Hodina 28. júla 2023

Program:

- 1. Domáca úloha (z minula)
- 2. Niekoľko príkladov na zahriatie a pozdvihnutie mysli.
- 3. Dôkazy. Matematická indukcia
- 4. Domáca úloha (nová)

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://g <a href="https:/

Videohovor Používame SpeakApp, link postnem vždy pred hodinou, *je možné, že sa bude týždeň od týždňa líšiť*.

1. Domáca úloha

Príklad 1

Dokážte, že pre všetky prirodzené n je číslo n(n+1)(n+5) deliteľné 3.

Riešenie

Priamy dôkaz

Nech r je zvyšok po delení n troma, teda n=3k+r, kde k je prirodzené číslo alebo 0 a $r\in\{0,1,2\}$. Môžu nastať tri prípady:

a. r = 0, v tomto prípade tvrdenie očividne platí;

b. r=1: v tomto prípde n+5=3k+1+5 a tvrdenie platí, pretože n+5 je deliteľné 3, a konečne v prípade

c. r=2 je n+1=3k+2+1, a tvrdenie platí, pretože n+1 je deliteľné 3.

Tieto tri prípady vyčerpávajú všetky možné situácie a preto tvrdenie platí.

Dôkaz indukciou

Pre $n \in N$ označme P(n) tvrdenie, že výraz n(n+1)(n+5) je deliteľný 3.

- 1. Základný prípad: P(0) platí, pretože 0 je deliteľná 3, a platí aj P(1), pretože $1\cdot 2\cdot 6=12$ je deliteľné troma.
- 2. Nech platí P(n) pre $n \in \{1, 2, \ldots\}$. Dokážeme, že platí P(n+1). Skutočne,

$$(n+1)(n+1+1)(n+1+5) = n(n+2)(n+6) + (n+2)(n+6)$$

 $= n(n+1)(n+6) + n(n+6) + (n+2)(n+6)$
 $= n(n+1)(n+5) + n^2 + n + n^2 + 6n + n^2 + 8n + 12$
 $= n(n+1)(n+5) + 3n^2 + 15n + 12$
 $= n(n+1)(n+5) + 3(n^2 + 5n + 4)$

a oba výrazy na poslednom riadku sú deliteľné troma (prvý podľa indukčného predpokladu, druhý je násobkom 3), čím je tvrdenie dokázané.

Príklad 2

Riešte rovnicu

a.
$$x^3 + x = 350$$

b.
$$x^3 - 9x^2 + 27x - 27 = 0$$

Riešenie a.

 $\it Met\'oda\ pozriem\ a\ vid\'im:\ 343=7^3\ a\ teda\ x=7\ je\ jeden\ koreň\ rovnice.\ Známou\ met\'odou\ syntetického\ delenia\ dostaneme$

7 _	1	0	1	-350
		7	49	350
	1	7	50	0

$$x^3 + x - 350 = (x - 7)(x^2 + 7x + 50)$$

Z toho vidíme, že sme našli jediný reálny koreň rovnice, pretože polynóm druhého stupňa vpravo nemá reálne korene.

Koreň x=7 dostaneme tiež pomocou vety o racionálnom koreni. Pretože q=1, $p=350=2\cdot 5^2\cdot 7$, možné racionálne korene sú $\{\pm 1,\pm 2,\pm 5,\pm 7,\pm 10,\pm 14,\pm 20,\pm 25,\pm 35,\pm 50,\pm 70,\pm 175,\pm 350\}$. Vzhľadom na tvar rovnice môžeme ľahko vylúčiť malé (1,2,5), ako aj veľké $(10,14,\ldots)$ korene.

Riešenie b.

$$x^3 - 9x^2 + 27x - 27 = 0$$

Opäť začneme metódou pozriem a vidím, v tomto prípade vidíme koreň x=3, a to hneď trojnásobný: $x^3-9x^2+27x-27=x^3-3\cdot 3\cdot x^2+3\cdot 3^2\cdot x-3^3=(x-3)^3$.

V prípade, že máme oko zahmlené, veta o racionálnom koreni nás nabáda preskúmať korene $\{\pm 1, \pm 3, \pm 9, \pm 27\}$.

Príklad 3.

Riešte rovnicu $8^x 27^x = 6\sqrt[5]{6}$

Riešenie

Túto rovnicu vyriešime prevedením mocnín na spoločný základ:

$$8^x 27^x = 2^{3x} 3^{3x} = 6^{3x}$$

$$6\sqrt[5]{6} = 6^{1+\frac{1}{5}} = 6^{6/5}$$

odtiaľ $3x = 6/5 \implies x = 2/5$.

Príklad 4

Ak je $\sin x^\circ = 12/13$, čomu sa rovná $\cos (90^\circ - x^\circ)$?

Riešenie

$$cos(90° - x°) = cos(90°)cos(x°) + sin(90°)sin(x°)$$

= $0 \cdot cos(x°) + 1 \cdot sin(x°) = sin(x°) = 12/13$

Geometrická interpretácia:

2. Príklady na zahriatie

Dnes iba jeden, ukazuje sa, že viac nestíhame.

Nájdite všetky reálne x, spĺňajúce rovnicu

$$x^4 - 12x - 5 = 0$$

Riešenie

Hoci máme vzorce pre korene rovníc 3. a 4. stupňa, tie sú prakticky nepoužiteľné. Preto sa snažíme nájsť riešenie takýchto rovníc rôznymi fintami. Niekoľko sme už prebrali:

- Skúsiť faktorizovať,
- veta o racionálnom koreni

Dnes sa naučíme ďalší spôsob, ako faktorizovať polynóm 4. stupňa. Veta o racionálnom koreni nám nič nedá - hoci máme polynóm s celočíselnými koeficientmi, $\pm 1, \pm 5$ nie sú korene.

Skúsme, či by nešlo náš polynóm 4. stupňa rozbiť na súčin kvadratických polynómov, nejako takto:

$$x^4 - 12x - 5 = (x^2 + ax + b)(x^2 + Ax + B)$$

Máme 4 koeficienty a 4 parametre, to by mohlo ísť. Roznásobíme a skúsime vyriešiť sústavu rovníc pre koeficienty:

$$x^{3}: a+A = 0$$
 $x^{2}: b+B+aA = 0$
 $x^{1}: aB+Ab = -12$
 $x^{0}: bB = -5$

Teraz nejako treba rozmotať toto klbko. Napríklad

$$A = -a$$

$$\implies b - B = \frac{12}{a}$$

$$\implies b + B = a^{2}$$

$$2b = \frac{12}{a} + a^{2} \implies b = \frac{6}{a} + \frac{1}{2}a^{2}, \quad B = -\frac{6}{a} + \frac{1}{2}a^{2}$$

a teraz musíme dosadiť do poslednej rovnice a vypočítať a:

$$\left(\frac{6}{a} + \frac{1}{2}a^2\right)\left(-\frac{6}{a} + \frac{1}{2}a^2\right) = -5$$
$$(a^3 + 12)(a^3 - 12) = 20a^2$$
$$(a^2)^3 + 20a^2 - 144 = 0$$

Toto našťastie vieme faktorizovať, pretože $a^2=4$ je koreň, takže

$$(a^2)^3 + 20a^2 - 144 = (a^2)^3 - 64 + 20(a^2 - 4) = (a^2 - 4)((a^2)^2 + 4a^2 + 36)$$

a vidíme, že člen kvadratický v a^2 nemá reálne (tobôž nie kladné) korene, takže jediné riešenie našej sústavy je $a=2,\ A=-2,\ b=5,\ B=-1$ (druhý koreň a=-2 dáva riešenie, kde si a, b vymenia úlohy s A, B). Tak sa naša rovnica 4. stupňa rozpadáva na dve kvadratické rovnice:

$$x^{4} - 12x - 5 = (x^{2} + 2x + 5)(x^{2} - 2x - 1) = 0$$
 \iff
 $x^{2} + 2x + 5 = 0$ alebo $x^{2} - 2x - 1 = 0$

Prvá z rovníc nemá reálne riešenia, z druhej $x=1\pm\sqrt{2}$, a to sú všetky reálne riešenia našej rovnice. Táto metóda nie je univerzálne úspešná - rovnice pre koeficienty a, A, b, B môžu byť komplikovanejšie ako pôvodná rovnica.

Alternatívna faktorizácia

lný spôsob, ako faktorizovať polynóm štvrtého stupňa:

Upravíme rovnicu na tvar $x^4=5x+12$ a skúsime k obom stranám pridať člen tvaru ax^2+b tak, aby sme na oboch stranách dostali úplný štvorec. Na pravej strane máme x^4+ax^2+b , a aby sme získali úplný štvorec $(x^2+a/2)^2=x^4+2\cdot a/2\cdot x^2+(a/2)^2$, potrebujeme, aby platilo

$$b = \frac{a^2}{4}$$

Podobne na druhej strane budeme mať $ax^2+12x+5+b=a(x^2+2\cdot 12/(2a)x+(5+b)/a)$, a teda pre úplný štvorec $(x+6/a)^2$ potrebujeme

$$\frac{5+b}{a} = \frac{36}{a^2} \implies b = 36/a - 5$$

Máme dve rovnice pre parametre a,b, a podobne ako v predchádzajúcom prípade nemáme žiadnu záruku, že riešenie tejto sústavy bude ľahšie ako riešenie pôvodnej rovnice. Dosadíme za b z prvej rovnice do druhej

$$\frac{a^2}{4} = \frac{36}{a} - 5$$
$$a^3 + 20a - 144 = 0$$

a túto rovnicu sme už videli a vieme, že má jediný reálny koreň a = 4. Potom b = 4 a máme

$$(x^2 + 2)^2 - 4(x + 3/2)^2 = 0$$

 $(x^2 + 2 + 2x + 3)(x^2 + 2 - 2x - 3) = 0$
 $(x^2 + 2x + 5)(x^2 - 2x - 1) = 0$

teda rovnaků faktorizáciu ako predtým a oba postupy sa cestou zišli a teda sú prakticky ekvivalentné.

3. Dôkazy. Matematická indukcia

Čo je dôkaz

Dôkaz je metóda určenia pravdy. V rôznych oblastiach sa toto dosahuje rôznymi spôsobmi:

- Súdny výrok
- Božie slovo
- Experimentálna veda
- Štatistické zisťovanie
- Vnútorné presvedčenie
- "Neviem, prečo by to nemala byť pravda..."
- Zastrašovanie

V matematike znamená dôkaz výroku reťazec logických dedukcií, ktoré dokazujú pravdivosť výroku vychádzajúc z množiny axióm.

Logický výrok je tvrdenie, ktoré je pravdivé alebo nepravdivé. Ne-výroky: "Umy si nohy!", "A teda čo je to dôkaz?"

- Výrok: 2+3 = 5. Tento výrok je pravdivý, aj keď nie je úplne jednoduché ukázať to, pretože toto tvrdenie spočíva na úplných základoch aritmetiky.
- Výrok. Pre prirodzené číslo n je $n^2 + n + 41$ prvočíslo.

Toto je iný výrok ako predchádzajúci. Máme tu dve nové veci: **Predikát** - teda parametrizovaný výrok (logickú funkciu), ktorý je pravdivý alebo nepravdivý podľa toho, čo doň dosadíme. A máme dokázať, že tvrdenie platí pre nekonečnú množinu čísel 1, 2, ... V matematickej notácii máme špeciálne symboly, označujúce, že nejaký predikát platí pre všetky prvky danej množiny (\forall), alebo že existuje prvok množiny, ktorý spĺňa daný predikát (\exists). Tieto symboly nazývame **kvantifikátory**. Teda posledný výrok môžeme napísať takto: $\forall n \in N: n^2 + n + 41$ je prvočíslo. Negácia takéhoto tvrdenia je $\exists n \in N: n^2 + n + 41$ nie je prvočíslo (nemáme užitočný symbol pre označenie, že číslo je alebo nie je prvočíslo).

Pri takýchto tvrdeniach väčšinou postupujeme tak, že vykonáme prieskum bojom: overíme platnosť tvrdena na niekoľkých hodnotách, a snažíme sa zistiť, ako tvrdenie "funguje". Toto tvrdenie má tú zvláštnu vlastnosť, že platí pre všetky n menšie ako 40, ale pre 40 dostaneme $40^2+40+41=40*41+41$ a teda sa nejedná o prvočíslo.

• Výrok. Neexistujú prirodzené čísla a, b, c, d spĺňajúce rovnosť $a^4+b^4+c^4=d^4$. Toto tvrdenie pochádza od Leonard Eulera z roku 1769, a až o 218 rokov neskôr Noam Elkies ukázal, že neplatí: a = 95800, b = 217519, c = 414560, d = 422481 sú riešením rovnice.

Axiómy sú tvrdenia, ktoré považujeme za pravdivé. Existujú známe systémy axióm, napríklad Euklidove axiómy rovinnej geometrie, často ale ako systém axiómov používame zrejmé vlastnosti celých či reálnych čísel.

Dôkaz je potom reťaz implikácií, ktorými ukážeme, že dané tvrdenie vyplýva z axióm (alebo zrejmých tvrdení).

Rôzne dôkazy

Príklad

Dokážte, že v každej skupine 6 ľudí sa nájde buď trojica ľudí, ktorí sa navzájom poznajú, alebo trojica ľudí, ktorí sa navzájom nepoznajú.

Riešenie

Toto je úloha na pomalé myslenie. Máme dokázať tvrdenie pre šesticu ľudí, ktorých vzťahy sú úplne náhodné - teda pre každú šesticu, kde sa ľudia i a j poznajú, existuje šestica, kde sa nepoznajú a tvrdenie musí platiť pre obe.

Budeme postupovať prípad po prípade. Zvolíme si náhodného človeka a budeme osobitne skúmať prípad, keď nepozná troch alebo viac ľudí (Prípad 1 na obrázku, zelení ľudia), a prípad, keď pozná troch alebo viacerých ľudí (Prípad 2, modrí ľudia) Úloha: premyslieť, prečo to vyčerpáva všetky možné situácie.

Dôkaz matematickou indukciou

Ak máme dokázať platnosť tvrdenia pre všetky prirodzené čísla, často využívame dôkaz matematickou indukciou

- Dokážeme tvrdenie pre nejaké počiatočné n, napríklad n=1. (počiatočný prípad, base case)
- Dokážeme, že z platnosti tvrdenia pre k=n vyplýva platnosť tvrdenia pre k=n+1.

Toto zaručuje platnosť tvrdenia pre všetky n: vychádzajúc z počiatočnej hodnoty n=1, postupne pomocou indukčného kroku vieme dokázať platnosť pre $n=2,3,\ldots$

Úloha

Dokážte, že pre všetky prirodzené čísla $n \geq 1$ platí $1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Dôkaz

Ako P(n) označíme predikát

$$1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$$

Platnosť P(n) pre všetky prirodzené čísla dokážeme matematickou indukciou.

- 1. Počiatočný prípad: P(1) platí , pretože $1^2=rac{1\cdot(1+1)(2+1)}{6}=1.$
- 2. Indukčný krok: Dokážeme, že z platnosti P(n) vyplýva platnosť P(n+1), n = 1, 2,Nech teda platí P(n), , teda $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$. Dokážeme, že z toho vyplýva platnosť P(n+1(). Skutočne,

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^{2}}{6} = \frac{(n+1)(2n^{2} + n + 6n + 6)}{6}$$

$$= \frac{(n+1)(2n^{2} + 7n + 6)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$

$$= \frac{(n+1)((n+1) + 1)(2(n+1) + 1)}{6}$$

a teda z platnosti P(n) vyplýva platnosť P(n+1), čím je dôkaz dokončený.

Úloha

Dokážte, že všetky kone sú rovnakej farby.

Dôkaz

Ako K(n) označíme predikát "V každej množine koní veľkosti n majú všetky kone rovnakú farbu." Dôkaz vykonáme matematickou indukciou.

- 1. (Base case) K(1) triviálne platí: Pre množinu veľkosti 1 máme jediného koňa a jedinú farbu.
- 2. (Indukčný krok) Predpokladajme, že platí K(n): "V každej množine koní veľkosti n majú všetky kone rovnakú farbu". Ukážeme, že z toho vyplýva platnosť K(n+1). Skutočne, označme $K=\{k_1,k_2,\ldots,k_n,k_{n+1}\}$ nejakú množinu koní veľkosti n+1. Podľa predpokladu kone v množinách veľkosti n, $\Lambda=\{k_1,k_2,\ldots,k_n\}$, a $M=\{k_2,\ldots,k_n,k_{n+1}\}$, majú rovnakú farbu. Potom ale všetky kone v K musia mať rovnakú farbu, pretože množiny Λ a M obsahujú spoločné kone k_2,\ldots,k_n , a teda keďže každý kôň môže mať jedinú farbu všetky kone v ich zjednotení $\Lambda\cup M=K$ musia mať rovnakú farbu. Tým sme dokázali, že z K(n) vyplýva K(n+1) a dôkaz platnosti K(n) pre všetky prirodzené n tým je dokončený: všetky kone majú rovnakú farbu.

4. Domáca úloha (nová)

1. Dokážte, že pre všetky kladné čísla a, b platí

$$\frac{a+b}{2} \geq \sqrt{ab}$$

- 2. Dokážte, že pre prirodzené n je $\log_7 n$ celé alebo iracionálne číslo.
- 3. Dokážte, že pre reálne r, s platí

a.
$$min(r,s) + max(r,s) = r + s$$

b.
$$|r+s| < |r| + |s|$$

4. Ak umocníme iracionálne číslo na iracionálne číslo, môže byť výsledok racionálny? Ukážte na prípade $\sqrt{2}^{\sqrt{2}}$.