Rapport TP Optimisation - OMA

Baptiste Doyen

October 22, 2018

Abstract

Rapport du TP d'optimisation continue (séance 1) et discrète (séance 2 et 3).

1 Séance 1 : optimisation continue et optimisation approchée

1.1 Optimisation sans contrainte

1.1.1 Méthode de gradient

1. Essai avec différentes valeurs de ρ

Certaines valeurs de ρ assurent la convergence de la méthode du gradient. Empiriquement, il semble que pour les valeurs inférieures ou égales à 0.022, la convergence est assurée tandis que pour les valeurs supérieures ou égales à 0.023, il n'y a plus convergence.

2. Méthode du gradient avec choix adaptatif

À chaque itération on choisit un pas qui annule le terme d'ordre 2. Calcul du pas : $d_k = \frac{||\nabla f(x_k)||^2}{\nabla f(x_k)^T A \nabla f(x_k)}$

3. Comparaison des résultats

La valeur minimale trouvée de -1.8369 est la même. On remarque néanmoins que plus ρ devient petit, plus la méthode avec choix adaptif devient rapide (plus de deux fois plus rapide pour $\rho=0.001$ par exemple).

Pour des valeurs de ρ plus grande (de l'ordre de 0.01), les temps d'exécutions sont similaires en revanche.

1.1.2 Méthode de Quasi-Newton

Il existait un autre moyen d'obtenir ce résultat : il s'agit de la méthode à pas optimal choisi précédemment. Ici la hessienne de f_1 se calcule simplement, on a donc pas besoin de l'approximer avec une méthode de Quasi-Newton.

1.2 Optimisation sous contraintes

Dans cette partie on suppose que $U \in \mathcal{U}_{ad} = [0;1]^5$.

1.2.1 Optimisation à l'aide de routines Matlab

On utilise ici l'algorithme SQP (Sequential Quadratic Programming).

(i) Résultats pour f_1

Iter	Func-count	Fval	Feasibility	Step Length	Norm of step	First-order optimality
0	6	0.000000e+00	0.000e+00	1.000e+00	0.000e+00	3.500e+00
1	20	-5.005467e-02	0.000e+00	5.765e-02	9.985e-02	6.590e+00
2	29	-7.313055e-02	0.000e+00	3.430e-01	9.696e-02	3.229e+00
3	35	-1.302938e-01	0.000e+00	1.000e+00	6.214e-02	7.129e-01
4	41	-1.327878e-01	0.000e+00	1.000e+00	5.254e-02	6.543e-01
5	47	-1.385285e-01	0.000e+00	1.000e+00	2.859e-02	3.977e-02
6	53	-1.385316e-01	0.000e+00	1.000e+00	5.595e-04	6.658e-03
7	59	-1.385317e-01	0.000e+00	1.000e+00	8.968e-05	4.680e-06

Figure 1: Résultats de l'algorithme SQP pour f_1

(ii) Résultats pour f_2

Iter	Func-count	Fval	Feasibility	Step Length	Norm of	First-order
					step	optimality
0	6	8.172101e+01	0.000e+00	1.000e+00	0.000e+00	7.475e+01
1	12	1.393828e+01	0.000e+00	1.000e+00	1.743e+00	9.465e+01
2	18	0.000000e+00	0.000e+00	1.000e+00	1.000e+00	1.452e+01
3	24	0.000000e+00	0.000e+00	1.000e+00	0.000e+00	6.661e-16

Figure 2: Résultats de l'algorithme SQP pour f_2

Commentaire : ici l'algorithme converge vers 0, ce qui est bien la valeur du minimum que l'on aurait pu attendre pour f_2 compte tenu des contraintes. Afin de pouvoir réaliser des itérations ailleurs qu'au point nul, on a initialisé l'algorithme de convergence en un vecteur aléatoire. L'algorithme converge tout de même rapidement vers le vecteur nul.

1.2.2 Optimisation sous contraintes et pénalisation

1. Fonction de pénalisation Soit U un vecteur de \mathbb{R}^N .

On définit le vecteur U^+ par :

$$\forall i \in [0, N], (U^+)_i = max(0, (U)_i)$$

De sorte que : $||U^+||^2 = 0 \iff \forall i \in [1; N], (U)_i \leq 0$

Soit $\beta: \mathbb{R}^5 \to \mathbb{R}$ la fonction définie par :

$$\beta(U) = ||(-U)^+||^2 + ||(U - [\mathbf{1}])^+||^2$$

où $[1] \in \mathbb{R}^5$ désigne le vecteur colonne ne contenant que des 1.

Ainsi,
$$\beta(U) = 0 \iff (-U)^+ = 0$$
 et $(U - [\mathbf{1}])^+ = 0$
 $\iff \forall i \in [0, N], -(U)_i \le 0$ et $(U)_i - 1 \le 0 \iff U \in \mathcal{U}_{ad}$.

De plus, β est continue et pour $u \notin \mathcal{U}_{ad}$, $\beta(u) > 0$. Enfin, f_1 est continue, et coercive $(f_1(u) \to +\infty \text{ car } U^T S U \text{ est quadratique en } U \text{ et domine donc} ||u|| \to +\infty$

 B^TU en l'infini).

Elle est donc inf-compacte (cas de la dimension finie) et est de plus bornée inférieurement (en effet elle est convexe - sa hessienne vaut $2A^TA \in S_n^+$ - sur \mathcal{U}_{ad} convexe et admet un minimum local autour de 0 qui est donc un minimum global par convexité). On peut donc légitimement appliquer la méthode de pénalisation pour f_1 .

On vérifie que c'est également le cas avec f_2 (elle est continue, coercive et bornée inférieurement car $x \mapsto xexp(x)$ l'est aussi et $U^TSU \ge 0$).

(on remarque que β définie plus haut est différentiable ($||U||^2 = U^T U$), ce qui sera utile dans la mise en oeuvre de cette méthode de pénalisation).

2. Mise en oeuvre de la méthode de pénalisation

On obtient la même valeur minimale qu'avec la méthode SQP vue précédemment soit -0.13853. Cette méthode a néanmoins un temps d'exécution plus long que l'algorithme SQP (4 fois plus long environ).

Pour f_2 , une tolerance beaucoup plus petit doit être appliquée si l'on souhaite une solution très petite proche de 0. Par exemple on doit fixer tolerance = 10^{-9} pour avoir un minimum de l'ordre de 10^{-9} très proche de 0. Le coût calculatoire est du coup impacté et le temps d'éxécution plus long (une demi-seconde sur PC)

1.2.3 Méthodes duales pour l'optimisation sous contraintes

1. Écriture du lagrangien

Soit $\mathcal{L}_1(U,\lambda)$ le lagrangien associé à la fonction f_1 et aux contraintes définissant \mathcal{U}_{ad} :

$$\mathcal{L}_1(U,\lambda) = f_1(U) + \sum_{i=0}^p \lambda_i g_i(U)$$

où : p = 10 et $g_i(U) = -u_i$ si $i \le 5$ et $g_i(U) = u_i - 1$ sinon.

On vérifie l'existence d'un point selle pour le Lagrangien :

- (i) f_1 et $(g_i)_i$ sont continûment différentiables
- (ii) Les contraintes sont qualifiées : $\forall u \in \mathcal{U}_{ad}, \nabla g_i(u) = +/-e_i$ où e_i désigne le $i\grave{e}me$ vecteur élémentaire de ${\rm I\!R}^p$
- (iii) Le problème de minimisation sous contraintes admet une solution : f_1 est inf-compacte sur \mathcal{U}_{ad} fermé.

On peut donc légitimement appliquer l'algorithme d'Uzawa pour résoudre le problème d'optimisation sous-contraintes.

2. Mise en oeuvre de l'algorithme d'Uzawa

Ici l'espace dual Λ est \mathbb{R}^p_+ , projeter un vecteur v de l'espace sur Λ revient donc à déterminer v^+ .

1.3 Optimisation non-convexe - Recuit simulé

1. Fonction f_3

Soit
$$U \in \mathbb{R}^5$$
, $f_3(U) := f_1(U) + 10 * sin(2f_1(U))$.
On calcule $\nabla f_3(U) = \nabla f_1(U) + 20 * \nabla f_1(U) * cos(2f_1(U))$

2. Avec une méthode d'optimisation classique

On applique la méthode de descente de gradient avec ρ constant ainsi qu'une routine MATLAB du type Quasi-Newton.

On converge parfois vers un minimul local de valeur -4,5147 avec la méthode de Quasi-Newton.

De manière surprenante, l'algorithme de descente de gradient avec ρ constant mais très faible (10^{-3}) permet de converger parfois vers le minimum global mais converge aussi vers un minimum global de valeur -7.6563 selon l'initialisation.

Ces méthodes sont assez sensibles au choix du point d'initialisation.

3. Avec la méthode du Recuit simulé

On fixe les paramètres Température initiale à 100 et Nombre de transformations par palier à 100 aussi.

Pour ces paramètres là, l'algorithme converge toujours vers la valeur minimale de -10.7979.

1.4 Application : synthèse d'un filtre à réponse impulsionnelle finie

1. Optimisation sans contraintes

On choisit une méthode de discrétisation à pas constant et régulière par rapport aux deux intervalles : l'intervalle [0,0.1] est subdivisé en M sous -intervalles égaux et de même pour l'intervalle [0.15,0.5] avec M=1000. On applique la méthode de Quasi-Newton au problème d'optimisation.

2. Optimisation sous contraintes

Sans contrainte le problème est le suivant :

$$\min_{h \in \mathbb{R}^{30}} \max_{1 \le j \le 30} |H_0(\nu_j) - H(\nu_j)|$$

ce qui est équivalent à ce problème avec des contraintes d'inégalités :

Le problème formulé ainsi est alors un problème d'optim
sation linéaire (la fonction objectif t est linéaire en t) sous contraintes.

2 Séance 2 et 3 : optimisation discrète et optimisation multi-objectif

2.1 Rangement d'objets (optimisation combinatoire)

1. Question préliminaire

Soit $i, j \in [|1; n|]$, puisque $x_{ij} = 0$ ou $x_{ij} = 1$, la boîte i contient un objet et un seul ssi $\sum_{j=1}^{n} x_{ij} = 1$ et l'objet j contient un objet et un seul ssi $\sum_{i=1}^{n} x_{ij} = 1$

2. **PLNE**

Soit
$$c \in \mathbb{R}^{n^2 \times 1}$$
 défini par $c_{ij} := ||O_j - B_i||$ et $x := (x_{ij})_{ij}$

La fonction coût liée au coût de déplacement est la somme totale des déplacements effectués pour ranger tous les objets dans toutes les boîtes. Comme la décision de ranger l'objet j dans la boîte i est encodée par la variable binaire x_{ij} , ce coût s'exprime par :

$$\sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} ||O_j - B_i|| = c^T x$$

Pour les contraintes : il s'agit de contraintes d'égalité énoncées dans la question préliminaire et que l'on exprime par Ax=b avec :

$$\begin{aligned} \mathbf{A} &= \begin{pmatrix} A_1 & A_2 & \dots & A_n \\ I_n & I_n & I_n & I_n \end{pmatrix} \in \mathbb{M}_{2n,n^2} \\ \text{où } A_i &= e_i[\mathbf{1}]^T \in \mathbb{M}_{n,n} \ , \ [\mathbf{1}]^T = (1,1,...,1) \text{ et } b = [\mathbf{1}] \end{aligned}$$

On en déduit ainsi la formulation du problème sous le format PLNE :

$$\min_{x \in \mathbb{R}^n} c^T x$$
$$Ax = b$$
$$x_{ij} \in \{0; 1\}$$

Résolution numérique : La valeur optimale du coût de déplacement fournie par la méthode intlinprog de MATLAB est environ de 15.3776

On peut représenter le vecteur x solution par une matrice avec le numéro des lignes j qui correspond au numéro des objets et le numéro des colonnes i qui correspond au numéro des boîtes.

Figure 3: Matrice de la solution au PLNE - l'objet 11 est dans la boîte 1

3. Ajout contrainte 1 au PLNE

La contrainte "l'objet 1 doit se situer dans la boîte située juste à gauche de la boîte contenant l'objet 2" équivaut à "si la boîte i+1 contient l'objet 2, alors la boîte i contient l'objet 1 et sinon, la boîte i ne contient pas l'objet 1". On obtient ainis la condition :

$$x_{i,1} = x_{i+1,2} \ (2 \le i \le n)$$

Il en résulte l'ajout d'une contrainte d'inégalité au PLNE précédent. Résolution numérique : La valeur optimale est environ de 15.5651.

Figure 4: Matrice de la solution au PLNE + contrainte 1 - l'objet 1 est en 11 juste à gauche de l'objet 2 qui est en 12

4. Ajout contrainte 2 au PLNE

On raisonne par contraposée : $\exists i_0, \exists k_0 > 0, x_{i_0,3} = 1$ et $x_{i_0+k_0,4} = 1$ équivaut à dire que "l'objet 4 se situe à droite de l'objet 3" ssi "l'objet 3 se situe à gauche de l'objet 4" ssi \mathbf{non} ("l'objet 3 se situe à droite de l'objet 4").

Ce qui démontre l'équivalence des deux propositions contraires.

Résolution numérique : La valeur optimale est environ de 15.9014.

Figure 5: Matrice de la solution au PLNE + contrainte 2 - l'objet 3 est en 11 à droite de l'objet 4 qui est en 10

5. Ajout contrainte 3 au PLNE

La condition "l'objet 7 se situe à côté de l'objet 9" équivaut à dire que "l'objet 7 est à gauche de l'objet 9 ou à droite de l'objet 9" $\underline{ssi} x_{i,7} = x_{i+1,9}$ ou $x_{i,7} = x_{i-1,9}$.

ou $x_{i,7}=x_{i-1,9}$. Or, comme $\sum_{i=1}^n x_{i9}=1, \; \exists ! \; i_0 \; / \; x_{i_0,9}=1$. La condition de contrainte équivaut donc à :

$$x_{i,7} = x_{i+1,9} + x_{i-1,9} \ (2 \le i \le n-1)$$

 $R\'{e}solution num\'{e}rique$: La valeur optimale est environ de 15.9828.

Figure 6: Matrice de la solution au PLNE + contrainte 3 - l'objet 7 est en 3 à droite de l'objet 9 qui est en 2

6. Optimalité de la solution

Pour vérifier l'uncité de la solution, on peut reprendre le problème PLNE + contrainte 3, précédent et y intégrer cette contrainte : $v^T(x-x_{opt}) \leq \delta$ avec $v \in \mathbb{R}^n$ et $\delta < 0$. Si x satisfait ces conditions et c^Tx (fonction coût) a la même valeur, cela prouve que la solution x_{opt} obtenue n'est pas la seule solution optimale.

Vérification numérique : pour $\delta = -0.01$ et v un vecteur aléatoire, on obtient une solution au problème avec la nouvelle contrainte et ayant la même valeur pour la fonction coût.

Figure 7: Matrice de la solution au PLNE + contrainte 3 et 4 - cette solution a intervertit les objets 13 et 14 de place par rapport à x_{opt} précédent

2.2 Communication entre espions (optimisation combinatoire)

1. Modélisation

Soient deux agents indexés par i et j. La probabilité d'interception de la communication entre ces deux agents est notée p_{ij} . On cherche à minimiser la probabilité totale d'interception d'un message entre tous les agents. Pour cela on peut maximiser la probabilité de non-interception d'un message. Cette probabilité vaut :

$$\prod_{i,j} (1 - p_{ij})$$

En prenant le log de cette quantité on se ramène ainsi à maximiser une certaine somme puis en prenant l'opposé cela revient à minimiser une somme de coûts c_{ij} : $\sum_{i,j} c_{ij}$ avec $c_{ij} = -log(1 - p_{ij})$

On propose alors de représenter le problème sous forme d'un graphe $\mathcal{G}.$ Les données du graphes sont les suivantes :

- (i) Les noeuds du graphes sont indexées par les numéros $i \in [|1;n|]$ des agents.
- (ii) Pour chaque arrête (i,j) du graphe, on associe un coût qui vaut c_{ij} défini plus haut (par symétrie on a $c_{ij}=c_{ji}$).

Le problème peut alors être formulé comme la recherche d'un arbre recouvant minimal sur \mathcal{G} .

2. Résolution

Pour cela nous utilisons la méthode graphminspantree de la toolbox Bioinformatics de MATLAB.

Numériquement, la probabilité d'interception vaut 0,5809

Et la visualisation de l'arbre recouvrant minimal est la suivante :

Figure 8: Résultat de l'algorithme Minimum Spanning Tree pour le problème des espions

2.3 Dimmensionnement d'une poutre (optimisation multiobjectif)

1. Méthode Gloutonne

On génère aléatoirement N points (a,b) vérifiant les contraintes :

$$0.02 \le a \le 1$$

$$0 \le b \le a - 0.01$$

Puis on représente sur un plan les points (p(a,b),d(a,b)). Cela nous permet ensuite de déterminer le front de Pareto de rang 1 de cet ensemble de points : il s'agit de l'ensemble des points "non-dominés" par un autre point. On les détermine en recherchant les points pour lesquels p(a,b) et d(a,b) ne peuvent pas être améliorés.

La figure qui suit a été réalisée pour $N=10^4$. En revanche pour $N \ge 10^5$, la méthode gloutonne est inefficace (MATLAB sur un PC portable ne renvoit pas de résultat pour ces valeurs).

On obtient 340 points pour approximer le front de Pareto (de l'ordre de \sqrt{N}).

Figure 9: Front de Pareto de rang 1 (en rouge) des points (poids, déflexion) (en bleu)

2. Méthode plus sophistiquée : par pondération

Pour $\alpha \geq 0$, on introduit le critère agrégé suivant :

$$J(a,b) = p(a,b) + \alpha d(a,b)$$

À chaque valeur de α , on peut résoudre le problème de minimisation sous contraintes (sur un ensemble convexe) :

$$\begin{aligned} & \min_{\substack{(a,b)\\ (0.02 \le a \le 1\\ 0 \le b \le a - 0.01}} & J(a,b) & \\ & \\ & \\ & \end{aligned}$$

2.4 Approvisionnement d'un chantier (optimisation combinatoire)

On se propose de modéliser le problème d'approvisionnement à résoudre sous la forme d'un PLNE.

On note N la dimension du problème (le nombre de semaines). Pour chaque semaine i, le nombre \hat{d}_i de tractopelles louées peut être décomposé en trois membres :

$$\hat{d}_i = loc_i + new_i - gone_i$$

avec loc_i le nombre de locations reconduites entre les semaines i-1 et i (coût $p_1 = 200 \ u.a.$); new_i le nombre de locations nouvelles entre les semaines i-1 et i (coût $p_2 = 1000 \ u.a.$) et $gone_i$ le nombre de locations arrêtées entre les semaines i-1 et i (coût $p_3 = 1200 \ u.a.$).

(i) Une des premières contraintes issue du problème est : $\hat{d}_i \geq d_i$ (stock requis à la semaine i).

Du fait de la modélisation choisie nous avons aussi les contraintes :

- (ii) $loc_i \leq loc_{i-1} + new_{i-1}$ (d'une semaine à l'autre on ne peut pas reconduire plus de contrats que ceux de la semaine précédente idée de stock maximal disponible à la semaine i)
- (iii) $\sum_{i=1}^{N} gone_i = \sum_{i=1}^{N} new_i$ (pendant les travaux, tous les tractopelles qui ont été louées doivent être remis à leur propriétaire à la fin et pas seulement ceux de la dernière semaine idée de flux sortants qui sont égaux aux flux rentrants)

On cherche donc un vecteur $x \in \mathbb{R}^{3N+3}$ représentant $\begin{pmatrix} loc_1 \\ new_1 \\ gone_1 \\ \dots \\ loc_{N+1} \\ new_{N+1} \\ qone_{N+1} \end{pmatrix}$ avec les

11

contraintes supplémentaires :

$$loc_1 = 0$$
; $gone_1 = 0$; $loc_{N+1} = 0$; $new_{N+1} = 0$; $gone_{N+1} = d_N$

De plus, loc_i, new_i et $gone_i$ sont positifs et bornés supérieurement par $\sum_{i=1}^N d_i$ (au pire l'entreprise loue tous les tractopelles requis d'un coup)

Comme toutes les contraintes sont linéaires en x, on peut donc légitimement se ramener à PLNE où l'on cherche à minimiser la fonction coût $c^T x$ avec $c \in \mathbb{R}^{3N+3}$ et $c = (p_1 p_2 p_3 ... p_1 p_2 p_3)^T$

 $R\acute{e}solution\ num\acute{e}rique$: La valeur de la solution optimale fournie par MATLAB est de 3 311 200 u.a.