Isambard WA - lesson 9 - class date: Sunday 6th July 2025

Introduction

 I_b = design current

I_n = Protective/fuse rating breaker size

 I_z = Cable rating

NOTE: I stands for current. $I_b I_n$ and I_z are all current based.

 $lb \le ln \le lz$

Simple example:

- Heater has a design current of 5
- needs to have a fuse of 6
- and a cable rating of 7.2.

Tutor aside: Always have leeway when it comes to I_b , I_n and I_z . For example, it says "less than or equal to". make sure it is always greater than. As shown in this example.

 $\underline{\mathbf{I}_b}$ – Design current: The actual current that the load is expected to draw under normal operation.

 $\underline{I_n}$ – **Nominal current:** of the protective device: The rated current of the circuit breaker or fuse (e.g., a 16 A MCB).

<u>I_z – Current-carrying capacity:</u>(ampacity) of the cable or conductor, under the given installation conditions.

START FIRST PRACTISE

Question:

If we run a cable in a 30 degree room. With a Twin and Earth 70 degrees. Grouped with 7 cables with 320mm insulation And a **32 A** breaker.

Workings out:

$$I_b \leq I_n \leq I_z$$

I_b = design current

 I_n = Protective/fuse rating breaker size

 I_z = Cable rating

The **first step** is to calculate the design current $\Rightarrow I_b$. $I_b = ??$

The **second step** is to calculate the breaker size \Rightarrow $I_n = 32 \text{ A}$ breaker.

The **third step** is to calculate $I_z =>$ cable rating;

• The pre-requisite is to calculate I_t => current carrying capacity

Isambard WA - lesson 9 - class date: Sunday 6th July 2025

$$I_t \leq rac{I_n}{C_a \cdot C_g \cdot C_i \cdot C_f}$$

• The base formula to deduce I_t => current carrying capacity.

C_a => ambient temperature

$$I_t \leq rac{I_n}{igl(1) \cdot C_g \cdot C_i \cdot C_f}$$

• C_a - The ambient temperature is deduced as 1 from **Table F1** on **page 168**.

C_q => grouping

$$I_t \leq rac{I_n}{1 \cdot extstyle 0.71 \cdot C_i \cdot C_f}$$

• C_g - is deduced as 0.71. Because there are seven cables in the wall. So this additional cable makes 8.

C_i => thermal insulation

$$I_t \leq rac{I_n}{1 \cdot 0.71 \cdot extstyle 0.51 \cdot C_f}$$

• **C**_i- is deduced as 0.51. Because the question states "320mm insulation" which, when rounded up to 400. Corresponds to 0.51 Derating factor (C_i).

C_f => account for 3036 fuse box

$$I_t \leq rac{I_n}{1 \cdot 0.71 \cdot 0.51 \cdot extbf{1}}$$

• C_f - is deduced as 1. As the on guide site states "for all other devices $C_f = 1$."

 l_n => represents the current at which the protective device is designed to operate in order to protect the circuit from damage.

$$I_t \leq rac{32\,A}{1\cdot 0.71\cdot 0.51\cdot 1}$$

 \bullet I_n - The question gives us the breaker size as **32 A**

Therefore I_t ,

$$I_t \leq rac{32}{1 imes 0.71 imes 0.51 imes 1} = rac{32}{0.3621} pprox 88.39\,A$$
 $I_t \leq 88.39\,A$

END FIRST PRACTISE

START SECOND PRACTISE

Question:

 I_n is 45. The total answer is 63.

A shower is running through **100mm insulation**. Which has a **70 degree** thermoplastic cover. The cable is fitted into an enclosed wall with 6 circuits. The shower requires **7.2 kW** to run and uses **230 volts**.

The temperature of the bathroom is **25 degrees**.

Finally, Sam's fuse box has not been updated in a while and is version 3036.

Workings out:

$$I_b \leq I_n \leq I_z$$

- I_b = design current
- I_n = Breaker Size
- I_z = cable rating

The first step is to calculate the design current $\Rightarrow I_b$.

- To calculate the design current (I_b) we use the **PIV formula triangle**;
- The answer for I_b will be measured in amps.

PIV formula triangle

- I = P / V or
- Current = Power / Voltage;
- 7.2 kW / 230 volts = 31.30 amps.
- 7,200 / 230 = 31.30 A

Diversity rule check

- For I_b (the design current) check if the appliance appears on table A1 on page 136;
- If yes, apply the diversity calculation;
- In this instance a shower does not appear on the table;
- So $I_b = 31.30$ amps.

The **second step** is to calculate the breaker size \Rightarrow I_n

- To calculate I_n read the Header row on **Table B1** (page 140);
- We must calculate the right sized breaker to use;

Protective Conductor (mm2)	20 A	30 A	45 A	60 A
1.0	2.3	NP	NP	NP
1.5	2.91	1.6	NP	NP
2.5	2.91	2.0	1.0	NP
4.0	2.91	2.0	1.2	0.85
16.0	2.91	2.0	1.2	0.85
Extract of Table B1 from page 140 BS:7671:2018+A2:2022				

- The design current (I_b) has been calculated as 31.30 amps as deduced in the first step;
- Round up to the nearest value in the header row table Table B1 (page 140);
- From the table we can conclude that the right breaker size is 45 A for a design current (I_b) of 31.30 amps;

- 30 A and 20 A are too small. 60 A is too large
- Note that we highlighted "protective device is a semi-enclosed fuse to BS 3036"

The **third step** is to calculate $I_7 =>$ cable rating;

- To calculate I_z => cable rating;
- We must first calculate I_t => current carrying capacity.

It => current carrying capacity formula

$$I_t \geq rac{I_n}{C_a \cdot C_g \cdot C_i \cdot C_f}$$

- The above formula is used to calculate It;
- From I_t we can deduce the value of I_z ;
- Use page 167 to calculate C_a, C_g, C_i and C_f

C_a => ambient temperature

$$I_t \geq rac{I_n}{1.03 \; C_g \cdot C_i \cdot C_f}$$

- Calculate C_a first;
- We know that the Ambient template is 25 degrees and the insulation is 70 degrees;
- Hence, in **Table F1** on **page 168** the answer is 1.03.

C_q=> grouping

$$I_t \geq rac{I_n}{1.03 \cdot 0.54} \; C_i \cdot C_f$$

- We calculate **Cg** because of the **Table F3** on **page 170**;
- The question states 6 cables already situated into the wall;
- Therefore this additional cable will make it **seven**.

C_i => thermal insulation

$$I_t \geq rac{I_n}{1.03 imes 0.54 imes 0.78 imes C_f}$$

- C_i is deduced from Table F2 on page 169;
- **C**_i factors in how insulation around a cable can affect its ability to dissipate heat and thus impact on the maximum amount of current that it can safely carry;
- The text informs us that the length of the insulation is 100mm this equates to 0.78.

C_f => account for 3036 fuse box

$$I_t \geq rac{I_n}{1.03 imes 0.54 imes 0.78 imes 0.725}$$

• C_f is deduced from page 167 at the bottom of the page;

Isambard WA - lesson 9 - class date: Sunday 6th July 2025

- The answer is 0.725;
- This number is deduced from the text "a semi-enclosed fuse to BS 3036".

l_n => represents the current at which the protective device is designed to operate in order to protect the circuit from damage

$$I_t \geq rac{I_n}{C_a imes C_g imes C_i imes C_f} = rac{45}{1.03 imes 0.54 imes 0.78 imes 0.725}$$

- I_n has been deduced from the **second step** to be **45** A;
- Because, we deduced the breaker size (I_n) based on the design current (I_b);
- If the current exceeds **45** A then the breaker device will operate.

 $I_t = 143.1A$

$$I_t \geq rac{45}{0.3145}pprox 143.1\,A$$

 I_z - Cable size. We need a cable size that can carry a **143.1 A** current flow. As mentioned in the question. We already have **6 circuits**. With this addition, there will be **7 circuits**.

END SECOND PRACTISE

Voltage drop

Introduction

$$Z_s = Z_e + (R_1 + R_2)$$

 Z_s = Earth Fault Loop Impedance (EFLI)

 $Z_{\rm e}$ = Connection from fuse box back to transformer

 (R_1+R_2) = Line + CPC resistance. Internal from the circuit to the fuse box

 R_1 = Live

 R_2 = Earth

Z = Impedance

 $(R_1 + R_2)$

Question

Working out

$$\frac{6.44\times28\times1.2}{1000}$$

$$= 0.22 \Omega$$

$$=> Z_s = Z_e + (R_1 + R_2)$$

230 / 0.31 = 741.94 A (will flow in an event of a fault)