Secure Multiparty Computation

Roberto Guanciale KTH

Goal

- Secure Multyparty Computation
 - o (privacy-preserving computation)
- Yao's Millionaires' Problem
- Yao, Protocols for secure computations (1982)
- Two millionaires, Alice and Bob, who are interested in knowing which
 of them is richer without revealing their actual wealth
- \circ F(d1,d2) = (d1 > d2)
- Generalization
 - N participants p1, … , pn
 - Have private data d1, ..., dn
 - Want to compute the public function F(d1, ..., dm)
 - While preserving input secrecy

Content

- Oblivious transfer: F(d1,d2) = d1[d2]
- Garbled circuits: n = 2
- (not today) Additive secret sharing: n = 3
- (not today) Shamir secret sharing: n > 2
- (not today) Homomorphic encryption
- . . .
- In the following we assume honest but curious adversary!
- . . .

Even, Goldreich, and Lempel

A Randomized Protocol for Signing Contracts (1985)

- Alice has two messages : $d_1 = [m_0, m_1]$
- Bob has one bit : $d_2 = b$
- Bob wishes to receive m_h without Alice learning b
- Alice wants to ensure that the receiver receives only one of the two messages

- 1. Alice generates pub PU priv PR keys and sends PU
- 2. Alice generates and sends two randoms $X=[X_0, X_1]$
- 3. Bob generates random r and blinds its encryption with X_b a. Bob sends (finite field arithmetic) $v = X_b + Enc(r, PU)$ (let b=0)
- 4. Alice does not know if Bob has chosen X_0 or X_1
 - a. $r_0 = Dec(v X_0, PR)$ $r_1 = Dec(v X_1, PR)$ b. $r_0 = r$ $r_1 = Dec(X_0 + Enc(r, PU) - X_1, PR)$
- 5. Alice sends $m_0' = m_0 + r_0$ and $m_1' = m_1 + r_1$
- 6. Bob computes $m_0 = m_0' r$ and discard m_1'

- Alice generates pub PU priv PR keys and sends PU
- Alice generates and sends two randoms $X=[X_0, X_1]$
- Bob generates random r and blinds its encryption with X_h a. Bob sends (finite field arithmetic) $v = X_0 + Enc(r, PU)$ (let b=0)
- 4. Alice does not know if Bob has chosen X_0 or X_1
 - a. $r_0 = Dec(v X_0, PR)$ $r_1 = Dec(v X_1, PR)$ b. $r_0 = r$
 - $r_1 = Dec(X_0 + Enc(r, PU) X_1, PR)$
- Alice sends m₀'=m₀+r₀ \mu_1'=m₁+r₁
- 6. Bob computes $m_0 = m_0' r$

One of the two r_i is correct. The other is a "random" number that cannot be controller by Bob

- 1. Alice generates pub PU priv PR keys and sends PU
- 2. Alice generates and sends two randoms $X = [X_0, X_1]$
- 3. Bob generates random r and blinds its encryption with X_b a. Bob sends (finite field arithmetic) $v = X_0 + Enc(r, PU)$ (let b=0)
- 4. Alice does not know if Bob has chosen X_0 or X_1

```
a. r_0 = Dec(v - X_0, PR) r_1 = Dec(v - X_1, PR)
b. r_0 = r r_1 = Dec(X_0 + Enc(r, PU) - X_1, PR)
```

- 5. Alice sends $m_0' = m_0 + r_0$ and $m_1' = m_1 + r_1$
- 6. Bob computes $m_0 = m_0' r$ and discard m_1'

m,' - r will result in a random number

Yao, How to generate and exchange secrets (1986)

Goldreich, Cryptography and Cryptographic Protocols (2003)

- 1. Function F(d1, d2) is compiled to a boolean circuit C a. Possibly by a third party
- Alice garbles (encrypts) the circuits and d1
 a. Alice sends the circuit to Bob
- 3. Bob receives the encryption of d2 from Alice via OT
- 4. Bob executes the circuita. Bob sends the result to Alice
- 5. Alice decrypts the result

- Function F(d1, d2) is compiled to a boolean circuit C
 a. Possibly by a third party
- Alice garbles (encrypts) the circuits and d1
 a. Alice sends the circuit to Bob
- 3. Bob receives the encryption of d2 from Alice via OT
- 4. Bob executes the circuita. Bob sends the result to Alice
- 5. Alice decrypts the result

1. Compilation to boolean circuits

- $\bullet \quad A_1 < B_1$ $\circ \quad X_1 = \text{not } A_1 \text{ and } B_1$
- $\bullet \quad A_2A_1 < B_2B_1$
 - \circ R₂ = not A₂ and B₂
 - $\circ S_2 = (A_2 == B_2)$
 - \circ T₁= S₂ and X₁
 - $\circ \quad \text{ X$_2$= T$_1$ or R$_2$}$
- ...

- 1. Function F(d1, d2) is compiled to a boolean circuit C a. Possibly by a third party
- 2. Alice garbles (encrypts) the circuits and d1 a. Alice sends the circuit to Bob
- 3. Bob receives the encryption of d2 from Alice via OT
- 4. Bob executes the circuita. Bob sends the result to Alice
- 5. Alice decrypts the result

2. Circuit Garbling (Alice)

- 1. For every wire w, generate X_w^0 and X_w^1 to represent false and true
- 2. For every gate with input wire a,b and output wire c, substitute the truth table
- 3. Encrypt the table
- 4. Permute the table

```
a. 0 0 -> 0 X_a^0 X_b^0 -> X_c^0 Enc(X_c^0:OK, X_a^0 X_b^0) Enc(X_c^1:OK, X_a^1 X_b^1)

b. 0 1 -> 0 X_a^0 X_b^1 -> X_c^0 Enc(X_c^0:OK, X_a^0 X_b^1) Enc(X_c^0:OK, X_a^0 X_b^0)

c. 1 0 -> 0 X_a^1 X_b^0 -> X_c^0 Enc(X_c^0:OK, X_a^1 X_b^0) Enc(X_c^0:OK, X_a^1 X_b^0)

d. 1 1 -> 1 X_a^1 X_b^1 -> X_c^1 Enc(X_c^1:OK, X_a^1 X_b^1) Enc(X_c^0:OK, X_a^0 X_b^1)
```

2. Circuit Garbling (Alice)

- 1. Function F(d1, d2) is compiled to a boolean circuit C a. Possibly by a third party
- Alice garbles (encrypts) the circuits and d1
 a. Alice sends the circuit to Bob
- 3. Bob receives the encryption of d2 from Alice via OT
- 4. Bob executes the circuita. Bob sends the result to Alice
- 5. Alice decrypts the result

3. Encryption of d2

- For every bit d[i] of d2
 - \circ Alice has X_w^0 and X_w^1 of the corresponding wires
 - Bob uses OT to get X_w^{d[i]}

- 1. Function F(d1, d2) is compiled to a boolean circuit C a. Possibly by a third party
- Alice garbles (encrypts) the circuits and d1
 a. Alice sends the circuit to Bob
- 3. Bob receives the encryption of d2 from Alice via OT
- 4. Bob executes the circuit

 a. Bob sends the result to Alice
- 5. Alice decrypts the result

2. Circuit Garbling (Alice)

- 1. Function F(d1, d2) is compiled to a boolean circuit C a. Possibly by a third party
- 2. Alice garbles (encrypts) the circuits and d1 a. Alice sends the circuit to Bob
- 3. Bob receives the encryption of d2 from Alice via OT
- Bob executes the circuit
 a. Bob sends the result to Alice
- 5. Alice decrypts the result

If more than 2 Parties...

Secret Sharing

How to securely perform computations on secret-shared data

Secret sharing

- Shamir secret sharing
 a. y out of x
- 2. Additive secret sharing a. y out of y

Additive secret sharing: 3 party computation

- S1 + S2 + S3 = V
- Secure if 2 parties collude
- To input (share) V you generate two random numbers a,b and set S1=a, S2=b, S3=V-a-b
- Addition
 - V1 + V2 =
 (S1 + S2 + S3) + (T1 + T2 + T3) =
 (S1 + T1) + (S2 + T2) + (S3 + T3)
- Multiplication by scalar
 - \circ n*V = n * (S1 + S2 + S3) = n*S1 + n*S2 + n*S3

Additive secret sharing: 3 party computation

- P1 knows s1; P2 knows s2
 (s1+x1)*(s2+x2) =
 - s1*s2 + x1*s2 + x2*s1 + x1*x2 =s1*s2 + x1(s2+x2) + x2(s1+x1) - x1*x2
- s1*s2 = (s1+x1)(s2+x2) x1(s2+x2) + -x2(s1+x1) + x1*x2
- P3 generates two random x1,x2
- 2. P3 sends $x1 \rightarrow P1$, $x2 \rightarrow P2$
- 3. P1 sends $(s1+x1) \rightarrow P2$ P2 sends $(s2+x2) \rightarrow P1$

Additive secret sharing: 3 party computation

Multiplication

```
    V1 * V2 =
    (S1 + S2 + S3) * (T1 + T2 + T3) =
    (S1*T1) + (S1*T2) + (S1*T3) + (S2*T1) + (S2*T2) + (S2*T3) + (S3*T1) + (S3*T2) + (S3*T3)
```

Sharemind

```
https://sharemind.cyber.ee
/sharemind-mpc/
```

Questions?