Oct 25, 2022

nilpotent if 3n>1 such that $a^n=0$. Nilpotent element: Let R be a tring. An element a E R in called

- · 0 in always a rilpotent element in any ring R.
- . In \mathbb{Z}_4 , 0 and 2 are both nilpotent elements.
- . In an integral domain D, o in the only nilpotent element.

Thurson Let R be a commutative ring with identity. Thus, $f(x) = c_0 + c_1 x + \dots + c_n x^n \in R[x]$ is a unit it and only it $c_0 \in U(R)$ and c_1, \dots, c_n are nilpatent elements in R.

11) Let R be an integral domain.

Then, U(R[x]) = U(R) (Since in an integral domain, o in the only nilpotent dement).

That in, I and - I are the only polynomials in Z[x] which

are units.

(2) Let $R = \mathbb{Z}_{4}$. Thun, $1+2x \in U(\mathbb{Z}_{4}[x])$ since 2 in Charly, inverse of 1+2x is $1+2x^{3}$.

• $(1+2x^3)\cdot(1+2x^3) = 1+4x^3+4x^4 = 1$ in $Z_4(x)$.

(3) Let F be a field. Thun U(F[x]) = U(F) = F-{o} Thus, the unit in F[x] are nonzero constant polynomials.

& tactorization in Palynomial rings.

let R be commutative with identity. Let $f(x) \in R[x]$ we say that $a \in R$ in a zero of f if f(a) = 0

(1) Let F be a field, $\alpha \in F$ and $f(x) \in F[x]$. Applying division algorithm, we find that α in a zero of f(x) if and only if $x-\alpha$ in a factor of f(x), that is, $f(x)=(x-\alpha)g(x)$

(2) A polynomial of digree n over a field has at most Proof: Follows from division algorithm.

In general, the statement (2) in not drue.

For example, let $f(x) = 2x \in \mathbb{Z}_{4}[x]$. Then, eqf = 1 but

of how two zeros, namely, o and 2.

Definition Cirreducible polynomial): Let R be a commutative ring

(2) stenewer $f(x) = h(x) \cdot g(x)$, then either h(x) in unit or g(x) in unit. with identity. A polynomial $f(x) \in \mathbb{R}[x]$ in called irreducible if
(1) f in non-zero and non-unit $(f \neq 0)$ and $f \neq 0$ $(\mathbb{R}[x])$

A reducible polynomial in a polynomial which is not irreducible.

Ex: Let $f(x) = 4 + 2x^2$ clearly, $f \neq 0$ and $f \notin U(\mathbb{Z}[x])$. we have $f(x) = 2(2+x^2)$ and both 2 and $2+x^2$ are

non-units.

However, 4+2x in irreducible in Q[x]. ... 4+2x in not irreducible over Z.

Ex: The polynomial x-5 in irreducible over Q but reducible

Ex Let F be a field. Thun, every digree 1 polynomial in F[x] is irreducible

Frost: Let duft > 2 and all F is a zero of f. a yero in F. dugt is 2 or 3, then to in reducible it and only it tax has Theorem (Root test): Let F be a field. If fix) < F[x] and Then, $f(x) = (x-\alpha) \cdot h(x)$. Since deg f > 2, so dug h

·· Both x-a and h(x) are non-units. => + in reducible. > 1 = deg 8-1

conversely, suppose that deg & = 2 or 3 and f in reducible Let f(x) = h(x)g(x), where both h(x) and g(x) are non-units. ... ly h> 1 and ly g>1.

It deg f = 3, then deg h + deg g = 3 96 degf=2, then degk= degg =1 => either degh=1 or deg g=1 ... h(x) = ax + b with $a \neq 0$. Then, $q = -a^{-1}b$ in a root of fry. In any case, f(x) has a root.

 $\underline{\xi_{X'}}$. Let $f(x) = x'+1 \in \mathbb{Z}_3[x]$. Note that \mathbb{Z}_3 in a field. f(0) = 1, f(1) = 2, f(2) = 5 = 2.

Since light=2, so of in irreducible in $\mathbb{Z}_{3}[x]$. .. f(x) does not have any root in Z3.

In $\mathbb{Z}_2[x]$, degree 2 irreducible polynomial in $1+x+x^2$. In Z2(2), degree 3 irreducible polynomials are 5x: In Z2[x], degree 1 irreducible polynomials are x and 1+x. But xx+1 in reducible in Zs[z] since 2 in a grooof xx+1 in Zs. x^3+x^2+1 and x^3+x+1 .

Thun, if $\alpha = \frac{m}{R}$, $\gcd(m, k) = 1$, in a rational root of f(x) = 0, Thm: (Rational Root test) Let $f(x) = c_0 + c_1 x + \cdots + c_n x^n \in \mathbb{Z}[x]$.

m cok and k anm. 今 co k"+ a,m k"+··+ a,m" k+ a,m"=0

Since gcd (m, b)=1, so m|a, and b|an. By Rational root test, if $\alpha = \frac{m}{R}$, 3cd(m,k)=1, in a root of $5c\alpha = 0$, then m|1| and k|3Let $f(x) = 1 + 2x + 3x^3 \in \mathbb{Z}[x]$.

... $d=\pm 1$, $\pm 1/3$. But for these values of α , $\pm (\alpha) \neq 0$ $1+2x+3x^3$ is irreducible in $\alpha[x]$. $\Rightarrow m = \pm 1$ and $k = \pm 1, \pm 3$ f(x) in who irreducible over B. obtained by reducing all the co-efficients of fix) modulo b. Mod p irraducibility test; It fix in irreducible over Zp and deg fin = deg fix, then $\{(x) \in \mathbb{Z}[x] \text{ with dig} \{ 51. \text{ Let } f(x) \in \mathbb{Z}_b[x] \text{ be the polynomial} \}$ Let p be a prime and suppose that

5x: $f(x) = 1 + 5x + 7x^{2} \in \mathbb{Z}[x]$. Take b = 5. Thum, $f(x) = 1 + 2x^2 \in \mathbb{Z}_{c}[x]$.

irreducible in $\mathbb{Z}_{5}(x)$. Also, \mathbb{Z}_{5} is less $\mathbb{Z}_{5}(x) = 2$, so $\mathbb{Z}_{7}(x)$ in irreducible over \mathbb{Q}_{5} . Now, $\overline{f(0)} = 1$, $\overline{f(1)} = 3$, $\overline{f(2)} = 9 = 4$, $\overline{f(3)} = 4$, $\overline{f(4)} = 3$.

5x: $f(x) = 21x^3 - 3x^2 + 2x + 9$. Since ligt = leg f, so f in irreducible over Q. Thun, over \mathbb{Z}_2 , $\frac{1}{3}(x) = x^3 + x^2 + 1$ which is irreducible over \mathbb{Z}_2 .