$$\rho = Rho = \rho(X,Y) = \frac{kov(X,Y)}{\sigma_X \sigma_Y}$$

Korrelation (Pearson's Korrelation)
$$\rho = Rho = \rho(x, y) = \frac{kov(x, y)}{\sigma_{x}\sigma_{y}} = \frac{\sum_{i=1}^{2} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{2} (x_{i} - \overline{x})} = \frac{\sum_{i=1}^{2} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{2} (x_{i} - \overline{x})}$$

Interpretation:

P>O: POSITIVE KORRELATION: Wenneine Variable wachst, die ander wirchst auch.

DOO: KEINE KORKELATION: Wenneine Vaniable sich andet andert sich die andere nicht.

: NEGATIVE KORRELATION: wenn eine Vaniable wachst die andere schrungft.

Beispiel: dite ermitteln die um wie viel sich die Wahlat eines Produktes verbessert, wenn die DLZ sich um 15/. Verbessern XDLZ (Tage) y Chalitat(ppm) Ny 713 3200 (pm) KW2 6'7 2700 KWZ 58 1900 1700 1. SCHRITT: Normieren X=7/3+6/7+5/8+5/6-6/35; F=3200+2700+1700-2375 (7'3-6'35)+(6'7-6'35)7 (58-6'35)7+(5'6-6'35)2=

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$

$$kirr(x^{*}, y^{*}) = \frac{\sum (x^{*}, -x^{*})(y^{*}, -y^{*})}{\sqrt{\sum (x^{*}, -x^{*})}} = \frac{\sum x^{*}, -y^{*}}{\sum x^{*}, -y^{*}} = \frac{x^{*}}{\sqrt{\sum (x^{*}, -x^{*})}} = \frac{x^{*}}{\sqrt{$$

Moung: dite ermiten die de Korrelationsmatrix des Kennzchlensystems mit 3 KPIS (UZ, KOSTOU, Q) Interpretieren die die Ergebnisse aus statistischer Sildt

•	Jent.	DLZ (Toge)	y Kostar(\$f)	2 Qualitat (4Pm)
	KWI	6'3	320	3200
	Kw2	4'7	180	4700
	KWJ	3'2	170	2100
	KWY	318	179	1500
	•			

1. HOLMICREH

2.	*	4*	2*
LW1	63-x	320-y	3200-2
	47-8	180-14	4700-2
Kwz	312-X	170 y	2/00-2

 $|x| = \frac{179 - y}{0x} = \frac{1500 - z}{0z}$ $|x| = \frac{2x^{2} y^{2}}{2x^{2} + 2y^{2}} = \frac{2x^{2}z^{2}}{2x^{2} + 2y^{2}} = \frac{2x^{2}z^{2}}{2x^{2} + 2y^{2}} = \frac{1}{2x^{2} + 2y^{2}}$