Due: 3/6

Note: Show all your work.

Problem 1 (10 points) Consider the following confusion matrix.

	predicted class		
actual class		C1	C2
	C1	628	137
	C2	59	394

Note: C1 is positive and C2 is negative.

Compute sensitivity, specificity, precision, accuracy, F-meassure, and F2.

Problem 2 (10 points) Suppose you built two classifier models *M*1 and *M*2 from the same training dataset and tested them on the same test dataset using 10-fold cross-validation. The error rates obtained over 10 iterations (in each iteration the same training and test partitions were used for both *M*1 and *M*2) are given in the table below. Determine whether there is a significant difference between the two models using the statistical method discussed in Section 6 of the online lecture Module 4 (also in Section 8.5.5, pp 372-373 of the textbook). Use a significance level of 1%. If there is a significant difference, which one is better?

Iteration	M1		M2
1		0.21	0.13
2		0.12	0.1
3		0.09	0.20
4		0.15	0.2
5		0.03	0.15
6		0.07	0.05
7		0.13	0.14
8		0.14	0.21
9		0.05	0.23
10		0.14	0.17

Note: When you calculate var(M1 - M2), calculate a sample variance (not a population variance).

Problem 3 (20 points). For this problem, you are required to run, on Weka, Naïve Bayes, J48, SimpleLogistic, RandomForest, neural network (Multilayer Perceptron), and OneR classification algorithms on *german-bank.arff* dataset and compare the performance of the models built by these six algorithms. Make sure that you select "Cross-validation" for "Test options." If you have to choose one model, which one

would you choose and why? Note that the neural network algorithm will take a longer time than other algorithms.