# Elegoo 2.8 Zoll Touch Screen Benutzer Handbuch

# ---Arduino Version





# **Vorwort**

Dieses 2.8 Zoll Touch Screen Benutzer Handbuch (Arduino Version) bezieht sich auf Arduino UNO und Mega 2560 Boards und solche, die mit dem UNO Board kompatibel sind. Andere Boards, welche 3-5V unterstützen, werden in dieser Anleitung nicht angesprochen.

# Übersicht

| 1. Produkteinführung              | 1         |
|-----------------------------------|-----------|
| 1.1. Eigenschaften                | 1         |
| 1.2. Modul Spezifikationen        | 2         |
| 1.2.1. Basis Spezifikationen      | 2         |
| 1.2.2. Elektronik Spezifikationen | 2         |
| 1.3. Schnittstellendefinition     | 3         |
| 1.3.1. Größen Spezifikationen     | 4         |
| 1.3.2. Pins Korrespondenz         | 4         |
| 1.3.3. CON1 interface             | 5         |
| 2. Vorbereitung                   | 错误!未定义书签。 |
| 2.1. Hardware Vorbereitung        | 6         |
| 2.2. Software Vorbereitung        | 7         |
| 3. Anleitung                      | 错误!未定义书签。 |
| 3.1. Bibliotheken importieren     | 9         |
| 3.2. Arbeiten mit UNO             | 9         |
| 3.2.1. Beispiel 1                 | 10        |
| 3.2.2. Beispiel 2                 | 12        |

|      | 3.2.3. Beispiel 3         |
|------|---------------------------|
|      | 3.2.4. Beispiel 4         |
|      | 3.2.5. Beispiel 514       |
|      | 3.2.6. Beispiel 6         |
|      | 3.2.7. Beispiel 7         |
| 3.3. | Arbeiten mit MEGA256016   |
|      | 3.3.1. Beispiel 1         |
|      | 3.3.2. Anderes Beispiel20 |

# 1. Produkteinführung

## 1.1. Eigenschaften

- (1) Kompatibel mit Arduino UNO und Mega2560, kann direkt über die Pins ohne weitere Verdrahtung mit dem Interface verbunden werden.
- (2) Kompatibel mit allen Arten von 5V oder 3V MCU mit 5V-3.3V Umschaltung.
- (3) 320X240 HD Auflösung, kann als Touch Screen benutzt werden.
- (4) Adopting 8-bit Parallel Bus, schnellere und glattere Auffrischung als bei SPI.
- ( 5 ) Bietet Unterstützung mit Arduino Bibliotheken, vereinfacht die Programmentwicklung.
- (6) Mit Micro-SD Kartenschaltung, einfache Erweiterung des Testumfangs.

# 1.2. Modul Spezifikationen

# 1.2.1. Basis Spezifikationen

| Item               | Description                  |
|--------------------|------------------------------|
| Display Type       | 2.8 inch a-si TFT LCD Module |
| Glass Type         | TFT                          |
| Display Resolution | 240XRGBX320 Pixels           |
| Back light         | 4 chip HighLight white LEDs  |
| Control IC         | ILI9341                      |
| Interface          | 8 Bit parallel interface     |
| PCB Module size    | 78.22mmX52.7mm               |
| LCD Area(WxHxT)    | 50mmX69.2mmX2.5mm            |
| Active Area(WxH)   | 43.2mmX57.6mm                |
| Module weight      | TDB                          |

Tabelle 1. Basis Spezifikationen

# 1.2.2. Elektronik Spezifikationen

| Specification          |                    | Min | Туре | Max | Unit |
|------------------------|--------------------|-----|------|-----|------|
| Power Voltage(VDD/VCC) |                    | 3.3 | 5    | 5.5 | VDC  |
| IO Pins Voltage        | MCU Voltage = 3.3V | 3   | 3.3  | 3.6 | V    |
|                        | MCU Voltage = 5V   | 4.5 | 5    | 5.5 |      |
| BackLight Voltage      |                    | 2.8 | 3.2  | 3.3 | V    |
| Current Consumption    |                    | -   | 120  | _   | mA   |

Tabelle 2. Elektronik Spezifikationen

## 1.3. Schnittstellendefinition



| LCD Pins | instruction                 |  |
|----------|-----------------------------|--|
| LCD_RST  | Reset Signal                |  |
| LCD_CS   | Chip Sellect                |  |
| LCD_RS   | Command/Data Sellect        |  |
| LCD_WR   | Write Signal                |  |
| LCD_RD   | Read Signal                 |  |
| GND      | Power GND                   |  |
| 5V       | Power VCC                   |  |
| 3V3      | No Connected                |  |
| LCD_D0   | LCD Data Bit0               |  |
| LCD_D1   | LCD Data Bit1               |  |
| LCD_D2   | LCD Data Bit2               |  |
| LCD_D3   | LCD Data Bit3               |  |
| LCD_D4   | LCD Data Bit4               |  |
| LCD_D5   | LCD Data Bit5               |  |
| LCD_D6   | LCD Data Bit6               |  |
| LCD_D7   | LCD Data Bit7               |  |
| SD_SS    | SD-card Chip Sellect Signal |  |
| SD_DI    | SD-card SPI Bus MOSI Signal |  |
| SD_DO    | SD-card SPI Bus MISO Signal |  |
| SD SCK   | SD-card SPI Bus SCLK Signal |  |

Bild 1. Interface Definition

# 1.3.1. Größenspezifikationen



Bild 2. Größenspezifikationen

# 1.3.2. Pinbelegung

| LCD Pins | Arduino UNO&2560 Pins | instruction                 |
|----------|-----------------------|-----------------------------|
| LCD_RST  | A4                    | Reset Signal                |
| LCD_CS   | A3                    | Chip Sellect                |
| LCD_RS   | A2                    | Command/Data Sellect        |
| LCD_WR   | A1                    | Write Signal                |
| LCD_RD   | A0                    | Read Signal                 |
| GND      | GND                   | Power GND                   |
| 5V       | 5V                    | Power VCC                   |
| 3V3      | 3.3V/NC               | No Connected                |
| LCD_D0   | 8                     | LCD Data Bit0               |
| LCD_D1   | 9                     | LCD Data Bit1               |
| LCD_D2   | 2                     | LCD Data Bit2               |
| LCD_D3   | 3                     | LCD Data Bit3               |
| LCD_D4   | 4                     | LCD Data Bit4               |
| LCD_D5   | 5                     | LCD Data Bit5               |
| LCD_D6   | 6                     | LCD Data Bit6               |
| LCD_D7   | 7                     | LCD Data Bit7               |
| SD_SS    | 10                    | SD-card Chip Sellect signal |
| SD_DI    | 11                    | SD-card SPI Bus MOSI Signal |
| SD_DO    | 12                    | SD-card SPI Bus MISO Signal |
| SD_SCK   | 13                    | SD-card SPI Bus SCLK Signal |

Tabelle 3. Pinbelegung zwischen LCD und Arduino

#### 1.3.3. CON1 Schnittstelle



Bild 3. CON1 Schnittstelle

Info: Nur SD\_DO, SD\_DI, SD\_SS, SD\_SCK und Arduino sind an, und der Rest ist unabhängig von Arduino's IO.

# 2. Vorbereitung

# 2.1. Hardware Vorbereitung

- (1) Einen PC oder ein Laptop
- (2) Ein Arduino UNO Board (Bild 3) oder ein Arduino MEGA2560 Board (Bild 4).



Bild 3. UNO

Bild 4. MEGA2560

(3) Ein Mini USB Kabel (Type B)



Bild 6. Mini USB Cable (Type B)

#### (4) Einen 2.8 Zoll Touch Screen.



Bild 7. 2.8 Zoll Touch Screen.

(5) Eine micro SD Karte, jede Speichergröße ist OK.



Bild 8. Micro SD Karte

#### 2.2. Software Vorbereitung

Laden Sie die Arduino IDE von der offiziellen Seite von Arduino herunter (www.arduino.cc). Installieren Sie die IDE mit der Standardeinstellung, Sie können den Installationspfad während der Installation auswählen. Öffnen Sie die IDE wie in Bild 9.

```
🥯 sketch_mar21a | Arduino 1.8.1
                                                            ×
File Edit Sketch Tools Help
 sketch_mar21a
 1⊟ void setup() {
      // put your setup code here, to run once:
 3
 4
 5
 6 □ void loop() {
      // put your main code here, to run repeatedly:
 8
 9 }
                                             Arduino/Genuino Uno on COM75
```

Bild 9. Arduino IDE

# 3. Anleitung

## 3.1. Bibliotheken importieren.

Kopieren Sie die Bibliotheken von "..\Arduino Demo\_UNO&Mega2560\Install libraries" (Bild 10) in den Arduino IDE Installationspfad: "..\Arduino\libraries" .



Bild 10

#### 3.2. Arbeiten mit dem UNO

Verbinden Sie den 2.8 Zoll Touch Screen mit dem Arduino UNO Board (siehe Bild 11), dann verbinden Sie das UNO Board mittels USB-Kabel mit dem PC oder Laptop.



Bild 11.

## 3.2.1. **Beispiel 1**

(1) Öffnen Sie ..\2.8inch\_Arduino\_ILI9341\_V3.2\Arduino

Demo\_UNO&Mega2560\Beispiel01-Simple test\Simple test for

UNO\ 9341uno\ 9341uno.ino;

(2) Klick auf "Werkzeuge" -- "Board" -- "Arduino/Genuino Uno" (Siehe Bild 12)



Bild 12

(3) Klick auf "Werkzeuge" -- "Port" -- "COMxx (Arduino/Genuino Uno)" (Siehe Bild 13)



Bild 13

(4) Klick auf die "Hochladen" Taste , und warten, bis die Programmierung abgeschlossen ist. (Siehe Bild 14)



Bild 14

Beispiel 1 ist das simpelste Beispiel-Program, welches ohne jegliche Bibliothek auskommt. Das Ergebnis von Beispiel 1 ist ein Bildschirm, der abwechselnd komplett mit rot, grün, blau, weiß und Schwarz und dann zufällig gefärbt wird. Wenn dieses Beispiel einwandfrei funktioniuert, iost die Hardware des 2.8 Zoll Touch Screen in Ordnung.

## 3.2.2. **Beispiel 2**

(1) Öffnen Sie ..\2.8inch\_Arduino\_ILI9341\_V3.2\Arduino

Demo UNO&Mega2560\Beispiel02-DisplayString\DisplayString\DisplayString.ino;

(2) - (4) Wie bei 3.2.1, In Bild 15 sieht man das Ergebnis von Beispiel 2.



Bild 15

Dieses Beispiel zeigt einen einfachen alphabetischen String inklusive Zahlen mittels Vector-Schriftart-Scalierung, welche jeden englischen Buchstaben in jeglicher Schriftart-Größe ermöglicht.

#### 3.2.3. **Beispiel 3**

(1) Öffnen Sie ..\2.8inch Arduino ILI9341 V3.2\Arduino

Demo UNO&Mega2560\Beispiel03-graphicstest\graphicstest\graphicstest.ino

(2) - (4) Wie bei 3.2.1, Bild 16 zeigt das Ergebnis.



Bild 16

Dieses Beispiel zeigt verschiedene GUI Bild Funktionen und rotiert den Bildschirm.

# 3.2.4. Beispiel 4

(1) Öffnen Sie ..\2.8inch\_Arduino\_ILI9341\_V3.2\Arduino

Demo\_UNO&Mega2560\Beispiel04-Touch\tftpaint\tftpaint.ino;

(2) - (4) Wie bei 3.2.1, Bild 17 zeigt das Ergebnis.



Das ist ein Beispiel für einen Touch Screen und Zeichenbrett.

#### 3.2.5. **Beispiel 5**

(1) Öffnen Sie ..\2.8inch\_Arduino\_ILI9341\_V3.2\Arduino

Demo UNO&Mega2560\Beispiel05-ShowBMP\ShowBMP\ino;

( 2 ) Entnehmen Sie die SD-Karte und schließen Sie sie mittels Kartenleser an Ihren PC oder Laptop an. (Siehe Bild 18). Öffnen Sie "Computer", Rechtsklick auf die SDS-Karte und diese formatieren, kopieren Sie die Bilder

von ..\2.8inch Arduino ILI9341 V3.2\Arduino

Demo\_UNO&Mega2560\Beispiel05-ShowBMP\PIC in das Hauptverzeichnis der SD-Karte.



Bild 18

(3) - (5) Wie bei (2) - (4) in 3.2.1, Bild 19 zeigt das Ergebnis.



Bild 19

Dieses Beispiel zeigt einen Digitalen Fotorahmen, welcher BMP-Bilder von SD\_Karte dekodiert und anzeigt.

## 3.2.6. **Beispiel 6**

(1) Öffnen Sie ..\2.8inch\_Arduino\_ILI9341\_V3.2\Arduino

Demo\_UNO&Mega2560\Beispiel06-Phonecal\phonecal\phonecal.ino;

(2) - (4) Wie bei 3.2.1, Bild 20 zeigt das Ergebnis auf dem 2.8 Zoll Touch Screen.

Bild 21 zeigt das Ergebnis am Computer im Seriellen Monitor.



Bild 20 Bild 21

Das Beispiel zewigt einen Nummernfeld-Tastatur, welche die mit dem Touch-Stift angeklickten Zeichen anzeigt.

#### 3.2.7. **Beispiel 7**

Es sind 6 Test-Beispiele in ..\2.8inch\_Arduino\_ILI9341\_V3.2\Arduino

Demo\_UNO&Mega2560\SDCard Exten Beispiel. Bitte testen Sie diese Beispiele wie in den Schritten bei 3.2.1.

#### 3.3. Arbeiten mit dem MEGA2560

Verbinden Sie den 2.8 Zoll Touch Screen mit dem Arduino MEGA2560 Board (Siehe Bild 22), dann verbinden Sie das MEGA2560 Board mit dem PC oder Laptop mittels USB-Kabel.



Bild 22



Bild 23

# 3.3.1. Beispiel 1

(1) Öffnen Sie ..\2.8inch\_Arduino\_ILI9341\_V3.2\Arduino

 $Demo\_UNO\&Mega2560 \backslash Beispiel 01-Simple\ test \backslash Simple\ test$ 

Mega2560\ 9341Mega2560\ 9341Mega2560.ino;

(2) Klick "Werkzeuge" -- "Board" -- "Arduino/Genuino Mega or Mega 2560" (Siehe Bild 24)



Bild 24

(5) Klick "Werkzeuge" -- "Prozessor" -- "ATMega2560 ( Mega2560 ) " (Siehe Bild 25)



Bild 25

(4) Klick "Werkzeuge" -- "Port" -- "COMxx (Arduino/Genuino Mega 2560)" (Siehe Bild 26)



Bild 26

(5) Klick auf die "Hochladen" Taste , und warten, bis die Programmierung abgeschlossen ist. (Siehe Bild 27)



Bild 27

Beispiel 1 ist das simpelste Beispiel-Program, welches ohne jegliche Bibliothek auskommt. Das Ergebnis von Beispiel 1 ist ein Bildschirm, der abwechselnd komplett mit rot, grün, blau, weiß und Schwarz und dann zufällig gefärbt wird. Wenn dieses Beispiel einwandfrei funktioniert, ist die Hardware des 2.8 Zoll Touch Screen in Ordnung.

# 3.3.2. Andere Beispiele

Bitte testen Sie die anderen Beispiele wie in den Schritten 3.3.1.

Beispiel 05-Show BMP and SDCard Exten Beispiel funktioniert nicht mit dem MEGA2560, weil sich das SPI IO des MEGA2560 vom UNO unterscheidet. Da dieses Beispiel von der SD-Karte lesen muss, kann es nicht mit dem MEGA 2560 funktionieren.

Die Ergebnisse der anderen Beispiele sind identisch mit denen des UNO.