ความรู้เกี่ยวกับคอมพิวเตอร์เบื้องต้น

ความหมายของคอมพิวเตอร์

คอมพิวเตอร์ คือ อุปกรณ์ทางอิเล็กทรอนิกส์ (electronic device) ที่มนุษย์ใช้เป็นเครื่องมือช่วยใน การจัดการกับข้อมูลที่อาจเป็นได้ ทั้งตัวเลข ตัวอักษร หรือสัญลักษณ์ที่ใช้แทนความหมายในสิ่งต่าง ๆ โดย คุณสมบัติที่สำคัญของคอมพิวเตอร์คือการที่สามารถกำหนดชุดคำสั่งล่วงหน้าหรือโปรแกรมได้ (programmable) นั่นคือคอมพิวเตอร์สามารถทำงานได้หลากหลายรูปแบบ ขึ้นอยู่กับชุดคำสั่งที่เลือกมาใช้ งาน ทำให้สามารถนำคอมพิวเตอร์ไปประยุกต์ใช้งานได้อย่างกว้างขวาง เช่น ใช้ในการตรวจคลื่นความถี่ของ หัวใจ การฝาก – ถอนเงินในธนาคาร การตรวจสอบสภาพเครื่องยนต์ เป็นต้น ข้อดีของคอมพิวเตอร์ คือ เครื่องคอมพิวเตอร์สามารถทำงานได้อย่างมีประสิทธิภาพ มีความถูกต้อง และมีความรวดเร็ว

คุณสมบัติของคอมพิวเตอร์

ปัจจุบันนี้คนส่วนใหญ่นิยมนำคอมพิวเตอร์มาใช้งานต่าง ๆ มากมาย ซึ่งผู้ใช้ส่วนใหญ่มักจะคิดว่า คอมพิวเตอร์เป็นเครื่องมือที่สามารถทำงานได้สารพัด แต่ผู้ที่มีความรู้ทางคอมพิวเตอร์จะทราบว่า งานที่ เหมาะกับการนำคอมพิวเตอร์มาใช้อย่างยิ่งคือการสร้าง <u>สารสนเทศ</u> ซึ่งสารสนเทศเหล่านั้นสามารถนำมา พิมพ์ออกทางเครื่องพิมพ์ ส่งผ่านเครือข่ายคอมพิวเตอร์ หรือจัดเก็บไว้ใช้ในอนาคตก็ได้ เนื่องจาก คอมพิวเตอร์จะมีคุณสมบัติต่าง ๆ คือ

1.ความเร็ว (speed) คอมพิวเตอร์ในปัจจุบันนี้สามารถทำงานได้ถึงร้อยถ้านคำสั่งในหนึ่งวินาที

2.ความเชื่อถือ (reliable) คอมพิวเตอร์ทุกวันนี้จะทำงานได้ทั้งกลางวันและกลางคืนอย่างไม่มีข้อผิดพลาด และไม่รู้จักเหน็ดเหนื่อย

3.ความถูกต้องแม่นยำ (accurate) วงจรคอมพิวเตอร์นั้นจะให้ผลของการคำนวณที่ถูกต้องเสมอหากผลของ การคำนวณผิดจากที่ควรจะเป็น มักเกิดจากความผิดพลาดของโปรแกรมหรือข้อมูลที่เข้าสู่โปรแกรม

4.เก็บข้อมูลจำนวนมาก ๆ ได้ (store massive amounts of information) ใมโครคอมพิวเตอร์ในปัจจุบัน จะ มีที่เก็บข้อมูลสำรองที่มีความสูงมากกว่าหนึ่งพันล้านตัวอักษร และสำหรับระบบคอมพิวเตอร์ขนาดใหญ่จะ สามารถเก็บข้อมูลได้มากกว่าหนึ่งล้าน ๆ ตัวอักษร

5.ย้ายข้อมูลจากที่หนึ่งไปยังอีกทีหนึ่งได้อย่างรวดเร็ว (move information) โดยใช้การติดต่อสื่อสารผ่าน ระบบ <u>เครือข่ายคอมพิวเตอร์</u> ซึ่งสามารถส่งพจนานุกรมหนึ่งเล่มในรูปของข้อมูลอิเล็กทรอนิกส์ ไปยังเครื่อง คอมพิวเตอร์ที่อยู่ใกลคนซีกโลกได้ในเวลาเพียงไม่ถึงหนึ่งวินาที ทำให้มีการเรียกเครือข่ายคอมพิวเตอร์ที่ เชื่อมกันทั่วโลกในปัจจุบันว่า ทางค่วนสารสนเทศ (Information Superhighway)

การทำงานของคอมพิวเตอร์

ขั้นตอนการทำงานที่สำคัญของคอมพิวเตอร์ 4 ขั้นตอน

ขั้นตอนที่	การทำงาน	ตัวอย่างอุปกรณ์
	คอมพิวเตอร์รับข้อมูลและคำสั่งผ่าน อุปกรณ์นำเข้าข้อมูล	Mouse, Keyboard, Scanner, Microphone
หรือคิดคำนวณ (Processing)	ข้อมูลที่คอมพิวเตอร์รับเข้ามา จะถูก ประมวลผลโดยการทำงานของหน่วย ประมวลผลกลาง (CPU : Central Processing Unit) ตามคำสั่งของโปรแกรม หรือซอฟต์แวร์	CPU
	คอมพิวเตอร์จะแสดงผลลัพธ์ของข้อมูลที่ ป้อน หรือแสดงผลจากการ ประมวลผล ทางอุปกรณ์แสดงผล	
4. การเก็บข้อมูล (Storage)	ผลลัพธ์จากการประมวลผลสามารถเก็บไว้ ในหน่วยเก็บข้อมูล	hard disk, floppy disk, CD-ROM

ส่วนประกอบของคอมพิวเตอร์(PC)

คอมพิวเตอร์เป็นเครื่องจักรมนุษย์ออกแบบขึ้นเพื่อนำมาช่วยใช้ในการคำนวณประมวลผลคำสั่งจากมนุษย์ ให้ได้ผลลัพธ์อย่างที่ต้องการ ปัจจุบันได้มีการนำคอมพิวเตอร์มาใช้ในด้านต่างๆ มาทำงานแทนมนุษย์เพื่อลด กระบวนการงานให้สำเร็จเร็วขึ้นและมีความถูกต้องแม่นยำมากยิ่งขึ้น เครื่องคอมพิวเตอร์ที่นิยมตาม สำนักงานและประจำบ้านทั่วไปได้แก่ PC ย่อมาจาก Personal Computer

ส่วนประกอบคอมพิวเตอร์พื้นฐานมีดังนี้

1.จอภาพ (Monitor)

จอภาพ เป็นอุปกรณ์ที่ใช้ติดต่อกับผู้ใช้โดยตรง นับเป็นอุปกรณ์ที่มีความสำคัญมากที่สุดอันหนึ่งของเครื่อง คอมพิวเตอร์ โดยจะแสดงผลออกมาเป็นภาพทางหน้าจอ โดยการแปลงจากสัญญาณอิเล็กทรอนิกส์ที่ส่งเข้า มา โดยวิธีการนั้นขึ้นอยู่กับชนิดของจอภาพ ซึ่งสามารถแบ่งได้เป็นจอภาพแบบหลอดรังสีแคโธด หรือจอ ซือาร์ที (cathode ray tube: CRT) และจอภาพแบบผลึกเหลวทรานซิสเตอร์แผ่นบาง หรือจอแบบ แอลซีดี

2.เคส (Case)

เคสเป็นโครงที่ใช้สำหรับใส่อุปกรณ์ภายในต่างๆเข้าไว้ด้วยกัน อุปกรณ์ที่มักจะใส่ไว้ในเคสก็เป็นพวก เมนบอร์ค(Mainboard) แรม (RAM) การ์คจอ(VGA Card) ฮาร์คคิสก์(Hard Disk Drive) พาวเวอซัพพลาย (Power Supply) เป็นต้น มีหลายแบบ หลายสีให้เลือกใช้ตามความพึงพอใจของผู้ใช้

3.พาวเวอร์ซัพพลาย (Power Supply)

ทำหน้าที่จ่ายกระแสไฟให้กับอุปกรณ์ต่างๆในเครื่องคอมพิวเตอร์ โดยสามารถเลือกใช้งานได้ตามจำนวน วัตต์ ถ้าเครื่องคอมพิวเตอร์มีอุปกรณ์ต่อเยอะก็ควรจะเลือกใช้ที่วัตต์สูงๆ ไม่เช่นนั้นกำลังไฟอาจจะไม่พอทำ ให้ไม่สามารถใช้งานได้

4.คีย์บอร์ด (Keyboard

ทำหน้าที่รับข้อมูลจากผู้ใช้ โดยจะประกอบไปด้วยแป้นพิมพ์ที่มีปุ่มต่างๆมากมาย ทั้งปุ่มตัวอักษร (Typewriter keys) ตัวเลข (Numeric keypad) ปุ่มพิเศษ (Special-purpose keys) ปุ่มควบคุมอื่นๆ (Control keys) หรือปุ่มฟังก์ชั่นต่างๆFunction keys) สำหรับการใช้งานคอมพิวเตอร์ที่ต้องใช้การพิมพ์เป็นหลัก

5.เมาส์ (Mouse)

ทำหน้าที่รับข้อมูลจากผู้ใช้ โดยจะใช้การเลื่อนเมาส์เพื่อบังคับตัวชี้ตำแหน่ง(Pointer) บนหน้าจอ แล้วใช้การ กดปุ่มบนตัวเมาส์เพื่อสั่งให้ทำงานอะไรบนหน้าจอที่จุดนั้นๆได้

6.เมนบอร์ด (Main board)

ทำหน้าที่เป็นตัวควบคุมอุปกรณ์ทั้งหมดในเครื่องคอมพิวเตอร์ โดยอุปกรณ์ทุกตัวจะต้องเชื่อมต่อกับ เมนบอร์ดนี้ มีลักษณะเป็นแผ่นวงจรขนาดใหญ่ โดยบนแผ่นวงจรนั้นจะมีช่องสำหรับนำอุปกรณ์ต่างๆมา เสียบไว้ที่เรียกว่า ซ็อคเก็ต(Socket) ซึ่งแต่ละอุปกรณ์ก็จะมี socket เฉพาะของอุปกรณ์นั้นๆ

ซีพียูคือโปรเซสเซอร์(Processor) หรือเรียกอีกชื่อหนึ่งว่า หน่วยประมวลผลกลาง หรือ ซิพ(Chip) เป็น อุปกรณ์ที่สำคัญมากที่สุดเพราะมีหน้าที่ประมวลผลข้อมูลที่ผู้ใช้ป้อนเข้ามาหรือโปรแกรมที่ผู้ใช้งานส่ง ข้อมูลเข้ามาเป็นชุดคำสั่ง ซีพียู ประกอบด้วยส่วนหลัก 2 ส่วนดังนี้

- 1) หน่วยคำนวณและตรรกะ (ALU: Arithmetic & Logical Unit) ทำหน้าที่เหมือนกับเครื่องคำนวณอยู่ใน เครื่องคอมพิวเตอร์ โดยทำงานเกี่ยวกับการคำนวณทางคณิตศาสตร์ เช่น บวก ลบ คุณ หาร และยังทำการ เปรียบเทียบทางตรรกศาสตร์ โดยจะเปรียบเทียบเงื่อนไขและกฎเกณฑ์ทางคณิตศาสตร์ เพื่อพิสูจน์ว่าคำตอบ นั้นเป็นจริงหรือเท็จ
- 2) หน่วยควบคุม (Control Unit) ทำหน้าที่ควบคุมขั้นตอนการประมวลผลและทำการประสานงานกับ อุปกรณ์ต่างๆ ทั้งค้าน Input และOutput รวมถึงหน่วยความจำต่างๆด้วย

8.การ์ดแสดงผล (Display Card)

การ์คแสดงผลจะทำงานเมื่อซีพียูประมวลผลจากข้อมูลต่างๆที่โปรแกรมส่งเข้ามา เมื่อซีพียูประมวลผลเสร็จ ก็จะทำการส่งข้อมูลที่จะใช้แสดงผลต่อไปยังการ์คแสดงผล การ์คแสดงผลก็จะส่งต่อข้อมูลไปยังจอภาพเพื่อ แสดงผลออกมาตามข้อมูลที่ได้รับมา โดยการ์ดบางรุ่นจะสามารถประมวลผลได้ในตัวเอง ทำให้ซีพียูไม่ต้อง ทำงานมากนัก มีผลทำให้การทำงานของคอมพิวเตอร์นั้นเร็วขึ้นด้วย บางรุ่นก็จะมีหน่วยความจำในตัวเอง แต่บางรุ่นที่ไม่มีก็จะต้องดึงหน่วยความจำมาจากแรม (RAM) ซึ่งหาก แรมมีจำนวนน้อย อาจส่งผลให้ คอมพิวเตอร์ทำงานได้ช้าลงไปด้วย แต่ในบางรุ่นที่มีหน่วยความจำในตัวเองก็จะทำให้รับข้อมูลจากซีพียูได้ มากขึ้น ประมวลผลได้เร็วขึ้น ทำให้การแสดงผลบนจอภาพมีคุณภาพที่สูงตามไปด้วย

9.แรม (RAM)

แรม หรือ RAM (Random-Access Memory) เป็นหน่วยความจำหลักที่ซีพียูสามารถคึงมาใช้ได้ทันที แต่ ไม่ใช่หน่วยความจำถาวรจำเป็นต้องมีไฟมาหล่อเลี้ยงตลอดเวลาในการทำงาน หากไม่มีไฟมาหล่อเลี้ยง ข้อมูลที่บันทึกไว้ก็จะหายไป โดยการทำงานของแรมนั้น เมื่อซีพียูได้รับข้อมูลมาจากผู้ใช้งานหรือโปรแกรม แล้วก็จะเริ่มทำการประมวลผล เมื่อซีพียูประมวลผลเสร็จแล้ว ก็จะส่งต่อข้อมูลที่ประมวลผลเสร็จแล้วเก็บไป ไว้ที่แรมก่อนจะถูกส่งต่อไปยังอุปกรณ์ต่างๆต่อไป

10.ฮาร์ดดิสก์ (Hard disk)

เป็นหน่วยความจำถาวรประจำเครื่อง โดยจะประกอบไปด้วยแผ่นจานแม่เหล็ก(platters) หลายๆแผ่นมาเรียง อยู่บนแกนเดียวกันที่เรียกว่า Spindle ทำให้แผ่นแม่เหล็กแต่ละแผ่นหมุนไปพร้อมๆกัน โดยใช้มอเตอร์เป็น ตัวหมุน โดยจะมีหัวอ่านติดอยู่ประจำแผ่นแต่ละแผ่นซึ่งหัวอ่านของแต่ละแผ่นจะเชื่อมติดกัน สามารถ

เกลื่อนที่เข้า-ออกแผ่นจานได้อย่างรวดเร็ว โดยมีแผงวงจรควบคุมอีกต่อหนึ่งอยู่ ซึ่งข้อมูลที่เก็บลงฮาร์ดดิสก์ จะเก็บอยู่บนแผ่นจานแม่เหล็ก โดยแผ่นจานแต่ละแผ่นจะถูกแบ่งออกเป็นสองส่วนก็คือ แทร็กและเซกเตอร์ โดยแทร็กจะเป็นรูปวงกลมทีละชั้นเข้าไปข้างใน และในแต่ละแทร็กก็จะถูกแบ่งออกเป็นเสี้ยวหนึ่งของ วงกลมซึ่งเรียกว่าเซกเตอร์ ซึ่งเราจะแย่งฮาร์ดดิสก์ออกเป็น 3 ชนิดตามอินเตอร์เฟส(Interface) ดังนี้

- IDE (Integrated Drive Electronics) จะใช้สายแพรในการต่อเข้ากับเมนบอร์คโดยจะมีคอนเน็คเตอร์จำนวน 40 ขาที่มีบนบอร์คไว้รองรับ ซึ่งโดยปกติแล้ว 1 คอนเน็คเตอร์จะสามารถต่อฮาร์คดิสก์ได้สองตัว - Serial ATA (Advanced Technology Attachment) เป็นอินเตอร์เฟสแบบใหม่ที่เข้ามาแทนแบบ IDE ซึ่งมี ความเร็วในการเข้าถึงข้อมูลสูงกว่าแบบ IDE โดยมีความเร็วถึง 150 Mbytes ต่อ วินาที ทำให้มีความรวดเร็ว ในการทำงานมากขึ้น

- SCSI (Small Computer System Interface) อินเตอร์เฟสแบบนี้จะมีการ์คที่มีหน่วยประมวลผลอยู่ในตัวเป็น ตัวควบคุมอีกต่อหนึ่งแยกออกมาจากตัวฮาร์คดิสก์ต่างหาก เพื่อเร่งความเร็วในการรับส่งข้อมูล เหมาะ สำหรับใช้งานในรูปแบบ Server แต่มีราคาค่อนข้างแพงกว่าสองแบบข้างต้นมาก

นอกจากนี้ยังมีฮาร์ดดิสก์อีกแบบหนึ่งที่ไม่ได้ใช้แผ่นจานแม่เหล็กในการเก็บข้อมูล แต่ใช้ชิพวงจรรวมที่ ประกอบรวมกันเป็นหน่วยความจำถาวร ที่เรียกว่า โซลิคสเตตไครฟ์ (SSD : Solid state drive) โดยที่ โซลิคสเตตไครฟ์ ได้ถูกสร้างขึ้นมาทดแทนฮาร์ดดิสก์แบบแผ่นจานแม่เหล็ก จึงมีข้อดีกว่าแบบแผ่นจาน แม่เหล็กเยอะมาก โดยที่ โซลิคสเตตไดรฟ์จะประกอบไปด้วยวงจรอิเล็กทรอนิกส์ จึงไม่ต้องมีชิ้นส่วนทาง กลใดๆ ที่ต้องเคลื่อนที่ขณะทำงาน ซึ่งต่างจากฮาร์ดดิสก์ไดรฟ์ที่ต้องใช้มอเตอร์ในการหมุนแผ่นจานแล้วมี หัวอ่านที่เคลื่อนที่ตลอดเวลาการทำงาน ทำให้โซลิคสเตตไดรฟ์สามารถทนแรงสั่นสะเทือนได้ดีกว่า และ จากการใช้วงจรอิเล็กทรอนิกส์ทำให้การเข้าถึงข้อมูลรวดเร็วกว่าฮาร์ดดิสก์ไดรฟ์ที่ต้องใช้หัวอ่านเคลื่อนที่เข้า ไปยังจุดที่เก็บข้อมูล ทำให้ โซลิคสเตตไดรฟ์ มีความเร็วในการเข้าถึงข้อมูลสูงกว่าฮาร์ดดิสก์ไดรฟ์มาก

นอกจากนั้นไม่ว่าจะเป็นเรื่องเสียงรบกวนหรืออุณหภูมิในการใช้งาน โซลิคสเตตไดรฟ์ ยังมีประสิทธิภาพ ดีกว่าฮาร์คคิสก์ใครฟ์มากนัก เพียงแต่ราคาอาจจะสูงกว่าพอสมควร

11.CD-ROM / CD-RW /DVD / DVD-RW

ใช้สำหรับการอ่านแผ่น CD หรือ DVD โดยหากต้องการที่จะเขียนข้อมูลลงไปในแผ่นจะต้องเป็นไดร์ฟที่มี RW ด้วย โดยการทำงานนั้นจะอ่านข้อมูลจาก CD/DVD โดยใช้หัวอ่านเลเซอร์ที่จะยิงแสงเลเซอร์ลงบน ซีดีรอม ซึ่งบนซีดีรอมนั้นจะแบ่งเป็นแทร็กและเซกเตอร์เช่นเดียวกับฮาร์ดดิสก์ไดรฟ์ แต่จะมีขนาดเท่ากัน ทุกเซกเตอร์ เมื่อเริ่มทำงานมอเตอร์จะหมุนแผ่นด้วยความเร็วต่าางๆกันทำให้แต่ละเซกเตอร์มีอัตราเร็วใน การอ่านคงที่

12.ฟล็อปปี้ดิสก์ (Floppy Disk)

เป็นอุปกรณ์ที่มีมาก่อนคอมพิวเตอร์เสียอีก ฟล็อปปี้คิสก์ ยุคแรกๆมีขนาดตั้งแต่ 8 นิ้ว 5.25 นิ้ว จนปัจจุบันอยู่ ที่ 3.5 นิ้ว มีความจำอยู่ที่ไม่กี่ร้อยกิโลไบต์จนถึง 2.88 เมกกะไบต์ ปัจจุบันคอมพิวเตอร์รุ่นใหม่นั้นแทบจะไม่ มี Floppy Disk Drive อีกแล้ว เนื่องจากแผ่น ฟล็อปปี้คิสก์ นั้นจุความจำได้น้อย แถมยังพังง่าย ปัจจุบันถูก ทดแทนด้วย Flash Drive เสียมากกว่า

13. เน็ตเวิร์คการ์ด (Lan card)

เน็ตเวิร์คการ์ดหรือการ์ดแลน เป็นตัวเชื่อมต่อระหว่างคอมพิวเตอร์และเครือข่าย โดยส่วนใหญ่จะเรียกว่า NIC (Network Interface Card) โดยจะทำการแปลงข้อมูลเป็นสัญญาณไฟฟ้าที่สามารถส่งไปตาม สายสัญญาณได้ ซึ่งก็จะมีความเร็วในการส่งข้อมูลหลายระดับตั้งแต่ 10 Mbps, 100Mbps หรือ 1000Mbps ซึ่ง การ์ดบางรุ่นก็สามารถเลือกระดับความเร็วในการทำงานได้ ปัจจุบันเมนบอร์ดส่วนใหญ่มักจะมีชิพที่เป็น ช่องเน็ตเวิร์คการ์ดในตัวอยู่แล้ว ทำให้ เน็ตเวิร์คการ์ด นั้นไม่ค่อยมีเห็นใช้กันแล้ว

ประเภทของเครื่องคอมพิวเตอร์

1.ซูเปอร์คอมพิวเตอร์ (supercomputer)

เป็นคอมพิวเตอร์ที่มีขนาดใหญ่ที่สุด ทำงานได้รวดเร็วและมีประสิทธิภาพสูง แต่จะมีราคาแพงที่สุด รวมทั้ง ต้องอยู่ที่ห้องได้รับการควบคุมอุณหภูมิ และปราศจากฝุ่นละออง ทำให้ต้องเป็นองค์กรขนาดใหญ่เท่านั้น จึง สามารถจัดหาเครื่องซูเปอร์คอมพิวเตอร์มาใช้งานได้ ผู้ใช้งานคอมพิวเตอร์สามารถใช้งานได้จำนวนหลาย ๆ คน นำมาใช้ในการคำนวณที่ซับซ้อน เช่นการคำนวณทางวิทยาศาสตร์ การบิน อุตสาหกรรมน้ำมันเป็นต้น รวมทั้งพบมากในวงการวิจัยในห้องปฏิบัติการต่างๆ ทั้งภาครัฐและเอกชน

ซูเปอร์คอมพิวเตอร์รุ่นแรกสร้างในปี ค.ศ. 1960 ที่องค์กรของสหรัฐอเมริกา โดยได้รับการออกแบบให้เป็น คอมพิวเตอร์ที่ความเร็วและมีประสิทธิภาพมากที่สุด ซูเปอร์ทำงานได้อย่างรวดเร็ว เนื่องจากมีการใช้หลักที่ เรียกว่า มัลติโปรเซสซึ่ง (Multiprocessing) อันเป็นใช้หน่วยประมวลผลจำนวนหลายตัว เพื่อทำให้ คอมพิวเตอร์สามารถทำงานหลายงานพร้อมกัน โดยที่งานเหล่านั้นมีความแตกต่างกัน งานที่ไม่เกี่ยวข้อง หรืออาจจะเป็นงานที่มีขนาดใหญ่ที่ถูกแบ่งย่อยไปในประมวลผลแต่ละตัวก็ทำงานได้ ซูเปอร์คอมพิวเตอร์มี หน่วยประมวลกลางทั้งหมด 4 ตัว แต่ปัจจุบันคอมพิวเตอร์มีความพัฒนามากจึงทำให้มีหน่วยประมวลผลนับ ร้อยตัวทำงานพร้อม ๆ กัน

ความเร็วของซูเปอร์คอมพิวเตอร์จะมีการวัดหน่วยเป็น นาโนวินาที (nanosecond) หรือเสษหนึ่งพันถ้าน วินาที และ จิกะฟลอป (gigaflop) หรือการคำนวณหนึ่งพันถ้านครั้งในหนึ่งวินาทีซึ่งคอมพิวเตอร์สามารถ คำนวนได้ถึง 128 จิกะฟลอป และใช้เครื่องที่มี สายส่งข้อมูล (data bus) กว้าง 32 หรือ 64 บิต

จากคุณสมบัติของซูเปอร์คอมพิวเตอร์ที่กล่าวมาทั้งหมด จะเห็นได้ว่าผู้ใช้ควรนำซูเปอร์คอมพิวเตอร์ไปใช้ ในการคำนวณมากๆ เช่น งานด้านกราฟิก หรือการคำนวณทางด้านวิทยาศาสตร์ เป็นต้น

2.เมนเฟรม (Mainframe)

เครื่องเมนเฟรมเป็นเครื่องที่ได้รับความนิยมใช้ในองค์กรขนาดใหญ่ทั่วๆไป จัดเป็นเครื่องที่มีประสิทธิภาพ รองถงมาจากซูเปอร์คอมพิวเตอร์ ซึ่งในช่วงปลาย ค.ศ. 1950 บริษัท IBM จัดเป็นบริษัทยักษ์ใหญ่ในวงการ อุตสาหกรรมคอมพิวเตอร์ โดยเกิดจากการมีส่วนแบ่งตลาดในการขายเครื่องระดับเมนเฟรมถึง 2 ใน 3 ของ ผู้ใช้เครื่องเมนเฟรมทั้งหมด เครื่องเมนเฟรมจะเป็นเครื่องที่มีขนาดใหญ่ ต้องอยู่ในห้องที่ได้รับการอุณหภูมิ และปราศจากฝุ่นละอองเช่นเดียวกับซูเปอร์คอมพิวเตอร์

เครื่องเมนเฟรมนิยมมาใช้ในงานที่มีการรับและแสดงผลข้อมูลจำนวนมาก ๆ เครื่องรุ่นใหม่ ๆ จะได้การ พัฒนาให้มีหน่วยประมวลผลหลายหน่วยทำงานพร้อม ๆ กันเช่นเดียวกับซูเปอร์คอมพิวเตอร์ แต่มีจำนวน ประมวลผลน้อยกว่า หน่วยเมนเฟรมจัดอยู่ในความเร็วของหน่วย เมกะฟรอป (megaflop) หรือการคำนวณ หนึ่งถ้านครั้งในหนึ่งวินาที

ระบบคอมพิวเตอร์ของเครื่องเมนเฟรม ส่วนมากจะมีหน่วยคอมพิวเตอร์ย่อยๆ ประกอบอยู่ด้วย เพื่อช่วยใน การทำงานบางประเภทให้กับเครื่องหลัก สามารถแยกตามหน้าที่ได้ดังนี้

Host processor เป็นเครื่องหลักทำหน้าที่ควบคุมหน่วยประมวลผล อุปกรณ์รอบข้าง และการคำนวณต่างๆ

Font-end processor มีหน้าที่ควบคุมติดต่อระหว่างหน้าจอของผู้ใช้งานที่เรียกว่า จอเทอร์มินัสระยะ ใกล (remote terminal) กับระบบคอมพิวเตอร์หลัก

Bank-end processor มีหน้าที่จัดการเกี่ยวกับการใช้ข้อมูล

โปรเซสเซอร์ส่วนต่าง ๆ บนเมนเฟรม

ระบบคอมพิวเตอร์ของเครื่องเมนเฟรม มีประสิทธิภาพเพียงพอที่จะรองรับผู้ใช้ได้หลายร้อยคนพร้อม ๆ กัน ซึ่งผู้ใช้เหล่านั้นอาจจะนั่งทำงานอยู่ใกล้เครื่องเมนเฟรม หรืออาจจะอยู่ที่อื่นซึ่งใหลออกไปก็ได้ เครื่อง เมนเฟรมจะเก็บโปรแกรมของผู้ใช้เหล่านั้นไว้ในหน่วยความจำหลัก และมีการสับเปลี่ยนหรือสวิทซ์การ ทำงานระหว่างโปรแกรมต่าง ๆ เหล่านั้นอย่างรวดเร็ว โดยที่ผู้ใช้จะไม่รู้สึกเลยว่ามีการสับเปลี่ยนการทำงาน ไปทำงานของคนอื่นอยู่ตลอดเวลา เนื่องจากคอมพิวเตอร์ทำงานได้เร็วกว่ามนุษย์มาก หลักการที่เครื่อง เมนเฟรมสามารถทำงานหลายโปรแกรมพร้อม ๆ กันนั้น เรียกว่า มัลติโปรแกรมมิง (multiprogramming)

3.มินิคอมพิวเตอร์ (Minicomputer)

เริ่มพัฒนาขึ้นใน ค.ศ. 1960 ต่อมาจากบริษัท Digital Equipment Corporation หรือ DEC ได้ประกาศตัว มินิคอมพิวเตอร์ DEC POP-8 (Programmed Data Processor) ในปี ค.ศ. 1965 ซึ่งได้รับความนิยมจากบริษัท หรือองค์กรที่มีขนาดกลาง เพราะมีราคาถูกกว่าเมนเฟรมมาก เครื่องมินิคอมพิวเตอร์จะใช้หลักการของมัลติ โปรแกรมมิงเช่นเดียวกับเมนเฟรม โดยจะสามารถรองรับผู้ใช้ได้ประมาณ 200 คนพร้อม ๆ กัน แต่สิ่งที่ แตกต่างระหว่างเครื่องเมนเฟรมและเครื่องมินิคอมพิวเตอร์ ก็คือความเร็วในการทำงาน เนื่องจาก เครื่อง มินิคอมพิวเตอร์จะทำงานได้ช้ากว่าการควบคุมผู้ใช้งานต่าง ๆ การะทำได้ในจำนวนที่น้อยกว่า รวมทั้งสื่อที่ เก็บข้อมูลต่าง ๆ มีความจุไม่สูงเท่าเมนเฟรม ดังนั้นเครื่องมินิคอมพิวเตอร์จึงจัดได้ว่ามินิคอมพิวเตอร์เป็น ขนาดกลาง

4.เวิร์คสเตชัน (Workstation) และ ใมโครคอมพิวเตอร์ (Micro Computer)

ในการทำงานบนเครื่องเมนเฟรมหรือมินิคอมพิวเตอร์ ผู้ใช้จะสามารถควบคุมการรับข้อมูลและดูการ แสดงผลบนจอภาพได้เท่านั้น ไม่สามารถควบคุมอุปกรณ์รอบข้างอื่น ๆ ได้ แต่การใช้ระบบคอมพิวเตอร์ ชนิคที่มีผู้ใช้คนเดียวนั้น จะทำให้ผู้ใช้สามารถควบคุมอุปกรณ์รอบข้างต่าง ๆ ได้ทั้งหมด ไม่ว่าจะเป็นหน่วย รับข้อมูล หน่วยประมวลผล หน่วยแสดงผล ตลอดจนหน่วยเก็บข้อมูลสำรอง นอกจากนี้ ผู้ใช้สามารถ เลือกใช้โปรแกรมได้เอง โดยไม่ต้องกังวลว่าจะต้องไปแย่งเวลาการเรียกใช้ข้อมูลกับผู้ใช้อื่น

คอมพิวเตอร์สำหรับผู้ใช้คนเดียว สามารถแบ่งออกเป็น 2 รุ่น คือ

เวิร์คสเตชั่น ถูกออกแบบมาให้เป็นคอมพิวเตอร์แบบตั้งโต๊ะ ที่มีความสามารถในการคำนวณด้านวิศวกรรม สถาปัตยกรรม หรืองานอื่นๆ ที่เน้นการแสดงผลด้านกราฟิกต่าง ๆ เช่น การนำมาช่วยออกแบบภาพกราฟิก ในโรงงานอุตสาหกรรมเพื่อออกแบบชิ้นส่วนใหม่ ๆ เป็นต้น ซึ่งจากการที่ต้องทำงานกราฟฟิกที่มีความ ละเอียดสูง ทำให้เวิร์คสเตชั่นใช้หน่วยประมวลผลที่มีประสิทธิภาพมาก รวมทั้งมีหน่วยเก็บข้อมูลสำรอง จำนวนมากด้วย มีผู้ใช้บางกลุ่มเรียกเครื่องระดับเวิร์คเตชั่นนี้ว่า ซูเปอร์ไมโคร (supermicro) เพราะออกแบบ มาให้ใช้งานแบบตั้งโต๊ะ แต่ชิปที่ใช้ทำงานนั้นแตกต่างกันมาก เนื่องจาก เวิร์คสเตชั่นส่วนมากใช้ชิป ประเภท RISC (reduce instruction set computer) ซึ่งเป็นชิปที่ลดจำนวนคำสั่งที่สามารถใช้สั่งงานให้เหลือ เฉพาะที่จำเป็น เพื่อให้สามารถทำงานได้ด้วยความเร็วสูง

ไมโกรกอมพิวเตอร์ ได้ถูกพัฒนาขึ้นในปี ค.ศ. 1975 และได้รับความนิยมอย่างเมื่อ IBM ได้สร้างเครื่อง IBM PC ออกมา ไมโครกอมพิวเตอร์ที่ได้รับความนิยมในปัจจุบันจะมี 2 ชนิดคือ Apple Macintosh และ IBM PC

ในปัจจุบัน ความแตกต่างหรือช่องว่างระหว่างเครื่องเวิร์คเตชั่นและเครื่องไมโครคอมพิวเตอร์ เริ่มลดน้อยลง เรื่อย ๆ เพราะเครื่องไมโครคอมพิวเตอร์ระดับสูงในปัจจุบัน มีประสิทธิภาพของเครื่องและความเร็วในการ แสดงผลที่ดีกว่าเครื่องเวิร์คเตชั่นจำนวนมาก

ซูเปอร์คอมพิวเตอร์ (ข) เมนเฟรมคอมพิวเตอร์ (ค) มินิคอมพิวเตอร์ (ง) ใมโครคอมพิวเตอร์

นอกจากนี้ ยังมีคอมพิวเตอร์ แบบผู้ใช้คนเคียวที่ได้รับการออกแบบให้สามารถพกพาติคตัวได้สะควก เช่น คอมพิวเตอร์โน้ตบุ๊ค (Notebook computer) คอมพิวเตอร์ปาล์มทอป (Palmtop computer) และ PDA (Personal Digital Assistant) ซึ่งคอมพิวเตอร์เหล่านี้ จัดได้ว่าเป็นเครื่องไมโครคอมพิวเตอร์ชนิดหนึ่งขนาก เล็ก น้ำหนักเบา และมีรูปลักษณ์ที่เหมาะกับการพกพา

ก) โน้ตบุ๊ค (ข) พี่ดีเอ

5.คอมพิวเตอร์เครื่อข่าย (Network computers)

เป็นคอมพิวเตอร์แบบใหม่ซึ่งเปลี่ยนแปลงมาจากไมโครคอมพิวเตอร์ โดยได้รับอิทธิพลมาจากแนว คอมพิวเตอร์อินเตอร์เน็ต คอมพิวเตอร์เครือข่ายหรือที่นิยมเรียกว่า NC จะถูกออกแบบให้เป็นคอมพิวเตอร์ที่ มีราคาต่ำ ค่าใช้จ่ายในการบำรุงรักษาน้อย ทำให้เหมาะสมกับการใช้งานปริมาณมาก ๆ ในองค์กรขนาดใหญ่ รวมทั้งการเชื่อมต่ออินเตอร์เน็ต

กอมพิวเตอร์เครือข่ายจะไม่มีหน่วยเก็บข้อมูลสำรองอยู่ในตัว การจัดเก็บข้อมูลและโปรแกรมตะอยู่เครื่อง ศูนย์กลาง (Server) ซึ่งมีข้อดีคือการเปลี่ยนรุ่น (upgrade) ซอฟต์แวร์สามารถทำงานได้ง่าย สามารถทำงาน จากเครื่องคอมพิวเตอร์เครือข่ายเครื่องใดก็ได้ รวมทั้งง่ายต่อการดูแลรักษา (mailtenance) ของผู้ดูแลระบบ คอมพิวเตอร์

6.คอมพิวเตอร์แบบฝัง (Embedded computer)

เป็นคอมพิวเตอร์ที่ถูกฝังไปในอุปกรณ์ ทำให้มองไม่เห็นรูปลักษณ์ภายนอกว่าเป็นคอมพิวเตอร์ นิยมใช้ใน การทำงานเฉพาะค้านโดยควบคุมการทำงานบางอย่าง เช่น เตาอบไมโครเวฟ ระบบการเติมน้ำมัน นาฬิกา ข้อมือ อุปกรณ์เล่นเกม เป็นต้น

องค์ประกอบของระบบคอมพิวเตอร์

ระบบคอมพิวเตอร์ประกอบด้วยองค์ประกอบสำคัญ 5 ส่วนด้วยกัน คือ

องค์ประกอบของระบบคอมพิวเตอร์

1.ฮารั่ดแวร์ (Hardware)

คือลักษณะทางกายของเครื่องคอมพิวเตอร์ ซึ่งหมายถึงตัวเครื่องคอมพิวเตอร์ และ อุปกรณ์รอบ ข้าง (peripheral) ที่เกี่ยวข้อง เช่น ฮาร์คดิสก์ เครื่องพิมพ์ เป็นต้น ฮาร์คแวร์ประกอบด้วย

- -หน่วยรับข้อมูล (input unit)
- -หน่วยประมวลผลกลาง (central processor unit) หรือ CPU
- -หน่วยความจำหลัก
- -หน่วยแสดงผลลัพธ์ (output unit)
- -หน่วยเก็บข้อมูลสำรอง (secondary storage unit)

หน่วยรับข้อมูล จะเป็นอุปกรณ์ที่ใช้สำหรับข้อมูลต่าง ๆ เข้าสู่คอมพิวเตอร์ จากนั้น หน่วยประมวลผล กลาง จะนำไปประมวลผล และแสดงผลลัพธ์ที่ได้ออกมากให้ผู้ใช้รับทราบทาง หน่วยแสดงผลลัพธ์

หน่วยความจำหลัก จะทำหน้าที่เสมือนเก็บข้อมูลชั่วคราวที่มีขนาดไม่สูงมากนัก การที่ฮาร์ดแวร์จะทำหน้าที่ ได้มีประสิทธิภาพนั้น ขึ้นอยู่กับโปรแกรมคอมพิวเตอร์ที่ใช้ ส่วนการทำงานได้มากน้อยเพียงใด จะขึ้นอยู่กับ หน่วยความจำหลักของเครื่องนั้น ๆ ข้อเสียของหน่วยความจำหลักคือ หากปิดเครื่องคอมพิวเตอร์ที่อยู่ใน หน่วยความจำหลักจะหายไป ในขณะที่ข้อมูลอยู่ที่ หน่วยเก็บข้อมูลสำรอง จะไม่สูญหายตราบเท่าที่ผู้ใช้ไม่ ทำการลบข้อมูลนั้น รวมทั้งหน่วยเก็บข้อมูลสำรองยังมีความจุที่สูงมาก จึงเหมาะสำหรับการเก็บข้อมูลที่มีขนาดใหญ่ หรือเก็บข้อมูลไว้ใช้ในภายหลัง ข้อเสียของหน่วยเก็บข้อมูลสำรองคือการเรียกใช้ข้อมูลจะช้ากว่า หน่วยความจำหลักมาก

2.ซอฟต์แวร์ (Software)

กอมพิวเตอร์ฮาร์คแวร์ที่ประกอบออกมาจากโรงงานจะยังไม่สามารถทำงานใคๆ เนื่องจากต้องมี ซอฟต์แวร์ (Software) ซึ่งเป็นชุดคำสั่งหรือโปรแกรมที่สั่งให้ฮาร์คแวร์ทำงานต่าง ๆ ตามต้องการ โดยชุดคำสั่งหรือ โปรแกรมนั้นจะเขียนขึ้นมาจาก ภาษาคอมพิวเตอร์ (Programming Language) ภาษาใคภาษาหนึ่ง และ มี โปรแกรมเมอร์ (Programmer) หรือนักเขียนโปรแกรมเป็นผู้ใช้ภาษาคอมพิวเตอร์เหล่านั้นเขียนซอฟต์แวร์ ต่าง ๆ ขึ้นมา

ซอฟต์แวร์ สามารถแบ่งออกเป็นสองประเภทใหญ่ๆคือ

-ซอฟต์แวร์ระบบ (System Software)

-ซอฟต์แวร์ประยุกต์ (Application Software)

ซอฟต์แวร์ระบบ โดยส่วนมากแล้วจะติดตั้งมากับเครื่องคอมพิวเตอร์เนื่องจากซอฟต์แวร์ระบบเป็นส่วน ควบคุมทำงานต่าง ๆ ของคอมพิวเตอร์ เพื่อให้สามารถเริ่มต้นการทำงานอื่น ๆ ที่ผู้ใช้ต้องการได้ต่อไป ส่วน ซอฟต์แวร์ประยุกต์ จะเป็นซอฟต์แวร์ที่เน้นในการช่วยการทำงานต่าง ๆ ให้กับผู้ใช้ ซึ่งแตกต่างกันไป ตามความต้องการของผู้ใช้แต่ละคน

ซอฟต์แวร์ในระบบไมโครคอมพิวเตอร์

3.บุคลากร (Peopleware)

เครื่องคอมพิวเตอร์ โดยมากต้องใช้บุคลากรสั่งให้เครื่องทำงาน เรียกบุคลากรเหล่านี้ว่า ผู้ใช้ หรือ ยูเซอร์ (user) แต่ก็มีบางชนิดที่สามารถทำงานได้เองโดยไม่ต้องใช้ผู้ควบคุม อย่างไรก็ตาม คอมพิวเตอร์ก็ยังคงต้อง ถูกออกแบบหรือดูแลรักษาโดยมนุษย์เสมอ

ผู้ใช้คอมพิวเตอร์ (computer user) แบ่งได้เป็นหลายระดับ เพราะผู้ใช้คอมพิวเตอร์บางส่วนก็ทำงานพื้นฐาน ของคอมพิวเตอร์เท่านั้น แต่บางส่วนก็พยายามศึกษาโปรแกรมประยุกต์ในขั้นที่สูงขึ้น ทำให้มีความชำนาญ ในการใช้โปรแกรมประยุกต์ต่าง ๆ นิยมเรียกกลุ่มนี้ว่า เพาเวอร์ยูสเซอร์ (power user)

ผู้เชี่ยวชาญทางค้านคอมพิวเตอร์ (computer professional) หมายถึงผู้ที่ได้ศึกษาวิชาการทางค้านคอมพิวเตอร์ ทั้งในระคับกลางและระคับสูง ผู้เชี่ยวชาญทางค้านนี้จะนำความรู้ที่ได้ศึกษามาประยุกต์และพัฒนาใช้งาน และประสิทธิภาพของระบบคอมพิวเตอร์ให้ทำงานในขั้นสูงขึ้นไปได้อีก นักเขียนโปรแกรม (programmer) ก็ถือว่าเป็นผู้เชียวชาญทางคอมพิวเตอร์เช่นกัน เพราะสามารถสร้างโปรแกรมใหม่ ๆ ได้ และ เป็นเส้นทางหนึ่งที่จะนำไปสู่การเป็นผู้เชี่ยวชาญทางคอมพิวเตอร์ต่อไป

บุคลากรก็เป็นส่วนหนึ่งของระบบคอมพิวเตอร์ เพราะมีความเกี่ยวข้องกับระบบคอมพิวเตอร์ ตั้งแต่การ พัฒนาเครื่องคอมพิวเตอร์ ตลอดจนถึงการนำคอมพิวเตอร์มาใช้งานต่าง ๆ ซึ่งสามารถสรุปลักษณะงานได้ ดังบี้

- -การคำเนินงานและเครื่องอุปกรณ์ต่าง ๆ เช่น การบันทึกข้อมูลลงสื่อ หรือส่งข้อมูลเข้าประมวล หรือควบคุม การทำงานของระบบคอมพิวเตอร์ เช่น เจ้าหน้าที่บันทึกข้อมูล (Data Entry Operator) เป็นต้น
- -การพัฒนาและบำรุงรักษาโปรแกรม เช่น เจ้าหน้าที่พัฒนาโปรแกรมประยุกต์ (Application Programmer) เจ้าหน้าที่พัฒนาโปรแกรม (System Programmer) เป็นต้น
- -การวิเคราะห์และออกแบบระบบงานที่ใช้คอมพิวเตอร์ประมวลผล เช่น เจ้าหน้าที่วิเคราะห์และออกแบบ ระบบงาน (System Analyst and Administrator) วิศวกรระบบ (System Engineer) เจ้าหน้าที่จัดการ ฐานข้อมูล (Database Administrator)เป็นต้น
- -การพัฒนาและบำรุงรักษาระบบทางฮาร์ดแวร์ เช่น เจ้าหน้าที่ควบคุมการทำงานระบบคอมพิวเตอร์ (Computer Operator) เป็นต้น
- -การบริหารในหน่วยประมวลผลข้อมูล เช่น ผู้บริหารศูนย์ประมวลผลข้อมูลด้วยคอมพิวเตอร์ (EDP Manager) เป็นต้น

4. ข้อมูลและสารสนเทศ (Data / Information)

ในการทำงานต่าง ๆ จะต้องมีข้อมูลเกิดขึ้นตลอดเวลา ข้อมูลที่เกี่ยวข้องกับงานที่ถูกเก็บรวบรวมมา ประมวลผล เพื่อให้ได้สารสนเทศที่เป็นประโยชน์ต่อผู้ใช้ ซึ้งในปัจจุบันมีการนำเอาระบบคอมพิวเตอร์มา เป็นข้อมูลในการดัดแปลงข้อมูลให้ได้ประสิทธิภาพโดยแตกต่างๆระหว่างข้อมูล และ สารสนเทศ คือ

ข้อมูล คือ ได้จากการสำรวจจริง แต่ **สารสนเทศ** คือ ได้จากข้อมูลไม่ผ่านกระบวนการหนึ่งก่อน

สารสนเทศเป็นสิ่งที่ผู้บริหารนำไปใช้ช่วยในการตัดสินใจ โดยที่สารสนเทศที่มีประโยชน์นั้นจะมีคุณสมบัติ ดังตาราง

มีความสัมพันธ์กัน (relevant)	สามารถนำมาประยุกต์ใช้ได้อย่างเหมาะสมกับสถานการณ์ปัจจุบัน	
มีความทันสมัย (timely)	ต้องมีความทันสมัยและพร้อมที่จะใช้งานได้ทันทีเมื่อต้องการ	
มีความถูกต้องแม่นยำ (accurate)	เมื่อป้อนข้อมูลเข้าสู่คอมพิวเตอร์และผลลัพธ์ที่ได้จะต้องถูกต้องในทุก ส่วน	
มีความกระชับรัดกุม (concise)	ข้อมูลจะต้องถูกย่นให้มีความยาวที่พอเหมาะ	
มีความสมบูรณ์ในตัวเอง (complete)	ค้องรวบรวมข้อมูลที่สำคัญไว้อย่างครบถ้วน 	

การเปลี่ยนรูปจากข้อมูลสู่สารสนเทศ

5.กระบวนการทำงาน (Procedure)

กระบวนการทำงานหรือโพรซีเยอร์ หมายถึง ขั้นตอนที่ผู้ใช้จะต้องทำตาม เพื่อให้ได้งานเฉพาะอย่างจาก คอมพิวเตอร์ซึ่งผู้ใช้คอมพิวเตอร์ทุกคนต้องรู้การทำงานพื้นฐานของเครื่องคอมพิวเตอร์ เพื่อที่จะสามารถใช้ งานได้อย่างถูกต้อง ตัวอย่างเช่น การใช้เครื่อง ฝาก-ถอนเงินอัตโนมัติ ถ้าต้องการถอนเงินจะต้องผ่าน กระบวนการต่าง ๆ ดังนี้

- 1. จอภาพแสดงข้อความเตรียมพร้อมที่จะทำงาน
- 2. สอดบัตร และพิมพ์รหัสผู้ใช้
- 3. เลือกรายการ

- 4. ใส่จำนวนเงินที่ต้องการ
- 5. รับเงิน
- 6. รับใบบันทึกรายการ และบัตร

การใช้คอมพิวเตอร์ปฏิบัติงานในส่วนต่าง ๆ นั้นมักจะมีขั้นตอนที่สลับซับซ้อน และเกี่ยวข้องกับช่วงเวลา ต่าง ๆ ในการปฏิบัติงานด้วย จึงต้องมีคู่มือการปฏิบัติงานที่ชัดเจน เช่น คู่มือสำหรับผู้ควบคุมเครื่อง (Operation Manual) คู่มือสำหรับผู้ใช้ (User Manual) เป็นต้น