МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 1

ОТЧЕТ							
ЗАЩИЩЕН С ОЦ	ЕНКОЙ						
РУКОВОДИТЕЛЬ							
доцент, канд.тех должность, уч. степен		подпись, дата	В. Б. Коцкович инициалы, фамилия				
	ОТЧЕТ ПО Л	АБОРАТОРНОЙ РАБ	OTE №1				
РАСТЯЖЕНИЕ. МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ							
по дисциплине: МЕХАНИКА							
РАБОТУ ВЫПОЛНИ.	П						
СТУДЕНТ ГР.	M251		А.Д. Бутенко				
		подпись, дата	инициалы, фамилия				

W

Протокол лабораторной работы Определение механических характеристик материала при растяжении

Результаты измерений

Замеры до испытания

Материал образца	кинатином				
Замеры	Cmars 3				
	1	2	3		
Диаметр образца (мм)	4.9	5.0	5.0		
Средние значения диаметра образца (мм)		5,0			
Длина образца (мм)		34,0			

Замеры после испытания

		пия	
Диаметр шейки (мм)			
_ 	- -	4, 7	
Длина образца (мм)		200	
	_	30,00	

Работу выполнили студенты:

No			
<u>n/n</u>	Фамилия и инициалы студента	Группа	подпись
<u>'</u>	MYTERKO A.D	M251	11
2	InnebokHA O.A		DYN
3	TONOMEN A.B.	M251	- Marie
T 4 T		M251	THOU
		M251	4 tonl
-1	Линьеберг А.С.	M251	80

1. Цель работы:

Ознакомление с испытательной машиной и измерительными приборами; получение диаграммы растяжения образца; определение характеристик прочности и пластичности материалов по диаграмме растяжения; определение марки материала, из которого изготовлен образец; выяснение примерного назначения испытанного материала и определение для него допускаемого напряжения по заданной величине коэффициента запаса прочности.

2. Описание и принцип работы лабораторной установки:

Испытание образца производят на машине ИМ-4Р, предназначенной главным образом для растяжения материалов.

Рис.1 – Принципиальная схема разрывной машины ИМ-4Р

- 1 Электродвигатель; 2,3 Червячные передачи; 4 Зубчатая пара;
- **5** Осевые опоры; **6** Грузовой винт; **7,8** Нижний и верхний захваты;
- **9, 11** Тяги; **10** Рычаг;**12** Датчики веса (тензодатчики); **13** Зубчатая пара;
- 14 Коническая зубчатая пара; 15 Датчик ЛИР-158Г; 16 Контроллер;
- **17** Компьютер.

Нагружение исследуемого образца осуществляется от электродвигателя 1, который через две пары червячных передач 2,3 и цилиндрическую зубчатую передачу 4 вращает винт 6. Зубчатая пара 4 состоит из зубчатого колеса и зубчатого колеса-гайки, которая втягивает в себя винт 6. В верхней части винта 6 устроен захват 7.

Так как колесо-гайка ограничено от осевых перемещений шарикоподшипниками 5, то при его вращении происходит вертикальное перемещение тягового винта 6 (с трапецеидальной резьбой), который с помощью захвата 7 создает растягивающую нагрузку на образце.

Создаваемое при этом усилие через образец передаётся захвату 8. Усилие, пропорциональное силе, растягивающей образец. От захвата 8 через тягу 9 усилие действует на рычаг 10 и передается через тягу 11 на датчики веса 12 (тензодатчики YZC-131), установленные на кронштейнах к станине.

Вращение всех зубчатых передач пропорционально величине опускания захвата 7. Опускание захвата 8 мало (оно равно вертикальному перемещению конца очень короткого плеча рычага 10), поэтому можно считать, что датчик 15 замеряет пропорциональные абсолютной деформации образца. перемещения 15 (ЛИР-158Г) фиксирует, удлинение образца, так как получает вращение через пару конических зубчатых колес 14 и зубчатую пару 13 от приводного колеса-гайки. Датчик ЛИР-158Г является инкрементным оптоэлектронным преобразователем угловых перемещений.

Растягивающее усилие, действующее на образец, а также удлинение образца преобразуются датчиками 12 и 15 через контроллер 16 в сигналы по координатам У и X соответственно. Полученные данные обрабатываются и в виде графика (диаграммы растяжения) представляются на компьютере 17. Диаграмма 12 растяжения записывается в координатах: растягивающая сила — по оси ординат; удлинение образца — по оси абсцисс.

3. Рабочие формулы:

1) Первоначальная площадь поперечного сечения:

$$S_{0_{
m cp}}=rac{\pi d_{0
m cp}^2}{4},$$
 где

 $d_{0\mathrm{cp}}^{2}$ — среднее значение диаметра образца.

2) Площадь поперечного сечения шейки:

$$S_{\text{mcp}} = \frac{\pi d_{\text{mcp}}^2}{4},$$

где $d_{\text{шср}}^2$ — значение диаметра шейки.

3) Предел пропорциональности:

$$\sigma_{\rm np}=\frac{{\rm P}_{\rm np}}{{\rm S}_{\rm o_{\rm cn}}},$$

где P_{np} — сила, соответствующая пределу пропорциональности.

4) Предел упругости:

$$\sigma_{\rm yn}=\frac{{\rm P}_{\rm yn}}{S_{\rm 0_{\rm CD}}},$$

где $P_{y\pi}$ — сила, соответствующая пределу упругости.

5) Предел текучести:

$$\sigma_{\rm T} = \frac{P_{\rm T}}{S_{0_{\rm CP}}},$$

где $P_{\scriptscriptstyle T}$ — сила, соответствующая пределу текучести.

6) Предел прочности:

$$\sigma_{\rm B}=\frac{\rm P_{\rm B}}{\rm S_{\rm 0_{\rm CP}}},$$

где $P_{\scriptscriptstyle B}$ — сила, соответствующая пределу прочности.

7) Относительное остаточное удлинений:

$$\delta = \frac{l_{1 \text{cp}} - l_{0 \text{cp}}}{l_{0 \text{cp}}} * 100\%,$$

где $l_{\rm 1cp}, l_{\rm 0cp}$ — длины испытуемого образца после и до деформации соответственно.

8) Относительное остаточное сужение:

$$\psi = \frac{s_{0 \text{cp}} - s_{\text{IIICp}}}{s_{0 \text{cp}}} * 100\%,$$

9) Допускаемое напряжение материала:

$$[\sigma] = \frac{\sigma_{\text{off}}}{n},$$

где

 $\sigma_{
m on}$ — опасное напряжение, при котором может произойти разрушение испытуемого образца

n- коэффициент запаса прочности.

4. Примеры расчётов:

1) Первоначальная площадь поперечного сечения:

$$S_{0_{\text{cp}}} = \frac{\pi d_{0\text{cp}}^2}{4} = \frac{3,14*5^2}{4} = 19,63 \text{ mm}^2$$

2) Площадь поперечного сечения шейки:

$$S_{\text{IIICP}} = \frac{\pi d_{\text{IIICP}}^2}{4} = \frac{3,14 * 2,9^2}{4} = 6,6 \text{ MM}^2$$

3) Предел пропорциональности:

$$\sigma_{\rm np} = \frac{P_{\rm np}}{S_{\rm 0cp}} = \frac{5.3 \times 10^3}{19.63} = 269.9 \text{ M}\Pi a$$

4) Предел упругости:

$$\sigma_{y\pi} = \frac{P_{y\pi}}{S_{0_{cp}}} = \frac{5.8 * 10^3}{19.63} = 295,5 \text{ Мпа}$$

5) Предел текучести:

$$\sigma_{\rm T} = \frac{P_{\rm T}}{S_{0_{\rm cp}}} = \frac{6 * 10^3}{19,63} = 305,6 \,\mathrm{M}\Pi\mathrm{a}$$

6) Предел прочности:

$$\sigma_{\rm B} = \frac{P_{\rm B}}{S_{0_{\rm CD}}} = \frac{9.3 * 10^3}{19.63} = 473.8 \text{ M}\Pi a$$

7) Относительное остаточное удлинений:

$$\delta = \frac{l_{1\text{cp}} - l_{0\text{cp}}}{l_{0\text{cp}}} * 100\% = \frac{38,8 - 31,0}{31,0} * 100\% = 25,2\%$$

8) Относительное остаточное сужение:

$$\psi = \frac{s_{0\text{cp}} - s_{\text{incp}}}{s_{0\text{cp}}} * 100\% = \frac{19,63 - 6,6}{19,63} * 100\% = 66,4\%$$

9) Допускаемое напряжение материала:

$$[\sigma] = \frac{\sigma_{\text{on}}}{n} = \frac{473.8}{4} = 118.5$$

5. Результаты измерений и вычислений:

Название	Координаты точки		оординаты точки Механические характеристики		стики
точки	Δl , mm	<i>Р</i> , кН	σ , ΜΠ a	δ, %	ψ, %
A	0,6	$P_{\Pi p} = 5.3$	$\sigma_{\Pi p} = 269,9$		
В	0,81	$P_{\text{УП}} = 7.8$	$\sigma_{ m YII} = 295,2$		
С	1,1	$P_{\mathrm{T}} = 6$	$\sigma_{\rm T} = 305,6$	25	66
D	1,1	$P_{\rm T}=6$	$\sigma_{\rm T} = 305,6$		
Е	5,65	$P_{\rm B} = 9.3$	$\sigma_{\rm B} = 473.8$		
M	8	$P_{\mathbf{p}} = 6$	$\sigma_{\rm p} = 305,6$		
			$\sigma_{\text{OII}} = \sigma_{\text{T}};$		
			$[\sigma] = 118,5$		

Вывод:

Сравнив полученные данные с таблицей «Механические характеристики материалов» можно сделать вывод что наиболее подходящим материалом является «Сталь углеродистая качественная конструкционная 30», для данного материала погрешность с полученными данными минимальна и составляет:

 σ т в допустимом диапазоне

$$\Delta \sigma_{\rm B} = 500 - 473,8 = 26,2$$

$$\Delta \delta = 25 - 21 = 4 \%$$

Фрагмент таблицы:

Фрагмент таол	тицы.	I				i_
Марка материала	Содержание углерода, %	Характеристики				Твёрдость по
		Прочности		Пластичности		Бринеллю
		$σ_T$, ΜΠα	$σ_B$, ΜΠ a	δ,%	ψ,%	НВ
Сталь углеродистая качественная конструкционная						
10		210	310	31		143
20		250	420	25		163
30		300 - 350	500	21		179
40		340 - 380	580	19		200
45		360	610	16		215
65Γ		440	750	9		230

Материал: Конструкционная качественная углеродистая сталь. Пластичный.

Марка материала: 30

6. Графики:

7. Выводы

В результате проведения испытаний на лабораторной установке и использования измерительных, в том числе электронных, приборов была получена диаграмма растяжения образца. Анализ этой диаграммы позволил определить прочностные и пластические характеристики исследуемого образца из неизвестного материала. Также, с учётом данной нам таблицы, была установлена марка материала, из которого изготовлен образец, сталь углеродистая качественная конструкционная 30, так как $\sigma m = 305,6$ МПа, $\sigma e = 473,8$ МПа, $\delta = 25\%$ определено допускаемое напряжение с использованием заданного коэффициента запаса прочности — 118,5 МПа.