On the Estimation of Unnormalized Statistical Models

Michael U. Gutmann

Dept of Computer Science and HIIT

Dept of Mathematics and Statistics

University of Helsinki

michael.gutmann@helsinki.fi

My academic background on the map

Michael U. Gutmann University of Helsinki - p. 2/29

Program

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

- Introduction: Background on unnormalized models, why they are hard to estimate, but why being able to estimate them is important
- Core part:
 - ◆ Noise-contrastive estimation: A new estimation method for unnormalized models (Gutmann and Hyvärinen, JMLR, 13(Feb):307–361, 2012.
 - Application in the modeling of natural images
- Closing: Some open questions and a summary

Michael U. Gutmann University of Helsinki - p. 3/29

Introduction

Michael U. Gutmann

University of Helsinki - p. 4/29

The talk is about parametric estimation

Introduction

Big picture

- Examples
- Points
- Focus

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

The big picture of parametric estimation is as follows:

Observe a collection $X = (\mathbf{x}_1, \dots, \mathbf{x}_{T_d})$ of continuous or discrete random variables \mathbf{x}_t .

Assume that the \mathbf{x}_t are iid and that their distribution $p_d(\mathbf{x})$ belongs to the family of nonnegative functions $\{p_m(\mathbf{x}; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$ parameterized by $\boldsymbol{\theta} \in \mathbb{R}^m$. That is $p_d(\mathbf{x}) = p_m(\mathbf{x}; \boldsymbol{\theta}^*)$.

Find $heta^{\star}$

Example 1

Introduction

Big picture

Examples

Points

Focus

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

- Model of $\mathbf{x} \in \mathbb{R}^2$: $p_m(\mathbf{x}, \sigma^2) = \frac{\exp\left(-\frac{||\mathbf{x}||^2}{2\sigma^2}\right)}{2\pi\sigma^2}$
- Estimation of σ^2 by maximizing the log-likelihood ℓ

$$\ell(\sigma^2) = -T_d \ln(2\pi\sigma^2) + \frac{1}{\sigma^2} \sum_{t=1}^{T_d} \frac{-||\mathbf{x}_t||^2}{2}$$

■ The term $2\pi\sigma^2$, which is such that $\int p_m(\mathbf{x}; \sigma^2) d\mathbf{x} = 1 \ \forall \sigma^2$, is important in maximum likelihood estimation (MLE).

Example 2

Introduction

Big picture

Examples

Points

Focus

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

■ Model of $\mathbf{x} \in \{-1,1\}^{320}$: $p_m(\mathbf{x}; \boldsymbol{\alpha}) = \frac{p_m^0(\mathbf{x}; \boldsymbol{\alpha})}{Z(\boldsymbol{\alpha})}$ $p_m^0(\mathbf{x}; \boldsymbol{\alpha})$ is some complicated function which captures the shape of the data distribution very well.

■ The normalizing partition function $Z(\alpha)$ is

$$Z(\boldsymbol{\alpha}) = \sum_{\mathbf{x} \in \{-1,1\}^{320}} p_m^0(\mathbf{x}; \boldsymbol{\alpha})$$

The sum goes over $2^{320} \approx 10^{96}$ configurations.

■ Estimation of α by maximizing the log-likelihood ℓ ,

$$\ell(\boldsymbol{\alpha}) = -T_d \ln Z(\boldsymbol{\alpha}) + \sum_{t=1}^{T_d} p_m^0(\mathbf{x}_t; \boldsymbol{\alpha}),$$

is computationally *very* expensive (curse of dimensionality).

Important points so far

Introduction

- Big picture
- Examples

Points

Focus

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

What I wanted to illustrate with the examples is:

- The normalizing term plays a key role in MLE.
- If we use MLE to estimate θ , $p_m(\mathbf{x}; \theta)$ must integrate to one for all θ . This imposes a condition on the model family: the model must be normalized.
- For MLE, having the "perfect" model for the *shape* of the data distribution does not yield much if we do not know the proper *scaling* of the model.
- But scaling (normalizing) a model may be analytically impossible or computationally expensive.

Michael U. Gutmann University of Helsinki - p. 8/29

Focus of the talk

Introduction

- Big picture
- Examples
- Points

Focus

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

Focus of the talk: estimating θ without requiring that the model $p_m(\mathbf{x}; \theta)$ integrates to one for all possible values of the parameter θ

- Such models are said to be unnormalized. MLE is not applicable.
- Examples of unnormalized models:
 - ◆ Unnormalized Gaussian (a pairwise Markov network):

$$\ln p_m(\mathbf{x}; \boldsymbol{\theta}) = -1/2\mathbf{x}^T \mathbf{\Lambda} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

 θ : upper triangular part of Λ , \mathbf{b} , c

More general:

$$\ln p_m(\mathbf{x}; \boldsymbol{\theta}) = \ln p_m^0(\mathbf{x}; \boldsymbol{\alpha}) + c$$
$$\boldsymbol{\theta} : \boldsymbol{\alpha}. c$$

■ Parameter α is responsible for the shape of p_m , parameter c for the scaling of p_m . It is a normalizing parameter and takes the role of $\ln 1/Z$.

Noise-Contrastive Estimation

Michael U. Gutmann University of Helsinki - p. 10/29

Logistic regression for classification

Introduction

Noise-Contrastive Estimation

Logistic regression

- Example
- Statistical properties
- Computational aspects

Application in the Modeling of Natural Images

Closing

- Denote by $Y = \{y_1, \dots y_{T_n}\}$ a data set of iid observations of a random variable y with distribution p_n .
- Logistic regression can be used to discriminate between the two data sets X and Y.
 - Let the regression function be

$$P(C = 1|\mathbf{u}; \boldsymbol{\theta}) = \frac{1}{1 + F(\mathbf{u}; \boldsymbol{\theta})}$$

with $F(\mathbf{u}; \boldsymbol{\theta}) \geq 0$

■ Conditional log-likelihood $J_T(\theta)$

$$\sum_{t=1}^{T_d} \ln P(C=1|\mathbf{x}_t; \boldsymbol{\theta}) + \sum_{t=1}^{T_n} \ln \left[P(C=0|\mathbf{y}_t; \boldsymbol{\theta}) \right]$$

can be used to learn θ .

■ Classification rule: Class C = 1 if $P(C = 1 | \mathbf{u}; \boldsymbol{\theta}) > 1/2$

Doing more with logistic regression

Introduction

Noise-Contrastive Estimation

Logistic regression

- Example
- Statistical properties
- Computational aspects

Application in the Modeling of Natural Images

Closing

Using Bayes' theorem we have that

$$P(C = 1|\mathbf{u}) = \left(1 + \frac{T_n p_n(\mathbf{u})}{T_d p_d(\mathbf{u})}\right)^{-1}$$

- We can show that $\hat{\theta}$ satisfying $F(\mathbf{u}; \hat{\theta}) = \frac{T_n p_n(\mathbf{u})}{T_d p_d(\mathbf{u})}$ is maximizing the conditional log-likelihood.
- Hence, if we choose ourselves p_n , create Y, and write $F(\mathbf{u}; \boldsymbol{\theta})$ as

$$F(\mathbf{u}; \boldsymbol{\theta}) = \frac{T_n p_n(\mathbf{u})}{T_d p_m(\mathbf{u}; \boldsymbol{\theta})}$$

we can estimate the model $p_m(\mathbf{x}; \boldsymbol{\theta})$ via logistic regression.

- We call this procedure to estimate θ "noise-contrastive estimation". (Gutmann and Hyvärinen, JMLR, 13(Feb):307–361, 2012.)
- The next slide shows that in noise-contrastive estimation p_m does not need to be normalized.

Simple Example

Introduction

Noise-Contrastive Estimation

Logistic regression

Example

- Statistical properties
- Computational aspects

Application in the Modeling of Natural Images

Closing

- Observed data X: Zero mean Gaussian with standard deviation $\sigma = 2$; Contrastive noise Y: standard Gaussian
- Unnormalized model: $\ln p_m(\mathbf{x}; \sigma, c) = -\frac{||\mathbf{x}||^2}{2\sigma^2} + c$
- Contour plot of $J_T(\sigma,c)$ (to be maximized) black: $c^* = \ln 1/Z(\sigma)$ (location of properly normalized models), green: optimization trajectories

Statistical properties of noise-contrastive estimation

Introduction

Noise-Contrastive Estimation

- Logistic regression
- Example

Statistical properties

Computational aspects

Application in the Modeling of Natural Images

Closing

- Denote by $\hat{\boldsymbol{\theta}}_T$ the parameter vector which maximizes $J_T(\boldsymbol{\theta})$, the objective where T_d observations of $\mathbf{x} \sim p_m(\mathbf{x}; \boldsymbol{\theta}^{\star})$ are used.
- Property 1 (consistency): As T_d increases $\hat{\boldsymbol{\theta}}_T$ converges in probability to $\boldsymbol{\theta}^*$.

For proof and (mild) conditions, see Gutmann and Hyvärinen, JMLR, 13(Feb):307–361, 2012.

- Property 2: For normalized models, as $\nu = T_n/T_d$ increases, for any valid choice of p_n , noise-contrastive estimation tends to "perform as well" as MLE (more formally: it is asymptotically Fisher efficient).
- We have also studied other properties like the distribution of $\hat{\theta}_T$ when T_d is large, see the article above.

Michael U. Gutmann University of Helsinki - p. 14/29

Validating the properties with toy data (1/2)

Introduction

Noise-Contrastive Estimation

- Logistic regression
- Example

Statistical properties

Computational aspects

Application in the Modeling of Natural Images

Closing

- Let the data follow the ICA model x = As with 4 sources.
- \blacksquare The distribution of x is

$$\ln p_m(\mathbf{x}; \boldsymbol{\theta}^*) = -\sum_{i=1}^4 \sqrt{2} |\mathbf{b}_i^* \mathbf{x}| + c^*$$

with $c^* = \ln |\det \mathbf{B}^*| - \frac{4}{2} \ln 2$ and $\mathbf{B}^* = \mathbf{A}^{-1}$.

■ For this toy data, we could formulate a properly normalized model. To validate our method, let us estimate the unnormalized model

$$\ln p_m(\mathbf{x}; \boldsymbol{\theta}) = -\sum_{i=1}^4 \sqrt{2} |\mathbf{b}_i \mathbf{x}| + c$$

with parameters $\theta = (\mathbf{b}_1, \dots, \mathbf{b}_4, c)$.

■ Contrastive noise p_n : Gaussian with the same covariance as the data.

Validating the properties with toy data (2/2)

Results for 500 estimation problems with random $\bf A$, for $\nu \in \{0.01, 0.1, 1, 10, 100\}$. For the MLE results, we used the properly normalized model.

Computational aspects (1/3)

Introduction

Noise-Contrastive Estimation

- Logistic regression
- Example
- Statistical properties

Computational aspects

Application in the Modeling of Natural Images

Closing

- The estimation accuracy improves as the number of noise samples T_n increases.
- With more noise samples, more computations are needed.
 → There is a trade-off between computational and statistical performance.
- Example: ICA model as before but with 10 sources. $T_d = 8000$, $\nu \in \{1, 2, 5, 10, 20, 50, 100, 200, 400, 1000\}$. Performance for 100 random estimation problems:

Computational aspects (2/3)

Introduction

Noise-Contrastive Estimation

- Logistic regression
- Example
- Statistical properties

Computational aspects

Application in the Modeling of Natural Images

Closing

How good is the trade-off? Let's compare with other estimation methods.

1. MLE where partition function is evaluated with importance sampling. Maximization of

$$J_{\mathsf{IS}}(\boldsymbol{\alpha}) = \frac{1}{T_d} \sum_{t=1}^{T_d} \ln p_m^0(\mathbf{x}_t; \boldsymbol{\alpha}) - \ln \left(\frac{1}{T_n} \sum_{t=1}^{T_n} \frac{p_m^0(\mathbf{n}_t; \boldsymbol{\alpha})}{p_{\mathsf{IS}}(\mathbf{n}_t)} \right)$$

 $p_{\rm IS}=p_n$ is the proposal distribution and

$$\ln p_m^0(\mathbf{x}; oldsymbol{lpha}) = -\sum_{i=1}^{10} \sqrt{2} |\mathbf{b}_i \mathbf{x}|$$
, $oldsymbol{lpha} = (\mathbf{b}_1, \dots, \mathbf{b}_{10})$

2. Score matching: minimization of

$$J_{\text{SM}}(\boldsymbol{\alpha}) = \frac{1}{T_d} \sum_{t=1}^{T_d} \sum_{i=1}^{10} \frac{1}{2} \Psi_i^2(\mathbf{x}_t; \boldsymbol{\alpha}) + \Psi_i'(\mathbf{x}_t; \boldsymbol{\alpha})$$

with $\Psi_i(\mathbf{x}; \boldsymbol{\alpha}) = \frac{\partial \ln p_m^0(\mathbf{x}; \boldsymbol{\alpha})}{\partial \mathbf{x}(i)}$ (smoothing needed!)

(see JMLR2012 paper for more comparisons)

Computational aspects (3/3)

Introduction

Noise-Contrastive Estimation

- Logistic regression
- Example
- Statistical properties

Computational aspects

Application in the Modeling of Natural Images

Closing

- Compared to the importance sampling approach (IS), noise-contrastive estimation (NCE) is less sensitive to the mismatch of data and noise distribution.
- Score matching (SM) does not perform well if the data distribution is not smooth.
- NCE seems suitable for data with heavy tails or non-smooth distribution.

Michael U. Gutmann University of Helsinki - p. 19/29

Application in the Modeling of Natural Images

Michael U. Gutmann University of Helsinki - p. 20/29

Natural image data

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Natural images

- Two-layer model
- Results

Closing

- Image patches: 32×32 pixel subregions of larger images
- Preprocessing: PCA dimension reduction from 625 to 160 (93% of variance retained), cancelling illumination condition by centering each patch.
- Data is clearly structured. Its modeling is important for image processing (e.g. denoising) and for understanding the visual processing in the brain.

(b) After preprocessing

(c) Noise

Two-layer model

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Natural images

Two-layer model

● Results

Closina

- Build a multi-layer network which takes as input an image x and outputs the pdf at x.
 - First layer: compute feature outputs $\mathbf{w}_i^T \mathbf{x}$ for $i=1,\ldots,160$
 - ♦ Then: compute "energies" $(\mathbf{w}_i^T \mathbf{x})^2$
 - Second layer: pooling of energies: $y_k = \sum_i Q_{ki}(\mathbf{w}_i^T \mathbf{x})^2$, $Q_{ki} > 0$, $k = 1, \dots, 160$
 - Output of the network: $\ln p_m(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{160} f(y_k) + c$ where f is a spline nonlinearity
- The parameters are $\theta = (\mathbf{w}_i, Q_{ki}, f, c)$. There are more than 50'000.
- The model p_m is unnormalized. We estimate it with noise-contrastive estimation.

Results of the estimation: features

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

- Natural images
- Two-layer model

Results

Closing

- The \mathbf{w}_i are "Gabor-like".
- The second layer is more interesting: Five different summations $\sum_{i=1}^{n} Q_{ki}(\mathbf{w}_{i}^{T}\mathbf{x})^{2}$ are shown.

Results of the estimation: nonlinearity

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

- Natural images
- Two-layer model

Results

Closing

- \blacksquare The nonlinearity f at the beginning and end of the learning.
- For natural images 99% of the second layer outputs y_k fall to the left of the dashed line. The learned f is only valid in that region.
- Nonlinearity f assigns high probabilities to either very small or large y_k . \rightarrow sparsity of the feature outputs

Michael U. Gutmann University of Helsinki - p. 24/29

Results of the estimation: likely points of the model

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

- Natural images
- Two-layer model

Results

Closing

- We visualize here the behavior of the model by showing what kind of structure the model considers likely.
- Initialize \mathbf{x} randomly and find $\hat{\mathbf{x}} = \operatorname{argmax}_{\mathbf{u}} p_m(\mathbf{u}; \hat{\boldsymbol{\theta}})$. We call the resulting local maximum a "likely point".

Closing

Michael U. Gutmann

University of Helsinki - p. 26/29

Some research directions for the estimation part

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

Open questions

- Summary
- Three points

- Noise-contrastive estimation uses noise (auxiliary) samples. How to select their distribution p_n ?
- Noise-contrastive estimation (NCE) is a special instance of a large family of estimators (Gutmann and Hirayama, UAI 2011).
 Minimizing

$$L_{\Psi}(\boldsymbol{\theta}) = \frac{1}{T_d} \left\{ \sum_{t=1}^{T_n} -\Psi\left(\frac{p_m(\mathbf{y}_t; \boldsymbol{\theta})}{\nu p_n(\mathbf{y}_t)}\right) + \Psi'\left(\frac{p_m(\mathbf{y}_t; \boldsymbol{\theta})}{\nu p_n(\mathbf{y}_t)}\right) \frac{p_m(\mathbf{y}_t; \boldsymbol{\theta})}{\nu p_n(\mathbf{y}_t)} - \sum_{t=1}^{T_d} \Psi'\left(\frac{p_m(\mathbf{x}_t; \boldsymbol{\theta})}{\nu p_n(\mathbf{x}_t)}\right) \right\},$$

where Ψ is strictly convex, gives a consistent estimator.

- $\Psi(u) = u \ln u (1+u) \ln(1+u)$ gives NCE. Are other Ψ more appropriate?
- The estimation is performed via optimization. Can we increase the computational efficiency by better optimization techniques?

Summary

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

Open questions

Summary

Three points

- Introduction
 - What unnormalized models are and why being able to estimate them is important
 - Unnormalized models cannot be estimated by MLE (without approximations)
- Noise-contrastive estimation
 - Estimating unnormalized models by discriminating the observed data from artificial data with known distribution
 - Statistical and computational properties
- Application to the modeling of natural images
 - Formulated a two-layer model with a spline nonlinearity
 - ◆ In the second layer, sparse pooling of similarly oriented Gabor features emerged. The shape of the learned spline matches the sparsity of the feature outputs.

Michael U. Gutmann University of Helsinki - p. 28/29

Three important points to retain

Introduction

Noise-Contrastive Estimation

Application in the Modeling of Natural Images

Closing

- Open questions
- Summary

Three points

The big picture of parametric estimation is as follows:

Observe a collection $X=(\mathbf{x}_1,\ldots,\mathbf{x}_{T_d})$ of continuous or discrete random variables \mathbf{x}_t .

Assume that the \mathbf{x}_t are iid and that their distribution $p_d(\mathbf{x})$ belongs to the family of nonnegative functions $\{p_m(\mathbf{x}; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$ parameterized by $\boldsymbol{\theta} \in \mathbb{R}^m$. That is $p_d(\mathbf{x}) = p_m(\mathbf{x}; \boldsymbol{\theta}^*)$.

Find θ^*

- 1. Many models p_m are unnormalized: only the shape of the pdf is modeled and not its scale. Such models do not integrate to one.
- 2. Normalizing them is problematic, but MLE is only applicable to normalized models.
- 3. Noise-contrastive estimation yields consistent estimates for unnormalized models and seems suitable for data with heavy tails.^a

Michael U. Gutmann University of Helsinki - p. 29/29

^aCode available at https://sites.google.com/site/michaelgutmann/code.