New Machine Learning Strategies for Data Scarce Material Science Problems

November 15, 2021

Ozgur Taylan Turan

Go/No-go Meeting

Outline

- Introduction
- Literature
- Aim
- Research Questions
- Planning
- Reflection

Introduction Literature Aim Research Questions Planning Reflection Extras

Computational Solid Mechanics

Solid Mechanics

- Relate deformation with internal force development
- $\nabla \cdot \mathbf{P} = 0$ with $\mathbf{P} = \mathcal{C}(\mathbf{F})$

Computational Solid Mechanics

Finite Element Method

- General PDE solving method
- Discretize the domain
- Weakly satisfy the PDE at selected points

Composite Modeling

Composite Modeling

FE²

- Representative Volume Element (RVE)
- Solve for RVE and average the response
- Repeat for every selected point

Composite Modeling

FE²-Bottleneck

- Micro-scale problem solution
- Repeating for every selected point
- Highly non-linear behaviour

Introduction Literature Aim Research Questions Planning Reflection Extras

Composite Modeling

FE²-Bottleneck

- Micro-scale problem solution
- Repeating for every selected point
- Highly non-linear behaviour

We need multiple of these simulations for real world applications!

FE² via Machine Learning

FE² via Machine Learning

ullet Computationally a Material: ${f F}
ightarrow {f P}$

FE² via Machine Learning

Problems in Current State

- Risky Extrapolation
- Data Scarcity
- Single Parameter Configuration
- General Applicability

Hypothesis

- Most of the problems encountered can be tackled with more general approaches.
- The core problem is finding the mapping between a deformation measure and a force measure. $(P = \mathcal{C}(F))$.
- Similarity between the problems can be exploited, without considering the different parameters that effect the model.

Aim-A

Aim-B

O.T. Turan

Overall Learning Problem-A

Consider an arbitrary space that represents overall material behaviour, and the subsets of this space representing specific material types.

Task Space Δ D۵ В D_1 C_3 D_2 B_2 C_4 В

O.T. Turan

Overall Learning Problem-B

ullet Every label in this space becomes a full mapping! ($T_{D_1}:=\{T_{D_{1i}}:{f F} o{f P}_i\}_{i=1}^M)$

Research Questions

- To what extent this prediction is possible?
- Can we find a latent space where the tasks with different parameters live and exploit the similarities between these tasks?
- What information can we extract from the model trained with the batch of tasks at hand?
- Can we find an effective sampling strategy in the task space and in the feature space of the given task?

Related Paradigms in ML Literature

- Meta Learning (Learning-to-learn)
- Transfer Learning and Domain Adaptation
 - Multi-task Learning

Project Planning

Collaborations

- Continuation of my MSc. Thesis Multi-fidelity Gaussian Process Regression
- Miguel Bessa and I in collaboration with Iuri Rocha and Frans van der Meer from Civil Engineering and Geosciences
- Data Generation

Doctoral Education Planning

Doctoral Education Planning				
Skills-Credit Balance	Course	Year	Credit	Status
Discipline Related-(10/16)	Machine Learning-1	1	5	1
	Deep Learning	1	5	/
	Linear Algebra and Optimisation for Machine Learning	2	6	X
Research Related-(4/24)	Speaker at a national (or minor international) conference	1-5	1	X
	Poster presentation conference/workshop	1-5	1	×
	Internship of at least 1 month with another institute	1-5	2	×
	Writing a research proposal	1-5	2	×
	Writing a conference paper	1-5	1	×
	Writing a journal article	1-5	3	×
	Supervising a MSc. Student	1-2	4	in-progress
	Supervising a BSc. Student	1	4	/
	Teaching assistance:laboratory course	2	2	in-progress
	Teaching assistance:providing material, correcting exams	2	2	in-progress
Transferable-(6/17)	PhD Startup Module (A-B-C)	1	2	/
	Mental fitness Intervention Program	1	1	/
	Standing up for yourself while keeping good relation	1	1	/
	Analytical Storytelling	1	2	/
	Work Smarter, stress less	2	3	planned
	Speedreading and Mindmapping	2	1.5	planned
	Time Management-Individual Crash Course	2	0.5	planned
	Research Design	2	3	planned
	Dutch for Foreigners	2	3	X

Past Year with COVID19

Academic

- PRB
- Collaboration

Past Year with COVID19

Academic

- PRB
- Collaboration

Non-Academic

- Work-Life Balance
- Well-being

Thanks for your attention!

Reflection

Reformulate the Problem-A

$\mathbf{P} = \mathcal{C}(\mathbf{F})$

- Normally, $P = f(F, \gamma)$
- $\gamma := \{\gamma_i\}_{i=1}^M$ with $M \in \mathbb{Z}^+$
- $\mathbf{P} = \mathcal{M}(\mathbf{F}, \gamma)$
- Application specific models!

Reformulate the Problem-B

$\mathbf{P} = \mathcal{C}(\mathbf{F})$

- Let's stick to P = C(F)
- Then, $P = \mathcal{M}(F)$

How to account for γ ?

- Let's stick to $\{\mathbf{P}_i = \mathcal{C}_i(\mathbf{F})\}_{i=1}^M$ with $M \in \mathbb{Z}^+$
- $\mathbf{P} = \mathcal{M}(\mathbf{F})$
- Model input-output remains the same!

Reformulate the Problem-C

How do we end up with a parametrized relationships?

Series of assumptions,

$$\mathcal{A}: \{a_n \subset a_{n-1} \subset ... \subset a_1\}$$

Individual Learning Problem

- If the aim is to learn $F \rightarrow P$
- Learning problem: $\mathcal{T}_{\mathcal{A}}: \mathbf{F} \to \mathbf{P}$

Extras

Reformulate the Problem-D

Overall Learning Problem

- Given $\{\mathbf{P}_i = \mathcal{C}_i(\mathbf{F})\}_{i=1}^M$ with $M \in \mathbb{Z}^+$
- Learning problem: $\{\mathcal{T}_{\mathcal{A}_i}:\mathbf{F} o\mathbf{P}_i\}_{i=1}^M$

Single-Task Learning vs Bias Learning-A

Single-Task Learning

- Input Space F OutputSpace P
- Probability Distribution p on $\mathbf{F} \times \mathbf{P}$
- Loss Function $l: \mathbf{P} \times \mathbf{P} \to \mathbb{R}$
- Hypothesis Space \mathcal{H} , a set of functions $h: \mathbf{F} \to \mathbf{P}$
- Minimize the expected loss to get $h \in \mathcal{H}$

Single-Task Learning vs Bias Learning-B

Bias Learning

- Input Space F OutputSpace P
- Probability Distribution p on $\mathbf{F} \times \mathbf{P}$
- Loss Function $l: \mathbf{P} \times \mathbf{P} \to \mathbb{R}$
- An environment $(\mathcal{Q}, \mathcal{P})$ where \mathcal{P} is all possible distribution of p and \mathcal{Q} is the distribution of \mathcal{P}
- Hypothesis Space Family $\mathbb{H}:=\{\mathcal{H}\}$, where each \mathcal{H} is a set of functions $h:\mathbf{F}\to\mathbf{P}$
- \bullet Minimize the expected future risk or transfer risk to find the appropriate Hypothesis Space $\mathcal H$

ntroduction Literature Aim Research Questions Planning Reflection **Extras**

MAML vs Multi-task

• Problem: $y = a * \sin(x + p)$ for $x \in [0, 5]$ and $a \in [0.1, 5]$ & $a \in [0, \pi]$ for K = 5 and $\mathcal{B}(\mathcal{T})$ size 100

O.T. Turan

Small Investigation of MAML ¹

- $a \in \mathbb{R}^d \to p_a \sim \mathcal{N}(m\mathbf{1}, c\mathbf{I})$
- $x \in \mathbb{R}^d \to p_x \sim \mathcal{U}(\mathbf{0}, b\mathbf{1})$
- $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- $y = a^{\mathsf{T}}x + \varepsilon \in \mathbb{R}$
- $Z := ((x_i, y_i))_{i=1}^N$
- $\hat{a}_N \rightarrow$ an estimator trained with N training points

Expected Error over the whole task space,

 $\int \int (\hat{a}_N(Z)^\mathsf{T} x - y)^2 p(x,y) dx dy p_Z dZ p_a da$

Investigating the performance of a future emprical risk minimizing algorithm for transfer risk.

¹C. Finn, P. Abbeel, and S. Levine (2017), "Model-agnostic meta-learning for fast adaptation of deep networks", In: 34th International Conference on Machine Learning, ICML 2017 3, pp. 1856-1868. arXiv: 1703.03400

F3DASM

- Design of Experiements
- Simulation or Machine Learning Module

Summer Schools & Conferences

Summer Schools

- Machine Learning Summer Schools (MLSS)
- Gaussian Process Summer School
- Nordic Probabilistic Al Summer School
- Oxford Machine Learning Summer School

Summer Schools & Conferences

Conferences on ML

- Conference on Computer Vision and Pattern Recognition (CVPR)
- International Conference on Learning Representations (ICLR)
- International Conference on Machine Learning (ICML)
- International Conference on Machine Learning and Pattern Recognition (ICMLPR)

troduction Literature Aim Research Questions Planning Reflection **Extras**

Summer Schools & Conferences

Conferences on Mechanics

- FEniCS Conference
- International Conference on Mathematics and Computational Mechanics (ICMCM)
- International Conference on Computational Geomechanics and Material Response (ICCGMR)
- FEniCS Conference
- International Conference on Computational Continuum Mechanics and Dynamics (ICCCMD)
- International Conference on Computational Continuum and Continuum Mechanics (ICCCM)