Actuarial Formula Cheat Sheet My Actuarial Revision Sheet

 ${\it Master in \ Insurance \ Economics/Econometrics}$ ${\it Master \ in \ Actuarial \ Science}$

30août2025

Insurance Keywords

1 - Life and Non-Life Insurance

The distinction between life and non-life insurance is fundamental. An insurer cannot offer both types of insurance without holding two separate companies:

- **Life insurance**, i.e., personal insurance excluding coverage for bodily injuries,
- Non-life insurance, which includes property and liability insurance as well as insurance for bodily injuries.

2 – The Principles of Insurance

Insurance is assumed to :

- be based on utmost good faith,
- apply only if the insured has an insurable interest in preserving the item (property insurance),
- operate under the indemnity principle :
 - not allow enrichment from a claim settlement,
 - not even through insurance accumulation,
 - include subrogation (in Liability Insurance, if the insurer compensates the insured victim, the insured cannot then claim from the party responsible for the loss.)
- not reduce the insured's efforts in prevention and protection, as a reasonable person, even if financially protected.

establish causality in Liability Insurance — I am not liable if I did not contribute to the cause of the loss.

3 - The Insurance Policy

The **insurance policy** (or contract) is the contractual document that governs the relationship between the insurance company (or mutual insurance company) and the insured (policyholder). This contract defines in particular:

- 1. the list of covered events, including any exclusions,
- 2. the coverage, i.e., the assistance provided to the insured in case of a loss,
- 3. the obligations of the insured :
 - any preventive measures required to reduce risk,
 - time limits for reporting a claim to the insurer,
 - the amount and payment conditions of the premium (deductible, limit),
 - the conditions for cancellation of the policy (automatic renewal),
- 4. the obligations of the insurance company : time limits for compensation payments.

4 – The Premium and Claims

Classically, the role of the insurer is to substitute a constant C, the **contribution** or the **premium**, for a random claim S. La **pure premium** or **technical premium** aims to compensate claims without surplus or profit, overall $C_t = \mathbb{E}[S]$

The **net premium** is higher than the pure premium. It aims to cover the cost of claims and provide a safety margin.

The **gross premium** is the net premium + overhead expenses + commissions + expected profit + taxes.

For commercial reasons, the premium actually charged may differ significantly from the technical premium.

Written premium: premium charged to the insured to cover claims that may occur during the coverage period defined by the contract (generally 1 year in Property and Casualty insurance).

Earned premium : proportion of the written premium used to cover the risk over the exposure period of one policy year.

The S/P is the key indicator. For the insurer to make a profit the $S/P \ll 1$.

5 - Loss / Payment Triangle

Insurance accounting is broken down by the **accident year** of the claim. If a premium covers multiple calendar years, a proportional part will be allocated to each. Each payment and each claim reserving is assigned to the accident year. The monitoring of payments or expenses is expressed through a triangle (triangular matrix):

$$\begin{pmatrix} C_{1,1} & C_{1,2} & \dots & C_{1,n} \\ C_{1,1} & C_{1,2} & \dots & C_{2,n-1} \\ \vdots & \vdots & & & \\ C_{n-1,1} & C_{n-1,2} & & & \\ C_{n,1} & & & & \end{pmatrix}$$

where $C_{i,j} = \sum_{k=1}^{j} X_{i,k}$ represents the cumulative amount of claims paid for origin year i and development year j.

6 - Solvency II and Risk Management

Solvency II is the European regulatory framework applicable to insurers and reinsurers since 2016. It is based on three interdependent pillars:

— Pillar 1: Quantitative Requirements

Determines the capital requirements:

- **SCR** (Solvency Capital Requirement): capital to absorb an extreme shock (99.5% over 1 year),
- MCR (Minimum Capital Requirement) : absolute minimum threshold,
- admissible assets to cover technical reserves and capital requirements.

Pillar 2 : Governance, Internal Control, and Risk Management

The core link with **ERM** (*Enterprise Risk Management*). The requirements cover :

- governance : boards of directors responsible for the risk management framework;
- an effective **internal control** system;
- independent key functions : actuarial, risk management, compliance, internal audit;
- **ORSA** (*Own Risk and Solvency Assessment*): internal assessment of risks and solvency, a central tool aligning strategy, risk appetite, and economic capital.

— Pillar 3 : Market Discipline

Based on transparency and communication:

— **SFCR** (Solvency and Financial Condition Report): public, summarizes solvency and financial position,

- **RSR** (*Regular Supervisory Report*): intended for the supervisor,
- quantitative reporting : regulatory statements (QRTs), regular submission of financial and prudential data.

7 - Main Branches of Life and Non-Life Insurance

Life insurance covers long-term commitments, with or without a savings component :

- **Life insurance**: lump sum or annuity paid if the insured is alive at a given date.
- **Death insurance**: payment if the insured dies during the covered period.
- **Endowment insurance** : combination of life and death coverage.
- **Life annuity**: periodic payments until death.
- **Savings/retirement**: products with deferred capital or deferred annuity.
- Unit-linked policies: benefits dependent on the value of financial assets.
- Group contracts: occupational pensions, group welfare insurance.

Non-life insurance covers risks occurring in the short or medium term :

- **Automobile**: third-party liability, vehicle damage.
- **Home**: fire, theft, water damage, liability.
- General liability: personal liability, business liability.
- Health and welfare: medical reimbursements, disability, incapacity.
- **Personal accident**: capital in case of accident, disability,

or death.

- Business interruption : financial losses related to a claim.
- **Technical risks**: construction, machinery breakdown.
- Transport, aviation, maritime insurance : goods in transit, specific liabilities.

8 - Actuary

In practice, the actuary:

- prices insurance and welfare products,
- estimates technical reserves,
- projects cash flows and values long-term liabilities,
- measures economic capital (SCR, ORSA) and contributes to ERM,
- advises management on strategy, solvency, and regulatory compliance.

Financial Mathematics

9 - Capitalization Discounting

10 – Interests

Discount rate d

$$d = i/(1+i)$$

 $Simple\ interest\ i$

$$I_t = Pit = Pi\frac{k}{365}$$

 $Compound\ interest\ i$

$$V_n = P(1+i)^n = P\left(1 + \frac{p}{100}\right)^n$$

 $Continuous\ interest\ r$

$$V_t = V_0 e^{rt}$$

Effective rate i_e

$$i_e = \left(1 + \frac{i}{m}\right)^m - 1$$

where i is the nominal rate and m the number of periods in a vear.

Equivalent rate $i^{(m)}$

$$i^{(m)} = m(1+i)^{1/m} - 1$$

Nominal rate i and periodic rate

The **nominal** or **face** rate allows calculating the interest due over one year. The **periodic** rate corresponds to the nominal rate divided by the number of periods in a year i/m. If the periodic rate is weekly, the nominal rate will be divided by 52.

11 - Present Value and Future Value

The present value (PV) represents the capital that must be invested today at an annual compound interest rate i to obtain future cash flows (F_k) at times t_k :

$$PV = \sum_{k=1}^{n} F_k \times \frac{1}{(1+i)^{t_k}} \tag{1}$$

When the F_k are constant

$$PV = K \frac{1 - (1+i)^{-n}}{i} \tag{2}$$

The future value (FV) represents the value of the capital at T which, with an annual compound interest rate i, capitalizes the

future cash flows (F_k) at times t_k .

$$FV = V_n = \sum_{k=1}^{n} F_k \times (1+i)^{n-t_k}$$
 (3)

More generally $FV = (1+i)^n PV$.

12 - Annuities

Certain annuity $a_{\overline{n}|}$ (or $a_{\overline{n}|i}$ if the interest rate i needs to be specified): this is the default case in financial mathematics. Its payments are, for example, guaranteed by a contract.

Contingent annuity \ddot{a}_x : its payments are conditional on a random event, such as a life annuity of an individual aged x. In this example, payments continue until death occurs:

The date of death is represented here by a small coffin. This type of annuity will be extensively studied in the life actuarial section. Annuity in arrears (immediate) $a_{\overline{n}|}$: its periodic payments are made at the end of each payment period, as with a salary paid at the end of the month. This is the default case, previously illustrated for the certain annuity.

$$\ddot{a}_{\overline{n}|} = 1 + v + \dots + v^{n-1} = \frac{1 - v^n}{1 - v} = \frac{1 - v^n}{d}$$

$$PV_{\overline{n}|}^{\text{due}} = K\ddot{a}_{\overline{n}|} = K\frac{1 - v^n}{d}$$

Annuity in advance (due) $\ddot{a}_{\overline{n}|}$: its periodic payments are made at the beginning of each payment period, as with rent payments, for example.

Also denoted PV^{im} :

$$a_{\overline{n}|} = v + v^2 + \dots + v^n = \frac{1 - v^n}{i} = v \frac{1 - v^n}{1 - v}$$

$$PV_{\overline{n}|}^{im} = Ka_{\overline{n}|} = K\frac{1 - v^n}{i}$$

Perpetuity a or $a_{\overline{\infty}}$:

$$a = 1/a$$

Deferred annuity $m|a_{\overline{n}|}$: its payments do not start in the first period but after m periods, with m fixed in advance.

Periodic / monthly annuity $a^{(m)}$: the default periodicity is one year, but the unit payment can also be spread over m periods within the year.

If $i^{(m)}$ represents the equivalent nominal (annual) interest rate with m periods per year, then $i^{(m)}=m\left((1+i)^{1/m}-1\right)$.

Similarly, $d^{(m)}$ is the nominal discount rate consistent with d and $m:d^{(m)}=m\left(1-(1-d)^{1/m}\right)$.

$$\ddot{a}_{\overline{n}|}^{(m)} = \frac{1}{m} \sum_{k=0}^{mn-1} v^{\frac{k}{m}} = \frac{d}{d^{(m)}} \ddot{a}_{\overline{n}|} = \frac{1-v^n}{d^{(m)}} \approx \ddot{a}_{\overline{n}|} + \frac{m-1}{2m} \left(1-v^n\right)$$

$$a_{\overline{n}|}^{(m)} = \frac{1}{m} \sum_{k=1}^{mn} v^{\frac{k}{m}} = \frac{i}{i^{(m)}} a_{\overline{n}|} = \frac{1 - v^n}{i^{(m)}} \approx a_{\overline{n}|} - \frac{m - 1}{2m} (1 - v^n)$$

Unit annuity a: it is used when constructing annuity formulas. For a constant annuity, the total amount paid each year is 1, regardless of m.

Dynamic annuity, increasing/decreasing Ia/Da: in its simplest form, it pays an amount that starts at 1 (n) and increases (decreases) each period arithmetically or geometrically. In the following example, the progression is arithmetic. The prefix I (increasing) is used to indicate increasing annuities and D (decreasing) for decreasing annuities.

$$(I\ddot{a})_{\overline{n}|} = 1 + 2v + \dots + nv^{n-1} = \frac{1}{d}(\ddot{a}_{\overline{n}|} - nv^n)$$
 (4)

with, we recall, d = i/(1+i) and in arrears (immediate)

$$(Ia)_{\overline{n}|} = v + 2v^2 + \dots + nv^n = \frac{1}{i} (\ddot{a}_{\overline{n}|} - nv^n)$$

$$(D\ddot{a})_{\overline{n}|} = n + (n-1)v + \dots + v^{n-1} = \frac{1}{d}(n-a_{\overline{n}})$$

and in arrears:

$$(Da)_{\overline{n}|} = nv + (n-1)v^2 + \dots + v^n = \frac{1}{i}(n-a_{\overline{n}|})$$

13 - The Loan (Indivisible)

The main property of the loan is to consider separately the interest from the repayment (or amortization).

By constant repayment or constant annuity: the sum of the amortization and the interest at each period is constant.

By constant amortization.

By a bullet repayment, where the interest is constant. Only the interests are paid periodically until maturity, when the total repayment is made.

14 – Loan Amortization Schedule

	In fine	Constant amortizations	Constant annuities
Outstanding principal S_k	$T_k = S_0, T_n = 0$	$S_0\left(1-\frac{k}{n}\right)$	$S_0 \frac{1 - v^{n-k}}{1 - v^n}$
Interest U_k	$i \times S_0$	$S_0\left(1-\frac{k-1}{n}\right)i$	$K\left(1-v^{n-k+1}\right)$
$\begin{array}{c} \text{Amortiz-} \\ \text{ations} \\ T_k \end{array}$	$T_k = O, T_n = S_0$	$\frac{S_0}{n}$	Kv^{n-k+1}
Annuity K_k	$K_k = iS_0, K_n = (1+i)S_0$	$\frac{S_0}{n}(1-(n-k+1)i)$	$K = S_0 \frac{i}{1 - v^n}$

Market Finance

15 - Market Functioning

The Exchange – a place of exchange – enables, in fact, the physical meeting between capital demanders and suppliers. The main listings concern equities, bonds (Fixed Income), and commodities. Listed are securities such as stocks or bonds, funds (Exchange Traded Funds that replicate equity indices, ETC or ETN that replicate more specific indices or commodities, SICAV or FCP, subscription warrants), futures contracts, options, swaps, and structured products.

The Financial Markets Authority (AMF) oversees:

- the protection of invested savings;
- the information of investors;
- the proper functioning of the markets.

Euronext (including Amsterdam, Brussels, Lisbon, and Paris) is the main stock exchange in France. Its competitors include Deutsche Börse (which includes Eurex, EEX) in Europe, or ICE (which includes NYSE (2012), NYBOT (2005), IPE (2001), LIFFE) and CME Group (including CBOT, NYMEX, COMEX) in the United States.

The over-the-counter market (OTC) represents a major share of volumes traded outside organized markets. Since the Pittsburgh G20 (2009), certain standardized OTC derivatives must be cleared through a central entity. These CCPs (Central Counterparties) thus play the role of clearinghouses: they replace the bilateral contract with two contracts between each party and the CCP.

16 - The Money Market

Short-term interest-bearing securities, traded on money markets, are generally at **discounted interest**. Nominal rates are then annual and calculations use **proportional rates** to adjust for durations less than one year. These securities are quoted or valued according to the discount principle and with a Euro-30/360 calendar convention.

In the American market, public debt securities are called : Treasury Bills (T-bills) : ZC < 1 year, Treasury Notes (T-notes) : ZC < 10 years, Treasury Bonds (T-bonds) : coupon bonds with maturity > 10 years.

They are mainly:

- BTF (fixed-rate Treasury bills, France): issued at 13, 26, 52 weeks, discounted rate, weekly auction, nominal 1 €, settlement at T+2.
- Treasury bills > 1 year : same rules as bonds (see next section).
- Certificates of deposit (CDN): securities issued by banks at fixed/discounted rate (short term) or variable/post-discounted rate (long term), also called BMTN.

- **Eurodollars**: USD deposits outside the USA, formerly indexed on LIBOR, now declining.
- Commercial paper: unsecured short-term securities issued by large companies to finance their cash flow.

Price calculations of a fixed-rate Treasury bill with discounted interest

In the case of a discounted interest security according to the Euro-30/360 convention, the discount D is expressed as :

$$D = F \cdot d \cdot \frac{k}{360}$$

where F denotes the nominal value, d the annual discount rate used to value the discounted security, and k the maturity in days. If the discount rate d is known, then the price P is expressed as:

$$P = F - D = F\left(1 - d \cdot \frac{k}{360}\right)$$

Similarly, if the price P is known, then the discount rate d is derived as :

$$d = \frac{F - P}{F} \cdot \frac{360}{k}$$

The main Futures Contracts: Federal Funds Futures (US), Three-Month SOFR Futures (US), ESTR Futures (EU), SONIA Futures (UK), Euribor Futures (EU).

17 - Bond Market

Bonds are long-term debt securities in which the issuer (central or local government, bank, borrowing company) promises the bondholder (the lender) to pay interest (coupons) periodically and to repay the nominal value (or face value, or principal) at maturity. As mentioned in the previous section, Treasury bills with a maturity greater than one year will be treated as bonds with maturities under 5 years because their functioning is similar.

Zero-coupon bonds: pay only the nominal value at maturity. With E the issue price and R its redemption value:

Coupon bonds: Fixed-rate bonds have a coupon rate that remains constant until maturity. Assuming a *bullet* repayment, with E the issue price, c the coupons, and R the redemption value, it can be illustrated as follows:

Indexed bonds (inflation-linked bonds) have coupons and sometimes also the nominal value indexed to inflation or another economic indicator, such as Treasury Assimilable Bonds indexed to inflation (OATi). The values of c vary.

Bonds with floating rate, variable rate, or resettable rate: have a coupon rate linked to a reference interest rate (for example, the euro short- term rate (\in STR)).

Perpetual bonds have no maturity date; the principal is never repaid.

A distinction is often made between government bonds (Treasury bonds) and corporate bonds issued by private companies.

A bond is mainly defined by a **nominal value** F (Face Value), the **nominal rate** i, its duration or **maturity** n. In the default case, the bondholder lends the amount E=F at issuance at time 0, receives each year a coupon $c=i\times F$, and at n, the principal or capital R=F is returned. When E=F, the issue is said to be at par, and when R=F, the redemption is said to be at par.

The price of a bond is determined by the present value of the expected future cash flows (coupons and principal repayment) discounted at the market yield rate r.

The price calculation of bonds simply relies on the present value formula :

$$VP = \sum_{k=1}^{n} \frac{c}{(1+r)^k} + \frac{F}{(1+r)^n}$$

where:

- PV: price or present value of the bond,
- -r: market interest rate for the relevant maturity.

For bonds with periodic coupons, the coupon is divided by the number of periods (m) per year and the formula becomes :

$$PV = \sum_{k=1}^{mn} \frac{c/m}{(1+r^{(m)})^k} + \frac{R}{(1+r^{(m)})^{mn}}$$

where c/m represents the periodic coupon payment and $r^{(m)}$ the periodic interest rate.

The bond yield is the value $r^{(m)}$, the equivalent rate of r over m periods in the year, which equates the present value VP_r with the current or market price of this bond.

The quotation of a bond is given as a percentage. Thus, a quotation of 97.9 on Euronext indicates a quoted value of $97.9/100 \times F$. It is quoted excluding **accrued coupons**, the portion of the next coupon to which the seller is entitled if the bond is sold before the payment of that coupon.

18 - Duration & Convexity

The Macaulay duration:

$$D = \sum_{t=1}^{n} t \cdot w_t, \quad \text{où} \quad w_t = \frac{PV(C_t)}{P}.$$

If the payment frequency is k per year, the duration expressed in years is obtained by dividing by k. The modified duration D^* :

$$D^* = \frac{D}{1+i}.$$

Which allows approximating the portfolio change ΔP in case of interest rate changes Δ_i

$$\Delta P \approx -P \ D^* \Delta_i$$

Similarly, the convexity

$$C = \frac{1}{P(i)} \times \frac{d^2 P(i)}{di^2},$$

which allows refining the approximation of ΔP

$$P(i + \Delta_i) \approx P(i) \left(1 - D^* \Delta_i + \frac{1}{2} C(\Delta_i)^2 \right).$$

19 - CAPM

Capital Asset Pricing Model:

$$E(r_i) = r_f + \beta_i (E(r_m) - r_f)$$

- $E(r_i)$ is the expected return of asset i,
- r_f is the risk-free rate,
- $E(r_m)$ is the expected market return,
- β_i is the sensitivity coefficient of asset i with respect to market variations.

The coefficient β_i measures the volatility of asset i relative to the overall market.

20 - Derivatives Market

A derivative contract (or contingent asset) is a financial instrument whose value depends on an underlying asset or variable. Options are part of derivative contracts.

An **option** is a contract that gives the right (without obligation) to buy (call) or sell (put) an underlying asset at a fixed price (strike price) at a future date, in exchange for the payment of a premium. The buyer (long position) pays the premium; the seller (short position) receives it. **European option** (exercise possible only at maturity) and **American option** (exercise possible at any time until maturity).

Options listed on stocks are called *stock options*.

21 – Simple Strategies

With T the maturity, K the strike price, S or S_T the underlying at maturity, the payoff is $\max(0, S_T - K) = (S_T - K)^+$. Letting C be the premium, the profit realized is $\max(0, S_T - K) - C$, with a profit if $(S_T < V_{PM} = K + C)$ (PM stands for **break-even point**).

At maturity, the payoff is $\min(0, K - S_T) = -\max(0, S_T - K) = -(S_T - K)^+$ and the profit realized is $C - \max(0, S_T - K)$.

At maturity, the payoff is $\max(0, K - S_T) = (K - S_T)^+$. Letting P be the put premium, the profit realized is $\max(0, K - S_T) - P$, positive if $V_{PM} = K - P < S_T$.

At maturity, the payoff is $min(0, S_T - K) = -(K - S_T)^+$.

22 - Spread Strategies

Spread strategy: uses two or more options of the same type (two call options or two put options). If the strike prices vary, it is a **vertical spread**. If the maturities change, it is a **horizontal spread**.

A vertical spread strategy involves a long position and a short position on call options on the same underlying asset, with the same maturity but different strike prices. We distinguish: bull vertical spread and bear vertical spread.

Bull vertical spread: anticipating a moderate rise in the underlying asset, the investor takes a long position on C_1 and a short position on C_2 under the condition $E_1 < E_2$. Net result at maturity:

Bear vertical spread: anticipating a moderate decline in the underlying asset, the investor sells the more expensive option and buys the cheaper one.

Butterfly spread: anticipates a small movement in the underlying asset. It is a combination of a bull vertical spread and a bear vertical spread. This strategy is suitable when large movements are considered unlikely. Requires a low initial investment.

23 - Combined strategies

A **combined strategy** uses both call and put options. Notably, we distinguish between **straddles** and **strangles**.

A **straddle** combines the purchase of a call option and a put option with the same expiration date and strike price. This strategy bets on a large price movement, either upward or downward. The maximum loss occurs if the price at expiration is equal to the strike price.

A **strangle** is the purchase of a call and a put with the same expiration date but different strike prices. It assumes a very large movement in the value of the underlying asset.

24 – Absence of arbitrage opportunity

It is impossible to realize a risk-free gain from a zero initial investment. Thus, no risk-free profit is possible by exploiting price differences.

25 – Parity relation

AAO implies the following relationship between the Call and the Put (stock):

$$S_t - C_t + P_t = Ke^{-i_f \cdot \tau}$$

26 - The Cox-Ross-Rubinstein model

It is based on a discrete-time process with two possible price movements at each period: an increase (factor u) or a decrease (factor d), with $u > 1 + i_f$ and $d < 1 + i_f$. The price at t = 1 is then $S_1^u = S_0 u$ or $S_1^d = S_0 d$, according to a probability q or 1 - q.

This model extends to n periods with n+1 possible prices for S_T . At expiration, the value of a call option is given by $C_1^u = (S_1^u - K)^+$ and $C_1^d = (S_1^d - K)^+$.

Absence of arbitrage opportunity implies

$$d < 1 + i_f < u$$

and a risk-neutral probability

$$q = \frac{(1+i_f) - d}{u - d}$$

Call price (with $S_1^d < K < S_1^u$):

$$C_0 = \frac{1}{1 + i_f} \left[qC_1^u + (1 - q)C_1^d \right]$$

We can also construct a replication portfolio composed of Δ shares and B bonds, such that :

$$\begin{cases} \Delta = \frac{S_1^u - K}{S_1^u - S_1^d}, \\ B = \frac{-S_1^d}{1 + i_f} \cdot \Delta \end{cases} \Rightarrow \Pi_0 = \Delta S_0 + B$$

Put price:

$$P_0 = \frac{1}{1 + i_f} \left[q P_1^u + (1 - q) P_1^d \right]$$

Determination of q, u, d: By calibrating the model to match the first moments of the return under the risk-neutral probability (expected value i_f , variance $\sigma^2 \delta t$), we obtain:

$$e^{i_f \delta t} = qu + (1 - q)d, \qquad qu^2 + (1 - q)d^2 - [qu + (1 - q)d]^2 = \sigma^2 \delta t$$

With the constraint $u = \frac{1}{d}$, we obtain:

$$q = \frac{e^{-if^{\delta}t} - d}{u - d}$$
$$u = e^{\sigma\sqrt{\delta}t}$$
$$d = e^{-\sigma\sqrt{\delta}t}$$

27 - The Black & Scholes Model

Assumptions of the model

- The risk-free rate R is constant. We define $i_f = \ln(1+R)$, which implies $(1+R)^t = e^{i_f t}$.
- The stock price S_t follows a geometric Brownian motion :

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

$$S_t = S_0 \exp\left(\sigma W_t + \left(\mu - \frac{1}{2}\sigma^2\right)t\right)$$

- No dividend during the option's lifetime.
- The option is "European" (exercised only at maturity).
- Frictionless market : no taxes or transaction costs.
- Short selling is allowed.

The Black-Scholes-Merton equation for valuing a derivative contract f is :

$$\frac{\partial f}{\partial t} + i_f S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = i_f f$$

At maturity, the price of a call option is $C(S,T) = \max(0, S_T - K)$, and that of a put option is $P(S,T) = \max(0, K - S_T)$.

Determinants	call	put
Underlying price	+	-
Strike price	-	+
Maturity (or time)	+ (-)	+ (-)
Volatility	+	+
Short-term interest rates	+	-
Dividend payment	-	+

The analytical solutions are:

$$C_t = S_t \Phi(d_1) - K e^{-i_f \tau} \Phi(d_2)$$

 $P_t = K e^{-i_f \tau} \Phi(-d_2) - S_t \Phi(-d_1)$

or:

$$d_1 = \frac{\ln(S_t/K) + (i_f + \frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}, \quad d_2 = d_1 - \sigma\sqrt{\tau}$$

— **Delta** Δ : variation in the option price depending on the underlying.

— **Gamma** Γ : delta sensitivity.

— **Thêta** Θ : sensitivity to time.

— **Véga** \mathcal{V} : sensitivity to volatility.

— **Rho** ρ : interest rate sensitivity.

The \mathbf{Delta} measures the impact of a change in the underlying asset :

$$\Delta_C = \frac{\partial C}{\partial S} = \Phi(d_1), \quad \Delta \in (0, 1)$$

$$\Delta_P = \frac{\partial P}{\partial S} = \Phi(d_1) - 1, \quad \Delta \in (-1, 0)$$

The global Delta of a portfolio Π with weights ω_i is:

$$\frac{\partial \Pi}{\partial S_t} = \sum_{i=1}^n \omega_i \Delta_i$$

28 - The Yield Curve

The **yield curve**, or the curve of returns, or $r_f(\tau)$, provides a graphical representation of risk-free interest rates as a function of maturity (or term). It is also called the **zero-coupon** yield curve, referring to a type of risk-free bond with no coupons (a debt composed only of two opposite cash flows, one at t_0 and the other at T). This curve also provides insight into market expectations regarding future interest rates (forward rates).

29 - The Nelson-Siegel and Svensson models

The **Nelson-Siegel** functions take the form

$$y(m) = \beta_0 + \beta_1 \frac{\left[1 - \exp\left(-m/\tau\right)\right]}{m/\tau} + \beta_2 \left(\frac{\left[1 - \exp\left(-m/\tau\right)\right]}{m/\tau} - \exp\left(-m/\tau\right)\right)$$

where $y\left(m\right)$ and m are as above, and $\beta_{0},\ \beta_{1},\ \beta_{2},$ and τ are parameters :

- β_0 is interpreted as the long-term level of interest rates (the coefficient is 1, it is a constant that does not decrease),
- β_1 is the short-term component, noting that :

$$\lim_{m \to 0} \frac{\left[1 - \exp\left(-m/\tau\right)\right]}{m/\tau} = 1$$

It follows that the overnight rate such as \in str will equal $\beta_0 + \beta_1$ in this model.

- β_2 is the medium-term component (it starts at 0, increases, then decreases back toward zero i.e., bell-shaped),
- τ is the scale factor on maturity; it determines where the term weighted by β_2 reaches its maximum.

Svensson (1995) adds a second bell-shaped term; this is the Nelson–Siegel–Svensson model. The additional term is:

$$+\beta_3 \left(\frac{\left[1-\exp\left(-m/\tau_2\right)\right]}{m/\tau_2}-\exp\left(-m/\tau_2\right)\right)$$

and the interpretation is the same as for β_2 and τ above; it allows for two inflection points on the yield curve.

These Nelson-Siegel and Svensson functions have the advantage of behaving well in the long term and being easy to parameterize. They are illustrated in the figure where the pictograms are represent the different usual maturities for this type of property or investment. They allow for the modeling of a broad yield curve. Once adjusted, the user can then evaluate assets or define various sensitivity measures.

30 - Vasicek model

Under a risk-neutral probability \mathbb{Q} , the short rate (r_t) follows an Ornstein–Uhlenbeck process with constant coefficients :

$$dr_t = \kappa(\theta - r_t) dt + \sigma dW_t, \quad r_0 \in \mathbb{R}$$

où:

— $\kappa > 0$ is the speed of mean reversion,

— θ is the long-term mean level,

— $\sigma > 0$ is the volatility,

— W_t is a standard Brownian motion under \mathbb{Q} .

The EDS solution (application of Itô's lemma to $Y_t = r(t)e^{\kappa t}$):

$$r_t = r_s e^{-\kappa(t-s)} + \theta(1 - e^{-\kappa(t-s)}) + \sigma \int_s^t e^{-\kappa(t-u)} dW_u$$

So:

$$\mathbb{E}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = r_s e^{-\kappa(t-s)} + \theta(1 - e^{-\kappa(t-s)})$$
$$\operatorname{Var}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa(t-s)}\right)$$

The process (r_t) is Gaussian; negative rates are possible.

31 – Price of a zero-coupon bond (Vasicek)

The price at time t of a zero-coupon bond maturing at T is given by :

$$ZC(t,T) = A(t,T) e^{-B(t,T) r_t}$$

où:

$$\begin{split} B(t,T) &= \frac{1 - e^{-\kappa(T-t)}}{\kappa} \\ A(t,T) &= \exp\left[\left(\theta - \frac{\sigma^2}{2\kappa^2}\right) \left(B(t,T) - (T-t)\right) - \frac{\sigma^2}{4\kappa}B(t,T)^2\right] \end{split}$$

This formulation is possible due to the fact that $\int_t^T r_s ds$ is a Gaussian random variable conditional on \mathcal{F}_t .

$$ZC(t,T) = \mathbb{E}_{\mathbb{Q}} \left[\exp \left(- \int_{t}^{T} r_{s} \, ds \right) \middle| \mathcal{F}_{t} \right]$$

32 - Cox-Ingersoll-Ross (CIR) model

Under the risk-neutral measure \mathbb{Q} , the short rate (r_t) follows the dynamics:

$$dr_t = \kappa(\theta - r_t) dt + \sigma \sqrt{r_t} dW_t, \quad r_0 \ge 0$$

with:

- $\kappa > 0$: mean reversion speed,
- $-\theta > 0$: long-term level,
- $\sigma > 0$: volatility,
- W_t : Brownian motion under \mathbb{Q} .

So:

- The square root $\sqrt{r_t}$ guarantees $r_t \geq 0$ if $2\kappa\theta \geq \sigma^2$ (Feller
- The process (r_t) is a non-Gaussian diffusion process but with continuous trajectories.
- The rate is **mean-reverting** around θ .

Thus, the process (r_t) is a diffusion with explicit conditional distributions (under \mathbb{Q}):

For s < t, the variable r_t follows a non-central χ^2 distribution :

$$r_t \mid \mathcal{F}_s \sim c \cdot \chi_d^2(\lambda)$$

with :
$$-c = \frac{\sigma^2(1 - e^{-\kappa(t-s)})}{4\kappa}$$

$$4\kappa\theta$$

$$\begin{split} & - d = \frac{4\kappa\theta}{\sigma^2} : \text{degrees of freedom} \\ & - \lambda = \frac{4\kappa e^{-\kappa(t-s)}r_s}{\sigma^2(1-e^{-\kappa(t-s)})} \end{split}$$

$$-\lambda = \frac{4\kappa e^{-\kappa(t-s)}r_s}{\sigma^2(1 - e^{-\kappa(t-s)})}$$

$$\mathbb{E}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = r_s e^{-\kappa(t-s)} + \theta(1 - e^{-\kappa(t-s)})$$

$$\operatorname{Var}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = \frac{\sigma^2 r_s e^{-\kappa(t-s)} (1 - e^{-\kappa(t-s)})}{\kappa} + \frac{\theta \sigma^2}{2\kappa} (1 - e^{-\kappa(t-s)})^2$$

33 – Price of a zero-coupon bond (CIR)

In the CIR model, the price of a zero-coupon bond at time t with maturity T is given by :

$$ZC(t,T) = A(t,T) \cdot e^{-B(t,T) r_t}$$

$$B(t,T) = \frac{2(e^{\gamma(T-t)} - 1)}{(\gamma + \kappa)(e^{\gamma(T-t)} - 1) + 2\gamma}$$
$$A(t,T) = \left[\frac{2\gamma e^{\frac{(\kappa + \gamma)}{2}(T-t)}}{(\gamma + \kappa)(e^{\gamma(T-t)} - 1) + 2\gamma}\right]^{\frac{2\kappa\theta}{\sigma^2}}$$

$$\gamma = \sqrt{\kappa^2 + 2\sigma^2}$$

34 – Swaption, Black model

A swaption is an option on an interest rate swap. It gives the right (but not the obligation) to enter into a swap at a future date T.

- Payer swaption: right to pay the fixed rate and receive the floating rate.
- Receiver swaption: right to receive the fixed rate and pay the floating rate.

${\bf Notation}:$

- T: swaption exercise date
- -K: fixed rate (strike)
- S(T): swap rate on the date T
- A(T): present value of future fixed flows.
- σ : swap rate volatility

The Black (1976) model is an adaptation of the Black-Scholes model for interest rate products. Here, the swap rate S(T) plays the role of the underlying asset, with a European option-type payoff.

Black's formula for a payer swaption:

$$SW_{payer} = A(T) \left[S_0 N(d_1) - K N(d_2) \right]$$

or:

$$d_1 = \frac{\ln(S_0/K) + \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}$$
$$d_2 = d_1 - \sigma\sqrt{T}$$

and $N(\cdot)$ is the cumulative distribution function of the standard normal distribution.

Formula for a receiver swaption:

$$SW_{receiver} = A(T) [KN(-d_2) - S_0N(-d_1)]$$

Life Actuarial Science

35 - Life Table Notations

Age x, y, z...

 l_x is the number of people alive, relative to an initial cohort, at age x (or y, z...)

 ω is the age limit of mortality tables.

 $d_x = l_x - l_{x+1}$ is the number of people who die between the age x and age x + 1.

 q_x is the probability of death between the ages of x et age x+1.

$$q_x = d_x/l_x$$

 p_x is the probability that the individual aged x survives age x+1.

$$p_x + q_x = 1$$

Likewise, $_nd_x=d_x+d_{x+1}+\cdots+d_{x+n-1}=l_x-l_{x+n}$ shows the number of people who die between the age x and age x+n. $_nq_x$ is the probability of death between the ages of x and age x+n.

$$_{n}q_{x} = _{n}d_{x}/l_{x}$$

 $_{n}p_{x}$ is the probability of a person of age x to survive the age x + n.

$$_{n}p_{x}=l_{x+n}/l_{x}$$

 $m|q_x$, the probability that the individual of age x dies in the $m+1^e$ year.

$$m|q_x = \frac{d_{x+m}}{l_x} = \frac{l_{x+m} - l_{x+m+1}}{l_x}$$

 e_x is the life expectancy for a person still alive at the age x. This is the number of birthdays you hope to live.

$$e_x = \sum_{t=1}^{\infty} t p_x$$

36 - Coefficient or commutations

These coefficients or commutations established by actuarial functions which depend on a mortality table and a rate i (v = 1/(1+i)) to establish the actuarial table.

$$D_x = l_x.v^x$$

can be seen "as" the actualized number of survivors. The sums

$$N_x = \sum_{k>0} D_{x+k} = \sum_{k=0}^{\omega - x} D_{x+k}$$

$$S_x = \sum_{k \ge 0} N_{x+k} = \sum_{k \ge 0} (k+1).D_{x+k}$$

will be used to simplify the calculations. Likewise

$$C_x = d_x v^{x+1}$$

can be seen "as" the number of deaths discounted to age x. The sums

$$M_x = \sum_{k=0}^{\omega - x} C_{x+k}$$

$$R_x = \sum_{k=0}^{\omega - x} M_{x+k}$$

will be used to simplify the calculations.

The coefficients D_x N_x and S_x will be used for calculations on operations in case of life and C_x M_x and R_x for operations in case of death.

37 - Life annuities or annuities

$$a_x = \sum_{k=1}^{\infty} {}_k p_x v^k = \ddot{a}_x - 1 = \frac{N_{x+1}}{D_x}$$

$$\ddot{a}_x = \sum_{k=0}^{\infty} {}_k p_x v^k = \frac{N_x}{D_x}$$

If the periodicity corresponds to m periods per year :

$$\ddot{a}_x^{(m)} = \sum_{k=0}^{\infty} \frac{1}{m^{\frac{k}{m}}} p_x v^{\frac{k}{m}} \approx \ddot{a}_x - \frac{m-1}{2m}$$

Similarly, if he pays 1/m at the start of the m periods

$$a_x^{(m)} \approx a_x + \frac{m-1}{2m}$$

Temporary life annuities. Whole life annuity guaranteed for n years

$$a_{x:\overline{n}|} = \sum_{k=1}^{n} {}_{k} p_{x} v^{k} = \frac{N_{x+1} - N_{x+n+1}}{D_{x}}$$

$$\ddot{a}_{x:\overline{n}|} = \sum_{k=0}^{n-1} {}_{k} p_{x} v^{k} = \frac{N_{x} - N_{x+n}}{D_{x}}$$

Deferred life annuities $m|a_x$ represent the annuities on the individual of age x deferred m years. The first payment occurs in m+1 years in the case of life.

38 - Death or survival benefits

Death benefits (Whole life insurance noted SP_x or A_x)

 A_x indicates a death benefit at the end of the year of death (amount of 1), regardless of the date of occurrence, for an individual insured at age x at the time of subscription.

 $A_{x:\overline{n}|}$ denotes a capital paid upon death if it occurs and at the latest in n years (Endowment).

 $A_{x:n|}^1$ denotes a death benefit paid if x dies within the next n years (Term insurance).

 $A_x^{(12)}$ indicates a benefit payable at the end of the month of death. \overline{A}_x indicates a benefit paid on the date of death.

Whole life benefit

$$A_x = \sum_{k=0}^{\infty} {}_{k|} q_x \ \nu^{k+1} = \frac{M_x}{D_x}$$

$$A_{x:\overline{n}|}^1 = \sum_{k=0}^{n-1} {}_{k|}q_x \ \nu^{k+1} = \frac{M_x - M_{x+n}}{D_x}$$

Deferred capital (Pure Endowment, unique capital in the event of survival) noted $A_{x:\overline{n}|}$ or ${}_{n}E_{x}$.

Death benefit with payment of the capital in the event of survival (Endowment)

$$A_{x:\overline{n}|} = A_{x:\overline{n}|}^1 + A_{x:\overline{n}|}^1$$

39 - Life insurance on several individuals

 a_{xyz} is an annual annuity, paid at the end of the first year and for as long as they live (x), (y) and (z).

 $a_{\overline{xyz}}$ is an annual annuity, paid at the end of the first year and for as long as they live (x), (y) or (z).

$$a_{\overline{xy}} = a_y + a_x - a_{xy}$$

 A_{xyz} is an insurance that comes into effect at the end of the year of the first death of (x), (y) and (z).

The vertical bar indicates conditionality:

 $a_{x|y}$ is a survivor's annuity which benefits (x) after the death of (y).

 $A_{x|yz}$ is a first-to-die insurance (y) and (z). $a_{x|y}$ $a_{x|y}$ x+1 x+2 x+3 x+n x+n+1 x+n+2 x+n+3 x+n+1 x+n+2 x+n+3 x+n+4

$40-Simplified\ pricing\ schemes\ for\ periodic\ premiums$ and reserves

 $V_t = PV_t(.) - PPP \times PPU_t$ $PV_t(.) \text{ recalculated with } x + t, k, n, m - t, K... \text{ if } t \ge m$ or x + t, k, n - (t - m), m = 0, K... si t > mlikewise $PPU_t =_{(m'-t)^+|} \ddot{a}_{x+t:n'-(t-m)^+|}^{(k')}$

Probability & Statistics

41 – Axiomatic

A universe Ω , is the set of all possible outcomes that can be obtained during a random experiment.

The **random event** is an event ω_i of the universe whose outcome (the result) is not certain.

The elementary event:

- two distinct elementary events ω_i and ω_j are incompatible,
- the union of all the elementary events of the universe Ω corresponds to certainty.

The sets:

- $E = \{\omega_{i1}, \dots, \omega_{ik}\}$ a subset of Ω (k elements).
- \overline{E} the complement of E,
- $E \cap F$ the intersection of E and F,
- $E \cup F$ the union of E and F,
- $E \setminus F = E \cap \overline{F} E \text{ minus } F$,
- \varnothing the impossible or empty event.

Let E be a set. We call **trib** or σ -algebra on E, a set \mathcal{A} of parts of E which satisfies:

- $-\mathcal{A}\neq\emptyset$,
- $-\forall A \in \mathcal{A}, \overline{A} \in \mathcal{A},$
- if $\forall n \in \mathbb{N}, A_n \in \mathcal{A} \text{ then } \cup_{n \in \mathbb{N}} A_n \in \mathcal{A}.$

We call **probability** \mathbb{P} any application of the set of events \mathcal{A} in the interval [0,1], such that :

$$\mathbb{P}: \mathcal{A} \mapsto [0,1]$$

satisfying the following properties (or axioms):

- **(P1)** $A \subseteq \mathcal{A}$ then $\mathbb{P}(A) \geq 0$,
- **(P2)** $\mathbb{P}(\Omega) = 1$,
- **(P3)** $A, B \subseteq \mathcal{A}$, if $A \cap B = \emptyset$ then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

The **probability space** is defined by

$$\{\Omega, \mathcal{A}, \mathbb{P}(.)\}$$

The **Poincaré equality** is written:

$$\forall A \in F, \forall B \in F, \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

42 - Bayes

In probability theory, the **conditional probability** of an event A, given that another event B of non-zero probability has occurred.

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

The real $\mathbb{P}(A|B)$ is read as 'probability of A, given B. Bayes' theorem allows us to write:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

43 – Random variables

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. We call **random variable** X from Ω to \Re any measurable function $X : \Omega \mapsto \Re$.

$${X \le x} \equiv {e \in \Omega \mid X(e) \le x} \in \mathcal{A}$$

The set of events of Ω is often not explicit.

The distribution function (F_X) of a real random variable characterizes its probability distribution.

$$F_X(x) = \mathbb{P}(X \le x), x \in \Re$$

where the right-hand side represents the probability that the real random variable X takes a value less than or equal to x. The probability that X is in the interval]a,b] is therefore, if a < b, $\mathbb{P}(a < X \le b) = F_X(b) - F_X(a)$

A probability law has a **probability density** f, if f is a function defined on \mathbb{R}^+ , Lebesgue integral, such that the probability of the interval [a, b] is given by

$$\mathbb{P}(a < X \le b) = \int_a^b f(x) \mathrm{d} x \text{ pour tous nombres tq } a < x < b.$$

44 - Expectations

The mathematical expectation in the discrete case (discrete qualitative or quantitative variables):

$$\mathbb{E}[X] = \sum_{j \in \mathbb{N}} x_j \mathbb{P}(x_j)$$

where $\mathbb{P}(x_j)$ is the probability associated with each event x_i . The mathematical expectation in the continuous case :

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x.f(x)dx$$

where f denotes the density function of the random variable x, defined in our case on \mathbb{R} . When it comes to sum or integral, the expectation is linear, that is to say :

$$\mathbb{E}[c_0 + c_1 X_1 + c_2 X_2] = c_0 + c_1 \mathbb{E}[X_1] + c_2 \mathbb{E}[X_2]$$

$$\mathbb{E}[X] = \int x \cdot f(x) dx = \int_0^1 F^{-1}(p) dp = \int \overline{F}(x) dx$$

45 - Convolution or law of sum

The convolution of two functions f and g, denoted (f * g)(x), is defined by :

$$(f * g)(x) = \int f(t)g(x - t) dt$$

Convolution measures how f(t) and g(t) interact at different points while taking into account the shift (or translation) between If X and Y are two independent random variables with respective densities f_X and f_Y , then the density of the sum Z = X + Y is given by:

$$f_Z(x) = (f_X * f_Y)(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt.$$

46 - Compound law or frequency/gravity model

Let N be a discrete random variable in \mathbb{N}^+ , (X_i) a sequence of iid random variables with finite expectation and variance, then

for
$$S = \sum_{i=1}^{N} X_i$$
:

$$\mathbb{E}(S) = \mathbb{E}(\mathbb{E}[S \mid N]) = \mathbb{E}(N.\mathbb{E}(X_1)) = \mathbb{E}(N).\mathbb{E}(X_1)$$
$$Var(S) = \mathbb{E}(Var[S \mid N]) + Var(\mathbb{E}[S \mid N])$$

47 - Fundamental theorems

Let X be a real random variable defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and assumed to be almost surely positive or zero. The **Markov Inequality** gives :

$$\forall \alpha > 0, \mathbb{P}(X \ge \alpha) \leqslant \frac{\mathbb{E}[X]}{\alpha}.$$

The Bienaymé-Tchebychev inequality : For any strictly positive real number α , with $\mathbb{E}[X] = \mu$ and $\text{Var}[X] = \sigma^2$

$$\mathbb{P}\left(|X - \mu| \ge \alpha\right) \le \frac{\sigma^2}{\alpha^2}.$$

The **weak law of large numbers** considers a sequence $(X_i)_{i\geq n\in\mathbb{N}^*}$ of independent random variables defined on the same probability space, having the same finite expectation and variance denoted respectively $\mathbb{E}[X]$ and $\mathrm{Var}(X)$.

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} \mathbb{P}\left(\left|\frac{X_1 + X_2 + \dots + X_n}{n} - \mathbb{E}[X]\right| \ge \varepsilon\right) = 0$$

Consider a sequence $(X_n)_{n\in\mathbb{N}}$ of independent random variables that follow the same probability law, integrable, i.e. $E(|X_0|) < +\infty$.

Using the notations, the **strong law of large numbers** specifies that $(Y_n)_{n\in\mathbb{N}}$ converges to E(X) « almost surely ».

$$\mathbb{P}\left(\lim_{n\to+\infty} Y_n = E(X)\right) = 1$$

Consider the sum $S_n = X_1 + X_2 + \cdots + X_n$.

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}},$$

the expectation and the standard deviation of Z_n are respectively 0 and 1: the variable is thus said to be centered and reduced. The **central limit theorem** then states that the distribution of Z_n converges in law to the reduced centered normal distribution $\mathcal{N}(0,1)$ as n tends to infinity. This means that if Φ is the distribution function of $\mathcal{N}(0,1)$, then for any real number z:

$$\lim_{n \to \infty} P(Z_n \le z) = \Phi(z),$$

or, equivalently:

$$\lim_{n\to\infty} \mathbf{P}\left(\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \le z\right) = \Phi(z)$$

48 – Multidimensional variables

A probability law is said to be **multidimensional**, or n-dimensional, when the law describes several (random) values of a random phenomenon. The multidimensional character thus appears during the transfer, by a random variable, of the probabilistic space (Ω, \mathcal{A}) to a numerical space E^n of dimension n.

Let X be a random variable on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$, with values in \mathbb{R}^n equipped with the real Borel tribe product $\mathcal{B}(\mathbb{R})^{\otimes n}$. The law of the random variable X is the probability measure \mathbb{P}_X defined by :

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X \in B).$$

for everything $B \in \mathcal{B}(\mathbb{R})^{\otimes n}$.

The Cramer-Wold theorem ensures that the (n-dimensional) law of this random vector is entirely determined by the (one-dimensional) laws of all linear combinations of these components:

$$\sum_{i=1}^{n} a_i X_i \text{ for all } a_1, a_2, \dots, a_n$$

49 - Marginal law

The probability distribution of the i^e coordinate of a random vector is called the i^e marginal distribution. The **marginal distribution** \mathbb{P}_i of \mathbb{P} is obtained by the formula :

$$\mathbb{P}_i(B) = \mathbb{P}_{X_i}(B) = \iint \mathbb{1}_{\omega_i \in B} \mathbb{P}(\mathrm{d}(\omega_1, \dots, \omega_n)), \forall B \in \mathcal{B}(\mathbb{R}).$$

The marginal laws of an absolutely continuous law are expressed using their marginal densities.

The conditional density function X_2 given the value x_1 of X_1 , can be written:

$$f_{X_2}(x_2 \mid X_1 = x_1) = \frac{f_{X_1, X_2}(x_1, x_2)}{f_{X_1}(x_1)},$$

$$f_{X_2}(x_2 \mid X_1 = x_1)f_{X_1}(x_1) = f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1 \mid X_2 = x_2)f_{X_2}(x_1,x_2)$$

50 – Independence

 $(X_1, X_2, ..., X_n)$ is a family of **independent random variables** if one of the following two conditions is met:

$$\forall (A_1,\ldots,A_n) \in \mathcal{E}_1 \times \cdots \times \mathcal{E}_n$$

$$\mathbb{P}(X_1 \in A_1 \text{ and } X_2 \in A_2 \dots \text{ and } X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i),$$

we have equality

$$\mathbb{E}\left[\prod_{i=1}^n \varphi_i(X_i)\right] = \prod_{i=1}^n \mathbb{E}\left[\varphi_i(X_i)\right],$$

for any sequence of functions φ_i defined on (E_i, \mathcal{E}_i) , with values in \mathbb{R} , as soon as the above expectations make sense.

$$f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)$$

51 – Perfect dependence in dimension 2

Let F_1, F_2 be distribution functions $\mathbb{R} \to [0, 1]$.

The **Fréchet classes** $\mathcal{F}_{(F_1,F_2)}$ group together the set of distribution functions $\mathbb{R}^2 \to [0,1]$ whose marginal laws are precisely F_1,F_2 .

For every $F \in \mathcal{F}(F_1, F_2)$, and for all x in \mathbb{R}^d

$$F^-(\boldsymbol{x}) \le F(\boldsymbol{x}) \le F^+(\boldsymbol{x})$$

où $F^+(\mathbf{x}) = \min\{F_1(x_1), F_2(x_2)\}, \text{ et } F^-(\mathbf{x}) = \max\{0, F_1(x_1) + F_2(x_2) - 1\}.$

1. The pair $\mathbf{X} = (X_1, X_2)$ is said to be comonotonic if and only if it admits F^+ as a distribution function.

2. The pair $X = (X_1, X_2)$ is said to be antimonotonic if and only if it admits F^- as a distribution function.

The pair $X = (X_1, X_2)$ is said to be **comonotone** (antimonotone) if there exist non-decreasing (non-increasing) functions g_1 and g_2 of a random variable Z such that

$$\boldsymbol{X} = (g_1(Z), g_2(Z))$$

52 - The Gaussian vector

A vector $X = (X_1, \dots, X_n)$ is said to be a **Gaussian vector**, with law $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, when any linear combination $\sum_{j=1}^{n} \alpha_j X_j$ of its components is the univariate normal law. In particular, each component X_1, \dots, X_n is of normal distribution.

- μ of \mathbb{R}^N its location,
- Σ positive semi-definite of $\mathcal{M}_N(\mathbb{R})$, its variance-covariance.

If Σ is well defined positive, therefore invertible, then

$$f_{(\boldsymbol{\mu},\boldsymbol{\Sigma})}\left(\boldsymbol{x}\right) = \frac{1}{(2\pi)^{N/2}\left|\boldsymbol{\Sigma}\right|^{1/2}}e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}.$$

where $|\Sigma|$ is the determinant of Σ .

53 – Three measures of connection (correlations)

The coefficient of **Pearson linear correlation** is called the value σ

$$\rho_P = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

where σ_{xy} denotes the covariance between the variables x and y, and σ_x , σ_y their standard deviation. ρ takes its values in [-1, 1] (application of the Cauchy-Schwartz theorem).

 $X \perp Y \Rightarrow \rho_P = 0$, Attention, $\rho_P = 0 \Rightarrow X \perp Y$.

Kendall's tau is defined by

$$\tau_K = \mathbb{P}((X - X')(Y - Y') > 0) - P((X - X')(Y - Y') < 0)$$

where (X,Y) (X',Y') are two independent pairs with the same joint density. This corresponds to the probability of the concordants reduced by that of the discordants:

$$\tau_K = \mathbb{P}\left(\operatorname{sgn}(X - X') = \mathbb{P}(\operatorname{sgn}(Y - Y')) - \mathbb{P}\left(\operatorname{sgn}(X - X') \neq \operatorname{sgn}(Y - Y')\right)\right)$$

$$= \mathbb{E}\left[\operatorname{sgn}(X - X')\operatorname{sgn}(Y - Y')\right]$$

$$= \operatorname{Cov}(\operatorname{sgn}(X - X'), \operatorname{sgn}(Y - Y'))$$

$$= 4\mathbb{P}(X < X', Y < Y') - 1$$

The correlation coefficient **Spearman's rho** of (X, Y) is defined as the Pearson correlation coefficient of the ranks of the random variables X and Y. For a sample n, the n values X_i , Y_i are converted by their ranks x_i , y_i , and ρ is calculated:

$$\rho_S = \frac{1/n \sum_{i} (x_i - \mathbb{E}[x])(y_i - \mathbb{E}[y])}{\sqrt{1/n \sum_{i} (x_i - \mathbb{E}[x])^2 \times 1/n \sum_{i} (y_i - \mathbb{E}[y])^2}}.$$

Si on note $x_i = R(X_i)$ de 1 à N et $d_i = x_i - y_i$:

$$\rho_S = 1 - \frac{6\sum_i d_i^2}{n(n^2 - 1)}$$

54 – Copula

A **copula** is a distribution function, denoted \mathcal{C} , defined on $[0,1]^d$ whose margins are uniform on [0,1]. A characterization is then that $\mathcal{C}(u_1,...,u_d)=0$ if one of the components u_i is zero, $\mathcal{C}(1,...,1,u_i,1,...,1)=u_i$, and \mathcal{C} is d-increasing.

Let $F^{(d)}$ be a distribution function in dimension d where the F_i are the marginal laws of F.

Sklar's theorem states that $F^{(d)}$ has a copula representation:

$$F^{(d)}(x_1,...,x_d) = \mathcal{C}(F_1(x_1),...,F_d(x_d))$$

If these marginal laws are all continuous, the copula $\mathcal C$ is then unique, and given by the relation

$$C(u_1, ..., u_d) = F^{(d)}(F_1^{-1}(u_1), ..., F_d^{-1}(u_d))$$

In this case, we can then speak of the copula associated with a random vector $(X_1, ..., X_d)$. This theorem is very important since we can separate the distribution margin part from the dependence part.

The Gaussian Copula is a distribution on the unit cube of dimension d, $[0,1]^d$. It is constructed on the basis of a normal law of dimension d on \mathbb{R}^d .

Given the correlation matrix $\Sigma \in \mathbb{R}^{d \times d}$, the Gaussian copula with parameter Σ can be written:

$$C_{\Sigma}^{Gauss}(u) = \Phi_{\Sigma} \left(\Phi^{-1}(u_1), \dots, \Phi^{-1}(u_d) \right),$$

where Φ^{-1} is the inverse distribution function of the standard normal distribution and Φ_{Σ} is the joint distribution of a normal distribution of dimension d, with zero mean and covariance matrix equal to the correlation matrix Σ .

A copula $\mathcal C$ is called $\mathbf Archimedean$ if it admits the following representation :

$$C(u_1, ..., u_d) = \psi^{-1} (\psi(u_1) + \cdots + \psi(u_d))$$

where ψ is then called **generator**.

Often, copulas admit an explicit formulation of \mathcal{C} . A single parameter allows to accentuate the dependence of the entire copula, whatever its dimension d.

This formula provides a copula if and only if ψ is d-monotonic on $[0,\infty)$ *i.e.* the k^e derivative of ψ satisfies

$$(-1)^k \psi^{(k)}(x) \ge 0$$

for all $x \geq 0$ and $k = 0, 1, \dots, d-2$ and $(-1)^{d-2}\psi^{d-2}(x)$ is non-increasing and convex.

The following generators are all monotone, i.e. d-monotone for all $d \in \mathbb{N}$.

Name	Generator $\psi^{-1}(t)$,	$\psi(t)$	Setting
Ali- Mikhail- Haq	$\frac{1-\theta}{\exp(t)-\theta}$	$\log\left(\frac{1-\theta+\theta t}{t}\right)$	$\theta \in [0,1)$
Clayton	$(1+\theta t)^{-1/\theta}$	$\frac{1}{\theta} \left(t^{-\theta} - 1 \right)$	$\theta \in (0, \infty)$
Frank	$-\frac{1}{\theta}\exp(-t)$	$-\log\left(\frac{\exp(-\theta t)-1}{\exp(-\theta)-1}\right)$	$\theta \in (0, \infty)$
	$\times \log(1 - (1 - \exp(-\theta)))$		
Gumbel	$\exp\left(-t^{1/\theta}\right)$	$(-\log(t))^{\theta}$	$\theta \in [1, \infty)$
1	$\exp(-t)$	$-\log(t)$	
Joe	$1 - \left(1 - \exp(-t)\right)^{1/\theta}$	$-\log\left(1-(1-t)^{\theta}\right)$	$\theta \in [1, \infty)$

55 - Brownian motion, filtration and martingales

A filtration $(\mathcal{F}_t)_{t\geq 0}$ is an increasing family of σ -algebras or tribe representing the information available up to time t. A process (X_t) is said to be \mathcal{F}_t -adapted if X_t is measurable with respect to \mathcal{F}_t for all t

A process $(B_t)_{t\geq 0}$ is a **standard Brownian motion** (or Wiener process) if it verifies :

- $-B_0=0$;
- independent increments : $B_t B_s$ independent of \mathcal{F}_s ;
- stationary increments : $B_t B_s \sim \mathcal{N}(0, t s)$;
- trajectories continue almost surely.

A process (M_t) is a **martingale** (with respect to \mathcal{F}_t) if:

$$\mathbb{E}[|M_t|] < \infty$$
 et $\mathbb{E}[M_t \mid \mathcal{F}_s] = M_s$ $\forall 0 \le s < t$

Examples: Brownian motion, stochastic integrals of the form $\int_0^t \theta_s dB_s$ (under conditions) are martingales.

Quadratic variation is denoted $\langle B \rangle_t = t$, $\langle cB \rangle_t = c^2 t$ Covariation : for two Itô processes X, Y,

$$\langle X, Y \rangle_t := \lim_{\|\Pi\| \to 0} \sum_i (X_{t_{i+1}} - X_{t_i}) (Y_{t_{i+1}} - Y_{t_i})$$

convergence in probability, where $\Pi = \{t_0 = 0 < t_1 < \dots < t_n = t\}$ is a partition of [0, t].

 ${f 56-It\^o's}$ process and stochastic differential calculus A process (X_t) is an ${f It\^o}$ process if it can be written :

$$X_t = X_0 + \int_0^t \phi_s \, ds + \int_0^t \theta_s \, dB_s$$

or in differential

$$dX_t = \phi_t dt + \theta_t dB_t$$

with ϕ_t , θ_t \mathcal{F}_t -adapted and L^2 -integrable.

Itô's formula (1D) : for $f \in C^2(\mathbb{R})$, we have :

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)d\langle X \rangle_t$$

Example: if $dXt = \mu and + \sigma dBt$ then:

$$dX_t^2 = 2X_t dX_t + d\langle X \rangle_t$$

Itô's formula (multi-dimensional):

If $X = (X^1, \dots, X^d)$ is an Itô process, $f \in C^2(\mathbb{R}^d)$:

$$df(X_t) = \sum_{i} \frac{\partial f}{\partial x_i}(X_t) dX_t^i + \frac{1}{2} \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j}(X_t) d\langle X^i, X^j \rangle_t$$

Integration by parts (Itô):

$$d(X_tY_t) = X_t dY_t + Y_t dX_t + d\langle X, Y \rangle_t$$

57 - Stochastic Differential Equations (SDE)

An SDE is a stochastic equation of the form:

$$dX_t = b(t, X_t)dt + a(t, X_t)dB_t, \quad X_0 = x$$

or:

- b(t,x) is the **drift** (*drift*) : function $\mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$;
- a(t,x) is the **diffusion**: function $\mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$;
- B_t is a Brownian motion;

— X_t is the solution, adapted stochastic process.

Integral form:

$$X_t = x + \int_0^t b(s, X_s) ds + \int_0^t a(s, X_s) dB_s$$

Conditions of existence and uniqueness:

— **Lipschitz**: there exists L > 0 such that:

$$|b(t,x) - b(t,y)| + |a(t,x) - a(t,y)| \le L|x-y|$$

— Linear growth:

$$|b(t,x)|^2 + |a(t,x)|^2 \le C(1+|x|^2)$$

Classic examples:

- Geometric Brownian : $dS_t = \mu S_t dt + \sigma S_t dB_t$
- Ornstein–Uhlenbeck : $dX_t = \theta(\mu X_t)dt + \sigma dB_t$

Numerical methods: Euler-Maruyama, Milstein.

58 - Risk-neutral probability

A probability \mathbb{Q} is said to be **risk neutral** if, under \mathbb{Q} , any asset S_t has an updated price $\frac{S_t}{B_t}$ which is a martingale where (B_t) is the numerary (e.g. $B_t = e^{rt}$).

The absence of arbitrage $\iff \exists \mathbb{Q} \sim \mathbb{P}$ such that the updated prices are martingales. This is the **fundamental theorem of asset pricing**.

Application:

Under \mathbb{Q} , the value at time t of an asset giving a return H at date T is :

$$S_t = B_t \, \mathbb{E}^{\mathbb{Q}} \left[\left. \frac{H}{B_T} \right\| \mathcal{F}_t \right]$$

Note:

The measure $\mathbb Q$ is equivalent to $\mathbb P$, but reflects a "risk-free" world, useful in valuation.

59 - Simulations

The simulations allow in particular to approximate the expectation by the empirical average of the realizations x_1, \ldots, x_n :

$$\frac{1}{n}(x_1 + \ldots + x_n) \approx \int x dF(x) = \mathbb{E}[X]$$

Then, under the TLC, we estimate the uncertainty or confidence interval based on the normal distribution :

$$\left[\overline{x} - 1,96\frac{S_n}{\sqrt{n}}, \overline{x} + 1,96\frac{S_n}{\sqrt{n}}\right]$$

where S_n unbiasedly estimates the variance of X:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

convergence is said to be in $\mathcal{O}(\frac{\sigma}{\sqrt{n}})$. This interval allows you to decide the number of simulations to be carried out.

60 – Pseudo-random generator on $[0,1]^d$

The computer does not know how to roll the die $(\Omega =$ $\{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \boxtimes, \boxtimes, \boxtimes \}$). It generates a pseudo-randomness, that is to say a deterministic algorithm which resembles a random event. Generators usually produce a random number on $[0,1]^d$. If the initial value (seed) is defined or identified, the following draws are known and replicable.

The simplest algorithm is called the method of linear congruences.

$$x_{n+1} = \Phi(x_n) = (a \times x_n + c) \mod m$$

each x_n is an integer between 0 and m-1. a the multiplier, c the increment, and m the modulus of the form $2^p - 1$, that is to say a Mersenne prime number (p necessarily prime):

Marsaglia generator : $a = 69069, b = 0, m = 2^{32}$

Knuth&Lewis generator : $a = 1664525, b = 1013904223, m = 2^{32}$

Haynes Generator : $a = 6364136223846793005, b = 0, m = 2^{64}$

The Tausworth generator constitutes an 'autoregressive' extension:

$$x_n = (a_1 \times x_{n-1} + a_2 \times x_{n-2} + \dots + a_k \times x_{n-k}) \mod m \text{ with } n \ge k$$

The generator period is $m^k - 1$, with all a_i relatively prime. If m is of the form 2^p , machine computation times are reduced.

The default random generator is usually the Mersenne-Twister algorithm. It is based on a linear recurrence on a matrix F_2 (matrix whose values are in base 2, i.e. 0 or 1). Its name comes from the fact that the length of the period chosen is a Mersenne prime number.

- 1. its period is $2^{19937} 1$
- 2. it is uniformly distributed over a large number of dimensions (623 for 32-bit numbers);
- 3. it is faster than most other generators,
- 4. it is random regardless of the weight of the bit considered, and passes Diehard tests.

61 – Simulate a random variable

Simulating X of any law F_X often comes down to simulating $(p_i)_{i\in[1,n]}$ of law Uni(0,1).

If F_X is invertible, $x_i = F_X^{-1}(p_i)$ (or quantile function) delivers $(x_i)_{i \in [1,n]}$ a set of n simulations of law F_X .

If it is a discrete variable $(F^{-1}$ does not exist) X_{ℓ} = $\min_{\ell} F(X_{\ell}) > p_i$, where $(X_{\ell})_{\ell}$ is the countable set of possible values, ordered in ascending order.

In the **change of variable** method, we assume that we know how to simulate a law X, and that there exists ϕ such that $Y = \varphi(X)$ follows a law F_Y . The natural example is that of $X \sim \mathcal{N}(0,1)$ and making the change $Y = \exp(X)$ to obtain Y which follows a lognormal law.

The rejection method is used in more complex cases, for example when F^{-1} is not explicit or requires a lot of computation time. Let f be a probability density function. Assume that there exists a probability density q such that :

$$\exists K > 0 , \forall x \in \mathbb{R} , f(x) \le Kg(x)$$

We then simulate Z according to the density law and $Y \sim \mathcal{U}([0; Kg(Z)])$. Then the random variable $X = \{Z | Y \le f(Z)\}$ follows the density law f.

f(x), normal law mixture

The performance of the algorithm depends on the number of rejections, represented by the blue area on the graph.

62 – Monte Carlo methods

Monte Carlo methods rely on the repeated simulation of random variables to approximate numerical quantities.

Convergence:

- By the **law of large numbers**, the estimator converges almost surely to the expected value.
- By the central limit theorem, the standard error is in $\mathcal{O}(N^{-1/2})$:

$$\sqrt{N}(\hat{\mu}_N - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$

— This slow convergence justifies the use of **convergence** improvement techniques.

Variance reduction techniques:

- **Antithetical variables** : we simulate X and -X (or 1-Uif $U \sim \mathcal{U}[0,1]$), then we average the results. Reduction is efficient if f is monotone.
- Control method: if $\mathbb{E}[Y]$ is known, we simulate (f(X), Y)and correct:

$$\hat{\mu}_{corr} = \hat{\mu} - \beta(\bar{Y} - \mathbb{E}[Y])$$

where β optimal minimizes the variance.

- Stratification: we divide the simulation space into strata (subsets), and we simulate proportionally in each stratum.
- Importance sampling: we modify the simulation law to accentuate rare events, then we reweight:

$$\mathbb{E}[f(X)] = \mathbb{E}^Q \left[f(X) \frac{\mathrm{d}P}{\mathrm{d}Q}(X) \right]$$

used in particular to estimate the tails of the distribution (VaR, TVaR).

63 – The bootstrap

The **bootstrap** is a *resampling* method for estimating the uncertainty of an estimator without assuming a parametric form for the underlying distribution.

Let $\xi = (X_1, X_2, \dots, X_n)$ be a sample of iid variables following an unknown distribution F. We seek to estimate a statistic $\theta = T(F)$ (e.g. mean, median, variance), via its empirical estimator $\hat{\theta} = T(\hat{F}_n)$.

1. We approximate ${\cal F}$ by the empirical distribution function :

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{X_k \le x\}}$$

- 2. We generate B bootstrap samples $\xi^{*(b)} = (X_1^{*(b)}, \dots, X_n^{*(b)})$ by drawing **with replacement** from the initial sample.
- 3. For each simulated sample, we calculate the estimate $T^{*(b)} = T(\hat{F}_n^{*(b)})$.

The realizations $T^{*(1)}, \ldots, T^{*(B)}$ form an approximation of the distribution of the estimator $\hat{\theta}$.

We can deduce from this :

- an estimated bias : $\widehat{\text{bias}} = \overline{T^*} \hat{\theta}$;
- a **confidence interval** at $(1 \alpha) : [q_{\alpha/2}, q_{1-\alpha/2}]$ of the empirical quantiles of $T^{*(b)}$;
- an estimate of the **variance** : $\widehat{\text{Var}}(T^*)$.

 ${\bf Note}$: Bootstrapping is particularly useful when the distribution of T is unknown or difficult to estimate analytically.

64 – Parametric Bootstrap

The **parametric bootstrap** is based on the assumption that the data follow a parameterized family of laws $\{F_{\theta}\}$.

Let $\xi = (X_1, \dots, X_n)$ be an *iid* sample according to an unknown F_{θ} distribution. We proceed as follows:

- 1. Estimate the parameter $\hat{\theta}$ from ξ (e.g. by maximum likelihood).
- 2. Generate B samples $\xi^{*(b)}$ of size n, simulated according to the law $F_{\hat{\theta}}$.
- 3. Calculate $T^{*(b)} = T(\xi^{*(b)})$ for each sample.

This method approximates the distribution of the estimator $T(\xi)$ assuming the shape of F is known. It is more efficient than the nonparametric bootstrap if the model assumption is well specified. The parametric bootstrap is faster, but inherits the biases of the model.

65 - Cross-validation

Cross-validation is a method for evaluating the predictive performance of a statistical model, used in particular in machine learning or pricing.

Principle:

- Divide the data into K blocks (or folds).
- For each $k = 1, \ldots, K$:
 - Train the model on the other K-1 blocks.
 - Evaluate the performance (error, log-likelihood...) on the k-th block.
- Aggregate the errors to obtain an overall estimate of outof-sample performance.

66 - Quasi-Monte Carlo methods

Quasi-Monte Carlo methods aim to accelerate the convergence of the expectation estimator without resorting to randomness. The typical error is of the order :

$$\mathcal{O}\left(\frac{(\ln N)^s}{N}\right)$$

where N is the sample size and s the dimension of the problem. These methods rely on the use of **low-discrepancy** sequences in $[0,1]^s$. The star discrepancy, denoted $D_N^*(P)$ for a set of points $P = \{x_1, \ldots, x_N\}$, measures the maximum difference between the proportion of points contained in rectangles anchored to the origin and their volume. It is defined by:

$$D_N^*(P) = \sup_{u \in [0,1]^s} \left| \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{[0,u)}(x_i) - \lambda_s([0,u)) \right|$$

with:

- $[0,u) = \prod_{j=1}^{s} [0,u_j)$ a rectangle anchored at the origin in $[0,1]^s,$
- $\mathbf{1}_{[0,u)}(x_i)$ the indicator of the membership of x_i to this rectangle,
- $\lambda_s([0,u)) = \prod_{i=1}^s u_i$ the volume of this rectangle.

A low discrepancy means that the points are well distributed in space, which improves the convergence of the estimate.

Van der Corput sequence (dimension 1) : Let n be an integer. We write it in base b :

$$n = \sum_{k=0}^{L-1} d_k(n) b^k$$

then we reverse the numbers around the decimal point to obtain:

$$g_b(n) = \sum_{k=0}^{L-1} d_k(n) b^{-k-1}$$

For example, for b=5 and n=146, we have $146=(1\,0\,4\,1)_5$, so :

$$g_5(146) = \frac{1}{5^4} + \frac{0}{5^3} + \frac{4}{5^2} + \frac{1}{5} = 0,3616$$

Halton sequence (dimension s): We generalize the van der Corput sequence using s distinct prime integer bases b_1, \ldots, b_s :

$$x(n) = (g_{b_1}(n), \dots, g_{b_s}(n))$$

This construction provides a sequence of points well distributed in $[0,1]^s$.

Koksma-Hlawka inequality

For a function f of finite variation V(f) (in the Hardy–Krause sense) on $[0,1]^s$:

$$\left| \int_{[0,1]^s} f(u) \, du - \frac{1}{N} \sum_{i=1}^N f(x_i) \right| \le V(f) \, D_N$$

where D_N is the discrepancy of the sequence used.

This bound explains why quasi-Monte Carlo methods are often more efficient than Monte Carlo methods.

Distribution	Density & support	Moments &	Moment-generating
		distribution function	function
$\mathcal{B}in(m,q)$ $(0$	$\binom{m}{x} p^x (1-p)^{m-x}$ $x = 0, 1, \dots, m$	$E = mp, \text{Var} = mp(1-p)$ $\gamma = \frac{mp(1-p)(1-2p)}{\sigma^3}$	$\left(1 - p + pe^t\right)^m$
$\mathcal{B}er(q)$	$\equiv \text{Binomial}(1, p)$		
$\mathcal{DU}ni(n)$ $(n>0)$	$\frac{1}{n}, x = 0, 1, \dots n$	$\mathbb{E} = (n+1)/2$ $\operatorname{Var} = (n^2 - 1)/12$ $\mathbb{E} = \operatorname{Var} = \lambda$	$\frac{e^t(1-e^{nt})}{n(1-e^t)}$
$\mathcal{P}ois(\lambda)$ $(\lambda > 0)$	$e^{-\lambda} \frac{\lambda^x}{x!}, x = 0, 1, \dots$	$\mathbb{E} = \text{Var} = \lambda$ $\gamma = 1/\sqrt{\lambda}$ $\kappa_j = \lambda, j = 1, 2, \dots$ $\mathbb{E} = m(1-p)/p$	$\exp\left[\lambda\left(e^{t}-1\right)\right]$
$\mathcal{NB}in(m,q)$ $(m > 0, 0$	$\binom{m+x-1}{x}p^m(1-p)^x$ $x=0,1,2,\dots$	$\mathbb{E} = m(1-p)/p$ $Var = \mathbb{E}/p$ $\gamma = \frac{(2-p)}{p\sigma}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^m$
$\mathcal{G}eo(q)$	$\equiv \mathcal{NB}in(1,q)$		
$\mathcal{CU}ni(a,b)$ $(a < b)$	$\frac{1}{b-a}; a < x < b$	$\mathbb{E} = (a+b)/2,$ $Var = (b-a)^2/12,$ $\gamma = 0$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
$ \frac{\mathcal{N}\left(\mu,\sigma^2\right)}{(\sigma>0)} $	$\frac{1}{\sigma\sqrt{2\pi}}\exp\frac{-(x-\mu)^2}{2\sigma^2}$	$\mathbb{E} = \mu, \text{Var} = \sigma^2, \gamma = 0$ $(\kappa_j = 0, j \ge 3)$	$\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$
$\mathcal{G}am(k,\theta)$ $(k,\theta>0)$	$\frac{\theta^k}{\Gamma(k)}x^{k-1}e^{-\theta x}, x > 0$	$\mathbb{E} = k/\theta, \text{Var} = k/\theta^2,$ $\gamma = 2/\sqrt{k}$	$\left(\frac{\theta}{\theta - t}\right)^k (t < \theta)$
$\mathcal{E}_{xp}(\lambda)$	$\equiv \mathcal{G}am(1,\lambda)$	$\mathbb{E} = 1/\lambda$ $Var = 1/\lambda^2$	
$\chi^2(k) (k \in \mathbb{N})$	$\equiv \mathcal{G}am(k/2,1/2)$		
$\mathcal{IN}(\alpha,\beta)$ $(\alpha > 0, \beta > 0)$	$\frac{\alpha x^{-3/2}}{\sqrt{2\pi\beta}} \exp\left(\frac{-(\alpha - \beta x)^2}{2\beta x}\right)$	$\mathbb{E} = \alpha/\beta, \text{Var} = \alpha/\beta^2, e^{\alpha/1}$ $\gamma = 3/\sqrt{\alpha} \qquad (t \le 1)$	$-\sqrt{1-2t/\beta})$ $\beta/2)$
	$F(x) = \Phi\left(\frac{-\alpha}{\sqrt{\beta x}} + \sqrt{\beta x}\right) + e^{2\alpha}\Phi\left(\frac{-\alpha}{\sqrt{\beta x}}\right)$	$\frac{-\alpha}{\beta x} - \sqrt{\beta x}$, $x > 0$	
$\mathcal{B}eta(\alpha,\beta)$ $(\alpha > 0, \beta > 0)$	$\Gamma(\alpha+\beta) \frac{x^{(\alpha-1}(1-x)^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)}, 0 < x < 1$		
$\frac{\mathcal{L}\mathcal{N}orm\left(\mu,\sigma^2\right)}{(\sigma>0)}$	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\frac{-(\log x - \mu)^2}{2\sigma^2}, x > 0$	$\mathbb{E} = e^{\mu + \sigma^2/2}, \text{Var} = e^{2\mu + 2\sigma^2} - \gamma = c^3 + 3c \text{ où } c^2 = \text{Var} / \mathbb{E}^2$	$e^{2\mu+\sigma^2}$
$\begin{aligned} \mathcal{P}areto\left(\alpha, x_{\mathrm{m}}\right) \\ \left(\alpha, x_{\mathrm{m}} > 0\right) \end{aligned}$	$\frac{\alpha x_{\rm m}^{\alpha}}{x^{\alpha+1}}, x > x_{\rm m}$	$\mathbb{E} = \frac{\alpha x_{\rm m}}{\alpha - 1} \alpha > 1, \text{Var} = \frac{\alpha}{(\alpha + 1)^{1/2}}$	$\frac{\alpha x_{\rm m}^2}{-1)^2(\alpha-2)} \alpha > 2$
$Weibull(\alpha, \beta)$ $(\alpha, \beta > 0)$	$\alpha\beta(\beta y)^{\alpha-1}e^{-(\beta y)^{\alpha}}, x>0$	$\mathbb{E} = \Gamma(1 + 1/\alpha)/\beta$ $\operatorname{Var} = \Gamma(1 + 2/\alpha)/\beta^2 - \mathbb{E}^2$ $\mathbb{E}\left[Y^t\right] = \Gamma(1 + t/\alpha)/\beta^t$	

(Micro)-Economics of Insurance

67 - Concept of utility

Utility models an individual's preferences between two baskets of goods x and y in a set S, via the relation $x \succcurlyeq y$ (preferred or indifferent).

A function $U:S\to\mathbb{R}$ represents preferences if :

$$x \succcurlyeq y \iff U(x) \ge U(y)$$

Axioms necessary for the existence of a utility function:

- 1. Completeness: For all $x, y \in S$, either $x \succcurlyeq y$, or $y \succcurlyeq x$
- 2. Transitivity: If $x \geq y$ and $y \geq z$, then $x \geq z$
- 3. Continuity: If $x_n \to x$ and $y_n \to y$, and $x_n \succcurlyeq y_n$ for all n, then $x \succcurlyeq y$

68 - Utility function

A function $u: \mathbb{R}_+ \to \mathbb{R}$ represents an agent's preferences in the face of uncertainty.

Expected utility criterion : The agent prefers X to Y if :

$$\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$$

He chooses X such that $\mathbb{E}[u(X)]$ is maximal.

Properties of u:

- u' > 0: the agent prefers more wealth (monotonicity)
- u'' < 0: the agent is risk averse (concavity)

Classic examples:

- Linear (risk neutral) : u(x) = x
- Logarithmic: u(x) = ln(x)
- CRRA (constant relative risk aversion) : $u(x) = \frac{x^{1-\gamma}}{1-\gamma}$, $\gamma \neq 1$
- CARA (constant absolute risk aversion) : $u(x) = -e^{-ax}$

69 - Aversion au risque

An agent is said to be **risk-averse** (or risk-phobic) if:

$$u(\mathbb{E}[X]) > \mathbb{E}[u(X)]$$

Which is equivalent to u concave, i.e. u''(x) < 0

70 – Measurement of risk aversion Absolute Aversion Index :

$$A_a(x) = -\frac{u''(x)}{u'(x)}$$

Relative Aversion Index:

$$A_r(x) = -x \cdot \frac{u''(x)}{u'(x)}$$

Jensen's inequality (concave case):

$$u(\mathbb{E}[X]) \ge \mathbb{E}[u(X)]$$

With equality if and only if X is constant.

71 – Risk premiums

The **risk premium** π is the maximum amount an individual is willing to pay to replace a random lottery win H with its certain expectation $\mathbb{E}[H]$. It verifies:

$$\mathbb{E}[u(w+H)] = u(w + \mathbb{E}[H] - \pi)$$

 π is also called *Markowitz measure*: it captures the gap between expected utility and certain utility.

Conversely, the **compensatory bonus** $\tilde{\pi}$ is the amount that must be offered to an individual so that he accepts the lottery H instead of a certain gain. It checks:

$$\mathbb{E}[u(w+H+\tilde{\pi})] = u(w+\mathbb{E}[H])$$

72 - Diversification and utility

Let's have two assets:

- -A: risk
- B: certain, with $\mathbb{E}[A] = B$

A risk-averse agent prefers a combination $Z = \alpha A + (1 - \alpha)B$, with $0 < \alpha < 1$, to the risky asset alone. If u is concave, then

$$\mathbb{E}[u(Z)] > \mathbb{E}[u(A)]$$

Optimal portfolio: choice of weights (w_i) maximizing expected utility:

$$\max \mathbb{E}[u(X)], \quad \text{où } X = \sum_{i} w_i X_i, \quad \text{s.c. } \sum w_i = 1$$

 $\mathbf{Principle}:$ diversification reduces risk (variance) without affecting expectation.

73 – Lagrange method for constrained optimization

The Lagrange multiplier method is used to solve a constrained optimization problem.

Objective: maximize/minimize $f(\mathbf{x})$ under the constraint $g(\mathbf{x}) = c$, where $\mathbf{x} \in \mathbb{R}^d$ is a vector of variables.

Steps of the method:

- 1. **Identification**: determine the objective function $f(\mathbf{x})$ and the constraint $g(\mathbf{x}) = c$
- 2. Lagrangian:

$$\mathcal{L}(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) + \lambda(g(\boldsymbol{x}) - c)$$

3. System of equations : solve

$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = \mathbf{0}, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = g(\mathbf{x}) - c = 0$$

- 4. **Resolution** of the system to obtain x^*, λ^*
- 5. **Verification**: ensure that the solutions satisfy the constraint and the type of optimum (max/min)

Example (dimension 2): maximize f(x,y) = xy under the constraint x + y = 10

$$\mathcal{L}(x, y, \lambda) = xy + \lambda(x + y - 10)$$

We derive :

$$\frac{\partial \mathcal{L}}{\partial x} = y + \lambda = 0, \quad \frac{\partial \mathcal{L}}{\partial y} = x + \lambda = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = x + y - 10 = 0$$

We solve the system:

$$\begin{cases} y + \lambda = 0 \\ x + \lambda = 0 \\ x + y = 10 \end{cases} \Rightarrow \begin{cases} \lambda = -y \\ x = -\lambda = y \\ x + y = 10 \Rightarrow 2x = 10 \end{cases} \Rightarrow \begin{cases} x^* = y^* = 5, \\ f(5,5) = 25 \end{cases}$$

Example (Optimal choice and budget constraint)

A rational agent is faced with a consumption choice (c_1, c_2) between two goods, under the constraint:

$$p_1c_1 + p_2c_2 = R$$

where p_1, p_2 are prices and R total revenue.

Issue: $\max_{c_1,c_2} u(c_1,c_2)$ s.c. $p_1c_1 + p_2c_2 = R$

Method: introduce the Lagrangian

$$\mathcal{L}(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda (R - p_1 c_1 - p_2 c_2)$$

First order conditions (FOC):

$$\begin{cases} \frac{\partial u}{\partial c_1} = \lambda p_1\\ \frac{\partial u}{\partial c_2} = \lambda p_2\\ p_1 c_1 + p_2 c_2 = R \end{cases}$$

By dividing the first two equations:

$$\frac{\partial u/\partial c_1}{\partial u/\partial c_2} = \frac{p_1}{p_2}$$

This ratio is called the **marginal rate of substitution** (MRS): it measures the quantity of good 2 that the agent is willing to give up to obtain an additional unit of good 1, while maintaining his level of utility constant.

74 – Insurance Application (Mosin)

An agent has an initial wealth w and faces a random loss L. There exists an **insurance demand** for the insurance that pays the indemnity 0 < I(L) < L iff $u(w - \pi_I) \ge \mathbb{E}(u(w - L))$ and the **optimal insurance** maximizes $u(w - \pi_I)$.

In Mosin (1968) or Borch (1961) or Smith (1968), the loss model L is simply defined by s between 0 and w:

$$L = \begin{cases} 0 \text{ with prob. } 1 - p \\ s \text{ with prob. } p \end{cases}$$

The premium becomes $\pi_I = (1+\lambda)\mathbb{E}(I(L)) = (1+\lambda)pI(s)$ with λ a loading. We denote by π the case where I(L) = L with $\pi = ps$. If $\lambda = 0$, then we speak of a pure or actuarially fair premium.

Co-insurance (risk sharing) : $I(l) = \alpha l$ knowing L = l for $\alpha \in [0, 1], \pi_I(\alpha) = \alpha \pi$ and :

$$w_f = w - L + I(L) - \pi(\alpha) = w - L + \alpha L - \alpha \pi = w - (1 - \alpha)L - \alpha \pi$$

$$U(\alpha) = (1 - p)u(w - \alpha\pi) + pu(w - (1 - \alpha)s - \alpha\pi)$$

Partial insurance ($\alpha^* < 1$) is optimal iff $\lambda > 0$. Total insurance ($\alpha^* = 1$) is optimal if the loading is zero.

Insurance with deductible (self-insurance portion) : With deductible d the insurer pays an indemnity $I(l) = (l-d)_+$ knowing L = l.

$$\pi(d) = (1 + \lambda)E((L - d)_{+}) = (1 + \lambda)(s - d)p$$

 $w_f = w - X + (L - d)_+ - \pi(d) = w - \min(X, d) - (1 + \lambda)(s - d)p$

$$U(d) = (1-p)u(\underbrace{w + (1+\lambda)(d-s)p}_{w_f^+}) + pu(\underbrace{w - d + (1+\lambda)(d-s)p}_{w_f^-}).$$

In the deductible model, partial insurance $(d^* > 0)$ is optimal iff the premium is not actuarially fair. Similarly, full insurance $(d^* = 0)$ is optimal if the loading is zero.

Generalized model : The random loss risk L > 0 is defined on \Re , with distribution function F_L),

$$\pi_I = (1+\lambda)\mathbb{E}(I(L)) = (1+\lambda)\int_0^\infty I(l)dF_L(l)$$

- 1. Total insurance $(d^* = 0)$ or $(\alpha^* = 1)$ is optimal if and only if the premium is actuarially fair.
- 2. If $A_a(u, x)$ is decreasing, then the deductible level d^* or the coverage rate α^* increases with initial wealth. For CARA preferences, d^* is independent of w or α^* is constant.
- 3. The coverage level decreases with the loading coefficient λ when $A_a(u, x)$ is increasing or constant.
- 4. A more risk-averse agent chooses higher coverage.

75 - Information and insurance

Mosin with heterogeneity : Two types of individuals : H for high risk and Lo for low risk. $\theta \in [0,1]$ the proportion of individuals H. Individuals of type $i \in \{Lo, H\}$ face a risk of the same amount s occurring with a different probability p_i such that $1 > p_H > p_{Lo} > 0$.

$$L_i = \left\{ \begin{array}{l} 0 \text{ with probability } 1 - p_i, \\ s \text{ with probability } p_i. \end{array} \right.$$

Market probability:

$$p_m = \theta p_H + (1 - \theta) p_{Lo}.$$

Absence of adverse selection: In this model, in the presence of total information, the insurer prefers individual insurance $I_i = s$ and $\pi_i = sp_i$, $\forall i$.

The adverse selection problem: The insurer offers a non-individualized contract from the market $M=(\pi_m=p_mI,I_m(s)=I(s))$, which does not depend on i. The final fortune of an individual of type i is $W_i^m=w-\pi_m-X_i+I_m$. In the presence of a single contract, individuals of type H prefer an insurance contract such that $I_H(s)=s$ and $\pi_H=sp_m$, while individuals of type Lo prefer partial coverage with $I_L^\star < s$ and $\pi_{Lo}=I_L^\star p_m$.

Moral hazard : Insuring him reduces or interrupts his efforts now that he is insured. The efforts of

- prevention reduces the probability of disaster,
- protection reduces the amount of loss.

In the absence of any effort e to prevent or reduce risk, the final fortune w_f is simply defined by

$$\begin{cases} w_f^- = w - s - \pi(I) + I & \text{with probability } p \\ w_f^+ = w - \pi(I) & \text{with probability } 1 - p \end{cases}$$

If there is an effort e to prevent risks, we consider

$$\begin{cases} w_f^- = w - s - \pi(I) + I - e & \text{with probability } p(e) \\ w_f^+ = w - \pi(I) - e & \text{with probability } 1 - p(e) \end{cases}$$

If there is an effort e to protect against risks, we consider

$$\begin{cases} w_f^- = w - s(e) - \pi(I) + I - e & \text{with probability } p \\ w_f^+ = w - \pi(I) - e & \text{with probability } 1 - p \end{cases}$$

with

- $e \mapsto p(e)$ is strictly decreasing and strictly convex.
- $e \mapsto s(e)$ is strictly decreasing and strictly convex.
- $I \le s$ implies $w_f^- \le w_f^+$

Econometrics & Time Series

76 - Definitions

Time series - is a succession of quantitative observations of a phenomena ordered in time.

There are some variations of time series:

- Panel data consist of a time series for each observation of a cross section.
- **Pooled cross sections** combines cross sections from different time periods.

 ${\bf Stochastic\ process}$ - sequence of random variables that are indexed in time.

77 - Components of a time series

- **Trend** is the long-term general movement of a series.
- **Seasonal variations** are periodic oscillations that are produced in a period equal or inferior to a year, and can be easily identified on different years (usually are the result of climatology reasons).
- Cyclical variations are periodic oscillations that are produced in a period greater than a year (are the result of the economic cycle).
- Residual variations are movements that do not follow a recognizable periodic oscillation (are the result of eventual phenomena).

78 - Type of time series models

— **Static models** - the relation between y and x is contemporary. Conceptually :

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

— **Distributed-lag models** - the relation between y and x is not contemporary. Conceptually:

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \dots + \beta_s x_{t-(s-1)} + u_t$$

The long term cumulative effect in y when Δx is : $\beta_1 + \beta_2 + \cdots + \beta_s$

— Dynamic models - lags of the dependent variable (endogeneity). Conceptually:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \dots + \beta_s y_{t-s} + u_t$$

— Combinations of the above, like the rational distributed-lag models (distributed-lag + dynamic).

79 – OLS model assumptions under time series

Under this assumptions, the OLS estimator will present good properties. **Gauss-Markov assumptions** extended applied to time series :

t1. Parameters linearity and weak dependence.

- a. y_t must be a linear function of the β 's.
- b. The stochastic $\{(x_t, y_t) : t = 1, 2, ..., T\}$ is stationary and weakly dependent.

t2. No perfect collinearity.

— There are no independent variables that are constant : $\operatorname{Var}(x_j) \neq 0, \ \forall j = 1, \dots, k$

- There is not an exact linear relation between independent variables.
- t3. Conditional mean zero and correlation zero.
 - a. There are no systematic errors : $\mathbb{E}(u \mid x_1, \dots, x_k) = \mathbb{E}(u) = 0 \rightarrow \text{strong exogeneity}$ (a implies b).
 - b. There are no relevant variables left out of the model : $Cov(x_j, u) = 0, \ \forall j = 1, \dots, k \to \mathbf{weak} \ \mathbf{exogeneity}.$
- t4. **Homoscedasticity**. The variability of the residuals is the same for any $x : \text{Var}(u \mid x_1, \dots, x_k) = \sigma_u^2$
- t5. **No autocorrelation**. Residuals do not contain information about any other residuals:

 $Corr(u_t, u_s \mid x_1, \dots, x_k) = 0, \ \forall t \neq s$

- t6. Normality. Residuals are independent and identically distributed (i.i.d.) : $u \sim \mathcal{N}(0, \sigma_u^2)$
- t7. **Data size**. The number of observations available must be greater than (k+1) parameters to estimate. (It is already satisfied under asymptotic situations)

80 - Asymptotic properties of OLS

Under the econometric model assumptions and the Central Limit Theorem :

- Hold t1 to t3a : OLS is **unbiased**. $\mathbb{E}(\hat{\beta}_i) = \beta_i$
- Hold t1 to t3 : OLS is **consistent**. $plim(\hat{\beta}_j) = \beta_j$ (to t3b left out t3a, weak exogeneity, biased but consistent)
- Hold t1 to t5 : asymptotic normality of OLS (then, t6 is necessarily satisfied) : $u \sim \mathcal{N}(0, \sigma_u^2)$
- Hold t1 to t5 : **unbiased estimate** of σ_u^2 . $\mathbb{E}(\hat{\sigma}_u^2) = \sigma_u^2$
- Hold t1 to t5 : OLS is BLUE (Best Linear Unbiased Estimator) or efficient.
- Hold t1 to t6: hypothesis testing and confidence intervals can be done reliably.

81 - Trends and seasonality

Spurious regression - is when the relation between y and x is due to factors that affect y and have correlation with x, $Corr(x_i, u) \neq 0$. Is the **non-fulfillment of t3**.

Two time series can have the same (or contrary) trend, that should lend to a high level of correlation. This can provoke a false appearance of causality, the problem is **spurious regression**. Given the model:

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

où:

$$y_t = \alpha_0 + \alpha_1 \text{Tendance} + v_t$$

 $x_t = \gamma_0 + \gamma_1 \text{Tendance} + v_t$

L'ajout d'une tendance au modèle peut résoudre le problème :

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 \text{Tendance} + u_t$$

La tendance peut être linéaire ou non linéaire (quadratique, cubique, exponentielle, etc.).

Une autre méthode consiste à utiliser le filtre de Hodrick-Prescott pour extraire la tendance et la composante cyclique.

82 – Saisonnalité

Une série temporelle peut présenter une saisonnalité. Cela signifie que la série est soumise à des variations ou à des schémas saisonniers, généralement liés aux conditions climatiques.

Par exemple, le PIB (en noir) est généralement plus élevé en été et plus faible en hiver. Série corrigée des variations saisonnières (en orange) à titre de comparaison.

— Ce problème est une **régression parasite**. Un ajustement saisonnier peut le résoudre.

Un simple **ajustement saisonnier** pourrait consister à créer des variables binaires stationnaires et à les ajouter au modèle. Par exemple, pour les séries trimestrielles (Qq_t sont des variables binaires):

$$y_t = \beta_0 + \beta_1 Q 2_t + \beta_2 Q 3_t + \beta_3 Q 4_t + \beta_4 x_{1t} + \dots + \beta_k x_{kt} + u_t$$

Une autre méthode consiste à ajuster les variables en fonction des variations saisonnières (sa), puis à effectuer la régression avec les variables ajustées :

$$z_{t} = \beta_{0} + \beta_{1}Q2_{t} + \beta_{2}Q3_{t} + \beta_{3}Q4_{t} + v_{t} \rightarrow \hat{v}_{t} + \mathbb{E}(z_{t}) = \hat{z}_{t}^{sa}$$
$$\hat{y}_{t}^{sa} = \beta_{0} + \beta_{1}\hat{x}_{1t}^{sa} + \cdots + \beta_{k}\hat{x}_{kt}^{sa} + u_{t}$$

Il existe des méthodes bien plus efficaces et complexes pour ajuster saisonnièrement une série temporelle, comme la méthode X-13ARIMA-SEATS.

83 – Autocorrélation

Le résidu de toute observation, u_t , est corrélé avec le résidu de toute autre observation. Les observations ne sont pas indépendantes. Il s'agit d'un cas de **non-respect** de **t5**.

$$Corr(u_t, u_s \mid x_1, \dots, x_k) = Corr(u_t, u_s) \neq 0, \ \forall t \neq s$$

84 – Conséquences — Les estimateurs OLS restent non biaisés.

- Les estimateurs OLS restent cohérents.
- L'OLS n'est **plus efficace**, mais reste un LUE (estimateur linéaire non biaisé).
- Les **estimations de variance** des estimateurs sont **biaisées** : la construction des intervalles de confiance et les tests d'hypothèse ne sont pas fiables.

85 – Détection

— **Diagrammes de dispersion** - recherchez des modèles de dispersion sur u_{t-1} par rapport à u_t .

- Corrélogramme - fonction d'autocorrélation (ACF) et fonction d'autocorrélation partielle (PACF).

Axe Y : corrélation.
 Axe X : nombre de décalages.

Processus MA(q). <u>ACF</u> : seuls les premiers coefficients q sont significatifs, les autres sont brusquement annulés. <u>PACF</u> : décroissance exponentielle rapide atténuée ou ondes sinusoïdales.

Processus AR(p). <u>ACF</u>: décroissance exponentielle rapide atténuée ou ondes sinusoïdales. <u>PACF</u>: seuls les premiers coefficients p sont significatifs, les autres sont brusquement annulés.

Processus ARMA(p,q). <u>ACF</u> et <u>PACF</u>: les coefficients ne sont pas brusquement annulés et présentent une décroissance rapide.

Si les coefficients ACF ne décroissent pas rapidement, cela indique clairement un manque de stationnarité dans la moyenne.

— Tests formels - En général, H_0 : pas d'autocorrélation. En supposant que u_t suit un processus AR(1):

$$u_t = \rho_1 u_{t-1} + \varepsilon_t$$

où ε_t est un bruit blanc.

Test t AR(1) (régresseurs exogènes):

$$t = \frac{\hat{\rho}_1}{\operatorname{se}(\hat{\rho}_1)} \sim t_{T-k-1,\alpha/2}$$

— H_1 : Autocorrélation d'ordre un, AR(1).

Statistique de Durbin-Watson (régresseurs exogènes et normalité des résidus) :

$$d = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{n} \hat{u}_t^2} \approx 2 \cdot (1 - \hat{\rho}_1)$$

Où $0 \le d \le 4$

— H_1 : Autocorrélation d'ordre un, AR(1).

$$\begin{array}{c|c|c|c}
d = & 0 & 2 & 4 \\
\hline
\rho \approx & 1 & 0 & -1 \\
\end{array}$$

h de Durbin (régresseurs endogènes):

$$h = \hat{\rho} \cdot \sqrt{\frac{T}{1 - T \cdot \iota}}$$

où υ est la variance estimée du coefficient associé à la variable endogène.

— H_1 : Autocorrélation d'ordre un, AR(1).

Test de Breusch-Godfrey (régresseurs endogènes) : il permet de détecter les processus $\mathrm{MA}(q)$ et $\mathrm{AR}(p)$ (ε_t est w. bruit) :

$$-- MA(q) : u_t = \varepsilon_t - m_1 u_{t-1} - \dots - m_q u_{t-q}$$

$$-- AR(p) : u_t = \rho_1 u_{t-1} + \dots + \rho_p u_{t-p} + \varepsilon_t$$

Sous H_0 : Pas d'autocorrélation :

$$T \cdot R_{\hat{u}_t}^2 \sim \chi_q^2$$
 ou $T \cdot R_{\hat{u}_t}^2 \sim \chi_p^2$

— H_1 : Autocorrélation d'ordre q (ou p).

Test Q de Ljung-Box :

- H_1 : Autocorrélation jusqu'au décalage h.
- 86 Correction Utiliser la méthode des moindres carrés ordinaires (OLS) avec un estimateur de matrice de variance-covariance robuste à l'hétéroscédasticité et à l'autocorrélation (HAC), par exemple celui proposé par Newey-West.
- Utiliser les moindres carrés généralisés (GLS). Supposons que $y_t = \beta_0 + \beta_1 x_t + u_t$, avec $u_t = \rho u_{t-1} + \varepsilon_t$, où $|\rho| < 1$ et ε_t est un <u>bruit blanc</u>.
 - Si ρ est connu, utilisez un modèle quasi-différencié :

$$y_t - \rho y_{t-1} = \beta_0 (1 - \rho) + \beta_1 (x_t - \rho x_{t-1}) + u_t - \rho u_{t-1}$$
$$y_t^* = \beta_0^* + \beta_1' x_t^* + \varepsilon_t$$

où $\beta_1' = \beta_1$; et estimez-le par OLS.

- Si ρ n'est **pas connu**, l'estimer par exemple par la **méthode itérative de Cochrane-Orcutt** (la méthode de Prais-Winsten est également valable) :
 - 1. Obtenir \hat{u}_t à partir du modèle original.
 - 2. Estimez $\hat{u}_t = \rho \hat{u}_{t-1} + \varepsilon_t$ et obtenez $\hat{\rho}$.
 - $3.\ {\rm Cr\'{e}ez}$ un modèle quasi-différencié :

$$y_t - \hat{\rho}y_{t-1} = \beta_0(1 - \hat{\rho}) + \beta_1(x_t - \hat{\rho}x_{t-1}) + u_t - \hat{\rho}u_{t-1}$$
$$y_t^* = \beta_0^* + \beta_1'x_t^* + \varepsilon_t$$

où $\beta_1' = \beta_1$; et l'estimer par OLS.

- 4. Obtenir $\hat{u}_t^* = y_t (\hat{\beta}_0^* + \hat{\beta}_1' x_t) \neq y_t (\hat{\beta}_0^* + \hat{\beta}_1' x_t^*).$
- 5. Répéter à partir de l'étape 2. L'algorithme se termine lorsque les paramètres estimés varient très peu entre les itérations.
- Si le problème n'est pas résolu, rechercher une forte dépendance dans la série.

87 – Lissage exponentiel $f_t = \alpha y_t + (1 - \alpha) f_{t-1}$ où $0 < \alpha < 1$ est le paramètre de lissage.

88 - Prévisions

Deux types de prévisions :

- De la valeur moyenne de y pour une valeur spécifique de x.
- D'une valeur individuelle de y pour une valeur spécifique de x.

Statistique U de Theil - compare les résultats prévus avec les résultats des prévisions réalisées à partir d'un minimum de données historiques.

$$U = \sqrt{\frac{\sum_{t=1}^{T-1} \left(\frac{\hat{y}_{t+1} - y_{t+1}}{y_t}\right)^2}{\sum_{t=1}^{T-1} \left(\frac{y_{t+1} - y_t}{y_t}\right)^2}}$$

- < 1 : la prévision est meilleure qu'une simple estimation.
- --=1: la prévision est à peu près aussi bonne qu'une simple estimation.
- -->1: La prévision est moins bonne qu'une simple estimation.

89 - Stationnarité

La stationnarité permet d'identifier correctement les relations entre les variables qui restent inchangées dans le temps.

- **Processus stationnaire** (stationnarité stricte) : si un ensemble de variables aléatoires est pris et décalé de *h* périodes (changements de temps), la distribution de probabilité conjointe doit rester inchangée.
- **Processus non stationnaire**: par exemple, une série avec une tendance, où au moins la moyenne change avec le temps.
- Processus stationnaire de covariance il s'agit d'une forme plus faible de stationnarité :
 - $\mathbb{E}(x_t)$ est constant. $\operatorname{Var}(x_t)$ est constant.
 - Pour tout $t, h \ge 1$, $Cov(x_t, x_{t+h})$ dépend uniquement de h, et non de t.

90 – Faible dépendance

La faible dépendance remplace l'hypothèse d'échantillonnage aléatoire pour les séries temporelles.

- Un processus stationnaire $\{x_t\}$ est **faiblement dépendant** lorsque x_t et x_{t+h} sont presque indépendants lorsque h augmente sans limite.
- Un processus stationnaire de covariance est **faiblement dé pendant** si la corrélation entre x_t et x_{t+h} tend vers 0 suffisamment rapidement lorsque $h \to \infty$ (ils ne sont pas corrélés de manière asymptotique).

Les processus faiblement dépendants sont appelés **intégrés** d'ordre zéro, I(0). Quelques exemples :

— Moyenne mobile - $\{x_t\}$ est une moyenne mobile d'ordre q, MA(q):

$$x_t = e_t + m_1 e_{t-1} + \dots + m_q e_{t-q}$$

où $\{e_t : t = 0, 1, ..., T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

— **Processus autorégressif** - $\{x_t\}$ est un processus autorégressif d'ordre p, AR(p):

$$x_t = \rho_1 x_{t-1} + \dots + \rho_p x_{t-p} + e_t$$

où $\{e_t: t=1,2,\ldots,T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

Condition de stabilité : si $1 - \rho_1 z - \cdots - \rho_p z^p = 0$ pour |z| > 1, alors $\{x_t\}$ est un processus AR(p) stable qui est faiblement dépendant. Pour AR(1), la condition est : $|\rho_1| < 1$.

— **Processus ARMA** - est une combinaison de AR(p) et MA(q); $\{x_t\}$ est un ARMA(p,q):

$$x_t = e_t + m_1 e_{t-1} + \dots + m_q e_{t-q} + \rho_1 x_{t-1} + \dots + \rho_p x_{t-p}$$

91 - Racines unitaires

Un processus est I(d), c'est-à-dire intégré d'ordre d, si l'application de différences d fois rend le processus stationnaire.

Lorsque $d \ge 1$, le processus est appelé **processus à racine unitaire** ou on dit qu'il a une racine unitaire.

Un processus a une racine unitaire lorsque la condition de stabilité n'est pas remplie (il existe des racines sur le cercle unitaire).

92 – Forte dépendance

La plupart du temps, les séries économiques sont fortement dépendantes (ou très persistantes). Quelques exemples de **racine** unitaire I(1) :

— Marche aléatoire - un processus AR(1) avec $\rho_1 = 1$.

$$y_t = y_{t-1} + e_t$$

où $\{e_t: t=1,2,\ldots,T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

— Marche aléatoire avec dérive - un processus AR(1) avec $\rho_1 = 1$ et une constante.

$$y_t = \beta_0 + y_{t-1} + e_t$$

où $\{e_t : t = 1, 2, ..., T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

93 – Tests de racine unitaire

Test	H_0	Rejeter H_0
ADF	I(1)	tau < Valeur critique
KPSS	Niveau I(0)	mu > Valeur critique
	Tendance I(0)	tau > Valeur critique
Phillips-Perron	I(1)	Z-tau < Valeur critique
Zivot-Andrews	I(1)	tau < Valeur critique

94 – De la racine unitaire à la faible dépendance Intégré d'ordre un, I(1), signifie que la première différence du processus est faiblement dépendante ou I(0) (et généralement stationnaire). Par exemple, soit $\{y_t\}$ une marche aléatoire :

$$\Delta y_t = y_t - y_{t-1} = e_t$$
 où $\{e_t\} = \{\Delta y_t\}$ est i.i.d.

Remarque:

- La première différence d'une série supprime sa tendance.
- Les logarithmes d'une série stabilisent sa variance.

De la racine unitaire au pourcentage de variation

Lorsqu'une série I(1) est strictement positive, elle est généralement convertie en logarithmes avant de prendre la première différence pour obtenir le pourcentage de variation (approximatif) de la série :

$$\Delta \log(y_t) = \log(y_t) - \log(y_{t-1}) \approx \frac{y_t - y_{t-1}}{y_{t-1}}$$

95 - Coiintégration

Lorsque deux séries sont I(1), mais qu'une combinaison linéaire de celles-ci est I(0). Dans ce cas, la régression d'une série sur l'autre n'est pas fallacieuse, mais exprime quelque chose sur la relation à long terme. Les variables sont dites cointégrées si elles ont une tendance stochastique commune.

Par exemple, $\{x_t\}$ et $\{y_t\}$ sont I(1), mais $y_t - \beta x_t = u_t$ où $\{u_t\}$ est I(0). (β est le paramètre de cointégration).

96 - Test de cointégration

En suivant l'exemple ci-dessus :

- 1. Estimer $y_t = \alpha + \beta x_t + \varepsilon_t$ et obtenir $\hat{\varepsilon}_t$.
- 2. Effectuer un test ADF sur $\hat{\varepsilon}_t$ avec une distribution modifiée. Le résultat de ce test est équivalent à :

— $H_0: \beta = 0$ (pas de cointégration)

— $H_1: \beta \neq 0$ (cointégration)

si la statistique du test > valeur critique, rejeter H_0 .

97 – Hétéroscédasticité sur les séries temporelles L'hypothèse affectée est t4, ce qui conduit à une inefficacité de l'OLS.

Utilisez des tests tels que Breusch-Pagan ou White, où H_0 : pas d'hétéroscédasticité. Il est **important** pour que les tests fonctionnent qu'il n'y ait **pas d'autocorrélation**.

98 - ARCH

Une hétéroscédasticité conditionnelle autorégressive (ARCH) est un modèle permettant d'analyser une forme d'hétéroscédasticité dynamique, où la variance de l'erreur suit un processus AR(p).

Étant donné le modèle : $y_t = \beta_0 + \beta_1 z_t + u_t$ où il y a AR(1) et hétéroscédasticité :

$$\mathbb{E}(u_t^2 \mid u_{t-1}) = \alpha_0 + \alpha_1 u_{t-1}^2$$

99 - GARCH

Un modèle général d'hétéroscédasticité conditionnelle autorégressive (GARCH) est similaire au modèle ARCH, mais dans ce cas, la variance de l'erreur suit un processus $\operatorname{ARMA}(p,q)$.

Actuariat Non-Vie

100 - La tarification en assurance non-vie

Une approche générale, mais non exhaustive, car les possibles sont nombreux :

101 – Structure générale des données en assurance

Une structure classique des données en assurance. Là encore, les possibles sont nombreux :

102 – Provision

L'actuaire non-vie évalue principalement les provisions suivantes :

- Des provisions pour sinistres à payer (PSAP, Reserves for claims reported but not settel (RBNS))
- Des provisions pour sinistres non encore manifestés (PS-NEM, Reserve for claims incurred but not reported (IBNR))
- Des provisions pour primes non acquises (PPNA, Reserves for unearned premiums)
- Des provisions pour risques en cours (PREC, Reserves for outstanding risks (non-life))

103 - Chain Ladder déterministe

Soit C_{ik} le montant, cumulé jusqu'en l'année de développement k, des sinistres survenus en l'année d'accident i, pour $1 \leq i, k \leq n$. C_{ik} peut représenter soit le montant payé, soit le cout total estimé (paiement déjà effectué plus réserve) du sinistre. Les montants C_{ik} sont connus pour $i+k \leq n+1$ et on cherche à estimer les valeurs des C_{ik} pour i+k > n+1, et en particulier les valeurs ultimes C_{in} pour $2 \leq i \leq n$. Ces notations sont illustrées dans le triangle suivant :

La méthode de Chain Ladder estime les montants inconnus, C_{ik} pour i + k > n + 1, par

$$\hat{C}_{ik} = C_{i,n+1-i} \cdot \hat{f}_{n+1-i} \cdots \hat{f}_{k-1} \quad i+k > n+1$$
 (5)

où

$$\hat{f}_k = \frac{\sum_{i=1}^{n-k} C_{i,k+1}}{\sum_{i=1}^{n-k} C_{ik}} \quad 1 \le k \le n-1.$$
 (6)

La réserve de sinistre pour l'année d'accident $(R_i, 2 \le i \le n)$, est alors estimée par

 $\hat{R}_i = C_{in} - C_{i,n+1-i}$

$$=C_{i,n+1-i}\cdot \hat{f}_{n+1-i}\cdots \hat{f}_{n-1}-C_{i,n+1-i}$$
 Délais de réglement
$$\begin{pmatrix} C_{1,1} & C_{1,2} & \cdots & C_{1,n+1-i} & \cdots & C_{1,n-1} & C_{1,n} \\ C_{2,1} & C_{2,2} & \cdots & C_{2,n+1-i} & \cdots & C_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ C_{i,1} & C_{i,2} & \cdots & C_{i,n+1-i} \\ \vdots & \vdots & \ddots & \sum \\ C_{n-1,1} & C_{n-1,2} \\ C_{n,1} & & & \text{Réglements de l'année } n \end{pmatrix}$$

104 - Méthode de Mack

Les deux premières hypothèses sont les suivantes :

$$E(C_{i,k+1} \mid C_{i1}, \dots, C_{ik}) = C_{ik} f_k \quad 1 \le i \le n, 1 \le k \le n-1$$
 (7)

(où i + j = n + 1)

$$\{C_{i1}, \dots, C_{in}\}, \{C_{j1}, \dots, C_{jn}\} \quad \forall i, j \text{ sont indépendents } (8)$$

Mack démontre que si on estime les paramètres du modèle (7) par (6) alors ce modèle stochastique (7), combiné avec l'hypothèse (8) fournit exactement les mêmes réserves que la méthode originale de Chain Ladder (5).

Avec la notation $f_{i,k} = \frac{C_{i,k+1}}{C_{i,k}}$, \hat{f}_k est la moyenne des $f_{i,k}$ pondérée par les $C_{i,k}$:

$$\hat{f}_k = \frac{\sum_{i=1}^{n-k} C_{i,k} \times f_{i,k}}{\sum_{i=1}^{n-k} C_{ik}}$$

La variance s'écrit :

$$\hat{\sigma}_{k}^{2} = \frac{1}{n-k-1} \sum_{i=1}^{n-k} C_{ik} \left(\frac{C_{i,k+1}}{C_{ik}} - \hat{f}_{k} \right)^{2}$$
$$= \frac{1}{n-k-1} \sum_{i=1}^{n-k} \left(\frac{C_{i,k+1} - C_{i,k} \hat{f}_{k}}{\sqrt{C_{i,k}}} \right)^{2}$$

Le troisième hypothèse concerne la distribution de R_i pour pouvoir construire facilement des intervalles de confiance sur les réserves estimées. Si la distribution est normale, de moyenne la valeur estimée \hat{R}_i et d'écart-type donné par l'erreur standard se (\hat{R}_i) . Un intervalle de confiance à 95% est alors donné par $\left[\hat{R}_i - 2\operatorname{se}\left(\hat{R}_i\right), \hat{R}_i + 2\operatorname{se}\left(\hat{R}_i\right)\right]$.

Si la distribution est supposée lognormale, les bornes d'un intervalle de confiance à 95% seront alors données par

$$\left[\hat{R}_i \exp\left(\frac{-\sigma_i^2}{2} - 2\sigma_i\right), \hat{R}_i \exp\left(\frac{-\sigma_i^2}{2} + 2\sigma_i\right)\right]$$

105 – Le modèle risque collectif

Le modèle collectif est le modèle de base en actuariat non-vie? X_i désigne le montant du i^e sinistre, N désigne le nombre de sinistres et S le montant total au cours d'une année

$$S = \sum_{i=1}^{N} X_i$$

en sachant que S=0 lorsque N=0 et que $\{X_i\}_{i=1}^\infty$ est une séquence iid et $N\perp\{X_i\}_{i=1}^\infty$. La difficulté est d'obtenir la distribution de S, alors même que $\mathbb{E}[N]$ n'est pas grand au sens du TCL.

106 – La distribution de S

Soit $G(x)=\mathbb{P}(S\leq x),\, F(x)=\mathbb{P}\left(X_1\leq x\right)$, et $p_n=\mathbb{P}(N=n)$ de sorte que $\left\{p_n\right\}_{n=0}^\infty$ soit la fonction de probabilité pour le nombre de sinistres.

$$\{S \le x\} = \bigcup_{n=0}^{\infty} \{S \le x \text{ et } N = n\}$$

$$\mathbb{P}(S \le x \mid N = n) = \mathbb{P}\left(\sum_{i=1}^{n} X_i \le x\right) = F^{n*}(x)$$

Ainsi, pour $x \ge 0$

$$G(x) = \sum_{n=0}^{\infty} p_n F^{n*}(x)$$

où F^{n*} désigne la convolution n^e , malheureusement elle n'existe pas sous forme fermée pour de nombreuses distributions. Si E[X] = m

$$E[S] = E[Nm] = E[N]m$$

Ce résultat est très intéressant, car il indique que le montant total attendu des sinistres est le produit du nombre attendu de sinistres et du montant attendu de chaque sinistre. De même, en utilisant le fait que $\{X_i\}_{i=1}^{\infty}$ sont des variables aléatoires indépendantes,

$$V[S \mid N=n] = V\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} V\left[X_i\right]$$

$$V[S] = E[V(S \mid N)] + V[E(S \mid N)]$$

= $E[N]V[X_i] + V[N]m^2$

107 – La classe de distributions (a, b, 0)

Une distribution de comptage est dite (a,b,0) si sa fonction de probabilité $\{p_n\}_{n=0}^{\infty}$ peut être calculée de manière récursive à partir de la formule

$$p_n = \left(a + \frac{b}{n}\right) p_{n-1}$$

pour $n = 1, 2, 3, \ldots$, où a et b sont des constantes.

Il existe exactement trois distributions non triviales dans la classe (a, b, 0), à savoir Poisson, binomiale et binomiale négative. Voici les valeurs de a et b pour les principales distributions (a, b, 0):

	a	b
$\mathcal{P}_{ois}(\lambda)$	0	λ
$\mathcal{B}_{in}(n,q)$	-q/(1-q)	(n+1)q/(1-q)
$\mathcal{NB}_{in}(k,q)$	1-q	(1-q)(k-1)
$\mathcal{G}_{eo}(q)$	1-q	0
Distribution de Panjer	$\frac{\lambda}{\alpha + \lambda}$	$\frac{(\alpha-1)\lambda}{\alpha+\lambda}$

La loi géométrique est un cas particulier de la binomiale négative où k=1.

108 – Algorithme d'agrégation de Panjer

L'algorithme de Panjer vise l'estimation de distribution d'une loi composée coût-fréquence dans des conditions particulières.

- $(X_i)_{i=1}^N$ iid discrètes définies sur $\{0, h, 2h, 3h...\}$
- la loi du nombre dans la classe dite (a, b, 0)

Puisque nous supposons désormais que les montants individuels des demandes sont répartis sur les entiers non négatifs, il s'ensuit que S est également réparti sur les entiers non négatifs. Comme $S = \sum_{i=1}^N X_i$, il s'ensuit que S = 0 si N = 0 ou si N = n et $\sum_{i=1}^n X_i = 0$. Comme $\sum_{i=1}^n X_i = 0$ uniquement si chaque $X_i = 0$, il s'ensuit par indépendance que

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} = 0\right) = f_{0}^{n}$$

$$\begin{cases} g_{0} = p_{0} + \sum_{n=1}^{\infty} p_{n} f_{0}^{n} = P_{N}\left(f_{0}\right) \text{ si } a \neq 0, \\ g_{0} = p_{0} \cdot \exp(f_{0}b) \text{ si } a = 0, \\ g_{k} = \frac{1}{1 - af_{0}} \sum_{j=1}^{k} \left(a + \frac{bj}{k}\right) f_{j} g_{k-j} \end{cases}$$

 g_x est exprimé en fonction de $g_0, g_1, \ldots, g_{x-1}$, de sorte que le calcul de la fonction de probabilité est récursif. Dans toutes les applications pratiques de cette formule, un ordinateur est nécessaire pour effectuer les calculs. Cependant, l'avantage de la formule de récursivité de Panjer par rapport à la formule pour g_x est qu'il n'est pas nécessaire de calculer les convolutions, ce qui est beaucoup plus efficace d'un point de vue computationnel. L'algorithme de Panjer nécessite la discrétisation de la variable X_i .

109 – Panjer et la loi de Poisson

Lorsque la fréquence suit une loi de Poisson, cela implique que a=0 et $b=\lambda$. Le résultat se simplifie :

$$\begin{cases} g_0 = e^{-\lambda(1-f_0)} \\ g_k = \frac{\lambda}{k} \sum_{j=1}^k j.f_j.g_{k-j} \end{cases}$$

110 – Panjer et Pollaczeck-Khinchine-Beekman

Soit τ_1 le premier instant où $R_t < \kappa (= \kappa_0)$. On pose alors $L_1 = \kappa - R_{\tau_1}$. On redémarre le processus avec $\kappa_1 = \kappa_0 - R_{\tau_1}$ pour trouver τ_2 et $L_2 = \kappa_1 - R_{\tau_2}$. En continuant de la sorte, on constate que :

$$M = \sup_{t \ge 0} \{ S_t - ct \} = \sum_{k=1}^K L_k$$

où $K \sim \mathcal{G}eo(q)$ avec $q=1-\psi(0)$. En remarquant que les variables $(L_k)_{1\leq k\leq K}$ sont iid (F), on a alors $\psi(k)=\mathbb{P}[M>\kappa]$ donnée par la formule de Pollaczeck-Khinchine-Beekman. La représentation

$$\psi(\kappa) = \mathbb{P}\left[\sum_{j=1}^{K} L_j > \kappa\right]$$

permet d'évaluer la probabilité de ruine sur horizon infini à l'aide de l'algorithme de Panjer.

Réassurance

ASSURÉ Contrat d'assurance ASSUREUR DIRECT cédante Convention de réassurance RÉASSUREUR(S) Convention de réassurance RÉTROCESSIONNAIRE(S)

112 – Les mots clés de la réassurance

Cédante : client du réassureur, c'est-à-dire l'assureur direct, qui transfère (cède) des risques au réassureur contre le versement d'une **prime de réassurance**.

Cession : transfert de risques par l'assureur direct au réassureur. Capacité (*Value Exposure*) : limite du montant du risque couvert par un contrat de (ré)assurance.

Réassurance proportionnelle : participation proportionnelle du réassureur aux primes et aux sinistres de l'assureur direct.

Réassurance en quote-part (*Quota Share*) : type de réassurance proportionnelle où le réassureur participe à un pourcentage donné de tous les risques souscrits par un assureur direct dans une branche déterminée.

Réassurance en excédent de plein (Surplus Share) : type de réassurance proportionnelle où le réassureur couvre les risques au delà du plein de conservation de l'assureur direct. Ce ratio se calcul sur la capacité du risque souscrit (\approx Sinistre maximal possible).

Commission de réassurance : rémunération que le réassureur accorde à l'assureur ou aux courtiers en dédommagement des frais d'acquisition et de gestion des contrats d'assurance.

Réassurance non proportionnelle (ou réassurance en excédent de sinistre, *Excess Reinsurance*): prise en charge par le réassureur des sinistres excédant un certain montant, contre le versement par l'assureur direct d'une prime de réassurance spécifique.

 ${\bf R\acute{e}trocession}$: part des risques que le réassureur cède à d'autres réassureurs.

 ${\bf Coassurance}$: participation de plusieurs assureurs directs au même risque.

On utilise alors l'expression **pool de réassurance**. Le réassureur principal est appelé **apériteur**.

Traité de réassurance : contrat conclu entre l'assureur direct et le réassureur sur un ou plusieurs portefeuilles de l'assureur.

Réassurance facultative : Elle diffère du traité de réassurance par une souscription risque par risque (ou police par police) (du cas par cas, un risque à la fois).

113 – Le rôle économique de la réassurance

L'assurance et la réassurance partagent la même finalité : la mu-

tualisation des risques. La réassurance intervient en particuliers sur les risques :

- indépendants, mais unitairement coûteux (avion, navire, sites industriels...),
- de petits montants (bris, auto, ...) mais corrélés lors d'événements de grandes ampleurs, engendrant des cumuls onéreux.
- agrégés au sein d'un portefeuille de polices d'assurance,
- mal connus ou nouveaux.

La réassurance permet d'augmenter la capacité d'émission d'affaires, assurer la stabilité financière de l'assureur, surtout en cas de catastrophes, réduire leur besoin en capital, bénéficier de l'expertise du réassureur.

114 - Les types d'ententes en réassurance

115 – Les types de réassurance à travers un exemple

Notre assureur réassure N=30 polices d'assurance, d'un total de primes est de $10\mathrm{M} \in (P=\sum_{i=1...N}P_i)$. La capacité totale est de $10\mathrm{M} \in (\sum_{i=1...30}K_i)$. S_r sera la part totale de sinistre pris en charge par l'assureur et P_r la prime totale de réassurance. Voici les n=8 polices sinistrées $(1 \geq i \geq n)$, les sinistres des autres polices étant nuls $(S_i=0,\forall i>n)$:

Num de sinistre	1	2	3	4	5	6	7	8
Prime (k€)	500	200	100	100	50	200	500	200
Capacité (M€)	8	5	3	2	3	5	8	8
Sinistres (M€)	1	1	1	2	3	3	5	8

Le S/P est de 240%.

Quote-part:

$$S_r = \alpha \sum_{i=1...n} S_i$$
 $P_r = \alpha \sum_{i=1...N} P_i$

où $\alpha~\in[0,1]$ (25% dans la figure) est la part cédé en Quote-part.

Excédent de plein, le plein est noté K (2M \in dans l'exemple), α_i représente le taux de cession de la police i.

$$S_r = \sum_{i=1...n} \underbrace{\left(\frac{(K_i - \boldsymbol{K})_+}{K_i}\right)}_{} S_i \qquad P_r = \sum_{i=1...N} \left(\frac{(K_i - \boldsymbol{K})_+}{K_i}\right) P_i$$

Excédent par sinistre

L'assureur fixe la priorité a et la porté b (respectivement 2M€ et 4M€ dans la figure).

$$S_r = \sum_{i=1...n} \min \left(\left(S_i - a \right)^+, b \right)$$

La prime est fixée par le réassurance, en fonction de son estimation de $\mathbb{E}[S_r]$.

WXL-R = Working XL per Risk

Excédent par événement

$$S_r = \sum_{\substack{Cat_j, \\ i = 1...N}} \min \left(\mathbb{1}_{i \in Cat_j} \times (S_i - a)^+, b \right)$$

Dans l'illustration, les sinistres font référence à un seul événement, avec une priorité à 5M \in et une portée à 10M \in .

 $Cat\text{-}XL = Catastrophe \ XL$

Excédent de pertes annuelles

Cette réassurance ($Stop\ Loss$) intervient lorsque le cumul des pertes annuelles est dégradé. Il s'exprime sur la base du ratio S/P avec une priorité et une porté du XL exprimées en %.

$$S_r = \min\left(\left(\sum_{i=1...N} S_i - aP\right)^+, bP\right)$$

116 – Les principales clauses en réassurance La franchise a^{ag} et la limite aggregate b^{ag} s'appliquent après le calcul du S_r .

$$S_r^{ag} = \min\left(\left(S_r - a^{ag} \right)^+, b^{ag} \right)$$

L'objectif de la **clause d'indexation** est de conserver les <u>modalités du traité</u> sur plusieurs exercices successifs. Les bornes du traité s'alignent sur un indice économique (salaire, devise, indice de prix ...).

Avec clause de stabilisation, lorsque le sinistre souffre d'un règlement long, voire très long (au moins ≥ 1 an), les bornes du traité sont actualisées dans le calcul du S_r afin que les parts respectives du réassureur et de la cédante prévues initialement soient globalement respectées.

Avec la clause de partage des intérêts, si lors d'une transaction ou d'un jugement d'un tribunal une distinction a été faite entre l'indemnité et les intérêts, les intérêts courus entre la date du sinistre et celle du paiement effectif de l'indemnité seront répartis entre la cédante et le réassureur proportionnellement à leur charge respective résultant de l'application du traité hors intérêts.

La clause de reconstitution de garantie concerne uniquement les traités en excédent de sinistre par risque ou par événement qui pourraient être déclenchée à plusieurs reprises dans l'année. Le réassureur limite sa prestation à N fois la portée de l'XS, contre le versement d'une prime complémentaire. La reconstitution peut se faire au prorata temporis (temps qui reste à courir jusqu'à la date d'échéance du traité) ou au prorata des capitaux absorbés, ou les deux (double proata).

La clause de superposition (Interlocking Clause) est utilisée dans les traités en XS par évènement, qui fonctionnent par exercice de souscription et non par exercice de survenance. La clause de superposition qui aura pour effet de recalculer les bornes du traité, parce qu'un même évènement peut déclencher le traité des souscriptions n et N-1.

117 – La réassurance publique

La Caisse Centrale de Réassurance (CCR) propose, avec la garantie de l'État, des couvertures illimitées pour des branches spécifiques au marché français.

- les risques exceptionnels liés à un transport,
- la RC des exploitants de navires et installations nucléaires,
- les risques de catastrophes naturelles,
- les risques d'attentats et d'actes de terrorisme,

— le Complément d'Assurance crédit Public (CAP).

Elle gère également pour le compte de l'État certains Fonds Publics, en particulier le régime Cat Nat.

Également, le GAREAT est un Groupement d'Intérêt Économique (GIE) à but non lucratif, mandaté par ses adhérents, qui gère la réassurance des risques d'attentats et actes de terrorisme avec le soutien de l'État via la CCR.

118 - Titrisation / CatBonds

Pourquoi ? Les capacités financières de tous les assureurs et réassureurs réunies ne couvrent pas les dégâts d'un tremblement de terre majeur aux État Unis ($\geq 200~\mathrm{Md} \in$). Cette somme correspond à moins de 1% de la capitalisation sur les marchés financiers américains.

La **titrisation** transforme un risque assuranciel en titre négociable, souvent en titres obligataires appelés **Cat-Bonds**. Elle consiste en un échange de principal contre paiement périodique de coupons, dans lequel le paiement des coupons et ou le remboursement du principal sont conditionnés à la survenance d'un événement déclencheur défini *a priori*. Les taux de ces obligations sont majorés en fonction du risque, non pas de défaillance ou de contre partie, mais de la survenance de l'événement (inférieur à 1%). La structure dédiée à cette transformation s'appelle *Special Purpose Vehicle* (SPV).

Le déclencheur peut être liés directement aux résultats de la cédente (Indemnitaire), dépendre d'un indice de sinistralité, d'un paramètre mesurable (somme des excédents de pluie, échelle de Richter, taux de mortalité), ou d'un modèle (RMS & Equecat Storm modelling).

Critère	Indem- nitaire	Indice	Paramé- trique	Modèle
Transparence	Θ	0	0	\oplus
Risque de base	\oplus	Θ	Θ	⊕
Aléa moral	Θ	0	0	0
Universalité des périls	\oplus	⊕	Θ	⊕
Délai de dé- clenchement	\oplus	Θ	0	0

Statistiques des extrêmes et tarification en réassurance

119 - Loi de Pareto

Soit la variable aléatoire X qui suit une loi de Pareto de paramètres (x_m,k) , k est l'indice de Pareto :

$$\mathbb{P}(X > x) = \left(\frac{x}{x_{\rm m}}\right)^{-k} \text{ avec } x \ge x_{\rm m}$$

$$f_{k,x_{\mathrm{m}}}(x) = k \frac{x_{\mathrm{m}}^k}{x^{k+1}} \text{ pour } x \ge x_{\mathrm{m}}$$

Loi de Pareto généralisée (GPD) a 3 paramètres μ , σ et ξ .

$$F_{\xi,\mu,\sigma}(x) = \begin{cases} 1 - \left(1 + \frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi} & \text{for } \xi \neq 0, \\ 1 - \exp\left(-\frac{x-\mu}{\sigma}\right) & \text{for } \xi = 0. \end{cases}$$

pour $x \ge \mu$ quand $\xi \ge 0$ et $\mu \le x \le \mu - \sigma/\xi$ quand $\xi < 0$ et où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ l'échelle et $\xi \in \mathbb{R}$ la forme. No-

tez que certaines références donnent le « paramètre de forme », comme $\kappa = -\xi$.

$$f_{\xi,\mu,\sigma}(x) = \frac{1}{\sigma} \left(1 + \frac{\xi(x-\mu)}{\sigma} \right)^{\left(-\frac{1}{\xi}-1\right)} = \frac{\sigma^{\frac{1}{\xi}}}{\left(\sigma + \xi(x-\mu)\right)^{\frac{1}{\xi}+1}}$$

120 - Loi des valeurs extrême généralisée

La fonction de répartition de la loi des extrêmes généralisée est

$$F_{\mu,\sigma,\xi}(x) = \exp\left\{-\left[1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

pour $1 + \xi(x - \mu)/\sigma > 0$, où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ d'échelle et $\xi \in \mathbb{R}$ la forme. Pour $\xi = 0$ l'expression est définie par sa limite en 0.

$$f_{\mu,\sigma,\xi}(x) = \frac{1}{\sigma} \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{(-1/\xi) - 1} \times \exp \left\{ - \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-1/\xi} \right\}$$

$$f(x; \mu, \sigma, 0) = \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right) \exp\left[-\exp\left(-\frac{x-\mu}{\sigma}\right)\right]$$

121 – Loi de Gumbel

La fonction de répartition de la loi de Gumbel est :

$$F_{\mu,\sigma}(x) = e^{-e^{(\mu-x)/\sigma}}.$$

Pour $\mu=0$ et $\sigma=1$, on obtient la loi standard de Gumbel. La loi de Gumbel est un cas particulier de la GEV (avec $\xi=0$). Sa densité :

$$f_{\mu,\sigma}(x) = \frac{1}{\sigma} e^{\left(\frac{x-\mu}{\sigma} - e^{-(x-\mu)/\sigma}\right)}$$

122 – Loi de Weibull

La **loi de Weibull** a pour fonction de répartition est définie par :

$$F_{\alpha,\mu,\sigma}(x) = 1 - e^{-((x-\mu)/\sigma)^{\alpha}}$$

où $x > \mu$. Sa densité de probabilité est :

$$f_{\alpha,\mu,\sigma}(x) = (\alpha/\sigma)((x-\mu)/\sigma)^{(\alpha-1)}e^{-((x-\mu)/\sigma)^{\alpha}}$$

où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ d'échelle et $\alpha = -1/\xi > 0$ la forme.

La distribution de Weibull est souvent utilisée dans le domaine de l'analyse de la durée de vie. C'est un cas particulier de la GEV lorsque $\xi < 0$.

Si le taux de pannes diminue au cours du temps alors, $\alpha < 1$. Si le taux de panne est constant dans le temps alors, $\alpha = 1$. Si le taux de panne augmente avec le temps alors, $\alpha > 1$. La compréhension du taux de pannes peut fournir une indication au sujet de la cause des pannes.

123 - Loi de Fréchet

Sa fonction de répartition de la loi de Frechet est donnée par

$$F_{\alpha,\mu,\sigma}(x) = \mathbb{P}(X \le x) = \begin{cases} e^{-\left(\frac{x-\mu}{\sigma}\right)^{-\alpha}} & \text{si } x > \mu \\ 0 & \text{sinon.} \end{cases}$$

où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ l'échelle et $\alpha = 1/\xi > 0$ la forme. C'est un cas particulier de la GEV lorsque $\xi > 0$.

$$f_{\alpha,\mu,\sigma}(x) = \frac{\alpha}{\sigma} \left(\frac{x-\mu}{\sigma}\right)^{-1-\alpha} e^{-\left(\frac{x-\mu}{\sigma}\right)^{-\alpha}}$$

124 – Lien entre GEV, Gumbel, Fréchet et Weibull

Le paramètre de forme ξ gouverne le comportement de la queue de distribution. Les sous-familles définies par $\xi=0,\ \xi>0$ et $\xi<0$ correspondent respectivement aux familles de Gumbel, Fréchet et Weibull :

- Gumbel ou loi des valeurs extrêmes de type I
- Fréchet ou loi des valeurs extrêmes de type II, si $\xi = \alpha^{-1}$ avec $\alpha > 0$.
- Reversed Weibull (\overline{F}) ou loi des valeurs extrêmes de type III, si $\xi = -\alpha^{-1}$, avec $\alpha > 0$.

125 – Théorème général des valeurs extrêmes

Soit X_1, \ldots, X_n iid, X de fonction de répartition F_X et soit $M_n = \max(X_1, \ldots, X_n)$.

La théorie donne la distribution exacte du maximum :

$$\mathcal{P}(M_n \le z) = \Pr(X_1 \le z, \dots, X_n \le z)$$

= $\mathcal{P}(X_1 \le z) \cdots \mathcal{P}(X_n \le z) = (F_X(z))^n$.

S'il existe une séquence de paire de nombres réels (a_n,b_n) de telle sorte que $a_n>0$ et $\lim_{n\to\infty}\mathcal{P}\left(\frac{M_n-b_n}{a_n}\leq x\right)=F_X(x)$, où F_X est une fonction de répartition non dégénérée, alors la limite de la fonction F_X appartient à la famille des lois GEV.

126 – Densité sous-exponentielle

Cas des puissances

Si $\overline{F}_X(x) = \mathbb{P}(X > x) \sim c \ x^{-\alpha}$ quand $x \to \infty$ pour un $\alpha > 0$ et une constante c > 0 alors la loi de X est sous-exponentielle. Si F_X est une fonction de répartition continue d'espérance $\mathbb{E}[X]$ finie, on appelle l'indice des grands risques par

$$D_{F_X}(p) = \frac{1}{\mathbb{E}[X]} \int_{1-p}^{1} F_X^{-1}(t) dt, \ p \in [0, 1]$$

Cette distribution en excès décroit moins vite que n'importe quelle distribution exponentielle. Il est possible de considérer cette statistique :

$$T_n(p) = \frac{X_{(1:n)} + X_{(2:n)} + \ldots + X_{(np:n)}}{\sum_{1 < i < n} (X_i)} \text{ où } \frac{1}{n} \le p \le 1$$

 $X_{(i:n)}$ désigne le i^e max des X_i .

127 – Théorème de Pickands–Balkema–de Haan (loi des excès)

Soit X de distribution F_X , et soit u un seuil élevé. Alors, pour une large classe de lois F_X , la loi conditionnelle des excès

$$X_u := X - u \mid X > u$$

est approximable, pour u suffisamment grand, par une loi de Pareto généralisée (GPD) :

$$\mathbb{P}(X - u \le y \mid X > u) \approx G_{\xi,\sigma,\mu=0}(y) := 1 - \left(1 + \frac{\xi(x - \mu)}{\sigma}\right)^{-1/\xi}$$

 $y \ge 0$. Autrement dit, pour $u \to x_F := \sup\{x : F(x) < 1\}$,

$$\sup_{0 \le y < x_F - u} |\mathbb{P}(X - u \le y \mid X > u) - G_{\xi, \sigma, \mu = 0}(y)| \to 0.$$

Ce théorème justifie l'utilisation de la loi de Pareto (généralisée) pour modéliser les excès au-delà d'un seuil, ce qui est précisément le cadre des traités de réassurance en excess of loss par risque, par événement ou de cumul annuel.

128 - Les données en réassurance

Comme la réassurance indemnise des agrégations de sinistre ou des sinistres extrêmes, elle utilise souvent des historiques qui devront être utilisé avec prudence :

- l'actualisation des données (impact de l'inflation monétaire).
- la revalorisation prend en compte l'évolution du risque :
 - l'évolution des taux de prime, garanties et modalités des contrats,
 - l'évolution des coûts des sinistres (indice des coûts de la construction, indices des coûts de réparation automobile,...)
 - l'évolution de l'environnement juridique.
- le redressement de la statistique pour prendre en compte l'évolution de la base portefeuille :
 - profil des polices (nombre, capitaux,...),
 - natures des garanties (évolution des franchises, des exclusions. . .)

Après ces corrections, les données sont dites « as if » (en économie, on utilise l'expression contre-factuel).

129- La prime $Burning\ Cost$

 X_i^j désigne le i^e sinistre de l'année j « as if » actualisé, revalorisé et redressé, n^j le nombre de sinistres l'année j, c^j la charge de l'assureur c. Le taux pur par la méthode de **Burning Cost** est donné par la formule :

$$BC_{pur} = \frac{1}{s} \sum_{j=1}^{n} \frac{c^j}{a_j}$$

Le Burning Cost n'est qu'une moyenne des ratios S/P croisés : les sinistres à la charge du réassureur sur les primes reçues par la cédante. La prime Burning Cost est alors : $P_{pure} = BC_{pur} \times a_{s+1}$.

Dans le cas d'un $p \times f$,

$$c^{j} = \sum_{i=1}^{n^{j}} \max\left(\left(X_{i}^{j} - f\right), p\right) \mathbb{1}_{x^{j} \ge f}$$

Si l'assurance vie calcule des taux de prime en référence au capital, l'assurance non vie utilise comme référence à la valeur assurée, la réassurance prend elle comme référence le total des primes de la cédante, appelée **assiette**. On note a_j désigne l'assiette de prime à l'année j et a_{s+1}^* désigne l'assiette estimée de l'année à venir et où s désigne le nombre d'années d'historique.

130 – Le modèle Poisson-Pareto

[Prime de l'XS ou de l'XL] Soit p et f respectivement la portée et la priorité (franchise) de l'XS, avec la limite l = p + f (p XS f).

La prime XS correspond à :

$$\mathbb{E}\left[S_{N}\right] = \mathbb{E}\left[\sum_{i=1}^{N} Y_{i}\right] = \mathbb{E}[N] \times \mathbb{E}[Y]$$

οù

$$\mathbb{E}[Y] = l\mathbb{P}[X > l] - f \times \mathbb{P}[X \ge f] + \mathbb{E}[X \mid f \ge x \ge l]$$

Si $l = \infty$ et $\alpha \neq 1$:

$$\mathbb{E}[S_N] = \lambda \frac{x_{\rm m}^{\alpha}}{\alpha - 1} f^{1 - \alpha}$$

si $l = \infty$ et $\alpha = 1$ il n'y a pas de solution.

Si $l < \infty$ et $\alpha \neq 1$:

$$\mathbb{E}[S_N] = \lambda \frac{x_{\rm m}^{\alpha}}{\alpha - 1} \left(f^{1 - \alpha} - l^{1 - \alpha} \right)$$

Si $l < \infty$ et $\alpha = 1$:

$$\mathbb{E}[S_N] = \lambda x_{\rm m} \ln \left(\frac{1}{f}\right)$$

131 – Le modèle Poisson-LogNormal

Si X suit une $\mathcal{LN}orm(x_{\mathrm{m}}, \mu, \sigma)$ alors $X - x_{\mathrm{m}}$ suit une $\mathcal{LN}orm(\mu, \sigma)$ Il vient :

$$\mathbb{P}[X > f] = \mathbb{P}[X - x_{\mathrm{m}} > f - x_{\mathrm{m}}] = 1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - \mu}{\sigma}\right)$$

$$\begin{split} \mathbb{E}[X \mid X > f] \\ = & \mathbb{E}\left[X - x_{\mathrm{m}} \mid X - x_{\mathrm{m}} > f - x_{\mathrm{m}}\right] + x_{\mathrm{m}} \mathbb{P}[X > f] \\ = & e^{m + \sigma^{2}/2} \left[1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - (\mu + \sigma^{2})}{\sigma}\right)\right] \\ & + x_{\mathrm{m}} \left(1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - \mu}{\sigma}\right)\right) \end{split}$$

Avec franchise et sans limite :

$$\begin{split} \mathbb{E}[S_N] \\ &= \lambda \left(\mathbb{E}\left[X - x_{\mathrm{m}} \mid X - x_{\mathrm{m}} > f - x_{\mathrm{m}} \right] + x_{\mathrm{m}} \mathbb{P}[X > f] - f \mathbb{P}[X > f] \right) \\ &= \lambda \left(e^{m + \sigma^2/2} \left[1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - (\mu + \sigma^2)}{\sigma}\right) \right] \right) \\ &+ \lambda (x_{\mathrm{m}} - l) \left(1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - \mu}{\sigma}\right) \right) \end{split}$$

Rappels Mathématiques Lycée/Prépa

132 - Pythagore

Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est rectangle en C, alors

133 - Thalès

Soient deux droites **sécantes en un point** A, et soient deux droites (BC) et (DE) **parallèles**, coupant les deux droites en B, D et C, E, alors :

134 – Équation du second degré

$$ax^2 + bx + c = 0$$

Le discriminant est défini par :

$$\Delta = b^2 - 4ac$$

— Si $\Delta > 0$, l'équation a deux solutions distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

— Si $\Delta = 0$, l'équation a une solution double :

$$x = \frac{-b}{2a}$$

— Si $\Delta < 0$, l'équation a une solution dans les imaginaires

$$x_1 = \frac{-b + i\sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b - i\sqrt{\Delta}}{2a}$$

135 – Fonctions factorielle, dénombrement et Gamma

La fonction **factorielle** (de \mathbb{N} dans \mathbb{N}) est définie par 0!=1 et $n!=n\times(n-1)\times\cdots\times2\times1=$ permutations de n éléments $C_n^k=\binom{k}{n}=\frac{n!}{k!(n-k)!}=$ choix de k éléments parmi n les C_n^k se calculent aussi par le triangle de Pascal et vérifient :

$$C_n^k = C_n^{n-k}, C_n^k + C_n^{k+1} = C_{n+1}^{k+1}.$$

Soit E un ensemble de cardinal $\operatorname{Card}(E)$ et de parties $\mathcal{P}(E)$:

$$Card(\mathcal{P}(E)) = 2^{Card(E)}$$

$$Card(A \times B) = Card(A) \times Card(B)$$

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$$

$$\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt$$

La fonction Γ peut être vue comme le prolongement de la factorielle : $\Gamma(n+1)=n!$.

136 – Développement binomial

Pour un entier positif n,

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

137 - Suites

Les suites arithmétiques de raison r

$$\begin{cases} u_{n+1} &= u_n + r \\ u_0 &\in \mathbb{R} \end{cases} \Rightarrow \begin{cases} u_n &= nr + u_0 \\ \sum_{k=0}^n u_k &= \frac{(n+1)(2u_0 + nr)}{2} \end{cases}$$

suites géométriques de raison $q \begin{cases} u_{n+1} = q \times u_n \\ u_0 \in \mathbb{R} \end{cases}$

$$\Rightarrow \begin{cases} u_n &= u_0 \times q^n \\ \sum_{k=0}^n u_k &= \begin{cases} (n+1)u_0 & \text{si} \\ u_0 \frac{1-q^{n+1}}{1-q} & \text{sinon} \end{cases} \quad q = 1$$

138 - Exponentielle et Logarithme

La fonction exponentielle e^x peut être définie par le développement en série entière suivant :

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Cette série converge pour tout $x \in \mathbb{R}$ et permet de définir l'exponentielle comme une somme infinie.

La fonction logarithme naturel $\ln(x)$ est définie comme la primitive de la fonction $\frac{1}{x}$. Autrement dit :

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

avec la condition $\ln(1)=0$. Cette définition permet d'établir le lien entre l'exponentielle et le logarithme via l'inversion : $e^{\ln(x)}=x$ pour x>0.

139 – Relation de congruence

Soit m>0. On dit que deux réels a et b sont congrus modulo m s'il existe un entier relatif $k\in\mathbb{Z}$ tel que :

$$a = b + km$$
.

On note $a \equiv b \pmod{m}$.

En trigonométrie, on choisit souvent $m=2\pi$ ou $m=\pi$.

141 – Propriétés de la relation de congruence Soient m>0 et $a,b,c,d\in\mathbb{R}.$ Alors :

- Réflexivité : $a \equiv a \pmod{m}$.
- Symétrie : $a \equiv b \pmod{m} \iff b \equiv a \pmod{m}$.
- **Transitivité**: si $a \equiv b \pmod{m}$ et $b \equiv c \pmod{m}$, alors $a \equiv c \pmod{m}$.
- Additivité : si $a \equiv b \pmod{m}$ et $c \equiv d \pmod{m}$, alors $a + c \equiv b + d \pmod{m}$.

142 – Dérivées et primitives

$$f$$
 continue en $x_{\mathrm{m}} \Leftrightarrow \lim_{x \to x_{\mathrm{m}}} f(x) = f\left(x_{\mathrm{m}}\right)$

$$f$$
 dérivable en $x_{\rm m} \Leftrightarrow \exists \lim_{h \to 0} \frac{f\left(x_{\rm m}+h\right)-f\left(x_{\rm m}\right)}{h} =: f'\left(x_{\rm m}\right)$

L'intégrale de Riemann d'une fonction f(x) sur un intervalle [a,b] est la limite, si elle existe, de la somme des aires des rectangles approchant l'aire sous la courbe, donnée par :

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x_i,$$

- $[x_{i-1}, x_i]$ est une subdivision de [a, b],
- $\Delta x_i = x_i x_{i-1}$ est la largeur du sous-intervalle,
- $x_i^* \in [x_{i-1}, x_i]$ est un point choisi arbitrairement dans chaque sous-intervalle.

Exemple d'intégrale de Riemann (upper)*

L'intégrale de Lebesgue d'une fonction f(x) sur un ensemble E est définie en mesurant l'aire sous la courbe en fonction des valeurs prises par f, donnée par :

$$\int_E f \, d\mu = \int_0^\infty \mu(\{x \in E : f(x) > t\}) \, dt,$$

- μ est une mesure (souvent la mesure de Lebesgue),
- $\{x \in E : f(x) > t\}$ représente l'ensemble des points où f(x) dépasse t.

À la différence de Riemann, Lebesgue regroupe les points selon leurs valeurs plutôt que selon leur position.

fonction $(n \in \mathbb{R})$	dérivée	primitive
x	1	$\frac{x^2}{2} + C$
x^2	2x	$\frac{x^3}{3} + C$
1/x	$-1/x^2$	$\ln(x) + C$
$\sqrt{x} = x^{1/2}$	$\frac{1}{2\sqrt{x}}$	$\frac{2}{3}x^{3/2} + C$
$x^n, n \neq -1$	nx^{n-1}	$\frac{x^{n+1}}{n+1} + C$
$\ln(x)$	1/x	$x\ln(x) - x + C$
e^x	e^x	$e^x + C$
$a^x = e^{x \ln(a)}$	$\ln(a) \times a^x$	$a^x/\ln(a) + C$
$\sin(x)$	$\cos(x)$	$-\cos(x) + C$
$\cos(x)$	$-\sin(x)$	$\sin(x) + C$
$\tan(x)$	$1 + \tan(x)$	$-\ln(\cos(x)) + C$
$1/\left(1+x^2\right)$	$-2x/\left(1+x^2\right)^2$	$\arctan(x) + C$

$$\begin{array}{ccc|c} (u+v)' &= u'+v' & \left(\frac{1}{u}\right)' &= -\frac{u'}{u^2} \\ (ku)' &= ku' & \left(\ln(u)\right)' &= \frac{u'}{u} \\ (u\times v)' &= u'v+uv' & \left(\exp(u)\right)' &= \exp(u)\times u' \\ \left(\frac{u}{v}\right)' &= \frac{u'v-uv'}{v^2} & (f(u))' &= f'(u)\times u' \\ (u^n)' &= nu^{n-1}\times u' & (f\circ u)' &= (f'\circ u)\times u' \end{array}$$

143 - Intégration par parties

Soit u(x) et v(x) deux fonctions continûment dérivables sur l'intervalle [a, b], alors

$$\int_{a}^{b} u(x)v'(x) \, dx = \left[u(x)v(x) \right]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx$$

où:

- u(x) est une fonction dont on connaît la dérivée u'(x),
- v'(x) est une fonction dont on connaît la primitive v(x).

144 - Intégration avec changement de variable

Soit f(x) une fonction continue et $x = \phi(t)$ un changement de variable, où ϕ est une fonction dérivable. Alors :

$$\int_{a}^{b} f(x) dx = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t)) \phi'(t) dt$$

où:

- $x = \phi(t)$ représente le changement de variable,
- $\phi'(t)$ est la dérivée de $\phi(t)$,
- les bornes de l'intégrale sont ajustées en fonction du changement de variable.

145 – Formule de Taylor

Soit f(x) une fonction n - fois dérivable en un point a. Le développement de Taylor de f(x) autour de a est donné par :

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^{n} + \mathcal{O}_{n}(x)$$

où:

- $-f^{(n)}(a)$ est la n^{e} dérivée de f évaluée en a,
- $\mathcal{O}_n(x)$ est le reste du développement de Taylor, représentant l'erreur d'approximation lorsque l'on tronque la série après le terme d'ordre n, avec

$$\lim_{x \to 0} \frac{\mathcal{O}_n(x)}{x^n} \Rightarrow 0$$

146 – Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle fermé [a,b] et $f(a) \neq f(b)$. Le théorème des valeurs intermédiaires affirme que pour tout réel c compris entre f(a) et f(b), il existe un point $x \in [a,b]$ tel que :

$$f(x) = c$$

Autrement dit, si une fonction est continue sur un intervalle, elle prend toutes les valeurs comprises entre f(a) et f(b) au moins une fois.

147 – Matrices et propriétés

Matrices diagonales : Une matrice est dite diagonale si tous les éléments en dehors de la diagonale principale sont nuls. Pour une matrice $A \in \mathbb{R}^{n \times n}$, cela s'écrit :

$$A = \operatorname{diag}(a_1, a_2, \dots, a_n)$$

où a_i sont les éléments diagonaux.

Matrices triangulaires : Une matrice est triangulaire supérieure si tous les éléments en dessous de la diagonale sont nuls, c'est-à-dire $A_{ij} = 0$ pour i > j. Inversement, elle est triangulaire inférieure si $A_{ij} = 0$ pour i < j.

148 - Déterminant d'une matrice

Le déterminant d'une matrice carrée $A \in \mathbb{R}^{n \times n}$ est un scalaire, noté $\det(A)$:

- Si A est une matrice carrée $n \times n$, alors A est inversible si et seulement si $\det(A) \neq 0$.
- Le déterminant d'une matrice triangulaire (supérieure ou inférieure) ou d'une matrice diagonale :

$$\det(A) = \prod_{i=1}^{n} A_{ii}$$

$$det(AB) = det(A) \cdot det(B), \quad det(\lambda B) = \lambda det(B),$$

$$\det(A^T) = \det(A)$$

— Si une matrice A contient deux lignes ou colonnes identiques, alors det(A) = 0.

Calcul du déterminant : Le déterminant d'une matrice 2×2 se calcule simplement par :

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

Pour une matrice 3×3 , il est donné par :

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$$

Pour des matrices de dimension supérieure, le déterminant peut être calculé par cofacteurs ou via une méthode de réduction (par exemple, la méthode de Gauss).

149 – Inversibilité d'une matrice

Une matrice $A \in \mathbb{R}^{n \times n}$ est inversible s'il existe une matrice A^{-1} telle que :

$$AA^{-1} = A^{-1}A = I_n$$

où I_n est la matrice identité. L'inversibilité d'une matrice est garantie par $\det(A) \neq 0$.

Trace : La trace d'une matrice carrée A, notée $\mathrm{Tr}(A)$, est la somme de ses éléments diagonaux :

$$Tr(A) = \sum_{i=1}^{n} A_{ii}$$

Elle représente souvent des grandeurs liées à la somme des valeurs propres d'une matrice.

Décomposition de Cholesky : La décomposition de Cholesky est applicable aux matrices symétriques définies positives. Elle permet de factoriser une matrice $A \in \mathbb{R}^{n \times n}$ en un produit de la forme :

$$A = LL^T$$

où L est une matrice triangulaire inférieure. Cette décomposition est utile dans les calculs numériques et les algorithmes d'optimisation.

150 – Gradient et matrice Hessienne

Pour une fonction $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathbb{C}^2 , on définit :

— Le gradient $\nabla f(x)$ comme le vecteur des dérivées par-

tielles premières:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix}$$

— La matrice Hessienne $\nabla^2 f(x)$ comme la matrice symétrique des dérivées secondes :

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix}$$

151 - Théorème des fonctions implicites

Soit $F: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 , et supposons que $F(a^*, b) = 0$ pour un certain couple $(a^*, b) \in \mathbb{R}^2$. Si

$$\frac{\partial F}{\partial y}(a^*, b) \neq 0,$$

alors il existe un réel h > 0 et une unique fonction φ , définie sur un voisinage $(a^* - h, a^* + h)$, telle que

$$\varphi(a^*) = b$$
 et $\forall x \in (a^* - h, a^* + h), \quad F(x, \varphi(x)) = 0$

De plus, la fonction implicite φ est de classe C^1 et sa dérivée est donnée par :

$$\varphi'(x) = -\left. \frac{\partial F/\partial x}{\partial F/\partial y} \right|_{y=\varphi(x)}$$

À propos des auteurs

Marcelo Moreno Porras () is an Associate Professor at the Department of Applied Economics I and Economic History and Institutions at Universidad Rey Juan Carlos (Madrid, Spain) since 2023, specializing in econometrics, macroeconomics, and programming. He is also a Software Developer and IT specialist at a private company in Mijas (Spain). He is the author of several contributions to teaching innovation, co-author of publications on incorporating Sustainable Development Goals in economics education, and has technical expertise on multiple programming languages and statistical tools. His academic background includes a Bachelor's degree in Economics (URJC, top 1