Curs 3

Cuprins

Termeni, substituţii, unificatori

2 Algoritmul de unificare

Corectitudinea algoritmului (optional)

Termeni, substituții, unificatori

Alfabet:

- \square \mathcal{F} o multime de simboluri de functii de aritate cunoscuta
- \square \mathcal{V} o multime numarabila de variabile
- $\hfill\Box$ ${\cal F}$ si ${\cal V}$ sunt disjuncte

Alfabet:

- $\square \mathcal{F}$ o multime de simboluri de functii de aritate cunoscuta
- $\square \mathcal{V}$ o multime numarabila de variabile
- \square \mathcal{F} si \mathcal{V} sunt disjuncte

Termeni peste \mathcal{F} si \mathcal{V} :

$$t ::= x \mid f(t_1, \ldots, t_n)$$

unde

- \square n > 0
- \square x este o variabila
- \Box f este un simbol de functie de aritate n

Notatii:

- □ constante: simboluri de functii de aritate 0
- $\square x, y, z, \dots$ pentru variabile
- \square a, b, c, \ldots pentru constante
- \Box f,g,h,... pentru simboluri de functii arbitrare
- \square s, t, u, . . . pentru termeni
- \square var(t) multimea variabilelor care apa in t
- \sqsupset ecuatii $s\stackrel{.}{=}t$ pentru o pereche de termeni
- \square $Trm_{\mathcal{F},\mathcal{V}}$ multimea termenilor peste \mathcal{F} si \mathcal{V}

- \Box f(x,g(x,a),y) este un termen, unde f are aritate 3, g are aritate 2, a este o constanta

Definiție

O subtituție σ este o funcție (parțială) de la variabile la termeni, adică

$$\sigma: \mathcal{V} \to \mathit{Trm}_{\mathcal{F},\mathcal{V}}$$

Exemplu

În notația uzuală, $\sigma = \{x/a, y/g(w), z/b\}$. Substitutia σ este identitate pe restul variabilelor.

Notatie alternativa $\sigma = \{x \mapsto a, y \mapsto g(w), z \mapsto b\}.$

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- □ Substituțiile se aplică simultan pe toate variabilele.

Aplicarea unei substitutii σ unui termen t:

$$\sigma(t) = \left\{ \begin{array}{l} \sigma(x), \; \mathsf{daca} \; t = x \\ f(\sigma(t_1), \ldots, \sigma(t_n)), \; \mathsf{daca} \; t = f(t_1, \ldots, t_n) \end{array} \right. .$$

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- □ Substituțiile se aplică simultan pe toate variabilele.

Aplicarea unei substitutii σ unui termen t:

$$\sigma(t) = \begin{cases} \sigma(x), \text{ daca } t = x \\ f(\sigma(t_1), \dots, \sigma(t_n)), \text{ daca } t = f(t_1, \dots, t_n) \end{cases}.$$

- $\square \ \sigma = \{x \mapsto f(x,y), y \mapsto g(a)\}$
- $\Box t = f(x, g(f(x, f(y, z))))$
- $\square \ \sigma(t) = f(f(x,y), g(f(f(x,y), f(g(a), z))))$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

$$\square \ t = h(u, v, x, y, z)$$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

- $\square \ t = h(u, v, x, y, z)$
- $\square \ \tau = \{x \mapsto f(y), \ y \mapsto f(a), \ z \mapsto u\}$
- $\square \ \sigma = \{ y \mapsto g(a), \ u \mapsto z, \ v \mapsto f(f(a)) \}$

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

- $\square \ t = h(u, v, x, y, z)$
- $\square \ \tau = \{x \mapsto f(y), \ y \mapsto f(a), \ z \mapsto u\}$
- $\square \ \sigma = \{ y \mapsto g(a), \ u \mapsto z, \ v \mapsto f(f(a)) \}$
- $\Box (\tau; \sigma)(t) = \sigma(\tau(t)) = \sigma(h(u, v, f(y), f(a), u)) =$ = h(z, f(f(a)), f(g(a)), f(a), z)

Două substituții σ_1 și σ_2 se pot compune

$$\sigma_1$$
; σ_2

(aplicăm întâi σ_1 , apoi σ_2).

- $\square \ t = h(u, v, x, y, z)$
- $\square \ \tau = \{x \mapsto f(y), \ y \mapsto f(a), \ z \mapsto u\}$
- $\square \ \sigma = \{ y \mapsto g(a), \ u \mapsto z, \ v \mapsto f(f(a)) \}$
- $\Box (\tau; \sigma)(t) = \sigma(\tau(t)) = \sigma(h(u, v, f(y), f(a), u)) =$ = h(z, f(f(a)), f(g(a)), f(a), z)
- $\square (\sigma; \tau)(t) = \tau(\sigma(t)) = \tau(h(z, f(f(a)), x, g(a), z))$ = h(u, f(f(a)), f(y), g(a), u)

Unificare

- \square Doi termeni t_1 și t_2 se unifică dacă există o substituție σ astfel încât $\sigma(t_1) = \sigma(t_2)$.
- \square În acest caz, σ se numesțe unificatorul termenilor t_1 și t_2 .

Unificare

- \square Doi termeni t_1 și t_2 se unifică dacă există o substituție σ astfel încât $\sigma(t_1) = \sigma(t_2)$.
- \square În acest caz, σ se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.

Unificare

- \square Doi termeni t_1 și t_2 se unifică dacă există o substituție σ astfel încât $\sigma(t_1) = \sigma(t_2)$.
- \square În acest caz, σ se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.
- Un unificator σ pentru t_1 și t_2 este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator σ' pentru t_1 și t_2 , există o substituție τ astfel încât

$$\sigma' = \sigma; \tau.$$

- $\Box t = x + (y * y) = +(x, *(y, y))$
- $\Box t' = x + (y * x) = +(x, *(y, x))$

- $\Box t = x + (y * y) = +(x, *(y, y))$
- $\Box t' = x + (y * x) = +(x, *(y, x))$
- $\square \ \sigma = \{x/y, y/y\}$

 - \square σ este cgu

Exemplu

□ t = x + (y * y) = +(x, *(y, y))□ t' = x + (y * x) = +(x, *(y, x))□ $\sigma = \{x/y, y/y\}$ □ $\sigma(t) = y + (y * y)$ □ $\sigma(t') = y + (y * y)$ □ σ este cgu □ $\sigma' = \{x/0, y/0\}$ □ $\sigma'(t) = 0 + (0 * 0)$ □ $\sigma'(t') = 0 + (0 * 0)$

```
\Box t = x + (y * y) = +(x, *(y, y))
\Box t' = x + (y * x) = +(x, *(y, x))
\square \sigma = \{x/y, y/y\}
     \Box \sigma(t) = y + (y * y)
     \Box \sigma este cgu
\sigma' = \{x/0, y/0\}
     \sigma'(t) = 0 + (0*0)
     \sigma'(t') = 0 + (0*0)
     \sigma' = \sigma; \{y/0\}
```

Exempli

```
\Box t = x + (y * y) = +(x, *(y, y))
\Box t' = x + (v * x) = +(x, *(v, x))
\square \sigma = \{x/y, y/y\}
     \Box \sigma(t) = y + (y * y)
     \Box \sigma(t') = y + (y * y)
     \Box \sigma este cgu
\sigma' = \{x/0, y/0\}
     \sigma'(t) = 0 + (0*0)
     \sigma'(t') = 0 + (0*0)
     \sigma' = \sigma; \{y/0\}
      \square \sigma' este unificator, dar nu este cgu
```

- □ Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.

- □ Pentru o mulțime finită de termeni $\{t_1, \ldots, t_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un cgu.
- Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - Lista soluție: *S*
 - ☐ Lista de rezolvat: R

□ Pentru o mulțime finită de termeni {t₁,..., t_n}, n ≥ 2, algoritmul de unificare stabilește dacă există un cgu.
 □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
 □ Algoritmul lucrează cu două liste:
 □ Lista soluție: S
 □ Lista de rezolvat: R
 □ Inițial:
 □ Lista soluție: S = ∅

 \blacksquare Lista de rezolvat: $R = \{t_1 \stackrel{\cdot}{=} t_2, \dots, t_{n-1} \stackrel{\cdot}{=} t_n\}$

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- □ DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S conține cgu.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S conține cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

În R există o ecuație de forma

$$f(t_1,\ldots,t_n) \stackrel{\cdot}{=} g(t_1',\ldots,t_k')$$
 cu $f \neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$	
SCOATE	S	R', $t = t$	
	S	R'	
DESCOMPUNE	S	$R', f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$	
	5	$R', t_1 \stackrel{\cdot}{=} t'_1, \ldots t_n \stackrel{\cdot}{=} t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	$x \stackrel{.}{=} t$, $S[x/t]$	R'[x/t]	
Final	S	Ø	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au cgu?

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)\}$ au cgu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE

Exemplu

ſ	S	R	
Ì	Ø	$g(y) = x, \ f(x, h(x), y) = f(g(z), w, z)$	REZOLVĂ
ĺ	$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y) = f(g(z),w,z)	DESCOMPUNE
ſ	$x \stackrel{.}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), \ h(g(y)) \stackrel{\cdot}{=} w, \ y \stackrel{\cdot}{=} z$	REZOLVĂ

Exemplu

S	R	
Ø	$g(y) = x, \ f(x, h(x), y) = f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{\cdot}{=} h(g(z))$		

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au cgu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \doteq h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \doteq h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \stackrel{\cdot}{=} h(g(z))$		

$$\square$$
 $\sigma = \{y \mapsto z, \ x \mapsto g(z), \ w \mapsto h(g(z))\}$ este cgu.

Exemplu

Exemplu

S	R	
Ø	$g(y) \doteq x$, $f(x, h(y), y) \doteq f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

Exemplu

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
x = g(y)	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

- \square h și b sunt simboluri de operații diferite!
- Nu există unificator pentru acesti termeni.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(y, w, z)\}$ au cgu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \doteq f(y,w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, h(g(y)) = w, y = z	- EŞEC -

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(g(y)),y)=f(y,w,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{\cdot}{=} y$, variabila y apare în termenul g(y).
- Nu există unificator pentru aceste ecuații.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Demonstrație

- Notăm cu
 - \square N_1 : numărul variabilelor care apar în R
 - \square N_2 : numărul aparițiilor simbolurilor care apar în R
- □ Este suficient să arătăm că perechea (N_1, N_2) descrește strict în ordine lexicografică la execuția unui pas al algoritmului:

dacă la execuția unui pas (N_1, N_2) se schimbă în (N'_1, N'_2) , atunci $(N_1, N_2) \ge_{lex} (N'_1, N'_2)$

Demonstrație (cont.)

Fiecare regulă a algoritmului modifică N_1 și N_2 astfel:

	N_1	N_2
SCOATE	2	>
DESCOMPUNE	=	>
REZOLVĂ	>	

- \square N_1 : numărul variabilelor care apar în R
- \square N_2 : numărul aparițiilor simbolurilor care apar în R

Unificare în Prolog

- □ Ce se întâmplă dacă încercăm să unificăm X cu ceva care conține X? Exemplu: ?- X = f(X).
- ☐ Conform teoriei, acești termeni nu se pot unifica.
- □ Totuși, multe implementări ale Prolog-ului sar peste această verificare din motive de eficiență.

$$?-X = f(X).$$

 $X = f(X).$

Unificare în Prolog

- □ Ce se întâmplă dacă încercăm să unificăm X cu ceva care conține X? Exemplu: ?- X = f(X).
- ☐ Conform teoriei, acești termeni nu se pot unifica.
- □ Totuși, multe implementări ale Prolog-ului sar peste această verificare din motive de eficiență.

$$?-X = f(X).$$

 $X = f(X).$

☐ Putem folosi unify_with_occurs_check/2

```
?- unify_with_occurs_check(X,f(X)).
false.
```

Quiz time!

https://www.questionpro.com/t/AT4NiZrWmq

Corectitudinea algoritmului (optional)

Lema 1

Mulțimea unificatorilor pentru ecuațiile din $R \cup S$ nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Lema 1

Mulțimea unificatorilor pentru ecuațiile din $R \cup S$ nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

□ SCOATE: evident

Lema 1

Multimea unificatorilor pentru ecuațiile din $R \cup S$ nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- ☐ SCOATE: evident.
 - DESCOMPUNE: Trebuie să arătăm că

$$u$$
 unificator pt. $\qquad\Leftrightarrow\qquad \qquad \nu$ unificator pt.

$$f(t_1,\ldots,t_n) \stackrel{.}{=} f(t'_1,\ldots,t'_n)$$
 $t_i \stackrel{.}{=} t'_i$, or. $i=1,\ldots,n$.

Lema 1

Mulțimea unificatorilor pentru ecuațiile din $R \cup S$ nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- □ SCOATE: evident
 - □ DESCOMPUNE: Trebuie să arătăm că

$$u$$
 unificator pt. \Leftrightarrow u unificator pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad t_i = t'_i, \text{ or. } i = 1, \ldots, n.$
 u unif. pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad \Leftrightarrow
u(f(t_1, \ldots, t_n)) =
u(f(t'_1, \ldots, t'_n)) \qquad \Leftrightarrow
f(
u(t_1), \ldots,
u(t_n)) = f(
u(t'_1), \ldots,
u(t'_n)) \qquad \Leftrightarrow
u(t_i) =
u(t'_i), \text{ or. } i = 1, \ldots, n$
 $\Leftrightarrow
u$ unificator pt. $t_i = t'_i, \text{ or. } i = 1, \ldots, n$

Demonstrație (cont.)

- □ REZOLVĂ:
 - \square Se observă că orice unificator ν pentru ecuațiile din $R \cup S$, atât înainte cât și după aplicarea regulii REZOLVĂ, trebuie să satisfacă:

$$\nu(x)=\nu(t).$$

Dacă μ este unificator pentru x = t observăm că:

$$(x \leftarrow t); \mu = \mu$$

unde
$$(x \leftarrow t)(x) = t$$
 și $(x \leftarrow t)(y) = y$ pentru orice $y \neq x \in V$.

$$((x \leftarrow t); \mu)(x) = \mu(t) = \mu(x)$$

$$((x \leftarrow t); \mu)(y) = \mu(y)$$
, pentru orice $y \neq x$

Deci.

 μ este un unificator pentru ecuațiile din $R \cup S$ înainte de REZOLVĂ

 \simeq

 μ este un unificator pentru ecuațiile din $R \cup S$ după REZOLVĂ

- \square Pres. că algoritmul de unificare se termină cu $R = \emptyset$.
- \square Fie $x_i \stackrel{.}{=} t_i$, i = 1, ..., k, ecuațiile din S.
- □ Variabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în termenii $t1, \ldots, t_k$.
- Definim substituţia:

$$\nu(x_i) = t_i$$
 pentru orice $i = 1, \ldots, k$.

Observăm că $\nu(t_i) = t_i = \nu(x_i)$ oricare i = 1, ..., k, deci ν este un unificator pentru $R \cup S$.

Lema 2

 ν definit mai sus cf. algoritmului de unificare este cgu pentru $R \cup S$.

Lema 2

 ν definit mai sus cf. algoritmului de unificare este cgu pentru $R \cup S$.

Demonstrație

La ultimul pas $R = \emptyset$ și $\nu(x_i) = t_i$ oricare i = 1, ..., k

- \square Fie μ un alt unificator pentru S. Avem
 - $\mu(\nu(x_i)) = \mu(t_i) = \mu(x_i), \text{ or. } i = 1, ..., k,$
 - \square $\mu(\nu(y)) = \mu(y)$, or. $y \neq x$.

Deci ν ; $\mu=\mu$. În concluzie, ν este cgu deoarece oricare alt

unificator se poate scrie ca o compunere a lui ν cu o substituție.

Din Lema 1 rezultă că ν este unificator pentru problema inițială $\{u_1 = u_2, \dots, u_{n-1} = u_n\}$, deci

$$\nu(u_1) = \cdots = \nu(u_n).$$

Complexitatea algoritmului

Problema de unificare

$$R = \{x_1 \stackrel{.}{=} f(x_0, x_0), x_2 \stackrel{.}{=} f(x_1, x_1), \dots, x_n \stackrel{.}{=} f(x_{n-1}, x_{n-1})\}$$
are cgu $S = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

Complexitatea algoritmului

Problema de unificare

$$R = \{x_1 = f(x_0, x_0), x_2 = f(x_1, x_1), \dots, x_n = f(x_{n-1}, x_{n-1})\}$$
are cgu
$$S = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$$

□ La pasul Elimină, pentru a verifica că o variabilă x_i nu apare în membrul drept al ecuației (occur check) facem 2^i comparații.

Complexitatea algoritmului

Problema de unificare

$$R = \{x_1 = f(x_0, x_0), x_2 = f(x_1, x_1), \dots, x_n = f(x_{n-1}, x_{n-1})\}$$

are cgu $S = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

- □ La pasul Elimină, pentru a verifica că o variabilă x; nu apare în membrul drept al ecuației (occur check) facem 2ⁱ comparații.
- □ Algoritmul de unificare prezentat anterior este exponențial. Complexitatea poate fi îmbunătățită printr-o reprezentare eficientă a termenilor.

K. Knight, Unification: A Multidisciplinary Survey, ACM Computing Surveys, Vol. 21, No. 1, 1989.

Pe săptămâna viitoare!