44. Calculer $\int_{1}^{2} f(x) dx =$

Calculer a:

 $1. \pi / 12$

2. 0

Les questions 45 et 46 se rapportent à la cycloïde d'équations paramétriques

1/2

3.

4. $\pi/2$

5. $\pi/3$ (M.-84)

Les questions 45 et 46 se rapportent à la cycloide d'equations parametre.
$$\begin{cases} x = \frac{1}{2}(t - \sin t) \\ y = \frac{1}{2}(1 - \cos t) \end{cases}$$
 une arcade de la cycloïde est déterminée par $0 < t < 2\pi$ (M.-84)

 $45. \text{ La tangente correspondante au point } t = \frac{\pi}{2} \text{ est parallèle à la première}$ bissectrice des axes coordonnées. Son équation a la forme y = x + a.

1.
$$3 - 2\frac{\pi}{3}$$
 2. $\frac{2}{3} - \frac{\pi}{3}$ 3. $\frac{8}{3} - 2\frac{\pi}{3}$ 4. $1 - \frac{\pi}{4}$ 5. $\frac{4}{3} - \frac{\pi}{3}$

46. L'aire de la surface limitée par une arcade de cycloïde et l'axe 0x vaut :

1.
$$\frac{\pi}{3}$$
 2. $27\frac{\pi}{3}$ 3. $4\frac{\pi}{3}$ 4. $16\frac{\pi}{3}$ 5. $3\frac{\pi}{4}$

47. Soit $F(x) = \int_{1}^{1+x^2} \ln t \, dt$. Calculer $F'(1)$ (attention! On demande la

47. Soit $F(x) = \int_{1}^{x} \ln t \, dt$. Calculer F'(t) (attention: On dehance to valeur de la dérivée au point 1) 1. $2 \ln 2 - 1$ 2. $2 \ln 2 - 3$ 3. $2 \ln 2$ 4. $2(\ln 2 + 1)$ 5. $\ln 2$ (MB.-85)

48. L'aire de la surface limitée par l'axe 0x, la courbe d'équation
$$y = x e^{-x}$$
 et la droite $x = \ln 2$ vaut :

3 - $\ln 2$ 3 - $\ln 2$ $\ln 2$

$$1.\frac{1+\ln 2}{2} \quad 2.\frac{3+\ln 2}{2} \quad 3.\frac{3-\ln 2}{2} \quad 4.\frac{\ln 2}{2} \quad 5.\frac{1-\ln 2}{2} \quad (MB. 85)$$

$$49 \int_{-\pi}^{\frac{\pi}{3}} \frac{\cos^3 x \, dx}{1-\sin x} =$$
www.ecoles-rdc.net

1.
$$\sqrt{3}$$
 2. $\frac{\sqrt{3}}{2} - \frac{1}{4}$ 3. $\frac{\sqrt{3}}{2} + \frac{3}{4}$ 4. $\frac{3}{4}$ 5. $\frac{\sqrt{3}}{2} + \frac{1}{4}$ (MB.-85)

50. Le volume de révolution engendré par la rotation de l'axe 0x de la

50. Le volume de révolution engendré par la rotation de l'axe ox de la courbe d'équation $y^2 = 4x$ pour 0 < x < 1 vaut :

1. π 2. 4π 3. $\pi/2$ 4. 2π 5. $4\pi/3$ (MB. 86)