(12) (19)	(· ·) · · Philoziman (to) · · · · DE					
(54)	Title Bicyclic amino derivatives and PGD2 antagonist containing the same					
(51) ⁶	International Patent Classification(s) C07C 233/52					
(21)	Application No: 199661370 (22) Application Date: 1996.06.19					
(87)	WIPO No: WO97/00853					
(30)	Priority Data					
(31)	Number (32) Date (33) Country 7-154575 1995.06.21 JP					
(43)	Publication Date: 1997.01.22					
(43)	Publication Journal Date: 1997.03.13					
(44)	Accepted Journal Date: 1999.12.23					
(71)	Applicant(s) Shionogi and Co., Ltd.					
(72)	Inventor(s) Mitsuaki Ohtani; Akinori Arimura; Tatsuo Tsuri; Junji Kishino; Tsunetoshi Honma					
(74)	Agent/Attorney DAVIES COLLISON CAVE,1 Little Collins Street,MELBOURNE VIC 3000					
(56)	Related Art EP 608847 EP 226346					

(51) 国際特許分類6 C07C 233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D 493/08, 495/08, A61K 31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38

(11) 国際公開番号 A1

WO97/00853

(43) 国際公開日

1997年1月9日(09.01.97)

(21) 国際出願番号

•

PCT/JP96/01685

(22) 国際出願日

1996年6月19日(19.06.96)

(30)優先権データ

特顧平7/154575

1995年6月21日(21.06.95)

(71) 出願人 (米国を除くすべての指定国について) 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP]

〒541 大阪府大阪市中央区道修町三丁目1番8号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

大谷光昭(OHTANI, Mitsuaki)[JP/JP]

〒630 奈良県奈良市高畑町1342 Nara, (JP)

有村昭典(ARIMURA, Akinori)[JP/JP]

〒558 大阪府大阪市住吉区南住吉1丁目7-32-304 Osaka, (JP)

釣 達男(TSURI, Tatsuo)[JP/JP]

〒651-11 兵庫県神戸市北区鈴蘭台北町9丁目20番6号

Hyogo, (JP)

岸野淳二(KISHINO, Junji)[JP/JP]

〒654-01 兵庫県神戸市須磨区神の谷3丁目3番17号 Hyogo,

本摩恒利(HONMA, Tsunetoshi)[JP/JP]

〒630-02 奈良県生駒市青山台117-42 Nara, (JP)

(74) 代理人

弁理士 青山 葆, 外(AOYAMA, Tamotsu et al.) 〒540 大阪府大阪市中央区城見1丁目3番7号

IMPビル 青山特許事務所 Osaka, (JP)

AL, AU, BB, BG, BR, CA, CN, CZ, EE, GE, HU, (81) 指定国 IL, IS, JP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

BICYCLIC AMINO DERIVATIVES AND PGD₂ ANTAGONIST CONTAINING THE SAME (54)Title:

(54)発明の名称 ビシクロ環系アミノ誘導体およびそれを含有するPGD2拮抗剤

(57) Abstract

Compounds of general formula (I), salts thereof or hydrates thereof wherein (a) represents (b) or (c), for example, the compounds (d) and (e), which are useful as a PGD₂ antagonist and thus usable in, for example, a remedy for systemic mastocytosis or systemic mast cell activati n disorders, a drug for bronchoconstricti n, an antiasthmatic, a drug for allergic rhinitis agent, a drug for allergic conjunctivitis, a drug for urticaria, a remedy for ischemia reflow disorders or an antiinflammatory agent. It is particularly useful in the treatment of nasal occlusion.

(57) 要約

式(I):

(式中、

は、

を表し、一例として、

である化合物またはその塩もしくは水和物は、PGD 2拮抗剤として有用であり、例えば全身性肥満細胞症や全身性肥満細胞活性化障害の治療剤、抗気管収縮剤、抗喘息剤、抗アレルギー性鼻炎剤、抗アレルギー性結膜炎剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤として用いることができる。特に鼻閉症の治療に有用である。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を固定するために使用されるコード

ABSTRACT

A compound of th formula (I):

5 wherein

is

for example, a compound below:

wherein

10

15

 R_1 is CH_3 , H or Na; and X1-X2-X3 is

or its salt or a hydrate ther of is us ful as PGD, antagonist and can be used as a drug for tr ating diseases in which mast c ll dysfunction is involved, for example, systemic mastocytosis and disorder f syst mic mast c ll activation, and

DESCRIPTION

BICYCLIC AMINO DERIVATIVES AND PGD, ANTAGONIST CONTAINING THEM

5 FIELD OF THE INVENTION

The present invention relates to bicyclic amino derivatives and prostaglandin D₂ (hereinafter, referred to as PGD₂) antagonist containing them.

10 BACKGROUND OF THE INVENTION

15

Some of bicyclic amino derivatives of the present invention have known to be useful as thromboxane A₂ (TXA₂) antagonists (Japanese Patent Publication (KOKOKU) No. 79060/1993). However, the Japanese Patent Publication (KOKOKU) No. 79060/1993 only describes that the compounds are useful as TXA₂ antagonist, and does not suggest the usefulness thereof as PGD₂ antagonist as disclosed by the present invention.

Namely, the TXA2 is known to have activities such as action against platelet agglutination thrombogenesis etc. The TXA2

also trach al c ntraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, injury due to ischemic rep rfusion, and as an anti-inflammatory agent. It is particularly useful in the treatment of nasal occlusion.

inflammation.

5

10

15

As is apparent from the above, the TXA, antagonist and the PGD, antagonist are completely different from each other in terms of the active site, mechanism of action, and application, and hav quite different characteristics. Accordingly, it has never been expected that any compound could possess these activities simultaneously.

PGD, is produced through PGG, and PGH, from arachidonic acid by the action of cyclooxygenase activated by immunological or unimmunological stimulation and is the major prostanoid that is produced and released from mast cells. PGD, has various potent physiological and pathological activities. For example, PGD2 can cause strong tracheal contraction, which leads to bronchial asthma, and, in a systemic allergic state, it can dilate the peripheral vessels, which leads to an anaphylactic shock. Especially, much attention has been paid on the idea that PGD, is one of the causal substances responsible to the onset of nasal occlusion in the allergic rhinitis. Therefore, it has been proposed to develop an inhibitor against the biosynthesis of PGD or an antagonist of pcn.

and biochemically stable.

Accordingly, the present invention provides a compound of the general formula (I) below or its salt or a hydrate thereof as an active ingredient:

wherein

10

is

15

A is alkylene which optionally:

- is intervened by hetero atom or phenylene, (i)
- contains a carbonyl group, and/or (ii)
- 20 has one or more double- or triple- bonds at any one or more positions on the (iii) chain;

B is hydrogen, alkyl, aralkyl or acyl;

R is COOR₁, CH₂OR₂ or CON(R₃)R₄;

R₁ is hydrogen or alkyl;

25 R₂ is hydrogen or alkyl;

R, and R, each are independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

 X_1 is a single bond, phenylene, naphtylene, thiophenediyl, indolediyl, or oxazolediyl;

30 X_2 is a single bond, -N=N-, -N=CH-, -CH=N-, -CH=N-N-, -CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(Cl)=C(Cl)-, -

```
(CH_2)n-, ethynylene, -N(R_5)-, -N(R_{51})CO-, -N(R_{52})SO_2-, -
     N(R_{53})CON(R_{54})-, -CON(R_{55})- -SO_2N(R_{56})-, -O-, -S-, -SO-, -SO_2-, -CO-
      , oxadiazolediyl, thiadiazolediyl or tetrazolediyl;
     X, is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group,
  5 cycloalkyl, cycloalkenyl, thiazolinylidenemethyl,
     thiazolidinylidenemethyl, -CH=NR_6 or -N=C(R_7)R_9;
     R_5, R_{51}, R_{52}, R_{53}, R_{54}, R_{55} and R_{56} each are hydrogen or alkyl;
     R<sub>6</sub> is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy,
     thiocarbamoyloxy, ureido or thioureido;
 10
    R, and R, each are independently alkyl, alkoxy or aryl;
    n is 1 or 2;
    Z is -SO_2- or -CO-; and
    m is 0 or 1;
15 wherein a cyclic substituent may has one to three substituents
    selected from the group consisting of nitro, alkoxy, sulfamoyl,
    substituted- or unsubstituted-amino, acyl, acyloxy, hydroxy,
   halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl, aralkoxycarbonyl,
   aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl,
20
   trifluoromethyl, alkylthio, -N=PPh, oxo, thioxo, hydroxyimino,
```

alkovvimino nhan 1 4 u

m is 0; and when Z is SO₂, both X₁ and X₂ are a single bond; X₃ is alkyl, phenyl, naphthyl, stylyl, quinolyl or thienyl; and a cyclic substituent among these substituents optionally has one to three substituents selected from a group consisting of nitro, alkoxy, substituted—or unsubstituted—amino, halogen, alkyl and hydroxyalkyl, or its salt or hydrate thereof.

Similarly, specific examples include a compound of the formula (I) wherein

10

15

5

is

when m is 1, both X_1 and X_2 are a single bond; and X_3 is phenyl optionally substituted with halogen, or its salt or hydrate thereof.

Similarly, specific examples include a compound of the formula (I) wherein

is

STRALIPZ POSTRALIPZ PO when m is 1, X_1 is phenyl, X_2 is -CH₂- or -N=N- and X_3 is phenyl, or its salt or hydrate thereof.

Similarly, examples of compounds of the formula (I) include those of the formula (Ia):

wherein A, B, R, X_1 , X_2 and X_3 are as defined above, or its salt or hydrate thereof, provided that those wherein (1) X_1 and X_2 are a single bond, and X_3 is substituted—or unsubstituted—phenyl, or naphthyl; and (2) A is 5-heptenylene, R is $COOR_1$ (R_1 is hydrogen or methyl),

 X_1 is 1,4-phenylene, X_2 is a single bond, and X_3 is phenyl are excluded.

Similarly, examples of compounds of the formula (I) include those of the formula (Ib):

$$\begin{array}{c}
A - R \\
Y' \\
N - CO - X_1 - X_2 - X_3
\end{array}$$
(Ib)

5

A, B, R, X_1 , X_2 and X_3 are as defined above, or its salt or hydrate thereof, provided that those wherein X_1 and X_2 are a single bond, and X_3 is phenyl, and wherein X_1 is a single bond, X_2 is -0-, and X_3 is benzyl are excluded.

More specifically, examples of compounds of the formula (I) include those of the formula (Ia) wherein X₁ and X₂ are a single bond, X₃ is isoxazolyl, thiadiazolyl, isothiazolyl, morpholyl, indolyl, benzofuryl, dibenzofuryl, dibenzodioxinyl, benzothienyl, dibenzothienyl, carbazolyl, xanthenyl, phenanthridinyl, dibenzoxepinyl, dibenzothiepinyl, cinnolyl, chromenyl, benzimidazolyl or dihydrobenzothiepinyl, or its salt or hydrate thereof.

Similarly, examples of compounds of the formula (I) include those of the formula (Ia) wherein X_1 is a single bond, X_2 is phenylene, X_3 is alkenyl, alkynyl, -CH=NR₆ or -N=C(R₇)R₈, or its salt or hydrate thereof.

Similarly, examples of compounds of the formula (I) include those of the formula (Ia) wherein R is COOR, X, is phenylene or thiophenediyl, X, is a single bond, -N=N-, -CH=CH-, -CONH-, -NHCO- or ethynylene and X, is phenyl, thiazolinylidenemethyl, thiazolidinylidenemethyl or thienyl, or its salt or hydrate thereof.

More specifically, examples of the compound (I) of the present invention include those of the formula (Ib) wherein

25 is

5

10

15

or its salt or hydrate thereof. Examples of more preferred compounds include those of the formula (Ib) wherein R is $COOR_1$ (R_1 is as defined above) or its salt or hydrate thereof.

Similarly, examples of compound (I) include those of the formula (Ib) wherein X_1 is phenylene or thiophenediyl, X_2 is a single bond, -N=N-, -CH=CH-, ethynylene, -O-, -S-, -CO-, $-CON(R_{55})-$ (R_{55} is as defined above), $-N(R_{51})CO-$ (R_{51} is as defined above) and X_3 is phenyl, or its salt or hydrate thereof.

More specifically, examples of compound (I) include thos of the formula (Ib) wherein

is

The compounds of th general formula (Ia) and (Ib) are novel compounds synthesized by the present inventors.

The terms used throughout the present specification are as defined below.

5 The term "alkylene" means C1 - C9 straight or branched chain alkylene, for example, methylene, methylmethylene, dimethylmethylene, methylethylmethylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethyene, nonamethylene, or the like. The alkylene above can be intervened by a hetero atom(s) (oxygen, sulfur, nitrogen atom, 10 or the like) or phenylene (e.g., 1,4-phenylene, 1,3-phenylene, 1,2-phenylene, or the like), contain an oxo group, and/or have on or more double- or triple-bonds at any positions on the chain. Examples include $-(CH_2)_2-O-CH_2-$, $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_2-O-(CH_2)_3-$, $-(CH_2)_2-O-(CH_2)_4-$, $-(CH_2)_2-O-(CH_2)_5-$, $-(CH_2)_2-O-(CH_2)_6-$, $-(CH_2)_2-S-$ 15 $(CH_2)_2-$, $-(CH_2)_3-S-(CH_2)_2-$, $-CH_2-S-CH_2-$, $-CH_2-S-(CH_2)_4-$, $-CH_2-N(CH_3) CH_2-$, $-CH_2-NH-(CH_2)_2-$, $-(CH_2)_2-N(CH_2CH_3)-(CH_2)_3-$, $-(CH_2)_2-1$, 4phenylene- CH_2 -, -(CH_2)₂-O-1,3-phenylene- CH_2 -, -(CH_2)₂-O-1,2phenylene- CH_2 -, - $(CH_2)_2$ -O-1,4-phenylene- CH_2 -, -CH=CH-S- CH_2 -1,4-20 phenylene- CH_2 -, -CH-CH-S-1,3-phenylene- $(CH_2)_2$ -, 2-oxopropylene, 3-oxopentylene, 5-oxohexylene, vinylene, 1-propenylene, 2propenylene, 1-butenylene, 2-butenylene, 3-butenylene, 1, 2butadienylene, 1,3-butadienylene, 1-pentenylene, 2-pentenylene, 3-pentenylene, 4-pentenylene, 1,2-pentadienylene, 1, 3pentadienylene, 1,4-pentadienylene, 2,3-pentadienylene, 2,4-25 pentadienylene, 1-hexyenylene, 2-hexenylene, 3-hexenylene, 4h xenylene, 5-hexenylene, 1,2-hexadienylene, 1,3-hexadienylene 1,4-hexadienylene, 1,5-hexadienylene, 2,3-hexadienylene, 2,4hexadienylene 2,5-hexadienylene, 3,4-h xadienylene, 3,5-

JSIRICAL PLANTS

hexadienyl n , 4,5-hexadienylen, 1,1-dimethyl-4-hexenylen, 1-heptenylene, 2-heptenylene, 3-heptenylene, 4-heptenylene, 5-heptenylene, 2,2-dimethyl-5-heptenylene, 6-heptenylene, 1,2-heptadienylene, 1,3-heptadienylene, 1,4-heptadienylene, 1,5-heptadienylene, 1,6-heptadienylene, 2,3-heptadienylene, 2,4-heptadienylene, 1,6-heptadienylene, 2,6-heptadienylene, 3,4-heptadienylene, 2,5-heptadienylene, 2,6-heptadienylene, 3,4-heptadienylene, 3,5-heptadienylene, 3, 6-heptadienylene, 4,5-heptadienylene, 4,6-heptadienylene or 5,6-heptadienylene, 1-propynylene, 3-butynylene, 2-pentynylene, 5-hexynylene, 6-heptadienylene, -(CH₂)-CH=CH-O-(CH₂)₂-, -CH₂-S-(CH₂)₃-, -CH₂-Cis-CH=CH-1,2-phenylene-CH₂-, -CH=CH-1,4-phenylene-(CH₂)₂-, -4-oxo-4,5-hexenylene-, and the like.

The term "alkyl" means C₁ - C₂₀ straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, i-pentyl, neopentyl, t-pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, and the like.

15

25

The term "aryl" means C₆ - C₁₄ monocyclic or condensed ring,

20 for example, phenyl, naphthyl (e.g., 1-naphthyl, 2-naphtyl), anthryl
(e.g., 1-anthryl, 2-anthryl, 9-anthryl), phenanthryl (e.g., 2phenanthryl, 3-phenanthryl, 9-phenanthryl), fluorenyl (e.g., 2fluorenyl), and the like. Phenyl is especially preferred.

The term "aralkyl" means a group formed by substituting an alkyl as defined above with an aryl above at any substitutable positions on the alkyl. Examples include benzyl, phenethyl, phenylpropyl (e.g., 3-phenylpropyl), naphtylmethyl (e.g., α -naphtylmethyl), anthrylmethyl (e.g., 9-anthrylmethy),

phenanthrylmethyl (e.g., 3-phenanthrylmethyl), and th like.

The t rm "acyl" means C_1 - C_9 acyl derived from aliphatic carboxylic acid, for example, formyl, acetyl, propionyl, butyryl, valeryl, and the like.

The term "alkylsulfonyl" means a group formed by substituting a sulfonyl with an alkyl above, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, and the like.

5

10

15

20

25

The term "alkenyl" is C₂ - C₂₀ straight or branched chain alkenyl, which corresponds to an alkyl above containing one or more double bonds. Examples include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,2-butadienyl, 1-pentenyl, 1,2-pentadienyl, 2-hexyenyl, 1,2-hexadienyl, 3-heptenyl, 1,5-heptenyl, and the like.

The term "alkynyl" is $C_2 - C_{20}$ straight or branched chain, alkynyl, which corresponds to an alkyl above containing one or more triple bonds. Examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, and the like.

The term "heterocyclic group" means 5 - 7 membered cyclic group containing one or more hetero atoms selected independently from the group consisting of oxygen, sulfur and/or nitrogen atom on the ring, and is optionally condensed with a carbon ring or other heterocyclic group at any substitutable positions. Examples include pyrrolyl (e.g., 1-pyrrolyl, 3-pyrrolyl), indolyl (e.g., 2-indolyl, 3-indolyl, 6-indolyl), carbazolyl (e.g., 2-carbazolyl, 3-carbazolyl), imidazolyl (e.g., 1-imidazolyl, 4-imidazolyl), pyrazolyl (e.g., 1-pyrazolyl, 3-pyrazolyl), benzimidazolyl (e.g., 2-benzimidazolyl, 5-benzimidazolyl), indazolyl (e.g., 3-indazolyl), indolizinyl (e.g., 6-indolyzinyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), quinolyl (e.g., 8-quinolyl),

isoquinolyl (e.g., 3-isoquinolyl), acridyl (e.g., 1-acridyl), phenanthrydinyl (e.g., 2-phenanthrydinyl, 3-phenanthrydinyl), pyridazinyl (e.g., 3-pydidazinyl), pyrimidinyl (e.g., 4pyrimidinyl), pyrazinyl (e.g., 2-pyrazinyl), cinnolinyl (e.g., 3-cinnolinyl), phthaladinyl (e.g., 5-phthaladinyl), quinazolinyl 5 (e.g., 2-quinazolinyl), isoxazolyl (e.g., 3-isoxazolyl, 4isoxazolyl), benzisoxazolyl (e.g., 1,2-benzisoxazol-4-yl, 2,1benzisoxazol-3-yl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5oxazolyl), benzoxazolyl (e.g., 2-benzoxazolyl), benzoxadiazolyl (e.g., 4-benzoxadiazolyl), isothiazolyl (e.g., 3-isothiazolyl, 10 4-isothiazolyl) benzisothiazolyl (e.g., 1,2-benzisothiazol-3-yl, 2,1-benzisothizol-5-yl), thiazolyl (e.g., 2-thiazolyl), benzothiazolyl (e.g., 2-benzothiazolyl), thiadiazolyl (e.g., 1,2,3-thiadiazol-4-yl), oxadiazolyl (e.g., 1,3,4-oxadiazol-2-yl), dihydroxadiazolyl (e.g., 4,5-dihydro-1,2,4-oxadiazol-3-yl), furyl 15 (e.g., 2-furyl, 3-furyl), benzofuryl (e.g., 3-benzofuryl), isobenzofuryl (e.g., 1-isobenzofuryl), thienyl (e.g., 2-thienyl, 3-thienyl), benzothienyl (1-benzothiophen-2-yl, 2benzothiophen-1-yl), tetrazolyl (e.g., 5-tetrazolyl), 20 benzodioxolyl (e.g., 1,3-benzodioxol-5-yl), dibenzofuryl (e.g., 2-dibenzofuryl, 3-dibenzofuryl), dibenzoxepinyl (e.g., dibenz[b,f]oxepin-2-yl), dihydrodibenzoxepinyl (e.g., dihydrodibenz[b,f]oxepin-2-yl, chromenyl (e.g., 2H-chromen-3-yl, 4H-chromen-2-yl), dibenzothiepinyl (e.g., dibenzo[b,f]thiepin-25 3-yl, dihydrodibenzo[b,f]thiepin-3-yl), morpholinyl (e.g., 1,4morpholin-4-yl), phenothiadinyl (2-phenothiadinyl), cyclopentathienyl (e.g., cyclop nta[b]thioph n-3-yl), cyclohexathienyl (e.g., cyclohexa[b]thiophen-3-yl),

cyclohexathienyl (e.g., cyclohexa[b]thiophen-3-yl),
cycloheptathienyl (.g., cyclohepta[b]thiophen-3-yl),
dibenzothienyl (e.g., 2-dibenzothienyl), dibenzopyranyl (e.g.,
2-dibenzopyranyl), dibenzo-p-dioxyl (e.g., 2-dibenzo-p-dioxyl),
and the like.

The term "cycloalkyl" means C_3 - C_8 cyclic alkyl, for

10

5

example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.

The term "cycloalkenyl" means C₃ - C₈ cyclic alkenyl, for example, cyclopropenyl (e.g., 1-cyclopropenyl), cyclobutenyl (e.g., 2-cyclobuten-1-yl), cyclopentenyl (1-cyclopenten-1-yl), cyclohexenyl (1-cyclohexen-1-yl), and the like.

5

15

20

The term "alkoxy" means $C_1 - C_6$ alkoxy, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, and the like.

"substituted- or un-substituted-amino" include mono- or disubstituted amino such as methylamino, ethylamino, dimethylamino,
cyclohexylamino, phenylamino, diphenylamino, or cyclic amino such
as piperidino, piperadino or morpholino.

The term "acyloxy" means an acyloxy derived from the "acyl" above, for example, acetyloxy, propionyloxy, butyryloxy, valeryloxy, and the like.

The term "halogen" means fluorine, chlorine, bromine and iodine.

The term "alkoxycarbonyl" means an alkoxycarbonyl group derived from the "alkoxy" above, for example, methoxycarbonyl, ethoxycarbonyl, phenyloxycarbonyl, and the like.

The term "aralkyloxycarbonyl" means an aralkyloxycarbonyl group derived from the "aralkyl" above, for example, benzyloxycarbonyl, phenethyloxycarbonyl, and the like.

25 The term "aryloxycarbonyl" means an aryloxycarbonyl group derived from the "aryl" above, for example, phenyloxycarbonyl,

2-butenyloxy, and the like.

5

10

25

The term "hydroxyalkyl" means a hydroxyalkyl group deriv d from the "alkyl" abov , for example, hydroxymethyl, hydroxypropyl, and the like.

The term "alkylthio" means an alkylthio group derived from the "alkyl" above, for example, methylthio, ethylthio, propylthio, and the like.

The term "alkylenedioxy" means $C_1 - C_3$ alkylenedioxy, for example, methylenedioxy, ethylenedioxty, propylenedioxy, and the like.

In the case of "phenylene, "naphtylene",
"thiophenediyl", "indolediyl", "oxazolediyl", "oxadiazolediyl" and
tetrazolediyl", the said group can bind to the neighboring groups
at any two substitutable sites.

In the definitions above, when a substituent(s) is cyclic, it may be substituted by one to three substituents selected from nitro, alkoxy, sulfamoyl, substituted—or un-substituted—amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl, trifluoromethyl, alkylthio,—N=PPh3, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy. The substituent(s) may bind to any substitutable positions on the ring.

Examples of salts of the compound (I) include those formed with an alkali metal (e.g., lithium, sodium or potassium), an alkali earth metal (e.g., calcium), an organic base (.g., tromethamine, trimethylamine, triethylamine, 2-aminobutane, t-butylamine, diisopropylethylamine, n-butylmethylamine, cyclohexylamine, dicyclohexylamine, N-isopropylcyclohexylamine, furfurylamine,

benzylamine, methylbenzylamine, dibenzylamine, N,Ndimethylbenzylamine, 2-chlorobenzylamine, 4-methoxybenzylamine,
1-naphthylenemethylamine, diphenylbenzylamine, triphenylamine,
1-naphthylamine, 1-aminoanthoracene, 2-aminoanthoracene,
dehydroabiethylamine, N-methylmorpholine or pyridine), an amino
acid (e.g., lysine, or arginine), and the like.

The term "hydrate" means a hydrate of the compound of the formula (I) or its salt. Examples include mono- and dihydrates.

The present compounds are shown by the formula (I) and are inclusive of the form of any types of stereoisomers (e.g., diastereomer, epimer, enantiomer) and racemic compounds.

Among the compounds of the general formula (I), those wherein m=1, especially, those shown in Tables 3b and 3c below are known compounds described in Japanese Patent Publication (KOKAI) No. 180862/1990.

15

Among the compounds of the general formula (I), those wherein m=0, [i.e., those shown by the general formula (I')], can be prepared by reacting an amino compound of the general formula

carboxylic acid corresponding to the said partial structure is a compound of the general formula $X_3-X_2-X_1$ -COOH. Reactive derivative of these sulfonic or carboxylic acids means a corresponding halide (e.g., chloride, bromide, iodide), acid anhydride (e.g., mixed acid anhydride with formic acid or acetic acid), active ester (e.g., succinimide ester), and examples thereof generally include acylating agents used for the acylation of amino group. The carboxylic acid $X_3-X_2-X_1$ -COOH can be used in the reaction as it is without converting into a reactive derivative, in the presence of a condensing agent (e.g., dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-dimetylaminopropyl)carbodiimide, N,N'-carbonyldiimidazole) which are used in the condensing reaction between amine and carboxylic acid.

5

10

The reaction can be conducted under the conditions generally used for the acylation of amino group. For example, in 15 the case of condensation using an acid halide, the reaction is carried out using a solvent such as an ether solvent (e.g., diethylether, tetrahydrofuran, dioxane), benzene solvent (e.g., benzene, toluene, xylene), halogenated hydrocarbon solvent (e.g., dichloromethane, 20 dichloroethane, chloroform), ethyl acetate, dimethylformamide, dimethyl sulfoxide, acetonitrile, or the like, if necessary, in the presence of a base (e.g., organic base such as triethylamine, pyridine, N,N-dimethylaminopyridine, N-methylmorpholine; inorganic base such as sodium hydroxide, potassium hydroxide, potassium carbonate, or the like) under cooling, at room temperature 25 or under heating, preferably at temperature ranging from $-20\,^{\circ}\text{C}$ to a temperature under cooling, or from room temperature to a refluxing temperature of the reaction system, for several min to several hr,

preferably for 0.5 hr to 24 hr, mor preferably, for 1 hr to 12 hr.

The reaction conditions for the reaction between other reactive derivative or a free acid and an amine (II) can be determined in a conventional manner depending on the characteristics of the respective reactive derivative or free acid.

5

The reaction product can be purified by conventional purification methods, for example, the extraction with a solvent, chromatography, recrystallization, or the like.

material for the present method are as follows. Examples of 3amino[2.2.1]bicyclic compound include 7-(3aminobicyclo[2.2.1]hept-2-yl)-5-heptenoic acid, 7-(3aminobicyclo[2.2.1]hept-2-yl)-2,2-dimethyl-5-heptenoic acid, 7(N-metnyl-3-aminobicyclo[2.2.1]hept-2-yl)-5-hexenoic acid, 6
(3-aminobicyclo[2.2.1]hept-2-yl)-5-hexenoic acid. Specific
examples of 2-amino-6,6-dimethyl[3.1.1]bicyclic compound include
7-(2-amino-6,6-dimethylbicyclo[3.1.1]hept-3-yl)-5-h ptenoic
acid. In these starting compounds, the heptenoic acid chain may be
saturated to form heptanoic acid chain intervened by a betare atom(a)

sulfonic acid or carboxylic acid having substitu nts corresponding to the Xs above. That is, examples includ alkane-sulfonic acid or -carboxylic acid, alk ne-sulfonic acid or -carboxylic acid, alkyne-sulfonic acid or -carboxylic acid, cycloalkane-sulfonic acid or -carboxylic acid, cycloalkene-sulfonic acid or -carboxylic acid, aryl-sulfonic acid or -carboxylic acid, aralkyloxy-sulfonic acid or -carboxylic acid, heterocyclic-substituted-sulfonic acid or -carboxylic acid, heteroarylalkyl-sulfonic acid or -carboxylic acid, and substituted-amino-sulfonic acid or -carboxylic acid. Each of sulfonic and carboxylic acids may have a substituent(s) above. These sulfonic acids and carboxylic acids are commercially available or can be easily synthesized from a known compound(s) in accordance with a known method. Upon reaction, the sulfonic or carboxylic acid can be converted into the corresponding reactive derivative above, if necessary. For example, when an acid halide is needed, the compound is reacted with thionyl halide (e.g., thionyl chloride), phosphorous halide (e.g., phosphorous trichloride, phosphorous pentachloride) or oxalyl halide (e.g., oxalyl chloride) in accordance with a known method such as those described in a literature (e.g., Shin-Jikken-Kagaku-Koza, vol. 14, pp. 1787 (1978); Synthesis, 852-854 (1986); Shin-Jikken-Kagaku-Koza, vol. 22, pp. 115 (1992)). The other reactive derivatives can also be prepared in accordance with a known method.

Among the objective compounds (I), those wherein the side chain A contains an unsaturated bond, especially, a double bond, can also be prepared by reacting an aldehyde derivative of the general formula (III) below with an ylide compound corresponding to the r st part of the side chain A-R under the conditions for the Wittig reaction:

Soit Co

5

10

15

20

CHO
$$Y'$$

$$N-Z-X_1-X_2-X_3$$

$$B$$
(III)
$$X-R$$

$$Y'$$

$$N-Z-X_1-X_2-X_3$$

$$B$$
(I')

wherein A, B, R, X_1 , X_2 , X_3 , Y and Z are as defined above.

The starting compound (III) can be prepared in accordance with a method described in, for example, Japanese Patent Publication (KOKAI) No. 256650/1990. Further, an ylide compound corresponding to the rest part of the side chain A-R can be synthesized by reacting triphenylphosphine with a corresponding halogenated alkanoic acid, or an ester derivative, ether derivative or amide derivative thereof in the presence of a base according to a known method.

10 Among the objective compounds (I), those wherein R is COOH

can be converted into a corresponding ester derivative, alcohol derivative, ether derivative, amide derivative, if desired. For example, ester derivatives can be prepared by esterifying a carboxylic acid in a conventional manner. An ester derivative, when

allergic rhinitis; allergic conjunctivitis, urticaria, injury due to ischemic reperfusion, and inflammation. The compound (I) shows prev ntiv eff ct on nasal occlusion in vivo, and therefore is especially useful as a drug for treating them.

When using a compound (I) of the present invention in treatment, it can be formulated into ordinary formulations for oral and parenteral administration. A pharmaceutical composition containing a compound (I) of the present invention can be in the form for oral and parenteral administration. Specifically, it can be formulated into formulations for oral administration such as tablets, capsules, granules, powders, syrup, and the like; those for parenteral administration such as injectable solution or suspension for intravenous, intramuscular or subcutaneous injection, inhalant, eye drops, nasal drops, suppositories, or percutaneous formulations such as ointment.

In preparing the formulations, carriers, excipients, solvents, and bases known to one ordinary skilled in the art may be used. In case of tablets, they are prepared by compressing or fomulating an active ingredient together with auxiliary components. Examples of usable auxiliary components include pharmaceutically acceptable excipients such as binders (e.g., cornstarch), fillers (e.g., lactose, microcrystalline cellulose), disintegrants (e.g., starch sodium glycolate) or lubricants (e.g., magnesium stearate). Tablets may be coated appropriately. In the case of liquid formulations such as syrups, solutions, or suspensions, they may contain suspending agents (e.g., methyl cellulose), emulsifiers (e.g., lecithin), preservatives, and the like. In the case of injectable formulations, it may be in the form of solution or suspension, or oily or aqueous emulsion, which may contain

(STRUE)

5

10

15

20

suspension-stabilizing agent or dispensing agent, and the like. In the case of an inhalant, it is formulated into a liquid formulation applicable to an inhaler. In the case of ey drops, it is formulated into a solution or a suspension. Especially, in the case of nasal drug for treating nasal occlusion, it can be used as a solution or suspension prepared by a conventional formulating method, or as a powder formulated using a powdering agent (e.g., hydroxypropyl cellulose, carbopole), which are administered into the nasal cavity. Alternatively, it can be used as an aerosol after filling into a special container together with a solvent of low boiling point.

Although an appropriate dosage of the compound (I) varies depending on the administration route, age, body weight, sex, or conditions of the patient, and the kind of drug(s) used together, if any, and should be determined by the physician in the end, in the case of oral administration, the daily dosage can generally be between about 0.01 - 100 mg, preferably about 0.01 - 10 mg, more preferably about 0.1 - 10 mg, per kg body weight. In the case of parenteral administration, the daily dosage can generally be between about 0.001 - 100 mg, preferably about 0.001 - 1 mg, more preferably about 0.001 - 1 mg, per kg body weight. The daily dosage can be administered in 1 - 4 divisions.

The following Examples are provided to further illustrate the present invention and are not to be construed as limiting the scope thereof.

Example 1

5

10

COOCH₃

$$(II-1)$$

$$(II-1)$$

$$(Ia-1)$$

$$(Ia-1)$$

$$(Ia-1)$$

$$(Ia-1)$$

$$(Ia-1)$$

$$(Ia-1)$$

$$(Ia-2)$$

$$(Ia-3)$$

Methyl (Z)-7-[(1S,2R,3R,4R)-3-

aminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (II-1) (251 mg, 1.00 mmol) was dissolved in methylene chloride (8 ml) and triethylamine (0.238 ml, 2.00 mmol) was added thereto under a nitrogen atmospher. To the mixture was added 2-chlorosulfonyldibenzofuran (350 mg, 1.31 mmol) under ice-cooling, and the mixture was stirred for 30 min and allowed to warm up to room temperature. The reaction mixture was purified by column chromatography on silica gel (n-hexane/ethyl acetate (1:4)) and recrystallized from n-hexane (10 ml) to yield methyl (Z)-7-[(1S,2R,3R,4R)-3-(2-dibezofuryl)sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate

15 Elemental analysis (C₂₇H₃₁NO₅S)

Calcd. (%):C, 67.34; H, 6.49; N, 2.91; S, 6.66

(1a-1) (342 mg, 0.710 mmol). Yield 71 %, mp 115-116 $^{\circ}$ C.

Found (%) :C, 67.16; H, 6.47; N, 2.99; S, 6.66

IR (CHCl₃):3382,3024,2952,2874,1726,1583,1465,1442,1319,1245,1154,1121,1104,1071,1019,890,840,817 /cm.

20 ¹H NMR(CDCl₃)δ: 0.94-1.92(14H,m),2.15-2.24(3H,m),2.99-3.07(1H,m),
3.66(3H,s),4.98(1H,d,J=6.6Hz),5.10-5.22(2H,m),7.397.46(1H,m),7.51-7.70(3H,m),7.87-8.13(2H,m),8.53(1H,d,J=2.1Hz)

ASTR. DO

 $[\alpha]_{D}=-0.6^{\circ}$ (CHCl₃,c=1.01%,23°C). $([\alpha]_{365}=+37.0^{\circ}$ (CHCl₃,c=1.01%,23°C).

Methyl (Z)-7-[(1S,2R,3R,4R)-3-(2-dibezofuryl)-5 sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1a-1) (234 mg, 0.50 mmol) was dissolved in methanol (6 ml)/tetrahydrofuran (4 ml). To the solution was added 1 N potassium hydroxide (1.50 ml, 1.50 mmol) under ice-cooling. After the reaction mixture was warmed up to room temperature, it was allowed to react for 16 hr and 10 concentrated to remove the solvent. To the residue were added ethyl acetate (50 ml) and water (10 ml), and then 1 N HCl (2.00 ml, 2.00 mmol), and the organic layer was separated. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by column chromatography 15 on silica gel (n-hexane/ethyl acetate (1:1) containing 0.2 % acetic acid) to yield (Z)-7-[(1S,2R,3R,4R)-3-(2-dibezofuryl)sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (1a-2) (203 mg, 0.434 mmol). Yield 87 %, oil.

mmol) was dissolved in methanol (5 ml). After addition of 1 N sodium methoxide/methanol (1.034 N, 0.937 ml, 0.97 mmol), the mixture was allowed to warm up to room t mperature and to react for 1 hr. The solvent was removed by distillation to yield the sodium salt (1a-3) (457 mg, 0.933 mmol). Yield 96 %.

Amorphous powder.

5

Elemental analysis (C₂₆H₂₈NO₅SNa 0.6H₂O)

Calcd.(%):C,62.41;H,5.88;N,2.80;S,6.41;Na,4.59

Found (%): C,62.45; H,5.92; N,2.99; S,6.49; Na,4.46

10 IR (KBr): 434, 3280, 3074, 3007, 2952, 2873, 1566, 1467, 1444, 1417, 1344, 1315, 1270, 1248, 1200, 1189, 1154, 1124, 1107, 1075, 1058, 895, 842, 818 /cm.

¹H NMR(CD₃OD)δ: 1.02-2.05(16H, m), 2.16-2.23(1H, m), 2.94-3.00(1H, m), 4.98-5.05(2H, m), 7.41-7.48(1H, m), 7.53-7.62(1H, m), 7.66(1H, d, J=8.4Hz), 7.77(1H, d, J=8.4Hz), 8.57(1H, d, J=2.1Hz).
[α]_D=-15.2° (CH₃OH, c=1.07%, 22°C).

Example 2

20

Methyl (Z)-7-[(1S,2R,3R,4R)-3-

aminobicyclo[2.2.1]hept-2-yl]-5-heptenoate trifrluroroacetate (II-2) (232 mg, 0.636 mmol), which was prepared by the method

described in R ference Example 4 of the Japanese Patent Publication (KOKOKU) No. 79060/1993, was dissolved in methylene chloride (5 ml).

To the solution were added triethylamine (0.279 ml, 2.00 mmol) and 4-biphenylcarbonyl chloride under ice-cooling and stirred for 7 hr at the same temperature. The reaction mixture was purified by column chromatography on silica gel (ethyl acetate/n-hexane (1:4)) to yield methyl (Z)-7-[(1S, 2R, 3R, 4R)-3-(4-

biphenyl)carbonylaminobicyclo[2.2.1]hept-2-

5

yl]-5-heptenoate (1k-11) (221 mg, 0.512 mmol). The compound (1k-11)

(190 mg, 0.440 mmol) was dissolved in methanol (6 ml). To the solution
was added 1 N KOH (1.10 ml, 1.10 mmol) under ice-cooling and stirred
for 15 hr at room temperature. The reaction mixture was concentrated
in vacuo. The residue, after the addition of water (20 ml) and 1

N HCl (2 ml), was extracted with ethyl acetate. The organic layer
was washed with saturated brine, dried over anhydrous sodium sulfate
and concentrated. The residue was purified by column chromatography
on silica gel (ethyl acetate/hexane (1:1) containing 0.3 % acetic
acid) to yield (Z)-7-[(1S,2R,3R,4R)-3-(4-

hinhenvilarhenvilariah'

bromide (14.8 g, 33.3 mmol) and tetrahydrofuran (80 ml) was added potassium t-butyrate (7.55 g, 67.3 mmol) at room temperature under a nitrogen atmosph re. After stirring for 1 hr at room temperature, the mixture was cooled to -20° C and a solution of N-[(15,25,35,4R)-3-formylmethylbicyclo[2.2.1]hept-2-yl]benzenesulfonamide (III-5 1) (Japanese Patent Publication (KOKAI) No. 256650/1990, Reference Example 2) (3.25 g; 11.1 mmol) in tetrahydrofuran (20 ml) was added slowly. After stirring for about 1 hr at -20 $^{\circ}$ C, the ice bath was removed and the mixture was further stirred for 1 hr. To the reaction 10 solution was added 2 N HCl and the mixture was extracted with ethyl acetate, washed with water and brine, and concentrated. After the addition of toluene and 1 N sodium hydroxide to the resultant crude product, aqueous layer was separated. The organic layer was washed with water again and the washing was combined with the previously obtained aqueous layer. After the addition of 2 N HCl, the aqueous 15 solution was extracted with ethyl acetate. The extract was washed with water and brine, dried over sodium sulfate, and concentrated. The residue was purified by column chromatography on silica gel to obtain calcium (Z)-7-[(1R,2S,3S,4S)-3-

phenylsulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1d-1) (3.29 g, yield 79 %, mp 62°).

Elemental analysis $(C_{20}H_{27}NO_4S)$

Calcd.(%) :C, 63.63; H, 7.21; N, 3.71; S, 8.49

Found (%) :C, 63.56; H, 7.21; N, 3.83; S, 8.43

25 $[\alpha]_0 = + 5.3 \pm 0.5^{\circ} (CHCl_3, c=1.003 %, 22^{\circ}C)$

 $[\alpha]_{D}=+27.1 \pm 0.7^{\circ}$ (MeOH, c=1.015 % 24 °C)

IR(Nujol) 3282, 3260, 3300, 2400, 1708, 1268, 1248, 1202, 1162, 1153,

1095, 1076/cm.

¹H NMR δ 0.88-2.10(m,14H), 2.14(br S, 1H), 2.34(t, J=7.2Hz, 2H), 2.95-3.07(m, 1H), 5.13-5.35(m, 3H), 7.45-7.64(m, 3H), 7.85-7.94(m, 2H), 9.52(brS, 1H).

Compounds prepared in accordance with a method described in Examples above are shown in Tables below.

Table 1a

<u> </u>		
 No.	R_1	X ₁ -X ₂ -X ₃
 1a-1	CH ₃	
1a-2	н	
1a-3	Na	
1a-4	СНз	
1a-5	н	
1a-6	СН₃	- <>
1a-7	н	
1a-8	СН₃	
1a-9	Н	
1a-10	СН	J-V-V-SO NIH
1a-11	н	-__SO ₂ NH ₂
1a-12	CH-	
1a-13	CH₃ H	-{_}_осн₃
1a-14	CH₃	
1a-15	н	
1- 16	011	
1a-16 1a-17	СН	
24.27	Н	
1a-18	СНз	
1a-19	н	
		_
1a-20	CH ₃	
1a-21	н	
1a-22	н	
		NO ₂
•	•	— Субтось
1a-23	н	
		NO ₂

No.	R ₁	$X_1-X_2-X_3$
1a-24 1a-25 1a-26	CH ₃ H Na	(
1a-27 1a-28 1a-29	CH ₃ H Na	\(\)_N=N-\(\)_N
1a-30 1a-31	CH₃ H	-N=N-\OAc
1a-32 1a-33	СН ₃ Н	-√_N=N-√_OH
1a-34	CH₃	N=CH
1a-35 1a-36	CH₃ H	-CH=CH ₂
1a-37 1a-38	CH₃ H	
1a-39 1a-40	CH₃ H	
_ 1a-41	н	————och
1a-42 1a-43	сн ₃ н	$-\langle s \rangle$
1a-44 1a-45	CH₃ H	-CH2CH2

No.	R ₁	X ₁ -X ₂ -X ₃	
1a-46 1a-47 1a-48	CH ₃ H Na	~\bar{\rightarrow}-=-\bar{\rightarrow}	
1a-49 1a-50	CH₃ H	$ \bigcirc$ \bigcirc NO ₂	
1a-51 1a-52	CH₃ H	NH ₂	
1a-53 1a-54	CH₃ H		
1a-55 1a-56	СН₃ Н		
1a-57 1a-58	CH₃ H		
1a-59 1a-60	СН₃ Н	——————————————————————————————————————	
1a-61 1a-62	сн₃ н		
1a-63 1a-64	CH₃ H	—————————————————————————————————————	
1a-65 1a-66	CH₃ H	——————	
1a-67 1a-68	сн ₃ н	− ⟨¯⟩ − F	

No.	R ₁	X ₁ -X ₂ -X ₃
1a-69 1a-70	сн₃ н	-{-}-сн _а
1a-71 1a-72	сн₃ н	
1a-73 1a-74	CH₃ H	-(OAc
1a-75 1a-76	CH₃ H	-COOR1
1a-77 1a-78	сн₃ н	NO ₂
1a-79	н	-C
. 1a-80 1a-81	CH₃ H	
1a-82 1a-83	сн ₃ н	$ \stackrel{\cdot}{\longrightarrow} \stackrel{NO_2}{\longrightarrow} \\ \underset{NH_2}{\longrightarrow} \\ $
1a-84	н	NO ₂ OCH ₃
1a-85	н	NH ₂ OCH ₃
1a-86	н	- — — — — — — — — — — — — — — — — — — —
1a-87	н	NH ₂

Contract

No.	R ₁	X ₁ -X ₂ -X ₃
1a-88 1a-89	CH₃ H	-\(\)-\(\)-\(\)-\(\)-\(\)-\(\)
1a-90 1a-91	СН ₃	
1a-92 1a-93	с н₃ н	-€-H-€>
_ 1a-94	н.	
1a-95	н	-{\$\rightarrow\$-\footnote{\rightarrow}-\foot
1a-96	н	-С-Й-С-ОН
1a-97	н	HO HO
1a-98 1a-99	H ' Na	OCH OCH

No.	R ₁	X ₁ -X ₂ -X ₃	
1a-100 · 1a-101	сн _з н	- NH	
1a-102	сн	NNa	
1a-103 1a-104	СН ₃ Н	- NH	
1a-105 1a-106	CH₃ H	N-OCH ₃	
1a-107 1a-108	CH₃ H	N-OC ₂ H ₅	
1a-109 1a-110	сн _а н		
1a-111 1a-112	CH ₃ H	$ \langle N, N- \langle N \rangle$	
1a-113 1a-114	CH₃ H	-√Ph Ph	

No.	R ₁	X ₁ -X ₂ -X ₃
1a-115 1a-116 1a-117 1a-118	CH ₃ H Na <i>I</i> -Pr	-CH ₂ -C
1a-119 1a-120 1a-121	CH ₃ Na H	- €}-•-€}
1a-122 1a-123	сн _е Н	-NH-
1a-124	СН₃	-CH ₂ -OMs
1a-125 1a-126	CH₃ H	-CH ₂ -COAc
1a-127 1a-128	CH₃ H	{
1a-129	CH₃	-CH2-CH3
1a-130 1a-131	CH₃ H	()-о-()-он
1a-132 1a-133	СН ₃ Н	————————————————————————————————————
1a-134	н	
1a-135 1a-136	СН ₃ Н	CC
1a-137 1a-138	CH₃ H	
1a-139 1a-140	СН ₃ Н	-cH ₂ -

Contract of the second

No.	R ₁	X ₁ -X ₂ -X ₃
1a-141 1a-142	сн _а	-CH ₂ -NC
1a-143	н	
1a-144	н	NO ₂
1a-145	н	
1a-146	н	NO2
1a-147	н	OCH ₉
1a-148	Н	OCH ₃
1a-149	н	
1a-150	н	OAC OAC
1a-151	н ·	OAC OCH ₃

(2) STRAZ

No.	. R ₁	X ₁ -X ₂ -X ₃
1a-152	н	
1a-153	н	CH ₂ C
1a-154	н	
1a-155	н	
1a-156	н	
1a-157	H ·	
1a-158	, н	SO ₂
1a-159	н	N-CH [®]
1a-160	н	NH NH

STIME

No.	R ₁	X ₁ -X ₂ -X ₃
1a-161	н	
1a-162	н	CH ₉ O
1a-163	н	HO
1a-164	н	C ₂ H ₅ Q
1a-165	н	CH ₀ O NO ₂
1a-166	н	CH ₃ O NO ₂
1a-167	н	
1a-168	н	
1a-169	Н	The och
1a-170	н	OCH ₃
1a-171	СН	ĊH₃ H₃C
1a-172	н	-SIJ"

(2)

No.	R ₁	X ₁ -X ₂ -X ₃
1a-173 _.	н	
1a-174	н	
1a-175 1a-176	CH₃ H	
1a-177 1a-178	СН₃ Н	-Cy-och
1a-179 1a-180	сн _е ,н	-Су-он
1a-181	н	N CH ₃
1a-182 1a-183	CH₃ H	

No.	R ₁	X ₁ -X ₂ -X ₃
1a-184	Н	
1a-185	н	NH NH
1a-186 1a-187	СН ₃ Н	
1a-188 1a-189	н сн,	COOR,
1a-190 1a-191 _.	сн₃ н	COOR ₁
1a-192 1a-193	сн₃ н	COOR

No.	X ₁ -X ₂ -X ₃	
1a-194	сњо	
1a-195	CH ₉ O	
1a-196	CH ₂ O	
1a-197	сњо	
1a-198	—————осн _я	
1a-199	-C	
1a-200	CH _O	
1a-0201	O ₂ N	
1a-202	$-$ \bigcolor \b	
1a-203	CH ₃ O NO ₂	

Range Contraction of the Contrac

No.	X ₁ -X ₂ -X ₃
1a-204	CH ₃ ON=N
1a-205	CH ₃ O N=N-(
1a-206	-N=N-C-OCH3 OCH3
1a-207	-N=N-\NO ₂
1a-208	N=CH-COCH ₈
1a-209	CH ₂ OCH=CH ₂
1a-210	CH3O
1a-211	CH ₃ O
1a-212	OCH ₃
1a-213	OCH ₃

12 S. T. Z.

No.	X ₁ -X ₂ -X ₃
1a-214	CH ₂ O
1a-215	OCH ₉
1a-216	OCH,
1a-217	CH ₃ O
1a-218	СНО
1a-219	-(S)
1a-220	CH ₃ O S
1a-221	− ₩-ë- -
1a-222	
1a-223	————————————————————————————————————

No.

 $X_1-X_2-X_3$

1a-224	CH ₈ O CH ₉
1a-225	O ₂ N
1a-226	CH ₉ O
1a-227	CH ₂ O OCH ₃
1a-228	CH ₉ O
1a-229	CH ₃ O NH ₂ N
1a-230	CH ₀ ONO ₂
1a-231	сн³о
1a-232	
1a-233	-{, H-{, H-
1a-234	
1a-235	-С-H-С-оснь

No. $X_1-X_2-X_3$ OCH₃ 1a-236 1a-237 ,осн₃ 1a-238 OCH ,OCH₃ 1a-239 1a-240 CH3Q 1a-241 1a-242 осн, CH3Q ,осн_з 1a-243 OCH3 OCH₃ 1a-244 -осн OCH3 осн3 •осн₃ 1a-245 OCH3 ,0CH₃ 1a-246 -OCH3

OCH3

No.

 $X_1-X_2-X_3$

	CH3O	OCH
1a-247		осн _е
1a-248	сщо ——— ё- <u>н</u> -	осң осң
1a-249	CHO O	
1a-250	CHO O O	OCH ³
1a-251	CH ₀ O	och och
1a-252	CH3O CH3O	OCH ₃
1a-253	-C-N-CH3	OCH ₃
1a-254	CH ₃ O CH ₃ O CH ₃	OCH3
1a-255	-€-H-€	CH ₃ CH ₃
1a-256	-С-N-С- сно) —осн _а
1a-257	-\(\bigc\)-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OCH3 OCH3

No.	X ₁ -X ₂ -X ₃
1a-258	{_}-s{_}
1a-259	сңо ————————————————————————————————————
1a-260	CH ₂ O
1a-261	CH³O
1a-262	CH ₃ O
1a-263	CH ₂ O,
1a-264	-CH ₉ O
1a-265	. — Осн₃
1a-266	-NH-C-)-OCH3
1a-267	-CH ₃ O -S-C
1a-268	-√S-√S OCH ₉
1a-269	CH ₃
1a-270	C-sC-S
1a-271	-\s\-\s\-\\\

No.	X ₁ -X ₂ -X ₃
1a-272	-√-о-√-осн₃
1a-273	-S-S-OCH
1a-274	CH ₃ O ————————————————————————————————————
1a-275	CH ₀
1a-276	CH ₃ O CH ₂
1a-277	СН ₈ О
1a-278	CH ₂ Q
1a-279	OCH ₃
1a-280	CH4O
1a-281	
1a-282	CH ₃ O O O O O O O O O O O O O O O O O O O
1a-283	

No.	$X_1 - X_2 - X_3$

1a-284	
1a-285	CH ₈ O
1a-286	CH ₂ O
1a-287	CH ₈ O
1a-288	CH3O NH
1a-289	CH ₉ O CH ₉
1a-290	CH ₃ O SO ₂
1a-291	CH ₃ O
1a-292	CH3O NH
1a-293	CH ₉ O
1a-294	CH ₃ O

No.	X ₁ -X ₂ -X ₃	
1a-295	CH-O H	
1a-296		
1a-297	CH ₈ O CH ₈	
1a-298	CH ₉ O H	
1a-299	CH ₂ O H	
1a-300	сн,о Н	
1a-301	CH ₃ O NH OCH ₃	•
1a-302	CH ₃ O NH NO ₂	
1a-303	CH3O OCH3	
1a-304	NH	
1a-305	O ₂ N S NH	

Table 1b

No.	_ R ₁	X ₁ -X ₂ -X ₃	
1b-1	сн₃	-(_)-(_)	
1b-2	сн	-{	
1b-3	н	-{	
1b-4	н	СНю	·
1b-5	н		
1b-6	. н	CH ² O	
1b-7	н	CH ₂ O	
1b-8	н	CH ₂ C	
1b-9	н	СН ₉ О	·
1b-10	н	CH ₃ O	

No.	R ₁	X ₁ -X ₂ -X ₃
1b-11	Н	och,
1b-12	Н	-C-H-C-och
1b-13	н	CH ₂ O OCH ₃
1b-14	н	CH ₉ Q
1b-15	Н	(¯)-s-(¯)

Table 1c

No.	R ₁	X ₁ -X ₂ -X ₃
1c-1	СН	~\bar{\}=\bar{\}
1c-2	СН₃	-\(\)-N=N-\(\)
1e-3	к	-
1c-4	н	-CH ₂ -
1c-5	н	
1c-6	н	OCH OCH OCH
1c-7	н	сно
1c-8	н	- √>-∘-√>
1c- 9	н	
1c-10	н	CH ₂ O
1c-11	н	сн _в о осн _в осн _в осн _в
1c-12	н	CH ₂ O

Table 1d

No.	R ₃ R ₄	X ₁ -X ₂ -X ₃
1d-1	H SO₂CH₃	-\(\big \rightarrow N=N-\(\big \rightarrow \)
1d-2	н н	
1d-3	н он	()-ch ₂ -()
1d-4	H SO₂CH₃	
1d-5	H SO₂CH₃	
1d-6	H SO₂CH₃	CH₀O
1d-7	H SO₂CH₃	CH ₃ O ————————————————————————————————————
1d-8	н ѕо₂сн₃	CH ₈ O CH ₂ C
1d-9	H SO₂CH₃	CH ₈ O
1d-10	H SO₂CH₃	CH ₉ O

No.	R ₃ R ₄	X ₁ -X ₂ -X ₃
1 d-11	H SO₂CH₃	оснь оснь
1d-12	H SO₂CH₃	—————————————————————————————————————
1d-13	н ѕо₂сн₃	CH3O OCH3 OCH3 OCH3
1d-14	H SO₂CH₃	CH ₃ O
1d-15	н ѕо₂сн₃	-{¯}-s-{¯}

Table 1e

No.	R ₁	X ₁ -X ₂ -X ₃
16-1	н	
1e-2	H	CH ₀ O
1e-3	н	-CH ₂ -C
1e-4	н	─
1e-5	Н	OCH3
1e-6	н	CH ₉ Q
16-7	Н	CH ₂ O
1e-8	H	СНО
1e-9	н	CH ₃ O OCH ₃ OCH ₃ OCH ₃ OCH ₃
1e-10	Н	CH ₃ O

Table 1f

No.	R ₂	X ₁ -X ₂ -X ₃
1f-1	н	
1f-2	н	CH3O
1f-3	н	-CH ₂ -C
1f-4	н	
1f-5	н	OCH OCH OCH
1f-6	н	CH ₂ O
. 11-7	н	CH ₂ O CH ₂ O
1f-8	н	CH ₃ O
1f-9	н	CH3O OCH3 OCH3 OCH3
1f-10	н	CH3O

Table 1g

No.	R ₁	X ₁ -X ₂ -X ₃
1g-1	н	
1g-2	н	CHO
1g-3	н	—(
1g-4	н	─
1g-5	н	-C-H-C-C-H och
1g-6	. Н	CH ₂ Q
1g-7	Н	- ⟨□⟩-∘-⟨□⟩
1g-8	н	CH ₃ O
1g-9	н	CH ₂ O
1g-10	н	сньо оснь оснь оснь
1g-11	н	CH ₀ O

Table 1h

No	D. R ₁	X ₁ -X ₂ -X ₃
11	i-1 H	
1h	-2 H	—————————————————————————————————————
1h-	з н	
1h	-4 н	och och
1h	-s H	CH8 O
1h-(6 Н	- √_}-∘-√_̄
1b-	7 H	CH ₂ O CH ₂
1h-8	н	CH³O
1h-9	н	CH ₃ O OCH ₃ OCH ₃ OCH ₃
1h-1	0 H	CH3O,

Table 1i

No.	R ₂	X ₁ -X ₂ -X ₃
11-1	н	-
1i-2	н	-CH ₂ -CCH ₂
1i-3	н	
1i-4	н	осн _в
1i-5	н	СНО
1i-6	н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1i-7	н	
1i-8	н	CH ₃ Q CH ₂
1i-9	н	
1i-10	н	CH3O OCH3 CH3O OCH3 OCH3
1i-11	н	
1i-12	н	сн _в о ————————————————————————————————————

Table 1j

No.	R ₁	X ₁ -X ₂ -X ₃
1j-1	СН3	
1j-2	н	()-CH ₂ -()
1j-3	Na	
1j-4	н	-\(\)-N=N-\(\)
	CH₃	
1j-5	٠٠٩	
1j-6	CH ₃	
11-7	н	
1j-8	сн₃	
1j-9	СН	
1j-10	н	
		-
1j-11	СН	0=¢
1j-12	н) \
1j-13 ·	сн	——————————————————————————————————————
1j-14	н	
1j-15	СН	
1 j- 16	н	

<u></u>	No.	R ₁	X ₁ -X ₂ -X ₃	
	1 j-17	н		
	1j-18 1j-19	сн _е		
	1j-20 1j-21	сн ₃ н		
	1j-22	н	-C-N-PPhs	
	1j-23 1j-24	сн₃ н	- © -₽- ©	
	1j-25 1j-26	сн₃ н	- N-N-N	
	1j-27	н	-H—	
	1j-28 1j-29	сн ₃ н	-N_O	

No.	R ₁	X ₁ -X ₂ -X ₃
1j-30	Н	CH3O
1j-31	Н	-N=N-N-OCH3
1j-32	Н	сңо ————о——— сңо
1j-33	Н	
1j-34	Н	CH3O
1j-35	Н	CH ₆ O
1j-36	Н	-C-H-Coch
1j-37	н	-C-H-C-OCH
1j-38	н	CH3O OCH3 OCH3 OCH3

Table 1k

No.	R ₁	X ₁ -X ₂ -X ₃
1k-)	L H	-0-CH ₂
1k-2 1k-3		-\(\bigcirc\)-N=N-\(\bigcirc\)
1k-4	н н	
1k-5	5 н	
1k-6	н	
1k-	7 н	─
1k-0	в н	{->О
1k-5	н	(
1k-1	.0 н	
1k-1	1 CH ₃	
1k-12	2 Н	→

No.	R ₁	X ₁ -X ₂ -X ₃
1k-13	Н	-N=N-(-)-OCH
1k-14	н	
1k-15	Н	CH3O
1k-16	Н	
1k-17	Н	CH ₃ O
1k-18	Н	-CH ₂ -(
1k-19	Н	och och
1k-20	н	()-s()

Table 1m

No.	R ₁	X ₁ -X ₂ -X ₃
1m-1 1m-2	СН₃ Н	─
1m-3 1m-4	сн ₈ н	→
1m-5 1m-6	сн ₃ н	-\(\bigcirc\)-N=N-\(\bigcirc\)
1m-7 1m-8	СН ₃ Н	-
1m-9 1m-10	сн₃ н	
1m-11 1m-12	CH₃ H	
1m-13 1m-14	СН₃ Н	
1m-15 1m-16	сн₃ н	-CAc
1m-17 1m-18	CH₃ H	—————

No.	R ₁	X ₁ -X ₂ -X ₃
1m19 1m-20	сн ₃ н	-C->-C->-OCH ₃
1m-21	н	
1m-22	н	
1m-23 1m-24	CH₃ H	→
1m-25 1m-26	CH₃ H	————OAc
1m-27 1m-28	CH₃ H	————он
1m-29 1m-30	сн₃ н	. — ОСН3
1m-31	Н	—
1m-32	н	
1m-33	н	

No.	R ₁	X ₁ -X ₂ -X ₃
1m-34	Н	CH ₃ O
1m-35	H	сно
1m-36	Н	-N=N-()-OCH
1m-37	Н	CH ₃ O
1m-38	Н	-C-H-C-OCH
1m-39	Н	CH3O OCH3
1m-40	н	C-N-C-N-CH,

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-1	СН		
2a-2	Н		
2a-3	СН		
2a-4 2a-5	∘ H Na	—()—N=N—()	
24-5	114		
2a-6	СН	- (_)	
2a-7	Н		
2a-8	СНз		
2a-9	Н	-СНО	
	.,		
2a-10	CH ₃		
2a-11	Н	NH NH	
		5 %	
2a-12	СН₃	-√} }	
2a-13	н	S NH	
		. S	
2a-14	СН		
2a-15	H		
·			
2a-16	CH ₃		
2a-17	н		
2a-18	СН		
2a-19	Н		
2a-20	CH₃	• •	
2a-21	H	— (¯)	
2a-22	Na	 /	
2a-23	сн		
2a-23 2a-24	Н	-\(\)__\\\\	
44-74	П		

No.	R ₁	X ₁ -X ₂ -X ₃
2a-25 2a-26	сн₃ н	-cH ₂ -
2a-27 2a-28	CH₃ H	
2a-29 2a-30	СН ₈ Н	N-o-
2a-31	СНз	N-N-W
2a-32 2a-33	СН ₃ Н	-CH ₂ -N N
2a-34 2a-35	СН _в Н	
2a-36 2a-37	сн _а н	-H-(_)-(_)
2a-38 2a-39	СН ₃ Н	N-OH .
2a-40 2a-41	СН ₃ Н	H NH2
2a-42 2a-43	сн ₃ н	-N-H NH2
2a-44 2a-45	сн ₉ н	
2a-46 2a-47	сн _а н	

#: 1. . .

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-48	СН	N=N	
2a-49	н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2a-50	СНз		
2a-51	Н	S-AND	
2a-52	СН	NH ₂	
2a-53	н	——————————————————————————————————————	
2a-54	СН	-_\N-\N	
2a-55	Н	H.N	
2a-56	СНз	∕— N-й	
2a-57	Н	CH ₈	
2a-58	СН₃	√≕ in=n	
2a-59	н	-\(\)-\(\)\-\(\)\-\(\)\-\(\)	
2a-60	CH₃		
2a-61	Н		
•		⟨⟩	
2a-62	СН₃		
2a-63	н		
2a-64	СНз		
2a-65	н	N-0-/	
2a-66	СН		
2a-67	н		

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-68 2a-69	сн _з н		
2a-70 2a-71	сң, н		
2a-72 2a-73	сн₃ н		
2a-74 2a-75	сн₃ н	————————————————————————————————————	
2a-76 2a-77	СН ₃ Н	-()-()-OAc	
2a-78 2a-79	сн₃ н		
2a-80 2a-81	CH₃ H	-С>-С->-осн _а	
2a-82 2a-83	СН ₃ Н	()-OAc	
2a-84 2a-85	СН ₃ Н	- Он	
2a-86 2a-87	с ң ₃ н	—(¯)−осн₃	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-88 2a-89	CH₃ H		
2a-90	CH ₃	11 0	
2a-91	Н		
2a-92 2a-93	CH ₉	-\$J	
2a-94 2a-95 2a-96	CH₃ H Na		
2a-97	Ca ^{1/2}	g	,
2a-98 2a-99	CH₃ H	-	\
2a-100 2a-101	СН _в н .	NO -	
2a-102 2a-103	сн₃ н	NO CH	
2a-104 2a-105	с н ₈	осн	
2a-106 2a-107	CH₃ H		
2a-108 2a-109 2a-110	CH ₃ H Na	-{	
2a-111 2a-112	CH₃ H	(=)cı	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-113 2a-114	СН _в	-CF ₃	
2a-115 2a-116	сн _а	— СН₃	
2a-117 2a-118	CH₃ H		
2a-119	н	OAc	
2a-120	н	ОН	
2a-121	н	OCH ₃	
2a-122	н	-	
2a-123	н	-CH ₂ -	
2a-124	н	−CH ₂ − OH	
2a-125	н .		

	No.	R ₁	X ₁ -X ₂ -X ₃	
	2a-126	. H	—————Br	
	2a-127	н		
	2a-128	н	-H-	
4	2a-129	н		
	2a-130	н		
	2a-131	н		
	2a-132	н	HO	
	2a-133	н	HÖ S	
	2a-134	н	-CH2-O-	
	2a-135	н		
	2a-136	н		

No	. R ₁	X ₁ -X ₂ -X ₃
2a-1	37 H	
2 a-1 .	38 H	осн(сн _у) ₂
2a-1	39 H	
2a-1	40 H	
2a-1	41 H	-О-оснь
22-14	12 H	H ₃ CO
2 a-1 <i>4</i>	43 H	HO
2a-14	14 H	HQ SHOW
2a-14	15 H	-\(\)-\(\si^\circ\)
2a-14	16 H	
2a-14	7 н	—————————————————————————————————————

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-148	н	-=	
2a-149	н		
2a-150	Н	-C"	
2a-151	н	N S	
2a-152	н	H ₉ C N	
2a-153	н	H ₃ C	
2a-154	н	— сн _в	
2a-155	Н	-600	
2a-156	н	TIN N	
2a-157	н	H³C ZNN	
2a-158	ľΗ	₹ ^N N	
2a-159	. н	√s,'n √N	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-160	н	HOOC .	
2a-161	н	H ₀ C-S'N	
2a-162	н	-NO ₂	
2a-163	н	─_\	
2a-164	н	→	
2a-165	Н	· — N	
2a-166	н		
2a-167	н		
2a-168	н		
2a-169	н	-{	
2a-170	н		

No.	R ₁	X ₁ -X ₂ -X ₃
2a-171	н	ST CHS
2a-172	н.	H ₆ C-S
2a-173	н	S Br
2a-174	н	S Br
2a-175	н	H ₆ CS-S
2a-176	н	CH ₃
2a-177	Н	у осн _в
2a-178	н	S-s-C
2a-179	н	Br
2a-180	н	Shoch
2a-181	н	SCH
2a-182	н	SCH

DETRAZIAN CO

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-183	н	-\(\)-\(\)-\(\)	
2a-184	н	-Cs	
2a-185	н		
2a-186	н		
2a-187	н	H ₃ CO	
2a-188	н	→	
2a-189	Н	—⟨N CH₃	
2a-190	н	T)	
2a-191	н	N CH ₃	
2a-192	н		
2a-193	н	N C ₂ H ₅	

No.	X ₁ -X ₂ -X ₃
2a-214	C(CH ₀) ₃
2a-215	Salva Sa
2a-216	Sal-Co
2a-217	
2a-218	SOCH
2a-219	H ₃ C
2a-220	H _{CO}
2a-221	S СНДОН
2a-222	\
2a-223	Z COCH

DETRAL DE

No.	X ₁ -X ₂ -X ₃
2a-224 _	—{
2a-225	-CH ₈
2a-226	-√S-s-√S H ₆ co
2a-227	-S-COCH ₈
2a-228	CH ₃ S-C CH ₃
2a-229	. CH ₃
2a-230	—————————————————————————————————————
2a-231	H₃CO ————————————————————————————————————
2a-232	H₃CO ————————————————————————————————————
2a-233	H ₃ CO ————————————————————————————————————

$X_1-X_2-X_3$

2a-234	H ₃ CO ————————————————————————————————————
2a-235	H ₉ CO ————————————————————————————————————
2a-236	H _s co ————————————————————————————————————
2a-237	H ₉ CO
2a-238	H ₀ C ————————————————————————————————————
2a-239	H _b C ————s——— OCH _b
2a-240	H ₃ C ————————————————————————————————————
2a-241	H ₃ CCÓ CH ₃ ————————————————————————————————————
2a-242	CH ₃ -s-C
2a-243	-CH ₃ -S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

No.

 $X_1-X_2-X_3$

2a-244	OCH ₃ -SSSSSSSSSSSSS-
2a-245	OCH ₃ -S-CT _{CH₃}
2a-246	och, ch,
2a-247	OCH ₈ -S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
2a-248	-C
2a-249	осн _а
2a-250	-S-S-S-S-S
2a-251	-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

No.	X ₁ -X ₂ -X ₃	
2a-252	-CH ₃	
2a-253	CH ₃	
2n-254	CH ₃ S-CH ₃ H ₃ CO	
2a-255	H ₉ CO CH ₉	
2a-256	H ₃ CO S—CH ₃ S—CO	
2a-257	S COOH	

No.	X ₁ -X ₂ -X ₃
2a-258	H ₉ CO
2a-259	H ₉ CO
2a-260	OCH _s
2a-261	стосня
2a-262	S OCH
2a-263	OCH ₃
2a-264	CH _s
2a-265	SCH ₃
2a-266	CH ₆
2 a-267	SCH ₃

No.	X ₁ -X ₂ -X ₃	_
2a-268		
2a-269		
2a-270	S. C.	
2a-271		
2a-272	HO	
2a-273		
2a-274	Cys Co	
2a-275	HON	
2a-276	HO	
2a-277		

SSTRALIAN OF THE PROPERTY OF T

No.	X ₁ -X ₂ -X ₃	
2a-278	CH ₉	
2a-279	S N C ₂ H ₅	
2a-280	SCOCH	
2a-281		
2a-282	S CH ₀	
2a-283	$N_{C_2H_5}$	
2a-284	S COCH ₃	
2a-285	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2a-286 _.		
2a-287	N _N CH ₃	

No.	X ₁ -X ₂ -X ₃
2a-288	$N_{C_2H_5}$
2a-289	Сосн
2a-290	
2a-291	NH ₀
2a-292	N _{C₂H₅}
2a-293	COCH
2a-294	(;-H-(
2a-295	C-N-CH3

2a-296

No.	X ₁ -X ₂ -X ₃
2a-297	—Сс-Й—Сон
2a-298	———°
2a-299	H3CO OCH OCH OCH OCH
2a-300	-CH9
2 a- 301	
2a-302	−₹ -₽-\$- ₹
2a-303	
2a-304	OCH OCH OCH
2a-305	—————————————————————————————————————
2a-306	-{оосн _в

No.	X ₁ -X ₂ -X ₃
2a-307	H ₃ CO OCH ₃ OCH ₃ OCH ₃ OCH ₃
2a-308	
2a-309	
2a-310	—————————————————————————————————————
2a-311	
2a-312	—————————————————————————————————————
2a-313	—————————————————————————————————————
2a-314	—————————————————————————————————————
	н₃сооснь

2a-315

No.	R ₁	X ₁ -X ₂ -X ₃	
2b-1	Н	$\overline{}$	
2b-2	н		

Table 2c

 No.	R ₁	X ₁ -X ₂ -X ₃	
2c-1	н		
2c-2	н	$\overline{}$	
2e-3	н		

Table 2d

No.	R ₁	X ₁ -X ₂ -X ₃	
2d-1	н		
2d-2	н	_	
2d-3	н		

No.	R ₁	X ₁ -X ₂ -X ₃	
2e-1	н	-	
2e-2	н	→	
26-3	н	T _s)	

Table 2f

No.	R ₁	$X_1-X_2-X_3$	
21-1	Н		
2f-2	Н	-	
2f-3	н		

Table 2g

No.	R ₃	R ₄	X ₁ -X ₂ -X ₃	
2g-1	н	SO ₂ CH₃		

Table 2h

No.	$X_{1}-X_{2}-X_{3}$
2h-1	S
2h-2	₹ сн₃
2h-3	
2h-4	
2h-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2h-6	

Table 2i

X ₁ -X ₂ -X ₃
S
SCH
()-s-()
─ ~~

<u> </u>	No.	X ₁ -X ₂ -X ₃
	2 j-1	
	2j-2	S CH
	2j-3	
	2j- 4	-√ _S-√
	2j-5	
	2 j- 6	
Table 2k	NHCOX ₁ -X ₂ -X ₃	X ₁ -X ₂ -X ₃
•		<u> </u>
	2k-1	
	2k-2	CH ₃
	2k-3	
	2k-4	
	2k-5	─
	2k-6	

No.	R ₁	X ₁ -X ₂ -X ₃	
3a-1	СН _З	→ <a> <a> <a> <a> <a> <a> <a> <a> <a> <a>	
3a-2	н		
3a-3 3a-4	сн _в н		
3a-5	H ₃ N ⁺ C(CH ₂ OH) ₃	$\prec \succ \prec \rangle$	
3a-6	Na		
3a-7	1/2 Ca		
3a-8	н	—(tBu	
3a-9	н	-CMe	
3a-10	СН₃	/= \	
3a-11	н		
3a-12	CH ₃	\prec	
3a-13	н	Br	
3a-14	сн₃	Br	
3a-15	сн₃		
3a-16	н	(_)-n(
3a-17 3a-18	сн ₃ н		

No.	R ₁	X ₁ -X ₂ -X ₃
3a-19	СН	H₃C
3a-20	Н	-С-
		H₃c∕
3a-21	CH ₃	
3a-22	Н	(s)-Br
3a-23	СН₃	
3a-24	н	—⟨сн₂он
2 45		
3a-25	Н	—(CH ₂) ₃ CH ₃
3a-26	CH ₃	
3a-27	н	—(СН ₂) ₇ СН ₃
3a-28	CH ₃	
3a-29	н	—————————————————————————————————————
3a-30	СН₃	—CI NH ₂
3a-31	СНз	
3a-32	Н	
3a-33	Na	
3a-34	Н	
3a-35	Na	

AUSTRAL, Z

Table 3b

No.	R ₁	X ₁ -X ₂ -X ₃
3b-1	СН₃	-CH ₂ -C
3b-2	н	
3b-3	н	
3b-4	н	———Br

Table 3c

No.	R_1	X ₁ -X ₂ -X ₃	
3c-1	н	-\(\)_N=N-\(\)	

3d-1 3d-2 Na	X ₁ -X ₂ -X ₃	R ₁	No.	
3d-4 Na CI 3d-5 CH ₃ 3d-6 H 3d-7 CH ₃ 3d-8 3d-9 Na 3d-10 CH ₃ 3d-11 H 3d-12 Na 3d-13 1/2 Ca	~			
3d-5 3d-6 H 3d-7 CH ₉ 3d-8 3d-9 Na 3d-10 CH ₉ 3d-11 H 3d-12 Na 3d-13 1/2 Ca	— СН₃	Na	3d-3	
3d-6 H 3d-7 CH ₃ 3d-8 H 3d-9 Na 3d-10 CH ₃ 3d-11 H 3d-12 Na 3d-13 1/2 Ca	— (□)—a	Na	3d-4	
3d-7 CH ₃ 3d-8 H 3d-9 Na 3d-10 CH ₃ 3d-11 H 3d-12 Na 3d-13 1/2 Ca				
3d-8 3d-9 Na 3d-10 CH ₃ 3d-11 H 3d-12 Na 3d-13 1/2 Ca				
3d-9 Na 3d-10 CH ₃ 3d-11 H 3d-12 Na 3d-13 1/2 Ca				
3d-11 H 3d-12 Na 3d-13 1/2 Ca				
3d-12 Na 💮		СНз		
3d-13 1/2 Ca		н	3d-11	
3d-13 1/2 Ca		Na	3d-12	
	•	1/2 Ca	3d-13	
3d-14 H		н	3d-14	
3d-15 Na		Na	3d-15	

No.	R ₁	X ₁ -X ₂ -X ₃	
3d-16	Н		
3d-17	Н	-(СН ₂)4СН ₃	1
3d-18	н	-(CH ₂) ₃ CH ₃	
3d-19 3d-20	CH₃ H	-NHCH3	
3d-21 3d-22	сн₃ н		
3d-23	н	()Br	
3d-24	н		·
3d-25 3d-26	H Na		racenic compound
3d-27 3d-28	H Na	C_2H_5	racemic compound
 3d-29 3d-30	H Na	Br	racenic compound

Table 3e

Physicoch mical properties of compounds above are shown b low. The compound number below corresponds to that described in Tables above.

5 No.1a - 4 $[\alpha]_{D} = -11.5^{\circ} \text{ (CHCl}_{S}, c=1.01, 23.5^{\circ}\text{C}).$

No.1a - 5

 $[\alpha]_D = -10.0^{\circ} \text{ (CHCl}_3, c=1.01,25.0^{\circ}\text{C}).$

10

No.1a - 6

CDCl₃ 300MHz

0.93-1.96(14H,m),2.20-2.26(3H,m),3.03(1H,m),3.67(3H,s),4.99(1H,d,J=6.6H z),5.10-5.24(2H,m),7.37-7.51(3H,m),7.54-7.64(3H,m),7.76-7.88(2H,m),8.11(1

15 H,m).

IR (CHCl₃):3384,3278,3026,2952,2874,1727,1436,1411,1324,1155,1097 /cm. $[\alpha]_D = -9.0^{\circ}$ (CHCl₈,c=1.04,22.0°C).

No.1a - 7

20 CDCl_s 300MHz

0.93-2.00(14H,m),2.18(1H,m),2.28(2H,t,J=7.2Hz),3.04(1H,m),5.15-5.25(2H,m), 5.28(1H,d,J=6.9Hz),7.36-7.50(3H,m),7.54-7.63(3H,m),7.76-

7.89(2H,m), 8.12(1H,m).

IR(CHCl_s):3268,3028,2952,2872,1708,1452,1410,1324,1155,1097/cm.

25 $[\alpha]_D = -9.1^{\circ} (CHCl_3, c=1.01, 24.0^{\circ}C).$

No.1a - 8

CDCl₃ 300MHz

0.94-1.99(14H,m),2.21-

2.29(3H,m), 3.05(1H,m), 3.67(3H,s), 4.92(1H,d,J=6.3Hz), 5.14

5.30(2H,m), 7.70-7.78(6H,m), 7.96-8.01(2H,m).

IR(CHCl_s):3376,3272,3018,2946,2868,1727,1616,1435,1388,1324,1162,1130, 1069/cm.

5 $[\alpha]_D = +1.6^{\circ}$ (CHCl₃, c=1.01,24.0°C). mp.117-119°C.

No.1a - 9

CDCl₃ 300MHz

0.95-2.08(14H,m), 2.19(1H,m), 2.32(2H,t,J=7.2Hz), 3.06(1H,m), 5.20-5.30(2H,t)

10 m), 5.34(1H, d, J=6.6Hz), 7.69-7.78(6H, m), 7.96-8.03(2H, m).

IR(CHCl₃):3260,3020,2950,2868,1708,1389,1324,1162,1130,1069 /cm.

 $[\alpha]_D = +13.3^{\circ} \text{ (CHCl}_s, c=1.05, 24.0^{\circ}\text{C}).$

mp.118-120℃

15 No.1 a -10

CDCl₃ 300MHz

 $0.96 \cdot 1.98(14H,m), 2.15 \cdot 2.32(3H,m), 3.04(1H,m), 3.66(3H,s), 5.12$

5.26(5H,m), 7.67-7.78(4H,m), 7.93-8.07(4H,m).

IR(CHCl₃):3276,3018,2946,2868,1726,1595,1435,1341,1162,1095 /cm.

No.1a - 12

CDCl₃ 300MHz

0.96-1.96(14H,m), 2.22-2.27(3H,m), 3.03(1H,m), 3.66(3H,s), 3.87(3H,s), 4.86(1H,s), 3.66(3H,s), 3.87(3H,s), 3.86(1H,s), 3.87(3H,s), 3.87(

5 H,d,J=6.9Hz),5.18-5.24(2H,m),6.99-7.02(2H,m),7.55-7.66(2H,m),7.66-7.69(2 H,m),7.89-7.92(2H,m).

IR(CHCl₃):3374,3270,3016,2948,2870,1726,1608,1518,1487,1458,1437,1248, 1157,1037.

 $[\alpha]_D = +4.2^{\circ} (CHCl_8, c=1.01, 24^{\circ}C).$

10 mp.85-87℃.

No.1a - 13

CDCl₈ 300MHz

0.97-1.99(14H,m), 2.18(1H,m), 2.30(2H,t,J=7.2Hz), 3.04(1H,m), 3.86(3H,s), 5.1

15 8(1H,d,J=5.7Hz),5.23-5.26(2H,m),6.99-7.02(2H,m),7.55-7.58(2H,m),7.66-7.6 8(2H,m),7.89-7.92(2H,m).

IR(CHCl₃):3380,3260,3020,2948,2868,1708,1608,1519,1487,1458,1306,1293, 1248,1156 /cm.

 $[\alpha]_D = +18.3^{\circ} (CHCl_3, c=1.00, 25.5^{\circ}C)$.

20

No.1a - 14

CDCl₃ 300MHz

0.98-2.00(14H,m),2.20(1H,m),2.25(2H,t,J=7.2Hz),3.02(1H,m),3.67(3H,s),4.8 5(1H,d,J=6.3Hz),5.19-5.25(2H,m),7.13(1H,dd,J=4.8,3.6Hz),7.39(1H,d,J=4.8

25 Hz), 7.40(1H, d, J=3.6Hz), 7.71-7.74(2H, m), 7.86-7.89(2H, m).

IR(CHCl₃):3374,3270,3018,2946,2868,1727,1593,1434,1322/cm.

 $[\alpha]_D = +5.6^{\circ} \text{ (CHCl}_{s,c} = 1.01,24^{\circ}\text{C}).$

mp.69-71℃.

CDCl₃ 300MHz

0.95-2.00(14H,m), 2.17(1H,m), 2.32(2H,t,J=7.2Hz), 3.03(1H,m), 5.20(1H,d,J=6.

9Hz),5.24-5.28(2H,m),7.13(1H,dd,J=4.8,3.3Hz),7.38(1H,d,J=4.8Hz),7.43(1H,

5 d, J=3.3Hz), 7.73(2H, d, J=8.4Hz), 7.87(2H, d, J=8.4Hz).

IR(CHCl₃):3260,3022,2948,2868,1709,1593,1404,1321,1154/cm.

 $[\alpha]_D = +20.8^{\circ} \text{ (CHCl}_8, c=1.07,23^{\circ}\text{C}).$

mp.71.73℃.

10 No.1a -16

CDCl₃ 300MHz

0.98-2.00(14H,m),2.27(2H,t,J=7.5Hz),2.28(1H,m),3.13(1H,m),3.66(3H,s),4.9 0(1H,d,J=6.9Hz),5.25-5.29(2H,m),7.40-7.65(6H,m),7.76(1H,d,J=8.4Hz),7.90-8.02(4H,m).

IR(CHCl_s):3376,3276,3018,2946,2868,1726,1593,1435,1394,1322,1159/cm. $[\alpha]_D = +7.0^{\circ} \text{ (CHCl_s,c=1.07,24°C)}.$

No.1a - 17

CDCl₃ 300MHz

20 1.02-2.07(14H,m),2.25(1H,m),2.34(2H,t,J=6.6Hz),3.14(1H,m),5.28-5.33(3H,m),7.39-7.57(4H,m),7.62-7.65(2H,m),7.76(1H,d,J=8.1Hz),7.89-8.02(4H,m).
IR(CHCl_s):3260,2948,2868,1709,1593,1394,1324,1157/cm.

[] -100 0° (OTTO) - 1 00 04°0\

IR(CHCl_s):3372,3272,,3018,2946,2868,1727,1433,1331,1152/cm. $[\alpha]_D$ =-5.7° (CHCl_s,c=1.01,23°C).

No.1a - 19

5 CDCl₈ 300MHz

1.05-2.05(14H,m),2.28-2.33(3H,m),3.13(1H,m),5.18(1H,d,J=6.3Hz),5.27-5.31 (2H,m),7.24(1H,d,J=4.2Hz),7.39-7.42(3H,m),7.56(1H,d,J=4.2Hz),7.58-7.62(2 H,m).

IR(CHCl₈):3372,3254,3018,2948,2868,1707,1431,1328,1151/cm.

10 $[\alpha]_D = +4.5^{\circ}$ (CHCl₈, c=1.01,21.5°C).

No.1a - 20

CDCl₈ 300MHz

1.05-2.00(14H,m), 2.26(2H,t,J=7.5Hz), 2.33(1H,m), 3.11(1H,m), 3.68(3H,s), 4.9

15 2(1H,d,J=6.0Hz),5.27(2H,m),7.05(1H,m),7.10(1H,d,J=3.6Hz),7.25(1H,m),7.3 2(1H,m),7.49(1H,d,J=3.6Hz).

IR(CHCl₈):3372,3272,3018,2946,2686,1727,1438,1417,1333,1151/cm. $[\alpha]_D$ =-9.2° (CHCl₈,c=1.01,25°C).

20 No.1 a -21

CDCl₈ 300MHz

1.02-2.01(14H,m), 2.28-2.34(3H,m), 3.13(1H,m), 5.12(1H,d,J=6.9Hz), 5.28-5.32(2H,m), 7.06(1H,m), 7.10(1H,d,J=3.9Hz), 7.25(1H,m), 7.32(1H,m), 7.50(1H,d,J=3.9Hz).

25 IR(CHCl₃):3350,3250,2948,1709,1440,1420,1330,1151. [α]_D=+2.5° (CHCl₃,c=1.00,25°C).

No.1a - 22

CDCl₃ 300MHz

0.96-2.05(14H,m), 2.25(1H,m), 2.35(2H,t,J=7.0Hz), 3.11(1H,m), 5.20-5.34(2H,m), 2.25(1H,m), 2.35(2H,t,J=7.0Hz), 3.11(1H,m), 3.20-5.34(2H,m), 3.11(1H,m), 3.20-5.34(2H,m), 3.20-

1.8and7.8Hz),8.35(1H,d,J=1.8Hz).

IR(CHCl₃):3384,3271,3025,2958,1708,1608,1559,1537,1357,1168/cm.

5 $[\alpha]_p = +18.3^{\circ} (CHCl_3, c=0.31, 22^{\circ}C).$

No.1a - 23

CDCl_a 300MHz

0.97-2.07(14H,m), 2.24(1H,m), 2.35(2H,t,J=6.9Hz), 3.09(1H,m), 3.86(3H,s), 5.2

10 4-5.35(2H,m),5.44(1H,d,J=6.3Hz),6.97-7.00(2H,m),7.26-7.28(2H,m),7.59(1H,d,J=8.1Hz),8.06(1H,d.d,J=2.1and8.1Hz),8.29(1H,d,J=2.1Hz).

IR(CHCl₃):3384,3270,2959,1709,1609,1535,1519,1357,1302,1255,1226,1169/cm.

 $[\alpha]_D = +17.0 \circ (CHCl_3, C=1.00, 21 \circ C).$

15

No.1No.1a - 24

CDCl_s 300MHz

0.95-2.00(14H,m), 2.20-2.25(1H,m), 2.26(2H,t,J=7.2Hz), 3.02-3.10(1H,m),

3.66(3H,s), 4.92(1H,d,J=6.6Hz), 5.16-5.31(2H,m), 7.52-7.60(3H,m), 7.94

m.

 $[\alpha]_D = +29.8 \pm 0.7 \text{ °(CHCl}_3, c=1.05, 25 °C)$ mp.158-160 °C

5 No.1 a -26

Anal. Calcd for $C_{26}H_{30}N_{3}O_{4}SNa$ 0.8 $H_{2}O$: C,60.29;H,6.15;N,8.11;S,6.19;Na, 4.44; Found: C,60.15;H,6.19;N,8.15;S,6.03;Na,4.98. [α]_D=-16.6° (CHCl₃,c=1.04,25.0°C).

10 No.1 a -27

CDCl₈ 300MHz

0.92-1.98(14H,m),2.20(1H,m),2.26(2H,t,J=7.5Hz),3.03(1H,m),3.12(6H,s),3.6 6(3H,s),4.87(1H,d,J=6.6Hz),5.16-5.32(2H,m),6.73-6.80(2H,m),7.88-8.00(6H,m).

15 IR(CHCl₈):3376,3020,2946,1726,1601,1518,1442,1419,1362,1312,1163,1133, 1088 /cm.

 $[\alpha]_D = +55.3^{\circ} \text{ (CHCl}_3, c = 0.53, 24.0^{\circ}\text{C}).$ mp.158-168°C

20 No.1 a -28

CDCl₃+CD₈OD 300MHz

 $0.99 \cdot 2.14(14H,m), 2.21(1H,m), 2.31(2H,t,J=7.2Hz), 2.94(1H,m),$

3.12(6H,s), 5.22-5.38(2H,m), 6.73-6.81(2H,m), 7.87-8.00(6H,m).

IR(KBr):3434,3309,2946,1708,1604,1520,1442,1416,1366,1312,1252,1164,1

25 155,1134,1091 /cm.

 $[\alpha]_D$ = not measurable (colored, insufficient energy) mp.193-196°C

CD₃OD 300MHz

1.02-1.96(14H,m), 2.10(2H,t,J=7.8Hz), 2.16(1H,m), 2.98(1H,m), 3.11(6H,s),

5.07-5.27(2H,m), 6.80-6.87(2H,m), 7.84-8.00(6H,m).

IR(KBr):3433,3087,3004,2949,2871,1604,1565,1520,1444,1420,1364,1312,1

5 253,11638,1136,1090 /cm.

 $[\alpha]_D$ = not measurable

No.1a - 30

CDCl₃ 300MHz

10 0.95-1.99(14H,m),2.22(1H,m),2.26(2H,t,J=7.2Hz),2.35(3H,s),3.06(1H,m),3.6 6(3H,s),4.95(1H,d,J=6.9Hz),5.15-5.30(2H,m),7.26-7.32(2H,m),7.97-8.06(6H,m).

IR(CHCl₈):3374,2996,2946,2868,1763,1728,1591,1495,1435,1368,1299,1228, 1192,1163,1139 /cm.

15 $[\alpha]_D = +12.9^{\circ} (CHCl_3, c=1.04, 26.0^{\circ}).$

No.1a - 31

CDCl₈ 300MHz

0.93-2.01(14H,m), 2.19(1H,m), 2.31(2H,t,J=7.2Hz), 2.35(3H,s), 3.06(1H,m),

20 5.17-5.32(2H,m), 7.25-7.32(2H,m), 7.96-8.07(6H,m).

IR(CHCl₈):3267.3028.2952.2874.1759.1708.1592 1495 1368 1328 1299 1163

IR(CHCl_s):3374,3276,3018,2946,2686,1725,1605,1589,1502,1433,1396,1330, 1271,1164,1135,1089 /cm. [α]_D= +18.6° (CHCl_s,c=1.00,26.0°C).

No.1a - 33

5 CDCl₃+CD₈OD 300MHz

0.98-2.08(14H,m), 2.20(1H,m), 2.28(2H,t,J=7.2Hz), 2.98(1H,m), 5.18-5.32(2H,m), 6.92-6.99(2H,m), 7.85-8.02(6H,m).

IR(KBr):3385,3248,2948,2876,1717,1601,1505,1430,1399,1296,1280,1219,1 165,1136,1092 /cm.

10 $[\alpha]_D = -16.0^{\circ} (CH_3OH, c=1.08, 26.0^{\circ}).$ mp.208-210°C

No.1a - 34

mp.82-83°C [α]_D=+10.6° (CHCl₈,c=1.01,23.5°C).

15

No.1a - 35

mp.80-82°C [α]_D= -1.8° (CHCl₃,c=1.07,22.0°C).

No.1a - 36

20 TLC Rf=0.25 (ethyl acetate/n-hexane = 1:1 (0.3% acetic acid))

No.1a - 37

CDCl₈ 300MHz

0.92-1.96(14H,m), 2.21(1H,m), 2.27(2H,t,J=7.4Hz), 3.01(1H,m), 3.66(3H,s), 4.7

25 1(1H,d,J=6.6Hz),5.14-5.29(2H,m),7.12(1H,d,J=16.2Hz),7.24(1H,d,J=16.2Hz),7.28-7.42(3H,m),7.52-7.56(2H,m),7.62(2H,d,J=8.7Hz),7.85(2H,d,J=8.7Hz).
IR(CHCl₈):3384,3283,3023,2954,2876,1730,1595,1494,1317,1163,1147/cm.

 $[\alpha]_D = +10.5^{\circ} \text{ (CHCl}_3, c=1.01,24^{\circ}\text{C}).$

mp 116-117 ℃.

CDCl₃ 300MHz

0.92-1.99(14H,m), 2.17(1H,m), 2.32(2H,t,J=7.2Hz), 3.02(1H,m), 5.23-5.29(3H,m), 5.25-5.29(3H,m), 5.25-5.29(3H,m), 5.25-5.29(3H,m), 5.25-5.29(3H,m), 5.25-5.29(

5 m),7.11(1H,d,J=16.2Hz),7.23(1H,d,J=16.2Hz),7.28-7.41(3H,m),7.52-7.55(2H,m),7.61(2H,d,J=8.7Hz),7.86(2H,d,J=8.7Hz).

IR(CHCl₃):3515,3384,3270,3022,3015,2957,2876,2669,1708,1595,1496,1320, 1157 /cm.

 $[\alpha]_D = +27.1^{\circ} \text{ (CHCl}_s, c=1.02,24^{\circ}\text{C}).$

10

No.1a - 39

CDCl₃ 300MHz

0.92-1.99(14H,m), 2.15(1H,m), 2.28(2H,t,J=7.4Hz), 3.01(1H,m), 3.68(3H,s), 4.9

6(1H,d,J=6.6Hz),5.16-5.32(2H,m),6.60(1H,d,J=12.0Hz),6.74(1H,d,J=12.0Hz),

15 7.16-7.23(5H,m), 7.35(2H,d,J=8.4Hz), 7.72(2H,d,J=8.4Hz).

IR(CHCl₈):3384,3283,3023,3015,2954,2876,1730,1595,1493,1324,1163,1147/cm.

 $[\alpha]_D = +13.7^{\circ} \text{ (CHCl}_s, c=1.00, 24^{\circ}\text{C}).$

20 No.1a -40

CDCl₃ 300MHz

0 90-9 16(14H m) 9 19(1H m) 9 34(9H + I-7 9Hg) 3 09(1H m) 5 16(1H d I-6

CDCl_s 300MHz

0.98-1.99(14H,m),2.17(1H,m),2.32(2H,t,J=7.2Hz),3.00(1H,m),3.84(3H,s), 5.20-5.26(3H,m),6.90-6.95(2H,m),6.98(1H,d,J=16.2Hz),7.17(1H,d,J=16.2Hz),7.46-7.49(2H,m),7.58(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz).

5 IR(CHCl₈):3258,3018,3002,2950,1709,1590,1509,1457,1404,1302,1250,1153 /cm.

[α]_D= +30.2° (CHCl₈,c=1.00,23°C). mp.99-100 °C

10 No.1a -42

CDCl_a 300MHz

1.01-1.99(14H,m),2.28(2H,t,J=7.2Hz),2.30(1H,m),3.10(1H,m),3.66(3H,s),5.0 7(1H,br),5.25-5.30(2H,m),6.98-7.04(2H,m),7.16(1H,d,J=16.2Hz),7.28-7.37(3 H,m),7.47-7.50(3H,m).

15 IR(CHCl₈):3372,3276,3020,2946,2870,1727,1491,1433,1331,1152 /cm. $[\alpha]_D = -11.5^{\circ}$ (CHCl₈,c=1.07,21.5°C).

No.1a - 43

CDCl₃ 300MHz

20 0.98-2.00(14H,m),2.11-2.36(3H,m),3.12(1H,m),5.10(1H,d,J=6.6Hz),5.29-5.32(2H,m),6.99-7.04(2H,m),7.23(1H,d,J=21.6Hz),7.32-7.49(6H,m). IR(CHCl₃):3380,3248,3020,2948,2868,1709,1491,1430,1329,1151/cm. $[\alpha]_D = +3.4^{\circ}$ (CHCl₃,c=1.03,25°C).

No.1a - 44

CDCl₃ 300MHz

1.00-2.00(14H,m),2.13(1H,m),2.29(2H,t,J=7.4Hz),2.90-3.13(5H,m),3.68(3H,s),4.74(1H,d,J=6.6Hz),5.15-5.30(2H,m),7.18-7.29(7H,m),7.76(2H,d,J=8.1Hz). IR(CHCl_s):3384,3282,3063,3028,3023,3016,2953,2876,1730,1599,1496,1319,

1157 /cm.

 $[\alpha]_D = +2.3^{\circ} \text{ (CHCl}_3, c=1.00, 25^{\circ}\text{C}).$

mp.85.0-86.0°C

 $5 \quad \text{No.1a} - 45$

CDCl₈ 300MHz

0.90-2.05(14H,m), 2.09(1H,m), 2.35(2H,t,J=6.9Hz), 2.90-3.13(5H,m), 5.18(1H,m), 5.18

 $d_{J}=6.6Hz$), 5.24-5.34(2H,m), 7.10-7.27(7H,m), 7.76(2H,d,J=8.4Hz).

IR(CHCl₃):3510,3384,3270,3087,3063,3026,3018,3014,2955,2876,2670,1708,

10 1599,1496,1318,1157/cm.

 $[\alpha]_D = +8.5^{\circ} \text{ (CHCl}_3, c=1.01, 25^{\circ}\text{C}).$

No.1a - 46

 $[\alpha]_D = +6.8^{\circ}$ (CHCl₃, c=1.05,25°C). mp.99-100°C.

15

No.1a - 47

CDCl₃ 300MHz

0.97-2.01(14H,m), 2.14(1H,m), 2.36(2H,t,J=7.2Hz), 3.02(1H,m), 5.23(1H,d,J=5.

4Hz),5.26-5.30(2H,m),7.37-7.39(3H,m),7.54-7.58(2H,m),7.63-7.66(2H,m),7.8

CDCl₈ 300MHz

0.96-1.97(14H,m),2.24(1H,m),2.31(2H,t,J=6.9Hz),3.05(1H,m),3.69(3H,s),5.1 5(1H,d,J=6.6Hz),5.25-5.27(2H,m),7.40-7.43(3H,m),7.61-7.64(2H,m),7.85(1H,d,J=8.1Hz),8.07(1H,dd,J=8.1,1.8Hz),8.58(1H,d,J=1.8Hz).

5 IR(CHCl_s):3374,3020,2948,2870,2212,1726,1606,1530,1493,1437,1345,1167/cm.

 $[\alpha]_D = +2.4^{\circ} \text{ (CHCl}_3, c=1.03, 25^{\circ}\text{C}). \quad \text{mp.77-79^{\circ}\text{C}}.$

No.1a - 50

10 CDCl₃ 300MHz

1.00-2.02(14H,m),2.20(1H,m),2.34(2H,t,J=6.6Hz),3.08(1H,m),5.26-5.29(2H,m),5.41(1H,d,J=6.9Hz),7.40-7.43(3H,m),7.61-7.64(2H,m),7.84(1H,d,J=8.1Hz),8.07(1H,dd,J=8.4,1.8Hz),8.57(1H,dd,J=1.8Hz).

IR(CHCl₈):3380,3254,2952,2880,2212,1707,1606,1531,1493,1409,1344,1166.

15

 $[\alpha]_D = +23.4^{\circ} \text{ (CHCl}_8, c=1.00, 25^{\circ}\text{C}).$

No.1a - 51

CDCl₈ 300MHz

20 0.95-1.98(14H,m),2.23(1H,m),2.30(2H,t,J=7.2Hz),3.00(1H,m),3.66(3H,s),4.5 6(2H,br),4.70(1H,d,J=6.9Hz),5.20-5.29(2H,m),7.15(1H,dd,J=7.8,1.8Hz),7.23 (1H,d,J=1.8Hz),7.36-7.39(3H,m),7.46(1H,d,J=7.8Hz),7.53-7.56(2H,m). IR(CHCl₈):3494,3386,3028,2952,2874,1725,1611,1559,1497,1422,1317,1162/cm.

25

No.1a - 52

CDCl₃ 300MHz

0.96-2.04(16H,m), 2.20(1H,m), 2.36(2H,t,J=6.9Hz), 2.99(1H,m), 5.17(1H,d,J=6.3Hz), 5.28-5.31(2H,m), 7.18(1H,dd,J=9.6,1.8Hz), 7.25(1H,m), 7.36-7.39(3H,m),

7.46(1H,d,J=7.8Hz),7.52-7.56(2H,m).

IR(CHCl₈):3482,3378,3260,3022,2948,2868,1708,161

2,1495,1422,1317/cm.

 $[\alpha]_D = +15.0^{\circ} \text{ (CHCl}_8, c=1.00, 24^{\circ}\text{C}).$

5

No.1a - 53

CDCl₃ 300MHz

1.01-2.05(15H,m), 2.31(2H,t,J=7.2Hz), 3.10(1H,m), 3.67(3H,s), 5.02(1H,br), 5.2

6-5.33(2H,m), 7.18(1H,d,J=4.2Hz), 7.36-7.39(3H,m), 7.48(1H,d,J=4.2Hz), 7.51-

10 7.55(2H,m).

IR(CHCl_s):3372,3270,3018,3004,2946,2868,2202,1726,1486,1433,1336,115 4/cm.

 $[\alpha]_D = +0.6^{\circ} \text{ (CHCl}_8, c=1.11,25^{\circ}\text{C}), \ [\alpha]_{486} +17.8^{\circ} \text{ (CHCl}_8, c=1.11,25^{\circ}\text{C}).$

15 No.1 a -54

CDCl₃ 300MHz

0.99-2.11(14H,m), 2.27(1H,m), 2.37(2H,t,J=7.5Hz), 3.13(1H,m), 5.16(1H,d,J=6.

6Hz), 5.31-5.35(2H,m), 7.18(1H,d,J=3.6Hz), 7.37-7.39(3H,m), 7.50(1H,d,J=3.6Hz)

Hz), 7.52-7.55(2H, m).

00 ID/OTTOL > 0.40.4 0050 00.40 00.40 0000 0000 1500 1.400 1.00 1.00

CDCl₃ 300MHz

0.95-1.95(14H,m),2.10(1H,m),2.27(2H,t,J=6.9Hz),3.00(1H,m),5.17-5.21(2H,m),5.38(1H,d,J=6.9Hz),7.39-7.60(7H,m),7.70(1H,dd,J=7.8,1.5Hz),8.07(1H,J

5 = 6.6, 1.5 Hz).

IR(CHCl_s):3364,3026,2952,2874,2212,1707,1597,1491,1458,1411,1341,1164/cm.

 $[\alpha]_D = -43.1^{\circ} \text{ (CHCl}_s, c=1.00, 25^{\circ}\text{C}).$

10 No.1a -57

CDCl₈ 300MHz

0.99-1.97(14H,m), 2.23-2.30(3H,m), 3.01(1H,m), 3.67(3H,s), 5.17-5.26(3H,m), 7.

36-7.38(3H,m), 7.50-7.56(3H,m), 7.60(1H,m), 7.83(1H,m), 8.05(1H,m).

IR(CHCl_s):3376,3020,2946,2870,1727,1598,1491,1437,1412,1330,1245,116

 $15 \quad 3/cm.$

 $[\alpha]_D = -12.7^{\circ} \text{ (CHCl}_3, c=1.00, 24^{\circ}\text{C}).$

No.1a - 58

CDCl₃ 300MHz

20 0.97-1.98(14H,m),2.20(1H,m),2.33(2H,t,J=6.9Hz),3.02(1H,m),5.19-5.28(3H,m),7.36-7.38(3H,m),7.47-7.55(3H,m),7.69(1H,m),7.83(1H,m),8.04(1H,m).
IR(CHCl₈):3376,3260,3022,3002,2948,2868,2220,1708,1598,1490,1455,1412,1327,1162/cm.

 $[\alpha]_D = -8.6^{\circ} (CHCl_8, c=1.01, 24^{\circ}C).$

25

No.1a - 59

CDCl_s 300MHz

0.95-1.99(24H,m), 2.20(1H,m), 2.28(2H,t,J=7.8Hz), 2.53(1H,s), 2.96(1H,m), 3.69(3H,s), 4.99(1H,d,J=6.6Hz), 5.18-5.20(2H,m), 7.53(2H,d,J=8.4Hz), 7.82(2H,d,J=8.4Hz), 7

J=8.4Hz).

IR(CHCl₈):3583,3376,3002,2936,2852,1725,1591,1490,1437,1393,1325,116

0/cm.

 $[\alpha]_D = -8.8^{\circ}$ (CHCl₃, c=1.00,24°C).

5

No.1a - 60

CDCl_s 300MHz

0.96-2.05(24H,m), 2.22(1H,m), 2.33(2H,m), 2.88(1H,m), 5.22-5.26(2H,m), 5.30(1H,d,J=5.7Hz), 7.50(2H,d,J=8.7Hz), 7.80(2H,d,J=8.7Hz).

10 IR(CHCl_s):3376,3260,3022,2936,2852,1710,1592,1491,1452,1395,1325,1159/cm.

 $[\alpha]_D = -8.9^{\circ} \text{ (CHCl}_3, c=1.06, 24^{\circ}\text{C}),$

mp.88-91°C

15 No.1 a - 61

CDCl₃ 300MHz

0.95-2.24(23H,m), 2.29(2H,m), 2.99(1H,m), 3.69(3H,s), 4.76(1H,d,J=6.3Hz), 5.24(2H,m), 6.28(1H,m), 7.50-7.53(2H,m), 7.77-7.80(2H,m).

IR(CHCl₃):3374,3270,3018,2942,2868,2196,1726,1589,1490,1435,1324,1158/

CDCl₃ 300MHz

 $0.93 \cdot 1.95(25 H,m), 2.16(1 H,m), 2.29(2 H,t,J=7.2 Hz), 2.43(2 H,t,J=6.9 Hz), 2.94(1 H,m), 3.69(3 H,s), 4.95(1 H,d,J=6.9 Hz), 5.21 \cdot 5.24(2 H,m), 7.49(2 H,d,J=8.7 Hz), 7.$

5 79(2H,J=8.7Hz).

IR(CHCl₃):3376,3018,2946,2866,2222,1727,1592,1456,1435,1325,1158/cm. $[\alpha]_D$ =+3.7° (CHCl₃,c=1.00,25°C).

No.1a - 64

10 CDCl₈ 300MHz

0.93-1.97(26H,m), 2.35(2H,t,J=7.2Hz), 2.43(2H,t,J=7.2Hz), 3.00(1H,m), 5.08(1H,d,J=6.6Hz), 5.26-5.27(2H,m), 7.49(2H,d,J=8.7Hz), 7.78(2H,d,J=8.7Hz). $IR(CHCl_8): 3260, 3020, 2948, 2864, 2222, 1708, 1592, 1489, 1456, 1397, 1324, 1156/cm.$

15 $[\alpha]_D = +14.4^{\circ}$ (CHCl₃, c=1.00,25°C) mp.70-71°C.

No.1a - 65

CDCl₈ 300MHz

0.95-1.98(14H,m), 2.18(1H,m), 2.30(2H,t,J=7.2Hz), 3.00(1H,m), 3.67(3H,s), 4.8

20 3(1H,d,J=6.9Hz),5.22-5.25(2H,m),5.54(1H,br),6.82-6.85(2H,m),7.42-7.45(2H,m),7.59-7.62(2H,m),7.82-7.85(2H,m).

IR(CHCl₃):3576,3374,3018,2946,2868,2208,1725,1607,1587,1514,1435,1325, 1270,1162,1133/cm.

 $[\alpha]_D = +9.1^{\circ} (CHCl_s, c=1.03, 24^{\circ}C), mp.111-112^{\circ}C$

25

No.1a - 66

CDCl₈ 300MHz

0.97-2.03(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.5Hz), 3.00(1H,m), 5.17(1H,d,J=6.6Hz), 5.26-5.30(2H,m), 6.82-6.85(2H,m), 7.42-7.45(2H,m), 7.59-7.62(2H,m), 7.8

2-7.85(2H,m).

IR(CHCl_s):3260,2948,2870,2208,1709,1607,1587,1514,1396,1325,1270,1162, 1133/cm.

 $[\alpha]_p = -21.0^{\circ} \text{ (CHCl}_3, c=1.00, 23^{\circ}\text{C}), mp.161-162^{\circ}\text{C}$

5

No.1a - 67

CDCl₃ 300MHz

0.95-1.98(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.01(1H,m), 3.67(3H,s), 4.8

2(1H,d,J=6.6Hz),5.19-5.27(2H,m),7.05-7.10(2H,m),7.51-7.56(2H,m),7.61-7.6

10 4(2H,m), 7.84-7.87(2H,m).

IR(CHCl₈):3374,3280,3020,2946,2868,2214,1727,1589,1509,1435,1327,1233, 1161,1134/cm.

 $[\alpha]_D = +6.7^{\circ}$ (CHCl₃,c=1.01,24°C), mp.84-85°C

15 No.1 a -68

CDCl₃ 300MHz

0.96-2.01(14H,m), 2.15(1H,m), 2.34(2H,t,J=6.9Hz), 3.02(1H,m), 5.23-5.27(3H,m), 5.25-5.27(3H,m), 5.25-5.27(3H,m), 5.25-5.27(3H,m), 5.25-5.27(3H,m), 5.25-5.27(3H,m), 5.25-5.27(3H,m), 5.25-5.27(3H,m), 5.25-5.27(

m), 7.04-7.10(2H, m), 7.51-7.56(2H, m), 7.61-7.64(2H, m), 7.85-7,88(2H, m).

IR(CHCl₃):3374,3258,3020,2948,2868,2214,1708,1589,1509,1455,1398,1322,

[α]_D=+9.2° (CHCl₈,c=1.02,24°C). mp.116-118°C

No.1a - 70

5 CDCl₃ 300MHz

1.15-2.00(14H,m),2.13(1H,m),2.33-2.38(5H,m),3.04(1H,m),5.14(1H,d,J=6.6 Hz),5.25-5.30(2H,m),7.17(2H,d,J=7.8Hz),7.44(2H,d,J=7.8Hz),7.62(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz).

IR(CHCl₈):3380,3260,3020,2948,2868,2210,1708,1590,1511,1396,1324,1160.

10 1133/cm.

 $[\alpha]_D = +24.6^{\circ}$ (CHCl₃,c=1.00,24°C).

No.1a - 71

CDCl₃ 300MHz

15 0.95-1.96(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),3.00(1H,m),3.20(1H,s),3.6 5(3H,s),4.81(1H,d,J=6.6Hz),5.20-5.27(2H,m),7.46-7.54(4H,m),7.62-7.65(2H,m),7.85-7.88(2H,m).

IR(CHCl₈):3374,3290,3018,3002,2946,2868,2212,2110,1726,1591,1507,1435, 1401,1324,1161/cm.

20 $[\alpha]_D = +9.6^{\circ}$ (CHCl₃, c=1.01,24°C), mp.136-138°C,

No.1a - 72

CDCl_a 300MHz

0.96-2.01(14H,m), 2.14(1H,m), 2.35(2H,t,J=7.2Hz), 3.05(1H,m), 3.20(1H,s), 5.1

25 6(1H,d,J=7.2Hz),5.26-5.29(2H,m),7.45-7.53(4H,m),7.63(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz).

IR(CHCl₈):3462,3374,3290,3024,2948,2868,2212,2110,1708,1591,1508,1455, 1401,1321,1274,1160,1132/cm.

 $[\alpha]_D = +24.3^{\circ} (CHCl_3, c=1.03, 24^{\circ}C), mp.96-99^{\circ}C$

CDCl₃ 300MHz

0.95-1.98(14H,m), 2.19(1H,m), 2.27-2.32(5H,m), 3.01(1H,m), 3.67(3H,s), 4.80(1M,s), 4.80(

5 H,d,J=6.6Hz),5.20-5.27(2H,m),7.12(2H,m),7.56(2H,m),7.63(2H,m),7.84(2H,m).

IR(CHCl_s):3374,3276,3018,2946,2868,2214,1762,1730,1589,1506,1435,1368, 1161/cm.

 $[\alpha]_D = +7.8^{\circ}$ (CHCl₈, c=1.02,24°C), mp.102-104°C

10

No.1a - 74

CDCl₈ 300MHz

0.95-2.05(14H,m), 2.15(1H,m), 2.32-2.37(5H,m), 3.02(1H,m), 5.14(1H,d,J=6.6)

Hz),5.26-5.30(2H,m),7.10-7.13(2H,m),7.54-7.57(2H,m),7.62-7.64(2H,m),7.84

15 -7.87(2H,m).

IR(CHCl₈):3482,3250,3022,2946,2868,2214,1716,1709,1589,1507,1454,1396, 1368,1322,1195,1161/cm.

 $[\alpha]_D = +15.0^{\circ} (CHCl_3, c=1.00, 24^{\circ}), mp.129-131^{\circ}$

1.04-2.05(14H,m),2.19(1H,m),2.32(2H,t,J=6.9Hz),2.93(1H,m),5.27-5.31(2H,m),7.60-7.63(2H,m),7.65-7.68(2H,m),7.86-7.89(2H,m),8.05-8.07(2H,m). IR(CHCl_s):3402,3299,2955,2876,2665,2549,1455,1422,1313,1281,1164 /cm. $[\alpha]_D$ =-21.1° (CH_sOH,c=1.03,23°C), mp.227-229(dec.)

5

10

No.1a - 77

CDCl₃ 300MHz

0.96-1.99(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),3.02(1H,m),3.68(3H,s),4.8 8(1H,d,J=6.3Hz),5.19-5.29(2H,m),7.67-7.72(4H,m),7.89-7.91(2H,m),8.24-8.2 7(2H,m).

IR(CHCl₃):3376,3276,3020,2946,2870,2214,1726,1594,1519,1455,1435,138 9,1344,1161/cm.

 $[\alpha]_D = +7.7^{\circ}$ (CHCl₈, c=1.02), mp.87-89°C

15 No.1 a -78

CDCl₃ 300MHz

0.98-2.00(14H,m), 2.18(1H,m), 2.34(2H,t,J=7.2Hz), 3.02(1H,m), 5.24-5.28(2H,m), 5.32(1H,d,J=5.7Hz), 7.67-7.72(4H,m), 7.89-7.92(2H,m), 8.23-8.26(2H,m). $IR(CHCl_8): 3374, 3260, 2948, 2214, 1708, 1595, 1344, 1160/cm.$

20 $[\alpha]_D = +23.3^{\circ}$ (CHCl₃, c=1.00), mp.102-103°C.

No.1a - 79

CDCl_s 300MHz

0.93-2.02(14H,m), 2.13(1H,m), 2.36(2H,t,J=7.1Hz), 3.05(1H,m), 3.84(3H,s), 5.1

25 8(1H,br),5.27-5.31(2H,m),6.88-6.91(2H,m),7.48-7.50(2H,m),7.60-7.63(2H,m),7.83-7.85(2H,m).

IR(CHCl₃):3380,3252,3020,2950,2868,2208,1708,1589,1511,1457,1396,1321, 1286,1160/cm.

 $[\alpha]_D = +26.7^{\circ}$ (CHCl₃, c=1.00). mp.75-77°C

CDCl_s 300MHz

0.96-1.99(14H,m), 2.21(1H,m), 2.30(2H,t,J=7.8Hz), 3.02(1H,m), 3.68(3H,s), 4.8

5 0(1H,d,J=6.6Hz),5.19-5.28(2H,m),7.51-7.77(5H,m),7.87-7.90(2H,m),8.13(1H,m).

IR(CHCl₃):3374,3270,3018,2946,2868,2216,1726,1607,1567,1527,1495,1456, 1436,1344,1296,1161/cm.

 $[\alpha]_D = +7.4^{\circ}$ (CHCl_s, $\dot{c} = 1.00, 22^{\circ}$ C), mp.68-70°C

10

No.1a - 81

CDCl₃ 300MHz

0.97-2.01(14H,m), 2.16(1H,m), 2.34(2H,t,J=7.2Hz), 3.01(1H,m), 5.22-5.28(3H,m), 2.34(2H,t,J=7.2Hz), 3.01(1H,m), 3.22-5.28(3H,m), 3.22-5.28(3H

m), 7.51(1H, m), 7.65(1H, m) 7.70-7.76(3H, m), 7.88-7.91(2H, m), 8.12(1H, dd, J=6.

15 9Hz, 1.5Hz).

IR(CHCl₃):3480,3382,3262,3026,2952,2872,2218,1708,1607,1567,1526,1396, 1343,1225,1160/cm.

 $[\alpha]_D = +22.0^{\circ}$ (CHCl₃, c=1.00), mp.92-94°C

20 No.1a - 8 2

CDCI COONITI

CDCl_s 300MHz

0.97-1.99(14H,m),2.17(1H,m),2.33(2H,t,J=6.9Hz),2.99(1H,m),5.20-5.28(2H,m),5.37(1H,d,J=6.9Hz),6.45(2H,br),6.71-6.76(2H,m),7.19(1H,dd,J=7.8,6.6Hz),7.37(1H,m),7.62(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz).

5 IR(CHCl₈):3478,3378,3260,3022,2950,2868,2204,1708,1613,1589,1484,1454, 1396,1316,1160/cm.

 $[\alpha]_D = +17.1^{\circ} (CHCl_3, c=1.01).$

No.1a - 84

10 CDCl₈ 300MHz

1.00-2.08(14H,m),2.21(1H,m),2.37(2H,t,J=6.9Hz),3.06(1H,m),3.86(3H,s),5.2 9-5.33(2H,m),5.45(1H,d,J=6.6Hz),6.91-6.94(2H,m),7.56-7.59(2H,m),7.81(1H,d,J=8.1Hz),8.04(1H,d,d,J=8.1&1.8Hz),8.57(1H,d,J=2.1Hz).

IR(CHCl₈):3492,3254,3028,2954,2202,1708,1597,1512,1344,1291,1250/cm.

15 $[\alpha]_D = +27.4^{\circ} (CHCl_s, c=0.53, 23^{\circ}C).$

No.1a - 85

CDCl₃ 300MHz

0.96-2.05(14H,m), 2.20(1H,m), 2.35(2H,t,J=6.9Hz), 2.99(1H,m), 3.84(3H,s), 5.2

20 2-5.31(3H,m),6.89(2H,d,J=8.7Hz),7.19(1H,brs),7.29(1H,brs),7.45-7.50(3H,m).

IR(CHCl₃):3478,3378,3020,2950,2868,2202,1708,1606,1511,1421,1311,128 7,1248,1155/cm.

 $[\alpha]_D = +17.1^{\circ} (CHCl_s, C=1.00, 23^{\circ}C).$

25

No.1a - 86

CDCl₃ 300MHz

1.03-2.05(14H,m),2.21(1H,m),2.37(2H,t,J=6.9Hz),3.04(1H,m),5.29-5.33(2H,m),5.57(1H,d,J=6.3Hz),6.84-6.87(2H,m),7.50-7.53(2H,m),7.79(1H,d,J=8.1Hz

),8.03(1H,d,d,J=1.5and8.1Hz),8.57(1H,d,J=1.5Hz).

IR(CHCl₈):3250,3024,2950,2868,2200,1707,1515,1344,1271,1166,1143/cm. $[\alpha]_D$ =+21.2° (CHCl₈,c=0.26,22°C).

5 No.1a - 87

CD_sOD 300MHz

1.04-2.00(14H,m),2.18(1H,m),2.26(2H,t,J=5.4Hz),2.93(1H,m),5.19-5.24(2H,m),6.77-6.80(2H,m),7.05(1H,d.d,J=2.1and8.1Hz),7.22(1H,d,J=2.1Hz),7.38-7.42(3H,m).

IR(CHCl₃):3377,2952,2873,2204,1705,1607,1515,1425,1312,1267,1222,115 3/cm.

 $[\alpha]_D = -15.6^{\circ} (CH_sOH, C = 1.02, 22^{\circ}C).$

No.1a - 88

15 CDCl₃ 300MHz

0.90-1.96(14H,m),2.22-2.31(3H,m),2.95(1H,m),3.65(3H,s),4.87(1H,d,J=6.6H z),5.13-5.28(2H,m),7.46-7.62(3H,m),7.82-7.89(4H,m),7.90-7.96(2H,m),8.42(1 H,brs).

IR(CHCl₈):3376,3016,2946,2868,1720,1677,1592,1514,1498,1429,1376,1314,

CDCl₈ 300MHz

 $0.89 \cdot 1.96(14H,m), 2.23 \cdot 2.33(3H,m), 2.92(1H,m), 3.67(3H,s), 4.85(1H,d,J=6.3H)$

5 z),5.10-5.25(2H,m),7.81-7.90(4H,m),8.10-8.18(2H,m),8.31-8.40(2H,m),8.77(1 H,s).

IR(CHCl₈):3372,3018,2946,2868,1718,1685,1592,1527,1436,1397,1346,1318, 1256,1154,1099 /cm.

 $[\alpha]_D = -16.1^{\circ} (CHCl_3, c=1.00, 23.0^{\circ}C).$

10

No.1a - 91

CDCl₃+CD₈OD 300MHz

0.94-2.02(14H,m), 2.18-2.36(3H,m), 2.87(1H,m), 5.15-5.30(2H,m), 7.82-7.92(4H,m), 8.09-8.16(2H,m), 8.30-8.37(2H,m).

15 IR(KBr):3284,3112,3006,2952,2874,1707,1593,1528,1498,1399,1348,1320,1 259,1153,1093 /cm.

 $[\alpha]_D = -26.3^{\circ} (CH_sOH, c=1.01, 22^{\circ}C).$

No.1a - 92

20 CDCl₃ 300MHz

0.93-1.95(14H,m),2.22-2.31(3H,m),2.98(1H,m),3.68(3H,s),5.07(1H,d,J=6.9H z),5.10-5.24(2H,m),7.18(1H,m),7.35-7.43(2H,m),7.70(2H,d,J=7.8Hz),7.88-8.05(4H,m),8.50(1H,brs).

IR(CHCl_s):3382,3008,2952,1720,1675,1599,1525,1499,1438,1321,1253,1161,

25 1087 /cm.

 $[\alpha]_D = -16.6^{\circ} \text{ (CHCl}_3, c=1.03, 24.0^{\circ}\text{C}) mp.100-101^{\circ}\text{C}$

No.1a - 93

CDCl₈+CD₈OD 300MHz

0.96-2.00(14H,m), 2.18-2.35(3H,m), 2.90(1H,m), 5.15-5.30(2H,m), 7.18(1H,m), 7.33-7.42(2H,m), 7.65-7.74(2H,m), 7.90-8.08(4H,m).

IR(KBr):3347,3194,3011,2955,2875,1706,1650,1602,1544,1499,1443,1325, 1265,1165,1091 /cm.

5 $[\alpha]_D = -19.4^{\circ} (CH_8OH, c=1.00, 24.0^{\circ}C)$ mp. 158-159°C

No.1a - 94

CD₃OD 300MHz

 $1.05 \cdot 2.00(14 \text{H,m}), 2.14(1 \text{H,m}), 2.23(2 \text{H,t,J}=7.2 \text{Hz}), 2.98(1 \text{H,m}), 3.80(3 \text{H,s}), 5.1$

10 3-5.27(2H,m), 6.88-6.98(2H,m), 7.54-7.64(2H,m), 7.94-8.12(4H,m).

IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,1 302,1248,1162,1107,1090,1032/cm.

 $[\alpha]_D = -19.1^{\circ} (CH_sOH, c=1.01, 24^{\circ}C).$

15 No.1 a -95

CD₈OD 300MHz

1.04-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.93-3.02(7H,m),5.13-5.27 (2H,m),6.82-6.92(2H,m),7.51-7.59(2H,m),7.95-8.02(2H,m),8.04-8.11(2H,m).

IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,1

309 1948 1169 1107 1000 1039/cm

d₆-DMSO 300MHz

1.05-2.08(15H,m), 2.15(2H,t,J=7.5Hz), 2.89(1H,m), 5.18-5.28(2H,m), 6.78-7.12

5 (3H,m),7.73(1H,d.d,J=1.4and7.8Hz),7.91-7.95(3H,m),8.14(2H,d,J=8.4Hz),9. 71(1H,s).

IR(KBr):3407,3191,2953,1711,1646,1614,1603,1537,1457,1326,1162,1151/c m.

 $[\alpha]_D = -20.7^{\circ} (CH_3OH, C = 1.01, 21^{\circ}C).$

10

No.1a - 98

CDCl₃ 300MHz

0.93-2.00(14H,m), 2.21(1H,m), 2.31(2H,t,J=7.2Hz), 2.93(1H,m), 3.84(3H,s), 3.85(6H,s), 5.15-5.30(2H,m), 5.45(1H,d,J=6.3Hz), 7.04(2H,s), 7.78-7.86(2H,m), 7.95(2H,m), 7.95(2H,

 $15 \quad 0.7.98(2H,m), 8.58(1H,s).$

IR(CHCl₈):3264,3008,2954,2874,1707,1670,1607,1537,1506,1451,1421,1308, 1158,1129,1088/cm.

 $[\alpha]_D = -7.2^{\circ}$ (CHCl₈, c=1.01,23.5°C). mp.147-149°C.

20 No.1a -99

CD₃OD 300MHz

1.04-1.98(14H,m),2.21(1H,m),2.10(2H,t,J=7.2Hz),2.95(1H,m),3.76(3H,s),3.8 6(6H,s),5.07-5.24(2H,m),7.19(2H,s),7.99(2H,d,J=8.7Hz),8.13(1H,d,J=8.7Hz).

25 IR(KBr):3354,3002,2950,2874,1656,1607,1570,1508,1452,1413,1314,1233,1 185,1157,1127,1092/cm.

 $[\alpha]_D = -20.3^{\circ} (CH_3OH, c=1.00, 23.5^{\circ}C).$

No.1a - 100

CDCl_s 300MHz

1.14-1.97(14H,m),2.19(1H,m),2.28(2H,t,J=7.4Hz),3.04(1H,m),3.69(3H,s),5.0 3(1H,d,J=6.9Hz),5.15-5.29(2H,m),7.65(2H,d,J=8.4Hz),7.87(1H,s),7.98(2H,d,J=8.4Hz).

5 IR(CHCl₈):3386,3271,3025,3015,2955,2877,1755,1712,1608,1331,1162/cm. $[\alpha]_D = -29.4^{\circ} \text{ (CH}_8\text{OH}, c=1.01,25^{\circ}\text{C}).$

No.1a - 101

d₆-DMSO

10 1.00-2.20(17H,m),2.84(1H,m),5.00-5.20(2H,m),7.78(2H,d,J=8.2Hz),7.84(1H,s),7.89-7.95(3H,m).

IR(KBr):3269,3065,3008,2952,2874,2763,1746,1707,1607,1322,1157 /cm. $[\alpha]_D = -26.2^{\circ}$ (CH₈OH,c=1.01,25°C).

15 No.1a -102

CD₈OD

1.00-2.25(17H,m),2.92(1H,s),3.64(3H,s),5.07-5.21(2H,m),7.53(1H,s),7.77(2H,d,J=8.6Hz),7.90(2H,d,J=8.6).

IR(KBr):3430,3277,3006,2952,2873,1720,1687,1620,1571,1438,1312,1156 /c

CDCl_s 300MHz

0.94-1.96(14H,m), 2.21(1H,m), 2.31(2H,t,J=6.8Hz), 2.99(1H,m), 5.18-5.28(2H,m), 2.21(1H,m), 2.31(2H,t,J=6.8Hz), 2.99(1H,m), 3.18-5.28(2H,m), 3.18-5.28(2H,m),

5 m),5.45(1H,d,J=6.6Hz),7.61(2H,d,J=8.7Hz),7.67(1H,s),7.99(2H,d,J=8.7Hz).
IR(CHCl₃):3382,3222,3028,3019,2957,2876,1736,1709,1604,1412,1322,1301,
1286,1179,1162 /cm.

 $[\alpha]_D = +10.4^{\circ} \text{ (CHCl}_3, c=1.00, 23^{\circ}\text{C}).$

10 No.1a - 1 0 5

CDCl₈ 300MHz

0.92-1.98(14H,m),2.17(1H,m),2.26(2H.d,J=7.5Hz),3.01(1H,m),3.69(3H,s),4.0 1(3H,s),4.84(1H,d,J=6.3Hz),5.14-5.30(2H,m),7.71(2H,d,J=8.7Hz),7.87(2H,d,J=8.7Hz),8.09(1H,s).

15 IR(CHCl₈):3385,3284,3025,3015,2954,2877,2821,1730,1598,1459,1438,1403, 1341,1160,1052 /cm.

 $[\alpha]_D = +3.6^{\circ} \text{ (CHCl}_s, c=1.00, 26^{\circ}\text{C}).$

No.1a - 106

20 CDCl₃ 300MHz

0.92-2.08(14H,m),2.14(1H,m),2.34(2H,d,J=7.2Hz),3.02(1H,m),4.01(3H,s),5.1 9(1H,d,J=6.9Hz),5.23-5.32(2H,m),7.71(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),8. 09(1H,s).

IR(CHCl₈):3510,3384,3268,3028,3021,3014,2957,2877,2821,2667,2821,2666,

25 1707,1598,1459,1404,1341,1324,1160,1052 /cm.

 $[\alpha]_D = +11.8^{\circ} \text{ (CHCl}_3, c=1.01, 25^{\circ}\text{C}). \text{ mp } 95-96^{\circ}\text{C}$

No.1a - 107

CDCl₃ 300MHz

0.92-1.97(14H,m),1.34(3H,t,J=7.2Hz),2.18(1H,m),2.28(2H.d,J=7.4Hz),3.01(1 H,m),3.68(3H,s),4.26(2H,q,J=7.2Hz),4.86(1H,d,J=6.6Hz),5.15-5.29(2H,m),7.

71(2H,d,J=8.7Hz),7.87(2H,d,J=8.7Hz),8.09(1H,s).

IR(CHCl₈):3385,3282,3025,3026,3015,2954,2877,1729,1599,1480,1458,1438,

5 1403,1338,1161 /cm.

 $[\alpha]_D = +4.4^{\circ}$ (CHCl₃, c=1.00,25°C).

No.1a - 108

CDCl₃ 300MHz

10 0.90-2.04(14H,m),1.34(3H,t,J=7.2Hz),2.14(1H,m),2.34(2H,d,J=7.1Hz),3.01(1 H,m),4.27(2H,q,J=7.2Hz),5.20(1H,d,J=6.6Hz),5.21-5.35(2H,m),7.71(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),8.10(1H,s).

IR(CHCl₈):3514,3384,3270,3025,3015,3015,2957,2877,1708,1599,1458,1403, 1324,1324,1160,1050 /cm.

15 $[\alpha]_D = +12.7^{\circ} (CHCl_{s}, c=1.00, 25^{\circ}C).$

No.1a - 109

 $[\alpha]_D = +8.5^{\circ} (CHCl_3, c=1.00, 25^{\circ}C).mp109.0-111.0^{\circ}C$

CDCl_a 300MHz

0.96-2.04(14H,m), 2.19(1H,m), 2.33(2H,d,J=7.1Hz), 3.07(1H,m), 5.28-5.31(2H,m), 5.28-5.31(

5 m),5.33(1H,d,J=6.6Hz),7.54-7.63(3H,m),8.05(2H,d,J=8.4Hz),8.18-8.23(2H,m),8.41(2H,d,J=8.4Hz).

IR(CHCl₈):3384,3269,3025,3015,2957,2877,1708,1598,1496,1457,1417,1326, 1164 /cm.

 $[\alpha]_D = +12.2^{\circ}$ (CHCl₈,c=1.00,24°C). mp.163-164°C

10

No.1a - 113

 $[\alpha]_D = +22.1^{\circ} \text{ (CHCl}_{3}, c=1.05, 25^{\circ}\text{C}). \quad mp.90-92^{\circ}\text{C}$

15 No.1a - 1 1 4

 $[\alpha]_D = +2.2^{\circ} \text{ (CHCl}_3, c=1.02, 25^{\circ}\text{C}).$

No.1a - 115

CDCl₃ 300MHz

20 0.90-1.98(14H,m),2.15-2.22(1H,m),2.27(2H,t,J=7.2Hz),2.95-3.04(1H,m), 3.68(3H,s),4.04(2H,s),4.85(1H,d,J=6.6Hz),5.10-5.27(2H,m),7.12-7.34(7H,m),7.76-7.82(2H,m).

IR(CHCl₈):3384,3026,2952,1727,1595,1493,1436,1318,1155,1091,890/cm. $[\alpha]_D=0$ °

25 $[\alpha]_{436}$ =+4.9±0.4 °(CHCl₃,c=1.05,23°C)

No.1a - 116

CDCl₃ 300MHz

0.90-2.10(14H,m), 2.10-2.18(1H,m), 2.32(2H,t,J=7.2Hz), 2.96-3.04(1H,m),

4.04(2H,s), 5.14(1H,d,J=6.6Hz), 5.16-5.28(2H,m), 7.12-7.34(7H,m), 7.76-9.10

7.82(2H,m).

IR(CHCl₈):3260,3020,2950,1709,1407,1318,1154,1091,892/cm.

 $[\alpha]_D = +9.1 \pm 0.5$ ° (CHCl₈, c=1.04,23°C)

5

No.1a - 117

CD₃OD 300MHz

0.96-2.18(17H,m), 2.89-2.92(1H,m), 4.05(2H,s), 4.95-5.22(2H,m), 7.15-

7.42(7H,m), 7.75-7.81(2H,m).

10 IR(KBr):3429,3279,2951,2872,1563,1494,1453,1408,1313,1155,1093,1057/c m.

 $[\alpha]_D = 16.3 \pm 0.5$ ° (CH₃OH, c=1.06, 25°C)

No.1a - 118

15 CDCl₈ 300MHz

0.98 - 1.70(15 H,m), 1.80 - 2.00(5 H,m), 2.20 - 2.40(3 H,m), 2.98(1 H,m), 4.06(2 H,s), 4.

72(1H,d,J=6.3Hz),5.00-5.23(3H,m),7.16(2H,d,J=8.4Hz),7.26-7.33(5H,m),7.7

9(2H,d,J=8.1Hz).

IR(CHCl₃):3376,3020,2948,2868,1716,1596,1492,1453,1407,1318,1155,1105/

CD₃OD 300MHz

1.00-2.00(14H,m), 2.13(2H,t,J=7.5Hz), 2.16(1H,m), 2.91(1H,m), 5.05-5.33(2H,m)

5 m),7.04-7.11(4H,m),7.18-7.25(1H,m),7.38-7.48(2H,m),7.80-7.87(2H,m).
IR(KBr):3430,3278,3006,2952,2873,1583,1487,1410,1322,1298,1245,1152,1
095 /cm.

 $[\alpha]_D = -8.8^{\circ} (CH_8OH, c=1.05, 25.0^{\circ}C).$

10 No.1a - 1 2 1

CDCl_a 300MHz

0.90-2.10(14H,m),2.15(1H,m),2.35(2H,t,J=7.2Hz),3.01(1H,m),5.20(1H,d,J=6.9Hz),5.22-5.35(2H,m),7.00-7.09(4H,m),7.18-7.25(1H,m),7.37-7.45(2H,m),7.79-7.86(2H,m).

15 IR(CHCl₈):3260,3020,2948,2868,1708,1582,1486,1409,1321,1296,1243,1151, 1093 /cm.

 $[\alpha]_D = +13.1^{\circ} (CHCl_3, c=1.04, 24.0^{\circ}C).$

No.1a - 122

20 CDCl₃ 300MHz

0.90-2.00(14H,m),2.23(1H,m),2.28(2H,t,J=7.5Hz),2.96(1H,m),3.67(3H,s),4.6 9(1H,d,J=6.6Hz),5.15-5.32(2H,m),6.22(1H,s),6.98-7.40(5H,m),7.30-7.38(2H,m),7.68-7.74(2H,m).

IR(CHCl₈):3416,3370,3018,2946,2868,1725,1587,1508,1437,1400,1320,1149,

25 1094 /cm.

 $[\alpha]_D = +6.2^{\circ} (CHCl_3, c=1.04, 25.0^{\circ}C).$

No.1a - 123

CDCl₃ 300MHz

0.90-2.04(14H,m),2.18(1H,m),2.33(2H,t,J=7.2Hz),2.96(1H,m),5.04-5.35(3H,m),6.98-7.12(3H,m),7.12-7.20(2H,m),7.28-7.38(2H,m),7.66-7.74(2H,m).

IR(CHCl₃):3424,3270,3028,2952,2872,1708,1587,1508,1445,1399,1320,1148,
1092 /cm.

5 $[\alpha]_D = +20.9^{\circ} (CHCl_3, c=1.06, 23.0^{\circ}C).$

No.1a - 124

CDCl₈ 300MHz

0.90-2.00(14H,m), 2.18(1H,m), 2.28(2H,t,J=7.2Hz), 3.00(1H,m), 3.14(3H,s), 3.6

10 8(3H,s),4.56(2H,s),4.84(1H,d,J=6.3Hz),5.10-5.29(2H,m),7.16-7.26(4H,m),7.2 6-7.34(2H,m),7.78-7.84(2H,m).

IR(CHCl₈):3384,3028,2952,2874,1727,1598,1501,1435,1410,1370,1329,1172, 1148,1091 /cm.

 $[\alpha]_D = +2.7^{\circ} \text{ (CHCl}_3, c=1.09, 23.0^{\circ}\text{C}).$

15

No.1a - 125

CDCl₃ 300MHz

0.90-2.00(14H,m),2.18(1H,m),2.28(2H,t,J=7.2Hz),2.29(3H,s),3.00(1H,m),3.6 8(3H,s),4.04(2H,s),4.80(1H,d,J=6.6Hz),5.11-5.29(2H,m),6.99-7.06(2H,m),7.1 IR(CHCl_s):3374,3260,3020,2948,2868,1749,1708,1596,1504,1407,1369,1317, 1195,1155,1091 /cm.

 $[\alpha]_D = +10.0^{\circ} (CHCl_3, c=1.09, 23.0^{\circ}C).$

5 No.1a - 1 2 7

CDCl_a 300MHz

0.87-1.95(14H,m), 2.18-2.32(3H,m), 2.95(1H,m), 3.69(3H,s), 3.96(2H,s), 4.79(1H,d,J=6.6Hz), 4.97-5.17(2H,m), 5.54(1H,s), 6.75-6.82(2H,m), 6.97-7.05(2H,m), 7.25-7.33(2H,m), 7.75-7.81(2H,m).

10 IR(CHCl₃):3382,3026,2950,2874,1722,1595,1511,1436,1407,1317,1257,1154, 1090 /cm.

 $[\alpha]_D = -2.1^{\circ} \text{ (CHCl}_{3}, c=1.00, 21.5^{\circ}\text{C}).$

No.1a - 128

15 CDCl₃ 300MHz

0.85-2.02(14H,m), 2.18(1H,m), 2.31(2H,t,J=7.2Hz), 2.96(1H,m), 3.95(2H,s), 5.05-5.27(3H,m), 6.73-6.82(2H,m), 6.96-7.04(2H,m), 7.25-7.32(2H,m), 7.74-7.81(2H,m).

IR(CHCl_s):3262,3020,2948,2868,1708,1596,1511,1407,1315,1242,1154,1091

20 /cm.

 $[\alpha]_D = +4.8^{\circ} (CHCl_3, c=1.04, 22^{\circ}C).$

No.1a - 129

CDCl₃ 300MHz

25 0.89-1.98(14H,m),2.18(1H,m),2.27(2H,t,J=7.2Hz),2.99(1H,m),3.68(3H,s),3.7 9(3H,s),3.98(2H,s),4.81(1H,d,J=6.6Hz),5.10-5.27(2H,m),6.81-6.87(2H,m),7.0 3-7.10(2H,m),7.25-7.32(2H,m),7.75-7.82(2H,m).

IR(CHCl₃):3382,3276,3006,2950,2874,1726,1609,1509,1457,1436,1407,1315, 1244,1154,1091,1033/cm.

 $[\alpha]_D = +19.3^{\circ} (CHCl_8, C=1.05, 23^{\circ}C).$

No.1a - 130

CDCl₃ 300MHz

5 0.90-2.00(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),2.98(1H,m),3.69(3H,s),4.8 1(1H,d,J=6.6Hz),5.12-5.32(2H,m),5.46(1H,brs),6.84-7.01(6H,m),7.76-7.83(2 H,m)

IR(CHCl₃):3380,3284,3024,2952,2874,1724,1588,1504,1488,1436,1321,1296, 1149,1091/cm.

10 $[\alpha]_D = +28.9^{\circ} (CHCl_s, C=1.01, 23^{\circ}C).$

No.1a - 131

CDCl₃ 300MHz

0.92-2.10(14H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 5.18-5.35(3H,m), 2.18(1H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 2.18(1H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 2.18(1H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 3.18-5.35(3H,m), 3.18-5.35

15 m),6.84-7.01(6H,m),7.75-7.83(2H,m).

IR(CHCl₈):3270,3028,2952,2874,1708,1589,1505,1489,1456,1322,1297,1238, 1148,1091/cm.

 $[\alpha]_D = +7.7^{\circ}$ (CHCl₃, c=1.09,24°C).

20 No.1a - 1 3 2

CDCl₃ 300MHz

0.91-2.02(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),2.99(1H,m),3.68(3H,s),3.8 3(3H,s),4.82(1H,d,J=6.6Hz),5.14-5.33(2H,m),6.90-7.04(6H,m),7.76-7.83(2H,m).

25 IR(CHCl_s):3384,3006,2952,2874,1727,1589,1502,1488,1459,1438,1321,1295, 1231,1150,1092,1033/cm.

 $[\alpha]_D = +3.1^{\circ} (CHCl_3, C=1.01, 23^{\circ}C).$

STRAL PA

No.1a - 133

TLC Rf=0.21 (ethyl acetate/n-hexane = 1:1 (0.3% acetic acid))

No.1a - 134

CDCl₈ 300MHz

5 0.97-2.10(14H,m),2.20(1H,m),2.36(2H,t,J=6.9Hz),3.04(1H,m),5.22-5.33(2H,m),5.41(1H,d,J=6.6Hz),7.02(1H,d,J=9.0Hz),7.09-7.13(2H,m),7.26-7.32(1H,m),7.43-7.49(2H,m),7.93(1H,d.d,J=2.4and9.0Hz),8.46(1H,d,J=2.4Hz).
IR(CHCl₈):3384,3270,3020,2958,1709,1610,1587,1537,1479,1352,1271,1252,1167/cm.

10 $[\alpha]_D = +20.9^{\circ} (CHCl_s, c=0.51, 22^{\circ}C).$

No.1a - 135

CDCl₃ 300MHz

0.96-2.02(14H,m), 2.21(1H,m), 2.29(2H,t,J=7.2Hz), 3.07(1H,m), 3.68(3H,s), 5.0

4(1H,d,J=6.9Hz),5.16-5.33(2H,m),7.48-7.55(2H,m),7.64(1H,m),7.76-7.82(2H,m),7.88-7.94(2H,m),7.98-8.04(2H,m).

IR(CHCl_s):3384,3282,3026,2952,2874,1727,1663,1596,1446,1396,1316,1274, 1163,1090 /cm.

 $[\alpha]_D = +3.1^{\circ} (CHCl_8, c=1.03, 22.0^{\circ}).$

20

No.1a - 136

CDCl_a 300MHz

0.95-2.05(14H,m),2.19(1H,m),2.34(2H,t,J=7.2Hz),3.08(1H,m),5.10-5.40(2H,m),5.35(1H,d,J=6.8Hz),7.45-7.58(2H,m),7.64(1H,m),7.74-7.84(2H,m),7.84-7.

95(2H,m), 7.95-8.06(2H,m).

IR(CHCl₃):3260,3018,2950,2870,1708,1662,1595,1446,1395,1316,1274,1162, 1090 /cm.

 $[\alpha]_D = +12.9^{\circ} \text{ (CHCl}_8, c=1.05, 21.5^{\circ}\text{C}).$

CDCl₃ 300MHz

0.97-2.04(14H,m), 2.27(1H,m), 2.31(2H,t,J=7.2Hz), 3.07(1H,m), 3.70(3H,s), 5.15-5.30(3H,m), 7.48-7.68(5H,m), 7.96-8.02(2H,m).

5 IR(CHCl₈):3382,3030,2952,2878,1725,1446,1329,1154,1098 /cm. $[\alpha]_D = -12.1^{\circ}$ (CHCl₈,c=1.03,22.0°C).

No.1a - 138

CDCl₃ 300MHz

10 0.95-2.04(14H,m),2.25(1H,m),2.35(2H,t,J=7.2Hz),3.08(1H,m),5.15-5.34(2H,m),5.41(1H,d,J=6.6Hz),7.48-7.68(5H,m),7.98-8.03(2H,m). IR(CHCl₈):3370,3242,3022,2950,2870,1707,1445,1408,1329,1154,1099 /cm. $[\alpha]_D$ =-0.6° (CHCl₈,c=1.06,21.5°C) $[\alpha]_{365}$ +30.7° (CHCl₈,c=1.06,21.5°C).

15 No.1a - 1 3 9

CDCl₈ 300MHz

0.92-2.19(14H,m),2.27-2.34(3H,m),3.26(1H,m),3.65(3H,s),4.28(2H,s),4.37(1 H,d,J=7.4Hz),5.34-5.50(2H,m),7.37-7.62(9H,m).

IR(CHCl₃):3389,3294,3028,3015,2954,2877,1730,1600,1488,1325,1151,1129

CDCl₃ 300MHz

0.92-2.19(15H,m), 2.32(2H,t,J=7.2Hz), 3.26(1H,m), 3.65(3H,s), 4.31(2H,s), 4.48

5 (1H,d,J=7.4Hz),5.33-5.49(2H,m),7.42-7.80(8H,m).

IR(CHCl₃):3388,3285,3018,2955,2877,2225,1730,1597,1479,1320,1152,1129/cm.

 $[\alpha]_D = -20.1^{\circ} (CHCl_3, c=0.96, 25^{\circ}C).$

10 No.1a - 142

CDCl₃ 300MHz

0.92-2.22(15H,m), 2.35(2H,t,J=6.8Hz), 3.25(1H,m), 4.32(2H,s), 4.86(1H,d,J=7.4Hz), 5.33-5.53(2H,m), 7.43-7.80(8H,m).

IR(CHCl_s):3512,3388,3258,3031,3023,3014,2956 2877,2225,1708,1597,147

15 9,1319,1151,1128 /cm.

 $[\alpha]_D = -19.3^{\circ} \text{ (CHCl}_{s,C} = 1.09,23^{\circ}\text{C}).$

 $No.1a - 14^{\circ}3$

CDCl₃ 300MHz

20 1.00-1.93(14H,m),2.17(1H,m),2.27(2H,t,J=7.2Hz),3.07(1H,m),5.17-5.22(2H,m),5.36(1H,d,J=6.9Hz),7.77(1H,d,J=9.0Hz),8.11-8.17(2H,m),8.36(1H,d,d,J=2.1and9.0Hz),8.51(1H,d,J=1.8Hz),8.65(1H,d,J=2.1Hz).
IR(CHCl₈):3382,3266,3026,2954,2874,1708,1632,1585,1528,1458,1419,1345,1153/cm.

25 $[\alpha]_D = +7.6^{\circ} (CHCl_s, c=1.04, 22^{\circ}C).$

No.1a - 144

CDCl₈ 300MHz

0.95-1.90(14H,m), 2.17(1H,m), 2.25(2H,t,J=7.5Hz), 3.02(1H,m), 5.09(1H,d,J=6.095-1.90(14H,m), 2.17(1H,m), 2.25(2H,t,J=7.5Hz), 3.02(1H,m), 3.09(1H,d,J=6.095-1.90(14H,m), 3.09(1H,d,J=6.095-1.90(14H,m), 3.09(1H,d,J=6.095-1.90(14H,m), 3.09(1H,d,J=6.095-1.90(14H,m), 3.09(14H,m), 3.

6Hz),5.15-5.21(2H,m),6.72(1H,d,J=8.4Hz),6.85(1H,s),7.54(1H,d,J=8.4Hz),7.
72(1H,d,J=9.0Hz),7.83(1H,d.d,J=1.8and9.0Hz),8.32(1H,d,J=1.8Hz).
IR(CHCl₃):3380,3260,3022,2948,2868,2352,1709,1636,1460,1425,1313,1291,
1265,1148,1130/cm.

5 $[\alpha]_D = +12.9^{\circ}$ (CHCl₃, C=1.02,22.5°C).

 $N_{0.1}a - 145$

CDCl₃ 300MHz

0.97-1.90(14H,m), 2.15(1H,m), 2.27(2H,t,J=6.9Hz), 3.02(1H,m), 3.08(6H,s), 5.1

10 2(1H,d,J=6.3Hz),5.19-5.25(2H,m),6.78-6.84(2H,m),7.53(1H,d,J=8.7Hz),7.76-7.83(2H,m),8.30(1H,d,J=1.8Hz).

IR(CHCl₈):3272,3030,2950,2874,1708,1635,1601,1511,1457,1425,1357,1328, 1151,1124/cm.

 $[\alpha]_D = +6.3^{\circ} \text{ (CHCl}_3, c=1.04, 23^{\circ}\text{C}).$

15

No.1a - 146

CDCl₈ 300MHz

0.95-2.00(14H,m),2.16(1H,m),2.29(2H,t,J=7.2Hz),3.05(1H,m),4.10(3H,s),5.1 3-5.28(2H,m),5.38(1H,d,J=6.9Hz),7.67-7.74(2H,m),8.08(1H,d,d,J=1.8and9.0

20 Hz),8.11(1H,s),8.61(1H,d,J=1.8Hz).

IR(CHCl₈):3260,3020,2948,2868,1708,1639,1606,1528,1470,1455,1424,1349,

1211 1929 1174 1140 1190 1070 1000 1000/---

IR(CHCl_s):3380,3264,3002,2950,2868,1708,1634,1476,1452,1426,1317,1264, 1218,1169,1147,1115,1068,1031/cm.

 $[\alpha]_D = +5.6^{\circ}$ (CHCl₃, C=1.02,23°C).

5 No.1a - 148

CDCl_s 300MHz

0.90-1.98(14H,m),2.15(1H,m),2.28(2H,t,J=6.9Hz),2.91(6Hs),3.03(1H,m),4.01 (3H,s),5.15-5.26(3H,m),7.18(1H,s),7.38(1H,s),7.59(1H,d,J=8.7Hz),7.87(1H,d.d,J=2.1and8.7Hz),8.40(1H,d,J=2.1Hz).

10 IR(CHCl₃):3384,3266,2956,1709,1632,1602,1495,1473,1458,1430,1317,1231, 1148,1121/cm.

 $[\alpha]_D = +11.2^{\circ} (CHCl_3, C=1.01, 23^{\circ}C).$

No.1a - 149

15 CDCl₈ 300MHz

0.99-1.90(14H,m),2.17(1H,m),2.28(2H,t,J=7.2Hz),3.00(1H,m),5.13-5.19(2H,m),5.43(1H,d,J=6.0Hz),7.02(1H,d.d,J=2.4and9.0Hz),7.38-7.41(2H,m),7.58(1H,d,J=8.7Hz),7.96(1H,d.d,J=1.8and8.7Hz),8.45(1H,d,J=1.8Hz).

IR(CHCl₈):3270,3020,2948,2868,1709,1601,1478,1448,1419,1315.1147.1120/

20 cm.

 $[\alpha]_D = 11.4^{\circ} \text{ (CHCl}_s, C=1.01, 23^{\circ}\text{C}).$

No.1a - 150

CDCl₈ 300MHz

25 0.97-1.88(14H,m),2.12-2.31(3H,m),2.38(3H,s),3.01(1H,m),5.14-5.19(2H,m),5. 36(1H,d,J=6.6Hz),7.24(1H,d,d,J=2.4and9.0Hz),7.59(1H,d,J=6.3Hz),7.66(1H,d,J=8.7Hz),7.72(1H,d,J=2.4Hz),8.01(1H,d,d,J=1.8and8.7Hz),8.49(1H,d,J=1.8Hz).

IR(CHCl₃):3470,3374,3260,3018,2950,2868,1709,1474,1444,1412,1370,1319,

1266,1162,1145,1118/cm.

 $[\alpha]_D = +4.9^{\circ} (CHCl_3, C=1.00, 24^{\circ}C).$

No.1a - 151

5 CDCl₃ 300MHz

0.97-1.89(14H,m), 2.17(1H,m), 2.25(2H,t,J=7.2Hz), 3.03(1H,m), 3.92(3H,s), 5.1 5-5.20(2H,m), 5.32(1H,d,J=6.6Hz), 7.11(1H,d,d,J=2.4and9.3Hz), 7.45(1H,d,J=2.4Hz), 7.50(1H,d,J=9.3Hz), 7.62(1H,d,J=8.7H), 7.97(1H,d,d,J=2.1and8.7Hz),8.50(1H,d,J=2.1Hz).

10 IR(CHCl₃):3260,3018,2948,1708,1483,1454,1432,1314,1287,1268,1188,1169, 1147/cm.

 $[\alpha]_D = +4.9^{\circ} (CHCl_3, C=1.01, 23.5^{\circ}C).$

No.1a - 152

15 CDCl₃ 300MHz

0.98-2.04(14H,m),2.15(1H,m),2.30(2H,t,J=6.6Hz),3.04(1H,m),5.17-5.29(3H,m),7.41(1H,d.d,J=1.5and8.1Hz),7.64-7.68(2H,m),7.92(1H,d,J=8.4Hz),8.00(1H,d.d,J=1.8and8.4Hz),8.49(1H,d,J=1.8Hz).

IR(CHCl₈):3266,3028,2952,2872,1707,1629,1591,1456,1416,1318,1275,1150/

20 cm.

 $[\alpha]_D = +3.2^{\circ} \text{ (CHCl}_3, c=1.04, 23^{\circ}\text{C}).$

No.1a - 153

CDCl₃ 300MHz

1969 1104 1140 1190/cm

25 0.97-1.88(14H,m),2.16(1H,m),2.26(2H,t,J=7.2Hz),3.03(1H,m),4.64-4.65(2H,m),5.16-5.50(5H,m),6.13(1H,m),7.14(1H,d.d,J=2.7and9.0Hz),7.46-7.52(2H,m),7.63(1H,d,J=8.7Hz),7.97(1H,d.d,J=1.8and8.7Hz),8.49(1H,d,J=1.8Hz).
IR(CHCl₃):3374,3260,3020,2948,2868,1708,1599,1478,1446,1414,1314,1284,

STRAL4

 $[\alpha]_D = +5.3^{\circ} (CHCl_3, C=1.00, 23^{\circ}C).$

No.1a - 154

CDCl₃ 300MHz

5 0.99-2.00(15H,m),2.26(2H,t,J=7.2Hz),3.03(1H,m),4.07(3H,s),5.23-5.27(2H,m),5.36(1H,d,J=7.2Hz),7.20(1H,s),7.36-7.48(2H,m),7.55-7.58(1H,m),7.91-7.93 (1H,m),8.52(1H,s).

IR(CHCl₈):3362,3257,3020,2948,2868,1708,1637,1602,1579,1488,1457,1437, 1413,1345,1318,1301,1276,1182,1104/cm.

10 $[\alpha]_D = +19.4^{\circ} \text{ (CHCl}_8, C=1.01, 25^{\circ}\text{C}).$ mp.88-90°C

No.1a - 155

CDCl₈ 300MHz

0.92-2.02(14H,m),2.15(1H,m),2.31(2H,t,J=7.2Hz),3.01(1H,m),4.10(2H,s),5.1 0(1H,d,J=6.6Hz),5.18-5.35(2H,m),7.04-7.26(5H,m),7.67-7.76(2H,m).
IR(CHCl₃):3266,3028,2952,2952,2872,1708,1599,1574,1478,1457,1418,1301, 1258,1147,1124,1101,1080/cm.
[α]₃₆₅ +33.4° (CHCl₃,c=1.00,23°C).

20

No.1a - 156

CDCl₈ 300MHz

0.91-2.21(15H,m), 2.33(2H,t,J=6.9Hz), 3.01(1H,m), 5.11(1H,d,J=6.6Hz), 5.27-5.35(2H,m), 6.85-6.96(5H,m), 7.35(1H,d,J=2.1Hz), 7.42(1H,d.d,J=2.1and8.7Hz).

25 IR(CHCl_s):3384,3263,2957,1708,1587,1489,1462,1416,1290,1222,1151,1123/cm.

 $[\alpha]_D = +6.4^{\circ} (CHCl_3, c=1.00, 23^{\circ}C).$

No.1a - 157

CDCl_s 300MHz

0.97-1.91(14H,m), 2.18(1H,m), 2.26(2H,t,J=6.9Hz), 3.04(1H,m), 5.18-5.26(3H,m), 2.18(1H,m), 2.26(2H,t,J=6.9Hz), 3.04(1H,m), 3.18-5.26(3H,m), 3.18-5.26

m), 7.52-7.56(2H, m), 7.88-8.00(3H, m), 8.25(1H, m), 8.69(1H, m).

IR(CHCl₈):3382,3268,2952,2874,1707,1457,1425,1409,1318,1152/cm.

5 $[\alpha]_D = +4.4^{\circ} (CHCl_s, C=1.02, 22^{\circ}C).$

No.1a - 158

CDCl₈ 300MHz

1.02-1.97(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.06(1H,m), 5.19-5.24(2H,m), 2.29(2H,t,J=7.2Hz), 3.06(1H,m), 3.19-5.24(2H,m), 3.19-5.24(2H

10 m),5.58(1H,d,J=6.6Hz),7.62(1H,m),7.72(1H,m),7.86-7.91(2H,m),7.96(1H,d,J=7.8Hz),8.04(1H,d,J=1.5and8.1Hz),8.34(1H,d,J=1.2Hz).

IR(CHCl₈):3490,3260,3020,2950,2870,1707,1456,1399,1312,1165/cm.

 $[\alpha]_D = -8.3^{\circ}$ (CHCl₃, c=1.00,23°C).

15 No.1a - 1 5 9

CDCl₈ 300MHz

0.92 - 1.88(14H,m), 2.13(1H,m), 2.24(2H,m), 3.02(1H,m), 3.90(3H,s), 5.12 - 5.26(3H,m), 3.90(3H,m), 3

H,m),7.29-7.58(4H,m),7.97(1H,d.d,J=1.8and7.5Hz),8.13(1H,d,J=7.5Hz),8.64

/1U / I-1 QU-/

1328,1240,1222,1156,1149/cm.

 $[\alpha]_D = +8.2^{\circ} \text{ (CHCl}_8, c=1.01,22^{\circ}\text{C}).$

No.1a - 161

5 CDCl₃ 300MHz

0.98-1.88(14H,m), 2.17(1H,m), 2.24(2H,t,J=7.2Hz), 3.05(1H,m), 5.16-5.20(2H,m), 5.35(1H,d,J=6.6Hz), 7.40(1H,m), 7.55(1H,m), 7.63(1H,d,J=8.1Hz), 7.89(1H,d,J=1.5and8.1Hz), 8.01(1H,m), 8.06(1H,d,J=8.1Hz), 8.12(1H,d,J=1.5Hz). $IR(CHCl_8): 3478, 3266, 3028, 2952, 2874, 1708, 1454, 1417, 1323, 1196, 1148/cm.$

10 $[\alpha]_D = +21.9^{\circ}$ (CHCl₃, c=1.01,23°C).

No.1a - 162

CDCl₃ 300MHz

0.96-1.98(14H,m), 2.02(1H,m), 2.25(2H,t,J=7.2Hz), 3.05(1H,m), 4.10(3H,s), 5.1

15 4-5.25(2H,m),5.41(1H,d,J=7.2Hz),7.35-7.42(1H,m),7.51-7.64(3H,m),7.94-8.0 0(1H,m),8.16(1H,s).

IR(CHCl₃):3368,3274,3028,2952,2874,1708,1633,1583,1465,1452,1438,1413, 1315,1151,1103,1053,1024/cm.

 $[\alpha]_D = +15.1^{\circ} \text{ (CHCl}_3, c=1.01, 23^{\circ}\text{C}). \text{ mp.108-110^{\circ}\text{C}}$

20

No.1a - 163

d₆-DMSO 300MHz

0.97-1.84(14H,m),1.92(1H,m),2.04(2H,t,J=7.5Hz),2.90(1H,m),5.08-5.23(2H,m),7.32(1H,s),7.38-7.61(2H,m),7.62(1H,s)7.68-7.71(1H,m),7.92(1H,s),8.14-8.

25 17(1H,m),10.7(1H,s),11.9(1H,s).

IR(KBr):3350,3295,2952,2874,1707,1636,1601,1466,1431,1389,1315,1251,1 174,1146,1106/cm.

 $[\alpha]_{D} = -25.3^{\circ} \text{ (CH}_{3}\text{OH,C} = 1.01,25^{\circ}\text{C}). mp.159-162^{\circ}\text{C}$

No.1a - 164

CDCl₃ 300MHz

0.98-1.96(17H,m), 2.05(1H,m), 2.25(2H,t,J=7.2Hz), 3.07(1H,m), 4.32(2H,q,J=7.2Hz), 3.07(1H,q,J=7.2Hz), 3.07(1H,q,J=7.2Hz)

2Hz),5.19-5.23(2H,m),5.31(1H,d,J=7.8Hz),7.38(1H,m),7.41-7.62(3H,m),7.95(

5 1H,m),8.15(1H,s).

IR(CHCl₈):3360,3018,2946,2870,1709,1633,1457,1445,1425,1394,1314,1176, 1152,1105/cm.

 $[\alpha]_D = +12.7^{\circ} \text{ (CHCl}_3, C=1.02, 25^{\circ}\text{C}). \text{ mp.} 108-109^{\circ}\text{C}$

10 No.1a - 165

 $CDCl_{8}$ 300MHz

0.95-1.98(15H,m),2.26(2H,t,J=7.5Hz),3.04(1H,m),4.15(3H,s),5.20-5.26(2H,m),5.34(1H,d,J=6.9Hz),7.41-7.47(1H,m),7.65-7.68(2H,m),7.89-7.92(1H,m),8.3 2(1H,s).

15 IR(CHCl₈):3366,3087,3022,2957,1708,1632,1538,1463,1408,1364,1346,1308, 1227,1212,1205,1167/cm.

 $[\alpha]_{D}$ = +19.6° (CHCl₈,C=1.01,25°C).

 $N_{0.1}a - 166$

20 CDCl₈ 300MHz

0.97-2.02(15H,m), 2.27(2H,t,J=6.9Hz), 3.07(1H,m), 4.14(3H,s), 5.21-5.27(2H,m), 5.47(1H,d,J=6.9Hz), 7.64(1H,s), 7.72(1H,d,d,J=0.6and9.0Hz), 8.25(1H,s), 8.47(1H,d,d,J=2.4and9.0Hz), 8.94(1H,d,d,J=0.6and2.4Hz).

TRICITO > 2000 2000 1700 1630 1587 1528 1467.1428.1415,1345,1221,1184,

0.92-2.00(14H,m), 2.15(1H,m), 2.27(2H,t,J=7.2Hz), 3.04(1H,m), 3.97(2H,s), 5.15-5.30(3H,m), 7.35-7.47(2H,m), 7.55-7.63(1H,m), 7.80-7.96(3H,m), 8.05(1H,d,J=0.3Hz).

IR(CHCl_s):3260,3020,2948,2868,1707,1451,1413,1319,1172,1144,1101,1071/

5 cm.

 $[\alpha]_D = +18.2^{\circ} \text{ (CHCl}_8, c=1.04, 22^{\circ}\text{C}).$

No.1a - 168

CDCl₃ 300MHz

10 0.90-1.88(14H,m),2.16(1H,m),2.25(2H,t,J=6.9Hz),3.00(1H,m),5.00-5.19(2H,m),5.35(1H,d,J=6.6Hz),7.25-7.30(1H,m),7.48-7.50(2H,m),7.73(1H,d.d,J=1.5 and8.1Hz),8.08-8.14(3H,m),8.93(1H,s).

IR(CHCl₃):3466,3380,3276,3016,2957,1708,1630,1495,1458,1324,1241,1150/cm.

15 $[\alpha]_D = +18.0^{\circ} (CHCl_3, C=1.00, 22^{\circ}C).$

No.1a - 169

CDCl₃ 300MHz

0.87-1.86(14H,m),2.15(1H,m),2.25(2H,t,J=6.9Hz),2.98(1H,m),3.89(3H,s),5.0 0-5.22(2H,m),5.27(1H,d,J=6.9Hz),6.88(1H,d.d,J=2.1and8.4Hz),6.94(1H,d,J=2.1Hz),7.69(1H,d.d,J=1.5and7.8Hz),7.92-8.01(3H,m),8.83(1H,s). IR(CHCl₃):3465,3378,3276,3022,2957,1708,1630,1609,1569,1459,1433,1314, 1281,1229,1151/cm.

 $[\alpha]_p = +19.3^{\circ} (CHCl_s, c=1.01, 21^{\circ}C).$

25

No.1a - 170

CDCl_s 300MHz

0.88-2.25(17H,m), 3.04(1H,m), 3.84(3H,s), 3.95(3H,s), 5.06-5.26(3H,m), 6.87-6.93(2H,m), 7.69(1H,d.d,J=1.6and8.2Hz), 7.93-9.05(3H,m).

IR(CHCl₈):3026,2957,1708,1630,1601,1460,1331,1243,1224,1152/cm. $[\alpha]_D = +17.2^{\circ} \text{ (CHCl₈,c=1.00,22°C)}.$

No.1a - 171

5 CDCl₈ 300MHz
0.95-2.00(14H,m),2.16-2.32(3H,m),2.66(3H,s),3.14(1H,m),3.68(3H,s),5.09(1 H,d,J=6.8Hz),5.10-5.28(2H,m),7.45(1H,d.d.,J=1.8&8.6Hz),7.75-7.84(2H,m).
IR(CHCl₈):3374,3018,2946,2868,1725,1585,1513,1436,1340,1278,1153,1112 /cm.

10 $[\alpha]_D = -14.7^{\circ} (CHCl_8, c=1.07, 25.0^{\circ}C).$

No.1a - 172

CDCl₃ 300MHz

0.97-2.02(14H,m), 2.23(1H,m), 2.28(2H,t,J=7.2Hz), 2.66(3H,s), 3.14(1H,m), 5.1

2-5.22(2H,m),5.41(1H,d,J=7.2Hz),7.45(1H,d.d.,J=2.1&8.7Hz),7.76(1H,d,J=8.7Hz),7.78(1H,d,J=2.1Hz).

IR(CHCl₃):3372,3250,3022,2950,2868,1707,1514,1419,1336,1279,1154,1112 /cm.

 $[\alpha]_D = -4.1^{\circ} \text{ (CHCl}_3, c=1.08, 26.0^{\circ}\text{C}) \text{ m.p.} 141-143^{\circ}\text{C}$

20

No.1a - 173

CDCl₃ 300MHz

1.15-2.42(17H,m), 2.91(1H,m), 5.15(1H,d,J=4.2Hz), 5.25-5.40(2H,m), 7.85(1H,m), 2.91(1H,m), 2.91(1H,m), 3.15(1H,d,J=4.2Hz), 3.25-3.40(2H,m), 3.25(1H,m), 3.25(1H,

No.1a - 174

CDCl₈+d₆-DMSO 300MHz

1.00-1.92(14H,m),2.20(2H,t,J=6.6Hz),2.35(1H,m),2.92(1H,m),5.05-5.22(2H,m),6.63(1H,d,J=5.4Hz),7.77-7.92(3H,m),8.31(1H,d,d,J=1.8and8.7Hz),8.59(1

5 H,d,J=8.7Hz),8.73(1H,d,J=8.7Hz),9.01(1H,s),9.55(1H,d,J=1.8Hz).

IR(KBr):3433,3252,2952,2871,1696,1578,1423,1335,1308,1219,1185,1160,1 106/cm.

 $[\alpha]_D = -19.3^{\circ}$ (DMSO, c=0.50, 23°C).

10 No.1a - 1 7 5

CDCl₈ 300MHz

0.96-1.87(14H,m),2.20-2.25(3H,m),2.95(1H,m),3.66(3H,s),4.74(1H,d,J=6.6H z),5.10-5.12(2H,m),6.88(1H,d,J=1.2Hz),7.37-7.50(3H,m),7.56(1H,dd,J=8.7,1.5Hz),7.68-7.77(3H,m),8.06(1H,s),9.44(1H,dd,J=1.2Hz).

15 IR(CHCl₈):3462,3374,3026,3006,2952,2872,1724,1610,1580,1484,1452,1358, 1309,1147.

 $[\alpha]_D = +16.4^{\circ} \text{ (CHCl}_3, c=1.05, 26^{\circ}\text{C}). \text{ mp.130-132^{\circ}\text{C}}.$

No.1a - 176

20 CDCl₃+CD₅OD 300MHz

1.00-2.02(14H,m),2.22(1H,m),2.29(2H,t,J=6.9Hz),2.88(1H,m),5.16-5.26(2H,m),6.87(1H,s),7.28-7.57(4H,m),7.69(1H,d,J=8.4Hz),7.75-7.78(2H,m),7.99(1H,s).

IR(KBr):3254,2944,1704,1484,1453,1358,1305,1147.

25 $[\alpha]_D = +13.0^{\circ} (CH_3OH, c = 1.02, 24^{\circ}C), mp.160-161^{\circ}C$

No.1a - 177

CDCl₈ 300MHz

0.96-1.88(14H,m),1.88-2.26(3H,m),2.94(1H,m),3.67(3H,s),3.87(3H,s),4.67(1

H,brs), 5.08-5.14(2H,m), 6.77(1H,d,J=1.5Hz), 6.99-7.02(2H,m), 7.53-7.57(1H,d,J=1.5Hz)

m), 7.65-7.70(3H, m), 8.00(1H, s), 9.27(1H, brs).

IR(CHCl₈):3426,3376,3006,2952,1724,1610,1495,1438,1357,1308,1282,1249, 1177,1147/cm.

5 $[\alpha]_D = +18.1^{\circ} (CHCl_3, C=1.02, 22^{\circ}C).$

No.1a - 178

CDCl_s+CD_sOD 300MHz

 $0.96 \cdot 1.91(14H,m), 2.19(1H,m), 2.27(2H,t,J=6.0Hz), 2.85(1H,m), 3.87(3H,s), 5.1$

10 6.5.23(2H,m), 6.99-7.02(2H,m), 7.41(1H,m), 7.64-7.73(3H,m), 7.92(1H,m).

IR(CHCl₃):3366,3261,3004,2954,2873,1705,1611,1496,1458,1438,1304,1286, 1253,1180,1149,1128/cm.

 $[\alpha]_D = +14.6^{\circ} (CHCl_3, C=1.02, 22^{\circ}).$

15 No.1a -179

CDCl₈+CD₈OD 300MHz

0.96-1.87(14H,m), 2.15-2.23(3H,m), 2.93(1H,m), 3.85(3H,s), 5.10-5.16(2H,m), 6.

90-6.93(2H,m), 7.50(1H,m), 7.60-7.65(3H,m), 7.91(1H,d,J=0.9Hz).

IR(CHCl_s):3369,3270,2950,2873,1719,1612,1498,1456,1440,1359,1306,1269,

No.1a - 181

CDCl₃ 300MHz

0.97-1.96(14H,m), 2.15(1H,m), 2.29(2H,t,J=6.9Hz), 3.05(1H,m), 3.81(3H,s), 5.0

5 8(1H,d,J=6.9Hz),5.23-5.25(2H,m),6.62(1H,s),7.47-7.54(5H,m),7.59(1H,m),7.70(1H,m),7.97(1H,m).

IR(CHCl₃):3380,3260,3020,2946,2868,1708,1466,1388,1328,1149/cm. $[\alpha]_{D}$ =+32.9° (CHCl₃,c=1.07,22°C).

10 No.1a - 182

CDCl₈ 300MHz

0.94-1.90(14H,m),2.25(2H,t,J=7.5Hz),2.30(1H,m),2.98(1H,m),3.70(3H,s),4.8 3(1H,d,J=6.6Hz),5.13-5.16(2H,m),6.95(1H,d,J=1.5Hz),7.11-7.23(2H,m),7.43(1H,d,J=8.1Hz),7.65(1H,d,J=8.1Hz),7.79-7.93(4H,m),9.08(1H,br).

15 IR(CHCl₈):3458,3372,3020,3002,2946,2868,1719,1598,1452,1422,1321,1300, 1157/cm.

 $[\alpha]_D = -6.6^{\circ}$ (CHCl₃, c=1.00), mp150-151°C

No.1a - 183

20 CDCl₈ 300MHz

0.95-1.94(14H,m),2.26(1H,m),2.28(2H,t,J=7.5Hz),3.00(1H,m),5.16-5.19(2H,m),5.32(1H,d,J=7.2Hz),6.93(1H,d,J=1.2Hz),7.13(1H,m),7.22(1H,dd,J=7.8,6.6Hz),7.42(1H,d,J=7.8Hz),7.63(1H,d,J=7.8Hz),7.76(2H,d,J=8.4Hz),7.90(2H,d,J=8.4Hz),8.95(1H,br).

25 IR(CHCl_s):3458,3374,3260,3020,3002,2948,2868,1708,1598,1452,1422,130 1,1156/cm.

 $[\alpha]_{D} = +17.9^{\circ} (CHCl_{s}, c=1.01, 22^{\circ}C).$

CDCl_s 200MHz

0.92-2.00(14H,m),2.20(1H,m),2.34(2H,t,J=6.8Hz),3.05(1H,m),5.20-5.36(3H,m),7.39-7.44(2H,m),7.61-7.66(1H,m),7.80-7.84(1H,m),8.05(2H,d,J=8.6Hz),8.40(2H,d,J=8.6Hz).

5 IR(CHCl_s):3384,3271,3019,2958,1709,1615,1599,1551,1453,1405,1344,1326, 1243,1163/cm.

 $[\alpha]_{D}$ =+18.5° (CHCl₃, c=1.00,21°C).

No.1a - 185

10 CDCl₃ 300MHz

0.89-2.20(15H,m),2.26(2H,d.t,J=2.1and7.2Hz),2.99(1H,m),5.08(1H,d,J=6.3Hz),5.09-5.24(2H,m),6.90(1H,d,J=1.2Hz),7.32-7.48(4H,m),7.64-7.72(3H,m),8.
20(1H,d,J=1.2Hz),9.00(1H,s).

IR(CHCl₃):3464,3375,3275,3022,2956,1707,1605,1490,1449,1356,1322,1219,

15 1147,1131/cm.

 $[\alpha]_{D}$ =+21.6° (CHCl₈,C=1.01,23°C).

No.1a - 186

ADAL BAALT

 $[\alpha]_D = +32^{\circ}$ (CHCl₈, c=1.69).

No.1a - 188

CDCl₃ 200MHz

5 0.86-1.92(14H,m),2.22(3H,m),2.36(3H,s),2.95(1H,m),3.67(3H,s),3.93(3H,s),4. 81(1H,d,J=6.2Hz),5.04-5.20(2H,m),7.02-7.05(2H,m),7.31(1H,d,J=8.6Hz),7.3 9(1H,d,J=7.8Hz),7.79-7.89(3H,m). IR(CHCl₈):3385,3286,3029,3019,3015,2954,2877,1718,1617,1598,1567,1507, 1311,1269,1153 /cm.

10 $[\alpha]_{D} = -29.4^{\circ} \text{ (CHCl}_{3}, c=1.01, 25^{\circ}\text{C}).$

No.1 a - 1 8 9 $[\alpha]_D = -7.7^{\circ}$ (CHCl_s, c=1.00,24°C).

15 No.1a - 1 9 0 $[\alpha]_{p} = -17.3^{\circ} \text{ (CHCl}_{s}, c = 1.00, 24^{\circ}\text{C}).$

 $N_{0.1a} - 191$

CDCl₈ 300MHz

20 0.95-2.20(14H,m),2.30(1H,m),2.36(2H,d,J=6.9Hz),3.21(1H,m),4.25(2H,s),5.0 7(1H,d,J=7.8Hz),5.35-5.48(2H,m),7.25(1H,dd,J=1.8 and 8.1Hz),7.32-7.35(2 H,m),7.59(1H,d,J=8.1Hz),7.94(1H,s),8.14(1H,d,J=2.7Hz),8.23(1H,d.d,J=2.7a nd8.7Hz).

IR(CHCl_s):3386,3026,3015,2957,2877,2633,1702,1617,1573,1530,1348,1123

25 /cm.

 $[\alpha]_D = -6.1^{\circ} \text{ (CHCl}_3, c=1.01, 25^{\circ}\text{C}).$

NO OFFI

No.1a - 192

CDCl₃ 300MHz

0.92-2.20(14H,m),2.13(3H,m),3.23(1H,m),3.64(3H,s),3.94(3H,s),4.22(2H,s),4. 36(1H,d,J=7.8Hz),5.37-5.42(2H,m),7.16-7.42(6H,m),7.53(1H,d,J=8.4Hz),7.9 4(1H,s).

IR(CHCl₈):3389,3022,3013,2953,2877,1716,1616,1560,1485,1340,1326,1124

5 /cm.

 $[\alpha]_D = -15.2^{\circ} \text{ (CHCl}_8, c=1.01, 25^{\circ}\text{C}).$

No.1a - 193

CDCl₃ 300MHz

10 0.92-2.20(14H,m),2.25(1H,m),2.35(2H,t,J=7.2Hz),3.17(1H,m),4.22(2H,s),4.9 1(1H,d,J=7.5Hz),5.37-5.42(2H,m),7.13-7.43(6H,m),7.60(1H,d,J=8.1Hz),8.05(1H,s).

IR(CHCl_s):3511,3387,3029,3020,3011,2957,2877,2651,1698,1614,1560,1505, 1320,1280,1252,1126 /cm.

15 $[\alpha]_D = -0.9^{\circ}$ (CHCl₈, c=1.00,25°C).

No.1b-1

CDCl₈ 300MHz

04 FTT > 1 OF 1 00/FTT > 0 99/1H m) 3 05/1H m) 3 66/3H s) 4 77/1

m), 7.78(2H, d, J=8.4Hz).

IR(CHCl₃):3384,3026,2952,2874,1719,1595,1453,1407,1320,1180/cm. $[\alpha]_{p}=+2.5^{\circ}$ (CHCl₃,c=1.02,24°C).

 $5 \quad \text{No.1b} - 3$

CDCl₃ 300MHz

0.96-2.05(20H,m), 2.07(1H,m), 3.07(1H,m), 4.04(2H,s), 5.21-5.35(2H,m), 5.55(1H,d,J=6.9Hz), 7.14(2H,d,J=6.6Hz), 7.20-7.32(5H,m), 7.78(2H,d,J=8.1H).

IR(CHCl₈):3250,3022,2950,1699,1596,1495,1453,1405,1318,1153/cm.

10 $[\alpha]_D = +17.1^{\circ} \text{ (CHCl}_8, c=1.01, 25^{\circ}\text{C}).$ mp.129-131°C.

No.1b-4

CDCl_s 200MHz

15 0.90-2.10(15H,m),1.19(3H,s),1.20(3H,s),3.11(1H,m),5.24-5.32(2H,m),5.70(1 H,d,J=6.6Hz),7.38-7.68(4H,m),7.96-8.04(2H,m),8.53(1H,d,J=1.4Hz). IR(CHCl₈):3384,3246,2958,1701,1632,1595,1468,1445,1322,1216,1202,1190, 1155,1122/cm. $[\alpha]_D = +10.8^{\circ} \text{ (CHCl₃,c=0.51,23°C)}.$

20

No.1b-5

1.02-2.10(15H,m),1.16(6H,s),3.02(1H,m),4.09(3H,s),5.23-5.28(2H,m),5.76(1 H,d,J=7.2Hz),7.36-7.63(4H,m),7.97(1H,d,J=7.8Hz),8.16(1H,s).

IR(CHCl₈):3369,2959,1702,1635,1585,1468,1454,1441,1415,1318,1222,1189,

25 1170,1154/cm.

 $[\alpha]_D = +9.9^{\circ} (CHCl_3, C=1.00, 23^{\circ}C).$

No.1c-1

CDCl₃ 300MHz

1.10-2.02(14H,m), 2.27(2H,t,J=7.5Hz), 2.50(1H,m), 2.89(3H,s), 3.31(1H,m), 3.64(3H,s), 5.16-5.30(2H,m), 7.34-7.42(3H,m), 7.50-7.59(2H,m), 7.62-7.68(2H,m),

 $7.76 \cdot 7.82(2H,m)$.

IR(CHCl₈):3020,2946,2868,2212,1727,1596,1495,1437,1339,1156,1135,1084

5 /cm.

 $[\alpha]_D = -16.1^{\circ} \text{ (CHCl}_3, c=1.05, 25.0^{\circ}\text{C}).$

m.p.100-102°C

No.1c-2

10 CDCl₃ 300MHz

1.10-2.05(14H,m), 2.23(2H,t,J=7.5Hz), 2.53(1H,m), 2.91(3H,s), 3.35(1H,m), 3.6

2(3H,s),5.02-5.30(2H,m),7.50-7.60(3H,m),7.90-8.08(6H,m).

IR(CHCl_s):3016,2946,2868,1728,1437,1398,1340,1160,1086 /cm.

 $[\alpha]_D = -32.5^{\circ} \text{ (CHCl}_3, c=1.00, 25.0^{\circ}\text{C}).$

15

No.1c-3

CD₃OD 300MHz

1.15-2.05(14H,m), 2.13(2H,t,J=7.2Hz), 2.47(1H,m), 2.91(3H,s), 3.27(1H,m), 4.9

 $[\alpha]_D = +40.0^{\circ} \text{ (CHCl}_3, c=0.53, 22^{\circ}\text{C}).$

No.1d-2

CDCl₈ 300MHz

5 1.03-2.30(17H,m),3.03(1H,m),4.03(2H,s),5.26(2H,m),5.84(1H,br),5.25-5.29(1 H,d,J=6.6Hz),6.03(1H,br),7.14(2H,d,J=8.1Hz),7.26-7.31(5H,m),7.80(2H,d,J=8.1Hz).

IR(CHCl₃):3376,3002,2946,1669,1595,1492,1454,1406,1318,1154/cm. $[\alpha]_D$ =+4.3° (CHCl₃,c=1.00,23°C).

10

No.1d-3

CDCl₃ 300MHz

 $0.96-2.17(17H,m), 2.33(2H,t,J=6.9Hz), 3.01(1H,m), 4.04(2H,s), 5.10(1H,d,J=6.6Hz), 5.21-5.26(2H,m), 7.14(2H,d,J=8.7Hz), 7.16-7.32(5H,m), 7.78(2H,d,J=8.4Hz), 7.78(2H_d,J=8.4Hz), 7.78(2H_d,J=8.4Hz), 7.78(2H_d,J=8.4Hz), 7.78(2H_d,J=8.4Hz), 7.78(2H_d,J=8$

15 Hz).

IR(CHCl_s):3260,3020,2946,1711,1596,1492,1457,1407,1318,1154/cm. [α]_D=+9.3° (CHCl_s,c=1.09,25°C).

No.1d-4

20 CDCl₃ 300MHz

0.95-2.14(15H,m),2.34(2H,t,J=7.2Hz),3.09(1H,m),3.30(3H,s),4.04(2H,s),5.19 (1H,d,J=7.2Hz),5.22-5.39(2H,m),7.10-7.35(7H,m),7.81(2H,d,J=8.1Hz),9.10(1 H,brs).

IR(CHCl_s):3382,3260,3028,2952,2874,2670,1713,1595,1492,1450,1405,1338,

25 1160,1120,1092/cm.

 $[\alpha]_D = +22.2^{\circ} (CHCl_s, c=1.07, 22^{\circ}C).$

No.1d-5

CDCl₃ 300MHz

1.00-2.10(14H,m), 2.30-2.39(3H,m), 3.15(1H,m), 3.35(3H,s), 5.18-5.40(3H,m), 7.

41(1H,d.t.,J=0.9and7.8Hz),7.50-7.69(3H,m),7.88-8.15(2H,m),8.60(1H,d,J=1.

5Hz),9.06(1H,s).

IR(CHCl₈):3382,3268,3028,2954,2874,1714,1442,1402,1338,1188,1155,1

5 121,1072/cm.

 $[\alpha]_D = +15.3^{\circ} \text{ (CHCl}_8, C = 1.00, 22^{\circ}\text{C}).$

No.1e-1

CDCl₃ 300MHz

10 1.19-2.45(19H,m),2.58(1H,m),5.63(1H,d,J=3.0Hz),7.42-7.65(4H,m),7.94-8.03 (2H,m),8.49-8.50(1H,m).

IR(CHCl₃):3293,3024,1710,1595,1584,1467,1445,1410,1324,1222,1213,1206, 1190,1160/cm.

 $[\alpha]_D$ =-41.1° (CHCl₈,c=1.01,23°C).

15

No.1e-2

CDCl_s 300MHz

1.10-2.25(19H,m),2.94(1H,m),4.12(3H,s),5.53(1H,d,J=7.2Hz),7.39(1H,m),7.5 0-7.62(3H,m),7.96(1H,d,J=7.5Hz),8.13(1H,s).

90 ID/CITOL\ 9907 9005 9055 1711 1004 1000 1504 1400 4454

 $[\alpha]_D = -54.1^{\circ} \text{ (CHCl}_8, c=1.01, 23^{\circ}\text{C}).$

No.1f-2

CDCl₈ 300MHz

5 1.08-2.24(19H,m),2.94(1H,m),3.53(2H,t,J=6.3Hz),4.13(3H,s),5.47(1H,d,J=6.6Hz),7.36-7.63(4H,m),7.96(1H,d,J=6.3Hz),8.14(1H,s).

IR(CHCl₃):3625,3368,3025,3013,2949,2877,1710,1634,1600,1584,1468,1454, 1440,1415,1342,1317,1232,1220,1189,1157/cm.

 $[\alpha]_D = -5.6^{\circ}$ (CHCl_s, c=1.00, 25°C).

10

No.1g-1

CDCl₈ 200MHz

1.17-2.34(15H,m), 3.22(1H,m), 5.10-5.16(2H,m), 5.45(1H,d,J=7.0Hz), 7.35-7.66(4H,m), 7.95-8.01(2H,m), 8.51(1H,d,J=2.0Hz).

15 IR(CHCl₃):3383,3275,2959,1707,1595,1584,1468,1445,1425,1319,1269,1248, 1190,1149,1123/cm.

 $[\alpha]_D = +64.3^{\circ} \text{ (CHCl}_3, c=1.01, 23^{\circ}\text{C}).$

No.1g-2

20 CDCl₃ 300MHz

1.10-2.15(13H,m), 2.36(2H,t,J=7.2Hz), 3.21(1H,m), 4.09(3H,s), 5.10-5.22(2H,m), 5.43(1H,d,J=7.8Hz), 7.36-7.62(4H,m), 7.96(1H,d,J=7.8Hz), 8.12(1H,s). $IR(CHCl_s): 3366, 2959, 1708, 1635, 1600, 1585, 1467, 1454, 1440, 1415, 1345, 1318,$

1233,1189,1152/cm.

25 $[\alpha]_D = +103.1^{\circ} (CHCl_3, C=1.01, 23^{\circ}C).$

No.1h-1

CDCl₃ 300MHz

0.90-1.60(17H,m), 1.83(1H,m), 2.11(1H,m), 2.22(2H,t,J=7.2Hz), 3.07(1H,m), 5.

11(1H,d,J=7.2Hz),7.38-7.47(1H,m),7.50-7.60(1H,m),7.60-7.72(2H,m),7.88-8. 12(2H,m),8.54(1H,d,J=0.9Hz).

IR(CHCl₈):3382,3274,2926,1707,1464,1442,1318,1266,1188,1153,1121,1105, 1071,1019/cm.

5 $[\alpha]_D = -2.8^{\circ}$ (CHCl₃, c=1.01,23°C).

 $N_0.1i - 1$

 $[\alpha]_{865}$ +50.9° (CHCl₃,c=1.01,24°C).

10 No.1i-2

CDCl₈ 300MHz

0.98-1.70(11H,m),1.80-2.00(5H,m),2.19(1H,m),3.03(1H,m),3.64(2H,t,J=6.6Hz),4.05(2H,s),4.69(1H,d,J=6.6Hz),5.15(1H,m),5.25(1H,m),7.16(2H,d,J=7.2Hz),7.27-7.32(5H,m),7.77(2H,d,J=8.4Hz).

IR(CHCl₃):3376,3004,2946,2316,1596,1492,1453,1407,1318,1154/cm. $[\alpha]_D = +3.5^{\circ} \text{ (CHCl}_3, c=1.00,22^{\circ}\text{C}).$

mp.80.5-82.0℃

[α]_D=-28.0±0.6 °(CHCl₈,c=1.06,24°C). mp.159-161°C

1j-5

5 $[\alpha]_D = -12.5 \pm 0.5 \text{ °(CHCl}_8, c=1.04,23 °C).$ mp.99-101°C

No.1j-6

CDCl₈ 300MHz

10 0.90-2.03(14H,m),2.20(1H,m),2.30(2H,t,J=7.3Hz),3.00(1H,m)3.68(3H,s),4.76 (1H,d,J=6.8Hz),5.13-5.35(2H,m),7.01-7.08(4H,m),7.19-7.26(1H,m),7.37-7.46 (2H,m),7.80-7.84(2H,m).
IR(CHCl₈):3382,3280,3080,3016,2952,2900,1727,1582,1486,1432,1322,1150/

15 $[\alpha]_D = -31.0^{\circ} (CHCl_s, c=1.05, 26^{\circ}C).$

No.1j-7

cm.

CDCl_s 300MHz

0.91-2.09(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.5Hz), 3.01(1H,m), 5.17(1H,d,J=6.091-2.09(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.5Hz), 3.01(1H,m), 3.01(1H,m),

20 8Hz),5.21-5.34(2H,m),7.01-7.08(4H,m),7.15-7.27(1H,m),7.37-7.43(2H,m),7.8 0-7.85(2H,m).

IR(CHCl₈):3474,3386,3270,3024,2958,2900,2675,1711,1584,1488,1420,1323, 1298,1150/cm.

 $[\alpha]_D = -13.4^{\circ} \text{ (CHCl}_3, c=1.01,26^{\circ}\text{C}).$

25

No.1j-8

CDCl₃ 300MHz

0.95-2.14(13H,m),2.30(2H,t,J=7.5Hz),2.36(1H,m),2.84(1H,m),2.91(1J=4.8Hz),3.66(3H,s),5.33-5.52(2H,m),6.82-6.87(1H,m),6.93-7.00(2H,m),7.09-7.15(4H,m)

m), 7.28-7.36(2H, m), 7.54-7.59(1H, m).

IR(CHCl₃):3350,3010,2950,2880,1728,1603,1582,1489 1461,1438,1360,1160 /cm.

 $[\alpha]_{D} = +75.1^{\circ} \text{ (CHCl}_{8}, c=1.13, 26^{\circ}\text{C}).$

5

No.1j-9

CDCl₈ 300MHz

0.95-2.03(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.5Hz), 3.06(1H,m), 3.68(3H,s), 4.9

8(1H,d,J=7.4Hz),5.14-5.34(2H,m),7.46-7.54(2H,m),7.60-7.68(1H,m),7.75-7.8

 $10 \quad 0(2H,m), 7.88-7.92(2H,m), 7.99-8.03(2H,m).$

IR(CHCl_s):3384,3280,3020,2960,2888,1727,1662,1600,1316,1273,1163/cm.

 $[\alpha]_{D} = -41.0^{\circ} \text{ (CHCl}_{8}, c=1.17, 26^{\circ}\text{C}).$

 $N_{0.1}j - 10$

15 CDCl₈+CD₈OD 300MHz

0.94-2.08(14H,m), 2.21(1H,m), 2.34(2H,t,J=6.2Hz), 3.04(1H,m), 5.21-5.35(2H,m), 2.21(1H,m), 2.34(2H,t,J=6.2Hz), 3.04(1H,m), 3.21-5.35(2H,m), 3.21-5.5(2H,m), 3.21-5.5(2H,m), 3.21-5.5(2H,m), 3.21-5.5(2H,m)

m), 5.40(1H, m), 7.49-7.58(2H, m), 7.64-7.68(1H, m), 7.79-8.06(6H, m).

IR(CHCl₃):3475,3370,3250,3018,2956,2976,2650,1709,1662,1595,1445,1420,

1005 1015 1054 1100

No.1j-12

CDCl₈ 300MHz

1.08-1.98(14H,m), 2.23(1H,m), 2.33(2H,t,J=7.5Hz), 3.16(1H,m), 5.18-5.26(2H,m), 2.23(1H,m), 2.33(2H,t,J=7.5Hz), 3.16(1H,m), 3.18-5.26(2H,m), 3.18-5.26(2H,m),

m),5.39-5.45(1H,m),7.39-7.49(3H,m),7.60-7.64(3H,m),7.80-7.83(2H,m),8.09-8.12(1H,m).

IR(CHCl₈):3325,3022,2956,2872,2680,1708,1662,1603,1598,1425,1340,1316, 1288,1271,1165/cm.

 $[\alpha]_D = +9.7^{\circ} \text{ (CHCl}_s, c=0.52, 25^{\circ}\text{C}).$

10

No.1j - 13

CDCl₃ 300MHz

0.95-2.00(14H,m),2.20(1H,m),2.27(2H,t,J=6.3Hz),3.03(1H,m),3.67(3H,s),4.9 9(1H,d,J=6.6Hz),5.12-5.31(2H,m),7.47-7.55(2H,m),7.60-7.69(2H,m),7.76-7.8

 $15 \quad 1(2H,m), 7.96-8.05(1H,m), 8.08-8.14(1H,m), 8.27-8.28(1H,m).$

IR(CHCl_s):3674,3538,3376,3276,3012,2948,2860,1726,1662,1595,1440,1335, 1317,1297,1274,1166,1150/cm.

 $[\alpha]_D = +10.2^{\circ} (CHCl_8, c=1.00, 25^{\circ}C).$

20 No.1j - 14

CDCl₃ 300MHz

0.93-2.08(14H,m),2.21(1H,m),2.32(2H,t,J=6.3Hz),3.00(1H,m),5.20-5.36(2H,m),5.38(1H,d,J=6.2Hz),7.50-7.55(2H,m),7.63-7.71(2H,m),7.77-7.81(2H,m),7.99-8.04(1H,m),8.10-8.18(1H,m),8.32-8.36(1H,m).

25 IR(CHCl₃):3674,3480,3374,3258,3012,2950,2875,2650,1709,1662,1598,1418, 1335,1317,1274,1143/cm.

 $[\alpha]_D = +61.0^{\circ} (CHCl_3, c=1.19, 25^{\circ}C).$

RSTRULY Z

No.1j-15

CDCl₈ 300MHz

0.90-2.00(14H,m), 2.19(1H,m), 2.30(2H,t,J=7.3Hz), 3.01(1H,m), 3.67(3H,s), 4.8 2(1H,d,J=6.6Hz), 5.14-5.34(2H,m), 7.36-7.39(3H,m), 7.53-7.57(2H,m), 7.62-7.66(2H,m), 7.83-7.88(2H,m).

5 IR(CHCl₈):3376,3276,3010,2948,2868,2212,1727,1597,1500,1437,1325,1161/cm.

 $[\alpha]_D = -7.2^{\circ}$ (CHCl₈, c=1.00, 26°C).

No.1j-16

10 CDCl₈ 300MHz

0.93-2.03(14H,m),2.15(1H,m),2.36(2H,t,J=7.5Hz),3.05(1H,m),5.20-5.40(3H,m),7.36-7.39(3H,m),7.55-7.66(4H,m),7.84-7.88(2H,m).

IR(CHCl_s):3470,3376,3260,3012,2950,2868,2675,2212,1708,1596,1503,1416, 1396,1322,1160.

15 $[\alpha]_D = -22.4^{\circ} (CHCl_8, c = 1.00, 26^{\circ}C).$

No.1j - 17

CDCl₃ 300MHz

1.00-1.60(9H,m),1.79-1.89(5H,m),2.17(1H,brs),2.23(2H,t,J=7.2Hz),3.03(1H,

20 m),5.10-5.23(2H,m),5.49(1H,d,J=6.6Hz),7.40(1H,t,J=7.4Hz),7.53(1H,t,J=7.2 Hz),7.60-7.68(2H,m),7.98-8.03(2H,m),8.55(1H,d,J=1.5Hz).

IR(CHCl₃):3516,3384,3270,2666,1708,1632,1595,1584,1467,1445,1425,1374, 1345,1321,1269,1248,1218/cm.

 $[\alpha]_D = -7.8^{\circ}(CHCl_3, c=1.01, 22^{\circ}C).$

25

No.1j - 18

CDCl₃ 300MHz

0.90-2.03(14H,m),2.19(1H,m),2.30(2H,t,J=7.5Hz),3.00(1H,m),3.67(3H,s),4.8

9(4H,m),7.57-7.61(1H,m).

IR(CHCl₈):3376,3276,3012,2948,2875,1727,1583,1488,1471,1432,1330,1311, 1150/cm.

 $[\alpha]_D = +54.0^{\circ} (CHCl_8, c=0.99, 25^{\circ}C).$

5

No.1j - 19

CDCl₈ 300MHz

0.91-2.09(14H,m), 2.15(1H,m), 2.34(2H,t,J=7.5Hz), 3.01(1H,m), 5.16(1H,d,J=6.6Hz), 5.24-5.40(2H,m), 7.01-7.08(2H,m), 7.15-7.25(2H,m), 7.35-7.53(4H,m), 7.5

10 9.7.65(1H,m).

IR(CHCl_s):3470,3376,3260,3012,2950,2875,2640,1708,1583,1488,1471,1430, 1335,1305,1149/cm.

 $[\alpha]_D = -21.0^{\circ} (CHCl_3, c=1.30, 25^{\circ}C).$

15 No.1j – 20

CDCl₃ 300MHz

1.17(1H,m),1.26-1.34(2H,m),1.54-2.24(11H,m),2.31(2H,t,J=7.4Hz),2.48(1H,brs),3.37(1H,m),3.67(3H,s),5.35-5.50(2H,m),7.39-7.68(9H,m).

IR(CHCl_s):3377,1727,1601,1435,1362,1168/cm.

20

No.1j - 21

CDCl₈ 300MHz

1,10-2.25(14H,m),2.36(2H,t,J=7.2Hz),2.47(1H,m),2.89(1H,m),5.35-5.53(2H,m),5.63(1H,d,J=7.2Hz),7.40-7.71(9H,m).

25 IR(CHCl₈):3674,3496,3374,3234,3010,2952,2870,2640,1730(sh),1710,1605,1 485,1425,1360,1167/cm.

 $[\alpha]_D = -43.0^{\circ} \text{ (CHCl}_s, c=1.01, 25^{\circ}\text{C}).$

No.1j-22

CDCl₈ 300MHz

0.98-1.95(14H,m), 2.25-2.31(3H,m), 2.95(1H,m), 5.19-5.30(2H,m), 5.33(1H,d,J)=3.9Hz),6.58(1H,d,J=7.5Hz),6.80(1H,t,J=7.5Hz),6.99-7.05(1H,m),7.44-7.53(6H,m),7.60-7.73(9H,m),7.94-7.73(3H,m),8.23-8.26(2H,m),10.66(1H,s).

5 IR(CHCl₈):3475,3372,3260,3008,2952,2868,2722,1725,1710(sh),1663,1590,1 571,1525,1448,1437,1345,1314,1161,1112/cm. $[\alpha]_0 = +12.9^{\circ}$ (CHCl₈,c=0.12,23°C).

No.1j-23

10 CDCl₃ 300MHz

0.94~1.94(14H,m),2.23-2.30(3H,m),2.98(1H,m),3.68(3H,s),5.09(1H,d,J=6.2H z),5.15-5.28(2H,m),7.14-7.22(1H,m),7.34-7.42(2H,m),7.68-7.73(2H,m),7.89-8.03(4H,m),8.51(1H,s).

IR(CHCl₃):3372,3275,1724,1673,1599,1438,1320,1161/cm.

15 $[\alpha]_D = +17.0^{\circ} (CHCl_8, c=1.38, 25^{\circ}C).$

No.1j-24

CDCl₈+CD₈OD 300MHz

IR(CHCl₈):3384,3278,1726,1605,1484,1448,1331,1161/cm.

No.1j - 26

CDCl_s+CD_sOD 300MHz

5 1,03-2.10(14H,m),2.22(1H,m).2.31(2H,t,J=7.5Hz),2.98(1H,m),5.23-5.38(2H,m),7.55-7.66(3H,m),8.05-8.08(2H,m),8.14-8.18(2H,m),8.28-8.31(2H,m). IR(Nujol):3260,2720,2660,1711,1545,1460,1317,1163/cm. $[\alpha]_D$ =+15.8° (CH₈OH,c=1.01,22°C).

10 No.1j-27 $[\alpha]_{D} = +16.7^{\circ} \text{ (CHCl}_{3}, c=1.00,23^{\circ}\text{C}).$

No.1j - 28

CDCl_a 300MHz

1.01(1H,m),1.14-1.29(2H,m),1.46-2.19(11H,m),2.33(2H,t,J=7.2Hz),2.41(1H,brs),3.18-3.21(5H,m),3.68(3H,s),3.73-3.76(4H,m),4.37(1H,d,J=7.2Hz),5.35-5.45(2H,m).

 $IR(CHCl_8):3392,1727,1435,1335,1148/cm.$

 $[\alpha]_D = +10.7^{\circ}(CHCl_8, c=1.39, 26^{\circ}C).$

20

No.1j - 29

CDCl₃ 300MHz

1.00(1H,m),1.20-1.29(2H,m),1,48-2.25(12H,m),2.37(2H,t,J=7.2Hz),,3.17-3.2 2(5H,m),3.74-3.79(4H,m),4.79(1H,d,J=7.8Hz),5.34-5.54(2H,m).

25 IR(CHCl₈):3470,3390,3270,2675,1709,1455,1420,1315,1147/cm. [α]_D= +16.8°(CHCl₃,c=1.42,26°C).

No.1k-1

 $[\alpha]_D = -25.4^{\circ} \text{ (CHCl}_3, c=1.08, 23^{\circ}\text{C}).$

 $N_0.1k-2$

CDCl₈ 200MHz

1.07-2.28(14H,m), 2.32(2H,t,J=7.4Hz), 2.63(1H,m), 3.63(3H,s), 3.93(1H,m), 5.3

 $5 \quad 0.5.52(2H,m), 6.35(1H,d,J=7.0Hz), 7.48-7.60(3H,m), 7.88-8.02(6H,m).$

IR(CHCl₃):3438,3002,2946,2868,1727,1652,1514,1485,1363,1310,1245,1154/cm.

 $[\alpha]_D = -80.4^{\circ} \text{ (CHCl}_s, c=1.01, 24.0^{\circ}\text{C}).$

10 No.1k-3

CDCl₈ 200MHz

1.10-2.26(14H,m),2.37(2H,t,J=7.2Hz),2.60(1H,m),3.93(1H,m),5.30-5.50(2H,

m),6.33(1H,d,J=7.5Hz),7.48-7.58(3H,m),7.88-7.99(6H,m).

IR(CHCl₈):3446,3004,2952,2874,1709,1652,1515,1485,1305,1153 /cm.

15 $[\alpha]_D = -96.4^{\circ} (CHCl_8, c = 1.05, 23.0^{\circ}C).$

No.1k-4

CDCl₃ 300MHz

502,1441,1410,1307,1276/cm.

 $[\alpha]_D = -63.6 \pm 1.9^{\circ} \text{ (CHCl}_8, c = 0.56, 22^{\circ}\text{C}).$

No.1k-6

5 CDCl₃ 300MHz

1.04-2.24(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.30-5.43(2H,m),6.21(1H,d,J=7.2Hz),7.41-7.49(3H,m),7.73-7.77(2H,m).

IR(CHCl_s):3447,3011,2955,1708,1653,1603,1578,1515,1486,1457,1312,1211, 1164/cm.

10 $[\alpha]_D = -60.3^{\circ}$ (CHCl₈, c=1.00,23°C).

No.1k-7

CDCl₈ 300MHz

1.04-2.22(14H,m), 2.36(2H,t,J=7.2Hz), 2.57(1H,m), 3.87(1H,m), 5.30-5.44(2H,m), 5.30-5.44(

15 m),6.17(1H,d,J=8.7Hz),6.99-7.40(7H,m),7.73(2H,d,J=7.5Hz).

IR(CHCl₈):3449,3013,2955,1739,1708,1651,1609,1588,1522,1487,1243,1227, 1169/cm.

 $[\alpha]_D = -60.2^{\circ} \text{ (CHCl}_3, c = 0.92, 23^{\circ}\text{C}).$

20 No.1k-8

CDCl₈ 300MHz

1.04-2.25(14H,m),2.34(2H,t,J=7.5Hz),2.56(1H,m),3.87(1H,m),5.30-5.44(2H,m),6.19(1H,d,J=7.5Hz),6.83-6.94(6H,m),7.69(2H,d,J=8.7Hz).

IR(CHCl_s):3599,3455,3012,2955,1711,1644,1604,1577,1524,1507,1492,1290,

25 1236,1197,1170/cm.

 $[\alpha]_D = -47.7^{\circ} \text{ (CHCl}_3, c=1.01,22^{\circ}\text{C}).$

No.1k-9

CDCl₈ 300MHz

1.04-2.20(14H,m),2.31(3H,s),2.36(2H,t,J=7.2Hz),2.56(1H,m),3.86(1H,m),5.3 0-5.43(2H,m),6.16(1H,d,J=7.2Hz),7.00-7.11(6H,m),7.74(2H,d,J=8.7Hz). IR(CHCl₈):3450,3010,2955,1750,1709,1651,1609,1596,1523,1489,1370,1247, 1227,1183/cm.

5 $[\alpha]_D = -54.7^{\circ}$ (CHCl₃, c=1.01,22°C).

No.1k-10

CDCl₃ 300MHz

1.04-2.22(14H,m), 2.35(2H,t,J=7.2Hz), 2.56(1H,m), 3.82(3H,s), 3.86(1H,m), 5.3

10 0-5.43(2H,m),6.17(1H,d,J=6.9Hz),6.89-7.01(6H,m),7.70(2H,d,J=8.7Hz).
IR(CHCl₈):3023,2955,1742,1708,1649,1613,1602,1577,1522,1507,1490,1227,
1210,1170/cm.

 $[\alpha]_D$ =-58.1° (CHCl₃, C=1.01,22°C).

15 No.1m-1

CDCl_s 300MHz

1.06-2.25(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.91(1H,m),5.3 3-5.47(2H,m),6.24(1H,d,J=6.9Hz),7.35-7.38(3H,m),7.53-7.60(4H,m),7.75-7.7 No.1m-3

CDCl₈ 300MHz

1.06-2.23(14H,m), 2.32(2H,t,J=7.0Hz), 2.62(1H,m), 3.63(3H,s), 3.93(1H,m), 5.3

5 0-5.50(2H,m),6.28(1H,d,J=7.0Hz),7.38-7.51(3H,m),7.58-7.67(4H,m),7.83-7.8 8(2H,m).

IR(CHCl_s):3438,3008,2948,2875,1783(w),1727,1650,1608,1580(w),1523,150 1,1482/cm.

 $[\alpha]_D = +59^{\circ} (CHCl_s, c=1.49, 25^{\circ}C)$

10

No.1m-4

CDCl₈ 300MHz

1.08-2.25(14H,m),2.36(2H,t,J=7.4Hz),2.59(1H,m),3.91(1H,m),5.28-5.48(3H,m),6.29(1H,d,J=7.4Hz),7.38-7.50(3H,m),7.61-7.67(4H,m),7.81-7.86(2H,m).

15 IR(CHCl_s):3436,3010,2948,2868,1727,1715(sh),1649,,1615(w),1524,1502,14 82,1372/cm.

 $[\alpha]_{D} = +72^{\circ} (CHCl_{s}, c=0.98, 25^{\circ}C)$

No.1m-5

20 CDCl₈ 300MHz

1.09-2.20(14H,m),2.32(2H,t,J=7.2Hz),2.63(1H,m),3.63(3H,s),3.92(1H,m),5.3 1-5.51(2H,m),6.35(1H,d,J=7.0Hz),7.51-7.60(3H,m),7.92-7.97(6H,m). IR(CHCl_s):3436,3008,2946,2875,1727,1652,1608(w),1515,1484/cm.

 $[\alpha]_D = +82^{\circ} \text{ (CHCl}_3, c=0.99, 25^{\circ}\text{C})$

25

No.1m-6

CDCl₃ 300MHz

1.09-2.23(14H,m),2.37(2H,t,J=7.2Hz),2.60(1H,m),3.92(1H,m),5.30-5.49(2H,m),6.32(1H,d,J=7.4Hz),7.51-7.55(3H,m),7.85-7.98(6H,m).

IR(CHCl₈):3436,3010,2950,2875,2670,1727,1715(sh),1650,1605(w),1515,148 4/cm.

 $[\alpha]_D = +84^{\circ} \text{ (CHCl}_8, c=1.54,25^{\circ}\text{C})$

 $5 \quad No.1m-7$

CDCl₃ 300MHz

1.03-2.18(14H,m),2.32(2H,t,J=7.4Hz),2.59(1H,m),3.64(3H,s),3.89(1H,m),5.2 9-5.49(2H,m),6.16(1H,d,J=7.8Hz),6.98-7.06(4H,m),7.14-7.20(1H,m),7.34-7.4 1(2H,m),7.73-7.78(2H,m).

IR(CHCl₈):3438,3008,2946,2868,1727,1648,1610,1586,1519,1485/cm. $[\alpha]_{D} = +54^{\circ} \text{ (CHCl}_{8}, c=1.29,25^{\circ}\text{C}).$

No.1m-8

CDCl₃ 300MHz

1.06-2.21(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.31-5.46(2H,m),6.17(1H,d,J=6.9Hz),6.99-7.05(4H,m),7.15-7.21(1H,m),7.36-7.41(2H,m),7.72-7.75(2H,m).

IR(CHCl₈):3436,3010,2948,2868,2675,1730(sh),1709,1647,1608,1586,1520,1

CDCl₈ 300MHz ·

1.04-2.20(14H,m), 2.31-2.39(5H,m), 2.57(1H,m), 3.87(1H,m), 5.28-5.47(2H,m), 6.17(1H,d,J=7.0Hz), 6.99-7.12(6H,m), 7.72-7.76(2H,m).

IR(CHCl₃):3674,3572,3438,3010,2948,2868,2626,1748,1710,1648,1615,1595.

5 1520,1489/cm.

 $[\alpha]_D = +51^{\circ} (CHCl_8, c=0.91, 25^{\circ}C)$

No.1m-11

CDCl₃ 300MHz

1.04-2.16(14H,m),2.31(2H,t,J=7.2Hz),2.59(1H,m),3.63(3H,s),3.89(1H,m),5.2 9-5.49(2H,m),6.24(1H,d,J=7.4Hz),6.54(1H,s),6.83-6.93(6H,m),7.69-7.73(2H,m).

IR(CHCl_s):3674,3588,3438,3296,3010,2946,2868,1725,1646,1603,1520,1504, 1489/cm.

15 $[\alpha]_D = +51^{\circ} (CHCl_s, c=0.91, 25^{\circ}C)$

No.1m - 12

CDCl₃ 300MHz

1.04-2.21(14H,m),2.33(2H,t,J=8.0Hz),2.56(1H,m),3.87(1H,m),5.28-5.48(2H,

m),6.23(1H,d,J=8.0Hz),6.75(1H,m),6.87-6.94(6H,m),7.66-7.71(2H,m),9.63(1 H,brs).

IR(CHCl_s):3674,3582,3436,3275,3010,2950,2868,2675,1727,1710(sh),1643,1 603,1522,1504,1490/cm.

 $[\alpha]_D = +30^{\circ} (CHCl_8, c=0.97, 25^{\circ}C)$

25

No.1m - 13

CDCl₈ 300MHz

1.01-2.18(14H,m),2.31(2H,t,J=7.4Hz),2.58(1H,m),3.63(3H,s),3.82(3H,s),3.89 (1H,m),5.29-5.48(2H,m),6.14(1H,d,J=7.0Hz),6.88-7.02(6H,m),7.70-7.74(2H,

m).

IR(CHCl₃):3442,3402,3004,2946,2868,1727,1648,1600,1518,1499/cm. $[\alpha]_D = +42^{\circ} (CHCl_s, c = 1.82, 26^{\circ}C)$

No.1m-145

CDCl₈ 300MHz

1.05-2.21(14H,m), 2.35(2H,t,J=7.2Hz), 2.55(1H,m), 3.82(3H,s), 3.88(1H,m), 5.27-5.46(2H,m), 6.16(1H,d,J=7.2Hz), 6.88-7.02(6H,m), 7.68-7.73(2H,m).

IR(CHCl₃):3438,3012,2948,2870,2650,1730(sh),1709,1647,1615(sh),1601,15

10 19,1492/cm.

 $[\alpha]_D = +64^{\circ} (CHCl_s, c = 0.70, 25^{\circ}C)$

No.1m-15

CDCl_s 300MHz

1.05-2.20(14H,m), 2.29-2.36(5H,m), 2.62(1H,m), 3.63(3H,s), 3.92(1H,m), 5.30-5.15 50(2H,m),6.25(1H,d,J=7.2Hz),7.16-7.21(2H,m),7.59-7.64(4H,m),7.83-7.87(2 H,m).

IR(CHCl_s):3446,3010,2946,2868,1745(sh),1728,1650,1615,1525,1507,1486/c m.

20 $[\alpha]_D = +65.0^{\circ} (CHCl_3, c=1.02, 23^{\circ}C)$

No.1m-16

CDCl_s 300MHz

1.08-2.21(14H,m), 2.34-2.40(5H,m), 2.59(1H,m), 3.90(1H,m), 5.29-5.48(2H,m),

6.29(1H,d,J=7.0Hz),7.18(2H,d,J=8.6Hz),7.58-7.64(4H,m),7.83(2H,d,J=8.2Hz)25).

IR(CHCl₃):3438,3012,2948,2870,2622,1749,1710,1649,1610,1526,1508,1487/

No.1m-17

CDCl₈ 300MHz

1.06-2.19(14H,m), 2.32(2H,t,J=7.2Hz), 2.62(1H,m), 3.63(3H,s), 3.93(1H,m), 5.3

5 0-5.50(2H,m),6.32(1H,d,J=7.6Hz),6.41(1H,s),6.94(2H,d,J=9.0Hz),7.47(2H,d, J=9.0Hz),7.58(2H,d,J=8.6Hz),7.81(2H,d,J=8.6Hz).

IR(CHCl₈):3580,3434,3284,3010,2946,2868,1726,1646,1606,1528,1490/cm. [α]_D=+62.4° (CHCl₈,c=1.01,23°C)

10 No.1m - 18

CDCl₃+CD₅OD 300MHz

1.11-2.18(14H,m),2.32(2H,t,J=7.4Hz),2.59(1H,m),3.88(1H,m),5.30-5.49(2H,m),6.55(1H,d,J=7.0Hz),6.92(2H,d,J=8.6Hz),7.47(2H,d,J=8.6Hz),7.59(2H,d,J=8.6Hz),7.79(2H,d,J=8.2Hz).

15 IR(Nujol):3398,3175,2725,1696,1635,1601,1531,1510/cm.

 $[\alpha]_D = +99.5^{\circ} (CH_3OH, c=1.011, 25^{\circ}C)$

No.1m - 19

CDCl₃ 300MHz

20 1.05-2.20(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.86(3H,s),3.94 (1H,m),5.30-5.50(2H,m),6.24(1H,d,J=7.0Hz),6.99(2H,d,J=8.6Hz),7.53-7.63(4 H,m),7.82(2H,d,J=8.6Hz).

IR(CHCl_s):3440,3006,2946,2875,1726,1649,1606,1527,1510,1489/cm.

 $[\alpha]_D = +68^{\circ} (CHCl_3, c=0.88, 26^{\circ}C)$

25

No.1m-20

CDCl₈ 300MHz

1.09-2.20(14H,m),2.35(2H,t,J=7.3Hz),2.58(1H,m),3.85(3H,s),3.89(1H,m),5.2 8-5.48(2H,m),6.35(1H,d,J=7.2Hz),6.98(2H,d,J=8.8Hz),7.51-7.61(4H,m),7.81(

2H, d, J=8.4Hz), 8.34(1H, brs).

IR(CHCl₈):3446,3012,2952,2881,2640,1730(sh),1707,1647,1606,1527,1510,1 489/cm.

 $[\alpha]_D = +83^{\circ} \text{ (CHCl}_3, c=1.00, 25^{\circ}\text{C}).$

5

 $N_{0.1m} - 21$

CDCl₈ 300MHz

1.05-2.14(14H,m),2.37(2H,t,J=7.2Hz),2.51(1H,m),3.81(1H,m),5.34-5.46(2H,m),6.11(1H,d,J=7.5Hz),7.33-7.48(3H,m),7.53-7.55(2H,m).

10 IR(CHCl₈):3420,3250,3008,2948,2870,2660,2210,1735(sh),1705,1645,1503,1 441,1409/cm.

 $[\alpha]_D = +59.2 \pm 1.0^{\circ}$ (CHCl₃,c=1.023,22°C).

No.1m - 22

15 CDCl_a 300MHz

1.05-2.17(14H,m),2.37(2H,t,J=7.2Hz),2.52(1H,m),3.82(1H,m),5.32-5.47(2H,m),6.20(1H,d,J=7.6Hz),7.38-7.53(3H,m),7.58-7.61(6H,m),9.11(1H,brs).
IR(CHCl_s):3420,3250,3010,2984,2870,2675,2208,1730(sh),1705,1640,1500,1

CDCl₈ 300MHz

1.05-2.21(14H,m),2.36(2H,t,J=7.2Hz),2.57(1H,m),3.89(1H,m),5.28-5.47(2H,m),6.22(1H,d,J=7.0Hz),7.39-7.55(3H,m),7.73-7.79(2H,m).

IR(CHCl₈):3676,3572,3436,3010,2948,2875,1730(sh),1709,1650,1600,1580,1

5 514,1484/cm.

 $[\alpha]_D = +57^{\circ}$ (CHCl₈,c=0.97,26°C).

No.1m - 25

CDCl_a 300MHz

1.04-2.18(14H,m),2.28-2.35(5H,m),2.59(1H,m),3.62(3H,s),3.88(1H,m),5.29-5. 49(2H,m),6.20(1H,d,J=7.2Hz),7.15(2H,d,J=9.0Hz),7.80(2H,d,J=8.8Hz). IR(CHCl₈):3436,3010,2946,2868,1752,1727,1653,1602,1519,1491/cm. $[\alpha]_D=+53^{\circ}$ (CHCl₈,c=1.63,25°C).

 $\cdot 15$ No.1m - 26

CDCl₈ 300MHz

1.05-2.19(14H,m), 2.32-2.38(5H,m), 2.56(1H,m), 3.88(1H,m), 5.29-5.47(2H,m), 6.25(1H,d,J=7.4Hz), 7.15(2H,d,J=9.0Hz), 7.78(2H,d,J=8.6Hz).

IR(CHCl₈):3434,3016,3006,2948,2880,2622,1752,1730(sh),1710,1651,1605,1

20 520,1492/cm.

 $[\alpha]_D = +58^{\circ} (CHCl_3, c=3.68, 24^{\circ}C)$

No.1m - 27

CDCl₃ 300MHz

25 1.05-2.16(14H,m),2.30(2H,t,J=7.5Hz),2.57(1H,m),3.62(3H,s),3.87(1H,m),5.2 7-5.47(2H,m),6.32(1H,d,J=7.4Hz),6.85(2H,d,J=8.6Hz),7.62(2H,d,J=8.6Hz),8. 35(1H,s).

IR(CHCl₃):3580,3450,3216,3010,2946,2868,1726,1640,1608,1584,1528,1496/cm.

 $[\alpha]_D = +56.2^{\circ} \text{ (CHCl}_3, c = 0.713, 23^{\circ}\text{C})$

No.1m - 28

CDCl₃ 200MHz

5 1.10-2.25(14H,m),2.32(2H,t,J=7.2Hz),2.55(1H,brs),3.82-3.93(1H,m),5.27-5.4 7(2H,m),6.25(1H,d,J=7.4Hz),6.86(2H,d,J=8.6Hz),7.62(2H,d,J=8.6Hz). IR(CHCl₈):3438,3242,2675,1730(sh),1708,1639,1607,1585/cm.

No.1m - 29

10 CDCl₃ 300MHz

1.05-2.18(14H,m),2.31(2H,t,J=7.4Hz),2.58(1H,m),3.64(3H,s),3.85(3H,s),3.89 (1H,m),5.29-5.48(2H,m),6.14(1H,d,J=6.6Hz),6.92(2H,d,J=9.0Hz),7.74(2H,d,J=9.0Hz).

IR(CHCl₈):3445,3008,2946,2868,1727,1646,1606,1578,1523,1493/cm.

15 $[\alpha]_{D}$ =+53° (CHCl₃,c=2.03,24°C)

No.1m - 30

CDCl₈ 300MHz

 $[\alpha]_D = +67^{\circ} (CH_8OH, c = 1.01, 24^{\circ}C).$

No.1m-32

CDCl₈ 200MHz

5 1.09-2.23(14H,m),2.33(2H,t,J=7.1Hz),2.57(1H,brs),3.40-3.93(9H,m),4.41(1H,brs),5.29-5.48(2H,m),6.44(1H,d,J=7.4Hz),7.43(2H,d,J=8.2Hz),7.80(2H,d,J=7.8Hz).

 $IR(CHCl_s):3434,3354,1726,1720(sh),1660(sh),1626/cm$.

 $10 \, \text{No.} \, 1\text{m} - 33$

CDCl₈ 200MHz

1.14-2.25(14H,m),2.37(2H,t,J=7.3Hz),2.64(1H,brs),3.93-4.01(1H,m),5.30-5.5 1(2H,m),6.47(1H,d,J=7.4Hz),7.63-7.74(2H,m),7.79(2H,s),7.89-7.93(1H,m),8. 00(1H,dd,J=2.3,1.0Hz),8.30(1H,d,J=1.0Hz),8.65-8.73(2H,m).

15 IR(CHCl_s):3450,2675,1728,1707,1649,1528,1509/cm.

 $[\alpha]_D = +82.8 \pm 1.2^{\circ} \text{ (CHCl}_8, c=1.01,23^{\circ}\text{C}).$

No.2a-1

 $[\alpha]_D = +69.0^{\circ} (MeOH, c=1.01, 25^{\circ}C)$

20

No.2a-2

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.3 0(1H,m),5.35-5.52(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),7.58(2H,m),7.58(2H,m),7.58(2H,m),7.58(2H,m),7.58(2H,m),7.58(2H,m),7.58(2H,m),7.58(2H,m

25 m),7.66 and 7.80(each 2H,each d,J=8.7Hz).

IR(CHCl_s):3116,3014,2925,2870,2663,1708,1651,1610,1524,1504,1484,1472 /cm.

 $[\alpha]_D = +64.1^{\circ} \text{ (MeOH,c=1.02,25°C)}.$

No.2a-3

 $[\alpha]_{D}$ =+76.6° (MeOH,c=1.18,26°C).

No.2a-4

5 CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.25(each 3H,each s),1.64-2.51(14H,m),4.3 1(1H,m),5.36-5.53(2H,m),6.33(1H,d,J=8.4z),7.50-7.56(3H,m),7.85-7.98(6H,m).

IR(CHCl₈):3515,3452,3014,2925,2870,1740,1708,1654,1517,1486,1470 /cm.

10 $[\alpha]_D = +79.5^{\circ}$ (MeOH,c=1.18, 22°C).

No.2a-5

CD_sOD 300MHz

0.98(1H,d,J=9.9Hz),1.18 and 1.25(each 3H,each s),1.56-1.71(3H,m),1.98-2.

15 40(11H,m), 4.17(1H,m), 5.41-5.52(2H,m), 7.52-7.61(3H,m), 7.91-8.01(6H,m). IR(KBr): 3416, 3063, 2983, 2921, 2869, 1704, 1643, 1566, 1518, 1488, 1408 /cm. $[\alpha]_{D} = +62.0^{\circ} \text{ (MeOH, c=1.00, } 25^{\circ}\text{C})$.

```
No.2a-10
```

 $[\alpha]_D = +74.7^{\circ}$ (MeOH, c=1.00,25°C).

5 No.2a-11

 $[\alpha]_D = +72.1^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

No.2a-12

 $[\alpha]_D = +53.1^{\circ} \text{ (CHCl}_3, c=1.01,26^{\circ}\text{C}).$

10 m.p.155.0-156.0℃

No.2a-13

CDCl₈ 300MHz

0.98(1H,d,J=10.2Hz),1.18 and 1.25(each 3H,each s),1.63-2.40(14H,m),4.3

15 0(1H,m),5.46-5.58(2H,m),6.44(1H,d,J=8.4Hz),7.49 and 7.77(each 2H,each d,J=8.7Hz),7.54(1H,s).

IR(CHCl_s):3689,3378,3028,3014,2924,1713,1652,1602,1522,1496 /cm.

 $[\alpha]_D$ = +78.3° (MeOH,c=0.84,25°C).

m.p.205.0-206.0°C

20

No.2a-14

 $[\alpha]_D = +72.5^{\circ} \text{ (MeOH,c=1.07,25°C)}.$

No.2a-15

25 CDCl₃ 300MHz

0.99(1H,d,J=9.9Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),4.27(1H,m),5.30-5.50(2H,m),6.29(1H,d,J=9.0Hz),7.11 and 7.20(each 1H,each d, J=16.2Hz),7.29-7.55(5H,m),7.57 and 7.72(each 2H,each d,J=8.7Hz).

 $IR(CHCl_s): 3453, 3083, 3022, 3013, 2925, 2870, 1708, 1650, 1607, 1560, 1522, 1496, 1660$

SEITH LAND

/cm.

 $[\alpha]_D$ = +72.3° (MeOH,c=1.00,27°C). m.p.115.0-117.0°C

5 No.2a-16

CDCl₃ 300MHz

0.92(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.48(14H,m),3.6 2(3H,s),4.29(1H,m),5.30-5.50(2H,m),6.20(1H,d,J=8.7Hz),6.59 and 6.68 (each 1H,each,d,J=12.3Hz),7.23(5H,s),7.29 and 7.59(each 2H,each d,J=8.

10 1Hz).

IR(CHCl₈):3453,3024,3016,2924,2870,1730,1651,1607,1520,1495 /cm. $[\alpha]_D = +56.8^{\circ}$ (MeOH,c=1.04,24°C).

No.2a-17

15 CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.38(14H,m),4.2 6(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.4Hz),6.59 and 6.70(each 1H,each d,J=12.3Hz),7.23(5H,s),7.30 and 7.57(each 2H,each d,J=8.7Hz).

 $IR(CHCl_{\mathfrak{d}}): 3452, 3081, 3019, 3014, 2925, 2870, 2665, 1708, 1650, 1607, 1521, 1495, 1666,$

20 /cm.

 $[\alpha]_D = +61.6^{\circ} \text{ (MeOH,c=1.00,27°C)}.$

No.2a-18

CDCl₈ 300MHz

25 0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each,s),1.50-2.50(14H,m),3.61 (3H,s),4.31(1H,m),5.35-5.51(2H,m),6.33(1H,d,J=8.4Hz),7.48-7.64(4H,m),7.7 9-7.83(2H,m),7.91(1H,dt,J=1.5 and 7.8Hz),8.01(1H,dt,J=1.5 and 7.8Hz),8. 13(1H,t,J=1.5Hz).

IR(CHCl.):3450 3026 3013 2025 2070 1720 1650 1600 1510

 $[\alpha]_D = +56.0^{\circ} \text{ (MeOH,c=1.01,25°C)}.$

No.2a-19

CDCl₃ 300MHz

5 0.95(1H,d,J=9.9Hz),1.14 and 1.21(each 3H,each s),1.53-2.60(14H,m),4.25(1H,m),5.35-5.64(2H,m),7.21(1H,d,J=7.8Hz),7.49-7.68(4H,m),7.76-7.84(3H,m),8.25(1H,m),8.43(1H,m).

IR(CHCl₈):3382,3196,3025,3015,2925,2870,1725,1652,1599,1577,1521 /cm.

 $[\alpha]_D = +55.9^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

10

No.2a-20

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.6 2(3H,s),4.31(1H,m),5.35-5.51(2H,m),6.24(1H,d,J=8.4Hz),7.40-7.52(3H,m),7.

15 71-7.76(2H,m).

IR(CHCl₃):3453,3025,3013,2925,2870,1730,1753,1579,1514,1486 /cm. $[\alpha]_D$ = +61.2° (MeOH,c=1.04,25°C).

No.2a-21

20 CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 8(1H,m),5.34-5.51(2H,m),6.27(1H,d,J=8.7Hz),7.41-7.53(3H,m),7.71-7.74(2H,m).

IR(CHCl₃):3452,3063,3027,3014,2925,2871,1708,1652,1578,1515,1486 /cm.

25 $[\alpha]_D = +62.0^{\circ} \text{ (MeOH,c=1.01,27°C)}.$

No.2a-22

d₆-DMSO 300MHz

0.86(1H,d,J=9.9Hz),1.10 and 1.16(each 3H,each s),1.42-1.52(3H,m),1.85-2.

46(11H,m),3.98(1H,m),5.32-5.43(2H,m),7.41(3H,m),7.88(2H,d,J=6.6Hz),8.19 (1H,d,J=6.6Hz).

IR(KBr):3367,3060,2984,2922,2868,1634,1563,1529,1487/cm.

 $[\alpha]_{D}$ =+47.7° (MeOH,c=1.00,25°C).

5

No.2a-23

 $[\alpha]_D = +62.7^{\circ} \text{ (MeOH,c=1.01,27°C)}.$

No.2a-24

10 CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.25(each 3H,each s),1.52-2.50(14H,m),4.3 1(1H,m),5.36-5.52(2H,m),6.34(1H,d,J=8.4Hz),7.47-7.52(2H,m),7.59-7.64(1H,m),7.78-7.83(6H,m).

IR(CHCl₃):3449,3027,3013,2925,2869,1708,1656,1599,1518,1493 /cm.

15 $[\alpha]_D = +63.1^{\circ} \text{ (MeOH, c=1.00,25°C)}.$

No.2a-25

 $[\alpha]_D = +35.1^{\circ} \text{ (MeOH, c=1.00,25°C)}.$

 $[\alpha]_D = +56.4^{\circ}$ (MeOH, c=1.01, 25°C).

No.2a-28

CDCl₃ 300MHz

5 0.98(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 6(1H,m),5.34-5.51(2H,m),6.20(1H,d,J=9.0Hz),7.01 and 7.70(each 2H,each d,J=9.0Hz,),6.98-7.15(2H,m),7.17(1H,t,J=7.5Hz),7.34-7.40(2H,m). IR(CHCl₈):3454,3031,3018,2925,2870,1708,1650,1588,1523,1487/cm. $[\alpha]_D = +56.2^{\circ}$ (MeOH,c=1.00,25°C).

10

No.2a-29

 $[\alpha]_D = +53.0^{\circ} \text{ (MeOH,c=1.03,25°C)}.$

No.2a-30

15 CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 5(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.7Hz),6.36(1H,s),7.26-7.39(10H,m),7. 60 and 7.68(each 2H,each d,J=8.4Hz).

IR(CHCl_s):3451,3088,3064,3029,3014,2925,2869,1707,1652,1522,1495 /cm.

20 $[\alpha]_D = +54.2^{\circ} \text{ (MeOH, c=1.00,25°C)}.$

No.2a-31

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.6

25 3(3H,s),4.31(1H,m),5.30-5.50(2H,m),6.26(1H,d,J=8.4Hz),6.90(1H,t,J=7.4Hz), 7.13(1H,d,J=8.7Hz),7.29(2H,t,J=8.0Hz),7.67-7.75(5H,m),7.82(1H,s).

IR(Nujol):3380,3244,1723,1638,1601,1578,1535,1495 /cm.

 $[\alpha]_D = +73.6^{\circ} \text{ (MeOH,c=0.50,26°C)}.$

m.p.133.0·134.0℃

No.2a-32

 $[\alpha]_D = +56.1^{\circ} \text{ (MeOH,c=} 1.02,26^{\circ}\text{C}).$

5 No.2a-33

CDCl₈ 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.21(each,3H,each s),1.50-2.50(14H,m),4.25

(1H,m), 5.13(2H,s), 5.30-5.70(3H,m), 6.41(1H,d,J=8.2Hz), 6.89(1H,s), 7.09(1H,s)

s),7.17 and 7.72(each 2H,each d,J=8.2Hz),7.62(1H,s).

10 IR(CHCl₃):3450,3125,3031,3013,2925,2870,2467,1917,1708,1654,1615,1575, 1523,1497 /cm.

 $[\alpha]_D = +55.2^{\circ} \text{ (MeOH,c=1.01,26°C)}.$

No.2a-34

15 $[\alpha]_D = +72.9^{\circ} \text{ (MeOH,c=1.03,25°C)}.$

No.2a-35

CDCl₈ 300MHz

CDCl_s 300MHz

0.83(1H,d,J=10.5Hz),0.95 and 1.18(each 3H,each s),1.44-2.46(14H,m),3.9 2(1H,m),5.34-5.52(3H,m),7.26-7.54(9H,m),7.62(1H,s).

IR(CHCl₈):3432,3310,3189,3023,3014,2924,2870,1704,1610,1594,1523,1487

5 /cm.

 $[\alpha]_D = +25.3^{\circ}$ (MeOH,c=1.00,26°C).

No.2a-38

 $[\alpha]_D = +70.9^{\circ}$ (MeOH, c=1.02, 25°C).

10

No.2a-39

 $[\alpha]_D = +70.6^{\circ} \text{ (MeOH,c=1.01,25°C)}.$

No.2a-40

15 $[\alpha]_D = +74.7^{\circ}$ (MeOH, c=1.00, 25°C).

No.2a-41

 $[\alpha]_D = +72.1^{\circ} \text{ (MeOH, } c=1.01,24^{\circ}\text{C}).$

20 No.2a-42

 $[\alpha]_{p}=+69.2^{\circ}$ (MeOH,c=1.00,25°C).

No.2a-43

 $[\alpha]_D = +70.8^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

25

No.2a-44

 $[\alpha]_D = +60.4^{\circ}$ (MeOH, c=1.00, 26°C).

No.2a-45

CDCl₃ 300MHz

0.97(1H,d,J=9.9Hz),1.13 and 1.23(each 3H,each s),1.55-2.52(14H,m),4.29(1H,m),5.34-5.54(2H,m),6.33(1H,d,J=9.0Hz),7.10(1H,t,J=7.4Hz),7.34(2H,t,J=7.4Hz),7.52(2H,m),7.68 and <math>7.75(each 2H,each d,J=8.4Hz),7.80(1H,s),8.

5 10(1H,s),10.09(1H,s).

IR(CHCl_s):3393,3195,3093,3033,3013,2925,2870,1698,1656,1598,1537,1498/cm.

 $[\alpha]_D = +59.4^{\circ} \text{ (MeOH,c=1.01,24°C)}.$

10 No.2a-46

 $[\alpha]_D = +63.5^{\circ} \text{ (MeOH, c=1.00,25}^{\circ}\text{C}).$

No.2a-47

CDCl₃ 300MHz

0.97(1H,d,J=9.9Hz),1.12 and 1.23(each 3H,each s),1.54-2.48(14H,m),4.29(1H,m),5.35-5.52(2H,m),6.32(1H,d,J=8.7Hz),7.26(1H,m),7.41(2H,t,J=7.8Hz),7.64(2H,d,J=7.5Hz),7.73 and 7.77(each 2H,each d,J=8.4Hz),7.95(1H,s),9.20(1H,s),10.38(1H,s).

IR(CHCl₈):3451,3029,3022,3016,2925,2870,1708,1655,1542,1508,1498,1471, 1459 /cm. $[\alpha]_{D} = +63.5^{\circ} \text{ (MeOH, c=1.02,25°C)}.$ m.p.135.0-137.0°C 5 No.2a-50 $[\alpha]_D = +68.9^{\circ}$ (MeOH,c=1.01,24°C). No.2a-51 10 d₆-DMSO 300MHz 0.87(1H,d,J=9.9Hz),1.10 and 1.17(each 3H,each s),1.40-1.60(3H,m),1.90-2. 40(11H,m),3.98(1H,m),5.35-5.46(2H,m),7.64(1H,s),7.65 and 7.91(each 2H, each d,J=8.7Hz),8.06(1H,d,J=6.0Hz),9.32(1H,brs). IR(KBr):3385,2962,1734,1707,1632,1529,1498 /cm. $[\alpha]_D = +68.4^{\circ} \text{ (MeOH,c=1.01,24°C)}.$ No.2a-52 $[\alpha]_D = +76.2^{\circ}$ (MeOH, c=1.01, 24°C). 20 No.2a-53 $[\alpha]_D = +73.9^{\circ}$ (MeOH, c=1.02,24°C). No.2a-54 $[\alpha]_D = +68.1^{\circ} \text{ (MeOH,c=1.00,24°C)}.$

STANT CELL

25

No.2a-56

No.2a-55

 $[\alpha]_{D}$ =+67.8° (MeOH,c=1.00.24°C).

 $[\alpha]_D = +65.4^{\circ} \text{ (MeOH,c=1.03,25°C)}.$

No.2a-57

 $[\alpha]_D = +63.4^{\circ} \text{ (MeOH,c=1.01,24°C)}.$

5

No.2a-58

 $[\alpha]_D = +66.6^{\circ} \text{ (MeOH,c=1.01,24°C)}.$

No.2a-59

10 $[\alpha]_D = +65.5^{\circ} (MeOH, c = 1.00, 24^{\circ}C).$

No.2a-60

 $[\alpha]_{D}$ =+60.9° (MeOH,c=1.02,25°C).

15 No.2a-61

CDCl₃ 300MHz

0.97(1H,d,J=10.0Hz),1.10 and 1.22(each 3H,each s),1.50-2.50(14H,m),4.2 6(1H,m),5.30-5.54(2H,m),6.28(1H,d,J=8.6Hz),6.60 and 6.82(each 1H,each

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.2 9(1H,m),5.36-5.55(2H,m),6.35(1H,d,J=9.1Hz),7.04 and 7.27(each 1H,each d,J=16.5Hz),7.37(2H,d,J=6.6Hz),7.56 and 7.76(each 2H,each d,J=8.4Hz), 8.57(2H,d,J=6.6Hz).

IR(CHCl_s):3452,3024,3018,3014,2925,2870,2470,1933,1708,1652,1605,1521,
1496 /cm.

 $[\alpha]_{D}$ =+69.2° (MeOH,c=1.01,25°C).

No.2a-64

10 $[\alpha]_D = +56.9^{\circ}$ (MeOH, c=1.24,25°C).

No.2a-65

CDCl_s 300MHz

0.98(1H,d,J=10.5Hz), 1.12 and 1.23(each 3H, each s), 1.54-2.46(14H, m), 4.2

7(1H,m),5.23(2H,s),5.34-5.52(2H,m),6.26(1H,d,J=8.4Hz),7.32-7.45(5H,m),7. 64 and 7.71(each 2H,each d,J=8.4Hz),8.15(1H,s).

IR(CHCl₈):3452,3088,3065,3032,3013,2925,2870,1708,1653,1611,1559,1522, 1496 /cm.

 $[\alpha]_D = +61.0^{\circ} \text{ (MeOH, c=0.91,25°C)}.$

20

No.2a-66

 $[\alpha]_D = +76.0^{\circ} \text{ (MeOH,c=1.01,25°C)}.$

No.2a-67

25 CDCl₃ 300MHz

0.98(1H,d,J=10.4Hz),1.14 and 1.24(each 3H,each s),1.54-2.46(14H,m),4.2 8(1H,m),5.32-5.53(2H,m),6.27(1H,d,J=8.6Hz),6,92-7.31(each 1H,each d,J=16.4Hz),7.02(1H,dd,J=5.8 and 3.6Hz),7.12(1H,d,J=3.6Hz),7.24(1H,d,J=5.8 Hz),7.51 and 7.70(each 2H,each d,J=8.4Hz).

IR(CHCl₃):3453,3029,3013,2925,2870,1739,1650,1604,1524,1515,1494 /cm. $[\alpha]_D = +76.2^{\circ} \text{ (MeOH,c=1.00,24°C)}.$ m.p.104.0-106.0°C

5 No.2a-68

 $[\alpha]_D = +57.7^{\circ} \text{ (MeOH,c=1.01,25}^{\circ}\text{C}).$

No.2a-69

CDCl₈ 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.54-2.48(14H,m),4.2 8(1H,m),5.34-5.53(2H,m),6.29(1H,d,J=9.0Hz),6,54-6.74(each 1H,each d,J=12.0Hz),7.02(1H,dd,J=4.8 and 3.3Hz),6.97(1H,dd,J=3.3 and 1.2Hz),7.13(1 H,dd,J=4.8 and 1.2Hz),7.44 and 7.70(each 2H,each d,J=8.7Hz). IR(CHCl₈):3453,3025,3010,2925,2870,1708,1650,1607,1559,1523,1493 /cm.

15 $[\alpha]_D = +58.4^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

No.2a-70

 $[\alpha]_D = +48.6^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

 $[\alpha]_D = +51.2^{\circ} \text{ (MeOH,c=} 1.02,25^{\circ}\text{C}).$

No.2a-73

CDCl₈ 300MHz

5 0.97(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.54-2.48(14H,m),4.27(1H,m),5.32-5.52(2H,m),6.24(1H,d,J=9.0Hz),6.83-6.94(6H,m),7.65(2H,d,J=9.0Hz).

IR(CHCl_s):3598,3451,3199,3033,3012,2925,2870,1708,1642,1604,1524,1507, 1491 /cm.

10 $[\alpha]_{D}=+52.2^{\circ}$ (MeOH,c=1.01,25°C).

No.2a-74

 $[\alpha]_D = +51.5^{\circ}$ (MeOH,c=0.92,25°C).

15 No.2a-75

CDCl₈ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.46(14H,m),3.8 2(3H,s),4.25(1H,m),5.32-5.52(2H,m),6.19(1H,d,J=8.7Hz),6.89-7.01(6H,m),7.65-7.68(2H,m).

20 IR(CHCl_s):3450,3025,3008,2925,2870,2837,1741,1649,1612,1521,1505,1490 /cm.

 $[\alpha]_D = +51.1^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

No.2a-76

25 $[\alpha]_D = +60.4^{\circ} \text{ (MeOH,c=0.98,25°C)}.$

No.2a-77

CDCl₈ 300MHz

0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),2.3

4(3H,s),4.29(1H,m),5.32-5.54(2H,m),6.32(1H,d,J=8.4Hz),7.19 and 7.60 (each 2H,each d,J=8.4Hz),7.63 and 7.79(each 2H,each d,J=8.4Hz). IR(CHCl₈):3452,3027,3012,2925,2870,1751,1709,1651,1611,1560,1527,1509, 1489 /cm.

5 $[\alpha]_D = +61.2^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

No.2a-78

 $[\alpha]_{D}=+67.4^{\circ}$ (MeOH,c=1.01,25°C).

10 No.2a-79

CDCl₈ 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.54-2.54(14H,m),4.3 1(1H,m),5.32-5.54(2H,m),6.36(1H,d,J=8.2Hz),6.93 and 7.48(each 2H,each d,J=8.6Hz),7.59 and 7.75(each 2H,each d,J=8.4Hz).

15 IR(CHCl₃):3593,3448,3192,3030,3010,2925,2870,1708,1644,1608,1591,1559, 1530,1516,1491 /cm.

 $[\alpha]_D = +65.8^{\circ} \text{ (MeOH,c=1.01,25°C)}.$

No.2a-80

20 $[\alpha]_D = +66.9^{\circ}$ (MeOH, c=1.01, 25°C).

No.2a-81

CDCl₃ 300MHz

0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),3.8 6(3H,s),4.29(1H,m),5.34-5.52(2H,m),6.20(1H,d,J=8.7Hz),6.99 and 7.55 (each 2H,each d,J=9.0Hz),7.61 and 7.77(each 2H,each d,J=8.7Hz). IR(CHCl_s):3450,3009,2925,2870,2838,1740,1708,1650,1608,1557,1528,1512,

1491 /cm.

() .00.00 04.077 4.04.0740

No.2a-82

 $[\alpha]_D = +57.7^{\circ}$ (MeOH, c=1.02,24°C).

5 No.2a-83

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.54-2.48(14H,m),2.3 3(3H,s),4.26(1H,m),5.32-5.52(2H,m),6.25(1H,d,J=8.7Hz),7.16 and 7.75 (each 2H,each d,J=8.7Hz).

10 IR(CHCl₃):3452,3030,3022,3012,2925,2870,1754,1709,1654,1604,1585,1522, 1493 /cm.

 $[\alpha]_D = +57.4^{\circ}$ (MeOH, c=1.01,24°C).

No.2a-84

15 $[\alpha]_p = +57.8^{\circ} \text{ (MeOH, c=1.01,24°C)}.$

No.2a-85

CDCl₈ 300MHz

0.95(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.54-2.48(14H,m),4.2 5(1H,m),5.32-5.52(2H,m),6.28(1H,d,J=8.7Hz),6.87 and 7.57(each 2H,each

d,J=9.0Hz).

IR(CHCl₈):3590,3450,3166,3019,3012,2925,2871,1708,1637,1608,1583,1531,

1498 /cm.

 $[\alpha]_D = +56.0^{\circ} \text{ (MeOH, c=1.01,24°C)}.$

25

20

No.2a-86

 $[\alpha]_D = +59.3^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

BINT CELL

No.2a-87

IR(CHCl₃):3437,3033,3022,3014,2925,2870,1739,1708,1655,1595,1520,1472 /cm.

 $[\alpha]_D = +55.0^{\circ} \text{ (MeOH, c=1.00, 22°C)}.$

5 No.2a-92

 $[\alpha]_D = +50.3^{\circ} \text{ (MeOH, c=1.00, 22°C)}.$

No.2a-93

CDCl₃ 300MHz

10 0.95(1H,d,J=10.5Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.2 5(1H,m),5.34-5.52(2H,m),6.12(1H,d,J=8.7Hz),7.07(1H,dd,J=3.9 and 5.1Hz), 7.45-7.48(2H,m).

IR(CHCl₈):3450,3023,3011,2925,2870,1739,1708,1645,1531,1501,1471 /cm. $[\alpha]_D$ =+49.1° (MeOH,c=1.02,24°C).

15

No.2a-94

 $[\alpha]_D = +51.5^{\circ} \text{ (MeOH,c=1.00,24°C)}.$

CDCl₃ 300MHz

0.98(1H,d,J=10.0Hz),1.13 and 1.23(each 3H,each s),1.54-2.48(14H,m),3.8 5(3H,s),4.25(1H,m),5.32-5.53(2H,m),6.19(1H,d,J=8.8Hz),6.93 and 7.69 (each 2H,each d,J=9.0Hz).

5 IR(CHCl₈):3450,3030,3017,3012,2925,2870,2840,1740,1708,1647,1606,1575, 1525,1496 /cm.

 $[\alpha]_D = +58.2^{\circ} \text{ (MeOH,c=0.99,22°C)}.$

No.2a-88

10 $[\alpha]_D = +50.9^{\circ} \text{ (MeOH, c=1.02,25°C)}.$

No.2a-89

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.18 and 1.26(each 3H,each s),1.56-2.48(14H,m),4.2

15 9(1H,m),5.36-5.54(2H,m),7.03(1H,d,J=8.7Hz),7.21(1H,s),7.43(2H,m),7.74(1 H,ddd,J=1.8,6.9 and 8.7Hz),8.22(1H,dd,J=1.8 and 8.1Hz).

IR(CHCl₈):3443,3087,3023,3014,2925,2870,1708,1685,1658,1630,1517,1466 /cm.

 $[\alpha]_D = +57.1^{\circ} \text{ (MeOH, c=1.01,22°C)}.$

20 m.p.117.0-118.0°C

No.2a-90

 $[\alpha]_D = +54.1^{\circ} \text{ (MeOH, c=1.01,22°C)}.$

25 No.2a-91

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.2 4(1H,m),5.34-5.52(2H,m),6.49-6.53(2H,m),7.11(1H,dd,J=0.9 and 3.6Hz),7.4 4(1H,dd,J=0.9 and 1.8Hz).

0.94(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.50-1.76(3H,m),1.94-

2.39(11H,m), 4.11(1H,m), 5.39-5.49(2H,m), 7.43-7.51(2H,m), 8.05(1H,m).

IR(KBr):3369,3084,2985,2921,2868,1630,1566,1538,1503 /cm.

 $[\alpha]_{D}=+38.8^{\circ}$ (MeOH,c=1.01,22°C).

5

No.2a-97

CD₈OD 300MHz

0.93(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.48-1.58(3H,m),1.96-2.

36(11H,m), 4.10(1H,m), 5.35-5.50(2H,m), 7.42-7.51(2H,m), 8.06(1H,m).

10 IR(KBr):3447,3087,2987,2922,2868,1629,1545,1501 /cm.

 $[\alpha]_D = +52.9^{\circ} \text{ (MeOH,c=1.01,24°C)}.$

No.2a-98

 $[\alpha]_D = +53.2^{\circ} \text{ (MeOH, c=1.02,23°C)}.$

15

No.2a-99

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.26-2.45(24H,m),4.2

No.2a-102

 $[\alpha]_D = +48.8^{\circ} \text{ (MeOH, c=1.01, 23°C)}.$

No.2a-103

5 CDCl₈ 300MHz

0.94(1H,d,J=10.2Hz),1.12 and $1.22(each\ 3H,each\ s),1.52-2.46(14H,m),2.4$ $8(3H,d,J=0.3Hz),4.20(1H,m),5.32-5.54(2H,m),6.46(1H,brs),7.12(1H,d,J=9.0\ Hz).$

IR(CHCl₃):3415,3144,3029,3011,2926,2871,1708,1671,1598,1538,14564 /cm

10

 $[\alpha]_D = +49.6^{\circ}$ (MeOH, c=1.01, 23°C).

No.2a-104

 $[\alpha]_D = +77.0^{\circ} \text{ (MeOH,c=1.02,23°C)}.$

15

No.2a-105

CDCl₃ 300MHz

93(1H,d,J=9.9Hz),1.09 and 1.21(each 3H,each s),1.51-2.44(14H,m),3.90(6 H,s),4.20(1H,m),5.38-5.50(2H,m),5.87(1H,d,J=9.0Hz),6.25 and 7.54

20 (each 1H,each d,J=15.6Hz),6.84(1H,d,J=8.1Hz),7.03(1H,d,J=1.8Hz),7.09(1H,d,J=1.8 and 8.1Hz).

IR(CHCl₈):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 /cm.

 $[\alpha]_D = +77.3^{\circ} \text{ (MeOH,c=1.01,23°C)}.$

25

No.2a-106

 $[\alpha]_D = +67.0^{\circ} \text{ (MeOH,c=1.00,25°C)}.$

No.2a-107

 $[\alpha]_D$ =+66.6° (MeOH,c=1.01,24°C). m.p.168.0-170.0°C

No.2a-108

5 $[\alpha]_D = +61.8^{\circ} \text{ (MeOH,c=1.00,22°C)}.$

No.2a-109

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.10 and 1.22(each 3H,each s),1.51-2.45(14H,m),4.2

10 5(1H,m),5.33-5.49(2H,m),6.21(1H,d,J=8.7Hz),7.25 and 7.60(each 2H,each d,J=8.7Hz),7.33-7.41(5H,s).

IR(CHCl₈):3453,3062,3028,3014,2925,2870,1739,1708,1651,1594,1557,1515, 1481 /cm.

 $[\alpha]_D = +61.0^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

15

No.2a-110

CD₈OD 300MHz

0.94(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.54-2.37(14H,m),4.12(

1H,m),5.38-5.49(2H,m),7.25 and 7.68(each 2H,each d,J=8.7Hz),7.41(5H,s)

20

IR(KBr):3435,3058,2986,2920,2866,1635,1595,1562,1521,1482,1439,1411 /c

 $[\alpha]_D = +47.3^{\circ} \text{ (MeOH, c=1.01,23°C)}.$

25 No.2a-111

m.

 $[\alpha]_D = +65.6^{\circ}$ (MeOH, c=1.01,24°C).

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.2 7(1H,m),5.35-5.50(2H,m),6.22(1H,d,J=8.4Hz),7.40 and 7.66(each 2H,each d,J=9.0Hz).

IR(CHCl₈):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513

5 /cm.

 $[\alpha]_D = +65.6^{\circ}$ (MeOH,c=1.01,22°C).

No.2a-113

 $[\alpha]_D = +59.6^{\circ}$ (MeOH,c=1.00,24°C).

10

15

No.2a-114

CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.12 and 1.24(each 3H,each s),1.52-2.46(14H,m),4.2 9(1H,m),5.35-5.51(2H,m),6.28(1H,d,J=8.4Hz),7.70 and 7.83(each 2H,each d,J=8.4Hz).

IR(CHCl_s):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 /cm.

 $[\alpha]_D = +60.6^{\circ}$ (MeOH, c=1.01,22°C).

20 No.2a-115

 $[\alpha]_D = +59.7^{\circ}$ (MeOH, c=0.99, 24°C).

No.2a-116

CDCl₃ 300MHz

25 0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.3 9(3H,s),4.27(1H,m),5.33-5.51(2H,m),6.24(1H,d,J=9.0Hz),7.23 and 7.62 (each 2H,each d,J=8.4Hz).

IR(CHCl₈):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513/cm.

 $[\alpha]_D = +59.7^{\circ} \text{ (MeOH, c=0.99, 24°C)}.$

No.2a-117

 $[\alpha]_p = +56.7^{\circ} \text{ (MeOH,c=} 1.00,23^{\circ}\text{C}).$

5

No.2a-118

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.44(14H,m),4.2

3(1H,m), 5.34-5.51(2H,m), 6.02(2H,s), 6.13(1H,d,J=8.7Hz), 6.83(1H,dd,J=1.2)

10 and 7.8Hz),7.22-7.25(2H,m).

IR(CHCl₈):3453,3031,3020,3012,2924,2870,1740,1708,1650,1619,1605,1519, 1504,1480 /cm.

 $[\alpha]_D = +57.2^{\circ} \text{ (MeOH,c=1.02,23°C)}.$

15 No.2a-119

CDCl₃ 300MHz

0.96(1H,d,J=10.5Hz),1.07 and 1.23(each 3H,each s),1.51-2.44(14H,m),2.3 2(3H,s),4.26(1H,m),5.37-5.52(2H,m),6.40(1H,d,J=9.0Hz),7.09(1H,m),7.30(1)

/cm.

 $[\alpha]_D = +46.3^{\circ} \text{ (MeOH,c=1.01,21°C)}.$

No.2a-121

5 CDCl₃ 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.47-2.47(14H,m),3.9 5(3H,s),4.31(1H,m),5.32-5.50(2H,m),6.98(1H,dd,J=0.9 and 8.4Hz),7.09(1H,dd,J=0.9,7.7 and 8.4Hz),7.45(1H,m),8.19(1H,dd,J=2.1 and 8.1Hz),8.32(1H,d,J=9.0Hz).

10 IR(CHCl₈):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600, 1536,1483,1470 /cm.

 $[\alpha]_D = +38.1^{\circ} \text{ (MeOH, c=1.02,23°C)}.$

No.2a-122

15 $[\alpha]_D = +42.3^{\circ} \text{ (MeOH,c=0.99,23°C)}.$

No.2a-123

 $[\alpha]_D = +38.7^{\circ}$ (MeOH, c=1.00, 21°C).

20 No.2a-124

 $[\alpha]_D = +45.0^{\circ} \text{ (MeOH,c=1.01,21°C)}.$

m.p.119.0-120.0℃

No.2a-125

25 $[\alpha]_D = +49.8^{\circ}$ (MeOH, c=1.01, 22°C).

No.2a-126

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.47(14H,m),4.2

6(1H,m), 5.34-5.50(2H,m), 6.22(1H,d,J=8.7Hz), 7.55-7.61(4H,m).

IR(CHCl₈):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600, 1536,1483,1470 /cm.

 $[\alpha]_D = +63.0^{\circ} \text{ (MeOH,c=1.01,23°C)}.$

5

10

No.2a-127

CDCl₃ 300MHz

0.91(1H,d,J=10.2Hz),1.10 and 1.20(each 3H,each s),1.50-2.42(14H,m),4.2 3(1H,m),5.31-5.51(2H,m),6.45(1H,d,J=8.4Hz),7.01(1H,t,J=7.4Hz),7.22-7.27(2H,m),7.33-7.40(4H,m),7.53(2H,d,J=9.0Hz),8.30 and 8.48(each 1H,each s)

IR(CHCl_s):3452,3028,3022,3015,2925,2870,1708,1654,1590,1514,1478 /cm. $[\alpha]_D$ =+59.5° (MeOH,c=1.01,23°C).

15 No.2a-128

d₆-DMSO 300MHz

0.84(1H,d,J=9.9Hz),1.06 and 1.19(each 3H,each s),1.37-2.37(14H,m),3.79(1H,m),5.35-5.51(2H,m),6.08(1H,d,J=8.7Hz),6.85-6.90(1H,m),7.18-7.23(2H,m),7.35-7.38(2H,m),8.42(1H,s),12.00(1H,s).

20 IR(Nujol):3395,3345,2925,2866,2623,2506,1697,1658,1638,1597,1557 /cm. $[\alpha]_D = +26.0^{\circ} \text{ (MeOH,c=1.01,23°C)}.$ m.p.164.0-166.0°C

No.2a-129

25 CDCl₃ 300MHz

1.01(1H,d,J=10.0Hz),1.17 and 1.25(each 3H,each s),1.54-2.52(14H,m),4.3 4(1H,m),5.36-5.57(2H,m),6.42(1H,d,J=8.6Hz),7.51-7.60(2H,m),7.77(1H,dd,J=1.8 and 8.6Hz),7.85-7.96(3H,m),8.24(1H,brs).

IR(CHCl₃):3451,3060,3028,3010,2925,2870,1708,1652,1629,1600,1517,1502

/cm.

 $[\alpha]_D = +68.6^{\circ}$ (MeOH, c=1.00,22°C).

No.2a-130

5 CDCl₃ 300MHz

 $1.02(1H,d,J=10.2Hz),1.04 \ \ and \ \ 1.26(each \ \ 3H,each \ \ s),1.54-2.52(14H,m),4.4$ $1(1H,m),5.41-5.58(2H,m),6.14(1H,d,J=9.0Hz),7.43-7.59(4H,m),7.85-7.92(2H,m),8.27(1H,dd,J=1.8 \ \ and \ \ 7.2Hz).$

IR(CHCl_s):3436,3032,3010,2924,2870,2664,1708,1652,1512,1498 /cm.

10 [α]_D=+93.9° (MeOH,c=1.00,22°C) m.p.94.0-96.0°C

No.2a-131

 $[\alpha]_D = +50.2^{\circ}$ (MeOH, c=0.95, 21°C).

15

No.2a-132

 $[\alpha]_D = +10.9^{\circ} \text{ (MeOH,c=0.92,21°C)}.$

No.2a-133

20 $[\alpha]_D = +60.4^{\circ}$ (MeOH, c=1.00,21°C).

No.2a-134

 $[\alpha]_D = +38.5^{\circ}$ (MeOH,c=1.01,23°C).

25 No.2a-135

 $[\alpha]_D = +52.5$ ° (MeOH,c=1.01,23°C).

m.p.180.0-182.0°C

Similar

No.2a-136

 $[\alpha]_D = +35.3^{\circ} \text{ (MeOH, c=1.02,23°C)}.$

m.p.79.0-80.0°C

No.2a-137

5 CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.43(3H,t,J=6.9Hz),1.

 $52 \cdot 2.44(14H,m), 4.03(2H,q,J=6.9Hz), 4.26(1H,m), 5.33 \cdot 5.50(2H,m), 6.19(1H,d,m)$

J=8.7Hz), 6.88-7.00(6H, m), 7.65-7.68(2H, m).

IR(CHCl₃):3455,3031,3024,3014,2988,2925,2870,1741,1708,1649,1602,1521,

10 1504,1490 /cm.

 $[\alpha]_D = +52.0^{\circ}$ (MeOH, c=1.01, 23°C).

No.2a-138

CDCl₈ 300MHz

· 15 0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.35(6H,d,J=6.0Hz),1. 53-2.46(14H,m),4.25(1H,m),4.51(1H,m),5.33-5.50(2H,m),6.12(1H,d,J=9.0Hz),6.87-6.99(6H,m),7.65-7.68(2H,m).

IR(CHCl₃):3454,3031,3014,2980,2925,2870,1741,1708,1649,1602,1522,1490

No.2a-140

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.18 and 1.23(each 3H,each s),1.57-2.50(14H,m),4.3

5 5(1H,m),5.32-5.55(2H,m),6.42(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.21-7.24(2H m),7.46(1H,m),7.76(1H,m),7.86(1H,d,J=3.0Hz),10.20(1H,s).

IR(CHCl₈):3465,3010,2924,1739,1604,1546,1504 /cm.

 $[\alpha]_D = +39.4^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

m.p.167.0-168.0°C

10

No.2a-141

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),3.8 4(3H,s),4.27(1H,m),5.34-5.52(2H,m),6.28(1H,d,J=9.0Hz),6.91 and 7.47

15 (each 2H,each d,J=9.0Hz),6.98 and 7.14(each 1H,each d,J=16.5Hz),7.54 and 7.70(each 2H,eachd,J=8.7Hz).

IR(CHCl_s):3453,3025,3015,2925,2870,2839,1740,1708,1649,1602,1510,1493, 1470 /cm.

 $[\alpha]_D = +73.4^{\circ} \text{ (MeOH,c=1.02,22°C)}.$

20 m.p.155.0-157.0℃

No.2a-142

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and $1.23(each\ 3H,each\ s),1.52-2.45(14H,m),3.7$

9(3H,s),4.27(1H,m),5.34-5.50(2H,m),6.24(1H,d,J=9.0Hz),6.49 and 6.62 (each 1H each d,J=12.3Hz),6.77 and 7.16(each 2H,each d,J=8.7Hz),7.32 and 7.59(each 2H,eachd,J=8.1Hz).

IR(CHCl₈):3453,3025,3014,2925,2870,2839,1739,1708,1649,1606,1510, 1494 /cm.

 $[\alpha]_{p}=+60.7^{\circ}$ (MeOH,c=0.99,22°C).

No.2a-143

 $[\alpha]_D = +57.3^{\circ}$ (MeOH,c=1.01,23°C).

5

No.2a-144

 $[\alpha]_D = +12.2^{\circ} \text{ (MeOH,c=1.00,23°C)}.$

m.p.114.0-116.0℃

10 No.2a-145

CDCl₃ 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.21(each 3H,each s),1.52-2.44(14H,m),4.2 5(1H,m),5.33-5.49(2H,m),6.37(1H,d,J=8.7Hz),7.45-7.47(3H,m),7.62-7.66(2H,m),7.69 and 7.80(each 2H,each d,J=7.5Hz,).

IR(CHCl_s):3449,3058,3027,3012,2925,2870,1708,1655,1513,1481,1043 /cm. $[\alpha]_D$ =+61.0° (MeOH,c=1.01,23°C).

No.2a-146

CDCl₈ 300MHz

0.95(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.41(14H,m),4.2 5(1H,m),5.33-5.49(2H,m),6.33(1H,d,J=8.4Hz),7.49-7.61(3H,m),7.91-7.92(2H,m),7.82 and 7.97(each 2H,each d,J=8.7Hz,).

IR(CHCl₃):3447,3029,3023,3015,2925,2870,1708,1660,1514,1484,1321,1161 /cm.

25 $[\alpha]_D = +62.0^{\circ} \text{ (MeOH, c=1.00,22°C)}.$

No.2a-147

CDCl₈ 300MHz

0 97(1H d J=10 2Hz) 1 12 and 1 23(each 3H each s) 1 52 2 46(14H m) 2

1(3H,s), 4.26(1H,m), 5.34-5.51(2H,m), 6.23(1H,d,J=8.4Hz), 7.26 and 7.64 (each 2H, each d, J=8.4Hz).

 $IR(CHCl_s):3453,3027,3015,2925,2870,2665,1708,1648,1596,1516,1484 /cm. \\ [\alpha]_D=+67.7° (MeOH,c=0.82,22°C).$

5

15

No.2a-148

 $[\alpha]_{D}=+72.5^{\circ}$ (MeOH,c=1.01,25°C).

No.2a-149

10 $[\alpha]_D = +67.8^{\circ}$ (MeOH,c=0.98,25°C).

No.2a-150

CDCl₈ 300MHz

0.94(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 2(1H,m),5.36-5.55(2H,m),6.48(1H,d,J=8.4Hz),8.35(1H,s),8.90(1H,s). IR(CHCl₈):3443,3374,3091,3024,3012,2925,2871,1709,1652,1525,1494 /cm. $[\alpha]_D$ =+58.1° (MeOH,c=1.01,23°C).

m.p.120.0-122.0°C

20 No.2a-151

 $[\alpha]_{D}=+40.6^{\circ}$ (MeOH,c=1.01,23°C).

No.2a-152

CDCl₃ 300MHz

25 0.96(1H,d,J=10.5Hz),1.10 and 1.24(each 3H,each s),1.50-2.50(14H,m),2.7 1(3H,s),4.26(1H,m),5.37-5.51(2H,m),6.02(1H,d,J=9.0Hz),8.73(1H,s). IR(CHCl₃):3463,3435,3087,3025,3014,2925,2870,1708,1649,1523,1503 /cm. $[\alpha]_D$ =+54.1° (MeOH,c=1.02,22°C).

No.2a-153

CDCl₈ 300MHz

0.95(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.50(14H,m),2.50(3H,s),4.26(1H,m),5.36-5.51(2H,m),6.01(1H,d,J=8.4Hz),6.88(1H,d,J=5.1Hz),

 $5 \quad 7.26(1H,d,J=5.1Hz).$

IR(CHCl₈):3469,3431,3025,3013,2925,2871,2664,1708,1639,1544,1505 /cm. $[\alpha]_{p}$ =+35.8° (MeOH,c=1.03,22°C).

No.2a-154

10 CDCl₈ 300MHz

0.95(1H,d,J=9.9Hz),1.10 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.51(3H,d,J=1.2Hz),4.26(1H,m),5.34-5.50(2H,m),6.00(1H,d,J=8.4Hz),6.73(1H,dd,J=5.1 and 3.6Hz),7.29(1H,d,J=3.6Hz).

IR(CHCl₈):3450,3431,3026,3011,2925,2869,1739,1708,1639,1547,1508 /cm.

15 $[\alpha]_D = +50.5^{\circ}$ (MeOH, c=1.01,22°C).

No.2a-155

20

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.19 and 1.25(each 3H,each s),1.53-2.48(14H,m),4.3 1(1H,m),5.36-5.51(2H,m),6.79(1H,d,J=9.3Hz),7.29(1H,m),7.41(1H,m),7.48(1

H,s, 7.51(1H,m), 7.66(1H,d,J=8.1Hz).

TD/CUCI \-9496 9090 9094 9015 9095 9971 9670 1700 1650 1500 1510 1

IR(KBr):3422,3115,2985,2922,2869,2609,1708,1636,1578,1529,1470 /cm. $[\alpha]_D$ =+62.8° (MeOH,c=1.01,22°C).

No.2a-157

5 $[\alpha]_D = +40.0^{\circ}$ (MeOH, c=0.95,22°C).

No.2a-158

CDCl₈ 300MHz

1.00(1H,d,J=10.5Hz),1.17 and 1.24(each 3H,each s),1.54-2.50(14H,m),4.3 10 4(1H,m),5.36-5.52(2H,m),7.80(1H,d,J=9.0Hz),9.30(1H,s). IR(CHCl₃):3410,3122,3030,3012,2925,2871,2668,1709,1667,1538,1466 /cm. $[\alpha]_D$ =+44.9° (MeOH,c=0.99,22°C).

No.2a-159

15 CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.55-2.43(14H,m),3.0 3(6H,s),4.23(1H,m),5.32-5.51(2H,m),6.16(1H,d,J=8.7Hz),6.87 and 7.63 (each 2H,each d,J=8.7Hz).

 $IR(CHCl_8): 3457, 3028, 3006, 2924, 2870, 2654, 1739, 1709, 1637, 1608, 1608, 1534, \\$

20 1501 /cm.

 $[\alpha]_D = +64.8^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

No.2a-160

d₆-DMSO 300MHz

25 0.83(1H,d,J=9.9Hz),1.02 and 1.19(each 3H,each s),1.38-1.61(3H,m),1.90-2. 32(11H,m),3.90(1H,m),5.41-5.44(2H,m),7.32(1H,dd,J=0.9 and 7.2Hz),7.45-7.60(2H,m),7.77(1H,dd,J=0.9 and 7.8Hz),8.03(1H,d,J=6.9Hz),12.40(1H,s). IR(Nujol):3315,2924,2856,2656,2535,1737,1703,1637,1598,1581,1541 /cm. $[\alpha]_D$ =+78.5° (MeOH,c=1.01,24°C).

m.p.161.0-162.0°C

No.2a-161

 $[\alpha]_{D}$ =+65.3° (MeOH,c=1.00,22°C).

5

10

No.2a-162

CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.13 and 1.25(each 3H,each s),1.53-2.45(14H,m),4.3 0(1H,m),5.36-5.51(2H,m),6.32(1H,d,J=8.4Hz),7.88 and 8.28(each 2H,each d,J=9.0Hz).

IR(CHCl₈):3448,3029,3016,2925,2870,1708,1664,1602,1527,1484,1347 /cm. $[\alpha]_D$ =+72.7° (MeOH,c=1.02,22°C).

No.2a-163

15 CDCl₈ 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.51(14H,m),4.2 6(1H,m),5.36-5.57(2H,m),6.68(1H,d,J=7.8Hz),7.41(1H,dd,J=4.8 and 8.1Hz), 8.20(1H,d,J=8.1Hz),8.66(1H,d,J=4.8Hz),9.00(1H,s).

IR(CHCl₈):3447,3346,3028,3016,2925,2870,2538,1941,1708,1662,1556,1516 /cm.

 $[\alpha]_D = +75.4^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

5 No.2a-166

CDCl₈ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.44(14H,m),2.9 5(6H,s),4.25(1H,m),5.33-5.50(2H,m),6.19(1H,d,J=8.7Hz),6.77 and 6.97 (each 2H,each d,J=8.4Hz),6.94 and 7.65(each 2H,each d,J=9.0Hz).

10 IR(CHCl₃):3453,3024,3016,2924,2871,2806,1739,1708,1647,1612,1604,1515, 1490 /cm.

 $[\alpha]_D = +53.1^{\circ} \text{ (MeOH,c=1.02,23°C)}.$

m.p.104.0-105.5℃

15 No.2a-167

CDCl₃ 300MHz

1.01(1H,d,J=9.9Hz),1.19 and 1.26(each 3H,each s),1.56-2.53(14H,m),4.37(1H,m),5.35-5.55(2H,m),6.47(1H,d,J=8.4Hz),7.61-7.71(2H,m),7.79(2H,s),7.89-7.97(2H,m),8.27(1H,d,J=2.1Hz),8.66-8.73(2H,m).

20 IR(CHCl₃):3450,3024,3014,2925,2870,2667,1707,1650,1531,1509 /cm. $[\alpha]_D$ =+70.5° (MeOH,c=1.00,22°C).

No.2a-168

CDCl₃ 300MHz

25 1.02(1H,d,J=10.2Hz),1.20 and 1.26(each 3H,each s),1.56-2.50(14H,m),4.3 8(1H,m),5.36-5.56(2H,m),6.51(1H,d,J=8.4Hz),7.61-7.93(7H,m),8.74(1H,d,J=8.4Hz),9.15(1H,s).

IR(CHCl_s):3517,3451,3060,3028,3011,2925,2870,2664,1709,1651,1519,1498/cm.

Service of the servic

 $[\alpha]_D = +54.4^{\circ} \text{ (MeOH,c=1.00,23°C)}.$

No.2a-169

CDCl₈ 300MHz

5 0.96(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.44(14H,m),3.8 5(3H,s),4.24(1H,m),5.32-5.48(2H,m),6.19(1H,d,J=8.4Hz),6.94 and 7.45 (each 2H,each d,J=9.0Hz),7.11 and 7.45(each 2H,each d,J=8.7Hz). IR(CHCl_s):3516,3453,3029,3009,2925,2870,2840,2665,1708,1650,1593,1515, 1493,1482 /cm.

10 $[\alpha]_D = +57.8^{\circ} \text{ (MeOH, c=1.00,23°C)}.$

No.2a-170

CDCl₈ 300MHz

0.98(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.52-2.50(14H,m),4.2

15 8(1H,m),5.33-5.54(2H,m),6.25(1H,d,J=8.2Hz),7.38-7.44(2H,m),7.74(1H,s),7. 81-7.86(2H,m).

IR(CHCl₈):3517,3448,3427,3024,3013,2925,2870,2669,1708,1650,1562,1535, 1500 /cm.

 $[\alpha]_D = +61.6^{\circ} \text{ (MeOH,c=1.00,23°C)}.$

20

No.2a-171

AD A1 AAA147

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.09 and 1.28(each 3H,each s),1.50-2.40(14H,m),2.6 9(3H,s),4.24(1H,m),5.35-5.51(2H,m),5.96(1H,d,J=8.7Hz),7.03 and 7.07 (each 1H,each d,J=5.4Hz).

5 IR(CHCl_s):3451,3031,3013,2925,2870,2666,1708,1647,1542,1497 /cm. $[\alpha]_D$ =+51.2° (MeOH,c=1.00,23°C).

No.2a-173

CDCl₃ 300MHz

10 0.95(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.50-2.45(14H,m),4.2 2(1H,m),5.35-5.49(2H,m),6.05(1H,d,J=8.4Hz),7.26 and 7.75(each 1H,each d,J=1.5Hz).

IR(CHCl₈):3451,3011,3029,3011,2925,2870,1708,1652,1538,1500 /cm. $[\alpha]_D$ =+50.6° (MeOH,c=1.01,23°C).

15

20

No.2a-174

CDCl₈ 300MHz

0.96(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 9(1H,m),5.35-5.51(2H,m),7.02(1H,d,J=8.4Hz),7.32 and 8.16(each 1H,each d,J=3.9Hz).

IR(CHCl₃):3417,3115,3023,3014,2925,2870,1708,1645,1530 /cm. $[\alpha]_D$ =+48.8° (MeOH,c=1.02,23°C).

No.2a-175

25 CDCl_s 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.50-2.52(14H,m),2.5 2(3H,s),4.29(1H,m),5.34-5.51(2H,m),7.78(1H,d,J=9.0Hz),7.24 and 7.52 (each 1H,each d,J=5.4Hz).

IR(CHCl₃):3329,3093,3023,3015,2924,2871,1708,1640,1526 /cm.

 $[\alpha]_D = +45.0^{\circ} \text{ (MeOH,c=1.01,23°C)}.$

No.2a-176

CDCl₈ 300MHz

5 0.95(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.4 0(3H,d,J=0.9Hz),4.24(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.7Hz),6.95(1H,m),7.57(1H,d,J=3.3Hz). IR(CHCl_s):3517,3444,3103,3024,3013,2926,2870,1739,1708,1649,1636,1507/cm.

10 $[\alpha]_D = +54.8^{\circ}$ (MeOH, c=1.01,23°C). m.p.97.0-99.0°C

No.2a-177

CDCl₃ 300MHz

15 0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.9 3(3H,s),4.27(1H,m),5.34-5.50(2H,m),6,35(1H,d,J=3.3Hz),7.80(1H,d,J=8.7Hz),8.10(1H,d,J=3.3Hz).

IR(CHCl₈):3395,3121,3031,3019,3012,2925,2871,1739,1709,1640,1557,1533 /cm.

20 [α]_D=+22.8° (MeOH,c=1.01,23°C). m.p.109.0-112.0°C

No.2a-178

CDCl₃ 300MHz

25 0.96(1H,d,J=10.5Hz),1.10 and 1.23(each 3H,each s),1.51-2.45(14H,m),4.2 4(1H,m),5.35-5.50(2H,m),6.09(1H,d,J=8.4Hz),7.17-7.31(6H,m),7.95(1H,d,J=1.5Hz).

 $[\alpha]_D = +47.9^{\circ} \text{ (MeOH, c=1.01,25°C)}.$

No.2a-179

CDCl₃ 300MHz

5 0.96(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.3 0(1H,m),5.36-5.52(2H,m),6.73(1H,d,J=9.0Hz),6.26 and 7.37(each 1H,each d,J=6.0Hz).

IR(CHCl₃):3509,3429,3115,3094,3025,3014,2925,2871,2666,1708,1649,1529, 1510 /cm.

10 $[\alpha]_{p}=+51.0^{\circ}$ (MeOH,c=1.02,25°C).

No.2a-180

CDCl₃ 300MHz

0.95(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.46(14H,m),3.8

15 9(3H,s), 4.21(1H,m), 5.35-5.50(2H,m), 6.05(1H,d,J=8.4Hz), 6.46 and 7.04 (each 1H,each d,J=1.8Hz).

IR(CHCl₈):3516,3450,3114,3031,3010,2925,2871,1708,1648,1546,1511,1477 /cm.

 $[\alpha]_D = +49.1^{\circ} \text{ (MeOH,c=1.01,25°C)}.$

20

No.2a-181

CDCl₃ 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.52-2.48(14H,m),2.4 2(3H,s),4.31(1H,m),5.34-5.52(2H,m),8.07(1H,d,J=9.3Hz),7.27 and 8.17 (

25 each 1H, each d, J=3.3Hz).

IR(CHCl₃):3510,3301,3112,3023,3007,2924,2871,2663,1708,1636,1534 /cm. $[\alpha]_D$ =+41.0° (MeOH,c=0.96,25°C).

ASTALLE .

No.2a-182

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.46(14H,m),2.5 1(3H,s),4.21(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.1Hz),7.26 and 7.78 (each 1H,each d,J=1.8Hz).

5 IR(CHCl₈):3509,3450,3109,3024,3012,2925,2870,2666,1708,1650,1535,1 498,1471 /cm.

 $[\alpha]_D = +52.9^{\circ}$ (MeOH, c=0.95, 25°C).

No.2a-183

10 CDCl₈ 300MHz

0.96(1H,d,J=10.5Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),4.2 5(1H,m),5.33-5.51(2H,m),6.17(1H,d,J=8.7Hz),7.01-7.05(3H,m).7.14 and 7.6 2(each 2H,each d,J=8.7Hz),7.27-7.34(2H,m).

IR(CHCl₈):3428,3026,3015,2925,2870,2666,1739,1708,1643,1613,1594,1526,

15 1499 /cm.

 $[\alpha]_D = +64.8^{\circ} \text{ (MeOH, c=1.02,23°C)}.$

No.2a-184

CDCl₃ 300MHz

20 101(1H d J=102Hz) 1 18 and 126(each 3H each s) 155 250(14H m) 43

4(1H,m), 5.35-5.54(2H,m), 6.36(1H,d,J=8.7Hz), 7.37(1H,t,J=7.4Hz), 7.50(1H,m), 7.57-7.59(2H,m), 7.79(1H,dd,J=1.8 and 8.1Hz), 7.99(1H,d,J=7.8Hz), 8.39(1H,d,J=1.8Hz).

IR(CHCl_s):3451,3030,3020,2870,2665,1708,1652,1632,1603,1586,1514,1469,

5 1448 /cm.

 $[\alpha]_{D} = +59.4^{\circ} \text{ (MeOH,c=1.01,24°C)}.$

No.2a-186

CDCl_a 300MHz

1.00(1H,d,J=10.5Hz),1.17 and 1.25(each 3H,each s),1.54-2.50(14H,m),4.3 3(1H,m),5.35-5.54(2H,m),6.37(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.51(1H,t,J=7.8Hz),7.56(1H,m),7.70(1H,dd,J=1.2 and 8.4Hz),7.97(3H,m). IR(CHCl₈):3451,3030,3014,2924,2870,2671,1739,1708,1652,1577,1517,1488, 1471 /cm.

15 $[\alpha]_D = +72.2^{\circ}$ (MeOH, c=1.00, 24°C).

No.2a-187

CDCl₈ 300MHz

1.00(1H,d,J=9.8Hz),1.18 and 1.25(each 3H,each s),1.54-2.53(14H,m),4.07(3H,s),4.37(1H,m),5.30-5.54(2H,m),7.34(1H,m),7.47(1H,s),7.47-7.60(2H,m),7.93(1H,d,J=7.8Hz),8.43(1H,s),8.49(1H,d,J=9.0Hz).

IR(CHCl_s):3397,3074,3027,3020,3009,2924,1738,1708,1647,1633,1534,1465, 1453 /cm.

 $[\alpha]_D = +43.7^{\circ} \text{ (MeOH, c=1.01,25°C)}.$

25

20

No.2a-188

CDCl₈ 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.50(14H,m),4.2 3(1H,m),5.37-5.50(2H,m),6.10(1H,d,J=9.0Hz),6.20(1H,m),6.51(1H,m),6.97(1H,m),9.97(1H,m),9

```
H,m),10.81(1H,brs).
```

IR(CHCl₈):3450,3236,3112,3029,3015,2925,2871,2645,1701,1616,1558,1516 /cm.

 $[\alpha]_D = +50.6^{\circ}$ (MeOH,c=1.01,24°C).

5

No.2a-189

CDCl₈ 300MHz

0.94(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.46(14H,m),3.93(3H,s),4.18(1H,m),5.35-5.52(2H,m),6.03(1H,d,J=9.3Hz),6.09(1H,m),6.48(1H,m

10 m),6.73(1H,m).

IR(CHCl₃):3452,3102,3028,3007,2925,2871,2666,1739,1708,1650,1536,1499, 1471 /cm.

 $[\alpha]_D = +49.8^{\circ} \text{ (MeOH,c=1.01,23°C)}.$

m.p.101.5-103.5℃

15

No.2a-190

CDCl₃ 300MHz

0.94(1H,d,J=10.2Hz),1.11 and $1.21(each 3H,each s),1.54\cdot2.47(14H,m),4.2$ $3(1H,m),5.33\cdot5.52(2H,m),6.06(1H,d,J=9.0Hz),6.34(1H,m),6.75(1H,m),6.36(1H,m),6$

20 H,m),9.71(1H,brs).

IR(CHCl_s):3470,3215,3030,3020,3010,2925,2871,2664,1709,1613,1564,1510/cm.

 $[\alpha]_D = +43.3^{\circ} \text{ (MeOH, c=1.01,24°C)}.$

IR(CHCl_s):3452,3031,3018,3006,2925,2871,2662,1736,1710,1634,1609,1556, 1498 /cm.

 $[\alpha]_D = +43.1^{\circ} \text{ (MeOH,c=1.01,23°C)}.$

5 No.2a-192

CDCl₈ 300MHz

 $0.96(1H,d,J=10.5Hz),1.11 \ and \ 1.21(each \ 3H,each \ s),1.43(3H,t,J=7.5Hz),1.$ $54-2.44(14H,m),3.93(2H,q,J=7.5Hz),4.21(1H,m),5.33-5.51(2H,m),5.94(1H,d,J=8.4Hz),6.27(1H,dd,J=1.8 \ and \ 2.7Hz),6.62(1H,t,J=2.7Hz),7.26(1H,t,J=1.8)$

10 Hz).

IR(CHCl_s):3630,3452,3032,3018,3006,2925,2871,2661,1735,1710,1633,1610, 1555,1497 /cm.

 $[\alpha]_D = +40.1^{\circ} \text{ (MeOH,c=1.00,23°C)}.$

15 No.2a-193

CDCl₃ 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.22(each 3H,each s),1.53-2.49(14H,m),2.5 8(3H,s),4.21(1H,m),5.35-5.54(2H,m),6.15(1H,d,J=8.1Hz),6.52(1H,dd,J=1.8 and 3.6Hz),7.29(1H,t,J=3.6Hz),7.94(1H,t,J=1.8Hz).

20 IR(CHCl₃):3516,3450,3410,3152,3027,3015,2925,2871,2670,1732,1648,1574, 1509 /cm.

 $[\alpha]_D = +45.0^{\circ} \text{ (MeOH,c=1.01,25°C)}.$

No.2a-194

25 CDCl₃ 300MHz

0.99(1H,d,J=10.2Hz),1.11 and 1.24(each 3H,each s),1.52-2.53(14H,m),4.3 4(1H,m),5.33-5.57(2H,m),6.21(1H,d,J=8.6Hz),7.35-7.50(2H,m),7.83(1H,s),7.86(1H,m),8.31(1H,m).

IR(CHCl₈):3443,3067,3013,2925,2870,2665,1708,1651,1515,1493 /cm.

 $[\alpha]_D = +55.7^{\circ}$ (MeOH, c=1.01, 23°C).

No.2a-195

CDCl₃ 300MHz

5 1.01(1H,d,J=10.0Hz),1.06 and 1.26(each 3H,each s),1.50-2.64(14H,m),2.6 8(3H,s),4.40(1H,m),5.36-5.61(2H,m),6.02(1H,d,J=9.4Hz),7.30-7.42(2H,m),7. 73-7.86(2H,m).

IR(CHCl₈):3510,3434,3062,3029,3014,2924,2871,2669,1708,1650,1563,1539, 1500 /cm.

10 $[\alpha]_D$ =+72.4° (MeOH,c=1.00,23°C). m.p.111.0-112.0°C

No.2a-196

CDCl₈ 300MHz

15 0.42 and 1.04(each 3H,each s),0.80(1H,d,J=10.0Hz),1.11-2.48(14H,m),2.2 4(3H,s),4.02(1H,m),5.23-5.44(2H,m),5.53(1H,d,J=8.8Hz),7.27-7.31(2H,m),7.42-7.48(3H,m),7.93(1H,s).

IR(CHCl₈):3419,3114,3025,3006,2924,2871,2662,1737,1709,1636,1540,1519/cm.

No.2a-198

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.50-2.44(14H,m),4.2 4(1H,m),4.42(2H,s),5.35-5.49(2H,m),6.25(1H,d,J=8.1Hz),7.33(1H,m),7.43(1H,m),7

H,dd,J=1.5and 7.5Hz),7.49(1H,d,J=8.1Hz),7.60-7.63(1H,m),7.68(1H,dd,J=1.8Hz),8.02(1H,d,J=1.8Hz),8.19(1H,dd,J=1.5 and 8.1Hz).

IR(CHCl₃):3448,3030,3012,2925,2870,1739,1708,1671,1588,1559,1514,1472

 $[\alpha]_D = +56.9^{\circ}$ (MeOH, c=1.01, 24°C).

10

No.2a-199

/cm.

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.46(14H,m),3.4 0(1H,m),3.76(1H,m),4.24(1H,m),5.33-5.51(3H,m),6.25(1H,m),7.16(1H,m),7.2

15 4-7.33(2H,m), 7.46(1H,d,J=7.5Hz), 7.52-7.60(2H,m), 7.85(1H,dd,J=1.8 and 4.5Hz).

IR(CHCl_s):3583,3447,3062,3028,3013,2924,2871,2663,1708,1651,1600,1557, 1514,1471 /cm.

 $[\alpha]_D = +54.8^{\circ} \text{ (MeOH,c=1.00,23°C)}.$

20

No.2a-200

CDCl₃ 300MHz

0.96(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.2 5(1H,m),5.34-5.51(2H,m),6.25(1H,d,J=8.4Hz),7.02 and 7.10(each,1H,each s)

25 d,J=12.3Hz), 7.23-7.33(4H,m), 7.50(1H,m), 7.64(1H,dd,J=1.8 and 7.8Hz), 7.8 2(1H,d,J=1.8Hz).

IR(CHCl_s):3450,3060,3025,3014,2925,2871,2662,1708,1653,1596,1542,1513, 1473 /cm.

 $[\alpha]_D = +62.5^{\circ}$ (MeOH,c=1.00,24°C).

No.2a-201

CDCl₃ 300MHz

0.95(1H,d,J=9.9Hz),1.15 and 1.22(each 3H,each s),1.55-2.60(14H,m),4.26(

5 1H,m),5.35-5.63(2H,m),7.14(1H,d,J=9.9Hz),7.34 and 7.40(each,1H,each d, J=12.9Hz),7.62-7.73(4H,m),8.25-8.30(2H,m),8.72(1H,d,J=1.5Hz).

IR(CHCl₈):3443,3389,3297,3061,3030,3016,2925 2870,1726,1708 1652,160 3,1521,1483,1472,1309 /cm.

 $[\alpha]_D = +61.1^{\circ} \text{ (MeOH, c=1.01,23°C)}.$

10

No.2a-202

CDCl₈ 300MHz

0.96(1H,d,J=10.2Hz),1.09 and $1.22(each 3H,each s),1.52\cdot2.43(14H,m),2.6$ $3(3H,s),4.25(1H,m),5.33\cdot5.49(2H,m),6.19(1H,d,J=8.4Hz),7.10$ and 7.58 (

each,2H,each d,J=9.0Hz),7.21(1H,m),7.30-7.32(2H,m),7.46(1H,d,J=7.5Hz)
IR(CHCl₃):3511,3453,3062,3032,3014,2925 2870,1739,1708,1650,1595,1556,
1516,1482,1471 /cm.

 $[\alpha]_D = +60.2^{\circ} \text{ (MeOH,c=1.01,25°C)}.$

 $[\alpha]_D = +25.6^{\circ} \text{ (MeOH, c=1.01,23°C)}.$

No.2b-2

 $[\alpha]_D = +38.9^{\circ} \text{ (MeOH,c=1.01,24°C)}.$

5

No2c-1

 $[\alpha]_D = +60.5^{\circ} \text{ (MeOH, c=1.01,22°C)}.$

No.2c-2

10 $[\alpha]_D = +55.8^{\circ}$ (MeOH,c=0.92,22°C).

No.2c-3

 $[\alpha]_D = +54.7^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

15 No.2d-1

 $[\alpha]_D = -6.2^{\circ} \text{ (MeOH,c=1.00,21°C)}.$

No.2d-2

 $[\alpha]_D = +15.8^{\circ}$ (MeOH, c=0.34,22°C).

20

No.2d-3

 $[\alpha]_D = +31.6^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

No.2e-1

25 $[\alpha]_D = -9.4^{\circ} \text{ (MeOH,c=1.00,22°C)}.$

No.2e-2

 $[\alpha]_D = -1.8^{\circ} \text{ (MeOH,c=1.02,23°C)}.$

A STATE OF THE STA

No.2e-3

 $[\alpha]_D = -6.7^{\circ} \text{ (MeOH,c=1.01,23°C)}.$

No.2f-1

5 $[\alpha]_D = +6.8^{\circ} \text{ (MeOH, c=1.01,23°C)}.$

No.2f-2

 $[\alpha]_D = -2.6^{\circ}$ (MeOH,c=1.00,22°C).

10 No.2f-3

 $[\alpha]_D = -3.5^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

No.2g-1

 $[\alpha]_D = +54.6^{\circ} \text{ (MeOH, c=1.01,24°C)}.$

15

No.3a-2

CDCl₃ 300MHz

0.98-2.15(14H,m), 2.31(2H,t,J=7.2Hz), 2.35-2.40(1H,m), 3.10-3.20(1H,m),

5.00(1H,d,J=6.9Hz),5.30-5.48(2H,m),6.75(1H,d,J=10.2Hz),7.38-7.52(6H,m).

ID/CDCI \ 2000 2000 2004 2004 1700 1000 1440 1410 1010 1144 070 000

/cm.

 $[\alpha]_D$ =+2.3±0.4°(CHCl₃,c=1.03,22°C). mp.65-66.5°C

5 No.3a-4

CDCl₃ 300MHz

0.93-2.05(14H,m),2.15-2.22(1H,m),2.31(2H,t,J=7.2Hz),3.01-3.10(1H,m), 5.18-5.31(3H,m),7.38-7.52(3H,m),7.58-7.66(2H,m),7.69-7.76(2H,m),7.92-7.98(2H,m)

10 IR(CHCl_s):3374,3260,3020,2948,2868,1708,1594,1479,1396,1319,1156,1095, 1052,891/cm.

 $[\alpha]_D = +13.1 \pm 0.5$ ° (CHCl₈,c=1.16,24°C).

No.3a-6

 $15 \quad CD_sOD 300MHz$

1.04-1.95(14H,m),2.07(2H,t,J=7.8Hz),2.14-2.22(1H,m),2.94-3.00(1H,m), 5.04-5.25(2H,m),7.36-7.52(3H,m),7.66-7.71(2H,m),7.78-7.85(2H,m),7.91-7.97(2H,m).

IR(KBr):3421,3278,2951,2872,1562,1481,1409,1317,1156,1097,1057,895/cm

20

 $[\alpha]_D$ =-15.3±0.5 °(CHCl₈,c=1.06,23°C). mp.105-112°C

No.3a-11

25 CDCl_s 300MHz

0.90-2.04(14H,m),2.08-2.19(1H,m),2.35(2H,t,J=7.2Hz),2.95-3.04(1H,m),
5.17-5.32(3H,m),7.56-7.63(2H,m),7.83-7.95(2H,m).
IR(CHCl₃):3260,3020,2948,2868,1707,1569,1456,1383,1325,1268,1160,1088,

1053,1006,892/cm.

 $[\alpha]_D = +8.3 \pm 0.5$ ° (CHCl₈, c=1.00,22°C).

No.3a-16

CDCl₃ 300MHz

5 0.80-1.90(14H,m),1.98-2.04(1H,m),2.27(2H,t,J=7.2Hz),2.88(6H,s),2.90-2.98(1H,m),4.88-5.00(2H,m),5.13(1H,d,J=7.2Hz),7.18(1H,d,J=7.5Hz),7.48-7.60(2H,m),8.25-8.33(2H,m),8.53(1H,d,J=8.7Hz).

IR(CHCl_s):3272,3020,2946,2866,2782,1708,1573,1455,1407,1311,1229,1160,1142,1070,942,891/cm.

10 $[\alpha]_D = -19.7 \pm 0.6$ ° (CHCl₃, c=1.08,23.5°C).

No.3a-31

CDCl₃ 300MHz

 $0.80 \cdot 1.85(14H,m), 2.02 \cdot 2.08(1H,m), 2.20(2H,t,J=7.2Hz), 2.85 \cdot 2.95(1H,m),$

3.68(3H,s),4.80-4.92(2H,m),4.96(1H,d,J=6.9Hz),7.50-7.70(3H,m),7.92-7.98(1H,m),8.07(1H,d,J=8.4Hz),8.29(1H,dd,J=1.5&7.5Hz),8.65(1H,d,J=8.7Hz).

IR(CHCl₃):3374,3016,2946,2868,1727,1506,1435,1318,1160,1133,1105,1051, 984,890/cm.

No.3a-33

CD₃OD 300MHz

0.94-1.84(14H,m), 1.96-2.08(3H,m), 2.77-2.84(1H,m), 4.67-4.84(2H,m), 7.55

5 7.75(3H,m),8.02(1H,d,J=7.8Hz),8.12-8.26(2H,m),8.74(1H,d,J=8.7Hz). IR(KBr):3432,3298,2951,2872,1564,1412,1315,1159,1134,1107,1082,1058,986/cm.

 $[\alpha]_D = -79.9 \pm 1.2 \circ (CH_8OH, c=1.00, 23 \circ C).$

10 No.3a-34

CDCl₃ 300MHz

0.97-1.91(14H,m),2.13-2.20(1H,m),2.42(2H,t,J=7.2Hz),3.00-3.07(1H,m), 5.06-5.24(2H,m),5.33(1H,d,J=6.9Hz),7.57-7.68(2H,m),7.82-8.00(4H,m), 8.45(1H,d,J=1.2Hz)

IR(CHCl₃):3260,3020,2948,1708,1408,1319,1154,1129,1073,953,893/cm. $[\alpha]_D$ =+20.7±0.6 °(CHCl₃,c=1.07,22°C).

No.3a-35

CD₈OD 300MHz

20 1.03-2.20(m,17H),2.97(m,1H),5.02(m,2H),7.64(m,2H),8.00(m,4H),8.43 (S,1H).

IR(KBr):3360,3285,1562,1407,1316,1153,1130,1075/cm.

 $[\alpha]_{D} = 0$

 $[\alpha]_{365}$ =+20.9±0.6 °(CH₈OH,c=1.04,23°C).

25

No.3d-1

CDCl₈ 300MHz

0.93-2.55(m,17H),3.02(m,1H),5.24(m,2H),6.48(m,1H),7.35-7.60(m,3H),7.85-8.00(m,2H)

DE HE

IR(Nujol): 3275,1548,1160,1094,758,719,689,591,557/cm.

 $[\alpha]_D = +19.0 \pm 0.6^{\circ}$ (CH₈OH,c=1.010,26.5°C).

Elemental analysis ($C_{20}H_{26}NO_4S$ 1/2Ca 1.0 H_2O)

Calcd.: C, 57.94; H, 6.82; N, 3.38; Ca, 4.83; H₂O, 4.35

5 Found: C, 57.80; H, 6.68; N, 3.68; Ca, 5.06; H_2O , 4.50

No.3d-6

 $[\alpha]_D = -20.7 \pm 0.6$ ° (CHCl₈, c=1.00,24°C).

10 No.3d-7

 $[\alpha]_D = -3.2 \pm 0.4$ ° (CHCl₃:c=1.03,22°C).

mp.65-67℃

No.3d-8

15 $[\alpha]_D = -14.5 \pm 0.5$ ° (CHCl₈, c=1.07, 24°C).

No.3d-9

 $[\alpha]_D = +12.2 \pm 0.5$ °(CH₃OH,c=1.00,23°C).

mp.119-125℃

20

No.3d-10

 $[\alpha]_D = +39.7 \pm 0.8$ ° (CHCl₃, c=1.07,22°C).

No.3d-11

25 $[\alpha]_D = +29.2 \pm 0.7$ ° (CHCl₃, c=1.06,22°C).

No.3d-12

 $[\alpha]_D = +76.4 \pm 1.1 \degree (CH_sOH, c=1.03, 24 \degree).$


```
No.3d-14
```

$$[\alpha]_D = -20.6 \pm 0.6 \, ^{\circ}(CHCl_3, c=1.07, 22 \, ^{\circ}).$$

No.3d-15

5 $[\alpha]_{865}$ =-28.0±0.7 °(CH₈OH,c=1.03,24.5°C).

No.3d-16

$$[\alpha]_{D} = -8.7 \pm 0.5 \text{ °(CHCl}_{s,c} = 1.06,22 \text{°C}).$$

10 No.3d-17

CDCl₃ 300MHz

 $0.80 - 2.15 (m, 24H), 2.32 (t, J=7Hz, 2H), 2.68 (t, J=7Hz, 2H), 3.02 (m, 1H), 2.15 \\ (m, 24H), 2.32 (t, J=7Hz, 2H), 2.68 (t, J=7Hz, 2H), 3.02 (m, 1H), 5.22 (m, 2H), 5.38 (d, J=7Hz, 1H), 7.30 (A2B2q-Apart, J=8Hz, 2H), 7.81 (A2B2qBpart, J=8Hz, 2H),$

15 9.86 (brs, 1H).

 $[\alpha]_{D} = 0$

 $[\alpha]_{365}=-9.7\pm0.5^{\circ}$ (CHCl₃,c=1.03,22°C).

No.3d-24

20 $[\alpha]_D = +19.2 \pm 0.6$ ° (CHCl₃, c=1.05,23°C).

No.3d-26

CD₈OD 300MHz

0.90-2.20(20H,m), 2.88(1H,m), 3.07(2H,q,J=7.0Hz), 5.00-5.40(2H,m), 7.20-5.40(2H,m), 7.20(2H,m), 7.

7.60(4H,m), 7.95(1H,m)

IR(KBr):3415,3254,1698,1564,1314,1154/cm.

No.3d-28

CD₃OD 300MHz

Soltviller H.

0.90-2.20(20H,m),2.73(2H,q,J=7.0Hz),2.93(1H,m),5.00-5.30(2H,m),7.40-7.50(2H,m),7.60-7.77(2H,m).

IR(KBr):3435,3280,1562,1323,1304,1151/cm.

5 No.3d-30

Elemental analysis (C20H25BrNO4SNa)

Calcd.: C50.21;H5.27;Br16.70;N2.93;S6.70;Na4.81

Found: C50.22;H5.40;Br15.57;N2.88;S6.41;Na5.10

IR(KBr):3425,3280,3085,1697,1570,1410,1321,1165,1155/cm.

10

No.3e-1

CD₃OD 300MHz

0.71(1H,d,J=10.2Hz), 1.04(3H,s), 1.12(3H,s), 1.35-2.28(14H,m),

2.42(3H,s),3.17-3.25(1H,m),5.18-

15 5.39(2H,m), 7.37(2H,d,J=8.4Hz), 7.75(2H,d,J=8.4Hz).

IR(CHCl₃):3400,3289,2986,2924,2870,1559,1424,1322,1305,1160,1095,1075, 1030/cm.

 $[\alpha]_D = +25.9 \pm 0.7 \degree (CH_3OH, c=1.00, 23 \degree C).$

Compounds pr pared in Examples above were t sted for the in vivo and in vitro activity according to the method shown in Experimental xampl s b low.

- 5 Experiment 1 Binding to PGD, Receptor
 Material and Method
- Blood sample was obtained using a plastic syringe containing 3.8 % sodium citrate from a venous of healthy volunteers (adult male and female), put into a plastic test tube and mixed gently by inversion. The sample was then centrifuged at 1800 rpm, 10 min at room temperature, and supernatant containing PRP (platelet rich plasma) was collected. The PRP was re-centrifuged at 2300 rpm, 22 min at room temperature to obtain platelets. The platelets were homogenized using a homogenizer (Ultra-Turrax) followed by
- homogenized using a homogenizer (Ultra-Turrax) followed by centrifugation 3 times at 20,000 rpm, 10 min at 4°C to obtain platelet membrane fraction. After protein determination, the membrane fraction was adjusted to 2 mg/ml and preserved in a 20 refrigerator at -80°C until use.
 - (2) Binding to PGD, Receptor

25

To a binding-reaction solution (50 mM Tris/HCl, pH 7.4, 5 mM MgCl₂) (0.2 ml) were added human platelet membrane fraction (0.1 mg) and 5 nM [³H]PGD₂ (115Ci/mmol), and reacted at 4°C for 90 min. After the reaction completed, the reaction mixture was filtered through the glass fiber filter paper, washed several times with cooled saline, and measured

radioactivity retained on th filt r paper. Th sp cific binding was calculated by subtracting the non-specific binding (the binding in the presence of 10 μ M PGD₂) from the total binding. The binding-inhibitory activity of each compound was expressed as concentration required for 50 % inhibition (IC₅₀), which was determined by depicting a substitution curve by plotting the binding ratio (%) in the presence of each compound, where the binding ratio in the absence of a test compound is 100 %. The results are shown in Table below.

5

10	Compound number	Activity (µM)	compound number	activity (μM)
	3a-4	0.6	2a-4	0.54
	1a-115	8.6	2a-17	0.12
	1a-28	0.045	2a-21	5.2
	1a-47	0.0086	2a-28	0.046
15	1a-100	0.56	2a-95	1.6
	1a-176	0.047	2a-109	0.003
	1a-2	0.13	1a-162	0.027

10⁸/ml was warmed at 37°C, and then subjected to the pretreatm nt with 3-isobutyl-1-m thylxanthine (0.5mM) for 5 min. To the suspension was add d a test compound diluted at various concentration. Ten-minute later, the reaction was induced by the addition of 0.1 -2.0 µM PGD, and, 15-minute later, stopped by the addition of HCl. The platelet was destroyed with an ultrasonic homogenizer. After centrifugation, the cAMP in the supernatant was determined by radioassay. PGD, receptor antagonism of a drug was evaluated as follows. The inhibition rate regarding cAMP increased by the addition of PGD, was determined at individual concentration, and then the concentration of the drug required for 50 % inhibition (IC₅₀). was calculated. The results are shown in Table below.

5

10

(Compound number	Inhibition of Increase of <u>Human Platelet cAMP (IC₅₀₎ (μΜ)</u>	
_			
	3a-16	0.37	
	1a-12	12.11	
	1a-28	0.30	
	1a-47	2.09	
	2a-2	0.77	
	2a-4	0.94	
	2a-35	1.52	
	2a-75	0.71	

Experiment 3 Experiment Using Nasal Occlusion Model

The method used for measuring the nasal cavity

resistance and evaluating the anti-nasal occlusion using a guinea pig are described below.

A 1% ovalbumin (OVA) solution was tr ated with ultrasonic nebulizer to obtain an aerosol. Hartley male guinea pig was sensitized by inhaling twice the aerosol for 10 min at one-week interval. Seven-day after the sensitization, the 5 quinea pig was exposed to an antigen to initiate the reaction. Then the trachea was incised under the anesthesia with pentobarbital (30 mg/kg, i.p.) and cannulas were inserted into the trachea at the pulmonary and nasal cavity sides. The canal inserted at the pulmonary side was connected with an artificial 10 respirator that provides 4 ml air 60 times/min. After arresting the spontaneous respiration of a guinea pig with Garamin (2 mg/kg, i.v.), air was supplied to the snout side with an artificial respirator at the frequency of 70 times/min, and the flow rate of 4 ml air/time, and the atmospheric pressure required for the aeration was measured by the use of a 15 transducer fitted at the branch. The measurement was used as a parameter of the nasal cavity resistance. The exposure of an antigen was carried out by generating aerosol of 3 % OVA solution for 3 min between the respirator and nasal cavity

	Compound number	Inhibition Rate (%) 1 mg/kg (i.v.)	Remarks
	1a-28	44	
	1a-98	69	
5	1a-100	50	
	1a-115	66	
	1a-116	48	•
	1a-120	58	3mg/kg (i.v.)
	1a-2	82	·
10	1a-162	80	
	1a-176	60	
	1a-267	62	
	2a-4	60	
	2a-21	52	
15	2a-28	54	
	2a-95	77	
	2a-96	77	10mg/kg(p.o.)
	2a-109	73	
	2a-110	66	10mg/kg(p.o.)
20	22a-194	79	

Formulation 1 Preparation of Tablets

Tablets each containing 40 mg of active ingredient

25 were prepared in a conventional manner. The ingredients for 40 mg tablet are as follows:

Calcium (+)-(Z)-7-[(1R,2S,3S,4S)-3-

benzenesulfonamidobicyclo[2.2.1]hept-2-yl]-

	5-heptenoate dihydrate	40.0 mg
30	Hydroxypropyl cellulose	3.6 mg
	Magnesium stearate	0.4mg
	Cornstarch	18.0 mg
	Lactose	58.0 mg
		·

Total 120.0 mg

Formulation 2 Preparation of Granules

Ingredients:

Calcium (+)-(Z)-7-[(1R,2S,3S,4S)-3-

5 benzenesulfonamidobicyclo[2.2.1]hept-2-yl]-

	5-heptenoate dihydrate		100.0 mg
	Hydroxypropyl cellulose		30.0 mg
	Carmellose Calcium		30.0 mg
	Talc		10.0 mg
10	Poloxamer 188		20.0 mg
	Crystalline cellulose		70.0 mg
	Cornstarch		300.0 mg
	Lactose		440.0 mg
		Total	1000.0 mg

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A compound of the general formula (I) below or its salt or a hydrate thereof as an active ingredient:

the Allegan Parketing

5

wherein

10

is

15

20

A is alkylene which optionally:

- (i) is intervened by
 - (i) is intervened by hetero atom or phenylene,(ii) contains a carbonyl group, and/or
 - (iii) has one or more double- or triple- bonds at any one or more positions on the chain;

B is hydrogen, alkyl, aralkyl or acyl;

R is $COOR_1$, CH_2OR_2 or $CON(R_3)R_4$;

R_i is hydrogen or alkyl;

R, is hydrogen or alkyl;

 R_{3} and R_{4} each are independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

 X_1 is a single bond, phenylene, naphtyl ne, thiophenediyl,

```
indol diyl, or oxazolediyl;
    X_2 is a single bond, -N=N-, -N=CH-, -CH=N-, -CH=N-N-, -CH=N-O-,
    -C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(Cl)=C(Cl)-, -
    (CH_2)n-, ethynylene, -N(R_5)-, -N(R_{51})CO-, -N(R_{52})SO_2-, -
    N(R_{53})CON(R_{54})-, -CON(R_{55})- -SO_2N(R_{56})-, -O-, -S-, -SO-, -SO_2-, -CO-,
    oxadiazolediyl, thiadiazolediyl or tetrazolediyl;
    X, is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group,
    cycloalkyl, cycloalkenyl, thiazolinylidenemethyl,
    thiazolidinylidenemethyl, -CH=NR, or -N=C(R_1)R_2;
 10 R_5, R_{51}, R_{52}, R_{53}, R_{54}, R_{55} and R_{56} each are hydrogen or alkyl;
   R, is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy,
   thiocarbamoyloxy, ureido or thioureido;
   R, and R, each are independently alkyl, alkoxy, or aryl;
   n is 1 or 2;
15
   2 is -SO<sub>2</sub>- or -CO-; and
   m is 0 or 1;
   wherein a cyclic substituent may has one to three substituents
   selected from the group consisting of nitro, alkoxy, sulfamoyl,
20 substituted- or unsubstituted-amino, acyl, acyloxy, hydroxy,
   halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl,
   aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy,
  hydroxyalkyl, trifluorom thyl, alkylthio, -N=PPh3, oxo, thioxo,
  hydroxyimino, alkoxyimino, phenyl and alkylenedioxy, when used as a PGD2 antagonist.
```

is

5

m is 0; Z is SO₂, both X₁ and X₂ are a single bond; X₃ is alkyl, phenyl, naphthyl, stylyl, quinolyl or thienyl; and a cyclic substituent among these substituents optionally has one to three substituents selected from a group consisting of nitro, alkoxy, substituted—or unsubstituted—amino, halogen, alkyl and hydroxyalkyl, or its salt or hydrate thereof.

3. The compound of claim 1 wherein

is

when m is 1, both X_1 and X_2 are a single bond; and X_3 is phenyl optionally substituted with halogen, or its salt or hydrate thereof.

4. The compound of claim 1 wherein

20 is

when m is 1, X_1 is phenylene, X_2 is -CH₂- or -N=N- and X_3 is phenyl, or its salt or hydrate thereof.

5

- 5. The compound of claim 1 which is the active ingredient in a drug for treating nasal occlusion.
- 6. A compound of the formula (Ia):

10

has one or more double- or triple- bonds at any one or more positions on the

wherein A is alkylene which optionally:

is intervened by hetero atom or phenylene, (i)

15

contains a carbonyl group, and/or (ii)

(iii) chain:

B is hydrogen, alkyl, aralkyl or acyl;

R is $COOR_1$, CH_2OR_2 or $CON(R_3)R_4$;

20 R₁ is hydrogen or alkyl;

R, is hydrogen or alkyl;

 R_{1} and R_{4} each are independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

 X_1 is a single bond, phenylene, naphtylene, thiophenediyl, indolediyl, or oxazolediyl;

 X_2 is a singl bond, -N=N-, -N=CH-, -CH=N-, -CH=N-N-, -CH=N-O-,

-C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(Cl)=C(Cl)-, -

 $(CH_2)n-$, ethynyl n , $-N(R_5)-$, $-N(R_{51})CO-$, $-N(R_{52})SO_2-$, -

30 $N(R_{53})CON(R_{54})-$, $-CON(R_{55}) -SO_2N(R_{56})-$, -O-, -S-, -SO-, $-SO_2-$, -COoxadiazol diyl, thiadiazol diyl or tetrazolediyl.

X₃ is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group,
cycloalkyl, cycloalkenyl, thiazolynylidenemethyl,
thiazolydinyliden methyl, -CH=NR₆ or -N=C(R₇)R₈;
R₅, R₅₁, R₅₂, R₅₃, R₅₄, R₅₅ and R₅₆ each are hydrogen or alkyl;

R₆ is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy, thiocarbamoyloxy, ureido or thioureido;
R₇ and R₈ each are independently alkyl, alkoxy or aryl; and n is 1 or 2;

wherein a cyclic substituent may has one to three substituents selected from the group consisting of nitro, alkoxy, sulfamoyl, substituted—or unsubstituted—amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl, trifluoromethyl, alkylthio, -N=PPh3, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy, or its salt or hydrate thereof, provided that those wherein (1) X1 and X2 are a single bond, and X3 is substituted—or unsubstituted—phenyl, or naphthyl; (2) A is 5-heptenylene, R is COOR1 (R1 is hydrogen or methyl), X1 is 1,4-phenylene, X2 is a single bond, and X3 is unsubstituted phenyl; (3) X1 and X2 are a single bond, X3 is methyl, n-hexyl, 2-cyclohexylethyl, benzyl, phenethyl, or substituted—or

7. The compound of claim 6, its salt or hydrate thereof, wherein X₁ and X₂ are a single bond, X₃ is isoxazolyl, thiadiazolyl, isothiazolyl, morpholyl, indolyl, benzofuryl, dibenzofuryl, dibenzothienyl, dibenzothienyl, carbazolyl, xanthenyl, phenanthridinyl, dibenzoxepinyl,

unsubstituted-alkenyl; and (4) X_1 and X_2 are a single bond, and X_3

10

15

20

25

is pyridyl are excluded.

dibenzothiepinyl, cinnolyl, chromenyl, benzimidazolyl, dihydrobenzothiepinyl, or dibenzopyranyl.

8. The compound of claim 6, its salt or hydrate 5 thereof,

wherein X_2 is a single bond, X_1 is phenylene, X_3 is alkenyl, alkynyl, -CH=NR₆ or -N=C(R_7) R_8 .

9. The compound of claim 6, its salt or hydrate thereof, wherein R is $COOR_1$, X_1 is phenylene, thiophenediyl or indolediyl, X2 is a single bond, -N=N-, -CH=CH-, -CONH-, -NHCO-, ethynylene, -N=CH-, -(CH₂)n-, -N(R₅)-,

-0-, -S-, -S0₂-, -C0-, oxadiazolediyl or tetrazolediyl; and X, is phenyl, thiazolinylidenemethyl, thiazolidinylidenemethyl, thienyl, cyclohexyl, 1-cyclohexenyl,

n-hexyl, indolyl or benzoxazolyl.

A compound of the formula (Ib):

wherein

20 is

25

wherein A is alkylene which optionally:

- is intervened by hetero atom or phenylene, (i)
- contains a carbonyl group, and/or (ii)
- has one or more double- or triple- bonds at any one or more positions on the (iii) chain;

B is hydrogen, alkyl, aralkyl or acyl;

R is $COOR_1$, CH_2OR_2 or $CON(R_3)R_4$;

R₁ is hydrogen or alkyl;

R₂ is hydrogen or alkyl;

R₃ and R₄ each ar independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

5 X₁ is a single bond, phenylene, naphtylene, thiophenediyl, indolediyl, or oxazolediyl;

 X_2 is a single bond, -N=N-, -N=CH-, -CH=N-, -CH=N-N-, -CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(C1)=C(C1)-, $-(CH_2)n-$, ethynylene, $-N(R_5)-$, $-N(R_{51})CO-$, $-N(R_{52})SO_2-$, -

- N(R₅₃)CON(R₅₄)-, -CON(R₅₅)- -SO₂N(R₅₆)-, -O-, -S-, -SO-, -SO₂-, -CO-, oxadiazolediyl, thiadiazolediyl or tetrazolediyl;

 X₃ is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group, cycloalkyl, cycloalkenyl, thiazolinylidenemethyl, thiazolidinylidenemethyl, -CH=NR₆ or -N=C(R₇)R₈;
- R₅, R₅₁, R₅₂, R₅₃, R₅₄, R₅₅ and R₅₆ each are hydrogen or alkyl;
 R₆ is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy,
 thiocarbamoyloxy, ureido or thioureido;
 R₇ and R₈ each are independently alkyl, alkoxy or aryl; and
 n is 1 or 2;
- wherein a cyclic substituent may has one to three substituents selected from the group consisting of nitro, alkoxy, sulfamoyl, substituted—or unsubstituted—amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl, trifluoromethyl, alkylthio, -N=PPh3, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy, or its salt or hydrate ther of, provided that those wher in X1 and X2 are a singl bond,

and X_3 is unsubstituted ph nyl, and wherein X_1 is a single bond, X_2

is -O-, and X, is benzyl ar excluded.

11. The compound of claim 10, its salt or hydrate th reof, wh r in

is

5

10

- 12. The compound of claim 11, its salt or hydrate thereof, wherein R is $COOR_1$.
- 13. The compound of claim 11, its salt or hydrate thereof, wherein X_1 is phenylene or thiophenediyl, X_2 is a single bond, N=N-, -CH=CH-, ethynylene, -O-, -S-, -CO-, -CON(R_{55})-

 $-N(R_{51})CO-$

and X, is phenyl

or thienyl.

14. The compound of claim 10, its salt or hydrate thereof, wherein

15

is

15. The compound of claim 14, its salt or hydrat the reof, where in B is hydrogen, both X₁ and X₂ are a single bond, X₃ is this nyl,

STRALLY

pyridyl, benzofuryl, benzimidazolyl, benzothienyl, dibenzofuryl, dibenzothienyl, quinolyl or indolyl.

16. The compound of claim 14, its salt or hydrate thereof, wherein X₁ is phenylene,
5 thiophenediyl, indolediyl or oxazolediyl, X₂ is a single bond, -N=N-, -CH=CH-, ethynylene,
-S-, or -O-, and X₃ is aryl or heterocyclic group.

17. The compound of claim 10, its salt or hydrate thereof, wherein

10

Y')

is

15

A is alkylene which optionally: (i) contains a carbonyl group and/or (ii) has one or more double- or triple- bonds at any one or more positions on the chain; B is hydrogen; R is COOH or CH_2OH ; X_1 is a single bond; X_2 is a single bond; and X_3 is substituted- or unsubstituted-benzothienyl.

20

- 18. A compound according to claim 1 substantially as hereinbefore described with reference to any one of the Examples.
- 19. A compound according to claim 6 substantially as hereinbefore described with 25 reference to any one of the Examples.

- 20. A method of treating diseases involving mast cell dysfunction due to excessive production of PGD₂ including the step of administering to a subject in need thereof an effective amount of a compound according to claim 1.
- 5 21. Use of a compound according to claim 1 in the preparation of a medicament for the treatment of a disease involving mast cell dysfunction due to excessive production of PGD₂.

DATED this 28TH day of SEPTEMBER, 1999

SHIONOGI & CO., LTD.

by DAVIES COLLISON CAVE

Patent Attorneys for the Applicant

k. 3