Section for Applied Statistics and Data Analysis

TA: Cong Mu

Office Hour: Wednesday 10:00AM - 12:00PM

October 4, 2019

1/9

Overview

- Some Statistics
 - Observational Data
 - Confidence Intervals
 - Diagnostics
- Some Programming
 - Examples in Faraway
 - Exercises in Faraway

Observational Data

Consider

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots + \widehat{\beta}_p x_p.$$

- What does $\hat{\beta}_1$ mean?
 - A unit change in x_1 will produce a change of $\widehat{\beta}_1$ in the response?
 - Lurking variable
 - Collinearity
 - The effect of x_1 when all the other predictors are held constant?
 - Not realistict in practice
 - The specification of other variables
- Steps to make a stronger case for causality
 - Include all relevant variables
 - Use nonstatistical knowledge
 - Try a variety of models
 - Multiple studies under different conditions
 - Infer causality from an observational study

Confidence Intervals for Coefficients

Recall

$$\text{Var}\left[\widehat{\boldsymbol{\beta}}\right] = \sigma^2 \left(\boldsymbol{X}^\top \boldsymbol{X}\right)^{-1}, \qquad \widehat{\sigma}^2 = s^2 = \frac{\text{SSE}}{n-p}.$$

General form

Estimate \pm Critical Value \times SE of Estimate.

• In particular, $100(1-\alpha)\%$ CI for $\widehat{\beta}_i$

$$\widehat{\beta}_{\mathfrak{i}} \pm t_{n-p}^{(\alpha/2)} \widehat{\sigma} \, \sqrt{(X^{\top}X)_{\mathfrak{i}\mathfrak{i}}^{-1}}.$$

Confidence Intervals for Predictions

Recall

$$\widehat{\mathbf{y}}_0 = \mathbf{x}_0^{\top} \widehat{\mathbf{\beta}}, \qquad \operatorname{Var}\left[\widehat{\mathbf{y}}_0\right] = \sigma^2 \mathbf{x}_0^{\top} \left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{x}_0.$$

• $100(1 - \alpha)\%$ CI for a single future response

$$\widehat{y}_0 \pm t_{n-p}^{(\alpha/2)} \widehat{\sigma} \, \sqrt{1 + x_0^\top \left(X^\top X \right)^{-1} x_0}.$$

• $100(1-\alpha)$ % CI for the mean response for given x_0

$$\widehat{y}_0 \pm t_{n-p}^{(\alpha/2)} \widehat{\sigma} \, \sqrt{x_0^\top \left(X^\top X \right)^{-1} x_0}.$$

Diagnostics

Recall

$$\epsilon \sim \mathcal{N}\left(0, \sigma^2 I\right)$$
.

- Checking Error Assumptions
 - Constant Variance
 - Normality
 - Correlated Errors
- Finding Unusual Observations
 - Leverage
 - Outliers
 - Influential Observations
- Checking the Structure of the Model

Constant Variance

(Figure from Linear Models with R)

Examples and Exercises in Faraway Chapter 3 & 4

• Example: savings dataset

• Example: gala dataset

• Exercise 1: prostate dataset

Thanks for listening!

9/9