				ı								CS	S/IT 215
a		cket N	Num!	ber:]				
					11/13/	рт	ook (Cunr	lomontow	o) DECDEE EV	AMINATIO	NI.	
١.	vil	2017			11/1 V	D. 1	ecii (Supp	nementar y	y) DEGREE EXA		mmon for CS	SF <i>8,</i> 17
_		Seme	cton						DISC	DETE MAT		CAL STRUC	
		Seme hree Ho							DISC	KEIE WIAI	пеман	CAL STRUC Maximum	
		Questio		l com	nulsa	rilv							12 Marks
		QNE qı				-						·	=48 Marks)
. 11.		swer all		•	eucn	ини.	•					•	12 Marks)
	a)	Define										(1712	12 Warks)
	b)	Define	the e	quiva	lence								
	c)								$(x^2 + \dots)^2$.		40		
	d) e)	In nov Simpl	-		's can .∩(A					sen from 11 studer	nts?		
	f)	Differ											
	g)	Define	the c	hroma	atic n	umbe	er of	a tree	?				
	h)	Is the							y?				
	i) j)	Draw Define				(~p)	V ~(~q).					
	k)					f Rec	urre	nce R	elation?				
	1)								l subgraph?				
	,	G			c	.1	,•			IT I			43.4
	a) b)								duction?	n th Fibonacci num	nher then		4M
	U)	OSC III											
			$\mathbf{F}_{\mathbf{n}} =$	$\frac{1}{\sqrt{5}}$		$\left(\frac{\sqrt{5}}{2}\right)$	_	$\left(\frac{1-}{2}\right)$	$\left(\frac{\sqrt{5}}{2}\right)$	For all integers n	≥0.		8M
									`	OR)			
	a)								n implicati				6M
	b)	Prove	or disj	prove i	ne v	anaı → (a -	ιy 01 → r)	the g	given argun	nents: ii. ~p ↔ q			
				1.	p − ~q	~ (q → ~	p 1)			$q \rightarrow r$			
					p					~r			6M
				_	∴r				TINE	∴p			
	a)	Find t	1e co-	efficie	ent of	X16	in (1:	$+X^{4}+$		IT II			3M
	b)									5 <i>X</i> + 3			5111
	,	Comp	ute the	e co-e	efficie	ent of	$\int_{r=1}^{\infty}$	$\int_{0}^{\infty} d_{r}$	$X^r = \frac{X^2 - X^2}{X^4 - 5}$	$\frac{3X+3}{5X^2+4}$			9M
	۵)	A com	mutar	noggy	word	oong	iata d	sf late	,	OR)	a (lattara) and	l 3digits. Find out	t tha
	a)		_	_				JI ICU	ici ioliowe	d by 4 characters	s (icucis) and	i Juigits. Tilla out	5M
	b)	number of possible passwords. How many integral solutions are there to $x_1+x_2+x_3+x_4+x_5 \le 19$									7M		
			•							T III			
	a)										0.1		
	b)	a_n - $7a_{n-1}$ + $10a_{n-2}$ = 7.3^n + 4^n for $n \ge 2$ using undetermined coefficients method. Solve the recurrence relation a_n - $3a_{n-1}$ - $4a_{n-2}$ = 0 for $n \ge 2$ and a_0 = a_1 = 1 by using characteristic roots.									6M 6M		
	U)	50176	100	JuiiCl	100 10	iatiOl	ı α _n	Ju _{n-1} -4)R)	oy using chai	acteristic roots.	OIVI
	a)	Consi	der the	relat	ion R	={(a	,b),(l	o,c),(l	b,d),(d,d),(d				
					i.			_	_	relation R.			
					ii.	Dra	ıw th	e dia	graph for tl	he inverse R,R ⁻¹			6M

ii. Symmetric and reflexive, but not transitive.

Give an example of a non empty set and a relation on the set that satisfies each of the following

iii. Transitive and reflexive, but not Symmetric.

i. Symmetric and transitive, but not reflexive.

combinations of properties; draw a di-graph of the relation

b)

iv. Transitive and reflexive, but not antisymmetric.

6M

- v. Transitive and antisymmetric, but not reflexive.
- vi. Antisymmetric and reflexive, but not transitive.

CS/IT 215

• •				
	N	ľľ	ı١	V

8	a)	State and prove euler's formula?	5M
	b)	Prove that every simple planar graph is 5-colorable.	7M
		(OR)	
9	a)	What is Hamiltonian Circle? Give two Hamiltonian circuits in K ₅ that have no edges in common.	
			7M
	b)	Using warshall's algorithm find the adjacency matrix of the transitive closure of the relation	
		$R = \{(a,a),(a,d),(b,a),(b,b),(c,c),(d,d)\}.$	5M