

Normally, after enabling wake up, the operating system writes (11b) to the lower two bits of the PMCSR to put the 82599 into low-power mode.

Once wake up is enabled, the 82599 monitors incoming packets, first filtering them according to its standard address filtering method, then filtering them with all of the enabled wake-up filters. If a packet passes both the standard address filtering and at least one of the enabled wake-up filters, the 82599:

- Sets the PME Status bit in the PMCSR.
- If the PME_En bit in the PMCSR is set, asserts PE_WAKE_N.

If enabled, a link state change wake up causes similar results, setting *PME_Status*, asserting *PE_WAKE_N* when the link goes up or down.

PE_WAKE_N remains asserted until the operating system either writes a 1b to the PME_Status bit of the PMCSR register or writes a 0b to the PME_En bit.

After receiving a wake-up packet or link change event, the 82599 ignores any subsequent wake-up packets or link change events until the driver clears the WUS register.

5.3.3 Wake-Up Packets

The 82599 supports various wake-up packets using two types of filters:

- · Pre-defined filters
- · Flexible filters

Each of these filters are enabled if the corresponding bit in the WUFC register is set to 1b.

Note:

When VLAN filtering is enabled, packet s that passed any of the receive wake-up filters should only cause a wake-up event if it also passed the VLAN filtering.

5.3.3.1 Pre-Defined Filters

The following packets are supported by the 82599's pre-defined filters:

- Directed Packet (including exact, multicast indexed, and broadcast)
- Magic Packet
- ARP/IPv4 Request Packet
- · Directed IPv4 Packet
- · Directed IPv6 Packet

Each of these filters are enabled if the corresponding bit in the WUFC register is set to 1b.

The explanation of each filter includes a table showing which bytes at which offsets are compared to determine if the packet passes the filter. Both VLAN frames and LLC/SNAP can increase the given offsets if they are present.

5.3.3.1.1 Directed Exact Packet

The 82599 generates a wake-up event after receiving any packet whose destination address matches one of the 128 valid programmed receive addresses if the *Directed Exact Wake Up Enable* bit is set in the Wake Up Filter Control (WUFC.EX) register.

Offset	# of bytes	Field	Value	Action	Comment
0	6	Destination Address		Compare	Match any pre-programmed address.

5.3.3.1.2 Directed Multicast Packet

For multicast packets, the upper bits of the incoming packet's destination address index a bit vector, the Multicast Table Array (MTA) that indicates whether to accept the packet. If the *Directed Multicast Wake Up Enable* bit set in the Wake Up Filter Control (WUFC.MC) register and the indexed bit in the vector is one, then the 82599 generates a wake-up event. The exact bits used in the comparison are programmed by software in the *Multicast Offset* field of the Multicast Control (MCSTCTRL.MO) register.

Offset	# of bytes	Field	Value	Action	Comment
0	6	Destination Address		Compare	See previous paragraph.

5.3.3.1.3 Broadcast

If the *Broadcast Wake Up Enable* bit in the Wake Up Filter Control (WUFC.BC) register is set, the 82599 generates a wake-up event when it receives a broadcast packet.

Offset	# of bytes	Field	Value	Action	Comment
0	6	Destination Address	FF*6	Compare	

5.3.3.1.4 Magic Packet

A Magic Packet's destination address must match the address filtering enabled in the configuration registers with the exception that broadcast packets are considered to match even if the *Broadcast Accept* bit of the Receive Control (FCTRL.BAM) register is 0b. If APM wake up is enabled in the EEPROM, the 82599 starts up with the Receive Address Register 0 (RAH0, RAL0) loaded from the EEPROM. This is to enable the 82599 to accept packets with the matching IEEE address before the driver comes up.

Offset	# of Bytes	Field	Value	Action	Comment	
0	6	Destination Address		Compare	MAC header. Processed by main address filter.	
6	6	Source Address		Skip		
12	4	Possible VLAN Tag		Skip		
12	8	Possible Len/LLC/SNAP Header		Skip		
12	2	Туре		Skip		
Any	6	Synchronizing Stream	FF*6+	Compare		
any+6	96	16 Copies of Node Address	A*16	Compare	Compared to Receive Address Register 0 (RAH0, RAL0)	

Note:

Accepting broadcast Magic Packets for wake-up purposes when the *Broadcast Accept* bit of the Receive Control (FCTRL.BAM) register is 0b is a change from 82544, which initialized FCTRL.BAM to 1b if APM was enabled in the EEPROM, but then required that bit to be 1b to accept broadcast Magic Packets, unless broadcast packets passed another perfect or multicast filter.

5.3.3.1.5 ARP/IPv4 Request Packet

The 82599 supports reception of ARP request packets for wake up if the ARP bit is set in the WUFC register. Four IPv4 addresses are supported, which are programmed in the IPv4 Address Table (IP4AT). A successfully matched packet must pass L2 address filtering, a protocol type of 0x0806, an ARP opcode of 0x01, and one of the four programmed IPv4 addresses. The 82599 also handles ARP request packets that have VLAN tagging on both Ethernet II and Ethernet SNAP types.

Offset	# of Bytes	Field	Value	Action	Comment
0	6	Destination Address		Compare	MAC header. Processed by main address filter.
6	6	Source Address		Skip	
12	4	Possible VLAN Tag		Compare	
12	4	Possible Len/LLC/SNAP Header		Skip	
12	2	Туре	0x0806	Compare	ARP.
14	2	Hardware Type	0x0001	Compare	

Offset	# of Bytes	Field	Value	Action	Comment	
16	2	Protocol Type	0x0800	Compare		
18	1	Hardware Size	0x06	Compare		
19	1	Protocol Address Length	0x04	Compare		
20	2	Operation	0x0001	Compare		
22	6	Sender Hardware Address	-	Ignore		
28	4	Sender IP Address	-	Ignore		
32	6	Target Hardware Address	-	Ignore		
38	4	Target IP Address	IP4AT	Compare	Can match any of four values in IP4AT.	

5.3.3.1.6 Directed IPv4 Packet

The 82599 supports reception of directed IPv4 packets for wake up if the IPV4 bit is set in the WUFC register. Four IPv4 addresses are supported, which are programmed in the IPv4 Address Table (IP4AT). A successfully matched packet must pass L2 address filtering, a protocol type of 0x0800, and one of the four programmed IPv4 addresses. The 82599 also handles directed IPv4 packets that have VLAN tagging on both Ethernet II and Ethernet SNAP types.

Offset	# of Bytes	Field	Value	Action	Comment
0	6	Destination Address		Compare	MAC header. Processed by main address filter.
6	6	Source Address		Skip	
12	4	Possible VLAN Tag		Compare	
12	8	Possible Len/LLC/SNAP Header		Skip	
12	2	Туре	0x0800	Compare	IP
14	1	Version/ HDR length	0x4X	Compare	Check IPv4.
15	1	Type of Service	-	Ignore	
16	2	Packet Length	-	Ignore	
18	2	Identification	-	Ignore	
20	2	Fragment Information	-	Ignore	
22	1	Time to Live	-	Ignore	

Offset	# of Bytes	Field	Value	Action	Comment
23	1	Protocol	-	Ignore	
24	2	Header Checksum	-	Ignore	
26	4	Source IP Address	-	Ignore	
30	4	Destination IP Address	IP4AT	Compare	Can match any of four values in IP4AT.

5.3.3.1.7 Directed IPv6 Packet

The 82599 supports reception of directed IPv6 packets for wake up if the $\mathit{IPV6}$ bit is set in the WUFC register. One IPv6 address is supported, which is programmed in the IPv6 Address Table (IP6AT). A successfully matched packet must pass L2 address filtering, a protocol type of 0x0800, and the programmed IPv6 address. The 82599 also handles directed IPv6 packets that have VLAN tagging on both Ethernet II and Ethernet SNAP types.

Offset	# of Bytes	Field	Value	Action	Comment
0	6	Destination Address		Compare	MAC header. Processed by main address filter.
6	6	Source Address		Skip	
12	4	Possible VLAN Tag		Compare	
12	8	Possible Len/LLC/SNAP Header		Skip	
12	2	Туре	0x0800	Compare	IP.
14	1	Version/ Priority	0x6X	Compare	Check IPv6.
15	3	Flow Label	-	Ignore	
18	2	Payload Length	-	Ignore	
20	1	Next Header	-	Ignore	
21	1	Hop Limit	-	Ignore	
22	16	Source IP Address	-	Ignore	
38	16	Destination IP Address	IP6AT	Compare	Match value in IP6AT.

5.3.3.2 Flexible Filter

The 82599 supports a total of **six** host flexible filters. Each filter can be configured to recognize any arbitrary pattern within the first 128 bytes of the packet. To configure the flexible filter, software programs the required values into the Flexible Host Filter Table (FHFT). These contain separate values for each filter. Software must also enable the filter in the WUFC register, and enable the overall wake-up functionality must be enabled by setting the *PME_En* bit in the PMCSR or the WUC register.

Once enabled, the flexible filters scan incoming packets for a match. If the filter encounters any byte in the packet where the mask bit is one and the byte doesn't match the byte programmed in FHFT then the filter fails that packet. If the filter reaches the required length without failing the packet, it passes the packet and generates a wake-up event. It ignores any mask bits set to one beyond the required length.

Packet that passed a wake-up flexible filter should cause a wake-up event only if it is directed to the 82599 (passed L2 and VLAN filtering).

Note:

The flexible filters are temporarily disabled when read from or written to by the host. Any packet received during a read or write operation is dropped. Filter operation resumes once the read or write access completes.

The following packets are listed for reference purposes only. The flexible filter could be used to filter these packets.

5.3.3.2.1 IPX Diagnostic Responder Request Packet

An IPX diagnostic responder request packet must contain a valid Ethernet MAC address, a protocol type of 0x8137, and an IPX diagnostic socket of 0x0456. It can also include LLC/SNAP headers and VLAN tags. Since filtering this packet relies on the flexible filters, which use offsets specified by the operating system directly, the operating system must account for the extra offset LLC/SNAP Headers and VLAN tags.

Offset	# of Bytes	Field	Value	Action	Comment
0	6	Destination Address		Compare	
6	6	Source Address		Skip	
12	4	Possible VLAN Tag		Compare	
12	8	Possible Len/LLC/SNAP Header		Skip	
12	2	Туре	0x8137	Compare	IPX.
14	16	Some IPX Information	-	Ignore	
30	2	IPX Diagnostic Socket	0x0456	Compare	

5.3.3.2.2 Directed IPX Packet

A valid directed IPX packet contains the station's Ethernet MAC address, a protocol type of 0x8137, and an IPX node address that equals to the station's Ethernet MAC address. It can also include LLC/SNAP headers and VLAN tags. Since filtering this packet relies on the flexible filters, which use offsets specified by the operating system directly, the operating system must account for the extra offset LLC/SNAP headers and VLAN tags.

Offset	# of Bytes	Field	Value	Action	Comment	
0	6	Destination Address		Compare	MAC header. Processed by main address filter.	
6	6	Source Address		Skip		
12	4	Possible VLAN Tag		Compare		
12	8	Possible Len/LLC/SNAP Header		Skip		
12	2	Туре	0x8137	Compare	IPX.	
14	10	Some IPX Information	-	Ignore		
24	6	IPX Node Address	Receive Address 0	Compare	Must match Receive Address 0.	

5.3.3.2.3 IPv6 Neighbor Discovery Filter

In IPv6, a neighbor discovery packet is used for address resolution. A flexible filter can be used to check for a neighborhood discovery packet.

5.3.4 Wake Up and Virtualization

When operating in a virtualized environment, all wake-up capabilities are managed by a single entity (such as the VMM or an IOVM). In an IOV architecture, the physical driver controls wake up and none of the Virtual Machines (VMs) has direct access to the wake-up registers. The wake-up registers are not replicated.

NOTE: This page intentionally left blank.

6.0 Non-Volatile Memory Map

6.1 **EEPROM General Map**

The following table lists the EEPROM map used by the 82599. This table lists common modules for the EEPROM including: hardware pointers, software and firmware. Blocks are detailed in the following sections. All addresses and pointers in this table are absolute in word units.

Word Address	Used By	Field Name	LAN 0 / 1	Reserved
0x00	HW	EEPROM Control Word 1 — Section 6.3.2.1	Shared Logic	
0x01	HW	EEPROM Control Word 2 — Section 6.3.2.2	Shared Logic	
0x03	HW	PCIe Analog Configuration Module Pointer — Section 6.3.3	Shared Logic	
0x04	HW	Core 0 Analog Configuration Module Pointer — Section 6.3.4	Port 0	
0x05	HW	Core 1 Analog Configuration Module Pointer — Section 6.3.4	Port 1	
0x06	HW	PCIe General Configuration Module Pointer — Section 6.3.5	Shared Logic	
0x07	HW	PCIe Configuration Space 0 Module Pointer — Section 6.3.6	Function 0	
0x08	HW	PCIe Configuration Space 1 Module Pointer — Section 6.3.6	Function 1	
0x09	HW	LAN Core 0 Module Pointer — Section 6.3.7	Port 0	
0x0A	HW	LAN Core 1 Module Pointer — Section 6.3.7	Port 1	
0x0B	HW	MAC 0 Module Pointer — Section 6.3.8	Port 0	
0x0C	HW	MAC 1 Module Pointer — Section 6.3.8	Port 1	
0x0D	HW	CSR 0 Auto Configuration Module Pointer — Section 6.3.9	Port 0	
0x0E	HW	HW CSR 1 Auto Configuration Module Pointer — Section 6.3.9		
0x0F	FW	Firmware Module Pointer — Section 6.4	FW	
0x10 - 0x14	SW	SW Compatibility Module — Section 6.2.1	SW	
0x15 — 0x16	SW	PBA Bytes 14 — Section 6.2.2	SW	

Word Address	Used By	Field Name	LAN 0 / 1	Reserved
0x17	SW	iSCSI Boot Configuration Start Address — Section 6.2.3	SW	
0x18 - 0x19	SW	Software Reserved	SW	
0x20	SW	PXE VLAN Configuration Pointer	SW	
0x21 - 0x25	SW	Software Reserved	SW	
0x26	SW	External Thermal Sensor Block — Section 6.2.9	SW	
0x27	SW	Alternate SAN MAC Address Block — Section 6.2.10	SW	
0x28	SW	Active SAN MAC Address Block — Section 6.2.11	SW	
0x29 - 0x2E	SW	Software Reserved	SW	
0x2F	OEM	VPD Pointer — Section 6.2.5	Shared Logic	
0x30 - 0x36	PXE	PXE Word 0 (Software Use) Configuration — Section 6.2.6	SW	
0x37	SW	Alternate Ethernet MAC Addresses Pointer — Section 6.2.7	SW	
0x38	HW	EEPROM Control Word 3 — Section 6.3.2.3	Shared Logic	
0x39 - 0x3E	HW	Hardware Reserved	Reserved	
0x3F	SW	Software Checksum, Words 0x00 — 0x3F	Shared Logic	

6.2 **EEPROM Software**

6.2.1 SW Compatibility Module — Word Address 0x10-0x14

Five words in the EEPROM image are reserved for compatibility information. New bits within these fields are defined as the need arises for determining software compatibility between various hardware revisions.

6.2.2 PBA Number Module — Word Address 0x15-0x16

The nine-digit Printed Board Assembly (PBA) number used for Intel manufactured Network Interface Cards (NICs) is stored in the EEPROM.

Note that through the course of hardware ECOs, the suffix field is incremented. The purpose of this information is to enable customer support (or any user) to identify the revision level of a product.

Network driver software should not rely on this field to identify the product or its capabilities.

Current PBA numbers have exceeded the length that can be stored as hex values in these two words. For these PBA numbers the high word is a flag (0xFAFA) indicating that the PBA is stored in a separate PBA block. The low word is a pointer to a PBA block.

PBA Number	Word 0x15	Word 0x16
G23456-003	FAFA	Pointer to PBA Block

The PBA block is pointed to by word 0x16.

Word Offset	Description	Reserved
0×0	0x0 Length in words of the PBA block (default 0x6).	
0x1 0x5	PBA number stored in hexadecimal ASCII values.	

The PBA block contains the complete PBA number including the dash and the first digit of the 3-digit suffix. For example:

PBA Number	Word Offset 0	Word Offset 1	Word Offset 2	Word Offset 3	Word Offset 4	Word Offset 5
G23456-003	0006	4732	3334	3536	2D30	3033

Older PBA numbers starting with (A,B,C,D,E) are stored directly in words 0x15 and 0x16. The dash itself is not stored nor is the first digit of the 3-digit suffix, as it is always 0b for relevant products.

PBA Number	Byte 1	Byte 2	Byte 3	Byte 4
123456-003	12	34	56	03

6.2.3 iSCSI Boot Configuration — Word Address 0x17

The iSCSI Boot configuration module is located using the Word pointer *iSCSI Boot Configuration Address* field in word 0x17. The block length is embedded in the iSCSI Boot module.

Configuration Item	Offset (Bytes)	Size in Bytes	Comments					
	Shared Words							
Boot Signature	0x1:0x0	2	'i', 'S' (0x5369).					
Block Size	0x3:0x2	2	Total byte size of the boot configuration block.					
Structure Version	0x4	1	Version of this structure. Should be set to 1b.					
Reserved	0x5	1	Reserved for future use, should be set to zero.					
iSCSI Initiator Name	0x105:0x6	255 + 1	iSCSI initiator name. This field is optional and built by manual input, DHCP host name, or with MAC address.					
iSCSI Configuration Block	0x107:0x106	2	Bits 15:8 (Major) - Combo image major version. Bits 7:0 (Build) - Combo image build number (15:8).					
	0x109:0x108	2	Bits 15:8 (Build) - Combo image build number (7:0). Bits 7:0 (Minor) - Combo image minor version.					
Reserved	0x127:0x10A	30	Reserved for future use, should be set to zero.					

Configuration Item	Offset (Bytes)	Size in Bytes	Comments				
Port 0 Configuration							
iSCSI Flags	0x129:0x128	2	Bit 0x00: Initiator DHCP flag 0b = Use static configurations from this structure. 1b = Use DHCP to get initiator IP configuration. Bit 0x01: Enable DHCP for getting iSCSI target DHCP flag. 0b = Use static target configuration. 1b = Use DHCP to get target information by the Option 17 Root Path. Bit 0x02 - 0x03: Authentication Type 0x00 = None. 0x01 = One way chap. 0x02 = Mutual chap. Bit 0x04 - 0x05: Ctrl-D setup menu 0x00 = Enabled 0x03 = Disabled, skip Ctrl-D entry Bit 0x06 - 0x07: Reserved Bit 0x08 - 0x09: ARP Retries Retry value Bit 0x0A - 0x0F: ARP Timeout Timeout value for each try				
iSCSI Initiator IP	0x12D:0x12A	4	Initiator DHCP flag Not set = This field should contain the initiator IP address. Set = This field is ignored.				
Subnet Mask	0x131:0x12E	4	Initiator DHCP flag Not set = This field should contain the subnet mask. Set = This field is ignored.				
Gateway IP	0x135:0x132	4	Initiator DHCP flag Not set = This field should contain the gateway IP address. Set = This field is ignored.				
iSCSI Boot LUN	0x137:0x136	2	Target DHCP flag Not set = iSCSI target LUN number should be specified. Set = This field is ignored.				
iSCSI Target IP	0x13B:0x138	4	Target DHCP flag; Not set = IP address of iSCSI target. Set = This field is ignored.				
iSCSI Target Port	0x13D:0x13C	2	Target DHCP flag Not set = TCP port used by iSCSI target. Default is 3260. Set = This field is ignored.				
iSCSI Target Name	0x23D:0x13E	255 + 1	Target DHCP flag Not set = iSCSI target name should be specified. Set = This field is ignored.				
CHAP Password	0x24F:0x23E	16 + 2	The minimum CHAP secret must be 12 octets and maximum CHAP secret size is 16. The last 2 bytes are null alignment padding.				

Configuration Item	Offset (Bytes)	Size in Bytes	Comments
CHAP User Name	0x2CF:0x250	127 + 1	The user name must be non-null value and maximum size of user name allowed is 127 characters.
VLAN ID	0x2D1:0x2D0	2	Reserved area since the function is disabled due to Microsoft restrictions. VLAN ID to include the tag in iSCSI boot frames. A valid VLAN ID is between 1 and 4094. Zero means no VLAN tag support.
Mutual CHAP Password	0x2E3:0x2D2	16 + 2	The minimum mutual CHAP secret must be 12 octets and maximum mutual CHAP secret size is 16. The last 2 bytes are null alignment padding.
FCoE Flags	0x2E5:0x2E4	2	Bit 1 used for Disable FCoE Ctrl-D Menu. Default = 0. 0b = FCoE Ctrl-D menu is enabled and user can configure FCoE ports. 1b = FCoE Ctrl-D menu is disabled and user cannot configure FCoE ports.
Reserved	0x2EB:0x2E6	6	Reserved for future use, should be set to zero.
		F	CoE Target 0
Target Worldwide Port Name (WWPN)	0x2F3:0x2EC	8	Byte string of target WWPN
Boot LUN	0x2F5:0x2F4	2	Target LUN
VLAN ID	0x2F7:0x2F6	2	VLAN ID for the Port. Default is 0.
Target Boot Order	0x2F8	1	Target Boot Order. Valid range is 0-4, with 0 meaning no boot order.
Reserved	0x2FB:0x2F9	3	Reserved for future use, should be set to zero.
	1	F	CoE Target 1
Target Worldwide Port Name (WWPN)	0x303:0x2FC	8	Byte string of target WWPN
Boot LUN	0x305:0x304	2	Target LUN
VLAN ID	0x307:0x306	2	VLAN ID for the Port. Default is 0.
Target Boot Order	0x308	1	Target Boot Order. Valid range is 0-4, with 0 meaning no boot order.
Reserved	0x30B:0x309	3	Reserved for future use, should be set to zero.
	<u>I</u>	F	CoE Target 2
Target Worldwide Port Name (WWPN)	0x313:0x30C	8	Byte string of target WWPN
Boot LUN	0x315:0x314	2	Target LUN
VLAN ID	0x317:0x316	2	VLAN ID for the Port. Default is 0.

Configuration Item	Offset (Bytes)	Size in Bytes	Comments		
Target Boot Order	0x318	1	Target Boot Order. Valid range is 0-4, with 0 meaning no boot order.		
Reserved	0x31B:0x319	3	Reserved for future use, should be set to zero.		
		F	CoE Target 3		
Target Worldwide Port Name (WWPN)	0x323:0x31C	8	Byte string of target WWPN		
Boot LUN	0x325:0x324	2	Target LUN		
VLAN ID	0x327:0x326	2	VLAN ID for the Port. Default is 0.		
Target Boot Order	0x328	1	Target Boot Order. Valid range is 0-4, with 0 meaning no boot order.		
Reserved	0x329	1	Reserved for future use, should be set to zero.		
Reserved	0x383:0x32A	90	Reserved for future use, should be set to zero.		
Port 1 Configuration					
Same configuration as	port 0. Add to eac	th offset 0x25C.			

6.2.4 Software Reserved Word — PXE VLAN Configuration Pointer — Word Address 0x20

Bits	Name	Default	Description
15:0	PXE VLAN Configuration Pointer	0x0	The pointer contains offset of the first NVM word of the PXE VLAN config block.

Table 6-1 PXE VLAN Configuration Section Summary Table

Word Offset	Word Name	Description
0×0000	VLAN Block Signature	ASCII 'V', 'L'.
0x0001	Version and Size	Contains version and size of structure.
0x0002	Port 0 VLAN Tag	VLAN tag value for the first port of the 82599. Contains PCP, CFI and VID fields. A value of 0 means no VLAN is configured for this port.
0x0003	Port 1 VLAN Tag	VLAN tag value for the second port of the 82599. Contains PCP, CFI and VID fields. A value of 0 means no VLAN is configured for this port.

Table 6-2 VLAN Block Signature - 0x0000

Bits	Name	Default	Description
15:0	VLAN Block Signature	0x4C56	ASCII 'V', 'L'

Table 6-3 Version and Size- 0x0001

Bits	Name	Default	Description	
15:8	Size		Total size in bytes of section.	
7:0	Version	0x01	Version of this structure. Should be set to 1.	

Table 6-4 Port 0 VLAN Tag - 0x0002

Bits	Name	Default	Description
15:13	Priority (0-7)	0x0	Priority 0-7
12	Reserved	0x0	Always 0
11:0	VLAN ID (1- 4095)	0x0	VLAN ID (1- 4095)

Table 6-5 Port 1VLAN Tag - 0x0003

Bits	Name	Default	Description
15:13	Priority (0-7)	0x0	Priority 0-7
12	Reserved	0x0 Always 0	
11:0	VLAN ID (1- 4095)	0x0	VLAN ID (1- 4095)

6.2.5 VPD Module Pointer — Word Address 0x2F

The Vital Product Data (VPD) module is located using the Word pointer VPD Pointer field in word 0x2F. The block length is embedded in the VPD module. The VPD section size is usually 64 words, and is initialized to 0x0 or 0xFFFF. Customers write their own data in this module. During run time this module is accessible through the VPD capability in the PCI configuration space.

6.2.6 EEPROM PXE Module — Word Address 0x30-0x36

Words 0x30 through 0x36 are reserved for configuration and version values used by PXE code.

The configuration of the Boot Agent software is controlled by several words in the EEPROM . The main setup options for Port 0 are stored in this word. These options are those that can be changed by the user using the Control-S setup menu.

Word Address	Description	Reserved		
0x30	0 PXE Word 0 (Software Use) Configuration			
0x31	0x31 PXE Word 1 (Software Use) Configuration			
0x32 PXE Word (Software Use) PXE Version				
0x33	PXE Word (Software Use) EFI Version			
0x34 - 0x36	Additional PXE Reserved words (Software Use)			

6.2.6.1 PXE Setup Options PCI Function 0 — Word Address 0x30

The main setup options for Port 0 are stored in this word. These options are those that can be changed by the user using the Control-S setup menu.

Bits	Name	Default	Description
15:13			Reserved. Must be 0x0.
12:10	FSD		Bits 12:10 control forcing speed and duplex during driver operation. Valid values are: 000b = Auto-negotiate. (default) 001b = Reserved. 010b = 100 Mb/s half duplex. 011b = Not valid (treated as 000b). 100b = Not valid (treated as 000b). 101b = Reserved. 110b = 100 Mb/s full duplex. 111b = 1000 Mb/s full duplex. Note: Only applicable for copper-based adapters. Not applicable to 10 GbE.
9	LWS		Legacy OS Wakeup Support. If set to 1b, the agent enables PME in the adapter's PCI configuration space during initialization. This allows remote wake up under legacy operating systems that don't normally support it. Note that enabling this makes the adapter technically noncompliant with the ACPI specification, which is why the default is disabled. Must be set to 0b for 1 GbE and 10 GbE adapters. Ob = Disabled (default). 1b = Enabled.
8	DSM		Display Setup Message. If the bit is set to 1b, the "Press Control-S" message is displayed after the title message. Default value is 1b.

Bits	Name	Default	Description
7:6	PT		Prompt Time. These bits control how long the "Press Control-S" setup prompt message is displayed, if enabled by DIM. 00b = 2 seconds (default). 01b = 3 seconds. 10b = 5 seconds. 11b = 0 seconds. Note: The Ctrl-S message is not displayed if 0 seconds prompt time is selected.
5	Disable iSCSI Setup Menu	0x0	This controls the iSCSI init message (Ctrl+D menu prompt) when iSCSI is disabled. When iSCSI option ROM is disabled and this bit is set to 1b, the init message is not displayed for the port. When iSCSI option ROM is disabled and this bit is set to 0b, the init message is displayed for the port. When iSCSI option ROM is enabled this bit does not matter, as the init message is displayed for the port.
4:3	DBS		Default Boot Selection. These bits select which device is the default boot device. These bits are only used if the agent detects that the BIOS does not support boot order selection or if the MODE field of word 31h is set to MODE_LEGACY. 00b = Network boot, then local boot (default) 01b = Local boot, then network boot 10b = Network boot only 11b = Local boot only

Bits 2:0 are defined as follows:

Bit	Value	Port Status	CLP (Combo) Executes	iSCSI Boot Option ROM CTRL-D Menu	FCoE Boot Option ROM CTRL-D Menu
2:0	0	PXE	PXE	Displays port as PXE. Allows changing to Boot Disabled, iSCSI Primary or Secondary.	Displays port as PXE. Allows changing to Boot Disabled, FCoE enabled.
	1	Boot Disabled	NONE	Displays port as Disabled. Allows changing to iSCSI Primary/Secondary.	Displays port as Disabled. Allows changing to FCoE enabled.
	2	iSCSI Primary	iSCSI	Displays port as iSCSI Primary. Allows changing to Boot Disabled, iSCSI Secondary.	Displays port as iSCSI. Allows changing to Boot Disabled, FCoE enabled.
	3	iSCSI Secondary	iSCSI	Displays port as iSCSI Secondary. Allows changing to Boot Disabled, iSCSI Primary.	Displays port as iSCSI Allows changing to Boot Disabled, FCoE enabled.
	4	FCoE	FCoE	Displays port as FCoE. Allows changing port to Boot Disabled, iSCSI Primary or Secondary.	Displays port as FCoE Allows changing to Boot Disabled.
	7:5	Reserved	Same as disabled.	Same as disabled.	Same as disabled.

6.2.7 Alternate Ethernet MAC Address — Word Address 0x37

This word is used as a pointer to an EEPROM block that contains the space for two MAC addresses. The first three words of the EEPROM block are used to store the MAC address for the first port (PCI Function 0). The second three words of the EEPROM block is used to store the MAC address for the second port (PCI Function 1). Initial and default values in the EEPROM block should be set to 0xFFFF (for both addresses) indicating that no alternate MAC address is present. See Section 4.6.13 for more details.

Note:

Word 0x37 must be set to 0xFFFF if alternate MAC addresses are not used. Also, alternate MAC addresses are ignored by hardware and require specific software support for activation.

Word Offset	Word Offset Description				
0x0 0x2	0x0 0x2 Alternate Ethernet MAC Address 1 (function 0)				
0x3 0x5	Alternate Ethernet MAC Address 2 (function 1)				

6.2.8 Checksum Word Calculation (Word 0x3F)

The checksum word (0x3F) is used to ensure that the base EEPROM image is a valid image. The value of this word should be calculated such that after adding all the words (0x00:0x3F), including the checksum word itself, the sum should be 0xBABA. This word is used strictly by software. Hardware does not calculate or check its content but instead checks the Signaturefield in EEPROM Control Word 1.

The first 63 words of the EEPROM have a collection of pointers to other sections of the EEPROM. To ensure the integrity of the additional configuration parameters, their content should be included in the EEPROM checksum word at offset 0x3F. As a result, the new algorithm for determining the checksum is as follows:

- 1. Perform an EEPROM checksum of the first 63 words at 0x0-0x3E.
- 2. Starting with word offset 0x03 (PCIE_ANALOG_PTR) read the pointer value.
- 3. If the value of the pointer is 0x0 or 0xFFFF then move on to the next pointer.
- 4. If the pointer has a value, then read the content of where the pointer points to.

For example, if the pointer is 0x308, read the value at word offset 0x308. The value in the first word pointed to is the length of that particular configuration data section. Note that the length value is NOT added to the checksum value. If the value at 0x308 was 5, don't add 5 to the checksum value. Instead the length is used to determine how many words after the count value should be added to the checksum. In this example, 5 words are added to the checksum, starting at word offset 0x309. This same logic applies to the pointers in locations 0x4 through 0xE. The result of the checksum is then subtracted from 0xBABA and compared to the value at word offset 0x3F. If the values match then the checksum is valid, if not, then the checksum is invalid.

The checksum word (0x3F) is used to ensure that the base EEPROM image is a valid image. The following documents the calculation.


```
#define IXGBE EEPROM CHECKSUM
                                 0x3F
#define IXGBE EEPROM SUM
                                0xBABA
#define IXGBE PCIE ANALOG PTR
                                 0.3
#define IXGBE FW PTR
static u16 ixgbe_eeprom_calc_checksum(struct ixgbe_hw *hw)
   u16 i;
  u16 j;
  u16 checksum = 0;
   u16 length = 0;
   u16 pointer = 0;
   u16 \text{ word} = 0;
   /* Include 0x0-0x3F in the checksum */
   for (i = 0; i < IXGBE EEPROM CHECKSUM; i++) {</pre>
      if (ixgbe eeprom read(hw, i, &word) != IXGBE SUCCESS) {
         DEBUGOUT("EEPROM read failed\n");
         break;
      checksum += word;
   }
   /* Include all data from pointers except for the fw pointer */
   for (i = IXGBE PCIE ANALOG PTR; i < IXGBE FW PTR; i++) {
      ixgbe eeprom read(hw, i, &pointer);
      /* Make sure the pointer seems valid */
      if (pointer != 0xFFFF && pointer != 0) {
          ixgbe eeprom read(hw, pointer, &length);
          if (length != 0xFFFF && length != 0) {
             for (j = pointer+1; j <= pointer+length; j++) {</pre>
                ixgbe eeprom read(hw, j, &word);
                checksum += word;
          }
      }
   }
   checksum = (u16) IXGBE EEPROM SUM - checksum;
  return checksum;
}
```


6.2.9 Software Reserved Word 15 — Ext. Thermal Sensor Configuration Block Pointer — Word Address 0x26

Pointer to External Thermal Sensor Configuration block.

Bits	Name	Default	Description
15:0	External Thermal Sensor	0xFFFF	Pointer to External Thermal Sensor Configuration block. 0x0000 and 0xFFFF indicates an invalid pointer.

6.2.10 Software Reserved Word 16 — Alternate SAN MAC Block Pointer — Word Address 0x27

Word 0x27 points to the Alternate SAN MAC Address block used by FCoE.

Note: Default value 0xFFFF means this word is not used.

Bits	Name	Default	Description
15:0	Alternate SAN MAC Address Pointer	0xFFFF	Pointer to the Alternate SAN MAC Address block. Used by both software and firmware. 0xFFFF indicates an invalid pointer.

6.2.10.1 Alternate SAN MAC Address Block

Word 0x27 points to the Alternate SAN MAC Address block used to store the alternate SAN MAC addresses and alternate WWN prefixes. Offsets to the SAN MAC addresses are defined as follows:

Word Offset	Default	Description		
0x0	0x0003	Capabilities.		
0x1 0x3	0xFFFF	Alternate SAN MAC Address 1 (function 0)		
0x4 0x6	0xFFFF	Alternate SAN MAC Address 2 (function 1)		
0x7	0xFFFF	0xFFFF Alternate WWNN prefix		
0x8 0xFFFF Alternate WWPN prefix		Alternate WWPN prefix		

6.2.10.2 Capabilities - Offset 0x0

The capabilities block indicates which words are supported. It is primarily for future expansion, if necessary.

Bits	Name	Default	Description
15:2	Reserved	0x0	Reserved.
1	Alternate WWN Base	1b	Alternate WWN base address (0x7 and 0x8) are allocated in the alternate SAN MAC address block and can be read or written to.
0	Alternate SAN MAC Address	1b	Alternate SAN MAC Address words (0x10x6) are available and can be written to.

6.2.11 Software Reserved Word 17 — Active SAN MAC Block Pointer — Word Address 0x28

Word 0x28 points to the Active SAN MAC Address block used for FCoE (SPMA and FPMA) and DCB.

Bits	Name	Default	Description
15:0	SAN MAC Address Pointer	0xFFFF	Pointer to the Active SAN MAC Address block. 0xFFFF indicates an invalid pointer.

6.2.11.1 Active SAN MAC Address Block

Word 0x28 points to the Active SAN MAC Address block used for FCoE (SPMA and FPMA) and DCB. Offsets to the MAC addresses are defined in the following table.

Word Offset	Description
0x0 0x2	SAN MAC Address 1 (function 0)
0x3 0x5	SAN MAC Address 2 (function 1)

6.3 EEPROM Hardware Sections

This module contains address control words and hardware pointers indicated as HW in the table of Section 6.1.

EEPROM Hardware Section — Auto-Load Sequence

The following table lists sections of auto-read following device reset events.

Table 6-6 EEPROM Section Auto-Read

	LAN_PWR_ GOOD	PCIe Reset or PCIe Inband Reset	D3 to D0 transit or FLR (per port)	SW Reset (per port)	Link Reset (per port)	Force TCO
PCIe Analog Configuration	Х					
PCIe General Configuration		Х				
PCIe Function 0/1 Config Space (for each LAN port)		Х	Х			
LAN Core and CSRs (for each LAN port)		Х	Х	Х	Х	Х
MAC Module (for each LAN port)	X (1)	X (2)	X (2)	X (2)	Х	

 $^{1. \}quad \text{The MAC module is auto-read only if manageability or wake up are enabled}.$

6.3.2 EEPROM Init Module

The init section (EEPROM control word 0x1, 0x2, and 0x38) are read after a LAN_PWR_GOOD reset and PCIe Reset.

6.3.2.1 EEPROM Control Word 1 — Address 0x00

Bits	Name	Default	Description	Reserved
15:12	Reserved	0×0	Reserved.	
11:8	EEPROM Size	0010b	These bits indicate the EEPROM's actual size. Mapped to EEC.EE_Size (see field definition in the EEC register section).	

^{2.} The MAC module is auto-read only if the manageability unit is not enabled.

Bits	Name	Default	Description	Reserved
7:6	Signature	01b	The Signature field indicates to the 82599 that there is a valid EEPROM present. If the Signature field is not 01b, the other bits in this word are ignored, no further EEPROM read is performed, and the default values are used for the configuration space IDs.	
5	MNG Enable	0b	Manageability Enable. When set, indicates that the manageability block is enabled. When cleared, the manageability block is disabled (clock gated). Mapped to GRC.MNG_EN	
4	EEPROM Protection	0b	If set to 1, EEPROM protection schemes are enabled.	
3:0	HEPSize	0b	Hidden EEPROM Block Size. This field defines the EEPROM area accessible only by manageability firmware. It can also be used to store secured data and other manageability functions. The size in bytes of the secured area equals: 0 bytes (if HEPSize equals zero), or 2^ HEPSize bytes (2 bytes, 4 bytes,32 KB.)	

6.3.2.2 EEPROM Control Word 2 — Address 0x01

Bits	Name	Default	Description	Reserved
15:7	Reserved	0x0	Reserved.	
6	Core KR PLL Gate Disable	0b	When set disable the gating of the Core KR_PLL in device low power states and Non-KR Modes Note: In case KR_Dis bit is set, KR-PLL is disabled regardless the value of this bit	
5:3	Reserved	001b	Reserved.	
2	Core XAUI Gate Disable	0b	When set disables the gating of the Core XAUI PLL in device low power states and Non-XAUI Modes.	
1	Core Clocks Gate Disable	0b	During nominal operation this bit should be zero enabling core clock gating. When set disables the gating of the core clock in low power state. Setting this bit also has side affects disabling auto link down (when both MNG and WOL are disabled) and also keeps the LEDs active.	
0	PCIe PLL Gate Disable	0b	When set disables the gating of the PCIe PLL in L1/2 states.	

6.3.2.3 EEPROM Control Word 3 — Address 0x38

Bits	Name	Default	Description	Reserved
15:2	Reserved	0x0	Reserved.	
1	APM Enable Port 1	Ob	Initial value of advanced power management wake up enable in the General Receive Control register (GRC.APME). Mapped to GRC.APME of port 1. If the LAN PCI disable bit in the NVM is set for Port 1, then the APM bit must be cleared.	
0	APM Enable Port 0	0b	Initial value of advanced power management wake up enable in the General Receive Control register (GRC.APME). Mapped to GRC.APME of port 0. If the LAN PCI disable bit in the NVM is set for Port 0, then the APM bit must be cleared.	

Note:

Bits 1:0 should not be set if the respective port is disabled by PCIe Control 2 word bits 1:0.

6.3.3 PCIe Analog Configuration Module

These sections are loaded only after LAN_PWR_GOOD only. These sections contain the analog default configurations for the 82599's PCIe analog parts. Word 0x3 is the pointer for this section (the EEPROM address, in words).

The structure of this section is listed in the following table.

Word Offset	Description			
0x0	Section Length			
0x1	PCIe Analog Address 1			
0x2	PCIe Analog Data 1			
0x3	PCIe Analog Address 2			
0x4	PCIe Analog Data 2			

6.3.3.1 Section Length — Offset 0x00

The section length word contains the length of the section in words. Note that section length does not include a count for the section length word.

6.3.3.2 PCIe Analog Address — Offset 0x01, 0x03, 0x05...

Each odd offset word in the PCIe analog section is the register address. The PCIe analog registers are 2 words wide with a 12-bit address width. Bits 11:2 are the register address (in Dwords) and bit 1 select the upper/lower word of the Dword register.

6.3.3.3 PCIe Analog Data — Offset 0x02, 0x04, 0x06...

Each even offset word in the PCIe analog section is the register data. After reading a pair of address word and data word, the register specified in the address word is loaded with the data from the data word.

6.3.4 Core 0/1 Analog Configuration Modules

These modules are loaded after LAN_PWR_GOOD only. They contain the analog default configurations for the 82599's XAUI/KR analog parts. Words 0x4-0x5 are the pointers for these sections (the EEPROM address, in words).

The structure of all sections is similar to the following structure.

Word offset	Bits	Description	Reserved
0x0	15:0	Section Length — Section 6.3.4.1.	
0x1	15:8	Configuration Address — Section 6.3.4.2	
0x1	7:0	Configuration Data — Section 6.3.4.2	
0x2	15:8	Configuration Address — Section 6.3.4.2	
0x2	7:0	Configuration Data — Section 6.3.4.2	

6.3.4.1 Section Length — Offset 0x00

The section length word contains the length of the section in words. Note that section length does not include a count for the section length word.