获得的答案

返回

Given that

A is any language and

$$DROP_OUT(A) = \{xz \mid xyz \in A \text{ where } x, z \in \Sigma^*, y \in \Sigma\}$$

We have to prove that class of regular languages closed under <code>DROP_OUT</code> operation.

i.e. if A is a regular language then $DROP_OUT(A)$ is also regular.

We have to take that A is regular and we have to prove that $DROP_OUT(A)$ is regular.

Since A is a regular language, it must be recognized by a DFA.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA recognizes A.

Now we will construct an NFA $N = (Q', \Sigma \cup \{\epsilon\}, \delta', q_0', F')$ that we recognize $DROP_OUT(A)$.

There are two copies of Machine M.

- Copy 1: Copy 1 corresponds to the state of having 'not yet skipped a symbol'
- Copy 2: Copy 2 corresponds to the state of having "already skipped a symbol".

(i) Proof by picture:-

 $N=(Q',\Sigma \cup \{\in\}, \delta', q'_0, F')$

- $Q' = \{(q,b) | q \in Q, b \in \{0,1\}\} = \text{ set of states}$
- q_0' = start state

• F' = set of final states

$$= \left\{ \left(q, 1 \right) \mid q \in F \right\}$$

• δ' is gives as follows:

$$\rightarrow \delta'((q,b),a) = \{(\delta(q,a),b)\} \forall q \in Q, b \in \{0,1\}, a \in \Sigma$$

This means that both the copy1 and copy2 of the machine M do exactly as the original machine does on every symbol a of the alphabet

$$\rightarrow \delta'((q,0), \in) = \{(\hat{q},1) | \exists a \in \Sigma, \delta(q,a) = \hat{q}\}$$

Also at every stage, the machine has the option to skip a character. The only accepting sates are in copy 2. This means, the machine cannot accept a string without skipping a character.

(ii) Formal proof:

- → The formal proof is given by induction on the length the string.
- \rightarrow An appropriate inductive hypothesis is to assume that, for any string w of length k,
- The machine M stays in the copy -1 iff it has not yet skipped a symbol.

i.e.
$$\delta' * ((q_0, 0), w) = (q_1, 0)$$
 iff $\delta * (q_0, w) = q_1$

• The machine *M* jumps to the copy-2 iff there is some symbol a that is skipped.

i.e.
$$\delta' * ((q_0, 0), w) = (q_1, 1)$$
 iff $\delta * (q_0, w_1 a w_2) = q_1$.

So in both (i) and (ii) we constructed an NFA N that recognizes the language $DROP_OUT(A)$.

Thus $DROP_OUT(A)$ is regular.

Hence class of regular languages closed under DROP_OUT operation.