High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers

DE-EE0005775

United Technologies Research Center/ University of Massachusetts (Lowell)/
University of Akron
12/15/2014-09/30/2016

Dr. Catherine Thibaud-Erkey, United Technologies Research Center (Presenter)

UTC Climate, Controls & Security

UTC Aerospace Systems

Otis

Pratt & Whitney

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C.

June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

Identify and evaluate polymer-based material options for industrial and commercial heat exchangers

Goals: Enable new designs, reduce cost, weight, corrosion

Where ingenuity takes off No technical data subject to EAR or ITAR

Technical Innovation

- Most heat exchangers are constructed from heavy and costly metals that are subject to corrosion and pose manufacturing constraints
- Identify commercially available com posite materials used for other heat transfer applications as a starting point
- Evaluate other relevant properties for heat exchanger applications such as strength at temperature, fluid compatibility, permeability, flammability and manufacturability
- What is innovative about your project and approach?
 - Couple unique materials and heat transfer expertise
 - Work with experts in the field:
 - University of Massachusetts, Lowell
 - University of Akron
 - Leverage UTC's market leadership in HVAC&R and Aerospace

Technical Approach

Developed experimental and modeling tools

strength

Manufacturable

T Scan of

njection molded

Injection molding trials Other manufacturing techniques possible to allow new designs (Additive manufacturing)

Inorganic filler addition to increase

Sufficient

Thermal

Transport

Target t/c >10 W/mK (refrigerant case)-Application dependent

Enhanced thermal conductivity through addition of thermally conductive fillers

E2 (y-z plane)

Permeability measurement at MOCON

Coatings to manage permeability

Mechanically **Functional**

Manageable Permeability

Transition and Deployment

- End users
 - HVAC industry
 - Food Industry
 - Aerospace
 - Heat recovery at moderate temperatures

- Lower cost
- Lightweight
- Corrosion resistance
- Multifunctionality

Transition and Deployment

- The team is working closely with UTC business units, in particular Carrier Corporation (the world's largest manufacturer and distributor of HVAC&R equipment) to ensure specific requirements are integrated in material selection.
- The team is also following UTRC's project planning and execution process (PPE) to ensure continuity from research and development to commercialization.

Leveraging synergy with thermal management for electronics, LEDs

Measure of Success

CURRENT PROJECT IMPACT

Thorough material database to enable selection of optimal material for industrial HX applications

FUTURE IMPACTS

- Projected 50% cost savings (Materials and Manufacturing)
- Increased energy productivity
- Reduction in GHG emission
- Fuel savings due to reduced weight (shipping / transport application)

Project Management & Budget

1.5 Year project - 12/15/2014 to 09/30/2016

Total Project Budget	
DOE Investment	\$ 744,154
Cost Share	\$ 186,039
Project Total	\$ 930,194

Results and Accomplishments

>20 commercially available materials characterized

Laser flash (DLF-1200)

Plate and Frame Heat Exchanger

• Plate thickness is a bigger driver of HX size than material thermal conductivity

Fabrication via Injection Molding

- Composite materials are harder to injection mold than regular materials leading to thicker parts
- Less filled materials are easier to mold
- Thermal management due to higher thermal conductivity
 25% filled

45% filled

Project output:

1 Master Thesis – University of Massachusetts Lowell

1 publication in review

Acknowledgement

This material is based upon work supported by the Department of Energy [Advanced Manufacturing Office] under award DE-EE0005775 [High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers, PI: Dr. Catherine Thibaud-Erkey] to the United Technologies Research Center. This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, process, or process disclosed, or represents that its use would infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily reflect those of the United States Government or any agencies thereof. The authors are grateful for the support of the Department of Energy (DOE).