ML QUESTION BANK (UT2)

Q.J Minimum threshold (E) = 0.85 Minimum Pts >= 2

- 1	-					
		[P]	P2	P3	P4	P5
	PI	1.00	0.30	0.60	0.70	0.79
	P2	0.30	1.00	0.88	0.90	0.89
	P3	0.60	0.88	1.00	0.60	0.90
	P4	0.70	0.90	0.60	1.00	0.80
	P5 1	0.79	0.89	0.90	0.80	1.00
	,	1				ı

Points & which satisfy the threshold condition P1: -, P2: P3, P4, P5, P3: P2, P5

f P4: P2, , P5: P2, P3

Status of Points (Border, Noise, (ore)

		Status				
	PI	Noise	V			
	P2	Core				
	P3	Core				
	P4 /	Core				
	P5	Core				
1						

Bince, PI is not in any of the conclusters of the points with status as core, it is not a border point too.

Point too. Hence, Pl is not a part of any chester.

			and the second	managed on the same of the last or the last of the las
-		X	X2	[(m)
	PI	182	72	2
	P2	170	56	
	P3	168	60	
•	P4	179	68	2
	P-5	185	72	2
1	PG	188	77	2

Cluster 1: P2, P3 Cluster 2: P1, P4, P5, P6

Intra Cluster Distance Table:

	1 PI 1	P2	P3	P4	P5	[P6]
PI	0	_	_	5	3	7.81
P2	_	0	4.47	_		and of the property of the second
P3		4.47	0			
100	5			0	7.21	12.73
199	2	_		7.21	0	5.83
125	7 81			12.73	5.83	0
116	7.01	500 A 5				

$$0.5$$
 Cenhe XI Cenhe X2

E1 1 0

E2 1 2

E3 3 4

E4 -3 -4

E5 -1 -2

E6 -1 0

Step 1 :- Calculate Mean

$$X_1 = \frac{1}{6} (1+1+3+(-3)+(-1)+(-1)) = 0$$

$$\overline{X}_2 = \frac{1}{6}(0+2+4-4-2+0) = 0$$

Step 2: - Calculation of Conariance Matrix

$$S = \begin{bmatrix} Cov(X_1, X_1) & Cov(X_1, X_2) \\ Cov(X_2, X_1) & Cov(X_2, X_2) \end{bmatrix}$$

$$Cov(X_{1},X_{1}) = \frac{1}{N-1} \stackrel{\text{def}}{\underset{\text{N}}{=}} (X_{1k} - \bar{X}_{1}) (X_{1k} - \bar{X}_{1})$$

$$=\frac{1}{5}\left((x_{11}-\bar{x_{1}})^{2}(x+(x_{12}-\bar{x_{1}})^{2}+(x_{13}-\bar{x_{1}})^{2}+(x_{13}-\bar{x_{1}})^{2}+(x_{14}-\bar{x_{1}})^{2}+(x_{15}-\bar{x_{1}})^{2}+(x_{16}-\bar{x_{1}})^{2}\right)$$

$$+(x_{14}-x_{1})+(x_{15}-x_{1})+(x_{16}-x_{1})$$

$$= 1 (x_{14}-x_{1})^{2}+(x_{15}-x_{1})^{2}+(x_{16}-x_{1})^{2}$$

$$= \frac{1}{5} \left((1)^{2} + (1)^{2} + (3)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} \right)$$

$$\begin{array}{l} \text{Cov}\left(X_{1},X_{2}\right) = \frac{1}{N-1} \sum_{k=1}^{N} \left(X_{1k} - \bar{X}_{1}\right) \left(X_{2k} - \bar{X}_{2}\right) \\ = \frac{1}{5} \left((1)(0) + (1)(2) + (3)(4) + (-3)(-4) + (-1)(-2) + (-1)(0) \right) \\ = \frac{28}{5} = 5.6 \\ \text{Cov}\left(X_{2},X_{1}\right) = \frac{1}{N-1} \sum_{k=1}^{N} \left(X_{2k} - \bar{X}_{2}\right) \left(X_{2k} - \bar{X}_{1}\right) \\ = 5.6 \\ \text{Cov}\left(X_{2},X_{2}\right) = \frac{1}{N-1} \sum_{k=1}^{N} \left(X_{2k} - \bar{X}_{2}\right) \left(X_{2k} - \bar{X}_{2}\right) \\ = \frac{1}{5} \left(0^{2} + 2^{2} + 4^{2} + (-4)^{2} + (-2)^{2} + 0^{2}\right) \\ = \frac{1}{5} \left(0^{2} + 2^{2} + 4^{2} + (-4)^{2} + (-2)^{2} + 0^{2}\right) \\ = \frac{1}{5} \left(0^{2} \left(X_{2},X_{1}\right) \right) \left(0^{2}\left(X_{2},X_{2}\right)\right) = \begin{bmatrix} 4.4 & 5.6 \\ 5.6 & 8 \end{bmatrix} \\ \text{Cov}\left(X_{2},X_{1}\right) \left(0^{2}\left(X_{2},X_{2}\right)\right) = \begin{bmatrix} 4.4 & 5.6 \\ 5.6 & 8 \end{bmatrix} \\ \text{Sep 3:} \quad \text{EigenValues of the lowerience matrix} \\ \text{The characteristic equation of the eoverience matrix} \\ \text{Soliton is} \\$$

$$\begin{array}{l} \lambda = 12.0822 \quad , 0.3178 \\ = \lambda_1 \quad , \lambda_2 \quad (say) \end{array} \qquad \begin{array}{l} \lambda_1 = 12.0822 \\ \lambda_1 = 12.0822 \\ \lambda_2 = 0.3178 \end{array}$$
 Step 4: - (omputation of the tiganvectors
$$U = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \implies (S-\lambda I) \quad U = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 4.4-\lambda & 5.6 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 4.4-\lambda & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 4.4-\lambda & 0 \\ 0 \end{bmatrix}$$

We will be finding the unit eigenvector, we compute the length of v, which is given by, $||V_1|| = \sqrt{(45)^2 + (2.6)^2 + (2.0822)^2} = \sqrt{4.4} = \sqrt{4.4}$ $= \sqrt{31.36+59.0162} = 9.5066$ Length of Unit Eigenvector (110,11) = 12. 9.5066 Eigenvector $(e_i) = [5.6 | 11 | v_1 | 1]$ $[\lambda_i + 4.4 | 11 | v_1 | 1]$ = 5.6 | 9.5066| 2.0822 - 4.4 | 9.5066 | = 0.8081 $U_2 = \begin{bmatrix} 5.6 \\ \lambda_2 - 4.4 \end{bmatrix}$ Computing length of V2 $||V_2|| = \sqrt{(5.6)^2 + (\lambda_2 - 4.4)^2} = \sqrt{31.36 + (0.3178 - 4.4)^2}$ $=\sqrt{48.02}=6.9296$ $=\sqrt{31.36+16.66}$ Eigenvector (C2) = $\begin{bmatrix} 5.6 & |1|^{1} \\ 12 & |1| \\ 11|$ $= \begin{bmatrix} 5.6 & | 6.9296 \\ | 0.3178 - 4.4 & | 6.9296 \end{bmatrix} = \begin{bmatrix} 0.8081 \\ | -0.5891 \end{bmatrix}$

= -1.62

$$V_{1}^{T} \begin{bmatrix} x_{1k} - x_{1} \\ x_{2k} - x_{2} \end{bmatrix} = \begin{bmatrix} 0.59 & 0.81 \end{bmatrix} \begin{bmatrix} 126 - 128 \\ 78 - 80 \end{bmatrix} = \begin{bmatrix} 0.59 & 0.81 \end{bmatrix} \begin{bmatrix} -27 \\ -2 \end{bmatrix}$$

$$= (0.59)(-2) + (0.81)(2) = -1.18 + 1.62$$

$$= 0.49$$

$$V_{1}^{T} \begin{bmatrix} x_{1k} - x_{1} \\ x_{2k} - x_{2} \end{bmatrix} = \begin{bmatrix} 0.59 & 0.81 \end{bmatrix} \begin{bmatrix} 128 - 128 \\ 80 - 80 \end{bmatrix} = 0$$

$$V_{2k}^{T} \begin{bmatrix} x_{1k} - x_{1} \\ x_{2k} - x_{2} \end{bmatrix} = \begin{bmatrix} 0.59 & 0.81 \end{bmatrix} \begin{bmatrix} 128 - 128 \\ 80 - 80 \end{bmatrix} = 0$$

$$V_{3k}^{T} \begin{bmatrix} x_{1k} - x_{1} \\ x_{2k} - x_{2} \end{bmatrix} = \begin{bmatrix} 0.59 & 0.81 \end{bmatrix} \begin{bmatrix} 128 - 128 \\ 80 - 80 \end{bmatrix} = 0$$

$$v_{1}^{T} \begin{bmatrix} x_{1k} - x_{1} \\ \lambda_{2k} - x_{2} \end{bmatrix} = \begin{bmatrix} 0.59 & 0.81 \end{bmatrix} \begin{bmatrix} 128 - 128 \\ 82 - 80 \end{bmatrix} = -(0.81)(2)$$

X	130 70	E2 128	E3 128 82	126 78	128 8D	€6 128 82	
First Principal Company		0	-1.62	0.44	0	-1.62	

Computation of Second Principle Components $V_{2}^{T} \begin{bmatrix} X_{1k} - \bar{X}_{1} \\ X_{2k} - \bar{X}_{2} \end{bmatrix} = \begin{bmatrix} -0.81 & 0.59 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = 21.62 + 1.18$

$$v_{2}^{\dagger}\begin{bmatrix} x_{1k} - \bar{x_{1}} \\ x_{2k} - \bar{x_{2}} \end{bmatrix} = \begin{bmatrix} -0.81 & 0.59 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

$$V_{2}^{T} \begin{bmatrix} X_{1R} - X_{1} \\ X_{2k} - X_{2} \end{bmatrix} = \begin{bmatrix} -0.81 & 0.59 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = -1.18$$