Compléments de mathématiques

Sommations

$$\sum_{k=m}^{n} r^{k} = r^{m} \frac{1 - r^{n-m+1}}{1 - r} \qquad \sum_{k=0}^{\infty} k v^{k} = \frac{v}{(1 - v)^{2}}$$

$$\sum_{k=m}^{n} r^{k} = r^{m} \frac{1 - r^{n-m+1}}{1 - r}$$

$$\sum_{k=0}^{\infty} k v^{k} = \frac{v}{(1 - v)^{2}}$$

$$\sum_{k=0}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

$$\sum_{k=0}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Estimation Taylor

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

$$\approx f(x_0) + f'(x_0)(x - x_0)$$

Théorème de Leibnitz

Soit:

- \rightarrow une fonction $f(x, \alpha)$ continue sur [a, b] et
- \rightarrow des fonctions (dérivables) de α , $u(\alpha)$ et $v(\alpha)$, prenant valeur dans [a,b].

Alors,

$$\frac{\partial}{\partial \alpha} \int_{u(\alpha)}^{v(\alpha)} f(x,\alpha) dx = \int_{u(\alpha)}^{v(\alpha)} \frac{\partial}{\partial \alpha} f(x,\alpha) dx + f(v(\alpha),\alpha) \frac{\partial}{\partial \alpha} v(\alpha) - f(u(\alpha),\alpha) \frac{\partial}{\partial \alpha} u(\alpha)$$

Domaines

- \mathbb{R} : Real numbers, $x \in (-\infty, \infty)$.
- \mathbb{Z} : Integers; all integers positive & negative, $x \in \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.
- \mathbb{N} : Natural numbers; all positive integers numbers, $x \in \{1, 2, 3, \ldots\}$.
- \mathbb{Q} : Rational numbers; numbers written as fractions, for example 1.25%, $-0.4775, 3.\overline{153}, \frac{1}{2}, \frac{4}{7}$.

 $\mathbb{R}\backslash\mathbb{Q}$: Irrational numbers; for example π , e, $\sqrt{3}$.

Mathématiques financières

Intérêt simple

$$a(t) = 1 + it$$

$$Prix = 100 \left(1 - \frac{it}{365}\right)^{-1}$$

$$v(t) = \frac{1}{1 + it}$$

facteurs d'actualisation et d'accumulation

$$a(t) = (1+i)^{t}$$
$$= (1-d)^{-t}$$
$$= e^{\int_0^t \delta_s ds}$$

$$v(t) = (1+i)^{-t}$$
$$= (1-d)^{t}$$
$$= e^{-\int_0^t \delta_s ds}$$

Conversion de taux

$$d = \frac{i}{1+i}$$

Taux d'intérêt effectif annuel

Taux d'intérêt nominal annuel

Taux d'escompte nominal annuel

$$i^{R} = \frac{i-r}{1+r}$$

$$i = \left(1 + \frac{i^{(m)}}{m}\right)^{m} - 1$$

$$i^{(m)} = m\left((1+i)^{1/m} - 1\right)$$

$$d^{(m)} = m\left(1 - (1-d)^{-1/m}\right)$$

Rentes constantes

$$\ddot{\mathbf{a}}_{\overline{n}|}^{(m)} = \frac{1 - v^n}{(i^{(m)}|d^{(m)})}$$
$$\ddot{\mathbf{a}}_{\overline{\infty}|} = \frac{1}{(i|d)}$$

$$\ddot{\mathbf{s}}_{n|}^{(m)} = \frac{(1+i)^{n} - 1}{(i^{(m)}|d^{(m)})}$$

Rentes continues

$$(\bar{I}\bar{s})_{\bar{n}|i} = \frac{\bar{s}_{\bar{n}|i} - n}{\delta}$$
$$\bar{a}_{\bar{n}|i} - nv^n$$

$$(\bar{D}\bar{s})_{\overline{n}|i} = \frac{nv^n - \bar{s}_{\overline{n}|i}}{\delta}$$

$$(\bar{I}\bar{a})_{\overline{n}|i} = \frac{\bar{a}_{\overline{n}|i} - nv^n}{\delta}$$

$$(\bar{D}\bar{a})_{\overline{n}|i} = \frac{n - \bar{a}_{\overline{n}|i}}{\delta}$$

Rentes (dé)croissantes annuellement

$$(I^{(m)}\ddot{a})_{\overline{n}|}^{(m)} = \frac{\ddot{a}_{\overline{n}|}^{(m)} - nv^{n}}{(i|d^{(m)})} \qquad (D^{(m)}\ddot{a})_{\overline{n}|}^{(m)} = \frac{n - a_{\overline{n}|}^{(m)}}{(i|d^{(m)})}$$
$$(I^{(m)}\ddot{s})_{\overline{n}|}^{(m)} = \frac{\ddot{s}_{\overline{n}|}^{(m)} - n}{(i|d^{(m)})} \qquad (D^{(m)}\ddot{s})_{\overline{n}|}^{(m)} = \frac{n(1+i)^{n} - s_{\overline{n}|}^{(m)}}{(i|d^{(m)})}$$

Rentes croissantes continûment

$$(I\ddot{a})_{\overline{\infty}|} = \frac{1}{d(i|d)}$$

Paiement en continu, valeurs accumulée et actualisée

$$(\bar{I}\bar{s})_{\bar{n}|\delta_s,h(t)} = \int_0^n h(t) \mathrm{e}^{\int_t^n \delta_s ds} dt$$

$$(\bar{I}\bar{a})_{\overline{n}|\delta_s,h(t)} = \int_0^n h(t) \mathrm{e}^{-\int_0^t \delta_s ds} dt$$

Rentes avec croissance géométrique

$$\ddot{\mathbf{a}}_{\overline{n}|i^{R}} = \frac{1 - \left[\frac{1+r}{1+i}\right]^{n}}{i - r} (1+i) \qquad \qquad \ddot{\mathbf{s}}_{\overline{n}|i^{R}} = \frac{(1+i)^{n} - (1+r)^{n}}{i - r} (1+i)$$

T-Bills

$$Prix = 100 \left(1 - \frac{dt}{360}\right)^t$$

Obligations

Formule de base

- P Prix de l'obligation
- F Valeur nominale de l'obligation (face value)
- r Taux de coupon par période de paiement (coupon rate)
- i Taux d'intérêt par période de paiement (interest rate)
 - *Fr* Montant par paiement.
- C Valeur de remboursement de l'obligation (redemption value)

$$P = Fra_{\overline{n}|i} + Cv^{n}$$

$$= C + (Fr - Ci)a_{\overline{n}|i} + v^{n}$$

Amortissement d'obligations

Book value

$$BV_t = (Fr - C)_{n-t}a_j + C$$

Analyse probabiliste des risques actuariels

Théorèmes probabilistes

Théorème du binôme

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}, \ \forall n \in \mathbb{N}$$

Théorème multinomial

$$(x_1 + \dots + x_r)^n = \sum_{\substack{(n_1, \dots, n_r):\\n_1 + \dots + n_r = n}} \binom{n}{n_1, \dots, n_r} x_1^{n_1} \dots x_r^{n_r} s$$

Relations factoriels

$$\binom{n}{k} = \binom{n}{n-k}$$

Triangle de Pascal

Règle de Pascal

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

- > Triangle des coefficients binomiaux
- > Chaque nombre est la somme des 2 nombres directement au-dessus.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Moments

ı	Moment d'ordre <i>n</i> (<i>autour de l'origine</i>).	$F[X^n] - \nabla_{x^n} P_r(X - x_i)$	d e densité	$f_X(x) = \Pr(X = x)$	Density Function
	Moment a orare n (union ne i origine).	i	de masse de probabilité	$f_X(x) \neq \Pr(X = x)$	Probability Mass Function (PMF)
	Moment <i>centré</i> d'ordre <i>n</i> .	$E[(X - E[X])^n] = \sum (x_i - E[X])^n \Pr(X = x_i)$) de répartition		Cumulative Density Function (CDF)
		$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	de survie	$S_X(x) = \Pr(X > x)$	Survival Function (CDF)
	Moment <i>réduit</i> d'ordre <i>n</i> .	$\left E \left \left(\frac{X}{\sqrt{x_i}} \right)^n \right = \sum_{i=1}^n \left(\frac{x_i}{\sqrt{x_i}} \right)^n \Pr(X = x_i)$	$F_{\rm Y}(x)$		

Soit la fonction

Moment *centré-réduit* d'ordre
$$n$$
.
$$E\left[\left(\frac{\sqrt{V(X)}}{\sqrt{V(X)}}\right)^{-1}\right] = \sum_{i} \left(\frac{\sqrt{V(X)}}{\sqrt{V(X)}}\right)^{-1} \Pr(X = x_{i})$$

$$E\left[\left(\frac{X - E[X]}{\sqrt{V(X)}}\right)^{n}\right] = \sum_{i} \left(\frac{x_{i} - E[X]}{\sqrt{V(X)}}\right)^{n} \Pr(X = x_{i})$$

Fonction stop-loss
Fonction d'excès-moye

$$\gamma_X = \mathrm{E}\left[\left(\frac{\mathrm{X} - \mathrm{E}[\mathrm{X}]}{\sqrt{\mathrm{V}(\mathrm{X})}}\right)^3\right]$$
 $\kappa_X = \mathrm{E}\left[\left(\frac{\mathrm{X} - \mathrm{E}[\mathrm{X}]}{\sqrt{\mathrm{V}(\mathrm{X})}}\right)^4\right]$

$$\pi_X(d) = \mathbb{E}\left[\max(X - d; 0)\right]$$

$$\pi_X(d) = \mathbb{E}\left[X - d \mid X > d\right]$$

Lois multivariées

Loi multinomiale

$$\Pr(X_1 = x_1, \dots, X_r = x_r) = \binom{n}{x_1, \dots, x_r} p_1^{x_1} \dots p_r^{x_r}$$

Conditionnels

$$\mathbf{E}[X] = \mathbf{E}_Y[\mathbf{E}[X|Y]] \qquad \qquad \mathbf{V}(X) = \mathbf{E}_Y[\mathbf{V}(X|Y)] + \mathbf{V}_Y(\mathbf{E}[X|Y])$$

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

- 1. Cov(X, Y) = Cov(Y, X)
- 2. Cov(X, X) = V(X)
- 3. $Cov(X,Y) \stackrel{\perp}{=} 0$
- 4. Cov(c, X) = 0
- 5. Cov(cX, Y) = cCov(X, Y)
- 6. $Cov(\sum_{i=1}^{n} \alpha_i X_i, \sum_{j=1}^{m} \beta_j Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j Cov(X_i, Y_j)$

$$V(\sum_{i=1}^{n} \alpha_i X_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i^2 V(X_i) + 2 \sum_{i < j} \sum_{j=1}^{n} \alpha_i \alpha_j Cov(X_i, X_j)$$
$$\rho_{P}(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Convolution

$$f_{X+Y}(s) = \int_{-\infty}^{\infty} f_X(s-y) f_Y(y) dy$$

Variable aléatoire

Soit X une variable aléatoire.

Loi normale multivariée

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det(\mathbf{\Sigma})}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

Théorèmes limites

Inégalité de Markov

Soit la variable aléatoire (non-négative) X.

Alors $\forall a > 0$ on a :

$$\Pr(X \ge a) \le \frac{\operatorname{E}[X]}{a}$$

Inégalité de Tchebychev

Soit la variable aléatoire X avec μ , $\sigma^2 < \infty$.

Alors $\forall k > 0$ on a :

$$\Pr\left(|X - \mu| \ge k\sigma\right) \le \frac{1}{k^2}$$

$$\Pr(|X - \mu| \ge k\sigma) \le \frac{1}{k^2} \qquad \text{ou} \qquad \Pr(|X - \mu| \ge k^*) \le \frac{\sigma^2}{(k^*)^2}$$

Loi (faible) des grands nombres (WLLN)

Soit la suite de variables aléatoires (iid) X_1, \ldots, X_n tel que $\forall i = 1, \ldots, n$ $E[X_i] = \mu$ et $Var[X_i] = \sigma^2 > 0$.

Alors $\forall \epsilon > 0$ où $\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$:

$$\lim_{n\to\infty} \Pr\left(|\bar{X}_n - \mu| \ge \epsilon\right) \to 0 \qquad \Leftrightarrow \qquad \bar{X}_n \xrightarrow[n\to\infty]{\mathbb{P}} \mu$$

où \mathbb{P} représente la convergence en probablité.

Théorème central limite (CLT)

Soit la suite de variables aléatoires (iid) X_1, \ldots, X_n tel que $\forall i = 1, \ldots, n$ $E[X_i] = \mu$ et $Var[X_i] = \sigma^2 > 0$.

Alors pour $S_n = \sum_{i=1}^n X_i$:

$$\lim_{n\to\infty} \Pr\left(\frac{S_n - \mathrm{E}[S_n]}{\sqrt{\mathrm{Var}(S_n)}} \le z\right) = \Phi(z) \qquad \Leftrightarrow \frac{S_n - \mathrm{E}[S_n]}{\sqrt{\mathrm{Var}(S_n)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

où ${\mathcal L}$ représente la convergence en distribution ("law").