MÓDULO 5

- JACOBIANOS
- TEOREMA DE LA FUNCIÓN IMPLÍCITA
- TEOREMA DE LA FUNCIÓN INVERSA

Jacobianos

Cuando se considera un sistema de ecuaciones donde el número de variables independientes es igual al número de variables dependientes, puede considerarse tal sistema como una transformación o cambio de coordenadas.

Por ejemplo si se tiene el sistema:

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

donde las funciones definidas por él:

$$\begin{cases} x = X(u, v) \\ y = Y(u, v) \end{cases}$$

son una aplicación de los puntos del plano uv en los del plano xy.

Los cambios de coordenadas más utilizados son las coordenadas: polares, cilíndricas y esféricas.

Definición

La **matriz jacobiana** tiene como entradas a las derivadas parciales de las funciones que definen la aplicación con respecto a sus variables.

$$\frac{\partial(X,Y)}{\partial(u,v)} = \begin{pmatrix} \frac{\partial X}{\partial u} & \frac{\partial X}{\partial v} \\ \frac{\partial Y}{\partial u} & \frac{\partial Y}{\partial v} \end{pmatrix}$$

Denominamos **jacobiano** al determinante de tal matriz jacobiana:

$$J = J\left(\frac{X,Y}{u,v}\right) = \begin{vmatrix} \frac{\partial(X,Y)}{\partial(u,v)} \end{vmatrix} = \begin{vmatrix} \frac{\partial X}{\partial u} & \frac{\partial X}{\partial v} \\ \frac{\partial Y}{\partial u} & \frac{\partial Y}{\partial v} \end{vmatrix} = \frac{\partial X}{\partial u} \frac{\partial Y}{\partial v} - \frac{\partial X}{\partial v} \frac{\partial Y}{\partial u}$$

Ejemplos

Ejemplo 1

Queremos calcular el jacobiano del cambio de variable: $\begin{cases} x = X(u, v) = u - 2v \\ y = Y(u, v) = 2u - v \end{cases}$

$$J\left(\frac{X,Y}{u,v}\right) = \begin{vmatrix} \frac{\partial X}{\partial u} & \frac{\partial X}{\partial v} \\ \frac{\partial Y}{\partial u} & \frac{\partial Y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -1 \end{vmatrix} = -1 + 4 = 3$$

Ejemplo 2

Una de las transformaciones más utilizadas es el cambio a coordenadas polares, queremos hallar el jacobiano de este cambio de variables.

$$x = r\cos\theta$$
$$y = r\,\sin\theta$$

$$J\left(\frac{X,Y}{r,\theta}\right) = \begin{vmatrix} \cos\theta & \sin\theta \\ -r\sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r$$

Ejemplo 3

Con las coordenadas cilíndricas

$$x = r \cdot \cos \theta$$

$$y = r \cdot sen \theta$$

$$z = z$$

$$J\left(\frac{X, Y, Z}{r, \theta, z}\right) = \begin{vmatrix} \cos \theta & \sin \theta & 0 \\ -r \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \cos^2 \theta + r \sin^2 \theta = r$$

Ejemplo 4

Otra de las transformaciones muy utilizadas es el cambio a coordenadas esféricas

$$x = r \cdot \cos u \cdot \cos v$$

$$y = r \cdot \sin u \cdot \cos v$$

$$z = r \cdot \sin v$$

$$J\left(\frac{X,Y,Z}{r,u,v}\right) = \begin{vmatrix} \frac{\partial X}{\partial r} & \frac{\partial X}{\partial u} & \frac{\partial X}{\partial v} \\ \frac{\partial Y}{\partial r} & \frac{\partial Y}{\partial u} & \frac{\partial Y}{\partial v} \\ \frac{\partial Z}{\partial r} & \frac{\partial Z}{\partial u} & \frac{\partial Z}{\partial v} \end{vmatrix} = \begin{vmatrix} \cos u \cos v & -r \cos u \sin v \\ \sin u \cos v & r \cos u \cos v & -r \sin u \sin v \\ \sin u \cos v & r \cos u \cos v & -r \sin u \sin v \end{vmatrix} =$$

$$= r^2 \cos^2 u \cos^3 v + r^2 \sin^2 u \sin^2 v \cos v + r^2 \cos^2 u \sin^2 v \cos v + r^2 \sin^2 u \cos^3 v =$$

$$= r^2 \cos^3 v + r^2 \sin^2 v \cos v = r^2 \cos v$$

5.1.-

Calcular el jacobiano del cambio de variables indicado:

a)
$$x = -\frac{1}{2}(u - v)$$
; $y = \frac{1}{2}(u + v)$

b)
$$x = u - v^2$$
; $y = u + v$

c)
$$x = u - uv$$
; $y = u.v$

Teorema de la función implícita

Sea $F: D \subseteq \mathbb{R}^2 \to \mathbb{R}$, D abierto, F con derivadas parciales continuas en D, $(x_0, y_0) \in D$, $F(x_0, y_0) = 0 \text{ y } \frac{\partial F}{\partial y}(x_0, y_0) \neq 0$, entonces existen $\delta_h > 0 \text{ y } \delta_k > 0$ tales que:

- i) $\forall x \in (x_0 \delta_h, x_0 + \delta_h)$, la ecuación F(x, y) = 0 tiene una **única** solución en $(y_0 \delta_k, y_0 + \delta_k)$
- ii) Denotando esa única solución por f(x), la función y=f(x) tiene derivada continua en $\left(x_0-\delta_h\,,x_0+\delta_h\right)$, dada por:

$$y' = f'(x) = -\frac{\frac{\partial F(x, f(x))}{\partial x}}{\frac{\partial F(x, f(x))}{\partial y}}$$

Una manera sencilla de recordar este resultado es usando el diagrama de árbol para la derivada de funciones compuestas:

Como F(x, y) = 0, cualquiera de sus derivadas también valdrá **cero**.

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial x} = 0 \Rightarrow y' = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$

Para el caso de una función de tres variables tendríamos F(x, y, z) = 0; z = f(x, y) y $\frac{\partial F}{\partial z} \neq 0$, entonces:

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

Sugerencia: Plantear el diagrama de árbol correspondiente para justificar estas fórmulas.

Ejemplos

Ejemplo 1

La ecuación

$$x^2 + y^2 + 1 = 0$$

no se satisface en ningún punto (x, y) del plano, y en consecuencia, no define ninguna función implícita y = f(x).

Ejemplo 2

La ecuación

$$x^2 + y^2 = 0$$

sólo se satisface en el origen $(0,0) \in \mathbb{R}^2$, con lo que no definirá implícitamente ninguna función significativa.

Ejemplo 3

La ecuación

$$x^3 + y^3 - 2 = 0$$

sí define a y como función implícita de x, y en este caso es posible expresar a y como función explícita de x.

$$y = \sqrt[3]{2 - x^3} \quad x \in \mathbb{R}$$

Podemos entonces, plantear y resolver el siguiente problema:

Ejemplo 4

Sea $F(x, y) = x^3 + y^3 - 2$, obtener un punto de \mathbb{R}^2 , donde sea aplicable el TFI, obtener y' en dicho punto. Haciendo F(x, y) = 0, despejar y y derivarla para verificar el resultado.

Solución

Las hipótesis del TFI nos piden:

1) Derivadas parciales continuas de F, cosa que se ve claramente por ser F polinómica.

2) Un punto en el que F se anule, en nuestro caso anda el (1,1).

3) Y no se anule la derivada
$$\frac{\partial F}{\partial y}(1,1) \neq 0$$
, $\frac{\partial F(x,y)}{\partial y} = 3y^2 \Rightarrow \frac{\partial F(1,1)}{\partial y} = 3 \neq 0$

Como las hipótesis se cumplen, entonces también se cumple la conclusión del teorema, por lo tanto calculamos la otra derivada parcial

$$\frac{\partial F}{\partial x}(x, y) = 3x \Rightarrow \frac{\partial F}{\partial x}(1, 1) = 3$$

$$y' = f'(1) = -\frac{\frac{\partial F(1,1)}{\partial x}}{\frac{\partial F(1,1)}{\partial y}} = -\frac{3}{3} = -1$$

Verifiquemos el resultado despejando y derivando:

$$x^{3} + y^{3} - 2 = 0 \Leftrightarrow y = \sqrt[3]{2 - x^{3}}$$
$$y' = f'(x) = -\frac{1}{3} (2 - x^{3})^{-\frac{2}{3}} . 3x^{2}$$
$$f'(1) = -1$$

5.2.-

Considerar la ecuación $x^3y + y^2 - xy^5 - 1 = 0$

- a) Demostrar que la ecuación define implícitamente una función de la forma y = f(x) alrededor del punto (1,1).
- b) ¿Cuál es el valor de la pendiente de la función implícita en (1,1)?
- c) ¿Cómo es la concavidad de f alrededor de (1,1)?
- d) Hacer un bosquejo de la grafica de f en una vecindad de (1,1).

5.3.-

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x, y) = 1 + x \cdot y - \ln(e^{xy} + e^{-xy}) = 0$

Calcular las derivadas primeras y segundas de la función implícita y = g(x) definida por f(x, y) = 0.

5.4.-

Calcular las derivadas primeras y segundas de la función implícita y = f(x), definida por la ecuación $\ln \sqrt{x^2 + y^2} = \arctan\left(\frac{y}{x}\right)$

5.5.-

Sea $F: \mathbb{R}^2 \to \mathbb{R}$ definida por $F(x,y) = x^2 + y^2 - 1$, analizar para qué puntos de \mathbb{R}^2 es aplicable el teorema de la función implícita para definir una función y = f(x) tal que F(x,y) = 0. Para esos puntos hallar y'.

5.6.-

Considerar $F: \mathbb{R}^2 \to \mathbb{R}/F(x,y) = x^4 - e^{xy^3 - 1}$. Probar que en un entorno del punto (1,1) es aplicable el teorema de la función implícita y calcular y'. Luego hacer F(x,y) = 0, despejar y = f(x) y verificar el resultado por derivación.

5.7.-

Sea $F: \mathbb{R}^2 \to \mathbb{R}/F(x, y) = e^{2y+x} + \operatorname{sen}(x^2+y) - 1$. Obtener un punto de \mathbb{R}^2 en cuya vecindad sea aplicable el teorema de la función implícita y obtener y'. Observar que en este caso no es posible hacer explícita la función y = f(x), pero sí su derivada.

5.8.-

Dada $F: \mathbb{R}^2 \to \mathbb{R} / F(x,y) = x^3 + y^3 - 2xy$. Indicar un punto de \mathbb{R}^2 alrededor del cual se verifique el teorema de la función implícita, y obtener para tal punto las derivadas primeras y segundas de y = f(x)

5.9.-

Dada
$$F : \mathbb{R}^3 \to \mathbb{R} / F(x, y, z) = y^2 + xz + z^2 - e^z - c = 0$$

a) Hallar c tal que F(0,e,2) = 0

b) Obtener
$$\frac{\partial z}{\partial x}$$
 y $\frac{\partial z}{\partial y}$ si $z = f(x, y)$

5.10.-

La ecuación $x^2 + y^2 + 2axy$, en la que a > 1, define una función y = y(x). Probar que $\frac{d^2y}{dx^2} = 0$.

Teorema de la función inversa

Sea $f: \mathbb{R}^n \to \mathbb{R}^n$, con derivadas parciales continuas en un conjunto abierto que contiene al punto $\mathbf{x_0}$ y tal que $\det Jf(\mathbf{x_0}) = \left| Jf(\mathbf{x_0}) \right| \neq 0$, entonces existe un entorno V abierto $\left(V \subset \mathbb{R}^n \right)$ que contiene a $\mathbf{x_0}$ y existe otro entorno W abierto $\left(W \subset \mathbb{R}^n \right)$ que contiene a $\mathbf{y_0} = f(\mathbf{x_0})$ tal que:

 $f:V\to W$ tiene una inversa continua $f^{-1}:W\to V$, que es diferenciable y que $\forall \mathbf{y}\in W$ satisface:

$$(Jf^{-1})(\mathbf{y}) = [Jf(\mathbf{x})]^{-1}$$

Ejemplo

Dada $f: \mathbb{R}^2 \to \mathbb{R}^2 / f(x, y) = (5e^{4y}, 3e^{5x} + 2e^{4y})$, a) Probar que f es localmente inversible en un entorno de cada punto de \mathbb{R}^2 . b) Obtener f^{-1} . c) Comprobar que $Jf y Jf^{-1}$ son matrices inversas en puntos correspondientes

$$f(x, y) = \left(5e^{4y}, 2e^{4y} + 3e^{5x}\right)$$

$$Jf(x, y) = \begin{pmatrix} 0 & 20e^{4y} \\ 15e^{5x} & 8e^{4y} \end{pmatrix} \to \det Jf(x, y) = -300e^{5x}e^{4y} \neq 0 \ \forall (x, y) \in \mathbb{R}^2$$

Por lo tanto f es inversible alrededor de cada punto del plano.

b)

$$u = 5e^{4y} \to \frac{u}{5} = e^{4y} \to y = \frac{1}{4} \ln\left(\frac{u}{5}\right)$$

$$v = 3e^{5x} + 2e^{4y} \to v = 3e^{5x} + \frac{2}{5}u \to v - \frac{2}{5}u = 3e^{5x} \to x = \frac{1}{5} \ln\left[\frac{1}{3}\left(v - \frac{2}{5}u\right)\right]$$

$$f^{-1}(u, v) = \left(\frac{1}{5} \ln\left[\frac{1}{3}\left(v - \frac{2}{5}u\right)\right], \frac{1}{4} \ln\left(\frac{u}{5}\right)\right)$$

c)

$$Jf^{-1}(u,v) = \begin{pmatrix} \frac{-2}{75\frac{1}{3}\left(v - \frac{2}{5}u\right)} & \frac{1}{15\frac{1}{3}\left(v - \frac{2}{5}u\right)} \\ \frac{1}{20\left(\frac{u}{5}\right)} & 0 \end{pmatrix} \rightarrow Jf^{-1}(x,y) = \begin{pmatrix} \frac{-2}{75e^{5x}} & \frac{1}{15e^{5x}} \\ \frac{1}{20e^{4y}} & 0 \end{pmatrix}$$

$$Jf(x, y) Jf^{-1}(x, y) = Jf^{-1}(x, y) Jf(x, y) = I$$

Son matrices inversas.

5.11.-

Estudiar si g es localmente inversible, es decir si $|Jg(t)| \neq 0, \forall t \in \Delta$. En ese caso, determinar g^{-1} :

a)
$$g(s,t) = (s + 2t, s - t); \Delta = \mathbb{R}^2$$

c)
$$g(s,t) = (2s+3.t, s-4t); \Delta = \mathbb{R}^2$$

b)
$$g(s,t) = (s^2 - s - 2, 3t); \Delta = \mathbb{R}^2$$

a)
$$g(s,t) = (s+2t, s-t); \Delta = \mathbb{R}^2$$
 c) $g(s,t) = (2s+3t, s-4t); \Delta = \mathbb{R}^2$
b) $g(s,t) = (s^2-s-2,3t); \Delta = \mathbb{R}^2$ d) $g(s,t) = (s^2-t^2,st); \Delta = \mathbb{R}^2 - \{(0,0)\}$

5.12.-

Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3 / f(x, y, z) = \left(\operatorname{sen}(x+z), \operatorname{sen}(y+z), e^y \right)$$

- a) Demostrar que f es localmente inversible en (0, 0, 0)
- b) Ver que existen puntos en \mathbb{R}^3 donde no se cumplen las condiciones del teorema de la función inversa, es decir donde $|f'(x_0, y_0, z_0)| = 0$.

5.13.-

Sea la función
$$f: \mathbb{R}^2 \to \mathbb{R}^2 / f(x, y) = (e^{2x} - e^y, e^y)$$

- a) Probar que f es localmente inversible en un entorno de cada punto $(x, y) \in \mathbb{R}^2$
- b) Obtener f^{-1} para los puntos (x, y) de ese entorno.
- c) Comprobar que las matrices derivadas de f y f^{-1} , en puntos correspondientes, son inversas.

5.14.-

Sea $g: \mathbb{R}^3 \to \mathbb{R}^3: g(s,t,u) = (u.\cos(st), u.\sin(st), s+u)$. En particular vale que g(1,0,1) = (1,0,2). Calcular $J g^{-1}(1,0,2)$.

Problemas propuestos

Recuperatorio 2005

Sea z = f(x, y) dada implícitamente por: $F(x, y, z) = x y z - e^z = 0$.

Demostrar que:
$$\frac{\partial^2 z}{\partial y \partial x} \left(e^2, \frac{1}{2}, 2 \right) = \frac{\partial^2 z}{\partial x \partial y} \left(e^2, \frac{1}{2}, 2 \right)$$

Recuperatorio 2006

Sea la función $f: \mathbb{R}^2 \to \mathbb{R}^2 / f(u,v) = (e^{u+v}, e^{u-v})$. a) Probar que f es localmente inversible en un entorno de cada punto $(u,v) \in \mathbb{R}^2$. b) Obtener f^{-1} para los puntos (u,v) de ese entorno. c) Comprobar que las matrices Jf y Jf^{-1} , en puntos correspondientes, son inversas.

Recuperatorio 2007

Sea la función $f : \mathbb{R}^2 \to \mathbb{R}^2 / f(x, y) = (3e^{2x} + e^{3y}, 2e^{3y})$

a) Probar que f es localmente inversible en un entorno de cada punto de \mathbb{R}^2 . b) Obtener f^{-1} . c) Comprobar que Jf y Jf^{-1} son matrices inversas en puntos correspondientes.

Final febrero 2015

Dada la función $F(x, y, z) = 3xy + xz + yz - 3e^z$.

- a) Probar que la ecuación F(x, y, z) = 0 define implícitamente a z como función de (x, y), z = f(x, y), en un entorno del punto (1,1).
- b) Calcular la derivada direccional de f en el punto (1,1) en la dirección que va hacia el (0,0).