Wireless and Mobile Computing for Entertainment Applications

Assignment 06: Mobile Computing Algorithms for Wi-Fi 802.11

Important

- This is assignment 6: Mobile Computing Algorithms for Wi-Fi 802.11
- Submit your results via e-mail: schmist@inf.ethz.ch
- Submission deadline: Wednesday, 2015-Dec-10, 11:59pm
- As XML scenario file, create one with three stations, for example based on the one from earlier assignments
 - Use two access categories (AC01 and AC02)
 - TCP should be disabled, instead use data or saturation without TCP
 - A simple model for the medium is sufficient: set attribute useInterference="false".

Motivation

- Learn about WLAN IEEE 802.11e QoS support
 - Isolated, single basic service set with perfect radio channel condition
 - Multiple competing stations, each with two streams (AC01 and AC02)
- Develop and test a mobile computing algorithm for modifying the contention window parameters
 - Design and present algorithm
 - Implement algorithm into the Java emulation tool Jemula802
 - Evaluate and illustrate performance with the tool (documentation)
 - Provide confidence information with all results
 - Test your algorithm against other algorithms
- We will organize a final tournament for all algorithms to identify the best performer!

Step 1: Understand IEEE 802.11e & update the tool

- For more detailed information on Wi-Fi, read and understand the 802.11 course chapter
- Read the full paper of assignment 2
- Update tool from repository (GitHub)

Step 2: Set the algorithm, e.g. "TutorialVerbose"


```
package layer2 802Algorithms;
import layer2 80211Mac.JE802 11Mac;
 public class None extends JE802 11MacAlgorithm {
     public None(String name, JE802_11Mac mac) {
         super(name, mac);
     @Override
     public void compute() {
         // TODO Auto-generated method stub
     @Override
     public void plot() {
         // TODO Auto-generated method stub
```

Algorithm name in MLME = Name of the algorithm Java file without .java

Step 3: Find the XML tag in the scenario file

Node	Content
▲ e JE802Station	
address	1
■ JE802SME	
▶ ■ JE802Mobility	
▶ e JE802TCP	
■ JE802MAC	
® dot11MacAddress4_byte	6
® dot11MacFCS_byte	4
® dot11MacHeaderACK_byte	10
® dot11MacHeaderCTS_byte	10
® dot11MacHeaderDATA_byte	24
® dot11MacHeaderRTS_byte	16
dot11WepEncryption	false
▶ @ JE802PHY	
■ JE802MIme	
® ComputingInterval_ms	1000
® NameOfAlgorithm	phymode_54Mbps
ShowPlot	false
▶ © MIB802.11-1999	
▶ ■ JE802BackoffEntity	
▶ IE IF802TrafficGen	

Step 4: Tutorial algorithm (1/2)

- There should be one receiving station (station 01) and two transmitting stations (station 02 and station 03)
 - Start with this scenario, and scale up to more complex where needed
- Stations 02 and 03 carry two traffic generators each
 - AC01 and AC02 transmitting data to the single receiving station 01
 - As result, station 01 receives four streams of data
- All stations comprise two backoff entities
 - The two backoff entities inside the two transmitting stations will modify their backoff parameters determined by the mobile computing algorithm
- The mobile computing algorithm resides in the MLME
 - MLME = MAC Layer Management Entity
 - Package layer2_802Algorithms for different implementations

Step 4: Tutorial algorithm (2/2)

- Check the tutorial algorithm "TutorialVerbose"
 - <JE802Mlme NameOfAlgorithm="TutorialVerbose"
 ComputingInterval_ms="100" ShowPlot="true">
- Receiving station does not send any data
 - Must be using algorithm "none"
- In the initial example, station 02 uses algorithm "none"
 - The algorithm "none" means that that station will not change any parameters
- In the initial example, station 03 should be set to algorithm "TutorialVerbose"
 - Run the simulation, and check the shell logging output (set debuglevel in Jemula.java smaller than the log level you use)
 - Don't forget to set the ShowPlot="true"

Step 5: Design your own algorithm

- Station 2 and station 3 should both follow your algorithm
- Give your algorithm a name that can be used in XML scenario
- The objective is to provide maximum QoS to AC1 and (with less priority) AC2 in competition to other stations with unknown algorithms
- Next week (Monday 8th), present your design idea to the class
 - 8 min + 2 min questions & answers; use projector, white-board, or PPT
 - What need do you address? What is your approach? What benefit do you expect for whom? Any alternatives / competition?
- The algorithm should perform even against any unknown algorithm
 - What does "perform" mean? what are the metrics, how about fairness?

Step 6: Implement and test algorithm

- Simulate algorithm against itself and against other algorithms
- The algorithm should perform even against other (currently unknown) algorithms
- Create appropriate graphical representation of the simulation result(s), and interpret the results
 - Illustrating benefits, drawbacks, and limitations of the algorithm: How would it perform with more than two transmitting stations?
- Provide confidence information
- We will organize a tournament to evaluate the overall performance

Expected results

- Please submit the following results (step 5 next week, the rest by due date, as a report in PDF format):
 - Step 5: 10 min presentation on algorithm design, submit PPT or PDF after your presentation (during the lecture next week)
 - Step 6: Your algorithm including documentation
 - Step 6: Simulation results to illustrate performance (graphs), interpretation
 - Submit XML scenario file and source code for competition tournament
 - OPTIONAL: feedback on the assignment: difficulty, clarity, time
- Send your report to: schmist@inf.ethz.ch

Assignment 06: Mobile Computing Algorithms for Wi-Fi 802.11 – END OF ASSIGNMENT –

