

Sabancı University Faculty of Engineering and Natural Sciences

CS301 – Algorithms

Homework 1

Due: March 6, 2024 @ 23.55 (upload to SUCourse)

PLEASE NOTE:

- Provide only the requested information and nothing more. Unreadable, unintelligible, and irrelevant answers will not be considered.
- Submit only a PDF file. (-20 pts penalty for any other format)
- Not every question of this homework will be graded. We will announce the question(s) that will be graded after the submission.
- You can collaborate with your TA/INSTRUCTOR ONLY and discuss the solutions of the problems. However, you have to write down the solutions on your own.
- Plagiarism will not be tolerated.

Late Submission Policy:

- Your homework grade will be decided by multiplying what you normally get from your answers by a "submission time factor (STF)".
- If you submit on time (i.e. before the deadline), your STF is 1. So, you don't lose anything.
- If you submit late, you will lose 0.01 of your STF for every 5 mins of delay.
- We will not accept any homework later than 500 mins after the deadline.
- SUCourse's timestamp will be used for STF computation.
- If you submit multiple times, the last submission time will be used.

Question 1

The recurrence relation of a recursive divide and conquer algorithm is given. Explain this recurrence, verbally, in terms of the size of each sub-problem, the cost of dividing the problem, and combining solutions.

$$T(n) = 3T(\frac{n}{4}) + 2n + n^3$$

ANSWER:

Tan Vfoh Gelih 10:28285 tanufuk $T(n) = 3T(\frac{n}{2}) + 2n + n^{3}$ Answer: > In terms of the size of each problem; The given recursion relation shows that we divide each problem of size a into 3 smaller subproblems of size n/4. This is expressed by the term -> The cost of dividing problem; In this recursion relationship, the cost associated with dividing the problem is 2n. This is linear cost associated with breaking the original problem into sub-problems - Combining solutions; The cost of combining solutions is n3. This is cubic cost and with merging or combining the solutions of the sub-problems. In divide and conquer algorithms, after doing the sub-problems, these solutions should be combined to get the solution of the original problem. Therefore, as a summary; 1 -> the size of each problem (1 -> input size) In -> cost of the dividing 13 -> cost of cambring

Question 2

Find an asymptotically tight lower bound for the following recurrence by using the substitution method.

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + \Theta(n)$$

ANSWER:

Question 3

For the following recurrences, either solve it by using the master method or show that it cannot be solved with the master method.

(a)
$$T(n) = T(\frac{n}{2}) + \Theta(1)$$

ANSWER:

T(n)=
$$T(\frac{n}{2})+\Theta(1)$$

Since the master theorem works with recurrences

of the form

In this case; $a=1$, $b=2$, $f(n)=\Theta(1)$

when need \log_a^b , let's colculere it:

 $\log_a^b = \log_2^b = n^a = 1$

We need to campose \log_a^2 with $f(n)$
 $f(n)=\Theta(1)=\Theta(\log_a^2)$

It is case 2

 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$
 $O(n)=O(\log_a^2)$

(b)
$$T(n) = 3T(\frac{n}{4}) + n \lg n$$

ANSWER:

Tan Ufik Gelik

$$T(n) = 3T(\frac{n}{4}) + n\log n$$
 $a = 3$, $b = 4$, $f(n) = n\log n$
 $a > 1$

We need $n\log^n n$, let's calculate it:

 $n\log^n n = \log^1 n$

We need to compare $n\log^n n + \log^n n$

We need to compare $n\log^n n + \log^n n$

We need to compare $n\log^n n + \log^n n$
 $f(n) = n\log n = \Omega(n\log^n n + \log^n n)$
 $f(n) = n\log n = \Omega(n\log^n n + \log^n n)$
 $f(n) = n\log n = \Omega(n\log^n n + \log^n n)$
 $f(n) = n\log n = \Omega(n\log^n n + \log^n n)$
 $f(n) = n\log n = \Omega(n\log^n n + \log^n n)$

This finishes our necessory requirements and we have that

 $f(n) = O(f(n))$

Then, $f(n) = O(n\log n)$