1298 - One Theorem, One Year

A number is **Almost-K-Prime** if it has exactly **K** prime numbers (not necessarily distinct) in its prime factorization. For example, 12 = 2 * 2 * 3 is an **Almost-3-Prime** and 32 = 2 * 2 * 2 * 2 * 2 is an **Almost-5-Prime** number. A number **X** is called **Almost-K-First-P-Prime** if it satisfies the following criterions:

- 1. **X** is an **Almost-K-Prime** and
- 2. X has all and only the first $P(P \le K)$ primes in its prime factorization.

For example, if **K=3** and **P=2**, the numbers 18 = 2 * 3 * 3 and 12 = 2 * 2 * 3 satisfy the above criterions. And 630 = 2 * 3 * 3 * 5 * 7 is an example of **Almost-5-First-4-Pime**.

For a given **K** and **P**, your task is to calculate the summation of $\Phi(X)$ for all integers **X** such that **X** is an **Almost-K-First-P-Prime**.

Input

Input starts with an integer T (\leq 10000), denoting the number of test cases.

Each case starts with a line containing two integers K ($1 \le K \le 500$) and P ($1 \le P \le K$).

Output

For each case, print the case number and the result modulo 100000007.

Sample Input	Output for Sample Input
3	Case 1: 10
3 2	Case 2: 816
5 4	Case 3: 49939643
99 45	

Note

- 1. In mathematics $\Phi(X)$ means the number of relatively prime numbers with respect to X which are smaller than X. Two numbers are relatively prime if their GCD (Greatest Common Divisor) is 1. For example, $\Phi(12) = 4$, because the numbers that are relatively prime to 12 are: 1, 5, 7, 11.
- 2. For the first case, K = 3 and P = 2 we have only two such numbers which are Almost-3-First-2-Prime, 18=2*3*3 and 12=2*2*3. The result is therefore, $\Phi(12) + \Phi(18) = 10$.