HACETTEPE UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING BBM231 LOGIC DESIGN

Homework 4 (For all sections)

Assigned : 12.12.2018

Due : 17.12.2018

Hand in your homework solutions in class.

QUESTIONS:

- **Q1.** For the sequential circuit given at right, find:
- a. <u>Input equations and state table</u>.
- b. State equations and output equation.
- c. State diagram.

Q2. Fort he sequential circuit below:

- a. Find flip-flop input equations (J $_{\!A},\,K_{\!A},\,J_{\!B},\,K_{\!B})$ and fill the state table.
- b. Write state equations and output equation.
- c. Draw its state diagram.

Q3. A Mealy type state diagram is given in the figure below. Using JK type flip-flops and gates, design and draw the circuit for this sequential system. (In the diagram X(input) / Y(output))

Q4. Design a <u>Mealy type state machine</u> with input X and output Y. Y should be 1 whenever the sequence <u>110 or 101</u> has been detected on X on the last 3 consecutive rising clock edges (or ticks). Otherwise, Y=0. <u>Use at most two D flipflops</u>. An example input—output combination is given below:

Х	0	0	1	1	0	0	1	0	1	0	0	1	1	1	0	1	0	0	1	0	1	1	0	0	1	1	0	0	1	1
Υ	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	1	0	1	0	0	0	1	0	0	0

You should show: a) State diagram. b) State table. c) Flip flop input equations and output equation.

Q5. A PN flip-flop has four functions given below:

PN	Functions
00	Reset to 0
01	No change
10	Complement
11	Set to 1

- a) Derive the characteristic equation for PN flip-flop. Show your work.
- b) Draw the Mealy type state diagram of a sequence detector that detects the sequence 1101. You must have at most four states. When the sequence 1101 is detected, the output Z becomes 1.
- c) Design the sequence detector usin two PN flip-flops. (Hint: You should determine the flip-flop input equations, P_A, N_A, P_B, N_B, and the output equation.)

