EE538_Wi2021_Midterm_Practice

February 13, 2021

Instructor: Jason Silver Midterm Practice

Show all work

Problem 1:Cascode amplifier design

For the following, use the long channel drain current expression and assume $\lambda=0$ and $\gamma=0$ unless otherwise stated.

Use
$$I_{D9}=1mA$$
, $V_{DD}=3V$, $\mu_nC_{ox}=100\mu A/V^2$, $\mu_pC_{ox}=50\mu A/V^2$, $V_{thn}=V_{thp}=500mV$, $L_n=L_p=L_{eff}=1\mu m$

- a) Size M_5 , M_6 , M_7 , and M_8 for overdrive voltages of 200mV. What is the DC output voltage of the amplifier?
- **b)** Determine the value of V_{BP} required such that $V_{SD7} = V_{SD8} = 300 mV$. Based on this value, are M_5 and M_6 in saturation?
- **c)** Size $M_{1,2}$ for $g_{m1,2} = 10mS$.
- **d)** Size M_3 and M_4 for overdrive voltages of 200mV.
- **e)** If the maximum value of V_{iCM} is 1.5V, determine the value of V_{BN2} that ensures $M_{1,2}$ remain in saturation.
- **f)** If the minimum value of V_{iCM} is 1V, determine size of M_9 that ensures it remains in saturation.
- **g)** Determine the small-signal gain of the amplifier if $\lambda_n = 0.01V^{-1}$ and $\lambda_p = 0.02V^{-1}$.