الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

دورة: 2020

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

. $f(x) = \frac{4x+4}{9-x}$: بـ [1;4] الدالة العددية f معرّفة على المجال

1] أ . ادرس اتّجاه تغيّر الدالة f على المجال [1;4] أ .

 $f(x) \in [1;4]$ فإن: [1;4] فإن: [1;4] فإن: عدد حقيقي x من المجال وأيا:

 $u_{n+1} = f(u_n): n$ عدد طبيعي عدد $u_0 = 0$ عدد $u_0 = 0$ عدد طبيعي (u_n) عمرّفة بحدها الأول $u_n = 0$ عدد طبيعي المتتالية العددية $u_n = 0$ معرّفة بحدها الأول عدد طبيعي $u_n = 0$ عدد طبيعي أنّه من أجل كل عدد طبيعي $u_n = 0$ عدد طبيعي أنّه من أجل كل عدد طبيعي $u_n = 0$

 \boldsymbol{u}_n ادرس اتجاه تغيّر المتتالية (u_n) و استنتج أنّها متقاربة.

 $v_n = rac{u_n-1}{u_n-4}$: المتتالية العددية $ig(v_nig)$ معرّفة من أجل كل عدد طبيعي $ig(v_nig)$ معرّفة من أجل كل

. v_0 هندسية يُطلب تعيين أساسها وحدّها الأول (v_n) . أ. برهن أنّ المتتالية

 $\lim_{n\to +\infty} u_n$ واحسب والحد العام u_n بدلالة u_n ، ثمّ استنتج الحد العام u_n بدلالة v_n واحسب بدلالة بالمد بالمد العام واحسب بدلالة واحسب

.n بدلالة $.S_n=v_0+8v_1+8^2v_2+...+8^nv_n$ بدلالة $.S_n=v_0+8v_1+8^2v_2+...+8^nv_n$ بدلالة التمرين الثاني: (40 نقاط)

صندوق به 5 كريات بيضاء و 3 كريات حمراء (كل الكريات متماثلة لا نفرق بينها باللمس).

نسحب من الصندوق كرية واحدة حيث: إذا ظهرت كرية حمراء نُعيدها إلى الصندوق ونُضيف له كرية بيضاء وإذا ظهرت كرية بيضاء ، ثم نُكرّر العملية مرّة ثانية.

3) احسب احتمال أن يوجد في الصندوق 4 كريات حمراء على الأقل.

4) ليكن X المتغير العشوائي الذي يأخذ كقيمة عدد الكريات البيضاء الموجودة في الصندوق بعد العملية الثانية.

أ . برّر أنّ قيم المتغير العشوائي X هي: 5، 6 و 7 .

 $oldsymbol{\psi}$. عرّف قانون الاحتمال للمتغير العشوائي $oldsymbol{X}$ ، ثمّ احسب $oldsymbol{E}(X)$ أمله الرياضياتي.

اختبار في مادة: الرياضيات \ الشعبة: رياضيات \بكالوريا 2020

التمرين الثالث: (05 نقاط)

ليكن n عددا طبيعيا أكبر تماما من 1.

 \cdot c=3n+2 و b=6n+1 ، a=4n+1 : فعتبر الأعداد الطبيعية a و b ، a و b ، a

- أثبت أنّ العددين a و b أوليان فيما بينهما.
- \cdot c و lpha نسمى lpha القاسم المشترك الأكبر للعددين lpha

 $\alpha=5$: يقسم 3، ثمّ عين الأعداد الطبيعية α بحيث يكون α

- bc و a نسمى نسمى القاسم المشترك الأكبر للعددين $oldsymbol{eta}$
 - . $oldsymbol{eta}$. أثبت أنّ $oldsymbol{lpha}$ يقسم
- $oldsymbol{lpha}=oldsymbol{eta}$: أثبت أنّ العددين $oldsymbol{eta}$ و $oldsymbol{b}$ أوليان فيما بينهما ثمّ استنتج أنّ
- $A = 18n^3 3n^2 13n 2$ و $A = 4n^2 3n 1$ و $A = 4n^2 3n 1$ و $A = 4n^2 3n 1$
 - . (n-1) . بيّن أنّ كلا من العددين A و B مضاعف للعدد الطبيعي

 $(bc = 18n^2 + 15n + 2 : نضع: d = PGCD(A; B)$ عبّر حسب قيم α عن d بدلالة d عبّر حسب قيم d عبّر حسب قيم d التمرين الرابع: d نقاط)

- $h(x) = x(e^x + 1)$ و $g(x) = -2e^x$: يا الدّالتان العدديتان g و $g(x) = x(e^x + 1)$ و الدّالتان العدديتان $g(x) = x(e^x + 1)$ على المجال $g(x) = x(e^x + 1)$ و $g(x) = x(e^x + 1)$ و $g(x) = x(e^x + 1)$ على المجال $g(x) = x(e^x + 1)$ على المجال $g(x) = x(e^x + 1)$
 - $f(x) = (x-3)e^x + \frac{1}{2}x^2$ بـِ: $f(x) = (x-3)e^x + \frac{1}{2}x^2$ بـِ: $f(x) = (x-3)e^x + \frac{1}{2}x^2$ بالدالة العددية $f(x) = (x-3)e^x + \frac{1}{2}x^2$
 - $\left(C_{f}
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}
 ight)$
 - - . f احسب f(x) و f(x) و f(x) احسب (2
 - -1.5 < lpha < -1.4: ثمّ تَحقّق أنّ f(x) = 0 تقبل حلا وحيدا lpha في المجال α المعادلة α تقبل حلا وحيدا α
 - .]- ∞ ; 0] هو التمثيل البياني للدالة: $x\mapsto \frac{1}{2}x^2$ على المجال (P) (4
 - أ. احسب $\lim_{x \to -\infty} \left[f(x) \frac{1}{2} x^2 \right]$ أ. احسب
 - (C_f) و (P) ادرس الوضع النسبي للمنحنيين
 - $[-\infty;0]$ على المجال (P) ثم المنحنى المجال على المجال أيث
 - $[-\infty;0]$ في $|f(x)|=e^m$ عدد حلول المعادلة: $|f(x)|=e^m$ في الكن المعادلة: $|f(x)|=e^m$

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

- . حيث x و y عددان صحيحان. 3x-5y=2 خات المجهول (x;y) حيث x
- 1. ادرس تبعا لقيم العدد الطبيعي n باقي القسمة الإقليدية للعدد الطبيعي n على 7. (2

 \cdot 11. ادرس تبعا لقيم العدد الطبيعي n باقي القسمة الإقليدية للعدد الطبيعي \cdot على 11.

- $.14 \times 4^{n} + 11 \times 9^{n} 4 = 0[77]$ عيّن الأعداد الطبيعية n بحيث يكون: (3
- $S_n = u_1 + u_2 + u_3 + ... + u_{15n}$ و $u_n = 3 \times 4^n + 4 \times 9^n$ نظیر معدوم، نضع: $u_n = 3 \times 4^n + 4 \times 9^n$ و

 \cdot ب. أثبت أنّ $_n$ مضاعف للعدد 77.

التمرين الثاني: (04 نقاط)

 $(n \ge 2)$ عدد طبیعی و $n \ge n$ عدد n عدد طبیعی و $n \ge n$

 $\frac{\pi}{3}$ و $\frac{\pi}{2}$ تحمل الأعداد $\frac{\pi}{2}$ ، $\frac{\pi}{2}$ و كريتين خضراوين تحملان العددين $\frac{\pi}{2}$ و $\frac{\pi}{3}$ نسحب عشوائيا كريتين في آن واحد من هذا الصندوق.

اً . احسب احتمال كل من A و B حيث:

اللون" و R: "سحب كريتين من نفس اللون" و R: "سحب كريتين تحملان نفس العدد علما أنهما من نفس اللون" و $P(A) = \frac{17}{55}$.

. نفرض في ما يلي: n=5 و نسمي α و β العددين الظاهرين على الكريتين المسحوبتين (2

 $\cos(lpha)\cos(eta)$ المتغيّر العشوائي الذي يرفق بكل نتيجة سحب العدد: X

 $\cdot 1$ ، $rac{1}{4}$ ، 0 ، $-rac{1}{2}$: هي: X هي المتغيّر العشوائي العشوائي

$$P(X=0) = \frac{27}{55}$$
 : بيّن أنّ

 $oldsymbol{\mathcal{E}}(X)$ عيّن قانون احتمال المتغيّر العشوائي X واحسب أمله الرياضياتي

التمرين الثالث: (05 نقاط)

المتتاليتان العدديتان $\left(u_{n}
ight)$ و $\left(v_{n}
ight)$ معرفتان على \mathbb{N} بـ:

(عدد حقيقي)
$$\begin{cases} v_0=3\\ v_{n+1}=3\alpha v_n+\left(1-3\alpha\right)u_n \end{cases} \qquad \begin{cases} u_0=-1\\ u_{n+1}=3\alpha u_n+\left(1-3\alpha\right)v_n \end{cases}$$
 المتتالية العددية $\begin{pmatrix} w_n \end{pmatrix}$ معرّفة على \mathbb{N} ب

اختبار في مادة: الرياضيات \ الشعبة: رياضيات \بكالوريا 2020

lpha أ . احسب w_0 ثمّ احسب السب السب w_0

 \cdot . (6lpha-1) متتالیة هندسیة أساسها (w_n) نّن أنّ

 $\cdot \lim_{n \to +\infty} w_n = 0$: کتب عبارة α میں قیم α میں قیم α میں قیم w_n بدلالہ w_n بدلالہ و

 $\frac{1}{6} < \alpha < \frac{1}{3}$ نفرض في كلّ ما يلي:

أ. أثبت أنّ المتتالية $ig(u_nig)$ متزايدة تماما و أنّ $ig(v_nig)$ متناقصة تماما.

 ℓ استنتج أنّ (u_n) و (v_n) متقاربتان نحو نفس النهاية

. ℓ قيمة واستنتج قيمة $u_n + v_n = 2$: n عدد طبيعي عدد طبيعي (3

 $S = u_0 + u_1 + \dots + u_{2020}$: حيث: α المجموع (4

التمرين الرابع: (07 نقاط)

 $f(x) = \ln\left(\sqrt{9x^2 + 1} + 3x\right)$ بنا الدالة العددية f معرّفة على \mathbb{R} بنا

 $\cdot \left(O; \overrightarrow{i}, \overrightarrow{f}\right)$ المنحنى البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس الدالة f

 $\lim_{x \to -\infty} f(x) = -\infty$: ثمّ بيّن أنّ $\lim_{x \to +\infty} f(x)$ أ . احسب

 $f'(x) = \frac{3}{\sqrt{9x^2 + 1}}$ الدينا: x عدد حقيقي x لدينا:

ج. استنتج اتجاه تغيّر الدالة f ثمّ شكّل جدول تغيّراتهاً.

g(x)=f(x)-x نعتبر الدالة g المعرّفة على المجال g(x)=f(x)-x كما يلي: (2

 $\lim_{x \to +\infty} g(x) = -\infty$ أنّ بيّن أنّ

 $g'(x) = \frac{-9x^2 + 8}{\left(\sqrt{9x^2 + 1}\right)\left(3 + \sqrt{9x^2 + 1}\right)} : \left[0; +\infty\right[$ من المجال x من المجال عدد حقیقی x من المجال x من المجال x

 $\left(g\left(\frac{2\sqrt{2}}{3}\right)\approx 0.8\right)^{2}$. ادرس اتجاه تغیّر الدالة g على المجال g على المجال أثم شكّل جدول تغیّراتها.

 $2.83 < \alpha < 2.84$: ثمّ تَحقّق أنّ : g(x) = 0 تقبل حلا وحيدا α في المجال $\frac{2\sqrt{2}}{3}$; +∞ في المجال g(x) = 0 ثمّ تَحقّق أنّ : g(x) = 0 أ. استنتج إشارة g(x) = 0 على g(x) = 0.

 $[0;+\infty[$ المجال على المستقيم (Δ) في المعادلة y=x و المنحنى المجال على المجال y=x

4) نعتبر الدالة k المعرّفة على $[0;+\infty]$ ب $[0;+\infty]$ ب $[0;+\infty]$ و ليكن (γ) منحنيها البياني في المعلم السابق. أ . بيّن أنّ (γ) هو صورة منحنى الدالة: $x\mapsto \ln x$ بتحويل نقطى بسيط يطلب تعيينه.

بيانيا. النتيجة بيانيا. $\lim_{x \to +\infty} [f(x)-k(x)]$ بيانيا.

أ . بيّن الدالة f فردية.

انتهى الموضوع الثاني