Artemis: Repetitive Elements Quantification In Much Less Time

Timothy J. Triche, Jr, Anthony R. Colombo, Harold Pimentel
08 February, 2016

Contents

1	SpeedSage Intro	1
	1.1 changes calcIndividualExpressionsC	1
2	Individual Expression Function	1

1 SpeedSage Intro

quasge is published software that is slow for large runs, SpeedSage corrects for speed and efficiency at large orders #Bottlenecking of Functions Quasge can improve the speed of its algorithm by minimizing the cost of computation.

1.1 changes calcIndividualExpressionsC

trading NA flexibility slows down qu
sage runs, but having the user input no NAs enforcing good input, this speeds up calc
Individual
Expressions
C $2{\rm X}$

2 Individual Expression Function

This test the local version which enforces no NA in Baseline or PostTreatment object, this reduces the flexibility.

```
library(speedSage)

## Loading required package: limma

library(qusage)

## ## Attaching package: 'qusage'

## The following object is masked from 'package:speedSage':
## ## makeComparison
```

```
load(eset)
labels<-c(rep("t0",134),rep("t1",134))
contrast<-"t1-t0"
fileISG<-system.file("extdata", "c2.cgp.v5.1.symbols.gmt",package="speedSage")
ISG.geneSet<-read.gmt(fileISG)</pre>
ISG.geneSet<-ISG.geneSet[grep1("DER_IFN_GAMMA_RESPONSE_UP",names(ISG.geneSet))]</pre>
Baseline<-eset
PostTreatment<-eset+20.4
#non-paired
test1<-calcIndividualExpressions(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6,na.rm=TR
## Found more than one class "QSarray" in cache; using the first, from namespace 'speedSage'
test2<-calcIndividualExpressionsC(Baseline, PostTreatment, paired=FALSE, min.variance.factor=10^-6)
identical(test2,test1)
## [1] TRUE
library(microbenchmark)
mb<-microbenchmark(
test1<-calcIndividualExpressions(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6,na.rm=TR
test2<-calcIndividualExpressionsC(Baseline, PostTreatment, paired=FALSE, min.variance.factor=10^-6))
#on average 1.49X faster
## Unit: milliseconds
##
## test1 <- calcIndividualExpressions(Baseline, PostTreatment, paired = FALSE,
                                                                                       min.variance.facto
                                                                                     paired = FALSE, min.
##
                 test2 <- calcIndividualExpressionsC(Baseline, PostTreatment,</pre>
##
                          mean
                                 median
                                                       max neval cld
         min
                   lq
                                               uq
## 169.5908 173.4177 190.3726 178.0368 195.6845 245.2669
                                                             100
## 135.4584 145.9423 165.6165 151.7338 176.8570 268.3592
                                                             100 a
require(profr)
## Loading required package: profr
require(ggplot2)
## Loading required package: ggplot2
x1<-profr(calcIndividualExpressions(Baseline, PostTreatment, paired=FALSE, min.variance.factor=10^-6, na.rm
ggplot(x1)+labs(title="Qusage SE Default")
```

eset<-system.file("extdata","eset.RData",package="speedSage")</pre>

x2<-profr(calcIndividualExpressionsC(Baseline,PostTreatment,paired=FALSE,min.variance.factor=10^-6))
ggplot(x2)+labs(title="Qusage SE Parallel")</pre>

Qusage SE Parallel


```
#paired end testing
testPE1<-calcIndividualExpressions(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6,na.rm=T
testPE2<-calcIndividualExpressionsC(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6)
for(i in 1:length(test1)){
   message(paste0(identical(testPE1[[i]],testPE2[[i]])," ",i))
}</pre>
```

```
## TRUE 1
## TRUE 2
## TRUE 3
## FALSE 4
## TRUE 5

require(profr)
require(ggplot2)
y1<-profr(calcIndividualExpressions(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6,na.rm=</pre>
```

ggplot(y1)+labs(title="Qusage PE Default")

y2<-profr(calcIndividualExpressionsC(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6))

ggplot(y2)+labs(title="Qusage PE Parallel")

Qusage PE Parallel


```
#this shows that the only difference is the vector of Non-NA columns per each row; which is the same as peMB<-microbenchmark(
testPE1<-calcIndividualExpressions(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6,na.rm=Treatment)
testPE2<-calcIndividualExpressionsC(Baseline,PostTreatment,paired=TRUE,min.variance.factor=10^-6)
) #for paired end 1.2X faster
peMB
```

```
## Unit: milliseconds
##
##
    testPE1 <- calcIndividualExpressions(Baseline, PostTreatment,</pre>
                                                                             paired = TRUE, min.variance.fact
                  testPE2 <- calcIndividualExpressionsC(Baseline, PostTreatment,</pre>
##
                                                                                             paired = TRUE, min
                            mean
                                                           max neval cld
##
                                    median
         min
                                                  uq
    151.7463 158.5880 195.4980 212.5370 223.7431 254.5119
##
                                                                  100
    141.4003 154.1403 186.3135 174.1096 216.4663 291.7925
#add NAs and test
testPT<-PostTreatment[1:20,]</pre>
testPT<-cbind(rbind(testPT, NaN), NA)</pre>
rownames(testPT)[nrow(testPT)]<-"NA"</pre>
testB<-Baseline[1:20,]
testB<-cbind(rbind(testB, NaN), NA)</pre>
rownames(testB)[nrow(testB)]<-"NA"</pre>
```

#calcIndividualExpressionsC(testB, testPT)) will produce error and stop if NA