Alejandro Sherman, 862062898, Section 21, ENGR ID asherman, NET ID asher011 Partner Sec21 Group 1: Christopher Alexman calex025 (our reports and results are unique)

Lab 4 Part 2 Report

Video Checkoff

Video Checkoff Week 2 Part1:

https://www.youtube.com/watch?v=oOfRTjm-Ns4

(Includes gate level for gcd and compiler report location)

Video Checkoff Week 2 Part2:

https://www.youtube.com/watch?v=BajzzlxEvgQ

(Includes final layout in fig 51)

What I learned

In today's lab I learned how to once again perform register level design and then create my hardware design with HDL for electric designs. This time, I learned how to do so with a more complex verilog design. Additionally, I learned how to generate meaningful data reports from dc_shell. Also, when running icc_shell I learned how to modify a floorplan for a larger layout. Finally, I learned how to continue routing after enabling filters and I also learned how to generate the post place and route netlist, the constraint file, and parasitics files to generate power estimates.

Gate Level for GCD

Final Layout

Fig 51

Timing Report

Report: timing
-path full
-delay max
-nets
-max_paths 1
-transition_time
Design: gcdGCDUnit_rtl
Version: K-2015.06-SP4
Date: Sat Feb 26 20:33:56 2022

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: top

```
Startpoint: GCDdpath0/A_reg_reg[4]

(rising edge-triggered flip-flop clocked by ideal_clock1)

Endpoint: GCDdpath0/A_reg_reg[9]

(rising edge-triggered flip-flop clocked by ideal_clock1)

Path Group: ideal_clock1
```

Path Type: max

Attributes:

d - dont_touch

u - dont_use

mo - map_only

so - size_only

i - ideal_net or ideal_network

inf - infeasible path

Point	Fanout	Trans	Ind	cr Pa	th Attri	butes
clock ideal clock1 (rise edge	;) 			0.00	0.00	
clock network delay (ideal)	,		(0.00	
GCDdpath0/A reg reg[4]/Cl	_K (DFFAR)	X1)		0.00	0.00	0.00 r
GCDdpath0/A reg reg[4]/Q	•			0.04	0.24	0.24 f
result bits data[4] (net)	5	,	0		.24 f	
U153/QN (NAND2X1)			0.04	0.03	0.28 r	
n294 (net)	2		0.00	0.28	f	
U251/QN (INVX0)		0.0)3	0.03	0.31 f	
n183 (net)	2		0.00	0.311		
U133/QN (NAND2X0)			0.06	0.04	0.35 r	
n149 (net)	1		0.00	0.35	r	
U252/QN (NAND2X1)			0.05	0.04	0.39 f	
n314 (net)	3		0.00	0.39		
U253/QN (NAND2X2)			0.03	0.02	0.41 r	
n153 (net)	1		0.00	0.41	r	
U258/QN (NAND2X1)			0.03	0.03	0.44 f	
n154 (net)	1		0.00	0.44		
U259/Q (AO21X1)		0.0	04	0.08	0.52 f	
n227 (net)	4	(0.00	0.52	f	
U177/Q (LSDNX1)		0.	04	80.0	0.60 f	
n308 (net)	2	(0.00	0.60	f	
U320/Q (AO21X1)		0.0	03	0.09	0.69 f	
n233 (net)	1	(0.00	0.69	f	
U322/Q (XOR2X1)		0.	04	0.12	0.81 r	
n234 (net)	1		0.00	0.81	r	
U140/QN (NAND2X0)			0.05	0.04	0.84 f	
n238 (net)	1	(0.00	0.84	f	
U324/QN (NAND4X0)			0.07	0.04	0.88 r	
n91 (net)	1		0.00	0.88 r		
GCDdpath0/A_reg_reg[9]/D	(DFFARX1))		0.07	0.00	0.88 r
data arrival time				0.88		
clock ideal_clock1 (rise edge	e)			1.00	1.00	
clock network delay (ideal)			(0.00	1.00	
GCDdpath0/A_reg_reg[9]/Cl	K (DFFAR)	X1)			0.00	1.00 r
library setup time			-0.12		3	
data required time				0.88		

data required time	0.88
data arrival time	-0.88
slack (MET)	0.00

Area Report

Report: area

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sat Feb 26 20:38:09 2022

Library(s) Used:

saed90nm typ (File:

/usr/local/synopsys/pdk/SAED90_EDK/SAED_EDK90nm_REF/references/ChipTop/ref/saed90nm_fr/LM/s aed90nm typ.db)

Number of ports: 54
Number of nets: 384
Number of cells: 317

Number of combinational cells: 283
Number of sequential cells: 34
Number of macros/black boxes: 0

Number of buf/inv: 34 Number of references: 30

Combinational area: 1995.864012 Buf/Inv area: 199.999007

Noncombinational area: 1081.958015 Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 3077.822028

Total area: undefined

Hierarchical area distribution

	Global cell area Local cell area
Hierarchical cell	Absolute Percent Combi- Noncombi- Black-
	Total Total national national boxes Design
gcdGCDUnit_rtl	3077.8220 100.0 1995.8640 1081.9580 0.0000 gcdGCDUnit_rt

Power Analysis

Report : power -hier

-analysis_effort low Design : gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sat Feb 26 20:39:31 2022

Library(s) Used:

saed90nm typ (File:

/usr/local/synopsys/pdk/SAED90_EDK/SAED_EDK90nm_REF/references/ChipTop/ref/saed90nm_fr/LM/s aed90nm_typ.db)

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: top

Global Operating Voltage = 1.2

Power-specific unit information:

Voltage Units = 1V

Capacitance Units = 1.000000pf

Time Units = 1ns

Dynamic Power Units = 1mW (derived from V,C,T units)

Leakage Power Units = 1pW

Standard Cell-Area Reference Analysis

Report : reference Design : gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sat Feb 26 20:40:56 2022

Attributes:

- b black box (unknown)
- bo allows boundary optimization
- d dont_touch
- mo map_only
- h hierarchical
- n noncombinational
- r removable
- s synthetic operator
- u contains unmapped logic

Reference	Library Unit	Area Count	Tota	l Area Attribute
AND2X1	saed90nm_typ	7.445000	1	7.445000
AO21X1	saed90nm_typ	10.138000	2	20.275999
AO222X1	saed90nm_typ	14.746000	16	235.936005
AOINVX1	saed90nm_typ	6.451000	1	6.451000
AOINVX2	saed90nm_typ	6.451000	1	6.451000
DFFARX1	saed90nm_typ	32.256001	32	1032.192017
DFFX1	saed90nm_typ	24.882999	2	49.765999 n
INVX0	saed90nm_typ	5.530000	28 1	54.840006
INVX2	saed90nm_typ	6.451000	1 6	6.451000
INVX8	saed90nm_typ	14.746000	1 '	14.746000
ISOLANDX1	saed90nm_ty	p 7.373000	1	7.373000
ISOLORX1	saed90nm_typ	7.387000	4	29.548000
LSDNX1	saed90nm_typ	5.530000	1	5.530000
NAND2X0	saed90nm_typ	5.443000	88	478.983986
NAND2X1	saed90nm_typ	5.501000	9	49.508999
NAND2X2	saed90nm_typ	8.798000	4	35.192001
NAND2X4	saed90nm_typ	14.501000	1	14.501000
NAND3X0	saed90nm_typ	7.373000	2	14.746000
NAND4X0	saed90nm_typ	8.294000	16	132.703995
NBUFFX2	saed90nm_typ	5.530000	1	5.530000
NOR2X0	saed90nm_typ	5.530000	71	392.630015
NOR2X1	saed90nm_typ	6.005000	6	36.030001
NOR2X2	saed90nm_typ	9.216000	2	18.431999
NOR2X4	saed90nm_typ	14.731000	2	29.462000
NOR3X0	saed90nm_typ	8.294000	1	8.294000
OA21X1	saed90nm_typ	9.216000	5	46.079998
OA22X1	saed90nm_typ	11.059000	1	11.059000
OR4X1	saed90nm_typ	10.152000	2	20.304001
XNOR2X1	saed90nm_typ	13.824000	8	110.592003
XOR2X1	saed90nm_typ	13.824000	7	96.768003

Total 30 references 3077.822028

RTL Design Resources Report

Report: resources

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Sat Feb 26 20:43:14 2022

Resource Report for this hierarchy in file ./gcd_dpath.v

======		
Cell	Module F	Parameters Contained Operations
sub_x_2	DW01_sub	width=16 GCDdpath0/sub_45 (gcd_dpath.v:45)
It_x_3	DW_cmp	width=16 GCDdpath0/lt_51 (gcd_dpath.v:51)
=======	=========	

Implementation Report

======	:========		
	Cu	rrent Set	
Cell	Module	Implementation	Implementation
======			
sub_x_2	DW01_sub	pparch (area	a,speed)
It_x_3	DW_cmp	pparch (area,s	speed)

Some Issues I had

Unlike the week 1 portion of lab 4, I didn't encounter much of any issues in week 2. Since I had played with dc_shell and icc_shell quite a bit in week 1, week 2 was much smoother as a result. Due to this, I didn't have any issues in week 2. The only thing I'd like to mention was that the layout step for week 2 took a lot longer to load before I could configure my options, but that wasn't an issue as I could continue just fine when it loaded.