V101

Das Drehmoment

 $\begin{array}{ccc} \text{David Rolf} & \text{Jonah Blank} \\ \text{david.rolf@tu-dortmund.de} & \text{jonah.blank@tu-dortmund.de} \end{array}$

Durchführung: 28.11.2017 Abgabe: 05.12.2017

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Aufbau	3
4	Durchführung	3
5	Auswertung	3
6	Diskussion	3
Literatur		4

1 Zielsetzung

2 Theorie

$$\sqrt{\frac{a}{\ln b}} = e^c \cdot d_{\rm f} \tag{1}$$

Formel(1)

$$m = 0.035 \,\mathrm{m} \tag{2}$$

3 Aufbau

4 Durchführung

5 Auswertung

Die Graphen wurden sowohl mit Matplotlib [1] als auch NumPy [4] erstellt. Die Fehlerrechnung wurde mithilfe von Uncertainties [2] durchgeführt. Die Konstanten k, \hbar , e_0 , m_0 , u_0 und $N_{\rm A}$ sind vom NIST [3].

Tabelle 1: Test Tabelle

$T_{\rm x}/{ m K}$	$T_{ m y}/{ m K}$	$m_{\rm x}/{ m g}$	$m_{ m y}/{ m g}$
21,10	83,00	270,16	498,05

6 Diskussion

Literatur

- [1] John D. Hunter. *Matplotlib: A 2D Graphics Environment*. Version 1.5.3. URL: http://matplotlib.org/ (visited on 11/13/2017).
- [2] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties*. Version 3.0.1. URL: http://pythonhosted.org/uncertainties/ (visited on 11/13/2017).
- [3] NIST. Numpy Konstanten. URL: http://physics.nist.gov/cuu/Constants/index.html (visited on 04/25/2017).
- [4] Travis E. Oliphant. NumPy: Python for Scientific Computing. Version 1.11.1. URL: http://www.numpy.org/ (visited on 11/13/2017).