Phys 5B: Lenses III

BY KAMERON GILL Date March 6, 2017

- Compound microscope (Not simple magnifier!)
 Object's image at foal point of eyepiece
 - Object is not at $d_0 = \infty$ (like for telescope)
 - Object is NEAR objective $\Rightarrow \text{image is not at } f_0, \text{ but at } d_i > f_0$ $d_i = l f_e$ $\frac{1}{d_i} = \frac{1}{f_0} \frac{1}{d_0} \Rightarrow \frac{1}{l f_e} = \frac{1}{f_0} \frac{1}{d_0}$
 - Linear Magnification of Objective $m_0 = \frac{h_i}{h_0} = \frac{-d_i}{d_0} = \frac{-(l-f_e)}{d_0}$ If the eyepiece magnification $M_e = \frac{N}{f_e}$ Total magnification: $M = M_e m_0 \Rightarrow \frac{N}{f_e} \left(\frac{l-f_e}{d_0}\right)$
- Combo telescope/microscope

Two lenses: $f_0=20\mathrm{cm},\,f_e=2.0\mathrm{cm}$ for Telescope: $l=f_0+f_e\Rightarrow 20+2.0=22\mathrm{cm}$ $M=\frac{-f_0}{f_e}\Rightarrow \frac{-20}{2}=-10$ For Microscope: $M=\frac{-\mathrm{Nl}}{f_ef_0}=\frac{-(2.5\times40\mathrm{cm})}{2\times20}=25X$

I. Light as a wave => Physical Optics

Diffraction and Interference

• Wavefront Huygen's Construction: distance r = vt Matches speed of wave v. Wavefront $\pm V$