A case for redundant array of inexpensive disks (RAID)

Siddharth Bhat (20161105)

March 12, 2020

- \bullet Moore's law: Transitors in a chip $\times 2$ every 2 years: $\equiv 2^{\frac{Year-1964}{2}}$
- ullet Bits stored / inch imes 10 every 10 years: $\equiv 10^{rac{{\sf Year}-1971}{10}}$
- SLED (Single Large expensive magnetic disks) cannot keep pace with CPUs!
- Speedup ≡?? Amdahl's law

Inexpensive Disks

	IBM 3380	Conners CP3100
Price	\$ 135000	\$1000
Power/box(Watt)	6600 W	10 W
IO/sec (max)	50 ops/s	30 ops/s
IO/sec (typical)	30 ops/s	20 ops/s
Data capacity (MB)	7500 MB	100 MB
Time to failure (rated)	30,000 hours	30,000 hours
Time to failure (practice)	100,000 hours	Unk

Array of Inexpensive Disks

	IBM 3380	$135 \times Conners\ CP3100$
Price	\$135000	\$135000
Power/box(Watt)	6600 W	1350 W
IO/sec (max)	50 ops/s	4050 ops/s
IO/sec (typical)	30 ops/s	2700 ops/s
Data capacity (MB)	7500 MB	13500 MB
Time to failure (rated)	30,000 hours	100 hours
Time to failure (practice)	100,000 hours	Unk

The ugly

Mean time to failure of any of 135 disks: 30,000 hours / 135 = 100 hours

Redundant Array of Inexpensive Disks

- Extra check disks store redundant information.
- Replace failed disk & replicate from check disk.

Pleasing side-effects of Redundancy

Parallel reads & writes are enabled to random sections of disk.

RAID 1: Mirrored Disks

• All data is duplicated across all disks

RAID 1: Mirrored Disks

- All data is duplicated across all disks
- Writes are expensive: need to be replicated!

RAID 1: Mirrored Disks

- All data is duplicated across all disks
- Writes are expensive: need to be replicated!
- Disk space utilization: **50%**.

- ullet Use **bit-level** striping (consecutive bits o different disks).
- Use Hamming code **per bit**.

- Use bit-level striping (consecutive bits → different disks).
- Use Hamming code **per bit**.
- All disks need to read same bit simultaneously: bitwise error checking.

- Use bit-level striping (consecutive bits → different disks).
- Use Hamming code **per bit**.
- All disks need to read same bit simultaneously: bitwise error checking.
- So, Cannot service multiple requests at once.

- Use bit-level striping (consecutive bits → different disks).
- Use Hamming code **per bit**.
- All disks need to read same bit simultaneously: bitwise error checking.
- So, Cannot service multiple requests at once.
- Not used anymore.

ullet Use **byte-level** striping (consecutive bytes o different disks).

- ullet Use **byte-level** striping (consecutive bytes o different disks).
- I/O needs synchronized spindles.

- Use byte-level striping (consecutive bytes → different disks).
- I/O needs synchronized spindles.
- parity needs far less storage space.

- Use byte-level striping (consecutive bytes → different disks).
- I/O needs synchronized spindles.
- parity needs far less storage space.
- Rarely used in practice.

ullet Stripe data per-block (consecutive block o different disks).

- ullet Stripe data per-block (consecutive block o different disks).
- Block level parity needs far less storage space.

- Stripe data per-block (consecutive block \rightarrow different disks).
- Block level parity needs far less storage space.
- Good random access read times.

- Stripe data per-block (consecutive block \rightarrow different disks).
- Block level parity needs far less storage space.
- Good random access read times.
- Bad write times: All parities in same disk.

RAID 5: Block level striping + distributed parity ECC

• Inherits the good from RAID 4.

RAID 5: Block level striping + distributed parity ECC

- Inherits the good from RAID 4.
- Good write times: parities distributed across disks.