

Data Science Internship

- Ankitha Sridhar

Task-01

"

Create a bar chart or histogram to visualize the distribution of a categorical or continuous variable, such as the distribution of ages or genders in a population.

Objective: The objective of creating a bar chart or histogram is to visually represent and analyze the distribution of a specific variable, be it categorical or continuous, within a population, enabling insights into the data's characteristics and patterns.

```
In [44]: #Importing packages
    import pandas as pd
    import matplotlib.pyplot as plt

In [33]: # Excel Data stored as dataframe
    data = pd.read_excel("D:/Prodigy/Task 1/worldbank data.xlsx")

In [42]: # Displaying the first 5 records
    data.head()
```

Out[42]:

	Country Name	Country Code	Region	IncomeGroup	Year	Birth rate, crude (per 1,000 people)	Death rate, crude (per 1,000 people)	Electric power consumption (kWh per capita)	GDP (USI
0	Afghanistan	AFG	South Asia	Low income	2018	NaN	NaN	NaN	1.936300e+1
1	Afghanistan	AFG	South Asia	Low income	2017	33.211	6.575	NaN	2.019180e+1
2	Afghanistan	AFG	South Asia	Low income	2016	33.981	6.742	NaN	1.936260e+
3	Afghanistan	AFG	South Asia	Low income	2015	34.809	6.929	NaN	1.990710e+1
4	Afghanistan	AFG	South Asia	Low income	2014	35.706	7.141	NaN	2.048490e+1
									•

In [43]: # Displaying the last 5 records

data.tail()

Out[43]:

	Country Name	Country Code	Region	IncomeGroup	Year	Birth rate, crude (per 1,000 people)	Death rate, crude (per 1,000 people)	Electric power consumption (kWh per capita)	GDP
12444	Zimbabwe	ZWE	Sub- Saharan Africa	Low income	1964	47.770	13.083	NaN	1.21713
12445	Zimbabwe	ZWE	Sub- Saharan Africa	Low income	1963	47.876	13.419	NaN	1.15951
12446	Zimbabwe	ZWE	Sub- Saharan Africa	Low income	1962	47.950	13.762	NaN	1.11760
12447	Zimbabwe	ZWE	Sub- Saharan Africa	Low income	1961	47.988	14.104	NaN	1.09664
12448	Zimbabwe	ZWE	Sub- Saharan Africa	Low income	1960	47.996	14.441	NaN	1.05299

In [16]: # gives the total number of records (rows) and attributes/fields (columns)

data.shape

(12449, 15) Out[16]:

In [17]:

#total number of records is displayed

```
data.size
         186735
Out[17]:
In [45]:
         # Displaying all the column/attribute names
          data.columns
         Index(['Country Name', 'Country Code', 'Region', 'IncomeGroup', 'Year',
Out[45]:
                 'Birth rate, crude (per 1,000 people)',
                 'Death rate, crude (per 1,000 people)',
                 'Electric power consumption (kWh per capita)', 'GDP (USD)',
                 'GDP per capita (USD)',
                 'Individuals using the Internet (% of population)',
                 'Infant mortality rate (per 1,000 live births)',
                 'Life expectancy at birth (years)',
                 'Population density (people per sq. km of land area)',
                 'Unemployment (% of total labor force) (modeled ILO estimate)'],
                dtype='object')
In [46]: #Data type of each type of attribute will be described
          data.dtypes
         Country Name
                                                                            object
Out[46]:
         Country Code
                                                                            object
         Region
                                                                            object
         IncomeGroup
                                                                            object
         Year
                                                                             int64
         Birth rate, crude (per 1,000 people)
                                                                           float64
         Death rate, crude (per 1,000 people)
                                                                           float64
         Electric power consumption (kWh per capita)
                                                                           float64
                                                                           float64
         GDP (USD)
         GDP per capita (USD)
                                                                           float64
         Individuals using the Internet (% of population)
                                                                           float64
         Infant mortality rate (per 1,000 live births)
                                                                           float64
         Life expectancy at birth (years)
                                                                           float64
         Population density (people per sq. km of land area)
                                                                           float64
         Unemployment (% of total labor force) (modeled ILO estimate)
                                                                           float64
         dtype: object
In [18]:
         data.index
         RangeIndex(start=0, stop=12449, step=1)
Out[18]:
In [19]: # Summary statistics of the dataset
          data.describe()
```

Out[19]:

1/20/24, 5:28 PM

	Year		Birth rate, crude (per 1,000 people)	Death rate, crude (per 1,000 people)	Electric power consumption (kWh per capita)	GDP (USD)	GDP per capita (USD)	Indiv usi Inter popu
-					- Capita,			РОРШ
	count	12449.00000	11440.000000	11416.000000	5848.000000	9.578000e+03	9575.000000	5064.0
	mean	1989.00000	28.643276	10.588539	3175.294686	1.700740e+11	8231.812259	23.3
	std	17.03007	13.131893	5.489382	4467.139298	8.979866e+11	16173.539954	28.3
	min	1960.00000	6.900000	1.127000	0.000000	8.824450e+06	34.790600	0.0
	25%	1974.00000	16.600000	6.863750	390.385750	1.393010e+09	513.145500	0.!
	50%	1989.00000	27.545500	9.200000	1541.895000	7.275305e+09	1852.810000	8.4
	75%	2004.00000	40.881250	12.687000	4313.767500	4.857782e+10	7774.565000	41.7
	max	2018.00000	58.227000	54.444000	54799.200000	2.050000e+13	189171.000000	100.0

In [39]: # the output indicates that there is no duplicate values in the records
data.duplicated().sum()

Out[39]:

In [20]: # Null and NaN values are dropped from the dataset

data1=data.dropna()
data1.head()

1/20/24, 5:28 PM Prodigy_DS_Task1

Out[20]

0]:		Country Name	Country Code	Region	IncomeGroup	Year	Birth rate, crude (per 1,000 people)	Death rate, crude (per 1,000 people)	Electric power consumption (kWh per capita)	GDP (USD)
	63	Albania	ALB	Europe & Central Asia	Upper middle income	2014	12.259	7.219	2309.37	1.322820e+10
	64	Albania	ALB	Europe & Central Asia	Upper middle income	2013	12.257	7.096	2533.25	1.277630e+10
	65	Albania	ALB	Europe & Central Asia	Upper middle income	2012	12.197	6.996	2118.33	1.231980e+10
	66	Albania	ALB	Europe & Central Asia	Upper middle income	2011	12.100	6.915	2205.70	1.289090e+10
	67	Albania	ALB	Europe & Central Asia	Upper middle income	2010	12.001	6.841	1943.34	1.192700e+10
										>
8]:	dat	:a1.shape	1							
8]:	(27	75, 15)								

In [48

Out[48

#Verifying to check the presence of null values In [49]: data1.isna()

Rirth

Death

Out[49]:

	Country Name	Country Code	Region	IncomeGroup	Year	rate, crude (per 1,000 people)	rate, crude (per 1,000 people)	Electric power consumption (kWh per capita)	GDP (USD)	ca (l
63	False	False	False	False	False	False	False	False	False	1
64	False	False	False	False	False	False	False	False	False	I
65	False	False	False	False	False	False	False	False	False	1
66	False	False	False	False	False	False	False	False	False	I
67	False	False	False	False	False	False	False	False	False	1
•••										
12410	False	False	False	False	False	False	False	False	False	1
12411	False	False	False	False	False	False	False	False	False	I
12412	False	False	False	False	False	False	False	False	False	1
12413	False	False	False	False	False	False	False	False	False	l
12414	False	False	False	False	False	False	False	False	False	1

2775 rows × 15 columns

```
In [23]:
         #sum() sums up the boolean values [true=1,false=0].
         data1.isna().sum()
         #Here we can see all columns' NaN values are dropped. There is no missing value in
         Country Name
                                                                           0
Out[23]:
         Country Code
                                                                           0
                                                                           0
         Region
         IncomeGroup
                                                                           0
                                                                           0
         Year
         Birth rate, crude (per 1,000 people)
                                                                           0
         Death rate, crude (per 1,000 people)
                                                                           0
         Electric power consumption (kWh per capita)
                                                                           0
                                                                           0
         GDP (USD)
         GDP per capita (USD)
         Individuals using the Internet (% of population)
                                                                           0
         Infant mortality rate (per 1,000 live births)
                                                                           0
         Life expectancy at birth (years)
                                                                           0
         Population density (people per sq. km of land area)
                                                                           0
         Unemployment (% of total labor force) (modeled ILO estimate)
         dtype: int64
         data1.info()
In [24]:
```

```
<class 'pandas.core.frame.DataFrame'>
         Int64Index: 2775 entries, 63 to 12414
         Data columns (total 15 columns):
                                                                           Non-Null Count
          # Column
         Dtype
                                                                            _____
         --- -----
          0 Country Name
                                                                           2775 non-null
         object
              Country Code
                                                                           2775 non-null
         object
          2 Region
                                                                           2775 non-null
         object
                                                                           2775 non-null
          3
              IncomeGroup
         object
                                                                           2775 non-null
          4
              Year
         int64
              Birth rate, crude (per 1,000 people)
                                                                           2775 non-null
          5
         float64
             Death rate, crude (per 1,000 people)
                                                                           2775 non-null
         float64
          7 Electric power consumption (kWh per capita)
                                                                           2775 non-null
         float64
          8 GDP (USD)
                                                                           2775 non-null
         float64
                                                                           2775 non-null
          9 GDP per capita (USD)
          10 Individuals using the Internet (% of population)
                                                                           2775 non-null
         float64
          11 Infant mortality rate (per 1,000 live births)
                                                                           2775 non-null
         float64
         12 Life expectancy at birth (years)
                                                                           2775 non-null
          13 Population density (people per sq. km of land area)
                                                                           2775 non-null
         float64
          14 Unemployment (% of total labor force) (modeled ILO estimate) 2775 non-null
         float64
         dtypes: float64(10), int64(1), object(4)
         memory usage: 346.9+ KB
In [25]:
         year = 2012
         variable = 'Life expectancy at birth (years)'
In [26]: #Filter the data for a specific year
         data year = data[data['Year'] == year]
```

Creating a histogram

```
In [27]: plt.figure(figsize=(10,5))
    plt.hist(data_year[variable],bins=20, edgecolor='k', alpha=0.7)

plt.title(f'Distribution of {variable} in {year}')
    plt.xlabel(variable)
    plt.ylabel('Frequency')
    plt.show()
```

Distribution of Life expectancy at birth (years) in 2012


```
In [28]: # Customize the plot further
    plt.title(f'Distribution of {variable} in {year}')
    plt.xlabel(variable)
    plt.ylabel('Frequency')

plt.grid(True, linestyle='--', alpha=0.7)

# Add Labels for mean and median
    mean_value = data_year[variable].mean()
    median_value = data_year[variable].median()
    plt.axvline(mean_value, color='red', linestyle='dashed', linewidth=2, label=f'Mean:
    plt.axvline(median_value, color='green', linestyle='dashed', linewidth=2, label=f'Mean:
    plt.legend()
    plt.show()
```


Bar Plot

```
In [29]: region_counts = data['Region'].value_counts()

# Create a bar chart
plt.figure(figsize=(10, 6))
region_counts.plot(kind='bar', color='skyblue')
plt.xlabel('Region')
plt.ylabel('Number of Countries')
plt.title('Distribution of Countries by Region')
plt.xticks(rotation=45)
plt.show()
```


Pie Plot

```
In [32]: plt.figure(figsize=(15,6))
    plt.subplot(1,2,2)
    region_percentage = (region_counts / region_counts.sum())*100
    colors = ['gold', 'lightcoral', 'lightgreen', 'lightskyblue']

region_percentage.plot(kind='pie', autopct='%1.1f%%', colors=colors)
    plt.axis('equal')
    plt.title("Distribution of countries by region (Percentage)")

plt.tight_layout()
    plt.show()
```

Distribution of countries by region (Percentage)

Thank you!