Министерство на образованието и науката

74. Национална олимпиада по математика Национален кръг, 4 – 7 март 2025 г.

ТЕМА ЗА 7. КЛАС

Задача 1. Магазинер купил от зеленчукова борса a kg домати на цена b лв. за килограм и 100 пъти повече картофи, чиято цена за килограм е с 64% по-ниска от цената на доматите.

Той продал закупеното количество, като в магазина му доматите били с a^2 % по-скъпи, а на картофите – с b^2 % по-скъпи, отколкото на борсата.

- а) Намерете отношението b:a, ако печалбата на магазинера от продажбата е била $0,12a^2b^2$ лв.
- б) С колко процента щеше да е по-голяма печалбата, ако b: a=1:2 и в магазина доматите бяха с b^2 % по-скъпи, а картофите с a^2 % по-скъпи, отколкото на борсата?

Решение. Отговор. а) 1:6; б) 262,5%.

а) Закупената стока струва $ab + 100a \cdot 0,36b = 37ab$ лв. и е продадена за

$$ab(100+a^2)\%+100a\cdot 0,36b(100+b^2)\%=37ab+\frac{ab(a^2+36b^2)}{100}$$
 лв.

Печалбата е $\frac{ab(a^2+36b^2)}{100}$ лв. От

$$\frac{ab(a^2 + 36b^2)}{100} = 0,12a^2b^2$$

следва, че

$$(a-6b)^2 = 0 \iff b: a = 1:6.$$

(3 точки)

б) Закупената стока струва 37ab лв. и е продадена за

$$ab(100+b^2)\%+100a\cdot 0,36b(100+a^2)\%=37ab+rac{ab(b^2+36a^2)}{100}$$
 лв.,

т.е. печалбата е $\frac{ab(b^2+36a^2)}{100}$ лв. Тъй като a=2b, печалбата в този случай е $2,9b^4$.

(2 точки)

Печалбата в а) е $\frac{ab(a^2+36b^2)}{100}$, което при a=2b е равно на $0,8b^4$.

Ако печалбата в този случай е с x% по-голяма от печалбата в а), то

$$x\%0, 8b^4 = 2,9b^4 - 0,8b^4 \iff x = \frac{210}{0.8} = 262,5.$$

(2 точки)

Задача 2. В равнобедрения $\triangle ABC$ (AC=BC) са построени ъглополовящите AL и CH. Оказало се, че AL=2 CH.

- а) Намерете ъглите на триъгълника ABC.
- б) Точките P и Q от страната AC са такава, че \d $ABP = \d$ $PBQ = \d$ QBC. Ако $R = BP \cap AL$ и $N = QR \cap AB$, а K е точката от страната AB, за която \d $AKR = \d$ NPB, докажете, че AK = BR.

Решение. а) (3 точки)

Да означим $\not ACH = \not BCH = \alpha$, тогава $\not CAB = \not CBA = 90^{\circ} - \alpha$. Да удвоим ъглополовящата (и височина) CH, т.е да вземем точка $E \in CH^{\rightarrow}$ така, че $CE = 2\,CH$. Тогава AH е симетрала на отсечката CE, следователно AE = AC, $\triangle AEC$ е равнобедрен и $\not AEC = \not ACE = \alpha$, а $\not EAH = \not CAH = 90^{\circ} - \alpha$. От равенството $\not AEC = \not ECB = \alpha$ следва, че AE||CB.

Нека D е пресечната точка на правата AE и правата през L, която е успоредна на CE. Тогава CEDL е успоредник, $\not \subset D = \alpha$ и

$$LD = CE = 2 CH = AL.$$

Тогава триъгълникът ADL е равнобедрен и $\not \subset DAL = \not \subset D = \alpha$. От друга страна,

$$\not \subset DAL = \not \subset EAH + \not \subset BAL = 90^\circ - \alpha + \frac{1}{2}(90^\circ - \alpha) = \frac{3}{2}(90^\circ - \alpha).$$

Получаваме равенството

$$\alpha = \frac{3}{2}(90^{\circ} - \alpha) \iff \alpha = 54^{\circ}.$$

Следователно $\stackrel{>}{\checkmark} ACB = 108^{\circ}, \stackrel{>}{\checkmark} A = \stackrel{>}{\checkmark} B = 36^{\circ}.$

Ако $\alpha > \beta$, от $\triangle AEI$ получаваме неравенството AI > EI, а от $\triangle CIL$ получаваме неравенството IL > IC, откъдето AL = AI + IL > EI + IC = CE.

Ако $\alpha < \beta$, по същия начин получаваме AL < CE.

Следователно равенството AL = CE е в сила точно когато $\alpha = \beta$.

Тогава $\alpha= \ ALC= \ BAL+ \ ABL= \frac{3}{2}(90^\circ-\alpha)$ и получаваме $\alpha=54^\circ, \ ACB=108^\circ, \ A= \ B=36^\circ.$

Трето решение. През точка H построяваме HF||BC, $F \in AL$ и HG||AL, $G \in BC$. Тогава FHGL е успоредник, откъдето HG = FL, а триъгълниците AHF и HBG са еднакви по втори признак, откъдето HG = AF. Така получихме, че $HG = \frac{1}{2}AL = CH$, т.е. триъгълникът CHG е равнобедрен.

Ако $\not ACH = \not BCH = \alpha$, тогава $\not CGH = \alpha = \not ALC = \frac{3}{2}(90^\circ - \alpha)$ и намираме $\alpha = 54^\circ$, $\not ACB = 108^\circ$, $\not A = \not B = 36^\circ$.

б) (4 точки)

Първо ще намерим $\triangleleft NPB$. Като използваме резултата от а), пресмятаме

$$\triangleleft BAL = \triangleleft CAL = 18^{\circ}, \triangleleft ABP = \triangleleft PBQ = \triangleleft QBC = 12^{\circ}$$

и от сбора на ъглите в $\triangle ABQ$ получаваме $\triangleleft AQB = 120^{\circ}$, следователно $\triangleleft BQC = 60^{\circ}$.

В триъгълника ABQ ъглополовящите на $\not \in BAQ$ и $\not \in ABQ$ се пресичат в точка R, следователно R е на равни разстояния от AQ, AB и BQ, т.е. QR е ъглополовяща на $\not \in AQB$, откъдето $\not \in AQR = \not \in BQR = 60^\circ$.

В триъгълника NBQ вътрешната ъглополовяща BR и външната ъглополовяща AQ се пресичат в точка P, следователно P е на равни разстояния от BQ, BN и NQ, т.е. PN е ъглополовяща на $\not ANQ$.

Оттук

$$\not \exists \ ANP = \frac{1}{2} \not \exists \ ANQ = \frac{1}{2} (\not \exists \ NQB + \not \exists \ NBQ) = \frac{1}{2} (60^\circ + 24^\circ) = 42^\circ.$$

Тъй като $\triangleleft ANP$ е външен ъгъл за $\triangle NBP$, намираме

$$\triangleleft NPB =
\triangleleft ANP -
\triangleleft NBP = 42^{\circ} - 12^{\circ} = 30^{\circ}.$$

Сега да построим точка K от страната AB, така че $4KR = 30^{\circ}$.

По втори признак триъгълниците CBQ и RBQ са еднакви, следователно QR=QC и BR=BC. Това означава, че BQ е симетрала на CR и намираме $\not \subset QCR=90^\circ-\not \subset BQC=30^\circ$. Тогава триъгълниците AKR и ACR също са еднакви по втори признак и получаваме

$$AK = AC = BC = BR$$
.

Задача 3. Нека $M = \{1, 2, 3, \dots, 50\}$. Да се намери най-малкото естествено число n, за което всяко подмножество на M с n елемента съдържа две различни числа a и b, такива че сборът a+b дели произведението ab.

Решение. Отговор. 39.

Ще намерим всички двойки числа a и b от множеството M, такива че сборът a+b дели произведението ab. Нека (a,b)=c, т.е. $a=ca_1$ и $b=cb_1$, като $(a_1,b_1)=1$.

Тогава $c(a_1 + b_1) \mid c^2 a_1 b_1$, т.е. $(a_1 + b_1) \mid c a_1 b_1$. Тъй като $a_1 + b_1$ е взаимнопросто с a_1 и с b_1 , то $(a_1 + b_1) \mid c$. От $c(a_1 + b_1) \leq 99$ и $a_1 + b_1 \leq c$ следва, че $a_1 + b_1 \leq 9$.

Образуваме всички възможни двойки числа a и b от M, за които a < b и $a + b \mid ab$.

a_1	b_1	c	а	b
1	2	3	3	6
1	2	6	6	12
1	2	9	9	18
1	2	12	12	24
1	2	15	15	30
1	2	18	18	36
1	2	21	21	42
1	2	24	24	48
1	3	4	4	12
1	3	8	8	24
1	3	12	12	36
1	3	16	16	48

a_1	<i>b</i> ₁	c	а	b
1	4	5	5	20
1	4	10	10	40
1	5	6	6	30
1	6	7	7	42
2	3	5	10	15
2	3	10	20	30
2	3	15	30	45
2	5	7	14	35
3	4	7	21	28
3	5	8	24	40
4	5	9	36	45

(3 точки)

От намерените 23 двойки числа a и b избираме следните 12 непресичащи се двойки (a,b):

•											
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
3	4	5	7	8	9	10	14	15	16	21	36 45
6	12	20	42	24	18	40	35	30	48	28	45

Както и да премахнем 11 числа от M, ще остане множество с 39 числа, което включва двойка (a;b) измежду посочените 12. Следователно $n \leq 39$.

(2 точки)

Можем да образуваме следното подмножество на M с 38 елемента, което не съдържа нито една от намерените 23 двойки:

1	2	3	4	5		7	8	9	10
11		13			16	17		19	
	22	23		25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	
41		43	44		46	47		49	50

Следователно n=39 е най-малкото число, което удовлетворява условието на задачата.

(2 точки)