Median

- ➤ Median of a distribution is the value of the variable which divides it into two equal parts.
- It is the value which exceeds and is exceeded by the same number of observations. Thus the median is called as a "positional average".

Evaluation of Median: For ungrouped data,

- (i) Odd number of observations. (middle value after the values has been arranged in ascending or descending order of magnitude)
- (ii) Even number of observations. (arithmetic mean of two middle terms after the values has been arranged in ascending or descending order of magnitude)

Ex: Find the median of the values 25, 20, 15, 35, 18.

Ex: Find the median of the values 8, 20, 50, 25, 15, 30.

For Grouped data:

- (i) Discrete Frequency distribution:
 - 1. Find $\frac{N+1}{2}$, where *N*-Total Frequency = $\sum_{i=1}^{n} f_i$.
 - 2. See the cumulative frequency (c.f.) just greater than $\frac{N+1}{2}$.
 - 3. The corresponding value of x is median.

Example:

x	1	2	3	4	5	6	7	8	9
f	8	10	11	16	20	25	15	9	6

Calculate the Median of the distribution.

Ans:

x	f	<i>c.f.</i> 8		
1	8	8		
2	10	18		
3	11	29		
4	16	45		
5	20	65		
6	25	90		
7	15	10		
8	9	114		
9	6	120		
	N = 120			

$$\frac{N+1}{2} = 60.5$$

The cumulative frequency (c.f.) just greater than $\frac{N+1}{2}$ is 65 and value corresponding to 65 is 5.

.. Median is 5.

(ii) Continuous Frequency distribution:

In case of continuous frequency distribution, the class corresponding to the c.f. just greater than N/2 is called the median class and the value of median is obtained by the following formula:

$$Median = l + \frac{h}{f} \left(\frac{N}{2} - c \right)$$

Where,

l -is the lower limit of the median class,

f-is the frequency of the median class,

h -is the magnitude of the median class,

c-is the c.f. of the class preceding the median class

Note: The median formula can only be used only for continuous classes without any gaps, i.e., for exclusive type classifications.

Example: Find the median of the following data:

Wages (in Rs.)	2000-3000	3000-4000	4000-5000	5000-6000	6000-7000
No. of workers	3	5	20	10	5

Ans:

Wages (in Rs.)	No. of Employees	c.f.		
2000-3000	3	3		
3000-4000	5	8		
4000-5000	20	28		
5000-6000	10	38		
6000-7000	5	43		
	N = 43			

$$\frac{N}{2} = \frac{43}{2} = 21.5$$

Cumulative frequency just greater than 21.5 is 28 and the corresponding class is 4000-5000. Thus the median class is 4000-5000.

$$l = 4000$$
; $h = 1000$; $f = 20$; $c = 8$

$$l = 4000$$
; $h = 1000$; $f = 20$; $c = 8$
Median = $4000 + \frac{1000}{20}$ (21.5–8)

∴ Median =
$$4675$$
.

Example: Find the value of the median from the following data:

No. of days for which absent (less than)	5	10	15	20	25	30	35	40	45
No. of students	29	224	465	582	634	644	650	653	655

Ans: The given cumulative frequency will be converted into ordinary frequency as follows:

Class-Interval	Cumulative frequency	Ordinary frequency		
0–5	29	29 = 29		
5–10	224	224 - 29 = 195		
10–15	465	465 – 224 = 241		
15–20	582	582 – 465 = 117		
20–25	634	634 - 582 = 52		
25–30	644	644 -634 = 10		
30–35	650	650 – 644 = 6		
35–40	653	653 - 650 = 3		
40–45	655	655 – 653 = 2		

Median

$$= 10 + \frac{\frac{655}{2} - 224}{241} \times 5$$

$$= 10 + \frac{103.5 \times 5}{241} = 10 + 2.15$$

$$= 12.15$$