1 Preliminaries

1.1 Commutative algebra

We begin with some algebraic prerequisites. For more see [atiyah2018introduction].

Definition 1.1.1. A commutative ring $(R, +, \cdot, 0, 1)$ is an abelian group (R, +, 0) along with an associative binary operator \cdot and a unit element 1 such that for all $x, y, z \in R$

- 1. $x \cdot y = y \cdot x$,
- 2. $x \cdot 1 = 1$, and
- $3. \ x \cdot (y+z) = x \cdot y + x \cdot z$

We call a commutative ring $(R, +, \cdot, 0, 1)$ simply a ring and write it as R when there is no ambiguity. Also we denote $x \cdot y$ by xy.

Definition 1.1.2. An *ideal* of a ring R is a subset $I \subset R$ that is closed under addition (+) and "absorbs" multiplication from elements of R: for all $x \in R$ and $y \in I$, $xy \in I$.

Proposition 1.1.1. The images and preimages of a prime ideal under ring homomorphisms are prime.

1.2 Categories and functors

Definition 1.2.1. A category C consists of a collection of objects, a set C(A, B) of morphisms between any two objects, an identity morphism $id_A \in C(A, A)$ for each object A, and a composition law

$$\circ: \mathcal{C}(B,C) \times \mathcal{C}(A,B) \to \mathcal{C}(A,C) \tag{1.1}$$

for each triple of objects A, B, C. Composition must be associative, and identity morphisms must behave as their names indicate: $h \circ (g \circ f) = (h \circ g) \circ f, id \circ f = f$, and $f \circ id = f$ whenever the the composites are defined.

Definition 1.2.2. A terminal object of category C is an object T to which there is a unique morphism from each object of C.

Definition 1.2.3. A functor $F: \mathcal{C} \to \mathcal{D}$ assigns an object F(A) of \mathcal{D} to each object A of \mathcal{C} and a morphism $F(f): F(A) \to F(B)$ of \mathcal{D} to each morphism $f: A \to B$ of \mathcal{C} such that

$$F(id_A) = id_{F(A)} \text{ and } F(g \circ f) = F(g) \circ F(f). \tag{1.2}$$

1 Preliminaries

Definition 1.2.4. A natural transformation $\alpha: F \to G$ between functors $F, G: \mathcal{C} \to \mathcal{D}$ consists of a morphism $\alpha_A: F(A) \to G(A)$ for each object A of \mathcal{C} such that the following diagram commutes for each morphism $f: A \to B$ of \mathcal{C} :

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_B}$$

$$G(A) \xrightarrow{G(f)} G(B)$$