

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

SHORTER ARTICLES AND DISCUSSION

A NOTE ON CERTAIN BIOMETRICAL COMPUTATIONS¹

1. It is a well known fact that curves of individual growth, in which some size character of the organism is taken as ordinate, and time as abscissa, are closely related to a logarithmic curve. To Pearson² belongs the credit of first demonstrating this concretely by fitting a logarithmic curve to growth data. Since that time a number of other students³ of growth have made use of such curves in graduating observational data.

Now while the simplest logarithmic curve

$$y = a + b \log x \tag{i}$$

is probably only very exceptionally (if ever) followed precisely in the growth of an organism, yet it certainly represents the general type towards which many observational growth curves tend. In the practical analysis of growth data it is often found to be extremely helpful as the first step to fit such a curve as (i) or a simple variant of it in which a "line" term is added, as in

$$y = a + bx + c \log x. \tag{ii}$$

Actually finding out by trial just wherein a curve like (ii) fails to fit the data—if it does fail—will usually give one the clue as to the way in which the curve must be modified in order to graduate the observations satisfactorily.

In fitting a curve like (ii) to a series of observations by the method of least squares the type equations are as follows:

$$S(y) - na - bS(x) - cS(\log x) = 0, S(xy) - aS(x) - bS(x^2) - cS(x \log x) = 0, S(y \log x) - aS(\log x) - bS(x \log x) - cS(\log x)^2 = 0,$$
 (iii)

where S denotes summation for the n values of the variables.

Now it is evident that, of the 11 summations included in these equations, only 3 involve the variable y. All the others are func-

- ¹Papers from the Biological Laboratory of the Maine Agricultural Experiment Station. No. 31.
- ² Pearson, K., Biometrika, IV, 131-190. Cf. also Lewenz, M. A., and Pearson, K., ibid., III, 367-397.
- ³ Cf., for example, Pearl, R., Pepper, O. M., and Hagle, F. J., Carnegie Institution Publ. No. 58, 1907, and Donaldson, H. H., in *Jour. Comp. Neurol. and Psychol.*, XVIII, 345–392, 1908, and also in later papers.

tions of x. In practise many cases arise where all the base elements of the observational curve are equal and the values of x run in ordinal units from 1 to whatever number the observations comprise. In such cases, taking the origin of x at 0, the sums in (iii) which involve x and x^2 may be read off at once from Elderton's⁴ tables of the sums of the powers of the natural numbers. If, now, similar tables are available from which one can obtain the values of $S(\log x)$, $S(x \log x)$ and $S(\log x)^2$ for integral values of x, there are left only the three sums in which y is involved which must be directly calculated.

So far as we are aware no tables have hitherto been published giving the sums of these logarithmic functions of the natural numbers. Consequently the present short table has been prepared. The immediate incentive to its calculation was the fact that in studies on growth and related topics in this laboratory it has been rather frequently necessary to fit these simple logarithmic curves. The table was calculated several years ago purely as a labor saving factor in the work of the laboratory. It has been used in manuscript here since that time. It seems desirable to publish it in order that other workers may have the benefit of the time and effort which it saves in curve-fitting work of this sort.

2. The values of $S(\log x)$, $S(x \log x)$ and $S(\log x)^2$ given in the appended table were calculated twice independently, once with 10-place values of the logarithms, and once with 7-place The 10-place logarithms were taken from Vega's Thesaurus,⁵ and the multiplications and summations were performed on a large size Brunsviga arithmometer. As was to be expected, the values of $S(x \log x)$ and $S(\log x)^2$ for the higher numbers, when calculated from 7-place logarithms, were not accurate beyond the fifth place. This 7-place table merely served as a rough check on the accuracy of the 10-place work. tabled values given in this paper were all obtained by cutting off the last 3 figures from the values in the 10-place table. The accuracy of these last figures was previously tested by differences. The table as given is believed to be accurate in the seventh place. This is entirely sufficient because, as a matter of fact, in practical curve fitting work one will not ordinarily use more than 4 or at the most 5 places of figures in the logarithms.

⁴ Biometrika, II, 474-480.

⁵ For the loan of a copy of these tables we are greatly indebted to Dr. H. G. Kribs, of the University of Pennsylvania.

3. The use of the tables may be illustrated from a concrete example based on data collected in this laboratory. Each of the successively laid eggs of a certain hen were measured, length and breadth being recorded. From these records the length-breadth index (100 breadth — length) was calculated. In all 87 eggs were measured.⁶ To the line given by plotting the value of the index of each of these eggs in consecutive order as they were laid a curve of the type

$$y = a + bx + c(\log x)$$

was fitted by the method of least squares. In this equation y denotes the value of the length-breadth index of an egg whose ordinal number in the whole series laid is x. That is, S(x) will be the sum of the integers from 1 to 87 inclusive.

The type equations for this curve have been given above (p. 756) and need not be repeated. For the data under discussion n = 87. From the table given in the present paper we read off at once

$$S \log x = 132.3238,$$

 $S(x \log x) = 6,602.9556,$
 $S(\log x)^2 = 215.0293.$

Further from Elderton's table (loc. cit.) we get

$$S(x) = 3,828,$$

 $S(x^2) = 223,300.$

This leaves to be obtained by actual addition from the data only

$$S(y) = 5,473.81,$$

 $S(xy) = 245,041.55,$
 $S(y \log x) = 8,416.4497.$

Substituting these values in the type equation (iii) we have

$$87a + 3,828b + 132.3238c = 5,473.81,$$

 $3,828a + 223,300b + 6,602.9556c = 245,041.55,$
 $132.3238a + 6,602.9556b + 215.0293c = 8,416.4497.$

Solving

$$y = 49.0241 - .0910x + 11.7669 \log x$$
.

The goodness of fit of this curve may be judged by examination of Plate II of the paper where the original data are published.

⁶ The actual measurements of these eggs are given in detail in the *Journal* of Experimental Zoology, VI, 349.

Jour. Exper. Zool., loc. cit.

TABLE OF THE SUMS OF THE LOGARITHMS OF THE NATURAL Numbers from 1 to 100

x	$S(\log x)$	$S(x \log x)$	$S(\log x)^2$
1	0.0000000	0.0000000	0.0000000
$\stackrel{\mathtt{1}}{2}$	0.3010300	0.6020600	0.0906191
3	0.7781513	2.0334238	0.3182638
4	1.3802112	4.4416637	0.6807400
5	2.0791812	7.9365137	1.1692991
6	2.8573325	12.6054212	1.7748184
7	3.7024305	18.5211075	2.4890091
8	4.6055205	25.7458274	3.3045806
9	5.5597630	34.3340100	4.2151594
10	6.5597630	44.3340100	5.2151594
11	7.6011557	55,7893295	6.2996581
			7.4642903
12	8.6803370	68.7395045	
13	9.7942803	83.2207681	8.7051601
14	10.9404084	99.2665606	10.0187696
15	12.1164996	116.9079295	11.4019602
16	13.3206196	136.1738492	12.8518651
17	14.5510685	157.0914808	14.3658697
18	15.8063410	179.6863859	15.9415788
19	17.0850946	203.9827044	17.5767895
20	18.3861246	230.0033043	19.2694686
21	19.7083439	257.7699095	21.0177324
22	21.0507666	287.3032084	22.8198311
23	22.4124944	318.6229487	24.6741338
24	23.7927057	351.7480185	26.5791169
25	25.1906457	386.6965187	28.5333531
26	26.6056190	423.4858257	30.5355027
27	28.0369828	462.1326474	32.5843049
28	29.4841408	502.6530722	34.6785713
29	30.9465388	545.0626142	36.8171792
30	32.4236601	589.3762518	38.9990664
31	33,9150218	635.6084643	41.2232261
32	35.4201717	683.7732636	43.4887026
33	36.9386857	733.8842237	45.7945871
		785.9545068	48.1400148
34	38.4701646		
35	40.0142326	839.9968884	50.5241609
36	41.5705351	896.0237784	52.9462384
37	43.1387369	954.0472422	55.4054951
38	44.7185205	1,014.0790189	57.9012113
39	46.3095851	1,076.1305385	60.4326979
40	47.9116451	1,140.2129382	62.9992941
41	49.5244289	1,206.3370763	65.6003659
42	51.1476782	1,274,5135465	68.2353041
		,	70.9035233
43	52.7811467	1,344.7526901	
44	54.4245993	1,417.0646079	$73.6044600 \\ 76.3375716$
45	56.0778119	1,491.4591710	10.3373710
46	57.7405697	1,567.9460313	79.1023352
47	59.4126676	1,646.5346306	81.8982465
48	61.0939088	1,727.2342100	84.7248186
49	62.7841049	1,810.0538179	87.5815814
50	64.4830749	1,895.0023181	90.4680804

x	$S(\log x)$	$S(x \log x)$	$S(\log x)^2$
51	66.1906450	1,982.0883971	93.3838763
52	67.9066484	2,071.3205710	96.3285438
53	69.6309243	2,162.7071920	
			99.3016711
54	71.3633180	2,256.2564551	102.3028592
55	73.1036807	2,351.9764030	105.3317215
56	74.8518687	2,449.8749325	108.3878829
57	76.6077436	2,549.9597993	111.4709794
58	78.3711716	2,652.2386229	114.5806577
59	80.1420236	2,756.7188916	
			117.7165745
60	81.9201748	2,863.4079666	120.8783964
61	83.7055047	2,972.3130866	124.0657990
62	85.4978964	3,083.4413713	127.2784670
63	87.2972369	3,196.7998259	130.5160934
64	89.1034169	3,312.3953443	133.7783793
65	90.9163303	3,430.2347124	137.0650341
		,	•
66	92.7358742	3,550.3246122	140.3757742
67	94.5619490	3,672.6716240	143.7103234
68	96.3944579	3,797.2822300	147.0684123
69	98.2333070	3,924.1628173	150.4497786
70	100.0784050	4,053.3196801	153.8541654
71	101.9296634	4,184.7590228	157.2813229
72	103.7869959	4,318.4869626	160.7310069
73	105.6503187	4,454.5095314	164.2029790
74	107.5195505	4,592.8326786	167.6970062
75	109.3946117	4,733.4622734	171.2128609
76	111.2754253	4,876.4041064	174.7503207
77	113.1619160	5,021.6638922	
			178.3091670
78	115.0540106	5,169.2472713	181.8891890
79	116.9516377	5,319.1598115	185.4901776
80	118.8547277	5,471.4070104	189.1119291
81	120.7632127	5,625.9942970	192,7542442
82	122.6770266	5,782.9270329	196.4169276
83	124.5961047	5,942.2105145	200.0997884
84	126.5203840	6,103.8499746	
			203.8026391
85	128.4498029	6,267.8505832	207.5252965
86	130.3843013	6,434.2174510	211.2675808
87	132.3238206	6,602.9556260	215.0293157
88	134.2683033	6,774.0701012	218.8103286
89	136.2176933	6,947.5658118	222.6104500
90	138.1719358	7,123.4476376	226.4295137
91	140.1309772	7,301.7204043	230.2673568
92	142.0947650	7,482.3888844	234.1238194
93	144.0632480	7,665.4577986	237.9987445
94	146.0363758	7,850.9318169	241.8919781
95	148.0140994	8,038.8155594	245.8033687
96	149.9963707	8,229.1135977	249.7327590
97	151.9831424	8,421.8304560	253.6800209
98	153.9743685	8,616.9706114	257.6450022
99	155.9700037	8,814.5384957	261.6275620
100	157.9700037	9,014.5384957	265.6275620

RAYMOND PEARL, LOTTIE E. McPHETERS.