Build Heap

- 1. Let index = length/2-1. This is the parent of the last node in the tree, i.e. list[index + 1] . . . list[length-1] are leaves
- 2. Convert the subtree with root of list[index] into a heap.
 - a. Given list[a] is root of tree, list[b] is left child (root *2 +1), list[c] is right child (root*2+2), if exists
 - b. Compare list[b] with list[c] to determine larger child, list[largerIndex]
 - c. Compare list[a] with list[largerIndex]. If list[a] list[largerIndex], then swap, else already a heap
 - d. If swap, repeat step 2 for the subtree of list[largerIndex]
- 3. Convert the subtree with the root of list[index-1] into a heap, repeat until list[0]

Heap Sort

- 1. Swap the root with the end of the list.
- 2. Heapify the list up to but not including the root
- 3. Repeat until there is only one node in the list

Simulate the heapsort algorithm manually to sort the array:

Show all steps

- 1. Make into a heap
- 2. Sort

Max-Heap)
----------	---

[0]	5	5									
[1]	22	22	5								
[2]	9	22	5	0							
[3]	76	76	22	()	5						
[4]	63	76	3	9	Ŋ	22					
[5]	81	81	63		5	22	9				
[6]	48	<u>S</u>	$\mathcal{L}_{\mathcal{I}}$	J	Ŋ	22	9	યુષ્ઠ			
[7]	92	92	81	76	63	22	9	48	5		
[8]	54	92	81	76	63	2 2	9	48	5	54	
[9]	28	92	8	76	<u>ر</u> ح	28	9	48	5	59	22

		•										
[0]	92	181	76	9	(Y	9	48	Ŋ	59	2)	
[1]	22	81	76	S	کم	(5	48	b	54			
[2]	9	63	76	آ	(So)	0	48	5	22			
[3]	22	GZ	J	5	28	σ	48	b				
[4]	76)	63	48	54	28	9	کم کم					
[5]	5	$G_{\mathcal{S}}$	48	54	28	J	22					
[6]		54	48	ls,	28	5	22					
[7]	22	54	48	5	28	(J						
[8]	59	28	7 8	\int	22							
[9]	9	28	48	5	2							

			•	•					
[0]	48)	28	9	5 (22)			
[1]	22	28	9	5					
[2]	(28)	22	4	(5)					
[3]	9	22	9						
[4]	(22)	5	9						
[5]	9	5							
[6]	(5)								
[7]	5								
[8]									
[9]									