STA2101 Project

December 19, 2018 Jessica Chau Student ID: 998286554

Introduction:

The purpose of this study is to draw a conclusion on whether the 'Beating the Blues' (BtheB) treatment improves patients' depression scores (evaluated by the Beck Depression Inventory score) compared to the treatment as usual (TAU). The analysis of this data is important in understanding whether patients with depression improved when the BtheB treatment is used. In the data collected, the BDI scores of the same patients were evaluated after 2months, 4months, 6months, and 8months of the treatment and the data includes information on whether the patients were taking anti-depressants and the length of the episode of depression (in months).

The Beck Depression Inventory (BDI) has four standard cut-off scores as follows:

- 0-9 points indicates minimal depression
- 10-18 points indicates mild depression
- 19-29 points indicates moderate depression
- 30-63 points indicates severe depression

This is a between case design, and from the data, it does appear that the candidates were randomly assigned to either BtheB or TAU based on the frequency table calculated (Appendix B-2).

Statistical Methods:

The BDI test comprises of 21 questions and each question is worth three points which results in a maximum score of 63 points. To evaluate whether the Beating the Blues treatment improved compared to the baseline, the scores were categorized into the four standard cut-offs: minimal, mild, moderate and severe (these cut-off scores are the standard groupings for BDI). Then the prior treatment scores were compared against the post-treatment scores. If the patient improved after the treatment (at time t) from the original period, t0, the response is classified as one. Otherwise, the response is zero if the patient remained in the same category or did not improve.

Exploratory analyzes were conducted to better understand the data (Appendix B-4 to Appendix B-7) and noticed a few trends:

- In Appendix B-4, the BtheB treatment has a higher success rate
- In Appendix B-5, the BtheB treatment has a higher success rate for length >6m
- In Appendix B-6, the BtheB treatment has a higher success rate for no drugs

To confirm these trends, the Pearson chi-squared test is computed and the findings show that the results are statistically significant. BtheB treatment has a higher improvement rates in a person's depression after 2 months compared to the treatment as usual.

A logistic regression is plotted to confirm that Beating the Blues treatment improves the patient's BDI scores after 2 months and to understand the variables that best describe the dataset.

The first logistic regression plotted is:

$$y = \beta_0 + \beta_1 * treatment_type + \beta_2 * length + \beta_3 * drug$$

In the logistic summary output, length (Appendix B – 9) is not significant with an $\alpha = 0.10$.

Earlier in the exploratory analyzes, it was found that the proportion of success was higher for certain 'length' and 'drug use'. To confirm if the model relied on these variables, 'length' and 'drug' was removed from the model and treatment was the only explanatory variable (Appendix B-8). As a result, the second logistic model is computed as:

$$y = \beta_0 + \beta_1 * treatment_type$$

Note that treatment type, length and drug are categorical variables and from the summary table, (Appendix B-8) it appears that treatment is significant (at significance level = 0.10). To test the goodness of fit of the model, and whether the reduced model can be used, the likelihood ratio test is performed. The computed likelihood ratio indicates that the null hypothesis cannot be rejected (the null hypothesis states that the reduced model is true). More models were computed (to determine the interaction terms) and the correlation matrix is calculated. From the correlation matrix, there does not appear to be any strong correlations between the explanatory variables (Appendix B-3). Because of this, no explanatory variables were excluded in the model testing.

More models were fitted (including interaction terms between the variables) and the likelihood ratio test were applied to confirm whether the reduced model had better performance (Appendix B-9 to Appendix B-13). The interaction terms appears to be significant so a Wald test will be performed to test this.

$$y = \beta_0 + \beta_1 * trmt + \beta_2 * length + \beta_3 * drug + \beta_4 * length * trmt + \beta_5 * drug * trmt$$

The Wald test is computed to test whether a variable is necessary in the logistic regression (Appendix B-14). The null hypothesis tests that the coefficient of the test variable equals to zero. In the end, the model that had the better fit of the data as indicated by the Likelihood Ratio and Wald tests was:

$$y = \beta_0 + \beta_1 * treatment + \beta_2 * drug + \beta_3 * (length * treatment)$$

The model was computed using the response variable of the 2month BDI results. There were only three missing data values in the 2monh responses, as a result, these missing rows were removed from the analyzes. The data for 4months, 6months and 8months had a larger number of missing values, as a result, imputation will be used.

Mean imputation is computed and compared against the results when the missing data values were removed. At timeframes 4 and 6 months, mean imputation and the non-missing data values

shows the same results. There appears to be an improvement over time when BtheB treatment is used. A chi-squared test is computed to test if BtheB treatment has the same proportion of improvements as TAU (Appendix B-15 to Appendix B-20) but the test shows that the null hypothesis cannot be reject at the 0.05 significance level and there is a chance that the BtheB treatment is similar to TAU at the 4month and 6month period after treatment.

At 8months, imputation and actual results also show the same trend. TAU appears to be performing slightly better than BtheB (Appendix B-16 to Appendix B-17). The chi-squared test is calculated and found that we cannot dismiss that TAU and BtheB may have similar improvement rates (Appendix B-18).

Conclusion:

In conclusion, it was found that 'Beating the Blues' tend to perform better than 'Treatment as Usual' two months after the treatment under two circumstances:

- When patients were not taking medication (drugs)
- When patents' episode of depression (length) were over 6months

In this analyzes, improvement is defined as a patient who moved from a severe category into a less severe depression category. The data was formatted as a binary response. The BDI questionnaire only contains 21 questions, thus answering one question incorrectly would impact the scores by 5% (1/21). The cut-off categories of the BDI scores were established by researchers and thus by converting the fields to binary, it has a stronger test of whether Treatment as Usual and Beating the Blues were effective.

Discussion of the issues:

- 1. In python, it was important to understand what libraries were available and whether they were credible sources to use (due diligence had to be performed here)
- 2. The exploratory analysis of the data is important and took a lot of time
- 3. The model selection process is also time consuming; this is due to testing several variables of inputs into the model
- 4. There are several imputation approaches, due to constraints on time, the means imputation was computed in the model

Being new to Python, this assignment took more time than it would have in R due to syntax and researching what libraries are available. In addition, there were not as many available statistical libraries available compared to R such as likelihood ratio test for logistic regressions (i.e anova or lrtest functions) and this results in more time spent on testing the models.

Appendix A: Python Program

The python program contains the following items:

- 1. The code written to clean the data for example:
 - a. Converting the '...' in the data to 'NaN'
 - b. Removing the nulls
 - c. Plotted the frequency of missing values
 - d. Modifying the datatype from strings into numerical values in the bdi_2m/bdi_4m etc
 - e. Converted the response variable to be 1 or 0 (1 if there was an improvement after the treatment to the pre-treatment, 0 otherwise)

2. Exploratory analysis

- a. Created frequency tables to show the proportion of success by factors (split several times)
- b. Computed the correlation matric of the variables
- c. Computed the summary statistics (i.e. mean/median/min/max) of the fields

3. Statistical Analyzes

- a. Computed the chi-squared test to confirm whether H0: BtheB = TAU for drug/length/treatment
- b. Computed the Likelihood Ratio tests for model selection
- c. Computed the Wald tests for variable selection in the model

4. Imputation Exercise

- a. Means imputation applied to 4month/6month/8months of data and the results are compared to no imputation (just removing the null rows)
- b. Chi square test performed to test if H0: TAU = BtheB
- c. Results compared between imputation vs. no imputation results

```
In [1]: # Import the Libraries
   import pandas as pd
   import numpy as np
   import statsmodels.api as sm
   import statsmodels.formula.api as smf
```

Did the treatment program worked?

https://en.wikipedia.org/wiki/Beck Depression Inventory (https://en.wikipedia.org/wiki/Beck Depression Inventory)

When the test is scored, a value of 0 to 3 is assigned for each answer and then the total score is compared to a key to determine the depression's severity. The standard cut-off scores were as follows:[7]

- 0-9: indicates minimal depression
- 10-18: indicates mild depression
- 19-29: indicates moderate depression
- 30-63: indicates severe depression

Out[2]:

	drug	length	treatment	bdi_pre	bdi_2m	bdi_4m	bdi_6m	bdi_8m
1	No	>6m	TAU	29	2	2	NaN	NaN
2	Yes	>6m	BtheB	32	16	24	17	20
3	Yes	<6m	TAU	25	20	NaN	NaN	NaN
4	No	>6m	BtheB	21	17	16	10	9
5	Yes	>6m	BtheB	26	23	NaN	NaN	NaN

In [3]: # Compute the pairwise correlation of the variables
 df_corr = df[['drug','length','treatment','bdi_pre']]
 df_corr.apply(lambda x : pd.factorize(x)[0]).corr(method='pearson', min_periods=1)

Out[3]:

	drug	length	treatment	bdi_pre
drug	1.000000	0.138629	0.287103	0.013332
length	0.138629	1.000000	0.020821	-0.020498
treatment	0.287103	0.020821	1.000000	0.049253
bdi_pre	0.013332	-0.020498	0.049253	1.000000

In [4]: # Counting the frequency of nulls, possibly use imputation
There's a lot of nulls in 4,6,8 months
df.isna().sum()

Out[4]: drug length 0 treatment 0 bdi pre 0 bdi_2m 3 bdi_4m 27 bdi_6m 42 bdi 8m 48 dtype: int64

Out[5]:

			bdi_pre
			count
drug	length	treatment	
No	<6m	BtheB	9
		TAU	15
	>6m	BtheB	13
		TAU	19
Yes	<6m	BtheB	17
		TAU	8
	>6m	BtheB	13
		TAU	6

Out[7]:

	bdi_pre
	count
pre_response	
1	10
2	27
3	33
4	30

```
In [8]: # Remove nulls from 2months and compute the model
    df1 = df[['drug', 'length', 'treatment', 'bdi_pre', 'pre_response','bdi_
    2m']]
    moddf = df1.dropna()
    moddf['bdi_2m'] = pd.to_numeric(moddf['bdi_2m'])
    moddf['bdi_2m'].astype(str).astype(int)
    moddf.describe()
```

/Users/jchau/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.p y:4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-d ocs/stable/indexing.html#indexing-view-versus-copy after removing the cwd from sys.path.

Out[8]: _

	bdi_pre	pre_response	bdi_2m
count	97.000000	97.000000	97.000000
mean	23.154639	2.824742	16.917526
std	10.786122	0.979055	10.786440
min	2.000000	1.000000	0.000000
25%	15.000000	2.000000	8.000000
50%	22.000000	3.000000	15.000000
75%	30.000000	4.000000	23.000000
max	49.000000	4.000000	48.000000

```
In [9]: # Compute the conditions of the model
    conditions = [
          (moddf['bdi_2m'] < 10),
          (moddf['bdi_2m'] < 19),
          (moddf['bdi_2m'] <30)]
        choices = [1, 2, 3]
        moddf['2m_response'] = np.select(conditions, choices, default=4)</pre>
```

/Users/jchau/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.p y:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

```
In [10]: # Classify as 1 if there's an improvement and 0 otherwise
    moddf['2m_y0'] = moddf['pre_response'] - moddf['2m_response']
    moddf.head()
# Based on the difference, I will classify the response variable as 1 (i
    f the treatement worked) or 0 if no change in treatment or gotten worse
    def f(row):
        if row['2m_y0']>0:
            val = 1
        else:
            val = 0
        return val
    moddf['2m_y'] = moddf.apply(f, axis=1)
```

/Users/jchau/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.p y:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

"""Entry point for launching an IPython kernel.

/Users/jchau/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.p y:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

Remove the CWD from sys.path while we load stuff.

In [11]: # Exploratory view of the data
moddf.describe()

Out[11]:

	bdi_pre	pre_response	bdi_2m	2m_response	2m_y0	2m_y
count	97.000000	97.000000	97.000000	97.000000	97.000000	97.000000
mean	23.154639	2.824742	16.917526	2.247423	0.577320	0.443299
std	10.786122	0.979055	10.786440	1.108968	0.955631	0.499355
min	2.000000	1.000000	0.000000	1.000000	-1.000000	0.000000
25%	15.000000	2.000000	8.000000	1.000000	0.000000	0.000000
50%	22.000000	3.000000	15.000000	2.000000	0.000000	0.000000
75%	30.000000	4.000000	23.000000	3.000000	1.000000	1.000000
max	49.000000	4.000000	48.000000	4.000000	3.000000	1.000000

```
In [12]: dat = moddf[['drug', 'length', 'treatment','2m_y']]
    dat.head()
```

Out[12]:

	drug	length	treatment	2m_y
1	No	>6m	TAU	1
2	Yes	>6m	BtheB	1
3	Yes	<6m	TAU	0
4	No	>6m	BtheB	1
5	Yes	>6m	BtheB	0

Out[13]: _____

2m_y	0	1	All	PropSucc
treatment				
BtheB	25	27	52	0.519231
TAU	29	16	45	0.355556
All	54	43	97	0.443299

```
In [18]: (27/25)/(16/29) # odds of the BtheB being effective
         # Chi squared test
         # HO: BtheB is the same as TAU
         from scipy.stats import chi2 contingency
         from scipy.stats import chi2
         table = [[25,27],
                 [29,16]]
         stat, p, dof, expected = chi2_contingency(table)
         # interpret test-statistic
         prob = 0.95
         critical = chi2.ppf(prob, dof)
         print('probability=%.3f, critical=%.3f, stat=%.3f' % (prob, critical, st
         at))
         if abs(stat) >= critical:
             print('Dependent (reject H0)')
         else:
             print('Independent (fail to reject H0)')
```

probability=0.950, critical=3.841, stat=1.997
Independent (fail to reject H0)

```
In [19]: # Examining if length has an impact on the proportion of successes
    dat_length = moddf[['length', 'treatment','2m_y']]
    piv1 = pd.pivot_table(dat_length, index = ['length', 'treatment'], colum
    ns = ['2m_y'], aggfunc = len)
    piv1['propsucc'] = piv1[1]/(piv1[1] + piv1[0])
    piv1
    # it appears that BtheB seems to do poorer when length is a factor in the e analysis
```

Out[19]:

	2m_y	0	1	propsucc
length	treatment			
<6m	BtheB	15	11	0.423077
	TAU	11	9	0.450000
>6m	BtheB	10	16	0.615385
	TAU	18	7	0.280000

```
In [20]: # Calculating the odds ratio
         (16/10)/(7/18)
         # For length >6months, the BtheB treatment is 4x the odds of performing
          better than TAU
         table = [[15,11],
                  [11,9]]
         stat, p, dof, expected = chi2 contingency(table)
         # interpret test-statistic
         prob = 0.95
         critical = chi2.ppf(prob, dof)
         print('probability=%.3f, critical=%.3f, stat=%.3f' % (prob, critical, st
         at))
         if abs(stat) >= critical:
             print('Dependent (reject H0)')
         else:
             print('Independent (fail to reject H0 for <6m)')</pre>
         probability=0.950, critical=3.841, stat=0.014
         Independent (fail to reject H0 for <6m)</pre>
In [21]: table1 = [[10,16],
                  [18,7]]
         stat, p, dof, expected = chi2_contingency(table1)
         prob = 0.95
         critical = chi2.ppf(prob, dof)
         print('probability=%.3f, critical=%.3f, stat=%.3f' % (prob, critical, st
         at))
         if abs(stat) >= critical:
             print('Dependent (reject H0)')
         else:
             print('Independent (fail to reject H0 for >6m)')
         probability=0.950, critical=3.841, stat=4.515
```

Dependent (reject H0)

In [22]: # Examining if drug has an impact on the proportion of successes
 dat_drug = moddf[['drug', 'treatment','2m_y']]
 piv1 = pd.pivot_table(dat_drug, index = ['drug', 'treatment'], columns =
 ['2m_y'], aggfunc = len)
 piv1['propsucc'] = piv1[1]/(piv1[1] + piv1[0])
 piv1
 # with drug as a characteristic, it appears that BtheB works well when p
 atients are not using drugs

Out[22]:

	2m_y	0	1	propsucc
drug	treatment			
No	BtheB	11	11	0.500000
	TAU	24	9	0.272727
Yes	BtheB	14	16	0.533333
	TAU	5	7	0.583333

```
In [23]: # Calculating the odds ratio (11/1)/(9/24) # For no drugs, the BtheB treatment has 29x the odds of performing bette r than TAU
```

Out[23]: 29.333333333333333

```
In [24]: # Examining if drug has an impact on the proportion of successes
    piv = pd.pivot_table(dat, index = ['drug', 'length', 'treatment'], colum
    ns = ['2m_y'], aggfunc = len)
    piv['propsucc'] = piv[1]/(piv[1] + piv[0])
    piv
```

Out[24]:

		2m_y	0	1	propsucc
drug	length	treatment			
No	<6m	BtheB	5	4	0.444444
		TAU	8	6	0.428571
	>6m	BtheB	6	7	0.538462
		TAU	16	3	0.157895
Yes	<6m	BtheB	10	7	0.411765
		TAU	3	3	0.500000
	>6m	BtheB	4	9	0.692308
		TAU	2	4	0.666667

Plotting a logistic regression

```
In [25]: dat_log = dat.replace(['No', 'Yes'], [0,1])
    dat_log = dat.replace(['<6m', '>6m'], [0,1])
    dat_log = dat.replace(['TAU', 'BtheB'], [0,1])
    dat_log.head()

dat_log['y'] = dat_log['2m_y']
```

Out[26]:

	treatment
treatment	1.0

In [27]: logitmod1 = smf.logit(formula = 'y ~ treatment', data = dat_log).fit()
 print(logitmod1.summary())

Optimization terminated successfully.

Current function value: 0.673113

Iterations 4

Logit Regression Results

______ ====== No. Observations: Dep. Variable: 97 Model: Logit Df Residuals: 95 Method: MLEDf Model: 1 Date: Sun, 09 Dec 2018 Pseudo R-squ.: 0.01979 Time: 17:51:02 Log-Likelihood: -65.292 converged: True LL-Null: -66.610 LLR p-value: 0.1044 ______ coef std err Z P > |z| [0.025] 0.975] ______ Intercept -0.5947 0.311 -1.910 0.056 -1.2050.016 treatment 0.6717 0.417 1.610 0.107 -0.1461.489

```
In [28]: logitmod2 = smf.logit(formula = 'y ~ treatment+length+drug', data = dat_
log).fit()
print(logitmod2.summary2())
```

Optimization terminated successfully.

Current function value: 0.662337

Iterations 4

Results: Logit

Model:	Logit	Pseudo R-squared:	0.035
Dependent Variable:	У	AIC:	136.4934
Date:	2018-12-09 17:51	BIC:	146.7922
No. Observations:	97	Log-Likelihood:	-64.247
Df Model:	3	LL-Null:	-66.610
Df Residuals:	93	LLR p-value:	0.19291
Converged:	1.0000	Scale:	1.0000
No. Iterations:	4.0000		

Coef. Std.Err. z P>|z| [0.025 0.975]

```
In [29]: # Apply the Pearson Chi Squared Test
    piv1 = pd.pivot_table(dat_length, index = ['length', 'treatment'], colum
    ns = ['2m_y'], aggfunc = len)
    piv1['propsucc'] = piv1[1]/(piv1[1] + piv1[0])
    piv1
```

Out[29]:

	2m_y	0	1	propsucc
length	treatment			
<6m	BtheB	15	11	0.423077
	TAU	11	9	0.450000
>6m	BtheB	10	16	0.615385
	TAU	18	7	0.280000

- 1. let;s try imputation
- 2. Bonferroni correction

```
In [30]: # Computing the Likelihood Ratio Test
from scipy.stats.distributions import chi2
def likelihood_ratio(llmin, llmax):
    return(2*(llmax-llmin))
```

```
In [31]: from scipy.optimize import minimize
from math import exp, log
```

```
In [32]: # Based on the difference, I will classify the response variable as 1 (i
         f the treatement worked) or 0 if no change in treatment or gotten worse
         dat log2 = dat log
         def f(row):
             if row['drug']=='Yes':
                 val = 1
             else:
                 val = 0
             return val
         dat_log['drug'] = dat_log.apply(f, axis=1)
         def f(row):
             if row['length']=='>6m':
                 val = 1
             else:
                 val = 0
             return val
         dat_log['length'] = dat_log.apply(f, axis=1)
         dat log['b0'] = '0'
         def f(row):
             if row['b0']=='0':
                 val = 1
             else:
                 val = 1
             return val
         dat log['b0'] = dat log.apply(f, axis=1)
```

Out[33]: 1515.8191057613108

```
In [34]: parameters2 = logitmod2.params
         parameters2 = np.asmatrix(parameters2.values)
         parameters2 = parameters2.transpose()
         y2 = logitmod2.fittedvalues
         y2 = np.asmatrix(y2.values)
         x2 = dat_log[['b0','treatment','length','drug']]
         x2 = np.asmatrix(x2.values)
         def log_L2(parameters2):
             term1 = y2*x2*parameters2
             term2 = np.log(1+np.exp(x2*parameters2))
             result = sum(term1 - term2)
             return result.item(0)
         log L2(parameters2)
Out[34]: 1730.491119784164
In [35]: # Finding the MLE for fun
         #lik model = minimize(log L, np.array([1,1]), method='Nelder-Mead')
         #lik model
In [36]: from scipy.stats.distributions import chi2
         def likelihood_ratio(llmin, llmax):
             return(2*(llmax-llmin))
         L1 = log L(parameters)
         L2 = log L2(parameters2)
         LR = likelihood ratio(L1,L2)
         \#LR
         p = chi2.sf(LR, 2) # L2 has 2 DoF more than L1
```

We do not reject H0, which means we favour the reduced model

'{0:.10f}'.format(p)

```
Applied Stats Final Project v3
In [37]: logitmod3 = smf.logit(formula = 'y ~ treatment+drug+treatment*drug', dat
        a = dat log).fit()
        print(logitmod3.summary2())
        Optimization terminated successfully.
                Current function value: 0.654265
                Iterations 5
                             Results: Logit
        ______
        Model:
                          Logit
                                         Pseudo R-squared: 0.047
        Dependent Variable: y
                                         AIC:
                                                         134.9274
        Date:
                          2018-12-09 17:51 BIC:
                                                         145.2262
        No. Observations: 97
                                         Log-Likelihood:
                                                         -63.464
        Df Model:
                                         LL-Null:
                          3
                                                         -66.610
        Df Residuals:
                        93
                                         LLR p-value:
                                                         0.098191
        Converged:
                         1.0000
                                         Scale:
                                                         1.0000
        No. Iterations: 5.0000
                       Coef. Std.Err. z  P>|z|  [0.025  0.975]
        Intercept
                     -0.9808
                             0.3909 -2.5094 0.0121 -1.7469 -0.2147
                      treatment
                       1.3173 0.7040 1.8711 0.0613 -0.0625 2.6971
        drug
        treatment:drug -1.1838 0.9008 -1.3142 0.1888 -2.9492 0.5817
        ______
In [38]: parameters3 = logitmod3.params
        parameters3 = np.asmatrix(parameters3.values)
        parameters3 = parameters3.transpose()
        y3 = logitmod3.fittedvalues
        y3 = np.asmatrix(y3.values)
        dat_log['treatmentxdrug'] = dat_log['treatment'] * dat_log['drug']
        x3 = dat log[['b0','treatment','drug','treatmentxdrug']]
        x3 = np.asmatrix(x3.values)
        def log L3(parameters3):
            term1 = y3*x3*parameters3
            term2 = np.log(1+np.exp(x3*parameters3))
            result = sum(term1 - term2)
            return result.item(0)
        log L3(parameters3)
        L1 = log L(parameters)
        L2 = log L3(parameters3)
        LR = likelihood ratio(L1,L2)
```

Out[38]: '0.000000000'

'{0:.10f}'.format(p)

We reject H0

p = chi2.sf(LR, 2) # L2 has 2 DoF more than L1

```
In [39]: logitmod4 = smf.logit(formula = 'y ~ treatment+length+treatment*length',
         data = dat log).fit()
        print(logitmod4.summary2())
        Optimization terminated successfully.
                 Current function value: 0.655905
                 Iterations 5
                               Results: Logit
        ______
        Model:
                           Logit
                                           Pseudo R-squared: 0.045
        Dependent Variable: y
                                           AIC:
                                                           135.2455
        Date:
                           2018-12-09 17:51 BIC:
                                                           145.5444
        No. Observations:
                           97
                                          Log-Likelihood:
                                                           -63.623
        Df Model:
                           3
                                           LL-Null:
                                                           -66.610
        Df Residuals:
                         93
                                          LLR p-value:
                                                           0.11284
        Converged:
                          1.0000
                                           Scale:
                                                           1.0000
        No. Iterations:
                           5.0000
                         Coef. Std.Err. z  P>|z|  [0.025 0.975]
                                 0.4495 - 0.4465 \ 0.6553 - 1.0816 \ 0.6803
        Intercept
                        -0.2007
                        -0.1095 0.5997 -0.1826 0.8551 -1.2848 1.0658
        treatment
        length
                        -0.7438  0.6328 -1.1754 0.2398 -1.9841 0.4965
        treatment:length 1.5239 0.8488 1.7954 0.0726 -0.1397 3.1876
        ______
In [40]:
        parameters4 = logitmod4.params
        parameters4 = np.asmatrix(parameters4.values)
        parameters4 = parameters4.transpose()
        y4 = logitmod4.fittedvalues
        y4 = np.asmatrix(y4.values)
        dat log['lengthxtreatment'] = dat log['treatment'] * dat log['length']
        x4 = dat log[['b0','treatment','length','lengthxtreatment']]
        x4 = np.asmatrix(x4.values)
        def log L4(parameters4):
            term4a = y4*x4*parameters4
            term4b = np.log(1+np.exp(x4*parameters4))
            result = sum(term4a - term4b)
            return result.item(0)
        log L4(parameters4)
        L1 = log L(parameters)
        L2 = log L4(parameters4)
        LR = likelihood ratio(L1,L2)
        LR
        p = chi2.sf(LR, 1)
         '{0:.10f}'.format(p)
Out[40]: '0.0000000000'
```

```
Applied Stats Final Project v3
In [41]: logitmod5 = smf.logit(formula = 'y ~ treatment+length+drug+lengthxtreatm
         ent+treatment*drug', data = dat log).fit()
         print(logitmod5.summary2())
         Optimization terminated successfully.
                 Current function value: 0.637191
                 Iterations 5
                              Results: Logit
         ______
         Model:
                           Logit
                                          Pseudo R-squared: 0.072
         Dependent Variable: y
                                          AIC:
                                                          135.6151
         Date:
                           2018-12-09 17:51 BIC:
                                                          151.0634
         No. Observations:
                           97
                                          Log-Likelihood:
                                                          -61.808
         Df Model:
                                          LL-Null:
                           5
                                                          -66.610
         Df Residuals:
                         91
                                          LLR p-value:
                                                          0.087221
         Converged:
                          1.0000
                                          Scale:
                                                          1.0000
         No. Iterations: 5.0000
                         Coef. Std.Err. z P > |z| [0.025 0.975]
         Intercept
                       -0.5940 0.5140 -1.1556 0.2479 -1.6015 0.4135
                       0.1040 0.7568 0.1374 0.8907 -1.3792 1.5873
         treatment
                       length
         drug
                        1.3021 0.7149 1.8215 0.0685 -0.0990 2.7033
         lengthxtreatment 1.5471
                                 0.8761 1.7659 0.0774 -0.1700 3.2643
         treatment:drug -1.0293
                                 0.9227 - 1.1155 \ 0.2646 - 2.8376 \ 0.7791
         ______
In [139]: parameters5 = logitmod5.params
         parameters5 = np.asmatrix(parameters5.values)
         parameters5 = parameters5.transpose()
         y5 = logitmod5.fittedvalues
         y5 = np.asmatrix(y5.values)
         x5 = dat log[['b0','treatment','length','drug','lengthxtreatment','treat
         mentxdrug']]
         x5 = np.asmatrix(x5.values)
         def log L5(parameters5):
            term5a = y5*x5*parameters5
            term5b = np.log(1+np.exp(x5*parameters5))
            result = sum(term5a - term5b)
            return result.item(0)
         log L5(parameters5)
         # L1 = log L(parameters)
         \# L2 = log L5(parameters5)
         # LR = likelihood ratio(L1,L2)
```

Out[139]: 4796.033282280123

LR

p = chi2.sf(LR, 1)# '{0:.10f}'.format(p)

```
In [141]: hypothesis 1 = '(length = 0)'
          hypothesis 2 = '(drug = 0)'
          hypothesis_3 = '(lengthxtreatment = 0)'
          hypothesis_4 = '(treatmentxdrug = 0)'
          results = smf.logit(formula = 'y ~ treatment+length+drug+lengthxtreatmen
          t+treatmentxdrug', data = dat_log).fit()
          Optimization terminated successfully.
                   Current function value: 0.637191
                   Iterations 5
In [143]:
         wald 1 = results.wald test(hypothesis 1)
          wald 2 = results.wald test(hypothesis 2)
          wald 3 = results.wald test(hypothesis 3)
          wald_4 = results.wald_test(hypothesis_4)
In [145]: | wald_1
Out[145]: <class 'statsmodels.stats.contrast.ContrastResults'>
          <Wald test (chi2): statistic=[[1.19630261]], p-value=0.274061922485458
          6, df_denom=1>
In [146]: wald 2 # reject
Out[146]: <class 'statsmodels.stats.contrast.ContrastResults'>
          <Wald test (chi2): statistic=[[3.31770831]], p-value=0.0685373045788513</pre>
          2, df denom=1>
In [147]: wald 3 # reject
Out[147]: <class 'statsmodels.stats.contrast.ContrastResults'>
          <Wald test (chi2): statistic=[[3.11846091]], p-value=0.0774098667994206</pre>
          5, df denom=1>
In [148]: wald 4
Out[148]: <class 'statsmodels.stats.contrast.ContrastResults'>
          <Wald test (chi2): statistic=[[1.24441715]], p-value=0.264621457251622</pre>
          2, df denom=1>
```

Optimization terminated successfully.

Current function value: 0.650204

Iterations 5

Results: Logit

============		======		=======
Model:	Logit		Pseudo R-squared:	0.053
Dependent Variable	e: y		AIC:	134.1395
Date:	2018-12-0	9 17:51	BIC:	144.4383
No. Observations:	97		Log-Likelihood:	-63.070
Df Model:	3		LL-Null:	-66.610
Df Residuals:	93		LLR p-value:	0.069362
Converged:	1.0000		Scale:	1.0000
No. Iterations:	5.0000			
	Coef. Std.E	rr.	$z \qquad P > z \qquad [0.02]$	5 0.975]

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	-0.7960	0.3426	-2.3235	0.0202	-1.4675	-0.1245
treatment	0.0112	0.5403	0.0207	0.9835	-1.0479	1.0702
drug	0.7096	0.4510	1.5734	0.1156	-0.1743	1.5935
lengthxtreatment	0.9147	0.5829	1.5692	0.1166	-0.2278	2.0572
=======================================	=======					======

Means Imputation Exercise

```
In [50]: # imputation of data for 4m to 8m
import numpy as np

# Imput bdi_4m & bdi_6m & bdi_8m

from sklearn.preprocessing import Imputer
df.head()
```

Out[50]:

	drug	length	treatment	bdi_pre	bdi_2m	bdi_4m	bdi_6m	bdi_8m	pre_response
1	No	>6m	TAU	29	2	2	NaN	NaN	3
2	Yes	>6m	BtheB	32	16	24	17	20	4
3	Yes	<6m	TAU	25	20	NaN	NaN	NaN	3
4	No	>6m	BtheB	21	17	16	10	9	3
5	Yes	>6m	BtheB	26	23	NaN	NaN	NaN	3

```
In [89]:
        # Imputation method 1: Means substitution for 4 months, 6months, 8 month
         y_4m = df[['bdi_4m']]
         y_4m.values
         imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
         y_4m_imputed = imp.fit_transform(y_4m)
         dataframe_4y=pd.DataFrame(y_4m_imputed, columns=['y_4m_imputed'])
         y_6m = df[['bdi_6m']]
         y_6m.values
         imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
         y_6m_imputed = imp.fit_transform(y_6m)
         dataframe 6y=pd.DataFrame(y_6m imputed, columns=['y_6m_imputed'])
         y_8m = df[['bdi_8m']]
         y_8m.values
         imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
         y 8m imputed = imp.fit_transform(y 8m)
         dataframe 8y=pd.DataFrame(y 8m imputed, columns=['y 8m imputed'])
```

```
In [91]: Imputation method 1: Means
    dataframe_4y.index -= 1
    df_imp = df.join(dataframe_4y)
    df_imp

dataframe_6y.index += 1
    df_imp = df_imp.join(dataframe_6y)

dataframe_8y.index += 1

df_imp = df_imp.join(dataframe_8y)
    df_imp
```

Out[91]:

	bdi_pre	pre_response	y_4m_imputed	y_6m_imputed	y_8m_imputed
count	100.000000	100.00000	100.000000	100.000000	100.00000
mean	23.330000	2.83000	14.808219	12.758621	11.134615
std	10.840492	0.97499	10.080141	8.463004	6.678821
min	2.000000	1.00000	0.000000	0.000000	0.000000
25%	15.000000	2.00000	8.000000	8.750000	10.000000
50%	22.000000	3.00000	14.808219	12.758621	11.134615
75%	30.250000	4.00000	16.000000	12.758621	11.134615
max	49.000000	4.00000	53.000000	47.000000	40.000000

```
In [92]: # Remove nulls from 4 months and compute the model
         df_imp1 = df_imp[['drug', 'length', 'treatment', 'bdi_pre', 'pre_respons
         e', 'y 4m imputed', 'y 6m imputed', 'y 8m imputed']]
         df imp1 = df_imp1.dropna()
         df impl.describe()
         conditions = [
              (df_{imp1}['y_4m_{imputed'}] < 10),
              (df_{imp1['y_4m_imputed']} < 19),
              (df imp1['y 4m imputed'] <30)]
         choices = [1, 2, 3]
         df_imp1['4m_response'] = np.select(conditions, choices, default=4)
         conditions = [
              (df_{imp1}['y_6m_{imputed'}] < 10),
              (df_{imp1['y_6m_imputed']} < 19),
              (df_imp1['y_6m_imputed'] <30)]
         choices = [1, 2, 3]
         df imp1['6m response'] = np.select(conditions, choices, default=4)
         conditions = [
              (df_imp1['y_8m_imputed'] < 10),
              (df_{imp1['y_8m_imputed']} < 19),
              (df imp1['y 8m imputed'] <30)]
         choices = [1, 2, 3]
         df imp1['8m response'] = np.select(conditions, choices, default=4)
```

```
In [95]: df_imp1['4m_y'] = df_imp1['pre_response'] - df_imp1['4m_response']
    df_imp1['6m_y'] = df_imp1['pre_response'] - df_imp1['6m_response']
    df_imp1['8m_y'] = df_imp1['pre_response'] - df_imp1['8m_response']
    df_imp1.head()
```

Out[95]:

	drug	length	treatment	bdi_pre	pre_response	y_4m_imputed	y_6m_imputed	y_8m_iı
1	No	>6m	TAU	29	3	2.000000	12.758621	11.1346
2	Yes	>6m	BtheB	32	4	24.000000	17.000000	20.0000
3	Yes	<6m	TAU	25	3	14.808219	12.758621	11.1346
4	No	>6m	BtheB	21	3	16.000000	10.000000	9.00000
5	Yes	>6m	BtheB	26	3	14.808219	12.758621	11.1346

```
In [96]: # Based on the difference, I will classify the response variable as 1 (i
         f the treatement worked) or 0 if no change in treatment or gotten worse
         def f(row):
             if row['4m_y']>0:
                 val = 1
             else:
                 val = 0
             return val
         df_imp1['4m_y'] = df_imp1.apply(f, axis=1)
         def f(row):
             if row['6m_y']>0:
                 val = 1
             else:
                 val = 0
             return val
         df_imp1['6m_y'] = df_imp1.apply(f, axis=1)
         def f(row):
             if row['8m y']>0:
                 val = 1
             else:
                 val = 0
             return val
         df_imp1['8m_y'] = df_imp1.apply(f, axis=1)
```

```
In [108]: dat_4m = df_imp1[['drug', 'length', 'treatment','4m_y']]
    dat_4m = pd.crosstab(index = dat_4m['treatment'], columns= dat_4m['4m_y'
    ], margins=True)
    dat_4m['PropSucc'] = dat_4m[1]/dat_4m['All']
    dat_4m
```

Out[108]:

4m_y	0	1	All	PropSucc
treatment				
BtheB	18	34	52	0.653846
TAU	21	27	48	0.562500
All	39	61	100	0.610000

```
In [114]: dat_4m_drug = df_imp1[['drug', 'treatment','4m_y']]
    piv1 = pd.pivot_table(dat_4m_drug, index = ['drug', 'treatment'], column
    s = ['4m_y'], aggfunc = len)
    piv1['propsucc'] = piv1[1]/(piv1[1] + piv1[0])
    piv1
```

Out[114]:

	4m_y	0	1	propsucc
drug	treatment			
No	BtheB	7	15	0.681818
	TAU	17	17	0.500000
Yes	BtheB	11	19	0.633333
	TAU	4	10	0.714286

```
In [115]: dat_4m_drug = df_imp1[['length', 'treatment','4m_y']]
    piv2 = pd.pivot_table(dat_4m_drug, index = ['length', 'treatment'], colu
    mns = ['4m_y'], aggfunc = len)
    piv2['propsucc'] = piv2[1]/(piv2[1] + piv2[0])
    piv2
```

Out[115]:

	4m_y	0	1	propsucc
length	treatment			
<6m	BtheB	10	16	0.615385
	TAU	8	15	0.652174
>6m	BtheB	8	18	0.692308
	TAU	13	12	0.480000

```
In [128]: # No imputation for 4months
    df_4m_no_imp = df[['drug', 'length', 'treatment', 'bdi_pre', 'pre_respon
    se','bdi_4m']]
    df_4m_no_imp = df_4m_no_imp.dropna()
    df_4m_no_imp.head()
```

Out[128]:

	drug	length	treatment	bdi_pre	pre_response	bdi_4m
1	No	>6m	TAU	29	3	2
2	Yes	>6m	BtheB	32	4	24
4	No	>6m	BtheB	21	3	16
6	Yes	<6m	BtheB	7	1	0
7	Yes	<6m	TAU	17	2	7

```
In [129]: df 4m no imp['bdi 4m'] = pd.to numeric(df 4m no imp['bdi 4m'])
          df 4m no imp['bdi 4m'].astype(str).astype(int)
          conditions = [
              (df_4m_no_imp['bdi_4m'] < 10),
              (df 4m no imp['bdi 4m'] < 19),
              (df_4m_no_imp['bdi_4m'] <30)]
          choices = [1, 2, 3]
          df 4m no imp['4m response'] = np.select(conditions, choices, default=4)
          df 4m no imp['4m y'] = df 4m no imp['pre response'] - df 4m no imp['4m r
          esponse'l
          def f(row):
              if row['4m_y']>0:
                  val = 1
              else:
                  val = 0
              return val
          df 4m no imp['4m y'] = df 4m no imp.apply(f, axis=1)
```

```
In [130]: # Even without imputation, BtheB program is still effective at 4 months
    df_4m_no_imp1 = df_4m_no_imp[['drug', 'length', 'treatment','4m_y']]
    df_4m_no_imp1 = pd.crosstab(index = df_4m_no_imp1['treatment'], columns=
        df_4m_no_imp1['4m_y'], margins=True)
    df_4m_no_imp1['PropSucc'] = df_4m_no_imp1[1]/df_4m_no_imp1['All']
    df_4m_no_imp1
```

Out[130]:

4m_y	0	1	All	PropSucc
treatment				
BtheB	12	25	37	0.675676
TAU	18	18	36	0.500000
All	30	43	73	0.589041

probability=0.950, critical=3.841, stat=1.657
Independent (fail to reject H0)

```
In [132]: # Imputation for 6 months:
    dat_6m = df_imp1[['drug', 'length', 'treatment','6m_y']]
    dat_6m = pd.crosstab(index = dat_6m['treatment'], columns= dat_6m['6m_y'
    ], margins=True)
    dat_6m['PropSucc'] = dat_6m[1]/dat_6m['All']
    dat_6m
```

Out[132]:

6m_y	0	1	All	PropSucc
treatment				
BtheB	17	35	52	0.673077
TAU	20	28	48	0.583333
All	37	63	100	0.630000

```
In [133]: # Imputation for 8 months:
    dat_8m = df_imp1[['drug', 'length', 'treatment','8m_y']]
    dat_8m = pd.crosstab(index = dat_8m['treatment'], columns= dat_8m['8m_y'
    ], margins=True)
    dat_8m['PropSucc'] = dat_8m[1]/dat_8m['All']
    dat_8m
```

Out[133]:

8m_y	0	1	All	PropSucc	
treatment		·			
BtheB	18	34	52	0.653846	
TAU	14	34	48	0.708333	
All	32	68	100	0.680000	

```
In [134]: # No imputation for 6months
          df_6m_no_imp = df[['drug', 'length', 'treatment', 'bdi_pre', 'pre_respon
          se','bdi 6m']]
          df_6m_no_imp = df_6m_no_imp.dropna()
          df 6m no imp.head()
          df 6m no imp['bdi 6m'] = pd.to numeric(df 6m no imp['bdi 6m'])
          df 6m no imp['bdi 6m'].astype(str).astype(int)
          conditions = [
               (df_6m_no_imp['bdi_6m'] < 10),
               (df_6m_no_imp['bdi_6m'] < 19),
               (df_6m_no_imp['bdi_6m'] <30)]
          choices = [1, 2, 3]
          df_6m_no_imp['6m_response'] = np.select(conditions, choices, default=4)
          df 6m no imp['6m y'] = df 6m no imp['pre response'] - df 6m no imp['6m r
          esponse']
          def f(row):
              if row['6m_y']>0:
                  val = 1
              else:
                  val = 0
              return val
          df 6m no imp['6m y'] = df 6m no imp.apply(f, axis=1)
```

```
In [135]: # Even without imputation, BtheB program is still effective at 6 months

df_6m_no_imp1 = df_6m_no_imp[['drug', 'length', 'treatment','6m_y']]

df_6m_no_imp1 = pd.crosstab(index = df_6m_no_imp1['treatment'], columns=
    df_6m_no_imp1['6m_y'], margins=True)

df_6m_no_imp1['PropSucc'] = df_6m_no_imp1[1]/df_6m_no_imp1['All']

df_6m_no_imp1
```

Out[135]:

6m_y	0	1	All	PropSucc
treatment				
BtheB	9	20	29	0.689655
TAU	15	14	29	0.482759
All	24	34	58	0.586207

```
In [157]: table = [[9,20],
                   [15, 14]]
          # HO: BtheB is the same as TAU at 6 months
          stat, p, dof, expected = chi2 contingency(table)
          # interpret test-statistic
          prob = 0.95
          critical = chi2.ppf(prob, dof)
          print('probability=%.3f, critical=%.3f, stat=%.3f' % (prob, critical, st
          at))
          if abs(stat) >= critical:
              print('Dependent (reject H0)')
          else:
              print('Independent (fail to reject H0)')
          probability=0.950, critical=3.841, stat=1.777
          Independent (fail to reject H0)
In [136]: # No imputation for 8months
          df_8m_no_imp = df[['drug', 'length', 'treatment', 'bdi_pre', 'pre_respon
          se','bdi_8m']]
          df 8m no imp = df 8m no imp.dropna()
          df 8m no imp.head()
          df 8m no imp['bdi 8m'] = pd.to numeric(df 8m no imp['bdi 8m'])
          df_8m_no_imp['bdi_8m'].astype(str).astype(int)
          conditions = [
              (df 8m no imp['bdi 8m'] < 10),
              (df_8m_no_imp['bdi_8m'] < 19),
              (df 8m no imp['bdi 8m'] <30)]
          choices = [1, 2, 3]
          df 8m no imp['8m response'] = np.select(conditions, choices, default=4)
          df 8m no imp['8m y'] = df 8m no imp['pre response'] - df 8m no imp['8m r
          esponse']
          def f(row):
              if row['8m y']>0:
                  val = 1
              else:
                  val = 0
              return val
          df 8m no imp['8m y'] = df 8m no imp.apply(f, axis=1)
```

```
In [137]: # without imputation, BtheB program is not effective at 8 months

df_8m_no_imp1 = df_8m_no_imp[['drug', 'length', 'treatment','8m_y']]

df_8m_no_imp1 = pd.crosstab(index = df_8m_no_imp1['treatment'], columns=
    df_8m_no_imp1['8m_y'], margins=True)

df_8m_no_imp1['PropSucc'] = df_8m_no_imp1[1]/df_8m_no_imp1['All']

df_8m_no_imp1
```

Out[137]:

8m_y	0	1	All	PropSucc
treatment				
BtheB	8	19	27	0.703704
TAU	6	19	25	0.760000
All	14	38	52	0.730769

probability=0.950, critical=3.841, stat=0.001
Independent (fail to reject H0)

Appendix B: Results file

Figure B-1: Percentage of nulls in the data by column

drug	0
length	0
treatment	0
bdi_pre	0
bdi_2m	3
bdi_4m	27
bdi_6m	42
bdi_8m	48

Figure B-2: Frequency of categories

			- up. u
			count
drug	length	treatment	
No	<6m	BtheB	9
		TAU	15
	>6m	BtheB TAU	13
			19
Yes	<6m	BtheB	17
		TAU	8
	>6m	BtheB	13
		TAU	6

bdi_pre

Figure B-3: Correlation between explanatory variables

	treatment	drug	length
treatment	1.000000	0.312265	-0.055484
drug	0.312265	1.000000	-0.128440
length	-0.055484	-0.128440	1.000000

Figure B-4: Proportion of Successes by Treatment Type

2m_y	0	1	All	PropSucc
treatment				
BtheB	25	27	52	0.519231
TAU	29	16	45	0.355556
All	54	43	97	0.443299

Figure B-5: Proportion of Successes by Treatment Type and Length

2m_y

0

1

propsucc

length	treatment			
<6m	BtheB	15	11	0.423077
	TAU	11	9	0.450000
>6m	BtheB	10	16	0.615385
	TAU	18	7	0.280000

Figure B-6: Proportion of Successes by Treatment Type and Drug

	2m_y	0	1	propsucc
drug	treatment			
No	BtheB	11	11	0.500000
	TAU	24	9	0.272727
Yes	BtheB	14	16	0.533333
	TAU	5	7	0.583333

Figure B-7: Proportion of Successes by Treatment Type, Drug and Length

		2m_y	0	1	propsucc
drug	length	treatment			
No	<6m	BtheB	5	4	0.44444
		TAU	8	6	0.428571
	>6m	BtheB	6	7	0.538462
		TAU	16	3	0.157895
Yes	<6m	BtheB	10	7	0.411765
		TAU	3	3	0.500000
	>6m	BtheB	4	9	0.692308
		TAU	2	4	0.666667

Figure B-8: Summary Statistic of Logistic Model with treatment type variable

Optimization terminated successfully.

Current function value: 0.673113

Iterations 4

Logit Regression Results

=========		======	======		=========	.=======	
Dep. Variable	:		У	No.	Observations:	1	97
Model:			Logit	Df R	esiduals:		95
Method:			MLE	Df M	odel:		1
Date:	s	at, 08 I	Dec 2018	Pseu	do R-squ.:		0.01979
Time:			18:19:25	Log-	Likelihood:		-65.292
converged:			True	LL-N	ull:		-66.610
				LLR	p-value:		0.1044
=========	coef	std e	====== err	z	P> z	[0.025	0.975]
Intercept treatment	-0.5947 0.6717	0.3		-1.910 1.610	0.056 0.107	-1.205 -0.146	0.016
treatment			±	1.610	0.107	-0.146	1.489

Figure B-9: Summary Statistic of Logistic Model with treatment type, drug and length variables

Optimization terminated successfully.

Current function value: 0.662337

Iterations 4

Results: Logit

Model: Logit Pseudo R-squared: 0.035

Dependent Variable: y AIC: 136.4934

Date: 2018-12-08 18:19 BIC: 146.7922

No. Observations: 97 Log-Likelihood: -64.247

Df Model: 3 LL-Null: -66.610

Df Residuals: 93 LLR p-value: 0.19291

Converged: 1.0000 Scale: 1.0000

No. Iterations: 4.0000

Coef. Std.Err. z P>|z| [0.025 0.975]

Intercept -0.8728 0.4264 -2.0468 0.0407 -1.7086 -0.0370

Intercept -0.8728 0.4264 -2.0468 0.0407 -1.7086 -0.0370 length[T.>6m] 0.1804 0.4243 0.4250 0.6708 -0.6513 1.0120 drug[T.Yes] 0.6282 0.4425 1.4197 0.1557 -0.2391 1.4954 treatment 0.4984 0.4394 1.1343 0.2567 -0.3628 1.3596

Figure B-10: Summary Statistic of Logistic Model with treatment type and length variables

Optimization terminated successfully.

Current function value: 0.655905 Iterations 5

Results: Logit

============		=======	======			======
Model:	Logi	t	Pseud	do R-squ	ared:	0.045
Dependent Variab	le: y		AIC:			135.2455
Date:	2018	-12-08 22:	55 BIC:			145.5444
No. Observations	97		Log-l	Likelih	ood:	-63.623
Df Model:	3		LL-N	111:		-66.610
Df Residuals:	93		LLR p	-value	:	0.11284
Converged:	1.00	00	Scale	e:		1.0000
No. Iterations:	5.00	00				
	Coef.	Std.Err.	Z	P> z	[0.02	5 0.975]
Intercept	-0.2007	0.4495	-0.4465	0.6553	-1.081	6 0.6803
treatment	-0.1095	0.5997	-0.1826	0.8551	-1.284	8 1.0658
length	-0.7438	0.6328	-1.1754	0.2398	-1.984	1 0.4965
treatment:length	1.5239	0.8488	1.7954	0.0726	-0.139	7 3.1876
===========	======	=======	======	======	======	=======

Figure B-11: Summary Statistic of Logistic Model with treatment type and drug variables

Optimization terminated successfully.

Current function value: 0.654265

Iterations 5

Results: Logit

==========	====	====		====	====			
Model:		Log	it		Pseu	ido R-so	quared:	0.047
Dependent Varia	ble:	У			AIC	:	134.9274	
Date:		2018	2018-12-08 22:54			:		145.2262
No. Observation	s:	97	97			-Likelil	-63.464	
Df Model:		3			LL-N	Null:		-66.610
Df Residuals:		93			LLR	p-value	e:	0.098191
Converged:		1.00	000		Scal	le:		1.0000
No. Iterations:		5.00	000					
	Coe	ef.	Std.Err.	:	z	P> z	[0.02	0.975]
Intercept	-0.9	808	0.3909	-2.	5094	0.0121	-1.7469	9 -0.2147
treatment	0.9	808	0.5784	1.0	6956	0.0900	-0.1529	2.1146
drug	1.3	3173	0.7040	1.8	8711	0.0613	-0.0625	2.6971
treatment:drug	-1.	1838	0.9008	-1.3	3142	0.1888	-2.9492	0.5817
===========	====	====	=======	====	====	======	======	

Figure B-12: Summary Statistic of Logistic Model with treatment type, drug, length and interaction variables

Optimization terminated successfully.

Current function value: 0.637191

Iterations 5

Results: Logit

				======	======	
Model:	Logit	t	Pseu	do R-sq	uared: (0.072
Dependent Variab	le: y		AIC:		1	135.6151
Date:	2018-	-12-09 00:	21 BIC:		1	151.0634
No. Observations	97		Log-	Likelih	ood: -	-61.808
Df Model:	5		LL-N	ull:	-	-66.610
Df Residuals:	91		LLR	p-value	: (0.087221
Converged:	1.000	00	Scal	e:	1	L.0000
No. Iterations:	5.000	00				
	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Intercept	-0.5940	0.5140	-1.1556	0.2479	-1.6015	0.4135
treatment	0.1040	0.7568	0.1374	0.8907	-1.3792	2 1.5873
length	-0.7214	0.6596	-1.0938	0.2741	-2.0143	3 0.5714
treatment:length	1.5471	0.8761	1.7659	0.0774	-0.1700	3.2643
drug	1.3021	0.7149	1.8215	0.0685	-0.0990	2.7033
treatment:drug	-1.0293	0.9227	-1.1155	0.2646	-2.8376	0.7791

Figure B-13: Summary Statistic of Logistic Model with treatment type, drug, length and interaction variables

Optimization terminated successfully.

Current function value: 0.650204

Iterations 5

Results: Logit

============			====	====			
Model:	Log	it		Pseu	ido R-so	quared:	0.053
Dependent Variab	le: y			AIC:			134.1395
Date:	201	2018-12-09 17:5			:		144.4383
No. Observations	: 97			Log-	-Likeli	nood:	-63.070
Df Model:	3			LL-1	Null:		-66.610
Df Residuals:	93			LLR	p-value	e:	0.069362
Converged:	1.0	000		Scal	Le:		1.0000
No. Iterations:	5.0	000					
	Coef.	Std.Err.	:	z	P> z	[0.025	0.975]
Intercept	-0.7960	0.3426	-2.	3235	0.0202	-1.4675	5 -0.1245
treatment	0.0112	0.5403	0.0	0207	0.9835	-1.0479	1.0702
drug	0.7096	0.4510	1.	5734	0.1156	-0.1743	1.5935
lengthxtreatment	0.9147	0.5829	1.	5692	0.1166	-0.2278	3 2.0572
===========	======	=======	====	====		======	

Figure B-14: Wald test results

```
hypothesis_1 = '(length = 0)'
hypothesis_2 = '(drug = 0)'
hypothesis_3 = '(lengthxtreatment = 0)'
hypothesis_4 = '(treatmentxdrug = 0)'

wald_1 = results.wald_test(hypothesis_1)
wald_2 = results.wald_test(hypothesis_2)
wald_3 = results.wald_test(hypothesis_3)
wald_4 = results.wald_test(hypothesis_4)
```

Figure B-15: 4month No Imputation Results

4m_y	0	1	All	PropSucc
treatment				
BtheB	12	25	37	0.675676
TAU	18	18	36	0.500000
All	30	43	73	0.589041

Figure B-16: 4month Mean Imputation Results

4m_y	0	1	All	PropSucc
treatment				
BtheB	18	34	52	0.653846
TAU	21	27	48	0.562500
All	39	61	100	0.610000

Figure B-17: 4month Chi-squared results (H0: BtheB = TAU)

probability=0.950, critical=3.841, stat=1.657
Independent (fail to reject H0)

Figure B-18: 6month No Imputation Results

6m_y	0	1	All	PropSucc
treatment				
BtheB	9	20	29	0.689655
TAU	15	14	29	0.482759
All	24	34	58	0.586207

Figure B-19: 6month Mean Imputation Results

6m_y	0	1	All	PropSucc
treatment				
BtheB	17	35	52	0.673077
TAU	20	28	48	0.583333
All	37	63	100	0.630000

Figure B-20: 6month Chi-squared results (H0: BtheB = TAU)

probability=0.950, critical=3.841, stat=1.777
Independent (fail to reject H0)

Figure B-21: 8month No Imputation Results

8m_y	0	1	All	PropSucc
treatment				
BtheB	8	19	27	0.703704
TAU	6	19	25	0.760000
All	14	38	52	0.730769

Figure B-22: 8month Mean Imputation Results

8m_y	0	1	All	PropSucc
treatment				
BtheB	18	34	52	0.653846
TAU	14	34	48	0.708333
All	32	68	100	0.680000

Figure B-23: 8month Chi-squared results (H0: BtheB = TAU)

probability=0.950, critical=3.841, stat=0.001
Independent (fail to reject H0)