LG Aimers Phase 2

스마트공장제품품질상태분류

참가자: 얄루링

1. 개발 및 분석 환경

2. EDA

2-1. 데이터 확인

2-2. 주요 데이터 시각화

3. Feature Engineering

3-1. Feature Pre-Processing

3-2. Feature Engineering

4. Modeling

4-1. Validation Set Configuration

4-2. Modeling

1. 개발 및 분석 환경

1. 개발 및 분석 환경

Python Version

Python 3.7.13

JIEI Library Version

Scikit-learn 1.0.2

pandas 0.3.1

numpy 1.19.5

fancyimpute 0.7.0

런타임 유형: CPU

2. EDA

2-1. 데이터 확인

2-2. 주요 데이터 시각화

2-1. 데이터 확인

초기 데이터

598 rows × 2880 columns

	PRODUCT_ID	Y_Class	Y_Quality	LINE	PRODUCT_CODE	X_1	X_2	X_3	X_4	X_5		X_2866	X_2867	X_2868	X_2869	X_2870	X_2871	X_2872	X_2873	X_2874	X_2875
0	TRAIN_000	1	0.533433	T050304	A_31	NaN	NaN	NaN	NaN	NaN		39.34	40.89	32.56	34.09	77.77	NaN	NaN	NaN	NaN	NaN
1	TRAIN_001	2	0.541819	T050307	A_31	NaN	NaN	NaN	NaN	NaN		38.89	42.82	43.92	35.34	72.55	NaN	NaN	NaN	NaN	NaN
2	TRAIN_002	1	0.531267	T050304	A_31	NaN	NaN	NaN	NaN	NaN		39.19	36.65	42.47	36.53	78.35	NaN	NaN	NaN	NaN	NaN
3	TRAIN_003	2	0.537325	T050307	A_31	NaN	NaN	NaN	NaN	NaN	•••	37.74	39.17	52.17	30.58	71.78	NaN	NaN	NaN	NaN	NaN
4	TRAIN_004	1	0.531590	T050304	A_31	NaN	NaN	NaN	NaN	NaN		38.70	41.89	46.93	33.09	76.97	NaN	NaN	NaN	NaN	NaN
593	TRAIN_593	1	0.526546	T100306	T_31	2.0	95.0	0.0	45.0	10.0		NaN									
594	TRAIN_594	0	0.524022	T050304	A_31	NaN	NaN	NaN	NaN	NaN		49.47	53.07	50.89	55.10	66.49	1.0	NaN	NaN	NaN	NaN
595	TRAIN_595	0	0.521289	T050304	A_31	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN
596	TRAIN_596	1	0.531375	T100304	O_31	40.0	94.0	0.0	45.0	11.0		NaN									
597	TRAIN_597	1	0.533702	T100306	0_31	21.0	87.0	0.0	45.0	10.0		NaN									

- 초기 제공된 데이터는 데이터 수는 적고 피쳐 수가 아주 많은 특징을 지님
- 또한, 다수의 NaN 데이터도 눈에 띔

2-2. 주요 데이터 시각화

Y_Class 시각화

0/1/2 세 가지 class의 Mulit-classification이며
 상당한 비율의 Class 불균형을 보임

결측치 시각화

 검은색이 아닌 부분이 결측인 부분인데, 상당한 수의 결측을 확인할 수 있음

3. Feature Engineering

- 3-1. Feature Pre-Processing
- 3-2. Feature Engineering

3-1. Feature Pre-Processing

```
train_T050304 = train[train['LINE']=='T050304'] # 78
train_T050307 = train[train['LINE']=='T050307'] # 42
train_T100304 = train[train['LINE']=='T100304'] # 175
train_T100306 = train[train['LINE']=='T100306'] # 174
train_T010306 = train[train['LINE']=='T010306'] # 70
train_T010305 = train[train['LINE']=='T010305'] # 59

test_T050304 = test[test['LINE']=='T050304']
test_T050307 = test[test['LINE']=='T050307']
test_T100304 = test[test['LINE']=='T100306']
test_T100306 = test[test['LINE']=='T100306']
test_T010305 = test[test['LINE']=='T010305']
```

1. 라인별 분리

```
for col in train T050304.columns:
    if pd.notnull(train_T050304[col]).sum()==0:
        notwith1.append(col)
for col in train_T050307.columns:
    if pd.notnull(train_T050307[col]).sum()==0:
       notwith2.append(col)
for col in train T100304.columns:
    if pd.notnull(train_T100304[col]).sum()==0:
       notwith3.append(col)
for col in train_T100306.columns:
    if pd.notnull(train_T100306[col]).sum()==0:
       notwith4.append(col)
for col in train T010306.columns:
    if pd.notnull(train_T010306[col]).sum()==0:
       notwith5.append(col)
for col in train T010305.columns:
    if pd.notnull(train T010305[col]).sum()==0:
        notwith6.append(col)
```

2. 라인 내 사용하지 않는 (전부 결측값인) feature 제거

3-1. Feature Pre-Processing

```
train_T05 = pd.concat([train_T050304, train_T050307])
train_T10 = pd.concat([train_T100304, train_T100306])
train_T01 = pd.concat([train_T010306, train_T010305])

test_T05 = pd.concat([test_T050304, test_T050307])
test_T10 = pd.concat([test_T100304, test_T100306])
test_T01 = pd.concat([test_T010306, test_T010305])
```

3. 총 6라인 중 2라인씩 거의 유사한 feature를 지니고 있는 것을 확인해 소수의 feature 제외하고 concat 후 총 3개의 데이터셋으로 구성

4. Label Encoder로 'LINE'과 'PRODUCT_CODE' 두 가지 인코딩

3-1. Feature Pre-Processing

```
imputer1 = IterativeImputer(random_state=37)
imputer2 = IterativeImputer(random_state=37)
imputer3 = IterativeImputer(random_state=37, max_iter=5)

trans_x1 = imputer1.fit_transform(tmp_T05)
trans_x2 = imputer2.fit_transform(tmp_T01)
trans_x3 = imputer3.fit_transform(tmp_T10)
```

5. 결측치의 경우, 한 feature의 10프로까지 결측이라면 median값으로 결측 대치 후, 더 많은 결측치를 가진 남은 feature들은 MICE라는 imputer 라이브러리를 통해 회귀 결측 대치

3-2. Feature Engineering

```
one_data_col_train_T05 = []
one_data_col_train_T10 = []
one_data_col_train_T01 = []
for col in train_T05.filter(regex='X').columns:
    if len(train_T05[col].unique().tolist()) ==1:
        one_data_col_train_T05.append(col)
for col in train_T10.filter(regex='X').columns:
    if len(train_T10[col].unique().tolist()) ==1:
        one_data_col_train_T10.append(col)
for col in train_T01.filter(regex='X').columns:
    if len(train_T01[col].unique().tolist()) ==1:
        one_data_col_train_T01.append(col)
```

- 아직 feature 수가 여전히 많이 남았기 때문에 추가적인 방법으로 feature 수를 줄이면서 새로 engeineering 시도함
- 한 가지 값만 가지는 feature들을 모두 값을 합쳐 새로운 feature로 생성

4. Modeling

- 4-1. Validation Set Configuration
- 4-2. Modeling

4-1. Validation set Configuration

```
val_T05_0 = int_T05[int_T05['Y_Class']==0][:8] # 41
val_T05_1 = int_T05[int_T05['Y_Class']==1][:9] # 46
val_T05_2 = int_T05[int_T05['Y_Class']==2][:6] # 33
val_T05 = pd.concat([val_T05_0, val_T05_1, val_T05_2]) # 120

val_T10_0 = int_T10[int_T10['Y_Class']==0][:5] # 28
val_T10_1 = int_T10[int_T10['Y_Class']==1][:57] # 289
val_T10_2 = int_T10[int_T10['Y_Class']==2][:6] # 32
val_T10 = pd.concat([val_T10_0, val_T10_1, val_T10_2]) # 349

val_T01_0 = int_T01[int_T01['Y_Class']==0][:4] # 19
val_T01_1 = int_T01[int_T01['Y_Class']==1][:14] # 72
val_T01_2 = int_T01[int_T01['Y_Class']==2][:7] # 38
val_T01 = pd.concat([val_T01_0, val_T01_1, val_T01_2]) # 129
```

,	val_T10)					
~	0.1s						
	LINE	PRODUCT_CODE	X_1	X_2	X_5	X_7	X_8
0	0	1	2.0	102.0	11.0	45.0	10.0
1	0	1	2.0	102.0	11.0	45.0	10.0
10	0	1	2.0	102.0	11.0	45.0	10.0
11	0	1	2.0	95.0	11.0	45.0	10.0
12	0	1	2.0	101.0	11.0	45.0	10.0
54	0	1	1.0	97.0	11.0	45.0	10.0
58	0	1	2.0	100.0	10.0	45.0	10.0
68	0	1	2.0	100.0	11.0	45.0	10.0
72	0	1	2.0	99.0	10.0	45.0	10.0
82	0	1	2.0	95.0	10.0	45.0	10.0
68 rc	ws × 55	3 columns					

- Unbalance한 class 비율을 고려해서, 최종적으로 3개로 나누어진 데이터셋 각각 validation set을 구성함
- 비율을 고려하지 않으면 데이터가 적고 feature가 많은 현재 대회 데이터 특성 상 train set에 overfitting이 될 확률이 큼
- 또 너무 많은 수를 validation set에 배치하면 underfitting으로 데이터 패턴이 학습되지 않을 확률이 큼

4-2. Modeling

Y_Quality 회귀 모델

Y_Class 분류 모델

- 우선 데이터셋에서 주요하게 판단되는 feature는 첫 번째로 우리가 구하고자 하는 정답인 'Y_Class'가 있음
- 두 번째로 제품의 품질을 수치화한 'Y_Quality' feature가 존재하는데, 이 feature는 test dataset에 없음
- 따라서, train dataset에서 'Y_Quality'를 산출하는 회귀모델을 구성해, test dataset에서 새로운 feature를 생성함
- 그 후 'Y_Quality' 까지 test datset에 추가해 최종적으로 구하고자 하는 'Y_Class'의 분류 모델을 구성함

4-2. Modeling

- 이번 데이터는 양이 적고, feature가 굉장히 다양하기 때문에 딥러닝 모델은 학습이 어려울 것이라고 판단함
- 또한, 앙상블 모델 중 boosting은 모델을 연속적으로 학습하는데 여러 실험 결과 상 train dataset과 test dataset 또한 괴리가 있을 것으로 판단되어 overfitting을 유발할 수 있으므로 bagging 방식을 이용해 모델링
- Bagging 방식 중 가장 대표적인 RandomForest를 이용하여 회귀/분류 모델 모두 모델링

감사합니다.