Carissa Ying Geok Teng (A0205190R/E0425113)

Q1:

ai)

Assuming a_1 and a_2 were not terminal, number of conditional plans = $|A|^{|E|^d-1}$

$$=3^{2^2-1}=27$$

Number of conditional plans starting with $a_3 = 27/3 = 9$

ii)

[a_3 , if Percept = left then a_1 else a_2]

bi)

$$\alpha_{[a1]} = p(100) + (1-p)(-100) = 200p -100$$

$$\alpha_{[a2]} = (1-p)(100) + p(-100) = 100 - 200p$$

 $\alpha_{\text{[a3, if Percept=left then a1 else a2]}} = -10 + \gamma(100) = 90$

bii)

From p = 0 to p = 0.05, the optimal conditional plan is $[a_2]$

From p = 0.05 to p = 0.95, the optimal conditional plan is $[a_3$, if Percept = left then a_1 else a_2]

From p = 0.95 to p = 1, the optimal conditional plan is $[a_1]$

Q2:

Assume that P(s'|s, left) = 1, where s' is left of s.

$$\mathsf{b}'(\mathsf{s}') = \alpha \mathsf{P}(\mathsf{e} \,|\, \mathsf{s}') \, \textstyle\sum_{s} \; \mathsf{P}(\mathsf{s}' \,|\, \mathsf{s}, \mathsf{a}) \; \mathsf{b}(\mathsf{s})$$

b' =

α(0.1)(1/9)	α(0.1)(1/9)	0	0
0		0	0
α(0.1)(1/9)	α(0.1)(1/9)	α(0.9)(1/9)	0

$$\alpha(1/90)(4) + \alpha(0.1) = 1$$

$$\alpha = 90/13$$

0.07692	0.07692	0	0
0		0	0
0.07692	0.07692	0.69231	0