(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 November 2001 (22.11.2001)

PCT

(10) International Publication Number WO 01/87343 A2

- (51) International Patent Classification⁷: A61K 45/06, A61P 35/00, 25/28, 19/02, 9/00
- (21) International Application Number: PCT/CA01/00683
- (22) International Filing Date: 14 May 2001 (14.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/204,269

15 May 2000 (15.05.2000) US

- (71) Applicant (for all designated States except US): MERCK FROSST CANADA & CO. [CA/CA]; 16711 Trans-Canada Highway, Kirkland, Québec H9H 3L1 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): SCOLNICK, Edward [US/CA]; 16711 Trans-Canada Highway, Kirkland, Québec H9H 3L1 (CA). METTERS, Kathleen [CA/CA]; 16711 Trans-Canada Highway, Kirkland, Québec H9H 3L1 (CA). RIENDEAU, Denis [CA/CA]; 16711 Trans-Canada Highway, Kirkland, Québec H9H 3L1 (CA). TURNER, Mervyn [US/CA]; 16711 Trans-Canada Highway, Kirkland, Québec H9H 3L1 (CA).

- (74) Agents: MURPHY, Kevin, P. et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenu, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/87343

(54) Title: COMBINATION THERAPY USING COX-2 SELECTIVE INHIBITOR AND THROMBOXANE INHIBITOR AND COMPOSITIONS THEREFOR

(57) Abstract: The present invention provides a method for the treatment or prophylaxis of COX-2 mediated conditions in patients who are at risk of developing thromboembolic events which comprises administering to said patient a therapeutically or prophylactically effective amount of a COX-2 selective inhibitor and a cardiovascular protective amount of a thromboxane inhibitor, as well as compositions therefor.

TITLE OF THE INVENTION

COMBINATION THERAPY USING COX-2 SELECTIVE INHIBITOR AND
THROMBOXANE INHIBITOR AND COMPOSITIONS THEREFOR

5 BACKGROUND OF THE INVENTION

10

30

35

Non-steroidal, antiinflammatory drugs exert most of their antiinflammatory, analgesic and antipyretic activity and inhibit hormone-induced uterine contractions and certain types of cancer growth through inhibition of prostaglandin G/H synthase, also known as cyclooxygenase. Initially, only one form of cyclooxygenase was known, this corresponding to cyclooxygenase-1 (COX-1) or the constitutive enzyme. More recently a second, inducible, form of cyclooxygenase, cyclooxygenase-2 (COX-2) has been identified. COX-2 is rapidly and readily inducible by a number of agents including mitogens, endotoxin, hormones, cytokines and growth factors.

15 COX-1 is responsible, in large part, for endogenous basal release of prostaglandins and hence is important in their physiological functions such as the maintenance of gastrointestinal integrity and renal blood flow. In contrast, COX-2 is mainly responsible for the pathological effects of prostaglandins where rapid induction of the enzyme would occur in response to such agents as inflammatory 20 agents, hormones, growth factors, and cytokines. Most traditional NSAIDs inhibit both COX-1 and COX-2 isoforms of cyclooxygenase, and therefore their desirable antiinflammatory effect is often accompanied by undesirable gastrointestinal damaging effect. Selective inhibitors of COX-2 have similar antiinflammatory. antipyretic and analgesic properties to a conventional non-steroidal antiinflammatory 25 drug but have a diminished ability to induce some of the mechanism-based side effects. COX-2 selective inhibitors currently on the market, rofecoxib and celecoxib, have been shown to have much lower incidence of gastrointestinal side effects than traditional NSAIDs (NSAIDs that have no or little selectivity for COX-2 over COX-1).

Traditional NSAIDs also affect platelet function by virtue of their COX-1 inhibitory activity. Inhibition of COX-1 prevents the formation in platelet of thromboxane A2, a mediator that promotes platelet aggregation. This effect of NSAIDs on platelet function has been exploited therapeutically, as in the case of aspirin, in the prophylaxis of thromboembolic disorders. COX-2 inhibitors, on the other hand, are not expected to have such protective effect.

In patients who are taking COX-2 selective inhibitors, those who are at risk of developing thromboembolic event may benefit from the anti-platelet aggregation effect of traditional NSAIDs, such as aspirin. However, the chronic use of aspirin for its cardiovascular protective effect, albeit at doses lower than normally used for its antiinflammatory effect, would undesirably expose these patients to gastrointestinal side effects while they are on an otherwise GI-sparing treatment regimen. Therefore, for patients who are taking COX-2 selective inhibitors and who may benefit from the cardiovascular protective effect of aspirin, there remains a need for a cardiovascular protective treatment that does not expose them to increased risk for gastrointestinal side effects.

PCT Published Application WO00/18352 discloses a method for treating inflammtory diseases by administering a thrombin inhibitor, which may be used in combination of an NSAID, such as COX-2 inhibitors.

PCT Published Application WO99/45913 discloses combination
therapy and composition for acute coronary ischemic syndrome using an antiplatelet agent and a COX-2 inhibitor.

SUMMARY OF THE INVENTION

5

10

30

The present invention concerns a method for treating patients with

COX-2-mediated conditions, and who are also at risk of developing thromboembolic events which comprises administering to said patients a COX-2 selective inhibitor and a thromboxane A2 inhibitor. Also provided are pharmaceutical compositions comprising a COX-2 selective inhibitor and a thromboxane inhibitor.

25 DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a novel method for the treatment or prophylaxis of COX-2-mediated conditions in patients who are at risk of developing thromboembolic events which comprises administering to said patients a therapeutically or prophylactically effective amount of a COX-2 selective inhibitor and a cardiovascular protective amount of a thromboxane inhibitor.

The present invention also provides for pharmaceutical compositions comprising a therapeutically or prophylactically effective amount of a COX-2 selective inhibitor and a cardiovascular protective amount of a thromboxane inhibitor, and a pharmaceutically acceptable carrier in unit dosage form.

The present invention also provides a pharmaceutical product comprising (1) a therapeutically or prophylactically effective amount of a COX-2 selective inhibitor in a first oral unit dosage form, (2) a cardioprotective amount of a thromboxane inhibitor in a second oral unit dosage form, and (3) instructions for concurrent or sequential administration of said pharmaceutical product to a patient in need thereof.

5

10

15

20

25

30

In one embodiment of the present method, the COX-2 mediated condition is selected from osteoarthritis, rheumatoid arthritis, cancer and Alzheimer's disease. In one subset the COX-2 mediated condition is cancer. In another subset the COX-2 mediated condition is Alzheimer's disease; in yet another subset, the COX-2 mediated condition is osteoarthritis or rheumatoid arthritis.

In another embodiment the COX-2 selective inhibitor and the thromboxane inhibitor are administered orally.

In another embodiment the COX-2 selective inhibitor is selected from celecoxib, rofecoxib, valdecoxib and etoricoxib.

"Conditions mediated by COX-2" include, but are not limited to, pain, fever and inflammation of a variety of conditions including rheumatic fever, symptoms associated with influenza or other viral infections, common cold, low back and neck pain, dysmenorrhea, headache, toothache, sprains and strains, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (osteoarthritis), gout and ankylosing spondylitis, bursitis, burns, injuries following surgical and dental procedures, cancer including the transformation of a colonic adenoma to a colonic adenocarcinoma, and dementia including pre-senile and senile dementia, and in particular, dementia associated with Alzheimer Disease (ie Alzheimer's dementia).

"Thromboembolic event" includes, but are not limited to, ischemic stroke, transient ischemic stroke, and myocardial infarction. "Patients who are at risk of developing thromboembolic events" include those with a familial history of, or genetically predisposed to, thromboembolic disorders, who have had ischemic stroke, transient ischemic stroke, myocardial infarction, and those with unstable angina pectoris or chronic stable angina pectoris and patients with altered prostacyclin / thromboxane A_2 homeostasis or higher than normal thromboxane A_2 levels leading to increase risk for thromboembolism, including patients with diabetes and rheumatoid arthritis.

"COX-2 selective inhibitors" embrace compounds which selectively inhibit cyclooxygenase-2 over cyclooxygenase-1. COX-2 and COX-1 inhibitory activities may be determined employing the human whole blood COX-1 assay and the human whole blood COX-2 assay described in C. Brideau *et al, Inflamm. Res.* 45: 68-74 (1996), herein incorporated by reference. Preferably, the compounds have a cyclooxygenase-2 IC50 of less than about 2 μM in the human whole blood COX-2 assay, yet have a cyclooxygenase-1 IC50 of greater than about 5 μM in the human whole blood COX-1 assay. Also preferably, the compounds have a selectivity ratio of cyclooxygenase-2 inhibition over cyclooxygenase-1 inhibition of at least 5, and more preferably of at least 30.

"Thromboxane inhibitors" include compounds that inhibit thromboxane synthase and compounds that inhibit, prevent or otherwise interfere with the binding of thromboxane to its receptor (thromboxane antagonists), as well as compounds that are both thromboxane synthase inhibitors and thromboxane receptor antagonists. Thromboxane synthase inhibitors and thromboxane receptor antagonists can be identified using assays described in Tai, H.-H. Assay of thromboxane A synthase inhibitors. Methods in Enzymology Vol 86, 1982 pp. 110-113 and references contained within Hall, S. E. Thromboxane A₂ Receptor Antagonists. Medicinal Research Reviews, 11, 503-579 (1991) and Coleman, R. A., Smith, W. L., Narumiya, S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution and structure of the receptors and their subtypes. Pharmacol. Rev. 46, 205-229 (1994). The characteristics of the preferred thromboxane inhibitor should include suppression of thromboxane A₂ formation (thromboxane synthase inhibitors) and/or blockade of thromboxane A2 and prostaglandin H_2 on platelets and vessel wall (thromboxane receptor antagonists). The effects should block platelet activation and therefore platelet function. Thromboxane synthase inhibitors may also increase the synthesis of antiaggregatory prostaglandins including prostacyclin and prostaglandin D₂.

15

20

25

30

35

"Therapeutically effective amount" means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, a system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.

The term "treatment" or "treating" includes alleviating, ameliorating, relieving or otherwise reducing the signs and symptoms associated with a disease or disorder.

The term "prophylaxis" means preventing or delaying the onset or the progression of a disease or disorder, or the signs and symptoms associated with such disease or disorder.

"Prophylactically effective amount" means that amount of a pharmaceutical drug that will prevent, delay or reduce the risk of occurrence of the biological or medical event that is sought to be prevented in a tissue, a system, animal or human by a researcher, veterinarian, medical doctor or other clinician.

"Cardiovascular protective amount" means that amount of a thromboxane inhibitor that will prevent or reduce the risk of occurrence of thromboembolic events.

The term "composition", as in pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) (pharmaceutically acceptable excipients) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a COX-2 selective inhibitor and a thromboxane inhibitor, and pharmaceutically acceptable excipients.

20

25

15

5

10

COX-2 Selective Inhibitors

As explained in J. Talley, *Exp. Opin. Ther. Patents* (1997), 7(1), pp. 55-62, three distinct structural classes of selective COX-2 inhibitor compounds have been identified. One class is the methane sulfonanilide class of inhibitors, of which NS-398, flosulide, nimesulide and (i) are example members.

A second class is the tricyclic inhibitor class, which can be further divided into the sub-classes of tricyclic inhibitors with a central carbocyclic ring (examples include SC-57666, $\underline{1}$, and $\underline{2}$); those with a central monocyclic heterocyclic ring (examples include DuP 697, SC-58125, SC-58635, and $\underline{3}$, $\underline{4}$ and $\underline{5}$; and those with a central bicyclic heterocyclic ring (examples include $\underline{6}$, $\underline{7}$, $\underline{8}$, $\underline{9}$ and $\underline{10}$). Compounds $\underline{3}$, $\underline{4}$ and $\underline{5}$ are described in U.S. Patent No. 5,474,995.

$$\begin{array}{c} \text{CH}_3\text{SO}_2 \\ \text{F} \\ \text{CH}_3\text{SO}_2 \\ \text{CH}_3\text{$$

The third identified class can be referred to as those which are structurally modified NSAIDs, and includes $\underline{11a}$ and structure $\underline{11}$ as example members.

$$CH_3O$$
 CO_2H
 CH_3O
 CH_3
 CH_3

In addition to the structural classes, sub-classes, specific COX-2 selective inhibitor compound examples, and reference journal and patent publications described in the Talley publication which are all herein incorporated by reference, examples of compounds which selectively inhibit cyclooxygenase-2 have also been described in the following patent publications, all of which are herein incorporated by reference: U.S. Patent No.'s 5,344,991, 5,380,738, 5,393,790, 5,409,944, 5,434,178, 5,436,265, 5,466,823, 5,474,995, 5,510,368, 5,536,752, 5,550,142, 5,552,422, 5,604,253, 5,604,260, 5,639,780; and International Patent Specification Nos. 94/13635, 94/15932, 94/20480, 94/26731, 94/27980, 95/00501, 95/15316, 96/03387, 96/03388, 96/06840; and International Publication Nos. WO 94/20480, WO 96/21667, WO 96/31509, WO 96/36623, WO 97/14691, WO 97/16435.

Additional COX-2 selective inhibitor compounds which are included in the scope of this invention include:

5

Ö

<u>20</u>

<u>15</u>

5 Some of the compounds above can also be identified by the following chemical names:

SC58635: 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzene-sulfonamide (celecoxib);

3: 3-phenyl-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone (rofecoxib);

10 <u>4</u>: 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone;

5: 5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-3-(3-fluorophenyl)-5H-furan-2-one;

12: 5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-3-(2-propoxy)-5H-furan-2-one

<u>13</u>: 5-chloro-3-(4-(methylsulfonyl)phenyl)-2-(2-methyl-5-pyridinyl)pyridine (etoricoxib);

15 <u>14</u>: 2-(3,5-difluorophenyl)-3-(4-(methylsulfonyl)phenyl)-2-cyclopenten-1-one <u>15</u>: 5(S)-5-ethyl-5-methyl-4-(4-(methylsulfonyl)phenyl)-3-(2-propoxy)-5H-furan-2-one

16: 5-ethyl-5-methyl-4-(4-(methylsulfonyl)phenyl)-3-(3,4-difluorophenyl)-5H-furan-2-one;

17: 3-((2-thiazolyl)methoxy)-4-(4-(methylsulfonyl)phenyl)-5,5-dimethyl-5H-furan-2-one

18: 3-propyloxy-4-(4-(methylsulfonyl)phenyl)-5,5-dimethyl-5H-furan-2-one

19: 3-(1-cyclopropylethoxy)-5,5-dimethyl-4-(4-methylsulfonyl)phenyl)-5H-furan-2-

20: sodium 2-(4-chlorophenyl)-3-(4-(methylsulfonyl)phenyl)-4-oxo-2-pentenoate;

21: 3-(cyclopropylmethoxy)-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-5H-furan-2-one

<u>22</u>: 3-(cyclopropylmethoxy)-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-2,5-dihydro-furan-2-ol;

<u>23</u>: 3-isopropoxy-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-2,5-dihydrofuran-2-ol <u>24</u>: 5,5-dimethyl-3-(3-fluorophenyl)-2-hydroxy-4-(4-(methylsulfonyl)phenyl)-2,5-dihydrofuran

25: 5-Chloro-3-(4-(methylsulfonyl)phenyl)-2-(3-pyridinyl)pyridine

The following publications describe and/or provide methods for making the compounds as indicated: compounds 12, 15, 17, 18, 19 and 21, WO 97/14691; compounds 22, 23 and 24, WO 97/16435; compound 20, WO 96/36623; compound 14, U.S. Patent No. 5,536,752; compound 16, U.S. Patent No. 5,474,995. See Examples herein for compounds 13 and 25

Also incorporated herein by reference are those compounds described in WO 96/41645 as having structural Formula I, shown below, and the definition and preferred definitions and species described therein:

$$\begin{array}{c} R^2 \\ S \\ \end{array} \begin{array}{c} O \\ \\ \end{array} \begin{array}{c} -A \\ \\ R^3 \end{array} \begin{array}{c} I \\ \end{array}$$

25

5

10

15

20

Particularly preferred compounds of formula (I) include: 5-(4-fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-3-(trifluoromethyl)pyrazole; 4-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-1-phenyl-3-(trifluoromethyl)pyrazole;

4-(5-(4-chlorophenyl)-3-(4-methoxyphenyl)-1H-pyrazol-1-yl)benzenesulfonamide; 4-(3,5-bis(4-methylphenyl)-1H-pyrazol-1-yl)benzenesulfonamide;

```
4-(5-(4-chlorophenyl)-3-phenyl-1H-pyrazol-1-yl)benzenesulfonamide;
```

- 4-(3,5-bis(4-methoxyphenyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 4-(5-(4-chlorophenyl)-3-(4-methylphenyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 4-(5-(4-chlorophenyl)-3-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 5 4-(5-(4-chlorophenyl)-3-(5-chloro-2-thienyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(4-chloro-3,5-diphenyl-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(5-phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 10 4-(5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(4-chloro-5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 4-(3-(difluoromethyl)-5-(4-methylphenyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(3-(difluoromethyl)-5-(4-methoxyphenyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - $\hbox{$4$-(3-(difluoromethyl)-5-(3-fluoro-4-methoxyphenyl)-1$H-pyrazol-1-yl)} benzenesulfon-fluoromethyl. \\$
- 20 amide;
 - 4-(5-(3-fluoro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(4-chloro-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-(5-(4-chlorophenyl)-3-(hydroxyphenyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 4-(5-(4-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 5-(4-fluorophenyl)-6-(4-(methylsulfonyl)phenyl)spiro[2.4]hept-5-ene;
 - 4-(6-(4-fluorophenyl)spiro[2.4]hept-5-en-5-yl)benzenesulfonamide;
 - 6-(4-fluorophenyl)-7-(4-(methylsulfonyl)phenyl)spiro[3.4]oct-6-ene;
- 30 5-(3-chloro-4-methoxyphenyl)-6-(4-(methylsulfonyl)phenyl)spiro[2.4]hept-5-ene;
 - 4-(6-(3-chloro-4-methoxyphenyl)spiro[2.4]hept-5-en-5-yl)benzenesulfonamide;
 - 5-(3,5-dichloro-4-methoxyphenyl)-6-(4-(methylsulfonyl)phenyl)spiro[2.4]hept-5-ene;
 - 5-(3-chloro-4-fluorophenyl)-6-(4-(methylsulfonyl)phenyl)spiro[2.4]hept-5-ene;
 - 4-(6-(3,4-dichlorophenyl)spiro[2.4]hept-5-en-5-yl)benzenesulfonamide;
- $2\hbox{-}(3\hbox{-}chloro\hbox{-}4\hbox{-}fluorophenyl)\hbox{-}4\hbox{-}(4\hbox{-}fluorophenyl)\hbox{-}5\hbox{-}(4\hbox{-}methylsulfonylphenyl)thiazole;}$

```
2-(2-chlorophenyl)-4-(4-fluorophenyl)-5-(4-methylsulfonylphenyl)thiazole;
```

- 5-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-2-methylthiazole;
- 4-(4-fluorophenyl)-5-(4-methylsulfonylphenyl)-2-trifluoromethylthiazole;
- 4-(4-fluorophenyl)-5-(4-methylsulfonylphenyl)-2-(2-thienyl)thiazole;
- 4-(4-fluorophenyl)-5-(4-methylsulfonylphenyl)-2-benzylaminothiazole;
 - 4-(4-fluorophenyl)-5-(4-methylsulfonylphenyl)-2-(1-propylamino)thiazole;
 - 2-((3,5-dichlorophenoxy)methyl)-4-(4-fluorophenyl)-5-(4-(methylsulfonyl)-phenyl)thiazole;
 - 5-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-2-trifluoromethylthiazole;
- 10 1-methylsulfonyl-4-(1,1-dimethyl-4-(4-fluorophenyl)cyclopenta-2,4-dien-3-yl)-benzene;
 - 4-(4-(4-fluorophenyl)-1,1-dimethylcyclopenta-2,4-dien-3-yl)benzenesulfonamide;
 - 5-(4-fluorophenyl)-6-(4-(methylsulfonyl)phenyl)spiro[2.4]hepta-4,6-diene;
 - 4-(6-(4-fluorophenyl)spiro[2.4]hepta-4,6-dien-5-yl)benzenesulfonamide;
- 6-(4-fluorophenyl)-2-methoxy-5-(4-(methylsulfonyl)phenyl)-pyridine-3-carbonitrile; 2-bromo-6-(4-fluorophenyl)-5-(4-(methylsulfonyl)phenyl)-pyridine-3-carbonitrile;
 - 6-(4-fluorophenyl)-5-(4-(methylsulfonyl)phenyl)-2-phenyl-pyridine-3-carbonitrile;
 - 4-(2-(4-methylpyridin-2-yl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
- 4-(2-(5-methylpyridin-3-yl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
 - 4-(2-(2-methylpyridin-3-yl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
 - 3-(1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1H-imidazol-2-yl)benzenesulfon-
- 25 amide;
 - 2-(1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1H-imidazol-2-yl)pyridine; 2-methyl-4-(1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1H-imidazol-2-yl)pyridine;
 - 2-methyl-6-(1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1H-imidazol-2-yl)-
- 30 pyridine;
 - 4-(2-(6-methylpyridin-3-yl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzene-sulfonamide;
 - 2-(3,4-difluorophenyl)-1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1H-imidazole;
- 35 4-(2-(4-methylphenyl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;

```
2-(4-chlorophenyl)-1-(4-(methylsulfonyl)phenyl)-4-methyl-1H-imidazole;
```

- 2-(4-chlorophenyl)-1-(4-(methylsulfonyl)phenyl)-4-phenyl-1H-imidazole;
- 2-(4-chlorophenyl)-4-(4-fluorophenyl)-1-(4-(methylsulfonyl)phenyl)-1H-imidazole;
- $\hbox{$2$-(3-fluoro-4-methoxyphenyl)-1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1$H-line of the state of$
- 5 imidazole;
 - 1-(4-(methylsulfonyl)phenyl)-2-phenyl-4-trifluoromethyl-1H-imidazole;
 - 2-(4-methylphenyl)-1-(4-(methylsulfonyl)phenyl)-4-trifluoromethyl-1H-imidazole;
 - 4-(2-(3-chloro-4-methylphenyl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
- 2-(3-fluoro-5-methylphenyl)-1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1Himidazole;
 - 4-(2-(3-fluoro-5-methylphenyl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
 - 2-(3-methylphenyl)-1-(4-(methylsulfonyl)phenyl)-4-(trifluoromethyl)-1H-imidazole;
- 15 4-(2-(3-methylphenyl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
 - 1-(4-(methylsulfonyl)phenyl)-2-(3-chlorophenyl)-4-(trifluoromethyl)-1H-imidazole;
 - 4-(2-(3-chlorophenyl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
 - 4-(2-phenyl-4-(trifluoromethyl)-1H-imidazol-1-yl)benzenesulfonamide;
 - 4-(2-(4-methoxy-3-chlorophenyl)-4-(trifluoromethyl)-1H-imidazol-1-yl)benzene-
- 20 sulfonamide;
 - 1-allyl-4-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-5-(trifluoromethyl)-1H-pyrazole;
 - 4-(1-ethyl-4-(4-fluorophenyl)-5-(trifluoromethyl)-1H-pyrazol-3-yl)benzenesulfonamide;
- N-phenyl-(4-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-5-(trifluoromethyl)-1H-pyrazol-1-yl)acetamide;
 - ethyl (4-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-5-(trifluoromethyl)-1H-pyrazol-1-yl)acetate;
 - 4-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-1-(2-phenylethyl)-1H-pyrazole;
- 4-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-1-(2-phenylethyl)-5-(trifluoromethyl)pyrazole;
 - 1-ethyl-4-(4-fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-5-(trifluoromethyl)-1H-pyrazole;
 - 5-(4-fluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(trifluoromethyl)-1H-imidazole;
- 35 4-(4-(methylsulfonyl)phenyl)-5-(2-thiophenyl)-2-(trifluoromethyl)-1H-imidazole;

```
5-(4-fluorophenyl)-2-methoxy-4-(4-(methylsulfonyl)phenyl)-6-(trifluoromethyl)-pyridine;
```

- 2-ethoxy-5-(4-fluorophenyl)-4-(4-(methylsulfonyl)phenyl)-6-(trifluoromethyl)-pyridine;
- 5 5-(4-fluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(2-propynyloxy)-6-(trifluoromethyl)pyridine;
 - 2-bromo-5-(4-fluorophenyl)-4-(4-(methylsulfonyl)phenyl)-6-(trifluoromethyl)-pyridine;
 - 4-(2-(3-chloro-4-methoxyphenyl)-4,5-difluorophenyl)benzenesulfonamide;
- 10 1-(4-fluorophenyl)-2-(4-(methylsulfonyl)phenyl)benzene;
 - 5-difluoromethyl-4-(4-(methylsulfonyl)phenyl)-3-phenylisoxazole;
 - 4-(3-ethyl-5-phenylisoxazol-4-yl)benzenesulfonamide;
 - 4-(5-difluoromethyl-3-phenylisoxazol-4-yl)benzenesulfonamide;
 - 4-(5-hydroxymethyl-3-phenylisoxazol-4-yl)benzenesulfonamide;
- 15 4-(5-methyl-3-phenylisoxazol-4-yl)benzenesulfonamide (valdecoxib);
 - N-propanoyl-4-(5-methyl-3-phenylisoxazol-4-yl)benzenesulfonamide:
 - 1-(2-(4-fluorophenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 1-(2-(4-fluoro-2-methylphenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 1-(2-(4-chlorophenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
- 20 1-(2-(2,4-dichlorophenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 1-(2-(4-trifluoromethylphenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 1-(2-(4-methylthiophenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 1-(2-(4-fluorophenyl)-4,4-dimethylcyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 4-(2-(4-fluorophenyl)-4,4-dimethylcyclopenten-1-yl)benzenesulfonamide;
- 25 1-(2-(4-chlorophenyl)-4,4-dimethylcyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 4-(2-(4-chlorophenyl)-4,4-dimethylcyclopenten-1-yl)benzenesulfonamide;
 - 4-(2-(4-fluorophenyl)cyclopenten-1-yl)benzenesulfonamide;
 - 4-(2-(4-chlorophenyl)cyclopenten-1-yl)benzenesulfonamide;
 - 1-(2-(4-methoxyphenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
- 30 1-(2-(2,3-difluorophenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 4-(2-(3-fluoro-4-methoxyphenyl)cyclopenten-1-yl)benzenesulfonamide;
 - 1-(2-(3-chloro-4-methoxyphenyl)cyclopenten-1-yl)-4-(methylsulfonyl)benzene;
 - 4-(2-(3-chloro-4-fluorophenyl)cyclopenten-1-yl)benzenesulfonamide;
 - 4-(2-(2-methylpyridin-5-yl)cyclopenten-1-yl)benzenesulfonamide;

ethyl 2-(4-(4-fluorophenyl)-5-(4-(methylsulfonyl)phenyl)oxazol-2-yl)-2-benzylacetate;

2-(4-(4-fluorophenyl)-5-(4-(methylsulfonyl)phenyl)oxazol-2-yl)acetic acid;

2-(tert-butyl)-4-(4-fluorophenyl)-5-(4-(methylsulfonyl)phenyl)oxazole;

4-(4-fluorophenyl)-5-(4-(methylsulfonyl)phenyl)-2-phenyloxazole;

4-(4-fluorophenyl)-2-methyl-5-(4-(methylsulfonyl)phenyl)oxazole; and

4-(5-(3-fluoro-4-methoxyphenyl)-2-trifluoromethyl-4-oxazolyl)benzenesulfonamide; or a pharmaceutically acceptable salt thereof.

Several of the above mentioned COX-2 selective inhibitors have been approved for human use or are in advanced stage of development; accordingly, one subset of COX-2 selective inhibitors of the present invention include celecoxib, rofecoxib, valdecoxib and etoricoxib.

Thromboxane Inhibitors

Examples of thromboxane inhibitors include serabenast (seratrodast), picotamide, ozagrel, egualen, domitroban, ramatroban, ridrogrel, samixogrel, terbogrel, satrigrel, sulotraban, ifetroban, vapiprost, daltroban, imitrodast, dazoxiben, linotroban, triletide, nafagrel, rolafagrel, pirmagrel,

Z335,

S18886, S32080, ICI192605, ICI185282, ONO-3708, ONO-8809, FPL-55712, WHR-2348, KW3635, LCB2853, Y20811, CGS12970, CGS22652, UK34787, MED27, ONO1301, MR948, AZ1355, KD1792 and F10171. Examples of thromoboxane inhibitors such as (-)-6,8-difluoro-9-p-methylsulfonylbenzyl-1,2,3,4-tetrahydrocarbazol-1-yl-acetic acid may also be found in US 4,808,608, which is hereby incorporated by reference.

As used herein "COX-2 selective inhibitors" and "thromboxane inhibitors" (including thromboxane synthase inhibitors and thromboxane receptor antagonists) encompass pharmaceutically acceptable salts of the active chemical entity.

5

10

15

20

25

30

The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylenediamine, diethylamine, 2-dibenzylethylenediamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.

When a compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.

Dosage and Administration

5

10

15

20

25

30

35

In the present method, the COX-2 selective inhibitor and the thromboxane inhibitor may be administered separately in separate dosage forms or together in a single unit dosage form. Where separate dosage formulations are used, the thromboxane inhibitor and the COX-2 selective inhibitor can be administered at essentially the same time, i.e., concurrently, or at separately staggered times, i.e, sequentially, and in any order. It is preferred that the thromboxane inhibitor and the COX-2 selective inhibitor be co-administered concurrently on a once-a-day dosing schedule; however, varying dosing schedules, such as the thromboxane inhibitor once per day and the COX-2 selective inhibitor once, twice or more times per day, or the COX-2 selective inhibitor once per day and the thromboxane inhibitor once, twice or more times per day, is also encompassed herein. A single oral dosage formulation comprised of both the thromboxane inhibitor and the COX-2 selective inhibitor is preferred. A single dosage formulation will provide convenience for the patient.

The COX-2 selective inhibitor may be administered at a dosage level up to conventional dosage levels for NSAIDs. Suitable dosage levels will depend upon the anti-inflammatory effect of the chosen inhibitor of cyclooxygenase-2, but typically suitable levels will be about 0.001 to 50 mg/kg body weight of the patient per day, preferably 0.005 to 30mg/kg per day, and especially 0.05 to 10mg/kg per day. The compound may be administered on a regimen of up to 6 times per day, preferably 1 to 4 times per day, and especially once per day.

In the case where an oral composition is employed, a suitable dosage range is, e.g. from about 0.01 mg to about 100 mg of a COX-2 selective inhibitor per kg of body weight per day, preferably from about 0.1 mg to about 10 mg per kg of a COX-2 selective inhibitor per kg of body weight per day.

The thromboxane inhibitor may be administered at a dosage level up to conventional dosage levels for thromboxane inhibitors. Suitable dosage levels will depend upon the cardiovascular protective effect of the chosen thromboxane inhibitor, but typically suitable levels will be about 0.001 to 50 mg/kg body weight of the patient per day, preferably 0.005 to 30mg/kg per day, and especially 0.05 to 10mg/kg per day. The compound may be administered on a regimen of up to 6 times per day, preferably 1 to 4 times per day, and especially once per day.

In the case where an oral composition is employed, a suitable dosage range is, e.g. from about 0.01 mg to about 100 mg of a thromboxane inhibitor per kg of body weight per day, preferably from about 0.1 mg to about 10 mg per kg and for

cytoprotective use from 0.1 mg to about 100 mg of a thromboxane inhibitor per kg of body weight per day.

It will be understood that the dosage of the therapeutic agents will vary with the nature and the severity of the condition to be treated, and with the particular therapeutic agents chosen. The dosage will also vary according to the age, weight, physical condition and response of the individual patient. The selection of the appropriate dosage for the individual patient is within the skills of a clinician.

Pharmaceutical Compositions

10

15

20

25

30

Any suitable route of administration may be employed for providing a patient with an effective dosage of drugs of the present invention. For example, oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like. However, for the convenience of dosing, the drugs of the present invention are preferably administered orally.

The compositions include compositions suitable for oral, rectal, topical, parenteral (including subcutaneous, intramuscular, and intravenous), ocular (ophthalmic), pulmonary (aerosol inhalation), or nasal administration, although the most suitable route in any given case will depend on the nature and severity of the conditions being treated and on the nature of the active ingredient. They may be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy.

For administration by inhalation, the drugs used in the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or nebulisers. The compounds may also be delivered as powders which may be formulated and the powder composition may be inhaled with the aid of an insufflation powder inhaler device. The preferred delivery systems for inhalation are metered dose inhalation (MDI) aerosol, which may be formulated as a suspension or solution of a compound of Formula I in suitable propellants, such as fluorocarbons or hydrocarbons and dry powder inhalation (DPI) aerosol, which may be formulated as a dry powder of a compound of Formula I with or without additional excipients.

Suitable topical formulations of a compound of formula I include transdermal devices, aerosols, creams, ointments, lotions, dusting powders, and the like.

In practical use, drugs used can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques.

5

10

15

In addition to the common dosage forms set out above, the compounds of Formula I may also be administered by controlled release means and/or delivery devices such as those described in U.S. Patent Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 3,630,200 and 4,008,719.

20 The instant invention also provides pharmaceutical compositions comprised of a therapeutically effective amount of an COX-2 selective inhibitor in combination with a cardiovascular protective amount of a thromboxane inhibitor, and a pharmaceutically acceptable carrier. One embodiment of the instant compositions is a single unit dosage form adapted for oral administration comprised of a 25 therapeutically effective amount of a COX-2 selective inhibitor in combination with a therapeutically effective amount of a thromboxane inhibitor and a pharmaceutically acceptable carrier. The active ingredients together with the inert pharmaceutical excipients are made into pharmaceutical unit dosage form such as tablets and capsules using conventioal pharmacy techniques. The combination can also be administered in 30 separate dosage forms, each having one of the active agents. Such separate unit dosage forms may be packaged together into a pharmaceutical product such as blister packs, which are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil 35 of a preferably transparent plastic material. During the packaging process recesses are

formed in the plastic foil. The recesses have the size and shape of the tablets or capsules to be packed. Next, the tablets or capsules are placed in the recesses and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are sealed in the recesses between the plastic foil and the sheet. Preferably the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.

5

10

15

20

25

30

If administered in separate dosage forms, the separate dosage forms are administered such that the beneficial effect of each active agent is realized by the patient at substantially the same time.

Pharmaceutical compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet may be prepared by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine, the active ingredient in a freeflowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. Desirably, each tablet contains from about 1 mg to about 500 mg of the active ingredient and each cachet or capsule contains from about 1 to about 500 mg of the active ingredient.

EXAMPLE 1

Tablet Preparation

Tablets containing 25.0, 50.0, and 100.0 mg, respectively, of a thromboxane inhibitor are prepared as illustrated below:

5

TABLE FOR DOSES CONTAINING FROM 25-100MG OF THROMBOXANE INHIBITOR

thromboxane inhibitor	Amount-mg		
	25.0	50.0	100.0
Microcrystalline cellulose	37.25	100.0	200.0
Modified food corn starch	37.25	4.25	8.5
Magnesium stearate	0.50	0.75	1.5

10

All of the active compound, cellulose, and a portion of the corn starch are mixed and granulated to 10% corn starch paste. The resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate. The resulting granulation is then compressed into tablets containing 25.0, 50.0, and 100.0 mg, respectively, of active ingredient per tablet.

15

20

EXAMPLE 2

Wet granulated tablet composition

Tablet dose strengths of between 5 and 125 mg can be accommodated by varying total tablet weight, and the ratio of the first three ingredients. Generally it is preferable to maintain a 1:1 ratio for microcrystalline cellulose: lactose monohydrate.

Ingredient	Amount/tablet			
COX-2 Selective Inhibitor	25 mg	12.5 mg	10 mg	5 mg
Microcrystalline cellulose	79.7 mg	86 mg	87.2 mg	89.7 mg
Lactose monohydrate	79.7 mg	86 mg	87.2 mg	89.7 mg
Hydroxypropyl cellulose	6 mg	6 mg	6 mg	6 mg
Croscarmellose sodium	8 mg	8 mg	8 mg	8 mg
Iron oxide	0.6 mg	0.6 mg	0.6 mg	0.6 mg
Magnesium stearate	1 mg	1 mg	1 mg	1 mg

EXAMPLE 3

Directly compressed tablet composition

Tablet dose strengths of between 5 and 125 mg can be accommodated by varying total tablet weight, and the ratio of the first three ingredients. Generally it is preferable to maintain a 1:1 ratio for microcrystalline cellulose: lactose monohydrate.

Ingredient	Amount per tablet			
COX-2 Selective Inhibitor	5 mg	10 mg	12.5 mg	25 mg
Microcrystalline cellulose	45 mg	42.5 mg	113.2 mg	106.9 mg
Lactose anhydrate	45 mg	42.5 mg	113.2 mg	106.9 mg
Croscarmellose sodium	4 mg	4 mg .	7.5 mg	7.5 mg
Magnesium stearate	1 mg	1 mg	3.7 mg	3.7 mg

10

EXAMPLE 4

Hard gelatin capsule composition

Capsule dose strengths of between 1 and 50 mg can be accommodated by varying total fill weight, and the ratio of the first three ingredients. Generally it is preferable to maintain a 1:1 ratio for microcrystalline cellulose: lactose monohydrate.

<u>Ingredient</u> <u>Amount per capsule</u>

COX-2 Selective Inhibitor 25 mg

Microcrystalline cellulose 37 mg

Lactose anhydrate

37 mg

Magnesium stearate

1 mg

Hard gelatin capsule

1 capsule

EXAMPLE 5

Oral solution

Solution dose strengths of between 1 and 50 mg/5mL can be accommodated by varying the ratio of the two ingredients.

Ingredient

Amount per 5 mL dose

COX-2 Inhibitor

5

50 mg

to 5 mL with Polyethylene oxide 400

EXAMPLE 6

Oral suspension

Suspension dose strengths of between 1 and 50 mg/5ml can be accommodated by varying the ratio of the first two ingredients.

Ingredient Amount per 5 mL dose

COX-2 Selective Inhibitor

101 mg

Polyvinylpyrrolidone

150 mg

Poly oxyethylene sorbitan monolaurate

2.5 mg

Benzoic acid

10 mg

to 5 mL with sorbitol solution (70%)

EXAMPLE 7

15

Combination Tablet Preparation

Tablets containing 25.0, 50.0, and 100.0 mg, respectively, of a thromboxane inhibitor and 25 mg COX-2 selective inhibitor are prepared as illustrated below:

Thromboxane Inhibitor			
	25.0	50.0	100.0
COX-2 Selective Inhibitor	25.0	25,0	25.0
Microcrystalline cellulose	37.25	100.0	175.0
Modified food corn starch	37.25	4.25	8.5
Magnesium stearate	0.50	0.75	1.5

Both active compounds, cellulose, and a portion of the corn starch are mixed and granulated to 10% corn starch paste. The resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate. The resulting granulation is then compressed into tablets containing 25.0, 50.0, and 100.0 mg, respectively, of thromboxane inhibitor per tablet, and 25 mg COX-2 selective inhibitor, per tablet.

While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that 10 various changes, modifications and substitutions can be made therein without departing from the spirit and scope of the invention. For example, effective dosages other than the particular dosages as set forth herein above may be applicable as a consequence of variations in the responsiveness of the mammal being treated for any of the indications for the active agents used in the instant invention as indicated above. Likewise, the specific pharmacological responses observed may vary according to and depending upon the particular active compound selected or whether there are present pharmaceutical carriers, as well as the type of formulation and mode of administration employed, and such expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.

15

WHAT IS CLAIMED IS:

1. A method for the treatment or prophylaxis of COX-2-mediated conditions in patients who are at risk of developing thromboembolic events which comprises administering to said patiens a therapeutically or prophylactically effective amount of a COX-2 selective inhibitor and a cardiovascular protective amount of a thromboxane inhibitor.

- 2. A method of Claim 1 wherein said COX-2 selective inhibitor and said throm boxane inhibitor are adiminstered orally.
 - 3. A method of Claim 1 wherein said COX-2 mediated condition is osteoarthritis.
- 4. A method of Claim 1 wherein said COX-2 mediated condition is rheumatoid arthritis.
 - 5. A method of Claim 1 wherein said COX-2 mediated condition is selected from Alzeheimer's disease.

- 6. A method of Claim 1 wherein said COX-2 mediated condition is transformation of colonic adenoma into colonic adenocarcinoma.
- 7. A method of Claim 1 wherein said COX-2 selective inhibitor is selected from: 3-phenyl-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone; 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone; 5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-3-(3-fluorophenyl)-5H-furan-2-one; 5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-3-(2-propoxy)-5H-furan-2-one; 5-chloro-3-(4-(methylsulfonyl)phenyl)-2-(2-methyl-5-pyridinyl)pyridine;
- 2-(3,5-difluorophenyl)-3-(4-(methylsulfonyl)phenyl)-2-cyclopenten-1-one; 5(S)-5-ethyl-5-methyl-4-(4-(methylsulfonyl)phenyl)-3-(2-propoxy)-5H-furan-2-one; 5-ethyl-5-methyl-4-(4-(methylsulfonyl)phenyl)-3-(3,4-difluorophenyl)-5H-furan-2-one;
 - 3-((2-thiazolyl)methoxy)-4-(4-(methylsulfonyl)phenyl)-5,5-dimethyl-5H-furan-2-one;
- 35 <u>3</u>-propyloxy-4-(4-(methylsulfonyl)phenyl)-5,5-dimethyl-5H-furan-2-one;

3-(1-cyclopropylethoxy)-5,5-dimethyl-4-(4-methylsulfonyl)phenyl)-5H-furan-2-one; sodium 2-(4-chlorophenyl)-3-(4-(methylsulfonyl)phenyl)-4-oxo-2-pentenoate;

- 3-(cyclopropylmethoxy)-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-5H-furan-2-one;
- 3-(cyclopropylmethoxy)-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-2,5-dihydrofuran-
- 5 2-ol;
 - 3-isopropoxy-5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-2,5-dihydrofuran-2-ol;
 - 5,5-dimethyl-3-(3-fluorophenyl)-2-hydroxy-4-(4-(methylsulfonyl)phenyl)-2,5-dihydrofuran and
 - 5-Chloro-3-(4-(methylsulfonyl)phenyl)-2-(3-pyridinyl)pyridine.

10

- 8. A method of Claim 1 wherein said COX-2 selective inhibitor is 3-phenyl-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone or 5-chloro-3-(4-(methylsulfonyl)phenyl)-2-(2-methyl-5-pyridinyl)pyridine.
- 9. A method of Claim 1 wherein said COX-2 selective inhibitor is 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide or 4-(5-methyl-3-phenylisoxazol-4-yl)benzenesulfonamide.
 - 10. A method of Claim 1 whrein said thromboxane inhibitor is a thromboxane synthase inhibitor.
 - 11. A method of Claim 1 wherein said thromboxane inhibitor is a thromboxane receptor antagonists.
- 25
 12. A pharmaceutical composition comprising a therapeutically or prophylactically effective amount of a COX-2 selective inhibitor and a cardiovascular protective amount of a thromboxane inhibitor, and a pharmaceutically acceptable carrier in a unit dosage form.
- 30 13. A pharamceutical composition of Claim 12 wherein said COX-2 selective inhibitor is selected from the group consisting of:
 - 3-phenyl-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone;
 - 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone;
 - 5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-3-(3-fluorophenyl)-5H-furan-2-one;
- 35 5,5-dimethyl-4-(4-(methylsulfonyl)phenyl)-3-(2-propoxy)-5H-furan-2-one;

covers the magnetic layer 26, and is made of electrically insulation material.

5

10

15

20

25

In general, a magnetic impedance device includes a magnetic layer having zero magneto-striction or low magneto-striction. This is because the magnetic layer having low magneto-striction is prevented from changing the magnetic properties generated by a striction of the magnetic layer, for example, from reducing the sensor sensitivity or the detection accuracy. However, the inventors obtain the following experimental results. In the device having a protection layer for covering the magnetic layer, an internal stress σ in the protection layer affects the magnetic properties of the magnetic layer, so that the sensor sensitivity is reduced. Further, there is a different influence of the internal stress σ affecting the magnetic properties of the magnetic layer between a case where the internal stress σ of the protection layer is a compression stress and a case where the internal stress σ is a tensile stress.

Considering the above experimental result, the device 2 according to the second embodiment includes the substrate 22, the insulation layer 24, the magnetic layer 26, a pair of electrode pads 28a, 28b and the protection layer 32. The external magnetic field Hext is applied to the device 2 along with the energization direction of the alternating current.

Although the magnetic layer id made of NI-Fe series alloy film, the magnetic layer 26 can be formed of linear shaped or thin film type amorphous alloy such as Co-Nb-Zr alloy, Co-Si-B alloy, and the like. There is no limitation of the shape of the magnetic layer

26.

5

10

15

20

25

The protection layer 32 covers the surface of the magnetic layer 26 and the surface of the insulation layer 24. The electrode pads 28a, 28b are not covered with the protection layer 32, so that the electrode pads 28a, 28b are exposed from the protection layer 32. The protection layer 32 is made of non-magnetic material having electrically insulation property. Preferably, the protection layer 32 is made of, for example, silicon nitrides, aluminum nitrides, silicon oxides, phosphorized silicon oxides, and boron-doped silicon oxides. The protection layer 32 made of these materials prevents from oxidizing in a case where the magnetic layer 26 is made of easily oxidized material such as Ni and/or Fe, or prevents from crystallizing by heat treatment in a case where the magnetic layer 26 is made of amorphous alloy. Further, these materials are usually used in a general semiconductor process, so that the device 2 can be manufactured with using a general semiconductor process. Further, it is preferred that the protection layer 32 is formed of composite material having a plurality of insulation materials or has a laminated structure. In this case, by a combination of a plurality of insulation materials, the internal stress σ of the protection layer 32 can be reduced. Preferably, a thickness L11 of the protection layer 32 is in a range between 0.2 $\mu\,\mathrm{m}$ and 5 $\mu\,\mathrm{m}$. In this case, the protection layer 32 can protect the magnetic layer 26 sufficiently. Further, the protection layer 32 is prevented from removing from the magnetic layer 26 caused by the internal stress σ of the protection layer 32. More preferably, the thickness of the protection layer 32 is in a range between $0.5\,\mu\,\mathrm{m}$ and $2\,\mu\,\mathrm{m}$. In

this case, the protection layer 32 protects the magnetic layer 26 much sufficiently. The above reasons are described later.

5

10

15

20

25

When the internal stress σ of the protection layer 32 is a compression stress, it is preferred that a magnitude of the compression stress is lower than 500MPa. When the internal stress σ of the protection layer 32 is a tensile stress, it is preferred that the magnitude of the tensile stress is lower than 100MPa. this case, the sensor sensitivity of the device 2 is prevented from reducing caused by a deterioration of soft magnetic property of the magnetic layer 26 by the internal stress σ of the protection layer 32. Further, the protection layer 32 is prevented from removing from the magnetic layer 26 caused by the internal stress σ of the protection layer 32. When the internal stress σ of the protection layer 32 is a compression stress, more preferably the magnitude of the compression stress is lower than 200MPa. When the internal stress σ of the protection layer 32 is a tensile stress, more preferably the magnitude of the tensile stress is lower than 50MPa. Preferably, the protection layer 32 has an insulation resistance, which is equal to or larger than $10\,\mathrm{M}\Omega$. The above reasons are described later.

When the magnetic layer 26 is made of, for example, amorphous alloy, the amorphous alloy may be crystallized in a semiconductor process under high temperature higher than 400°C, so that the magnetic property is changed, i.e., the sensor sensitivity is reduced. Therefore, when the magnetic layer 26 is made of a certain material such as amorphous material, which is easily affected by temperature, it is preferred that the protection layer 32 is made

of a material such as SiO₂, phospho-silicate glass (i.e., PSG), boro-silicate glass (i.e., BSG) and boro-phospho-silicate glass (i.e., BPSG), which has low heat conductivity.

5

10

15

20

25

When the magnetic layer 26 includes a material such as Ni and/or Co, which is easily oxidized, it is considered that the heat 400°C in a high temperature higher than treatment under semiconductor process is performed in vacuum so that the magnetic layer 26 can be prevented from oxidizing. However, additional equipment to perform the heat treatment in vacuum is required, so that the manufacturing cost is increased. On the other hand, in a case where the protection layer 32 is disposed on the magnetic layer 26, the magnetic layer 26 is prevented from oxidizing even when the heat treatment is performed in the presence of oxygen, for example, in air. Thus, no additional equipment to perform the heat treatment in vacuum is necessitated. Further, comparing with increase of the manufacturing cost to prepare the additional equipment of the heat treatment in vacuum, manufacturing cost increase of an additional process to form the protection layer 32 is much lower. Moreover, the magnetic layer 26 is prevented from oxidizing by the protection layer 32 after being manufactured.

Next, the magnetic impedance device 2 according to the second embodiment is manufactured as follows. At first, as shown in Figs. 4A to 4C, the substrate 22 is prepared. Then, the insulation layer 24 is formed on the substrate 22. When the substrate 22 is made of silicon, the surface of the silicon substrate 22 is oxidized with using thermal oxidation method so that the insulation layer 24 made of silicon oxides is formed. Further, the insulation layer 24 can

be formed with using chemical vapor deposition method, sputtering method, or the like, and is made of silicon oxides, silicon nitrides. There is no limitation of the deposition method for forming the insulation layer 24.

5

10

15

20

25

Next, a ferromagnetic film having a soft magnetic property is formed on the insulation layer 24. The ferromagnetic film can be formed with using sputtering method, vapor deposition, or coating method. There is no limitation of the deposition method for forming the ferromagnetic film. The ferromagnetic film is patterned into a predetermined shape with using photo etching method, so that the magnetic layer 26 is formed, as shown in Fig. 4C. In this case, preferably the single axial anisotropic magnetic field is applied to the magnetic layer 26 in the energization direction of the alternating current, i.e., the longitudinal direction of the magnetic layer 26 with using deposition under magnetic filed or heat treatment under magnetic field, so that the magnetic layer 26 has the axis of easy magnetization.

Next, a preliminary layer for an electrode is formed on both the magnetic layer 26 and the insulation layer 24. The preliminary layer can be formed with using the sputtering method, vapor deposition, or coating method. There is no limitation of the deposition method for forming the preliminary layer. The preliminary layer is patterned into a predetermined shape with using photo etching method, so that the electrode pads 28a, 28b are formed so as to cover both ends of the magnetic layer 26, as shown in Figs. 1 and 2.

Next, an insulation material layer is formed on the insulation

layer 24, the magnetic layer 26 and the electrode pads 28a, 28b. The insulation material layer can be formed with using the CVD method (that includes a plasma CVD method), the sputtering method and the like. There is no limitation of deposition method. This insulation material layer is patterned into a predetermined shape with using reactive ion etching method (i.e., RIE method) and the like, so that part of the insulation material layer disposed on the electrode pads 28a, 28b is removed. Thus, the protection layer 32 shown in Figs. 19 and 20 is formed. Then, the electrodes 28a, 28b is connected with bonding wires. Thus, the magnetic impedance device 2 is completed.

5

10

15

20

25

Specifically, the detailed manufacturing method is described as follows. A magnetic impedance device S205 (that is shown in Fig. 21) according to this embodiment is manufactured. As shown in Fig. 4, the silicon substrate 22 is prepared. The insulation layer 24 made of silicon oxides having thickness of 1μ m is formed on the substrate 22 with using the thermal oxidation method.

Next, a Ni₈₁Fe₁₉ Alloy film having thickness of $2\,\mu$ m is formed on the insulation layer 24 with using the sputtering method under magnetic field. The Ni₈₁Fe₁₉ Alloy film is patterned into a predetermined shape with using the photo etching method, so that the magnetic layer 26 is formed. Specifically, the magnetic layer 26 has a length of 2mm and a width of $10\,\mu$ m. At this time, the single axial anisotropic magnetic field is applied to the magnetic layer 26 in the energization direction of the alternating current, i.e., the longitudinal direction of the magnetic layer 26 with using the sputtering method under magnetic filed, so that the magnetic layer

26 has the axis of easy magnetization.

5

10

15

20

25

Next, aluminum layer having thickness of 1 μ m is formed on both the insulation layer 24 and the magnetic layer 26. The aluminum layer is patterned into a predetermined shape with using the photo etching method so that the electrode pads 28a, 28b are formed so as to cover both ends of the magnetic layer 26, as shown in Figs. 1 and 2. Specifically, the area of each electrode pad 28a, 28b disposed on the upper surface of the electrode pad 28a, 28b is a square of $200 \, \mu \, \text{m} \, \text{X} \, 200 \, \mu \, \text{m}$.

Next, a silicon nitride layer having thickness of $1\,\mu\,\mathrm{m}$ is formed on the insulation layer 24, the magnetic layer 26 and the electrode pads 28a, 28b with using the plasma CVD method. The silicon nitride layer is patterned into a predetermined shape with using the RIE method and the like so that part of the insulation material layer disposed on the electrode pads 28a, 28b is removed. Thus, the protection layer 32 is formed. On the assumption that the device S205 is processed in semiconductor process, the device S205 is processed in argon (i.e., Ar) gas atmosphere under 450°C during 30 minutes. After that, each electrode pad 28a, 28b is connected with a bonding wire. Thus, the device S205 is completed.

The device S205 is evaluated with using a coil and an impedance analyzer. Here, the coil provides an external magnetic field Hext applied to the device S205, and the impedance analyzer detects a high frequency impedance Z generated at both ends of the magnetic layer 26 of the device S205. The external magnetic field Hext is parallel to the energization direction of the high frequency alternating current generated from the alternating current supply