B.Tech. (Computer Engg.) VIIIth Semester Examination, 2018 Network Security Paper No. CEN-805

Time: Three Hours Maximum Marks: 60

Write your roll no. immediately on receipt of this question paper Note: Attempt all question. All questions carry equal marks. Assume suitable missing data, if any.

CO's No./	Content of Questions	Marks
Q.No.		
1. (a)/ CO1	Find the value of 2001 ³⁵ mod 1980 using square and multiply method.	6
1. (b)/ CO1	Generate the elements of the field GF(24) using the irreducible	6
	polynomial $f(x) = x^4 + x + 1$. Also find the value of g^3/g^8 .	
	OR	
1'. (a)/ CO1	Find the output of Shift rows of the AES after passing the following	_
	states as input to the Shift rows:	6
	$\begin{pmatrix} 00 & 12 & 0C & 08 \end{pmatrix}$	
	04 04 00 23	
	12 12 13 19	
	14 00 11 19	
1'. (b)/ CO1	Solve the following simultaneous congruence using Chinese Remainder	6
	Theorem.	
	$x \equiv 6 \pmod{11}$	
	$x \equiv 13 \pmod{16}$	
	$x \equiv 9 \pmod{21}$	
	$x \equiv 19 \pmod{25}$	
2. (a)/	For the chosen value of $p=11$, $e1=2$, $d=3$ and $r=4$. Find the set of the	6
CO2	values of public and private keys and then encrypt the plain text 7 using	
	ElGamal cryptosystem.	
2. (b)/	An elliptic curve is defined by $y^2 = x^3 + 2x + 9$ with a modulus of p=37	6
CO2	for the Elliptical curve cryptosystem. Determine any four points on this	
	curve excluding infinite.	
	OR	
2'. (a)/	Explain the procedure of Digital signature generation and verification	6

CO2	using Schnorr Digital Signature scheme.	
2'. (b)/ CO2	An elliptical curve over $GF(2^3)$ is defined as $y^2 + xy = x^3 + ax^2 + b$ with the given value of $a = g^3$ and $b = 1$. Find the value of $R = P + Q$, where $P = (0, 1)$ and $Q = (g^2, 1)$.	6
3. (a)/ CO3	 i. For SHA-512, show the equation for the values of W₁₆ and W₁₉. ii. Find the value of padding field and the value of length field if the length of the message is 1920 bits in SHA-512. 	6
3. (b)/ CO3	How many rounds and iterations are required for hash generation in MD5? Explain about one of the rounds of MD5 in detail.	6
4. (a)/ CO4	What is zero knowledge authentication? Explain the Fiat-Shamir protocol used for zero knowledge authentications.	6
4. (b)/ CO4	In the Diffie-Hellman protocol key exchange, for g=7, p=23, x=3 and y=5: calculate i. The value of R1 and R2. ii. The value of symmetric key.	6
5. (a)/ CO5	Write the procedure of generation of pre-master and master secret for the Secure Socket Layer.	6
5. (b)/ CO5	Encode the message "WHAT IS A TEXT" using the Radix 64 encoding scheme used in PGP.	6