Multi-Agent Systems Introduction to Reinforcement Learning

Part 4: Policy-Gradient and Actor-Critic

Eric Pauwels (CWI & VU)

December 12, 2023

Outline

Policy Gradient Methods

Policy gradient algorithms

Policy gradient algorithms

- · optimise policy directly,
- NOT via value function (indirectly)

Ingredients:

- 1. Parametrised policy $\pi_{\theta}(a|s)$ (θ to be determined)
- 2. Objective function $J(\theta)$ to be maximised
- 3. Update rule: $\theta_{new} \leftarrow \theta_{old}$, specifically **gradient** ascent:

$$\theta_{new} \leftarrow \theta_{old} + \nabla_{\theta} J(\theta_{old})$$

Policy gradient: Objective Function

• Trajectory (episodic):

$$\tau = \{s_0, a_0, r_1, s_1, a_1, r_2, s_2, \dots, s_{T-1}, a_{T-1}, r_T, s_T\}$$

Cumulative return along trajectory

$$R(\tau) := \sum_{t=1}^{T} \gamma^{t-1} r_t$$
 or $R_s(\tau) := \sum_{t=s}^{T} \gamma^{t-s} r_t$

• Objective function $J(\theta)$: Quantifying policy performance:

$$J(\theta) := \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \right]$$

Goal:

$$\max_{\theta} J(\theta)$$

Policy gradient: Example(1)

Absorbing states at $x = \pm 1$, absorption reward = 0

• Objective function (as path integral and MC version)

$$J(\theta) := \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \right] = \int R(\tau) \rho(\tau \mid \theta) \, d\tau \approx \frac{1}{N} \sum_{\tau \sim \pi_{\theta}} R(\tau)$$

(Path integral makes dependence on θ explicit)

• In abstract terms (to simplify notation):

$$g(\theta) := \mathbb{E}_{X \sim p_{\theta}} \left[\phi(X) \right] = \int \phi(x) p(x \mid \theta) dx$$

Need to compute derivative (to optimise):

$$\frac{d}{d\theta}g(\theta) = \frac{d}{d\theta} \int \phi(x)p(x\,|\,\theta)\,dx = \int \phi(x)\frac{d}{d\theta}\left(p(x\,|\,\theta)\right)\,dx$$

Optimal value
$$\theta^* = \theta_2$$

- Maximise $g(\theta) = \mathbb{E}_{X \sim p_{\theta}}\left[\phi(X)\right] pprox rac{1}{n} \sum_{X_i \sim p_{\theta}} \phi(X_i)$,
- Intuition: Sample $X_i \sim p(x \mid \theta)$
 - If $\phi(X_i)$ large: change θ to make X_i more likely;
 - If $\phi(X_i)$ small: change θ to make X_i less likely;
- Mathematics: Policy gradient theorem

$$\frac{dg}{d\theta} = \frac{d}{d\theta} \mathbb{E}_{X \sim p_{\theta}} \left[\phi(X) \right] = \mathbb{E}_{X \sim p_{\theta}} \left[\phi(X) \frac{d}{d\theta} \left(\log p(X \mid \theta) \right) \right]$$

Change θ such that

- If $\phi(X_i)$ large: make X_i more likely, i.e. $\frac{d(\log)p(X_i)}{d\theta} > 0$
- If $\phi(X_i)$ small: make X_i less likely, i.e. $\frac{d(\log p(X_i))}{d\theta} < 0$

$$\frac{d}{d\theta}g(\theta) = \int \phi(x) \frac{d}{d\theta} (p(x|\theta)) dx$$

$$= \int \phi(x) \left[\frac{\frac{d}{d\theta} (p(x|\theta))}{p(x|\theta)} \right] p(x|\theta) dx$$

$$= \int \phi(x) \left[\frac{\frac{d}{d\theta} (p(x|\theta))}{p(x|\theta)} \right] p(x|\theta) dx$$

$$= \int \phi(x) \left[\frac{d}{d\theta} (\log p(x|\theta)) \right] p(x|\theta) dx$$

$$= \mathbb{E}_{X \sim p_{\theta}} \left[\phi(X) \frac{d}{d\theta} (\log p(x|\theta)) \right]$$

$$\frac{d}{d\theta} \mathbb{E}_{\mathsf{X} \sim p_{\theta}} \left[\phi(\mathsf{X}) \right] = \mathbb{E}_{\mathsf{X} \sim p_{\theta}} \left[\phi(\mathsf{X}) \frac{d}{d\theta} \left(\log p(\mathsf{X} \mid \theta) \right) \right]$$

$$\frac{d}{d\theta}g(\theta) = \frac{d}{d\theta}\mathbb{E}_{X \sim p_{\theta}} [\phi(X)]$$

$$= \mathbb{E}_{X \sim p_{\theta}} \left[\phi(X) \frac{d}{d\theta} (\log p(X \mid \theta)) \right]$$

$$\approx \frac{1}{n} \sum_{X_{i} \sim p_{\theta}} \phi(X_{i}) \frac{d}{d\theta} (\log p(X_{i} \mid \theta))$$

$$= \frac{1}{n} \sum_{X_{i} \sim p_{\theta}} \phi(X_{i}) q(X_{i} \mid \theta)$$

$$p(x)$$
 vs $\log p(x)$

- p(x) vs $\log p(x)$ have same local extremes, increasing and decreasing behaviour
- $sgn(\nabla_{\theta}p(x \mid \theta)) = sgn(\nabla_{\theta}\log p(x \mid \theta))$

$$\frac{dg}{d\theta} \approx \frac{1}{n} \sum_{X_i \sim p_{\theta}} \phi(X_i) \frac{d}{d\theta} \left(\log p(X_i \mid \theta) \right)$$

General result

$$\nabla_{\theta} \mathbb{E}_{\mathbf{X} \sim p_{\theta}} \left[\phi(X) \right] = \mathbb{E}_{\mathbf{X} \sim p_{\theta}} \left[\phi(X) \nabla_{\theta} \log p(X \mid \theta) \right]$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \right] = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \nabla_{\theta} \log p(\tau \mid \theta) \right]$$

- If $R(\tau)$ high, change θ to make τ MORE likely, i.e. $p(\tau \mid \theta) \uparrow$
- If $R(\tau)$ low, change θ to make τ LESS likely, i.e. $p(\tau \mid \theta) \downarrow$

$$egin{array}{lcl} p(au \,|\, heta) &=& \prod_{t \geq 0} \underbrace{p(s_{t+1} \,|\, s_t, \, a_t)}_{\mathsf{MDP \; env.}} \underbrace{\pi_{ heta}(a_t \,|\, s_t)}_{\mathsf{policy}} \ & \log p(au \,|\, heta) &=& \sum_{t \geq 0} \left[\log p(s_{t+1} \,|\, s_t, \, a_t) + \log \pi_{ heta}(a_t \,|\, s_t)
ight] \ &
abla_{ heta} \log p(au \,|\, heta) &=& \sum_{t \geq 0}
abla_{ heta} \log \pi_{ heta}(a_t \,|\, s_t) \end{array}$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau) \nabla_{\theta} \log p(\tau \mid \theta)]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_{t}(\tau) \nabla_{\theta} \log \pi_{\theta} (a_{t} \mid s_{t}) \right]$$

Policy gradient illustration

Policy gradient: Example(1)

Policy gradient: Example(2)

$$T_{\theta}(R|x)$$

$$T_{\theta}(R|x)$$

$$p(T_{\theta}|\theta+\Delta\theta) < p(T_{\theta}|\theta) \longrightarrow V_{\theta}(y|p|T_{\theta}|\theta) < 0 \quad (=-\delta)$$

$$p(T_{\theta}|\theta+\Delta\theta) > p(T_{\theta}|\theta) \longrightarrow V_{\theta}(y|p|T_{\theta}|\theta) > 0 \quad (=+\delta)$$

$$V_{\theta} J \approx R(T_{\theta}) \cdot V_{\theta}(y|p|T_{\theta}|\theta) + R(T_{\theta})V_{\theta}(y|p|T_{\theta}|\theta)$$

$$\approx \delta \left[-R(T_{\theta}) + R(T_{\theta}) \right] < 0 \implies \theta$$

$$\approx \delta \left[|R(T_{\theta})| - |R(T_{\theta})| \right] < 0 \implies \theta$$

Recall: reward(path) = - length(path)

REINFORCE algorithm

Example of policy gradient algo

- 1. Initialise parameter θ of policy π_{θ} , learning rate α
- 2. **for** episode = $1 \dots NR_EPISODES$:
- 3. Sample trajectory $\tau = \{s_0, a_0, r_1, s_1, \dots, r_T, s_T\}$
- 4. Set $\nabla_{\theta} J(\theta) = 0$
- 5. # add gradient contributions along trajectory
- 6. **for** t = 0, 1, ..., T:
- 7. $R_t(\tau) = \sum_{u=t}^T \gamma^{u-t} r_u$,
- 8. $\nabla_{\theta} J(\theta) = \nabla_{\theta} J(\theta) + R_t(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)$
- 9. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ # update policy parameter

NOTE: REINFORCE algo is on-policy:

au cannot be re-used when policy (i.e. heta) changes!

Worked example

- Linear state space (-10:10), left and right absorbing
- $R_{left} = 0, R_{right} = 5, R_{NT} = -1$

Figure: Left: MC computation for each value of θ , (Right) Numerical gradient (diff), zero crossing at $\theta = -2.5$

Worked example

- Linear state space (-10:10), left and right absorbing
- $R_{left} = 0, R_{right} = 5, R_{NT} = -1$

$$abla_{ heta} J(heta) = \sum_t R_t(au)
abla_{ heta} \log \pi_{ heta}(a_t \mid s_t)$$

Figure: $\nabla_{\theta} J(\theta)$ via policy gradient theorem, zero crossing at $\theta = -2.57$

Improving REINFORCE algorithm

 Policy gradient estimate has high variance (trajectories might be very different!)

$$abla_{ heta} J(heta) pprox \sum_{t=0}^T R_t(au)
abla_{ heta} \log \pi_{ heta}(a_t \,|\, s_t)$$

Variance reduction by introducing action-independent baseline:

$$abla_{ heta} J(heta) pprox \sum_{t=0}^T (R_t(au) - b(s_t))
abla_{ heta} \log \pi_{ heta}(a_t \mid s_t)$$

• Example: Actor-Critic algorithm:

$$R_t(\tau) = q_{\pi_{\theta}}(s_t, a_t)$$
 and $b(s_t) = v_{\pi_{\theta}}(s_t)$