

Campus Cornélio Procópio

1. Construir num mesmo sistema cartesiano os gráficos das funções

$$y = x^2$$
 $y = (x-1)^2$ $y = (x+1)^2$ $y = (x-2)^2$

2. Construir separadamente os gráficos das seguintes funções

$$y = -(x-1)^2 + 2$$
 $y = (x+2)^2 - 1$ $y = -(x-4)^2 - 1$ $y = (x+3)^2 - 2$

3. Determinar em \mathbb{R} as raizes das seguintes funções.

a)
$$f(x) = x^2 - 3x + 2$$
 b) $f(x) = -x^2 + 7x - 12$ c) $f(x) = 3x^2 - 7x + 2$

d)
$$f(x) = x^2 - 2x + 2$$
 e) $f(x) = x^2 + 4x + 4$ f) $f(x) = x^2 - 2x - 1$

g)
$$f(x) = -x^2 + 3x - 4$$
 h) $f(x) = 2x^2 - 4x$ i) $f(x) = 4x^2 + 3$

4. Determinar em \mathbb{R} as raizes das seguintes funções.

a)
$$f(x) = x^4 - 3x^2 - 4$$
 b) $f(x) = x^4 - 5x^2 + 4$ c) $f(x) = 3x^4 - 12x^2$

5. Determinar os valores de m para que a função quadrática

$$f(x) = mx^{2} + (2m - 1)x + (m - 2)$$

possua duas raizes reais distintas.

6. Determinar os valores de m para que a função quadrática

$$f(x) = (m-1)x^2 + (2m+3)x + m$$

possua duas raizes reais distintas.

7. Determinar os valores de m para que a função quadrática

$$f(x) = (m+2)x^2 + (3-2m)x + (m-1)$$

possua no mínimo uma raiz real.

8. Determinar os valores de m para que a função quadrática

$$f(x) = mx^2 + (m+1)x + (m+1)$$

possua uma raiz real dupla.

9. Determinar os valores de m para que a função quadrática

$$f(x) = x^2 + (3m+2)x + (m^2 + m + 2)$$

possua uma raiz real dupla.

10. Determinar os valores de m para que a função quadrática

$$f(x) = (m+1)x^2 + (2m+3)x + (m-1)$$

não possua raiz real.

11. Determinar funções do segundo grau que possuam as seguintes raizes.

a)
$$x_1 = 1$$
 $x_2 = -2$

b)
$$x_1 = 0.5$$
 $x_2 = -\sqrt{2}$

a)
$$x_1 = 1$$
 $x_2 = -2$ b) $x_1 = 0, 5$ $x_2 = -\sqrt{2}$ c) $x_1 = 1 + \sqrt{3}$ $x_2 = 1 - \sqrt{3}$

12. Determinar o valor mínimo ou máximo, bem como o ponto de máximo ou mínimo das seguintes funções.

a)
$$f(x) = 2x^2 + 5x$$

a)
$$f(x) = 2x^2 + 5x$$
 b) $f(x) = 4x^2 - 8x + 4$ c) $f(x) = -x^2 + 5x - 7$

c)
$$f(x) = -x^2 + 5x - 7$$

13. Determinar os valores de m para que a função quadrática

$$f(x) = 3x^2 - 2x + m$$

possua valor mínimo iqual $\frac{5}{3}$.

14. Determinar os valores de m para que a função quadrática

$$f(x) = -3x^2 + 2(m-1)x + m + 1$$

possua valor máximo iqual 2.

15. Determinar os valores de m para que a função quadrática

$$f(x) = mx^2 + (m-1)x + m + 2$$

possua valor máximo iqual 2.

16. Determinar os valores de m para que a função quadrática

$$f(x) = (m-1)x^2 + (m+1)x - m$$

possua valor mínimo iqual 1.

- 17. Dentre todos os números cujo a soma é 8. Determine aqueles cujo a soma é máxima.
- 18. Dentre todos os números x e y tais que 2x+y=8. Determine aqueles cujo o produto é máximo.
- 19. Dentre todos os números cujo a soma é 6. Determine aqueles cujo a soma dos quadrados é mínima.
- 20. Resolva as seguintes inequações.

$$(1-4x^2)(2x^2+3x) > 0$$
 e $\frac{4x^2+x-5}{2x^2-3x-2} > 0$

2