計量経済 II: 宿題 8

村澤 康友

提出期限: 2023年11月20日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ wgmacro は,旧西ドイツのマクロの投資・所得・消費の 1960 年第 1 四半期 \sim 1982 年第 4 四半期の季節調整済みデータである.所得と消費のグレンジャー因果について,以下の分析を行いなさい.
 - (a) 所得・消費の対数階差の 2 変量 VAR(4) モデルを推定し、2 変数間のグレンジャー因果検定の F 検 定統計量の p 値を示しなさい.
 - (b) 所得・消費・投資の対数階差の 3 変量 VAR(4) モデルを推定し,所得・消費の 2 変数間のグレンジャー因果検定の F 検定統計量の p 値を示しなさい.
 - ※ VAR モデルを推定すると、グレンジャー因果検定の F 検定統計量と p 値も出力される.
- 2. 前問と同じデータを使用する.所得・消費の対数階差の 2 変量 VAR(4) モデルを推定し,変数の順序を変えてインパルス応答関数を比較しなさい(95 %信頼区間も示すこと).
 - (a) 所得・消費の順
 - (b) 消費・所得の順
 - ※推定した VAR モデルのインパルス応答関数をプロットする手順は以下の通り.
 - (a) 推定結果の画面のメニューから「グラフ」→「インパルス応答」を選択.
 - (b)「予測する期間数」を入力.
 - (c)「ブートストラップ信頼区間を含む」をチェック.
 - (d) 信頼係数 $1-\alpha$ を入力.
 - (e)「コレスキー順序」を設定(先行する変数が上).
 - (f) $\lceil OK \rfloor$ proper points of the content of the
- 3. 前問と同じデータとモデルを使用して、各変数の予測誤差分解を図示しなさい. ※推定した VAR モデルの予測誤差分解をプロットする手順は以下の通り.
 - (a) 推定結果の画面のメニューの「グラフ」→「予測分散分解」で変数を選択.
 - (b)「予測する期間数」を入力.
 - (c) グラフの種類を選択.
 - (d)「コレスキー順序」を設定(先行する変数が上).
 - (e) $\lceil OK \rfloor$ をクリック.

解答例

1. (a) 2 変量 VAR(4) モデルの推定結果

VAR モデル, ラグ次数: 4

最小二乗法 (OLS) 推定量, 観測: 1961:2-1982:4 (T=87)

Log-likelihood = 569.727

共分散行列の行列式の値 = 7.03108e-009

AIC = -12.6834

BIC = -12.1732

 $\mathrm{HQC} = -12.4779$

かばん検定 (Portmanteau test): LB(21) = 71.631, df = 68 [0.3583]

方程式 1: ld_income

	係数	標準誤差	t-ratio	p 値
const	0.00916667	0.00423939	2.162	0.0337
ld_income_1	-0.0475029	0.137666	-0.345	1 0.7310
ld_income_2	0.0203763	0.149614	0.136	2 0.8920
ld_income_3	0.156903	0.154238	1.017	0.3122
ld_income_4	-0.0653646	0.143679	-0.454	9 0.6504
$ld_consumption_1$	0.242406	0.162255	1.494	0.1392
$ld_consumption_2$	0.102592	0.179680	0.571	0.5697
$ld_consumption_3$	0.0743322	0.166489	0.446	5 0.6565
$ld_consumption_4$	0.0339139	0.147066	0.230	6 0.8182
Mean dependent va	ar 0.018968	S.D. depende	ent var	0.011812
Sum squared resid	0.010565	S.E. of regre	ssion	0.011638
R^2	0.119542	Adjusted \mathbb{R}^2		0.029239
F(8,78)	1.323784	$\operatorname{P-value}(F)$		0.244309
$\hat{ ho}$	0.002307	Durbin-Wat	son	1.993954
	ばっ生19年	7. 17. 松宁		

ゼロ制約のF 検定

All lags of ld_income	F(4,78) = 0.562628	[0.6905]
All lags of ld_consumption	F(4,78) = 0.635902	[0.6384]
All vars, lag 4	F(2,78) = 0.103501	[0.9018]

方程式 2: ld_consumption

	係数	標準誤差	t-ratio	o p値		
const	0.00703256	0.00358462	1.962	0.0533		
ld_income_1	0.336748	0.116404	2.893	3 0.0049		
ld_income_2	0.360800	0.126506	2.852	0.0056		
ld_income_3	0.203602	0.130416	1.561	0.1225		
ld_income_4	0.0865131	0.121488	0.712	21 0.4785		
ld_consumption_1 -	-0.442682	0.137195	-3.227	7 0.0018		
ld_consumption_2 -	-0.138131	0.151929	-0.909	92 0.3661		
$ld_consumption_3$	0.126397	0.140775	0.897	79 0.3720		
$ld_consumption_4$	0.0235226	0.124352	0.189	0.8505		
Mean dependent var	0.018378	S.D. depende	ent var	0.011021		
Sum squared resid	0.007554	S.E. of regres	ssion	0.009841		
R^2	0.276862	Adjusted \mathbb{R}^2		0.202694		
F(8,78)	3.732901	$\operatorname{P-value}(F)$		0.000963		
$\hat{ ho}$	0.001900	Durbin-Wats	son	1.904516		
ゼロ制約のF検定						
All lags of ld_income $F(4,78) = 3.29681$ [0.0150]						
All lags of ld_con	sumption I	F(4,78) = 3.20	279	[0.0173]		
All vars lag 4	1	7(2.78) - 0.44	8052	[0.6405]		

All vars, lag 4 F(2,78) = 0.448052 [0.6405]

所得→消費のグレンジャー因果検定の p 値は 0.0150消費→所得のグレンジャー因果検定の p 値は 0.6384

(b) 3 変量 VAR(4) モデルの推定結果

VAR モデル, ラグ次数: 4

最小二乗法 (OLS) 推定量, 観測: 1961:2-1982:4 (T=87)

Log-likelihood = 738.353

共分散行列の行列式の値 = 8.53139e-012

AIC = -16.0771

 $\mathrm{BIC} = -14.9717$

 $\mathrm{HQC} = -15.6320$

かばん検定 (Portmanteau test): LB(21) = 152.402, df = 153 [0.4985]

方程式 1: ld_investment

	係数	標準誤差	t-ratio	p 値
const	0.00714076	0.0171878	0.4155	0.6790
$ld_investment_1$	-0.267888	0.114955	-2.330	0.0225
$ld_investment_2$	-0.0702268	0.120929	-0.5807	0.5632
$ld_investment_3$	0.162136	0.123848	1.309	0.1945
$ld_investment_4$	0.318690	0.118062	2.699	0.0086
ld_income_1	0.409866	0.529704	0.7738	0.4415
ld_income_2	-0.164909	0.567110	-0.2908	0.7720
ld_income_3	0.0542716	0.579176	0.0937	0 0.9256
ld_income_4	-0.258145	0.539730	-0.4783	0.6339
$ld_consumption_1$	0.421302	0.643686	0.6545	0.5148
$ld_consumption_2$	0.441097	0.705106	0.6256	0.5335
$ld_consumption_3$	-0.00886575	0.652669	-0.0135	8 0.9892
$ld_consumption_4$	-0.548284	0.579633	-0.9459	0.3473
Mean dependent v	rar 0.015742	S.D. depend	dent var	0.044885
Sum squared resid	0.139474	S.E. of regr	ession	0.043414
R^2	0.195009	Adjusted R	2	0.064470
F(12, 74)	1.493879	P-value (F)		0.145822
$\hat{ ho}$	0.029353	Durbin-Wa	tson	1.922754
	ゼロ制約の	D F 検定		

All lags of ld_investment	F(4,74) = 3.54535	[0.0106]
All lags of ld_income	F(4,74) = 0.255617	[0.9054]
All lags of ld_consumption	F(4,74) = 0.360071	[0.8362]
All vars, lag 4	F(3,74) = 2.73269	[0.0497]

方程式 2: ld_income

	係数	標準誤差	t-ratio	p 値		
const	0.0114330	0.00458519	2.493	0.0149		
$ld_investment_1$	0.0480725	0.0306666	1.568	0.1212		
$ld_investment_2$	0.0582115	0.0322603	1.804	0.0752		
$ld_investment_3$	0.0160952	0.0330388	0.4872	0.6276		
$ld_investment_4$	-0.0028719	9 0.0314953	-0.09119	0.9276		
ld_income_1	-0.0722543	0.141309	-0.5113	0.6106		
ld_income_2	0.0380503	0.151288	0.2515	0.8021		
ld_income_3	0.173421	0.154507	1.122	0.2653		
ld_income_4	-0.0531766	0.143984	-0.3693	0.7129		
$ld_consumption_1$	0.191309	0.171716	1.114	0.2688		
$ld_consumption_2$	-0.0049833	8 0.188101	-0.02649	0.9789		
$ld_consumption_3$	-0.0085643	5 0.174112	-0.04919	0.9609		
$ld_consumption_4$	0.0246668	0.154629	0.1595	0.8737		
Mean dependent v	var 0.01896	8 S.D. depen	dent var 0	.011812		
Sum squared resid	0.00992	6 S.E. of reg	ression 0	.011582		
R^2	0.17281	8 Adjusted I	\mathbb{R}^2 0	.038680		
F(12, 74)	1.28836	0 P-value (F)	0	.243650		
$\hat{ ho}$	0.00460	1 Durbin–Wa	atson 1	.984346		
ゼロ制約のF検定						
All lags of ld_in	vestment	F(4,74) = 1.1	9151 [0.3	3217]		
All lags of ld_in	come	F(4,74) = 0.6	56848 [0.6]	6239]		
All lags of ld_co	onsumption	F(4,74) = 0.4	55569 [0.	7680]		
All vars, lag 4		F(3,74) = 0.0	475061 [0.9	9862]		

方程式 3: ld_consumption

	係数	標準誤差	t-ratio	p 値	
const	0.00769718	0.00390494	1.971	0.0524	
$ld_investment_1$	0.00436965	0.0261169	0.1673	0.8676	
$ld_investment_2$	0.0395282	0.0274742	1.439	0.1544	
$ld_investment_3$	0.00872797	0.0281372	0.3102	0.7573	
ld_investment_4	-0.0250735	0.0268227	-0.9348	0.3529	
ld_income_1	0.297120	0.120344	2.469	0.0159	
ld_income_2	0.376714	0.128843	2.924	0.0046	
ld_income_3	0.218133	0.131584	1.658	0.1016	
ld_income_4	0.0939959	0.122622	0.7665	0.4458	
ld_consumption_1	-0.418620	0.146240	-2.863	0.0055	
ld_consumption_2	-0.165454	0.160194	-1.033	0.3050	
$ld_consumption_3$	0.0699289	0.148281	0.4716	0.6386	
$ld_consumption_4$	0.0254889	0.131688	0.1936	0.8471	
Mean dependent var	0.018378	S.D. depend	lent var (0.011021	
Sum squared resid	0.007199	S.E. of regre	ession (0.009863	
R^2	0.310795	Adjusted R	2 (0.199032	
F(12,74)	2.780845	$\operatorname{P-value}(F)$	(0.003531	
$\hat{ ho}$	-0.003267	Durbin-Wa	tson 1	.905366	
ゼロ制約のF検定					
All lags of ld_investment $F(4,74) = 0.910861$ [0.4622]					
All lags of ld_ince	ome I	7(4,74) = 2.96	728 [0.0	249]	
All less of 1d consumption $E(4.74) = 2.2579 = [0.0629]$					

All lags of ld_consumption F(4,74) = 2.33572[0.0632]All vars, lag 4 F(3,74) = 0.583211[0.6279]

所得→消費のグレンジャー因果検定の p 値は 0.0249消費→所得のグレンジャー因果検定の p 値は 0.7680

2. (a) 所得・消費の順

3. 所得(対数階差)の予測誤差分解

消費(対数階差)の予測誤差分解

