AITL Strategy Proposal (Draft v3)

● AITL戦略提言書 / **■** AITL Strategy Proposal {#top}

📎 Jump to Introduction 🚺 Download PDF

目次 / Table of Contents {#toc}

- 1. はじめに / Introduction
- 2. 背景と課題認識 / Background & Issues
 - 。 2.1 技術教育の分断 / Edu-Industry Gap
 - 。 2.2 LLM偏重PoCの限界 / Limits of LLM-centric PoCs
 - 。 2.3 先端偏重戦略の限界 / Limits of Advanced-Node Focus
 - 。 2.4 単体PoC vs 統合PoC / Single vs Integrated PoC
- 3. AITL構想の概要 / AITL Overview
- 4. 教育モデル / Education Framework
 - 。 4.1 教材・支援ツール / Materials & Tools
 - 。 4.2 教育→設計→PoC / Seamless Flow
 - 。 4.3 国際的独自性 / Global Uniqueness
- 5. 社会実装 / PoC & Real-World Applications
 - 。 5.1 実装例 / Use Cases
 - 。 5.2 FPGA検証の意義 / FPGA Verification
- 6. スタートアップ構想 / Startup Strategy
 - 。 6.1 小規模・実装型モデル / Lean Model
 - 。 6.2 エグジット戦略 / Exit
- 7. 提言と施策 / Policy Recommendations
 - 。 7.1 SystemDKの戦略的役割 / SystemDK as Enabler
- ・8. おわりに / Conclusion
- •付録 図・注記 / Figures & Notes
- 戻る / Back

1. はじめに / Introduction {#introduction}

本提言書は、**生成AI(ChatGPT)と制御理論(FSM/PID)**を統合した AITL (All-in-Theory Logic) 構想に基づき、教育・設計・社会実装を一体化させた国家戦略・地域活性の具体モデルを示す。

This proposal outlines a national & regional model based on AITL, integrating generative AI with control theory across education, design, implementation.

AITL戦略は、先端ノードや大規模資本に依存せず、テンプレート設計と老朽ファウンドリ再活用により、

PoC→スタートアップ創出を可能にする"もう一つの半導体戦略"。

An alternative to capital-intensive advanced-node paths—template-based design + legacy foundry reuse enable a route from PoC to startups.

2. 背景と課題認識 / Background & Issues {#background}

2.1 技術教育の分断 / Edu-Industry Gap {#edu-gap}

- •教育と実装の**断絶。HDL/制御**が"見えない技術"化。
- A widening gap between education and deployment; HDL/control skills become invisible.

2.2 LLM偏重PoCの限界 / Limits of LLM-centric PoCs {#llm-limit}

- ChatGPT等の活用が**単体PoC止まり**。構造的連携が不足。
- Lacks **structural integration** with **control** and **hardware**.

2.3 先端偏重戦略の限界 / Limits of Advanced-Node Focus {#advanced-limit}

- 国家資本依存で再現性が低く、地域教育/SMEには導入困難。
- Hard to replicate outside state-funded settings; inaccessible for local institutes & SMEs.

2.4 単体PoC vs 統合PoC / Single vs Integrated PoC {#single-vs-integrated}

- 単体PoC: ChatGPT対話デモ、単独センサ試験 → 再利用性に乏しい。
- ・統合PoC(AITL): センサ → PID/FSM → UARTログ → ChatGPT解析 → 教育・実装・評価まで繋がる設計。

3. AITL構想の概要 / AITL Overview {#aitl-overview}

三層アーキテクチャ:

- Logic Layer LLM推論/異常検知/言語生成
- Control Layer FSM / PID / MPC による明示的制御
- Physical Layer センサ/アクチュエータ/物理制約
- ⑥ Goal: 説明可能性・安全性・実装容易性をAI-制御-物理で両立。

4. 教育モデル / Education Framework {#edu-framework}

4.1 教材と支援ツール / Materials & Tools {#materials-tools}

- Edusemi (基礎・Sky130演習)
- EduController (PID・FSMシミュレーション)
- AITL-H(FSM×PID×LLM統合制御テンプレート)
- SamizoGPT (プロンプト設計・自動化)

【4.2 教育→設計→PoC の統合 / Seamless Flow {#seamless-flow}

- ・FSM設計, PIDチューニング, UART をChatGPTテンプレ化。
- FPGAでリアルタイムPoC → ログをChatGPT解析。

4.3 国際的独自性 / Global Uniqueness {#global-uniqueness}

- 明示的アーキテクチャでAI制御の透明性を担保。
- •AI×制御×テンプレ設計の教育モデルは国際的にも希少。

5. 社会実装 / PoC & Real-World Applications {#poc}

5.1 実装例 / Use Cases {#use-cases}

Field	PoC Content	Node
Agriculture	Greenhouse: Temp/Humidity → PID → Fan → ChatGPT log analysis	Sky130 / 180nm
Disaster	Tilt sensor: FSM + ChatGPT	65nm
Care	Gait assist: IMU + PID + fall detection	130nm
Factory	Thermal control AI: FSM + LLM optimization	

Field	PoC Content	Node
		0.35μm HVMOS
AMS Design	HV-ADC control (SystemDK + PID + Sky130 AMS)	Sky130 / 180nm

SystemDK×AMS: Sky130高耐圧ADCの**PID制御ブロック**と**AMS制約モデル**を統合し、実環境PoCを実施。

Constraints are **templated** and aligned to **Edusemi** materials.

5.2 FPGA検証の意義 / FPGA Verification {#fpga}

- •FSM/PID/LLMをリアルクロックで検証。
- ・UARTログでPoC評価→ChatGPT解析が可能。

6. スタートアップ構想 / Startup Strategy {#startup}

■ 6.1 小規模・実装型モデル / Lean, Practical Model {#lean-model}

- テンプレ+教材で開発を加速。
- ・Sky130/180nm/FPGAで地域LSIを実装。

■ 6.2 エグジット戦略 / Exit Strategy {#exit}

- •技術 PoC 人材の単位で買収可能性。
- ・教育×製品開発の両立が強み。

7. 提言と施策 / Policy Recommendations {#policy}

Target	Recommendation
MEXT	高専/大学に FSM・PID・LLM統合教材 を導入支援
METI	Sky130/180nm PoC 支援制度の整備
MAFF	テンプレ制御LSI のスマート農業導入
Local Gov.	地域PoC+設計+教育 の一体支援

7.1 SystemDKの戦略的役割 / SystemDK as an Enabler {#systemdk-policy}

SystemDK は **物理制約統合設計**の要。GAA/AMS/MRAM等の**ノード特性**に応じた制約をテンプレ化し、

教育→評価→試作→起業を一貫支援。

Action: 教材整備(MEXT)、PoC助成(METI)、演習化(高専/大学)、地域プログラム(中小機構)。

8. おわりに / Conclusion {#conclusion}

AITL戦略は 教育 → PoC → 実装/起業 を結ぶ現実志向の設計戦略。 先端偏重ではなく、地域に根ざし教育に立脚した設計力の再興を目指す。 It can start—right now, right here.

付録:図・注記 / Figures & Notes {#figures}

| AITL統合構成図 / AITL Integrated Architecture

Notes

1. **Core Flow**: Sensor → **FSM/PID** → UART → **ChatGPT** (非リアルタイム解析)

- 2. **Three-Layer Architecture**: Logic / Control / Physical(再利用性・説明性)
- 3. **Startup Path**: Education \rightarrow Template \rightarrow FPGA \rightarrow ASIC PoC \rightarrow M&A

戻る / Back {#back}

Repository: github.com/Samizo-AITL/AITL-Strategy-Proposal

Contact: ⊠ shin3t72@gmail.com | **>** x.com/shin3t72