ACADEMY OF ENGINEERING AND AUTOMOTIVE ELECTRICAL AND ELECTRONIC ENGINEERING

Ronald van Buuren April 2023

NET4 IN THE NET SERIES

Net1: constant voltage & current (DC)

Net2: sinusoidal voltage & current (AC)

Net3: sinusoidal voltage & current (AC), variation in frequency

Net4: transient (switching) behavior of systems

- 1st order networks, DC source
- 1st order networks, switching DC source
- Solving differential equations
 - Homogeneous solution
 - Complementary solution
- Steady-state situation
- Complementary solution for sinusoidal & exponential sources

SWITCHING BEHAVIOUR

- NET4: solve in time domain
- Next year: solve in frequency domainLaplace transformation

NET4 PROGRAM BY WEEK

- 1. 1st order RC networks (dis)charging DC source
- 2. 1st order RC networks (dis)charging switched DC source
- 3. RL networks Steady-state DC
- 4. RL networks Switched DC source
- 5. RC & RL networks complementary solution
- 6. <spare week>
- 7. Sample Exam

REMEMBER NET2: CAPACITOR & INDUCTOR

	Capacitor	Inductor
Voltage	$v = \frac{1}{C} \int i(t)dt$	$v = L \frac{di}{dt}$
Current	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int v(t)dt$
Power	$P(t) = v(t) \cdot i(t)$	
Energy	$W(t) = \frac{1}{2}Cv^2(t)$	$W(t) = \frac{1}{2}Li^2(t)$
Energy stored in:	Electric field	Magnetic field

DISCHARGING A CAPACITOR: ESTIMATIONS

Vi = 100 V $C = 10 \mu\text{F}$ $R = 1 \text{ M}\Omega$

Capacitance charged to V_i prior to t = 0

WHAT WILL HAPPEN AFTER TIME=0?

SPOILER: IT'S AN EXPONENTIAL DECAY

Copyright ©2018 Pearson Education, All Rights Reserved.

DISCHARGING A CAPACITOR: ANALYTIC SOLUTION

Vi = 100 V $C = 10 \mu\text{F}$ $R = 1 \text{ M}\Omega$

Capacitance charged to V_i prior to t = 0

DISCHARGING A CAPACITOR: KCL

Vi = 100 V $C = 10 \mu\text{F}$ $R = 1 \text{ M}\Omega$

Capacitance charged to V_i prior to t = 0

KCL:

• sum of currents = 0

$$C\frac{dv_C(t)}{dt} + \frac{v_C(t)}{R} = 0$$

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION: HOW TO SOLVE

$$s = \frac{-1}{RC}$$

Forget about K=0 ©

(4.4)

INDEED IT'S AN EXPONENTIAL DECAY

Copyright @2018 Pearson Education, All Rights Reserved.

HOW DID YOU FIND K=V₁?

Copyright @2018 Pearson Education, All Rights Reserved.

LOOK AT T=0 S: MUST BE CONTINUOUS

Copyright @2018 Pearson Education, All Rights Reserved.

CHARGING A CAPACITOR

CHARGING A CAPACITOR

(4.20)

EXERCISE 4.1

Exercise 4.1 Suppose that $R = 5000 \Omega$ and $C = 1 \mu$ F in the circuit of Figure 4.1(a). Find the time at which the voltage across the capacitor reaches 1 percent of its initial value.

Capacitance charged to V_i prior to t = 0

EXERCISE 4.1 - SOLUTION

Exercise 4.1 Suppose that $R = 5000 \Omega$ and $C = 1 \mu$ F in the circuit of Figure 4.1(a). Find the time at which the voltage across the capacitor reaches 1 percent of its initial value.

prior to t = 0

$$\frac{v_C(t)}{V_i} = 1\% = 0.01$$

$$e^{\frac{-t}{RC}} = 0.01$$

$$\frac{-t}{RC} = \ln(0.01)$$

$$v_C(t) = V_i e^{-t/RC}$$

$$\tau = RC$$

$$t = -RC \cdot \ln(0.01)$$

$$t \approx 23 \text{ ms}$$

EXERCISE 4.2

Exercise 4.2 Show that if the initial slope of $v_C(t)$ is extended, it intersects the final value at one time constant, as shown in Figure 4.4. [The expression for $v_C(t)$ is given

in Equation 4.20.]

$$v_C(t) = V_s - V_s e^{-t/\tau}$$

EXERCISE 4.2 – SOLUTION STEP 1

Exercise 4.2 Show that if the initial slope of $v_C(t)$ is extended, it intersects the final value at one time constant, as shown in Figure 4.4. [The expression for $v_C(t)$ is given

in Equation 4.20.]

$$v_C(t) = V_s - V_s e^{-t/\tau}$$

$$v_C(t) = V_S(1 - e^{-t/\tau})$$

slope:
$$\frac{dv_C}{dt} = V_S \frac{d(1 - e^{-t/\tau})}{dt} = V_S \frac{1}{\tau} e^{-t/\tau}$$

so, at t=0: slope =
$$\frac{V_S}{\tau}$$

PROBLEMS TO FINISH BEFORE NEXT CLASS

- P4.2
- P4.5
- P4.7
- P4.10
- P4.11
- P4.15