Module 4

VHDL Structure

Design

- A VHDL design includes the following elements
 - Entity Declaration
 - Describes the external interface to the outside world
 - Keywords used: entity, is, port, end
 - Architectural Body
 - Describes the internal behavior of the VHDL circuitry
 - Keywords used: architecture, is, begin, end

Full Adder Example

$S = x \oplus y \oplus C_i$
$C_o = C_i(x+y) + xy$
$C_o = C_i(x\bar{y} + \bar{x}y + xy) + xy$
$C_o = C_i(x \oplus y) + xy$

\boldsymbol{x}	y	C_i	C_o	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder Truth Table

Full Adder Digital Logic Equivalent

Full Adder Example

```
-- Dataflow Full Adder
                                                                      FA
     library IEEE;
     use IEEE.STD LOGIC 1164.ALL;
    entity Full Adder 1 is
    port ( S: out std logic;
 6
             C out: out std logic;
             x: in std logic;
                                             Entity Declaration
             y: in std logic;
 9
10
             C in: in std logic);
11
12
     end Full Adder 1;
13
14
     architecture dataflow of Full Adder 1 is
15
         begin
16
17
         C out <= (C in and (x xor y)) or (x and y);
                                                          Architectural Body
18
         S <= x xor y xor C in;
19
20
     end dataflow;
```

VHDL Entities

 Each port member has to have a specific mode and type

- Mode options are:
 - in
 - Input only
 - out
 - Output only
 - inout
 - Bi-directional
 - buffer
 - Output port that can also be read from inside architecture body

Port Mode Options

In

Input to the design. Inputs cannot be assigned a value inside architectural body, they only can assign values to outputs and internal signals.

out

Outputs cannot drive other signals or outputs. Outputs are assigned values inside the architectural body.

inout

Bidirectional signal. They can be assigned values from inside the architectural body (acting as output) or they can drive signals inside the architectural body(acting as input)

buffer

Output signal that may also be read from inside the architectural body. Typically used in a feedback type of scenario.

VHDL Entities

Entities can also contain generics

```
entity USR is
    🖹 generic (
 8
          data width : integer := 8);
    port (
10
                      : out std_logic_vector(data_width - 1 downto 0);
11
                      : in std logic vector(data width - 1 downto 0);
12
                      : in std logic vector(2 downto 0);
13
         reset
                      : in std logic;
14
          clk
                      : in std_logic);
15
      end USR;
```

VHDL Architecture Body

- Architecture body consists of
 - Concurrent signal assignment statements
 - Process statements
 - Component instantiation statements

Summary

Main elements of a VHDL design are

Entity Declaration

Architecture Body

Each VHDL design contains a single entity declaration and architectural body.

The Entity declaration is where inputs and outputs are specified.