Mandelbrot & Julia

Dario Comanducci, 21 settembre 2024

1 Richiami di topologia

Definizione 1.1 (distanza). Dato un generico insieme X, ogni funzione $d: X \times X \to \mathbb{R}$ tale da soddisfare le seguenti proprietà è detta distanza, $\forall x, y, z \in X$:

- 1. $d(x,y) \ge 0$
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) = 0 \iff x \equiv y$
- 4. $d(x,y) \le d(x,z) + d(x,z)$

Definizione 1.2 (spazio metrico). Uno *spazio metrico* (X, d) è costituito da un insieme X con una distanza (o metrica) $d: X \times X \to \mathbb{R}$.

Ogni sottoinsieme $A \subset X$ in uno spazio metrico (X, d) definisce anch'esso uno spazio metrico (con la metrica indotta), restringendo d a $A \times A \subset X \times X$. Dato un generico insieme $A \subset X$, introduciamo quindi le seguenti definizioni.

Definizione 1.3 (disco o intorno). Il disco di centro $x_0 \in X$ e raggio $\varepsilon > 0$ è l'insieme

$$D(x_0, \varepsilon) = \{ x \in X : d(x, x_0) < \varepsilon \}$$

Definizione 1.4 (punto interno). Un punto $x_0 \in A$ si dice *interno ad* A se

$$\exists \varepsilon > 0 : D(x_0, \varepsilon) \subset A$$

Definizione 1.5 (punto esterno). Un punto $x_0 \in A$ si dice esterno ad A se è interno al suo complementare $A^c = \{x \in X : x \notin A\}$

Definizione 1.6 (punto di accumulazione). Un punto $x_0 \in X$ è di accumulazione per A se ogni intorno di x_0 contiene un punto $x \in A$, con $x \neq x_0$.

Definizione 1.7 (insieme aperto). Un insieme A si dice aperto se ogni suo punto è interno, ossia

$$\forall x_0 \in A, \exists \varepsilon > 0: D(x_0, \varepsilon) \subset A$$

Definizione 1.8 (insieme chiuso). Un insieme A si dice *chiuso* se il suo complementare A^c è aperto.

Definizione 1.9 (insieme denso). Un insieme A si dice denso in X se ogni insieme aperto $B \subset X$, $B \neq \emptyset$, contiene almeno un punto di A.

 $^{^1}$ Ad esempio, l'insieme $\mathbb Q$ dei numeri razionali è denso in $\mathbb R.$ Informalmente, A è denso in X se ogni punto di X appartiene ad A o altrimenti è arbitrariamente "vicino" a un membro di A; in modo più formale, ogni punto di X o appartiene ad A o è un punto di accumulazione per A.

2 Gli insiemi di Julia

Definizione 1.10 (interno o apertura di un insieme). L'*interno* \mathring{A} di A è l'insieme dei punti interni ad A.

Definizione 1.11 (chiusura di un insieme). La *chiusura* \bar{A} di A è l'insieme dei punti non esterni ad A, ossia $\bar{A} = ((\mathring{A}^c))^c$.

Definizione 1.12 (frontiera di un insieme). La frontiera ∂A di A è l'insieme dei punti che non sono né interni né esterni ad A.

Definizione 1.13 (derivato di un insieme). Il derivato A' di un insieme A è l'insieme dei punti di accumulazione per A.

Definizione 1.14 (insieme sconnesso). Un insieme A è sconnesso se esistono almeno due insiemi aperti A_1 e A_2 tali che

$$A_1 \cup A_2 = A$$
$$A_1 \cap A_2 = \emptyset$$

Definizione 1.15 (insieme connesso). Un insieme A non sconnesso è detto connesso.

2 Gli insiemi di Julia

In questo ambito su $\mathbb C$ verrà impiegata la distanza euclidea

$$d(z_1, z_2) = \sqrt{(a_1 - a_2)^2 + (b_1 + b_2)^2} \equiv |z_1 - z_2| \text{ per } z_k = a_k + ib_k \text{ } (k = 1, 2)$$
 (1)

così da poter trattare $\mathbb C$ come uno spazio metrico; la definizione di intorno pertanto diventa

$$D(z_0, \varepsilon) = \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}$$

Inoltre, $d(z, 0 + 0i) \equiv |z|$ rappresenta il modulo di z.

Consideriamo la seguente funzione razionale³ [1, p. 27]

$$f(z) = \frac{p(z)}{q(z)}, \quad z \in \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

con $p(z), q(z): \hat{\mathbb{C}} \to \mathbb{C}$ polinomi primi tra loro; supporremo inoltre che il grado di f sia maggiore di 1.⁴

Ai fini di illustrare graficamente alcuni dei concetti esposti di seguito, verrà considerata la funzione razionale con q(z) = 1 e $p(z) = a_2 z^2 + a_1 z + a_0$: attraverso il cambio di variabili

$$\begin{cases} z = a_2 z' + \frac{a_1}{2} \\ c = a_0 a_2 - \frac{a_1}{2} (1 - \frac{a_1}{2}) \end{cases}$$

è poi possibile ricondurre f(z') = p(z') al polinomio coniugato⁵

$$f(z) = z^2 + c \tag{2}$$

Per definire l'insieme di Julia J_f relativo alla funzione f conviene prima introdurre il concetto di *orbita periodica*.

 $^{^2}$ (\mathring{A}^c) costituisce i punti interni dell'insieme complementare ad A, ossia i punti esterni ad A. 3 ossia il dominio di fè dato dal piano dei numeri complessi esteso ai punti all'infinito, detto anche sfera di Riemann.

anche spera at themam. $^4 \operatorname{grad}(f) = \max(\operatorname{grad}(p), \operatorname{grad}(q))$ $^5 f(z) = z^2 + c = (a_2 z' + a_1/2)^2 + a_0 a_2 - a_1/2 = a_2^2 z'^2 + a_1 a_2 z' + a_0 a_2 + (a_1^2 - a_1)/2 = a_2 (a_2 z'^2 + a_1 z' + a_0 + (a_1^2 - a_1)/(2a_2)).$

2.1 Orbite 3

2.1 Orbite

Definizione 2.1 (orbita futura). La successione

$$z_n = f(z_{n-1}) \equiv f^n(z_0) \quad n = 1, 2, \dots$$

definisce, per ogni $z_0 \in \hat{\mathbb{C}}$, l'orbita futura indicata dal simbolo $\operatorname{Or}^+(z_0)$.

Definizione 2.2 (orbita inversa). Dal momento che l'applicazione f non è iniettiva, definiamo come *orbita inversa* l'insieme di tutte le controimmagini:

$$\operatorname{Or}^-(z') = \{ z_0 \in \hat{\mathbb{C}} : f^k(z_0) = z' \text{ per } k = 0, 1, 2, \dots \}$$

ossia tutti quei punti $z_0 \in \hat{\mathbb{C}}$ per i quali la successione $f^k(z_0)$ arriva in z' con un certo numero di passi k.

2.1.1 Punti periodici

Definizione 2.3 (punto periodico). Se per qualche valore di n si ha $f^n(z_0) = z_0$ in $\operatorname{Or}^+(z_0)$, diremo che z_0 è un punto periodico.

Definizione 2.4 (orbita periodica o ciclo). L'orbita futura corrispondente ad un punto periodico è detta *orbita periodica*.

Definizione 2.5 (periodo di un'orbita periodica). Data un'orbita periodica, il più piccolo n tale che $z_0 = f^n(z_0)$ è detto periodo dell'orbita.

Definizione 2.6 (punto fisso). Un punto periodico con periodo d'orbita n=1 viene detto *punto fisso*.

Definizione 2.7 (stabilità di un punto periodico). Dato un punto periodico z_0 di periodo n, sia

$$\lambda = \frac{df^n(z_0)}{dz} = \frac{df(f^{n-1}(z_0))}{dz} = \frac{df(z_{n-1})}{dz} \frac{df^{n-1}(z_0)}{dz} = \prod_{k=0}^n \frac{df(z_k)}{dz}$$
(3)

il valore assunto dalla derivata di $f^n(z)$ in z_0 ($\lambda \in \mathbb{C}$ è detto autovalore di z_0): tale numero è lo stesso per ogni punto del ciclo⁷ ossia è una costante dell'orbita $\operatorname{Or}^+(z_0)$; pertanto in base al valore di λ il punto periodico z_0 , così come il ciclo corrispondente, può essere

- superattivo $\iff \lambda = 0$,
- $attrattivo \iff 0 < |\lambda| < 1$
- $indifferente \iff |\lambda| = 1$
- $repulsivo \iff |\lambda| > 1$

In particolare, per un punto periodico repulsivo, piccole perturbazioni di z porteranno a grandi cambiamenti nelle iterazioni successive: intuitivamente, un punto periodico repulsivo è un punto che "respinge" i punti vicini applicando iterativamente la funzione f(z) in quanto se la successione $f^k(z')$ inizia con un punto z' vicino a un punto periodico repulsivo z_0 , le iterazioni tenderanno ad allontanarsi da z_0 .

⁶ Un punto periodico z_0 di periodo k per $f^n(z)$, è un punto fisso per $g(z) \equiv f^k(z)$.

⁷ Lo si verifica applicando la derivazione a catena: $df^n(z_0)/dz = df^n(z_1)/dz = \cdots = df^n(z_{n-1})/dz$, dato che i valori z_k sono periodici con periodo n.

4 2 Gli insiemi di Julia

Definizione 2.8 (insieme di Julia). Siamo ora in grado di caratterizzare l'insieme di Julia J_f di una funzione razionale f: sia quindi P l'insieme di tutti i punti repulsivi di f; in tal caso P è denso in J_f , ossia ogni punto di J_f può essere espresso come limite di una successione di punti in P.

Definizione 2.9 (bacino d'attrazione). Dato un punto fisso attrattivo z_0 , il suo bacino d'attrazione è dato dall'insieme

$$A(z_0) = \{ z \in \hat{\mathbb{C}} : f^k(z) \to z_0 \text{ per } k \to \infty \}$$

Il bacino d'attrazione contiene l'orbita inversa di z_0 , $\operatorname{Or}^-(z_0)$; inoltre, se γ è un ciclo attrattivo di periodo n, ognuno dei punti fissi $f^k(z_0)$ di $f^n(z)$ $(k=0\ldots n-1)$ ha il proprio bacino di attrazione e $A(\gamma)$ è dato dall'unione di tali bacini.

2.2 Proprietà fondamentali degli insiemi di Julia

Elenchiamo ora alcune proprietà fondamentali dell'insieme J_f , trovate da Gaston Julia nel 1918 e da Pierre Fatou nel 1919-20 [1, p. 28].

Proposizione 2.1. J_f è non vuoto, con un'infinità più che numerabile di punti

Proposizione 2.2. J_f Gli insiemi di Julia di f(z) e di $f^k(z)$ coincidono per ogni k = 1, 2, ...

Proposizione 2.3. $f(J_f) = J_f = f^{-1}(J_f)$

Proposizione 2.4. Per ogni $z \in J_f$, l'orbita inversa $Or^-(z)$ è densa in J_f

Proposizione 2.5. Se γ è un ciclo attrattivo di f, si ha $A(\gamma) \subset F_f = \hat{\mathbb{C}} \backslash J_f$ ed inoltre $\partial A(\gamma) = J_f$

Definizione 2.10 (insieme di Fatou). L'insieme $F_f = \hat{\mathbb{C}} \backslash J_f = J_f^c$ è l'insieme complementare di J_f e viene detto *insieme di Fatou*.

Proposizione 2.6. Se J_f ha parte interna non vuota (ossia esiste almeno un punto $z' \in J_f$ per cui $D(z', \varepsilon) \subset J_f$ per qualche $\varepsilon > 0$), possiamo concludere che $J_f = \hat{\mathbb{C}}.$

Proposizione 2.7. Posti $z' \in J_f$, $\varepsilon > 0$ e $J^* = \{z \in J_f : |z - z'| < \varepsilon\}$, esiste un intero n tale che $f^n(J^*) = J_f$.

La propietà Prop. 2.1 implica che ogni funzione razionale ha un considerevole numero di punti periodici repulsivi.

Da Prop. 2.3 segue che l'insieme di Julia è invariante rispetto a f(z), e dal fatto che P è denso in J_f si deduce che la dinamica sull'insieme di Julia è caotica.

Prop. 2.4 suggerisce un metodo numerico per visualizzare graficamente J_f , ma si rendono necessari gli algoritmi sofisticati su Or^-z (§ ??), in quanto l'orbita inversa di un punto non si distribuisce uniformemente sull'insieme di Julia.

 $[\]overline{\ ^8}$ Da Def. 1.9 e nota 1 quindi se P è denso in $J_f,$ significa che ogni punto di J_f o appartiene a P oppure è un punto di accumulazione per P.

⁹ Tale situazione si verifica raramente, ma ad esempio $f(z) = (z-2)^2/z^2$ ne è un esempio.

Da Prop. 2.5 segue che nella maggior parte dei casi j_f presenta una struttura frattale: ad esempio se f possiede più di due punti fissi attrattivi a,b,c,\ldots , tale proprietà implica che

$$\partial A(a) = J_f = \partial A(b) = \partial Ac = \dots$$

ossia tutte le frontiere dei bacini di attrazione coincidono.

2.3 Comportamento nell'intorno dei punti periodici indifferenti Riferimenti bibliografici

[1] Heinz-Otto Peitgen and Peter H. Richter. La bellezza dei frattali – Immagini di sistemi dinamici complessi. Bollati Boringhieri editore s.r.l., Torino, 1987.