Chapitre 6 Dérivation (2) Règles de calculs de fonctions dérivées

Table 6.1 – Objectifs. À fin de ce chapitre 6...

	Pour m'entraîner <u></u>			
Je dois connaître / savoir faire	&	•	Ō	
Règles de calcul de fonctions dérivées				
les dérivées de fonctions de référence		6.2, 6.3		
dérivée d'une somme et d'une multiplication par constante		6.4, 6.5, 6.6		
dérivée d'une composée par une fonction affine		6.7		
dérivée d'un produit		6.18, 6.19		
dérivée d'un inverse et d'un quotient		6.22, 6.26		
Application 1 : équations de tangentes				
calcul et interprétation du nombre dérivé		6.8 à 6.11	6.20, 6.21, 6.23 à 6.25	
calcul d'équations réduite de tangentes		6.12 à 6.17		
Application 2 : méthodes numériques pour une résolution approchée de $f(x)=0$				
algorithme de Newton-Raphson		6.27 à 6.30		

6.1 Opérations sur les fonctions

Définition 6.1

Soit deux fonctions f et g. On définit leur somme, différence, produit et quotient par :

$$(f+g)(x) = f(x) + g(x)$$
$$(f-g)(x) = f(x) - g(x)$$
$$(fg)(x) = f(x) \times g(x)$$
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Le domaine de définition des fonctions f + g, f - g et fg est l'intersection des domaines de définitions de f et de g.

$$D_{f+g} = D_{f-g} = D_{fg} = D_f \cap D_g$$

Le domaine de définition de la fonction $\frac{f}{g}$ est l'intersection des domaines de définitions de f et de g, à quoi on enlève les valeurs annulant g (les zéros de g).

$$x \in D_{\frac{f}{g}} \quad \Longleftrightarrow \quad x \in D_f \cap D_g \quad \text{ et } \quad g(x) \neq 0$$

■ Exemple 6.1

Soit les fonctions f et g définies respectivement dans \mathbb{R} et \mathbb{R}^* par f(x) = x et $g(x) = \frac{x+1}{x}$.

1.
$$(f+g)(x) = x + \frac{x+1}{x} = \frac{x^2 + x + 1}{x}$$

2. $(f-g)(x) = x - \frac{x+1}{x} = \frac{x^2 - x - 1}{x}$

$$D_{f+g} = D_f \cap D_g = \mathbb{R}^*.$$

2.
$$(f-g)(x) = x - \frac{x+1}{x} = \frac{x^2 - x - 1}{x}$$

$$D_{f-g} = D_f \cap D_g = \mathbb{R}^*.$$

3.
$$(fg)(x) = x\frac{x+1}{x} = x+1$$

$$D_{fg} = D_f \cap D_g = \mathbb{R}^*.$$

4.
$$\left(\frac{f}{g}\right)(x) = \frac{x}{\left(\frac{x+1}{x}\right)} = \frac{x^2}{x+1}$$
.
 $g(x) = 0 \iff \frac{x+1}{x} = 0 \iff x = -1$.

$$D_{\frac{f}{g}} = D_f \cap D_g - \{-1\} = \mathbb{R} \setminus \{0; -1\}.$$

Définition 6.2 — combinaison linéaire. Soit $a, b \in \mathbb{R}$.

La fonction af + bg est une combinaison linéaire de f et g.

Elle est définie sur $D_f \cap D_g$ par (af + bg)(x) = af(x) + bg(x).

■ Exemple 6.2

Soit les fonctions $f\colon x\mapsto x^2$, $g\colon x\mapsto x$ et $h\colon x\mapsto 1$ définies sur $\mathbb R$. La combinaison linéaire p = 3f - 5g + 2h est aussi définie sur \mathbb{R} par $p(x) = 3x^2 - 5x + 2$

Définition 6.3 — composée par une fonction affine.

La fonction f définie par f(x)=u(ax+b) est la *composée* de u avec la fonction affine $x\mapsto ax+b$:

définition de f

Le domaine de définition de f est l'ensemble de tous les $x \in \mathbb{R}$ tels que ax + b est dans le domaine de définition de u:

$$x \in D_f$$
 si $ax + b \in D_u$

■ Exemple 6.3

- 1. Soit les fonctions f et u définies par $f(x)=x^2$ et u(x)=2x+1. La composée de f avec u est la fonction g définie par $g(x)=f(2x+1)=(2x+1)^2$.
- 2. La fonction g définie sur \mathbb{R} par $g(x) = 3(2x-5)^5$ est composée affine de la fonction $f: x \mapsto 3x^5$ avec $u: x \mapsto 2x 5$.
- 3. La fonction g définie sur par $g(x) = \sqrt{3x+1}$ est composée de la fonction $f\colon x\mapsto \dots$ par la fonction $u\colon x\mapsto 3x+1$.
- 4. La fonction g définie sur par $g(x) = \frac{10}{(2x+3)^3}$ est composée de la fonction $f: x \mapsto \dots$ par la fonction $u: x \mapsto 2x + 3$.

■ Exemple 6.4 — domaine d'une composée affine.

Soit les fonctions f et g définies par $f(x) = \frac{1}{x}$ et $g(x) = \sqrt{x}$. Déterminer le domaine de définition des composées affines $x \mapsto f(2x+3)$ et $x \mapsto g(2x+3)$:

solution.

- 1. f(2x+3) est définie pour $2x+3 \in D_f = \mathbb{R}^*$, c.à.d. $2x+3 \neq 0$. $D_f = \mathbb{R} \setminus \left\{-\frac{3}{2}\right\}$
- **2.** g(2x+3) est définie pour $2x+3 \in D_g = [0; +\infty[$, c.à.d. $2x+3 \ge 0$. $D_g = \left[-\frac{3}{2}; +\infty\right[$

6.2 Dérivées des fonctions de référence

Définition 6.4

Soit une fonction f définie sur un intervalle $D \in \mathbb{R}$. L'ensemble $D' \subset D$ des abscisses x pour lesquelles f est dérivable en x est le domaine de dérivabilité.

La fonction dérivée f' est définie sur D' par f': $x \mapsto f'(x)$.

Table 6.2 – Dérivées de fonctions de références établies dans le chapitre ??

fonction f	domaine de définition	fonction dérivée f'	domaine de dérivabilité
c (constante)	\mathbb{R}	0	\mathbb{R}
x	\mathbb{R}	1	\mathbb{R}
x^2	\mathbb{R}	2x	\mathbb{R}
$x^n \ (n \in \mathbb{N})$	\mathbb{R}	nx^{n-1}	\mathbb{R}
$\frac{1}{x}$	$\mathbb{R}\setminus\{0\}$	$-\frac{1}{x^2}$	$\mathbb{R}\setminus\{0\}$
$\frac{1}{x^2}$	$\mathbb{R}\setminus\{0\}$	$-\frac{2}{x^3}$	$\mathbb{R}\setminus\{0\}$
$\frac{1}{x^n} (n \in \mathbb{N}^*)$	$\mathbb{R}\setminus\{0\}$	$-\frac{n}{x^{n+1}}$	$\mathbb{R}\setminus\{0\}$
\sqrt{x}	$[0; +\infty[$	$\frac{1}{2\sqrt{x}}$	$]0;+\infty[$

Exemple 6.5 Soit c, m et $c \in \mathbb{R}$.

- 1. Soit f définie sur $\mathbb R$ par f(x)=c. f est dérivable sur $\mathbb R$ et pour tout $x\in\mathbb R$: f'(x)=0.
- 2. Soit g définie sur $\mathbb R$ par g(x)=mx+c. g est dérivable sur $\mathbb R$ et pour tout $x\in\mathbb R$: g'(x)=m.

Démonstration. vu au chapitre 04

La formule de la dérivée de $f\colon x\mapsto \sqrt{x}=x^{0.5}$, est similaire à la formule de la dérivée de $x\mapsto x^n$. En effet $f'(x)=0.5x^{0.5-1}=0.5x^{-0.5}=\frac{1}{2}\frac{1}{x^{0.5}}=\frac{1}{2\sqrt{x}}$

5

6.3 Règles de dérivation (1)

Théorème 6.1 Soit $c \in \mathbb{R}$.

Si les fonctions u et v sont dérivable sur I, alors cu et u+v sont aussi dérivables sur I:

$$\forall x \in I$$
 $(cu)'(x) = cu'(x)$

constante fois une fonction

$$(u+v)'(x) = u'(x) + v'(x)$$

règle d'addition

Toute combinaison linéaire de fonctions dérivables sur I est dérivable sur I.

Démonstration. $x \in I$. On pose f = cu et g = u + v

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{cu(x+h) - cu(x)}{h} \qquad = \lim_{h \to 0} \frac{u(x+h) + v(x+h) - [u(x) + v(x)]}{h}$$

$$= \lim_{h \to 0} c \left(\frac{u(x+h) - u(x)}{h}\right) \qquad = \lim_{h \to 0} \left(\frac{u(x+h) - u(x)}{h}\right) + \left(\frac{v(x+h) - v(x)}{h}\right)$$

$$= c \lim_{h \to 0} \left(\frac{u(x+h) - u(x)}{h}\right) \qquad = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} + \lim_{h \to 0} \frac{v(x+h) - v(x)}{h}$$

$$= cu'(x) \qquad = u'(x) + v'(x)$$

Théorème 6.2 — Dérivée d'une composée avec une fonction affine.

Soit u une fonction dérivable sur un intervalle J.

La fonction f définie par f(x) = u(ax + b) est dérivable sur son domaine de définition I:

$$\forall x \in I$$
 $f'(x) = au'(ax + b)$

Le domaine de dérivabilité de f est l'ensemble des $x \in \mathbb{R}$ tel que ax + b est dans le domaine de dérivabilité de u:

$$x \in D_f'$$
 si $ax + b \in D_u'$

Démonstration.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{u(a(x+h) + b) - u(ax+b)}{h}$$

$$= \lim_{h \to 0} \frac{u(ax+b+ah) - u(ax+b)}{h}$$

$$= \lim_{h \to 0} a \frac{u(ax+b+ah) - u(ax+b)}{ah}$$

$$= \lim_{h \to 0} a \frac{u(ax+b+h) - u(ax+b)}{h}$$

$$= \lim_{h \to 0} a \frac{u(ax+b+h) - u(ax+b)}{h}$$

$$= au'(ax+b)$$

6.4 Règles de dérivation (2) : produit et quotient

Théorème 6.3 — dérivée d'un produit.

Soit les fonctions u et v sont dérivables pour tout $x \in I$.

uv est aussi dérivable sur I et on a :

$$(uv)' = u'v + uv'$$

Démonstration.

$$(uv)'(x) = \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$

$$= \lim_{h \to 0} \frac{(u(x+h) - u(x))v(x+h) + u(x)(v(x+h) - v(x))}{h}$$

$$= \lim_{h \to 0} \frac{(u(x+h) - u(x))}{h}v(x+h) + u(x)\frac{(v(x+h) - v(x))}{h}$$

$$= u'(x)v(x) + u(x)v'(x)$$

Corollaire 6.4 — dérivées de puissances.

Si u est une fonction dérivable sur I, $u^2 = uu$ est aussi dérivable et $(u^2)' = 2uu'$.

Plus généralement, pour $n \ge 2$, u^n est aussi dérivable et $(u^n)' = nu^{n-1}u'$.

Théorème 6.5 — dérivée de l'inverse et du quotient.

Soit les fonctions u et v sont dérivables pour tout $x \in I$.

Si pour tout $x \in I$, $v(x) \neq 0$, alors $\frac{1}{v}$ est dérivable sur I et on a :

$$\left(\frac{1}{v}\right)' = \frac{-v'}{(v)^2}$$

Si pour tout $x \in I$, $v(x) \neq 0$, alors $\frac{u}{v}$ est aussi dérivables sur I et on a :

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{(v)^2}$$

Démonstration.

$$\left(\frac{1}{v}\right)'(x) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{v(x+h)} - \frac{1}{v(x)}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \frac{v(x) - v(x+h)}{v(x+h)(v(x))}$$

$$= \lim_{h \to 0} \frac{-1}{v(x+h)(v(x))} \frac{v(x+h) - v(x)}{h}$$

$$= -\frac{v'(x)}{(v(x))^2}$$

$$\left(\frac{u}{v}\right)' = \left(u\frac{1}{v}\right)'$$

$$= (u)'\frac{1}{v} + u\left(\frac{1}{v}\right)'$$

$$= \frac{u'}{v} + u\frac{-v'}{v^2}$$

$$= \frac{u'v - uv'}{v^2}$$

6.5 Exercices

- Soit les fonctions f et g définies par $f(x) = \sqrt{x-2}$ et g(x) = x-3.
- 1. f est définie pour $x-2 \ge 0$, $D_f = [2; +\infty[$ et g est définie sur \mathbb{R} .
- 2. le domaine de définition de f + g, f g et fg est $D_f \cap D_g = [2; +\infty[$.
- 3. $\left(\frac{f}{g}\right)(x)$ est défini sur $D_f \cap D_g$ à quoi on enlève les zéros de g. $g(x) = 0 \iff x - 3 = 0 \iff x = 3. \ D_{\frac{f}{g}} = D_f \cap D_g - \{-3\} = [2; 3[\ \cup\]3; +\infty[.]]$
- 4. $\left(\frac{g}{f}\right)(x)$ est défini sur $D_f \cap D_g$ à quoi on enlève les zéros de f. $f(x) = 0 \iff \sqrt{x-2} = 0 \iff x = 2. \ D_{\frac{f}{a}} = D_f \cap D_g - \{2\} =]2; +\infty[.$

Exercice 6.1

Déterminer le domaine des fonctions f, g, (f+g), (f-g), (fg) et $\left(\frac{f}{g}\right)$ dans chaque cas. 1. f(x) = 3x et $g(x) = \frac{1}{x+2}$ $\left| 2. \ f(x) = \sqrt{x+4} \right|$ et $g(x) = \frac{x}{x-5}$

- Exemple 6.7 connaître les formules des dérivées de fonctions de référence.
- 1. f définie sur \mathbb{R} par $f(x) = x = x^1$. f dérivable sur \mathbb{R} , et $f'(x) = 1x^{1-1} = 1$
- 2. f définie sur \mathbb{R} par $f(x) = x^2$. f dérivable sur \mathbb{R} et $f'(x) = 2x^{2-1} = 2x$
- 3. f définie sur \mathbb{R} par $f(x) = x^{10}$. f dérivable sur \mathbb{R} et $f'(x) = 10x^{10-1} = \dots$
- 4. f définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{1}{x}$. f dérivable sur $\mathbb{R} \setminus \{0\}$ et $f'(x) = \dots$

Exercice 6.2 Voir la solution

- 1. Pour chaque cas, donner le domaine, le domaine de dérivabilité et l'expression de f':
 - a) $f(x) = x^3$ $D = \dots D' = \dots f'(x) = \dots f'(x)$
 - **b)** $f(x) = \frac{1}{x^2} = x^{-2}$ $D = \dots D' = \dots f'(x) = \dots f'(x)$
 - c) $f(x) = \frac{1}{x^5} = x^{-5}$ $D = \dots D' = \dots f'(x) = \dots$
 - $D = \dots \qquad D' = \dots \qquad f'(x) = \dots$ d) $f(x) = x^6$
 - $D = \dots D' = \dots f'(x) = \dots f'(x)$ e) $f(x) = x^7$
 - f) $f(x) = \frac{1}{x^3} = \dots$ $D = \dots D' = \dots f'(x) = \dots f'(x)$
 - g) $f(x) = \frac{1}{x^9} = \dots$ $D = \dots D' = \dots f'(x) = \dots$
 - $D = \dots D' = \dots f'(x) = \dots f'(x)$ h) $f(x) = x^9$.

2. Proposer une expression de la fonction f qui convient (plusieurs réponses possibles) :

a)
$$f(x) = \dots D' = \dots f'(x) = 5x^4$$

b)
$$f(x) = \dots D' = \dots f'(x) = 2x$$

c)
$$f(x) = \dots D' = \dots f'(x) = \frac{-4}{x^5}$$

d)
$$f(x) = \dots D' = \dots f'(x) = \frac{-8}{x^9}$$

e)
$$f(x) = \dots D' = \dots f'(x) = 3x^2$$

■ Exemple 6.8 — généralisation aux dérivées de la forme $x \mapsto x^n \sqrt{x}$.

1.
$$f(x) = x\sqrt{x} = xx^{0.5} = x^{1.5}$$

 $f'(x) = 1.5x^{1.5-1} = 1.5x^{0.5} = \frac{3}{2}\sqrt{x}$ $D = [0; +\infty[$ et $D' =]0; +\infty[$

2.
$$f(x) = \frac{1}{\sqrt{x}} = x^{-0.5}$$

 $f'(x) = -0.5x^{-0.5-1} = -0.5x^{-1.5} = -0.5\frac{1}{x^{1.5}} = \frac{-1}{2x\sqrt{x}}$

$$D =]0; +\infty[\text{ et } D' =]0; +\infty[$$

Exercice 6.3 Voir la solution

Pour chaque cas, donner le domaine, le domaine de dérivabilité et l'expression de f^\prime :

■ Exemple 6.9 — dérivée de somme, ou d'une multiplication par constante.

Donner le domaine de définition puis de dérivabilité et l'expressoin de la dérivée :

1.
$$f(x)=3x^2-2x+4$$

$$D=\mathbb{R} \quad \text{et} \quad D'=\mathbb{R} \quad \text{combinaison de } x\mapsto x^2 \text{ et } x\mapsto x \text{ et } x\mapsto 4 \text{, dérivable sur } \mathbb{R}$$

$$f'(x) = 3(2x) - 2(1) + 0$$

$$f'(x) = 6x - 2$$

$$2. \quad f(x) = \sqrt{x} + 2x \\ D = [0; +\infty[\qquad D' =]0; +\infty[\qquad \ \ \ \ \]0; +\infty[\ \ et \ x \mapsto x, \ \ \ \ \ d\'erivable \ sur \ \mathbb{R}$$

$$f'(x) = \frac{1}{2\sqrt{x}} + 2(1) = \frac{1}{2\sqrt{x}} + 2$$

3.
$$f(x) = 7x - \frac{4}{x} + \frac{3}{x^3}$$
 combinaison de $x \mapsto \frac{1}{x}$ et $x \mapsto \frac{1}{x^3}$ définies et dérivables sur $D = \mathbb{R} \setminus \{0\}$ et $D' = \mathbb{R} \setminus \{0\}$ et $x \mapsto x$, dérivable sur \mathbb{R}

$$f'(x) = 7(1) - 4 \times \frac{-1}{x^2} + 3 \times \frac{-3}{x^4}$$
$$f'(x) = 7 + \frac{4}{x^2} - \frac{9}{x^4}$$

Exercice 6.4 Voir la solution

Donner le domaine de définition, le domaine de dérivation et l'expression de la fonction dérivée des fonctions suivantes.

1. a)
$$f(x) = 2x^3$$

b)
$$f(x) = 7x^2$$

c)
$$f(x) = x^2 + x$$

d)
$$f(x) = 3 - \frac{6}{x}$$

2. a)
$$f(x) = 4x^3 - x$$

b)
$$f(x) = \frac{2}{x} - \frac{3}{x^2}$$

c)
$$f(x) = 4 - 2x^2$$

d)
$$f(x) = x^2 + \frac{5}{x^2}$$

3. a)
$$f(x) = 5x^4 - 6x^2$$

1. a)
$$f(x) = 2x^3$$
 | b) $f(x) = 7x^2$ | c) $f(x) = x^2 + x$ | d) $f(x) = 3 - \frac{6}{x}$

2. a) $f(x) = 4x^3 - x$ | b) $f(x) = \frac{2}{x} - \frac{3}{x^2}$ | c) $f(x) = 4 - 2x^2$ | d) $f(x) = x^2 + \frac{5}{x^2}$

3. a) $f(x) = 5x^4 - 6x^2$ | b) $f(x) = x^2 + 1 - \frac{3}{x}$ | c) $f(x) = x^2 + 3x - 5$ | d) $f(x) = 4x - \frac{1}{4x}$

c)
$$f(x) = x^2 + 3x - 5$$

d)
$$f(x) = 4x - \frac{1}{4x}$$

4. a)
$$f(x) = 2 - x\sqrt{3}$$
 | b) $f(x) = 4\sqrt{x} + x$ | c) $f(x) = 2x - \sqrt{x}$ | d) $f(x) = 3x^2 - x\sqrt{x}$

b)
$$f(x) = 4\sqrt{x} + x$$

c)
$$f(x) = 2x - \sqrt{x}$$

d)
$$f(x) = 3x^2 - x\sqrt{x}$$

5. a)
$$f(x) = -\frac{2}{\sqrt{x}}$$
 b) $f(x) = \frac{4}{\sqrt{x}} - 5$ c) $f(x) = \frac{5}{x^2 \sqrt{x}}$ d) $f(x) = 2x - \frac{3}{x\sqrt{x}}$

b)
$$f(x) = \frac{4}{\sqrt{x}} - 5$$

c)
$$f(x) = \frac{5}{x^2 \sqrt{x}}$$

d)
$$f(x) = 2x - \frac{3}{x\sqrt{2}}$$

Exercice 6.5 Voir la solution

Déterminer l'expression d'une fonction f dont la fonction dérivée est donnée :

1. pour
$$x \in \mathbb{R}$$
, $f'(x) = x - 2$

3. pour
$$x \in \mathbb{R} \setminus \{0\}$$
, $f'(x) = 3 - \frac{1}{x^2}$

2. pour
$$x \in \mathbb{R}$$
, $f'(x) = 4x^3 + 3x^2$

4. pour
$$x \in \mathbb{R} \setminus \{0\}$$
, $f'(x) = x\sqrt{x}$

Pour une fonction notée $f \colon x \mapsto f(x)$, il est d'usage de noter la fonction dérivée f' mais encore $\frac{\mathrm{d}f}{\mathrm{d}x}$ (à lire « d-f sur d-x » ou « dérivée de f par rapport à x).

■ Exemple 6.10

 $P \colon t \mapsto P(t) = 2t^2 - 12t + 118$ est le profit en \in réalisé après un temps t en années.

Éxprimer $\frac{dP}{dt}$ en fonction de t. Préciser l'unité et interpréter la valeur de $\frac{dP}{dt}$.

solution.

 $\frac{dP}{dt} = 4t - 12$, $\frac{dP}{dt}$ est le taux d'augmentation du profit, exprimé en \in /an.

Exercice 6.6 Voir la solution

Déterminer les expressions des fonctions dérivées demandées.

1. y donnée par $x \mapsto y(x) = 3x^2 - 9x + 4$, déterminer l'expression de $\frac{dy}{dx}$.

2. y donnée par $x \mapsto y(x) = \frac{3}{x} - x^2$, déterminer l'expression de $\frac{dy}{dx}$.

3. y donnée par $x \mapsto y(x) = 5x + \sqrt{x}$, déterminer l'expression de $\frac{dy}{dx}$.

4. y donnée par $t \mapsto y(t) = \sqrt{2}t^3 + 8t + 3c$, déterminer l'expression de $\frac{dy}{dt}$.

5. y donnée par $t \mapsto y(t) = at^2 + \frac{1}{t^2}$, déterminer l'expression de $\frac{dy}{dt}$.

6. v définie par $t \mapsto v(t) = \frac{5mt^2}{2} + bt + c$, déterminer l'expression de $\frac{dv}{dt}$.

■ Exemple 6.11 — dérivée d'une composée affine.

$$f'(x) = 5u'(5x+3) = 15(5x+3)^2$$

2.
$$f(x) = \frac{1}{(2x-1)^2} = u(2x-1)$$
 avec $u(x) = \frac{1}{x^2}$, f définie
$$D_f = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$
 pour $2x-1 \in D_u = \mathbb{R} \setminus \{0\}$
$$u'(x) = \frac{-2}{x^3}$$

$$\int u'(x) = \frac{1}{x^2}$$
 définie
$$\frac{1}{x} \in D'_u = \mathbb{R} \setminus \{0\}$$

$$f'(x) = 2u'(2x - 1) = 2 \times \frac{-2}{(2x - 1)^3} = \frac{-4}{(2x - 1)^3}$$

3.
$$f(x) = \sqrt{4x - 1} = u(4x - 1)$$
 avec $u(x) = \sqrt{x}$, f définie pour
$$D_f = \begin{bmatrix} \frac{1}{4}; +\infty \begin{bmatrix} \\ \frac{1}{4}; +\infty \end{bmatrix} \end{bmatrix}$$
 $4x - 1 \in D_u = [0; +\infty[]$
$$u'(x) = \frac{1}{2\sqrt{x}}$$
 $4x - 1 \in D'_u = [0; +\infty[]$ $4x - 1 \in D'_u = [0; +\infty[]$

$$f'(x) = 4u'(4x - 1) = \frac{4}{2\sqrt{4x - 1}}$$

Exercice 6.7 Voir la solution

Déterminer les domaines de définition et de dérivation de f et l'expression de la dérivée f'.

1. a)
$$f(x) = (3x+4)^3$$

b)
$$f(x) = (2x - 1)^2$$

c)
$$f(x) = (5-x)^5$$

2. a)
$$f(x) = 2(3x + 10)^5$$

b)
$$f(x) = 4\pi (2x+1)^3$$

c)
$$f(x) = \frac{1}{2}(5-3x)^2$$

3. a)
$$f(x) = \frac{1}{3x+6}$$

b)
$$f(x) = \frac{1}{5 - 2x}$$

c)
$$f(x) = \frac{1}{(x-1)^2}$$

4. a)
$$f(x) = \frac{5}{(2x-5)^2}$$

b)
$$f(x) = \frac{2}{2x+5}$$

c)
$$f(x) = \frac{4}{(3-x)^3}$$

5. a)
$$f(x) = \sqrt{5x - 3}$$

b)
$$f(x) = \sqrt{12 - 3x}$$

c)
$$f(x) = 5x + \sqrt{3x + 18}$$

6. a)
$$f(x) = 5\sqrt{x+5}$$

| b)
$$f(x) = 3\sqrt{2} - x$$

| c)
$$f(x) = \sqrt{2x}$$

Le nombre dérivé de f au point a se note f'(a) ou $\frac{\mathrm{d}f}{\mathrm{d}x}(a)$ ou $\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=a}$. Il s'interprète comme :

- la pente de la tangente à la courbe \mathscr{C}_f au point d'abscisse a.
- le taux de variation (instantané/infinitésimal) de f(x) lorsque x varie au voisinage de a.

■ Exemple 6.12 — déterminer la pente d'une tangente.

Soit \mathscr{C}_f la représentation graphique de f par $f(x) = x^2 - \frac{4}{x}$. Déterminer la pente de la tangente T_2 à \mathscr{C}_f au point d'abscisse 2.

solution.
$$f(x) = x^2 - \frac{4}{x}$$
 $D = \mathbb{R} \setminus \{0\}$ et $D' = \mathbb{R} \setminus \{0\}$ combinaison de $x \mapsto \frac{1}{x}$ définie et dérivable sur \mathbb{R} $f'(x) = 2x - 4 \times \frac{-1}{x^2} = 2x + \frac{4}{x^2}$ $f'(2) = 2(2) + \frac{4}{(2)^2} = 5$ \therefore La pente de la tangente est 5

Exercice 6.8 Voir la solution

- 1. Déterminer le nombre dérivé de f'(2) dans les cas suivants :
 - a) f définie sur \mathbb{R} par $f(x) = x^2$.
- b) f définie sur \mathbb{R} par $f(x) = x^3$.
- c) f définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = 2x \frac{5}{x}$. d) f définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = \frac{8}{x^2}$.
- 2. Déterminer la pente de la tangente T_a à \mathscr{C}_f : y = f(x) au point x = a.

 - a) f définie sur \mathbb{R} par $f(x)=2x^2-3x+7$. b) f définie sur \mathbb{R} par $f(x)=5x^3-3x^2-2$. c) f définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=x-\frac{4}{x}-\frac{8}{x^2}$. d) f définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=1-\frac{4}{x^2}$

Exercice 6.9 Voir la solution

La distance parcourue d'une voiture voyageant le long d'une route est donnée par $S(t)=2t^2+4t$, où t est le temp écoulé en secondes. Déterminer $\frac{dS}{dt}$ et en donner une interprétation.

Exercice 6.10 Voir la solution

Le coût de fabrication et vente de x objets connectés chaque semaine est exprimé \in par $C(x)=1785+3x+0.002x^2$. Déterminer $\frac{\mathrm{d}C}{\mathrm{d}x}$ et en donner une interprétation.

Exercice 6.11 Voir la solution

Une flèche est lancée à la verticale depuis la surface de la Lune à la vitesse de 58 m/s. Sa hauteur en mêtres est donnée par $H(t)=58t-0.83t^2$, où t est le temp écoulé en secondes.

- 1. Exprimer la vitesse instantanée à l'instant t.
- 2. Déterminer la vitesse instantanée après 1 s.

- 3. Déterminer l'instant t_0 pour lequel la flèche revient sur la surface de la Lune.
- 4. Quelle est la vitesse de la flèche à l'impact?

6.5.1 Exercices : équations de tangentes

Soit f une fonction dérivable en a. La tangente T_a à la courbe \mathscr{C}_f au point de coordonnées (a,f(a)) est une droite non verticale d'équation

$$T_a$$
: $y = f'(a)(x - a) + f(a)$ alternative : $y - f(a) = f'(a)(x - a)$

■ Exemple 6.13 — déterminer l'équation d'une tangente.

Soit f définie par $f(x) = \sqrt{10 - 3x}$, et sa représentation graphique \mathscr{C}_f et A le point de \mathscr{C}_f d'abscisse 3.

- 2. Déterminer l'expression de f'(x).
- 3. Justifier que A(3; 1).
- 4. Déterminer l'équation réduite de la tangente T à \mathscr{C}_f en A.
- 5. Tracer la tangente T en A.

solution.

1.
$$f(x)=u(10-3x)$$
 avec $u(x)=\sqrt{x}$, f définie pou
$$D_f=\left]-\infty;\frac{10}{3}\right]$$

$$10-3x\in D_u=\left[0;+\infty\right[$$

$$u'(x)=\frac{1}{2\sqrt{x}}$$

$$D'_{f} = \left] -\infty; \frac{10}{3} \right[\qquad 2\sqrt{x}$$
2. $f'(x) = -3u'(10 - 3x) = \frac{-3}{2\sqrt{10 - 3x}}$

3.
$$f(3) = \sqrt{10 - 3(3)} = 1$$
 donc $A(3; 1) \in \mathscr{C}_f$

4.
$$f'(3) = \frac{-3}{2\sqrt{10 - 3(3)}} = -\frac{3}{2}$$

$$T: y = f'(3)(x-3) + f(3)$$

$$\therefore T \colon y = -\frac{3}{x}x + \frac{11}{2}$$

Exercice 6.12 Voir la solution

Déterminer pour chaque fonction f de représentation graphique \mathscr{C}_f :

- Les coordonnées du point A de \mathscr{C}_f d'abscisse a.
- La pente et l'équation réduite de la tangente T_a à \mathscr{C}_f au point d'abscisse a.
- 1. f définie sur \mathbb{R} par $f(x) = 2x^2 + 5x + 3$ et a = -2.

- 2. f définie sur \mathbb{R} par $f(x) = x^3 + 3x$ et a = 0.
- 3. f définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = x^2 + \frac{1}{x}$ et a = -1.
- 4. f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x} + 1$ et a = 4.

Exercice 6.13 Voir la solution

Ci-contre la représentation de la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 + \frac{3}{4}x^2 - \frac{5}{2}x - \frac{1}{4}$.

- 1. Justifier que les points A(-3; 5) et $B(1; -\frac{5}{3}) \in \mathscr{C}_f$.
- 2. Déterminer l'expression de la fonction dérivée f'.
- 3. Déterminer l'équation réduite de la tangente T_{-3} à \mathscr{C}_f en A.
- 4. Déterminer les coordonnées des points d'intersection de T_{-3} avec les axes du repère.

Exercice 6.14 Voir la solution

Soit \mathscr{C}_f la représentation graphique de f par $f(x) = x^2 - 4x + 7$. Déterminer le(s) points de la courbe ou la pente de la tangente à \mathscr{C}_f vaut 2.

Exercice 6.15 Voir la solution

Soit \mathscr{C}_f la représentation graphique de f par $f(x) = 3x^3 - 5x + 2$. Déterminer le(s) points de la courbe ou la pente de la tangente à \mathscr{C}_f vaut 4.

Exercice 6.16 Voir la solution

Soit \mathscr{C}_f la représentation graphique de f par $f(x) = x^3 - x^2 - 5x + 2$.

- 1. Calculer l'abscisse des points en lesquels la tangente à \mathcal{C}_f est parallèle à la droite passant par A(-3; 2) et B(1; 14).
- 2. Déterminer les équations des tangentes ainsi obtenues.

Exercice 6.17 Voir la solution

Ci-dessous est représenté la fonction f définie par $f(x) = -x^2 - 6x - 4$ et la tangente en A à \mathscr{C}_f . Déterminer les coordonnées de A.

6.5.2 Exercices : dérivées de produit et de quotient et applications

■ Exemple 6.14 — dérivée d'un carré ou d'une puissance.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

1.
$$f(x)=(2x^2+3x-5)^2$$
 carré de $u\colon x\mapsto 2x^2+3x-5$ définie et $D_f=\mathbb{R}$ $D_f'=\mathbb{R}$ dérivable sur \mathbb{R}

$$f'(x) = 2u'(x)u(x)$$

$$f'(x) = 2(2x^2 + 3x - 5)'(2x^2 - 5x - 3)$$
$$= 2(4x + 3)(2x^2 - 5x - 3)$$

2.
$$f(x)=(3-2x)^5$$
 puissance de $u\colon x\mapsto 3-2x$ définie et $D_f=\mathbb{R}$ $D_f'=\mathbb{R}$ dérivable sur \mathbb{R}

$$f'(x) = 5u'(x)u^{4}(x)$$
$$= 5(3 - 2x)'(3 - 2x)^{4}$$
$$= -10(3 - 2x)^{4}$$

Exercice 6.18 Voir la solution

Dériver en utilisant la règle de la dérivé d'une puissance.

1. a)
$$f(x) = (2x+3)^4$$

b)
$$f(x) = (4-x)^3$$

c)
$$f(x) = (2x+3)^4$$

2. a)
$$f(x) = (3x^2 - 1)^2$$

b)
$$f(x) = (x^2 + 5)^2$$

| c)
$$f(x) = (x^3 - 1)^2$$

■ Exemple 6.15 — dérivation d'un produit.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

1.
$$f(x)=(8x-1)(2x^2-5x-3)$$

$$D_f=D_u\cap D_v=\mathbb{R}$$

$$D_f'=D_u'\cap D_v'=\mathbb{R}$$
 définies et dérivables sur \mathbb{R}

$$f'(x) = (8x - 1)'(2x^2 - 5x - 3) + (8x - 1)(2x^2 - 5x - 3)'$$

$$= 8(2x^2 - 5x - 3) + (8x - 1)(2(2x) - 5(1) + 0)$$

$$= 16x^2 - 40x - 24 + (8x - 1)(4x - 5)$$

$$= 48x^2 - 84x - 19$$

2.
$$f(x) = \sqrt{x}(2x+1)^3$$

$$D_f = D_u \cap D_v = [0; +\infty[$$
 $produit de \ u \colon x \mapsto \sqrt{x} \ définie \ sur \ [0; +\infty[\ et \ dérivable \ sur \]0; +\infty[\ et \ v \colon x \mapsto (2x+1)^3 \ définie \ et \ dérivable \ sur \ \mathbb{R}$
$$D_f' = D_u' \cap D_v' =]0; +\infty[$$

$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

$$= \frac{1}{2\sqrt{x}}(2x+1)^3 + \sqrt{x} \times 2 \times 3(2x+1)^2$$

$$= \frac{(2x+1)^3}{2\sqrt{x}} + 6\sqrt{x}(2x+1)^2$$

3.
$$f(x) = (1-2x)^3 \left(1-\frac{x}{2}\right)^2$$
 produit de $u: x \mapsto (1-2x)^3$ définie et dérivable sur $\mathbb R$ et $D_f = D_u \cap D_v = \mathbb R$ $v: x \mapsto \left(1-\frac{x}{2}\right)^2$ définie et dérivable sur $\mathbb R$

$$\begin{split} f'(x) &= u'(x)v(x) + u(x)v'(x) \\ &= -6(1-2x)^2 \left(1-\frac{x}{2}\right)^2 - (1-2x)^3 \left(1-\frac{x}{2}\right) \\ &= (1-2x)^2 \left(1-\frac{x}{2}\right) (-6(1-2x) - (1-2x)) \end{split} \qquad \begin{cases} u'(x) = -2 \times 3(1-2x)^2, \ v'(x) = 2 \times \frac{-1}{2} \left(1-\frac{x}{2}\right) \\ factoriser\ par\ facteur\ commun \\ &= (1-2x)^2 \left(1-\frac{x}{2}\right) (14x-7) \end{cases}$$

Exercice 6.19 Voir la solution

Dériver en utilisant la règle de la dérivé d'un produit.

1. a)
$$f(x) = x^2(7-3x^2)$$

b)
$$f(x) = 4x(2x+1)^3$$

| c)
$$f(x) = x^5(3x-1)^2$$

2. a)
$$f(x) = x^2(2x-1)^3$$

b)
$$f(x) = (3x-1)^2(5x-2)^3$$
 c) $f(x) = (2+x)^2(1-x)^3$

c)
$$f(x) = (2+x)^2(1-x)^3$$

3. a)
$$f(x) = x^2 \sqrt{3-x}$$

b)
$$f(x) = x^2 \sqrt{x+1}$$

b)
$$f(x) = x^2 \sqrt{x+1}$$
 c) $f(x) = \sqrt{x}(x-x^2)^3$

Exercice 6.20 Voir la solution

Déterminer la pente de la tangente à la représentation graphique de f au point d'abscisse a:

1.
$$f$$
 définie par $f(x) = x^4(1-2x)^2$ et $a = -1$

1.
$$f$$
 définie par $f(x) = x^4(1-2x)^2$ et $a = -1$. | 3. f définie par $f(x) = \sqrt{x}(x^2 - x + 1)^2$ et $a = 4$.

2.
$$f$$
 définie par $f(x) = x\sqrt{1-2x}$ et $a = -4$. 4. f définie par $f(x) = x^3\sqrt{5-x^2}$ et $a = 1$.

4. *f* définie par
$$f(x) = x^3 \sqrt{5 - x^2}$$
 et $a = 1$.

Exercice 6.21 Voir la solution

Soit la fonction f définie par $f(x) = (x-3)^2 \sqrt{x}$.

- 1. Donner le domaine de définition D et le domaine de dérivabilité D' de f.
- 2. Montrer que pour tout $x \in D'$, $f'(x) = \frac{(x-3)(5x-3)}{2\sqrt{x}}$.
- 3. Pour quelle(s) valeur(s) de x, f'(x) = 0. Interpréter graphiquement les valeurs obtenues.
- 4. Pour quelle(s) valeur(s) de x, f est définie mais non dérivable? Interpréter graphiquement les valeurs obtenues.

■ Exemple 6.16 — dérivation d'un quotient.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

1.
$$f(x) = \frac{1+3x}{x^2+1}$$

$$D = \mathbb{R} \quad D' = \mathbb{R}$$

$$D' = \mathbb{R} \quad D' = \mathbb{R}$$
 on applique $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$
$$f'(x) = \frac{3(x^2+1) - (1+3x)2x}{(x^2+1)^2}$$

$$f'(x) = \frac{3(x^2+1)-(1+3x)2x}{(x^2+1)^2}$$
 on simplifie le numérateur sans développer
$$= \frac{3x^2+3-2x-6x^2}{(x^2+1)^2} = \frac{3-2x-3x^2}{(x^2+1)^2}$$
 le dénominateur

2.
$$f(x) = \frac{1-2x}{3x+3}$$

$$D = \mathbb{R} \setminus \{-1\} \quad D' = \mathbb{R} \setminus \{-1\}$$

$$f'(x) = \frac{(1-2x)'(3x+3) - (1-2x)(3x+3)'}{(3x+3)^2}$$

$$= \frac{-2(3x+3) - (1-2x) \times 3}{(3x+3)^2}$$
on applique $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$
on simplifie le numérateur sans développer

Exercice 6.22 Voir la solution

1. a)
$$f(x) = \frac{1+3x}{2-x}$$
 b) $f(x) = \frac{x^2}{2x+1}$

2. a)
$$f(x) = \frac{x+5}{x-1}$$
 b) $f(x) = \frac{(3x-1)^3}{(2x+3)^2}$ c) $f(x) = \frac{(x-1)^3}{(x+1)^2}$

3. a)
$$f(x) = \frac{\sqrt{x}}{1 - 2x}$$
 b) $f(x) = \frac{x^2 - 3}{3x - x^2}$ c) $f(x) = \frac{x}{\sqrt{1 - 3x}}$

Exercice 6.23 Voir la solution

Soit \mathcal{C}_f la représentation graphique de f. Déterminer la pente de la tangente au point d'abscisse a dans les cas suivants :

- 1. f définie par $f(x) = \frac{x}{1-2x}$ et a=1. 2. f définie par $f(x) = \frac{4x+7}{x+3}$ et a=2. 3. f définie par $f(x) = \frac{x^3}{x^2+1}$ et a=-1.
- 4. f définie par $f(x) = \frac{(2x-1)^3}{(5x+1)^2}$ et a = -3.

17

- 5. f définie par $f(x) = \frac{\sqrt{x}}{2x+1}$ et a=4. 6. f définie par $f(x) = \frac{x^2}{\sqrt{3x+5}}$ et a=-2.

Exercice 6.24 Voir la solution

Soit \mathscr{C}_f la représentation graphique de f donnée par $f(x) = \frac{2\sqrt{x}}{1-x}$.

- 1. Déterminer le domaine et le domaine de dérivabilité de f.
- 2. Montrer que pour tout $x \in D'$, $f'(x) = \frac{x+1}{\sqrt{x}(1-x)^2}$.
- 3. Déterminer les points de \mathcal{C}_f où la tangente est horizontale.

Exercice 6.25 Voir la solution

Soit \mathscr{C}_f la représentation graphique de f donnée par $f(x) = \frac{x^2 - 3x + 1}{x + 2}$.

- 1. Déterminer le domaine et le domaine de dérivabilité de f.
- **2.** Montrer que pour tout $x \in D'$, $f'(x) = \frac{x^2 + 4x 7}{(x+2)^2}$.
- 3. Déterminer les points de \mathcal{C}_f où la tangente est horizontale.
- Exemple 6.17 dérivation d'un inverse.

Donner le domaine de dérivabilité et l'expression de la dérivée dans les cas suivants :

$$f(x) = \frac{1}{(5x+3)^2}$$

$$D = D' = \mathbb{R} \setminus \{-\frac{3}{5}\}$$

$$f'(x) = \frac{-((5x+3)^2)'}{\left((5x+3)^2\right)^2}$$

$$= \frac{-(5x+3)' \times 2(5x+3)}{(5x+3)^4}$$

$$= \frac{-10(5x+3)}{(5x+3)^4} = \frac{-10}{(5x+3)^3}$$
inverse de $v: x \mapsto (5x+3)^2$, dérivable pour $5x+3 \neq 0$.

on applique $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$

$$u(x) = x^2, \text{ on dérive } (u(5x+3))' = 5u'(5x+3)$$
on simplifie le numérateur sans développer le dénominateur

Exercice 6.26 Voir la solution

Donner les domaines de définition et de dérivabilité, puis dériver les fonctions suivantes :

1.
$$f(x) = \frac{2}{3x - 1}$$

1.
$$f(x) = \frac{2}{3x - 1}$$

2. $f(x) = \frac{1}{\sqrt{x}}$
3. $f(x) = \frac{-5}{x^2 - 1}$
4. $f(x) = \frac{3}{2 - 3x}$

5.
$$f(x) = \frac{1}{\sqrt{2x-3}}$$

6. $f(x) = \frac{-5}{3x^2+2}$

6.
$$f(x) = \frac{\sqrt{-5}}{3x^2 + 2}$$