Romário Jonas de Oliveira Veloso

Relatório da 4º prática

Romário Jonas de Oliveira Veloso

Relatório da 4º prática

Relatório Técnico para a disciplina Circuitos Elétricos 2, período 2024.1.

Universidade Federal de Pernambuco (UFPE)

Centro de Tecnologia e Geociências (CTG)

Departamento de Eletrônica e Sistemas (DES)

Recife - PE 2024

1 Introdução

Neste laboratório, será projetado e implementado um filtro passivo RC passa-baixa. Serão analisados o comportamento na frequência, com e sem carga, da magnitude de resposta em frequência. Será utilizado um buffer para diminuir o impacto de uma carga no comportamento do circuito.

2 Objetivos Gerais

Conhecer as características de um circuito RC que se comporta como um filtro passa-baixa e treinar a análise de circuitos com carga e com fontes não-ideais.

3 Objetivos Específicos

- Aplicar a transformada de Laplace na análise de circuitos.
- Usar um amplificador operacional como buffer.
- Medir as grandezas elétricas em um circuito usando um osciloscópio.
- Comparar o comportamento na frequência de circuitos de filtros com o comportamento esperado.
- Usar o SymPy para resolver equações algébricas aplicadas na resolução de circuitos elétricos.

4 Metodologia

4.1 Equipamentos e Materiais Necessários

Para a realização desta prática, serão utilizados tanto softwares específicos quanto componentes eletrônicos. Os recursos computacionais incluem:

- Jupyter Notebook;
- Osciloscópio (KEYSIGHT..., 2023);
- Fonte de tensão;
- Multímetro (Keysight Technologies,);

Com os materiais e softwares preparados, o próximo passo envolve a análise detalhada dos circuitos planejados para esta prática. Esta análise é fundamental para entender as respostas teóricas e práticas dos filtros.

4.2 Análise do Circuito

Esta seção aborda a análise dos três circuitos propostos, explorando suas características e comportamentos em diferentes configurações.

4.2.1 Primeiro Circuito: Filtro Passa-Baixa RC Sem Carga

Este circuito consiste de um simples arranjo RC em série, cuja saída é tomada através do capacitor. O diagrama abaixo ilustra o circuito:

Figura 1 – Diagrama do Primeiro Circuito: Filtro Passa-Baixa RC Sem Carga. (Fonte: (LUIZ, 2023))

A função de transferência do circuito é descrita pela seguinte equação:

$$H_1(s) = \frac{\frac{1}{RC}}{s + \frac{1}{RC}} \tag{4.1}$$

A frequência de corte, ω_c , é determinada por:

$$\omega_c = \frac{1}{RC} \tag{4.2}$$

4.2.1.1 Projeto do Filtro

Para projetar o filtro de modo que ele tenha ganho unitário e frequência de corte $f_c = 50$ Hz, e usando um capacitor de 100 nF, precisamos determinar o valor adequado de R. A frequência de corte f_c pode ser calculada usando a seguinte fórmula:

$$f_c = \frac{1}{2\pi RC} \tag{4.3}$$

Substituindo $f_c = 50$ Hz e C = 100 nF na equação, podemos resolver para R:

$$R = \frac{1}{2\pi \times 50 \times 100 \times 10^{-9}} \tag{4.4}$$

$$R \approx \frac{1}{2\pi \times 50 \times 100 \times 10^{-9}} \approx 31.8 \text{ k}\Omega$$
 (4.5)

Este valor de R precisa ser ajustado para o valor comercial mais próximo disponível. Considerando os padrões comerciais, o valor de 33 k Ω é uma escolha comum e está disponível nas séries E12 e E24 de resistores. Usando um resistor de 33 k Ω , a frequência de corte será ligeiramente ajustada:

$$\omega_c' = \frac{1}{2\pi \times 33 \times 10^3 \times 100 \times 10^{-9}} \approx 48 \,\text{Hz}$$
 (4.6)

Este valor ajustado de ω_c' ainda está bastante próximo do objetivo de 50 Hz, demonstrando que a alteração é aceitável para a maioria das aplicações práticas. Conforme descrito na Equação $\ref{eq:conformedescrito}$, a análise de resposta em frequência será essencial para determinar o diagrama de Bode de magnitude do filtro.

4.2.1.2 Diagrama de Bode do Filtro

A análise de Bode é essencial para entender o comportamento em frequência do filtro. Os diagramas de Bode de magnitude e fase fornecem uma representação visual da resposta do filtro em frequência e fase ao longo de um intervalo de frequências. Abaixo estão os diagramas de Bode para o filtro RC com um resistor de 33 k Ω e um capacitor de 100 nF.

4.2. Análise do Circuito

5

Figura 2 – Acima, o diagrama de Bode de magnitude do filtro. Abaixo, o diagrama de Bode de fase do filtro.

Estes diagramas são fundamentais para a análise detalhada do desempenho do filtro em várias frequências. A magnitude mostra como o filtro atenua ou amplifica diferentes frequências, enquanto o gráfico de fase indica a mudança de fase que cada componente de frequência experimenta ao passar pelo filtro.

4.2.1.3 Simulação no LTSpice

Para complementar a análise analítica e os diagramas de Bode, é realizada uma simulação no software LTSpice (ANALOG DEVICES, 2024). A simulação serve para validar o design do filtro e para observar seu comportamento sob condições operacionais simuladas. A seguir, está apresentado o diagrama do circuito montado no LTSpice para o primeiro circuito.

Figura 3 – Diagrama do circuito montado no LTSpice para o primeiro circuito.

Este diagrama ilustra a configuração do circuito utilizado na simulação, incluindo todos os componentes e conexões necessárias para a análise do filtro RC. Essa visualização ajuda a garantir que o modelo no LTSpice esteja configurado corretamente conforme o design teórico.

Figura 4 – Diagrama de Bode do circuito no LTSpice.

O diagrama de Bode gerado pela simulação fornece informações sobre a resposta em frequência do filtro, incluindo a magnitude e a fase. Comparar este diagrama com os resultados analíticos ajuda a identificar qualquer discrepância e a realizar ajustes necessários no design ou na configuração do circuito.

4.2. Análise do Circuito 7

4.2.2 Segundo Circuito: Filtro Passa-Baixa RC Com Carga RL

Adicionando uma carga RL à saída do filtro RC, este circuito explora como a presença da carga afeta as características do filtro, incluindo o ganho e a frequência de corte. A inclusão de R_L altera a constante de tempo do circuito, modificando assim a função de transferência e a frequência de corte.

Figura 5 – Diagrama do Segundo Circuito: Filtro Passa-Baixa RC Com Carga RL. (Fonte: (LUIZ, 2023))

A função de transferência é dada pela seguinte equação, onde K é um fator de divisão de tensão determinado pela relação entre R_L e a soma $R + R_L$:

$$H_2(s) = \frac{\frac{1}{RC}}{s + \frac{1}{KRC}} \tag{4.7}$$

onde $K = \frac{R_L}{R + R_L}$.

A frequência de corte ajustada, ω_c , é recalculada para refletir o impacto da carga R_L :

$$\omega_c = \frac{1}{KRC} \tag{4.8}$$

Considerando agora o filtro projetado anteriormente com $R=33\,k\Omega$, $C=100\,nF$, e uma frequência de corte de $f_c=50\,Hz$, com um resistor de carga $R_L=22\,k\Omega$, a função de transferência é determinada pela fórmula já fornecida. O fator K, que é importante para a frequência de corte e o ganho do circuito, é calculado como:

$$K = \frac{R_L}{R + R_L} = \frac{22 \, k\Omega}{33 \, k\Omega + 22 \, k\Omega} \approx 0.4$$
 (4.9)

Substituindo K, R, e C na fórmula da frequência de corte, obtemos:

$$f_c = \frac{1}{2\pi KRC} \approx \frac{1}{0.4 \times 2\pi \times 33 \times 10^3 \times 100 \times 10^{-9}} \approx 120.5 \,\text{Hz}$$
 (4.10)

Este resultado mostra que a frequência de corte do filtro aumenta para aproximadamente 120.5 Hz quando um resistor de carga R_L é incluído, indicando a influência significativa da carga sobre o comportamento do filtro.

4.2.2.1 Diagrama de Bode do Filtro

A resposta em frequência do filtro com a nova configuração de R e R_L é fundamental para confirmar a eficácia do projeto. Os diagramas de Bode de magnitude e de fase são apresentados a seguir para ilustrar isso:

Figura 6 – Acima, o diagrama de Bode de magnitude do segundo circuito. Abaixo, o diagrama de Bode de fase do segundo circuito.

As alterações no ganho e na fase demonstradas nos gráficos são críticas para avaliar as capacidades de atenuação e estabilidade do filtro. Com essa visualização direta da resposta em frequência do filtro, avançaremos para uma validação ainda mais detalhada através da simulação computacional.

4.2. Análise do Circuito 9

4.2.2.2 Simulação no LTSpice

Para consolidar os dados obtidos e verificar a performance do filtro em condições controladas, foi realizada uma simulação detalhada no software LTSpice. A seguir, é apresentado o diagrama do circuito montado no LTSpice, juntamente com o gráfico do diagrama de Bode gerado pela simulação.

Figura 7 – Diagrama do circuito montado no LTSpice para o segundo circuito.

O diagrama ilustra detalhadamente o arranjo dos componentes dentro do simulador LTSpice, facilitando a comparação direta com o design teórico. As simulações são fundamentais para garantir que todas as expectativas de projeto se reflitam adequadamente na prática.

Figura 8 – Diagrama de Bode do segundo circuito no LTSpice.

Estas simulações confirmam as previsões analíticas e oferecem uma validação adicional de que o filtro opera dentro dos parâmetros esperados.

4.2.3 Terceiro Circuito: Filtro Passa-Baixa RC Com Buffer Ampop

O terceiro circuito incorpora um buffer amplop seguindo o arranjo básico de um filtro passa-baixa RC. A presença do amplificador operacional configurado como buffer visa minimizar a influência de qualquer carga conectada na saída do filtro sobre a sua função de transferência.

Figura 9 – Diagrama do Terceiro Circuito: Filtro Passa-Baixa RC Com Buffer Ampop. (Fonte: (LUIZ, 2023))

O circuito equivalente para este filtro, em termos de função de transferência e frequência de corte, é o mesmo que o do Primeiro Circuito (veja Figura 1). Isso ocorre porque O buffer é usado para garantir que a carga (R_L) não afete a função de transferência do filtro RC. O buffer, sendo ideal, tem uma impedância de entrada infinita e ganho de tensão unitário. Dessa forma, a função de transferência e frequência de corte são as mesmas que as do primeiro circuito, expressas nas Equações 4.1 e 4.2, respectivamente.

4.2.3.1 Simulação no LTSpice

Para validar a análise teórica e observar o comportamento do filtro com o buffer, uma simulação detalhada foi realizada no LTSpice. A seguir são apresentados tanto o diagrama do circuito simulado quanto o diagrama de Bode obtido pela simulação.

Figura 10 – Diagrama do circuito montado no LTSpice para o Terceiro Circuito.

Este diagrama mostra claramente como o filtro RC é configurado no LTSpice, incluindo o buffer, o que é crucial para garantir uma simulação precisa.

Figura 11 – Diagrama de Bode do Terceiro Circuito no LTSpice.

O Diagrama de Bode ilustra a resposta em frequência do filtro, confirmando teoricamente as expectativas com uma representação visual precisa das alterações de magnitude e fase ao longo do espectro de frequências.

Com os resultados da simulação fornecendo uma compreensão detalhada da resposta do circuito, a próxima etapa envolve a validação prática destas observações. As medições em laboratório não só confirmam os dados da simulação como também ajudam a identificar qualquer comportamento inesperado dos componentes reais.

5 Medições em Laboratório

Para a segunda parte da prática, o circuito será montado em uma protoboard e serão realizadas medições do sinal de saída, comparando-o com a entrada para determinar a diferença de magnitude e fase da entrada para a saída.

5.1 Medição dos Componentes com Multímetro

Utilizando um multímetro, os valores dos resistores e capacitores do circuito serão medidos e registrados. A tabela abaixo compara os valores esperados com os valores mensurados:

Componente	Valor Esperado	Valor Mensurado
Capacitor (C)	100 nF	98 nF
Resistor (R)	$33 \text{ k}\Omega$	$32.7 \text{ k}\Omega$
Resitor (R_L)	$22~\mathrm{k}\Omega$	21.3 kΩ

Tabela 1 – Comparação dos valores esperados e mensurados dos componentes com multímetro (Keysight Technologies,)

5.2 Primeiro Circuito

5.2.1 Montagem do Circuito na Protoboard

O circuito será montado na protoboard. Após a montagem, a fonte de tensão será conectada para alimentar o circuito. A figura abaixo mostra o circuito montado na protoboard.

5.2.2 Configuração do Osciloscópio

O gerador de sinal do osciloscópio será conectado na entrada $v_i(t)$ do circuito. O gerador será configurado para gerar uma onda senoidal de amplitude de 5 V pico a pico e a frequência será ajustada para a mínima disponível de 100 mHz para observar a máxima tensão de saída que o filtro passa-baixa pode oferecer nas frequências baixas.

5.2. Primeiro Circuito

Figura 12 – Curva de saída no osciloscópio para a frequência mínima de 100 mHz.

5.2.3 Cálculo da Tensão Máxima

Com base na máxima tensão de saída observada de 4.9 V, o valor de $H_{\rm max}$ é calculado da seguinte forma:

$$H_{\text{max}} = \frac{1}{\sqrt{2}} \times 4.9 \approx 3.4648 \text{V}$$
 (5.1)

Este valor será utilizado para análises adicionais.

5.2.4 Frequência de Corte Observada

A frequência de corte observada, onde a amplitude de saída cai para 70.7% da amplitude máxima observada, foi determinada como 53 Hz (ver Figura 13. Esta informação é essencial para validar a performance do filtro em atenuar frequências acima deste ponto.

Figura 13 – Curva de saída no osciloscópio mostrando a frequência de corte para o Primeiro Circuito.

Este procedimento assegura uma compreensão detalhada da característica passabaixa do filtro e da influência da frequência sobre a amplitude do sinal.

5.2.5 Medição de Amplitudes em Frequências Variadas

A amplitude de saída será medida para diferentes frequências para avaliar a frequência de corte do filtro. As amplitudes de entrada e saída para cada frequência testada serão registradas na seguinte tabela:

Frequência (Hz)	Amplitude de Entrada (Vi)	Amplitude de Saída (Vo)
100 m	5.11 V	4.9 V
1.06	5.11 V	4.9 V
10.6	5.11 V	4.78 V
26.5	5.11 V	4.38 V
39.8	5.11 V	3.9 V
53	5.11 V	3.46 V
66.3	5.11 V	3.1 V
84.8	5.11 V	2.61 V
132.5	5.11 V	1.89 V
185.5	5.11 V	1.41 V
265	5.11 V	1.01 V
530	5.11 V	560 mV
1060	5.11 V	360 mV

Tabela 2 – Amplitudes de entrada e saída para diferentes frequências no circuito 1

Este procedimento assegura uma compreensão detalhada da característica passabaixa do filtro e da influência da frequência sobre a amplitude do sinal.

5.3 Segundo Circuito

5.3.1 Montagem do Circuito na Protoboard

O circuito será montado na protoboard. Após a montagem, a fonte de tensão será conectada para alimentar o circuito. A figura abaixo mostra o circuito montado na protoboard.

Figura 14 – Segundo circuito montado na protoboard.

5.3.2 Configuração do Osciloscópio

O gerador de sinal do osciloscópio será conectado na entrada $v_i(t)$ do circuito. O gerador será configurado para gerar uma onda senoidal de amplitude de 5 V pico a pico e a frequência será ajustada para a mínima disponível de 100 mHz para observar a máxima tensão de saída que o filtro passa-baixa pode oferecer nas frequências baixas.

Figura 15 – Curva de saída no osciloscópio para a frequência mínima de 100 mHz.

5.3.3 Cálculo da Tensão Máxima

Com base na máxima tensão de saída observada de 2,09 V, o valor de $H_{\rm max}$ é calculado da seguinte forma:

$$H_{\text{max}} = \frac{1}{\sqrt{2}} \times 2.09 \approx 1.478 \text{V}$$
 (5.2)

Este valor será utilizado para análises adicionais.

5.3.4 Frequência de Corte Observada

A frequência de corte observada, onde a amplitude de saída cai para 70.7% da amplitude máxima observada, foi determinada como 140 Hz (ver Figura 16. Esta informação é essencial para validar a performance do filtro em atenuar frequências acima deste ponto.

Figura 16 – Curva de saída no osciloscópio mostrando a frequência de corte para o Segundo Circuito.

5.3.5 Cálculo da Tensão Máxima

5.3.6 Medição de Amplitudes em Frequências Variadas

A amplitude de saída será medida para diferentes frequências para avaliar a frequência de corte do filtro. As amplitudes de entrada e saída para cada frequência testada serão registradas na seguinte tabela:

Frequência (Hz)	Amplitude de Entrada (Vi)	Amplitude de Saída (Vo)
100 m	5.11 V	2.09 V
3	5.11 V	$2.05 \mathrm{~V}$
29.4	5.11 V	$2.01~\mathrm{V}$
73.5	5.11 V	1.81 V
110.3	5.11 V	$1.57~\mathrm{V}$
140	5.11 V	1.41 V
183.75	5.11 V	1.21 V
235.2	5.11 V	1.01 V
365.6	5.11 V	$760~\mathrm{mV}$
514.5	5.11 V	600 mV
735	5.11 V	$440~\mathrm{mV}$
1470	5.11 V	$280~\mathrm{mV}$
2940	5.11 V	$200~\mathrm{mV}$

Tabela 3 – Amplitudes de entrada e saída para diferentes frequências no circuito 2

5.4. Terceiro Circuito

Este procedimento assegura uma compreensão detalhada da característica passabaixa do filtro e da influência da frequência sobre a amplitude do sinal.

5.4 Terceiro Circuito

5.4.1 Montagem do Circuito na Protoboard

O circuito será montado na protoboard. Após a montagem, a fonte de tensão será conectada para alimentar o circuito. A figura abaixo mostra o circuito montado na protoboard.

Figura 17 – Terceiro circuito montado na protoboard.

5.4.2 Configuração do Osciloscópio

O gerador de sinal do osciloscópio será conectado na entrada $v_i(t)$ do circuito. O gerador será configurado para gerar uma onda senoidal de amplitude de 5 V pico a pico e a frequência será ajustada para a mínima disponível de 100 mHz para observar a máxima tensão de saída que o filtro passa-baixa pode oferecer nas frequências baixas.

5.4.3 Cálculo da Tensão Máxima

Com base na máxima tensão de saída observada de 5.03 V, o valor de $H_{\rm max}$ é calculado da seguinte forma:

$$H_{\text{max}} = \frac{1}{\sqrt{2}} \times 5.03 \approx 3.56 \text{V}$$
 (5.3)

Este valor será utilizado para análises adicionais.

5.4.4 Frequência de Corte Observada

A frequência de corte observada, onde a amplitude de saída cai para 70.7% da amplitude máxima observada, foi determinada como 43 Hz. Esta informação é essencial para validar a performance do filtro em atenuar frequências acima deste ponto.

Figura 18 – Curva de saída no osciloscópio mostrando a frequência de corte para o Terceiro Circuito.

5.4.5 Medição de Amplitudes em Frequências Variadas

A amplitude de saída será medida para diferentes frequências para avaliar a frequência de corte do filtro. As amplitudes de entrada e saída para cada frequência testada serão registradas na seguinte tabela:

Frequência (Hz)	Amplitude de Entrada (Vi)	Amplitude de Saída (Vo)
100 m	5.11 V	5.03 V
900 m	5.11 V	$4.46~\mathrm{V}$
8.6	5.14 V	$4.38 \mathrm{\ V}$
21.5	5.11 V	$4.14~\mathrm{V}$
32.3	5.11 V	$3.86 \mathrm{~V}$
43	5.11 V	$3.5 \mathrm{~V}$
53.8	5.11 V	$3.38 \mathrm{~V}$
68.8	5.11 V	2.93 V
107.5	5.11 V	1.81 V
150.5	5.11 V	1.33 V
215	5.11 V	1.01 V
430	5.11 V	$520~\mathrm{mV}$
860	5.11 V	320 mV

Tabela 4 – Amplitudes de entrada e saída para diferentes frequências no circuito 3

Este procedimento assegura uma compreensão detalhada da característica passabaixa do filtro e da influência da frequência sobre a amplitude do sinal.

6 Resultados

Os resultados obtidos a partir das medições laboratoriais, teóricas e simulações revelam comportamentos característicos dos filtros passa-baixas implementados nos três circuitos analisados. A análise focalizou-se na avaliação das frequências de corte, na máxima tensão de saída e na forma como esses elementos se alinham com as previsões teóricas das funções de transferência.

6.1 Características Observadas nos Circuitos

Os três circuitos exibiram a propriedade fundamental de um filtro passa-baixas, que é a manutenção da máxima tensão de saída em frequências baixas. Como foi teoricamente previsto e confirmado pelas simulações e medições em laboratório, a amplitude da saída diminui conforme a frequência de entrada excede a frequência de corte. Esta característica foi visualmente confirmada pelos gráficos de Bode (ver Figuras 4, 8, e 11), que mostraram uma queda na resposta de ganho próximo às respectivas frequências de corte de cada filtro.

6.1.1 Análise das Funções de Transferência

As funções de transferência dos três circuitos, detalhadas nas equações 4.1 e 4.7, fundamentam o comportamento observado. No caso dos circuitos primeiro e terceiro, as frequências de corte foram semelhantes, o que indica uma similaridade nas características dos componentes de design, apesar de variações mínimas nos valores componentes. Em contraste, o segundo circuito apresentou uma frequência de corte significativamente diferente, devido a variações na configuração de seus elementos (ver Figura 16).

6.1.2 Comparação das Frequências de Corte

Interessante observar que, apesar de variações nas frequências de corte observadas entre o primeiro e o segundo circuito, a consistência do desempenho dentro dos parâmetros de um filtro passa-baixas se manteve. A frequência de corte do segundo circuito (f_{c2}) foi diferente devido às diferenças nas funções de transferência e nos valores componentes utilizados. Esta observação destaca a importância de escolher apropriadamente os componentes durante o design para atender às especificações desejadas.

6.2 Síntese dos Resultados

Os dados consolidados oferecem uma visão ampla da eficácia dos designs de filtro e da adequação das técnicas de simulação e medição. As análises teóricas se alinham bem com as observações práticas, o que confirma a validade dos modelos teóricos utilizados e proporciona uma base sólida para futuras iterações de design e optimização.

7 Conclusão

Esta atividade validou a eficácia dos filtros passa-baixas, confirmando a consistência entre teoria, simulações e resultados experimentais. Três diferentes circuitos foram investigados, todos aderindo ao princípio fundamental de maximizar a tensão de saída em frequências baixas e atenuar as altas.

As análises realizadas demonstram que simulações e medições são métodos eficazes para validar a performance dos filtros. Além disso, recomenda-se a realização de pesquisas adicionais para explorar o impacto de variáveis externas, como a temperatura, no desempenho dos filtros a longo prazo.

Portanto, este estudo enfatiza a importância de métodos de simulação e medição precisos para o desenvolvimento e validação de componentes eletrônicos, servindo como um guia prático para futuras inovações na engenharia eletrônica.

Referências 21

Referências

ANALOG DEVICES. LTspice. 2024. Software de simulação de circuitos eletrônicos. Disponível em: https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html>. Acesso em: 15 de maio de 2024. Citado na página 5.

KEYSIGHT InfiniiVision Manual do osciloscópio. [S.l.], 2023. Acesso em: 15 de maio de 2024. Disponível em: https://www.dropbox.com/s/cmvdgjmbbwzqls1/manual. Citado na página 3.

Keysight Technologies. *U1250 Series Handheld Digital Multimeters*. [S.l.]: Keysight Technologies. [s.d.]. Citado 2 vezes nas páginas 3 e 12.

LUIZ, S. O. D. 3a Prática de Laboratório. 2023. Universidade Federal de Pernambuco, Departamento de Eletrônica e Sistemas. Curso de EL216 - Circuitos 2, 2o semestre de 2023. Citado 3 vezes nas páginas 3, 7 e 10.