Contextual Word Representations with BERT and Other Pre-trained Language Models

Jacob Devlin Google Al Language

History and Background

Pre-training in NLP

 Word embeddings are the basis of deep learning for NLP

Word embeddings (word2vec, GloVe) are often
 pre-trained on text corpus from co-occurrence
 statistics

Contextual Representations

Problem: Word embeddings are applied in a context free manner

```
open a bank account on the river bank [0.3, 0.2, -0.8, ...]
```

• **Solution**: Train *contextual* representations on text corpus

```
[0.9, -0.2, 1.6, ...] [-1.9, -0.4, 0.1, ...] open a bank account on the river bank
```

History of Contextual Representations

Semi-Supervised Sequence Learning, Google, 2015

Fine-tune on Classification Task

History of Contextual Representations

 ELMo: Deep Contextual Word Embeddings, Al2 & University of Washington, 2017

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

History of Contextual Representations

 Improving Language Understanding by Generative Pre-Training, OpenAI, 2018

Model Architecture

Transformer encoder

- Multi-headed self attention
 - Models context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional embeddings
 - Allows model to learn relative positioning

Model Architecture

- Empirical advantages of Transformer vs. LSTM:
- 1. Self-attention == no locality bias
 - Long-distance context has "equal opportunity"
- 2. Single multiplication per layer == efficiency on TPU
 - Effective batch size is number of words, not sequences

Transformer

LSTM

BERT

Problem with Previous Methods

- Problem: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- <u>Reason 1:</u> Directionality is needed to generate a well-formed probability distribution.
 - We don't care about this.
- Reason 2: Words can "see themselves" in a bidirectional encoder.

<u>Unidirectional</u> vs. Bidirectional Models

Unidirectional context Build representation incrementally

Bidirectional context Words can "see themselves"

Masked LM

- Solution: Mask out k% of the input words, and then predict the masked words
 - We always use k = 15%

```
store gallon

the man went to the [MASK] to buy a [MASK] of milk
```

- Too little masking: Too expensive to train
- Too much masking: Not enough context

Masked LM

- Problem: Mask token never seen at fine-tuning
- Solution: 15% of the words to predict, but don't replace with [MASK] 100% of the time. Instead:
- 80% of the time, replace with [MASK]
 went to the store → went to the [MASK]
- 10% of the time, replace random word
 went to the store → went to the running
- 10% of the time, keep same

went to the store \rightarrow went to the store

Next Sentence Prediction

 To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Label = IsNextSentence
```

Sentence A = The man went to the store. Sentence B = Penguins are flightless. Label = NotNextSentence

Input Representation

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings
- Single sequence is much more efficient.

Model Details

- <u>Data</u>: Wikipedia (2.5B words) + BookCorpus (800M words)
- <u>Batch Size</u>: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- <u>Training Time</u>: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head
- BERT-Large: 24-layer, 1024-hidden, 16-head
- Trained on 4x4 or 8x8 TPU slice for 4 days

Fine-Tuning Procedure

Fine-Tuning Procedure

GLUE Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80,1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MultiNLI

<u>Premise</u>: Hills and mountains are especially sanctified in Jainism.

Hypothesis: Jainism hates nature.

Label: Contradiction

CoLa

<u>Sentence</u>: The wagon rumbled down the road.

<u>Label</u>: Acceptable

<u>Sentence</u>: The car honked down the road.

Label: Unacceptable

SQuAD 2.0

What action did the US begin that started the second oil shock? Ground Truth Answers: <No Answer> Prediction: <No Answer>

The 1973 oil crisis began in October 1973 when the members of the Department of Arab Petroleum Exporting Countries (DAPEC, consisting of the Arab members of OPEC plan Egypt and Syrial proclaimed an oil emberge. By the end of the embargo in March 1974, the price of oil had risen toos USS3 per borrel to nearly \$12 globally. US prices were significantly higher. The embargo caused an oil offails, or "shock", with many short- and long-born effects on global politics and the global economy. It was later called the "last oil shock", followed by the 1979 oil crisis, termed the "second oil shock."

Rank	Model	EM	F1
	Human Performance Stanford University (Ra)purkar & Jia et al. '18)	86.831	89.452
12 Nov 08, 2018	BERT (single model) Google Al Language	80.005	83.061
20 Sep 13, 2018	ninet (single model) Microsoft Research Asia	74.272	77.052

- Use token 0 ([CLS]) to emit logit for "no answer".
- "No answer" directly competes with answer span.
- Threshold is optimized on dev set.

Effect of Pre-training Task

- Masked LM (compared to left-to-right LM) is very important on some tasks, Next Sentence Prediction is important on other tasks.
- Left-to-right model does very poorly on word-level task (SQuAD), although this is mitigated by BiLSTM

Effect of Directionality and Training Time

- Masked LM takes slightly longer to converge because we only predict 15% instead of 100%
- But absolute results are much better almost immediately

Effect of Model Size

- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not asymptoted

Open Source Release

One reason for BERT's success was the open

source release

- Minimal release (not part of a larger codebase)
- No dependencies but TensorFlow (or PyTorch)
- Abstracted so people could including a single file to use model
- End-to-end push-button examples to train SOTA models
- Thorough README
- Idiomatic code
- Well-documented code
- Good support (for the first few months)

Post-BERT Pre-training Advancements

Roberta

- RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al, University of Washington and Facebook, 2019)
- Trained BERT for more epochs and/or on more data
 - Showed that more epochs alone helps, even on same data
 - More data also helps
- Improved masking and pre-training data slightly

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
BERTLARGE	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	2	_
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-

XLNet

- XLNet: Generalized Autoregressive Pretraining for Language Understanding (Yang et al, CMU and Google, 2019)
- Innovation #1: Relative position embeddings
 - o Sentence: John ate a hot dog
 - Absolute attention: "How much should dog attend to hot (in any position), and how much should dog in position 4 attend to the word in position 3? (Or 508 attend to 507, ...)"
 - Relative attention: "How much should dog attend to hot (in any position) and how much should dog attend to the previous word?"

XLNet

Innovation #2: Permutation Language Modeling

- In a left-to-right language model, every word is predicted based on all of the words to its left
- Instead: Randomly permute the order for every training sentence
- Equivalent to masking, but many more predictions per sentence
- Can be done efficiently with Transformers

XLNet

- Also used more data and bigger models, but showed that innovations improved on BERT even with same data and model size
- XLNet results:

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
Single-task single	models on de	ev.						
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0
RoBERTa [21]	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	90.8	69.0	92.5

ALBERT

- ALBERT: A Lite BERT for Self-supervised Learning of Language Representations (Lan et al, Google and TTI Chicago, 2019)
- Innovation #1: Factorized embedding parameterization
 - Use small embedding size (e.g., 128) and then project it to
 Transformer hidden size (e.g., 1024) with parameter matrix

ALBERT

- Innovation #2: Cross-layer parameter sharing
 - Share all parameters between Transformer layers
- Results:

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS
Single-task single	models on	dev						
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4
ALBERT (IM)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0

ALBERT is light in terms of parameters, not speed

Mod	lel:	Parameters	SQuAD1.1	SQuAD2.0	MNLL	SST-2	RACE	Avg	Speedup
820.27	base	108M	90,4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	111111
BERT	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0
	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6x
ALBERT	large	18M	90,6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7x
ALBERT	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6x
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3x

T5

- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (Raffel et al, Google, 2019)
- Ablated many aspects of pre-training:
 - Model size
 - Amount of training data
 - Domain/cleanness of training data
 - Pre-training objective details (e.g., span length of masked text)
 - Ensembling
 - Finetuning recipe (e.g., only allowing certain layers to finetune)
 - Multi-task training

T5

Conclusions:

- Scaling up model size and amount of training data helps a lot
- Best model is 11B parameters (BERT-Large is 330M), trained on 120B words of cleaned common crawl text
- Exact masking/corruptions strategy doesn't matter that much
- Mostly negative results for better finetuning and multi-task strategies

• T5 results:

	Reich .	Note	Model	195	Town	best	OK.	(1094)	INVEST	19080	m	100	NEC	28.6	Atte
	1	SuperGLLS Human Dassines	SqueQUSC Human Boselines	D,	93	95.0	95,0/98,9	180	81,001.8	917/913	30.6	88.0	190.9	76.6	103/007
+	2	15 Team-Scogle	15	ß	19.3	11.2	10.076.0	14.0	88.1503	941984	10.5	76.9	15.2	45.6	12,7/11.9
	*	Zhaigi Teotrologi	NAMES OF THE OWNER.		367	87.1	12.010.6	812	88.5%(3	810/818	88.1	72.1	81.8	18.8	91.0/201
		Facebook, All	Additio	E,	14.1	82.1	985952	90.6	844/525	98.6/98.0	88.2	68.9	86.9	87.5	81.87951
	10	EM Research At	0CR1cell		19.5	101	38.6/940	75.0	10,0/00.6	746740	163	64.2	10.0	29.6	128/023
	6	SuperSLUE StateSteet	9081++	13"	71.5	79.8	94.0/95.4	71.0	30,8/941	72.0/21.0	79.8	68.6	14.4	39.0	89.4/51.4
			wat	G*	99.0	77.4	78.7383.6	76.4	70 8/3011	210/113	21.2	44.0	86.6	218	974/91.7

ELECTRA

- ELECTRA: Pre-training Text Encoders as
 Discriminators Rather Than Generators (Clark et al, 2020)
- Train model to discriminate locally plausible text from real text

ELECTRA

Difficult to match SOTA results with less compute

Model	Train FLOPs	Params	SQuA	D 1.1	SQuAD 2.0		
Model	Train FLOPS	rarams	EM	F1	EM	F1	
BERT-Base	6.4e19 (0.09x)	110M	80.8	88.5	÷	-	
BERT	1.9e20 (0.27x)	335M	84.1	90.9	79.0	81.8	
SpanBERT	7.1e20 (1x)	335M	88.8	94.6	85.7	88.7	
XLNet-Base	6.6e19 (0.09x)	117M	81.3	-	78.5	-	
XLNet	3.9e21 (5.4x)	360M	89.7	95.1	87.9	90.6	
RoBERTa-100K	6.4e20 (0.90x)	356M	-	94.0	-	87.7	
RoBERTa-500K	3.2e21 (4.5x)	356M	88.9	94.6	86.5	89.4	
ALBERT	3.1e22 (44x)	235M	89.3	94.8	87.4	90.2	
BERT (ours)	7.1e20 (1x)	335M	88.0	93.7	84.7	87.5	
ELECTRA-Base	6.4e19 (0.09x)	110M	84.5	90.8	80.5	83.3	
ELECTRA-400K	7.1e20 (1x)	335M	88.7	94.2	86.9	89.6	
ELECTRA-1.75M	3.1e21 (4.4x)	335M	89.7	94.9	88.1	90.6	

Applying Models to Production Services

- BERT and other pre-trained language models are extremely large and expensive
- How are companies applying them to low-latency production services?

THEFT | THE | THEFT WITHOUT |

Google is improving 10 percent of searches by understanding language context

Say hello to BERT

By Dates Barri | glocolor | 100/20, 2019, 2014-1007

Bing says it has been applying BERT since April

The natural language processing capabilities are now applied to all Bing queries globally.

George Nguyen on November 19, 2019 at 1:38 pm

- Answer: Distillation (a.k.a., model compression)
- Idea has been around for a long time:
 - Model Compression (Bucila et al, 2006)
 - Distilling the Knowledge in a Neural Network (Hinton et al, 2015)
- Simple technique:
 - Train "Teacher": Use SOTA pre-training + fine-tuning technique to train model with maximum accuracy
 - Label a large amount of unlabeled input examples with Teacher
 - Train "Student": Much smaller model (e.g., 50x smaller) which is trained to mimic Teacher output
 - Student objective is typically Mean Square Error or Cross Entropy

- Example distillation results
 - o 50k labeled examples, 8M unlabeled examples

Well-Read Students Learn Better: On the Importance of Pre-training Compact Models (Turc et al, 2020)

 Distillation works much better than pre-training + fine-tuning with smaller model

- Why does distillation work so well? A hypothesis:
 - Language modeling is the <u>fultimate</u> NLP task in many ways
 - I.e., a perfect language model is also a perfect question answering/entailment/sentiment analysis model
 - Training a <u>massive language</u> model learns millions of latent features which are useful for these other NLP tasks
 - Finetuning mostly just picks up and tweaks these existing latent features
 - This requires an oversized model, because only a subset of the features are useful for any given task
 - Distillation allows the model to only focus on those features
 - Supporting evidence: Simple self-distillation (distilling a smaller BERT model) doesn't work

Conclusions

lest Gundleyen

Conclusions

- Pre-trained bidirectional language models work incredibly well
- However, the models are extremely expensive
- Improvements (unfortunately) seem to mostly come from even more expensive models and more data
- The inference/serving problem is mostly "solved" through distillation