Coursera Notes for Bayesian Statistics: Techniques and Models

Jordan Katz

June 2, 2020

Week 2

Metropolis-Hastings

Allows us to sample from generic distribution (whose normalizing constant may not be known). To accomplish this, we effectively construct a Markov Chain whose stationary distribution is the target distribution.

Say we want to know $p(\theta)$ but we only know $q(\theta)$ where $p(\theta) \propto q(\theta)$.

Algorithm:

- 1. Select initial value θ_0
- 2. for $i = 1, \ldots, m$ repeat:

a. Draw candidate $\theta^* \sim q(\theta^*|\theta_{i-1})$ b. Define $\alpha = \frac{g(\theta^*)/q(\theta^*|\theta_{i-1})}{g(\theta_{i-1})/q(\theta_{i-1}|\theta^*)} = \frac{g(\theta^*)}{g(\theta_{i-1})} \frac{q(\theta_{i-1}|\theta^*)}{q(\theta^*|\theta_{i-1}))}$ i. if $\alpha \geq 1$: accept θ^* and set $\theta_i \leftarrow \theta^*$ ii. $0 < \alpha < 1$: with prob α : accept θ^* and set $\theta_i \leftarrow \theta^*$ with prob $1 - \alpha$: reject θ^* and set $\theta_i \leftarrow \theta_{i-1}$

Where q here is the candidate generating distribution which may or may not depend on θ_{i-1} .

One choice is to make q the same distribution regardless of the value θ_{i-1} . If we take this option, we want $q(\theta)$ to be similar to $p(\theta)$ to best approximate it. A high acceptance rate is a good sign here but still may want q to have a larger variance then p to assure we are exploring the space well.

Another choice – one which does depend on θ_{i-1} – is to choose a distribution q that is centered on θ_{i-1} . In any symmetric case, we have the property q(a|b) = q(b|a), so step 2 in the algorithm above reduces to

$$\alpha = \frac{g(\theta^*)}{g(\theta_{i-1})}$$

A common choice for such a distribution is $N(\theta_{i-1}, 1)$, or in order words, a Gaussian random walk: $\theta^* = \theta_{i-1} + N(0, 1)$ In this particular case, we have

$$q(\theta^*|\theta_{i-1}) = \frac{1}{\sqrt{2\pi}} \exp\left[-0.5(\theta^* - \theta_{i-1})^2\right] = q(\theta_{i-1}|\theta^*)$$

The "size" of the random walk step can affect acceptance (and thus convergence) rate. A high acceptance rate is not a good sign here. If random walk is taking too small of steps, it will accept candidate more often but will take a long time to fully explore the space. If it is taking too large of steps, many proposals will have low probabilities which leads to a low acceptance rate. This amounts to "wasted" samples. Ideally, a random walk sampler should have an acceptance rate between 23% and 50%.

Example: Suppose $y_i|\mu \stackrel{iid}{\sim} N(\mu,1)$ for $i=1,\ldots,n$ and $\mu \sim t(0,1,1)$. We want to sample from the posterior distribution $p(\mu|y_1,\ldots,y_n)$, which we can analytically show is proportional to

$$g(\mu) := \frac{\exp[n(\overline{y}\mu - \mu^2/2)]}{1 + \mu^2}$$

using log(q(x)) instead of q(x) for numerical stability

```
LOGg = function(mu, n, ybar) {
  n * (ybar * mu - mu^2 / 2) - log(1 + mu^2)
metropolis_hastings = function(n, ybar, n_iter, mu_init, cand_sd) {
  # Random-Walk Metropolis-Hastings algorithm
  # initializations
  mu_out = numeric(n_iter)
  n_accept = 0
  # step 1
  mu_now = mu_init
  LOGg_now = LOGg(mu=mu_now, n=n, ybar=ybar)
  for (i in 1:n iter) {
    # step 2a
    mu cand = rnorm(1, mean=mu now, sd=cand sd) # draw candidate
    # step 2b
    LOGg_cand = LOGg(mu=mu_cand, n=n, ybar=ybar)
    LOGalpha = LOGg_cand - LOGg_now
    alpha = exp(LOGalpha)
    u = runif(1) # less than alpha with prob min(1, alpha)
    if (u < alpha) { # accept candidate</pre>
      n_accept = n_accept + 1
      mu_now = mu_cand
     LOGg_now = LOGg_cand
    mu_out[i] = mu_now
  list(mu=mu_out, accept_rate=n_accept/n_iter)
}
Problem set up:
y = c(1.2, 1.4, -0.5, 0.3, 0.9, 2.3, 1.0, 0.1, 1.3, 1.9) # data
ybar = mean(y) # sample mean
n = length(y)
hist(y, freq=FALSE, xlim=c(-1, 3)) # histogram of data
```

curve(dt(x=x, df=1), lty=2, add=TRUE) # prior for mu
points(y, rep(0,n), pch=1) # individual data points

points(ybar, 0, pch=19) # sample mean

Histogram of y


```
set.seed(43) # for reproducibility
library("coda") # traceplot --> helpful to determine convergence
```

Posterior sampling:

```
post = metropolis_hastings(n=n, ybar=ybar, n_iter=1e3, mu_init=0, cand_sd=3)
str(post)
```

```
## List of 2
## $ mu : num [1:1000] -0.113 1.507 1.507 1.507 1.507 ...
## $ accept_rate: num 0.122
traceplot(as.mcmc(post$mu))
```


Step size too large (low acceptance rate). Let's try another.

Step size too small (high acceptance rate). Let's try another.

Looks good. Experimenting with different initial value:

approximation to the true posterior in blue

JAGS Software

```
1. Specify the model
  2. Set up the model
  3. Run the MCMC sampler
  4. Post processing
(using same example as above)
library("rjags")
## Linked to JAGS 4.3.0
## Loaded modules: basemod, bugs
set.seed(50)
# 1.
mod_string = "model {
 for (i in 1:n) {
    y[i] ~ dnorm(mu, 1.0/sig2)
 mu \sim dt(0.0, 1.0/1.0, 1)
 sig2 = 1.0
}"
y = c(1.2, 1.4, -0.5, 0.3, 0.9, 2.3, 1.0, 0.1, 1.3, 1.9) # data
n = length(y)
data_jags = list(y=y, n=n)
params = c("mu")
inits = function() {
  inits = list("mu"=0.0)
}
mod = jags.model(textConnection(mod_string), data=data_jags, inits=inits)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 10
##
      Unobserved stochastic nodes: 1
##
      Total graph size: 15
## Initializing model
# 3.
update(mod, 500)
mod_sim = coda.samples(model=mod,
                        variable.names=params,
                        n.iter=1000)
# 4.
library("coda")
```

summary(mod_sim)

```
## Iterations = 1501:2500
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 1000
##
##
  1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
##
             Mean
                               SD
                                        Naive SE Time-series SE
##
         0.885762
                        0.314521
                                        0.009946
                                                       0.012853
##
## 2. Quantiles for each variable:
##
##
     2.5%
             25%
                    50%
                           75% 97.5%
## 0.2697 0.6838 0.8797 1.0817 1.5443
plot(mod_sim)
```

Trace of mu

1600 2000 2400 Iterations

Density of mu

Gibbs Sampling

Question: What happens if we want a posterior distribution of multiple parameters? Say we want to know $p(\theta, \phi|y)$ but we only know $g(\theta, \phi)$ where $p(\theta, \phi|y) \propto g(\theta, \phi)$. By the chain rule of probability we have

$$p(\theta|\phi, y) = \frac{p(\theta, \phi|y)}{p(\phi|y)} \propto p(\theta, \phi|y) \propto g(\theta, \phi)$$

and by a similar analysis,

$$p(\phi|\theta,y) \propto g(\theta,\phi)$$

Main idea: iterate, taking turns drawing θ and ϕ one at a time, using the g function.

Algorithm:

- 1. Initialize θ_0, ϕ_0
- 2. For $i = 1, \ldots, m$ repeat:
 - a. Using ϕ_{i-1} , draw $\theta_i \sim p(\theta|\phi_{i-1}, y)$
 - b. Using θ_i , draw $\phi_i \sim p(\phi|\theta_i, y)$ results in a pair (θ_i, ϕ_i)

Note how this can be naturally extended to more than two parameters.

Example: Suppose we have

$$y_i|\mu, \sigma^2 \stackrel{iid}{\sim} N(\mu, \sigma^2), \qquad i = 1, \dots, m$$

 $\mu \sim N(\mu_0, \sigma_0)$
 $\sigma^2 \sim IG(\nu_0, \beta_0)$

$$p(\mu, \sigma^2 | y_1, \dots, y_n) \propto p(y_1, \dots, y_n | \mu, \sigma^2) p(\mu) p(\sigma^2)$$