Problem 2

Predicting the ratings of the book

Primary motive

- synopsis is the key feature to predict the genre of the book
- its also better to combine the name of the book and writer with the synopsis
- it has been noted that few fetures are in string format so those needs to convert into integer format
- need to use word to vector techniques and various ML models for each combination

Text Preprocessing

- book title, author and synopsis has been combined into a single column description and a function has been made
- *data_pre is a function to
- clean the description
- to remove stop words in description
- to lemmatize the words in description.
- * convert1 is a function to convert string values of no. of followers, no. of ratings and reviews to numerical values

Data Analysis

- The numerical features are not normally distributed and have some outliers in the data
- The previous model's data analysis helped to make some key changes in this model like:
- removing Genre column (since no impact on rating)
- removing no. of ratings feature (multi-collinearity problem with no. of reviews feature)

Data Analysis

 no. of reviews follow the log normal distribution after applying log transformation

Data Analysis

 no. of reviews follow the log normal distribution after applying log transformation

Model building

- GridSearch CV techniques has been used to find the best parameters for the models used.
- Crossval score has been evaluated
- The models are performing very poor when TF IDF has been used might be because of so many features

Models Results

Elastic net Regression with Spacy

```
-r2_score : 0.15906696125727904
```

-mean squared error: 0.05072226389893163

-root mean squared error : 0.22521603828087294

-best parameters: {'alpha': 0.5, 'l1_ratio': 0.001}

Random Forest Regressor with Spacy

r2 score: 0.15004280644111379

mean squared error: 0.05126657068789391

root mean squared error: 0.2264212240226033

best parameters: {'bootstrap': True, 'max_depth': 10, 'max_features': 'auto', 'min_samples_leaf': 2,

'min_samples_split': 5, 'n_estimators': 20}

Models conclusion

• Elastic net regression with Spacy did very well out of all models