

Binary Operations Ex 3.5 Q6 $a \times_7 b$ = the remainder when the product of ab is divided by 7.

The composition table for \times_7 on $S = \{1, 2, 3, 4, 5, 6\}$

×7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

We know that 1 is the identity element with respect to multiplication

Also, b will be the inverse of a

if, $a \times_7 b = e = 1$

 $3 \times_7 b = 1$

From the above table $3 \times_7 5 = 1$

 $b = 3^{-1} = 5$

Now, $3^{-1} \times_7 4 = 5 \times_7 4 = 6$

Binary Operations Ex 3.5 Q7 $a \times_{11} b =$ the remainder when the product of ab is divided by 11.

The composition table for $\times_{\mathbf{11}}$ on $Z_{\mathbf{11}}$

×11	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	3	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	3	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

From the above table

 $5 \times_{11} 9 = 1$

Inverse of 5 is 9.

Binary Operations Ex 3.5 Q8

$$Z_5 = \left\{0, 1, 2, 3, 4\right\}$$

 $a \times_5 b =$ the remainder when the product of ab is divided by 5.

The composition table for x_5 on $Z_5 = \{0, 1, 2, 3, 4\}$

×5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	Э	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	o	2	1

Binary Operations Ex 3.5 Q9

From the above table we can say that

$$b*c=c*b=d$$

$$b*d=d*b=c$$

$$c * d = d * c = b$$

∴ '*' is commutative

Again, $a,b,c \in S$

$$\Rightarrow (a*b)*c=b*c=d \text{ and}$$

$$a*(b*c)=a*d=d$$

$$(a*b)*c=a*(b*c)$$

We know that e will be identity element with respect to * if

$$a * e = e * a = a$$
 for all $a \in S$

∴ a will be the identity element.

Again,

b will be the inverse of o if

From the above table

$$a*a=a$$
, $b*b=b,c*c=c$ and $d*d=d$

$$\therefore$$
 inverse of $a = a$

$$b = b$$

$$c = c$$

$$d = d$$

(ii)

From the above table, we can observe

aob= boa, boc = cob aoc = coa, bod = dob

ood = doo, cod = doc

 \therefore ' σ ' is commutative on S

Again, for $a,b,c \in S$

$$(aob)oc = aoc = a$$
 $---(i)$
 $ao(boc) = aoc = a$ $---(ii)$

So, 'o' is associative on S

Now, we have,

oob= o

bob = b

cob = c

dob = d

 \Rightarrow **b** is the identity element with respect to ' σ '

We know that x will be inverse of y

If x x y = y x x = e

$$\Rightarrow xxy = yxx = b \qquad [\because e = b]$$

Now, from the above table we find that

bob = b

cod = b

doc = b

$$b^{-1} = b, c^{-1} = d, \text{ and } d^{-1} = c$$

Not a^{-1} does ont exist.

Binary Operations Ex 3.5 Q10

Let $X = \{0, 1, 2, 3, 4, 5\}.$

The operation * on X is defined as:

$$a*b = \begin{cases} a+b & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

An element $e \in X$ is the identity element for the operation *, if

 $a*e=a=e*a\ \forall a\in X.$

For $a \in X$, we observed that:

$$a*0 = a+0 = a$$
 $\left[a \in X \Rightarrow a+0 < 6\right]$
 $0*a = 0+a = a$ $\left[a \in X \Rightarrow 0+a < 6\right]$

$$\therefore a*0 = a = 0*a \ \forall a \in X$$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

i.e.,
$$\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6, & \text{if } a+b\geq 6 \end{cases}$$

i.e.,

a = -b or b = 6 - a

But, $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then, $a \neq -b$.

Therefore, b = 6 - a is the inverse of $a \in X$.

Hence, the inverse of an element $a \in X$, $a \neq 0$ is 6 - a i.e., $a^{-1} = 6 - a$.

******* END ******