

Table of contents

- 1 Introdiction
- 2 Work Flow
- 3 Data
- 4 Design

- 5 Tools
- 6 EDA Analysis
- 7 Models
- 8 Conclusion

Introduction

Introduction

Washington DC Weather data will be used in this project to build a linear regression model that would predict the revenue of bikes rented from bikeshare stations based on weather conditions. This model will provide insights about their sales performance.

Capital Bikeshare Location

Work Flow

Work Flow

- 1 Idea
- Web Scraping
- 3 Data Cleaning
- 4 EDA

- 5 Checking Assumptions
- 6 Building Models
- 7 Best Model
- 8 Testing Model

Data

Scraped Data

Scrapped the daily weather condtions from

Weather Undergroud website using BeautifulSoup

Scraped Data

Data Features

Temperature	Dew Point	Wind Speed
Pressure	Humidity	Precipitation
Working Day	Weather Condition	Season

Target

The target of the model is the total revenue of bikeshare company per day.

Data

Explore data after **merging** both datasets

Cleaning Data

By removing **Null** and **Dublicate** values.

Desgin

Design

This project aims to predict the total revenue for capital bikeshare by building a linear regression model. The final data set presents the complete status of the weather in Washington DC and bikeshare information.

Tools

Tools

Collect data from website

Pandas

Explor & clean data

Matplotlib, Seaborn

Visualise data and models

sklearn

Models traning

Excel

Download data as csv file

EDA - Analysis

EDA Pie chart

EDA Lollipop graph

Correlation

	temperature	dew_point	humidity	wind_speed	pressure	season	year	month	weekday	bikes_count	total_revenue
temperature	1.000000	0.923648	0.066277	-0.125530	-0.302314	0.335210	0.047242	0.222659	0.001824	0.629202	0.647721
dew_point	0.923648	1.000000	0.428297	-0.189849	-0.343361	0.358848	-0.007092	0.267570	-0.025208	0.507101	0.523259
humidity	0.066277	0.428297	1.000000	-0.200623	-0.218173	0.150917	-0.122031	0.178983	-0.041748	-0.165105	-0.165797
wind_speed	-0.125530	-0.189849	-0.200623	1.000000	-0.315738	-0.210581	-0.012161	-0.193456	0.018161	-0.239832	-0.236982
pressure	-0.302314	-0.343361	-0.218173	-0.315738	1.000000	0.020412	0.046417	0.054921	-0.041393	0.020073	0.018402
season	0.335210	0.358848	0.150917	-0.210581	0.020412	1.000000	-0.001844	0.831440	-0.003080	0.406100	0.385822
year	0.047242	-0.007092	-0.122031	-0.012161	0.046417	-0.001844	1.000000	-0.001792	-0.005461	0.566710	0.528084
month	0.222659	0.267570	0.178983	-0.193456	0.054921	0.831440	-0.001792	1.000000	0.009509	0.279977	0.260944
weekday	0.001824	-0.025208	-0.041748	0.018161	-0.041393	-0.003080	-0.005461	0.009509	1.000000	0.067443	0.069801
bikes_count	0.629202	0.507101	-0.165105	-0.239832	0.020073	0.406100	0.566710	0.279977	0.067443	1.000000	0.985522
total_revenue	0.647721	0.523259	-0.165797	-0.236982	0.018402	0.385822	0.528084	0.260944	0.069801	0.985522	1.000000
holiday_holiday	-0.027812	-0.026257	-0.013989	0.004532	0.063848	-0.010537	0.007954	0.019191	-0.101960	-0.068348	-0.044381
holiday_not a holiday	0.027812	0.026257	0.013989	-0.004532	-0.063848	0.010537	-0.007954	-0.019191	0.101960	0.068348	0.044381
working_day_weekend	-0.053169	-0.055003	-0.035133	0.016849	0.119158	-0.012485	0.002013	0.005901	-0.035790	-0.061156	0.067883
working_day_working day	0.053169	0.055003	0.035133	-0.016849	-0.119158	0.012485	-0.002013	-0.005901	0.035790	0.061156	-0.067883
her_condition_Clear_Partly cloudy	0.120942	-0.119244	-0.620334	-0.004430	0.179764	0.002771	0.029429	-0.021960	-0.029379	0.252870	0.261079
her_condition_Light Snow, Light Rain	-0.058538	0.047185	0.315434	0.151185	-0.143736	0.070618	-0.073941	0.078543	0.016586	-0.239958	-0.237551
ner_condition_Mist_Cloudy	-0.102542	0.104821	0.520595	-0.048879	-0.132381	-0.027762	-0.003869	-0.005365	0.024074	-0.172879	-0.182093

Models

Assumptions

Linear Relastionshipbetween some
featurs and target

Error is following the **Normal Distribution**

There is **No** Strong Multicolinearty

Error is following the Normal Distribution

Models

Linear Regression train R²: 0.991

Linear Regression validation R²: 0.989

Linear Regression train R²: 0.771

Linear Regression validation R²: 0.757

Models

Linear Regression train R²: 0.782

Linear Regression validation R²: 0.785

Linear Regression train R²: 0.772

Linear Regression validation R²: 0.766

The chosen Model

Colnclusion

Conclusion

Since the revenue increase on good weather days with hotter temperature, the company must increase their bike availability and promotions during the summer months to further increase their revenue.

Thanks

