Here I intend to create a model to predict when a client will accept a term deposit.

Bank Marketing Data Set

URL: https://archive.ics.uci.edu/ml/datasets/Bank+Marketing)

Data Set Information:

The data is related wif direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required, in order to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed.

Their are four datasets:

- 1) bank-additional-full.csv with all examples (41188) and 20 inputs, ordered by date (from May 2008 to November 2010), very close to the data analyzed in
- 2) bank-additional.csv with 10% of the examples (4119), randomly selected from 1), and 20 inputs.
- 3) bank-full.csv wif all examples and 17 inputs, ordered by date (older version of dis dataset wif less inputs).
- 4) bank.csv with 10% of the examples and 17 inputs, randomly selected from 3 (older version of dis dataset with less inputs).

Teh smallest datasets are provided to test more computationally demanding machine learning algorithms (e.g., SVM).

Target:

The classification goal is to predict if the client will subscribe (yes/no) a term deposit (variable y).

Attribute Information:

Input variables:

Bank client data:

- 1 age (numeric)
- 2 job : type of job (categorical: 'admin.','blue-collar','entrepreneur','housemaid','management','retired','self-employed','services','student','technician','unemployed','unnon')

- 3 marital: marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
- 4 education (categorical:

'basic.4y','basic.6y','basic.9y','high.school','illiterate','professional.course','university.degree','unknown')

- 5 default: has credit in default? (categorical: 'no','yes','unknown')
- 6 housing: TEMPhas housing loan? (categorical: 'no','yes','Unknown')
- 7 Ioan: TEMPhas personal Ioan? (categorical: 'no', 'yes', 'unknow')

Related wif the last contact of the current campaign:

- 8 contact: contact communication type (categorical: 'cellular', 'telephone')
- 9 month: last contact month of year (categorical: 'jan', 'feb', 'mar', ..., 'nov', 'dec')
- 10 day of week: last contact day of teh week (categorical: 'mon', 'tue', 'wed', 'thu', 'fri')
- 11 duration: last contact duration, in seconds (numeric). Important note: dis attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not non before a call is performed. Also, after the end of the call y is obviously non. Thus, dis input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.

other attributes:

- 12 campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13 pdays: number of days dat passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 14 previous: number of contacts performed before this campaign and for this client (numeric)
- 15 poutcome: outcome of teh previous marketing campaign (categorical: 'failure', 'nonexistent', 'success')

Output variable (desired target):

21 - y - has the client subscribed a term deposit? (binary: 'yes','no')

social and economic context attributes

- 16 emp.var.rate: employment variation rate quarterly indicator (numeric) Cylical employment variation is essentially teh variation of how many people are being hired or fired due to teh shifts in teh conditions of teh economy
- 17 cons.price.idx: consumer price index monthly indicator (numeric)- A Consumer Price Index measures changes in teh price level of a weighted average market basket of consumer goods and services purchased by households.

- 18 cons.conf.idx: consumer confidence index monthly indicator (numeric)- Consumer confidence, measured by the Consumer Confidence Index (CCI), is defined as teh degree of optimism about teh state of teh economy that consumers (like you and me) are expressing through their activities of saving and spending.
- 19 euribor3m: euribor 3 month rate daily indicator (numeric)- Teh 3 month Euribor interest rate is teh interest rate at which a panel of banks lend money to one another wif a maturity of 3 months.
- 20 nr.employed: number of employees quarterly indicator (numeric)

In [1]:

```
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, cal l drive.mount("/content/drive", force_remount=True).

In [0]:

```
# Load Libraries
%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler, StandardScaler
```

In [3]:

```
data = pd.read_csv("/content/drive/My Drive/assigment/bank-additional-full.csv", sep=';')
data.head()
```

Out[3]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_weel
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mor
1	57	services	married	high.school	unknown	no	no	telephone	may	mor
2	37	services	married	high.school	no	yes	no	telephone	may	mor
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mor
4	56	services	married	high.school	no	no	yes	telephone	may	mor
4										>

Drop duration column dis attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not non before a call is performed. Also, after the end of the call y is obviously non. Thus, dis input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.

In [4]:

```
data=pd.read_csv("/content/drive/My Drive/assigment/bank-additional-full.csv",sep=';')
data=data.drop(['duration'],axis=1)
print(data.shape)
data.head()
```

(41188, 20)

Out[4]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_weel
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mor
1	57	services	married	high.school	unknown	no	no	telephone	may	mor
2	37	services	married	high.school	no	yes	no	telephone	may	mor
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mor
4	56	services	married	high.school	no	no	yes	telephone	may	mor
4										>

In [5]:

data.tail()

Out[5]:

	age	job	marital	education	default	housing	loan	contact	month	day_
41183	73	retired	married	professional.course	no	yes	no	cellular	nov	
41184	46	blue- collar	married	professional.course	no	no	no	cellular	nov	
41185	56	retired	married	university.degree	no	yes	no	cellular	nov	
41186	44	technician	married	professional.course	no	no	no	cellular	nov	
41187	74	retired	married	professional.course	no	yes	no	cellular	nov	
4										•

2. Data Exploration

In [6]:

```
#Information of data
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 20 columns):
                  41188 non-null int64
age
job
                  41188 non-null object
marital
                  41188 non-null object
                  41188 non-null object
education
default
                  41188 non-null object
housing
                  41188 non-null object
loan
                  41188 non-null object
contact
                  41188 non-null object
                  41188 non-null object
month
day_of_week
                  41188 non-null object
                  41188 non-null int64
campaign
pdays
                  41188 non-null int64
                  41188 non-null int64
previous
                  41188 non-null object
poutcome
emp.var.rate
                  41188 non-null float64
                  41188 non-null float64
cons.price.idx
cons.conf.idx
                  41188 non-null float64
euribor3m
                  41188 non-null float64
                  41188 non-null float64
nr.employed
                  41188 non-null object
dtypes: float64(5), int64(4), object(11)
memory usage: 6.3+ MB
```

In [7]:

data.describe()

Out[7]:

	age	campaign	pdays	previous	emp.var.rate	cons.price.idx	con
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	411
mean	40.02406	2.567593	962.475454	0.172963	0.081886	93.575664	-
std	10.42125	2.770014	186.910907	0.494901	1.570960	0.578840	
min	17.00000	1.000000	0.000000	0.000000	-3.400000	92.201000	-
25%	32.00000	1.000000	999.000000	0.000000	-1.800000	93.075000	-
50%	38.00000	2.000000	999.000000	0.000000	1.100000	93.749000	-
75%	47.00000	3.000000	999.000000	0.000000	1.400000	93.994000	-
max	98.00000	56.000000	999.000000	7.000000	1.400000	94.767000	-
4							•

1.1. Knowing the categorical variables

```
In [8]:
```

```
# knowing the job categorical variables
data["job"].unique()
Out[8]:
'entrepreneur', 'student'], dtype=object)
In [9]:
# knowing the age categorical variables
data["age"].unique()
Out[9]:
array([56, 57, 37, 40, 45, 59, 41, 24, 25, 29, 35, 54, 46, 50, 39, 30, 55,
      49, 34, 52, 58, 32, 38, 44, 42, 60, 53, 47, 51, 48, 33, 31, 43, 36,
      28, 27, 26, 22, 23, 20, 21, 61, 19, 18, 70, 66, 76, 67, 73, 88, 95,
      77, 68, 75, 63, 80, 62, 65, 72, 82, 64, 71, 69, 78, 85, 79, 83, 81,
      74, 17, 87, 91, 86, 98, 94, 84, 92, 89])
In [10]:
data["marital"].unique()
Out[10]:
array(['married', 'single', 'divorced', 'unknown'], dtype=object)
In [11]:
data["education"].unique()
Out[11]:
array(['basic.4y', 'high.school', 'basic.6y', 'basic.9y',
      'professional.course', 'unknown', 'university.degree',
      'illiterate'], dtype=object)
```

We first start the exploratory analysis of the categorical variables and see what are the categories and are there any missing values for these categories. Here, we used the seaborn package to create the bar graphs below.

In [12]:

```
# we will not emp.var.rate ,cons.price.idx etc into consideration due to they are all singl
categori=['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month',
for col in categori:
    plt.figure(figsize=(11,6))
    sns.barplot(data[col].value_counts(),data[col].value_counts().index,data=data)
    plt.title(col)
    plt.tight_layout()
  blue-collar
  technician
 management
self-employed
 unemployed
    student
   unknown
                     2000
                                   4000
                                                 6000
                                                                            10000
```

Input Categorical feature Observation

- 1) Job More Job types are Admin , Technician and blue-collor and it means bank targeting high salaried people.
- 2)Marital more people of type married (#To Do Check the target value distribution for high salaried married people)
- 3) Education more count in university.degree people . of course High salaried people should have university degree expected. And illiterate count is very less.
- 4) default most people have no credit default ,which means they can be approched .
- 5) housing we must give more importance to people who have not taken any housing loan.
- 6)loan we must give more importance to people who have not taken any personnel loan.
- 7) month Seems May is busy season in Portuguese
- 8) Day_of_week Seems every day is busy but not on weekends.
- 9) p_outcome -outcome of the previous marketing campaign- Success is small rate. (#To DO Check how success correlates without put parameter ?)

Categorize variables correlated with Target Variables

In [0]:

#Check How Categorize variables correlated with Target Variables and How it impacted. from scipy import stats

In [14]:

```
#Check How Job Type correlated with Target Variable
data.groupby(['job','y']).y.count()

#Admin are more interested in Term Deposit.
```

Out[14]:

job	У	
admin.	no	9070
	yes	1352
blue-collar	no	8616
	yes	638
entrepreneur	no	1332
	yes	124
housemaid	no	954
	yes	106
management	no	2596
	yes	328
retired	no	1286
	yes	434
self-employed	no	1272
	yes	149
services	no	3646
	yes	323
student	no	600
	yes	275
technician	no	6013
	yes	730
unemployed	no	870
	yes	144
unknown	no	293
	yes	37
Namas v dtvaa	. :	

Name: y, dtype: int64

In [15]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature_name = 'job'
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
# angelaxuan/dna-brown-bag-session-bank-marketing-campaign
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature name)
plt.tight_layout()
```


In [16]:

```
data.groupby(['marital','y']).y.count()
#married people are more interested in Term Deposit
```

Out[16]:

marital	У	
divorced	no	4136
	yes	476
married	no	22396
	yes	2532
single	no	9948
	yes	1620
unknown	no	68
	yes	12
Name: y,	dtype:	int64

In [17]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature_name = 'marital'
# ------
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature_name)
plt.tight_layout()
```


In [18]:

```
data.groupby(['job','marital','y']).y.count()
# And Admin - married people are more interested in Term Deposit.
```

Out[18]:

```
job
         marital
                    У
admin.
         divorced
                    no
                            1148
                             132
                    yes
         married
                            4601
                    no
                             652
                     yes
         single
                            3309
                    no
unknown
         married
                              16
                    yes
         single
                              59
                    no
                              15
                    yes
         unknown
                    no
                               6
                               3
                    yes
```

Name: y, Length: 90, dtype: int64

In [19]:

```
data.groupby(['contact','y']).y.count()
#Contact field has good correlation with Target variable. Since we have two observation for
```

Out[19]:

```
contact y
cellular no 22291
yes 3853
telephone no 14257
yes 787
```

Name: y, dtype: int64

In [20]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature_name = 'contact'
# ------
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature_name)
plt.tight_layout()
```


In [21]:

```
data.groupby(['day_of_week','y']).age.count()
```

Out[21]:

day_of	f_weel	k y	
fri		no	6981
		yes	846
mon		no	7667
		yes	847
thu		no	7578
		yes	1045
tue		no	7137
		yes	953
wed		no	7185
		yes	949
Name:	age,	dtype:	int64

In [22]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature_name = 'day_of_week'
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature_name)
plt.tight_layout()
```


In [23]:

```
data.groupby(['loan','y']).age.count()
```

Out[23]:

```
loan
                  30100
no
          no
                   3850
          yes
unknown
                    883
         no
                    107
          yes
                   5565
          no
yes
          yes
                    683
Name: age, dtype: int64
```

In [24]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature_name = 'loan'
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature_name)
plt.tight_layout()
```


In [25]:

```
data.groupby(['default','y']).age.count()
```

```
Out[25]:
```

```
default y
no no 28391
yes 4197
unknown no 8154
yes 443
yes no 3
Name: age, dtype: int64
```

In [26]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature name = 'default'
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature_name)
plt.tight_layout()
```


In [27]:

```
data.groupby(['housing','y']).age.count()
```

Out[27]:

```
housing
        У
                 16596
no
         no
                  2026
         yes
                   883
unknown
         no
          yes
                   107
                 19069
yes
         no
                  2507
          yes
Name: age, dtype: int64
```

In [28]:

#Normalized distribution of each class per feature and plotted difference between positive #Positive values imply this category favors clients that will subscribe and negative values #product.

pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()

```
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))

#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()

pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in all_counts
```


sns.barplot(all_counts, all_index)

plt.title(feature_name)
plt.tight_layout()

In [29]:

```
data.groupby(['poutcome','y']).age.count()
Out[29]:
poutcome  y
```

Name: age, dtype: int64

In [30]:

#Normalized distribution of each class per feature and plotted difference between positive #Positive values imply this category favors clients that will subscribe and negative values #product.

```
feature_name = 'poutcome'
```


In [31]:

```
data.groupby(['month','y']).age.count()
```

Out[31]:

month	У	
apr	no	2093
	yes	539
aug	no	5523
	yes	655
dec	no	93
	yes	89
jul	no	6525
	yes	649
jun	no	4759
	yes	559
mar	no	270
	yes	276
may	no	12883
	yes	886
nov	no	3685
	yes	416
oct	no	403
	yes	315
sep	no	314
	yes	256
Name:	age,	dtype: int64

In [32]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature_name = 'month'
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature_name)
plt.tight_layout()
```


In [33]:

```
#Normalized distribution of each class per feature and plotted difference between positive
#Positive values imply this category favors clients that will subscribe and negative values
#product.
feature_name = 'y'
# ------
pos_counts = data.loc[data.y.values == 'yes', feature_name].value_counts()
neg_counts = data.loc[data.y.values == 'no', feature_name].value_counts()
all_counts = list(set(list(pos_counts.index) + list(neg_counts.index)))
#Counts of how often each outcome was recorded.
freq_pos = (data.y.values == 'yes').sum()
freq_neg = (data.y.values == 'no').sum()
pos_counts = pos_counts.to_dict()
neg_counts = neg_counts.to_dict()
all_index = list(all_counts)
all_counts = [pos_counts.get(k, 0) / freq_pos - neg_counts.get(k, 0) / freq_neg for k in al
sns.barplot(all_counts, all_index)
plt.title(feature_name)
plt.tight_layout()
```


Inference/Result: There are unknown values for many variables in the Data set. There are many ways to handle missing data. One of the ways is to discard the row but that would lead to reduction of data set and hence would not serve our purpose of building an accurate and realistic prediction model.

- 2)Other method is to smartly infer the value of the unknown variable from the other variables. This a way of doing an imputation where we use other independent variables to infer the value of the missing variable. This doesn't gurantee that all missing values will be addressed but majority of them will have a reasonable which can be useful in the prediction.
- 3)Variables with unknown/missing values are: 'education', 'job', 'housing', 'loan', 'deafult', and 'marital'. But the significant ones are 'education', 'job', 'housing', and 'loan'. The number of unknowns for 'marital' is very low. The unknown for 'default' variable are considered to be recorded as unknown. It may be possible that customer is not willing to disclose this information to the banking representative. Hence the unknown value in 'default' is actually a separate value.
- 4) Therefore, we start with creating new variables for the unknown values in 'education', 'job', 'housing' and 'loan'. We do this to see if the values are missing at random or is there a pattern in the missing values.

splitting of data

In [34]:

```
data.head()
```

Out[34]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_weel
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mor
1	57	services	married	high.school	unknown	no	no	telephone	may	mor
2	37	services	married	high.school	no	yes	no	telephone	may	mor
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mor
4	56	services	married	high.school	no	no	yes	telephone	may	mor
4										•

In [0]:

```
from sklearn.model_selection import train_test_split
```

In [0]:

```
# Saperating features and result vectors
y=data[['y']]
X = data.drop(['y'], axis=1)
#y = data['y'].values
```

In [0]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
```

```
In [38]:
X_test.columns
Out[38]:
Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
        'contact', 'month', 'day_of_week', 'campaign', 'pdays', 'previous',
        'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx',
        'euribor3m', 'nr.employed'],
      dtype='object')
In [39]:
X_train.columns
Out[39]:
Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan',
        'contact', 'month', 'day_of_week', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx',
        'euribor3m', 'nr.employed'],
      dtype='object')
In [40]:
y_train.head()
Out[40]:
 39075 no
34855 no
 7107 no
31614 no
34878 no
In [41]:
y_test.head()
Out[41]:
        у
32884 no
 3169 no
32206 no
 9403 no
 14020 no
```

Distribution of train and test data

In [42]:

```
def plot_distribution(class_distribution,title,xlabel,ylabel):
    class_distribution.plot(kind='bar')
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.title(title)
    plt.grid()
    plt.show()
# it returns a dict, keys as class labels and values as the number of data points in that d
train_class_distribution = y_train['y'].value_counts()
test_class_distribution = y_test['y'].value_counts()
plot_distribution(train_class_distribution,
                 'Distribution of y i in train data',
                 'Class',
                 'Data points per Class')
# ref: argsort https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
# -(train_class_distribution.values): the minus sign will give us in decreasing order
sorted_yi = np.argsort(-train_class_distribution.values)
for i in sorted yi:
    print('Number of data points in class', i+1, ':',train_class_distribution.values[i],
          '(', np.round((train_class_distribution.values[i]/X_train.shape[0]*100), 3), '%)'
print('-'*80)
```



```
Number of data points in class 1 : 25580 ( 88.724 %)

Number of data points in class 2 : 3251 ( 11.276 %)
```

In [43]:


```
Number of data points in class 1 : 10968 ( 88.759 %)

Number of data points in class 2 : 1389 ( 11.241 %)

----
```

Distribution of both train and test data are same

In [0]:

```
# concatinate train data for data manupulation
data = pd.concat([X_train, y_train], axis=1)
```

In [45]:

data.head()

Out[45]:

	age	job	marital	education	default	housing	loan	contact	month	day
39075	29	admin.	married	university.degree	no	no	no	cellular	dec	
34855	29	technician	single	university.degree	no	no	no	telephone	may	
7107	45	blue- collar	married	basic.6y	unknown	yes	no	telephone	may	
31614	34	services	married	university.degree	no	no	no	cellular	may	
34878	32	admin.	single	high.school	no	no	no	cellular	may	

In [0]:

concatinate test data for data manupulation
data_1= pd.concat([X_test, y_test], axis=1)

In [47]:

data_1.head()

Out[47]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_
32884	57	technician	married	high.school	no	no	yes	cellular	may	
3169	55	unknown	married	unknown	unknown	yes	no	telephone	may	
32206	33	blue-collar	married	basic.9y	no	no	no	cellular	may	
9403	36	admin.	married	high.school	no	no	no	telephone	jun	
14020	27	housemaid	married	high.school	no	yes	no	cellular	jul	
4										•

Imputation:

Now, to infer the missing values in 'job' and 'education', we make use of the cross-tabulation between 'job' and 'education'. Our hypothesis here is that 'job' is influenced by the 'education' of a person. Hence, we can infer 'job' based on the education of the person. Moreover, since we are just filling the missing values, we are not much concerned about the causal inference. We, therefore, can use the job to predict the education.

In [0]:

```
def cross tab(data,f1,f2):
    # find no of unique values in jobs colums
    jobs=list(data[f1].unique())
    # find no of unique values in education columns
    edu=list(data[f2].unique())
    dataframes=[]
    for e in edu:
        dfe=data[data[f2]==e]
        # https://www.youtube.com/watch?v=qy0fDqoMJx8 for groupby operation
        #https://www.youtube.com/watch?v=hfDXRyYIFkk grupby count
        #https://data36.com/pandas-tutorial-2-aggregation-and-grouping/
        dfejob=dfe.groupby(f1).count()[f2]
        dataframes.append(dfejob)
        #https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html
    xx=pd.concat(dataframes,axis=1)
    xx.columns=edu
    xx=xx.fillna(0)
    return xx
```

In [49]:

```
cross_tab(data,'job','education')
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: FutureWarni ng: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

from ipykernel import kernelapp as app

Out[49]:

	university.degree	basic.6y	high.school	basic.4y	professional.course	basic.9y ເ
admin.	4038	111	2344	57	263	345
blue-collar	62	1010	620	1658	308	2528
entrepreneur	410	42	161	91	93	146
housemaid	102	59	128	329	48	61
management	1421	57	208	58	66	119
retired	185	50	204	411	167	92
self- employed	550	16	77	64	122	160
services	118	153	1913	86	155	268
student	124	11	263	16	34	65
technician	1300	62	592	38	2271	243
unemployed	183	21	183	71	111	117
unknown	37	15	25	35	10	23
4						>

Inferring education from jobs: From the cross-tabulation, it can be seen that people with management jobs

usually have a university degree. Hence wherever 'job' = management and 'education' = unknown, we can replace 'education' with 'university.degree'. Similarly, 'job' = 'services' --> 'education' = 'high.school' and 'job' = 'housemaid' --> 'education' = 'basic.4y'.

- Inferring jobs from education: If 'education' = 'basic.4y' or 'basic.6y' or 'basic.9y' then the 'job' is usually 'blue-collar'. If 'education' = 'professional.course', then the 'job' = 'technician'.
- While imputing the values for job and education, we were cognizant of the fact that the correlations should make real world sense. If it didn't make real world sense, we didn't replace the missing values.

In [50]:

```
data['job'][data['age']>60].value counts()
Out[50]:
retired
                  472
housemaid
                   40
admin.
                   33
technician
                   26
unknown
                   17
management
                   16
blue-collar
                   15
                    7
unemployed
self-employed
                    7
entrepreneur
                    6
services
                    2
Name: job, dtype: int64
```

Inferring jobs from age: As we see, if 'age' > 60, then the 'job' is 'retired,' which makes sense.

In [0]:

```
data.loc[(data['age']>60) & (data['job']=='unknown'), 'job'] = 'retired'
data.loc[(data['education']=='unknown') & (data['job']=='management'), 'education'] = 'univ
data.loc[(data['education']=='unknown') & (data['job']=='services'), 'education'] = 'high.s
data.loc[(data['education']=='unknown') & (data['job']=='housemaid'), 'education'] = 'basic
data.loc[(data['job'] == 'unknown') & (data['education']=='basic.4y'), 'job'] = 'blue-colla
data.loc[(data['job'] == 'unknown') & (data['education']=='basic.6y'), 'job'] = 'blue-colla
data.loc[(data['job'] == 'unknown') & (data['education']=='basic.9y'), 'job'] = 'blue-colla
data.loc[(data['job'] == 'unknown') & (data['education'] == 'professional.course'), 'job'] = 't
```

In [52]:

```
#youtube.com/watch?v=I_kUj-MfYys use of cross tab
cross_tab(data,'job','education')
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: FutureWarni ng: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

from ipykernel import kernelapp as app

Out[52]:

	university.degree	basic.6y	high.school	basic.4y	professional.course	basic.9y	u
admin.	4038	111.0	2344	57.0	263.0	345.0	_
blue-collar	62	1025.0	620	1690.0	308.0	2551.0	
entrepreneur	410	42.0	161	91.0	93.0	146.0	
housemaid	102	59.0	128	355.0	48.0	61.0	
management	1506	57.0	208	58.0	66.0	119.0	
retired	186	50.0	204	414.0	169.0	92.0	
self- employed	550	16.0	77	64.0	122.0	160.0	
services	118	153.0	2029	86.0	155.0	268.0	
student	124	11.0	263	16.0	34.0	65.0	
technician	1300	62.0	592	38.0	2279.0	243.0	
unemployed	183	21.0	183	71.0	111.0	117.0	
unknown	36	0.0	25	0.0	0.0	0.0	
4							•

As we can see, we are able to reduce the number of unknowns and enhance our data set.

Imputations

Imputation for house and loan: We are again using cross-tabulation between 'house' and 'job' and between 'loan' and 'job.' Our hypothesis is that housing loan status (Yes or No) should be in the proportion of each job category. Hence using the prior known distribution of the housing loan for each job category, the house loan for unknown people will be predicted such that the prior distribution (% House = Yes's and No's for each job category remains the same). Similarly, we have filled the missing values in the 'loan' variable.

In [53]:

```
jobhousing=cross_tab(data,'job','housing')
print(jobhousing)
```

```
unknown
                        yes
job
admin.
                3280
                       3889
                                  169
                3062
                                  182
blue-collar
                       3326
                 444
entrepreneur
                        517
                                   27
                 356
                        381
                                   17
housemaid
management
                 939
                       1030
                                   45
                 547
                                   36
retired
                        614
self-employed
                 461
                        527
                                   28
services
                1280
                       1464
                                   65
student
                 271
                        349
                                   18
technician
                2035
                       2526
                                  103
                 284
                                   20
unemployed
                        398
unknown
                  62
                         75
                                    4
```

In [0]:

```
def fillhousing(data,jobhousing):
    """Function for imputation via cross-tabulation to fill missing values for the 'housing
    jobs=['housemaid','services','admin.','blue-collar','technician','retired','management'
    house=["no","yes"]
    for j in jobs:
        #Here we are taking value in which housing is unknow and job value is known
        ind=data[np.logical_and(np.array(data['housing']=='unknown'),np.array(data['job']==
        mask=np.random.rand(len(ind))<((jobhousing.loc[j]['no'])/(jobhousing.loc[j]['no']+j
        ind1=ind[mask]
        ind2=ind[~mask]
        data.loc[ind1,"housing"]='no'
        data.loc[ind2,"housing"]='yes'
    return data</pre>
```

In [0]:

```
data=fillhousing(data, jobhousing)
```

In [56]:

```
jobhousing=cross_tab(data,'job','housing')
print(jobhousing)
```

	no	yes	unknown
admin.	3351	3987	0.0
blue-collar	3162	3408	0.0
entrepreneur	456	532	0.0
housemaid	364	390	0.0
management	960	1054	0.0
retired	561	636	0.0
self-employed	475	541	0.0
services	1302	1507	0.0
student	279	359	0.0
technician	2079	2585	0.0
unemployed	293	409	0.0
unknown	62	75	4.0

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

from ipykernel import kernelapp as app

Imputation for personnel loan and loan

In [57]:

```
jobloan=cross_tab(data,'job','loan')
print(jobloan)
```

	no	yes	unknown
job			
admin.	5968	1201	169
blue-collar	5413	975	182
entrepreneur	810	151	27
housemaid	635	102	17
management	1670	299	45
retired	986	175	36
self-employed	849	139	28
services	2300	444	65
student	522	98	18
technician	3880	681	103
unemployed	586	96	20
unknown	114	23	4

In [0]:

```
def fillloan(data,jobloan):
    """Function for imputation via cross-tabulation to fill missing values for the 'loan' c
    jobs=['housemaid','services','admin.','blue-collar','technician','retired','management'
    loan=["no","yes"]
    for j in jobs:
        ind=data[np.logical_and(np.array(data['loan']=='unknown'),np.array(data['job']==j))
        mask=np.random.rand(len(ind))<((jobloan.loc[j]['no'])/(jobloan.loc[j]['no']+jobloar
        ind1=ind[mask]
        ind2=ind[~mask]
        data.loc[ind1,"loan"]='no'
        data.loc[ind2,"loan"]='yes'
    return data</pre>
```

In [0]:

```
data=fillloan(data,jobloan)
```

In [60]:

```
jobloan=cross_tab(data,'job','loan')
print(jobloan)
```

	no	yes	unknown
admin.	6115	1223	0.0
blue-collar	5560	1010	0.0
entrepreneur	834	154	0.0
housemaid	651	103	0.0
management	1709	305	0.0
retired	1015	182	0.0
self-employed	873	143	0.0
services	2351	458	0.0
student	536	102	0.0
technician	3967	697	0.0
unemployed	604	98	0.0
unknown	114	23	4.0

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: FutureWarni ng: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

from ipykernel import kernelapp as app

Numerical variables:

Let see the summary of the data in order to understand the numerical variables

In [61]:

Out[61]:

	age	campaign	pdays	previous	emp.var.rate	cons.price.idx	C
count	28831.000000	28831.000000	28831.000000	28831.000000	28831.000000	28831.000000	2
mean	40.011203	2.575769	963.215844	0.172592	0.083202	93.577264	
std	10.450128	2.752303	185.077567	0.494338	1.570978	0.579694	
min	17.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	
25%	32.000000	1.000000	999.000000	0.000000	-1.800000	93.075000	
50%	38.000000	2.000000	999.000000	0.000000	1.100000	93.749000	
75%	47.000000	3.000000	999.000000	0.000000	1.400000	93.994000	
max	98.000000	43.000000	999.000000	7.000000	1.400000	94.767000	
4							•

• Missing Values: From the source of the data (U.C. Irvine ML Repository), we're told that the missing values, or NaNs, are encoded as '999'. From the above table, it is clear that only 'pdays' has missing values. Moreover, a majority of the values for 'pdays' are missing.

In [62]:

```
data.head()
```

Out[62]:

	age	job	marital	education	default	housing	loan	contact	month	day
3907	'5 29	admin.	married	university.degree	no	no	no	cellular	dec	
3485	55 29	technician	single	university.degree	no	no	no	telephone	may	
710	7 45	blue- collar	married	basic.6y	unknown	yes	no	telephone	may	
3161	4 34	services	married	university.degree	no	no	no	cellular	may	
3487	'8 32	admin.	single	high.school	no	no	no	cellular	may	
4										•

In [63]:

```
data.columns
```

Out[63]:

#Balancing y out

In [64]:

```
sns.countplot(x='y',data=data)
```

Out[64]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa6279be0>

We can see that the data is very skewed, so we duplicate the tuples corresponding to 'yes'

In [0]:

```
d1=data.copy()
d2=d1[d1.y=='yes']
d1=pd.concat([d1, d2])
data=d1
```

In [66]:

```
sns.countplot(x='y',data=data)
```

Out[66]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa6135860>

Missing Values in Numerical Variables

Let's examine the missing values in 'pdays'

In [0]:

```
def drawhist(data,feature):
   plt.hist(data[feature])
```

Filtered out missing values encoded with an out-of-range value when plotting the histogram of values in order to properly understand the distribution of the known values. Here, histograms were created using matplotlib.

In [68]:

```
drawhist(data,'pdays')
plt.show()

plt.hist(data.loc[data.pdays != 999, 'pdays'])
plt.show()
```


In [69]:

#https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.crosstab.html
#Compute a simple cross-tabulation of two (or more) factors
pd.crosstab(data['pdays'],data['poutcome'], values=data['age'], aggfunc='count', normalize=

Out[69]:

poutcome	failure	nonexistent	success
pdays			
0	0.000000	0.000000	0.001124
1	0.000000	0.000000	0.001182
2	0.000000	0.000000	0.003683
3	0.000019	0.000000	0.034446
4	0.000174	0.000000	0.006998
5	0.000330	0.000000	0.002830
6	0.001376	0.000000	0.032566
7	0.000698	0.000000	0.003101
8	0.000640	0.000000	0.000853
9	0.001357	0.000000	0.002636
10	0.000678	0.000000	0.002753
11	0.000194	0.000000	0.001803
12	0.001182	0.000000	0.002035
13	0.000795	0.000000	0.002094
14	0.000058	0.000000	0.001454
15	0.000678	0.000000	0.001454
16	0.000000	0.000000	0.000678
17	0.000233	0.000000	0.000039
18	0.000504	0.000000	0.000000
19	0.000000	0.000000	0.000019
20	0.000019	0.000000	0.000000
21	0.000155	0.000000	0.000000
22	0.000000	0.000000	0.000174
25	0.000155	0.000000	0.000000
27	0.000000	0.000000	0.000155
999	0.105179	0.783496	0.000000

In [70]:

```
#creating a new column named "pdays2" based on the value in "pdays" column
def function (row):
    if(row['pdays']==999):
        return 0;
    return 1;
data['pdays2']=data.apply(lambda row: function(row),axis=1)
#changing the value 999 in pdays column to value 30
def function1 (row):
    if(row['pdays']==999):
        return 30;
    return row['pdays'];
data['pdays']=data.apply(lambda row: function1(row),axis=1)
#changing the type of pdays to int
data['pdays']=data['pdays'].astype(int)
data.head()
```

Out[70]:

		age	job	marital	education	default	housing	loan	contact	month	day
3	9075	29	admin.	married	university.degree	no	no	no	cellular	dec	
3	4855	29	technician	single	university.degree	no	no	no	telephone	may	
	7107	45	blue- collar	married	basic.6y	unknown	yes	no	telephone	may	
3	1614	34	services	married	university.degree	no	no	no	cellular	may	
3	4878	32	admin.	single	high.school	no	no	no	cellular	may	
4											•

As we can see from the above table, the majority of the values for 'pdays' are missing. The majority of these missing values occur when the 'poutcome' is 'non-existent'. This means that the majority of the values in 'pdays' are missing because the customer was never contacted before. To deal with this variable, we removed the numerical variable 'pdays' and replaced it with categorical variables with following categories: pdays,pdays2

outlier check

Outliers

Outliers are defined as 1.5 x Q3 value (75th percentile). From the above table, it can be seen that only 'age' and 'campaign' have outliers as max('age') and max('campaign') > 1.5Q3('age') and >1.5Q3('campaign') respectively.

In [71]:

```
# Check outlier if any for Numberic column.
data.age.plot(kind='box')
# There are outlier and check max age and age greated than 90
```

Out[71]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa6956978>

In [72]:

```
print(data.age.max())
data[data['age'] > 80].head(5)
```

98

Out[72]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_
27813	88	retired	divorced	basic.4y	no	yes	no	cellular	mar	
38032	91	retired	married	university.degree	no	no	yes	cellular	sep	
37472	88	retired	divorced	basic.4y	no	yes	no	cellular	aug	
39625	82	retired	married	high.school	unknown	yes	no	cellular	may	
39466	82	retired	divorced	basic.4y	no	yes	yes	cellular	apr	
4										•

In [73]:

data.age.plot(kind='hist')
it is bit positively skewed but it is ok and seems no high dependency with Output variabl

Out[73]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa4c8518>

In [74]:

data.age.plot(kind='kde')

Out[74]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa6988d68>

In [0]:

```
# Create Binning for all numeric fields base on Box plot quantile

def binning(dataframe, featureName):
    print (featureName)
    q1 = dataframe[featureName].quantile(0.25)
    q2 = dataframe[featureName].quantile(0.50)
    q3 = dataframe[featureName].quantile(0.75)
    dataframe.loc[(dataframe[featureName] <= q1), featureName] = 1
    dataframe.loc[(dataframe[featureName] > q1) & (dataframe[featureName] <= q2), featureNa
    dataframe.loc[(dataframe[featureName] > q2) & (dataframe[featureName] <= q3), featureNa
    dataframe.loc[(dataframe[featureName] > q3), featureName] = 4
    print (q1, q2, q3)
```

In [76]:

```
binning(data, 'age')
```

age

31.0 38.0 48.0

outliner check for feature campaign

In [77]:

```
# let check campaign field now and it is positively skewed..
data.campaign.plot(kind='hist')
```

Out[77]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa6b849b0>

In [78]:

```
data.campaign.plot(kind='box')
# Lot of exreme values.
```

Out[78]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa63890b8>

In [79]:

```
print(data.campaign.max())
print(data.campaign.mean())
print(data.campaign.median())
print(data.campaign.unique())
print('Y=1 for campaign > 10' , data[(data['campaign'] > 10) & (data['y'] ==1)].age.count()
print('Y=1 for campaign < 10' , data[(data['campaign'] <= 10) & (data['y'] ==1)].age.count()
print('Y=1 for campaign = 1' , data[(data['campaign'] == 1) & (data['y'] ==1)].age.count())

43
2.334670853686904
2.0
[ 3  4  2  1  9  5  6  12  7  8  10  11  19  15  13  14  17  18  25  32  21  16  40  24
27  22  23  35  20  43  26  29  33  31  28  34  30  41  39  37]
Y=1 for campaign > 10  0
Y=1 for campaign < 10  0
Y=1 for campaign = 1  0</pre>
```

In [80]:

```
data.groupby(['campaign','y']).y.count()
```

Out[80]:

campaign	у	
1	no	10648
	yes	12928
2	no	6538
	yes	6808
3	no	3401
	yes	3224
4	no	1709
	yes	1464
5	no	1012
	yes	568
6	no	641
	yes	424
7	no	409
	yes	200
8	no	269
	yes	112
9	no	205
	yes	104
10	no	149
	yes	48
11	no	119
	yes	56
12	no	93
	yes	16
13	no	62
	yes	32
14	no	46
	yes	8
15	no	33
16	no	38
17	no	41
	yes	16
18	no	22
19	no	19
20	no	20
21	no	18
22	no	12
23	no	11
24	no	12
25	no	4
26	no	7
27	no	6
28	no	3
29	no	7
30	no	4
31	no	3
32	no	3 3 2
33	no	
34	no	3
35	no	4
37	no	1
39	no	1
40	no	2
41	no	1

```
1/3/2020
                                                Bank Marketing 121
  43
                        2
            no
  Name: y, dtype: int64
  In [81]:
  data['campaign'].describe()
  Out[81]:
  count
           51588.000000
  mean
               2.334671
               2.328928
  std
  min
               1.000000
  25%
               1.000000
  50%
               2.000000
  75%
               3.000000
              43.000000
  max
  Name: campaign, dtype: float64
  In [82]:
  q1 = data['campaign'].quantile(0.25)
  q2 = data['campaign'].quantile(0.50)
  q3 = data['campaign'].quantile(0.75)
  print(q1)
  print(q2)
  print(q3)
  iqr = q3-q1 #Interquartile range
  extreme_low_campaign = q1-1.5*iqr
  extreme_high_capmaign = q3+1.5*iqr
  print (extreme_low_campaign)
  print (extreme_high_capmaign)
  1.0
  2.0
  3.0
  -2.0
  6.0
  In [83]:
```

```
binning(data,'campaign')
```

```
campaign
1.0 2.0 3.0
```

```
In [84]:
```

```
data.head(5)
```

Out[84]:

	age	job	marital	education	default	housing	loan	contact	month	day
39075	1	admin.	married	university.degree	no	no	no	cellular	dec	
34855	1	technician	single	university.degree	no	no	no	telephone	may	
7107	3	blue- collar	married	basic.6y	unknown	yes	no	telephone	may	
31614	2	services	married	university.degree	no	no	no	cellular	may	
34878	2	admin.	single	high.school	no	no	no	cellular	may	

Standardizing the data

In [85]:

```
data.columns
```

Out[85]:

In [86]:

data.head()

Out[86]:

	age	job	marital	education	default	default housing		contact	month	day
39075	1	admin.	married	university.degree	no	no	no	cellular	dec	
34855	1	technician	single	university.degree	no	no	no	telephone	may	
7107	3	blue- collar	married	basic.6y	unknown	yes	no	telephone	may	
31614	2	services	married	university.degree	no	no	no	cellular	may	
34878	2	admin.	single	high.school	no	no	no	cellular	may	
4										•

In [0]:

```
idx_numeric=[0,10,11,12,14,15,16,17,18]
scaler = MinMaxScaler()
data[data.columns[idx_numeric]] = scaler.fit_transform(data[data.columns[idx_numeric]])
```

Categorical variables can be either Ordinal or Nominal

```
In [0]:
```

```
data['poutcome'] = data['poutcome'].map({'failure': -1, 'nonexistent': 0, 'success': 1})
data['default'] = data['default'].map({'yes': -1, 'unknown': 0, 'no': 1})
data['housing'] = data['housing'].map({'yes': -1, 'unknown': 0, 'no': 1})
data['loan'] = data['loan'].map({'yes': -1, 'unknown': 0, 'no': 1})
```

Handling Nominal Variables (One Hot Encoding)

'job', 'maritial', 'education', 'contact', 'month', 'day_of_week' are Nominal Variables

In [89]:

```
# One hot encoding of nominal varibles
nominal = ['job','marital','education','contact','month','day_of_week']
data_clean = pd.get_dummies(data,columns=nominal)
data_clean['y']=data_clean['y'].map({'yes': 1,'no': 0})
data_clean.head()
```

Out[89]:

	age	default	housing	loan	campaign	pdays	previous	poutcome	emp.var.rate	(
39075	0.000000	1	1	1	0.666667	1.0	0.142857	-1	0.083333	_
34855	0.000000	1	1	1	1.000000	1.0	0.000000	0	0.333333	
7107	0.666667	0	-1	1	0.333333	1.0	0.000000	0	0.937500	
31614	0.333333	1	1	1	0.000000	1.0	0.142857	-1	0.333333	
34878	0.333333	1	1	1	1.000000	1.0	0.000000	0	0.333333	
4									1	•

```
In [90]:
data clean.columns
Out[90]:
Index(['age', 'default', 'housing', 'loan', 'campaign', 'pdays', 'previous',
        'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y', 'pdays2', 'job_admin.',
         'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
        'job_management', 'job_retired', 'job_self-employed', 'job_services',
        'job_student', 'job_technician', 'job_unemployed', 'job_unknown',
        'marital_divorced', 'marital_married', 'marital_single',
'marital_unknown', 'education_basic.4y', 'education_basic.6y',
         'education_basic.9y', 'education_high.school', 'education_illiterat
e',
         'education_professional.course', 'education_university.degree',
         'education unknown', 'contact cellular', 'contact telephone',
        'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun',
'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep',
'day_of_week_fri', 'day_of_week_mon', 'day_of_week_thu',
         'day_of_week_tue', 'day_of_week_wed'],
       dtype='object')
In [91]:
data clean.shape
Out[91]:
(51588, 56)
In [0]:
df_with_dummies=pd.get_dummies(data_clean)
In [0]:
def dropfeature(df,f):
     """Drops one of the dummy variables."""
     df=df.drop(f,axis=1)
     return df
In [0]:
features_dropped = ['marital_single','contact_cellular',
                         'education_unknown','job_unknown',
      'marital_single','contact_cellular',
                         'education unknown']
data clean = dropfeature(df with dummies, features dropped)
```

Aanalising the data distribution by plotting graphs for numerical fields

In [95]:

data_clean.describe()

Out[95]:

	age	default	housing	loan	campaign	pdays	
count	51588.000000	51588.000000	51588.000000	51588.000000	51588.000000	51588.000000	51
mean	0.481165	0.842211	-0.085291	0.687951	0.327718	0.910696	
std	0.369656	0.364653	0.996327	0.725711	0.366461	0.255672	
min	0.000000	-1.000000	-1.000000	-1.000000	0.000000	0.000000	
25%	0.000000	1.000000	-1.000000	1.000000	0.000000	1.000000	
50%	0.333333	1.000000	-1.000000	1.000000	0.333333	1.000000	
75%	0.666667	1.000000	1.000000	1.000000	0.666667	1.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
4	_						•

In [96]:

data_clean.head()

Out[96]:

	age	default	housing	loan	campaign	pdays	previous	poutcome	emp.var.rate	(
39075	0.000000	1	1	1	0.666667	1.0	0.142857	-1	0.083333	
34855	0.000000	1	1	1	1.000000	1.0	0.000000	0	0.333333	
7107	0.666667	0	-1	1	0.333333	1.0	0.000000	0	0.937500	
31614	0.333333	1	1	1	0.000000	1.0	0.142857	-1	0.333333	
34878	0.333333	1	1	1	1.000000	1.0	0.000000	0	0.333333	
4										•

In [97]:

data_clean.shape

Out[97]:

(51588, 52)

In [98]:

data_clean.corr()

Input feature - nr.employed and euribor3m (.94) and emp.var.rate and nr.employed (.90) #and euribor3m and emp.var.rate (.97) are more correlated and we can remove on column. # And lets Remove columns - euribor3m and emp.var.rate

Out[98]:

	age	default	housing	loan	campaign	pdays
age	1.000000	-0.159097	-0.001274	0.004152	0.004681	-0.016179
default	-0.159097	1.000000	-0.019276	-0.003156	-0.052518	-0.116533
housing	-0.001274	-0.019276	1.000000	0.040992	0.005236	0.008160
Ioan	0.004152	-0.003156	0.040992	1.000000	-0.013027	0.019333
campaign	0.004681	-0.052518	0.005236	-0.013027	1.000000	0.087789
pdays	-0.016179	-0.116533	0.008160	0.019333	0.087789	1.000000
previous	0.014762	0.128664	-0.010664	-0.003202	-0.089996	-0.700447
poutcome	0.011068	0.025770	-0.002063	-0.014975	-0.019361	-0.659579
emp.var.rate	0.030919	-0.269147	0.049646	-0.012045	0.184304	0.331613
cons.price.idx	0.018910	-0.169529	0.062885	-0.007607	0.121563	0.040687
cons.conf.idx	0.102651	0.007123	0.030842	0.021115	-0.034240	-0.158459
euribor3m	0.039051	-0.268032	0.051686	-0.008651	0.166938	0.380179
nr.employed	0.017508	-0.260352	0.036050	-0.009995	0.169953	0.464418
у	-0.032947	0.174342	-0.014232	0.000202	-0.111788	-0.302358
pdays2	0.013838	0.117999	-0.008114	-0.017486	-0.086793	-0.986892
job_admin.	-0.107240	0.114042	-0.002315	-0.009551	-0.001394	-0.037200
job_blue-collar	0.015869	-0.200815	0.034006	0.004107	0.015190	0.108956
job_entrepreneur	0.041854	-0.013014	-0.011505	0.013625	-0.001159	0.037910
job_housemaid	0.092825	-0.027735	0.016343	0.006985	0.003439	-0.014767
job_management	0.075787	0.040568	0.013611	0.005482	-0.002996	-0.007100
job_retired	0.354760	0.014107	-0.001810	-0.001172	-0.026843	-0.092019
job_self-employed	-0.011675	-0.000598	0.008814	0.002351	0.010102	0.024411
job_services	-0.061198	-0.027105	-0.007766	-0.010854	0.019149	0.037116
job_student	-0.241201	0.053183	-0.020556	-0.013732	-0.031576	-0.095798
job_technician	-0.051993	0.056619	-0.026926	0.001772	0.004195	0.009808
job_unemployed	-0.010176	-0.002830	-0.013706	0.014696	-0.004031	-0.035013
marital_divorced	0.181917	0.023029	-0.003774	0.000962	0.015558	0.002507
marital_married	0.343594	-0.135859	0.011549	-0.000897	0.009489	0.035467
marital_unknown	-0.002686	0.007139	0.015675	0.008168	0.002673	-0.006484
education_basic.4y	0.261242	-0.154634	0.017403	-0.008096	-0.002883	-0.009512
education_basic.6y	0.016176	-0.103685	0.011299	0.011839	0.016553	0.037914
education_basic.9y	-0.023610	-0.076409	0.012357	-0.007346	0.010528	0.083703

	age	default	housing	loan	campaign	pdays
education_high.school	-0.101765	0.043584	-0.000815	0.001785	-0.002008	0.019652
education_illiterate	0.020225	-0.014840	-0.018184	-0.008598	-0.004575	-0.010787
education_professional.course	0.013987	0.041031	-0.032698	0.003719	-0.002066	-0.013299
education_university.degree	-0.090016	0.147483	-0.000372	-0.002161	-0.004526	-0.061803
contact_telephone	0.031191	-0.166672	0.078272	0.014294	0.088219	0.152674
month_apr	-0.000737	0.070566	-0.047554	0.003529	-0.076062	0.026512
month_aug	0.055406	0.003253	-0.024187	0.015889	0.035682	-0.011707
month_dec	0.042394	0.032610	-0.013507	-0.001191	-0.002808	-0.071976
month_jul	-0.024798	-0.057701	0.007792	-0.025953	0.100945	0.077106
month_jun	-0.019974	-0.043552	0.059455	0.005289	0.041615	0.023981
month_mar	-0.038413	0.068832	-0.014984	0.012131	-0.033663	-0.081912
month_may	-0.033938	-0.104417	0.016671	-0.006305	0.033967	0.109855
month_nov	0.032674	0.061367	-0.024221	-0.003349	-0.082197	-0.027498
month_oct	0.017616	0.070678	0.012883	0.017749	-0.099385	-0.133870
month_sep	0.005111	0.072096	0.003246	-0.004105	-0.037290	-0.175936
day_of_week_fri	0.006108	-0.019440	0.014099	0.000414	0.053995	0.011980
day_of_week_mon	0.030581	-0.008828	-0.007405	-0.004465	0.060507	0.009906
day_of_week_thu	-0.024087	0.010356	-0.015718	0.002535	-0.043922	0.002568
day_of_week_tue	0.013874	-0.001139	0.004190	-0.002035	-0.035848	-0.013781
day_of_week_wed	-0.025249	0.018116	0.005614	0.003437	-0.031424	-0.010348

```
In [0]:
```

```
def drawheatmap(df):
    '''Builds the heat map for the given data'''
    f, ax = plt.subplots(figsize=(15, 15))
    sns.heatmap(df.corr(method='spearman'), annot=False, cmap='coolwarm')
```

Inferences: From the above heat map we can see that 'y' (our target variable) has good correlation with 'previous', 'emp.var.rate', 'euribor3m', 'nr.employed', 'pdays_missing', 'poutcome_success', 'poutcome_nonexistent'and 'pdays_bet_5_15'. We expect to see these independent variables as significant while building the models.

In [100]:

drawheatmap(data_clean)

Standardizing the test data

In [0]:

```
data_1= pd.concat([X_test, y_test], axis=1)
```

```
In [102]:
```

```
data_1.shape
```

Out[102]:

(12357, 20)

In [103]:

```
data_1.columns
```

Out[103]:

As we seen in train data the majority of the values for 'pdays' are missing. The majority of these missing values occur when the 'poutcome' is 'non-existent'. This means that the majority of the values in 'pdays' are missing because the customer was never contacted before. To deal with this variable, we removed the numerical variable 'pdays' and replaced it with categorical variables with following categories: 'pdays' and 'pdays2'

Balancing y out

In [104]:

```
sns.countplot(x='y',data=data_1)
```

Out[104]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aaa5045c0>

We can see that the data is very skewed, so we duplicate the tuples corresponding to 'yes'

In [0]:

```
d1=data_1.copy()
d2=d1[d1.y=='yes']
d1=pd.concat([d1, d2])
```

In [106]:

```
sns.countplot(x='y',data=data_1)
```

Out[106]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f4aa6c078d0>

In [107]:

```
#creating a new column named "pdays2" based on the value in "pdays" column
def function (row):
    if(row['pdays']==999):
        return 0;
    return 1;
data_1['pdays2']=data_1.apply(lambda row: function(row),axis=1)
#changing the value 999 in pdays column to value 30
def function1 (row):
    if(row['pdays']==999):
        return 30;
    return row['pdays'];
data_1['pdays']=data_1.apply(lambda row: function1(row),axis=1)
#changing the type of pdays to int
data_1['pdays']=data_1['pdays'].astype(int)
data_1.head()
```

Out[107]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_
32884	57	technician	married	high.school	no	no	yes	cellular	may	
3169	55	unknown	married	unknown	unknown	yes	no	telephone	may	
32206	33	blue-collar	married	basic.9y	no	no	no	cellular	may	
9403	36	admin.	married	high.school	no	no	no	telephone	jun	
14020	27	housemaid	married	high.school	no	yes	no	cellular	jul	

In [108]:

```
data_1.columns
```

Out[108]:

In [0]:

```
idx_numeric=[0,10,11,12,14,15,16,17,18]
scaler = MinMaxScaler()
data_1[data_1.columns[idx_numeric]] = scaler.fit_transform(data_1[data_1.columns[idx_numeric])
```

```
In [110]:
```

```
data_1.head()
```

Out[110]:

	age	job	marital	education	default	housing	loan	contact	month	da
32884	0.519481	technician	married	high.school	no	no	yes	cellular	may	
3169	0.493506	unknown	married	unknown	unknown	yes	no	telephone	may	
32206	0.207792	blue-collar	married	basic.9y	no	no	no	cellular	may	
9403	0.246753	admin.	married	high.school	no	no	no	telephone	jun	
14020	0.129870	housemaid	married	high.school	no	yes	no	cellular	jul	

#Categorical variables can be either Ordinal or Nominal

In [0]:

```
data_1['poutcome'] = data_1['poutcome'].map({'failure': -1, 'nonexistent': 0, 'success': 1})
data_1['default'] = data_1['default'].map({'yes': -1, 'unknown': 0, 'no': 1})
data_1['housing'] = data_1['housing'].map({'yes': -1, 'unknown': 0, 'no': 1})
data_1['loan'] = data_1['loan'].map({'yes': -1, 'unknown': 0, 'no': 1})
```

In [112]:

```
data_1.head()
```

Out[112]:

	age	job	marital	education	default	housing	loan	contact	month	day_
32884	0.519481	technician	married	high.school	1	1	-1	cellular	may	
3169	0.493506	unknown	married	unknown	0	-1	1	telephone	may	
32206	0.207792	blue-collar	married	basic.9y	1	1	1	cellular	may	
9403	0.246753	admin.	married	high.school	1	1	1	telephone	jun	
14020	0.129870	housemaid	married	high.school	1	-1	1	cellular	jul	
4										•

In [113]:

```
data_1.shape
```

Out[113]:

(22080, 21)

#Handling Nominal Variables(One Hot Encoding)

'job', 'maritial', 'education', 'contact', 'month', 'day_of_week' are Nominal Variables

```
In [114]:
```

```
# One hot encoding of nominal varibles
nominal = ['job','marital','education','contact','month','day_of_week']
data_clean_1 = pd.get_dummies(data_1,columns=nominal)
data_clean_1['y']=data_clean_1['y'].map({'yes': 1,'no': 0})
data_clean_1.head()
```

Out[114]:

	age	default	housing	loan	campaign	pdays	previous	poutcome	emp.var.rate	(
32884	0.519481	1	1	-1	0.000000	1.0	0.166667	-1	0.333333	
3169	0.493506	0	-1	1	0.018182	1.0	0.000000	0	0.937500	
32206	0.207792	1	1	1	0.000000	1.0	0.166667	-1	0.333333	
9403	0.246753	1	1	1	0.054545	1.0	0.000000	0	1.000000	
14020	0.129870	1	-1	1	0.018182	1.0	0.000000	0	1.000000	
4										>

In [115]:

```
data_clean_1.shape
```

Out[115]:

(22080, 56)

In [0]:

```
df_with_dummies=pd.get_dummies(data_clean_1)
```

In [0]:

```
def dropfeature(df,f):
    """Drops one of the dummy variables."""
    df=df.drop(f,axis=1)
    return df
```

In [0]:

In [119]:

```
data_clean_1.shape
```

Out[119]:

(22080, 52)

```
In [120]:
data clean.shape
Out[120]:
(51588, 52)
In [121]:
data_clean_1.columns
Out[121]:
Index(['age', 'default', 'housing', 'loan', 'campaign', 'pdays', 'previous',
        'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y', 'pdays2', 'job_admin.',
        'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
'job_management', 'job_retired', 'job_self-employed', 'job_services',
        'job_student', 'job_technician', 'job_unemployed', 'marital_divorce
d',
        'marital married', 'marital unknown', 'education basic.4y',
        'education_basic.6y', 'education_basic.9y', 'education_high.school',
        'education_illiterate', 'education_professional.course',
        'education_university.degree', 'contact_telephone', 'month_apr',
        'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar',
        'month_may', 'month_nov', 'month_oct', 'month_sep', 'day_of_week_fr
i',
        'day_of_week_mon', 'day_of_week_thu', 'day_of_week_tue',
        'day_of_week_wed'],
       dtype='object')
In [122]:
data_clean.columns
Out[122]:
Index(['age', 'default', 'housing', 'loan', 'campaign', 'pdays', 'previous',
        'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y', 'pdays2', 'job_admin.',
        'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
        'job_management', 'job_retired', 'job_self-employed', 'job_services', 'job_student', 'job_technician', 'job_unemployed', 'marital_divorce
d',
        'marital_married', 'marital_unknown', 'education_basic.4y',
        'education basic.6y', 'education basic.9y', 'education high.school',
        'education_illiterate', 'education_professional.course',
        'education_university.degree', 'contact_telephone', 'month_apr',
        'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar',
        'month_may', 'month_nov', 'month_oct', 'month_sep', 'day_of_week_fr
i',
        'day of week mon', 'day of week thu', 'day of week tue',
        'day_of_week_wed'],
       dtype='object')
```

Create Model

In [0]:

```
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, GridSearchCV
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
```

In [124]:

```
data_clean.shape
Out[124]:
(51588, 52)
In [125]:
```

```
data_clean_1.shape
```

```
Out[125]:
```

(22080, 52)

In [0]:

```
# Saperating features and result vectors
y_test=data_clean_1[['y']]
X_test = data_clean_1.drop(['y'], axis=1)
#y = data['y'].values
```

In [0]:

```
# Saperating features and result vectors
y_train=data_clean[['y']]
X_train = data_clean.drop(['y'], axis=1)
#y = data['y'].values
```

```
In [0]:
```

```
def Convert_Model(X_train,y_train,X_test,y_test,classifier):
     from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matr
     classifier.fit(X_train,y_train)
     print(classifier.score(X_test,y_test))
     print(confusion_matrix(y_test,classifier.predict(X_test)))
     print(accuracy_score(y_test,classifier.predict(X_test)))
     print(precision_score(y_test,classifier.predict(X_test)))
     print(recall_score(y_test,classifier.predict(X_test)))
     f1 = 2 * precision_score(y_test,classifier.predict(X_test)) * recall_score(y_test,clas
     print("f1 score", f1)
     return classifier
In [129]:
X_train.shape
Out[129]:
(51588, 51)
In [130]:
X_test.shape
Out[130]:
(22080, 51)
In [131]:
# inport Dummy Classifier for creating Base Model
from sklearn.dummy import DummyClassifier
classifier = DummyClassifier(strategy='most_frequent',random_state=0)
finalModel = Convert_Model(X_train,y_train,X_test,y_test,classifier)
0.5032608695652174
0 10968]
      0 11112]]
0.5032608695652174
0.5032608695652174
```

LogisticRegression

f1 score 0.6695589298626176

```
In [0]:
```

```
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
```

In [133]:

```
# inport Dummy Classifier for creating Base Model
from sklearn.linear_model import LogisticRegression
classifier_lr = LogisticRegression(random_state=0)
finalModel_lr = Convert_Model(X_train,y_train,X_test,y_test,classifier_lr)
/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:432:
FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a
solver to silence this warning.
  FutureWarning)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: Data
ConversionWarning: A column-vector y was passed when a 1d array was expecte
d. Please change the shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
0.7341032608695652
[[9233 1735]
```

[4136 6976]]

- 0.7341032608695652
- 0.8008265411548616
- 0.6277897768178545
- f1 score 0.7038288856378954

In [134]:

```
# roc curve and auc on imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train test split
from sklearn.metrics import roc curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
probs = finalModel_lr.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the precision-recall curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
```

AUC: 0.787

Random Forest Classifier

In [0]:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
import matplotlib.pyplot as plt
import seaborn as sns
# roc curve and auc on imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
```

Training Random Forest Classifier

In [136]:

```
from sklearn.ensemble import GradientBoostingClassifier
rfc = RandomForestClassifier(n_estimators=100)
finalModel_rfc = Convert_Model(X_train,y_train,X_test,y_test,rfc)
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: DataConversi onWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

This is separate from the ipykernel package so we can avoid doing imports until

```
0.6591032608695652

[[10233 735]

[6792 4320]]

0.6591032608695652

0.8545994065281899

0.38876889848812096

f1 score 0.5344219706810168
```

Testing

In [137]:

```
probs = finalModel_rfc.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the precision-recall curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
```

AUC: 0.764

Feature Importance

In [138]:

```
data_clean.head()
```

Out[138]:

	age	default	housing	loan	campaign	pdays	previous	poutcome	emp.var.rate	(
39075	0.000000	1	1	1	0.666667	1.0	0.142857	-1	0.083333	
34855	0.000000	1	1	1	1.000000	1.0	0.000000	0	0.333333	
7107	0.666667	0	-1	1	0.333333	1.0	0.000000	0	0.937500	
31614	0.333333	1	1	1	0.000000	1.0	0.142857	-1	0.333333	
34878	0.333333	1	1	1	1.000000	1.0	0.000000	0	0.333333	
4									ı	•

In [139]:

```
X = data_clean.drop('y', axis=1).values
y = data_clean['y'].values
pp=data_clean.drop('y', axis=1)
x_train, x_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.3, random_state=42)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
feature_importances = pd.DataFrame(rfc.feature_importances_,index = pp.columns,columns=['importances_]
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:6: DataConversi onWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

In [140]:

feature_importances

Out[140]:

	importance
euribor3m	0.150254
campaign	0.080627
age	0.072522
nr.employed	0.061296
emp.var.rate	0.050446
housing	0.042294
marital_married	0.031835
loan	0.028005
cons.conf.idx	0.025639
default	0.023751
cons.price.idx	0.022879
poutcome	0.020840
pdays2	0.020274
job_admin.	0.019714
contact_telephone	0.019123
education_high.school	0.018692
education_university.degree	0.017136
pdays	0.016834
marital_divorced	0.016025
day_of_week_mon	0.016024
job_blue-collar	0.015896
job_technician	0.015715
day_of_week_thu	0.015330
day_of_week_wed	0.015305
day_of_week_tue	0.015221
day_of_week_fri	0.015216
education_basic.9y	0.015038
education_professional.course	0.012786
previous	0.012574
job_services	0.011420
month_may	0.011315
job_management	0.010450
education_basic.4y	0.010261
education_basic.6y	0.008843
job_self-employed	0.007332

	importance
job_entrepreneur	0.006973
job_retired	0.006697
month_oct	0.006247
job_student	0.005393
job_unemployed	0.005204
job_housemaid	0.005193
month_apr	0.003560
month_mar	0.003041
month_jun	0.002442
month_jul	0.002277
month_aug	0.001993
month_nov	0.001632
month_sep	0.001029
marital_unknown	0.000739
month_dec	0.000404
education_illiterate	0.000266

SVM Classifier

In [0]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import PolynomialFeatures, StandardScaler
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
```

Choosing the best parameters for SVM classifier based on 2-fold Cross Validation score

```
In [0]:
```

```
In [0]:
```

```
clf = GridSearchCV(SVC(), tuned_parameters, cv=2, scoring='precision')
```

```
In [144]:
```

```
finalModel_gb = Convert_Model(X_train,y_train,X_test,y_test,clf)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: Data
ConversionWarning: A column-vector y was passed when a 1d array was expecte
d. Please change the shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: Data
ConversionWarning: A column-vector y was passed when a 1d array was expecte
d. Please change the shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: Data
ConversionWarning: A column-vector y was passed when a 1d array was expecte
d. Please change the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: Data
ConversionWarning: A column-vector y was passed when a 1d array was expecte
d. Please change the shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: Data
ConversionWarning: A column-vector y was passed when a 1d array was expecte
d. Please change the shape of y to (n_samples, ), for example using ravel().
 y = column_or_1d(y, warn=True)
0.7313915857605178
[[9640 1328]
 [7496 3616]]
0.6003623188405797
0.7313915857605178
0.3254139668826494
f1 score 0.45042351768809163
In [145]:
print('The best model is: ', finalModel_gb.best_params_)
print('This model produces a mean cross-validated score (precision) of', finalModel_gb.best
The best model is: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
This model produces a mean cross-validated score (precision) of 0.8724364983
829902
```

Testing

In [146]:

```
from sklearn.metrics import precision_score, accuracy_score, recall_score, f1_score
y_true, y_pred = y_test, finalModel_gb.predict(X_test)
pre1 = precision_score(y_true, y_pred)
rec1 = recall_score(y_true, y_pred)
acc1 = accuracy_score(y_true, y_pred)
f1_1 = f1_score(y_true, y_pred)
print('precision on the evaluation set: ', pre1)
print('recall on the evaluation set: ', rec1)
print('accuracy on the evaluation set: ', acc1)
print("F1 on the evaluation set",f1_1)
```

precision on the evaluation set: 0.7313915857605178 recall on the evaluation set: 0.3254139668826494 accuracy on the evaluation set: 0.6003623188405797 F1 on the evaluation set 0.45042351768809163

In [147]:

```
# roc curve and auc on imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc curve
from sklearn.metrics import roc auc score
from matplotlib import pyplot
probs = finalModel_gb.predict(X_test)
# keep probabilities for the positive outcome only
# calculate AUC
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the precision-recall curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
```

AUC: 0.602

In [148]:

```
from matplotlib import pyplot as plt
from sklearn import svm
from matplotlib import pyplot as plt
X = data_clean.drop('y', axis=1).values
y = data_clean['y'].values
pp=data_clean.drop('y', axis=1)
x_train, x_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.3, random_state=42)
def f_importances(coef, names, top=-1):
    imp = coef
    imp, names = zip(*sorted(list(zip(imp, names))))
    # Show all features
    if top == -1:
        top = len(names)
    plt.barh(range(top), imp[::-1][0:top], align='center')
    plt.yticks(range(top), names[::-1][0:top])
    plt.show()
# whatever your features are called
features_names = ['age', 'default', 'housing', 'loan', 'campaign', 'pdays', 'previous',
        'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y', 'pdays2', 'job_admin.',
        'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
        'job_management', 'job_retired', 'job_self-employed', 'job_services', 'job_student', 'job_technician', 'job_unemployed', 'job_unknown',
        'marital_divorced', 'marital_married', 'marital_single',
        'marital_unknown', 'education_basic.4y', 'education_basic.6y',
        'education_basic.9y', 'education_high.school', 'education_illiterate',
        'education_professional.course', 'education_university.degree',
        'education_unknown', 'contact_cellular', 'contact_telephone',
        'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun',
'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep',
        'day_of_week_fri', 'day_of_week_mon', 'day_of_week_thu',
        'day_of_week_tue', 'day_of_week_wed']
svm = svm.SVC(kernel='linear')
svm.fit(X_train, y_train)
# Specify your top n features you want to visualize.
# You can also discard teh abs() function
# if you are interested in negative contribution of features
f_importances(abs(svm.coef_[0]), features_names, top=10)
```

/usr/local/lib/python3.6/dist-packages/sklearn/utils/validation.py:724: Data ConversionWarning: A column-vector y was passed when a 1d array was expecte d. Please change the shape of y to (n_samples,), for example using ravel(). y = column_or_1d(y, warn=True)

Reducing Features using PCA

Classify the model using XGBClassifier

In [0]:

```
from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```

In [150]:

```
# fit model no training data
model = XGBClassifier()
finalModel_XGB = Convert_Model(X_train,y_train,X_test,y_test,model)
```

/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/label.py:219: D ataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel ().

y = column_or_1d(y, warn=True)

/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/label.py:252: D ataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel ().

y = column_or_1d(y, warn=True)

0.7442934782608696

[[9330 1638]

[4008 7104]]

0.7442934782608696

0.8126286890871655

0.6393088552915767

f1 score 0.7156240556059232

In [151]:

```
#ROC curve
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
probs = finalModel_XGB.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the precision-recall curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
```

AUC: 0.797

In [152]:

```
X = data_clean.drop('y', axis=1).values
y = data_clean['y'].values
pp=data_clean.drop('y', axis=1)
x_train, x_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.3, random_state=42)
rmodel = XGBClassifier()
rmodel.fit(X_train, y_train)
feature_importances = pd.DataFrame(rmodel.feature_importances_,index = pp.columns,columns=[
```

```
/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/label.py:219: D
ataConversionWarning: A column-vector y was passed when a 1d array was expec
ted. Please change the shape of y to (n_samples, ), for example using ravel
().
    y = column_or_1d(y, warn=True)
/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/label.py:252: D
ataConversionWarning: A column-vector y was passed when a 1d array was expec
ted. Please change the shape of y to (n_samples, ), for example using ravel
().
    y = column_or_1d(y, warn=True)
```

In [153]:

feature_importances

Out[153]:

	importance
nr.employed	0.575482
month_oct	0.051430
cons.conf.idx	0.049530
pdays	0.033252
cons.price.idx	0.033085
euribor3m	0.028439
default	0.016820
contact_telephone	0.015261
poutcome	0.011918
previous	0.011453
month_apr	0.010338
age	0.009056
job_services	0.009027
month_mar	0.008550
emp.var.rate	0.008050
day_of_week_tue	0.007238
education_basic.4y	0.006695
month_may	0.006264
marital_divorced	0.006192
month_nov	0.006008
education_professional.course	0.005805
month_aug	0.005701
education_university.degree	0.005622
education_basic.9y	0.005564
education_basic.6y	0.005544
job_unemployed	0.005374
marital_married	0.005251
day_of_week_wed	0.005194
day_of_week_mon	0.004796
campaign	0.004566
job_student	0.004439
job_entrepreneur	0.004310
day_of_week_thu	0.004272
loan	0.004083
housing	0.003945

	importance
job_blue-collar	0.003919
job_technician	0.003517
job_housemaid	0.003488
job_retired	0.003431
month_jul	0.002492
education_illiterate	0.002200
job_management	0.001210
job_self-employed	0.001191
job_admin.	0.000000
month_dec	0.000000
month_jun	0.000000
pdays2	0.000000
education_high.school	0.000000
marital_unknown	0.000000
month_sep	0.000000
day_of_week_fri	0.000000

MLP Classifier with 3 layer

In [154]:

```
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
seed = 7
test_size = 0.33
mlp = MLPClassifier(hidden_layer_sizes=(13,13,13),max_iter=500)
mlp.fit(X_train,y_train)
/usr/local/lib/python3.6/dist-packages/sklearn/neural network/multilayer per
ceptron.py:921: DataConversionWarning: A column-vector y was passed when a 1
d array was expected. Please change the shape of y to (n_samples, ), for exa
mple using ravel().
  y = column_or_1d(y, warn=True)
Out[154]:
MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.
9,
              beta 2=0.999, early stopping=False, epsilon=1e-08,
              hidden_layer_sizes=(13, 13, 13), learning_rate='constant',
              learning_rate_init=0.001, max_iter=500, momentum=0.9,
              n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
              random state=None, shuffle=True, solver='adam', tol=0.0001,
              validation fraction=0.1, verbose=False, warm start=False)
```

In [155]:

```
from sklearn.metrics import classification_report,confusion_matrix
predictions = mlp.predict(X_test)
#print the confusion matrix
print(confusion_matrix(y_test,predictions))
```

```
[[8373 2595]
[3952 7160]]
```

In [156]:

```
#Print the classification report
print(classification_report(y_test,predictions))
```

	precision	recall	f1-score	support
0	0.68	0.76	0.72	10968
1	0.73	0.64	0.69	11112
accuracy			0.70	22080
macro avg	0.71	0.70	0.70	22080
weighted avg	0.71	0.70	0.70	22080

In [157]:

```
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score

classifier_mlp = MLPClassifier(hidden_layer_sizes=(13,14,15), max_iter=500)
finalModel_mlp = Convert_Model(X_train,y_train,X_test,y_test,classifier_mlp)
```

/usr/local/lib/python3.6/dist-packages/sklearn/neural_network/multilayer_per ceptron.py:921: DataConversionWarning: A column-vector y was passed when a 1 d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

```
y = column_or_1d(y, warn=True)
```

0.7008152173913044

[[8618 2350]

[4256 6856]]

- 0.7008152173913044
- 0.7447316967195308
- 0.6169906407487401
- f1 score 0.6748695737769466

In [158]:

```
# roc curve and auc on imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import roc curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
probs = finalModel_mlp.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the precision-recall curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
```

AUC: 0.745

MLP Classifier with 2 layer

In [162]:

```
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score

classifier_mlp = MLPClassifier(hidden_layer_sizes=(13,13)), max_iter=500)
finalModel_mlp = Convert_Model(X_train,y_train,X_test,y_test,classifier_mlp)

/usr/local/lib/python3.6/dist-packages/sklearn/neural_network/multilayer_per
ceptron.py:921: DataConversionWarning: A column-vector y was passed when a 1
d array was expected. Please change the shape of y to (n_samples, ), for exa
```

mple using ravel().
 y = column_or_1d(y, warn=True)

0.7070199275362319
[[8723 2245]
 [4224 6888]]
 0.7070199275362319
 0.754188109055075
 0.6198704103671706
f1 score 0.6804643121758459

In [163]:

```
# roc curve and auc on imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import roc curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
probs = finalModel_mlp.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the precision-recall curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
```

AUC: 0.760

MLP Classifier with 1 layer

In [164]:

```
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score

classifier_mlp = MLPClassifier(hidden_layer_sizes=(13 ) ,max_iter=500)
finalModel_mlp = Convert_Model(X_train,y_train,X_test,y_test,classifier_mlp)
```

/usr/local/lib/python3.6/dist-packages/sklearn/neural_network/multilayer_per ceptron.py:921: DataConversionWarning: A column-vector y was passed when a 1 d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

```
y = column_or_1d(y, warn=True)
```

0.7223278985507247

[[9021 1947]

[4184 6928]]

0.7223278985507247

0.7806197183098591

0.6234701223902088

f1 score 0.693250612898384

In [165]:

```
# roc curve and auc on imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import roc curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
probs = finalModel_mlp.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(y_test, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(y_test, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the precision-recall curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
```

AUC: 0.766

In [166]:

```
#by balcing y output
# After standardization our f1 score and auc percentage increases
from prettytable import PrettyTable
x = PrettyTable()

x.field_names = ["MODEL", "ACCURACY_score","precision_score","Recall_score","F1 score","AUC
x.add_row(["Dummy classifer",0.50, 0.50,1,0.66,"NAN"])
x.add_row(["Logistic Regression)", 0.73, 0.80,0.62,0.70,0.78])
x.add_row(["Random Forest",0.65, 0.85,0.38,0.52,0.766])
x.add_row(["SVM classifier",0.73, 0.82,0.60,0.69,0.73])
x.add_row(["XGB boost",0.74, 0.81,0.63,0.71,0.798])
x.add_row(["MLP classifier with 3 layers",0.70, 0.74,0.61,0.67,0.745])
x.add_row(["MLP classifier with 2 layers",0.70, 0.75,0.61,0.68,0.76])
x.add_row(["MLP classifier 1 layers",0.72, 0.78,0.62,0.693,0.766])

print('Bank Marketing')
print('Bank Marketing')
print(x)
```

Bank Marketing

+	.+	+	+
+ MODEL score F1 score AUC	_	precision_score	_
· +	•	•	
Dummy classifer	0.5	0.5	1
0.66 NAN Logistic Regression)	0.73	0.8	0.6
2 0.7 0.78 Random Forest	0.65	0.85	0.3
8 0.52 0.766 SVM classifier	l 0.73	0.82	0.6
0.69 0.73	0.73	0.02	1 0.0
XGB boost 3 0.71 0.798	0.74	0.81	0.6
MLP classifier with 3 layers	0.7	0.74	0.6
1 0.67 0.745 MLP classifier with 2 layers	0.7	0.75	0.6
1 0.68 0.76 MLP classifier 1 layers	0.72	0.78	0.6
2 0.693 0.766			.
+		T	F

In [0]:

```
# for EDA part i have take refrance from Chaitra Hegde github assignment
# for differnt model implemnetation google as source
```