PREDICTIVE ANALYTICS FOUNDATIONS

LECTURE 9 - 10

HOUSEKEEPING

Questions:

- From others asking:
 - Break problems into individual smaller tasks.
 - Print "what happened" (e.g. variable values) after each line if needed. (Read something, print it; change a variable, print it; calculate something, print it...)

Today:

- Datasheets and data shapes.
- Pandas and manipulating data.
- Simple concepts, moderately tricky code, important for the future.
- Slicing and dicing data.

DATASHEETS

MANIPULATING DATA

- To this point, we can read data from a file and do a lot to manipulate it.
- Each time we use some data, we need to "organize" it to some degree:
 - What data do we have?
 - Which parts come where?
- It might be easier to use lots of data if it was in a standardized format.
- We can have assumptions that we rely on to make things easier.
- When we get to machine learning, we use this old, organized, data as our main source.

LARGE AMOUNTS OF DATA

- This system of using old examples to make accurate predictions fits well with how data is stored in databases.
 - We'll look at this in more detail over the next two times, for now we just want a basic understanding of what's in a database.
- Databases are made of tables that each look like a spreadsheet.
 - Each table represents an entity one "thing" that we track.
 - Each column represents an attribute one value that we store for this entity.
 - Each row represents an instance one example of that entity.
- So, each table is effectively a list of items, and what we know about them.

LoanID •	Date •	Amount -	InterestRate •	Term •	Type •	CustomerID -	FirstName •	LastName -	Paid
L0001	1/15/2018	\$475,000	6.20%	15	М	C0004	Wendy	Solomon	
L0002	1/23/2018	\$35,000	7.20%	5	C	C0004	Wendy	Solomon	~
L0003	1/25/2018	\$10,000	5.50%	3	C	C0005	Alex	Rey	
L0004	1/31/2018	\$12,000	9.50%	10	0	C0004	Wendy	Solomon	~
L0005	2/8/2018	\$525,000	6.50%	30	M	C0006	Ted	Myerson	~
L0006	2/12/2018	\$10,500	7.50%	5	0	C0007	Lori	Sangastiano	~
L0007	2/15/2018	\$35,000	6.50%	5	0	C0008	John	Smith	
L0008	2/20/2018	\$250,000	8.80%	30	M	C0008	John	Smith	
L0009	2/21/2018	\$5,000	10.00%	3	0	C0008	John	Smith	
L0010	2/28/2018	\$200,000	7.00%	15	M	C0001	Eileen	Faulkner	
L0011	3/1/2018	\$25,000	10.00%	3	С	C0002	Scott	Wit	
L0012	3/1/2018	\$20,000	9.50%	5	0	C0005	Alex	Rey	~
L0013	3/3/2018	\$56,000	7.50%	5	С	C0009	David	Powell	~
L0014	3/10/2018	\$129,000	8.50%	15	M	C0010	Matt	Hirsch	
L0015	3/11/2018	\$200,000	7.25%	15	M	C0003	Benjamin	Grauer	
L0016	3/21/2018	\$150,000	7.50%	15	M	C0001	Eileen	Faulkner	
L0017	3/22/2018	\$100,000	7.00%	30	M	C0001	Eileen	Faulkner	~
L0018	3/31/2018	\$15,000	6.50%	3	0	C0003	Benjamin	Grauer	~
L0019	4/1/2018	\$10,000	8.00%	5	С	C0002	Scott	Wit	
L0020	4/15/2018	\$25,000	8.50%	4	C	C0003	Benjamin	Grauer	
L0021	4/18/2018	\$41,000	9.90%	4	С	C0008	John	Smith	2 - 2
L0022	4/22/2018	\$350,000	7.50%	15	M	C0010	Matt	Hirsch	~
L0023	5/1/2018	\$150,000	6.00%	15	M	C0003	Benjamin	Grauer	
L0024	5/3/2018	\$350,000	8.20%	30	M	C0004	Wendy	Solomon	~
L0025	5/8/2018	\$275,000	9.20%	15	M	C0007	Lori	Sangastiano	
(New)									

- Table loans.
- Row instance, one loan.
- Column thing we track about the loan.
 - Including if it was paid.
 - We could know the inputs (other stuff) before giving a loan, then use these old ones to predict if it was paid.

Kinds of data

- Named categories
- Categories with an implied order

- Only particular numbers
- · Any numeric value

DATASHEETS

- This format (table, row, column) is called a datasheet.
- Most databases that exist in the world look just like this.
 - We keep one table for each "item" sale, product, customer, registration.
 - Each column is one value that we track for that thing.
 - Each row is one instance, or one specific example of that thing.
- We generally load and manipulate data that looks like this.
 - Safe assumptions for the "shape" of the data.
 - Standardized tools and commands to manipulate the data.

DATA SEPARATION

- Continuing with the idea of using a database as a source for our data...
- Databases are normally large and centralized, used by many people.
 - We can't have all our data in a spreadsheet because we don't own it.
 - Other people need to be looking at and updating that data as well.
- Solution connect to the data that is held remotely.
 - Data stays in a database where it is, or it stays in a file like it will for us.
 - We can grab it and use it remotely in Excel, on the web, in Tableau, in another system...
- We assume that the data is structured in a datasheet format, allowing us to use those assumptions to handle any data interchangeably.

Data Source. The CSV you download. Could be a DB.

- and "grab" it from elsewhere.
 - We can use it just like we have been.
 - It isn't actually located in our workbook.
 - That data can change on its own, we update from it.
- This is how most "data tools" work in real usage.

PANDAS

- Pandas is a library that provides a Dataframe roughly a Python spreadsheet.
- We can manipulate our data largely as we would think about it in Excel, but through code.
- Maps easily to databases, if we are getting data from them.

SLICE AND DICE THE DATA

- One useful thing about dataframes is that they make it easy to "slice" data.
- In ML, we commonly need to slice "vertically", or separate a column.
 - E.g. separate the column that we want to predict from the inputs.
- We can also slice "horizontally", or create groupings or samples.
 - Horizontal slices can allow us to segment the data into subsets.
 - We can compare groups against each other.
 - If we have a large amount of data, or want to do some stats calculations, we can generate samples from our "population" (population = everything, in stats).

DATA AND ANALYSIS

- Much of common data analysis that we want to do is based on Aggregation.
- Aggregation is the "totaling" of some value, here it's calculating sums, avg, count, etc...
- We can combine these aggregations with grouping and slicing of the data.
 - We can calculate any aggregate we want min, max, average, sum, etc....
 - We can group or split our data to get the result for any subgroup.
- We can compare and contrast these groups for a powerful analysis tool.
- This works directly with the datasheet formatted data that we get from a DB.

