Compositional Semantic Dependencies for Relaxed-Memory Concurrency

1 2

ALAN JEFFREY, Roblox, USA

JAMES RIELY, DePaul University, USA

MARK BATTY, University of Kent, UK

SIMON COOKSEY, University of Kent, UK

ILYA KAYSIN, JetBrains Research, Russia and University of Cambridge, UK

ANTON PODKOPAEV, HSE University, Russia

Program logics and semantics tell us that when executing $(S_1; S_2)$ starting in state s_0 , we execute S_1 in s_0 to arrive at s_1 , then execute S_2 in s_1 to arrive at the final state s_2 . This is, of course, an abstraction. Processors execute instructions out of order, due to pipelines and caches, and compilers reorder programs even more dramatically. All of this reordering is meant to be unobservable in single-threaded code, but is observable in multi-threaded code. A formal attempt to understand the resulting mess is known as a "relaxed memory model." The relaxed memory models that have been proposed to date either fail to address sequential composition directly, overly restrict processors and compilers, or permit nonsense thin-air behaviors which are unobservable in practice.

To support sequential composition while targeting modern hardware, we propose using preconditions and families of predicate transformers. When composing $(S_1; S_2)$, the predicate transformers used to validate the preconditions of events in S_2 are chosen based on the semantic dependencies from events in S_1 to events in S_2 . We apply this approach to two existing memory models: "Modular Relaxed Dependencies" for C11 and "Pomsets with Preconditions."

CCS Concepts: • Theory of computation \rightarrow Parallel computing models; *Preconditions*.

Additional Key Words and Phrases: Concurrency, Relaxed Memory Models, Multi-Copy Atomicity, ARMv8, Pomsets, Preconditions, Temporal Safety Properties, Thin-Air Reads, Compiler Optimizations

ACM Reference Format:

Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The Leaky Semicolon: Compositional Semantic Dependencies for Relaxed-Memory Concurrency. *Proc. ACM Program. Lang.* 0, POPL, Article 0 (January 2022), 29 pages.

1 INTRODUCTION

Sequentiality is a leaky abstraction [Spolsky 2002]. For example, sequentiality tells us that when executing $(r_1 := x; y := r_2)$, the assignment $r_1 := x$ is executed before $y := r_2$. Thus, one might reasonably expect that the final value of r_1 is independent of the initial value of r_2 . In most modern languages, however, this fails to hold when the program is run concurrently with (s := y; x := s), which copies y to x.

Authors' addresses: Alan Jeffrey, Roblox, Chicago, USA, ajeffrey@roblox.com; James Riely, DePaul University, Chicago, USA, jriely@cs.depaul.edu; Mark Batty, University of Kent, Canterbury, UK, m.j.batty@kent.ac.uk; Simon Cooksey, University of Kent, Canterbury, UK, simon@graymalk.in; Ilya Kaysin, JetBrains Research, Russia and University of Cambridge, , UK, ik404@cam.ac.uk; Anton Podkopaev, HSE University, Saint Petersburg, Russia, apodkopaev@hse.ru.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART0

https://doi.org/

 In certain cases it is possible to ban concurrent access using separation [O'Hearn 2007], or to accept inefficient implementation in order to obtain sequential consistency [Marino et al. 2015]. When these approaches are not available, however, we are left with an enormous gap in our understanding of one of the most basic elements of computing: the humble semicolon. Until recently, existing approaches either

- did not bother tracking dependencies, allowing "thin air" executions as in C and C++ [Batty et al. 2015],
- tracked dependencies conservatively, using syntax, requiring inefficient implementation of relaxed access [Boehm and Demsky 2014; Kavanagh and Brookes 2018; Lahav et al. 2017; Vafeiadis and Narayan 2013]— a non-starter for safe languages like Java, and an unacceptable cost for low-level languages like C,
- computed dependencies using non-compositional operational models over alternate worlds [Chakraborty and Vafeiadis 2019; Cho et al. 2021; Jagadeesan et al. 2010; Kang et al. 2017; Lee et al. 2020; Manson et al. 2005]—these models validate many compiler optimizations, but fail to validate temporal safety properties (see §??).

Recently, two denotational models have been proposed that compute sequential dependencies semantically. Paviotti et al. [2020] defined Modular Relaxed Dependencies (MRD-c11), which use event structures to calculate dependencies for c11, targeting the Intermediate Memory Model (IMM) [Podkopaev et al. 2019]. Jagadeesan et al. [2020] defined Pomsets¹ with Preconditions (PwP), which use preconditions and logic to calculate dependencies for a Java-like language targeting multicopyatomic (MCA) hardware, such as Arm8 [Pulte et al. 2018]. However, neither paper treated sequential composition as a first-class citizen. MRD-c11 encoded sequential composition using continuation-passing, and PwP used prefixing, adding one event at a time on the left. In both cases, adding an event requires perfect knowledge of the future.

In this paper, we show that PwP can be extended with families of predicate transformers (PwT) to calculate sequential dependencies in a way that is compositional and direct: compositional in that the denotation of $(S_1; S_2)$ can be computed from the denotation of S_1 and the denotation of S_2 , and direct in that these can be calculated independently.

The model has been formalized in Coq. We have formally verified that the sequential composition satisfies the expected monoid laws (Lemma 4.5). In addition we have formally verified that $[if(\phi)\{S_1; S_3\}] = [if(\phi)\{S_1\}] = [if(\phi)\{$

To manage complexity, we have layered the definitions. After an overview and discussion of related work, we define sequential dependencies in §4. We then add concurrency. In §5, we define PwT-mca, which provides a Java-like model for multicopy-atomic (mca) hardware, similar to that of Jagadeesan et al. [2020]; §6 summarizes the results for this model. In §7, we define PwT-c11, which models c11, adapting the approach of Paviotti et al. [2020]; §8 describes a tool for automatic evaluation of litmus tests. In §9, we extend the semantics to include additional features, such as address calculation and RMWs.

2 OVERVIEW

This paper is about the interaction of two of the fundamental building blocks of computing: sequential composition and mutable state. One would like to think that these are well-worn topics, where every issue has been settled, but this is not the case.

¹A pomset is a labeled partial order.

2.1 Sequential Composition

 Novice programmers are taught sequential abstraction: that the program S_1 ; S_2 executes S_1 before S_2 . Since the late 1960s, we've been able to explain this using logic [Hoare 1969]. In Dijkstra's [1975] formulation, we think of programs as predicate transformers, where predicates describe the state of memory in the system. In the calculus of weakest preconditions, programs map postconditions to preconditions. We recall the definition of $wp_S(\psi)$ for loop-free code below (where r-s range over thread-local registers and M-N range over side-effect-free expressions).

- (D1) $wp_{skin}(\psi) = \psi$
- (D2) $wp_{r:=M}(\psi) = \psi[M/r]$
- (D3) $wp_{S_1;S_2}(\psi) = wp_{S_1}(wp_{S_2}(\psi))$
- (D4) $wp_{if(M)\{S_1\} \text{ else }\{S_2\}}(\psi) = ((M \neq 0) \Rightarrow wp_{S_1}(\psi)) \land ((M=0) \Rightarrow wp_{S_2}(\psi))$

For this language, the Hoare triple $\{\phi\}$ S $\{\psi\}$ holds exactly when $\phi \Rightarrow wp_S(\psi)$. This is an elegant explanation of sequential computation in a sequential context. Note that D2 is sound because a read from a thread-local register must be fulfilled by a preceding write in the same thread. In a concurrent context, with shared variables (x-z), the obvious generalization

(D2a)
$$wp_{x:=M}(\psi) = \psi[M/x]$$

(D2b) $wp_{r:=x}(\psi) = \psi[x/r]$

is unsound! In particular, a read from a shared memory location may be fulfilled by a write in another thread, invalidating D2b. (We assume that expressions do *not* include shared variables.)

In this paper we answer the following question: what does sequential composition mean in a concurrent context? An acceptable answer must satisfy several desiderata:

- (1) it should not impose too much order, overconstraining the implementation,
- (2) it should not impose too little order, allowing bogus executions, and
- (3) it should be *compositional* and *direct*, as described in §1.

Memory models differ in how they navigate between desiderata 1 and 2. In one direction there are both more valid compiler optimizations and also more potentially dubious executions, in the other direction, less of both. To understand the tradeoffs, one must first understand the underlying hardware and compilers.

2.2 Memory Models

For single-threaded programs, memory can be thought of as you might expect: programs write to, and read from, memory references. This can be thought of as a total order over memory actions (\rightarrow) , where each read has a matching *fulfilling* write (\rightarrow) , for example:

$$x := 0; x := 1; y := 2; r := y; s := x$$

$$(Wx0) \longrightarrow (Wx1) \longrightarrow (Ry2) \longrightarrow (Rx1)$$

This model extends naturally to the case of shared-memory concurrency, leading to a *sequentially consistent* semantics [Lamport 1979], in which *program order* inside a thread implies a total *causal order* between read and write events, for example (where; has higher precedence than ||):

$$x := 0; x := 1; y := 2 \parallel r := y; s := x$$

$$(Wx0) \longrightarrow (Wx1) \longrightarrow (Ry2) \longrightarrow (Rx1)$$

In general, there will be many such executions, reflecting different interleavings of the threads.

Unfortunately, this model does not compile efficiently to commodity hardware, resulting in a 37–73% increase in CPU time on Arm8 [Liu et al. 2019] and, hence, in power consumption. Developers

161 162 163

164

165

167

171 172 173

174

175 176 177

178

179

180 181 182

183

184 185

186 187 188

189 190

191

192

193 194 195

196

of software and compilers have therefore been faced with a difficult trade-off, between an elegant model of memory, and its impact on resource usage (such as size of data centers, electricity bills and carbon footprint). Unsurprisingly, many have chosen to prioritize efficiency over elegance.

This has led to relaxed memory models, in which the requirement of sequential consistency is weakened to only apply per-location. This allows executions that are inconsistent with program order, such as the following, which contains an *antidependency* (\rightarrow) :

$$x := 0; x := 1; y := 2 \parallel r := y; s := x$$

$$(Wx0) \qquad (Ry2) \qquad (Rx0)$$

In such models, the causal order between events is important, and includes control and data dependencies (→), to avoid paradoxical "out of thin air" examples such as:

$$r := x; \text{ if } (r) \{y := 1\} \parallel s := y; x := s$$

$$(Rx1) \qquad (Ry1) \qquad (Ry1) \qquad (Wx1)$$

This candidate execution forms a cycle in causal order, so is disallowed, but this depends crucially on the control dependency from (Rx1) to (Wy1), and the data dependency from (Ry1) to (Wx1). If either is missing, then this execution is acyclic and hence allowed. For example dropping the control dependency results in:

$$r := x ; y := 1 \parallel s := y ; x := s$$

$$(Rx1) \qquad (Wy1) \qquad (Ry1) \qquad (Wx1)$$

While syntactic dependency calculation suffices for hardware models, it is not preserved by common compiler optimizations. For example, if we calculate control dependencies syntactically, then there is a dependency from (Rx1) to (Wy1), and therefore a cycle in, the candidate execution:

$$r := x$$
; if $(r)\{y := 1\}$ else $\{y := 1\} \parallel s := y$; $x := s$

A compiler may lift the assignment y := 1 out of the conditional, thus removing the dependency.

To address this, Jagadeesan et al. [2020] introduced Pomsets with Preconditions (PwP), where events are labeled with logical formulae. Nontrivial preconditions are introduced by store actions (modeling data dependencies) and conditionals (modeling control dependencies):

In this diagram, (s<1) is a control dependency and (r*s)=0 is a data dependency. Preconditions are discharged by being ordered after a read (we assume the usual precedence for logical operators):

$$r := x; s := y; if(s<1)\{z := r*s\}$$

$$(\dagger)$$

$$(Rx0) \qquad Ry0 \longrightarrow (0=s) \Rightarrow (s<1) \land (r*s)=0 \quad Wz0$$

Note that there is dependency order from (Ry0) to (Wz0) so the precondition for (Wz0) only has to be satisfied assuming the hypothesis (0=s). There is no matching order from (Rx0) to (Wz0)which is why we do not assume the hypothesis (0=r). Nonetheless, the precondition on (Wz0) is a tautology, and so can be elided in the diagram:

$$(Rx0)$$
 $(Ry0) \longrightarrow (Wz0)$

2.3 Predicate Transformers For Relaxed Memory

 Pomsets with Preconditions show how the logical approach to sequential dependency calculation can be mixed into a relaxed memory model. However, Jagadeesan et al. do not provide a model of sequential composition. Instead, their model uses *prefixing*, which requires that the model is built from right to left: events are prepended one at a time, with perfect knowledge of the future. This makes reasoning about sequential program fragments difficult. For example, Jagadeesan et al. state the equivalence allowing reordering independent writes as follows,

$$[x := M; y := N; S] = [y := N; x := M; S]$$
 if $x \neq y$

where S is the entire future computation! By formalizing sequential composition, we can show:

$$[x := M; y := N] = [y := N; x := M]$$
 if $x \neq y$

Then the equivalence holds in any context.

Predicate transformers are a good fit for logical models of dependency calculation, since both are concerned with preconditions and how they are transformed by sequential composition. Our first attempt is to associate a predicate transformer with each pomset. We visualize this in diagrams by showing how ψ is transformed, for example:

The predicate transformer from the write matches Dijkstra's D2a. For the reads, however, D2b defines the transformer of r:=x to be $\psi[x/r]$, which is equivalent to $(x=r) \Rightarrow \psi$ under the assumption that registers are assigned at most once. Instead, we use $(0=r) \Rightarrow \psi$, reflecting the fact that 0 may come from a concurrent write. The obligation to find a matching write is moved from the sequential semantics of *substitution* and *implication* to the concurrent semantics of *fulfillment*.

For a sequentially consistent semantics, sequential composition is straightforward: we apply each predicate transformer to subsequent preconditions, composing the predicate transformers.

$$r:=x\;;\;s:=y\;;\;\mathsf{if}(s<1)\{z:=r*s\}$$

$$(8x0) \longrightarrow (0=r) \Rightarrow (0=s) \Rightarrow (s<1) \wedge (r*s) = 0 \quad \forall wz0 \qquad (0=r) \Rightarrow (0=s) \Rightarrow \psi[r*s/z]$$

This works for the sequentially consistent case, but needs to be weakened for the relaxed case.

The key observation of this paper is that rather than working with one predicate transformer, we should work with a *family* of predicate transformers, indexed by sets of events. For example, for single-event pomsets, there are two predicate transformers, since there are two subsets of any one-element set. The *independent* transformer is indexed by the empty set, whereas the *dependent* transformer is indexed by the singleton. We visualize this by including more than one transformed predicate, with a dotted edge leading to the dependent one (\cdots) . For example:

$$r := x$$

$$s := y$$

$$\psi \quad (0=r) \Rightarrow \psi$$

$$\psi \quad (0=s) \Rightarrow \psi$$

The model of sequential composition then picks which predicate transformer to apply to an event's precondition by picking the one indexed by all the events before it in causal order.

For example, we can recover the expected semantics for (†) by choosing the predicate transformer which is independent of (Rx0) but dependent on (Ry0), which is the transformer which maps ψ to (0=s) $\Rightarrow \psi$. (In subsequent diagrams, we only show predicate transformers for reads.)

$$r := x \; ; \; s := y \; ; \; if(s<1) \{z := r*s\}$$

$$(8x0) \qquad (9x) \qquad (9x) \qquad (9x) \qquad (9x) \qquad (8x) \qquad (8x) \qquad (8x) \qquad (9x) \qquad ($$

In the diagram, the dotted lines indicate set inclusion into the index of the transformer-family. As a quick correctness test, we can see that sequential composition is associative in this case, since it does not matter whether we associate to the left, with the intermediate step eliding (Wz0) in the diagram above, or to the right, with the intermediate step:

$$s := y \; ; \; \text{if} (s<1) \{z := r*s\}$$

$$\psi \qquad (0=s) \Rightarrow \psi \quad (\mathbb{R} y0) \longrightarrow (0=s) \Rightarrow (s<1) \land (r*s)=0 \quad \mathbb{W} z0$$

This is an instance of the general result that sequential composition forms a monoid.

3 RELATED WORK

Marino et al. [2015] argue that the "silently shifting semicolon" is sufficiently problematic for programmers that concurrent languages should guarantee sequential abstraction, despite the performance penalties (see also [Liu et al. 2021]). In this paper, we take the opposite approach. We have attempted to find the most intellectually tractable model that encompasses all of the messiness of relaxed memory.

There are few prior studies of relaxed memory that include sequential composition and/or precise calculation of semantic dependencies. Jagadeesan et al. [2020] give a denotational semantics, using prefixing rather than sequential compositions. Paviotti et al. [2020] give a denotational semantics, calculating dependencies using event structures rather than logic. They give the semantics of sequential composition in continuation passing style, whereas we give it in direct style. This paper provides a general technique for computing sequential dependencies and applies it to these two approaches. We provide a detailed comparison with [Jagadeesan et al. 2020] in §??.

Kavanagh and Brookes [2018] define a semantics using pomsets without preconditions. Instead, their model uses syntactic dependencies, thus invalidating many compiler optimizations. They also require a fence after every relaxed read on Arm8. Pichon-Pharabod and Sewell [2016] use event structures to calculate dependencies, combined with an operational semantics that incorporates program transformations. This approach seems to require whole-program analysis.

Other studies of relaxed memory can be categorized by their approach to dependency calculation. Hardware models use syntactic dependencies [Alglave et al. 2014]. Many software models do not bother with dependencies at all [Batty et al. 2011; Cox 2016; Watt et al. 2020, 2019]. Others have strong dependencies that disallow compiler optimizations and efficient implementation, typically requiring fences for every relaxed read on Arm [Boehm and Demsky 2014; Dolan et al. 2018; Jeffrey and Riely 2016; Lahav et al. 2017; Lamport 1979]. Many of the most prominent models are operational, whole-program models based on speculative execution [Chakraborty and Vafeiadis 2019; Cho et al. 2021; Jagadeesan et al. 2010; Kang et al. 2017; Lee et al. 2020; Manson et al. 2005]. We provide a detailed comparison with these approaches in §??.

Other work in relaxed memory has shown that tooling is especially useful to researchers, architects, and language specifiers, enabling them to build intuitions experimentally [Alglave et al. 2014; Batty et al. 2011; Cooksey et al. 2019; Paviotti et al. 2020]. Unfortunately, it is not obvious that tools can be built for all thin-air-free models, the calculation of Pichon-Pharabod and Sewell

[2016] does not have a termination proof for an arbitrary input, and the enormous state space for the operational models of Kang et al. [2017] and Chakraborty and Vafeiadis [2019] is a daunting prospect for a tool builder – and as yet no tool exists for automatically evaluating these models. We describe a tool, PwTer, for automatically evaluating PwT in §8.

4 SEQUENTIAL SEMANTICS

After some preliminaries (§4.1–4.2), we define the basic model and establish some basic properties (§4.3 and Fig. 1). We then explain the model using examples (§4.4–4.9). We encourage readers to skim the definitions and then skip to §4.4, coming back as needed.

In this section, we concentrate on the sequential semantics, ignoring the requirement that concurrent reads be *fulfilled* by matching writes. We extend the model to a full concurrent semantics in §5 and §7 by defining a *reads-from* relation (rf) subject to various constraints.

4.1 Preliminaries

 The syntax is built from

- a set of values V, ranged over by v, w, ℓ, k ,
- a set of registers \mathcal{R} , ranged over by r, s,
- a set of *expressions* \mathcal{M} , ranged over by M, N, L.

Memory references are tagged values, written $[\ell]$. Let \mathcal{X} be the set of memory references, ranged over by x, y, z. We require that

- values and registers are disjoint,
- values are finite² and include at least the constants 0 and 1,
- expressions include at least registers and values,
- expressions do *not* include references: M[N/x] = M.

We model the following language.

$$\mu, \nu := rlx \mid rel \mid acq \mid sc$$

$$S := r := M \mid r := [L]^{\mu} \mid [L]^{\mu} := M \mid F^{\mu} \mid \text{skip} \mid S_1; S_2 \mid \text{if}(M)\{S_1\} \text{ else } \{S_2\} \mid S_1 \not \mapsto S_2$$

Access modes, μ , are relaxed (rlx), release (rel), acquire (acq), and sequentially consistent (sc). Let expressions (r := M) only affect thread-local state and thus do not have a mode. Reads ($r := [L]^{\mu}$) support rlx, acq, sc. Writes ($[L]^{\mu} := r$) support rlx, rel, sc. Fences (F $^{\mu}$) support rel, acq, sc. In examples, the default mode for reads and writes is rlx—we systematically drop the annotation.

Commands, aka statements, S, include memory accesses at a given mode, as well as the usual structural constructs. Following Ferreira et al. [1996], # denotes parallel composition, preserving thread state on the right after a join. In examples and sublanguages without join, we use the symmetric $\|$ operator.

We use common syntactic sugar, such as *extended expressions*, \mathbb{M} , which include memory locations. For example, if \mathbb{M} includes a single occurrence of x, then $y := \mathbb{M}$; S is shorthand for r := x; $y := \mathbb{M}[r/x]$; S. Each occurrence of x in an extended expression corresponds to an separate read. We also write $if(M)\{S\}$ as shorthand for $if(M)\{S\}$ else $\{skip\}$.

Throughout §1-8 we require that

• each register is assigned at most once in a program.

In §9, we drop this restriction, requiring instead that

• there are registers that do not appear in programs.

²We require finiteness for the semantics of address calculation (§9.4), which quantifies over all values. Using types, one could limit the finiteness assumption to the subset of values used for address calculation.

346

347

348

349

351

353

355

357

359

360

363

365

367

369

371

372

373

374

375

376

377

378

379 380

381

382

383

384

385

386 387

388

389 390

391 392 The semantics is built from the following.

- a set of events \mathcal{E} , ranged over by e, d, c, and subsets ranged over by E, D, C,
- a set of *logical formulae* Φ , ranged over by ϕ , ψ , θ ,
- a set of actions \mathcal{A} , ranged over by a, b,
- a family of *quiescence symbols* Q_x , indexed by location.

We require that

- formulae include tt, ff, Q_x , and the equalities (M=N) and (x=M),
- formulae are closed under \neg , \land , \lor , \Rightarrow , and substitutions [M/r], [M/x], $[\phi/Q_x]$,
- there is a relation \models between formulae, capturing entailment,
- \models has the expected semantics for =, \neg , \land , \lor , \Rightarrow and substitutions [M/r], [M/x], $[\phi/Q_x]$,
- there is a subset of \mathcal{A} , distinguishing *read* actions,
- there are four binary relations over $\mathcal{A} \times \mathcal{A}$: delays and matches \subseteq blocks \subseteq overlaps.

Logical formulae include equations over registers and memory references, such as (r=s+1) and (x=1). We use expressions as formulae, coercing M to $M\neq 0$.

We write $\phi \equiv \psi$ when $\phi \models \psi$ and $\psi \models \phi$. We say ϕ is a *tautology* if tt $\models \phi$. We say ϕ is *unsatisfiable* if $\phi \models$ ff, and *satisfiable* otherwise.

4.2 Actions in This Paper

In this paper, we let actions be reads and writes and fences:

$$a.b := W^{\mu}xv \mid R^{\mu}xv \mid F^{\mu}$$

We use shorthand when referring to actions. In definitions, we drop elements of actions that are existentially quantified. In examples, we drop elements of actions, using defaults. Let \sqsubseteq be the smallest order over access and fence modes such that $r|x \sqsubseteq rel \sqsubseteq sc$ and $r|x \sqsubseteq acq \sqsubseteq sc$. We write $(W^{\exists rel})$ to stand for either (W^{rel}) or (W^{sc}) , and similarly for the other actions and modes.

```
Definition 4.1. Actions (R) are read actions.
```

We say a matches b if a = (Wxv) and b = (Rxv).

We say a blocks b if a = (Wx) and b = (Rx), regardless of value.

We say a overlaps b if they access the same location, regardless of whether they read or write.

Let \bowtie_{co} capture write-write, read-write coherence: $\bowtie_{co} = \{(Wx, Wx), (Rx, Wx), (Wx, Rx)\}.$

Let \ltimes_{sync} capture conflict due to synchronization:³ $\ltimes_{\text{sync}} = \{(a, W^{\exists \text{rel}}), (a, F^{\exists \text{rel}}), (R, F^{\exists \text{acq}}), (R^{\exists \text{acq}}, b), (F^{\exists \text{rel}}, b), (F^{\exists \text{rel}}, b), (W^{\exists \text{re$

Let \bowtie_{sc} capture conflict due to sc access: $\bowtie_{sc} = \{(W^{sc}, W^{sc}), (R^{sc}, W^{sc}), (W^{sc}, R^{sc}), (R^{sc}, R^{sc})\}$. We say a delays b if $a \bowtie_{co} b$ or $a \bowtie_{svnc} b$ or $a \bowtie_{sc} b$.

4.3 PwT: Pomsets with Predicate Transformers

Predicate transformers are functions on formulae that preserve logical structure, providing a natural model of sequential composition. The definition follows Dijkstra [1975]. (See §?? for a discussion.)

Definition 4.2. A predicate transformer is a function $\tau:\Phi\to\Phi$ such that

```
(x1) \tau(\psi_1 \wedge \psi_2) \equiv \tau(\psi_1) \wedge \tau(\psi_2), (x3) if \phi \models \psi, then \tau(\phi) \models \tau(\psi). (x2) \tau(\psi_1 \vee \psi_2) \equiv \tau(\psi_1) \vee \tau(\psi_2),
```

We consistently use ψ as the parameter of predicate transformers. Note that substitutions ($\psi[M/r]$ and $\psi[M/x]$) and implications on the right ($\phi \Rightarrow \psi$) are predicate transformers.

³This formalization includes *release sequences* ($W^{\exists rel}x$, Wx). Symmetry would suggest that we include (Rx, $R^{\exists acq}x$), but this is not sound for Arm8.

As discussed in §1, predicate transformers suffice for sequentially consistent models, but not relaxed models, where dependency calculation is crucial. For dependency calculation, we use a *family* of predicate transformers, indexed by sets of events. In sequential composition, we will use τ^C as the predicate transformer applied to event e where $d \in (C)$ if d < e.

Definition 4.3. A family of predicate transformers over E consists of a predicate transformer τ^D for each $D \subseteq \mathcal{E}$, such that if $C \cap E \subseteq D$ then $\tau^C(\psi) \models \tau^D(\psi)$.

In a family of predicate transformers, the transformer of a smaller set must entail the transformer of a larger set. Thus bigger sets are *better* and $\tau^E(\psi)$ —the transformer of the biggest set—is the *best*. (The definition is insensitive to events outside E—it is for this reason that we have taken $D \subseteq \mathcal{E}$ rather than $D \subseteq E$.)

In sequential composition, adding more order can only increase the size of C. Following Def. 4.3, the larger C is, the better, at least in terms of satisfying preconditions. Thus more order means weaker preconditions.

```
Definition 4.4. A pomset with predicate transformers (PwT) is a tuple (E, \lambda, \kappa, \tau, \checkmark, \lt) where
```

```
(M1) E \subseteq \mathcal{E} is a set of events,
```

(M2) $\lambda: E \to \mathcal{A}$ defines an *action* for each event,

(M3) $\kappa : \mathcal{E} \to \Phi$ defines a *precondition* for each event, such that (M3a) $e \notin E$ implies $\kappa(e) = \mathsf{ff}$,

(M4) $\tau: 2^{\mathcal{E}} \to \Phi \to \Phi$ is a family of predicate transformers over E,

(M5) \checkmark : Φ is a *termination condition*, such that

(M5a) $\checkmark \models \tau^E(tt)$,

(M6) $\leq E \times E$, is a strict partial order capturing *causality*.

A PwT is complete if

393

394

395

396 397

398

400

401

402

403

404

405

406 407

408

417

418

420

422

424

426 427

428

429

430

431 432

433

434

435

436

437

438

439

440 441

```
(c3) \kappa(e) is a tautology (for every e \in E), (c5) \checkmark is a tautology.
```

Let P range over pomsets, and P over sets of pomsets. We give the semantics of programs $[\cdot]$ in Fig. 1. The model has 6 components, which can be daunting at first glance. To aid the reader, we use consistent numbering throughout. For example, item 6 always refers to the order relation.

The core of the model is a pomset, which includes a set of events (M1), a labeling (M2), and an order (M6). As usual, we write $d \le e$ to mean d < e or d = e. On top of this basic structure, M3-M5 add a layer of logic. For each pomset, M5 provides a termination condition. For each event in a pomset, M3 provides a precondition. For each set of events in a pomset, M4 provides a predicate transformer. Sequential dependency is calculated by κ'_2 in the semantics of sequential composition.

Before discussing the details of the model, we note that the semantics satisfies the expected monoid laws, as well as some laws concerning the conditional. We have verified Lemma 4.5 and Lemma 4.6e in Coq^4 .

```
Lemma 4.5. (a) [S] = [(S; skip)] = [(skip; S)]. (b) [(S_1; S_2); S_3] = [S_1; (S_2; S_3)].
```

The proof of (a) requires M5a for the termination condition in (S; skip). (b) requires both conjunction closure (x1, for the termination condition) and disjunction closure (x2, for the predicate transformers themselves). (b) also requires that s6 enforce projection as well as inclusion (see the definition of *respects*).

```
Lemma 4.6. (c) [if(\phi)\{S\}] = [S]] \supseteq [S].

(d) [if(\phi)\{S_1\}] = [S_2] \supseteq [S_1] if \phi is a tautology.

(e) [if(\phi)\{S_1; S_3\}] = [if(\phi)\{S_1\}] = [s_2\}; [S_3].
```

 $^{^4}$ Specifically, we have proven these results for the semantics of Fig. 1 with the refinements of §4.7, §9.1, and §9.3

(f)
$$[\![if(\phi)\{S_1; S_2\}] = [\![S_1; if(\phi)\{S_2\}] = [\![S_1; if(\phi)\{S_2\}]]\!]$$
.
(g) $[\![if(\neg\phi)\{S_2\}]; if(\phi)\{S_1\}]\!] \subseteq [\![if(\phi)\{S_1\}] = [\![if(\phi)\{S_1\}]; if(\neg\phi)\{S_2\}]\!]$.

In §9.3, we refine the semantics to validate the reverse inclusions for (e), (f), and (c). For Fig. 1, (g) can be strengthened to equations, rather than inclusions. However, the reverse direction does not hold for PwT-mca (§5.1) nor for PwT-po (§7). For further discussion, see §??.

The semantics is also closed with respect to augmentation. P_2 is an *augment* of P_1 if all fields are equal except, perhaps, the order, where we require $<_2 \supseteq <_1$. In examples, we typically consider pomsets that are augment-minimal. One intuitive reading of augment closure is that adding order can only cause preconditions to weaken.

LEMMA 4.7. If $P_1 \in [S]$ and P_2 augments P_1 then $P_2 \in [S]$.

4.4 Pomsets and Complete Pomsets

Ignoring the logic, the definitions are straightforward. Reads and writes map to pomsets with at most one event. skip maps to the empty pomset. Note only that [x := 1] can write any value v; the fact that v must be 1 is captured in the logic.

The structural rules combine pomsets: *PAR* performs disjoint union, inheriting labeling and order from the two sides. *SEQ* and *IF* perform a union. We say that $d \in E_1$ and $e \in E_2$ coalesce if d = e. As a trivial consequence of using union rather than disjoint union, s1 validates *mumbling* [Brookes 1996] by coalescing events. For example [x := 1; x := 1] includes the singleton pomset [x := 1]. From this it is easy to see that $[x := 1; x := 1] \supseteq [x := 1]$ is a valid refinement. It is equally obvious that $[x := 1] \not\supseteq [x := 1]$ is not a valid refinement, since the latter includes a two-element pomset, but the former does not. (These are distinguished by the context: $[-] | x := x; x := 2; s := x; if (r=s) \{z := 1\}$.)

In complete pomsets, c5 requires that \checkmark is a tautology, capturing termination. In *WRITE*, w5 ensures that all writes are included in complete pomsets—note that $K(\emptyset) = \text{ff}$. This also ensures $[x := 1] \not\supseteq [if(M)\{x := 1\}]$, since $[if(M)\{x := 1\}]$ includes the empty set with termination condition $\neg M$, but [x := 1] can only include the empty set with termination condition ff.

In addition, w5 ensures that complete pomsets do not include bogus writes. Suppose $P \in [x := 1]$. As we noted above, P can include $(1=v \mid Wxv)$, for any value v. In complete pomsets, however, w5 requires that $\sqrt{}$ implies 1=v. We might wish to require that all preconditions be satisfiable. However, unsatisfiable writes can become satisfiable via merging:

$$x := 1$$
 $x := 2$ if $(M)\{x := 3\}$ $(Wx1)$ $(2=3 \mid Wx3)$ $(M \mid Wx3)$

By merging, the semantics allows the following:

This pomset is incomplete, however, since $\sqrt{\ } \equiv 2=3$.

In *READ*, \checkmark depends on the mode. R5b ensures that all acquiring reads are included in complete pomsets. Instead R5a states that relaxed reads are optional: \checkmark is alway true for relaxed reads. From this, it is easy to see that $[r := x] \supseteq [skip]$ is a valid refinement (where the default mode is rlx).

Ignoring predicate transformers, the SEQ rule s5 takes \checkmark to be $\checkmark_1 \land \checkmark_2$. This is as expected: the program terminates if both subprograms terminate.

In $IF(\phi, \mathcal{P}_1, \mathcal{P}_2)$, the termination condition (I5) is $(\phi \land \sqrt{1}) \lor (\neg \phi \land \sqrt{2})$: the program terminates as long as the taken branch terminates. Thus $[if(tt)\{x:=1\}]$ contains a complete

```
If P \in SKIP then E = \emptyset and \tau^D(\psi) \equiv \psi and \checkmark \equiv tt.
491
492
           If P \in ASSIGN(r, M) then E = \emptyset and \tau^D(\psi) \equiv \psi[M/r] and \sqrt{\ } \equiv tt.
493
           Suppose R_i is a relation in E_i \times E_i. We say R respects R_i if R \supseteq R_i and R \cap (E_i \times E_i) = R_i.
           If P \in PAR(\mathcal{P}_1, \mathcal{P}_2) then (\exists P_1 \in \mathcal{P}_1) (\exists P_2 \in \mathcal{P}_2)
495
                                                                                                        (P4) \tau^D(\psi) \equiv \tau_2^D(\psi),
               (P1) E = (E_1 \uplus E_2),
496
               (P2) \lambda = (\lambda_1 \cup \lambda_2),
                                                                                                        (P5) \checkmark \equiv \checkmark_1 \land \checkmark_2,
                                                                                                        (P6) < respects <_1 and <_2.
               (P3) \kappa(e) \equiv \kappa_1(e) \vee \kappa_2(e),
498
499
           If P \in SEO(\mathcal{P}_1, \mathcal{P}_2) then (\exists P_1 \in \mathcal{P}_1) (\exists P_2 \in \mathcal{P}_2)
500
           let \kappa_2'(e) = \tau_1^C(\kappa_2(e)) where C = \{c \mid c < e\}
501
                                                                                                        (s4) \tau^{D}(\psi) \equiv \tau_{1}^{D}(\tau_{2}^{D}(\psi)),
                (s1) E = (E_1 \cup E_2),
502
                                                                                                        (s5) \checkmark \equiv \checkmark_1 \land \tau_1^{E_1}(\checkmark_2),
                (s2) \lambda = (\lambda_1 \cup \lambda_2),
503
                (s3) \kappa(e) \equiv \kappa_1(e) \vee \kappa_2'(e),
                                                                                                        (s6) < respects <_1 and <_2.
504
           If P \in IF(\phi, \mathcal{P}_1, \mathcal{P}_2) then (\exists P_1 \in \mathcal{P}_1) (\exists P_2 \in \mathcal{P}_2)
505
                                                                                                        (14) \tau^D(\psi) \equiv (\phi \wedge \tau_1^D(\psi)) \vee (\neg \phi \wedge \tau_2^D(\psi)),
                (11) E = (E_1 \cup E_2),
506
                (12) \lambda = (\lambda_1 \cup \lambda_2),
                                                                                                         (15) \checkmark \equiv (\phi \land \checkmark_1) \lor (\neg \phi \land \checkmark_2),
507
                (13) \kappa(e) \equiv (\phi \wedge \kappa_1(e)) \vee (\neg \phi \wedge \kappa_2(e)),
                                                                                                         (16) < respects <_1 and <_2.
508
           Let K(D) = \bigvee_{d \in D} \kappa(d). Note that K(\emptyset) = ff.
           If P \in FENCE(\mu) then
511
                                                                                                        (F4) \tau^D(\psi) \equiv \psi,
                (F1) |E| \leq 1,
512
               (F2) \lambda(e) = \mathsf{F}^{\mu},
                                                                                                        (F5) \checkmark \equiv \mathbf{K}(E).
513
               (F3) \kappa(e) \equiv tt,
           If P \in WRITE(x, M, \mu) then (\exists v \in V)
515
                                                                                                       (w4) \tau^D(\psi) \equiv \psi[M/x][K(E)/Q_x],
              (w1) |E| \leq 1,
516
              (w2) \lambda(e) = W^{\mu}xv,
                                                                                                       (w5) \checkmark \equiv \mathbf{K}(E),
517
              (w3) \kappa(e) \equiv M = v,
518
519
           If P \in READ(r, x, \mu) then (\exists v \in \mathcal{V})
                                                                                                      (R4c) if E = \emptyset then \tau^D(\psi) \equiv \psi,
520
               (R1) |E| \leq 1,
               (R2) \lambda(e) = R^{\mu} x v,
                                                                                                      (R5a) if \mu \sqsubseteq rlx then \checkmark \equiv tt,
522
               (R3) \kappa(e) \equiv Q_x,
                                                                                                      (R5b) if \mu \supseteq \text{acq then } \checkmark \equiv \mathbf{K}(E).
             (R4a) if e \in E \cap D then \tau^D(\psi) \equiv (\kappa(e) \Rightarrow v=r) \Rightarrow \psi,
             (R4b) if e \in E \setminus D then \tau^D(\psi) \equiv (\kappa(e) \Rightarrow (v=r \lor x=r)) \Rightarrow \psi,
524
525
                                                                                 \llbracket \mathsf{F}^{\mu} \rrbracket = FENCE(\mu) \qquad \llbracket S_1 \not \Vdash S_2 \rrbracket = PAR(\llbracket S_1 \rrbracket, \llbracket S_2 \rrbracket)
                    [r := M] = ASSIGN(r, M)
526
                                                                             [skip] = SKIP
                 \llbracket x^{\mu} := M \rrbracket = WRITE(x, M, \mu)
                                                                                                                             [S_1; S_2] = SEQ([S_1], [S_2])
528
                    \llbracket r := x^{\mu} \rrbracket = READ(r, x, \mu)
                                                                                                 [\inf(M)\{S_1\} \text{ else } \{S_2\}] = IF(M \neq 0, [S_1], [S_2])
529
```

Fig. 1. PwT Semantics

530

531532533534535

536

537

538 539 pomset with exactly one event: (Wx1). To construct this pomset, we take the singleton from the left and the empty set from the right. This is a general principle: for code that contributes no events at top-level, use the empty set.

542

543

545

546

547

548

549

551

553

555

557

559

560 561

563

564

565

567

569570

571572573

574

575

576

577

578

579

580

581

582

583

584 585 586

587 588

4.5 Preconditions, Predicate Transformers, and Data Dependencies

Preconditions are used to calculate dependencies. They also determine which events can appear in a pomset. In a complete pomset, c3 requires that every precondition $\kappa(e)$ is a tautology. Using w3, [x := 2] cannot include a complete pomset with event (Wx3), since 2=3 is not a tautology.

We defer discussion of Q_x to §4.8. Here we assume we take $Q_x = tt$, for all x.

Note that $[S_1 \mapsto S_2]$ is asymmetric, taking the predicate transformer for S_2 in P4.

Preconditions are discharged during sequential composition by applying predicate transformers τ_1 from the left to preconditions $\kappa_2(e)$ on the right. The specific rule is s3, which uses the transformed predicate $\kappa_2'(e) = \tau_1^C(\kappa_2(e))$, where $C = \{c \mid c < e\}$ is the set of events that precede e in causal order. We call C the *dependent set* for e. Then $E \setminus (C)$ is the *independent set*.

Before looking at the details, it is useful to have a high-level view of how nontrivial preconditions and predicate transformers are introduced. (We discuss address dependencies in §9.4.)

Preconditions are introduced in:

Predicate transformers are introduced in:

(13) for control dependencies,

(R4a) for reads in the dependent set,

(w3) for data dependencies on writes.

(R4b) for reads in the independent set,

(w4) for writes.

The rules track dependencies. We discuss data dependencies (w3) here and control dependencies (13) in §4.6. Unless otherwise noted, we assume pomsets are *complete* and *augment-minimal*.

A simple example of a data dependency is a pomset $P \in [r := x ; y := r]$. If P is complete, it must have two events. Then SEQ requires that there are $P_1 \in [r := x]$ and $P_2 \in [y := r]$ of the form:

$$r := x \qquad \qquad y := r$$

$$(v=r \lor x=r) \Rightarrow \psi \mid (Rxv)^{d} \longrightarrow v=r \Rightarrow \psi \mid \qquad \qquad \psi[r/y] \mid (r=w \mid Wyw)^{e} \longrightarrow \psi[r/y] \mid \qquad \qquad (\dagger\dagger)$$

First we consider the case that v = w. For example, if v = w = 1, we have:

$$\boxed{ (1 = r \lor x = r) \Rightarrow \psi \ \left(\mathsf{R} x \, 1 \right)^d } = 1 = r \Rightarrow \psi$$

$$\boxed{ \psi[r/y] \ \left(r = 1 \ \mathsf{W} y \, 1 \right)^e } \psi[r/y]$$

For the read, the dependent transformer $\tau_1^{\{d\}}$ is $1=r\Rightarrow \psi$; the independent transformer τ_1^{\emptyset} is $(1=r\vee x=r)\Rightarrow \psi$. These are determined by R4a and R4b, respectively. For the write, both $\tau_2^{\{e\}}$ and τ_2^{\emptyset} are $\psi[r/y]$, as are determined by W4. Combining these into a single pomset, we have:

$$\begin{array}{c} r:=x\;;\;y:=r\\ \hline \left(1=r\vee x=r\right)\Rightarrow\psi[r/y] \end{array} \\ \hline \left(\mathbb{R}x1\right)^d \longrightarrow \boxed{1=r\Rightarrow\psi[r/y]} \qquad \left(\phi \ \middle|\ \mathsf{W}y1\right)^e \end{array}$$

By \$4, predicate transformers are determined by composition; thus $\tau^D(\psi)$ is $\tau^D_1(\tau^D_2(\psi))$. Since the transformer does not depend on whether the write is included, we do not draw dependencies for the write in the diagram.

Note that both R4a and R4b degenerate to R4c when $\kappa(e) = \text{ff.}$

Turning to the precondition ϕ on the write, recall that in order for e to participate in a top-level pomset, the precondition ϕ must be a tautology at top-level. There are two possibilities.

- If d < e then we apply the dependent transformer and $\phi \equiv (1=r \Rightarrow r=1)$, a tautology.
- If $d \not\in e$ then we apply the independent transformer and $\phi \equiv ((1=r \lor x=r) \Rightarrow r=1)$. Under the assumption that r is bound, this is logically equivalent to (x=1). (We make this more precise in §??.)

Eliding transformers, the two outcomes are:

$$r := x; y := r$$

$$Rx1 \xrightarrow{d} Wy1^{e}$$

$$Rx1 \xrightarrow{d} x = 1 Wy1^{e}$$

The independent case on the right can only participate in a top-level pomset if the precondition (x=1) is discharged. To do so, we must prepend a pomset P_0 that writes 1 to x:

$$x := 1 \qquad \qquad x := 1; \ r := x; \ y := r$$

$$\psi[1/x] \quad \underbrace{\begin{pmatrix} 1 = 1 & \mathsf{W}x1 \end{pmatrix}^c}_{c} \mapsto \psi[1/x] \quad \underbrace{\begin{pmatrix} 1 = 1 & \mathsf{W}y1 \end{pmatrix}^c}_{c} \quad \underbrace{\begin{pmatrix} \mathsf{R}x1 \end{pmatrix}^d}_{c} \quad \underbrace{\begin{pmatrix} 1 = 1 & \mathsf{W}y1 \end{pmatrix}^c}_{c}$$

Here we apply the predicate transformer τ_0^0 to (x=1), resulting in the tautology (1=1). Now suppose that $v \neq w$ in $(\dagger\dagger)$. Again there are two possibilities. Taking v=0 and w=1:

$$r := x \; ; \; y := r$$

$$(Rx0)^{d} \xrightarrow{0} (0=r \Rightarrow r=1 \; | Wy1)^{e}$$

$$(Rx0)^{d} \xrightarrow{(0=r \vee x=r) \Rightarrow r=1} | Wy1)^{e}$$

Assuming that r is bound, both preconditions on e are unsatisfiable.

If a write is independent of a read, then clearly no order is imposed between them. For example, the precondition of e is a tautology in:

$$\begin{aligned} r := x \; ; \; y := 1 \\ \hline \left[(0 = r \lor x = r) \Rightarrow \psi[r/y] \right] & \overbrace{\left(\mathbb{R} x 0 \right)^d} \\ \downarrow^d & \downarrow 0 = r \Rightarrow \psi[r/y] \end{aligned} & \left((0 = r \lor x = r) \Rightarrow 1 = 1 \middle| \mathbb{W} y 1 \right)^e \end{aligned}$$

4.6 Control Dependencies

 In $IF(\phi, \mathcal{P}_1, \mathcal{P}_2)$, the predicate transformer (14) is $(\phi \wedge \tau_1^D(\psi)) \vee (\neg \phi \wedge \tau_2^D(\psi))$, which is the disjunctive equivalent of Dijkstra's conjunctive formulation: $(\phi \Rightarrow \tau_1^D(\psi)) \wedge (\neg \phi \Rightarrow \tau_2^D(\psi))$.

This semantics validates dead code elimination: if $M \neq 0$ is a tautology then $[if(M)\{S_1\}]$ else $[S_2] \supseteq [S_1]$. The reverse inclusion does not hold.

For events from E_1 , I3 requires $\phi \wedge \kappa_1(e)$. For events from E_2 , I3 requires $\neg \phi \wedge \kappa_2(e)$. For coalescing events in $E_1 \cap E_2$, I3 requires $(\phi \wedge \kappa_1(e)) \vee (\neg \phi \wedge \kappa_2(e))$. This semantics allows common code to be lifted out of a conditional, validating the transformation $[If(M)\{S\}] = [S]$.

By allowing events to coalesce, I3 ensures that control dependencies are calculated semantically, rather than syntactically. For example, consider $P \in [if(r=1)\{y:=r\}]$ else $\{y:=1\}$, which is build from $P_1 \in [y:=r]$ and $P_2 \in [y:=1]$ such as:

$$y := r \qquad \qquad y := 1 \qquad \qquad \text{if } (r=1)\{y := r\} \text{ else } \{y := 1\}$$

$$(r=1) | Wy1 |^{e} \qquad \qquad (r=1 \Rightarrow r=1) \land (r \neq 1 \Rightarrow 1=1) | Wy1 |^{e}$$

Here, the precondition in the combined pomset is a tautology, independent of r.

Control dependencies are eliminated in the same way as data dependencies. For example:

$$r:=x \qquad \qquad \text{if}(r=1)\{y:=1\}$$

$$(v=r\vee x=r)\Rightarrow \psi \quad \text{$\left(v=r\vee x=r\right)\Rightarrow\psi$} \quad v=r\Rightarrow \psi \qquad \qquad \tau_2^{\{e\}}(\psi) \quad r=1 \quad \forall yw \quad \tau_2^{\{e\}}(\psi)$$

where $\tau_2^{\emptyset}(\psi) \equiv \tau_2^{\{e\}}(\psi) \equiv (r=1 \land \psi[1/y]) \lor (r \neq 1 \land \psi)$. As for $(\dagger \dagger)$, there are two possibilities:

$$r := x$$
; if $(r=1)\{y := 1\}$
$$r := x$$
; if $(r=1)\{y := 1\}$
$$(Rx1)^{d} \xrightarrow{d} (1=r \Rightarrow r=1 \mid Wy1)^{e}$$

$$(Rx1)^{d} \xrightarrow{d} (1=r \lor x=r) \Rightarrow r=1 \mid Wy1)^{e}$$

[Todo: Add example showing empty set on untaken branch.]

4.7 A Refinement: No Dependencies into Reads

To avoid stalling the CPU pipeline unnecessarily, hardware does not enforce control dependencies between reads. To support if-introduction (§9.3), software models must not distinguish control

.

dependencies from other dependencies. Thus, we are forced to drop all dependencies into reads. To achieve this, we modify the definition of κ'_2 in Fig. 1.

$$\kappa_2'(e) = \begin{cases} \tau_1^{E_1}(\kappa_2(e)) & \text{if } \lambda(e) \text{ is a read} \\ \tau_1^C(\kappa_2(e)) & \text{otherwise, where } C = \{c \mid c < e\} \end{cases}$$

Thus reads always use the "best" transformer, $\tau_1^{E_1}$. In order for non-reads to get a good transformer, they need to add order.

Throughout the remainder of the paper, we use this definition. (The lack of dependencies into reads is one of the factors complicating downset closure; see §?? for a discussion.)

4.8 Subtleties: Local Invariant Reasoning and Local State

R4b introduces locations into formula, in order to track the local state of memory. This is necessary to support local invariant reasoning as in JMM Causality Test Case 1 (TC1) [Pugh 2004]:

$$\begin{array}{c} x := 0; \; (r := x; \; \text{if} \; (r \geq 0) \{ y := 1 \} \parallel x := y) \\ \hline (\mathbb{R}x1) \qquad \phi \quad \mathbb{R}y1 \longrightarrow \mathbb{R}y1 \longrightarrow \mathbb{R}y1 \end{array} \tag{Tc1}$$

In order to allow this execution, the precondition ϕ must be a tautology. Using R4b and W4, the precondition is $((1=r\vee x=r)\Rightarrow r\geqslant 0)[0/x]$ which is $((1=r\vee 0=r)\Rightarrow r\geqslant 0)$ which is indeed a tautology. Intuitively, R4b says that, to be independent of the read action, subsequent preconditions must be tautological under both [v/r] and [x/r]. Here v is the value read, and x tracks the "local state" of the variable. This idea is borrowed from [Jagadeesan et al. 2020]. Local invariant reasoning requires that we track the state of variables in the logic, not just registers. This is one reason we use predicate transformers rather than simple postconditions.

[Todo: Put tc12' first. Fix the narrative.] Q_x ensures that the local state of x is up-to-date when x is read. R3 and R4 add these "quiescence" constraints, which are simplified by w4. Consider the following example [Paviotti et al. 2020, §6.3]:

$$x := 1; r := y; \text{ if } (r = 0) \{x := 0; s := x; \text{ if } (s) \{z := 1\}\} \quad \| \text{ if } (z) \{y := 1\}$$

$$\text{else } \{s := x; \text{ if } (s) \{z := 1\}\}$$

$$\mathbb{R}y1 \qquad \mathbb{R}y1 \qquad \mathbb{R}y1 \qquad \mathbb{R}z1 \qquad \mathbb{R}y1 \qquad \mathbb{R$$

[Todo: Make this understandable.] Note that the two branches of the conditional are the same except for the leading (x := 0). Without Q_x , the precondition ϕ is tt, which is a tautology, and the execution is allowed, resulting in a violation of DRF-sc. To construct this pomset, we have chosen the empty pomset for [x := 0]. The constraints on complete pomsets do not filter out this pomset, since x := 0 is in the untaken branch of the conditional. The problem here is that we have forgotten the local state of x in the untaken branch of the execution. Nonetheless, we are using the subsequent read.

With Q_x , the precondition of ϕ is ff. Intuitively, Q_x requires that the most recent prior write to x must be in the pomset in order to read x.

We include Q_x in R3 to reduce the number of useless pomsets—when Q_x is false for (x := r), the read is useless and can be eliminated by taking $E = \emptyset$. By including Q_x in R3, we also guarantee initialization in complete pomsets: (C3) requires tautologies, which means that all variables must be initialized sequentially in order to get rid of Q_x .

Control variant of TC12 with all initial values 0:

$$r := y; \text{ if } (r) \{a := 1\} \text{ else } \{b := 1\}; s := b; x := !s \parallel y := x$$

$$(\text{Tc}12')$$

Building the precondition ϕ from right to left:

$$\phi_1 \equiv s=0 \qquad (x:=s)$$

$$\phi_2 \equiv (Q_b \Rightarrow 0=s) \Rightarrow s=0 \qquad (Prepending s:=b)$$

$$\phi_3 \equiv (r\neq 0 \land \phi_2[1/a][tt/Q_a]) \lor (r=0 \land \phi_2[1/b][ff/Q_b]) \qquad (Prepending if)$$

$$\equiv (r\neq 0 \land ((Q_b \Rightarrow 0=s) \Rightarrow s=0)) \lor (r=0 \land s=0)$$

Dependent case:

$$\phi_4 \equiv (\mathsf{Q}_y \Rightarrow 1 = r) \Rightarrow \phi_3 \qquad \qquad \text{(Prepending } r := y)$$

$$\phi_5 \equiv 1 = r \Rightarrow (r \neq 0 \land (0 = s \Rightarrow s = 0)) \lor (r = 0 \land s = 0) \qquad \qquad \text{(Prepending Initializers)}$$

Independent case:

$$\phi_4' \equiv (\mathsf{Q}_y \Rightarrow 1 = r \lor y = r) \Rightarrow \phi_3$$
 (Prepending $r := y$)
$$\phi_5' \equiv (1 = r \lor 0 = r) \Rightarrow (r \neq 0 \land (0 = s \Rightarrow s = 0)) \lor (r = 0 \land s = 0)$$
 (Prepending Initializers)

4.9 Associativity and Skolemization

The predicate transformers we have chosen for R4a and R4b are different from the ones used traditionally, which are written using substitution. Attempting to write R4a and R4b in this style we would have (as in [Jagadeesan et al. 2020]):

(R4a') if
$$e \in E \cap D$$
 then $\tau^D(\psi) \equiv \psi[v/r]$,
(R4b') if $e \in E \setminus D$ then $\tau^D(\psi) \equiv \psi[v/r] \wedge \psi[x/r]$.

Sadly, R4b' fails x2, and therefore is not a predicate transformer. This is not merely a theoretical inconvenience: adopting R4b' would also break associativity. Consider the following example, where we elide transformers for the writes and "!" represents logical negation:

$$r:=y \hspace{1cm} x:=!r \hspace{1cm} x:=!!r \\ \boxed{\psi[1/r] \wedge \psi[y/r]} \hspace{1cm} Ry1 \rightarrow \hspace{1cm} \psi[1/r] \hspace{1cm} r=0 \hspace{1cm} Wx1 \hspace{1cm} (r\neq 0 \hspace{1cm} Wx1)$$

Coalescing the writes and associating to the right, we have the following, since $(r=0 \lor r\neq 0) \equiv tt$:

$$r := y$$
 $x := !r; x := !!r$ $r := y; (x := !r; x := !!r)$ $(Ry1)$ $(Wx1)$

The precondition of (Wx1) is a tautology. Associating to the left and the coalescing, instead:

$$r := y \; ; \; x := ! r \qquad \qquad x := ! ! r \qquad \qquad (r := y \; ; \; x := ! r) \; ; \; x := ! ! r$$

$$(\mathbb{R} y 1) \quad (1 = 0 \land y = 0 \mid \mathbb{W} x 1) \qquad (\mathbb{R} y 1) \quad (\mathbb{R} y 1) \quad (\mathbb{R} y 1)$$

The precondition $\phi \equiv (1=0 \land y=0) \lor (1\neq 0 \land y\neq 0)$ is equivalent to $y\neq 0$, which is not a tautology. Our solution is to Skolemize, replacing substitution by implication, with uniquely chosen registers. Using Fig. 1, we compute $\phi \equiv ((1=r \lor y=r) \Rightarrow r=0) \lor ((1=r \lor y=r) \Rightarrow r\neq 0)$, which is a tautology.

738

739

740

741

742

743

744

745

746

747

748

749 750

751

753

755

757

759

763

765

767

768

769

770

771

772

773

774

775 776 777

778

779

780

781

782

783 784

PwT-MCA: POMSETS WITH PREDICATE TRANSFORMERS FOR MCA

We derive a model of concurrent computation by adding *reads-from* to Fig. 1. To model coherence and synchronization, we add delay to the rule for sequential composition. For multicopy-atomic (MCA) architectures, it is sufficient to encode delay in the pomset order. The resulting model, PWT-MCA₁, supports optimal lowering for relaxed access on Arm8, but requires extra synchronization for acquiring reads. (Lowering is the translation of language-level operators to machine instructions. A lowering is *optimal* if it provides the most efficient execution possible.)

A variant, PwT-McA₂, supports optimal lowering for all access modes on Arm8. To achieve this, PwT-MCA2 drops the global requirement that reads-from implies pomset order (M7c). The models are the same, except for internal reads, where a thread reads its own write.

The lowering proofs can be found in §??. The proofs use recent alternative characterizations of Arm8 [Alglave et al. 2021].

5.1 PwT-MCA1

We define PwT-MCA₁ by extending Def. 4.4 and Fig. 1. The definition uses several relations over actions-matches, blocks and delays-as well a distinguished set of read actions; see §4.2.

Definition 5.1. The definition of PwT-MCA1 extends that of PwT with a relation rf such that

(M7) rf $\subseteq E \times E$ is an injective relation capturing reads-from, such that

```
(M7a) if d \xrightarrow{rf} e then \lambda(d) matches \lambda(e),
```

(M7b) if $d \xrightarrow{rf} e$ and $\lambda(c)$ blocks $\lambda(e)$ then either $c \le d$ or $e \le c$,

(M7c) if $d \xrightarrow{rf} e$ then d < e.

The definition of completeness extends Def. 4.4 as follows:

(c7) if $\lambda(e)$ is a read then there is some $d \xrightarrow{\text{rf}} e$.

The semantic function extends Fig. 1 as follows:

```
(P7) (S7) (I7) rf respects rf_1 and rf_2,
                                                               (16a) if \lambda_1(d) delays \lambda_2(e) then d \leq e.
```

We write $[\cdot]_{mca1}$ for the semantic function when it is unclear from context.

In complete pomsets, rf must pair every read with a matching write (c7). The requirements M7a, M7b, and M7c guarantee that reads are fulfilled, as in [Jagadeesan et al. 2020, §2.7].

The semantic rules are mostly straightforward: Parallel composition is disjoint union, and all constructs respect reads-from. The monoid laws (Lemma 4.5) extend to parallel composition, with skip as right unit only due to the asymmetry of P4.

Only 16a requires explanation. From Def. 4.1, recall that a delays b if $a \bowtie_{co} b$ or $a \bowtie_{sync} b$ or $a\bowtie_{sc} b$. 16a guarantees that sequential order is enforced between conflicting accesses of the same location (⋈_{CO}), into a release and out of an acquire (⋉_{SVNC}), and between SC accesses (⋈_{SC}). Combined with the fulfillment requirements (M7a, M7b and M7c), these ensure coherence, publication, subscription and other idioms. For example, consider the following:⁵

$$x := 0; x := 1; y^{\text{rel}} := 1 \parallel r := y^{\text{acq}}; s := x$$

$$(Wx0) \longrightarrow (Wx1) \longrightarrow (W^{\text{rel}}y1) \longrightarrow (R^{\text{acq}}y1) \longrightarrow (Rx0)$$

The execution is disallowed due to the cycle. All of the order shown is required at top-level: The intra-thread order comes from I6a: $(Wx0) \rightarrow (Wx1)$ is required by \bowtie_{CO} . $(Wx1) \rightarrow (W^{rel}y1)$ and

- $d \rightarrow e$ arises from \bowtie_{co} (16a),
- $d \rightarrow e$ arises from reads-from (M7a),
- $d \rightarrow e$ arises from \bowtie_{SVNC} or \bowtie_{SC} (16a),
- $d \rightarrow e$ arises from blocking (M7b).
- $d \rightarrow e$ arises from control/data/address dependency (s3, definition of $\kappa'_2(d)$),

In PwT-mca₂, it is possible for rf to contradict <. In this case, we use a dotted arrow for rf: $d \cdot \cdot \cdot \rangle$ e indicates that e < d.

⁵We use different colors for arrows representing order:

 $(\mathsf{R}^{\mathsf{acq}}y1) \to (\mathsf{R}x0)$ are required by \ltimes_{sync} . The cross-thread order is required by fulfillment: c7 requires that all top-level reads are in the image of $\stackrel{\mathsf{rf}}{\longrightarrow}$. M7a ensures that $(\mathsf{W}^{\mathsf{rel}}y1) \stackrel{\mathsf{rf}}{\longrightarrow} (\mathsf{R}^{\mathsf{acq}}y1)$, and M7c subsequently ensures that $(\mathsf{W}^{\mathsf{rel}}y1) < (\mathsf{R}^{\mathsf{acq}}y1)$. The *antidependency* $(\mathsf{R}x0) \to (\mathsf{W}x1)$ is required by M7b. (Alternatively, we could have $(\mathsf{W}x1) \to (\mathsf{W}x0)$, again resulting in a cycle.)

The semantics gives the expected results for store buffering and load buffering, as well as litmus tests involving fences and SC access. The model of coherence is weaker than C11, in order to support common subexpression elimination, and stronger than Java, in order to support local reasoning about data races. For further examples, see §?? and [Jagadeesan et al. 2020, §3.1].

Lemmas 4.5 and 4.6 hold for PwT-MCA₁. For further discussion of item (g) see §??.

5.2 PwT-MCA2

 Lowering PwT-MCA1 to Arm8 requires a full fence after every acquiring read. To see why, consider the following attempted execution, where the final values of both x and y are 2.

$$x := 2; r := x^{\text{acq}}; y := r - 1 \parallel y := 2; x^{\text{rel}} := 1$$

$$(Wx2) \leftarrow (Wy1) \rightarrow (Wy2) \leftarrow (W^{\text{rel}}x1)$$

The execution is allowed by Arm8, but disallowed by PwT-MCA1, due to the cycle.

Arm8 allows the execution because the read of *x* is internal to the thread. This aspect of Arm8 semantics is difficult to model locally. To capture this, we found it necessary to drop M7c and relax 16a, adding local constraints on rf to *PAR*, *SEQ* and *IF*. Rather than ensuring that there is no *global* blocker for a sequentially fulfilled read (M7c), we require only that there is no *thread-local* blocker (s6b). For PwT-MCA₂, internal reads don't necessarily contribute to order, and thus the above execution is allowed.

Definition 5.2. The definition of PwT-MCA₂ is derived from that of PwT-MCA₁ by removing M7c and adding the following:

```
(P6a) if d \in E_1, e \in E_2 and d \xrightarrow{rf} e then d < e,
```

- (P6b) if $d \in E_1$, $e \in E_2$ and $e \xrightarrow{rf} d$ then e < d,
- (s6a) if $d \in E_1$, $e \in E_2$ and $\lambda_1(d)$ delays $\lambda_2(e)$ then either $d \stackrel{\mathsf{rf}}{\longrightarrow} e$ or $d \leq e$,
- (s6b) if $d \in E_1$, $e \in E_2$ and $\lambda_1(d)$ blocks $\lambda_2(e)$ then $c \xrightarrow{\text{rf}} e$ implies $d \le c$.

A PwT-MCA₂ need not satisfy requirement M7c, and thus we may have $d \xrightarrow{\text{rf}} e$ and e < d. [Todo: Example using s6a and s6b. Perhaps move Lemma 5.3 to appendix.]

With the weakening of 16a, we must be careful not to allow spurious pairs to be added to the rf relation. For example, $[if(b)\{r:=x \mid x:=1\}]$ should not include [Rx1] taking rf from the left and < from the right. The use of respects ensures this.

As a consequence of dropping M7c, sequential rf must be validated during pomset construction, rather than post-hoc. In §7, we show how to construct program order (po) for complete pomsets using phantom events (π). Using this construction, the following lemma gives a post-hoc verification technique for rf. Let π^{-1} be the inverse of π .

Lemma 5.3. If $P \in [S]_{mca2}$ is complete, then for every $d \xrightarrow{rf} e$ either

- external fulfillment: d < e and if $\lambda(c)$ blocks $\lambda(e)$ then either $c \le d$ or $e \le c$, or
- internal fulfillment: $(\exists d' \in \pi^{-1}(d))$ $(\exists e' \in \pi^{-1}(e))$ $d' \stackrel{\text{po}}{\longleftrightarrow} e'$ and $(\nexists c)$ $\kappa(c)$ is a tautology and $\lambda(c)$ blocks $\lambda(e)$ and $d' \stackrel{\text{po}}{\longleftrightarrow} e'$.

These mimic the *external consistency* requirements of Arm8 [Alglave et al. 2021].

6 PwT-MCA RESULTS

PwP [Jagadeesan et al. 2020] is a novel memory model, intended to serve as a semantic basis for a Java-like language, where all access is safe. PwT-mcA generalizes PwP, making several small but significant changes. As a result, we have had to re-prove most of the theorems from PwP.

In §??, we show that PwT-mcA₁ supports the optimal lowering of relaxed accesses to Arm8 and that PwT-mcA₂ supports the optimal lowering of *all* accesses to Arm8. The proofs are based on two recent characterizations of Arm8 [Alglave et al. 2021]. For PwT-mcA₁, we use *External Global Consistency*. For PwT-mcA₂, we use *External Consistency*.

In §??, we prove sequential consistency for local-data-race-free programs. The proof uses *program order*, which we construct for c11 in §7. The same construction works for PwT-mcA. (This proof assumes there are no RMW operations.)

The semantics validates many peephole optimizations, such as the standard reorderings on relaxed access:

$$\begin{bmatrix} r := x ; s := y \end{bmatrix} = \begin{bmatrix} s := y ; r := x \end{bmatrix} & \text{if } r \neq s \\
 \begin{bmatrix} x := M ; y := N \end{bmatrix} = \begin{bmatrix} y := N ; x := M \end{bmatrix} & \text{if } x \neq y \\
 \begin{bmatrix} x := M ; s := y \end{bmatrix} = \begin{bmatrix} s := y ; x := M \end{bmatrix} & \text{if } x \neq y \text{ and } s \notin \text{id}(M)
 \end{bmatrix}$$

Here id(S) is the set of locations and registers that occur in S. Using augmentation closure, the semantics also validates roach-motel reorderings [Sevčík 2008]. For example, on read/write pairs:

$$[x^{\mu} := M; s := y] \supseteq [s := y; x^{\mu} := M]$$
 if $x \neq y$ and $s \notin id(M)$
$$[x := M; s := y^{\mu}] \supseteq [s := y^{\mu}; x := M]$$
 if $x \neq y$ and $s \notin id(M)$

Notably, the semantics does *not* validate read introduction. When combined with case analysis (§9.3), read introduction can break temporal reasoning. This combination is allowed by speculative operational models. See §?? for a discussion.

Prop. 6.1 of [Jagadeesan et al. 2020] establishes a compositional principle for proving that programs validate formula in past-time temporal logic. The principal is based entirely on the pomset order relation. Its proof, and all of the no-thin-air examples in [Jagadeesan et al. 2020, §6] hold equally for the models described here.

7 PwT-C11: POMSETS WITH PREDICATE TRANSFORMERS FOR C11

PwT can be used to generate semantic dependencies to prohibit thin-air executions of c11, while preserving optimal lowering for relaxed access. We follow the approach of Paviotti et al. [2020], using our semantics to generate c11 candidate executions with a dependency relation, then applying the rules of Rc11 [Lahav et al. 2017]. The No-Thin-Air axiom of Rc11 is overly restrictive, requiring that rf \cup po be acyclic. Instead, we require that rf \cup < is acyclic. This is a more precise categorisation of thin-air behavior, and it allows aggressive compiler optimizations that would be erroneously forbidden by Rc11's original No-Thin-Air axiom.

The chief difficulty is instrumenting our semantics to generate program order, for use in the various axioms of c11.

```
Definition 7.1. A PwT-po is a PwT (Def. 4.4) equipped with relations \pi and po such that (M8) \pi: (E \to E) is an idempotent function capturing merging, such that let R = \{e \mid \pi(e) = e\} be real events, let \overline{R} = (E \setminus R) be phantom events, let S = \{e \mid \forall d. \ \pi(d) = e \Rightarrow d = e\} be simple events, let \overline{S} = (E \setminus S) be compound events,
```

(M8a) $\lambda(e) = \lambda(\pi(e)),$ (M8b) if $e \in \overline{S}$ then $\kappa(e) \models \bigvee_{\{c \in \overline{R} \mid \pi(c) = e\}} \kappa(c).$

(M9) po \subseteq ($S \times S$) is a partial order capturing program order.

A PwT-Po is complete if

 (c3) if $e \in R$ then $\kappa(e)$ is a tautology, (c5) \checkmark is a tautology.

Since π is idempotent, we have $\pi(\pi(e)) = \pi(e)$. Equivalently, we could require $\pi(e) \in R$.

We use π to partition events E in two ways: we distinguish *real* events R from *phantom* events \overline{R} ; we distinguish *simple* events S from *compound* events \overline{S} . From idempotency, it follows that all phantom events are simple ($\overline{R} \subseteq S$) and all compound events are real ($\overline{S} \subseteq R$). In addition, all phantom events map to compound events (if $e \in \overline{R}$ then $\pi(e) \in \overline{S}$).

Lemma 7.2. If P is a PwT then there is a PwT-po P'' that conservatively extends it.

PROOF. The proof strategy is as follows: We extend the semantics of Fig. 1 with po. The obvious definition gives us a preorder rather than a partial order. To get a partial order, we replay the semantics without merging to get an *unmerged* pomset P'; the construction also produces the map π . We then construct P'' as the union of P and P', using the dependency relation from P.

We extend the semantics with po as follows. For pomsets with at most one event, po is the identity. For sequential composition, $po = po_1 \cup po_2 \cup E_1 \times E_2$. For the conditional, $po = po_1 \cup po_2$. By construction, po is a pre-order, which may include cycles due to coalescing. For example:

$$if(r)\{x := 1; y := 1\} else\{y := 1; x := 1\}$$
 (Wx1) (Wy1)

To find an acyclic po', we replay the construction of P to get P'. When building P', we require disjoint union in s1 and s1: $E' = E'_1 \uplus E'_2$. If and event is unmerged in P (i.e. $e \in E_1 \uplus E_2$) then we choose the same event name for E' in P'. If an event is merged in P (i.e. $e \in E_1 \cap E_2$) then we choose fresh event names— e'_1 and e'_2 —and extend π accordingly: $\pi(e'_1) = \pi(e'_2) = e$. In P', we take $\leq' = \mathsf{po'}$.

To arrive at P'', we take (1) $E'' = E \cup E'$, (2) $\lambda'' = \lambda \cup \lambda'$, (3a) if $e \in E$ then $\kappa''(e) = \kappa(e)$, (3b) if $e \in E' \setminus E$ then $\kappa''(e) = \kappa'(e)$, (4) $\tau''^D = \tau^{(\pi^{-1}(D))}$, (5) $\checkmark'' = \checkmark$, (6) d <'' e exactly when $\pi(d) < \pi(e)$, (7) po'' = po', and (8) π'' is the constructed merge function.

Definition 7.3. For a PwT-Po, let extract(P) be the projection of P onto the set $\{e \in E_1 \mid e \text{ is simple and } \kappa_1(e) \text{ is a tautology}\}$.

By definition, extract(P) includes the simple events of P whose preconditions are tautologies. These are already in program order, as per item 7 of the proof. The dependency order is derived from the real events using π , as per item 6.

The following lemma shows that if P is *complete*, then extract(P) includes at least one simple event for every compound event in P.

LEMMA 7.4. If P is a complete PwT-PO with compound event e, then there is a phantom event $c \in \pi^{-1}(e)$ such that $\kappa(c)$ is a tautology.

PROOF. Immediate from M8b.

A pomset in the image of extract is a candidate execution.

 As an example, consider Java Causality Test Case 6. Taking w = 0 and v = 1, the PwT-Po on the left below produces the candidate execution on the right. In diagrams, we visualize po using a dotted arrow \rightarrow , and π using a double arrow \rightarrow .

$$y := w; r := y; \text{ if } (r = 0)\{x := 1\}; \text{ if } (r = 1)\{x := 1\}$$

$$y := 0; r := y; \text{ if } (r = 0)\{x := 1\}; \text{ if } (r = 1)\{x := 1\}$$

$$(v = r) \Rightarrow (r = 0 \lor r = 1) \quad \forall x \neq 1$$

$$(v = r) \Rightarrow (r = 0) \Rightarrow (r = 0 \lor r = 1) \quad \forall x \neq 1$$

$$(v = r) \Rightarrow (r = 0) \Rightarrow$$

We write $[\![\cdot]\!]^{po}$ for the semantic function defined by applying the construction of Lemma 7.2 to the base semantics of 1.

The dependency calculation of $[\![\cdot]\!]^{po}$ is sufficient for c11; however, it ignores synchronization and coherence completely.

$$f(r)\{x := 1\}; if(s)\{x := 2\}; if(!r)\{x := 1\}$$

$$r \neq 0 \lor r = 0 \quad | Wx1 |^{d}$$

$$(\ddagger)$$

$$r \neq 0 \quad | Wx1 | \quad | (s \neq 0 \quad | Wx2)^{e} \quad | (r = 0 \quad | Wx1)$$

Adding a pair of reads to complete the pomset, we can extract the following candidate execution.

$$\begin{split} r := y \; ; \; s := z \; ; \; \text{if}(r)\{x := 1\}; \; \text{if}(s)\{x := 2\}; \; \text{if}(!r)\{x := 1\} \\ & (\text{R} \, y1) \dots \text{(} \text{R} \, z1) \dots \text{(} \text{W} \, x1) \dots \text{(} \text{W} \, x2) \end{split}$$

It is somewhat surprising that the writes are independent of both reads!

In PwT-McA, delay stops the merge in (‡).

It is possible to mimic this in c11, without introducing extra dependencies: one can filter executions post-hoc using the relation \sqsubseteq , defined as follows:

$$\pi(d) \sqsubseteq \pi(e)$$
 if $d \xrightarrow{\text{po}} e$ and $\lambda(d)$ delays $\lambda(e)$.

In (‡), we have both $d \sqsubseteq e$ and $e \sqsubseteq d$. To rule out this execution, it suffices to require that \sqsubseteq is a partial order.

Program (‡) shows that the definition of semantic dependency is up for debate in c11, and the International Standard Organisation's C++ concurrency subgroup acknowledges that semantic dependency (sdep) would address the Out-of-Thin-Air problem: *Prohibiting executions that have cycles in* rf ∪ sdep *can therefore be expected to prohibit Out-of-Thin-Air behaviors* [McKenney et al. 2016]. PwT-c11 resolves program structure into a dependency relation—not a complex state—that is precise and easily adjusted. As refinements are made to c11, PwT-c11 can accommodate these and test them automatically.

8 PwTer: AUTOMATIC LITMUS TEST EVALUATOR

PwTer automatically and exhaustively calculates the allowed outcomes of litmus tests for the PwT, PwT-po, and PwT-c11 models. It is built in OCaml, and uses Z3 [De Moura and Bjørner 2008] to judge the truth of predicates constructed by the models. PwTer obviates the need for error-prone hand evaluation.

PwTer allows several modes of evaluation: it can evaluate the rules of Fig. 1, implementing PwT; it can generate program order according to §7, implementing PwT-Po; and similar to MRD-c11 [Paviotti et al. 2020], it can construct C11-style pre-executions and filter them according to the

Causality Test	PwT-c11		PwT
	Result	Execution Time (s)	Execution Time (s)
jctc1	pass	2.397	2.608
jctc2	pass	25.780	25.754
jctc3	pass	196.935	205.120
jctc4	pass	2.269	2.110
jctc5	pass	63.714	69.441
jctc6	pass	11.245	12.489
jctc7	pass	88.250	96.099
jctc8	pass	2.482	2.473
jctc9	pass	13.592	15.384
jctc10	pass	494.133	513.234
jctc11		_	_
jctc12		_	_
jctc13	pass	2.101	2.247
jctc17	pass	178.304	186.228
jctc18	pass	177.292	2.247

Fig. 2. Tool results for supported Java Causality Test Cases [Pugh 2004]. \perp indicates the tool failed to run for this test due to a memory overflow. Tests run on an Intel i9-9980HK with 64 GB of memory, execution times are the mean of 3 runs.

rules of Rc11 as described in §7, implementing PwT-c11. Finally, PwTer also allows us to toggle the complete check of 4.4, providing an interface for understanding how fragments of code might compose by exposing preconditions and termination conditions that are not yet tautologies. We have run PwTer over the Java Causality Tests [Pugh 2004] supported in the input syntax, and tabulated the results in Figure 2.

The execution times give a good indication the poor scaling of the tool with program size: for larger test cases, the tool takes exponentially longer to compute, and in some cases simply fails. The compositional nature of the semantics makes tool building practical, but it is not enough to make it scalable for large tests. Unsurprisingly the execution time is dominated by the calculation of the denotation, with the additional axiomatic filtering step of PwT-c11 being within margin of error difference of just calculating the PwT semantics. PwTer is available online at https://github.com/graymalkin/pomsets-with-predicate-transformers.

9 REFINEMENTS AND ADDITIONAL FEATURES

 In the paper so far, we have assumed that registers are assigned at most once. We have done this primarily for readability. In the first subsection below, we drop this assumption, instead using substitution to rename registers. We use a set of registers indexed by event identifier: $S_{\mathcal{E}} = \{s_e \mid e \in \mathcal{E}\}$. By assumption (§4.1), these registers do not appear in programs: $S[N/s_e] = S$. The resulting semantics satisfies redundant read elimination.

Our approach to register recycling allows us to define a criterion for eliminating certain types of useless pomsets (§??).

In the remainder of this section we consider several mostly-orthogonal features: address calculation, if-introduction, and read-modify-write operations. Address calculation and if-introduction do have some interaction, and we spell out the combined semantics in §9.5.

 It is worth pointing out that address calculation and if-introduction only affect the semantics of read and write. RMWs introduce new infrastructure in order to ensure atomicity while compiling to Arm8 using load-exclusive and store-exclusive.

These extensions preserve all of the program transformation discussed thus far, and apply equally to the various semantics we have discussed: PwT, PwT-mcA₁, PwT-mcA₂, and PwT-c11. The results discussed in §6 also apply equally, with the exception of RMws: we have not proven DRF-sc or Arm8 lowering for RMws.

9.1 Register Recycling and Redundant Read Elimination

JMM Test Case 2 [Pugh 2004] states the following execution should be allowed "since redundant read elimination could result in simplification of r=s to true, allowing y:=1 to be moved early."

$$r := x; s := x; if(r=s)\{y := 1\} \parallel x := y$$

$$\stackrel{d}{(\mathbb{R}x1)} \underbrace{(\mathbb{W}y1)^e}_{(\mathbb{R}y1)} \underbrace{(\mathbb{R}y1)}_{(\mathbb{W}x1)}$$
(TC2)

Under the semantics of Fig. 1, the precondition of e in the independent case is

$$(1=r \lor x=r) \Rightarrow (1=s \lor r=s) \Rightarrow (r=s), \tag{*}$$

which is equivalent to $(x=r) \Rightarrow (1=s) \Rightarrow (r=s)$, which is not a tautology, and thus Fig. 1 requires order from d to e in order to complete the pomset.

This execution is allowed, however, if we rename registers using a map from event names to register names. By using this renaming, coalesced events must choose the same register name. In the above example, the precondition of e in the independent case becomes

$$(1=s_e \lor x=s_e) \Rightarrow (1=s_e \lor s_e=s_e) \Rightarrow (s_e=s_e), \tag{**}$$

which is a tautology. In (**), the first read resolves the nondeterminism in both the first and the second read. Given the choice of event names, the outcome of the second read is predetermined! In (*), the second read remains nondeterministic, even if the events are destined to coalesce.

Definition 9.1. Let $\llbracket \cdot \rrbracket$ be defined as in Fig. 1, changing R4 of READ:

- (R4a) if $e \in E \cap D$ then $\tau^D(\psi) \equiv (\kappa(e) \Rightarrow v = s_e) \Rightarrow \psi[s_e/r]$,
- (R4b) if $e \in E \setminus D$ then $\tau^D(\psi) \equiv (\kappa(e) \Rightarrow (v = s_e \lor x = s_e)) \Rightarrow \psi[s_e/r]$,
- (R4c) if $E = \emptyset$ then $\tau^D(\psi) \equiv (\forall s) \psi \lceil s/r \rceil$.

With this semantics, it is straightforward to see that redundant load elimination is sound:

$$[r := x^{\mu}; s := x^{\mu}] \supseteq [r := x^{\mu}; s := r]$$

As a further example, consider [Sevčík and Aspinall 2008, Fig. 5], referenced in [Paviotti et al. 2020, §6.4]. Consider the case where the reads are merged, both seeing 1:

$$r := y$$
; if $(r=1)\{s := y; x := s\}$ else $\{x := 1\}$ (Ry1) $(\phi \mid Wx1)$

In order to independent of both reads, we take the precondition ϕ to be:

$$(1=r \lor y=r) \Rightarrow [r=1 \land ((1=s \lor y=s) \Rightarrow s=1)] \lor [r\neq 1]$$

Then collapsing r and s and substituting the initial value of y (say 0), we have a tautology:

$$(1{=}r \lor 0{=}r) \Rightarrow [r{=}1 \land \big((1{=}r \lor 0{=}r) \Rightarrow r{=}1\big)] \lor [r{\neq}1]$$

9.2 Read-Modify-Write Operations

 To support RMWs, we add a relation $\subseteq E \times E$ that relates the read of a successful RMW to the succeeding write.

Definition 9.2. Extend the definition of a pomset as follows.

(M10) rmw : $E \to E$ is a partial function capturing read-modify-write *atomicity*, such that (M10a) if $d \xrightarrow{\text{rmw}} e$ then $\lambda(e)$ blocks $\lambda(d)$,

(M10b) if $d \xrightarrow{\mathsf{rmw}} e$ then d < e,

(M10c) if $\lambda(c)$ overlaps $\lambda(d)$ and $d \xrightarrow{rmw} e$ then c < e implies $c \le d$ and d < c implies $e \le c$.

Extend the definition of SEQ, IF and PAR to include:

(s10) (110) (P10)
$$rmw = (rmw_1 \cup rmw_2),$$

To define specific operations, we extend the syntax:

$$S := \cdots \mid r := \mathsf{CAS}^{\mu,\nu}([L], M, N) \mid r := \mathsf{FADD}^{\mu,\nu}([L], M) \mid r := \mathsf{EXCHG}^{\mu,\nu}([L], M)$$

We require that r does not occur in L. The corresponding semantic functions are as follows.

Definition 9.3. Let READ' be defined as for READ, adding the constraint:

(R4d) if
$$(E \cap D) = \emptyset$$
 then $\tau^D(\psi) \equiv \psi$.

If $P \in FADD(r, x, M, \mu, \nu)$ then $P \in SEO(READ'(r, x, \mu), WRITE(x, r+M, \nu))$ and

If $P \in EXCHG(r, x, M, \mu, \nu)$ then $P \in SEO(READ'(r, x, \mu), WRITE(x, M, \nu))$ and

If $P \in CAS(r, x, M, N, \mu, \nu)$ then

 $P \in SEQ(READ'(r, x, \mu), IF(r=M, WRITE(x, N, \nu), SKIP))$ and

(U10) if $\lambda(e)$ is a write then there is a read $\lambda(d)$ such that $\kappa(e) \models \kappa(d)$ and $d \xrightarrow{\mathsf{rmv}} e$.

$$[\![r := \mathsf{CAS}^{\mu,\nu}(x,M,N)]\!] = CAS(r, x, M, N, \mu, \nu)$$
$$[\![r := \mathsf{FADD}^{\mu,\nu}(x,M)]\!] = FADD(r, x, M, \mu, \nu)$$
$$[\![r := \mathsf{EXCHG}^{\mu,\nu}(x,M)]\!] = EXCHG(r, x, M, \mu, \nu)$$

This definition ensures atomicity and supports lowering to Arm load/store exclusive operations. See [Jagadeesan et al. 2020] for examples.

One subtlety of the definition is that we use *READ'* rather than *READ*. Thus, for RMW operations, the independent case for a read is the same as the empty case. To see why this should be, consider the relaxed variant of the CDRF example from [Lee et al. 2020], using *READ* rather than *READ'*.

$$x := 0$$
; $(r := \mathsf{FADD}^{\mathsf{rlx},\mathsf{rlx}}(x,1); \mathsf{if}(!r)\{\mathsf{if}(y)\{x := 0\}\} \parallel r := \mathsf{FADD}^{\mathsf{rlx},\mathsf{rlx}}(x,1); \mathsf{if}(!r)\{y := 1\})$

$$(\mathsf{W}x0) \xrightarrow{\mathsf{R}x0} \mathsf{W}x1 \qquad \mathsf{R}y1 \xrightarrow{\mathsf{R}x0} \mathsf{W}x1 \qquad \mathsf{W}y1$$

A write should only be visible to one FADD instruction, but here the write of 0 is visible to two. This is allowed because no order is required from (Rx0) to (Wy1) in the last thread. To see why, consider the independent transformers of the last thread and initializer:

$$x := 0 \qquad \qquad \text{FADD}^{\mathsf{rlx},\mathsf{rlx}}(x,1) \qquad \qquad \text{if}(!\,r)\{y := 1\}$$

$$\psi[0/x] \quad \text{$(0=r \lor x=r) \Rightarrow \psi[1/x]$} \quad \text{$\mathbb{R}$x0} \qquad \qquad \psi[1/y] \quad r=0 \quad \text{\mathbb{W}y1}$$

After sequencing, the precondition of (Wy1) is a tautology: $(0=r \lor 0=r) \Rightarrow r=0$.

By including R4d, READ' constrains the independent predicate transformer of the FADD:

$$x := 0 \qquad \qquad \text{FADD}^{\mathsf{rlx},\mathsf{rlx}}(x,1) \qquad \qquad \text{if}(!\,r)\{y := 1\}$$

$$\psi[0/x] \quad \text{ψ}[1/x] \quad \text{\mathbb{R}}x0 \qquad \qquad \psi[1/y] \quad r = 0 \quad \text{\mathbb{W}}y1$$

 After sequencing, the precondition of (Wy1) is r=0, which is *not* a tautology. This forces any top-level pomset to include dependency order from (Rx0) to (Wy1).

9.3 If-Introduction (aka Case Analysis)

In order to model sequential composition, we must allow inconsistent predicates in a single pomset, unlike PwP [Jagadeesan et al. 2020]. For example, if S = (x := 1), then the semantics Fig. 1 does not allow:

if
$$(M)\{x := 1\}$$
; S; if $(\neg M)\{x := 1\}$
 $(Wx1) \rightarrow (Wx1)$

However, if $S = (if(\neg M)\{x := 1\}; if(M)\{x := 1\})$, then it *does* allow the execution. Looking at the initial program:

The difficulty is that the middle action can coalesce either with the right action, or the left, but not both. Thus, we are stuck with some non-tautological precondition. Our solution is to allow a pomset to contain many events for a single action, as long as the events have disjoint preconditions.

Def. 9.4 allows the execution, by splitting the middle command:

Coalescing events gives the desired result.

This is not simply a theoretical question; it is observable. For example, the semantics of Fig. 1 does not allow the following, since it must add order in the first thread from the read of y to one of the writes to x.

$$r := y$$
; if $(r)\{x := 1\}$; $x := 1$; if $(\neg r)\{x := 1\}$; $z := r$

$$|| if(x)\{x := 0; if(x)\{y := 1\}\}$$

$$|| (wx1) - (wx1) - (wy1) - ($$

We show the rules for write and read.⁶ The rule for fences requires similar treatment.

```
Definition 9.4. If P \in WRITE(x, M, \mu) then (\exists v : E \to V) (\exists \phi : E \to \Phi)
1163
                  (w1) if \kappa(d) \wedge \kappa(e) is satisfiable then d = e, (w4) \tau^D(\psi) \equiv \psi \lceil M/x \rceil \lceil K(E)/Q_r \rceil,
1164
                  (w2) \lambda(e) = W^{\mu} x v_e,
                                                                                                                                   (w5) \checkmark \equiv \mathbf{K}(E),
1165
                                                                                                                              (w6) \phi_e[N/s_d] = \phi_e.
                  (w3) \kappa(e) \equiv \phi_e \wedge M = v_e,
1166
               If P \in READ(r, x, \mu) then (\exists v : E \to V) (\exists \phi : E \to \Phi)
1167
                   (R1) if \phi_d \wedge \phi_e is satisfiable then d=e, (R5a) if \mu \sqsubseteq \text{rlx} then \checkmark \equiv \text{tt}, (R2) \lambda(e) = \mathsf{R}^\mu x v_e (R5b) if \mu \sqsubseteq \text{rlx} then \checkmark \equiv \mathsf{K}(E), (R3) \kappa(e) \equiv \phi_e \wedge \mathsf{Q}_x, (R6) \phi_e[N/s_d] = \phi_e.
1168
1169
                   (R2) \lambda(e) = \mathbb{R}^{\mu} x v_{e} (R5b) if

(R3) \kappa(e) \equiv \phi_{e} \wedge \mathbb{Q}_{x}, (R6) \phi

(R4) \tau^{D}(\psi) \equiv \bigwedge_{e \in E \cap D} \phi_{e} \Rightarrow (\kappa(e) \Rightarrow v_{e} = s_{e}) \Rightarrow \psi[s_{e}/r]
1170
1171
                                               \wedge \wedge_{e \in E \setminus D} \phi_e \Rightarrow (\kappa(e) \Rightarrow (v_e = s_e \lor x = s_e)) \Rightarrow \psi[s_e/r]
1172
1173
                                               \wedge (\wedge_{e \in F} \neg \phi_e) \Rightarrow (\forall s) \psi[s/r]
```

⁶The Coq development uses \models rather than \equiv in w3 and R3. Given the quantification over ϕ , these are equivalent.

The definition allows multiple events to represent a single action, each with a disjoint precondition. The predicate transformers are derived from those defined for the conditional. W6 and R6 require that the predicates do not mention registers in $S_{\mathcal{E}}$.

This modification validates Lemma 4.6e, f, and c as equations.

We show how to combine address calculation and if-introduction in §9.5.

1181 1182 1183

1184

1185

1186

1187

1188

1189

1195

1196

1197

1198 1199

1200

1201

1202 1203

1204

1205 1206

1207

1208

1209 1210

1211

1212 1213

1214 1215

1216

1217 1218

1219 1220

1221 1222

1223

1224 1225

1177

1178

1179

1180

9.4 Address Calculation

[Todo: Check definitions and examples in this subsection.]

Inevitably, address calculation complicates the definitions of WRITE and READ. In this section, we develop a flat memory model, which does not deal with provenance [Lee et al. 2018].

Definition 9.5. Within a pomset P, let $K(x) = \bigvee \{\kappa(e) \mid e \in E \land \lambda(e) = Wx\}$.

If $P \in WRITE(L, M, \mu)$ then $(\exists \ell \in \mathcal{V})$ $(\exists v \in \mathcal{V})$

```
(w4) \tau^D(\psi) \equiv \bigwedge_{k \in \mathcal{V}} L = k \implies \psi[M/[k]][K([k])/Q_{[k]}],
             (w1) if |E| \le 1,
1190
             (w2) \lambda(e) = \mathsf{W}^{\mu}[\ell]v,
1191
             (w3) \kappa(e) \equiv L = \ell \wedge M = v,
1192
```

If $P \in READ(r, L, \mu)$ then $(\exists \ell \in \mathcal{V})$ $(\exists v \in \mathcal{V})$ 1193

```
(R4c) if E = \emptyset then \tau^D(\psi) \equiv (\forall s) \psi[s/r],
  (R1) if |E| \leq 1,
                                                                                                           (R5a) if \mu \sqsubseteq \text{rlx then } \checkmark \equiv \text{tt},
  (R2) \lambda(e) = R^{\mu}[\ell]v
(R3) \kappa(e) \equiv L = \ell \wedge \mathbb{Q}_{[\ell]}, (R5b) if \mu

(R4a) if e \in E \cap D then \tau^D(\psi) \equiv (\kappa(e) \Rightarrow v = s_e) \Rightarrow \psi[s_e/r],
                                                                                                           (R5b) if \mu \supseteq acg then \checkmark \equiv K(E).
```

(R4b) if $e \in E \setminus D$ then $\tau^D(\psi) \equiv (\kappa(e) \Rightarrow (v = s_e \vee [\ell] = s_e)) \Rightarrow \psi[s_e/r]$,

The combination of read-read independency (§4.7) and address calculation is somewhat delicate. Consider the following program, from [Jagadeesan et al. 2020, $\S 5$], where initially x=0, y=0, [0]=0, [1]=2, and [2]=1. It should only be possible to read 0, disallowing the attempted execution below:

$$r := x ; s := [r] ; y := s \parallel r := y ; s := [r] ; x := s$$

$$(ADDR1)$$

This execution would become possible, however, if we were to remove $(L=\ell)$ from R4. In this case, (Ry2) would not necessarily be dependency ordered before (Wx1).

TC12 with all initial values 0:

$$r := y; [r] := 1; s := [0]; x := !s \parallel y := x$$

$$(TC12)$$

Building the precondition ϕ from right to left:

$$\begin{aligned} \phi_1 &\equiv s = 0 & (x := s) \\ \phi_2 &\equiv (Q_{[0]} \Rightarrow 0 = s) \Rightarrow s = 0 & (\text{Prepending } s := [0]) \\ \phi_3 &\equiv (r = 1 \Rightarrow \phi_2 [1/[1]][\text{tt}/Q_{[1]}]) \land (r = 0 \Rightarrow \phi_2 [1/[0]][\text{ff}/Q_{[0]}]) & (\text{Prepending if}) \\ &\equiv (r = 1 \Rightarrow (Q_{[0]} \Rightarrow 0 = s) \Rightarrow s = 0) \land (r = 0 \Rightarrow s = 0) \end{aligned}$$

Dependent case:

$$\phi_4 \equiv (\mathsf{Q}_y \Rightarrow 1 = r) \Rightarrow \phi_3 \qquad \qquad \text{(Prepending } r := y)$$

$$\phi_5 \equiv 1 = r \Rightarrow (r = 1 \Rightarrow (0 = s \Rightarrow s = 0)) \land (r = 0 \Rightarrow s = 0) \qquad \text{(Prepending Initializers)}$$

 Independent case:

$$\phi_4' \equiv (Q_y \Rightarrow 1 = r \lor y = r) \Rightarrow \phi_3$$
 (Prepending $r := y$)
$$\phi_5' \equiv (1 = r \lor 0 = r) \Rightarrow (r = 1 \Rightarrow (0 = s \Rightarrow s = 0)) \land (r = 0 \Rightarrow s = 0)$$
 (Prepending Initializers)

9.5 Combining Address Calculation and If-Introduction

Def. 9.5 is naive with respect to merging events. Consider the following example:

Merging, we have:

$$if(M)\{[r] := 0; [0] := !r\} else\{[r] := 0; [0] := !r\}$$

$${}^{c}(r = 1 | W[1]0) | {}^{d}(r = 0 \lor r = 1 | W[0]0) | {}^{e}(r = 0 | W[0]1)$$

The precondition of W [0] 0 is a tautology; however, this is not possible for ([r] := 0; [0] := !r) alone, using Def. 9.5.

Def. 9.6, enables this execution using if-introduction. Under this semantics, we have:

Sequencing and merging:

The precondition of (W[0]0) is a tautology, as required.

```
Definition 9.6. If P \in WRITE(L, M, \mu) then (\exists \ell : E \to V) (\exists v : E \to V) (\exists \phi : E \to \Phi)

(w1) if \kappa(d) \land \kappa(e) is satisfiable then d = e, (w4) \tau^D(\psi) \equiv \bigwedge_{k \in V} L = k \Rightarrow \psi[M/k][K([k])/Q_{[k]}],

(w2) \lambda(e) = W^{\mu}[\ell_e]v_e, (w5) \checkmark \equiv K(E),

(w3) \kappa(e) \equiv \phi_e \land L = \ell_e \land M = v_e, (w6) \phi_e[N/s_d] = \phi_e.

If P \in READ(r, L, \mu) then (\exists \ell : E \to V) (\exists v : E \to V) (\exists \phi : E \to \Phi)

(R1) if \kappa(d) \land \kappa(e) is satisfiable then d = e, (R5a) if \mu \sqsubseteq \text{rlx} then \checkmark \equiv \text{tt},

(R2) \lambda(e) = R^{\mu}[\ell_e]v_e (R5b) if \mu \sqsubseteq \text{acq} then \checkmark \equiv K(E),

(R3) \kappa(e) \equiv \phi_e \land L = \ell_e \land Q_{[\ell_e]}, (R6) \phi_e[N/s_d] = \phi_e.

(R4) \tau^D(\psi) \equiv \bigwedge_{e \in E \cap D} \phi_e \Rightarrow (\kappa(e) \Rightarrow v_e = s_e) \Rightarrow \psi[s_e/r]

\wedge \bigwedge_{e \in E \setminus D} \phi_e \Rightarrow (\kappa(e) \Rightarrow (v_e = s_e \lor [\ell_e] = s_e)) \Rightarrow \psi[s_e/r]

\wedge (\bigwedge_{e \in E \setminus D} \phi_e) \Rightarrow (\forall s) \psi[s/r],
```

10 CONCLUSIONS

This paper is the first to present a direct denotational semantics for sequential composition in a relaxed memory model that can be efficiently compiled to modern CPUs. We extract from this model a semantic dependency relation and use it to build PwT-c11, a solution to the Out-of-Thin-Air problem in c11, and PwT-mcA, a model for Java-like languages.

We have not treated loops in this model, though we expect that the usual approach of showing continuity for all the semantic operations with respect to set inclusion would go through. Paviotti et al. [2020] use step-indexing to account for loops; a similar approach could be applied here.

PwT-MCA does not validate access elimination: store-forwarding and dead-write-removal are unsound. We expect that these can be validated by allowing events with different actions to merge.

PwT-MCA₁ is a simpler model than PwT-MCA₂, but requires fences on acquiring reads for Arm8. It would be illuminating to find out what the performance penalty is for these fences.

PwT does not validate read introduction, whereas speculative operational semantics do. Recent work shows a tension between read introduction and compositional reasoning for temporal safety properties (see §??). Nonetheless, read introduction is ubiquitous in some compilers. It would be interesting to know if there is a performance penalty for banning read introduction.

REFERENCES

1275

1276

1277

1278

1280 1281 1282

1283

1284

1285

1294

- Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM Trans. Program. Lang. Syst. 43, 2, Article 8 (July 2021), 54 pages. https://doi.org/10.1145/3458926
- Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752
- Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of Programming Language Concurrency Semantics. In Programming Languages and Systems 24th European Symposium on Programming, ESOP 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer, 283–307. https://doi.org/10.1007/978-3-662-46669-8_12
- Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL '11). ACM, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394
 - Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-thin-air Results. In Proceedings of the Workshop on Memory Systems Performance and Correctness (Edinburgh, United Kingdom) (MSPC '14). ACM, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134
- 1296 Stephen D. Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. *Inf. Comput.* 127, 2 (1996), 145–163. https://doi.org/10.1006/inco.1996.0056
- Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air reads with event structures. *PACMPL* 3, POPL (2019), 70:1–70:28. https://doi.org/10.1145/3290383
- Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Modular Data-Race-Freedom Guarantees in the Promising Semantics. *Proc. ACM Program. Lang.* 2, PLDI. To Appear.
- Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore, and Mikoláš Janota. 2019. PrideMM: Second Order Model Checking for Memory Consistency Models. In *Formal Methods. FM 2019 International Workshops*. Springer International Publishing, 507–525.
- Russ Cox. 2016. Go's Memory Model. http://nil.csail.mit.edu/6.824/2016/notes/gomem.pdf.
- Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In *Proceedings of the Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems* (Budapest, Hungary) (TACAS'08/ETAPS'08). Springer-Verlag, Berlin, Heidelberg, 337–340.
- Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. *Commun. ACM* 18, 8 (1975), 453–457. https://doi.org/10.1145/360933.360975
- Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding Data Races in Space and Time. In *Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation* (Philadelphia, PA, USA) (*PLDI 2018*). ACM, New York, NY, USA, 242–255. https://doi.org/10.1145/3192366.3192421
- William Ferreira, Matthew Hennessy, and Alan Jeffrey. 1996. A Theory of Weak Bisimulation for Core CML. In *Proceedings of the 1996 ACM SIGPLAN International Conference on Functional Programming, ICFP 1996, Philadelphia, Pennsylvania, USA, May 24-26, 1996*, Robert Harper and Richard L. Wexelblat (Eds.). ACM, 201–212. https://doi.org/10.1145/232627.232649
- C.A.R. Hoare. 1969. An Axiomatic Basis for Computer Programming. *Commun. ACM* 12, 10 (Oct. 1969), 576–580. https://doi.org/10.1145/363235.363259
- Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with preconditions: a simple model of relaxed memory. Proc. ACM Program. Lang. 4, OOPSLA (2020), 194:1–194:30. https://doi.org/10.1145/3428262
- Radha Jagadeesan, Corin Pitcher, and James Riely. 2010. Generative Operational Semantics for Relaxed Memory Models.

 In Programming Languages and Systems, 19th European Symposium on Programming, ESOP 2010, Paphos, Cyprus, March
 20-28, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6012), Andrew D. Gordon (Ed.). Springer, 307–326. https://doi.org/10.1007/978-3-642-11957-6_17
- Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures Model of Relaxed Memory. In *Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016*, M. Grohe, E. Koskinen, and N. Shankar (Eds.). ACM, 759–767. https://doi.org/10.1145/2933575.2934536

- Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxedmemory concurrency. In *Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages*,
 POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 175–189. http://dl.acm.org/citation.cfm?id=3009850
- Ryan Kavanagh and Stephen Brookes. 2018. A denotational account of C11-style memory. CoRR abs/1804.04214 (2018). arXiv:1804.04214 http://arxiv.org/abs/1804.04214
- Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618-632. https://doi.org/10.1145/3062341.3062352
- Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. *IEEE Trans. Comput.* 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439
- Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling high-level optimizations and low-level code in LLVM. *Proc. ACM Program. Lang.* 2, OOPSLA (2018), 125:1–125:28. https://doi.org/10.1145/3276495
- Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.
 2020. Promising 2.0: global optimizations in relaxed memory concurrency. In *Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020,*Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 362–376. https://doi.org/10.1145/3385412.3386010
- Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2019. Accelerating Sequential Consistency for Java with Speculative Compilation. In *Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation* (Phoenix, AZ, USA) (*PLDI 2019*). ACM, New York, NY, USA, 16–30. https://doi.org/10.1145/3314221.3314611
- Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2021. Safe-by-Default Concurrency for Modern Programming Languages.

 ACM Trans. Program. Lang. Syst. 43, 3, Article 10 (Sept. 2021), 50 pages. https://doi.org/10.1145/3462206
- Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. SIGPLAN Not. 40, 1 (Jan. 2005), 378–391.
 https://doi.org/10.1145/1047659.1040336
- Daniel Marino, Todd D. Millstein, Madanlal Musuvathi, Satish Narayanasamy, and Abhayendra Singh. 2015. The Silently Shifting Semicolon. In 1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar, California, USA (LIPIcs, Vol. 32), Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.). Schloss Dagstuhl Leibniz-Zentrum für Informatik, 177–189. https://doi.org/10.4230/LIPIcs.SNAPL.2015.177
- Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. 2016. Out-of-Thin-Air Execution is vacuous. http://wg21.link/p0422.
- Peter O'Hearn. 2007. Resources, Concurrency, and Local Reasoning. *Theor. Comput. Sci.* 375, 1-3 (April 2007), 271–307. https://doi.org/10.1016/j.tcs.2006.12.035
- Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed

 Dependencies in Weak Memory Concurrency. In Programming Languages and Systems 29th European Symposium on

 Programming, ESOP 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),

 Peter Müller (Ed.). Springer, 599–625. https://doi.org/10.1007/978-3-030-44914-8_22
- Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation and Avoids Thin-air Executions. In *Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages* (St. Petersburg, FL, USA) (*POPL '16*). ACM, New York, NY, USA, 622–633. https://doi.org/10. 1145/2837614.2837616
- Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the gap between programming languages and hardware weak memory models. *Proc. ACM Program. Lang.* 3, POPL (2019), 69:1–69:31. https://doi.org/10.1145/3290382
- William Pugh. 2004. Causality Test Cases. https://perma.cc/PJT9-XS8Z
- Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic and operational models for ARMv8. *PACMPL* 2, POPL (2018), 19:1–19:29. https://doi.org/10.1145/3158107
- Jaroslav Sevčík. 2008. Program Transformations in Weak Memory Models. PhD thesis. Laboratory for Foundations of
 Computer Science, University of Edinburgh.
- Jaroslav Sevčík and David Aspinall. 2008. On Validity of Program Transformations in the Java Memory Model. In ECOOP
 2008 Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings (Lecture Notes in Computer Science, Vol. 5142), Jan Vitek (Ed.). Springer, 27-51. https://doi.org/10.1007/978-3-540-70592-5_3
- Joel Spolsky. 2002. The Law of Leaky Abstractions. https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/.
- Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In Proceedings
 of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications,

OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 867–884. https://doi.org/10.1145/2509136.
2509532
Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod,

Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan, Shaked Flur, Jean Pichon-Pharabod, and Shu-yu Guo. 2020. Repairing and mechanising the JavaScript relaxed memory model. In *Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020*, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 346–361. https://doi.org/10.1145/3385412.3385973

Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. 2019. Weakening WebAssembly. *Proc. ACM Program. Lang.* 3, OOPSLA (2019), 133:1–133:28. https://doi.org/10.1145/3360559