VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"Jnana Sangama", Belagavi, Karnataka-590018

A Mini Project Report On

"STOCK MARKET PRICE PREDICTION USING MACHINE LEARNING"

Submitted in partial fulfillment of the requirements for the Award of Degree of Bachelor of Engineering in Computer Science and Engineering

Submitted by

HAMSA D M	4GK21CS016
MADHUSHREE C K	4GK21CS020
PRIYANKA B R	4GK21CS034

Under the Guidance of

SHIVAYOGI A M

4GK21CS044

Dr. HAREESHA K
Project Guide
Department of Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
K R PETE KRISHNA GOVERNMENT ENGINEERING COLLEGE
K.R PET-571426

2023-24

K R PET KRISHNA GOVERNMENT ENGINEERING COLLEGE K. R PETE -571426

(Affiliated to Visveswaraya Technological University, Belagavi, Approved by AICTE, New Delhi)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CERTIFICATE

This is to certify that Mini Project report entitled "STOCK MARKET PRICE PREDICTION USING MACHINE LEARNING" has been carried out by HAMSA D M [4GK21CS016], MADHUSHREE C K [4GK21CS020], PRIYANKA B R [4GK21CS034], SHIVAYOGI A M [4GK21CS038], for the partial fulfilment of Bachelor of Engineering in Computer Science and Engineering of Visveswaraya Technological University, Belagavi during the year 2023-24. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the report. The Mini Project work report has been approved as it satisfies the academic requirements in report of mini Project prescribed for the semester.

Signature of the Guide

Signature of the HOD

Dr. Hareesh KProject Guide
Dept. of CSE

Dr. Hareeshs KAssociate Professor & HOD
Dept. of CSE

ACKNOWLEDGEMENT

We feel great pleasure in submitting this report "STOCK MARKET PRICE PREDICTION USING MACHINE LEARNING". The successful completion of any task would be incomplete without the mention of people who made it possible and whose support had been a constant of encouragement which crowned our efforts with success.

We express my sincere gratitude to **Dr. K R Dinesh SS**, the principal of K R pete Krishna Government Engineering College, K R Pet for providing healthy environment in the college, which helped in concentrating on the task.

We thank to entire faculty of the Computer Science and Engineering Department, especially **Dr. Hareesh K**, Head of the Department CSE, who has given me confidence to believe in ourselves and complete the project.

We give a great sense of satisfaction in acknowledging the encouragement & immense support of our Guide, **Dr. Hareesh K** Associate Professor of Computer Science and Engineering Department, for his valuable guidance, suggestion and consistent encouragement during the course of my mini project

We are thankful to all the staff members of the Department of Computer Science and Engineering for their support and encouragement.

Finally, we thank each and everybody who have directly or indirectly contributed to this work. We always welcome suggestions regarding the presented report.

HAMSA D M	4GK21CS016
MADHUSHREE C K	4GK21CS020
PRIYANKA B R	4GK21CS034
SHIVAYOGI A M	4GK21CS044

K R PET KRISHNA GOVERNMENT ENGINEERING COLLEGE K. R PETE -571426

(Affiliated to Visveswaraya Technological University, Belagavi, Approved by AICTE, New Delhi)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DECLARATION

We, HAMSA D M [4GK21CS016], MADHUSHREE C K [4GK21CS020], PRIYANKA B R [4GK21CS034], SHIVAYOGI A M [4GK21CS044], are respectively studying in the 6th semester of Bachelor of Engineering in Computer Science at K R Pete Krishna Government Engineering College K R Pet, Mandya. Hereby declare that the mini project entitled "STOCK MARKET PRICE PREDICTION USING MACHINE LEARNING"

has been carried out under the guidance of Dr. Hareesh K Associate Professor Department of CSE for the partially fulfilment of Bachelor of Engineering in Computer Science and Engineering of Visveswaraya Technological University, Belagavi during the year 2023-24. Belagavi during the academic year 2023-24.

Place: Krishnarajpet

Date:

HAMSA D M [4GK21CS016]

MADHUSHREE C K [4GK21CS020]

PRIYANKA B R [4GK21CS034]

SHIVAYOGI A M[4GK21CS044]

ABSTRACT

Predicting stock market prices is a complex challenge that has long intrigued researchers and investors alike. This project explores the application of machine learning techniques to forecast stock market trends and prices with increased accuracy. We employ a range of supervised learning algorithms, including linear regression, decision trees, random forests, and advanced neural networks, to analyze historical stock price data and identify predictive patterns. The project integrates data preprocessing steps such as normalization, feature selection, and time series analysis to enhance model performance. By leveraging historical price data, trading volumes, and macroeconomic indicators, we aim to build a robust predictive model that can adapt to evolving market conditions. The performance of the models is evaluated using metrics such as mean squared error (MSE) and accuracy to determine their effectiveness in predicting future stock prices. The results suggest that machine learning models, particularly deep learning approaches, can offer valuable insights and improve forecasting accuracy compared to traditional methods. This research contributes to the field of financial analytics by demonstrating the potential of machine learning in making more informed investment decisions and optimizing trading strategies.

CONTENTS:

SL	Chapter	Page No.
No.		
1.	Introduction	
	1.1 Overview	1
	1.2 Objectives	2
	1.3 Scope of the project	3
	1.4 Challenges and Motivation	3
	1.5 Problem Statement	4
	1.6 Proposed System	5
2.	Literature Survey	
	2.1 Introduction	7
	2.2 Related Work	8
3.	System Requirement Specification	
	3.1 Functional Requirements	10
	3.2 Non-Functional Requirements	10
	3.3 Resource Requirements	12
	3.4 Tensor Flow Network	14
	3.5 Hardware Requirements	15 17
	3.6 Software Requirements	17
4.	System Analysis	1 /
4.	System Analysis 4.1 Technical Feasibility	
	4.2 Economical Feasibility	18
	4.3 Operational Feasibility	19
		20
5.	System Design	
	5.1 Fundamental Design Concept	22
	5.2 System Development Methodology	23
6.	System Architecture	27
	6.1 Modules	27
7	6.2 Use Case Diagram	28
7.	Implementation	20
	7.1 Languages Used	30
	7.2 Platform Used 7.3 Working Methodology	31 31
8.	Testing	31
0.	8.1 Unit Testing	38
	8.2 Functional Testing	39
	8.3 Acceptance Testing	40
	8.4 Validation Testing	41
9.	Snapshots and Results	11
<i>)</i> .	9.1 Snapshots	42
	9.2 Results	42
10		45
10.	Conclusion	46 47
	References	4/

LIST OF FIGURES:

Figure	Title	Page
No.		No.
1.	Fig 3.1: OpenCV	15
2.	Fig 3.2: Numpy	16
3.	Fig 5.1: Water Fall Model	24
4.	Fig 6.1: System Architecture	27
5.	Fig 6.2: Use Case Diagram	28
6.	Fig 6.3: DataFlow Diagram	29
7.	Fig 9.1: Distribution of Datasets	42
8.	Fig 9.2: 2D Distributions	42
9.	Fig 9.3: Representation of Datasets	43
10.	Fig 9.4: Open Stock Price	43
11.	Fig 9.5: Data vs High stock price graph	44
12.	Fig 9.6: Actual price vs Predicted price graph	44

LIST OF TABLES:

Table No.	Title	Page No.
4.1	Economic Feasibility	20
4.2	Operational Feasibility	21