Educação Profissional Paulista

Técnico em Ciência de Dados

Pandas: combinando DataFrames

Aula 3

Código da aula: [DADOS]ANO1C2B4S26A3

Bibliotecas: Pandas, NumPy, SciPy, Matplotlib e Seaborn Mapa da Unidade 5 Componente 3

Você está aqui!

Pandas: combinando DataFrames

Aula 3

Código da aula: [DADOS]ANO1C2B4S26A3

26

Objetivos da Aula

 Combinar DataFrame com métodos do Pandas Python.

Recursos Didáticos

- Recurso audiovisual para exibição de vídeos e imagens;
- Acesso ao laboratório de informática e/ou internet;
- Software Anaconda/Jupyter Notebook instalado ou similar.

Duração da Aula

50 minutos.

Competências Técnicas

- Ser proficiente em linguagens de programação para manipular e analisar grandes conjuntos de dados;
- Usar técnicas para explorar e analisar dados, aplicar modelos estatísticos, identificar padrões, realizar inferências e tomar decisões baseadas em evidências.

Competências Socioemocionais

- Colaborar efetivamente com outros profissionais, como cientistas de dados e engenheiros de dados;
- Trabalhar em equipes multifuncionais, colaborando com colegas, gestores e clientes.

Combinando DataFrames

Método merge()

O método *merge*() é usado para combinar DataFrames com base em colunas comuns. Ele permite especificar o tipo de junção (*inner*, *outer*, *left* ou *right*) e a coluna pela qual os DataFrames devem ser unidos.

Método concat()

O método *concat*() é usado para concatenar (juntar) DataFrames ao longo de um eixo (linhas ou colunas). Ele não requer colunas em comum e simplesmente empilha os DataFrames.

© Getty Images

MERGE – Métodos de junção

Inner Join

Método de junção que retorna apenas as linhas que possuem valores correspondentes em ambos os DataFrames, com base nas colunas em comum.

Left Join

Método de junção que retorna todas as linhas do DataFrame da esquerda e as linhas da direita que possuem valores correspondentes nas colunas em comum.

© Getty Images

MERGE – Métodos de junção

Right Join

O *Right Join* é um método de junção que retorna todas as linhas do DataFrame da direita e as linhas correspondentes do DataFrame da esquerda que possuem valores correspondentes nas colunas em comum.

Outer Join

O *Outer Join* é um método de junção que retorna todas as linhas de ambos os DataFrames e preenche com NaN as células vazias onde não há correspondência entre as colunas.

MERGE

Observe o seguinte DataFrame:

```
import pandas as pd

# DataFrame 1
df1 = pd.DataFrame({
    'Nome': ['João', 'João', 'Pedro', 'Caio'],
    'Telefone': ['12121', '343434', '565656', '787878'],
    'Carros': ['azul', 'preto', 'verde', 'amarelo']
})

# DataFrame 2
df2 = pd.DataFrame({
    'Nome': ['João', 'Marcelo', 'Thiago', 'Caio'],
    'Irmãos': ['1', '3', '2', '2']
})
```

df	1		
	Nome	Telefone	Carros
0	João	12121	azul
1	João	343434	preto
2	Pedro	565656	verde
3	Caio	787878	amarelo

ат	2	
	Nome	Irmãos
0	João	1
1	Marcelo	3
2	Thiago	2
3	Caio	2

MERGE

Vamos combinar os DataFrames com base na coluna "**Nome**" e usando o método de junção "**inner**".

```
# Merge com base na coluna 'Nome'
df_combinado = pd.merge(df1, df2, how='inner', on='Nome')
df_combinado
```

	Nome	Telefone	Carros	Irmãos
0	João	12121	azul	1
1	João	343434	preto	1
2	Caio	787878	amarelo	2

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

© Getty Images

Concat

Vamos combinar os DataFrames com o método *concat*() ao longo do eixo das colunas (axis=1).

	Nome	Telefone	Carros	Nome	Irmãos
0	João	12121	azul	João	1
1	João	343434	preto	Marcelo	3
2	Pedro	565656	verde	Thiago	2
3	Caio	787878	amarelo	Caio	2

Elaborado especialmente para o curso com a ferramenta Jupyter Notebook.

© Getty Images

Concat

Vamos combinar os DataFrames com o método *concat*() ao longo do eixo das linhas (axis=0).

	Nome	Telefone	Carros	Irmãos
0	João	12121	azul	NaN
1	João	343434	preto	NaN
2	Pedro	565656	verde	NaN
3	Caio	787878	amarelo	NaN
0	João	NaN	NaN	1
1	Marcelo	NaN	NaN	3
2	Thiago	NaN	NaN	2
3	Caio	NaN	NaN	2

© Getty Images

Exemplo – Unindo data frames por colunas comuns (Merge)

Cenário: Você possui dois DataFrames com informações relacionadas, mas armazenadas em colunas diferentes. Deseja combinar os dados em um único DataFrame, com base em uma coluna comum.

1	pedidos			
	ID_cliente		produto	valor
0	1		Camisa	50
1	1		Tenis	120
2	2		Celular	800
3	3		Notebook	2500
. 1	cliente	S		
	ID_client	e	nome	idade
0		1	João	30
0			João Maria	30 25

Exemplo - Unindo *DataFrames* por colunas comuns (*Merge*)

Objetivo: Combinar os DataFrame para obter um DataFrame com informações de clientes e seus pedidos, unindo por ID_cliente.

```
1 # Realizando o merge por 'ID_cliente'
2 df_merge = clientes.merge(pedidos, on="ID_cliente")
3
4 # Mostrando o DataFrame resultante
5 df_merge
```

	ID_cliente	nome	idade	produto	valor
0	1	João	30	Camisa	50
1	1	João	30	Tenis	120
2	2	Maria	25	Celular	800
3	3	Pedro	22	Notebook	2500

Exemplo

Cenário: Você deseja incluir todas as linhas de ambos os DataFrames no resultado do *merge*, mesmo que não haja correspondência nas colunas de junção.

Exemplo

Cenário: Você deseja incluir todas as linhas de ambos os DataFrames no resultado do *merge*, mesmo que não haja correspondência nas colunas de junção.

Exemplo

Cenário: Você deseja realizar um *merge* à esquerda, mas incluir apenas linhas do DataFrame principal que atendem a um determinado critério.

```
1 import pandas as pd
 3 # Criando DataFrames de exemplo
 4 clientes = pd.DataFrame(
           "ID_cliente": [1, 2, 3, 4],
           "nome": ["João", "Maria", "Pedro", "Ana"],
           "idade": [30, 25, 22, 32],
10 )
11 pedidos = pd.DataFrame(
13
           "ID_cliente": [1, 1, 2, 3, 5],
14
           "produto": ["Camisa", "Tenis", "Celular", "Notebook", "Tablet"],
           "valor": [50, 120, 800, 2500, 750],
15
           "quantidade": [10, 20, 5, 2, 1],
17
18 )
```


Exemplo

Cenário: Você deseja realizar um *merge* à esquerda, mas incluir apenas linhas do DataFrame principal que atendem a um determinado critério.

1	clientes			
	ID_cliente	nome i	dade	
0	1	João	30	
1	2	Maria	25	
2	3	Pedro	22	
3	4	Ana	32	
1	pedidos			
	ID_cliente	produte	valor	quantidade
0	1	Camis	a 50	10
1	1	Toni	s 120	20
•		Term		

3 Notebook 2500

Tablet

750

```
1 # Realizando o merge à esquerda com filtro
2 df_merge = clientes[clientes["idade"] > 25].merge(pedidos, on="ID_cliente", how="left")
3
4 # Mostrando o DataFrame resultante
5 df_merge
```

	ID_cliente	nome	idade	produto	valor	quantidade
0	1	João	30	Camisa	50.0	10.0
1	1	João	30	Tenis	120.0	20.0
2	4	Ana	32	NaN	NaN	NaN

Exemplo

Cenário: Você deseja concatenar dois DataFrames ao longo do eixo x.

Observe que o padrão **axis=0** e veja a diferença entre ignore_index=True e ignore_index=False.

```
import pandas as pd

friando DataFrames de exemplo

df1 = pd.DataFrame({'col1': [1, 2, 3], 'col2': ['A', 'B', 'C']})

df2 = pd.DataFrame({'col1': [3, 4, 5], 'col2': ['C', 'D', 'E']})
```

1	df1	
	col1	col2
0	1	Α
1	2	В
2	3	С
1	df2	
1		col2
0		col2
	col1	

Exemplo

Cenário: Você deseja concatenar dois DataFrame ao longo do eixo x.

Observe que o padrão axis=0 e veja a **diferença entre ignore_index=True e ignore_index=False**.

```
1 # Realizando a concatenação (pode haver duplicatas)
2 df_concat = pd.concat([df1, df2], ignore_index=True, axis=0)
3
4 # Mostrando o DataFrame resultante
5 df_concat
```

	col1	col2
0	1	Α
1	2	В
2	3	С
3	3	С
4	4	D
5	5	Е

```
1 # Realizando a concatenação
2 df_concat = pd.concat([df1, df2], ignore_index=False)
3
4 # Mostrando o DataFrame resultante
5 df_concat
```

	col1	col2
0	1	Α
1	2	В
2	3	С
0	3	С
1	4	D
2	5	Е

Exemplo

Cenário: Imagine que você possui dois DataFrames com informações relacionadas, mas armazenadas em colunas separadas:

- DataFrame 1: Alunos (ID, nome, curso);
- DataFrame 2: Notas (ID_aluno, notal, nota2).

1	alunos					
	ID	nome	curso			
0	1	João	Engenharia			
1	2	Maria	Medicina			
2	3	Pedro	Direito			

1	notas						
	ID_aluno	nota1	nota2				
0	1	8.5	9.0				
1	1	9.2	8.8				
2	2	7.8	8.2				
3	3	9.1	9.4				

Exemplo

Objetivo:

Combinar os DataFrames em um único DataFrame que contenha as informações de alunos e suas notas lado a lado.

Observe a diferença entre *concat* e *merge*.

```
1 # Realizando a concatenação horizontal
2 df_completo = pd.concat([alunos, notas], axis=1)
3
4 # Mostrando o DataFrame resultante
5 df_completo
```

	ID	nome	curso	ID_aluno	nota1	nota2
0	1.0	João	Engenharia	1	8.5	9.0
1	2.0	Maria	Medicina	1	9.2	8.8
2	3.0	Pedro	Direito	2	7.8	8.2
3	NaN	NaN	NaN	3	9.1	9.4

Nuvem de palavras

Então ficamos assim...

- Para combinar informações de tabelas diferentes, podemos usar a biblioteca Pandas do Python.
- 2 A biblioteca possui o método *merge* que combina dois DataFrames em um só a partir de, pelo menos, uma coluna (chave).
- **3** Para juntar DataFrames ao longo do eixo x ou eixo y, podemos usar o método *concat*.

Já abriu um arquivo do tipo json no Pandas? No capítulo "Compreendendo os Dados" você vai descobrir como.

ALURA. *Pandas*: transformação e manipulação de dados, [s. d.]. Disponível em:

https://www.alura.com.br/conteudo/pandastransformacao-manipulacao-dados.

Acesso em: 19 jul. 2024.

Referências da aula

MCKINNEY, W. *Python para análise de dados*: tratamento de dados com Pandas, NumPy & Jupyter. São Paulo: Novatec, 2023.

PANDAS. *Pandas documentation*, 10 abr. 2024. Disponível em: https://pandas.pydata.org/docs/. Acesso em: 19 jul. 2024.

Identidade visual: imagens © Getty Images.

Educação Profissional Paulista

Técnico em Ciência de Dados

