DICTIONARIES AND VERTICES

Main Message

Dictionaries of Simplex = Vertices of the feasible region.

Linear Programming Problem

From Two Weeks Ago.

max.
$$x_1 + 2x_2$$

s.t. $-3x_1 + x_2 \le 2$
 $+x_2 \le 11$
 $x_1 - x_2 \le 3$
 $x_1 \le 6$
 $x_1, x_2 \ge 0$

Goal: Solve LP using Simplex and visualize!

Linear Programming Problem

Dictionary Vertex Corr.

Dictionary Vertex Corr.

$ x_1 $	• • •		
x_3	• • •		
x_4	• • •		
x_6	• • •		
z	?	$?x_2$	$?x_5$

Example #3

Linear Programming Problem (Standard Form)

 $\mathbf{c}^{\mathsf{T}} \mathbf{x}$ max Feasible Dictionary $x_{B1} = b_1 + a_{11}x_{I1} + \cdots + a_{1j}x_{Ij} + \cdots + a_{1n}x_{In}$

$$x_{Bm} = b_m + a_{m1}x_{I1} + \cdots + a_{mj}x_{Ij} + \cdots + a_{mn}x_{In}$$
 $z = c_0 + c_1x_{I1} + \cdots + c_jx_{Ij} + \cdots + c_nx_{In}$

- (1) Solution associated will make at least n constraints active.
- (2) Rank of active constraints is n.

Summary

- Vertex (definition).
 - A feasible point that makes at least n inequalities active.
 - The rank of active inequalities equals n.

- Feasible Dictionaries in Simplex:
 - Solution associated must be a vertex of the feasible region.

What does pivoting do?