# Estudio del comportamiento de representaciones de tiempo frecuencia en presencia de ruido heterocedástico dependiente

#### Sofía Nieva

Facultad de Ciencias Exactas y Naturales Universidad Nacional de Buenos Aires

> Tesis de Licenciatura 17 de Diciembre de 2021

## Tabla de Contenidos

- Introducción
- 2 Métodos para descomponer señales
- Teoría de Wavelets
- 4 Método no paramétrico
- Simulaciones
- O Un ejemplo real
- Conclusiones

## Tabla de Contenidos

- 1 Introducción
  - ▶ Preliminares
  - Objetivos
- Métodos para descomponer señales
- Teoría de Wavelets
- 4 Método no paramétrico
- Simulaciones
- 6 Un ejemplo real
- Conclusione

# Descomposición de señales

Serie de tiempo o señal: conjunto de observaciones  $x_t$ , cada una registradas en un momento t específico

Modelo aditivo: 
$$X_t = T_t + S_t + Y_t$$

- T<sub>t</sub>: Tendencia
- S<sub>t</sub>: Estacionalidad
- Y<sub>t</sub>: Residuo o ruido

#### Características:

- Heterocedástico
- Dependiente

#### Ejemplos:

- ARMA
- GARCH

## Métodos

#### Tres dominios:

- Tiempo
- Frecuencia
- ullet Tiempo-Frecuencia o Representaciones de tiempo-frecuencia

#### Modelos:

- Paramétricos
  - TBATS
- No paramétricos
  - EMD
  - SST



# Preguntas

- 1. Si hay varios componentes oscilatorios dentro de la señal, ¿cómo detectarlos y estimarlos?
- 2. Si existe una tendencia además de los componentes oscilatorios, ¿cómo extraerla?
- 3. Si el patrón de los componentes oscilatorios varía en el tiempo, ¿cómo cuantificarlo/identificarlo?
- 4. Dado que la longitud de los datos observados se alarga con el tiempo, ¿qué tan sensible es el estimador a la longitud de la serie de tiempo observada?
- 5. Si los errores son dependientes, o si la varianza del error cambia según el tiempo, ¿Es el estimador robusto ante tales errores heterocedásticos dependientes?



## Identificabilidad

En estadística, un modelo se dice *identificable* si diferentes valores de los parámetros generar diferentes distribuciones de probabilidad de las variables observables. Con lo cual, es *no identificable* si dos o más parametrizaciones son observacionalmente equivalentes.

En otras áreas, el término *identificabilidad* puede tener otros significados. En descomposición de señales vamos a ver condiciones analíticas que permitan dar confianza de que los componentes encontrados son los correctos (estaban en el proceso y no los generó el método).

## Tabla de Contenidos

- 1 Introducción
- Métodos para descomponer señales
  - ► TBATS
  - ► EMD
- Teoría de Wavelets
- 4 Método no paramétrico
- Simulaciones
- 6 Un ejemplo real
- Conclusiones

## Formulación BATS

Box-Cox (B), errores ARMA (A), tendencia (T) y componentes estacionales (S)

$$y_t^{(\omega)} = \begin{cases} \frac{y_t^{\omega} - 1}{\omega} & \omega \neq 0 \\ \log y_t & \omega = 0 \end{cases}$$

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^K s_{t-m_i}^{(i)} + d_t$$

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

$$s_t^{(i)} = s_{t-m_i}^{(i)} + \gamma_i d_t$$

$$d_t = \sum_{i=1}^p \varphi_i d_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t$$

## Formulación BATS

- ullet  $y_t$  es la observación a tiempo t
- $y_t^{(\omega)}$  es la observación transformada con Box-Cox con parámetro  $\omega$
- $m_1, \ldots, m_K$  períodos constantes de las componentes estacionales
- $\ell_t$  es el nivel local
- b es la tendencia a largo plazo
- $b_t$  es la tendencia a corto plazo
- $s_t^{(i)}$  es el *i*-ésimo componente estacional
- $d_t$  es un proceso ARMA(p,q)
- $\varepsilon_t$  es un proceso de ruido blanco Gaussiano (media 0, varianza  $\sigma^2$ )
- Parámetros de suavizado:  $\phi$ ,  $\alpha$ ,  $\beta$  y  $\gamma_i$  para  $i = 1, \dots, K$ .
- Argumentos: BATS $(\omega, \phi, p, q, m_1, m_2, \dots, m_K)$



## **BATS**

#### Ventajas y Desventajas

- Funciona para múltiples componentes estacionales
- Identifica la tendencia
- No funciona con períodos no enteros o anidados
- No funciona para estacionalidad dinámica
- Requiere estimar muchos parámetros
- Produce componentes estacionales ruidosas

## Formulación TBATS

Representación trigonométrica (T) + BATS

- Mas flexible que BATS
- Descomposición de la señal más suave
- Representación trigonométrica de los componentes estacionales, basada en series de Fourier:

$$\begin{split} s_t^{(i)} &= \sum_{j=1}^{k_i} s_{j,t}^{(i)} \\ s_{j,t}^{(i)} &= s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_{j,t}^{*(i)} &= -s_{j,t-1} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t \end{split}$$

# Formulación TBATS

- $\gamma_1^{(i)}$  y  $\gamma_2^{(i)}$  son parámetros de suavizado
- $\lambda_j^{(i)} = 2\pi j/m_i$  (notar que  $\lambda_j^{(i)}$  está fijo)
- $s_{j,t}^{(i)}$  es el nivel estocástico del i-ésimo componente estacional
- $s_{i,t}^{*(i)}$  es el crecimiento estocástico del nivel
- k<sub>i</sub> es el número de armónicos requeridos
- Argumentos: TBATS( $\omega, \phi, p, q, \{m_1, k_1\}, \{m_2, k_2\}, \dots, \{m_K, k_K\}$ )

El método TBATS se obtiene reemplazando el componente estacional  $s_t^{(i)}$  en las ecuaciones de BATS por la formulación estacional trigonométrica

## **TBATS**

#### Ventajas y Desventajas

- Requiere menos estimaciones iniciales que BATS
- Funciona para múltiples componentes estacionales con períodos no enteros o anidados
- Se puede controlar la suavidad con el número de armónicos
- Tiene en cuenta autocorrelación de los residuos
- La estimación de los parámetros depende de toda la serie
- No hay garantías para errores heterocedásticos
- Si bien tiene componentes estacionales estocásticos, los períodos son fijos

# Descomposición Empírica en Modos (EMD)

Funciones de moda intrínseca (IMF)

Dada una señal f(t), el método la descompone en varias funciones de moda intrínseca (IMF):

$$f(t) = \sum_{k=1}^{K} f_k(t)$$

$$f_k(t) = A_k(t)\cos\left(\phi_k(t)\right), \text{ con } A_k(t), \phi_k'(t) > 0 \ \forall t$$

Cada IMF  $f_k$  es básicamente una función que oscila alrededor de 0, no necesariamente con frecuencia o amplitud constante, pero que en general varían lentamente



# Ejemplo IMF



#### Condiciones IMF

- 1. En todo el conjunto de datos, el número de extremos locales y el número de ceros de  $f_k(t)$  deben ser iguales o diferir máximo en uno
- 2. En cualquier momento t, el valor de la envolvente definida por los mínimos locales de  $f_k(t)$  es el negativo de la envolvente correspondiente definida por los máximos locales.



# Sifting

#### Construcción de la descomposición

- 1. Empezar con la señal original
- 2. Construir las envolventes inferior y superior interpolando con splines cúbicos
- 3. Calcular la curva media (promedio de las envolventes)
- 4. Restar la media a la señal y repetir hasta obtener un IMF
- 5. Restar este IMF a la señal original y repetir los pasos anteriores para encontrar el siguiente hasta satisfacer criterio de parada

# Descomposición con EMD



Figura: Descomposición de señal sin ruido suma de dos sinusoides. En rojo el verdadero valor de los componentes y en negro la estimación obtenida con EMD.

# Inestabilidad y mezcla de modos



Figura: Descomposición de la misma señal con ruido blanco.



Figura: Descomposición de la misma señal con otra realización del ruido.

otra realización del ruido.

## **EMD**

#### Ventajas y Desventajas

- Funciona para series con múltiples componentes estacionales que varían en el tiempo.
- Funciona para series no estacionarias
- Es local y adaptativo
- Uso eficaz de los datos
- Identifica la tendencia
- Inestable frente a ruido
- Difícil obtener garantías teóricas

## Tabla de Contenidos

- 1 Introducción
- 2 Métodos para descomponer señales
- 3 Teoría de Wavelets
  - Wavelets
  - Transformada Wavelet Continua (CWT)
  - ▶ Transformada Synchrosqueezing (SST)
- Método no paramétrico
- Simulaciones
- 6 Un ejemplo real

## Wavelets

Pequeñas funciones con forma de onda localizada. Se utilizan para transformar una señal del dominio del tiempo a una representación de tiempo-frecuencia que presente la información de forma más útil.



Figura: Ejemplos de wavelets

# Requisitos

• Debe tener energía finita:

$$E = \int_{-\infty}^{\infty} |\psi(t)|^2 dt < \infty$$

•  $\hat{\psi}(f)$ , la transformada de Fourier debe cumplir:

$$C_g = \int_0^\infty \frac{|\hat{\psi}(f)|^2}{f} df < \infty$$

 Para wavelets complejas, la transformada de Fourier debe ser real y decaer para las frecuencias negativas.



# Ubicación y Escala



Figura: Distintas ubicaciones de una wavelet



Figura: Distintas escalas de una wavelet



#### Wavelet madre

Es la forma básica de la wavelet de la que luego se derivan las versiones dilatadas y trasladadas que se utilizan en la transformación

## Ejemplo (Sombrero Mejicano)

Wavelet madre:

$$\psi(t) = (1 - t^2)e^{-t^2/2}$$

Versión dilatada y trasladada:

$$\psi\left(\frac{t-b}{a}\right) = \left(1 - \left(\frac{t-b}{a}\right)^2\right) e^{-\frac{1}{2}\left[(t-b)/a\right]^2}$$

a parámetro de escala, b parámetro de ubicación



# Esquema CWT



#### Formulación

#### Transformada respecto a una wavelet $\psi$

$$T(a,b) = w(a) \int_{-\infty}^{\infty} x(t) \psi^* \left(\frac{t-b}{a}\right) dt$$

donde x(t) es la señal, w(a) es una función de peso y  $\ast$  indica el conjugado

#### Notación

$$\psi_{\mathsf{a},b}(t) = rac{1}{\sqrt{\mathsf{a}}}\psi\left(rac{t-b}{\mathsf{a}}
ight)$$

$$T(a,b) = \int_{-\infty}^{\infty} x(t) \psi_{a,b}^{*}(t) dt$$

4□ > 4回 > 4 = > 4 = > ■ 990

# Interrogación de una señal



Figura: Wavelet con una escala y ubicación específica sobre una señal.



## Gráfico de la Transformada

#### Contorno



Figura: **a)** Señal compuesta por dos sinusoides **b)** Gráfico de contorno de T(a, b). (wavelet madre: Sombrero Mejicano)

## Gráfico de la Transformada

Fase y módulo



Figura: **a)** Señal compuesta por dos sinusoides. **b)** Gráfico de la fase  $\phi(a, b)$  de T(a, b). **c)** Gráfico del módulo de T(a, b). (wavelet madre: Morlet)

#### Transformada inversa

#### Transformada wavelet inversa

Permite recuperar la señal original a partir de su transformada wavelet al integrar en todas las escalas y ubicaciones, a y b:

$$x(t) = \frac{1}{C_g} \int_{-\infty}^{\infty} \int_{0}^{\infty} T(a, b) \psi_{a, b}(t) \frac{dadb}{a^2}$$

#### Filtrado básico

Fijamos una escala  $a^*$  como umbral y asignamos T(a,b)=0,  $\forall~a< a^*$ 

$$x(t) = \frac{1}{C_a} \int_{-\infty}^{\infty} \int_{a^*}^{\infty} T(a, b) \psi_{a,b}(t) \frac{dadb}{a^2}$$

# **Aplicaciones**

#### Filtrado de ruido





15 20

10 15 20

# **Aplicaciones**

#### Reconstrucción de componentes



# Métodos de reasignación

## Synchrosqueezing









# Clase $\mathcal{A}_{\epsilon}$

#### Definición

Una función  $f: \mathbb{R} \to \mathbb{C}$ , se dice que es de tipo moda intrínseca con precisión  $\epsilon > 0$  si f y A := |f| tienen las siguientes propiedades:

$$f(t)=A(t)e^{2\pi i\phi(t)}$$
, donde  $A\in C^1(\mathbb{R}),\; \phi\in C^2(\mathbb{R}),\; \inf_{t\in\mathbb{R}}\phi'(t)>0$   $\left|A'(t)
ight|,\; \left|\phi''(t)
ight|\leq \epsilon\left|\phi'(t)
ight|,\; orall t\in\mathbb{R},\; y\; M'':=\sup\left|\phi''(t)
ight|<\infty$ 

Llamamos función de amplitud a A(t), función de fase a  $\phi(t)$  y frecuencia instantánea a  $\phi'(t)$ 

# Clase $\mathcal{A}_{\epsilon,d}$

#### Definición

Una función  $f: \mathbb{R} \to \mathbb{C}$ , se dice que es una superposición de componentes de moda intrínseca bien separados con precisión  $\epsilon > 0$  y separación d > 0 si puede escribirse como:

$$f(t) = \sum_{k=1}^{K} f_k(t)$$

donde las  $f_k$  son funciones de tipo moda intrínseca y sus respectivas funciones de fase  $\phi_k$  satisfacen:

$$\phi_k'(t) > \phi_{k-1}'(t) \ \ \ \ \ |\phi_k'(t) - \phi_{k-1}'(t)| \ge d \left[\phi_k'(t) + \phi_{k-1}'(t)\right], \ \ \forall t \in \mathbb{R}$$

4 D F 4 D F 4 D F 5 9 9 0

# Algoritmo SST

- 1. Elegir wavelet madre  $\psi \in \mathcal{S}$  tal que  $sop(\widehat{\psi}) \subset [1-\Delta, 1+\Delta]$ ,  $\Delta \ll 1$  y calcular  $T_f(a,b)$
- 2. Calcular la regla de reasignación:

$$\omega_f(a,b) := \left\{ egin{array}{ll} rac{-i\partial_b T_f(a,b)}{2\pi T_f(a,b)} & \mathrm{si} & |T_f(a,b)| 
eq 0 \ \infty & \mathrm{si} & |T_f(a,b)| = 0 \end{array} 
ight.$$

3. La SST de f(t) con umbral  $\epsilon$  se define como:

$$S_{f,\epsilon}(b,\xi) := \lim_{\alpha \to 0} \int_{\{(a,b): |T_f(a,b)| \ge \epsilon\}} h_\alpha\left(|\omega_f(a,b) - \xi|\right) T_f(a,b) a^{-3/2} da$$

donde  $(b,\xi) \in \mathbb{R} \times \mathbb{R}^+$ ,  $\alpha, \epsilon > 0$ ,  $h_{\alpha}(b) := \frac{1}{\alpha} h\left(\frac{b}{\alpha}\right)$ ,  $h \in L^1(\mathbb{R})$ , y  $h_{\alpha} \to \delta$  débilmente cuando  $\alpha \to 0$  con  $\delta$  la función delta de Dirac.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

### Resultados teóricos

En ausencia de ruido

#### Teorema

Sean  $f \in \mathcal{A}_{\epsilon,d}$ ,  $\widetilde{\epsilon} := \epsilon^{1/3}$ ,  $\psi$  tal que  $sop(\widehat{\psi}) \subset [1 - \Delta, 1 + \Delta]$ , con  $\Delta < d/(1+d)$ , y sea  $\mathcal{R}_{\psi} = \int \widehat{\psi}(\zeta) \zeta^{-1} d\zeta$ . Consideramos la CWT  $T_f(a,b)$  de f respecto a la wavelet  $\psi$ , y la SST  $S_{f,\widetilde{\epsilon}}(b,\omega)$ , obtenida de  $T_f$ , con umbral  $\widetilde{\epsilon}$ . Entonces, dado  $\epsilon$  suficientemente chico, vale lo siguiente:

- (I)  $|T_f(a,b)| > \widetilde{\epsilon}$  si para algún  $k, (a,b) \in Z_k = \{(a,b); |a\phi_k'(b) 1| < \Delta\}$
- (II) Para cada  $k \in \{1, ..., K\}$ , y para cada par  $(a, b) \in Z_k$  para el cual  $|T_f(a, b)| > \widetilde{\epsilon}$ , se tiene que  $|\omega_f(a, b) \phi_k'(b)| \le \widetilde{\epsilon}$
- (III) Además, para cada  $k \in \{1, \dots, K\}$ , existe una constante  $\mathcal{C}_1$  tal que, para cualquier  $b \in \mathbb{R}$ ,

$$\left| \left( \mathcal{R}_{\psi}^{-1} \int_{|\omega - \phi_k'(b)| < \widetilde{\epsilon}} S_{f,\widetilde{\epsilon}}(b,\omega) d\omega \right) - A_k(b) e^{2\pi i \phi_k(b)} \right| \leq C_1 \widetilde{\epsilon}$$

4 D > 4 A > 4 B > 4 B > B = 90

### Resultados teóricos

En presencia de ruido blanco Gaussiano

#### Teorema

Sea  $f \in \mathcal{A}_{\epsilon,d}$ ,  $\epsilon, \psi, \Delta$  y  $Z_k$  como en el teorema anterior, con  $\psi \in \mathcal{S}$  y  $|\langle \psi, \psi' \rangle| < \|\psi\|_{L^2} \|\psi'\|_{L^2}$ . Sea g = f + N, donde N es ruido blanco Gaussiano con densidad espectral  $\epsilon^{2+p}$  para algún p > 0. Para cada k, sea  $M_k \geq 1$  dado por  $M_k = \max\left(\frac{1}{1-\Delta} \|\phi'_k\|_{L^\infty}, (1+\Delta) \left\|\frac{1}{\phi'_k}\right\|_{L^\infty}\right)$ , entonces:

- (I) Si  $a \in [M_k^{-1}, M_k]$ , para cada punto  $(a, b) \in Z_k$  con  $|T_f(a, b)| > \widetilde{\epsilon}$ ,  $\exists E_1$  y  $C_2'$  ctes tales que con probabilidad  $1 e^{-E_1 \epsilon^{-p}}$ ,  $|\omega_g(a, b) \phi_k'(b)| \le C_2'\widetilde{\epsilon}$ . Si  $(a, b) \notin Z_k$  para ningún k, entonces  $\exists E_2$  cte, tal que con probabilidad  $1 e^{-E_2 \epsilon^{-p}}$ ,  $|T_g(a, b)| \le \widetilde{\epsilon} + \frac{1}{2}\epsilon$ .
- (II)  $\exists C_3'$  cte tal que con probabilidad  $1 e^{-E_1 \epsilon^{-\rho}}$ ,  $\forall b \in \mathbb{R}$  se tiene:  $\left| \left( \mathcal{R}_{\psi}^{-1} \int_{\left|\omega \phi_k'(b)\right| \le C_2' \tilde{\epsilon}} S_{f,M_k^{1/2} \epsilon + \tilde{\epsilon}}(b,\omega) d\omega \right) A_k(b) e^{2\pi i \phi_k(b)} \right| \le C_3' \tilde{\epsilon}$

### Resultados teóricos

#### Ideas

- El método de synchrosqueezing tiene éxito en descomponer funciones arbitrarias en la clase  $\mathcal{A}_{\epsilon,d}$
- Identifica la frecuencia instantánea y la amplitud de cada componente
- La SST está completamente concentrada, en el plano  $(b,\omega)$ , en bandas estrechas alrededor de las curvas de frecuencia instantánea  $\omega = \phi_k'(b)$
- Para reconstruir el k-ésimo componente  $A_k(b)e^{2\pi i\phi_k(b)}$ , invertimos  $S_{f,\tilde{\epsilon}}$  restringiendo el dominio a la k-ésima banda concentrada
- Obtenemos una descomposición adaptativa con garantías teóricas sobre la precisión de la estimación de los componentes

### Tabla de Contenidos

- Introducción
- Métodos para descomponer señales
- 3 Teoría de Wavelets
- 4 Método no paramétrico
  - ▶ Identificabilidad
  - ▶ Modelo
  - ► Resultados teóricos
- Simulaciones
- 6 Un ejemplo real

#### Problema

Con SST podemos aproximar bien los componentes estacionales de  $f \in \mathcal{A}_{\epsilon,d}$ . Pero, ¿es esa la única representación de f dentro de la clase?

#### Ejemplo

$$\frac{1}{4}\cos([\Omega-\gamma]t) + \frac{5}{2}\cos(\Omega t) + \frac{1}{4}\cos([\Omega+\gamma]t) = (2+\cos^2\left[\frac{\gamma}{2}t\right])\cos(\Omega t)$$

En general, la expresión  $f(t) = \sum_{k=1}^{K} A_k(t) \cos(2\pi\phi_k(t))$  no es única y por lo tanto existe el problema de la identificabilidad de f. Soluciones:

- Modelar A(t) y  $\phi(t)$  de forma paramétrica o Restrictivo
- Considerar nuevas clases de funciones  $(\mathcal{A}^{c_1,c_2}_{\epsilon} \ y \ \mathcal{A}^{c_1,c_2}_{\epsilon,d})$  que imponen supuestos no paramétricos sobre A(t) y  $\phi(t)$

# Clase $\mathcal{A}^{c_1,c_2}_{\epsilon}$

#### Definición

Dados  $0 < \epsilon \ll 1$  y  $\epsilon \ll c_1 < c_2 < \infty$ , el espacio  $\mathcal{A}^{c_1,c_2}_{\epsilon}$  de funciones de moda intrínseca consiste de funciones  $f: \mathbb{R} \to \mathbb{R}, f \in C^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$  de la forma

$$f(t) = A(t)\cos(2\pi\phi(t))$$

donde  $A: \mathbb{R} \to \mathbb{R}$  y  $\phi: \mathbb{R} \to \mathbb{R}$  satisfacen las siguientes condiciones para todo  $t \in \mathbb{R}$ :

$$egin{aligned} A &\in \mathit{C}^1(\mathbb{R}) \cap \mathit{L}^\infty(\mathbb{R}), \inf_{t \in \mathbb{R}} \mathit{A}(t) > \mathit{c}_1, \sup_{t \in \mathbb{R}} \mathit{A}(t) < \mathit{c}_2 \ \\ \phi &\in \mathit{C}^2(\mathbb{R}), \inf_{t \in \mathbb{R}} \phi'(t) > \mathit{c}_1, \sup_{t \in \mathbb{R}} \phi'(t) < \mathit{c}_2 \ \\ &|\mathit{A}'(t)| \leq \epsilon \phi'(t), \quad |\phi''(t)| \leq \epsilon \phi'(t) \end{aligned}$$

4 D > 4 A > 4 B > 4 B > B 9 9 9

# Clase $\mathcal{A}^{c_1,c_2}_{\epsilon,d}$

#### Definición

Fijado 0 < d < 1, el espacio  $\mathcal{A}_{\epsilon,d}^{c_1,c_2}$  de superposiciones de funciones de moda intrínseca consiste en funciones f de la forma

$$f(t) = \sum_{k=1}^{K} f_k(t)$$

para algún K>0 finito y para cada  $k=1,\ldots,K,\ f_k(t)\in\mathcal{A}^{c_1,c_2}_{\epsilon}$  tal que  $\phi_k$  satisface

$$\phi_k'(t) > \phi_{k-1}'(t)$$
 y  $\phi_k'(t) - \phi_{k-1}'(t) \ge d\left[\phi_k'(t) + \phi_{k-1}'(t)\right]$ 

# Clase $\mathcal{A}^{c_1,c_2}_{\epsilon}$

#### Teorema

Supongamos que  $a(t)\cos\phi(t)\in\mathcal{A}^{c_1,c_2}_{\epsilon}$  puede representarse de una forma diferente que también pertenece a  $\mathcal{A}^{c_1,c_2}_{\epsilon}$ , es decir,

$$a(t)\cos\phi(t) = A(t)\cos\varphi(t) \in \mathcal{A}_{\epsilon}^{c_1,c_2}$$

Definimos  $t_m \in \mathbb{R}, m \in \mathbb{Z}$  tal que  $\phi(t_m) = (m+1/2)\pi$ ,  $s_m \in \mathbb{R}, m \in \mathbb{Z}$  tal que  $\phi(s_m) = m\pi$ ,  $\alpha(t) = A(t) - a(t)$  y  $\beta(t) = \varphi(t) - \phi(t)$ . Entonces  $\alpha \in C^2(\mathbb{R})$ ,  $\beta \in C^1(\mathbb{R})$ ,  $\alpha(t_m) = 0$   $\forall m$ ,  $\beta(s_m) \geq 0$   $\forall m$  y  $\beta(s_m) = 0$  si y solo si  $\alpha(s_m) = 0$ . Además, tenemos que  $|\alpha'(t)| \leq 3\pi\epsilon$ ,  $|\alpha(t)| \leq \frac{4\pi^2\epsilon}{c_1}$  y  $|\beta(t)| < 3\pi\epsilon$  para todo  $t \in \mathbb{R}$ 

# Clase $\mathcal{A}^{c_1,c_2}_{\epsilon,d}$

#### Teorema

Supongamos que  $f(t) = \sum_{l=1}^{N} a_l(t) \cos \phi_l(t) \in \mathcal{A}^{c_1,c_2}_{\epsilon,d}$  puede representarse de una forma diferente que también pertenece a  $\mathcal{A}^{c_1,c_2}_{\epsilon,d}$ , es decir,

$$f(t) = \sum_{l=1}^{N} a_l(t) \cos \phi_l(t) = \sum_{l=1}^{M} A_l(t) \cos \varphi_l(t) \in \mathcal{A}_{\epsilon,d}^{c_1,c_2}$$

entonces M=N,  $|\phi_I(t)-\varphi_I(t)|\leq E_I\epsilon$ ,  $|\phi_I'(b)-\varphi_I'(b)|\leq E_I\epsilon$  y  $|a_I(t)-A_I(t)|\leq E_I\epsilon$  para todo  $I=1,\ldots,N$ , donde  $E_I>0$  es una constante universal finita que depende de  $c_1$ ,  $c_2$  y d.

4□ > 4□ > 4 = > 4 = > = 90

### Caso Continuo

Se modela a un proceso aleatorio Y(t) con múltiples componentes estacionales y tendencia contaminadas por errores heterocedásticos dependientes de la siguiente manera:

$$Y(t) = f(t) + T(t) + \sigma(t)\Phi(t)$$

- La estacionalidad  $f(t) = \sum_{k=1}^K A_k(t) \cos(2\pi\phi_k(t))$  está en  $\mathcal{A}^{c_1,c_2}_{\epsilon}$  o en  $\mathcal{A}^{c_1,c_2}_{\epsilon,d}$  cuando K>1
- La tendencia T(t) es una función real  $C^1$
- $\Phi(t)$  es algún proceso aleatorio estacionario
- $\sigma \in C^{\infty} \cap L^{\infty}$  es una función suave que se utiliza para modelar la heterocedasticidad del término de error, con  $\sigma(t) > 0$



#### Caso Discreto

En la práctica, solo podemos acceder al proceso de tiempo continuo Y(t) en puntos de muestreo discretos  $n\tau$ , donde  $n \in \mathbb{Z}$  y  $\tau > 0$  es el intervalo de muestreo. Entonces, consideramos el siguiente modelo de tiempo discreto:

$$Y_n = f(n\tau) + T(n\tau) + \sigma(n\tau)\Phi_n, n \in \mathbb{Z}$$
 (1)

- f, T y  $\sigma$  son como en el caso continuo
- $\Phi_n, n \in \mathbb{Z}$  es una serie estacionaria con media cero, por ejemplo, un proceso ARMA

#### Teoremas de Chen

Caso continuo y discreto

Muestran la robustez de SST para señales suma de estacionalidad más tendencia contaminada además por un proceso aleatorio heterocedástico y dependiente

#### Ventajas:

- Modelo no paramétrico junto con la técnica adaptativa de análisis de tiempo-frecuencia SST conforman un método capaz de responder satisfactoriamente las 5 preguntas
- Además tenemos los resultados de identificabilidad que nos dan confianza en las estimaciones encontradas



### Tabla de Contenidos

- 1 Introducción
- 2 Métodos para descomponer señales
- 3 Teoría de Wavelets
- Método no paramétrico
- Simulaciones
  - Configuración
  - ▶ Parámetros
  - Experimentos
- 6 Un ejemplo real

### **Funciones**

$$\begin{split} s_{1,1}(t) &:= 2.5\cos(2\pi t), \ \ s_{1,2} := 3\cos\left(2\pi^2 t\right) \\ A_1(t) &:= (1+0.1\cos(t))\arctan\left(\frac{1132-200t}{87}\right)/2 + 2 \\ A_2(t) &:= 3.5\chi_{[0,\ 7,5]}(t) + 2\chi_{(7,5,\ 10]}(t) \\ \phi_1(t) &:= t+0.1\sin(t), \ \phi_2(t) := 3.4t - 0.02|t|^{2,3} \\ s_{2,1}(t) &:= A_1(t)\cos\left(2\pi\phi_1(t)\right), \ \ s_{2,2} := A_2(t)\cos\left(2\pi\phi_2(t)\right) \end{split}$$

#### Estacionalidad y Tendencia

$$egin{aligned} s_1(t) &:= s_{1,1}(t) + s_{1,2}(t), \ s_2(t) := s_{2,1}(t) + s_{2,2}(t) \ T_1(t) &:= 8 \left( rac{1}{1 + (rac{t}{5})^2} + e^{-rac{t}{10}} 
ight), \ T_2(t) := 2t + 10e^{-rac{(t-4)^2}{6}} \end{aligned}$$

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P



### Ruido

- $X_1(n) := 2\sigma(n\tau)X_{ARMA1}(n)$
- $X_2(n) := \sigma(n\tau) \left( 4X_{\text{ARMA1}}(n)\chi_{[1,\frac{N}{2}]}(n) + X_{\text{ARMA2}}(n)\chi_{[\frac{N}{2}+1,N]}(n) \right)$
- $X_3(n) := 2X_{GARCH}(n)$

#### Métrica

Raíz del error cuadrático medio

$$RMSE(y, \hat{y}) = \sqrt{\frac{\sum_{t=1}^{T} (\hat{y}_t - y_t)^2}{T}}$$



#### Muestreo

- Período de tiempo [0, 10]
- Intervalo de muestreo de longitud au=1/100
- Resultan N = 1001 puntos de muestreo

#### Experimentos

Vamos a probar los algoritmos en series de tiempo de la forma:

$$\mathbf{Y}_{i,j,k,\sigma_0} := \mathbf{s}_i + \mathbf{T}_j + \sigma_0 \mathbf{X}_k$$

donde  $i = 1, 2, \ j = 1, 2, \ k = 1, 2, 3 \ y \ \sigma_0 \ge 0$ 

## Elección de parámetros

- Wavelet madre: "hhhat" (función analítica de Hilbert del sombrero hermitiano)
- Cantidad de componentes estacionales K=2
- Umbral Γ, valor por defecto
- Número de voces  $n_v = 32$
- Lidiamos con los efectos de frontera



Señal sin ruido  $s_2 + T_1$ 



Figura: **a)**  $s_2 + T_1$  **b)**  $T_1$  **c)**  $s_{2,1}$  **d)**  $s_{2,2}$ 

#### Resultado SST



#### Resultado EMD



#### Resultados

| Método | $\widetilde{s_{2,1}}$ | $\widetilde{s_{2,2}}$ | $\widetilde{T_1}$ |
|--------|-----------------------|-----------------------|-------------------|
| SST    | 0,170                 | 0,084                 | 0,325             |
| EMD    | 0,662                 | 0,418                 | 0,155             |

Tabla: Resultados de SST y EMD para la señal  $\emph{s}_2 + \emph{T}_1$ 

Señal con estacionalidad no dinámica  $m{Y}_{1,1,1,1} := m{s}_1 + m{T}_1 + m{X}_1$ 

- 101 realizaciones
- Analizamos con SST y TBATS
- $\bullet$  TBATS necesita como parámetro los períodos de los componentes estacionales, 100 y  $100/\pi$
- Graficamos la descomposición hecha por cada método para la realización que tuvo como RMSE la mediana entre todas las realizaciones.

### ${\sf Resultados\ TBATS/SST}$



#### Resultados

| Método | $\widetilde{s_{1,1}}$ | $\widetilde{s_{1,2}}$ | $\widetilde{	au_1}$ | ř                 | Tiempo            |
|--------|-----------------------|-----------------------|---------------------|-------------------|-------------------|
| SST    | $0,103 \pm 0,023$     | $0,181 \pm 0,024$     | $0,327 \pm 0,020$   | $0,391 \pm 0,024$ | $2,761 \pm 0,223$ |
| TBATS  | $0,140 \pm 0,036$     | $0,204 \pm 0,068$     | $0,431 \pm 0,655$   | $0,518 \pm 0,649$ | $7,714 \pm 1,819$ |

Tabla: Resultados de SST y TBATS para la señal  $s_1 + T_1 + X_1$ .

Señales con estacionalidad dinámica  $m{Y}_{2,j,k,\sigma_0} := m{s}_2 + m{T}_j + \sigma_0 m{X}_k$ 



Figura: Resultado SST para la señal  $oldsymbol{Y}_{2,1,2,1} := oldsymbol{s}_2 + oldsymbol{T}_1 + oldsymbol{X}_2$ 

Resultados SST

| (j, k, $\sigma_0$ ) | $\widetilde{s_{1,1}}$ | $\widetilde{s_{1,2}}$               | $\widetilde{	au_1}$                 | ř                 | Tiempo                              |
|---------------------|-----------------------|-------------------------------------|-------------------------------------|-------------------|-------------------------------------|
| (1, 2, 0.5)         | $0,\!206 \pm 0,\!018$ | $0,164 \pm 0,020$                   | $0,327 \pm 0,015$                   | $2,960 \pm 0,199$ | $2,\!378 \pm 0,\!270$               |
| (2, 2, 0.5)         | $0,205 \pm 0,018$     | $0,\!164\pm0,\!020$                 | $2,\!124\pm0,\!016$                 | $3,629 \pm 0,166$ | $2,945 \pm 0,494$                   |
| (1, 2, 1)           | $0,241 \pm 0,035$     | $\textbf{0,}279 \pm \textbf{0,}043$ | $\textbf{0,333} \pm \textbf{0,029}$ | $0,499 \pm 0,037$ | $2,765 \pm 0,262$                   |
| (2, 2, 1)           | $0,241 \pm 0,035$     | $\textbf{0,}279 \pm \textbf{0,}043$ | $2,\!124\pm0,\!031$                 | $2,156 \pm 0,030$ | $2,\!661 \pm 0,\!169$               |
| (1, 3, 0.5)         | $0,253 \pm 0,042$     | $0,\!279\pm0,\!032$                 | $\textbf{0,332} \pm \textbf{0,029}$ | $1,967 \pm 0,078$ | $2,\!482 \pm 0,\!085$               |
| (2, 3, 0.5)         | $0,253 \pm 0,042$     | $0,\!279\pm0,\!032$                 | $2,\!125\pm0,\!029$                 | $2,877 \pm 0,083$ | $2,\!758 \pm 0,\!146$               |
| (1, 3, 1)           | $0,368 \pm 0,076$     | $\textbf{0,504} \pm \textbf{0,064}$ | $\textbf{0,348} \pm \textbf{0,058}$ | $0,719 \pm 0,069$ | $2,824 \pm 0,128$                   |
| (2, 3, 1)           | $0,368 \pm 0,076$     | $\textbf{0,504} \pm \textbf{0,064}$ | $2,\!128\pm0,\!058$                 | $2,220 \pm 0,059$ | $\textbf{2,411} \pm \textbf{0,120}$ |

Tabla: Resultados de aplicar SST a señales  $m{Y_{2,j,k,\sigma_0}} := m{s_2} + m{T_j} + \sigma_0 m{X_k}$ 



Figura: Resultado TBATS para las señales  $m{Y_{2,1,2,1}} := m{s_2} + m{T_1} + m{X_2}$  (izquierda) y  $m{Y_{2,2,3,0,5}} := m{s_2} + m{T_2} + 0.5 m{X_3}$  (derecha)

#### Resultados TBATS

| (j, k, $\sigma_0$ ) | $\widetilde{s_{1,1}}$ | $\widetilde{s_{1,2}}$ | $\widetilde{	au_1}$   | ř                     | Tiempo             | Fallas |
|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|--------|
| (1, 2, 0.5)         | $1,393 \pm 0,072$     | $2,098 \pm 0,016$     | $1{,}187 \pm 0{,}851$ | $3,726 \pm 0,796$     | $8,926 \pm 2,690$  | 1      |
| (2, 2, 0.5)         | $1,412 \pm 0,048$     | $2,096 \pm 0,023$     | $1,363 \pm 0,615$     | $3,738 \pm 0,598$     | $8,876 \pm 2,862$  | 1      |
| (1, 2, 1)           | $1,411 \pm 0,046$     | $2,116 \pm 0,022$     | $0,865 \pm 0,199$     | $1,897 \pm 0,147$     | $10,447 \pm 3,394$ | 3      |
| (2, 2, 1)           | $1,411 \pm 0,045$     | $2,112 \pm 0,019$     | $1,293 \pm 1,379$     | $1,433 \pm 1,303$     | $9,618 \pm 2,615$  | 3      |
| (1, 3, 0.5)         | $1,443 \pm 0,078$     | $2,047 \pm 0,187$     | $1,361 \pm 0,550$     | $2,671 \pm 0,188$     | $7,477 \pm 2,994$  | 4      |
| (2, 3, 0.5)         | $1,\!443\pm0,\!061$   | $2,061 \pm 0,161$     | $1,575 \pm 0,449$     | $2,691 \pm 0,177$     | $8,441 \pm 2,989$  | 2      |
| (1, 3, 1)           | $1,\!509 \pm 0,\!119$ | $2,103 \pm 0,124$     | $1,608 \pm 0,556$     | $1,775 \pm 0,210$     | $5,767 \pm 1,756$  | 1      |
| (2, 3, 1)           | $1,\!517\pm0,\!131$   | $2,\!103\pm0,\!141$   | $1,713 \pm 0,439$     | $1,\!782 \pm 0,\!214$ | $5,716 \pm 2,098$  | 0      |

Tabla: Resultados de aplicar TBATS a señales  $m{Y}_{2,j,k,\sigma_0} := m{s}_2 + m{T}_j + \sigma_0 m{X}_k$ .

### Tabla de Contenidos

- 1 Introducción
- Métodos para descomponer señales
- 3 Teoría de Wavelets
- 4 Método no paramétrico
- Simulaciones
- 6 Un ejemplo real
  - ▶ Datos
  - ► CWT y SST
  - ▶ Descomposición

### Movimiento de codornices japonesas

- Períodos de descanso y de movimiento
- Ritmos circadianos de 24 hs y ritmos ultradianos, por ejemplo de 12, 8 o 6 hs
- Patrones fractales
- Correlación temporal de largo alcance

Estudiaremos los ritmos, con períodos de varias horas, utilizando SST



### Recolección y procesamiento de los datos

- Los datos se registraron de forma continua durante 6,5 días
- Frecuencia de muestreo de  $0.5 \text{ s} (> 10^6 \text{ datos})$
- Serie de estados mutuamente excluyentes: móvil (1)/ inmóvil (0)
- Cada día, durante 30 minutos, se realizaban tareas de mantenimiento
- Se agrupan y promedian los datos de a 6 minutos
- Obtenemos una serie de largo 1479 con valores entre 0 y 1



# Codornices 2 y 4



# Codornices 7 y 11



# SST para la codorniz 5





# Descomposición para la codorniz 5



### Tabla de Contenidos

- 1 Introducción
- Métodos para descomponer señales
- 3 Teoría de Wavelets
- 4 Método no paramétrico
- Simulaciones
- 6 Un ejemplo real
- Conclusiones



#### Generales

Existen muchos métodos en la literatura estadística para descomponer señales que tienen en cuenta tanto la estacionalidad como la tendencia. En este trabajo estudiamos tres de ellos: SST, EMD y TBATS.

Sobre el problema de la identificabilidad vimos teoremas que nos permiten afirmar que si f está en cierta clase de funciones la diferencia entre distintas representaciones de f es despreciable, con lo que podemos decir que f es "identificable", y que al aplicar SST estamos encontrando la única función que explica nuestros datos y que no hay otra observacionalmente equivalente.

### Comparación de métodos

- TBATS al ser paramétrico puede ser demasiado restrictivo
- Métodos no paramétricos como EMD o SST responden mejor a un sistema dinámico, incluso si las frecuencias y las amplitudes que varían en el tiempo son desconocidas
- SST es robusto a errores, incluso heterocedásticos y dependientes, en la práctica y la teoría, mientras que EMD puede ser muy inestable y difícil de analizar matemáticamente
- SST requiere algunos argumentos, EMD ninguno



En definitiva, no hay un método universal que funcione perfecto bajo cualquier circunstancia. Depende que tipo de serie queremos estudiar y que pretendemos obtener del análisis de esa serie. Pero es importante entender las fortalezas y debilidades de cada uno para saber porque pueden fallar y cuál conviene usar en cada caso

# ¡Muchas Gracias!

