Sheet 7 Based on a paper: 11 A Revisit to SVDD, National Taiwan EX 1 a) Derive the dual program for the one-class SVM
SVDD primal is given by: (0 < V < 1)
min $R_{1}c_{1}(\mathcal{E}_{i})_{i=1}^{n}$ $R^{2} + \frac{1}{nv} \sum_{i=1}^{n} \xi_{i}$
s.t. \(\forall \ \partial \ \ \text{1.} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
For minimizing an optimization problem, before deriving the
dagrangian dual problem and checking whether the dual
optimal value is identical to the primal optimal value, one
Should make sure that the original problem is convex.
Otherwise, the duality theory of convex programming may not
be applicable.
The primal problem @ is non-convex, because 11¢(xi)-412-R2-Si

The prismal problem (1) is non-convex, because $||\phi(xi)-\phi||^2-R^2-Si|$ is concave with R. Therefore problem (1) has a non-convex feasible region, so it is not a vonvex optimization problem.

Nevertheless, by defining $\overline{R} = R^2$, (1) is equivalent to the following convex problem:

min $R + \frac{1}{nv} \sum_{i=1}^{n} \xi_i$ Rickei) n |x| = 1 |x|

(A new constraint specifying the non-negativity of Risadded).

A related difficulty is whether the non-negativity constraint R 70 is active. We handle this, by splitting the derivation to two cases:

1° for any WOCV<1, the constraint R70 in (2) is not necessary i.e. without this constraint any optimal solution still satisfies R70

2° for any V=4 at least one optimal solution has $\overline{R}=0$.

We derive the dual problem by considering cases reparately,

Case 1: 0 < v < 1 The Lagrangian of @ is: L(c, R, 5, 0, 8) = R + 1 = R + 1 = Fi - I ai(R+ Fi - II d(x) - c|12) - 2 xi gi= = R (1-Zai) + Z gi (mn -ai - gi) + Z xi (1/0(xi) - c1)2) where & and & are Lagrange multipliers. The Lagrange dual problem is: max (inf L(c, R; \$100, y)) From Karsish-Kuhn-Tucker (KKT) Conditions: 1: Stationarity: condition for primal variables VL = 0 gives: $\frac{\partial x}{\partial R} = 0$: $\frac{\partial$ $\frac{\partial \mathcal{L}}{\partial c} = 0 : 2c \sum_{i=1}^{N} \alpha_i - 2 \sum_{i=1}^{N} \alpha_i \phi(x_i) = 0$ $\Rightarrow c = \sum_{i=1}^{N} \alpha_i \phi(x_i)$ $\frac{\partial d}{\partial \xi_i} = 0 : \frac{1}{nv} - \xi \alpha_i - \xi_i = 0 \implies \alpha_i \beta_i > 0 \implies 0 \le \alpha_i \le \frac{1}{nv}$ Substituting the results local state () can yield the dural problem forwalded as: 2. primal admission: $|\phi(x_i)-c||^2 \leq R + \xi_i \quad \forall i=1$ Ei >0 Hi=1 3: dual admission: di 70, yi 7,0 4. complementarity: MANTHAM (slackness conditions) di (||d(xi) - c||2 - R - Si) = 0 and yi fi = 0 Vi=1 L> complementarity tells us: two groups of points: 1) the support vectors $\|\phi(x_i) - c\|^2 = R^{\frac{1}{2}}$ 2) and the insiders di = 0

Resubstituting the optimality conditions in d(.) gives the Lagrange function only in dual variables di $d(\alpha i) = \overline{R} (1 - \sum_{i=1}^{n} \alpha_i) + \sum_{i=1}^{n} \xi_i (\frac{1}{nv} - \alpha_i - \gamma_i) + \sum_{i=1}^{n} \alpha_i (||d(\alpha_i) - \alpha_i|^2) = 0$ n = 0 n = 0 $= \sum_{i=1}^{N} di \left(\left\| \phi(x_i) - \sum_{i=1}^{N} d_i \phi(x_i) \right\|^2 \right) =$ $= \sum_{i=1}^{n} \alpha_i \left(\phi(x_i) \phi(x_i) - 2\phi(x_i) \sum_{s=1}^{n} \alpha_j \phi(x_j) + \left(\sum_{s=1}^{n} \alpha_j \phi(x_j) \right) \sum_{s=1}^{n} \phi(x_j) \right)$ $= \sum_{i=1}^{n} x_i \phi(x_i) \phi(x_i) - 2 \sum_{i=1}^{n} x_i \phi(x_i) \sum_{i=1}^{n} x_i \phi(x_i) + \sum_{i=1}^{n} x_i \cdot \left(\sum_{i=1}^{n} x_i \phi(x_i)\right) \left(\sum_{i=1}^{n} x_i \phi(x_i)\right$ $= \sum_{i=1}^{n} \omega_i \phi(x_i) \phi(x_i) - \left(\sum_{i=1}^{n} \omega_i \phi(x_i)\right) \left(\sum_{i=1}^{n} \omega_i \phi(x_i)\right) \left(\sum_{i=1}^{n} \omega_i \phi(x_i)\right) = 1$ $= \sum_{i=1}^{n} \alpha_i \phi(x_i)^T \phi(x_i) - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \phi(x_i)^T \phi(x_j)$ That yields the dual problem formlated as: max $Z \propto \phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ $\phi(x_i)^T \phi(x_i) - Z Z \propto \alpha_j \phi(x_i)^T \phi(x_j)$ Case 2: W V=1 then at least one optimal solution has R=0, so we can vernove the variable R from the problem The minimum must occur when $g_i = 10(x_i) - 011^2 7,0$ Thus problem (2) can be reduced to: min Σ [φ(xi)-cll² This problem is strictly convex to a, so setting the gradient to be zero heads to: $C = \frac{\sum_{i \geq 1} \phi(x_i)}{h_i}$

-3-

1 6) Show that the kernelized dual has the form max Zaik(xi) - Z Z aiajk(xi)xj) s.t. Zi di =1 and Vi=1: 0 s xi s uv and with center $c = \sum_{i=1}^{\infty} x_i \phi(x_i)$ where k is the kernel associated to the feature map. SVDD can be simply hernalized $\phi(x)^T\phi(x_j)$ in the computations by k(xi,xj), where k(j) is some suitable kernel function Sidenote: Let I be a RKHS on some domain RP endowed with kernel k. If there exist some constant c s.t. $\forall x \in \mathbb{R}^P \ k(x_1x) = c$, then the SVDD and One-Class SVM one equivalent (for translation invariant keniels). Let consider the kernel k(xi, xj) = \$\phi(xi)^T \phi(xj)\$ Then the dual problem after bemalization is: from May excercise 1a): $\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} \phi(x_{i})^{T} \phi(x_{i}) - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \phi(x_{i})^{T} \phi(x_{j})$ 8. t. $\sum_{i=1}^{n} x_i = 1$ and $\forall i=1 : 0 \le x_i \le \frac{1}{nu}$ replacing $\phi(x_i)^T \phi(x_i) = k(x_i, x_i)$ we get max Z dik(xi 1xi) - Z Z didj k(xi xj)

a in a xi = 1 and Yin 0 sai < hu

s.t. Z xi = 1 and Yin 0 sai < hu Note that the KKT stationarity condition is equivalent to the Represe for The to the Representer Theorem i.e. $c = \sum_{i=1}^{n} x_i \phi(x_i) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$

-4-

EX2. Show that the dual program from EX1 is a linearly constrained QP:

min $\alpha TP x + q^T x$ s.t $G x \le h$ and A x = b

From EX1 we have the dual program:

max
$$\sum_{i=1}^{n} \alpha_i k(x_i, x_i) - \sum_{i=1}^{n} k(x_i, x_i)$$

At. $\sum_{i=1}^{n} \alpha_i = 1$ and $V_{i=1}^{n}$ $0 \le \alpha_i \le nv$

Which is equivalent to minimization problem:

Resorting it in a matrix form:

-> matrix P is a kernel matrix with the elements

Pij = k(xi,xj) of dimensions n xn

$$\rightarrow$$
 vector $\alpha = \frac{dn}{dt}$ of dimensions $n \times 1$

-> vector
$$Q = \begin{bmatrix} k(x_1, x_1) \\ \vdots \\ k(x_n, x_n) \end{bmatrix}$$

with the diagonal elements of the kernel matrix of dimensions n x1

-> matrix G is an identity matrix G= [10000]
of dinensions n xn

> vector h is a vector with all the same elements $h = \begin{bmatrix} 1/nv \end{bmatrix} \text{ of dimensions } N \times 1$

- → motrix A contains only number 1 A=[1,...1]

 and it's actually a transposed unity vector

 A has dimensions 1×n.
- > vector b is a scalar: b=1 (vector of dim. 1×1)