Discrete Mathematics MATH1064, Lecture 9

Jonathan Spreer

Interval notation

For endpoints $a, b \in \mathbb{R}$ with $a \leq b$:

$$[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$[a, \infty) = \{x \in \mathbb{R} \mid a \le x\}$$

$$(a, \infty) = \{x \in \mathbb{R} \mid a < x\}$$

$$(-\infty, b] = \{x \in \mathbb{R} \mid x \le b\}$$

$$(-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$$

All you need to remember is:

- A round bracket means exclude the endpoint
- A square bracket means include the endpoint
- You are never allowed to include ∞ or $-\infty$!

Power Sets

For any set S, the power set of S is the set of all subsets of S. We write this as $\mathcal{P}(S)$:

$$\mathcal{P}(S) = \{X \mid X \subseteq S\}$$

If
$$S = \{3, 5\}$$
:

$$\mathcal{P}(S) = \{\emptyset, \{3\}, \{5\}, \{3,5\}\}$$

If
$$S = \{a, b, c\}$$
:

$$\mathcal{P}(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

We always have $\emptyset \in \mathcal{P}(S)$ and $S \in \mathcal{P}(S)$.

The cardinality of the power set

Suppose S is a finite set with n elements, i.e., |S| = n.

What is $|\mathcal{P}(S)|$? That is, how many subsets does S have?

- 1 n
- 2n
- \circ n^2
- $^{\circ}$ 2ⁿ
- n!

Cartesian product

For sets, order does not matter: $\{a,b\} = \{b,a\}$

We write (a, b) for an ordered pair.

Here order and repetition do matter:

(a,b)=(c,d) if and only if a=c and b=d.

Example: $(3,5) \neq (5,3)$

Example: $(3,3) \neq 3$

The Cartesian product $A \times B$ of sets A and B is:

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}.$$

Example: If $A = \{a, b\}$ and $B = \{2, 3\}$, then

$$A \times B = \{ (a,2), (a,3), (b,2), (b,3) \}.$$

Question

What is the cardinality of $\{a, b, c\} \times \{d, e\}$?

Hint: Write down the elements!

The cardinality of the Cartesian product

Suppose X and Y are finite sets with |X| = n and |Y| = m.

What is $|X \times Y|$?

How do we build an ordered pair $(x, y) \in X \times Y$?

We have n choices for x, and m choices for y.

Therefore we have $n \cdot m$ choices overall!

So
$$|X \times Y| = n \cdot m$$
.

If
$$A = \emptyset$$
 or $B = \emptyset$, then $A \times B = \emptyset$

$$A \times B = B \times A$$
 if and only if

We write
$$A^2 = A \times A$$
.

One set you know from geometry: the plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

Bigger Cartesian products

Can generalise from pairs to

- ordered triples (a_1, a_2, a_3)
- ordered quadruples (a_1, a_2, a_3, a_4)
- ordered *n*-tuples (a_1, a_2, \ldots, a_n)

where $a_k \in A_k$ for sets A_1 , A_2 , A_3 ,

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$$

if and only if
 $a_k = b_k$ for each $k \in \{1, \dots, n\}$.

The set of all ordered *n*-tuples is denoted $A_1 \times A_2 \times \dots A_n$.

What is a function?

Let X and Y be sets.

Then f is called a function from X to Y, written $f: X \to Y$, if it assigns to each $x \in X$ a unique element $y \in Y$.

In mathematics, "unique" means "one and only one".

We write y = f(x), and sometimes abbreviate this to $x \mapsto y$.

Examples:

 $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$

 $g: \mathbb{N} \to \mathbb{N}$ defined by $n \mapsto 2^n$

 $\sin\colon\thinspace \mathbb{R}\to\mathbb{R}$

A function is sometimes called a map, or a mapping.

Are these functions?

- 2 $f: \mathbb{N} \to \mathbb{N}$ where f(n) = n!
- $f: \mathbb{N} \to \mathbb{N}$ where $f(n) = \frac{(n+1)(n+3)}{3}$ No, since $f(n) \notin \mathbb{N}$ for some n.
- $f: \mathbb{N} \to \mathbb{N}$ where $f(n) = \frac{(n+1)(n+2)}{2}$
- **5** $f: \mathbb{R} \to \mathbb{R}$ where f(x) = 42
- $f: \mathbb{Q} \to \mathbb{Z}$ where for all $m, n \in \mathbb{Z}$ with $n \neq 0$, f(m/n) = mNo, since each rational has many different expressions m/n.
- **1** $f: \mathbb{R} \to \mathbb{R}$ where f(x) is the solution $z \in \mathbb{R}$ to 3x + 1 = z
- **9** $f: \mathbb{R} \to \mathbb{R}$ where f(x) is the solution $z \in \mathbb{R}$ to $z^2 = x$ No, since $z^2 = x$ might have two solutions, or none.

A formal definition

We can think of a function as a subset of a Cartesian product:

A function $f: X \to Y$ is a subset $\Gamma \subseteq X \times Y$ such that, for each $x \in X$, there is a unique $y \in Y$ such that $(x, y) \in \Gamma$. We write f(x) to denote this unique y.

Example: For $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = x^2$,

$$\Gamma = \{ (1,1), (2,4), (3,9), (4,16), \ldots \}$$

The subset

$$\Gamma = \{ (x, y) \mid x \in X \land f(x) = y \} \subseteq X \times Y$$

is the graph of the function f. We have

$$\Gamma = \{ (x, f(x)) \mid x \in X \} \subseteq X \times Y$$

If $f: X \to Y$ is a function, then:

- $oldsymbol{0}$ X is called the domain of f.
- 2 Y is called the co-domain of f.
- **1** If $x \in X$, then f(x) is called the image of x.
- If $A \subseteq X$, then

$$f(A) = \{f(x) \mid x \in A\} = \{y \mid \exists x \in A : f(x) = y\} \subseteq Y$$

is called the image of A.

The entire set f(X) is called the range of f.

- If $y \in Y$, then $f^{-1}(y) = \{x \in X \mid f(x) = y\} \subseteq X$ is called the preimage of y.
- **o** If $B \subseteq Y$, then $f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subseteq X$ is called the preimage of B.

Don't confuse f^{-1} with $\frac{1}{f}$!

More functions

• The assignment f(x) = x for each x ∈ X defines the identity function ι_X: X → X.
Note: μ is the Greek letter jota.

- ② If $f: X \to Y$ is a function, then a function $\mathcal{P}(X) \to \mathcal{P}(Y)$ is defined by $A \mapsto f(A)$.
- **③** If $f: X \to Y$ is a function, then a function $\mathcal{P}(Y) \to \mathcal{P}(X)$ is defined by $B \mapsto f^{-1}(B)$.

Exercise

Which of the following are functions?

• $f: \mathbb{N} \to \{a, b, c, \dots, z\} = \text{English alphabet defined by } f(n) = \text{first letter in English spelling of } n.$

• $f: \mathbb{N} \to \mathbb{Z}$ defined by $f(n) = \sin(n)$.

• $f: \mathbb{N} \to \mathbb{R}$ defined by $f(n) = \sqrt{n}$.