What Is Interesting To Me Right Now ...

Mark Horowitz

7/12/2018

APPLICATIONS TO HARDWARE

If You Are Building an Accelerator

The application better be parallel

The application better have locality

Performance/energy must be a critical issue

Remember It Must Be Cheap To Design

Application designer accessible

Little silicon expertise

Halide Example: Unsharp Masking

```
Func clamp, gray, blurx, blury, sharpen, ratio, unsharp;
Var x, y, c, xi, yi;
// The algorithm
clamp = BoundaryConditions::repeat_edge(in);
gray(x, y) = 0.3*clamp(0, x, y)+0.6*clamp(1, x, y)+0.1*clamp(2, x, y);
blury(x, y) = (gray(x, y-1) + gray(x, y) + gray(x, y+1)) / 3;
blurx(x, y) = (blury(x-1, y) + blury(x, y) + blury(x+1, y)) / 3;
sharpen(x, y) = 2 * gray(x, y) - blurx(x, y);
ratio(x, y) = sharpen(x, y) / gray(x, y);
unsharp(c, x, y) = ratio(x, y) * input(c, x, y);
// The schedule
unsharp.tile(x, y, xi, yi, 256, 256)
       .accelerate({clamp}, xi, x)
       .parallel(y).parallel(x);
in.fifo depth(unsharp, 512);
gray.fifo_depth(ratio, 8);
// other schedules...
```

Accelerator Interface

Architecture Template:

Stencil Functions and Line Buffers

- Stencil functions consume sliding windows of data
 - ▶ Huge locality
- To capture this locality need to buffer a few lines
 - ▶ Line buffer is the hardware buffer block.

Dataflow IR Transformation

Pu, Jing, et al. "Programming heterogeneous systems from an image processing DSL." ACM Transactions on Architecture and Code Optimization (TACO) 14.3 (2017): 26

DNN Accelerators

Google TPU

Huawei Kirin NPU

Eyeriss

Can represent them as different schedules to a Halide program.

C. Zheng, et al (FPGA)

^[1] https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

^[2] https://www.electronicsweekly.com/news/ifa-2017-huawei-reveals-low-power-kirin-970-mobile-ai-chipset-2017-09/

^[3] http://eyeriss.mit.edu/

Architecture Template for DNNs

Dataflow Impact

Most dataflows achieve close-to-optimal energy efficiency

Energy Breakdown Comparison

 Use a smaller register file size can greatly improve overall energy efficiency, by reducing register file energy

What Are Other Applications Classes?

Connect Hardware to User Process

AHA CGRA Architecture

Design Space Exploration:

- Tile Design
- Programmable Routing
- Tile Clustering
- Memory Topology

Area Breakdown for Simple 2:1 PE

Clustering

