Memory

Logical vs. Physical Memory Address Space

- **Logical (Virtual) Memory Address Space**: The memory address space as seen by processes.
- **Physical Memory Address Space**: The actual memory used by the system.
- The **Memory Management Unit (MMU)** translates addresses between logical and physical spaces.

Memory Allocation

Contiguous Allocation of Memory

- Memory is allocated in a continuous block, making it vulnerable to fragmentation:
 - Internal Fragmentation: Wasted space within an allocated block.
 - External Fragmentation: The sum of internal fragments being large enough to host a process but scattered across memory.

Process 1
8 MB
Process 1
8 MB
Process 1
6 MB
2 MB Fragment
Process 1
8 MB
Process 1
8 MB
Process 1
8 MB

Non-Contiguous Allocation of Memory

1. **Paging**:

- Divides memory into fixed-size segments called pages (logical) and frames (physical).
- o Page Size = Frame Size to simplify address mapping.
- o **Advantages**: Efficient memory utilization.
- o **Disadvantages**: Still prone to internal fragmentation.
- Pages and frames are mapped using a page table, stored in the PCB of each process.

2. **Segmentation**:

- Divides memory based on the logical structure of a process (e.g., code, stack, data).
- Uses a **segmentation table** for mapping.
- o **Advantages**: Better representation of process structure.
- Disadvantages: Prone to external fragmentation due to multiple reallocations.

Virtual Memory

- **Concept**: Only a portion of a process is loaded into physical memory, while the rest remains on the disk.
- **Benefit**: Allows more processes to be loaded into memory simultaneously, enhancing system utility.

Demand Paging

- Only necessary pages of a process are loaded into memory on demand.
- **Page Fault**: Occurs when a required page is not found in physical memory, prompting the page to be swapped in from the disk.

Thrashing

- **Definition**: Excessive page faults caused by loading too many processes, resulting in frequent disk I/O and decreased CPU utilization.
- Impact: Reduces system performance significantly.

Cache Memory

- **Purpose**: Cache memory stores frequently accessed data to reduce memory access time and improve performance.
- **Locality of Reference**: Determines what is stored in the cache.
 - Temporal Locality: Recently accessed data is likely to be accessed again soon.
 - Spatial Locality: Data located near the recently accessed data is also likely to be accessed.
- Cache Hits and Misses:
 - o **Cache Hit**: Data is found in the cache.
 - o **Cache Miss**: Data is not found, requiring access to main memory.