heuristic_analysis

May 8, 2017

1 Heuristic Analysis - Planning Seach Algorithm

- 1.1 Air Cargo System
- 1.2 Uninformed planning searches
- 1.2.1 Optimal sequence of actions for each problem (Planning problems):

Problem 1

Optimal plan length 6

Load(C1, P1, SF0) Load(C2, P2, JFK)

Fly(P1, SFO, JFK)

Fly(P2, JFK, SFO)

Load(C1, P1, JFK)

Load(C2, P2, SF0)

Problem 2

Optimal plan length 9

Load(C1, P1, SF0)

Load(C2, P2, JFK)

Fly(P2, JFK, ATL)

Load(C3, P2, ATL)

Fly(P1, SFO, JFK)

Load(C1, P1, JFK)

Fly(P2, ATL, SF0)

Load(C2, P2, SF0)

Load(C3, P2, SF0)

Problem 3

Optimal plan length 12

Load(C1, P1, SF0)

Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Load(C1, P1, JFK)

Load(C3, P1, JFK)

Fly(P2, ORD, SFO)

11)(12, 0102, 010)

Load(C2, P2, SFO)

Load(C4, P2, SF0)

1.2.2 Analysis for non heuristic search

Breadth First Search BFS is optimal with better performance in terms of time and space complexity (number of node expansion)

	Expansions	Goal Tests	Time elapsed	Plan length
Problem 1	43	56	0.041	6
Problem 2	3190	4380	16.083	9
Problem 3	14663	18098	139.33	12

Depth First Graph Search DFGS is not optimal with high space complexity

	Expansions	Goal Tests	Time elapsed	Plan length
Problem 1	21	22	0.022	20
Problem 2	1172	1173	4.59	200
Problem 3	408	409	2.24	392

Uniform Cost Search UCS is optimal however explores nodes more than BFS

	Expansions	Goal Tests	Time elapsed	Plan length
Problem 1	55	57	0.049	6
Problem 2	4548	4550	13.74	9
Problem 3	18235	18237	72.18	12

1.2.3 Analysis for A* searches

	Expansions	Goal Tests	Time elapsed	Plan length
Problem 1	55	57	0.98	6
Problem 2	4548	4550	558	9

	Expansions	Goal Tests	Time elapsed	Plan length
Problem 3	18235	18237	3147.5	12

A* search h_pg_levelsum.

	Expansions	Goal Tests	Time elapsed	Plan length
Problem 1	41	43	0.04	6
Problem 2	1379	1381	4.9	9
Problem 3	5040	5042	21.5	12

A* search h_ignore_preconditions Ignore Preconditions heuristic out perform all non-heuristic algorithms and levelsum heuristic as well in terms of the number of node expansion and in time, which indicate that evaluating the preconditions takes time.

In general A* search is optimal and it has less expansion than non-heuristic algorithms, however, it takes more time/ computation effort to reach the goal.