

Основы искусственного интеллекта

Лекция 5

Обучение с учителем: Решающие деревья

к.ф.-м.н., доцент кафедры ИСиЦТ Корнаева Е.П.

Деревья классификации и регрессии (Classification and regression trees (CART))

Решающие деревья (decision trees) - модели, которые определяются путем рекурсивного разделения факторного пространства и определения локальной модели в каждой результирующей области входного пространства [1]

Вершины дерева содержат предикаты вида $X_j \leq t_m$ Листья дерева содержат прогнозы (для классификации – класс или вероятность, для регрессии – значение целевой переменной)

[1] Murphy, Kevin P. Machine learning: a probabilistic perspective / Kevin P. Murphy. – 2012. - 1098 p.

Деревья классификации и регрессии (Classification and regression trees (CART))

Пример для задачи классификации

 $y_{pred} = argmax(p_k)$

Деревья классификации и регрессии (Classification and regression trees (CART))

Деревья классификации и регрессии (Classification and regression trees (CART))

Деревья классификации и регрессии (Classification and regression trees (CART))

Деревья классификации и регрессии (Classification and regression trees (CART))

Деревья классификации и регрессии (Classification and regression trees (CART))

Пример для задачи классификации

Дерево можно построить так, чтобы точность на обучающей выборке была 100%, т.е. деревья легко переобучаются (например, как на рис.1)

Чтобы дерево не переобучалось:

- глубина дерева должна быть ограничена;
- нужны условия на продолжение ветвления.

Деревья классификации и регрессии (Classification and regression trees (CART))

Выбор предикатов

Вид предиката	Название предиката
$[x_j < t_i]$	Порог на признак
$[X\Theta < t_i]$	Предикат с линейной моделью
$[\rho(X, X_0) < t_i]$	Предикат с метрикой

Для деревьев можно выбирать разные предикаты, но обычно достаточно самых простых!

Деревья классификации и регрессии (Classification and regression trees (CART))

Выбор предикатов. Жадный алгоритм построения

Критерий качества разбиения вершины дерева: $Q(R_i, \Theta) \rightarrow min$

Обозначения:

 R_i – текущая вершина;

 $\Theta = (j, t_i)$ – номер признака X_j и порог для предиката $X_j \le t_i$ в вершине i;

$$R_l(\Theta) = \{(X, y) | x_j \le t_i\}$$
 – объекты, попавшие в левую вершину;

 $R_r(\Theta) = R_i \backslash R_l(\Theta)$ - объекты, попавшие в правую вершину;

 N_l , N_r — количество объектов в левой и правой вершине.

Деревья классификации и регрессии (Classification and regression trees (CART))

Выбор предикатов. Жадный алгоритм построения

Пример для классификации. Какое разбиение лучше?

Деревья классификации и регрессии (Classification and regression trees (CART))

Выбор предикатов. Жадный алгоритм построения

Критерий информативности (impurity) $H(R_i)$ – оценивает меру неоднородности целевых переменных в вершине R_i .

- Критерий Джини (Gini index) [1] как мера неопределенности в $i^{\text{ой}}$ вершине:

$$H(R_i) = \sum_{k=1}^K p_{ik} (1 - p_{ik}) = 1 - \sum_{k=1}^K p_{ik}^2$$

- Энтропия (Entropy, or deviance) [1]:

$$H(R_i) = -\sum_{i=1}^K p_{ik} \log p_{ik}$$

- Ошибка классификации (Misclassification rate) [1]:

$$H(R_i) = 1 - \max_k p_{ik}$$

где $p_{ik} = \frac{1}{N_i} \sum_{y \in R_i} [y == k]$ – доля объектов $k^{\text{го}}$ класса, попавшие в $i^{\text{ю}}$ вершину.

Рис. 2. Критерий информативности для бинарной классификации [1]. Ф. Энтропии масштабирована.

[1] Sarah Guido, Andreas Muller. Introduction to Machine Learning with Python: A Guide for data scientists. O'Reilly & Associates. - 2017.

Деревья классификации и регрессии (Classification and regression trees (CART))

Выбор предикатов. Жадный алгоритм построения

 $H(R_i) = \sum_{k=1}^{n} p_{ik} (1 - p_{ik}),$

Рассчитать значения $H(R_l)$, $H(R_r)$ для каждой вершины, используя критерий Джини:

$$H(R_{1}) = H(R_{1}) = H(R_{1}) = \begin{bmatrix} P_{3} = \frac{3}{5} \\ P_{c} = \frac{1}{5} \\ P_{0} = \frac{3}{5} \end{bmatrix} = \frac{3}{5} \left(1 - \frac{3}{5}\right) + \frac{3}{5} \left(1 - \frac{3}{5}\right) + \frac{3}{5} \left(1 - \frac{3}{5}\right) = \frac{16}{35}$$

$$H(R_{1}) = \begin{bmatrix} P_{3} = P_{0} = \frac{1}{3} \\ P_{5} = P_{0} = \frac{1}{3} \end{bmatrix} = \frac{3}{3} \cdot \frac{4}{3} \left(1 - \frac{1}{3}\right) = \frac{2}{3}$$

Деревья классификации и регрессии (Classification and regression trees (CART))

Выбор предикатов. Жадный алгоритм построения

Критерий качества разбиения вершины R_i:

$$Q(R_i) = \frac{N_l}{N_m} H(R_l(\Theta)) + \frac{N_r}{N_m} H(R_r(\Theta)) \underset{\Theta}{\longrightarrow} min,$$

где $H(R_l)$, $H(R_r)$ — меры неопределенности в левой и правой вершинах;

 N_l , N_r — количество объектов в левой и правой вершине.

Деревья классификации и регрессии (Classification and regression trees (CART))

Выбор предикатов. Жадный алгоритм построения

Рассчитать критерий качества разбиения вершины R_i для предыдущей задачи. Какое разбиение лучше?

$$Q(R_i) = \frac{f}{g} \cdot \underbrace{f^2}_{g} \cdot \underbrace{f^2}_{g}$$

Деревья классификации и регрессии (Classification and regression trees (CART))

Как остановить процесс построения дерева?

Задать:

- Ограничение на глубину дерева;
- Ограничение количества листьев;
- Минимальное количество объектов в вершине;
- Минимальное уменьшение хаотичности при разбиении;
- и т.д.

Деревья классификации и регрессии (Classification and regression trees (CART))

Для задачи регрессии

Предсказание значения в i^{ом} листе:

$$y_{pred} = \frac{1}{N_i} \sum_{k=1}^{N_i} y_k$$

Критерий информативности - это дисперсия целевой переменной (для объектов, попавших в этот лист):

$$H(R_i) = \frac{1}{N_i} \sum_{k=1}^{N_i} (y_k - \bar{y})^2$$

Критерий качества разбиения вершины R_i:

$$Q(R_i) = \frac{N_l}{N_m} H(R_l(\Theta)) + \frac{N_r}{N_m} H(R_r(\Theta)) \underset{\Theta}{\rightarrow} min,$$

Деревья классификации и регрессии (Classification and regression trees (CART))

Резюме

Преимущества	Недостатки
Четкие правила классификации (легко интерпретировать)	Чувствительны к шумам в данных (модель сильно меняется при небольшом изменении обучающей выборки)
Легко визуализируются	Разделяющая граница имеет свои ограничения (состоит из гиперплоскостей)
Быстро обучаются и выдают прогноз	Необходимость борьбы с переобучением (стрижка или какой-либо из критериев останова)
Малое кол-во параметров	Проблема поиска оптимального дерева (на практике используется жадное построение дерева)