ANALIZA MATEMATYCZNA

LISTA ZADAŃ 10

12.12.2022

1. Wyznacz promień zbieżności szeregu Maclaurina funkcji:

(a)
$$f(x) = \sqrt{x+2}$$
, (b) $f(x) = \frac{1}{x+3}$, (c) $f(x) = \log(x+e)$.

2.	Znajdź pu	nkty przegięcia i	przedziały	wypukłości	funkcji	danych	wzorami:
	(a)	$x^3 + 2x^2 + 3x +$	4, (b)	$x^8 - x^2 + 7x$	x - 15,	(c)	e^{-x^2} ,
	(d)	$\sin^4(x)$,	(e)	$\sqrt{x} - \log(x)$,	(f)	$x^4 + \sqrt[4]{x}.$

(a)
$$x^3 + 2x^2 + 3x + 4$$
,

(b)
$$x^8 - x^2 + 7x - 15$$
.

(c)
$$e^{-x^2}$$
,

$$(d)$$
 $\sin^4(x)$,

(e)
$$\sqrt{x} - \log(x)$$
,

(f)
$$x^4 + \sqrt[4]{x}$$

- 3. Znajdź punkt przecięcia stycznej do wykresu funkcji $f(x) = x^2$ w punkcie (2,4) z osią
- 4. Znajdź punkt przecięcia stycznej do wykresu funkcji $f(x)=e^x$ w punkcie (0,1) z osią OX.
- 5. Znajdź punkt przecięcia stycznych do wykresu funkcji $f(x) = x^3$ odpowiednio w punk- $\tanh (-1, -1) i (2, 8).$

6. Oblicz
$$\int f(x) dx$$
 jeśli $f(x)$ dane jest wzorem:

(a)
$$10^x$$
,

(b)
$$\sqrt[m]{n}$$
, $m, n \in \mathbb{N}$, (c) $a^x e^x$, $a > 0$,

(c)
$$a^x e^x$$
, $a > 0$

(d)
$$3, 4x^{-0.17}$$
,

(e)
$$1 - 2x$$
,

(e)
$$1-2x$$
, (f) $\left(\frac{1-x}{x}\right)^2$,

(g)
$$(\sqrt{x}+1)(x-\sqrt{x}+1)$$
, (h) $\frac{\sqrt{x}-x^3e^x+x^2}{x^3}$, (i) $(x+1)^{22}$, (j) $\frac{x^{100}-1}{x-1}$, (k) $\frac{x\sqrt[6]{x}+\sqrt[7]{x}}{x^2}$, (l) $\frac{x^3}{x+1}$,

(h)
$$\frac{\sqrt{x} - x^3 e^x + x^2}{x^3}$$

(i)
$$(x+1)^{22}$$

(j)
$$\frac{x^{100}-1}{x-1}$$

$$\text{(k)} \quad \frac{x\sqrt[6]{x} + \sqrt[7]{x}}{x^2}$$

$$(1) \quad \frac{x^3}{x+1}$$

7. Znaleźć taką funkcję
$$F$$
, żeby $F''(x)$ było równe:

(a)
$$x^2 + 2x$$
, (b) $\cos(x)$,

(b)
$$\cos(x)$$
.

(c)
$$e^{7x}$$
.

8. Znajdź taką funkcję
$$F$$
, że:

(a)
$$F''(x) = x^2 + 1$$
, $F'(0) = 2$, $F(0) = 3$;

(b)
$$F''(x) = \frac{1}{x^3}$$
, $F'(2) = 1$, $F(3) = 5$;
(c) $F'''(x) = \sin(x)$, $F''(0) = F'(0) = F(0) = 0$;

(c)
$$F'''(x) = \sin(x)$$
, $F''(0) = F'(0) = F(0) = 0$;

(d)
$$F''(x) = \frac{1}{x^2}$$
, $F'(1) = F'(-1) = 1$, $F(1) = F(-1) = 3$.

9. Oblicz
$$\int f(x)\,dx$$
jeśli $f(x)$ dane jest wzorem:

(a)
$$x\sin(2x)$$
,

(b)
$$x e^{-x}$$

th wzorem:

(b)
$$x e^{-x}$$
, (c) $x^n \log(x), n \in \mathbb{N}$,

(e) $e^x \sin^2(x)$, (f) $x 3^x$,

(h) $e^{3x} \sin(2x)$, (i) $\sqrt{e^x - 1}$,

(k) $x e^x$, (l) $1 \cdot \sin(\log(x))$,

(d)
$$x^3 e^{5x}$$
,

(e)
$$e^x \sin^2(x)$$

(f)
$$x 3^x$$
,

(g)
$$x \sin(x) \cos(x)$$
,

(h)
$$e^{3x} \sin(2x)$$

(i)
$$\sqrt{e^x-1}$$

(j)
$$e^x \sin(e^x)$$
,

$$(k) r e^{x^2}$$

(1)
$$1 \cdot \sin(\log(r))$$

(m)
$$e^{-x^2}x$$
,

(h)
$$e^{-\sin(2x)}$$

(k) $x e^{x^2}$,
(n) $\frac{\cos(\sqrt{x})}{\sqrt{x}}$,

(o)
$$e^{\sqrt[3]{x}}$$
,

(p)
$$\frac{1}{x \log(x) \log(\log(x))}$$
,

(t)
$$\frac{e^{2x}}{\sqrt{}}$$

(r)
$$6^{1-x}$$
,

(s)
$$\sin^5(x)\cos(x)$$
,

(t)
$$\frac{e^{2x}}{\sqrt[4]{e^x + 1}}$$
,
(w) $e^{5x} \cos(3x)$,

(u)
$$x e^{x^2} (x^2 + 1)$$
,

$$(v) \quad e^{5x} \sin(3x),$$

$$\text{(w)} \quad e^{5x} \cos(3x),$$

(q) $\cos(x) e^{\sin(x)}$,

(x)
$$\sin(3x) \cdot \sin(5x)$$
,

$$(y) \quad \sin(15x) \cdot e^{-4x},$$

(z)
$$\frac{\arctan(x)}{x^2+1}$$

(aa)
$$\frac{\arctan^7(x) + 9 \arctan^5(x)}{x^2 + 1}$$

(ab)
$$\frac{x^3}{(x-1)^{12}}$$
,

(z)
$$\frac{\arctan(x)}{x^2 + 1},$$
(ac)
$$\frac{\log^7(x) + \log^2(x)}{x},$$

(ad)
$$e^{-x^2} x^5$$
,

(ae)
$$\sin(\sqrt{x})$$
,

(af)
$$\frac{\sqrt{2 + \log(x)}}{x}$$