16. მაჩვენებლიანი და ლოგარითმული ფუნქციები, განტოლებები და უტოლობები.

მაჩვენებლიანი ფუნქცია

 $y=a^x$ სახის ფუნქციას, სადაც a>0, $a\ne 1$, მაჩვენებლიანი ფუნქცია ეწოდება. ამ ფუნქციის განსაზღვრის არეა ნამდვილ რიცხვთა R სიმრავლე, ხოლო მნიშვნელობათა სიმრავლე კი a>0, $b=a^x$ ფუნქციის გრაფიკი Oy ღერძს კვეთს (0;1) წერტილში, რადგან $a^0=1$

როცა a>1 და x>0, მაშინ a^x>1; როცა a>1 და x<0, მაშინ 0<a^x<1; როცა 0<a<1 და x>0, მაშინ 0<a^x<1; როცა 0<a<1 და x<0, მაშინ a^x>1;

ლოგარითმის ცნება

განსაზღვრება. b რიცხვის ლოგარითმი a ფუძით $(a>0\,,a\ne 1)$ ეწოდება ხარისხის მაჩვენებელს, რომელშიც უნდა ავახარისხოთ a, რომ მივიღოთ b და $\log_a b$ სიმბოლოთი აღინიშნება.

მაგალითად:

$$\log_5 25 = 2$$
 , რადგან $5^2 = 25$;

ლოგარითმის განსაზღვრებიდან გამომდინარეობს:

$$a^{\log_a b} = b$$

ლოგარითმის ძირითადი თვისებები:

- 1. $\log_a b$ გამოსახულებას აზრი აქვს მხოლოდ მაშინ, როცა b>0 .
- 2. ერთის ლოგარითმი ნებისმიერი ფუძით ნულის ტოლია. მართლაც, რადგან $a^0=1$, ამიტომ $\log_a 1=0$.
- 3. თუ ლოგარითმის ფუძე ერთზე ნაკლები დადებითი რიცხვია, მაშინ ერთზე ნაკლები დადებითი რიცხვის ლოგარითმი დადებითია, ხოლო ერთზე მეტი რიცხვის ლოგარითმი კი—უარყოფითი.
- 4. თუ ლოგარითმის ფუძე ერთზე მეტი რიცხვია, მაშინ ერთზე ნაკლები დადებითი რიცხვის ლოგარითმი უარყოფითია, ხოლო ერთზე მეტი რიცხვის ლოგარითმი კი–დადებითი.
- 5. ფუძის ლოგარითმი ერთის ტოლია. მართლაც, რადგან $a^1=a$, ამიტომ $\log_a a=1$.
- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a 0 = \begin{cases} -\infty \ \mathfrak{mg} \ a > 1 \\ +\infty \ \mathfrak{mg} \ a < 1 \end{cases}$
- $\bullet \, \log_a(xy) = \log_a x + \log_a y$
- $\log_a \frac{x}{y} = \log_a x \log_a y$
- $\log_a(x^n) = n \log_a x$
- $\log_a \sqrt[n]{x} = \frac{1}{n} \log_a x$
- $\bullet \ \log_a x = \tfrac{\log_c x}{\log_c a} = \log_c x \cdot \log_a c, c > 0, c \neq 1$
- $\log_a c = \frac{1}{\log_c a}$
- $x = a^{\log_a x}$
- ullet ლოგარითმი 10-ის ფუძით $\log_{10} x = \log x$

ლოგარითმული ფუნქცია:

 $y = \log_a x$ სახის ფუნქციას $(a > 0, a \ne 1)$, ლოგარითმული ფუნქცია ეწოდება. რადგან ლოგარითმული ფუნქცია წარმოადგენს მაჩვენებლიანი ფუნქციის შექცეულ ფუნქციას, ამიტომ $y = \log_a x$ ფუნქციის გრაფიკი სიმეტრიულია $y = a^x$ ფუნქციის გრაფიკისა y = x წრფის მიმართ (ნახ. 81, 82).

მაჩვენებლიანი განტოლება:

განტოლებას, რომელიც ცვლდს შეიცავს ხარისხის მაჩვენებელში მაჩვენებლიანი განტოლება ეწოდება.

 $a^x = b$ $(a > 0, \ a \ne 1)$ წარმოადგენს უმარტივეს მაჩვენებლიან განტოლებას. როცა b > 0 ამ განტოლების ამონახნს წარმოადგენს $x = \log_a b$, ხოლო როცა b < 0 განტოლებას ამონახსნი არ აქვს.

ლოგარითმული განტოლება

განტოლებას რომელიც ცვლადს შეიცავს ლოგარითმის ნიშნის ქვეშ ლოგარითმული განტოლება ეწოდება.

 $\log_a x = b$ $(a > 0, \ a \ne 1)$ წარმოადგენს უმარტივეს ლოგარითმულ განტოლებას რომლის ამონახსნია $x = a^b$.

მაჩვენებლიანი უტოლობა

უტოლობას რომელიც ცვლადს შეიცავს ხარისხის მაჩვენებელში მაჩვენებლიანი უტოლობა ეწოდება.

 $a^x > b$ და $a^x < b$ $(a > 0, a \ne 1)$ წარმოადგენენ უმარტივეს მაჩვენებლიან უტოლობებს. განვიხილოთ თითოეული მათგანი:

s) $a^x > b$.

თუ $b \leq 0$, მაშინ ამ უტოლობის ამონახსნთა სიმრავლეა R .

თუ b>0, მაშინ a^x ფუნქციის მონოტონურობის გამო $x<\log_a b$, როდესაც 0< a<1 და $x>\log_a b$, როდესაც a>1.

ਰੇ) $a^x < b$.

თუ $b \leq 0$, მაშინ ამ უტოლობის ამონახსნთა სიმრავლე ცარიელია.

თუ b>0, მაშინ a^x ფუნქციის მონოტონურობის გამო $x>\log_a b$, როდესაც 0< a<1 და $x<\log_a b$, როდესაც a>1.

ლოგარითმული უტოლობა

უტოლობას რომელიც ცვლადს შეიცავს ლოგარითმული ნიშნის ქვეშ ლოგარითმული უტოლობა ეწოდება.

 $\log_a x > b$ და $\log_a x < b$ $(a > 0, a \ne 1)$ წარმოადგენენ უმარტივეს ლოგარითმულ უტოლობებს. განვიხილოთ თითოეული მათგანი:

s) $\log_a x > b$.

თუ 0 < a < 1, მაშინ $\log_a x$ ფუნქცია კლებადია, მისი განსაზღვრის არეა $]0;+\infty[$, ამიტომ $0 < x < a^b$.

თუ a>1, მაშინ $\log_a x$ ფუნქცია ზრდადია, ამიტომ $x>a^b$.

ਨ) $\log_a x < b$.

თუ 0 < a < 1, მაშინ $\log_a x$ ფუნქცია კლებადია, ამიტომ $x > a^b$.

თუ a>1, მაშინ $\log_a x$ ფუნქცია ზრდადია, მისი განსაზღვრის არეა $]0;+\infty[$, ამიტომ $0< x < a^b$.