web-страница djvu-документ

Вечный двигатель, демоны и информация

М. Альперин, А. Герега, $Keanm^1$, 1995, № 5, 14–16.

В 1824 году в Париже вышла в свет небольшая книжка «Размышления о движущей силе огня и о машинах, способных развить эту силу». Ее автор, молодой французский инженер Сади Карно (1796–1832), скончавшийся от холеры, так и не успел узнать, что сделал великое открытие — заложил основы термодинамики. Крупнейший физик второй половины нашего века Ричард Фейнман писал, что это один из немногих замечательных случаев, когда инженер заложил основы физической теории. Другой пример, приводимый Р. Фейнманом, — создание инженером-связистом Клодом Шенноном теории информации. Замечательно, что термодинамику и теорию информации объединяет не только история их рождения. Между ними существует глубокая взаимосвязь, обсуждение которой продолжается по сей день. Об этом мы и собираемся рассказать.

Первое и второе начала термодинамики

Первое начало (первый закон) термодинамики по сути есть закон сохранения энергии — теплота, подводимая к газу, расходуется на работу, совершаемую газом, и на изменение его внутренней энергии:

$$Q = A + \Delta U$$
.

Второе начало (второй закон) термодинамики формулируется по-разному. Одна из формулировок, данная

Р. Клаузиусом, говорит о том, что теплота не может самопроизвольно переходить от тела менее нагретого к более нагретому. (Более точно — невозможно передать теплоту от более холодного тела к более горячему, не изменив при этом состояние других тел. — Прим. ред.)

Наиболее лаконичные формулировки первого и второго законов термодинамики звучат на удивление единообразно.

1-й закон: Вечный двигатель первого рода (ВД 1) невозможен.

2-й закон: Вечный двигатель второго рода (ВД 2) невозможен.

Как вы помните, ВД 1 — это такой двигатель, который мог бы совершать работу неограниченно долгое время, не заимствуя энергию извне. ВД 2 — периодически действующий двигатель, который целиком превращал бы в работу теплоту, извлекаемую из единственного резервуара.

С практической точки зрения ВД 2 не хуже ВД 1, так как найти один источник с практически бесконечным запасом энергии можно — например, океан или атмосфера. В чем причина невозможности ВД 2? Она связана с молекулярно-кинетической теорией, и выяснение этой причины — новая «драма идей», как сказал когда-то по другому поводу Альберт Эйнштейн.

Интересно, что уже вскоре после того, как было сформулировано второе начало термодинамики, стали возникать какие-то смутные сомнения в справедливости этого закона. Как это могло случиться?

Броуновское движение

В 1827 году известный английский ботаник Роберт Броун — «бесспорный глава ботаников», по выражению знаменитого немецкого естествоиспыта-

¹ «Квант» — научно-популярный физикоматематический журнал.

теля и географа А. Гумбольдта, — испытывал свой, недавно изобретенный, ахроматический объектив. Броун увидел под микроскопом «пляшущих человечков» и показал их восемнадцатилетнему Чарльзу Дарвину.

Позже Ч. Дарвин писал, что, вероятно, это было движение протоплазмы в какой-то растительной клетке. Но великий биолог был неправ, и понадобились труды целого поколения физиков, чтобы понять природу броуновского «вечного движения».

Только в 60-х годах XIX века стали появляться робкие, часто умозрительные высказывания о связи движения броуновских частиц с тепловым движением молекул, а количественно описать броуновское движение удалось лишь в 1905 году. Сделал это А. Эйнштейн.

Какое это имеет отношение к работам С. Карно? Дело в том, что в 1888 году французский физик Луи Жорж Гюи доказал тепловую природу броуновского движения, а также сделал неожиданный вывод — броуновское движение несовместимо со вторым началом термодинамики. Действительно, броуновское движение — «вечно», и хотя это, конечно, не ВД 2, но, может быть, возможно его построить за счет броуновского движения. Рассуждение не очень убедительное, но орешек оказался твердым.

Демон Максвелла

Другое направление «удара» по второму началу термодинамики известно под названием «демона Максвелла».

Процитируем здесь так называемое «Письмо Максвелла о демонах», написанное в 1868 году и адресованное шотландскому физику Петеру Тэту:

«1. Кто дал им имя? — У. Томсон.

- 2. Что они собой представляют? Это очень маленькие, но весьма подвижные существа, которые не способны выполнять работу, но могут открывать и закрывать перегородку, движущуюся без трения и инерции.
- 3. Для чего они нужны? Чтобы показать, что второе начало термодинамики имеет лишь статистический смысл.»

Далее Дж. Максвелл пишет: «Демон — это существо конечных размеров, которое может определять траектории и скорости всех молекул, просто наблюдая за ними».

Как работает демон? Пусть сосуд с газом разделен перегородкой с клапаном. Работой клапана управляет демон Максвелла. Он пропускает «быстрые» молекулы и задерживает «медленные». Вследствие такого разделения температура газа в правой и левой частях сосуда станет разной, что даст возможность построить машину Карно. Для бесконечно большого сосуда это и будет ВД 2. Причин, по которым построение ВД 2, использующего демон Максвелла, невозможно несколько. Вот некоторые из них. Вопервых, демон сам является частью системы — броуновской частицей среди молекул газа. Поэтому, участвуя в броуновском движении и увлекая за собой клапан, он будет пропускать как «быстрые», так и «медленные» молекулы и, следовательно, разность температур между частями сосуда не возникает. Во-вторых, возникает проблема обнаружения демоном движущейся молекулы. Ее можно обнаружить, например, по молекулярным силам, с которыми она действует на демона. Но такие силы (называемые ван-дерваальсовыми) очень быстро убывают с расстоянием. Поэтому их обнаружение возможно лишь в непосредственной близости от клапана, управляемого демоном, а это приведет к тому, что открывать клапан без совершения работы будет уже невозможно. Существуют и другие причины.

Интересно, что, как мы уже говорили, само существование броуновского движения дало повод Л. Ж. Гюи усомниться в невозможности создания ВД 2, но именно оно отвергает возможность создания ВД 2 с помощью демона Максвелла.

Мысленный эксперимент Лео Сциларда

Через много лет, в 1929 году, произошло возвращение к вопросу о демоне Максвелла, когда в одном очень авторитетном немецком журнале появилась довольно обстоятельная статья Лео Сциларда «Второе начало термодинамики и вмешательство мыслящего существа».

Здесь, должно быть, уместно сказать несколько слов о Лео Сциларде. Это был щедро одаренный человек. Он известен как специалист в области ядерной физики, термодинамики, теории ускорителей элементарных частиц. Его эксперименты по изучению деления ядер урана и обнаружению вторичных (образующихся в процессе реакции) нейтронов были решающими для американского атомного проекта. К тому же Л.Сцилард оказался выдающимся биофизиком — известны его работы по молекулярной биологии, генетике, иммунологии. Вместе с А. Эйнштейном он увлекался созданием различных технических приспособлений. Сотрудничая, они стали соавторами более десяти патентов, среди которых есть и патент на бесшумный холодильник.

Цель упомянутой статьи Сциларда — обсудить возможность нарушения второго начала термодинамики.

Пусть есть замкнутый цилиндр объемом V, который может быть разделен подвижной заслонкой на две части с объемами V_1 и V_2 (в начале $V_1 =$ $= V_2 = V/2$), и пусть в этом цилиндре есть только одна молекула. Предположим, что эта молекула находится в V_1 . Тогда будем передвигать заслонку как поршень, расширяя объем V_1 до V, поддерживая при этом постоянную температуру за счет единственного теплового резервуара. Для получения максимальной величины работы процесс расширения должен происходить бесконечно медленно, как и в идеальной машине Карно. Для этого среднее «давление» молекулы должно уравновешиваться каким-то давлением на поршень. Если затем заслонку выдвинуть из сосуда и привести в исходное положение, разделяющее цилиндр на две части, то такая система будет производить механическую работу. Но это возможно лишь в том случае, если заслонка-поршень движется в сторону той части цилиндра, которая не содержит молекулы. Следовательно, нужно придумать способ, позволяющий определять, где находится молекула. Можно придумать много вариантов такого эксперимента, например пропускать через прозрачные стенки цилиндра свет и смотреть, при прохождении через какую часть цилиндра он рассеялся. Нас же сейчас интересует то, что на любой такой эксперимент, позволяющий получить информацию о местонахождении частицы, требуется затратить энергию.

Сравним теперь энергию, получаемую и расходуемую в одном цикле устройства Сциларда.

В процессе изотермического расширения (вспоминаем закон Бойля—Мариотта), газ совершает работу, равную

$$A = \int_{V_1}^{V} p(V) \, dV.$$

сходя из уравнения Менделеева—Клапейрона $pV = \nu RT$, где ν — число молей газа, R — универсальная газовая постоянная, получим

$$A = \nu RT \int_{V_1}^{V} \frac{dV}{V} = \nu RT \ln \frac{V}{V_1}.$$

В случае если «газ» состоит из одной молекулы, то количество вещества, содержащегося в нем, равно $\nu=N_{\rm A}^{-1}$, где $N_{\rm A}$ — постоянная Авогадро. Тогда, с учетом того, что $R=N_{\rm A}k$ (k — постоянная Больцмана) и $V=2V_1$, окончательно получим

$$A = kT \ln 2$$
.

Для расчета энергии, расходуемой на получение информации о месте частицы в цилиндре, необходимо обратиться к понятию энтропии.

Энтропия

Энтропия — один из параметров, характеризующих состояние газа. Понятие энтропии было введено в научный обиход уже упоминавшимся нами немецким физиком Рудольфом Клаузиусом. Он предложил считать, что если к газу подвести очень малую порцию количества теплоты ΔQ так, чтобы его температура осталась постоянной, изменение энтропии ΔS будет равно $\Delta S = \Delta Q/T$. Мы не будем подробнее обсуждать такое определение энтропии. Тот, кто заинтересовался им, может обратиться, например, к книге Я. А. Смородинского «Температура» (М.: Наука, серия «Библиотечка Квант», вып. 12). Нас же будет интересовать другое, статистическое, определение энтропии, данное Больцманом: $S = k \ln W$, где W — вероятность состояния.

Чтобы прояснить смысл упомянутого понятия «вероятность состояния»,

разделим мысленно объем, занимаемый этим газом, на N одинаковых ячеек. Макроскопическое состояние данного газа задается числом атомов, попавших в различные ячейки: n_1, n_2, \dots \ldots , n_N . Можно рассчитать вероятность W такого состояния (она пропорциональна числу способов, которым его можно реализовать). Оказывается, W будет максимальной для состояния, когда $n_1 = n_2 = \ldots = n_N$. В этом случае газ находится в максимально неупорядоченном состоянии, и его энтропия — максимальна. Таким образом, энтропия может служить мерой беспорядка в системе.

Такое определение энтропии физической системы близко к понятию информационной энтропии, предложенному в 1949 году Клодом Шенноном. Рассмотрение этого понятия выходит за рамки нашей статьи, и мы лишь заметим, что количество энергии, которое необходимо затратить на уменьшение информационной энтропии, т. е. на определение, в какой части сосуда находится молекула, в точности равно $A = kT \ln 2$. Таким образом, машина Сциларда выигрыша в работе не дает.

На этом, однако, история демона Максвелла не закончилась.

Несколько лет назад американский ученый К. Кэйвс предложил усовершенствованную машину Сциларда. В этой машине объединены несколько, например десять, цилиндров. Кэйвс высказал предположение, что такое устройство с единой информационной системой может дать энергетический эффект. Действительно, для десяти камер получаемая механическая работа в десять раз больше. Энергия, необходимая для получения информации, может возрасти меньше чем в десять раз, например когда все молекулы находятся, скажем, в левых отсеках цилиндров, что также описывается одним битом информации, как

и в случае одного цилиндра. (Один бит информации можно определить как минимальное количество информации, позволяющее однозначно ответить на вопрос, требующий ответа «да» или «нет».)

Однако вскоре стало ясно, что итоговый выигрыш в работе все равно в среднем недостижим. Это связано, как показали К. Кэйвс, В. Унру и В. Зурек,

с тем, что в каждом цикле демону Максвелла нужны обновленные данные — в каком режиме работать: повторить наблюдения за молекулами или сразу начинать рабочий цикл, а на получение такой информации также надо затратить энергию.

Итак, второе начало термодинамики вновь выстояло, но теперь мы знаем о нем больше.