IEEE-754

Rappresentazione di numeri a virgola mobile in precisione singola (32 bit) o doppia (64). Nella versione a doppia precisione:

- 1 bit di segno s;
- 11 bit di esponente e, con offset di 1022: p = e 1022;
- 52 bit di mantissa f.

Permette di rappresentare i numeri di macchina $\mathcal{F}(2,53,1021,1024)$:

- t = 53 anche se f ha 52 bit perché $d_1 \neq 0 \land \beta = 2 \implies d_1 = 1$, quindi f contiene le cifre da 2 a 53;
- \bullet i limiti di pnon sono 1022 e 1025 perché e=0 ed $e=1\dots 1$ hanno significati particolari.

Oltre a questi, è possibile codificare numeri denormalizzati e tre valori speciali ($\pm {\rm Inf}$ e NaN).

Numeri denormalizzati

Se e = 0, il valore rappresentato è:

$$(-1)^s \cdot 2^{-1021} (0.0d_2 \dots d_{53})_2$$

Questo permette di includere valori nell'intervallo $[0,\omega)$: il minimo è $2^{-1021-53}=2^{-1074}$.

Valori speciali

Se $e = 1 \dots 1_2 = 2047$,

- se $d_2 = \cdots = d_{53} = 0$ allora il valore è $\pm Inf$;
- altrimenti se $\exists d_i \neq 0$ è NaN.

NaN ha più rappresentazioni possibili, quindi NaN \neq NaN.

Numeri non rappresentabili

Se $x \in \mathbb{R}$ non è rappresentabile:

- se è troppo grande, diventa Inf: overflow;
- se è troppo piccolo, diventa 0: underflow;
- se richiede troppe cifre, viene arrotondato o troncato.