Calcolo differenziale

L'operazione di derivata

Sia $f: A \rightarrow R$. Si vuole conoscere l'equazione della retta tangente al grafico della funzione in un punto.

Retta secante

Retta tangente

Derivata di f in un punto

Sia f: $A \rightarrow R$ e sia $x \in A$. Diciamo che la funzione f è derivabile in x se $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ esiste ed è finito.

Il risultato del limite si chiama derivata della funzione f in x.

La derivata di f in un punto è un numero.

Derivata di f in un punto

La derivata di f in un punto si può definire anche ponendo x+h = x_0 e si ha $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

e si rappresenta come

$$f'(x_0) \qquad \qquad D(f)|_{x^0}$$

$$\frac{df}{dx}|_{x^0}$$

Retta tangente al grafico di f in $P(x_0, y_0)$

Sia
$$f: A \rightarrow R$$
 derivabile in x_0 .
 $x_0 \quad y_0$

La retta tangente al grafico di f in P (x_0,y_0) è

$$y-y_0 = m(x-x_0)$$

 $y-y_0 = f'(x_0)(x-x_0)$

Derivata di f in un intervallo

Sia f: A
$$\rightarrow$$
 R se $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ esiste ed

è finito per tutti i punti di I⊂A allora la funzione è derivabile in I.

Sia $f: A \rightarrow R$. Se f è derivabile in x_0 allora è continua in x_0 .

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\lim_{x \to x_0} [f(x) - f(x_0)]^? = 0$$

$$\lim_{x \to x_0} [f(x) - f(x_0)] \frac{x - x_0}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} [x - x_0]$$

Sia $f: A \rightarrow R$. Se f è derivabile in x_0 allora è continua in x_0 .

ATTENZIONE: Non vale il viceversa.

Punti angolosi

Sia $f: A \rightarrow R$. Se f è derivabile in x_0 allora è continua in x_0 .

ATTENZIONE: Non vale il viceversa.

Sia $f: A \rightarrow R$. Se f è derivabile in x_0 allora è continua in x_0 .

ATTENZIONE: Non vale il viceversa.

Flessi a tangente verticale

Derivate fondamentali

Sia f:
$$R \rightarrow R$$
.

$$f'(x)=0$$

Sia f:
$$R \rightarrow R$$
.

$$f'(x)=1$$

Sia f:
$$R \rightarrow R$$
.

$$f'(x)=nx^{n-1}$$

Derivate fondamentali

Sia f:
$$R \rightarrow R$$
.

 $x = \sin x$

$$f'(x)=\cos x$$

Sia f:
$$R \rightarrow R$$
.

 $\times cosx$

$$f'(x) = -\sin x$$

Derivate fondamentali

Sia f:
$$R \rightarrow R$$
.

$$f'(x) = a^x \ln a$$

Sia f:
$$R \rightarrow R$$
.
 $x \log_a x$

$$f'(x) = \frac{1}{x} \log_a e$$

Somma

Siano f e g: $A \rightarrow R$ derivabili in $x \in A$. Allora anche la funzione (f+g)(x) è derivabile in x e D(f+g)=Df+Dg.

$$y = x^3 + \ln x$$

Differenza

Siano f e g: $A \rightarrow R$ derivabili in $x \in A$. Allora anche la funzione (f-g)(x) è derivabile in x e D(f-g)=Df-Dg.

$$y = \sqrt[3]{x} - \sin x$$

Prodotto

Siano f e g: $A \rightarrow R$ derivabili in $x \in A$. Allora anche la funzione $(f \cdot g)(x)$ è derivabile in x e $D(f \cdot g)=f' \cdot g+f \cdot g'$

In particolare D(cf)=cD(f).

$$y = (2x+1) \cdot \cos x$$

Divisione

Siano f e g: $A \rightarrow R$ derivabili in $x \in A \mid g(x) \neq 0$. Allora anche la funzione (f/g)(x) è derivabile in x $e D\left(\frac{f}{g}\right) = \frac{f(x)g(x) - f(x)g(x)}{g^2(x)}$

$$y = \tan x$$

Derivata di funzione composta

Siano $f: A \rightarrow B e g: B \rightarrow C$. Sia f derivabile in $x \in A$ e g derivabile in $y=f(x) \in B$, allora g(f(x)) è derivabile in $x \in Dg(f(x)) = g^*(f(x)) \cdot f^*(x)$

$$y = \cos(x^3 - 2x)$$

Esercizi

$$\ln(\sin x - x^2)$$

$$\frac{\cos 2x}{e^{x+3}}$$

$$\sqrt{\ln(2x^3+1)}$$

$$x^2 \cdot \sqrt[3]{x+3}$$

$$\cos\left[\ln(x^2)\right]$$

$$\sqrt[3]{\frac{x+3}{x^2}}$$

Derivata di funzione inversa

Sia $f: A \rightarrow B$ invertibile e derivabile in $x \in A$ e sia $f'(x)\neq 0$, allora $f^{-1}(y)$ è derivabile in y=f(x) e

$$D(f^{-1}(y)) = \frac{1}{D(f(x))} \bigg|_{x=f^{-1}(y)}$$

$$y = \sqrt{x} \qquad \qquad y = \ln x$$

Uso della derivata per lo studio della monotonia di una funzione

$$m = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f^{*}(x)$$

Uso della derivata per lo studio della monotonia di una funzione

Sia $f: A \rightarrow B$ derivabile in $I \subset A$. $f \in C$ crescente in $I \subset A \Leftrightarrow f'(x) \ge 0$, $\forall x \in I$.

Uso della derivata per lo studio della monotonia di una funzione

Sia $f: A \rightarrow B$ derivabile in $I \subset A$. $f \grave{e}$ decrescente in $I \subset A \Leftrightarrow f'(x) \leq 0$, $\forall x \in I$.

Massimi relativi

Sia $f: A \rightarrow B$ e $a \in A$. Il punto P(a, f(a)) è un punto di massimo relativo per la funzione f se $\exists I(a) | f(a) \ge f(x) \ \forall x \in I(a)$.

Minimi relativi

Sia $f: A \rightarrow B$ e $a \in A$. Il punto P(a, f(a)) è un punto di minimo relativo per la funzione f se $\exists I(a) | f(a) \le f(x) \forall x \in I(a)$.

Massimi e minimi relativi

Se a è interno al dominio allora I(a) deve essere un intorno circolare.

Se a è un estremo del dominio allora I(a) sarà un intorno destro o sinistro.

Teorema di Fermat

Sia $f: A \rightarrow B$ e $a \in A$. Condizione necessaria affinché il punto P(a,f(a)) sia un massimo o un minimo relativo è che f'(a)=0.

I punti del dominio in cui f'(a)=0 si chiamano punti critici o stazionari.

La condizione f'(a)=0 non consente però di discriminare tra i diversi punti stazionari.

Significato geometrico dei punti stazionari

I punti del dominio in cui f'(a)=0 si chiamano punti critici o stazionari.

Nei punti stazionari la curva ha retta tangente orizzontale.

Esercizio

Dimostrare che il punto di ascissa x=3 non è un massimo per la funzione $y=\sqrt{x}$.

Condizione sufficiente

Sia $f: A \rightarrow B$ continua e derivabile in I(a), $a \in A$. Condizione sufficiente affinché il punto P(a,f(a)) sia un massimo è che f'(x)>0 in $I^{-}(a)$ e f'(x)<0 in $I^{+}(a)$.

Sia $f: A \rightarrow B$ continua e derivabile in I(a), $a \in A$. Condizione sufficiente affinché il punto P(a,f(a)) sia un minimo è che f'(x)<0 in $I^{-}(a)$ e f'(x)>0 in $I^{+}(a)$.

Esercizio

Determinare i massimi ed i minimi relativi della funzione y=sinx nell'intervallo $[0,2\pi]$.

Dimostrare che la funzione y=lnx è sempre crescente.

Massimi e minimi assoluti

Sia f: [a,b] \rightarrow R e siano P_1 , P_2 , ..., P_n i punti di massimo (minimo) relativo della funzione f. Il massimo (minimo) assoluto della funzione f è il punto di ordinata massima (minima) tra f(a), f(b) e le ordinate dei punti P_1 , P_2 , ..., P_n .

Esercizio

Determinare i massimi ed i minimi assoluti della funzione $y=x^3+3x^2$ nell'intervallo [-3/2,2].

Flesso

Sia $f: A \rightarrow R$ e $a \in A$, si dice che il punto P(a, f(a)) è un flesso se in quel punto la curva attraversa la retta tangente.

Esercizi

$$y = \sqrt[3]{x}$$

$$y = \frac{x^3}{x^2 - 1}$$

Derivate successive

Sia f: $A \rightarrow R$, derivabile in I(x), con $x \in A$. Diciamo che la funzione f è derivabile due volte in x se $\lim_{h\to 0} \frac{f^*(x+h)-f^*(x)}{h}$ esiste ed è finito.

Il risultato del limite si chiama derivata seconda della funzione f in x e si indica con f"(x), D²f o $\frac{d^2f}{dv^2}$.

Significato geometrico della derivata seconda

La derivata seconda rappresenta il tasso di variazione della curva dall'andamento rettilineo.

Concavità di una funzione

Sia $f: A \rightarrow R$ e $a \in A$. La funzione rivolge la concavità verso l'alto in P(a, f(a)) se $\exists I(a)|$ il grafico della funzione sta sopra quello della retta tangente $\forall x \in I(a)$.

Concavità di una funzione

Sia $f: A \rightarrow \mathbb{R}$ e $a \in A$. La funzione rivolge la concavità verso il basso in P(a, f(a)) se $\exists I(a)|$ il grafico della funzione sta sotto quello della retta tangente $\forall x \in I(a)$.

Studio della concavità di una funzione tramite derivata seconda

Sia $f: A \rightarrow R$ e $a \in A$. La funzione rivolge la concavità verso l'alto (il basso) in P(a, f(a)) se e solo se f''(a)>0 (<).

Studio dei punti critici mediante l'uso delle derivate successive

Sia $f: A \rightarrow R$, derivabile due volte in $a \in A$. Condizione sufficiente affinché P(a, f(a)) sia un punto di massimo (minimo) è che:

$$f'(a)=0 \wedge f''(a)<0$$

Flesso

Sia $f: A \rightarrow R$ e $a \in A$, si dice che il punto P(a, f(a)) è un flesso se in quel punto la curva attraversa la retta tangente.

Sia $f: A \rightarrow R$ e $a \in A$, si dice che il punto P(a, f(a)) è un flesso se in quel punto vi è un cambio di concavità.

Esercizi

$$y=2x^3-3x^2+1$$

$$y=|\ln(x+1)|$$

Teorema di Rolle

Sia f: $[a,b] \rightarrow R$, derivabile in (a,b) e f(a)=f(b). Allora $\exists x \in [a,b] \mid f'(x)=0$.

Teorema di Lagrange

Applicazione del T. di Lagrange

Alcuni autovelox (safety tutor) misurano il tempo che impiega un veicolo per coprire lo spazio tra due punti, e ne calcolano la velocità media in quel tratto.

Applicando il teorema di Lagrange, è possibile calcolare se si è superato il limite di velocità.

$$v_m = \frac{s(b) - s(a)}{b - a}$$

$$v_i(t_0) = \lim_{t \to 0} \frac{s(t) - s(t_0)}{t - t_0}$$

Teorema di de L'Hôpital

Siano f e g: $A \rightarrow R$ e $x_0 \in A$ punto di accumulazione per A. Sia $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$.

Siano f e g derivabili in $I(x_0) \setminus \{x_0\}$. Se $g(x) \neq 0$ e

$$g'(x)\neq 0$$
 in $I(x_0)\setminus\{x_0\}$, allora $\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$.

Siano f e g derivabili in x_0 , con derivata continua in x_0 e $g(x_0) \neq 0$.

Esercizi

$$\lim_{x\to 0} \frac{e^x - 1}{\sin 2x}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{\ln x}$$

$$\lim_{x\to 0} x \cdot \ln x$$

Differenziale

Siano $f: A \rightarrow R$ e x punto interno ad A. Si dice che f è differenziabile in x se esiste $c \in R$ | $f(x+h)-f(x)=c\cdot h+o(h)$.

La quantità c·h è detta differenziale di f in x.

La funzione f è differenziabile \Leftrightarrow f è derivabile

Significato geometrico del differenziale

$$f(x+h)-f(x)=c\cdot h+o(h).$$

Significato geometrico del differenziale

Operazioni sul differenziale

Siano f e $g: A \rightarrow R$, differenziabili in x, punto interno ad A. Allora:

- 1. f+g è differenziabile e d(f+g)=df+dg
- 2. f-g è differenziabile e d(f-g)=df-dg
- 3. f·g è differenziabile e d(f·g)=df·g+ f·dg
- 4. Se $g \neq 0$, f/g è differenziabile e $d\frac{f}{g} = \frac{df \cdot g f \cdot dg}{g^2}$