

Aufgaben zu Riemannsche Flächen - WS 2025/26

4. Blatt

Aufgabe 12: Betrachte $Y:=\mathbb{C}\setminus\{\pm 1\}$ und $X:=\mathbb{C}\setminus\left(\frac{\pi}{2}+\mathbb{Z}\pi\right)$, sowie

$$p: X \to Y, \quad z \mapsto \sin(z).$$

- i) Zeige, dass p eine Überlagerung ist.
- ii) Betrachte dann die Kurven $\alpha,\beta:[0,1]\to Y$, mit $\alpha(t)=1-e^{2\pi it}$ und $\beta(t)=-1+e^{2\pi it}$. Bestimme die Endpunkte der Liftungen von $\alpha\cdot\beta$ und $\beta\cdot\alpha$ jeweils zum Startpunkt 0 und folgere, dass $\pi_1(Y,0)$ nicht abelsch ist.

Aufgabe 13: Zeige: Ist $f: X \to Y$ eine Überlagerung zusammenhängender, lokal wegzusammenhängender Hausdorffräume, $x_0 \in X$ und $y_0 := f(x_0)$, so ist

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0), f_*([\alpha]) := [f \circ \alpha]$$

injektiv.

Aufgabe 14: Bestimme die Verzweigungspunkte von

$$f: \mathbb{CP}^1 \to \mathbb{CP}^1, \quad z \mapsto \frac{1}{2} \left(z + \frac{1}{z} \right).$$

Wer will, kann das Bild des Einheitskreises $S^1\subset\mathbb{C}$ zeichnen und erklären, warum diese Transformation f im Flugzeugbau eine Rolle gespielt haben könnte.

Aufgabe 15: Sei $\pi:X\to Y$ eine holomorphe Überlagerung Riemannscher Flächen. Sei $\varphi:X\to X$ ein Homöomorphismus, so dass $\pi\circ\varphi=\pi$ (also eine sogenannte *Decktransformation*). Zeige, dass φ dann automatisch schon biholomorph ist.