Question number	Scheme	Marks	
6 (a)	$ \begin{array}{c} \rightarrow \rightarrow \rightarrow \rightarrow \\ \text{eg } SR = SP + PR = (3\mathbf{i} - 15\mathbf{j} - \mathbf{i} + 18\mathbf{j}) \\ = 2\mathbf{i} + 3\mathbf{j} \end{array} $	M1 A1	
	$\begin{array}{ccc} & & & & \\ & & & \\ & \rightarrow & & \rightarrow & \rightarrow \end{array}$		
	$\operatorname{eg} Q \dot{R} = Q \dot{P} + Q \dot{R} = (-2\mathbf{i} - 3\mathbf{j} - \mathbf{i} + 18\mathbf{j})$ $= -3\mathbf{i} + 15\mathbf{j}$	M1 A1	
	$ \begin{array}{cccc} $	M1	
	(As opposite sides are equal in length and parallel) <i>PQRS</i> is a parallelogram *	A1cso [4]	
(b)	$\overrightarrow{QS} = \overrightarrow{QP} + \overrightarrow{PS} = (-2\mathbf{i} - 3\mathbf{j} - 3\mathbf{i} + 15\mathbf{j})$ $= -5\mathbf{i} + 12\mathbf{j}$	M1 A1	
	Unit vector = $(\pm)\frac{1}{13}(-5\mathbf{i}+12\mathbf{j})$	M1 A1	
(c)	$\overrightarrow{PT} = 2\mathbf{i} + 3\mathbf{j} + \frac{5}{13}("-5\mathbf{i} + 12\mathbf{j}") = \frac{1}{13}\mathbf{i} + \frac{99}{13}\mathbf{j}$	M1 A1	
	Total 10 marks		

Part	Mark	Notes
(a)	M1	For stating a correct valid vector path, e.g. $\overrightarrow{SR} = \overrightarrow{SP} + \overrightarrow{PR}$
	A1	For $\pm (2\mathbf{i} + 3\mathbf{j})$ or $\pm (-3\mathbf{i} + 15\mathbf{j})$
	M1	For a correct vector statement leading to a conclusion eg $\overrightarrow{PQ} = \overrightarrow{SR}$
	A1*cso	For some form of conclusion.
(b)	M1	For using e.g. $\overrightarrow{QS} = \overrightarrow{QP} + \overrightarrow{PS}$ or \overrightarrow{SQ}
	A1	For -5 i +12 j
	M1	For an attempt to use Pythagoras with a plus sign, allow use of their vector $\pm QS$
	A1	For $(\pm)\frac{1}{13}(-5\mathbf{i}+12\mathbf{j})$ oe Must be one vector only ie can't list as \pm
(c)	M1	For using e.g. $\overrightarrow{PT} = \overrightarrow{PQ} + \frac{5}{13} \left(\text{their } \overrightarrow{QS} \right)$
	A1	For $\frac{1}{13}$ i + $\frac{99}{13}$ j oe