

Hasta el momento:

- Se definieron modelos simples de regresión, con el caso lineal.
- Se abordó el problema desde la perspectiva del ML.
- Se programaron distintas versiones, con y sin gradiente descendiente.

¿Cómo se puede medir el rendimiento de nuestros modelos?

Es posible utilizar cuatro métricas para medir el desempeño en modelos de regresión.

Error Cuadrático Medio

Es la métrica más común, de forma convexa, fácil de diferenciar y, como resultado, fácil de optimizar.

$$ECM = \frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$

- Penaliza errores grandes y elimina el signo.
- Es un arma de doble filo:
 - Sobre estima errores

Raíz del Error Cuadrático Medio

Es la métrica más común, de forma convexa, fácil de diferenciar y, como resultado, fácil de optimizar.

$$RECM = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\widehat{y}_i - y_i)^2}$$
• Es deseable que el error sea lo más pequeño.
• Un error grande implica que hay mucha desviación en los dates y el valor que se predice

- hay mucha desviación en los datos y el valor que se predice.

Error Absoluto Medio

Es la métrica más sencilla en su estructura, pero tiene la característica de no penalizar grandes errores y truena con outliers.

$$EAM = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

R² Score

Esta métrica oscila entre 0 y 1.

- Entre más cercano sea a 1, mejor es nuestro modelo de regresión.
- Si es cercano a 0, no es mejor que una selección al azar.
- Si es negativo, el modelo tiene errores.

$$SSE = \sum_{I=1}^{n} (\hat{y}_i - y_i)^2$$

$$R^2 = 1 - \frac{SSE}{SST}$$

$$SST = \sum_{I=1}^{n} (\bar{y}_i - y_i)^2$$

Se puede interpretar como la razón entre:

- la varianza que explica el modelo
- total de la varianza

Tarea

- ¿Cómo se ve el Error Cuadrático Medio desde la perspectiva de estimar un parámetro?
 - Escribir la forma matemática
- Investigar en qué consiste el \mathbb{R}^2 ajustado.

Luis Zúñiga

p40887@correo.uia.mx

Sitio web