

- t	rai	า5	for	mo	710	n	of										
	ob	je	cti	ve	fu	nct	lon.										
•	.00	st	ka	in Es													
						; T X	. 5	bi		25	e	94	. Q	74	•		
2) (Cor	15	tra	ints	of	th	e f	Ovm) (Z; X	≱Ь	as	e	qua	e:	દેવુ:	
3)				rain					?	for	m	C	7 2; X	: = Ł	j		
							. 3										
4)	M	0	k u	າຊ	_	D D	va x	ıah	ا م		000	- 04)	2	. p		
				,3				IGE					3				

		~			- E	3 R	2 8	- A	K		~	~	~			_
fu	nci	? 10r	ns	4h	5	le	od			meg						
	07	071	on,	160	ac k	Ps.	D UN		en	?		9		X		
<u>_</u>) กร	51 de	28	ła	00	P0	in t	5,	Χ,,	x _g €	IR	n			5	42
Lin	ne	se	?g 1	ne	nt	Ь	et.	ωe	en	×	T (200	×	3 :		

6) Norms rexpress distances, *length, A function f: IRM - IR is colled a norm iff i) f(x) > O for all x \in IR" ii) $f(x) = 0 \iff x = 0$ iii) $f(\alpha x) = |\alpha| f(x), \alpha \in \mathbb{R},$ iv) $f(x+y) \leq f(x) + f(y)$

rove	e tho	<i>t</i> ×	745	$\ \times \ _{1}$	tor	all	
4	with	t x	7 < 1				
J		3 0					
reco	20156	Cin	pav 1	ninir	nıza	710n	
	be	OXDVP	scod	CIS	20 111	210n valent	<i>(</i> 0)
					7 4		
•			45				
			43				
	LP.		45				

(1) min
$$f(x) = min \int_{i}^{max} (a_{i}^{7}x + b_{i}) \int_{i}^{p}$$

(2)

To prove that (1) and (2) are equival. we will prove that

$$p^{\#} \leq p^{\#}$$
and
$$p^{\#} \leq p^{\#}$$

$$p^{\#} \leq p^{\#}$$

$$p^{\#} \leq p^{\#}$$
and
$$p^{\#} \leq p^{\#}$$

$$p^{\#} \leq p^{\#}$$
and
$$p^{\#} \leq p^{\#}$$

Sum of piecewise functions

min [max (a; x+b;) + max (c; x+d;)]

equivalent min
problem st

Can be expressed in matrix form

min
$$\tilde{c}^{7}\tilde{x}$$

st $A\tilde{x} \leq b$

$$\tilde{x} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A = \begin{bmatrix} a_{1}^{7} -1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 1$$

		N	Or1	m	M) (1)	ım	12	a i	lo	n		