# FLS 6441 - Methods III: Explanation and Causation

Week 6 - Instrumental Variables

Jonathan Phillips

April 2020

# Section 1

► What can we do when the treatment assignment mechanism is not 'as-if' random?

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
  - ► Eg. An omitted variable affects both treatment and the outcome

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
  - ► Eg. An omitted variable affects both treatment and the outcome
- Natural experiments focus on a specific component of treatment assignment that is 'as-if' random

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
  - ► Eg. An omitted variable affects both treatment and the outcome
- Natural experiments focus on a specific component of treatment assignment that is 'as-if' random
- ► An 'instrument' is a variable which assigns treatment in an 'as-if' random way

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
  - ► Eg. An omitted variable affects both treatment and the outcome
- Natural experiments focus on a specific component of treatment assignment that is 'as-if' random
- An 'instrument' is a variable which assigns treatment in an 'as-if' random way
  - ► I.e. Independent of potential outcomes

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
  - ► Eg. An omitted variable affects both treatment and the outcome
- Natural experiments focus on a specific component of treatment assignment that is 'as-if' random
- An 'instrument' is a variable which assigns treatment in an 'as-if' random way
  - ► I.e. Independent of potential outcomes
  - ► Even if other variables linked to potential outcomes **also** affect treatment









- Example Instruments:
  - ► Rainfall for conflict
  - Gender of first two children for effect of having a third child
  - ▶ Distance from the coast for exposure to slave trade

► 1. Strong 'First Stage':

- ▶ 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- We can assess this with a simple regression:

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- We can assess this with a simple regression:
- $\triangleright D_i = \alpha + \beta Z_i + \epsilon_i$

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- We can assess this with a simple regression:
- $\triangleright D_i = \alpha + \beta Z_i + \epsilon_i$
- The instrument should be a significant predictor of treatment

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- We can assess this with a simple regression:
- $\triangleright D_i = \alpha + \beta Z_i + \epsilon_i$
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F - statistic > 10

# ► 2. Exclusion Restriction

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- We can assess this with a simple regression:
- $\triangleright D_i = \alpha + \beta Z_i + \epsilon_i$
- The instrument should be a significant predictor of treatment
- Rule-of-thumb: F statistic > 10

- ► 2. Exclusion Restriction
- ► The Instrument ONLY
  affects the outcome
  through its effect on
  treatment, and not directly

- ▶ 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- We can assess this with a simple regression:
- $\triangleright D_i = \alpha + \beta Z_i + \epsilon_i$
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F — statistic > 10

- ► 2. Exclusion Restriction
- The Instrument ONLY
   affects the outcome
   through its effect on
   treatment, and not directly
- Formally,  $cov(Z_i, \epsilon_i \text{ in } Y_i \sim D_i) = 0$

- ▶ 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- We can assess this with a simple regression:
- The instrument should be a significant predictor of treatment
- Rule-of-thumb: F statistic > 10

- ► 2. Exclusion Restriction
- The Instrument ONLY
   affects the outcome
   through its effect on
   treatment, and not directly
- Formally,  $cov(Z_i, \epsilon_i \text{ in } Y_i \sim D_i) = 0$
- We cannot test or prove this assumption!

- ▶ 1. Strong 'First Stage':
- ► Instrument Predicts
  Treatment
- ► We can assess this with a simple regression:
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F - statistic > 10

- ► 2. Exclusion Restriction
- The Instrument ONLY affects the outcome through its effect on treatment, and not directly
- Formally,  $cov(Z_i, \epsilon_i \text{ in } Y_i \sim D_i) = 0$
- We cannot test or prove this assumption!
- ► Theory and qualitative evidence needed

► 1. 2-Stage Least Squares (2SLS):

- ► 1. 2-Stage Least Squares (2SLS):
- Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

- ► 1. 2-Stage Least Squares (2SLS):
- Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

Save the predicted values from this regression:

$$\hat{\mathbf{D}}_i = \hat{\alpha} + \hat{\beta_1} Z_i$$

- ► 1. 2-Stage Least Squares (2SLS):
- ► Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

Save the predicted values from this regression:

$$\hat{D}_i = \hat{\alpha} + \hat{\beta_1} Z_i$$

► Estimate how the predicted values affect the outcome:  $Y_i = \alpha + \beta_2 \hat{D}_i$ 

- ► 1. 2-Stage Least Squares (2SLS):
- ► Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

Save the predicted values from this regression:  $\hat{D}_i = \hat{\alpha} + \hat{\beta}_1 Z_i$ 

- ► Estimate how the predicted values affect the outcome:  $Y_i = \alpha + \beta_2 \hat{D}_i$
- ► Interpret the coefficient on  $\hat{D_i}$

► 1. 2-Stage Least Squares (2SLS):

Instrumental Variables

00000000000000000

▶ Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

Save the predicted values from this regression:  $\hat{\mathbf{D}}_i = \hat{\alpha} + \hat{\beta_1} \mathbf{Z}_i$ 

- Estimate how the predicted values affect the outcome:  $Y_i = \alpha + \beta_2 \hat{D}_i$
- ► Interpret the coefficient on Di
- ▶ But our Standard Errors won't be accurate

# ► 2. All-in-one Package

- ▶ 1. 2-Stage Least Squares (2SLS):
- ▶ Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

Save the predicted values from this regression:

$$\hat{D}_i = \hat{\alpha} + \hat{\beta_1} Z_i$$

- Estimate how the predicted values affect the outcome:  $Y_i = \alpha + \beta_2 \hat{D}_i$
- ► Interpret the coefficient on Di
- ▶ But our Standard Errors won't be accurate

- ► 2. All-in-one Package
- Use an all-in-one package, eg. ivreg in the AER package

- ► 1. 2-Stage Least Squares (2SLS):
- ► Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

► Save the predicted values from this regression:

$$\hat{\mathbf{D}}_i = \hat{\alpha} + \hat{\beta_1} \mathbf{Z}_i$$

- ► Estimate how the predicted values affect the outcome:  $Y_i = \alpha + \beta_2 \hat{D}_i$
- ► Interpret the coefficient on  $\hat{D}_i$
- But our Standard Errors won't be accurate

- ► 2. All-in-one Package
- Use an all-in-one package, eg. ivreg in the AER package
- Specify the formula:

$$Y_i \sim D_i | Z_i$$

- ▶ 1. 2-Stage Least Squares (2SLS):
- ▶ Isolate the variation in treatment caused by the instrument:

$$D_i = \alpha + \beta_1 Z_i + \epsilon_i$$

Save the predicted values from this regression:

$$\hat{D}_i = \hat{\alpha} + \hat{\beta}_1 Z_i$$

- Estimate how the predicted values affect the outcome:  $Y_i = \alpha + \beta_2 \hat{D}_i$
- ► Interpret the coefficient on Di
- ▶ But our Standard Errors won't be accurate

- ► 2. All-in-one Package
- Use an all-in-one package, eg. ivreg in the AER package
- Specify the formula:  $Y_i \sim D_i | Z_i$
- Interpret the coefficient on  $D_i$

► Types of IV Regressions:

- ► Types of IV Regressions:
  - 1. **Biased Regression:** The regression ignoring omitted variable bias:  $Y_i \sim D_i$

- ► Types of IV Regressions:
  - 1. **Biased Regression:** The regression ignoring omitted variable bias:  $Y_i \sim D_i$
  - 2. **First-Stage Regression:** Checking the instrument is valid:  $D_i \sim Z_i$

- ► Types of IV Regressions:
  - 1. **Biased Regression:** The regression ignoring omitted variable bias:  $Y_i \sim D_i$
  - 2. **First-Stage Regression:** Checking the instrument is valid:  $D_i \sim Z_i$
  - 3. **IV Regression:** All-in-one estimate of the effect of treatment on the outcome:  $Y_i \sim D_i | Z_i$

#### Instrumental Variables

Instrumental Variables

00000000000000000

- Types of IV Regressions:
  - 1. Biased Regression: The regression ignoring omitted variable bias:  $Y_i \sim D_i$
  - 2. **First-Stage Regression:** Checking the instrument is valid:  $D_i \sim Z_i$
  - 3. IV Regression: All-in-one estimate of the effect of treatment on the outcome:  $Y_i \sim D_i | Z_i$
  - 4. **2-Stage Least Squares:** Two linear regressions: correct coefficient, wrong p-value:  $D_i \sim Z_i$ , then  $Y_i \sim \hat{D}_i$

### Instrumental Variables

- ► Types of IV Regressions:
  - 1. **Biased Regression:** The regression ignoring omitted variable bias:  $Y_i \sim D_i$
  - 2. **First-Stage Regression:** Checking the instrument is valid:  $D_i \sim Z_i$
  - 3. **IV Regression:** All-in-one estimate of the effect of treatment on the outcome:  $Y_i \sim D_i | Z_i$
  - 4. **2-Stage Least Squares:** Two linear regressions: correct coefficient, wrong p-value:  $D_i \sim Z_i$ , then  $Y_i \sim \hat{D_i}$
  - 5. **Reduced-Form Regression:** Estimate of the Instrument on the Outcome, *ignoring treatment*:  $Y_i \sim Z_i$

► Our research question: How does economic growth affect conflict?

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
  - 1. First Stage: Low Rainfall -> -Growth

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
  - 1. First Stage: Low Rainfall -> -Growth ✓

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
  - 1. First Stage: Low Rainfall -> -Growth ✓
  - 2. **Exclusion Restriction:** Low Rainfall *only* affects Conflict through Economic Growth

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
  - 1. First Stage: Low Rainfall -> -Growth ✓
  - 2. **Exclusion Restriction:** Low Rainfall *only* affects Conflict through Economic Growth?

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
- ► First-Stage Regression:

```
Growth_i = 0.12 - 0.1*Rainfall_i + \epsilon_i
```

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
- ► First-Stage Regression:  $Growth_i = 0.12 - 0.1*Rainfall_i + \epsilon_i$
- ► Fitted values from First-Stage Regression:  $Growth_i = 0.12 0.1*0.5 + \epsilon_i$

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
- ► First-Stage Regression:  $Growth_i = 0.12 - 0.1*Rainfall_i + \epsilon_i$
- ► Fitted values from First-Stage Regression: 0.07 = 0.12 0.1\*0.5

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
- ► First-Stage Regression:  $Growth_i = 0.12 - 0.1*Rainfall_i + \epsilon_i$
- ► Fitted values from First-Stage Regression: Growth = 0.07, 0.02, 0.06, 0.12, 0.03...

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
- ► First-Stage Regression:  $Growth_i = 0.12 - 0.1*Rainfall_i + \epsilon_i$
- ► Fitted values from First-Stage Regression: Growth = 0.07, 0.02, 0.06, 0.12, 0.03...
- ► Second-Stage Regression:  $Conflict_i = \alpha + \beta_2 Growth_i + \epsilon_i$

- ► Our research question: How does economic growth affect conflict?
- ► Our instrument for treatment: Low Rainfall
- ► First-Stage Regression:  $Conflict_i = 0.02 + 0.1*Rainfall_i + \epsilon_i$
- ► Fitted values from First-Stage Regression: Conflict<sub>i</sub> = 0.07, 0.02, 0.06, 0.12, 0.03...
- ► Second-Stage Regression:  $Conflict_i = 1.2 0.04*Growth_i + \epsilon_i$

► IV Interpretation:

- ► IV Interpretation:
  - ➤ Your coefficient is a causal estimate ONLY for units that were actually treated **because of the instrument**

## ► IV Interpretation:

- ➤ Your coefficient is a causal estimate ONLY for units that were actually treated **because of the instrument**
- ► They don't tell us about the causal effect for other units that never responded to the instrument

## ► IV Interpretation:

- Your coefficient is a causal estimate ONLY for units that were actually treated because of the instrument
- ► They don't tell us about the causal effect for other units that never responded to the instrument
- ► Eg. For places where conflict started because of ethnic tensions or an accident

## ► IV Interpretation:

- Your coefficient is a causal estimate ONLY for units that were actually treated because of the instrument
- ► They don't tell us about the causal effect for other units that never responded to the instrument
- Eg. For places where conflict started because of ethnic tensions or an accident

# Local Average Treatment Effect (LATE)

The Average Treatment Effect among the subset of units who are treated because of the instrument:

$$(D_i|Z_i=0)=0$$
 and  $(D_i|Z_i=1)=1$ 

- ► IV Interpretation:
  - ► Your coefficient is a causal estimate ONLY for units that were actually treated because of the instrument
  - They don't tell us about the causal effect for other units that never responded to the instrument
  - ► Eg. For places where conflict started because of ethnic tensions or an accident

# Local Average Treatment Effect (LATE)

The Average Treatment Effect among the subset of units who are treated because of the instrument:

$$(D_i|Z_i=0)=0$$
 and  $(D_i|Z_i=1)=1$ 

Remember, these 'Local' units might be very rare and unusual so our estimate might be very difficult to generalize

Non-Compliance in Experiments

# Section 2

- ► Acemoglu & Robinson (2001)
  - ► **Theory:** Non-electoral **institutions** (property rights, rule of law, checks and balances) cause economic growth

- ► Acemoglu & Robinson (2001)
  - ► **Theory:** Non-electoral **institutions** (property rights, rule of law, checks and balances) cause economic growth
- ▶ What is the inferential problem here?

- ► Acemoglu & Robinson (2001)
  - ► **Theory:** Non-electoral **institutions** (property rights, rule of law, checks and balances) cause economic growth
- ▶ What is the inferential problem here?
- ► Can we run a field experiment?

- ► Acemoglu & Robinson (2001)
  - ► **Theory:** Non-electoral **institutions** (property rights, rule of law, checks and balances) cause economic growth
- ► What is the inferential problem here?
- ► Can we run a field experiment?
- ► Can we find a natural experiment?

► They need an Instrumental Variable that:

- ► They need an Instrumental Variable that:
  - 1. First Stage:

- ► They need an Instrumental Variable that:
  - 1. First Stage: Predicts Institutions

- ► They need an Instrumental Variable that:
  - 1. First Stage: Predicts Institutions
  - 2. Exclusion Restriction:

- ► They need an Instrumental Variable that:
  - 1. First Stage: Predicts Institutions
  - 2. **Exclusion Restriction:** *Only* affects growth through institutions

- ► They need an Instrumental Variable that:
  - 1. First Stage: Predicts Institutions
  - Exclusion Restriction: Only affects growth through institutions
- ► They make the *argument* that Settler (soldier) mortality rates are an appropriate instrument for institutions

Population:

► **Population:** Ex-colonies

- ► **Population:** Ex-colonies
- **►** Sample:

► **Population:** Ex-colonies

► **Sample:** Ex-colonies

- ► **Population:** Ex-colonies
- ► Sample: Ex-colonies
- **►** Treatment:

► **Population:** Ex-colonies

► Sample: Ex-colonies

➤ **Treatment:** 'Settler' Institutions in ex-colonies (measured by 'risk of expropriation' index 1985-95)

- ► **Population:** Ex-colonies
- ► Sample: Ex-colonies
- ► **Treatment:** 'Settler' Institutions in ex-colonies (measured by 'risk of expropriation' index 1985-95)
- **▶** Control:

► **Population:** Ex-colonies

► Sample: Ex-colonies

➤ **Treatment:** 'Settler' Institutions in ex-colonies (measured by 'risk of expropriation' index 1985-95)

► Control: 'Extractive' institutions

- ► **Population:** Ex-colonies
- ► Sample: Ex-colonies
- ➤ **Treatment:** 'Settler' Institutions in ex-colonies (measured by 'risk of expropriation' index 1985-95)
- ► Control: 'Extractive' institutions
- ▶ Outcome:

► **Population:** Ex-colonies

► Sample: Ex-colonies

► **Treatment:** 'Settler' Institutions in ex-colonies (measured

by 'risk of expropriation' index 1985-95)

► Control: 'Extractive' institutions

▶ Outcome: Growth rates in 1995

► **Population:** Ex-colonies

► Sample: Ex-colonies

► **Treatment:** 'Settler' Institutions in ex-colonies (measured

by 'risk of expropriation' index 1985-95)

➤ Control: 'Extractive' institutions
➤ Outcome: Growth rates in 1995

► Treatment Assignment Mechniams:

► **Population:** Ex-colonies

► Sample: Ex-colonies

➤ **Treatment:** 'Settler' Institutions in ex-colonies (measured by 'risk of expropriation' index 1985-95)

Control: 'Extractive' institutionsOutcome: Growth rates in 1995

► Treatment Assignment Mechniams: Messy! But high settler mortality rates led to extractive institutions

► **Population:** Ex-colonies

► Sample: Ex-colonies

► **Treatment:** 'Settler' Institutions in ex-colonies (measured by 'risk of expropriation' index 1985-95)

► Control: 'Extractive' institutions
► Outcome: Growth rates in 1995

► Treatment Assignment Mechniams: Messy! But high settler mortality rates led to extractive institutions

► Instrument:

► **Population:** Ex-colonies

► Sample: Ex-colonies

► **Treatment:** 'Settler' Institutions in ex-colonies (measured

by 'risk of expropriation' index 1985-95)

Control: 'Extractive' institutionsOutcome: Growth rates in 1995

► Treatment Assignment Mechniams: Messy! But high settler mortality rates led to extractive institutions

► Instrument: Settler (soldier) mortality rates

► First Stage:

► First Stage: Settler mortality rates predict institutions

- ► First Stage: Settler mortality rates predict institutions
- ► Supporting Evidence:

- ► First Stage: Settler mortality rates predict institutions
- ► Supporting Evidence:
- "Mortality rates faced by the settlers more than 100 years ago explains over 25 percent of the variation in current institutions."



FIGURE 3. FIRST-STAGE RELATIONSHIP BETWEEN SETTLER MORTALITY AND EXPROPRIATION RISK

► Exclusion Restriction:

► Exclusion Restriction: Settler mortality rates ONLY affect growth through institutions

- ► Exclusion Restriction: Settler mortality rates ONLY affect growth through institutions
- ► Supporting Evidence:
  - Mortality rates for locals are low and don't affect human capital or growth directly, due to local immunity

- ► Exclusion Restriction: Settler mortality rates ONLY affect growth through institutions
- ► Supporting Evidence:
  - Mortality rates for locals are low and don't affect human capital or growth directly, due to local immunity
  - Control for other possible correlated variables geography, climate, etc.

- Methodology:
  - ► Institutions<sub>i</sub> =  $\alpha + \beta_0$ Settler\_Mortality<sub>i</sub> +  $\epsilon_i$
  - ►  $Growth_i = \alpha + \beta_1 Institutions_i + \epsilon_i$

| al | Va | ırı | а | b | le |
|----|----|-----|---|---|----|
| 00 | 00 | ) C | C | 0 | C  |

Average protection against

"Other" continent dummy

Log European settler mortality

"Other" continent dummy

expropriation risk 1985-1995

Base

sample

(1)

0.94

(0.16)

-0.61

(0.13)

0.27

| ables | Instrumenting for Institutions<br>oooooooo•o |
|-------|----------------------------------------------|
|       |                                              |
|       |                                              |

Base

sample

(2)

1.00

(0.22)

(1.34)

-0.65

-0.51

(0.14)

2.00

(1.34)

0.30

Base sample

without

Neo-Europes

(3)

1.28

(0.36)

-0.39

(0.13)

0.13

| ns | Non-Compliance in Experiments |
|----|-------------------------------|
|    |                               |

Base sample

without

Neo-Europes

(4)

1.21

(0.35)

0.94

(1.46)

Panel A: Two-Stage Least Squares

Panel B: First Stage for Average Protection Against Expropriation Risk in 1985-1995

-0.39

-0.11

(0.14)

(1.50)

0.13

Base

sample

without

Africa

(5)

0.58

(0.10)

-1.20

(0.22)

0.47

Base

sample

without

Africa

(6)

0.58

(0.12)

0.04

(0.84)

-1.10

(0.24)

0.99

(1.43)

0.47

Base

sample,

depender

variable

log outpi

per work

(9)

0.98

(0.17)

-0.63

26/3.58

(0.13)

Base

sample

with

continent

dummies

(7)

0.98

(0.30)

-0.92(0.40)

-0.46

(0.36)

(0.85)

-0.94

-0.43

(0.17)

0.33

(0.49)

(0.41)

1.24

(0.84)

0.30

-0.27

Base

sample

with

continent

dummies

(8)

1.10

(0.46)

-1.20

(1.8)

-1.10

-0.44

-0.99

(1.0)

-0.34

(0.18)

2.00

(1.40)

0.47

(0.50)

(0.41)

(0.84)

0.33

1.1

-0.26

(0.52)

(0.42)

# Instrumenting for Institutions

Latitude

Latitude

 $R^2$ 

Asia dummy

Africa dummy

Asia dummy

Africa dummy

Instrument

Results: Improving Nigeria's institutions to Chile's level would raise GDP 7-fold

# Section 3

► Sometimes field experiments don't work perfectly

- ► Sometimes field experiments don't work perfectly
  - ► Eg. We offer free health insurance to families at random, but some reject the offer

- ► Sometimes field experiments don't work perfectly
  - ► Eg. We offer free health insurance to families at random, but some reject the offer
  - ▶ Who rejects treatment?

Instrumental Variables

- Sometimes field experiments don't work perfectly
  - ▶ Eq. We offer free health insurance to families at random, but some reject the offer
  - ► Who rejects treatment?
  - ▶ Those that decline treatment are different to those that accept (eg. richer)

- ► Sometimes field experiments don't work perfectly
  - ► Eg. We offer free health insurance to families at random, but some reject the offer
  - ► Who rejects treatment?
  - ► Those that decline treatment are *different* to those that accept (eg. richer)
- ► We cannot just compare units that *actually* received treatment to those that did not

- ► Sometimes field experiments don't work perfectly
  - ► Eg. We offer free health insurance to families at random, but some reject the offer
  - ► Who rejects treatment?
  - ► Those that decline treatment are *different* to those that accept (eg. richer)
- ► We cannot just compare units that *actually* received treatment to those that did not
- ► Those groups are no longer 'balanced'

- ► Sometimes field experiments don't work perfectly
  - ► Eg. We offer free health insurance to families at random, but some reject the offer
  - ► Who rejects treatment?
  - ► Those that decline treatment are *different* to those that accept (eg. richer)
- ► We cannot just compare units that *actually* received treatment to those that did not
- ► Those groups are no longer 'balanced'
- Omitted variable bias has returned!



0

Complier

We can divide our units into four types depending on how they accept or reject treatment assignment:

#### Treatment Status:

| If Assigned to Control | If Assigned to<br>Treatment | Unit Type    |
|------------------------|-----------------------------|--------------|
| 0                      | 1                           | Complier     |
| 0                      | 0                           | Never-taker  |
| 1                      | 1                           | Always-taker |
| 1                      | 0                           | Defier       |

Assignment to Treatment is now a separate step prior to treatment - so we can consider it like an instrument,  $Z_i$ 

| $D_i(Z_i=0)$    | $D_i(Z_i=1)$    |       |
|-----------------|-----------------|-------|
| Treatment Sta-  | Treatment Sta-  | Type? |
| tus If Assigned | tus If Assigned |       |
| to Control      | to Treatment    |       |
| 0               | 1               |       |
| 0               | 0               |       |
| 0               | 1               |       |
| 1               | 0               |       |
| 1               | 1               |       |
| 0               | 0               |       |
| 0               | 1               |       |
| 1               | 0               |       |
|                 |                 |       |

➤ Simple difference-in-means estimates of treatment are biased

- Simple difference-in-means estimates of treatment are biased
- ▶ But we can still use the randomized component of treatment assignment as an instrumental variable

- Simple difference-in-means estimates of treatment are biased
- But we can still use the randomized component of treatment assignment as an instrumental variable

# Local Average Treatment Effect (LATE)

# The Average Treatment Effect among Compliers

► LATE just means we *cannot* learn anything about Never-takers and Always-takers from our Instrumental Variable

- Simple difference-in-means estimates of treatment are biased
- But we can still use the randomized component of treatment assignment as an instrumental variable

# Local Average Treatment Effect (LATE)

# The Average Treatment Effect among Compliers

- ► LATE just means we *cannot* learn anything about Never-takers and Always-takers from our Instrumental Variable
  - Because the instrument can't do anything to affect treatment for these units

- Simple difference-in-means estimates of treatment are biased
- But we can still use the randomized component of treatment assignment as an instrumental variable

# Local Average Treatment Effect (LATE)

# The Average Treatment Effect among Compliers

- ► LATE just means we *cannot* learn anything about Never-takers and Always-takers from our Instrumental Variable
  - ► Because the instrument *can't* do anything to affect treatment for these units
- Never-takers and Always-takers are balanced across treatment assignment and do not affect the difference-in-means

- ➤ Simple difference-in-means estimates of treatment are biased
- ▶ But we can still use the randomized component of treatment assignment as an instrumental variable

# Local Average Treatment Effect (LATE)

## The Average Treatment Effect among Compliers

- ► LATE just means we *cannot* learn anything about Never-takers and Always-takers from our Instrumental Variable
  - ► Because the instrument *can't* do anything to affect treatment for these units
- ► Never-takers and Always-takers are balanced across treatment assignment and do not affect the difference-in-means
- ► We also need to **assume** Defiers don't exist

- ► Two methodologies for Experiments with Non-Compliance
- ► 1. Intention-to-Treat Analysis

Instrumental Variables

- ► Two methodologies for Experiments with Non-Compliance
- 1. Intention-to-Treat **Analysis**

Instrumental Variables

▶ The Effect of Treatment **Assignment** (the Instrument) on the Outcome

- ► Two methodologies for Experiments with Non-Compliance
- ▶ 1. Intention-to-Treat Analysis
- ➤ The Effect of Treatment **Assignment** (the Instrument) on the Outcome
- $\triangleright Y_i \alpha + \beta Z_i + \epsilon_i$

- Two methodologies for Experiments with Non-Compliance
- 1. Intention-to-Treat Analysis
- ► The Effect of Treatment **Assignment** (the Instrument) on the Outcome
- $\triangleright$   $Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)</p>

- ► Two methodologies for Experiments with Non-Compliance
- ► 1. Intention-to-Treat Analysis
- ► The Effect of Treatment
  Assignment (the
  Instrument) on the
  Outcome
- $\triangleright Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)</p>
- ► For the FULL sample

► 2. LATE Instrumental Variables Analysis

- ► Two methodologies for Experiments with Non-Compliance
- ► 1. Intention-to-Treat Analysis
- ➤ The Effect of Treatment
  Assignment (the
  Instrument) on the
  Outcome
- $\triangleright Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)</li>
- ► For the FULL sample

- ► 2. LATE Instrumental Variables Analysis
- ► The Effect of Treatment on the Outcome

- ► Two methodologies for Experiments with Non-Compliance
- ► 1. Intention-to-Treat Analysis
- ► The Effect of Treatment
  Assignment (the
  Instrument) on the
  Outcome
- $\triangleright Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)</li>
- ► For the FULL sample

- ► 2. LATE Instrumental Variables Analysis
- The Effect of Treatment on the Outcome
- $ightharpoonup Y_i \alpha + \beta D_i | Z_i + \epsilon_i$

- ► Two methodologies for Experiments with Non-Compliance
- ► 1. Intention-to-Treat Analysis
- ► The Effect of Treatment
  Assignment (the
  Instrument) on the
  Outcome
- $\triangleright Y_i \alpha + \beta Z_i + \epsilon_i$
- ► A BIASED estimate (<LATE estimate)
- ► For the FULL sample

- ► 2. LATE Instrumental Variables Analysis
- ► The Effect of Treatment on the Outcome
- $ightharpoonup Y_i \alpha + \beta D_i | Z_i + \epsilon_i$
- ► An UNBIASED estimate

- ► Two methodologies for Experiments with Non-Compliance
- ► 1. Intention-to-Treat Analysis
- ► The Effect of Treatment
  Assignment (the
  Instrument) on the
  Outcome
- $\triangleright Y_i \alpha + \beta Z_i + \epsilon_i$
- ► A BIASED estimate (<LATE estimate)
- ► For the FULL sample

- ► 2. LATE Instrumental Variables Analysis
- The Effect of Treatment on the Outcome
- $ightharpoonup Y_i \alpha + \beta D_i | Z_i + \epsilon_i$
- ► An UNBIASED estimate
- ► Only for COMPLIERS

Instrumental Variables

▶ The 'Strong First-Stage' assumption here requires that treatment assignment affects treatment for at least some people

- ➤ The 'Strong First-Stage' assumption here requires that treatment assignment affects treatment for at least some people
- ► The 'Exclusion Restriction' assumption requires that outcomes depend on treatment and not treatment assignment
  - So being labelled 'treatment group' (without treatment) doesn't affect your outcome