Национальный исследовательский университет «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ КАФЕДРА РАДИОТЕХНИЧЕСКИХ СИСТЕМ

Курсовая работа

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

ФИО СТУДЕНТА: ЛЕВАШОВ А.В.
Группа: ЭР-15-16
Вариант №: 11
Дата:
Подпись:
ФИО преподавателя: <u>Корогодин И.В.</u>
Оценка:

ВВЕДЕНИЕ

На сегодняшний день трудно представить жизнь современного человека без спутниковых радионавигационных систем. Возможность определения собственных координат, а также точного времени сильно улучшила уровень жизни современных людей. Бумажные карты остались в прошлом, определить свое местоположение, необходимый маршрут и продолжительность времени в пути можно просто зайдя в мобильное приложение.

Но большинство пользователей совершенно не задумывается насколько в действительности сложные технические решения предприняты для того, чтобы предоставить настолько высокоточный сервис неограниченному числу пользователей. Когда-то о таком не могли мечтать даже военные, а ведь первые радионавигационные технологии были доступны только им.

Нам, как инженерам-радиотехникам, в отличие от пользователей интересен не только готовый продукт в виде координат и маршрута движения, но и то по средствам каких научных и технических изысканий решается навигационная задача.

Поэтому целью курсового проекта является укрепление знаний, полученных в курсах, посвящённых глобальным навигационным системам, исследование навигационной системы Beidou, ознакомление с рядом инструментов и техник, используемых при разработке навигационных приемников.

АННОТАЦИЯ

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- 1) требования назначения;
- 2) отсутствие утечек памяти;
- 3) малое время выполнения;
- 4) низкий расход памяти;
- 5) корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- 1) обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
 - 2) моделирование модуля в Matlab/Python;
- 3) реализация программного модуля на C/C++, включая юниттестирование в Check.

Этапы курсовой работы отличаются осваиваемыми инструментами.

ЭТАП 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1.1 Общие сведения о системе Beidou

ВеіDou Navigation Satellite System является самостоятельно реализуемой и развиваемой Китайской Народной Республикой навигационной спутниковой системой. Целью создания системы являются: создание независимой, открытой, высокотехнологичной, стабильной и надежной Глобальной навигационной спутниковой системы. Кроме того, создание BDS призвано ускорить развитие космической отрасли Китая и промышленности в целом. Вследствие чего Китай уделяет большое внимание развитию BDS и, в частности, обладанию правами на интеллектуальную собственность касательно всех элементов системы. В соответствии с вышесказанным сформулированы основные принципы построения BDS:

- 1) Открытость. Строительство и развитие BDS ведётся открыто, система должна предоставляет высокое качество бесплатных услуг пользователям по всему миру.
- 2) Автономность. BDS должна обеспечивать работу по всему миру в независимость от других навигационных систем.
- 3) Совместимость. BDS должна быть пригодна для совместного использования с другими ГНСС.
- 4) Прогрессивность. В процессе строительства и эксплуатации системы должно вестись постоянное планомерное повышение качества и внедрение новейших технологий.

Состав орбитальной группировки космической навигационной системы Бэйдоу на 10 марта 2020 года:

- 1) Всего в составе ОГ: 48 КА
- 2) Используются по целевому назначению: 43 КА

3) Не используется по целевому назначению: 5 КА

Орбитальная группировка системы BeiDou Navigation Satellite System представлена на рисунке 1:

Рисунок 1 – орбитальная группировка системы BeiDou Navigation Satellite System

Приведем параметры эфемерид системы в таблице 1.

Таблица 1 – Параметры эфемерид системы

Параметр	Описание
toe	Опорная эпоха эфемерид
\sqrt{A}	Корень из большой полуоси орбиты
e	Эксцентриситет орбиты
ω	Аргумент перигея
Δη	Поправка в среднее движение
M_0	Средняя аномалия на опорную эпоху
Ω_0	Долгота восходящего угла орбиты на
	опорную эпоху
Ω	Скорость прямого восхождения
i0	Угол наклона орбиты на опорную эпоху
IDOT	Скорость изменения наклона орбиты
Cuc	Амплитуда косинусной поправки к
	аргументу широты
Cus	Амплитуда синусной поправки к
	аргументу широты
Crc	Амплитуда косинусной поправки к
	радиусу орбиты
Crs	Амплитуда синусной поправки к
	радиусу орбиты
Cic	Амплитуда косинусной поправки к
	углу наклона
Cis	Амплитуда синусной поправки к углу
	наклона

1.2 Использование входных данных и определение номера спутника

На крыше корпуса Е МЭИ установлена трехдиапазонная антенна Harxon HX-CSX601A. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- 1) Javad Lexon LGDD,
- 2) SwiftNavigation Piksi Multi,
- 3) Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года, доступны в рабочем репозитории (директория logs) в нескольких форматах.

Воспользуемся этими данными и сведем их в таблицу для конкретного варианта. Данные сведены в таблицу 2.

Таблица 2 – Значения эфемерид спутника С11

Параметр	Обозначение	Значение			
	параметра				
Satnum	PRN	11			
toe (MC)	t _{oe}	237600000.000			
Crs (рад)	-	-1.47500000000000000e+01			
Dn (рад/мс)	Δn	3.08584299606173840e-12			
М0 (рад)	M_0	2.05369950341053498e+00			
Сис (рад)	-	-8.32602381706237793e-07			
е	e	2.12729186750948429e-03			
Cus (рад)	-	1.11386179924011230e-05			
sqrtA (m ^{1/2})	\sqrt{A}	5.28260794258117676e+03			
Сіс (рад)	-	3.35276126861572266e-08			
Omega0 (рад)	Ω_0	-2.34989438813352569e+00			
Сіѕ (рад)	-	-2.60770320892333984e-08			
i0 (рад)	i_0	9.90627871535710081e-01			
Стс (рад)	-	1.45906250000000000e+02			
Omega (рад)	ω	-1.91916766236221403e+00			
OmegaDot (рад/мс)	$\dot{\Omega}$	-6.45062583731548538e-12			
iDot (рад/сек)	i _{DOT}	-1.25719522437021839e-13			
Tgd (мc)	T_{gd}	4.10000000000000000e+04			
Toc (Mc)	T_{oc}	2.37600000000000000e+08			
$af2 (mc/mc^2)$	-	2.16840444796468865e-22			
afl (мс/мс)	-	2.26592078433895949e-11			
af0 (мc)	-	-9.19481515884399414e-01			
URA	-	0			
IODE	-	2827			
IODC	-	10			
codeL2	-	0			
L2P	-	0			
WN	-	789			

Проверку корректности этих данных можно осуществить сравних их с данными на сайте (https://www.glonass-iac.ru/BEIDOU/beidou_almanac.php). Приведем скриншот таблицы эфемерид с сайта glonass-iac (рисунок 2).

PRN	Н	е	t	δ_{l}	Ω	Α	Ω_0	ω	m	af ₀	af ₁	week
C01	000	0.00071239	430080	0.00743022	1.38291475e-9	6493.3501	2.98905894	-1.58469541	1.06331646	-0.0007095337	3.63798e-11	789
C02	000	0.00096846	430080	0.02975084	9.25752847e-10	6493.3682	-1.02751434	-1.63411872	-2.20927314	0.0005016327	-2.91038e-11	789
C03	000	0.00091696	430080	0.03526358	1.21147903e-9	6493.5327	-1.29044860	-0.02036682	-3.09766448	-0.0004491806	2.54659e-11	789
C04	000	0.00042629	430080	0.01647232	1.46291808e-9	6493.4438	-1.55592091	-2.85548951	0.86799906	-0.0004148483	-8.00355e-11	789
C05	000	0.00081635	602112	0.02306963	1.54292141e-9	6493.5288	-1.38334432	-1.17875413	-2.77005621	-0.0007972717	-7.63976e-11	789
C06	000	0.01062536	430080	0.00345146	-2.01151236e-9	6492.7988	0.63641665	-2.20170060	-2.74867860	0.0001039505	3.27418e-11	789
C07	000	0.00814486	430080	-0.05126851	-2.18294807e-9	6492.9468	2.63927761	-2.52518816	1.88863220	-0.0003395081	-3.63798e-11	789
C08	000	0.00533342	430080	0.09738381	-1.88579284e-9	6493.1177	-1.48581469	-2.68672953	-0.08744552	-0.0009117126	7.27596e-12	789
C09	000	0.00773954	430080	0.00841293	-1.96579617e-9	6492.9893	0.67875279	-2.38421885	-2.99440952	0.0007238388	-2.54659e-11	789
C10	000	0.00687933	430080	-0.04953679	-2.16008998e-9	6493.2471	2.63247394	-2.55366680	1.54080693	-0.00008392334	7.27596e-12	789
C11	000	0.00211430	417792	0.04812865	-6.75456707e-9	5282.5640	-2.35106374	-1.91359160	1.31983804	-0.0009155273	2.18279e-11	789

Рисунок 2 – Таблицы эфемерид с сайта glonass-iac

Как видно, что данные предоставленные преподавателем действительно сходятся со спутником С11. Но сложность заключается в том что PRN не отражает номера спутника, который используется в различных сторонних средствах. Номер спутника можно определить с помощью таблицы приведенной на Википедии (рисунок 3).

Рисунок 3 – Таблица спутников BeiDou на Википедии

Из предоставленной таблицы видно, что спутнику с PRN C11 соответствует спутник \mathbb{N} 12, это обстоятельство стоит учитывать при выполнении следующих пунктов этапа.

1.3 Определение формы орбиты и положения спутника на ней на начало рассматриваемого интервала времени по данным сервиса CelesTrak

Для выполнения этого пункта перейдем на сайт CelesTrak (https://celestrak.com). Настроим параметры и выберем необходимый спутник, после чего будет построена Земля и орбита спутника вокруг нее (рисунок 4).

Рисунок 4 – Результат моделирования на CelesTrak

Учтем, что в задании просится построить модель на момент 18:00 по МСК. Это говорит о том, что на сайте нужно время установить 15:00. На данный момент времени спутник еще не находится в зоне видимости антенны на корпусе Е, что сходится с данными, полученными при использовании сервиса Trimble GNSS Planning.

1.4 Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Нужно построить график угла места от времени и SkyView собственного спутника на заданный интервал времени. Для этого воспользуемся веб-сайтом Trimble GNSS Planning (https://www.gnssplanning.com). Во вкладке настроек (Settings) указываем координаты корпуса «Е» МЭИ и время проведения записи (Рисунок 5). Во вкладке библиотеки спутников (Satellite Library) отключаем отображение всех спутников, кроме заданного (Рисунок 6).

Рисунок 5 – Вкладка настроек (Settings) Trimble GNSS Planning

Рисунок 6 – Вкладка библиотека спутников (Satellite Library) Trimble GNSS Planning

Чтобы получить график угла места, нажимаем вкладку графики (Charts). По полученным данным, спутник был виден 1 раз (Рисунок 7). Появление наблюдается с 18:40 до 00:30. Время указано по UTC +00:00.

Рисунок 7 – График угла места спутника Beidou C11

Во вкладке «Sky Plot» можно получить карту небосвода (SkyView) (рисунок 8).

Рисунок 8 – SkyView спутника Beidou C11

Траектория отражает единственное появление спутника в заданном промежутке времени.

ЭТАП 2. МОДЕЛИРОВАНИЕ

Задание на этап:

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника Beidou на заданный момент по шкале времени UTC. В качестве эфемерид использовать данные, полученные на предыдущем этапе.

Построить трехмерные графики множества положений спутника Beidou с системным номером, соответствующим номеру студента по списку. Графики в двух вариантах: в СК ЕСЕF WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 18:00 МСК 16 февраля до 06:00 МСК 17 февраля 2021 года. Допускается использовать одни и те же эфемериды на весь рассматриваемый интервал.

Построить SkyView за указанный временной интервал (напоминаю, антенна на крыше корпуса E) и сравнить результат с Trimble GNSS Planning Online, полученный на прошлом этапе.

Моделирование.

Моделирование проводилось с помощью алгоритма приведенного на сайте Навипедия. Для выполнения данного этапа был использован пакет математического моделирования Matlab.

2.1 Результаты моделирования

Алгоритм расчёта реализован в программе MATLAB R2015a, код приведён в приложении 1.

Рассчитанные траектории движения спутника приведены на рисунке 9.

Рисунок 9 – Траектория движения спутника Beidou PRN №11 в системе координат WGS-84 (синяя линия) и инерциальной системе координат (красная линия)

Необходимо построить SkyView за указанный временной интервал и сравнить результат с Trimble GNSS Planning Online, полученный на прошлом этапе.

Для этого необходимо декартовые координаты пересчитать в сферические, а затем по полученным углам построить графики в полярной системе координат (рисунок 10) и угла места в зависимости от времени (рисунок 11). Полученные результаты соответствуют, полученным на Trimble GNSS Planning.

Рисунок 10 – SkyView спутника Beidou PRN №11

Рисунок 11 – График угла места спутника Beidou PRN №11

ПРИЛОЖЕНИЕ

Приложение 1.

```
close all;
clear all;
clc:
format long
%% Введем исходные данные
SatNum = 11;
Toe = 237600.0000000;
Crs = -1.4750000000000000000e+01;
Dn = 3.08584299606173840e-12;
M0 = 2.05369950341053498e+00;
Cuc = -8.32602381706237793e-07;
e = 2.12729186750948429e-03;
Cus = 1.11386179924011230e-05;
sqrtA = 5.28260794258117676e+03;
A = sqrtA^2;
Cic = 3.35276126861572266e-08;
Omega0 = -2.34989438813352569e+00;
Cis = -2.60770320892333984e-08;
i0 = 9.90627871535710081e-01;
Crc = 1.459062500000000000e+02;
omega = -1.91916766236221403e+00;
OmegaDot = -6.45062583731548538e-12;
iDot = -1.25719522437021839e-13;
Tgd = 4.100000000000000000e+04;
Toc = 2.376000000000000000e+08;
af2 = 2.16840444796468865e-22;
af1 = 2.26592078433895949e-11;
af0 = -9.19481515884399414e-01;
URA = 0;
IODE = 2827;
IODC = 10;
codeL2 = 0;
L2P = 0;
WN = 789;
mu = 3.98600442e14;
Om_Earth = 7.2921151467e-5;
R_Earth = 6371e3;
% время на начало расчета 18:00 МСК 16 февраля
t begin = (24*2 + 15)*3600;
% время на момент окончания расчета 6:00 МСК 17 февраля
t finish = (24*3 + 3)*3600;
 %Длительность расчета
 Time = t_begin:1:t_finish;
 % Среднее движение КА
 n = sqrt(mu/A^3) + Dn;
```

```
%Рассчитаем координаты КА
  =  for k = 1: length (Time)
      T(k) = Time(k) - Toe;
       %Исходя из предоставленного алгоритма
      if T(k) > 302400
 阜
          T(k) = T(k) - 604800;
      if T(k) < -302400
           T(k) = T(k) + 604800;
      end
       % Средняя аномалия
      M(k) = M0 + n*T(k);
       % Уравнение Кеплера
      E(k) = M(k);
      Epre(k) = M(k)+1;
      Ostanova = 1e-7;
      while abs(E(k) - Epre(k)) > Ostanova
           Epre(k) = E(k);
           E(k) = M(k) + e*sin(Epre(k));
      end
       % Истинная аномалия
      v(k) = atan2( sqrt(1 - e^2) * sin(E(k)) , cos(E(k)) - e );
       % Коэффициенты коррекции
      Correction_{cos(k)} = cos(2*(omega + v(k)));
      Correction sin(k) = sin(2*(omega + v(k)));
       % Аргумент широты
      u(k) = omega + v(k) + Cuc*Correction_cos(k) + Cus*Correction_sin(k);
       % Радиус орбиты
      r(k) = A * (1 - e * cos(E(k))) + Crc*Correction cos(k) + Crs*Correction sin
       % Наклон орбиты КА
      i(k) = i0 + iDot * T(k) + Cic*Correction cos(k) + Cis*Correction sin(k);
       % Долгота восходящего угла
      E(k) = Omega0 + (OmegaDot - Om Earth) * T(k) - Om Earth*Toe;
      % Положение на орбите
      x = r(k) * cos(u(k));
      y = r(k) * sin(u(k));
       % Координаты
      Xcord(k) = x * cos(E(k)) - y * cos(i(k)) * sin(E(k));
      Ycord(k) = x * sin(E(k)) + y * cos(i(k)) * cos(E(k));
       Zcord(k) = y * sin(i(k));
       % Координаты в инерциальной
      X(k) = Xcord(k) * cos(E(k)) + Ycord(k) * sin(E(k));
       Y(k) = -X \operatorname{cord}(k) * \sin(E(k)) + Y \operatorname{cord}(k) * \cos(E(k));
       Z(k) = Zcord(k);
 end
 %% Пересчет координат в WGS-84
 ppb = 1e-9;
 mas = 1e-3/206264.8; % [рад]
 WGS 84 = [-3*ppb -353*mas -4*mas;353*mas -3*ppb 19*mas;4*mas -19*mas -3*ppb];
 CordWGS_84 = [Xcord; Ycord; Zcord];
\blacksquare for i = 1:length(CordWGS 84(1,:))
     CordWGS_84(:,i) = CordWGS_84(:,i) + WGS_84 * CordWGS_84(:,i) + [0.07; -0; -0.77];
CordWGS_84 = CordWGS_84.';
```

```
% Построение графических зависимостей
  [XE,YE,ZE] = sphere(30);
  figure (1)
  surf (XE*R Earth, YE*R Earth, ZE*R Earth)
  hold on
  grid on
  plot3(CordWGS_84(:,1), CordWGS_84(:,2), CordWGS_84(:,3))
  plot3(X, Y, Z)
  xlabel('X, м', 'FontName', 'Times New Roman')
  ylabel('Y, m', 'FontName', 'Times New Roman')
  zlabel('Z, M', 'FontName', 'Times New Roman')
  hold off
  lgd = legend('Земная сфера','WGS84','Инерциальная СК');
  lgd.FontName = 'Times New Roman';
  %% Географические координаты корпуса Е
  % Широта
  N gr = 55;
  N_{min} = 45;
  N sec = 23.8178;
  N = N_gr*pi/180 + N_min/3437.747 + N_sec/206264.8;
  % Долгота
  E_gr = 37;
  E_{min} = 42;
  E_{sec} = 12.2608;
  E = E_gr*pi/180 + E_min/3437.747 + E_sec/206264.8;
  H = 500; % высота [м]
  a = 6378137.0000;
  b = 6356752.3142;
  e = sqrt (1-(b/a).^2);
  x = (a*cos(E))/(sqrt(1 + (1 - e*e)*(tan(N))^2)) + H*cos(E)*cos(N);
  y = (a*cos(N))/(sqrt(1 + (1 - e*e)*(tan(N))^2)) + H*cos(N)*cos(N);
  z = (a*(1 - e*e)*sin(N))/(sqrt(1 - e*e*sin(N)*sin(N))) + H*sin(N);
 Cordinates E(1) = x;
  Cordinates E(2) = y;
 Cordinates E(3) = z;
 %% SkyPlot
 for i = 1:length(CordWGS_84(:,1)) 
     [X(i) Y(i) Z(i)] = ecef2enu(CordWGS_84(i,1),CordWGS_84(i,2), ...
     ... CordWGS_84(i,3), N, E, H, wgs84Ellipsoid, 'radians');
     if Z(i) > 0
         r(i) = sqrt(X(i)^2 + Y(i)^2 + Z(i)^2);
         theta(i) = acos(Z(i)/r(i));
         if X(i) > 0
             N(i) = -atan(Y(i)/X(i))+pi/2;
         elseif (X(i)<0) &&(Y(i)>0)
            N(i) = -atan(Y(i)/X(i))+3*pi/2;
         elseif (X(i)<0) &&(Y(i)<0)
            N(i) = -atan(Y(i)/X(i))-pi/2;
     else theta(i) = NaN;
        r(i) = NaN;
         N(i) = NaN;
     end
end
```

```
% SkyPlot
figure (1)
polar(N,theta*180/pi)
ax.ThetaDir = 'clockwise';
ax.ThetaZeroLocation = 'top';

% Angle
T_hours = hours(Time/3600 - 2*24); % Перевод временной оси в формат hh:mm:ss
figure (2)
grid on
hold on
plot(T_hours,(-theta)*180/pi+90,'DurationTickFormat','hh:mm:ss')
```