Lista de Exercícios de Vetores e Matrizes

- 1. Leia um vetor de 12 posições e em seguida ler também dois valores X e Y quaisquer correspondentes a duas posições no vetor. Ao final seu programa deverá escrever a soma dos valores encontrados nas respectivas posições X e Y.
- 2. Declare um vetor de 10 posições e o preencha com os 10 primeiros números impares e o escreva.
- 3. Leia um vetor de 16 posições e troque os 8 primeiros valores pelos 8 últimos e vice-e-versa. Escreva ao final o vetor obtido.
- 4. Leia um vetor de 20 posições e em seguida um valor X qualquer. Seu programa devera fazer uma busca do valor de X no vetor lido e informar a posição em que foi encontrado ou se não foi encontrado.
- 5. Leia um vetor de 40 posições. Contar e escrever quantos valores pares ele possui.
- 6. Leia um vetor de 40 posições e atribua valor 0 para todos os elementos que possuírem valores negativos.
- 7. Leia dos vetores de 20 posições e calcule um outro vetor contendo, nas posições pares os valores do primeiro e nas posições impares os valores do segundo.
- 8. Leia um vetor de 40 posições e acumule os valores do primeiro elemento no segundo, deste no terceiro e assim por diante. Ao final, escreva o vetor obtido.
- 9. Leia um vetor contendo letras de uma frase inclusive os espaços em branco. Retirar os espaços em branco do vetor e depois escreve-los.
- 10. Leia um vetor de 5 posições contendo os caracteres de um numero. Em seguida escreva esse numero por extenso.
- 11. Leia dois vetores de 4 posições. Verifique e escreva se um é anagrama de outro. Ex: ARARA ARARA - são anagramas
- 12. Leia 3 vetores de 9 posições e crie outro com o 1º terço do primeiro, o segundo 3º. do segundo e o ultimo terço do 3º. Escrever o vetor resultante ao final.
- 13. Leia um vetor de 10 posições e verifique se existem valores iguais e os escreva.
- 14. Leia um vetor de 50 posições e o compacte, ou seja, elimine as posições com valor zero avançando uma posição, com os com os valores subseqüentes do vetor. Dessa forma todos "zeros" devem ficar para as posições finais do vetor.
- 15. Considere um vetor de trajetórias de 9 elementos, onde cada elemento possui o valor do próximo elemento do vetor a ser lido.

Assim, a sequência da leitura seria 1, 5, 2, 7, 4, 9, 3, 6, 8, 0

Faça um algoritmo que seja capaz de ler esse vetor e seguir a trajetória.

- 16. Leia uma matriz 10 x 10 e escreva a localização (linha e a coluna) do maior valor.
- 17. Declare uma matriz 5 x 5. Preencha com 1 a diagonal principal e com 0 os demais elementos. Escreva ao final a matriz obtida.
- 18. Leia duas matrizes 4 x 4 e escreva uma terceira com os maiores elementos entre as primeiras
- 19. Leia uma matriz 6 x 6, conte e escreva quantos valores maiores que 10 ela possui.
- 20. Leia uma matriz 20 x 20. Leia também um valor X. O programa deverá fazer uma busca desse valor na matriz e, ao final escrever a localização (linha e coluna) ou uma mensagem de "não encontrado".

- 21. Leia uma matriz 4 x 4 e troque os valores da 1ª.linha pelos da 4ª.coluna, vice-e-versa. Escrever ao final a matriz obtida
- 22. Leia uma matriz 8 x 8 e a transforme numa matriz triangular inferior, atribuindo zero a todos os elementos acima da diagonal principal, escrevendo-a ao final.
- 23. Leia uma matriz 5 x 5 e faça uma troca entre as diagonais superior e inferior. Escreva-a ao final.
- 24. Leia duas matrizes 10 x 10 e faça uma substituição entre a diagonal inferior da primeira coma diagonal superior da segunda.
- 25. Leia uma matriz 8x 8 e escreva o maior elemento da diagonal principal e a soma dos elementos da diagonal secundaria.
- 26. Leia uma matriz 6 x 6 e atribuir o valor 0 para os valores negativos encontrados fora das diagonais principal e secundaria.
- 27. Leia uma matriz 50 x 2, onde cada coluna corresponde a um lado de um triangulo retângulo. Declare um vetor que contenha a área dos respectivos triângulos e o escreva.
- 28. Leia duas matrizes 20 x 20 e escreva os valores da primeira que ocorrem em qualquer posição da segunda.
- 29. Considere uma matriz de distância entre cidades 6 x 6:

	1.(Cáceres)	2.(BBugres)	3.(Cuiabá)	4.(VGrande)	5.(Tangará)	6.(PLacerda)
1.(Cáceres)		63	210	190		190
2.(BBugres)	63		160	150	95	
3.(Cuiabá)	210	160		10		
4.(VGrande)	190	150	10			
5.(Tangará)		95				80
6.(PLacerda)	190				80	

Considere também um vetor de viagem indo de Cuiabá até Cáceres pela seguinte rota:

Indice	1	2	3	4	5	6
Cidade	3	4	2	5	6	1

Faça um programa que leia a matriz e o vetor e calcule a distancia percorrida durante a viagem.

- 30. Leia uma matriz 100 x 10 que se refere respostas de 10 questões de múltipla escolha, referentes a 100 alunos. Leia também um vetor de 10 posições contendo o gabarito d e respostas que podem ser a, b, c ou d. Seu programa deverá comparar as respostas de cada candidato com o gabarito e emitir um vetor Resultado, contendo a pontuação correspondente.
- 31. Leia duas matrizes 4 x 4 e verifique se uma é palindromo, isto é, sua leitura a partir de qualquer direção sempre apresentara a mesma seqüência.

EX. SATOR
AREPO
TENET
OPERA
ROTAS