Corto 3 Matemática Discreta

Miércoles, 2 de octubre 2019

David Gabriel Corgo Mcmath Nombre y Apellidos: _

Tema:	1	2	3	4	Total
Puntos:	35	30	35	10	110
Nota:	25	30	25	8	නුන

1. (35 pts.) Utilice el algoritmo de Euclides para encontrar el máximo común divisor de 100 y 101.

$$mcd(100,101)$$
 $101 = 100 \cdot 1 + 1$
 $mcd(109, 1)$

mcd (101,100)=1.

mcd (

2. (30 pts.) ¿Qué enteros positivos menores que 12 son sus primos relativos?

(b) pis.) Eque enteres positives menores que 12 sen sus primos relativos.							
mcd (11,12)	mcd (10, 12)	med (9,12)	mcd (7,12)				
12 = 11.1 + 1	72=10-1 +2 mcd(10,2)	12 = 9.1 + 3 mcd(9,3)	72=7.1+5 med (7,5)				
mcd(11, 1) $11 = 1.11 + 0$	10 = 2.5 + 0	d=3.3 +0	7=5.1 +2 mid (5,2)				
med (1,0)7	mcd (2,0)	mcd (3,0)	s = 2.2 + 1 mcd(2,1)				
Lista/de/prija	relativos:	1	2=2.1+0				
11, 7, 5, 1 per condo el mod gueda questión se							

4. (10 pts.) ¿Puede determinar una fórmula para la siguiente secuencia de tal forma que pueda predecir el siguiente término? , 1, [2] 3, [2], 5, [2], 7, [2], 3, [2], 11, [2], 13, [2], ... 15, 2, 17

 $(9) \text{ for } x = \begin{cases} \text{di } x = 2k \text{ enforces, } f(x) = 2 \\ \text{di } x = 2k + 1 \text{ enforces } f(x) = 2k + 1 \end{cases}$