Számítógép és hálózati arch. l

1. Alapok, csoportosítás, topológiák, protokollok, eszközök

- A kialakítás előnyei
 - perifériák, erőforrások megosztása
 - nyomtató
 - plotter
 - modem
 - internet-hozzáférés
 - háttértár, processzor, memória
 - működési és adatbiztonság
 - költségmegtakarítás
 - teljesítmény-kihasználás
 - fürtözés
 - szabad processzoridő kihasználás

- információ megosztás
 - csoportmunka
 - adatbázis
- kommunikáció
 - üzenetküldés-fogadás
 - netmeeting
 - banki ügyletek intézése...
- interaktív szórakozás
 - játék
 - online rádió, tv
- távvezérlési lehetőség
 - épületfelügyelet
 - távolról történő számítógép működtetés

- Kiterjedtség szerint:
 - PAN (Personal Area Network)
 - Kiterjedtsége 1-2 méter
 - LAN (Local Area Network)
 - épületen, intézményen belüli helyi hálózat
 - kiterjedtsége max. néhány száz méter
 - MAN (Metropolitan Area Network)
 - városon belüli hálózat
 - kiterjedtsége néhány kilométer
 - WAN (Wide Area Network)
 - Városnál nagyobb kiterjedésű hálózat
 - GAN (Global Area Network)

Átviteli közeg szerint:

- fizikailag összekötött bounded (vezetékes)
- fizikailag nem összekötött unbounded (vezeték nélküli)

Gépek egymás közötti viszonya alapján

- Egyenrangú (peer to peer)
 - a hozzáférés megosztásszintű
 - nehéz korlátozni kinek mit lehet és mit nem
 - 10 számítógép felett anarchikus lehet
 - Windows XP, Vista, 7 hálózati kialakítása

Szerver-kliens alapú (hierarchikus)

- létezik egy adminisztrátor, aki meghatározza az egyes felhasználók jogait
- Központi felhasználói csoportok alakíthatók ki
- a felhasználók számára személyre szabottan megadhatók a jogok
- Windows AD, LINUX, NETWARE hálózati kialakítása.

Hálózati struktúrák

- elemei:
 - hoszt (host):
 - az a számítógép., ami hálózatba van kötve
 - vonalak (csatornák)
 - az adatáramlás közegei
 - agépeket kötik össze
 - kapcsolóelemek
 - IMP (Interface Message Processor)
 - pl: hálókártya+szoftver
- lehetőségei:
 - két pont közötti (Piont to Point)
 - adatszóró (broadcasting)

fa topológia

- a szerverből kiinduló ág több ágra oszlik
- a csomópontokban található a HUB (aktív, vagy passzív)
- a hálózat független az egyes ágak működésétől
- a hiba jól lokalizálható
- sok kábel

- gyűrű topológia
 - az összeköttetés körkörös
 - kevés kábel
 - a terhelés egyenletes
 - hiba esetén az egész hálózat leáll

- Üzenetszórásos (broadcasting) alhálózatok
 - a címzés követelményei:
 - egyedi
 - tartalmazzon csoportra utaló tagot
 - tartalmazzon az üzenetszórásra utaló tagot
 - pl: brodcast (1 bit) multicast (n bit) unicast (m bit)
 - előnye:
 - mindenki mindenkivel tarthat kapcsolatot
 - hátrány:
 - nagy a redundancia
 - egyszerre több állomás adhat egyszerre
 - a versenyhelyzetet fel kell oldani: arbitráció

sín topológia

- a server és a munkaállomások is egy közös kábelre csatlakoznak
- kevés kábel
- hiba esetén az egész hálózat leáll
- a hiba nehezen kereshető

Közeghozzáférés szerint:

- Két pont közötti alhálózat
 - kommunikációs végpontok vannak összekötve
 - ezen a csatornán haladnak az adatcsomagok (packet)
 - ha egy vevő nem neki szóló csomagot kap, akkor továbbadja egy másik kapcsolaton keresztül
 - előnye:
 - a hiba jól lokalizálható
 - hátránya:
 - kommunikáció csak közvetlen összekötés révén lehetséges
 - az összes gép összekötéséhez n*(n-1)/2 db összeköttetésre van szükség

- Üzenetszórásos (broadcasting) alhálózatok
 - ténylegesen egy kommunikációs csatorna
 - a kiküldött csomagot minden állomás veszi
 - a célt címzés tartalmazza
 - a címzés része minden csomagnak
 - küldő cím:
 - unicast (egyedi)
 - célcím:
 - unicast (egyedi)
 - multicast (csoport)
 - üzenetszórásos (broadcast)
 - a cím kinyeréséig a csomagot mindig fel kell dolgozni
 - további feldolgozás csak egyező cím esetén

Logikai topológia:

- adási jog továbbításos (Token Passing)
 - az adási jog körbejár a hálózaton
 - vezérjel (frame) megy végig, ha egy munkaállomás adni szeretne "elveszi" és adásba kezd
 - minden munkaállomás kap egy időszeletet a forgalmazásra
- vivőérzékelő-ütközésfigyeléses (CSMA/CD)
 - előbb figyelj, aztán forgalmazz!
 - adatütközés esetén az ütközésfigyelő (CD) leállítja a forgalmazást

Felhasználók számára hozzáférhetőség szerint:

- Nyílt hálózat
 - Használatának feltételei, körülményei bárki számára hozzáférhető, más hálózatok kapcsolódhatnak hozzá.
- Zárt hálózat
 - Felépítése titkos, külső felhasználó számára nem hozzáférhető.

A hálózat egységei

- kiszolgáló állomás (server)
 - kielégítik a felhasználók igényeit
 - a feladata alapján lehet:
 - fájlszerver (FTP server)
 - nyomtatószerver (printserver)
 - webszerver
- munkaállomás (workstation)
 - az egyes felhasználók munkahelyei
- hálózati perifériák
 - nyomtató
 - plotter
- csomóponti eszközök
- hálózati csatolók
- kábelek

- hálózati csatoló (network adapter)
 - a hálózat és a szgép közötti illesztő, lehet:
 - alaplapra integrált, PCIE, USB (PCI, ISA)
 - csatlakozás: BNC, RJ45
 - átviteli sebesség: 10 Mbs, 100 Mbs, 1000 Mbs
 - BOOTROM-mal, vagy anélkül

- koaxális kábelek
 - jellemzői:
 - hullámellenállás
 - 50 Ω , 75 Ω
 - késleltetési idő
 - hosszegységre eső csillapítás
 - alapsávú koaxális kábelek:
 - helyi számítógép hálózatok számára (LAN)
 - max. adatátviteli sebe4sség: 100 Mb/s (max 1 km)
 - vékony koaxális kábel (Thin)
 - 10BASE2 200m (180 m)
 - impedancia: 50 OHM
 - Csatlakoztatható gépek száma 30 db.
 - BNC csatlakozás

- UTP (Unshadowed Twisted Pair)
- STP (Shadowed Twisted Pair)
- FTP (Foilshadowed Twisted Pair)
- kategóriái:

Cat. 1		2 Mbit/s		(telefonvonal)
Cat. 2	84-113 Ohm	4 Mbit/s		(Local Talk)
Cat. 3	100 Ohm	10 Mbit/s	100 m	(Ethernet)
Cat. 4	100 Ohm	20 Mbit/s	100 m	(16 Mbit/s Token Ring)
Cat. 5.	100 Ohm	100 Mbit/s	100 m	(Fast Ethernet)
Cat. 6.	100 Ohm	1000 Mbit/s	100 m	Gigabit Ethernet
Cat. 7.	100 Ohm	10 Gbit/s	>100 m	10 Gigabit Ethernet

- UTP kábelek
 - bekötési módok:
 - egyenes:
 - hoszt és IMP között

- · hoszt és hoszt között
- IMP és IMP között

UTP kábelek

- négy darab csavart érpár
- a csavarás lényege: az interferencia kiküszöbölése
- minden érpár eltérő számú csavarodást tartalmaz méterenként
- minél sűrűbb a csavarás, annál nagyobb az átviteli sebesség
- a kábel végén a csavarást max. 13 mm hosszan lehet megbontani (csatlakozó készítéskor)
- csatlakozója: 8P8C

- Optikai kábel
 - a legkorszerűbb vezetékelés
 - az információ fényimpulzusok formájában terjed tovább
 - a fényforrás egy LED dióda, vagy lézerdióda
 - az érzékelő fotodióda, vagy fototranzisztor
 - a közeg vékony üvegszál
 - lehetséges fényveszteség:
 - visszaverődés: közeghatáron
 - megoldható jó minőségű illesztéssel
 - csillapítás
 - a szennyeződés következménye
 - megfelelő anyaggal minimalizálható
 - a közegen átlépő fénysugarak
 - teljes visszaverődéssel a közegen belül tarthatók a sugarak
 - többmódusú üvegszál

ismétlő (repeater)

- a fizikai rétegen működik
- a jelen csak erősítést végez
- feladata a távolságnövelés

elosztó (HUB)

- a fizikai rétegen működik
- a jelen erősítést végez és továbbosztja azt
- egy ágon maximum három elosztó eszköz lehet

híd (bridge, gateway)

- a kapcsolati rétegen működik
- átjárhatóságot biztosít különböző rendszerek között
- erősítést is végez

kapcsoló (switch)

- a kapcsolati rétegen működik
- eloszt
- erősít
- a helyi hálózaton utat talál a címzetthez

útkiválasztó (router)

- a hálózati rétegen működik
- belső routing táblázatot vezetnek
- utat találnak más hálózatokba, vagy routerekhez