日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 4月22日

出 願 番 号 Application Number:

特願2003-117164

[ST. 10/C]:

[JP2003-117164]

出 願 人
Applicant(s):

セイコーエプソン株式会社

官

公 并

3月22日

2004年

特許庁長官 Commissioner, Japan Patent Office 【書類名】

特許願

【整理番号】

J0098193

【あて先】

特許庁長官殿

【国際特許分類】

H05K 3/12

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

森山 英和

【特許出願人】

【識別番号】

000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】

100095728

【弁理士】

【氏名又は名称】 上柳 雅誉

【連絡先】

 $0\ 2\ 6\ 6\ -\ 5\ 2\ -\ 3\ 5\ 2\ 8$

【選任した代理人】

【識別番号】 100107076

【弁理士】

【氏名又は名称】 藤綱 英吉

【選任した代理人】

【識別番号】

100107261

【弁理士】

【氏名又は名称】 須澤 修

【手数料の表示】

【予納台帳番号】

013044

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

ページ: 2/E

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0109826

【プルーフの要否】

要

【書類名】明細書

【発明の名称】 洗浄方法及び保管方法、パターンの形成方法及びデバイスの製造方法、電気光学装置及び電子機器

【特許請求の範囲】

【請求項1】 液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路の洗浄方法であって、

前記流路を純水で置換する第1置換工程と、

前記純水と前記機能液に含まれる溶媒との双方を溶解する溶媒で置換する第2 置換工程と、

前記機能液に含まれる溶媒で置換する第3置換工程とを有することを特徴とする洗浄方法。

【請求項2】 所定の保管液が充填された状態の液滴吐出ヘッド及び該液滴 叶出ヘッドに機能液を供給する管部を含む流路の洗浄方法であって、

前記流路を前記保管液を溶解する第1の溶媒で置換する第1置換工程と、

前記第1の溶媒と前記機能液に含まれる溶媒との双方を溶解する第2の溶媒で 置換する第2置換工程と、

前記機能液に含まれる溶媒で置換する第3置換工程とを有することを特徴とする洗浄方法。

【請求項3】 前記第3置換工程の後に、前記機能液で前記流路を置換することを特徴とする請求項1又は2記載の洗浄方法。

【請求項4】 液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路の保管方法であって、

前記機能液を吐出した液滴吐出ヘッドを含む前記流路を前記機能液に含まれる 溶媒で置換する第1工程と、

前記機能液に含まれる溶媒と純水との双方を溶解する溶媒で置換する第2工程 と、

純水で置換する第3工程とを有し、

前記第3工程の後に、前記流路に水溶性保管液を充填することを特徴とする保管方法。

2/

【請求項5】 液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路に所定の保管液を充填する工程を有する保管方法であって、

前記機能液を吐出した液滴吐出ヘッドを含む前記流路を前記機能液に含まれる 溶媒で置換する第1工程と、

前記機能液に含まれる溶媒と前記保管液との双方を溶解する第1の溶媒で置換する第2工程と、

前記保管液を溶解する第2の溶媒で置換する第3工程とを有し、

前記第3工程の後に、前記流路を前記保管液で置換して該保管液を前記流路に 充填することを特徴とする保管方法。

【請求項6】 機能液の液滴を基板上に配置することにより膜パターンを形成するパターンの形成方法であって、

前記液滴を配置可能な液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路を純水で置換する第1置換工程と、

前記純水と前記機能液に含まれる溶媒との双方を溶解する溶媒で置換する第2 置換工程と、

前記機能液に含まれる溶媒で置換する第3置換工程と、

前記基板上に設定された前記膜パターンを形成するパターン形成領域を囲む領域に撥液性膜を設ける表面処理工程と、

前記パターン形成領域に前記液滴を前記液滴吐出ヘッドにより配置する材料配置工程とを有することを特徴とするパターンの形成方法。

【請求項7】 機能液の液滴を基板上に配置することにより膜パターンを形成するパターンの形成方法であって、

所定の保管液が充填された状態の液滴吐出ヘッド及び該液滴吐出ヘッドに機能 液を供給する管部を含む流路を前記保管液を溶解する第1の溶媒で置換する第1 置換工程と、

前記第1の溶媒と前記機能液に含まれる溶媒との双方を溶解する第2の溶媒で 置換する第2置換工程と、

前記機能液に含まれる溶媒で置換する第3置換工程と、

前記基板上に設定された前記膜パターンを形成するパターン形成領域を囲む領

域に撥液性膜を設ける表面処理工程と、

前記パターン形成領域に前記液滴を前記液滴吐出ヘッドにより配置する材料配置工程とを有することを特徴とするパターンの形成方法。

【請求項8】 前記撥液性膜は前記基板の表面に形成された単分子膜であることを特徴とする請求項6又は7記載のパターンの形成方法。

【請求項9】 前記単分子膜は有機分子からなる自己組織化膜であることを 特徴とする請求項8記載のパターンの形成方法。

【請求項10】 前記撥液性膜はフッ化重合膜であることを特徴とする請求項6又は7記載のパターンの形成方法。

【請求項11】 前記機能液は熱処理又は光処理により導電性を発現することを特徴とする請求項6~10のいずれか一項記載のパターンの形成方法。

【請求項12】 基板上に膜パターンを形成する工程を有するデバイスの製造方法において、

請求項6~請求項11のいずれか一項記載のパターンの形成方法により、前記 基板上に膜パターンを形成することを特徴とするデバイスの製造方法。

【請求項13】 請求項12記載のデバイスの製造方法を用いて製造された デバイスを備えることを特徴とする電気光学装置。

【請求項14】 請求項13記載の電気光学装置を備えることを特徴とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、液滴吐出ヘッドを含む機能液の流路の洗浄方法及び保管方法、機能 液の液滴を基板上に配置することにより膜パターンを形成するパターンの形成方 法及びデバイスの製造方法、電気光学装置及び電子機器に関するものである。

[0002]

【従来の技術】

従来より、半導体集積回路など微細な配線パターン(膜パターン)を有するデバイスの製造方法としてフォトリソグラフィ法が多用されているが、液滴吐出法

を用いたデバイスの製造方法が注目されている(特許文献1、2参照)。この液 滴吐出法は機能液の消費に無駄が少なく、基板上に配置する機能液の量や位置の 制御を行いやすいという利点がある。また、液滴吐出法においては良好な吐出状態を得るために液滴吐出ヘッドを定期的に洗浄することが好ましく、従来より種 々の洗浄方法が提案されている(特許文献3、4参照)。

[0003]

【特許文献1】

特開平11-274671号公報

【特許文献2】

特開2000-216330号公報

【特許文献3】

特開平9-39260号公報

【特許文献4】

特開平10-337882号公報

[0004]

【発明が解決しようとする課題】

ところで、デバイスを製造するために使用された液滴吐出装置を所定期間保管する際、液滴吐出ヘッドに水溶性保管液を充填した状態で保管する場合が多い。水溶性保管液とするのは蒸発のしずらさを考慮したためである。また、保管液を用いずにデバイスを製造するための機能液(インク)を充填した状態で保管することも考えられるが、この機能液が乾燥しやすいものであったり冷蔵保存(あるいは冷凍保存)が必要なものである場合、保管に適していないため、専用の保管液を用いて保管する。そして、保管した液滴吐出ヘッドを再使用(再稼働)する場合、水溶性保管液を取り除いて機能液を充填することになるが、機能液と保管液との相溶性が悪いと、固形分が析出して液滴吐出ヘッドを含む機能液の流路が詰まるなど液滴吐出動作に影響を及ぼしたり、あるいは機能液が変質する等の不都合が生じる可能性がある。

[0005]

本発明はこのような事情に鑑みてなされたものであって、保管液を用いた保管

状態の液滴吐出ヘッドを再稼働する際、液滴吐出動作に影響を及ぼさずに機能液を変質させずに、流路を円滑に機能液に置換して良好に洗浄できる洗浄方法を提供することを目的とする。また、液滴吐出動作終了後の液滴吐出ヘッドを保管する際、固形分の析出等の不都合を抑えた状態で保管液を充填できる保管方法を提供することを目的とする。更に、液滴吐出動作に影響を及ぼさずに機能液を変質させずに、流路を円滑に機能液に置換して良好にパターン形成できるパターンの形成方法及びデバイスの製造方法を提供することを目的とする。更に本発明は、所望の機能を有する機能液で良好な液滴吐出動作のもとで形成された電気光学装置及び電子機器を提供することを目的とする。

[0006]

【課題を解決するための手段】

上記の課題を解決するため、本発明の洗浄方法は、液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路の洗浄方法であって、前記流路を純水で置換する第1置換工程と、前記純水と前記機能液に含まれる溶媒との双方を溶解する溶媒で置換する第2置換工程と、前記機能液に含まれる溶媒で置換する第3置換工程とを有することを特徴とする。この場合において、前記第3置換工程の後に、前記機能液で前記流路を置換することが好ましい。

本発明によれば、液滴吐出ヘッドを含む流路が水溶性保管液で保管されている場合、流路をまず純水で置換し、次いで純水と機能液に含まれる溶媒との双方を溶解する所定の溶媒で置換し、次いで機能液に含まれる溶媒で置換するようにしたので、固形分の析出や機能液の変質といった不都合の発生を防止しつつ、流路を洗浄して機能液に円滑に置換することができる。

[0007]

本発明の洗浄方法は、所定の保管液が充填された状態の液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路の洗浄方法であって、前記流路を前記保管液を溶解する第1の溶媒で置換する第1置換工程と、前記第1の溶媒と前記機能液に含まれる溶媒との双方を溶解する第2の溶媒で置換する第2置換工程と、前記機能液に含まれる溶媒で置換する第3置換工程とを有することを特徴とする。この場合において、前記第3置換工程の後に、前記機能液で前記流

路を置換することが好ましい。

本発明によれば、液滴吐出ヘッドを含む流路が水溶性保管液以外の所定の保管液で保管されている場合であっても、流路をまず保管液を溶解する第1の溶媒で置換し、次いで第1の溶媒及び機能液に含まれる溶媒の双方を溶解する第2の溶媒で置換し、次いで機能液に含まれる溶媒で置換するようにしたので、固形分の析出や機能液の変質といった不都合の発生を防止しつつ、流路を洗浄して機能液に円滑に置換することができる。

[0008]

本発明の保管方法は、液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路の保管方法であって、前記機能液を吐出した液滴吐出ヘッドを含む前記流路を前記機能液に含まれる溶媒で置換する第1工程と、前記機能液に含まれる溶媒と純水との双方を溶解する溶媒で置換する第2工程と、純水で置換する第3工程とを有し、前記第3工程の後に、前記流路に水溶性保管液を充填することを特徴とする。

本発明によれば、機能液の液滴を吐出した後の液滴吐出ヘッドを保管状態にする際、流路をまず機能液に含まれる溶媒で置換し、次いで機能液に含まれる溶媒と純水との双方を溶解する所定の溶媒で置換し、次いで純水で置換するようにしたので、固形分の析出といった不都合の発生を防止しつつ、流路を洗浄して水溶性保管液で保管することができる。

[0009]

本発明の保管方法は、液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路に所定の保管液を充填する工程を有する保管方法であって、前記機能液を吐出した液滴吐出ヘッドを含む前記流路を前記機能液に含まれる溶媒で置換する第1工程と、前記機能液に含まれる溶媒と前記保管液との双方を溶解する第1の溶媒で置換する第2工程と、前記保管液を溶解する第2の溶媒で置換する第3工程とを有し、前記第3工程の後に、前記流路を前記保管液で置換して該保管液を前記流路に充填することを特徴とする。

本発明によれば、液滴吐出ヘッドを含む流路を水溶性保管液以外の所定の保管 液で保管状態にする際にも、流路をまず機能液に含まれる溶媒で置換し、次いで 機能液に含まれる溶媒と保管液との双方を溶解する第1の溶媒で置換し、次いで保管液を溶解する第2の溶媒で置換するようにしたので、固形分の析出といった 不都合の発生を防止しつつ、流路を洗浄して保管液で保管することができる。

$[0\ 0\ 1\ 0\]$

本発明のパターンの形成方法は、機能液の液滴を基板上に配置することにより 膜パターンを形成するパターンの形成方法であって、前記液滴を配置可能な液滴 吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路を純水で置 換する第1置換工程と、前記純水と前記機能液に含まれる溶媒との双方を溶解す る溶媒で置換する第2置換工程と、前記機能液に含まれる溶媒で置換する第3置 換工程と、前記基板上に設定された前記膜パターンを形成するパターン形成領域 を囲む領域に撥液性膜を設ける表面処理工程と、前記パターン形成領域に前記液 滴を前記液滴吐出ヘッドにより配置する材料配置工程とを有することを特徴とす る。

本発明によれば、液滴吐出ヘッドを含む流路が水溶性保管液で保管されている場合、流路をまず純水で置換し、次いで純水と機能液に含まれる溶媒との双方を溶解する所定の溶媒で置換し、次いで機能液に含まれる溶媒で置換するようにしたので、固形分の析出や機能液の変質といった不都合の発生を防止しつつ、流路を洗浄して機能液に円滑に置換することができる。そして、膜パターンを形成するパターン形成領域を囲むように撥液性膜を設けたので、吐出された液滴はパターン形成領域に円滑に配置される。

$[0\ 0\ 1\ 1]$

本発明のパターンの形成方法は、機能液の液滴を基板上に配置することにより膜パターンを形成するパターンの形成方法であって、所定の保管液が充填された状態の液滴吐出ヘッド及び該液滴吐出ヘッドに機能液を供給する管部を含む流路を前記保管液を溶解する第1の溶媒で置換する第1置換工程と、前記第1の溶媒と前記機能液に含まれる溶媒との双方を溶解する第2の溶媒で置換する第2置換工程と、前記機能液に含まれる溶媒で置換する第3置換工程と、前記基板上に設定された前記膜パターンを形成するパターン形成領域を囲む領域に撥液性膜を設ける表面処理工程と、前記パターン形成領域に前記液滴を前記液滴吐出ヘッドに

より配置する材料配置工程とを有することを特徴とする。

本発明によれば、液滴吐出ヘッドを含む流路が水溶性保管液以外の所定の保管液で保管されている場合であっても、流路をまず保管液を溶解する第1の溶媒で置換し、次いで第1の溶媒及び機能液に含まれる溶媒の双方を溶解する第2の溶媒で置換し、次いで機能液に含まれる溶媒で置換するようにしたので、固形分の析出や機能液の変質といった不都合の発生を防止しつつ、流路を洗浄して機能液に円滑に置換することができる。そして、膜パターンを形成するパターン形成領域を囲むように撥液性膜を設けたので、吐出された液滴はパターン形成領域に円滑に配置される。

$[0\ 0\ 1\ 2]$

本発明のパターンの形成方法において、前記撥液性膜は前記基板の表面に形成された単分子膜であることを特徴とする。そして、この前記単分子膜は有機分子からなる自己組織化膜であることを特徴とする。これにより、撥液性膜を容易に形成できる。自己組織化膜としては、フルオロアルキルシランからなる自己組織化膜が挙げられる。

また、前記撥液性膜はフッ化重合膜であってもよい。フッ化重合膜は、例えば フルオロカーボン系化合物を反応ガスとするプラズマ処理により容易に形成でき る。

[0013]

本発明のパターンの形成方法において、前記機能液は熱処理又は光処理により 導電性を発現することを特徴とする。本発明によれば、薄膜パターンを配線パタ ーンとすることができ、各種デバイスに応用することができる。また、有機銀化 合物や導電性微粒子の他に有機EL等の発光素子形成材料やR・G・Bのインク 材料を用いることで、有機EL装置やカラーフィルタを有する液晶表示装置等の 製造にも適用することができる。

[0014]

本発明のデバイスの製造方法は、基板上に膜パターンを形成する工程を有する デバイスの製造方法において、上記記載のパターンの形成方法により、前記基板 上に膜パターンを形成することを特徴とする。 本発明によれば、変質が防止され所望の機能を有する機能液で良好な液滴吐出動作のもとで所望のパターン形状に形成された膜パターンを有するデバイスを製造することができる。

[0015]

本発明の電気光学装置は、上記記載のデバイスの製造方法を用いて製造された デバイスを備えることを特徴とする。また、本発明の電子機器は、上記記載の電 気光学装置を備えることを特徴とする。本発明によれば、所望の機能を有する機 能液で良好な液滴吐出動作のもとで形成された電気伝導に有利な膜パターンを備 えているので、良好な性能を発揮する電気光学装置及び電子機器を提供できる。

ここで、電気光学装置としては、例えば、プラズマ型表示装置、液晶表示装置 、及び有機エレクトロルミネッセンス表示装置等が挙げられる。

[0016]

上記液滴叶出装置(インクジェット装置)の叶出方式としては、帯電制御方式 、加圧振動方式、電気機械変換式、電気熱変換方式、静電吸引方式等が挙げられ る。帯電制御方式は、材料に帯電電極で電荷を付与し、偏向電極で材料(機能液)の飛翔方向を制御して吐出ノズルから吐出させるものである。また、加圧振動 方式は、材料に30kg/cm²程度の超高圧を印加してノズル先端側に材料を 吐出させるものであり、制御電圧をかけない場合には材料が直進して吐出ノズル から吐出され、制御電圧をかけると材料間に静電的な反発が起こり、材料が飛散 して吐出ノズルから吐出されない。また、電気機械変換方式は、ピエゾ素子(圧 電素子)がパルス的な電気信号を受けて変形する性質を利用したもので、ピエゾ 素子が変形することによって材料を貯留した空間に可撓物質を介して圧力を与え 、この空間から材料を押し出して吐出ノズルから吐出させるものである。また、 電気熱変換方式は、材料を貯留した空間内に設けたヒータにより、材料を急激に 気化させてバブル(泡)を発生させ、バブルの圧力によって空間内の材料を吐出 させるものである。静電吸引方式は、材料を貯留した空間内に微小圧力を加え、 吐出ノズルに材料のメニスカスを形成し、この状態で静電引力を加えてから材料 を引き出すものである。また、この他に、電場による流体の粘性変化を利用する 方式や、放電火花で飛ばす方式などの技術も適用可能である。液滴吐出法は、材

料の使用に無駄が少なく、しかも所望の位置に所望の量の材料を的確に配置できるという利点を有する。なお、液滴吐出法により吐出される機能液(液体材料)の一滴の量は例えば1~300ナノグラムである。

$[0\ 0\ 1\ 7]$

機能液を含む液体材料とは、液滴吐出ヘッド(インクジェットヘッド)の吐出ノズルから吐出可能な粘度を備えた媒体をいう。水性であると油性であるとを問わない。ノズル等から吐出可能な流動性(粘度)を備えていれば十分で、固体物質が混入していても全体として流動体であればよい。また、液体材料に含まれる材料は、溶媒中に微粒子として分散されたものの他に、融点以上に加熱されて溶解されたものでもよく、溶媒の他に染料や顔料その他の機能性材料を添加したものであってもよい。また、基板はフラット基板のほか、曲面状の基板であってもよい。さらにパターン形成面の硬度が硬い必要はなく、ガラスやプラスチック、金属以外に、フィルム、紙、ゴム等可撓性を有するものの表面であってもよい。

$[0\ 0\ 1\ 8]$

【発明の実施の形態】

<パターンの形成方法>

以下、本発明のパターンの形成方法について図面を参照しながら説明する。図 1及び図2は本発明のパターンの形成方法の一実施形態を示すフローチャート図 である。ここで、本実施形態ではガラス基板上に導電膜配線パターンを形成する 場合を例にして説明する。導電膜配線パターンを形成するための機能液には、熱 処理等により導電性を発現する材料を含む機能液を用い、具体的には、分散媒を テトラデカンとする銀微粒子を用いる。

[0019]

本実施形態に係るパターンの形成方法は、所定の保管液を用いて保管されている状態の液滴吐出ヘッド及びこの液滴吐出ヘッドに機能液を供給する管部を含む流路を洗浄し、機能液に置換する洗浄工程と、この洗浄された液滴吐出ヘッドを用いてパターン形成するパターン形成工程とを有している。

図1において、本実施形態に係るパターンの形成方法の一部を構成する洗浄工程は、水溶性保管液が充填されている液滴吐出ヘッド及びこの液滴吐出ヘッドに

機能液を供給する管部を含む流路を純水で置換する第1置換工程(ステップSA1)と、純水とデバイス製造のための機能液に含まれる溶媒との双方を溶解する溶媒で置換する第2置換工程(ステップSA2)と、機能液に含まれる溶媒で置換する第3置換工程(ステップSA3)と、機能液で置換する第4置換工程(ステップSA4)とを有している。

[0020]

また、図2に示すように、パターン形成工程は、機能液の液滴が配置される基板を所定の溶媒等を用いて洗浄する基板洗浄工程(ステップS1)と、基板表面に撥液性膜を設けることにより基板に撥液性を付与する表面処理工程の一部を構成する撥液化処理工程(ステップS2)と、撥液化処理された基板表面のうち配線パターンが形成されるパターン形成領域に親液性を付与する表面処理工程の一部を構成する親液化処理工程(S3)と、基板上のパターン形成領域に液滴吐出法に基づいて機能液の液滴を配置して膜パターンを形成(描画)する材料配置工程(ステップS4)と、基板上に配置された機能液の液体成分の少なくとも一部を除去する熱・光処理を含む中間乾燥処理工程(ステップS5)と、所定の膜パターンが描画された基板を焼成する焼成工程(ステップS7)とを有している。なお、中間乾燥処理工程の後、所定のパターン描画が終了したかどうかが判断され(ステップS6)、パターン描画が終了したら焼成工程が行われ、一方、パターン描画が終了していなかったら材料配置工程が行われる。

[0021]

図3は本発明のパターンの形成方法に使用するパターン形成装置の一部を構成する液滴吐出装置の概略構成図である。

図3において、液滴吐出装置 I Jは、機能液(インク)の液滴を吐出する液滴吐出ヘッド1と、吐出ヘッド1から吐出されるインクの液滴が配置される基板 P を支持するステージ2と、インクを収容する収容部であるタンク3と、タンク3 と吐出ヘッド1とを接続しインクを流通可能な流路 4 の一部を形成する管部 4 K とを備えている。インクが流通する流路 4 は管部 4 K 及び吐出ヘッド 1 を含んで構成されている。吐出ヘッド 1 の吐出動作を含む液滴吐出装置 I J の動作は制御装置 C O N T により制御される。また、吐出ヘッド 1、管部 4 K、及びタンク 3

を含む液滴吐出装置 I J 全体はチャンバCの内部に収容され、チャンバCの内部は温度調整装置 6 により温度管理されている。なお、チャンバC内部は、大気雰囲気に設定されていてもよいし窒素ガス等の不活性ガス雰囲気に設定されていてもよい。そして、チャンバC及びこのチャンバCに収容されている液滴吐出装置 I J はクリーンルーム内に設けられておりパーティクル及びケミカル的にクリーン度を維持されている。

[0022]

ここで、以下の説明において、水平面内における第1の方向をX軸方向、水平面内において第1の方向と直交する第2の方向をY軸方向、X軸方向及びY軸方向に垂直に交わる方向をZ軸方向とする。また、X軸、Y軸、及びZ軸のそれぞれの軸まわり方向を、 θX 、 θY 、及び θZ 方向とする。

[0023]

液滴吐出装置 I J は、基板 P の表面にインクの液滴を配置することによりインク中に含まれる材料からなる膜を成膜する。ここで、本実施形態におけるインクは例えばテトラデカン等の所定の分散媒に分散された銀微粒子を含んでおり、液滴吐出装置 I J はこのインクを基板 P 上に吐出することによりデバイスである配線パターン(導電膜パターン)を形成する。なお、液滴吐出装置 I J は液晶表示装置用のカラーフィルタ形成用材料を含むインクを吐出してカラーフィルタを製造することもできるし、有機 E L 装置等のデバイスを製造することもできる。

$[0\ 0\ 2\ 4]$

吐出ヘッド1はステージ2に支持されている基板Pに対してインクの液滴を定量的に吐出(滴下)するものであって、吐出ヘッド1のノズル形成面1Pには液滴を吐出する複数のノズルが設けられている。また、吐出ヘッド1にはこの吐出ヘッド1を移動可能に支持するヘッド移動装置1Aが設けられている。ヘッド移動装置1Aは吐出ヘッド1をX軸、Y軸、及びZ軸方向に移動するとともにθX、θY、及びθZ方向に微動する。なお、吐出ヘッド1から吐出される液滴の温度は吐出ヘッド1に設けられた不図示の温度調整装置により制御され、温度調整装置は液滴を所望の粘度に調整する。ステージ2は基板Pを支持するものであって、基板Pを真空吸着する吸着保持装置(不図示)を備えている。ステージ2に

はこのステージ2を移動可能に支持するステージ移動装置2Aが設けられている。ステージ移動装置2Aはステージ2をX軸、Y軸、及びθ Z方向に移動する。

[0025]

管部4 Kは、例えば合成樹脂製のチューブにより構成されており可撓性を有する。管部4 Kにより形成された流路4は一端部4 Aを吐出ヘッド1に接続し、他端部4 Bをタンク3に接続している。また、管部4 Kの他端部4 BにはバルブBが設けられている。バルブBの開閉動作は制御装置CONTに制御されるようになっており、制御装置CONTはバルブBを制御することにより流路4 におけるインクの流通制御を行う。すなわち、制御装置CONTはバルブBを制御することによりタンク3 から吐出ヘッド1 に対するインクの供給及び供給の停止を行う。なお、管部4 Kは可撓性部材により構成されているため、吐出ヘッド1のヘッド移動装置1 Aによる移動は妨げられない。

[0026]

タンク3はインクを収容するものであって、タンク3内のインクには予め脱気処理が施されている。タンク3は管部4Kを配置可能な穴部3Hを有しており、この穴部3Hに管部4Kが配置されることによりタンク3は略密閉される。また、タンク3にはこのタンク3の内部空間の圧力を調整するタンク圧力調整装置8が設けられている。タンク圧力調整装置8の動作は制御装置CONTに制御されるようになっており、制御装置CONTはタンク圧力調整装置8を介してタンク3の内部の圧力を調整する。そして、タンク3の圧力が調整されることにより、流路4の他端部4Bにおける圧力が調整されることになる。なお、タンク3には、不図示であるが、タンク3に取り付けられタンク内のインクの温度を調整する温度調整装置と、タンク内のインクを攪拌する撹拌装置とが設けられている。タンク内のインクは温度調整装置で温度調整されることにより所望の粘度に調整される。

[0027]

ステージ2のうち基板Pが載置される以外の位置には、吐出ヘッド1のインクを吸引可能な吸引装置9が設けられている。この吸引装置9は、吐出ヘッド1のうちノズルが形成されているノズル形成面1Pに密着し、ノズル形成面1Pとの

間に密閉空間を形成するキャップ部9Aと、キャップ部9Aを昇降可能に支持するリフト部9Dと、前記密閉空間のガスを吸引することで吐出ヘッド1のノズルのインクを吸引するポンプ9Bと、吐出ヘッド1から吸引したインクを収容する排液収容部9Cとを備えている。ノズル形成面1Pとキャップ部9AとのXY方向における位置合わせはヘッド移動装置1A及びステージ移動装置2Aに基づく吐出ヘッド1とステージ2との相対移動により行われる。また、吐出ヘッド1のノズル形成面1Pと吸引装置9のキャップ部9Aとは、キャップ部9Aが吐出ヘッド1に対して上昇することで密着される。吸引装置9の吸引動作は制御装置CONTに制御され、制御装置は吸引装置9を介して前記密閉空間の圧力を調整する。そして、ノズル形成面1Pとキャップ部9Aとで形成される密閉空間の圧力が調整されることにより、流路4の一端部4Aにおける圧力が調整されることになる。つまり、上記タンク圧力調整装置8及び吸引装置9により流路4の圧力を調整する圧力調整装置が構成されている。

[0028]

次に、上述した液滴吐出装置 I Jによりデバイスを製造方法について説明する。本実施形態では、液滴を配置可能な液滴吐出ヘッド 1 及びこの液滴吐出ヘッド 1 にインクを供給する管部 4 Kを含む流路 4 は水溶性保管液であるポリエチレングリコール水溶液を充填された状態で保管されており、デバイスを製造するための吐出動作の前に、流路 4 の洗浄工程が行われる。

[0029]

洗浄工程ではまず、管部4Kの他端部4Bに純水(第1の溶媒)を収容したタンク3Aが接続される。ここで、タンク3Aはインクを収容するタンク3と同等の構成であり、タンク圧力調整装置8などを備えている。なおタンク3A内の純水には予め脱気処理が施されている。このとき、第1の溶媒である純水は保管液であるポリエチレングリコール水溶液を溶解可能な物質であって、純水(第1の溶媒)と保管液とは相溶性を有する。純水を収容したタンク3Aが管部4Kの他端部4Bに接続されたら、制御装置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定する。

[0030]

図4は、圧力調整装置8及び9が流路4の一端部4A及び他端部4Bの圧力調 整を行っている状態を示す模式図である。図4に示すように、ステージ2が移動 して、吐出ヘッド1と吸引装置9のキャップ部9AとがXY方向において位置合 わせされ、キャップ9Aが上昇することにより、キャップ部9Aと吐出ヘッド1 のノズル形成面1Pとが密着される。そして、ポンプ9Bが駆動することにより 、吐出ヘッド1のノズル形成面1Pとキャップ部9Aとで形成される密閉空間が 減圧され、流路4の一端部4Aが圧力p1に設定される。一方、タンク圧力調整 装置8がタンク3内を加圧することにより、流路4の他端部4Bが圧力p2に設 定される。こうして、制御装置CONTは、タンク圧力調整装置8によりタンク 3内の圧力を調整しつつ吸引装置 9 (ポンプ 9 B) による単位時間当たりの吸引 量を調整することにより、流路4の一端部4Aと他端部4Bとを所定の圧力差(p2-p1)に設定する。ここで、制御装置CONTはこの洗浄工程における前 記圧力差(p2-p1)を、後の工程であるデバイスを製造するための吐出動作 時における圧力差より大きく設定する。この状態においてバルブBは開いており 、吸引装置9はノズルから流路4に充填されている保管液を吸引し、吸引した保 管液を排液収容部9Cに収容する。そして、更にタンク3Aの加圧動作及び吸引 装置9による吸引動作を行うことにより、タンク3A内の純水が流路4に充填さ れ、流路4が純水で置換される。吸引した純水(洗浄液)は排液収容部9Cに収 容される。そして、この吸引動作を所定時間行い、流路4を純水で十分に置換し 洗浄する(ステップSA1)。

[0031]

このとき、流路4の一端部4Aと他端部4Bとは所定の圧力差に設定されているので、後の工程であるデバイスを製造するための吐出動作時に比べて、洗浄液(純水)は流路4を高速に流れる。したがって、洗浄処理を高速且つ十分に行うことができる。

[0032]

流路4を純水で置換したら、タンク圧力調整装置8及び吸引装置9の駆動が停止された後、管部4Kとタンク3Aとの接続が解除されるとともに、管部4Kの

他端部4Bに対してイソプロピルアルコール(第2の溶媒)を収容したタンク3Bが接続される。なおタンク3Bは上述したタンク3及びタンク3Aと同等の構成を有する。ここで、第2の溶媒であるイソプロピルアルコールは、第1の溶媒である純水と、インクに含まれる分散媒であるテトラデカンとの双方を溶解可能な溶媒である。換言すれば、第2の溶媒は純水及びインクに含まれる溶媒のそれぞれに対して相溶性を有する。また、タンク3B内のイソプロピルアルコールには予め脱気処理が施されている。イソプロピルアルコールを収容したタンク3Bが管部4Kの他端部4Bに接続されたら、図4を参照して説明した手順同様、制御装置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定し、流路4を第2の溶媒であるイソプロピルアルコールで置換する(ステップSA2)。

[0033]

流路4を第2の溶媒で置換したら、タンク圧力調整装置8及び吸引装置9の駆動が停止された後、管部4Kとタンク3Bとの接続が解除されるとともに、管部4Kの他端部4Bに対してインクに含まれる分散媒であるテトラデカンを収容したタンク3Cが接続される。なおタンク3Cは上述したタンク3、3A、3Bと同等の構成を有する。ここで、テトラデカンは、第2の溶媒であるイソプロピルアルコールを溶解する溶媒であって、このイソプロピルアルコールに対して相溶性を有する。なお、テトラデカンは非極性溶媒である。タンク3C内のテトラデカンには予め脱気処理が施されている。テトラデカンを収容したタンク3Cが管部4Kの他端部4Bに接続されたら、図4を参照して説明した手順同様、制御装置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定し、流路4をインクに含まれる分散媒であるテトラデカンで置換する(ステップSA3)。

[0034]

なお、本実施形態におけるインクの分散媒はテトラデカンであるが、インクが 複数種類の溶媒を含んでいる場合、ステップSA3で置換する溶媒は、インクに 含まれている複数種類の溶媒と完全に一致している必要はなく、これら複数種類 の溶媒のうち任意の溶媒を用いることができる。ここで、用いる任意の溶媒は複 数種類の溶媒のうち最も含有量の多い溶媒(主溶媒)を用いることが好ましい。

[0035]

流路4をテトラデカンで置換したら、タンク圧力調整装置8及び吸引装置9の駆動が停止された後、管部4Kとタンク3Cとの接続が解除されるとともに、管部4Kの他端部4Bに対してインクを収容したタンク3が接続される。なおタンク3のインクには予め脱気処理が施されている。インクを収容したタンク3が管部4Kの他端部4Bに接続されたら、図4を参照して説明した手順同様、制御装置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定し、流路4をインクで置換する(ステップSA4)。

[0036]

このとき、チャンバC内部を温度調整する温度調整装置 6 や流路 4 を温度調整する温度調整装置(不図示)を用いてインクの温度を調整しつつ、流路 4 をインクで置換してもよい。例えばインクを加熱することによりインクの粘度が低下するため、置換動作を気泡の発生を抑えつつ円滑に行うことができる。また、管部4 Kを含む流路 4 を例えば超音波加振しながら流路 4 をインクで置換するようにしてもよい。こうすることにより、管部 4 Kの内壁に付着している気泡やインク中の気泡など流路 4 に存在する気泡を吐出ヘッド 1 側から外部に排出することができる。

[0037]

洗浄工程が終了したら、制御装置CONTは、吸引装置9による吸引動作を終了するとともに、タンク圧力調整装置8によるタンク3の加圧動作を終了する。そして、ステージ2が移動して基板Pを吐出ヘッド1の下に配置し、デバイスを製造するための吐出動作を開始する。ここで、制御装置CONTは、流路4の一端部4Aと他端部4Bとの圧力差を、洗浄工程で設定した値より低い値にする。また、温度調整装置6も、チャンバC内部をデバイスを製造するための最適温度に調整する。そして、デバイスを製造するための液滴吐出動作が実行される。

[0038]

なお本実施形態では、保管液として水溶性であるポリエチレングリコールが用

いられているため、第1置換工程SA1では純水により洗浄する構成であるが、 保管液が水溶性でない場合であっても本発明に係る洗浄工程を用いることができ る。その場合、第1置換工程で用いる第1の溶媒として、保管液を溶解する溶媒 を用いればよい。

[0039]

以上、保管状態からインク液滴吐出可能状態までの洗浄工程について説明した。次に、インク液滴吐出動作終了後、液滴吐出ヘッド1及び管部4Kを含む流路4を保管状態にするまでの手順について図5を参照しながら説明する。

デバイス製造のための液滴吐出動作が終了したら、保管処理の開始が指令される。まず、管部4Kとインクを収容したタンク3との接続が解除され、管部4Kの他端部4Bにインクに含まれる分散媒であるテトラデカンを収容するタンク3Cが接続される。テトラデカンを収容したタンク3Cが管部4Kの他端部4Bに接続されたら、制御装置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定し、流路4をテトラデカンで置換する(ステップSB1)。

[0040]

流路4をテトラデカンで置換したら、タンク圧力調整装置8及び吸引装置9の駆動が停止された後、管部4Kとタンク3Cとの接続が解除されるとともに、管部4Kの他端部4Bに対してイソプロピルアルコール(第1の溶媒)を収容したタンク3Bが接続される。イソプロピルアルコールを収容したタンク3Bが管部4Kの他端部4Bに接続されたら、制御装置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定し、流路4を第1の溶媒であるイソプロピルアルコールで置換する(ステップSB2)。

[0041]

流路4を第1の溶媒で置換したら、タンク圧力調整装置8及び吸引装置9の駆動が停止された後、管部4Kとタンク3Bとの接続が解除されるとともに、管部4Kの他端部4Bに対して純水(第2の溶媒)を収容したタンク3Aが接続される。純水を収容したタンク3Aが管部4Kの他端部4Bに接続されたら、制御装

置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定し、流路4を純水で置換する(ステップSB3)。

[0042]

流路4を純水で置換したら、タンク圧力調整装置8及び吸引装置9の駆動が停止された後、管部4Kとタンク3Aとの接続が解除されるとともに、管部4Kの他端部4Bに対して水溶性保管液であるポリエチレングリコール水溶液を収容したタンクが接続される。保管液を収容したタンクが管部4Kの他端部4Bに接続されたら、制御装置CONTは、圧力調整装置としてのタンク圧力調整装置8及び吸引装置9を用いて、流路4の一端部4Aと他端部4Bとを所定の圧力差に設定し、流路4を保管液で置換する(ステップSB4)。これにより流路4に保管液が充填され、保管処理が終了する。以上説明したように、保管処理では、洗浄工程と逆の手順で洗浄液を使用すればよい。

[0043]

なおこの場合においても、保管液としてポリエチレングリコール等の水溶性保管液以外の所定の保管液を用いる場合、ステップSB3で置換する溶媒(第2の溶媒)としては、上記所定の保管液を溶解する溶媒を用いればよい。

[0044]

<実施例1>

保管液であるポリエチレングリコール1%水溶液により保管状態の流路4を複数の置換工程のそれぞれにおいて以下の溶媒(洗浄液)を用いて置換及び洗浄した。

第1置換工程:純水

第2置換工程:イソプロピルアルコール

第3置換工程:テトラデカン

その後、分散媒をテトラデカンとする銀微粒子を含むインク (機能液)を用いてパターン形成動作を行った。流路 4 には固形分が析出せず、液滴吐出動作を良好に行うことができた。

[0045]

<実施例2>

保管液としてポリエチレングリコール1%水溶液により保管状態の流路4を複数の置換工程のそれぞれにおいて以下の溶媒(洗浄液)を用いて置換及び洗浄した。

第1置換工程:純水

第2置換工程:エチルアルコール

第3置換工程:ジエチレングリコールジエチルエーテル

その後、溶媒をジエチレングリコールジエチルエーテルとする有機銀化合物を含むインク (機能液)を用いてパターン形成動作を行った。流路4には固形分が析出せず、液滴吐出動作を良好に行うことができた。

[0046]

以下、デバイスを製造するためのパターン形成工程について説明する。

< 基板洗浄工程>

まず、所定の溶剤等を用いて基板が洗浄される。これにより基板上の有機物残 渣等が除去される。なお、基板表面に紫外光を照射することでも有機物残渣を除 去できる。

[0047]

<撥液化処理工程>

次に、表面処理工程の一部として、配線パターンを形成する基板表面が機能液に対して撥液性に加工される。具体的には、機能液に対する所定の接触角が、60 [deg]以上、好ましくは90 [deg]以上110 [deg]以下となるように基板に対して表面処理を施す。撥液性(濡れ性)を付与する方法としては、基板表面に撥液性膜を設ける方法を採用できる。ここでは基板表面に撥液性を有する自己組織化膜を形成する。

$[0\ 0\ 4\ 8]$

自己組織膜形成法では、導電膜配線を形成すべき基板の表面に、有機分子膜などからなる自己組織化膜を形成する。基板表面を処理するための有機分子膜は、 基板に結合可能な官能基と、その反対側に親液基あるいは撥液基といった基板の 表面性を改質する(表面エネルギーを制御する)官能基と、これらの官能基を結 ぶ炭素の直鎖あるいは一部分岐した炭素鎖とを備えており、基板に結合して自己 組織化して分子膜、例えば単分子膜を形成する。

[0049]

ここで、自己組織化膜(自己組織化単分子膜:SAM(Self Assembled Monol ayer))とは、基板の下地層等の構成原子と反応可能な結合性官能基とそれ以外の直鎖分子とからなり、直鎖分子の相互作用により極めて高い配向性を有する化合物を、配向させて形成された膜である。この自己組織化膜は、単分子を配向させて形成されているので、極めて膜厚を薄くすることができ、しかも、分子レベルで均一な膜となる。すなわち、膜の表面に同じ分子が位置するため、膜の表面に均一でしかも優れた撥液性や親液性を付与することができる。

[0050]

上記の高い配向性を有する化合物として、例えばフルオロアルキルシラン(以下、適宜「FAS」と称する)を用いることにより、膜の表面にフルオロアルキル基が位置するように各化合物が配向されて自己組織化膜が形成され、膜の表面に均一な撥液性が付与される。このような自己組織化膜を形成する化合物であるFASとしては、ヘプタデカフルオロー1、1、2、2テトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロー1、1、2、2テトラヒドロデシルトリメトキシシラン、ヘプタデカフルオロー1、1、2、2テトラヒドロデシルトリクロロシラン、トリデカフルオロー1、1、2、2テトラヒドロオクチルトリエトキシシラン、トリデカフルオロー1、1、2、2テトラヒドロオクチルトリメトキシシラン、トリデカフルオロー1、1、2、2テトラヒドロオクチルトリクロロシラン、トリアカフルオロー1、1、2、2テトラヒドロオクチルトリクロシラン、トリフルオロプロピルトリメトキシシラン等のフルオロアルキルシラン等が挙げられる。これらの化合物は単独で使用してもよく2種以上を組み合わせて使用してもよい。なお、FASを用いることにより基板との密着性と良好な撥液性とを得ることができる。

[0051]

FASは、一般的に構造式Rn-Si-X(4-n) で表される。ここでnは 1以上3以下の整数を表し、Xはメトキシ基、エトキシ基、ハロゲン原子などの 加水分解基である。またRはフルオロアルキル基であり、(CF $_3$)(CF $_2$)

x (CH₂) yの (ここで x は 0 以上 1 0 以下の整数を、 y は 0 以上 4 以下の整数を表す) 構造を持ち、複数個の R 又は X が S i に結合している場合には、 R 又は X はそれぞれすべて同じでもよく異なっていてもよい。 X で表される加水分解 基は加水分解によりシラノールを形成して、基板 (ガラス、シリコン) の下地の ヒドロキシル基と反応してシロキサン結合で基板と結合する。一方、 R は表面に (CF₃) 等のフルオロ基を有するため、基板の下地表面を濡れない (表面エネルギーが低い)表面に改質する。

[0052]

図6は、基板P上にFASからなる自己組織化膜(FAS膜)を形成するFAS処理装置40の概略構成図である。FAS処理装置40は基板PにFASからなる自己組織化膜を形成し、撥液性を付与する。図6に示すように、FAS処理装置40は、チャンバ41と、チャンバ41内に設けられ、基板Pを保持する基板ホルダ42と、液相状態のFAS(液体FAS)を収容する容器43とを備えている。そして、室温環境下で、チャンバ41内に基板Pと液体FASを収容した容器43とを放置しておくことにより、容器43内の液体FASが容器43の開口部43aからチャンバ41に気相となって放出され、例えば2~3日程度で、基板P上にFASからなる自己組織化膜が成膜される。また、チャンバ1全体を100℃程度に維持することにより、3時間程度で基板P上に自己組織化膜が成膜される。

なおここでは気相からの形成法を説明したが、液相からも自己組織化膜を形成できる。例えば、原料化合物を含む溶液中に基板を浸積し、洗浄、乾燥することで基板上に自己組織化膜が形成される。

[0053]

なお、撥液性膜としてはプラズマ処理法により形成したフッ化重合膜であって もよい。プラズマ処理法では、常圧又は真空中で基板に対してプラズマ照射を行 う。プラズマ処理に用いるガス種は、配線パターンを形成すべき基板 P の表面材 質等を考慮して種々選択できる。処理ガスとしては、例えば、4 フッ化メタン、 パーフルオロヘキサン、パーフルオロデカン等を例示できる。

なお、基板Pの表面を撥液性に加工する処理は、所望の撥液性を有するフィル

ム、例えば4フッ化エチレン加工されたポリイミドフィルム等を基板表面に貼着することによっても行ってもよい。また、撥液性の高いポリイミドフィルムをそのまま基板として用いてもよい。

[0054]

<親液化処理工程>

基板PにFAS処理を施した後、表面処理工程の一部として、基板表面のうち配線パターンを形成するパターン形成領域に親液性を付与する親液化処理が行われる。親液性を付与する処理としては波長170~400mm程度の紫外線(UV)照射処理が挙げられる。所定のパワーの紫外光を所定時間だけ基板Pのパターン形成領域に照射することで、FAS処理された基板のパターン形成領域の撥液性が低下され、パターン形成領域は所望の親液性を有するようになる。

[0055]

図7は、FAS処理が施された基板Pに対して紫外光を照射する紫外線照射装置44を示す模式図である。図7に示すように、紫外線照射装置44は、所定の波長を有する紫外光(UV)を射出可能な紫外線射出部45と、基板Pを支持するステージ46と、基板Pを支持したステージ46を所定方向に走査するステージ駆動部47とを備えている。紫外線照射装置44は、所定方向に基板Pを走査しつつ紫外線射出部45から紫外光を射出することにより基板Pに対して紫外光を照射する。基板Pが小さい場合は、基板Pを走査せずに紫外光を照射してもよい。もちろん、紫外線射出部45を移動しつつ基板Pに紫外光を照射してもよい。紫外光を照射されることにより基板P上のFAS膜が破壊され、基板Pのうち紫外光を照射された領域が親液化(撥液性低下化)される。

[0056]

ここで、紫外線照射装置44は、基板上のパターン形成領域に応じたパターンを有するマスクMを介して基板Pに紫外光を照射する。紫外線照射装置44はマスクMを介して基板Pに紫外光を照射することによりFAS膜を選択的に破壊し、これにより基板Pのパターン形成領域が親液化される。こうして、パターン形成領域を囲む領域にFAS膜が設けられたことになる。本実施形態ではマスクMの下面に酸化チタン層48が設けられており、この酸化チタン層48と基板P表

面とを接触した状態で紫外光が照射される。FAS膜に対して酸化チタンが接触 した状態で紫外光が照射されることにより、酸化チタンの光触媒効果により親液 化(FAS膜の破壊)を短時間で行うことができる。なお、マスクMの下面に酸 化チタン層 4 8 を設けなくても基板のパターン形成領域を親液化できるし、マス クMと基板Pとを離間した状態で紫外光を照射しても基板のパターン形成領域を 親液化できる。

[0057]

紫外線照射装置44の照射動作は不図示の制御装置により制御される。制御装置は紫外線照射条件を設定し、この設定条件に基づいて紫外線照射装置44の照射動作を制御する。ここで、設定可能な紫外線照射条件は、基板Pに対する紫外光の照射時間、基板Pの単位面積当たりに対する照射量(光量)、及び照射する紫外光の波長のうち少なくとも1つであり、制御装置はこれらの条件のうち少なくとも1つに基づいて照射動作を制御する。これにより、基板Pのパターン形成領域は所望の親液性(機能液に対する接触角)を有することになる。

[0058]

なおここでは、親液化処理として紫外線照射処理が行われるが、基板をオゾン 雰囲気に曝すことにより基板の撥液性を低下することもできる。

[0059]

<材料配置工程>

次に、本実施形態の材料配置工程について説明する。材料配置工程は、配線パターン形成用材料を含む機能液の液滴30を液滴吐出装置IJの液滴吐出ヘッド1より吐出してパターン形成領域に配置することにより基板P上に線状の膜パターン(配線パターン)を形成する工程である。本実施形態において、機能液は分散媒をテトラデカンとする銀微粒子を含むものである。

[0060]

ここで、パターン形成領域を囲むように撥液領域であるFAS膜領域(撥液性膜領域)が形成されているため、パターン形成領域に配置された液滴が所定位置以外に拡がることを阻止できる。また、吐出された液滴の一部が撥液領域にかかっても、撥液性となっていることにより撥液領域からはじかれ、パターン形成領

域に配置される。さらに、基板Pのパターン形成領域は親液性を付与されている ため、吐出された液滴がパターン形成領域にてより拡がり易くなり、これにより 機能液は所定位置内で均一に配置される。

$[0\ 0\ 6\ 1\]$

図8は配線パターンを形成する際の液滴配置手順の一例を示す模式図である。まず、図8 (a)に示すように、液滴吐出ヘッド1から吐出した液滴L1 (30)が所定の間隔をあけて基板P上のパターン形成領域34に順次配置される。すなわち、液滴吐出ヘッド1は基板P上で液滴L1どうしが重ならないように配置する。本例では、液滴L1の配置ピッチP1は基板P上に配置した直後の液滴L1の直径よりも大きくなるように設定されている。これにより基板P上に配置された直後の液滴L1どうしは重ならずに(接触せずに)、液滴L1どうしが合体して基板P上で濡れ拡がることが防止される。また、液滴L1の配置ピッチP1は基板P上に配置した直後の液滴L1の直径の2倍以下となるように設定されている。ここで、基板P上に液滴L1を配置した後、溶媒の除去を行うために必要に応じて中間乾燥処理(ステップS5)を行うことができる。

[0062]

次に、図8(b)に示すように、上述した液滴の配置動作が繰り返される。すなわち図8(a)に示した前回と同様に、液滴吐出ヘッド1から機能液が液滴L2として吐出され、その液滴L2が一定距離ごとに基板P上のパターン形成領域34に配置される。このとき、液滴L2の体積(1つの液滴あたりの機能液の量)、及びその配置ピッチP2は前回の液滴L1と同じである。そして、液滴L2の配置位置は前回の液滴L1から1/2ピッチだけシフトされ、基板P上に配置されている前回の液滴L1どうしの中間位置に今回の液滴L2が配置される。前述したように、基板P上の液滴L1の配置ピッチP1は、基板P上に配置した直後の液滴L1の直径よりも大きく且つ、その直径の2倍以下である。そのため、液滴L1の中間位置に液滴L2が配置されることにより、液滴L1に液滴L2が一部重なり、液滴L1どうしの間の隙間が埋まる。このとき、今回の液滴L2と前回の液滴L1とが接するが、前回の液滴L1はすでに溶媒が完全に又はある程度除去されているので、両者が合体して基板P上で拡がることは少ない。液滴L

2 を基板 P 上に配置した後、溶媒の除去を行うために前回と同様に必要に応じて中間乾燥処理を行うことが可能である。

[0063]

こうした一連の液滴の配置動作を複数回繰り返すことにより、基板P上に配置される液滴どうしの隙間が埋まり、図8 (c)に示すように、線状の連続した配線パターン33が基板P上に形成される。この場合、液滴の配置動作の繰り返し回数を増やすことにより基板P上に液滴が順次重なり、配線パターン33の膜厚が増す。

[0064]

なお、液滴吐出の条件としては、例えば、インク重量 4 ng/dot、インク速度(吐出速度) $5 \sim 7 \text{ m/s}$ e c で行うことできる。また、液滴を吐出する雰囲気は、温度 6 0 \mathbb{C} 以下、湿度 8 0 %以下に設定されていることが好ましい。これにより、液滴吐出ヘッド 1 0 の吐出ノズルが目詰まりすることなく安定した液滴吐出を行うことができる。

[0065]

<中間乾燥工程>

基板Pに液滴を吐出した後、溶媒(分散媒)の除去及び膜厚確保のため、必要に応じて乾燥処理をする。乾燥処理は、例えば基板Pを加熱する通常のホットプレート、電気炉などによる処理の他、ランプアニールによって行なうこともできる。ランプアニールに使用する光の光源としては、特に限定されないが、赤外線ランプ、キセノンランプ、YAGレーザ、アルゴンレーザ、炭酸ガスレーザ、XeF、XeCl、XeBr、KrF、KrCl、ArF、ArClなどのエキシマレーザなどを光源として使用することができる。これらの光源は一般には、出力10W以上5000W以下の範囲のものが用いられるが、本実施形態では100W以上1000W以下の範囲で十分である。そして、この中間乾燥工程と上記材料配置工程とを繰り返し行うことにより、機能液の液滴が複数層積層され、膜厚の厚い配線パターン(膜パターン)が形成される。

[0066]

<焼成工程>

吐出工程後の導電性材料は、例えば有機銀化合物の場合、導電性を得るために熱処理を行い、有機銀化合物の有機分を除去し銀粒子を残存させる必要がある。そのため、吐出工程後の基板には熱処理及び/又は光処理が施される。熱処理及び/又は光処理は通常大気中で行なわれるが、必要に応じて、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気中で行なうこともできる。熱処理及び/又は光処理の処理温度は、分散媒の沸点(蒸気圧)、雰囲気ガスの種類や圧力、微粒子の分散性や有機銀化合物、酸化性等の熱的挙動、コーティング材の有無や量、基材の耐熱温度などを考慮して適宜決定される。たとえば、有機銀化合物の有機物を除去するためには、約200℃で焼成することが必要である。また、プラスチックなどの基板を使用する場合には、室温以上100℃以下で行なうことが好ましい。以上の工程により吐出工程後の導電性材料(有機銀化合物)は、銀粒子の残留により、図8(c)に示すように、導電性膜(配線パターン)33に変換される。

[0067]

なお、上記実施形態において、導電膜配線用の基板としては、ガラス、石英ガラス、Siウエハ、プラスチックフィルム、金属板など各種のものを用いることができる。また、これら各種の素材基板の表面に半導体膜、金属膜、誘電体膜、有機膜などが下地層として形成されたものも含む。

[0068]

導電膜配線用の機能液として、上記実施形態では有機銀化合物を含む導電性材料を溶媒に溶解したものであるが、導電性微粒子を分散媒に分散させた分散液を用いることができ、これは水性であると油性であるとを問わない。ここで用いられる導電性微粒子は、金、銀、銅、パラジウム、及びニッケルのうちのいずれかを含有する金属微粒子の他、導電性ポリマーや超電導体の微粒子などが用いられる。これらの導電性微粒子は、分散性を向上させるために表面に有機物などをコーティングして使うこともできる。

[0069]

導電性微粒子の粒径は5 n m以上0. 1 μ m以下であることが好ましい。0. 1 μ mより大きいと、上記液滴吐出ヘッドのノズルに目詰まりが生じるおそれが

ある。また、5 nmより小さいと、導電性微粒子に対するコーテイング剤の体積 比が大きくなり、得られる膜中の有機物の割合が過多となる。

[0070]

導電性微粒子を含有する液体の分散媒としては、室温での蒸気圧が0.001 mmHg以上200mmHg以下(約0.133Pa以上26600Pa以下)であるものが好ましい。蒸気圧が200mmHgより高い場合には、吐出後に分散媒が急激に蒸発し、良好な膜を形成することが困難となる。また、分散媒の蒸気圧は0.001mmHg以上50mmHg以下(約0.133Pa以上6650Pa以下)であることがより好ましい。蒸気圧が50mmHgより高い場合には、インクジェット法で液滴を吐出する際に乾燥によるノズル詰まりが起こりやすい。一方、室温での蒸気圧が0.001mmHgより低い分散媒の場合、乾燥が遅くて膜中に分散媒が残留しやすくなり、後工程の熱・光処理後に良質の導電膜が得られにくい。

[0071]

上記分散媒としては、上記の導電性微粒子を分散できるものであって凝集を起こさないものであれば特に限定されない。本実施形態ではテトラデカンを用いているが、例えば、水、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、nーヘプタン、nーオクタン、デカン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系化合物、またエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチルエチル、ジロールメチルエーテル、カージメトキシエタン、ビス(2ーメトキシエチル)エーテル、pージオキサンなどのエーテル系化合物、さらにプロピレンカーボネート、γーブチロラクトン、Nーメチルー2ーピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性化合物を例示できる。これらのうち、微粒子の分散性と分散液の安定性、また液滴吐出法への適用の容易さの点で、水、アルコール類、炭化水素系化合物、エーテル系化合物が好ましく、より好ましい分散媒としては、水、炭化水素系化合物

を挙げることができる。これらの分散媒は、単独で使用してもよく、2種以上の 混合物として使用してもよい。

[0072]

上記導電性微粒子を分散媒に分散する場合の分散質濃度は1質量%以上80質量%以下であり、所望の導電膜の膜厚に応じて調整するとよい。なお、80質量%を超えると凝集をおこしやすく、均一な膜が得にくい。

[0073]

上記導電性微粒子の分散液の表面張力は 0.02 N/m以上 0.07 N/m以下の範囲内であることが好ましい。液滴吐出法にて液体材料を吐出する際、表面張力が 0.02 N/m未満であると、液体材料のノズル面に対する濡れ性が増大するため飛行曲りが生じやすくなり、 0.07 N/mを超えるとノズル先端でのメニスカスの形状が安定しないため吐出量や、吐出タイミングの制御が困難になる。

[0074]

表面張力を調整するため、上記分散液には、基板との接触角を大きく低下させない範囲で、フッ素系、シリコーン系、ノニオン系などの表面張力調節剤を微量添加するとよい。ノニオン系表面張力調節剤は、液体の基板への濡れ性を向上させ、膜のレベリング性を改良し、膜の微細な凹凸の発生などの防止に役立つものである。上記分散液は、必要に応じて、アルコール、エーテル、エステル、ケトン等の有機化合物を含んでもよい。

[0075]

上記分散液の粘度は1mPa・s以上50mPa・s以下であることが好ましい。液滴吐出法を用いて液体材料を液滴として吐出する際、粘度が1mPa・sより小さい場合にはノズル周辺部が液体材料の流出により汚染されやすく、また粘度が50mPa・sより大きい場合は、ノズル孔での目詰まり頻度が高くなり円滑な液滴の吐出が困難となる。

[0076]

<電気光学装置>

次に、本発明の電気光学装置の一例としてプラズマ型表示装置について説明す

る。図9は本実施形態のプラズマ型表示装置500の分解斜視図を示している。 プラズマ型表示装置500は、互いに対向して配置された基板501、502、 及びこれらの間に形成される放電表示部510を含んで構成される。放電表示部 510は複数の放電室516が集合されたものである。複数の放電室516のう ち、赤色放電室516(R)、緑色放電室516(G)、青色放電室516(B) の3つの放電室516が対になって1画素を構成するように配置されている。

[0077]

基板501の上面には所定の間隔でストライプ状にアドレス電極511が形成され、アドレス電極511と基板501の上面とを覆うように誘電体層519が形成されている。誘電体層519上には、アドレス電極511、511間に位置しかつ各アドレス電極511に沿うように隔壁515が形成されている。隔壁515は、アドレス電極511の幅方向左右両側に隣接する隔壁と、アドレス電極511と直交する方向に延設された隔壁とを含む。また、隔壁515によって仕切られた長方形状の領域に対応して放電室516が形成されている。また、隔壁515によって区画される長方形状の領域の内側には蛍光体517が配置されている。蛍光体517は、赤、緑、青の何れかの蛍光を発光するもので、赤色放電室516(R)の底部には赤色蛍光体517(R)が、緑色放電室516(G)の底部には緑色蛍光体517(G)が、青色放電室516(B)の底部には青色蛍光体517(B)が各々配置されている。

[0078]

一方、基板502には、先のアドレス電極511と直交する方向に複数の表示電極512がストライプ状に所定の間隔で形成されている。さらに、これらを覆うように誘電体層513、及びMgOなどからなる保護膜514が形成されている。基板501と基板502とは、前記アドレス電極511…と表示電極512…を互いに直交させるように対向させて相互に貼り合わされている。上記アドレス電極511と表示電極512は図示略の交流電源に接続されている。各電極に通電することにより、放電表示部510において蛍光体517が励起発光し、カラー表示が可能となる。

[0079]

本実施形態では、上記アドレス電極 5 1 1、及び表示電極 5 1 2 がそれぞれ、 本発明のパターンの形成方法に基づいて形成されている。

[0080]

次に、本発明の電気光学装置の他の例として液晶装置について説明する。図1 0は本実施形態に係る液晶装置の第1基板上の信号電極等の平面レイアウトを示すものである。本実施形態に係る液晶装置は、この第1基板と、走査電極等が設けられた第2基板(図示せず)と、第1基板と第2基板との間に封入された液晶(図示せず)とから概略構成されている。

[0081]

図10に示すように、第1基板300上の画素領域303には、複数の信号電極310…が多重マトリクス状に設けられている。特に各信号電極310…は、各画素に対応して設けられた複数の画素電極部分310a…とこれらを多重マトリクス状に接続する信号配線部分310b…とから構成されており、Y方向に伸延している。また、符号350は1チップ構造の液晶駆動回路で、この液晶駆動回路350と信号配線部分310b…の一端側(図中下側)とが第1引き回し配線331…を介して接続されている。また、符号340…は上下導通端子で、この上下導通端子340…と、図示しない第2基板上に設けられた端子とが上下導通材341…によって接続されている。また、上下導通端子340…と液晶駆動回路350とが第2引き回し配線332…を介して接続されている。

[0082]

本実施形態では、上記第1基板300上に設けられた信号配線部分310b… 、第1引き回し配線331…、及び第2引き回し配線332…がそれぞれ、本発明のパターンの形成方法に基づいて形成されている。また、大型化した液晶用基板の製造に適用した場合においても、配線用材料を効率的に使用することができ、低コスト化が図れる。なお、本発明が適用できるデバイスは、これらの電気光学装置に限られず、例えば導電膜配線が形成される回路基板や、半導体の実装配線等、他のデバイス製造にも適用が可能である。

[0083]

<電子機器>

次に、本発明の電子機器の例について説明する。図11は上述した実施形態に係る表示装置を備えたモバイル型のパーソナルコンピュータ(情報処理装置)の構成を示す斜視図である。同図において、パーソナルコンピュータ1100は、キーボード1102を備えた本体部1104と、上述した電気光学装置1106を備えた表示装置ユニットとから構成されている。このため、発光効率が高く明るい表示部を備えた電子機器を提供することができる。

[0084]

なお、上述した例に加えて、他の例として、携帯電話、腕時計型電子機器、液晶テレビ、ビューファインダ型やモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、電子ペーパー、タッチパネルを備えた機器等が挙げられる。本発明の電気光学装置は、こうした電子機器の表示部としても適用できる。なお、本実施形態の電子機器は液晶装置を備えるもの、有機エレクトロルミネッセンス表示装置、プラズマ型表示装置等、他の電気光学装置を備えた電子機器とすることもできる。

[0085]

以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明 したが、本発明は係る例に限定されないことは言うまでもない。上述した例にお いて示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨か ら逸脱しない範囲において設計要求等に基づき種々変更可能である。

【図面の簡単な説明】

- 【図1】本発明のデバイスの製造方法の一部を構成する洗浄工程の一実施形態を 示すフローチャート図である。
- 【図2】本発明のパターンの形成方法の一実施形態を示すフローチャート図である。
- 【図3】本発明のパターン形成装置の一実施形態を示す模式図である。
- 【図4】本発明のパターン形成装置により洗浄動作が行われている状態を示す模式図である。
 - 【図5】本発明に係る保管処理工程の一例を示すフローチャート図である。

- 【図6】本発明のパターンの形成手順の一例を示す模式図である。
- 【図7】本発明のパターンの形成手順の一例を示す模式図である。
- 【図8】本発明のパターンの形成手順の一例を示す模式図である。
- 【図9】本発明の電気光学装置の一例を示す図であってプラズマ型表示装置を示す模式図である。
- 【図10】本発明の電気光学装置の一例を示す図であって液晶表示装置を示す模式図である。
 - 【図11】本発明の電子機器の具体例を示す図である。

【符号の説明】

- 1…液滴吐出ヘッド(液滴吐出装置)、4…流路、4K…管部、
- 30…液滴 (機能液)、33…配線パターン (膜パターン)、
- 3 4 ···パターン形成領域、 I J ···液滴吐出装置 (パターン形成装置) 、
- P…基板

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【書類名】 要約書

【要約】

【課題】 保管液を用いた保管状態の液滴吐出ヘッドを再稼働する際、液滴吐出動作に影響を及ぼさずに液滴吐出ヘッドを洗浄してパターン形成できるパターンの形成方法を提供する。

【解決手段】 本発明のパターン形成方法は、液滴吐出ヘッド1及び液滴吐出ヘッド1に機能液を供給する管部4Kを含む流路4を純水で置換する第1置換工程SA1と、純水と機能液に含まれる溶媒との双方を溶解する溶媒で置換する第2置換工程SA2と、機能液に含まれる溶媒で置換する第3置換工程SA3と、基板P上に設定されたパターン形成領域34を囲む領域に撥液性膜を設ける表面処理工程S2、S3と、パターン形成領域34に液滴30を液滴吐出ヘッド1により配置する材料配置工程S4とを有する。

【選択図】 図1

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-117164

受付番号

50300668020

書類名

特許願

担当官

第四担当上席 0093

作成日

平成15年 4月23日

<認定情報・付加情報>

【提出日】

平成15年 4月22日

次頁無

特願2003-117164

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名

セイコーエプソン株式会社