11

Lösung: Aufgabe 6

- a) Dirichtlet Bedingungen:
 - 1) periodisch
 - 2) eindentig å skrig, ar pres om endlich vielen endlichen Unskrighen boskellen
 - 3) endliche Anzahl au Extremesten in einen Periodiziterhiches vall
 - 4) Salf(x) dx honvergiert
- b) rot(2) = Eijk (2; (2aj) ek = ek Eijk 2 2; aj + ek Eijkaj 2; 2 = 2 rota + ek Eijkaj [gradi]; = 2 rota + gradi xa
- c) gegeben: g(t), $\hat{g}(\omega) = \mathcal{F}g(t)$]

 gesucht: $\mathcal{F}[g(t-a)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(t-a) e^{-i\omega t} dt$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\hat{t}) e^{-i\omega \hat{t}} dt$ $= \frac{e^{-i\omega a}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\hat{t}) e^{-i\omega \hat{t}} dt$ $= \frac{e^{-i\omega a}}{\sqrt{2\pi}} \mathcal{F}[g(t)]$ $= \frac{e^{-i\omega a}}{\sqrt{2\pi}} \mathcal{F}[g(t)]$
- d) $\vec{+}(\vec{r},t) = (x+ty+tz)\vec{+} + (x+y+t\cdot z)\vec{j} + (t\cdot x+y+z)\vec{k}$ $rot\vec{F} = [1-t]\vec{+} + [1-t]\vec{j} + [1-t]\vec{k}$ = $\vec{+}$ wir bel frei (-2) rot $\vec{+} = 0$ $rot\vec{+} = 0 = 2t = 1$ For den 2cit punch t = 1 wird dan $\vec{+}$ Teld wirbel frei.
- e) 1:A, 2:A,D