Class Work –6

Name:

Find:

1.
$$\int x \sin(x) dx = -x \cos x + \int \cos x dx = -x \cos x + \sin x + C$$
 $u = x$
 $du = dx$
 $dv = \sin x dx$
 $v = -\cos x$

2.
$$\int t^4 \ln(t) dt$$
. = $\frac{1}{5} t^5 \ln(t) - \frac{1}{5} \int t^4 dt = \frac{1}{5} t^5 \ln(t) - \frac{1}{25} t^5 \ln(t)$
 $u = \ln(t) du = \frac{1}{4} dt$
 $dv = t^4 dt$ $v = \frac{1}{5} t^5$

3.
$$\int (\sec^2(x) + \sec(x) \tan(x)) dx = \int \sec^2 x dx + \int \sec x \tan x dx$$
$$= \tan x + \sec x + C$$

4.
$$\int x \sec^2(x) dx = x \cdot t \operatorname{cn}(x) - \int t \operatorname{cn} x \, dx + C = x \cdot t \operatorname{an} x + \ln |\operatorname{cn} x| + C$$
 $u = x \quad du = dx$
 $dv = \sec^2 x \, dx \quad v = t \operatorname{cn}(x)$

5. Find the volume of the solid obtained by revolving the region bounded by the curves $y = \sec(x)$, $y = \cos(x)$, $0 \le x \le \frac{\pi}{3}$, about y = -1.

$$\frac{11}{6} \int_{0}^{13} (\sec x + 1)^{2} (\cos x + 1)^{2} dx = \frac{1}{6} \int_{0}^{13} [\sec x + 2\sec x - \cos x - 2\cos x] dx \\
= \frac{11}{6} \left[\tan x + 2 \ln |\sec x + \tan x| - \frac{1}{2}x - \frac{1}{4} \sin 2x - 2 \sin x \right]_{0}^{13} \\
= \frac{11}{6} \left[\frac{1}{12} + \frac{1}{12} \ln \left[2 + \frac{1}{12} \right] - \frac{11}{6} - \frac{\sqrt{3}}{8} - \frac{\sqrt{3}}{2} \right] = \frac{11}{6} \left[2 \ln \left(2 + \frac{1}{12} \right) - \frac{11}{6} - \frac{\sqrt{3}}{2} \right]$$