Deep Learning en el diagnostico de Alzheimer mediante Imágenes de Resonancia Magnética

Juan David Escobar Escobar

Dirigido por: PhD. Ricardo Serafín Alonso Rincón

ÍNDICE

- 01 Introducción
- 02 Estado del arte
- 03 Objetivos
- 04 Metodología
- 05 Desarrollo de la contribución
- 06 Resultados
- 07 Conclusiones y líneas futuras

Apartado 01 Introducción

Redes Neuronales Convolucionales en el diagnostico del Alzheimer

Necesidad de encontrar un método eficaz para diagnosticar la EA de manera mas óptima y en etapas tempranas.

Apartado 02 Estado del arte

Open Care

Trabajos similares

Flujos basados en aprendizaje profundo para la detección de la EA

Al-Rad Companion.4

Apartado 03 Objetivos

General

Examinar y comparar diferentes arquitecturas de una red neuronal convolucional profunda (CNN), hacia la catalogación de imágenes resonancia magnética (MRI), con cortes axial, sagital y coronal del cerebro humano.

Específicos

- Implementar un flujo de datos para generar un conjunto de datos uniforme para la red neuronal.
- Estudiar diferentes arquitecturas existentes para un modelo profundo de tipo red neuronal CNN.
- Entrenar y validar 4 modelos de clasificación a partir de las IMR.
- Generar un informe de la comparativa con los hallazgos logrados
- Analizar y concluir sobre los resultados obtenidos.

Apartado 04 Metodología

Entendimiento de necesidad

Flujo de datos

1. Extracción de datos

ID. Imagen	Sujeto	Grupo	Sexo
194935	141_S_1004	MCI	F
139122	094_S_0434	MCI	М
166241	137_S_0669	MCI	М

Flujo de datos

2. Extracción de cerebro (IMR, Formato NIFTI)

Función: Lectura

Tipo Imagen medica: ADNI – MRI Dimensión: (256, 256, 160)

Formato: Nifti

Función: Extracción cerebro Tipo Imagen medica: ADNI – MRI Dimensión: (256, 256, 160)

Formato: Nifti

Función: Remover cuello tejido extra

cerebral y homogenización. **Tipo Imagen medica**: ADNI – MRI **Dimensión:** (256, 256, 160)

Formato: Nifti

Función: Despojar calavera Tipo Imagen medica: ADNI – MRI Dimensión: (256, 256, 160)

Formato: Nifti

Función: Eliminar cortes extraños + zoom Tipo Imagen medica: ADNI – MRI Dimensión: (256, 256, 160)

Formato: Nifti

Tipo Imagen medica: ADNI – MRI Dimensión: (113, 113, 127)

Formato: Nifti.gz

Flujo de datos

3. Transformación (pre-procesamiento Imágenes de resonancia magnética)

Flujo de datos

4. Homogenizar y preparar conjuntos de datos procesados

Flujo de datos

5. Construcción modelos pre-entrenados (Tensorflow - Keras)

Apartado 06 Resultados

Matriz de Confusión

Algoritmo	Instancias clasificadas correctamente	Instancias clasificadas incorrectamente	Clase	Matriz confusión		
				AD	CN	MCI
VGG16	31 49.2%	32 50.8%	AD	5	5	10
			CN	4	4	13
			MCI	0	0	22
Xception 25 39.7%		41 65.1%	AD	5	9	6
			CN	3	10	8
			мсі	3	12	7
MobileNet	24 38.1%	39 61.9%	AD	18	1	1
			CN	17	4	0
			мсі	14	6	2
ResNet152	18 28.6%	45 71.4%	AD	1	8	11
			CN	1	9	11
			MCI	2	12	8

Ranking

Apartado 07 Conclusiones

- Se lograron la mayoría de las metas, pero los resultados obtenidos del modelo entrenado no son óptimos.
- Ninguno de los modelos seleccionados, configurados y entrenados lograron un resultado viable.
- El problema principal que presentan los modelos es el de sobreajuste, a pesar de que se aplicaron diferentes técnicas comúnmente usadas para atacar el problema.
- El Fine Tunning es una técnica valiosa que permite generar modelos con poco sesgo y más precisos.

Apartado 07 Líneas futuras

- Mejorar el preprocesamiento de las IMR para el diagnóstico de la EA
 - o Las imágenes pasaron por un tratamiento y pre-procesado donde se mejoró la calidad de estas, se extrajeron elementos que generan ruido como lo es la parte hueso del cuello, la materia gris y blanca. En este punto específicamente se pueden incluir pasos adicionales los cuales se utilicen algoritmos más avanzados para la limpieza de ruido en las imágenes.
- Énfasis en áreas específicas de las imágenes
 - O Hacer especial énfasis en las áreas donde se ubican los patrones para detectar la enfermedad "como, por ejemplo," el hipocampo e ignorar el resto de información que no aporte información relevante para el entrenamiento de los modelos y "así," contar con un conjunto de datos más limpio y que ayude a obtener mayor precisión en las predicciones.

muchas gracias.

