NLP HW1 NER Report

姓名: 薛竣祐 學號: 111526009

一. 資料前處理

在前處理部分,考慮到句子來源為Twitter,並在觀測資料後,發現有資料包含許多URL、Hashtag等特殊資料,因此在讀取資料時將此類資料轉換為個別Token,另外也移除掉字詞中的符號。使用到的Token有:

• <at>:"@"符號開頭的字詞

• <hashtag>:"#"符號開頭的字詞

● <url>: "http"或"www."開頭的字詞

• <naw>: 只包含符號的字詞

```
def get_data(path="./datas/twitter/train.txt"):
         with open(path, "r") as f:
             lines = f.readlines()
         datas = [[[]], [[]]] # [ sequences, tags(or origin sequence) ]
         submit = "submit" in path # if submitting, change return tag to return origin word
         for line in lines:
14
             if line == "\n": # new sequence
                 datas[0].append([])
                 datas[1].append([])
             sp = line.split() # word, (tag)
             datas[0][-1].append(encode_word(sp[0]))
             datas[1][-1].append(sp[0] if submit else sp[1])
         return datas[0][:-1], datas[1][:-1] * # last one is empty
     def encode_word(word):
         if word.startswith("@"): return "<at>" # start with @
         if word.startswith("#"): return "<hashtag>" #start with #
         if word.startswith("http") or word.startswith("www."): return "<url>" # start with http or www.
         return re.sub(r"\W", "", word) or "<naw>" * # remove non-word, if empty then <naw>
```

將資料使用DataLoader來存取,在經過collate_fn後會回傳兩項資料。

第一項:回傳embedding過的sequences (batch_size, seq_len, emb_size)

第二項:若為Training或Validating回傳label的index (batch_size, seq_len) 若為Testing則回傳未經前處理的原始資料 (batch_size, seq_len)

另外在Training及Validating時,會將兩項製作成PackedSequence物件,而在Testing時則只有第一項。此物件可直接通過GRU Layer,不需要考慮資料長度對齊的問題。

```
compacted_seqs, tags_or_words in batched_data:
compacted_seqs, tags_or_words in batched_data:
compacted_seqs_len.append(len(seqs))
compacted_seq_indexs.append(torch.tensor([word_to_i.get(word, unk) for word in seqs]))
compacted_seqs = pad_sequence(batch_seq_indexs, batch_first=True, padding_value=word_to_i["<pad>"])
compacted_seqs = pad_sequence(embedding(padded_seqs), seqs_len, batch_first=True, enforce_sorted=False)
compacted_tags = pad_sequence(batch_tag_indexs, batch_first=True, padding_value=-1)
compacted_tags = pad_sequence(batch_tag_indexs, batch_first=True, padding_value=-1)
compacted_tags = pad_sequence(batch_tag_indexs, batch_first=True, padding_value=-1)
compacted_tags = pad_sequence(padded_tags, seqs_len, batch_first=True, enforce_sorted=False)
compacted_tags = pad_sequence(padded_tags, seqs_len, batch_first=
```

二. 模型架構

1. Pre-train Embedding (freeze)

使用GloVe作為Pre-train Embedding,其中經過測試發現其效果使用Common Crawl 840B 300d,會比使用Twitter 27B 200d好。並在vocab中加入在前處理時新增的特殊Token,其向量設定為其他向量的平均值。

```
def create_pretrained_embedding(name, embedding_size):
   glove = GloVe(name=name, dim=embedding_size)
   mean_vector = glove.vectors.mean(dim=0).unsqueeze(dim=0) + H mean vector as default vector for new token
   def add_token(token):
       if glove.stoi.get(token, None) is not None:
           print(f"\"{token}\" is already in Glove")
       glove.itos.append(token)
       glove.stoi[token] = glove.itos.index(token)
       glove.vectors = torch.cat((glove.vectors, mean_vector), dim=0)
   add token("<unk>")
   add_token("<pad>")
   add_token("<naw>")
   add_token("<hashtag>")
    add_token("<at>")
    add_token("<url>")
    return torch.nn.Embedding.from_pretrained(glove.vectors, freeze=True), glove.stoi
```

2. GRU

在經過各種超參數設定的測試下,評估效率與效果後決定使用以下設定:

- embedding_size=300
- hidden_size=256
- num_layers=2
- batch_first=True
- bidirectional=True

另發現hidden_size與num_layer會嚴重影響執行時間,num_layer提升對模型可能造成反效果,而hidden_size提升對效果無明顯的影響。embedding_layer使用twitter 50d~200d測試,結果顯示embedding_layer越高效果越好。

3. Dropout

Dropout Layer可以有效的避免模型過度依賴某些特徵,造成Overfitting,因此在最後的Output Layer前加入dropout。而不在GRU使用dropout,是因為GRU不會在最後一層套用dropout。

4. Linear

Linear最後會輸出21維的結果,而21維對應的是21種的Label,並依照Label在 Training Data出現機率由大至小排序後的index。

三. 模型訓練

相關超參數設定如下:

• Learning Rate: 0.001

Epoch: 100Batch Size: 32Clip Grad: 0.5

• Loss Function : CrossEntropy

• Optimizer : AdamW

使用助教提供的Github程式計算F1成績,最佳模型成績約在36~43之間,訓練時間約為30分鐘。且hidden_size及num_layer與訓練時間呈正相關,例如如果為hidden_size=128且num_layer=1時,訓練時間約為7分鐘。

```
for i in range(epoch):
98
99
      train_loss = []
       dev loss = []
100
      · # train
101
      net.train()
102
      for padded_seqs, tags_target in dataloader:
103
104
             tags_predict = net(padded_seqs)
105
           106
          train_loss.append(loss.item())
         optimizer.zero_grad()
          loss.backward()
108
          torch.nn.utils.clip_grad_value_(net.parameters(), 0.5)
109
110
             optimizer.step()
111
      # dev
      net.eval()
112
113
      with torch.no_grad():
114
             padded_seqs, tags_target = next(iter(dev_dataloader)) # full batch
115
            tags_predict = net(padded_seqs)
116
             loss = loss_fn(tags_predict, tags_target)
             dev_loss.append(loss.item())
117
             _, _, f1, non_o_accuracy, accuracy = evaluate(
118
                [i_to_tag[idx] for idx in tags_target.tolist()],
119
120
                [i_to_tag[idx] for idx in tags_predict.argmax(dim=1).tolist()],
121
             True
122
```

四. 實驗成果

在此節將以圖示比較相同模型於不同超參數的部分執行結果,使用Tensorboard做圖,淺色線為真實資料,而深色線為平滑過後的資料,縱軸皆為Epoch(0~99)。

Model	num layers	dropout (inGRU, afterGRU)	hidden size	grad clip	token vector
GRU_layer2	2	X	128	Χ	random
GRU_layer3	3	Χ	128	Х	random
GRU_layer2_dp0.5_h256	2	after 0.5	256	Χ	random
GRU_layer2_dp0.5_h256_clip0.5	2	after 0.5	256	0.5	random
GRU_layer1_dp0.5_h256_clip0.5	1	after 0.5	256	0.5	random
GRU_layer1_dp0.5_h128_clip0.5	1	after 0.5	128	0.5	random
GRU_layer2_dp0.5inGRU_h256_clip0.5_meanV	2	in 0.5	256	0.5	mean
submit	2	after 0.5	256	0.5	mean

此表顯示各model之間使用的超參數。num layers表示GRU layer使用的層數;dropout表示於GRU中或後使用的dropout比例;hidden size表示GRU中隱藏層大小;grad clip表示在gradient時clipping的正負範圍;token vector表示特殊vocab token使用的vector計算方式。若為X則為無使用。

1. Training Loss

/_f1	Run	Smoothed	Value	Step	Time	Relative
•	runs/GRU_layer1_dp0.5_h128_clip0.5.local	0.01971	0.003602	99	11/3/22, 2:13 PM	6.587 min
•	runs/GRU_layer1_dp0.5_h256_clip0.5.local	0.01464	0.002179	99	11/1/22, 11:33 PM	14.66 min
	runs/GRU_layer2.local	0.01134	0.001125	99	11/1/22, 4:44 PM	12.79 min
	runs/GRU_layer2_dp0.5_h256.local	0.01081	0.001656	99	11/1/22, 10:00 PM	34.79 min
•	runs/GRU_layer2_dp0.5_h256_clip0.5.local	0.0113	0.002253	99	11/1/22, 11:08 PM	34.66 min
•	runs/GRU_layer2_dp0.5inGRU_h256_clip0.5_meanV.local	0.0128	0.002293	99	11/4/22, 4:20 PM	34.53 min
	runs/GRU_layer3.local	0.0125	0.001198	99	11/1/22, 5:07 PM	19.45 min
•	runs/submit.local	0.0104	0.002077	99	11/4/22, 6:23 PM	34.87 min

2. Validating Loss

Run		Smoothed	Value	Step	Time	Relative
runs/GRU_laye	r1_dp0.5_h128_clip0.5.local	0.4456	0.5131	99	11/3/22, 2:13 PM	6.587 min
runs/GRU_laye	r1_dp0.5_h256_clip0.5.local	0.4661	0.5576	99	11/1/22, 11:33 P	M 14.66 min
runs/GRU_laye	r2.local	0.4354	0.501	99	11/1/22, 4:44 PM	12.79 min
runs/GRU_laye	r2_dp0.5_h256.local	0.4641	0.5149	99	11/1/22, 10:00 P	M 34.79 min
runs/GRU_laye	r2_dp0.5_h256_clip0.5.local	0.4519	0.4718	99	11/1/22, 11:08 P	M 34.66 min
runs/GRU_laye	r2_dp0.5inGRU_h256_clip0.5_meanV.loca	l 0.4973	0.569	99	11/4/22, 4:20 PM	34.53 min
runs/GRU_laye	r3.local	0.4546	0.4975	99	11/1/22, 5:07 PM	l 19.45 min
runs/submit.lo	cal	0.4648	0.491	99	11/4/22, 6:23 PM	34.87 min

3. Validating Total Accuracy

Run	Smoothed	Value Ste	p Time	Relative
runs/GRU_layer1_dp0.5_h128_clip0.5.local	93.67	93.59 99	11/3/22, 2:13 PM	6.587 min
runs/GRU_layer1_dp0.5_h256_clip0.5.local	93.7	93.84 99	11/1/22, 11:33 PM	14.66 min
runs/GRU_layer2.local	93.82	93.99 99	11/1/22, 4:44 PM	12.79 min
runs/GRU_layer2_dp0.5_h256.local	93.93	94.17 99	11/1/22, 10:00 PM	34.79 min
runs/GRU_layer2_dp0.5_h256_clip0.5.local	93.83	94.07 99	11/1/22, 11:08 PM	34.66 min
runs/GRU_layer2_dp0.5inGRU_h256_clip0.5_meanV.local	93.89	93.73 99	11/4/22, 4:20 PM	34.53 min
runs/GRU_layer3.local	93.57	93.73 99	11/1/22, 5:07 PM	19.45 min
runs/submit.local	94.03	94.07 99	11/4/22, 6:23 PM	34.87 min

4. Validating non-o Accuracy

/_ac Runacy	Smoothed	Value	Step	Time	Relative
runs/GRU_layer1_dp0.5_h128_clip0.5.local	29.25	30.67	99	11/3/22, 2:13 PM	6.587 min
runs/GRU_layer1_dp0.5_h256_clip0.5.local	29.97	29.88	99	11/1/22, 11:33 PM	14.66 min
runs/GRU_layer2.local	32.44	32.45	99	11/1/22, 4:44 PM	12.79 min
runs/GRU_layer2_dp0.5_h256.local	32.4	33.6	99	11/1/22, 10:00 PM	34.79 min
runs/GRU_layer2_dp0.5_h256_clip0.5.local	33.04	32.27	99	11/1/22, 11:08 PM	34.66 min
runs/GRU_layer2_dp0.5inGRU_h256_clip0.5_meanV.local	32.62	33.87	99	11/4/22, 4:20 PM	34.53 min
runs/GRU_layer3.local	33.02	35.46	99	11/1/22, 5:07 PM	19.45 min
runs/submit.local	32.69	33.6	99	11/4/22, 6:23 PM	34.87 min

5. Validating F1 Score

Run	Smoothed	Value S	tep Time	Relative
runs/GRU_layer1_dp0.5_h128_clip0.5.local	37.44	37.82 9	9 11/3/22, 2:13 PM	6.587 min
runs/GRU_layer1_dp0.5_h256_clip0.5.local	38.16	38.35 9	9 11/1/22, 11:33 PN	1 14.66 min
runs/GRU_layer2.local	39.81	40.54 9	9 11/1/22, 4:44 PM	12.79 min
runs/GRU_layer2_dp0.5_h256.local	40.38	42.24 9	9 11/1/22, 10:00 PN	1 34.79 min
runs/GRU_layer2_dp0.5_h256_clip0.5.local	40.69	41.4 99	9 11/1/22, 11:08 PN	1 34.66 min
runs/GRU_layer2_dp0.5inGRU_h256_clip0.5_meanV.local	40.49	41.04 99	9 11/4/22, 4:20 PM	34.53 min
runs/GRU_layer3.local	39.08	41.21 99	9 11/1/22, 5:07 PM	19.45 min
• runs/submit.local	41.5	41.54 99	9 11/4/22, 6:23 PM	34.87 min