MECÁNICA GENERAL CUERPO RÍGIDO | TENSORES DE INERCIA

Los problemas marcados con (*) son opcionales.

- 1. Se tiene una barra de $m=1\,\mathrm{kg}$ de sección despreciable frente a $l=1\,\mathrm{m}$. De alinear un eje (\hat{z}) con ella,
 - a) ¿cuales son sus momentos de inercia?,
- b) ¿existen los productos de inercia?
- 2. Dibuje sistemas de ejes conveniente para calcular momentos de inercia.

- 3. Calcule para el sistema de ambas m (la masa de brazos y ejes es despreciable)
 - a) momento de inercia $\overline{\overline{I}}$ respecto a A,
 - b) momento angular $\vec{L}\Big|_A = \overline{\overline{I}}\vec{\Omega}$ y torque $\vec{\tau} = \dot{\vec{L}}$.

La porción vertical de la barra se mantiene con rulemanes que impiden su movimiento vertical, pero posibilitan que el eje rote sin fricción con velocidad angular Ω respecto el marco inercial O_{xyz} .

- 4. Calcule los momentos de inercia para una molécula de H_2O . En CNPT se abre con un ángulo de $104,5^{\circ}$ y median 95,84 pm entre O y H.
- 5. Tensor de inercia de un cubo con arista b. Encuentre:

b) Use la forma general del teorema de ejes paralelos de Steiner para calcularlo ahora desde el centro de masa O para el sistema x_i .

6. En una plancha metálica se calaron dos aberturas en forma simétrica. Esta pendul'ea desde el punto A. Conociendo la m de la planchuela calada calcule su momento de inercia I_{zz} desde su centro de masa y luego desde A.

7. Hallar la energía cinética de un cilindro homogéneo de radio a que rueda en el interior de una superficie cilíndrica de radio R.

8. (*) Calcule:

a) Momentos principales de inercia de un cono homogéneo de altura h y radio en su base R.

