Name:

Problem 6. Find the equation of a circle which is tangent to the lines x = 0, x = 2, and y = x.

Solution. We begin by labeling our geometric objects as follows. We label the center (h, k). Clearly, h = 1, and the radius of the circle is r = 1. We need to find k.

- Let $L_1 = locus(x = 0)$, $L_2 = locus(x = 2)$, and $L_3 = locus(y = x)$.
- Let A be the point of tangency between the circle and L_3 . Label A = (a, a).
- Let B be the point of tangency between the circle and L_2 , so that B = (2, k).
- Let C be the center of the circle, so that C = (h, k).
- Let D be the intersection of L_2 and L_3 , so that D = (2, 2).
- Let E be the intersection of the line \overrightarrow{BD} and the line through A perpendicular to \overrightarrow{BD} .
- Let F be the intersection of the line \overrightarrow{BC} and the line through A perpendicular to \overrightarrow{BC} .

Please refer to the following diagram.

Since the slope of L_3 is 1, we see that the triangles $\triangle AED$ and $\triangle AFC$ are isosceles right triangles. Since $\triangle AFC$ is a right triangle, $|AF|^2 + |CF|^2 = |AC|^2$. We see that |AF| = |CF| = a - k, so

$$2(a-k)^2 = 1.$$

From this, $\sqrt{2}a = 1 + \sqrt{2}k$.

Since $\triangle CBD$ is similar to $\triangle CAD$, we have |AD| = |BD|. Since $\triangle AED$ is a right triangle, $|AE|^2 + |DE|^2 = |BD|^2$. We see that |AE| = |DE| = 2 - a and |BD| = 2 - k, so

$$2(2-a)^2 = (2-k)^2.$$

Thus $2\sqrt{2} - \sqrt{2}a = 2 - k$.

Substitution now gives $2\sqrt{2}-1-\sqrt{2}k=2-k$. Solving this for k yields

$$k = 1 - \sqrt{2}$$
.

Thus the equation of the circle is

$$(x-1)^2 + (y - (1 - \sqrt{2}))^2 = 1.$$