Master's Theorem

Master theorem

General formula that works if recurrence has the form:

$$T(n) = aT(n/b) + f(n) \longrightarrow (1)$$

- a is number of subproblems
- n/b is size of each subproblem
- f(n) is cost of non-recursive part

Eqn (1) describes the running time of an algorithm that divides a problem of size n = b, where a and b are positive constants. The a subproblems are solved recursively, each in time T(n/b). The function f(n) encompasses the cost of dividing the problem and combining the results of the subproblems.

Consider a recurrence of the form

$$T(n) = a T(n/b) + f(n)$$

with $a \ge 1$, $b \ge 1$, and f(n) eventually positive.

- a. If $f(n) = O(n^{\log_b(a)-\epsilon})$, then $T(n) = \Theta(n^{\log_b(a)})$.
- b. If $f(n) = \Theta(n^{\log_b(a)})$, then $T(n) = \Theta(n^{\log_b(a)} \log(n))$.
- c. If $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ and f(n) is regular, then $T(n) = \Theta(f(n))$

[f(n) regular iff eventually $af(n/b) \le cf(n)$ for some constant $c \le 1$]

Examples

```
T(n) = 4T(n/2) + n
a = 4, b = 2
\Rightarrow n^{\log_b a} = n^2;
f(n) = n.
CASE 1: f(n) = O(n^{2-\varepsilon}) \text{ for } \varepsilon = 1.
\therefore T(n) = \Theta(n^2)
```

$$T(n) = 4T(n/2) + n^{2}$$

$$a = 4, b = 2$$

$$\Rightarrow n^{\log ba} = n^{2};$$

$$f(n) = n^{2}.$$

CASE 2:
$$f(n) = \Theta(n^2 \lg^0 n)$$
, that is, $k = 0$.

$$\therefore T(n) = \Theta(n^2 \lg n)$$

$$T(n) = 4T(n/2) + n^{3}$$
 $a = 4, b = 2$
 $\Rightarrow n^{\log ba} = n^{2};$
 $f(n) = n^{3}.$

CASE 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(cn/2)^{3} \le cn^{3}$
for $c = 1/2$.
 $\therefore T(n) = \Theta(n^{3}).$

$$T(n) = 9T(n/3) + n$$

$$a=9$$
, $b=3$, $f(n) = n$

$$n^{\log_{b} a} = n^{\log_{3} 9} = \Theta(n^2)$$

Since
$$f(n) = O(n^{\log_3 9 - \epsilon})$$
, where $\epsilon = 1$, CASE 1 applies:

Thus the solution is $T(n) = \Theta(n^2)$

$$T(n) = T(2n/3) + 1$$

$$a=1, b=3/2, f(n) = 1$$

$$n \log_{b}^{a} = n \log_{3/2}^{1}$$

$$f(n) = 1$$

Since $f(n) = \Theta(n \log_b a) = \Theta(1)$, CASE 2 applies:

Thus the solution is $T(n) = \Theta(lgn)$

$$T(n) = 3T(n/4) + nlgn$$

$$a=3, b=4, f(n) = nlgn$$

$$n_{b}^{\log a} = n_{4}^{\log 3} = n^{0.793}$$

Since
$$f(n) = \Omega(n_{4}^{\log_{4} 3 + \epsilon})$$
 where ϵ is approximately 0.2

CASE 3 applies:

For sufficiently large n

$$af(n/b)=3f(n/4)lg(n/4) \le (3/4)nlgn = cf(n)$$
 for $c=3/4$

By case 3

Thus the solution is $T(n) = \Theta(n \lg n)$

T(n) = 2T(n/2) + nlgn

$$a=2, b=2, f(n) = nlgn$$

$$n^{\log a} = n$$

Since f(n) = nlgn is asymptotically larger than $n \log_b a = n$

CASE 3 applies:

But f(n) = nlgn is NOT polynomially larger than $n \stackrel{log \ a}{b} = n$

The ratio $f(n) / n \log_b^a = (n \lg n) / n$ is asymptotically less than n^ϵ

For any positive constant ε

So the recurrence falls the gap between case 2 and case 3

Master theorem CANNOT be applied to the recurrence