Al Agent 과정

평가및모니터링

목차/평가및모니터링

- 1. RAG 평가 개요
- 2. 평가 자동화 프레임워크
- 3. 평가 고도화 및 개선 전략
- 4. LangGraph 개요

2. 평가 자동화 프레임워크

- RAGAS(Retrieval-Augmented Generation Answer Scoring)
 - RAG 시스템이 생성한 답변의 품질을 평가하기 위한 평가 체계
 - 외부 문서나 데이터베이스와 같은 근거 자료를 활용하여 답변을 생성하기 때문에
 - 단순히 문법이나 유창성만 평가하는 기존 지표로는 부족
 - 답변이 근거 자료와 얼마나 일치하며 신뢰할 수 있는지를 평가
- 평가 대상
 - Retrieval(Context)
 - LLM output(Answer)

ragas score

generation

faithfulness

how factually acurate is the generated answer

answer relevancy

how relevant is the generated answer to the question retrieval

context precision

the signal to noise ratio of retrieved context

context recall

can it retrieve all the relevant information required to answer the question

- Retrieval(Context) 평가
 - Context Recall
 - 회수된 Chunk 중 LLM이 생성한 답변과 일치하는 비율
 - 질문에 답하기 위해 필요한 모든 관련 정보를 검색할 수 있는지를 평가
 - Ground truth Answer를 sentence로 쪼갬 → sentence 가 context에 속하는지 판단
 - 정답 답변과 검색된 Context 간의 관련성을 비교하여 계산

```
context\; recall = \frac{|GT\; sentences\; that\; can\; be\; attributed\; to\; context|}{|Number\; of\; sentences\; in\; GT|}
```


• Retrieval(Context) 평가

- Context Recall 예시
 - Query: 대한민국은 어디에 위치하고 있고, 수도는 어디인가요?
 - Ground truth Answer : 대한민국은 동아시아에 위치하며, 수도는 서울입니다.
 - Context Recall이 높은 경우
 - Retrivered Context : 대한민국은 한반도에 자리한 동아시아의 국가이며, 수도는 서울입니다.
 - Context Recall이 낮은 경우
 - Retrivered Context : 대한민국은 삼면이 바다로 둘러싸인 반도 국가입니다.

- Retrieval(Context) 평가
 - Context Precision
 - Context가 얼마나 잘 회수되었는지를 평가
 - Context 중 Query에 부합하는 중요 내용들이 Top-K에 얼마나 포진되었는지를 평가
 - context → chunk → chunk 마다 유사한지 여부 판단 → 최종 precision 계산

$$\begin{aligned} & \text{Context Precision@K} = \frac{\sum_{k=1}^{K} \left(\text{Precision@k} \times v_k \right)}{\text{Total number of relevant items in the top K results}} \\ & \text{Precision@k} = \frac{\text{true positives@k}}{\left(\text{true positives@k} + \text{false positives@k} \right)} \end{aligned}$$

Where K is the total number of chunks in contexts and $v_k \in \{0,1\}$ is the relevance indicator at rank k.

- Retrieval(Context) 평가
 - Context Precision 예시
 - Query: 대한민국은 어디에 위치하고 있고, 수도는 어디인가요?
 - 높은 정밀도 Context :
 - 대한민국은 동아시아에 위치하며, 수도는 서울입니다.
 - 서울은 대한민국의 수도입니다.
 - 낮은 정밀도 Context :
 - 한국의 고유한 전통 발표식품에는 김치가 있습니다.
 - 서울에는 한강이 가로지르고 있습니다.
 - 점수 계산 : 높은 정밀도 Context가 상위에 위치 → 높은 점수

• LLM output(Answer) 평가

- Relevancy(Supportiveness)
 - 생성된 답변이 제공된 근거 자료의 내용을 얼마나 잘 반영하는지를 평가
 - 답변이 주어진 질문에 얼마나 적합한지를 평가
 - 답변으로 부터 여러 인공 질문 생성 → 생성된 질문들과 원래 질문 간의 평균 코사인 유사도 계산

$$\text{answer relevancy} = \frac{1}{N} \sum_{i=1}^{N} cos(E_{g_i}, E_o)$$

$$\text{answer relevancy} = \frac{1}{N} \sum_{i=1}^{N} \frac{E_{g_i} \cdot E_o}{\|E_{g_i}\| \|E_o\|}$$

Where:

- E_{g_i} is the embedding of the generated question i.
- E_o is the embedding of the original question.
- ullet N is the number of generated questions, which is 3 default.

- LLM output(Answer) 평가
 - Relevancy(Supportiveness) 예시
 - Query: 대한민국은 어디에 위치하고 있고, 수도는 어디인가요?
 - Answer : 대한민국은 동아시아에 있습니다.
 - Generated Query :
 - 대한민국은 아시아의 어느 지역에 있나요?
 - 대한민국은 동아시아에 위치해 있나요?
 - 대한민국은 아시아의 동쪽에 위치하나요?
 - 점수 계산 : 각 인공 질문과 원래 질문 간의 코사인 유사도 계산 후 평균

- LLM output(Answer) 평가
 - Faithfulness
 - 답변에 포함된 정보가 실제 자료에 기반하고 있는지를 확인 (Hallucination 평가)
 - 근거 자료의 정보를 왜곡하거나 잘못 해석하지 않고, 사실 그대로 전달하는지를 측정

 $Faithfulness\ score = \frac{|\text{Number of claims in the generated answer that can be inferred from given context}|}{|\text{Total number of claims in the generated answer}|}$

- 생성된 답변으로 부터 Claim 추출 후 Claim들이 context로 추론이 가능한지를 평가
 - Claim : 생성된 답변에서 주장하는 핵심 point

• LLM output(Answer) 평가

- Faithfulness 예시
 - Query: 대한민국은 어디에 있고, 수도는 어디이고, 피파 랭킹은 몇 위야?
 - Context : 대한민국은 동아시아 국가 중 그 다음으로 ... , 대한민국은 수도인 서울을 중심으로 ...
 - Hight Faithful Answer : 대한민국은 동아시아에 위치하고 있으며 수도는 서울입니다.
 - Low Faithful Answer: 대한민국은 동아시아에 위치하고 있으며 수도는 서울이고 <u>피파 랭킹은 23위입니다.</u>
 - → 피파 랭킹은 Context에 없는 내용