(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 19 janvier 2006 (19.01.2006)

PCT

(10) Numéro de publication internationale WO 2006/005869 A1

(51) Classification internationale des brevets⁷:

H01L 21/285, 21/04

(21) Numéro de la demande internationale :

PCT/FR2005/050469

(22) Date de dépôt international : 20 juin 2005 (20.06.2005)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 04 06751 21 juin 2004 (21.06.2004)

21 juin 2004 (21.06.2004) FR

(71) Déposants (pour tous les États désignés sauf US): COM-MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75752 PARIS 15ème (FR). UNIVERSITE PARIS SUD (PARIS XI) [FR/FR]; 15, avenue Georges Clémenceau, F-91405 ORSAY (FR).

- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): RADTKE, Claudio [FR/BR]; Rua Maestro Pena, 47 Bairro Gloria, CEP 90660-060 Porto Alegre - RS (BR). SILLY, Mathieu [FR/FR]; Les Sourdinières, F-28240 SAINT VICTOR DE BUTHON (FR). SOUKIASSIAN, Patrick [FR/FR]; 18, rue Alexandre Dumas, F-78470 SAINT REMY LES CHEVREUSE (FR). ENRIQUEZ, Hanna [FR/FR]; 71, boulevard Arago, F-75013 PARIS (FR).
- (74) Mandataire: LEHU, Jean; BREVATOME, 03, rue du Docteur Lancereaux, F-75008 PARIS (FR).
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT,

[Suite sur la page suivante]

(54) Title: METHOD FOR METALLIZING THE PREVIOUSLY PASSIVATED SURFACE OF A SEMICONDUCTOR MATERIAL AND RESULTING MATERIAL

(54) Titre : PROCEDE DE METALLISATION DE LA SURFACE PREALABLEMENT PASSIVEE D'UN MATERIAU SEMI-CONDUCTEUR ET MATERIAU OBTENU PAR CE PROCEDE

(57) Abstract: The invention concerns a method for metallizing the previously passivated surface of a semiconductor material and resulting material. The invention, which is applicable in microelectronics, is characterized in that it consists in: preparing the surface of the material (2) so that it contains bonds capable of absorbing hydrogen atoms or a metal element, passivating one or more layers, preferably immediately underlying the surface, by exposing same to a passivating compound, and metallizing the surface (4) by exposing same to hydrogen atoms or the metal element.

(57) Abrégé: Procédé de métallisation de la surface préalablement passivée d'un matériau semiconducteur et matériau obtenu par ce procédé. Selon l'invention, qui s'applique notamment en microélectronique, on prépare la surface de matériau (2) de façon qu'elle possède des liaisons capables d'adsorber des atomes d'hydrogène ou d'un élément métallique, on passive une ou plusieurs couches, de préférence immédiatement sous-jacentes à la surface, en l'exposant à un composé de passivation, et l'on métallise la surface (4) en l'exposant à des

WO 2006/005869 A1

- 1 1888 | 1 | 1888 | 1 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 | 1888 |

AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, IT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

1

PROCEDE DE METALLISATION DE LA SURFACE PREALABLEMENT PASSIVEE D'UN MATERIAU SEMICONDUCTEUR ET MATERIAU OBTENU PAR CE PROCEDE

DESCRIPTION

DOMAINE TECHNIQUE

25

La présente invention concerne un procédé

5 de métallisation de la surface d'un matériau
semiconducteur, utilisant notamment l'hydrogène, ainsi
que le matériau à surface métallisée que l'on obtient
par ce procédé.

Comme on le verra par la suite, l'invention

10 a de nombreuses applications, notamment en
microélectronique.

ÉTAT DE LA TECHNIQUE ANTÉRIEURE

Pour faire des dispositifs, notamment des transistors bipolaires, des diodes et des transistors unipolaires tels que les transistors MOS, MOSFET et MESFET, qui sont basés sur des semiconducteurs, il faut former des "contacts" métalliques. Cela se fait couramment par dépôt de couches d'un métal que l'on peut choisir notamment parmi Au, Al, Cu et les métaux de transition tels que Ti, W et Ni.

La tendance à la miniaturisation conduit à utiliser des couches de plus en plus minces et à chercher à obtenir des interfaces métal/semiconducteur de plus en plus abruptes.

Cependant, un problème se pose : la plupart des métaux, en tout cas ceux qui sont les plus

2

intéressants, forment des alliages avec les substrats sur lesquels on les dépose. Cela conduit à des interfaces peu abruptes, ayant des performances dégradées.

De ce fait, pour former par exemple un tansistor MOS, il faut déposer une couche de métal sur un oxyde, lui-même déposé sur un semiconducteur.

EXPOSÉ DE L'INVENTION

10 La présente invention a pour but de remédier aux inconvénients précédents.

Le procédé objet de l'invention permet non seulement d'utiliser des couches métalliques très minces mais encore d'obtenir des interfaces abruptes.

Ce procédé objet de l'invention permet de travailler avec précision à l'échelle atomique et donc au niveau de la couche atomique. Il permet ainsi d'obtenir une interface abrupte entre deux couches aux propriétés électriques distinctes. Par exemple, il permet d'obtenir une interface abrupte entre une couche métallique et une couche semiconductrice.

Certes, on connaît déjà un procédé de traitement de la surface d'un matériau semiconducteur par le document suivant auquel on se reportera :

25

15

20

(1) Demande internationale PCT/FR02/01323, déposée le 17 avril 2002, invention de V. Derycke et P. Soukiassian, n° de publication internationale WO 02/086202A.

5

10

15

20

3

PCT/FR2005/050469

Dans ce document (1), on a montré que l'hydrogène atomique pouvait métalliser la surface du carbure de silicium par création de défauts spécifiques, contrairement à son rôle bien connu d'agent de passivation des surfaces de matériaux semiconducteurs.

Dans ce cas cependant, seule une interface abrupte est possible entre une couche métallique, qui est due à l'hydrogène, et une couche semiconductrice (couche de SiC).

De façon précise, la présente invention a pour objet un procédé de traitement d'un matériau semiconducteur, en vue de mettre la surface de ce matériau dans un état électrique conducteur, ce procédé étant caractérisé en ce qu'il comprend les étapes suivantes :

- une étape de préparation dans laquelle on prépare cette surface de façon qu'elle possède des liaisons capables d'adsorber des atomes d'hydrogène ou des atomes d'au moins un élément métallique,
- une étape de passivation dans laquelle on passive une ou plusieurs couches, de préférence immédiatement sous-jacentes à cette surface, en exposant cette surface à un composé de passivation, et
- une étape de métallisation dans laquelle on métallise la surface en exposant cette surface à des atomes d'hydrogène ou à des atomes de l'élément métallique,

la préparation et la combinaison de la 30 surface à l'hydrogène ou à l'élément métallique

4

coopérant pour obtenir l'état électrique conducteur de la surface,

le procédé comprenant éventuellement en outre une étape de dépassivation partielle de la couche ou des couches passivées, qui suit l'étape de passivation.

5

25

30

L'ordre des étapes peut être quelconque : dans ce procédé, on peut avoir par exemple l'ordre suivant pour ces étapes :

- préparation, puis passivation, puis éventuellement dépassivation, puis métallisation, , ou
 - passivation, puis éventuellement dépassivation, puis préparation, puis métallisation.

Ainsi, selon un mode de réalisation

15 particulier de l'invention, l'étape de dépassivation suit l'étape de passivation et est elle-même suivie par l'étape de préparation puis par l'étape de métallisation.

Le matériau semiconducteur est de 20 préférence monocristallin.

Selon un premier mode de mise en œuvre particulier du procédé objet de l'invention, la passivation de la couche ou des couches est réalisée par oxydation de cette couche ou ces couches, en exposant la surface à un composé oxydant.

Selon un deuxième mode de mise en œuvre particulier, la passivation de la couche ou des couches est réalisée par oxynitruration de cette couche ou ces couches, en exposant la surface à un composé d'oxynitruration.

5

Selon un troisième mode de mise en œuvre particulier, la passivation de la couche ou des couches est réalisée par nitruration de cette couche ou ces couches, en exposant la surface à un composé de nitruration.

5

15

25

30

Les liaisons capables d'absorber des atomes d'hydrogène ou des atomes de l'élément métallique sont de préférence des liaisons pendantes (en anglais "dangling bonds").

Selon un mode de mise en œuvre préféré du procédé objet de l'invention, le matériau semiconducteur est le carbure de silicium.

De préférence, la surface du carbure de silicium est préparée de façon à présenter, à l'échelle atomique, une organisation contrôlée de symétrie 3x2.

Dans le présente invention, les couches que l'on passive peuvent être des couches immédiatement sous-jacentes à la surface.

Selon un mode de réalisation préféré de la 20 présente invention, la surface métallisée est exposée à de l'oxygène pour renforcer la métallisation de cette surface.

La présente invention a aussi pour objet un matériau semiconducteur, de préférence monocristallin, dont la surface est métallisée par le procédé de traitement objet de l'invention.

La présente invention a également pour objet un matériau solide composite comprenant un substrat semiconducteur dont la surface est métallisée, ce matériau étant caractérisé en ce que cette surface recouvre une ou plusieurs couches atomiques du

6

substrat, qui sont passivées et sont de préférence immédiatement sous-jacentes à cette surface, et en ce que l'interface entre la ou les couches atomiques passivées et le substrat ainsi que l'interface entre la ou les couches atomiques passivées et la surface métallisée sont abruptes.

5

10

20

25

30

Dans la présente invention, par « interface abrupte » on entend une interface dans laquelle se produit un changement brusque de composition et/ou de structure entre les deux matériaux se trouvant de part et d'autre de l'interface.

Typiquement, ce changement brusque se produit dans un espace constitué de deux à trois couches monoatomiques.

Typiquement, la couche métallisée a une épaisseur de 1 à 3 couches monoatomiques.

De préférence, la surface possède des liaisons pendantes, cette surface étant métallisée, c'est-à-dire rendue électriquement conductrice, par adsorption d'atomes d'hydrogène ou d'atomes d'un élément métallique.

Le matériau est de préférence du carbure de silicium de structure cubique, dont la surface présente, à l'échelle atomique, une organisation contrôlée de symétrie 3x2.

La présente invention concerne aussi un procédé de fabrication d'un contact électrique à la surface d'un matériau semiconducteur, dans lequel on fabrique ce contact en métallisant la surface du matériau par le procédé de traitement objet de l'invention.

7

La présente invention concerne également un procédé de fabrication d'une interface entre un matériau semiconducteur et une matière biologique, dans lequel on fabrique cette interface en métallisant la surface du matériau par le procédé de traitement objet de l'invention.

La présente invention concerne en outre un procédé de réduction du coefficient de friction d'une surface d'un matériau semiconducteur, dans lequel on métallise cette surface par le procédé de traitement objet de l'invention.

BRÈVE DESCRIPTION DU DESSIN

5

10

25

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence à la figure unique annexée qui illustre schématiquement un matériau semiconducteur dont la surface a été métallisée conformément à l'invention.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

On décrit ci-après un procédé de traitement d'un matériau semiconducteur conforme à l'invention. Ce procédé permet de mettre la surface de ce matériau dans un état électrique conducteur. Ce matériau, par exemple le carbure de silicium, est de préférence monocristallin.

Dans une première étape de ce procédé, on 30 prépare la surface du matériau de façon que cette

25

8

PCT/FR2005/050469

surface possède des liaisons capables d'adsorber des atomes d'hydrogène. De préférence, ce sont des liaisons pendantes.

Pour obtenir ces liaisons, on peut procéder de la façon suivante : à l'aide d'une source de 5 1300°C, chauffée à on dépose plusieurs silicium monocouches de silicium sur la surface du substrat. A l'aide de recuits thermiques, on évapore, de façon contrôlée, une partie du silicium déposé jusqu'à ce que 10 surface présente une organisation à l'échelle 3x2.atomique (reconstruction) de symétrie symétrie de la surface peut être contrôlée diffraction d'électrons.

Dans une deuxième étape, on réalise la passivation d'une ou plusieurs couches immédiatement sous-jacentes à la surface ainsi préparée en l'exposant à un composé adéquat, permettant cette passivation. On reviendra sur cette étape dans la suite.

Dans une troisième étape, on métallise la 20 surface ainsi préparée, en l'exposant à des atomes d'hydrogène.

Pour ce faire, on peut procéder de la façon suivante : on expose la surface avec la symétrie 3x2 à l'hydrogène atomique. Pour produire cet hydrogène atomique, on utilise de l'hydrogène moléculaire ultra pur que l'on décompose grâce à un filament de tungstène incandescent placé à 2cm de l'échantillon. Au cours de cette exposition, la surface est maintenue à une température égale à 300°C.

30 La préparation de la surface et la combinaison de cette surface à l'hydrogène coopèrent

9

pour obtenir l'état électrique conducteur de la surface.

Les avantages du procédé conforme à l'invention, que l'on vient de décrire, sont donnés ci après.

5

10

15

20

25

Dans le cas du procédé décrit dans le document (1), seule une interface abrupte était possible entre une couche métallique et une couche semiconductrice, alors que le procédé conforme à l'invention permet d'obtenir un matériau où deux interfaces abruptes coexistent :

- une première interface abrupte entre une couche semiconductrice, constituée par le matériau initial, qui se présente généralement sous la forme d'un substrat massif (en anglais "bulk"), et la couche passivée, obtenue au cours de la mise en œuvre du procédé, et

- une deuxième interface abrupte entre cette même couche passivée et la couche externe métallisée qui est obtenue au cours de l'étape finale du procédé conforme à l'invention.

Cela est bien entendu extrêmement intéressant pour faire un transistor MOS (Métal-Oxyde-Semiconducteur) dans lequel il faut déposer une couche de métal sur un oxyde qui est lui-même déposé sur un semiconducteur.

Pour la passivation des couches immédiatement sous-jacentes, on procède de préférence par

30 i) oxydation de ces couches, en exposant la surface par exemple à de l'oxygène moléculaire ou à une

10

15

20

25

30

molécule contenant de l'oxygène, telle que H_2O , CO ou CO_2 , ou

10

ii) oxynitruration de ces couches, en exposant la surface par exemple à NO ou à $N_2\text{O}$, ou

5 iii) nitruration de ces couches, en exposant la surface par exemple à NH_3 ou N_2 .

Il convient de noter, dans le point i) cidessus, que la molécule contenant l'oxygène n'est pas exclusivement sous forme gazeuse. Elle peut se trouver sous la forme de fines goutellettes c'est-à-dire sous forme nébulisée ou d'une atmosphère saturée (vapeur d'eau par exemple).

Dans le cas où le matériau est le carbure de silicium, la surface que l'on prépare afin qu'elle puisse adsorber des atomes d'hydrogène est de préférence une surface que l'on a préparée de façon qu'elle présente, à l'échelle atomique, une organisation contrôlée de symétrie 3x2.

En particulier, le matériau peut présenter une surface 3C-SiC(100) 3x2, surface qui est riche en silicium.

Une telle préparation peut se faire de la façon suivante : à l'aide d'une source de silicium chauffée à 1300°C, on dépose plusieurs monocouches de silicium sur la surface du substrat. A l'aide de recuits thermiques, on évapore, de façon contrôlée, une partie du silicium déposé jusqu'à ce que la surface organisation à l'échelle présente atomique une (reconstruction) de symétrie 3x2. Cette symétrie de la surface être contrôlée diffraction peut par d'électrons.

5

11

PCT/FR2005/050469

Cependant, l'invention pourrait être mise en œuvre sur d'autres surfaces, par exemple les surfaces hexagonales 3x3 de SiC et aussi sur la couche de Si 4x3 sur 6H-SiC(0001)4x3.

A ce sujet, on se reportera au document suivant:

(2) WO 01/39257A, "Couche de silicium très sensible à l'oxygène et procédé d'obtention de cette couche", invention de F. Amy, C. Brylinski, G. Dujardin, H. Enriquez, A. Mayne et P. Soukiassian.

De préférence, on passive une ou plusieurs couches choisies parmi les couches immédiatement sous-jacentes à la surface.

De façon avantageuse, on passive la couche ayant le numéro 3 ou 4, tout en laissant les couches supérieures non passivées.

Par ailleurs, la métallisation n'est pas limitée à la couche la plus externe : elle peut se faire sur plus d'une couche atomique et peut, par exemple, s'étendre sur les trois premières couches.

Dans le cas où la métallisation se cantonne 25 à la première couche la plus externe de la surface, on peut envisager que des couches semiconductrices s'intercalent entre la couche externe métallisée et les couches passivées plus profondes.

Optionnellement, une ou plusieurs couches 30 de matériau semiconducteur peuvent être intercalées entre la surface métallisée et les couches sous-

5

10

15

20

25

PCT/FR2005/050469

jacentes passivées. Ainsi, plus précisément dans le cas d'un matériau semiconducteur de type Si terminé Si, la structure du matériau est la suivante :

12

3 premières couches constituées de Si (car le matériau est terminé Si); puis zone de SiC, puis zone sous-jacente passivée, puis enfin on retrouve le substrat originel de SiC.

À titre d'exemple, avec un substrat de SiC, on peut oxyder sous la surface de ce substrat et laisser une couche de Si non oxydée à la surface.

Au lieu d'atomes d'hydrogène, on peut utiliser des atomes d'un élément métallique.

Cet élément métallique peut être choisi par exemple parmi les métaux dont la bande d est pleine, les métaux de type jellium, les métaux alcalins (tels que Cs, Rb, K ou Na, en particulier Na et K), et les métaux de transition et l'argent.

Dans ce cas, pour préparer la surface de façon qu'elle possède des liaisons capables d'adsorber des atomes de l'élément métallique, on peut procéder de la façon suivante : à l'aide d'une source de silicium chauffée à 1300°C, on dépose plusieurs monocouches de silicium sur la surface du substrat. A l'aide de recuits thermiques, on évapore, de façon contrôlée, une partie du silicium déposé jusqu'à ce que la surface organisation à l'échelle présente une atomique (reconstruction) de symétrie 3x2 ou c(4x2). Cette symétrie de la surface peut être contrôlée diffraction d'électrons.

30 Et, pour métalliser la surface préparée, on peut procéder de la façon suivante : à l'aide d'une

20

30

PCT/FR2005/050469

source d'un élément métallique, on dépose plusieurs monocouches sur la surface du substrat. On peut faire des recuits thermiques dans le but d'évaporer une partie de l'élément métallique, de façon contrôlée, et d'organiser le dépôt.

13

On peut renforcer la métallisation, que l'on a obtenue au moyen d'atomes d'hydrogène ou d'atomes d'un élément métallique, par une nouvelle exposition à de l'oxygène.

En effet, à titre d'exemple, après avoir métallisé, au moyen d'hydrogène, une surface pré-oxydée de SiC, on a de nouveau exposé cette même surface à de l'oxygène et l'on a constaté qu'il fallait un recuit à une température plus élevée pour éliminer l'hydrogène et donc la métallisation.

En effet, normalement, il faut chauffer à moins de 600°C pour éliminer l'hydrogène.

Or, après l'exposition additionnelle à l'oxygène, il faut monter à plus de 900°C pour éliminer l'hydrogène, et donc la métallisation, ce qui élimine d'ailleurs également l'oxygène.

Donc, la post-oxydation protège la métallisation ou, en quelque sorte, passive cette métallisation.

Donc, par rapport au procédé qui est décrit dans le document (1), la métallisation est renforcée.

On montre ci-après, en s'appuyant sur un exemple qui utilise le carbure de silicium, qu'une métallisation superficielle a lieu avec l'hydrogène, comme dans le cas du document (1), même si la surface du carbure de silicium est préalablement passivée.

14

Dans cet exemple, on a passivé la surface du SiC par oxydation superficielle. Cependant, cette oxydation par exposition à l'oxygène peut aussi être réalisée avec des molécules contenant de l'oxygène telles que $\rm H_2O$ (à l'état gazeux), $\rm NO$, $\rm N_2O$, $\rm CO$, $\rm CO_2$, à température ambiante (environ 20°C) ou à température élevée (de 25°C à 1200°C).

En outre, on avait déjà remarqué que la métallisation induite par l'hydrogène n'était pas éliminée par l'oxydation ni par d'autres adsorbats accepteurs d'électrons.

Selon l'exemple considéré, on pré-oxyde légérement une surface propre de SiC riche en silicium, ou terminée Si, par une exposition à l'oxygène allant de 1 langmuir à 1000 langmuirs (1 langmuir (1L) étant égal à 10⁻⁶ torr.seconde c'est-à-dire environ 10⁻⁴Pa.s), en maintenant cette surface à une température comprise dans l'intervalle allant de 25°C à 800°C.

Ensuite, on expose la surface ainsi oxydée 20 à de l'hydrogène atomique (que l'on peut obtenir en excitant du dihydrogène par un filament de tungstène chaud), l'exposition allant de quelques langmuirs jusqu'à quelques centaines de langmuirs. On obtient alors la métallisation de la surface pré-oxydée.

25

30

10

15

On donne maintenant un autre exemple de l'invention.

On sait que la préparation d'une surface propre de SiC consiste à en éliminer les oxydes natifs, ce qui demeure une opération délicate.

10

20

15

PCT/FR2005/050469

Dans cet autre exemple, il suffit cette fois de n'éliminer que très partiellement les oxydes natifs, par un simple recuit thermique rapide à haute température (ou par une méthode chimique appropriée), pour enlever la plus grande partie de ces oxydes, puis d'exposer la surface à l'hydrogène atomique comme précédemment.

Après la deuxième étape de passivation, à l'issue de laquelle on peut considérer que l'on obtient alors un oxyde natif, on réalise une étape supplémentaire de « dépassivation », consistant en un recuit thermique rapide à haute température qui élimine partiellement les oxydes natifs.

Cette étape est bien entendu suivie de 15 l'étape de préparation de la surface et de l'étape de métallisation.

À la lumière de cet autre exemple, on voit donc bien que les étapes du procédé objet de l'invention peuvent ne pas être exécutées dans l'ordre « préparation puis passivation puis métallisation » puisque, dans cet autre exemple, l'ordre des étapes est « passivation puis dépassivation puis préparation puis métallisation ».

L'élimination partielle des oxydes natifs, qui est mise en œuvre dans cet autre exemple que l'on vient de décrire, est une opération plus simple et plus rapide que l'élimination totale de ces oxydes, ce qui est particulièrement intéressant en production.

La zone sous-jacente passivée ainsi obtenue 30 est relativement localisée et ne s'étend tout au plus que sur quelques couches. Cela reste donc intéressant 16

WO 2006/005869

5

pour la fabrication de transistors MOS, les interfaces étant encore suffisamment abruptes.

PCT/FR2005/050469

Dans cet autre exemple, la durée du recuit thermique peut être de l'ordre de quelques secondes à quelques minutes et la température pendant ce recuit peut être de l'ordre de 700°C à 1300°C.

Donnons encore un autre exemple de l'invention.

On prépare une surface 3C-SiC(100) 3x2 riche en Si et préoxydée, par enlèvement partiel thermique d'oxydes natifs. Puis on procède à des séquences comprenant chacune un dépôt de silicium puis un recuit.

15 Ce protocole conduit à une surface 3C-SiC(100), riche en Si, ayant deux états d'oxydation et présentant un motif 3x2 par LEED (diffraction par des électrons de faible énergie).

Des expositions à l'hydrogène atomique sont 20 effectuées à 300°C, en utilisant du dihydrogène de qualité laboratoire » (en anglais « research grade H_2 ») que l'on dissocie par un filament de tungstène chauffé.

La présente invention met en évidence des 25 propriétés nouvelles et très originales qui ouvrent la à applications dans les des domaines de l'électronique, de mécanique, de la biola compatibilité, nanotechnologies la des et de microfabrication.

30 La métallisation de la surface d'un semiconducteur, que l'on a préalablement

5

10

15

20

25

17

PCT/FR2005/050469

oxydée/passivée, constitue une propriété absolument sans précédent.

Elle est très importante sur le plan pratique car elle ouvre la voie à la fabrication de "ohmiques" contacts à la surface des matériaux contacts qui semiconducteurs, sont naturellement résistants à la corrosion et/ou à l'humidité et ce, sans avoir recours à des métaux rares et coûteux tels l'or, de toute qui façon ne remplissent qu'imparfaitement leur rôle.

Sur la figure unique annexée, on voit un substrat 2 en carbure de silicium, par exemple de structure cubique, dont la surface 4 a été métallisée conformément à l'invention, à l'aide d'hydrogène atomique ou d'atomes d'un élément métallique. On voit aussi une couche 5 que l'on a passivée préalablement à la métallisation.

L'obtention d'un contact ohmique résulte d'une telle métallisation, effectuée localement sur le substrat.

Par ailleurs, la métallisation l'hydrogène est très intéressante dans le domaine de la bio-compatibilité, pour fabriquer des dispositifs des interfaces comportant entre une matière électronique et une matière biologique. Contrairement à la plupart des métaux, l'hydrogène est bio-compatible c'est un élément essentiel de la matière vivante - et il en est de même pour le carbure de silicium.

En revenant à la figure unique annexée, la 30 surface 4, métallisée au moyen d'hydrogène, peut

18

constituer une telle interface entre le matériau 2 et une matière biologique 6.

Enfin, il est bien connu en tribologie que le coefficient de friction des surfaces ayant un caractère métallique est très inférieur à celui des surfaces isolantes ou semiconductrices.

Ainsi, la métallisation par l'hydrogène, conformément à l'invention, permet de réduire le coefficient de frottement de la surface du SiC et d'autres semiconducteurs, notamment le diamant.

10

15

Les applications en mécanique et surtout en micro-fabrication ou en nano-fabrication, par exemple pour fabriquer des nano-moteurs et des nano-gyroscopes, sont donc très intéressantes. Dans ce cas, les atomes d'hydrogène jouent le rôle d'un "lubrifiant à l'échelle atomique".

19

REVENDICATIONS

- 1. Procédé de traitement d'un matériau semiconducteur, en vue de mettre la surface de ce matériau dans un état électrique conducteur, ce procédé étant caractérisé en ce qu'il comprend les étapes suivantes :
- une étape de préparation dans laquelle on prépare cette surface de façon qu'elle possède des liaisons capables d'adsorber des atomes d'hydrogène ou des atomes d'un élément métallique,
- une étape de passivation dans laquelle on passive une ou plusieurs couches, de préférence immédiatement sous-jacentes à cette surface, en exposant cette surface à un composé de passivation, et
- une étape de métallisation dans laquelle on métallise la surface en exposant cette surface à des atomes d'hydrogène ou à des atomes de l'élément métallique,
- la préparation et la combinaison de la 20 surface à l'hydrogène ou à l'élément métallique coopérant pour obtenir l'état électrique conducteur de la surface,
- le procédé comprenant éventuellement en outre une étape de dépassivation partielle de la couche ou des couches passivées qui suit l'étape de passivation.
 - 2. Procédé selon la revendication 1, dans lequel le matériau semiconducteur est monocristallin.

5

5

10

3. Procédé selon l'une quelconque des revendications 1 et 2, dans lequel la passivation de la couche ou des couches est réalisée par oxydation de cette couche ou ces couches, en exposant la surface à un composé oxydant.

- 4. Procédé selon l'une quelconque des revendications 1 et 2, dans lequel la passivation de la couche ou des couches est réalisée par oxynitruration de cette couche ou ces couches, en exposant la surface à un composé d'oxynitruration.
- 5. Procédé selon l'une quelconque des revendications 1 et 2, dans lequel la passivation de la couche ou des couches est réalisée par nitruration de cette couche ou ces couches, en exposant la surface à un composé de nitruration.
- 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les liaisons capables d'adsorber des atomes d'hydrogène ou des atomes de l'élément métallique sont des liaisons pendantes.
- 7. Procédé selon l'une quelconque des 25 revendications 1 à 6, dans lequel le matériau semiconducteur est le carbure de silicium.
- 8. Procédé selon la revendication 7, dans lequel la surface du carbure de silicium est préparée de façon à présenter, à l'échelle atomique, une organisation contrôlée de symétrie 3x2.

9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel les couches que l'on passive sont des couches immédiatement sous-jacentes à

21

10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la surface métallisée est exposée à de l'oxygène pour renforcer la métallisation de cette surface.

la surface.

- 11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel l'étape de dépassivation suit l'étape de passivation et est ellemême suivie par l'étape de préparation puis par l'étape de métallisation.
- 12. Matériau semiconducteur (2), de préférence monocristallin, dont la surface (4) est 20 métallisée par le procédé selon l'une quelconque des revendications 1 à 11.
- 13. Matériau solide composite comprenant un substrat semiconducteur dont la surface est métallisée, ce matériau étant caractérisé en ce que cette surface recouvre une ou plusieurs couches atomiques du substrat, qui sont passivées et sont de préférence immédiatement sous-jacentes à cette surface, et en ce que l'interface entre la ou les couches atomiques passivées et le substrat ainsi que l'interface entre la

22

ou les couches atomiques passivées et la surface métallisée sont abruptes.

- 14. Matériau selon la revendication 13, 5 dans lequel la surface possède des liaisons pendantes, cette surface étant métallisée par adsorption d'atomes d'hydrogène ou d'atomes d'un élément métallique.
- 15. Matériau selon la revendication 14, dans lequel le matériau (2) est du carbure de silicium de structure cubique, dont la surface présente, à l'échelle atomique, une organisation contrôlée de symétrie 3x2.
- 16. Procédé de fabrication d'un contact électrique (4) à la surface d'un matériau semiconducteur (2), dans lequel on fabrique ce contact en métallisant la surface du matériau par le procédé selon l'une quelconque des revendications 1 à 11.

20

- 17. Procédé de fabrication d'une interface entre un matériau semiconducteur (2) et une matière biologique (6), dans lequel on fabrique cette interface (4) en métallisant la surface du matériau par le procédé selon l'une quelconque des revendications 1 à 11.
- 18. Procédé de réduction du coefficient de friction d'une surface d'un matériau semiconducteur, 30 dans lequel on métallise cette surface par le procédé selon l'une quelconque des revendications 1 à 11.

1/1

INTERNATIONAL SEARCH REPORT

International Application No PCT/FR2005/050469

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H01L21/285 H01L21/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{MinImum documentation searched (classification system followed by classification symbols)} \\ \text{IPC 7} & \text{H01L} \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data, PAJ

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DERYCKE V ET AL: "Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization" NATURE MATERIALS NATURE PUBLISHING GROUP UK, vol. 2, no. 4, April 2003 (2003-04), pages 253-258, XP002316481 ISSN: 1476-1122 Published on the web: 16-03-2003 the whole document	1,2,6-9, 12-18
X Y	WO 02/086202 A (COMMISSARIAT A L'ENERGIE ATOMIQUE; DERYCKE, VINCENT; SOUKIASSIAN, PATR) 31 October 2002 (2002-10-31) page 5, line 13 - page 7, line 26; figure 1 page 8, line 5 - page 13, line 20	1,2,6-9, 12-14, 16-18 3-5,10, 11,15
	-/	

	-/
X Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
25 October 2005	02/11/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hedouin, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2005/050469

0.15)	PCT/FR2005/050469		
C.(Continu Category °	Citation of decument, with indication, where appropriate of the relevant			
oategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	SOUKIASSIAN P G ET AL: "Atomic scale control and understanding of cubic silicon carbide surface reconstructions, nanostructures and nanochemistry" JOURNAL OF PHYSICS: CONDENSED MATTER IOP PUBLISHING UK, vol. 16, no. 17, 5 May 2004 (2004-05-05), pages S1611-S1658, XP002316482 ISSN: 0953-8984 page 1650, paragraph 6.2 - page 1655, paragraph 7	1,2,6-9, 11-18		
Y	WO 02/085778 A (COMMISSARIAT A L'ENERGIE ATOMIQUE; D'ANGELO, MARIE; ARISTOV, VICTOR; D) 31 October 2002 (2002-10-31) page 4, line 23 - page 5, line 20 page 8, line 22 - page 9, line 10; claims 5-13	3-5,10, 11,15		

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/FR2005/050469

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 02086202	A	31-10-2002	CA EP FR JP US	2444793 A1 1383944 A1 2823770 A1 2004531886 T 2004104406 A1	31-10-2002 28-01-2004 25-10-2002 14-10-2004 03-06-2004
WO 02085778	A	31-10-2002	CA EP FR JP US	2444865 A1 1381561 A1 2823739 A1 2004524984 T 2004132242 A1	31-10-2002 21-01-2004 25-10-2002 19-08-2004 08-07-2004

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No PCT/FR2005/050469

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 H01L21/285 H01L21/04

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) C1B 7 H01L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, INSPEC, WPI Data, PAJ

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	DERYCKE V ET AL: "Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization" NATURE MATERIALS NATURE PUBLISHING GROUP UK, vol. 2, no. 4, avril 2003 (2003-04), pages 253-258, XP002316481 ISSN: 1476-1122 Published on the web: 16-03-2003 le document en entier	1,2,6-9, 12-18
X	WO 02/086202 A (COMMISSARIAT A L'ENERGIE ATOMIQUE; DERYCKE, VINCENT; SOUKIASSIAN, PATR) 31 octobre 2002 (2002-10-31)	1,2,6-9, 12-14, 16-18
Υ .	page 5, ligne 13 - page 7, ligne 26; figure 1 page 8, ligne 5 - page 13, ligne 20 	3-5,10, 11,15

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais	T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'Invention X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme Impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier &" document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
25 octobre 2005	02/11/2005
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Hedouin, M

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No PCT/FR2005/050469

		PC1/FR2005/050469				
	(suite) DOCUMENTS CONSIDERES COMME PERTINENTS					
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées				
X	SOUKIASSIAN P G ET AL: "Atomic scale control and understanding of cubic silicon carbide surface reconstructions, nanostructures and nanochemistry" JOURNAL OF PHYSICS: CONDENSED MATTER IOP PUBLISHING UK, vol. 16, no. 17, 5 mai 2004 (2004-05-05), pages S1611-S1658, XP002316482 ISSN: 0953-8984 page 1650, alinéa 6.2 - page 1655, alinéa 7	1,2,6-9, 11-18				
Y	WO 02/085778 A (COMMISSARIAT A L'ENERGIE ATOMIQUE; D'ANGELO, MARIE; ARISTOV, VICTOR; D) 31 octobre 2002 (2002-10-31) page 4, ligne 23 - page 5, ligne 20 page 8, ligne 22 - page 9, ligne 10; revendications 5-13	3-5,10, 11,15				

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No PCT/FR2005/050469

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
WO 02086202	A	31-10-2002	CA EP FR JP US	2444793 A1 1383944 A1 2823770 A1 2004531886 T 2004104406 A1	31-10-2002 28-01-2004 25-10-2002 14-10-2004 03-06-2004
WO 02085778	A	31-10-2002	CA EP FR JP US	2444865 A1 1381561 A1 2823739 A1 2004524984 T 2004132242 A1	31-10-2002 21-01-2004 25-10-2002 19-08-2004 08-07-2004