Динамика смены ролика в контакте омни-колеса и плоскости

К.В. Герасимов, А.А. Зобова

Кафедра теоретической механики и мехатроники Механико-математический факультет МГУ им. М.В. Ломоносова

Ломоносовские чтения, Апрель 2018

План

Постановка задачи

Удар

Переход между роликами как задача теории удара

Удар как действие реакций

Удар как проецирование скоростей

Изменение энергии

Численное решение

Примеры.

Постановка задачи

Рисунки

Рис.: Экипаж

Рис.: Колесо

Постановка задачи

Тела, связи, степени свободы

ightharpoonup Экипаж состоит из платформы, N колес и n роликов, количество твердых тел:

$$1 + N(n+1)$$

- Оси и центры колес и роликов неподвижны относительно платформы и колес соответственно
- Скорость точек контакта равна нулю:

$$\mathbf{v}_{C_i} = 0, i = 1 \dots N$$

Количество степеней свободы:

$$3 + N(n-1)$$

Постановка задачи

Координаты, псевдоскорости, связи

• Обобщенные координаты: $q=(x,y, heta,\chi_i,\phi_k,\phi_s)$, где $i,k=1\dots$ N, s – ролики вне

Псевдоскорости:

контакта.

$$\nu = (\nu_1, \nu_2, \nu_3, \nu_s), \mathbf{v}_S = R\nu_1 \mathbf{e}_\xi + R\nu_2 \mathbf{e}_\eta, \nu_3 = \Lambda \dot{\theta}, \nu_s = \dot{\phi}_s$$

Связи:

$$\dot{x} = R\nu_1 \cos \theta - R\nu_2 \sin \theta, \quad \dot{y} = R\nu_1 \sin \theta + R\nu_2 \cos \theta,$$

$$\dot{\theta} = \frac{\nu_3}{\Lambda}, \quad \dot{\chi}_i = \frac{R}{I} (\nu_1 \sin \alpha_i - \nu_2 \cos \alpha_i - \frac{\nu_3}{\Lambda}),$$

$$\dot{\phi}_k = \frac{R}{I \cos \chi_k - r} (\nu_1 \cos \alpha_k + \nu_2 \sin \alpha_k), \quad \dot{\phi}_s = \nu_s$$

Уравнения движения

в форме Я.В. Татаринова

$$\frac{d}{dt}\frac{\partial L^*}{\partial \nu_\alpha} + \{P_\alpha, L^*\} = \{P_\alpha, \nu_\mu P_\mu\} \qquad \qquad \begin{bmatrix} \widetilde{\mathsf{M}}_{11} & O_{3\times N} & \widetilde{\mathsf{M}}_{13} \\ & JE_{N\times N} & O_{N\times Nn} \\ \star & & BE_{Nn\times Nn} \end{bmatrix}$$

$$\nu_\mu P_\mu = \dot{q}_i p_i, \quad p_i = \frac{\partial L}{\partial \dot{q}_i} \qquad \qquad \widetilde{\mathsf{M}}_{11} = \operatorname{diag}(M, M, I_S)$$

$$\widetilde{\mathsf{M}}_{13} = \begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ B\sin\chi_{11} & \cdots & B\sin\chi_{Nn} \end{bmatrix}$$

$$L^* = \frac{1}{2} \boldsymbol{\nu}^{\mathrm{T}} \mathbf{V}^{\mathrm{T}} \mathbf{M} \mathbf{V} \boldsymbol{\nu} = \frac{1}{2} \boldsymbol{\nu}^{\mathrm{T}} \mathbf{M}^* (\chi_i) \boldsymbol{\nu} \qquad \qquad \begin{bmatrix} R\cos\theta & -R\sin\theta & 0 \\ R\sin\theta & R\cos\theta & 0 \\ 0 & 0 & \frac{1}{\Lambda} \\ \frac{R}{I}\sin\alpha_i & -\frac{R}{I}\cos\alpha_i & -\frac{R}{I\Lambda} \end{bmatrix}$$

План

Постановка задачи

Удар

Переход между роликами как задача теории удара

Удар как действие реакций

Удар как проецирование скоростей

Изменение энергии

Численное решение

Примеры

Переход между роликами

(1) Уравнения вырождаются на стыках роликов:

разрыв 20го рода в правой части из-за выражений $(l\cos\chi_i - r)$ в знаменателе.

Пусть переход на следующий ролик будет раньше стыка.

Рис.: Ролики перекрываются

Переход между роликами

(2) Ролики входят и выходят из состояния контакта при $t=t^*$.

Происходит мгновенное снятие связи с одного ролика и наложение связи на другой.

Пусть:

- $ightharpoonup \Delta t << 1, \quad \Delta q \sim \nu \Delta t << 1, \quad \Delta \nu < \infty,$
- ightharpoonup в точках контакта: m f R = f N + f F, m f M = 0,
- трения в осях нет,
- lacktriangledown к моменту окончания удара $t^*+\Delta t$ уравнения связей выполнены ($\dot{f q}^+={f V}({f q}^+)
 u^+$), т.е. за время Δt проскальзывание вошедшего в контакт ролика закончилось

План

Постановка задачи

Удар

Переход между роликами как задача теории удара

Удар как действие реакций

Удар как проецирование скоростей

Изменение энергии

Численное решение

Примеры

Удар как действие реакций

Линейная система уравнений на реакции и скорости после удара

$$\begin{aligned} \mathbf{M}(\dot{\mathbf{q}}^{+} - \dot{\mathbf{q}}^{-}) &= \mathbf{Q} \\ \mathbf{Q} &= \mathbf{KF}, \quad \dot{\mathbf{q}}^{+} &= \mathbf{V}\boldsymbol{\nu}^{+} \\ \mathbf{M}\mathbf{V}\boldsymbol{\nu}^{+} - \mathbf{KF} &= \mathbf{M}\dot{\mathbf{q}}^{-} \\ \left(\boldsymbol{\nu}^{+}; \mathbf{F}\right)^{T} &= \left(\mathbf{M}\mathbf{V} - \mathbf{K}\right)^{-1} \mathbf{M}\dot{\mathbf{q}}^{-} \\ \dim \mathbf{M}\mathbf{V} &= \dim \mathbf{q} \times \dim \boldsymbol{\nu} \\ \dim \mathbf{K} &= \dim \mathbf{q} \times \dim \boldsymbol{F} \\ \dim \mathbf{q} &= 3 + N(n+1) \\ \dim \boldsymbol{\nu} &= 3 + N(n-1) \\ \dim \mathbf{F} &= 2N \end{aligned}$$

Рис.: Касательные реакции в точках контакта

Удар как действие реакций

Обобщенные импульсы и реакции

$$\mathbf{Q}_{1}^{i} = \mathbf{F}_{x}^{i}
\mathbf{Q}_{2}^{i} = \mathbf{F}_{y}^{i}
\mathbf{Q}_{\theta}^{i} = R\left(-\mathbf{F}_{x}^{i}\sin(\theta + \alpha_{i}) + \mathbf{F}_{y}^{i}\cos(\theta + \alpha_{i})\right)
\mathbf{Q}_{\chi_{i}} = \frac{I}{R}\mathbf{Q}_{\theta}^{i}
\mathbf{Q}_{\phi_{i}} = -\rho_{i}\left(\mathbf{F}_{x}^{i}\cos(\theta + \alpha_{i}) + \mathbf{F}_{y}^{i}\sin(\theta + \alpha_{i})\right)
\mathbf{Q}_{s} = 0$$

$$\mathbf{Q} = \left(\begin{array}{ccc} \sum_{i=1}^{N} \mathbf{Q}_{1}^{i}, & \sum_{i=1}^{N} \mathbf{Q}_{2}^{i}, & \sum_{i=1}^{N} \mathbf{Q}_{\theta}^{i}, & \mathbf{Q}_{\chi_{i}}|_{i=1}^{N}, & \mathbf{Q}_{\phi_{i}}|_{i=1}^{N}, & \mathbf{Q}_{s} \end{array}
ight)^{T}$$

План

Постановка задачи

Удар

Переход между роликами как задача теории удара

Удар как действие реакций

Удар как проецирование скоростей

Изменение энергии

Численное решение

Примеры

Удар как проецирование скоростей

$$\dot{\mathbf{q}}^+ = \dot{\mathbf{q}}^- \! - \Delta \dot{\mathbf{q}} = \mathbf{V} \boldsymbol{\nu}^+ \in \widetilde{V}$$

$$\begin{array}{lll} 0 & = & \left(\Delta\dot{q}, \; \mathsf{MV}\right) \\ & = & \left(\mathsf{V}\nu^+ - \dot{q}^-, \; \mathsf{MV}\right) \\ & = & \left(\mathsf{MV}\nu^+ - \mathsf{M}\dot{q}^-, \; \mathsf{V}\right) \\ & = & \mathsf{V}^T\mathsf{MV}\nu^+ - \mathsf{V}^T\mathsf{M}\dot{q}^- \end{array}$$

$$oldsymbol{
u}^+ = \left(oldsymbol{\mathsf{V}}^\mathsf{T} oldsymbol{\mathsf{M}} oldsymbol{\mathsf{V}}^- oldsymbol{\mathsf{M}} \dot{oldsymbol{\mathsf{q}}}^-
ight.$$

Рис.: $\dot{\mathbf{q}}^+$ — проекция $\dot{\mathbf{q}}^-$ на \widetilde{V} , ортогональная в метрике \mathbf{M}

Два способа

$$\mathsf{M}(\dot{\mathsf{q}}^+ - \dot{\mathsf{q}}^-) = \mathsf{Q}$$
 $\mathsf{Q} = \mathsf{KF}, \quad \dot{\mathsf{q}}^+ = \mathsf{V}
u^+$

 $MV\nu^+ - KF = M\dot{a}^-$

$$\dim \mathbf{MV} = \dim \mathbf{q} \times \dim \boldsymbol{\nu}$$

 $\dim \mathbf{K} = \dim \mathbf{q} \times \dim \mathbf{F}$ $\dim \mathbf{q} = 3 + N(n+1)$

$$\dim \nu = 3 + N(n-1)$$

 $\mathbf{u}_{m} = \mathbf{0} + \mathbf{v}_{m} = \mathbf{1}$

$$\dim \mathbf{F} = 2N$$

$$\left(oldsymbol{
u}^{+}; \mathsf{F}
ight)^{T} = \left(\mathsf{MV} \ - \mathsf{K}
ight)^{-1} \mathsf{M} \dot{\mathsf{q}}^{-}$$

Вычисление ударных импульсов и проецирование $\dot{\mathbf{q}}^-$ на \widetilde{V} дают один результат.

$$\dot{\mathbf{q}}^+ = \dot{\mathbf{q}}^- - \ \Delta \dot{\mathbf{q}} = \mathbf{V} \boldsymbol{\nu}^+ \in \widetilde{V}$$

$$0 = (\Delta \dot{\mathbf{q}}, MV)$$

$$= (V\nu^{+} - \dot{\mathbf{q}}^{-}, MV)$$

$$= (MV\nu^{+} - M\dot{\mathbf{q}}^{-}, V)$$

$$= V^{T}MV\nu^{+} - V^{T}M\dot{\mathbf{a}}^{-}$$

$$oldsymbol{
u}^+ = \left(oldsymbol{\mathsf{V}}^\mathsf{T} oldsymbol{\mathsf{M}} oldsymbol{\mathsf{V}}^- oldsymbol{\mathsf{M}} \dot{oldsymbol{\mathsf{q}}}^-$$

План

Постановка задачи

Удар

Переход между роликами как задача теории удара

Удар как действие реакций

Удар как проецирование скоростей

Изменение энергии

Численное решение

Примеры

Изменение энергии

Соответствует теореме Карно

$$\mathbf{T}=rac{1}{2}\left(\mathsf{M}\dot{\mathsf{q}},\ \dot{\mathsf{q}}
ight),\quad \dot{\mathsf{q}}^{+}=\mathsf{V}oldsymbol{
u}^{+}$$

В силу идеальности связей:

$$\left(\boldsymbol{M}\dot{\boldsymbol{q}}^{+},\ \Delta\dot{\boldsymbol{q}}\right)=\left(\boldsymbol{M}\Delta\dot{\boldsymbol{q}},\ \dot{\boldsymbol{q}}^{+}\right)=\left(\boldsymbol{P},\ \dot{\boldsymbol{q}}^{+}\right)=0$$

Поэтому:

$$\Delta \mathbf{T} = -\frac{1}{2} \left(\mathbf{M} \Delta \dot{\mathbf{q}}, \ \Delta \dot{\mathbf{q}} \right) < 0$$

$$\begin{split} 2\Delta T &=& 2\left(T^{+}-T^{-}\right) = \left(M\dot{q}^{+},\ \dot{q}^{+}\right) - \left(M\dot{q}^{-},\ \dot{q}^{-}\right) \\ &=& \left(M\Delta\dot{q},\ \Delta\dot{q}\right) + 2\left(M\dot{q}^{-},\ \Delta\dot{q}\right) \\ &=& -\left(M\Delta\dot{q},\ \Delta\dot{q}\right) + 2\left(M\dot{q}^{+},\ \Delta\dot{q}\right) = -\left(M\Delta\dot{q},\ \Delta\dot{q}\right) \end{split}$$

План

Постановка задачи

Удар

Переход между роликами как задача теории удара

Удар как действие реакций

Удар как проецирование скоростей

Изменение энергии

Численное решение

Примеры.

Значения параметров

- ▶ радиус колеса r = 0.05,
- ▶ масса колеса $M_{\kappa} = 0.15$,
- ▶ масса ролика $m_{\rm poл} = 0.05$,
- ▶ радиус платформы R = 0.15,
- масса платформы M_{пл} = 1.

Вращение вокруг своей оси $(\nu_{1,2}(0)=0,\nu_3=1)$.

Движение по прямой $(\nu_1(0)=1, \nu_{2,3}=0)$.

Движение с закруткой $(\nu_1(0)=1,\nu_2(0)=0,\nu_3(0)=1)$.

Результаты

- Рассмотрены уравнения движения экипажа в неголономной постановке с учетом движения всех роликов.
- Предложен способ ведения расчетов, учитывающий влияние ударного взаимодействия при смене контакта на всю систему.
- Показано, что кинетическая энергия не возрастает при сменах контакта
 и постоянна на гладких участках движения.
- Получены численные решения для симметричной конфигурации.

Спасибо за внимание!

Кинетическая энергия и лагранжиан

▶ Присутствует аддитивный член, пропорциональный В – моменту инерции ролика относительно его оси собственного вращения:

$$2T = 2L = M\mathbf{v}_{S}^{2} + I_{S}\dot{\theta}^{2} + J\sum_{i}\dot{\chi}_{i}^{2} +$$

$$+B\sum_{i,j}(\dot{\phi}_{ij}^{2} + 2\dot{\theta}\sin(\kappa_{j} + \chi_{i})\dot{\phi}_{ij}),$$

$$M = \mathring{M} + Nnm$$

$$I_{S} = \mathring{I}_{S} + N \cdot n(\frac{A+B}{2} + mR^{2} + \frac{mr^{2}}{2}),$$

$$J = \mathring{J} + n(A + mr^{2})$$

Кинетическая энергия и лагранжиан

С учетом связей:

$$2L^* = \mathring{\nu}^T \mathring{V}^T \mathring{M} \mathring{V} \mathring{\nu} +$$

$$+B \sum_{i} \left(\frac{(\nu_2 \sin \alpha_i + \nu_1 \cos \alpha_i)^2 R^2}{\rho_i^2} + \frac{2R\nu_3(\nu_2 \sin \alpha_i + \nu_1 \cos \alpha_i) \sin \chi_i}{\rho_i \Lambda} \right)$$

$$+B \sum_{i,j} \left(\frac{2\nu_3 \nu_{ni+j} \sin(\kappa_j + \chi_i)}{\Lambda} + \nu_{ni+j}^2 \right)$$

где $\frac{1}{2}\mathring{\nu}^T\mathring{V}^T\mathring{M}\mathring{V}\mathring{\nu}$ – лагранжиан системы без роликов, $ho_i = I\cos\chi_i - r$

Кинетическая энергия и лагранжиан

Матрицы кинетической энергии и связей для системы без роликов

$$\mathring{M} = diag(M, M, I_S, J...J),$$

$$\mathring{V} = \begin{bmatrix} R\cos\theta & -R\sin\theta & 0\\ R\sin\theta & R\cos\theta & 0\\ 0 & 0 & \frac{1}{\Lambda}\\ \frac{R}{I}\sin\alpha_i & -\frac{R}{I}\cos\alpha_i & -\frac{R}{I\Lambda} \end{bmatrix}$$

Отличие от случая без роликов

Уравнения Я.В. Татаринова:

$$\frac{d}{dt}\frac{\partial L^*}{\partial \nu_{\alpha}} + \{P_{\alpha}, L^*\} = \{P_{\alpha}, \nu_{\mu}P_{\mu}\},$$

$$\nu_{\mu}P_{\mu} = \dot{q}_{i}p_{i}, \quad p_{i} = \frac{\partial L}{\partial \dot{q}_{i}}$$
(3.1)

 Лагранжиан и "импульсы" отличаются аддитивными членами:

$$L^* = \mathring{L}^* + BL^*_{\Delta}(\nu, \chi)$$

$$P_{\alpha} = \mathring{P}_{\alpha}(\theta, p_x, p_y, p_\chi) + P_{\Delta}(p_{\phi_i}, \chi)$$

Матрица лагранжиана

Лагранжиан с учетом связей имеет вид:

$$2L^* = \boldsymbol{\nu}^{\mathrm{T}} \boldsymbol{V}^{\mathrm{T}} \mathcal{M} \boldsymbol{V} \boldsymbol{\nu} = \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}^* (\chi_i) \boldsymbol{\nu}$$

Структура симметричной матрицы \mathcal{M}^* следующая:

Слагаемые для свободных роликов

Первое слагаемое (3.1) получается дифференцированием лагранжиана и подстановкой связей (ниже $\mathcal{M}_i^* = \frac{\partial \mathcal{M}^*}{\partial \chi_i}$):

$$\frac{d}{dt}\frac{\partial L^*}{\partial \nu_{\alpha}} = \frac{d}{dt}(\mathcal{M}^*(\chi)\nu_{\alpha}) = \mathcal{M}^*(\chi_i)\dot{\nu_{\alpha}} + \left(\sum_{i=1}^N \mathcal{M}_i^*(V\nu)_{3+i}\nu\right)_{\alpha},$$

Слагаемые, соответствующие свободным роликам:

$$\frac{\cos\chi_{ij}\nu_3B\left(-\frac{\nu_3R}{I\Lambda}-\frac{\cos\alpha_i\nu_2R}{I}+\frac{\sin\alpha_i\nu_1R}{I}\right)}{\Lambda}=\frac{B}{\Lambda}\cos\chi_{ij}(\dot{\chi_i})^*\nu_3.$$

Детали

Формальные импульсы P_{α} и скобки Пуассона L^* с ними:

$$\begin{split} P_1 &= R \bigg(p_x \cos \theta + p_y \sin \theta + \sum_i \bigg(\frac{\sin \alpha_i p_{\chi_i}}{l} + \frac{\cos \alpha_i p_{\phi_{i1}}}{\rho_i} \bigg) \bigg), \\ P_2 &= R \bigg(- p_x \sin \theta + p_y \cos \theta + \sum_i \bigg(- \frac{\cos \alpha_i p_{\chi_i}}{l} + \frac{\sin \alpha_i p_{\phi_{i1}}}{\rho_i} \bigg) \bigg), \\ P_3 &= \frac{1}{\Lambda} \bigg(p_\theta - \sum_i \frac{R}{l} p_{\chi_i} \bigg), \quad P_s p_{\phi_s}, \\ &\{ P_1, L^* \} = - \frac{\partial P_1}{\partial p_{\chi_i}} \frac{\partial L^*}{\partial \chi_i} = - \frac{R}{2l} \boldsymbol{\nu}^{\mathrm{T}} \sin \alpha_i \mathcal{M}_i^* \boldsymbol{\nu}, \\ &\{ P_2, L^* \} = \frac{R}{2l} \boldsymbol{\nu}^{\mathrm{T}} \cos \alpha_i \mathcal{M}_i^* \boldsymbol{\nu}, \; \{ P_3, L^* \} = \frac{R}{2l\Lambda} \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}_i^* \boldsymbol{\nu}, \quad \{ P_s, L^* \} = 0, \\ \mathsf{Суммы} \; \{ P_\alpha, \nu_\mu P_\mu \} \neq 0 \; \mathsf{лишь} \; \mathsf{для} \; \mathsf{первых} \; \mathsf{трех} \; \mathsf{уравнений}. \end{split}$$

4 □ ト ← □ ト ← 亘 ト ← 亘 ・ り Q で

Новые слагаемые (\mathcal{P}_{α} и \mathcal{M}_{i}^{*} зависят от χ)

$$\mathcal{M}^{*}\dot{\boldsymbol{\nu}} = \frac{MR^{2}}{\Lambda} \begin{pmatrix} \nu_{2}\nu_{3} \\ -\nu_{1}\nu_{3} \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \frac{R}{2I}\boldsymbol{\nu}^{T} \begin{pmatrix} -\sin\alpha_{i}\mathcal{M}_{i}^{*} \\ \cos\alpha_{i}\mathcal{M}_{i}^{*} \\ \Lambda^{-1}\mathcal{M}_{i}^{*} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \boldsymbol{\nu}$$

$$- BR^{2}\boldsymbol{\nu}^{T} \begin{pmatrix} \mathcal{P}_{1} \\ \mathcal{P}_{2} \\ \mathcal{P}_{3} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \boldsymbol{\nu} - B \begin{pmatrix} * \\ * \\ \cos\chi_{12}\frac{\nu_{3}}{\Lambda}\dot{\chi}_{1}^{*} \\ \vdots \\ \cos\chi_{N_{D}}\frac{\nu_{3}}{\lambda}\dot{\chi}_{N_{D}}^{*} \end{pmatrix}$$

Свойства

- 1. Интеграл энергии $\frac{1}{2} \nu^{\mathrm{T}} \mathcal{M}^*(\chi_i) \nu = h = \mathrm{const}$ (связи автономны, идеальны, силы консервативны)
- 2. $\nu_1 = \nu_2 = \nu_3 = 0 \implies \nu_s = \text{const}$
- 3. $B = 0 \implies$ уравнения как в безынерционной модели.
- 4. Интеграл $m_{33}^* \nu_3 = {
 m const}$ разрушается при $B \neq 0$. $\dot{\nu_3} {\sim} B$.
- 5. Первые интегралы:

$$\nu_s + \frac{1}{\Lambda} \sin \chi_{ij} \nu_3 = const.$$

Вращение $\nu_1(0)=0, \nu_2(0)=0, \nu 3(0) \neq 0$ неравномерно.

6. Замена псевдоскоростей $m{
u} o \lambda m{
u}, \lambda
eq 0$ эквивалентна замене времени $t o \lambda t.$

