Problem 1 — Sliced Score Matching (SSM)

Goal: Show that

$$L_{ ext{SSM}}(heta) = \mathbb{E} * x, v! ig[|v^ op S(x; heta)|^2 + 2, v^ op
abla_x (v^ op S(x; heta)) ig],$$

where $S(x;\theta) = \nabla_x \log p * \theta(x)$

Definition

Start from the sliced Fisher divergence:

$$L_{ ext{SSM}}(heta) = rac{1}{2}\mathbb{E}_{x,v}!ig(v^ op
abla_x\log p(x) - v^ op S(x; heta)ig)^2,$$

with #v# a random direction

Expand & Drop Constants

$$L_{ ext{SSM}} \dot{=} \mathbb{E}_{x,v}! \Big[rac{1}{2} (v^ op S)^2 - (v^ op
abla_x \log p) (v^ op S) \Big].$$

First term of p(x) is constant \rightarrow omit

Integration by Parts

$$\mathbb{E} * p(x)[(v^ op
abla_x \log p), g(x)] = -\mathbb{E} * p(x)[v^ op
abla_x g(x)],$$

where $g(x) = v^{\top} S(x; \theta)$

Substitute:

$$L_{ ext{SSM}} \doteq \mathbb{E}_{x,v}! \left[\frac{1}{2} (v^{\top} S)^2 + v^{\top} \nabla_x (v^{\top} S) \right].$$

Multiply by 2 and ignore constants \rightarrow final form as in assignment.

References

- Hyvärinen (2005), Score Matching
- Yang Song & S. Ermon (2019), Sliced Score Matching arXiv:1905.07088

Problem 2 — Stochastic Differential Equations (SDE)

Definition

A stochastic differential equation describes dynamics under deterministic **drift** and stochastic **diffusion**:

$$dx_t = f(x_t, t), dt + G(x_t, t), dW_t, \qquad x(0) = x_0.$$

- $x_t \in \mathbb{R}^d$: state variable
- $f(x_t, t)$: drift term
- $G(x_t,t)$: diffusion matrix
- W_t : standard Brownian motion

Itô form:

$$x_t=x_0+\int_0^t f(x_s,s), ds+\int_0^t G(x_s,s), dW_s.$$

Special cases

- *Pure drift : $dx_t = f(x_t,t)dt$ ightarrow deterministic ODE
- *Pure diffusion : $dx_t = G(x_t,t)dW_t$ ightarrow Brownian-like motion

Wiener Process W_t

A standard Brownian motion satisfies:

- 1. $W_0 = 0$
- 2. Stationary Gaussian increments $W_{t+\Delta} W_t \sim \mathcal{N}(0,\Delta I)$
- 3. Independent increments
- 4. Continuous paths with probability 1

Moments:

$$\mathbb{E}[W_t] = 0, \quad \operatorname{Var}(W_t) = t$$

Noise $h(t)=rac{dW_t}{dt}$ is formally its derivative

Euler-Maruyama Approximation

Partition ([0,T]) into (N) steps ($\Delta t = T/N$):

$$X_{n+1} = X_n + f(X_n, t_n) \Delta t + G(X_n, t_n) \Delta W_n,$$

where $\Delta W_n \sim \mathcal{N}(0, \Delta t, I)$

Problem 3 — Questions

•	How does the SSM a	approximation b	ehave in high-c	limensional manifolds?	