# P-HRL: An Adaptive and Flexible Predictionbased Hierarchical Reinforcement Learning for Robot Soccer

Zongyuan Zhang, Tianyang Duan, Zekai Sun, Xiuxian Guan, Shengliang Deng, Yong Cui, Hongbin Liang, Heming Cui







### Motivation

- > **Robot soccer** is a robot sports game in which both parties control a team of robots and cannot be manually controlled during the game.
  - A robot cooperation scenario: need effective team strategies and joint decision-making processes
  - Several leagues have been successfully organized in recent years.
    - e.g., RoboCup, IEEE Very Small Size Soccer (IEEE VSSS).



- Promoted research in academic scenarios
  - e.g., path planning, humanoid robot research







## **Existing MARL Method**

- > Multi-agent reinforcement learning (MARL) has achieved outstanding success on cooperative scenarios.
  - e.g., video games(Google research football), cooperative traffic light control.





- Thus, the MARL approach has great potential in robot soccer.
- ➤ MARL controls the actions of multiple agents **based on rewards** to maximize the expected rewards by continuously interacting with the environment.
  - Actor-critic structure
    - ■e.g., MADDPG, MATD3.
  - A "high-efficient" multi-agent reinforcement learning environment: diverse reward feedback and simple state-action space



## Problems of Existing MARL in Robot Soccer

- A "high-efficient" multi-agent reinforcement learning environment:
  - (1) Continuous and timely reward feedback



(2) Different reward feedback for each agent



(3) Low-dimensional and limited state-action space



- > However, in robot soccer:
  - (1) Sparse reward



- Long-term process; occurs infrequently
- (2) Global reward



- Cannot assign to each robot
- 3 High-dimensional and continuous state-action spaces 🕩



■ Difficult to fully explore



It difficult for MARL to learn to collaborate in robot soccer.



|                 | Video game<br>(Google research<br>football)  | Robot soccer<br>(IEEE VSSS)                                    |
|-----------------|----------------------------------------------|----------------------------------------------------------------|
| action<br>space | Only 20 actions<br>(e.g., left, short Pass.) | Left wheel speed: range [-1,1] Right wheel speed: range [-1,1] |

## Key Idea: Subtask Decomposition by Coach

- The coach assigns different subtasks to each robot.
  - Give each robot different and continuous reward feedback
- Two types of subtasks: offensive subtask and defensive subtask
  - Guarantee possession of the ball
  - Select based on ball possession

|                                 | Offensive subtask $g^A$                                                                                    | Defensive subtask $g^D$            |
|---------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|
| Initiation condition $I_g$      | Our robots are in possession.                                                                              | Opposing robots are in possession. |
| Termination condition $\beta_g$ | (1) Opposing robots are in possession. (2) The ball reaches the predicted zone (3) After $T_p$ time steps. | Our robots are in possession.      |



## P-HRL: Prediction-based Hierarchical Reinforcement Learning

#### Hierarchical structure

- The coach provides a subtask and subtask reward to the robot controller(MARL).
- Coach: adjusting soccer tactics
- Robot controller: learning robot control.
- The robot controller uses a MARL method(MADDPG).
  - Added subtasks to actors and critics



## P-HRL: Prediction-based Hierarchical Reinforcement Learning

- In the offensive subtask, the robot needs to make judgments about the trajectory of the ball.
- The coach helps robot to judge the trajectory of the ball by predicting its position.
- Soccer Position Prediction Network(SPPN)
  - Mixture of experts(MoE) network
    - Independence of data in state
    - Easy to convergence
  - Zoning prediction



Soccer Position Prediction



An example of zoning prediction



## Implementation and Evaluation

#### > Evaluation environment:

rSoccer - IEEE VSSS multi-agent environment to simulate a robot soccer scenario.

#### > Baseline opponent:

 MATD3 - a state-of-the-art MARL method that has been used in many multi-agent cooperative tasks similar to robot soccer.

#### > Evaluation settings:

- 3 vs 3 robot soccer match
- No hardware on robots for dribbling or kicking the ball
- Follow the rewards shaping in rSoccer
- Each match lasting 2000 time steps



### **Evaluation Questions**

- ➤ How is P-HRL compared to baseline in terms of end-to-end performance?
- ➤ How does the coach contribute to the overall system?
- ➤ How well does the P-HRL adapt to the new opponent compared to the baseline?

### **End-to-end Performance**

- P-HRL has 52% win rate, 22% draw rate and 26% loss rate.
  - 50 matches: P-HRL won 26 matches and tied 11 matches. MATD3 won 13 matches.

#### Training method:

- Stage 1: Train P-HRL and MATD3 respectively, using rSoccer built-in agent as the opponent.
- Stage 2: Train P-HRL and MATD3 in a mutual confrontation.
- Each stage lasts until the average episode reward does not rise with the episode (about 1×10<sup>6</sup> steps).



➤ Goal difference: subtracting the number of goals scored by a team from the number of goals conceded in a match.





### **End-to-end Performance**

- Ball Possession Rate: team possession of the ball as a percentage of total time
- Number of Passes: total number of passes on the team
- Number of Interception: total number of interceptions on the team
- > P-HRL outperforms MATD3 in ball possession rate and the number of passes.

|       | Ball possession | Number of   | Number of    |  |
|-------|-----------------|-------------|--------------|--|
|       | rate            | passes      | interception |  |
|       | (per match)     | (per match) | (per match)  |  |
| P-HRL | 70.25%          | 14.32       | 14.40        |  |
| MATD3 | 17.14%          | 1.92        | 14.44        |  |



### The Effect of the Coach to P-HRL

- The coach brings better performance for P-HRL than baseline.
  - NN Coach: Using a neural network with the same number of parameters as SPPN in the coach (but without the structure of MoE).
  - Random Nearest Coach: Using a method that selects two random adjacent zones of the current zone as the prediction results in the coach.

| Coach                | Team Score: Opponent Score      | Acc Top 1       | Acc Top 2         |
|----------------------|---------------------------------|-----------------|-------------------|
| SPPN Coach           | $2.40{\pm}1.78:1.48\pm1.05$     | 0.70±0.06       | $0.85 \pm 0.04$   |
| NN Coach             | $2.15{\pm}1.22:1.55\pm1.31$     | $0.59 \pm 0.06$ | $0.80 {\pm} 0.05$ |
| Random Nearest Coach | $1.85 \pm 1.35 : 2.15 \pm 1.39$ | $0.06 \pm 0.11$ | $0.12 \pm 0.06$   |

Match results for different types of coach (vs. MATD3 in 50 matches)



### Conclusion

- > In this talk, we presented P-HRL, a prediction-based hierarchical reinforcement learning.
  - P-HRL consists of a coach for soccer tactics and a robot controller for robot motion control.
  - In matches against the state-of-the-art baseline MATD3, P-HRL has 52% win rate, 22% draw rate and 26% loss rate.
- We designed several key performance indicators (KPIs) for robotic soccer (e.g., ball possession) to more fully evaluate the performance of the P-HRL.
  - P-HRL has better cooperation between robots, with 70.25% possession rate compared to 17.14% for baseline.

### Future work

- P-HRL has been submitted to the International Conference on Automated Planning and Scheduling (ICAPS2023).
- Short-term work
  - Add additional baselines, e.g., MAAC.
- Long-term work
  - Deploying P-HRL to real robots for soccer matches instead of evaluating it in the simulation environment.
    - Quickly correct deviations between the simulation environment and the real environment.
  - Using large-scale training models in robot soccer.
    - Optimize distributed training process.