

Description

Features	Application		
● 600V, 4A	● Load Switch		
$R_{DS(ON)} < 2.3\Omega$ @ $V_{GS} = 10V$	PWM Application		
● Fast Switching	● Power management		
● Improved dv/dt Capability			
	100% UIS		
	100% ΔVds		
TO-220F	Schematic Diagram		

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	TUBE (PCS)	Inner Box (PCS)	Per Carton (PCS)
VSM4N60-TF	VSM4N60	TAPING	TO-220F	50	1,000	5,000

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V_{DSS}	Drain-Source Voltage		600	V
V_{GSS}	Gate-Source Voltage		±30	V
I _D Continuous Drain Cu	Continuous Drain Current	T _C = 25°C	4	Α
	Continuous Drain Current	T _C = 100°C	2.6	Α
I_{DM}	Pulsed Drain Current note1		16	Α
E _{AS}	Single Pulsed Avalanche Energy note2		80	mJ
P_D	Power Dissipation	T _C = 25°C	36	W
R ₀ JC	Thermal Resistance, Junction to Case		3.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		62.5	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Characteristic							
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	600	-	-	V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =600V, V _{GS} =0V, T _J =25℃	-	-	1	μA	
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±30V	-	-	±100	nA	
On Charac	cteristics						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V	
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =2A	-	1.9	2.3	Ω	
Dynamic (Characteristics						
C _{iss}	Input Capacitance), of), o,	-	593	-	pF	
Coss	Output Capacitance	$V_{DS}=25V, V_{GS}=0V,$	-	66	-	pF	
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	10	-	pF	
Q_g	Total Gate Charge	V _{DD} =480V, I _D =4A,	-	15	-	nC	
Q_gs	Gate-Source Charge	V_{DD} V_{DD} V_{GS} V_{GS} V_{GS}	-	2.5	-	nC	
Q_gd	Gate-Drain("Miller") Charge	VGS-10V	-	7.5	-	nC	
Switching	Characteristics						
t _{d(on)}	Turn-on Delay Time		-	12	-	ns	
t _r	Turn-on Rise Time	V _{DD} =300V, I _D =4A,	-	22	-	ns	
t _{d(off)}	Turn-off Delay Time	R _G =25Ω	-	50	-	ns	
t _f	Turn-off Fall Time		-	48	-	ns	
Drain-Sou	rce Diode Characteristics and Maxin	num Ratings					
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	4	Α	
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	16	Α	
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _{SD} =4A	-	-	1.4	٧	
t _{rr}	Reverse Recovery Time	V _{GS} =0V, I _S =4A,	-	250	-	ns	
Q _{rr}	Reverse Recovery Charge	di/dt=100A/µs	-	3.5	-	μC	

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: T_J = 25°C, V_{DD} = 50V, V_G = 10V, L= 10mH, I_{AS} = 4A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤1%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms