回転群の基底テンソル

[要点]

テンソル成分は、テンソルを定義する系が属する対称群の基底をなすような線形結合の組に分けることによって、互いに独立な組合せになる。そして、点 群(及びその拡張版である置換・反転群)の対称操作は、座標の回転操作あるいは回転操作と反転操作の積で表せる。球対称群(任意の座標回転を対称操作と する群)の基底は、点群の基底にもなるのである(一般の点群での対称操作は特定の回転になるので、前者の基底が独立でなくなることはあるが)。即ち、別 ファイルで示す変換行列と併用することによって、点群一般での基底とその変換特性(既約表現)を導き出す上で、球対称群の基底は有用性を発揮する。

1次元から4次元までのテンソルについて、球対称群(任意の回転に対して対称な群)の基底とデカルト座標成分の関係を示す。

基底は $T^{(n)}_{mb}$, $T^{(n)}_{ma}$, または $T^{(n)}_{0}$ と表すが、右肩にカッコで示す数字は階数を表し、左肩に*を付けたものは、xz面での鏡映に対して ($T^{(n)}_{mb}$, $T^{(n)}_{ma}$, $T^{(n)}_{0}$) の変換が (x,y,z) の変換と逆符号になるものである。後に具体的に記すが、反転、鏡映または回映を含む系の基底の中には、回転操作に対しては通常のベクトルの変換性と良い対応を持つ一方で、反転、鏡映、または回映に対しては逆符号になる(変換係数の符号が反転する)基底が存在する。数学の言葉で記すと、* 印を付けたテンソルの変換行列と、同じ階数で * 印が付かないテンソル — 次数が 1 だけ違うテンソル — の変換行列は、互いに他方の余因子行列を転置したもの、即ち、逆行列の転置行列に行列式(ユニタリー行列だから ± 1)を倍数したものになっている、ということである。

 $\cos(n\theta)$ だけを含む対角要素は1個だけ存在するが、このときにはm=0 で添字 a,b は付けない。但し、以後で考えるテンソルは、0次元テンソルがスカラーに、1次元テンソルが座標ベクトル(極性ベクトル)にそれぞれ対応して、高次元テンソルはこのような1次元テンソルのテンソル積として組み立てられるものに限る。(共変テンソル、反変テンソルというものがあるが、詳しいことを忘れたのでここで記すこととの関連は良くわからない。)

すべての基底は対称種の1個の既約表現である。

既約表現に2重縮重(まで)を持つ対称種で、(x,y) を縮重表現の基底に取る場合には、 $T^{(n)}_0$ は縮重のない 1 次元表現になる。また、z 軸まわりに n 回の回転 対称がある場合には、m が n の整数倍になるときには m が m の整数倍になる。

1 次元テンソル(1 階のみ)

$$V_{1b} = V_x$$
, $V_{1a} = V_y$, $V_0 = V_z$

行列形式で表すと、

	V _x	V_{y}	V _z
$V^{(1)}_{1b}$	+1	0	0
$V^{(1)}_{1a}$	0	+1	0
$V^{(1)}_{0}$	0	0	+1

2次元テンソル(0,1,2階)

$$\begin{split} &D^{(0)}_{0} = (1/\sqrt{3})(D_{xx} + D_{yy} + D_{zz}) \\ *D^{(1)}_{1b} = (1/\sqrt{2})(D_{yz} - D_{zy}), & *D^{(1)}_{1a} = (1/\sqrt{2})(D_{zx} - D_{xz}), & *D^{(1)}_{0} = (1/\sqrt{2})(D_{yz} - D_{zy}) \\ &D^{(2)}_{2b} = (1/\sqrt{2})(D_{xx} - D_{yy}), & D^{(2)}_{2a} = (1/\sqrt{2})(D_{xy} + D_{yx}), & D^{(2)}_{1b} = (1/\sqrt{2})(D_{zx} + D_{xz}), & D^{(2)}_{1a} = (1/\sqrt{2})(D_{yz} + D_{zy}), \\ &D^{(2)}_{0} = (1/\sqrt{6})(-D_{xx} - D_{yy} + 2D_{zz}) \end{split}$$

行列形式で表すと、

	D_{xx}	D_{yy}	D_{zz}
$D^{(0)}_{0}$	$+1/\sqrt{3}$	$+1/\sqrt{3}$	$+1/\sqrt{3}$
D ⁽²⁾ _{2b}	$+1/\sqrt{2}$	1/√2	0
$D^{(2)}_{0}$	-1/√6	-1/√6	+2/√6

	$D_{yz}/D_{zx}/D_{xy}$	$D_{zy}/D_{xz}/D_{yx}$
$D^{(1)}_{1b}/D^{(1)}_{1a}/D^{(2)}_{0}$	$+1/\sqrt{2}$	-1/√2
$D^{(2)}_{1a}/D^{(2)}_{1b}/D^{(2)}_{2a}$	+1/√2	$+1/\sqrt{2}$

3次元テンソル(0,1,2,3階)

(線形結合を作る時に混じり合う4個のサブグループについて、表形式で示す。)

(グループ 1)

	Y _{xyz}	Y_{zxy}	Y_{yzx}	Y _{yxz}	Y _{zyx}	Y _{xzy}
$*Y^{(0)}_{0}$	+1/√6	+1/√6	$+1/\sqrt{6}$	-1/√6	-1/√6	-1/√6
$*Y^{(2)}_{0,1}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-2/2√3	-1/2√3	-1/2√3	+2/2√3
$*Y^{(2)}_{0,2}$	-1/2	+1/2	0	+1/2	-1/2	0
*Y ⁽²⁾ _{2b,1}	+1/2	-1/2	0	+1/2	-1/2	0
*Y ⁽²⁾ _{2b,2}	+1/2√3	+1/2√3	-2/2√3	+1/2√3	$+1/2\sqrt{3}$	-2/2√3
Y ⁽³⁾ _{2a}	+1/√6	+1/√6	$+1/\sqrt{6}$	$+1/\sqrt{6}$	$+1/\sqrt{6}$	+1/√6

(グループ 2)

	Y _{xxx}	Y _{yyx}	Y _{zzx}	Y_{xyy}	Y _{xzz}	Y_{yxy}	Y _{zxz}
Y ⁽¹⁾ _{1b,1}	+2/2√2	$+1/2\sqrt{2}$	+1/2√2	+1/2√2	$+1/2\sqrt{2}$	0	0
Y ⁽¹⁾ _{1b,2}	0	-1/2	-1/2	+1/2	+1/2	0	0
Y ⁽¹⁾ _{1b,3}	+2/2√10	-1/2√10	-1/2√10	-1/2√10	-1/2√10	+4/2√10	+4/2√10
*Y ⁽²⁾ _{1a,1}	0	-1/2	+1/2	+1/2	-1/2	0	0
*Y ⁽²⁾ _{1a,2}	0	-1/2√3	+1/2√3	-1/2√3	+1/2√3	+2/2√3	-2/2√3
Y ⁽³⁾ _{1b}	-3/2√15	-1/2√15	+4/2√15	-1/2√15	+4/2√15	-1/2√15	+4/2√15
Y ⁽³⁾ _{3b}	-1/2	+1/2	0	+1/2	0	+1/2	0

(グループ3)

	Y _{yyy}	Y _{xxy}	Y _{zzy}	Y _{yxx}	Y _{yzz}	Y _{xyx}	Y _{zyz}
$Y^{(1)}_{1a,1}$	+2/2√2	$+1/2\sqrt{2}$	+1/2√2	$+1/2\sqrt{2}$	+1/2√2	0	0
Y ⁽¹⁾ _{1a2}	0	-1/2	-1/2	+1/2	+1/2	0	0
Y ⁽¹⁾ _{1a,3}	+2/2√10	-1/2√10	-1/2√10	-1/2√10	-1/2√10	+4/2√10	+4/2√10
*Y ⁽²⁾ _{1b,1}	0	+1/2	-1/2	-1/2	+1/2	0	0
*Y ⁽²⁾ _{1b,2}	0	$+1/2\sqrt{3}$	-1/2√3	$+1/2\sqrt{3}$	-1/2√3	-2/2√3	+2/2√3
Y ⁽³⁾ _{1a}	-3/2√15	-1/2√15	+4/2√15	-1/2√15	+4/2√15	-1/2√15	+4/2√15
Y ⁽³⁾ _{3a}	-1/2	+1/2	0	+1/2	0	+1/2	0

(グループ 4)

	Y _{zzz}	Y _{xxz}	Y_{yyz}	Y _{zxx}	Y_{zyy}	Y _{xzx}	Y_{yzy}
$Y^{(1)}_{0,1}$	+2/2√2	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	0	0
$Y^{(1)}_{0,2}$	0	-1/2	-1/2	+1/2	+1/2	0	0
Y ⁽¹⁾ _{0,3}	+2/2√10	-1/2√10	-1/2√10	-1/2√10	-1/2√10	+4/2√10	+4/2√10
*Y ⁽²⁾ _{2a,1}	0	-1/2	+1/2	+1/2	-1/2	0	0
*Y ⁽²⁾ _{2a,2}	0	-1/2√3	+1/2√3	-1/2√3	+1/2√3	+2/2√3	-2/2√3
Y ⁽³⁾ ₀	-2/√10	$+1/\sqrt{10}$	$+1/\sqrt{10}$	+1/√10	+1/√10	+1/√10	$+1/\sqrt{10}$
Y ⁽³⁾ _{2b}	0	-1/√6	+1//√6	-1/√6	+1//√6	-1/√6	+1//√6

球対称群の基底として同じ変換性を持つもののセットが複数個存在するので、右下付きに加えた数字は、そのサブグループに付けた番号である。この番号が 同じもの同士が球対称群の既約表現の基底としての組を構成する。

4 次元テンソル(0,1,2,3,4 階)右下付きでは、前ページで記したことにそれぞれの基底が作られるもとになるセット($T^{(1)}T^{(1)}$ など)を加味してある) (グループ 1-1)

	W_{xxxy}	W_{yyxy}	W _{zzxy}	W _{xyxx}	W_{xyyy}	W_{xyzz}	W_{xxyx}	W _{yyyx}	W _{zzyx}	W_{yxxx}	W_{yxyy}	W _{yxzz}
$*W^{(1)}_{0,1}$	0	0	0	0	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{0,2}	-2/2√10	+2/2√10	0	+2/2√10	-2/2√10	0	-2/2√10	+2/2√10	0	+2/2√10	-2/2√10	0
*W ⁽¹⁾ _{0,3}	$+1/2\sqrt{3}$	+1/2√3	$+1/2\sqrt{3}$	+1/2√3	+1/2√3	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3
*W ⁽¹⁾ _{0,4}	+1/2√3	+1/2√3	+1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	+1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$
*W ⁽¹⁾ _{0,5}	-1/2√15	-1/2√15	+2/2√15	-1/2√15	-1/2√15	+2/2√15	+1/2√15	+1/2√15	-2/2√15	+1/2√15	+1/2√15	-2/2√15
*W ⁽¹⁾ _{0,6}	+1/2√15	+1/2√15	-2/2√15	-1/2√15	-1/2√15	+2/2√15	-1/2√15	-1/2√15	+2/2√15	+1/2√15	+1/2√15	-2/2√15
$W^{(2)}_{2a,1}$	0	0	0	0	0	0	0	0	0	0	0	0
$W^{(2)}_{2a,2}$	-2/2√42	-2/2√42	+4/2√42	-2/2√42	-2/2√42	+4/2√42	-2/2√42	-2/2√42	+4/2√42	-2/2√42	-2/2√42	+4/2√42
$W^{(2)}_{2a,3}$	+1/2√3	+1/2√3	+1/2√3	+1/2√3	+1/2√3	$+1/2\sqrt{3}$	+1/2√3	$+1/2\sqrt{3}$	+1/2√3	+1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$
$W_{2a,4}^{(2)}$	$+1/2\sqrt{3}$	+1/2√3	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3	+1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3
$W^{(2)}_{2a,5}$	+1/2√3	-1/2√3	0	+1/2√3	-1/2√3	0	-1/2√3	$+1/2\sqrt{3}$	0	-1/2√3	$+1/2\sqrt{3}$	0
$W_{2a,6}^{(2)}$	-1/2√3	+1/2√3	0	+1/2√3	-1/2√3	0	+1/2√3	-1/2√3	0	-1/2√3	$+1/2\sqrt{3}$	0
*W ⁽³⁾ _{2b,1}	-1/2√6	-1/2√6	+2/2√6	+1/2√6	+1/2√6	-2/2√6	-1/2√6	-1/2√6	+2/2√6	+1/2√6	+1/2√6	-2/2√6
*W ⁽³⁾ _{2b,2}	-1/2√6	+1/2√6	0	-1/2√6	+1/2√6	0	+1/2√6	-1/2√6	0	+1/2√6	-1/2√6	0
*W ⁽³⁾ _{2b,3}	+1/2√6	-1/2√6	0	-1/2√6	+1/2√6	0	-1/2√6	+1/2√6	0	+1/2√6	-1/2√6	0
$*W^{(3)}_{0,1}$	+1/2√10	-1/2√10	0	-1/2√10	+1/2√10	0	+1/2√10	-1/2√10	0	-1/2√10	$+1/2\sqrt{10}$	0
*W ⁽³⁾ _{0,2}	+1/2√10	+1/2√10	-2/2√10	+1/2√10	+1/2√10	-2/2√10	-1/2√10	-1/2√10	+2/2√10	-1/2√10	-1/2√10	+2/2√10
*W ⁽³⁾ _{0,3}	-1/2√10	-1/2√10	+2/2√10	+1/2√10	+1/2√10	-2/2√10	+1/2√10	+1/2√10	-2/2√10	-1/2√10	-1/2√10	+2/2√10
$W^{(4)}_{4a}$	+1/2√2	-1/2√2	0	+1/2√2	-1/2√2	0	+1/2√2	-1/2√2	0	+1/2√2	-1/2√2	0
$W^{(4)}_{2a}$	-1/2√14	-1/2√14	+2/2√14	-1/2√14	-1/2√14	+2/2√14	-1/2√14	-1/2√14	+2/2√14	-1/2√14	-1/2√14	+2/2√14

(グループ 1-2)

	1-2/	1	1	1	1	1		1
	W _{xzzy}	W _{zxyz}	W _{yzzx}	W_{zyxz}	W_{xzyz}	W _{zxzy}	W_{yzxz}	W _{zyzx}
*W ⁽¹⁾ _{0,1}	-1/2√2	-1/2√2	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	+1/2√2	-1/2√2	-1/2√2
*W ⁽¹⁾ _{0,2}	-1/2√10	-1/2√10	$+1/2\sqrt{10}$	+/2√10	-1/2√10	-1/2√10	+1/2√10	+1/2√10
*W ⁽¹⁾ _{0,3}	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{0,4}	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{0,5}	-3/2√15	+3/2√15	+3/2√15	-3/2√15	0	0	0	0
*W ⁽¹⁾ _{0,6}	0	0	0	0	-3/2√15	+3/2√15	+3/2√15	-3/2√15
W ⁽²⁾ _{2a,1}	+1/2√2	+1/2√2	+1/2√2	$+1/2\sqrt{2}$	-1/2√2	-1/2√2	-1/2√2	-1/2√2
$W^{(2)}_{2a,2}$	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42
W ⁽²⁾ _{2a,3}	0	0	0	0	0	0	0	0
$W^{(2)}_{2a,4}$	0	0	0	0	0	0	0	0
W ⁽²⁾ _{2a,5}	0	0	0	0	-1/2√3	+1/2√3	-1/2√3	+1/2√3
W ⁽²⁾ _{2a,6}	-1/2√3	+1/2√3	-1/2√3	+1/2√3	0	0	0	0
*W ⁽³⁾ _{2b,1}	0	0	0	0	0	0	0	0
*W ⁽³⁾ _{2b,2}	0	0	0	0	-2/2√6	+2/2√6	-2/2√6	+2/2√6
*W ⁽³⁾ _{2b,3}	-2/2√6	+2/2√6	-2/2√6	+2/2√6	0	0	0	0
*W ⁽³⁾ _{0,1}	-2/2√10	-2/2√10	+2/2√10	+2/2√10	-2/2√10	-2/2√10	+2/2√10	+2/2√10
*W ⁽³⁾ _{0,2}	-2/2√10	+2/2√10	+2/2√10	-2/2√10	0	0	0	0
*W ⁽³⁾ _{0,3}	0	0	0	0	-2/2√10	+2/2√10	+2/2√10	-2/2√10
W ⁽⁴⁾ _{4a}	0	0	0	0	0	0	0	0
W ⁽⁴⁾ _{2a}	+2/2√14	+2/2√14	+2/2√14	+2/2√14	+2/2√14	+2/2√14	+2/2√14	+2/2√14

(グループ 2-1)

	W_{xxyz}	W_{yyyz}	W _{zzyz}	W_{yzxx}	W_{yzyy}	W_{yzzz}	W _{xxzy}	W_{yyzy}	W _{zzzy}	W_{zyxx}	W_{zyyy}	W_{zyzz}
*W ⁽¹⁾ _{1b,1}	0	0	0	0	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{1b,2}	0	-2/2√10	+2/2√10	0	+2/2√10	-2/2√10	0	-2/2√10	+2/2√10	0	+2/2√10	-2/2√10
*W ⁽¹⁾ _{1b,3}	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3
*W ⁽¹⁾ _{1b,4}	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$
*W ⁽¹⁾ _{1b,5}	+2/2√15	-1/2√15	-1/2√15	+2/2√15	-1/2√15	-1/2√15	-2/2√15	+1/2√15	+1/2√15	-2/2√15	+1/2√15	+1/2√15
*W ⁽¹⁾ _{1b,6}	-2/2√15	+1/2√15	+1/2√15	+2/2√15	-1/2√15	-1/2√15	+2/2√15	-1/2√15	-1/2√15	-2/2√15	+1/2√15	+1/2√15
W ⁽²⁾ _{1a,1}	0	0	0	0	0	0	0	0	0	0	0	0
W ⁽²⁾ _{1a,2}	-2/2√42	+4/2√42	-2/2√42	+4/2√42	-2/2√42	-2/2√42	-2/2√42	+4/2√42	-2/2√42	+4/2√42	-2/2√42	-2/2√42
W ⁽²⁾ _{1a,3}	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3	+1/2√3	+1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3	$+1/2\sqrt{3}$
W ⁽²⁾ _{1a,4}	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3
W ⁽²⁾ _{1a,5}	0	$+1/2\sqrt{3}$	-1/2√3	0	+1/2√3	-1/2√3	0	-1/2√3	$+1/2\sqrt{3}$	0	-1/2√3	$+1/2\sqrt{3}$
W ⁽²⁾ _{1a,6}	0	-1/2√3	+1/2√3	0	+1/2√3	-1/2√3	0	+1/2√3	-1/2√3	0	-1/2√3	$+1/2\sqrt{3}$
*W ⁽³⁾ 3b,1	-1/4	+1/4	0	+1/4	-1/4	0	-1/4	+1/4	0	+1/4	-1/4	0
*W ⁽³⁾ 3b,2	-1/4	+1/4	0	-1/4	+1/4	0	+1/4	-1/4	0	+1/4	-1/4	0
*W ⁽³⁾ 3b,3	+1/4	-1/4	0	-1/4	+1/4	0	-1/4	+1/4	0	+1/4	-1/4	0
*W ⁽³⁾ _{1b,1}	+5/4√15	-1/4√15	-4/4√15	-5/4√15	+1/4√15	+4/4√15	+5/4√15	-1/4√15	-4/4√15	-5/4√15	+1/4√15	+4/4√15
*W ⁽³⁾ _{1b,2}	-3/4√15	-1/4√15	+4/4√15	-3/4√15	-1/4√15	+4/4√15	+3/4√15	+1/4√15	-4/4√15	+3/4√15	+1/4√15	-4/4√15
*W ⁽³⁾ _{1b,3}	+3/4√15	+1/4√15	-4/4√15	-3/4√15	-1/4√15	+4/4√15	-3/4√15	-1/4√15	+4/4√15	+3/4√15	+1/4√15	-4/4√15
$W^{(4)}_{3a}$	+1/4	-1/4	0	+1/4	-1/4	0	+1/4	-1/4	0	+1/4	-1/4	0
W ⁽⁴⁾ _{1a}	$+1/4\sqrt{7}$	+3/4√7	-4/4√7	+1/4√7	+3/4√7	-4/4√7	+1/4√7	+3/4√7	-4/4√7	+1/4√7	+3/4√7	-4/4√7

(グループ 2-2)

	W_{yxxz}	W_{xyzx}	W _{zxxy}	W_{xzyx}	W_{yxzx}	W _{xyxz}	W _{zxyx}	W _{xzxy}
*W ⁽¹⁾ _{1b,1}	-1/2√2	-1/2√2	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	-1/2√2	-1/2√2
*W ⁽¹⁾ _{1b,2}	-1/2√10	-1/2√10	+1/2√10	$+1/2\sqrt{10}$	-1/2√10	-1/2√10	+1/2√10	+1/2√10
*W ⁽¹⁾ _{1b,3}	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{1b,4}	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{1b,5}	-3/2√15	+3/2√15	+3/2√15	-3/2√15	0	0	0	0
*W ⁽¹⁾ _{1b,6}	0	0	0	0	-3/2√15	+3/2√15	+3/2√15	-3/2√15
W ⁽²⁾ _{1a,1}	+1/2√2	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	$+1/2\sqrt{2}$	-1/2√2	-1/2√2	-1/2√2	-1/2√2
W ⁽²⁾ _{1a,2}	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42
W ⁽²⁾ _{1a,3}	0	0	0	0	0	0	0	0
W ⁽²⁾ _{1a,4}	0	0	0	0	0	0	0	0
W ⁽²⁾ _{1a,5}	0	0	0	0	-1/2√3	+1/2√3	-1/2√3	$+1/2\sqrt{3}$
W ⁽²⁾ _{1a,6}	-1/2√3	+1/2√3	-1/2√3	$+1/2\sqrt{3}$	0	0	0	0
*W ⁽³⁾ 3b,1	-1/4	-1/4	+1/4	+1/4	-1/4	-1/4	+1/4	+1/4
*W ⁽³⁾ 3b,2	-1/4	+1/4	+1/4	-1/4	+1/4	-1/4	+1/4	-1/4
*W ⁽³⁾ 3b,3	+1/4	-1/4	+1/4	-1/4	-1/4	+1/4	+1/4	-1/4
*W ⁽³⁾ _{1b,1}	-3/4√15	-3/4√15	+3/4√15	+3/4√15	-3/4√15	-3/4√15	+3/4√15	$+3/4\sqrt{15}$
*W ⁽³⁾ _{1b,2}	-3/4√15	+3/4√15	+3/4√15	-3/4√15	-5/4√15	+5/4√15	-5/4√15	+5/4√15
*W ⁽³⁾ _{1b,3}	-5/4√15	+5/4√15	-5/4√15	+5/4√15	-3/4√15	+3/4√15	+3/4√15	-3/4√15
W ⁽⁴⁾ _{3a}	+1/4	+1/4	+1/4	+1/4	+1/4	+1/4	+1/4	+1/4
W ⁽⁴⁾ _{1a}	+1/4√7	+1/4√7	+1/4√7	+1/4√7	+1/4√7	$+1/4\sqrt{7}$	$+1/4\sqrt{7}$	+1/4√7

(グループ 3-1)

	W _{xxzx}	W _{yyzx}	W _{zzzx}	W _{zxxx}	W _{zxyy}	W _{zxzz}	W _{xxxz}	W_{yyxz}	W _{zzxz}	W _{xzxx}	W _{xzyy}	W _{xzzz}
*W ⁽¹⁾ _{1a,1}	0	0	0	0	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{1a,2}	0	-2/2√10	+2/2√10	0	+2/2√10	-2/2√10	0	-2/2√10	+2/2√10	0	+2/2√10	-2/2√10
*W ⁽¹⁾ _{1a,3}	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3
*W ⁽¹⁾ _{1a,4}	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	-1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3
*W ⁽¹⁾ _{1a,5}	-1/2√15	+2/2√15	-1/2√15	-1/2√15	+2/2√15	-1/2√15	+1/2√15	-2/2√15	+1/2√15	+1/2√15	-2/2√15	+1/2√15
*W ⁽¹⁾ _{1a,6}	+1/2√15	-2/2√15	+1/2√15	-1/2√15	+2/2√15	-1/2√15	-1/2√15	+2/2√15	-1/2√15	+1/2√15	-2/2√15	+1/2√15
$W^{(2)}_{1b,1}$	0	0	0	0	0	0	0	0	0	0	0	0
$W^{(2)}_{1b,2}$	-2/2√42	+4/2√42	-2/2√42	-2/2√42	+4/2√42	-2/2√42	-2/2√42	+4/2√42	-2/2√42	-2/2√42	+4/2√42	-2/2√42
$W^{(2)}_{1b,3}$	+1/2√3	+1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3	+1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	+1/2√3
W ⁽²⁾ _{1b,4}	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	-1/2√3	-1/2√3	-1/2√3
$W^{(2)}_{1b,5}$	-1/2√3	0	$+1/2\sqrt{3}$	-1/2√3	0	+1/2√3	$+1/2\sqrt{3}$	0	-1/2√3	$+1/2\sqrt{3}$	0	-1/2√3
W ⁽²⁾ _{1b,6}	+1/2√3	0	-1/2√3	-1/2√3	0	+1/2√3	-1/2√3	0	$+1/2\sqrt{3}$	$+1/2\sqrt{3}$	0	-1/2√3
*W ⁽³⁾ 3a,1	-1/4	+1/4	0	+1/4	-1/4	0	-1/4	+1/4	0	+1/4	-1/4	0
*W ⁽³⁾ _{3a,2}	+1/4	-1/4	0	+1/4	-1/4	0	-1/4	+1/4	0	-1/4	+1/4	0
*W ⁽³⁾ 3a,3	-1/4	+1/4	0	+1/4	-1/4	0	+1/4	-1/4	0	-1/4	+1/4	0
*W ⁽³⁾ _{1a,1}	+1/4√15	-5/4√15	+4/4√15	-1/4√15	+5/4√15	-4/4√15	+1/4√15	-5/4√15	+4/4√15	-1/4√15	+5/4√15	-4/4√15
*W ⁽³⁾ _{1a,2}	-1/4√15	-3/4√15	+4/4√15	-1/4√15	-3/4√15	+4/4√15	+1/4√15	+3/4√15	-4/4√15	+1/4√15	+3/4√15	-4/4√15
*W ⁽³⁾ _{1a,3}	+1/4√15	+3/4√15	-4/4√15	-1/4√15	-3/4√15	+4/4√15	-1/4√15	-3/4√15	+4/4√15	+1/4√15	+3/4√15	-4/4√15
$W^{(4)}_{3b}$	-1/4	+1/4	0	-1/4	+1/4	0	-1/4	+1/4	0	-1/4	+1/4	0
$W^{(4)}_{1b}$	+3/4√7	+1/4√7	-4/4√7	+3/4√7	+1/4√7	-4/4√7	+3/4√7	+1/4√7	-4/4√7	+3/4√7	+1/4√7	-4/4√7

(グループ 3-2)

	/							
	W _{zyyx}	W _{yzxy}	W _{xyyz}	W _{yxzy}	W _{zyxy}	W_{yzyx}	W_{xyzy}	W_{yxyz}
*W ⁽¹⁾ _{1a,1}	-1/2√2	-1/2√2	+1/2√2	+1/2√2	+1/2√2	+1/2√2	-1/2√2	-1/2√2
*W ⁽¹⁾ _{1a,2}	-1/2√10	-1/2√10	+1/2√10	$+1/2\sqrt{10}$	-1/2√10	-1/2√10	$+1/2\sqrt{10}$	$+1/2\sqrt{10}$
*W ⁽¹⁾ _{1a,3}	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{1a,4}	0	0	0	0	0	0	0	0
*W ⁽¹⁾ _{1a,5}	-3/2√15	+3/2√15	+3/2√15	-3/2√15	0	0	0	0
*W ⁽¹⁾ _{1a,6}	0	0	0	0	-3/2√15	+3/2√15	+3/2√15	-3/2√15
W ⁽²⁾ _{1b,1}	$+1/2\sqrt{2}$	+1/2√2	+1/2√2	$+1/2\sqrt{2}$	-1/2√2	-1/2√2	-1/2√2	-1/2√2
$W^{(2)}_{1b,2}$	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42	-3/2√42
$W^{(2)}_{1b,3}$	0	0	0	0	0	0	0	0
W ⁽²⁾ _{1b,4}	0	0	0	0	0	0	0	0
W ⁽²⁾ _{1b,5}	0	0	0	0	-1/2√3	$+1/2\sqrt{3}$	-1/2√3	$+1/2\sqrt{3}$
W ⁽²⁾ _{1b,6}	-1/2√3	$+1/2\sqrt{3}$	-1/2√3	$+1/2\sqrt{3}$	0	0	0	0
*W ⁽³⁾ 3a,1	-1/4	-1/4	+1/4	+1/4	-1/4	-1/4	+1/4	+1/4
*W ⁽³⁾ 3a,2	-1/4	+1/4	+1/4	-1/4	-1/4	+1/4	-1/4	+1/4
*W ⁽³⁾ 3a,3	-1/4	+1/4	-1/4	+1/4	-1/4	+1/4	+1/4	-1/4
*W ⁽³⁾ _{1a,1}	-3/4√15	-3/4√15	+3/4√15	+3/4√15	-3/4√15	-3/4√15	+3/4√15	+3/4√15
*W ⁽³⁾ _{1a,2}	-3/4√15	+3/4√15	+3/4√15	-3/4√15	+5/4√15	-5/4√15	+5/4√15	-5/4√15
*W ⁽³⁾ _{1a,3}	+5/4√15	-5/4√15	+5/4√15	-5/4√15	-3/4√15	+3/4√15	+3/4√15	-3/4√15
$W^{(4)}_{3b}$	+1/4	+1/4	+1/4	+1/4	+1/4	+1/4	+1/4	+1/4
W ⁽⁴⁾ _{1b}	$+1/4\sqrt{7}$	+1/4√7	+1/4√7	+1/4√7	+1/4√7	+1/4√7	+1/4√7	+1/4√7

(グループ 4-1)

	W _{xxxx}	W_{yyyy}	W _{zzzz}	W _{xxyy}	W _{yyzz}	W _{zzxx}	W _{xyyx}	W_{yzzy}	W _{zxxz}	W _{xyxy}	W_{yzyz}	W _{zxzx}
$W^{(0)}_{0,1}$	+1/3	+1/3	+1/3	+1/3	+1/3	+1/3	0	0	0	0	0	0
$W^{(0)}_{0,2}$	0	0	0	0	0	0	-1/2√3	-1/2√3	-1/2√3	+1/2√3	+/2√3	$+1/2\sqrt{3}$
$W^{(0)}_{0,3}$	+4/6√5	+4/6√5	+4/6√5	-2/6√5	-2/6√5	-2/6√5	+3/6√5	+3/6√5	+3/6√5	+3/6√5	+3/6√5	+3/6√5
$W^{(2)}_{0,1}$	0	0	0	0	0	0	-2/2√6	+1/2√6	+1/2√6	+2/2√6	-1/2√6	-1/2√6
$W^{(2)}_{0,2}$	+4/6√14	+4/6√14	-8/6√14	-8/6√14	+4/6√14	+4/6√14	+6/6√14	-3/6√14	-3/6√14	+6/6√14	-3/6√14	-3/6√14
W ⁽²⁾ _{0,3}	-2/6	-2/6	+4/6	-2/6	+1/6	+1/6	0	0	0	0	0	0
$W^{(2)}_{0,4}$	0	0	0	0	+1/2	-1/2	0	0	0	0	0	0
W ⁽²⁾ _{0,5}	0	0	0	0	0	0	0	0	0	0	+1/2	-1/2
$W^{(2)}_{0,6}$	0	0	0	0	0	0	0	+1/2	-1/2	0	0	0
$W^{(2)}_{2b,1}$	0	0	0	0	0	0	0	-1/2√2	+1/2√2	0	+1/2√2	-1/2√2
$W^{(2)}_{2b,2}$	-4/2√42	+4/2√42	0	0	-4/2√42	+4/2√42	0	+3/2√42	-3/2√42	0	+3/2√42	-3/2√42
W ⁽²⁾ _{2b,3}	+2/2√3	-2/2√3	0	0	-1/2√3	+1/2√3	0	0	0	0	0	0
$W^{(2)}_{2b,4}$	0	0	0	-2/2√3	+1/2√3	+1/2√3	0	0	0	0	0	0
W ⁽²⁾ _{2b,5}	0	0	0	0	0	0	0	0	0	-2/2√3	+1/2√3	$+1/2\sqrt{3}$
$W^{(2)}_{2b,6}$	0	0	0	0	0	0	-2/2√3	+1/2√3	+1/2√3	0	0	0
$W^{(3)}_{2a,1}$	0	0	0	+1/√6	+1/√6	+1√6	0	0	0	0	0	0
*W ⁽³⁾ _{2a,2}	0	0	0	0	0	0	0	0	0	+1/√6	+1/√6	+1√6
*W ⁽³⁾ _{2a,3}	0	0	0	0	0	0	+1/√6	+1/√6	+1√6	0	0	0
$W^{(4)}_{4b}$	-1/2√2	-1/2√2	0	+1/2√2	0	0	+1/2√2	0	0	+1/2√2	0	0
W ⁽⁴⁾ _{2b}	-1/√14	+1/√14	0	0	-1/√14	+1/√14	0	-1/√14	+1/√14	0	-1/√14	+1/√14
$W^{(4)}_{0}$	+3/2√70	+3/2√70	+8/2√70	+1/2√70	-4/2√70	-4/2√70	+1/2√70	-4/2√70	-4/2√70	$+1/2\sqrt{70}$	-4/2√70	-4/2√70

(グループ 4-2)

	W_{yyxx}	W _{zzyy}	W _{xxzz}	$\mathbf{W}_{\mathrm{yxxy}}$	W _{zyyz}	W _{xzzx}	W _{yxyx}	W _{zyzy}	W _{xzxz}
$W^{(0)}_{0,1}$	+1/3	+1/3	+1/3	0	0	0	0	0	0
$W^{(0)}_{0,2}$	0	0	0	-1/2√3	-1/2√3	-1/2√3	+1/2√3	+1/2√3	+1/2√3
$W^{(0)}_{0,3}$	-2/6√5	-2/6√5	-2/6√5	+3/6√5	+3/6√5	+3/6√5	+3/6√5	+3/6√5	+3/6√5
W ⁽²⁾ _{0,1}	0	0	0	-2/2√6	+1/2√6	+1/2√6	+2/2√6	-1/2√6	-1/2√6
$W^{(2)}_{0,2}$	-8/6√14	+4/6√14	+4/6√14	+6/6√14	-3/6√14	-3/6√14	+6/6√14	-3/6√14	-3/6√14
W ⁽²⁾ _{0,3}	-2/6	+1/6	+1/6	0	0	0	0	0	0
W ⁽²⁾ _{0,4}	0	-1/2	+1/2	0	0	0	0	0	0
W ⁽²⁾ _{0,5}	0	0	0	0	0	0	0	-1/2	+1/2
W ⁽²⁾ _{0,6}	0	0	0	0	-1/2	+1/2	0	0	0
$W^{(2)}_{2b,1}$	0	0	0	0	-1//2√2	+1/2√2	0	+1/2√2	-1/2√2
$W^{(2)}_{2b,2}$	0	-4/2√42	+4/2√42	0	+3/2√42	-3/2√42	0	+3/2√42	-3/2√42
$W^{(2)}_{2b,3}$	0	-1/2√3	+1/2√3	0	0	0	0	0	0
$W^{(2)}_{2b,4}$	+2/2√3	-1/2√3	-1/2√3	0	0	0	0	0	0
$W^{(2)}_{2b,5}$	0	0	0	0	0	0	+2/2√3	-1/2√3	-1/2√3
W ⁽²⁾ _{2b,6}	0	0	0	+2/2√3	-1/2√3	-1/2√3	0	0	0
$W_{2a,1}^{(3)}$	-1/√6	-1/√6	-1/√6	0	0	0	0	0	0
*W ⁽³⁾ _{2a,2}	0	0	0	0	0	0	-1/√6	-1/√6	-1/√6
*W ⁽³⁾ _{2a,3}	0	0	0	-1/√6	-1/√6	-1/√6	0	0	0
W ⁽⁴⁾ _{4b}	$+1/2\sqrt{2}$	0	0	+1/2√2	0	0	+1/2√2	0	0
W ⁽⁴⁾ _{2b}	0	-1/√14	+1/√14	0	-1/√14	+1/√14	0	-1/√14	+1/√14
$W^{(4)}_{0}$	$+1/2\sqrt{70}$	-4/2√70	-4/2√70	+1/2√70	-4/2√70	-4/2√70	+1/2√70	-4/2√70	-4/2√70

付録:基底のパリティー

回転操作だけで作られる点群では、 $(T^{(n)}_{lb}, T^{(n)}_{la}, T^{(n)}_{0})$ 及び $(*T^{(n)}_{lb}, *T^{(n)}_{la}, *T^{(n)}_{0})$ がともに (x, y, z) と同じ挙動をする。 (1次元テンソルをベクトルとみなす場合には前者は極性ベクトル、後者は軸性ベクトルである。)また、z 軸まわりの回転(角度: χ)に対して $(T^{(n)}_{mb}, T^{(n)}_{ma})$ 及び $(*T^{(n)}_{mb}, *T^{(n)}_{ma})$ は回転角が $m\chi$ のときの (x, y) と同じ変換性を示す。しかし、反転、鏡映あるいは回映が含まれる対称種では、これらの対称操作(および回転操作との積)に対して $(T^{(n)}_{mb}, T^{(n)}_{ma}, T^{(n)}_{0})$ が通常の回転に対するものと同じ変換をするのに対して $(*T^{(n)}_{mb}, *T^{(n)}_{ma}, *T^{(n)}_{0})$ に対する変換行列は行列要素(よって指標、キャラクターも)が $(T^{(n)}_{mb}, T^{(n)}_{ma}, T^{(n)}_{0})$ に対するものと逆符号になる。例えば、 $(*T^{(n)}_{lb}, *T^{(n)}_{la}, *T^{(n)}_{0})$ は軸性ベクトルである回転角運動量のx成分、y成分、z成分と同じ変換性を示す。例えば、xz面による鏡映に対して $(T^{(n)}_{lb}, T^{(n)}_{la}, T^{(n)}_{0})$ は $(T^{(n)}_{lb}, T^{(n)}_{la}, *T^{(n)}_{0})$ になるが $(*T^{(n)}_{lb}, *T^{(n)}_{la}, *T^{(n)}_{0})$ は $(-*T^{(n)}_{lb}, *T^{(n)}_{la}, -*T^{(n)}_{0})$ になる。* 印を付けた成分に対する変換行列およびキャラクター(指標)は対応する成分(\Box 印が無いもの)に対する変換行列 Dを ε 倍($\varepsilon = |D|$)することと同じことである。

* 印の有無が意味を持つのは対称操作に反転・鏡映・回映が含まれるときである。そして、 σ_v (回転対称軸のうちで次数が一番高い軸 — 通常 z 軸とする — を含む平面での鏡映)を含む系で縮重があるとき、その鏡映面の一つに xz 面を取るか yz 面を取るかによって * 印が付く基底のセットに違いが出る(よって奇数次の回転軸があるときにより重要である)。階数が n の基底のうち $T^{(n)}_0$ に* 印が付くか否かはこの区別によらず、次数と階数の和が奇数のものである。一方、 $T^{(n)}_{mb}$ 、* $T^{(n)}_{ma}$ ($m \neq 0$) のうちで * $T^{(n)}_{mb}$ 、* $T^{(n)}_{ma}$ となるのは、 σ_v 面に xz を含めたときには次元数と n の和が偶数になる場合であるが、yz 面を σ_v 面の一つに取る場合には次元数と階数 n の和にさらに下付き数字 m を加えたものが偶数になるものである。本稿では前者を取る。

下に、代表的な対称操作に対して $(T^{(n)}_{lb}, T^{(n)}_{la}, T^{(n)}_{0})$ セット及び $(T^{(n)}_{mb}, T^{(n)}_{ma})$ セットについて、(x, y, z)及び(x, y) セットの変換のしかたを基準にしたときに * 印が付くものと付かないものとを見分けるための一覧を示す。 (1次元テンソルをV、2次元テンソルをD、3次元テンソルをY、4次元テンソルをV0で表す。)

	V ⁽¹⁾ 11	$(x) V^{(1)}_{1}$	$_{a}(y) V^{(1)}_{0}(z)$	$D^{(0)}_{0}$	$D^{(1)}_{1b}(J_{1})$	x) $D^{(1)}_{1a}$	$(J_y) D^{(1)}_{0}(J_z)$	D ⁽²	2) _{2b} D	(2) _{2a} D) ⁽²⁾ _{1b} I	$D_{1a}^{(2)}$) ⁽²⁾ ₀
反転 (I)	-1	-1	-1	+1	+1*	+1*	+1*	+1*	+1*	+1*	+1*	+1*	
$\sigma_{yz} (IR_x^{\pi})$	-1	+1	+1	+1	+1*	-1*	-1*	+1*	-1*	-1	+1	+1	
$\sigma_{xy} (IR_z^{\pi})$	+1	+1	-1	+1	-1*	-1*	+1*	+1	+1	-1*	-1*	+1*	
$\sigma_{xz} (IR_y^{\pi})$	+1	-1	+1	+1	-1*	+1*	-1*	+1	-1	+1	-1	+1	

	$Y^{(0)}_{0}$	Y ⁽¹⁾) _{1b} Y ⁽¹	$Y_{1a}^{(1)} Y_{0}^{(1)}$	Y ⁽²⁾	_{2b} Y ⁽	²⁾ _{2a} Y	(2) _{1b} Y	$Y_{1a}^{(2)} Y_{0}^{(2)}$	Y	r(3) 3b	$Y^{(3)}_{3a}$	$Y^{(3)}_{2b}$	Y ⁽³⁾ _{2a}	Y ⁽³⁾ _{1b}	Y ⁽³⁾ _{1a}	Y ⁽³⁾ ₀
反転(I)	-1*	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
$\sigma_{vz} (IR_x^{\pi})$	-1*	-1	+1	+1	-1	+1	+1*	-1*	-1*	-1	+1	+1*	-1*	-1	+1	+1	
$\sigma_{xy} (IR_z^{\pi})$	-1*	+1	+1	-1	-1*	-1*	+1	+1	-1	+1	+1	-1*	-1*	+1	+1	-1	
$\sigma_{xz} (IR_y^{\pi})$	-1*	+1	-1	+1	-1*	+1*	-1*	+1*	-1*	+1	-1	+1	-1	+1	-1	+1	

	${\bf W}^{(0)}_{0}$	$\mathbf{W}^{(1)}$) _{1b} W	${}^{(1)}_{1a} W^{(1)}_{0}$	W ⁽	²⁾ _{2b} W	(2) _{2a} W	(2) _{1b} W	${}^{(2)}_{1a} {W^{(2)}}_{0}$	W	V ⁽³⁾ _{3b}	$W^{(3)}_{3a}$	W ⁽³⁾ _{2b}	$W_{2a}^{(3)}$	W ⁽³⁾ _{1b}	$W^{(3)}_{1a}$	$W^{(3)}_{0}$
反転(I)	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	
$\sigma_{vz} (IR_x^{\pi})$	+1	-1	+1	+1	-1	+1	+1*	-1*	-1*	-1	+1	+1*	-1*	-1	+1	+1	
$\sigma_{xy}(IR_z^{\pi})$	+1	+1	+1	-1	-1*	-1*	+1	+1	-1	+1	+1	-1*	-1*	+1	+1	-1	
$\sigma_{xz} (IR_y^{\pi})$	+1	+1	-1	+1	-1*	+1*	-1*	+1*	-1*	+1	-1	+1	-1	+1	-1	+1	

	$W^{(4)}_{4t}$	$W^{(4)}$	$_{4a}$ $W^{(4)}$	3b W ⁽⁴	$^{\circ}_{3a}$ $\mathbf{W}^{(}$	4) _{2b} W ⁽⁴⁾	4) _{2a} W	7 ⁽⁴⁾ _{1b} V	$W_{1a}^{(4)} W_{0}^{(4)}$	* mark for o-ordered basis of $T_{0}^{(0)}$, $(T_{1b}^{(n)}, T_{1a}^{(n)}, T_{0}^{(n)})$, $(T_{mb}^{(n)}, T_{ma}^{(n)})$
反転(I)	+1	+1	+1	+1	+1	+1	+1	+1	+1	o = odd, $o = even$, $o = even$
$\sigma_{yz} (IR_x^{\pi})$	+1*	-1*	-1	+1	+1*	-1*	-1	+1	+1	o = odd, $o+n = odd$, $o+n+m = even$
$\sigma_{xy} (IR_z^{\pi})$	+1	+1	-1*	-1*	+1	+1	-1	-1	+1	o = odd, $o = even$, $o+m = odd$
$\sigma_{xz} (IR_y^{\pi})$	+1	-1	+1	-1	+1	-1	+1	-1	+1	$o = odd, o+n = odd, \qquad o+n = odd$