Fascinating Tales of a Strange

Jamerrew

Principal Technical Evangelist julsimon@amazon.fr @julsimon

Pop-up Loft

1956

Dartmouth Summer Research Project

John McCarthy
Coined the term "Artificial Intelligence"
Invented LISP (1958)
Received Turing Award (1971)

Forbidden Planet

Robbie the Robot

Predictions

- 1958 H. A. Simon and Allen Newell: "within 10 years a digital computer will be the world's chess champion" and "within 10 years a digital computer will discover and prove an important new mathematical theorem"
- 1965 H. A. Simon: "machines will be capable, within 20 years, of doing any work a man can do"
- 1967 Marvin Minsky: "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved."
- 1970 Marvin Minsky: "In from 3 to 8 years we will have a machine with the general intelligence of an average human being"

"It's 2001. Where is HAL?"

Marvin Minsky
Co-founded the MIT AI lab (1959)
Advised Kubrick on 2001: A Space Odyssey (1968)
Received Turing Award (1969)

HAL 9000 HAL Laboratories (1992)

Meanwhile, on the US West Coast...

YAHOO!

Millions of users... Mountains of data... Commodity hardware... Bright engineers... Need to make money....

Gasoline waiting for a match!

The Machine Learning explosion

• 12/2004 - Google publishes Map Reduce paper

04/2006 - Hadoop 0.1

05/2009 – Yahoo sorts a Terabyte in 62 seconds

The rest is history

Fast forward a few years

- ML is now a commodity
- Great, but still no HAL in sight
- Traditional Machine Learning doesn't work well with complex problems such as computer vision, computer speech or natural language processing
- Another Al winter, then?

Neural networks

- Through training, a neural network self-organizes and discovers features automatically: the more data, the better (unlike traditional ML)
- "Universal approximation machine" (Andrew Ng)
 - Artificial Intelligence is the New Electricity https://www.youtube.com/watch?v=21EiKfQYZXc
- Not new technology!
 - Perceptron (Rosenblatt, 1958)
 - Backpropagation (Werbos, 1975)
- They failed back then because
 - data sets were too small
 - computing power was not available

Why it's different this time

- Large data sets are available
 - Imagenet: 14M+ images http://www.image-net.org/
- GPUs and FPGAs deliver unprecedented amounts of computing power.
 - It's now possible to train networks that have hundreds of layers

- Scalability and elasticity are key assets for Deep Learning
 - Grab a lot of storage and compute resources for training, then release them
 - Using a DL model is lightweight: you can do it on a Raspberry Pi!

I for one welcome our new Deep Learning Overlords

Sorting cucumbers in Japan

Detecting plant diseases

Improving hearing aids

Flipping burgers

Flippy

Amazon Echo

Now what?

High-level services Rekognition, Polly, Lex

Platform – EMR, Spark, Notebooks, Models

ML/DL – MXNet, TensorFlow, Caffe, Torch, Theano

Hardware – EC2, GPU, FPGA

AWS GPU Instances

- g2 (2xlarge, 8xlarge)
 - 32 vCPUs, 60 GB RAM
 - 4 NVIDIA K520 GPUs
 - 16 GB of GPU memory, 6144 CUDA cores
- p2 (xlarge, 8xlarge, 16xlarge)
 - 64 vCPUs, 732 GB RAM
 - 16 NVIDIA GK210 GPUs
 - 192 GB of GPU memory, 39936 CUDA cores
 - 20 Gbit/s networking

EC2 Instance Type O	Total
g2.2xlarge	\$0.65/hr
g2.8xlarge	\$2.60/hr
p2.8xlarge	\$7.20/hr
p2.xlarge	\$0.90/hr
p2.16xlarge	\$14.40/hr

https://aws.amazon.com/blogs/aws/new-g2-instance-type-with-4x-more-gpu-power/https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-16-gpus/https://aws.amazon.com/ec2/Elastic-GPUs/

AWS Deep Learning AMI

- Deep Learning Frameworks 5 popular Deep Learning Frameworks (mxnet, Caffe, Tensorflow, Theano, and Torch) all prebuilt and pre-installed
- Pre-installed components Nvidia drivers, cuDNN, Anaconda, Python2 and Python3
- AWS Integration Packages and configurations that provide tight integration with Amazon Web Services like Amazon EFS (Elastic File System)
- Amazon Linux & Ubuntu

mxnet

4 ne o

Flexible

Supports both imperative and symbolic programming

Multiple Languages

Supports over 7 programming languages, including C++, Python, R, Scala, Julia, Matlab, and Javascript

Distributed on Cloud

Supports distributed training on multiple CPU/GPU machines, including AWS, GCE, Azure, and Yarn clusters

Portable

Runs on CPUs or GPUs, on clusters, servers, desktops, or mobile phones

Q Auto-Differentiation

Calculates the gradient automatically for training a model

⋪ Performance

Optimized C++ backend engine parallelizes both I/O and computation

mxnet resources

http://mxnet.io/ https://github.com/dmlc/mxnet https://github.com/dmlc/mxnet-notebooks

http://www.allthingsdistributed.com/2016/1 1/mxnet-default-framework-deep-learning-aws.html

https://github.com/awslabs/deeplearning-cfn

mxnet demo

Deep Learning AMI on p2.16xlarge
Training and predicting the MNIST data set

MNIST dataset

http://yann.lecun.com/exdb/mnist/

70,000 handwritten digits

28x28 pixels

Greyscale (0 to 255)

Multilayer perceptron

Train and test

INFO:root:Epoch[9] Batch [5600] Speed: 6475.51 samples/sec Train-accuracy=0.987500 INFO:root:Epoch[9] Batch [5800] Speed: 6541.05 samples/sec Train-accuracy=0.988000 INFO:root:Epoch[9] Batch [6000] Speed: 6481.38 samples/sec Train-accuracy=0.988000

INFO:root:Epoch[9] Resetting Data Iterator

INFO:root:Epoch[9] Time cost=9.317

INFO:root:Epoch[9] Validation-accuracy=0.963600

Web visualization

http://scs.ryerson.ca/~aharley/vis/fc/

Now the hard questions...

- Can my business benefit from Deep Learning?
 - DL: "solving the tasks that are easy for people to perform but hard to describe formally"
- Should I build my own network?
 - Do I have the expertise?
 - Do I have enough time, data & compute to train it?
- Or should I use a pre-trained model?
 - How well does it fit my use case?
 - On what data was it trained?
- Or should I use a high-level service?
- Same questions as ML years ago ©

Science catching up with Fiction?

October 2014: Tesla Autopilot

October 2015: 30,000 robots in Amazon Fulfillment Centers

May 2016: Al defeats Lee Sedol, Go world champion

Will man-like machines rule the world?

Who knows?

Whatever happens, these will be fascinating tales of a strange tomorrow.

Thank You

Julien Simon julsimon@amazon.fr @julsimon

Your feedback is important to us!

Pop-up Loft