Prvek, nuklid, izotop, izobar, izoton

A = Nukleonové (hmotnostní) číslo

A = počet protonů + počet neutronů

A = Z + N

Z = Protonové číslo, náboj jádra

Prvek = soubor atomů se stejným Z

Nuklid = soubor atomů se stejným A a Z

Izotopy = soubor nuklidů daného prvku

Izobary = nuklidy se stejným A a různým \overline{Z} ($^{14}C-^{14}N$; $^{3}H-^{3}He$)

Izotony = nuklidy se stejným počtem neutronů, N = A - Z

Izomery = stejné nuklidy, liší se obsahem energie

Frederick Soddy (1877-1956) NP za chemii 1921 (objev izotopů)

Izotopy

Izotopy jsou souborem nuklidů pro daný prvek existuje asi 2600 nuklidů (stabilních i radioaktivních) 340 nuklidů se vyskytuje v přírodě 270 stabilních a 70 radioaktivních, ostatní uměle připravené

Monoizotopické prvky:

9Be, ¹⁹F, ²³Na, ²⁷Al, ³¹P, ⁵⁹Co, ¹²⁷I, ¹⁹⁷Au

Polyizotopické prvky: ¹H, ²H (D), ³H (T) ¹⁰B, ¹¹B Sn má největší počet **stabilních** izotopů – 10

Stabilita jader

Stabilita (vzhledem k radioaktivnímu rozpadu) je určena počtem protonů a neutronů Zóna stability Lehké nuklidy stabilní pro Z ~ N

Jen 1 H a 3 He mají více p než n. 2 H, 4 He, 6 Li, 10 B, 12 C, 14 N, 16 O, 20 Ne, 24 Mg, 28 Si, 32 S, 36 Ar a 40 Ca mají stejný počet p a n Všechny ostatní nuklidy mají **více** n než p N > Z

Mattauchovo pravidlo: ze dvojice izobarů, které se liší o 1 v protonovém čísle, je jeden radioaktivní.

 40 Ar 40 Ca $\Delta Z = 2$ 40 Ar 40 K 40 Ca $\Delta Z = 1$ 40 K je radioaktivní

Stabilita jader

Stabilita jader

U některých prvků existují v přírodě radioaktivní izotopy s dlouhým poločasem přeměny ⁴⁰K, 0.012%, 1.3 10¹⁰ roků

Prvky s $Z \le 83$ (po Bi) mají alespoň jeden stabilní izotop Výjimky: Z = 43 (Tc), 61 (Pm) se nevyskytují v přírodě Umělé radioaktivní izotopy připravené jadernými reakcemi

Nuklidy s Z ≥ 84 (od Po dále) jsou **nestabilní** vzhledem k radioaktivnímu rozpadu = **radioaktivní prvky**

Magická čísla

Počet Protonů, Z	Počet Neutronů, N	Počet stabilních nuklidů
Sudá	Sudá	168
Sudá	Lichá	57
Lichá	Sudá	50
Lichá	Lichá	4

Nuklidy se sudým počtem p a n jsou nejčastější

Astonovo pravidlo: prvky se sudým Z mají více izotopů, prvky s lichým Z nemají více než dva izotopy, z toho jeden nestabilní, prvky s lichým počtem nukleonů (A) mají jen jeden stálý izotop (⁹Be, ¹⁹F, ²³Na, ²⁷Al, ³¹P, ⁵⁹Co, ¹²⁷I, ¹⁹⁷Au).

Jen ²H, ⁶Li, ¹⁰B, ¹⁴N, ⁴⁰K, ⁵⁰V, ¹³⁸La, ¹⁷⁶Lu mají lichý počet jak p tak n

Magická čísla

Magická čísla 2, 8, 20, 28, 50, 82 a 126

Prvky s Z = magické číslo mají velký počet stabilních izotopů, pokud je izotop radioaktivní, pak má dlouhý poločas rozpadu

Sn Z = 50, 10 stabilních izotopů

Nuklidy ⁴He, ¹⁶O, ⁴⁰Ca, ⁴⁸Ca a ²⁰⁸Pb mají magický počet p i n

Hmotnost elektronu a nukleonů

Symbol	<i>m</i> / kg	<i>m</i> / u
e	9.11 10 ⁻³¹	0.0005486
р	1.673 10-27	1.007276
n	1.675 10-27	1.008665

 $1 u = 1.6606 \ 10^{-27} \ \text{kg}$

Hmotnostní úbytek

Hmotnost jádra je vždy menší než součet

hmotností nukleonů

$$M_j < Z m_p + (A-Z) m_n$$

Hmotnostní úbytek $\Delta m < 0$ [Δm v jednotkách amu]

Vazebná energie jádra $E_v = -\Delta m c^2$

 $E_{v} = -931.5 \,\Delta m \,[MeV]$

NP za fyziku 1921

Vazebná energie jádra, E_v

Nuklid	E _v , MeV
$^{2}\mathrm{H}$	2.226
⁴ He	28.296
^{14}N	104.659
¹⁶ O	127.619
⁴⁰ Ca	342.052
⁵⁸ Fe	509.945
²⁰⁶ Pb	1622.340
²³⁸ U	1822.693

Střední vazebná energie jádra, E_v(st)

E _v (st), MeV	E _v , MeV	
1.113	2.226	
7.074	28.296	$E_{v}(st) = E_{v}/A$
7.476	104.659	Energie na odtržení 1
7.976	127.619	nukleonu
7.779	147.801	
8.551	342.052	
8.765	482.070	
8.792	509.945	
8.795	545.259	
7.875	1622.340	
7.658	1822.693	13
	1.113 7.074 7.476 7.976 7.779 8.551 8.765 8.792 8.795 7.875	1.1132.2267.07428.2967.476104.6597.976127.6197.779147.8018.551342.0528.765482.0708.792509.9458.795545.2597.8751622.340

¹²C ¹⁶O Střední vazebná energie jádra

Střední vazebná energie jádra

Výskyt prvků ve vesmíru

Vazebná energie jádra a chemické vazby

Střední vazebná energie jádra ⁵⁸Fe 8.792 MeV

Energie vazby C-H 411 kJ $mol^{-1} = 4.25 eV$

Jaderná vazebná energie je milionkrát větší než chemická vazebná energie.

Vazebná energie jádra a chemické

Chemické reakce se odehrávají ve vnější elektronové slupce, atomové jádro zůstává neovlivněno.

Energetické změny při chemických reakcích jednotky eV $1 \text{ eV} \text{ (molekula)}^{-1} = 96.485 \text{ kJ mol}^{-1}$

Hmotnostní úbytek neměřitelný, platí zákon zachování hmotnosti.

Jaderné reakce mění složení jader, elektronový obal nehraje žádnou roli. Energetické změny řádu MeV. Významné hmotnostní úbytky, platí zákon zachování energie a ekvivalence hmoty a energie.

$$E = m c^2$$

Objev radioaktivity

Uran, Thorium

Antoine Henri Becquerel (1852-1908)

Objev radioaktivity 1896 NP za fyziku 1903

Radium, Polonium Marie Curie (1867-1934) Pierre Curie (1859-1906)

NP za fyziku 1903 M. C. NP za chemii 1911

Radioaktivita

Má-li jádro příliš málo nebo mnoho neutronů →

Radioaktivita = schopnost některých jader přeměňovat se na jiné jádro, emitují se menší částice a uvolňuje se energie (exo)

Radioaktivita = samovolný děj, produkty mají nižší obsah energie a jsou stabilnější

Geigerův čítač

Geigerův čítač

Hans Geiger (1882-1945)

částice

Měření radioaktivity

Radioaktivita

1 Bq (becquerel) = 1 rozpad za 1 s (⁴⁰K v lidském těle 4 kBq) 1 Ci (curie) = 3.7 10¹⁰ Bq = 37 GBq

Radiační dávka

$$1 \text{ Gy} = 100 \text{ rad}$$

Ekvivalentní dávka

1 Sv (sievert) = 1 Gy
$$\times$$
 Q faktor

$$1 \text{ Sv} = 100 \text{ rem}$$

$$3 \text{ Sv} = \text{LD } 50/30$$

2 mSv/rok = dávka od kosmického záření a přirozeného radiačního pozadí v ČR

Fotony a elektrony všech energií Q = 1Protony Q = 2

Neutrony Q je funkcí energie

Alfa částice a jiná jádra Q = 20

Jaderné reakce

Rutherford – odklon radioaktivního záření v elektrickém a magnetickém poli

Alfa = pozitivně nabité částice Beta = negativně nabité částice Gama = neutrální částice

Tvorba nového nuklidu

Posuvové zákony – změny v Z a N Posun v periodické tabulce

Radioaktivní látka

Emise alfa částice

U těžkých jader

Alfa částice opouští jádro rychlostí 10% c

Velmi malá penetrace, několik cm ve vzduchu, zastaví je list papíru

Velmi škodlivé pro buňky Inhalace

$${}^{222}_{86}Rn \rightarrow {}^{218}_{84}Po + {}^{4}_{2}He$$

Alfa emise

Posun v periodické tabulce o dva prvky doleva

$$\begin{array}{ccccc}
A & & & & & & & & & & & & \\
& N_1 & & & & & & & & & \\
Z & & & & & & & & & & & \\
\end{array}$$

Alfa emise

Radium-226

Curium-240

Uran-232

Zlato-185

Thorium-230

 $\begin{array}{cccc}
A & & & A-4 \\
& N_1 & \longrightarrow & N_2 \\
Z & & & Z-2 & \end{array}$

Posun v periodické tabulce o dva prvky doleva

Americium-241 detektory kouře

Polonium-210

Beta částice

Jádra s nadbytkem neutronů, nedostatek protonů

Beta částice jsou elektrony (ale ne z elektronového obalu!!!)

Vznikají rozpadem neutronu

$${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e$$

e opouští jádro rychlostí 90% c

Penetrace větší než alfa, několik m ve vzduchu, zastaví je 1cm Al folie

$$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$$

Beta emise

Posun v periodické tabulce o jeden prvek doprava

Krypton-87 **Beta emise**

Zinek-71

Křemík-32

Kobalt-60

Hořčík-27

Sodík-24

Železo-59

Posun v periodické tabulce o jeden prvek doprava

Fosfor-32

Gama částice

Jádra s nadbytkem energie emitují gama částice

Elektromagnetické záření s velmi krátkou vlnovou délkou, Vysoká energie, MeV

Rychlost světla

Hluboká penetrace, 500 m ve vzduchu

$$^{m99}Tc \rightarrow ^{99}Tc + \gamma$$

Tracer

Gyorgy Hevesy 1913 NP 1943

$$^{m99}\text{Tc} \rightarrow ^{99}\text{Tc} + \gamma$$

Positronová emise

Jádra s nadbytkem protonů, nedostatek neutronů

$${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{1}^{0}e$$

$${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{1}^{0}e$$

$${}_{6}^{11}C \rightarrow {}_{5}^{11}B + {}_{+1}^{0}e$$

Positron (antičástice) se rekombinuje během 10 ⁻¹⁰ s Velmi malá penetrace

Anihilace
$$_{1}e + _{-1}e \rightarrow \gamma$$

$$\begin{array}{ccc}
A & & & A \\
& N_1 & \longrightarrow & N_2 \\
Z & & Z-1
\end{array}$$

Posun v periodické tabulce o jeden prvek doleva

Positronová emise

Rubidium-81

Germanium-66

Praseodym-140

Neon-18

Kyslík-15

Dusík-13

Měď-59

Posun v periodické tabulce o jeden prvek doleva

Elektronový záchyt

Elektron z elektronového obalu atomu může být zachycen jádrem

Zachycený e přemění p na n, e z vnější slupky klesne na volnou hladinu, emise rentgenového záření

$$_{1}^{1}p+_{-1}^{0}e\rightarrow_{0}^{1}n$$

34

Jádra s Z > 83 nemohou dosáhnout stabilitu beta emisí, pozitronovou emisí nebo elektronovým záchytem

Rubidium-83

Elektronový záchyt

Vanad-48

Gallium-67

$$_{1}^{1}p+_{-1}^{0}e\longrightarrow_{0}^{1}n$$

Beryllium-7

Vápník-41

Kobalt-57

Selen-72

Posun v periodické tabulce o jeden prvek doleva

Rozpadové řady

Thoriová ²³²Th - ²⁰⁸Pb

A = 4n

Neptuniová (umělá) 241 Pu - 209 Bi A = 4n+1

Uranová ²³⁸U - ²⁰⁶Pb

A = 4n + 2

Aktinuranová ²³⁵U - ²⁰⁷Pb

A = 4n + 3

Samovolné štěpení

Těžké jádro se rozpadá na dva nebo tři fragmenty a jeden nebo více neutronů

Syntéza a štěpení jader

Syntéza a štěpení jader - vazebná energie jádra

Syntéza jader ve vesmíru

Big Bang

$$^{1}\text{n} \rightarrow ^{1}\text{H} + \text{e}^{-}$$

Slunce (teplota = 2×10^6 K v nitru, energie z PP nebo CN cyklu)

PP cyklus

$${}^{1}H + {}^{1}H \rightarrow {}^{2}H + e^{+} + v + 0.42 \text{ MeV}$$

$$^{1}H + ^{2}H \rightarrow ^{3}He + \gamma + 5.49 \text{ MeV}$$

$${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2 {}^{1}\text{H} + 12.86 \text{ MeV}$$

$$^{3}\text{He} + ^{1}\text{H} \rightarrow ^{4}\text{He} + \text{e}^{+}$$

$$e^+ + e^- \rightarrow \gamma + 1.02 \text{ MeV}$$

PP cyklus

CN cyklus

Uhlíkový cyklus

CN cyklus

 $4^{1}H \rightarrow {}^{4}He$

Syntéza jader ve vesmíru

Slunce
$$\rightarrow$$
 rudý obr \rightarrow bílý trpaslík
 3 He + 4 He \rightarrow 7 Be + γ + 1.59 MeV
 4 He + 4 He \rightarrow 8 Be
 7 Be + p \rightarrow 8 B + γ + 13 MeV
 8 B \rightarrow 8 Be + γ + e⁺ + 10.78 MeV
 8 Be + 4 He \rightarrow 12 C

Syntéza jader ve vesmíru

Těžké hvězdy $^{12}C \rightarrow \text{Ne, Mg}$ $^{16}O \rightarrow \text{Si, S}$ $\text{Si} \rightarrow ^{58}\text{Fe}$

Fe jádra nejstabilnější Jak dál?

Výbuch supernovy vysoké toky neutronů

$$Fe + n \rightarrow Au \rightarrow Pb \rightarrow U$$

Termojaderné reakce

$${}^{2}\text{H} + {}^{2}\text{H} \rightarrow {}^{3}\text{He} + n + 3.3 \text{ MeV}$$

$$^{2}\text{H} + ^{2}\text{H} \rightarrow ^{3}\text{H} + p + 4.0 \text{ MeV}$$

$$^{3}\text{H} + ^{2}\text{H} \rightarrow ^{4}\text{He} + \text{n} + 17.6 \text{ MeV}$$
 A další...

ITER Cadarache, Francie

National Ignition Facility, USA

Transmutace

1919, Rutherford, první umělá příprava prvku

$${}_{2}^{4}He+{}_{7}^{14}N\rightarrow{}_{1}^{1}H+{}_{8}^{17}O$$

ekvivalentní zápis jaderné rovnice

 $^{14}N(\alpha, p)^{17}O$

Transmutace

Wilsonova mlžná komora

Charles Wilson (1869-1959) NP za fyziku 1923

Plyn (vzduch, He, Ar,...) a páry vody nebo alkoholu v komoře se zářičem, píst pro změnu objemu Expanze, ochlazení, vznik přesycené páry, částice při průletu ionizují okolní atomy, kondenzace na ionizovaných₄₉ atomech – kondenzační stopa

1929 **Cyklotron**urychlovač pozitivních iontů (H⁺, D⁺, ...) průchod potenciálovým rozdílem, střídavé poz/neg nabíjení D elektrod, kruhový pohyb v magnetickém poli, energie do 100 MeV

Ernest O. Lawrence (1901-1958) NP za fyziku 1939

duté elektrody tvaru D

Štěpení jader

1932

John D. Cockcroft (1897-1967) a Ernest T. S. Walton (1903-1995) Kaskádový urychlovač, protony 800 keV

První štěpení stabilního jádra urychlenou částicí

$${}_{1}^{1}H + {}_{3}^{7}Li \rightarrow {}_{2}^{4}He + {}_{2}^{4}He$$

1951 společně NP za fyziku

1932

Objev neutronu

$${}_{2}^{4}He + {}_{4}^{9}Be \rightarrow {}_{6}^{12}C + {}_{0}^{1}n$$

neutron = částice s nulovým nábojem, spin ½ $m = 1.67470 \ 10^{-27} \, kg$

James Chadwick (1891-1974) NP za fyziku 1935

BNCT = Boron Neutron Capture Therapy

$$^{10}B + ^{1}n_{th} = ^{7}Li + ^{4}He + \gamma + 2.4 MeV$$

Dolet v tkáni asi 12 μm – průměr buňky

Akumulace v tumoru (20 μg/g tumoru)

Transmutace

Cyklotron

$${}_{2}^{4}He + {}_{92}^{238}U \rightarrow {}_{94}^{239}Pu + 3{}_{0}^{1}n$$

Bombardování neutrony

$${}_{27}^{59}Co + {}_{0}^{1}n \rightarrow {}_{27}^{60}Co$$

1933 Umělá radioaktivita

Frederic and Irene Joliot-Curie (1900-1958) (1897-1956)

$${}_{2}^{4}He+{}_{13}^{27}Al\rightarrow{}_{15}^{30}P+{}_{0}^{1}n$$

$$^{30}_{15}P \rightarrow ^{30}_{14}Si + ^{0}_{+1}e$$

Otto Hahn (1879-1968) NP za fyziku1944

Štěpení jader

²³⁵U, 0.71% Pomalé neutrony

190 MeV

Fission product yield distribution after thermal fission of 23⁵⁸U.

Řetězová reakce neřízená

Jaderný reaktor

1942 Chicago Pile - 1

První řízená štěpná reakce ²³⁵U

Enrico Fermi (1901-1954) NP za fyziku 1938

Řízená štěpná reakce ²³⁵U

Moderátor = zpomalení neutronů – grafit Cd dobře pohlcuje neutrony – zachycení n

Transurany

Do 1940 nejtěžší přírodní prvek Z = 92 (U) Prvky $Z \ge 93$ (Np) transurany pouze umělé

1940 První umělý transuran = ²³⁹₉₃Np

bombardování neutrony

$$^{238}U + n \rightarrow ^{239}U \rightarrow ^{239}Np + e$$

²³⁹₉₄Pu

Sdílená NP za chemii 1951

Glenn T. Seaborg (1912 - 1999)

Edwin M. McMillan (1907-1991) 62

Adresa Glenna Seaborga Sg, Lr, Lv, Bk, Cf, Am

90 *****	91 37489	92 ****	93 ****	94 🗝	95 🐃	96 IMS	97 ^{an}	98 🗝	99 🦔	100 ISTO	101 °	102 🐃	103 🐃
90 coccen Th Thorium	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protectium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Medelevium	Nobelium	Lawrencium

Syntéza transuranů

bombardování kladnými ionty

⁴He, ¹²C, ¹⁵N, ¹⁸O, ... připraveny transurany po Z = 118

$$^{208}_{82}$$
Pb + $^{62}_{28}$ Ni $\rightarrow ^{269}_{110}$ Ds + 1 n $t_{\frac{1}{2}}$ = 270 µs

$$^{208}82$$
Pb + $^{64}28$ Ni $\rightarrow ^{271}110$ Ds + 1 n

$$^{209}_{83}$$
Bi + $^{54}_{24}$ Cr $\rightarrow ^{262}_{108}$ Bh + 1 n

Spojený ústav jaderných výzkumů, Dubna, Rusko GSI (Gesellschaft fur Schwerionenforschung), Německo Lawrence Berkeley and Livermore National Laboratories, CA₆₃USA

Syntéza transuranů

bombardování kladnými ionty

připraveny transurany po Z = 118

$$^{249}_{97}$$
Bk + $^{48}_{20}$ Ca \rightarrow $^{293}_{117}$ X + 3 ¹n

$$^{208}82$$
Pb + $^{70}30$ Zn $\rightarrow ^{278}112$ Cn $\rightarrow ^{277}112$ Cn + 1 n

$$^{48}_{20}$$
Ca + $^{248}_{96}$ Cm $\rightarrow ^{296}_{116}$ Lv $\rightarrow ^{293}_{116}$ Lv + 3 $^{1}_{0}$ n

Kinetika radioaktivního rozpadu

$$-dN/dt = k N$$

dN/N = -k dt

Integrace t = 0 $N = N_0$

$$\ln(N/N_0) = -k t$$

$$N/N_0 = \exp(-k t)$$

$$N = N_0 \exp(-k t)$$

-

Poločas rozpadu, t_{1/2}

$$t = t_{1/2}$$
 $N = N_0/2$

$$ln(N/N_0) = -k t$$

$$ln(1/2) = -k t_{1/2}$$

$$t_{1/2} = \ln(2) / k$$

$$k = \ln(2) / t_{1/2}$$

$$ln(N/N_0) = -t ln(2) / t_{1/2}$$

Poločas rozpadu

Datování pomocí ¹⁴C

 14 C vzniká kontinuálně vysoko v atmosféře 14 ₇N + 1 _on (kosmické záření) \rightarrow 14 ₆C + p⁺

Willard Libby (1908-1980) NP za chemii 1960

Rozpadá se beta rozpadem s poločasem $t_{\frac{1}{2}} = 5730$ let ${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e}$

V atmosféře a živých rostlinách (CO₂, fotosyntéza) se ustaví rovnovážná koncentrace ¹⁴C. Po smrti organismu koncentrace ¹⁴C klesá.

¹⁴C/ ¹²C se určí hmotnostní spektrometrií

$$\ln(N/N_0) = -k t$$

 $k = \ln(2) / t_{1/2}$ $\ln(N/N_0) = -t \ln(2) / t_{1/2}$

3 Å

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$10^{-15}\,\mathrm{m}$$

$$10^{-18}\,\mathrm{m}$$

Elementární částice

Zoologická zahrada částic

Quarky

- Spin
- Zlomkový náboj

Murray Gell-Mann (1929 -) NP za fyziku 1969

Elementární částice – Standardní Model

Astrofyzika a částicová fyzika

Přenašeče interakcí

Elmagn.

Silné inter.

Slabé inter.

γ a g nemají hmotnost Z a W mají hmotnost

Higgs dodává hmotnost Z a W bosonům

Antičástice

Chemická hmota

Leptony

lepton	značka	el. náboj	m [amu]
elektron	e -	-1	5.5 10-4
elektronické neutrino	$v_{\rm e}$	0	
mion	μ	-1	0.1144
mionické neutrino	$ u_{\mu}$	0	
tauon	τ	-1	1.915
tauonické neutrino	$ u_{\tau}$	0	

Leptony

Existují volné, nevážou se

Náboj číslo 0 nebo –1, kvantování el. náboje Levoruké a s opačnou helicitou (neexistují pravoruká neutrina)

Antileptony mají opačný náboj

Leptonové číslo L

L = 1 pro leptony

L = -1 pro antileptony

L = 0 pro ostatní

Quarky

Quark	značka	el. náboj
down	d	- 1/3
up	u	+2/3
strange	S	- 1/3
charm	c	+2/3
bottom	b	- 1/3
top	t	+2/3

Chemická hmota

Quarky

Quarky nejsou známy volné, nemají hmotnost Existují jen ve vázaných stavech – Hadrony (Baryony a Mezony) Nábojové číslo +2/3 a -1/3 Levoruké a s opačnou helicitou Antiquarky opačný náboj

Baryon = 3 quarky (např. proton se skládá z uud) Antibaryon = 3 antiquarky Mezon = 1 quark + 1 antiquark

Baryonové číslo

B = 1 pro baryony

B = -1 pro antibaryony

B = 0 pro ostatní

Quarky

Vazebné síly mezi quarky:

- Zprostředkovány gluony
- Slabé na malou vzdálenost, při oddalování rostou

(Proto není možné quarky zachytit volné)

Hadrony

Hadron	značka	el. náboj	složení	
pozitivní pion	Π+	+1	ud	
pozitivní kaon	K ⁺	+1	us	
proton	р	+1	uud	
neutron	n	0	udd	
lambda	Λ	0	uds	

Bosony

Zprostředkovatelé interakcí

Boson	značka	el. náboj	interakce
foton	γ	0	elektromagnetická
gluon	g	0	silná
W-boson	W^+	+1	slabá
	W^-	-1	
Z-boson	Z	0	slabá

Zákon zachování B a L čísla

Součet B a L před reakcí a po reakci musí být stejný např.