Teorema de Bachet-Bézout e Teorema Fundamental da Aritmética

Prof. Dr. Vinícius Wasques

Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro

15 de junho de 2020

Teorema de Bachet-Bézout

Sejam $a,b\in\mathbb{Z}$. Então existem $x,y\in\mathbb{Z}$ com

$$ax + by = mdc(a, b).$$

Portanto, se $c \in \mathbb{Z}$ é tal que c|a e c|b, então c|mdc(a,b)

Se a=b=0, então o problema está resolvido pois mdc(a,b)=0 e portanto para quaisquer $x,y\in\mathbb{Z}$ segue o resultado.

Se a=b=0, então o problema está resolvido pois mdc(a,b)=0 e portanto para quaisquer $x,y\in\mathbb{Z}$ segue o resultado.

Caso contrário, considere o conjunto de todas as combinações \mathbb{Z} -lineares de a e b, isto é,

$$I(a,b) = \{ax + by : x, y \in \mathbb{Z}\}.$$

Se a = b = 0, então o problema está resolvido pois mdc(a,b)=0 e portanto para quaisquer $x, y \in \mathbb{Z}$ segue o resultado.

Caso contrário, considere o conjunto de todas as combinações \mathbb{Z} -lineares de a e b, isto é,

$$I(a,b) = \{ax + by : x, y \in \mathbb{Z}\}.$$

Exercício: Mostre que existe pelo menos um elemento positivo em I(a,b)

Seja $d = ax_0 + by_0$ o menor elemento positivo de I(a, b).

Note que d divide todos os elementos de I(a, b). De fato, dado $m = ax + by \in I(a, b)$, e dividindo-o por d temos

$$m = dq + r$$
 e $0 \le r < d$,

 $com q, r \in \mathbb{Z}$

Seja $d = ax_0 + by_0$ o menor elemento positivo de I(a, b).

Note que d divide todos os elementos de I(a, b). De fato, dado $m = ax + by \in I(a, b)$, e dividindo-o por d temos

$$m = dq + r$$
 e $0 \le r < d$,

 $com q, r \in \mathbb{Z}$

Assim,

$$r = m - dq = ax + by - (ax_0 + by_0)q = a(x - qx_0) + b(y - qy_0) \in I(a, b).$$

No entanto, como r < d e d é o menor elemento positivo de I(a,b), segue que r=0 e portanto d|m.

Em particular, como $a, b \in I(a, b)$ temos que d|a e d|b, logo $d \leq mdc(a, b)$.

Note ainda que se $c|a \in c|b$, então $c|ax_0 + by_0 \Leftrightarrow c|d$.

Tomando c = mdc(a, b) temos que mdc(a, b)|d o que, juntamente com a desigualdade $d \le mdc(a, b)$, mostra que d = mdc(a, b).

Corolário. Sejam $a,b,c\in\mathbb{Z}$. A equação

$$ax + by = c$$

admite solução inteira em x e y se, e somente se, mdc(a,b)|c

Corolário. Sejam $a, b, c \in \mathbb{Z}$. A equação

$$ax + by = c$$

admite solução inteira em x e y se, e somente se, mdc(a,b)|c

Dem: Se a equação admite solução inteira, então mdc(a, b) divide o lado esquerdo, logo deve dividir o direito também.

Corolário. Sejam $a, b, c \in \mathbb{Z}$. A equação

$$ax + by = c$$

admite solução inteira em x e y se, e somente se, mdc(a,b)|c

Dem: Se a equação admite solução inteira, então mdc(a, b) divide o lado esquerdo, logo deve dividir o direito também.

Reciprocamente, se mdc(a,b)|c, digamos c=k.mdc(a,b) com $k\in\mathbb{Z}$, pelo teorema de Bachet-Bézout existem inteiros x_0 e y_0 tais que $ax_0+by_0=mdc(a,b)$ e multiplicando tudo por k obtemos que $x=kx_0$ e $y=ky_0$ são soluções da equação dada.

Teorema Fundamental da Aritmética

Seja $n \geq 2$ um número natural. Podemos escrever n de uma única forma como um produto

$$n = p_1 \dots p_m$$

em que $m \in \mathbb{N}$ e $p1 \leq \ldots \leq p_m$ são números primos.

Mostraremos a existência da fatoração de n em primos por indução.

Se n é primo não há o que provar (escrevemos m = 1, $p_1 = n$).

Se n é composto podemos escrever n = ab, sendo $a, b \in \mathbb{N}$, 1 < a < n, 1 < b < n.

Por hipótese de indução, a e b se decompõem como produto de primos.

Juntando as fatorações de a e b (e reordenando os fatores) obtemos uma fatoração de n.

Vamos agora mostrar a unicidade. Suponha por absurdo que n possui duas fatorações diferentes

$$n = p_1 \dots p_m = q_1 \dots q_l$$

com $p_1 \leq \ldots \leq p_m$, $q_1 \leq \ldots \leq q_l$ e que n é mínimo com tal propriedade.

Como $p_1|q_1 \dots q_l$ temos $p_1|q_i$ para algum valor de i.

Vamos agora mostrar a unicidade. Suponha por absurdo que n possui duas fatorações diferentes

$$n=p_1\ldots p_m=q_1\ldots q_I,$$

com $p_1 \leq \ldots \leq p_m$, $q_1 \leq \ldots \leq q_l$ e que n é mínimo com tal propriedade.

Como $p_1|q_1 \dots q_l$ temos $p_1|q_i$ para algum valor de i.

Mostre que se p é primo e $p|q_1 \dots q_n$, então $p|q_i$ para algum algum $i \in \{1, \dots, n\}$.

Logo, como q_i é primo, $p_1 = q_i$ e $p_1 \ge q_1$.

Analogamente temos $q_1 \leq p_1$, assim $p_1 = q_1$. Note que

$$n/p_1=p_2\ldots p_m=q_2\ldots q_I$$

admite uma única fatoração, pela minimalidade de n. Portanto,

m = l e $p_i = q_i$ para todo i, o que contradiz o fato de n ter duas fatorações.

Teorema de Euclides

Existem infinitos números primos.

Teorema de Euclides

Existem infinitos números primos.

Demonstre o Teorema de Euclides.

Exercícios

Discutir os exercícios propostos nesse slide.

Discutir exercícios da Lista 1, disponível no site.

Focar a discussão na seção de divisibilidade.

Referências

MARTINEZ, F.E.B; MOREIRA, C.G.T; SALDANHA, N.,T.; TENGAN, E. Teoria dos Números. Um passeio com Primos e outros Números Familiares pelo Mundo Inteiro. IMPA, 2013.

GRAHAM, R. L., KNUTH, D. E., PATASHNIK, O Matemática Concreta. LTC, São Paulo, 1995

NIVEN, I. E.; ZUCKERMAN, N.S. An Introduction to the Theory of Numbers, NY, John Wiley & Sons, 1991.

Contato

Prof. Dr. Vinícius Wasques

email: viniciuswasques@gmail.com

Departamento de Matemática

site: https://viniciuswasques.github.io/home/

