Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj Department of Computer Science & Engineering

2ndYear 1stSemester B.Sc. (Engg.) Final Examination-2020 Course Title: Data Structure

Course No.: CSE201

Full Marks: 60

N.B.: i. Answer SIX questions, taking any THREE from each section.

ii. All questions are of equal values

Times: 3 Hours

		Section A	1
1.	a)	Define Data Structure. Why do we need to know about different types data structures in the computer engineering field?	-
	b)	What do you mean by garbage collection? Define Overflow and Underflow.	(1+
	c)	What do you mean by the complexity of an algorithm? Discuss briefly the time-space tradeoff of algorithms.	(1+)
2	(a)	What are the limitations of linear search algorithm?	0
	(b)	Apply binary search technique to the following sorted array, when search item is 40. Array: 11, 22, 30, 33, 40, 44, 55, 60, 66, 77, 80, 88, 99	(1)
,	(e)	Let's consider an array with values: 5, 1, 6, 2, 4, 3. Sort this array using the Bubble Sort algorithm. Show the first step's (pass 1) comparisons in detail.	(4)

Consider the following link list. 3.

TART		INFO	LINK
4	1	A	2
	2	8	8
AVAIL	3		6
3	4	С	7
	5	D	0
	6		0
	7	E	1
		F	5

	a)	Find the sequence of characters in the list.	1
	b)	Suppose F and then C are deleted from the list and then G is inserted at the beginning of the list. Find the final structure.	2
	c)	Suppose C and then F are deleted from the list and then G is inserted at the beginning of the list. Find the final structure.	2
	d)	Suppose G is inserted at the beginning of the list and then F and then C are deleted from the structure. Find the final structure.	2
	e)	What is two-way list? Write down the advantages and disadvantages of it.	3
4.	a)	Consider the following stack, where STACK is allocated N = 6 memory cells: STACK: AAA, DDD, EEE, FFF, GGG, Describe the stack as the following operations take place: (i) PUSH(STACK, KKK), (ii) POP(STACK, ITEM), (iii) PUSH(STACK, LLL), (iv) PUSH(STACK, SSS), (v) POP(STACK, ITEM) and (vi) PUSH(STACK, TTT).	3
	b)	Consider the following arithmetic expression P, written in postfix notation: P: 12, 7, 3, -, /, 2, 1, 5, +, *, + (i) Translate P, by inspection and hand, into its equivalent infix expression. (ii) Evaluate the infix expression.	3
	c)	Define priority queue. Consider the following queue of characters, where QUEUE is a circular array which is allocated six memory cells: FRONT = 2, REAR = 4, QUEUE: _, A, C, D, _, _ (For notational convenience, we use " _ " to denote an empty memory cell). Describe the queue as the following operations take place: (i) F is added to the queue (ii) K, L, and M are added to the queue (iii) R is added to the queue (iv) S is added to the queue	

Section B

What is heap? State max-heap and min-heap property. Write the Huffman's Algorithm. Suppose A, B, C, D, E, F, G and H are 8 items and suppose they are assigned Weights as follows:

Data Item: A B C D E F G H Weight : 22 5 11 19 2 11 25 5

Construct a tree using Huffman's algorithm.

Deduce the preorder, in order, and post order sequences for the following binary tree:

(a) Consider the following list of letters is inserted into an empty binary search tree:

3)

J, R, D, G, T, E, M, H, P, A, F, Q 1. Find the final tree T (show each step separately) and

ii. Describe the tree after the node R is deleted

Suppose inorder and preorder traversals of a binary tree are as follows:

Inorder: DBHEAIFJCG Preorder: ABDEHCFIJG Draw the binary tree.

7. a) Consider the following directed graph G. (i) Find the indegree and outdegree of each node. (ii) Find the number of simple paths from v1 to v4. (iii) Are there any sources or sinks?

b) Suppose the graph G (Figure 7) represents the daily flights between cities of some airline. 6 Now find the minimum path from the city A to city E using BFS, where the each edge has length 1.

Figure 7: A directional graph G

Suppose an array A contains 6 elements as follows: 99 2 34 18 76 14 Insertion sort algorithm is applied on array A to sort its elements. Depict the state of the array after each pass of the algorithm.

Suppose 9 cards are punched as follows: 348, 143, 361, 423, 538, 128, 321, 543, 366. Sort the numbers using Radix sort.

Bangabandhu Sheikh Mujibur Rahman Science and Technology University

Department of Computer Science and Engineering

2nd Year 1st Semester B.Sc. Engineering Examination 2020

Course Code: CSE203 Course Title: Digital Logic Design
Total Marks: 60 Time: 3 (Three) Hours

N.B. i) Answer any SIX questions taking THREE from each section.

				eren							
111	1	SECTION-A Find out the 11's and 10's complement of (5192.19) ₁₁ .									
A.											
	b)										
	(c)	Simplify the function $F = \Sigma(2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$ by using the tabulation method.									
JJ 2.	_a)	Design a logic circuit that converts a BCD number into a Gray code number.									
	(d)										
	c) Design a full subtractor with a decoder and basic logic gates.										
3.	a)	Implement the function $F = \Sigma$	(1, 3, 4,	5, 7, 8,	9, 13, 15) with only one 4X1 MUX.	4					
	b)	Design a combinational circ whether B is 2's complement	res two 4-bit numbers A and B to check	4							
	CT	Design a 4X1 MUX using two	2X1 M	IUXs.		2					
4.	a)	Design a sequential circuit	that per	rforms t	he following operations on a 4-bit binary	8					
		number using necessary MUX									
			S_I	S_0	Operation						
			0	0	Set						
			0	1	Reset						
			1	0	Shift left						
			1	1	1's complement						
	b)	What is carry propagation? W	hy is it	used?		2					
		William I		SECTI		7					
10.	ay	and one 2-to-1 multiplexer.	piexers	Implei	nent a 8-to-1 multiplexer using two 4-to-1	6)					
	b)	Make a 2-to-1 multiplexer usi	ng NA!	ND gate.		4					
						3					
6.	aj	A(t+1) = (CD' + C'D)x + (CD + C'D')x'; $B(t+1) = A;$ $C(t+1) = B;$ $D(t+1) = C$ Obtain the sequence of states when $x = 1$, starting from state $ABCD = 0001$.									
	1 %										
	b)					3					
		following sequence. 000 → 001 → 011 → 100 → 110 → 111. If state 0 encountered, it moves to valid state 011 and for state 101, it moves to state 110. What are the conditions for state reduction?									
	3										
	c)	what are the conditions for su	ate redu	iction?		2					
7.	a)	There are 4 states as 00 01 1	0 11 6	or a mac	hine. It moves from a state to another which	6					
		I's complement of the prev	There are 4 states as 00, 01, 10, 11 for a machine. It moves from a state to another which 1's complement of the previous state when input $x = 0$ and 2's complement of the previous state when input $x = 1$. Design the sequential circuit with JK flip-flop.								
	b)	Convert a D flip-flop to T flip	-flop. (Jse nece	ssary gates.	2					
	c)	not be a second of the second									
√ 8.	a)	Explain the memory unit and its	operation	ng princip	oles with block diagram.	4					
V 0.	b)	and the property of the proper									

difference between Johnson Counter and Ring Counter?

Write the difference between ROM and PLA.

Bangabandhu Sheikh Mujibur Rahman Science and Technology University

Course Code: CSE205

Department of Computer Science & Engineering 2nd Year 1st Semester B.Sc. Engineering Examination-2020

Course Title: Java Technology

Time: 3 hours Full Marks: 60 Answer Three questions from each section Section A 0.1 (a) Why is object oriented design used for large scale software projects such as java? (a) Explain about Public, Private and protected access specifiers with proper example. (e) What is interface, why do we need interface? justify your answer with a proper example. -0.2 (a) Why java is Object-oriented, Platform independent and Multi-threaded? (b) Briefly describe Encapsulation, Polymorphism and Inheritance with real life example. (c) Write down the difference between constructor and method in java. Q.3 (a) What are the functions of class constructors? (b) Explain function overriding and function overloading with proper examples. (c) Why bytecodes are important in java. What are the functions of JVM? 100 Explain the use of the final keyword in variable, method and class. 3 Explain class and objects in java? Translate the following algorithm into Java Code: Step1: Declare a double variable named miles with initial value 100 O Step2: Declare a double constant named KILOMETERS PER MILE with value 1.609 (c) Step3: Declare a double variable named kilometers, multiply miles and KILOMETERS_PER_MILE, and assign the result to kilometers. Step4: Display kilometers to the console. Section B What is a Thread? How many ways a thread can be created, answer it with proper examples? (b) Explain Thread life cycle. (c) How does an exception propagate in the code? give example. What do you mean by class variable? What do you understand by an instance variable and a local variable? (b) What are the advantages of Packages in Java? Give examples. (c) Multiple inheritance is not allowed in java but Multilevel is allowed; justify it. 3 What do you mean by data encapsulation, JDK, JVM, JRE? 4 Write output of the following code: 3 public class InterviewBit{ final static int a = 10; public static void main(String[] args) a++: System.out.println(a); (c) Use relevant properties to highlight the differences between interfaces and abstract classes. X Q.8 (a) Do final, finally and finalize keywords have the same function? 2 (b) When can you use super keyword? What are the differences between C++ and Java? Can the static methods be overloaded? Can the static methods be overridden?

Bangabandhu Sheikh Mujibur Rahman Science and Technology University Department of Computer Science & Engineering 2nd Year 1st Semester B.Sc. Engineering Examination, 2020

Course Code: MAT205, Course Title: Vector, Matrix and Fourier Analysis

Time: 3 hours

N.B. i) Answer SIX questions, taking any THREE from each section.

ii) All questions are of equal values.

- (b) Find the unit tangent vector to any point on the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$. 5
 Also determine the unit tangent at the point where t = 2.
- Q.2 (a) Define gradient, divergence and curl. Find the directional derivative of $\phi = x^2yz + 4xz^2$ 6 at (1,-2,-1) in the direction $2\mathbf{i} \mathbf{j} 2\mathbf{k}$.
 - (b) Prove that: $\nabla \times (\phi A) = (\nabla \phi) \times A + \phi(\nabla \times A)$
- Define line integrals, surface integrals and volume integrals. Find the total work done in moving a particle in a force field given by $\mathbf{F} = 3xy\mathbf{i} - 5z\mathbf{j} + l0x\mathbf{k} \text{ along the curve } x = t^2 + 1, \ y = 2t^2, \ z = t^3 \text{ from } t = 1 \text{ to } t = 2.$
 - Evaluate $\iint_S A \cdot n \, dS$, where $A = zi + xj 3y^2 zk$ and S is the surface of the cylinder

 4
 - $x^2 + y^2 = 16$ included in the first octant between z = 0 and z = 5. Q.4 (a) State and prove Green's theorem in the plane.
 - (b) Verify Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$.

SECTION-B (30 Marks)

- Define symmetric matrix, hermitian matrix and orthogonal matrix with example. Show that $A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$ is a idempotent matrix.
 - (b) Show that, every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

6

$$A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4 \end{bmatrix}$$

Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8 \end{bmatrix}$$
.

(a) Define Fourier series.

5

Find the Fourier series of the function
$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ 1, & 0 \le x \le \pi \end{cases}$$

Find the Fourier integral of the function $f(x) = e^{-kx}$ when x > 0 and f(-x) = f(x) for

$$k > 0$$
, and hence prove that
$$\int_{0}^{\infty} \frac{\cos ux}{k^2 + u^2} du = \frac{\pi}{2k} e^{-kx}.$$

Q.8 (a) Find the Fourier transform of
$$f(x)$$
 defined by $f(x) = \begin{cases} 1, |x| < a \\ 0, |x| > a \end{cases}$

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}; \quad U(0,t) = 0; U(\pi,t) = 0; U(x,0) = 2x \quad \text{where} \quad 0 < x < \pi, t > 0.$$

Bangabandhu Sheikh Mujibur Rahman of Science and Technology University Department of Computer Science and Engineering

2ndYear 1stSemester B.Sc. (Engg.) Final Examination-2020

Course Code: STA205, Course Title: Applied Statistics and Queuing Theory

Full Marks: 60 Time: 3 Hour

			Section	n A						
		[Answer any			question	ns]				
11.	√ 1. a) Define the following terms with example: Statistics, Variable, Data									
		Distinguish among the fol						able, Bar		
7										
1/	c)			es as nominal, ordinal, interval or ratio:						
		Number of patients seen,								
		Occupation, Country, Runnin								
		overpending, realing, realing	ab speed							
A 2.	a)	Show that $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$								
		e of meas	urement.							
	1	The following table shows the								
	c)	orkers of	а рнан	iaccuticai						
9		company	25-29	30-34	35-39	40-44	45-49	50-54		
		Age in years	3	9	15	12	6	5		
7		Number of workers								

13

a) What do you mean by dispersion? State the name of some measures of dispersion.

b) The following table gives the marks of 30 students in physics in an examination

Marks 30-34 35-39 40-44 45-49 50-54

Number of students 8 12 6 2 2

Calculate variance and hence standard deviation.

Show that the variance is independent on the origin but dependent on the scale of 3 measurement.

A. a) Defin

a) Define and illustrate with example: Probability, Sample space, Event, Experimentb) Distinguish between: Deterministic experiment and Random experiment.

c) A newly married couple is planning to have two children and suppose that each 4 child is equally likely to be a boy or a girl. Construct a sample space and find the probability that the couple will have i) two boys ii) one boy and one girl iii) at least one girl.

Section B [Answer any three of the followings]

What is regression analysis? Mention some properties of correlation coefficient.

What are the differences between regression and correlation analysis?

/	b)	A departmental store has the following statistic on sales (y) for a period of last one	6
		year of 10 salesmen, who have varying years of sales experience (x).	

Salesperson	1	2	3	4	5	6	7	8	9	10
Years of experience (x)	1	3	4	4	6	8	10	10	11	13
Sales (v)	80	97	92	102	103	111	119	123	117	136

Find the regression of y on x. i)

Predict the annual sales volume of persons who have 12 and 15 years of ii) sales experience.

16.	a)	Define: Joint	probability,	Conditional	probability.

2

Examination results of 150 students showed that 95 students passed mathematics, 75 students passed economics and 135 students passed at least one of the above subjects. A student is selected at random. What is the probability that the student

Passed both mathematics and economics? i)

Failed both the subjects? (ii

Passed mathematics but failed economics? (iii

- What is independence of events? A fire brigade has two fire engines operating 4 independently. The probability that a specific fire engine is available when needed is 0.99
 - What is the probability that an engine is available when needed? i)
 - What is the probability that none is available when needed? ii)

b) A continuous random variable X has the following density function:

$$f(x) = \frac{2(x+1)}{27}, 2 < x < 5$$

= 0, elsewhere

Find (i) P(X < 4) and (ii) P(3 < X < 4)

8. a) What is the differences between Bernoulli and Binomial distribution? State the important properties of Binomial distribution.

b) Find mean and variances of Binomial distribution.

A traffic control officer reports that 75% of the trucks passing through a check post are from within Dhaka city. What is the probability that at least three of the next five cars are from outside of Dhaka city?