1.4. Приложения определенного интеграла

1.4.1. Площади

1* Мет. Значение интеграла - площадь фигуры под графиком

Геом. смысл.
$$S = \int_a^b f(x) dx$$
 $S' = -\int_b^c f(x) dx$

Площадь фигуры, окруженной графиками функций $S = \int_a^b |f(x) - g(x)| dx$, a, b - абсциссы точек пересечения

Nota. Симметрия

Если
$$f(x)$$
 – четная функция, то $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$

Если
$$f(x)$$
 – нечетная функция, то $\int_{-a}^{a} f(x)dx = 0$

1.4.2. Площадь в ПСК

В ДПСК мы производили дробление фигуры на элементарные прямоугольники. Сделаем подобное в ПСК для $\rho(\varphi)$:

- 1. Дробление $[\alpha; \beta]$ на угловые сектора $[\varphi_{i-1}; \varphi_i]$ $\Delta \varphi_i$ угол сектора
- 2. Выбор средней точки $\psi_i \in [\varphi_{i-1}; \varphi_i]$, площадь сектора $S_i = \frac{1}{2} \Delta \varphi_i \rho^2(\psi_i)$
- 3. Интегральная сумма $\sigma_n = \frac{1}{2} \sum_{i=1}^n \rho^2(\varphi_i) \Delta \varphi_i$
- 4. Предел $\lim_{n\to\infty}\frac{1}{2}\sum_{i=1}^n\rho^2(\varphi_i)\Delta\varphi_i=\frac{1}{2}\int_{\alpha}^{\beta}\rho^2(\varphi)d\varphi$

Ех. Кардиоида:

$$\rho = 1 + \cos \varphi \\ S = \frac{1}{2} \int_{-\pi}^{\pi} \rho^{2}(\varphi) \Delta \varphi = \int_{0}^{\pi} \rho^{2}(\varphi) \Delta \varphi = \int_{0}^{\pi} (1 + \cos \varphi)^{2} \Delta \varphi = \int_{0}^{\pi} (1 + 2 \cos \varphi + \cos^{2} \varphi) \Delta \varphi = \varphi \Big|_{0}^{\pi} + \int_{0}^{\pi} \frac{1 + \cos 2\varphi}{2} \Delta \varphi = \pi + \frac{1}{2}\pi = \frac{3}{2}\pi$$

Nota. Если фигура задана параметрическими уравнениями:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad \alpha \le t \le \beta$$

то площадь будет равна $S=\int_a^b y(x)dx=\int_{\alpha}^{\beta} y(t)x'(t)dt$

1.4.3. Длина кривой дуги

Пусть дуга AB задана уравнением y = f(x) $x \in [a; b]$

- 1. Производим дробление дуги на элементарные дуги точками $A=M_0 < M_1 < \cdots < M_n=B$ Здесь порядок M_i таков, что их абсциссы $a=x_0 < x_1 < \cdots < x_n=b$ $\Delta x_i > 0$
- 2. Стягиваем сумму элементарными хордами. Сумма длин этих хорд при уменьшении их длин будет приближать длину этой дуги

$$\Delta s_i = \sqrt{\Delta y_i^2 + \Delta x_i^2}$$

По **Th.** Лагранжа существует такая точка $\xi_i \in [x_{i-1}; x_i]$, что значение производной в этой точке равно наклону отрезка: $f'(\xi_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

- 3. Интегральная сумма $\sigma_n = \sum_{i=1}^n \Delta s_i = \sum_{i=1}^n \sqrt{1 + (y'(\xi_i))^2} \Delta x_i$
- 4. Предельный переход $\lim_{\substack{n\to\infty\\ \tau\to 0}}\sigma_n=\int_a^b\sqrt{1+(y'(x))^2}dx=l_{\rm дуги}$

Nota. Очевидно, что требуется гладкость дуги, то есть ее спрямляемость. Только при этом условии $\Delta l_i \approx \Delta s_i$, и работает **Th.** Лагранжа

Параметрическое задание:

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

$$\Delta s_i = \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} = \sqrt{(\varphi'(\theta_i)\Delta t)^2 + (\psi'(\theta_i)\Delta t)^2} = |\Delta t| \sqrt{(\varphi'(\theta_i))^2 + (\psi'(\theta_i))^2}$$

$$l = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} |dt|$$

Ех. Длина эллипса

$$L = 4l = 4\int_0^{\frac{\pi}{2}} \sqrt{a^2\sin^2t + b^2\cos^2t} dt = 4\int_0^{\frac{\pi}{2}} \sqrt{(a^2-b^2)\sin^2t + b^2} dt = 4\int_0^{\frac{\pi}{2}} \sqrt{c^2\sin^2t + b^2} dt = 4\int_0^{\frac{\pi}{2}} \sqrt{1 + k^2\sin^2t} dt$$
 - эллиптический интеграл

1.4.4. Объемы тел

1* Объемы тел с известными площадями сечений

Для тела известна площадь сечения перпендикулярной Ox плоскости S(x)

Аналогично обычному дроблению
$$\lim_{\substack{n\to\infty\\ \tau\to 0}} v_n = \int_a^b S(x) dx = V_{\text{тела}}$$

Ex. Тело отсечено от I октанта плоскостью $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$

$$S(x) = S_{DBC} = \frac{(a-x)^2}{2}$$
 Тогда $V = \int_0^a \frac{1}{2} (a-x)^2 dx = \frac{1}{2} \int_0^a (x-a)^2 dx = \frac{1}{2} \int_0^a (x-a)^2 d(x-a) = \frac{1}{6} (x-a)^3 \Big|_0^a = \frac{a^3}{6}$

Nota. Объем тела вращения

Пусть дана функция r(x), задающая радиус тела вращения на уровне x, тогда объем

тела вращения будет равен $\int_a^b \pi r^2(x) dx$

