2021/3/3 @ オンライン, F31-4 (10:00~)

因果関係に基づく類似出来事の検索

東京都立大学

澄川 靖信

背景|歴史の重要性

- 歴史を知ることは重要
 - 現代の形成過程の理解
 - 過去の知見を現代で活用
 - 小学校から開講されている基礎科目の一つ

背景|歴史の重要性

- 歴史を知ることは重要
 - 現代の形成過程の理解
 - 過去の知見を現代で活用
 - 小学校から開講されている基礎科目の一つ

- 歴史学習支援の実際・研究
 - 内容理解 → 思考力育成 → 歴史を活用できることが目標[1]
 - 学校教育における<mark>歴史活用能力を支援</mark>する学習環境の研究[2]

背景 | 因果関係に着目する意義

● 過去の知見を現代・未来に活用出来る

背景 | 因果関係に着目する意義

過去の知見を現代・未来に活用出来る

歴史
現代・未来

| 10-19-32 | 10-18

- 歴史的類推の促進[3]
 - カードゲームで過去と現代の出来事の因果関係の類似性を見出す教材
 - 題材はゲームの作者が決め、手動で構造を決定

- カードゲームで過去と現代の出来事の因果関係の類似性を見出す教材
- 題材はゲームの作者が決め、手動で構造を決定

- 将来起こりうる出来事を予測出来る[4~5]
 - A→Bの関係性を学習
 - A'→○の○を予測

[3]: 池尻良平 (2011): 歴史の因果関係を現代に応用する力を育成するカードゲーム教材のデザインと評価 . 日本教育工学会論文誌 34巻4号, 375-386.

[4]: K., Radinsky, S., Davidovich, S., Markovitch (2012): Learning to Predict from Textual Data. J. Artif. Intell. Res. 45: 641-684.)

[5]: A., Jatowt, C.-m. A., Yeung (2011): Extracting collective expectations about the future from large text collections. CIKM: 1259-1265

目的

- 因果関係を表す出来事集合の類似度を評価
 - 前提:出来事のグラフは予め定義されている

● 主な貢献は以下の通り

- 主な貢献は以下の通り
 - a. 因果関係を表す出来事間の類似度を求めるアルゴリズムを提案

- 主な貢献は以下の通り
 - a. 因果関係を表す出来事間の類似度を求めるアルゴリズムを提案
 - b. トイデータセットを用いた評価
 - c. 広く使われている手法との比較

- 主な貢献は以下の通り
 - a. 因果関係を表す出来事間の類似度を求めるアルゴリズムを提案
 - b. トイデータセットを用いた評価
 - c. 広く使われている手法との比較

- 今後の課題
 - a. 因果関係を木構造で表現できる一般化
 - b. ground truthとなるデータセットの構築とその上での評価
 - c. 文書検索アルゴリズムのstate-of-the-artな手法との比較
 - d. 歴史的類推を促進させる学習環境としての検索エンジンの実現

目次

- 提案手法を適用するためのデータ表現の定義
- アルゴリズム
- 実験
- まとめ

データ表現

比較する因果関係はサブ出来事を節とする線形リストで表す

出来事B:産業革命

出来事A:IT革命

サブ出来事A1 a_1 サブ出来事A2 a_2

出来事C:地震·津波

データ表現

比較する因果関係はサブ出来事を節とする線形リストで表す

因果関係の比較のために二部グラフを構築する

データ表現

比較する因果関係はサブ出来事を節とする線形リストで表す

因果関係の比較のために二部グラフを構築する

● サブ出来事同士の類似度を辺の重みとする

アルゴリズム|理論

■ 二部グラフ上での最大重みマッチングを拡張

赤線:本研究で解く最大重みマッチング

青線:一般的な最大重みマッチング

アルゴリズム|理論

● 二部グラフ上での最大重みマッチングを拡張

赤線:本研究で解く最大重みマッチング

青線:一般的な最大重みマッチング

拡張方法:以下の制約を追加 解となる辺集合で交点は無い $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ $\begin{bmatrix} a_3 \\ b_4 \\ b_4 \end{bmatrix}$

緑線:解として選択済みの辺

赤線:解に含めるか分析中の辺

青線:未だ分析していない辺

	1	2	3		j		B
1	70	66	99	57	56	76	94
2	2	18	73	10	82	69	3
3	27	26	13	96	79	89	22
	58	85	54	38	4 6	67	30
i	8	55	14	78			
A							

緑線:解として選択済みの辺

赤線:解に含めるか分析中の辺 青線:未だ分析していない辺

W	b_1	b_2	b_3	b_4
a_1	2	0	0	4
a_2	0	10	0	0
a_3	0	0	1	0

DP	0	0	0	0
0				
0				
0				

W	b ₁	b_2	b_3	b ₄
a_1	2	0	0	4
a_2	0	10	0	0
a_3	0	0	1	0

DP	0	0	0	0
0	2			
0				
0				

W	b_1	b_2	b_3	b ₄
a_1	2	0	0	4
a_2	0	10	0	0
a_3	0	0	1	0

DP	0	0	0	0
0	2			
0		12		
0				

W	b_1	b_2	b_3	b_4
a_1	2	0	0	4
a_2	0	10	0	0
a_3	0	0	1	0

DP	0	0	0	0
0	2			
0		12		
0			13	

W	b_1	b_2	b_3	b_4
a_1	2	0	0	4
a_2	0	10	0	0
a_3	0	0	1	0

DP	0	0	0	0
0	2	2	2	6
0	2	12	12	12
0	2	12	13	13

実験|データセット

- Wikipediaから記事を収集
 - a. WikipediaでEventとして定義されているカテゴリを参考に記事を収集した。
 - b. セクションごとにサブ出来事が記述されているものを対象

● 因果関係として表1のものを収集

表1 評価用データセットの統計	情報.
地震	222
地震と津波	57
地震と地崩れ	3
ウィルスの発生とワクチン開発	5
ウィルスの発生と治療	6
計	293

実験 | 比較対象(先行研究2+提案手法)

1. コサイン類似度

Wikipedia記事の本文を抽出して純粋な類似文章の検索

実験 | 比較対象(先行研究2+提案手法)

1. コサイン類似度

Wikipedia記事の本文を抽出して純粋な類似文章の検索

2. 動的時間伸縮法(DTW)

時系列性を考慮したデータ間の類似度を評価(信号処理でよく使われている)

実験 | 比較対象(先行研究2+提案手法)

1. コサイン類似度

Wikipedia記事の本文を抽出して純粋な類似文章の検索

2. 動的時間伸縮法(DTW)

時系列性を考慮したデータ間の類似度を評価(信号処理でよく使われている)

- 3. 提案手法
- ※ 特徴ベクトルはTF-IDFのみで生成
- ※提案手法ではTF-IDF+コサイン類似度で辺の重みを計算

実験 | 評価(p@1)

- 交差検定(分割数:10)で訓練/テストデータに分割
- 次の表は結果の平均

コサイン類似度	DTW	提案手法
0.567	0.753	0.858

まとめ

本発表: 因果関係の類似度を評価するアルゴリズムを提案した。

- 研究のゴール:歴史的類推を促進するための因果関係に着目した類似出来事を 検索 できる学習環境の実現
- 本研究の提案手法:2つの出来事の類似度をDPで評価
- 実験:Wikipediaにある因果関係が記載されている記事+一般的な手法

今後の課題

- 1. アルゴリズム:因果関係の表現形式をグラフ構造に一般化
- 2. 実験:専用のデータセットを構築して本格的な評価の実施