1. (a) The value of ω such that the expression for $v_1(t)$ represents the waveform shown in Fig. 1(a):

$$\omega=rac{2\pi}{L}$$
 $(v_{avg})_{fullcycle}=rac{2A}{\pi}$ $(v_{avg})_{halfcycle}=rac{2A}{\pi}$ $v_{rms}=rac{A}{\sqrt{2}}$

(b)
$$(v_{avg})_{fullcycle}=\frac{A}{2} \qquad (v_{avg})_{halfcycle}=\frac{A}{4}$$

$$v_{rms}=\frac{A}{\sqrt{3}}$$

(c)
$$(v_{avg})_{fullcycle} = 0 \qquad (v_{avg})_{halfcycle} = \frac{A}{2}$$

$$v_{rms} = \frac{A}{\sqrt{3}}$$

(d)
$$(v_{avg})_{fullcycle} = 0 \qquad (v_{avg})_{halfcycle} = A$$
 $v_{rms} = A$

(e)
$$(v_{avg})_{fullcycle} = A(2\alpha - 1) \qquad (v_{avg})_{halfcycle} = \begin{cases} (4\alpha - 1)A & \alpha < 0.5\\ A & \alpha \geq 0.5 \end{cases}$$

$$v_{rms} = A$$

(f)
$$(v_{avg})_{fullcycle}=0 \qquad (v_{avg})_{halfcycle}=\frac{20A}{9\pi}$$

$$v_{rms}=\frac{A\sqrt{205}}{12\sqrt{2}}$$