Lecture 12 – Undecidable problems, Post's correspondence problem

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 11

- Recursively enumerable languages are exactly those generated by (Type 0) grammars
 - ullet TM to G: simulate moves on a reversed non-terminal copy of ω , generate sufficient space, cleanup if accepting state
 - G to TM: generate all strings, check if any of them represents a valid derivation of ω (sentential forms separated by #)
- Context-sensitive languages:
 - context-sensitive grammars are equivalent to monotone grammars
 - Linear Bounded Automaton (LBA): nondeterministic TM with tape limited to the length of input
 - constructions: monotone grammar to LBA, LBA to monotone grammar
- Intro to computability: an overview
- decision problem \infty the language of all 'YES' instances
- machine-readable encoding of TMs

The Diagonal language

Let decode(w) be the TM M such that code(M) = w. (Recall: if w is not a valid code, then decode(w) is a fixed one-state TM with no instructions.) Then:

$$L_D = \{ w \mid w \notin L(\operatorname{decode}(w)) \}$$

Theorem

 L_D is not recursively enumerable.

Proof idea: there cannot exist a TM recognizing L_D : running it on its own code would lead to Barber's paradox

"The program accepts all programs that don't accept themselves. Does the program accept itself?"

Proof that $L_D = \{ w \mid w \notin L(\operatorname{decode}(w)) \}$ is not RE

Proof: Assume for contradiction that $L_D = L(M)$ for some M. Let w = code(M). Then $L_D = \{w \mid w \notin L(M)\}$. Is $w \in L(M)$?

$$w \in L(M) \Leftrightarrow w \in L_D \Leftrightarrow w \notin L(M)$$

Why 'diagonal'? A variant of Cantor's diagonal argument. Order all TMs by $M_i = \text{decode}(w_i)$. Does M_i accept w_i ?

A TM for L_D would be one of the rows but differs from each row in the diagonal element. (Same as the proof that \mathbb{R} is uncountable.)

The Universal Turing Machine

Summary of Lecture 12

- the Diagonal language L_D is not recursively enumerable
- the Universal language L_U, the Universal TM: simulate any M
 on any w
- Post's theorem: L recursive iff both L, \overline{L} are RE
- L_U , $\overline{L_D}$ are recursively enumerable but not recursive