Chi-Squared Distribution, t-distribution, CI for means

3.2, 5.5, 7.1

Today's topics

Review: Point estimators, Sample Variance

New terminology: Indicator functions, Order Statistics

New topics:

- Chi-squared Distribution
 - Degrees of freedom
 - Overview, relation to Normal distribution
 - Pdf and relation to Gamma distribution
- t-distribution
 - Definition
 - Uses in statistics
- Confidence Interval for means
 - Example: calculating s² and creating a CI for the mean

Sample variance, s²

 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\chi_{i} - \overline{\chi})^{2}$

Suppose we draw \underline{n} iid observations from a distribution with mean $\underline{\mu}$ and variance σ^2 .

Ideally, we would estimate
$$\sigma^2$$
 with $\frac{1}{n}\sum (x_i - \mu)^2$.

Problem: μ is usually unknown!

We can try replacing μ with the \bar{x} , giving $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{\chi})^2$.

Unfortunately, this tends to underestimate σ^2 .

To compensate, we divide by n-1 instead.

Degrees of Freedom

- The degrees of freedom is the number of values in the final calculation of a statistic or parameter that are free to vary.
- In other words: the number of observations that contain new information.

DF for calculating sample mean

Suppose we have the following sample:

We want to calculate the average.

10, 20, 30, 40

All four numbers are free to vary, so df = 4

$$\bar{x} = 25$$

don't overthink this

DF for calculating sample variance:

In the sum, we have $(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + (x_4 - \bar{x})^2$.

If I am going to rely on the sample average to calculate the sample variance, it is going to "cost me" one degree of freedom.

Using the same sample: 10, 20, 30, 40 $\bar{\chi} = 25$

Remember:
$$(x_1 - \bar{x}) + (x_2 - \bar{x}) + (x_3 - \bar{x}) + (x_4 - \bar{x}) = 0$$
using $\bar{x} = 2^5$, $0,20,30$ 40

notes

Mean

df

how much

Var

df=0

Sample Verience

Chi-squared distribution, χ^2 (overview)

The Chi-squared distribution is an important distribution that is frequently used in statistical inference.

Comes from summing the squares of Standard Normal RVs.

- If Z ~ N(0,1), then Z² follows a Chi-Squared distribution with one degree of freedom. $Z^2 \sim \chi^2_{(1)}$
- If Z_1 , Z_2 ,... Z_k , $\sim N(0,1)$, then $Z_1^2 + Z_2^2 + ... + Z_k^2 \sim \chi^2_{(k)}$

Chi-squared distribution X ~ \(\chi_{\sigma}\)

$$f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{r/2}} x^{\frac{r}{2}-1} e^{-x/2}, \qquad 0 < x < \infty$$

We can see from this pdf that X also follows another distribution! $X \sim G_{\text{comp}} (\alpha = 1/2, \theta = 2)$

$$M_{x} = d\theta = \left(\frac{r}{2}\right) \cdot \lambda = r$$

$$\sigma_{\chi}^{2} = \alpha \theta^{2} = \left(\frac{r}{a}\right)^{2} \left(\frac{r}{a}\right)^{2}$$

$$W = \begin{cases} 2 \\ 2 \\ 1 \end{cases}$$

Gamma and Chi-Squared

The Chi-Squared distribution is also a special case of the Gamma distribution where $\theta = 2$.

If
$$X \sim Gamma(\alpha, 2)$$
, $X \sim \chi^2_{2\alpha}$

Example:

$$\sim \chi_r^2$$
 $\sim \text{Gamma}(\alpha = r/2, \theta = 2)$

notes

 $\lambda=1/2$ $\theta=2$

Example:

Lets say poisson process with (every minute) rate lambda = $\frac{1}{2}$.

How long will it take for the 6th person to show up? (on average)

$$\int P[X > 18.6]$$

Find P[X < 11]. (give a range) Ans. 0.9

P[X>14.45] R 0.025

P[0.83] < X 12.83] = .95

 χ^2 Table

 $X \sim \chi^2_{(5)}$, find two constants, a and b, such that P[a < X < b] = 0.95.

Ans. a=0.831, b=12.83

Or

a=0, b = 11.07

Or

a = , b =

0.10	$\chi^2(8)$	0.10	
0.05		$\chi^{2}(8)$	
0 2 4	6 8 10 12 14 16 18	20 0 2 4 6 8 10 $\chi^2_{o}(8)$ 16 18 20	:

						$P(X \leq X)$			
	6	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
R	r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi_{0.05}^{2}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$
	1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
	2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
	3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
	4	0.297	0.484	0.711	1.064	7.779	27.10	11.14	13.28
	5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
	6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81
	7	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48
	8	1.646	2.180	2.733	3.490	13.36	15.51	17.54	20.09
	9	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67
	10	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21

t distribution: When do we need it?

Z=
$$\frac{x-\mu}{\sigma}$$
 ~ N(0,1)

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

If σ is unknown: Use s instead of σ .

$$T = \frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

Var (X) = 0

t distribution

Theorem 5.5-3

(Student's t distribution) Let

$$T = \frac{Z}{\sqrt{U/r}},$$

where Z is a random variable that is N(0,1), U is a random variable that is $\chi^2(r)$, and Z and U are independent. Then T has a t distribution with pdf

$$f(t) = \frac{\Gamma((r+1)/2)}{\sqrt{\pi r} \Gamma(r/2)} \frac{1}{(1+t^2/r)^{(r+1)/2}}, \quad -\infty < t < \infty.$$

					$P(T \le t)$			
V		0.60	0.75	0.90	0.95	0.975	0.99	0.995
(r	$t_{0.40}(r)$	$t_{0.25}(r)$	$t_{0.10}(r)$	$t_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$
`	1 2 3 4 5 6 7	0.325 0.289 0.277 0.271 0.267 0.265 0.263	1.000 0.816 0.765 0.741 0.727 0.718 0.711	3.078 1.886 1.638 1.533 1.476 1.440	6.314 2.920 2.353 2.132 2.015 1.943 1.895	12.706 4.303 3.182 2.776 2.571 2.447 2.365	31.821 6.965 4.541 3.747 3.365 3.143 2.998	63.657 9.925 5.841 4.604 4.032 3.707 3.499
	8 9 10 11 12 13 14 15	0.262 0.261 0.260 0.260 0.259 0.259 0.258 0.258	0.706 0.703 0.700 0.697 0.695 0.694 0.692 0.691	1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341	1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753	2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131	2.896 2.821 2.764 2.718 2.681 2.650 2.624 2.602	3.355 3.250 3.169 3.106 3.055 3.012 2.997 2.947

Calculating t and χ^2 properties using R

Find probability to the left:

T distribution: pt(x, df)

Chi Squared: pchisq(x, df)

Finding critical value given a probability:

T distribution: qt(p, df)

Chi Squared: qchisq(p, df)

Estimation (consideral) 957.
$$\alpha = 0.05$$

Confidence Intervals

100 (1-0.05) 7.

A $100(1-\alpha)\%$ confidence interval is a range of numbers believed to include an unknown population parameter.

α refers to the likelihood that the true population parameter lies
 outside the confidence interval.

- Its complement, $(1-\alpha)$, is called the **confidence coefficient**.
- It is a measure of the confidence we have that the interval contains the parameter of interest.

$$-6 < -5 < -4$$
 $6 > 5 > 4$

A $100(1-\alpha)\%$ CI for μ when σ is known (derivation)

$$P\left(-z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha.$$

$$-z_{\alpha/2} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2},$$

$$-z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right) \leq \overline{X} - \mu \leq z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right),$$

$$-\overline{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) \leq -\mu \leq -\overline{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right),$$

$$\overline{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) \geq \overline{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right).$$

CI example, σ known

$$\left(\overline{X} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Example 7.1-2

Let \bar{x} be the observed sample mean of five observations of a random sample from the normal distribution $N(\mu, 16)$. A 90% confidence interval for the unknown mean μ is

n=5

$$\left[\overline{x} - 1.645 \sqrt{\frac{16}{5}}, \overline{x} + 1.645 \sqrt{\frac{16}{5}} \right].$$

$$\int \bar{x}$$

A $100(1-\alpha)\%$ CI for μ when σ is unknown (use s)

$$\overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$
.

• where the distribution, t, has df = n - 1

Example: Confidence Interval

Given the following sample: {16, 12, 18, 13, 21, 15, 8, 17}

Construct a 92% confidence interval for the true mean.

$$\bar{x}=15$$
,

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \frac{112}{7} = \underline{16},$$

$$\alpha = 0.08, \alpha/2 = 0.04$$

$$df = n - 1 = 7$$
,

$$t_{7,0.04} = 2.046$$

CI: **15**
$$\pm$$
 2.046 $\cdot \frac{4}{\sqrt{8}} = (12.107, 17.893)$

x	$x-\overline{x}$	$(x-\overline{x})^2$
16	1	1
12	-3	9
18	3	9
13	-2	4
21	6	36
15	0	0
8	-7	49
17	2	4
	0	112

