Skolornas Matematiktävling

Svenska Matematikersamfundet

Lösningar till finaltävlingen den 22 november 1997

1. Periferivinkeln ADC på diametern AC är rät. De tre trianglarna ABC, DAC och DBC är likvinkliga och därmed likformiga. Av likformigheten $\triangle DAC \sim \triangle DBA$ och det faktum att en katet i en rätvinklig triangel är mindre än hypotenusan, följer

$$C$$
 D
 A
 B

$$\frac{b}{1} = \frac{|DC|}{|AC|} = \frac{|DA|}{|AB|} < \frac{|AC|}{|AB|} = \frac{1}{a}.$$

Division med den positiva kvantiteten a ger nu den högra olikheten. Likformigheten $\triangle DAC \sim \triangle ABC$ och Pythagoras sats ger

$$\frac{b}{1} = \frac{|DC|}{|AC|} = \frac{|AC|}{|BC|} = \frac{1}{\sqrt{a^2 + 1}}.$$

Den vänstra olikheten är alltså ekvivalent med

$$\frac{1}{a^2 + \frac{1}{2}} < \frac{1}{a\sqrt{a^2 + 1}},$$

som, då alla ingående kvantiteter är positiva, är ekvivalent med

$$a^4 + a^2 + \frac{1}{4} = \left(a^2 + \frac{1}{2}\right)^2 > a^2(a^2 + 1) = a^4 + a^2$$

giltig för alla a.

2. Sätt $\angle ACE = 2\gamma$, $\angle BCE = 3\gamma$ och $\angle CBD = \angle DBA = \beta$. Yttervinkelsatsen tillämpad på triangeln BCP ger då $\angle CPD = \angle BCE + \angle CBD = 3\gamma + \beta$. I den likbenta triangeln DCP är $\angle CDP = \angle CPD = 3\gamma + \beta$. Vinkelsumman i triangeln BCD blir då $\beta + 5\gamma + 3\gamma + \beta = 180^\circ$. Yttervinkelsatsen tillämpad på triangeln BCE ger $\angle AEC = \angle EBC + \angle BCE = 2\beta + 3\gamma$. I den likbenta triangeln EDC är $\angle CED = \angle ECD = 2\gamma$. Detta ger $\angle AED = \angle AEC - \angle CED = \gamma + 2\beta$. Strålen BA skär den kring $\triangle BCD$ omskrivna cirkeln i en punkt E', där kordan DE', enligt periferivinkelsatsen, är lika lång som kordan CD, dvs lika lång som sträckan DE.

Om E=E' är BEDC en cirkelfyrhörning och summan av vinklarna vid E och C är $180^{\circ}-\gamma-2\beta+5\gamma=180^{\circ}$. Tillsammans med relationen $2\beta+8\gamma=180^{\circ}$ ger detta $\beta=2\gamma=30^{\circ}$ varav $\angle A=45^{\circ}$, $\angle B=60^{\circ}$ och $\angle C=75^{\circ}$.

Om $E'\neq E$ så är triangeln EDE' likbent och, eftersom A måste ligga utanför den omskrivna cirkeln, $\angle BE'D=\angle AED$. Summan av de i fyrhörningen motstående vinklarna vid C och E' blir då $2\beta+\gamma+5\gamma<2\beta+8\gamma=180^\circ$. Detta ger en motsägelse och alltså är E=E'.

Här är en alternativ lösning.

Sätt som i den tidigare lösningen $\angle ACE = 2\gamma$, $\angle BCE = 3\gamma$ och $\angle CBD = \angle DBA = \beta$. Sinussatsen tillämpad på $\triangle BCD$ och $\triangle BED$ ger

$$\frac{|DC|}{|BD|}\sin 5\gamma = \sin \beta = \frac{|ED|}{|BD|}\sin \angle BED.$$

Av likheten |DC|=|ED| följer då att $\sin 5\gamma = \sin \angle BED$. Om då $5\gamma = \angle BED$ är de två trianglarna BCD och BED likvinkliga trianglar med en gemensam sida och alltså kongruenta. Detta innebär bl.a. att triangeln CBE är likbent och att bisektrisen BP sammanfaller med höjden i triangeln. Detta ger att vinklarna vid P är räta vinklar vilket strider mot att basvinklarna i den likbenta triangeln DCP är spetsiga. Alltså är $5\gamma = 180^{\circ} - \angle BED = \angle AED$. Yttervinkelsatsen tillämpad på den likbenta triangeln CDE ger $\angle ADE = \angle DCE + \angle DEC = 4\gamma$. Dessutom är trianglarna ADB och CPB likformiga, ty vinklarna vid B är lika stora, medan vinklarna vid D och D är supplementvinklar till de lika stora basvinklarna i den likbenta triangeln DCP. Detta ger att trianglarna är likvinkliga och vinklarna vid A respektive C är båda lika med 3γ . Vinkelsumman i triangeln ADE blir då $3\gamma + 4\gamma + 5\gamma = 180^{\circ}$, varav $\gamma = 15^{\circ}$.

Svar: $\angle A = 45^{\circ}$, $\angle B = 60^{\circ}$ och $\angle C = 75^{\circ}$

3. Sätt $A=2a+\varepsilon_a$ och $B=2b+\varepsilon_b$, där ε_a och ε_b är icke-negativa heltal med $\varepsilon_a+\varepsilon_b=1$. Detta är möjligt eftersom summan A+B är udda. Då gäller

$$x^{2} - y^{2} + Ax + By = x^{2} + 2ax - (y^{2} - 2by) + \varepsilon_{a}x + \varepsilon_{b}y$$

$$= (x+a)^{2} - (y-b)^{2} - a^{2} + b^{2} + \varepsilon_{a}x + \varepsilon_{b}y$$

$$= (x+y+a-b)(x-y+a+b) - a^{2} + b^{2} + \varepsilon_{a}x + \varepsilon_{b}y$$

För varje heltal k har det diofantiska ekvationssytemet

$$\begin{cases} x - y = -a - b \\ \varepsilon_a x + \varepsilon_b y = k + a^2 - b^2 \end{cases}$$

den entydiga lösningen $x=k+a^2-b^2-\varepsilon_b(a+b)$, $y=k+a^2-b^2+\varepsilon_a(a+b)$. För dessa värden på x och y är $x^2-y^2+Ax+By=k$.

Beviset kan också genomföras med induktion.

Låt P(n) vara utsagan:

Om summan av heltalen A och B är udda och $|A|+|B|\leq 2n+1$ så finns till varje heltal m två heltal x och y sådana att $x^2-y^2+Ax+By=m$.

Start:

Utsagan P(0) är sann ty om A=0 och $B=\pm 1$ kan man, till givet m, välja x=m och y=Bm och om $A=\pm 1$ och B=0 duger x=Am och y=m.

Induktionsteg:

Antag nu att $n \ge 0$ och att P(n) är sann. Antag vidare att $1+2n < |A|+|B| \le 2n+3$ och att A+B är udda. Då är antingen $|A| \ge 2$ eller $|B| \ge 2$. Antag att $|A| \ge 2$. Sätt $A_0 = A - \frac{2A}{|A|}$ och $B_0 = B$. Då är $A_0 + B_0$ udda, $|A_0| + |B_0| = |A| - 2 + B \le 2n + 1$ och det finns heltal x och y sådana att

$$\left(x + \frac{A}{|A|}\right)^2 - y^2 + A_0\left(x + \frac{A}{|A|}\right) + B_0 y = m - 1 + \frac{A^2}{|A|}$$

som förenklas till $x^2 - y^2 + Ax + By = m$.

Om $|B| \ge 2$ sätter man i stället $A_0 = A$ och $B_0 = B - \frac{2B}{|B|}$. Då är $A_0 + B_0$ udda, $|A_0| + |B_0| = |A| + B - 2 \le 2n + 1$ och det finns heltal x och y sådana att

$$x^{2} - \left(y - \frac{B}{|B|}\right)^{2} + A_{0}x + B_{0}\left(y - \frac{B}{|B|}\right) = m + 1 - \frac{B^{2}}{|B|}$$

som förenklas till $x^2 - y^2 + Ax + By = m$.

Alltså gäller implikationen $P(n) \Rightarrow P(n+1)$.

Slutsats: Enligt induktionsprincipen gäller P(n) för alla naturliga tal.

4. Summan S(x,y) av alla elementen i den skapade ursprungliga listan vars sista tal är 10x + y är

$$S(x,y) = (1+\dots+(x-1))60 + (x-1)(1+\dots+6) + y10x + (1+\dots+y)$$

$$= x(x-1)30 + (x-1)21 + 10xy + \frac{(1+y)y}{2}$$

$$= 10(3x(x-1) + 2(x-1) + xy) + x - 1 + \frac{(1+y)y}{2}$$

varav

$$S(x,y) - x = 10(3x(x-1) + 2(x-1) + xy) + \frac{(2+y)(y-1)}{2},$$

som visar att S(x,y) - x är ett jämnt tal för y = 1, 2, 5, 6 och udda för y = 3, 4.

Nu har summan av talen i varje reducerad lista samma paritet som den ursprungliga listan ty om en heltalssumma ändras genom att a och b subtraheras och a-b adderas så ändras summan med -(a+b)+a-b=-2b. Speciellt har talet i den färdigreducerade listan samma paritet som S(x,y), vilket visar att A vinner alla spel utom då y=3 eller 4.

Svar: Sannolikheten är $\frac{2}{3}$

5. Entydighet

Antag att f(n) existerar och har m+1 siffror. Då är $f(n)=a10^m+b$, där $0\leq b<10^m$ och $1\leq a\leq 9$.

Om $m\geq 1$ och $b\geq 1$ gäller enligt förutsättningen n-s(b)=s(f(n)-b)=a och n-s(b+1)=s(f(n)-b-1)=a-1+9m, varav s(b+1)-s(b)=1-9m. Nu är $s(b+1)\geq 1$ och $s(b)\leq 9m$, med likhet då och endast då b endast innehåller nior. Alltså är $f(n)=a10^m+9\sum_{i=0}^{m-1}10^i$ och n=a+9m. Om $m\geq 1$ och b=0 gäller enligt förutsättningen $n-1=s(f(n)-1)=s(a10^m-1)=a-1+9m$ och, om $f(n)>10, n-1=s(f(n)-10)=s(a10^m-10))=a-1+9(m-1)$, som ger motsägelsen a-1+9m=a-1+9(m-1). Om f(n)=10 ger den första relationen n=10. Antag nu att m=0 och $f(n)=a\geq 2$. Då ger villkoren n=s(1)+s(a-1)=1+a-1=a.

Existens:

Sätt för n = a + 9m, där a är principala resten vid division av $n \bmod 9$, $f(n) = a10^m + 9\sum_{i=0}^{m-1} 10^i$. Antag att 0 < k < f(n) kan skrivas $k = b10^m + \sum_{i=0}^{m-1} k_i 10^i$. Då är $f(n) - k = (a - b)10^m + \sum_{i=0}^{m-1} (9 - k_i)10^i$ och $s(f(n) - k) = a - b + \sum_{i=0}^{m-1} (9 - k_i) = a + 9m - b - \sum_{i=0}^{m-1} k_i = n - s(k)$.

6. Antag att $M = \bigcup_{j=1}^n I_j$ är unionen av de disjunkta intervallen I_j . Låt a_j och b_j vara intervallet I_j :s vänstra respektive högra ändpunkt och låt $k_j = [a_j]$ vara det största heltalet mindre än eller lika med a_j . Enligt förutsättningarna är $d = \sum_{j=1}^n (b_j - a_j) > 1$. Om $b_j - a_j > 1$ för något j, med $1 \le j \le n$,

finns två punkter med avstånd 1 i intervallet I_j . Antag därför att n>1 och att $b_j-a_j\leq 1$ för $1\leq j\leq n$. Eftersom problemet är translationsinvariant är det ingen inskränkning att anta $k_1=a_1$. Eftersom d>1 är det heller ingen inskränkning att anta att a_1 tillhör intervallet I_1 .

Translatera nu intervallen I_j så att translatet I'_j har sin vänstra ändpunkt i punkten $a'_j = k_1 - k_j + a_j$. Då gäller $k_1 \le a'_j < k_1 + 1$.

Om det finns något j som innehåller punkten k_1+1 så är $2 \le j \le n$ och $k_1+1=k_1-k_j+y_j$ för något y_j i I_j och heltalet $k_j+1-k_1=y_j-a_1$ är skillnaden mellan två olika tal i M.

Om $b_j'=k_1-k_j+b_j < k_1+1$ för alla j, med $1 \le j \le n$ så kan inte translaten vara parvis disjunkta, eftersom summan av translatens längder är > 1. Men om $A_i \cap A_m \ne \emptyset$ så finns tal $x_i \in I_i$ och $x_m \in I_m$ så att $k_1-k_i+x_i=k_1-k_m+x_m$ och $x_i-x_m=k_m-k_i$ är ett heltal. Eftersom I_i och I_m är disjunkta är $x_i \ne x_m$.