$\mathbf{P}_{\mathbf{I}}$	rogram: Bachelor in	Part A: Introduction			
1	Science (Degree/Honors Course Code	Class: B.Sc. Sem. V	Year: 2024	Session:2024-2025	
2	Course Title	MSE-3 Complex Analysis Discipline Specific Elective (DSE) This Course will enable the students to: Understand Complex number and their properties. Understand the concept of Limit, Continuity, Differentiability of Complex and Analytic function. Understand the fundamental Complex integration. Understand the generate Complex integration.			
3	Course Type				
4	Course Learning Outcome (CLO)				
5	Credit Value	state of singularity and meromorphic function			
6	Total Marks	Maximum Marks: 100 (Ext. 80 + Int. 20) Minimum Passing Marks: 40			

Module	Part B: Content of the Course	
I	Complex Name Agents	No. of Hours
	Complex Numbers and Their Geometrical Representation: Complex numbers as ordered pairs, Geometrical representation of complex numbers, Modulus and argument of complex numbers and its Properties, Equation of straight line and circle, Cauchy's inequality and Lagrange's identity	15
II	Continuity and Differentiability of Complex and Analytic Functions: Limit, Continuity, Differentiability of functions of a Complex variables, Analytic function, Cauchy – Riemann equations, Conjugate function, Laplace's Differential equations, Harmonic functions, Orthogonal system and Construction of Analytic function.	15
111	Complex integration: Complex integration, Cauchy-Goursat. Theorem. Cauchy's integral formula. Higher order derivatives. Morera's Theorem. Cauchy's inequality and Liouville's theorem. The fundamental theorem of algebra. Taylor's theorem. Laurent's series.	15
IV	Singularity: Singularity and its classification. Meromorphic functions. Maximum modulus principle. Schwarz lemma. The argument principle. Rouche's theorem Inverse function theorem.	15

Part C - Learning Resource

Text Books, Reference Books, Other Resources

- 1. Complex Analysis By L.V.Ahlfors, McGraw Hill, 1979.
- J.B. Conway, Functions of one Complex variable, Springer-Verlag, International student- Edition, Narosa Publishing House, 1980.
- 3. H.K. Pathak, Complex Analysis and Applications, ShikshaSahityaPrakashan, 2019
- 4.H.A. Priestly, Introduction to Complex Analysis, Clarendon Press, Oxford 1990.
- 5. Complex Function Theory By D.Sarason

22

uh 1

Res

8000°

- 6. Liang-shin Hahn & Bernard Epstein, Classical Complex Analysis, Jones and Bartlett Publishers International, London, 1996.
- 7. S. Lang, Complex Analysis, Addison Wesley, 1977.
- 8. D. Sarason, Complex Function Theory, Hindustan Book Agency, Delhi, 1994.
- 9. Mark J.Ablowitz and A.S. Fokas, Complex Variables: Introduction and Applications, Cambridge University press, South Asian Edition, 1998.
- 10. C.Caratheodory, Theory of Functions (2 Vols.) Chelsea Publishing Company, 1964.
- 11. E.C Titchmarsh, The Theory of Functions, Oxford University Press, London.
- 12. S.Ponnusamy, Foundations of Complex Analysis, Narosa Publishing House, 1997.

E-Recourses:

https://onlinecourses.nptel.ac.in https://epqp.inflibnet.aci.in https://swayam.gov.in https://www.mooc.org

Part D: Assessment and Evaluation

Suggested Continuous Evaluation Methods:

Maximum Marks:

100 Marks

Continuous Comprehensive Evaluation (CCE): 20 Marks

Semester End Exam (SEE):

80 Marks

Internal Assessment: Continuous Comprehensive	Internal Test -02 of 10 Marks each Assignment/Seminar-01 of 10 Marks	Better marks out of two test + obtained marks in Assignment shall be considered against 20 marks
Evaluation(CCE) Semester End Exam (SEE)	Paper-Two Section-A&B Section-A: Objective and short answer type ques Section-B: Descriptive answer type question Mo	
Amendment or Moo	Section-B: Descriptive answer type question into	as per situation of directed by

the department/Examination cell/NEP-20 Scheme coordinator

Name and signature of convener & member of BOS: