An Introduction to Abelian Categories

Gabriel Antonio Videtta

May 2025

Preliminary steps (i)

The intuition for abelian categories comes from the behaviour of a kind of mathematical object which is found everywhere in each science: **vector spaces**.

Vector spaces are considered to be well understood and have interesting categorical properties.

Preliminary steps (ii)

First of all, we will denote with $Vect_K$ the category of vector spaces over the field K, whose objects are vector spaces and morphisms are linear maps.

We will denote with $FinDimVect_K$ the subcategory of $Vect_K$ which contains only finite dimensional K-vector spaces.

Preliminary steps (iii): zero objects

Vector spaces have a peculiar property: initial objects are isomorphic to final objects! This tells use that 0 (the zero dimensional vector space) is a special object.

Definition (Zero object)

Let $\mathcal C$ be a category. We say 0 is a **zero object** if it's both an initial and a final object.

Zero morphisms

Zero objects also allow for the definition of zero morphisms, which will be regarded as the "trivial morphism" from A to B (e.g., sending all elements of A into a "null element", if the category is an algebraic one).

Definition

Let A and B be two objects and let 0 be a zero object of C. Then we define 0_{AB} as follows

$$0_{AB} \triangleq ?_B \circ !_A$$
, where $?_B : 0 \rightarrow B$, $!_A : A \rightarrow 0$.

The definition is independent of the zero object 0 and is in this sense "unique".

Preliminary steps (iv)

Moreover, the hom-set hom(V, W) has an additional structure: it's not just a set, it has a natural structure of a vector space as well!

We can sum linear maps (f + g), multiply a linear map by a scalar (λf) , and all these operations behave "bilinearly" with the composition (\circ) :

$$(f+g) \circ h = f \circ h + g \circ h,$$

 $f \circ (g+h) = f \circ g + f \circ h,$
 $(\lambda f) \circ g = \lambda (f \circ g) = f \circ (\lambda g).$

This gives rise to an important definition...

Preliminary steps (v): enriched categories

Definition (Enriched categories)

Let $\mathcal C$ be a category. We say that $\mathcal C$ is a category **enriched over a monoidal category** $(\mathcal D,\otimes)$ if the hom-sets of $\mathcal C$ are objects from $\mathcal D$ and if the composition of morphisms makes the composition \circ bilinear over \otimes , namely:

$$(F \otimes G) \circ H = (F \circ H) \otimes (G \circ H),$$

$$F \circ (G \otimes H) = (F \circ G) \otimes (F \circ H).$$

Therefore, we can say that $Vect_K$ is enriched over itself!

Preliminary steps (vi): preadditive categories

Recall that an abelian group is a monoid which allows inverses and satisfies the law of commutativity. For example, a vector space V is itself an abelian group.

Definition (Preadditive category)

Let $\mathcal C$ be a category. We say that $\mathcal C$ is a **preadditive category** if it's enriched over the category of abelian groups (Ab).

In short, a preadditive category is such that its morphisms can be added and subtracted in a way that respects composition.

Preliminary steps (vii): modules and relationship with Ab

Before we properly discuss abelian categories, let's introduce the last fundamental algebraic structure we're going to talk about in this seminary: **modules**.

Modules are pretty much "vector spaces over a ring": they have the same axioms as a vector space, except they are built over a ring, which does not have to allow inverses.

Notice that abelian groups are \mathbb{Z} -modules, where:

$$n \cdot x := \underbrace{x + x + \ldots + x}_{n \text{ times}}.$$

This fact will result useful later on.

Products and coproducts behave in the same way in a pre-additive category, as shown below.

Proposition

Let C be a preadditive category. Then products and coproducts are isomorphic to one another in C.

We only prove that products are also coproducts; the other part of the statement is proved similarly.

Let A and B be two objects in C and let

 $(C := A \times B, \pi_A : C \to A, \pi_B : C \to B)$ be a product of A and B. We shall determine two morphisms $\iota_A : A \to C$ and $\iota_B : B \to C$ such that (C, ι_A, ι_B) is also a coproduct of A and B.

In doing so, we strive to get some "injections" of A and B into C. A way of doing that is to use the universal property of C and extend the following morphisms to two morphisms ι_A ,

$$\iota_B:A, B\to C$$
:

- 1 id_A, $0_{AB} \rightsquigarrow \iota_A$,
- $\mathbf{2} \; \mathbf{0}_{BA}, \; \mathrm{id}_{B} \rightsquigarrow \iota_{B}.$

 ι_A and ι_B yield the following commutative diagram:

Let's now prove that (C, ι_A, ι_B) is a coproduct. Let D be an object from C and let $f, g : A, B \to D$ be morphisms.

Let's define $h_{f,g}: C \to D$ such that:

$$h_{f,g} = f \circ \pi_A + g \circ \pi_B.$$

 $h_{f,g}$ will play the role of the "connecting morphism" from C to D.

We then expect that h_{ι_A,ι_B} – the connecting morphism generated by the "injections" – will behave as the identity on C.

Since the following identities hold:

$$\pi_{A} \circ h_{\iota_{A},\iota_{B}} = \pi_{A} \circ (\iota_{A} \circ \pi_{A} + \iota_{B} \circ \pi_{B}) = \pi_{A},$$

$$\pi_{B} \circ h_{\iota_{A},\iota_{B}} = \pi_{B} \circ (\iota_{A} \circ \pi_{A} + \iota_{B} \circ \pi_{B}) = \pi_{B}.$$

then h_{ι_A,ι_B} is indeed $\mathrm{id}_\mathcal{C}$ by the universal property of the product.

Let's now prove that $h_{f,g}$ is the unique morphism which makes the following diagram commute:

The commutativity can easily be proved by hand, since 0_{AB} and 0_{BA} are the zeroes of hom(A, B) and hom(B, A), respectively.

On the other hand, uniqueness is proved as follows:

$$h_{f,g} - h' = (h_{f,g} - h') \circ h_{\iota_A,\iota_B}$$

$$= (h_{f,g} - h') \circ (\iota_A \circ \pi_A + \iota_B \circ \pi_B)$$

$$= \dots$$

$$= 0_{C,D}.$$

We're missing just two ingredients for the definition of pre-abelian categories: **kernels** and **cokernels**. Let's derive kernels from an example, and cokernels will be defined as the dual of kernels.

In linear algebra, given a linear map $f: V \to W$, we define ker f as follows:

$$\ker f \triangleq \{v \in V \mid f(v) = w\}.$$

Of course we're not allowed to defined kernels as sets, but only as morphisms. An elementary property of ker f is that ker f is a subspace of V, hence there exists a natural injection map $\iota: \ker f \to V$ such that:

$$\ker f \stackrel{\iota}{\smile} V \stackrel{f}{\longrightarrow} W$$
, $f \circ \iota = 0_{VW}$.

It is then natural to define the kernel of $f: A \to B$ as the "biggest morphism k" that annihilates f.

Definition

Let $f: A \to B$ be a morphism. Then a kernel k of f is a morphism $k: K \to A$ such that:

- 2 If $k': K' \to A$ is a morphism such that $f \circ k' = 0_{K'B}$, then there exists a unique morphism $\iota_{K'}: K' \to K$ such that $k' = k \circ \iota_{K'}$.

Dually, a cokernel of $f: A \rightarrow B$ is the "smallest morphism j" that f annihilates.

Definition

Let $f: A \to B$ be a morphism. Then a cokernel j of f is a morphism $j: B \to J$ such that:

- $1 j \circ f = 0_{AJ},$
- 2 If $j': B \to J'$ is a morphism such that $j' \circ f = 0_{AJ'}$, then there exists a unique morphism $\pi_{J'}: J \to J'$ such that $j' = \pi_{J'} \circ j$.

Definition

A pre-additive category is pre-abelian if it allows kernels and cokernels for every morphism f and permits products for a finite family of objects.