S.-T. Yau College Student Mathematics Contests 2018

Geometry and Topology Individual

Please solve 5 out of the following 6 problems.

1. Let M and N be smooth, connected, orientable n-manifolds for $n \geq 3$, and let M # N denote their connect sum.

- (a) Compute the fundamental group of M#N in terms of that of M and of N (you may assume that the basepoint is on the boundary sphere along which we glue M and N).
- (b) Compute the homology groups of M#N.
- (c) For part (a), what changes if n = 2? Use this to describe the fundamental groups of orientable surfaces.
- **2.** Determine all of the possible degrees of maps $S^2 \to S^1 \times S^1$.
- 3. Classify all vector bundles over the circle S^1 up to isomorphism.
- **4.** Suppose C is a regular curve in the unit sphere S^2 . For any point $W \in S^2$, there exists the only oriented great circle S_W (determined by the right hand rule) in S^2 such that W is the pole of S_W . Denote by n(W) the number of points at which the oriented great circle S_W and C intersect. Prove the Crofton formula

$$\iint_{S^2} n(W)dW = 4L,$$

where dW and L is the area element of S^2 and the length of C, respectively.

5. Let M be an n-dimensional closed submanifold in the Euclidean space \mathbb{R}^{n+p} . Prove the following inequality

$$\int_{M} H^{n} dV \ge vol(S^{n}),$$

where H and dV is the mean curvature (i.e., norm of the mean curvature vector) and the volume element of M, and S^n is the standard unit sphere of dimension n.

6. Let M be an even dimensional compact and oriented Riemannian manifold with positive sectional curvature. Show that M is simply connected.

1