

### Loss Functions

Loss Functions are essential to training



# Quantifying Loss



- How bad are the probabilities we predicted?
- How do we quantify the degree our prediction is off by?

### Cross Entropy Loss or Categorical Cross Entropy Loss

| Class | Predicted Probabilities | Ground Truth |
|-------|-------------------------|--------------|
| 0     | 0.1                     | 0            |
| 1     | 0.2                     | 0            |
| 2     | 0.1                     | 0            |
| 3     | 0.05                    | 0            |
| 4     | 0.05                    | 0            |
| 5     | 0.05                    | 0            |
| 6     | 0.05                    | 0            |
| 7     | 0.3                     | 1            |
| 8     | 0.05                    | 0            |
| 9     | 0.05                    | 0            |

- Cross Entropy Loss uses two distributions, our ground truth distribution p(x) and q(x) our predicted distribution.
- $L = -y \cdot log(\hat{y})$
- Where y is the ground truth vector,  $\hat{y}$  is the predicted distribution and '.' is the inner product.

# Cross Entropy Loss a Simpler Example

| Class | Predicted Probabilities | <b>Ground Truth</b> |
|-------|-------------------------|---------------------|
| 0     | 0.3                     | 0                   |
| 1     | 0.6                     | 1                   |
| 2     | 0.1                     | 0                   |

• 
$$L = -y \cdot log(\hat{y})$$

• 
$$L = -(0 \times log(0.3) + 1 \times log(0.6) + 0 \times log(0.1)$$

• 
$$L = -(0 + 1 \times -0.222 + 0) = 0.222$$

#### • NOTE:

Multi-class log loss rewards/penalises the correct classes only

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

•

### Other Loss Functions

- Loss Functions are sometimes called Cost Functions
- For Binary Classification problems we use **Binary Cross-Entropy Loss** (same as categorical cross-entropy loss except it uses just one output node)
- For Regressions we often use the Mean Square Error (MSE)
  - Mean Square Error (MSE) = (Target Predicted)<sup>2</sup>

• 
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Other loss functions that are sometimes used:
  - L1, L2
  - Hinge Loss
  - Mean Absolute Error (MAE)



### What do we do with our Quantified Loss?

- Updating all the weights of our model is not trivial
- How do we correctly update our weights to minimise loss?
- We use Back Propagation
- And we use the loss value for this!

# Next...

**Back Propagation** 

