Evaluation of Deep Audio Representations for Semantic Sound Similarity

Recep Oguz Araz, Dmitry Bogdanov, Pablo Alonso-Jiménez, Frederic Font Music Technology Group, Universitat Pompeu Fabra, Spain

- Audio-sharing platforms, such as Freesound, offer sound similarity functions (query-by-example) for content-based retrieval.
 - They typically use manually-engineered audio representations that:
 - Do not capture audio semantics
 - Do not leverage recent developments in deep representation learning.
- Our goal is to identify the best deep audio representation for semantic sound similarity and deploy it within the Freesound platform.
- GitHub repository: https://github.com/raraz15/semantic-sound-similarity

Deep representation learning models which use audio and language modalities together perform significantly better in the semantic sound similarity task.

Modality	Model	Pre-training Objective	Param.	Data	Dim.	MAP@N↑		MR1 ↓
						N=15	N=150	1411/1
A	Freesound	-	-	-	846	0.09	0.03	43
A	VGGish	Classification	62M	80M	128	0.20	0.11	27
	YAMNet	Classification	4M	2M	1024	0.27	0.15	25
	FSD-SINet	Classification	5M	51K	512	0.33	0.19	18
	BEATs	Classification	90M	1.8M	768	0.37	0.20	13
A & I	OpenL3	Audiovisual correspondence	5M	296K	512	0.15	0.06	31
	CAV-MAE	Audiovisual correspondence	85M	1.8M	768	0.33	0.18	15
A & L	CLAP2022	Contrastive alignment	81M	128K	1024	0.38	0.25	20
	LAION-CLAP	Contrastive alignment	31M	2.5M	512	0.53	0.37	8
	CLAP2023	Contrastive alignment	31M	4.6M	1024	0.50	0.34	10
	Pengi	Question-answering	31M	3.4M	1024	0.49	0.35	12
A & I & L	AudioCLIP	Contrastive alignment	30M	1.8M	1024	0.06	0.02	56
	Wav2CLIP	Contrastive alignment	12M	200K	512	0.12	0.04	36
A & I & L & O	ImageBind	Contrastive alignment	85M	1.8M	1024	0.29	0.17	22

Model performances on the semantic sound similarity task

Methodology

Data: FSD50K evaluation set - 10,231 audio clips with 200 sound class labels from 7 sound families.

Task: Evaluate the audio representations of Freesound and 13 neural networks. For each representation, optimize:

- Embedding processing parameters,
- Similarity search functions.

Evaluation:

- Objective: MAP@15, MAP@150, and MR1. On,
 - Class-wise (e.g., birds, bells, motor.)
 - Family-wise
 - Macro-averaged
- **Subjective:** Using our web interface (see our <u>GitHub</u> repo)

Conclusion

Learning paradigm

- Input modalities are crucial for retrieval performance
 - Audio & language > audio > audio & image
- LAION-CLAP works the best across all families.
- Models that outperform others in the sound event classification task underperform in the semantic sound similarity task.

Embedding processing

Dimensionality can be greatly reduced by as much as 90%, while increasing performance slightly.

Similarity search

 Maximum Cosine Similarity Search (MCSS) works the best for all.

Results

Macro-averaged MAP@15 scores of QbE systems that use FSD-SINet VGG42-tlpf

_						
Freesound -	0.047	0.085	0.194	0.117	0.062	0.053
VGGish -	0.192	0.170	0.378	0.222	0.156	0.099
YAMNet-	0.374	0.262	0.410	0.336	0.208	0.127
FSD-SINet -	0.382	0.304	0.500	0.336	0.290	0.217
BEATs -	0.421	0.339	0.491	0.472	0.343	0.225
OpenL3 -	0.119	0.141	0.296	0.174	0.104	0.072
CAV-MAE -	0.410	0.298	0.493	0.368	0.286	0.172
CLAP2022 -	0.470	0.370	0.502	0.391	0.340	0.230
LAION-CLAP -	0.613	0.483	0.676	0.526	0.507	0.376
CLAP2023 -	0.572	0.440	0.627	0.534	0.482	0.344
Pengi -	0.592	0.411	0.605	0.525	0.480	0.289
AudioCLIP -	0.070	0.068	0.138	0.063	0.036	0.018
Wav2CLIP-	0.081	0.108	0.245	0.095	0.083	0.061
ImageBind -	0.387	0.206	0.449	0.373	0.274	0.123
	Animal	Human Sounds	Music	Natural Sounds	Sounds Of Things	Source Ambiguous Sounds

Family-wise MAP@15 scores

