1. 采用动态规划技术求解RNA序列: AUGAUGGCCAU 的最大碱基对数目。

For k = 5 To n - 1For i = 1 To n - k $j \leftarrow i + k$. For each b_t ($i \le t < j - 4$) paired with b_j T = 1 + M[i, t - 1] + M[t + 1, j - 1]. $M[i, j] \leftarrow \max\{M[i, j - 1], T\}$.

Return M[1, n].

For
$$k=5$$
 To $n-1$
For $i=1$ To $n-k$
 $j \leftarrow i+k$.
For each b_t $(i \le t < j-4)$ paired with b_j
 $T=1+M[i,t-1]+M[t+1,j-1]$.
 $M[i,j] \leftarrow \max\{M[i,j-1],T\}$.
Return $M[1,n]$.

A U G A U G G C C A U 1 2 3 4 5 6 7 8 9 10 11

$$i \le t < j - 4$$

5	0	0	0	0		
4	0	0	0			
3	0	0				
2	0					
1						
'	6	7	8	9	10	11

5	0	0	0	0	1	
4	0	0	0	0		
3	0	0	1			
2	0	0				
1	0					
·	6	7	8	9	10	11

For
$$k = 5$$
 To $n - 1$
For $i = 1$ To $n - k$
 $j \leftarrow i + k$.
For each b_t ($i \le t < j - 4$) paired with b_j
 $T = 1 + M[i, t - 1] + M[t + 1, j - 1]$.
 $M[i, j] \leftarrow \max\{M[i, j - 1], T\}$.
Return $M[1, n]$.

A U G A U G G C C A U 1 2 3 4 5 6 7 8 9 10 11

$$i \le t < j - 4$$

5	0	0	0	0	1	1
4	0	0	0	0	1	
3	0	0	1	1		
2	0	0	1			
1	0	0				
'	6	7	8	9	10	11

5	0	0	0	0	1	1
4	0	0	0	0	1	2
3	0	0	1	1	1	
2	0	0	1	1		
1	0	0	1			
·	6	7	8	9	10	11

For
$$k = 5$$
 To $n - 1$
For $i = 1$ To $n - k$
 $j \leftarrow i + k$.
For each b_t ($i \le t < j - 4$) paired with b_j
 $T = 1 + M[i, t - 1] + M[t + 1, j - 1]$.
 $M[i, j] \leftarrow \max\{M[i, j - 1], T\}$.
Return $M[1, n]$.

$$i \le t < j - 4$$

5	0	0	0	0	1	1
4	0	0	0	0	1	2
3	0	0	1	1	1	2
2	0	0	1	1	2	
1	0	0	1	1		
'	6	7	8	9	10	11

5	0	0	0	0	1	1
4	0	0	0	0	1	2
3	0	0	1	1	1	2
2	0	0	1	1	2	2
1	0	0	1	1	2	
	6	7	8	9	10	11

For
$$k = 5$$
 To $n - 1$
For $i = 1$ To $n - k$
 $j \leftarrow i + k$.
For each b_t ($i \le t < j - 4$) paired with b_j
 $T = 1 + M[i, t - 1] + M[t + 1, j - 1]$.
 $M[i, j] \leftarrow \max\{M[i, j - 1], T\}$.
Return $M[1, n]$.

$$i \le t < j - 4$$

采用动态规划计算实例 A="xyxxzxyzxy"和

B="zxzyyzxxyxxz"的最长公共子序列。

采用动态规划技术计算实例A="xyxxzxyzxy"和B="zxzyyzxxyxxz"的最长公共子序列。

```
LCS算法
输入:字符串A和B;输出:A和B最长公共子序列的长度。
For i \leftarrow 0 to n
  L[i,0] \leftarrow 0
For j \leftarrow 0 to m
  L[0,j] \leftarrow 0
For i \leftarrow 1 to n
  For j \leftarrow 1 to m
     If a_i = b_i Then L[i,j] \leftarrow L[i-1,j-1] + 1
     Else L[i,j] \leftarrow \max\{L[i,j-1],L[i-1,j]\}
Return L[n, m]
```

采用动态规划技术计算实例A="xyxxzxyzxy"和B="zxzyyzxxyxxz"的最长

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0												
2	0												
3	0												
4	0												
5	0												
6	0												
7	0												
8	0												
9	0												
10	0												

采用动态规划技术计算实例A="xyxxzxyzxy"和B="zxzyyzxxyxxz"的最长

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1	1	1
2	0												
3	0												
4	0												
5	0												
6	0												
7	0												
8	0												
9	0												
10	0												

采用动态规划技术计算实例A="xyxxzxyzxy"和B="zxzyyzxxyxxz"的最长

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	1	2	2	2	2	2	2	2	2	2
3	0												
4	0												
5	0												
6	0												
7	0												
8	0												
9	0												
10	0												

采用动态规划技术计算实例A="xyxxzxyzxy"和B="zxzyyzxxyxxz"的最长

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	1	2	2	2	2	2	2	2	2	2
3	0	0	1	1	2	2	2	3	3	3	3	3	3
4	0	0	1	1	2	2	2	3	4	4	4	4	4
5	0	1	1	2	2	2	3	3	4	4	4	4	5
6	0	1	2	2	2	2	3	4	4	4	5	5	5
7	0	1	2	2	3	3	3	4	4	5	5	5	5
8	0	1	2	3	3	3	4	4	4	5	5	5	6
9	0	1	2	3	3	3	4	5	5	5	6	6	6
10	0	1	2	3	4	4	4	5	5	6	6	6	6