(1)
$$P(n) = 1^{2} + 2^{2} + ... + n^{2} = n(n+1)(2n+1)$$

(a) $P(1) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

(b) $P(1) = \frac{1}{2} + \frac{1}$

第2題.

$$2^{2} + 9 \times + 10 = (\times + 1) (3 \times + 5)$$
=> $3 \times + 1 = (2 \times + 3) (\times + 2) (3 \times + 15)$
 $3 \times + 1 = (2 \times + 3) (\times + 2) (3 \times + 15)$

```
p(8): one 3 cents, one 5 cents

P(10): three 3 cents

b) the inductive is the statement that using 3 cent
and 5 cent stamps we can postage for all jointh

8 tj t k, k > 10

c) the must show, assuming the inductive hypothesis,

that we can form k+1 cents postage using 3 cents

and 5 cents.

d) Since k > 10, we know that P(k-2) is true that we

can form k-2 cents of postage. Put one more 3

cents stamp on the envelope and we have formed k+1

cents of postage,
```

第4題.

a)
$$f(n+1) = f(n)^2 f(n-1)$$
 $f(n) = -1$
 $f(2) = f(+1) = f(1)^2 f(0) = 2^2 \cdot (-1) = -4$
 $f(3) = f(2+1) = f(2)^2 f(1) = 16 \cdot 2 = 32$
 $f(4) = f(3+1) = f(2)^2 \cdot f(2) = 32^2 \cdot (-4) = 1024 \cdot (-4) = -4096$
b) $f(n+1) = 3f(n)^2 - 4f(n-1)^2$
 $f(2) = f(1+1) = 3 \cdot f(1)^2 - 4 \cdot f(2)^2 = 3 \cdot 2^2 - 4 \cdot (-1)^2 = 12 - 4 = 8$
 $f(3) = f(2+1) = 3 \cdot f(2)^2 - 4 \cdot f(1)^2 = 3 \cdot 2^2 - 4 \cdot 2^2 = 192 - 16 = 176$
 $f(4) = f(3+1) = 3 \cdot f(3)^2 - 4 \cdot f(2)^2 = 3 \cdot 176^2 - 4 \cdot 2^2 = 92338 - 276 = 92672$
c) $f(n+1) = f(n-1)/f(n)$
 $f(2) = f(1+1) = f(2)/f(3) = -1/2 = -\frac{1}{2}$
 $f(3) = f(2+1) = f(2)/f(3) = -\frac{1}{2} \cdot -4 = \frac{1}{8}$

答案僅供參考

第5題.

- (a) $f(n+1)=f(n)+2,a_1=3$ or $f(n)=f(n-1)+2,a_1=3$
- (b) $f(n+1)=f(n),a_1=5$ or $f(n)=f(n-1),a_1=5$

第6題.

- F(n)=1+2+3+...+n
- F(1)=1
- F(2)=3
- F(3)=6
- F(n)=F(n-1)+n

第7題.

9)	n th odd positive integer (an-1)
•	procedure sum of (n: positive integer)
	If n=1 then sum of odds(n):=1
	else sum of odds (n): = sum of odds (n-1) + (n-1)