From our proportion equations, setting $\frac{dI}{dt}=0$ we get:

$$\beta SI - \gamma I - \mu I = 0$$

$$I(\beta S - \gamma - \mu) = 0$$

$$\beta S = \gamma + \mu$$

$$\hat{S} = \frac{1}{R_0}$$

Adding the proportion equations of $\frac{dS}{dt}=0$ and $\frac{dI}{dt}=0$ we also get:

$$\mu - \mu S - \gamma I - \mu I = 0$$

$$1 - S - I = \frac{\gamma}{\mu} I$$

$$1 - S = \frac{\mu + \gamma}{\mu} I$$

$$1 - S = \frac{1}{\epsilon} I$$

$$I = \epsilon (1 - S)$$

$$I = \epsilon (1 - \frac{1}{R_0})$$

Therefore $(\hat{S}, \hat{I}) = (\frac{1}{R_0}, \epsilon - \frac{\epsilon}{R_0})$. Both equilibria are biologically relevant as long as $R_0 >= 1$, since values of S and I outside of the range [0,1] are not meaningful as proportions.