

Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation

Xiaoying Zhang¹*, Baolin Peng², Ye Tian², Jingyan Zhou¹, Lifeng Jin², Linfeng Song², Haitao Mi², Helen Meng^{1,3}

¹The Chinese University of Hong Kong, Hong Kong

²Tencent AI Lab, Bellevue

³Centre for Perceptual and Interactive Intelligence, Hong Kong

*Work done during the internship at Tencent AI Lab

Introduction

Problem

 LLMs hold relevant knowledge ("knowing"), yet often struggle with factual inaccuracies, *i.e.*, "hallucinations" ("telling")

Limitations of Existing Approaches

- Necessitate high-quality human factuality annotations
- Employ consistency-based factuality signals, intrinsically linked to the LLM's generation ability

Motivation

 An LLM shows potential in "self-evaluation", i.e., identifying factual inaccuracies within its generated responses, with a reasonable prediction confidence

Prompt: Write a biography of Jesse Foppert.

Figure 1. Illustration of self-alignment for factuality. Given a prompt to write a biography, before factuality alignment, the LLM generates some facts that are not accurate. Through self-evaluation, the LLM is capable of identifying these inaccurate facts. The feedback from the self-evaluation is used as a reward signal to align the LLM towards factuality. Each fact is highlighted in distinct colors, and the corrected facts are marked in green.

Contributions

- Propose self-alignment for factuality framework that leverages an LLM's self-evaluation capability to mitigate hallucinations
- Introduce SK-Tuning to improve an LLM's confidence estimation and calibration, boosting self-evaluation
- Show the efficacy of Self-Alignment for Factuality on three knowledge-intensive tasks

Self-Alignment for Factuality

Figure 2. Illustration of self-alignment for factuality in the long-form generation task. (i) Step 1: Generate initial responses for preference data collection. (ii) Step 2: Estimate responses factuality via SELF-EVAL for preference labeling. (iii) Step 3: Create preference data and aligning the LLM with DPO.

Factuality Self-Evaluation

- SELF-EVAL Component, built on an LLM ${\cal M}$, is prompted to assess the validity of \mathcal{M} 's response a, using exclusively its internal knowledge, given a prompt q

$$p(\text{True}|q,a) = f_{\mathcal{M}}(q,a)$$

Self-Knowledge Tuning (SK-Tuning) augments LLMs' self-evaluation ability

Figure 3. The process of constructing training data \mathcal{D}_{ψ} for SK-Tuning.

$$\mathcal{L}_{\phi} = -\mathbb{E}_{(q, a, r_{+}, r_{-}) \sim \mathcal{D}_{\psi}} \left[\log \sigma \left(\log \pi_{\phi} \left(r_{+} \mid q, a \right) - \log \pi_{\phi} \left(r_{-} \mid q, a \right) \right) \right]$$

Experiments

Main Results

Model	Labeled TruthfulQA		TruthfulQA (Gen.)			BioGEN (Long-Form Gen.)			
	In-dom. <u>Data</u>	% Acc.	% True	% Info?	% True*Inf	o#Cor.	# Incor	. % Res.	% FActScore
Llama-7B*	-	25.60	30.40	96.30	26.90	7.70	16.92	98.00	30.72
+ SFT*	\checkmark	24.20	47.10	_	36.10	8.52	16.52	98.00	32.17
+ ITI* (Li et al., 2023)	\checkmark	25.90	49.10	-	43.50	-	-	-	-
+ DoLa* (Chuang et al., 2023) + FactTune-MC (Tian et al., 2023	√	32.20 -	42.10 -	98.30	40.80 -	7.46 10.98	13.70 21.33	99.00 99.00	33.91 30.92
Self-Alignment for Factuality (Our	rs)								
w/ Self-Eval-P(True) w/ Self-Eval-SKT		36.59 45.48	42.88 47.40	O ,	41.51 45.75	6.21 8.54	13.19 13.49	100.00 100.00	0_00
LLAMA2-7B	-	28.90	50.41	88.22	39.04	8.84	12.65	99.00	40.54
+ DoLa (Chuang et al., 2023) + FactTune-MC (Tian et al., 2023	√	31.10 -	47.53 -	94.66 -	42.60 -	8.74 12.64	11.85 16.16	72.00 100.00	38.99 42.71
Self-Alignment for Factuality (Our	rs)								
w/ Self-Eval-P(True)		43.15	_	94.93	41.10	8.46	11.17	100.00	. , 🔾
w/ Self-Eval-SKT		44.10	55.07	98.08	53.42	12.12	14.44	99.00	46.50

Table 1. Few-shot evaluation results on three distinct tasks: six-shot prompting results of the MCQA and short-form generation tasks on TruthfulQA, and five-shot prompting results of the long-form generation task on BioGEN.

- Self-alignment for factuality is effective on mitigating hallucinations.
- SK-Tuning is helpful to improve factuality estimation with LLM's inherent knowledge.

In-Depth Analysis of Self-Eval

Task	Model	Multi-choice QA Datasets							
		TruthfulQA (Full)	CommonSenseQA	OpenBookQA (Closed)	MedQA	MMLU			
Selection (Metric: Acc.)	Llama2-7B Self-Eval-P(True) Self-Eval-SKT	25.49 32.64 43.97	54.30 64.95 70.43	55.00 65.40 67.40	30.71 29.69 36.37	44.76 43.29 49.88			
	n Self-Eval-P(True)) Self-Eval-SKT	51.33 59.02	79.76 84.65	71.66 75.72	52.75 60.40	59.52 67.07			

Table 2. Five-shot results on MCQA tasks, following Singhal et al. (2023).

- SK-Tuning shows strong efficacy in improving the LLM's confidence estimation.
- Factuality evaluation is easier than factual generation.
- SK-Tuning improves the LLM's confidence calibration.

Figure 4. Calibration curves of utilizing Self-Eval-P(True) and Self-Eval-SKT on Llama2-7B in the CommonsenseQA task. Following Kadavath et al. (2022), we plot confidence vs. frequency that a prediction is correct. The dashed line indicates perfect calibration.