Your grade: 90%

Your latest: 90% • Your highest: 90% • To pass you need at least 80%. We keep your highest score.

Next item \rightarrow

1.	Whi	ch approach ensures continual (never-ending) exploration? (Select all that apply)	1/1 point
	~	Exploring starts	
		Correct! Exploring starts guarantee that all state-action pairs are visited an infinite number of times in the limit of an infinite number of episodes.	
		On-policy learning with a deterministic policy	
	✓	On-policy learning with an ϵ -soft policy	
		Correct! ϵ -soft policies assign non-zero probabilities to all state-action pairs.	
	~	Off-Policy learning with an ϵ -soft behavior policy and a deterministic target policy	
		Correct! ϵ -soft policies have non-zero probabilities for all actions in all states. The behavior policy is used to generate samples and should be exploratory.	
		Off-Policy learning with an ϵ -soft target policy and a deterministic behavior policy	
2.	Whe	en can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)	1/1 point
		When the problem is continuing and given a batch of data containing sequences of states, actions, and rewards	
		When the problem is continuing and there is a model that produces samples of the next state and reward	
	~	When the problem is episodic and given a batch of data containing sample episodes (sequences of states, actions, and rewards)	
		Correct! Well-defined returns are available in episodic tasks.	
	~	When the problem is episodic and there is a model that produces samples of the next state and reward	
		Correct! Well-defined returns are available in episodic tasks.	
3.	Whi	ch of the following learning settings are examples of off-policy learning? (Select all that apply)	1/1 point
	✓	Learning the optimal policy while continuing to explore	
		Correct! An off-policy method with an exploratory behavior policy can assure continual exploration.	
	~	Learning from data generated by a human expert	
		Correct! Applications of off-policy learning include learning from data generated by a non-learning agent or human expert. The policy that is being learned (the target policy) can be different from the human expert's policy (the behavior policy).	
4.		ch of the following is a requirement <i>on the behaviour policy</i> b for using off-policy Monte Carlo policy luation? This is called the <i>assumption of coverage</i> .	1/1 point
	0	All actions have non-zero probabilities under π	

Ear each state a and action a if $\pi(a \mid a) < 0$ than $h(a \mid a) < 0$

		Correct! Every action taken under π must have a non-zero probability under b .		
	0	For each state s and action a , if $b(a \mid s) > 0$ then $\pi(a \mid s) > 0$		
5.	When is it possible to determine a policy that is greedy with respect to the value functions v_π, q_π for the policy π ? (Select all that apply)			
	✓	When state values v_π and a model are available		
		Correct! With state values and a model, one can look ahead one step and see which action leads to the best combination of reward and next state.		
	✓	When state values v_π are available but no model is available.		
		Incorrect, please review Lesson 2 (Video: Using Monte Carlo for estimating action-values)		
	~	When action values q_π and a model are available		
		Correct! Action values are sufficient for choosing the best action in each state.		
	~	When action values q_π are available but no model is available.		
		Correct! Action values are sufficient for choosing the best action in each state.		
6.	Mor	nte Carlo methods in Reinforcement Learning work by	1/1 point	
	Hint: recall we used the term <i>sweep</i> in dynamic programming to discuss updating all the states systematically. This is not the same as visiting a state.			
	0	Performing sweeps through the state set		
	O	Averaging sample returns		
		Correct! Monte Carlo methods in Reinforcement Learning sample and average returns much like bandit methods sample and average rewards.		
	0	Averaging sample rewards		
	0	Planning with a model of the environment		
7.		pose the state s has been visited three times, with corresponding returns $8,4,$ and $3.$ What is the current	1/1 point	
	_	nte Carlo estimate for the value of s ?		
		3 15		
	•			
		Correct! The Monte Carlo estimate for the state value is the average of sample returns observed from that state.		
	0	3.5		
8.	Whe	en does Monte Carlo prediction perform its first update?	1/1 point	
	0	After the first time step		
	0	After every state is visited at least once		
	•	At the end of the first episode		
		Correct! Monte Carlo Prediction updates value estimates at the end of an episode.		

To reach state s and action a, if n $(a \mid s) > 0$ then $o(a \mid s) > 0$

9.	For Monte Carlo Prediction of state-values, the number of updates at the end of an episode depends on	1/1 point		
	Hint: look at the innermost loop of the algorithm			
	The number of possible actions in each state			
	The number of states			
	The length of the episode			
	Correct! Monte Carlo Prediction updates the estimated value of each state visited during the episode.			
10. In an ϵ -greedy policy over \mathcal{A} actions, what is the probability of the highest valued action if there are no other actions with the same value?				
	\bigcirc 1 – ϵ			
	\bigcirc ϵ			
	$igotimes 1 - \epsilon + rac{\epsilon}{\mathcal{A}}$			
	Correct! The highest valued action still has a chance of being selected as an exploratory action.			
	\bigcirc $\frac{\epsilon}{A}$			
4	Like			