EXERCÍCIOS 2.6

- **1.** (a) Quando x se torna grande, f(x) aproxima-se de 5.
- (b) Quando x se torna um negativo grande (em módulo), f(x) aproxima-se de 3.
- **3.** (a) ∞ (b) ∞ (c) $-\infty$ (d) 1 (e) 2
- (f) x = -1, x = 2, y = 1, y = 2

- 13. $\frac{3}{2}$ **11.** 0
- **15.** 0
- 17. $-\frac{1}{2}$ 19. -1
 - 29. ∞ **31**. −∞

- **23.** 3
- **27.** $\frac{1}{2}(a-b)$
- **35.** $-\frac{1}{2}$ **37.** 0 **39.** (a), (b) $-\frac{1}{2}$
- **41.** y = 2, x = 2 **43.** y = 2; x = -2, x = 1
- - - **45.** x = 5

21. 4

- **47.** y = 3
- **49.** $f(x) = \frac{2-x}{x^2(x-3)}$
- **51.** (a) $\frac{5}{4}$
- (b) 5

- **53.** $-\infty$, $-\infty$
- **55.** −∞, ∞

- **57**. (a) 0
- (b) Um número infinito de vezes

- **59.** (a) 0
 - (b) ±∞
- **61**. 5
- **63**. (a) *v**

- **65.** $N \ge 15$
- **67.** $N \le -6, N \le -22$
- **69.** (a) x > 100

EXERCÍCIOS 2.7

- **1.** (a) $\frac{f(x) f(3)}{x 3}$ (b) $\lim_{x \to 3} \frac{f(x) f(3)}{x 3}$

3. (a) 2 (b) y = 2x + 1 (c)

- **5.** y = -8x + 12
 - 7. $y = \frac{1}{2}x + \frac{1}{2}$
- **9.** (a) $8a 6a^2$ (b) y = 2x + 3, y = -8x + 19
- (c)

11. (a) Direita: 0 < t < 1 e 4 < t < 6; esquerda: 2 < t < 3; está parada: 1 < t < 2 e 3 < t < 4

- **13.** -9.6 m/s
- **15.** $-2/a^3$ m/s; -2 m/s; $-\frac{1}{4}$ m/s; $-\frac{2}{27}$ m/s
- **17.** g'(0), 0, g'(4), g'(2), g'(-2)
- **19.** f(2) = 3; f'(2) = 4
- 21.

- **23.** y = 3x 1
- **25.** (a) $-\frac{3}{5}$; $y = -\frac{3}{5}x + \frac{16}{5}$

- **27.** 6a 4 **29.** $\frac{5}{(a+3)^2}$
- **33.** $f(x) = x^{10}$, a = 1 ou $f(x) = (1 + x)^{10}$, a = 0
- **35.** $f(x) = 2^x, a = 5$
- **37.** $f(x) = \cos x$, $a = \pi \text{ ou } f(x) = \cos(\pi + x)$, a = 0
- **39.** 1 m/s; 1 m/s
 - ↑ Temperatura Maior (em módulo) 22 (em °C) 2 Tempo

- **43**. (a) (i) 0,82
 - (ii) 1,07
- (iii) 1.38
- (b) 1,23 milhão de passageiros por ano
- **45.** (a) (i) \$ 20,25/unidade (ii) \$ 20,05/unidade
- (b) \$20/unidades
- 47. (a) A taxa na qual o custo está variando por quilograma de ouro produzido; dólares por quilograma
- (b) Quando o 50° quilograma de ouro é produzido, o custo da produção é de \$ 36/kg
- (c) Decresce a curto prazo; cresce a longo prazo
- **49.** A taxa em que a temperatura está variando às 17h00; -1,25 °C/h
- 51. (a) A taxa em que a solubilidade do oxigênio varia com relação à temperatura da água; (mg/L)/°C
- (b) $S'(16) \approx -0.25$; à medida que a temperatura aumenta após 16 °C, a solubilidade do oxigênio está decrescendo a uma taxa de $0.25 \, (mg/L)/^{\circ}C$.
- 53. Não existe

EXERCÍCIOS 2.8

- **1.** (a) -0.2 (b) 0 (c) 1 (d) 2 (e) 1 (f) 0 (g) -0.2

- **3.** (a) II
- (b) IV
- - (c) I
 - (d) III

7.

9.

11.

13. (a) A taxa instantânea de variação da porcentagem da capacidade total com relação ao tempo decorrido em horas

A taxa de variação da porcentagem da capacidade total está decrescendo e se aproximando a 0.

17.

- **19.** (a) 0, 1, 2, 4 (b) -1, -2, -4 (c) f'(x) = 2x
- **21.** $f'(x) = \frac{1}{2}, \mathbb{R}, \mathbb{R}$ **23.** $f'(t) = 5 - 18t, \mathbb{R}, \mathbb{R}$
- **25.** $f'(x) = 3x^2 3$, \mathbb{R} , \mathbb{R}
- **27.** $g'(x) = -\frac{1}{2\sqrt{9+x}}$, $(-\infty, 9]$, $(-\infty, 9)$
- **29.** $G'(t) = \frac{-7}{(3+t)^2}, (-\infty, -3) \cup (-3, \infty), (-\infty, -3) \cup (-3, \infty)$
- **31.** $f'(x) = 4x^3$, \mathbb{R} , \mathbb{R} **33.** (a) $f'(x) = 4x^3 + 2$
- 35. (a) A taxa em que o índice de desemprego está variando, em porcentagem de desempregados por ano

(b)	t	U'(t)	t	U'(t)
	1995	-0,10	2000	0,10
	1996	0,05	2001	0,15
	1997	-0,05	2002	-0,35
	1998	-0,75	2003	-0,45
	1999	-0,85	2004	-0,60

- **37.** -4 (canto); 0 (descontinuidade)
- **39.** -1 (tangente vertical); 4 (canto)
- 41.

Derivável em -1; não derivável em 0

- **43.** a = f, b = f', c = f''
- **45.** a = aceleração, b = velocidade, c = posição
- **47.** 6x + 2; 6

 $f'(x) = 4x - 3x^2,$

$$f''(x) = 4 - 6x,$$

 $f'''(x) = -6,$

$$f'''(x) = -6,$$

$$f^{(4)}(x) = 0$$

51. (a)
$$\frac{1}{3}a^{-2/3}$$

53.
$$f'(x) = \begin{cases} -1 & \text{se } x < 6 \\ 1 & \text{se } x > 6 \end{cases}$$

- (b) Todo x
- (c) f'(x) = 2|x|

57. 63°

CAPÍTULO 2 REVISÃO

Teste Verdadeiro-Falso

- 1. Falso 3. Verdadeiro 5. Falso 7. Verdadeiro 9. Verdadeiro
- 11. Verdadeiro 13. Falso 15. Verdadeiro 17. Verdadeiro
- 19. Falso 21. Falso 23. Verdadeiro

Exercícios

- **1.** (a) (i) 3 (ii) 0 (iii) Não existe (iv) 2
- $(v) \propto (vi) -\infty (vii) 4 (viii) -1$
- (b) y = 4, y = -1 (c) x = 0, x = 2 (d) -3, 0, 2, 4
- **5.** $\frac{3}{2}$ **7.** 3 **9.** ∞ **11.** $\frac{4}{7}$ **13.** $\frac{1}{2}$

- **15.** $-\infty$ **17.** 2 **19.** $\pi/2$
- **21.** x = 0, y = 0
- **29.** (a) (i) 3 (ii) 0 (iii) Não existe (iv) 0 (v) 0 (vi) 0
- (b) Em 0 e 3 (c)

- 31. ℝ
- **35.** (a) -8 (b) y = -8x + 17
- **37.** (a) (i) 3 m/s (ii) 2,75 m/s (iii) 2,625 m/s
- (iv) 2,525 m/s (b) 2,5 m/s
- **39.** (a) 10 (b) y = 10x 16
- (c)

- 41. (a) A taxa em que o custo varia com relação à taxa de juros; dólares/(% ao ano)
- (b) À medida que a taxa de juros aumenta após 10%, o custo está aumentando a uma taxa de \$ 1 200/(% ao ano).
- (c) Sempre positivo
- 43.

- **45.** (a) $f'(x) = -\frac{5}{2}(3-5x)^{-1/2}$ (b) $(-\infty, \frac{3}{5}], (-\infty, \frac{3}{5})$

(c)

- **47.** -4 (descontinuidade), -1 (canto), 2 (descontinuidade), 5 (tangente vertical)
- 49. A taxa em que o valor do euro está variando no meio do ano de 2002 em termos de dólares americanos por ano; \$ 0,151/ano

PROBLEMAS QUENTES

- **3.** -4 **5.** (a) Não existe (b) 1 **7.** $a = \frac{1}{2} \pm \frac{1}{2}\sqrt{5}$
- **9.** $\frac{3}{4}$ **11.** (b) Sim (c) Sim; não
- **13.** (a) 0 (b) 1 (c) $f'(x) = x^2 + 1$

CAPÍTULO 3

EXERCÍCIOS 3.1

- 1. (a) Veja a Definição do Número e
- (b) 0.99, 1.03; 2.7 < e < 2.8
- **3.** f'(x) = 0 **5.** f'(x) = 5 **7.** $f'(x) = 3x^2 4$
- **9.** $g'(x) = 2x 6x^2$ **11.** $y' = -\frac{2}{5}x^{-7/5}$ **13.** $A'(s) = 60/s^6$
- **15.** R'(a) = 18a + 6 **17.** $S'(p) = \frac{1}{2} p^{-1/2} 1$ **19.** $y' = 3e^x \frac{4}{3} x^{-4/3}$ **21.** $h'(u) = 3Au^2 + 2Bu + C$
- **23.** $y' = \frac{3}{2}\sqrt{x} + \frac{2}{\sqrt{x}} \frac{3}{2x\sqrt{x}}$ **25.** $j'(x) = 2,4x^{1.4}$ **27.** $H'(x) = 3x^2 + 3 3x^{-2} 3x^{-4}$
- **29.** $u' = \frac{1}{5}t^{-4/5} + 10t^{3/2}$
- **31.** $z' = -10A/y^{11} + Be^y$ **33.** $y = \frac{1}{4}x + \frac{3}{4}$
- **35.** Tangente: y = 2x + 2; normal: $y = -\frac{1}{2}x + 2$
- **37.** y = 3x 1 **39.** $f'(x) = 4x^3 6x^2 + 2x$
- (c) $4x^3 9x^2 12x + 7$ **41**. (a)

- **43.** $f'(x) = 100x^9 25x^4 + 1$; $f''(x) = 900x^8 + 100x^3$
- **45.** $f'(x) = 2 \frac{15}{4}x^{-1/4}, f''(x) = \frac{15}{16}x^{-5/4}$
- **47.** (a) $v(t) = 3t^2 3$, a(t) = 6t (b) 12 m/s^2
- (c) $a(1) = 6 \text{ m/s}^2$
- **49.** (a) V = 5.3/P
- (b) −0,00212; taxa instantânea de variação do volume com relação à pressão em 25 °C; m3/kPa
- **51**. (-2, 21), (1, -6)
- **55.** y = 12x 15, y = 12x + 17 **57.** $y = \frac{1}{3}x \frac{1}{3}$
- **59.** $(\pm 2, 4)$ **63.** $P(x) = x^2 x + 3$
- **65.** $y = \frac{3}{16}x^3 \frac{9}{4}x + 3$
- **67.** Não

69. (a) Não derivável em 3 ou -3

$$f'(x) = \begin{cases} 2x & \text{se } |x| > 3\\ -2x & \text{se } |x| < 3 \end{cases}$$

- **71.** $y = 2x^2 x$ **73.** $a = -\frac{1}{2}, b = 2$ **75.** m = 4, b = -4
- **77.** 1 000 **79.** 3: 1

EXERCÍCIOS 3.2

- **1.** $1 2x + 6x^2 8x^3$ **3.** $f'(x) = e^x(x^3 + 3x^2 + 2x + 2)$ **5.** $y' = (x 2)e^x/x^3$ **7.** $g'(x) = 5/(2x + 1)^2$

- **9.** H'(u) = 2u 1 **11.** $F'(y) = 5 + \frac{14}{y^2} + \frac{9}{y^4}$
- **13.** $y' = \frac{x^2(3-x^2)}{(1-x^2)^2}$ **15.** $y' = \frac{2t(-t^4-4t^2+7)}{(t^4-3t^2+1)^2}$ **17.** $y' = e^p(1+\frac{3}{2}\sqrt{p}-p+p\sqrt{p})$ **19.** $y' = 2v-1/\sqrt{v}$

- **21.** $f'(t) = \frac{4 + t^{1/2}}{(2 + \sqrt{t})^2}$ **23.** $f'(x) = \frac{-ACe^x}{(B + Ce^x)^2}$
- **25.** $f'(x) = \frac{2cx}{(x^2 + c)^2}$
- **27.** $(x^4 + 4x^3)e^x$; $(x^4 + 8x^3 + 12x^2)e^x$
- **29.** $\frac{2x^2 + 2x}{(1+2x)^2}$; $\frac{2}{(1+2x)^3}$ **31.** $y = \frac{2}{3}x \frac{2}{3}$
- **33.** y = 2x; $y = -\frac{1}{2}x$
- **35.** (a) $y = \frac{1}{2}x + 1$ (b)

37. (a) $e^x(x^3 + 3x^2 - x - 1)$ (b)

39. $f'(x) = \frac{4x}{(x^2 + 1)^2}$; $f''(x) = \frac{4(1 - 3x^2)}{(x^2 + 1)^2}$

- **41.** $\frac{1}{4}$ **43.** (a) -16 (b) $-\frac{20}{9}$ (c) 20
- **45.** 7

- **47.** y = -2x + 18
- **49.** (a) 0 (b) $-\frac{2}{3}$
- **51.** (a) y' = xg'(x) + g(x) (b) $y' = \frac{g(x) xg'(x)}{[g(x)]^2}$
- (c) $y' = \frac{xg'(x) g(x)}{x^2}$

- **53.** Dois, $\left(-2 \pm \sqrt{3}, \frac{1}{2}(1 \mp \sqrt{3})\right)$
- **57.** \$ 1,627 bilhão/ano
- **61.** $f'(x) = (x^2 + 2x)e^x$, $f''(x) = (x^2 + 4x + 2)e^x$,
- $f'''(x) = (x^2 + 6x + 6)e^x, f^{(4)}(x) = (x^2 + 8x + 12)e^x,$
- $f^{(5)}(x) = (x^2 + 10x + 20)e^x; f^{(n)}(x) = [x^2 + 2nx + n(n-1)]e^x$

EXERCÍCIOS 3.3

- 1. $f'(x) = 6x + 2 \sin x$ 3. $f'(x) = \cos x - \frac{1}{2} \operatorname{cossec}^2 x$
- **5.** $g'(t) = 3t^2 \cos t t^3 \sin t$
- 7. $h'(\theta) = -\csc\theta \cot\theta + e^{\theta}(\cot\theta \csc^2\theta)$

- 9. $y' = \frac{2 \operatorname{tg} x + x \sec^2 x}{(2 \operatorname{tg} x)^2}$ 11. $f'(\theta) = \frac{\sec \theta \operatorname{tg} \theta}{(1 + \sec \theta)^2}$ 13. $y' = \frac{(t^2 + t)\cos t + \sin t}{(1 + t)^2}$
- **15.** $f'(x) = e^x \operatorname{cossec} x (-x \operatorname{cotg} x + x + 1)$
- **21.** $y = 2\sqrt{3}x \frac{2}{3}\sqrt{3}\pi + 2$ **23.** $y = x \pi 1$
- **25.** (a) y = 2x
- (b) $\underline{3\pi}$

43. $-\frac{3}{4}$

- **27.** (a) $\sec x \tan x 1$
- **29.** $\theta \cos \theta + \sin \theta$; $2 \cos \theta \theta \sin \theta$
- **31.** (a) $f'(x) = (1 + \lg x)/\sec x$ (b) $f'(x) = \cos x + \sec x$
- **33.** $(2n + 1)\pi \pm \frac{1}{3}\pi$, *n* um inteiro
- **35.** (a) $v(t) = 8 \cos t$, $a(t) = -8 \sin t$
- (b) $4\sqrt{3}$, -4, $-4\sqrt{3}$; para a esquerda
- **37.** 3 m/rad
- **39.** 3 **41.** 3
- **45.** $\frac{1}{2}$ **47.** $-\sqrt{2}$ **49.** $-\cos x$ **51.** $A = -\frac{3}{10}$, $B = -\frac{1}{10}$
- **53.** (a) $\sec^2 x = \frac{1}{\cos^2 x}$ (b) $\sec x \, \text{tg } x = \frac{\sin x}{\cos^2 x}$
- (c) $\cos x \sin x = \frac{\cot x 1}{\csc x}$
- **55.** 1

EXERCÍCIOS 3.4

- **1.** $4\cos 4x$ **3.** $-20x(1-x^2)^9$
- 7. $F'(x) = 10x(x^4 + 3x^2 2)^4(2x^2 + 3)$
- **9.** $F'(x) = \frac{2 + 3x^2}{4(1 + 2x + x^3)^{3/4}}$ **11.** $g'(t) = -\frac{12t^3}{(t^4 + 1)^4}$
- **13.** $y' = -3x^2 \operatorname{sen}(a^3 + x^3)$ **15.** $y' = e^{-kx}(-kx + 1)$
- **17.** $f'(x) = (2x + 3)^3(x^2 + x + 1)^4(28x^2 12x 7)$
- **19.** $h'(t) = \frac{2}{3}(t+1)^{-1/3}(2t^2-1)^2(20t^2+18t-1)$
- **21.** $y' = \frac{-12x(x^2+1)^2}{(x^2-1)^4}$ **23.** $y' = \frac{3e^{3x}}{\sqrt{1+2e^{3x}}}$ **25.** $y' = 5^{-1/x}(\ln 5)/x^2$ **27.** $y' = (r^2+1)^{-3/2}$
- **29.** $F'(t) = e^{t \sin 2t} (2t \cos 2t + \sin 2t)$
- **31.** $y' = 2\cos(\operatorname{tg} 2x)\sec^2(2x)$ **33.** $y' = 2^{\operatorname{sen} \pi x}(\pi \ln 2)\cos \pi x$
- **35.** $y' = \frac{4e^{2x}}{(1+e^{2x})^2} \operatorname{sen} \frac{1-e^{2x}}{1+e^{2x}}$
- 37. $y' = -2 \cos \theta \cot (\sin \theta) \csc^2 (\sin \theta)$
- **39.** $f'(t) = \sec^2(e^t)e^t + e^{\operatorname{tg} t} \sec^2 t$
- **41.** $f'(t) = 4 \operatorname{sen}(e^{\operatorname{sen}^2 t}) \cos(e^{\operatorname{sen}^2 t}) e^{\operatorname{sen}^2 t} \operatorname{sen} t \cos t$
- **43.** $g'(x) = 2r^2 p(\ln a) (2ra^{rx} + n)^{p-1} a^{rx}$

45.
$$y' = \frac{-\pi \cos(\operatorname{tg} \pi x) \sec^2(\pi x) \sin\sqrt{\sin(\operatorname{tg} \pi x)}}{2\sqrt{\sin(\operatorname{tg} \pi x)}}$$

47.
$$y' = -2x \operatorname{sen}(x^2)$$
; $y'' = -4x^2 \cos(x^2) - 2 \operatorname{sen}(x^2)$

49.
$$e^{\alpha x}(\beta \cos \beta x + \alpha \sin \beta x)$$
;

$$e^{\alpha x}[(\alpha^2 - \beta^2) \sin \beta x + 2\alpha\beta \cos \beta x]$$

51.
$$y = 20x + 1$$

53.
$$y = -x + \pi$$

55. (a)
$$y = \frac{1}{2}x + 1$$

57. (a)
$$f'(x) = \frac{2 - 2x^2}{\sqrt{2 - x^2}}$$

59.
$$((\pi/2) + 2n\pi, 3), ((3\pi/2) + 2n\pi, -1), n$$
 um inteiro

65. (a)
$$\frac{3}{4}$$
 (b) Não existe (c) -2

67.
$$-\frac{1}{6}\sqrt{2}$$

69. (a)
$$F'(x) = e^x f'(e^x)$$
 (b) $G'(x) = e^{f(x)} f'(x)$

(b)
$$G'(x) = e^{f(x)}f'(x)$$

77.
$$-2^{50}\cos 2x$$

79.
$$v(t) = \frac{5}{2}\pi \cos(10\pi t)$$
 cm/s

81. (a)
$$\frac{dB}{dt} = \frac{7\pi}{54} \cos \frac{2\pi t}{54}$$
 (b) 0,16

83.
$$v(t) = 2e^{-1.5t}(2\pi\cos 2\pi t - 1.5\sin 2\pi t)$$

85. dv/dt é a taxa de variação da velocidade com relação ao tempo; dv/ds é a taxa de variação da velocidade com relação ao deslocamento

87. (a)
$$Q = ab^t$$
 onde $a \approx 100,01244$ e $b \approx 0,000045146$

(b)
$$-670,63 \mu A$$

93. (b)
$$-n \cos^{n-1} x \operatorname{sen}[(n+1)x]$$

EXERCÍCIOS 3.5

1. (a)
$$y' = -(y + 2 + 6x)/x$$

(b)
$$y = (4/x) - 2 - 3x$$
, $y' = -(4/x^2) - 3$

3. (a)
$$y' = -y^2/x^2$$
 (b) $y = x/(x-1), y' = -1/(x-1)^2$

5.
$$y' = -\frac{x^2}{y^2}$$
 7. $y' = \frac{2x + y}{2y - x}$

5.
$$y' = -\frac{x^2}{y^2}$$
 7. $y' = \frac{2x + y}{2y - x}$
9. $y' = \frac{3y^2 - 5x^4 - 4x^3y}{x^4 + 3y^2 - 6xy}$ **11.** $y' = \frac{-2xy^2 - \sin y}{2x^2y + x\cos y}$

13.
$$y' = \operatorname{tg} x \operatorname{tg} y$$
 15. $y' = \frac{y(y - e^{x/y})}{y^2 - xe^{x/y}}$
17. $y' = \frac{1 + x^4y^2 + y^2 + x^4y^4 - 2xy}{x^2 - 2xy - 2x^5y^3}$

17.
$$y' = \frac{1 + x^4y^2 + y^2 + x^4y^4 - 2xy}{x^2 - 2xy - 2x^5y^3}$$

19.
$$y' = \frac{e^y \sin x + y \cos(xy)}{e^y \cos x - x \cos(xy)}$$
 21. $-\frac{10}{12}$

19.
$$y' = \frac{e^y \sin x + y \cos(xy)}{e^y \cos x - x \cos(xy)}$$
 21. $-\frac{16}{13}$ **23.** $x' = \frac{-2x^4y + x^3 - 6xy^2}{4x^3y^2 - 3x^2y + 2y^3}$ **25.** $y = \frac{1}{2}x$ **27.** $y = -x + 2$ **29.** $y = x + \frac{1}{2}$ **31.** $y = -\frac{9}{13}x + \frac{40}{13}$

27.
$$y = -x + 2$$
 29. $y = x + \frac{1}{2}$ **31.** $y = -\frac{9}{13}x + \frac{4}{1}$

33. (a)
$$y = \frac{9}{2}x - \frac{5}{2}$$
 (b)

35.
$$-81/y^3$$
 37. $-2x/y^5$

37.
$$-2x/y^5$$
 39. $1/e^2$

Oito;
$$x \approx 0.42, 1.58$$

(b)
$$y = -x + 1, y = \frac{1}{3}x + 2$$
 (c) $1 = \frac{1}{3}\sqrt{3}$

43.
$$\left(\pm \frac{5}{4}\sqrt{3}, \pm \frac{5}{4}\right)$$
 45. $(x_0x/a^2) - (y_0y/b^2) = 1$

43.
$$\left(\pm \frac{5}{4}\sqrt{3}, \pm \frac{5}{4}\right)$$
 45. $(x_0x/a^2) - (y_0y/b^2) = 1$
49. $y' = \frac{1}{2\sqrt{x}(1+x)}$ **51.** $y' = \frac{1}{\sqrt{-x^2-x}}$

53.
$$G'(x) = -1 - \frac{x \arccos x}{\sqrt{1 - x^2}}$$
 55. $h'(t) = 0$

57.
$$y' = \text{sen}^{-1}x$$
 59. $y' = \frac{\sqrt{a^2 - b^2}}{a + b \cos x}$

61.
$$1 - \frac{x \arcsin x}{\sqrt{1 - x^2}}$$

71. (a)
$$\frac{V^3(nb-V)}{PV^3-n^2aV+2n^3ab}$$
 (b) -4,04 L/atm

73.
$$(\pm\sqrt{3},0)$$
 75. $(-1,-1),(1,1)$ **77.** (b) $\frac{3}{2}$

79. (a) 0 (b)
$$-\frac{1}{2}$$

EXERCÍCIOS 3.6

1. A fórmula de derivação é mais simples.

3.
$$f'(x) = \frac{\cos(\ln x)}{x}$$
 5. $f'(x) = \frac{1}{5x\sqrt[5]{(\ln x)^4}}$

$$f'(x) = \frac{1}{5x\sqrt[5]{(\ln x)^4}}$$

7.
$$f'(x) = \frac{3x^2}{(x^3 + 1) \ln 10}$$

7.
$$f'(x) = \frac{3x^2}{(x^3 + 1) \ln 10}$$
 9. $f'(x) = \frac{\sin x}{x} + \cos x \ln(5x)$

11.
$$g'(x) = \frac{2x^2 - 1}{x(x^2 - 1)}$$

11.
$$g'(x) = \frac{2x^2 - 1}{x(x^2 - 1)}$$
 13. $G'(y) = \frac{10}{2y + 1} - \frac{y}{y^2 + 1}$

15.
$$F'(s) = \frac{1}{s \ln s}$$
 17. $y' = \sec^2(\ln(ax + b)) \frac{a}{ax + b}$

19.
$$y' = \frac{-x}{1+x}$$
 21. $y' = \frac{1}{\ln 10} + \log_{10} x$

23.
$$y' = x + 2x \ln(2x)$$
; $y'' = 3 + 2 \ln(2x)$

25.
$$y' = \frac{1}{\sqrt{1+x^2}}; y'' = \frac{-x}{(1+x^2)^{3/2}}$$

27.
$$f'(x) = \frac{2x - 1 - (x - 1)\ln(x - 1)}{(x - 1)[1 - \ln(x - 1)]^2};$$

 $(1, 1 + e) \cup (1 + e, \infty)$

- **29.** $f'(x) = \frac{2(x-1)}{x(x-2)}; (-\infty, 0) \cup (2, \infty)$
- **33.** y = 3x 9 **35.** $\cos x + 1/x$
- **39.** $y' = (2x+1)^5(x^4-3)^6\left(\frac{10}{2x+1} + \frac{24x^3}{x^4-3}\right)$
- **41.** $y' = \sqrt{\frac{x-1}{x^4+1}} \left(\frac{1}{2x-2} \frac{2x^3}{x^4+1} \right)$
- **43.** $y' = x^x(1 + 1)$
- **45.** $y' = x^{\sin x} \left(\frac{\sin x}{x} + \cos x \ln x \right)$
- **47.** $y' = (\cos x)^x (-x \operatorname{tg} x + \ln \cos x)$
- **49.** $y' = (\operatorname{tg} x)^{1/x} \left(\frac{\sec^2 x}{x \operatorname{tg} x} \frac{\ln \operatorname{tg} x}{x^2} \right)$ **51.** $y' = \frac{2x}{x^2 + y^2 2y}$ **53.** $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(x-1)^n}$

EXERCÍCIOS 3.7

- 1. (a) $3t^2 24t + 36$ (b) -9 m/s(c) t = 2, 6
- (d) $0 \le t < 2, t > 6$ (e) 96 m
- (g) 6t 24; -6 m/s^2 t = 6.

- (i) Acelerando quando 2 < t < 4 ou t > 6; freando quando
- $0 \le t < 2 \text{ ou } 4 < t < 6$
- **3.** (a) $-\frac{\pi}{4} \operatorname{sen} \left(\frac{\pi t}{4} \right)$ (b) $-\frac{1}{8} \pi \sqrt{2} \text{ m/s}$ (c) t = 0, 4, 8
- (d) 4 < t < 8 (e) 4 m
- t = 0, s = 1 t = 0, s = 1 t = 0, s = 1 t = 0, s = 1
- (g) $-\frac{1}{16}\pi^2\cos(\pi t/4); \frac{1}{32}\pi^2\sqrt{2} \text{ m/s}^2$

- (i) Acelerando quando 0 < t < 2, 4 < t < 6, 8 < t < 10;freando quando 2 < t < 4, 6 < t < 8
- **5.** (a) Acelerando quando 0 < t < 1 ou 2 < t < 3; freando quando 1 < t < 2
- (b) Acelerando quando 1 < t < 2 ou 3 < t < 4; freando quando 0 < t < 1 ou 2 < t < 3
- **7.** (a) 4,9 m/s; -14,7 m/s (b) Após 2,5 s (c) $32\frac{5}{8}$ m
- (d) $\approx 5.08s$ (e) $\approx -25.3 \text{ m/s}$
- **9.** (a) 7,56 m/s (b) 6,24 m/s; -6,24 m/s

- 11. (a) 30 mm²/mm; a taxa em que a área está aumentando com relação ao comprimento da lateral quando x atinge 15 mm
- (b) $\Delta A \approx 2x \Delta x$
- **13**. (a) (i) 5π (ii) 4.5π (iii) 4.1π
- (b) 4π (c) $\Delta A \approx 2\pi r \Delta r$
- **15.** (a) 160π cm²/cm (b) 320π cm²/cm (c) $480\pi \text{ cm}^2/\text{cm}$ A taxa aumenta à medida que o raio aumenta.
- **17.** (a) 6 kg/m (b) 12 kg/m (c) 18 kg/m

Na extremidade direita; na extremidade esquerda

- **19.** (a) 4,75 A (b) 5 A; $t = \frac{2}{3}$ s
- **23.** (a) $dV/dP = -C/P^2$ (b) No início
- **25.** $400(3^t) \ln 3$; $\approx 6.850 \text{ bactérias/h}$
- 27. (a) 16 milhões/ano; 78,5 milhões/ano
- (b) $P(t) = at^3 + bt^2 + ct + d$, onde $a \approx 0.00129371$,
- $b \approx -7.061422$, $c \approx 12.822.979$, $d \approx -7.743.770$
- (c) $P'(t) = 3at^2 + 2bt + c$
- (d) 14,48 milhões/ano; 75,29 milhões/ano (menor)
- (e) 81.62 milhões/ano
- **29.** (a) 0,926 cm/s; 0,694 cm/s; 0
- (b) 0; -92.6 (cm/s)/cm; -185.2 (cm/s)/cm
- (c) Ao centro; na extremidade
- **31.** (a) $C'(x) = 12 0.2x + 0.0015x^2$
- (b) \$32/ metro; o custo de produzir os 2010s primeiros metros
- **33.** (a) $[xp'(x) p(x)]/x^2$; a produtividade média aumenta à medida que novos trabalhadores são contratados.
- **35.** -0.2436 K/min
- **37.** (a) 0 e 0 (b) C = 0
- (c) (0, 0), (500, 50); é possível que as espécies coexistam.

EXERCÍCIOS 3.8

- 1. Cerca de 235
- **3.** $100(4,2)^t$ (b) ≈ 7.409 (c) ≈ 10.632 bactérias/h
- (d) $(\ln 100)/(\ln 4.2) \approx 3.2 \text{ h}$
- **5.** (a) 1 508 milhões, 1 871 milhões (b) 2 161 milhões
- (c) 3 972 milhões; guerras na primeira metade do século, expectativa de vida aumentada na segunda metade
- **7.** (a) $Ce^{-0.0005t}$ (b) $-2\,000 \ln 0.9 \approx 211 \text{ s}$
- **9.** (a) $100 \times 2^{-t/30}$ mg (b) ≈ 9.92 mg (c) ≈ 199.3 anos
- **11.** ≈ 2500 anos **13.** (a) $\approx 58^{\circ}$ C (b) $\approx 98 \text{ min}$
- **15.** (a) 13.3° C (b) $\approx 67.74 \text{ min}$
- **17.** (a) $\approx 64.5 \text{ kPa}$ (b) $\approx 39.9 \text{ kPa}$
- **19.** (a) (i) \$3.828,84 (ii) \$3.840,25 (iii) \$3.850,08
- (iv) \$3.851,61 (v) \$3.852,01 (vi) \$3.852,08
- (b) dA/dt = 0.05A, A(0) = 3000

EXERCÍCIOS 3.9

- $1. \ dV/dt = 3x^2 \, dx/dt$
- 3. $48 \text{ cm}^2/\text{s}$ **5.** $3/(25\pi)$ m/min
- **7.** (a) 1 (b) 25 **9.** -18
- 11. (a) A altitude do avião é de 2 km e sua velocidade é de 800 km/h.
- (b) A taxa na qual a distância entre o avião e a estação aumenta quando ele está a 3 km além da estação
- (d) $y^2 = x^2 + 4$
- (e) $\frac{800}{3}\sqrt{5}$ km/h
- 13. (a) A altura do poste (6 m), a altura do homem (2 m) e a velocidade do homem (1,5 m/s)
- (b) A taxa em que a ponta da sombra do homem está se movendo quando ele está a 10 m do poste

(d)
$$\frac{6}{2} = \frac{x+y}{y}$$
 (e) $\frac{9}{4}$ m/s

- **15.** 78 km/h **17.** 8 $064/\sqrt{8334,400} \approx 2,79 \text{ m/s}$
- **19.** -1,6 cm/min **21.** $\frac{720}{13} \approx 55,4$ km/h
- **23.** $(10\ 000\ +\ 800\ 000\pi/9) \approx 2.89 \times 10^5\ \text{cm}^3/\text{min}$
- **27.** $4/(3\pi) \approx 0.42 \text{ m/min}$ **29.** $0.3 \text{ m}^2/\text{s}$ **25.** $\frac{10}{3}$ cm/min

3. $L(x) = \frac{1}{4}x + 1$

- **31.** 5 m **33.** 80 cm³/min **35.** $\frac{107}{810} \approx 0.132 \Omega/s$
- **39.** (a) 120 m/s (b) ≈ 0.107 rad/s **37.** 0,396 m/min
- **43.** $1.650/\sqrt{31} \approx 296 \text{ km/h}$ **41**. $\frac{10}{9} \pi \, \text{km/min}$
- **45.** $\frac{7}{4}\sqrt{15} \approx 6.78 \text{ m/s}$

EXERCÍCIOS 3.10

- 1. L(x) = -10x 6
- **5.** $\sqrt{1-x} \approx 1 \frac{1}{2}x$; $\sqrt{0.9} \approx 0.95$,

$$\sqrt{0.9} \approx 0.95,$$
$$\sqrt{0.99} \approx 0.995$$

- **7.** -0.383 < x < 0.516 **9.** -0.045 < x < 0.055
- **11.** (a) $dy = 2x(x\cos 2x + \sin 2x) dx$ (b) $dy = \frac{t}{1 + t^2} dt$
- **13.** (a) $dy = \frac{\sec^2 \sqrt{t}}{2\sqrt{t}} dt$ (b) $dy = \frac{-4v}{(1+v^2)^2} dv$
- **15.** (a) $dy = \frac{1}{10} e^{x/10} dx$ (b) 0.01
- **17.** (a) $dy = \frac{x}{\sqrt{3+x^2}}dx$ (b) -0.05
- **19.** $\Delta y = 0.64, dy = 0.8$

21. $\Delta y = -0.1, dy = -0.125$

- **23.** 15,968
- **25.** 10,003
- **27.** $1 \pi/90 \approx 0.965$
- **33.** (a) 270 cm^3 , 0.01, 1% (b) 36 cm^2 , 0.006, 0.6%
- **35.** (a) $84/\pi \approx 27 \text{ cm}^2$; $\frac{1}{84} \approx 0.012 = 1.2\%$
- (b) $1.764/\pi^2 \approx 179 \text{ cm}^3$; $\frac{1}{56} \approx 0.018 = 1.8\%$
- **37.** (a) $2\pi r h \Delta r$ (b) $\pi (\Delta r)^2 h$
- **43.** (a) 4,8, 5,2 (b) Muito grande

EXERCÍCIOS 3.11

- **1.** (a) 0 (b) 1
- **3.** (a) $\frac{3}{4}$ (b) $\frac{1}{2}(e^2 e^{-2}) \approx 3,62686$
- **5.** (a) 1 (b) 0
- **21.** sech $x = \frac{3}{5}$, senh $x = \frac{4}{3}$, cossech $x = \frac{3}{4}$, tgh $x = \frac{4}{5}$, cotgh $x = \frac{5}{4}$
- **23.** (a) 1 (b) -1 (c) ∞ (d) $-\infty$ (e) 0 (f) 1 (g) ∞ (h) $-\infty$ (i) 0

- **31.** $f'(x) = x \cosh x$ **33.** $h'(x) = \tanh x$
- **35.** $y' = 3e^{\cosh 3x} \operatorname{senh} 3x$
- **37.** $f'(t) = -2e^t \operatorname{sech}^2(e^t) \operatorname{tgh}(e^t)$
- **39.** $G'(x) = \frac{-2 \operatorname{senh} x}{(1 + \cosh x)^2}$ **41.** $y' = \frac{1}{2\sqrt{x}(x-1)}$
- **43.** $y' = \operatorname{senh}^{-1}(x/3)$ **45.** $y' = -\operatorname{cossec} x$
- **51.** (a) 0,3572 (b) 70,34°
- **53.** (a) 164,50 m (b) 120 m; 164,13 m
- **55.** (b) $y = 2 \sinh 3x 4 \cosh 3x$
- **57.** $(\ln{(1+\sqrt{2})}, \sqrt{2})$

CAPÍTULO 3 REVISÃO

Teste Verdadeiro-Falso

- 1. Verdadeiro 3. Verdadeiro 5. Falso 7. Falso 9. Verdadeiro
- 11. Verdadeiro 13. Verdadeiro 15. Verdadeiro

Exercícios

- **1.** $6x(x^4-3x^2+5)^2(2x^2-3)$ **3.** $\frac{1}{2\sqrt{x}}-\frac{4}{3\sqrt[3]{x^7}}$

- 5. $x(\pi x \cos \pi x + 2 \sin \pi x)$ 7. $\frac{8t^3}{(t^4 + 1)^2}$ 9. $\frac{1 + \ln x}{x \ln x}$ 11. $\frac{\cos \sqrt{x} \sqrt{x} \sin \sqrt{x}}{2\sqrt{x}}$
- **13.** $-\frac{e^{1/x}(1+2x)}{x^4}$ **15.** $\frac{2xy-\cos y}{1-x\sin y-x^2}$
- **17.** $\frac{1}{2\sqrt{\arctan x}(1+x^2)}$ **19.** $\frac{1-t^2}{(1+t^2)^2}\sec^2\left(\frac{t}{1+t^2}\right)$
- **21.** $3^{x \ln x} (\ln 3)(1 + \ln x)$ **23.** $-(x-1)^{-2}$
- 25. $\frac{2x y \cos(xy)}{x \cos(xy) + 1}$ 27. $\frac{2}{(1 + 2x) \ln 5}$ 29. $\cot x \sin x \cos x$ 31. $\frac{4x}{1 + 16x^2} + \operatorname{tg}^{-1}(4x)$
- **33.** 5 sec 5x **35.** -6x cossec² $(3x^2 + 5)$
- 37. $\cos(\operatorname{tg}\sqrt{1+x^3})(\operatorname{sec}^2\sqrt{1+x^3})\frac{3x^2}{2\sqrt{1+x^3}}$
- **39.** $2 \cos \theta \ \operatorname{tg}(\operatorname{sen} \theta) \sec^2(\operatorname{sen} \theta)$ **41.** $\frac{(x-2)^4(3x^2-55x-52)}{2\sqrt{x+1}(x+3)^8}$
 - **43.** $2x^2 \cosh(x^2) + \sinh(x^2)$
- **45.** 3 tgh 3x **47.** $\frac{\cosh x}{\sqrt{\sinh^2 x 1}}$
- **49.** $\frac{-3 \operatorname{sen}(e^{\sqrt{\operatorname{ig } 3x}})e^{\sqrt{\operatorname{ig } 3x}} \operatorname{sec}^2(3x)}{2\sqrt{\operatorname{tg } 3x}}$ **51.** $-\frac{4}{27}$ **53.** $-5x^4/y^{11}$
- **57.** $y = 2\sqrt{3}x + 1 \pi\sqrt{3}/3$ **59.** y = 2x + 1
- **61.** y = -x + 2; y = x + 2
- (b) $y = \frac{7}{4}x + \frac{1}{4}$, y = -x + 8

- **65.** $(\pi/4, \sqrt{2}), (5\pi/4, -\sqrt{2})$
 - - **69.** (a) 2 (b) 44
- **71.** $2xg(x) + x^2g'(x)$ **73.** 2g(x)g'(x)
- **75.** $g'(e^x)e^x$

- **77.** g'(x)/g(x)
- **79.** $\frac{f'(x)[g(x)]^2 + g'(x)[f(x)]^2}{[f(x) + g(x)]^2}$
- **81.** $f'(g(\text{sen } 4x))g'(\text{sen } 4x)(\cos 4x)(4)$
- **85.** $y = -\frac{2}{3}x^2 + \frac{14}{3}x$
- **87.** $v(t) = -Ae^{-ct}[c\cos(wt + \delta) + w\sin(wt + \delta)],$
- $a(t) = Ae^{-ct}[(c^2 \omega^2)\cos(\omega t + \delta) + 2c\omega\sin(\omega t + \delta)]$

89. (a) $v(t) = 3t^2 - 12$; a(t) = 6t

(b) t > 2: $0 \le t < 2$

(c) 23

- (e) t > 2; 0 < t < 2
- 91. 4 kg/m
- **93.** (a) $200(3,24)^t$ (b) ≈ 22040
- (c) $\approx 25\,910\,\text{bactéria/h}$ (d) $(\ln 50)/(\ln 3.24) \approx 3.33\,\text{h}$
- **95.** (a) $C_0 e^{-kt}$ (b) $\approx 100 \text{ h}$
- **99.** $117/\sqrt{666} \approx 4.53 \text{ m/s}$ **101**. 400 pés/h
- **103.** (a) L(x) = 1 + x; $\sqrt[3]{1 + 3x} \approx 1 + x$; $\sqrt[3]{1,03} \approx 1,01$
- (b) -0.235 < x < 0.401
- **105.** $12 + \frac{3}{2}\pi \approx 16.7 \text{ cm}^2$
- 107. $\frac{1}{32}$
- 109. $\frac{1}{4}$

97. $\frac{4}{3}$ cm²/min

111. $\frac{1}{8}x^2$

PROBLEMAS QUENTES

- 1. $\left(\pm \frac{1}{2}\sqrt{3}/2, \frac{1}{4}\right)$
- **5.** $3\sqrt{2}$
- **11.** $(0, \frac{5}{4})$
- **13.** (a) $4\pi\sqrt{3}/\sqrt{11} \text{ rad/s}$ (b) $40(\cos\theta + \sqrt{8 + \cos^2\theta}) \text{ cm}$
- (c) $-480\pi \operatorname{sen} \theta \left(1 + \cos \theta / \sqrt{8 + \cos^2 \theta}\right) \operatorname{cm/s}$
- **17.** $x_T \in (3, \infty), y_T \in (2, \infty), x_N \in (0, \frac{5}{3}), y_N \in (-\frac{5}{2}, 0)$
- **19.** (b) (i) 53° (ou 127°) (ii) 63° (ou 117°)
- **21.** R aproxima-se do ponto médio do raio AO.
- **23.** $-\sin a$ **25.** $2\sqrt{e}$ **29**. (1, -2), (-1, 0)
- **33.** $2 + \frac{375}{128}\pi \approx 11,204 \text{ cm}^3/\text{min}$ **31.** $\sqrt{29}/58$

CAPÍTULO 4

EXERCÍCIOS 4.1

Abreviações: abs, absoluto; loc, local; max., máximo; min., mí-

- 1. Min. abs: menor valor da função em todo o domínio da função; Min. loc em c: menor valor da função quando x está próximo c
- **3.** Max. abs em s, Min. abs em r, Max. loc em c, Min. loc em b e r, nem um max. nem um min. em a e d
- **5.** Max. abs f(4) = 5, Max. loc f(4) = 5 e f(6) = 4, Min. loc f(2) = 2 e f(1) = f(5) = 3

11. (a)

(b)

(c)

13. (a)

(b)

- **15.** Max. abs f(3) = 4**17.** Max. abs f(1) = 1
- **19.** Min. abs f(0) = 0
- **21.** Max. abs $f(\pi/2) = 1$; Min. abs $f(-\pi/2) = -1$
- **23.** Max. abs $f(2) = \ln 2$ **25.** Max. abs f(0) = 1
- **27.** Max. abs f(3) = 2 **29.** $-\frac{2}{5}$ **31.** -2, 3 **33.** 0
- **35.** 0, 2 **37.** 0, $\frac{4}{9}$ **39.** 0, $\frac{8}{7}$, 4 **41.** n/π (*n* um inteiro)
- **43.** 0, $\frac{2}{3}$ **45.** 10 **47.** f(0) = 5, f(2) = -7
- **49.** f(-1) = 8, f(2) = -19 **51.** f(-2) = 33, f(-2) = -31
- **53.** f(0,2) = 5,2, f(1) = 2 **55.** $f(\sqrt{2}) = 2, f(-1) = -\sqrt{3}$
- **57.** $f(\pi/6) = \frac{3}{2}\sqrt{3}$, $f(\pi/2) = 0$
- **59.** $f(2) = 2/\sqrt{e}, f(-1) = -1/\sqrt[8]{e}$
- **61.** $f(1) = \ln 3$, $f(-\frac{1}{2}) = \ln \frac{3}{4}$

63.
$$f\left(\frac{a}{a+b}\right) = \frac{a^a b^b}{(a+b)^{a+b}}$$

- **65.** (a) 2,19, 1,81 (b) $\frac{6}{25}\sqrt{\frac{3}{5}} + 2$, $-\frac{6}{25}\sqrt{\frac{3}{5}} + 2$
- **67.** (a) 0,32, 0,00 (b) $\frac{3}{16}\sqrt{3}$, 0 **69.** ≈ 3.9665 °C
- **71.** Mais barato, $t \approx 0.855$ (junho de 1994); mais caro, $t \approx 4.618$ (março de 1998)
- **73.** (a) $r = \frac{2}{3}r_0$ (b) $v = \frac{4}{27}kr_0^3$

EXERCÍCIOS 4.2

- **1.** 2 **3.** $\frac{9}{4}$ **5.** f não é derivável em (-1,1)
- **7.** 0,3, 3, 6,3
- **9**. 1
- **11.** $-\frac{1}{2} \ln \left| \frac{1}{6} (1 e^{-6}) \right|$
- **13**. 1

- **15.** f não é contínua em 3
- **23.** 16
- 25. Não **31**. Não

EXERCÍCIOS 4.3

Abreviações: cres., crescente; decres., decrescente; CC, côncava para cima; CB, côncava para baixo; AH, assíntota horizontal; AV, assíntota vertical; PI, ponto(s) de inflexão

- **1.** (a) (1,3), (4,6) (b) (0,1), (3,4) (c) (0,2)
- (d) (2, 4), (4, 6) (e) (2, 3)
- 3. (a) Teste C/D (b) Teste da Concavidade
- (c) Encontre os pontos em que a concavidade muda.
- **5.** (a) Cres. em (1, 5); decres. em (0, 1) e (5, 6)
- (b) Max. loc em x = 5, Min. loc em x = 1
- **7.** (a) 3, 5 (b) 2, 4, 6 (c) 1, 7
- **9.** (a) Cres. em $(-\infty, -3)$, $(2, \infty)$; decres. em (-3, 2)
- (b) Max. $\log f(-3) = 81$; Min. $\log f(2) = -44$
- (c) CC em $(-\frac{1}{2}, \infty)$; CB em $(-\infty, -\frac{1}{2})$; PI $(-\frac{1}{2}, \frac{37}{2})$
- **11.** (a) Cres. em (-1, 0), $(1, \infty)$; decres. em $(-\infty, -1)$, (0, 1)
- (b) Max. loc f(0) = 3; Min. loc $f(\pm 1) = 2$
- (c) CC em $(-\infty, -\sqrt{3}/3), (\sqrt{3}/3, \infty)$;