

Figure 1: Blue line is the time signal of δp_e from IAW simulation with $T_i = 0.2T_e$. Red line shows a mode damping trend with a rate calculated from (3.2). The time unit $\tau_0 = 1/\omega_0$.

Figure 2: Frequencies (a) and damping rates (b) from IAW simulation for different values of T_i/T_e . The dashed lines are the theoretical results calculated from (3.1) and (3.2).

Figure 3: Time evolution of δp_e from IAW simulation with $T_i = 0.3T_e$, showing echoes of oscillation after the mode is damped.

Figure 4: (a) Profiles of q and total pressure of the equilibrium used in the DIII-D simulation. (b) Flux contours and mesh boundary used in the simulation.

Figure 5: Growth rates (solid lines) and frequencies (dashed lines) as functions of q_{min} of the n = 1 mode from M3D-C1 linear simulations with DIII-D equilibrium. The blue line shows the MHD-only result. The red lines show the kinetic-MHD results with only fast ions. The green lines show the results with both thermal and energetic ions.

Figure 6: Two-dimensional structure of $\delta\phi(a)$ and $\delta\psi(b)$ from DIII-D n=1 linear simulation of the $q_{min}=1.04$ case with thermal ions.

Figure 7: Two-dimensional structure of perturbed electron pressure $\delta p_e(a)$ and thermal ion pressure $\delta p_i(b)$ from the linear simulation of the $q_{min} = 1.04$ case with thermal ions.

Figure 8: Two-dimensional structure of perpendicular (a) and parallel (b) fast ion pressure from the linear simulation of the $q_{\min} = 1.04$ case with thermal ions, and the difference between the two (c).

Figure 9: (a) Structure of v_{\parallel} from the linear simulation of the $q_{min}=1.04$ case with thermal ions and synchronization of $v_{\parallel}(2.20)$. (b) Structure of v_{\parallel} from the linear simulation with only fast ions using the MHD equation (2.23).

Figure 10: Growth rates (solid lines) and frequencies (dashed lines) of the n = 1 mode with different plasma β (β_0 is the experimental value) and a fixed q profile. The blue line shows the MHD-only result. The green lines show the kinetic-MHD results with fast and thermal ions.

Figure 11: (a) Profiles of q and pressure of different particle species of the equilibrium used in the NSTX simulation. (b) Flux contours and mesh boundary used in the simulation.

Figure 12: (a) The original EP distribution of energy and pitch angle near the magnetic axis from NUBEAM. (b) The smoothed EP distribution that was used in M3D-C1-K simulations.

Figure 13: Growth rates γ (solid lines) and frequencies f (dashed lines) as functions of q_{min} of the n=1 modes from M3D-C1 linear simulation with NSTX equilibrium with fixed β . The blue line shows the MHD-only result. The red lines show the kinetic-MHD results with only fast ions. The green lines show the results with both thermal and energetic ions.

Figure 14: Two-dimensional structure of $\delta\phi(a)$ and $\delta\psi(b)$ from NSTX n=1 linear simulation of the $q_{min}=1.08$ case with thermal ions.

Figure 15: Time evolution of kinetic energy (a) and magnetic energy (b) of different toroidal harmonics from NSTX nonlinear simulation of the $q_{min} = 1.08$ case with thermal ions.

Figure 16: (a) Poincaré plot of magnetic flux surfaces at t = 1.2 ms. The (1,1) and (2,1) islands are marked as red. (b) Change of fast ion density profile in the nonlinear simulation of $q_{min} = 1.08$ due to mode excitation.