Goldbach Rings

1 Introduction

Goldbach's conjecture is one of the oldest unsolved problems in number theory. It states

Conjecture 1. Every even integer greater than 2 can be expressed as the sum of two primes.

In this article we use tools and methods from commutative algebra in order to study this and related conjectures.

2 Preliminary Material

3 The Goldbach Ring

Throughout this article, let *K* be a field. We are going to consider polynomial rings over *K* with infinitely variables. In particular, let

$$R = K[\{x_p, x_{2k} \mid p \text{ odd prime and } k \in \mathbb{Z}_{\geq 3}\}]$$

 $I = \langle \{x_p x_q - x_{p+q} \mid p, q \text{ odd primes}\} \rangle$
 $G = R/I$.

We will refer to G as the **Goldbach ring**. We simplify our notation by writing $\{x_p, x_{2k}\}$ to denote the set $\{x_p, x_{2k} \mid p \text{ odd prime and } k \in \mathbb{Z}_{\geq 3}\}$. Similarly, we write $\{x_px_q - x_{p+q}\}$ to denote the set $\{x_px_q - x_{p+q} \mid p, q \text{ odd primes}\}$.

3.1 Representing Monomials

We will denote by \mathcal{M} to be the set of all monomials in R. There are two ways we can represent monomials in R. The first way is as a finite product of the indeterminates $\{x_p, x_{2k}\}$, namely, a monomial can be expressed in the form

$$x_{p_1}\cdots x_{p_r}x_{2k_1}\cdots x_{2k_s}$$

where p_1, \ldots, p_r are odd primes (not necessarily distinct) and $2k_1, \ldots, 2k_s$ are even integers greater than or equal to 6 (not necessarily distinct). We will use the way of representing monomials to give R a graded structure.

The second way of representing monomials is described as follows: given a function $\alpha \colon \mathbb{N} \to \mathbb{Z}_{\geq 0}$, we define its **support**, denoted supp α , to be the set

$$\operatorname{supp} \alpha = \{ m \in \mathbb{N} \mid \alpha(m) \neq 0 \}.$$

We denote by \mathcal{F} to be the set

$$\mathcal{F} = \{\alpha \colon \mathbb{N} \to \mathbb{Z}_{\geq 0} \mid \text{supp } \alpha \text{ is finite and contained in } \{x_p, x_{2k}\}\}.$$

Thus if $\alpha \in \mathcal{F}$, then α takes value 0 zero almost everywhere, and the only places where it is nonzero is at an odd prime or an even greater than or equal to 6. Then there is a bijection from \mathcal{F} to \mathcal{M} given by assigning $\alpha \in \mathcal{F}$ to the monomial

$$x^{\alpha} := \prod_{m \in \mathbb{N}} x_m^{\alpha(m)} = \prod_{m \in \text{supp } \alpha} x_m^{\alpha(m)}.$$

For instance, suppose $\alpha \colon \mathbb{N} \to \mathbb{Z}_{\geq 0}$ is defined by

$$\alpha(m) = \begin{cases} 3 & \text{if } m = 2\\ 2 & \text{if } m = 6\\ 4 & \text{if } m = 11\\ 0 & \text{if } m \in \mathbb{N} \setminus \{2, 6, 11\} \end{cases}$$

Then $x^{\alpha} = x_3^3 x_6^2 x_{11}^4$ and supp $x^{\alpha} = \{2, 6, 11\}$. This second way of expressing monimals gives us a cleaner way of expressing nonzero polynomials in R, namely, every nonzero polynomial $f \in R$ can be expressed in the form

$$f = a_1 x^{\alpha_1} + \dots + a_n x^{\alpha_n}$$

for unique $a_1, ... a_n \in K$ and for unique $\alpha_1, ..., \alpha_n \in \mathcal{F}$. We often pass back and forth between functions $\alpha \in \mathcal{F}$ and monimals $x^{\alpha} \in \mathcal{M}$. For instance, given a monimal $x^{\alpha} \in \mathcal{M}$, we define its **support**, denoted supp x^{α} , to be supp $x^{\alpha} = \text{supp } \alpha$.

3.1.1 Graded Ring Structure on R

We describe a graded structure on R using this representation of monoimals, namely, we define $\deg_1 \colon \mathcal{M} \to \mathbb{N}$ and $\deg_2 \colon \mathcal{M} \to \mathbb{N}$ by

$$\deg_1(x_{p_1}\cdots x_{p_r}x_{2k_1}\cdots x_{2k_s}) = \sum_{i=1}^r p_r + 2\sum_{j=1}^s k_j \quad \text{and} \quad \deg_2(x_{p_1}\cdots x_{p_r}x_{2k_1}\cdots x_{2k_s}) = r + 2s.$$

In particular, we have

$$\deg_1(x_p) = p$$

$$\deg_1(x_{2k}) = 2k$$

$$\deg_2(x_p) = 1$$

$$\deg_2(x_{2k}) = 2$$

In terms of our other notation, we have

$$\deg_1 x^{\alpha} = \sum_{m \in \mathbb{N}} m\alpha(m)$$
 and $\deg_2 x^{\alpha} = \sum_{p \text{ odd prime}} \alpha(p) + 2 \sum_{m \text{ even } \geq 6} \alpha(m)$.

Next, for each $n \in \mathbb{N}$, we set

$$R_n = \operatorname{span}_K \{ x^{\alpha} \in \mathcal{M} \mid \deg_1 x^{\alpha} = n \}.$$

Also for each $n, d \in \mathbb{N}$, we set

$$R_{n,d} = \operatorname{span}_K \{ x^{\alpha} \in \mathcal{M} \mid \deg_1 x^{\alpha} = n \text{ and } \deg_2 x^{\alpha} = d \}.$$

For instance, we have

$$R_{14} = Kx_3x_3x_3x_5 + Kx_6x_8 + Kx_3x_5x_6 + Kx_7x_7 + Kx_3x_{11}$$

$$R_{14,4} = Kx_3x_3x_3x_5 + Kx_6x_8 + Kx_3x_5x_6$$

$$R_{14,2} = Kx_7x_7 + Kx_3x_{11}$$

Observe that $R_n R_{n'} \subseteq R_{n+n'}$, so R has the structure of a graded ring

$$R=\bigoplus_{n\in\mathbb{N}}R_n,$$

moreover we also have $R_{n,d}R_{n',d'} \subseteq R_{n+n',d+d'}$, so we can refine this grading

$$R=\bigoplus_{n,d\in\mathbb{N}}R_{n,d}.$$

Note that the ideal *I* is homogeneous with respect to this grading, and thus *G* inherits both of these gradings. In particular, we have

$$G = \bigoplus_{n \in \mathbb{N}} G_n$$
 and $G = \bigoplus_{n,d \in \mathbb{N}} G_{n,d}$,

where $G_n = R_n/I \cap R_n$ and $G_{n,d} = R_{n,d}/I \cap R_{n,d}$. We will be interested in describing the dimensions of the K-vector spaces R_n , G_n , $R_{n,d}$, and $G_{n,d}$.

4 Conjecture

Let us rephrase Goldbach's conjecture to a statement about the graded ring *R*.

Conjecture 2. For each $k \ge 3$, we have $\dim_K R_{2k,2} > 1$.

We now make the following conjecture about the graded ring *G*.

Conjecture 3. For each