Sistema di riconoscimento piante

Progetto di visione Artificiale
Vitali Anna e Yan Elena

Introduzione

- per il progetto di visione artificiale si è pensato di realizzare un sistema in grado di riconoscere diverse tipologie di piante a partire da una foto della loro foglia
- sono state realizzate tre diverse soluzioni.
 - o riconoscimento delle 14 diverse piante tramite **feature** *Hand Crafted*
 - o riconoscimento delle 14 diverse piante tramite una **rete neurale**
 - o riconoscimento delle diverse **piante e malattie** che le possono affliggere (38 classi) tramite una **rete** neurale

Dataset utilizzato

- per risolvere il problema è stato utilizzato il dataset: <u>Plant Diseases</u> disponibile sulla piattaforma Kaggle
- il dataset contiene in tutto 87K immagini RGB di foglie con malattie e sane riferite a 14 diverse tipologie di piante
- presenta un totale di 38 differenti classi

Riconoscimento piante - feature Hand Crafted

- per riconoscere le diverse tipologie di piante si è deciso di estrarre dalle immagini le feature
 - o di **forma**
 - colore
 - o di tessitura
- per **ogni feature** viene prodotta una **classifica** delle **immagini più simili** a quella da classificare

Feature di forma

Range H: 49 – 104

Range S: 19 – 255

Range V: 0 – 255

- 1. calcolando la rappresentazione dell'immagine nello spazio HSV
- 2. tarando i valori di questo spazio ottenendo una maschera binaria che individuasse la foglia
- 3. applicando questa maschera binaria all'immagine, per estrarre la forma della foglia,
- 4. applicando un'operazione di **chiusura morfologica** per riempire eventuali buchi

Risultati - feature di forma

Feature di texture

Per poter estrarre le feature relative alla texture si è deciso di utilizzare i filtri di **Gabor**

- un filtro di Gabor è una sinusoide ottenuta progressivamente a partire da una gaussiana e regolata da tre parametri principali
 - ampiezza della gaussiana;
 - o frequenza;
 - o **orientazione** rispetto allo spazio x,y.

Risultati - feature di texture

Feature colore

- È vero che le foglie non differiscono molto fra loro per il **colore**, ma queste feature possono comunque **contribuire** nella **distinzione** delle diverse classi;
- Per il calcolo dell'istogramma colore è stato utilizzato lo spazio colore HSV e un numero di bin pari a 20
 - o i **range**, dei diversi parametri dello spazio, sono gli stessi che sono stati utilizzati per individuare la forma della foglia.

Risultati - feature di colore

Fusione degli score

- le diverse classifiche vengono convertite in punteggi, attribuendo un peso diverso alle differenti feature
- punteggi vengono sommati e associati alle diverse classi del problema
- all'immagine viene associata la classe con il punteggio più elevato

```
tot_scores = borda_count([color_ranking, shape_ranking, texture_ranking], [ 0.1, 0.6,
0.3])
tot_ranking = np.array(tot_scores).argsort()[:: -1]
```

Classifica finale

Valutazione delle prestazioni- Validation e Test

Una volta classificate le diverse immagini si è effettuato il calcolo:

- dell'accuratezza → circa 57% su Validation set e 59% sul Test set
- della matrice di confusione, per valutare l'entità degli errori commessi.

Principali cause di errore:

- l'immagine è di **piccole** dimensioni
- foglie con **forme simili** fra loro

Matrice di confusione

Validation Set

Test Set

Classification Report

accuratezza per classe: [0.29 0.35 0.62 0.91 0.62 0.68 0.64 0.55 0.39 0.65 0.24 0.72 0.57 0.72] accuratezza media: 0.5678571428571428

accuracezza per	(192	25. [6.2	0.5125 0.6125	0.0/5	0.00/5 0.00/	5 0.50/5 0.4/5	0.425	0.0023
0.3875 0.775	0.6	0.6875]						
accupatezza men	dia. o	E010714300	714205					

precision	recall	f1-score	support
0.45	0.29	0.35	100
0.58	0.35	0.44	100
0.59	0.62	0.60	100
0.76	0.91	0.83	100
0.97	0.62	0.76	100
0.55	0.68	0.61	100
0.74	0.64	0.68	100
0.47	0.55	0.51	100
0.43	0.39	0.41	100
0.58	0.65	0.61	100
0.60	0.24	0.34	100
0.86	0.72	0.78	100
0.46	0.57	0.51	100
0.34	0.72	0.47	100
		0.57	1400
0.60	0.57	0.56	1400
0.60	0.57	0.56	1400
	0.45 0.58 0.59 0.76 0.97 0.55 0.74 0.47 0.43 0.58 0.60 0.86 0.46 0.34	0.45	0.45 0.29 0.35 0.58 0.35 0.44 0.59 0.62 0.60 0.76 0.91 0.83 0.97 0.62 0.76 0.55 0.68 0.61 0.74 0.64 0.68 0.47 0.55 0.51 0.43 0.39 0.41 0.58 0.65 0.61 0.60 0.24 0.34 0.86 0.72 0.78 0.46 0.57 0.51 0.34 0.72 0.47

0.30/3 0.//3	0.0 0.0	10/2]		
accuratezza m	edia: 0.5910	714285714	285	
	precision	recall	f1-score	support
Apple	0.49	0.30	0.37	80
Blueberry	0.71	0.51	0.59	80
Cherry	0.51	0.61	0.56	80
Corn	0.76	0.88	0.81	80
Grape	0.98	0.69	0.81	80
Orange	0.50	0.69	0.58	80
Peach	0.78	0.59	0.67	80
Pepper,	0.51	0.47	0.49	80
Potato	0.44	0.42	0.43	80
Raspberry	0.66	0.66	0.66	80
Soybean	0.82	0.39	0.53	80
Squash	0.86	0.78	0.82	80
Strawberry	0.44	0.60	0.51	80
Tomato	0.37	0.69	0.48	80
accuracy			0.59	1120
macro avg	0.63	0.59	0.59	1120
weighted avg	0.63	0.59	0.59	1120

Validation Set Test Set

Problematiche e migliorie

Problematiche della soluzione adottata:

- la classificazione computazionalmente costosa e richiede diverso tempo
 - non si è utilizzato un classificatore, a causa dei limiti di memoria imposti dal framework CoLab

Possibili **migliorie**:

- provare altre tecniche per l'estrazione delle feature
- provare ad aumentare la dimensione delle immagini;
- migliorare la tecnica di acquisizione della forma;
- sfruttare per la computazione della classe la GPU;

Riconoscimento piante - Deep Learning

Come modello di partenza si è deciso di utilizzare **VGG16** addestrata con i pesi di **imagenet**:

la dimensione delle immagini di input è 224 x 224 x
 3

È stato definito un nuovo modello in questo modo:

- aggiungendo un nuovo livello Fully Connected,
 adattando il numero di classi (14 piante);
 - o funzione di attivazione \rightarrow soft_max.

Per l'addestramento del modello è stato utilizzato

- Adam -> come ottimizzatore
- sparse_categorical_crossentropy -> come funzione di loss.

Modello rete VGG16

Valutazione delle prestazioni - Training e Validation set

Per l'addestramento del modello sono state utilizzate 3 epoche

 già con questo numero si ottengono un buon risultato per la loss e per l'accuratezza.

L'accuratezza:

- sul *training set* → **aumenta** notevolmente fin dalla prima epoca, per poi rallentare
- sul validation set → si abbassa leggermente fino alla seconda epoca per poi aumentare

La loss:

- per il training set → tende a diminuire man mano che le epoche aumentano
- per il validation set → aumenta durante la prima epoca per poi diminuire nella seconda

loss: 0.5117 - accuracy: 0.9900 - val_loss: 1.2203 - val_accuracy: 0.9840

Valutazione delle prestazioni - Test set

	precision	recall	f1-score	support
Apple	0.99	0.97	0.98	600
Blueberry	0.96	0.99	0.98	123
Cherry	1.00	0.98	0.99	278
Corn	0.99	1.00	1.00	548
Grape	1.00	0.99	1.00	528
Orange	0.99	0.99	0.99	166
Peach	0.98	0.98	0.98	263
Pepper,	0.98	0.98	0.98	304
Potato	1.00	0.93	0.96	436
Raspberry	0.99	1.00	1.00	130
Soybean	1.00	0.97	0.99	149
Squash	1.00	0.99	1.00	129
Strawberry	0.99	0.99	0.99	268
Tomato	0.97	0.99	0.98	1349
accuracy			0.98	5271
macro avg	0.99	0.98	0.99	5271
weighted avg	0.98	0.98	0.98	5271

1200

1000

- 800

Problematiche e possibili modifiche

Problematiche della soluzione adottata:

- la loss sul validation set non ha un andamento stabile;
- se si diminuiscono le dimensioni delle immagini, le prestazioni calano, sebbene non di molto.

Possibili modifiche:

- adottare un'altra funzione per misurare la loss;
- modificare l'ottimizzatore;
- aumentare le epoche.

Riconoscimento delle malattie - Deep Learning

In questo caso sono state considerate tutte e 38 le classi del problema

Come modello di partenza si è deciso di utilizzare *MobileNet* addestrata con i pesi di **imagenet**:

la dimensione delle immagini di input è di 224 x 224 x 3

È stato definito un nuovo modello in questo modo:

- aggiungendo un nuovo livello Fully Connected adattando il numero di classi
 - o funzione di attivazione \rightarrow soft_max.

Per l'addestramento del modello è stato utilizzato:

- Adam → come ottimizzatore
- sparse_categorical_crossentropy
 - → come funzione di loss

Valutazione delle prestazioni - Training e Validation set

Per l'addestramento del modello sono state utilizzate 3 epoche

• si è visto che aumentando questo numero, anche se l'accuratezza migliora, la **loss** invece peggiora.

L'accuratezza:

- sul training set → aumenta notevolmente fin dalla prima epoca, per poi rallentare
- sul validation set → fino alla seconda epoca rimane stabile e poi aumenta

La loss:

- per il training set → tende a diminuire man mano che le epoche aumentano
- per il validation set → aumenta durante la prima epoca per poi diminuire nella seconda

loss: 2.2044 - accuracy: 0.8876 - val_loss: 4.1122 - val_accuracy: 0.8407

Valutazione delle prestazioni - Test set

	precision	recall	f1-score	support	
AppleApple_scab	0.64	0.85	0.73	154	
AppleBlack_rot	0.81	0.92	0.86	160	
AppleCedar_apple_rust	0.90	0.95	0.92	153	
Applehealthy	0.61	0.92	0.73	133	
Blueberryhealthy	0.93	0.82	0.87	123	
Cherry_(including_sour)Powdery_mildew	0.96	0.88	0.92	137	
Cherry_(including_sour)healthy	0.99	0.91	0.95	141	
Corn_(maize)Cercospora_leaf_spot Gray_leaf_spot	0.95	0.63	0.76	114	
Corn_(maize)Common_rust_	0.99	0.99	0.99	151	
Corn_(maize)Northern_Leaf_Blight	0.86	0.79	0.82	126	
Corn_(maize)healthy	1.00	0.99	0.99	157	
GrapeBlack_rot	0.95	0.82	0.88	143	
<pre>GrapeEsca_(Black_Measles)</pre>	0.86	0.95	0.90	142	
<pre>GrapeLeaf_blight_(Isariopsis_Leaf_Spot)</pre>	0.99	0.90	0.95	126	
Grapehealthy	0.95	0.86	0.91	117	
OrangeHaunglongbing_(Citrus_greening)	1.00	0.89	0.94	166	
PeachBacterial_spot	0.83	0.81	0.82	137	
Peachhealthy	0.95	0.83	0.89	126	
Pepper,_bellBacterial_spot	0.95	0.57	0.71	137	
Pepper,_bellhealthy	0.84	0.92	0.87	167	
PotatoEarly_blight	0.96	0.88	0.92	150	
PotatoLate_blight	0.87	0.70	0.78	149	
Potatohealthy	0.95	0.80	0.87	137	
Raspberryhealthy	0.95	0.79	0.87	130	
Soybeanhealthy	0.99	0.83	0.90	149	
SquashPowdery_mildew	0.69	0.99	0.82	129	
StrawberryLeaf_scorch	0.96	0.92		132	
Strawberryhealthy	0.89	0.97	0.93	136	
TomatoBacterial_spot	0.93	0.80	0.86	115	
TomatoEarly_blight	0.54	0.83	0.65	151	
TomatoLate_blight	0.88	0.49	0.63	144	
TomatoLeaf_Mold	0.91	0.57	0.70	145	
TomatoSeptoria_leaf_spot	0.45	0.87	0.59	122	
TomatoSpider_mites Two-spotted_spider_mite	0.69	0.91	0.78	130	
TomatoTarget_Spot	0.84	0.57	0.68	125	
TomatoTomato_Yellow_Leaf_Curl_Virus	0.83	0.93	0.87	135	
TomatoTomato_mosaic_virus	0.84	0.92	0.88	127	
Tomatohealthy	0.93	0.92	0.92	155	
accuracy			0.84	5271	
macro avg weighted avg	0.87	0.84	0.84	5271	
	0.87	0.84	0.84	5271	

Problematiche e possibili modifiche

Problematiche della soluzione adottata:

- la loss sul validation set non ha un andamento stabile;
- necessario diverso tempo per effettuare le differenti epoche;
- se diminuiscono le dimensioni delle immagini, le prestazioni calano di molto.

Possibili **modifiche**:

- aumentare la **dimensione** dell'immagine;
- aggiungere ulteriori livelli al modello, cercando di ridurre l'overfitting, ad esempio adottando il Dropout o ulteriori livelli di Pooling;
- adottare un'altra funzione per misurare la loss;
- modificare l'ottimizzatore;
- aumentare le epoche.

The End