Capstone 2: Biodiversity Project

Introduction

You are a biodiversity analyst working for the National Parks Service. You're going to help them analyze some data about species at various national parks.

Note: The data that you'll be working with for this project is *inspired* by real data, but is mostly fictional.

Step 1

Import the modules that you'll be using in this assignment:

- from matplotlib import pyplot as plt
- import pandas as pd

```
from matplotlib import pyplot as plt
import matplotlib
import numpy as np
import pandas as pd
```

Step 2

You have been given two CSV files. species_info.csv with data about different species in our National Parks, including:

- The scientific name of each species
- The common names of each species
- The species conservation status

Load the dataset and inspect it:

• Load species_info.csv into a DataFrame called species

```
species = pd.read_csv("species_info.csv")
```

Inspect each DataFrame using .head().

	category	scientific_name	common_names	conservation_status
0	Mammal	Clethrionomys gapperi gapperi	Gapper's Red-Backed Vole	NaN
1	Mammal	Bos bison	American Bison, Bison	NaN
2	Mammal	Bos taurus	Aurochs, Aurochs, Domestic Cattle (Feral), Dom	NaN
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	NaN
4	Mammal	Cervus elaphus	Wapiti Or Elk	NaN

Step 3

Let's start by learning a bit more about our data. Answer each of the following questions.

How many different species are in the species DataFrame?

```
print(species.nunique())

category 7
scientific_name 5541
common_names 5504
conservation_status 4
dtype: int64
```

What are the different values of category in species?

What are the different values of conservation status?

```
print(species.conservation_status.unique())

[nan 'Species of Concern' 'Endangered' 'Threatened' 'In Recovery']
```

Step 4

Let's start doing some analysis!

The column conservation_status has several possible values:

- Species of Concern: declining or appear to be in need of conservation
- Threatened: vulnerable to endangerment in the near future
- Endangered : seriously at risk of extinction
- In Recovery : formerly Endangered , but currnetly neither in danger of extinction throughout all or a significant portion of its range

We'd like to count up how many species meet each of these criteria. Use groupby to count how many scientific name meet each of these criteria.

```
print(species.groupby("conservation_status").scientific_name.count())

conservation_status
Endangered 16
In Recovery 4
Species of Concern 161
Threatened 10
Name: scientific_name, dtype: int64
```

As we saw before, there are far more than 200 species in the species table. Clearly, only a small number of them are categorized as needing some sort of protection. The rest have conservation_status equal to None . Because groupby does not include None , we will need to fill in the null values. We can do this using .fillna . We pass in however we want to fill in our None values as an argument.

Paste the following code and run it to see replace None with No Intervention:

```
species.fillna('No Intervention', inplace=True)
```

```
species.fillna('No Intervention', inplace=True)
```

Great! Now run the same groupby as before to see how many species require No Intervention .

```
print(species.groupby("conservation_status").scientific_name.count())

conservation_status
Endangered 16
In Recovery 4
No Intervention 5633
Species of Concern 161
Threatened 10
Name: scientific_name, dtype: int64
```

Let's use plt.bar to create a bar chart. First, let's sort the columns by how many species are in each categories. We can do this using <code>.sort_values</code> . We use the keyword by to indicate which column we want to sort by.

Paste the following code and run it to create a new DataFrame called protection_counts , which is sorted by scientific_name :

```
protection_counts = species.groupby('conservation_status')\
    .scientific_name.nunique().reset_index()\
    .sort_values(by='scientific_name')
```

```
protection_counts = species.groupby(['category', 'conservation_status
'])\
    .scientific_name.nunique().reset_index()\
    .sort_values(['category','conservation_status']).reset_index(drop=Tr
ue)
protection counts.rename(columns ={'scientific name': 'count'}, inplace=
True)
to_add = \{\}
index = 1
for cat in protection counts.category.unique():
   for status in protection_counts.conservation_status.unique():
        if protection_counts.loc[(protection_counts.category == cat)
                            & (protection counts.conservation status ==
status),
                            "count"].any() == False:
            to_add[index] = [cat, status,0]
            index += 1
df = pd.DataFrame(to add.values(), columns=['category','conservation sta
tus', 'count'])
protection counts new = pd.concat([protection counts, df], axis= 0).sort
_values(['category','conservation_status']).reset_index(drop=True)
display(protection_counts_new)
```

	category	conservation_status	count
0	Amphibian	Endangered	1
1	Amphibian	In Recovery	0
2	Amphibian	No Intervention	72
3	Amphibian	Species of Concern	4
4	Amphibian	Threatened	2
5	Bird	Endangered	4
6	Bird	In Recovery	3
7	Bird	No Intervention	413
8	Bird	Species of Concern	68
9	Bird	Threatened	0
10	Fish	Endangered	3
11	Fish	In Recovery	0
12	Fish	No Intervention	115
13	Fish	Species of Concern	4
14	Fish	Threatened	4
15	Mammal	Endangered	6
16	Mammal	In Recovery	1

T								
Now let's cr	eate a category eate a bar chart!	conservation_status	count					
	Mammal	No Intervention	146					
1. Start by	creating a wide i	figure with figsize=(10 Species of Concern	, 4) , 22					
	1. Start by creating a wide figure with figsize=(10, 4) 2. Start by creating an axes object called ax using plt.subplot.							
3. Creat le a	a Mamenart whose	e hergresedre equal to s	clentific_name column of					
prot e20 :	i. oko<u>n</u>ovasictis ar Plant	Endangered	0					
4. Creat <u>e</u> a	nontiskuar maah	of the bars.	0					
5 Lahelea	ch x-tick with the	e lahel from conservati	on status in protection_counts					
6. Label th	Nonvascular Plant e y-axis Number o	No intervention of Species	328					
		iSpecies of Concernecies	5					
8. Plot t2n4e	ghrænpvaussiunlegr pillatn.ts	h dwe atened	0					
25	Roptile	Endangered	0					
26	Reptile	In Recovery	0					
20	керше	III Recovery	0					
27	Reptile	No Intervention	73					
28	Reptile	Species of Concern	5					
29	Reptile	Threatened	0					
30	Vascular Plant	Endangered	1					
31	Vascular Plant	In Recovery	0					
32	Vascular Plant	No Intervention	4216					
33	Vascular Plant	Species of Concern	43					
34	Vascular Plant	Threatened	2					

```
labels = protection_counts_new.category.unique()
endangered_means = protection_counts_new.loc[protection_counts_new.conse
rvation_status == 'Endangered', "count"].to_numpy()
recovery means = protection counts new.loc[protection counts new.conserv
ation_status == 'In Recovery', "count"].to_numpy()
no_intervention_means = protection_counts_new.loc[protection_counts_new.
conservation status == 'No Intervention', "count"].to numpy()
concern_means = protection_counts_new.loc[protection_counts_new.conserva
tion_status == 'Species of Concern', "count"].to_numpy()
threatened_means = protection_counts_new.loc[protection_counts_new.conse
rvation_status == 'Threatened', "count"].to_numpy()
labels[4] = "Nonvascular\n Plant"
labels[6] = "Vascular\n Plant"
x = np.arange(len(labels)) * 1.5
width = 0.25
y \text{ range} = [[0,10], [10,100], [100, 1000], [1000, 10000]]
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, ncols=1, sharex=True)
ax1.set title('Conservation Status by Species')
ax1.set_ylim(y_range[3])
ax1.bar(x - width*2, endangered_means, width, label='Endangered', align=
'center', color="#e31a1c")
ax1.bar(x - width, threatened_means, width, label='Threatened', align='c
enter', color="#fb9a99")
ax1.bar(x, concern means, width, label='Species of Concern', align='cent
er', color="#fdbf6f")
ax1.bar(x + width, no intervention means, width, label='No Intervention
', align='center', color="#a6cee3")
ax1.bar(x + width*2, recovery_means, width, label='In Recovery', align='
center', color="#33a02c")
ax1.legend(loc='upper left', ncol=1, fontsize='xx-small')
ax2.set_ylim(y_range[2])
ax2.bar(x - width*2, endangered_means, width, label='Endangered', align=
'center', color="#e31a1c")
ax2.bar(x - width, threatened_means, width, label='Threatened', align='c
enter', color="#fb9a99")
ax2.bar(x, concern_means, width, label='Species of Concern', align='cent
er', color="#fdbf6f")
ax2.bar(x + width, no intervention means, width, label='No Intervention
', align='center', color="#a6cee3")
ax2.bar(x + width*2, recovery_means, width, label='In Recovery', align='
center', color="#33a02c")
ax3.set_ylim(y_range[1])
```

```
ax3.bar(x - width*2, endangered_means, width, label='Endangered', align=
'center', color="#e31a1c")
ax3.bar(x - width, threatened means, width, label='Threatened', align='c
enter', color="#fb9a99")
ax3.bar(x, concern_means, width, label='Species of Concern', align='cent
er', color="#fdbf6f")
ax3.bar(x + width, no intervention means, width, label='No Intervention
', align='center', color="#a6cee3")
ax3.bar(x + width*2, recovery_means, width, label='In Recovery', align='
center', color="#33a02c")
ax4.set xticks(x)
ax4.set_xticklabels(labels, rotation=-90)
ax4.set_ylim(y_range[0])
ax4.bar(x - width*2, endangered means, width, label='Endangered', align=
'center', color="#e31a1c")
ax4.bar(x - width, threatened means, width, label='Threatened', align='c
enter', color="#fb9a99")
ax4.bar(x, concern means, width, label='Species of Concern', align='cent
er', color="#fdbf6f")
ax4.bar(x + width, no_intervention_means, width, label='No Intervention
', align='center', color="#a6cee3")
ax4.bar(x + width*2, recovery means, width, label='In Recovery', align='
center', color="#33a02c")
fig.subplots_adjust(hspace=0.02, bottom=0.25)
plt.savefig('Conservation Status vs Species.jpeg', format='jpeg')
plt.show()
               Conservation Status by Species
  10000
  5000
```


Step 4

Are certain types of species more likely to be endangered?

Let's create a new column in species called is_protected, which is True if conservation_status is not equal to No Intervention, and False otherwise.

```
species["is_protected"] = species.conservation_status.apply(lambda x: Tr
ue if x != 'No Intervention' else False)
display(species.head())
```

	category	scientific_name	common_names	conservation_status	is_prot
0	Mammal	Clethrionomys gapperi gapperi	Gapper's Red- Backed Vole	No Intervention	False
1	Mammal	Bos bison	American Bison, Bison	No Intervention	False
2	Mammal	Bos taurus	Aurochs, Aurochs, Domestic Cattle (Feral), Dom	No Intervention	False
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False
4	Mammal	Cervus elaphus	Wapiti Or Elk	No Intervention	False

Let's group the species data frame by the category and is_protected columns and count the unique scientific_name s in each grouping.

Save your results to category_counts .

category_counts = pd.DataFrame(species.groupby(["category", 'is_protecte
d']).scientific_name.nunique()).reset_index()
display(category_counts)

category is_	_protected	scientific_	name
--------------	------------	-------------	------

0	Amphibian	False	72
1	Amphibian	True	7
2	Bird	False	413
3	Bird	True	75
4	Fish	False	115
5	Fish	True	11
6	Mammal	False	146
7	Mammal	True	30
8	Nonvascular Plant	False	328
9	Nonvascular Plant	True	5
10	Reptile	False	73
11	Reptile	True	5
12	Vascular Plant	False	4216
13	Vascular Plant	True	46

Examine category_counts using head().

display(category_counts.head())

	category	is_protected	scientific_name
0	Amphibian	False	72
1	Amphibian	True	7
2	Bird	False	413
3	Bird	True	75
4	Fish	False	115

It's going to be easier to view this data if we pivot it. Using pivot , rearange category_counts so that:

- columns is is_protected
- index is category
- values is scientific_name

Save your pivoted data to category_pivot . Remember to reset_index() at the end.

```
category_pivot = category_counts.pivot(index='category', columns='is_pro
tected', values='scientific_name')
```

Examine category_pivot.

display(category_pivot)

is_protected False True category

Amphibian	72	7
Bird	413	75
Fish	115	11
Mammal	146	30
Nonvascular Plant	328	5
Reptile	73	5
Vascular Plant	4216	46

Use the .columns property to rename the categories True and False to something more description:

- Leave category as category
- Rename False to not_protected
- Rename True to protected

category_pivot.rename(columns={False: 'not_protected', True: 'protected
'}, inplace=True)

Let's create a new column of category_pivot called percent_protected, which is equal to protected (the number of species that are protected) divided by protected plus not_protected (the total number of species).

```
category_pivot['precent_protected'] = category_pivot['protected'] /(cate
gory_pivot['not_protected'] + category_pivot['protected'])
```

Examine category pivot.

display(category_pivot.sort_values(by='precent_protected', axis=0,ascend
ing=False))

is_protected not_protected protected precent_protected category

Mammal	146	30	0.170455
Bird	413	75	0.153689
Amphibian	72	7	0.088608
Fish	115	11	0.087302
Reptile	73	5	0.064103
Nonvascular Plant	328	5	0.015015
Vascular Plant	4216	46	0.010793

It looks like species in category Mammal are more likely to be endangered than species in Bird. We're going to do a significance test to see if this statement is true. Before you do the significance test, consider the following questions:

- Is the data numerical or categorical?
- Categorical
- How many pieces of data are you comparing?
- 4 pieces of data

Based on those answers, you should choose to do a *chi squared test*. In order to run a chi squared test, we'll need to create a contingency table. Our contingency table should look like this:

protected not protected

```
Mammal ? ?
Bird ? ?
```

Create a table called contingency and fill it in with the correct numbers

In order to perform our chi square test, we'll need to import the correct function from scipy. Past the following code and run it:

```
from scipy.stats import chi2_contingency
```

```
from scipy.stats import chi2_contingency
```

Now run chi2_contingency with contingency.

```
Stat, PValue, DOF, ExpFreq = chi2_contingency(contingency)
print(PValue)
```

0.6875948096661336

It looks like this difference isn't significant!

Let's test another. Is the difference between Reptile and Mammal significant?

Yes! It looks like there is a significant difference between Reptile and Mammal!

Step 5

Conservationists have been recording sightings of different species at several national parks for the past 7 days. They've saved sent you their observations in a file called observations.csv . Load observations.csv into a variable called observations , then use head to view the data.

observations = pd.read_csv("observations.csv")
display(observations.head(10))

scientific_name	park_name	observations
0 Vicia benghalensis	Great Smoky Mountains National Park	68
1 Neovison vison	Great Smoky Mountains National Park	77
2 Prunus subcordata	Yosemite National Park	138
3 Abutilon theophrasti	Bryce National Park	84
4 Githopsis specularioides	Great Smoky Mountains National Park	85
5 Elymus virginicus var. virginicus	Yosemite National Park	112
6 Spizella pusilla	Yellowstone National Park	228
7 Elymus multisetus	Great Smoky Mountains National Park	39
8 Lysimachia quadrifolia	Yosemite National Park	168
9 Diphyscium cumberlandianum	Yellowstone National Park	250

Some scientists are studying the number of sheep sightings at different national parks. There are several different scientific names for different types of sheep. We'd like to know which rows of species are referring to sheep. Notice that the following code will tell us whether or not a word occurs in a string:

```
# Does "Sheep" occur in this string?
strl = 'This string contains Sheep'
'Sheep' in strl

True
```

```
# Does "Sheep" occur in this string?
str2 = 'This string contains Cows'
'Sheep' in str2
print(observations.columns)
display(species)
  Index(['scientific_name', 'park_name', 'observations'], dtype='object')
        category scientific_name common_names conservation_status is_p
                    Clethrionomys
                                       Gapper's Red-
        Mammal
                                                            No Intervention
                                                                                     False
 0
                    gapperi gapperi
                                       Backed Vole
                                        American Bison,
 1
        Mammal
                    Bos bison
                                                            No Intervention
                                                                                     False
                                        Bison
                                       Aurochs, Aurochs,
 2
        Mammal
                    Bos taurus
                                        Domestic Cattle
                                                            No Intervention
                                                                                     False
                                        (Feral), Dom...
                                        Domestic Sheep,
                                        Mouflon, Red
 3
        Mammal
                    Ovis aries
                                                            No Intervention
                                                                                     False
                                        Sheep, Sheep
                                       (Feral)
        Mammal
                    Cervus elaphus
                                       Wapiti Or Elk
                                                            No Intervention
                                                                                     False
                                                                                     ...
        Vascular
 5819
                    Solanum parishii
                                        Parish's Nightshade
                                                            No Intervention
                                                                                     False
        Plant
                                        Chaparral
        Vascular
 5820
                                        Nightshade, Purple
                    Solanum xanti
                                                            No Intervention
                                                                                     False
        Plant
                                        Nightshade
                                        Thicket Creeper,
        Vascular
                    Parthenocissus
                                        Virginia Creeper,
                                                            No Intervention
                                                                                     False
 5821
        Plant
                    vitacea
                                        Woodbine
                                        California Grape,
        Vascular
                    Vitis californica
                                        California Wild
                                                            No Intervention
                                                                                     False
        Plant
                                        Grape
                                        Bullhead, Caltrop,
        Vascular
                    Tribulus terrestris
 5823
                                       Goathead, Mexican
                                                           No Intervention
                                                                                     False
       Plant
                                        Sandbur, ...
5824 rows × 5 columns
```

Use apply and a lambda function to create a new column in species called is_sheep which is True if the common_names contains 'Sheep', and False otherwise.

```
species["is_sheep"] = species.common_names.apply(lambda x: True if 'Shee
p' in x else False)
```

Select the rows of species where is_sheep is True and examine the results.

display(species.loc[species.is_sheep == True,:])

	category	scientific_name	common_names	conservation_status	is_p
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False
1139	Vascular Plant	Rumex acetosella	Sheep Sorrel, Sheep Sorrell	No Intervention	False
2233	Vascular Plant	Festuca filiformis	Fineleaf Sheep Fescue	No Intervention	False
3014	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
3758	Vascular Plant	Rumex acetosella	Common Sheep Sorrel, Field Sorrel, Red Sorrel,	No Intervention	False
3761	Vascular Plant	Rumex paucifolius	Alpine Sheep Sorrel, Fewleaved Dock, Meadow Dock	No Intervention	False
4091	Vascular Plant	Carex illota	Sheep Sedge, Smallhead Sedge	No Intervention	False
4383	Vascular Plant	Potentilla ovina var. ovina	Sheep Cinquefoil	No Intervention	False
4446	Mammal	Ovis canadensis sierrae	Sierra Nevada Bighorn Sheep	Endangered	True

Many of the results are actually plants. Select the rows of species where is_sheep is True and category is Mammal. Save the results to the variable sheep_species.

```
sheep_species = species.loc[(species.category == 'Mammal') & (species.is
_sheep == True), :]
display(sheep_species)
```

	category	scientific_name	common_names	conservation_status	is_p
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False
3014	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
4446	Mammal	Ovis canadensis sierrae	Sierra Nevada Bighorn Sheep	Endangered	True

Now merge $sheep_species$ with observations to get a DataFrame with observations of $sheep_Save$ this DataFrame as $sheep_observations$.

sheep_observations = sheep_species.merge(observations, how='inner', on="
scientific_name")

display(sheep_observations.head(20))

	category	scientific_name	common_names	conservation_status	is_pro
0	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False
1	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False
2	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False
3	Mammal	Ovis aries	Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral)	No Intervention	False
4	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
5	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
6	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
7	Mammal	Ovis canadensis	Bighorn Sheep, Bighorn Sheep	Species of Concern	True
8	Mammal	Ovis canadensis sierrae	Sierra Nevada Bighorn Sheep	Endangered	True
9	Mammal	Ovis canadensis sierrae	Sierra Nevada Bighorn Sheep	Endangered	True
10	Mammal	Ovis canadensis sierrae	Sierra Nevada Bighorn Sheep	Endangered	True
11	Mammal	Ovis canadensis sierrae	Sierra Nevada Bighorn Sheep	Endangered	True

How many total sheep observations (across all three species) were made at each national park? Use groupby to get the sum of observations for each park_name . Save your answer to obs_by_park .

This is the total number of sheep observed in each park over the past 7 days.

```
obs_by_park = sheep_observations.groupby("park_name").observations.sum
().reset_index()
display(obs_by_park)
```

	park_name	observations
0	Bryce National Park	250
1	Great Smoky Mountains National Park	149
2	Yellowstone National Park	507
3	Yosemite National Park	282

Create a bar chart showing the different number of observations per week at each park.

- 1. Start by creating a wide figure with figsize=(16, 4)
- 2. Start by creating an axes object called ax using plt.subplot.
- 3. Create a bar chart whose heights are equal to observations column of obs_by_park.
- 4. Create an x-tick for each of the bars.
- 5. Label each x-tick with the label from park name in obs by park
- 6. Label the y-axis Number of Observations
- 7. Title the graph Observations of Sheep per Week
- 8. Plot the grap using plt.show()

```
fig_1 = plt.figure(figsize=(16,4))
ax_1 = plt.subplot()
ax_1.bar(obs_by_park.index, obs_by_park.observations, tick_label=obs_by_
park.park_name)
ax_1.set_ylabel("Number of Observations")
ax_1.set_title("Observations of Sheep per Week")
plt.show()
```


Our scientists know that 15% of sheep at Bryce National Park have foot and mouth disease. Park rangers at Yellowstone National Park have been running a program to reduce the rate of foot and mouth disease at that park. The scientists want to test whether or not this program is working. They want to be able to detect reductions of at least 5 percentage points. For instance, if 10% of sheep in Yellowstone have foot and mouth disease, they'd like to be able to know this, with confidence.

Use <u>Codecademy's sample size calculator (https://s3.amazonaws.com/codecademy-content /courses/learn-hypothesis-testing/a_b_sample_size/index.html)</u> to calculate the number of sheep that they would need to observe from each park. Use the default level of significance (90%).

Remember that "Minimum Detectable Effect" is a percent of the baseline.

```
n_observations_req = 890
```

How many weeks would you need to observe sheep at Bryce National Park in order to observe enough sheep? How many weeks would you need to observe at Yellowstone National Park to observe enough sheep?

```
n_of_weeks_4_sigf = n_observations_req / obs_by_park.loc[obs_by_park.pa
rk_name == "Yellowstone National Park", "observations"]
print(n_of_weeks_4_sigf )

2    1.755424
Name: observations, dtype: float64
```