18 февраля 2012 г. (день 1), высшая лига

Задача А. Ааа

 Имя входного файла:
 a.in

 Имя выходного файла:
 a.out

 Ограничение по времени:
 2 с

 Ограничение по памяти:
 256 Мб

Эта и все последующие задачи посвящены истории о девушке, которая сыграла немаловажную роль в жизни авторов.

А началось все так:

Староста группы математиков на очередной абсолютно неважной паре занималась тем, что равномерно распределяла в области ближайшего окружения листочки с судоку. Саша не оказался обделенным вниманием, что послужило поводом заговорить.

- А, надеюсь, это самый сложный уровень?
- Как раз для тебя.
- Ну-ну, видя глубокую иронию в ее глазах и то, что первые три строки судоку уже заполнены.
- Решишь еще дам.
- Я тебе не просто решу, а скажу еще, сколько решений существует, лихо заметил Саша, не подозревая, какие проблемы себе создал.
 - Ну-ну.

Следующие два дня Саша занимался только тем, что искал количество решений судоку. Кстати, судоку — это головоломка, в которой предлагается заполнить таблицу 9×9 числами от 1 до 9 так, чтобы в каждой строке, столбце и каждом из 9 квадратов 3×3 все числа были различны. Изначально некоторые клетки уже заполнены и остается вписать числа в пустые клетки.

- А как девушку-то зовут?
- Aaa...

Формат входного файла

В трех строках дано по 9 чисел от 1 до 9 в каждой — первые три строки судоку.

Формат выходного файла

Единственное число — количество вариантов решения. Гарантируется, что хотя бы один вариант существует.

							a	.in	a.out
1	4	7	5	6	3	8	2	9	7013953152
2	5	8	4	7	9	1	3	6	
3	6	9	1	2	8	5	4	7	

18 февраля 2012 г. (день 1), высшая лига

Задача B. Bachelor pursuing

 Имя входного файла:
 b.in

 Имя выходного файла:
 b.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

Не узнав имени девушки в предыдущей задаче, Саша решил навести справки, благо база данных университета и ВКонтакте всегда под рукой. Оказалось, что Ира — уже четыре года как отличница — твердо хотела получить степень бакалавра, и, как выяснилось впоследствии, степень магистра и степень кандидата наук. И мало ли что дальше?..

- Сколько же это будет в сумме? - с восторгом думал Саша, при этом подсознательно вспоминая задачу с недавнего контеста, которую он так и не решил: даны два числа N и K, вычислить

$$\sum_{i=1}^{N} i^{K}$$

Формат входного файла

В первой строке дано число Q — количество запросов. В каждой из Q следующих строк даны два числа N и K.

Формат выходного файла

Для каждого запроса в отдельной строке вывести одно число — сумму K-ых степеней натуральных чисел от 1 до N по модулю 1,000,000,007.

Ограничения

 $1 \le Q \le 41000$

 $1 \leq N \leq 10^9$

1 < K < 1000

b.in	b.out
4	3
2 1	30
4 2	36
3 3	675987247
11 11	

18 февраля 2012 г. (день 1), высшая лига

Задача C. Concatenation of credits

 Имя входного файла:
 c.in

 Имя выходного файла:
 c.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

Ире за ее выдающиеся достижения доверили вести пары у младшекурсников. Имея неплохой опыт занятия на парах посторонними вещами (задача A), Ира нашла себе другое развлечение. Пользуясь тем, что студенты писали зачет и сдали ей все зачетки, она стала искать закономерности в их оценках.

Преподаватели в университете, надо сказать, суровые. Во-первых, 100 баллов принципиально не ставят. А во-вторых, они никогда не поставят в зачётку оценку, которая там уже есть.

Таким образом, Ира видела в каждой зачётке шесть разных оценок от 10 до 99. И вместо того, чтобы поставить туда седьмую, она конкатенировала эти шесть оценок и делила на своё любимое число.

Саша, прогуливающий свою пару ради того, чтобы поприсутствовать на Ириной, следил за происходящим.

- Знаешь, комбинаций оценок, делящихся на это твое любимое число без остатка, довольно много.
- Аж три? спросила Ира с плохо скрываемой издёвкой.
- Не совсем у нас в университете студентов не хватит.
- Ну-ну.

Формат входного файла

Дано единственное любимое число І.

Формат выходного файла

Вывести количество способов выбрать упорядоченную шестерку различных двузначных чисел такую, что их конкатенация делится на I.

Ограничения

 $1 \le I \le 100$

c.in	c.out
10	44828253360

Задача D. DeviantArt

 Имя входного файла:
 d.in

 Имя выходного файла:
 d.out

 Ограничение по времени:
 2 с

 Ограничение по памяти:
 256 Мб

Фотография — еще одно увлечение Иры. Ее произведения занимают достойное место на страницах DeviantArt. Каждый свободный пользователь интернета может зайти в ее галерею и плюсануть понравившиеся изображения.

— Ммм! Неплохая работа для бота.

Суть бота заключалась в следующем: специально созданный пользователь плюсует K фотографий, начиная с I-ой, с шагом A. Второй бот был создан для контроля результата. Он проверяет сумму всех плюсов L фотографий, начиная с J-ой, с шагом B. Фотографии нумеруются с 0.

Боты работают независимо до тех пор, пока администрация DeviantArt не заметит накрутки вклада и не забанит анонимусов.

Формат входного файла

В первой строке даны четыре числа N, A, B и Q — количество фотографий, величины шагов для ботов, которые не меняются на протяжении всей их жизни, и суммарное количество итераций. Далее в каждой из Q строк записана команда для бота:

- $s\ I\ K$ первый бот плюсует K фотографий, начиная с I-ой.
- q J L второй бот суммирует плюсы L фотографий, начиная с <math>J-ой.

До действия ботов фотографии имели рейтинг 0.

Формат выходного файла

Для каждой команды второго бота вывести ее результат в отдельной строке.

Ограничения

- $1 \le N \le 10^5$
- $1 \leq A \leq N$
- $1 \leq B \leq N$
- $0 \le Q \le 10^5$
- 0 < I < N 1
- $1 \le K \le N, I + (K 1)A \le N 1$
- 0 < J < N 1
- $1 \le L \le N, J + (L-1)B \le N-1$

d.out
1
1
1
1
1

Задача Е. Ехат

 Имя входного файла:
 e.in

 Имя выходного файла:
 e.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

Неприязнь к философии сближает, необходимость сдавать экзамен — тем более. Но главное — четкое ощущение нежелания к нему готовиться.

- Смотри, Ира, подходишь к преподавателю и предлагаешь ему такую штуку: у нас есть 18 билетов, они лежат лицом вниз. Давайте K из них перевернем, потом Вы их хорошенько перетасуете и положите в одну стопку. А дальше я, в смысле ты, с закрытыми глазами разделишь их на две стопки так, что в них будет одинаковое количество открытых билетов. При этом тебе разрешается, скажем, поменять местами два билета в первой стопке, перевернуть какой-то билет в первой стопке ну и безвозвратно переложить билет из первой стопки во вторую. Ты все это делаешь с закрытыми глазами и о состоянии билетов не имеешь никакой информации кроме той, что ты знаешь число K и помнишь все свои действия.
 - Ладно, и что дальше?
- Так вот, если у тебя это благополучно получается, то преподаватель дает тебе возможность отвечать любой среди открытых билетов.
 - А если нет?
 - Будем верить в чудо.
 - Почему бы тебе самому не попробовать?
 - Не то что бы у меня хорошая репутация.
 - Поэтому хочешь испортить мою?
 - Аж три раза.

Формат входного файла

Дано единственное четное число K — количество перевернутых лицом вверх билетов (изначально все 18 билетов находятся в первой стопке).

Формат выходного файла

Если нет возможности разделить билеты на две непустые стопки требуемым образом, вывести -1. Иначе в первой строке вывести количество действий Q. Далее в Q строках описать порядок действий. Каждая строка должна содержать команду одного из трех типов:

 \mathtt{swap} і j — поменять местами билеты на позициях i и j первой стопки.

 ${\tt rev}$ і — перевернуть билет на позиции i первой стопки.

out i — переместить билет на позиции i из первой стопки во вторую. После этой операции все билеты первой стопки, начиная с (i+1)-го, занимают позицию на единицу меньше.

Стопки должны оказаться непустые и содержать одинаковое количество открытых билетов.

Ограничения

 $0 \le K \le 18, K$ — четное

 $0 \le Q \le 2^9 + 36$

 $1 \leq i \neq j \leq 18$, не должны превышать текущий размер первой стопки

e.in	e.out	
18	9	
	out 1	

18 февраля 2012 г. (день 1), высшая лига

Задача F. Fate to hate

 Имя входного файла:
 f.in

 Имя выходного файла:
 f.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

Близился день рожденья Иры. В ночь с 27-го на 28-е Саша долго не мог уснуть. Математически логичный бред дискретно лез в голову. Обыкновенное гадание на ромашке превратилось в жестокую игру чисел и битовых операций.

Снилось бесконечное поле абсолютно одинаковых ромашек. У каждой ромашки было N лепестков, а на каждом лепестке написано число. Время от времени страх перед тем, что Ира может сменить номер своего ICQ заставлял просыпаться в холодном поту. И каждый раз, когда новый номер приходил в голову, его непременно нужно было получить из лепестков, применяя к написанным на них числам операции AND и OR. Если номер удавалось получить, это было хорошим знаком, иначе же сон пропитывался ужасом от ненависти и зла.

Все ромашки одинаковые и их можно безвозмездно срывать для того, чтобы использовать нужные лепестки. То есть для получения одного номера можно сорвать несколько ромашек и взять непустое подмножество их лепестков. В своих снах Саша способен полностью контролировать порядок выполнения операций.

Формат входного файла

В первой строке дано число N — количество лепестков у ромашки. В следующей строке перечислены целые числа на лепестках a_i . Далее дано число Q — количество ICQ-номеров, которые необходимо получить. В каждой из следующих Q строк записано по одному числу b_i .

Формат выходного файла

Для каждого номера в отдельной строке выведите "Yes", если это число можно получить из чисел на лепестках, применяя к ним операции побитового AND и OR, и "No", если нельзя.

Ограничения

 $1 \le N \le 10^5$

 $0 \le a_i \le 10^9$

 $1 \le Q \le 10^5$

 $0 \le b_i \le 10^9$

f.in	f.out
3	Yes
1 4 5	No
6	No
1	Yes
2	Yes
3	No
4	
5	
6	

18 февраля 2012 г. (день 1), высшая лига

Задача G. Genealogic tree

Имя входного файла:g.inИмя выходного файла:g.outОграничение по времени:1 сОграничение по памяти:256 Мб

На дне рожденья Иры было много родственников, так что знакомство с ними оказалось непростой задачей. Для того, чтобы получить общую картину, возникла идея составить генеалогическое дерево. В сумбурной обстановке как-то так получилось, что дерево оказалось не бинарным, хотя количество вершин было вполне логичным — 2^k-1 .

- Что-то тут не так.
- Да ну?
- Я предлагаю все перепроверить.
- Конкретнее.
- Разобьем дерево на связные части по 2^i вершин и поручим каждому проверить свою часть.
- Почему именно так?
- Не знаю, люблю степени двойки и к тому же в сумме будет ровно то, что надо. Хотя тут есть маленькая проблема, это можно сделать кучей способов.
 - Да, я помню судоку и зачетки. Сколько же на этот раз?
 - У тебя великолепная память, дай мне несколько минут на подумать.
 - Лови.

Формат входного файла

В первой строке дано число $N=2^k-1$ — количество вершин в дереве. В следующей строке дано N-1 число. a_i означает наличие ребра между вершинами i+1 и a_i .

Формат выходного файла

Вывести одно число — количество способов разделить дерево ровно на k связных блоков размеров $1,2,4\dots 2^{k-1}$. Каждая вершина должна попасть ровно в один блок.

Ограничения

 $0 \le k \le 12$
 $1 \le a_i < i + 1$

g.in	g.out
7	4
1 1 2 2 3 3	

Задача H. Happy Birthday

 Имя входного файла:
 h.in

 Имя выходного файла:
 h.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

Настал долгожданный день рождения. Осталось только одно испытание — добраться к Ире домой.

Самый популярный вид транспорта в городе — маршрутки. У каждой маршрутки есть два водителя, один из них любит один маршрут, а второй — другой. Правда место и время отправления маршрутки одинаковы для обоих водителей. Каждый день один из водителей работает, а второй отдыхает. Если Саша окажется на какойто остановке, то он сразу же узнает, какие из водителей работают сегодня на маршрутках, отправляющихся с этой остановки. Однако до того, как он попадет на остановку, он знает только расписание возможного движения маршруток и вероятность того, что работает первый водитель. Саша живет возле остановки с номером 1 и может оказаться на ней в любое время, а Ира живет рядом с остановкой N. Требуется найти математическое ожидание времени прибытия к Ире на день рождения. При этом Саша никогда не воспользуется способом, который может привести к тому, что он не попадет к Ире вообще, а среди всех остальных выбирает тот, который минимизирует ожидаемое время прибытия.

Важные факты:

Сеть движения маршруток представляет собой ациклический ориентированный граф.

С маршрутки на маршрутку можно пересаживаться мгновенно.

При определении оптимальной стратегии Саша использует в том числе и то, что по прибытии на каждую остановку он узнает сегодняшних шоферов.

О своей остановке Саша тоже изначально ничего не знает.

Формат входного файла

В первой строке даны два числа N и K — число остановок и действующих маршруток. Далее в каждой из K строк описана информация о маршруках: семь целых чисел u d p v_1 a_1 v_2 a_2 — номер остановки и время отправления, вероятность того, что работает первый водитель, место и время прибытия, если работает второй водитель.

Формат выходного файла

Единственное число — математическое ожидание времени прибытия на остановку N с абсолютной или относительной погрешностью 10^{-6} или -1, если есть ненулевая вероятность туда не попасть.

Ограничения

```
2 \le N \le 10^{5}
0 \le K \le 10^{5}
1 \le u, v_{1}, v_{2} \le N
u \ne v_{1}
u \ne v_{2}
0 \le d, a_{1}, a_{2} \le 1440
d < a_{1}
d < a_{2}
0
```

h.in	h.out
5 6	423.437500000000
1 60 50 2 200 3 150	
1 100 25 2 160 3 150	
1 200 50 5 350 4 300	
2 180 50 5 300 4 280	
3 400 80 5 600 5 660	
4 350 50 5 500 5 550	

18 февраля 2012 г. (день 1), высшая лига

Задача I. I love Ira

 Имя входного файла:
 i.in

 Имя выходного файла:
 i.out

 Ограничение по времени:
 3 с

 Ограничение по памяти:
 256 Мб

Саша хотел сделать Ире совершенно необычный подарок на день рождения. Романтическое сообщение, выложенное решенными задачами, на самом популярном украинском сайте, посвященном спортивному программированию.

Задачи на сайте располагаются в виде прямоугольной таблицы, сданные задачи подсвечиваются приятным зеленым цветом. Это однажды натолкнуло на мысль зажечь в таблице только те ячейки, которые бы сформировали задуманную картинку или надпись...

И если с содержанием сообщения неоднозначностей не возникало, то его расположением в таблице можно было управлять. Конечно же от места расположения надписи зависело то, какие задачи придется решать. Поэтому Саша назначил каждой задаче оценку сложности — число от 0 до 9. И решил выбрать такое расположение, чтобы сумма оценок решенных им задач была максимальна. Надпись может располагаться в таблице где угодно, но только чтобы весь шаблон находился в пределах таблицы.

Формат входного файла

В первой строке даны два числа R и C — количество строк и столбцов в таблице. Далее в R строках описана карта задач. В каждой строке ровно по C символов — сложности задач. Сложность задачи измеряется цифрой от 0 до 9. В следующей строке даны два числа H и W — высота и ширина надписи. Далее в H строках дан шаблон надписи. Каждая строка состоит из W символов: '#' означает необходимость решения задачи, '.' означает, что задачу надо не решать.

Формат выходного файла

В единственной строке вывести максимальную сумму оценок сложности решенных задач.

Ограничения

 $1 \leq R, C \leq 800$

 $1 \le H \le R$

 $1 \le W \le C$

18 февраля 2012 г. (день 1), высшая лига

i.in	i.out
22 18	69
0000000001000000	
00300100000000000	
00000000000000003	
02000000010000000	
09000000901000100	
300400001911323500	
00000000000000000	
00000000000000000	
000001000001000049	
020100113210100000	
20000006220004100	
600009000217100009	
000001000031004210	
020101600100000190	
11000100200000000	
000092096071021990	
000094000120010100	
201003007430040300	
100000010000100000	
101040008000020001	
40400000040043200	
0000001000001000	
17 18	
####	
.##	
.###.##	
.##.#.#.#.#.	
.##.#.#.###	
.##.#.##.	
#######	
• • • • • • • • • • • • • • • • • • • •	
•••••	
###	
#	
# # . # . #	
# # #	
# # #	
###	
··ппп··п··пп·п·п·п	

18 февраля 2012 г. (день 1), высшая лига

Задача J. Justice

Имя входного файла: j.in Имя выходного файла: j.out Ограничение по времени: 1 с Ограничение по памяти: 256 Мб

- Давай сыграем в игру. Есть несколько кучек, в каждой из них сколько-то камешков. За один ход можно брать любое количество камешков из одной кучки, хоть все. Кто не может сделать ход, тот проиграл.
 - Ладно, только я первая хожу.
 - Ладно, тогда я выбираю сколько у нас будет камешков.
 - Ладно, тогда я выбираю сколько будет кучек.
 - А я тогда распределяю камешки по кучкам.
 - Удачи.

Формат входного файла

Два числа N и K - количество камней и количество кучек.

Формат выходного файла

Если нельзя распределить N камешков ровно на K непустых кучек таким образом, что при оптимальной игре обоих выиграет второй игрок, вывести -1. Иначе вывести ровно K натуральных чисел a_i — размеры кучек.

Ограничения

 $1 \le N \le 10^9$ $2 \le K \le 16$

j.in	j.out
4 2	2 2