Introduction

CS121 Parallel Computing Fall 2024

Course info

■ Instructor Assoc Prof Rui FAN 范睿

Research Parallel and distributed computing

Contact fanrui@shanghaitech.edu.cn (English please)

Office hours Thursdays 4:40-6pm, SIST 1A-504E

■ TA 黄磊, huanglei@shanghaitech.edu.cn

Recitation TBA

Website Blackboard and Piazza

Problem sets	20%	 About once every 2 weeks
Labs	25%	 Solve problems using OpenMP and CUDA
Reading project	10% Teams of 2	 Find an interesting research paper from suggested reading list Tell me your paper by week 8 Submit a report after week 16
Programming project	15% Teams of 2	 Find an interesting problem and write an efficient parallel program for it Tell me your problem by week 8 Submit a report and give a 20 minute presentation in week 16
Midterm exam	10%	■ In week 9
Final exam	20%	

Parallel computing: what and why

- Parallel computing studies how to use multiple computers together to solve a problem.
- Allows solving complicated problems faster.
 - \square Ideally, with k processors we can solve a problem k times faster.
 - Also more memory to solve larger problems, or same problem with more accuracy.
 - □ May be more fault tolerant; but also more prone to faults.
- Almost all modern computer systems are parallel.
 - □ Multicores, GPUs, cloud computing, etc.
- Parallel computing crucial for modern large scale applications, e.g. physical simulations, data mining, machine learning.

Course objectives

- To understand the concepts and techniques of parallel computing, and take advantage of the capabilities of modern systems.
 - Parallel hardware models and interaction with parallel software.
 - □ Power and limitations of parallelism.
 - ☐ Efficient parallel algorithms for important problems.

Applications

Fluid dynamics, weather prediction, climate modeling.

- DNA, protein, drug structures and interactions.
- Quantum / atomic simulations, cosmological simulations.
- Cryptoanalysis.
- Big data analytics.
- Simulating financial and social behaviors.
- Machine learning and AI.
- Simulating the human brain.

Parallel hardware

- Efficient parallel computing requires synergy between parallel hardware and software.
- Parallel system consists of multiple independent processors communicating over an interconnect
- Unlike sequential (von Neumann) architecture, many parallel hardware designs.
 - Different types of processors (multicores, manycores, FPGA, etc.).
 - Heterogeneous designs combine multiple architectures, e.g. multicores and GPUs.
 - □ Different interconnect designs.
 - Communicate through shared memory, or message passing over network.
- Parallelism exists at many layers.
 - Instruction, core, chip, node, rack, etc.

Parallel software

- Break a large problem into subproblems (tasks) that can be solved (somewhat) independently.
- OS and scheduler allocate tasks to different processors.
 - □ Respect dependencies between tasks.
- Parallel software must be matched to the hardware.
 - □ Similar amounts of concurrency in software and hardware.
 - Hardware must adequately handle software communication pattern.
 - □ No single hardware model suffices.
 - □ Parallel software is often not portable.
- PRAM model tries to abstract parallel hardware.
 - Useful for understanding inherent parallelism.
 - Unrealistically discounts cost of communication.

Challenges

- Harnessing power of the masses.
 - Easier said than done...
- Communication
 - Processors compute faster than they can communicate.
 - □ Problem gets worse as number of processors increases.
 - Main bottleneck to parallel computing.
- Synchronization
 - Tasks may interfere with each other, so can't be done at same time.
- Scheduling
 - □ Track and enforce dependencies.
 - □ Find good allocation of tasks to processors.
 - Data locality, heterogeneous processors
 - Maximize utilization and performance.

Challenges

- Structured vs unstructured
 - Structured problems can be solved with custom hardware.
 - Unstructured problems more general, but less efficient.
- Inherent limitations
 - Some problems are not (or don't seem to be) parallelizable.
 - Ex Binary search, Dijkstra's shortest paths algorithm.
 - Other problems require clever algorithms to become parallel.
 - Ex Fibonacci series $(a_n = a_{n-1} + a_{n-2})$.
- The human factor
 - Hard to keep track of concurrent events and dependencies.
 - Parallel algorithms are hard(er) to design and debug.

Course outline

- Parallel architectures
 - □ Shared memory
 - □ Distributed memory
 - Manycore
- Parallel languages
 - □ OpenMP, MPI, CUDA, MapReduce
- Algorithm design techniques
 - Decomposition, load balancing, scheduling
- Parallel algorithms
 - Dense and sparse matrix algorithms, sorting, search, graph algorithms, PRAM algorithms, etc.

MA.

A brief history

- Research and theory started in the early 60's.
 - □ Cray-1 reached 160 MFLOPS in 1976.
- Commercially successful supercomputers (Cray, Thinking Machines, etc.) started in 1980's.
 - □ Used expensive custom processors.
- In 1990's massively parallel processors (MPPs) and clusters became dominant.
 - MPPs use commercial (OTS) processors with custom interconnects.
 - □ Clusters use OTS processors and interconnects running Linux.
 - Cheap, easy to build and relatively powerful.
 - Most data centers today are clusters.
- Fastest supercomputer today is Cray Frontier MPP.
 - □ Runs at 1.2 EFLOPS, about 10M times faster than a workstation.
- Apart from supercomputers, progress in parallel computing stalled in 1990's until mid 2000's.

Moore's Law and parallel computing

- In 1965, Gordon Moore, co-founder of Intel, predicted transistor count would double every 18 months.
 - □ Held true for the last 50 years!
- Until mid 2000's, this implied single processor performance doubled at same rate.
- This held back development of parallel computers, since in the time to develop one, single processor performance would improve dramatically.
- But since ca. 2005, parallel processing has become essential for taking advantage of Moore's Law.

Moore's Law and performance

- Transistor properties, e.g. size and clock speed, do not scale equally.
- Higher single processor clock speeds is increasingly difficult to achieve.
 - ☐ Heat
 - □ Power consumption
 - Current leakage

- Multicore technology addresses (lack of) clock speed scaling.
 - Link multiple processing cores together on same chip.
 - More efficient to replace a single high speed processor with multiple slower processors.
 - Another approach is to stack chips in a 3D structure.
- Developing software for multicores has been harder than scaling hardware.
 - Software developers with parallel computing skills are in high demand.

The state of the art

- Parallel computers today mainly based on four processor architectures.
 - Multicores
 - Small / moderate number (≤ 128) of fast, general purpose cores.
 - Ex AMD EPYC, Intel Xeon, IBM Power.
 - Manycores
 - Large number (10K's) of simple cores.
 - Ex Nvidia Hopper GPU, Intel Xeon Phi, Sunway SW26010Pro.
 - □ FPGA (field programmable gate arrays)
 - Reconfigurable hardware customized for specific problems.
 - ASIC (application specific integrated circuits)
 - Specially built hardware for specific problems.
 - Ex Google TPU, Cerebras, IBM TrueNorth.
- In addition to processing speed, energy efficiency also increasing important.
 - □ Biggest datacenters consume over ~100 MW of power, ~50K homes.
 - □ Biggest supercomputers consume ~20MW of power.
 - □ Best supercomputers achieve ~50 GFLOPS / W.

Top 500 list

- Biannual ranking of fastest 500 supercomputers in the world.
 - Speed measured in floating point operations per second.
 - □ Uses high-performance LINPACK to solve a dense linear system Ax = b.
 - Compute intensive, but doesn't stress memory system.
 - May not represent performance on real-world problems.

	MAY 2	024	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	Frontier	HPE Cray EX235a, AMD Opt 3rd Gen EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	DOE/SC/ORNL	USA	8,699,904	1,206.0	22.7
2	Aurora	HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 (52C 2.4GHz), Intel Data Center GPU Max, Slingshot-11	DOE/SC/ANL	USA	9,264,128	1,012.0	38.7
3	Eagle	Microsoft NDv5, Xeon Platinum 8480C (48C 2GHz), NVIDIA H100, NVIDIA Infiniband NDR	Microsoft Azure	USA	1,123,200	561.2	
4	Fugaku	Fujitsu A64FX (48C, 2.2GHz), Tofu Interconnect D	RIKEN R-CCS	Japan	7,630,848	442.0	29.9
5	LUMI	HPE Cray EX235a, AMD Opt 3rd Gen EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	EuroHPC/CSC	Finland	2,220,288	379.7	6.01

Mega	Giga	Tera	Peta	Exa
10 ⁶	10 ⁹	1012	10 ¹⁵	10 ¹⁸

□ For comparison, Intel multicore achieves ~100 GFLOPS / core, and GPU achieves ~100 TFLOPS / card.

Top 500 – Trends

Top 500 – Architecture

ARCHITECTURES

CHIP TECHNOLOGY

INSTALLATION TYPE

ACCELERATORS/CO-PROCESSORS

Top 500 – Interconnect

Top 500 – Applications

Semiconductor

Finance

Automotive

Geophysics

Others

Software

Database

IT Services

Telecommunication

Logistic Services

Information Processing Service

Other performance measures

- LINPACK does compute-intensive operations on structured dense matrices.
 - ☐ Uniform control flow, predictable and coalesced memory accesses.
 - □ Ideal for physical simulations.
- Data-intensive applications today have instruction divergence, branching and random memory accesses.
- New benchmarks give more complete performance picture
 - □ HPCG performs sparse matrix operations.
 - ☐ Graph500 performs breadth-first search.
- A computer's performance can differ dramatically depending on benchmark.

HPCG results

New HPCG results were announced at ISC 2024

Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of Peak
1	RIKEN Center for Computational Science Japan	Supercomputer Fugaku — A64FX 48C 2.2GHz, Tofu interconnect D	7,630,848	442.01	4	16.00	3.0%
2	DOE/SC/Oak Ridge National Laboratory United States	Frontier — AMD Optimized 3rd Generation EPYC 64C 2GHz, Slingshot-11, AMD Instinct MI250X	8,699,904	1206.00	1	14.05	0.8%
3	DOE/SC/Argonne National Laboratory United States	Aurora — Xeon CPU Max 9470 52C 2.4GHz, Slingshot-11, Intel Data Center GPU Max	9,264,128	1012.00	2	5.613	0.3%
4	EuroHPC/CSC Finland	LUMI — AMD Optimized 3rd Generation EPYC 64C 2GHz, Slingshot-11, AMD Instinct MI250X	2,752,704	379.70	5	4.587	0.9%
5	Swiss National Supercomputing Centre (CSCS) Switzerland	Alps — NVIDIA Grace 72C 3.1GHz, Slingshot-11, NVIDIA GH200 Superchip	1,305,600	270.00	6	3.671	1.0%
6	EuroHPC/CINECA Italy	Leonardo — Xeon Platinum 8358 32C 2.6GHz, Quad-rail NVIDIA HDR100 Infiniband, NVIDIA A100 SXM4 64 GB	1,824,768	241.20	7	3.114	1.0%
7	DOE/SC/Oak Ridge National Laboratory United States	Summit — IBM POWER9 22C 3.07GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta GV100	2,414,592	148.60	9	2.926	1.5%
8	DOE/SC/LBNL/NERSC United States	Perlmutter — AMD EPYC 7763 64C 2.45GHz, Slingshot-11, NVIDIA A100 SXM4 40 GB	888,832	79.23	14	1.905	1.7%
9	DOE/NNSA/LLNL United States	Sierra — IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta GV100	1,572,480	94.64	12	1.796	1.4%
10	NVIDIA Corporation United States	Selene — AMD EPYC 7742 64C 2.25GHz, Mellanox HDR Infiniband, NVIDIA A100	555,520	63.46	15	1.623	2.0%

Graph500

Top Ten from June 2024 BFS

RANK \$	MACHINE \$	VENDOR \$	INSTALLATION \$	LOCATION \$	COUNTRY \$	YEAR \$	NUMBER OF \$ NODES	NUMBER OF \$ CORES	SCALE \$	GTEPS \$
1	Supercomputer Fugaku	Fujitsu	RIKEN Center for Computational Science (R-CCS)	Kobe Hyogo	Japan	2020	152064	7299072	42	166029
2	Wuhan Supercomputer	HUST	Wuhan Supercomputing Center	Wuhan	China	2023	252	6999552	41	115357.6
3	Frontier	HPE	DOE/SC/Oak Ridge National Laboratory	Oak Ridge TN	United States	2021	9248	8730112	40	29654.6
4	Pengcheng Cloudbrain-II	HUST- Pengcheng Lab- HUAWEI	Pengcheng Lab	ShenZhen	China	2022	488	93696	40	28463.1
5	Aurora	Intel/HPE	DOE/SC/Argonne National Laboratory	Argonne IL	United States	2023	4096	25591808	40	24250.2
6	Sunway TaihuLight	NRCPC	National Supercomputing Center in Wuxi	Wuxi	China	2015	40768	10599680	40	23755.7
7	Wisteria/BDEC- 01 (Odyssey)	Fujitsu	Information Technology Center The University of Tokyo	Kashiwa Chiba	Japan	2021	7680	368640	37	16118
8	MareNostrum 5 ACC	Eviden	Barcelona Supercomputing Center	Barcelona	Spain	2024	1120	680960	35	15737.43
9	TOKI-SORA	Fujitsu	Japan Aerospace eXploration Agency (JAXA)	Tokyo	Japan	2020	5760	276480	36	10813
10	NAPS-FX1000	Fujitsu	Japan Meteorological Agency	Tokyo	Japan	2022	4608	221184	36	10158

Overview of Tianhe-2 (MilkyWay-2) Supercomputer

Yutong Lu

School of Computer Science, National University of Defense Technology; State Key Laboratory of High Performance Computing, China ytlu@nudt.edu.cn

Motivation

Tianhe-2 (Milkyway-2) Supercomputer

国防科学技术大学

National University of Defense Technology

Specification

■ Hybrid Architecture

◆ Xeon CPU & Xeon Phi

Items	Configuration
Processors	32000 Intel Xeon CPUs + 48000 Xeon Phis + 4096 FT CPUs Peak performance is 54.9PFlops, HPL
Interconnect	Proprietary high-speed interconnection network TH Express-2
Memory	1.4PB in total
Storage	Global shared parallel storage system, 12.4PB
Cabinets	125+13+24=162 compute/communication/storage Cabinets
Power	17.8 MW (1902MFlops/W)
Cooling	Closed Air cooling system

Compute Node

From Chips to Entire System

◆16000 compute nodes in total

♦ Frame: 32 compute Nodes

♦ Rack: 4 Compute Frames

♦ Whole System: 125 Racks

国防科学技术大学

System

Compute Node

■ Neo-Heterogeneous Compute Node

- Similar ISA, different ALU
- ◆ 2 Intel Ivy Bridge CPU + 3 Intel Xeon Phi
- ◆ 16 Registered ECC DDR3 DIMMs, 64GB
- ◆ 3 PCI-E 3.0 with 16 lanes
- PDP Comm. Port
- Dual Gigabit LAN
- ◆ Peak Perf.: 3.432Tflops

Interconnection network

■ TH Express-2 interconnection network

- ◆ Fat-tree topology using 13 576-port top level switches
- ◆Opto-electronic hybrid transport tech.
- Proprietary network protocol
- **♦ NRC +NIC**

HPC Software stack

高性能计算应用服务与云计算平台 (HPC Application Service and Cloud Computing Platform) 应用支撑环境 科学数据可视化系统(Scientific Data Visualization System) (Application Environment) 多领域并行编程框架 (Parallel Numerical Toolkit for Multi-field of Scientific Applications) (Autonomic Fault Tolerant Management) 自治故障管理 并行调试工具 并行性能分析工具 (Parallel Debugging Tool) (Parallel Performance Profiling Tool) 综合管理环境 应用开发环境 MPI通信库 OpenMC编译器 (Management (Application Environment) (MPI Library) (OpenMC Compiler) Development Environment) 串行编译器 OpenMP并行编译器 (Serial Compiler) (OpenMP Compiler) 资源管理系统(Resource Management System) 系统操作环境 (System 并行文件系统 (Parallel File System) H2FS Environment) 操作系统 (Operating System)

OS & RMS

- Operating System
 - **♦** Kylin Linux
- Resource manage system
 - **♦** Power-aware resource allocation
 - Multiple custom schedule policies

Application

- Application of a global shallow water model: algorithms
 - Hierarchical data partition & communication on cubed-sphere
 - Balanced partition between CPU/MIC inside each node
 - Communication hiding algorithm based on "Pipe-flow" scheme
- Nearly ideal weak scaling on the Tianhe-2
 - Using up to 4,056 nodes (97,344 CPU cores + 693,576 MIC cores)
 - # of unknowns for the largest run:200 billion

Course texts

- Course materials partly taken from the following texts.
 - □ But all topics covered by lecture slides.
- Introduction to Parallel Computing. Grama, Karypis, Kumar, Gupta. Pearson, 2003.
- An Introduction to Parallel Programming. Peter Pacheco. Morgan Kaufmann 2011.
- Programming Massively Parallel Processors. Kirk, Hwu. Morgan Kaufmann 2016.
- CUDA by Example. Sanders, Kandrot. Addison-Wesley 2010.

