UNIDAD 2 PARTE A: RELACIONES

Licenciatura en Ciencias de la Computación - Facultad de Ingeniería Universidad Nacional de Cuyo

2023

Conceptos

- Relaciones
 - Conceptos Básicos
 - Definición y Ejemplos
 - Algunas Relaciones Importantes
 - Operaciones entre Relaciones
 - Inversa
 - Composición
 - Clasificación de Relaciones
 - Reflexiva
 - SIMÉTRICA
 - Antisimétrica
 - Transitiva
 - EQUIVALENCIA
 - Orden
 - Conjunto Cociente
 - Clases de equivalencia
 - Paritición de un Conjunto
 - Teorema de Caracterización

DEFINICIÓN Y EJEMPLOS

Definición de Relación

Sean A y B dos conjuntos. Un subconjunto R de $A \times B$ se denomina **relación** entre A y B. Es decir, R es una relación si

$$R \subset A \times B$$
.

Si $(a,b) \in R$ decimos que a esta relacionado con b por medio de R y escribimos aRb o $a \sim b$.

En el caso de que A=B decimos que R es una relación sobre A.

DEFINICIÓN Y EJEMPLOS

Figura: Representación de la relación

$$R = \{(a,3), (b,1), (b,2), (c,2), (c,3)\}$$
 entre $A = \{a,b,c,d\}$ y $B = \{1,2,3\}.$

DEFINICIÓN Y EJEMPLOS

Representación de la relación $R=\{(a,3),(b,1),(b,2),(c,2),(c,3)\}$ entre $A=\{a,b,c,d\}$ y $B=\{1,2,3\}$ en forma matricial.

	1	2	3
а	0	0	1
b	1	1	0
С	0	1	1
d	0	0	0

DEFINICIÓN Y EJEMPLOS

Figura: Representación, en forma de grafo dirigido, de la relación

$$R = \begin{cases} (1, 1), & (1, 2), & (2, 3), & (3, 3), \\ (3, 4), & (4, 5), & (5, 5), & (5, 6), \\ (6, 7), & (7, 7), & (7, 8), & (8, 1) \end{cases}$$
 sobre $X = \{1, 2, 3, 4, 5, 6, 7, 8\}.$

DEFINICIÓN Y EJEMPLOS

DEFINICIÓN

Sea R una relación de A en B, esto es $R \subset A \times B$. Al conjunto A se lo denomina **conjunto de salida** y al conjunto B se lo denomina **conjunto de llegada**. El **dominio** de R es el conjunto

$$\mathsf{Dom}(R) := \{a \in A : \text{ existe } b \in B \text{ tal que } (a,b) \in R\}.$$

La **imagen** de R es el conjunto

$$\operatorname{Im}(R) := \{b \in B : \text{ existe } a \in A \text{ tal que } (a,b) \in R\}.$$

Observar que siempre

$$Im(R) \subset B$$
.

DEFINICIÓN Y EJEMPLOS

Ejemplos:

DEFINICIÓN Y EJEMPLOS

Ejemplos:

 Sean $A=\{1,2,3,4\}$ y $B=\{a,b,c\}$. Definimos la relación $R_1\subset A\times B$ como

$$R_1 := \{(1, a), (2, a), (2, b), (3, a), (3, c)\}$$

Ejemplos:

 Sean $A=\{1,2,3,4\}$ y $B=\{a,b,c\}$. Definimos la relación $R_1\subset A\times B$ como

$$R_1 := \{(1, a), (2, a), (2, b), (3, a), (3, c)\}$$

• Sean $A = B = \{a, b, c\}$. Definimos la relación $R_2 \subset A \times B$ como

$$R_2 := \{(a, a), (b, a), (a, b), (c, c)\}$$

Definición y Ejemplos

Ejemplos:

• Sean $A=\{1,2,3,4\}$ y $B=\{a,b,c\}$. Definimos la relación $R_1\subset A\times B$ como

$$R_1 := \{(1, a), (2, a), (2, b), (3, a), (3, c)\}$$

• Sean $A = B = \{a, b, c\}$. Definimos la relación $R_2 \subset A \times B$ como

$$R_2 := \{(a, a), (b, a), (a, b), (c, c)\}$$

• Sean $C=\{3,5,7\}$ y $D=\{14,15,25,30,35\}$. Definimos la relación $R_3\subset C\times D$ por

$$R_3 := \left\{ \begin{aligned} y & \text{tiene exactamendo dos} \\ (x,y) : \text{divisores en } C & \text{y} & x & \text{es el} \\ \text{menor de ellos} \\ &= \{(3,15), (3,30)(5,35)\} \end{aligned} \right.$$

ALGUNAS RELACIONES IMPORTANTES

 Relación vacía: como el Ø ⊂ A × B entonces es una relación y se la denomina relación vacía ya que no tiene ningún par ordenado.

ALGUNAS RELACIONES IMPORTANTES

- **Relación vacía**: como el $\varnothing \subset A \times B$ entonces es una relación y se la denomina *relación vacía* ya que no tiene ningún par ordenado.
- Relación identidad: Dado cualquier conjunto A, la relación identidad id $_A$ sobre A está definida como el subconjunto id $_A \subset A \times A$ tal que

$$id_A = \{(a, a) : a \in A\}.$$

Por ejemplo, si $A=\{1,2,3,4\}$ entonces

$$id_A = \{(1,1), (2,2), (3,3), (4,4)\}.$$

ALGUNAS RELACIONES IMPORTANTES

- **Relación vacía**: como el $\varnothing \subset A \times B$ entonces es una relación y se la denomina *relación vacía* ya que no tiene ningún par ordenado.
- Relación identidad: Dado cualquier conjunto A, la relación identidad id $_A$ sobre A está definida como el subconjunto id $_A \subset A \times A$ tal que

$$\mathsf{id}_A = \{(a,a) : a \in A\} .$$

Por ejemplo, si $A = \{1, 2, 3, 4\}$ entonces

$$\mathsf{id}_A = \{(1,1), (2,2), (3,3), (4,4)\}.$$

• Relación universal: como $A \times B \subset A \times B$ entonces es una relación y se la denomina relación universal ya que tiene todos los pares ordenados de $A \times B$.

RELACIONES: OPERACIONES ENTRE RELACIONES

INVERSA

Definición de Inversa

Sean $R \subset A \times B$ una relación de A en B. La **relación inversa** $R^{-1} \subset B \times A$ es una relación de B en A y está definida por

$$R^{-1} := \{(b, a) \in B \times A : (a, b) \in R\}.$$

RELACIONES: OPERACIONES ENTRE RELACIONES

INVERSA

Definición de Inversa

Sean $R \subset A \times B$ una relación de A en B. La **relación inversa** $R^{-1} \subset B \times A$ es una relación de B en A y está definida por

$$R^{-1} := \{(b, a) \in B \times A : (a, b) \in R\}.$$

OBSERVACIÓN

La relación inversa siempre existe.

RELACIONES: OPERACIONES ENTRE RELACIONES

Composición

DEFINICIÓN DE COMPOSICIÓN

Sean $R\subset A\times B$ una relación de A en B y $S\subset B\times C$ una relación de B en C. La **relación compuesta** $S\circ R\subset A\times C$ es una relación de A en C y está definida por

 $S\circ R:=\left\{(a,c)\in A\times C: \text{existe un }b\in B \text{ tal que }(a,b)\in R \text{ y }(b,c)\in S\right\}.$

OBSERVACIÓN

 $S \circ R$ se lee "S compuesta con R" o "S cerito R".

RELACIONES: CLASIFICACIÓN DE RELACIONES

Definición

Sea A un conjunto y R una relación sobre A. Entonces

 $oldsymbol{0}$ R es **reflexiva** si para todo $x \in A$ se cumple que

$$(x,x) \in R$$
.

DEFINICIÓN

Sea A un conjunto y R una relación sobre A. Entonces

1 R es **reflexiva** si para todo $x \in A$ se cumple que

$$(x,x) \in R$$
.

Ejemplos:

• Si $A=\{a,b,c\}$, entonces la relación $R_1=\{(a,a),(a,c),(b,b),(c,b),(c,c)\}$ sobre A es reflexiva.

Definición

Sea A un conjunto y R una relación sobre A. Entonces

2 R es simétrica si para todo $x, y \in A$ se cumple que

$$(x,y) \in R \longrightarrow (y,x) \in R.$$

RELACIONES: CLASIFICACIÓN DE RELACIONES

Definición

Sea A un conjunto y R una relación sobre A. Entonces

2 R es **simétrica** si para todo $x, y \in A$ se cumple que

$$(x,y) \in R \longrightarrow (y,x) \in R.$$

Ejemplos:

• Si $A=\{a,b,c\}$, entonces la relación $R_2=\{(a,c),(b,b),(c,a),(c,c)\}$ sobre A es simétrica pero no reflexiva.

Definición

Sea A un conjunto y R una relación sobre A. Entonces

2 R es **simétrica** si para todo $x, y \in A$ se cumple que

$$(x,y) \in R \longrightarrow (y,x) \in R.$$

Ejemplos:

- Si $A=\{a,b,c\}$, entonces la relación $R_2=\{(a,c),(b,b),(c,a),(c,c)\}$ sobre A es simétrica pero no reflexiva.
 - $R_1 = \{(a, a), (a, c), (b, b), (c, b), (c, c)\}$ **NO** es simétrica.

Definición

Sea A un conjunto y R una relación sobre A. Entonces

2 R es **simétrica** si para todo $x, y \in A$ se cumple que

$$(x,y) \in R \longrightarrow (y,x) \in R.$$

Ejemplos:

- Si $A=\{a,b,c\}$, entonces la relación $R_2=\{(a,c),(b,b),(c,a),(c,c)\}$ sobre A es simétrica pero no reflexiva.
 - $R_1 = \{(a, a), (a, c), (b, b), (c, b), (c, c)\}$ **NO** es simétrica.
 - La relación \leqslant sobre los \mathbb{Z} NO es simétrica ya que $-3 \leqslant 5$ pero NO es cierto que $5 \leqslant -3$, en realidad 5 > -3.

Definición

Sea A un conjunto y R una relación sobre A. Entonces

 $oldsymbol{0}$ R es antisimétrica si para todo $x,y\in A$ se cumple que

$$(x,y) \in R \land (y,x) \in R \longrightarrow x = y.$$

Definición

Sea A un conjunto y R una relación sobre A. Entonces

3 R es antisimétrica si para todo $x, y \in A$ se cumple que

$$(x,y) \in R \land (y,x) \in R \longrightarrow x = y.$$

Ejemplos:

• Si $A=\{a,b,c\}$, entonces la relación $R_2=\{(a,c),(c,b),(c,a),(c,c)\}$ sobre A **NO** es antisimétrica.

Definición

Sea A un conjunto y R una relación sobre A. Entonces

3 R es antisimétrica si para todo $x, y \in A$ se cumple que

$$(x,y) \in R \land (y,x) \in R \longrightarrow x = y.$$

Ejemplos:

- Si $A=\{a,b,c\}$, entonces la relación $R_2=\{(a,c),(c,b),(c,a),(c,c)\}$ sobre A **NO** es antisimétrica.
 - La relación de divisibilidad sobre $\mathbb N$ es antisimétrica ya que si n es divisible por m y m es divisible por n entonces n=m.

RELACIONES: CLASIFICACIÓN DE RELACIONES

OBSERVACIÓN

Ser antisimétrico no es la negación de simétrico. por ejemplo, si $A = \{a, b, c\}$ entonces $R_3 = \{(a, a), (a, c), (b, b), (c, a)(c, b), (c, c)\}$ **NO** es antisimétrica ni simétrica.

Definición

Sea A un conjunto y R una relación sobre A. Entonces

lacktriangledown R es transitiva si para todo $x,y,z\in A$ se cumple que

$$(x,y) \in R \land (y,z) \in R \longrightarrow (x,z) \in R.$$

Definición

Sea A un conjunto y R una relación sobre A. Entonces

 $lackbox{0}$ R es **transitiva** si para todo $x,y,z\in A$ se cumple que

$$(x,y) \in R \land (y,z) \in R \longrightarrow (x,z) \in R.$$

Ejemplos:

 \bullet Si $A=\{a,b,c\},$ entonces la relación $R_4=\{(a,a),(a,b),(b,c),(a,c),(c,c)\} \text{ sobre } A \text{ es transitiva}.$

Definición

Sea A un conjunto y R una relación sobre A. Entonces

9 R es **transitiva** si para todo $x,y,z\in A$ se cumple que

$$(x,y) \in R \land (y,z) \in R \longrightarrow (x,z) \in R.$$

Ejemplos:

- Si $A = \{a, b, c\}$, entonces la relación $R_4 = \{(a, a), (a, b), (b, c), (a, c), (c, c)\}$ sobre A es transitiva.
 - La relación de inclusión de conjuntos en un universo $\mathcal U$ es transitiva, esto es, si $A,B,C\subset\mathcal U$, $A\subset B$ y $B\subset C$ entonces $A\subset C$.

DEFINICIÓN

Sea ${\cal A}$ un conjunto y ${\cal R}$ una relación sobre ${\cal A}.$ Entonces

 \bullet R es de **equivalencia** si R es reflexiva, simétrica y transitiva.

Definición

Sea A un conjunto y R una relación sobre A. Entonces

 \bullet R es de **equivalencia** si R es reflexiva, simétrica y transitiva.

Ejemplos:

• Si $A=\{a,b,c\}$, entonces la relación $R_5=\{(a,a),(a,c),(b,b),(c,a),(c,c)\}$ sobre A es reflexiva, simétrica y transitiva, por lo tanto es de equivalencia.

DEFINICIÓN

Sea A un conjunto y R una relación sobre A. Entonces se dice que

 \bullet R es un **orden parcial** en A si R es *reflexiva*, *antisimétrica* y *transitiva*.

Un conjunto A junto con un orden parcial R se dice **conjunto** parcialmente ordenado.

DEFINICIÓN

Sea ${\cal A}$ un conjunto y ${\cal R}$ una relación sobre ${\cal A}.$ Entonces se dice que

 \bullet R es un **orden parcial** en A si R es *reflexiva*, *antisimétrica* y *transitiva*.

Un conjunto A junto con un orden parcial R se dice **conjunto** parcialmente ordenado.

Ejemplos:

• La relación \leqslant en $\mathbb Z$ es un orden parcial pero no lo es la relación < en $\mathbb Z$.

Definición

Sea A un conjunto y R una relación sobre A. Entonces se dice que

 $footnote{\bullet}$ R es un **orden parcial** en A si R es *reflexiva*, *antisimétrica* y *transitiva*.

Un conjunto A junto con un orden parcial R se dice **conjunto** parcialmente ordenado.

Ejemplos:

- La relación ≤ en Z es un orden parcial pero no lo es la relación < en Z.
 - La relación de inclusión sobre el conjunto de partes del conjunto $A=\{a,b,c\}$, esto es $\mathcal{P}(A)$, es un orden parcial en $\mathcal{P}(A)$.

RELACIONES: CONJUNTO COCIENTE

CLASES DE EQUIVALENCIA

DEFINICIÓN

Sea R una relación de equivalencia sobre el conjunto A. Entonces para cada $x\in A$ definimos la **clase de equivalencia** de x, [x], por

$$[x] := \{ y \in A : (x, y) \in R \}.$$

El elemento x se llama **representante** de la clase [x].

CLASES DE EQUIVALENCIA

DEFINICIÓN

Sea R una relación de equivalencia sobre el conjunto A. Entonces para cada $x\in A$ definimos la **clase de equivalencia** de x, [x], por

$$[x] := \{ y \in A : (x, y) \in R \}.$$

El elemento x se llama **representante** de la clase [x]. Al conjunto de todas las clases de equivalencia se denomina **conjunto cociente**, A/R, esto es,

$$A/R:=\left\{ \left[x\right] :x\in A\right\} .$$

CLASES DE EQUIVALENCIA

Ejemplo: Sea R la siguiente relación en \mathbb{Z} :

 $m \sim k$ si y sólo si m - k es divisible por 5.

Se puede probar que R es una **relación de equivalencia**.

CLASES DE EQUIVALENCIA

Ejemplo: Sea R la siguiente relación en \mathbb{Z} :

 $m \sim k$ si y sólo si m - k es divisible por 5.

Se puede probar que ${\cal R}$ es una **relación de equivalencia**.

Por ejemplo 23 y 58 están relacionados porque $58-23=35=7\cdot 5.$

CLASES DE EQUIVALENCIA

Ejemplo: Sea R la siguiente relación en \mathbb{Z} :

 $m \sim k$ si y sólo si m-k es divisible por 5.

Se puede probar que ${\cal R}$ es una **relación de equivalencia**. Notemos que:

$$\dots \sim -20 \sim -15 \sim -10 \sim -5 \sim 0 \sim 5 \sim 10 \sim 15 \sim 20 \sim \dots,$$

$$\dots \sim -19 \sim -14 \sim -9 \sim -4 \sim 1 \sim 6 \sim 11 \sim 16 \sim 21 \sim \dots,$$

$$\dots \sim -18 \sim -13 \sim -8 \sim -3 \sim 2 \sim 7 \sim 12 \sim 17 \sim 22 \sim \dots,$$

$$\dots \sim -17 \sim -12 \sim -7 \sim -2 \sim 3 \sim 8 \sim 13 \sim 18 \sim 23 \sim \dots,$$

$$\dots \sim -16 \sim -11 \sim -6 \sim -1 \sim 4 \sim 9 \sim 14 \sim 19 \sim 24 \sim \dots$$

CLASES DE EQUIVALENCIA

Ejemplo: Sea R la siguiente relación en \mathbb{Z} :

 $m \sim k$ si y sólo si m-k es divisible por 5.

Se puede probar que ${\cal R}$ es una **relación de equivalencia**. Por lo tanto podemos afirmar que

$$[0] = \{5n : n \in \mathbb{Z}\}$$

$$[1] = \{5n + 1 : n \in \mathbb{Z}\}$$

$$[2] = \{5n + 2 : n \in \mathbb{Z}\}$$

$$[3] = \{5n + 3 : n \in \mathbb{Z}\}$$

$$[4] = \{5n + 4 : n \in \mathbb{Z}\}$$

Clases de equivalencia

Ejemplo: Sea R la siguiente relación en \mathbb{Z} :

 $m \sim k$ si y sólo si m-k es divisible por 5.

Se puede probar que ${\cal R}$ es una **relación de equivalencia**. Por lo tanto podemos afirmar que

$$[0] = \{5n : n \in \mathbb{Z}\}$$

$$[1] = \{5n + 1 : n \in \mathbb{Z}\}$$

$$[2] = \{5n + 2 : n \in \mathbb{Z}\}$$

$$[3] = \{5n + 3 : n \in \mathbb{Z}\}$$

$$[4] = \{5n + 4 : n \in \mathbb{Z}\}$$

Notemos que 0 es un representante de la clase [0], pero también lo son -5, 5, 10, -10, -15, 15, -20, 20, etc.

Clases de equivalencia

Ejemplo: Sea R la siguiente relación en \mathbb{Z} :

 $m \sim k$ si y sólo si m-k es divisible por 5.

Se puede probar que ${\cal R}$ es una **relación de equivalencia**. Por lo tanto podemos afirmar que

$$[0] = \{5n : n \in \mathbb{Z}\}$$

$$[1] = \{5n + 1 : n \in \mathbb{Z}\}$$

$$[2] = \{5n + 2 : n \in \mathbb{Z}\}$$

$$[3] = \{5n + 3 : n \in \mathbb{Z}\}$$

$$[4] = \{5n + 4 : n \in \mathbb{Z}\}$$

Así, el conjunto cociente es

$$\mathbb{Z}/R = \{[0], [1], [2], [3], [4]\}$$

CLASES DE EQUIVALENCIA

Ejemplo:

El número 5 no tiene nada en particular. De igual forma podríamos hacer muchas otras relaciones de equivalencia y obtener los conjuntos cocientes respectivos. En otras palabras podríamos definir la relación R_n en \mathbb{Z} :

 $m \sim k$ si y sólo si m-k es divisible por n.

Clases de equivalencia

Ejemplo:

El número 5 no tiene nada en particular. De igual forma podríamos hacer muchas otras relaciones de equivalencia y obtener los conjuntos cocientes respectivos. En otras palabras podríamos definir la relación R_n en \mathbb{Z} :

 $m \sim k$ si y sólo si m - k es divisible por n.

El conjunto cociente

 \mathbb{Z}/R_n

es simbolizado en general por \mathbb{Z}_n y se denomina conjunto de enteros módulo \mathbf{n} .

Clases de equivalencia

Teorema

Sea R es una relación de equivalencia en un conjunto A. Si $a,b\in A$, entonces

- **1** $a \in [a];$
- $\textbf{2} \ [a] = [b] \text{ si y s\'olo si } (a,b) \in R;$
- ullet Si $[a] \cap [b] \neq \emptyset$ entonces [a] = [b].

Paritición de un Conjunto

DEFINICIÓN DE PARTICIÓN

Sea A un conjunto no vacío. Una **partición** es una colección de subconjuntos de A, $\mathcal{A}=\{A_i\}_i$, tales que

- $\bigcup_{i} A_{i} = A$

Paritición de un Conjunto

DEFINICIÓN DE PARTICIÓN

Sea A un conjunto no vacío. Una **partición** es una colección de subconjuntos de A, $\mathcal{A}=\{A_i\}_i$, tales que

Figura: Representación de una partición del conjunto A.

Paritición de un Conjunto

DEFINICIÓN DE PARTICIÓN

Sea A un conjunto no vacío. Una **partición** es una colección de subconjuntos de A, $\mathcal{A}=\{A_i\}_i$, tales que

- $\bigcup_i A_i = A$

Figura: Representación de una partición del conjunto ${\cal A}.$

Paritición de un Conjunto

Definición de Partición

Sea A un conjunto no vacío. Una **partición** es una colección de subconjuntos de A, $\mathcal{A}=\{A_i\}_i$, tales que

- $\bigcup_{i} A_{i} = A$

Ejemplo: Sea $A=\{{\rm blue,\ brown,\ green,\ orange,\ pink,\ red,\ white,\ yellow}\}$ y R la relación definida por

 $x \sim y$ si y sólo si x tiene el mismo número de letras que y

Paritición de un Conjunto

Definición de Partición

Sea A un conjunto no vacío. Una **partición** es una colección de subconjuntos de A, $\mathcal{A}=\{A_i\}_i$, tales que

- $2 A_i \cap A_j = \varnothing \text{ para } i \neq j;$
- $\bigcup_{i} A_{i} = A$

Ejemplo: Sea $A=\{{\rm blue,\ brown,\ green,\ orange,\ pink,\ red,\ white,\ yellow}\}$ y R la relación definida por

 $x \sim y$ si y sólo si x tiene el mismo número de letras que y

Entonces.

$$A/R = \{\{\mathsf{red}\}, \{\mathsf{blue}, \, \mathsf{pink}\}, \{\mathsf{brown}, \, \mathsf{green}, \, \mathsf{white}\}, \{\mathsf{orange}, \, \mathsf{yellow}\}\}$$

Relaciones: Conjunto Cociente y Partición

TEOREMA DE CARACTERIZACIÓN

TEOREMA DE CARACTERIZACIÓN

Sea A un conjunto no vacío. Entonces:

- Si R es una relación de equivalencia en A, entonces el conjunto cociente A/R es una partición, \mathcal{A}_R , del conjunto A.
- ② Si $\mathcal{A}=\{A_i\}_i$ es una partición de A, entonces la relación $R_{\mathcal{A}}$, definida por $(x,y)\in R_{\mathcal{A}}$ si y sólo si $x,y\in A_i$ para algún i, es de equivalencia.

RELACIONES: CONJUNTO COCIENTE Y PARTICIÓN

TEOREMA DE CARACTERIZACIÓN

TEOREMA DE CARACTERIZACIÓN

Sea A un conjunto no vacío. Entonces:

- Si R es una relación de equivalencia en A, entonces el conjunto cociente A/R es una partición, \mathcal{A}_R , del conjunto A.
- ② Si $\mathcal{A}=\{A_i\}_i$ es una partición de A, entonces la relación $R_{\mathcal{A}}$, definida por $(x,y)\in R_{\mathcal{A}}$ si y sólo si $x,y\in A_i$ para algún i, es de equivalencia.

Ejemplo: Sea la partición $\mathcal{A}=\{\{1,3,5\},\{2,6\},\{4\}\}$ de $X=\{1,2,3,4,5,6\}$. Por el teorema anterior, la relación $R_{\mathcal{A}}$ es de equivalencia:

$$R_{\mathcal{A}} = \{(1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1), (5,3), (5,5), (2,2), (2,6), (6,2), (6,6), (4,4)\}$$

