

Міністерство освіти і науки України НТУУ«Київський політехнічний інститут» Фізико-технічний інститут

Лабораторні роботи № 4

з предмету «Криптографія»

на тему: «Вивчення криптосистеми RSA та алгоритму електронного підпису; ознайомлення з методами генерації параметрів для асиметричних криптосистем»

Виконали:

Студенти 3 курсу ФТІ

Групи ФБ-84

Зеленін В.Ю.

Михайленко О.В.

Перевірив:

Чорний О. М.

Мета роботи:

Ознайомлення з тестами перевірки чисел на простоту і методами генерації ключів для асиметричної криптосистеми типу RSA; практичне ознайомлення з системою захисту інформації на основі криптосхеми RSA, організація з використанням цієї системи засекреченого зв'язку й електронного підпису, вивчення протоколу розсилання ключів.

Завдання:

- 1. Написати функцію пошуку випадкового простого числа з заданого інтервалу або заданої довжини, використовуючи датчик випадкових чисел та тести перевірки на простоту. В якості датчика випадкових чисел використовуйте вбудований генератор псевдовипадкових чисел вашої мови програмування. В якості тесту перевірки на простоту рекомендовано використовувати тест Міллера-Рабіна із попередніми пробними діленнями. Тести необхідно реалізовувати власноруч, використання готових реалізацій тестів не дозволяється.
- 2. За допомогою цієї функції згенерувати дві пари простих чисел p, q і 1 1 p , q довжини щонайменше 256 біт. При цьому пари чисел беруться так, щоб pq \leq p1q1 ; p і q прості числа для побудови ключів абонента A, 1 p і q1 абонента B.
- 4. Написати програму шифрування, розшифрування і створення повідомлення з цифровим підписом для абонентів A і B. Кожна з операцій (шифрування, розшифрування, створення цифрового підпису, перевірка цифрового підпису) повинна бути реалізована окремою процедурою, на вхід до якої повинні подаватись лише ті ключові дані, які необхідні для її виконання. За допомогою датчика випадкових чисел вибрати відкрите повідомлення M і знайти криптограму для абонентів A и B, перевірити правильність розшифрування. Скласти для A і B повідомлення з цифровим підписом і перевірити його.
- 5. За допомогою раніше написаних на попередніх етапах програм організувати роботу протоколу конфіденційного розсилання ключів з підтвердженням справжності по відкритому каналу за допомогою алгоритму RSA. Протоколи роботи кожного учасника (відправника та приймаючого) повинні бути реалізовані у вигляді окремих процедур, на вхід до яких повинні подаватись лише ті ключові дані, які необхідні для виконання. Перевірити роботу програм для випадково обраного ключа 0 < k < n.

Хід роботи:

Під час виконання лабораторної роботи ми стикнулись з наступними проблемами:

- Необхідність використовувати функцію pow, вбудовану у пайтон, оскільки ми при використанні звичайних операцій програма некоректно реагувала на великі числа ключів.
 - 1. Робота виключно з локальними функціями

Примітка: числа, які було відкинуто під час тестів, додаються до файлу log.txt, де їх можна переглядати.

Таблиці значень елементів ключів для кожного з учасників (як приклад):

	A	В		
	Open Key			
n	52411688293442316707227815200226897051	1144232297228601879356868369810509886624		
	14387902571992526187948318920290293191	6484261620545723218527012140908861975826		
	96038433631036378141911225677046771470	0416578138742028965433828378125500981626		
	79155946694887859203386624618678923988	40092167858503288370078515047607347		
	9			
e	52125514618417016069366477217654015518	2121095282572591147787725399989764776433		
	44233475265781331117725550045307025580	7771451438172431878136866781441185036466		
	63172176357311958050253181213617559637	2411580663707041669030127425769510845587		
	86185763351033837540646464763132379304	390987158954082529043500132625137		
	1			
	Secret Key			
p	14967568988040225479967761104497604129	1055367132328984143425277932167911862911		
	96147451549396790647657154073603844558	68911776980645283478423770722953165579		
	9			
q	35016834287065361753195441098960275281	1084203081730913955746138435571467068429		
	19549978150313319706176940019860853870	71801986983869070489609587396281961593		
	1			
d	12262787970074932551657829036224960114	4381596033746114716132944628514471		
	73250394644484293953280683255904365053	9375976861590000274541986278810470763653		
	71520780688139843255658834771874123777	1468229883085947460397161878873206064576		
	78438964427705480930406587005907363761	4623599459696068504949436333451426137409		

Приклад шифрування/дешифрування

A		В
P	30	330
T		
C	3207853946116805334953165234176750650160	6575896556963011793638303832247899573724
T	9196445937568554113675016671893599694036	3649249749463484900404045395831216159930
	8110973761666225723007566962372124872653	3659219862361293635978050940593071555965
	904619374602377726886218559896655	7745646157666620980204368551885123

2. Робота з допомогою сайту

За допомогою сайту http://asymcryptwebservice.appspot.com було перевірено створені функції.

Я згенерував 512-бітний ключ на сайті та за його допомогою передав сайту таємне повідомлення

	Me	Asymcryptwebservice		
	Open Key			
n	a01d4783218ce95acf552ee6de3ec197c0df6	8EB8F87CE1564A1B1DCABCAC8A92DCC298A		
	e193642ebc6d62fca44fa85da04e597304080	315F122C3148E1E7D73184BA09CC7A1AC8775C		
	47397a57f8a4527f161a76679d929ca2008c8	C7FE3735CC80C3271E385E17E2D72B3CB14286		
	ce803a446f7ffc51	69AAE03870B803DF7		
e	9f3d792a1e5357fde7909a5f17f63bf884caa5	0x10001		
	126d871bbca0f780c3434cadc40e245408f17			
	c3a0bbd07ad83e9aa305da31cea29708954de			
	12dd96aa9c00691			
	Secret Key			

Sent Data			
k	42533ffd23b441185164b53a595079f5482e0b600c0c853b9080e5d0b5ef85d62f3b7598db112bd1c0aa		
1	277e8be69bdc646e7a640ee7af6bb53eea018eb22930		
S	5625725db15c63ccd0f17404f1db476e3f1da7237b8cf409e02d5bee8f7c1e8c5b475151b7634512e9dae		
1	ab7880cee19d7538e36277f7a36715634a301c9ead4		

Висновки:

В результаті виконання лабораторної роботи ми ознайомились з тестами перевірки чисел на простоту і методами генерації ключів для асиметричної криптосистеми типу RSA; практичне ознайомлення з системою захисту інформації на основі криптосхеми RSA, організація з використанням цієї системи засекреченого зв'язку й електронного підпису, вивчення протоколу розсилання ключів.