

Available online at www.sciencedirect.com

# **ScienceDirect**





## **Short Communication**

# Nitrogen-doped carbon supported platinum catalyst via direct soft nitriding for high-performance polymer electrolyte membrane fuel cell



Dong-Jun Seo  $^{a,b,1}$ , Myeong-Ri Kim  $^{a,b,1}$ , Seung Yong Yang  $^{a,b}$ , Won-Young Choi  $^{a,c}$ , Hyunguk Choi  $^{a,c}$ , Seo-Won Choi  $^{a,c}$ , Myeong-Hwa Lee  $^{a,c}$ , Young-Gi Yoon  $^{a}$ , Min-Ho Seo  $^{a}$ , Hansung Kim  $^{b,***}$ , Chi-Young Jung  $^{a,**}$ , Tae-Young Kim  $^{a,*}$ 

## ARTICLE INFO

Article history:
Received 21 March 2018
Received in revised form
17 July 2018
Accepted 28 July 2018
Available online 20 August 2018

Keywords: Soft nitriding Nitrogen doping Electrocatalyst ORR PEMFC

## ABSTRACT

Control of doping levels of nitrogen to carbon support plays a key role to enhance the catalytic activity of the Pt/C catalyst toward oxygen reduction reaction. Mass-production of such materials is still challenging issue for the practical use. Here, we demonstrate a facile approach for fabrication of the nitrogen-doped Pt/C catalysts via direct soft nitriding of the Pt/C catalyst. The commercial 40 wt% Pt/C is first physically mixed with urea and then heat-treated at 300 °C, which allowed a massive production of the 6.6 atom% nitrogen-doped Pt/C catalysts without sacrificing the Pt catalysts. The specific activity increases by 46.9% after the thermal treatment, while the particle size and crystallinity of Pt remain similar to those before the thermal treatment. As a result, the fuel cell test showed a notable increase in the current density by 100% and 18.5% at 0.8 V and 0.5 V, respectively, for the membrane electrode assembly employing urea treated Pt/C catalyst. Hence, the soft nitriding by urea offers great promise as a simple, energy-efficient and eco-friendly way in manufacturing the nitrogen-doped Pt/C catalyst for the polymer electrolyte membrane fuel cell applications.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

<sup>&</sup>lt;sup>a</sup> Buan Fuel Cell Center, Korea Institute of Energy Research (KIER), Jeollabuk-do, 56332, Republic of Korea

<sup>&</sup>lt;sup>b</sup> Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03772, Republic of Korea

<sup>&</sup>lt;sup>c</sup> Department of Energy Storage and Conversion Engineering, Chonbuk National University, Jellabuk-do, 54596, Republic of Korea

<sup>\*</sup> Corresponding author.

<sup>\*\*</sup> Corresponding author.

<sup>\*\*\*</sup> Corresponding author.

E-mail addresses: elchem@yonsei.ac.kr (H. Kim), cyjung@kier.re.kr (C.-Y. Jung), kty@kier.re.kr (T.-Y. Kim).

<sup>&</sup>lt;sup>1</sup> D. Seo and M. Kim contributed equally to this work.