# Model Building: Real Estate price prediction

Feziwe M Shongwe

melvin.shongwe@gmail.com

#### Introduction

Real estate is one of the most competitive markets in terms of pricing and the same tends to vary significantly based on a lot of factors which include location, Features and Condition and Supply and demand. Researchers have worked on developing models to accurately predict housing prices with high accuracy and least error, using various factors such as the area of the house, the number of bedrooms, etc. Previous studies show that this prediction can include a lot of factors especially for businesses that deal in real estate are likely to have billions of features to choose from as this can have several drawbacks such as heavy computations will be required. Lastly, most models tend to include highly correlated factors and uninfluential features in predicting the price which does not improve the accuracy of the model.

### Approach to solve this problem

In this short study, I will use the features from the dataset to build an optimum model (Multiple regression model) for the prediction of the price for a specific house using 5 features. The features that I will be using includes date of purchase, house age, location, distance to nearest MRT station, and house price of unit area. I will follow the four basic steps for building a good model which consist of 4 phases (data collection and preparation Reduction of explanatory variables, Model refinement and selection, and Model validation). Under the collection and preparation phase, the dataset (see section 1 under appendix) that I will be using throughout the analysis is publicly available on the Kaggle website based on a study that was conducted in Sindian Dist, New Taipei City, Taiwan. My variables seem to be related to the response variables as they are influencing the prediction which makes me to employ the Explanatory observations studies. I split my data into two sets which is the training set (for modelling) and validating set (for validating the proposed model). The main reason for applying linear regression is because my main goal for this study, is to predict an accurate house price given different features which makes it multivariable linear regression as I will have more than one predictor variable and liner regression focuses on continuous variables which is applicable in this case also. Lastly, studies show that linear regression model has proven to be a reliable and scientific way to predict the future. Below is an information per attribute:

#### Predictor Variables:

No =the observation number (1 represents 1<sup>st</sup> house information)

X1=the transaction date (for example, 2013.250=2013 March, 2013.500=2013 June, etc.)

X2=the house age (unit: year)

X3=the distance to the nearest MRT station (unit: meter)

X4=the number of convenience stores in the living circle on foot (integer)

X5=the geographic coordinate, latitude. (Unit: degree)

X6=the geographic coordinate, longitude. (Unit: degree)

### Response variable:

Y= house price of unit area (10000 New Taiwan Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 meter squared)

### **Full analysis**

From my exploratory variables, I found that the predictor variable which represents number of observations is not useful in this model. Thus, I dropped it during the preliminary investigation stage. In addition, I decided to include an interaction term of the coordinated which is a product of the longitude and the latitude. During the preliminary investigation, I also obtained a scatter plot to determine relationship among my predictor variables (excluding the dropped variable).

From the Multicollinearity analysis (see <u>figure 4</u>), the geographical latitude is highly correlated with the interaction variable of the latitude and the longitude with a correlation coefficient of (r = 0.978. Similarly, to the geographical longitude is highly correlated with the distance of nearest MRT station with a Pearson correlation of coefficient of (r = -0.800).

The statistics for the multiple linear regression model (Full model see Figure 5),  $R^2 = 0.583$ , which indicates 58.3% of the variability in the predictor variables is explained by the response variable (House price of unit area). From the parameter estimates the statistics shoes that all the estimators have p - values < 0.05 which indicated that all these predictors will be included in the model as we reject the null hypothesis in saying the variable(s) equals zero for all of them. Lastly, the Analysis of variance (ANOVA) F-value is extremely large which indicated that not all of the coefficients equal to zero, furthermore the p - value < 0.05 which supports the rejection of the null hypothesis.

Using the model selection criteria (see Figure 6),  $R_p^2$  and  $Adjusted R^2$  are increasing from one model to another I am more interested whenever the increase rate is no longer large. Thus, the maximum  $max(R^2)=0.5755$  suggest 5 variables in the model (All the predictor variable). The mallows'  $C_p$  considers good subset if  $C_p < p$  and  $E\{C_p\} \approx p$ , in this case we have p=6, it follows that  $C_p$  suggests 4-5 variables as good models for this prediction. Furthermore, the  $AIC_p$  suggest 5- variables should be included in the model.

### Models:

$$\begin{split} & \hat{Y} = - \ 15654 \ + \ 4.84870X_1 - 0.30272X_2 - 0.00379X_3 \ + \ 1.08678X_4 \ + \ 1.95592X_5X_6 \\ & \hat{Y} = - \ 11278 \ + \ 5.62372X_1 - 0.289515X_2 - 0.00539X_3 \ + \ 1.21885X_4 \\ & \hat{Y} = - \ 17441 \ + \ 5.33620X_1 - 0.29741X_2 - 0.00518X_3 \ + \ 2.20344X_5X_6 \end{split}$$

Where:

```
X1 = the transaction date (for example, 2013.250 = 2013 March, 2013.500 = 2013 June, etc.)

X2 = the house age (unit: year)

X3 = the distance to the nearest MRT station (unit: meter)
```

X4 =the number of convenience stores in the living circle on foot (integer)

$$X_{5}X_{6}$$
 = Interaction variable for the latitute and longitude

To verify the computations from the Models selection criterions I will then compute the Automatic search methods which are Forward Stepwise regression, Forward selection, and Backward elimination. Surprisingly, all the methods support the models that were suggested by the  $AIC_p$  &  $C_p$  as they also show that the model should include all the predictor variables. (See figures under section 4 in appendix)

Therefore, I can conclude that the model with 5 variables is a good model for this prediction.

$$\hat{Y} = -15654 + 4.84870X_1 - 0.30272X_2 - 0.00379X_3 + 1.08678X_4 + 1.95592X_5X_6$$

The parameters are still the same as stated above.

### **Model Validation**

Starting by comparing the factors that are considers as good factors for these predictions, studies show that location, structural and Neighbourhood are good factors for this prediction. Thus, it corresponds with the factors I have computed using the multiple linear regression as my model consists of when was the transaction made, how old is the house since it was built, Distance to the nearest MRT station, Number of convenience stores and the location of the house using the longitude and latitude. Thus, my study supports the Neighbourhood and the location from the previous studies on these factors

Furthermore, I used the validation set to re-estimate the coefficients as it is one of the methods one can use to validate a model. The coefficients estimators using the validation set form the following regression model.

$$\hat{Y} = -20562 + 6.99335X_1 - 0.24294X_2 - 0.00314X_3 + 1.4432X_4 + 2.18937X_5X_6$$

Comparing the two models (Training set model and Validation model) I can clearly see that the model I have produced is valid and it will be applicable to different dataset as it is similar to the one, I formed using the validation set.

## **Summary and Conclusion**

As stated under the validation section, the model is accurate and suitable model for this problem as it is validated, and studies suggest the factors that I found that their good factors for the house price are also similar with the ones I have chosen. Lastly, throughout this study there was no funding and my limitations I had was time as we have other modules and different schedule. I would recommend the next research about this to have a larger dataset and more predictor variables.

# **Appendix**

## 1. Datasets

For full datasets visit the repository on GitHub: Click Here

|     | The Full Dataset |                     |                 |                                     |                                 |                |                 |                            |  |
|-----|------------------|---------------------|-----------------|-------------------------------------|---------------------------------|----------------|-----------------|----------------------------|--|
| Obs | No               | X1 transaction date | X2 house<br>age | X3 distance to the<br>nearest MRT s | X4 number of convenience stores | X5<br>latitude | X6<br>longitude | Y house price of unit area |  |
| 1   | 1                | 2012.917            | 32              | 84.87882                            | 10                              | 24.98298       | 121.54024       | 37.9                       |  |
| 2   | 2                | 2012.917            | 19.5            | 306.5947                            | 9                               | 24.98034       | 121.53951       | 42.2                       |  |
| 3   | 3                | 2013.583            | 13.3            | 561.9845                            | 5                               | 24.98746       | 121.54391       | 47.3                       |  |
| 4   | 4                | 2013.5              | 13.3            | 561.9845                            | 5                               | 24.98746       | 121.54391       | 54.8                       |  |
| 5   | 5                | 2012.833            | 5               | 390.5684                            | 5                               | 24.97937       | 121.54245       | 43.1                       |  |
| 6   | 6                | 2012.667            | 7.1             | 2175.03                             | 3                               | 24.96305       | 121.51254       | 32.1                       |  |
| 7   | 7                | 2012.667            | 34.5            | 623.4731                            | 7                               | 24.97933       | 121.53642       | 40.3                       |  |
| 8   | 8                | 2013.417            | 20.3            | 287.6025                            | 6                               | 24.98042       | 121.54228       | 46.7                       |  |
| 9   | 9                | 2013.5              | 31.7            | 5512.038                            | 1                               | 24.95095       | 121.48458       | 18.8                       |  |
| 10  | 10               | 2013.417            | 17.9            | 1783.18                             | 3                               | 24.96731       | 121.51486       | 22.1                       |  |

Figure 1: First 10 Elements in the Dataset (Full)

|     | The Training set for training my Model |    |                     |              |                                  |                                 |                |                 |                            |  |
|-----|----------------------------------------|----|---------------------|--------------|----------------------------------|---------------------------------|----------------|-----------------|----------------------------|--|
| Obs | Selected                               | No | X1 transaction date | X2 house age | X3 distance to the nearest MRT s | X4 number of convenience stores | X5<br>latitude | X6<br>longitude | Y house price of unit area |  |
| 1   | 1                                      | 2  | 2012.917            | 19.5         | 306.5947                         | 9                               | 24.98034       | 121.53951       | 42.2                       |  |
| 2   | 1                                      | 3  | 2013.583            | 13.3         | 561.9845                         | 5                               | 24.98746       | 121.54391       | 47.3                       |  |
| 3   | 1                                      | 5  | 2012.833            | 5            | 390.5684                         | 5                               | 24.97937       | 121.54245       | 43.1                       |  |
| 4   | 1                                      | 7  | 2012.667            | 34.5         | 623.4731                         | 7                               | 24.97933       | 121.53642       | 40.3                       |  |
| 5   | 1                                      | 8  | 2013.417            | 20.3         | 287.6025                         | 6                               | 24.98042       | 121.54228       | 46.7                       |  |
| 6   | 1                                      | 9  | 2013.5              | 31.7         | 5512.038                         | 1                               | 24.95095       | 121.48458       | 18.8                       |  |
| 7   | 1                                      | 11 | 2013.083            | 34.8         | 405.2134                         | 1                               | 24.97349       | 121.53372       | 41.4                       |  |
| 8   | 1                                      | 13 | 2012.917            | 13           | 492.2313                         | 5                               | 24.96515       | 121.53737       | 39.3                       |  |
| 9   | 1                                      | 14 | 2012.667            | 20.4         | 2469.645                         | 4                               | 24.96108       | 121.51046       | 23.8                       |  |
| 10  | 1                                      | 15 | 2013.5              | 13.2         | 1164.838                         | 4                               | 24.99156       | 121.53406       | 34.3                       |  |

Figure 2: First 10 Elements in The Training Set

|     | The Validation set for testing my Model |    |                     |              |                                  |                                 |                |                 |                            |  |  |
|-----|-----------------------------------------|----|---------------------|--------------|----------------------------------|---------------------------------|----------------|-----------------|----------------------------|--|--|
| Obs | Selected                                | No | X1 transaction date | X2 house age | X3 distance to the nearest MRT s | X4 number of convenience stores | X5<br>latitude | X6<br>longitude | Y house price of unit area |  |  |
| 1   | 0                                       | 1  | 2012.917            | 32           | 84.87882                         | 10                              | 24.98298       | 121.54024       | 37.9                       |  |  |
| 2   | 0                                       | 4  | 2013.5              | 13.3         | 561.9845                         | 5                               | 24.98746       | 121.54391       | 54.8                       |  |  |
| 3   | 0                                       | 6  | 2012.667            | 7.1          | 2175.03                          | 3                               | 24.96305       | 121.51254       | 32.1                       |  |  |
| 4   | 0                                       | 10 | 2013.417            | 17.9         | 1783.18                          | 3                               | 24.96731       | 121.51486       | 22.1                       |  |  |
| 5   | 0                                       | 12 | 2013.333            | 6.3          | 90.45606                         | 9                               | 24.97433       | 121.5431        | 58.1                       |  |  |
| 6   | 0                                       | 17 | 2013.25             | 0            | 292.9978                         | 6                               | 24.97744       | 121.54458       | 70.1                       |  |  |
| 7   | 0                                       | 20 | 2012.667            | 1.5          | 23.38284                         | 7                               | 24.96772       | 121.54102       | 47.7                       |  |  |
| 8   | 0                                       | 36 | 2013.5              | 13.9         | 4079.418                         | 0                               | 25.01459       | 121.51816       | 27.3                       |  |  |
| 9   | 0                                       | 37 | 2012.917            | 14.7         | 1935.009                         | 2                               | 24.96386       | 121.51458       | 22.9                       |  |  |
| 10  | 0                                       | 38 | 2013.167            | 12           | 1360.139                         | 1                               | 24.95204       | 121.54842       | 25.3                       |  |  |

Figure 3: First 10 Elements in the validation set

## 2. Multicollinearity

| Pearson Correlation Coefficients, N = 290<br>Prob >  r  under H0: Rho=0    |                    |                   |                    |          |                   |                   |                   |
|----------------------------------------------------------------------------|--------------------|-------------------|--------------------|----------|-------------------|-------------------|-------------------|
|                                                                            | X1                 | X2                | Х3                 | X4       | X5                | X6                | INTER_X5_X6       |
| X1                                                                         | 1.00000            | 0.01144           | 0.09454            | -0.00431 | 0.02834           | -0.07453          | 0.00871           |
| the transaction date                                                       |                    | 0.8462            | 0.1081             | 0.9418   | 0.6307            | 0.2057            | 0.8826            |
| X2                                                                         | 0.01144            | 1.00000           | 0.01680            | 0.01217  | 0.03402           | -0.05804          | 0.01752           |
| The house age                                                              | 0.8462             |                   | 0.7758             | 0.8365   | 0.5639            | 0.3246            | 0.7664            |
| X3                                                                         | 0.09454            | 0.01680           | 1.00000            | -0.62367 | -0.54522          | -0.80023          | -0.66913          |
| The distance to the nearest MRT station                                    | 0.1081             | 0.7758            |                    | <.0001   | <.0001            | <.0001            | <.0001            |
| X4 The number of convenience stores in the living circle on foot (integer) | -0.00431<br>0.9418 | 0.01217<br>0.8365 | -0.62367<br><.0001 | 1.00000  | 0.44169<br><.0001 | 0.43111<br><.0001 | 0.49335<br><.0001 |
| X5                                                                         | 0.02834            | 0.03402           | -0.54522           | 0.44169  | 1.00000           | 0.35638           | 0.97775           |
| The geographic coordinate, latitude. (Unit: degree)                        | 0.6307             | 0.5639            | <.0001             | <.0001   |                   | <.0001            | <.0001            |
| X6                                                                         | -0.07453           | -0.05804          | -0.80023           | 0.43111  | 0.35638           | 1.00000           | 0.54446           |
| The geographic coordinate, longitude. (Unit: degree)                       | 0.2057             | 0.3246            | <.0001             | <.0001   | <.0001            |                   | <.0001            |
| INTER_X5_X6                                                                | 0.00871            | 0.01752           | -0.66913           | 0.49335  | 0.97775           | 0.54446           | 1.00000           |
| Interaction of the corordinates(latitude and longitude)                    | 0.8826             | 0.7664            | <.0001             | <.0001   | <.0001            | <.0001            |                   |

Figure 4: Multicollinearity between the Predictor variables



Figure 5: Multiple Linear regression (Full Model)

#### The REG Procedure Model: MODEL1 Dependent Variable: Y

### R-Square Selection Method

Number of Observations Read 290 Number of Observations Used 290

| Number<br>in |          | Adjusted re R-Square | C(p)     |           | SBC        |             |         | Paramete | er Estimate | S       |             |
|--------------|----------|----------------------|----------|-----------|------------|-------------|---------|----------|-------------|---------|-------------|
| Model        | R-Square |                      |          | AIC       |            | Intercept   | X1      | X2       | Х3          | X4      | INTER_X5_X6 |
| 1            | 0.4333   | 0.4314               | 99.8291  | 1354.8836 | 1362.22339 | 45.68560    |         |          | -0.00712    |         |             |
| 1            | 0.3536   | 0.3513               | 154.1529 | 1393.0846 | 1400.42441 | -14301      |         |          |             |         | 4.72515     |
| 1            | 0.3302   | 0.3279               | 170.0326 | 1403.3629 | 1410.70264 | 26.91593    |         |          |             | 2.62231 |             |
| 2            | 0.4896   | 0.4861               | 63.5119  | 1326.5509 | 1337.56052 | 50.65118    |         | -0.28645 | -0.00708    |         |             |
| 2            | 0.4774   | 0.4738               | 71.8211  | 1333.4034 | 1344.41300 | 38.60720    |         |          | -0.00531    | 1.22554 |             |
| 2            | 0.4763   | 0.4727               | 72.5422  | 1333.9905 | 1345.00010 | -6686.59525 |         |          | -0.00510    |         | 2.21777     |
| 3            | 0.5367   | 0.5318               | 33.4800  | 1300.5069 | 1315.18638 | 43.46650    |         | -0.29404 | -0.00520    | 1.26673 |             |
| 3            | 0.5366   | 0.5317               | 33.5266  | 1300.5497 | 1315.22922 | -6990.03585 |         | -0.29659 | -0.00496    |         | 2.31943     |
| 3            | 0.5258   | 0.5208               | 40.9043  | 1307.2525 | 1321.93202 | -9974.73051 |         | -0.31398 |             | 1.70217 | 3.29895     |
| 4            | 0.5728   | 0.5668               | 10.8552  | 1278.9387 | 1297.28808 | -6186.19926 |         | -0.30214 | -0.00355    | 1.12120 | 2.05252     |
| 4            | 0.5503   | 0.5440               | 26.1847  | 1293.8339 | 1312.18334 | -11278      | 5.62372 | -0.29515 | -0.00539    | 1.21885 |             |
| 4            | 0.5490   | 0.5426               | 27.1012  | 1294.7007 | 1313.05006 | -17441      | 5.36628 | -0.29741 | -0.00518    |         | 2.20344     |
| 5            | 0.5829   | 0.5755               | 6.0000   | 1274.0218 | 1296.04105 | -15654      | 4.84870 | -0.30272 | -0.00379    | 1.08678 | 1.95592     |

Figure 6:Subset Models

# 4. Forward Stepwise Regression, Forward Selection and Backward Elimination

|      | Summary of Stepwise Selection |                     |                                                                         |                   |                     |                   |         |            |        |
|------|-------------------------------|---------------------|-------------------------------------------------------------------------|-------------------|---------------------|-------------------|---------|------------|--------|
| Step | Variable<br>Entered           | Variable<br>Removed | Label                                                                   | Number<br>Vars In | Partial<br>R-Square | Model<br>R-Square | C(p)    | F<br>Value | Pr > F |
| 1    | Х3                            |                     | The distance to the nearest MRT station                                 | 1                 | 0.4333              | 0.4333            | 99.8291 | 220.24     | <.0001 |
| 2    | X2                            |                     | The house age                                                           | 2                 | 0.0563              | 0.4896            | 63.5119 | 31.65      | <.0001 |
| 3    | X4                            |                     | The number of convenience stores in the living circle on foot (integer) | 3                 | 0.0470              | 0.5367            | 33.4800 | 29.04      | <.0001 |
| 4    | INTER_X5_X6                   |                     | Interaction of the corordinates(latitude and longitude)                 | 4                 | 0.0362              | 0.5728            | 10.8552 | 24.13      | <.0001 |
| 5    | X1                            |                     | the transaction date                                                    | 5                 | 0.0101              | 0.5829            | 6.0000  | 6.86       | 0.0093 |

|      | Summary of Forward Selection |                                                                         |                   |                     |                   |         |            |        |  |
|------|------------------------------|-------------------------------------------------------------------------|-------------------|---------------------|-------------------|---------|------------|--------|--|
| Step | Variable<br>Entered          | Label                                                                   | Number<br>Vars In | Partial<br>R-Square | Model<br>R-Square | C(p)    | F<br>Value | Pr > F |  |
| 1    | Х3                           | The distance to the nearest MRT station                                 | 1                 | 0.4333              | 0.4333            | 99.8291 | 220.24     | <.0001 |  |
| 2    | X2                           | The house age                                                           | 2                 | 0.0563              | 0.4896            | 63.5119 | 31.65      | <.0001 |  |
| 3    | X4                           | The number of convenience stores in the living circle on foot (integer) | 3                 | 0.0470              | 0.5367            | 33.4800 | 29.04      | <.0001 |  |
| 4    | INTER_X5_X6                  | Interaction of the corordinates(latitude and longitude)                 | 4                 | 0.0362              | 0.5728            | 10.8552 | 24.13      | <.0001 |  |
| 5    | X1                           | the transaction date                                                    | 5                 | 0.0101              | 0.5829            | 6.0000  | 6.86       | 0.0093 |  |

| Variable    | Parameter<br>Estimate | Standard<br>Error | Type II SS | F Value | Pr > F |
|-------------|-----------------------|-------------------|------------|---------|--------|
| Intercept   | -15654                | 3827.73438        | 1325.55866 | 16.72   | <.0001 |
| X1          | 4.84870               | 1.85189           | 543.33006  | 6.86    | 0.0093 |
| X2          | -0.30272              | 0.04632           | 3384.54121 | 42.70   | <.0001 |
| Х3          | -0.00379              | 0.00063357        | 2837.30393 | 35.80   | <.0001 |
| X4          | 1.08678               | 0.22611           | 1830.95009 | 23.10   | <.0001 |
| INTER_X5_X6 | 1.95592               | 0.41526           | 1758.31314 | 22.18   | <.0001 |

## 5. Validation

|             | Parameter Estimates                                                     |    |                       |                   |         |         |  |  |
|-------------|-------------------------------------------------------------------------|----|-----------------------|-------------------|---------|---------|--|--|
| Variable    | Label                                                                   | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |
| Intercept   | Intercept                                                               | 1  | -20562                | 6808.48465        | -3.02   | 0.0031  |  |  |
| X1          | the transaction date                                                    | 1  | 6.93335               | 3.13553           | 2.21    | 0.0289  |  |  |
| X2          | The house age                                                           | 1  | -0.24294              | 0.08251           | -2.94   | 0.0039  |  |  |
| X3          | The distance to the nearest MRT station                                 | 1  | -0.00314              | 0.00133           | -2.36   | 0.0197  |  |  |
| X4          | The number of convenience stores in the living circle on foot (integer) | 1  | 1.44320               | 0.40016           | 3.61    | 0.0005  |  |  |
| INTER_X5_X6 | Interaction of the corordinates(latitude and longitude)                 | 1  | 2.18937               | 0.84649           | 2.59    | 0.0109  |  |  |

# 6. Tools and Resources

Kaggle link for the dataset : <u>Click here</u> Computations were done using SAS

The computations and full results can be found under my repository in GitHub: <u>Click Here</u>

## timeline

| Task                      | Date                              |
|---------------------------|-----------------------------------|
| Understanding the Problem | 27 September 2021 -5 October 2021 |
| Brainstorming ideas       | 6 October 2021 – 9 October 2021   |
| Planning                  | 11 October 2021 – 14 October 2021 |
| Implement                 | 15 October 2021 – 21 October 2021 |
| Documentation             | 21 October 2021 – 24 October 2021 |