Nom, Prénom:

SI01

Interrogation 05

01/2022

Exercice 1

En utilisant la table de vérité ci-dessous, montrer que, quelles que soient les valeurs de vérité de P et Q, on a

$$\overline{P} \vee \overline{Q} \Leftrightarrow \overline{P \wedge Q}$$

P	Q	\overline{P}	\overline{Q}	$\overline{P} \vee \overline{Q}$	$P \wedge Q$	$\overline{P \wedge Q}$

Indiquer les colonnes identiques qui permettent de conclure.

Exercice 2

En complétant, donner la table de vérité de

$$(P \wedge Q) \vee \left(P \wedge \overline{Q}\right)$$

Р	Q		

Finalement, à quoi est égal $(P \wedge Q) \vee (P \wedge \overline{Q})$?

Exercice 3 - On peut retrouver tous les opérateurs à partir du nand

Pour toutes propositions A et B on définit l'opération « nand », notée \uparrow par :

$$A \uparrow B \Longleftrightarrow \overline{A \land B}$$

Cette opération est dite *universelle* car elle permet de retrouver toutes les autres opérations.

1. Donner la table de vérité de l'opération nand.

2. Montrer que $A \uparrow A \iff \overline{A}$ (on peut donc retrouver l'opération « non »).

3. En déduire que l'on peut retrouver l'opération « et » ainsi :

$$(A\uparrow B)\uparrow (A\uparrow B) \Longleftrightarrow A\wedge B$$

