jeudi le 24 novembre 2016; durée: 08h30 à 09h20; aucune documentation permise; 7.5% de note finale

Problème 1 (20 points sur 100)

A. Est-ce que ces systèmes sont linéaires et invariant en temps?

$y(t) = \cos\left(x(t)\right)$		NON
$y(t) = \int_{-\infty}^{t} x(z) dz$	OUI	
y(t) = x(t-1) + x(t+1)	OUI	

B. En supposant que ces systèmes sont linéaire et invariants en temps avec une réponse en fréquence de $H(\omega)$,

$\frac{d}{dt}(f*g) = \frac{df}{dt}*\frac{dg}{dt}$	FAUX
Ce système linéaire et invariant en temps (SLIT) est CAUSAL	
$x(t) - \frac{\text{SLIT}}{H(\omega)} - y(t)$	FAUX
$f(t) \Leftrightarrow F(\omega)$ $f(t) = 0 \text{ pour } t > \frac{2\pi}{\omega_0} \text{ET} F(\omega) = 0 \text{ pour } \omega > \omega_0$	FAUX

Professeur: Leslie A. Rusch

Problème 2 (30 points sur 100)

A. (12 points) Trouvez la réponse en fréquence pour le système linéaire et invariant en temps décrit par l'équation différentielle suivante

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = \frac{dx}{dt} + 2x$$

$$P_1(D)x(t) = (D+2)x(t)$$
 $P_2(D)y(t) = (D^2+5D+6)y(t)$

$$H(\omega) = \frac{P_1(j\omega)}{P_2(j\omega)} = \frac{(j\omega) + 2}{(j\omega)^2 + 5(j\omega) + 6} = \frac{2 + j\omega}{(j\omega + 3)(j\omega + 2)} = \frac{1}{j\omega + 3}$$

B. (15 points) Trouvez la réponse impulsionnelle pour le système avec réponse en fréquence

$$H(\omega) = \frac{1}{1 + 2j\omega}$$

Dans le table de transformées fourni

$$e^{-eta t}\,\mathrm{U}ig(tig) \qquad \qquad rac{1}{eta+j\omega}$$

En identifiant $\beta = \frac{1}{2}$, nous avons

$$h(t) = \frac{1}{2}e^{-t/2}$$

C. (10 points) Trouvez la sortie du système de la partie B pour l'entrée $x(t) = \cos(.5t)$.

La sortie d'un filtre pour un cosinus est encore un cosinus avec un gain et déphasage :

$$|H(.5)|\cos(.5t + \arg[H(.5)])$$
 $H(.5) = \frac{1}{1 + 2 \cdot j \cdot 0.5} = \frac{1}{1 + j}$

La sortie est donc

$$\frac{1}{\sqrt{2}}\cos\left(.5t + \arctan\left[\frac{-1}{1}\right]\right) = \frac{1}{\sqrt{2}}\cos\left(.5t - \frac{\pi}{4}\right)$$

Problème 3 (50 points sur 100) Trouvez la convolution de

Trouvez la convolution de $f(t) = \begin{cases} e^{-t} & t > 0 \\ 0 & ailleurs \end{cases}$ et $g(t) = \text{Rect}\left(\frac{t-1}{2}\right) + \text{Rect}(t-1.5)$

a. <u>régions</u> de définition de la convolution

b. intégrales et bornes d'intégration

$$\int_{-\infty}^{\infty} f(u)g(t-u)du = \int_{0}^{t} e^{-u} \cdot 1 du$$

g(t-u) = Rect[(t-u-1)/2] + Rect[t-u-1.5]

$$\int_{-\infty}^{\infty} f(u) g(t-u) du = \int_{0}^{t-1} e^{-u} \cdot 2 du + \int_{t-1}^{t} e^{-u} \cdot 1 du$$

$$\int_{-\infty}^{\infty} f(u)g(t-u)du = \int_{t-2}^{t-1} e^{-u} \cdot 2 du + \int_{t-1}^{t} e^{-u} \cdot 1 du$$

a. (15 points) Donnez les intégrales à évaluer pour <u>chaque région</u> de définition de la convolution; <u>spécifiez clairement les bornes d'intégration pour chaque région.</u>

	Partie b	Partie c
t < 0	zéro	0
0 < t < 1	$\int\limits_{0}^{t}e^{-u}\cdot 1\ du$	$\left[-e^{-u}\right]_0^t = 1 - e^{-t}$
1 < t < 2	$\int_{0}^{t-1} e^{-u} \cdot 2 du + \int_{t-1}^{t} e^{-u} \cdot 1 du$	$ \left[-2e^{-u} \right]_0^{t-1} + \left[-e^{-u} \right]_{t-1}^t = 2 - 2e^{-t+1} - e^{-t} + e^{-t+1} = 2 - e^{-t+1} - e^{-t} $
2 < t	$\int_{t-2}^{t-1} e^{-u} \cdot 2 du + \int_{t-1}^{t} e^{-u} \cdot 1 du$	$ \left[-2e^{-u} \right]_{t-2}^{t-1} + \left[-e^{-u} \right]_{t-1}^{t} = 2e^{-t+2} - 2e^{-t+1} + e^{-t+1} - e^{-t} = e^{-t} \left(2e^{2} - e - 1 \right) $

t1=linspace(-1,0,100); t2=linspace(0,1,100); t3=linspace(1,2,100); t4=linspace(2,6,200); O=ones(1,100); A=1-exp(-t2); B=2*O-exp(-t3+1)-exp(-t3); C=exp(-t4)*(2*exp(2)-exp(1)-1); plot(t1,0*O,t2,A,t3,B,t4,C)

