BYOE Version 11

- 1. (4 pts) Compute the dot product and the cross product of $u = \langle 2, 5, -9 \rangle$ and $v = \langle 1, 2, 3 \rangle$.
- 2. Let $r(t) = \langle \exp 2t, \cos(4t), 5t^3 \rangle$ represent the position of a particle.
 - (a) (3 pts) Determine the particle's velocity and acceleration functions.
 - (b) (2 pts) Determine the particle's displacement on the interval $[0, 2\pi]$.
 - (c) (3 pts) Determine the distance traveled by the particle on the interval $[0, 2\pi]$.
- 3. (3 pts) Find the unit tangent vector for the function $r(t) = \langle 6\cos(2t), \sin(13t), 5\cos(t) \rangle$.
- 4. Consider the lines $L_1(f) = \langle 3t 7, 2t 3, 4t + 5 \rangle$ and $L_2(t) = \langle t 1, 3t 5, 2t + 1 \rangle$.
 - (a) (2 pts) Write the symmetric equations of each line, if possible. If this cannot be done, explain why.
 - (b) (3 pts) Determine whether the lines intersect at a point, are parallel, skew, or the same line.
- 5. Let $f(x) = yx^4 x^3 + 2xy^2 4y$.
 - (a) (2 pts) Compute the gradient ∇f .
 - (b) (3 pts) Compute the directional derivative $D_u f$ at point P = (1,3) in the direction of u = (3,4).
- 6. (7 **pts**) Let $z = f(x, y) = x^2y 2xy^2 8xy$, $v(s, t) = \langle 2s^2t, 3s^2 t^2 \rangle$, and (s, t) = (2, 3). Compute $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ using the Chain Rule.
- 7. (3 pts) Let $5 = z \exp(x^2) 3y$ define z implicitly as a function of x and y. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial t}$ using implicit differentiation.
- 8. (5 pts) Given the function $f(x) = 2xy 3x^2 + xy^2 + 3$, find the critical points and classify them with the Second Derivative Test.
- 9. Let R be the region between $x^2 + y^2 = 9$ and $x^2 + y^2 = 16$, restricted to $y \ge 0$.
 - (a) (2 pts) Graph R and label the region carefully.
 - (b) (4 pts) If R has density $\delta(x, y) = x^2 + y^2$, compute the mass of the region.
- 10. Let R be the region inside the rectangle from (0,0) to (2,3). Suppose R describes a lamina of density $\delta(x,y)=3$.
 - (a) (4 pts) Find the center of mass of R using double integration.
 - (b) (1 pts) Briefly explain why your answer to (a) makes sense.
- 11. (5 pts) Compute the surface area of the function $f(x, y) = x^3 2x + 4y$ over the region bounded by $y = x^3$, $y = 2 x^2$, x = 0, and y = 0.
- 12. (2 pts) Use cylindrical coordinates to prove that a cylinder with radius r and height h has a volume of $V = \pi r^2 h$.
- 13. (2 pts) Explain why it is necessary to insert an extra term in the integrand, such as r or $\rho^2 \sin \varphi$, when switching coordinate systems.

Total points: 60.