Lista 2 MS21.L02: Modelowanie epidemii

Modelowanie Stochastyczne

Zadanie 1

Parametry modeli do zadań 1-3: $\emph{I}_0=1$, $\beta=0.5$, $\gamma=0.1$, $\sigma=0.1$, $\eta=0.1$, $\emph{N}_0=1000$

Na podstawie teorii, kodów i przykładów dla modelu SIR, zaimplementuj wykorzystując schemat Eulera i przedstaw na wykresach w skali liniowej i logarytmicznej ewolucję czasową modeli (patrz slajdy 17-21):

(a) SI, (b) SIS, (c) SIRS

Posiadając parametry zbudowany został model SIR w trzech wariantach

dwa stanySIdwa stany zapętloneSISi trzy stany zapętloneSIRS

Algorytm wykorzystuje wzór:

$$S_{t+1} = S_t + \Delta t \left(-\frac{\beta}{N} I_t S_t \right)$$

, czyli przybliżenie różniczki do różnicy

Wynikiem kodu z zadania 1 są reprezentacje modeli w postaci wykresów (liniowy, semilog i loglog):

a)Si

b) SIS

c) SIRS

Zadanie 2

Na podstawie teorii, kodów i przykładów dla modelu SIR, zaimplementuj wykorzystując metodę DOPRI (w Matlabie funkcja ode45.m) i przedstaw na wykresach w skali liniowej i logarytmicznej ewolucję czasową modeli: (a) SI, (b) SIS, (c) SIRS

Przebieg problemu wygląda tak samo jak w zadaniu pierwszym jedynie zmieniony został sposób implementacji modelu, mianowicie użyta została metoda DOPRI w pythonie metoda RK45 z biblioteki scipy.integrate.
Wykresy:

Powtórz zadania 1 i 2 dla modeli:

(d) SEIR, (e) SEIRS

Wykresy dla modeli SEIR i SEIRS z zadań 1 i 2 (pliki źródłowe zadania 1 i 2 posiadają metody tworzące model SEIR i SEIRS):

Zadanie 1:

SEIR

Wykresy z zadania 2 metodą DOPRI:

lacktriangledown Porównaj wyniki zadań 1 i 2 dla $\Delta t=1,0.1,0.01,0.001$ w metodzie Eulera.

Stworzony został kod źródłowy, który rysuje na jednym wykresie wyniki porównawcze. Oto wykresy:

SI:

• SIS:

Wnioskiem możemy być tutaj fakt, że wzrasta dokładność obydwu metod, przybliżanie różniczki z mniejszą różnicą jest dokładniejsze jak i metoda DOPRI przez co wykresy obu metod pokrywają się wraz ze zmniejszaniem różnicy deltaT.

• Dla modelu SI zbadaj wpływ wartości parametru β na czas stabilizacji układu (czas w którym $I(t) >= N_0 - 1$).

 $\beta = 0.5$

Razem:

Wniosek jaki widzimy dla współczynnika Beta to że dla równego 1 tempo wzrostu zarażonych osób jest bardzo szybkie w porównaniu do tempa dla Beta równego 0.05

ullet Dla modelu SIR zbadaj wpływ wartości parametru γ na czas stabilizacji układu (czas w którym $R(t)>=N_0-1$).

Wykresy przedstawiają poszczególne wykresy dla gamma równego 0,07 0,035 0,05 0,025 $_{\gamma=\,0.07}$

Wnioskiem dla współczynnika gamma jest to, że rośnie liczba zarażonych w szybszym tempie, a liczba redukcji R wolniej rośnie