Седмица на олимпийската математика 2017

Контролно по Геометрия януари 2017

Този материал е изготвен със съдействието на школа Sicademy

Задача G1. Даден е равнобедрен $\triangle ABC$ (AC=BC), вписан в окръжност k. Нека X е произволна точка от страната AB. Разглеждаме окръжностите k_1 и k_2 , които се допират до страната AB, до отсечката CX и вътрешно до k. Ако означим техните радиуси с r_1 и r_2 , да се докаже, че

$$r_1 + r_2 < 2r,$$

където r е радиусът на вписаната в $\triangle ABC$ окръжност.

Задача G2. Даден е $\triangle ABC$. Нека M и N са точки върху страните AC и BC съответно, такива че при симетрия относно правата MN образът ω' на описаната около $\triangle MNC$ окръжност ω се допира до страната AB. Да се докаже, че при всеки такъв избор на точките M и N, окръжността ω се допира до фиксирана окръжност.

Задача G3. Даден е $\triangle ABC$ и точка T върху страната AB. Да означим с N и M допирните точки на външновписаната за $\triangle ATC$ окръжност към страната AC със страната AC и продължението на AT. Съответно с L и K означаваме допирните точки на външновписаната за $\triangle BTC$ окръжност към страната BC със страната BC и продължението на BT. Да се докаже, че пресечната точка на правите MN и KL, средата X на CT и центърът I на вписаната в $\triangle ABC$ окръжност k лежат на една права тогава и само тогава, когато T съвпада с допирната точка на k с AB.