Package 'robustcov'

October 14, 2022

2 conta_normal

Index																													11
	robglasso		•			•	 •	•	•	•		•	•	•	•	 		•	•	•	•	•	•	•		•	•	•	10
	rmvt																												
	rmvnorm										 																		9
	raltert										 						•		•		•	•							8

 ${\tt conta_normal}$

Sample contaminated normal

Description

This function samples normal distribution with normal contamination

Usage

```
conta_normal(
 n,
 Omega,
 byrow = FALSE,
 cont_rate = 0.05,
 mu = 10,
  sd = sqrt(0.2)
)
```

Arguments

n	samplesize
Omega	precision matrix of the normal
byrow	whether the contamination happened by row? FALSE stand for cellwise contamination
cont_rate	how many cells/rows are contaminated?
mu	mean of the contamination
sd	standard deviation of the contamination

Value

a matrix of contaminated (multivariate) normal distributed data, row as sample

corKendall 3

corKendall

Kendall's tau

Description

This routine calculates the Kendall's tau

Usage

```
corKendall(data)
```

Arguments

data

the n by p raw data matrix

Value

a matrix with dimension p by p, Kendall's tau

Examples

```
corKendall(matrix(rnorm(500),100,5))
```

corQuadrant

Quadrant correlation coefficients

Description

This routine calculates Quadrant correlation coefficients

Usage

```
corQuadrant(data)
```

Arguments

data

the n by p raw data matrix

Value

a matrix with dimension p by p, Quadrant correlation coefficients

Examples

```
corQuadrant(matrix(rnorm(500),100,5))
```

4 covGK

corSpearman

Spearman correlation

Description

This routine calculates the Spearman correlation

Usage

```
corSpearman(data)
```

Arguments

data

the n by p raw data matrix

Value

a matrix with dimension p by p of spearman correlations

Examples

```
corSpearman(matrix(rnorm(500),100,5))
```

covGK

Gnanadesikan-Kettenring estimator for *covariance*

Description

This routine calculates the Gnanadesikan-Kettenring estimator, diagonal will be MAD

Usage

```
covGK(data)
```

Arguments

data

the n by p raw data matrix

Value

a matrix with dimension p by p, GK estimator, note that it's not necessarily positive

Examples

```
covGK(matrix(rnorm(500),100,5))
```

covNPD 5

covNPD	NPD estimator for *covariance* based on Qn	

Description

This routine calculates the NPD estimator for *covariance* based on Qn

Usage

```
covNPD(data, eigenTol = 1e-06, convTol = 1e-07, psdTol = 1e-08, maxit = 1000L)
```

Arguments

data	the n by p raw data matrix
eigenTol	tolerance in eigen system, used in finding nearest positive matrix
convTol	tolerance in cov, used in finding nearest positive matrix
psdTol	tolerance in psd, used in finding nearest positive matrix
maxit	max iterations in finding nearest positive matrix

Value

a matrix with dimension p by p, NPD estimator

Examples

```
covNPD(matrix(rnorm(500),100,5))
```

covOGK	Orthogonalized Gnanadesikan-Kettenring (OGK) estimator for *co-
	variance*

Description

This routine calculates the Orthogonalized Gnanadesikan-Kettenring (OGK) estimator for *covariance*, using scale estimation of Gn, as in Maronna and Zamar

Usage

```
covOGK(data)
```

Arguments

data the n by p raw data matrix

6 cvglasso

Value

a matrix with dimension p by p, OGK estimator

Examples

```
covOGK(matrix(rnorm(500),100,5))
```

covSpearmanU

SpearmanU estimator for *covariance*

Description

This routine calculates the SpearmanU, the pairwise covariance matrix estimator proposed in Oellererand Croux

Usage

```
covSpearmanU(data)
```

Arguments

data

the n by p raw data matrix

Value

a matrix with dimension p by p of spearmanU correlation

Examples

```
covSpearmanU(matrix(rnorm(500),100,5))
```

cvglasso

Cross validation to chose tuning parameter of glasso

Description

This routine use k fold cross validation to chose tuning parameter

Usage

```
cvglasso(
  data,
  k = 10,
  covest = cov,
  rhos = seq(0.1, 1, 0.1),
  evaluation = negLLrobOmega,
  ...
)
```

nearPPSD 7

Arguments

data The full dataset, should be a matrix or a data.frame, row as sample

k number of folds

covest a *function* or name of a function (string) that takes a matrix to estimate co-

variance

rhos a vector of tuning parameter to be tested

evaluation a *function* or name of a function (string) that takes only two arguments, the

estimated covariance and the test covariance, when NULL, we use negative log

likelihood on test sets

... extra arguments send to glasso

Value

a matrix with k rows, each row is the evaluation loss of that fold

Examples

```
cvglasso(matrix(rnorm(100),20,5))
```

nearPPSD

nearest positive semi-definite projection of a matrix

Description

This routine calculate the nearest positive semi0definite projection

Usage

```
nearPPSD(X, eigenTol = 1e-06, convTol = 1e-07, psdTol = 1e-08, maxit = 1000L)
```

Arguments

X the matrix

eigenTol tolerance in eigen system, used in finding nearest positive matrix

convTol tolerance in cov, used in finding nearest positive matrix psdTol tolerance in psd, used in finding nearest positive matrix

maxit max iterations in finding nearest positive matrix

Value

a matrix which is the nearest positive semi-definite matrix of input X

8 raltert

negLLrobOmega

-log Likelihood on test set

Description

The default evaluation function in corss validation, -log liekihood on test set

Usage

```
negLLrobOmega(Sigma_hat, Sigma)
```

Arguments

Sigma_hat the estimated *covariance* matrix of training set

Sigma the *covariance* matrix of test sets

Value

-log likelihood

raltert

Alternative multivariate t distribution

Description

This routine samples alternative multivarate t distribution

Usage

```
raltert(n, Omega, nu)
```

Arguments

n sample size

Omega **precision** matrix of dimension p by p

nu degree of freedom

Value

a matrix with dimension n by p, each row is a sample

rmvnorm 9

rmvnorm

Multivariate normal distribution with 0 mean

Description

This routine samples multivarate normal distribution of mean 0 from precision matrix

Usage

```
rmvnorm(n, Omega)
```

Arguments

n sample size

Omega **precision** matrix of dimension p by p

Value

a matrix with dimension n by p, each row is a sample

rmvt

Multivariate t distribution

Description

This routine samples multivarate t distribution

Usage

```
rmvt(n, Omega, nu)
```

Arguments

n sample size

Omega **precision** matrix of dimension p by p

nu degree of freedom

Value

a matrix with dimension n by p, each row is a sample

10 robglasso

robglasso

glasso with robust covariance estimations

Description

This routine fits glasso using a robust covariance matrix

Usage

```
robglasso(
  data,
  covest = cov,
  rho = 0.1,
  CV = FALSE,
  k = 10,
  grids = 15,
  evaluation = negLLrobOmega,
  ...
)
```

Arguments

data	raw data, should be a matrix or a data.frame, row as sample
covest	a *function* or name of a function (string) that takes a matrix to estimate covariance
rho	a scalar or vector of tuning parameters to be chosen, if CV=FALSE, should be a scalar, if CV=TRUE scalar input will be override and tuning parameter will be chosen based on CV
CV	bool, whether doing cross validation for tuning parameter, if set to TRUE and rho is a scalar, the candidate will be chosen automatically by log spacing between 0.01 max covariance and max covariance with number of grids
k	fold for cross validation if applicable
grids	number of candidate tuning parameters in cross validation
evaluation	a *function* or name of a function (string) that takes only two arguments, the estimated *covariance* and the test *covariace*, when NULL, we use negative log likelihood on test sets
• • •	extra argument sent to glasso::glasso

Value

a glasso return (see ?glasso::glasso), most important one is \$X\$ the estimated sparse precision, with an extra entry of tuning parameter lambda

Examples

```
robglasso(matrix(rnorm(100),20,5))
```

Index

```
conta_normal, 2
corKendall, 3
corQuadrant, 3
corSpearman, 4
covGK, 4
covNPD, 5
covOGK, 5
covSpearmanU, 6
cvglasso, 6
nearPPSD, 7
negLLrobOmega, 8
raltert, 8
rmvnorm, 9
rmvt, 9
robglasso, 10
```