the Complex number

Z = x + iy

3) argument of Complex

ے حی الزاری الحورہ بین الغط الواجل بین نقطۃ الذہل وهور السیات و خواج من د المادة مثل خواج اللوغاء بھات (جزب جوۃ جمع برہ و العتمة جوہ وطرح برہ و ها تعلیما واطری)

Oarg (ZIZz) = arg ZI + arg Zz

Darg(Zi) = argZ, - argZz

garazⁿ = naraz

ardz = tan Z

Z=X+iy

TEXT find modulus and argument Por

$$\frac{2}{(2+5i)} \frac{(1+i)^3}{(3+6i)^2}$$

$$\frac{d}{dt} = \frac{dt}{(1+i)^3}$$

$$\frac{dt}{(-1-i)^2(1-i)^4}$$

$$\frac{1}{(1+i)^{8}} = \frac{1}{(1+i)^{3}} = \frac{1}{(1+i)^{3}} = \frac{1}{(1-i)^{2}(1-i)^{4}} = \frac{1}{(1-i)^{4}} = \frac$$

$$= \frac{(\sqrt{2})^3}{(\sqrt{2})^2 (\sqrt{2})^4} = \frac{1}{2\sqrt{2}}$$

$$=\frac{1}{2\sqrt{2}}$$

tan - =

م نلاخ مرالاً له تحسي بعة العبدالكي معظر بية خاطية مع دولك لعم التممير من الإنتارة على هي و أم لا ولعل منه الانتارة على مع و أم لا ولعل منه الانتارة على مع و أم لا الإشارات دندس ('tan') دفعد ربع الزارية مسقية لا) ب لو کانت ی دار بع دلنای ک ک و - ۱ ماله النالنه ۱ و - ۱۱ ان ازدا که الای الادل ادالرابع نینع القیم کاهی اور ا

=
$$arg(1+i)^3 - arg[(-1-i)^2(1-i)^4]$$

$$=3\left(\frac{\pi}{4}\right)-2\left(\pi+\frac{\pi}{4}\right)-4\left(-\frac{\pi}{4}\right)$$

$$|Z_1+Z_2| \leqslant |Z_1| + |Z_2|$$

$$|4| - |z| < |4-z|$$

صر ۱) ؟ بنتج اعطلایا

عايز اثبت انهم متعامداء لو

تحقير الخرط الحكوب فوصر.

[EX:3] Prove that the line Joining the Points

Zi, Zi and Zi, Za are perendicular with then the

$$\operatorname{Re}_{Z_3-Z_4} = 0$$

arg(Z,-Zz) =0,

arg (Z3-Z4) = 02

[A] Lec 1

org
$$\left(\frac{Z_1 - Z_2}{Z_3 - Z_4}\right) = \frac{\pi}{2}$$

y par de te Z1-Z2 N°t si.

$$Re\left(\frac{Z_1-Z_2}{Z_3-Z_4}\right)=0$$

an Zuckerby

andre Eers per les virisions la las plas men

* Polar Form of Complex number:

مندد بعد ونیش (سایان او کار (۲۸) کاری (۲۸) کاری در زادی دیشی (۱۹۵۸) کاری در زادی دیشی (۱۹۵۸)

$$Z = Y \left[\cos \left(\Theta \pm 2n\pi \right) + i \sin \left(\Theta \pm 2n\pi \right) \right]$$

i(10,651)
e = Cos (10,651) + i sin (10,651) Z=Ye(0±2nT) $Y = \sqrt{x^2 + y^2}$ 0 = tan 3 (Cose +isine) = Cos(ne) +isin (ne) > De Mouver theorem Z=e + Z= Coso +isino (Cosotisino) = cos (no) + i sin(no) => Roots of Complex number:-1x+iy ے لکی نوجہ فکم لیجاد العنار لای عدد مرکب نحتاج لنکرہ Each 1 (x, x) (b sin cincer) (0, x) (xtis)

6 Leci

$$x+iy = y e^{i\left(\Theta \pm 2K\pi\right)}$$

$$(x+iy)^{\frac{1}{n}} = y^{\frac{1}{n}} e^{i\left(\Theta \pm 2K\pi\right)}$$

$$(x+iy)^{\frac{1}{n}}$$

EX: Find the roots of
$$\sqrt[3]{1+i}$$

$$\frac{50(1)}{3} = \sqrt{3} \left[\cos\left(\frac{\Theta + 2K\pi}{3}\right) + i\sin\left(\frac{\Theta + 2\pi K}{3}\right) \right]$$

$$K = 0, 1, 2 \qquad |X = 1, Y = 1$$

$$Y = \sqrt{2} \qquad \Theta = \tan^{3} 1 = \frac{\pi}{4}$$

$$(1+i)^{\frac{1}{3}} = (2)^{\frac{1}{6}} \left[\cos\left(\frac{\pi}{4} + 2K\pi\right) + i\sin\left(\frac{\pi}{4} + 2\pi K\right) \right]$$

1 Leci

$$K = 0$$

$$Z_{0} = 2^{\frac{1}{6}} \left[Cos \frac{\pi}{12} + i sin \frac{\pi}{12} \right] = 0$$

$$K = 1$$

$$Z_{1} = 2^{\frac{1}{6}} \left[Cos \left(\frac{3\pi}{4} \right) + i sin \left(\frac{3\pi}{4} \right) \right] = 0$$

$$K = 2$$

$$Z_{2} = 2^{\frac{1}{6}} \left[Cos \left(\frac{17\pi}{12} \right) + i sin \left(\frac{17\pi}{12} \right) \right]$$

[8] Lec 1

- 5-3
