

Homework 2 Solutions

February 4, 2019

Dummit and Foote Chapter 13 Selected Exercises

§13.1 # 1 Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

Solution: Note that as 3 is prime and divides 9 and 6, but $3^2 = 9$ does not divide 6, p(x) is irreducible by Eisenstein.

If θ is a root of p(x), then $\mathbb{Q}(\theta)$ has as a basis $1, \theta, \theta^2$ (because p(x) is degree 3). So, let β be the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$. Then if $\beta = b_0 + b_1\theta + b_2\theta^2$,

$$1 = (1 + \theta)(\beta)$$

$$= (1 + \theta)(b_0 + b_1\theta + b_2\theta^2)$$

$$= b_0 + b_1\theta + b_2\theta^2 + b_0\theta + b_1\theta^2 + b_2\theta^3$$

$$= (b_0) + (b_1 + b_0)\theta + (b_2 + b_1)\theta^2 + b_2\theta^3.$$

However, as $p(\theta) = 0$, we have that $\theta^3 = -9\theta - 6$, so we have that

$$1 = (b_0 - 6b_2) + (b_1 + b_0 - 9b_2)\theta + (b_2 + b_1)\theta^2.$$

This becomes the set of equations

$$1 = b_0 - 6b_2$$

$$0 = b_0 + b_1 - 9b_2$$

$$0 = b_1 + b_2$$

which has solution

$$b_0 = \frac{1}{4}, \qquad b_1 = -\frac{5}{2}, \qquad b_2 = \frac{5}{2}.$$

So, $1 + \theta$ has inverse

$$1 + \theta = \frac{1}{4} - \frac{5}{2}\theta + \frac{5}{2}\theta^2$$

in $\mathbb{Q}(\theta)$.

Solution: Note that as 2 divides -2, but $2^2 = 4$ does not divide -2, $x^3 - 2x - 2$ is irreducible over \mathbb{Q} by Eisenstein's criterion.

Note that as θ is a root of $x^3 - 2x - 2$, we have that $\theta^3 - 2\theta - 2 = 0$, so $\theta^3 = 2\theta + 2$. So,

$$(1+\theta)(1+\theta+\theta^2) = 1+2\theta+2\theta^2+\theta^3 = 1+2\theta+2\theta^2+2\theta+2=3+4\theta+2\theta^2.$$

Next, let $\beta = b_0 + b_1 \theta + b_2 \theta^2$ be the inverse of $1 + \theta + \theta^2$ in $\mathbb{Q}(\theta)$. Then

$$1 = (1 + \theta + \theta^{2})(b_{0} + b_{1}\theta + b_{2}\theta^{2})$$

$$= b_{0} + (b_{0} + b_{1})\theta + (b_{2} + b_{1} + b_{0})\theta^{2} + (b_{1} + b_{2})\theta^{3} + b_{2}\theta^{4}$$

$$= (b_{0} + 2b_{1} + 2b_{2}) + (b_{0} + 3b_{1} + 4b_{2})\theta + (b_{0} + b_{1} + 3b_{2})\theta^{2},$$

which gives rise to the system of equations

$$1 = b_0 + 2b_1 + 2b_2$$

$$0 = b_0 + 3b_1 + 4b_2$$

$$0 = b_0 + b_1 + 3b_2$$

This has solution

$$b_0 = -\frac{1}{3},$$
 $b_1 = \frac{1}{3},$ $b_2 = -\frac{2}{3},$ is
$$-\frac{1}{3} + \frac{1}{3}\theta - \frac{2}{3}\theta^2.$$

so the inverse of $1 + \theta + \theta^2$ is

$$-\frac{1}{3} + \frac{1}{3}\theta - \frac{2}{3}\theta^2$$
. 5/3

Thus,

§13.2 # 3 Determine the minimal polynomial over \mathbb{Q} for the element 1+i.

Solution: Note that $(1+i)^2 = 2i$, so

$$(1+i)^2 - 2(1+i) + 2 = 0$$

 $(1+i)^2-2(1+i)+2=0,$ which gives us a polynomial $p(x)=x^2-2x+2$ with p(1+i)=0. However, by Eisenstein's criterion, $x^2 - 2x + 2$ is irreducible, so p(x) is the minimal polynomial over \mathbb{Q} for 1 + i.

§13.2 # 4 Determine the degree over \mathbb{Q} of $2 + \sqrt{3}$ and $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

Solution: Note that $(2+\sqrt{3})^2 = 7+4\sqrt{3}$, so

$$(2+\sqrt{3})^2 - 4(2+\sqrt{3}) + 1 = 0,$$

and $2 + \sqrt{3}$ is a root of $p(x) = x^2 - 4x + 1$. Moreover,

$$p(x+1) = (x+1)^2 - 4(x+1) + 1 = x^2 - 2x - 2$$

is irreducible by Eisenstein, so p(x) is also irreducible, and is the minimal polynomial for $2+\sqrt{3}$. Thus, $2+\sqrt{3}$ is degree 2 over \mathbb{Q} .

Next, note that

$$(1+\sqrt[3]{2}+\sqrt[3]{4})^2=5+4(2^{1/3})+3(2^{2/3})$$

and

$$(1+\sqrt[3]{2}+\sqrt[3]{4})^3 = 19+15(2^{1/3})+12(2^{2/3}),$$

so $1 + \sqrt[3]{2} + \sqrt[3]{4}$ is a root of $p(x) = x^3 - 3x^2 - 3x - 1$. Moreover,

$$p(x-1) = x^3 - 6x - 3,$$

which is irreducible over \mathbb{Q} by Eisenstein with p=3. Thus, p(x) is the minimal polynomial for $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

Once JZE Q(JZ+J3), then (JZ+J3)-JZ = J3 & Q(JZ+J3)

§13.2 # 7 Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ [one inclusion is obvious, for the other consider $(\sqrt{2} + \sqrt{3})^2$, etc.]. Conclude that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. Find an irreducible polynomial satisfied by $\sqrt{2} + \sqrt{3}$.

Proof. Clearly, $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$, so $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. On the other hand, note that $(\sqrt{2} + \sqrt{3})^2 = 6 + 2\sqrt{6}$ and $(\sqrt{2} + \sqrt{3})^3 = 11\sqrt{2} + 9\sqrt{3}$.

So, $(\sqrt{2}+\sqrt{3})^3-9(\sqrt{2}+\sqrt{3})=2\sqrt{2}$, which implies that $\sqrt{2}\in\mathbb{Q}(\sqrt{2}+\sqrt{3})$. Moreover, $(\sqrt{2}+\sqrt{3})^3-11(\sqrt{2}+\sqrt{3})=-2\sqrt{3}$, so $\sqrt{3}\in\mathbb{Q}(\sqrt{2}+\sqrt{3})$ as well. Thus, $\mathbb{Q}(\sqrt{2},\sqrt{3})\subseteq\mathbb{Q}(\sqrt{2}+\sqrt{3})$. Therefore, $\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.

Note that $(\sqrt{2}+\sqrt{3})^4=(5+2\sqrt{6})^2=49+20\sqrt{6}$, so if $p(x)=x^4-x^2+1$, then $p(\sqrt{2}+\sqrt{3})=0$. Note that p(x) is irreducible over $\mathbb{Z}/2\mathbb{Z}$, so p(x) is irreducible in $\mathbb{Q}[x]$ as well, demonstrating both an irreducible polynomial satisfied by $\sqrt{2}+\sqrt{3}$ and that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]=4$.

- §13.2 # 11 (a) Let $\sqrt{3+4i}$ denote the square root of the complex number 3+4i that lies in the first quadrant and let $\sqrt{3-4i}$ denote the square roote of 3-4i that lies in the fourth quadrant. Prove that $\left[\mathbb{Q}(\sqrt{3+4i}+\sqrt{3-4i}]=1\right]$.
 - (b) Determine the degree of the extension $\mathbb{Q}\left(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}\right)$ over \mathbb{Q} .

Proof. (a) We will show that the element $\sqrt{3+4i}+\sqrt{3-4i}$ is in fact rational, which implies the desired result.

This involves a number of algebraic manipulations of $(\sqrt{3+4i}+\sqrt{3-4i})^2$, which are presented below:

$$(\sqrt{3+4i} + \sqrt{3-4i})^2 = (3+4i) + 2\sqrt{3+4i}\sqrt{3-4i} + (3-4i)$$

$$= 6 + 2\sqrt{(3+4i)(3-4i)}$$

$$= 6 + 2\sqrt{9+16}$$

$$= 6 + 2\sqrt{25}$$

$$= 16,$$

which implies that $\sqrt{3+4i} + \sqrt{3-4i} = \pm 4$, and as such is a rational number. Thus, $[\mathbb{Q}(\sqrt{3+4i} + \sqrt{3-4i}) : \mathbb{Q}] = 1$.

(b) Note that

$$(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{3}})^2 = (1+\sqrt{-3})+2\sqrt{(1-\sqrt{3})(1+\sqrt{3})}+(1-\sqrt{3})$$

$$= 2+2\sqrt{1+3}$$

$$= 6.$$

1 day

so $\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}=\sqrt{6}$. This satisfies the minimal polynomial x^2-6 , which is irreducible by Eisenstein with p=3, and thus $[\mathbb{Q}(\sqrt{1+\sqrt{-3}}+\sqrt{1-\sqrt{-3}}:\mathbb{Q}]=2$.

13.2.12 Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K containing F is either K or F.

Proof. (Thomas) Suppose E is a subfield of K containing F. Then p = [K : F] = [K : E][E : F] and since p is prime, either [K : E] = p and [E : F] = 1 or vice versa. If [K : E] = p then [E : F] = 1 and E = F. If [K : E] = 1 then K = E.

13.2.13 Suppose $F = \mathbb{Q}(\alpha_1, \alpha_2, \dots, \alpha_n)$ where $\alpha_i^2 \in \mathbb{Q}$ for $i = 1, 2, \dots, n$. Prove that $2^{\frac{1}{3}} \notin F$.

Proof. (Thomas) Suppose for the sake of contradiction that $2^{\frac{1}{3}} \in F$. Then $3 = [\mathbb{Q}(2^{\frac{1}{3}}) : \mathbb{Q}] | [F : \mathbb{Q}]$. Note that $[F : \mathbb{Q}] = [\mathbb{Q}(\alpha_1, \ldots, \alpha_n) : \mathbb{Q}(\alpha_1, \ldots, \alpha_{n-1})] [\mathbb{Q}(\alpha_1, \ldots, \alpha_{n-1}) : \mathbb{Q}(\alpha_1, \ldots, \alpha_{n-2})] \ldots [\mathbb{Q}(\alpha_1) : \mathbb{Q}]$. Since each $\alpha_i^2 \in \mathbb{Q}$, we have $[\mathbb{Q}(\alpha_1, \ldots, \alpha_i) : \mathbb{Q}(\alpha_1, \ldots, \alpha_{i-1})] | 2$ for each i so $[F : \mathbb{Q}] | 2^l$ for some $l \in \mathbb{Z}$. But this is a contradiction, since $3 | [F : \mathbb{Q}]$ then implies $3 | 2^l$. Thus $2^{\frac{1}{3}} \notin F$.

13.2.14 Prove that if $[F(\alpha):F]$ is odd then $F(\alpha)=F(\alpha^2)$.

Proof. (Thomas) Suppose $[F(\alpha):F]$ is odd. Note that $F(\alpha^2)$ is a subfield of $F(\alpha)$ so $[F(\alpha):F]=[F(\alpha):F(\alpha^2)][F(\alpha^2):F]$. Note that α is a root of the polynomial $x^2-\alpha^2\in F(\alpha^2)[x]$ which has degree 2 so $[F(\alpha):F(\alpha^2)][2$. But since $[F(\alpha):F]$ is odd we see that $[F(\alpha):F(\alpha^2)]=1$ so $F(\alpha)=F(\alpha)$.

- 13.2.18 Let k be a field and let k(x) be the field of rational functions in x with coefficients from k. Let $t \in k(x)$ be the rational function $\frac{P(x)}{Q(x)}$ with relatively prime polynomials $P(x), Q(x) \in k[x]$, with $Q(x) \neq 0$. Then k(x) is an extension of k(t) and to compute its degree it is neccessary to compute the minimal polynomial with coefficients in k(t) satisfied by x.
 - (a) Show that the polynomial P(X) tQ(X) in the variable X and coefficients in k(t) is irreducible in k(t) and has x as a root. [By Guass' Lemma this polynomial is irreducible in (k(t))[X] if and only if it is irreducible in (k[t])[X]. Then note that (k[t])[X] = (k[X])[t].]

Proof. (Thomas) Define Z(X) = P(X) - tQ(X) and note that in (k[X])[t] the polynomial Z(X) is linear and is thus irreducible. Since (k[X])[t] = (k[t])[X], we note that Z(X) is also irreducible in (k[t])[X]. Then by Gauss' Lemma Z(X) is also irreducible in (k(t))[X] as desired. Finally, note that $Z(x) = P(x) - tQ(x) = P(x) - \frac{P(x)}{Q(x)}Q(x) = P(x) - P(x) = 0$ and x is a root of Z(X).

(b) Show that the degree of P(X) - tQ(X) as a polynomial in X with coefficients in k(t) is the maximum of the degrees of P(x) and Q(x).

Proof. (Thomas) Define Z(X) = P(X) - tQ(X) and note that $Z(X) \in (k(t))[X]$ but $P(X), Q(X) \in k[X]$. Then the coefficients in P(X), Q(X) are from k so the coefficients in P(X) and tQ(X) cannot cancel. Then noting that in (k(t))[X], P(X) - tQ(X) is a sum of polynomials the degree of Z(X) is simply the maximum of the degrees of Q(X), P(X) as desired.

(c) Show that $[k(x):k(t)] = [k(x):k(\frac{P(x)}{Q(x)})] = \max(\deg P(x), \deg Q(x)).$

Proof. (Thomas) Note that (k(t))(x) = k(x) since $t \in k(x)$ and k(x) is a field. Then since Z(X) = P(X) - tQ(X) is irreducible over k(t) with x as a root, $Z(X) = m_{x,k(t)}(X)$ and $[(k(t))(x) : k(t)] = [k(x) : k(t)] = deg(m_{x,k(t)}(X))$ which is the maximum of the degrees of Q(X), P(X).

Nice.

- 13.2.19 Let K be an extension of F of degree n.
 - (a) For any $\alpha \in K$ prove that α acting by left multiplication on K is an F-linear transformation of K.

Proof. (Thomas) Choose $\alpha \in K$ and define $\phi : K \to K$ by $\phi(k) = \alpha k$ and let $a, b \in F$ and $A, B \in K$. Observe that $\phi(aA + bB) = \alpha(aA + bB) = \alpha ab + \alpha bB = a\alpha A + b\alpha B = a\alpha A + b\alpha B$ $a\phi(A) + b\phi(B) \in K$ so left multiplication by α is an F-linear transformation on K.

(b) Prove that K is isomorphic to a subring of the ring of $n \times n$ matrices over F, so the ring of $n \times n$ matrices over F contains an isomorphic copy of every extension of F of degree

Proof. (Thomas) Let $k \in K$. Since multiplication by α is a linear transformation, there exists a matrix $M_{\alpha} \in M_n(K)$ such that αk is the same transformation as $M_{\alpha}k$. Then define $\psi: K \to M_n(K)$ by $\psi(k) \mapsto M_k$. Noting that linear transformation have unique matrix representations (and vice versa) we see that ψ is well defined and a bijection.

Met and

Met and

Not a good choice of language. A matrix represents a lit. wit

Let $\{\alpha_1, \ldots, \alpha_n\}$ be a basis for K. Then note that for any $\gamma \in K$, $M_{\gamma} = (\gamma \alpha_1 | \ldots | \gamma \alpha_n)$.

Let $a,b \in K$ and note that $\psi(a+b) = M_{a+b} = \left((a+b)\alpha_1 \middle| ... \middle| (a+b)\alpha_n \right) = \left(a\alpha_1 \middle| ... \middle| a\alpha_n \right) +$

 $\left(b\alpha_1|\dots|b\alpha_n\right) = M_a + M_b = \psi(a) + \psi(b).$

Further, note that $\psi(ab) = M_{ab} = \left(\left. ab\alpha_1 \right| ... \middle| ab\alpha_n \right) = \left(\left. a\alpha_1 \middle| ... \middle| a\alpha_n \right) \left(\left. b\alpha_1 \middle| ... \middle| b\alpha_n \right) \right. =$ $M_a M_b = \psi(a) \psi(b).$

come Or

Then we see that ψ is a bijective ring homomorphism and is thus an isomorphism from $K \to \psi(M_n(K)).$

LOSK B.

13.2.20 Show that if the matrix of the linear transformation "multiplication by α " considered in the previous exercise is A then α is a root of the characteristic polynomial for A. This gives an effective procedure for determining an equation of degree n satisfied by an element α in an extension of F of degree n. Use this proceedure to obtain the monic polynomial of degree 3 satisfied by $2^{\frac{1}{3}}$ and by $1 + 2^{\frac{1}{3}} + 4^{\frac{1}{3}}$. L Cayley - Hamilton

Proof. (Thomas) Note that by the Caley-Hamilton theorem A satisfies its own characteristic polynomial. Then since $\alpha \mapsto A$ by an isomorphism we see that α must satisfy the same polynomial.

Consider $K = \mathbb{Q}(2^{\frac{1}{3}})$ with basis $\{1, 2^{1/3}, 2^{2/3}\}$.

Letting $\alpha = 2^{\frac{1}{3}}$, we obtain $M_{\alpha} = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Note that M_{α} has the characteristic equation $x^3-2=0$ and that $2^{1/3}$ satisfies this equation. Then x^3-2 is the monic polynomial of degree 3 satisfied by $2^{\frac{1}{3}}$.

Letting $\alpha = 1 + 2^{\frac{1}{3}} + 4^{1/3} = 1 + 2^{\frac{1}{3}} + 2^{\frac{2}{3}}$, we obtain $M_{\alpha} = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$. Note that M_{α} has the characteristic equation $x^3 - 3x^2 - 3x - 1 = 0$ and that $1 + 2^{1/3} + 2^{2/3}$ satisfies this equation. Then $x^3 - 3x^2 - 3x - 1$ is the monic polynomial of degree 3 satisfied by $1 + 2^{\frac{1}{3}} + 4^{1/3}$.

Good.