Polyharmonicity and algebraic support of measures

Ognyan Kounchev and Hermann Render

December 8, 2011

Abstract

Our main result states that two measures μ and ν with bounded support contained in the zero set of a polynomial P(x) are equal if they coincide on the subspace of all polynomials of polyharmonic degree N_P where the natural number N_P is explictly computed by the properties of the polynomial P(x). The method of proof depends on a definition of a multivariate Markov transform which another major objective of the present paper. The classical notion of orthogonal polynomial of second kind is generalized to the multivariate setting: it is a polyharmonic function which has similar features as in the one-dimensional case.

Acknowledgement: Both authors have been sponsored by the Institutes partnership project at the Alexander von–Humboldt Foundation; the first was sponsored by a Greek–Bulgarian S&T Cooperation project.

2000 Mathematics Subject Classification: Primary: 44A15, Secondary 35D55, 42C05:

Key words and phrases: Markov function, Stieltjes transform, Polynomial of second kind, Polyharmonic function.

1 Introduction

Recall that a complex-valued function f defined on a domain G in the euclidean space \mathbb{R}^n is polyharmonic of order N if f is 2N-times continuously differentiable and

$$\Delta^{N} f(x) = 0 \text{ for all } x \in G$$

where Δ^N is the N-th iterate of the Laplace operator $\Delta = \frac{\partial^2}{\partial x_1^2} + \ldots + \frac{\partial^2}{\partial x_n^2}$. For N=1 this class of functions are just the harmonic functions, while for N=2 the term biharmonic function is used which is important in elasticity theory. Fundamental work about polyharmonic functions is due to E. Almansi [2], M. Nicolesco (see e.g. [27]) and N. Aronszajn [3], and still this is an area of active research, see e.g. [7], [8],[9], [13], [18],[20], [25], [30], [31]. Polyharmonic functions are also important in applied mathematics, e.g. in approximation theory, radial basis functions and wavelet analysis, see e.g. [5], [21], [22], [23], [26].

In this paper we address the following question: suppose that P(x) is a polynomial, and that μ and ν are signed measures which have support in the zero set K_P of the polynomial P, i.e. in the set

$$K_P(R) := \{x \in \mathbb{R}^n : P(x) = 0 \text{ and } |x| \le R\}.$$

Under which conditions do μ and ν coincide? As motivating example consider the polynomial $P(x) = |x|^2 - 1$ where $|x| := r(x) := \sqrt{x_1^2 + \ldots + x_n^2}$ is the euclidean norm in \mathbb{R}^n . It is well known that two measures μ and ν with support in the unit sphere $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ coincide if they are equal on the set of all harmonic polynomials. We shall show that two measures μ and ν with support in $K_P(R)$ are equal if the moments $\mu(f)$ an $\nu(f)$ are equal for polyharmonic polynomials f of a certain degree N_P which depends on the polynomial P. In order to formulate this precisely, let us introduce the polyharmonic degree d(f) defined by

$$d(f) := \min \{ N \in \mathbb{N}_0 : \Delta^{N+1}(f) = 0 \}$$
 (1)

Note that f has polyharmonic degree $\leq N$ if and only if f is of polyharmonic order N+1.

Let us denote by \mathcal{P} set of all polynomials. One of the main results of this paper reads as follows:

Theorem 1 Let P(x) be a polynomial and define

$$N_P := \sup \{ d(P \cdot h) : h \in \mathcal{P} \text{ is a harmonic polynomial} \}.$$

Let μ and ν be measures with support contained in the set $K_P(R)$ for some R > 0. Then $\mu \equiv \nu$ if and only if $\int h d\mu = \int h d\nu$ for all polynomials h in the subspace

$$U_{N_P} := \left\{ Q \in \mathcal{P} : \ \Delta^{N_P} Q = 0 \right\}.$$

It is easy to see that N_P is lower or equal to the total degree of the polynomial $P\left(x\right)$. In the appendix we shall give a procedure to determine the number N_P explicitly.

An application of the Hahn-Banach theorem shows us the following consequence of Theorem 1: the space U_{N_P} is dense in the space $C\left(K_P\left(R\right),\mathbb{C}\right)$ of all continuous complex-valued functions on the compact space $K_P\left(R\right)$ endowed with the supremum norm, see Corollary 17. We call the reader's attention to this interesting result which may be compared with the density results for solutions to $\Delta^p h = 0$ in $C\left(K\right)$ for compacts K, obtained with the techniques of Potential theory in the 1970s; see [14], [15] and the references therein.

It is also instructive to consider the statement of Theorem 1 for the univariate case n=1, so P is a polynomial of degree N, and $P^{-1}(0)$ has at most N elements. Note that $\Delta^N Q = \frac{d^{2N}}{dx^{2N}} Q = 0$ if and only if Q is a polynomial of degree $\leq 2N-1$. Hence, Theorem 1 says that two non-negative measures μ and ν with support in $P^{-1}(0)$ are equal if and only if

$$\int x^s d\mu = \int x^s d\nu \text{ for all } s \le 2N - 1.$$

So Theorem 1 can be seen as a generalization of a simple univariate statement based upon the Polyharmonic paradigm as presented in [21, chapter 1.5].

The proof of Theorem 1 will be a by-product of our investigation of the socalled multivariate Markov transform which we will introduce below and which we consider as a suitable generalization of the univariate Markov transform, an important tool in the classical moment problem and its applications to Spectral theory. Recall that the Markov transform¹ of a finite measure σ with support in the interval [-R, R] is defined on the upper half-plane by the formula

$$\widehat{\sigma}(\zeta) := \int_{-R}^{R} \frac{1}{\zeta - x} d\sigma(x) \text{ for } \operatorname{Im} \zeta > 0, \tag{2}$$

see e.g. [1, Chapter 2], [28, Chapter 2.6]. Let us recall a central result called Markov's theorem: the N-th Padé approximant $\pi_N(\zeta) = Q_N(\zeta)/P_N(\zeta)$ of the asymptotic expansion of $\hat{\sigma}(\zeta)$ at infinity converges compactly in the upper half plane to $\hat{\sigma}(\zeta)$; here the polynomial P_N is the N-th orthogonal polynomial with respect to the measure σ and Q_N is the orthogonal polynomial of the second kind with respect to the measure σ given through the formula

$$Q_{N}\left(\zeta\right) = \int_{-\infty}^{\infty} \frac{P_{N}\left(\zeta\right) - P_{N}\left(x\right)}{\zeta - x} d\sigma\left(x\right). \tag{3}$$

Further, to each $\pi_N(\zeta)$ there corresponds a (non-negative) measure σ_N with support in the zeros of the nominator P_N , thus leading to a proof of the famous Gauß quadrature formula.

Our definition of a multivariate Markov transform depends on the work of N. Aronszajn [3] on polyharmonic functions, and of L.K. Hua [16] about harmonic analysis on Lie groups; the definition is related to the Poisson formula for the ball $B_R := \{x \in \mathbb{R}^n : |x| < R\}$ which we recall now: Let R > 0 and h be a function harmonic in the ball B_R and continuous on the closure $\overline{B_R}$; then for any $x \in \mathbb{R}^n$ with |x| < R

$$h(x) = \frac{1}{\omega_n} \int_{\mathbb{S}^{n-1}} \frac{\left(R^2 - |x|^2\right) R^{n-2}}{r(R\theta - x)^n} h(R\theta) d\theta, \tag{4}$$

where ω_n denotes the area of \mathbb{S}^{n-1} , $\theta \in \mathbb{S}^{n-1}$, $y = R\theta$, and r(x) is the euclidean norm of x. Note that for fixed x with |x| < R the function $\rho \longmapsto r(\rho\theta - x)$ defined for $\rho \in \mathbb{R}$ with $|\rho| > R$ has an analytic continuation for $\zeta \in \mathbb{C}$ with $|\zeta| > R$, so we can write $r(\zeta\theta - x)$ for $\zeta \in \mathbb{C}$ with $|\zeta| > R$. The following Cauchy type integral formula, proved in [3, p. 125], is important for our approach: for any polynomial u(x) and for any |x| < R the following identity holds

$$u(x) = \frac{1}{2\pi i \omega_n} \int_{\Gamma_R} \int_{\mathbb{S}^{n-1}} \frac{\zeta^{n-1}}{r(\zeta \theta - x)^n} u(\zeta \theta) d\theta d\zeta$$
 (5)

 $^{^1}$ In some recent works in Approximation theory, Potential theory, and Probability theory this function is called the *Markov function* of a measure, see e.g. [32] or [12]. On the other hand apparently Widder [35] was the first who has given the name *Stieltjes transform* to this function. If μ has infinite support the transform is also called Stieltjes transform. This tradition has been followed by Akhiezer [1] and other Russian mathematicians.

where the contour $\Gamma_R(t) = R \cdot e^{it}$ for $t \in [0, 2\pi]$. A similar result is also valid for holomorphic functions u defined on the so-called harmonicity hull of B_R ; since we need (5) only for polynomials we refer the reader to [3, p. 125] for details.

Assume now that μ is a measure with support in the closed ball $\{x \in \mathbb{R}^n : |x| \leq R\}$. The multivariate Markov transform $\widehat{\mu}$ of μ is a function defined for all $\theta \in \mathbb{S}^{n-1}$ and all $\zeta \in \mathbb{C}$ with $|\zeta| > R$ by the formula

$$\widehat{\mu}\left(\zeta,\theta\right) = \frac{1}{\omega_n} \int_{\mathbb{R}^n} \frac{\zeta^{n-1}}{r\left(\zeta\theta - x\right)^n} d\mu\left(x\right). \tag{6}$$

Since $\zeta \mapsto r(\zeta \theta - x)$ has no zeros for $|\zeta| > R$ the function $\zeta \mapsto \widehat{\mu}(\zeta, \theta)$ is defined for all $|\zeta| > R$. In the first Section we shall show that the multivariate Markov transform $\widehat{\mu}$ determines the measure μ uniquely, cf. Theorem 3.

Our second main innovation is the introduction of the notion of the function $Q_P(\zeta, \theta)$ of the second kind with respect to a given polynomial P(x) which is the multivariate analogue of (3), defined by

$$Q_{P}\left(\zeta,\theta\right) = \int_{\mathbb{R}^{n}} \frac{P\left(\zeta\theta\right) - P\left(x\right)}{r\left(\zeta\theta - x\right)^{n}} \zeta^{n-1} d\mu\left(x\right) \tag{7}$$

for all $|\zeta| > R, \theta \in \mathbb{S}^{n-1}$. Let us emphasize that Q_P is in general *not* a polynomial. However, we shall show the surprising and interesting result that the function $r\theta \mapsto r^{-(n-1)}Q_P(r\theta)$ is a *polyharmonic* function of order $\leq \deg P(x)$ where \deg denotes the usual total degree of a polynomial.

One further main result of the paper, Theorem 13, is concerned with measures μ having their supports in algebraic sets: Let us assume that the measure μ has support in $K_P(R)$. Then the Markov transform $\widehat{\mu}$ has the representation

$$\widehat{\mu}(\zeta, \theta) = \frac{Q_P(\zeta, \theta)}{P(\zeta \theta)} \quad \text{for } |\zeta| > R, \tag{8}$$

where Q_P is the function of second kind with respect to P(x). The reverse statement holds as well, i.e. if the measure μ with supp $(\mu) \subset \overline{B_R}$ satisfies (8) for some polynomial P where Q_P is defined by (7), then supp $(\mu) \subset K_P(R)$. By means of these characterizations we can deduce our main result Theorem 1.

2 The multivariate Markov transform

Recall that the univariate Markov transform has, for $|\zeta| > R$, the asymptotic expansion

$$\widehat{\sigma}\left(\zeta\right) = \sum_{k=0}^{\infty} \frac{1}{\zeta^{k+1}} \int_{-\infty}^{\infty} t^k d\sigma\left(t\right). \tag{9}$$

Let Γ_R denote the contour in \mathbb{C} defined by $\Gamma_R(t) = R \cdot e^{it}$ for $t \in [0, 2\pi]$. By means of standard facts from complex analysis the following identity may be proved,

$$M(p) := \frac{1}{2\pi i} \int_{\Gamma_{R}} p(\zeta) \,\widehat{\sigma}(\zeta) \,d\zeta = \int_{-R}^{R} p(x) \,d\sigma(x) \tag{10}$$

for all polynomials p and any $R_1 > R$.

In this section we want to show that similar results hold for the multivariate Markov transform $\hat{\mu}$; in particular the following is the analogue of formula (10) in the multivariate case:

Proposition 2 Let μ be a signed measure over \mathbb{R}^n with support in $\overline{B_R}$ and let $R_1 > R$. Then for every polnomial P(x)

$$M_{\mu}(P) := \frac{1}{2\pi i} \int_{\Gamma_{R_1}} \int_{\mathbb{S}^{n-1}} P(\zeta \theta) \,\widehat{\mu}(\zeta, \theta) \, d\zeta d\theta = \int_{\mathbb{R}^n} P(x) \, d\mu(x) \,. \tag{11}$$

Proof. Replace $\widehat{\mu}(\zeta,\theta)$ in (11) by (6) and interchange integration. Then

$$M_{\mu}\left(P\right) = \int_{\mathbb{R}^{n}} \frac{1}{2\pi i \omega_{n}} \int_{\Gamma_{R_{1}}} \int_{\mathbb{S}^{n-1}} P\left(\zeta\theta\right) \frac{\zeta^{n-1}}{r\left(\zeta\theta - x\right)^{n}} d\zeta d\theta d\mu\left(x\right). \tag{12}$$

According to (5) we obtain $M_{\mu}(P) = \int P(x) d\mu(x)$.

Theorem 3 Let μ, ν be finite signed measures over \mathbb{R}^n with compact support. If the multivariate Markov transforms of μ and ν coincide for large ζ , i.e., if there exists R > 0 such that $\widehat{\mu}(\zeta, \theta) = \widehat{\nu}(\zeta, \theta)$ for all $|\zeta| > R$ and for all $\theta \in \mathbb{S}^{n-1}$, then μ and ν are identical.

Proof. Since the multivariate Markov transforms coincide for large $|\zeta|$ it is clear that the functionals M_{μ} and M_{ν} in (11) are identical by taking the radius R_1 of the path Γ_{R_1} large enough. Then Proposition 2 shows that $\int P(x) \, d\mu(x) = \int P(x) \, d\nu(x)$ for all polynomials P(x). Further we apply a standard argument: since μ and ν have compact supports we may apply the Stone–Weierstrass theorem according to which the polynomials are dense in the space $C(\sup(\mu) \cup \sup(\nu))$ which implies by the Hahn–Banach theorem that $\mu = \nu$.

Next we want to determine the asymptotic expansion of the multivariate Markov transform and we need some notations from harmonic analysis; for a detailed account we refer to [4] or [33]. Recall that a function $Y: \mathbb{S}^{n-1} \to \mathbb{C}$ is called a *spherical harmonic* of degree $k \in \mathbb{N}_0$ if there exists a *homogeneous harmonic* polynomial P(x) of degree k (in general, with complex coefficients) such that $P(\theta) = Y(\theta)$ for all $\theta \in \mathbb{S}^{n-1}$. Throughout the paper we assume that $Y_{k,m}(x)$, $m = 1, ..., a_k$, is a basis of the set of all harmonic homogeneous polynomials of degree k which are orthonormal with respect to scalar product

$$\langle f, g \rangle_{\mathbb{S}^{n-1}} := \int_{\mathbb{S}^{n-1}} f_m(\theta) \overline{g(\theta)} d\theta.$$

For a continuous function $f: \mathbb{S}^{n-1} \to \mathbb{C}$ we define the Laplace-Fourier series by

$$f(\theta) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} f_{k,m} Y_{k,m}(\theta)$$

²One may restrict the attention to real valued spherical harmonics and this does not change the results essentially.

and $f_{k,m} = \int_{\mathbb{S}^{n-1}} f(\theta) \overline{Y_{k,m}(\theta)} d\theta$ are the Laplace-Fourier coefficients of f. Using the Gauss decomposition of a polynomial (see Theorem 5.5 in [4]) it is easy to see that the system

$$|x|^{2t} Y_{k,m}(x), t, k \in \mathbb{N}_0, m = 1, ..., a_k$$

is a basis of the set of all polynomials. The numbers

$$c_{t,k,m} := \int_{\mathbb{R}^n} |x|^{2t} \overline{Y_{k,m}(x)} d\mu(x), \quad t, k \in \mathbb{N}_0, m = 1, ..., a_k$$
 (13)

are sometimes called the *distributed moments*, see [17]. For a treatment and formulation of the *multivariate moment problem* we refer to [10], see also [34].

Theorem 4 Let μ be a signed measure over \mathbb{R}^n with support in the closed ball $\overline{B_R}$. Then for all $|\zeta| > R$ and for all $\theta \in \mathbb{S}^{n-1}$ the following relation holds

$$\widehat{\mu}\left(\zeta,\theta\right) = \sum_{t=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} \frac{Y_{k,m}\left(\theta\right)}{\zeta^{2t+k+1}} \int_{\mathbb{R}^n} |x|^{2t} \overline{Y_{k,m}\left(x\right)} d\mu\left(x\right) \tag{14}$$

Proof. A zonal harmonic of degree k with pole $\theta \in \mathbb{S}^{n-1}$ is the unique spherical harmonic $Z_{\theta}^{(k)}$ of degree k such that for all spherical harmonics Y of degree k the relation $Y(\theta) = \int_{\mathbb{S}^{n-1}} Z_{\theta}^{(k)}(\eta) Y(\eta) d\eta$ holds. Let $p_n(\theta, x) = \frac{1}{\omega_n} \frac{1-|x|^2}{|x-\theta|^n}$ be the Poisson kernel for $0 \le |x| < 1 = |\theta|$. Theorem 2.10 in [33, p. 145] gives $p_n(\theta, x) = \sum_{k=0}^{\infty} |x|^k Z_{\theta}^{(k)}(x')$ for all $\theta, x' \in \mathbb{S}^{n-1}$, where $x = |x| \cdot x'$, |x| < 1. Lemma 2.8 in [33] shows that $Z_{\theta}^{(k)}(x') = \sum_{m=1}^{a_k} \overline{Y_{k,m}(x')} Y_{k,m}(\theta)$ where $x', \theta \in \mathbb{S}^{n-1}$, so

$$p_n\left(\theta, x\right) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} |x|^k \overline{Y_{k,m}\left(x'\right)} Y_{k,m}\left(\theta\right). \tag{15}$$

for |x| < 1. Let R be as in the theorem, and replace now x in (15) by x/ρ , $\rho \in \mathbb{R}$ such that $|x| < R < \rho$; one obtains that

$$\frac{1}{\omega_n} \frac{\rho^{n-2} \left(\rho^2 - |x|^2\right)}{r \left(\rho \theta - x\right)^n} = \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} \frac{1}{\rho^k} \overline{Y_{k,m}(x)} Y_{k,m}(\theta).$$
 (16)

The real variable ρ can now be replaced by a complex variable ζ with $|\zeta| > R$. We multiply by $\zeta \left(\zeta^2 - |x|^2 \right)^{-1}$, and integrate integrate over the closed ball $\overline{B_R}$ with respect to μ . This gives

$$\widehat{\mu}\left(\zeta,\theta\right) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} Y_{k,m}\left(\theta\right) \zeta^{-k+1} \int_{\mathbb{R}^n} \frac{\overline{Y_{k,m}\left(x\right)}}{\zeta^2 - |x|^2} d\mu\left(x\right),\tag{17}$$

and we have determined the Laplace-Fourier series of $\theta \longmapsto \widehat{\mu}\left(\zeta,\theta\right)$. Since $|\zeta| > R \geq |x|$ we can expand $1/(1-\frac{|x|^2}{\zeta^2})$ in a geometric series and we obtain

$$\widehat{\mu}\left(\zeta,\theta\right) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} \frac{Y_{k,m}\left(\theta\right)}{\zeta^{k+1}} \int_{\mathbb{R}^n} \overline{Y_{k,m}\left(x\right)} \left(\sum_{t=0}^{\infty} \frac{\left|x\right|^{2t}}{\zeta^{2t}}\right) d\mu\left(x\right). \tag{18}$$

After interchanging summation and integration the claim is obvious. ■

3 The function of the second kind

In the following we want to a give a multivariate analogue of the polynomial of second kind. It turns out that in the multivariate case the corresponding definition does not lead to a polynomial but to a polyharmonic function $Q_P(\zeta,\theta)$ which is defined only for all $|\zeta| > R, \theta \in \mathbb{S}^{n-1}$.

Definition 5 Let P(x) be a polynomial and μ be a non-negative measure with support in $\overline{B_R}$. Then the function $Q_P(\zeta, \theta)$ of the second kind is defined by

$$Q_{P}\left(\zeta,\theta\right) = \frac{1}{\omega_{n}} \int_{\mathbb{R}^{n}} \frac{P\left(\zeta\theta\right) - P\left(x\right)}{r\left(\zeta\theta - x\right)^{n}} \zeta^{n-1} d\mu\left(x\right)$$

for all $|\zeta| > R, \theta \in \mathbb{S}^{n-1}$. Similarly we define the function $R_P(\zeta, \theta)$ by

$$R_{P}\left(\zeta,\theta\right) = \frac{1}{\omega_{n}} \int_{\mathbb{R}^{n}} \frac{P\left(x\right)}{r\left(\zeta\theta - x\right)^{n}} \zeta^{n-1} d\mu\left(x\right)$$

for all $|\zeta| > R, \theta \in \mathbb{S}^{n-1}$.

The last definitions immediately give the identity

$$P(\zeta\theta)\,\widehat{\mu}(\zeta,\theta) = Q_P(\zeta,\theta) + R_P(\zeta,\theta)\,. \tag{19}$$

Theorem 6 Let P(x) be a polynomial, μ be a signed measure with support in $\overline{B_R}$ and $Q_P(\zeta,\theta)$ the function of the second kind. Then for any $R_1 > R$ and for each polynomial h(x)

$$\frac{1}{2\pi i} \int_{\Gamma_{R,}} \int_{\mathbb{S}^{n-1}} h(\zeta \theta) Q_P(\zeta, \theta) d\zeta d\theta = 0.$$
 (20)

Proof. Let us denote the integral in (20) by I(h). By (19) we obtain that $I(h) = I_1(h) - I_2(h)$ where

$$I_{1}(h) = \frac{1}{2\pi i} \int_{\Gamma_{R_{1}}} \int_{\mathbb{S}^{n-1}} h(\zeta \theta) P(\zeta \theta) \widehat{\mu}(\zeta, \theta) d\zeta d\theta, \tag{21}$$

$$I_{2}(h) = \frac{1}{2\pi i \omega_{n}} \int_{\Gamma_{R_{1}}} \int_{\mathbb{S}^{n-1}} h(\zeta \theta) \int_{\mathbb{R}^{n}} \frac{P(x)}{r(\zeta \theta - x)^{n}} \zeta^{n-1} d\mu(x) d\zeta d\theta.$$
 (22)

Proposition 2 yields $I_1(h) = \int_{\mathbb{R}^n} h(x) P(x) d\mu(x)$. Change the integration order in (22) and use formula (5). Then we obtain $I_2(h) = I_1(h)$, therefore I(h) = 0 which was our claim.

A similar argument as in the proof of formula (14) proves the following:

Theorem 7 The rest function $R_P(\zeta, \theta)$ has the asymptotic expansion

$$\sum_{t=0}^{\infty} \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} \frac{Y_{k,m}\left(\theta\right)}{\zeta^{2t+k+1}} \int_{\mathbb{R}^n} P\left(x\right) \left|x\right|^{2t} \overline{Y_{k,m}\left(x\right)} d\mu\left(x\right). \tag{23}$$

Let us consider now the Laurent series of the function $\zeta \mapsto R_P(\zeta, \theta)$: for $|\zeta| > R, \theta \in \mathbb{S}^{n-1}$ we can write

$$R_{P}\left(\zeta,\theta\right) = \sum_{s=0}^{\infty} r_{s}\left[P\right]\left(\theta\right) \frac{1}{\zeta^{s+1}}.$$
(24)

From (23), by putting s = 2t + k, it follows that

$$r_{s}[P](\theta) = \sum_{t=0}^{[s/2]} \sum_{m=1}^{a_{s-2t}} Y_{s-2t,m}(\theta) \int_{\mathbb{R}^{n}} P(x) |x|^{2t} \overline{Y_{s-2t,m}(x)} d\mu(x).$$
 (25)

Hence the coefficient function $r_s\left(P\right)$ is a sum of spherical harmonics with degree < s.

We can now formulate a characterization of orthogonality in asymptotic analysis:

Theorem 8 Let μ be a signed measure with compact support and P(x) be a polynomial. Then P is orthogonal to all polynomials of degree < M with respect to μ if and only if

$$r_0[P] = \dots = r_{M-1}[P] = 0$$

where $r_s[P]$ are the functions defined in (24)–(25).

Proof. From (25) we see that $r_0(P) = ... = r_{M-1}(P) = 0$ if and only for all s = 0, ..., M-1

$$\int_{\mathbb{R}^n} P(x) |x|^{2t} \overline{Y_{s-2t,m}(x)} d\mu(x) = 0.$$

But the polynomials $|x|^{2t} Y_{s-2t,m}(x)$ with $s=0,...,M-1,\,t=0,...,[s/2],\,m=1,...,a_{s-2t}$, span up the space of polynomials of degree $\leq M-1$.

The next theorem, interesting in its own right, is not needed later, and therefore the proof will be omitted.

Theorem 9 Let μ be a signed measure with compact support and let P(x) be a polynomial of degree 2N. If P is orthogonal to all polynomials of degree $\leq 2N$ and polyharmonic degree $\langle N |$ then $r_0(P) = ... = r_{2N-1}(P) = 0$ and $r_{2N}(\theta)$ is constant.

4 Polyharmonicity of the function of second kind

In this Section we want to show that the function $Q_P(\zeta, \theta)$ of the second kind, multiplied by $\zeta^{-(n-1)}$, is a polyharmonic function.

Recall that we have defined $N_P = \sup \{d(P \cdot h) : h \text{ harmonic polynomial}\}$ for a polynomial P(x). In the Appendix we will show that $N_P \leq \deg P(x)$ and an explicit determination of N_P will be given there as well.

Proposition 10 Let $Y_{k,m}$, $m = 1, ..., a_k$, be an orthonormal basis of the space of all homogeneous harmonic polynomials. Then

$$N_{P} := \sup_{k \in \mathbb{N}_{0}, m=1,...,a_{k}} d\left(P\left(x\right) Y_{k,m}\left(x\right)\right). \tag{26}$$

Proof. Let us denote the right hand side by M_P . Then the inequality $M_P \leq N_P$ is trivial. For the converse let $h\left(x\right)$ be a harmonic polynomial and write $h\left(x\right) = \sum_{k=0}^{N} \sum_{m=1}^{a_k} \lambda_{k,m} Y_{k,m}\left(x\right)$. Then

$$d\left(P \cdot h\right) \leq \sup_{k \in \mathbb{N}_{0}, m=1, \dots, a_{k}} d\left(P\left(x\right) Y_{k, m}\left(x\right)\right) \leq M_{P}.$$

Note that $N_P = \sup_{k \in \mathbb{N}_0, m=1,...,a_k} d\left(P\left(x\right)\overline{Y_{k,m}\left(x\right)}\right)$ since $\overline{Y_{k,m}}, m=1,...,a_k$ is an orthonormal basis as well. Now we determine the asymptotic expansion of the function of the second kind:

Theorem 11 Let P(x) be a polynomial and μ be a signed measure with support in $\overline{B_R}$. Then $\theta \mapsto Q_P(\zeta, \theta)$, the function of the second kind, possesses a Laplace-Fourier series of the form

$$Q_{P}\left(\zeta,\theta\right) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} \frac{1}{\zeta^{k-1}} p_{k,m}\left(\zeta^{2}\right) Y_{k,m}\left(\theta\right)$$

$$(27)$$

where $p_{k,m}(t)$ are univariate polynomials of degree strictly smaller than $N_{k,m} := d(P(x)Y_{k,m}(x))$. The function $Q_P(\zeta,\theta)$ of the second kind depends on those distributed moments

$$\int_{\mathbb{R}^n} h(x) |x|^{2t} d\mu(x) \tag{28}$$

where $t \leq \sup_{k \in \mathbb{N}_0} \deg p_{k,m}$ and h(x) is a harmonic polynomial.

Proof. For each fixed ζ with $|\zeta| > R$ the function $\theta \mapsto Q_P(\zeta, \theta)$ possesses a Laplace-Fourier expansion, say

$$Q_P(\zeta, \theta) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} e_{km}(\zeta) Y_{k,m}(\theta)$$

Recall that $Q_P(\zeta, \theta) = P(\zeta\theta) \widehat{\mu}(\zeta, \theta) - R_P(\zeta, \theta)$. Formula (23) yields the Laplace-Fourier expansion of $\theta \mapsto R_P(\zeta, \theta)$: in (23) one computes the sum over the

variable t obtaining

$$R_{P}(\zeta,\theta) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_{k}} Y_{k,m}(\theta) \frac{1}{\zeta^{k-1}} \int_{\mathbb{R}^{n}} \frac{P(x) \overline{Y_{k,m}(x)}}{\zeta^{2} - |x|^{2}} d\mu(x).$$
 (29)

The Laplace-Fourier coefficients of $\theta \mapsto P(\zeta \theta) \widehat{\mu}(\zeta, \theta)$ are given through

$$f_{k,m}\left(\zeta\right) := \int_{\mathbb{S}^{n-1}} P\left(\zeta\theta\right) \widehat{\mu}\left(\zeta,\theta\right) \overline{Y_{k,m}\left(\theta\right)} d\theta. \tag{30}$$

Let us write $P(x)\overline{Y_{k,m}(x)}$ in the Gauß decomposition, see Theorem 5.5 in [4], in the form

$$P(x)\overline{Y_{k,m}(x)} = \sum_{j=0}^{N_{k,m}} h_{j,k,m}(x) |x|^{2j},$$
(31)

where $h_{j,k,m}$ are harmonic polynomials and $N_{k,m}$ is the polyharmonic degree of $P(x) Y_{k,m}(x)$. Then (30) and (31) yield

$$\begin{split} f_{k,m}\left(\zeta\right) &= \frac{1}{\zeta^{k}} \int_{\mathbb{S}^{n-1}} P\left(\zeta\theta\right) \zeta^{k} \overline{Y_{k,m}\left(\theta\right)} \widehat{\mu}\left(\zeta,\theta\right) d\theta \\ &= \frac{1}{\zeta^{k}} \sum_{j=0}^{N_{k,m}} \zeta^{2j} \int_{\mathbb{S}^{n-1}} h_{j,k,m}\left(\zeta\theta\right) \widehat{\mu}\left(\zeta,\theta\right) d\theta \\ &= \frac{1}{\zeta^{k}} \sum_{j=0}^{N_{k,m}} \zeta^{2j} \int_{\mathbb{R}^{n}} \int_{\mathbb{S}^{n-1}} h_{j,k,m}\left(\zeta\theta\right) \frac{1}{\omega_{n}} \frac{\zeta^{n-1}}{r\left(\zeta\theta - x\right)^{n}} d\theta d\mu\left(x\right). \end{split}$$

Since $h_{j,k,m}$ is a harmonic polynomial the Poisson formula shows that for real $\zeta > R$ holds

$$h_{j,k,m}\left(x\right) = \frac{1}{\omega_n} \int_{\mathbb{S}^{n-1}} h_{j,k,m}\left(\zeta\theta\right) \frac{\zeta^{n-2}\left(\zeta^2 - |x|^2\right)}{r\left(\zeta\theta - x\right)^n} d\theta.$$

Since the integrand is holomorphic in ζ this holds for all complex values ζ with $|\zeta|>R$ as well. Thus

$$f_{k,m}(\zeta) = \frac{1}{\zeta^k} \sum_{j=0}^{N_{k,m}} \zeta^{2j} \int_{\mathbb{R}^n} \frac{\zeta}{\zeta^2 - |x|^2} h_{j,k,m}(x) \, d\mu(x)$$
 (32)

are the Laplace Fourier coefficients of $\theta \mapsto P(\zeta \theta) \widehat{\mu}(\zeta, \theta)$.

Replace now $P(x)\overline{Y_{k,m}(x)}$ in (29) by the right hand side of (31) and take the difference of the Laplace-Fourier coefficients we computed so far. Then the Laplace-Fourier coefficients of $Q_P(\zeta, \theta)$ are given by

$$e_{k,m}(\zeta) = \frac{1}{\zeta^{k-1}} \sum_{i=0}^{N_{k,m}} \int_{\mathbb{R}^n} \frac{1}{\zeta^2 - |x|^2} h_{j,k,m}(x) \left(\zeta^{2j} - |x|^{2j}\right) d\mu(x).$$

Note that for j = 0 the summand ist just zero. For $j \ge 1$ we have

$$\frac{\zeta^{2j} - |x|^{2j}}{\zeta^2 - |x|^2} = |x|^{2(j-1)} + |x|^{2(j-1)} \zeta^2 + \dots + \zeta^{2(j-1)}.$$

We conclude that $\zeta \mapsto \zeta^{k-1}e_{k,m}(\zeta) =: P_{k,m}(\zeta^2)$ is a polynomial in ζ^2 of degree at most $N_{k,m}-1$. It follows that $e_{k,m}(\zeta)$ can be computed if we know all moments of the form (28) where $t \leq \deg p_{k,m}$ and h(x) is a harmonic polynomial. The proof is complete.

From this we have the following interesting consequence

Corollary 12 Let P(x) be a polynomial, μ be a signed measure with support in $\overline{B_R}$ and $Q_P(\zeta,\theta)$ be the corresponding function of the second kind. Then the function $r\theta \mapsto r^{-(n-1)}Q_P(r\theta)$ defined for r > R and $\theta \in \mathbb{S}^{n-1}$, is a polyharmonic function of polyharmonic degree $< N_P$ where N_P is defined in (26).

Proof. By the last theorem the function $\theta \mapsto r^{-(n-1)}Q_{P}\left(r\theta\right)$ has the following Laplace-Fourier expansion

$$f(r\theta) := r^{-(n-1)}Q_P(r\theta) = \sum_{k=0}^{\infty} \sum_{m=1}^{a_k} \frac{1}{r^{n+k-2}} p_{k,m}(r^2) Y_{k,m}(\theta)$$

Let us define the differential operator

$$L_{(k)} := \frac{d^2}{dr^2} + \frac{n-1}{r} \frac{d}{dr} - \frac{k(k+n-2)}{r^2}.$$
 (33)

It is known that a function $g(r\theta)$ is a solution of $\Delta^p g(x) = 0$ if and only if the coefficient functions $g_{k,m}(r)$ of its Laplace-Fourier expansion are solutions of the equation $\left[L_{(k)}\right]^p g_{k,m}(r) = 0$; an elaboration of these classical results can be found in [21]. Further the polynomials r^j with j = -k - n + 2, -k - n + 4, ..., -k - n + 2p are solutions of this equation. It follows that

$$f_{k,m}(r) = \frac{1}{r^{n+k-2}} p_{k,m}(r^2)$$

are solutions of the equation $\left[L_{(k)}\right]^p g_{k,m}\left(r\right) = 0$ when $p \geq N_k$. The proof is complete. \blacksquare

5 Measures with algebraic support

A measure μ over \mathbb{R}^n is algebraically supported if the support of the measure is contained in an algebraic set, i.e. if the support of μ is contained in $P^{-1}(0)$ for some polynomial P(x). This is equivalent to the statement that $\int P^*P(x)\,d\mu(x)=0$ where $P^*(x):=\overline{P(x)}$ for $x\in\mathbb{R}^n$. The Cauchy-Schwarz inequality implies that

$$\left| \int PQd\mu \right|^2 \leq \int PP^*d\mu \cdot \int Q^*Qd\mu = 0.$$

It follows that P is orthogonal to all polynomials Q with respect to μ .

In the one-dimensional case a measure μ has algebraic support if and only if the support is finite. Further this is equivalent to the property that the Markov transform is a rational function. As we shall see, in the multivariate case all these properties will be different.

Theorem 13 Let μ be a measure with support in $\overline{B_R}$ and let P(x) be a polynomial. Then μ has support in $P^{-1}\{0\}$ if and only if

$$P(\zeta\theta)\,\widehat{\mu}(\zeta,\theta) = Q_P(\zeta,\theta) \text{ for all } \theta \in \mathbb{S}^{n-1}, |\zeta| > R,$$
 (34)

where $Q_P(\zeta, \theta)$ is the function of the second kind.

Proof. If μ has support in $P^{-1}\{0\}$ it follows that the rest function $R_P(\zeta,\theta)$ is equal to zero and (34) is evident. For the converse assume that $P(\zeta\theta)$ $\widehat{\mu}(\zeta,\theta) = Q_P(\zeta,\theta)$. By Proposition 2 and Theorem 6

$$\int P^* P d\mu = \frac{1}{2\pi i} \int_{\Gamma_{R_1}} \int_{\mathbb{S}^{n-1}} P^* (\zeta \theta) P(\zeta \theta) \widehat{\mu} (\zeta, \theta) d\zeta d\theta$$
$$= \frac{1}{2\pi i} \int_{\Gamma_{R_1}} \int_{\mathbb{S}^{n-1}} P^* (\zeta \theta) Q_P(\zeta, \theta) d\zeta d\theta = 0.$$

It follows that μ has support in $P^{-1}\{0\}$.

The same proof shows that $\int P^* P d\mu = 0$ if we know that for each fixed θ the map $\zeta \mapsto P(\zeta \theta) \widehat{\mu}(\zeta, \theta)$ is a polynomial in the variable ζ (since the integral over Γ_{R_1} is already zero). Hence we have proved that for a measure μ with compact support the following implication holds

$$\zeta \widehat{\mu}(\zeta, \theta)$$
 rational \Rightarrow supp (μ) is contained in an algebraic set,

where rationality of $\hat{\mu}(\zeta, \theta)$ means that it is a quotient of two polynomial Q(x) and P(x). Not very surprisingly, the converse is not true as the following result shows (where we choose for example σ to be equal to the Lebesgue measure on the unit interval):

Proposition 14 Let σ be a measure σ over \mathbb{R} with compact support, δ_0 the Dirac measure over \mathbb{R} at the point 0 and let $\mu = \sigma \otimes \delta_0$. Then the multivariate Markov transform is given by

$$\widehat{\sigma \otimes \delta_0} \left(\zeta, e^{it} \right) = \frac{1}{\omega_2} \sum_{l=0}^{\infty} \int x^l d\sigma \left(x \right) \frac{\sin \left(l+1 \right) t}{\sin t} \frac{1}{\zeta^{l+1}}.$$
 (35)

Then μ has algebraic support but its multivariate Markov transform $\widehat{\sigma \otimes \delta_0}$ is rational if and only if the measure σ has finite support.

Proof. Let $\theta = e^{it}$ with $t \in \mathbb{R}$. It is straightforward to verfy that

$$\widehat{\sigma \otimes \delta_0} (\zeta, \theta) = \frac{1}{\omega_2} \int_{\mathbb{R}^2} \frac{\zeta}{r (\zeta \theta - (x, y))^2} d(\sigma \otimes \delta_0)$$
$$= \frac{1}{\omega_2} \int_{-\infty}^{\infty} \frac{\zeta}{\zeta^2 - 2\zeta x \cos t + x^2} d\sigma.$$

Note that

$$\frac{2i\zeta\sin t}{\zeta^2-2\zeta x\cos t+x^2}=\frac{1}{\zeta\overline{\theta}-x}-\frac{1}{\zeta\theta-x}.$$

Define for the measure σ the one-dimensional Markov transform by $\widetilde{\sigma}(\zeta) = \int \frac{1}{\zeta - x} d\sigma(x)$. Then $2i\omega_2 \sin t \cdot \widehat{\sigma \otimes \delta_0}(\zeta, \theta) = \widetilde{\sigma}(\zeta \overline{\theta}) - \widetilde{\sigma}(\zeta \theta)$ and the asymptotic expansion of $\widetilde{\sigma}$ leads to (35).

Assume now that $\sigma \otimes \delta_0(\zeta, \theta)$ is rational. Then for $t = \pi/2$ the function $\zeta \mapsto \widehat{\sigma \otimes \delta_0}(\zeta, \theta)$ is rational, i.e. that $f(\zeta) := \sum_{k=0}^{\infty} \int x^{2k} d\mu(x) \frac{1}{\zeta^{2k+1}}$ is a rational function. From the univariate results it follows that μ must have finite support.

If μ is a measure with finite support and the dimension n is even then it is easy to see that $\zeta \widehat{\mu}(\zeta, \theta)$ is a rational function. The following example shows that the converse is not true:

Example 15 Let μ be the Lebesgue measure on the unit circle \mathbb{S}^1 . Since the measure is rotation-invariant it follows that $\widehat{\mu}(\zeta,\theta) = \frac{\zeta}{\zeta^2-1}$. Hence the multivariate Markov transform $\zeta\widehat{\mu}(\zeta,\theta)$ is a rational function but μ is not discrete.

6 Proof of Theorem 1

Proof. In Theorem 11 we have seen that $Q_{\mu,P}$ and $Q_{\nu,P}$ only depends on the moments $c_{t,k,m}$ where $t < N_P$. It follows that $Q_{\mu,P} = Q_{\nu,P}$. By Theorem 13 $P(\zeta\theta)\,\widehat{\mu}\,(\zeta,\theta) = Q_{\mu,P}\,(\zeta,\theta)$ and $P(\zeta\theta)\,\widehat{\nu}\,(\zeta,\theta) = Q_{\nu,P}\,(\zeta,\theta)$ for all large ζ and for all $\theta \in \mathbb{S}^{n-1}$, therefore $P(\zeta\theta)\,\widehat{\mu}\,(\zeta,\theta) = P(\zeta\theta)\,\widehat{\nu}\,(\zeta,\theta)$. We want to conclude that $\widehat{\mu}\,(\zeta,\theta) = \widehat{\nu}\,(\zeta,\theta)$; in that case Theorem 3 yields $\mu = \nu$. If $P(\zeta\theta)$ has no zeros for large ζ it is clear that $\widehat{\mu}\,(\zeta,\theta) = \widehat{\nu}\,(\zeta,\theta)$. In the general case, it suffices to show that $A := \{(\zeta,\theta) \in \mathbb{C} \times \mathbb{S}^{n-1} : P(\zeta\theta) = 0\}$ is nowhere dense since then a continuity argument leads to $\widehat{\mu}\,(\zeta,\theta) = \widehat{\nu}\,(\zeta,\theta)$. This fact will be proven in the next Proposition. \blacksquare

Just for completeness sake we include the following

Proposition 16 The set $A := \{(\zeta, \theta) \in \mathbb{C} \times \mathbb{S}^{n-1} : P(\zeta\theta) = 0\}$ is closed and has no interior point, i.e. A is nowhere dense in $\mathbb{C} \times \mathbb{S}^{n-1}$.

Proof. Clearly A is closed. Suppose that there $\theta_0 \in \mathbb{S}^{n-1}$ and ζ_0 such that $P(\zeta\theta) = 0$ for all ζ in a neighborhood U of ζ_0 and for all θ in a neighborhood V of θ_0 . For fixed $\theta \in V$ it follows that $\zeta \to P(\zeta\theta)$ must be the zero polynomial since for all $\zeta \in U$ (hence uncountably many ζ) we have $P(\zeta\theta) = 0$. It follows

that $P(\zeta\theta) = 0$ for all $\zeta \in \mathbb{C}$ and for all $\theta \in V$. Hence P(x) = 0 for all x in an open set W of \mathbb{R}^n and we conclude that P = 0.

Corollary 17 Let P(x) be a polynomial and N_P be given by (26). Then the space

 $U_{N_P} := \left\{ Q \in \mathcal{P}_n : \ \Delta^{N_P} Q = 0 \right\}$

is dense in the space $C(K_P(R), \mathbb{C})$ of all continuous complex-valued functions on $K_P(R)$ endowed with the supremum norm.

Proof. Since U_{N_P} is closed under complex conjugation we may reduce the problem to the case of real-valued continuous functions. Suppose that U_{N_P} is not dense in $C(K_P(R), \mathbb{R})$. By the Hahn-Banach theorem there exists a continuous non-trivial real-valued functional L which vanishes on U_{N_P} . By Riesz's Theorem there exists a signed measures σ representing the functional L with support in K_P . By Theorem 1 we conclude that $\sigma = 0$, a contradiction.

7 Appendix: The Polyharmonic degree

We want to list some of the properties of the polyharmonic degree map. Note that the inequality $d\left(P+Q\right) \leq \max\left\{d\left(P\right),d\left(Q\right)\right\}$ is trivial. In [3] the important equality

$$d(Q \cdot |x|^2) = d(Q) + d(|x|^2) = d(Q) + 1.$$
 (36)

is proved for any polyharmonic function defined on a domain containing zero. The following inequality is implicitly contained in [3, Theorem 1.2, p. 31]. For completeness we give the short proof.

Proposition 18 Let f, g be harmonic polynomials. Then $d(ff^*) = \deg f$ and $d(fg) \leq \min \{\deg f, \deg g\}$

Proof. Let ∇f be the gradient of f. Then $\Delta(fg) = (\Delta f)g + 2 < \nabla f, \nabla g > + f\Delta g$. If h and g are harmonic it is easy to show by induction that

$$\Delta^p\left(fg\right)=2^p\sum_{i_1,...,i_p=1}^n(\frac{\partial}{\partial x_{i_1}}...\frac{\partial}{\partial x_{i_p}}f)(\frac{\partial}{\partial x_{i_1}}...\frac{\partial}{\partial x_{i_p}}g).$$

Suppose that $s:=\deg f\leq \deg g$. Then $\frac{\partial^{\beta}}{\partial x^{\beta}}f=0$ for all $\beta\in\mathbb{N}_{0}^{n}$ with $|\beta|=s+1$. It follows from the above formula that $\Delta^{s+1}(fg)=0$. Hence $d\left(fg\right)=s$. For the first statement note that by the above $d(ff^{*})\leq \deg f$. Suppose that $\Delta^{p+1}(ff^{*})=0$ for some $p\in\mathbb{N}$. Then $\sum_{i_{1},...,i_{p+1}=1}^{n}\left|\frac{\partial}{\partial x_{i_{1}}}...\frac{\partial}{\partial x_{i_{p+1}}}f\right|^{2}=0$. It follows that $\frac{\partial^{\beta}}{\partial x^{\beta}}f=0$ for all $\beta\in\mathbb{N}_{0}^{n}$ with $|\beta|=p+1$. Hence $\deg f\leq p$ and we have proved that $\deg f\leq d\left(ff^{*}\right)$. The proof is complete. \blacksquare

Now we can prove the following

Corollary 19 Let Y_k be a harmonic homogeneous polynomial of degree k and P(x) be a polynomial with the Gauß decomposition

$$P(x) = h_0(x) + |x|^2 h_1(x) + \dots + |x|^{2N} h_N(x).$$
(37)

Then

$$d\left(P \cdot Y_{k}\right) \leq \max_{r=0}^{N} \left\{r + \deg h_{r}\right\} \leq \deg P\left(x\right). \tag{38}$$

Proof. By (36) $d\left(|x|^{2r}h_rY_k\right) = r + d\left(h_rY_k\right)$. By Proposition 18 $d\left(h_rY_k\right) \le \min\left\{\deg h_r, \deg Y_k\right\} \le \deg h_r$. This proves the first inequality. Further we know that $\deg |x|^{2r}h_r = 2r + \deg h_r \le \deg P$ for r = 0, ..., N. Hence the second inequality is established.

In the following we want to give an explicit formula for N_P .

Theorem 20 Let $Y_{k,m}(x)$ be an orthonormal basis of spherical harmonics with $k \in \mathbb{N}_0$ and $m = 1, ..., a_k$. Then $d(Y_{k,m}(x) Y_{k,m_1}(x)) = k$ if and only if $m = m_1$.

Proof. We start with a general remark: Let Y_k and Y_l be harmonic homogeneous polynomials of degree k and l respectively. Clearly $Y_k\left(x\right)Y_l\left(x\right)$ is a homogeneous polynomial of degree k+l. By Proposition 18 it has polyharmonic degree at most min $\{k,l\}$. By Gauß decomposition there exist harmonic homogeneous polynomials h_{k+l-2u} , either h_{k+l-2u} is zero or of exact degree k+l-2u for $u=0,...,\min\left\{k,l\right\}$, such that

$$Y_k(x) Y_l(x) = \sum_{u=0}^{\min\{k,l\}} |x|^{2u} h_{k+l-2u}(x).$$
 (39)

Now assume that $Y_k\left(x\right)=Y_{k,m}\left(x\right)$ and $Y_l\left(x\right)=Y_{k,m_1}\left(x\right)$. Let us consider the summand $\left|x\right|^{2k}h_0\left(x\right)$ for u=k. Then h_0 must have degree 0, hence it is a constant polynomial. Integrate equation (39) with respect to $d\theta$. Since h_{2k-2u} is either 0 or of exact degree 2k-2u>0 for u=1,...,k the integral over the sphere of $\left|x\right|^{2u}h_{k+l-2u}(x)$ will vanish. Then we obtain

$$\delta_{m,m_1} |x|^{2k} = \int_{\mathbb{S}^{n-1}} h_0 d\theta = h_0 \omega_n.$$

Hence for $m \neq m_1$ we see that the polyharmonic degree is less than k, for $m = m_1$ it is exactly k. The proof is finished.

Theorem 21 Let P(x) be a homogeneous polynomial of degree N, say of the form

$$P(x) = \sum_{t,k \in \mathbb{N}_0, 2t+k=N} \sum_{m=1}^{a_k} a_{t,k,m} |x|^{2t} Y_{k,m}(x).$$

Let k_0 be the largest natural number such that $a_{t_0,k_0,m_0} \neq 0$ for some m_0 in the above sum. Then

$$N_{P} := \sup_{k \in \mathbb{N}_{0}, m=1,...,a_{k}} d(P(x) Y_{k,m}(x)) = \frac{1}{2} (N + k_{0}).$$

Proof. Since $d(P+Q) \leq \max\{d(P), d(Q)\}$ we obtain for $k_1 \in N_0$ and $m_1 \in \{1, ..., a_{k_1}\}$ that

$$d(P(x) Y_{k_1,m_1}(x)) \le \max d(|x|^{2t} Y_{k,m} Y_{k_1,m_1}(x))$$

where the maximum ranges over all indices t, k, m with $a_{t,k,m} \neq 0$. Since $d(Y_{k,m}Y_{k_1,m_1}) \leq k$ we arrive at (note that 2t + k = N)

$$d(P(x)Y_{k_1,m_1}(x)) \le \max\{t+k\} = \frac{1}{2}\max\{N+k\} \le \frac{1}{2}(N+k_0).$$

Hence we see that $\frac{1}{2}(N+k_0)$ is a bound for the polyharmonic degree of $P(x)Y_{k_1,m_1}(x)$. Let us consider $P(x)Y_{k_0,m_0}(x)$ where k_0 is as in the theorem. Consider a summand $a_{t,k,m}|x|^{2t}Y_{k,m}$ with $a_{t,k,m} \neq 0$. Then $k \leq k_0$ and Proposition 18 shows that $d(Y_{k,m}Y_{k_0,m_0}) \leq k$, hence for $k < k_0$ each summand $a_{t,k,m}|x|^{2t}Y_{k,m}Y_{k_0,m_0}$

$$d\left(a_{t,k,m} |x|^{2t} Y_{k,m} Y_{k_0,m_0}\right) \le t + k = \frac{1}{2} (N+k) < \frac{1}{2} (N+k_0).$$
 (40)

Now consider the case $k=k_0$. If $m\neq m_0$ then we apply Theorem 20 and the same argument shows that (40) holds. Finally assume that $k=k_0$ and $m=m_0$. Then Theorem 20 shows that $a_{t_0,k_0,m_0}|x|^{2t_0}Y_{k_0,m_0}Y_{k_0,m_0}$ has exact polyharmonic degree $t_0+k_0=\frac{1}{2}\left(N+k_0\right)$. Hence we have proven that

$$P(x) Y_{k_0,m_0} = a_{t_0,k_0,m_0} \omega_n |x|^{N+k_0} + R(x)$$

where R(x) has polyharmonic degree $<\frac{1}{2}(N+k_0)$. Thus $P(x)Y_{k_0,m_0}$ has exact polyharmonic degree $\frac{1}{2}(N+k_0)$.

Let us finish with the following remark. Let P(x) be an arbitrary polynomial. We can write $P(x) = \sum_{j=0}^{N} P_j(x)$ where $P_j(x)$ are homogeneous polynomials. It is not very difficult to see that

$$d\left(P \cdot Y_{k,m}\right) = \max_{j=0,\dots,N} d\left(P_j \cdot Y_{k,m}\right),\,$$

see e.g. the proof of Theorem 1.27 in [4]. Hence N_P is the maximum of N_{P_j} for j=0,...,N.

8 References

References

[1] N.I. Akhiezer, The problem of moments and some related questions in analysis, Oliver & Boyd, Edinburgh, 1965.(Transl. from Russian ed. Moscow 1961).

- [2] E. Almansi, Sull'integrazione dell'equazione $\Delta^{2n}u=0$, Ann. Math. pura appl. 2, (1899) 1–51.
- [3] N. Aronszajn, T.M. Creese, L.J. Lipkin, Polyharmonic functions, Clarendon Press, Oxford 1983.
- [4] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer, New York 1992.
- [5] B. Bacchelli, M. Bozzini, C. Rabut, M. Varas, Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets, Appl. Comput. Harmon. Anal. 18 (2005), 282–299.
- [6] C.F. Dunkl, Y. Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications 81, Cambridge University Press, Cambridge UK, 2001.
- [7] J. Edenhofer, Integraldarstellung einer m-polyharmonischen Funktion, deren Funktionswerte und erste m-1 Normalableitungen auf einer Hypersphäre gegeben sind, Math. Nachr. 68 (1975), 105–113.
- [8] T. Futamura, K. Kishi, Y. Mizuta, A generalization of Bôcher's theorem for polyharmonic functions, Hiroshima Math. J. 31 (2001), 59–70.
- [9] T. Futamura, K. Kishi, Y. Mizuta, Removability of sets for sub-polyharmonic functions, Hiroshima Math. J. 33 (2003), 31–42.
- [10] B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 47-65.
- [11] D. Gieseker, H. Knörrer, E. Trubowitz, The geometry of algebraic Fermi curves, Academic Press, Boston, 1993.
- [12] A.A. Gonchar, E.A. Rakhmanov, V.N. Sorokin, On Hermite-Padé approximants for systems of functions of Markov type. (Russian) Mat. Sb. 188 (1997), no. 5, 33–58; translation in Sb. Math. 188 (1997), no. 5, 671–696.
- [13] W.K. Hayman, B. Korenblum, Representation and Uniqueness Theorems for polyharmonic functions, Journal D'Analyse Mathématique 60 (1993) 113-133.
- [14] L.I. Hedberg, Approximation in the mean by solutions of elliptic equations, Duke Math. J. 40 (1973), 9-16.
- [15] L.I. Hedberg, Two approximation problems in function spaces, Ark. Mat. 16 (1978), no. 1, 51-81.
- [16] L.K. Hua, Harmonic Analysis of functions of several complex variables in the classical domains, Amer. Math. Soc., Providence, Rhode Island, 1963.

- [17] Kounchev, O., Extremal problems for the distributed moment problem. In: Potential theory (Prague, 1987), 187–195, Plenum, New York, 1988.
- [18] Kounchev, O., Sharp estimate for the Laplacian of a polyharmonic function. Trans. Amer. Math. Soc. 332 (1992), 121–133.
- [19] Kounchev, O., Zeros of non-negative sub-biharmonic functions and extremal problems in the inverse source problem for the biharmonic potential. In: Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine, (eds. G. Anger, R. Gorenflo, H. Jochmann, H. Moritz, W. Webers), Akademie Verlag, Berlin, 1993.
- [20] Kounchev, O., Minimizing the Laplacian of a function squared with prescribed values on interior boundaries theory of polysplines. *Trans. Amer. Math. Soc.* 350 (1998), 2105–2128.
- [21] O. Kounchev, Multivariate Polysplines. Applications to Numerical and Wavelet Analysis, Academic Press 2000.
- [22] Kounchev, O., Render, H., Polyharmonic splines on grids $\mathbb{Z} \times a\mathbb{Z}^n$ and their limits, Math. Comp. 74 (2005), 1831–1841.
- [23] Kounchev, O., Render, H., Cardinal interpolation with polysplines on annuli, to appear in Jour. of Approx. Theory.
- [24] O. Kounchev, H. Render, Multivariate Orthogonality, Moments and Transforms, Research Monography, to appear in Academic Press.
- [25] Ligocka, E., On duality and interpolation for spaces of polyharmonic functions. Studia Math. 88 (1988), 139–163.
- [26] Madych, W.R., Nelson, S.A., Polyharmonic Cardinal Splines, J. Approx. Theory 60 (1990), 141–156.
- [27] M. Nicolesco, Recherches sur les fonctions polyharmoniques, Ann. Sci. Ecole Norm. Sup. 52 (1935), 183–220.
- [28] E.M. Nikishin, V.N. Sorokin, Rational Approximations and Orthogonality. Transl. of Math. Monographs, Vol. 92, Amer. Math. Soc., 1991.
- [29] S. P. Novikov, I. A. Dynnikov, Discrete spectral symmeties of low–dimensional differential operators and difference operators on regular lattices and two–dimensional manifolds, Russian Math. Surveys, 52 (1997), 1057–1116.
- [30] H. Render, Real Bargmann spaces, Fischer pairs and Sets of Uniqueness for Polyharmonic Functions, Submitted for publication.
- [31] S. L. Sobolev: Cubature Formulas and Modern Analysis: An introduction, Gordon and Breach Science Publishers, Montreux, 1992; Russian Edition, Nauka, Moscow, 1974.

- [32] H. Stahl, V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York 1992.
- [33] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton University Press, 1971.
- [34] J. Stochel, F.H. Szafraniec, The complex moment problem and subnormality: a polar decomposition approach, J. Funct. Analysis 159 (1998), 432–491.
- [35] D.V. Widder, The Laplace transform, Princeton University Press, Princeton 1941.
- 1. Ognyan Kounchev, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; e-mail: kounchev@math.bas.bg, kounchev@math.uni-duisburg.de
- 2. Hermann Render, Departamento de Matemáticas y Computatión, Universidad de la Rioja, Edificio Vives, Luis de Ulloa, s/n. 26004 Logroño, Spain; e-mail: render@gmx.de; hermann.render@dmc.unirioja.es