Suthabang suit alberture can part when heard a function of the function of the

. Moma bus speal whole so significant in the series of the

spia geta lloma o esu su bluch?
Seria geta spial o re
algina et esnes ardon ti ([1,0] no.

the function more as on [2,4]) it .
One [1,4] (even more as on [2,4]) it moless as not to use a large stry singe ond sample the function has.

Sxb(x)+ I et vieutomijenggo storusso erem a vi usistes

(4)
$$\frac{\$}{[t_{\mu}, \varepsilon]} + (+)_{[c_{\eta}, 1]} + (+)_{[c_{\eta}, 0]}$$
 (7) $\frac{36.0}{[t_{\eta}, 0]}$ (7) $\frac{\$}{[t_{\eta}, 0]} + (+)_{[c_{\eta}, 0]}$ (7) $\frac{\$}{[t_{\eta}, 0]} + (+)_{[c_{\eta}, 0]}$ another $\frac{\$}{[t_{\eta}, 0]} + \frac{\$}{[t_{\eta}, 0]} + \frac{\$$

$$\int_{0}^{4} \frac{1}{5} e^{-6x} \sin(x) dx = \frac{6}{3} e^{-30} \left(1 - 5\sin(4) - 5\cos(4) \right) \approx 0.19330769406...$$

a collect the volume of the function exclusion was a tel

and but a figs is needed. When the volue doub doub or now, a longer also sings can be used. Can we downs a scheme where the rate pine is adapted on vorious partiens of the Interpolition?

Suppose we wish to appropriate the table $\int_0^h f(x) dx$ with the topological nult above the sign of $\int_0^h f(x) dx$ with the sign of $\int_0^h f(x) dx$ and $\int_0^h f(x) dx = \int_0^h f(x) dx = \int_$

Similarly when $b-\alpha$ If we apply the Thopogod rule with also size $\frac{h}{\alpha}$, $\frac{h}{\alpha}$ (1) $\frac{h}{\alpha}$ (2), $\frac{h}{\alpha}$ (1) $\frac{h}{\alpha}$ (1) $\frac{h}{\alpha}$ (2), $\frac{h}{\alpha}$ (1), $\frac{h}{\alpha}$ (1), $\frac{h}{\alpha}$ (1), $\frac{h}{\alpha}$ (2), $\frac{h}{\alpha}$ (2), $\frac{h}{\alpha}$ (2), $\frac{h}{\alpha}$ (2), $\frac{h}{\alpha}$ (2), $\frac{h}{\alpha}$ (3), $\frac{h}{\alpha}$ (4), $\frac{h}{\alpha}$ (4), $\frac{h}{\alpha}$ (5), $\frac{h}{\alpha}$ (6), $\frac{h}{\alpha}$ (7), $\frac{h}{\alpha}$ (8), $\frac{h}{\alpha}$ (9), $\frac{h}{\alpha}$ (9), $\frac{h}{\alpha}$ (1), $\frac{h}{$

$$= Th = \frac{h}{(\frac{4}{5})^{1}} + \frac{h}{(\frac{4}{5})^{1}} + \frac{h}{(\frac{4}{5})^{1}} + \frac{h}{(\frac{4}{5})^{1}} + \frac{h}{(\frac{4}{5})^{1}} + \frac{h}{(\frac{4}{5})^{1}} = \frac{h}{(\frac{4}{5})^{1}} + \frac{h}{(\frac{4}{5}$$

met . (atal aut je etibilor ub arvais Wie) (is)" + % (s)" + smuods

((**) m aut ponal

$$\left| \left(T_{(a,\frac{64}{6})} T - T_{(a,\frac{64}{6})} T - T_{(a,\frac{64}{6})} T \right) \approx \left| T \right| \approx \left| T - T_{(a,\frac{64}{6})} T \right|$$

$$(T_{(a,\frac{64}{6})} T - T_{(a,\frac{64}{6})} T \right)$$

$$(T_{(a,\frac{64}{6})} T - T_{(a,\frac{64}{6})} T - T_{(a,\frac{64}{6$$

.3 multies xb(x) to such their suc, 38 > (***) p ea bono