МГТУ им. Н.Э. Баумана

Дисциплина электроника Лабораторный практикум №1

по теме: «Исследование характеристик и параметров полупроводниковых диодов»

Работу выполнил: студент группы ИУ7-32Б Тузов Даниил

Работу проверил: Дмитрий Игоревич Оглоблин

ЦЕЛЬ ПРАКТИКУМА:

Получение в программе схемотехнического анализа Місгосар XX и исследование статических характеристик кремниевого полупроводникового диода с целью определения по ним параметров модели полупроводниковых диодов. Освоение программы Mathcad для расчёта параметров модели полупроводниковых приборов на основе данных экспериментальных исследований

Часть 1

Пункт 1-2. Работа в МістоСар11

В рамках этого эксперимента была собрана экспериментальная ветвь с прямым током

И обратным током:

Данный выбор схем объясняется следующими соображениями. Несмотря на то, что идеальных измерительных приборов не существует, все-таки амперметр должен обладать относительно малым сопротивлением, а вольтметр, наоборот, довольно значительным. При прямом включении диод имеет малое сопротивление, и, если параллельно к нему подключить вольтметр, то потери в токе будут не значительны, т.к. сопротивление вольтметра во много раз превышает сопротивление диода при прямом включении. При обратном включении такая схема не прокатит, т.к. сопротивления диода и вольтметра

станут соизмеримы, и потери в токе окажутся весомыми. Поэтому следует точно измерить ток на ветви диода, вставив в нее амперметр, потерями напряжения можно пренебречь, т.к. падение напряжения на диоде при обратном включении будет гораздо больше потерь на амперметре. Проиллюстрируем сказанное графиками, построенным в MicroCap 11 по схеме, приведенной выше.

Для диода модели KD522A, соответствующей моему варианту, были получены BAX в программе MicroCap:

Для прямого тока:

Для обратного тока:

Для анализа нашей BAX и нахождения физических параметров диода воспользуемся программой MathCAD. Чтобы вычислительный блок

Given...Міпетт сработал как можно точнее, возьмем 7 точек в наиболее нелинейной части BAX

Для того, чтобы использовать полученные данные в программе MathCAD необходимо привести данные к соответствующему формату

Вариант «До»:

Вариант «После»:

0.0000000	-0.0000000
0.0199980	0.0000000
0.0399960	0.0000000
0.0599940	0.0000000
0.0799920	0.0000000
0.0999900	0.0000000
0.1199880	0.000000
0.1399860	0.0000000
0.1599840	0.0000000
0.1799820	0.0000000
0.1999800	0.0000000
0.2199780	0.0000000
0.2399760	0.0000000
0.2599740	0.0000000
0.2799720	0.0000000
0.2999700	0.0000000
0.3199680	
	0.0000000
0.3399660	0.0000000
0.3599639	0.0000001
0.3799619	0.0000001
0.3999597	0.0000003
0.4199574	0.0000006
0.4399548	0.0000012
0.4599516	0.0000024
0.4799472	0.0000048
0.4999403	0.0000097
0.5199284	0.0000196
0.5399065	0.0000395
0.5598644	0.0000796
0.5797823	0.0001598
0.5996213	0.0001338
0.6193093	
	0.0006287
0.6387218	0.0012143
0.6576704	0.0022638
0.6759286	0.0040038
0.6933084	0.0066223
0.7097400	0.0101890
0.7252807	0.0146468
0.7400596	0.0198664
0.7542201	0.0257045
0.7678890	0.0320342
0.7811682	0.0387537
0.7941366	0.0457840
0.8068543	0.0530650
0.8193672	0.0605508
0.8317108	0.0682060
0.8439127	0.0682060
0.8559946	0.0839198
0.8679739	0.0919393
0.8798648	0.1000473
0.8916785	0.1082323

Пункт 3-4. Работа в MathCAD

Найдем параметры диода в программе MathCAD

Для начала выгрузим значения из файла, сформированного в результате предыдущих пунктов

И построим по ним график зависимости силы тока от напряжения

Для самопроверки найдем параметры полупроводникового диода методом трех ординат

$$Id3 := max \Big(VAX^{\langle 1 \rangle} \Big) \qquad Id3 = 0.108$$

$$nMax := match \Big(Id3, VAX^{\langle 1 \rangle} \Big)$$

$$nMax = (50)$$

$$Ud3 := \Big(VAX^{\langle 0 \rangle} \Big)_{50} \qquad Ud3 = 0.892$$

$$nId1 := match \Big(\frac{Id3}{15}, VAX^{\langle 1 \rangle} \Big) \qquad nId2 := match \Big(\frac{Id3}{7}, VAX^{\langle 1 \rangle} \Big)$$

$$nId1 = (35) \qquad nId2 = (37)$$

$$Ud1 := linterp \Big(VAX^{\langle 1 \rangle}, VAX^{\langle 0 \rangle}, \frac{Id3}{15} \Big) \qquad Ud1 = 0.696 \qquad Id1 := \frac{Id3}{15} \qquad Id1 = 7.215 \times 10^{-3}$$

$$Ud2 := linterp \Big(VAX^{\langle 1 \rangle}, VAX^{\langle 0 \rangle}, \frac{Id3}{7} \Big) \qquad Ud2 = 0.728 \qquad Id2 := \frac{Id3}{7} \qquad Id2 = 0.015$$

$$Rb := \frac{(Ud1 - 2 \cdot Ud2 + Ud3)}{Id1} \qquad Rb = 18.369$$

$$NFt := \frac{[(3 \cdot Ud2 - 2 \cdot Ud1) - Ud3]}{ln(2)} \qquad NFt = -0.146$$

$$Io := Id1 \cdot exp \Big[\frac{-1}{NFt} \cdot (2 \cdot Ud1 - Ud3) \Big] \qquad Io = 0.224$$

И методом Given Minerr

Построим новый график теоретической зависимости силы тока и напряжения полупроводникового диода по полученным в результате метода Given Minerr значениям

Сравним теоретическую и экспериментальную зависимость

Как можно заметить теоретический график и экспериментальный совпадают, что свидетельствует от правильности проведенных измерений.