UNIVERSIDAD CENTROAMERICANA "JOSÉ SIMEÓN CAÑAS" FACULTAD DE INGENIERÍA Y ARQUITECTURA

MEF 4D

Asignatura: Simulación de Computadoras

Sección 01

Equipo de Proyecto: Los Simuladores

Catedrático:

Ing. Jorge Alfredo López Sorto

Integrantes:

William Josué Pineda Martínez 00225919 Julio Eduardo Ventura Escamilla 00023199 Rodrigo Enrique Diaz Cárdenas 00156118 Salvador Alberto Pocasangre Aldana 00368718

Fecha de entrega: 28 de junio de 2024

Definición del Modelo

$$-\frac{d}{dx}(K\frac{d}{dx}T) = Q$$

$$-\frac{\partial}{\partial x}(K\frac{\partial}{\partial x}T) = Q$$

$$\nabla f = \frac{\mathrm{df}}{\mathrm{df}x}\mathbf{i} + \frac{\mathrm{df}}{\mathrm{d}y}\mathbf{j} + \frac{\mathrm{df}}{\mathrm{d}z}\mathbf{k} + \frac{\mathrm{df}}{\mathrm{d}s}\mathbf{s}$$

$$-\frac{\partial}{\partial x}(K\frac{\partial}{\partial x}T)-\frac{\partial}{\partial y}(K\frac{\partial}{\partial y}T)-\frac{\partial}{\partial z}(K\frac{\partial}{\partial z}T)+\frac{\partial}{\partial s}(K\frac{\partial}{\partial s}T)=Q$$

$$\nabla f = \begin{bmatrix} \frac{\mathrm{d}f}{\mathrm{d}x} \\ \frac{\mathrm{d}f}{\mathrm{d}y} \\ \frac{\mathrm{d}f}{\mathrm{d}z} \\ \frac{\mathrm{d}f}{\mathrm{d}z} \end{bmatrix} - \begin{bmatrix} \frac{\mathrm{d}f}{\mathrm{d}x} \\ \frac{\mathrm{d}f}{\mathrm{d}y} \\ \frac{\mathrm{d}f}{\mathrm{d}z} \\ \frac{\mathrm{d}f}{\mathrm{d}s} \end{bmatrix} * (K \begin{bmatrix} \frac{\mathrm{d}f}{\mathrm{d}x} \\ \frac{\mathrm{d}f}{\mathrm{d}y} \\ \frac{\mathrm{d}f}{\mathrm{d}z} \\ \frac{\mathrm{d}f}{\mathrm{d}s} \end{bmatrix} T) = Q$$

Ecuación del Calor Final y considerando las 4 Dimensiones:

$$-\nabla(K\nabla T) = Q$$

Algoritmo del método de los elementos Finitos.

1) Localización (Pentacoro)

1.5) Isoparametrizacion

$$N1 = 1 - \varepsilon - \eta - \phi - \alpha$$

$$N2 = \varepsilon$$

$$N3 = \eta$$

$$N4 = \phi$$

$$N5 = \alpha$$

2) Interpolación

$$T \approx N1 * T1 + N2 * T2 + N3 * T3 + N4 * T4 + N5 * T5$$

$$T \approx \begin{bmatrix} N1 & N2 & N3 & N4 & N5 \end{bmatrix} * \begin{bmatrix} T1 \\ T2 \\ T3 \\ T4 \\ T5 \end{bmatrix}$$

$$T \approx N * T$$

3)Aproximación del Modelo.

3.5) Definición del Residual

$$-\nabla(K\nabla T) = Q
-\nabla(K\nabla(N * T)) = Q$$

$$R = Q + \nabla \big(K \nabla (N * T) \big)$$

4) Método de los Residuos Ponderados.

$$\int_{v_4} w * R dv = 0$$

$$\int_{v_4} \begin{bmatrix} w1 \\ w2 \\ w3 \\ w4 \end{bmatrix} * R dv = 0$$

$$\int_{v_4} W * (Q + \nabla(K\nabla(N * T))) dv = 0$$

5) Método de Galerkin

$$\int_{v_4} w * \left(Q + \nabla (K\nabla(N * T)) \right) dv = 0$$

$$\int_{v_4} N^T \left(Q + \nabla (K\nabla(N * T)) \right) dv = 0$$

$$\int_{v_4} N^T Q + \left(\nabla (K\nabla(N * T)) \right) dv = 0$$

$$\int_{v_4} N^T Q dv + N^T \left(\nabla * \left(K\nabla(N * T) \right) \right) dv = 0$$

$$\int_{v_4} N^T * Q dv + \int_{v_4} N^T * \nabla \left(K\nabla(N * T) \right) dv = 0$$

$$\int_{v_4} N^T * Q dv + \left(\int_{v_4} N^T * \nabla \left(K\nabla(N * T) \right) dv \right) dv = 0$$

$$- \left(\int_{v_4} N^T * \nabla \left(K\nabla(N * T) \right) dv \right) T = \int_{v_4} N^T * Q dv$$

6) Resolución de Integrales

Resolviendo Termino Independiente (Lado Derecho).

$$Q \int_{v_4} N^T \, \mathrm{d}v$$

$$Q \int \int \int \int \int \begin{bmatrix} 1 - \varepsilon - \eta - \phi - \alpha \\ \varepsilon \\ \eta \\ \phi \\ \alpha \end{bmatrix} \, \mathrm{d}x \mathrm{d}y \mathrm{d}z \mathrm{d}s$$

$$\int Q \int \int \int \int \int \begin{bmatrix} 1 - \varepsilon - \eta - \phi - \theta \\ \varepsilon \\ \eta \\ \phi \\ \alpha \end{bmatrix} \, \mathrm{d}\varepsilon \mathrm{d}\eta \mathrm{d}\phi \mathrm{d}\alpha$$

$$\int Q \int \int \int \int \int \int \int \frac{1 - \varepsilon - \eta - \phi - \theta}{\varepsilon} \, \mathrm{d}\varepsilon \mathrm{d}\eta \mathrm{d}\phi \mathrm{d}\alpha$$

Para Calcular los Limites de Integración, Usamos la Ecuación del Hiperplano Ax + By + Cz + Du + E = 0, y en base al plano original podemos ya asumir los valores de algunos límites de las integrales.

$$\varepsilon = (1,0,0,0) \ \eta = (0,1,0,0) \ \varphi = (0,0,1,0) \ \alpha = (0,0,0,1)$$

Sustituimos los valores de sus coordenadas en las ecuaciones :

$$A\varepsilon + B\eta + C\varphi + D\alpha + E = 0$$

$$A + E = 0$$

$$B + E = 0$$

$$C + E = 0$$

$$D + E = 0$$

$$E = -A$$

$$B = A$$

$$C = A$$

$$D = -E$$

Sustituyendo en la Ecuacion Oriignal Nos Quedaria

$$A\varepsilon + A\eta + A\phi + A\alpha - A = 0$$

$$\frac{A\varepsilon}{A} + \frac{A\eta}{A} + \frac{A\phi}{A} + \frac{A\alpha}{A} - \frac{A}{A} = \frac{0}{A}$$

$$1 - \varepsilon + \eta + \phi + \alpha = 0$$

$$\varepsilon = 1 - \eta - \phi - \alpha$$

Por lo que nos quedaría de la siguiente Forma.

$$Q \int_{0}^{1} \int_{0}^{1-\alpha} \int_{0}^{1-\phi-\alpha} \int_{0}^{1-\eta-\phi-\alpha} \begin{bmatrix} 1-\varepsilon-\eta-\phi-\alpha \\ \varepsilon \\ \eta \\ \phi \\ \alpha \end{bmatrix} d\varepsilon d\eta d\phi d\alpha$$

$$\begin{bmatrix} \int_{0}^{1} \int_{0}^{1-\alpha} \int_{0}^{1-\phi-\alpha} \int_{0}^{1-\eta-\phi-\alpha} (1-\varepsilon-\eta-\phi-\alpha) \end{bmatrix}$$

$$QJ \begin{bmatrix} \int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} (1-\varepsilon-\eta-\phi-\alpha) \\ \int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} (\varepsilon) \\ \int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} (\eta) \\ \int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} (\phi) \\ \int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} (\alpha) \end{bmatrix} \mathrm{d}\varepsilon \mathrm{d}\eta \mathrm{d}\phi \mathrm{d}\alpha$$

$$\int_{0}^{1-\eta-\phi-\alpha} \epsilon \, d\epsilon$$

$$\int \epsilon \, d\epsilon = \frac{\epsilon^{2}}{2} + C = \left[\frac{\epsilon^{2}}{2}\right]_{0}^{1-\eta-\phi-\alpha}$$

$$= \frac{(1-\eta-\phi-\alpha)^{2}}{2} - \frac{0^{2}}{2}$$

$$\int_{0}^{1-\eta-\phi-\alpha} \epsilon \, d\epsilon = \frac{(1-\eta-\phi-\alpha)^{2}}{2}$$

$$\begin{split} \int_0^{1-\phi-\alpha} \frac{(1-\eta-\phi-\alpha)^2}{2} \, d\eta \\ \int_0^{1-\phi-\alpha} \frac{((1-\phi-\alpha)^2-2(1-\phi-\alpha)\eta+\eta^2)}{2} \, d\eta \\ \int_0^{1-\phi-\alpha} \frac{(1-\phi-\alpha)^2}{2} \, d\eta - \int_0^{1-\phi-\alpha} (1-\phi-\alpha)\eta \, d\eta + \int_0^{1-\phi-\alpha} \frac{\eta^2}{2} \\ \int_0^{1-\phi-\alpha} \frac{(1-\phi-\alpha)^2}{2} \, d\eta = \frac{(1-\phi-\alpha)^2}{2} \int_0^{1-\phi-\alpha} \, d\eta \\ & = \frac{(1-\phi-\alpha)^2}{2} \left[\eta\right]_0^{1-\phi-\alpha} \\ & = \frac{(1-\phi-\alpha)^2}{2} \cdot (1-\phi-\alpha) = \frac{(1-\phi-\alpha)^3}{2} \\ \int_0^{1-\phi-\alpha} \frac{\eta^2}{2} \, d\eta = \frac{1}{2} \int_0^{1-\phi-\alpha} \eta^2 \, d\eta = \frac{1}{2} [\frac{\eta^3}{3}]_0^{1-\phi-\alpha} = \frac{1}{2} \cdot \frac{(1-\phi-\alpha)^3}{3} = \frac{(1-\phi-\alpha)^3}{6} \\ & = \frac{(1-\phi-\alpha)^3}{2} - \frac{(1-\phi-\alpha)^3}{2} + \frac{(1-\phi-\alpha)^3}{6} = \frac{(1-\phi-\alpha)^3}{6} \\ & = \frac{(1-\phi-\alpha)^3}{12} \\ \int_0^{1-\alpha} \frac{(1-\phi-\alpha)^3}{12} \, d\phi [(1-\phi-\alpha)^3 = (1-\phi-\alpha)(1-\phi-\alpha)(1-\phi-\alpha)] \\ (1-\phi-\alpha)^3 = 1 - 3\phi + 3\phi^2 + 6\phi\alpha + 3\alpha^2 - \phi^3 - 3\phi^2\alpha - 3\phi\alpha^2 - \alpha^3 \end{split}$$

$$\begin{split} \left[\frac{1}{12}\left(\int_{0}^{1-\alpha}1\,d\phi-3\int_{0}^{1-\alpha}\phi\,d\phi-3\alpha\int_{0}^{1-\alpha}1\,d\phi+3\int_{0}^{1-\alpha}\phi^{2}\,d\phi+6\alpha\int_{0}^{1-\alpha}\phi\,d\phi\right.\right.\\ &+3\alpha^{2}\int_{0}^{1-\alpha}1\,d\phi-\int_{0}^{1-\alpha}\phi^{3}\,d\phi-3\alpha\int_{0}^{1-\alpha}\phi^{2}\,d\phi-3\alpha^{2}\int_{0}^{1-\alpha}\phi\,d\phi-\alpha^{3}\int_{0}^{1-\alpha}1\,d\phi\right)]\\ \left[\frac{1}{12}\left[(1-\alpha)-3\cdot\frac{(1-\alpha)^{2}}{2}-3\alpha(1-\alpha)+3\cdot\frac{(1-\alpha)^{3}}{3}+6\alpha\cdot\frac{(1-\alpha)^{2}}{2}+3\alpha^{2}(1-\alpha)\right.\right.\\ &\left.-\frac{(1-\alpha)^{4}}{4}-3\alpha\cdot\frac{(1-\alpha)^{3}}{3}-3\alpha^{2}\cdot\frac{(1-\alpha)^{2}}{2}-\alpha^{3}(1-\alpha)\right]=\\ \left[=\frac{(1-\alpha)^{4}}{48}\right]\\ \int_{0}^{1-\alpha}\frac{(1-\phi-\alpha)^{3}}{48}\,d\phi=\frac{1}{48}\int_{0}^{1}(1-\alpha)^{4}\,d\alpha\\ \left.(1-\alpha)^{4}=\sum_{k=0}^{4}\binom{4}{k}(1)^{4-k}(-\alpha)^{k}\right.\\ \left.(1-\alpha)^{4}=1-4\alpha+6\alpha^{2}-4\alpha^{3}+\alpha^{4}\right.\\ \left.\frac{1}{48}\int_{0}^{1}(1-4\alpha+6\alpha^{2}-4\alpha^{3}+\alpha^{4})\,d\alpha\\ \left.\frac{1}{48}\left(\int_{0}^{1}1\,d\alpha-4\int_{0}^{1}\alpha\,d\alpha+\int_{0}^{1}\alpha\,d\alpha+\int_{0}^{1}\alpha^{4}d\alpha\right)\right. \end{split}$$

$$140 - 10 - 1 - 0 - 1 = \frac{1}{48}(128) = \frac{128}{48} = \frac{8}{3}$$

$$\int_{0}^{1} \alpha^{2} d\alpha = \left[\frac{\alpha^{3}}{3}\right]_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3} = \frac{1}{3}$$

$$\int_{0}^{1} \alpha^{2} d\alpha = \left[\frac{\alpha^{3}}{3}\right]_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3} = \frac{1}{3}$$

$$\int_{0}^{1} \alpha^{4} d\alpha = \left[\frac{\alpha^{5}}{5}\right]_{0}^{1} = \frac{1^{5}}{5} - \frac{0^{5}}{5} = \frac{1}{5}$$

$$\frac{1}{6}(1 - 2 + 2 - 1 + \frac{1}{5}) = \frac{1}{6}(1 - 2 + 2 - 1 + \frac{1}{5}) = \frac{1}{6}(\frac{1}{5}) = \frac{1}{24}$$

$$\int_{0}^{1} \frac{(1 - \alpha)^{4}}{48} d\alpha = \frac{1}{24}$$

$$\int_{0}^{1 - \eta - \phi - \alpha} \epsilon \ d\epsilon = \frac{1}{24}$$

Cuando Cambiamos los Limites de integración, e incluimos a Épsilon en el espacio, cambiando el orden de Integración, entonces decimos que eta, phi y Alpha se encuentran en el mismo espacio que épsilon por lo que la respuesta es la misma para todas las Variables de las funciones de Forma. Ya que se aplica la regla vista en clase de:

$$\int_{0}^{1} \int_{0}^{1-\alpha} \int_{0}^{1-\phi-\alpha} \int_{0}^{1-\varepsilon-\phi-\alpha} \eta \, d\eta d\varepsilon d\phi d\alpha = \frac{1}{24}$$

$$\int_{0}^{1} \int_{0}^{1-\phi} \int_{0}^{1-\eta-\phi} \int_{0}^{1-\varepsilon-\eta-\phi} \alpha \, d\alpha d\varepsilon d\eta d\phi = \frac{1}{24}$$

$$\int_{0}^{1} \int_{0}^{1-\alpha} \int_{0}^{1-\eta-\alpha} \int_{0}^{1-\varepsilon-\eta-\alpha} \phi \, d\phi d\varepsilon d\eta d\alpha = \frac{1}{24}$$

$$\int_{0}^{1} \int_{0}^{1-C} \int_{0}^{1-B-C} \int_{0}^{1-B-C-D} A dA dB dC dD = \frac{1}{24}$$

Sin Embargo, falta calcular la integral de:

$$\int_{0}^{1} \int_{0}^{1-\alpha} \int_{0}^{1-\phi-\alpha} \int_{0}^{1-\eta-\phi-\alpha} 1 - \varepsilon - \eta - \phi - \theta \, d\varepsilon d\eta d\phi d\alpha$$

$$=\int_0^1\int_0^{1-\alpha}\int_0^{1-\phi-\alpha}\int_0^{1-\eta-\phi-\alpha}1\ d\epsilon d\eta d\phi d\alpha \qquad -\int_0^1\int_0^{1-\alpha}\int_0^{1-\phi-\alpha}\int_0^{1-\eta-\phi-\alpha}\varepsilon\ d\epsilon d\eta d\phi d\alpha$$

$$-\int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} \eta \ d\epsilon d\eta d\phi d\alpha \quad -\int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} \phi \ d\epsilon d\eta d\phi d\alpha$$

$$-\int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} \alpha \ d\epsilon d\eta d\phi d\alpha$$

$$= \int_0^1 \int_0^{1-\alpha} \int_0^{1-\phi-\alpha} \int_0^{1-\eta-\phi-\alpha} 1 \ d\epsilon d\eta d\phi d\alpha - \frac{1}{24} - \frac{1}{24} - \frac{1}{24} - \frac{1}{24}$$

$$\int_0^{1-\eta-\phi-\alpha} 1 \, d\epsilon = 1 \cdot ((1-\eta-\phi-\alpha)-0)$$

$$1-\eta-\phi-\alpha$$

$$\int_0^{1-\phi-\alpha} 1-\eta-\phi-\alpha \, d\eta$$

$$\int (1-\phi-\alpha-\eta) \, d\eta = \int 1 \, d\eta-\phi \int d\eta-\alpha \int d\eta - \int \eta \, d\eta$$

$$\int 1 \, d\eta = \eta$$

$$\int \eta \, d\eta = \frac{\eta^2}{2}$$

$$\int (1-\phi-\alpha-\eta) \, d\eta = \eta-\phi\eta-\alpha\eta-\frac{\eta^2}{2}$$

$$\left[\eta-\phi\eta-\alpha\eta-\frac{\eta^2}{2}\right]_0^{1-\phi-\alpha}$$

$$\begin{split} \left[(1-\phi-\alpha) - \phi(1-\phi-\alpha) - \alpha(1-\phi-\alpha) - \frac{(1-\phi-\alpha)^2}{2} \right] \\ \phi^2 + 2\phi\alpha - 2\phi - \frac{(\phi-\alpha+1)^2}{2} + \alpha^2 - 2\alpha + 1 \\ \int_0^{1-\phi} \phi^2 + 2\phi\alpha - 2\phi - \frac{(\phi-\alpha+1)^2}{2} + \alpha^2 - 2\alpha + 1 \, d\alpha \\ \int_0^{1-\phi} \alpha^2 d\alpha + \int_0^{1-\phi} 2\phi\alpha d\alpha - \int_0^{1-\phi} 2\phi \, d\alpha - \int_0^{1-\phi} \frac{(\phi-\alpha+1)^2}{2} \, d\alpha + \int_0^{1-\phi} \alpha^2 \, d\alpha - \int_0^{1-\phi} 2\alpha \, d\alpha + \int_0^{1-\phi} 1 \, d\alpha \\ \int \alpha^2 d\alpha = \frac{\alpha^3}{3} \\ \int 2\phi\alpha d\alpha = 2\phi \int \alpha d\alpha = 2\phi \cdot \frac{\alpha^2}{2} = \phi\alpha^2 \\ \int 2\phi d\alpha = 2\phi\alpha \\ \int \frac{(\phi-\alpha+1)^2}{2} \, d\alpha = \frac{1}{2} \int (\phi^2 - 2\phi\alpha + \alpha^2 + 2\phi - 2\alpha + 1) \, d\alpha \\ = \frac{1}{2} \left(\phi^2\alpha - \phi\alpha^2 + \frac{\alpha^3}{3} + 2\phi\alpha - \alpha^2 + \alpha\right) \\ \frac{1}{2} \left((\phi^2 + 2(\phi-1) + (\alpha-1)^3\right) \, d\alpha = \frac{1}{2} \left(\frac{\alpha^3}{3} + 2(\phi-1)\alpha^2 + (\alpha-1)^3\right) \end{split}$$

$$\begin{split} &=\frac{\phi^3}{3} + \alpha\phi^2 - \phi^2 = \frac{1}{2} \left[\frac{\phi^3}{3} + 2(\alpha - 1)\phi^2 + (\alpha - 1)^2\phi \right] + \frac{\alpha^2}{2} - 2\alpha\phi + \alpha \Big|_0^{1-\alpha} \\ &\int_0^{1-\alpha} \left(\phi^2 + 2\phi\alpha - 2\phi - \frac{(\phi - \alpha + 1)^2}{2} + \alpha^2 - 2\alpha + 1 \right) d\phi = \frac{(\alpha + 1)^3}{3} - \frac{(\alpha + 1)^3}{6} \\ &\int_0^1 \left[\frac{(\alpha + 1)^3}{3} - \frac{(\alpha + 1)^3}{6} \right] d\alpha \\ &= \left[\frac{1}{3} \left(\frac{\alpha^4}{4} + \frac{3\alpha^3}{2} - \alpha \right) - \frac{1}{6} \left(\alpha^4 + \alpha^3 - 2\alpha \right) \right]_0^1 \\ &= \frac{1}{3} \left(\frac{1^4}{4} + \frac{3 \cdot 1^3}{2} - 1 \right) - \frac{1}{6} \left(1^4 + 1^3 - 2 \cdot 1 \right) \\ &= -\frac{1}{3} \left(\frac{1}{4} + \frac{3 \cdot 0^2}{2} - 0 \right) - \frac{1}{6} \left(0^4 + 0^3 - 2 \cdot 0 \right) \\ &= \left(0^4 \cdot \frac{3}{4} + 0^3 \cdot \frac{3 \cdot 0^2}{2} - 0 \right) \\ &\int_0^1 \left[-\frac{(\alpha + 1)^3}{3} - \left(-\frac{(\alpha + 1)^3}{6} \right) \right] d\alpha = \frac{1}{6} \end{split}$$

Entonces sustituyendo nos da los valores de

$$= \frac{1}{6} - \frac{1}{24} - \frac{1}{24} - \frac{1}{24} - \frac{1}{24} = 0$$

Por lo que la Resolución al lado derecho de las integrales

$$Q\int_0^1\int_0^{1-\alpha}\int_0^{1-\phi-\alpha}\int_0^{1-\eta-\phi-\alpha}\begin{bmatrix}1-\varepsilon-\eta-\phi-\alpha\\ & \varepsilon\\ & \eta\\ & \phi\\ & \alpha\end{bmatrix}\mathrm{d}\varepsilon\mathrm{d}\eta\mathrm{d}\phi\mathrm{d}\alpha$$

$$= QJ \begin{bmatrix} 0 \\ \frac{1}{24} \\ \frac{1}{24} \\ \frac{1}{24} \\ \frac{1}{24} \end{bmatrix} = \frac{QJ}{24} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{b}$$

Procedemos a Resolver el lado Izquierdo de la Ecuación:

$$-\left(\int_{v_4} N^T * \nabla (K\nabla(N)) dv\right) T$$

Aplicamos integración por Partes

$$\int u dv - [uv]| - \int duv$$

$$U = \mathbf{N}^T dv = \nabla (K\nabla(\mathbf{N}))$$

$$du = \nabla \mathbf{N}^T v = K\nabla(\mathbf{N})$$

$$-[\nabla \mathbf{N}^T K\nabla(\mathbf{N})]|v - (\int_{v_4} \nabla \mathbf{N}^T (K\nabla(\mathbf{N})) dv)$$

$$abla \mathbf{N} = egin{bmatrix} rac{\mathrm{d}f}{\mathrm{d}x} \\ rac{\mathrm{d}f}{\mathrm{d}y} \\ rac{\mathrm{d}f}{\mathrm{d}z} \\ rac{\mathrm{d}f}{\mathrm{d}s} \end{bmatrix} * \eta [1 - \varepsilon - \eta - \phi - lpha & arepsilon & \eta & \phi & lpha]$$

$$\nabla \mathbf{N} = J^{-1} * \begin{bmatrix} \frac{\partial}{\partial \varepsilon} (1 - \varepsilon - \eta - \phi - \alpha) & \frac{\partial}{\partial \varepsilon} \varepsilon & \frac{\partial}{\partial \varepsilon} \eta & \frac{\partial}{\partial \varepsilon} \phi & \frac{\partial}{\partial \varepsilon} \alpha \\ \frac{\partial}{\partial \eta} (1 - \varepsilon - \eta - \phi - \alpha) & \frac{\partial}{\partial \eta} \varepsilon & \frac{\partial}{\partial \eta} \eta & \frac{\partial}{\partial \eta} \phi & \frac{\partial}{\partial \eta} \alpha \\ \frac{\partial}{\partial \phi} (1 - \varepsilon - \eta - \phi - \alpha) & \frac{\partial}{\partial \phi} \varepsilon & \frac{\partial}{\partial \phi} \eta & \frac{\partial}{\partial \phi} \phi & \frac{\partial}{\partial \phi} \alpha \\ \frac{\partial}{\partial \alpha} (1 - \varepsilon - \eta - \phi - \alpha) & \frac{\partial}{\partial \alpha} \varepsilon & \frac{\partial}{\partial \alpha} \eta & \frac{\partial}{\partial \alpha} \phi & \frac{\partial}{\partial \alpha} \alpha \end{bmatrix}$$

$$\nabla \mathbf{N} = \mathbf{J}^{-1} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\nabla N = J^{-1}B$$

Es Necesario Calcular también el Jacobiano:

$$J = \begin{bmatrix} \frac{\partial \mathbf{x}}{\partial \varepsilon} & \frac{\partial \mathbf{x}}{\partial \eta} & \frac{\partial \mathbf{x}}{\partial \phi} & \frac{\partial \mathbf{x}}{\partial \alpha} \\ \frac{\partial \mathbf{y}}{\partial \varepsilon} & \frac{\partial \mathbf{y}}{\partial \eta} & \frac{\partial \mathbf{y}}{\partial \phi} & \frac{\partial \mathbf{y}}{\partial \alpha} \\ \frac{\partial \mathbf{z}}{\partial \varepsilon} & \frac{\partial \mathbf{z}}{\partial \eta} & \frac{\partial \mathbf{z}}{\partial \phi} & \frac{\partial \mathbf{z}}{\partial \alpha} \\ \frac{\partial \mathbf{s}}{\partial \varepsilon} & \frac{\partial \mathbf{s}}{\partial \eta} & \frac{\partial \mathbf{s}}{\partial \phi} & \frac{\partial \mathbf{s}}{\partial \alpha} \end{bmatrix}$$

Necesitamos Calcular los Datos del Jacobiano.

$$x = N1 * x1 + N2 * x2 + N3 * x3 + N4 * x4 + N5 * x5$$
$$x = (1 - \varepsilon - \eta - \phi - \theta) * x1 + (\varepsilon) * x2 + (\eta) * x3 + (\phi) * x4 + (\theta) * x5$$

$$x = x1 - \varepsilon(x1) - \eta(x1) - \phi(x1) - \theta(x1) + \varepsilon(x2) + \eta(x3) + \phi(x4) + \theta(x5)$$

$$x = (x2 - x1)\varepsilon + (x3 - x1)\eta + (x4 - x1)\phi + (x5 - x1)\theta + x1$$

$$y = (y2 - y1)\varepsilon + (y3 - y1)\eta + (y4 - y1)\phi + (y5 - y1)\theta + y1$$

$$z = (z2 - z1)\varepsilon + (z3 - z1)\eta + (z4 - z1)\phi + (z5 - z1)\theta + z1$$

$$u = (s2 - s1)\varepsilon + (s3 - s1)\eta + (s4 - s1)\phi + (s5 - s1)\theta + s1$$

$$j = \begin{bmatrix} (x2 - x1) & (x3 - x1) & (x4 - x1) & (x5 - x1) \\ (y2 - y1) & (y3 - y1) & (y4 - y1) & (y5 - y1) \\ (z2 - z1) & (z3 - z1) & (z4 - z1) & (z5 - z1) \\ (s2 - s1) & (s3 - s1) & (s4 - s1) & (s5 - s1) \end{bmatrix}$$

Donde el Termino de A y A^T se calculan con la inversa del Jacobiano y con con la transpuesta de la inversa , debido a ser un proceso muy complejo y largo por ser en 4 dimensiones, se hace la observación , de que A y A^T , se dejan indicadas.

$$\int_{v_4} N^T * \nabla (K\nabla(N)) dv$$

$$N^T * \nabla (K\nabla(N)) \int_{v_4} dv$$

$$\frac{k}{j^2} B^T A^T A B \int_{v_4} dv$$

$$\frac{kV}{j^2} B^T A^T A B$$

$$= K$$

Por lo que Uniendo todas las Respuestas quedaría de la siguiente Forma:

$$\left(\frac{KV_4}{j^2}\mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{B}\right)\begin{bmatrix}T1\\T2\\T3\\T4\\T5\end{bmatrix} = \frac{QJ}{24}\begin{bmatrix}0\\1\\1\\1\\1\end{bmatrix}$$

Sistema de Ecuaciones Finales

$$\left(\frac{KV_4}{j^2}\mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{B}\right)\mathbf{T} = \frac{QJ}{24} \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}$$

$$\mathbf{K} * \mathbf{T} = \mathbf{B}$$