Отчёт

Дисциплина: Моделирование УИР 2 «Исследование Систем Массового Обслуживания На Марковкских Моделях»

Вариант 8-11

Студент:

Ляо Ихун

Гр.Р34131

Предподаватель:

Алиев Тауфик Измайлович

Оглавление

Цель работы	3
Задание	3
Исходные данные	3
Выполнения	4
Разработка марковских моделей исследуемых систем	4
Рассчитаем значения стационарных вероятностей, используя программу MARK	6
Рассчитаем характеристики систем	7
Сравнение	8
Вывод	9
Рисунок 1 Система 1	4 5 6
Таблицы Таблица 1 Параметры структурной и функциональной организации исследуемых систем Таблица 2 Параметры нагрузки	3
Таблица 4 матрица интенсиваностей переходов системы 1	6
Таблица 5 матрица интенсиваностей переходов системы 2	
Таблица 7 Характеристики систем	

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Задание

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности. В процессе исследований для расчета характеристик функционирования СМО используется программа МАRK.

Исходные данные

Таблица 1 Параметры структурной и функциональной организации исследуемых систем

Вариант	Система_1		Система_2	Критерий	
	П	EH	П	EH	эффект
8	1(H2)	2	2	1/3	(B)
					максимальна
					я загрузка
					системы

Система 1:

• В ней один прибор по гиперэкспоненциальному закону с коэффициентом вариации 2. Ёмкость накопителя 2.

Система 2:

• В ней 2 прибора. Ёмкость первого накопителя 1. Ёмкость второго накопителя 3.

Таблица 2 Параметры нагрузки

Номер	Интенс. потока	Ср длит	Верятности занятия прибора		
варианта		обслуж			
	λ , c^{-1}	b,c	П1	П2	П3
11	0.1	40	1/3	1/3	1/3

- Интенсивность потока: $\lambda = 0.1c^{-1}$
- Средняя длительность обслуживания: b = 40c
- Интенсивность обслуживания: $\mu = 0.025 \ c^{-1}$
- Верятность занятия приборов:

$$p_{11} = 1$$

$$p_{21} = \frac{1}{3}, p_{22} = \frac{2}{3}.$$

• Параметр $q \le \frac{2}{1+v^2} = \frac{2}{1+4} = 0.4$. Выбираем q = 0.3

•
$$b_1' = \left[1 + \sqrt{\frac{1-q}{2q}(v^2 - 1)}\right]b \approx 114.83, \mu_1 = \frac{1}{b_1'} \approx 0.0087$$

•
$$b_2' = \left[1 - \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}\right]b \approx 7.93, \mu_2 = \frac{1}{b_2'} \approx 0.1261$$

• $qb_1^{'} + (1-q)b_2^{'} = 40$. И b тоже равен 40. То есть $qb_1^{'} + (1-q)b_2^{'} = b$

Рисунок 1 Система 1

Рисунок 2 Система 2

Выполнения

Разработка марковских моделей исследуемых систем

Принятые обозначения

- Π1 / Π2 / E1 / E2:
 - о П1 описывает, обрабатывает заявку (1) или нет (0) первый прибор.
 - о П1 описывает, обрабатывает заявку (1) или нет (0) второй прибор.
 - о Е1 описывает, емкость накопителя первого прибора.
 - о Е2 описывает, емкость накопителя второго прибора.

Таблица 3 Состояния Марковского процесса (СИСТЕМА_1 и СИСТЕМА_2)

Номер состояния	Система 1	Система 2	
	Π1/E1	Π1/Π2/E1/E2	

E_0	0/0	0/0/0/0
E_1	1 ₁ /0	0/1/0/0
E_2	1 ₂ /0	0/1/0/1
E_3	1 ₁ /1	0/1/0/2
E_4	1 ₂ /1	0/1/0/3
E_5	1 ₁ /2	1/0/0/0
E_6	1 ₂ /2	1/1/0/0
E_7		1/1/0/1
E_8		1/1/0/2
E_9		1/1/0/3
E_{10}		1/0/1/0
E_{11}		1/1/1/0
E_{12}		1/1/1/1
$\overline{E_{13}}$		1/1/1/2
E_{14}		1/1/1/3

Рисунок 3 граф переходов системы 1

Рисунок 4 граф переходов система 2

Таблица 4 матрица интенсиваностей переходов системы 1

C1	E_0	E_1	E_2	E_3	E_4	E ₅	E_6
E_0	-0.1	0.03	0.07				
E_1	0.0087	-0.1087		0.1			
E_2	0.1261		-0.2261		0.1		
E_3		0.0026	0.0061	-0.1087		0.1	
E_4		0.0378	0.0883		-0.2261		0.1
E_5				0.0026	0.0061	-0.0087	
E_6				0.0378	0.0883		-0.1261

Таблица 5 матрица интенсиваностей переходов системы 2

C2	E_0	E_1	E_2	E3	E_4	E_5	E ₆	E 7	E_{8}	Eq	E 10	E ₁₁	E ₁₂	E ₁₃	E ₁₄
E_0	-0.1	0.0667				0.0333	Ĭ	,			10	•		10	1
E_1	0.025	-0.125	0.0667				0.0333								
E_2		0.025	-0.125	0.0667				0.0333							
E_3			0.025	-0.125	0.0667				0.0333						
E_4				0.025	-					0.0333					
					0.0583										
E_5	0.025					-0.125	0.0667				0.0333				
E_6		0.025				0.025	-0.15	0.0667				0.0333			
E 7			0.025				0.025	-0.15	0.0667				0.0333		
E ₈				0.025				0.025	-0.15	0.0667				0.0333	
E_9					0.025				0.025	-0.0833					0.0333
E_{10}						0.025					-0.0917	0.0667			
E_{11}							0.025				0.025	-0.1167	0.0667		
E_{12}								0.025				0.025	-0.1167	0.0667	
E ₁₃									0.025				0.025	-	0.0667
														0.1167	
E_{14}										0.025				0.025	-0.05

Рассчитаем значения стационарных вероятностей, **ИСПОЛЬЗУЯ ПРОГРАММУ МАКК.**Таблица 6 станционарные вероятности состояний (СИСТЕМА 1 и СИСТЕМА_2

Номер состояния	Система 1	Система 2
-----------------	-----------	-----------

	П1/Е1	Верятность	П1/П2/Е1/Е2	Верятность
E_0	0/0	0.0507	0/0/0/0	0.0030
E_1	1 ₁ /0	0.0337	0/1/0/0	0.0081
E_2	1 ₂ /0	0.0379	0/1/0/1	0.0215
E_3	1 ₁ /1	0.0627	0/1/0/2	0.0575
E_4	1 ₂ /1	0.0524	0/1/0/3	0.1534
E_5	1 ₁ /2	0.7210	1/0/0/0	0.0040
$\overline{E_6}$	1 ₂ /2	0.0416	1/1/0/0	0.0108
E_7			1/1/0/1	0.0287
E_8			1/1/0/2	0.0766
E_9			1/1/0/3	0.2043
E_{10}			1/0/1/0	0.0054
E_{11}			1/1/1/0	0.0143
$\overline{E_{12}}$			1/1/1/1	0.0382
E ₁₃			1/1/1/2	0.1020
$\overline{E_{14}}$			1/1/1/3	0.2721

Рассчитаем характеристики систем

Таблица 7 Характеристики систем

Характеристики	Прибор	Расчетная формула	Система 1	Система 2
Нагрузка	Π1(C1)	$\gamma_{} = \frac{\lambda}{2}$	4	-
		$y_{11} = \frac{\pi}{\mu}$ λ		
	Сумм(С1)	$\lambda = \frac{\lambda}{2}$	4	-
		$y_1 - \frac{1}{\mu}$		
	Π1(C2)	$v_{21} = \frac{\lambda}{-} * n_{21}$	-	1.3333
		$\mu^{y_{21}} - \mu^{y_{21}}$		
	Π2(C2)	$y_1 = \frac{\lambda}{\mu}$ $y_{21} = \frac{\lambda}{\mu} * p_{21}$ $y_{21} = \frac{\lambda}{\mu} * p_{22}$	-	2.6667
	Сумм(С2)	μ λ	_	4
	Cymm(C2)	$y_2 = \frac{\kappa}{\mu}$	-	4
Загрузка	П1(C1)	$\rho_{11} = 1 - (p_0)$	0.9493	-
	Сумм(С1)	$\rho_1 = 1 - (p_0)$	0.9493	-
	Π1(C2)	$\rho_{21} = 1 - (p_0 + p_1 + p_2 + p_3 + p_4)$	-	0.7565
	Π2(C2)	$\rho_{22} = 1 - (p_0 + p_{10} + p_5)$	-	0.9876
	Сумм(С2)	$\rho_{21} = 1 - (p_0 + p_1 + p_2 + p_3 + p_4)$ $\rho_{22} = 1 - (p_0 + p_{10} + p_5)$ $\rho_2 = \frac{\rho_{21}}{3} + \frac{\rho_{22} * 2}{3}$	-	0.9106
Длина очереди	Π1(C1)	$l_{11} = (p_3 + p_4) + 2 * (p_5 + p_6)$	1.6403	-
	Сумм(С1)	$l_1 = l_{11}$	1.6403	-
	Π1(C2)	$l_{21} = p_{10} + p_{11} + p_{12} + p_{13} + p_{14}$	-	0.432
	П2(C2)	$l_{22} = (p_2 + p_7 + p_{12}) +$	-	2.45
		$+2*(p_3+p_8+p_{13})+$		
		$+3*(p_4+p_9+p_{14})$		
	Сумм(С2)	$l_2 = l_{21} + l_{22}$	-	2.882
Число заявок	Π1(C1)	$m_{11} = (l_{11} + \rho_{11})$	2.5896	-
	Сумм(С1)	$m_1 = m_{11}$	2.5896	-
	Π1(C2)	$m_{21} = (l_{21} + \rho_{21})$	-	1.1885
	Π2(C2)	$m_{22} = (l_{22} + \rho_{22})$	-	3.4376
	Сумм(С2)	$m_2 = m_{21} + m_{22}$	-	4.6261
Время ожидания	П1(С1)	$\omega_{11} = \frac{l_{11}}{\lambda_{11}}$	69.0944	-
	Сумм(С1)	$\omega_1 = \omega_{11}$	69.0944	-
	П1(C2)	$\omega_{21} = \frac{l_{21}}{\lambda'_{21}}$	-	7.6056
		$\lambda_{21} = \lambda_{21}$		

	Π2(C2)	$\omega_{22} = \frac{l_{22}}{\lambda_{22}}$	-	66.1804
	Сумм(С2)	$\omega_2 = \frac{l_2}{\lambda_2}$	-	66.0807
Время пребывания	П1(С1)	$\mu_{11} = \frac{m_{11}}{\lambda_{11}}$	109.0817	-
	Сумм(С1)	$\mu_1 = \mu_{11}$	109.0817	-
	П1(C2)	$\mu_{21} = \frac{\overline{m}_{21}}{\lambda_{21}'}$	-	20.9243
	П2(C2)	$\mu_{22} = \frac{m_{22}}{\dot{\lambda}_{22}}$	-	92.8579
	Сумм(С2)	$\mu_2 = \frac{m_2}{\dot{\lambda_2}}$	-	106.0708
Вероятность потери	Π1(C1)	$\pi_{11} = p_5 + p_6$	0.7626	-
	Сумм(С1)	$\pi_1 = \pi_{11}$	0.7626	-
	Π1(C2)	$\pi_{21} = p_{10} + p_{11} + p_{12} + p_{13} + p_{14}$	-	0.432
	Π2(C2)	$\pi_{22} = p_4 + p_9 + p_{14}$	-	0.6298
	Сумм(С2)	$\pi_2 = \frac{\pi_{21}}{3} + \frac{\pi_{22} * 2}{3}$	-	0.5639
Производительность	Π1(C1)	$\lambda_{11} = \lambda * (1 - \pi_{11})$	0.02374	-
	Сумм(С1)	$\lambda_1^{'}=\lambda_{11}^{'}$	0.02374	-
	Π1(C2)	$\lambda'_{21} = \lambda * (1 - \pi_{21})$	-	0.0568
	П2(C2)	$\lambda_{22} = \lambda * (1 - \pi_{22})$	-	0.0370
	Сумм(С2)	$\lambda_2' = \frac{\lambda_{21}'}{3} + \frac{2 * \lambda_{22}'}{3}$	-	0.0436

Сравнение

Рисунок 5 сравнение характеристик

Рисунок 6 погрешность сравнения

Сравним полученные характеристики обеих систем:

- Системы имеют одинаковую нагрузку, что ожидаемо при одинаковых параметрах нагрузки, заданных по варианту.
- Система 1 имеет большее значение загрузки, чем система 2. Значит что возможность того, что система на работе, первой системы больше воторой.(4.17% разница)
- Система 1 имеет меньше значение длины очереди, чем система 2. (54.91% разница)
- Система 1 имеет меньше число заявок в системе, чем система 2.(56.45% разница)
- Система 1 имеет большее время ожидания, чем система 2. То есть если заявка поступал в очереди в первой системе, то она будет ждать больше времень чем в второй (4.46% разница)
- Система 1 имеет большее время пребывания заявки в системе, чем система 2. То есть в целом заявки быстрее обрабатываются в системе 2.(2.799% разница)
- Система 1 имеет больше вероятность потери заявки, чем система 2. (29.96% разница)
- Система 1 имеет меньше производительность, чем система 2. (59.01% разница) Наша критерий выбора системы является максимальной загрузкой системы поэтому выбираем первую систему.

Вывод

Мы проанализовали наши системы в начале работы. Потом нарисовали граф переходов состояния систем. Поставили матрицы интенсивностей переходов. Рассчитали значения стационарных вероятностей, используя программу MARK и характеристики систем. В конце выбрали систему по критерию.