MATH 3430-02 WEEK 10-1

Key Words: The Laplace Transform (s-shifting and t-shifting); Step functions.

We start with two useful properties of the Laplace transform. Officially they are both called 'shifting theorems', but to distinguish, we'll call one s-shifting, the other t-shifting, for obvious reasons that will become clear.

- Q1. Suppose that f(t) is of exponential order (i.e., appropriate for \mathcal{L}). Find a formula for $\mathcal{L}\{e^{ct}f(t)\}$.
- If F(s) is defined on (α, ∞) , where is $\mathcal{L}\{e^{ct}f(t)\}$ defined?

Let's call the formula above the 's-shifting property' of \mathcal{L} .

Q2. Let $H_c(t)$ $(c \ge 0)$ ('H' referring to a scientist named Oliver Heaviside) be the following function

$$H_c(t) = \begin{cases} 0, & t < c, \\ 1, & t \ge c. \end{cases}$$

Plot the graph of $H_c(t)$ for c = 1. $H_c(t)$ is called a **step function**.

Q3. First plot the graph of t^2 ; then plot the graph of $H_2(t)(t-2)^2$.

Q4. In general, what is the relation between f(t) and $H_c(t)f(t-c)$?

(We call the latter the shifting to right by c of the former. Note that the part of f(t) for t < 0 is truncated.)

Q5. Express the Laplace transform

$$\mathcal{L}\{H_c(t)f(t-c)\}$$

in terms of F(s).

Let's call this formula the 't-shifting property' of \mathcal{L} .

Q6. Find the following Laplace transforms or inverse transforms.

- $(1) \mathcal{L}\{e^{3t}\sin t\};$
- (2) $\mathcal{L}\{H_2(t)\cos(t-2)\};$
- (3) $\mathcal{L}\{H_3(t)\};$
- (4) $\mathcal{L}{H_5(t)(t-3)};$
- $(5) \mathcal{L}\lbrace e^{2t}H_7(t)t\rbrace;$
- (6) $\mathcal{L}^{-1}\left\{\frac{1}{s^2+4s+5}\right\};$
- (7) $\mathcal{L}^{-1}\left\{\frac{e^{-3s}}{s-2}\right\}$;

- Q7. One can use the step functions to express other discontinuous functions.
 - (1) Suppose that

$$g(t) = \begin{cases} 0, & t < \pi, \\ 1, & \pi \le t < 2\pi, \\ 0, & t \ge 2\pi. \end{cases}$$

Plot the graph of g(t); then express g(t) as the difference between two step functions.

(2) Let g(t) be the one as above, plot the graph of the function $g(t)\sin(t)$.

(3) Suppose that

$$h(t) = \begin{cases} 0, & t < 1, \\ e^{5t}, & 1 \le t < 2, \\ t, & 2 \le t < 5, \\ e^{-t}, & t \ge 5. \end{cases}$$

Write h(t) in a closed form using the step functions.

Q8. For the h(t) in **Q7**, find $\mathcal{L}\{h(t)\}$.

Next time, we'll see such discontinuous functions appearing as the forcing term (right-hand-side) of an ODE.