ELEMENTARY NUMBER THEORY

PROBLEM SET: WEEK 6

A selection of exercises on Simultaneous Linear Congruences and supplementary exercises on Quadratic Residues

Andrew Dong

Professor Ngo Bao Chau Minh-Tam Trinh

November 19, 2015

Math 17500: Problem Set Week 6

1. Find all integers satisfying both congruences $x \equiv 10 \mod 24$ and $x \equiv 16 \mod 18$

Solution:

```
x \equiv 10 \mod 24 \Rightarrow x = 10 + 24t.
```

Putting this value of x into our second congruence $x \equiv 16 \mod 18$ we get

 $10 + 24t \equiv 16 \mod 18$ which becomes $24t \equiv 6 \mod 18$ which becomes $4t \equiv 1 \mod 3$ which can be rewritten $t \equiv 1 \mod 3$. Thus t = 1 + 3s where $s \in \mathbb{Z}$.

Plugging in this value for t into our original congruence, we get x = 10 + 24(1 + 3s) = 34 + 72s. Thus $x \equiv 34 \mod 72$. Notice that 72 is the lcm(24,28).

2. Find all integers satisfying both congruences $x \equiv 8 \mod 9$ and $x \equiv 31 \mod 33$

Solution:

 $x \equiv 8 \mod 9$ implies that x = 8 + 9t for integer valued t. Plugging this value of x into our second congruence yields the congruence $8 + 9t \equiv 31 \mod 33$ or $9t \equiv 23 \mod 33$. Since $\gcd(9,33) = 3$ and 3 does not divide 23, t has no solutions, thus there are no integers satisfying both congruences.

3. Prove that there exists integer $x \in \mathbb{Z}$ satisfying $x \equiv m \mod a$ and $x \equiv n \mod b$ if and only if $m \equiv n \mod \gcd(a,b)$. In that case, find the general form of the solution

Solution:

If an integer solution x exists then $x \equiv m \mod a$ and $x \equiv n \mod b$ and thus a|(x-m) and b|(x-n). Let $c = \gcd(a,b)$ so c divides both a and b and therefore also divides x-m and x-n. Notice that c must divide (x-n) - (x-m) = m - n, which is equivalent to saying that $m = n \mod c \sim m \equiv n \mod \gcd(a,b)$.

The general solution forms a single congruence class $\operatorname{mod}(y)$ where $y = \operatorname{lcm}(a,b)$. Suppose x_0 is any solution of the congruences. Then an integer x is a solution to the congruences if and only if $x \equiv x_0 \mod (a)$ and $x \equiv x_0 \mod (b)$. This implies that $x - x_0$ is divisible by a and b, or equivalently $x - x_0$ is divisible by their least common multiple $\operatorname{lcm}(a,b)$. Thus, the general solution consists of a single congruence clas $x_0 \mod \operatorname{lcm}(a,b)$.

4. Solve the system of congruences:

```
2x + 36 \equiv 1 \mod 17
5x + 10y \equiv 2 \mod 17
```

Solution:

```
2x \equiv 16 \mod 17 \implies x \equiv 8 \mod 16.
```

We then have $40 + 10y \equiv 2 \mod 17 \implies 10y \equiv 13 \mod 17 \implies [y] = [3]$ since $3 * 10 = 30 = 13 \mod 17$.

5. Solve the system of congruences:

 $2x + 3y \equiv 1 \mod 24$

 $6x + 10y \equiv 2 \mod 24$

Solution:

we write our first congruence

 $6x + 9y \equiv 3 \mod 24$. Subtracting our second congruence from this transformation of our first congruence we get $y \equiv 23 \mod 24$.

Putting this value back into our first congruence we get $2x - 3 \equiv 1 \mod 24$. Thus $2x \equiv 4 \mod 24$ and $x \equiv 2 \mod 12$.

6. Solve the congruence equation $x^2 \equiv 61 \mod 100$

Solution:

The congruence equation has solutions for $x \equiv 19 \mod 50$ and $\equiv 31 \mod 50$.

7. Solve the congruence equation $x^2 \equiv 61 \mod 1000$

Solution:

Actually, this congruence equation doesn't have any solutions because $x \equiv 19 \mod 50$ and $\equiv 31 \mod 50$ both fail mod for $x^2 \equiv 61 \mod 1000$.

8. Exercise 7.20

Question: Show that, for each $r \ge 1$, there are infinitely many primes $p \equiv 1 \mod (2^r)$. Solution:

Suppose there are instead finitely many primes $p \equiv 1 \mod (2^r)$. Name them $p_1, ..., p_k$ and define a = $2p_1 * ... * p_k$ and $m = a^{2^{2^{-1}}} + 1$ which is divisible by an odd prime p. Since a has order 2^r in U_p , by Lagrange's theorem we have that $2^r | p - 1$. This implies the congruence $p \equiv 1 \mod (2^r)$ which means that $p = p_i$ for some i and p divides a. But since p divies m, we have that $p | m - a^{2r-1} = 1$, which is a contradiction. Thus, there must be infinitely many primes $p \equiv 1 \mod (2^r)$. \square

9. Exercise 7.21

Question: For which values of n is -1 a quadratic residue mod (n)?

Solution:

We determine the values for which -1 is a quadratic residue mod n by our corollary that $-1 \in Q_p \iff p \equiv 1 \mod 4$. However, we know that a value n is in the set of quadratic residues over n if and only if a \in the set of quadratic residues over n_i for where $n = n_1 * n_2 * ... * n_i$ where n_i are mutually coprime.

To determine values n can take, we must check the cases for two quadratic residue sets, Q_{2^e} and Q_{n_i} where $n_i > 2$. For the case of Q_{2^e} we know that e must equal 0 or 1 for $-1 \in Q_{2^e}$. For the case of Q_{n_i} where $n_i > 2$ we apply our corollary and claim that $-1 \in Q_{n_i}$ where $n_i > 2 \iff n_1 \equiv 1 \mod 4$.

Taking the results from these two cases we conclude that -1 is a quadratic residue mod(n) for values n not divisible by 4 or any prime of the form $p \equiv 3 \mod 4$.

10. Exercise 7.23

Question: Show that if n > 2 then a quadratic residue mod (n) cannot also be a primitive root mod (n). Solution:

By definition, for n > 2 the set of quadratic residues Q_n in Z_n is a proper subgroup of the set of units in Z_n , U_n . We also know that if a is in the set of quadratic residues then so are all powers of a. Recall that an element a is a primitive root if every number coprime to it is congruent to a power of g modulo a. Using the fact that the set of quadratic residues is strictly smaller than the set of units and the fact that all powers of a are in the set of quadratic residues for a quadratic residue, we know that there exists some elements of U_n that are not a power of a and thus a cannot be a primitive root mod (n).

Page 3 of 3