Rational homotopy groups of a pointed space X arise from $[S^k, X]$ by inverting action of self-map $S^k \xrightarrow{p} S^k$ for every prime p.

. What is lost? p-torsion

sk psk sk for mod & Moore space

and consider [sk, x] =: TK(x; Z/p) mod b homotoby grbs

. Adams: 3 a self-map

which induces an iso in K-thewry.

for b - odd, $k \ge 3$, d = 2(b-1)b = 2, $k \ge 5$, d = 8.

. u, on k* is each by some multiplication of the Both class.

$$U_{i}^{\dagger} \Pi_{k}(x; \mathbb{Z}/p) := \lim_{\longrightarrow} ([\mathbb{Z}S^{k}/p, x] \xrightarrow{J^{d}} [\mathbb{Z}^{d}S^{k}/p, x]$$

$$[\mathbb{Z}^{2d}S^{k}/p, x]$$

- · (mod b) u, periodic fromotopy groups of X.
- . These we (somewhat) computable. (Mahowald).

 These were completely known for spheres.
- Q. what info is lost? U. torsion.

continue: consider maps out of $(\Sigma^d S^k/_b \rightarrow S^k/_b) =: \Psi(2)$

Beginning of a heirarchy in which rationalization is the "zeroth" map.

& Bousfield classes of finite (p-local) spectra

V finile (p-local) space, E spectarn

- · E is V-null if EEFF F(V, E) ~ *
- . the finite spectrum V, W have some Bousfield class if

 E is V-null (=> E is IN-null, + spectra E
 - wisk <v>><w> if E is V-null ⇒ E is w-null ∀E

 $\langle S \rangle$ is maximal $(E S-null \Leftrightarrow E \cong *)$ $\langle S/p \rangle$ $(E is S/p local \Leftrightarrow E is rational)$ $\langle E^{\circ}V(2) \rangle$ \vdots

Def: A finite spectrum V is of type n if $K(m)_*V = 0$ for m < n and $K(m)_*V \neq 0$

where K(m) is the nth Morava K-theory.

K(0) = HQ , K(1)"=" KU/p , K(n) = IFp [Un=1] , IUn = 2(p"-1)

. <\$> has type 0.

(\$/p) has type 1.

 $\langle \Sigma^{\infty} V(2) \rangle$ has type 2.

Thm (Mitchell) Type n-spectra & exist for all n.

Thm (Hopkins-Smith) For firete spectra V, W

(V) > (W) => type of V < type IN

i.e. the poset of Bourfield classes of finite p-local spectra is iso to Zo.

Thm: (Hopkins-Smith)

A finite type spectrum V admits a un self-map $u_n: \Sigma^d V \longrightarrow V$ meaning

K(i) = { an iso if i=n of $i\neq n$.

eg: v. self map: S - S

o, Self map: Adams map \(\geq \frac{\sigma}{\beta} \frac{\sigma}{\sigma} \frac{\sigma}{\beta} \frac{\sigma}{\sigma} \frac{\sigma}{\sigma}

Slep 0: Start with [sk, -] and invert b

1: consider [skp,-], invert 4.

2: consider [V(2),-], invert 42

Step n: consider $V(n) = cofib (\sum_{i=1}^{d} V(n-i) \xrightarrow{\sigma_{n-i}} V(n-i))$

consider [V(n),-], invert unix.

S vn periodic homotopy groups of spaces:

. Type -n space V(n) with a un self map

u: \(\geq V(n) -> V(n) \)

- . These are the un-periodic homotopy groups of coeffs in V(n).
- · There homotopy groups are specialic with special

. Slightly better construction:

Structure: maps =

adjuint

U: Edv(n) -> V(n) . Maps (-, X)

· I = telescopic functor associated to V(n) (and a).

The Bousfield-Kuhn functor: at height n.

→ Spectra , backages all the Φ, s into 1.

Properties:

D F(Σ V(m), Φ(x)) ~ Φ(x)

for different choices of type n spectrum V(n).

2 In 2 LTCm

T(n) = telescope of a un self-map hocolim ($\Sigma^{\infty}V(n) \xrightarrow{\cup} \Sigma^{-d} \Sigma^{\infty}V(n) \xrightarrow{\omega} ...$)

· THE LTON = LKCI)

3) $\overline{\phi}(x)$ is a $\overline{\tau}(n)$ local spectrum.

Kuhn: I is characterized by w.e. # 1 by 1) 43).

& Analogue on rational homotopy:

Slogan: \$\overline{\overline{\sigma}} \tag{\text{is like the forgetful function}} \\ \L_k (\overline{\overline{\sigma}} \cho \overline{\sigma}) \rightarrow \cho \overline{\cho}} \end{cha}

15 Quillen

· Ho (Mm) = category obtained from Ho (70 px) luy
inverting maps which induce isomorphisms
on on-periodic q homotopy groups.

(Bousfield Showed this is possible)

analogue of Top * for n>0.

. f = finitary or something

· X - 1-com, a finite

115

minimal model

TOS

$$H_{k-1}^{\mathbb{Q}}(A) \rightarrow \oplus H_{M}^{\mathbb{Q}}(A) \otimes H_{m}^{\mathbb{Q}}(A)$$

I need to shift degrees when we dualize.