Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

ОТЧЕТ Лабораторная работа №6

По теме: «Синтез и исследование иерархической системы управления. Решение задачи координации по принципу согласования взаимодействий путем модификации целей»

Дисциплина: Компьютерные системы управления

Выполнил студент гр. 3540901/02001			Бар	аев Д. Р.
n.	(подпись)		TT	C . A
Руководитель	(подпись)		нестер	оов С. А.
		"	>>	2021Γ

Содержание

1.	Исходные данные	3
	Задание	
	Ход работы	
	Формализация модели	
	Синтез решающих органов первого уровня	
	рвая подсистема	
	ррая подсистема	
	Синтез решающих органов первого уровня	
	Синтез решающих органов первого уровня	
	Выводы	

1. Исходные данные

Объект первого порядка:

$$\begin{vmatrix} \dot{x_1} \\ \dot{x_2} \end{vmatrix} = \begin{vmatrix} -2 & 0.4 \\ -0.4 & -2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$$

Целевые функции:

$$\begin{cases} f_1 = (x_1 - 1)^2 + (x_2 - 1)^2 \\ f_2 = (x_1 - 2)^2 + (x_2 - 2)^2 \\ \alpha_1 = 0.1, \ \alpha_2 = 0.9 \end{cases}$$

2. Задание

1) Реализовать двухуровневую иерархическую систему управления. Для координации подсистем использовать принцип согласования взаимодействий путем модификации целей с нулевой суммой.

3. Ход работы

3.1 Формализация модели

Основным недостатком одноуровневого многоцелевого управления является необходимость ввода компромиссных решений для сведения многокритериальной задачи к однокритериальной. В случае многоуровневого управления принятие компромиссных решений производится на дополнительном вышестоящем уровне. В этом случае цель координации — обеспечение согласованных действий подсистем нижнего уровня для достижения глобальной цели. Координатор должен иметь возможность воздействовать на действия решающих органов локальных подсистем.

Координация по принципу согласования взаимодействий относится к типу координаций после принятия решений решающими органами локальных подсистем.

Рисунок 1 - Структурная схема многоуровневой системы управления по принципу согласования взаимодействий

Конфликты в иерархических системах управления могут возникать из-за несогласованного изменения связующих переменных отдельных подсистем. Способ модификации целей заключается в поиске таких модификаций локальных

целевых функций, чтобы связующие переменные изменялись в нужном направлении при неизменной глобальной целевой функции.

Считается, что задача локального управления на уровне подсистем решена, поэтому требуется только организация совместного управления. В качестве реализации подсистемы с регулятором возьмем полученные в 4 лабораторной работе результаты синтеза локального регулятора. В этом случае подсистемы будут иметь структуру:

Рисунок 2 - Структурная схема системы управления

Далее определим формальную постановку задачи.

Глобальная целевая функция

Локальные цели:

$$f_1 = (x_1 - 1)^2 + (x_2 - 1)^2$$

 $f_2 = (x_1 - 2)^2 + (x_2 - 2)^2$

С учётом весовых коэффициентов $f = 0.1 \cdot f_1 + 0.9 \cdot f_2$ С минимумом в точке $\{1.9, 1.9\}$

Записываем перекрёстное влияние подсистем:

$$\frac{0.4}{2}s_2 = 0.2 \cdot s_2 = z_1$$

$$\frac{-0.4}{2}s_1 = -0.2s_1 = z_2$$

Записываем уравнения для каждой подсистемы:

$$s_1 - z_1 - u_1 = 0$$

$$s_2 - z_2 - u_2 = 0$$

Найдём экстремумы с учётом записанных условий в подсистемах:

$$L_0 = 0.1((x_1 - 1)^2 + (x_2 - 1)^2) + 0.9((x_1 - 2)^2 + (x_2 - 2)^2) + \mu_1(s_1 - z_1 - u_1) + \mu_2(s_2 - z_2 - u_2) + \rho_1(z_1 - 0.2 \cdot s_2) + \rho_2(z_2 + 0.2 \cdot s_1)$$

Тогда получаем Лагранжианы подсистем:

$$\begin{split} L_i(u_i,z,\mu_i,\rho_i) &= f_i(z,u_i) + \mu_i \big(s_i - \varphi_i(u_i,z_i) \big) + \rho_i z_j - \rho_j c_{ij} s_i \\ L_1 &= 0.1((z_1+u_1-1)^2 + (5z_1-1)^2) + \mu_1 (s_1-z_1-u_1) + \rho_1 \cdot z_1 + 0.2 s_1 \cdot \rho_2 \\ L_0 &= 0.9((5z_2+2)^2 + (z_2+u_2-2)^2) + \mu_2 (s_2-z_2-u_2) - 0.2 s_2 \cdot \rho_1 + \rho_2 \cdot z_2 \end{split}$$

3.2 Синтез решающих органов первого уровня

В локальных подсистемах для нахождения экстремума при заданных ограничениях необходимо найти экстремум соответствующего Лагранжиана:

Для этого требуется решить следующую систему уравнений:

$$\begin{cases} \frac{dL_i}{du_i} = 0\\ \frac{dL_i}{dz_i} = 0\\ \frac{dL_i}{d\mu_i} = 0\\ \frac{dL_i}{ds_i} = 0 \end{cases}$$

При этом значения ρ_i являются модификаторами локальных целей и определяются на верхнем уровне.

```
1 -
      w=0.1;
 2 -
       syms z1 z2 u1 u2 f1 f2;
 3 -
      f1 = w*((z1+u1-1)^2+(5*z1-1)^2);
      f2 = (1-w)*((5*z2+2)^2+(z2+u2-2)^2);
     syms s1 s2 m1 m2 p1 p2;
     syms L1 L2;
 7 - L1 = f1 + m1*(s1-z1-u1) + p1*z1 +1/5*p2*s1; %L1 = f1 + m1*(z1-s1+u1) + p1*z1 +2/15*p2*s1;
 8 - L2 = f2 + m2*(s2-z2-u2) + p2*z2 - p1/5*s2;%L2 = f2 + m2*(z2-s2+u2) + p2*z2 - p1/5*s2;
 9 - display('Лагранжиан 1')
10 -
      diff(L1,u1)
11 -
      diff(L1,z1)
12 -
      diff(L1,s1)
13 -
     diff(L1,m1)
14 - display ('Лагранжиан 2')
15 - diff(L2,u2)
16 - diff(L2, z2)
17 - diff(L2,s2)
18 -
       diff(L2,m2)
```

Рисунок 3 - Вычисление частных производных локальных Лагранжианов

Первая подсистема

$$\begin{cases} \frac{dL_1}{du_1} \cdot 5 = -5\mu_1 + u_1 + z_1 - 1 = 0\\ \frac{dL_1}{dz_1} \cdot 5 = -5\mu_1 + u_1 + 26z_1 + 5\rho_1 - 6 = 0\\ \frac{dL_1}{ds_1} = \mu_1 + 0.2 \cdot \rho_2 = 0\\ \frac{dL_1}{d\mu_1} = s_1 - z_1 - u_1 = 0\\ \begin{cases} u_1 = 5\mu_1 - z_1 + 1\\ z_1 = \frac{5 - 5\rho_1}{25} = \frac{1 - \rho_1}{5}\\ \mu_1 = -\frac{1}{5}\rho_2\\ s_1 = u_1 + z_1 \end{cases}$$

Рисунок 4 - Соответствующая схема решающего органа первого уровня

Вторая подсистема

$$\begin{cases} \frac{dL_2}{du_2} \frac{5}{9} = -\frac{5}{9} \mu_2 + u_2 + z_2 - 2 = 0 \\ \frac{dL_2}{dz_2} \frac{5}{9} = -\frac{5}{9} \mu_2 + u_2 + 26 \cdot z_2 + \frac{5}{9} \rho_2 + 8 = 0 \\ \frac{dL_2}{ds_2} = \mu_2 - 0.2 \rho_1 = 0 \\ \frac{dL_2}{d\mu_2} = s_2 - u_2 - z_{12} = 0 \end{cases}$$

$$\begin{cases} u_2 = \frac{5}{9} \mu_2 - z_2 + 2 \\ z_2 = \frac{-2 - \frac{1}{9} \rho_2}{5} \\ \mu_2 = 0.2 \rho_1 \\ s_2 = u_2 + z_2 \end{cases}$$

Рисунок 5 - Соответствующая схема решающего органа первого уровня

3.3 Синтез решающих органов первого уровня

В локальных решающих органах для нахождения управляющего воздействия ищется экстремум локального Лагранжиана. Верхний уровень реализует поиск неопределенных множителей Лагранжиана p_1 и p_2 , которые обеспечивают согласование локальных подсистем, модифицируя их локальные цели. Поиск осуществляется методом наискорейшего спуска при учете выполнения условия:

$$\sum_{i}^{n} \Delta f_{i}() = \left| \sum_{i}^{n} \rho_{i} \left(z_{i} - \sum_{j} c_{ji} \hat{s}_{j} \right) \right| \leq \varepsilon,$$

где ε — допустимая величина отклонения оценки выхода подсистемы и реального выхода, \hat{s}_j — оценка выхода подсистем, получаемая с первого уровня системы управления.

Если условие не выполняется, то необходимо скорректировать значение ρ_i :

$$\Delta \rho_i = \pm \gamma \left(z_i - \sum_j c_{ji} \hat{s}_j \right); \quad \rho_i = \rho_i + \Delta \rho_i,$$

где γ — величина шага. Знак перед γ определяет направление градиентного спуска и зависит от знака \hat{s}_i , если \hat{s}_i принимает положительное значение, то знак плюс, если \hat{s}_i величина отрицательная, то знак минус.

Когда условие согласованности локальных и глобальных целей будет выполнено, на нижний уровень будет подан сигнал разрешения управления.

```
\Box function [p1, p2, ena1, ena2] = fcn(z1, z2, s1, s2)
 2 -
       persistent p1 t;
 3 -
       persistent p2 t;
 4 -
       persistent enal t;
 5 -
       persistent ena2 t;
       ерs = 0.001; % Величина отклонения оценки от реального значения
 6 -
 7 -
       step = 0.0025; % Шаг изменения множителей р
       % Инициализация
 9 -
       if(isempty(p1 t))
10 -
          p1 t =-1.0;%4;%-5;% 1.5;
11 -
          p2 t =-1;%-4.0;%5;%-5;% -1.5;
12 -
          ena1 t = 0;%0
13 -
          ena2 t = 0; %0
14 -
           p1 = p1 t;
15 -
          p2 = p2 t;
16 -
           ena1 = ena1 t;
17 -
           ena2 = ena2 t;
18 -
           return;
19
       end
20
       % Коррекция множителя р1
21 -
       if(abs(p2 t*z2-p2 t*s1+p1 t*z1-p1 t*s2) > eps)%(2*abs((p2 t*z2-p1
22
          % Знак перед step завистит от знака s2
23
          p1 t = p1 t + step*(z1 - (0.2)*s2);
24 -
         p1 t = p1 t+step*(z1-s2);
25 -
          ena1 t = 0;
26
          p2 t = p2 t + step*(z2 - (-0.2)*s1);
27
28 -
          p2 t = p2 t + step*(z2-s1);
29 -
          ena2 t = 0;
          else
 30
 31 -
            ena1 t = 1;
             ena2 t = 1;
 32 -
 33
          end
 34
 35
 36
         % ena1 t = 1;
 37
         % ena2 t = 1;
          % p1 t = -0.9;
 38
 39
          % p2 t = -0.9;
 40 -
         p1 = p1 t;
 41 -
         p2 = p2 t;
 42 -
         ena1 = ena1 t;
 43 -
         ena2 = ena2 t;
 44
         ∟end
```

Рисунок 6 - Реализация решающего органа верхнего уровня

Рисунок 7 - Полная модель двухуровневой системы управления

3.4 Синтез решающих органов первого уровня

Перед началом моделирования требуется задать исходные данные: ϵ и γ . Величина шага спуска γ влияет на скорость сходимости решения, ϵ влияет как на отклонение решения от исходной глобальной цели, так и на скорость сходимости. Экспериментально были подобраны следующие значения: $\epsilon = 0.001$, $\gamma = 0.0025$

Динамика изменения связующих переменных ρ :

Полученное решение:

$$\varepsilon = 0.001, \gamma = 0.075$$

Рисунок 10 - Динамика изменения связующих переменных ρ при $\varepsilon = 0.001$, $\gamma = 0.075$

Рисунок 11 - Полученное решение при $\varepsilon = 0.001$, $\gamma = 0.075$

4. Выводы

Переход к многоуровневой системе управления позволил устранить необходимость введения компромиссных решений на этапе проектирования. Задача поиска компромисса и согласования работы подсистем в этом случае решается верхним уровнем. За счет этого стало возможным создать два независимых решающих органа, каждый из которых обеспечивает достижение локальной цели при учете согласующих переменных, вычисляемых координатором.

К недостаткам данного подхода можно отнести существенное усложнение структуры системы и продолжительный процесс поиска решения координатором (около 35.9 секунд в первом рассмотренном случае). Метод градиентного спуска, применяемый в координаторе, требует подбора двух параметров. При увеличении шага в градиентном спуске возможно достижение более высокой скорости поиска решения (0.121 секунды во втором рассмотренном случае) и более быстрого переходного процесса.