Chapter 10

THE BLAHUT-ARIMOTO ALGORITHMS

For a discrete memoryless channel p(y|x), the capacity

$$C = \max_{r(x)} I(X;Y), \tag{10.1}$$

where X and Y are respectively the input and the output of the generic channel and r(x) is the input distribution, characterizes the maximum asymptotically achievable rate at which information can be transmitted through the channel reliably. The expression for C in (10.1) is called a *single-letter characterization* because it depends only the transition matrix of the generic channel but not on the block length n of a code for the channel. When both the input alphabet $\mathcal X$ and the output alphabet $\mathcal Y$ are finite, the computation of C becomes a finite-dimensional maximization problem.

For an i.i.d. information source $\{X_k, k \geq 1\}$ with generic random variable X, the rate distortion function

$$R(D) = \min_{Q(\hat{x}|x): Ed(X, \hat{X}) \le D} I(X; \hat{X})$$
 (10.2)

characterizes the minimum asymptotically achievable rate of a rate distortion code which reproduces the information source with an average distortion no more than D with respect to a single-letter distortion measure d. Again, the expression for R(D) in (10.2) is a single-letter characterization because it depends only on the generic random variable X but not on the block length n of a rate distortion code. When both the source alphabet $\mathcal X$ and the reproduction alphabet $\hat{\mathcal X}$ are finite, the computation of R(D) becomes a finite-dimensional minimization problem.

Unless for very special cases, it is not possible to obtain an expression for C or R(D) in closed form, and we have to resort to numerical computation.

However, computing these quantities is not straightforward because the associated optimization problem is nonlinear. In this chapter, we discuss the *Blahut-Arimoto algorithms* (henceforth the BA algorithms), which is an iterative algorithm devised for this purpose.

In order to better understand how and why the BA algorithm works, we will first describe the algorithm in a general setting in the next section. Specializations of the algorithm for the computation of C and R(D) will be discussed in Section 10.2, and convergence of the algorithm will be proved in Section 10.3.

10.1 ALTERNATING OPTIMIZATION

In this section, we describe an alternating optimization algorithm. This algorithm will be specialized in the next section for computing the channel capacity and the rate distortion function.

Consider the double supremum

$$\sup_{\mathbf{u}_1 \in A_1} \sup_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2), \tag{10.3}$$

where A_i is a convex subset of \Re^{n_i} for i=1,2, and f is a function defined on $A_1\times A_2$. The function f is bounded from above, and is continuous and has continuous partial derivatives on $A_1\times A_2$. Further assume that for all $\mathbf{u}_2\in A_2$, there exists a unique $c_1(\mathbf{u}_2)\in A_1$ such that

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) = \max_{\mathbf{u}_1' \in A_1} f(\mathbf{u}_1', \mathbf{u}_2), \tag{10.4}$$

and for all $\mathbf{u}_1 \in A_1$, there exists a unique $c_2(\mathbf{u}_1) \in A_2$ such that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = \max_{\mathbf{u}_2' \in A_2} f(\mathbf{u}_1, \mathbf{u}_2').$$
 (10.5)

Let $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ and $A = A_1 \times A_2$. Then (10.3) can be written as

$$\sup_{\mathbf{u}\in A} f(\mathbf{u}). \tag{10.6}$$

In other words, the supremum of f is taken over a subset of $\Re^{n_1+n_2}$ which is equal to the Cartesian product of two convex subsets of \Re^{n_1} and \Re^{n_2} , respectively.

We now describe an alternating optimization algorithm for computing f^* , the value of the double supremum in (10.3). Let $\mathbf{u}^{(k)} = (\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$ for $k \geq 0$ which are defined as follows. Let $\mathbf{u}_1^{(0)}$ be an arbitrarily chosen vector in A_1 , and let $\mathbf{u}_2^{(0)} = c_2(\mathbf{u}_1^{(0)})$. For $k \geq 1$, $\mathbf{u}^{(k)}$ is defined by

$$\mathbf{u}_{1}^{(k)} = c_{1}(\mathbf{u}_{2}^{(k-1)}) \tag{10.7}$$

Figure 10.1. Alternating optimization.

and

$$\mathbf{u}_2^{(k)} = c_2(\mathbf{u}_1^{(k)}). \tag{10.8}$$

In other words, $\mathbf{u}_1^{(k)}$ and $\mathbf{u}_2^{(k)}$ are generated in the order $\mathbf{u}_1^{(0)}$, $\mathbf{u}_2^{(0)}$, $\mathbf{u}_1^{(1)}$, $\mathbf{u}_2^{(1)}$, $\mathbf{u}_1^{(2)}$, \cdots , where each vector in the sequence is a function of the previous vector except that $\mathbf{u}_1^{(0)}$ is arbitrarily chosen in A_1 . Let

$$f^{(k)} = f(\mathbf{u}^{(k)}). \tag{10.9}$$

Then from (10.4) and (10.5),

$$f^{(k)} = f(\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$$
 (10.10)

$$\geq f(\mathbf{u}_{1}^{(k)}, \mathbf{u}_{2}^{(k-1)}) \qquad (10.11)$$

$$\geq f(\mathbf{u}_{1}^{(k-1)}, \mathbf{u}_{2}^{(k-1)}) \qquad (10.12)$$

$$= f^{(k-1)} \qquad (10.13)$$

$$\geq f(\mathbf{u}_1^{(k-1)}, \mathbf{u}_2^{(k-1)})$$
 (10.12)

$$= f^{(k-1)} (10.13)$$

for $k \geq 1$. Since the sequence $f^{(k)}$ is non-decreasing, it must converge because f is bounded from above. We will show in Section 10.3 that $f^{(k)} o f^*$ if f is concave. Figure 10.1 is an illustration of the alternating maximization algorithm, where in this case both n_1 and n_2 are equal to 1, and $f^{(k)} \to f^*$.

The alternating optimization algorithm can be explained by the following analogy. Suppose a hiker wants to reach the summit of a mountain. Starting from a certain point in the mountain, the hiker moves north-south and eastwest alternately. (In our problem, the north-south and east-west directions can be multi-dimensional.) In each move, the hiker moves to the highest possible point. The question is whether the hiker can eventually approach the summit starting from any point in the mountain.

Replacing f by -f in (10.3), the double supremum becomes the double infimum

$$\inf_{\mathbf{u}_1 \in A_1} \inf_{\mathbf{u}_2 \in A_2} f(\mathbf{u}_1, \mathbf{u}_2). \tag{10.14}$$

All the previous assumptions on A_1 , A_2 , and f remain valid except that f is now assumed to be bounded from below instead of bounded from above. The double infimum in (10.14) can be computed by the same alternating optimization algorithm. Note that with f replaced by -f, the maximums in (10.4) and (10.5) become minimums, and the inequalities in (10.11) and (10.12) are reversed.

10.2 THE ALGORITHMS

In this section, we specialize the alternating optimization algorithm described in the last section to compute the channel capacity and the rate distortion function. The corresponding algorithms are known as the BA algorithms.

10.2.1 CHANNEL CAPACITY

We will use **r** to denote an input distribution r(x), and we write $\mathbf{r} > 0$ if **r** is strictly positive, i.e., r(x) > 0 for all $x \in \mathcal{X}$. If **r** is not strictly positive, we write $\mathbf{r} \geq 0$. Similar notations will be introduced as appropriate.

LEMMA 10.1 Let r(x)p(y|x) be a given joint distribution on $\mathcal{X} \times \mathcal{Y}$ such that $\mathbf{r} > 0$, and let \mathbf{q} be a transition matrix from \mathcal{Y} to \mathcal{X} . Then

$$\max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)} = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)},$$
(10.15)

where the maximization is taken over all q such that

$$q(x|y) = 0$$
 if and only if $p(y|x) = 0$, (10.16)

and

$$q^*(x|y) = \frac{r(x)p(y|x)}{\sum_{x'} r(x')p(y|x')},$$
(10.17)

i.e., the maximizing \mathbf{q} is the which corresponds to the input distribution \mathbf{r} and the transition matrix p(y|x).

In (10.15) and the sequel, we adopt the convention that the summation is taken over all x and y such that r(x) > 0 and p(y|x) > 0. Note that the right hand side of (10.15) gives the mutual information I(X;Y) when \mathbf{r} is the input distribution for the generic channel p(y|x).

Proof Let

$$w(y) = \sum_{x'} r(x')p(y|x')$$
 (10.18)

in (10.17). We assume with loss of generality that for all $y \in \mathcal{Y}$, p(y|x) > 0 for some $x \in \mathcal{X}$. Since $\mathbf{r} > 0$, w(y) > 0 for all y, and hence $q^*(x|y)$ is well-defined. Rearranging (10.17), we have

$$r(x)p(y|x) = w(y)q^*(x|y). (10.19)$$

Consider

$$\sum_{x}\sum_{y}r(x)p(y|x)\log\frac{q^*(x|y)}{r(x)}-\sum_{x}\sum_{y}r(x)p(y|x)\log\frac{q(x|y)}{r(x)}$$

$$= \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{q(x|y)}$$
 (10.20)

$$= \sum_{y} \sum_{x} w(y) q^{*}(x|y) \log \frac{q^{*}(x|y)}{q(x|y)}$$
 (10.21)

$$= \sum_{y} w(y) \sum_{x} q^{*}(x|y) \log \frac{q^{*}(x|y)}{q(x|y)}$$
 (10.22)

$$= \sum_{y} w(y) D(q^*(x|y) || q(x|y))$$
 (10.23)

$$> 0,$$
 (10.24)

where (10.21) follows from (10.19), and the last step is an application of the divergence inequality. Then the proof is completed by noting in (10.17) that \mathbf{q}^* satisfies (10.16) because $\mathbf{r} > 0$. \square

THEOREM 10.2 For a discrete memoryless channel p(y|x),

$$C = \sup_{r>0} \max_{q} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$
 (10.25)

where the maximization is taken over all \mathbf{q} which satisfies (10.16).

Proof Let $I(\mathbf{r}, \mathbf{p})$ denote the mutual information I(X; Y) when \mathbf{r} is the input distribution for the generic channel p(y|x). Then we can write

$$C = \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}). \tag{10.26}$$

Let \mathbf{r}^* achieves C. If $\mathbf{r}^* > 0$, then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p}) \tag{10.27}$$

$$= \max_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \tag{10.28}$$

$$= \max_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
 (10.29)

$$= \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \tag{10.30}$$

where (10.29) follows from Lemma 10.1 (and the maximization is over all q which satisfies (10.16)).

Next, we consider the case when $\mathbf{r}^* \geq 0$. Since $I(\mathbf{r}, \mathbf{p})$ is continuous in \mathbf{r} , for any $\epsilon > 0$, there exists $\delta > 0$ such that if

$$\|\mathbf{r} - \mathbf{r}^*\| < \delta,\tag{10.31}$$

then

$$C - I(\mathbf{r}, \mathbf{p}) < \epsilon, \tag{10.32}$$

where $\|\mathbf{r} - \mathbf{r}^*\|$ denotes the Euclidean distance between \mathbf{r} and \mathbf{r}^* . In particular, there exists $\tilde{\mathbf{r}} > 0$ which satisfies (10.31) and (10.32). Then

$$C = \max_{\mathbf{r} \ge 0} I(\mathbf{r}, \mathbf{p})$$

$$\ge \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p})$$

$$(10.33)$$

$$\geq \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \tag{10.34}$$

$$\geq I(\tilde{\mathbf{r}}, \mathbf{p}) \tag{10.35}$$

$$> C - \epsilon,$$
 (10.36)

where the last step follows because $\tilde{\mathbf{r}}$ satisfies (10.32). Thus we have

$$C - \epsilon < \sup_{\mathbf{r} > 0} I(\mathbf{r}, \mathbf{p}) \le C. \tag{10.37}$$

Finally, by letting $\epsilon \to 0$, we conclude that

$$C = \sup_{\mathbf{r}>0} I(\mathbf{r}, \mathbf{p}) = \sup_{\mathbf{r}>0} \max_{\mathbf{q}} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}.$$
 (10.38)

This accomplishes the proof.

Now for the double supremum in (10.3), let

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)},$$
 (10.39)

with \mathbf{r} and \mathbf{q} playing the roles of \mathbf{u}_1 and \mathbf{u}_2 , respectively. Let

$$A_1 = \{ (r(x), x \in \mathcal{X}) : r(x) > 0 \text{ and } \sum_x r(x) = 1 \},$$
 (10.40)

and

$$A_{2} = \{(q(x|y), (x, y) \in \mathcal{X} \times \mathcal{Y}) : q(x|y) > 0$$
if $p(x|y) > 0$, $q(x|y) = 0$ if $p(y|x) = 0$,
and $\sum_{x} q(x|y) = 1$ for all $y \in \mathcal{Y}$. (10.41)

Then A_1 is a subset of $\Re^{|\mathcal{X}|}$ and A_2 is a subset of $\Re^{|\mathcal{X}||\mathcal{Y}|}$, and it is readily checked that both A_1 and A_2 are convex. For all $\mathbf{r} \in A_1$ and $\mathbf{q} \in A_2$, by Lemma 10.1,

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
(10.42)

$$\leq \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q^*(x|y)}{r(x)}$$
 (10.43)

$$= I(X;Y) \tag{10.44}$$

$$\leq H(X) \tag{10.45}$$

$$\leq \log |\mathcal{X}|. \tag{10.46}$$

Thus f is bounded from above. Since for all $\mathbf{q} \in A_2$, q(x|y) = 0 for all x and y such that p(x|y) = 0, these components of \mathbf{q} are degenerated. In fact, these components of \mathbf{q} do not appear in the definition of $f(\mathbf{r},\mathbf{q})$ in (10.39), which can be seen as follows. Recall the convention that the double summation in (10.39) is over all x and y such that r(x) > 0 and p(y|x) > 0. If q(x|y) = 0, then p(y|x) = 0, and hence the corresponding term is not included in the double summation. Therefore, it is readily seen that f is continuous and has continuous partial derivatives on A because all the probabilities involved in the double summation in (10.39) are strictly positive. Moreover, for any given $\mathbf{r} \in A_1$, by Lemma 10.1, there exists a unique $\mathbf{q} \in A_2$ which maximizes f. It will be shown shortly that for any given $\mathbf{q} \in A_2$, there also exists a unique $\mathbf{r} \in A_1$ which maximizes f.

The double supremum in (10.3) now becomes

$$\sup_{\mathbf{r} \in A_1} \sup_{\mathbf{q} \in A_2} \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}, \tag{10.47}$$

which by Theorem 10.2 is equal to C, where the supremum over all $\mathbf{q} \in A_2$ is in fact a maximum. We then apply the alternating optimization algorithm in the last section to compute C. First, we arbitrarily choose a *strictly positive* input distribution in A_1 and let it be $\mathbf{r}^{(0)}$. Then we define $\mathbf{q}^{(0)}$ and in general $\mathbf{q}^{(k)}$ for $k \geq 0$ by

$$q^{(k)}(x|y) = \frac{r^{(k)}(x)p(y|x)}{\sum_{x'} r^{(k)}(x')p(y|x')}$$
(10.48)

in view of Lemma 10.1. In order to define $\mathbf{r}^{(1)}$ and in general $\mathbf{r}^{(k)}$ for $k \geq 1$, we need to find the $\mathbf{r} \in A_1$ which maximizes f for a given $\mathbf{q} \in A_2$, where the constraints on \mathbf{r} are

$$\sum_{x} r(x) = 1 \tag{10.49}$$

and

$$r(x) > 0 \quad \text{for all } x \in \mathcal{X}.$$
 (10.50)

We now use the method of Lagrange multipliers to find the best \mathbf{r} by ignoring temporarily the positivity constraints in (10.50). Let

$$J = \sum_{x} \sum_{y} r(x)p(y|x) \log \frac{q(x|y)}{r(x)} - \lambda \sum_{x} r(x).$$
 (10.51)

For convenience sake, we assume that the logarithm is the natural logarithm. Differentiating with respect to r(x) gives

$$\frac{\partial J}{\partial r(x)} = \sum_{y} p(y|x) \log q(x|y) - \log r(x) - 1 - \lambda. \tag{10.52}$$

Upon setting $\frac{\partial J}{\partial r(x)} = 0$, we have

$$\log r(x) = \sum_{y} p(y|x) \log q(x|y) - 1 - \lambda, \tag{10.53}$$

or

$$r(x) = e^{-(\lambda+1)} \prod_{y} q(x|y)^{p(y|x)}.$$
 (10.54)

By considering the normalization constraint in (10.49), we can eliminate λ and obtain

$$r(x) = \frac{\prod_{y} q(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q(x'|y)^{p(y|x')}}.$$
 (10.55)

The above product is over all y such that p(y|x) > 0, and q(x|y) > 0 for all such y. This implies that both the numerator and the denominator on the right hand side above are positive, and therefore r(x) > 0. In other words, the \mathbf{r} thus obtained happen to satisfy the positivity constraints in (10.50) although these constraints were ignored when we set up the Lagrange multipliers. We will show in Section 10.3.2 that f is concave. Then \mathbf{r} as given in (10.55), which is unique, indeed achieves the maximum of f for a given $\mathbf{q} \in A_2$ because \mathbf{r} is in the interior of A_1 . In view of (10.55), we define $\mathbf{r}^{(k)}$ for $k \ge 1$ by

$$r^{(k)}(x) = \frac{\prod_{y} q^{(k-1)}(x|y)^{p(y|x)}}{\sum_{x'} \prod_{y} q^{(k-1)}(x'|y)^{p(y|x')}}.$$
 (10.56)

The vectors $\mathbf{r}^{(k)}$ and $\mathbf{q}^{(k)}$ are defined in the order $\mathbf{r}^{(0)}$, $\mathbf{q}^{(0)}$, $\mathbf{r}^{(1)}$, $\mathbf{q}^{(1)}$, $\mathbf{r}^{(2)}$, $\mathbf{q}^{(2)}$, \cdots , where each vector in the sequence is a function of the previous vector except that $\mathbf{r}^{(0)}$ is arbitrarily chosen in A_1 . It remains to show by induction that $\mathbf{r}^{(k)} \in A_1$ for $k \geq 1$ and $\mathbf{q}^{(k)} \in A_2$ for $k \geq 0$. If $\mathbf{r}^{(k)} \in A_1$, i.e., $\mathbf{r}^{(k)} > 0$,

Figure 10.2. A tangent to the R(D) curve with slope equal to s.

then we see from (10.48) that $q^{(k)}(x|y)=0$ if and only if p(x|y)=0, i.e., $\mathbf{q}^{(k)}\in A_2$. On the other hand, if $\mathbf{q}^{(k)}\in A_2$, then we see from (10.56) that $\mathbf{r}^{(k+1)}>0$, i.e., $\mathbf{r}^{(k+1)}\in A_2$. Therefore, $\mathbf{r}^{(k)}\in A_1$ and $\mathbf{q}^{(k)}\in A_2$ for all $k\geq 0$. Upon determining $(\mathbf{r}^{(k)},\mathbf{q}^{(k)})$, we can compute $f^{(k)}=f(\mathbf{r}^{(k)},\mathbf{q}^{(k)})$ for all k. It will be shown in Section 10.3 that $f^{(k)}\to C$.

10.2.2 THE RATE DISTORTION FUNCTION

This discussion in this section is analogous to the discussion in Section 10.2.1. Some of the details will be omitted for brevity.

For all problems of interest, R(0) > 0. Otherwise, R(D) = 0 for all $D \ge 0$ since R(D) is nonnegative and non-increasing. Therefore, we assume without loss of generality that R(0) > 0.

We have shown in Corollary 9.19 that if R(0) > 0, then R(D) is strictly decreasing for $0 \le D \le D_{max}$. Since R(D) is convex, for any $s \le 0$, there exists a point on the R(D) curve for $0 \le D \le D_{max}$ such that the slope of a tangent to the R(D) curve at that point is equal to s. Denote such a point on the R(D) curve by $(D_s, R(D_s))$, which is not necessarily unique. Then this tangent intersects with the ordinate at $R(D_s) - sD_s$. This is illustrated in Figure 10.2.

Let $I(\mathbf{p}, \mathbf{Q})$ denote the mutual information $I(X, \hat{X})$ and $D(\mathbf{p}, \mathbf{Q})$ denote the expected distortion $Ed(X, \hat{X})$ when \mathbf{p} is the distribution for X and \mathbf{Q} is the transition matrix from X to \hat{X} defining \hat{X} . Then for any \mathbf{Q} , $(I(\mathbf{p}, \mathbf{Q}), D(\mathbf{p}, \mathbf{Q}))$ is a point in the rate distortion region, and the line with slope s passing through

¹We say that a line is a tangent to the R(D) curve if it touches the R(D) curve from below.

 $(I(\mathbf{p}, \mathbf{Q}), D(\mathbf{p}, \mathbf{Q}))$ intersects the ordinate at $I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})$. Since the R(D) curve defines the boundary of the rate distortion region and it is above the tangent in Figure 10.2, we see that

$$R(D_s) - sD_s = \min_{\mathbf{Q}} [I(\mathbf{p}, \mathbf{Q}) - sD(\mathbf{p}, \mathbf{Q})].$$
(10.57)

For each $s \leq 0$, if we can find a \mathbf{Q}_s which achieves the above minimum, then the line passing through $(0, I(\mathbf{p}, \mathbf{Q}_s) - sD(\mathbf{p}, \mathbf{Q}_s))$, i.e., the tangent in Figure 10.2, gives a tight lower bound on the R(D) curve. In particular, if $(R(D_s), D_s)$ is unique,

$$D_s = D(\mathbf{p}, \mathbf{Q}_s) \tag{10.58}$$

and

$$R(D_s) = I(\mathbf{p}, \mathbf{Q}_s). \tag{10.59}$$

By varying over all $s \le 0$, we can then trace out the whole R(D) curve. In the rest of the section, we will devise an iterative algorithm for the minimization problem in (10.57).

LEMMA 10.3 Let $p(x)Q(\hat{x}|x)$ be a given joint distribution on $\mathcal{X} \times \hat{\mathcal{X}}$ such that $\mathbf{Q} > 0$, and let \mathbf{t} be any distribution on $\hat{\mathcal{X}}$ such that $\mathbf{t} > 0$. Then

$$\min_{\mathbf{t}>0} \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t^*(\hat{x})},$$
(10.60)

where

$$t^*(\hat{x}) = \sum_{x} p(x)Q(\hat{x}|x), \qquad (10.61)$$

i.e., the minimizing $t(\hat{x})$ is the distribution on $\hat{\mathcal{X}}$ corresponding to the input distribution \mathbf{p} and the transition matrix \mathbf{Q} .

Proof It suffices to prove that

$$\sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} \ge \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t^*(\hat{x})} \quad (10.62)$$

for all $\mathbf{t} > 0$. The details are left as an exercise. Note in (10.61) that $\mathbf{t}^* > 0$ because $\mathbf{Q} > 0$. \square

Since $I(\mathbf{p}, \mathbf{Q})$ and $D(\mathbf{p}, \mathbf{Q})$ are continuous in \mathbf{Q} , via an argument similar to the one we used in the proof of Theorem 10.2, we can replace the minimum over all \mathbf{Q} in (10.57) by the infimum over all $\mathbf{Q} > 0$. By noting that the right hand side of (10.60) is equal to $I(\mathbf{p}, \mathbf{Q})$ and

$$D(\mathbf{p}, \mathbf{Q}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}), \qquad (10.63)$$

we can apply Lemma 10.3 to obtain

$$\begin{split} R(D_{s}) - sD_{s} \\ &= \inf_{Q>0} \left[\min_{t>0} \sum_{x,\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x,\hat{x}} p(x)Q(\hat{x}|x) d(x,\hat{x}) \right] \\ &= \inf_{Q>0} \min_{t>0} \left[\sum_{x,\hat{x}} p(x)Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x,\hat{x}} p(x)Q(\hat{x}|x) d(x,\hat{x}) \right]. \end{split}$$
(10.65)

Now in the double infimum in (10.14), let

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})}$$
$$-s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x}), \qquad (10.66)$$

$$A_{1} = \left\{ (Q(\hat{x}|x), (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}}) : Q(\hat{x}|x) > 0, \right.$$

$$\sum_{\hat{x}} Q(\hat{x}|x) = 1 \text{ for all } x \in \mathcal{X} \right\}, \tag{10.67}$$

and

$$A_2 = \{(t(\hat{x}), \hat{x} \in \hat{\mathcal{X}}) : t(\hat{x}) > 0 \text{ and } \sum_{\hat{x}} t(\hat{x}) = 1\},$$
 (10.68)

with \mathbf{Q} and \mathbf{t} playing the roles of \mathbf{u}_1 and \mathbf{u}_2 , respectively. Then A_1 is a subset of $\Re^{|\mathcal{X}||\hat{\mathcal{X}}|}$ and A_2 is a subset of $\Re^{|\hat{\mathcal{X}}|}$, and it is readily checked that both A_1 and A_2 are convex. Since $s \leq 0$,

$$f(\mathbf{Q}, \mathbf{t}) = \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x, \hat{x})$$
(10.69)

$$\geq \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t^*(\hat{x})} + 0 \tag{10.70}$$

$$= I(X; \hat{X}) \tag{10.71}$$

$$\geq 0. \tag{10.72}$$

Therefore, f is bounded from below.

The double infimum in (10.14) now becomes

$$\inf_{\mathbf{Q}\in A_1} \inf_{\mathbf{t}\in A_2} \left[\sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) \log \frac{Q(\hat{x}|x)}{t(\hat{x})} - s \sum_{x} \sum_{\hat{x}} p(x) Q(\hat{x}|x) d(x,\hat{x}) \right],$$
(10.73)

where the infimum over all $\mathbf{t} \in A_2$ is in fact a minimum. We then apply the alternating optimization algorithm described in Section 10.2 to compute f^* , the value of (10.73). First, we arbitrarily choose a *strictly positive* transition matrix in A_1 and let it be $\mathbf{Q}^{(0)}$. Then we define $\mathbf{t}^{(0)}$ and in general $\mathbf{t}^{(k)}$ for $k \geq 1$ by

$$t^{(k)}(\hat{x}) = \sum_{x} p(x)Q^{(k)}(\hat{x}|x)$$
 (10.74)

in view of Lemma 10.3. In order to define $\mathbf{Q}^{(1)}$ and in general $\mathbf{Q}^{(k)}$ for $k \geq 1$, we need to find the $\mathbf{Q} \in A_1$ which minimizes f for a given $\mathbf{t} \in A_2$, where the constraints on \mathbf{Q} are

$$Q(\hat{x}|x) > 0 \text{ for all } (x, \hat{x}) \in \mathcal{X} \times \hat{\mathcal{X}},$$
 (10.75)

and

$$\sum_{\hat{x}} Q(\hat{x}|x) = 1 \quad \text{for all } x \in \mathcal{X}. \tag{10.76}$$

As we did for the computation of the channel capacity, we first ignore the positivity constraints in (10.75) when setting up the Lagrange multipliers. Then we obtain

$$Q(\hat{x}|x) = \frac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t(\hat{x}')e^{sd(x,\hat{x}')}} > 0.$$
 (10.77)

The details are left as an exercise. We then define $\mathbf{Q}^{(k)}$ for $k \geq 1$ by

$$Q^{(k)}(\hat{x}|x) = \frac{t^{(k-1)}(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'} t^{(k-1)}(\hat{x}')e^{sd(x,\hat{x}')}}.$$
(10.78)

It will be shown in the next section that $f^{(k)} = f(\mathbf{Q}^{(k)}, \mathbf{t}^{(k)}) \to f^*$ as $k \to \infty$. If there exists a unique point $(R(D_s), D_s)$ on the R(D) curve such that the slope of a tangent at that point is equal to s, then

$$(I(\mathbf{p}, \mathbf{Q}^{(k)}), D(\mathbf{p}, \mathbf{Q}^{(k)})) \to (R(D_s), D_s).$$
 (10.79)

Otherwise, $(I(\mathbf{p}, \mathbf{Q}^{(k)}), D(\mathbf{p}, \mathbf{Q}^{(k)}))$ is arbitrarily close to the segment of the R(D) curve at which the slope is equal to s when k is sufficiently large. These facts are easily shown to be true.

10.3 CONVERGENCE

In this section, we first prove that if f is concave, then $f^{(k)} \to f^*$. We then apply this sufficient condition to prove the convergence of the BA algorithm for computing the channel capacity. The convergence of the BA algorithm for computing the rate distortion function can be proved likewise. The details are omitted.

10.3.1 A SUFFICIENT CONDITION

In the alternating optimization algorithm in Section 10.1, we see from (10.7) and (10.8) that

$$\mathbf{u}^{(k+1)} = (\mathbf{u}_1^{(k+1)}, \mathbf{u}_2^{(k+1)}) = (c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)})))$$
(10.80)

for k > 0. Define

$$\Delta f(\mathbf{u}) = f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) - f(\mathbf{u}_1, \mathbf{u}_2). \tag{10.81}$$

Then

$$f^{(k+1)} - f^{(k)} = f(\mathbf{u}^{(k+1)}) - f(\mathbf{u}^{(k)})$$
 (10.82)

$$= f(c_1(\mathbf{u}_2^{(k)}), c_2(c_1(\mathbf{u}_2^{(k)}))) - f(\mathbf{u}_1^{(k)}, \mathbf{u}_2^{(k)})$$
 (10.83)

$$= \Delta f(\mathbf{u}^{(k)}). \tag{10.84}$$

We will prove that f being concave is sufficient for $f^{(k)} \to f^*$. To this end, we first prove that if f is concave, then the algorithm cannot be trapped at \mathbf{u} if $f(\mathbf{u}) < f^*$.

Lemma 10.4 Let f be concave. If $f^{(k)} < f^*$, then $f^{(k+1)} > f^{(k)}$.

Proof We will prove that $\Delta f(\mathbf{u}) > 0$ for any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. Then if $f^{(k)} = f(\mathbf{u}^{(k)}) < f^*$, we see from (10.84) that

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) > 0,$$
 (10.85)

and the lemma is proved.

Consider any $\mathbf{u} \in A$ such that $f(\mathbf{u}) < f^*$. We will prove by contradiction that $\Delta f(\mathbf{u}) > 0$. Assume $\Delta f(\mathbf{u}) = 0$. Then it follows from (10.81) that

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) = f(\mathbf{u}_1, \mathbf{u}_2).$$
 (10.86)

Now we see from (10.5) that

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) \ge f(c_1(\mathbf{u}_2), \mathbf{u}_2).$$
 (10.87)

If $c_1(\mathbf{u}_2) \neq \mathbf{u}_1$, then

$$f(c_1(\mathbf{u}_2), \mathbf{u}_2) > f(\mathbf{u}_1, \mathbf{u}_2)$$
 (10.88)

because $c_1(\mathbf{u}_2)$ is unique. Combining (10.87) and (10.88), we have

$$f(c_1(\mathbf{u}_2), c_2(c_1(\mathbf{u}_2))) > f(\mathbf{u}_1, \mathbf{u}_2),$$
 (10.89)

which is a contradiction to (10.86). Therefore,

$$\mathbf{u}_1 = c_1(\mathbf{u}_2). \tag{10.90}$$

Figure 10.3. The vectors \mathbf{u} , \mathbf{v} , $\tilde{\mathbf{z}}$, \mathbf{z}_1 , and \mathbf{z}_2 .

Using this, we see from (10.86) that

$$f(\mathbf{u}_1, c_2(\mathbf{u}_1)) = f(\mathbf{u}_1, \mathbf{u}_2),$$
 (10.91)

which implies

$$\mathbf{u}_2 = c_2(\mathbf{u}_1). \tag{10.92}$$

because $c_2(c_1(\mathbf{u}_2))$ is unique.

Since $f(\mathbf{u}) < f^*$, there exists $\mathbf{v} \in A$ such that

$$f(\mathbf{u}) < f(\mathbf{v}). \tag{10.93}$$

Consider

$$\mathbf{v} - \mathbf{u} = (\mathbf{v}_1 - \mathbf{u}_1, 0) + (0, \mathbf{v}_2 - \mathbf{u}_2).$$
 (10.94)

Let $\tilde{\mathbf{z}}$ be the unit vector in the direction of $\mathbf{v} - \mathbf{u}$, \mathbf{z}_1 be the unit vector in the direction of $(\mathbf{v}_1 - \mathbf{u}_1, 0)$, and \mathbf{z}_2 be the unit vector in the direction of $(\mathbf{v}_2 - \mathbf{u}_2, 0)$. Then

$$\|\mathbf{v} - \mathbf{u}\|\tilde{\mathbf{z}} = \|\mathbf{v}_1 - \mathbf{u}_1\|\mathbf{z}_1 + \|\mathbf{v}_2 - \mathbf{u}_2\|\mathbf{z}_2,$$
 (10.95)

or

$$\tilde{\mathbf{z}} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2,\tag{10.96}$$

where

$$\alpha_i = \frac{\|\mathbf{v}_i - \mathbf{u}_i\|}{\|\mathbf{v} - \mathbf{u}\|},\tag{10.97}$$

i = 1, 2. Figure 10.3 is an illustration of the vectors $\mathbf{u}, \mathbf{v}, \tilde{\mathbf{z}}, \mathbf{z}_1$, and \mathbf{z}_2 .

We see from (10.90) that f attains its maximum value at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$ when \mathbf{u}_2 is fixed. In particular, f attains its maximum value at \mathbf{u} alone the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$. Let ∇f denotes the gradient of

f. Since f is continuous and has continuous partial derivatives, the directional derivative of f at \mathbf{u} in the direction of \mathbf{z}_1 exists and is given by $\nabla f \cdot \mathbf{z}_1$. It follows from the concavity of f that f is concave along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$. Since f attains its maximum value at \mathbf{u} , the derivative of f along the line passing through $(\mathbf{u}_1, \mathbf{u}_2)$ and $(\mathbf{v}_1, \mathbf{u}_2)$ vanishes. Then we see that

$$\nabla f \cdot \mathbf{z}_1 = 0. \tag{10.98}$$

Similarly, we see from (10.92) that

$$\nabla f \cdot \mathbf{z}_2 = 0. \tag{10.99}$$

Then from (10.96), the directional derivative of f at \mathbf{u} in the direction of $\tilde{\mathbf{z}}$ is given by

$$\nabla f \cdot \tilde{\mathbf{z}} = \alpha_1 (\nabla f \cdot \mathbf{z}_1) + \alpha_2 (\nabla f \cdot \mathbf{z}_2) = 0. \tag{10.100}$$

Since f is concave along the line passing through \mathbf{u} and \mathbf{v} , this implies

$$f(\mathbf{u}) \ge f(\mathbf{v}),\tag{10.101}$$

which is a contradiction to (10.93). Hence, we conclude that $\Delta f(\mathbf{u}) > 0$. \square

Although we have proved that the algorithm cannot be trapped at \mathbf{u} if $f(\mathbf{u}) < f^*$, $f^{(k)}$ does not necessarily converge to f^* because the increment in $f^{(k)}$ in each step may be arbitrarily small. In order to prove the desired convergence, we will show in next theorem that this cannot be the case.

Theorem 10.5 If f is concave, then $f^{(k)} \to f^*$.

Proof We have already shown in Section 10.1 that $f^{(k)}$ necessarily converges, say to f'. Hence, for any $\epsilon > 0$ and all sufficiently large k,

$$f' - \epsilon \le f^{(k)} \le f'. \tag{10.102}$$

Let

$$\gamma = \min_{\mathbf{u} \in A'} \Delta f(\mathbf{u}),\tag{10.103}$$

where

$$A' = {\mathbf{u} \in A : f' - \epsilon \le f(\mathbf{u}) \le f'}.$$
 (10.104)

Since f has continuous partial derivatives, $\Delta f(\mathbf{u})$ is a continuous function of \mathbf{u} . Then the minimum in (10.103) exists because A' is compact².

 $^{^2}A'$ is compact because it is the inverse image of a closed interval under a continuous function and A is bounded.

We now show that $f' < f^*$ will lead to a contradiction if f is concave. If $f' < f^*$, then from Lemma 10.4, we see that $\Delta f(\mathbf{u}) > 0$ for all $\mathbf{u} \in A'$ and hence $\gamma > 0$. Since $f^{(k)} = f(\mathbf{u}^{(k)})$ satisfies (10.102), $\mathbf{u}^{(k)} \in A'$, and

$$f^{(k+1)} - f^{(k)} = \Delta f(\mathbf{u}^{(k)}) \ge \gamma$$
 (10.105)

for all sufficiently large k. Therefore, no matter how smaller γ is, $f^{(k)}$ will eventually be greater than f', which is a contradiction to $f^{(k)} \to f'$. Hence, we conclude that $f^{(k)} \to f^*$. \square

10.3.2 CONVERGENCE TO THE CHANNEL CAPACITY

In order to show that the BA algorithm for computing the channel capacity converges as intended, i.e., $f^{(k)} \to C$, we only need to show that the function f defined in (10.39) is concave. Toward this end, for

$$f(\mathbf{r}, \mathbf{q}) = \sum_{x} \sum_{y} r(x) p(y|x) \log \frac{q(x|y)}{r(x)}$$
(10.106)

defined in (10.39), we consider two ordered pairs $(\mathbf{r}_1, \mathbf{q}_1)$ and $(\mathbf{r}_2, \mathbf{q}_2)$ in A, where A_1 and A_2 are defined in (10.40) and (10.41), respectively. For any $0 \le \lambda \le 1$ and $\bar{\lambda} = 1 - \lambda$, an application of the log-sum inequality (Theorem 2.31) gives

$$(\lambda r_1(x) + \bar{\lambda} r_2(x)) \log \frac{\lambda r_1(x) + \bar{\lambda} r_2(x)}{\lambda q_1(x|y) + \bar{\lambda} q_2(x|y)}$$

$$\leq \lambda r_1(x) \log \frac{r_1(x)}{q_1(x|y)} + \bar{\lambda} r_2(x) \log \frac{r_2(x)}{q_2(x|y)}.$$
(10.107)

Taking reciprocal in the logarithms yields

$$(\lambda r_{1}(x) + \bar{\lambda}r_{2}(x)) \log \frac{\lambda q_{1}(x|y) + \bar{\lambda}q_{2}(x|y)}{\lambda r_{1}(x) + \bar{\lambda}r_{2}(x)}$$

$$\geq \lambda r_{1}(x) \log \frac{q_{1}(x|y)}{r_{1}(x)} + \bar{\lambda}r_{2}(x) \log \frac{q_{2}(x|y)}{r_{2}(x)}, \qquad (10.108)$$

and upon multiplying by p(y|x) and summing over all x and y, we obtain

$$f(\lambda \mathbf{r}_1 + \bar{\lambda} \mathbf{r}_2, \lambda \mathbf{q}_1 + \bar{\lambda} \mathbf{q}_2) \ge \lambda f(\mathbf{r}_1, \mathbf{q}_1) + \bar{\lambda} f(\mathbf{r}_2, \mathbf{q}_2). \tag{10.109}$$

Therefore, f is concave. Hence, we have shown that $f^{(k)} \to C$.

PROBLEMS

1. Implement the BA algorithm for computing channel capacity.

- 2. Implement the BA algorithm for computing the rate-distortion function.
- 3. Explain why in the BA Algorithm for computing channel capacity, we should not choose an initial input distribution which contains zero probability masses.
- 4. Prove Lemma 10.3.
- 5. Consider $f(\mathbf{Q}, \mathbf{t})$ in the BA algorithm for computing the rate-distortion function.
 - a) Show that for fixed s and t, $f(\mathbf{Q}, \mathbf{t})$ is minimized by

$$Q(\hat{x}|x) = rac{t(\hat{x})e^{sd(x,\hat{x})}}{\sum_{\hat{x}'}t(\hat{x}')e^{sd(x,\hat{x}')}}.$$

b) Show that $f(\mathbf{Q}, \mathbf{t})$ is convex.

HISTORICAL NOTES

An iterative algorithm for computing the channel capacity was developed by Arimoto [14], where the convergence of the algorithm was proved. Blahut [27] independently developed two similar algorithms, the first for computing the channel capacity and the second for computing the rate distortion function. The convergence of Blahut's second algorithm was proved by Csiszár [51]. These two algorithms are now commonly referred to as the Blahut-Arimoto algorithms. The simplified proof of convergence in this chapter is based on Yeung and Berger [217].

The Blahut-Arimoto algorithms are special cases of a general iterative algorithm due to Csiszár and Tusnády [55] which also include the EM algorithm [59] for fitting models from incomplete data and the algorithm for finding the log-optimal portfolio for a stock market due to Cover [46].

Bibliography

- [1] J. Abrahams, "Code and parse trees for lossless source encoding," *Comm. Inform. & Syst.*, 1: 113-146, 2001.
- [2] N. Abramson, Information Theory and Coding, McGraw-Hill, New York, 1963.
- [3] Y. S. Abu-Mostafa, Ed., Complexity in Information Theory, Springer-Verlag, New York, 1988.
- [4] J. Aczél and Z. Daróczy, On Measures of Information and Their Characterizations, Academic Press, New York, 1975.
- [5] R. Ahlswede, B. Balkenhol and L. Khachatrian, "Some properties of fix-free codes," preprint 97-039, Sonderforschungsbereich 343, Universität Bielefeld, 1997.
- [6] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network information flow," *IEEE Trans. Inform. Theory*, IT-46: 1204-1216, 2000.
- [7] R. Ahlswede and J. Körner, "Source coding with side information and a converse for degraded broadcast channels," *IEEE Trans. Inform. Theory*, IT-21: 629-637, 1975.
- [8] R. Ahlswede and I. Wegener, Suchprobleme, Teubner Studienbeher. B. G. Teubner, Stuttgart, 1979 (in German). English translation: Search Problems, Wiley, New York, 1987.
- [9] R. Ahlswede and J. Wolfowitz, "The capacity of a channel with arbitrarily varying cpf's and binary output alphabet," *Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete*, 15: 186-194, 1970.
- [10] P. Algoet and T. M. Cover, "A sandwich proof of the Shannon-McMillan-Breiman theorem," Ann. Prob., 16: 899-909, 1988.
- [11] S. Amari, *Differential-Geometrical Methods in Statistics*, Springer-Verlag, New York, 1985.
- [12] J. B. Anderson and S. Mohan, *Source and Channel Coding: An Algorithmic Approach*, Kluwer Academic Publishers, Boston, 1991.

- [13] S. Arimoto, "Encoding and decoding of *p*-ary group codes and the correction system," *Information Processing in Japan*, 2: 321-325, 1961 (in Japanese).
- [14] S. Arimoto, "An algorithm for calculating the capacity of arbitrary discrete memoryless channels," *IEEE Trans. Inform. Theory*, IT-18: 14-20, 1972.
- [15] S. Arimoto, "On the converse to the coding theorem for discrete memoryless channels," *IEEE Trans. Inform. Theory*, IT-19: 357-359, 1973.
- [16] R. B. Ash, Information Theory, Interscience, New York, 1965.
- [17] E. Ayanoglu, R. D. Gitlin, C.-L. I, and J. Mazo, "Diversity coding for transparent self-healing and fault-tolerant communication networks," 1990 IEEE International Symposium on Information Theory, San Diego, CA, Jan. 1990.
- [18] A. R. Barron, "The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem," Ann. Prob., 13: 1292-1303, 1985.
- [19] L. A. Bassalygo, R. L. Dobrushin, and M. S. Pinsker, "Kolmogorov remembered," *IEEE Trans. Inform. Theory*, IT-34: 174-175, 1988.
- [20] T. Berger, *Rate Distortion Theory: A Mathematical Basis for Data Compression*, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
- [21] T. Berger, "Multiterminal source coding," in *The Information Theory Approach to Communications*, G. Longo, Ed., CISM Courses and Lectures #229, Springer-Verlag, New York, 1978.
- [22] T. Berger and R. W. Yeung, "Multiterminal source coding with encoder breakdown," *IEEE Trans. Inform. Theory*, IT-35: 237-244, 1989.
- [23] E. R. Berlekamp, "Block coding for the binary symmetric channel with noiseless, delayless feedback," in H. B. Mann, *Error Correcting Codes*, Wiley, New York, 1968.
- [24] E. R. Berlekamp, Ed., Key Papers in the Development of Coding Theory, IEEE Press, New York, 1974.
- [25] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo codes," Proceedings of the 1993 International Conferences on Communications, 1064-1070, 1993.
- [26] D. Blackwell, L. Breiman, and A. J. Thomasian, "The capacities of certain channel classes under random coding," Ann. Math. Stat., 31: 558-567, 1960.
- [27] R. E. Blahut, "Computation of channel capacity and rate distortion functions," *IEEE Trans. Inform. Theory*, IT-18: 460-473, 1972.
- [28] R. E. Blahut, "Information bounds of the Fano-Kullback type," *IEEE Trans. Inform. Theory*, IT-22: 410-421, 1976.
- [29] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, Reading, Massachusetts, 1983.
- [30] R. E. Blahut, Principles and Practice of Information Theory, Addison-Wesley, Reading, Massachusetts, 1987.

[31] R. E. Blahut, D. J. Costello, Jr., U. Maurer, and T. Mittelholzer, Ed., Communications and Cryptography: Two Sides of One Tapestry, Kluwer Academic Publishers, Boston, 1994.

- [32] C. Blundo, A. De Santis, R. De Simone, and U. Vaccaro, "Tight bounds on the information rate of secret sharing schemes," *Designs, Codes and Cryptography*, 11: 107-110, 1997.
- [33] R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary group codes," *Inform. Contr.*, 3: 68-79, Mar. 1960.
- [34] L. Breiman, "The individual ergodic theorems of information theory," *Ann. Math. Stat.*, 28: 809-811, 1957.
- [35] M. Burrows and D. J. Wheeler, "A block-sorting lossless data compression algorithm," Technical Report 124, Digital Equipment Corporation, 1994.
- [36] R. Calderbank and N. J. A. Sloane, "Obituary: Claude Shannon (1916-2001)," *Nature*, 410: 768, April 12, 2001.
- [37] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, "On the size of shares for secret sharing schemes," *J. Cryptology*, 6: 157-168, 1993.
- [38] H. L. Chan (T. H. Chan), "Aspects of information inequalities and its applications," M.Phil. thesis, The Chinese University of Hong Kong, Jun. 1998.
- [39] T. H. Chan, "A combinatorial approach to information inequalities," to appear in Comm. Inform. & Syst..
- [40] T. H. Chan and R. W. Yeung, "On a relation between information inequalities and group theory," to appear in *IEEE Trans. Inform. Theory*.
- [41] T. H. Chan and R. W. Yeung, "Factorization of positive functions," in preparation.
- [42] G. J. Chatin, Algorithmic Information Theory, Cambridge Univ. Press, Cambridge, 1987.
- [43] H. Chernoff, "A measure of the asymptotic efficiency of test of a hypothesis based on a sum of observations," *Ann. Math. Stat.*, 23: 493-507, 1952.
- [44] K. L. Chung, "A note on the ergodic theorem of information theory," *Ann. Math. Stat.*, 32: 612-614, 1961.
- [45] T. M. Cover, "A proof of the data compression theorem of Slepian and Wolf for ergodic sources," *IEEE Trans. Inform. Theory*, IT-21: 226-228, 1975.
- [46] T. M. Cover, "An algorithm for maximizing expected log investment return," *IEEE Trans. Inform. Theory*, IT-30: 369-373, 1984.
- [47] T. M. Cover, P. Gács, and R. M. Gray, "Kolmogorov's contribution to information theory and algorithmic complexity," *Ann. Prob.*, 17: 840-865, 1989.
- [48] T. M. Cover and S. K. Leung, "Some equivalences between Shannon entropy and Kolmogorov complexity," *IEEE Trans. Inform. Theory*, IT-24: 331-338, 1978.

- [49] T. M. Cover and J. A. Thomas, *Elements of Information Theory*, Wiley, New York, 1991.
- [50] I. Csiszár, "Information type measures of difference of probability distributions and indirect observations," Studia Sci. Math. Hungar., 2: 229-318, 1967.
- [51] I. Csiszár, "On the computation of rate-distortion functions," *IEEE Trans. Inform. Theory*, IT-20: 122-124, 1974.
- [52] I. Csiszár and J. Körner, *Information Theory: Coding Theorems for Discrete Memory-less Systems*, Academic Press, New York, 1981.
- [53] I. Csiszár and P. Narayan, "Arbitrarily varying channels with constrained inputs and states," *IEEE Trans. Inform. Theory*, IT-34: 27-34, 1988.
- [54] I. Csiszár and P. Narayan, "The capacity of the arbitrarily varying channel revisited: Positivity, constraints," *IEEE Trans. Inform. Theory*, IT-34: 181-193, 1988.
- [55] I. Csiszár and G. Tusnády, "Information geometry and alternating minimization procedures," *Statistics and Decisions*, Supplement Issue 1: 205-237, 1984.
- [56] G. B. Dantzig, *Linear Programming and Extensions*, Princeton Univ. Press, Princeton, New Jersey, 1962.
- [57] L. D. Davisson, "Universal noiseless coding," *IEEE Trans. Inform. Theory*, IT-19: 783-795, 1973.
- [58] A. P. Dawid, "Conditional independence in statistical theory (with discussion)," *J. Roy. Statist. Soc., Series B*, 41: 1-31, 1979.
- [59] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood form incomplete data via the EM algorithm," *Journal Royal Stat. Soc.*, Series B, 39: 1-38, 1977.
- [60] G. Dueck and J. Körner, "Reliability function of a discrete memoryless channel at rates above capacity," *IEEE Trans. Inform. Theory*, IT-25: 82-85, 1979.
- [61] P. Elias, "Universal codeword sets and representations of the integers," *IEEE Trans. Inform. Theory*, IT-21: 194-203, 1975.
- [62] Encyclopedia Britanica, http://www/britanica.com/.
- [63] R. M. Fano, Class notes for Transmission of Information, Course 6.574, MIT, Cambridge, Massachusetts, 1952.
- [64] R. M. Fano, Transmission of Information: A Statistical Theory of Communication, Wiley, New York, 1961.
- [65] A. Feinstein, "A new basic theorem of information theory," *IRE Trans. Inform. Theory*, IT-4: 2-22, 1954.
- [66] A. Feinstein, Foundations of Information Theory, McGraw-Hill, New York, 1958.
- [67] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, New York, 1950.

[68] B. M. Fitingof, "Coding in the case of unknown and changing message statistics," *PPI* 2: 3-11, 1966 (in Russian).

- [69] L. K. Ford, Jr. and D. K. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, New Jersey, 1962.
- [70] G. D. Forney, Jr., "Convolutional codes I: Algebraic structure," *IEEE Trans. Inform. Theory*, IT-16: 720 738, 1970.
- [71] G. D. Forney, Jr., Information Theory, unpublished course notes, Stanford University, 1972.
- [72] G. D. Forney, Jr., "The Viterbi algorithm," Proc. IEEE, 61: 268-278, 1973.
- [73] F. Fu, R. W. Yeung, and R. Zamir, "On the rate-distortion region for multiple descriptions," submitted to *IEEE Trans. Inform. Theory*.
- [74] S. Fujishige, "Polymatroidal dependence structure of a set of random variables," *Inform. Contr.*, 39: 55-72, 1978.
- [75] R. G. Gallager, "Low-density parity-check codes," *IEEE Trans. Inform. Theory*, IT-8: 21-28, Jan. 1962.
- [76] R. G. Gallager, "A simple derivation of the coding theorem and some applications," *IEEE Trans. Inform. Theory*, IT-11: 3-18, 1965.
- [77] R. G. Gallager, Information Theory and Reliable Communication, Wiley, New York, 1968.
- [78] Y. Ge and Z. Ye, "Information-theoretic characterizations of lattice conditional independence models," submitted to *Ann. Stat.*
- [79] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, Boston, 1992.
- [80] S. Goldman, Information Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1953.
- [81] R. M. Gray, Entropy and Information Theory, Springer-Verlag, New York, 1990.
- [82] S. Guiasu, Information Theory with Applications, McGraw-Hill, New York, 1976.
- [83] B. E. Hajek and T. Berger, "A decomposition theorem for binary Markov random fields," Ann. Prob., 15: 1112-1125, 1987.
- [84] D. Hammer, A. Romashchenko, A. Shen, and N. K. Vereshchagin, *J. Comp. & Syst. Sci.*, 60: 442-464, 2000.
- [85] R. V. Hamming, "Error detecting and error correcting codes," *Bell Sys. Tech. Journal*, 29: 147-160, 1950.
- [86] T. S. Han, "Linear dependence structure of the entropy space," *Inform. Contr.*, 29: 337-368, 1975.
- [87] T. S. Han, "Nonnegative entropy measures of multivariate symmetric correlations," *Inform. Contr.*, 36: 133-156, 1978.

- [88] T. S. Han, "A uniqueness of Shannon's information distance and related non-negativity problems," J. Comb., Inform., & Syst. Sci., 6: 320-321, 1981.
- [89] T. S. Han, "An information-spectrum approach to source coding theorems with a fidelity criterion," *IEEE Trans. Inform. Theory*, IT-43: 1145-1164, 1997.
- [90] T. S. Han and K. Kobayashi, "A unified achievable rate region for a general class of multiterminal source coding systems," *IEEE Trans. Inform. Theory*, IT-26: 277-288, 1980.
- [91] G. H. Hardy, J. E. Littlewood, and G. Polya, *Inequalities*, 2nd ed., Cambridge Univ. Press, London, 1952.
- [92] K. P. Hau, "Multilevel diversity coding with independent data streams," M.Phil. thesis, The Chinese University of Hong Kong, Jun. 1995.
- [93] C. Heegard and S. B. Wicker, *Turbo Coding*, Kluwer Academic Publishers, Boston, 1999.
- [94] A. Hocquenghem, "Codes correcteurs d'erreurs," Chiffres, 2: 147-156, 1959.
- [95] Y. Horibe, "An improved bound for weight-balanced tree," *Inform. Contr.*, 34: 148-151, 1977
- [96] Hu Guoding, "On the amount of Information," *Teor. Veroyatnost. i Primenen.*, 4: 447-455, 1962 (in Russian).
- [97] D. A. Huffman, "A method for the construction of minimum redundancy codes," *Proc. IRE*, 40: 1098-1101, 1952.
- [98] L. P. Hyvarinen, Information Theory for Systems Engineers, Springer-Verlag, Berlin, 1968.
- [99] A. W. Ingleton, "Representation of matroids," in *Combinatorial Mathematics and Its Applications*, D. J. A. Welsh, Ed., 149-167, Academic Press, London, 1971.
- [100] E. T. Jaynes, "On the rationale of maximum entropy methods," *Proc. IEEE*, 70: 939-052, 1982.
- [101] F. Jelinek, Probabilistic Information Theory, McGraw-Hill, New York, 1968.
- [102] V. D. Jerohin, " ϵ -entropy of discrete random objects," *Teor. Veroyatnost. i Primenen*, 3: 103-107, 1958.
- [103] O. Johnsen, "On the redundancy of binary Huffman codes," *IEEE Trans. Inform. Theory*, IT-26: 220-222, 1980.
- [104] G. A. Jones and J. M. Jones, Information and Coding Theory, Springer, London, 2000.
- [105] Y. Kakihara, Abstract Methods in Information Theory, World-Scientific, Singapore, 1999.
- [106] J. Karush, "A simple proof of an inequality of McMillan," *IRE Trans. Inform. Theory*, 7: 118, 1961.

[107] T. Kawabata, "Gaussian multiterminal source coding," Master thesis, Math. Eng., Univ. of Tokyo, Japan, Feb. 1980.

- [108] T. Kawabata and R. W. Yeung, "The structure of the I-Measure of a Markov chain," IEEE Trans. Inform. Theory, IT-38: 1146-1149, 1992.
- [109] A. I. Khinchin, Mathematical Foundations of Information Theory, Dover, New York, 1957.
- [110] J. C. Kieffer, E.-h. Yang, "Grammar-based codes: A new class of universal lossless source codes," *IEEE Trans. Inform. Theory*, IT-46: 737-754, 2000.
- [111] R. Kindermann and J. Snell, *Markov Random Fields and Their Applications*, American Math. Soc., Providence, Rhode Island, 1980.
- [112] R. Koetter and M. Médard, "An algebraic approach to network coding," 2001 IEEE International Symposium on Information Theory, Washington, D.C., Jun. 2001.
- [113] A. N. Kolmogorov, "On the Shannon theory of information transmission in the case of continuous signals," *IEEE Trans. Inform. Theory*, IT-2: 102-108, 1956.
- [114] A. N. Kolmogorov, "Three approaches to the quantitative definition of information," Problems of Information Transmission, 1: 4-7, 1965.
- [115] A. N. Kolmogorov, "Logical basis for information theory and probability theory," *IEEE Trans. Inform. Theory*, IT-14: 662-664, 1968.
- [116] L. G. Kraft, "A device for quantizing, grouping and coding amplitude modulated pulses," M.S. thesis, Dept. of E.E., MIT, 1949.
- [117] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.
- [118] S. Kullback, Topics in Statistical Information Theory, Springer-Verlag, Berlin, 1987.
- [119] S. Kullback and R. A. Leibler, "On information and sufficiency," Ann. Math. Stat., 22: 79-86, 1951.
- [120] G. G. Langdon, "An introduction to arithmetic coding," IBM J. Res. Devel., 28: 135-149, 1984.
- [121] S. L. Lauritzen, Graphical Models, Oxford Science Publications, Oxford, 1996.
- [122] M. Li and P. Vitányi, *An Introduction to Kolmogorov Complexity and Its Applications*, 2nd ed., Springer, New York, 1997.
- [123] S.-Y. R. Li, R. W. Yeung and N. Cai, "Linear network coding," to appear in *IEEE Trans. Inform. Theory*.
- [124] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
- [125] T. Linder, V. Tarokh, and K. Zeger, "Existence of optimal codes for infinite source alphabets," *IEEE Trans. Inform. Theory*, IT-43: 2026-2028, 1997.
- [126] L. Lovasz, "On the Shannon capacity of a graph," *IEEE Trans. Inform. Theory*, IT-25: 1-7, 1979.

- [127] D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," *IEEE Trans. Inform. Theory*, IT-45: 399-431, Mar. 1999.
- [128] F. M. Malvestuto, "A unique formal system for binary decompositions of database relations, probability distributions, and graphs," *Inform. Sci.*, 59: 21-52, 1992; with Comment by F. M. Malvestuto and M. Studený, *Inform. Sci.*, 63: 1-2, 1992.
- [129] M. Mansuripur, Introduction to Information Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
- [130] K. Marton, "Error exponent for source coding with a fidelity criterion," *IEEE Trans. Inform. Theory*, IT-20: 197 199, 1974.
- [131] J. L. Massey, "Shift-register synthesis and BCH decoding," *IEEE Trans. Inform. Theory*, IT-15: 122-127, 1969.
- [132] J. L. Massey, "Causality, feedback and directed information," in *Proc. 1990 Int. Symp. on Inform. Theory and Its Applications*, 303-305, 1990.
- [133] J. L. Massey, "Contemporary cryptology: An introduction," in *Contemporary Cryptology: The Science of Information Integrity*, G. J. Simmons, Ed., IEEE Press, Piscataway, New Jersey, 1992.
- [134] A. M. Mathai and P. N. Rathie, *Basic Concepts in Information Theory and Statistics:* Axiomatic Foundations and Applications, Wiley, New York, 1975.
- [135] F. Matúš, "Probabilistic conditional independence structures and matroid theory: Background," Int. J. of General Syst., 22: 185-196, 1994.
- [136] F. Matúš, "Conditional independences among four random variables II," Combinatorics, Probability & Computing, 4: 407-417, 1995.
- [137] F. Matúš, "Conditional independences among four random variables III: Final conclusion," *Combinatorics, Probability & Computing*, 8: 269-276, 1999.
- [138] F. Matúš and M. Studený, "Conditional independences among four random variables I," Combinatorics, Probability & Computing, 4: 269-278, 1995.
- [139] R. J. McEliece, The Theory of Information and Coding, Addison-Wesley, Reading, Massachusetts, 1977.
- [140] W. J. McGill, "Multivariate information transmission," Transactions PGIT, 1954 Symposium on Information Theory, PGIT-4: pp. 93-111, 1954.
- [141] B. McMillan, "The basic theorems of information theory," Ann. Math. Stat., 24: 196-219, 1953.
- [142] B. McMillan, "Two inequalities implied by unique decipherability," *IRE Trans. Inform. Theory*, 2: 115-116, 1956.
- [143] S. C. Moy, "Generalization of the Shannon-McMillan theorem," *Pacific J. Math.*, 11: 705-714, 1961.
- [144] J. K. Omura, "A coding theorem for discrete-time sources," *IEEE Trans. Inform. Theory*, IT-19: 490-498, 1973.

[145] J. M. Ooi, Coding for Channels with Feedback, Kluwer Academic Publishers, Boston, 1998.

- [146] A. Orlitsky, "Worst-case interactive communication I: Two messages are almost optimal," *IEEE Trans. Inform. Theory*, IT-36: 1111-1126, 1990.
- [147] A. Orlitsky, "Worst-case interactive communication—II: Two messages are not optimal," *IEEE Trans. Inform. Theory*, IT-37: 995-1005, 1991.
- [148] D. S. Ornstein, "Bernoulli shifts with the same entropy are isomorphic," *Advances in Math.*, 4: 337-352, 1970.
- [149] J. G. Oxley, Matroid Theory, Oxford Univ. Press, Oxford, 1992.
- [150] A. Papoulis, Probability, Random Variables and Stochastic Processes, 2nd ed., McGraw-Hill, New York, 1984.
- [151] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufman, San Meteo, California, 1988.
- [152] A. Perez, "Extensions of Shannon-McMillan's limit theorem to more general stochastic processes," in Trans. Third Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, 545-574, Prague, 1964.
- [153] J. R. Pierce, An Introduction to Information Theory: Symbols, Signals and Noise, 2nd rev. ed., Dover, New York, 1980.
- [154] J. T. Pinkston, "An application of rate-distortion theory to a converse to the coding theorem," *IEEE Trans. Inform. Theory*, IT-15: 66-71, 1969.
- [155] M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Vol. 7 of the series Problemy Peredači Informacii, AN SSSR, Moscow, 1960 (in Russian). English translation: Holden-Day, San Francisco, 1964.
- [156] N. Pippenger, "What are the laws of information theory?" 1986 Special Problems on Communication and Computation Conference, Palo Alto, California, Sept. 3-5, 1986.
- [157] C. Preston, Random Fields, Springer-Verlag, New York, 1974.
- [158] M. O. Rabin, "Efficient dispersal of information for security, load balancing, and fault-tolerance," J. ACM, 36: 335-348, 1989.
- [159] I. S. Reed and G. Solomon, "Polynomial codes over certain finite fields," *SIAM Journal Appl. Math.*, 8: 300-304, 1960.
- [160] A. Rényi, Foundations of Probability, Holden-Day, San Francisco, 1970.
- [161] F. M. Reza, An Introduction to Information Theory, McGraw-Hill, New York, 1961.
- [162] J. Rissanen, "Generalized Kraft inequality and arithmetic coding," *IBM J. Res. Devel.*, 20: 198, 1976.
- [163] J. Rissanen, "Universal coding, information, prediction, and estimation," *IEEE Trans. Inform. Theory*, IT-30: 629-636, 1984.

- [164] J. R. Roche, "Distributed information storage," Ph.D. thesis, Stanford University, Mar. 1992.
- [165] J. R. Roche, A. Dembo, and A. Nobel, "Distributed information storage," 1988 IEEE International Symposium on Information Theory, Kobe, Japan, Jun. 1988.
- [166] J. R. Roche, R. W. Yeung, and K. P. Hau, "Symmetrical multilevel diversity coding," IEEE Trans. Inform. Theory, IT-43: 1059-1064, 1997.
- [167] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.
- [168] A. Romashchenko, A. Shen, and N. K. Vereshchagin, "Combinatorial interpretation of Kolmogorov complexity," *Electronic Colloquium on Computational Complexity*, vol.7, 2000.
- [169] K. Rose, "A mapping approach to rate-distortion computation and analysis," *IEEE Trans. Inform. Theory*, IT-40: 1939-1952, 1994.
- [170] S. Shamai, S. Verdú, "The empirical distribution of good codes," *IEEE Trans. Inform. Theory*, IT-43: 836-846, 1997.
- [171] S. Shamai, S. Verdú, and R. Zamir, "Systematic lossy source/channel coding," *IEEE Trans. Inform. Theory*, IT-44: 564-579, 1998.
- [172] A. Shamir, "How to share a secret," Comm. ACM, 22: 612-613, 1979.
- [173] C. E. Shannon, "A Mathematical Theory of Communication," *Bell Sys. Tech. Journal*, 27: 379-423, 623-656, 1948.
- [174] C. E. Shannon, "Communication theory of secrecy systems," *Bell Sys. Tech. Journal*, 28: 656-715, 1949.
- [175] C. E. Shannon, "The zero-error capacity of a noisy channel," *IRE Trans. Inform. Theory*, IT-2: 8-19, 1956.
- [176] C. E. Shannon, "Coding theorems for a discrete source with a fidelity criterion," *IRE National Convention Record, Part 4*, 142-163, 1959.
- [177] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, "Lower bounds to error probability for coding in discrete memoryless channels," *Inform. Contr.*, 10: 65-103 (Part I), 522-552 (Part II), 1967.
- [178] C. E. Shannon and W. W. Weaver, The Mathematical Theory of Communication, Univ. of Illinois Press, Urbana, Illinois, 1949.
- [179] P. C. Shields, The Ergodic Theory of Discrete Sample Paths, American Math. Soc., Providence, Rhode Island, 1996.
- [180] J. E. Shore and R. W. Johnson, "Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy," *IEEE Trans. Inform. Theory*, IT-26: 26-37, 1980.
- [181] I. Shunsuke, Information theory for continuous systems, World Scientific, Singapore, 1993.

[182] M. Simonnard, *Linear Programming*, translated by William S. Jewell, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

- [183] D. S. Slepian, Ed., Key Papers in the Development of Information Theory, IEEE Press, New York, 1974.
- [184] D. S. Slepian and J. K. Wolf, "Noiseless coding of correlated information sources," IEEE Trans. Inform. Theory, IT-19: 471-480, 1973.
- [185] N. J. A. Sloane and A. D. Wyner, Ed., Claude Elwood Shannon Collected Papers, IEEE Press, New York, 1993.
- [186] L. Song, R. W. Yeung, and N. Cai, "A separation theorem for point-to-point communication networks," submitted to *IEEE Trans. Inform. Theory*.
- [187] L. Song, R. W. Yeung and N. Cai, "Zero-error network coding for acyclic networks," submitted to *IEEE Trans. Inform. Theory*.
- [188] F. Spitzer, "Random fields and interacting particle systems," M. A. A. Summer Seminar Notes, 1971.
- [189] M. Studený, "Multiinformation and the problem of characterization of conditional-independence relations," *Problems Control Inform. Theory*, 18: 1, 3-16, 1989.
- [190] J. C. A. van der Lubbe, *Information Theory*, Cambridge Univ. Press, Cambridge, 1997 (English translation).
- [191] E. C. van der Meulen, "A survey of multi-way channels in information theory: 1961-1976," *IEEE Trans. Inform. Theory*, IT-23: 1-37, 1977.
- [192] E. C. van der Meulen, "Some reflections on the interference channel," in *Communications and Cryptography: Two Side of One Tapestry*, R. E. Blahut, D. J. Costello, Jr., U. Maurer, and T. Mittelholzer, Ed., Kluwer Academic Publishers, Boston, 1994.
- [193] M. van Dijk, "On the information rate of perfect secret sharing schemes," *Designs, Codes and Cryptography*, 6: 143-169, 1995.
- [194] S. Vembu, S. Verdú, and Y. Steinberg, "The source-channel separation theorem revisited," *IEEE Trans. Inform. Theory*, IT-41: 44-54, 1995.
- [195] S. Verdú and T. S. Han, "A general formula for channel capacity," *IEEE Trans. Inform. Theory*, IT-40: 1147-1157, 1994.
- [196] S. Verdú and T. S. Han, "The role of the asymptotic equipartition property in noiseless source coding," *IEEE Trans. Inform. Theory*, IT-43: 847-857, 1997.
- [197] S. Verdú and S. W. McLaughlin, Ed., Information Theory: 50 years of Discovery, IEEE Press, New York, 2000.
- [198] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," *IEEE Trans. Inform. Theory*, IT-13: 260-269, 1967.
- [199] A. J. Viterbi and J. K. Omura, Principles of Digital Communications and Coding, McGraw-Hill, New York, 1979.

- [200] T. A. Welch, "A technique for high-performance data compression," *Computer*, 17: 8-19, 1984.
- [201] P. M. Woodard, Probability and Information Theory with Applications to Radar, McGraw-Hill, New York, 1953.
- [202] S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-Hall, Englewood Cliffs, New Jersey, 1995.
- [203] S. B. Wicker and V. K. Bhargava, Ed., Reed-Solomon Codes and Their Applications, IEEE Press, Piscataway, New Jersey, 1994.
- [204] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, "The context-tree weighting method: basic properties," *IEEE Trans. Inform. Theory*, IT-41: 653-664, 1995.
- [205] J. Wolfowitz, "The coding of messages subject to chance errors," *Illinois Journal of Mathematics*, 1: 591-606, 1957.
- [206] J. Wolfowitz, Coding Theorems of Information Theory, Springer, Berlin-Heidelberg, 2nd ed., 1964, 3rd ed., 1978.
- [207] A. D. Wyner, "On source coding with side information at the decoder," *IEEE Trans. Inform. Theory*, IT-21: 294-300, 1975.
- [208] A. D. Wyner and J. Ziv, "The rate-distortion function for source coding with side information at the decoder," *IEEE Trans. Inform. Theory*, IT-22: 1-10, 1976.
- [209] E.-h. Yang and J. C. Kieffer, "Efficient universal lossless data compression algorithms based on a greedy sequential grammar transform Part one: Without context models," *IEEE Trans. Inform. Theory*, IT-46: 755-777, 2000.
- [210] C. Ye and R. W. Yeung, "Some basic properties of fix-free codes," *IEEE Trans. Inform. Theory*, IT-47: 72-87, 2001.
- [211] C. Ye and R. W. Yeung, "A simple upper bound on the redundancy of Huffman codes," to appear in *IEEE Trans. Inform. Theory*.
- [212] Z. Ye and T. Berger, Information Measures for Discrete Random Fields, Science Press, Beijing/New York, 1998.
- [213] R. W. Yeung, "A new outlook on Shannon's information measures," *IEEE Trans. Inform. Theory*, IT-37: 466-474, 1991.
- [214] R. W. Yeung, "Local redundancy and progressive bounds on the redundancy of a Huffman code," *IEEE Trans. Inform. Theory*, IT-37: 687-691, 1991.
- [215] R. W. Yeung, "Multilevel diversity coding with distortion," *IEEE Trans. Inform. Theory*, IT-41: 412-422, 1995.
- [216] R. W. Yeung, "A framework for linear information inequalities," *IEEE Trans. Inform. Theory*, IT-43: 1924-1934, 1997.
- [217] R. W. Yeung and T. Berger, "Multi-way alternating minimization," 1995 IEEE Internation Symposium on Information Theory, Whistler, British Columbia, Canada, Sept. 1995.

[218] R. W. Yeung, T. T. Lee and Z. Ye, "Information-theoretic characterization of conditional mutual independence and Markov random fields," to appear in *IEEE Trans. Inform. Theory*.

- [219] R. W. Yeung and Z. Zhang, "On symmetrical multilevel diversity coding," *IEEE Trans. Inform. Theory*, IT-45: 609-621, 1999.
- [220] R. W. Yeung and Z. Zhang, "Distributed source coding for satellite communications," IEEE Trans. Inform. Theory, IT-45: 1111-1120, 1999.
- [221] R. W. Yeung and Z. Zhang, "A class of non-Shannon-type information inequalities and their applications," *Comm. Inform. & Syst.*, 1: 87-100, 2001.
- [222] Z. Zhang and R. W. Yeung, "A non-Shannon-type conditional inequality of information quantities," *IEEE Trans. Inform. Theory*, IT-43: 1982-1986, 1997.
- [223] Z. Zhang and R. W. Yeung, "On characterization of entropy function via information inequalities," *IEEE Trans. Inform. Theory*, IT-44: 1440-1452, 1998.
- [224] S. Zimmerman, "An optimal search procedure," *Am. Math. Monthly*, 66: 8, 690-693, 1959.
- [225] K. Sh. Zigangirov, "Number of correctable errors for transmission over a binary symmetrical channel with feedback," *Problems Inform. Transmission*, 12: 85-97, 1976. Translated from *Problemi Peredachi Informatsii*, 12: 3-19 (in Russian).
- [226] J. Ziv and A. Lempel, "A universal algorithm for sequential data compression," *IEEE Trans. Inform. Theory*, IT-23: 337-343, 1977.
- [227] J. Ziv and A. Lempel, "Compression of individual sequences via variable-rate coding," IEEE Trans. Inform. Theory, IT-24: 530-536, 1978.

Index

a posterior distribution, 218 Abel, N.H., 368 Abelian group, 368, 381, 384, 386 Abrahams, J., xvii, 389 Abramson, N., 122, 389 abstract algebra, 365 Abu-Mostafa, Y.S., 389 acyclic network, 245–250, 338, 364 Aczél, J., 389 Ahlswede, R., 58, 186, 260, 262, 389 Algoet, P., 389 almost perfect reconstruction, 65, 66, 233 alternating optimization algorithm, 216–218,	basic inequalities, 23, 22–25, 92, 103, 139, 264, 279–301, 313, 322–325, 365, 381 Bassalygo, L.A., 390 Bayesian networks, 160, 291, 300 BCH (Bose-Chaudhuri-Hocquenghem) code, 174 Beethoven's violin concerto, 1 Bell Telephone Laboratories, 2 Berger, T., xii, xvii, 93, 120, 213, 214, 231, 390, 393, 400 Berlekamp, E.R., 390, 398 Berrou, C., 174, 390 Bhargava, V.K., 400 biased coin, 41
convergence, 226 Amari, S., 39, 389 Anatharam, V., xvii Anderson, J.B., 389 applied mathematics, 4 applied probability, 3 Arimoto, S., 174, 186, 231, 389, 390 See also Blahut-Arimoto algorithms arithmetic mean, 159 ascendant, 55 Ash, R.B., 390 asymptotically reliable communication, 152 atom of a field, 96 weight of, 137 audio signal, 189 audio source, 323 auxiliary random variable, 310, 311, 324, 340– 361 average distortion, 188, 189, 191, 206, 210, 215 expected, 206 average probability of error, 159, 185 Ayanoglu, E., 262, 390 Balkenhol, B., 58, 389	binary arbitrarily varying channel, 185 binary covering radius, 212 binary entropy function, 11, 29, 30, 201 binary erasure channel, 156, 179 binary symmetric channel (BSC), 149, 155, 183–186 binomial formula, 132, 295, 297 bit, 3, 11, 236 Blackwell, D., 390 Blahut, R.E., xvii, 186, 214, 231, 390, 399 Blahut-Arimoto algorithms, xii, 157, 204, 215–231 channel capacity, 218–223, 230 convergence, 230 rate distortion function, 223–226, 231 block code, 64 block length, 64, 151, 160, 187, 215 Blundo, C., 121, 391 Bose, R.C., 391 See also BCH code bottleneck, 235 brain, 323 branching probabilities, 54 Breiman, L., 71, 390, 391 See also Shannon-McMillan-Breiman the-
Balkenhol, B., 58, 389 Barron, A.R., 390	See also Shannon-McMillan-Breiman theorem

DRAFT September 13, 2001, 6:27pmDRA

FΤ

Burrows, M., 391	Shannon's model, 2
	communication theory, 3
Cai, N., xvii, 77, 185, 260, 262, 364, 389, 395, 399	commutative group, <i>see</i> Abelian group commutativity, 368, 369
Calderbank, R., 391	compact disc, 1
capacity of an edge, 234	compact set, 154, 229
Capocelli, R.M., 121, 391	composite function, 369
Cartesian product, 216	compound source, 213
cascade of channels, 184	computational procedure, 283, 287
causality, 184	computer communication, 174
Cesáro mean, 34	computer network, 233, 240
chain rule for	computer science, 11
	computer storage systems, 174
conditional entropy, 18 conditional mutual information, 19	concavity, 36, 37, 112, 115, 226, 227, 229, 230
	conditional branching distribution, 54
entropy, 17, 26	conditional entropy, 5, 12
mutual information, 18 , 27 Chan, A.H., xvii	conditional independence, xiii, 6 , 276–277, 291
	300
Chan, T.H., xvii, 10, 92, 386, 387, 391	elemental forms, 298
Chan, V.W.S., xvii	structure of, 10, 325
channel capacity, 3, 154 , 149–186, 215	conditional mutual independence, 126–135
computation of, xii, 157, 186, 218–223,	conditional mutual information, 5, 15
226, 230	constant sequence, 191
feedback, 174–180	continuous partial derivatives, 216, 221, 229
channel characteristics, 149	convex closure, 341, 343, 377, 380
channel code, 150, 160, 183	convex cone, 306, 307, 346
probability of error, 150	convexity, 20, 37, 113, 192, 195, 198, 206, 216
rate, 152, 159	221, 225, 266, 308
with feedback, 175	convolutional code, 174
without feedback, 158	convolutional network code, 260
channel coding theorem, xii, 3, 39, 160 , 158– 160, 186	Cornell, xvii
achievability, 158, 166-171	coset
converse, 158, 179	left, 370 , 371, 373
random code, 166	right, 370 Costello, Jr., D.J., 390, 395, 399
strong converse, 165, 186	
channel with memory, 183	countable alphabet, 71 Cover, T.M., xi, xvii, 231, 389, 391
Chatin, G.J., 391	crossover probability, 149 , 184–186, 202
Chernoff bound, 77	Croucher Foundation, xvii
Chernoff, H., 391	Csiszár, I., xii, xvii, 39, 93, 122, 231, 278, 392
chronological order, 242	cyclic network, 251–259
Chung, K.L., 71, 391	cyclic network, 251–257
cipher text, 115, 120	D-adic distribution, 48, 53
classical information theory, 233	D-ary source code, 42
closure, in a group, 366	D-it, 11, 44, 57
code alphabet, 42	D_{max} , 191, 195, 198, 201
code tree, 46 , 46–57	d_{max} , 205
pruning of, 55	Dantzig, G.B., 392
codebook, 158, 192, 207	Daróczy, Z., 389
codeword, 64, 158, 192, 207	data communication, 174
coding session, 242, 247, 248, 339	data packet, 240
transaction, 242, 261	data processing theorem, 28 , 117, 164, 244, 289
coding theory, 173, 174	323
column space, 275	Davisson, L.D., 392
combinatorics, 86	Dawid, A.P., 292, 392
communication engineer, 3	De Santis, A., 121, 391
communication engineering, 149	De Simone, R., 121, 391
communication system, 1, 3	decoder, 64, 166, 207, 240
•	· · · · · · · · · · · · · · · · · · ·

INDEX 405

decoding function, 70, 158, 175, 192, 242, 247, 258, 339, 354	primal, 286 Dueck, G., 392
deep space communication, 174	dyadic distribution, 48
Delchamps, D.F., xvii	
Dembo, A., 262, 398	ear drum, 323
Dempster, A.P., 392	east-west direction, 217
dense, 347	efficient source coding, 66–67
dependency graph, 160, 176, 185	elemental inequalities, 281 , 279–281, 285, 301,
directed edge, 160	302
dotted edge, 160	α -inequalities, 294–298
parent node, 160	β -inequalities, 294–298
solid edge, 160	minimality of, 293–298
descendant, 47, 55, 56	Elias, P., 392
destination, 2	EM algorithm, 231
destination node, 233	emotion, 1
digital, 3	empirical distribution, 93
digital communication system, 3	joint, 210
directed graph, 234	empirical entropy, 62 , 64, 73
acyclic, 245, 337	encoder, 64, 166, 207, 240
cut, 235, 350	encoding function, 70, 158, 175, 192, 242, 246,
capacity of, 235	247, 257, 339, 353
cycle, 245, 252	Encyclopedia Britanica, 4, 392
cyclic, 245	engineering, 3, 183
edges, 234	ensemble average, 68
max-flow, 235	entropic, 266, 305, 342, 374
min-cut, 235	entropies, linear combination of, 10, 24, 123,
nodes, 234	267, 281
path, 245, 252	entropy, 3, 5, 10 , 39, 372
rate constraints, 234, 235, 337	concavity of, 112
sink node, 234	relation with groups, 365–387
source node, 234	entropy bound, xii, 44 , 42–45, 48, 50, 53, 57
directional derivative, 229	for prefix code, 54
discrete channel, 153	entropy function, xi, 266 , 301, 306, 308, 313,
discrete memoryless channel (DMC), 152–157,	322, 372
175, 183, 184, 215	continuity of, 380
achievable rate, 160	group characterization, 375 , 372–376
symmetric, 184	entropy rate, xii, 5, 33 , 32–35, 187
disk array, 239, 335, 362	entropy space, 266, 269, 281, 301, 341, 372
distinguishable messages, 248	equivalence relation, 138
distortion measure, 187–214	erasure probability, 156
average, 188	ergodic, 68
context dependent, 189	Euclidean distance, 220, 309
Hamming, 189, 201, 203	Euclidean space, 266, 302, 341
normalization, 189, 199	evesdroper, 117
	expected distortion, 191, 223
single-letter, 188	minimum, 191, 201
square-error, 189 distortion rate function, 195	extreme direction, 305, 314, 321
distributed source coding, 364	extreme direction, 303, 311, 321
divergence, 5, 20 , 19–22, 39, 318	£
convexity of, 37	facsimile, 1
· · · · · · · · · · · · · · · · · · ·	fair coin, 41
divergence inequality, 20 , 22, 37, 219, 318	Fano's inequality, 30 , 28–32, 39, 67, 164, 179,
diversity coding, 239, 336	182, 186, 245, 344
Dobrushin, R.L., 390 double infimum, 218, 225	simplified version, 31
	tightness of, 38
double supremum, 216, 218, 220, 221	Fano, R.M., 39, 186, 392
duality theorem, 286	fault-tolerant data storage system, 239, 322
dual, 286	fault-tolerant network communication, 335

FCMI, see full conditional mutual independen-	identity, 366, 367–370, 372, 373
cies	inverse, 366–368, 370
feedback, xii, 153, 154, 183-185	order of, 365, 367, 370
Feinstein, A., 186, 392	group inequalities, 365-380, 384, 387
Feller, W., 392	group theory, xi, xiii, 93, 306
ferromagnetic material, 140, 148	relation with information theory, 365–387
field, in measure theory, 96	group-characterizable entropy function, 375,
Fine, T.L., xvii	372–376
finite alphabet, 29, 32, 67, 70, 71, 93, 154, 167,	Guiasu, S., 393
180, 188, 207, 215, 352, 358, 380	
finite group, 367 , 365–387	Hajek, B.E., xvii, 393
finite resolution, 1	half-space, 269, 347
finite-dimensional maximization, 215	Hammer, D., 325, 393
Fitingof, B.M., 392	Hamming ball, 212
fix-free code, 58	Hamming code, 174
flow, 234 , 251	Hamming distance, 185
conservation conditions, 235	Hamming distortion measure, 189
value of, 235	Hamming, R.V., 393
zero flow, 252	Han, T.S., xvii, 37, 123, 278, 309, 393, 394, 399
Ford, Jr., L.K., 393	Hardy, G.H., 38, 394
Forney, Jr., G.D., 393	Hau, K.P., 363, 364, 394, 398
frequency of error, 189	Heegard, C., xvii, 394
Fu, F., xvii, 146, 393	Hekstra, A.P., xvii
Fujishige, S., 300, 393	hiker, 217
Fulkerson, D.K., 393	Ho, SW., xvii
full conditional independence, xii	Hocquenghem, A., 394
full conditional mutual independencies, 126,	See also BCH code
136–140, 291	home entertainment systems, 174
axiomatization, 148	Horibe, Y., 394
image of, 136 , 138	Hu, G., 122, 394
set-theoretic characterization, 148	Huffman code, 48 , 48–53
functional dependence, 276, 358	expected length, 50, 52
fundamental inequality, xii, 20, 20, 45	optimality of, 50
fundamental limits, 3	Huffman procedure, 48 , 48–53
	dummy symbols, 49
Gács, P., 391	Huffman, D.A., 59, 394
Gallager, R.G., xvii, 174, 186, 393, 398	human factor, 1 hyperplane, 268, 273, 277, 305, 321, 347
Γ_n , 281–301	Hyvarinen, L.P., 394
Γ_n^* , 266 , 282, 301, 364, 366	11y varmen, E.1., 394
$\overline{\Gamma}_n^*$, 305	I, CL., 262, 390
group characterization of, 377–380	<i>I</i> -Measure, xii, 102 , 95–123, 125–148, 162,
Gargano, L., 121, 391	302, 308
Ge, Y., 148, 393	empty atom, 100
generic discrete channel, 153, 166, 215, 218	Markov chain, 105–111, 143–146
Gersho, A., 393	Markov structures, 125–148
Gitlin, R.D., 262, 390	negativity of, 103–105
Glavieux, A., 390	nonempty atom, 100
global Markov property, 140, 147	universal set, 97, 100
Goldman, S., 393	i.i.d. source, 64, 68, 70, 73, 188, 213, 215
gradient, 228	bivariate, 83, 84
graph theory, 234	image, 189
graphical models, xii, 148	imperfect secrecy theorem, 115
Gray, R.M., 391, 393	implication problem, xiii, 276–277, 291–293,
group, 366 , 365–387	300
associativity, 366 , 367–369, 372	involves only FCMI's, 138, 276
axioms of, 366	inclusion-exclusion formula, 99
closure, 368, 369, 372	a variation of, 118

INDEX 407

incomplete data, 231 incompressible, 66, 239 independence bound for entropy, 25, 66 independence of random variables, 5–10 mutual, 6, 25, 26, 33, 36, 106, 120, 208, 270, 290, 359 pairwise, 6, 36, 104, 303 independent parallel channels, 184, 299	Jelinek, F., 394 Jensen's inequality, 205 Jerohin, V.D., 212, 394 Jewell, W.S., 399 Johnsen, O., 58, 394 Johnson, R.W., 398 joint entropy, 12, 265 joint source-channel coding, 181, 183
inferior, 329, 347	Jones, G.A., 394
strictly, 347	Jones, J.M., 394
infinite alphabet, 29, 32, 70, 93	W-1-11 W 204
infinite group, 367	Kakihara, Y., 394
Information Age, 4	Karush, J., 59, 394 Kawabata, T., 108, 123, 148, 394, 395
information diagram, xii, 105 , 95–123, 287, 293, 312	Keung-Tsang, FO., xviii
Markov chain, 108–111, 143–146, 162	key, of a cryptosystem, 115, 120
information expressions, 263	Khachatrian, L., 58, 389
canonical form, 267–269	Khinchin, A.I., 395
alternative, 277	Kieffer, J.C., 395, 400
uniqueness, 268, 277, 278	Kindermann, R., 395
nonlinear, 278	Kobayashi, K., xvii, 394
symmetrical, 277	Koetter, R., 364, 395
information identities, xii, 24, 122, 263	Kolmogorov complexity, 325, 387
constrained, 272, 284-285	Kolmogorov, A.N., 395
unconstrained, 269	Körner, J., xii, 93, 122, 278, 389, 392
information inequalities, xi, xii, 24 , 112, 263, 364, 366, 380–384	Kraft inequality, xii, 42 , 44, 45, 47, 48, 52, 58, 59
constrained, 270-272, 284-285	Kraft, L.G., 395
equivalence of, 273–276, 278	Kschischang, F.R., xvii
framework for, xiii, 263-278, 340, 341	Kullback, S., 39, 395
machine-proving, ITIP, 265, 287-291	Kullback-Leibler distance, see divergence
non-Shannon-type, xiii, 25, 301–325	L'Hospital's rule, 17
Shannon-type, xiii, 279–300	Lagrange multipliers, 222
symmetrical, 298	Lagrange's Theorem, 371
unconstrained, 269 , 283–284, 305, 366,	Laird, N.M., 392
380	Langdon, G.G., 395
information rate distortion function, 196 , 206	Lapidoth, A., xvii
continuity of, 206	IAT _E X, xviii
properties of, 198	lattice theory, 123
information source, 2, 32, 42, 187, 233, 242 informational divergence, <i>see</i> divergence	Lauritzen, S.L., 395
Ingleton inequality, 325, 386	laws of information theory, xiii, 264, 321, 325
Ingleton, A.W., 394	leaf, 46 , 46–57
input channel, 240, 247, 339	Lebesgue measure, 278, 305
input distribution, 154 , 166, 215, 218, 224	Lee, J.YB., xvii
strictly positive, 221, 231	Lee, T.T., 148, 400
interleave, 254	Leibler, R.A., 39, 395
internal node, 46 , 46–57	Lempel, A., 401
conditional entropy of, 54	letter, 32 Leung, S.K., 391
Internet, 233	Li, M., 395
invertible transformation, 268	Li, Ivi., 393 Li, P., xvii
Ising model, 140, 148	Li, SY.R., 260, 262, 389, 395
iterative algorithm, 186, 214, 216, 224, 231	Lin, S., 395
ITIP, xiii, xvii, 287–291, 310, 324	Linder, T., 59, 395
efficient implementation, 294	line of sight, 336
	linear code, 174
Jaynes, E.T., 394	linear constraints, 270, 273

linear network code, 262 linear programming, xiii, 279, 281–287, 300,	mean-square error, 189 meaningful information, 1
346	measure theory, 68, 96
linear subspace, 271, 314, 321	Médard, M., 364, 395
Littlewood, J.E., 38, 394	membership table, 373
local Markov property, 147	message, 236
local redundancy, 56	message set, 149, 158
local redundancy theorem, 56–57	method of types, 77, 93
log-optimal portfolio, 231	microelectronics, 173
log-sum inequality, 21, 37, 230	min-cut, 235, 244
longest directed path, 245	minimum distance decoding, 185
Longo, G., 390	Mittelholzer, T., 390, 399
lossless data compression, 3	modulo 2 addition, 238, 261, 367–368, 375, 376
Lovasz, L., 395	modulo 3 addition, 261
low-density parity-check (LDPC) code, 174	Mohan, S., 389
	most likely sequence, 64
MW D.I.C. 174 205	Moy, S.C., 396
MacKay, D.J.C., 174, 395	
majority vote, 151	μ^* , see I-Measure multi-dimensional direction, 217
Malvestuto, F.M., 148, 396	
Mann, H.B., 390	multi-source network coding, xiii, 327–364
Mansuripur, M., 396	$\frac{\Gamma_{N}^{*}}{2}$, 342
mapping approach, 214	$\overline{\Gamma}_N^*$, 342
marginal distribution, 310–312	achievable information rate region, 327,
Markov chain, xii, 5, 7 , 27, 107, 108, 111, 112,	340
115, 117, 125, 126, 140, 143–146,	inner bound, 340–342
161, 179, 184, 244, 275, 287, 289,	LP bound, 346–350
310, 312, 323	outer bound, 342–346
information diagram, 107–111, 143–146,	achievable information rate tuple, 339
162	algebraic approach, 364
Markov graph, 140	network code for acyclic network, 337-
Markov random field, xii, 111, 126, 140–143,	340
148	random code, 352
Markov star, 147	superposition, 330-334, 362, 364
Markov structures, xii, 125–148	variable length zero-error, 341
Markov subchain, 8	multicast, xiii, 233 , 233–262, 327–364
Marton, K., 396	multilevel diversity coding, 335-336, 364
Massey, J.L., xvii, 117, 396	symmetrical, 336, 364
Mathai, A.M., 396	multiple descriptions, 146
MATLAB, 287	multiple information sources, 234
Matúš, F., 276, 309, 325, 396	multiterminal source coding, 213
Maurer, U., 390, 399	mutual information, 5, 13 , 223
max-flow, 235, 244, 252	between more than two random variables,
max-flow bound, xiii, 236, 242, 242-259, 262,	105
327, 350	concavity of, 115
achievability, 245–259	•
max-flow bounds, 328–330, 361	convexity of, 113, 199 mutually independent information sources, 327–
max-flow min-cut theorem, 235, 244, 249	
maximal probability of error, 159, 166, 181, 185	361
maximum likelihood decoding, 185	
Mazo, J., 262, 390	Narayan, P., xvii, 77, 392
McEliece, R.J., 396	nerve impulse, 323
McGill, W.J., 122, 396	network coding, xi, xiii, 240, 233-262, 327-364
McLaughlin, S.W., 399	Nobel, A., 262, 398
McMillan, B., 59, 71, 396	node of a network, 233, 240
See also Shannon-McMillan-Breiman the-	noise source, 2
orem	noisy channel, 3, 149, 171
mean ergodic, 69	noisy environment, 1
٠٠, ٠٠	• • • • • •

```
DRAFT September
13, 2001, 6:27pmDRA
FT
```

INDEX 409

non-Shannon-type inequalities, xiii, 25, 264,	prefix-free code, see prefix code
265, 287, 301–325	Preston, C., 148, 397
constrained, 315–321	probabilistic coding, 70, 183
unconstrained, 310–315, 366, 384	probability distribution
nonlinear optimization, 216	rational, 377
nonnegative linear combination, 285 , 286	strictly positive, 5 , 9, 218, 299
nonnegative orthant, 266, 268, 282, 302, 309	with zero masses, 5 , 147, 218
normalization constant, 161	probability of error, 30, 64, 150, 165, 189, 196
north-south direction, 217	339
null space, 273	probability theory, 276, 321
numerical computation, 157, 204, 215–231	product source, 212, 299
	projection, 346 pyramid, 282, 285
Omura, J.K., 396, 399	pyramiu, 282, 283
Ooi, J.M., 396	quantized samples, 188
optimal coding scheme, 3	quasi-uniform structure, 374
order of a node, 47	asymptotic, 91, 374
ordinate, 223	usymptotic, > 1, 5 / 1
Orlitsky, A., xvii, 397	Rabin, M.O., 262, 397
Ornstein, D.S., 397	random code, 166, 207, 247, 262, 352, 363
orthogonal complement, 274	random coding error exponent, 186
output channel, 237, 240	random noise, 149
Oxley, J.G., 397	rank function, 386
	rank of a matrix, 273
Papoulis, A., 122, 397	full, 274–276
parity check, 174	rate constraints, 234, 236, 242, 243, 245, 247
partition, 138, 353	251, 259, 332, 337, 339
PC, xviii, 287	rate distortion code, 191, 187–215
Pearl, J., 397	rate distortion function, 195 , 191–196, 206, 213
perceived distortion, 189 Perez, A., 397	215
perfect secrecy theorem, Shannon's, xii, 117	binary source, 201
permutation, 368	forward channel description, 212
permutation group, 368–370	reverse channel description, 202 computation of, xii, 204, 214, 223–226
physical entity, 236	231
physical system, 4	normalization, 214
physics, xi	product source, 212, 299
Pierce, J.R., 397	properties of, 195
Pinkston, J.T., 214, 397	Shannon lower bound, 212
Pinsker's inequality, 22, 37, 39, 77	rate distortion pair, 192, 204
Pinsker, M.S., 39, 390, 397	rate distortion region, 192, 196, 223
Pippenger, N., 325, 397	rate distortion theorem, 197, 196-204, 214
plain text, 115, 120	achievability, 206–211
point-to-point channel, 149, 233, 234	converse, 204–206
error-free, 233	random code, 207
point-to-point communication network, xiii,	relation with source coding theorem, 203
233–235, 327	rate distortion theory, xii, 187–214
point-to-point communication system, 2, 233	Rathie, P.N., 396
Polya, G., 38, 394	rational number, 193, 194, 377
polymatroid, 297, 300, 325 polynomial, 278	raw bits, 66 , 239
practical communication system, 149, 174	"approximately raw" bits, 67 Ray-Chaudhuri, D.K., 391
prefix code, xii, 42, 45 , 45–57	See also BCH code
entropy bound, xii	reaching probability, 54, 55
existence of, 47	receiver, 2
expected length, 55	receiving point, 233, 330
random coding, 58	rectangular lattice, 140, 148
redundancy, xii, 54–57	reduced code tree, 51
** :	•

reduced probability set, 51	irreducible, 279 , 298
redundancy, xii	linear combination of, 263
of prefix code, 54–57	reducible, 279 , 298
of uniquely decodable code, 45	set-theoretic structure of, see I-Measure
Reed, I.S., 397	Shannon's papers, collection of, 4
Reed-Solomon code, 174	Shannon, C.E., xi, 2, 39, 59, 64, 71, 186, 213
relative entropy, see divergence	214, 300, 325, 398
relative frequency, 73	Shannon-McMillan-Breiman theorem, xii, 35
Rényi, A., 397	68 , 68–69, 181
repetition code, 151	Shannon-type identities
replication of information, 237, 238	constrained, 284–285
reproduction alphabet, 188, 201, 207	Shannon-type inequalities, xiii, 264 , 265, 279-
reproduction sequence, 187–189, 194, 207	300, 309
	constrained, 284–285
resultant flow, 235, 252	
Reza, F.M., 122, 397	machine-proving, ITIP, 279, 287–291
Rissanen, J., 397	301
Roche, J.R., 262, 363, 364, 397, 398	unconstrained, 283–284
Rockafellar, R.T., 398	Shen, A., 325, 387, 393, 398
Romashchenko, A., 325, 387, 393, 398	Shields, P.C., 398
Rose, K., 214, 398	Shore, J.E., 398
routing, 236, 238	Shtarkov, Y.M., 400
row space, 274	Shunsuke, I., 398
Rubin, D.B., 392	siblings, 50
Russian, 122	side-information, 213
	signal, 149
Sason, I., xvii	signed measure, 96 , 102, 103
satellite communication network, 335-336	Simmons, G.J., 396
science, 3	Simonnard, M., 398
science of information, the, 3	simple path, 252
secret key cryptosystem, 115, 120	maximum length, 253
secret sharing, 120 , 121, 290	simplex method, 284, 285
access structure, 121	optimality test, 284, 285
information-theoretic bounds, 120–121,	single-input single-output system, 149, 153
290, 291	single-letter characterization, 215
participants, 121	single-letter distortion measure, 215
security level of cryptosystem, 117	single-source network code
self-information, 14	α -code, 241, 242, 247
semi-graphoid, 299, 300	causality of, 244
axioms of, 292	β -code, 246, 247, 257, 338
separating rate distortion coding and channel	γ -code, 257
coding, 213	phase, 258
separating source and channel coding, 153, 180–	single-source network coding, 233–262, 327
183	328, 348, 350
separation theorem for source and channel cod-	achievable information rate, 242, 259
ing, 183	one sink node, 236
set function, 266	random code, 247, 262
	three sink nodes, 239
additive, 96, 118, 135 set identity, 99, 122, 132	two sink nodes, 237
set identity, 99, 122, 132 set operations, 95, 96	sink node, 234, 236
	Slepian, D.S., 213, 399
set theory, xii, 95	Slepian-Wolf coding, 213
Shamai, S., xvii, 398	
Shamir, A., 398	Sloane, N.J.A., 391, 399
Shannon code, 53	Snell. J., 395
Shannon's information measures, xii, 5 , 10–16,	Solomon, G., 397
24, 95	See also Reed-Solomon code
continuity of, 16	Song, L., xvii, 185, 364, 399
elemental forms, 280, 298	sound wave, 323

INDEX 411

source code, 42, 183, 187	time average, 68
source coding theorem, xii, 3, 64 , 64–66, 71,	time-parametrized acyclic graph, 251
187, 196, 204	layers of nodes, 251
coding rate, 64	time-sharing, 193, 359
converse, 66	Tjalkens, T.J., 400
direct part, 65	transition matrix, 153, 184, 198, 215, 218, 223,
general block code, 70	224
source node, 234, 236	strictly positive, 226
source random variable, 212	transmitter, 2
source sequence, 187-189, 194, 207	transmitting point, 233, 330
Spitzer, F., 148, 399	Tsang, MW., xviii
stationary ergodic source, 68, 68 , 71, 180	Tsang, PW.R., xviii
entropy rate, 69	turbo code, 174
stationary source, xii, 34, 68	Tusnády, G., 231, 392
entropy rate, 5, 32–35	Type I atom, 141
Steinberg, Y., 399	Type II atom, 141
still picture, 2	type of an empirical distribution, 93
Stirling's approximation, 85	
stock market, 231	uncertainty, 2, 11
strong asymptotic equipartition property (AEP),	undirected graph, 140
61, 74 , 73–82, 93, 209, 352, 353,	components, 140
357	cutset, 140
strong law of large numbers, 69	edges, 140
strong typicality, xii, 73–93, 207, 351	loop, 140
consistency, 83, 168, 208	vertices, 140
joint, 83–91	uniform distribution, 155, 157, 158, 167, 212,
joint AEP, 84	247, 304, 308, 374, 375
joint typicality array, 90, 374	union bound, 76, 168, 181, 195, 249, 250
jointly typical sequence, 83	uniquely decodable code, xii, 42 , 45, 47, 48, 50,
jointly typical set, 83	54, 58, 59
typical sequence, 73	expected length, 43
typical set, 73	redundancy, 45
vs weak typicality, 82	universal source coding, 70
Studený, M., 122, 299, 300, 325, 396, 399	Unix, xviii, 287
subcode, 194	Vaccare II 121 201
subgroups, xiii, 365–387	Vaccaro, U., 121, 391
intersection of, 365, 372	van der Lubbe, J.C.A., 399
membership table, 373	van der Meulen, E.C., 399
substitution of symbols, 99	van Dijk, M., 121, 399
suffix code, 58	variable length channel code, 179
summit of a mountain, 217	variational distance, 22, 38
support, 5, 11, 16, 17, 19, 36, 70, 73, 188, 304,	vector space, 386 Vembu, S., 399
375	Venn diagram, xviii, 14, 96, 105, 122
finite, 358	Verdú, S., xvii, 398, 399
switch, 240	Vereshchagin, N.K., 325, 387, 393, 398
	video signal, 189
tangent, 223	Vitányi, P., 395
Tarokh, V., 59, 395	Viterbi, A.J., 399
telephone conversation, 174	vicoloi, 11.5., 577
telephone line, 1, 174	water flow, 234
telephone network, 233	water leakage, 234
Teletar, I.E., xvii	water pipe, 171, 234
television broadcast channel, 2	weak asymptotic equipartition property (AEP),
thermodynamics, 39	xii, 61 , 61–71
Thitimajshima, P., 390	See also Shannon-McMillan-Breiman the-
Thomas, J.A., xi, 391	orem
Thomasian, A.J., 390	weak independence, 120
·	* '

weak law of large numbers, 61, 62, 151 weak typicality, xii, 61-71, 73 typical sequence, **62**, 62–71 typical set, **62**, 62–71 Weaver, W.W., 398 Wegener, I., 389 Wei, V.K., xvii Welch, T.A., 399 Welsh, D.J.A., 394 Wheeler, D.J., 391 Wicker, S.B., 394, 400 Willems, F.M.J., xvii, 400 wireless communication, 174 Wolf, J.K., xvii, 213, 399 See also Slepian-Wolf coding Wolfowitz, J., 186, 389, 400

Woodard, P.M., 400

WYSIWYG, 112

Wyner, A.D., 399, 400

Yan, Y.-O., xvii, 320 Yang, E.-h., 395, 400 Ye, C., xvii, 59, 400 Ye, Z., 148, 393, 400 Yeh, Y.N., xviii Yeung, G., xviii Yeung, R.W., 10, 57, 59, 77, 120, 122, 123, 146, 148, 185, 231, 260, 262, 278, 300, 324, 325, 363, 364, 389–391, 393, 395, 398–401 Yeung, S.-W.S., xviii

Zamir, R., 146, 393, 398 Zeger, K., xvii, 59, 395 zero-error data compression, xii, 41–59, 61 zero-error reconstruction, 233, 242 Zhang, Z., xvii, 292, 324, 325, 364, 401 Zigangirov, K.Sh., 401 Zimmerman, S., 59, 401 Ziv, J., 400, 401