Übungen zur Vorlesung Physik 1

Aufgabe 29: Zentripetalbeschleunigung

(Im Skript Aufgabe 3.13) Ein handelsübliches Sägeblatt hat einen Durchmesser von 210 mm und darf mit einer maximalen Geschwindigkeit von 8 000 Umdrehungen pro Minute betrieben werden.

- a) Mit welcher Geschwindigkeit (auch in km/h) bewegen sich die Zähne?
- b) Wie hoch ist die Beschleunigung an den Zähnen des Sägeblatts bei maximaler Drehzahl? Geben Sie den Wert relativ zur Erdbeschleunigung an $(g_0 = 9.81 \text{ m/s}^2)$.

Aufgabe 30: Zentripetalbeschleunigung

(Im Skript Aufgabe 3.14) Ein Käfer kann auf einer Vinyl-Schallplatte maximal einer seitlichen Beschleunigung von $0.25 g_0$ standhalten. Bei einer Drehzahl von $33\frac{1}{3}$ Umdrehungen pro Minute, bis zu welchem Radius kann sich der Käfer noch auf der Schallplatte halten ($g_0 = 9.81 \text{ m/s}^2$)? Welche (Tangential-)Geschindigkeit hat der Käfer dann auf diesem Radius?

Aufgabe 31: Trägheitskraft

(Im Skript Aufgabe 4.3) Ein Astronaut schüttelt eine Butterdose (Eigengewicht der Dose $100\,\mathrm{g}$) und stellt fest, dass er für eine Beschleunigung von $4\,\mathrm{m/s^2}$ eine Kraft von 1 N benötigt. Wie viel Butter ist noch in der Dose?

Aufgabe 32: Beschleunigung

(Im Skript Aufgabe 4.6) Sie schieben auf ebener Fläche einen PKW und benötigen 12 s um den Wagen von null auf 1,4 m/s zu beschleunigen. Wie schnell rollt der Wagen, wenn Sie zusammen mit einer ähnlich starken Person den Wagen für 6 s anschieben?

Aufgabe 33: Newtonsche Axiome

Fiete stellt sich in einem stehenden Fahrstuhl auf eine Personenwaage, die dann $m=72\,\mathrm{kg}$ anzeigt. Während der anschließenden Beschleunigungsphase mit einer Dauer von $t_\mathrm{b}=2\,\mathrm{s}$ zeigt die Waage konstant $m_\mathrm{b}=64\,\mathrm{kg}$ an.

- a) Mit welcher Geschwindigkeit und in welche Richtung (aufwärts oder abwärts) bewegt sich der Fahrstuhl nach der Beschleunigungsphase?
- b) Der Fahrstuhl bremst nun gleichmäßig bis zum Stillstand ab und legt dabei einen Bremsweg von $l=3\,\mathrm{m}$ zurück. Wie lange dauert der Abbremsvorgang und was zeigt die Waage während des Bremsvorgangs an?

Aufgabe 34: Bewegung im Raum

Ein PKW beschleunigt aus dem Stand mit 1 m/s² für 20 s. Danach fährt der Wagen für 30 s mit konstanter Geschwindigkeit um dann in 40 s gleichmäßig die Geschwindigkeit auf null zu reduzieren.

a) Zeichnen Sie die Diagramme für Beschleunigung und Geschwindigkeit. (Optional: skizzieren Sie die Position, dazu am Besten zuerst b) rechnen).

b) Wie weit ist der Wagen gefahren?

Aufgabe 35: Kreisbewegung

Berechnen Sie die Umlaufgeschwindigkeiten und Zentripetalbeschleunigungen

- a) am Äquator durch die Erdrotation ($r_{\rm Erde} = 6370 \, {\rm km}$).
- b) auf der Erdumlaufbahn um die Sonne, angenommen als Kreisbahn mit Abstand Sonne zu Erde von 149,6 Millionen Kilometer.