Analyse fonctionnelle

$TD n^0 1$

Exercice 1

Soit E un \mathbb{C} -espace vectoriel muni d'une famille séparante de semi-normes $(p_i)_{i\in I}$, H un hyperplan de E et u une forme linéaire non nulle sur E de noyau H.

- (a) On suppose u continue sur E. Montrer que H est fermé dans E.
- (b) On suppose maintenant H fermé dans E et on fixe $a \in E$ tel que u(a) = 1.
 - (i) Vérifier que a + H est un fermé de E ne contenant pas 0.
 - (ii) En déduire qu'il existe $N \ge 1, i_1, \dots, i_N \in I$ et $\varepsilon > 0$ tels que

$$\omega = \left\{ x \in E; \ \max_{1 \le k \le N} p_{i_k}(x) < \varepsilon \right\} \subset E \setminus (a + H).$$

- (iii) Vérifier que, pour tout $x \in \omega$, |u(x)| < 1 (pour cela, soit $x \in \omega$ tel que $|u(x)| \ge 1$, se ramener au cas où u(x) est un réel ≥ 1 et obtenir une contradiction).
- (iv) Prouver que u est continue sur E.
- (c) Enoncer le résultat prouvé dans cet exercice.
- (d) Dans le cas où E est un espace vectoriel normé, donner une autre preuve de (b) en utilisant des suites.

Exercice 2 L'espace $C^k(\Omega)$

Soit Ω un ouvert non vide de \mathbb{R}^d et $(K_n)_{n\geq 1}$ une suite exhaustive de compacts pour Ω . Pour $k\geq 1$, on désigne par $C^k(\Omega)$ l'espace des fonctions de classe C^k sur Ω à valeurs dans \mathbb{C} . Pour tout $n\geq 1$ et toute $f\in C^k(\Omega)$, on pose

$$p_n(f) = \sup_{x \in K_n} \sup_{|\alpha| \le k} |D^{\alpha} f(x)|.$$

- (a) Vérifier que la suite $(p_n)_{n\geq 1}$ est une suite séparante de semi-normes sur $C^k(\Omega)$, puis que la topologie définie par cette suite de semi-normes ne dépend pas du choix de la suite exhaustive $(K_n)_{n\geq 1}$. On munit désormais $C^k(\Omega)$ de cette topologie.
- (b) Donner une métrique d sur $C^k(\Omega)$ qui définisse la topologie de $C^k(\Omega)$, et montrer que $C^k(\Omega)$ est un espace de Fréchet.

Exercice 3 L'espace s

Soit s l'espace des suites de nombres complexes $(s=\mathbb{C}^{\mathbb{N}^*})$. Si $x\in s$ et $m\in\mathbb{N}^*$ on définit $p_m(x)=\max_{1\leq i\leq m}|x_i|$.

- (a) Montrer que la suite $(p_m)_{m\in\mathbb{N}^*}$ est une suite séparante de semi-normes sur s et que, muni de la topologie définie par ces semi-normes, s est un espace de Fréchet.
- (b) Montrer qu'une partie A de s est compacte si, et seulement si, A est fermée et bornée dans s. Pour cela, on pourra considérer une suite $(x^n)_{n\geq 1}$ d'éléments de A et procéder de la manière suivante:
 - (i) Vérifier que la suite $(x_1^n)_{n\geq 1}$ est bornée dans \mathbb{C} . En déduire qu'il existe une application ϕ_1 strictement croissante de \mathbb{N}^* dans \mathbb{N}^* telle que $\left(x_1^{\phi_1(n)}\right)_{n\geq 1}$ converge vers $x_1\in\mathbb{C}$.
 - (ii) Pour $k \in \mathbb{N}^*$, on suppose construites des applications ϕ_1, \dots, ϕ_k strictement croissantes de \mathbb{N}^* dans \mathbb{N}^* telles que, pour tout $1 \leq l \leq k$, $\left(x_l^{\phi_1 \circ \dots \circ \phi_l(n)}\right)_{n \geq 1}$ converge vers $x_l \in \mathbb{C}$. Montrer qu'il existe une application ϕ_{k+1} strictement croissante de \mathbb{N}^* dans \mathbb{N}^* telle que $\left(x_{k+1}^{\phi_1 \circ \dots \circ \phi_{k+1}(n)}\right)_{n \geq 1}$ converge vers $x_{k+1} \in \mathbb{C}$.
 - (iii) On pose $x=(x_k)_{k\geq 1}$ et, pour tout $n\geq 1, \, \phi(n)=\phi_1\circ\ldots\circ\phi_n(n)$. Vérifier que ϕ est strictement croissante et que, pour tout $k \geq 1$, $\left(x_k^{\phi(n)}\right)_{n\geq 1}$ converge vers x_k . Pour ce dernier point, il suffit de voir que $\left(x_k^{\phi(n)}\right)_{n\geq 1}$ est extraite de $\left(x_k^{\phi_1\circ\dots\circ\phi_k(n)}\right)_{n\geq 1}$ à partir d'un certain rang. (iv) En déduire que $\left(x^{\phi(n)}\right)_{n\geq 1}$ converge vers x dans s, puis que $x\in A$. Conclure.
- (c) Existe-t-il une norme sur s qui définisse la topologie considérée dans les questions (a) et (b)? Le procédé décrit pour la question (b) s'appelle le procédé diagonal de Cantor.

Exercice 4 L'espace L^p pour 0

Soit $p \in [0,1]$ et $f:[0,1] \to \mathbb{C}$ une fonction mesurable. On dit que $f \in L^p$ si, et seulement si,

$$\Delta(f) = \int_0^1 |f(t)|^p dt < +\infty.$$

- (a) Montrer que L^p est un espace vectoriel et que, si $f, g \in L^p$, $\Delta(f+g) \leq \Delta(f) + \Delta(g)$.
- (b) Pour $f,g \in L^p$, on définit $d(f,g) = \Delta(f-g)$. Montrer que d est une distance invariante par translation sur L^p . Prouver aussi que L^p , muni de cette distance, est complet (preuve analogue à celle de la complétude de L^p pour $p \ge 1$).
- (c) On veut prouver que les seuls ouverts convexes inclus dans L^p sont \emptyset et L^p . Soit donc ω un ouvert convexe non vide de L^p .
 - (i) Expliquer pourquoi on peut supposer que $0 \in \omega$ (c'est-à-dire que, si on sait prouver le résultat quand $0 \in \omega$, on l'obtient aussitôt dans tous les cas), et vérifier qu'il existe r > 0 tel que $\{ f \in L^p; \ \Delta(f) < r \} \subset \omega.$
 - (ii) Soit $f \in L^p$ et $n \in \mathbb{N}^*$. En utilisant la continuité de $x \mapsto \int_0^x |f(t)|^p dt$, montrer qu'il existe des points $0 = x_0 < x_1 < \ldots < x_n = 1$ tels que, pour tout i,

$$\int_{T_i}^{x_{i+1}} \left| f(t) \right|^p dt = \frac{1}{n} \Delta(f).$$

(iii) Pour tout i, on définit la fonction $g_i(t) = nf(t)\chi_{|x_{i-1},x_i|}(t)$. En calculant $\Delta(g)$, montrer que, si n est bien choisi, $g_i \in \omega$. En déduire que $f \in \omega$.

- (d) Montrer que toute forme linéaire continue sur L^p est nulle.
- (e) Existe-t-il une norme sur $L^p(\Omega)$ qui définisse la topologie de $L^p(\Omega)$?

Exercice 5 Théorème de Riesz

Soit E un espace vectoriel muni d'une famille séparante de semi-normes. On suppose E localement compact, ce qui veut dire qu'il existe un ouvert ω de E contenant 0 et d'adhérence compacte. On veut montrer que E est de dimension finie. Dans la suite, on admettra que tout sous-espace de E de dimension finie est fermé dans E.

(a) Montrer qu'il existe une famille finie de points $x_1, \ldots, x_n \in E$ tels que

$$\omega \subset \left(x_1 + \frac{1}{2}\omega\right) \cup \ldots \cup \left(x_n + \frac{1}{2}\omega\right).$$

(b) On désigne par F le sous-espace de E engendré par x_1, \ldots, x_n . Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\omega \subset F + 2^{-n}\omega$$
.

- (c) En déduire que $\omega \subset \overline{F}$, puis que E = F.
- (d) Conclure.

Exercice 6 Topologie de la convergence simple

Soit E l'espace de toutes les fonctions de [0,1] dans \mathbb{R} . Pour tout $x \in [0,1]$ et toute $f \in E$, on pose $p_x(f) = |f(x)|$.

- (a) Vérifier que la famille $(p_x)_{0 \le x \le 1}$ est une famille séparante de semi-normes sur E. On munit désormais E de la topologie définie par cette famille de semi-normes.
- (b) Soit $(f_k)_{k\geq 1}$ une suite d'éléments de E et $f\in E$. Montrer que la suite $(f_k)_{k\geq 1}$ converge vers f dans E si, et seulement si, pour tout $x\in [0,1]$, $f_k(x)$ converge vers f(x). Pour cette raison, la topologie définie par les $(p_x)_{0\leq x\leq 1}$ s'appelle la topologie de la convergence simple.
- (c) Soit A l'ensemble des fonctions $f \in E$ telles que l'ensemble $\{x \in [0,1]; f(x) \neq 0\}$ soit fini. Montrer que A est dense dans E.
- (d) Soit B l'ensemble des fonctions $f \in E$ telles que l'ensemble $\{x \in [0,1]; f(x) \neq 0\}$ soit fini ou dénombrable.
 - (i) Soit $(f_k)_{k\geq 1}$ une suite d'éléments de B qui converge vers $f\in E$. Montrer que $f\in B$ (utiliser la question (b)).
 - (ii) Montrer que B est dense dans E (utiliser (c)). En déduire que B n'est pas fermé dans E.
- (e) Existe-t-il une distance d sur E qui définisse sur E la même topologie que les $(p_x)_{0 \le x \le 1}$?

Exercice 1

Soient E un espace de Fréchet, F un sous-espace de E et $x \in E$. Montrer que $x \in \overline{F}$ si, et seulement si, toute forme linéaire continue ϕ sur E qui s'annule sur F s'annule aussi en x. En déduire un critère de densité de F dans E.

Exercice 2

Soit E un espace de Fréchet. Pour tout sous-espace vectoriel F de E, on pose

$$F^{\perp} = \{ \phi \in E', \ \forall x \in F, \ \phi(x) = 0 \}.$$

Pour tout sous-espace vectoriel G de E', on pose

$$G^{\perp} = \{ x \in E, \ \forall \phi \in G, \ \phi(x) = 0 \}.$$

- (a) Vérifier que, pour tout sous-espace F de E, F^{\perp} est un sous-espace fermé de E', et que, pour tout sous-espace G de E', G^{\perp} est un sous-espace fermé de E.
- (b) Soit F un sous-espace de E. Montrer que $(F^{\perp})^{\perp} = \overline{F}$ (on montrera successivement les deux inclusions).

Remarque: si G est un sous-espace de E', on a toujours $\overline{G} \subset (G^{\perp})^{\perp}$, mais l'égalité est fausse en général.

Exercice 3

Soient E un \mathbb{R} -espace vectoriel et $\phi, \phi_1, \ldots, \phi_n$ des formes linéaires sur E $(n \in \mathbb{N}^*)$. On suppose que

$$\bigcap_{1 < i < n} \ker \, \phi_i = \ker \, \phi.$$

- (a) Pour tout $x \in E$, on définit $F(x) = (\phi(x), \phi_1(x), \dots, \phi_n(x)) \in \mathbb{R}^{n+1}$. Vérifier que $a = (1, 0, \dots, 0)$ n'appartient pas à l'image de F.
- (b) En déduire qu'il existe $\lambda, \lambda_1, \ldots, \lambda_n \in \mathbb{R}$ et $\alpha \in \mathbb{R}$ tels que, pour tout $x \in E$,

$$\lambda < \alpha < \lambda \phi(x) + \sum_{i=1}^{n} \lambda_i \phi_i(x).$$

(c) Montrer que $\lambda < 0$ et en déduire que ϕ est une combinaison linéaire de ϕ_1, \ldots, ϕ_n .

Exercice 4

On rappelle qu'un espace topologique X est dit séparable si, et seulement si, il existe une partie dénombrable A de X dense dans X.

Soit E un espace de Banach tel que E' soit séparable. On cherche à montrer que E est séparable. Pour cela, on note $(\phi_k)_{k\geq 1}$ une suite d'éléments de E' dense dans E'.

- (a) Montrer que pour tout $k \ge 1$, il existe $x_k \in E$ avec $||x_k|| = 1$ et $\phi_k(x_k) \ge \frac{1}{2} ||\phi_k||$. On notera F le sous-espace de E engendré par les $(x_k)_{k>1}$.
- (b) Montrer que F est dense dans E. On utilisera le critère de densité vu dans l'exercice 1.
- (c) En déduire que E est séparable.
- (d) Montrer que $(l^{\infty})'$ et l^1 ne sont pas isomorphes (on commencera par remarquer que l^1 est séparable, et que l^{∞} ne l'est pas).
- (e) Donner un exemple d'espace de Banach séparable E tel que E' ne soit pas séparable.

Exercice 5 Demi-espaces

Une partie A d'un espace de Fréchet réel E s'appelle un demi-espace fermé si, et seulement si, il existe $\alpha \in \mathbb{R}$ et une forme linéaire continue f sur E tels que

$$A = \{x \in E; \ f(x) \ge \alpha\}.$$

Soit C un convexe fermé de E avec $C \neq E$. Montrer que C est une intersection de demi-espaces fermés (utiliser la forme géométrique du théorème de Hahn-Banach en séparant C de tout $x \notin C$).

Exercice 6 Limite généralisée de Banach

Pour tout $x \in l^{\infty}$, on définit la suite $\tau(x) \in l^{\infty}$ par

$$(\tau(x))_n = x_{n+1}.$$

Prouver qu'il existe une forme linéaire continue Λ sur l^{∞} telle que, pour tout $x \in l^{\infty}$,

$$\Lambda(\tau(x)) = \Lambda(x)$$

et

$$\underline{\lim}_{n \to +\infty} x_n \le \Lambda(x) \le \overline{\lim}_{n \to +\infty} x_n.$$

Suggestion: pour tout $n \geq 1$ et tout $x \in l^{\infty}$, on définit

$$\Lambda_n(x) = \frac{\sum_{k=1}^n x_k}{n}.$$

On pose alors

$$M = \left\{ x \in l^{\infty}; \ \lim_{n \to +\infty} \Lambda_n(x) \text{ existe} \right\}$$

et, pour tout $x \in l^{\infty}$,

$$p(x) = \overline{\lim_{n \to +\infty}} \Lambda_n(x).$$

Appliquer le théorème de Hahn-Banach.

Exercice 1

Soit E un espace de Banach de dimension infinie, $B = \{x \in E; \|x\| \le 1\}, S = \{x \in E; \|x\| = 1\}.$

- (a) Montrer que B est fermé dans E pour la topologie $\sigma(E, E')$.
- (b) Soit $x \in E$ vérifiant ||x|| < 1. Montrer que tout ouvert ω (pour $\sigma(E, E')$) contenant x contient une droite passant par x. En déduire que x est adhérent à S pour $\sigma(E, E')$.
- (c) Quelle est l'adhérence de S dans E pour $\sigma(E, E')$?
- (d) Quel est l'intérieur de $\{x \in E; ||x|| < 1\}$ pour $\sigma(E, E')$?

Exercice 2

Soit c_0 l'espace des suites complexes qui tendent vers 0, muni de la norme $\| \|_{\infty}$. On fixe une suite $(a_n)_{n\in\mathbb{N}}\in l^1$ telle que, pour tout $n\in\mathbb{N}$, $a_n>0$. Pour tout $x=(x_n)_{n\in\mathbb{N}}\in c_0$, on pose

$$L(x) = \sum_{n \in \mathbb{N}} a_n x_n.$$

- (a) Vérifier que L est une forme linéaire continue sur c_0 et calculer ||L||.
- (b) Montrer qu'il n'existe pas de $x \in c_0$ vérifiant $||x||_{\infty} = 1$ tel que |L(x)| = ||L||.
- (c) En déduire que la boule unité fermée de c_0 n'est pas compacte pour $\sigma(c_0, c'_0)$.

Exercice 3

- (a) Soit E un espace de Fréchet et ϕ une forme linéaire continue sur E' pour $\sigma(E', E)$. Montrer qu'il existe $x \in E$ tel que, pour toute $f \in E'$, $\phi(f) = f(x)$. On utilisera le résultat de l'exercice 3 de la feuille 2.
- (b) En déduire que, si H est un hyperplan de E' fermé pour la topologie $\sigma(E', E)$, il existe $\alpha \in \mathbb{R}$ et $x \in E \setminus \{0\}$ tels que

$$H = \{ \phi \in E'; \ \phi(x) = \alpha \}.$$

Exercice 4

Pour tout entier $n \in \mathbb{N}^*$, tout entier $0 \le m \le n-1$ et tout $t \in [-\pi, \pi]$, on pose

$$f_{n,m}(t) = e^{imt} + me^{int}.$$

On note E le sous-ensemble de $L^2([-\pi,\pi])$ formé des fonctions $(f_{n,m})_{n\in\mathbb{N}^*,\ 0\leq m\leq n-1}$. On note enfin E_1 l'ensemble des fonctions $f\in L^2$ pour lesquelles il existe une suite d'éléments $(g_k)_{k\geq 0}$ dans E qui converge faiblement vers f dans $L^2([-\pi,\pi])$.

- (a) Quels sont tous les éléments de E_1 ?
- (b) Quelle est l'adhérence faible de E dans $L^{2}\left(\left[-\pi,\pi\right] \right)$?

(c) Montrer que la fonction 0 appartient à l'adhérence faible de E dans $L^2([-\pi,\pi])$ mais pas à E_1 .

Exercice 5

Soit E un espace de Banach séparable (cf Feuille 2, exercice 4), B_E la boule unité fermée de E et $B_{E'}$ celle de E'. On note $(x_n)_{n\geq 1}$ une suite de points de B_E dense dans B_E . Pour tous $f,g\in B_{E'}$, on note

$$d(f,g) = \sum_{n \ge 0} \frac{1}{2^n} |f(x_n) - g(x_n)|.$$

- (a) Vérifier que d est une distance sur $B_{E'}$.
- (b) Montrer que la topologie définie par d sur $B_{E'}$ est la même que celle induite par $\sigma(E', E)$ sur $B_{E'}$.

Exercice 6

Soit E un espace de Banach. On suppose qu'il existe une distance d sur $B_{E'}$ qui définit sur $B_{E'}$ la topologie induite par $\sigma(E', E)$.

(a) Pour tout $n \ge 1$, on pose

$$V_n = \{ f \in B_{E'}; \ d(f,0) < 1/n \}.$$

Montrer qu'il existe un entier $k_n \in \mathbb{N}^*$, des points $x_1^n, \dots, x_{k_n}^n \in E$ et un réel $\varepsilon_n > 0$ tels que

$$\{f \in B_{E'}; |f(x_i^n)| < \varepsilon_n \ \forall 1 \le i \le k_n\} \subset V_n.$$

(b) Montrer que l'espace vectoriel engendré par les $(x_i^n)_{n\geq 1,\ 1\leq i\leq k_n}$ est dense dans E (utiliser le résultat de l'exercice 2 de la feuille 2). En déduire que E est séparable.

Exercice 1

Soient I un intervalle ouvert non vide de \mathbb{R} et $(f_k)_{k\geq 1}$ une suite de fonctions continues sur I qui converge simplement vers une fonction f sur I. Soient aussi a < b des points de I.

(a) Pour tous $c < d \in I$, tout $N \ge 1$ et tout $\varepsilon > 0$, on pose

$$G_N = \{x \in [c, d] ; \forall p, q \ge N, |f_p(x) - f_q(x)| \le \varepsilon.\}$$

Montrer qu'il existe $N \geq 1$ tel que G_N soit d'intérieur non vide dans [a, b].

(b) En déduire qu'il existe une suite $(a_n)_{n\geq 1}$ strictement croissante dans [a,b] et une suite $(b_n)_{n\geq 1}$ strictement décroissante dans [a,b] telles que, pour tout $n\geq 1$, $a_n< b_n$ et il existe $N_n\geq 1$ tel que, pour tous $p,q\geq N_n$ et tout $x\in [a_n,b_n]$,

$$|f_p(x) - f_q(x)| \le 1/n.$$

- (c) En déduire qu'il existe $x \in]a,b[$ tel que f soit continue en x, puis que l'ensemble des points de I où f est continue est dense dans I.
- (d) Soit $g: I \to \mathbb{R}$ une fonction dérivable. Montrer que l'ensemble des points de I où g' est continue est dense dans I.

Exercice 2

Soient E un espace de Banach, F un espace vectoriel normé et $(T_i)_{i\in I}$ une famille d'applications linéaires continues de E dans F. Pour tout $n \in \mathbb{N}$, on définit

$$U_n = \{x \in E; \exists i \in I, ||T_i(x)|| > n\}.$$

- (a) Montrer que, pour tout $n \in \mathbb{N}$, U_n est ouvert dans E.
- (b) On suppose qu'il existe $n \in \mathbb{N}$ tel que U_n ne soit pas dense dans E. Montrer qu'il existe M > 0 tel que, pour tout $i \in I$, $||T_i|| \leq M$.
- (c) On suppose que, pour tout $n \in \mathbb{N}$, U_n est dense dans E. Montrer que

$$\left\{ x \in E; \ \sup_{i \in I} \|T_i(x)\| = +\infty \right\}$$

est dense dans E.

Exercice 3 Séries de Fourier

On désigne par $L^1(\mathbb{T})$ l'espace des fonctions intégrables sur $[0,2\pi]$ à valeurs dans \mathbb{C} . Si $f \in L^1(\mathbb{T})$ et $n \in \mathbb{Z}$, on pose

$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int}dt.$$

Soit $N \in \mathbb{N}$. On pose, pour tout $t \in \mathbb{R}$,

$$D_N(t) = \sum_{|k| \le N} e^{ikt}.$$

- (a) Montrer que $f \mapsto \widehat{f}$ est une application linéaire continue et injective de $L^1(\mathbb{T})$ dans c_0 , l'espace des suites complexes qui tendent vers 0.
- (b) Vérifier RAPIDEMENT que, pour tout $t \neq 0$,

$$D_N(t) = \frac{\sin((N + \frac{1}{2})t)}{\sin\frac{t}{2}}$$

et en déduire que

$$\lim_{N \to +\infty} \int_{-\pi}^{\pi} |D_N(t)| \, dt = +\infty.$$

(c) Calculer $\widehat{D_N}(k)$ pour tout $N \in \mathbb{N}$ et tout $k \in \mathbb{Z}$, et en déduire que $f \mapsto \widehat{f}$ n'est pas surjective de $L^1(\mathbb{T})$ sur c_0 .

Exercice 4

Soit $f \in C^{\infty}(\mathbb{R}^n)$. On dit que $f \in \mathcal{S}(\mathbb{R}^n)$ si, et seulement si, pour tout $N \in \mathbb{N}$,

$$p_N(f) = \sup_{|\alpha| \le N} \sup_{x \in \mathbb{R}^n} \left(1 + |x|^2 \right)^N |D^{\alpha} f(x)| < +\infty.$$

On munit $\mathcal{S}(\mathbb{R}^n)$ de la topologie définie par les semi-normes $(p_N)_{N\in\mathbb{N}}$.

- (a) Vérifier que $\mathcal{S}(\mathbb{R}^n)$ est un Fréchet.
- (b) Soient P un polynôme, $g \in \mathcal{S}(\mathbb{R}^n)$ et α un multi-indice. Montrer que les applications

$$f \mapsto Pf, \ f \mapsto gf, \ f \mapsto D^{\alpha}f$$

sont continues de $\mathcal{S}(\mathbb{R}^n)$ dans $\mathcal{S}(\mathbb{R}^n)$. On utilisera le théorème du graphe fermé.

(c) Vérifier que, si $f \in \mathcal{S}(\mathbb{R}^n)$ et P est un polynôme, alors

$$\widehat{P(D)f} = P\widehat{f}, \ \widehat{Pf} = P(-D)\widehat{f}.$$

En déduire que la transformée de Fourier est continue de $\mathcal{S}(\mathbb{R}^n)$ dans $\mathcal{S}(\mathbb{R}^n)$.

Exercice 1

Si f est continue sur [0,1], on pose

$$||f||_{\mathcal{C}([0,1])} = \sup_{0 \le x \le 1} |f(x)|.$$

Si f est de classe C^1 sur [0,1], on pose

$$||f||_{\mathcal{C}^1([0,1])} = \sup_{0 \le x \le 1} |f(x)| + \sup_{0 \le x \le 1} |f'(x)|.$$

On munit $\mathcal{C}([0,1])$ de la norme $\|.\|_{\mathcal{C}([0,1])}$. Soit E un sous-espace fermé de $\mathcal{C}([0,1])$ tel que, pour toute $f \in E$, f est de classe C^1 .

(a) Montrer que E, muni de la norme $C^1([0,1])$, est complet. En déduire qu'il existe C > 0 tel que, pour toute $f \in E$,

$$\sup_{0 \le x \le 1} |f'(x)| \le C \sup_{0 \le x \le 1} |f(x)|.$$

- (b) Soit $B = \left\{ f \in E; \ \|f\|_{\mathcal{C}([0,1])} \le 1 \right\}$. Montrer que B est une partie compacte de $\mathcal{C}([0,1])$.
- (c) En déduire que E est de dimension finie.

Exercice 2

Soit E un espace de Banach. Un opérateur T de E dans E est dit de rang fini si, et seulement si, son image est de dimension finie.

- (a) Montrer que tout opérateur de rang fini est compact. En déduire que, si les $(T_n)_{n\in\mathbb{N}}$ sont tous de rang fini et si $||T_n T|| \to 0$, alors T est compact.
- (b) Dans cette question, on suppose que E est un espace de Hilbert. Soit T un opérateur compact de E dans E. Montrer qu'il existe une suite d'opérateurs $(T_n)_{n\in\mathbb{N}}$ de rang fini qui converge vers T pour la norme d'opérateur.

Indication: pour $\varepsilon > 0$, $T(B_E)$ peut être recouvert par un nombre fini de boules $B(x_i, \varepsilon)$. Utiliser la projection orthogonale sur l'espace engendré par les x_i .

(c) Utiliser le résultat de la question (b) pour retrouver que, si H est un espace de Hilbert, un opérateur T de H dans H est compact si, et seulement si, T^* est compact.

Complément: le résultat de la question (b) est faux dans un Banach quelconque, voir [1].

Exercice 3

Soit E un espace de Banach. On dit que E est uniformément convexe si, et seulement si, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que, pour tous $x, y \in E$,

$$(\|x\| \le 1 \text{ et } \|y\| \le 1 \text{ et } \|x - y\| > \varepsilon) \Rightarrow \left\|\frac{x + y}{2}\right\| < 1 - \delta.$$

- (a) Vérifier que \mathbb{R}^2 muni de la norme euclidienne est uniformément convexe, mais que \mathbb{R}^2 muni de la norme l^1 ne l'est pas. Plus généralement, vérifier qu'un espace de Hilbert est uniformément convexe. Dans la suite, on prouve qu'un espace de Banach uniformément convexe est réflexif. Soit donc E un espace de Banach uniformément convexe et $\xi \in B_{E''}$.
- (b) Expliquer pourquoi il suffit de prouver que, pour tout $\varepsilon > 0$, il existe $x \in B_E$ tel que $\|\xi J(x)\| < \varepsilon$. Dans la suite, on fixera donc $\varepsilon > 0$.
- (c) Soit $\delta > 0$ associé à ε dans la définition de l'uniforme convexité. Justifier l'existence de $f \in B_{E'}$ tel que $\xi(f) > 1 \frac{\delta}{2}$.
- (d) On définit

$$V = \left\{ \eta \in B_{E''}; \ |(\eta - \xi)(f)| < \frac{\delta}{2} \right\}.$$

Montrer qu'il existe $x \in B_E$ tel que $J(x) \in V$.

On pose alors $W = E'' \setminus (J(x) + \varepsilon B_{E''})$, et on suppose que $\xi \in W$.

(e) Justifier l'existence de $y \in B_E$ tel que $J(y) \in V \cap W$, puis montrer que

$$\left\| \frac{x+y}{2} \right\| \ge 1 - \delta.$$

(f) Obtenir une contradiction, et en déduire que $\xi \notin W$. Conclure.

Exercice 4

Soient E et F des espaces de Banach. On suppose E réflexif. Soit $T:E\to F$ un opérateur compact. On note

$$B_E = \{x \in E; ||x|| \le 1\}.$$

- (a) Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de B_E . Montrer qu'il existe $\phi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $T(x_{\phi(n)})$ converge vers $y \in F$ fortement et $x_{\phi(n)}$ converge vers $x \in B_E$ pour $\sigma(E, E')$.
- (b) En déduire que $T(B_E)$ est une partie compacte de F pour la topologie de la norme (pour cela, on montrera que $T(x_n)$ converge vers T(x) pour la topologie de la norme).

References

[1] P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math., 130, 309-317, 1973.