Title: Threat Hunt Scenario: Phishing Attack Compromise

Overview

This threat hunt scenario simulates a phishing attack leading to credential theft or compromised accounts. It outlines the steps to detect, investigate, remediate, and prevent such incidents using real-world tools and methods.

Objective

- Detect and mitigate phishing attempts targeting organizational email accounts.
- Investigate malicious activities, such as compromised account logins and unauthorized email forwarding.
- Apply preventive measures to enhance security against phishing threats.

1. Setup a Virtual Environment

Create a Virtual Machine (VM)

- Use a cloud provider like Microsoft Azure, AWS, or a local hypervisor such as VirtualBox or VMware.
- 2. Install **Windows 10** or the primary operating system used by your organization.
- 3. Ensure the VM has access to your organization's mail platform (e.g., Office 365).

Simulate Phishing Activity

- 1. Set up a dummy email account for testing.
- 2. Use an email simulation platform like **Gophish** to send test phishing emails.
- 3. Include a link to a credential-harvesting page to simulate real phishing activity.

2. Detection

Query 1: Email Logs for Phishing Detection

KQL Query:

kql

Copy code

EmailEvents

```
| where ThreatTypes has "Phishing"
| project Timestamp, Sender, Recipient, Subject, Url
```

Example Output:

Timestamp	Sender	Recipient	Subject	Url
2024-12-20T1 0:15:34Z	phisher@example.co m	victim@example.com	Action Required: Update Password	http://malicious-lin k.com/login

Query 2: Authentication Logs for Suspicious Logins

KQL Query:

kql

Copy code

SigninLogs

```
| where UserPrincipalName == "victim@example.com"
| where Location not in ("USA", "Known Locations")
| project Timestamp, UserPrincipalName, Location, IPAddress
```

Example Output:

Timestamp	UserPrincipalName	Locatio n	IPAddress
2024-12-20T12:45:23Z	victim@example.com	Russia	203.0.113.4 5

Query 3: Detection of Email Forwarding Rules

KQL Query:

kql

Copy code

EmailSettings

```
| where Action == "ForwardingRuleCreated"
| project Timestamp, UserPrincipalName, ForwardingAddress
```

Example Output:

Timestamp	UserPrincipalName	ForwardingAddress
2024-12-20T13:12:45Z	victim@example.com	attacker@example.co

3. Response

Immediate Actions to Contain the Threat

1. Quarantine Phishing Emails:

 Use your email security solution (e.g., Microsoft Defender for Office 365) to remove phishing emails from all user inboxes.

Query all recipients of the phishing email:

kql

Copy code

EmailEvents

```
| where Sender == "phisher@example.com"
| project Timestamp, Recipient
```

0

o Execute an email recall or quarantine action on the identified emails.

2. Reset Compromised Accounts:

- Force a password reset for all accounts flagged in the incident, especially those with suspicious login activity.
- Enable multifactor authentication (MFA) immediately for affected accounts.

3. Revoke Forwarding Rules:

- Remove any malicious email forwarding rules:
 - Review rules in Microsoft Exchange Admin Center or similar tools.

Use PowerShell to remove rules:

powershell

Copy code

Remove-InboxRule -Mailbox "victim@example.com" -Identity "Forwarding to attacker@example.com"

4. Monitor Active Sessions:

Terminate any active sessions for compromised accounts.

Use PowerShell or admin dashboards to log off sessions:

powershell

Copy code

Get-SecurityToken | Revoke-SecurityToken -User "victim@example.com"

0

Investigation

Phishing Source Analysis:

- Investigate the sender's IP address and domain using DNS lookups or services like VirusTotal.
- Block the sender domain and IPs in email security filters.

Analyze Affected Systems:

- Review endpoint logs to ensure no malicious payloads were downloaded.
- Use EDR solutions to scan affected devices for malware or unauthorized changes.

• Assess Data Exposure:

Check if sensitive files/emails were accessed or exfiltrated.

4. Prevention

Technical Measures

1. Improve Email Security:

- Enable Advanced Threat Protection (ATP) to analyze email attachments and links.
- Implement Domain-based Message Authentication (DMARC) to block spoofed emails.
- Enable real-time URL scanning for all email links.

2. Strengthen User Authentication:

- Require multifactor authentication (MFA) for all users.
- Implement Conditional Access Policies:
 - Restrict login access based on geolocation or known IP ranges.
 - Block high-risk sign-ins automatically.

3. Enhance Monitoring and Detection:

- o Deploy continuous monitoring tools (e.g., Azure Sentinel) for real-time alerting.
- Use threat intelligence feeds to update your SIEM with the latest indicators of compromise (IoCs).

5. User Awareness Training

1. Phishing Simulations:

- Regularly test employees with phishing simulation campaigns using platforms like Gophish.
- Provide targeted training to users who fail the tests.

2. Security Awareness Programs:

- Teach employees how to identify and report phishing emails.
- o Promote the use of security buttons to report suspicious emails in email clients.

6. Summary

This guide provides a comprehensive approach to detecting, mitigating, and preventing phishing attacks. By implementing the remediation and prevention steps outlined above, organizations can strengthen their defenses against similar threats.