## Example 1:

In a mobile handset manufacturing factory, components arrive with a Poisson distribution at the rate of 6 components per 100 seconds. Assume that the time for testing the component takes any random time from 5 to 15 seconds, per component. It is assumed that the system can accommodate at most 15 components. Determine the measures of effectiveness.

## **Solution:**

In the given situation, the components arrive as a Poisson process with rate 0.06/sec and are processed in the time duration following uniform distribution over [5,15]. Hence the system is and M/G/1/15 queue. In order to obtain the measures of effectiveness, we follow the steps as shown below:

- > Open the page where the experimentation is to be performed
- Feed the data as shown:

#### M/G/1/N, G/M/1/N, G/G/1/N



Virtual Lab @ IITD

Next, click on the 'Start' button to obtain the desired measures of effectiveness



Virtual Lab @ IITD

## Example 2:

In a mobile handset manufacturing factory, a component arrives for testing every 3 seconds. It is assumed that the time for testing the component is exponentially distributed with parameter 4. It is assumed that the system can accommodate atmost 15 components. Determine the measures of effectiveness.

## **Solution:**

In the given situation, the components arrive at a fixed time interval of 3 seconds and is tested at the rate of 4 components per second. Hence the system is and G/M/1/15 queue. In order to obtain the measures of effectiveness, we follow the steps as shown below:

- > Open the page where the experimentation is to be performed
- Feed the data as shown:

#### M/G/1/N, G/M/1/N, G/G/1/N



Virtual Lab @ IITD

## Next, click on the 'Start' button to obtain the desired measures of effectiveness

### M/G/1/N, G/M/1/N, G/G/1/N



|                          | Start Reset            |
|--------------------------|------------------------|
|                          | C.M                    |
|                          |                        |
|                          | <b>©</b> G             |
| Arrival Distribution :   | Deterministic 💌        |
| Parameters :             | 3                      |
|                          | € M                    |
|                          | <b>C</b> G             |
| Departure Distribution : | Uniform                |
| Parameters :             | 4 15                   |
| Number of Servers :      | 1                      |
| Capacity of the System : | 15                     |
| Queueing Discipline :    | € FIFO C LIFO C Random |
|                          |                        |
|                          |                        |

# Example 3:

In a mobile handset manufacturing factory, a component arrives for testing every 10 mins. It is assumed that the time for testing the component takes any random time from 5 to 15 mins, per component. It is assumed that the system can accommodate atmost 15 components. Determine the measures of effectiveness.

## **Solution:**

In the given situation, the components arrive at a fixed time interval of 10 minutes. The time for testing is uniformly distributed between 5 to 15 mins. Hence the system is and G/G/1/15 queue. In order to obtain the measures of effectiveness, we follow the steps as shown below:

- > Open the page where the experimentation is to be performed
- Feed the data as shown:



Virtual Lab @ IITD

Next, click on the 'Start' button to obtain the desired measures of effectiveness

### M/G/1/N, G/M/1/N, G/G/1/N



Virtual Lab @ IITD