

IRFP460

N - CHANNEL 500V - 0.22 Ω - 20 A - TO-247 PowerMESHTM MOSFET

TYPE	V _{DSS}	R _{DS(on)}	Ι _D
IRFP460	500 V	< 0.27 Ω	20 A

- TYPICAL $R_{DS(on)} = 0.22 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED

DESCRIPTION

This power MOSFET is designed using the company's consolidated strip layout-based MESH OVERLAY^{IM} process. This technology matches and improves the performances compared with standard parts from various sources.

APPLICATIONS

- HIGH CURRENT SWITCHING
- UNINTERRUPTIBLE POWER SUPPLY (UPS)
- DC/DC COVERTERS FOR TELECOM, INDUSTRIAL, AND LIGHTING EQUIPMENT.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	500	V
V _{GS}	Gate-source Voltage	± 20	V
I _D	Drain Current (continuous) at T _c = 25 °C	20	А
I _D	Drain Current (continuous) at T _c = 100 °C	13	Α
I _{DM} (•)	Drain Current (pulsed)	80	Α
P _{tot}	Total Dissipation at T _c = 25 °C	250	W
	Derating Factor	2	W/°C
dv/dt(1)	Peak Diode Recovery voltage slope	3.5	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

^(•) Pulse width limited by safe operating area

(1) $I_{SD} \le 20$ A, $di/dt \le 160$ A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $Tj \le T_{JMAX}$

September 1998

THERMAL DATA

R	thj-case	Thermal Resistance Junction-case	Max	0.5	°C/W
R	thj-amb	Thermal Resistance Junction-ambi	ent Max	30	oC/W
R	thc-sink	Thermal Resistance Case-sink	Тур	0.1	°C/W
	T_I	Maximum Lead Temperature For Sc	Idering Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	20	А
	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	1000	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125 ^{\circ}C$			10 100	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V I _D = 12 A		0.22	0.27	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	20			А

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 12 \text{ A}$	13			S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		4200 500 50		pF pF pF

2/8

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	$V_{DD} = 250 \text{ V}$ $I_D = 10 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 1)		32 15		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 \text{ V}$ $I_{D} = 20 \text{ A}$ $V_{GS} = 10 \text{ V}$		100 21 37	130	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 400 \text{ V}$ $I_{D} = 20 \text{ A}$		20		ns
t _f	Fall Time	$R_{G} = 4.7 \Omega V_{GS} = 10 V$		25		ns
tc	Cross-over Time	(see test circuit, figure 5)		47		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				20 80	A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 20 \text{ A} V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 20 \text{ A}$ di/dt = 100 A/ μ s $V_{DD} = 100 \text{ V}$ $T_i = 150 ^{\circ}\text{C}$		700		ns
Q _{rr}	Reverse Recovery	(see test circuit, figure 3)		9		μС
I _{RRM}	Charge Reverse Recovery Current			25		А

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area

Safe Operating Area

Thermal Impedance

477

Output Characteristics

Transconductance

Gate Charge vs Gate-source Voltage

Transfer Characteristics

Static Drain-source On Resistance

Capacitance Variations

4/8

Normalized Gate Threshold Voltage vs

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 1: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

6/8

TO-247 MECHANICAL DATA

DIM.		mm		inch			
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.7		5.3	0.185		0.209	
D	2.2		2.6	0.087		0.102	
E	0.4		0.8	0.016		0.031	
F	1		1.4	0.039		0.055	
F3	2		2.4	0.079		0.094	
F4	3		3.4	0.118		0.134	
G		10.9			0.429		
Н	15.3		15.9	0.602		0.626	
L	19.7		20.3	0.776		0.779	
L3	14.2		14.8	0.559	0.413	0.582	
L4		34.6			1.362		
L5		5.5			0.217		
М	2		3	0.079		0.118	
Dia	3.55		3.65	0.140		0.144	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

47