NUMBER SYSTEM & CONVERSION

Number System

Introduction

- Many number systems are in use in digital technology. The most common are:
 - Decimal (Base 10)
 - Binary (Base 2)
 - □ Octal (Base 8)
 - Hexadecimal (Base 16)
- The decimal system is the number system that we use everyday

Number System

Decimal system uses 10 symbols (digits)

Octal System uses eight symbols

Binary System uses only two symbols

0 and 1

Hexadecimal System uses sixteen symbols

to represent any number, no matter how large or how small.

Familiar System

Octal System (Base - 8 ns)	Hexa decimal Number System (Base - 16)	Decimal Number (Base-10)	Binary Equivalent (Base-2)	Base 4 number System (Base -4)
0	0	0	0	0
1	1	1	1	1
2	2	2	10	2
3	3	3	11	3
4	4	4	100	10
5	5	5	101	11
6	6	6	110	12
7	7	7	111	13
10	8	8	1000	20
11	9	9	1001	21
12	A	10	1010	22
13	В	11	1011	23
14	С	12	1100	30
15	D	13	1101	31
16	E	14	1110	32
17	F	15	1111	33

Bits, Bytes, Nibbles

□ Bits (b)

- □ Bytes & Nibbles
 - \square Byte (B) = 8 bits
 - Used everyday
 - \square Nibble (N) = 4 bits
 - Not commonly used

KB, MB, GB ...

- In computer, the basic unit is byte (B)
- □ And, we use KB, MB, GB many many many times

```
2^{10} = 1024 = 1KB  (kilobyte)
```

$$2^{20} = 1024 \times 1024 = 1MB$$
 (megabyte)

$$2^{30} = 1024 \times 1024 \times 1024 = 1$$
 1GB (gigabyte)

How about these?

```
2^{40} = 1TB \text{ (terabyte)}
```

 $2^{50} = 1PB (petabyte)$

260 = 1EB (exabyte)

 $2^{70} = 1ZB (zettabyte)$

- ...

Decimal System

- □ **The decimal system** is composed of 10 numerals or symbols. These 10 symbols are 0,1,2,3,4,5,6,7,8,9; using these symbols as digits of a number, we can express any quantity.
- Example: 3501.51

Binary System

- □ The binary system is composed of 2 numerals or symbols 0 and 1; using these symbols as digits of a number, we can express any quantity.
- Example: 1101.01

Decimal Number Quantity (positional number)

Binary-to-Decimal Conversion

Octal-to-Decimal Conversion

Hexadecimal-to-Decimal Conversion

Decimal Number Quantity (fractional number)

Binary-to-Decimal Conversion

Octal-to-Decimal Conversion

$$0.25 + 0.017825 = 0.267825$$

$$0.25_8 = 0.267825_{10}$$

Hexadecimal-to-Decimal Conversion

. F 5 (base-16)

15
$$X16^{-1} = 15 \times 0.0625 = 0.9375$$

5 $X16^{-2} = 5 \times 0.00390625$

= 0.01953125

$$0.9375 + 0.01953125 = 0.95703125$$

 $0.F5_{16} = 0.95703125_{10}$

Exercise 1

- Convert these binary system numbers to decimal system numbers
 - a) 100101101
 - b) 11100.1001
 - c)111111
 - d)100000.0111
- □ b)

$$1x2^4 + 1x2^{3+}1x2^2 + 0x2^1 + 0x2^0 + 1x2^{-1} + 0x2^{-2} + 0x2^{-3}1 + 1x2^{-4}$$

$$= 16 + 8 + 4 + 0 + 0 + 0.5 + 0 + 0 + 0.0625$$

$$= 28.5625$$

Decimal-to-Binary Conversion (positional number)

Decimal-to-Octal Conversion

$$250_{10} = 372_8$$

Decimal-to-Hexadecimal Conversion

$$250_{10} = 15 \ 10_{16} ?$$
= FA_{16}

Decimal-to-Binary Conversion (fractional number)

0.4375

```
0.4375 \times 2 = 0.8750
0.8750 \times 2 = 1.75
0.75 \times 2 = 1.5
0.5 \times 2 = 1.0
```

$$0.4375_{10} = 0.0111_2$$

Decimal-to-Octal Conversion

0.4375

$$0.4375 \times 8 = 3.5$$

 $0.5 \times 8 = 4.0$

$$0.4375_{10} = 0.34_{8}$$

Decimal-to-Hexadecimal Conversion

0.4375

$$0.4375 \times 16 = 7.0$$

$$0.4375_{10} = 0.7_{16}$$

Example: Decimal-to-Binary Conversion (Estimation)

```
11001_2 \rightarrow 2^{-1} + 2^{-2} + 2^{-5}
   0.782
                                           \rightarrow 0.5 + 0.25 + 0.03125
0.782 \times 2 = 1.564
                                           \rightarrow 0.78125
0.564 \times 2 = 1.128
0.128 \times 2 = 0.256
                                1100100001<sub>2</sub>
0.256 \times 2 = 0.512
                                \rightarrow 2<sup>-1</sup> + 2<sup>-2</sup> + 2<sup>-5</sup> + 2<sup>-10</sup>
0.512 \times 2 = 1.024
                                 \rightarrow 0.5 + 0.25 + 0.03125 +
                = 0.048
0.024 \times 2
                                      0.0009765625
0.048 \times 2 = 0.096
                                 \rightarrow 0.7822265625
0.192 \times 2 = 0.384
                = 0.768
0.384 \times 2
0.768 \times 2 = 1.536
```

Exercise 2

- Convert these decimal
 system numbers to binary
 system numbers
 - a)127
 - b)38
 - c)22.5
 - d) 764.375

```
c) (22.5)_{10} = (?)_2
2[22]
2[11]
0
2[5]
1
2[2]
1
0
```

$$0.5 \times 2 = 1.0$$

=> $(22.5)_{10} = (10110.1)_2$

Base X — to — Base Y Conversion

- We can convert base x number to base y number by following these steps:
 - Convert base x to base 10 (decimal system number)
 - Then, convert decimal number to base y

Example

- □ Convert 372.34₈ to hexadecimal system number
 - Convert 372.34₈ to decimal system number

■
$$372.34_8 = (3x8^2) + (7x8^1) + (2x8^0)$$
 . $(3x8^{-1}) + (4x8^{-2})$
= $192 + 56 + 2$. $0.375 + 0.0625$
= 250.4375

- \square Convert 250.4375₁₀ to hexadecimal system number
 - **250.4375**₁₀

Positional number

$$250 / 16 = 15 \text{ remainder } 10$$
$$250 \rightarrow FA_{16}$$

Fractional number

$$0.4375 * 16 = 7.0$$

 $0.4375 \rightarrow 0.7_{16}$

$$372.34_8 = FA.7_{16}$$

Exercise 3 (TODO)

- Convert these numbers to octal system number
 - 11100.1001₂
 - **1111111**₂
 - □ 5A.B₁₆
- Convert these numbers to binary system number
 - □ 5A.B₁₆
 - □ 75.2₈

Thank you