Niveau: Première année de PCSI

COLLE 14 = DIMENSION DES ESPACES VECTORIELS

Connaître son cours:

- 1. Soit $(P_k)_{k \in [\![1,n]\!]}$ une famille de polynômes non nuls échelonnée en degré, montrer que cette famille est libre. Donner un exemple de famille libre de polynômes qui n'est pas échelonnée en degré.
- 2. Soit F et G deux sous-espaces supplémentaires d'un \mathbb{K} -espace vectoriel E. Montrer que la famille obtenue par concaténation d'une base de F et d'une base de G est une base de E.
- 3. Montrer que deux K-espaces vectoriels de dimension finie sont isomorphes si, et seulement s'ils ont la même dimension.

Exercices:

Exercice 1. (**)

Soit E l'espace vectoriel des applications de $\mathbb R$ dans $\mathbb R$. On note $L:E\to E$ l'application qui à $f\in E$ associe L(f) définie par $L(f):x\mapsto \frac{f(x)+f(-x)}{2}$.

- 1. Montrer que L est un endomorphisme de ${\bf E}.$
- 2. Préciser le noyau et l'image de L.
- 3. L'application L est-elle injective? surjective?
- 4. Montrer que l'application L est une projection.

Exercice 2. (**)

Soit f l'endomorphisme de \mathbb{R}^3 tel que f(x,y,z) = (-3x + 2y - 4z, 2x + 2z, 4x - 2y + 5z). Montrer que f est la projection sur un plan P parallèlement à une droite D. Donner une équation cartésienne du plan P et un vecteur directeur de D.

Exercice 3. (**)

Soit E un espace vectoriel et $u, v \in \mathcal{L}(E)$. On suppose que $u \circ v = v \circ u$.

Démontrer que ker(u) et Im(u) sont stables par v.

Exercice 4. (**)

Soit $f \in \mathcal{L}(E)$ et soient α, β deux réels distincts.

1. Démontrer que $E = \text{Im}(f - \alpha I d_E) + \text{Im}(f - \beta I d_E)$. On suppose de plus que α et β sont non nuls et que

$$(f - \alpha I d_E) \circ (f - \beta I d_E) = 0.$$

- 2. Démontrer que f est inversible, et calculer f^{-1} .
- 3. Démontrer que $E = \ker(f \alpha I d_E) \oplus \ker(f \beta I d_E)$.
- 4. Exprimer en fonction de f le projecteur p sur $\ker(f \alpha Id_E)$ parallèlement à $\ker(f \beta Id_E)$.

Niveau: Première année de PCSI

Exercice 5. (***)

Soit E un espace vectoriel de dimension finie n et soit $f \in \mathcal{L}(E)$.

- 1. Soit $k \ge 1$. Démontrer que $\ker(f^k) \subset \ker(f^{k+1})$ et $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$.
- 2. (a) Démontrer que si $\ker(f^k) = \ker(f^{k+1})$, alors $\ker(f^{k+1}) = \ker(f^{k+2})$.
 - (b) Démontrer qu'il existe $p \in \mathbb{N}$ tel que
 - si k < p, alors $\ker(f^k) \neq \ker(f^{k+1})$;
 - si $k \ge p$, alors $\ker(f^k) = \ker(f^{k+1})$.
 - (c) Démontrer que $p \le n$;
- 3. Démontrer que si k < p, alors $\operatorname{Im}(f^k) \neq \operatorname{Im}(f^{k+1})$ et si $k \ge p$, alors $\operatorname{Im}(f^k) = \operatorname{Im}(f^{k+1})$.
- 4. Démontrer que $\ker(f^p)$ et $\operatorname{Im}(f^p)$ sont supplémentaires.
- 5. Démontrer qu'il existe deux sous-espaces F et G de E tels que F et G sont supplémentaires, $f_{|F}$ est nilpotent et $f_{|G}$ induit un automorphisme de G.
- 6. Soit $d_k = \dim(\operatorname{Im}(f^k))$. Montrer que la suite $(d_k d_{k+1})$ est décroissante.

Exercice 6. (***)

Partie A - Exemple d'un projecteur

Notons $E = \mathbb{R}[X]$ l'ensemble des polynômes réels, \mathscr{P} et \mathscr{I} les sous-espaces vectoriels des polynômes pairs et impairs respectivement.

- 1. Montrer que \mathscr{I} est un supplémentaire de \mathscr{P} dans E.
- 2. Soit l'application linéaire

$$\varphi: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ P & \longmapsto & \frac{P(X) + P(-X)}{2} + X \frac{P(X) - P(-X)}{2} \end{array} \right.$$

(a) Déterminer $\operatorname{Im} \varphi$ puis établir que

$$\operatorname{Ker} \varphi = \{(1 - X)P(X), P \in \mathscr{I}\}.$$

- (b) Montrer que φ est un projecteur de E.
- (c) En déduire que $\operatorname{Ker} \varphi$ est un supplémentaire de \mathscr{P} .

Partie B - sous-espaces qui admettent un supplémentaire commun

Soit E un espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E

- 1. Supposons, dans cette question, que F_1 et F_2 sont supplémentaires dans E et qu'il existe un isomorphisme $u: F_1 \to F_2$.
 - Montrer que $G = \{x u(x), x \in F_1\}$ est un espace vectoriel puis qu'il est un supplémentaire commun à F_1 et F_2 .
- 2. Réciproquement supposons dans cette question que F_1 et F_2 admettent un supplémentaire commun G. Montrer que F_1 et F_2 sont isomorphes.