1 Vectors

Inner Product Magnitude $\langle a, b \rangle = a^T b = \sum_{i=1}^n a_i b_i \quad ||v||^2 = \langle v, v \rangle \quad \cos \theta = \frac{\langle v, w \rangle}{||v|| ||w||}$

1.1 Linear Combination

A linear combination of vectors $\{v_1, \ldots, v_n\}$ is a sum $c_1v_1 + \cdots + c_nv_n$, where each c_i is a real number.

1.2Linear Independence

Vectors are LI iff no vector in the set can be expressed as a linear combination of the other vectors. Equivalently:

LI iff
$$\lambda_1 v_1 + \cdots + \lambda_k v_k = 0 \implies \lambda_1 = 0, \dots, \lambda_k = 0$$

2 Matrix Properties

A matrix $M \in \mathbb{R}^{m \times n}$ has m rows and n columns.

Matrix-Matrix Multiplication

- \bullet A(BC) = (AB)C
- A(B+C) = AB + AC, (A+B)C = AC + AB
- $AB \neq BA$ generally

2.2 Inverse

R is a right inverse if AR = I, L is left inverse if LA = I. If L and R exist, then $L = R = A^{-1}$ (and A is square).

- For square invertable A and B, $(AB)^{-1} = B^{-1}A^{-1}$.
- If A is orthogonal then $A^{-1} = A^T$ (since $A^T A = I$).

To compute the inverse, use Gaussian Elimination to transform [A I] to [I B]. Then $B = A^{-1}$.

For a 2 × 2 matrix,
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Transpose

The transpose of an $m \times n$ matrix A is an $n \times m$ matrix A^T where $(A^T)_{ij} = Aji$.

- $\bullet \ (AB)^T = B^T A^T$
- $\bullet (A^T)^T = A$ $\bullet (A+B)^T = A^T + B^T$
- For square and invertible A, $(A^{-1})^T = (A^T)^{-1}$

2.4 Rank

The rank of a matrix is given by:

- The max number of L.I. columns (= $\dim C(A)$)
- The max number of L.I. rows (= dim $C(A^T)$)
- The number of pivots in the RREF of A.

2.4.1 Rank-Nullity Theorem

For any $m \times n$ matrix A, rank(A) + dim(N(A)) = n.

Gaussian Elimination

To solve a system Ax = b (find x), we can perform row operations on the augmented matrix to simplify without changing the solution set.

Swap Rows 1 & 2
$$r'_1 = r_1 - r_2$$
 $r'_1 = 2 * r_1$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A matrix is in row-echelon form when all pivots (leftmost nonzero in a row) go from left to right. A matrix is in reduced REF if each pivot has only zeros in its column.

Example. Let's say we have the following system, which we write in matrix-vector form:

$$\begin{cases} x_1 - x_2 & +2x_3 = 1 \\ -2x_1 + 2x_2 & -3x_3 = -1 \\ -3x_1 - x_2 & +2x_3 = -3 \end{cases}$$

To keep track of operations, we put the matrix in augmented form by appending b, and then perform operations to convert it to REF: $r_2' = r2 + 2r_1 \rightarrow r_3' =$ $r_3 + 3r_1 \rightarrow \text{swap } r_2, r_3.$

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ -2 & 2 & -3 & -1 \\ -3 & -1 & 2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & -4 & 8 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

We can then create simpler equations:

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & -4 & 8 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \to \begin{cases} x_1 - x_2 & +x_3 = 1 \\ -4x_2 & +8x_3 = 0 \\ x_3 = 1 \end{cases}$$

A matrix is singular if it has a row of all zeros—then it has many or no solutions.

Operations on Vectors 4

4.1 Permutations

A permutation is a function that changes the order of elements in a vector. In matrix form, it has a single 1 in each row and column and zeros elsewhere. Applying a permutation matrix preserves length and relative angle between vectors, and if A is a permutation matrix then $A^{-1} = A^T$.

4.2 Rotation

To rotate a two-dimensional vector x by an angle θ , we can use the matrix below. Conveniently, $R_{\theta}^{-1} = R_{-\theta} =$ R_{θ}^{T} (and this holds in higher dimensions):

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad R_{\theta}^{-1} = R_{-\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

4.3Projection

We can project a point onto a line by minimizing the distance to the line, i.e. $\operatorname{proj}_{l}(a) = \arg\min_{b \in l} \|a - b\|$. To do this more easily, we can rotate the line to be on the x axis and zero the y coordinate. With $D = {1 \atop 0} {0 \atop 0}$, a matrix that projects onto a line with angle θ is then $P = R_{\theta}DR_{-\theta}$, where Pv gives the projection. Note that a projection matrix cannot have an inverse and $P^2 = P$.

$$\mathrm{proj}_w v = \frac{v \cdot w}{\|w\|^2} w$$

4.4 Reflection

A reflection across a line l can be expressed as 2(b-a)+a, where b is the closest point on l to a. Since 2(b-a)+a=2b-a, we can write this as a matrix product with 2P-I. A reflection across a line with angle θ can also be written as:

$$\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

5 Vector Space

A vector space is a set V on which addition and scaling are closed: $\forall v, w \in V, v + w \in V$ and $\forall v \in V, \alpha \in \mathbb{R}, \alpha v \in V$. If S and V are vector spaces, then $S \subseteq V$ is also a subspace.

- If S_1 and S_2 are subspaces then $S = S_1 \cap S_2$ is too.
- $S = S_1 + S_2$ is too (NOT union).

5.1 Columnspace

The columnspace of a matrix is the span of its n columns, where the span of a set of vectors is the set of all linear combinations of vectors in the set. If $A \in \mathbb{R}^{m \times n}$, then $C(A) \in \mathbb{R}^m$.

Given a matrix A, a basis for the columnspace of A is given by the columns corresponding to the pivots in rref(A).

5.2 Nullspace

The nullspace of A is $N(A) = \{x | Ax = 0\}.$

- If B is square and invertible, then N(A) = N(BA).
- For any B, if A = BA' then $N(A') \subseteq N(A)$.

To find the nullspace of a matrix, we can take advantage of the fact that N(A) = N(BA) if B is invertible. We can reduce A to rref, then form equations from R and write the vector in terms of the free variables.

5.3 Generators and Bases

A set of vectors $\mathcal{V} \subseteq \mathcal{S}$ generates a subspace \mathcal{S} iff every vector in \mathcal{S} can be written as a linear combination of vectors in \mathcal{V} . If the vectors in \mathcal{V} are linearly independent, then \mathcal{V} is a *basis* for \mathcal{S} . All bases have the same cardinality—the dimension of the subspace.

5.4 Projections

For a subspace V defined by orthonormal basis vectors $\{v_1, \ldots v_i\}$, we can compute $proj_V x = \sum_{i=1}^k (x \cdot v_i)v_i$. Expanding this:

$$proj_V x = \sum_{i=1}^k (x \cdot v_i) v_i = \sum_{i=1}^k v_i (v_i^T x) = (\sum_{i=1}^k v_i v_i^T) x$$

We can then equivalently define $P = \sum_{i=1}^{k} v_i v_i^T = VV^T$, where $V = [v_1 \dots v_k]$. Then, $proj_V x = VV^T x$.

Note that the rank of P is equal to the dimension of the subspace.

5.5 Orthogonality

Two subspaces can be orthogonal, which means that $\forall v \in V, \forall w \in W, v \cdot w = 0$ (i.e. all vectors are orthogonal). Given $V \in \mathbb{R}^n$, its orthogonal complement V^{\perp}

is the set of vectors that are orthogonal to all $v \in V$. Importantly, V^{\perp} is a subspace.

- $dim(V) + dim(V^{\perp}) = n$ (where $V \in \mathbb{R}^n$).
- $\bullet \ (V^{\perp})^{\perp} = V$

If V and W are orthogonal complements of each other, they form an orthogonal decomposition and every vector $x \in \mathbb{R}^n$ can be written uniquely as x = v + w where $v \in V, w \in W, v \cdot w = 0$.

5.6 Matrix Decomposition

N(A) and $C(A^T) \in \mathbb{R}^n$ are orthogonal complements of each other, as are $C(A) \in \mathbb{R}^m$ and $N(A^T) \in \mathbb{R}^m$.

For a matrix $A \in \mathbb{R}^{m \times n}$ with rank(A) = m, we can decompose a point x into these two subspaces:

- $P = A^T (AA^T)^{-1}A$ is the orthogonal projection onto $C(A^T)$
- $Q = I A^{T}(AA^{T})^{-1}A$ is the projection onto N(A). Notice that $P^{2} = P$ and P + Q = I.

6 Equivalences

6.1 Tall Matrices $(A \in \mathbb{R}^{m \times n}, m \ge n)$

- 1. Columns of A are LI
- 2. If solvable, Ax = b has a unique solution
- 3. A has a left inverse
- 4. $N(A) = \{0\}$
- 5. rank(A) = n (this is called "full column rank")

6.2 Wide Matrices $(A \in \mathbb{R}^{m \times n}, m < n)$

- 1. Rows of A are LI
- 2. Ax = b is solvable for every b
- 3. A has a right inverse
- 4. $C(A) = \mathbb{R}^m$
- 5. rank(A) = m (this is called "full row rank")

6.3 Square Matrices $(A \in \mathbb{R}^{n \times n})$

- 1. Rows of A are LI
- 2. Columns of A are LI
- 3. Ax = b always has a unique solution
- 4. A is invertible (has a left and a right inverse)
- 5. $N(A) = \{0\}$
- 6. $C(A) = \mathbb{R}^n$
- 7. rank(A) = n (this is called "full rank")
- 8. $\det A \neq 0$

7 Determinant

The determinant of a square matrix, geometrically, gives the ratio between the *volume* of a set of points before and after application of the matrix.

- Rotations preserve the determinant
- A matrix is invertible/nonsingular iff $\det \neq 0$.
- For square $A, B, \det(AB) = \det(A) \det(B)$.
- $\det(A+B) \neq \det(A) + \det(B)$.
- \bullet det $(A) = \det(A^T)$
- For a triangular (or diagonal) matrix, det A is the product of the diagonal.
- For a block triangular matrix, such as ${}^{B}_{0}{}^{C}_{D}$, det $A = \det(B) \det(D)$.

• Swapping rows negates, adding rows preserves. Multiplying row by c multiplies by a factor of c.

We can also compute the determinant using cofactor expansion. Where sub(A, i, j) gives A except for row i and column j, and for any row i (or column, via A^T):

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \det(\text{sub}(A, i, j))$$

Least Squares 8

For Ax = b, the following minimizes the error if overdetermined, or the norm if underdetermined.

$$x^* = (A^T A)^{-1} A^T b$$

Sometimes, we care about the size of x, and want to instead minimize $||Ax - b||^2 + \lambda ||x||^2$, where λ is a regularization parameter. $x^* = (A^T A + \lambda I)^{-1} A^T b$ always exists and gives this.

Singular Value Decomposition 9

For any matrix $A \in \mathbb{R}^{n \times m}$, we can write:

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

Where $U \in \mathbb{R}^{n \times n} = [v_1 \dots v_n]$ and $V \in \mathbb{R}^{m \times n} =$ $[v_1 \dots v_m]$ are orthogonal matrices (orthonormal columns) and $\Sigma \in \mathbb{R}^{n \times m}$ is a rectangular matrix with $\sigma_1, \sigma_2, \dots, \sigma_r, \sigma_{r+1}, \dots$ along the main diagonal. These σ_i are in decreasing order up to some σ_r , and then are all

The σ_i are singular values and u_i and v_i are singular vectors. We can think of $U\Sigma V^T x$ as first rotating x by V^T , then scaling it by Σ , and finally rotating it by U.

- rank(A) is the number of nonzero singular values.
- u_1, \ldots, u_r are an orthonormal basis for C(A).
- v_{r+1}, \ldots, v_m are an orthonormal basis for N(A). If $A = U\Sigma V^T$, then $A^T = (U\Sigma V^T)^T = V\Sigma U^T$

Pseudoinverse

If A is square and invertible (full column rank), then $A^{-1} = V \Sigma^{-1} U^T$. We can derive this: $A^{-1} =$ $(U\Sigma V^T)^{-1}=(V^T)^{-1}\Sigma^{-1}U^{-1}$ and since U and V^T are orthogonal, $A^{-1}=V\Sigma^{-1}U^T$. We can extend this for non-invertible matrices, defining the pseudoinverse:

$$A^+ = \sum_{i=1}^r \sigma_i^{-1} v_i u_i^T$$

- $AA^+ = \sum_{i=1}^r u_i u_i^T$ gives the projector onto C(A). $A^+A = \sum_{i=1}^r v_i v_i^T$ gives the projector onto $N(A)^{\perp}$. The following two properties uniquely define it:

• $AA^{+}A = A$ and $A^{+}AA^{+} = A^{+}$.

• AA^+ and A^+A are symmetric.

Operator Norm

The operator norm of $A \in \mathbb{R}^{m \times n}$ is the maximum norm result of multiplying by a unit vector:

$$\|A\| := \max_{x \in \mathbb{R}^n, \|x\| = 1} \|Ax\|$$

- ||A|| is equal to the largest singular value of A.
- If P and Q are orthogonal, then ||PA|| = ||AQ|| =
- |Ax| < ||A|||x|, ||AB|| < ||A||||B||

Low Rank Approximation

If we want to create a k-rank matrix C that approximates $B = \sum_{i=1}^{r} \sigma_i u_i v_i^T$ such that ||B - C|| is minimized, that minimum is σ_{k+1} and it is achieved by the truncated SVD:

$$C = \sum_{i=1}^{k} \sigma_i u_i v_i^T$$

Principal Component Analysis

For analyzing datasets, it can be useful to find a projection onto a lower-dimensional space that maximizes the spread of the data. That is, finding $c_1, \ldots c_k$ such that:

$$\max_{c_1, \dots, c_k} \frac{1}{p} \sum_{i=1}^p \|C^T y_i\|^2$$

Where $C = [c_1 \dots c_k]$ and $c_1, \dots c_k$ are orthonormal. The best set of vectors is u_1, \ldots, u_k from the SVD of the data. This basis also minimizes the reconstruction error $\frac{1}{p}\sum_{i=1}^{p}||y_i-\hat{y}_i||^2$ where \hat{y}_i is the projection onto the subspace defined by the c_i s.

Eigenvalues and Eigenvectors 10

For a square $n \times n$ matrix A, we can find eigenvalues λ and corresponding eigenvectors $x \in \mathbb{R}^n$ where $Ax = \lambda x$. To find the eigenvalues, we find the roots of the characteristic polynomial, given by $\det(A - \lambda I)$, which is degree n. Given an eigenvalue, we can find the corresponding eigenvector by finding a vector in the nullspace of $A - \lambda I$, i.e. a vector for which the above holds.

Note that for 2×2 A, $p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A)$ and $\lambda = \frac{1}{2} \left(\operatorname{tr}(\mathbf{A}) \pm \sqrt{\operatorname{tr}(A)^2 - 4 \operatorname{det}(A)} \right).$

- λ is an eigenvalue of $A \iff Av = \lambda v \iff$ $(\lambda I - A)v = 0 \iff N(\lambda I - A) \neq \{0\} \iff \lambda I - A$ not invertible \iff det $(\lambda I - A) = 0 \iff p(\lambda) = 0$.
- det $A = \prod \lambda_i$, tr $(A) = \sum \lambda_i$

Diagonalization

For a matrix $A \in \mathbb{R}^{n \times n}$, it can sometimes be written as $A = TDT^{-1}$, where $D = \text{Diagonal}(\lambda_1, \dots, \lambda_n)$, and $T = [v_1 \cdots v_n]$ where v_i is the eigenvector associated with

A is diagonalizable iff every eigenvalue has the same algebraic multiplicity and geometric multiplicity. λ has alg. mult. k if p(t) has a factor $(t - \lambda)^k$, and λ has geom. mult. K if dim $N(A - \lambda I) = K$.

- If A is diagonalizable s.t. $A = TDT^{-1}$ as above, then $A^k = TD^kT^{-1}$.
- For a polynomial or convergent power series, $q(A) = TD_qT^{-1}$ where $D_q = \text{Diagonal}(q(\lambda_1), \ldots)$.
- Cayley-Ham.: $p(\lambda) = \det(A \lambda I) \implies p(A) = 0$.

11 Symmetric Matrices

A square matrix is symmetric if $A = A^T$. Then:

- The eigenvalues of A are real.
- The eigenvectors of A can be chosen to be orthogonal.
- A is diagonalizable, and $A = TDT^T$.
- The nonzero singular values of A are the square root of the eigenvalues of MM^T or M^TM .

11.1 Positive (Semi-)Definite

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is PSD if $x^T A x \ge 0 \forall x \in \mathbb{R}^n$. A is positive definite if $x^T A x > 0$ for nonzero x. A matrix is PSD if:

- All eigenvalues are ≥ 0 (> 0 for PD). For 2×2 , it is equivalent that $\operatorname{trace}(A) \geq 0$ and $\det A \geq 0$.
- It is the sum of two PSD matrices.
- It can be expressed as AA^T for $A \in \mathbb{R}^{n \times m}$.

12 Power Method

By choosing a random vector and repeatedly applying A to it and normalizing the result, we will converge on the largest eigenvector x_k and eigenvalue $x_k A x_k$. The convergence rate depends on the spectral gap $\frac{|\lambda_1|}{|\lambda_2|}$. We apply $x_{k+1} = \frac{A x_k}{\|A x_k\|}$.

13 Linear Dynamical Systems

If we have a system $x_k = Ax_{k-1}$, equivalently $x_k = A^k x_0$, then for large k the system evolves at λ_1^k where λ_1 is the largest eigenvalue.

14 Linear ODEs

For a system of linear ordinary differential equations:

$$\frac{d}{dt}x(t) = Ax(t), \quad x(0) = x_0$$

The solution is $x(t) = e^{At}x_0$. We define the matrix exponential equivalently to the scalar exponential:

$$e^{At} = I + At + \frac{A^2t^2}{2} + \frac{A^3t^3}{3!} + \cdots$$

$$= I + VDV^{-1}t + \frac{VD^2V^{-1}t^2}{2!} + \dots = V(I + Dt + \frac{D^2t^2}{2!} + \dots)V^{-1}$$

15 Convexity

A $set\ C$ is convex if it contains the line segment between any two points in the set:

$$ta + (1-t)b \in C \forall a, b \in C, \forall t \in [0,1]$$

- If C_1, C_2 are convex, then $C_1 \cap C_2$ is convex.
- If C is convex and ϕ is a linear (Ax) or affine (Ax+b) map, then $\phi(C)$ is convex.

15.1 Convex Functions

A function f is convex if the function is below the chord between any two points:

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b) \forall t \in [0,1]$$

f(x) is convex if:

- $f(x) = c_1 f_1(x) + c_2 f_2(x)$ with f_1, f_2 convex.
- $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ with f_i convex.

If f(x) is convex, then the following are convex sets:

- $S_{\gamma} = \{x \in \mathbb{R}^n : f(x) \le \gamma\}$
- $\operatorname{epi} f = \{(x, y) : x \in \mathbb{R}^n, y \in \mathbb{R} : f(x) \le y\}$

f is convex if $f'' \ge e0$ or \mathbf{H}_f PSD. For convex f, local minima are global so $\nabla f = 0$ is a minimum.

16 Gradient & Hessian

The gradient of a function $f(x_1, x_2, ..., x_d)$ is the d-dimensional vector with $\frac{\partial f}{\partial x_i}$ at each entry. The Hessian \mathbf{H}_f is the $d \times d$ matrix with $\frac{\partial f}{\partial x_i x_j}$ at each i, j.

17 Quadratic Functions

Quadratic functions are of the form:

$$f(x) = x^T A x + b^T x$$

Then, $\nabla f = 2Ax + b$ and H(x) = 2A. So, if A is PSD then f is convex. It is always possible to write A as a symmetric matrix.

17.1 Quadratic Programming

If we have a quadratic program like min $\frac{1}{2}x^TPx + q^Tx$, we can solve it by setting the gradient equal to zero. If we add an equality constraint Ax = b, then we can solve:

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ c \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

And the solution x will be optimal.

18 Gradient Descent

Gradient descent repeatedly applies the following:

$$x_{k+1} = x_k - \gamma \nabla f(x_k)$$

If f is a convex function with $\nabla^2 f = H$, and $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$:

- If f is smooth and convex, with $\lambda_i \leq L$, then should choose $\gamma = \frac{1}{L}$. If f is quadratic, then it converges for any $0 < \gamma < \frac{2}{\lambda_1}$. This converges according to $f(x_k) f(x^*) \leq \frac{L}{2k} ||x_0 x^*||^2$.
- If f is smooth and strongly convex, the best step size is $\gamma = \frac{2}{m+L}$ and we define $Q = \frac{L}{m}$. If f is quadratic, $m = \lambda_n$, $L = \lambda_1$. This converges according to $f(x_k) f(x^*) \leq \frac{L}{2} \left(\frac{Q-1}{Q+1}\right)^{2k} \|x_0 x^*\|^2$: much faster.