UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2023/1 Prova da área IIB

1 - 3	4	5	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- $\bullet\,$ Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

1.	ropriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$. 1. Linearidade $\mathcal{F}\{\alpha f(t) + \beta q(t)\} = \alpha \mathcal{F}\{f(t)\} + \beta \mathcal{F}\{q(t)\}$						
		() () () () () () () () ()					
2.	Transformada da derivada	Se $\lim_{t\to\pm\infty}f(t)=0$, então $\mathcal{F}\left\{f'(t)\right\}=iw\mathcal{F}\left\{f(t)\right\}$					
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$					
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$					
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$					
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$					
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$					
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$					
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$					
8.	Conjugação	$\overline{F(w)} = F(-w)$					
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$					
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$					
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = rac{1}{ a }F\left(rac{w}{a} ight), \qquad a eq 0$					
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$					
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$					

Séries e transformadas de Fourier:						
	Forma trigonométrica	Forma exponencial				
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$				
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$				
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$					
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$					
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$					
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$				
	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$				

Integrais definidas

	tegrais definidas		
1.	$\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2.	$\int_0^\infty e^{-ax} \operatorname{sen}(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{- m a} \qquad (a > 0)$	4.	$\int_0^\infty \frac{x \operatorname{sen}(mx)}{a^2 + x^2} dx = \begin{cases} \frac{\pi}{2} e^{- m a}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2} e^{- m a}, & m < 0 \end{cases}$
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases}$	6.	$\int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases}$
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8.	$\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10.	$\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
			$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12.	$\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14.	$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16.	$\int_0^\infty \frac{\operatorname{sen}(mx)\operatorname{sen}(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases}$
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18.	$\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20.	$\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma)e^{-ma} (a > 0, m \ge 0)$	22.	$\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

$$\int x^2 \cos(\lambda x) dx = \frac{2\lambda x \cos(\lambda x) + (\lambda^2 x^2 - 2) \sin(\lambda x)}{\lambda^3} + C$$

$$\int x^2 \sin(\lambda x) dx = \frac{2\lambda x \sin(\lambda x) + (2 - \lambda^2 x^2) \cos(\lambda x)}{\lambda^3} + C$$

ullet Questão 1 (0.5 ponto por item - total de 3.0 pontos) Considere as seguintes duas funções que modelam duas ondas sonoras:

$$f(t) = 2 + 3\cos(440\pi t) + 3\sin(440\pi t) + 2\cos(660\pi t) - 2\sin(660\pi t) - \cos(880\pi t) + \sin(1100\pi t)$$

$$g(t) = 2 + \cos(220\pi t) + \sin(220\pi t) - 3\cos(440\pi t) - 3\sin(440\pi t) - \cos(660\pi t) + \cos(880\pi t)$$

Marque a resposta correta para cada item.

Quais são as notas musicais que representam os sinais f(t) e g(t), respectivamente?

- () Lá da escala 3 e Lá da escala 2
- () Lá da escala 4 e Lá da escala 3
- () Lá da escala 5 e Lá da escala 4
- () Lá da escala 3 e Lá da escala 3
- (X) Lá da escala 2 e Lá da escala 2

Escrevendo $f(t) = \sum_{n=0}^{\infty} C_n e^{iw_n t}$, temos:

()
$$w_1 = 110, C_1 = 0 e C_2 = 2 + i$$
.

()
$$w_1 = 220, C_1 = 0 e C_2 = \frac{3-3i}{2}$$

()
$$w_1 = 440\pi$$
, $C_1 = 0$ e $C_1 = \frac{3-3i}{2}$

(X)
$$w_1 = 220\pi$$
, $C_1 = 0$ e $C_2 = \frac{3-3i}{2}$.

()
$$w_1 = 220\pi$$
, $C_1 = \frac{3-3i}{2}$ e $C_2 = 1+i$.

O valor médio do sinal f(t) dado por $\frac{1}{T} \int_0^T f(t)dt$ é:

- () 1.
- (X) 2.

e

- () 4.
- () 8.

O som produzido pelo sinal f(2t) + g(3t) representa:

- (X) Uma única nota Lá da escala 2
- () Uma única nota Lá da escala 3
- () Uma única nota Lá da escala 4
- () Uma única nota Mi da escala 3
- () Duas notas Lá da escala 2 e Mi da escala 3.

Escrevendo
$$g(t) = \sum_{n=0}^{\infty} D_n e^{iw_n t}, D_n = |D_n| e^{i\phi_n}$$
, temos:

()
$$w_1 = 110, |D_1| = \frac{\sqrt{2}}{2} e \phi_1 = \frac{\pi}{4}.$$

()
$$w_1 = 110, |D_1| = \frac{1}{2} e \phi_1 = -\frac{\pi}{4}.$$

(X)
$$w_1 = 220\pi$$
, $|D_1| = \frac{\sqrt{2}}{2} e \phi_1 = -\frac{\pi}{4}$.

()
$$w_1 = 220\pi$$
, $|D_1| = \frac{\sqrt{2}}{2} e \phi_1 = \frac{\pi}{2}$.

()
$$w_1 = 220\pi$$
, $|D_1| = 1$ e $\phi_1 = -\frac{\pi}{2}$

Potência média do sinal g(t) dada por $\frac{1}{T} \int_0^T |g(t)|^2 dt$ é:

- () 5
- () 8
- () 12
- (X) 15
- Solução: A frequência angular fundamental de f(t) é 220π e a frequência angular fundamental de g(t) é 220π . Em ambas funções, todas as frequências são múltiplas de 220π rad/s. Como 220 rad/s é igual 110 Hz, ambas as notas são Lá na escala 2.

Pela propriedade da mudança de escala, sabemos que f(2t) produz uma nota com o dobro da frequência de f(t), ou seja, 220 Hz (Lá da escala 3) e g(3t) produz uma nota com o triplo da frequência de g(t), ou seja, 330 Hz (quase um Mi da Escala 4 - 329, 6 Hz). Observe que, 110 Hz é uma frequência fundamental para a soma das duas notas, pois 330 e 220 ambas múltiplos de 110. Para f(t), temos $a_1 = 0$, $b_1 = 0$, $a_2 = 3$ e $b_2 = 3$. Assim,

$$C_1 = 0$$
 e $C_2 = \frac{a_2 - ib_2}{2} = \frac{3 - 3i}{2}$

Para g(t), temos $a_1=1,\ b_1=1,$ ou seja, $D_1=\frac{1-i}{2}.$ Assim, $|D_1|=\sqrt{(1/2)^2+(1/2)^2}=\frac{\sqrt{2}}{2}$ e $\phi_1=-\frac{\pi}{4}$

O valor médio é o coefiente $\frac{a_0}{2} = 2$

A potência média pode ser calculada pelo teorema de Parseval. Para isso, listemos todos coefientes de g(t): $a_0 = 4$, $a_1 = 1$, $b_1 = 1$, $a_2 = -3$, $b_2 = -3$, $a_3 = -1$, $a_4 = 1$. Assim, $D_0 = 2$, $D_1 = \frac{1-i}{2}$, $D_2 = \frac{-3+3i}{2}$, $D_3 = -\frac{1}{2}$ e $D_4 = \frac{1}{2}$. Assim, $|D_0| = 2$, $|D_1| = \frac{\sqrt{2}}{2}$,

$$|D_2| = \frac{3\sqrt{2}}{2}, \, |D_3| = \frac{1}{2} \, e \, |D_4| = \frac{1}{2}.$$
 Portanto,

$$\frac{1}{T} \int_0^T |g(t)|^2 dt = |D_0|^2 + 2(|D_1|^2 + |D_2|^2 + |D_3|^2 + |D_4|^2) = 4 + 2(\frac{2}{4} + \frac{18}{4} + \frac{1}{4} + \frac{1}{4}) = 15$$

• Questão 2 (0.5 ponto por item - total de 1.0 ponto) Seja $f(t) = e^{-t^2}$, $F(w) = \mathcal{F}\{f(t)\}$, $g(t) = \mathcal{F}^{-1}\{F(w-10) + 2F(w) + F(w+10)\}$ e $h(t) = \mathcal{F}^{-1}\{-w^2 F(w)\}\$

Marque a resposta correta para cada item.

()
$$g(t) = 2e^{-t^2}\cos(10t)$$

()
$$g(t) = 4e^{-t^2}\cos(10t)$$

()
$$g(t) = 2e^{-t^2}\cos(5t)$$

()
$$g(t) = 2e^{-t^2}\cos^2(10t)$$

(X)
$$a(t) = 4e^{-t^2}\cos^2(5t)$$

()
$$h(t) = 2ie^{-t^2}(2t^2 - 1)$$
.

(X)
$$h(t) = 2e^{-t^2}(2t^2 - 1)$$

()
$$h(t) = -2te^{-t^2}$$
.

()
$$h(t) = 2tie^{-t^2}$$
.

(X) $q(t) = 4e^{-t^2}\cos^2(5t)$ () $h(t) = t^2 e^{-t^2}$

Solução: Pela propriedade da modulação, temos que $\mathcal{F}\{f(t)\cos(5t)\}=(F(w+5)+F(w-5))/2$. Quando aplicamos a mesma

$$\mathcal{F}\{f(t)\cos^2(5t)\} = \frac{(F(w+5+5)+F(w+5-5))/2+(F(w-5+5)+F(w-5-5))/2}{2} = \frac{F(w+10)+2F(w)+F(w-10)}{4} = \frac{F(w+5+5)+F(w+5-5)}{4} = \frac{F(w+5+5)+F(w+5+5)}{4} = \frac{F(w+5+5)+F(w+5+5)}{4} = \frac{F(w+5+5)+F(w+5+5)}{4} = \frac{F(w+5+5)+F(w+5+5)}{4} = \frac{F(w+5+5)+F(w+5+5$$

Dado que $f(t) = e^{-t^2}$, temos:

$$\mathcal{F}\{4e^{-t^2}\cos^2(5t)\} = F(w+10) + 2F(w) + F(w-10)$$

Pela propriedade da transformada da derivada, temos $\mathcal{F}\{f'(t)\} = iwF(w)$. Aplicando novamente a mesma propriedade novamente, $\mathcal{F}\{f''(t)\} = -w^2F(w)$. Logo,

$$h(t) = f''(t) = (-2te^{-t^2})' = 4t^2e^{-t^2} - 2e^{-t^2} = (4t^2 - 2)e^{-t^2}$$

• Questão 3 (0.5 ponto por item - total de 1.0 pontos) Considere três funções f(t), g(t) e h(t) e suas respectivas transformadas de Fourier F(w), G(w) e H(w). Abaixo estão apresentados os diagramas de espectro de magnitudes das três funções.

Assinale em cada coluna o item que é compatível com os gráficos.

$$() g(t) = f(2t)$$

()
$$g(t) = \frac{1}{2}f(2t)$$

()
$$f(t) = \frac{1}{2}(g * h)(t)$$

$$(\)\ f(t) = g\left(\frac{t}{2}\right)$$

()
$$g(t) = (f * h)(t)$$

(X) $h(t) = 2(f * g)(t)$

()
$$h(t) = 2f\left(\frac{t}{2}\right)$$

$$() f(t) = \frac{1}{2}(h*g)(t)$$

(X)
$$f(t) = \frac{1}{2}g\left(\frac{t}{2}\right)$$

$$() h(t) = (f * g)(t)$$

 $\textbf{Solução:} \ \ \text{Observemos que, pela propriedade da mudança de escala, } g(t) = 2f(2t) \ \text{ou, } f(t) = \frac{1}{2}g\left(\frac{t}{2}\right). \ \ \text{Também, pela propriedade da convolução, temos } |\mathcal{F}\{(f*g)(t)\}| = |F(w)||G(w)|. \ \ \text{Como} \ |H(w)| = \frac{1}{2}|F(w)||G(w)|, \ \text{então} \ h(t) = \frac{1}{2}(f*g)(t).$

ullet Questão 4 (2.5 pontos) Considere a função periódica f(t) dada no gráfico

e sua série de Fourier dada por

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(w_n t) + b_b \sin(w_n t).$$

- a) (0.5 ponto) Calcule o período fundamental e a frequência fundamental.
- b) (1.0 ponto) Calcule os coeficientes a_0 e a_n e b_n , $n \ge 1$.
- c) (0.5 ponto) Simplifique as expressões dos coeficientes a_n e b_n com $n \in \{1, 2, 3\}$.
- d) (0.5 ponto) Calcule C_n com $n \in \{1,2,3\}$ e escreva a forma exponencial $C_n = |C_n|e^{i\phi_n}$

Solução: a) O período fundamental é T=6 e a frequência angular fundamental é $w=\frac{2\pi}{6}=\frac{\pi}{3}$.

$$a_0 = \frac{2}{6} \int_{-1}^{5} f(t)dt = 1$$

$$a_n = \frac{2}{6} \int_{-1}^{5} f(t) \cos((\pi n/3)t) dt$$

$$= \frac{1}{3} \int_{-1}^{2} \cos((\pi n/3)t) dt$$

$$= \frac{1}{3} \left[\frac{\sin((\pi n/3)t)}{\pi n/3} \right]_{-1}^{2}$$

$$= \frac{\sin(2\pi n/3) - \sin(-\pi n/3)}{\pi n}$$

$$= \frac{\sin(2\pi n/3) + \sin(\pi n/3)}{\pi n}$$

$$b_n = \frac{2}{6} \int_{-1}^{5} f(t) \sin((\pi n/3)t) dt$$

$$= \frac{1}{3} \int_{-1}^{2} \sin((\pi n/3)t) dt$$

$$= \frac{1}{3} \left[-\frac{\cos((\pi n/3)t)}{\pi n/3} \right]_{-1}^{2}$$

$$= \frac{-\cos(2\pi n/3) - (-\cos(-\pi n/3))}{\pi n}$$

$$= \frac{-\cos(2\pi n/3) + \cos(\pi n/3)}{\pi n}$$

c)

$$a_{1} = \frac{\operatorname{sen}(2\pi/3) + \operatorname{sen}(\pi/3)}{\pi} = \frac{\sqrt{3}}{2\pi} + \frac{\sqrt{3}}{2\pi} = \frac{\sqrt{3}}{\pi}$$

$$a_{2} = \frac{\operatorname{sen}(4\pi/3) + \operatorname{sen}(2\pi/3)}{2\pi} = -\frac{\sqrt{3}}{2\pi} + \frac{\sqrt{3}}{2\pi} = 0$$

$$a_{3} = \frac{\operatorname{sen}(6\pi/3) + \operatorname{sen}(3\pi/3)}{3\pi} = 0$$

$$b_{1} = \frac{-\cos(2\pi/3) + \cos(\pi/3)}{\pi} = -\left(-\frac{1}{2\pi}\right) + \frac{1}{2\pi} = \frac{1}{\pi}$$

$$b_{2} = \frac{-\cos(4\pi/3) + \cos(2\pi/3)}{2\pi} = -\left(-\frac{1}{4\pi}\right) - \frac{1}{4\pi} = 0$$

$$b_{3} = \frac{-\cos(6\pi/3) + \cos(3\pi/3)}{3\pi} = -\frac{1}{3\pi} - \frac{1}{3\pi} = -\frac{2}{3\pi}$$

$$C_{1} = a_{1} - ib_{1} = \frac{\sqrt{3} - i}{2\pi} = \frac{1}{\pi}e^{-i\pi/6}$$

$$C_{2} = a_{2} - ib_{2} = 0$$

$$C_{3} = a_{3} - ib_{3} = \frac{i}{3\pi} = \frac{1}{3\pi}e^{i\pi/2}$$

• Questão 5 (2.5 pontos) Considere a função f(t) dada abaixo.

$$f(t) = \frac{2}{\pi(4+t^2)}$$

- a) (1.5 ponto) Calcule, a partir da definição, a transformada de Fourier da função f(t).
- b) (1.0 ponto) Esboce o diagrama de magnitudes de $F(w) = \mathcal{F}\{f(t)\}\$ e de $G(w) = \mathcal{F}\{f(t)\cos(5t)\}\$.

Solução:

$$\begin{split} \mathcal{F}\{f(t)\} &= \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1}{4+t^2} e^{-iwt} dt \\ &= \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{\cos(wt) - i \sin(wt)}{4+t^2} dt \end{split}$$

Como f(t) é par, temos que $\frac{\cos(wt)}{4+t^2}$ é par e $\frac{\sin(wt)}{4+t^2}$ é impar. Logo,

$$\mathcal{F}{f(t)} = \frac{4}{\pi} \int_0^\infty \frac{\cos(wt)}{4+t^2} dt$$
$$= \frac{4}{\pi} \frac{\pi}{4} e^{-2|w|}$$
$$= e^{-2|w|}$$

b) Como $F(w) = \mathcal{F}\{f(t)\}$ é real e positiva, |F(w)| = F(w). Pelo propriedade da modulação, temos que $G(w) = \frac{F(w+5) + F(w-5)}{2}$. Aqui, quando |F(w+5)| está longe do zero, |F(w-5)| é quase zero, de tal forma que a aproximação $|G(w)| \approx \frac{|F(w+5)| + |F(w-5)|}{2}$ é bem razoável. Os gráficos seguem abaixo:

