Step 1: Start >> [data, model, estimation, misc] = OpenBDLM_main; OpenBDLM Starting OpenBDLM_V1.0 Time series analysis using Bayesian Dynamic Linear Models Start a new project: Enter a configuration filename -> Interactive tool Type D to Delete project(s), V for Version control, Q to Quit. Step 2: Choose the interactive tool (choice >> 0) Starting a new project... Enter a project name (max 25 characters): (choice >> Example_DISP) Step 3: Enter the project name - Does this project aim to create synthetic data ? (y/n) choice >> no Step 4: Disregard generating synthetic data Load data... Choose a database 0 —> Build a new database choice >> 0 Step 5: Load new data — Data available: Time series number # Reference name Size DISP [19366x1] — How many model classes do you want for each time—series? choice >> 1 Step 6a: Select the number of model classes

BDLM Component reference numbers 11: Local level 12: Local trend 13: Local acceleration 21: Local level compatible with local trend 22: Local level compatible with local acceleration 23: Local trend compatible with local acceleration 31: Periodic 41: Autoregressive process (AR(1)) 51: Kernel regression 61: Level Intervention Identify components for time series #1; e.g. [11 31 41] (choice >> [11 31 31 41]) Step 6b: Select the block components Building model... Saving project... Project saved in saved_projects/PROJ_Example_DISP.mat. Printing configuration file... Saving data... Database saved in data/mat/DATA_Example_DISP.mat Configuration file saved in config_files/CFG_Example_DISP.m. OpenBDLM main menu. Choose from 1 -> Learn model parameters values 2 -> Estimate initial hidden states values 3 -> Estimate hidden states values 11 -> Display and modify current model parameter values 12 -> Display and modify current initial hidden states values 13 -> Display and modify current training period 14 -> Plots 15 -> Display model matrices 16 -> Create synthetic data 17 -> Export 18 -> Display current options in configuration file format

Type Q to Save and Quit

choice >> 1

/ Learn model parameters

1 -> Newton—Raphson

2 -> Stochastic Gradient Ascent

Type R to return to the previous menu

choice >> 1) Step 7b: Start the Newton-Raphson algorithm

Learning model parameters (Newton—Raphson) ...

\Start Newton—Raphson maximization algorithm (finite difference method)

Training period: 1—Inf [days]

Maximal number of iteration: 3

Total time limit for calibration : 60 [min] Convergence criterion: 1e-07*LL

Nb. of search levels for \lambda: 4*2

Initial LL: 36627.6547

Loop #1 : AR|M1|1 | \sigma_w delta_param: 0.0048527

log—likelihood : 40472.2846

param change : 0.0174 -> 0.022253

	AR M1 1	AR M1 1	M1 1
parameter names:	\phi	\sigma_w	\sigma_v
current values:	+7.50e-01	+2.23e-02	+8.70e-03
current f.o. std:	+0.00e+00	+5.63e-05	+0.00e+00
previous dLL:	+1.00e+06	+3.84e+03	+1.00e+06
converged:	+0.00e+00	+0.00e+00	+0.00e+00

Loop #2 : AR|M1|1 | \phi delta_param: 0.16243 log—likelihood : 46976.3494 param change : 0.75 -> 0.91243

	AR M1 1	AR M1 1	M1 1
parameter names:	\phi	\sigma_w	σ_v
current values:	+9.12e-01	+2.23e-02	+8.70e-03
current f.o. std:	+1.94e-03	+5.63e-05	+0.00e+00
previous dLL:	+6.50e+03	+3.84e+03	+1.00e+06
converged:	+0.00e+00	+0.00e+00	+0.00e+00

Loop #3 : |M1|1 | \sigma_v delta_param: -0.0056165 log—likelihood : 47795.5556

param change : 0.0087002 -> 0.0030837

	AD IM1 I 1	AD IM1 I 1	114111
	AR M1 1	AR M1 1	M1 1
parameter names:	\phi	\sigma_w	\sigma_v
current values:	+9.12e-01	+2.23e-02	+3.08e-03
current f.o. std:	+1.94e-03	+5.63e-05	+2.02e-04
previous dLL:	+6.50e+03	+3.84e+03	+8.19e+02
converged:	+0.00e+00	+0.00e+00	+0.00e+00

Warning: the optimization has reached the maximum number of loops (3) without convergence

Final results

log—likelihood: 47795.5556

/ OpenBDLM main menu. Choose from

(choice >> 2) Step 8: Estimate the initial hidden states values

OpenBDLM main menu. Choose from

```
(choice >> 3) Step 9a: Access hidden states estimation menu
State estimation
1 → Filter
2 -> Smoother
Type R to return to the previous menu
(choice >> 1 ) Step 9b: Estimate the hidden states
OpenBDLM main menu. Choose from
               Step 10a: Access the export menu
(choice >> 17)
Export menu
1 → Export the project in a configuration file
2 -> Export data in CSV format
3 -> Export results in CSV format
4 -> Create and export figures
Type R to return to the previous menu
(choice >> 1 ) Step 10b: Export the project in a configuration file
Printing configuration file...
Saving data...
Database saved in data/mat/DATA_Example_DISP.mat
Configuration file saved in config_files/CFG_Example_DISP.m.
OpenBDLM main menu. Choose from
               Step 11: Save and quit
(choice >> Q )
```