

2005 אלגוריתמים – (234247) אלגוריתמים 1

פתרון תרגיל בית 6

שאלה 1

הפתרון מופיע בדפי ההרצאה (וב-CLRS).

שאלה 2

עייי $B\subseteq\{1,2,...,n\}$ ואת הקבוצה $p(A)=\sum_{i\in A}x^i$ עייי הפולינום $A\subseteq\{1,2,...,n\}$ ואת הקבוצה $A\subseteq\{1,2,...,n\}$ עייי $A\subseteq\{1,2,...,n\}$ בזמן $A\subseteq\{1,2,...,n\}$ הפולינום $a\in A$ כעת, ניתן לחשב את פולינום המכפלה $a\in A$ בימן $a\in A$ שימו לב כי לכל $a\in A$ מתקיים כי המקדם של $a\in A$ שונה מאפס אמיים קיימים $a\in A$ כך ש- a+b=c בלן פלט האלגוריתם יהיה החזקות בעלות מקדם שונה מאפס ב- a+b=c בי a+b=c

<u>שאלה 3</u>

- $(a_0+a_1)(b_0+b_1)$ ו- $(a_0b_0+a_1b_1)$ ו- $(a_0+a_1)(b_0+b_1)$ די לחשב את המכפלות המכפלות $(a_0+a_1)(b_0+b_1)-a_0b_0-a_1b_1=a_0b_1+a_1b_0$ יש לשים לב כי $(a_0+a_1)(b_0+b_1)-a_0b_0-a_1b_1=a_0b_1+a_1b_0$ יש לשים לב כי
- : נחלק כל אחד מהפולינומים לחזקות גבוהות ונמוכות (ניתן גם לחלק לפי זוגיות החזקות): $A(x) = A_0(x) + x^{n/2} A_1(x) = (a_0 + a_1 x + \ldots + a_{(n/2)-1} x^{(n/2)-1}) + x^{n/2} (a_{n/2} + a_{(n/2)+1} x + \ldots + a_{n-1} x^{(n/2)-1})$ $B(x) = B_0(x) + x^{n/2} B_1(x) = (b_0 + b_1 x + \ldots + b_{(n/2)-1} x^{(n/2)-1}) + x^{n/2} (b_{n/2} + b_{(n/2)+1} x + \ldots + b_{n-1} x^{(n/2)-1})$ כעת נשים לב כי באופן דומה לסעיף הקודם מתקיים

$$C(x) = A(x) \cdot B(x) = A_0(x)B_0(x) + x^{n/2} \left(A_0(x)B_1(x) + A_1(x)B_0(x)\right) + x^n A_1(x)B_1(x)$$

$$: \forall x \in A(x) \cdot B(x) = A_0(x)B_0(x) + x^{n/2} \left(A_0(x)B_1(x) + A_1(x)B_0(x)\right) + x^n A_1(x)B_1(x)$$

$$\left(A_0(x)+A_1(x)
ight)(B_0(x)+B_1(x)
ight)-A_0(x)B_0(x)-A_1(x)B_1(x)=A_0(x)B_1(x)+A_1(x)B_0(x)$$
 כלומר, ניתן לחשב את $C(x)$ עייי 3 פעולות כפל של פולינומים מדרגה חסומה ב- $C(x)$ עייי 3 פעולות נוספות. נסמן ב- $C(x)$ את זמן ריצת האלגוריתם עבור פולינום מדרגה חסומה ב- $C(x)$ אזי נוסחת $T(n)=C(1)$ הנסיגה שמתקבלת היא $T(n)=3$

ניתן לפתור את הנוסחה עפייי משפט ה-Master או בצורה ישירה (למשל, עייי פיתוח):

$$T(n) \le 3T(n/2) + cn \le 3\left(3T(n/4) + c\frac{n}{2}\right) + cn = 9T(n/4) + (1 + \frac{3}{2})cn = 9\left(3T(n/8) + c\frac{n}{4}\right) + (1 + \frac{3}{2})cn = 27T(n/8) + (1 + \frac{3}{2} + \frac{9}{4})cn = \dots = 3^{\log_2 n}T(1) + cn\sum_{i=0}^{\log_2 n} \left(\frac{3}{2}\right)^i = \Theta\left(3^{\log_2 n} + \frac{cn3^{\log_2 n}}{2^{\log_2 n}}\right) = \Theta(3^{\log_2 n}) = \Theta(n^{\log_2 3}) \approx \Theta(n^{1.58})$$

. $\Theta(n^2)$ - שימו לב שזמן מפתרון משמעותית שהתקבל טוב שהתקבל שימו שימו לב

<u>שאלה 4</u>

- א. נחשב זרימת מקסימום f ב-N ונסתכל על הקבוצות S ו-T שהוגדרו ברמז. יש להראות כי $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ ו- $v\in S$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ ו- $v\in T$ סיבוכיות האלגוריתם תהיה לכן $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ ו- $v\in T$ סיבוכיות האלגוריתם היים לכן $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ ווסתכל על הקבוצות אמ"ם מקסימום $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם מלמעלה אמ"ם $v\in T$ היא קשת קריטית מלמעלה אמ"ם מלמעלה א
- ב. נחשב זרימת מקסימום u ב- v ונבדוק לכל קשת $e=(u,v)\in E$ אם יש מסלול מכוון v בגרף בגרף v בארן v ועייי הרצת BFS משל). יש להראות כי v קשת קריטית מלמטה אמיים אין מסלול כזה. v משום v (עייי הרצת v למשל). יש להראות כי v (עייי הרצת v למשל). יש להראות כי v v קשת v משום v משום v משום היא v v v v v v משום v משום הנחנו שעוסקים רק בגרפים פשוטים (אם יש קשתות מקבילות ניתן להחליף אותן בקשת אחת שקיבולה שווה לסכום קיבולן, ובכך לקבל גרף ללא קשתות מקבילות).

<u>שאלה 5</u>

- א. $v\in \overline{S}$ ו $v\in S$ אבל אז וועני צמתים שקשת עשויה בלתי תלויה משום שקשת עשויה להיות הקיבול שני צמתים $A\cup B$ הקיבול של (S,\overline{S}) יהיה ∞ בסתירה לכך שזהו חתך מינימום (ישנם ברשת חתכים עם קיבול סופי למשל ($\{s\},V^{\}\setminus\{s\}$) לכן לא יתכן שקיבול חתך מינימום יהיה אינסופי).
- נניח בשלילה שקיימת קבוצה בלתי-תלויה מקסימום IS כך ש- IS נניח נניח בשלילה שקיימת קבוצה בלתי-תלויה מקסימום $S' = \{s\} \cup (IS \cap V_1) \cup (\overline{IS} \cap V_2)$ ניתן לראות כי $S' = \{s\} \cup (IS \cap V_1) \cup (\overline{IS} \cap V_2)$ ניתן לראות כי $c(S) = |V_1 \cup V_2| |A \cup B|$ באופן דומה ניתן לראות ש- $c(S') = |V_1 \cup V_2| |IS|$ לכן אם $c(S') = |V_1 \cup V_2| |A \cup B|$ אז $c(S') = |S| \times |S| = |S|$ חתך מינימום.

שאלה 6

נשתמש באלגוריתם שהוצע בשאלה. נוכיח נכונות באמצעות שתי הטענות הבאות.

. מסלולים $V\!-\!|f|$ מסלולים כיסוי עייי הרא בשלמים ברשת ברשת העזר העזר f מסלולים.

מתוך מבנה רשת העזר, וכיוון ש- G אינו מכיל מעגלים, נובע שקיבלנו באופן זה כיסוי במסלולים. נראה i הוא i נסתכל על הצומת האחרון בכל אחד מהמסלולים שהגדרנו. אם i הוא i הוא i הוא i אז i הוא i אז i הוא בומת אחרון המשמעות היא שאין זרימה דרך הצומת i, ולהיפך: אם אין זרימה דרך i אז i הוא צומת אחרון באחד המסלולים שבנינו. לכן מספר המסלולים הוא $V-\left|f\right|$

V-k מסלולים ניתן להתאים ורימה (בשלמים) אערכה אינה ביסוי עייי k מסלולים ניתן אינה ביסוי עייי

הוכחה: לכל מסלול המכיל ℓ צמתים $i_1 \to i_2 \to ... \to i_\ell$ נתאים ℓ צמתים ברשת העזר: ℓ ב- j ב- j מסלול המסלול ה- $j \le \ell$ ישנם באמור k מסלולים. נסמן את האורך של המסלול ה- $j \le \ell$ ישנם באזי נקבל כי: j אזי נקבל כי:

$$|f| = \sum_{j=1}^{k} (\ell_j - 1) = \left(\sum_{j=1}^{k} \ell_j\right) - k = V - k$$

. סיבוכיות האלגוריתם היא ערך ארימת f^*) $O(E'f^*) = Oig((V+E)Vig)$ היא האלגוריתם היא