## All-Resolutions Inference for brain imaging Flexible Inference for fMRI Data

Jonathan D. Rosenblatt Livio Finos Wouter D. Weeda Aldo Solari Jelle J. Goeman

Neuroimage, 2018, 181:786-796. doi: 10.1016/j.neuroimage.2018.07.060





## **Outline**

#### Introduction

Cluster-level Inference

**All-Resolutions Inference** 

Discussion



## Volumetric pixels





amount of the same of the same



- fMRI unit of resolution: voxel
- response (BOLD) is measured for every voxel



## Go/No-go data

#### **Task**

- Go: press a button when you see an happy face ⊚
- No-go: hold when you see a neutral face ⊚ and vice-versa

#### High-dimensional data

- n = 34 subjects
- m = 902629 voxels

#### Z-score map

- contrast: No-go > Go
- $\circ$  compute the test statistic Z for every voxel





#### **Outline**

Introduction

Cluster-level Inference

**All-Resolutions Inference** 

Discussion



## Most popular approach



<sup>\* 814</sup> fMRI studies published in 2010 and 2011 from Cerebral Cortex, Nature, Nature Neuroscience, NeuroImage, Neuron, PNAS, and Science



#### **Cluster-level inference**

- Cluster-level inference is data-driven: clusters are both defined and tested with the same data
- Issues with circular inference solved by random field theory
- **1.** Cluster definition: specify cluster forming Z-threshold e.g. contiguous voxels with Z > 3.2
- 2. Cluster significance: specify RFT  $\alpha$ -threshold e.g. cluster RFT p-value < 5% (cluster size  $> s_{5\%}$ )

#### **Clusters**

- $\rightarrow$  Z > 3.2 and  $\alpha = 5\%$  ( $s_{5\%} = 161$ )
- ← 9 clusters of sizes 2191, 1835, 1400, 698, 421, 304, 245, 232, 187



## Low spatial resolution

Discovering a cluster means that

"there exists at least one active voxel in the cluster" and not that

"all the voxels in the cluster are active"

- Spatial specificity paradox: the larger the detected cluster, the less information we have on the location of the activation
- No information on the % of activation of each cluster



## Low spatial resolution

| cluster | size | # active | % active |
|---------|------|----------|----------|
| А       | 2191 | 7        | 7        |
| В       | 1835 | ?        | ?        |
| C       | 1400 | ?        | ?        |
| D       | 698  | ?        | ?        |
| Е       | 421  | ?        | ?        |
| F       | 304  | ?        | ?        |
| G       | 245  | ?        | ?        |
| Н       | 232  | ?        | ?        |
|         | 187  | ?        | ?        |



#### **Notation**

- $B = \{1, 2, ..., m\}$ : brain, collection of m voxels
- $S \subseteq B$ : voxel set
- C : cluster (particular case of voxel set)
- $S = \{S : S \subseteq B\}$  with  $|S| = 2^m$ : collection of all voxel sets:
- $A \subseteq B$ : (unknown) set of truly active voxels:

#### Parameter of interest

- $a(S) = |A \cap S|$ : # of truly active voxels in S
- $\pi(S) = a(S)/|S|$ : % of truly active voxels in S



## **Cluster null hypothesis**

- $\circ$  Given a pre-specified cluster forming Z-threshold, we obtain a collection of clusters  $\mathcal C$
- $\circ$  Both the number of clusters  $|\mathcal{C}|$  and each cluster  $\mathcal{C} \in \mathcal{C}$  are random quantities, because are determined by the data
- Cluster null hypothesis

$$H_C : \pi(C) = 0$$

- Rejecting  $H_C$  implies  $\pi(C) > 0$ , at least one active voxel in C
- Note that also the null hypotheses are random



#### **Simultaneous confidence bounds**

 $\circ$  Simultaneous lower confidence bounds  $\bar{\pi}(S)$  for  $\pi(S)$  satisfy

P(for all 
$$S \in \mathcal{S} : \overline{\pi}(S) \leq \pi(S)$$
)  $\geq 1 - \alpha$ 

• With probability at least  $1-\alpha$  the lower bound is valid for all S, and therefore for one or more selected S, regardless of how they were selected (after seeing the data, etc.)



## **All-Resolutions Inference**<sup>1</sup>

#### ARI accounts for 3 layers of circularity:

- 1. defining clusters
- 2. testing on clusters
- 3. testing on voxels within clusters

all with the same data

#### ARI allows to

- 1. quantify the activation of each cluster
- **2.** localize the source of the activation within the cluster: "drill-down" from discovered clusters to sub-clusters



## Quantify

| cluster | RFT p-value | size | # active | % active |
|---------|-------------|------|----------|----------|
| А       | < .0001     | 2191 | 624      | 29 %     |
| В       | < .0001     | 1835 | 847      | 46 %     |
| С       | < .0001     | 1400 | 454      | 32 %     |
| D       | < .0001     | 698  | 0        | 0 %      |
| Е       | .0001       | 421  | 25       | 6 %      |
| F       | .0034       | 304  | 33       | 11 %     |
| G       | .0097       | 245  | 0        | 0 %      |
| Н       | .0123       | 232  | 0        | 0 %      |
|         | .0291       | 187  | 0        | 0 %      |



## Quantify





## Localize

| cluster | threshold    | RFT p   | size | # active | % active |
|---------|--------------|---------|------|----------|----------|
| А       | Z > 3.2      | < .0001 | 2191 | 624      | 29 %     |
| 1       | Z > 4        | _       | 405  | 267      | 66 %     |
| 2       | Z > 4        | _       | 133  | 31       | 23 %     |
| 3       | <i>Z</i> > 4 | _       | 6    | 0        | 0 %      |
| В       | Z > 3.2      | < .0001 | 1835 | 847      | 46 %     |
| 1       | Z > 4        | _       | 963  | 826      | 86 %     |
| C       | Z > 3.2      | < .0001 | 1400 | 454      | 32%      |
| 1       | Z > 4        | _       | 583  | 449      | 77 %     |
| 2       | Z > 4        | _       | 4    | 0        | 0 %      |
| 3       | Z > 4        | _       | 1    | 0        | 0 %      |
|         |              |         |      |          | /        |

## Localize





## Localize





#### **Outline**

Introduction

Cluster-level Inference

**All-Resolutions Inference** 

Discussion



#### **Notation**

- $B = \{1, 2, ..., m\}$ : brain, collection of m voxels
- $S \subseteq B$  : voxel set
- $S = \{S : S \subseteq B\}$  with  $|S| = 2^m$ : collection of all voxel sets:
- $A \subseteq B$ : (unknown) set of truly active voxels:
- $a(S) = |A \cap S|$ : # of truly active voxels in S
- $\pi(S) = a(S)/|S|$ : % of truly active voxels in S

#### **All-Resolutions Inference**

• Derive simultaneous lower confidence bounds  $\bar{\pi}(S)$  for  $\pi(S)$ :

P(for all 
$$S \in \mathcal{S} : \overline{\pi}(S) \leq \pi(S)$$
)  $\geq 1 - \alpha$ 

• With probability at least  $1-\alpha$  the lower bound is valid for all S, and therefore for one or more selected S, regardless of how they were selected (after seeing the data, etc.)



#### Simes test

Test the null hypothesis

$$H_S: a(S) = 0$$

with the Simes test

$$p_S = \min_{1 \le i \le |S|} \frac{|S|}{i} p_{(i:S)}$$

Reject  $H_S$  if  $p_S \leq \alpha$ 

#### **ARI** assumption

$$P(p_{B\setminus A} \leq \alpha) \leq \alpha$$



## Simes inequality



## Toy example

| V <sub>2</sub> | V <sub>3</sub> |
|----------------|----------------|
| $V_1$          | V4             |

• 
$$p_1 = 0.020$$

• 
$$p_2 = 0.026$$

• 
$$p_3 = 0.032$$

• 
$$p_4 = 0.500$$



## Simes test rejections (local test, raw-p)



# Closed testing correction (adjusted-p, multiple testing)



## Number of truly active voxels



• 
$$p_1 = 0.020$$

• 
$$p_2 = 0.026$$

• 
$$p_3 = 0.032$$

$$p_4 = 0.500$$



with statements simultaneously true with probability 95%



## **Outline**

Introduction

Cluster-level Inference

**All-Resolutions Inference** 

Discussion



#### **Discussion**

- Flexibility of ARI: users can iterate the process of
  - 1. choosing regions in any way, also after seeing the data
  - 2. quantify the % of activation
  - 3. redefine the regions

without compromising the validity of the inference

- Implemented in C++: take seconds
- Package hommel on CRAN.
   Package ARIbrain on CRAN implement the method for fMRI data.

