IMC Practice Day 1 - Question 1

> Ridley Roelofs

Proble m:

let (an) n=1 and (bn) n=1 be two Sequences of positive numbers. Show that the following statements are equivalent:

There is a sequence $(C_n)_{n=1}^{00}$ of positive numbers such that $\sum_{n=1}^{00} \frac{a_n}{c_n}$ and $\sum_{n=1}^{00} \frac{c_n}{b_n}$ both converge

@ \$\square converges.

Solution:

Let
$$(C_{n})_{n=1}^{\infty} = (a_{n})_{n=1}^{\infty}$$

 $(b_{n})_{n=1}^{\infty} = (a_{n})_{n=1}^{\infty}$

From O $\frac{\partial O}{\partial x} = \sum_{n=1}^{\infty} \frac{\partial n}{\partial x^n} = \sum_{n=1}^{\infty} \frac{1}{\partial x^n} \quad Converges$

From (1) ∞C_n Converges

$$= \sum_{n=1}^{\infty} \sqrt{\frac{a_n}{a_n^3}} \quad \text{Converges}$$

and ② are equivelent in Saying that
$$\sum_{n=1}^{\infty} \frac{1}{a_n}$$
 Converges for $(C_n)_{n=1}^{\infty} = (a_n^2)_{n=1}^{\infty}$ $(b_n)_{n=1}^{\infty} = (a_n^3)_{n=1}^{\infty}$

Reflection:

My original Solution was good for a Specific case where $(C_n)_{n=1}^{00} = (a_n^2)_{n=1}^{00}$ $(b_n|_{n=1}^{00} = (a_n^2)_{n=1}^{00}$

but I should have carried on to find Cn in terms of any an and br.

find Cn Such that

$$\frac{a_n}{C_n} = \frac{C_n}{b_n} = \sqrt{\frac{a_n}{b_n}}$$

$$C_n = \sqrt{\frac{a_n}{b_n}} \cdot b_n$$

$$= \sqrt{\frac{a_n}{b_n}} \cdot b_n$$

A choice of $C_n = \sqrt{a_n \cdot b_n}$ Shows equivalence of O and O for any two positive Sequences an and b_n .