

Training Đại số tuyến tính

BHT Đoàn khoa MMT&TT – Training cuối kì I K16

Trainers: NGUYỄN THỊ MINH CHÂU - ATTT2021 LÊ XUÂN HOÀNG - ATCL2021 PHẠM NGUYỄN HẢI ANH - ATTT2021 01.

Ôn tập giữa kỳ

Không gian vector con Tổ hợp tuyến tính Độc lập tuyến tính Tập sinh, cơ sở, số chiều

04.

Không gian Euclide

02.

Tập sinh, cơ sở, số chiều

03.

Tọa độ - Ma trận chuyển cơ sở

05.

Chéo hóa ma trận

06.

Dạng toàn phương

Không gian vecto con

Tập W là tập con của không gian vecto V và thừa hưởng 2 phép toán cộng, nhân của V => W là 1 không gian vecto con của V

Các bước chứng minh 1 tập hợp là không gian con:

B1: Kiểm tra vecto Ø có thuộc W (nếu không thì W không phải không gian con của V)

B2: Lấy bất kì 2 vecto $x,y \in W, \alpha \in R$

- $x + \alpha y \in W \rightarrow W$ là không gian con của V
- $x + \alpha y \notin W \rightarrow W$ không là không gian con của V (chọn ví dụ)

Câu 1: Tập nào sau đây là không gian con của không gian lớn?

a.
$$W = \{(x_1, x_2, x_3) \in R^3 \mid x_1 + 3x_2 + x_3 = 1\}$$

Ta có:

 $\emptyset = (0,0,0)$. Ta thấy 0+3.0+0=0 \neq 1 nên $\emptyset \notin W \rightarrow W$ không phải là không gian con của R^3

b.
$$W = \{(x_1, x_2, x_3) \in R^3 \mid 2x_1 + x_2 - x_3 = 0\}$$

Ta có:

$$\emptyset = (0,0,0)$$
. Ta thấy 2.0+0-0=0 nên $\emptyset \in W$

Lấy
$$x = (x_1, x_2, x_3) \rightarrow 2x_1 + x_2 - x_3 = 0 \text{ và } y = (y_1, y_2, y_3) \rightarrow 2y_1 + y_2 + y_3 = 0$$

$$y_2 - y_3 = 0 \text{ và } \alpha \in R$$

Ta có :
$$x + \alpha y = (x_1 + \alpha y_1, x_2 + \alpha y_2, x_3 + \alpha y_3)$$

$$2(x_1 + \alpha y_1) + (x_2 + \alpha y_2) - (x_3 + \alpha y_3)$$

$$= (2x_1 + x_2 - x_3) + \alpha \cdot (2y_1 + y_2 - y_3)$$

$$= (2x_1 + x_2 - x_3) + \alpha \cdot (2y_1 + y_2 - y_3)$$
SPACE

$$= 0 + \alpha . 0 = 0$$

Suy ra $x + \alpha y \in W$ nên W là không gian con của R^3

c.
$$W = \{(a+2b, a-b, -a+2b) \in R^3 \mid a; b \in R\}$$
Ta có : $\emptyset = (0,0,0)$. Ta thấy
$$\begin{cases} a+2b=0 \\ a-b=0 \end{cases} \rightarrow \begin{cases} a=0 \\ b=0 \end{cases} \rightarrow \emptyset \in W \text{ \'et } ng \text{ v\'et } a=0, b=0$$

Lấy $x \in W$ ứng với a_1, b_1 ; $y \in W$ ứng với a_2, b_2 và $\alpha \in R$

$$x + \alpha y$$

$$= (a_1 + 2b_1 + \alpha.(a_2 + 2b_2); (a_1 - b_1 + \alpha.(a_2 - b_2)); -a_1 + 2b_1 + \alpha.(-a_2 + 2b_2)$$

 $\vec{\text{De}} x + \alpha y \in W$ thì có cơ số A, B tương ứng

$$x + \alpha y = ((a_1 + \alpha. a_2) + 2.(b1 + \alpha. b2); (a_1 + \alpha. a_2) - (b1 + \alpha. b2); -(a_1 + \alpha. a_2) + 2.(b1 + \alpha b2))$$

$$A = a_1 + \alpha . a_2$$
, $B = b1 + \alpha . b2$

 $-> x + \alpha y \in W$ ứng với $(a_1 + \alpha. a_2)$, $(b1 + \alpha. b2)$ nên W là không gian con của R^3

Tổ hợp tuyến tính

```
Cho 1 hệ vecto S = \{u_1; u_2; ...; u_n\} \subseteq V. Khi đó với \alpha_i \in R(s \circ thực) x = \alpha_1 \cdot u_1 + \alpha_2 \cdot u_2 + \cdots + \alpha_n \cdot u_n \Rightarrow vecto x là tổ hợp tuyến tính của <math>S
```

```
Ví dụ: Không gian R^2 với u_1 = (1; 2), u_2 = (3; 4)

x = 2u_1 + u_2 = (5; 0) \rightarrow x là tổ hợp tuyến tính của u_1, u_2
```

- S = $\{u_1; u_2; ...; u_n\} \subseteq V \ và \ x \in V$ Nếu phương trình $\alpha_1.u_1 + \alpha_2.u_2 + \cdots + \alpha_n.u_n = x$ có nghiệm (1 nghiệm, vô số nghiệm) thì x là tổ hợp tuyến tính của S
- $\emptyset = 0.u_1 + 0.u_2 + \cdots + 0.u_n \leftrightarrow$ \emptyset luôn là tổ hợp tuyến tính của tập S bất kì
- Biểu diễn x dưới dạng tổ hợp tuyến tính của S

$$x=\alpha 1.u_1+\alpha 2.u_2+\cdots +\alpha n.u_n$$
 Ban Học tập Đoàn khoa Mạng máy tính và Truyền thông

Ví dụ: Hỏi u có phải tổ hợp tuyến tính của u_1 , u_2 , u_3 không? u = (-3, 1; 4), $u_1 = (1; 2; 1)$, $u_2 = (-1; -1; 1)$, $u_3 = (-2; 1; 1)$

$$\begin{array}{c} \text{X\'et } \alpha_1.u_1 + \alpha_2.u_2 + \alpha_3.u_3 = u \; (\mathring{s}n \; \alpha i) \\ \leftrightarrow \alpha_1. \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \alpha_2. \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + \alpha_3. \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix} \leftrightarrow h \hat{e} \; phwong \; trình \; \mathring{s}n \; \alpha 1, \; \alpha 2, \; \alpha 3 \\ \\ (A \mid B) = \begin{pmatrix} 1 & -1 & -2 \mid & -3 \\ 2 & -1 & -1 \mid & 1 \\ 1 & 1 & 1 \mid & 4 \end{pmatrix} \xrightarrow{d_3 - d_1} \begin{pmatrix} 1 & -1 & -2 \mid & -3 \\ 0 & 1 & 5 \mid & 7 \\ 0 & 2 & 3 \mid & 7 \end{pmatrix} \xrightarrow{d_3 - 2d_2} \begin{pmatrix} 1 & -1 & -2 \mid & -3 \\ 0 & 1 & 5 \mid & 7 \\ 0 & 0 & -7 \mid & -7 \end{pmatrix} \\ & \Rightarrow \begin{pmatrix} \alpha_1 - \alpha_2 - 2\alpha_3 = -3 \\ \alpha_2 + 5\alpha_3 = 7 \\ -7\alpha_3 = -7 \end{pmatrix} \begin{pmatrix} \alpha_1 = 1 \\ \alpha_2 = 2 \\ \alpha_3 = 1 \end{pmatrix}$$

Phương trình có nghiệm $\Rightarrow u$ là tổ hợp tuyến tính của u_1, u_2, u_3

$$u = u_1 + 2u_2 + u_3$$

Ví dụ 2: Xét R^4 : $u_1 = (1;2;1;3)$, $u_2 = (2;3;2;-2)$, $u_3 = (5;8;5;-1)$, u = (a;b;c;d). Tìm điều kiện để u là tổ hợp tuyến tính của u_1 ; u_2 ; u_3

$$\mathsf{X\acute{e}t} \ \alpha_1. \ u_1 + \alpha_2. \ u_2 + \alpha_3. \ u_3 = u \ (\mathring{a}n \ \alpha i) \\ (A \mid B) = \begin{pmatrix} 1 & 2 & 5 \mid & a \\ 2 & 3 & 8 \mid & b \\ 1 & 2 & 5 \mid & c \\ 3 & -2 & -1 \mid & d \end{pmatrix} \xrightarrow{d2-2d1} \begin{pmatrix} 1 & 2 & 5 \mid & a \\ 0 & -1 & -2 \mid & b-2a \\ 0 & 0 & c-a \\ 0 & -8 & -16 \mid & d-3a \end{pmatrix} \xrightarrow{d4-8d2} \begin{pmatrix} 1 & 2 & 5 \mid & a \\ 0 & -1 & -2 \mid & b-2a \\ 0 & 0 & 0 \mid & c-a \\ 0 & 0 & 0 \mid & d-8b+13a \end{pmatrix}$$

Để phương trình có nghiệm
$$\leftrightarrow \begin{cases} c-a=0\\ d-8b+13a=0 \end{cases}$$

Vậy u là tổ hợp tuyến tính của
$$\mathbf{u_1},\mathbf{u_2},\mathbf{u_3}$$
 khi $\begin{cases} c-a=0\\ d-8b+13a=0 \end{cases}$

NC LEARNING SPACE

Độc lập / Phụ thuộc tuyến tính

- Xét không gian vecto V có hệ $S = \{u_1 ; u_2 ; ...; u_n \}$ và pt $\alpha \mathbf{1}. u_1 + \alpha \mathbf{2}. u_2 + \cdots + \alpha \mathbf{n}. u_n = \mathbf{0} \ (*) (\alpha \mathbf{i} \in \mathbf{R})$
 - Pt (*) chỉ có 1 nghiệm (0;0;...;0) thì u_1 ; u_2 ; ...; u_n độc lập tuyến tính (S độc lập tuyến tính)
 - Pt (*) có vô số nghiệm thì u_1 ; u_2 ;...; u_n phụ thuộc tuyến tính (S phụ thuộc tuyến tính)
 - Trường hợp phụ thuộc tuyến tính thì có ít nhất 1 vecto là tổ hợp tuyến tính của các vecto còn lại
 - Hạng của 1 hệ vecto S:

Lập ma trận A =
$$\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
. Ta có r(S) = r(A)

Suy ra hạng của 1 hệ vecto S là số vecto tối đa độc lập tuyến tính trong hệ

Kiểm tra độc lập/phụ thuộc tuyến tính bằng hạng/định thức

B1: Lập ma trận A (theo dòng/cột)

B2: Kiểm tra

• Hạng
$$\begin{cases} r(A) = n \ thì \ S \ \text{độc lập tuyến tính} \\ r(A) < n \ thì \ S \ phụ \ thuộc \ tuyến tính \end{cases}$$

• Định thức
$$\begin{cases} |A| \neq 0 \ thì \ S \ \text{độc lập tuyến tính} \\ |A| = 0 \ thì \ S \ phụ \ thuộc \ tuyến \ tính \end{cases}$$

NC LEARNING SPACE

Xét $P_2[x]$. Các đa thức sau có độc lập tuyến tính ? $f_1(x) = (x - 1)^2$; $f_2(x) = (x + 1)^2$; $f_3(x) = x$.

Các vecto tương ứng
$$u_1 = (1; -2; 1), u_2 = (1; 2; 1); u_3 = (0; 1; 0)$$

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} có |A| = 0 \rightarrow f_1(x), f_2(x), f_3(x) phụ thuộc tuyến tính$$

NC LEARNING SPACE

 $X\acute{e}t\ M_2(R)$:

$$S = \left\{ A = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}; B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; C = \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix}; D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

Tìm m để S độc lập tuyến tính

Ta có các vecto tương ứng: u_1 =(1; m; 0; 1), u_2 =(0; 1; 1; 0), u_3 = (1; 0; m; 1); u_4 = (1; 0; 0; -1)

Lập ma trận A =
$$\begin{pmatrix} 1 & m & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & m & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \rightarrow |A| = -4m.$$

Để S độc lập tuyến tính $\leftrightarrow -4m \neq 0 \leftrightarrow m \neq 0$

NC LEARNING SPACE

Tập sinh: cho $S=\{u_1;u_2;...;u_n\} \subset V$. Nếu tất cả các vecto trong V đều là tổ hợp tuyến tính của S thì hệ S được gọi là tập sinh của không gian V (không gian V được sinh bởi tập S) Kí hiệu: $V=\langle S \rangle = \mathrm{span}(S)$

NC LEARNING SPACE

Cơ sở của 1 không gian vecto

Xét không gian vecto V và S={ $u_1;u_2;...;u_n$ } ⊂ V

S là cơ sở của V \leftrightarrow $\begin{cases} S \text{ là tập sinh của V} \\ S \text{ độc lập tuyến tính} \end{cases}$

Số chiều của không gian V: dimV = số vecto trong 1 cơ sở của V (hằng số)

- Một không gian vecto có nhiều cơ sở khác nhau. Số lượng vecto trong những cơ sở đó đều bằng số chiều
- Không gian vecto R^n : $dim R^n = n$ Cơ sở chính tắc $B_0 = \{e_1 = (1;0;...;0); e_2 = (0;1;...;0); ...; en = (0;0;...;1)\}$
- Không gian đa thức $P_n[x]=R_n[x]$: $dim P_n[x]=n+1$ Cơ sở chính tắc $B_0=\{x^n;x^{n-1};\dots;x;1\}$
- Không gian ma trận $M_{m \times n}(R)$: $dim M_{m \times n}(R) = m.n$

$$\text{Cơ sở chính tắc } B_0 = \{ M_1 = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}; M_2 = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}; \dots; M_n = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \}$$

Xét kg R^3 , $S = \{u_1 = (1; 0; 1); u_2 = (1; -1; 0); u_3 = (0; 0; 1)\}$. S có là cơ sở của R^3 không?

$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1 \neq 0 \leftrightarrow S \, \text{độc lập tuyến tính}$$

Lấy $u = (a; b; c) \in R^3 b \tilde{a}t k$ ì

Xét
$$\alpha_1. u_1 + \alpha_2. u_2 + \alpha_3. u_3 = u$$
 (*)

$$\begin{pmatrix} 1 & 1 & 0 | & a \\ 0 & -1 & 0 | & b \\ 1 & 0 & 1 | & c \end{pmatrix} \xrightarrow{-d2} \begin{pmatrix} 1 & 1 & 0 | & a \\ 0 & 1 & 0 | & -b \\ 0 & -1 & 1 | & c - a \end{pmatrix} \xrightarrow{d3+d2} \begin{pmatrix} 1 & 1 & 0 | & a \\ 0 & -1 & 0 | & -b \\ 0 & 0 & 1 | & c - a - b \end{pmatrix}$$

Phương trình (*) luôn có nghiệm $\forall a, b, c \Rightarrow S \ là tập sinh của <math>R^3$ Suy ra S là cơ sở của R^3 , dim $R^3 = 3$

Xét không gian R^3 (dim $R^3 = 3$)

- a. $A=\{x_1;x_2\}$ không là cơ sở của R^3 vì chỉ có 2 vecto
- b. $B=\{x_1;x_2;x_3;x_4\}$ không là cơ sở của R^3 vì có 4 vecto
- c. $C=\{u_1=(1;-2;m); u_2=(2;m-2;1); u_3=(2;m-5;m+1)\}$. Tìm m để C là cơ sở của \mathbb{R}^3

$$|A| = \begin{vmatrix} 1 & -2 & m \\ 2 & m - 2 & 1 \\ 2 & m - 5 & m + 1 \end{vmatrix} = (m - 3)(m - 1)$$
Ta có
$$\begin{cases} C & có & 3 & vecto \\ dim & R^3 = 3 \end{cases}$$

Để C là cơ sở của R^3 thì C độc lập tuyến tính $\leftrightarrow |A| \neq 0 \leftrightarrow \begin{cases} m \neq 3 \\ m \neq 1 \end{cases}$

NC LEARNING SPACE

Tìm m để u là cơ sở của $P_2[x]$. $u = \{f_1 = 3x^2 - x + m; f_2 = mx^2 - 1; f_3 = x^2 + x + 1\}$

Ta có dim $P_2[x] = 3 = số$ vecto u

$$|A| = \begin{vmatrix} \bar{3} & -1 & m \\ m & 0 & -1 \\ 1 & 1 & 1 \end{vmatrix} = m^2 + m + 4 \neq 0$$

Suy ra u độc lập tuyến tính với mọi giá trị của m \circ Vậy u là cơ sở của $P_2[x]$

NC LEARNING SPACE

Tọa độ

Ma trận chuyển cơ sở

Tích vô hướng

Tọa độ của vecto trong cơ sở

- +) Giả sử S = $\{v_1, v_2, ..., v_n\}$ là cơ sở của không gian n chiều V
- +) v là 1 vecto

Ta có tọa độ của v theo cơ sở B là $v = (c_1 \ c_2 \ \dots \ c_n)^T$, sao cho: $v = c_1v_1 + c_2v_2 + \dots + c_nv_n$

Câu 1: Tìm tọa độ của vecto x = (2, 3, 6) theo cơ sở $B = \{u = (1,2,3), v = (1,3,4), w = (2,4,7)\}$:

$$A.(3 -1 0)^{T}$$
 $B.(-1 -1 2)^{T}$
 $C.(-3 -1 3)^{T}$
 $D.(1 -1 1)^{T}$

Giải:

+) Giả sử x = au+bv+cw

$$\begin{cases} a+b+2c = 2 \\ 2a+3b+4c = 3 \\ 3a+4b+7c = 6 \end{cases}$$

Giải hệ được a = 1, b = -1, c = 1. Chọn D

Câu 2: Tìm tọa độ của vecto x = (m,m,4m) theo cơ sở $B = \{u = (1,2,3), v = (3,7,9), w = (5,10,16):$

$$A.\left(0 - m \frac{4m}{5}\right)^T$$

$$B.(m m m)^T$$

$$C.(-m -m m)^T$$

$$D.(4m -m 0)^T$$

Giải:

Giả sử x = au+bv+cw

$$\begin{cases} a. + 3c + 5c = m \\ 2a + 7b + 10c = m \\ 3a + 9b + 16c = 4m \end{cases}$$

Giả sử m = 10, giải hệ được

$$a = -10 = -m$$

$$b = -10 = -m$$

$$c = 10 = m$$
.

Chon C

Ma trận chuyển cơ sở

Ta có ma trận chuyển cơ sở từ A sang B được tính như sau

$$P_{A\to B} = P_{A\to E} P_{E\to B} = P_{E\to A}^{-1} P_{E\to B}$$

Trong đó E là cơ sở chính tắc

Chuyển tọa độ ứng với cơ sở A sang tọa độ ứng với cơ sở B:

$$\left[x\right]_{B} = P_{B \to A} \left[x\right]_{A}$$

Giả sử A có cơ sở là {(1,2,3),(2,3,4),(3,4,6)}

$$P_{E \to A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$$

Xếp dọc xuống

Trong không gian R^2 cho cơ sở $A = \{(2, 1), (-1, -1)\}, B = \{(-1, 0), (0, 1)\}$

Tìm ma trận chuyển cơ sở từ A sang B

$$A.$$
 $\begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix}$

$$B.$$
$$\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

$$C.$$
 $\begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$

$$D.\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

Giải:

$$P_{A \to B} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$$

28

Chọn C

Tích vô hướng

Với V là không gian vecto

"
$$\check{u},\check{v}\in V$$

Tích vô hướng <u, v> thỏa mãn 5 tiên đề:

- +) <u, v> luôn xác định với mọi cặp u, v
- +) <u, v>=<v, u>
- +) <u+w, v>=<u, v>+<w, v>
- +) <ku, v>=k<u, v>
- +) <u, u> >= 0 và <u, u>=0 khi chỉ khi u=0

Tích vô hướng Euclid:

$$V = R^n, u = (u_1, ..., u_n) \in V, v = (v_1, ..., v_n) \in V$$

 $< u, v >= u_1 v_1 + ... + u_n v_n$

Tích vô hướng tổng quát:

 $\langle u, v \rangle = |u|.|v|. \cos a$ (a là góc giữa 2 vecto u và v)

Trong R^2 cho tích vô hướng:

$$\langle x, y \rangle = \langle (x_1, x_2), (y_1, y_3) \rangle = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + 10x_2 y_2$$

A, Tính
$$\langle x, y \rangle$$
 với $x = (1, 2), y = (2, -1)$

B, Tính ||y||

Giải:

$$\langle x, y \rangle = 1.2+2.1.(-1)+2.2.2+10.2.(-1)=-12$$

$$\langle y, y \rangle = 2.2 + 2.2.(-1) + 2.(-1).2 + 10.(-1).(-1) = 6$$

Vậy ||y|| =
$$\sqrt{6}$$

Trong $P_2[x]$ cho tích vô hướng

$$< p(x), q(x) >= \int_{-1}^{2} q(x) p(x) dx, \forall p(x), q(x) \in P_2[x]$$

Tính
$$< p(x), q(x) >$$

Trong đó, $p(x) = x^2 + x + 1, q(x) = -x^2 + 2x - 2$

Giải:

$$< p(x), q(x) >= \int_{-1}^{2} (x^2 + x + 1)(-x^2 + 2x - 2)dx = -\frac{237}{20}$$

Độ dài, góc, khoảng cách

Độ dài vecto:
$$||\mathbf{u}|| = \sqrt{\langle u, u \rangle}$$

Khoảng cách: d(u, v) = ||u-v||

Góc: cosa =
$$\frac{\langle u, v \rangle}{\|u\|.\|v\|}$$

Độ dài của vecto u=(1,2,2) là $||u|| = \sqrt{1+2^2+2^2} = 3$

Khoảng cách giữa 2 vecto u=(1,2,3) và v=(2,5,6) là:

$$d(u,v) = ||u-v|| = \sqrt{(2-1)^2 + (5-2)^2 + (6-3)^2} = \sqrt{7}$$

Góc giữa 2 vecto u và v là:

$$\cos a = \frac{\langle u, v \rangle}{\|u\| . \|v\|} = \frac{1.2 + 2.5 + 3.6}{\sqrt{1 + 2^2 + 3^2} . \sqrt{2^2 + 5^2 + 6^2}} = \frac{2\sqrt{65}}{13}$$

Trực giao – trực chuẩn

Một hệ vector $\{u_1, u_2, ..., u_n\}$ là hệ vector trực giao nếu $\forall i \neq j$, có:

$$\langle u_i, u_j \rangle = 0$$

Cơ sở E của không gian vector V là cơ sở trực giao nếu các vector của E lập nên hệ vector trực giao.

Hệ vector trực giao trong đó mọi vector có độ dài bằng 1 gọi là hệ vector trực chuẩn.

Nếu hệ vector trực chuẩn B là cơ sở của không gian V thì B được gọi là cơ sở trực chuẩn của V Mạng máy tính và Truyền thông

Trực giao - trực chuẩn

Hệ vector trực giao không chứa vector heta là hệ độc lập tuyến tính

Hệ vector trực chuẩn là hệ độc lập tuyến tính

A là ma trận trực giao $\Leftrightarrow A^T = A^{-1}$

Định lý: Nếu B = $\{u_1, u_2, ..., u_n\}$ là 1 cơ sở trực chuẩn của không gian Euclid V thì $\forall v \in V$, có:

NC
$$[v]_B$$
 PACE

Ban Học tập Đoàn khoa Mạng ∞ áy tính và Truyền thông $\langle v, u_n \rangle$

Phương pháp Gram-Schmidt

Từ cơ sở {u₁, u₂, ..., u_n}

Đặt
$$v_1 = u_1$$

$$v_2 = u_2 - \frac{\langle u_2, \mathbf{V}_1 \rangle}{\langle v_1, \mathbf{V}_1 \rangle} v_1$$

$$v_3 = u_3 - \frac{\langle u_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle u_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$$

•••

$$v_n = u_n - \sum_{i=1}^{n-1} \frac{\langle u_n, \mathbf{v}_i \rangle}{\langle v_i, \mathbf{v}_i \rangle} v_i$$

Trực chuẩn hóa:

$$e_1 = \frac{v_1}{\|v_1\|}$$

$$e_2 = \frac{v_2}{\|v_2\|}$$

$$e_3 = \frac{v_3}{\|v_3\|}$$

. . .

$$e_n = \frac{v_n}{\|v_n\|}$$

 $\{v_1, v_2, v_3, ..., v_n\}$ là cơ sở trực giao

náy tính và Truyền thông $\{e_1,e_2,e_3,...,e_n\}$ là cơ sở trực chuẩn

Phương pháp Gram-Schmidt

Cho 2 vector $u_1 = (1; 1; 0)$, $u_2 = (0; -2; 1)$. $B = \{u_1, u_2\}$ là cơ sở của R^3 . Trực chuẩn hóa cơ sở trên.

Đặt
$$w_1 = (1; 1; 0)$$

$$w_2 = (0; -2; 1) - \frac{\langle u_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = (0; -2; 1) - \frac{-2}{2} (1; 1; 0) = (1; 3; 1)$$

Trực chuẩn hóa:
$$e_1 = \left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; 0\right), e_2 = \left(\frac{1}{\sqrt{11}}; \frac{3}{\sqrt{11}}; \frac{1}{\sqrt{11}}\right)$$

Trị riêng – Vector riêng

Cho $A \in M_n(\mathbb{R})$. Vector u được gọi là vector riêng của ma trận A nếu

$$Au = \lambda u \quad (\lambda \in \mathbb{R}, u \in \mathbb{R}^n)$$

 λ là trị riêng của A và u là vector riêng ứng với λ .

NC LEARNING SPACE

Ví dụ: Tìm vector riêng u = (x, y) ứng với $\lambda = 2$ là trị riêng của $A = \begin{pmatrix} 27 & -5 \\ -5 & 3 \end{pmatrix}$

- a) $u = (5a, a) \text{ v\'oi } a \in \mathbb{R} \setminus \{0\}$
- b) $u = (a, 5a) \text{ v\'oi } a \in \mathbb{R}$
- c) $u = (a, 5a) \text{ v\'oi } a \in \mathbb{R} \setminus \{0\}$
- d) u = (1, 5)

Hướng dẫn giải

Với
$$u \neq \theta$$
, có: $(A-2I_2).u = 0$

$$\Leftrightarrow \begin{pmatrix} 25 & -5 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

$$\Leftrightarrow \begin{cases} 25x - 5y = 0 \\ -5x + y = 0 \end{cases}$$

Trị riêng – Vector riêng

Nếu x là vector riêng ứng λ của A thì $\forall a \in \mathbb{R}$, ax cũng là vector riêng ứng với λ của A

Ma trận vuông A cấp n có n trị riêng nhưng có thể có các trị riêng trùng nhau.

Cho $A \in M_n(\mathbb{R})$, đặt:

$$P(\lambda) = \det(A - \lambda I_n)$$

 $P(\lambda)$ được gọi là đa thức đặc trưng của A

Ví dụ 1: Tìm đa thức đặc trưng của ma trận $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$

Hướng dẫn giải

$$P(\lambda) = \det(A - \lambda I_2)$$

$$= \begin{vmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)(3 - \lambda) - 8$$

$$= \lambda^2 - 4\lambda - 5$$

NC LEARNING SPACE

Tìm đa thức đặc trưng của
$$A = \begin{pmatrix} 3 & 0 & 5 & 0 \\ 2 & 2 & 4 & 9 \\ 0 & 0 & 5 & 8 \\ 7 & 0 & 0 & 4 \end{pmatrix}$$

$$P(\lambda) = (-1)^4 \lambda^4 + (-1)^3 x \lambda^3 + (-1)^2 y \lambda^2 + (-1)^1 z \lambda + (-1)^0 t$$

$$y = \{(3.2 - 2.0) + (3.5 - 0.5) + (3.4 - 7.0)\} + \{(2.5 - 4.0) + (2.4 - 0.9)\} + (5.4 - 0.8) - 71$$

NC LEARNING SPACE

Không gian riêng

Không gian riêng ứng với trị riêng λ của A

- là tập chứa các vector riêng của A ứng với λ
- là không gian nghiệm của $(A \lambda I_n)u = 0$

Ký hiệu: $E(\lambda)$

Chéo hóa ma trận

Ma trận $A \in M_n(\mathbb{R})$ được gọi là chéo hóa được nếu tồn tại ma trận P khả nghịch sao cho P^{-1} . A . P = D

Trong đó:

D là ma trận đường chéo

P là ma trận làm chéo hóa A

Định lý: A chéo hóa được khi và chỉ khi A có n vector riêng độc lập tuyến tính Hệ quả: A có n trị riêng khác nhau đôi một => A chéo hóa được

Thuật toán chéo hóa

BĐS là bội của 1 trị riêng λ trong $P(\lambda) = 0$

Bước 1: Tìm trị riêng λ từ phương trình đặc trưng det $(A - \lambda I_n) = 0$ (tổng bội đại số < n => A không chéo hóa)

Bước 2: Tìm không gian riêng ứng với từng trị riêng. Tìm cơ sở và số chiều của nó

(nếu với mỗi trị riêng, số chiều < số bội => A không chéo hóa)

Bước 3:

Lập ma trận P. Mỗi cột của P là 1 vector riêng.

Lập ma trận D gồm các trị riêng tương ứng với vector riêng của P

Ban Học tập Đoàn khoa Mang máy tính và Truyền thông

$$P^{-1} \cdot A \cdot P = D$$

BHH là số chiều của KGCR của 1 trị riêng λ trong $P(\lambda) = 0$

Ví dụ: Cho 1 ma trận A vuông cấp 3 có 3 vector riêng là (1, 2, 1); (1, 0, 1); (1, 0, 0) lần lượt ứng với trị riêng 1, 2, 3.

Đặt
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$
. Tìm ma trận A. Hướng dẫn giải

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$A = P.D.P^{-1}$$

$$= \begin{pmatrix} 3 & -1/2 & -1 \\ 0 & 1 & 0 \\ 0 & -1/2 & 2 \end{pmatrix}$$

Giả sử A là một ma trận vuông cấp 3 có đa thức đặc trưng là $P(\lambda) = (\lambda - 3)^2$. $(\lambda - 4)$. Khẳng định nào sau đây đúng nhất?

- a) A không chéo hóa được vì A không có 3 trị riêng phân biệt
- b) A chéo hóa được

Đáp án đúng

- c) A chéo hóa được khi và chỉ khi ứng với trị riêng 3, A có hai vector độc lập tuyến tính
- d) Các khẳng định trên đều sại náy tính và Truyền thông

Cho ma trận $A \in M_n(\mathbb{R})$ có ma trận P khả nghịch và ma trận đường chéo D sao cho P^{-1} . A . P = D

Hay
$$A = P \cdot D \cdot P^{-1} => A^n = P \cdot D^n \cdot P^{-1}$$

D là ma trận đường chéo nên lũy thừa của D là lũy thừa các phần tử trên đường chéo chính trong D

NC LEARNING SPACE

Phương pháp Lagrange:

Bước 1:

Nếu $a_{11} \neq 0$, nhóm tất cả số hạng chứa x_1 vào và biến đổi thành bình phương 1 tổng, ngoài tổng này không còn số hạng nào chứa x_1 Nếu a_{11} = 0, chọn a_{ii} nào đó khác 0 rồi làm như trên

Nếu mọi a_{ii} = 0 thì chọn $a_{ij} \neq 0$ bất kỳ rồi đặt $x_i = y_i + y_j$, $x_j = y_i - y_j$

Bước 2: Như bước 1 với các biến còn lại.

NC LEARNING SPACE

Vd1: Đưa dạng toàn phương về chính tắc trong \mathbb{R}^n

$$f(x_1, x_2, x_3) = x_2^2 - 3x_2x_3$$

Giải

$$f(x) = x_2^2 - 3x_2x_3$$

$$= \left(x_2^2 - 2 \cdot \frac{3}{2}x_2x_3 + \frac{9}{4}x_3^2\right) - \frac{9}{4}x_3^2$$

$$= \left(x_2 - \frac{3}{2}x_3\right)^2 - \frac{9}{4}x_3^2$$

Đặt
$$y_1 = x_1$$

$$y_2 = x_2 - \frac{3}{2}x_3$$

$$y_3 = x_3$$

$$f(y) = y_2^2 - \frac{9}{4}y_3^2$$

NC LEARNING SPACE

Vd1: Đưa dạng toàn phương về dạng chính tắc (theo phương pháp Larange) và chỉ ra 1 cơ sở cho dạng chính tắc đó: $f(x) = x_2^2 - 3x_2x_3 - 4x_1x_3$

Hướng dẫn giải

$$f(x) = x_2^2 - 3x_2x_3 - 4x_1x_3$$
$$= \left(x_2 - \frac{3}{2}x_3\right)^2 - \frac{9}{4}x_3^2 - 4x_1x_3$$

Đặt
$$y_2 = x_2 - \frac{3}{2}x_3$$

$$x_1 = y_1 + y_3$$

$$x_3 = y_1 - y_3$$

$$f(y) = y_2^2 - \frac{9}{4}(y_1 - y_3)^2 - 4y_1^2 + 4y_3^2$$

$$= y_2^2 - \frac{25}{4}y_1^2 + \frac{18}{4}y_1y_3 + \frac{7}{4}y_3^2$$

$$= y_2^2 - \frac{25}{4}y_1^2 + \frac{18}{4}y_1y_3 + \frac{7}{4}y_3^2$$

$$= y_2^2 - \frac{1}{4}\left(25y_1^2 - 18y_1y_3 + \frac{81}{25}y_3^2\right) + \frac{64}{25}y_3^2$$

Ban Học tập Đoàn khoa Mạn
$$=y_2^2 + y_1^2 + y_1^2 + y_3^2 + y_3^2 + \frac{64}{25}y_3^2$$

$$f(x) = x_2^2 - 3x_2x_3 - 4x_1x_3$$

$$= \left(x_2 - \frac{3}{2}x_3\right)^2 - \frac{9}{4}x_3^2 - 4x_1x_3$$

Đặt
$$y_2 = x_2 - \frac{3}{2}x_3$$

 $x_1 = y_1 + y_3$
 $x_3 = y_1 - y_3$

Không đúng phương pháp

$$(B_1 -> B_0) = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & AR & 1 & R & 0 \end{pmatrix}$$
Ban Học tập $1/2$ khoa $3/2$ may $1/2$ Truyền thông

VD1: Đưa dạng toàn phương về dạng chính tắc và chỉ ra 1 cơ sở cho dạng chính tắc đó: $f(x) = x_2^2 - 3x_2x_3 - 4x_1x_3$

Hướng dẫn giải

$$f(x) = x_2^2 - 3x_2x_3 - 4x_1x_3$$
$$= \left(x_2 - \frac{3}{2}x_3\right)^2 - \frac{9}{4}x_3^2 - 4x_1x_3$$

$$= \left(x_2 - \frac{3}{2}x_3\right) - \frac{3}{4}x_3^2 - 4x_1x_3$$

$$= \left(x_2 - \frac{3}{2}x_3\right)^2 - \frac{9}{4}\left(x_3 + \frac{8}{9}x_1\right)^2 + \frac{16}{9}x_1^2 \qquad (B_1 \to B_0) = \begin{pmatrix} 1 & 0 & \frac{8}{9} \\ 0 & 1 & 0 \\ 0 & \frac{-3}{2} & 1 \end{pmatrix}$$

Đặt
$$y_2 = x_2 - \frac{3}{2}x_3$$

 $y_3 = x_3 + \frac{8}{9}x_1$
 $y_1 = x_1$

$$f(y) = y_2^2 - \frac{9}{4}y_3^2 + \frac{16}{9}y_1^2$$

$$(B_1 \to B_2) = \begin{pmatrix} 1 & 0 & \frac{8}{9} \\ 0 & 1 & 0 \end{pmatrix}$$

$$(B_1 \to B_0) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & \frac{-3}{2} & 1 \end{bmatrix}$$

Cơ sở mới gồm các vector là các cột Ban Học tập Đoàn khoa M**crua**n $(B_0 \rightarrow B_1)$; ân thâ

$$\{(1,0,0),(\frac{-4}{3},1,\frac{3}{2}),(\frac{-8}{9},0,1)\}_{58}$$

