Отчет по лабораторной работе

Исследование временных характеристик твердотельного лазера на кристалле YAG:Nd³⁺ с ламповой накачкой

Работу выполнили студенты 440 группы радиофизического факультата

Виноградов И.Д., Есюнины Д.В. и М.В., Понур К.А., Платонова М.В., Сарафанов Ф.Г., Шиков А.П.

Содержание

	Получение лазерной генерации		
.2.			
	1.2.1. Время задержки начала генерации		
.3.	Осциллограммы излучения генерации		
.4.	Отдельный пичок генерации		
.5.	Расчет численных величин		
	.4.	1.2.2. Длительность генерации	1.2.2. Длительность генерации

Введение

В настоящей работе изучаются временные характеристики лазера с оптической накачкой. В роли накачки выступает ксеноновая газорязрядная лампа, излучение которой фокусируется в активной среде. Излучение обеспечивает инверсию населенностей в активной среде, в роли которой используется кристалл алюмоиттриевого граната, легированный неодимом, в виде стержня. В качестве селектирующей системы выступает резонатор Фабри-Перо, образованый двумя плоскими зеркалами: одно из них глухое ($R_1 = 99.8\%$), через второе осуществляется вывод генерируемого лазером излучения ($R_2 = 92\%$).

Измерение выходных характеристик производится с помощью фотоприемного устройства, данные с которого вводятся через АЦП в компьютер. Запуск поджигающего импульса ксеноновой вспышки и запуск записи сигнала с фотоприемника синхронизированы и запускаются по команде с компьютера.

Допустимый диапазон напряжений поджига определяет границы, в которых можно снимать характеристики лазера: для данной установки допустимы напряжения поджига от 1000 до 2000 вольт.

1. Экспериментальное исследование лазера

1.1. Получение лазерной генерации

При минимально возможном напряжении накачки U=1000 вольт была получена лазерная генерация в свободном режиме. В силу невозможности исследовать на данной установке генерацию при меньших напряжениях, полагаем

$$U_{\text{nop}} = 1000 \text{ B}.$$

1.2. Зависимость характерных времен генерации от накачки

Было снято 15 осциллограмм импульса генерации с помощью программы, в которой задавалось напряжение поджига (оно же – напряжение накачки) и снималась осциллограмма после запуска поджига. Фиксировалось два времени: t_1 – время начала генерации (первый пичок) и t_2 – конец генерации (последний пичок). По измерениям построены графики для времени задержки начала генерации $t_1(U)$ и для длительности генерации $\tau(U) = t_2(U) - t_1(U)$.

1.2.1. Время задержки начала генерации

Рис. 1. Зависимость задержки генерации от накачки

1.2.2. Длительность генерации

Рис. 2. Зависимость длительности генерации от накачки

1.3. Осциллограммы излучения генерации

Рис. 3. Излучение генерации при $U=1040~{\rm B}$

Рис. 4. Излучение генерации при $U=1100~{\rm B}$

1.4. Отдельный пичок генерации

При напряжении накачки U=1200 вольт были измерены средняя длительности одного пичка генерации

$$\tau_1 \approx 5$$
 мкс

и средний временной интервал между пичками

$$\delta t \approx 6.5$$
 MKC.

1.5. Расчет численных величин

Сечение лазерного перехода $\sigma_{\text{изл}}$. В соответствии с формулой (6) в методичке

$$\sigma_{\text{\tiny MBJI}} = \frac{\lambda^4}{8\pi c n^2 \tau_{\text{\tiny CII}} \delta \lambda} = 1.53 \cdot 10^{-19} \text{ cm}^2$$

 $^{^{1}}$ Усреднение по десяти пичкам

Пороговая разность населенностей $\Delta N_{\text{пор}}$. См. (23) в методичке

$$\Delta N_{\text{пор}} = \frac{8\pi c n^2 \tau_{\text{сп}} \delta \lambda}{\lambda^4} \left[K_{\text{п}} - \frac{1}{l} \ln \sqrt{R_1 R_2} \right] = \frac{K_{\text{п}} - \frac{1}{l} \ln \sqrt{R_1 R_2}}{\sigma_{\text{из,п}}}$$
$$= \frac{0.1 \text{ cm}^{-1} - 0.1 \text{ cm}^{-1} \ln \sqrt{0.998 \cdot 0.92}}{1.53 \cdot 10^{-19} \text{ cm}^2} = 0.68 \cdot 10^{19} \text{ cm}^{-3}.$$

Пороговую энергию накачки $E_{\text{пор}}$.

$$E_{\text{пор}} = \frac{CU_{\text{пор}}^2}{2} \cdot 0.4 \cdot 0.1 = \frac{400 \cdot 10^{-6} \,\Phi \cdot 10^6 \,\mathrm{B}^2}{2} \cdot 0.04 = 8 \,\mathrm{Дж}.$$

Показатель усиления рабочей среды.

$$K_{
m ycull} = \sigma \Delta N = 1.04 \ {
m cm}^{-1}$$

Заключение

В настоящей работе мы

Список литературы

[1] Савикин А.П., Шарков В.В., Еремейнкин О.Н. Исследование временных характеристик твердотельного лазера на кристалле YAG:Nd³⁺ с диодной накачкой (практикум). Н.Новгород: издательство ННГУ, 2013.