

Tarfala Research Station automatic weather station, 2014

Peter Jansson

Contents

1	Instrumentation	3					
2	Notes on the station data	3					
3	Data coverage	3					
4 Notes on data storage							
5	Data files and content	7					
	5.1 Program for 2014 (same as for 2011) until	10					

1 Instrumentation

The TRS met station consisted of the following instruments during 2014

Sensor	Serial number	Remark
Pt100		in Stevenson screen
Pt100		in Young screen
Young Wind Monitor		at 3 m
LiCor Li-200SB pyranometer		at 2 m
Tipping bucket precipitation gauge		at 2 m
Vent HygroClip T/Rh		at 2 m
CR10X-2M data logger		

2 Notes on the station data

- Young tipping was run with old calibration of 0.16 mm per pulse (tip) until approx. 2013-07-05 11:00:00 when the program was switched to new calibration of 0.1 mm per pulse. Raw data uses old calibration while Precipitation data file has been corrected for new calibration from from January to 5 July.
- Wind sensor is unreliable for the entire year. A problem went undiscovered that affected mainly wind speed.
 The reliability of the numbers must be checked against an independent sensor. During 2013 a new station
 TRSAWS was installed (2013-09-20 14:15:00) near TRSmet with a functioning wind sensor. Reliable wind
 data from late September until the end of year is available from this station.

3 Data coverage

- General data gap: 2013-07-10 10:00:00
- Relative humidity data missing from 2013-07-04 19:00:00 to 2013-07-05 11:00:00 2013-07-10 10:00:00
- Temperature data missing from 2013-04-19 07:00:00 2013-05-18 03:00:00 to 2013-05-18 12:00:00 2013-06-16 07:00:00 to 2013-07-05 11:00:00 2013-07-15 15:00:00 2013-09-15 13:00:00
- Wind data missing from 2013-04-30 03:00:00 2013-04-30 08:00:00 2013-05-03 01:00:00 2013-05-10 16:00:00 to 2013-05-10 18:00:00 2013-05-10 21:00:00 to 2013-05-10 23:00:00 2013-05-11 03:00:00 to 2013-05-11 04:00:00 2013-05-11 17:00:00 to 2013-05-11 20:00:00 2013-05-11 23:00:00 to 2013-05-12 20:00:00 2013-05-12 10:00:00 to 2013-05-12 13:00:00 2013-05-12 12:00:00 to 2013-05-12 18:00:00 2013-05-12 16:00:00 to 2013-05-12 18:00:00 2013-05-12 20:00:00 to 2013-05-12 21:00:00 2013-05-13 06:00:00 to 2013-05-13 07:00:00 2013-05-13 13:00:00

```
2013-05-13 16:00:00 to 2013-05-14 03:00:00
```

2013-05-19 12:00:00

2013-05-21 02:00:00 to 2013-05-21 04:00:00

2013-05-21 10:00:00

2013-06-01 21:00:00

2013-06-09 04:00:00 to 2013-06-09 06:00:00

2013-06-09 10:00:00 to 2013-06-09 11:00:00

2013-06-09 14:00:00

2013-06-10 05:00:00

2013-06-14 09:00:00

2013-06-14 15:00:00 to 2013-06-14 21:00:00

2013-06-14 23:00:00 to 2013-06-15 10:00:00

2013-06-17 01:00:00 to 2013-06-17 11:00:00

2013-06-18 15:00:00

2013-06-19 03:00:00 to 2013-06-19 04:00:00

2013-06-22 13:00:00 to 2013-06-22 14:00:00

2013-06-22 17:00:00 to 2013-06-22 18:00:00

2013-06-28 09:00:00 to 2013-06-28 10:00:00

2013-06-28 13:00:00

2013-06-28 17:00:00 to 2013-06-28 18:00:00

2013-06-28 20:00:00

2013-06-29 00:00:00 to 2013-06-29 01:00:00

2013-07-05 11:00:00 to 2013-07-11 10:00:00

2013-07-13 08:00:00 to 2013-07-13 12:00:00

2013-07-15 20:00:00 to 2013-07-16 01:00:00

2013-07-18 17:00:00

2013-07-18 20:00:00

2013-07-28 22:00:00 to 2013-07-29 02:00:00

2013-07-29 19:00:00 to 2013-07-29 22:00:00

2013-08-11 16:00:00

2013-08-11 22:00:00 to 2013-08-11 23:00:00

2013-08-12 03:00:00

2013-08-12 09:00:00

2013-08-14 10:00:00 to 2013-08-14 14:00:00

2013-08-14 17:00:00

2013-08-14 23:00:00 to 2013-08-15 08:00:00

2013-08-15 14:00:00

2013-08-16 02:00:00 to 2013-08-16 04:00:00

2013-09-03 10:00:00

2013-09-13 10:00:00

2013-09-15 05:00:00 to 2013-09-15 07:00:00

2013-09-22 01:00:00

2013-09-22 03:00:00 to 2013-09-22 06:00:00

2013-09-22 08:00:00 to 2013-09-22 11:00:00

2013-09-22 17:00:00 to 2013-09-22 19:00:00

2013-09-22 21:00:00

2013-09-22 23:00:00 to 2013-09-23 00:00:00

2013-09-23 05:00:00

2013-09-23 08:00:00 to 2013-09-23 09:00:00

2013-09-28 00:00:00 to 2013-09-28 01:00:00

2013-09-28 14:00:00

2013-09-29 11:00:00 to 2013-09-29 12:00:00

2013-09-29 15:00:00

2013-09-30 16:00:00 to 2013-09-30 17:00:00

2013-10-09 09:00:00 to 2013-10-09 11:00:00

2013-10-09 17:00:00

2013-10-23 08:00:00 to 2013-10-24 02:00:00

2013-10-24 04:00:00 to 2013-10-25 16:00:00

```
2013-10-26 14:00:00 to2013-10-26 16:00:00
2013-10-27 02:00:00
2013-10-27 04:00:00
2013-10-29 08:00:00
2013-11-05 05:00:00 to 2013-11-05 12:00:00
2013-11-05 16:00:00
2013-11-06 06:00:00 to 2013-11-06 11:00:00
2013-11-06 14:00:00 to 2013-11-07 14:00:00
2013-11-08 03:00:00 to 2013-11-08 07:00:00
2013-11-08 12:00:00 to 2013-11-08 16:00:00
2013-11-08 18:00:00 to 2013-11-08 19:00:00
2013-11-08 21:00:00 to 2013-11-08 22:00:00
2013-11-09 00:00:00 to 2013-11-09 07:00:00
2013-11-09 10:00:00 to 2013-11-09 11:00:00
2013-11-09 13:00:00
2013-11-09 17:00:00
2013-12-20 09:00:00 to 2013-12-20 17:00:00
```

Daily data missing from 2013-04-20 00:00:00 2013-05-19 00:00:00 2013-06-17 00:00:00 until end of year

4 Notes on data storage

Example of hourly data:

 $101, 2013, 185, 1300, 11.625, 12.45, NaN, 30.488, 2.3748, 142.69, 0.03002, 191.1, 0, 0, 0, 4.4492, 1227, \\11.98, 12.962, NaN, 26.656, NaN, 1256, NaN, 1200, 884.45$

Column	Example data	Description
01:	101	ID
02:	2013	Year
03:	191	Day of Year
04:	1600	hour-minute (hhmm)
05:	11.625	2 Pt100 T in Stevenson screen)
06:	12.45	3 Pt100 in new Young screen
07:	NaN	4 Ventilated T
08:	30.488	5 Ventilated T
09:	2.3748	6 Mean horizontal wind speed
10:	142.69	7 resultant mean wind direction
11:	0.03002	8 Standard deviation of wind direction
12:	191.1	9 Global radiation
13:	0	10 Precipitation
14:	0	11 Not used
15:	0	12 Not used
16:	4.4492	13 hourly max wind speed
17:	1227	14 time for max wind speed
18:	11.98	15 Sample T Stevenson
19:	12.962	16 Sample T Young
20:	NaN	17 Sample ventilated T
21:	26.656	18 Sample ventilated Rh
22:	NaN	19 Max T
23:	1256	20 time for max T
24:	NaN	21 Min T
25:	1200	22 time for min T
26:	884.45	23 Barometric pressuree

Example of daily data summaries:

124,2013,185,2400,9.3932,10.217,NaN,NaN,15.108,1358,5.3009,245,9.3688,526, 2.1094,127.07,120.77,2.72,13.974,0,0,883.86

Column	Example data	Description
01:	124	ID
02:	2013	Year
03:	185	Day of Year
04:	2400	hour-minute (hhmm)
05:	9.3932	2 Daily average T in Stevenson screen)
06:	10.217	3 Daily T from T/Rh in Young screen
07:	NaN	4 Daily T from ventilated T/Rh
08:	NaN	5 daily average Rh from ventilated T/Rh
08:	15.108	6 Daily maximum temperature in Young screen
10:	1358	7 hhmm for maximum daily temperature
11:	5.3009	8 Daily minimum temperature in Young screen
12:	245	9 hhmm for minimum daily temperature
13:	9.3688	10 Maximum wind speed
14:	526	11 hhmm for maximum wind speed
15:	2.1094	12 Average wind speed
16:	127-07	13 Average wind direction
17:	120.77	14 Incoming radiation
18:	2.72	15 Totalized precipitation
19:	13.974	16 Battery voltage
20:	0	17 Not used
21:	0	18 Not used
21:	883.86	18 Average barometric pressure

Example of 'Synoptic' output:

Column	Example data	Description				
01:	103	ID				
02:	2013	Year				
03:	185	Day of Year				
04:	1300	hour-minute (hhmm)				
05:	12.962	Pt100 in Young screen				

5 Data files and content

TRSmet2014.csv Raw data file

TRS_met_2014_Barometric_pressure.csv 2013-01-01 01:00:00,857.2 TRS_met_2014_Precipitation.csv Date-time, Precipitation 2013-01-01 01:00:00,0.00

TRS_met_2014_Radiation.csv Date-time, Global radiation 2013-01-01 01:00:00,-4.97

TRS_met_2014_Relative_humidity.csv Date-time, Vented Rh, ssample ventilated Rh 2013-01-01 01:00:00,97.7,98.3

TRS_met_2014_Temperature.csv

Date-time, hourly average T (Stevenson), hourly average T (Young), hourly average vented T/Rh, sample T (Stevenson), Sample T (Young), sample T vent, max T vent, time for max T vent, min T vent, time for min T vent 2013-01-01 01:00:00,-6.85,-6.55,-7.71,-7.15,-6.51,-7.65,-6.97,19,-8.57,38

TRS_met_2014_Wind.csv

Date-time, Mean horizontal wind speed, resultant mean wind direction, hourly max wind speed, time of max wind spd

2013-01-01 01:00:00,1.3,324.8,0.0361,4.61,29

TRS_met_2014_Daily_data.csv

Data columns follows description above except last two columns (not used) 2013-01-02 00:00:00,-7.97,-7.57,-8.58,94.2,-5.88,16,-11.73,2233, 4.6,29,1.1,28.4,-4.8,0.0,13.99

TRS_met_2014_Synop_data.csv Date-time, sample temperature 2013-01-01 01:00:00,-6.51

The data collected during 2014 is summarized the figure 1 and Table 1.

 $Figure.\ 1.\ Summary\ of\ meteorological\ data\ from\ Tarfala\ Research\ Station\ automatic\ weather\ station\ 2014.$

 $Table.\ 1.\ Monthly\ averages\ of\ meteorological\ parameters\ from\ the\ Tarfala\ Research\ Station\ automatic\ weather\ station\ 2014.$

	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Average air to	emperature ((Stevenson)										
$\stackrel{(^{\circ}\mathrm{C})}{n}$	$-11.3 \\ 743$	$-8.2 \\ 671$	$-7.8 \\ 728$	$-3.3 \\ 516$	$-1.0 \\ 743$	$\frac{4.1}{743}$	$12.7 \\ 742$	$7.8 \\ 714$	$\frac{3.5}{743}$	$-3.7 \\ 767$	$-5.4 \\ 743$	$-8.4 \\ 765$
Average air to	emperature	(Young)										
$_{n}^{(^{\circ}\mathrm{C})}$	$-10.4 \\ 743$	$-7.6 \\ 671$	$-7.1 \\ 728$	$-2.8 \\ 516$	$-0.7 \\ 743$	4.5 743	13.0 742	286.7 718	$\frac{4.0}{743}$	$-3.0 \\ 767$	$-4.4 \\ 743$	$-7.8 \\ 765$
Average air to	emperature											
$\stackrel{(^{\circ}\mathrm{C})}{n}$	$-11.3 \\ 743$	$-8.4 \\ 671$	$-8.0 \\ 728$	$-3.4 \\ 516$	$-1.2 \\ 743$	3.8 743	$\frac{12.5}{743}$	8.0 718	$\frac{3.5}{743}$	$-3.8 \\ 767$	$-5.4 \\ 743$	$-8.6 \\ 765$
Positive degr	ee sum											
$\stackrel{(^{\circ}\mathrm{C})}{n}$	$\begin{array}{c} 1 \\ 2 \end{array}$	$\begin{array}{c} 4 \\ 14 \end{array}$	25 20	187 100	$\frac{1154}{331}$	$3004 \\ 617$	9307 743	 717	3110 583	291 135	$\frac{140}{116}$	52 48
Average relat	ive humidit	y										
$\binom{\%}{n}$	58.4 743	83.7 671	86.1 728	$84.0 \\ 516$	73.1 743	72.5 743	69.5 743	$75.8 \\ 718$	$74.9 \\ 743$	$83.4 \\ 767$	$70.2 \\ 743$	75.3 765
Average inco	ming global	radiation										
$(W m^{-2})$ n	$\frac{11.5}{743}$	$\frac{18.4}{671}$	56.9 728	$124.0 \\ 516$	$162.7 \\ 743$	159.8 743	$146.5 \\ 743$	$72.9 \\ 717$	$\frac{45.4}{743}$	$\frac{25.8}{767}$	$\frac{14.9}{743}$	11.8 765
Global incom	ning energy	sum										
$(W m^{-2})$ n	8554 743	12362 671	$41428 \\ 728$	 516	$120921 \\ 743$	$118767 \\ 743$	$108876 \\ 743$	 717	$33704 \\ 743$	19773 767	$11088 \\ 743$	9049 765
Totalized pre-	cipitation											
$\binom{\text{mm}}{n}$	$0.00 \\ 743$	$0.25 \\ 671$	$\frac{2.94}{728}$	$6.56 \\ 516$	$11.94 \\ 743$	$18.06 \\ 743$	81.41 743	$98.00 \\ 718$	$90.10 \\ 743$	$8.50 \\ 767$	$\frac{2.40}{743}$	1.10 765
Average wind	l speed											
$(m s^{-1})$ n	$\frac{2.0}{743}$	$\frac{2.2}{671}$	$\frac{4.2}{728}$	$\frac{4.7}{516}$	$\frac{2.2}{743}$	2.3 743	$0.7 \\ 743$	0.7 718	$\frac{3.7}{743}$	$\frac{2.2}{767}$	$\frac{2.8}{743}$	3.7 765
Average baro	metric press	sure										
(hPa) n	880.2 743	868.2 671	869.6 728	877.3 516	884.4 743	884.8 743	889.7 743	879.3 718	883.0 743	881.1 767	882.9 743	864.2 765

Logger program

5.1 Program for 2014 (same as for 2011) until

```
*Table 1 Program
 01: 10.0000 Execution Interval (seconds)
; Check battery voltage
; and stop execution if lower than 9.7V
1: Batt Voltage (P10)
           Loc [ Battery ]
1: 10
2: If (X<=>F) (P89)
         X Loc [ Battery ]
1: 10
3: 9.7
            F
4: 0
            Go to end of Program Table
; AIR TEMPERATURE
; Measure R/RO for old met cage Rt100
3: 3W Half Bridge (P7)
            Reps
            25 mV 50 Hz Rejection Range
SE Channel
2: 33
3: 1
            Excite all reps w/Exchan 2
4: 2
5: 2100
            mV Excitation
6: 22
            Loc [ R_RO_T_1 ]
7: 95.969 Mult
8: 0
            Offset
; Meaasure R/R0 for Young screen Rt100 \,
4: 3W Half Bridge (P7)
            Reps
            25 mV 50 Hz Rejection Range
3: 3
            SE Channel
            Excite all reps w/Exchan 2
4: 2
5: 2100
            mV Excitation
6: 23
            Loc [ R_RO_T_2 ]
7: 100.2
            Mult
8: 0
            Offset
; Calculate T for both Rt100
5: Temperature RTD (P16)
            Reps
            R/RO Loc [ R_RO_T_1 ]
3: 1
            Loc [ T_1
4: 1
            Mult
5: 0
            Offset
; VENTILATED T&Rh
; Measure temperature from ventilated
 HygroClip sensor
6: Volt (Diff) (P2)
1: 1
            Reps
            2500 mV 50 Hz Rejection Range
2: 35
            DIFF Channel
3: 3
4: 3
            Loc [ T_vent
5: .1
            Mult
6: -40
            Offset
; HygroClip sensor 7: Volt (Diff.)
; Measure humidity from ventilated
   Volt (Diff) (P2)
1: 1
            2500 mV 50 Hz Rejection Range
2: 35
3: 4
            DIFF Channel
4: 4
            Loc [ rH_vent ]
5: .1
            Mult
6: 0.0
            Offset
;-----
; W I N D
; Measure wind speed on Young Wind Monitor
8: Pulse (P3)
            Reps
2: 1
            Pulse Channel 1
3: 21
            Low Level AC, Output Hz
4: 5
            Loc [ Wind_spd ]
5: .098
            Mult
6: 0
            Offset
; Measure wind direction on Young Wind Monitor
```

```
9: Excite-Delay (SE) (P4)
         Reps
             2500 mV Slow Range
 2: 5
             SE Channel
 3: 9
            Excite all reps w/Exchan 1
Delay (0.01 sec units)
 4: 1
 5: 2
 6: 2500
             mV Excitation
 7: 6
             Loc [ Wind_dir ]
 8: .142
            Mult
 9: -135
            Offset
; Make corrections to wind direction
10: If (X<=>F) (P89)
          X Loc [ Wind_dir ]
 1: 6
 2: 4
           F
Then Do
 3: 0
 4: 30
11: Z=X+F (P34)
         X Loc [ Wind_dir ]
F
 1: 6
 2: 360
            Z Loc [ Wind_dir ]
 3: 6
12: End (P95)
; G L O B A L R A D I A T I O N
; Measure Li200s Pyranometer
13: Volt (SE) (P1)
         Reps
 1: 1
             25 mV 50 Hz Rejection Range
2: 33
3: 10 SE Chan
4: 7 Loc [ L
5: 116.55 Mult
0 Offset
            SE Channel
            Loc [ Li200S
; PRECIPITATION
; Measure tipping bucket rain gauge
14: Pulse (P3)
1: 1
            Reps
             Pulse Channel 2
 2: 2
            Switch Closure, All Counts
Loc [ Precip ]
 3: 2
 4: 8
 5: .16
 6: 0
            Offset
; INTERNAL TEMPERATURE
15: Internal Temperature (P17)
           Loc [ T_int
; B A R O M E T R I C P R E S S U R E 16: If time is (P92)
         Minutes (Seconds --) into a
 1: 59
             Interval (same units as above)
 3: 48
            Set Port 8 High
17: If time is (P92)
         Minutes (Seconds --) into a
 1: 0
 2: 60
            Interval (same units as above)
 3: 30
            Then Do
    18: Volt (SE) (P1)
              Reps
2500 mV Fast Range
     1: 1
      2: 15
                 SE Channel
      3: 11
                Loc [ P_mb
Mult
      4: 11
     5: 0.2
     6: 600
                 Offset
    19: Do (P86)
                 Set Port 8 Low
     1: 58
20: End (P95)
; HOURLY OUTPUT
21: If time is (P92)
           Minutes (Seconds --) into a
            Interval (same units as above)
 3: 10
            Set Output Flag High (Flag 0)
22: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
```

```
2: 101
            Array ID
23: Real Time (P77)
            Year, Day, Hour/Minute (midnight = 2400)
 1: 1220
24: Resolution (P78)
            High Resolution
; Store average unvent and vent {\tt T} and {\tt Rh}
25: Average (P71)
 1: 4
            Reps
                            ]
            Loc [ T_1
 2: 1
26: Resolution (P78)
 1: 1
            High Resolution
; Store wind speed, dir and std dev 27: Wind Vector (P69)
            Reps
             Samples per Sub-Interval
 3: 0
             S, theta(1), sigma(theta(1)) with polar sensor
            Wind Speed/East Loc [Wind_spd ]
Wind Direction/North Loc [Wind_dir ]
 4: 5
 5: 6
28: Resolution (P78)
            High Resolution
; Store average global rad
29: Average (P71)
1: 1 Reps
 1: 1
        keps
Loc [ Li200S
 2: 7
; Store hourly precipitation 30: Totalize (P72)
            Reps
 1: 1
            Loc [ Precip
 2: 8
; no data
31: Average (P71)
           Reps
 1: 2
 2: 12
            Loc [ _____]
32: Resolution (P78)
            High Resolution
 1: 1
; Store maximum wind speed during last hour
33: Maximum (P73)
1: 1
            Reps
 2: 10
             Value with Hr-Min
            Loc [ Wind_spd ]
 3: 5
34: Resolution (P78)
1: 1
            High Resolution
; Store transient unvent and vent T and Rh
35: Sample (P70)
          Reps
 2: 1
            Loc [ T_1
36: Resolution (P78)
            High Resolution
1: 1
; Store max vent T
37: Maximum (P73)
 1: 1
            Reps
            Value with Hr-Min
 2: 10
            Loc [ T_vent
 3: 3
38: Resolution (P78)
            High Resolution
1: 1
; Store min vent T
39: Minimum (P74)
1: 1
            Reps
 2: 10
             Value with Hr-Min
            Loc [ T_vent
40: Resolution (P78)
            High Resolution
 1: 1
41: Sample (P70)
 1: 1
            Reps
            Loc [ P_mb
;-----
; D A I L Y O U T P U T
42: If time is (P92)
```

```
1: 0
             Minutes (Seconds --) into a
 2: 1440
             Interval (same units as above)
 3: 10
             Set Output Flag High (Flag 0)
43: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
             Array ID
44: Real Time (P77)
             Year, Day, Hour/Minute (midnight = 2400)
1: 1220
45: Resolution (P78)
1: 1
             High Resolution
; Store daily average unvent and vent T \&\ \mbox{Rh}
46: Average (P71)
1: 4 Reps
            Reps
             Loc [ T_1
2: 1
47: Resolution (P78)
             High Resolution
; Store daily max unvent T 48: Maximum (P73)
1: 1
             Reps
             Value with Hr-Min
3: 2
             Loc [ T_2
49: Resolution (P78)
             High Resolution
1: 1
; Store daily min unvent T
50: Minimum (P74)
1: 1
             Reps
             Value with Hr-Min Loc [ T_2 ]
 2: 10
 3: 2
51: Resolution (P78)
             High Resolution
; Store daily max wind speed 52: Maximum (P73)
          Reps
1: 1
 2: 10
             Value with Hr-Min
            Loc [ Wind_spd ]
53: Resolution (P78)
1: 1
             High Resolution
: Store average wind vector
54: Wind Vector (P69)
1: 1
             Reps
 2: 1
             Samples per Sub-Interval
             S, theta(1) with polar sensor
Wind Speed/East Loc [ Wind_spd ]
3: 1
 4: 5
             Wind Direction/North Loc [Wind_dir ]
5: 6
55: Resolution (P78)
            High Resolution
; Store daily avg global radioation
56: Average (P71)
1: 1
             Reps
             Loc [ Li200S ]
; Store daily precipitation
57: Totalize (P72)
1: 1 Reps
             Loc [ Precip ]
; Store sample of battery voltage
58: Sample (P70)
1: 1
             Reps
2: 10
             Loc [ Battery ]
59: Average (P71)
1: 2
             Reps
2: 12
             Loc [ _____]
60: Resolution (P78)
1: 1
             High Resolution
61: Average (P71)
1: 1
             Reps
 2: 11
             Loc [ P_mb
```

]

```
; SYNOPTIC OUTPUT; transient T data is stored every 3 hrs
; according to synoptic standards.
62: If time is (P92)
 1: 60
             Minutes (Seconds --) into a
             Interval (same units as above)
 3: 10
             Set Output Flag High (Flag 0)
63: Set Active Storage Area (P80)
1: 1 Final Storage Area 1
             Array ID
 2: 103
64: Real Time (P77)
 1: 1220
            Year, Day, Hour/Minute (midnight = 2400)
65: Resolution (P78)
             High Resolution
 1: 1
66: Sample (P70)
             Reps
                            ]
             Loc [ T_2
 2: 2
*Table 2 Program
01: 0.0000 Execution Interval (seconds)
*Table 3 Subroutines
End Program
                ] RW-- 3
] RW-- 6
] RW-- 5
; ] RW-- 3
od ] RW-- 4
ir ] RW-- 4
] RW-- 2
       [ T_1
                                            Start -----
       T_2
3
       [ T_vent
                                             -----
4
       [ rH_vent
                                             ----- -----
       [ Wind_spd ] [ Wind_dir ]
                                             ----- -----
6
       [ Li200S
       Precip
9
       [ T_int
                      -W--
                             0
10
       [ Battery ] RW--
                             2
                                             -----
                                             -----
11
       [ P_mb
                   1 RW--
                             2
                                             ----- -----
12
       [ _____]
                      R.---
                                      0
                      R---
                             2
13
                                      0
14
       [ ----- ]
                      ----
                             0
16
       [ _____]
                             0
                                      0
17
                     ----
                             0
                                      0
                                             ----- -----
       [ ---- ] ----
                                             -----
18
                             0
                                      0
                                             ----- -----
19
                     ----
                             0
                                      0
20
                     ----
                             0
                                             -----
                                      0
       [ _____ ] ---- 0
[ R_RO_T_1 ] RW-- 1
[ R_RO_T_2 ] RW-- 1
                            0
22
                                             -----
23
```

14