Домашняя работа 2 (дедлайн – 17:00 8.10.19)

October 11, 2020

Задача 1 (3 балла)

Пусть X_1, \ldots, X_n – независимые одинаково распределенные случайные величины (н.о.р.с.в.) с функцией распределения F(x). Найти функции распределения $\max_{1 \le i \le n} X_i$ и $\min_{1 \le i \le n} X_i$.

Решение

 X_i - случайная величина, тогда $\max_{1 \leq i \leq n} X_i$ и $\min_{1 \leq i \leq n} X_i$ - случайные величины. Пусть $g(X_i) = \max_{1 \leq i \leq n} X_i$, тогда $F_{\max_{1 \leq i \leq n} X_i}(x) = F_{g(X_i)}(x) = P(g(X_i) < x)$. Аналогично и для $g(X_i) = \min_{1 \leq i \leq n} X_i$.

Задача 2 (3 балла)

Докажите, что функция $F_{\xi}(x) = P(\xi \leq x)$ непрерывна справа.

Решение

Непрерывность справа означает следующее: $\forall x \in \mathbb{R} \lim_{t \to x+0} F(t) = F(x)$. Рассмотрим $P(t < \xi \le x) = P(\xi \in (-\infty; x] \cap \xi \in (t; +\infty)) = \dots = 1 - P(\xi \in (x; +\infty) \cup \xi \in (-\infty; t]) = 1 - P(\xi \in (x; +\infty)) - P(\xi \in (-\infty; t]) = 1 - 1 + F(x) - F(t) = F(x) - F(t)$. Перейдём к пределу $\lim_{t \to x+0} F(t) = \lim_{t \to x+0} P(t < \xi \le x) = F(x) - \lim_{t \to x+0} F(t)$.

Задача 3 (3 балла)

Пусть $\xi_1, \xi_2, \dots, \xi_n$ – независимые одинаково распределённые случайные величины, $P(\xi_k = i) = \frac{1}{N}, i = 1, 2, \dots, N$. Пусть $\eta_n = \xi_1 + \xi_2 + \dots + \xi_n$. Доказать, что $P(\eta_n$ делится на $n) \ge \frac{1}{N^{n-1}}$

Решение

Так как $\xi_1, \xi_2, \dots, \xi_n$ – независимые одинаково распределённые случайные величины, то вероятность того, что все ξ_i примут одинаковые значения a, где $a \in 1..N$: $P(\xi_1 = a, \xi_2 = a, \dots, \xi_n = a) = \frac{1}{N^n}$, так как с.в. независимые. Если в сумме $\eta_n = \xi_1 + \xi_2 + \dots + \xi_n \xi_1 = a, \xi_2 = a, \dots, \xi_n = a$, то η_n делится на n. $a \in 1..N$, поэтому таких значени a - N штук, тогда $P(\xi_1 = a, \xi_2 = a, \dots, \xi_n = a)$, где а уже любое число из $1..N = \frac{N}{N^n} = \frac{1}{N^{n-1}}$. Но ведь мы можем получить η_n кратное n не только путём сложения одинаковых чисел из 1..N, но и путём сложения разных чисел из этого же диапазона, тогда искомое $P(\eta_n$ делится на $n) \geq \frac{1}{N^{n-1}}$

Задача 4 (4 балла)

Допустим, что вероятность столкновения молекулы с другими молекулами в промежутке времени $[t,t+\Delta t)$ равна $p=\lambda \Delta t + o(\Delta t)$ и не зависит от времени, прошедшего после предыдущего столкновения $(\lambda=const)$. Найти распределение времени свободного пробега молекулы (показательное распределение) и вероятность того, что это время превысит заданную величину t^*

Решение

Рассмотрим событие $A_t =$ нет столкновений в промежутке (0;t]. $P(A_{t+\Delta t}|A_t)$ - условная вероятность. Нужно найти $P(A_t) = p(t)$, то есть вероятность того, что время свободного пробега не меньше. $P(A_{t+\Delta t}|A_t) = 1 - P(not(A_{t+\Delta t})|A_t) = 1 - \frac{P(not(A_{t+\Delta t}))}{P(A_t)} = 1 - \frac{p(t+\Delta t)}{p(t)}$. $A_{t+\Delta t} \subset A_t => A_{t+\Delta t}A_t = A_{t+\Delta t}$. Получаем $1 - \frac{p(t+\Delta t)}{p(t)} = \lambda \Delta t + o(\Delta t)$. $\frac{p(t+\Delta t)-p(t)}{\Delta t} = -\lambda p(t) + o(\Delta t)$. $\frac{dp(t)}{p(t)} = -\lambda dt$. $p(t) = ce^{-\lambda t}$, t > 0; $1 - p(t^*) = \lambda t^* + o(t^*)$; $e^{-\lambda t^* = 1 - \lambda t^* + o(t^*)}$; $1 - c + c\lambda t^* + o(t^*) = \lambda t^* + o(t^*)$; Получаем c = 1. $p(t) = e^{-\lambda t}$

Задача 5 (2 балла)

Диаметр круга измерен приближенно. Считая, что его величина равномерно распределена в отрезке [a, b], найти распределение площади круга, её среднее значение и дисперсию.

Решение

Диаметр круга - случайная величина ξ . Площадь - непрерывная возрастающая борелевская функция: $S\eta=f(\xi), f(\xi)=\pi\frac{\xi^2}{4}$ - тоже случайная величина. $F_\eta(y)=P(\eta< y)=P(f(\xi)< y)=P(\xi\in f^{-1}(-\infty;y)).$ Существует f^{-1} (тк непрерывна и возрастает). $F_\eta(y)=P(\eta< y)=P(f(\xi)< y)=P(\xi< f^{-1}(y))=F_\xi(f^{-1}(y)).$

Распределение нашли. Мат ожидание: $\mathbb{E}_{\eta} = \int\limits_{-\infty}^{+\infty} \xi g(\xi) d\xi$, где $g(\xi): P(\xi \in [a,b]) = \int\limits_{-\infty}^{b} g(\xi) d\xi$. Дисперсия: $\mathbb{D}_{\eta} = \mathbb{E}(\eta - \mathbb{E}_{\eta})^2.$

Задача 6 (2 балла)

Пусть случайные величины ξ и η независимы и $\mathbb{E}\xi = 1$, $\mathbb{E}\eta = 2$, $\mathbb{D}\xi = 1$, $\mathbb{D}\eta = 4$. Найти математические ожидания случайных величин:

a)
$$\xi^2 + 2\eta^2 - \xi\eta - 4\xi + \eta + 4$$
; 6) $(\xi + \eta + 1)^2$

а) $\xi^2 + 2\eta^2 - \xi\eta - 4\xi + \eta + 4$; б) $(\xi + \eta + 1)^2$ Решение Раз $\xi\eta$ независимые с.в., то $\mathbb{E}(\xi^{\not\vDash} + \not\vDash \eta^{\not\vDash} - \xi\eta - \not\trianglerighteq \xi + \eta + \not\trianglerighteq) = \mathbb{E}(\xi^{\not\vDash}) + \mathbb{E}(\not\vDash \eta^{\not\vDash}) - \mathbb{E}(\xi)\mathbb{E}(\eta) - \mathbb{E}(\not\trianglerighteq \xi) + \mathbb{E}(\not\vdash \eta^{\not\vDash}) + \mathbb{E}(\xi)\mathbb{E}(\eta) - \mathbb{E}(\xi)\mathbb{E}(\eta) + \mathbb{E$ $\mathbb{E}(\eta) + 4$

Задача 7 (3 балла)

Пусть $\xi_1, \xi_2, \dots, \xi_n$ – н.о.р.с.в. Доказать, что

$$\mathbb{E}\left(\frac{\xi_1 + \xi_2 + \dots + \xi_k}{\xi_1 + \xi_2 + \dots + \xi_n}\right) = \frac{k}{n}$$

дя любого $1 \le k \le n$.

Задача 8 (5 баллов)

На небольшом кластере GPU прямо сейчас очередь на обучение из 30 нейросетей. Единовременно на кластере может обучаться только одна сеть. За каждую нейросеть отвечают разные МL-инженеры. Нейросети имеют разные свойства: 10 из них больших (время их обучения 15 часов) и 20 маленьких (время их обучения 1 час). Пока не наступил момент начала обучения, разработчик переживает и внимательно следит за очередью, бесполезно растрачивая время. Посчитайте математическое ожидание, сколько человеко-часов будет потрачено на переживания разработчиков ровно с текущего момента (кластер освободился и начинает обрабатывать очередь, описанную выше), если задачи в очереди расположены в случайном порядке