Databázové systémy Přednáška 1. Relace v databázích

Jan Laštovička

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

Obsah

1 Tabulky

2 Relace a relační proměnné

3 SQL

tři děti: Anna, Bert, Cyril

- tři děti: Anna, Bert, Cyril
- Anně jsou tři roky, Bertovi a Cyrilovi jsou čtyři roky

- tři děti: Anna, Bert, Cyril
- Anně jsou tři roky, Bertovi a Cyrilovi jsou čtyři roky

Tabulka:

name	age
Anna	3
Bert	4
Cyril	4

- tři děti: Anna, Bert, Cyril
- Anně jsou tři roky, Bertovi a Cyrilovi jsou čtyři roky

Tabulka:

name	age
Anna	3
Bert	4
Cyril	4

Otázky:

- Chodí Cyril do školky?
- Chodí Daniela do školky?
- 3 Kolik let je Anně?
- 4 Kterým dětem jsou čtyři roky?

name	age
Anna	3
Bert	4
Cyril	4

name	age
Anna	3
Bert	4
Cyril	4

name	age
Bert	4
Cyril	4
Anna	3

prohozené řádky

name	age
Anna	3
Bert	4
Cyril	4

name	age
Bert	4
Cyril	4
Anna	3

prohozené řádky

age	name
3	Anna
4	Bert
4	Cyril

prohozené sloupce

U

name	age
Anna	3
Bert	4
Cyril	4

name	age
Bert	4
Cyril	4
Anna	3

prohozené řádky

age	name
3	Anna
4	Bert
4	Cyril

name	age
Anna	3
Anna	3
Bert	4
Cyril	4

opakující se řádky

prohozené sloupce

U

name	age
Anna	3
Bert	4
Cyril	4

name	age
Bert	4
Cyril	4
Anna	3

prohozené řádky

age	name
3	Anna
4	Bert
4	Cyril

name	age
Anna	3
Anna	3
Bert	4
Cyril	4

opakující se řádky

prohozené sloupce

Lepší reprezentace?

Obsah

1 Tabulky

2 Relace a relační proměnné

3 SQL

...hodnoty v tabulce jsou určitého typu

... hodnoty v tabulce jsou určitého typu

Typem rozumíme pojmenovanou množinu hodnot.

... hodnoty v tabulce jsou určitého typu

Typem rozumíme pojmenovanou množinu hodnot.

Příklady:

 \blacksquare varchar(i) ... množina všech řetězců délky nejvýše i

... hodnoty v tabulce jsou určitého typu

Typem rozumíme pojmenovanou množinu hodnot.

Příklady:

- \blacksquare varchar(i) ... množina všech řetězců délky nejvýše i
- \blacksquare integer ... množina celých čísel od $-2\,147\,483\,648$ do $2\,147\,483\,647$

...hodnoty v tabulce jsou určitého typu

Typem rozumíme pojmenovanou množinu hodnot.

Příklady:

- \blacksquare varchar(i) ... množina všech řetězců délky nejvýše i
- \blacksquare integer ... množina celých čísel od $-2\,147\,483\,648$ do $2\,147\,483\,647$

Hodnota v je typu T, pokud v je prvkem množiny jménem T.

...hodnoty v tabulce jsou určitého typu

Typem rozumíme pojmenovanou množinu hodnot.

Příklady:

- lacktriangle varchar(i) ... množina všech řetězců délky nejvýše i
- \blacksquare integer ... množina celých čísel od $-2\,147\,483\,648$ do $2\,147\,483\,647$

Hodnota v je typu T, pokud v je prvkem množiny jménem T.

Příklady:

- 'Anna' je typu varchar(4)
- 'Anna' není typu varchar(3)
- \blacksquare 3,4,5,6, 7 jsou typu integer

Atributy

...buňky záhlaví

name	age
Anna	3
Bert	4
Cyril	4

Atributy

...buňky záhlaví

name	age
Anna	3
Bert	4
Cyril	4

Atribut je dán svým jménem a jménem svého typu.

Atributy

...buňky záhlaví

name	age
Anna	3
Bert	4
Cyril	4

Atribut je dán svým jménem a jménem svého typu.

Příklady:

- atribut name typu varchar(10)
- atribut age typu integer

...záhlaví tabulky

...záhlaví tabulky

Konečnou množinu atributů s unikátními jmény nazveme záhlavím.

...záhlaví tabulky

Konečnou množinu atributů s unikátními jmény nazveme záhlavím.

■ například: {name varchar(10), age integer}

...záhlaví tabulky

Konečnou množinu atributů s unikátními jmény nazveme záhlavím.

- například: {name varchar(10), age integer}
- zobrazení:

name varchar(10) age integer

...záhlaví tabulky

Konečnou množinu atributů s unikátními jmény nazveme záhlavím.

- například: {name varchar(10), age integer}
- zobrazení:

■ typy vynecháváme: {name, age}

. . . záhlaví tabulky

Konečnou množinu atributů s unikátními jmény nazveme záhlavím.

- například: {name varchar(10), age integer}
- zobrazení:

- typy vynecháváme: {name, age}
- zobrazení:

name age

...záhlaví tabulky

Konečnou množinu atributů s unikátními jmény nazveme záhlavím.

- například: {name varchar(10), age integer}
- zobrazení:

- typy vynecháváme: {name, age}
- zobrazení:

name age

nezáleží na pořadí:

age name

... řádek tabulky

... řádek tabulky

A: atribut

Komponenta přiřazuje atributu A hodnotu, která je stejného typu, jako je typ atributu A.

... řádek tabulky

A: atribut

Komponenta přiřazuje atributu A hodnotu, která je stejného typu, jako je typ atributu A.

Například: komponenta atributu name typu varchar(10) přiřadí hodnotu 'Anna'

... řádek tabulky

A: atribut

Komponenta přiřazuje atributu A hodnotu, která je stejného typu, jako je typ atributu A.

Například: komponenta atributu name typu varchar(10) přiřadí hodnotu 'Anna'

Konečnou množinu komponent t s jedinečnými názvy atributů nazýváme n-ticí nad A_1, \ldots, A_n , kde A_1, \ldots, A_n jsou všechny atributy komponent v t.

... řádek tabulky

A: atribut

Komponenta přiřazuje atributu A hodnotu, která je stejného typu, jako je typ atributu A.

Například: komponenta atributu name typu varchar(10) přiřadí hodnotu 'Anna'

Konečnou množinu komponent t s jedinečnými názvy atributů nazýváme n-ticí nad A_1, \ldots, A_n , kde A_1, \ldots, A_n jsou všechny atributy komponent v t.

Množina $\{A_1, \ldots, A_n\}$ se nazývá záhlaví n-tice t.

... řádek tabulky

A: atribut

Komponenta přiřazuje atributu A hodnotu, která je stejného typu, jako je typ atributu A.

Například: komponenta atributu name typu varchar(10) přiřadí hodnotu 'Anna'

Konečnou množinu komponent t s jedinečnými názvy atributů nazýváme n-ticí nad A_1, \ldots, A_n , kde A_1, \ldots, A_n jsou všechny atributy komponent v t.

Množina $\{A_1, \ldots, A_n\}$ se nazývá záhlaví n-tice t.

Komponenty:

- c_1 atributu name přiřazuje 'Anna'
- c_2 atributu age přiřazuje 3

 $\{c_1, c_2\} \dots n$ -tice nad name a age

Zobrazení *n*-tice tabulkou

Komponenty:

- lacksquare c_1 atributu name přiřazuje 'Anna'
- lacksquare c_2 atributu age přiřazuje 3
- $\{c_1,c_2\}$... n-tice nad name a age

Zobrazení *n*-tice tabulkou

Komponenty:

- lacksquare c_1 atributu name přiřazuje 'Anna'
- lacksquare c_2 atributu age přiřazuje 3

 $\{c_1,c_2\}$...n-tice nad name a age

Zobrazení:

name	age
Anna	3

Zobrazení *n*-tice tabulkou

Komponenty:

- $lacktriangleq c_1$ atributu name přiřazuje 'Anna'
- $lacktriangleq c_2$ atributu age přiřazuje 3

 $\{c_1,c_2\}$...n-tice nad name a age

Zobrazení:

name	age
Anna	3

Chybné tabulky:

name	age
Anna	

chybí hodnota

Zobrazení *n*-tice tabulkou

Komponenty:

- lacksquare c_1 atributu name přiřazuje 'Anna'
- $lacktriangleq c_2$ atributu age přiřazuje 3

 $\{c_1,c_2\}$...n-tice nad name a age

Zobrazení:

name	age
Anna	3

Chybné tabulky:

name	age
Anna	

chybí hodnota

name	age
Anna	3, 4

dvě hodnoty

. . . tabulka

...tabulka

$$\{A_1,\ldots,A_n\}\ldots$$
 záhlaví

...tabulka

$$\{A_1,\ldots,A_n\}\ldots$$
 záhlaví Relace nad atributy A_1,\ldots,A_n se skládá ze záhlaví $\{A_1,\ldots,A_n\}$ a těla.

...tabulka

$$\{A_1,\ldots,A_n\}\ldots$$
 záhlaví

Relace nad atributy A_1,\ldots,A_n se skládá ze záhlaví $\{A_1,\ldots,A_n\}$ a těla.

Tělo relace je konečná množina n-tic nad A_1, \ldots, A_n .

...tabulka

 $\{A_1,\ldots,A_n\}\ldots$ záhlaví

Relace nad atributy A_1, \ldots, A_n se skládá ze záhlaví $\{A_1, \ldots, A_n\}$ a těla.

Tělo relace je konečná množina n-tic nad A_1, \ldots, A_n .

Relaci, jejíž tělo je prázdná množina, říkáme prázdná relace.

. . . tabulka

 $\{A_1,\ldots,A_n\}\ldots$ záhlaví

Relace nad atributy A_1, \ldots, A_n se skládá ze záhlaví $\{A_1, \ldots, A_n\}$ a těla.

Tělo relace je konečná množina n-tic nad A_1, \ldots, A_n .

Relaci, jejíž tělo je prázdná množina, říkáme prázdná relace.

Například:

 $r\dots$ relace (dětí ve školce) nad name a age

...tabulka

 $\{A_1,\ldots,A_n\}\ldots$ záhlaví

Relace nad atributy A_1,\ldots,A_n se skládá ze záhlaví $\{A_1,\ldots,A_n\}$ a těla.

Tělo relace je konečná množina n-tic nad A_1, \ldots, A_n .

Relaci, jejíž tělo je prázdná množina, říkáme prázdná relace.

Například:

 $r.\ldots$ relace (dětí ve školce) nad name a age tělo r je $\{t_1,t_2,t_3\}$

...tabulka

 $\{A_1,\ldots,A_n\}\ldots$ záhlaví

Relace nad atributy A_1, \ldots, A_n se skládá ze záhlaví $\{A_1, \ldots, A_n\}$ a těla.

Tělo relace je konečná množina n-tic nad A_1, \ldots, A_n .

Relaci, jejíž tělo je prázdná množina, říkáme prázdná relace.

Například:

 $r.\dots$ relace (dětí ve školce) nad name a age tělo r je $\{t_1,t_2,t_3\}$

- lacksquare t_1 přiřazuje name hodnotu 'Anna' a age hodnotu 3
- $lacktriangleq t_2$ přiřazuje name hodnotu 'Bert' a age hodnotu 4
- $lacktriangleq t_3$ přiřazuje name hodnotu 'Cyril' a age hodnotu 4

Zobrazení relace tabulkou

name varchar(10)	age integer
Anna	3
Bert	4
Cyril	4

Zobrazení relace tabulkou

name varchar(10)	age integer
Anna	3
Bert	4
Cyril	4

Vynechání typů:

name	age
Anna	3
Bert	4
Cyril	4

Zobrazení relace tabulkou

name varchar(10)	age integer
Anna	3
Bert	4
Cyril	4

Vynechání typů:

name	age
Anna	3
Bert	4
Cyril	4

Chybná tabulka:

name	age
Anna	
Bert	3, 4
Cyril	4

Proměnným, které uchovávají relace, říkáme přirozeně relační proměnné.

Proměnným, které uchovávají relace, říkáme přirozeně relační proměnné.

- relační proměnná má jméno a je jistého typu
- typ proměnné je dán záhlavím

Proměnným, které uchovávají relace, říkáme přirozeně relační proměnné.

- relační proměnná má jméno a je jistého typu
- typ proměnné je dán záhlavím Relační proměnná může uchovávat pouze relace s odpovídajícím záhlavím.

Proměnným, které uchovávají relace, říkáme přirozeně relační proměnné.

- relační proměnná má jméno a je jistého typu
- typ proměnné je dán záhlavím Relační proměnná může uchovávat pouze relace s odpovídajícím záhlavím.

Například:

Proměnným, které uchovávají relace, říkáme přirozeně relační proměnné.

- relační proměnná má jméno a je jistého typu
- typ proměnné je dán záhlavím Relační proměnná může uchovávat pouze relace s odpovídajícím záhlavím.

Například:

definujeme relační proměnnou child typu {name varchar(10),age integer}

Proměnným, které uchovávají relace, říkáme přirozeně relační proměnné.

- relační proměnná má jméno a je jistého typu
- typ proměnné je dán záhlavím
 Relační proměnná může uchovávat pouze relace s odpovídajícím záhlavím.

Například:

- definujeme relační proměnnou child typu {name varchar(10),age integer}
- 2 nastavíme její hodnotu na relaci dětí školky

Proměnným, které uchovávají relace, říkáme přirozeně relační proměnné.

- relační proměnná má jméno a je jistého typu
- typ proměnné je dán záhlavím
 Relační proměnná může uchovávat pouze relace s odpovídajícím záhlavím.

Například:

- definujeme relační proměnnou child typu {name varchar(10), age integer}
- 2 nastavíme její hodnotu na relaci dětí školky

Zobrazíme pojmenovanou tabulkou:

child

name	age
Anna	3
Bert	4
Cyril	4

Obsah

1 Tabulky

2 Relace a relační proměnné

3 SQL

Postgre SQL

PostgreSQL

systém řízení báze dat (Database Management System)

PostgreSQL

- systém řízení báze dat (Database Management System)
- https://www.postgresql.org

PostgreSQL

- systém řízení báze dat (Database Management System)
- https://www.postgresql.org
- psql (SQL shell)

Příkaz deklarující relační proměnnou

- R...jméno relační proměnné
- n > 0
- \blacksquare různá jména atributů: A_1, \ldots, A_n
- lacksquare jména typů: T_1,\ldots,T_n

Příkaz deklarující relační proměnnou

- R...jméno relační proměnné
- n > 0
- \blacksquare různá jména atributů: A_1, \ldots, A_n
- lacksquare jména typů: T_1,\ldots,T_n

```
CREATE TABLE R ( A_1 \ T_1 \ \text{NOT NULL,} \vdots A_n \ T_n \ \text{NOT NULL,} \text{UNIQUE } (A_1, \ \dots, \ A_n) );
```

Příkaz deklarující relační proměnnou

- R...jméno relační proměnné
- n > 0
- \blacksquare různá jména atributů: A_1, \ldots, A_n
- lacksquare jména typů: T_1,\ldots,T_n

```
CREATE TABLE R ( A_1 T_1 NOT NULL, \vdots A_n T_n NOT NULL, UNIQUE (A_1, \ldots, A_n));
```

- deklaruje relační proměnnou R nad A_1, \ldots, A_n
- A_i je typu T_i pro každé $1 \le i \le n$
- hodnota proměnné R je prázdná relace nad A_1, \ldots, A_n

Příklad použití


```
# CREATE TABLE child (
    name varchar(10) NOT NULL,
    age integer NOT NULL,
    UNIQUE (name, age)
).
```

Příklad použití


```
# CREATE TABLE child (
    name varchar(10) NOT NULL,
    age integer NOT NULL,
    UNIQUE (name, age)
):
```

- deklaruje relační proměnnou child nad name a age
- name je typu varchar(10)
- age je typu integer
- hodnota relační proměnné child je prázdná relace nad name a age

Zobrazení hodnoty relační proměnné

 $R \dots$ relační proměnná TABLE R;

Zobrazení hodnoty relační proměnné


```
R \dots relační proměnná TABLE R;
```

například:

```
# TABLE child;
```

Zobrazení hodnoty relační proměnné


```
R\ldotsrelační proměnná
 TABLE R;
například:
 # TABLE child;
zobrazí prázdnou relaci:
  name | age
 (0 rows)
```

Neměnnost relací

■ relační proměnná child obsahuje prázdnou relaci

Neměnnost relací

- relační proměnná child obsahuje prázdnou relaci
- chceme, aby relační proměnná child obsahovala neprázdnou relaci

- relační proměnná child obsahuje prázdnou relaci
- chceme, aby relační proměnná child obsahovala neprázdnou relaci
- musíme změnit hodnotu proměnné child

- relační proměnná child obsahuje prázdnou relaci
- chceme, aby relační proměnná child obsahovala neprázdnou relaci
- musíme změnit hodnotu proměnné child
- relace měnit nelze

- relační proměnná child obsahuje prázdnou relaci
- chceme, aby relační proměnná child obsahovala neprázdnou relaci
- musíme změnit hodnotu proměnné child
- relace měnit nelze
- musíme s použitím hodnoty proměnné child vytvořit novou relaci

- relační proměnná child obsahuje prázdnou relaci
- chceme, aby relační proměnná child obsahovala neprázdnou relaci
- musíme změnit hodnotu proměnné child
- relace měnit nelze
- musíme s použitím hodnoty proměnné child vytvořit novou relaci
- novou relaci musíme vložit do proměnné child

Příkaz přidání n-tic do proměnné

- \blacksquare R je relační proměnná nad A_1, \ldots, A_n
- lacksquare A_i je typu T_i pro každé $1 \leq i \leq n$
- lacksquare $\{t_1,\ldots,t_m\}$ je konečná neprázdná množina n-tic nad A_1,\ldots,A_n
- $\{t_1,\ldots,t_m\}$ je disjunktní s tělem relace R
- lacksquare hodnotu v_{ij} přiřazuje n-tice t_j atributu A_i

Příkaz přidání n-tic do proměnné

- lacksquare R je relační proměnná nad A_1,\ldots,A_n
- A_i je typu T_i pro každé $1 \le i \le n$
- $lacksquare \{t_1,\dots,t_m\}$ je konečná neprázdná množina n-tic nad A_1,\dots,A_n
- $\{t_1,\ldots,t_m\}$ je disjunktní s tělem relace R
- lacksquare hodnotu v_{ij} přiřazuje n-tice t_j atributu A_i

```
INSERT INTO R (A_1, \ldots, A_n) VALUES (v_{11}, \ldots, v_{1n}), \vdots (v_{m1}, \ldots, v_{mn});
```

Příkaz přidání n-tic do proměnné

- lacksquare R je relační proměnná nad A_1,\ldots,A_n
- A_i je typu T_i pro každé $1 \le i \le n$
- $lacksquare \{t_1,\ldots,t_m\}$ je konečná neprázdná množina n-tic nad A_1,\ldots,A_n
- $\{t_1,\ldots,t_m\}$ je disjunktní s tělem relace R
- lacksquare hodnotu v_{ij} přiřazuje n-tice t_j atributu A_i

```
INSERT INTO R (A_1, ..., A_n) VALUES (v_{11}, ..., v_{1n}), \vdots (v_{m1}, ..., v_{mn});
```

r... relace proměnné R r' je relace:

- f 1 má stejné záhlaví jako relace r
- 2 tělo vznikne sjednocením těla r a množiny $\{t_1, \ldots, t_m\}$ Příkaz nastaví hodnotu proměnné R na r'.


```
# INSERT INTO child (name, age) VALUES
        ('Anna', 3),
        ( 'Bert', 4 ),
        ( 'Cyril', 4);
Tělo child obsahuje tři n-tice:
 # TABLE child;
  name
        age
  Bert | 4
  Cyril | 4
  Anna | 3
 (3 rows)
```


Přidání dítěte do relace child:

#

Přidání dítěte do relace child:

Přidání dítěte do relace child:

Přidání dítěte do relace child:


```
Přidání dítěte do relace child:
```

```
# INSERT INTO child (name, age) VALUES
       ( 'Daniela', 5);
  TABLE child;
          age
   name
 Bert
 Cyril
         1 3
 Anna
 Daniela |
(4 rows)
```

Příkaz zrušení relační proměnné

R... relační proměnná DROP TABLE R;

Příkaz zrušení relační proměnné

R... relační proměnná DROP TABLE R;

Zrušení relační proměnné child:

DROP TABLE child;