What is claimed is:

1	1.	A method of testing an integrated circuit (IC), the method comprising:
2		driving a terminal on the IC to a state;
3		stopping the driving of the terminal;
4		floating the terminal for a predetermined time; and
5		determining a state of the terminal after the predetermined time.
1	2.	The method of claim 1 further comprising:
2		determining quality of the IC based on the state of the terminal after the
3		predetermined time.
1	3.	The method of claim 1, wherein driving includes applying a logic low to the
2		terminal.
1	4.	The method of claim 1, wherein driving includes applying a logic high to the
2		terminal.
l	5.	The method of claim 1, wherein determining includes measuring a voltage of the
2		terminal after the predetermined time.
1	6.	A method of testing comprising:
2		charging a pin on an integrated circuit (IC) until it reaches a known state;
3		stopping the charging of the pin;
4		floating the pin for a predetermined time;
5		sampling a state of the pin after the predetermined time; and
6		determining a test result of the pin based on the state of the pin after the
7		predetermined time, wherein the method is performed with Boundary
8		Scan.

- The method of claim 6, wherein charging includes driving the pin to a logic low.
- 1 8. The method of claim 6, wherein charging includes driving the pin to a logic high.
- 1 9. The method of claim 6, wherein sampling includes determining if the pin changes state after the predetermined time.
- 1 1\hbar A method of testing comprising:
- driving the first terminal on an integrated circuit (IC) to a first state;
- driving the second terminal on the IC to a second state;
- 4 stopping the driving of at least one of the terminals;
- floating at least one of the terminals for a predetermined time; and
- determining a state of at least one of the terminals after the predetermined
- 7 time.
- 1 11. The method of claim 10 further comprising:
- determining quality of the IC based on the state of at least one of the terminal after
- 3 the oredetermined time.
- 1 12. The method of claim 10, wherein driving the first and second terminals include
- 2 applying opposite states to the terminals.
- 1 13. The method of claim 10, wherein determining includes measuring a voltage value
- 2 of least one of the terminals.

1	Ŋ.	A method of testing comprising:
2	4	charging the first pin on an integrated circuit (IC) to a first known state;
3	`	charging the second pin on the IC to a second known state;
4		stopping the charging of at least one of the pins;
5		floating at least one of the pins for a predetermined time;
6		sampling a state of at least one of the pins after the predetermined time; and
7		determining a test result of at least one of the pins based on the state of at least
8		one the pins after the predetermined time, wherein the method is
9		performed with Boundary Scan.
1	15.	The method of claim 14, wherein charging the first and second terminals includes
2		applying opposite states to the terminals.
1	16.	The method of claim 14, wherein sampling includes determining whether at least
2		one of the pin changes state after the predetermined time.
1	17.	A method of testing a circuit module, the method comprising:
2		tri-stating all of the terminals on any of the integrated circuits (ICs) connected
3		to a net, the ICs located on the same circuit module, and wherein the ICs
4		includes different types of ICs and perform different functions,
5		driving the net to a state through a terminal on one or more of the ICs;
6		stopping the driving of the terminal;
7		floating the net for a predetermined time; and
8		determining a state of the net after the predetermined time, wherein the
9		method is performed with Boundary Scan.
1	18.	The method of claim 17 further includes:
2		determining quality of the circuit module based on the state of the net after the
3		predetermined time.

i	19.	The method of claim 1/, wherein determining includes determining if the net
2	,	changes from one state to another.
	/	
1	20.	An apparatus comprising:
2		an integrated circuit (IC); and
3		a tester connected to the IC, wherein the tester performs leakage test on the IC by
4		a method of:
5		driving the terminal of an IC to a state;
6		stopping the driving of the terminal;
7		floating the terminal for a predetermined time; and
8		determining a state of the terminal after the predetermined time.
1	21.	The apparatus of claim 20, wherein the IC includes a plurality of Boundary Scan
2		pins, wherein the tester connects to the IC through the Boundary Scan pins.
1	22.	The apparatus of claim 20, wherein the tester is a computer.
1	23.	An apparatus comprising:
2		an integrated circuit (IC); and
3		a tester connected to the IC, wherein the tester performs a leakage test on the IC
4		by a method of:
5		driving the first terminal of an IC to a first state;
6		driving the second terminal of an IC to a second state;
7		stopping the driving of at least one of the terminals;
8		floating at least one of the terminals for a predetermined time; and
9		determining a state of at least one of the terminals after the predetermined
10		time, wherein the method is performed with Boundary Scan.
10		time, wherein the method is performed with boundary seam
1	24.	The apparatus of claim 23, wherein the IC comprises a plurality of Boundary Scar
2		pins, wherein the tester connects to the IC through the Boundary Scan pins.
	Atto	rney Docket No. 884.410US1 Client Ref. No. P10920

- 1 25. The apparatus of claim 23, wherein the tester performs the leakage test through
- 2 \ \ the Boundary Scan pins.
- 1 26. The apparatus of claim 23, wherein the tester is a computer.
- 1 27. A machine-readable medium having instructions stored thereon capable of
- 2 causing a tester to perform method of testing, the method comprising:
- charging the pin of an integrated circuit (IC) until it reaches a known state;
- 4 stopping the charging of the pin;
- 5 floating the pin for a predetermined time;
- 6 sampling a state of the pin after the predetermined time; and
- determining a test result of the pin based on the state of the pin after the
- 8 predetermined time.
- 1 28. The method of claim 27, wherein charging includes driving the pin to a logic low.
- 1 29. The method of claim 27, wherein charging includes driving the pin to a logic
- 2 high.
- 1 30. The method of claim 27, wherein sampling includes determining if the pin
- 2 changes state after the predetermined time.