

Multiply

Matrix multiplication is a basic tool of linear algebra, and as such has numerous applications in many areas. In more detail, if A is an $n \times m$ matrix and B is an $m \times p$ matrix, their matrix product AB is an $n \times p$ matrix, in which the m entries across a row of A are multiplied with the m entries down a column of B and summed to produce an entry of AB. You will be given matrix A with size N x N. You will be asked to compute A^N % 1,000,000,007.

Format Input

The first line will be an integer T, the number of test cases. In each test case, there is a positive integer N indicating the size of the matrix. This is followed by N^2 integers separated by whitespace (newlines and spaces). These N^2 integers make up the array in row-major order.

Format Output

For each test case, you should output the case number starting from 1. The next line should be the answer of A^N % 1,000,000,007.

Constraints

1 <= T <= 10 1 <= N <= 30 0 <= A_{ii} <= 1,000,000,000

Sample Input	Sample Output
2	Case #1:
2	2 2
1 1	2 2
1 1	Case #2:
3	999993007 0 0
10000 0 0	0 1 0
0 1 0	0 0 1
0 0 1	

Note

You can use one of these equations to calculate the answer

$$(a+b) \% k == ((a \% k) + (b \% k)) \% k$$

$$(a-b) \% k == ((a \% k) + k - (b \% k)) \% k$$

$$(a*b) \% k == ((a \% k) * (b \% k)) \% k$$