计算机组成原理——CPU

刘宏伟

哈尔滨工业大学 计算机科学与技术学院

我们现在在哪里——这部分我们将介绍什么

第7章 指令系统

✓指令系统在计算机中的地位

第7章 指令系统

- 7.1 机器指令
- 7.2 操作数类型和操作类型
- 7.3 寻址方式
- 7.4 指令格式举例
- 7.5 RISC 技术

7.1 机器指令

- 指令的格式是什么
 - 操作码 地址码 寻址方式

什么操作 对谁操作

- 指令的字长
 - 固定字长、可变字长

7.1 机器指令

一、指令的一般格式

操作码字段 地址码字段

- 1. 操作码 反映机器做什么操作 还包含被操作数据的类型etc
 - (1)长度固定

用于指令字长较长的情况 , RISC 如 IBM 370 操作码 8 位

(2) 长度可变 如x86

操作码分散在指令字的不同字段中

(3) 扩展操作码技术

码点"

7.1

操作码的位数随地址数的减少而增加

1111

1111

(3) 扩展操作码技术

7.1

操作码的位数随地址数的减少而增加

4位操作码

如果在这里把1110也当作扩展码的话...

三地址指令操作码 每减少一种最多可多构成

24种二地址指令

8位操作码

经常出现的高频操作用短操作码

12 位操作码

 二地址指令操作码 每减少一种最多可多 构成24 种一地址指令

16 位操作码

2. 地址码

7.1

(1) 四地址

A₁第一操作数地址

A₂ 第二操作数地址

A3结果的地址

A₄下一条指令地址

 $(A_1) OP(A_2) \longrightarrow A_3$

设指令字长为 32 位

操作码固定为8位

4 次访存 取指令的访存: OP和A4一起进行

寻址范围 $2^6 = 64$ 可访问的内存空间非常小

若PC代替A4

(2) 三地址

 $(A_1) OP(A_2) \longrightarrow A_3$

4次访存

寻址范围 $2^8 = 256$

若 A,用 A,或 A,代替

(3) 二地址

8

12

12

OP $\mathbf{A_1}$ $\mathbf{A_2}$

 $(A_1) OP(A_2) \longrightarrow A_1$

保存结果也需要访存一次 4次访存

7.1

 $(A_1) OP(A_2) \longrightarrow A_2$

寻址范围 $2^{12} = 4 \text{ K}$

若结果存于ACC 3次访存 若ACC 代替 A₁(或A₂)

不保存在内存中,存在寄存器中

一地址

24

OP

2次访存

一个操作数在ACC中

 $(ACC) OP(A_1) \longrightarrow ACC$

寻址范围 $2^{24} = 16 M$

(5) 零地址 对ACC中数据进行一元操作

二、指令字长

7.1

指令字长决定于 {操作码的长度 地址码的长度 操作数地址的个数

1. 指令字长 固定

指令字长 = 存储字长 或者短于存储字长

2. 指令字长 可变

按字节的倍数变化

小结 7.1

- > 当用一些硬件资源代替指令字中的地址码字段后
 - •可扩大指令的寻址范围
 - 可缩短指令字长 指令字长=操作码+地址码长度
 - 可减少访存次数
- > 当指令的地址字段为寄存器时

```
三地址 OP R_1, R_2, R_3
```

- 二地址 OP R_1 , R_2 直接把寄存器编码
- 一地址 $OP R_1$
- 可缩短指令字长
- 指令执行阶段不访存