Problem

Show that PSPACE is closed under the operations union, complementation, and star.

Step-by-step solution

Step 1 of 4

 $PSPACE = \bigcup SPACE(n^k)$

PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine i.e.

Consider the two languages $^{L_{\rm l}}$ and $^{L_{\rm 2}}$ that are decided by PSPACE Turing machines $^{M_{\rm l}}$ and $^{M_{\rm 2}}$.

 M_1 decides L_1 in deterministic time $O(n^k)$ and M_2 decides L_2 in deterministic time $O(n^l)$.

If any polynomial solvable in polynomial time, then it is solvable in polynomial space.

Comment

Step 2 of 4

UNION:

M ="on input w:

- 1. Run M_1 on w , if M_1 accepted then accept
- 2. Else run $\,^{M_2}$ on $\,^{w}$, if $\,^{M_2}$ accepted then accept
- 3. Else reject"

Clearly, the longest branch in any computation tree on input w of length n is $O(n^{\max\{k,L\}})$. Thus, M is a polynomial time deterministic decider for $L_1 \cup L_2$. If any polynomial solvable in polynomial time, then it is solvable in polynomial space. Therefore, PSPACE is closed under union.

Comment

Step 3 of 4

COMPLEMENTATION:

M ="on input w:

- 1. Run M_1 on w, if M_1 accepted then reject.
- 2. Else accept"

Clearly, the longest branch in any computation tree on input w of length n is $O(n^{\{k\}})$. Thus, M is a polynomial time deterministic decider for \overline{L}_1 . If any polynomial solvable in polynomial time, then it is solvable in polynomial space. Therefore, PSPACE is closed under complementation.

Comment

Step 4 of 4

STAR:

M ="on input w:

- 1. If $w = \mathcal{E}$ then accept
- 2. Deterministically select a number m such that $1 \le m \le |w|$

- 3. Deterministically split $\ w$ into $\ m$ pieces such that $\ w=w_1w_2...w_m$.
- 4. For all i, $1 \le i \le m$: run M_1 on W_i , if M_1 rejected then reject.
- 5. Else (M_1 accepted all w_i , $1 \le i \le m$), accept".

The steps 1 and 2 takes O(m) time. Step 3 also possible in polynomial time. In step 4, the for loop is run at most m times and every run takes almost $O(m^k)$. The total times is $O(m^{k+1})$. This means that M is a polynomial time decides for L_1^* . If any polynomial solvable in polynomial time, then it is solvable in polynomial space. Therefore, PSPACE is closed under star.

Therefore, PSPACE is closed under Union, Complementation and star.

Comment