

A. P. SHAH INSTITUTE OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: DLCA SEM: III

Boslean laws

(2)
$$A+1 = 1$$

$$(4)$$
 A·1 = A

$$(7)$$
 A·A = A

$$\widehat{A} = A$$

$$\begin{array}{ccc} \textcircled{10} & A + AB = A \\ & A + AB = A (1+B) \\ & = A \cdot 1 \\ & = A \end{array}$$

$$\begin{array}{ccc} \boxed{1} & A + \overline{A}B = A + B \\ & - & - \end{array}$$

$$\underline{A} + \overline{A}B = \underline{A + AB} + \overline{AB} \qquad \therefore A = A + AB$$

$$= AA + AB + \overline{AB} \qquad \therefore A = AA$$

$$= AA + AB + A\overline{A} + \overline{AB} \qquad \therefore A\overline{A} = 0$$

$$= (A + \overline{A}) (A + B)$$

$$= 1 \cdot (A + B)$$

$$= A + B$$

Parshvanath Charitable Trust's

A. P. SHAH INSINHIUMD OF INDCHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: DLCA

SEM: III

Commutative Law

A + B = B + A

The order in which variables are ORed makes no difference.

A·B = B·A

The order in which variables are ANDED makes no difference.

Associative law:

A + (B+C) = (A+B)+C

 $A(BC) = (AB) \cdot C$

Distributive law

A(B+c) = AB+AC

De Morgan's Theorem

 I^{st} theorem $\overline{AB} = \overline{A} + \overline{B}$

The compliment of two or more variables ANDED is equivalent to OR of the compliment of endissual variable.

 \overline{A} theorem. $\overline{A+B} = \overline{A} \cdot \overline{B}$

The compliment of two variables of ed is equivalent to ANDing of complement of indivisual variable.

Prof. Vaibhav Yavalkar

Department of CSE-Data Science

A. P. SHAH INSTITUTE OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)
(Religious Jain Minority)

Subject: DLCA SEM: III

Simplification of Beolean expression

$$(HC)=1$$

$$= AB + AC + B$$
$$= B(1+A) + AC$$

= Bc

Parshvanath Charitable Trust's

A. P. SHAH INSTRUCTE OF TRECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: DLCA SEM: III

Simplify:

$$O(A+C)(AD+A\overline{D})+AC+C$$

$$=(A+C)A(D+\overline{D})+AC+C$$

$$=(A+C)A+(A+1)C$$

$$=(A+C)A+C$$

$$=$$

Parshvanath Charitable Trust's

A. P. SHAH INSTITUTED OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Subject: DLCA SEM: III

Y = AB (B+C) + AB (B+C)
= (A+B)(B+0) + AB(3	3.2)
= AB+AC+BB+BC+	
- AB+AC+BC+O	
= AB+AC+BC	
Simplify wing boolean the 10gic diagram for the - 10gic diagram for the - 10gic ABC+ ABC+ ABC+ ABC = ABC+ ABC+ ABC+ABC = ABC+ ABC+ABC+ABC = ABC+ABC+ABC+ABC = ABC+ABC+ABC+ABC+ABC+ABC+ABC+ABC+ABC+ABC+	
- ABC+ A(B+BC)	(A+AB)= A+B
= AB(+ A(B+C)	(1.10.2)
- ABC+ AB+AC	
= B(A+AC)+AC	
= B(A+C) TAC"	
- AB+BC+AC	