Plan du cours

I.	Introduction			
II.	Symétrique d'un point, d'une figure			
	1.	Propriété de la symétrie axiale	1	
	2.	Symétrique d'un point par rapport à une droite	2	
	3.	Symétrique de figures usuelles	4	
111.	Axe	es de symétrie	5	

I. Introduction

Si l'on plie les trois figures ci-dessous suivant la droite (d), laquelle se superpose?

Définition

On dit que la figure présente **un axe de symétrie**, qu'elle est symétrique par rapport à la droite (d). On dit des deux moitiés de figure qui se superposent par pliage, qu'elles sont **symétriques** l'une de l'autre par rapport à l'axe de symétrie.

Les figures suivantes sont symétriques par rapport à la droite tracée en gras.

On dit par exemple que la dernière figure (celle constituée des deux triangles) est symétrique par rapport à la droite (d). Le triangle 1 est le symétrique du triangle 2 dans la symétrie d'axe (d) et le triangle 2 est le symétrique du triangle 1 par rapport à la droite (d).

II. Symétrique d'un point, d'une figure

1. Propriété de la symétrie axiale

Construire l'image d'une figure par une symétrie axiale revient à "décalquer plier" cette figure par rapport à une droite donnée. Une telle construction n'entraîne pas de déformation ni de changement de disposition.

Propriété

•

•

En pratique:

Pour construire l'image d'une figure géométrique par une symétrie axiale, on ne construit donc que l'image de ses points caractéristiques :

- pour un segment, ses,
- pour une droite, l'image de de ses,
- pour un triangle, ses trois,
- pour un cercle, son et son

2. Symétrique d'un point par rapport à une droite

Pour construire l'image A' d'un point A dans une symétrie d'axe (d) donné, on utilise les propriétés de la médiatrice d'un segment : l'axe (d) est la du segment [AA'].

Première méthode (à l'équerre) :

On trace la droite perpendiculaire à la droite (d) passant par A grâce à l'équerre et on y reporte la distance séparant A de (d) soit en utilisant la règle, soit le compas.

A vous de jouer!

Deuxième méthode (au compas) :

On reporte deux distances prises entre n'importe quel point de l'axe de symétrie et le point A.

A vous de jouer!

Remarque : Lorsqu'un point est situé sur l'axe de symétrie, son symétrique est

Exercice d'application 1 Construire A' et B', les symétriques respectifs des points A et B par rapport à la droite (d). $A \times A \times B \times A \times B$ $A \times B \times B \times B$ $A \times B \times B \times B$ $A \times B \times B \times B$

3. Symétrique de figures usuelles

Propriété

Exemple:

Propriété

Exemple:

Propriété

Exemple:

III. Axes de symétrie

Définition

Lorsque le symétrique d'une figure par rapport à une droite est la figure elle-même, on dit que cette droite est **un axe de symétrie** de la figure.

Exemple:

Construire les axes de symétries des chiffres ci-dessous, si ils existent.

Construire les axes de symétries des figures ci-dessous, si ils existent.

Axes de symétrie des figures usuelles :

Pour chaque figure, tracer tous les axes de symétrie puis compléter les textes.

	Un triangle isocèle a	Conséquence :
	axe de symétrie :	les deux angles à la base ont
	la de sa base.	la même
\wedge	Un triangle équilatéral a	Conséquence :
	axes de symétrie :	les trois angles ont
	les de ses côtés.	la même
	Un losange a	Conséquence :
	axes de symétrie :	les diagonales se coupent
	ses	en leur
		et sont
	Un rectangle a	Conséquence :
	axes de symétrie :	les diagonales se coupent
	les de ses côtés.	en leur
		et ont
	Un carré est à la fois un	Conséquence :
	et un	les diagonales d'un carré
	Il a axes de symétrie :	se coupent en leur,
	ses et les	sontet
	de ses côtés.	ont la même

Remarque: