

### for Graphs and Document Collections Fast Effective Clustering

William W. Cohen

Machine Learning Dept. and Language Technologies Institute School of Computer Science Carnegie Mellon University

Joint work with: Frank Lin





#### Outline

- Background on spectral clustering
- "Power Iteration Clustering"
- Motivation
- Experimental results
- Analysis: PIC vs spectral methods
- PIC for sparse bipartite graphs
- Motivation & Method
- Experimental Results



# Spectral Clustering: Graph = Matrix









### Transitively Closed Components = "Blocks" Spectral Clustering: Graph = Matrix





Of course we can't see the "blocks" unless the nodes are sorted by cluster ..



## Spectral Clustering: Graph = Matrix Vector = Node > Weight

> **>** 









 $M * V_1 = V_2$ 

|   |   |            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | B       | )       |   |   |   |   |     |   |
|---|---|------------|----------------------------------------|---------|---------|---|---|---|---|-----|---|
| 7 |   | 2*1+3*1+0* | <b>-</b>                               | 3*1+3*1 | 3*1+2*1 |   |   |   |   |     |   |
| • |   | 4          |                                        | a       | ပ       | ۵ | ш | L | O | エ   | Н |
|   |   |            |                                        |         |         |   |   |   |   |     |   |
|   |   | m          | 0                                      | က       |         |   |   |   |   |     |   |
|   |   | 4          | a                                      | U       | Δ       | Ш | L | 0 | I | Н   | b |
|   | Ь |            |                                        |         |         |   |   | - | - | -   | I |
|   | Н |            |                                        |         |         |   |   | - | - | - 1 | - |
|   | I |            |                                        |         |         |   |   |   | ı | -   | - |
|   | 0 |            |                                        |         |         |   |   | I |   | -   | - |
|   | ட | 1          |                                        |         | -       | - | ı |   |   |     |   |
|   | ш |            |                                        |         | -       | ı | - |   |   |     |   |
|   | Δ |            |                                        |         | ı       | - | - |   |   |     |   |
|   | U | -          | -                                      | I       |         |   |   |   |   |     |   |
|   | a | -          | J                                      | -       |         |   |   |   |   |     |   |
|   | 4 | I          | -                                      | -       |         |   |   |   |   |     |   |
|   |   | 4          | a                                      | U       | ۵       | ш | L | O | I | н   | Ь |
|   |   |            |                                        |         |         |   |   |   |   |     |   |



W: normalized so columns sum to 1

 $W * V_1 = V_2$ 

|            | U)             |             | (B)   |            |    | <u>ш</u> |      | E   |   |        |    |
|------------|----------------|-------------|-------|------------|----|----------|------|-----|---|--------|----|
|            | 2*.5+3*.5+0*.3 | о<br>С<br>С | 55+55 | 3*.33+2*.5 |    |          |      |     |   |        |    |
|            | 4              | (           | מ     | U          |    |          | ) LL | . 0 | I | Н      | b  |
|            |                |             |       |            |    |          |      |     |   |        |    |
|            | က              | 0           | ~     | ר          |    |          |      |     |   |        |    |
|            | 4              | m           | ر     | <b>)</b>   | Δ  | Ш        | L    | 0   | I | н      | b  |
| <b>-</b>   |                |             |       |            |    |          |      | w.  | w | w.     | ı  |
| <b>–</b> 1 |                |             |       |            |    |          |      | w.  | w | I      | w  |
| I          |                |             |       |            |    |          |      |     | ı | ιυ.    | ī  |
| 0          |                |             |       |            |    |          |      | I   |   | ι<br>L | īŪ |
| _          | w.             |             |       |            | m. | w.       | I    |     |   |        |    |
| n          |                |             |       |            | ι. | I        | ιύ   |     |   |        |    |
| ۵          |                |             |       |            | I  | ι.       | ιύ   |     |   |        |    |
| ပ          | rö.            | ιύ          | I     |            |    |          |      |     |   |        |    |
| n          | ιύ.            | I           | ι.    |            |    |          |      |     |   |        |    |
|            | ı              | က်          | w     |            |    |          | w.   |     |   |        |    |



 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v} : \mathbf{v}$  is an eigenvector with eigenvalue  $\lambda$ 

Q: How do I pick **v** to be an eigenvector for a block-stochastic matrix?





 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v} : \mathbf{v}$  is an eigenvector with eigenvalue  $\lambda$ 

How do I pick v to be an eigenvector for a blockstochastic matrix?







# Spectral Clustering: Graph = Matrix

 $W^*v_1 = v_2$  "propogates weights from neighbors"

 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v} : \mathbf{v}$  is an eigenvector with eigenvalue  $\lambda$ 



[Shi & Meila, 2002]





## Spectral Clustering: Graph = Matrix

 $W^*v_1 = v_2$  "propogates weights from neighbors"

 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v} : \mathbf{v}$  is an eigenvector with eigenvalue  $\lambda$ 



[Shi & Meila, 2002]

seg.1 seg.2 seg.3



 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v} : \mathbf{v}$  is an eigenvector with eigenvalue  $\lambda$ 

If W is connected but roughly block diagonal with k blocks then

- the top eigenvector is a constant vector
- the next *k* eigenvectors are roughly piecewise constant with "pieces" corresponding to blocks







 $\mathbf{W} \cdot \mathbf{v} = \lambda \mathbf{v} : \mathbf{v}$  is an eigenvector with eigenvalue  $\lambda$ 

roughly block diagonal with k • Find the top k+1 If W is connected but blocks then

- the "top" eigenvector is a constant vector
- the next k eigenvectors are with "pieces" corresponding roughly piecewise constant to blocks

Spectral clustering:

- eigenvectors V<sub>1</sub>,...,V<sub>k+1</sub>
- Discard the "top" one
- with k-dimensional vector Replace every node a  $x_a = \langle \mathbf{v}_2(a), ..., \mathbf{v}_{k+1}(a) \rangle$ 
  - · Cluster with k-means



# Spectral Clustering: Pros and Cons

- Elegant, and well-founded mathematically
- Tends to avoid local minima
- Optimal solution to relaxed version of mincut problem (Normalized cut, aka NCut)
- Works quite well when relations are approximately transitive (like similarity, social connections)
- Expensive for very large datasets
- Computing eigenvectors is the bottleneck
- Approximate eigenvector computation not always useful
- Noisy datasets sometimes cause problems
- Picking number of eigenvectors and k is tricky
- "Informative" eigenvectors need not be in top few
- Performance can drop suddenly from good to terrible



### best-case assignment of class labels to clusters Experimental results:

|      |          |       |             |             |          |        |       | *       | * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A + 1 |         |   |    |   |            |
|------|----------|-------|-------------|-------------|----------|--------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---|----|---|------------|
| W    | Macro-F1 | 908.0 | 1.000       | 0.754       | 0.953    | 0.342  | 0.955 | 7 CT 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |   |    |   |            |
| WLN  | Accuracy | 0.807 | 1.000       | 0.755       | 0.953    | 0.520  | 0.955 | 0 5 5 0 | of the state of th |       |         |   |    |   |            |
| Sut  | Macro-F1 | 0.570 | 1.000       | 0.753       | 0.953    | 0.342  | 0.955 | 0.344   | 0.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.432 | 0.663   | / | ¥* | 1 |            |
| NCut | Accuracy | 0.673 | 1.000       | 0.755       | 0.953    | 0.520  | 0.955 | 0.505   | 0.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.469 | 0.716   |   |    |   | ance       |
|      | K        | т     | 7           | 2           | 2        | 7      | 7     | 7       | $\mathfrak{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4     |         |   |    |   |            |
|      | Dataset  | Iris  | PenDigits01 | PenDigits17 | UBMCBlog | AGBlog | 20ngA | 20ngB   | 20ngC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20ngD | Average |   |    |   | Adamic & G |

"Divided They Blog:..." 2004



### Spectral Clustering: Graph = Matrix $M^*v_1 = v_2$ "propogates weights from neighbors"

| II                    |  |
|-----------------------|--|
| <b>V</b> <sub>1</sub> |  |
| Je                    |  |
| *                     |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



|     | (II) |
|-----|------|
| (A) | D    |
|     |      |

|     |                              | _ |
|-----|------------------------------|---|
|     |                              | H |
|     | $\langle \rangle$            |   |
| (U) | $\overline{}$                |   |
|     | $\langle \mathbf{m} \rangle$ |   |
|     |                              |   |
|     |                              |   |



### Repeated averaging with neighbors as a clustering method

- Pick a vector v<sup>0</sup> (maybe at random)
- Compute  $v^1 = Wv^0$
- i.e., replace  $v^0[x]$  with weighted average of  $v^0[y]$  for the neighbors y of x
- Plot v<sup>1</sup>[x] for each x
- Repeat for v<sup>2</sup>, v<sup>3</sup>, ...
- Variants widely used for semi-supervised learning
- clamping of labels for nodes with known labels
- Without clamping, will converge to constant v<sup>†</sup>
- What are the dynamics of this process?



problem...

blue green





(b) Embedding at t=10

(a) 3Circles PIC result

 Create a graph, connecting all points in the 2-D initial space to all other points

- Weighted by distance
- Run power iteration for 10 steps
  - Plot node id x vs v<sup>10</sup>(x)
- nodes are ordered by actual cluster number









smaller



problem...



(d) Embedding at t=100

(a) 3Circles PIC result

(b) Embedding at t=10

(C) Embedding at t=50

blue green rec

red

<u>blue</u> green

(e) Embedding at t=200

(f) Embedding at t=400





problem...









(d) Embedding at t = 100

(c) Embedding at t=50

(b) Embedding at t = 10

(a) 3Circles PIC result





very small



(f) Embedding at t=400

(e) Embedding at t = 200

(g) Embedding at t = 600

(h) Embedding at t=1000



## PIC: Power Iteration Clustering

run power iteration (repeated averaging w/ neighbors) with early stopping

1. Pick an initial vector  $\mathbf{v}^0$ 

2. Set 
$$\mathbf{v^{t+1}} \leftarrow \frac{W\mathbf{v^t}}{\|W\mathbf{v^t}\|_1}$$
 and  $\delta^{t+1} \leftarrow |\mathbf{v^{t+1}} - \mathbf{v^t}|$ .

3. Increment t and repeat above step until  $|\delta^t - \delta^{t-1}| \simeq 0$ .

4. Use k-means to cluster points on  $\mathbf{v}^{\mathsf{t}}$  and return clusters  $C_1, C_2, ..., C_k$ .

Vo: random start, or "degree matrix" D, or ...

Easy to implement and efficient

Very easily parallelized

Experimentally, often better than traditional spectral methods

Surprising since the embedded space is 1-dimensional!



### Experiments

- "Network" problems: natural graph structure
- PolBooks: 105 political books, 3 classes, linked by copurchaser
- UMBCBlog: 404 political blogs, 2 classes, blogroll links
- AGBlog: 1222 political blogs, 2 classes, blogroll links
- "Manifold" problems: cosine distance between classification instances
- . Iris: 150 flowers, 3 classes
- PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)
- 20ngA: 200 docs, misc.forsale vs soc.religion.christian
- 20ngB: 400 docs, misc.forsale vs soc.religion.christian
- 20ngC: 20ngB + 200 docs from talk.politics.guns
- 20ngD: 20ngC + 200 docs from rec.sport.baseball



### best-case assignment of class labels to clusters Experimental results:

|             |    | NCI      | Sut      | Z        | WtN      | P.       | PIC      |
|-------------|----|----------|----------|----------|----------|----------|----------|
| Dataset     | K  | Accuracy | Macro-F1 | Accuracy | Macro-F1 | Accuracy | Macro-F1 |
| Iris        | m  | 0.673    | 0.570    | 0.807    | 908.0    | 0.980    | 0.980    |
| PenDigits01 | 7  | 1.000    | 1.000    | 1.000    | 1.000    | 1.000    | 1.000    |
| PenDigits17 | 7  | 0.755    | 0.753    | 0.755    | 0.754    | 0.755    | 0.753    |
| UBMCBlog    | 7  | 0.953    | 0.953    | 0.953    | 0.953    | 0.948    | 0.948    |
| AGBlog      | 2  | 0.520    | 0.342    | 0.520    | 0.342    | 0.957    | 0.957    |
| 20ngA       | 7  | 0.955    | 0.955    | 0.955    | 0.955    | 0.960    | 096.0    |
| 20ngB       | 7  | 0.505    | 0.344    | 0.550    | 0.436    | 0.905    | 0.904    |
| 20ngC       | n  | 0.613    | 0.621    | 0.635    | 0.639    | 0.737    | 0.730    |
| 20ngD       | 4  | 0.469    | 0.432    | 0.535    | 0.534    | 0.580    | 0.570    |
| Average     | į, | 0.716    | 0.663    | 0.746    | 0.713    | 698.0    | 0.867    |
|             |    |          |          |          |          |          |          |

Table 1: Clustering performance of PIC and spectral clustering algorithms on several real datasets.









# Experiments: run time and scalability

| erations    | 9                    | 9                                                                                                     | 9                                                                                                                                                      | 21                                                                                                                                                                                                       | 34                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                        | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|----------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Runtime Ite | 59                   | 99                                                                                                    | 62                                                                                                                                                     | 85                                                                                                                                                                                                       | 211                                                                                                                                                                                                                                         | 72                                                                                                                                                                                                                                                                                                  | 139                                                                                                                                                                                                                                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                                                                                       | 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Runtime     | 242                  | 326                                                                                                   | 528                                                                                                                                                    | 1589                                                                                                                                                                                                     | 58145                                                                                                                                                                                                                                       | 355                                                                                                                                                                                                                                                                                                 | 1864                                                                                                                                                                                                                                                                                                                                                   | 6383                                                                                                                                                                                                                                                                                                                                                                                                      | 16295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Runtime     | 685                  | 965                                                                                                   | 1197                                                                                                                                                   | 4205                                                                                                                                                                                                     | 114821                                                                                                                                                                                                                                      | 1113                                                                                                                                                                                                                                                                                                | 4085                                                                                                                                                                                                                                                                                                                                                   | 13070                                                                                                                                                                                                                                                                                                                                                                                                     | 33191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Size        | 150                  | 200                                                                                                   | 200                                                                                                                                                    | 404                                                                                                                                                                                                      | 1222                                                                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                                                                                                                    | 009                                                                                                                                                                                                                                                                                                                                                                                                       | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dataset     | Iris                 | PenDigits01                                                                                           | PenDigits17                                                                                                                                            | UBMCBlog                                                                                                                                                                                                 | AGBlog                                                                                                                                                                                                                                      | 20ngA                                                                                                                                                                                                                                                                                               | 20ngB                                                                                                                                                                                                                                                                                                                                                  | 20ngC                                                                                                                                                                                                                                                                                                                                                                                                     | 20ngD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | Size Runtime Runtime | Size         Runtime         Runtime         Runtime           150         589         242         59 | Size         Runtime         Runtime         Runtime           150         589         242         59           200         965         326         56 | Size         Runtime         Runtime         Runtime           150         589         242         59           200         965         326         56           200         1197         528         62 | Size         Runtime         Runtime           150         589         242         59           200         965         326         56           200         1197         528         62           404         4205         1589         85 | Size         Runtime         Runtime           150         589         242         59           200         965         326         56           200         1197         528         62           404         4205         1589         85           1222         114821         58145         211 | Size         Runtime         Runtime           150         589         242         59           200         965         326         56           200         1197         528         62           404         4205         1589         85           1222         114821         58145         211           200         1113         3555         72 | Size         Runtime         Runtime           150         589         242         59           200         965         326         56           200         1197         528         62           404         4205         1589         85           1222         114821         58145         211           200         1113         355         72           400         4085         1864         139 | Size         Runtime         Runtime           150         589         242         59           11         200         965         326         56           17         200         1197         528         62           18         404         4205         1589         85           12         114821         58145         211           200         11113         355         72           400         4085         1864         139           600         13070         6383         190 |

Time in millisec



eigenvectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ 

eigenvalues  $\lambda_1, \ldots, \lambda_n$ ,

 $\mathbf{s}_a = \langle \mathbf{e}_1(a), \dots, \mathbf{e}_k(a) \rangle,$ 

$$spec(a, b) \equiv \|\mathbf{s}_a - \mathbf{s}_b\|_2 = \sqrt{\sum_{i=2}^{\kappa} (\mathbf{e}_i(a) - \mathbf{e}_i(b))^2}$$

$$pic^t(\mathbf{v}^0; a, b) \equiv |\mathbf{v}^t(a) - \mathbf{v}^t(b)|$$



eigenvectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ 

eigenvalues  $\lambda_1, \ldots, \lambda_n$ ,

 $\mathbf{s}_a = \langle \mathbf{e}_1(a), \dots, \mathbf{e}_k(a) \rangle,$ 

 $pic^t(\mathbf{v}^0; a, b) \equiv |\mathbf{v}^t(a) - \mathbf{v}^t(b)|$ 

 $\mathbf{v}^{t} = W\mathbf{v}^{t-1} = W^{2}\mathbf{v}^{t-2} = \dots = W^{t}\mathbf{v}^{0}$  $= c_{1}W^{t}\mathbf{e}_{1} + c_{2}W^{t}\mathbf{e}_{2} + \dots + c_{n}W^{t}\mathbf{e}_{n}$ 

 $= c_1 \lambda_1^t \mathbf{e}_1 + c_2 \lambda_2^t \mathbf{e}_2 + \dots + c_n \lambda_n^t \mathbf{e}_n$ 

 $pic^t(a,b) = \left| [\mathbf{e}_1(a) - \mathbf{e}_1(b)]c_1\lambda_1^t \right|$ 

 $+ \sum [\mathbf{e}_i(a) - \mathbf{e}_i(b)]c_i\lambda_i^t + \sum [\mathbf{e}_j(a) - \mathbf{e}_j(b)]c_j\lambda_j^t$ 



eigenvectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ 

eigenvalues  $\lambda_1, \ldots, \lambda_n$ ,

 $\mathbf{s}_a = \langle \mathbf{e}_1(a), \dots, \mathbf{e}_k(a) \rangle,$ 

L2 distance

 $spec(a,b) \equiv \|\mathbf{s}_a - \mathbf{s}_b\|_2 = \sqrt{\sum_{i=2} (\mathbf{e}_i(a) - \mathbf{e}_i(b))^2}$  $pic^{t}(a,b) = [\mathbf{e}_{1}(a) - \mathbf{e}_{1}(b)]c_{1}\lambda_{1}^{t}$ 

 $+ \sum [\mathbf{e}_i(a) - \mathbf{e}_i(b)]c_i\lambda_i^t + \sum [\mathbf{e}_j(a) - \mathbf{e}_j(b)]c_j\lambda_j^t$ scaling?

differences might cancel?

k+1 "noise" terms



- eigenvectors e<sub>2</sub>,...,e<sub>k</sub> are approximately piecewise constant on blocks;
- $\lambda_2,..., \lambda_k$  are "large" and  $\lambda_{k+1},...$  are "small";
- · e.g., if matrix is block-stochastic
- the c<sub>i</sub>'s for v<sup>0</sup> are bounded;
- for any a,b from distinct blocks there is at least one  $e_i$  with  $e_i(a)-e_i(b)$  "large"
- Then exists an R so that
- spec(a,b) small ⇔ R\*pic(a,b) small



eigenvectors  $\mathbf{e}_1, \dots, \mathbf{e}_n$ 

eigenvalues  $\lambda_1, \ldots, \lambda_n$ ,

$$\mathbf{s}_a = \langle \mathbf{e}_1(a), \dots, \mathbf{e}_k(a) \rangle,$$

 $spec(a, b) \equiv \|\mathbf{s}_a - \mathbf{s}_b\|_2 = \sqrt{\sum_{i=2} (\mathbf{e}_i(a) - \mathbf{e}_i(b))^2}$ 

$$pic^t(a,b) = |\mathbf{e}_1(a) - \mathbf{e}_1(b)|c_1\lambda_1^t$$

 $+\sum_{i=-n}^{k} [\mathbf{e}_i(a) - \mathbf{e}_i(b)] c_i \lambda_i^t + \sum_{j=k+1}^{n} [\mathbf{e}_j(a) - \mathbf{e}_j(b)] c_j \lambda_j^t \Big|$ 

- Sum of differences vs sum-of-squared differences
- "soft" eigenvector selection



| m RI    | 0.7779 | 1.0000      | 0.6301      | 0.8447   | 0.9104          | 0.5006 | 0.9232 | 0.5001 | 0.6750            | 0.6312 | 0.7393  |
|---------|--------|-------------|-------------|----------|-----------------|--------|--------|--------|-------------------|--------|---------|
| NMI     | 0.7235 | 1.0000      | 0.2066      | 0.5745   | 0.7488          | 0.0000 | 0.7594 | 0.0096 | 0.3295            | 0.2385 | 0.4596  |
| Purity  | 0.6733 | 1.0000      | 0.7550      | 0.8476   | 0.9530          | 0.5205 | 0.9600 | 0.5050 | 0.6183            | 0.4750 | 0.7308  |
| ¥       | 3      | 2           | 2           | က        | 2               | 2      | 2      | 2      | က                 | 4      |         |
| Dataset | Iris   | PenDigits01 | PenDigits17 | PolBooks | ${ m UBMCBlog}$ | AGBlog | 20ngA  | 20 ngB | $20 \mathrm{ngC}$ | 20 ngD | Average |

### Ncut with top *k* eigenvectors

## Ncut with top 10 eigenvectors: weighted

Table 2. Clustering performance of eigenvalue-weighted NCut on several real datasets. For all measures a higher number means better clustering. Bold numbers are the highest in its row.

| $\sqrt{\lambda_i^{+}}$             | $\mathbf{RI}$    | 0.9741 | 1.0000      | 0.6301      | 0.8453                    | 0.9104                    | 0.9051 | 0.8961 | 0.5001 | 0.6784            | 0.7129 | 0.8052        |
|------------------------------------|------------------|--------|-------------|-------------|---------------------------|---------------------------|--------|--------|--------|-------------------|--------|---------------|
| $e_i$ weighted by $\lambda_i^{ij}$ | NMI              | 0.9306 | 1.0000      | 0.2066      | 0.5936                    | 0.7488                    | 0.7175 | 0.7005 | 0.0096 | 0.4719            | 0.2906 | 0.5670        |
| $\mathbf{e}_i$ we                  | Purity           | 0.9800 | 1.0000      | 0.7550      | 0.8381                    | 0.9530                    | 0.9501 | 0.9450 | 0.5050 | 0.6350            | 0.5263 | 0.8087        |
| $y \lambda_i$                      | $_{ m RI}$       | 0.9741 | 1.0000      | 0.6301      | 0.8514                    | 0.9059                    | 0.9066 | 0.9232 | 0.8961 | 0.7025            | 0.6425 | 0.8432        |
| eighted b                          | urity NMI RI     | 0.9306 |             | 0.2066      | 0.5861                    | 0.7400                    | 0.7223 | 0.7594 | 0.7042 | 0.3772            | 0.2555 | 0.6282        |
| $\mathbf{e}_i$ We                  | Purity           | 0.9800 | 1.0000      | 0.7550      | 0.8476                    | 0.9505                    | 0.9509 | 0.9600 | 0.9450 | 0.6617            | 0.4875 | 0.8538        |
| hts                                | m RI             | 0.7254 | 0.5800      | 0.5800      | 0.4413                    | 0.9059                    | 0.9037 | 0.5072 | 0.5903 | 0.6546            | 0.6368 | 0.6525        |
| uniform weights                    | NMI              | 0.6507 | 0.2746      | 0.1810      | 0.1040                    | 0.7400                    | 0.7143 | 0.0685 | 0.2734 | 0.3866            | 0.2365 | 0.3630        |
| unifc                              |                  | 0.6667 |             | 0.7000      | 0.4857                    |                           |        |        | 0.7125 | 0.6867            | 0.4763 | 0.6888 0.3630 |
|                                    | k                | 3      | 2           | 2           | 3                         | 2                         | 2      | 5      | 2      | 3                 | 4      |               |
|                                    | Dataset k Purity | Iris   | PenDigits01 | PenDigits17 | $\operatorname{PolBooks}$ | $\operatorname{UBMCBlog}$ | AGBlog | 20 ngA | 20 ngB | $20 \mathrm{ngC}$ | 20 ngD | Average       |



| $\mathbf{RI}$ | 0.7779 | 1.0000      | 0.6301      | 0.8447   | 0.9104          | 0.5006 | 0.9232 | 0.5001 | 0.6750            | 0.6312 | 0.7393  |
|---------------|--------|-------------|-------------|----------|-----------------|--------|--------|--------|-------------------|--------|---------|
| NMI           | 0.7235 | 1.0000      | 0.2066      | 0.5745   | 0.7488          | 0.0000 | 0.7594 | 0.0096 | 0.3295            | 0.2385 | 0.4596  |
| k Purity      | 0.6733 | 1.0000      | 0.7550      | 0.8476   | 0.9530          | 0.5205 | 0.9600 | 0.5050 | 0.6183            | 0.4750 | 0.7308  |
| ¥             | က      | 2           | 2           | 3        | 2               | 2      | 2      | 2      | 3                 | 4      |         |
| Dataset       | Iris   | PenDigits01 | PenDigits17 | PolBooks | ${ m UBMCBlog}$ | AGBlog | 20ngA  | 20ngB  | $20 \mathrm{ngC}$ | 20 ngD | Average |

| RI<br>0.9741<br>1.0000     |
|----------------------------|
| 0.                         |
| NMI<br>0.9306<br>1.0000    |
| N 0.9                      |
| Purity<br>0.9800<br>1.0000 |
| _ ~ ~                      |

Table 2. Clustering performance of eigenvalue-weighted NCut on several real datasets. For all measures a higher number means better clustering. Bold numbers are the highest in its row



## Summary of results so far

- Both PIC and Ncut embed each graph node in a space where distance is meaningful
- Distances in "PIC space" and Eigenspace are closely related
- At least for many graphs suited to spectral clustering
- PIC does "soft" selection of eigenvectors
- Strong eigenvalues give high weights
- PIC gives comparable-quality clusters
- But is much faster



#### Outline

- Background on spectral clustering
- "Power Iteration Clustering"
- Motivation
- Experimental results
- Analysis: PIC vs spectral methods
- PIC for sparse bipartite graphs
- "Lazy" Distance Computation "Lazy" Normalization
- Experimental Results



# Motivation: Experimental Datasets are...

"Network" problems: natural graph structure

- PolBooks: 105 political books, 3 classes, linked by copurchaser

UMBCBlog: 404 political blogs, 2 classes, blogroll links

AGBlog: 1222 political blogs, 2 classes, blogroll links

Also: Zachary's karate club, citation networks, ...

"Manifold" problems: cosine distance between all pairs of classification instances

Iris: 150 flowers, 3 classes

Gets expensive fast

PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)

20ngA: 200 docs, misc.forsale vs soc.religion.christian

20ngB: 400 docs, misc.forsale vs soc.religion.christian



### Lazy computation of distances and normalizers

Recall PIC's update is

$$- v^{\dagger} = W * v^{\dagger-1} = D^{-1}A * v^{\dagger-1}$$

1 is a column vector of 1's

- ...where D is the [diagonal] degree matrix:  $D=A^*1$ 

<u, v>=inner product My favorite distance metric for text is lengthnormalized TFIDF:

||u|| is L2-norm

- Let N(i,i)=||v<sub>i</sub>|| ... and N(i,j)=0 for il=j

- Let F(i,k)=TFIDF weight of word wk in document vi

- Then:  $A = N^{-1}F^{T}FN^{-1}$ 



### Equivalent to using Lazy computation of distances and normalizers

Recall PIC's update is

$$- v^{\dagger} = W * v^{\dagger-1} = D^{-1}A * v^{\dagger-1}$$

sparse matrices

TFIDF/cosine on all pairs of

examples but requires only

- ...where D is the [diagonal] degree matrix:  $D=A^*1$ 

Let F(i,k)=TFIDF weight of word wk in document vi

- Compute  $N(i,i)=||v_i||$  ... and N(i,j)=0 for il=j

- Don't compute  $A = N^{-1}F^{T}FN^{-1}$ 

- Let D(i,i)= N-1FTFN-1\*1 where 1 is an all-1's vector

• Computed as  $D=N^{-1}(F^{T}(F(N^{-1}*1)))$  for efficiency

New update:

$$\cdot v^{\dagger} = D^{-1}A * v^{\dagger-1} = D^{-1} N^{-1}F^{\top}FN^{-1} * v^{\dagger-1}$$



## Experimental results

- RCV1 text classification dataset
- 800k + newswire stories
- Category labels from industry vocabulary
- Took single-label documents and categories with at least 500 instances
- Result: 193,844 documents, 103 categories
- Generated 100 random category pairs
- Each is all documents from two categories
- Range in size and difficulty
- Pick category 1, with m<sub>1</sub> examples
- Pick category 2 such that 0.5m<sub>1</sub><m<sub>2</sub><2m<sub>1</sub>



|                 | ACC-Avg      | NMI-Avg |
|-----------------|--------------|---------|
| baseline        | 57.59        | 1       |
| k-means         | 69.43        | 0.2629  |
| NCUTevd         | 77.55        | 0.3962  |
| <b>NCUTiram</b> | 61.63        | 0.0943  |
| PIC             | <b>16.67</b> | 0.3818  |

- NCUTevd: Ncut with exact eigenvectors
- NCUTiram: Implicit restarted Arnoldi method
- No stat. signif. diffs between NCUTevd and PIC











- Linear run-time implies constant number of iterations
- Number of iterations to "accelerationconvergence" is hard to analyze:
- Faster than a single complete run of power iteration to convergence
- On our datasets
- 10-20 iterations is typical
- 30-35 is exceptional





### Thanks to...

- · NIH/NIGWS
- · NSF
- Microsoft LiveLabs
- Google