	As rendered by TeX	As rendered by your browser
1	x^2y^2	x^2y^2
2	$_2F_3$	$_2F_3$
3	$\frac{x+y^2}{k+1}$	$\frac{x+y^2}{k+1}$
4	$x+\sqrt{\frac{2}{k+1}}$	$x + y^{\frac{2}{k+1}}$
5	$\frac{\epsilon}{b/2}$	$\frac{a}{h/2}$
6	$a_{1} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{$	$a_{1} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{1}}} - \frac{1}{1}$
	$a_{5}+\frac{1}{a_{4}}$	$a_3 + \frac{1}{a_4}$
7	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_7 + \frac{1}{a_1}}} - \frac{1}{a_7 + \frac{1}{a_4}}$
8	$\binom{n}{k/2}$	$\binom{n}{k/2}$

9	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$
10	$\sum_{\substack{0 \leq i \leq m \\ 0 \leq j \leq n}} P(i,j)$	$\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j)$
11	j^{2y}	x^{2y}
12	$\sum_{i=1}^{r} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} z_{ki}$	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$
13	$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}$	$1+\sqrt[4]{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt$
14	$\left(\frac{\mathcal{E}^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \varphi(x+iy) ^2 = 0$	$\left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial v^2}\right) \left \varphi(x + iy) \right ^2 = 0$
15	$2^{2^{2^x}}$	2222x
16	$\int_{1}^{x} \frac{dt}{t}$	$\int_{1}^{c} \frac{d}{t}$
17	$\iint_{D} dx dy$	$\iint_{D} dx dy$

18	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$	
15	$x + \cdots + x$	$\overbrace{x + \dots + x}^{k \text{ times}}$	
25	y_{x^2}	y_x^2	
21	$\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\tau (t)$	$\sum_{p \in \text{time}} f(p) = \int_{t>1} f(t) d\pi(t)$	
22	$\{\underbrace{\epsilon, \dots, a, b, \dots, b}_{k+l \text{ elemen's}}\}$	$\{\overline{a,,a,b,,t}\}$ $\overline{k+\ell} \text{ eler lents}$	
23	$ \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ 0 & \begin{pmatrix} i & i \\ k & l \end{pmatrix} \end{pmatrix} $	$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ \vdots & \begin{pmatrix} i & i \\ k & l \end{pmatrix} \end{pmatrix}$	
24	$\det \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0$	$\det \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0$	

25	y_{x_2}	y_{x_2}
26	$x_{92}^{31415} + \pi$	$x_{92}^{31415} + \pi$
27	$x_c^{z_c^d} \ x_y^b$	$x_{y_b^a}^{z_c^d}$
28	y_3'''	<i>y</i> ₃ "
	447(0)/7/2	