

# **Logistic Regression**



#### Let's Go to the Deep Learning World!!

## 쉬운 것부터 시작해봅시다

## 초등학교 6학년 수학 – 정비례





- 어느 학교 학생들의 신체검사 자료
- 새로 전학온 학생 A의 키가 175cm일 때 예상 몸무게는?



- 어느 학교 학생들의 신체검사 자료
- 새로 전학온 학생 A의 키가 175cm일 때 예상 몸무게는?



## Regression?



- 선형함수(예: 1차함수)로 주어진 data를 근사한다
- y = wx + b



• 잘 예측했는지 측정할 척도(metric)가 필요함



$$y^* = wx + b$$
 (예측값)
$$Cost(Loss) = \sum_{i} (y_i - y_i^*)^2$$

$$= \sum_{i} (y_i - wx_i - b)^2$$

- Cost(Loss) 값을 minimize하는 w와 b를 구하면 될텐데.... 어떻게?
  - Random Search 가능????
  - Cost function을 미분해서 최솟값(미분=o이되는 점)을 찾자!

## 산수를(미분을...) 조금 해야겠습니다

## b 구하기

$$L = \sum_{i} (y_i - wx_i - b)^2$$

$$\frac{\delta L}{\delta b} = \frac{\delta \sum_{i} (y_i - wx_i - b)^2}{\delta b}$$

$$= -2\sum_{i} (y_i - wx_i - b) = ny_{avg} - nwx_{avg} - nb = 0$$

$$\therefore b = y_{avg} - wx_{avg}$$

## w구하기

$$L = \sum_{i} (y_i - wx_i - b)^2$$

$$\frac{\delta L}{\delta w} = \frac{\delta \sum_{i} (y_i - wx_i - b)^2}{\delta w}$$

$$= -2\sum_{i} x_{i}(y_{i} - wx_{i} - b) = -2\sum_{i} x_{i}(y_{i} - wx_{i} - y_{avg} + wx_{avg})$$

$$= 0$$

## Multi Variable Linear Regression

• x가 scalar값(1개)가 아니라 vector가 된다면??

• Input

■ X1: Facebook 광고료

■ X2 : TV 광고료

■ X<sub>3</sub> : 신문 광고료

Output

■판매량

| FB                    | TV                    | 신문                    | 판매량  |
|-----------------------|-----------------------|-----------------------|------|
| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | Y    |
| 230.1                 | 37.8                  | 69.2                  | 22.1 |
| 44.5                  | 39.3                  | 45.1                  | 10.4 |
| 17.2                  | 45.9                  | 69.3                  | 9.3  |
| 151.5                 | 41.3                  | 58.5                  | 18.5 |
| 180.8                 | 10.8                  | 58.4                  | 12.9 |
| 8.7                   | 48.9                  | 75                    | 7.2  |
| 57.5                  | 32.8                  | 23.5                  | 11.8 |
| :                     | :                     | :                     |      |

## Multi Variable Linear Regression

- 식은 여전히  $y^* = \mathbf{w}^T \mathbf{x} + b$ •  $\mathbf{w}^T = [w_1, w_2, w_3], \ \mathbf{x}^T = [x_1, x_2, x_3]$
- 그런데 미분해서 o이 되는 점은 어떻게 찾아야 할까?
  - 변수가 많아지고, matrix가 커지면 복잡도가  $O(n^3)$  이기 때문에 exponential하게 증가하여 계산이 거의 불가능함
  - minimum을 바로 구하는 게 아니라, 현재 loss에 대한 w의 gradient(경사도)를 구하여 gradient x learning rate 만큼 w를 update하자
    - → Gradient Descent

#### **Gradient Descent**

$$w_{new} = w - \alpha \frac{\delta L}{\delta w}$$

- 방향 : 그 지점에서의 gradient
- 속력(보폭) : learning rate(α)



#### Stochastic Gradient Descent, Mini-batch Training

• Data가 너무 많아서 한번에 다 넣고 학습하면 시간도 오래걸리고, memory도 부족하게 됨



## Classification도 할 수 있지 않을까요?

- 종양의 크기에 따른 양성/음성 판별 문제
  - 1 : 양성(암), o: 음성(정상)



- Linear Regression으로 해봅시다
  - Regression 예측값이 o.5 이상이면 양성, o.5 이하면 음성으로 판별



• 종양의 크기가 매우 큰 data(outlier) 가 추가된 경우







- 아주 크거나 아주 작은 data에 영향을 많이 받지 않았으면 좋겠다
- Binary classification에 맞게 o에서 1사이 값으로 나오면 좋겠다
- → Sigmoid 를 써보자



## Logistic Regression

• Linear Regression 식에 Sigmoid 함수를 통과시킨 것(odds의 logit을 linear regression)

$$\bullet y = \sigma(w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$$



## Logistic Regression

- Loss function으로 MSE(Mean Squared Error)를 쓰면?
  - Linear regression에서는 convex function이었지만 Logistic Regression에서 는...



## Logistic Regression

• 새로운 Cost(Loss) function을 정의(maximum likelihood estimation)

$$cost(W) = -\frac{1}{m} \sum ylog(H(x)) + (1 - y)log(1 - H(x))$$



Figure B.1: Logarithmic transformation of the sigmoid function.