Linear Regression Project

Made by: Juan Esteban Monsalve Castrillón

Source: https://www.kaggle.com/datasets/angeloftechml/realstaterentcolombia2021 (La data original fué modificada para la realización de este modelado)

Pre-Procesado: Se limpió la base de datos desde excel eliminando caracteres especiales o raros: Para esto:

- 1. Se limpiaron los caracteres extras de la columna details con Buscar y reemplazar (Ctrl + L). Y se le dio un formato de JSON
- 2. Para este JSON se creo un codigo aparte para pasarlo a columnas y asi tener las columnas de forma individual para proceder al procesamiento de los datos

Libraries Import

```
In []: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

#Control de outliers
   import numpy as np
   from scipy.stats.mstats import winsorize
   from sklearn.metrics import r2_score

In []: #Importe desde Google Drive
   from google.colab import drive
   drive.mount("/content/drive", force_remount=True)
```

Mounted at /content/drive


```
In [ ]: #Cargamos el archivo
  data = pd.read_excel("/content/drive/MyDrive/Colab Notebooks/DataSistemasInteligent
  data.head()
```

Out[]:

	Column1	lat	long	id	date	category	location
0	15251	182998000000000	-9860000000000000	4699482	2021- 06-20	Apartamento	Medellín ALTOS DEL POBLADO
1	12092	3060180000000000	-9640000000000000	6009990	2021- 06-20	Apartamento	Medellín San Diego
2	11756	30588200000000	-9640000000000000	6048970	2021- 06-20	Apartamento	Medellín El Poblado
3	5840	30588200000000	-9640000000000000	6397276	2021- 06-20	Apartamento	Medellín Santa Mónica
4	15269	3068730000000000	-8810000000000000	3283733	2021- 06-20	Apartamento	Medellín POBLADO
5 r	5 rows × 25 columns						
4							>

In []: data.info()

RangeIndex: 15367 entries, 0 to 15366 Data columns (total 25 columns): Column Non-Null Count Dtype -----_____ 0 Column1 15367 non-null int64 1 lat 15367 non-null int64 15367 non-null int64 2 long 3 id 15367 non-null int64 15367 non-null datetime64[ns] 4 date 5 15367 non-null object category location 15367 non-null object mode 15367 non-null object price 15367 non-null int64 9 details 15367 non-null object 15367 non-null object 10 description 11 surface metro cuadrado 15367 non-null object 12 rooms 15367 non-null object 13 baths 15367 non-null object 14 park 15367 non-null object 15 Área privada en metro cuadrado 10832 non-null object 16 Área Construcción en metro cuadrado 15367 non-null object 17 Precio por metro cuadrado 15367 non-null object 15344 non-null float64 18 Estrato 19 Antigüedad 10648 non-null object 20 Sector 15367 non-null object 21 Admón 3134 non-null object 22 Piso No 7247 non-null object 23 Estado 4483 non-null object 24 Tipo de Apartamento 441 non-null object dtypes: datetime64[ns](1), float64(1), int64(5), object(18) memory usage: 2.9+ MB

Data Dictionary

<class 'pandas.core.frame.DataFrame'>

A continuación se describen las variables contenidas en el dataset:

Nombre de la Variable	Descripción	Unidad de Medición
Column1	Índice adicional sin orden alguno	Índice numérico
lat	Latitud geográfica del inmueble	Coordenada geográfica
long	Longitud geográfica del inmueble	Coordenada geográfica
id	Identificador único del inmueble	Identificador numérico
date	Fecha y hora de publicación o recolección del dato	Fecha y hora (YYYY-MM-DD HH:MM:SS)
category	Categoría del inmueble (ej. apartamento, apartaestudio)	Texto
location	Dirección o ubicación del inmueble	Texto

Nombre de la Variable	Descripción	Unidad de Medición
mode	Tipo de transacción (arriendo)	Texto
price	Precio total del inmueble	Pesos colombianos (COP)
details	Información adicional sobre el inmueble	Texto
description	Descripción del anuncio del inmueble	Texto
surface metro cuadrado	Área total del inmueble	Metros cuadrados (m²)
rooms	Número de habitaciones	Cantidad de habitaciones
baths	Número de baños	Cantidad de baños
park	Número de parqueaderos	Cantidad de parqueaderos
Área privada en metro cuadrado	Área privada del inmueble	Metros cuadrados (m²)
Área Construcción en metro cuadrado	Área construida del inmueble	Metros cuadrados (m²)
Precio por metro cuadrado	Valor por unidad de área	Pesos colombianos por metro cuadrado (COP/m²)
Estrato	Estrato socioeconómico del inmueble	Nivel socioeconómico (1 a 6)
Antigüedad	Edad del inmueble	Años (puede requerir limpieza)
Sector	Zona o sector donde se ubica el inmueble	Texto
Admón	Valor mensual de administración	Pesos colombianos (COP)
Piso No	Número de piso en el que se ubica el inmueble	Número de piso
Estado	Estado del inmueble (ej. remodelar, bueno, excelente, etc.)	Texto
Tipo de Apartamento	Tipo de apartamento (ej. pent- house, duplex, loft)	Texto

Out[]:

```
category
                 location
                            price
                                                                rooms
                 Medellín
                   ALTOS
                          3500000 x000D x000D x000D 2 x000D x000D x000D x000D
O Apartamento
                     DEL
                POBLADO
                 Medellín
1 Apartamento
                     San
                          1800000 _x000D_x000D_x000D_3_x000D_x000D_ _x000D_x000D_
                   Diego
                 Medellín
                       Εl
                          2650000 _x000D_x000D_x000D_2_x000D_x000D_ _x000D_x000D_
2 Apartamento
                 Poblado
                 Medellín
3 Apartamento
                   Santa
                          1000000 _x000D_x000D_x000D_3_x000D_x000D_ _x000D_x000D_
                  Mónica
                 Medellín
                          3000000 _x000D_x000D_x000D_1_x000D_x000D_ _x000D_x000D_
4 Apartamento
                POBLADO
data.columns = ['Categoria', 'Ubicación', 'Precio', 'Habitaciones', 'Baños', 'Parqu
                     'Área privada (m^2)', 'Área Construcción (m^2)',
                     'Estrato', 'Piso No']
#Muevo la variable que voy a predecir para el final que es el precio
data['Precio'] = data.pop('Precio')
data.head()
```

Out[]:

		Categoria	Ubicación			Habitac	ione	S		
	0	Apartamento	Medellín ALTOS DEL POBLADO	_x000D_x000E)_x000D	_2_x000Dx()00D	x000E	D_x000D_x(000D_2 ₋
	1	Apartamento	Medellín San Diego	_x000Dx000D	_x000D	_3_x000Dx(000D	x000E	D_x000D_x(000D_2 __
	2	Apartamento	Medellín El Poblado	_x000Dx000E)_x000D	_2_x000Dx()00D	x000I	D_x000D_x(000D_3 ₋
	3	Apartamento	Medellín Santa Mónica	_x000Dx000E)_x000D	_3_x000Dx()00D	x000I	D_x000D_x(000D_2 ₋
	4	Apartamento	Medellín POBLADO	_x000Dx000D	_x000D	_1_x000Dx(000D	x000E	D_x000D_x(000D_2 __
	4 (>
		ta['Habitacio ta['Baños'] =							', regex=Fa	alse).
	da ⁻	ta['Baños'] = ta['Parqueade ta.head()	= data['Bañ eros'] = da	ita['Habitacio ios'].astype(s ita['Parqueade Habitaciones	str).str eros'].a	r.replace(' sstype(str)	_x00 .str	Área privada	é('_x000D_ Ár Construcci	ea ón Es
0 0	da ⁻	ta['Baños'] = ta['Parqueade ta.head()	= data['Bañ eros'] = da	ios'].astype(s ata['Parqueade	str).str eros'].a	r.replace(' sstype(str)	_x00 .str	Área	é('_x000D_ Ár Construcci	rea ón Es
]:	da ⁻	ta['Baños'] = ta['Parqueade ta.head() Categoria	eros'] = da Ubicación Medellín ALTOS DEL	ios'].astype(s ata['Parqueade Habitaciones	eros'].a	r.replace(' sstype(str)	_x00 .str	Área privada (m²)	Ár Construcci (n	rea ón Est n²)
]:	da ⁻ da ⁻ da ⁻	ta['Baños'] = ta['Parqueade ta.head() Categoria Apartamento	data['Bañeros'] = da Ubicación Medellín ALTOS DEL POBLADO Medellín	ios'].astype(sata['Parqueade Habitaciones	Baños	r.replace(' sstype(str)	_x00 .str	Área privada (m²)	Ár Construcci (n	rea ón Est n²)
]:	da ⁻ da ⁻	ta['Baños'] = ta['Parqueade ta.head() Categoria Apartamento Apartamento	e data['Bañ eros'] = da Ubicación Medellín ALTOS DEL POBLADO Medellín San Diego Medellín El	ios'].astype(sata['Parqueade Habitaciones	Baños 2	r.replace(' sstype(str)	x00 .str	Área privada (m²)	Ár Construcci (n	rea on Est
]:	da ⁻ da ⁻	ta['Baños'] = ta['Parqueade ta.head() Categoria Apartamento Apartamento Apartamento	e data['Bañ eros'] = da Ubicación Medellín ALTOS DEL POBLADO Medellín San Diego Medellín El Poblado Medellín Santa	ios'].astype(sata['Parqueade Habitaciones 2	Baños 2 2	r.replace(' sstype(str)	x00 .str ros 1	Área privada (m²) 74,00	Ár Construcci (n 74,	rea on Est
]:	0 1 2 3	ta['Baños'] = ta['Parqueade ta.head() Categoria Apartamento Apartamento Apartamento Apartamento	e data['Bañ eros'] = da Ubicación Medellín ALTOS DEL POBLADO Medellín San Diego Medellín El Poblado Medellín Santa Mónica Medellín	ios'].astype(sata['Parqueade Habitaciones 2 3	Baños 2 2	r.replace(' sstype(str)	x00 .str ros 0	Área privada (m²) 74,00 104,00	Ár Construcci (n 74, 92,	rea on Est

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15367 entries, 0 to 15366
Data columns (total 10 columns):
    Column
                           Non-Null Count Dtype
--- -----
                           -----
0
    Categoria
                           15367 non-null object
1
    Ubicación
                           15367 non-null object
    Habitaciones
                           15367 non-null object
    Baños
                           15367 non-null object
4
    Parqueaderos
                           15367 non-null object
    Área privada (m²)
                           10832 non-null object
    Área Construcción (m²) 15367 non-null object
    Estrato
                           15344 non-null float64
    Piso No
                           7247 non-null
                                           object
    Precio
                           15367 non-null int64
dtypes: float64(1), int64(1), object(8)
memory usage: 1.2+ MB
```

X Null and type control

```
In [ ]: #Miro si hay null en mi df
        print(data.isnull().sum())
       Categoria
                                     0
       Ubicación
                                     0
       Habitaciones
                                     0
       Baños
                                     0
       Parqueaderos
                                     0
       Área privada (m²)
                                  4535
       Área Construcción (m²)
       Estrato
                                    23
       Piso No
                                  8120
       Precio
                                     0
       dtype: int64
In [ ]: # Elimina filas donde la columna 'Piso No' es null
        data = data[data['Piso No'].notnull()]
        print(data.isnull().sum())
       Categoria
                                     0
       Ubicación
                                     0
       Habitaciones
       Baños
       Parqueaderos
       Área privada (m²)
                                  3187
       Área Construcción (m²)
                                     0
       Estrato
                                     0
       Piso No
                                     0
       Precio
                                     0
       dtype: int64
In [ ]: #Asignarle los datos de Área Construcción al Área privada ya que casi siempre son l
        data['Área privada (m²)'] = data['Área privada (m²)'].fillna(
            data['Área Construcción (m²)'])
```

```
In [ ]: columnas_float = ['Área privada (m²)',
                     'Área Construcción (m²)']
        for col in columnas float:
            data[col] = (
                 data[col]
                 .astype(str)
                 .str.replace('.', '', regex=False)
                 .str.replace(',', '.', regex=False)
            )
        #Luego convierto las variables que pueden o deben ser enteros
        columnas_int = ['Habitaciones',
                     'Baños',
                     'Parqueaderos',
                     'Piso No']
        for col in columnas_int:
            data[col] = (
                 data[col]
                 .astype(str)
                 .str.replace(',', '', regex=False)
                 .str.replace('.', '', regex=False)
            )
```

```
In []: #Define las columnas con las que vamos a trabajar
total_columnas = columnas_int + columnas_float + ['Estrato'] + ['Precio']

for col in total_columnas:
    # Convertir a numérico, poniendo NaN donde no se pueda convertir
    data[col] = pd.to_numeric(data[col], errors='coerce')

#Muestro la cantidad de NaN
total_nulos = data.isna().sum().sum()
print(f"Total de valores NaN en todo el DataFrame: {total_nulos} \n")

# Elimino todas las filas que tengan NaN en cualquiera de esas columnas (es decir, data = data.dropna(subset=total_columnas)

total_nulos_controlados = data.isna().sum().sum()
print(f"Total de valores NaN en todo el DataFrame luego del control: {total_nulos_columnas}
```

Total de valores NaN en todo el DataFrame: 1052

Total de valores NaN en todo el DataFrame luego del control: 0

<class 'pandas.core.frame.DataFrame'>
Index: 6195 entries, 1 to 15366
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Categoria	6195 non-null	object
1	Ubicación	6195 non-null	object
2	Habitaciones	6195 non-null	int64
3	Baños	6195 non-null	int64
4	Parqueaderos	6195 non-null	float64
5	Área privada (m²)	6195 non-null	float64
6	Área Construcción (m²)	6195 non-null	float64
7	Estrato	6195 non-null	float64
8	Piso No	6195 non-null	float64
9	Precio	6195 non-null	int64

dtypes: float64(5), int64(3), object(2)

memory usage: 532.4+ KB

In []: data.head()

Out[]:

	Categoria	Ubicación	Habitaciones	Baños	Parqueaderos	Área privada (m²)	Área Construcción (m²)	Es
1	Apartamento	Medellín San Diego	3	2	1.0	92.0	92.0	
2	Apartamento	Medellín El Poblado	2	3	1.0	104.0	104.0	
3	Apartamento	Medellín Santa Mónica	3	2	0.0	58.0	60.0	
9	Apartamento	Medellín Calasanz	2	1	0.0	45.0	45.0	
10	Apartamento	Medellín El Poblado	5	4	2.0	166.0	166.0	

Zeros Control

In []: #Miro los datos en cero y datos nulos para tomar decisiones sobre la data a utiliza
 columnas_con_ceros = data.columns[(data == 0).any()]
 for columna in columnas_con_ceros:

```
conteo_ceros = (data[columna] == 0).sum()
            print(f"Columna - {columna}: {conteo_ceros} ceros")
       Columna - Habitaciones: 143 ceros
       Columna - Baños: 8 ceros
       Columna - Parqueaderos: 2670 ceros
In [ ]: #Un apartamento sin baño es atipico, entonces se remueven
        data = data[data['Baños'] != 0]
In [ ]: #Miro cuantas filas quedaron luego de la limpieza
        print(data.shape)
       (6187, 10)
```

Outliers Control

```
In [ ]: data.describe()
```

Out[]:

	Habitaciones	Baños	Parqueaderos	Área privada (m²)	Area Construcción (m²)	Estrato
count	6187.000000	6187.000000	6187.000000	6187.000000	6187.000000	6187.000000
mean	2.342654	1.995151	0.718119	97.421490	97.447094	4.495394
std	1.138315	0.974112	0.745327	407.485976	407.454000	1.056642
min	0.000000	1.000000	0.000000	1.000000	1.000000	1.000000
25%	2.000000	1.000000	0.000000	52.000000	52.000000	4.000000
50%	2.000000	2.000000	1.000000	70.000000	70.000000	5.000000
75%	3.000000	2.000000	1.000000	101.000000	101.000000	5.000000
max	32.000000	16.000000	10.000000	24542.000000	24542.000000	6.000000

```
In [ ]: #Gráfica para los outliers
        for col in total_columnas:
            sns.set(style="whitegrid")
            plt.figure(figsize=(6, 3))
            sns.boxplot(x=data[f'{col}'], color='#D8BFD8', linewidth=1.2)
            plt.title(f'Boxplot de {col}')
            plt.show()
            print("\n")
```

Boxplot de Habitaciones

Boxplot de Baños

Boxplot de Piso No

Boxplot de Área privada (m²)

Boxplot de Área Construcción (m²)

Boxplot de Precio


```
In []: #Función para winsorizar todo
def aplicar_winsorizing(data, columnas):
    for col in columnas:
        print(f"\n--- Procesando columna: {col} ---")

    # Calcular Q1, Q3 e IQR
    Q1 = data[col].quantile(0.25)
    Q3 = data[col].quantile(0.75)
    IQR = Q3 - Q1

# Calcular límites inferior y superior
    lower_limit = Q1 - 1.5 * IQR
    upper_limit = Q3 + 1.5 * IQR
```

```
print(f"Límite inferior para outliers: {lower_limit}")
         print(f"Límite superior para outliers: {upper_limit}")
         # Calcular proporciones de datos que serán winsorizados
         lower_prop = max(0, (data[col] < lower_limit).mean())</pre>
         upper_prop = max(0, (data[col] > upper_limit).mean())
         # Aplicar winsorización
         data[f'{col}_winsorized'] = winsorize(data[col], limits=(lower_prop, upper_
         # Mostrar descripción estadística antes y después
         print("\nResumen estadístico original vs winsorizado:")
         print(data[[col, f'{col}_winsorized']].describe())
         #-----Para Crear el gráfico-----
         # Crear figura con dos subgráficas una al lado de la otra
         fig, axes = plt.subplots(1, 2, figsize=(10, 5))
         # Boxplot del precio original
         sns.boxplot(y=data[col], ax=axes[0], color='#ffbd6b', linewidth=1.2)
         axes[0].set_title(f'{col} original')
         axes[0].set_ylabel(f'{col}')
         # Boxplot del precio winsorizado
         sns.boxplot(y=data[f'{col}_winsorized'], ax=axes[1], color='lightgreen', li
         axes[1].set_title(f'{col} winsorizado')
         axes[1].set_ylabel(f'{col}')
         # Mostrar ambas gráficas
         plt.tight_layout()
         plt.show()
     return data
 #Llamado a la función
 data = aplicar_winsorizing(data, total_columnas)
--- Procesando columna: Habitaciones ---
Límite inferior para outliers: 0.5
Límite superior para outliers: 4.5
Resumen estadístico original vs winsorizado:
      Habitaciones Habitaciones_winsorized
count 6187.000000
                                 6187.000000
           2.342654
                                    2.334088
mean
std
           1.138315
                                    0.924436
min
           0.000000
                                    1.000000
25%
           2.000000
                                    2.000000
50%
          2.000000
                                    2.000000
75%
           3.000000
                                    3.000000
          32.000000
                                    4.000000
max
```


--- Procesando columna: Baños ---Límite inferior para outliers: -0.5 Límite superior para outliers: 3.5

	Baños	Baños_winsorized
count	6187.000000	6187.000000
mean	1.995151	1.893486
std	0.974112	0.735767
min	1.000000	1.000000
25%	1.000000	1.000000
50%	2.000000	2.000000
75%	2.000000	2.000000
max	16.000000	3.000000

--- Procesando columna: Parqueaderos ---Límite inferior para outliers: -1.5 Límite superior para outliers: 2.5

Resumen estadístico original vs winsorizado:

		•
	Parqueaderos	Parqueaderos_winsorized
count	6187.000000	6187.000000
mean	0.718119	0.699208
std	0.745327	0.685543
min	0.000000	0.000000
25%	0.000000	0.000000
50%	1.000000	1.000000
75%	1.000000	1.000000
max	10.000000	2.000000

--- Procesando columna: Piso No ---Límite inferior para outliers: -4.0 Límite superior para outliers: 12.0

	Piso No	Piso No_winsorized
count	6187.000000	6187.000000
mean	4.878455	4.766607
std	3.606641	3.338994
min	1.000000	1.000000
25%	2.000000	2.000000
50%	4.000000	4.000000
75%	6.000000	6.000000
max	15.000000	12.000000

--- Procesando columna: Área privada (m²) ---Límite inferior para outliers: -21.5 Límite superior para outliers: 174.5

	Área privada (m²)	Área privada (m²)_winsorized
count	6187.000000	6187.000000
mean	97.421490	81.244267
std	407.485976	40.437758
min	1.000000	1.000000
25%	52.000000	52.000000
50%	70.000000	70.000000
75%	101.000000	101.000000
max	24542.000000	174.000000


```
--- Procesando columna: Área Construcción (m²) ---
```

Límite inferior para outliers: -21.5 Límite superior para outliers: 174.5

Resumen estadístico original vs winsorizado:

	Área Construcción (m²)	Área Construcción (m²)_winsorized
count	6187.000000	6187.000000
mean	97.447094	81.303328
std	407.454000	40.399456
min	1.000000	1.000000
25%	52.000000	52.000000
50%	70.000000	70.000000
75%	101.000000	101.000000
max	24542.000000	174.000000

--- Procesando columna: Estrato ---Límite inferior para outliers: 2.5 Límite superior para outliers: 6.5

	Estrato	Estrato_winsorized
count	6187.000000	6187.000000
mean	4.495394	4.511395
std	1.056642	1.024746
min	1.000000	3.000000
25%	4.000000	4.000000
50%	5.000000	5.000000
75%	5.000000	5.000000
max	6.000000	6.000000

--- Procesando columna: Precio ---Límite inferior para outliers: -1100000.0 Límite superior para outliers: 4500000.0

Resumen estadístico original vs winsorizado:

Precio Precio_winsorized count 6.187000e+03 6.187000e+03 mean 2.695619e+06 1.812357e+06 std 2.333965e+07 1.003428e+06 min 2.300000e+05 2.300000e+05 25% 1.000000e+06 1.000000e+06 50% 1.550000e+06 1.550000e+06 75% 2.400000e+06 2.400000e+06 4.500000e+06 max 1.250000e+09


```
In [ ]: #Reinicio indices
data.reset_index(drop=True, inplace=True)
In [ ]: data.tail()
```

		Categoria	Ubicación	Habitaciones	Baños	Parqueaderos	Área privada (m²)	Área Construcción (m²)
61	82	Apartamento	Medellín Poblado Patio Bonito	2	2	1.0	70.0	72.0
61	83	Apartamento	Medellín Centro	2	1	0.0	60.0	60.0
61	84	Apartamento	Medellín Medellín	2	3	2.0	170.0	170.0
61	85	Apartamento	Medellín Loma de San Julian	2	2	1.0	77.0	77.0
61	86	Apartamento	Medellín Belen	2	2	1.0	76.0	76.0
4 (_						•

Correlation analysis

Data sin Winsorizar

```
In []: #Paso mi df ya creado con todas las columnas a mi data_subset
    data_subset = data[total_columnas] #Con esto lo paso a lista

#matriz_correlacion = total_columnas.corr() #No usar directamente total_columnas =
    #se crea la mtriz de correlacion y se muestra
    matriz_correlacion = data_subset.corr()

plt.figure(figsize=(10, 8))
    sns.heatmap(matriz_correlacion, cmap='coolwarm', annot=True, fmt=".2f", linewidths=
    plt.title("Mapa de Correlación: con variables normales")
    plt.tight_layout()
    plt.show()

print(matriz_correlacion['Precio'])
```


Habitaciones 0.048226 Baños 0.084487 Parqueaderos 0.073888 Piso No 0.007256 Área privada (m²) 0.016763 Área Construcción (m²) 0.016755 Estrato 0.054342 Precio 1.000000

Name: Precio, dtype: float64

Data Winsorizada

```
#matriz_correlacion = variables_winsorized.corr() #No usar directamente variables_w
#Se crea la mtriz de correlacion y se muestra
matriz_correlacion = data_subset.corr()

plt.figure(figsize=(10, 8))
sns.heatmap(matriz_correlacion, cmap='coolwarm', annot=True, fmt=".2f", linewidths=
plt.title("Mapa de Correlación: con variables winsorized")
plt.tight_layout()
plt.show()

print(matriz_correlacion['Precio_winsorized'])
```


Habitaciones_winsorized	0.519105
Baños_winsorized	0.694434
Parqueaderos_winsorized	0.663107
Área privada (m²)_winsorized	0.806358
Área Construcción (m²)_winsorized	0.806313
Estrato_winsorized	0.674423
Piso No_winsorized	0.291445
Precio_winsorized	1.000000

Name: Precio_winsorized, dtype: float64

Se excluye el 'piso' ya que no está tan correlacionado como las otras variables, ademas de 'Área privada (m²)_winsorized' ya que es lo mismo que la variable 'Área Construcción (m²)_winsorized' y esto puede afectar el modelo

Modeling (ML)

Regresión lineal simple

```
In [ ]: from sklearn.linear_model import LinearRegression
In [ ]: data_train = data.iloc[:6185]
        data_test = data.iloc[6185::]
In [ ]: #Se prerpara la variable independiente como matriz 2D. Para esto le pongo oble corc
        x = data_train[['Área Construcción (m²)_winsorized']]
        y = data_train['Precio_winsorized']
        x_test = data_test[['Área Construcción (m²)_winsorized']]
        y_test = data_test['Precio_winsorized']
        #Creo el modelo
        modelo_lr = LinearRegression()
        #Ajustar modelo a los datos
        modelo_lr.fit(x,y)
        #Se imprimen los resultados obtenidos
        print(f'pendiente (m): {modelo_lr.coef_[0]}')
        print(f'Intercepto de y (m): {modelo_lr.intercept_}')
        #Predicciones realizada por el modelo
        data_nueva = pd.DataFrame({'Área Construcción (m²)_winsorized': [150, 200, 250]})
        predicciones = modelo lr.predict(data nueva)
        #Predicciones para los datos en data_test
        predicciones_test = modelo_lr.predict(x_test)
        # Se imprimen los resultados obtenidos con la prediccion
        print("\nPredicciones para 1500 y 2500 en Área Construcción (m²)_winsorized:")
        print(predicciones)
        print("\n")
        plt.figure(figsize=(10, 6))
        sns.regplot(x='Área Construcción (m²)_winsorized', y='Precio_winsorized', data=data
        # Añade etiquetas y título
        plt.xlabel('Área Construcción (m²)')
        plt.ylabel('Precio')
        plt.title('Regresión Lineal Simple del Precio vs. Área Construcción (Datos de entre
```

```
# Grafica los puntos de las predicciones
plt.scatter(data_nueva['Área Construcción (m²)_winsorized'], predicciones, color='y
pendiente (m): 20026.713819088403
Intercepto de y (m): 184188.20587913995

Predicciones para 1500 y 2500 en Área Construcción (m²)_winsorized:
[3188195.2787424 4189530.96969682 5190866.66065124]
```

Out[]: <matplotlib.collections.PathCollection at 0x7d32b66640d0>

Regresion lineal múltiple

Variables de mayor correlación

```
In [ ]: import statsmodels.api as sm
In [ ]: print(data.shape)
       (6187, 18)
In [ ]: data_train = data.iloc[:6185]
        data_test = data.iloc[6185::]
In [ ]: x_1 = data_train[['Habitaciones_winsorized',
            'Baños_winsorized',
            'Parqueaderos winsorized',
            'Área Construcción (m²)_winsorized',
            'Estrato_winsorized']]
        y_1 = data_train['Precio_winsorized']
In [ ]: modelo_mlr1 = LinearRegression()
        modelo_mlr1.fit(x_1, y_1)
Out[]: • LinearRegression
        LinearRegression()
In [ ]: for columna in x_1.columns:
            # 1. Seleccionar la variable predictora individual
            variable_predictora = x_1[[columna]]
            # 2. Añadir una constante para el intercepto en la regresión simple
            variable_predictora_con_constante = sm.add_constant(variable_predictora)
            # 3. Ajustar el modelo de regresión lineal simple
            modelo_simple = sm.OLS(y_1, variable_predictora_con_constante).fit()
            # 4. Obtener el intercepto y la pendiente para esta variable
            intercepto_simple = modelo_simple.params['const']
            pendiente_simple = modelo_simple.params[columna]
```

```
# 5. Imprimir los resultados
            print(f"Variable: {columna:<35} | Intercepto: {intercepto simple:>10.4f} | Pend
                                                   | Intercepto: 497263.5809 | Pendiente:
      Variable: Habitaciones winsorized
      563446.4364
      Variable: Baños_winsorized
                                                   | Intercepto: 19197.5718 | Pendiente:
      947085.1736
      Variable: Parqueaderos winsorized
                                                   | Intercepto: 1133820.6055 | Pendient
      e: 970714.8486
      Variable: Área Construcción (m²)_winsorized | Intercepto: 184188.2059 | Pendiente:
      20026.7138
      Variable: Estrato_winsorized
                                                   | Intercepto: -1167603.4404 | Pendient
      e: 660538.9453
In [ ]: x_1test = data_test[['Habitaciones_winsorized',
            'Baños_winsorized',
            'Parqueaderos_winsorized',
            'Área Construcción (m²)_winsorized',
            'Estrato winsorized']]
        y_1test = data_test['Precio_winsorized']
In [ ]: predicciones mlr1 = modelo mlr1.predict(x 1test)
        precios_reales = y_1test.tolist()
        print("Resultados:")
        print("----")
        suma precisiones = 0
        total = len(precios_reales)
        for real, predicho in zip(precios_reales, predicciones_mlr1):
            precision = 100 - (abs(real - predicho) / real * 100)
            suma_precisiones += precision
            print(f"Precio real: ${real:,.0f}")
            print(f"Precio predicho: ${predicho:,.2f}")
            print(f"Precisión: {precision:.2f}%")
            print("----")
        precision_promedio = suma_precisiones / total
        print(f" ✓ Precisión promedio del modelo: {precision promedio:.2f}%")
      Resultados:
      Precio real: $1,700,000
      Precio predicho: $2,014,305.45
      Precisión: 81.51%
       _____
      Precio real: $1,300,000
      Precio predicho: $1,437,568.79
      Precisión: 89.42%
       ✓ Precisión promedio del modelo: 85.46%
In [ ]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6187 entries, 0 to 6186
Data columns (total 18 columns):

#	Column	Non-N	Null Count	Dtype	
0	Categoria	6187	non-null	object	
1	Ubicación	6187	non-null	object	
2	Habitaciones	6187	non-null	int64	
3	Baños	6187	non-null	int64	
4	Parqueaderos	6187	non-null	float64	
5	Área privada (m²)	6187	non-null	float64	
6	Área Construcción (m²)	6187	non-null	float64	
7	Estrato	6187	non-null	float64	
8	Piso No	6187	non-null	float64	
9	Precio	6187	non-null	int64	
10	Habitaciones_winsorized	6187	non-null	int64	
11	Baños_winsorized	6187	non-null	int64	
12	Parqueaderos_winsorized	6187	non-null	float64	
13	Piso No_winsorized	6187	non-null	float64	
14	Área privada (m²)_winsorized	6187	non-null	float64	
15	Área Construcción (m²)_winsorized	6187	non-null	float64	
16	Estrato_winsorized	6187	non-null	float64	
17	Precio_winsorized	6187	non-null	int64	
types: float64(10), int64(6), object(2)					

memory usage: 870.2+ KB

In []: data_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 6185 to 6186

Data columns (total 18 columns):

```
# Column
                                     Non-Null Count Dtype
--- -----
                                     _____
                                                    ----
0
   Categoria
                                     2 non-null
                                                    object
    Ubicación
                                     2 non-null
                                                    object
   Habitaciones
                                    2 non-null
                                                    int64
    Baños
                                     2 non-null
                                                    int64
    Parqueaderos
                                    2 non-null
                                                    float64
 5
    Área privada (m²)
                                     2 non-null
                                                    float64
    Área Construcción (m²)
                                    2 non-null
                                                    float64
    Estrato
                                    2 non-null
                                                    float64
    Piso No
                                     2 non-null
                                                    float64
    Precio
                                    2 non-null
                                                    int64
 10 Habitaciones_winsorized
                                     2 non-null
                                                    int64
11 Baños_winsorized
                                    2 non-null
                                                    int64
12 Parqueaderos_winsorized
                                    2 non-null
                                                    float64
13 Piso No_winsorized
                                    2 non-null
                                                    float64
14 Área privada (m²)_winsorized 2 non-null
                                                    float64
15 Área Construcción (m²)_winsorized 2 non-null
                                                    float64
 16 Estrato winsorized
                                     2 non-null
                                                    float64
 17 Precio_winsorized
                                     2 non-null
                                                    int64
dtypes: float64(10), int64(6), object(2)
```

memory usage: 420.0+ bytes

memory usage. 420.0+ bytes

In []: #Gráfico de regresion linela múltiple con variables de mayor correlación
num_cols = len(x_1test.columns)

```
num filas = 3
num_cols_por_fila = 3
total_subplots = num_filas * num_cols_por_fila
fig, axes = plt.subplots(num_filas, num_cols_por_fila, figsize=(15, 20))
for i, col in enumerate(x_1test.columns):
   fila = i // num_cols_por_fila
   columna = i % num cols por fila
   ax = axes[fila, columna]
   sns.scatterplot(x=x_1[col], y=y_1, ax=ax, label='Precio Real (Prueba)')
   sns.scatterplot(x=x_1test[col], y=predicciones_mlr1, ax=ax, color='yellow', mar
    # Ensure x_range is based on the test data range for plotting purposes
   x_range = np.linspace(x_1test[col].min(), x_1test[col].max())
   # Create a DataFrame with the correct column name for prediction
   x_range_df = pd.DataFrame({col: x_range})
   # Fit the simple model on the test data for plotting the simple regression line
   modelo_simple = sm.OLS(y_1test, sm.add_constant(x_1test[col])).fit()
   # Predict using the correctly structured DataFrame with constant
   y_pred_line = modelo_simple.predict(sm.add_constant(x_range_df, prepend=True))
   ax.plot(x_range, y_pred_line, color='red', linestyle='-', label=f'Regresión Sim
   ax.set_title(f'Precio vs. {col}')
   ax.set xlabel(col)
   ax.set_ylabel('Precio')
   ax.legend()
# Ocultar los subplots vacíos si es necesario
if num cols < total subplots:</pre>
   for j in range(num_cols, total_subplots):
       fila = j // num_cols_por_fila
        columna = j % num_cols_por_fila
        fig.delaxes(axes[fila, columna])
```


Data completa

```
Out[]: v LinearRegression v linearRegression()
```

```
In [ ]: for columna in x_1_complete.columns:
            # 1. Seleccionar la variable predictora individual
            variable_predictora = x_1_complete[[columna]]
            # 2. Añadir una constante para el intercepto en la regresión simple
            variable_predictora_con_constante = sm.add_constant(variable_predictora)
            # 3. Ajustar el modelo de regresión lineal simple
            modelo_simple = sm.OLS(y_1_complete, variable_predictora_con_constante).fit()
            # 4. Obtener el intercepto y la pendiente para esta variable
            intercepto_simple = modelo_simple.params['const']
            pendiente_simple = modelo_simple.params[columna]
            # 5. Imprimir los resultados
            print(f"Variable: {columna:<35} | Intercepto: {intercepto_simple:>10.4f} | Pend
                                                    | Intercepto: 497263.5809 | Pendiente:
       Variable: Habitaciones winsorized
       563446.4364
       Variable: Baños_winsorized
                                                    | Intercepto: 19197.5718 | Pendiente:
       947085.1736
       Variable: Parqueaderos_winsorized
                                                   | Intercepto: 1133820.6055 | Pendient
       e: 970714.8486
       Variable: Área privada (m²) winsorized | Intercepto: 186821.1534 | Pendiente:
       20008.8696
       Variable: Área Construcción (m²)_winsorized | Intercepto: 184188.2059 | Pendiente:
       20026.7138
       Variable: Estrato_winsorized
                                                    | Intercepto: -1167603.4404 | Pendient
       e: 660538.9453
       Variable: Piso No winsorized
                                                    | Intercepto: 1394940.9808 | Pendient
       e: 87587.4736
In [ ]: x_1_complete_test = data_test[[
            'Habitaciones winsorized',
            'Baños_winsorized',
            'Parqueaderos_winsorized',
            'Área privada (m²)_winsorized',
            'Área Construcción (m²)_winsorized',
            'Estrato_winsorized',
            'Piso No winsorized'
        ]]
        y_1_complete_test = data_test['Precio_winsorized']
In [ ]: predicciones mlr2 = modelo mlr2.predict(x 1 complete test)
        precios_reales = y_1_complete_test.tolist()
        print("Resultados:")
        print("----")
        suma_precisiones = 0
```

```
total = len(precios_reales)
 for real, predicho in zip(precios reales, predicciones mlr2):
    precision = 100 - (abs(real - predicho) / real * 100)
    suma_precisiones += precision
    print(f"Precio real: ${real:,.0f}")
    print(f"Precio predicho: ${predicho:,.2f}")
    print(f"Precisión: {precision:.2f}%")
    print("----")
 precision_promedio = suma_precisiones / total
 print(f" ✓ Precisión promedio del modelo: {precision promedio:.2f}%")
Resultados:
-----
```

Precio real: \$1,700,000

Precio predicho: \$1,941,775.83

Precisión: 85.78%

Precio real: \$1,300,000

Precio predicho: \$1,453,614.65

Precisión: 88.18%

✓ Precisión promedio del modelo: 86.98%

```
In [ ]: data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6187 entries, 0 to 6186 Data columns (total 18 columns):

```
# Column
                                    Non-Null Count Dtype
--- -----
                                     _____
   Categoria
                                    6187 non-null
                                                   object
                                    6187 non-null
 1
    Ubicación
                                                   object
    Habitaciones
                                                   int64
 2
                                    6187 non-null
 3
    Baños
                                                   int64
                                   6187 non-null
                                   6187 non-null
   Parqueaderos
                                                   float64
                                   6187 non-null float64
   Área privada (m²)
    Área Construcción (m²)
                                   6187 non-null
                                                   float64
 7
    Estrato
                                   6187 non-null float64
   Piso No
                                   6187 non-null
                                                   float64
 9
    Precio
                                   6187 non-null
                                                   int64
10 Habitaciones_winsorized
                                  6187 non-null
                                                   int64
11 Baños_winsorized
                                   6187 non-null
                                                   int64
12 Parqueaderos_winsorized
                                  6187 non-null
                                                   float64
13 Piso No_winsorized
                                    6187 non-null
                                                   float64
 14 Área privada (m²)_winsorized 6187 non-null
                                                   float64
 15 Área Construcción (m²)_winsorized 6187 non-null
                                                   float64
16 Estrato winsorized
                                    6187 non-null float64
17 Precio_winsorized
                                    6187 non-null
                                                   int64
dtypes: float64(10), int64(6), object(2)
memory usage: 870.2+ KB
```

```
In [ ]: data_test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 6185 to 6186
Data columns (total 18 columns):
# Column
                                     Non-Null Count Dtype
--- -----
                                     _____
0
   Categoria
                                     2 non-null
                                                    object
1
    Ubicación
                                     2 non-null
                                                    object
    Habitaciones
                                     2 non-null
                                                    int64
 3
    Baños
                                    2 non-null
                                                    int64
4
    Parqueaderos
                                                    float64
                                    2 non-null
 5
    Área privada (m²)
                                    2 non-null
                                                    float64
    Área Construcción (m²)
                                   2 non-null
                                                    float64
 7
    Estrato
                                     2 non-null
                                                    float64
    Piso No
                                    2 non-null
                                                    float64
 9
    Precio
                                     2 non-null
                                                    int64
10 Habitaciones winsorized
                                   2 non-null
                                                    int64
11 Baños_winsorized
                                    2 non-null
                                                    int64
12 Parqueaderos_winsorized
                                   2 non-null
                                                    float64
13 Piso No winsorized
                                    2 non-null
                                                    float64
 14 Área privada (m²)_winsorized
                                   2 non-null
                                                    float64
15 Área Construcción (m²)_winsorized 2 non-null
                                                    float64
16 Estrato winsorized
                                     2 non-null
                                                    float64
17 Precio_winsorized
                                     2 non-null
                                                    int64
dtypes: float64(10), int64(6), object(2)
memory usage: 420.0+ bytes
```

```
In [ ]: #Gráfico de regresion lineal múltiple con toda la data completa
        num_cols = len(x_1_complete_test.columns)
        num filas = 3
        num_cols_por_fila = 3
        total_subplots = num_filas * num_cols_por_fila
        fig, axes = plt.subplots(num_filas, num_cols_por_fila, figsize=(15, 20))
        for i, col in enumerate(x_1_complete_test.columns):
            fila = i // num_cols_por_fila
            columna = i % num_cols_por_fila
            ax = axes[fila, columna]
            sns.scatterplot(x=x_1_complete[col], y=y_1_complete, ax=ax, label='Precio Real
            sns.scatterplot(x=x_1_complete_test[col], y=predicciones_mlr2, ax=ax, color='ye
            # modelo_simple = sm.OLS(y_1test, sm.add_constant(x_1test[col])).fit()
            \# x\_range = np.linspace(x\_1[col].min(), x\_1[col].max(), 100)
            # y_pred_line = modelo_simple.predict(sm.add_constant(pd.Series(x_range)))
            # ax.plot(x_range, y_pred_line, color='red', linestyle='-', label=f'Regresión S
             # Ensure x_range is based on the test data range for plotting purposes
            x_range = np.linspace(x_1_complete_test[col].min(), x_1_complete_test[col].max(
            # Create a DataFrame with the correct column name for prediction
            x_range_df = pd.DataFrame({col: x_range})
```

```
# Fit the simple model on the test data for plotting the simple regression line
modelo_simple = sm.OLS(y_1_complete_test, sm.add_constant(x_1_complete_test[col

# Predict using the correctly structured DataFrame with constant
y_pred_line = modelo_simple.predict(sm.add_constant(x_range_df, prepend=True))

ax.plot(x_range, y_pred_line, color='red', linestyle='-', label=f'Regresión Sim

ax.set_title(f'Precio vs. {col}')
ax.set_xlabel(col)
ax.set_ylabel('Precio')
ax.legend()

# Ocultar los subplots vacíos si es necesario
if num_cols < total_subplots:
    for j in range(num_cols, total_subplots):
        fila = j // num_cols_por_fila
        columna = j % num_cols_por_fila
        fig.delaxes(axes[fila, columna])</pre>
```


Regresión RANSAC

Variables con mayor correlación

In []: from sklearn.linear_model import LinearRegression, RANSACRegressor

```
In [ ]: #Definimos variables independientes ydependientes
        x_2 = data_train[['Habitaciones_winsorized',
           'Baños_winsorized',
            'Parqueaderos winsorized',
            'Área Construcción (m²)_winsorized',
            'Estrato_winsorized']]
        y_2 = data_train['Precio_winsorized']
In [ ]: modelo_ransac = RANSACRegressor(estimator=LinearRegression())
       modelo_ransac.fit(x_2, y_2)
           -----
Out[]: | •
              RANSACRegressor
                  estimator:
              LinearRegression
            LinearRegression
In [ ]: x_2test = data_test[['Habitaciones_winsorized',
            'Baños_winsorized',
            'Parqueaderos_winsorized',
            'Área Construcción (m²)_winsorized',
            'Estrato_winsorized']]
       y_2test = data_test['Precio_winsorized']
In [ ]: #Graficar el modelo
        predicciones_ransac = modelo_ransac.predict(x_2test)
In [ ]: precios_reales = y_2test.tolist()
        print("Resultados:")
        print("-----")
        suma_precisiones = 0
        total = len(precios_reales)
        for real, predicho in zip(precios_reales, predicciones_ransac):
           precision = 100 - (abs(real - predicho) / real * 100)
           suma precisiones += precision
           print(f"Precio real: ${real:,.0f}")
           print(f"Precio predicho: ${predicho:,.2f}")
           print(f"Precisión: {precision:.2f}%")
           print("----")
        precision promedio = suma precisiones / total
        print(f" ✓ Precisión promedio del modelo: {precision_promedio:.2f}%")
```

Resultados:

✓ Precisión promedio del modelo: 92.64%

```
In [ ]: #Gráfico de regresion RANSAC con variables de mayor correlación
        num_cols = len(x_2test.columns)
        num_filas = 3
        num_cols_por_fila = 3
        total_subplots = num_filas * num_cols_por_fila
        fig, axes = plt.subplots(num filas, num cols por fila, figsize=(15, 20))
        for i, col in enumerate(x_2test.columns):
            fila = i // num_cols_por_fila
            columna = i % num_cols_por_fila
            ax = axes[fila, columna]
            sns.scatterplot(x=x_2[col], y=y_2, ax=ax, label='Precio Real (Prueba)')
            sns.scatterplot(x=x_2test[col], y=predicciones_ransac, ax=ax, color='yellow', m
             # Ensure x_range is based on the test data range for plotting purposes
            x_range = np.linspace(x_2test[col].min(), x_2test[col].max(), 100)
            # Create a DataFrame with the correct column name for prediction
            x_range_df = pd.DataFrame({col: x_range})
            # Fit the simple model on the test data for plotting the simple regression line
            modelo_simple = sm.OLS(y_2test, sm.add_constant(x_2test[col])).fit()
            # Predict using the correctly structured DataFrame with constant
            y_pred_line = modelo_simple.predict(sm.add_constant(x_range_df, prepend=True))
            ax.plot(x_range, y_pred_line, color='red', linestyle='-', label=f'Regresión Sim
            ax.set_title(f'Precio vs. {col}')
            ax.set_xlabel(col)
            ax.set_ylabel('Precio')
            ax.legend()
        # Ocultar los subplots vacíos si es necesario
        if num_cols < total_subplots:</pre>
            for j in range(num_cols, total_subplots):
                fila = j // num cols por fila
                columna = j % num_cols_por_fila
                fig.delaxes(axes[fila, columna])
```


Data completa

Resultados:

✓ Precisión promedio del modelo: 97.04%

```
In [ ]: #Gráfico de regresion RANSAC con toda la data completa
        num_cols = len(x_2_complete_test.columns)
        num filas = 3
        num cols por fila = 3
        total_subplots = num_filas * num_cols_por_fila
        fig, axes = plt.subplots(num_filas, num_cols_por_fila, figsize=(15, 20))
        for i, col in enumerate(x_2_complete_test.columns):
            fila = i // num_cols_por_fila
            columna = i % num_cols_por_fila
            ax = axes[fila, columna]
            sns.scatterplot(x=x_2_complete[col], y=y_2_complete, ax=ax, label='Precio Real
            sns.scatterplot(x=x_2_complete_test[col], y=predicciones_ransac2, ax=ax, color=
             # Ensure x_range is based on the test data range for plotting purposes
            x_range = np.linspace(x_2_complete_test[col].min(), x_2_complete_test[col].max(
            # Create a DataFrame with the correct column name for prediction
            x_range_df = pd.DataFrame({col: x_range})
            # Fit the simple model on the test data for plotting the simple regression line
            modelo_simple = sm.OLS(y_2_complete_test, sm.add_constant(x_2_complete_test[col
            # Predict using the correctly structured DataFrame with constant
            y_pred_line = modelo_simple.predict(sm.add_constant(x_range_df, prepend=True))
            ax.plot(x_range, y_pred_line, color='red', linestyle='-', label=f'Regresión Sim
            ax.set title(f'Precio vs. {col}')
            ax.set_xlabel(col)
            ax.set_ylabel('Precio')
            ax.legend()
        # Ocultar los subplots vacíos si es necesario
        if num cols < total subplots:</pre>
            for j in range(num_cols, total_subplots):
                fila = j // num_cols_por_fila
                columna = j % num_cols_por_fila
                fig.delaxes(axes[fila, columna])
```


Regresión polinómica

Variables con mayor correlacion

```
In [ ]: from sklearn.preprocessing import PolynomialFeatures
       from sklearn.metrics import mean squared error
In [ ]: #Definimos variables independientes ydependientes
       x_3 = data_train[['Habitaciones_winsorized',
           'Baños winsorized',
           'Parqueaderos_winsorized',
           'Área Construcción (m²)_winsorized',
           'Estrato_winsorized']]
       y_3 = data_train['Precio_winsorized']
In [ ]: #Definimos variables independientes ydependientes
       x_3test = data_test[['Habitaciones_winsorized',
           'Baños_winsorized',
           'Parqueaderos_winsorized',
           'Área Construcción (m²)_winsorized',
           'Estrato_winsorized']]
       y_3test = data_test['Precio_winsorized']
In [ ]: grado = 2
       poly_features = PolynomialFeatures(degree=grado, include_bias=False)
       x_poly = poly_features.fit_transform(x_3)
        x_poly_test = poly_features.fit_transform(x_3test)
In [ ]: | model poly = LinearRegression()
       model_poly.fit(x_poly, y_3)
Out[ ]:
        LinearRegression
       LinearRegression()
In [ ]: poly_predict = model_poly.predict(x_poly_test)
In [ ]: precios_reales = y_3test.tolist()
        print("Resultados:")
        print("----")
        suma_precisiones = 0
        total = len(precios_reales)
       for real, predicho in zip(precios_reales, poly_predict):
           precision = 100 - (abs(real - predicho) / real * 100)
           suma_precisiones += precision
           print(f"Precio real: ${real:,.0f}")
           print(f"Precio predicho: ${predicho:,.2f}")
           print(f"Precisión: {precision:.2f}%")
           print("----")
        precision promedio = suma precisiones / total
```

Resultados:

✓ Precisión promedio del modelo: 86.89%

```
In [ ]: #Gráfico de regresion polinómica con variables de mayor correlación
        num_cols = len(x_3test.columns)
        num_filas = 3
        num_cols_por_fila = 3
        total_subplots = num_filas * num_cols_por_fila
        fig, axes = plt.subplots(num filas, num cols por fila, figsize=(15, 20))
        for i, col in enumerate(x_3test.columns):
            fila = i // num_cols_por_fila
            columna = i % num_cols_por_fila
            ax = axes[fila, columna]
            sns.scatterplot(x=x_3[col], y=y_3, ax=ax, label='Precio Real (Prueba)')
            sns.scatterplot(x=x_3test[col], y=poly_predict, ax=ax, color='yellow', marker='
             # Ensure x_range is based on the test data range for plotting purposes
            x_range = np.linspace(x_3test[col].min(), x_3test[col].max(), 100)
            # Create a DataFrame with the correct column name for prediction
            x range df = pd.DataFrame({col: x range})
            # Fit the simple model on the test data for plotting the simple regression line
            modelo_simple = sm.OLS(y_3test, sm.add_constant(x_3test[col])).fit()
            # Predict using the correctly structured DataFrame with constant
            y_pred_line = modelo_simple.predict(sm.add_constant(x_range_df, prepend=True))
            ax.plot(x_range, y_pred_line, color='red', linestyle='-', label=f'Regresión Sim
            ax.set_title(f'Precio vs. {col}')
            ax.set xlabel(col)
            ax.set_ylabel('Precio')
            ax.legend()
        # Ocultar los subplots vacíos si es necesario
        if num_cols < total_subplots:</pre>
            for j in range(num_cols, total_subplots):
                fila = j // num_cols_por_fila
                columna = j % num_cols_por_fila
                fig.delaxes(axes[fila, columna])
```


Data Completa

```
In [ ]: #Definimos variables independientes ydependientes
        x_3_complete = data_train[[
             'Habitaciones_winsorized',
             'Baños_winsorized',
             'Parqueaderos_winsorized',
             'Área privada (m²)_winsorized',
             'Área Construcción (m²)_winsorized',
             'Estrato_winsorized',
             'Piso No_winsorized']]
        y_3_complete = data_train['Precio_winsorized']
In [ ]: #Definimos variables independientes ydependientes
        x_3_complete_test = data_test[[
             'Habitaciones_winsorized',
             'Baños winsorized',
             'Parqueaderos_winsorized',
             'Área privada (m²)_winsorized',
             'Área Construcción (m²)_winsorized',
             'Estrato_winsorized',
             'Piso No_winsorized']]
        y_3_complete_test = data_test['Precio_winsorized']
```

```
In [ ]: grado = 2
        poly features complete = PolynomialFeatures(degree=grado, include bias=False)
        x_complete_poly = poly_features_complete.fit_transform(x_3_complete)
        x complete poly test = poly features complete.fit transform(x 3 complete test)
In [ ]: model poly complete = LinearRegression()
        model_poly_complete.fit(x_complete_poly, y_3_complete)
Out[]:
        ▼ LinearRegression
       LinearRegression()
In [ ]: poly_complete_predict = model_poly_complete.predict(x_complete_poly_test)
In [ ]: precios_reales = y_3_complete_test.tolist()
        print("Resultados:")
        print("-----")
        suma_precisiones = 0
        total = len(precios_reales)
        for real, predicho in zip(precios_reales, poly_complete_predict):
           precision = 100 - (abs(real - predicho) / real * 100)
           suma precisiones += precision
           print(f"Precio real: ${real:,.0f}")
           print(f"Precio predicho: ${predicho:,.2f}")
           print(f"Precisión: {precision:.2f}%")
           print("----")
        precision_promedio = suma_precisiones / total
        print(f" ✓ Precisión promedio del modelo: {precision promedio:.2f}%")
      Resultados:
      -----
      Precio real: $1,700,000
      Precio predicho: $1,787,466.08
      Precisión: 94.85%
       ______
      Precio real: $1,300,000
      Precio predicho: $1,510,741.84
      Precisión: 83.79%
       Precisión promedio del modelo: 89.32%
In [ ]: #Gráfico de regresion polinómica con toda la data completa
        num_cols = len(x_3_complete_test.columns)
        num_filas = 3
        num_cols_por_fila = 3
        total_subplots = num_filas * num_cols_por_fila
        fig, axes = plt.subplots(num_filas, num_cols_por_fila, figsize=(15, 20))
        for i, col in enumerate(x_3_complete_test.columns):
```

```
fila = i // num_cols_por_fila
   columna = i % num_cols_por_fila
   ax = axes[fila, columna]
   sns.scatterplot(x=x_3_complete[col], y=y_3_complete, ax=ax, label='Precio Real
   sns.scatterplot(x=x_3_complete_test[col], y=poly_complete_predict, ax=ax, color
    # Ensure x_range is based on the test data range for plotting purposes
   x_range = np.linspace(x_3_complete_test[col].min(), x_3_complete_test[col].max(
   # Create a DataFrame with the correct column name for prediction
   x_range_df = pd.DataFrame({col: x_range})
   # Fit the simple model on the test data for plotting the simple regression line
   modelo_simple = sm.OLS(y_3_complete_test, sm.add_constant(x_3_complete_test[col
   # Predict using the correctly structured DataFrame with constant
   y_pred_line = modelo_simple.predict(sm.add_constant(x_range_df, prepend=True))
   ax.plot(x_range, y_pred_line, color='red', linestyle='-', label=f'Regresión Sim
   ax.set_title(f'Precio vs. {col}')
   ax.set_xlabel(col)
   ax.set_ylabel('Precio')
   ax.legend()
# Ocultar los subplots vacíos si es necesario
if num cols < total subplots:</pre>
   for j in range(num_cols, total_subplots):
       fila = j // num_cols_por_fila
        columna = j % num_cols_por_fila
        fig.delaxes(axes[fila, columna])
```


Metricas del modelo

Necesito que el R^2 suba(indica que el modelo explica una buena parte de la varianza), el error típico RMSE baje (indicando que tus errores de predicción son pequeños)

```
In [ ]: #Para regresión lineal simple
        r2 = r2_score(y_test, predicciones_test)
        rmse = np.sqrt(mean_squared_error(y_test, predicciones_test))
        print(f"Coeficiente de determinación (R^2): {r2:.4f}")
        print(f"Error cuadrático medio (RMSE): {rmse:.4f}")
       Coeficiente de determinación (R^2): -1.0713
       Error cuadrático medio (RMSE): 287838.7075
In [ ]: #Para regresión lineal múltiple con variables de mayor correlación
        r2 = r2_score(y_1test, predicciones_mlr1)
        rmse = np.sqrt(mean_squared_error(y_1test, predicciones_mlr1))
        print(f"Coeficiente de determinación (R^2): {r2:.4f}")
        print(f"Error cuadrático medio (RMSE): {rmse:.4f}")
       Coeficiente de determinación (R^2): -0.4714
       Error cuadrático medio (RMSE): 242603.6759
In [ ]: #Para regresión lineal múltiple con toda la data completa
        r2 = r2_score(y_1_complete_test, predicciones_mlr2)
        rmse = np.sqrt(mean_squared_error(y_1_complete_test, predicciones_mlr2))
        print(f"Coeficiente de determinación (R^2): {r2:.4f}")
        print(f"Error cuadrático medio (RMSE): {rmse:.4f}")
       Coeficiente de determinación (R^2): -0.0257
       Error cuadrático medio (RMSE): 202550.0109
In [ ]: #Para regresión RANSAC con variables de mayor correlación
        r2 = r2_score(y_2test, predicciones_ransac)
        rmse = np.sqrt(mean_squared_error(y_2test, predicciones_ransac))
        print(f"Coeficiente de determinación (R^2): {r2:.4f}")
        print(f"Error cuadrático medio (RMSE): {rmse:.4f}")
       Coeficiente de determinación (R^2): 0.7114
       Error cuadrático medio (RMSE): 107448.8863
In [ ]: #Para regresión RANSAC con toda la data completa
        r2 = r2_score(y_2_complete_test, predicciones_ransac2)
        rmse = np.sqrt(mean_squared_error(y_2_complete_test, predicciones_ransac2))
        print(f"Coeficiente de determinación (R^2): {r2:.4f}")
        print(f"Error cuadrático medio (RMSE): {rmse:.4f}")
       Coeficiente de determinación (R^2): 0.9117
       Error cuadrático medio (RMSE): 59439.2290
In [ ]: #Para regresión polinómica con variables de mayor correlación
        r2 = r2_score(y_3test, poly_predict)
        rmse = np.sqrt(mean_squared_error(y_3test, poly_predict))
        print(f"Coeficiente de determinación (R^2): {r2:.4f}")
        print(f"Error cuadrático medio (RMSE): {rmse:.4f}")
```

```
Coeficiente de determinación (R^2): 0.0831
Error cuadrático medio (RMSE): 191513.6252
```

```
In [ ]: #Para regresión polinómica con toda la data completa
        r2 = r2_score(y_3_complete_test, poly_complete_predict)
        rmse = np.sqrt(mean_squared_error(y_3_complete_test, poly_complete_predict))
        print(f"Coeficiente de determinación (R^2): {r2:.4f}")
        print(f"Error cuadrático medio (RMSE): {rmse:.4f}")
```

Coeficiente de determinación (R^2): 0.3492 Error cuadrático medio (RMSE): 161341.9355

Conclusión

El mejor modelo es el mismo RANSAC pero con las varaibles de correlación. Esto se debe a que el modelo RANSAC con toda la data aunque tiene el mejor r2 score (0.9117) y RMSE (59439.2290), tiene una variable de Precio por metros cuadrados, lo cual puede afectar al modelo ya que indirectamente le estamos enviando el precio. Este posee un r2 score de 0.711, lo cual significa que el modelo explica el 71,11% de la variabilidad de los datos. También presenta un error cuadrático medio(RMSE) de la variable a predecir(precio) de 107448.8863 lo que indica, que en promedio, el cuadrado del error entre los precios predichos y los reales es de ~107,448 COP(Pesos colombianos).

Conversion de Jupyter a HTML

```
!jupyter nbconvert --to html "/content/TrafficML_JuanMonsalve.ipynb"
```