Example 1. Let X be a compact, zero-dimensional space with a point-countable cover $\{U_{\alpha} : \alpha \in \text{Lim}(\omega_1)\}$ which is not σ -point-finite. (Can we change this to, every uncountable subcollection is not point-finite, or every stationary subset S of $\text{Lim}(\omega_1)$ doesn't yield a point-finite subcollection?)

For $\alpha \in \text{Lim}(\omega_1)$, pick $\beta_{\alpha,n}$ such that $\lim_{n \to \infty} \beta_{\alpha,n} = \alpha$. Assume every $\beta \in \text{Suc}(\omega_1)$ is $\beta_{\alpha,n}$ for some α, n . Let $\mathcal{B}_{\alpha} = \{\beta_{\alpha,0}, \beta_{\alpha,1}, \dots\}$

Let $\mathbb{X} = \operatorname{Lim}(\omega_1) \cup (X \times \operatorname{Suc}(\omega_1))$, with the topology induced by $X \times \{\beta\}$ being open and a topological copy of X, and each α given the open neighborhood $B_{\alpha} = \{\alpha\} \cup (U_{\alpha} \times \mathcal{B}_{\alpha})$.

Theorem 2. $K \uparrow LF_{K,P}(\mathbb{X})$.

Proof. Idea: Seeing $\langle x_i, \beta_i \rangle$, K forbids $X \times \{\beta_i\}$, and promises to eventually forbid B_{α} for each α where $x_i \in U_{\alpha}$.

Theorem 3. $K \gamma_{tact} LF_{K,P}(X)$.

Proof. Locally compact, not metacompact.

Game idea: Suppose there exists $\alpha \in \text{Lim}(\omega_1)$ such that one may find arbitrarily large $n < \omega$ and $x \in U_\alpha$ such that $\sigma(x, \beta_{\alpha,n})$ does not forbid a branch for α . Then P has a counter converging to α .

Otherwise define $f: \operatorname{Lim}(\omega_1) \to \omega$ such that for $n \geq f(\alpha)$, $\sigma(x, \beta_{\alpha,n})$ forbids a branch for α for all $x \in U_{\alpha}$. Then $g(\alpha) = \beta_{\alpha,f(\alpha)}$ is a downward function, and there exists a stationary subset $S \subseteq \operatorname{Lim}_{\omega_1}$ and some $\beta \in \operatorname{Suc}(\omega_1)$ such that $\beta = \beta_{\alpha,f(\alpha)}$ for all $\alpha \in S$.

Observing that $\{U_{\alpha} : \alpha \in S\}$ is dfggreat