Q1 abc

Qua)
$$R_{(2)} = \sum_{n=-\infty}^{\infty} d_{(2)} z^{n} - \sum_{n=-\infty}^{\infty} (2 \delta_{(n+1)} + 3 \delta_{(n+1)} + 3 \delta_{(n+1)} + 4 \delta_{(n+1)} z^{n}) + 2 z^{1} + 3 z^{2} + 4 z^{-1}$$

$$R_{(2)} = \sum_{n=-\infty}^{\infty} d_{(2)} z^{n} + 2 \delta_{(2)} z^{n} + 4 \delta_{(2)} z^{n} + 2 \delta_{(2)} z^{n} + 4 z^{-1}$$

$$R_{(2)} = \sum_{n=-\infty}^{\infty} d_{(2)} z^{n} - \sum_{n=-\infty}^{\infty} (\frac{1}{2})^{n} z^{n}$$

Q1 de

d)
$$\chi(z) = \int_{n=-\infty}^{\infty} \chi_{[n]} z^{-n} = \int_{n=-\infty}^{\infty} (-1)^n U_{[n]} z^{-n} - \int_{n=-\infty}^{\infty} (-z)^n U_{[n]} z^{-n} = \int_{n=-\infty}^{\infty} U_{[n]$$

Q2 abc

$Q_{2} \alpha) \qquad U_{En3} \longleftrightarrow U_{(2)} = \frac{1}{1-z^{-1}} z > 1$
21[n] = (1/2) N UEN] <> X1(Z) = ?
ging = an ning () G(z) = X(z) ROC laby(HZKAIZ
$= > 2 \times (2) = (2) = \frac{1}{1 - (2)^{-1}} = \frac{1}{1 - (2)^{-1}}$
$X_1(z) = \frac{1}{1 - (2z)^{-1}} = \frac{1}{1 - \frac{1}{2}z^{-1}}$ $ z > a $
ROCX = {ZEC : Z > 1/2 }
b) 22[n]= Kan, [n-5] = K(\frac{1}{2})^{n-5} U[n-5] = K(\frac{1}{2})^5 (\frac{1}{2})^n U[n-5]
$=>k=(\frac{1}{2})^{5}$
GENJ-KIMEN KJ MENJ X(Z)
$G(z) \leftarrow > Kz^{-k} X(z)$ $ROC_{o} = ROC_{x}$
$\chi_{2}(z) = z^{-5} \left(\frac{1}{1 - \frac{1}{2}z^{-1}}\right) \left(\frac{1}{z}\right)^{5} z > \frac{1}{z}$
C) n3[n] = (1/2) "U[n] - (1/2) "U[n-5] - N,[n] - n2[n]
X3(Z) (> X1(Z) - X2(Z) ROC3 > ROC1 1 ROC2
$=> \chi_3(z) = \frac{1}{1-\frac{1}{2}z^{-1}} = \frac{1}{2} $

Q2 de

4- 40
$1 - (2z)^{-1}$
d) - (2t)
-X ± 122)
021-1275
-(2Z) ±(2Z)-2
(2 E)-2-(2 E)-5
-(2Z) = (ZZ) 3
-(24) = (24)
(2Z)-3 (2Z)-5
-(2Z)-3± (2Z)-4
(27)4-(2755
-(2Z)4±(2Z)-5
$\chi_{3}(z) = \frac{1-(2z)^{5}}{1-(2z)^{-1}} = 1 + (2z)^{-1} + (2z)^{-2} + (2z)^{-3} + (2z)^{-4}$
1-(27)
$=1+\frac{1}{2}z^{-1}+\frac{1}{4}z^{-2}+\frac{1}{8}z^{-3}+\frac{1}{10}z^{-4}$
2 4 8 16
e) nin3 > X(z) v, < 12 < v2
C) NEW THE C
geng = ar ng G(z) = X(z-1) ROCG = 1x121<1
STUD - VI
24[n] = (1) - 1 UEn] = 24[n]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y GY Y GT - 1
=
2
pm 1-20 1-1127
ROCX4 - {ZEK: 121 < 2}

Q3 a) NEN3 = n (-1) n UEN] = n g [n]
$9[n] = (-1)^n U[n] < 3 \cdot 1 - G(z) \text{ based on}$ $1+z^{-1} - G(z) \text{ based on}$ $Q1 \text{ part(d)}$
X(z) = -2 d &(z) Roco = Rocx P1>1
$X(z) = -\frac{z}{\sqrt{z}} \frac{1}{1+z^{-1}} = -\frac{z}{(1+z^{-1})^2} = -\frac{z^{-1}}{(1+z^{-1})^2}$
ROCX-ROC6 1=1>1
ROCX-ROCG 171>1 Flower NIM ROCX R
$\frac{\chi_{(z)} - z^{-1}}{(1+z^{-1})^2} - z^{-1} - z^{-1} - z^{-1} - z^{-1} - z^{-1} - z^{-1}$ $= -z^{-1} - z^{-1} $
$Z_1 = 0$ $P_1 = P_2 = -1$
* because M <n, at="" has="" one="" x(z)="" z="0</td" zero=""></n,>
The poles are on the unit circle, so the envelop

b) a, [n] = U[n] $X_1(z) = \frac{1}{1-z^{-1}}$ $A_2[n] = n U[n] \qquad X_2(z) = -z d X_1(z) \qquad z > 1$
$\frac{1}{1+2[n]} = \frac{1}{1+2[n]} = \frac{1}$
$\chi_{3[z]} = n \chi_{2[n]}$ $\chi_{3(z)} = -z \int_{z}^{z} \chi_{2(z)} = -z \int_{z}^{z} (1-z^{-1})^{2} - 2z (1-z^{-1})$
$\frac{-2+2}{(1-2^{-1})^{3}} = \frac{2}{1-3z^{-2}+3z^{-2}-2^{-3}} = \frac{2^{3}-3z^{2}+3z-1}{2^{3}-3z^{2}+3z-1}$
$= \frac{Z(Z+1)}{(Z-1)^3} \Rightarrow \frac{Z_{1,2} \circ ,-1}{(Z-1)^3} \xrightarrow{\text{since M/N}} \frac{Z_{1,2} \circ ,-1}{(Z-1)^3} \Rightarrow \frac{Z_{1,2} \circ ,-1}{(Z$
Re circle so the envelop of signs is constant

Q3 C	
12 38 B	JR3 -TMX
	C) = 9 [n] = n (0.9) Sin (17n) U[n] = n (0.9) (= 1 - = 10) U[n]
	= n (1.9e)" UEN] - n (0.9e)" UEN]
	0x1[n] -(09e] () () () () () () () () () () () () ()
	92 = [1] = (49e ^{JR/3})"U[n] > X2(Z) = 1 Z >0.9
	25 27 2 [n] - 2 2 [n] - 2 [n] - 24[n]
	$\alpha_3[n] = \frac{n}{2J} \alpha_1[n] \qquad X_3(z) = -\frac{z}{2J} \frac{d}{dz} X_1(z)$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\chi_3(z) = \frac{1}{27} \left(\frac{1}{(z - 0.9e^{\sqrt{11/3}})^2} \right) = \frac{0.49e^{-\sqrt{11/3}}}{(z - 0.9e^{\sqrt{11/3}})^2} = \frac{1}{(z - 0.9e^{\sqrt{11/3}})^2}$
	74[n] - n n2[n] => X4(z) - 0.45e-11/3 = z >9
	2507 = 913503 - 914507 > X(Z) = X2(Z) - X((Z)
	$X(z) = \underbrace{\frac{45e^{5\pi/3}}{2}}_{J(z-9e^{5\pi/3})^2} \underbrace{\frac{2.45e^{-5\pi/3}}{2}}_{J(z-9e^{5\pi/3})^2} \underbrace{\frac{11_2}{2.9e^{5\pi/3}}}_{(z-9e^{5\pi/3})^2} \underbrace{\frac{11_2}{2.9e^{5\pi/3}}}_{(z-9e^{5\pi/3})^2}$
	45JZ (Z ² 2 sinty - V,81 sinty) Z >+9 ROC ROC
	$Z_{1}=0$ $Z_{3/2}=0.9$ $Z_{3/2}=0.9e^{-JR/3}$ $Z_{3/4}=0.9e^{-JR/3}$
	poles are inside of the unit circle then as n >00 the envelop of signal decruys to zero
	because MLN there is a zero at z=0
923 34	

d) a Eng- (2) (UEng- UEn- 33) = a (Eng- Ka, En-3] K- (2)3
$9.[n] - (\frac{1}{2})^n U[n] > X_1(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} z > \frac{1}{2}$
$\chi_{2[n]} = K \chi_{1[n-3]} > \chi_{2(2)} = (\frac{1}{2})^3 \frac{z^{-3}}{1 - \frac{1}{2}z^{-1}} z > \frac{1}{2}$
9 EN3 - 9 IN3 + 9 2[N] -> X(Z) = 1 - [(2) 3 Z-3]
$\frac{1-(\frac{1}{2}z^{1})^{3}}{1-(\frac{1}{2}z^{1})} = \frac{1-(\frac{1}{2}z^{1})^{3}}{1-(\frac{1}{2}z^{1})} = \frac{1-(\frac{1}{2}z^{1})^{$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
P_P_2 = 0 P_3 = 1. This side shows zero is not in ROC
d) the poles are inside of unit circles then the envelop of signal decays to zero as n > 0