Exploratory Data Analysis for Telecom Customer Churn

By-Veer Singh

Importing all the Important Libraries for Exploratory Data Analysis

```
In [ ]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Importing Dataset

```
In [ ]: data=pd.read_csv('Customer Churn.csv')
```

Understanding the Data

In []:	data.head()								
Out[]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneSe	
	0	7590-VHVEG	Female	0	Yes	No	1		
	1	5575- GNVDE	Male	0	No	No	34		
	2	3668-QPYBK	Male	0	No	No	2		
	3	7795- CFOCW	Male	0	No	No	45		
	4	9237-HQITU	Female	0	No	No	2		

5 rows × 21 columns

```
In [ ]: data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 21 columns): Non-Null Count Dtyne # Column

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	object
20	Churn	7043 non-null	object
dtyp	es: float64(1), in		-
		- ·	

memory usage: 1.1+ MB

Insights:

- The 'TotalCharges' column is incorrectly assigned as an object data type, but it should be a float. This error occurs due to the presence of blank values.
- Upon further investigation, the issue stems from Python's misinterpretation of blank values. These blanks appear when the 'Tenure' value is zero, as 'TotalCharges' is a product of 'Tenure' and 'MonthlyCharges'.
- The zero 'Tenure' values likely represent new customers who have recently joined the telecom service, leading to blank 'TotalCharges'.

Changing Datatype for 'TotalCharges' to float.

```
In [ ]: | data["TotalCharges"]=data["TotalCharges"].replace(" ","0")
        data["TotalCharges"]=data["TotalCharges"].astype("float")
In [ ]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
     Column
                      Non-Null Count Dtype
     -----
                       -----
                                      ----
 0
     customerID
                      7043 non-null
                                      object
     gender
                      7043 non-null
                                      object
 2
     SeniorCitizen
                      7043 non-null
                                      int64
 3
     Partner
                      7043 non-null
                                      object
 4
    Dependents
                      7043 non-null
                                      object
 5
     tenure
                      7043 non-null
                                      int64
 6
     PhoneService
                      7043 non-null
                                      object
 7
    MultipleLines
                      7043 non-null
                                      object
 8
                      7043 non-null
     InternetService
                                      object
 9
     OnlineSecurity
                      7043 non-null
                                      object
 10 OnlineBackup
                      7043 non-null
                                      object
 11 DeviceProtection 7043 non-null
                                      object
 12 TechSupport
                      7043 non-null
                                      object
 13 StreamingTV
                      7043 non-null
                                      object
 14 StreamingMovies
                      7043 non-null
                                      object
 15 Contract
                      7043 non-null
                                      object
                                      object
 16 PaperlessBilling
                      7043 non-null
 17 PaymentMethod
                       7043 non-null
                                      object
 18 MonthlyCharges
                       7043 non-null
                                      float64
    TotalCharges
                       7043 non-null
                                      float64
 20 Churn
                       7043 non-null
                                      object
```

dtypes: float64(2), int64(2), object(17)

memory usage: 1.1+ MB

Checking Null Values

```
In [ ]: data.isnull().sum()
```

Out[]: 0 customerID 0 gender 0 SeniorCitizen 0 Partner 0 **Dependents** 0 tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 **OnlineSecurity** 0 OnlineBackup 0 **DeviceProtection** 0 TechSupport 0 StreamingTV 0 **StreamingMovies** 0 Contract 0 PaperlessBilling 0 **PaymentMethod** 0 **MonthlyCharges** 0 **TotalCharges** 0 Churn 0

dtype: int64

There are no Null values.

Descriptive Statistics

In []: data.describe()

Out[]:		SeniorCitizen	tenure	MonthlyCharges	TotalCharges
	count	7043.000000	7043.000000	7043.000000	7043.000000
	mean	0.162147	32.371149	64.761692	2279.734304
	std	0.368612	24.559481	30.090047	2266.794470
	min	0.000000	0.000000	18.250000	0.000000
	25%	0.000000	9.000000	35.500000	398.550000
	50%	0.000000	29.000000	70.350000	1394.550000
	75 %	0.000000	55.000000	89.850000	3786.600000
	max	1.000000	72.000000	118.750000	8684.800000

Transforming the values in column 'SeniorCitizen' into Yes/No

```
In [ ]: def convert(value):
          if value==1:
            return "Yes"
            return "No"
        data["SeniorCitizen"]=data["SeniorCitizen"].apply(convert)
In [ ]: data.head()
           customerID gender SeniorCitizen Partner Dependents tenure PhoneSe
        0 7590-VHVEG
                        Female
                                          No
                                                   Yes
                                                                No
                                                                          1
                 5575-
        1
                          Male
                                          No
                                                   No
                                                                 No
                                                                         34
                GNVDE
           3668-QPYBK
                          Male
                                          No
                                                   No
                                                                 No
                                                                          2
                 7795-
        3
                                          No
                                                   No
                                                                 No
                                                                         45
                          Male
                CFOCW
            9237-HQITU
                                                                          2
                        Female
                                          No
                                                   No
                                                                 No
       5 rows × 21 columns
```

In []: data.tail()

Out[]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	Phone
	7038	6840-RESVB	Male	No	Yes	Yes	24	
	7039	2234-XADUH	Female	No	Yes	Yes	72	
	7040	4801-JZAZL	Female	No	Yes	Yes	11	
	7041	8361-LTMKD	Male	Yes	Yes	No	4	
	7042	3186-AJIEK	Male	No	No	No	66	

 $5 \text{ rows} \times 21 \text{ columns}$

Number of Customers Churned

```
In [ ]: bar=sns.countplot(x=data["Churn"],palette=['skyblue','darkblue'])
    bar.bar_label(bar.containers[0])
    bar.bar_label(bar.containers[1])
    plt.title("Churn Count")
    plt.show()

<ipython-input-13-e115b69b15c5>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

bar=sns.countplot(x=data["Churn"],palette=['skyblue','darkblue'])
```


This bar chart depicts both the count of customers who have churned out and the retained ones.

```
In [ ]: plt.pie(x=data["Churn"].value_counts(),labels=data["Churn"].value_counts().i
    plt.legend()
    plt.title("Churn Percentage")
    plt.show()
```


We can clearly observe that about 26% of the customers have churned out.

Now Lets explore the possible reasons for this.

Impact of Gender on Churn Rate

```
In []: plt.figure(figsize=(5,4))
    g=sns.countplot(x=data["gender"],hue=data["Churn"],palette=['skyblue','darkt
    g.bar_label(g.containers[0])
    g.bar_label(g.containers[1])
    plt.title("Churn by Gender")
    plt.show()
```


• No significant difference in churn rate based on gender: Both males and females exhibit similar churn rates.

```
In []: plt.figure(figsize=(5,4))
    g=sns.countplot(x=data["SeniorCitizen"],hue=data["Churn"],palette=['skyblue'
    g.bar_label(g.containers[0])
    g.bar_label(g.containers[1])
    plt.title("Churn by Senior Citizens")
    plt.show()
```


Even though the senior citizens are less in number than other citizens, it looks like a more percentage of them are churning out. In order to confirm this fact stacked bar chart with percentage labels would be plotted.

```
In [ ]: counts = data.groupby(['SeniorCitizen', 'Churn']).size().unstack(fill_value=
        percentages = counts.div(counts.sum(axis=1), axis=0) * 100
        plt.figure(figsize=(5, 4))
        bars = percentages.plot(kind='bar', stacked=True, ax=plt.gca())
        for i in range(len(bars.containers[0])):
            height1 = bars.containers[0][i].get height()
            height2 = bars.containers[1][i].get height()
            bars.annotate(f'{height1:.1f}%',
                          (bars.containers[0][i].get x() + bars.containers[0][i].get
                           height1 / 2), ha='center', va='center')
            bars.annotate(f'{height2:.1f}%',
                          (bars.containers[1][i].get_x() + bars.containers[1][i].get
                           height1 + height2 / 2), ha='center', va='center')
        plt.title("Churn by Senior Citizens")
        plt.xlabel("Senior Citizen")
        plt.ylabel("Percentage")
        plt.xticks(rotation=0)
        plt.show()
```


- Higher churn rate among senior citizens: Senior citizens are more likely to churn compared to younger customers.
- Non-senior citizens have a much lower churn rate: A significantly higher percentage of non-senior citizens remain with the company (76.4%) compared to senior citizens (58.3%).

Impact of Customer Tenure on Churn and Usage Patterns

```
In [ ]: sns.histplot(x=data["tenure"],bins=72,hue=data["Churn"])
    plt.show()
```


- Higher churn rates among newer customers: Customers with lower tenure
 (i.e., those who have been with the company for a shorter duration) are more
 likely to churn.
- Decreasing churn rates with increasing tenure: As customers stay with the company longer, their likelihood of churning decreases.
- Significant difference in churn rates for early tenure: The difference in churn rates between customers with and without churn is most pronounced during the initial tenure period.

Impact of Customer Contract on Churn Rate

```
In []: plt.figure(figsize=(5,4))
   g=sns.countplot(x=data["Contract"],hue=data["Churn"],palette=['#b0bec5','#5c
   g.bar_label(g.containers[0])
   g.bar_label(g.containers[1])
   plt.title("Churn by Contract")
   plt.show()
```


- Customers having month-to-month billing contract are more likely to churn out in comparison to one year and two year contract
- This helped us in identifying that we need to work on convincing the customer for opting with long term contract in order to reduce the churn rate.
- Long term contracts should include more incentives in order to attract the customers.

Churn Counts Across Various Services

plt.tight_layout()
plt.show()

Insights:

- Additional services like online security, backup, device protection, and tech support correlate with lower churn rates. Customers who lack these services churn significantly more.
- Fiber optic internet users exhibit a higher churn rate compared to DSL users, indicating possible dissatisfaction or competitive pressure in this service category.
- Customers without multiple lines, streaming TV, or streaming movies tend to churn more frequently, suggesting that bundling more services could help reduce churn.
- Phone service has a high churn rate overall, but customers without this service churn at a significantly lower rate.

Impact of Payment Method on Churn Rate

```
In []: plt.figure(figsize=(10,4))
    b=sns.countplot(x=data["PaymentMethod"],hue=data["Churn"])
    b.bar_label(b.containers[0])
    b.bar_label(b.containers[1])
    plt.title("Churn by Payment Method")
    plt.show()
```


- Electronic check has the highest churn rate. A significant portion of customers using electronic check have churned.
- Credit card (automatic) has the lowest churn rate. This payment method seems to be the most reliable and has the least customer attrition.

```
In [ ]: columns = ['Partner', 'Dependents']
        n rows = 1
        n cols = 2
        fig, axes = plt.subplots(n rows, n cols, figsize=(10, 4))
        axes = axes.flatten()
        for i, col in enumerate(columns):
            sns.countplot(x=data[col], ax=axes[i], hue=data["Churn"])
            axes[i].set title(f'Count of {col}')
            axes[i].set xlabel('')
            axes[i].set ylabel('Count')
            for p in axes[i].patches:
                axes[i].annotate(f'{int(p.get_height())}',
                                  (p.get_x() + p.get_width() / 2., p.get_height()),
                                  ha='center', va='bottom')
        plt.tight layout()
        plt.show()
```


- Partner status is a stronger predictor of churn than dependents.
- Customers with partners have lower churn rates.
- The presence or absence of dependents does not significantly impact churn.

This notebook was converted to PDF with convert.ploomber.io