

Karna: A Security Aware EDA Flow for Improved Side-Channel Attack Protection

Contact: Patanjali SLPSK slpskp@cse.iitm.ac.in, Prasanna Karthik Vairam pkarthik@cse.iitm.ac.in, Chester Rebeiro chester@iitm.ac.in, Kamakoti V kama@cse.iitm.ac.in

RISE group, Department of Computer Science and Engineering, IIT Madras

The Problem Can we incorporate security constraints into backend VLSI design? 1. Introduction Performance, Power, **Data Driven Applications** Area and **Security** Performance, **Power** Video/Audio Processing & Area **Constraints** Performance **Workloads** Floating point/Scientific computation Area **Complex Arithmetic** Performance Performance **Simple Arithmetic** Figure: With increasing workloads the constraints that are placed on the device also increases. 2. Overview **Vulnerabilities** Hardware side-channels **Software Vulnerabilities** EM Noise **Fault** Timing 3. Goals ► Can try and identify the reason for the information leakage via power side-channel? ► Can we come up with a solution to minimize/eliminate the same while designing a device? **Bonus:** Can we keep the overheads down? 4. Prior Work **Specification** [1], [2] HDL **Synthesis**

Changing the gate parameters might affect the other design goals like delay and

area.

Results

Figure: The TVLA profile of the AES-128 design, with the design divided into a 10×10 grid after Karna optimization.

9. Results

Table: Design delay, area and power numbers with and without Karna for achieving a security (τ) of 4.5.

	AES		PRESENT		Simon	
	Without Karna	With Karna	Without Karna	With Karna	Without Karna	With Karna
Delay (ns)	0.5	0.5	0.3	0.3	1.12	1.12
Leakage Power(µW)	492.4	236.65	5.62	0.418	3.70	0.16
#Gates	149943	149943	1520	1520	622	622
TVLA	8.22	3.7	12.28	4.06	20.799	4.48

- ► Power reduction of 80.05% on average.
- ► Karna meets security & delay objectives.

10. Future Work

- ► Can be extended to target fault attacks, EM attacks.
- ► Can be extended to incorporate more constraints (e.g. Routing).

References

0.378 0.378 0.378

- 1. Canright et.al. "A very compact "perfectly masked" s-box for AES (corrected)." CHES 2009.
- 2. Akkar et.al. "An implementation of DES and aes, secure against some attacks." CHES 2001.
- Tiri et.al. " A vlsi design flow for secure side-channel attack resistant ics." DATE 2005.
 A. G. Bayrak et al. An eda-friendly protection scheme against side-channel attacks. DATE 2013.
- 5. Arvind Singh, et.al. "Exploring power attack protection of resource constrained encryption engines using integrated low-drop-out regulators." ISLPED 2015.
- 6. Sanu Mathew, et.al. "Ultra-low energy circuit building blocks for security technologies." DATE 2018.

Floorplan

Placement

Routing

Layout

Tapeout

Hardware

Where the power profile of the design is altered