

Компьютерная лингвистика и информационные технологии

Улица сезам, бертология и графы (используются материалы Е. Артемовой, ФКН ВШЭ)

Byte Pair Encoding Subword Tokenization

- Чего мы хотим от токенизации?
- Представим слова как набор "подслов
- В чем отличие от fastText?
- Алгоритм сжатия данных


```
text = 'на дворе трава на дворе дрова'
group_subtokens(text)
['[CLS]', 'на', 'дворе', 'т', '##рава', 'на', 'дворе', 'др', '##ова', '[SEP]']
```


BERT внутри

https://colab.research.google.com/drive/19OFFe9C1D8-5U5uO-WV3anX2jUP1Qfcp?usp=sharing

```
class BertForTokenClassification(BertPreTrainedModel):
    _keys_to_ignore_on_load_unexpected = [r"pooler"]

def __init__(self, config):
    super().__init__(config)
    self.num_labels = config.num_labels

self.bert = BertModel(config, add_pooling_layer=False)
    self.dropout = nn.Dropout(config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
```


BERT внутри

```
class BertForSequenceClassification(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

    self.bert = BertModel(config)
    self.dropout = nn.Dropout(config.hidden_dropout_prob)
    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
```


BERT as Embedder: Pooling

- [CLS]-пулинг вектор управляющего токена CLS на последнем слое
- МЕАN-пулинг усреднение векторов слов на последнем слое
- МАХ-пулинг покомпонентный максимум векторов слов на последнем слое

Улица Сезам

By Xiaozhi Wang & Zhengyan Zhang @THUNLP

Улица Сезам

https://arxiv.org/pdf/2003.07278.pdf

Method	Architecture	Encoder	Decoder	Objective	Dataset
ELMo	LSTM	×	✓	LM	1B Word Benchmark
GPT	Transformer	X	\checkmark	LM	BookCorpus
GPT2	Transformer	X	\checkmark	LM	Web pages starting from Reddit
BERT	Transformer	\checkmark	X	MLM & NSP	BookCorpus & Wiki
RoBERTa	Transformer	\checkmark	X	MLM	BookCorpus, Wiki, CC-News, OpenWebText, Stories
ALBERT	Transformer	\checkmark	X	MLM & SOP	Same as RoBERTa and XLNet
UniLM	Transformer	\checkmark	X	LM, MLM, seq2seq LM	Same as BERT
ELECTRA	Transformer	\checkmark	X	Discriminator (o/r)	Same as XLNet
XLNet	Transformer	X	\checkmark	PLM	BookCorpus, Wiki, Giga5, ClueWeb, Common Crawl
XLM	Transformer	\checkmark	\checkmark	CLM, MLM, TLM	Wiki, parellel corpora (e.g. MultiUN)
MASS	Transformer	\checkmark	\checkmark	Span Mask	WMT News Crawl
T5	Transformer	\checkmark	\checkmark	Text Infilling	Colossal Clean Crawled Corpus
BART	Transformer	\checkmark	\checkmark	Text Infilling & Sent Shuffling	Same as RoBERTa

Улица Сезам

https://arxiv.org/pdf/2003.07278.pdf

Objective	Inputs	Targets
LM	[START]	I am happy to join with you today
MLM	I am [MASK] to join with you [MASK]	happy today
NSP	Sent1 [SEP] Next Sent or Sent1 [SEP] Random Sent	Next Sent/Random Sent
SOP	Sent1 [SEP] Sent2 or Sent2 [SEP] Sent1	in order/reversed
Discriminator (o/r)	I am thrilled to study with you today	oororoo
PLM	happy join with	today am I to you
seq2seq LM	I am happy to	join with you today
Span Mask	I am [MASK] [MASK] [MASK] with you today	happy to join
Text Infilling	I am [MASK] with you today	happy to join
Sent Shuffling	today you am I join with happy to	I am happy to join with you today
TLM	How [MASK] you [SEP] [MASK] vas-tu	are Comment

Улица Сезам и не только

- Авторегресионные модели: LM objective (GPT, Reformer)
- Автоэнкодеры: pre-training objectives (BERT, RoBERTa)
- Модели seq2seq: enc-dec architecture (Т5, BART)
- Мультимодальные модели: CV & NLP (DALL-E,
 VQA Models, Speech2Text)

Как оценить модели?

- NLU-бенчмарки GLUE, SuperGLUE,
 XTREME
- Пробинг моделей
- Производительность моделей

Бенчмарки

- GLUE: 10 NLU-задач (linguistic acceptability, categories)
- SuperGLUE: 9 еще более сложных задач
- XTREME: перенос знания между языками

Cross-lingual learning in the transfer learning taxonomy (Ruder, 2019)

GLUE, SuperGLUE, XTREME

- Лидерборды позволяют сравнивать между собой языковые модели
- Больше параметров и данных -- языковая модель выше в лидерборде
- Затраты на скорость, память и ресурсы при этом почти не учитываются
- Высокий рейтинг языковой модели не означает хорошие результаты на практике

Бертология

- BERT модель динамических векторов слов
- Инструменты для изучения и интерпретации:
 - Анализ векторных представлений слов и предложений
 - Анализ весов механизма внимания
 - Диагностические тесты (probing tasks)

Пробинг

BERT и уровни языка

- BERT и его компания умеют решать простые диагностические тесты:
- Блины одно из самых древнейших изделий русской кухни -> есть ли в предложении слово "блины"?
- [Блины] одно из самых древнейших изделий русской кухни -> NOUN
- Блины одно из [самых древнейших изделий русской кухни] -> NP

BERT и синтаксис

BERT и семантика

BERT и знание о мире

e.g. ELMo/BERT

BERT и уровни языка

- Нижние слои BERT лучше понимают порядок слов и поверхностную информацию
- Средние слои BERT лучше понимают морфологию и синтаксическую структуру предложения
- Верхние слои BERT отвечают за решение конкретной задачи
- За понимание семантики отвечает вся модель

Малышка BERT

- Техники уменьшения размера моделей:
 - Удаление весов [weights pruning]
 - Дистилляция [distillation]

Прунинг

- Poor Man's BERT
 https://arxiv.org/abs/2004.03844
- Удаляется порядка 40% весов с использованием разных стратегий
- Модель после удаления весов тюнится на целевую задачу
- Точность сохраняется на уровне исходной модели (98% от показателей на GLUE)

Прунинг

- Poor Man's BERT
- Удаляется порядка 40% весов с использованием разных стратегий
- Модель после удаления весов дообучается на целевую задачу
- Точность сохраняется на уровне исходной модели (98% от показателей на GLUE)

Одна голова хорошо, а две лучше?

- В режиме тестирования большинство голов механизма внимания избыточны и без них модель не теряет в качестве
- Можно оставить одну голову и практически не потерять в качестве
- Это значит, что на каждом слое существуют головы, которую выполняют всю работу модели
- Удаление 50% голов ускоряет модель на 17%

Дистиляция

- Скорость, память или качество?
- Можем ли мы сохранить качество, сократив вычислительные затраты?

Дистиляция

- Шаг 1: Обучаем большую модель (или берем предобученную) учитель
- Шаг 2: Берем ребенка этой модели (student) и обучаем его воспроизводить поведение учителя
- При обучении используем разные objectives, включая MLM

Дистиляция

- DistilBERT https://arxiv.org/pdf/1910.01108.pdf
- Это работает
- Дистилированные модели сравнимы по качеству с учителями
- Такие модели могут давать нижнюю оценку

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	_	79.1/86.9

Table 3: **DistilBERT is significantly smaller** while being constantly faster. Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Графовые методы в NLP

Графы знаний

- Широкое применение
- В области ОЕЯ: алгоритмы и структуры данных, вопросноответные системы, датасеты, архитектуры моделей

Alexander Pushkin (Александр Пушкин)

Russian poet

Alexander Sergeyevich Pushkin was a Russian poet, playwright, and novelist of the Romantic era. He is considered by many to be the greatest Russian poet, and the founder of modern Russian literature. Pushkin was born into Russian nobility in Moscow. Wikipedia

Born: June 6, 1799, Moscow, Russia

Died: February 10, 1837, Saint Petersburg, Russia

Books: The Captain's Daughter, The Queen of Spades, MORE

Plays: Eugene Onegin, Boris Godunov, Mozart and Salieri, MORE

Children: Maria Pushkina, Alexander Pushkin, Grigory Pushkin,

Natalya Pushkina

Графы знаний

- Широкое применение
- В области ОЕЯ: алгоритмы и структуры данных, вопросноответные системы, датасеты, архитектуры моделей

ERNIE

- Инкорпорирование графовой информации в контекстуализированные представления
- Архитектура BERT
- Маскирование с использованием графа знаний
- Лучше в задачах извлечения информации

ERNIE

Suffix Tree

- Исправление опечаток
- Быстрые алгоритмы
- https://github.com/wolfgarbe/SymSpell

Задача KGQA

- Очень сложная
- Формальный язык
- Многокомпонентная
- Недостатки графов

```
What is the birthplace of Westworld's writer?
```

```
SELECT ?uri WHERE {
    ?x ex:writer ex:Westworld.
    ?x ex:bornIn ?uri
}
```


QA

- Multi-hop QA
 https://arxiv.org/pdf/1710.06481.pdf
- Hybrid QA
 https://www.aclweb.org/anthology/D18-145
 5/
- KGQA https://arxiv.org/pdf/1907.09361.pdf

Figure 2: A bipartite graph connecting entities and documents mentioning them. Bold edges are those traversed for the first fact in the small KB on the right; yellow highlighting indicates documents in S_q and candidates in C_q .

QA

- Multi-hop QA
 https://arxiv.org/pdf/1710.06481.pdf
- Hybrid QA
 https://www.aclweb.org/anthology/D18-145
 5/
- KGQA https://arxiv.org/pdf/1907.09361.pdf

QA

Классификация

- Строим граф, вершины
 которого документы и
 слова в документах
- Ребра слово-документ
 взвешены tf-idf
- Ребра слово-слововзвешены РМІ
- 2-layer GCN

