ES 827 – ROBÓTICA INDUSTRIAL PROJETO FINAL (NOTA DA SEGUNDA AVALIAÇÃO) DINÂNICA E CINEMÁTICA DO ROBÔ PUMA 560

1) DINÂMICA

Todas as tarefas aqui seguem o mesmo roteiro do Capítulo 6 da tese do link abaixo. A diferença é que você irá trabalhar com o modelo dinâmico do robô Puma 560 (do Robotics Toolbox) e não com o robô IRB 140, como está apresentado na tese.

TESE → http://www.diva-portal.org/smash/get/diva2:436733/FULLTEXT01.pdf

1.1 Instalar o Toolbox de Robótica (versão 8 ou 9) a partir do link abaixo

http://www.petercorke.com/Robotics Toolbox.html

1.2 Crie um bloco "puma560" no Simulink para representar a dinâmica do robô Puma 560 no Simulink, usando para isso uma "Matlab function" com o comando "accel", como feito no último laboratório.

- **1.3** Realize todas as simulações de malha aberta da seção 6.3 da tese acima, ou seja, para o robô em **MALHA ABERTA**. Utilize os mesmos ângulos das juntas como descrito na tese. Apresente os gráficos como na tese, COMENTANDO os resultados obtidos com suas observações (resumidamente).
- **1.4** Realize todas as simulações de malha aberta da seção 6.4 da tese acima, ou seja, para analisar o **equilíbrio de energia** do robô. Considere apenas a análise da Energia **CINÉTICA**. Não é preciso calcular a energia Potencial. Utilize os mesmos ângulos da juntas e demais parâmetros como descrito na tese. Para o cálculo da energia cinética considere a expressão abaixo, onde a matriz de massa M pode ser obtida através do comando → M=inertia(p560, q)

$$K = \frac{1}{2}\dot{q}^T M(q)\dot{q}$$

Faça duas análises do comportamento da energia cinética:

(a) **COM** atrito viscoso e seco, como é o *default* do p560.

(b) SEM atrito viscoso e seco. Para isso altere o modelo do robô Puma na função Matlab "puma560.m", zerando os termos de % viscous friction e % Coulomb friction

Apresente os gráficos como na tese, COMENTANDO os resultados com suas observações (resumidamente).

1.5 Realize todas as simulações de malha aberta da seção 6.5 da tese acima, ou seja, para analisar o **CONTROLE EM MALHA FECHADA** do robô. Utilize os mesmos ângulos da juntas e demais parâmetros como descrito na tese. Obtenha matrizes de ganho proporcional Kp e derivativo Kd adequados e simule os resultados.

Apresente os gráficos como na tese, COMENTANDO os resultados com suas observações (resumidamente).

2) CINEMÁTICA

2.1 Execute as rotinas "ini_Rbt.m" e "Rbtsquare.m" fornecidas na pasta dos arquivos deste trabalho e veja o resultado do controle de trajetória cinemático realizado. Esse resultado deve ser igual ao do vídeo abaixo.

https://www.youtube.com/watch?v=440-3LCZ_ow

2.2 Construa um programa Matlab similar a esse "ini_Rbt.m" para traçar uma elipse ou "semi-elipse" (caso não seja possível pela limitação do espaço de trabalho do robô). O robô deve "desenhar" uma elipse no "chão" do espaço de trabalho e outra em uma das "paredes" mostradas no mesmo vídeo.

3) QUESTÕES PARA O RELATÓRIO FINAL:

- 1) Por que no item 1.5 acima, os torques finais obtidos são nulos ? O torque final não deveria ser igual ao torque de compensação da força da gravidade ?
- 2) No item 1.4 foi indicado um comando Matlab para se obter a matriz de massa/inércia no espaço das juntas → M(q). Como você faria para obter essa matriz de massa utilizando o método de Newton-Euler além de manipulação simbólica ? Veja os apêndices B e C da mesma tese acima. Essa matriz corresponde a matriz M(q) da equação geral da dinâmica de um robô, como dado abaixo, onde "u" é o vetor de torques nas juntas.

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = u$$

3) Por que é que essa matriz de massa M(q) não é do tipo da matriz de massa abaixo de um corpo rígido, que é uma matriz 6x6 com uma matriz diagonal **M** e outra matriz de inércia do corpo **J** ?

$$\overline{\mathbf{M}} = \begin{bmatrix} \mathbf{M} & 0 \\ 0 & \mathbf{J} \end{bmatrix}$$