supported by the Solar Heating and Cooling Research and Development Branch, Office of Conservation and Solar Applications, U.S. Department of Energy, Contract No. DE-AC04-78CS15362MOD. The authors also wish to thank W. R. Koryak and B. L. Csontos for their assistance in this program.

Literature Cited

Mendelsohn, M. A.: Luck, R. M.: Yeoman, F. A.: Navish, Jr., F. W. "Collector

Sealants and Breathing", Contract No. DE-AC04-78CS15362, Department of Energy, Washington, DC, Feb 20, 1980. prris, L.; Schubert, R. J. "Development of 400 °F Sealants for Flat Plate

Morris, L.; Schubert, R. J. "Development of 400 °F Sealants for Flat Plate Solar Collector Construction and Installation", Contract No. DE-AC04-78CS35303, Department of Energy, Washington, DC, March 1980.

Stiehler, R. D.; Hockman, A.; Embree, E. J.; Masters, L. W. "Solar Energy Systems—Standards for Rubber Seals", NBSIR 77-1437, National Bureau of Standards Report, Washington, DC, March 1978.

> Received for review March 15, 1982 Accepted June 28, 1982

COMMUNICATIONS

A Look at Creosote vs. Chromated Copper Arsenate Salts as Wood Preservatives for the Marine Environment

Chromated copper arsenate (CCA) treatment at a retention above 0.6 pcf preserved wood better than coal-tar creosote treatment at 28 pcf in the warm-water harbor of Key West, FL, where teredine marine borers and *Limnoria tripunctata* are prevalent. CCA at between 1.1 and 2.4 pcf has prevented borer attack for over a decade. By contrast, untreated wood was destroyed in about 1 year. At Key West, CCA alone at 2.4 pcf protected wood as well from marine borers as did a combination treatment of CCA followed by creosote impregnation.

Introduction

Wood preservatives that provide long-term protection from decay fungi and terrestrial wood-boring insects often do not prevent degradation by marine borers. Annual expenditures for repair or replacement of wood damaged by marine borers may exceed \$200 million (Parrish and Bultman, 1979). Creosote has long been the favored marine preservative and protects wood well from attack by molluscan-type borers such as teredines and pholads. It is effective against crustaceans, the other major group of borers, in northern waters but not in many southern waters where the species Limnoria tripunctata is prevalent. It had been observed that some salts of copper and arsenic inhibit wood degradation by limnoria. Therefore, a study was initiated in 1969 to determine what combination of preservative type, quality, and quantity would be the most effective and economical single or dual (combination) treatment to protect wood in waters where teredine borers and Limnoria tripunctata are prevalent.

Methods

Small wood panels, $^{1}/_{4} \times 1^{1}/_{2} \times 6$ in., treated with 130 different combinations of preservative salts and creosotes, have been submerged in the sea at Key West, FL, for 12 years. Complete details of experimental design and procedures have been published previously (Johnson et al., 1973) as has a tabulation of condition of panels after 9 years' exposure (Johnson and Gutzmer, 1981). This note describes and compares some commercially important preservative treatments that show a range of effectiveness in reducing marine borer attack. These treatments are the Type III formulation (Fed. Spec. TT-W-550) of chromated copper arsenate (CCA) waterborne salts at four retentions (concentrations within the wood), a marine-grade coal-tar creosote (Fed. Spec. TT-C-645) at a high retention (28

pounds of creosote per cubic foot of wood (pcf)), and combinations of these treatments where panels were pressure impregnated with aqueous CCA solution, dried, then impregnated with creosote. The proportions of components in CCA treating solution were 47% hexavalent chromium (calculated as CrO₃), 18% bivalent copper (as CuO), and 35% pentavalent arsenic (as As₂O₅). Performance in the exposure test is based on semiannual inspections where panels are rated by ASTM procedures for extent and type of marine borer attack. Marine borer activity is continuously monitored through installation and inspection of untreated controls at each inspection.

Results and Discussion

Untreated panels of southern pine sapwood were generally heavily attacked by limnoria and teredines in 6 months and destroyed in 6 to 24 months (Figure 1). This attack was observed over the entire 12-year exposure period. CCA panels at 0.25 pcf (as CrO_3 , CuO, and As_2O_5), a retention normally recommended for wood exposed above ground out-of-doors but not in soil or water contact. remained free of attack for 18 months but then degraded rapidly to complete failure after 3 years' exposure. Panels treated quite heavily (28 pcf) with coal-tar creosote degraded less rapidly than panels with 0.25 pcf CCA, but still failed in about 5 years. This test with small panels is accelerated relative to the performance of dimension timbers or piling due to the greater surface-to-volume ratio of the panels and more exposure of earlywood preferred by borers. Despite this, such rapid degradation must be regarded as unsatisfactory. At 0.6 pcf CCA, the retention specified for wood (building) foundations, panels were heavily attacked after 6 years and destroyed in 81/2 years. Creosote-treated panels were attacked only by limnoria, but salt-treated panels at 0.25 and 0.60 pcf showed both