FURIN CLEAVAGE SITE IN SARS-COV-2

An evidence for laboratory leak or natural origin?

Anna Medgyes-Horváth

2024.

The role of the furin protease

Proprotein active protein

The furin cleavage site (FCS) may increase the efficiency of virus infection in SARS-CoV-2

host membrane fusion

FCS deletion					
Attenuated viral infection	Less efficient replication in lung and tracheal tissues	Less weigth loss and reduced lung damage in hamsters	Low titer virus shed - no transmission in ferrets	Augmented rate of replication in Vero E6 cells	

Villoutreix, B. O., et al. (2022). Furin and COVID-19: Structure, Function and Chemoinformatic Analysis of Representative Active Site Inhibitors. Frontiers in Drug Discovery, 2. https://doi.org/10.3389/fddsv.2022.899239

Concerns about FCS

- FCS appears to destabilize the spike and the first known adaptive mutation in spike (D614G) is likely to have evolved to primarily compensate for this destabilization. Delta P/R (RRRA), Omicron P/histidine, H (HRRA).
- No known Sarbecovirus except SARS-CoV-2 has an FCS insertion at the S1/S2 junction. (But present in some Alphacoronaviruses, Betacoronaviruses, Gammaproteobacteria)
- Unique four-residue P-R-R-A (681–684)
 insertion at its spike S1/S2 junction, producing
 an FCS.
 - "non-canonical" -- not an R-R-X-R-R
 - highly functional
 - similar to FCSs found in other CoVs such as MERS
- Insertion is out of frame, arginine coding codon (CGG-CGG) is very rare (2/42)


```
Pangolin MP789

G A G I C A S Y Q T Q T N S - - - - R S V S S X A I

RaTG13

G A G I C A S Y Q T Q T N S - - - - R S V S S X A I

(nt 23543):

ggt gca gga ata tgt gcc agt tat cag act caa act aat tca -- - - - - R S V A S Q S I

(nt 23543):

GA G I C A S Y Q T Q T N S - - - - R S V A S Q S I

ggt gca gga ata tgc gcc agt tat cag act caa act aat tca -- - - - - cgt agt gtt tca agt caa tct att

SARS-CoV-2

(nt 23561):

Black = common for all 3

Red

= unique to SARS-CoV-2

Green = unique to SARS-CoV-2

Blue = common difference of RaTG13 and SARS-CoV-2 from MP789
```

The close relatives of SARS-CoV-2 lack FCS

- S1/S2 region in unconserved and prone to substitutions, indels, and possibly recombinations.
- Numerous insertion at different positions in the S1/S2 region, but FCS is unique to SARS-CoV-2
- Conserved NSPXARVG motif in samples collected from different locations
 - RmYNo2 (Yunnan, China)
 - RacCS203 (Thailand)
 - BANAL-20-116 and BANAL-20-247 (Laos)

Chan, Y. A., & Zhan, S. H. (2022). The Emergence of the Spike Furin Cleavage Site in SARS-CoV-2. Molecular Biology and Evolution, 39(1). https://doi.org/10.1093/molbev/msab327

Possible human origin?

- Sequence analysis showed that the SARS-CoV-2 S gene 12-nucleotide fragments, potentially involved in the PRRA coding, 100% match to several NCBI human mRNA RefSeq transcripts
- These human transcripts could be good candidates as donors of mRNA template in a potential recombination link to a SARS-CoV-2 furin cleavage motif.
- Laos and Vietnam bat coronaviruses can infect human cells despite the absence of the furin cleavage motif - these may gain the FCS in human cells.
- Other PRRA-like insertions in the SARS-CoV-2 spike glycoprotein sequence

Query and transcript position	RefSeq GenBank title	Chr	Exon range
CTCCTCGGCGGG-2921	NM_000466.3 Homo sapiens peroxisomal biogenesis factor 1 (PEX1), transcript variant 1, mRNA	7	Exon, 28693011
CTCCTCGGCGGG-2750	NM_001282677.2 Homo sapiens peroxisornal biogenesis factor 1 (PEX1), transcript variant 2, mRNA	7	Exon, 26692803
CTCCTCGGCGGG-2956	NM_001282678.2 Homo sapiens peroxisomal biogenesis factor 1 (PEX1), transcript variant 3, mRNA	7	Exon, 28693011
CTCCTCGGCGGG-1643	NM_001099289.3 Homo sapiens SH3 domain containing ring finger 3 (SH3RF3), mRNA	2	Exon, 16361739
CTCCTCGGCGGG-869	NM_001145873.1 Homo sapiens CD8a molecule (CD8A), transcript variant 3, mRNA	2	Exon, 7621080
CTCCTCGGCGGG-851	NM_001382698.1 Homo sapiens CD8a molecule (CD8A), transcript variant 5, mRNA	2	Exon, 7441062
CTCCTCGGCGGG-3430	NM_020910.3 Homo sapiens KIAA1549 (KIAA1549), transcript variant 1, mRNA	7	Exon, 37903967
CTCCTCGGCGGG-3430	NM_001164665.2 Homo sapiens KIAA1549 (KIAA1549), transcript variant 2, mRNA	7	Exon, 37903967
CTCCTCGGCGGG-853	NM_001291291.2 Homo sapiens MISP family member 3 (MISP3), transcript variant 1, mRNA	19	Exon, 11092
CTCCTCGGCGGG-853	NM_001393577.1 Homo sapiens MISP family member 3 (MISP3), transcript variant 3, mRNA	19	Exon, 11092
CTCCTCGGCGGG-169	NM_004717.3 Homo sapiens diacylglycerol kinase iota (DGKI), transcript variant 1, mRNA	7	Exon, 1403
CTCCTCGGCGGG-279	NM_001321708.2 Homo sapiens diacylglycerol kinase iota (DGKI), transcript variant 2, mRNA	7	Exon, 1513
CTCCTCGGCGGG-145	NM_001321710.2 Homo sapiens diacylglycerol kinase iota (DGKI), transcript variant 4, mRNA	7	Exon, 1379
CTCCTCGGCGGG-279	NM_001388092.1 Homo sapiens diacylglycerol kinase iota (DGKI), transcript variant 5, mRNA	7	Exon, 1513
CTCCTCGGCGGG-7	NM_004093.4 Homo sapiens ephrin B2 (EFNB2), transcript variant 1, mRNA	13	Exon, 1820
CTCCTCGGCGGG-7	NM_001372056.1 Homo sapiens ephrin B2 (EFNB2), transcript variant 2, mRNA	13	Exon, 1820
CTCCTCGGCGGG-7	NM_001372057.1 Homo sapiens ephrin B2 (EFNB2), transcript variant 3, mRNA	13	Exon, 1820
CTCCTCGGCGGG-7	NM_001372058.1 Homo sapiens ephrin B2 (EFNB2), transcript variant 4, mRNA	13	Exon, 1820
CTCCTCGGCGGG-118	NM_004637.6 Homo sapiens RAB7A, member RAS oncogene family (RAB7A), mRNA	3	Exon, 1177
CTCCTCGGCGGG-307	NM_006843.3 Homo sapiens serine dehydratase (SDS), mRNA	12	Exon, 276315
CTCCTCGGCGGG-187	NM_016085.5 Homo sapiens all-trans retinoic acid induced differentiation factor (ATRAID), transcript variant 1, mRNA	2	Exon, 1248
CTCCTCGGCGGG-1032	NM_021620.4 Homo sapiens PR/SET domain 13 (PRDM13), mRNA	6	Exon, 6003129
CTCCTCGGCGGG-36	NM_022831.4 Homo sapiens axin interactor, dorsalization associated (AIDA), mRNA	1	Exon, 1284
CTCCTCGGCGGG-2215	NM_171999.4 Homo sapiens spalt like transcription factor 3 (SALL3), mRNA	18	CDS*, 4584360

The presence of the FCS is not a direct evidence of the 'lab leak' hipothesis

- Loss of FCS in cell cultures → SARS-CoV-2 is not replicating efficiently in this form
- Poor replication in traditional animal models
- No direct evidence of genetic engineering
- The pathogenesis of SARS-CoV-2 may be dependent on the cleavage site loop length and not only the presence of the furin cleavage site.