NOTE: This lecture differs significantly from the textbook.

Network Security Solutions

Jun Li lijun@cs.uoregon.edu

Learning Objectives

- Basic concepts
- Routing Security (Network Layer)
- IPSec (Network Layer)
- SSL/TLS (Transport Layer)
- Firewalls and Intrusion Detection Systems

Basic Concepts

Layered Network Security

- We focus on the Internet
- Security attacks toward the Internet can happen at each layer
- Let's look at security defense at each layer
 - For example, what may happen at the physical layer?

application transport network link physical

Link Layer

End-to-End Encryption

Link Encryption

To other A3 A4 **A**1 A2 sites 🔻 2 Office VPN server 0000 4 Teleworker

Network Layer

Network Layer Security

- Routing Security: control plane security
- IPSec: data plane security

Routing Security

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to AS1:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - Ic can then use iBGP to distribute new prefix info to all routers in ASI
 - Ib can then re-advertise new reachability info to AS2 over Ib-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

Routing Attacks

- Internet routing is not secure
 - Routers trust each other?
 - Many routing attacks have happened
- Origin
 - Blackhole attack
- Path
 - Prefix hijacking
 - Route leaks

How to Secure Routing?

- Origin Authentication
 - Sign who you are
- Path Authentication
 - Sign your attestation: I have seen this path.

```
- {A, sig_by_A}
- {B, {A, sig(A)}}, sig_by_B}
- {C, {B, {A, sig(A)}}, sig_by_B}, sig_by_C
```

IPsec

IPsec as a Real-Time Protocol

- A real-time protocol is one where parties negotiate interactively to authenticate each other and establish a session key
 - The conversation protected using the session key is called security association
- Examples: IPsec, SSL/TLS, SSH
 - Public key based

Security at Layer 4 vs. 3

Assumption: TCP/IP are in the OS

Pros and Cons

- Security at layer 4 (SSL/TLS/SSH)
 - + No need to change OS
 - Applications have to be modified
 - No way to notify the TCP layer if newly received data is bogus
- Security at layer 3 (IPsec)
 - + Transparent to applications
 - OS needs to modified
 - Security is in terms of IP addresses
 - IPsec authentication cannot distinguish between users

IPsec User Model

- Alice and Bob set up a secure channel
 - Called Security Association
- Then rely on IPsec to protect the channel

What does IPsec Accomplish?

- Encrypted traffic
- Connectionless Integrity
- Anti replay
- More secure authentication based on source IP address
- Enforced access control based on a policy database
- Similar to setting up two firewalls between two ends

Main Pieces

AH & ESP

IP header extensions for carrying cryptographically protected data

• IKE

- A protocol for establishing security associations (SA) and establishing session keys
- Not required for IPsec but recommended
 - IPsec also supports manual SAs/keying

IPsec Deployment

- Individual host: an end system can implement its own protection end-to-end or hop-by-hop
- Host community: a single security gateway (e.g. a firewall) can protect an entire domain of hosts
- Pairings: host-to-host, host-to-gateway, gateway-to-gateway
 - Or combined

Security Association

- An <u>unidirectional</u> cryptographically protected connection
 - Communication between Alice and Bob consists of two SAs, one for each direction
- Each end remembers:
 - Id of the other end
 - A cryptographic key
 - Sequence number currently being used
 - Cryptographic services being used
 - Integrity only, encryption only, or both
 - Which cryptographic algorithms

Security Association Database

- A security association database (SAD) is used to remember those info above for every active security association
 - Indexed by security parameter index (SPI)
- Thus an IPsec-capable node knows how to communicate with a given destination
 - A packet from Alice to Bob should tell Bob the SPI value that Bob can use to locate the Alice-Bob SA entry in his SAD

AH & ESP

- AH provides integrity protection
 - For payload and some fields in IP header
- ESP provides encryption and/or integrity protection
 - For payload
 - The encryption algorithm can be "null" or others

Two IPsec Modes

- Transport mode
- Tunnel mode

Transport Mode

Tunnel Mode

Mode Selection

- Transport mode is most logical when applying IPsec for end-to-end communication
- A tunnel mode is good for firewall-to-firewall, or end-to-firewall

An Example of Using Tunnel Mode

IP: src=F1, dst=F2 | ESP | IP: src=A, dst=B

Format of IPsec-Protected Packets

- A field in the IP header points to AH header or ESP header
 - "Protocol" field in IPv4
 - "Next header" field in IPv6
 - -ESP = 50
 - AH = 51
 - (TCP = 6, UDP = 17)

IPv4 Datagram Format

Copyright © Jun Li. All rights reserved.

AH - Authentication Header

octets

1	next header
1	payload length
2	unused
4	SPI (security parameter index)
4	sequence number
variable	authentication data

AH Fields

- Next header
 - Same as "protocol" field in IPv4
 - If TCP follows the AH header, this field is 6
- Payload length:
 - The size of the AH header (in 32-bit chunks)
- SPI
 - For the recipient to locate the SA entry in its SAD
- Sequence number:
 - For anti-replay purpose
- Authentication data
 - Cryptographic integrity check
 - Those immutable and mutable-but-predictable fields in an IP header are also protected

ESP - Encapsulating Security Header

octets

4	SPI (security parameter index)
4	sequence number
variable	IV (initialization vector)
variable	data
variable	padding
1	padding length
1	next header / protocol type
variable	authentication data

ESP Fields

- Same fields as in AH header:
 - SPI, sequence number, next header
- Initialization vector
 - Needed for some encryption algorithms
 - for example, when CBC mode is used (see next slide)
- Data: protected data, probably encrypted
- Padding: many 0's mainly in order to
 - make data be a multiple of a block size
 - Maybe required by adopted cryptographic algorithms
 - Or make [data, padding, padding length, next header] a multiple of four octets

CBC

Encipherment

Decipherment

42

(cont'd)

- Authentication data
 - Cryptographic integrity check
 - Zero length if ESP is providing only encryption

More on the Data Field in an ESP Header

- In Tunnel Mode
 - Begin at the IP header
- In Transport Mode
 - Begin at the IP payload
 - Begin at TCP header if a TCP payload

Security Policy Database

- An ordered list of SPD entries
- Each SPD entry specifies a policy:
 applicability, disposition, and protection
- Applicability: which packets are subject to policy
- Disposition: discard, bypass, or apply IPsec
- Protection: what kinds of SA to apply under this policy

An Example of SPD entry

- Outbound SPD entry example:
 - IP: source=175.34.*.* destination=98.34.32.6
 - Protocol = 6 (TCP)
 - Port: source=any, destination=80
 - Disposition = IPsec
 - Protection = Details on what kind of SA to set up (e.g. ESP tunnel mode, DES, . . .)
- Similarly an inbound SPD entry can be defined

IPsec Outbound Traffic Processing

IPsec Inbound Traffic Processing

SSL/TLS

SSL/TLS as Real-Time Protocols

- A real-time protocol is one where parties negotiate interactively to authenticate each other and establish a session key
- Examples: IPsec, SSL/TLS, SSH
 - Public key based
- SSL: Secure Socket Layer
- TLS: Transport Layer Security

Security at Layer 4 vs. 3

Copyright © Jun Li. All rights reserved.

Assumption: TCP/IP are in the OS

Quick History

- SSLv1: never deployed
- SSLv2: deployed in Netscape Navigator 1.1 in 1995
- Microsoft introduced PCT (Private Communication Tech) by improving SSLv2
- Netscape overhauled the protocol as SSLv3
- IETF introduced TLS to unify all of them
 - Currently TLS v1.3

Basic Protocol

Several Important Terms

- R_{Alice} : a random number from Alice
- S: pre-master secret
- **K**: master secret
- {}_{Bob} stands for message encrypted with Bob's public key
- {} stands for **protected** message using encryption and/or integrity protection through secret key algorithm

If a Keyed Hash Result in *Plaintext*

How Bob Verifies the Keyed Hash

- Decrypt $\{S\}_{Bob}$ using his private key
- Compute $K=f(S, R_{Alice}, R_{Bob})$
- Calculate *hash*(*K*, (m1, m2, "CLNT"))
 - HMAC algorithm
- Compares the result with the received one
- Verified if equal
- Q: must the keyed hash be protected?

How Alice Verifies the Key Hash

- Calculate hash(K, (m1, m2, "SRVR"))
 - HMAC algorithm
 - Recall Alice knows K already
 - The constant string make the hash different from what Bob receives
- Compares the result with the received one
- Verified if equal
- Q: must the keyed hash be protected?

Questions

- Can Eve eavesdrop?
- Can Mallury manipulate the data stream?

When Eve is Eavesdropping

When Mallury is Manipulating

reserved.

Questions

- When hashing, why add "CLNT" or "SRVR"?
- What if not?

If Verified, What does Bob Prove?

- The following can be regarded as the same entity:
 - The one sending, or forwarding, message 1
 - the one computing the pre-master secret that Bob received
 - the one sending message 3
- But not necessarily Alice, even claimed so!
 - Could be Mallury!
 - But Alice won't be deceived

If Verified, What does Alice Prove?

- The following are the same entity:
 - The one sending message 2
 - the one computing S and K on the other end, and
 - the one sending message 4
- And this entity is Bob!
 - Based on the certificate
- Also, this entity knows S and K
 - S and K are decided by Alice
- All handshake messages so far have NOT been tampered
 - Otherwise?

More on SSL/TLS

- Six secrets to protect Alice-Bob communication
- Handling a long *session* with many *connections*
- What if Alice also has a certificate

Six Secrets

- In fact, it's not a single key **K** for a session
- Definition: write keys and read keys
 - Write keys: keys for transmission
 - Read keys: keys for reception
- Each direction needs three write keys
 - Integrity protection key
 - Encryption key
 - IV, if required by encryption algorithms
- And also three read keys
- Computed using $g_i(K, R_{Alice}, R_{Bob})$

One Session w/ Multiple Connnections

- From a long SSL session, after one connection is set up, many other *connections* can further be derived
 - Alice (a browser) and Bob (a web site) can have many connections, for instance
- Simplify the SSL for later connections between Alice and Bob
 - They have gone through the pain anyway . . .

Session Initiation

Session Resumption

SSL/TLS is Asymmetrical

- Alice authenticated Bob
- But Bob does not authenticate Alice
 - Until Alice login to Bob
 - Could be Mallory handshaking with Bob
- SSL/TLS can be enhanced for mutual authentication
 - If the client has a certificate

Firewalls and Intrusion Detection Systems

Learning Objectives

- Basic concepts of firewalls (functions, types, configurations)
- Intrusion detection systems (how each type works)

What is a Firewall

- A device that filters all traffic between a protected or "inside" network and a less trustworthy or "outside" network
- A special form of reference monitor
 - Default permit vs. default deny

Types of Firewalls

- Packet filtering
- Stateful inspection firewalls
- Application proxies
- Personal firewalls

Packet Filtering Firewall

- The simplest
 - Sometimes most effective
- On the basis of packet address (source or destination) or specific protocol type.

Stateful Inspection Firewall

- Maintains state information from one packet to another in the input stream
- Useful when an attacker breaks an attack into multiple packets
- The firewall can track the sequence of packets and conditions from one packet to another to thwart the attack

Application Proxy

• Inspect the application data

Personal Firewalls

- An application running on a workstation to block unwanted traffic from the network
- E.g., Combining virus scanner with the personal firewall
 - Forward all incoming packets to the virus scanner

Intrusion Detection Systems

- Signature-based vs. anomaly-based
- Host-based vs. network-based

• False negatives vs. false positives

Midterm

- February 17; Open book, open notes
- Will be available on Canvas on 2/17 10:00 AM
- You then work on a Microsoft Word document
 - We plan to provide a fillable PDF too
- Must submit by 2/17 11:30 AM
 - Give yourself some time to upload your midterm
 - You may submit it multiple times, so long as it's before it's due
 - Tip: maybe try a submission earlier, then continue to work on it until you submit the final version
- I will be available via zoom