

The Machine Learning Pipeline:

Keeping Track of Models & Explaining Them (Visually)

Weijing Tang & Erika Lee CS764 Fall 2016

A Typical Machine Learning Workflow

Model Management

What

- ★ Which algorithms, parameters, and features have been tried
- **★** How they each performed

Why

- * Replicability
- **★** Minimize duplicate efforts

Stakeholder Buy-in

What

★ Present & explain what the best model does

Why

- ★ Many machine-learning algorithms = black box
- ★ Need to convince decision makers & humans in the loop

Data Transformation: Ava

★ Ava = A Machine Learning Chatbot developed by Rogers Jeffrey Leo John, Navneet Potti, Jignesh M. Patel @ UW Madison

Model Generation: Ava

Model Management: Ava's Notes

★ Extract discrete model information from Ava's logs

★ Visualize it!

Model Management: Ava's Notes

Model Explanation: LIME

- ★ LIME = 'Local Interpretable Model-Agnostic Explanations' developed by Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin @ University of Washington
- ★ Intuition: learn a linear model approximating the actual model in the vicinity of a data point whose prediction we want to explain

Model Explanation: LIME

Given

- ★ a data point whose prediction we want to explain
- **★** the predictions from a learned model

Output

Model Explanation: Globalizing LIME

- I. Aggregate the weight of "Distinguishing Features" identified at different data points
 - **★** Brute-force through all test data points?
 - **★** Randomly sample test data points?
 - ★ Cluster the test data points, use the centroids?
- II. Find the highest ranking "Distinguishing Features" for each unique label value

Model Explanation: Globalizing LIME

Explanation of Model #15			₽ XL 🗖
Prediction	Most Distinguishing Features	Weight of Feature	
Income<=50K	Capital_Gain <= 0.00	54.16	
	Marital_Status_Married-civ-spouse=0	22.81	
	Occupation_Exec-managerial=0	13.05	
	Education_Num <= 9.00	10.29	
	Hours_per-week <= 40.00	6.85	
Income>50K	Capital_Gain > 0.00	28.19	
	Marital_Status_Married-civ-spouse=1	22.75	
	Education_Num > 12.00	10.38	1 - 12
	Occupation_Other-service=0	2.36	
	Occupation_Exec-managerial=1	2.19	

Model Explanation: What Next?

- ★ Further extension on LIME
- ★ Clustering + Discriminant Analysis
- Principal Component Analysis/Data Reduction Approach
- ★ "Hack"/reverse-engineer

Rogers Jeffrey Leo John, Navneet Potti, Jignesh M. Patel, Ava: From Data to Insights Through Conversation (2016).

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin, "Why Should I Trust You?" Explaining the Predictions of Any Classifier (2016).

Florian Tramèr, et al. Stealing Machine Learning Models via Prediction APIs. *USENIX Security*. 2016.

