1

Constructions using Python

G V V Sharma*

1

CONTENTS

1 Examples

2 Exercises 3

Abstract—This book introduces constructions in high school geometry using Python. The content and exercises are based on NCERT textbooks from Class 6-12. A simple introduction to Python and LaTeXfigures is provided in the process.

Download all python codes from

svn co https://github.com/gadepall/school/trunk/ ncert/constructions/codes

and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ ncert/constructions/figs

1 Examples

1.1. Draw Fig. 1.1.1 for a = 4, c = 3.

Fig. 1.1.1: Right Angled Triangle

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Solution: The vertices of $\triangle ABC$ are

$$\mathbf{A} = \begin{pmatrix} 0 \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
(1.1.1)

The python code for Fig. 1.1.1 is

codes/triangle/tri_right_angle.py

and the equivalent latex-tikz code is

The above latex code can be compiled as a standalone document as

figs/triangle/tri right angle alone.tex

1.2. Draw Fig. 1.2.1 for a = 4, c = 3.

Solution: The vertex **A** can be expressed in *polar coordinate form* as

$$\mathbf{A} = b \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \tag{1.2.1}$$

where

$$b = \sqrt{a^2 + c^2} = 5, \tan \theta = \frac{3}{4}$$
 (1.2.2)

The python code for Fig. 1.2.1 is

codes/triangle/tri polar.py

and the equivalent latex-tikz code is

figs/triangle/tri polar.tex

1.3. Draw Fig. 1.3.1 with a = 6, b = 5 and c = 4. **Solution:** Let the vertices of $\triangle ABC$ and **D** be

$$\mathbf{A} = \begin{pmatrix} p \\ q \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} p \\ 0 \end{pmatrix} \quad (1.3.1)$$

Then

$$AB = ||\mathbf{A} - \mathbf{B}||^2 = ||\mathbf{A}||^2 = c^2 \quad :: \mathbf{B} = \mathbf{0}$$
(1.3.2)

$$BC = \|\mathbf{C} - \mathbf{B}\|^2 = \|\mathbf{C}\|^2 = a^2$$
 (1.3.3)

$$AC = \|\mathbf{A} - \mathbf{C}\|^2 = b^2 \tag{1.3.4}$$

Fig. 1.2.1: Right Angled Triangle

Fig. 1.3.1

From (1.3.4),

$$b^{2} = \|\mathbf{A} - \mathbf{C}\|^{2} = \|\mathbf{A} - \mathbf{C}\|^{T} \|\mathbf{A} - \mathbf{C}\|$$
(1.3.5)
$$= \mathbf{A}^{T} \mathbf{A} + \mathbf{C}^{T} \mathbf{C} - \mathbf{A}^{T} \mathbf{C} - \mathbf{C}^{T} \mathbf{A}$$
(1.3.6)
$$= \|\mathbf{A}\|^{2} + \|\mathbf{C}\|^{2} - 2\mathbf{A}^{T} \mathbf{C}$$
(\therefore\textbf{A}^{T} \mathbf{C} = \mathbf{C}^{T} \mathbf{A})
(1.3.7)

$$= a^2 + c^2 - 2ap \tag{1.3.8}$$

yielding

$$p = \frac{a^2 + c^2 - b^2}{2a} \tag{1.3.9}$$

From (1.3.2),

$$\|\mathbf{A}\|^2 = c^2 = p^2 + q^2$$
 (1.3.10)

$$\implies q = \pm \sqrt{c^2 - p^2} \tag{1.3.11}$$

The python code for Fig. 1.3.1 is

and the equivalent latex-tikz code is

figs/triangle/tri sss.tex

1.4. Construct parallelogram ABCD in Fig. 1.4.1 given that BC = 5, AB = 6, $\angle C = 85^{\circ}$.

Fig. 1.4.1: Parallelogram Properties

Solution: BD is found using the cosine formula and $\triangle BDC$ is drawn using the approach in Construction 1.3 with

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \tag{1.4.1}$$

Since the diagonals bisect each other,

$$\mathbf{O} = \frac{\mathbf{B} + \mathbf{D}}{2} \tag{1.4.2}$$

$$\mathbf{A} = 2\mathbf{O} - \mathbf{C}.\tag{1.4.3}$$

AB and AD are then joined to complete the $\parallel gm$. The python code for Fig. 1.4.1 is

codes/quad/pgm sas.py

and The equivalent latex-tikz code is

figs/quad/pgm sas.tex

1.5. Draw the $\|\text{gm } ABCD \text{ in Fig. 1.5.1} \text{ with } BC = 6, CD = 4.5 \text{ and } BD = 7.5. \text{ Show that it is a rectangle.}$

Fig. 1.5.1: Rectangle

Solution: It is easy to verify that

$$BD^2 = BC^2 + C^2 (1.5.1)$$

Hence, using Baudhayana theorem,

$$\angle BCD = 90^{\circ} \tag{1.5.2}$$

and ABCD is a rectangle.

$$\mathbf{A} = \begin{pmatrix} 0 \\ 4.5 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} \quad (1.5.3)$$

The python code for Fig. 1.5.1 is

and the equivalent latex-tikz code is

1.6. Draw the rhombus BEST with BE = 4.5 and ET = 6.

Solution: The coordinates of the various points in Fig. 1.6.1 are obtained as

$$\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ -4.5 \end{pmatrix} \tag{1.6.1}$$

$$\mathbf{E} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \mathbf{S} = \begin{pmatrix} 4.5 \\ 0 \end{pmatrix}, \mathbf{T} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$
 (1.6.2)

1.7. A square is a rectangle whose sides are equal. Draw a square of side 4.5.

Solution: The coordinates of the various points

Fig. 1.6.1: Rhombus

in Fig. 1.7.1 are obtained as

$$\mathbf{A} = \begin{pmatrix} 0 \\ 4.5 \end{pmatrix}$$

$$(1.7.1)$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 4.5 \\ 0 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 4.5 \\ 4.5 \end{pmatrix} \mathbf{O} = \frac{\mathbf{B} + \mathbf{C}}{2}$$

$$(1.7.2)$$

2 Exercises

- 2.1. Construct a triangle of sides a = 4, b = 5 and c = 6.
- 2.2. Construct an isosceles triangle whose base is a = 8 cm and altitude AD = h = 4 cm
- 2.3. In $\triangle ABC$, given that a+b+c=11, $\angle B=45^{\circ}$ and $\angle C=45^{\circ}$, find a,b,c and sketch the triangle.
- 2.4. Draw $\triangle ABC$ with a = 6, c = 5 and $\angle B = 60^{\circ}$.
- 2.5. Draw $\triangle ABC$ with $a = 7, \angle B = 45^{\circ}$ and $\angle A = 105^{\circ}$.

Fig. 1.7.1: Square

- 2.6. $\triangle ABC$ is right angled at **B**. If a = 12 and b+c = 18, find b, c and draw the triangle.
- 2.7. In $\triangle ABC$, a = 8, $\angle B = 45^{\circ}$ and c b = 3.5. Sketch $\triangle ABC$.
- 2.8. In $\triangle ABC$, a = 6, $\angle B = 60^{\circ}$ and b-c = 2. Sketch $\triangle ABC$.
- 2.9. Draw $\triangle ABC$, given that a+b+c=11, $\angle B=30^{\circ}$ and $\angle C=90^{\circ}$.
- 2.10. Construct $\triangle xyz$ where xy = 4.5, yz = 5 and zx = 6.
- 2.11. Draw an equilateral triangle of side 5.5.
- 2.12. Draw $\triangle PQR$ with PQ = 4, QR = 3.5 and PR = 4. What type of triangle is this?
- 2.13. Construct $\triangle ABC$ such that AB = 2.5, BC = 6 and AC = 6.5. Find $\angle B$.
- 2.14. Construct $\triangle PQR$, given that PQ = 3, QR = 5.5 and $\angle PQR = 60^{\circ}$.
- 2.15. Construct $\triangle DEF$ such that DE = 5, DF = 3 and $\angle D = 90^{\circ}$.
- 2.16. Construct an isosceles triangle in which the lengths of the equal sides is 6.5 and the angle between them is 110°.
- 2.17. Construct $\triangle ABC$ with BC = 7.5, AC = 5 and $\angle C = 60^{\circ}$.
- 2.18. Construct $\triangle XYZ$ if XY = 6, $\angle X = 30^{\circ}$ and $\angle Y = 100^{\circ}$.
- 2.19. If AC = 7, $\angle A = 60^{\circ}$ and $\angle B = 50^{\circ}$, can you draw the triangle?

- 2.20. Construct $\triangle ABC$ given that $\angle A = 60^{\circ}$, $\angle B = 30^{\circ}$ and AB = 5.8.
- 2.21. Construct $\triangle PQR$ if $PQ = 5, \angle Q = 105^{\circ}$ and $\angle R = 40^{\circ}$.
- 2.22. Can you construct $\triangle DEF$ such that EF = 7.2, $\angle E = 110^{\circ}$ and $\angle F = 180^{\circ}$?
- 2.23. Construct $\triangle LMN$ right angled at M such that LN = 5 and MN = 3.

Solution:

Let

$$\mathbf{L} = \begin{pmatrix} 0 \\ l \end{pmatrix}, \mathbf{M} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{N} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 (2.23.1)

From the given information,

$$\|\mathbf{N} - \mathbf{M}\|^2 = \|\mathbf{N}\|^2 = 3^2 = 9$$
 (2.23.2)

$$\|\mathbf{L} - \mathbf{M}\|^2 = \|\mathbf{L}\|^2 = l^2$$
 (2.23.3)

$$\|\mathbf{L} - \mathbf{N}\|^2 = 5^2 = 25 \tag{2.23.4}$$

which can be expressed as

$$\|\mathbf{L} - \mathbf{N}\|^2 = (\mathbf{L} - \mathbf{N})^T (\mathbf{L} - \mathbf{N})$$
 (2.23.5)

=
$$\|\mathbf{L}\|^2 + \|\mathbf{N}\|^2 - 2\mathbf{L}^T\mathbf{N}$$
 (2.23.6)

$$\implies l^2 + 9 = 25 \tag{2.23.7}$$

or,
$$l = \pm 4$$
 (2.23.8)

For l=4, $\triangle LMN$ is plotted in the first quadrant in Fig. 2.23.1.

Fig. 2.23.1

2.24. Construct $\triangle PQR$ right angled at Q such that QR = 8 and PR = 10.

Solution: Let

$$\mathbf{Q} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 \\ p \end{pmatrix}$$
 (2.24.1)

Then,

$$\|\mathbf{P} - \mathbf{R}\|^2 = (\mathbf{P} - \mathbf{R})^T (\mathbf{P} - \mathbf{R})$$
 (2.24.2)
= $\|\mathbf{P}\|^2 + \|\mathbf{R}\|^2$ (2.24.3)

$$\mathbf{P}^{T}\mathbf{R} = \mathbf{R}^{T}\mathbf{P}, \mathbf{R}^{T}\mathbf{P} = 0 \qquad (2.24.4)$$

$$= p^2 + 64 = 10^2 (2.24.5)$$

$$\implies p = \pm 6 \tag{2.24.6}$$

Since positive area is considered here, only p =6 is taken into consideration. Thus,

$$\mathbf{P} = \begin{pmatrix} 0 \\ 6 \end{pmatrix} \tag{2.24.7}$$

and the desired traingle is plotted in Fig. 2.24.1

Fig. 2.24.1: Right Angle $\triangle PQR$

2.25. Construct right angled \triangle whose hypotenuse is 6 and one of the legs is 4.

> **Solution:** Let us consider $\triangle PQR$ right angled at Q and assume that we are restricted to first quadrant such that

$$\mathbf{Q} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 \\ p \end{pmatrix}$$
 (2.25.1)

Then,

$$\|\mathbf{P} - \mathbf{R}\|^2 = 36 \tag{2.25.2}$$

$$\implies p^2 + 16 = 36 \tag{2.25.3}$$

$$\implies p = \pm 2\sqrt{5} \tag{2.25.4}$$

 $p = +2\sqrt{5}$ is taken into consideration. So,the

vertices of $\triangle PQR$ in Fig. 2.25.1 are

$$\mathbf{P} = \begin{pmatrix} 0 \\ 2\sqrt{5} \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 (2.25.5)

Fig. 2.25.1: Right Angled $\triangle PQR$

2.26. Construct an isosceles right angled $\triangle ABC$ right angled at C such AC = 6.

Solution:

 $\therefore \triangle ABC$ is isosceles, its vertices are

$$\mathbf{C} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$$
 (2.26.1)

which are used to plot the desired triangle in Fig. 2.26.1.

2.27. Construct the triangles in Table 2.27.1.

S.NoTriangle		Given Measurements		
1	∆ABC	$\angle A = 85^{\circ}$	$\angle B = 115$	$^{\circ}$ AB = 5
2	△PQR	$\angle Q = 30^{\circ}$	$\angle R = 60^{\circ}$	QR = 4.7
3	∆ABC	$\angle A = 70^{\circ}$	$\angle B = 50^{\circ}$	AC = 3
4	△LMN	$\angle L = 60^{\circ}$	$\angle N = 120^{\circ}$	LM = 5
5	∆ABC	BC = 2	AB = 4	AC = 2
6	△PQR	PQ = 2.5	QR = 4	PR = 3.5
7	ΔXYZ	XY = 3	YZ = 4	XZ = 5
8	△DEF	DE = 4.5	EF = 5.5	DF = 4

TABLE 2.27.1

- (2.25.2) 2.28. Construct a quadrilateral *ABCD* such that *AB* = $5, \angle A = 50^{\circ}, AC = 4, BD = 5 \text{ and } AD = 6.$
 - 2.29. Construct PQRS where PQ = 4, QR = 6, RS =5, PS = 5.5 and PR = 7.
- Since first quadrant was assumed here, only 2.30. Draw JUMP with JU = 3.5, UM = 4, MP =5, PJ = 4.5 and PU = 6.5

Fig. 2.26.1: Isosceles Right Angle $\triangle ABC$

- 2.31. Construct a quadrilateral ABCD such that BC = 4.5, AC = 5.5, CD = 5, BD = 7 and AD = 5.5.
- 2.32. Can you construct a quadrilateral *PQRS* with PQ = 3, RS = 3, PS = 7.5, PR = 8 and SQ = 3

Solution: From the given information,

$$||\mathbf{P} - \mathbf{Q}|| = 3 \tag{2.32.1}$$

$$\|\mathbf{R} - \mathbf{S}\| = 3 \tag{2.32.2}$$

$$||\mathbf{P} - \mathbf{S}|| = 7.5 \tag{2.32.3}$$

$$\|\mathbf{P} - \mathbf{R}\| = 8 \tag{2.32.4}$$

$$\|\mathbf{S} - \mathbf{Q}\| = 4 \tag{2.32.5}$$

Let quadrilateral PQRS be made up of two triangles $\triangle PSQ$ and $\triangle PSR$ on base PS.

a) In $\triangle PSR$,

$$\|\mathbf{P} - \mathbf{S}\| + \|\mathbf{R} - \mathbf{S}\| = 7.5 + 3 = 10.5$$

> $\|\mathbf{P} - \mathbf{R}\|$ (2.32.6)

$$\|\mathbf{P} - \mathbf{R}\| + \|\mathbf{R} - \mathbf{S}\| = 8 + 3 = 11 > \|\mathbf{P} - \mathbf{S}\|$$
(2.32.7)

$$\|\mathbf{P} - \mathbf{S}\| + \|\mathbf{P} - \mathbf{R}\| = 7.5 + 8 = 15.5$$

> $\|\mathbf{R} - \mathbf{S}\|$ (2.32.8)

: using triangle inequality, construction of $\triangle PSR$ is possible.

b) In $\triangle PSQ$,

$$\|\mathbf{P} - \mathbf{S}\| + \|\mathbf{S} - \mathbf{Q}\| = 7.5 + 4 = 11.5$$

$$> \|\mathbf{P} - \mathbf{Q}\| \qquad (2.32.9)$$

$$\|\mathbf{P} - \mathbf{S}\| + \|\mathbf{P} - \mathbf{Q}\| = 7.5 + 3 = 10.5$$

$$> \|\mathbf{S} - \mathbf{Q}\| \qquad (2.32.10)$$

$$\|\mathbf{P} - \mathbf{Q}\| + \|\mathbf{S} - \mathbf{Q}\| = 3 + 4 = 7 < \|\mathbf{P} - \mathbf{S}\|$$

$$(2.32.11)$$

which violates triangle inequality. : construction of $\triangle PSQ$ is not possible.

Fig. 2.32.1 highlights this.

Fig. 2.32.1: Construction of quadrilateral *PQRS*

- 2.33. Construct LIFT such that LI = 4, IF = 3, TL =2.5, LF = 4.5, IT = 4.
- 2.34. Draw GOLD such that OL = 7.5, GL =6, GD = 6, LD = 5, OD = 10.
- 2.35. DRAW rhombus BEND such that BN = 5.6, DE = 6.5.
- (2.32.3) 2.36. construct a quadrilateral MIST where MI = $3.5, IS = 6.5, \angle M = 75^{\circ}, \angle I = 105^{\circ} \text{ and } \angle S =$ 120°.
 - 2.37. Can you construct the above quadrilateral MIST if $\angle M = 100^{\circ}$ instead of 75°.
 - 2.38. Can you construtt the quadrilateral PLAN if $PL = 6, LA = 9.5, \angle P = 75^{\circ}, \angle L = 150^{\circ}$ and $\angle A = 140^{\circ}$?
 - 2.39. Construct MORE where MO = 6, OR = $4.5, \angle M = 60^{\circ}, \angle O = 105^{\circ}, \angle R = 105^{\circ}.$
- $\|\mathbf{P} \mathbf{R}\| + \|\mathbf{R} \mathbf{S}\| = 8 + 3 = 11 > \|\mathbf{P} \mathbf{S}\|$ 2.40. Construct *PLAN* where *PL* = 4, *LA* = $6.5, \angle P = 90^{\circ}, \angle A = 110^{\circ} \text{ and } \angle N = 85^{\circ}.$
 - 2.41. Draw rectangle OKAY with OK = 7 and KA =
 - 2.42. Construct ABCD, where AB = 4, BC = 5, Cd =6.5, $\angle B = 105^{\circ}$ and $\angle C = 80^{\circ}$.
 - 2.43. Construct *DEAR* with DE = 4, EA = 5, AR = 1

- 4.5, $\angle E = 60^{\circ}$ and $\angle A = 90^{\circ}$.
- 2.44. Construct TRUE with TR = 3.5, RU3, $UE = 4\angle R = 75^{\circ} \text{ and } \angle U = 120^{\circ}.$
- AC = 6 and BD = 7?
- 2.46. Draw a square READ with RE = 5.1.
- 2.47. Draw a rhombus who diagonals are 5.2 and
- 2.48. Draw a rectangle with adjacent sides 5 and 4.
- 2.49. Draw a parallelogram OKAY with OK = 5.5and KA = 4.2.
- 2.50. Construct a kite EASY if AY = 8, EY = 4 and SY = 6.
- 2.51. Draw a circle of diameter 6.1
- 2.52. With the same centre **O**, draw two circles of radii 4 and 2.5

Solution:

All input values required to plot Fig. 2.52.1 are given in Table 2.52.1 as shown below

	Symbols	Circle1	Circle2
Centre	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Radius	r_1,r_2	2.5	4
Polar coordinate	$\mathbf{C}_1,\mathbf{C}_2$	$2.5 \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$	$4 \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
Angle	θ	$0-2\pi$	$0-2\pi$

TABLE 2.52.1: Input values

Fig. 2.52.1: Concentric circles with centre as origin and radii 2.5 and 4 respectively

2.53. Draw a circle with centre **B** and radius 6. If C be a point 10 units away from its centre, construct the pair of tangents AC and CD to the circle.

- 2.54. Draw a circle of radius 3 and any two of its diameters. Draw the ends of these diameters. What figure do you get?
- 2.45. Can you construct a rhombus ABCD with 2.55. Let A and B be the centres of two circles of equal radii 3 such that each one of them passes through the centre of the other. Let them intersect at C and D. Is $AB \perp CD$?
 - 2.56. Construct a tangent to a circle of radius 4 units from a point on the concentric circle of radius 6 units.

Solution: Take the centre of both circles to be at the origin.

2.57. Draw a circle of radius 3 units. Take two points P and O on one of its extended diameter each at a distance of 7 units from its centre. Draw tangents to the circle from these two points P and **O**.

Solution: Take the diameter to be on the x-

2.58. Draw a pair of tangents to a circle of radius 5 units which are inclined to each other at an angle of 60°.

> Solution: The tangent is perpendicular to the radius.

2.59. Draw a line segment AB of length 8 units. Taking A as centre, draw a circle of radius 4 units and taking **B** as centre, draw another circle of radius 3 units. Construct tangents to each circle from the centre of the other circle.

Solution: Let

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}. \tag{2.59.1}$$

- 2.60. Let ABC be a right triangle in which a = 8, c =6 and $\angle B = 90^{\circ}$. BD is the perpendicular from **B** on AC (altitude). The circle through **B**, **C**, **D** (circumcircle of $\triangle BCD$) is drawn. Construct the tangents from A to this circle.
- 2.61. Draw a circle with centre C and radius 3.4. Draw any chord. Construct the perpendicular bisector of the chord and examine if it passes through C