Лабораторна робота

Закони розподілу ймовірностей дискретних випадкових величин

Дискретні випадкові величини

Табличний запис закону розподілу — це таблиця значень x_k випадкової величини та відповідних їхніх ймовірностей p_k :

x_k	x_1	x_2	 x_n
p_k	p_1	p_2	 p_n

За допомогою табличного запису закону розподілу можна визначити функцію розподілу F(x) випадкової величини X за формулою:

$$F(x) = P\{X < x\} = \sum_{k: x_k < x} p_k$$
,

у якій сумування проводиться за всіма індексами k, для яких $x_k < x$.

Реалізація в R:

```
1 # Функція розподілу
 2 - pdiscrete <- function(x, xk, pk) {
      ind \leftarrow which(xk < x)
      return (sum(pk[ind]))
 4
   # Табличний запис закону розподілу
   xk < -c(-2, 1, 4, 6)
   pk <- c(0.2, 0.1, 0.3, 0.4)
    # Ймовірність того, що значення випадкової величини < 5
10 p <- pdiscrete(5,xk,pk)</pre>
11
13
   # Спосіб з використанням функцій cumsum() та stepfun() в R
14
15 x <- xk; y <- c(0, cumsum(pk))
16 # функція cumsum() повертає вектор, елементи якого є накопичувальними сумами елементів аргументу
17
18 myFun <- stepfun(x, y, f=1, right=TRUE)</pre>
# Побудова графіка функції розподілу
plot.stepfun(myFun, xlab="x", ylab="F(x)",
main = "Функція розподілу дискретної випадковох величини", verticals=FALSE, pch=16)
```

Біномний розподіл

Нехай проводиться серія з n незалежних випробувань, кожне з яких закінчується або успіхом, або неуспіхом. Нехай у кожному випробуванні ймовірність успіху p, а ймовірність неуспіху q=1-p. З таким випробуванням

можна пов'язати випадкову величину X — число успіхів у серії з n випробувань. Ця величина приймає цілі значення від 0 до n. Її розподіл називається біномним (біноміальним) і визначається формулою Бернуллі:

$$p_k = P\{X = k\} = C_n^k p^k q^{n-k},$$

де k = 0, 1, ..., n.

Легко переконатися, що $\sum_{k=0}^{n} p_{k} = 1$.

В R для обчислення ймовірності і функції розподілу випадкової величини, що має біномний розподіл, призначені функції dbinom(k,n,p) і pbinom(k,n,p), значення яких p_k і $F(k) = P\{X \le k\}$ відповідно.

Приклад. Побудувати біномний розподіл для серії з 20 незалежних випробувань з ймовірністю успіху 0.4, 0.6 і 0.8. Побудувати графік розподілу. Для p=0.4 знайти значення k, для якого величина $P\{X=k\}$ максимальна. Перевірити рівність $\sum_{k=0}^n p_k = 1$. Знайти ймовірність попадання значень випадкової величини в проміжок [2,5].

Зразок виконання в R:

```
k <- 0:20
                    P4 < -dbinom(k, 20, 0.4)
                    P6 \leftarrow dbinom(k, 20, 0.6)
                    P8 < - dbinom(k, 20, 0.8)
     6
                    # Графік розподілу
                    plot(k, P4, ylim=range(c(P4,P6,P8)), xlim=range(k), col="red", type="b", red"), xlim=range(k), col="red", type="b", red"), xlim=range(k), red", type="b", red", type="b", red"), xlim=range(k), red", type="b", red", type="b", red", type="b", red"), xlim=range(k), red", type="b", red", type="b", red", type="b", red", type="b", red"), xlim=range(k), red", type="b", 
     7
                    pch=16, xlab="k", ylab="p", main = "Біномний розподіл") lines(k, P6, col="green", type="b", pch=16) lines(k, P8, col="blue", type="b", pch=16)
    9
10
11
12
                    # Обчислення найвірогіднішого к та відповідної ймовірності
                    kp \leftarrow k[which(P4 == max(P4))]
13
                    maxP <- max(P4)
14
15
                   # Перевірка (=1)
16
                    result <- sum(P4)==1
17
18
                  # Ймовірність попадання значень випадкової величини в проміжок [2,5]
19
20 p <- pbinom(5,20,0.4) - pbinom(1,20,0.4)
```

Результат:

k	int [1:21] 0 1 2 3 4 5 6 7 8 9
kp	8L
maxP	0.179705787754689
р	0.125074923346629
P4	num [1:21] 3.66e-05 4.87e-04 3.09e-03 1
P6	num [1:21] 1.10e-08 3.30e-07 4.70e-06 4
P8	num [1:21] 1.05e-14 8.39e-13 3.19e-11 7
result	TRUE

Біномний розподіл

Геометричний розподіл

Зі схемою випробувань Бернуллі можна пов'язати ще одну випадкову величину: X — число випробувань до першого успіху. Ця величина приймає значення від 0 до $+\infty$, і її розподіл визначається формулою

$$p_k = P\{X = k\} = q^k p,$$

де
$$k = 0, 1, \dots$$
 , $0 .$

Як і для біномного розподілу, $\sum_{k=0}^{\infty} p_k = 1$. В R для обчислення ймовірності і функції розподілу випадкової величини, що має геометричний розподіл, призначені функції $\mathbf{dgeom}(\mathbf{k},\mathbf{p})$ і $\mathbf{pgeom}(\mathbf{k},\mathbf{p})$, значення яких p_k і $F(k) = P\{X \leq k\}$ відповідно.

Гіпергеометричний розподіл

Нехай в партії з N виробів наявні M (M < N) якісних і (N - M) дефектних виробів. Якщо випадковим способом зі всієї партії вибрати контрольну партію з n виробів, то число якісних виробів в цій партії буде випадковою величиною, яку позначимо X. Її розподіл має вигляд:

$$p_k = P\{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, ..., \min(n, M),$$

і називається гіпергеометричним.

Для будь-яких значень параметрів, що входять в розподіл $\sum_{k=0}^{\min(n,M)} p_k = 1.$

В R для обчислення ймовірності і функції розподілу випадкової величини, що має гіпергеометричний розподіл, призначені функції dhyper(k,M,N-M,n) і phyper(k,M,N-M,n), значення яких p_k і $F(k)=P\{X\leq k\}$ відповідно.

Розподіл Пуассона

Розподіл Пуассона має випадкова величина X, що приймає значення $k=0,1,2,\dots$ з ймовірностями

$$p_k = P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$$

$$p_k = P(\mu = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 k=0.1.2....

де $\lambda>0$ – параметр розподілу Пуассона. При будь-якому $\lambda>0$, $\sum_{k=0}^{\infty}p_k=1$.

В R для обчислення ймовірності і функції розподілу випадкової величини, що має розподіл Пуассона, призначені функції $dpois(k,\lambda)$ і $ppois(k,\lambda)$, значення яких p_k і $F(k) = P\{X \le k\}$ відповідно.

У базовій версії R є функції для роботи з поширеними законами розподілу ймовірностей. Залежно від призначення, імена цих функцій починаються з однієї з наступних чотирьох букв:

- d (від "<u>d</u> ensity", щільність): функції щільності ймовірності ("функція розподілу мас" для дискретних величин);
- p (від "<u>p</u> robability", ймовірність): кумулятивні функції розподілу ймовірностей;
- q (від "*q uantile*", квантиль): функції для знаходження квантилів того чи іншого розподілу;
- r (від "<u>r</u> andom", випадковий): функції для генерації випадкових чисел відповідно до параметрів того чи іншого закону розподілу ймовірностей.

Щоб переглянути перелік розподілів для яких реалізовані всі ці функцій в R необхідно в консолі набрати **help(Distributions)** або **?Distributions**.

Індивідульні завдання

Завдання 1

Побудувати функцію розподілу та графік функції розподілу для випадкової величини з розподілом згідно свого варіанту.

Nº 1	х	0	0,1	0,2	0,3	0,4	0,5	
	р	0,3	0,1	0,2	0,15	0,2	0,05	
Nº 2	х	3	3,2	3,3	3,6	3,9	4	
	р	0,1	0,11	0,2	0,16	0,09	0,34	
№ 3	х	0,3	0,7	1,1	1,4	1,95	2,3	
	р	0,33	0,05	0,25	0,15	0,12	0,1	
Nº 4	х	0,7	0,9	1,15	1,32	1,56	1,7	
	р	0,21	0,1	0,1	0,16	0,19	0,24	
№ 5	х	5	6	6,6	7	7,7	8	
	р	0,3	0,15	0,15	0,1	0,25	0,05	
№ 6	х	2,4	3,2	3,4	3,6	3,9	7	
	р	0,15	0,1	0,1	0,16	0,1	0,39	
№ 7	х	0,35	0,45	0,55	0,7	0,75	0,9	
	р	0,05	0,15	0,25	0,25	0,12	0,18	
№ 8	х	4,7	5	5,1	5,35	5,5	5,7	
	р	0,3	0,2	0,1	0,1	0,1	0,2	
№ 9	х	9,3	9,9	10,5	11,1	11,7	12,3	
	р	0,05	0,15	0,25	0,19	0,14	0,22	
Nº 10	х	7,7	8,9	10,1	11	12	13,7	
	р	0,22	0,1	0,15	0,15	0,1	0,28	
Nº 11	х	1	2	3,5	5	5,5	6,9	
	р	0,23	0,1	0,12	0,15	0,25	0,15	
Nº 12	х	0	0,1	0,2	0,3	0,4	0,5	
	р	0,2	0,15	0,2	0,2	0,2	0,05	
		,	,	· · · · · · · · · · · · · · · · · · ·	,	,	,	
Nº 13	х	3	3,2	3,3	3,6	3,9	4	
	р	0,12	0,11	0,22	0,16	0,05	0,34	
		-,	-,	-,	5,=5	5,55	٠,٠٠.	

Nº 14	х	0,3	0,7	1,1	1,4	1,95	2,3
	р	0,3	0,05	0,2	0,15	0,12	0,18
№ 15	х	0,7	0,9	1,15	1,32	1,56	1,7
	р	0,21	0,2	0,1	0,16	0,15	0,18
№ 16	х	5	6	6,6	7	7,7	8
	р	0,2	0,25	0,15	0,1	0,25	0,05
Nº 17	х	2,4	3,2	3,4	3,6	3,9	7
	р	0,1	0,1	0,15	0,15	0,1	0,4
Nº 18	х	0,35	0,45	0,55	0,7	0,75	0,9
	р	0,15	0,15	0,15	0,25	0,12	0,18
Nº 19	х	4,7	5	5,1	5,35	5,5	5,7
	р	0,2	0,25	0,1	0,15	0,1	0,2
Nº 20	х	9,3	9,9	10,5	11,1	11,7	12,3
	р	0,15	0,05	0,25	0,19	0,14	0,22
Nº 21	х	7,7	8,9	10,1	11	12	13,7
	р	0,22	0,15	0,1	0,23	0,1	0,2
Nº 22	х	1	2	3,5	5	5,5	6,9
	р	0,2	0,1	0,1	0,15	0,3	0,15
Nº 23	х	0	0,1	0,2	0,3	0,4	0,5
	р	0,2	0,15	0,25	0,15	0,2	0,05
Nº 24	х	3	3,2	3,3	3,6	3,9	4
	р	0,1	0,11	0,25	0,18	0,09	0,27

Завдання 2

Для заданих значень параметрів, згідно свого варіанту, обчислити і побудувати **біномний розподіл** для серії з n незалежних випробувань з ймовірністю успіху p, **розподіл Пуассона** з параметром λ , **геометричний розподіл** з параметрами n, p, **гіпергеометричний розподіл** з параметрами N, M, n.

Для кожного розподілу виконати наступне:

- Перевірити виконання рівності $\sum_k p_k = 1$, де $p_k = P\{X = k\}$;
- Знайти значення k для якого величина $P\{X=k\}$ максимальна;
- Побудувати графік розподілу;

Графік розподілу — це ломана лінія, вершини якої точки (k,p_k) , де k — значення випадкової величини, а p_k — ймовірність цього значення.

• Обчислити ймовірність попадання значень випадкової величини в проміжок [a,b].

Варіант	n	р	λ	N	М	а	b
1	20	0,1	1	100	90	2	4
2	22	0,11	0,95	110	100	3	5
3	24	0,12	0,9	120	100	2	5
4	26	0,13	0,85	130	120	3	6
5	28	0,14	0,8	140	120	2	5
6	30	0,15	0,75	150	120	3	6
7	21	0,16	0,7	160	150	2	8
8	23	0,17	0,65	170	150	3	9
9	25	0,18	0,6	170	160	2	7
10	27	0,19	0,55	170	130	3	8
11	29	0,2	0,5	170	165	3	10
12	31	0,21	1,05	105	100	4	10
13	20	0,22	1,1	115	100	3	5
14	22	0,23	1,15	125	100	4	6
15	24	0,24	1,25	135	110	3	6
16	26	0,25	1,3	145	120	4	7