Asynchronous Transfer Mode (ATM)

Issues Driving LAN Changes

- Traffic Integration
 - Voice, video and data traffic
 - Multimedia became the 'buzz word'

• One-way batch Web traffic

• Two-way batch voice messages

• One-way interactive broadcasts

• Two-way interactive video conferencing

- Quality of Service guarantees (e.g. limited jitter, non-blocking streams)
- LAN Interoperability
- Mobile and Wireless nodes

Figure 5.9 Example ATM LAN configuration.

Stallings "High-Speed Networks"

Figure 5.10 ATM LAN hub configuration.

ATM Adaptation Layers

Digital voice samples

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 9.3

Asynchronous Transfer Mode (ATM)

Copyright ©2000 The McGraw Hill Companies

Figure 7.37

Leon-Garcia & Widjaja: Communication Networks

- ATM standard is widely accepted by common carriers as mode of operation for communication particularly BISDN.
- ATM is a form of <u>cell switching</u> using small fixedsized packets.

Leon-Garcia & Widjaja: Communication Networks

ATM Conceptual Model Four Assumptions

1. ATM network will be organized as a hierarchy.

User's equipment connects to networks via a **UNI** (User-Network Interface).

Connections between provided networks are made through NNI (Network-Network Interface).

2. ATM will be connection-oriented.

A connection (an ATM channel) must be established before any cells are sent.

Figure 9.5

ATM Connections

- two levels of ATM connections:
 virtual path connections
 virtual channel connections
- indicated by two fields in the cell header:

virtual path identifier VPI

virtual channel identifier **VCI**

ATM Virtual Connections

Copyright ©2000 The McGraw Hill Companies

Figure 7.40

ATM Conceptual Model Assumptions (cont.)

- 3. Vast majority of ATM networks will run on optical fiber networks with extremely low error rates.
- 4. ATM must support low cost attachments.
 - This decision lead to a significant decision to prohibit cell reordering in ATM networks.
 - → ATM switch design is more difficult.

12

UNI Cell Format

GFC (4 bits)	VPI (4 bits)		
VPI (4 bits)	VCI (4 bits)		
VCI (8 bits)			
VCI (4 bits)	PT (3 bits) CLP (1 bit)		
HEC (8 bits)			
Payload (48 bytes)			
(46 bytes)			

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

ATM Cell Switching

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 7.38

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 7.39

ATM Protocol Architecture

- ATM Adaptation Layer (AAL) the protocol for packaging data into cells is collectively referred to as AAL.
- Must efficiently package higher level data such as voice samples, video frames and datagram packets into a series of cells.

Design Issue: How many adaptation layers should there be?

16

Leon-Garcia & Widjaja: Communication Networks

Leon-Garcia & Widjaja: Communication Networks

Original ATM Architecture

- Four classes of applications (A-D) requiring four distinct adaptation layers (1-4) which would be *optimized* for an application class:
 - A. Constant bit-rate applications CBR
 - B. Variable bit-rate applications **VBR**
 - C. Connection-oriented data applications
 - D. Connectionless data application

19

ATM Architecture

An AAL is further divided into:

The Convergence Sublayer (CS)

manages the flow of data to and from SAR sublayer.

The Segmentation and Reassembly Sublayer (SAR)

breaks data into cells at the sender and reassembles cells into larger data units at the receiver.

Original ATM Architecture

^{1.} Protocol Reference Model in the User Plane. See Section 4.1 for AAI SAP classes (A to D) and values (1 to 4).

21

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 9.6

Original ATM Architecture

- The AAL interface was initially defined as classes **A-D** with SAP (service access points) for **AAL1-4**.
- AAL3 and AAL4 were so similar that they were merged into AAL3/4.
- The data communications community concluded that AAL3/4 was not suitable for data communications applications. They pushed for standardization of AAL5 (also referred to as SEAL the Simple and Efficient Adaptation Layer).
- AAL2 was not initially deployed.

23

Revised ATM Architecture (a) Service type AAL2 **AAL 3/4** AAL 5 AALI Timing relationship No Yes Variable Constant Bit rate Connection-oriented Connectionless Mode (b) SAP I SAP 2 SAP 3/4 SAP 5 Cell loss detection Satisfies interface Timing and cell loss CS protocols recovery (AAL 1/2) (AAL 3/4/5) requirements SAR sublayer Segmentation and reassembly Processes cell pay protocols SAP I SAP 5 2 Processes cell he ATM Physical Transports cells CS = Convergence sublayer SAR * Segmentation and reassembly

Revised ATM Service Categories

Class	Description	Example
CBR	Constant Bit Rate	T1 circuit
RT-VBR	Real Time Variable Bit Rate	Real-time videoconferencing
NRT-VBR	Non-real-time Variable Bit Rate	Multimedia email
ABR	Available Bit Rate	Browsing the Web
UBR	Unspecified Bit Rate	Background file transfer

QoS, PVC, and SVC

- Quality of Service (QoS) requirements are handled at connection time and viewed as part of *signaling*.
- ATM provides permanent virtual connections and switched virtual connections.
 - Permanent Virtual Connections (PVC)
 permanent connections set up *manually* by network manager.
 - Switched Virtual Connections (5VC)
 set up and released *on demand* by the end user via signaling procedures.

26

AAL 1 Payload

(b) CS PDU with pointer in structured data transfer

(a) SAR PDU header

CSI	Seq. Count	SNP
1 bit	3 bits	4 bits

Leon-Garcia & Widjaja: Communication Networks

AAL 1

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 9.10

AAL 3/4 CS and SAR PDUs

(a) CPCS-PDU format

(b) SAR PDU format

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

Figure 9.16

AAL 3/4

AAL 5

Convergent Sublayer Format

ATM Header 48 bytes of Data

1-bit end-of-datagram field (PTI)

Copyright ©2000 The McGraw Hill Companies

Leon-Garcia & Widjaja: Communication Networks

AAL 5

PTI = 0 PTI = 0

PTI = 1