CAM: Causal Additive Models, High-dimensional Order Search and Penalized Regression

Peter Bühlmann, Jonas Peters, Jan Ernest; AOS, 2014

September 19, 2023

- 1 Preliminaries: Directed Acyclic Graph (DAG)
- Preliminaries: Causal Discovery
 - Structural Equation Models (SEM)
- Causal Ordering
- Estimation of Causal Ordering
 - Unrestricted MLE for Order Search
 - Restricted MLE on a Preliminary Neighborhood

- 1 Preliminaries: Directed Acyclic Graph (DAG)
- 2 Preliminaries: Causal Discovery
 - Structural Equation Models (SEM)
- Causal Ordering
- 4 Estimation of Causal Ordering
 - Unrestricted MLE for Order Search
 - Restricted MLE on a Preliminary Neighborhood

Preliminaries: Directed Acyclic Graph (DAG)

- p variables: $\boldsymbol{X} = (X_1, \dots, X_p)$.
- One node for each variable. Set of nodes: $V = \{1, ..., p\}$.
- Set of edges: $E = \{(i,j) \in V^2 : i \rightarrow j\}$.
- D = (V, E) is a DAG if all the edges are directed and there are no cycles.

- Here, $V = \{1, \dots, 4\}$.
- $E = \{(1,2), (1,3), (2,3), (2,4), (3,4)\}.$
- If we include another edge, 4 \rightarrow 1, then it is no longer a DAG.

Figure: Example of a

DAG

- Define, $pa_D(i) = \{k \in V : (k, i) \in E\}.$
- $pa_D(i)$ is the set of parents of node i in the DAG D.
- pa_D(i) consists of all nodes that has direct edge to node i.
- For example, $pa_D(1) = \phi$ and $pa_D(3) = \{1, 2\}$, $pa_D(4) = \{2, 3\}$ etc.

Figure: Parents of Nodes in a DAG

- Preliminaries: Directed Acyclic Graph (DAG)
- 2 Preliminaries: Causal Discovery
 - Structural Equation Models (SEM)
- Causal Ordering
- 4 Estimation of Causal Ordering
 - Unrestricted MLE for Order Search
 - Restricted MLE on a Preliminary Neighborhood

Basic Idea: Causal Discovery

- Suppose p variables, X has a joint distribution, \mathbb{P} .
- Assume, there exists a DAG *D*, which describe the **true** data generating process.
- Then, it is possible to infer true causal relationship between p variables.

- For instance, assume the DAG D represents $\mathbb P$ perfectly.
- Then, X_1 is a common cause for both X_2 and X_3 .
- X₁ do not affect X₄ directly, but may have indirect causal effect which mediates through X₃, or X₂ or both.

Figure: Inferring Causal Relationships using a DAG

Preliminaries: Causal Discovery

Given the observed data, how can we recover the DAG?

- Conditional Independent Tests:
 - PC (Spirtes et al., 2000) and its variants.
- Optimizing a Score:
 - GES (Chickering, 2002)
- Structural Equaltion Model (SEM):
 - Linear SEM (Peters and Bühlmann, 2013)
 - Non-linear SEM (Bühlmann et al., 2014)
 - Partially Linear SEM (Rothenhäusler et al., 2018)
- and other methods...

Structural Equation Model (SEM)

General SEM:

$$X_j = f_j(\boldsymbol{X}_{\mathsf{pa}_D(j)}, \epsilon_j) \quad \epsilon_1, \dots, \epsilon_p \ (\mathsf{mutually}) \ \mathsf{independent}$$

 $\{f_j: 1 \leq j \leq p\}$ are unknown functions.

Too general; lacks identifiability.

Additive SEM

• Functions $f_j(.)$ are additive in its arguments:

$$X_j = \sum_{k \in \mathsf{pa}_D(j)} f_{j,k}(X_k) + \epsilon_j \tag{1}$$

 $\epsilon_1, \ldots, \epsilon_p$ independent with $\epsilon_j \sim \text{Normal}(0, \sigma_j^2)$.

- Too many structural assumptions.
- But, identifiability is achieved.

Additive SEM

Q: What do we mean by identifiability here?

- Let \mathbb{P} is generated by model (1) with DAG D and functions $f_{j,k}$.
- And \mathbb{Q} is generated by model (1) with a different DAG, $D'(\neq D)$ and different set of functions $f'_{i,k}$.
- ullet Then, under some conditions on $f_{j,k}$ and $f_{j,k}^{\prime}$,

$$\mathbb{Q} \neq \mathbb{P}$$

(See Lemma 1)

Rewrite model (1) as,

$$X_{j} = \sum_{k \in pa_{D}(j)} f_{j,k}(X_{k}) + \epsilon_{j}$$
$$= \sum_{k \neq j} f_{j,k}(X_{k}) + \epsilon_{j}$$

 $f_{j,k}(.) \neq 0$ iff there is a directed edge $k \rightarrow k \in D$

Parameters to Estimate:

$$\theta = (f_{1,2}, \ldots, f_{1,p}, f_{2,1}, \ldots, f_{p-1,p}, \sigma_1, \ldots, \sigma_p)$$

- How?
 - ϵ_j 's are normal; Can we use Likelihood?
 - Can we perform regressions?

- Regression is possible. But,
 - we have *p* regressions.
 - No defined set of response or covariate.
- We need some criterion to order the variables.

(Section 1.1) "If the order among the variables would be known, the problem boils down to variable selection in multivariate (potentially nonlinear) regression;"

- Preliminaries: Directed Acyclic Graph (DAG)
- 2 Preliminaries: Causal Discovery
 - Structural Equation Models (SEM)
- Causal Ordering
- 4 Estimation of Causal Ordering
 - Unrestricted MLE for Order Search
 - Restricted MLE on a Preliminary Neighborhood

Causal Ordering

- Let, π is a permutation of $\{1, \ldots, p\}$.
- Define $m{X}^{\pi}=(X_1^{\pi},\ldots,X_p^{\pi})$, where,

$$X_j^{\pi} = X_{\pi(j)}$$

• Let, D^{π} be the fully connected DAG with edges $\pi(k) \to \pi(j)$ for all k < j.

• For instance, fix p = 4 and π such that,

$$\pi(1) = 2$$
, $\pi(2) = 3$, $\pi(3) = 4$, $\pi(4) = 1$

- D^{π} consists of edges $\pi(k) \to \pi(j)$ for all k < j.
- D^{π} is a super-DAG of true DAG D.

Figure: True DAG, D

Figure: Fully connected DAG, D^{π}

- For any permutation π , we can construct a fully-connected DAG, D^{π} .
- But, *D* is not fully-connected. True order is not unique.
- For instance, the following two permutations respects the **causal ordering** in *D*.

$$\pi(1) = 2, \ \pi(2) = 3, \ \pi(3) = 4, \ \pi(4) = 1$$

 $\pi(1) = 2, \ \pi(2) = 4, \ \pi(3) = 3, \ \pi(4) = 1$

Figure: True DAG, D

- Let, D^0 is the true DAG.
- Define, the set of true ordering,

$$\Pi^0 = \{\pi^0 : \text{ the fully connected DAG } D^{\pi^0} \text{ is a super-DAG of } D^0 \}$$

- If we can identify Π^0 , then we need to remove edges to reach D^0 (why? Next Slide).
- How to remove edges? Regression + variable selection.

"Any true ordering of permutation π^0 allows for a lower-triangular representation" (See equation (5))

• Recall $\pi \in \Pi^0$ for the true DAG, $D^0 = D$, where

$$\pi(1) = 2$$
, $\pi(2) = 3$, $\pi(3) = 4$, $\pi(4) = 1$

Then, we can write,

$$X_{2} = \epsilon_{2}$$

$$X_{3} = f_{3,2}(X_{2}) + \epsilon_{3}$$

$$X_{4} = f_{4,2}(X_{2}) + f_{4,3}(X_{3}) + \epsilon_{4}$$

$$X_{1} = f_{1,2}(X_{2}) + f_{1,3}(X_{3}) + f_{1,4}(X_{4}) + \epsilon_{1}$$
(2)

• Now, it is easier to recover *D* by (nonlinear) regression.

- But how to identify the set Π^0 ?
 - Section 2.4: Maximum Likelihood Estimation for Order (Low Dimension)
 - Section 3: Restricted MLE (High Dimension)

- 1 Preliminaries: Directed Acyclic Graph (DAG)
- 2 Preliminaries: Causal Discovery
 - Structural Equation Models (SEM)
- Causal Ordering
- 4 Estimation of Causal Ordering
 - Unrestricted MLE for Order Search
 - Restricted MLE on a Preliminary Neighborhood

Unrestricted MLE for Order Search

- For *p* variables, consider all possible permutations.
- For each permutation π , we have a lower triangular representation (similar to (2)).
- Estimate the functions \hat{f}_j^{π} by some non-linear regression method (e.g., boosting).

$$\hat{f}_j^{\pi} = \operatorname*{argmin}_{g_j} \left\| oldsymbol{X}_j^{\pi} - \sum_{k=1}^{j-1} g_{j,k}(X_k^{\pi})
ight\|_2^2$$

Estimate the variances

$$(\hat{\sigma}_{j}^{\pi})^{2} = \left\|m{X}_{j}^{\pi} - \sum_{k=1}^{j-1} \hat{f}_{j,k}^{\pi}(X_{k}^{\pi})
ight\|_{2}^{2}$$

• Maximize the unpenalized negative log-likelihood:

$$\hat{\pi} \in \operatorname*{argmin}_{\pi} \sum_{j=1}^{p} \log(\hat{\sigma}_{j}^{\pi})$$

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 釣 Q ()

- After estimating $\hat{\pi}$, we can construct, the fully connected DAG, $D^{\hat{\pi}}$.
- Variable selection on $D^{\hat{\pi}}$ to obtain the final estimated DAG, $\hat{D}^{\hat{\pi}}$.
- If p = 10, the number of possible permutations are $10! > 3 \times 10^6$.
- For each permutation, it involves p-1 regressions.
- How to perform order search for high-dimensional data?

Restricted MLE on a Preliminary Neighborhood

• Regress X_j on $X_{-j} = \{X_k : k \neq j\}$ (Additive Regression; Group Lasso).

 $\hat{\mathbb{E}}_{add}[X_j|X_{-j}] = \sum_{k \in \hat{A}_j} \hat{h}_{jk}(X_k)$

with,
$$\hat{A}_{j} = \{k : k \neq j, \hat{h}_{j,k} \neq 0\}.$$

- \hat{A}_i : preliminary neighborhood of node j.
- Previously, we regress,

$$X_{\pi(j)}$$
 on $\{X_k : k \in \{\pi(1), \dots, \pi(j-1)\}\}$

Now we regress,

$$X_{\pi(j)}$$
 on $\{X_k: k\in\{\pi(1),\ldots,\pi(j-1)\}\}\cap\hat{A}_{\pi(j)}$

FIG. 1. Step PNS. For each variable the set of possible parents is reduced (in this plot, a directed edge from X_k to X_j indicates that X_k is a selected variable in \hat{A}_j and a possible parent of X_j). This reduction leads to a considerable computational gain in the remaining steps of the procedure.

References

- Bühlmann, P., Peters, J., and Ernest, J. (2014). "Cam: Causal additive models, high-dimensional order search and penalized regression."
- Chickering, D.M. (2002). "Optimal structure identification with greedy search." *Journal of machine learning research*, **3(Nov)**, 507–554.
- Peters, J. and Bühlmann, P. (2013). "Identifiability of Gaussian structural equation models with equal error variances." *Biometrika*, **101(1)**, 219–228. ISSN 0006-3444. doi:10.1093/biomet/ast043.
- Rothenhäusler, D., Ernest, J., and Bühlmann, P. (2018). "Causal inference in partially linear structural equation models." *The Annals of Statistics*, **46(6A)**, 2904–2938.
- Spirtes, P., Glymour, C.N., and Scheines, R. (2000). *Causation, prediction, and search.* MIT press.

Thank You