

25 Most important Mathematical

Definitions in Data Science

💸 blog. DailyDoseofDS.com

1) Gradient Descent

$$\theta_{j+1} = \theta_j - \alpha \nabla J(\theta_j)$$

2) Normal distribution

$$\left| heta_{j+1} = heta_j - lpha
abla J(heta_j)
ight| \left| f(x|\mu, \sigma^2) = rac{1}{\sigma \sqrt{2\pi}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)
ight| \left| z = rac{x-\mu}{\sigma}
ight|$$

$$z = \frac{x - \mu}{\sigma}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

$$\operatorname{Correlation} = rac{\operatorname{Cov}(X,Y)}{\operatorname{Std}(X) \cdot \operatorname{Std}(Y)}$$

6) Cosine Similarity

similarity =
$$\frac{A \cdot B}{\|A\| \|B\|}$$

7) Naive Bayes

$$P(y|x_1,\ldots,x_n) = rac{P(y)\prod_{i=1}^n P(x_i|y)}{P(x_1,\ldots,x_n)}$$

8) MLE

$$\operatorname{argmax}_{\theta} \prod_{i=1}^{n} P(x_i | \theta)$$

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

10) F1 Score

$$\frac{2 \cdot P \cdot R}{P + R}$$

11) RelU

$$\max(0, x)$$

12) Softmax

$$P(y=j|x) = rac{e^{x^Tw_j}}{\sum_{k=1}^K e^{x^Tw_k}}$$

$$P(y=j|x) = rac{e^{x^T w_j}}{\sum_{k=1}^K e^{x^T w_k}} \; igg| \; R^2 = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

14) MSE

$$\text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

15) MSE + L2 Reg

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \left[\int ext{MSE}_{ ext{regularized}} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^p eta_j^2
ight]$$

16) Eigen vectors

$$Av = \lambda v$$

17) Entropy

$$ext{Entropy} = -\sum_i p_i \log_2(p_i)$$

18) KMeans

$$\operatorname{argmin}_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} \|x - \mu_{i}\|^{2}$$

19) KL Divergence

$$\operatorname{argmin}_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} \|x - \mu_{i}\|^{2} \qquad D_{\operatorname{KL}}(P\|Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right)$$

20) Log-loss

$$-rac{1}{N} \sum_{i=1}^{N} \left(y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)
ight)$$

$$-rac{1}{N}\sum_{i=1}^{N}\left(y_{i}\log(\hat{y}_{i})+(1-y_{i})\log(1-\hat{y}_{i})
ight)\Bigg[\prod_{w,b}rac{1}{2}\|w\|^{2}+C\sum_{i=1}^{n}\max(0,1-y_{i}(w\cdot x_{i}-b))\Bigg]$$

22) Linear regression

$$y=eta_0+eta_1x_1+eta_2x_2+\ldots+eta_nx_n+\epsilon$$

23) SVD

$$A = U\Sigma V^T$$

24) Lagrange multiplier

$$\max f(x) \; ; \; g(x) = 0$$
 $L(x,\lambda) = f(x) - \lambda * g(x)$

25) What will you add?

Machine Learning Hyperparameters

ML Algorithms		Hyperparameters
Linear Regression		L1/L2 Penalty • Fit InterceptSolver
Logistic Regression		L1/L2 Penalty • Class WeightSolver
Naive Bayes	$P(A B) = \frac{P(B A)P(A)}{P(B)}$	AlphaBinarizeFit Prior
Decision Tree		CriterionMin SampleMax DepthSplit
Random Forest		 Criterion Max Depth Max Features
Gradient Boosted Trees		 Criterion Max Depth N Estimators Min Sample Split Learning Rate
Principal Component	PC2 PC1	N Component
K-Nearest Neighbor		N Neighbors Algorithm ('kd_tree', 'brute')
K-Means		N Clusters Max Iter Init
Dense Neural Networks	Input (X) Output (0) Hidden (H1) Hidden (H2)	 Hidden Layer Sizes • Solver Activation • Alpha Droput • Learning rate