Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(Original) A process for the hydrogenation and/or asymmetric hydrogenation of an imine of Formula (I) to an amine of Formula (II):

wherein

 ${\sf R}^1$ is selected from the group consisting of aryl and heteroaryl, which two groups are optionally substituted;

R² is selected from the group consisting of hydrogen, aryl, heteroaryl, C₁₋₁₀alkyl,

 $C_{2\text{-}10}$ alkenyl, $C_{2\text{-}10}$ alkynyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkenyl and $C_{3\text{-}10}$ heterocyclo, which latter eight groups are optionally substituted; and

R³ is selected from the group consisting of optionally substituted C₁ to C₂ alkyl and optionally substituted C₃₋₁₀cycloalkyl;

or R1 and R2 or R2 and R3 are linked to form an optionally substituted ring;

wherein the optional substituents of R^1 and R^2 are independently selected from one or more of the group consisting of halo, NO₂, OR⁴, NR⁴₂ and R⁴, in which R⁴ is independently selected from one or more of the group consisting of hydrogen, aryl,

 $C_{1\text{--}6}$ alkyl, $C_{2\text{--}6}$ alkenyl, $C_{3\text{--}6}$ cycloalkyl and $C_{3\text{--}6}$ cycloalkenyl;

 ${\sf R}^1$ is selected from the group consisting of aryl and heteroaryl, which two groups are optionally substituted;

R² is selected from the group consisting of hydrogen, aryl, heteroaryl, C₁₋₁₀alkyl,

 C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl and C_{3-10} heterocyclo, which latter eight groups are optionally substituted; and

 R^3 is selected from the group consisting of optionally substituted C_1 to C_2 alkyl and optionally substituted C_{3-10} cycloalkyl;

or R^1 and R^2 or R^2 and R^3 are linked to form an optionally substituted ring;

wherein the optional substituents of R^1 and R^2 are independently selected from one or more of the group consisting of halo, NO₂, OR^4 , NR^4_2 and R^4 , in which R^4 is independently selected from one or more of the group consisting of hydrogen, aryl,

C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl and C₃₋₆cycloalkenyl;

2. (Original) A process for the hydrogenation and/or asymmetric hydrogenation of an imine of Formula (III) to an amine of Formula (IV):

wherein

 R^4 and R^5 represent simultaneously or independently hydrogen, aryl, heteroaryl, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl or C_{3-10} heterocyclo, which latter eight groups are optionally substituted, or

R⁴ and R⁵ are linked together to form an optionally substituted ring;

 R^6 is selected from the group consisting of H, aryl, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl,

 $C_{3\text{--}10} \text{cycloalkyl and } C_{3\text{--}10} \text{cycloalkenyl, which latter six groups are optionally substituted};$

wherein the optional substituents of R⁴, R⁵ and R⁶ are independently selected from one or more of the group consisting of halo, NO₂, OR⁷, NR⁷₂ and R⁷, in which R⁷ is independently selected from the group consisting of C_{1:6}alkvI, C_{2:6}alkenyl and

C2-salkynyl; and

one or more of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R^4 , R^5 and/or R^5 are optionally replaced with a heteroatom selected from the group consisting

of O, S, N, P and Si, which, where possible, is optionally substituted with one or more C_{1-8} alkyl groups,

said process comprising the steps of reacting imines of Formula (III) in the presence of H_2 , and a catalytic system in which the catalytic system includes a base and a ruthenium complex comprising (1) a diamine and (2) a diphosphine ligand or monodentate phosphine ligands.

- (Original) The process according to claim 1, wherein the amine of Formula (II) or its opposite enantiomer, is produced in enantiomerically enriched form.
- 4. (Original) The process according to claim 2, wherein the amine of Formula (IV) or its opposite enantiomer, is produced in enantiomerically enriched form.
- (Currently Amended) The process according to claim 1 er-3, wherein R¹ is optionally substituted aryl.
- 6. (Original) The process according to claim 5, wherein R1 is optionally substituted phenyl,
- 7. (Original) The process according to claim 6, wherein $\ensuremath{R^1}$ is unsubstituted phenyl.
- 8. (Currently Amended) The process according to any-one of claim[[s]] 5[[-7]], wherein R² is selected from the group consisting of hydrogen, aryl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl and C₃₋₆cycloalkenyl, which latter six groups are optionally substituted.
- 9. (Original) The process according to claim 8, wherein R^2 is selected from the group consisting of hydrogen, aryl and $C_{1\text{-e}}$ alkyl, which latter two groups are optionally substituted.
- 10. (Original) The process according to claim 9, wherein R^2 is selected from the group consisting of hydrogen, phenyl, and $C_{1\text{-}e}$ alkyl, which latter two groups are optionally substituted

- 11. (Oriiginal) The process according to claim 10, wherein \mathbb{R}^2 is selected from the group consisting of hydrogen, unsubstituted phenyl and methyl.
- 12. (Currently Amended) The process according to any—one—of claim[[s]] 5[[-14]], wherein R³ is selected from the group consisting of optionally substituted C₁ to C₂ alkyl and optionally substituted C₃₅cycloalkyl.
- 13. (Original) The process according to claim 12, wherein R³ is methyl, ethyl, i-propyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which latter four groups are unsubstituted
- 14. (Currently Amended) The process according to claim[[s]] 1 er-3, wherein R² and R³, including the atoms to which they are attached, are linked to form an optionally substituted 5- or 6-membered ring.
- 15. (Original) The process according to claim 14, wherein R^2 and R^3 , including the atoms to which they are attached, are linked to form an unsubstituted 5- or 6-membered ring.
- 16. (Currently Amended) The process according to any—one—of claim[[s]] 5[[-45]], wherein the optional substituents for R^1 and R^2 in the compounds of Formula I, are independently selected from one or more of the group consisting of halo, NO_2 , OR^4 , NR^4 ₂ and R^4 , in which R^4 is independently selected from one or more of the group consisting of hydrogen, aryl and C_{1-4} alkyl, and the optional substituents of R^3 are independently selected from one or more of the group consisting of halo, NO_2 , OR^5 , NR^5 ₂ and R^5 , in which R^5 is independently selected from the group consisting of C_{1-4} alkyl.
- 17. (Original) The process according to claim 16, wherein the optional substituents for R^1 and R^2 in the compounds of Formula I, are independently selected from one or more of

the group consisting of halo, NO₂, OH, OCH₃, NH₂, N(CH₃)₂, CH₃ and phenyl and the optional substituents of R³ are independently selected from one or more of the group consisting of halo, NO₂, OH, OCH₃, NH₂, N(CH₃)₂ and CH₃.

- 18. (Currently Amended) The process according to any-one of claim[[s]] 5[[-47]], wherein one to three of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R¹, R² and/or R³ is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.
- 19. (Original) The process according to claim 18, wherein suitably one of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R¹, R² and/or R³ is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.
- 20. (Currently Amended) The process according to claim 2 er-4, wherein R^4 and R^5 represent simultaneously or independently hydrogen, aryl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-6} cycloalkyl or C_{3-6} cycloalkenyl, which latter six groups are optionally substituted.
- 21. (Original) The process according to claim 20, wherein R^4 and R^5 represent simultaneously or independently hydrogen, aryl or $C_{1\text{-}6}$ alkyl, which latter two groups are optionally substituted.
- 22. (Original) The process according to claim 21, wherein R⁴ and R⁵ represent simultaneously or independently hydrogen, phenyl, and C₁₋₆alkyl, which latter two groups are optionally substituted.
- 23. (Original) The process according to claim 22, wherein R⁴ and R⁵ represent simultaneously or independently hydrogen, unsubstituted phenyl or methyl.

- 24. (Currently Amended) The process according to claim 2 or-claim 4, wherein R⁴ and R⁵, including the atoms to which they are attached, are linked to form an optionally substituted, suitably unsubstituted, 5- or 6-membered ring.
- 25. (Currently Amended) The process according to any one of claim[[6]] 20[[-24]], wherein R^6 is selected from the group consisting of H, aryl, $C_{1:6}$ alkyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkenyl, $C_{2:6}$ alkenyl, $C_{3:6}$ cycloalkyl and $C_{3:6}$ cycloalkenyl, which latter six groups are optionally substituted.
- 26. (Original) The process according to claim 25, wherein R^6 is selected from the group consisting of H and $C_{1:4}$ alkyl.
- 27. (Original) The process according to claim 26, wherein R⁶ is H.
- 28. (Currently Amended) The process according to any ene of claim[[6]] 20[[-27]], wherein the optional substituents for R^4 , R^5 and R^6 , are independently selected from one or more of the group consisting of halo, NO_2 , OR^7 , NR^7 ₂ and R^7 , in which R^7 is independently selected from one or more of the group consisting of C_{1-4} alkyl.
- 29. (Original) The process according to claim 28, wherein the optional substituents for R⁴, R⁵ and R⁶ in the compounds of Formula III, are independently selected from one or more of the group consisting of halo, NO₂, OH, OCH₃, NH₂, N(CH₃)₂ and CH₃,
- 30. (Currently Amended) The process according to any-one-of claim[[s]] 20[[-29]], wherein one to three, of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R⁴, R⁵ and/or R⁵ is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.
- 31. (Original) The process according to claim 30, wherein one of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R^4 , R^5 and/or R^6 is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.

- 32. (Currently Amended) The process according to any-one-of claim[[s]] 1 to-31, wherein said ruthenium complex has the general Formula RuXY(PR₃)z(NH₂-Z-NH₂) (III) or RuXY(R₂P-Q-PR₂)(NH₂-Z-NH₂) (IV), where Z and Q represent a chiral or achiral linker; the ancilliary ligands PR₃ and R₂P-Q-PR₂ represent monodentate and bidentate phosphines, respectively; and the ligands X and Y represent an anionic ligand.
- 33. (Original) The process according to claim 32, wherein the ligand PR₃:

represents a chiral or achiral monodentate phosphine ligand in which R is simultaneously or independently selected from the group consisting of optionally substituted linear and branched alkyl containing 1 to 8 carbon atoms, optionally substituted linear and branched alkenyl containing 2 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; or two R groups bonded to the same P atom are bonded together to form a ring having 5 to 8 atoms and including the phosphorous atom to which said R groups are bonded.

34. (Original) The process according to claim 32, wherein the ligand R₂P-Q-PR₂:

represents a bidentate ligand in which R is simultaneously or independently selected from the group consisting of optionally substituted linear and branched alkyl containing 1 to 8 carbon atoms, optionally substituted linear and branched alkenyl containing 2 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; or two R groups bonded to the same P atom are bonded together to form a ring having 5 to 8 atoms and including the phosphorous atom to which said R groups are bonded;

and Q is selected from the group consisting of linear and cyclic C₂-C₇ alkylene, optionally substituted metallocenediyl and optionally substituted C₆-C₂₂ arylene.

- 35. (Original) The process according to claim 34, wherein the ligand R₂P-Q-PR₂ is chiral and includes atropisomeric bis-tertiary phosphines, in which the two phosphorus atoms are linked by a biaryl backbone.
- 36. (Original) The process according to claim 35, wherein the ligand R_2P -Q-PR $_2$ is selected from the group consisting of BINAP, BIPHEP and BIPHEMP.
- 37. (Original) The process according to claim 32, wherein the bidentate phosphine is a chiral or achiral ligand of the type R₂P-NR⁸-Z-NR⁸-PR₂:

R₂P-NR⁸-Z-NR⁸-PR₂

wherein each R, taken separately, is independently selected from the group consisting of optionally substituted linear and branched alkyl containing 1 to 8 carbon atoms, optionally substituted linear and branched alkenyl containing 2 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; or two R groups bonded to the same P atom are bonded together to form a ring having 5 to 8 atoms and including the phosphorous atom to which said R groups are bonded; each R^8 , taken separately, is independently selected from the group consisting of hydrogen, optionally substituted linear and branched alkyl and alkenyl containing 1 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; and Z is optionally substituted linear and cyclic C_2 - C_7 alkylene, optionally substituted metallocenediyl and optionally substituted C_6 - C_{22} arylene.

38. (Original) The process according to claim 37, wherein the ligand R₂P-NR⁸-Z-NR⁸-PR₂ is selected from the group consisting of DPPACH and DCYPPACH.

39. (Currently Amended) The process according to any one of claim[[s]] 1 to 38, wherein the diamine ligand has the Formula NH₂-Z-NH₂:

wherein Z is selected from the group consisting of optionally substituted linear and cyclic C_2 - C_7 alkylene, optionally substituted metallocenediyl and optionally substituted C_6 - C_{22} arylene.

- 40. (Original) The process according to claim 39, wherein the diamine ligand is chiral and includes (1) compounds in which at least one of the amine-bearing centers is stereogenic, (2) compounds in which both of the amine-bearing centers are stereogenic and (3) atropisomeric bis-tertiary diamines, in which the two nitrogen atoms are linked by a biaryl backbone.
- 41. (Original) The process according to claim 39, wherein the diamine ligand NH₂-Z-NH₂ is selected from the group consisting of CYDN and DPEN.
- 42. (Currently Amended) The process according to any-one-of claim[[6]] 1 to-38, wherein the diamine is a bidentate ligand of the Formula D-Z-NHR⁹ in which Z is selected from the group consisting of optionally substituted linear and cyclic C₂-C₇ alkylene, optionally substituted metallocenediyl and optionally substituted C₆-C₂₂ arylene; D is an amido group donor or a chalcogenide radical selected from the group consisting of O, S, Se and Te; NHR⁶ is an amino group donor in which R⁹ is selected from the group consisting of hydrogen, optionally substituted linear and branched alkyl and alkenyl containing 1 to 8 carbon atoms, optionally substituted cycloalkyl and optionally substituted aryl.

- 43. (Original) The process according to claim 42, wherein D is NR¹⁰, wherein R¹⁰ is selected from the group consisting of $S(O)_2R^{10}$, $P(O)(R^{10})_2$, $C(O)R^{10}$, $C(O)N(R^{10})_2$ and $C(S)N(R^{10})_2$, in which R¹⁰ is independently selected from the group consisting of hydrogen, optionally substituted linear and branched alkyl and alkenyl containing 1 to 8 carbon atoms, optionally substituted cycloalkyl and optionally substituted aryl.
- 44. (Original) The process according to claim 42, wherein the diamine is chiral and includes (1) compounds in which the amine-bearing center is stereogenic, (2) compounds in which both the donor-bearing (D) and amine-bearing centers are stereogenic.
- 45. (Original) The process according to claim 44, wherein the diamine is $CH_3C_6H_4SO_3NCHPhCHPhNH_2$.
- 46. (Currently Amended) The process according to any one of claim[[s]] 1 to 45, wherein the ligands X and Y is selected from the group consisting of CI, Br, I, H, hydroxy, alkoxy and acyloxy.
- 47. (Currently Amended) The process according to any one of claim[[s]] 1 to 46, wherein the base is an alcoholate or an hydroxide salt selected from the group consisting of compounds of the Formula $(R^{12}O)_2M'$ and $R^{12}OM''$, in which M' is an alkaline-earth metal, M'' is an alkaline metal and R^{12} is selected from the group consisting of hydrogen, C_1 to C_6 linear and branched alkyl.
- 48. (Currently Amended) The process according to any—one—of claim[[s]] 1[[-47]], wherein the base is an organic non-coordinating base.
- 49. (Original) The process according to claim 48, wherein the base is selected from the group consisting of DBU, NR_3 and phosphazene.

- 50. (Currently Amended) The process according to any one of claim[[s]] 1 to 49, wherein the hydrogenation is carried out in the absence of a solvent.
- 51. (Currently Amended) The process according to any one of claim[[s]] 1 to 49, wherein the hydrogenation reaction is carried out in the presence of a solvent.
- 52. (Original) The process according to claim 51, wherein the solvent is selected from the group consisting of benzene, toluene, xylene, hexane, cyclohexane, tetrahydrofuran, primary and secondary alcohols, and mixtures thereof.
- 53. (Original) The process according to claim 51, wherein the hydrogenation is carried out in an amine solvent.
- 54. (Currently Amended) A process for the preparation of amines of Formula V from the amine of the Formula IV, or the opposite enantiomer thereof:

wherein R^4 , R^5 and R^6 are as defined in any-one-or claim[[s]] 2, 4-and-20-31, comprising reacting compounds of Formula IV under conditions for the selective removal of the CH_2 - $C=C-R^6$ group.

- 55. (Original) The process according to claim 54, wherein the conditions for the selective removal of the CH₂-C=C-R⁶ group comprise TiCl₃ and lithium.
- 56. (Currently Amended) The process according to claim 54 or 55 wherein the compound of Formula IV is enantiomericly enriched.