Lecture 18, Oct. 24

Midterm: 7:00-8:45

RCH 307 - A-J

RCH 306 - K-O

DWE 3522 - P-W

DWE 3522A - X-Z

Woman in Pure Math/Math Finance Lunch

Tuesday 12:30-1:20 MC5417

18.1 Definition. We say that L is the limit of f(x) from above (from the right) if for every $\epsilon > 0$ there exists $\delta > 0$ such that if $0 < x - a < \delta$, then $|f(x) - L| < \epsilon$. We write

$$\lim_{x \to a^+} f(x) = L$$

We say that L is the limit of f(x) from below (from the left) if for every $\epsilon > 0$ there exists $\delta > 0$ such that if $-\delta < x - a < 0$, then $|f(x) - L| < \epsilon$. We write

$$\lim_{x \to a^{-}} f(x) = L$$

Note. Both the Arithmetic Rules and Sequential Characterization hold for one-sided limits. As does the Squeeze Theorem.

 $\lim_{x \to a^+} f(x) = L$ iff whenever $\{x_n\}$ is such that $x_n \to a$, $a < x_n$ we have $\lim_{x \to \infty} f(x_n) = L$

18.2 Theorem. The following are equivaent

- 1. $\lim_{x\to a} f(x) = L$
- 2. $\lim_{x\to a^{-}} f(x) = L$ and $\lim_{x\to a^{+}} f(x) = L$
- *Proof.* 1. Assume that $\lim_{x\to a} f(x) = L$, Let $\epsilon > 0$, then there exists $\delta > 0$ such that if $0 < |x-a| < \delta$ then $|f(x)-L| < \epsilon$. Hence if $0 < x-a < \delta$ then $|f(x)-L| < \epsilon$ and if $0 < a-x < \delta$ then $|f(x)-L| < \epsilon$. Thus $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$.
 - 2. Conversely, assume that $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$. Let $\epsilon > 0$. We can find $\delta_1 > 0$ such that if $0 < x a < \delta_1$ then $|f(x) L| < \delta$ and $\delta_2 > 0$ such that if $0 < a x < \delta_1$ then $|f(x) L| < \delta$. Let $\delta = \min\{\delta_1, \delta_2\}$, hence if $0 < |x a| < \delta$ then $|f(x) L| < \epsilon$.

18.3 Example.

$$lim_{x\to 0} \frac{|x|}{x}$$

18.4 Example.

$$\lim_{x\to 0^+} \sqrt{x} = 0$$

18.5 Definition. A function f(x) is **even** if f(x) = f(-x) for all $x \in \mathbb{R}$ (graph is symmetric about x = 0) *Note.* If f(x) is even, (assume these limits exist)

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to -a^{-}} f(x)$$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to -a^{+}} f(x)$$

In particular, $\lim_{x\to 0} f(x)$ exists iff $\lim_{x\to 0^+} f(x)$ exists iff $\lim_{x\to 0^-} f(x)$ exists.

18.6 Definition. A function f(x) is **odd** if f(x) = -f(-x) for all $x \in \mathbb{R}$ (graph is symmetric about (0,0)) *Note.* If f(x) is odd, (assume these limits exist)

$$\lim_{x \to a^{+}} f(x) = -\lim_{x \to -a^{-}} f(x)$$

$$\lim_{x \to a^{-}} f(x) = -\lim_{x \to -a^{+}} f(x)$$

 $\lim_{x\to 0} f(x)$ exists iff $\lim_{x\to 0^+} f(x) = 0$ or $\lim_{x\to 0^-} f(x) = 0$

- **18.7 Example.** $\lim_{x\to 0} \sin x$ and $\lim_{x\to 0} \cos x$
- 18.8 Example.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$