Design process of room temperature monitor

Your Name

BU ID: Your BU ID

1 Summary

2 Introduction

Maintaining a stable indoor temperature is key to both comfort and energy efficiency. Commercial thermostats can be costly and rigid, so this project explores a low-cost, modular alternative. We build a room temperature monitor using a TMP36 sensor, a 16×2 I²C LCD, and an Arduino Uno, powered by a 9 V

battery, with green and red LEDs (with $1\,\mathrm{k}\Omega$ and $220\,\Omega$ resistors) and a buzzer for status indication.

The aims are to mimic basic thermostat functions using components we explored during the semeter and to gain hands-on experience in electronics assembly, firmware development, and CAD design. We modeled and fabricated a enclosure, lid, battery holder, and base plate in CAD (OnShape), wiring everything with

22 AWG and female-to-female jumper cables for the I²C monitor.

This report details the component selection, mechanical design, circuit assembly, and code implementa-

tion, and evaluates the system's performance in achieving the design objectives.

3 Design elements

Explain your design decisions. Address each of the following:

1. List all components used in your design electronic components, hardware, etc.

2. Precision measurements Make a table of relevant dimensions (see example below).

1

Table 1: Relevant dimensions of all components

Item	Sketch identification	W [mm]	L [mm]	H [mm]	Diameter [mm]
ABS enclosure					
Arduino Board					
Switch					
LCD 2X16					
Buzzer					
Temperature sensor					
LED					

3. CAD drawings

Include a screenshot of your final assembly.

Figure 1: CAD assembly of the prototype.

4. Prototype photographs

Top view of actual prototype, with and without lid, powered on.

(a) With lid (b) Without lid

Figure 2: Top views of the working prototype.

5. Purpose of using an Arduino board

Explain role of the Arduino in the circuit.

6. Wiring diagram and methods

Show diagram and discuss soldering, jumper wires, twist nut caps, spade connectors, etc.

Figure 3: Circuit wiring diagram.

7. Wire gauge and resistor values

Specify wire gauge used and justify choice (jumper vs. 22 AWG). State resistor values in series with green/red LEDs, calculate operating currents using KVL.

8. Internal power supply

Discuss why a 9 V battery, its charge capacity, expected runtime, and external power options.

9. Arduino code

Provide the code listing used in your design.

Listing 1: Arduino sketch for temperature monitoring

```
// Example placeholder code
void setup() { Serial.begin(9600);
// initialization...
} void loop() { float temp = readTemperature(); Serial.println(temp);
// control LEDs...
delay(1000); }
```

10. Prototype specifications

List:

- Voltage of power supply
- Operating voltage of circuit
- Total current drawn (measured with DMM)
- Battery operating time
- Sensor temperature range (from datasheet)
- Comfortable temperature range
- Use KVL to explain resistor choices (1 k Ω for green LED, 220 Ω for red LED)

4 Evaluation of Results

- Degree to which design objectives were met
- Summary of outcomes and comparison to standard thermometers
- Limitations and recommendations for future work (battery life, size, weight, etc.)
- Highlight usefulness of the design

A Supporting Materials