Aufgabe 1 (Black-Scholes-Modell; 4 Punkte). Zeigen Sie, dass das Semimartingal

$$X_t = X_0 e^{\sigma W_t + t(\mu - \sigma^2/2)}$$

für $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}_+$ und einer Standard Brown'schen Bewegung W folgende Darstellung besitzt

$$dX_t = \mu X_t dt + \sigma X_t dW_t = X_t d(\mu t + \sigma W_t).$$

Wir wenden die Itô-Formel auf $f(Y_t) = e^{Y_t}$ mit $Y_t = \sigma W_t + t(\mu - \sigma^2/2)$ an Da Y_t stetig ist, gilt $Y_- = Y$ und $\langle Y^c, Y^c \rangle = \langle Y \rangle = \sigma^2 t$. Zunächst ist nämlich $\sigma^2 t$ stetig, verschwindet für t = 0 und ist wachsend, also ist $\sigma^2 t \in \mathcal{V}$. Es müsste noch gezeigt werden, dass $Y_t^2 - \sigma^2 t$ ein Martingal ist. Mit $f'(Y_t) = f''(Y_t) = e^{Y_t} = X_t$ erhalten wir

$$X_t = X_0 + \int_0^t X_s dY_s + \frac{1}{2} \int_0^t X_s d\langle Y \rangle_s.$$

Durch Nachdifferenzieren, sowie $d\langle Y\rangle_s=\sigma^2 ds$, erhalten wir

$$= X_0 + \int_0^t X_s \sigma dW_s + \int_0^s \left(\mu - \frac{\sigma^2}{2}\right) ds + \frac{1}{2} \int_0^t X_s \sigma^2 ds$$

= $X_0 + \int_0^t X_s \sigma dW_s + \int_0^s X_s \mu ds$.

Nach Definition 1 von Blatt 9 mit $H_t = \mu X_t$ und $K_t = \sigma X_t$ besitzt X_t dann die angegebene Darstellung.