Model Checking

Linear Temporal Logic

[Baier & Katoen, Chapter 5.1]

Prof. Dr. Nils Jansen Radboud University, 2025

Credit to the slides: Prof. Dr. Dr.h.c. Joost-Pieter Katoen

Is There a Proper Logic to Define Properties?

Who would tell an engineer to write regular expressions for bad prefixes?

Overview

- 1 LTL Syntax
- 2 LTL Semantics
- 3 LTL Equivalence
- 4 LTL Model Checking
- **5** Summary

Overview

- LTL Syntax
- 2 LTL Semantics
- 3 LTL Equivalence
- 4 LTL Model Checking
- 5 Summary

Recall: LT Properties

- An LT property is a set of infinite traces over AP
- Specifying such sets explicitly is often inconvenient
- Mutual exclusion is specified over $AP = \{c_1, c_2\}$ by $E_{mutex} = \text{set of infinite words } A_0 A_1 \dots \text{ with } \{c_1, c_2\} \not\subseteq A_i \text{ for all } 0 \le i$
- Starvation freedom is specified over $AP = \{c_1, w_1, c_2, w_2\}$ by

 $E_{nostarve}$ = set of infinite words $A_0 A_1 \dots$ such that:

$$\left(\stackrel{\infty}{\exists} j.\ w_1\in A_j\ \right)\Rightarrow \left(\stackrel{\infty}{\exists} j.\ c_1\in A_j\ \right)\ \wedge\ \left(\stackrel{\infty}{\exists} j.\ w_2\in A_j\ \right)\Rightarrow \left(\stackrel{\infty}{\exists} j.\ c_2\in A_j\ \right)$$

Such properties can be specified much more succinctly using logic (or using ω -regular expressions)

Linear Temporal Logic

Arthur Norman Prior (1914–†1969)

Amir Pnueli (1941–†2009)

LTL Syntax

Definition: LTL syntax

BNF grammar for LTL formulas with proposition $a \in AP$:

LTL Syntax

Definition: LTL syntax

BNF grammar for LTL formulas with proposition $a \in AP$:

- Propositional logic
 - \bullet $a \in AP$
 - \blacksquare $\neg \varphi$ and $\varphi \land \psi$

atomic proposition negation and conjunction

- Temporal modalities
 - \bullet $\bigcirc \varphi$
 - φ U ψ

neXt state fulfills φ

 φ holds Until a ψ -state is reached

Linear Temporal Logic (LTL) is a logic to describe LT properties

$$\varphi \vee \psi \equiv \gamma (\gamma \ell_{\lambda} \gamma \ell_{\psi})$$

$$\varphi \Rightarrow \psi \equiv \gamma \ell_{\psi} \ell_{\psi}$$

$$\varphi \Leftrightarrow \psi \equiv (\ell = \gamma \ell_{\psi}) \gamma (\ell_{\psi} = \gamma \ell_{\psi})$$

$$\varphi \oplus \psi \equiv \ell_{\psi}$$

$$\text{true} \equiv \gamma \ell_{\psi} \ell_{\psi}$$

$$\text{false} \equiv \gamma \ell_{\psi} \ell_{\psi}$$

$$\varphi \lor \psi \quad \equiv \quad \neg \left(\neg \varphi \land \neg \psi \right)$$

$$\varphi \Rightarrow \psi \quad \equiv$$

$$\varphi \Leftrightarrow \psi \quad \equiv$$

$$\forall \varphi \Leftrightarrow \psi \quad \equiv$$

$$\text{true} \quad \equiv$$

$$\text{false} \quad \equiv$$

$$\Diamond \varphi \quad \equiv \qquad \text{"some time in the future"}$$

$$\square \varphi \quad \equiv \qquad \text{"from now on forever"}$$

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$$

$$\varphi \Leftrightarrow \psi \equiv$$

$$\forall \oplus \psi \equiv$$

$$\text{true} \equiv$$

$$\text{false} \equiv$$

$$\Diamond \varphi \equiv \text{"some time in the future"}$$

$$\square \varphi \equiv \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones.

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$$

$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$

$$\varphi \oplus \psi \equiv$$

$$\text{true} \equiv$$

$$\text{false} \equiv$$

$$\diamondsuit \varphi \equiv \text{"some time in the future"}$$

$$\square \varphi \equiv \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones.

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$$

$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$

$$\varphi \oplus \psi \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$
true \equiv
false \equiv

$$\diamondsuit \varphi \equiv \text{"some time in the future"}$$

$$\square \varphi \equiv \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones.

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$$

$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$

$$\varphi \oplus \psi \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

$$\mathsf{true} \equiv \varphi \lor \neg \varphi$$

$$\mathsf{false} \equiv$$

$$\diamondsuit \varphi \equiv \qquad \text{"some time in the future"}$$

$$\square \varphi \equiv \qquad \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones.

precedence order: the unary operators bind stronger than the binary ones.

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$$

$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$

$$\varphi \oplus \psi \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

$$\mathsf{true} \equiv \varphi \lor \neg \varphi$$

$$\mathsf{false} \equiv \neg \mathsf{true}$$

$$\diamondsuit \varphi \equiv \mathsf{true} \, \mathsf{U} \, \varphi \qquad \text{"some time in the future"}$$

$$\square \, \varphi \equiv \qquad \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones.

$$\varphi \lor \psi \equiv \neg (\neg \varphi \land \neg \psi)$$

$$\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$$

$$\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$

$$\varphi \oplus \psi \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

$$\mathsf{true} \equiv \varphi \lor \neg \varphi$$

$$\mathsf{false} \equiv \neg \mathsf{true}$$

$$\diamondsuit \varphi \equiv \mathsf{true} \, \mathsf{U} \, \varphi \quad \text{"some time in the future"}$$

$$\square \varphi \equiv \neg \diamondsuit \neg \varphi \quad \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones.

Intuitive Semantics

• The traffic light becomes green eventually:

• The traffic light becomes green eventually:

- ♦ green
- Once red, the light cannot become green immediately:

$$\square (red \Rightarrow \neg \bigcirc green)$$

- The traffic light becomes green eventually: ♦ green
- Once red, the light cannot become green immediately:

$$\Box (red \Rightarrow \neg \bigcirc green)$$

• Once red, the light becomes green eventually: \Box (red \Rightarrow \Diamond green)

- The traffic light becomes green eventually: ♦ green
- Once red, the light cannot become green immediately:

$$\Box$$
 (red $\Rightarrow \neg \bigcirc$ green)

- Once red, the light becomes green eventually: \Box (red \Rightarrow \Diamond green)
- Once red, the light always becomes green eventually after being yellow for some time inbetween:

$$\Box (red \Rightarrow \bigcirc (red \cup (yellow \land \bigcirc (yellow \cup green)))))$$

Example Properties in LTL

Reachability

- negated reachability
- conditional reachability
- reachability from any state

not expressible

Example Properties in LTL

Reachability

- negated reachability
- conditional reachability
- reachability from any state

$\diamondsuit \neg \psi$ $\varphi \cup \psi$

not expressible

Safety

- simple safety
- conditional safety

Example Properties in LTL

- Reachability
 - negated reachability
 - conditional reachability
 - reachability from any state

- $\diamondsuit \neg \psi$ $\varphi \ \mathsf{U} \ \psi$
- not expressible

- Safety
 - simple safety
 - conditional safety

 $\Box \neg \varphi$ $(\varphi \cup \psi) \lor \Box \varphi$

Liveness

 $\Box (\varphi \Rightarrow \diamondsuit \psi)$ and others

Overview

- 1 LTL Syntax
- 2 LTL Semantics
- 3 LTL Equivalence
- 4 LTL Model Checking
- 5 Summary

Semantics Over Words

Definition: LTL semantics over infinite words The LT-property induced by LTL formula φ over AP is:

$$\mathit{Words}(\varphi) \ = \ \Big\{ \ \sigma \in \big(2^{^{AP}}\big)^{\omega} \ \big| \ \sigma \models \varphi \ \Big\}, \text{where} \ \models \text{is the smallest relation with:}$$

$$\sigma \models \text{true}$$

$$\sigma \models a \qquad \text{iff} \quad a \in A_0 \quad \text{(i.e., } A_0 \models a\text{)}$$

$$\sigma \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma [1..] = A_1 A_2 A_3 \ldots \models \varphi$$

$$\sigma \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists j \geq 0. \ \sigma[j..] \models \varphi_2 \quad \text{and} \quad \sigma[i..] \models \varphi_1, \ 0 \leq i < j$$

for $\sigma = A_0 A_1 A_2 \dots$, let $\sigma[i...] = A_i A_{i+1} A_{i+2} \dots$ be the suffix of σ from index i on.

$$\sigma \models \Diamond \varphi \text{ iff } \exists j \geq 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Diamond \varphi \quad \text{iff} \quad \exists j \geq 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \varphi \quad \text{iff} \quad \forall j \geq 0. \ \sigma[j..] \models \varphi$$

$$\begin{split} \sigma & \models & \diamondsuit \varphi & \text{iff} & \exists j \geq 0. \ \sigma[j..] \models \varphi \\ \\ \sigma & \models & \Box \varphi & \text{iff} & \forall j \geq 0. \ \sigma[j..] \models \varphi \\ \\ \sigma & \models & \Box \diamondsuit \varphi & \text{iff} & \forall j \geq 0. \ \exists i \geq j. \ \sigma[i \ldots] \models \varphi \end{split}$$

$$\sigma \models \Diamond \varphi \quad \text{iff} \quad \exists j \geq 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \varphi \quad \text{iff} \quad \forall j \geq 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \Diamond \varphi \quad \text{iff} \quad \forall j \geq 0. \ \exists i \geq j. \ \sigma[i...] \models \varphi$$

$$\sigma \models \Diamond \Box \varphi \quad \text{iff} \quad \exists j \geq 0. \ \forall i \geq j. \ \sigma[i...] \models \varphi$$

Example

path
$$\pi = s_0 s_1 s_2 s_2 s_2 s_2 \dots$$
 $trace(\pi) = \{a\} \emptyset \{a, b\}^{\omega}$

$$\pi \models a, \text{ but } \pi \not\models b \qquad \text{as } L(s_0) = \{a\}$$

$$\pi \models \bigcirc (\neg a \land \neg b) \qquad \text{as } L(s_1) = \emptyset$$

$$\pi \models \bigcirc \bigcirc (a \land b) \qquad \text{as } L(s_2) = \{a, b\}$$

$$\pi \models (\neg b) \cup (a \land b) \qquad \text{as } s_0, s_1 \models \neg b$$

$$\pi \models (\neg b) \cup \Box (a \land b) \qquad \text{and } s_2 \models a \land b$$

Semantics over Paths and States

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system and φ be an LTL-formula over AP.

• For infinite path fragment π of TS:

$$\pi \models \varphi$$
 iff $trace(\pi) \models \varphi$

• For state $s \in S$:

$$s \models \varphi$$
 iff $\forall \pi \in Paths(s). \ \pi \models \varphi$

• For transition system *TS*:

$$TS \models \varphi$$
 iff $Traces(TS) \subseteq Words(\varphi)$ iff $\forall s \in I. s \models \varphi$

Example

On The Semantics of Negation

For paths, it holds $\pi \models \varphi$ if and only if $\pi \not\models \neg \varphi$ since:

$$Words(\neg \varphi) = (2^{AP})^{\omega} \setminus Words(\varphi)$$
.

On The Semantics of Negation

For paths, it holds $\pi \models \varphi$ if and only if $\pi \not\models \neg \varphi$ since:

$$Words(\neg \varphi) = (2^{AP})^{\omega} \setminus Words(\varphi)$$
.

But: $TS \not\models \varphi$ and $TS \models \neg \varphi$ are *not* equivalent in general

It holds: $TS \models \neg \varphi$ implies $TS \not\models \varphi$. Not always the reverse!

Note that:

$$TS \not\models \varphi$$
 iff $Traces(TS) \not\models Words(\varphi)$
iff $Traces(TS) \setminus Words(\varphi) \not\models \varnothing$
iff $Traces(TS) \cap Words(\neg \varphi) \not\models \varnothing$.

TS neither satisfies φ nor $\neg \varphi$ if there are paths π_1 and π_2 in TS such that $\pi_1 \models \varphi$ and $\pi_2 \models \neg \varphi$

Example

LTL Formulas for LT Properties

Provide LTL formulas over $AP = \{a, b\}$ for the LT properties:

• set of all words $A_0 A_1 \dots$ over $\left(2^{^{AP}}\right)^{\omega}$ such that:

$$\forall i \geq 0. \ (a \in A_i \implies i > 0 \land b \in A_{i-1})$$

$$\equiv \forall j \geq 0. \ (b \in A_j \lor a \notin A_{j+1})$$

$$\equiv Words(\Box(b \lor \neg \bigcirc a))$$

LTL Formulas for LT Properties

Provide LTL formulas over $AP = \{a, b\}$ for the LT properties:

• set of all words $A_0 A_1 \dots$ over $(2^{AP})^{\omega}$ such that:

$$\forall i \geq 0. \ (a \in A_i \implies i > 0 \land b \in A_{i-1})$$

$$\equiv \forall j \geq 0. \ (b \in A_j \lor a \notin A_{j+1})$$

$$\equiv Words(\Box(b \lor \neg \bigcirc a))$$

set of all words of the form

$$\{b\}^{n_1}\{a\}\{b\}^{n_2}\{a\}\{b\}^{n_3}\{a\}\dots$$

where $n_i \ge 0$. This is captured by

$$Words(\square((b \land \neg a) \cup (a \land \neg b)))$$

Overview

- 1 LTL Syntax
- 2 LTL Semantics
- 3 LTL Equivalence
- 4 LTL Model Checking
- Summary

LTL Equivalence

Definition: LTL equivalence

LTL formulas φ , ψ (both over AP) are equivalent:

$$\varphi \equiv_{LTL} \psi$$
 if and only if $Words(\varphi) = Words(\psi)$.

If it is clear from the context that we deal with LTL-formulas, we simply write $\varphi \equiv \psi$.

Equivalently:

$$\varphi \equiv_{LTL} \psi$$
 iff (for all transition systems $TS : TS \models \varphi$ iff $TS \models \psi$).

Duality and Idempotence

Duality:
$$\neg \Box \varphi \equiv \Diamond \neg \varphi$$

$$\neg \Diamond \varphi \equiv \Box \neg \varphi$$

$$\neg \bigcirc \varphi \equiv \bigcirc \neg \varphi$$

Duality and Idempotence

Duality:
$$\neg \Box \varphi \equiv \Diamond \neg \varphi$$
$$\neg \Diamond \varphi \equiv \Box \neg \varphi$$
$$\neg \bigcirc \varphi \equiv \bigcirc \neg \varphi$$
 Idempotence:
$$\Box \Box \varphi \equiv \Box \varphi$$
$$\Diamond \Diamond \varphi \equiv \Diamond \varphi$$
$$\varphi \cup (\varphi \cup \psi) \equiv \varphi \cup \psi$$
$$(\varphi \cup \psi) \cup \psi \equiv \varphi \cup \psi$$

Absorption and Distributive

Absorption:
$$\Diamond \Box \Diamond \varphi \equiv \Box \Diamond \varphi$$

 $\Box \Diamond \Box \varphi \equiv \Diamond \Box \varphi$

Absorption and Distributive

Absorption:
$$\diamondsuit \square \diamondsuit \varphi \equiv \square \diamondsuit \varphi$$
 $\square \diamondsuit \square \varphi \equiv \diamondsuit \square \varphi$ Distributive: $\bigcirc (\varphi \cup \psi) \equiv (\bigcirc \varphi) \cup (\bigcirc \psi)$

 $\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$ $\Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$

Absorption and Distributive

Absorption:
$$\diamondsuit \square \diamondsuit \varphi \equiv \square \diamondsuit \varphi$$

$$\square \diamondsuit \square \varphi \equiv \diamondsuit \square \varphi$$
Distributive: $\bigcirc (\varphi \cup \psi) \equiv (\bigcirc \varphi) \cup (\bigcirc \psi)$

$$\diamondsuit (\varphi \lor \psi) \equiv \diamondsuit \varphi \lor \diamondsuit \psi$$

$$\square (\varphi \land \psi) \equiv \square \varphi \land \square \psi$$
but : $\square (\varphi \cup \psi) \neq (\square \varphi) \cup (\square \psi)$

$$\diamondsuit (\varphi \land \psi) \neq \diamondsuit \varphi \land \diamondsuit \psi$$

$$\square (\varphi \lor \psi) \neq \square \varphi \lor \square \psi$$

Weak Until

Definition: the weak-until-operator

The weak-until (or: unless) operator is defined by

$$\varphi \mathsf{W} \psi = (\varphi \mathsf{U} \psi) \mathsf{V} \square \varphi.$$

In contrast to until, weak until does not require to establish ψ eventually

Weak Until

Definition: the weak-until-operator

The weak-until (or: unless) operator is defined by

$$\varphi \mathsf{W} \psi = (\varphi \mathsf{U} \psi) \mathsf{V} \square \varphi.$$

In contrast to until, weak until does not require to establish ψ eventually

Until U and weak until W are dual:

$$\neg(\varphi \cup \psi) \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \neg \psi)$$

$$\neg(\varphi \mathsf{W}\,\psi) \ \equiv \ (\varphi \wedge \neg\psi) \, \mathsf{U} \, (\neg\varphi \wedge \neg\psi)$$

Example

Overview

- 1 LTL Syntax
- 2 LTL Semantics
- 3 LTL Equivalence
- 4 LTL Model Checking
- Summary

Can We Do LTL Model Checking?

Automata-Based LTL Model Checking

Overview

- 1 LTL Syntax
- 2 LTL Semantics
- 3 LTL Equivalence
- 4 LTL Model Checking
- Summary

Summary

- Linear temporal logic (LTL) is a logic to succinctly describe LT properties
- LTL-formulas are equivalent iff they describe the same LT properties