Mathématiques – L2 – MPCI

PLANCHE D'EXERCICES 2 : ESPACES EUCLIDIENS

1 Orthogonalité dans les espaces euclidiens

Exercice 1 Dans \mathbb{R}^3 muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt la base suivante :

$$u = (1, 0, 1), v = (1, 1, 1), w = (-1, -1, 0).$$

2 Endomorphismes

Exercice 2 L'espace \mathbb{R}^4 est muni de sa structure euclidienne canonique. Déterminer, dans la base canonique, la matrice de la projection orthogonale sur le sous-espace vectoriel d'équations

$$\begin{cases} x + 2y + 3z = 0 \\ x + 2y + 3z + 4t = 0 \end{cases}$$

Exercice 3 Soit $E = \mathbb{R}[X]$. On définit l'application $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ par :

$$\langle P,Q\rangle = \int_{-1}^1 P(t)Q(t)t^2dt \quad \textit{pour} \quad P,Q \in E.$$

- a) Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E. On notera $\| \cdot \|$ la norme associée.
- b) Soit $F = \mathbb{R}_1[X]$ le sous-espace de E formé des polynômes de degré inférieur ou égal à 1. Appliquer le procédé de Schmidt à la base (1,X) de F pour obtenir une base orthonormée (u_0,u_1) de F.

Soit $\pi: E \to E$ la projection orthogonale sur F. Déterminer $\alpha_0, \ \alpha_1 \in \mathbb{R}$ tels que

$$\pi(X^2) = \alpha_0 u_0 + \alpha_1 u_1.$$

- c) En déduire la valeur de $\|\pi(X^2)\|^2$.
- d) Calculer

$$\inf_{(a,b)\in\mathbb{R}^2} \int_{-1}^1 (t^2 - at - b)^2 t^2 dt.$$

Exercice 4 (Partiel) On considère \mathbb{R}^3 muni du produit scalaire usuel. Soit P le plan d'équation x + y + z = 0.

- 1. Trouver une base orthonormée de P.
- 2. Soit $\pi: \mathbb{R}^3 \to \mathbb{R}^3$ la projection orthogonale sur P. Trouver l'expression de $\pi(X)$ où X un vecteur quelconque de \mathbb{R}^3 .

- 3. Calculer la matrice M de π exprimée dans la base canonique de \mathbb{R}^3 .
- 4. La matrice M est elle diagonalisable?

Exercice 5 L'espace \mathbb{R}^4 est muni de sa structure euclidienne canonique. On note u l'endomorphisme de \mathbb{R}^4 représenté dans la base canonique par la matrice

$$A = \frac{1}{7} \begin{bmatrix} -1 & -4 & 4 & -4 \\ -4 & 5 & 2 & -2 \\ 4 & 2 & 5 & 2 \\ -4 & -2 & 2 & 5 \end{bmatrix}$$

- 1 Justifier l'existence d'une base orthonormale par rapport à laquelle u est représenté par une matrice diagonale.
- 2 Déterminer une base orthonormale par rapport à laquelle u est représenté par une matrice diagonale.

Exercice 6 Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique. On suppose qu'il existe $p \in \mathbb{N}$ tel que $A^p = 0$. Que vaut A?

Exercice 7 Soit u un endomorphisme symétrique d'un espace euclidien E vérifiant, pour tout $x \in E$, $\langle u(x), x \rangle = 0$. Que dire de u?

Exercice 8 Soit E un espace préhilbertion. Pour x_1, \ldots, x_p des vecteurs de E, on appelle matrice de Gram la matrice de $\mathcal{M}_p(\mathbb{R})$ définie par $(\langle x_i, x_j \rangle)_{i,j}$. On appelle déterminant de Gram des vecteurs x_1, \ldots, x_p , et on note $G(x_1, \ldots, x_p)$, le déterminant de cette matrice.

- 1. Démontrer que (x_1, \ldots, x_p) est une famille libre si et seulement si $G(x_1, \ldots, x_p) \neq 0$.
- 2. On suppose désormais que (x_1, \ldots, x_p) est une famille libre, et on note $F = \text{vect}(x_1, \ldots, x_p)$. Soit également $x \in E$. Démontrer que

$$d(x, F)^2 = \frac{G(x, x_1, \dots, x_p)}{G(x_1, \dots, x_p)}.$$

Exercice 9 Soit $E = \mathbb{R}_3[X]$ muni du produit scalaire $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t)dt$. On considère l'endomorphisme de E défini par $\phi(P)(X) = P(-X)$. Démontrer que ϕ est une symétrie orthogonale.

3 Groupe orthogonal en dimension 2 et 3

Exercice 10 Expressions analytiques

Reconnaître les endomorphismes de \mathbb{R}^3 définis par les expressions analytiques dans la base canonique :

1)
$$\begin{cases} 3x' = 2x + 2y + z \\ 3y' = -2x + y + 2z \\ 3z' = x - 2y + 2z \end{cases}$$

2)
$$\begin{cases} 9x' = 8x + y - 4z \\ 9y' = -4x + 4y - 7z \\ 9z' = x + 8y + 4z \end{cases}$$

3)
$$\begin{cases} 3x' = -2x + 2y - z \\ 3y' = 2x + y - 2z \\ 3z' = -x - 2y - 2z \end{cases}$$

$$(9z' = x + 8y + 4z)$$

$$3x' = -2x + 2y - z$$

$$3y' = 2x + y - 2z$$

$$3z' = -x - 2y - 2z$$

$$4x' = -2x - y\sqrt{6} + z\sqrt{6}$$

$$4y' = x\sqrt{6} + y + 3z$$

$$4z' = -x\sqrt{6} + 3y + z$$

5)
$$\begin{cases} 15x' = 5x - 10z \\ 15y' = -8x + 5y + 6z \\ 15z' = 6x - 10y + 8z \end{cases}$$

Exercice 11 Expression analytique Déterminer la matrice de la rotation R de \mathbb{R}^3 dans une base orthonormée (i,j,k) telle que R(u)=u avec $u=(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ et R(i)=k. Donner son angle de rotation.

Exercice 12 Compléter la matrice $A = \frac{1}{7} \begin{pmatrix} 6 & 3 & . \\ -2 & 6 & . \\ 3 & . & . \end{pmatrix}$ en une matrice orthogonale positive.

Reconnaître l'application de matrice A dans la base canonique de \mathbb{R}^3 .

Exercice 13 Soient $(a, b, c) \in \mathbb{R}^3$, on pose S = a + b + c et $\sigma = ab + bc + ca$, et

$$M = \left(\begin{array}{ccc} a & b & c \\ c & a & b \\ b & c & a \end{array}\right).$$

- 1. Démontrer que $M \in O_3(\mathbb{R})$ si et seulement $\sigma = 0$ et $S = \pm 1$.
- 2. Démontrer que $M \in SO_3(\mathbb{R})$ si et seulement si $\sigma = 0$ et S = 1.