worksheet 18

April 3, 2024

1 Worksheet 18

Name: **Bowen Li** UID: **U79057147**

1.0.1 Topics

• Linear Regression

1.0.2 Optional Challenge

Every day my alarm goes off at seemingly random times... I've recorded the times at which it goes off for the past year of so (1 - 355 days). Today is day 356. Can you predict when my alarm will ring using data.csv?

Please fill out the piazza poll if you think you found the answer.

1.1 Linear Regression

Where does randomness come from?

```
intercepts = np.ones(355)
adj_mins = alarms['adjusted_mins'].to_numpy()
X = np.array([intercepts, np.log(alarms['day'].to_numpy())]).T

beta_hat = np.linalg.solve(X.T @ X, X.T @ adj_mins)

print(beta_hat)

alarms['pred'] = beta_hat[0] + beta_hat[1] * np.log(alarms['day'].to_numpy())
alarms.plot.scatter(x='day', y='adjusted_mins', c = 'b')
alarms.plot.scatter(x='day', y='pred', c = 'g')

print((beta_hat[0] + beta_hat[1] * np.log(356)) % 1440)
```

[-1.08077269e-02 9.83050156e+02] 15.340760939289794


```
[2]: %matplotlib inline
     import numpy as np
     import matplotlib.pyplot as plt
     from mpl_toolkits.mplot3d import Axes3D
     SAMPLE_SIZE = 100
     # it's possible for y = 3 * x_1 + (1/4) * x_2
     # but we don't know to look for x_2 and we only have x_1 as a feature
     x1 = -10.0 + 20.0 * np.random.random(SAMPLE_SIZE)
     x2 = -10.0 + 20.0 * np.random.random(SAMPLE_SIZE)
     y = 3 * x1 + (1/4) * x2
     # Create the figure
     fig = plt.figure()
     # Add an axes
     ax = fig.add_subplot(111,projection='3d')
     # and plot the point
     ax.scatter(x1 , x2 , y, color='green')
```

```
ax.set_xlabel("x1")
ax.set_ylabel("x2")
ax.set_zlabel("y")
plt.show()
```


a) Create and plot a dataset of 100 (Y, X) points where Y = 1 + 0.5 * X + eps.

```
[3]: import numpy as np
import matplotlib.pyplot as plt

SAMPLE_SIZE = 100

true_beta = np.array([ 1 , 0.5 ])
x = -10.0 + 20.0 * np.random.random(SAMPLE_SIZE)
y = true_beta[0] + true_beta[1] * x + np.random.randn(SAMPLE_SIZE)
plt.plot(x,y,'ro',markersize=4)
plt.show()
```


b) Plot the least squares estimate line through the scatter plot.

[1.11395025 0.49481614]

- c) How does the estimate of beta compare to the parameters we used to generate the data? The estimate is close to the parameters we used to generate the data.
 - d) Create and plot a dataset of 100 (Y, X) points where Y = 1 + 3 * X + .5 * X^2 + eps.

e) Plot the least squares estimate line through the scatter plot.

[0.98198296 2.97468036 0.50096126]

- f) How does the estimate of beta compare to the parameters we used to generate the data? The estimate is close to the parameters we used to generate the data.
 - g) Let's repeat d) and f) a large number of times to see how close our estimates are on average and what that distribution looks like.

