Session 4: Norms and inner-products

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Norms & inner-products
- 2. Orthogonality
- 3. Orthogonal projection
- 4. Proof of the Cauchy-Schwarz inequality

Norms and inner-products

Questions

Norme in machine leaving: 11.112 Evolideau norm > measure distances. 2. y Evolidean dot product $\cos(\Theta) = \frac{2 \cdot 4}{\|\alpha\|_2 \|y\|_2} \in [-1, 1]$ Use norms for "regularization" minimize $doss(dota, a) + \lambda ||a||_2^2 with <math>a \in \mathbb{R}^n$

Norms and inner-products

Questions

Norms and inner-products

2/20

Questions

Norms and inner-products

2/20

Orthogonality

Orthogonality 3/20

Definition

Definition

- We say that vectors x and y are orthogonal if $\langle x, y \rangle = 0$. We write then $x \perp y$.
- We say that a vector x is orthogonal to a set of vectors A if x is orthogonal to all the vectors in A. We write then $x \perp A$.

Exercise: If x is orthogonal to v_1, \ldots, v_k then x is orthogonal to any linear combination of these vectors i.e. $x \perp \operatorname{Span}(v_1, \ldots, v_k)$.

if
$$y \in Span(v_1 - v_{e_1})$$

then $g = \alpha_1 v_1 + \dots + \alpha_n v_{e_n}$

_ C

Orthogonality

Pythagorean Theorem

Theorem (Pythagorean theorem)

Let $\|\cdot\|$ be the norm induced by $\langle\cdot,\cdot\rangle$. For all $x,y\in V$ we have

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$$

Proof.

$$||x+y||^2 = (x+y, x+y)$$

= $||x||^2 + 2(x,y) + ||y||^2$

Orthogonality 5/20

Application to random variables

Orthogonalit

Orthogonal & orthonormal families

Definition

We say that a family of vectors (v_1, \ldots, v_k) is:

- orthogonal if the vectors v_1, \ldots, v_n are pairwise orthogonal, i.e. $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.
- orthonormal if it is orthogonal and if all the v_i have unit norm: $||v_1|| = \cdots = ||v_k|| = 1$.

•
$$\binom{1}{1}$$
, $\binom{-1}{1}$ is orthogonal best not orthonormal

Orthogonality 7/20

Coordinates in an orthonormal basis

Proposition

A vector space of finite dimension admits an orthonormal basis.

Proposition

Assume that $\dim(V) = n$ and let (v_1, \ldots, v_n) be an **orthonormal** basis of V. Then the coordinates of a vector $x \in V$ in the basis (v_1, \ldots, v_n) are $(\langle v_1, x \rangle, \ldots, \langle v_n, x \rangle)$:

$$x = (v_1, x)v_1 + \dots + \langle v_n, x \rangle v_n.$$

Proof: use hove $a = \alpha_1 V_1 + \dots + \alpha_n V_n$ for some $\alpha_1 - \alpha_1 \in \mathbb{R}$

Coordinates in an orthonormal basis

$$det \quad \alpha, y \in V = \mathbb{R}^n \quad \alpha = (v_n, \alpha) v_1 + \dots + (v_n, \alpha) v_n$$

$$y = (v_n, y) v_2 + \dots + (v_n, \alpha) v_n$$

$$\langle \alpha, y \rangle = (\alpha_1 v_1 + \dots + \alpha_n v_n) \beta_1 v_2 + \dots + \beta_n v_n$$

$$= \sum_{i=1}^n \sum_{j=1}^n \alpha_i \beta_j \langle v_i, v_j \rangle = 1 \quad \text{if } i = j$$

$$= \alpha_1 \beta_1 + \dots + \alpha_n \beta_n$$

$$= \alpha_1 \beta_1 + \dots + \alpha_n \beta_n$$

Orthogonality 9/20

121 = \d2 + - - dn

Orthogonality

Proof																				

10/20

Orthogonal projection

Orthogonal projection 11/20

Picture

Orthogonal projection

Orthogonal projection and distance

Definition

Let S be a subspace of \mathbb{R}^n . The orthogonal projection of a vector x onto S is defined as the vector $P_S(x)$ in S that minimizes the distance to x:

$$P_S(x) \stackrel{\text{def}}{=} (\arg \min_{y \in S} ||x - y||.$$
 that minimizes that minimizes

The distance of x to the subspace S is then defined as

$$d(x,S) \stackrel{\text{def}}{=} \min_{y \in S} ||x - y|| = ||x - P_S(x)||.$$

• if
$$a \in S$$
 then $x = P_s(a)$

Orthogonal projection 13/

Computing orthogonal projections

Proposition

Let S be a subspace of \mathbb{R}^n and let (v_1, \dots, v_k) be an **orthonormal** basis of S. Then for all $x \in \mathbb{R}^n$,

$$P_S(x) = \langle v_1, x \rangle v_1 + \dots + \langle v_k, x \rangle v_k.$$

$$\begin{array}{llll} & & & & \\ & & & \\ &$$

Orthogonal projection

Proof

Consequence

Orthogonal projection

Consequence

Corollary

For all $x \in \mathbb{R}^n$,

- $x P_S(x)$ is orthogonal to S.
- $||P_S(x)|| \le ||x||.$

Orthogonal projection 17/20

Proof of Cauchy-Schwarz inequality

Cauchy-Schwarz inequality

Theorem

Let $\|\cdot\|$ be the norm induced by the inner product $\langle\cdot,\cdot\rangle$ on the vector space V. Then for all $x,y\in V$:

$$|\langle x, y \rangle| \le ||x|| \, ||y||. \tag{1}$$

Moreover, there is equality in (1) if and only if x and y are linearly dependent, i.e. $x = \alpha y$ or $y = \alpha x$ for some $\alpha \in \mathbb{R}$.

Proof

We define $f: \mathbb{R} \longrightarrow \mathbb{R}$ t my-tall2 for ter, f(t) = ||y||^2-2t(2,y) + t2 ||a||2 . Romanh #1: f(t) is a degree-2 polynomial (int) · Remark #2: f(4) >0 for all t.

Hence the disciminant
$$\Delta$$
 of $f(t)$ is ≤ 0

$$\Delta = 4 \langle x, y \rangle^2 - 4 \|x\|^2 \|y\|^2 \qquad \leq 0 \Rightarrow \text{cauchy 1}$$
Proof of Cauchy-Schwarz inequality

Proof of Cauchy-Schwarz inequality

Proof

There is if and only 1(2,14) = hall lly l equality 0=4 fi -> There exists some & such that f(+) = 0 means that g -tx=0 1/y-tal2=0 this y = ta

Questions?

Questions?

Orthogonal matrices

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is called an *orthogonal matrix* if its columns are an <u>orthonormal family.</u>

$$\frac{\mathcal{E}_{x}}{\mathcal{E}_{x}}$$
: $Id_{n} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$ or the gonal matries.

A proposition

Proposition

Let $A \in \mathbb{R}^{n \times n}$. The following points are equivalent:

↑1. A is orthogonal.

$$\stackrel{>}{\nearrow} 2. \stackrel{A^{\mathsf{T}}}{A} = \mathrm{Id}_n. \Leftrightarrow A \text{ invertible and } \stackrel{A^{\mathsf{T}}}{=} A^{-1}$$
 $\stackrel{>}{\longrightarrow} 3. \stackrel{AA^{\mathsf{T}}}{=} \mathrm{Id}_n \Leftrightarrow \stackrel{>}{\longrightarrow}$

$$AA^{\mathsf{T}} = \mathrm{Id}_n$$

Orthogonal matrices & norm

Proposition

Let $A\in\mathbb{R}^{n\times n}$ be an orthogonal matrix. Then A preserves the dot product in the sense that for all $x,y\in\mathbb{R}^n$,

$$\langle Ax, Ay \rangle = \langle x, y \rangle.$$

In particular if we take x=y we see that A preserves the Euclidean norm: $\|Ax\|=\|x\|$.