

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24pages. *Hierdie nasienriglyne bestaan uit 24 bladsye.*

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat NIE.

	GEOMETRY • MEETKUNDE			
G	A mark for a correct statement (A statement mark is independent of a reason)			
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)			
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)			
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)			
S/R	Award a mark if statement AND reason are both correct			
	Ken 'n punt toe as die bewering EN rede beide korrek is			

1.1.1	140 items	✓ answer
		(1)
1.1.2	Modal class/modale klas: $20 < x \le 30$ minutes	✓ answer
	OR/OF	(1)
	$20 \le x < 30$ minutes	✓ answer
		(1)
1.1.3	Number of minutes taken = 20 minutes	✓ answer
		(1)
1.1.4	140 – 126 [Accept: 124 to 128]	✓ 126
	14 orders (12 to 16)	✓ answer
	Answer only: Full marks	(2)
1.1.5	75 th percentile is at 105 items	√ 105
	=37 minutes [accept 36 – 38 minutes]	✓ answer
	Answer only: Full marks	
	Thiswer only. I all marks	(2)
1.1.6	Lower quartile is at 35 items =21,5 min [accept 21 – 23 min] IQR = 37 – 21,5 Answer only: Full marks	✓ lower quartile (Q ₁)
	= 15,5 min [accept 13 – 17 min]	✓ answer
		(2)

35	70	75	80	80
90	100	100	105	105
110	110	115	120	125

1.2.1(a)	$\overline{x} = \frac{1420}{15}$ Answer only: Full marks	✓ 1420
	= R94,666 = R94,67	✓ answer
	,	(2)
1.2.1(b)	$\sigma = R22,691 = R22,69$	✓✓ answer
		(2)
1.2.2(a)	They both collected the same (equal) amount in	✓ answer
	tips, i.e. R1 420 over the 15-day period.	
	Hulle albei het dieselfde bedrag met fooitjies	(1)
	ontvang, nl. R1 420 oor die 15 dae-tydperk	
1.2.2(b)	Mary's standard deviation is smaller than Reggie's	
	which suggests that there was greater variation in	
	the amount of tips that Reggie collected each day	✓ explanation
	compared to the number of tips that Mary collected	
	each day.	
	Maria sa standaardafunkina is klainar as Passia sh	
	Marie se standaardafwyking is kleiner as Reggie s'n wat beteken dat daar groter variasie/verspreiding	
	in die fooitjies was wat Reggie elke dag ontvang	(1)
	het in vergelyking met die getal fooitjies wat Marie	(1)
	elke dag ontvang het.	
	eine aug omvang nei.	[15]
		[13]

2.1	251 km/h	✓ answer
		(1)
2.2.1	r = 0.52 OR C	✓ answer
		(1)
2.2.2	The points are fairly scattered and the least squares	
	regression line is increasing.	✓ reason
		(1)
	Die punte is redelik verspreid en die kleinstekwadrate-	
	regressielyn neem toe.	
2.3	There is a weak positive relation hence the height	
	could have an influence	✓ answer
		(1)
	Daar is 'n swak positiewe verband, tog kan die lengte	
	'n invloed hê.	
	OR/OF	
	There is no conclusive evidence that the height of a	
	player will influence his/her tennis serve speed.	
	player will influence his/her tellins serve speed.	√ answer
	Daar is geen duidelike bewys dat die lengte van die	(1)
	speler sy/haar afslaanspoed kan beïnvloed nie.	
	speier syrnaar agstaanspoed nan oentroed nie.	
	OR/OF	
	There is no conclusive evidence that a taller person	
	will serve faster than a shorter person.	✓ answer
	Daar is geen duidelike bewys dat 'n langer speler	(1)
	vinniger sal afslaan as 'n korter een nie.	

2.4	For (0; 27,07), it means that the player has a height of		
	0 m but can serve at a speed of 27,07 km/h.		
	It is impossible for a person to have a height of 0 m.	✓ explanation	
			(1)
	(0; 27,07) beteken dat 'n speler 'n lengte van 0 m kan		
	hê en teen 'n spoed van 27,07 km/h kan afslaan. Dit is		
	onmoontlik om 'n lengte van 0 m te hê.		
	OR/OF		
	This means that the player does not exist and	✓ explanation	
	therefore cannot serve and have a serve speed.		(1)
	Dit beteken dat die speler nie bestaan nie en daarom		
	nie kan afslaan en 'n afslaanspoed hê nie.		
	-		[5]

3.1.1	$m_{\rm KN} = \frac{y_2 - y_1}{x_2 - x_1}$	
	$m_{\rm KN} = \frac{2 - (-1)}{-1 - 1}$ Answer only: Full marks	✓ correct substitution
	$=-\frac{3}{2}$	✓ answer (2)
3.1.2	$\tan \theta = m_{\rm KN} = -\frac{3}{2}$	$\checkmark \tan \theta = m_{KN} = -\frac{3}{2}$
	$\theta = 180^{\circ} - 56{,}31^{\circ}$ Answer only: Full marks $\theta = 123{,}69^{\circ}$	✓ answer
	,	(2)
3.2	Inclination KL = $123,69^{\circ} - 78,69^{\circ} = 45^{\circ}$ [ext $\angle \Delta$]	✓ S
	$\tan 45^\circ = m_{KL} = 1$	$\checkmark \tan 45^\circ = m_{KL} = 1$
		(2)
3.3	y = x + c	
	2 = -1 + c	\checkmark substitute (-1; 2) and m
	c=3	
	y = x + 3	✓ equation
	OR/OF	(2)
	$y - y_1 = 1(x - x_1)$	
	y-2=1(x-(-1))	\checkmark substitute (-1; 2) and m
	y = x + 3	/ aquation
	,	✓ equation (2)
		(2)

3.4	$KN = \sqrt{(1+1)^2 + (-1-2)^2}$	✓ substitute K and N into distance formula
	$KN = \sqrt{13}$ or 3,61 Answer only: Full marks	✓ answer
		(2)
3.5.1	$(x+3)^2 + (y+5)^2 = 13$ (1)	✓ equation (1)
	L is a point on KL	
	y = x + 3(2) (2) in (1):	
	$(x+3)^2 + (x+3+5)^2 = 13$	
	$x^2 + 6x + 9 + x^2 + 16x + 64 = 13$	✓ substituting eq (2)
	$2x^2 + 22x + 60 = 0$	
	$x^2 + 11x + 30 = 0$	✓ standard form
	(x+5)(x+6) = 0	
	x = -5 or x = -6 y = -2 or y = -3	✓ x-values
	L(-5; -2) or $(-6; -3)$	\checkmark y-values
	OR/OF	(5)
	$(x+3)^2 + (y+5)^2 = 13$ (1)	✓ equation (1)
	L is a point on KL	
	$y = x + 3 \qquad \therefore x = y - 3 \qquad \dots (2)$	
	(2) in (1):	
	$(y-3+3)^2 + (y+5)^2 = 13$	✓ substituting eq (2)
	$y^2 + y^2 + 10y + 25 = 13$	
	$2y^2 + 10y + 12 = 0$	
	$y^2 + 5y + 6 = 0$	✓ standard form
	(y+2)(y+3) = 0	(a value (le eth)
	y = -2 or y = -3 x = -5 or x = -6	✓ y-values (both) ✓ x-values (both)
		(5)
3.5.2	L(-5; -2) or (-6; -3) Midpoint of KM: (-2; -1,5)	✓ midpoint of KM
	$\therefore \frac{x_L + 1}{2} = -2$ and $\frac{y_L - 1}{2} = -\frac{3}{2}$	
		$\checkmark x$ value $\checkmark y$ value
	$\therefore L(-5;-2)$ OR/ <i>OF</i>	(3)
	$m_{\mathrm{KN}} = m_{\mathrm{LM}}$	$\sqrt{m_{\rm LM}} = m_{\rm KN}$
	$\frac{y-(-5)}{x-(-3)} = -\frac{3}{2}$	"LM "KN
	2(x+3+5) = -3(x+3)	
	$\begin{vmatrix} 2x+16=-3x-9\\ 5x=-25 \end{vmatrix}$ Answer only: Full marks	
	x = -5	$\checkmark x$ value
	$\therefore L(-5;-2)$	$\checkmark y$ value
		(3)

	OR/OF N→M: $(x; y) \rightarrow (x-4; y-4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	
	OR/OF N→M: $(x; y) \rightarrow (x-4; y-4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	
	OR/OF N→M: $(x; y) \to (x-4; y-4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ ∴ L(-3-2; -5+3) ∴ L(-5; -2)	
	OR/OF N→M: $(x; y) \to (x-4; y-4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	
	OR/OF N→M: $(x; y) \to (x-4; y-4)$ ∴ L(-1-4; 2-4) OR/OF ∴ L(-5; -2)	N→K: $(x; y) \rightarrow (x-2; y+3)$ $\therefore L(-3-2; -5+3)$ $\therefore L(-5; -2)$	✓ transformation ✓ x value ✓ y value (3)
3.6	T(-6; -3) (from Question KT = $\sqrt{(-1 - (-6))^2 + (2 - (-6))^2}$ = $\sqrt{50}$ KN = $\sqrt{13}$ (CA from 3.4) Area of Δ KTN = $\frac{1}{2}$ KT.KN s	sinLĥN	✓ coordinates of T ✓ length of KT
	$= \frac{1}{2}\sqrt{50}.\sqrt{13}$ = 12,50 squa		✓ substitution into area rule ✓ answer (4)

OR/OF

In ΔKLM:

$$\frac{TL}{\sin 22,62^{\circ}} = \frac{\sqrt{13}}{\sin 78,69^{\circ}}$$
$$TL = 1,414..$$

KL =
$$\sqrt{(-1-(-5))^2 + (2-(-2))^2}$$

= $\sqrt{32}$

$$\therefore$$
 KT = 7,0708...

Area of
$$\Delta$$
KTN = $\frac{1}{2}$ KT.KN sinL \hat{K} N
= $\frac{1}{2}$ (7,0708). $\sqrt{13}$ sin78,69°
= 12,50 square units

✓ length of TL

✓ length of KT

✓ substitution into area rule

✓ answer

(4) [22]

4.1	F(3;1)		$\checkmark x$ value $\checkmark y$ value	e
				(2)
4.2	$FS = \sqrt{(6-3)^2 + (5-1)^2}$		✓ substitution of	F
	FS = 5		& S	
	rs – 3		✓ answer	
				(2)
4.3	FH(FS): HG = 1:2			
	\therefore HG = 2 FH			
	= 10		\checkmark HG = 10	
				(1)
4.4	Tangents from common/same point /		✓ answer	
	Raaklyne vanaf gemeenskaplike of diese	elfde punt		(1)
4.5.1	$\hat{FHJ} = 90^{\circ}$ [tan _	\bot radius / $rkl \bot radius$	✓ S ✓ R	
		theorem/stelling]	✓ S	
	$FJ = \sqrt{425}$ or $5\sqrt{17}$ or 20,62		✓ answer	
	V.20 01 0 VI / 01 20,02		WIID II VI	(4)
4.5.2	$(x-m)^2 + (y-n)^2 = 100$		✓ answer	, ,
				(1)

$NSC/NSS-Marking\ Guidelines/Nasienriglyne$

4.5.3 $K(22; n)$ [radius \perp tangent]	\checkmark K(22; n)
$\begin{array}{c c} GK = HG = 10 & \text{[radia]} \end{array}$	11(22, 11)
FH = FS = 5 [radii]	
m = 22 - 10	
m = 12	\checkmark value of m
F, H and G are collinear [HJ is a common tangent]	varae or m
F, H en G is saamlynig [HJ is 'n gemeemskaplike raaklyn]	
$FG^{2} = (12-3)^{2} + (n-1)^{2}$	✓ subst. of F and G in
	distance formula
$15^2 = 81 + (n-1)^2$	\checkmark FG = 15
$(n-1)^2 = 144$ $n^2 - 2n - 143 = 0$	✓ simplification/
$n-1=\pm 12$ OR/OF $(n+11)(n-13)=0$	standard form
$n \neq 13 \text{ or } n = -11$ $n = -11 \text{ or } n \neq 13$	\checkmark value of n
\therefore G(12; -11)	✓ coordinates of G
	(7)
OR/OF	
$K(22; n)$ [radius \perp tangent]	✓ K(22; <i>n</i>)
GK = HG = 10 [radii]	, , ,
FH = FS = 5 [radii]	
m = 22 - 10	
m=12	\checkmark value of m
Let J(22; y):	
$FJ^2 = (22-3)^2 + (y-1)^2$	✓ subst. of F and J in
	distance formula
$425 = 361 + y^2 - 2y + 1$	$\checkmark \text{ FJ} = \sqrt{425}$
$0 = y^2 - 2y - 63$	
	✓ standard form
0 = (y - 9)(y + 7)	
$\therefore y = 9 \text{ or/of } y \neq -7$	(1 0
$\therefore n = 9 - 20 = -11$	\checkmark value of n
$\therefore G(12;-11)$	✓ coordinates of G
	(7)
	[18]

NSC/NSS – Marking Guidelines/Nasienriglyne

5.1.1	$k^2 = (\sqrt{5})^2 - 1^2$	✓ substitution into theorem of
		Pythagoras
	= 4 Answer only: full marks $k = -2$	✓ answer
		(2)
5.1.2(a)	$\tan \theta = -\frac{1}{2}$	√answer
	2	(1)
5.1.2(b)	$\cos(180^{\circ} + \theta) = -\cos\theta$	✓ reduction
	2 Answer only: full marks	✓ answer
	$= \frac{2}{\sqrt{5}}$ Answer only: full marks	(2)
5.1.2(c)		(2)
3.1.2(0)	$\sin(\theta + 60^\circ) = \frac{a+b}{\sqrt{20}}$	
	•	
	LHS = $\sin\theta\cos60^{\circ} + \cos\theta\sin60^{\circ}$	✓ expansion
	$=\left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{2}\right)+\left(-\frac{2}{\sqrt{5}}\right)\left(\frac{\sqrt{3}}{2}\right)$	(1 4 6 : 0
	$-\left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{2}\right)^{+}\left(-\frac{1}{\sqrt{5}}\right)\left(\frac{1}{2}\right)$	\checkmark subst of sin θ
	1 2/2	\checkmark subst of $\cos \theta$
	$=\frac{1-2\sqrt{3}}{2\sqrt{5}}$	✓ both special ∠s
		$\checkmark \frac{1-2\sqrt{3}}{2\sqrt{5}}$
	$=\frac{1-2\sqrt{3}}{\sqrt{20}}$	$2\sqrt{5}$
	$\equiv \frac{1}{\sqrt{20}}$	
	V =0	(5)
5.1.3	1	
	$\tan \theta = -\frac{1}{2}$	
	$\therefore \theta = 180^{\circ} - 26,57^{\circ}$	
	$\therefore \theta = 153,43^{\circ}$	$\checkmark \theta$
	$\tan(2\theta - 40^\circ) = \tan[(2 \times 153,43^\circ) - 40^\circ]$	
	$= \tan 266.87^{\circ}$	✓ substitution
	=18,3	(
	-10,5	✓ answer
		(3)

5.3	$\sum_{i=1}^{52^{\circ}} \cos^2 A$		
	$= \cos^{2} 38^{\circ} + \cos^{2} 39^{\circ} + \cos^{2} 40^{\circ} + + \cos^{2} 51^{\circ} + \cos^{2} 52^{\circ}$ $= \sin^{2} 52^{\circ} + \sin^{2} 51^{\circ} + \sin^{2} 50^{\circ} + + \cos^{2} 51^{\circ} + \cos^{2} 52^{\circ}$ $= 7(1) + \cos^{2} 45^{\circ}$	✓ expansion ✓ co ratio ✓ $\cos^2 45^\circ$	
	$= 7 + \left(\frac{\sqrt{2}}{2}\right)^2 \text{or} = 7 + \left(\frac{1}{\sqrt{2}}\right)^2$ $= 7 \frac{1}{2}$	√ 7 × identity ✓ answer	
	$\frac{2}{\mathbf{OR}/\mathbf{OF}}$		(5)
	$\sum_{A=38^{\circ}}^{52^{\circ}}\cos^2 A$		
	$= \cos^2 38^\circ + \cos^2 39^\circ + \cos^2 40^\circ + + \cos^2 51^\circ + \cos^2 52^\circ$	✓ expansion	
	$= (\cos^2 38^\circ + \sin^2 52^\circ) + (\cos^2 39^\circ + \sin^2 51^\circ) + \cos^2 45^\circ$ $= 7(1) + \cos^2 45^\circ$	✓ pairing ✓ cos ² 45°	
	$= 7 + \left(\frac{\sqrt{2}}{2}\right)^2 \text{or} = 7 + \left(\frac{1}{\sqrt{2}}\right)^2$	✓ 7 × identity	
	$=7\frac{1}{2}$	✓ answer	(5)
			23]

6.1	Period = 120°	✓ answer (1)
6.2	$2 = -2\tan\frac{3}{2}x$	✓ equating
	$\tan\left(\frac{3}{2}t\right) = -1$ $\frac{3}{2}t = 135^{\circ} + k.180^{\circ}$ $t = 90^{\circ} + k.120^{\circ} ; k \in \mathbb{Z}$ OR/OF 000 $t = -30^{\circ} + k.120^{\circ} ; k \in \mathbb{Z}$ $t = -30^{\circ} + k.120^{\circ} ; k \in \mathbb{Z}$	✓ general solution of $\frac{3}{2}t$ ✓ general solution of t (3)
	$2 = -2\tan\frac{3}{2}x$ $\tan\left(\frac{3}{2}t\right) = -1$	✓ equating
	$\frac{3}{2}t = 135^{\circ} + k.360^{\circ} \text{ or/of } \frac{3}{2}t = 315^{\circ} + k.360^{\circ}$ $t = 90^{\circ} + k.240^{\circ} \text{ or.of } t = 210^{\circ} + k.240^{\circ} ; k \in \mathbb{Z}$	✓ general solution of $\frac{3}{2}t$ ✓ general solution of t (3)
6.3	-120° -90° -60° -30° 0° 30° 60° 90° 120° 150° 180° 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	✓ asymptotes: $x = \pm 60^{\circ}$; $x = 180^{\circ}$ ✓ x-intercepts 0° ; $\pm 120^{\circ}$ ✓ negative shape ✓ $(90^{\circ}; 2)$ or $(-30^{\circ}; 2)$ or $(30^{\circ}; -2)$ or $(-90^{\circ}; -2)$
6.4	$x \in (-60^{\circ}; -30^{\circ}] \text{ or } (60^{\circ}; 90^{\circ}]$ OR/OF $-60^{\circ} < x \le -30^{\circ} \text{ or } 60^{\circ} < x \le 90^{\circ}$	✓ interval ✓ interval ✓ notation (3) ✓ interval ✓ interval ✓ notation (3)
6.5	$g(x) = -2\tan\left[\frac{3}{2}(x+40^{\circ})\right] = f(x+40^{\circ})$ Translation of 40° to the left / skuif met 40° links	✓ Translation of 40° ✓ to the left (2)
		[13]

7.1	$ABD = 30^{\circ}$	$\checkmark ABD = 30^{\circ}$	
	$\sin 30^{\circ} = \frac{h}{AB}$ $AB = \frac{h}{\sin 30^{\circ}} \mathbf{OR} AB = \frac{h}{\frac{1}{2}} \mathbf{OR} AB = 2h$ \mathbf{OR}/\mathbf{OF}	✓ answer	2)
	$B\widehat{A}D = 60^{\circ}$ $\cos 60^{\circ} = \frac{h}{AB}$	✓ BÂD = 60°	
	$AB = \frac{h}{\cos 60^{\circ}} \mathbf{OR} AB = \frac{h}{\frac{1}{2}} \mathbf{OR} AB = 2h$	✓ answer	2)
7.2	$BC^{2} = AB^{2} + AC^{2} - 2AB.AC\cos BAC$ $= (2h)^{2} + (3h)^{2} - 2(2h)(3h)\cos 2x$ $= 13h^{2} - 12h^{2}(2\cos^{2}x - 1)$ $= 13h^{2} - 24h^{2}\cos^{2}x + 12h^{2}$ $= 25h^{2} - 24h^{2}\cos^{2}x$	✓ use of cosine rule in \triangle ABC ✓ substitution ✓ double angle identity ✓ $25h^2 - 24h^2 \cos^2 x$	
	$BC = h\sqrt{25 - 24\cos^2 x}$	(4)
		[[6]

8.1.1	$\hat{P} = \hat{M}_1 = 66^{\circ}$	[tan chord theorem/raaklyn koordst]	✓S ✓R	
				(2)
8.1.2	$\hat{M}_2 = 90^{\circ}$	[∠ in semi circle/∠in halfsirkel]	✓S ✓R	
				(2)
8.1.3	1 ,	[sum of \angle s of $/som\ van\ \angle e\ \Delta MNP$]	√S	
	= 24°		5	(1)
8.1.4	$\hat{O}_2 = \hat{P} = 66^{\circ}$	[corres. ∠s;/ooreenk ∠e, PM OR]	✓S ✓R	
				(2)
8.1.5	$\hat{R} + \hat{N}_1 + \hat{N}_2 = 180^{\circ} - 66^{\circ}$	[sum of \angle s of/som van \angle e \triangle RNO]		
	=114°		✓S	
	$\hat{\mathbf{R}} = \hat{\mathbf{N}}_1 + \hat{\mathbf{N}}_2 = 57^{\circ}$	$[\angle s \text{ opposite} = radii/\angle e \text{ teenoor} = radii]$	✓S/R	
	$\therefore \hat{N}_2 = 33^{\circ}$		✓S	
	2			(3)
	OR/OF			
	$P\hat{O}R = 114^{\circ}$	∠s on straight line/∠e op reguitlyn]	√S	
	$\hat{PNR} = 57^{\circ}$	\angle at centre = twice \angle at circumference/	✓S/R	
	i	$midpts \angle = 2 \times omtreks \angle$		
	$\therefore \hat{N}_2 = 33^{\circ}$		✓S	
				(3)

8.2

8.2.1	FC AB GH	[opp sides of rectangle /teenoorst sye v reghoek]	✓ R	
				(1)
8.2.2	$\frac{AC}{CH} = \frac{AF}{FG}$	[line \parallel one side of Δ] OR [prop theorem; FC \parallel GH]	✓S ✓R	
		[lyn een sy van Δ] OF [eweredighst; FC GH]		
	$\frac{AC}{21} = \frac{20}{15}$			
	$AC = \frac{20 \times 21}{15}$			
	= 28		✓ AC	
	DB = AC = 28	[diags of rectangle =/hoeklyne v reghoek =]	✓ S	
	$DM = \frac{1}{2}DB = 14$	[diags of rectangle bisect/hoekl v reghoek halveer]	✓ S	
	<u> </u>			(5)
			[[16]

9.1

9.1	Constr/Konstr.: Draw F	XO and MO/ <i>Trek KO en MO</i>	✓ construction	
	$\hat{O}_1 = 2\hat{J}$	[\angle at centre = twice \angle at circumference] [$midpts \angle = 2 \times omtreks \angle$]	✓ S/R	
	$\hat{O}_2 = 2\hat{L}$	$[\angle$ at centre = twice \angle at circumference]	✓ S	
	$\hat{O}_1 + \hat{O}_2 = 360^{\circ}$	[∠s around a point /∠e om 'n punt]	✓ S/R	
	$\therefore 2\hat{J} + 2\hat{L} = 360^{\circ}$		✓ S	
	$\therefore 2(\hat{J} + \hat{L}) = 360^{\circ}$			
	$\therefore \hat{J} + \hat{L} = 180^{\circ}$			(5)
	OR/OF			
	Constr/Konstr.: Draw F Proof:	XO and MO/ <i>Trek KO en MO</i>	✓ construction	
	Let $\hat{J} = x$		✓ S ✓ R	
	$\hat{O}_1 = 2x$	$[\angle$ at centre = twice \angle at circumference]	, g, K	
	â acaa a	$[midpts \angle = 2 \times omtreks \angle]$	✓ S/R	
	$O_2 = 360^{\circ} - 2x$	$[\angle s \text{ around a point } / \angle e \text{ om 'n punt}]$	✓ S	
	$\therefore \hat{\mathbf{L}} = 180^{\circ} - x$	$[\angle$ at centre = twice \angle at circumference]		
	$\therefore \hat{J} + \hat{L} = 180^{\circ}$			(5)
				(5)

9.2

9.2.1(a)	$\hat{\mathbf{B}}_1 = x$ [\(\angle \mathbf{s} \text{ in same seg}/\(\angle e \text{ in dieselfde segm}\)]	✓ S ✓ R
		(2)
9.2.1(b)	$\hat{B}_2 = y$ [ext \angle of cyclic quad/buite \angle koordevh]	✓ S ✓ R
		(2)
9.2.2	$\hat{C} = 180^{\circ} - (x + y)$ [sum of \angle s of/som $v \angle e$, $\triangle ACR$]	✓ S
	$\hat{SBD} + \hat{C} = x + y + 180^{\circ} - (x + y)$	
	$\hat{SBD} + \hat{C} = 180^{\circ}$	✓ S
	SCDB is a cyclic quad [converse opp angles of cyclic quad]	✓ R
	[omgekeerde teenoorst ∠e koordevh]	(3)
	OR/OF	
	$\hat{S}_1 = \hat{T}_2$ [\(\setminus \text{ in same segment} \) \(\setminus \text{ in dies. segment} \)	✓ S
	$\hat{T}_2 = \hat{D}_1 + \hat{D}_2 = B\hat{D}R$ [ext \angle of cyc quad/buite \angle koordevh]	
	$\therefore \hat{S}_1 = B\hat{D}R$	✓ S
	\therefore SCDB is cyc quad [ext \angle of quad = opp \angle /buite \angle = tos \angle]	✓ R
		(3)

[16]

9.2.3	$\hat{T}_4 = y - 30^{\circ}$ [ext \angle of/buite $\angle \Delta TDR$]	✓ S	
	$\hat{T}_1 = y - 30^{\circ}$ [vert opp $\angle s = /regoorst \angle e =$]	✓ S	
	$y - 30^{\circ} + x + 100^{\circ} = 180^{\circ}$ [sum of \angle s of/som $v \angle e$, $\triangle AST$]		
	$\therefore x + y = 110^{\circ}$		
	$\hat{SBD} = 110^{\circ}$	✓ S	
	\therefore SD not diameter [line does not subtend 90° \angle]		
	SD nie 'n middellyn [lyn onderspan nie 90°∠]	✓ R	
	OR/OF		(4)
	$\hat{AST} = \hat{C} + \hat{D}_2 \qquad [ext \angle \text{ of/buite } \angle \Delta \text{ SCD}]$	✓ S	
	$\hat{C} = 100^{\circ} - 30^{\circ} = 70^{\circ}$	✓ S	
	$\hat{SBD} = 180^{\circ} - 70^{\circ}$ [opp $\angle s$ cyclic quad/ teenoorst $\angle e$ kdvh]	
	= 110°	✓ S	
	∴ SD not diameter [line does not subtend 90° ∠]	(P	
	SD nie 'n middellyn [lyn onderspan nie 90°∠]	✓ R	(4)
			(4)

10.1.1
$$\hat{A}_2 = \hat{A}_1 = 90^{\circ} - x$$
 [= chords subtend = \angle s
$$= kde \ onderspan = \angle e$$
]
$$\hat{D}_2 = x$$
 [exterior angle of cyclic quad/buite \angle koordevh.]
$$\therefore \hat{C}_2 = 90^{\circ} - x$$
 [sum of \angle s of/som $v \angle e$, \triangle DCM]
$$\therefore \hat{C}_2 = \hat{A}_1 = 90^{\circ} - x$$

... MC is a tangent to the circle at C [converse: tan chord th] MC is 'n raaklyn by C [omgekeerde raakl koordst]

OR/OF

$$\hat{A}_2 = \hat{A}_1 = 90^{\circ} - x$$
 [= chords subtend = \angle s/
= $kde \ onderspan = \angle e$]
 $\hat{C}_1 + \hat{C}_2 = x$ [sum of \angle s of/ $som \ v \angle e$, \triangle ACM]
 $\therefore \hat{C}_1 + \hat{C}_2 = \hat{B} = x$

... MC is a tangent to the circle at C [converse : tan chord th] MC is 'n raaklyn by C [omgekeerde raakl koordst]

OR/OF

In \triangle AMC and \triangle ACB:

$$\hat{A}_2 = \hat{A}_1 = 90^\circ - x$$
 [= chords subtend = $\angle s$ /
= $kde \ onderspan = \angle e$]

$$\hat{AMC} = \hat{ACB} = 90^{\circ}$$
 [given]
 $\therefore \hat{C}_1 + \hat{C}_2 = \hat{B} = x$

✓ S/R

$$\checkmark \hat{C}_2 = 90^{\circ} - x$$

$$\checkmark \checkmark \hat{C}_1 + \hat{C}_2 = x$$

$$\checkmark \hat{\mathbf{C}}_1 + \hat{\mathbf{C}}_2 = x$$

			Т	
	_	to the circle at C [converse : tan chord th] by C [omgekeerde raakl koordst]	✓ R	(5)
	In \triangle ACB and/en \triangle	CMD		
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_2 = x$	[proved OR exterior \angle of cyclic quad.] [bewys OF buite \angle v koordevh]	✓ S	
	$\hat{\mathbf{A}}_2 = \hat{\mathbf{C}}_2 = 90^\circ - x$	[proved OR sum of \angle s in Δ] [Bewys OF som $v \angle e$ in Δ]	✓ S	
	ΔACB ΔCMD		✓ R	(3)
	OR/OF			(-)
	In \triangle ACB and/en \triangle 0	CMD		
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_2 = x$	[proved OR exterior ∠ of cyclic quad.] [bewys OF buite ∠v koordevh]	✓ S	
	$\hat{ACB} = \hat{AMC} = 90^{\circ}$		✓ S	
	$\triangle ACB \parallel \triangle CMD$			
		[-, -, -]	✓ R	(2)
	OR/OF			(3)
	In \triangle ACB and/en \triangle	CMD		
	$\hat{\mathbf{B}} = \hat{\mathbf{D}}_2 = x$	[proved OR exterior \angle of cyclic quad]		
		[bewys \mathbf{OF} buite $\angle v$ koordevh]		
	$\hat{\mathbf{A}}_2 = \hat{\mathbf{C}}_2 = 90^\circ - x$	[proved OR sum of \angle s in Δ]	✓ S	
		[Bewys \mathbf{OF} som $v \angle e$ in Δ]		
	$\hat{ACB} = \hat{AMC} = 90^{\circ}$	[given OR sum of \angle s in Δ]	✓ S	
		[gegee \mathbf{OF} som $v \angle e$ in Δ]		
	Δ ACB Δ CMD		✓ S	(3)
10.2.1	$\frac{BC}{AB} = \frac{AB}{AB}$	[ΔACB ΔCMD]	$\checkmark \frac{BC}{} = \frac{AB}{}$	
	MD DC		MD DC	
	$\frac{DC}{D} = \frac{AB}{D}$	[BC = DC]		
	MD DC		(DG ² + D	.
	$\therefore DC^2 = AB \times MI$)	$\checkmark DC^2 = AB \times$	MD
	In \triangle AMC and/en	\(CMD \)		
	M is common/gen	neen	✓ S	
	^ ^	chord th /raaklyn koordst]	✓ S	
	OR/OF			
	$\hat{\mathbf{C}}_1 + \hat{\mathbf{C}}_2 = \hat{\mathbf{B}} = \hat{\mathbf{D}} =$	x [tan chord th /raaklyn koordst OR/OF		
		exterior \angle of cyclic quad/buite $\angle v k dv h$]		
	***	$[\angle, \angle, \angle]$		
	$\frac{AM}{M} = \frac{CM}{M}$			
	CM MD	_	2	
	$\therefore CM^2 = AM \times M$	D	\checkmark CM ² = AM:	×MD
	$\cdot \frac{\text{CM}^2}{\text{M}} = \frac{\text{AM} \times \text{M}}{\text{M}}$	<u>ID</u>	, AM×MD	
	$ \cdot \cdot _{DC^2} - AB \times M $	D	$\sqrt{\frac{\text{AM} \times \text{MD}}{\text{AB} \times \text{MD}}}$	
	_ <u>AM</u>		ABXMD	(6)
	$={AB}$			(0)

	OR/OF	
	$\frac{AC}{MC} = \frac{AB}{DC} \qquad [\Delta ACB \parallel \Delta CMD]$ $\therefore CM \times AB = AC \times DC$	$\checkmark \frac{AC}{MC} = \frac{AB}{DC}$
	In \triangle AMC and/en \triangle ACB $\hat{C} = \hat{M} = 90^{\circ}$ [given] $\hat{A}_1 = \hat{A}_2$ [proven] OR /OF	✓ S ✓ S
	$A\widehat{C}M = \widehat{B} = x \text{ [proven]}$ $\Delta AMC \parallel \Delta ACB [\angle, \angle, \angle]$ $\frac{AC}{AM} = \frac{BC}{MC}$ $\therefore AC \times MC = AM \times BC$	✓ AC.MC = AM.BC
	$AC = \frac{BC.AM}{MC}$ $CM \times AB = \frac{BC.AM}{MC} \times DC$	✓ equating
	$CM^{2} = \frac{DC.AM}{AB} \times DC [BC = DC]$ $\frac{CM^{2}}{DC^{2}} = \frac{AM}{AB}$	✓ S (6)
10.2.2	$\frac{\text{In }\Delta \text{DMC}:}{\frac{\text{CM}}{\text{DC}}} = \sin x$	✓ trig ratio
	$\frac{CM^{2}}{DC^{2}} = \sin^{2} x \frac{AC}{AB} = \frac{CM}{DC}$ $\therefore \frac{AM}{AB} = \sin^{2} x$	✓ square both sides (2)
	OR/OF	
	In $\triangle ABC$: $\sin x = \frac{AC}{AB}$	
	In $\triangle AMC$: $\sin x = \frac{AM}{AC}$	✓ 2 equations for $\sin x$
	$\sin x \cdot \sin x = \frac{AC}{AB} \times \frac{AM}{AC} = \frac{AM}{AB}$	✓ product (2)
		[16]

TOTAL/TOTAAL: 150