

F1G. 1A2

i

FIG. 1B

4/335

MG. IB

F1G. 1D2

F14. 1F

F14. 1H

13/335

F14.2C1

F14.2C2

FIG. 201

F14.202

F14. 2E1

F14.2E2

F14.2F1

F14. 2F2

F14. 243

F14.2H2

FIG. 212

FIG 2I3

F14. 2J2

F14.2K

F14.2L

F14.20

F16.2P

F14.2Q

F16.3A3

43/335

ELEVATION AND SKEW ANGLE CHARACTERISTICS OF FACETS ON HOLOGRAPHIC SCANNING DISK OF THE PRESENT INVENTION

		UICU EL EVATION ANOLE	FACET NO.
	G1	HIGH ELEVATION ANGLE LEFT SKEW ANGLE	7
			9
			11
FACET		HIGH ELEVATION ANGLE	FACET NO.
GROUP NO.	G2	RIGHT SKEW ANGLE	' 8
			10
			12
			FACET NO.
			1
	G3	LOW ELEVATION ANGLE	2
	40	NO/ZERO SKEW ANGLE	3
			4
		·	5
			6

FIG. 3A4

L	V	В	ပ	O	E	F	ပ	Ξ	F	7	¥	-	Σ	z	0	
_	Station 1	(Local Co-ordinates)	o-ording	ates))	(#H)					Ì				
N	74/	/ ALA LY Negative skew	gative st	KeW		Poe	Positive Skew	Αe			No Skew	7	20m)			
က	First Mirror	×	λ	Z		X	y	Z		×	y					
4	-	2.55	 89:	2.70		3.80	2.30	2.77		4.30	1.60					
જ	"	4.15	1	ı	3	4.10	1.88	2.40		4.95		1				
9		3.95	ı	1	-	141/3.80	0.14	1.80	44	, 5.20						
_		2.42	-0.24	2.25		3.10	-0.80	1.80		7. 5.00	-1.80	1.66				
æ		2.55	-1.80	2.70		2.50	-0.16	2.45		4.70						
6						2.65	0.76	2.77		4.10	•					
9						3.80	2.30	2.77		4.30	1.60	2.52				
F																
12	Second Mirror	×	^	z		×	^	Z		X		2				
13		4.00	-2.63	0.05		1.70	4.10	1.30		3.10	2.60	-0.03				
4		4.90	-1.40	0.77	.;	3.00	4.45	1.98		4.50						
15	100/12 2	4.60	3.20	2.18	11/6	2 3.40	3.99	- 53	2	4.35	- 1	!				
18		3.70	[ŀ		2.30	2.43	-0.63	./	7 3.00	-2.00	0.04				
4		4.00	-2.63	0.05		1.40	2.57	-0.63		3.10						
8						1.00	2.99	-0.20								
19						1.70	4.10	1.30								
8																
21	Third Mirror	×	y	7												
Ø		4.41	-4.10													
ន	щ	1.97	-3.30	2.20												
24		1.12												ŀ		
ধ		2.51												1		
8		3.53	1													
23		4.41	4.10	1.10												
প্ত									٦							_

FIG. 3B

Mirror Summary

M63@572

													4	5	/3	33	55						
																Mr	47 '8' 2						
Ь													Z	-0.11	0.38		1.07	0.17	-0.11		(ines)		
0			No Skew										у	0.00	0.00	2.28	2.28	1.00	0.00		orizontal		
z			1										×	3.00	4.80	5.07	5.07	3.06	3.00		sets of t		
M			,																		g two		
٦				7	`	1.73		2.51	2.51				2	-0.11	0.38	1.07	1.07	0.17	-0.11		(Split mirror for generating two sets of horizontal lines)		
¥			No Skew	y	-1.60	-2.40	2.40	1.60	-1.60				У	0.00	0.00	-2.28	-2.26	-1.00	0.00		arror for		
ſ				×	3.75	5.10	5.10	3.75	3.75				×	3.00	4.80	5.07	5.07	3.06	3.00		(Spfit n		
-							_ •	1									23.24						
H			Α.	7			M	مرام			-		z				W 2 3						
Ø			Positive Skew	x									λ							-			
Н			Pos	×				_					×										
Е	Γ													_									
q		(se)	₩	7									2										
၁		o-ordinates)	jative skew	λ									λ									,	
В		(Local Co-or	Negath	×									×										
٧		Station 2		First Mirror									Second Mirror										
Г	စ္က	31	32	33		35	98	37	38	33	5	41	42	43	44	45	46	47	48	49	20	51	25
لب						_	نــا	لــا	_	ب ,		۷		ليت	ت	ك	لت	لي		ك	لت		لت

F14.3C

27.3							4	3,2.1	. 171						4	332													
MG3@5+3	٦			7	2.52	2.04		1.66		2.40	2.52		7	-0.03	0.22	0.30	0.04	-0.03											
mç	¥		No Skew	λ	-1.60	-2.15	-2.00	1.80	2.10	1.60	-1.60		y	-2.60	-3.00	2.30	2.00	-2.60											
	2			×	4.30	4.95	5.20	5.00	4.70	4.10	4.30		×	3.10	4.50	4.35	3.00	3.10											1
	-																												٦
573	Ξ		ew	Z	2.70	2.77	2.05	2.25	2.70				Z	0.05	0.77	2.18	1.06	0.05				Z	1.10	2.20	0.80	0.10	0.10	1.10	
175 10 ST3	ပ		! Positive Skew	y			-0.23	0.24	1.80				У	2.63	1		4.10	2.63				y	4.10	3.30	1.60	2.00	2.70	4.10	
i,	ī		(1)Pos	×	2.55	4.15	3/49.95	2.42	2.55				×	4.00	4.90	24.60	3.70	4.00				×	4.41	1.97		. !	3.53	4.41	
	3					Ą										MA									,	91/2			
3 ST 3	٥	(se)	¥	2		2.40	1.80	1.80	2.45	2.77	2.77		7	1.30	1.98	1.50	-0.63	-0.63	-0.20	1.30		Z			7				
77 5 200 ST3	ပ	o-ordina	V Negative skew	y	-2.30	-1.88	-0.14	0.80	0.16	-0.76	-2.30		χ	4.10	-4.45	-3.99	-2.43	-2.57	-2.99	-4.10		y							
Ċ.	8	(Local Co-ordinates)	V Neg	×	3.80		3.80	3.10	2.50	2.65	3.80		×	1.70	3.00	3.40	2.30	7 1.40	1.00	1.70		×							
	V	Station 3		First Mirror				*	1)2/6				Second Mirror				14	2,4				Third Mirror							
	Γ	R	જ	8	57	ထ္ထ	83	&	ळ	æ	ន	요	જ્	8	67	88	8	2	71	72	73	74	76	78	11	78	78	88	E

w	
_	
0	
_	

		: sa.	7 5 5	1207 5 cm		~	ふるる	20 OST4			3	mg3@ \$4	K	•	•		
	٧	В	O	0 0	ш	ı	9	E	-	5	¥	M	2	Z	C	۵	
8	83 Station 4	(Local Co-ordinates)	So-ording	ates)													
象	28	K Ne	K\ Negative skew	We)		/L Positive Skew	sitive Sk	Me.			No SKew				No Skew	I	
8	First Mirror	×	χ	Z		×	٨	×		×	>	Z		×	>	Z	
8		4.90		6.41		4.90	0.80	6.41		6.70	0.00	1		6.70	000	5.61	
6			-0.80	5.65	Σ	6.10	0.80		1	7.40	١	ľ		7.40	000	1	,
88	Mus		-4.50	6.47		8.00	4.50	6.47	15	ı	ľ	1		80.0	8	8	ď
8	60	4.90	l	7.17		4.90	4.50			1	Į			8	8	20.2	7,5,7
8		4.90	0.80	6.41		4	0.80	ŀ			1	ı		A 70	3 6	200	
91					T				Ī	?	1	1		3	3	9	
92					T				T	(Soft o	drive for	neperatin	Ì	(Solly mirror for page station than sold to the sold lines)	tolandaha	1000	
93					T						5	moroupk		5 20		(Spine	
94	94 Second Mirror	×	>	2	r	×	>	7	T	×	>	•	T		†		
8		2.85	3.20	3.37	Ī	2.85	3.20	3.37	T		1		1	İ	T		
96	4/1	4.20	-2.80		1	12420	2.80	323	T				T				
97	26%	5.95	4.50	6.46	-	5.95	4.50	648	T				T	1			
88		4.60	1	ļ		4.60	4.95	889	T				T				
8		2.85	-3.20	3.37		2.85	3.20	337	T				T	\dagger	1		
8				-	T				T		Ī	T	T	1	\dagger		
ĺ					I						•	•	•	•		•	

F1G. 3E

DOX width (Inches): DOX width (Inches): BOX width (Inches): Min and Box width (Inches): Social (See Note of the Content of th	and the first All the said.					1					
See Note 5 Age	ox neight (manes):			W.A	(See Note 1)	Problem Items	erre				
247 PES 250,0 (See Note 5) 250,0	ox width (Inches):			WA	(See Note 2)	/hjghilighted (rec	ہے				L
Sa	ax engle B (degrees):			62.00	(See Note 3)						L
Signature Sign	in angle B (degrees):	-		38.00	(See Note 3)						L
E Foutse Class 17 E Foutse Clas	otal facet angular sweep (degrees):		358.14	(See Note 4)						
not): 1000 1000											
19704 19704 19704 247 P-guite Cises 17 156 Note 7 0.91 Max benchrich (Mitt) for 7.5 247 P-guite Cises 17 2.47 (See Note 7) 0.91 Max benchrich (Mitt) for 7.5 248 Pulse train correction (See Note 8) (See Note 8	in (angle A - angle B) (deg	rees):		8.0	(See Note 6)						
256 Pulse Ctees 17 (See Note 7) 0.91 Max benchwich (Mitz) for 7.55 247 P-pulse Ctees 17 (See Note 8) 0.91 Max benchwich (Mitz) for 7.55 256 Pulse train correction (See Note 8) (See Note 9) (See Note	ax beem speed (inches pe	r second):		13704							
E. Soute Cises 17 Sol More To	in beam speed (inches per	r second):		7158							L
24.7 YES 24.7 P-guite Cleas 17 25.47 (See Note 7) 25.48 (See Note 7) 25.49 (See Note 7) 25.49 (See Note 7) 25.49 (See Note 7) 25.40 (See Note 7) 25.40 (See Note 8) 25.40 (See Note 8) 25.40 (See Note 8) 25.41 (See Note 8) 25.41 (See Note 8) 25.42 (See Note 8) 25.43 (See Note 8) 25.44 (See Note 8) 25.44 (See Note 8) 25.45 (See Note 8) 25.45 (See Note 8) 25.46 (See Note 8) 25.46 (See Note 8) 25.47 (See Note 8) 25.48 (See Note 8) 25.48 (See Note 8) 25.49 (See Note 8) 25.40 (See No	ower at data detector (nW			872							L
E Poulse Class 17 S.45 (See Note 5) 0.91 Max benchwicht (MHz) for 7.5	gnal voltage (volts):			5.47	(See Note 7)						L
PAST Populae Class 17 (See Note 6) 255 Pulse train correction 256 Pulse train correction 257 (See Note 6) 258 Pulse train correction 259 PASS 250 Pulse train correction 250 PASS	gnal voltage at max DOF 1			3.45	(See Note 7)	16.0	Wax bendwld	th (MHz) for	7,51	nii bars	L
VES PASS PASS PASS PASS PASS PASS PASS PA	ORIH: P-evg. Class 2	7 Class 2A?	P-pulse Class 17								L
PASS Paties train correction Real March 1 to Catif to be lentify the problem or line adjustments in Celts G215 to G254. X dealgn, but it gives an indication of the to bished by the width of the tops of the mirrange between 40 degrees and 70 degrees. If within a few degrees of, 380 degrees. If within a few degrees of, 380 degrees. In the scene of the scan lines. L.5 degrees to arreif, adjustments must be length of the scan lines. L.5 degrees to arreif, adjustments must be left than some value established by the adjustment than some value between must be increased arreased.		YES	YES		(See Note 8)						Ш
PASS PLUS TO PASS PASS PASS PASS PASS PASS PASS Then the value axceeds the specified value list adjustments in Cal56 to identify the problem of the adjustments in Cal56 to identify the problem of the adjustments in Cal56 to identify the problem of the adjustments in Cal56 to identify the problem of the adjustments in Cal56 to identify the adjustments in the length of the scan lines. The female of the scan lines. The female cals adjustments must be been access to any described by the significant than some value established by the significant that have about the laces from the laser power must be increased areased.	ĺ										
than the value axceeds the specified value vils GA17 to GA56 to identify the problem evils GA17 to GA56 to identify the problem evils GA17 to GA56 to identify the problem evils GA17 to GA56 to identify the problem exists and the same bished by the width of the tops of the mirriange between 40 degrees and 70 degrees. Trange between 40 degrees and 70 degrees, or angles may be difficult to construct. In within a few degrees of 380 degrees. BA5 degrees to evoid feedback into the beingth of the scan lines. BA5 degrees to evoid feedback into the beingth of the significant incess (8ee Cells X488 to X507). Act than some wake established by the significant the laser power must be increased areased.		P-evg. 0.25s	Pulse train correct	Por							
He I: if this entry is highlighted (red) than the value exceeds the specified velue for the box height (cell Carl). Ca be cells Gair? to didd be described with the problem entress and make the necessary kinner redius adjustments in Cells carl is to 0204. It is a think and the box dealigh, but it gives an indication of the box dealigh, but it gives an indication of the box dealigh, but it gives an indication of the box dealigh, but it gives an indication of the box dealigh, but it gives an indication of the hope of the mirror. It is a think analise of larger than bot within a few degrees of 360 degrees. Hobograms with smaller of larger happe between 40 degrees of 360 degrees. Hobograms with smaller of larger happe between 40 degrees of 360 degrees. To satisfy this requirement, it may be necessary to make adjustments to be seated attained and degrees to avoid feedback into the least from disk surface neffections. It is a finitely value must be greater than one value as hould be greater than 2 volts. If this value is less than 2 volts, either the least power must be larger than 2 volts. If this value is less than 2 volts, either the least power must be largered or the focal distances must be decreased. If this value is less than 2 volts, either the least power must be largered or the focal distances must be decreased. If this value is less than 2 volts, either the least power must be largered or the focal distances must be greater than 10 the larger power must be largered to a feet the larger power must be largered to a feet to a feet to a feet the larger power must be largered to a feet to a feet to a feet to a feet the largered to a feet f	PASS	PASS	PASS		(See Note 8)						
the Dr. It bis entry is highlighted (red) from the value acceeds the specified value for the box highlighted (red) from the value for the box highlighted (red) from the value for the box highlighted (red) from the part and and the housessey inner red of 17 to obtain the formal for the part of the red of the tops of the red of the box design, but it gives an indication of the box distinct the set of the red of the r					***************************************						L
the box height (Cell Carl), Go to cells Gell Te o Gidd to Identity the problem entries and make the necessary Inner radius adjustments in Cale Carl is to Gast. 19: 2. This entry is not used in the box dealer, but it gives an indication of the box dimensions that would be established by the width of the lops of the minors. 10: 3. Generally, the B stoke a thought are box dealers and 70 degrees. 10: 4. This entry must be less than but within a few degrees of, 360 degrees. 10: 4. This entry must be less than but within a few degrees of, 360 degrees. 10: 4. This entry must be greater than 0.5 degrees to evoid leadback into the less than but with a send volument in the processor requirement. It may be necessary to make adjustments to the focal distances and/or the length of the scall fines. 10: 5. This value must be greater than 0.5 degrees to evoid leadback into the less than send evoluments. It is box only the scall adjustments must be made on the B angles of the problem less to Box of the scall by the scall send to the B angles of the problem less to Box of the scall by the scall statuces must be decreased. 10: 5. The edgree of distances must be decreased. 11: 6. This value is less than 2 volts, either the laser power must be increased or the formal by the scale of the problem less than 2 volts, and the formal distances must be decreased. 12: 6. The following the made of the problem less than 1 volts and 1 volts. 13: 6. The scale of the problem less than 1 volts and 1 volts. 14: 6. The scale of the problem less than 1 volts and 1 volts. 15: 7. The scale of the problem less than 1 volts and 1 volts. 16: 7. The scale of the problem less than 1 volts. 17: 7. The scale of the problem less than 1 volts. 18: 8. The scale of the problem less than 1 volts. 19: 7. The scale of the problem less than 1 volts. 10: 7. The scale of the problem less than 1 volts. 10: 7. The scale of the scale of the problem less than 1 volts. 10: 7. The scale of the problem less than 1 volts. 10: 7. The scale of the problem l	te 1: if this entry is highly		value exceeds the	specified value	for						L
and make the necessary inner radius adjustments in Catis G215 to 0294. 19 2. This entry is not used in the box design, but it gives an indication of the box dimensions that would be established by the width of the lope of the mirror. 19 3. Cenerally, the B angles about carge angles may be difficult to construct. 10 satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. 10 satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. 10 the focal distances and/or the length of the scan lines. 11 It 2. The signal voltage must be greater than acre value setablished by the signal processor requirements. Typically, this value should be greater than acre wiles stabilished by the signal processor requirements. Typically, this value should be greater than some value satablished by the signal processor requirements. Typically, this value aloues must be decreased. 11 It 2. The signal voltage must be decreased. 12 It 3. All CERRINICE and a must be decreased. 13 It 3. All CERRINICE are must be VES or PASS. If not, leaser power must be reduced.	the box helph! (Call G2	1) Go to cells (M17	to 0456 to Mentity	the nephron et	Arles						L
dimensions that would be established by the width of the tops of the mirror. dimensions that would be established by the width of the tops of the mirror. 10 satisfy the samples should range between 40 degrees and 70 degrees. 10 satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. 10 satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. 10 satisfy this requirement, it is too amal, adjustments must be the focal distances and/or the length of the scan lines. 11 It 7. The signal voltage must be greater than 0.5 degrees to avoid feedback into the made to the 8 myles of the problem leads to a mail, adjustments must be greater than some value established by the signed processor requirements. Typically, this value should be greater than 3 volts. 12 The signal voltage must be greater than some value established by the signed processor requirements. Typically, this value is been than 2 volts, either the laser power must be hereaded or the focal distances must be decreased. 12 Stall confidence must be offerensed. 13 Stall confidence must be yet sor PASS. If not, laser power must be reduced.	and make the necessar		tments in Cetts G21	5 to Q254.							Ш
dimensions that would be established by the width of the typs of the mirors. dimensions that would be established by the width of the typs of the mirors. dimensions that would be established by the width of the typs of the mirors. Holograms with smaller or larger angles may be difficult to construct. Holograms with smaller or larger angles may be difficult to construct. To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. To satisfy this requirement, it may be necessary to make adjustments and the scale lines for the scan lines. Essar from dist surface reflections. If it is too anall, adjustments must be made to the B angles of the problem lesses (Sea to X607). It is hardly to angles of the problem lesses (Sea to X607). It is aligned woltage must be obtained by the value allowed the greater than 2 volts. If this value is less must be obtained the scan power must be increased or the focal distances must be VES or PASS. If not, laser power must be reduced.											
dimensions that would be established by the width of the tops of the mirrors. 1923: Generally, the B angles should range between 40 degrees and 70 degrees. Holograms with smaller or larger angles may be difficult to construct. 10 satisfy must be less than, but within a few degrees of, 380 degrees. 10 satisfy this requirement, it may be necessary to make adjustments to the focal distances andor the length of the scan tines. 10 satisfy this requirement, it may be necessary to make adjustments to the focal distances reflections. It it is too amai, adjustments must be made to the B angles of the problem facets (See Calis Ad88 to NB97). 10 The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be increased or the focal distances must be decreased. 10 SARIC Centrice must be VES or PASS. If not, laser power must be reduced.	to 2: This entry is not use	d in the box dealgn	but it gives an India	cation of the b	×						
Nelogrants with smaller or larger angles may be difficult to construct. Nelogrants with smaller or larger angles may be difficult to construct. To satisfy must be less than, but within a few degrees of 360 degrees. To satisfy this requirement, it may be necessary to make a djustments to the focal distances and/or the length of the scan lines. To satisfy this requirement, a may be necessary to make a djustments to the focal distances and/or the length of the scan lines. To satisfy this requirement, a may be necessary to make a djustments must be made to the Bangles of the problem lacetal (see Cella X488 to X507). Baser from disk surface reflections. If it is too small, adjustments must be problem lacetal (see Cella X488 to X507). If this value is less than 2 volts, after the laser power must be increased or the focal distances must be decreased. If this value is less than 2 volts, after the laser power must be reduced. If the value is less than 2 volts, after the laser power must be reduced.	dimensions that wo	uld be established	by the width of the	ope of the min	iore.						
112 d. This entry must be less than, but within a few degrees of, 360 degrees. To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. The satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. The satisfy this requirement is the focal may be appeared in the satisfy the problem facets (Bee Cetts X468 to X677). The signal voltage must be greater than some value established by the signal processor requirementa. Poplically, this value is should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be increased or the local distances must be decreased. The local distances must be decreased. The local distances must be decreased.											
Notograms with smaller or larger angles may be difficult to construct. To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the language of the acan lines. To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the language of the scan lines. This value must be greater than 0.5 degrees to avoid feedback into the lasser from disk surface reflections. If it is too amail, adjustments must be made to the B angles of the problem lacets (See Cala X468 to X607). The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be increased or the focal distances must be decreased. The CSRIVIEC entries must be YES or PASS. If not, laser power must be reduced.	IB 3: Generally, the B eng	tes should range be	tween 40 degrees a	nd 70 degrees							
To estisty this requirement, it may be necessary to make adjustments To estisty this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. In the focal distances and/or the length of the scan lines. In the focal distances and/or the length of the scan lines. In the square must be greater than 0.5 degrees to evoid feedback into the made to the B angles of the problem faces to service that the scan was be made to the B angles of the problem some value established by the signed processor requirements. Typically, this value should be greater than 2 voits. If this value is less than 2 voits, either the laser power must be increased or the local distances must be decreased. If the focal distances must be decreased. If the requirements is the YBS or PASS, if not, laser power must be reduced.	Holograms with sma		may be difficult to	construct.							
To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan line. To satisfy this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan line. By: This value must be greater than 0.5 degrees to avoid feachack into the lasser from disk surface reflections. If it is too amail, adjustments must be made to the B angles of the problem facets (See Cetts X468 to X507). It is signal voltage must be greater than some value stabilished by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be harmaned or the focal distances must be decreased. It is All CDRIVIEC entries must be VES or PASS. If not, isser power must be reduced.											
To estisty this requirement, it may be necessary to make adjustments to the focal distances and/or the length of the scan lines. 18 E. This value must be greater than 0.5 degrees to avoid feedback into the laser from disk surface reflections. If it is too small adjustments must be made to the B angles of the problem lacets (See Catis X488 to X507). 19 P. The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be herreased or the focal distances must be decreased. 19 E. All CDRIVIEC entries must be VES or PASS. If not, isser power must be reduced.	to 4: This entry must be i	ess then, but within	a few degrees of, 3	60 degrees.							
to the focal distances and/or the length of the scan lines. 19 8: This value must be greater than 0.5 degrees to avoid feedback into the least from disk surface reflections. If it is too armell, edjustments must be made to the B angles of the problem lacate (See Cells X488 to X507). 19 7: The signal vollage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the taser power must be increased or the focal distances must be decreased. The focal distances must be VES or PASS. If not, isser power must be reduced.	To satisfy this requi	rement, it may be n	scessary to make a	djustments			4 4 44	0			_
Reser from disk surface reflections. If it is too amail, adjustments must be made to the B angles of the problem facets (See Cetis XA68 to X507). The signal voltage must be greater than some value established by the skinel processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be harnessed or the focal distances must be decreased. The focal distances must be decreased. If the local distances must be YES or PASS. If not, isser power must be reduced.	to the focal distance	es and/or the length	of the scan lines.				7	77	-		
Reser from disk surface reflections. If it is too amail, adjustments must be made to the B angles of the problem facets (See Cetis XA68 to X507). The signal voltage must be greater than some value established by the skinel processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be harmased or the focal distances must be decreased. The focal distances must be decreased.							ך	5			L
RE: This value must be greater than 0.5 degrees to evoid feedback into the lasser from disk surface reflections. If it is too small adjustments must be made to the B angles of the problem facets (See Cetta X488 to X507). Re 2. The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be herreased or the focal distances must be decreased. The focal distances must be decreased. REAL CDRIVIEC entries must be YES or PASS. If not, isser power must be reduced.											L
Reser from disk surface reflectbons. If it is too small adjustments must be made to the B angles of the problem lacets (see Celts X488 to X507). 19.7. The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 3 volts. If this value is less than 2 volts, either the laser power must be hereased or the focal distances must be decreased. The focal distances must be VES or PASS. If not, isser power must be reduced.											
Reser from disk surface reflections. If it is too ennell, edjustments must be made to the B angles of the problem lacets (See Cells X488 to X507). 12 7: The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value about be greater than 2 volts. If this value is less than 2 volts, either the taser power must be horreased or the focal distances must be decreased. The focal distances must be VES or PASS. If not, isser power must be reduced.											
This value must be greater than 0.5 degrees to avoid feedback into the latest from disk surface reflections. It is to so small, adjustments must be made to the Bungles of the problem facets (Bee GLIB X488 to X507). 12.7 The signal voltage must be greater than some value established by the eligned for the problem facets than 2 volts. If this value should be greater than 2 volts. If this value is least than 2 volts, this value should be greater than 2 volts. If this value is least than 2 volts either the laser power must be horsead or the focal distances must be decreased. If BE ALI CDRIVIEC entries must be VES or PASS. If not, leser power must be reduced.											
Reser from disk surface reflections. If it is too analt, adjustments must be made to the B angles of the problem lacets (See Ceits X488 to X507). R 7: The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be increased or the focal distances must be decreased. The focal distances must be VES or PASS. If not, laser power must be reduced.	to 6: This value must be g	reater then 0.5 degr	ces to evoid feedba	ck into the							
made to the B angles of the problem facets (See Celts X468 to X507). 19.7. The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be increased or the focal distances must be decreased. 19.6. All CDRMREC entries must be VES or PASS. If not, laser power must be reduced.	laser from disk surfa	ace reflections. If it	s too smell, adjust	nents must be							_
19.7: The signal voltage must be greater than some value established by the signal processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be hereased or the focal distances must be decreased. 19.8: All CDRIMIEC entries must be YES or PASS. If not, isser power must be reduced.	made to the B angle	a of the problem fac	sets (See Cells X466	to X507).							_
The signal vollage must be greater than some value established by the signed processor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be increased or the focal distances must be decreased.								+			
# Cocessor requirements. Typically, this value should be greater than 2 volts. If this value is less than 2 volts, either the laser power must be increased or the focal distances must be decreased. The focal distances must be vess or PASS. If not, laser power must be reduced.	te 7: The signs vortage m	ust be greater than	some value establis	hed by the sig				+			
If this value is less than 2 volts, either the laser power must be increased or the focal distances must be decreased. It is: All CDRHMEC entries must be YES or PASS. If not, laser power must be reduced.	processor requirem	ents. Typically, this	value should be gre	ater than 2 vol	1						_
the focal distances must be decreased. 18. All CDRIVIEC entries must be YES or PASS. If not, leser power must be reduced.	if this value is less t	han 2 volts, either th	e laser power mus	be increased	5						_
18: All CDRIVIEC entries must be YES or PASS. If not, leser power must be reduced.	the focal distances r	nust be decreased.									
ABACTAL ISSUE CANTING MUST be YES or PASS. If not, leser power must be reduced.											
(MANGE Indian Indian)	a 8: All CDRIMEC entries	must be YES or PA	SS. If not, laser pov	ver must be re	duced.						
Caronia label bower in con page 1	father seems which	1 000 H									

d = distance	from disk to base	d = distance from disk to base of scanner (inches):	:(0			0						
Rotational e	Rotational speed of disk (rpm)					6200						Maximum
												Collection
DistStratos 4.xts	4.00					mu 099	uu			Accounting for	Ught	Area
						Focal plane	358.14			deed time for	Collection	(Ignoring
	Diffraction	Geometrical			Angle of	ecan line		Scan mult.	Rotation	laser beam	Factor	notch)
Facet	Focal length	Focal length	Angle A	Angle B	Diffraction	length	Scan Angle	Factor (m)	Angle	1.15		
	(Inches)	(Inches)	(degrees)	(degrees)	(seaubep)	(Inches)	(seames)		(degrees)	(degrees)		(sq. fn.)
	Given		Given	Given								
	12.6	12.73		38.00	62.00	9.750	42.61	1.62	26.24	27.39	1.00	2.28
~	11.5	11.68	92	40.00	20.00	9.760	45.95	1.62	28.35	29.50	080	1.81
6	12.7	12.94	52			9.750	42.00	1.58	26.66	27.81	0.92	
4	11.5	11.69	52	44.00	48.00	9.750	45.95	1.57	29.19	30.34	0.71	1.62
	12.7	12.94			42.00	9.750	42.00	1.50	79.72	29.12	62'0	1.79
_	12.0	12.21	23			9.750	44.22	1.46	30.28	31.43	99'0	1.47
_	14.7	15.08	3	2 58.00	32.00	9.750	36.69	1.31	27.99	28.14	28'0	1.97
40	14.7	15.08	29	2 68.00	32.00	8.750	36.69	1.31	66.72	28.14	78'0	1.97
5	13.5	13.80	23	60.00	30.00	9.750	39.71	1.30	30.65	31.80	0.71	1.61
10	13.5	13.80	52	2 60.00	30.00	9.750	39.71	1.30	30.65	31.80	0.71	1.81
=	14.8	15.19	62	62.00		9.750	36.46	1.25	29.19	30.34	0.83	1.88
12	14.8	15.19	52	62.00	28.00	9.750	36.46	1.25	29.19	30.34	0.83	1.88

F19.361

Notch size in mirror	rror													
TG (12/21/99)														
3.5 mm x 5.1 mm (3.5 mm x 6.5 mm at disk)	(3.5 mm x 6.5 m	m at disk)						NOTE: # au	ny entry in ti	NOTE: If any entry in these two columns is less than 0.5 degrees	nns is less th	ian 0.5 degre	68	
Design								glu)	hlighted in I	(highlighted in red), the corresponding 8 angle should be changed	sponding B a	ngte should I	be changed.	
Collection								Ę	s is accomp	This is accomplished by modifying the "Distance from rotational axis."	fying the "Di	stance from	rotational axi	
Area	Beam speed	Beam speed	Beam speed	Beam				ant	y for that th	entry for that line (cells G48 to G85).	3 G85).			
(Includes	at center of	at max depth	at min depth	ways	Facet count									
notch loss of	scan the	of field	of fleld	elgne	function	Number of				Angle A - Angle B	le B			:
0.035					1 = facet	facets				(Absolute value	(en			
se inches)	(inches/sec)	(inches/sec)	(lnches/sec)	(degrees)	0 and facet	12				(degrees)				
						Max freq.	Min Freq.	Bendwidth						
227	11052	13704	8400	0	1	0.914	0.560	0.354		14.00				
181	10150	12798	7502	0	1	0.853	0.500	0.353		12.00				
2.08	10895	13468	8321	0	1	969'0	0.555			10.00				
1.63	9828	12429	7286	0	1	0.829	0.486	0.343		8.00				
5 1.79	10383	12835	7930	0	1	0.856	0.529	0.327		4.00				
1.47	9544	11929	7158	0	1	0.795	0.477	0.318		00:00				
1.97	10492	12634	8351	**	1	0.842	0.557	0.286		9009				
76.1	10492	12634	8351	-28		0.842	0.557	0.286		6.00				
1.62	9524	11640	7407	28	1	0.778	0.494	0.282		8.00				
1.62	9524	11640		-28	1	0.776	0.494	0.282		8.00				
1.68	10068	12108	6027	28	1	0.807	0.635	0.272		10.00				
1.88	10068	12108	6027	-28	1	0.807	0.535	0.272		10.00				

F14. 3G2

F19.3H

O SEC

F1G. 3I

HS4Str.

He death chink equity II I I I I I I I I

F19.3J

Focal distances and distances to the window for the Stratos scanner LDD 12/7/99 RPH

<u>•</u>		Difference (inches)	(square)	4.5	3.08	3.85	2.25	е	1 .9						
Operator side	Distance to horizontal	window [(See See See See See See See See See See	8	8.42	8.85	9.25	9.7	10.1						
Ŭ	_	Vifference Vinches)		2.3	1.3	2.5	1.3	2.5	1.8	9.0	9.0	6.0	e.0	1.2	1.2
	Distance to vertical	<u> </u>		10.2	10.2	10.2	10.2	10.2	10.2	14.1	14.1	13.8	13.8	13.6	13.6
	۵	Difference		4	2.7	3.5	Q	2.9	1.8	4.4	S	2.3	3.7	3.7	5.2
	Distance to horizontal	window	(inches)	8.5	8.8	9.2	9.5	8.8	10.2	10.6	9.7	11.2	8.6	11.1	9.6
	Diffraction	Focal length	(inches) Given	12.5	11.5	12.7	11.5	12.7	42	14.7	14.7	13.5	13.5	14.8	14.8
		Facet F	Ø	_	8	Ø	4	ഹ	φ	7	ထ	O	5	=	12

The horizontal window lines from the even numbered vertical facets 8, 10, 12 are near the vertical window.

F1G. 3K

Ę	7
÷	j
į	Ī
Į	j
ë	Ä,
Ĭ	Ę
į	Ų.
1	Ī
Ξ	
ř.	
	=
×	==
1	ŝ
	Ū
Ę	4

		Marita that the Con	*** Shannard A. Marketter Second M. M. S.	ABClass Requireme	ants ***		
רטאוויון איניין	Carculations to	DAC OIL AND ALLO					
Thomasher	A moderning line	es (N-overlao) mus	The mirrhar of evertaming lines (Newerlap) must be determined from the scanner data.	om the scanner dat	6		
A polo accum	ntion for our scar	nners is to conside	A safe assummion for our scanners is to consider that two scan lines are overlapped	es are overlapped			
ON! Y when t	he difference bety	ween their diffracti	ON: Y when the difference between their diffraction angles (B) is less than 2 degrees.	s than 2 degrees.			
All else being	equal, the slowe	st scan lines (large	All else being equal, the stowest scan lines (largest angle B) will be the worst case scan lines.	the worst case sca	m lines.		
N-overlap:	-						
Motor speed (rpm):	(md):		2200				
Alpha-min (radians):	dlans):		0.0016	(from standard)			
FWHM P-dive	FWHM P-divergence of laser (deg.):	1eg.):	80	(Linked from Tmc spreadsheet	spreadshe		
FWHM S-dive	FWHM S-divergence of taser (deg.):	leg.):	30	(Linked from Trnc spreadsheet)	spreadshe	(\$	
Focal length	Focal length of collimating lens (mm):	s (mm):	6.1	(Linked from Tmc spreadsheet)	spreadshe	(F	
Angle of Incic	Angle of incidence at MF plate (deg.):	(deg.):	28.23				
Angle of diffr	Angle of diffraction at MF plate (deg.):	9 (deg.):	42.12				
X-0 (mm):		×	0.87				
X-a (mm):			3.93				Ī
Average sour	Average source dimension (mm):	Ë	2.40				
Distance to e	Distance to eperture (mm):		200	(actual distance o	r 200 mm, v	(actual distance or 200 mm, whichever is greater)	
Alpha (radians):	:(8)		0.012				
ÿ			7.996				
	1						
	<u>ه</u>		ti (actual)				
	at window	msit	7 mm transit	Pxt	+		
Facet	(mW)	time at	time at	(Joules)	1		
		d = 200 mm	actual d				
		(seconds)	(seconds)			Facet count	
1	0.86		3.95856E-05	0.0000339	1		
2	0.86		3.96549E-05	0.0000341		- -	
9	0.86	4,08001E-05	4.08001E-05	0.0000351			
4	0.86	4.08315E-05	4.08315E-05	0.0000352			
9	0.86	4.28116E-05	4.28115E-05	0.0000370			
9	0.87	4.40086E-05	4.40086E-05	0.0000381			
7	0.87	4.90358E-05	4.90358E-05	0.0000425		-	
8	0.87	4.90358E-05	4.90358E-05	0.0000425		-	
6	0.87	4.96126E-06	4.96126E-05	0.0000430		-	
10	0.87	4.96126E-05		0.0000430		-	
=	0.87	5.14526E-05	5.14525E-05	0.0000446		-	
12	78.0		5.14525E-05	0.0000446		-	

Sums:			00000	0.000044	8 These values a	0.0000446 These values are the sums of the	2	_
	Ц		DiskStr.	,	worst case (lar	worst case (largest) overlap values	hues	
Duty Cycle:	0.004459213	3						
of comment								
Paverege to	the sturn or the o	Parameter to the sum of the overlap PTX is products divided by the sum of the it times times the duty cycle	a divided by the	um of the ti	mes times the	uty cycle		
			was a proposed in a	no add ain a	TO LINCOL.			_
CDRH calcu	CDRH calculations and results	2						
			Class 1	Class 27	Class 2A?			, ,
Pava. (mW):		0.003869		YES	YES			
P (single pulse) (mW):	hee) (mW):	8.27						
(Maximum Blowed)	Howed)							
P (single pulse)	(96)	0.87	YES					
(Actual)								
								_
EC calculati	EC calculations and results							
						.		
10000000000000000000000000000000000000	EC condition A (Single parse)				PASS/FAIL			
P fairnite rus	an) (mM).	a K			9466			
(Navimen plice)	7.41177	98			LASS			
	, and							į
								アロロ
EC condition	n B (average pow	EC condition B (average power in a 0.25 second pulse train)	culse train)					<u>-</u>
pavg. allowed (mW):	(MM)	28.7			PASS/FAIL			
avg. scanner (mW):	er (mw):	60000			PASS			
EC condition	C (pulse train or	EC condition C (pulse train correction factor)						
For this calc	ulation, you need	d to linsent the sum of	(the pulse times in the overtaming scan lines)	the overlap	ohd econ lines)			
					,			
-total (seconds):	nds):	0.000051						
rum or purse times	times							
overlap scan lines	Ines)							
man faction.								
THE CHAPT.		8:						
tumber of pu	tumber of pulses in train:	21.87				-		
orrection factor:	ctor:	0.4635						
100 LT 1 CO	max (F1 corrected)(mw):	20.63			PASS/FAIL			
w (Including overlap)	overtap)	490			PASS			

He dent their reter also is that is then then then the direct time beet to be the

60/335

F16. 5A2

62/335

F14.5A4

F19.5A5

65/335

F14. 582

And the first test of west state of the sense west in the sense a with the sense there with

F14. 5B4

F16.585

71/335

F19.503

F1G. 5C4

F1G. 5C5

75/335

F14.502

F14. 505

81/335

F16.5E4

F1G. 5F2

F1G. 5F4

F19, 5F5

ao/335 -- 1562 F16, 562

FIG. 592

FIG 593

F1G,5G4

F19. 595

5H1

96/335

FIG. 5H3

FIG. 5H4

99/335

FIG. 545

F19. 5H6

10/335

F19. 5H8

F19, 5H9

FIG. 5 H10

FIG. 511

FIG. 513

F19, 514

F19. 5I5

Fig 5J1

FIG 5J3

FIG. 5J4

F19, 5J5

FIG. 5K1

FIG. 5K2

FIG 5K3

F19,5K4

F19, 5K5

F19, 512

FIG. 5L3

FIG. 5L4

FIG. 5L5

FIG. 5M1

FIG. 5M3

FIG. 5M4

FIG. 5M5

F19.5N3

F19, 5N4

FIG .5N5

F19.501

136/335

FIG. 503

FIG. 504

Fig. 505

F19, 573

der fight and the second of some court meet at the second and a description of the second of some court meet at the second of th

F19.584

F19. 575

F19. 5Q1

FIG. 5Q3

FIG. 5Q4

149/335

F19. 5Q5

FIG. 5R1

FIG. 5R3

F1G. 5R4

FIG. 5R5

FIG. 581

FIG. 553

F19,554

F19:585

FIG. 5T1

F19, 5T3

P19. 5T4

F14. 575

F16. 5 U1

FIG. 5V3

FIG. 504

F16.515

FIQ. 5V1

FIG. 5V2

FIG. 543

F19, 544

F14. 5V5

FIG. 5W1

F14, 5N3

FIG. 5W4

FIG. 5N5

FIG. 5X1

FIG. 5X2

F19. 5X3

FIG. 5x4

FIG. 5X5

FIG. 5 1

FIG. 5y3

FIG. 5y4

FIG. 545

F14. 572

F1 G. 523

F16.524

194/335

F14.525

×								~	0.8	95.0	0.4			26	7								l	
3	-						End	>	0.048	0.704	-0.628			Mirror 3 Comers	>	<u> </u>				-			-	
>								×	0.494	-0.387	-0.603			Mirri	×									
2											Γ	Г						Γ	Γ	Γ	Γ	Γ	Г	T
١								Z	0.848	-0.455	0.659			Ders	7	1.300	1.980	1.500	-0.625	-0.625	0.050			
S							Middle	^	0.249	0.832	-0.527			Mirror 2 Corners	^	4.102	4.400	3.990	2.427	2.524	3.101			
œ								×	0.468	-0.316	-0.537			Mirr	×	1.700	3.300	3.400	2300	<u>8</u> 2.	1.050			
O													Γ	Г								T		П
d					2	0.788		2	0.807	-0.310	0.781			Suere	7	2.770	2.400	1.800	1.800	2.450	2.770			
0				7	^	0.00	End	ý	0.416	0.917	-0.414			Mirror 1 Comers	>	2.436	1.879	0.137	-0.737	-0.159	0.757			
z				Facet	×	-0.616		×	0.419	-0.253	-0.469			Mirr	×	3.900	4.100	3.800	3.150	2.500	2.650			
	_	2	3		5	3		3		0	1	2	3	*	9	8	7	8	6			~	<u></u>	_

F1G. 6A2

_	$\overline{}$	_	_			٠.,	_	_		_			_		_	-	_	_		_	_	_	
ر								Z		-0.565	0.510			hers	2								
X							m g	У	0.088	0.717	-0.595			Mirror 3 Comers	y								
ſ								×	0.464	-0.408	-0.621			Mirro	×								
_			٦							_	П												П
н								7	0.866	-0.448	0.647			ers	2	1.300	1.980	1.500	-0.625	-0.625	-0.050		
ອ							Middle	λ	0.235	0.823	-0.512			Mirror 2 Comers	λ	4.102	4.400	3.990	2.427	2.524	3.101		 !
4								×	0.441	-0.349	-0.566			Min	×	1.700	3,300	3.400	2.300	1.700	1.050		
Ε																							
O					2	0.788		2	0.812	-0.263	0.797			BIS	2	2.770	2.400	1.800	1.800	2.450	2.770		
၁				6	y	0.000	End	ý	0.445	0.927	-0.367			Mirror 1 Comers	^	2.436	1.879	0.137	-0.737	-0.159	0.757		
8				Facet	×	-0.616		×	0.378	-0.269	-0,478			Mirr	×	3.900	4.100	3.800	3.150	2.500	2.650		
∢	Station 1			High Elevation Left Skew	(62)	Vector from Module			Output Vectors From Disk	First Mirror Reflected Directions	11 Second Mirror Reflected Directions	12 Third Mirror Reflected Directions				-	2	8	4	9	9	1	8
L		7	က	4	သ	φ	^	8	6	2	Ξ	12	13	=	2	18	11	18	9	ଷ	21	Ø	ន

F14.6A3

_	 	_	_					_															
₹							7	0.897	-0.536	0.524			ers	Z									
₹						Ead	^	0.086	0.728	0.584			Mirror 3 Comers	^								-	
¥							×	0.433	-0.429	-0.638			Mirro	×									
¥G												T			Г		Γ					r	П
AF				_			2	0.883	0.440	0.633			ers	Z	1.300	1.980	1.500	-0.625	-0.625	0.050			
AE						Middle	^	0.220	0.813	-0.496			Mirror 2 Comers	^	4.102	4.400	3.990	2.427	2.524	3.101			
AD							×	0.415	-0.382	0.594			Mirro	×	1.700	3.300	3.400	2.300	1.700	1.050			
AC							-	Γ				l		_		Г				Т			Н
AB				Z	0.788		7	0.814	-0.211	0.814			ers	2	2.770	2.400	1.800	1.800	2.450	2.770			
₩			11	^	0.000	End	^	0.476	0.935	-0.318			Mirror 1 Comers	ý	2436	1.879	0.137	-0.737	-0.159	0.757			
7			Facet	×	-0.616		×	0.333	-0.284	-0.487			Mirc	×	3.900	4.100	3.800	3.150	2.500	2.650			
	2	3		2	8	7	8		0	1	2	8	4	2	9	7	8	6	0		3	3	ᆿ

F1G. 6AL

station .

. 199/335

F14.6B1

Z	25 Facet	×	27 -0.616	28	×	30	31 0.4	32 -0.999	33 -0.616	क्र	ક્ક	88	37	88	ස	\$ 41	42	43	77
H	×		ட	Ū		0.468 -0.	0.408 -0.	L	_									_	
0	8		0.000	End	, A	-0.249	-0.675	0.012	0.531									\vdash	_
Ь		z	0.788		Z	0.848	-0.614	-0.034	0.582							l	l		-
σ								П											-
Я					×	0.468	0.408	O.999	-0.616										
S				Middle	λ	-0.249	-0.675	0.012	0.531										
7					Z	0.848	-0.614	-0.034	0.582										-
n																			-
۸					×	0.430	0.375	-0.993	-0.605										-
*				End	ý	-0.387	-0.774	-0.108	0.419	_									-
×					Z	0.816	-0.510	0.054	0.677		,								

F1G.6B2

	A	8	၁	a	E	F	g	I	_	ſ	¥	_
25	High Elevation Ric	Facet	10						Н			
8		×	^	Z					\dashv			
27		-0.616	0.000	0.788					\dashv			
8			2				Middle				2	
8		×	>	2	\vdash	×	ý	Z		×	λ	z
18	Orthur Vectors From Disk	0.441	-0.235	0.866		0.441	0.235	0.866	Н	0.398	-0.391	0.830
<u>~</u>		0.380	-0.673	-0.635		0.380	-0.673	-0.635	-	0.343	-0.784	-0.517
8		-0.998	0000	-0.087	Г	-0.99B	0.000	-0.087	Ė	0.991	-0.133	0.033
8		-0.589	0.553	0.589	П	-0.589	0.563	0.589	H	-0.578	0.426	0.697
8									-			
8		X	Mirror 1 Comers	Sers	_	Mirro	Mirror 2 Comers	Bris		Min	Mirror 3 Corners	ers S
8		×	>	7	_	×	λ	Z		×	Α,	Z
3	-	2.550	63	2.650		4.000	-2.630	0.049		3.746	-3.750	1.000
8	2	1		2.770		4.900	-1.400	0.775	H	1.371	-3.300	2.100
8	3	L.	0.198	2.060	-	4.600	-3.150	2.118		1.159	- 86	0 80 0
4	4	2.420	908.0	2.270		3.800	-3.900	1.067		2.824	-5.000	0.10
4	5				Н				\exists	3.771	-2.700	0.10
3	9								1	1		
<u>ફ</u>	2								1		•	
4	8				1	1			\dagger	1	1	Ī
45									1			

	Z	₩	AB	AC	PΩ	AE	ΑF	ত্ব	¥	₹	₹
52	Facet	15									
8	×	K	z								
27	-0.616	0000	0.788								
88		End				Middle				E E	
8	×	λ	2		×	λ	2		×		7
႙	0.415	9220	0.883		0.415	-0.220	0.883		0.369	-0.387	0.845
3	0.351	-0.669	-0.655		0.351	-0.669	-0.655		0.312	-0.788	-0.530
8	-0.995	-0.012	-0.099		-0.995	-0.012	6 60.0-	Г	-0.988	-0.153	0.007
ଞ	-0.562	0.574	0.596		-0.562	0.574	0.596		-0.550	0.439	0,710
ਲ											
ક્ષ	Mir	Mirror 1 Comers	ners		Mir	Mirror 2 Comers	BIS		Mir	Mirror 3 Comers	rers
8	×	>	Z		×	λ	Z		×		- 1
37	2.550	-1.630	2.650		4.000	-2.630	0.049		3.748	-3.750	1.000
88	4.150	-2.267	2.770		4.900	-1.400	0.775		1.371	3.300	2.100
8	3.950	0.198	2.060		4.800	-3.150	2.118		1.159	-1.600	0.800
\$	2.420	-0.309	2.270		3.800	006°E-	1.067		2.824	-2.000	0.100
4									3.771	-2.700	0.18
42											
43											
44											
45											

F19.684

F14.6C1

Station 1

	46	47	8	49	20	51	25	જ	ቖ	8	æ	25	ထ္ထ	89	8	61	8	ස	8	65
z	Facet	×	-0.616		×	0.753	-0.368	-0.574			Min	×	4.250	4.950	5.150	5.000	4.750	4,100		
0	1	λ	0.00	Ē	^	0.321	0.443	0.468			Mirror 1 Corners	>	1.500	2.000	1.800	-1.800	-1.950	-1.500		
Ь		Z	0.788		2	0.575	-0.819	0.672			THE	Z	2.547	2.029	1.851	1.656	1.844	2.405		
O																				
Œ					×	0.788	-0.425	-0.653		,	Mir	×	3.150	4.500	4.350	3.050				
တ				Middle	y	0.000	0.132	0.160			Mirror 2 Comers	λ	2.450	2.800	-2.200	-1.850				
⊢					Z	0.616	-0.896	0.740			ners	Z .	0.030	0.213	0.277	0.089				
כ																	-			
>					×	0.753	-0.421	-0.648			Mirro	×								
}				End	χ	-0.321	-0.193	-0.165			Mirror 3 Comers	У	,	-						
×					Z	0.575	-0.887	0.743			ers	Z								

F14. 6C2

		ľ	[ľ	u	L	٥	I	_	_	×	_
	¥	8	2	2	u	1	,	+	+	1		
ę	Oth Elevision	Facet	2					1	+	\dagger		
اع	CON CIPTORIA	×	>	2					$\frac{1}{2}$	1	1	
47	(63)	0,00	1	0 700					_			
8	48 Vector from Module	0.010	٦,	1		1	Middle		-		End	
67			2		1				+	١,	>	,
2		×	>	7		×	7	7	-	_		1000
3	100	0 734	0.305	0.607		0.766	0.000	0.643	٦		0.319	0.00
ភ	Output Vectors From Orsk	COV	1	-0 R09		-0.456	0.133	0880	Y	0.453	9.18	28.0
ß	52 First Mirror Reflected Directions	200	2 2 2			-0.679	0.161	0.716	۲	-0.675	-0.162	0.719
ß	53 Second Mirror Reflected Directions	20.00	5	1	İ				L			
\$	Third Mirror Reflected Directions								+	T		
ä									+		3	1
3		N.	Mirror 1 Comers	200		E	Mirror 2 Comers	Siers	_	2	Mirror 3 Corners	919
8						,	,	•	_	×	>	N
C		×	X	7		4	1	1	ł			
3		4.250	1.500	2.547	_	3.150	2.450	0.03 0.03	+	1		
8	6	1	1	2029		4.500	2.800	0.213	-			
8		1	1	ı		4.350	-2.200	0.277	_			
8		L	Ľ	L		3.050	-1.850	0.089				
<u></u>									\prod			
3 8				2.405					+	1		
3 2									-	1		
3										-		
8		0]							

F19.603

station

۲V					Z	0.633	-0.855	0.695			Suers	Z								
A				End	^	-0.311	-0.181	-0.155			Mirror 3 Corners	À								
HY					×	0.709	-0.485	-0.702			Mirro	×								
ΑĠ			-	-	Ì			Γ					-		T	-		T	T	
AF					7.	0.669	-0.863	0.692			ers S	z	0:030	0.213	0.277	0.089				
AE				Middle	>	0.000	0.134	0.161			Mirror 2 Comers	^	2.450	2,800	-2.200	-1.850				
PΩ					×	0.743	-0.487	-0.704			Mirro	×	3.150	4.500	4.350	3.050				
۷C							Г	Г		Г						Г				
AB		Z	0.788		Z	0.638	-0.797	0.632			ers	Z	2.547	2.029	1.851	1.656	- 1.844	2.405		
₹	9	λ	0.000	End	^	0.290	0.416	0.440			Mirror 1 Corners	y	1.500	2.000	1.800	-1.800	-1.950	-1.500		
2	Facet	×	-0.616		×	0.714	-0.438	-0.638			Mirro	×	4.250	4.950	5.150	5.000	4.750	4.100		
	46	47	48	49	20	21	25	53	Ř	55	ၾ	22	88	29	8	19	ଷ	ಜ	প্ত	ક્ષ

F14.6C4

۸V					7	0.660	-0.838	0.870			ners	Z								
ΑN			,	End	ý	-0.307	-0.176	-0.151			Mirror 3 Corners	ý								
AT					×	0.686	-0.516	-0.727			Mirr	×								
AS							Г													
AR					Z	0.695	-0.848	0.666			Siers	2	0.030	0.213	0.277	0.089				
ΑQ				Middle	>	0.000	0.135	0.161			Mirror 2 Comers	`	2.450	2.800	-2.200	-1.850				
AP					×	0.719	-0.517	-0.728			Min	×	3.150	4.500	4.350	3.050				
AO												Г								
AN		Z	0.788		Z	0.667	-0.784	0.611			Bers	z	2.547	2.029	1.851	1.656	1.844	2.405		
WY	4	ý	0.00	End	>	0.275	0.402	0.426			Mirror 1 Corners	^	1.500	2.000	1.800	-1.800	-1.950	-1.500		
۸L	Facet	×	-0.616		×	0.692	-0.472	-0.667			Mirr	×	4.250	4.950	5.150	5.000	4.750	4.100		
							Ι.	-	·	_	-			-		\vdash	Ι		-	

F14.6D1

×					7	0.562	0.923	0.801			<u>"</u>	7						T						apo							٦
	\downarrow	_	4						_	4	Ě	4	_	4	\dashv	4	4	-	4	4	_	4	4	캶	_	4	_	_	_	_	4
≩				9	×	-0.367	-0.367	0.098			Mirror 3 Comers	>												rror 2 k							
>					×	0.741	-0.117	0.590			Z	×								,				The second part of mirror 2 is the abor							
D																				7	٦			B							٦
Ţ					Z	0.616	-0.990	0.667			ers	2	-0.112	0.382	1.066	1.066	0.175							he seco		-0.112	0.382	1.066	1.066	0.175	
S				Middle	y	0.000	0.000	0.448			Mirror 2 Comers	λ	0.000	0.000	-2.258	-2.258	- 000							•		0.000	0.000	2.256	2.256	- 00:	
В					×	0.788	-0.140	-0.595			Mirro	×	3.000	4.800	5.071	5.071	3.080							This station uses a split mirror for mirror #2.		3.000	4.800	5.071	5.071	3.060	
0									Г							_								햹							
۵		7	0.788		Z	0.616	-0.990	0.687			ers	Z	2,509	1.728	1.728	2.509								a split r							
0	1	À	0.000	ם	>	0.00	0.000	0.448			Mirror 1 Comers	χ	-1.600	-2.400	2.400	1.600								ion uses							
z	Facet	×	-0.616		×	0.788	-0.140	-0.585			Mirr	×	3.750	5.100	5.100	3.750								This stat							
	46	47	84	49	ß	51	ß	ន	2	જ	8	57	88	83	8	6	ଷ	63	8	S 9	99	49	89	69	02	7	22	23	7	75	76

FIG. 6D2

															_							,							_		-
₹					7	0.581	-0.907	0.787			Jers	Z												the abo							
2				اقع	>	-0.395	-0.395	0.062			Mirror 3 Comers	7												ror 2 is	1						
¥					×	0.711	-0.149	-0.614			Mir	×												The second part of mirror 2 is the abo							
व्र																							٦	5 g							٦
ΑF					Z	0.643	-0.985	0.647			ers	Z	-0.112	0.382	1.066	1.066	0.175							he seco		-0.112	0.382	1.068	1.066	0.175	
ΑE				Middle	χ	0.000	0.000	0.440			Mirror 2 Comers	y	0.000	0.000	-2.256	-2.256	-1.000									0.000	0.000	2.256	2.256	1.00	
ΑD					×	0.766	-0.175	-0.623			Mirro	×	3.000	4.800	5.071	5.071	3.060							This station uses a split mirror for mirror #2.		3.000	4.800	5.071	5.071	3.060	
AC	П															Г								niro	П						
AB		Z	0.788		Z	0.643	-0.985	0.647			Sue	Z	2.509	1.728	1.728	2.509								a split r							
¥	2	ý	0.000	End	'n	0000	0.000	0.440			Mirror 1 Comers	^	- 99.	-2.400	2.400	1.600								on uses							
7	Facet	×	-0.818		×	0.766	-0.175	-0.623			Mirc	×	3.750	5.100	5.100	3.750								This stati				-			
	48	47	8	6	ಜ	21	જ	ន	Ŋ	જ	တ္ထ	22	88	23	8	5	છ	အ	8	શ્	99	67	88	8	8	F	22	8	74	75	9/

F14. 603

Facet
-0.616
0.743
-0.209
-0.649
-1
٠ ×
3.750
5,100
5.100
3.750
1
l
This station uses a split mirror for mirror #2.
1 1
1

F1G. 604

	Ą	AM	AN	Q	AP	ΑQ	AB	AS	AT	PΑ	٨V
46	Facet	4									
47	×	у	2								
8	-0.616	0000	0.788								
49		End				Middle				End	
20	×	y	Z		×	^	2		×	^	Z
51	0.719	0.000	0.695		0.719	0.000	0.695		0.664	-0.395	0.635
52	-0.243	0.000		_	-0.243	0000	-0.970		-0.220	-0.395	-0.892
જ	-0.675	0.425	0.603		-0.675	0.425	0.603		-0.668	0.046	L
Ŗ				Г							
55											
98	Mirro	Mirror 1 Corners	ners		Mirr	Mirror 2 Corners	ners		Mira	Mirror 3 Comers	Ders
57	×	y	Z	_	×	>	7		×	^	Z
28	3.750	-1.600	2.509		3.000	0.00	-0.112				
8	5.100	-2.400	1.728		4.800	0.000	ഥ.				
8	5.100	2.400	1.728		5.071	-2.256	1.066				
81	3.750	1.600	2.509		5.071	-2.256	1.066				
ଷ				_	3.060	-1.000	0.175				
೫				1				Γ			
প্র				Г							
8								Г			
8				-				Г			
29											
88											
8	This station uses a split mirror for mirror #2.	on uses	a split n	nimor	for mirr	٠.	The second part of mirror	nd pg	ut of mir	ror 2 ks t	2 is the abo
20				H		1		T		ŀ	
71				Г	3.000	0.000	-0.112				
2				_	4.800	0.000	0.382				
ଅ					5.071	2.256	1.086				
7				Н	5.071	2.258	1.066				
2					3.060	1.000	0.175				
9	1	1	1	┨	1			┪			

	¥	ΑY	ΑZ	ВА	22	۵	a	낊	p	20	5
46	Facet	9									
47	×	λ	Z								
48	-0.616	0000	0.788								
49		End				Middle				Eng.	
50	×	λ	Z		×	y	Z		×	>	Z
=	0.669	0000	0.743		0.669				0.634		0.708
52	-0.310	0.000	-0.951		-0.310	0.000			-0.298	-0.311	-0.903
g	-0.724	0.407	0.557		-0.724	0.407	0.557		-0.730	0.114	0.673
4											
55											
ģ	Mir	Mirror 1 Corners	nerrs		Mir	Mirror 2 Comers	ners		Mir	Mirror 3 Comers	ners
57	×	À	2		×	y	Z		×	У	2
88	3.750	-1.600	2.509		3.000	0000					
6	5.100	Ι.	1.728		4.800	1	0.382				
Š	5.100	2.400	1.728		5.071	-2.256	1.066				
61	3.750	L_	2.509		5.071	-2.256	1.066				
Ŋ					3.060	-1.000	0.175				
හි											
ጀ											
9											
99											
29											
88											
8	This stat	This station uses a split mirror for mirror #2.	a split r	aj je	r for min		The second part of mirror 2 is the abo	5	art of mi	rror 2 is	the abo
2											
71				П	3.000	0.000	-0.112				
72					4.800	0.000	0.382				
55					5.071	2.256	1.066				
4					5.071	2.256	1.066				
75		-			3.060	1.000	0.175				
26				ľ							

7	\neg	_	_	7	7				-			-		-									-		1	_	_	_	_	ŕ	_
æ																															
BW																								axis. I.e.:							
ВУ								,																This station uses a spilt mirror for mirror #2. The second part of mirror 2 is the above mirrored about the y axis.							
BC																								e mirrored						`	
ВТ					7	0.769	-0.900	0.600			ners	2												he abov							
BS				End	λ	-0.232	-0.232	0.173		•	Mirror 3 Comers	λ												rror 2 is (
BR				٠	×	965'0	-0.369	-0.781			Mirr	×		, ,										art of min							
BO										Г														b	Γ						П
ВР					Z	0.788	-0.927	0.508			ers	2	-0.112	0.382	1.066	1.066	0.175							he seco	-	-0.112	0.382	1.066	1.066	0.175	
8				Middle	ý	0.000	0.000	0.387			Mirror 2 Comers	^	0.000	0.000	-2.256	-2.256	-1.000							or #2. T		0.000	000	2.258	2.258	1.000	
BN					×	0.616	-0.376	-0.770			Mirr	×	3.000	4.800	5.071	5.071	3.060							r for mire		3.000	4.800	5.071	5.071	3.060	
BM										Г		Г												orie		-				П	\exists
-BF		2	0.788		7	0.788	-0.927	0.508			ers	N	2.509	1.728	1.728	5.509								a spilt n							
BK.	9	λ	000'0	End	λ	000.0	0.000	0.387			Mirror 1 Comers	>	1.600	-2.400	2.400	1.600								esn uo							
8	Facet	X	919.0-		×	0.616	-0.376	0.770			Mir	×	3.750	5.100	5.100	3.750								This stat							
	8	47	48	49	8	51	જ	ន	3	55	28	23	28	23	8	61	ଞ	සි	8	જ	99	87	68	89		71	72	73	74	75	78

F1G. 607

×								Z	0.816	-0.510	0.054	0.677		go	7	1.000	2.100	0.800	0.100	0.100				ſ
W						_	End	y	0.387	0.774	0.108	-0.419 (Mirror 3 Comers	, ,	3.750	3.300	1.600	2.000	2.700 (_	_		-
	L					L	-	_	Ц	<u>L</u> _	<u> </u>	Ĺ	L	10 3	_	П		_			L		L	L
>								×	0.430	0.375	0.983	-0.605		Σ	×	3.746	1.371	1.159	2.824	3.771				
n																								Γ
Ţ								Z	0.848	-0.614	-0.034	0.582		ers	Z	0.049	0.775	2.118	1.067					
S							Middle	À	0.249	0.675	-0.012	-0.531		Mirror 2 Comers	y	2.630	1.400	3.150	3.900					
Я								×	0.468	0.408	-0.999	-0.616		Mirro	×	4.000	4.900	4.600	3.800					r
σ						Г				Г		Ι-		T			Г		-	r	T		r	r
Ь					7	0.788		2	0.848	-0.614	0.034	0.582		ers	Z	2.650	2.770	2.060	2.270					
0				7	×	0.00	End	ý	0.249	0.675	-0.012	-0.531		Mirror 1 Comers	^	1.630	2.267	-0.196	0.309					
z			-	Facet	×	-0.616		×	0.468	0.408	-0.999	-0.618		Mirro	×	2.550	4.150	3.950	2.420					
	-	2	3	4	5	9	7	8	6	₽	Ξ	12	13	4	15	18	17	18	19	8	21	22	23	2

F14.6E2

_								7	0.830	-0.517	0.033	0.697		STS.	Z	1.000	2.100	0.800	0.100	0.100			
¥							End	λ	0.391	0.784	0.133	-0.426		Mirror 3 Comers	λ	3.750	3.300	1.600	2.000	2.700			
ſ								×	0.398	0.343	-0.991	-0.578		Mirro	×	3.748	1.371	1.159	2.824	3.771			
-												Г						Γ					
Ξ								2	0.866	-0.635	-0.067	0.589		ers	Z	0.049	0.775	2.118	1.067				
g							Middle	y	0.235	0.673	0.000	-0.553		Mirror 2 Comers	λ	2.630	1.400	3.150	3.900				
F								X	0.441	0.380	-0.998	-0.589		Mirro	×	4.000	4.900	4.600	3.800				
Ш	Ţ									Г													_
O					Z	0.788		Z	998.0	-0.635	-0.067	0.589		ers	Z	2.650	2.770	2.060	2.270				
၁				6	λ	0.000	End	y	0.235	0.673	0.000	-0.553		Mirror 1 Comers	\	1.630	2.267	-0.196	0.309				
В				Facet	×	-0.616		×	0.441	0.380	-0.998	-0.589		Mirro	×	2.550	4.150	3.950	2420				
¥	Station 3			High Elevation Left Skew	(G2)	Vector from Module			Output Vectors From Disk	First Mirror Reflected Directions	Second Mirror Reflected Directions	Third Mirror Reflected Directions					2	e	4	S	9	12	8
	-	2	ဇ	4	2	စ	1	8	6	2	Ξ	12	13	<u> </u>	15	16	17	18	-8	ଷ	21	22	23

F1G. 6E3

	-	7	က	4	2	9	<u> </u>	80	6	9	Ξ	12	13	=	15	16	17	18	<u>6</u> 2	8	21	8	g	24
7				Facet	×	-0.616		×	0.415	0.351	-0.995	-0.562		Mir	×	2.550	4.150	3.950	2.420					
₹				#	>	0.000	End	>	0.220	0.669	0.012	-0.574		Mirror 1 Comers	>	1.630	2.267	-0.196	0.309					
AB					7	0.788		Z	0.883	-0.665	90.0	0.596		ners	Z	2.650	2.770	2.060	2.270					
AC											Г													
ΨD								×	0.415	0.351	-0.995	-0.562		Mir	×	4.000	4.900	4.600	3.800					
AE							Middle	λ	0.220	0.669	0.012	-0.574		Mirror 2 Comers	À	2.630	1.400	3.150	3.900					
AF								2	0.883	-0.655	-0.099	0.596		ners	7	0.049	0.775	2.118	1.067					
AG																								
¥								×	0.369	0.312	-0.988	-0.550		Mirr	×	3.746	1.371	1,159	2.824	3.771				
₹							E	7	0.387	0.788	0.153	-0.439		Mirror 3 Comers	χ	3.750	3.300	1.600	2.000	2,700				
₹								2	0.845	-0.530	0.007	0.710		Jers	Z	- 90 90	2.100	0.80	0.100	0.13				

FIG. GEY

	1	-	-	-	-	~	76	-	_	-	-	-	-	_	_	٠.,	_	_		_
×					2	0.868	-0.596	0.494			Pers	Z								
*				End	y	-0.048	-0.704	0.626			Mirror 3 Comers	У								
۸					×	0.494	-0.387	-0.603			Mirr	×								
n																				
T					Z	0.848	-0.455	0.659			ers	2	1.300	1.980	1.500	-0.625	-0.625	-0.050		
S				Middle	λ	-0.249	-0.832	0.527			Mirror 2 Comers	λ	-4.102	4.400	-3.990	-2.427	-2.524	-3.101		
щ					×	0.468	-0.316	-0.537			Mirr	×	1.700	3.300	3.400	2.300	1.700	1.050		
O	Ĭ									Г	Г	Г		Г						
Ь		7	0.788		2	0.807	-0.310	0.781			Siers	2	2.770	2.400	1.800	1.800	2.450	2.770		
0	8	y	0.000	End	×	-0.416	-0.917	0.414			Mirror 1 Corners	À	-2.436	-1.879	-0.137	0.737	0.159	-0.757		
z	Facet	×	-0.618		×	0.419	-0.253	-0.469			Mirc	×	3.900	4.100	3.800	3.150	2.500	2.650		
	22	28	27	28	8	3	31	ଖ	အ	34	35	38	37	38	88	40	41	42	43	44

FIG. 6F2

_		_		_	_	_	-		_	_	_			_		_	_	_	_	_	_
-					7	0.883	0 717 O ERE	3	0.510			Siers	7			_					
¥				Ē	>	-0.088			0.595		1	Mirror 3 Comers	>								
٦					×	0.464	0070	9	-0.621			Mirr	×								
-					Г	Γ	T			1											
Ξ					Z	0.866	1	٠,	0.647			9 63	7	1.300	1.980	1.500	-0.625	-0.625	-0.050		
9				Middle	>	-0.235		- 1	0.512		1	Mirror 2 Corners	>	1.700 -4.102	4.400	-3.990	2.300 -2.427	1.700 -2.524	.050 -3.101		
L					×	0 441		-0.349	-0.586			Mir	×	1.700	3.300	3.400	2,300	1.700	1.050		
Ш						Τ															
۵		2	0.788		7	19	١	-0.263	0.797			Siec	7	2.770		1,800	1.800	2,450	2.770		
O	2	>	000	T C	3 >	O AAE		0.927	0.367			Mirror 1 Comers	>	3900 -2438	4 100 -1.879	-0.137	0.737	0.159	-0.757		
8	Facet	×	-0.616		,	0.070	0.5.0	92.0	-0.479			Mirr	,	3 900	1		3.150	2.500	2.650		
Α	Skew	(6.1)	57 Works from Modulo	ACCOLUMN MODER			30 Cutput Vectors From DISK	31 First Mirror Reflected Directions	32 Second Mirror Reflected Directions	Third Mirror Reflected Directions				-	2		4	3		7	8
1	2	3 8	3 6	۱		S)	8	3	S	ສ	동	, K	3 8	3 5	ò	3 8	8	₹	9	18	4

F14.6F3

L	25 F	%	┡	₽	8	8	Ļ	+	8	ğ	58	8	37	æ	ස	\$	4	5	£	4	
7	Facet	×	0.618		×	0.333	0.284	-0.487			Mir	×	3.900	4.100	3.800	3.150	2.500	2.650			
₹	12	^	0.000	Ē	>	-0.476	1	0.316			Mirror 1 Comers	>	-2.436	-1.879	-0.137	١.	0.159	-0.757			
AB		2	0.788		2	0.814	-0.211	0.814			Ders	Z	2.770	2.400	1.800	1.800	2.450	2.770			
AC																					
PΡ					×	0.415	-0.382	-0.594			Mirc	×	1.700	3.300	3.400	2.300	1.700	1.050			
AE				Middle	y	-0.220	-0.813	0.496			Mirror 2 Corners	Y	4.102	-4.400	-3.990	-2.427	-2.524	-3.101			
¥					7	0.883	-0.440	0.633			ners	2	1.300	1.980	1.500	-0.625	-0.625	-0.050			
व्य	7	٦																			_
¥					×	0.433	-0.429	-0.638			Mir	×									
8				ם	7	-0.086	-0.728	0.564			Mirror 3 Corners	λ									
₹						1	-0.535	0.524			Sue	2									

F1G. 6F4

Middle X X Z Z 0.788 0.000 0.6 0.425 -0.132 -0.8 0.00 0.7 0.6 0.7 0.00 0.00 0.0	0.788 2 2 0.575 0.672
Middle 2000 0.788 0.000 0.625 -0.132 0.085 0.000 0.653 0.000	▗ ┠┈╂┈╂┈╂
x y y 0.788 0.000 0.785 -0.132 0.0653 -0.160 0.000 0.0	
0.788 0.000 0.425 0.132 0.663 0.160	
0.788 0.000 -0.425 -0.132 -0.653 -0.160 Mirror 2 Cor	
-0.425 -0.132 -0.663 -0.160 Mirror 2 Cor	
-0.663 -0.160 Mirror 2 Con	
Mirror 2 Con	
Mirror 2 Con	_
Mirror 2 Con	_
×	$\overline{}$
3.150 -2.450	
4,500 -2,800	
4.350 2.200	
3.050 1.850	

and along their states of the control of the contro

F14.692

			ľ	4	Ľ	2	ď	1	_	_	¥	ر
	A	8	ပ	9	ᅵ	1	,	†	†	·		
46	AR I ow Flevation	Facet	2						†			
3	(63)	×	À	2				1	†	1	1	
: 9	Water from Modulo	-0.616	0.00	0.788	_				1]	
\$ 5	Vector Hall Modera		End		Г		Middle					
3		,	,	,		×	>	7		×	χ	7
읾	1.16	, 22,	305	١٩	T	0.766	0.00	0.643		0.731	0.319	0.68 4
2	51 Output Vectors From Disk	5 6	3		T	O AER	-0 133	1	Г	-0.453	0.190	-0.871
22	52 First Mirror Reflected Directions	-0.40¢	0.402 -0.423	· I	†	0240	181		T	-0.675	0.162	0.719
53	Second Mirror Reflected Directions	9	40.0	3	1	2.0/0	3	ı	†			
12	54 Third Mirror Reflected Directions				1				†			
55									1		- Como	1
12		Mir	Mirror 1 Comers	Jers		MIT	Mirror 2 Comers	919	1		5	e l
8 1		,	>	Z		×	>	7		×	7	7
اد		1 050	1 050	2 EA7		3 150	-2.450	0.030				
නු		-1	3	1	1	5	2000	0.212	Ī			
29		- 1		ı		3	3 8	-	T			
8	8	5.150	-1.800	`		4.30 000	~		1			
2	4	5.000	1.800	1.656		3.050	1.850	0.083	1			
: 8	S	4.750	1,950	1.844					7			
3 8		6 4.100	1,500	2.405					7			
3 2	2											
8	8								T			
8												
3												

F14 643

₹					Z	0.63	-0.85	0.68			ners	7								
₹				E	У	0.311	0.181	0.155			Mirror 3 Comers	У								
AH					×	0.709	-0.485	-0.702			E	×								
AG	П	1																		
AF					Z	0.669	-0.863	0.692			ers	7	0.030	0.213	0.277	0.089				
AE				Middle	>	000	-0.134	-0.161			Mirror 2 Comers	>	-2.450	-2.800	2.200	1.850				
8					×	0 743	-0.487	0.704			Mirr	×	3.150	4.500	4.350	3.050				
δ		Γ	Г	T	T	T	ı	T		T										
AB	1	Z	0.788		,	9830	707	0 633			90	2 2	2.547	2.029	1.851	1.656	1.844	2.405		
AA	6	>	000	Ē	}	000	2418	949			Supply of the state of the stat	3 3	200	2.000	-1.800	8	1.950	1.500		
-	1		318		1		2 0	3 8	3	†			کار		200	8	20	8	Γ	T

F1G. 69

tatlon 3

645
F14.

	¥	AM	₽¥	Q	AP	Ą	AR	AS	AT	٩n	≩
8	Facet	4		П							
47	×	λ	7					1			
48	-0.618	000.0	0.788			,		٦			
65		End				Middle					
8	×	>	2		×	λ	Z		×	X	7
5	0.692	-0.275	0.667		0.719	0.000	0.695		0.686	- 1	0.660
23	-0.472	-0.402	-0.784		-0.517	-0.135	-0.846		-0.518	- 1	-0.838
ន	-0.667	-0.456	0.611		-0.728	-0.161	0.666		-0.727	0.151	0.670
ফ											
8											
8	X	Mirror 1 Comers	Siece		Mirr	Mirror 2 Corners	ners		Mir	Mirror 3 Comers	Bers
22	×	>	7		×	^	Z		×	>	Z
8	4.250	-1.500	2.547		3.150	-2.450	0.030				
ස	4.950	-2.000	2.029		4.500	-2.800	0.213				
8	5,150	-1.800	1.851		4.350	2.200	0.277				
<u>@</u>	5.000	1.800	1.658		3,050	1.850	0.089				
8	4.750	1.950	1.844								
8	4.100	1.500	2.405								
প্র											
88											

ation 3

F1G.6H1

B Q B		7) z /	0.000 0.788	End	x	0.468 0.789 0.4	0.736 -0.519 -0.4	-0.585 0.339 -0.7		Mirror 1 Comers	X Z A	0.800 6.409 2.8	0.800 5.645 4.2	4.500 6.468 5.9	4.500 7.168 4.6		
Я					Middle	χ	0.468 0.249	-0.495 0.559	-0.768 -0.631		Mirror 2 Comers	X	2.850 3.200	4.200 2.800	5.950 4.500	4.600 4.950		
J						7	0.848	-0.665	0.108		ners	Z	3.370		6.464	6.680		
^						×	0.481	-0.511	-0.771		Mire	×						
≯					E	λ	0.180	0.500	-0.636		Mirror 3 Comers	λ						
×						Z	0.858	-0.700	0.038		lers	2						

F14. 6H2

					Ľ	ı	-	1		7	_	3
	A	8	ပ	٥	П	L	5	=	†	1		
	×											
-	Station 4											
0									T			
ľ					1		1		T			
7	Lich Elevation i aft Skew	Facet	6				1		T			
+ ի		×	>	7					†			
아	State Model	-0.616	000	0.788					†		Ž	
0	Vector from module		2		L						2	
7			2		ļ	,	>	7	_	×	λ	7
ď		×		•	1	,	0 005	0 866		0.452	0.177	0.874
١	Outset Vertore From Disk	0.366	0.474		<u> </u>	3	- 1		1	A 528		-0.681
»	Culput Vectors I City Stations	A 458	0.739	-0.494		-0.525	200	٠,	1		- 1	7000
9	10 First Mirror Heliected Directions	1	1			-0.789	909.0	960.0		0.792	20.0	3
=	11 Second Mirror Reflected Directions	2	- 1		1		1					
12	Third Mirror Reflected Directions				1				Ī			
5					4		Mirror O Combra	2		Ž	Mirror 3 Comers	ners
: ;		Ī	Mirror 1 Comers	SIE	4		3	2	I	,	١	^
•		×	>	7		×	>	- 1		،	1	
15			0800	6 409	6	2.850	3,200	3.370				
16		١	-	1.) • u	4 200	2,800	3.231	L			
1		ı	1	П.	2 0	E OFO	1	1				
: 0	8	9.00		- 1	ol	0.00	1	ı				
=	4	4.800	4.500	7.168	<u></u>	4.600	5 5 5	9				
2	9				4							
श	9		_	_	_						1	
2				L	-							
8					\mathbf{I}							

F14. 6H3

	-	7	3	4	2	Φ	^	æ	တ	2	Ξ	72	13	4	15	18	11	18	19	20	21	22	23	24
7				Facet	×	-0.618		×	0.332	-0.482	-0.773			Mirr	×	4.900	6.100	6.000	4.900					
₩				11	χ	0.00	End	^	0.478	0.741	-0.526			Mirror 1 Comers	À	0.800	0.800	4.500	4.500					
AB					2	0.788		2	0.813	-0.467	0.356			ners	7	6.408	5.645	6.468	7.168					
AC									Г	Γ		Г	Γ	Г				Г						
AD								×	0.415	-0.554	-0.810			Mirr	×	2.850	4.200	5.950	4.600					
AE							Middle	ý	0.220	0.533	-0.581			Mirror 2 Comers	λ	3.200	2.800	4.500	4.950					
AF								Z	0.883	-0.640	0.084			hers	2	3.370	3.231	8.464	6.680					
AG																								
ΨH				·				×	0.422	-0.584	-0.811			Mirro	×									
₹							End	λ,	0.176	0.494	-0.583			Mirror 3 Comers	λ									
₹								Z	0.889	-0.661	0.039)ers	2									

F14. 6H4

station 4

FIG. 611

_	_		_	Г	Т	Ìç	2	6	മ	Г	Г	1	Т	7		1	1	١			l	١.		ı
×					-	1	- 1	0.519	0.339			200		Z								L		
*				E E	;	- 4		-0.738	0.585	Ь.		Stomon & Compre	5	>										
>					,	×	0.399	-0.433	5 737			N.	M	×										
5	1	1	T	T					T						L	1	1		L	1	\perp	\perp	\downarrow	1
-	1					2	0.848	-0.665	3	3			ers S	2	0.00	- 1	ļ	6.464	G ARO	3				
0	†	1			Middle	>	-0.249	O EEO	3	3			Mirror 2 Comers	,			-2.800	4.500	1	1				
6	-					×	888		2	9			Mira	[,		2.850	4.200	5.950	900	3				
k	5					Γ	T	T										L		1	_	1	1	_
			Z	0.788		-	9000	0.00	0/.0	0.038			929	2	- (6.408	5.645	S ARR	ı	7.168				
	0	8	^	0000	E	,	7	3	0.50	0.636			Compression 1	3	χ	0.800	008 0			4.500				
Ì	z	Facet	×	-0.616		,	×	0.481	-0.511	-0.771				MILL	×	7 B00	9 100	3 3	6.000	4.900				
		28	28	27	8	3 8	3	ဓ	31	જ	8	2		કુ	38	27	3	8	8	9	4	4	₹	4

FIG. 672

					Ļ		_	_		_	_
		α	C	_	<u>.</u>	9	5		1		
_	¥	,			-		·			_	
	Link Claration Right Skow	Facet	0	1				-	-		
		,	>	Z				4	+	1	
8		•	1000	200	-						
1	Months from Modula	-0.616	3	0.70						2	
	Vector Horn Models		Fred		_	Middle	1	$\frac{1}{2}$	ł		
88			֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	,	,	>	7		×	χ	7
8		×	- 1	7	; ; 	1000	988	c	9980	-0.474	0.80
3	-	0.452	-0.17	0.874	0.441		. !	1		004	7070
္က		002		0.681	-0.525	5 -0.546	0.653	우	0.458	2 2 2	2
ė	First Mirror Reflected Directions	2.50	١,		001.0	1	9000	9	0.755	0.556	0,348
18	22 Second Mirror Reflected Directions	0.792	0.610) (S)	?	- 1	ł	+			
3 8	22 Third Mirror Reflected Directions				1			+	\dagger		
3								1	1		
8				900	2	Mirror 2 Corners	ners		Mirro	Mirror 3 Comers	2013
Š		Mir	MITTOL LOUISING	0101		;	•	-	×	>	7
3		×	>	7	×	X	,	+	†	1	
8		8	900	6.409	2.850	3.200	3.370	4	1		
37		1	ı	L	V 200	2 800	3.231				
g		2 6.100	- 1	- 1			1	-			
3 8		3 6.000	4.500		2.900		- 1	+	t		
3		4 900	-4.500	7.168	4.600	4.850	9.000	1	1		
4		L	1	1_	_				_		
41		۵			-			\vdash			
2		8			1	+		1	T		
		_			-			\dagger	T		
? :		60						1	1		
4											

F19. 6I3

				1	۱	١	U V	Ğ	Į	<	3
L	2	₹	₽B	Ş	₽	¥	į	7			
25	Facet	12									
8		>	2					1			
्री	9,00	ľ	0 78A								
è	0.010	- 1	-	I		Middle				E	
8		2		1					×	>	7
ଷ	×	>	7		×		- 1	I	0000	A 478	0.813
S	0.422	-0.176	0.889		0.415		ı	I	1000	i	0.467
ē	+-	-0.494	-0.661		-0.554	- 1	Ľ		\$ \$ \$	Ί.	- 1
8	+		0.039		-0.810	0.581	0.084		2//2	0.060	1
8	╄-	1_									
3 6											
3 8		Missor 4 Compre	٩		M	Mirror 2 Corners	ners		Mir	Mirror 3 Comers	Ders
ક્ષ		3	-		*	>	7	L	×	χ	7
8	4	- 1	_1		. 0	0000	2 370	L		L_	
37	4.900	-0.800			2.800	- 1	1				
ş	6 100	0.800	5.645	_	4.200	-2.800	_				
8	↓.	L	6.468		5.950	1	- 1				
8	↓_	4.500	7.168		4.60	-4.950	9.680	1			
4				_				1			
5				4				\downarrow			
8								ļ			
44				_							

F14. 6I4

F14.6J1

		Γ	Γ	Γ	T		0.562	0.029						N					1					
×					ľ	7	ö	ď		L				_					L		L	L	L	
*				200	֡֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟֓֓֟	γ	-0.367	1_					Mirror 3 Comers	^										
>						×	0.741	000	2,000				<u> </u>	×							-		-	
5	Τ	T		T			Γ								1	1			1	1	\downarrow	\perp	\perp	1
1						7	0.616	2000	0.00				Jers											
V	,			_	Middle	,	5	3	0.334				Mirror 2 Comers											
0	-					,	4	0 0 0	-0.939				Mirr		×									
1	5	1				T	1							I								\bot	_	
,	-		Z	0.788			7	0.616	0.087					25	7	5.608	١	2.897	5.345					
		-	×	0.000	E L		7	0.00	0.335					Mirror 1 Comers	>	0.000	0.000	-3.000	-3.000					
İ	z	Facet	×	-0.616			×	0.788	-0.938					Mirr	×	6.700	7 400	6.950	6.200					
Ì		46	47	48	ę	?	ß	51	3	83	Z	y	3	20	57	58	9	8	150	8	8	8	8	8

F19. 6J2

673
F14.

₹	+	+	1	_	7	95 0.581	RE 0.058	1	\mid	\downarrow		Mirror & Corners	7	_	_	-	+	1	+	+	+	+	$\left\{ \right.$
₹			ŀ		>	965.0	-0.085				3	2	7		L		1		1	1	1	\downarrow	
¥					×	0.711	900	2000				Σ	×										
ΑĠ						L								_	L	1	-	\downarrow	1	1	1	1	1
AF					7	1	- [0.121				79.TS	2										
ĄĘ				Middle	>	2	- 1	0.35				Mirror 2 Comers	>										
ą					,	004	8	936				Mir	×										
Ş																				_			_
AB		2	0.788			7	0.643	0.121				8	2	000	0.0	3.322	2.897	5.345					
₽	2	>	0000	2	2	>	8	0.329				Mirror 1 Corners	,	188	3	000	-3.000	-3.000					
-	1829	×	0.616			×	0.766	-0.936				Mirro	,		6.700	7.400	6.950	6.200				·	
r	188	-	Ę	9 9	2	ន	2	22	83	2	12	1 2	3 0	3	ß	29	8	19	ଥ	83	ঠ	88	98

					1	ŀ	ď	7	-	-	¥	ل
1	Ψ	8	ပ	0	u	-	,	1	†			
1	ļ	Facet	3					1	\dagger	1		
91	46 Low Elevation	×	>	7					\dagger	1	T	
ŀ	4.	-0.616	000	0.788	-			1	\dagger	1	1	
اخ	48 Vector from Module		1	1	T		Middle		1			
		1	:	,	T	×	>	Z		×	>	i
ı		×	- L	1	†	0 743	0000	0.669		0.697	-0.362	0.619
C	54 Output Vectors From Disk	0.743	- 1		1	2 2	١	1	t	96	-0.035	0.101
	En Einst Mirror Reflected Directions	-0.933	0.324	0.156	1	33.5	0.364	ı	t			
. 0	53 Second Mirror Reflected Directions								t			
١F	54 Third Mirror Reflected Directions				1				T			
-1					=				t		200	200
_ I		Mir	Mirror 1 Comers	Ders		Z	Mirror 2 Comers	ners	1		Miror o Colliero	210
		Ē,		,		×	>	7	_	×	$\left \cdot \right $	7
57		×	- 1	ı					r			
1		1 6.700		- }					T			
		2 7.400	0.00	3.322					†			
L		3 6.950	-3.000	2.897					1			
_		l_	-3.000	5.345					1			
		1							_			
		0			I							
┖		9							T			
15		7			1							
18		8		1								
98												
Į												

F19.654

r			N	Q	₽₽	AO	AH	AS	AT	₽	≱
┑	Ž	8	É								
8	Facet	4						I			
47	×	^	7					I			
8	-0.618	0000	0.788								
٦,		1				Middle				2	
3					\\	,	,		×	>	7
S	×	X	- 1			1	1		O RR4	-0.395	0.635
51	0.719	0.000	0.695		0.73	_1	-		200	1	i .
않	-0.929	0.319	0.190		-0.929	0.319	35.0		7.303	_	1
B											
2											
55									40.0	Alleron Comore	900
8	Ξ	Mirror 1 Comers	ners		Mir	Mirror 2 Comers	11975			3	9
1	×	>	Z		×	^	7		×	X	•
[5	6 700	0000	5,608					\downarrow			
2	╄	1	1					\perp			
8	1	-3.000	2.897					\downarrow			
2	6.200	-3.000	5.345					1			
8								\downarrow			
ଞ								1			
क्र				4				1			
શ્				_				1			
8	L							4			

F19.655

~	ì	676
F1G.	Ì	F/9.

Ŧ						A ROF	200				[<u></u>	,	Ţ									
표			L		Ľ	1	- 1	1	L	L	18	L	1		L	_	1	L	-	L	\vdash	(
BG				E	,	200	2000				Mirror 3 Comers		>								-	
BF					,		0.621	7,87,7			Ž		×									
H	t	t	†	†	†	1	1							_		I			I	floor		
SO C	3					7	0.743	0.257				2012	7									
5	3	1	1		Middle	χ	0.00	0.307		1		Mirror 2 Comers	>									
9	8	1	1			×	699.0	-0.916				Z	×									
	뒮	7	1											I								┙
ı	¥		Z	0.788		2	0.743	0.257				ers			2.608	3,322	2.897	5,345				
	¥	9	^	0.00	End	>	000	0.307				Mirror 1 Comers		X	000	0.00	-3.000	-3.000				
	₹	Facet	×	9		,	0880	-0.916				Mirro		×	6.700	7.400	6.950	6.200				
		8	47	গ্ৰ	9		3 2	8	ន	ঠ	55	9	3	2	83	23	8	9	ଥ	8	প্র	8

,77
4.6
I

BC			Ī	T											L	1	\perp		1		1	\perp	1
ВТ						2	0.735	0.270					S S S	7									
BS			1	-		^	-0.380	980 0	3				Mirror 3 Comers	>	1								
88		1	\dagger	1	Ī	×	0.561	080	20.5				Z	×	1								
g	1	†	†	1	1				1	1													
BP	T					7	0.788	7000	C.324				Iers		1								
Se Car					Middle	>	000		2233				Mirror 2 Comers	,									
N	1	1				×	0.618	2 3	0.900				Mirro	,	×			·					
Ma		1	1			T	t	1	1		_												
ā	٦		7	0.788		,	200	2,78	0.324				9	2	Z	5.608	3.322	2.897	5.345				
1	á	8	^	000	2	;		3	0.283				Mimor 4 Compile	3	^	0000	000	3.000	ب 2000				
	3	Facet	×	-0.616		,	× 1	0.616	900					MISIC	×	6.700	7,400	6.950	6.200				
ļ	٦	46	47	4	9	1	8	2	25	ន	2	ď	3 8	8	22	88	55	8	5	ଥ	ន	ঠ	S.

For the direct region to the second

244/335

FIG. 7A

FIG. 7B

246/335

SYMBOLICALLY EMBED A SECOND LOCALLY-DEFINED HYBRID CARTESIAN/
POLAR COORDINATE SYSTEM WITHIN THE 3-D SOLID GEOMETRY MODEL OF
THE HOLOGRAPHIC LASER SCANNING SYSTEM, IN ORDER TO SPECIFY THE
PROPAGATION OF LASER BEAMS GENERATED FROM THE LASER BEAM
PRODUCTION MODULE OF LASER SCANNING STATION NO. 2 THROUGH THE
FACETS ON THE HOLOGRAPHIC SCANNING DISC, AND OFF THE BEAM FOLDING
MIRRORS ASSOCIATED WITH THE LASER SCANNING STATION, THROUGH THE
BOTTOM SCANNING WINDOW FORMED IN THE SCANNER HOUSING. WHOSE
COORDINATE REFERENCE SYSTEM IS INDICATED BY R_{LOCAL2}

SYMBOLICALLY EMBED A THIRD LOCALLY-DEFINED HYBRID CARTESIAN/POLAR COORDINATE SYSTEM WITHIN THE 3-D SOLID GEOMETRY MODEL OF THE HOLOGRAPHIC LASER SCANNING SYSTEM, IN ORDER TO SPECIFY THE PROPAGATION OF LASER BEAMS GENERATED FROM THE LASER BEAM PRODUCTION MODULE OF LASER SCANNING STATION NO. 3 THROUGH THE FACETS ON THE HOLOGRAPHIC SCANNING DISC, AND OFF THE BEAM FOLDING MIRRORS ASSOCIATED WITH THE LASER SCANNING STATION, THROUGH THE SIDE SCANNING WINDOW FORMED IN THE SCANNER HOUSING. WHOSE COORDINATE REFERENCE SYSTEM IS INDICATED BY R_{LOCAL3}

B7

В6

B5

SYMBOLICALLY EMBED A FOURTH LOCALLY-DEFINED HYBRID CARTESIAN/
POLAR COORDINATE SYSTEM WITHIN THE 3-D SOLID GEOMETRY MODEL OF
THE HOLOGRAPHIC LASER SCANNING SYSTEM, IN ORDER TO SPECIFY THE
PROPAGATION OF LASER BEAMS GENERATED FROM THE LASER BEAM
PRODUCTION MODULE OF LASER SCANNING STATION NO. 4 THROUGH THE
FACETS ON THE HOLOGRAPHIC SCANNING DISC, AND OFF THE BEAM FOLDING
MIRRORS ASSOCIATED WITH THE LASER SCANNING STATION, THROUGH THE
SIDE SCANNING WINDOW FORMED IN THE SCANNER HOUSING. WHOSE
COORDINATE REFERENCE SYSTEM IS INDICATED BY R
10CAL4

 $\begin{pmatrix} \mathbf{c} \end{pmatrix}$

FIG. 7C

FIG. 7D

FIG. 7E

FIG. 7F

FIG. 7G

FIG. 7H

E. ⊿

į

...

FIG. 7J

FIG. 7K

FIG. 7M

FIG. 70

FIG. 7Q

FIG. 7R

۲.

FIG.8A

FIG. 8B

- (1) THE RADIUS TO BEAM-INCIDENT-POINT ON THE HOLOGRAPHIC SCANNING DISC, ASSIGNED THE SYMBOLIC NOTATION " $r_{\rm o}$ "
- (2) THE DISTANCE FROM RADIUS TO BEAM-INCIDENT-POINT ${\bf r_0}$ TO BEAM FOLDING MIRROR , ASSIGNED THE SYMBOLIC NOTATION "L"
- (3) THE FACET NO. ON THE HOLOGRAPHIC SCANNING DISC, ASSIGNED THE SYMBOLIC NOTATION "I"
- (4) THE DISTANCE FROM THE BEAM INCIDENT POINT ON THE VIRTUAL SCANNING DISC TO THE FOCAL PLANE WITHIN WHICH THE (i, i)-TH SCANLINE RESIDES, ASSIGNED THE SYMBOLIC NOTATION "f_i"
- (5) THE DIAMETER OF THE CROSS-SECTION OF THE LASER BEAM SCANNING STATION, ASSIGNED THE SYMBOLIC NOTATION " \mathbf{d}_{BEAM} "
- (6) THE ANGULAR GAP BETWEEN ADJACENT HOLOGRAPHIC SCANNING FACETS, ASSIGNED THE SYMBOLIC NOTATION " $\mathbf{d_{GAP}}$ "
- (7) THE OUTER RADIUS OF THE AVAILABLE LIGHT COLLECTION REGION ON THE HOLOGRAPHIC SCANNING DISC, ASSIGNED THE SYMBOLIC NOTATION "r_{OUTER}"
- (8) THE INNER RADIUS OF THE AVAILABLE LIGHT COLLECTION REGION ON THE HOLOGRAPHIC SCANNING FACET, ASSIGNED THE SYMBOLIC NOTATION "FINNER"
- (9) THE FOCAL LENGTH OF THE i-TH HOLOGRAPHIC SCANNING FACET FROM THE SCANNING FACET TO THE CORRESPONDING FOCAL PLANE WITHIN THE SCANNING VOLUME, ASSIGNED THE SYMBOLIC NOTATION "f;"
- (10) INCIDENT BEAM ANGLE, ASSIGNED THE SYMBOLIC NOTATION "A;"

- (11) DIFFRACTED BEAM ANGLE, ASSIGNED THE SYMBOLIC NOTATION "B_i"
- (12) THE SCAN ANGLE OF THE LASER BEAM , ASSIGNED THE SYMBOLIC NOTATION " θ_{SI} "
- (13) THE SCAN MULTIPLICATION FACTOR FOR THE i-TH HOLOGRAPHIC FACET, ASSIGNED THE SYMBOLIC NOTATION "M_i"
- (14) THE FACET ROTATION ANGLE FOR THE i-TH HOLOGRAPHIC FACET, ASSIGNED THE SYMBOLIC NOTATION " θ_{ROTI} "
- (15) ADJUSTED FACET ROTATION ANGLE ACCOUNTING FOR DEADTIME, ASSIGNED THE SYMBOLIC NOTATION " θ'_{ROTI} "
- (16) THE LIGHT COLLECTION EFFICIENCY FACTOR FOR THE 1-TH HOLOGRAPHIC FACET, NORMALIZED RELATIVE TO THE 16TH FACET, ASSIGNED THE SYMBOLIC NOTATION " ξ_i "
- (17) THE MAXIMUM LIGHT COLLECTION AREA FOR THE i-TH HOLOGRAPHIC FACET, ASSIGNED THE SYMBOLIC NOTATION "Area,"
- (18) THE ANGLE OF SKEW OF THE DIFFRACTED LASER BEAM AT THE CENTER OF THE i-TH HOLOGRAPHIC FACET, ASSIGNED THE SYMBOLIC NOTATION " ϕ_{SKFW} "

PARAMETER EQUATION USED IN THE SPREADSHEET DESIGN OF THE SCANNER

- (1) fi Focal Length fith facet
- (2) B_i Elevation Angle; $\theta_{dif} i = 90 B_i$
- (3) θ_{Si}

(4)
$$M_i := \frac{r_0}{f_i} \cos(\theta_{skew}) + \cos(\lambda_i) + \cos(B_i)$$

(5)
$$\theta_{\text{roti}} := \frac{\theta_{\text{Si}}}{M_i}$$

(6)
$$\theta'_{roti}$$
: = θ_{roti} + $\frac{d_{beam}}{r_0}$ + $\frac{d_{gap}}{r_0}$

$$\Theta_{dead}$$

(7)
$$\xi_i$$
 : = $\left[\frac{f_i}{f_{20}}\right]^2 \frac{\sin[B_{20}]}{\sin(B_i)} H_i$

(8) Area_i :=
$$\pi \left[r_{outer}^2 + r_{inner}^2 \right] \frac{\xi_i}{\sum_{i=1}^{20} \left[\xi_i \right]}$$
 i = 1, 2, ... 20

m S

()

		268/335	
House (Different fear (myth)	forus x rin(slamkiú) = E Llui)	FIG. 8F3 (Mathin) 5 Among carledon S. S. Carledon J. M. Calledon J. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. Calledon J. M. Calledon J. M. Calledon J. M. Calledon J. M. Calledon J. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. Calledon J. M. M. M. M. M. M. M. M. M. M. M. M. M.	you to the sun of these constant
¥4	\$ 4	F19.8F3	Mero
4	Santas (form)	F19.8F3 Limital (Lateria) 3. Among on (2) Among on (2) Among on (2) Among on (2) Among on (2) Among on (2) Among on (2)	1
	Sound of Sound of	F19 8F	% g
			4
W671	A Page		1
5186		6 6 3 /3	4,
ý			9

F1G. 8F4 8F4

73

Composition: 10' 0 = forus x con Columbin) "Ceo (show) + Madina (1 - con (notition)

+ from > cor (churtin) x sin (shew) + radher soller

+ freez . sin (slewstein) it

STAMS-MIDONO-END OF

F19. 8 F3

																									-
1	Person pt fire Da	S Description for	" Option Person pt the Deta Options and Presides Signal Legals "	1	L														L	_			Н		
		L																	L						
	1 of the power of	Se com category.	strategies of the passer at the dash detector for targets incuted at the lagst plane	To be de la constant									L				_	L	H	L					(Pers
1	Booked of the	and the standard of the	and longest breaked at the members doubt of tall limits for each took.	1												Detector a	Detector semelibrity (mWhite)	(paper)	414	H		Ц	Ц	g.com	
į	manufacture or second or second or	Mari or		4.7 Course					At mardman								(Terpora Jour		Targets toosbed at the	20 10					į
1		Others of endgeling beam from corrier of leads						(At beat	20 64								Stool least plants	_	Chapter of Balti Brake	Ī	L			(auto)	Coppe
								į	3	ſ	Average of P	Average of P			Table of	7	No.	-	Power of Opposites	1	L	Opposition	Chespee	160	š
	j	Transa of	1	OR 52 at	2. 4 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	B. rad. of	Trees. of	-	ī	Office Ref.		and 2 - 48, 46.	76	Program of	Bagganged	wherder	detecter at	1		<u>_</u>	Pace	Angle Both	•	Dobaceon	Collection
Į	****	- Agenda	1	1	Potographia	second, Star	200	references	1	of her coads	second, Start	of Periodynamics	- Sandara	Net. Band	ì	£	(MA)	(Applie)	3	(Marks)	Colectes	Contact of	Collection	1	į
	(appe)	Ē	-		1	& fourth retroit		1	T T		1	*	1	14 Case	Case ores		-	-	-		ş	Fecal	ş ş	dia.	Angle
																	F	-	L	L	2	Ť	1	1	(degrees)
L	**	1.00	1	-		683	2		-	2	3		page	3	_	ļ	H		-	L	_	Г	L	L	
		(This includes the	,		3			0.0007773	Description 6			200			L		258	447	ŧ	3		20,20	2	202	2
		Secondary Inches	,		3			B.DRET277	0.0017170			01.0				3		8.47	1	**	_	40 S	20	2.50	1
					3			17000000	8 CBT7579			K.				3	368	3	Ē	1			Re	19.2	Ä
	ļ				9			0.00000	0.0014857			17.0				8		*	ā	**	_	02.00	0.00 P	9.4	3
			Ĺ		B			2995200	40018004		Γ	353				30	8	3	203	00'0	Ĺ	1.77			
					9610			OMESCHA!	BONN (CO'N			17.0				9.07		06'Y	2	8.03	•				
	F				00'0	١		E319980 0	0.4010450			676				(1)		18 9	200	00 6					2.2
,					94			EZ19886'0	0.0016000			5				080		1976	447	9790	•	20.70			2.34
					044			Processor 6	3000 (00)			0.00				Jane .		1979		878	֡֝֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		70 B.06	2.00	1
•					9			0	9 (3) (99)			3				100		16.8	ì	200	2		l		2
	44				9			-	8 8016368			P.S.				78.0	8	231	1	910	֡ <u>֡</u>	1.00			1
Ľ										-								ļ				l		ļ	ľ

F16.9

GEOMETRICAL OPTICS MODEL FOR HOLOGRAFIC (TOTAL OUT AND BACK) LIGHT DIFFRACTION EFFICIENCY CALCULATIONS

FIG. 10A1

F16.10AZ

F16.10A4

S AND P DIFFRACTION EFFICIENCY ANALYSIS FOR THE MOST GENERAL CASE

The following analysis takes into consideration slanted fringes, skewed design, off-Bragg effects, and disc rotation effects. It is assumed that the wavelength does not deviate from the design, and that all scattering, absorption, and reflection losses are taken into account by the transmission coefficients, t_s and t_p , which are determined by measurement.

Definitions:

- θ_i = Angle of incidence outside the HOE ($\theta_i = 90^{\circ} A$);
- α = Angle of incidence inside the HOE;
- θ_d = Angle of diffraction outside the HOE ($\theta_d = 90^{\circ} B$);
- β = Angle of diffraction inside the HOE;
- ϕ_{thin} = Skew angle of the HOE;
- ϕ = Tilt of Bragg planes ($\phi = \frac{\pi}{2}$ for no tilt);
- θ_R = Rotation angle of HOE grating ($\theta_R = \theta_{Ro}$ when facet is centered);
- L = Separation of the Bragg planes;
- T = Thickness of the HOE medium;
- d = HOE surface fringe spacing;
- n_0 = Average refractive index of HOE medium;
- n_t = modulation (i.e. amplitude of periodic variation) of refractive index;
- λ_a = Laser wavelength in air;
- t, = Transmission of S-polarization through disc considering losses;
- t_p = Transmission of P-polarization through disc considering losses.

FIG. 10B

(1)
$$\alpha = \arcsin\left(\frac{\sin\theta_i}{n_0}\right)$$

(2) $\beta = \arcsin\left(\frac{\sin\theta_d}{n_0}\right)$
(3) $\phi = \arcsin\left(\frac{\cos\beta - \cos\alpha}{\sqrt{2(1 + \sin\alpha\sin\beta\cos\phi_{skew} - \cos\alpha\cos\beta)}}\right) + 90$
(4) $d = \sqrt{\frac{\lambda_a^2}{\sin^2\theta_d\sin^2\phi_{skew} + (\sin\theta_i + \sin\theta_d\cos\phi_{skew})^2}}$
(5) $L = d\sin\phi$
(6) $C_R = \cos\alpha$
(7) $C_S = \cos\alpha - \frac{\lambda_d}{n_0 L}\cos\phi$
(8) $N = \pi n_1 \frac{T}{\lambda_a \sqrt{C_R C_S}}$
(9) $\theta_{Ro} = \arcsin\left(\frac{d}{\lambda_a}\sin\theta_d\sin\phi_{skew}\right)$
(10) $\Gamma = \frac{2\pi(\sin\alpha\sin\phi\cos\theta_{Ro} + \cos\alpha\cos\phi)}{L} - \frac{\pi\lambda_a}{n_0 L^2}$
(11) $S = \Gamma \frac{T}{2C_S}$
Figure 10C1

(12)
$$\kappa = -\sin \alpha \sin \beta \cos \phi_{skew} + \cos \alpha \cos \beta$$
(13)
$$E_{par} = \frac{\left(\sin\left(\sqrt{N^2 + S^2}\right)\right)^2}{1 + \frac{S^2}{N^2}}$$
(14)
$$E_{perp} = \frac{\sin\left(\sqrt{(N\kappa)^2 + S^2}\right)^2}{1 + \frac{S^2}{(N\kappa)^2}}$$

$$-\sin \phi \sin \theta_{s}$$

(15)
$$P_{par} = \frac{-\sin\phi\sin\theta_{Ro}}{\sin(\arccos(-\sin\alpha\sin\phi\cos+\cos\alpha\cos\phi))}$$

$$(16) P_{perp} = 1 - P_{par}$$

Diffraction efficiencies E_i and E_p , given losses t_i and t_p which are specific to each polarization and include absorption, scattering, and reflection losses from AR coatings on the outer surfaces of the disc glass.

(17)
$$E_s = \left(E_{perp}P_{par} + E_{par}P_{perp}\right)t_s$$

(18)
$$E_p = \left(E_{p,rp}P_{perp} + E_{par}P_{par}\right)t_p$$

Total out-and-back efficiency is given by T_n , assuming no polarizer in front of the photodetector

(19)
$$T_s = E_s \frac{E_s + E_p}{2}$$

Figure 10C2

(20)
$$\theta_d \{\theta_R\} = \arcsin \sqrt{\left(\frac{\lambda_a}{d}\right)^2 - 2\frac{\lambda_a}{d}\cos\theta_R\sin\theta_i + \sin^2\theta_i}$$

(21)
$$\phi_{skew}\{\theta_R\} = \arctan\left[\frac{\sin\theta_R}{\cos\theta_R - (d/\lambda_a)\sin\theta_i}\right]$$

(22)
$$T_s\{\theta_{i\max}\}\cos\theta_d|_{\theta_R=\theta_{Ro}-\frac{1}{2}\theta_{ROT}} = T_s\{\theta_{i\max}\}\cos\theta_d|_{\theta_R=\theta_{Ro}+\frac{1}{2}\theta_{ROT}}$$

The design efficiency of the ith facet is given by evaluating T_i at the design incidence angle, θ_i , the design rotation angle, θ_{Ro} , and the index modulation that maximizes the efficiency, n_{lmax} , given the true maximum efficiency incidence angle, θ_{lmax} , that results from equation (22). The relative efficiency, H_i , is then given by dividing the total efficiency of the first facet by that of the ith facet.

(23)
$$H_i = \frac{T_{s1}}{T_{si}\{\theta_i, \theta_{i \max}, \theta_{Ro}, n_{1 \max}\}}$$

Figure 10C3

Diffraction Efficiency Variation with Disc Rotation

Facet 1: before optimization

Fixed design parameters:

$$\theta_t = 38^{\circ}$$

$$\theta_d = 52^{\circ}$$

$$\phi_{skew} = 0^{\circ}$$

$$\lambda_a = 650 \text{ nm}$$

DCG parameters:

T = 2.5 microns

$$n_0 = 1.40$$

$$n_1 = 0.121$$

Relative signal is equal to $T_s \cos \theta_d$. Note that the relative signal falls off as the rotation angle goes away from zero. This is for a maximum efficiency incidence angle, θ_{imax} , equal to θ_i (38°). This indicates a non-optimum configuration.

F16.10D1

Diffraction Efficiency Variation with Disc Rotation

Facet 1: after optimization

Fixed design parameters:

$$\theta_i = 38^{\circ}$$

$$\theta_d = 52^\circ$$

$$\phi_{skew} = 0^{\circ}$$

$$\lambda_a = 650 \text{ nm}$$

DCG parameters:

T = 2.5 microns

$$n_0 = 1.40$$

$$n_1 = 0.121$$

Relative signal is equal to $T_s \cos \theta_d$. Note that the relative signal at a rotation angle of $\pm 13^\circ$ is equal to the relative signal at 0°. This is achieved when the maximum efficiency incidence angle, θ_{imax} , is 36.3°.

F1G. 10D2

Diffraction Efficiency Variation with Disc Rotation

Facet 7: before optimization

Fixed design parameters:

 $\theta_l = 38^{\circ}$

 $\theta_d = 32^{\circ}$

 $\phi_{skew} = 28^{\circ}$

 $\lambda_a = 650 \text{ nm}$

DCG parameters:

T = 2.5 microns

 $n_0 = 1.40$

 $n_1 = 0.121$

Relative signal is equal to $T_i \cos \theta_d$. Note that the relative signal falls off as the rotation angle goes from negative to positive. This is for a maximum efficiency incidence angle, θ_{imax} , equal to θ_i (38°). This indicates a non-optimum configuration.

F19. 10E1

Diffraction Efficiency Variation with Disc Rotation

Facet 7: after optimization

Fixed design parameters:

 $\theta_i = 38^{\circ}$

 $\theta_d = 32^\circ$

 $\phi_{skew} = 28^{\circ}$

 $\lambda_a = 650 \text{ nm}$

DCG parameters:

T = 2.5 microns

 $n_0 = 1.40$

 $n_1 = 0.121$

Relative signal is equal to $T_s \cos \theta_d$. Note that the relative signal at a rotation angle of -14° is equal to the relative signal at +14°. This is achieved when the maximum efficiency incidence angle, θ_{max} , is 35.8°.

F14.10E2

S and P Diffraction Efficiency Calculations

It is assumed that there is no deviation from the nominal wavelength.

Eacet-independent design parameters:

Design wavelength:
External incidence angle:
Geletin effective thickness:
Average bulk refractive index:
1.4
Refractive index modulation:
S-polarization losses:
P-polarization losses:
10%
degrees to radians conversion:
0.121
6.06
10%

											•	(
10000	٥	۳	÷	70	θ	θ, σος	Omax	B _{max}	Фs max	0	7	UROT
שלמ	ρο	2	Wexe.	3		V 2017	(400)	(dec)	(ded)	(ded.)	(EU)	(deg.)
	(deg.)	(deg.)	(deg.)	(uu)	(ceg.)	(deg.)	(near)	(·Ron)	(i.G.a.)	1.0		
-												
					•	0000	00 30	25 A3	8	84.79	461.2	26.24
•	5000	34.25	0	463.1		00.00 00.00	20.04	3			000	40.00
• 1		1 6	•	7 0 2 7	9	38.30	25.02	8.8	0.0	85.35 45.35	400 500 500	70.07 00.00
N	20.0G	2.33	>	† :	3 6		8	10.00	5	85.90	477.1	26.66
ď	48.00	32.06	0	478.4	9.00	30.50	70.07	27.00	3		000	8
, .			•	0 88V	0	36.30	25.02	32.05	8.6	86.48 84.08	460.0	29.19
4	8.99 9.99	30.32	>	9	3 6		5	99.00	8	87.68	505.5	27.97
ĸ	42.00	28.55	0	505.9	9.69	36.30	70.07	20.02	3	3 6	0 10 1	00.00
•	i	0	•	£27 Q	9	38.30	25.02	27.17	9.69	28.25	07/20	30.40
9	38.00	A0.03	>	5.120	3		6	20 AE	96 F3	90 64 84	584.6	27.99
^	8	22.24	82	584.7	12.93	30.8C	24.7	2	20.05		9 7 6 1	00.00
- (2	Q	5847	.12 93	35.80	24.70	23.45	-26.52	8. 2.	0.45 0.	66.12
20	3.5	77.7	07.	5			27 70	90.00	26.07	91 17	600.1	30.65
σ	900	20.92	&	600.2	12.52	35.50	24.33	07.77	10.5	: !		20.00
> :			8		40.50	25.58	24.55	22.26	-26.27	91.17	 26	8.8
은	80.00	20.92	27.	2.00	16.05			8	00 00	94	6166	29.19
÷	28.00	19.59	88	617.0	12.08	35.72	24.63	3.5	20.40	00.10		
:			} {	0 110	90 0	0E 70	24 65	2000	-26.28	96.	616.6	2
5	28.00	19.59	87	0.719	-16.00	30.75	7					

FIG. 10F1

,	[~	ě			Ĺ			S	
Š	₹	-1½8 _{PtOT}	<i>d</i> +½8кот	-148mor	+128пот	7.5κ -}⁄2θποτ	+1½0рот	-149рот	θ,Αο	+У2Өнот	-1⁄2вяот	θρο	+Жврот
	1		Q£ 73	35 36	25.68	20 00	22.98	0.0634	0.2192	0.0634	0.0982	0.3397	0.0982
0.807	1.78	24.7	2 :	8.5	9.50	3 2	2	0000	0.0168	0.0380	0.0581	0.3315	0.0581
0.818	1.708	53.05	53.06	34.81	34.81	9.02	23.62	0.000	3	900		0000	2000
000	1 606	50 A	50.63	33.51	33.51	-23.91	23.91	0.0586	0.2143	0.0260	8 8 5 5	0.5656	200
0.00	200.	5 6	5 5	30.65	20.65	26 AF	28.45	0.0285	0.2116	0.0285	0.0424	0.3150	0.0424
0.830	- 20.	2 3	3.6	36.00	20.00	2.5		00700	1900	00.70	9630	78000	0.0636
0.861	1.663	4.69	8.89 89	30.16	30.16	-28.20	29.50	555	1070	9	9000	900	
	679	44.07	71 07	27 00	27 99	-29.30	89	0.0178	0.1992	0.0176	0.020	0,2820	0.00
200.0	2	5	5			6	00.08	0 2408	70560	-0 1618	0.4820	0.3180	8 8 9
0.904	1.620	29.78	38.91 16.92	29. 19. 19.	20.02	80.74 -	23.50	0000	200			0000	0000
0	1 830	38.01	20.78	26.66	20.76	-53.28	2.39	-0.1618	0.2307	0.3488	0.2230	0.010	0.4050
90.0	2.5	3 8	010	10 64	20 20	97 97	55.95	0.3549	0.2510	-0.1726	0.4854	0.3432	-0.2360
0.914	1.614	27.30	30.75	10.01	3	2			0000	0.05.40	0920	0 3432	0.4854
A140	1.814	37.62	27.96	8 8	19.57	-55.95	6.49	-C.1726	0.63.0	5.00	2000		0000
	100	9	25.00	18 20	24.21	909	55.44	0.3252	0.2304	0.1470	0.4400	0.3118	C.1888
0.824	3	8	Š	0.40				0.5.4.70	7000	0 2050	1000	0.3118	004400
0.924	1.805	85.8 4	28.08 28.08	24.21	18.29	-55.44	e S	-C-14/2	5	0.0604	3		

FIG. 10F2

	¥			E par			E pero			Poar			Pper	
-%-	θдо	+1⁄20вот	-1⁄20нот	9,40	+128пот	-1⁄20нот	θдо	+128пот	-%еват	θ_{Ro}	+1⁄20 _{ROT}	-%9кот	θдо	+1/28por
0.5028	0.4948	0.5028	0.9746	0.9315	0.9746	0.5759	0.5419	0.5759	0.0580	0.0000	0.0580	0.9420	1.0000	0.9420
0.5187	0.5111	0.5187	0.9804	0.9369	0.9804	0.5983	0.5639	0.5983	0.0680	0.0000	0.0680	0.8320	1.000	0.9320
0.5354	0.5277	0.5354	0.9814	0.9420	0.9814	0.6192	0.5860	0.6192	0.0609	0.0000	0.0609	0.9391	1.0000	0.9391
0.5519	0.5445	0.5519	0.9865	0.9468	0.9865	0.6416	0.6082	0.6416	0.0733	0.0000	0.0733	0.9287	1.0000	0.9267
0.5860	0.5787	0.5860	0.9899	0.9552	0.9899	0.6834	0.6521	0.6834	0.0688	0.0000	0.0688	0.9312	1.0000	0.9312
0.6200	0.6132	0.6200	0.9945	0.9623	0.9945	0.7248	0.6947	0.7248	0.0818	0.0000	0.0818	0,9182	1.0000	0.9182
0.6918	0.6843	9069.0	0.9056	0.9567	0.9773	0.7442	0.7720	0.7946	0.000	0.0620	0.2446	96660	0.9380	0.7554
9069.0	0.6843	0.6918	0.9773	0.9567	0.9056	0.7946	0.7720	0.7442	0.2446	0.0620	0.0004	0.7554	0.9380	0.9996
0.7080	0.7002	0.7068	0.9051	0.9508	0.9755	0.7584	0.7833	0.8093	0.0030	0.0587	0.2614	0.9970	0.9413	0.7386
0.7068	0.7002	0.7080	0.9755	0.9508	0.9051	0.8093	0.7833	0.7584	0.2614	0.0587	0:0030	0.7386	0.9413	0.9970
0.7227	0.7159	0.7221	0.9220	0.9597	0.9828	0.7823	0.8032	0.8278	0.0025	0.0555	0.2452	0.9975	0.9445	0.7548
0.7221	0.7159	0.7227	0.9828	0.9597	0.9220	0.8276	0.8032	0.7823	0.2452	0.0555	0.0025	0.7548	0.9445	0.9975

FIG. 10F3

H, Solver	(O=)	0 000.1	0 926	.953 0		0 0 0			0.020396813					0.255193744
	+½вкот	•	Ū	•		Ĭ	Ū	_	60.5%	Ĭ			Ī	
Ts	Өдо	55.6%	57.0%	58.3%	29.6%	62.2%	64.6%	66.2%	86.2%	66.1%	66.1%	%6.79	%67.9%	
	-1⁄20пот	59.7%	61.0%	62.2%	63.4%	65.7%	67.7%	60.5%	%6.99	%6.09	67.4%	63.6%	69.3%	
	+1⁄20нот	53.9%	56.2%	57.7%	80.09	63.4%	67.2%	75.5%	67.0%	76.7%	68.3%	77.9%	70.4%	
Ep	θдо	48.8%	50.8%	52.7%	54.7%	58.7%	62.5%	70.5%	70.5%	71.4%	71.4%	73.1%	73.1%	
	-%днот	53.9%	56.2%	57.7%	%0.09	63.4%	67.2%	%0.79	75.5%	68.3%	76.7%	70.4%	77.9%	
	+1269гот	85.6%	85.9%	86.3%	86.5%	87.2%	87.5%	83.9%	81.5%	83.9%	81.4%	85.0%	82.9%	
Es	θ_{Ro}	83.8%	84.3%	84.8%	85.2%	86.0%	86.6%	85.1%	85.1%	84.7%	84 7%	85.6%	85.6%	
	-1⁄20нот	85.6%	85.9%	86.3%	86.5%	87.2%	87.5%	81.5%	% 5.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8	81.4%	2000	8 6	85.0%	

Figure 10F4

2 86/335

F16.1061

FACET LIGHT COLLECTION EFFICIENCY

Z = DISTANCE FROM SCAN POINT ON LABEL (MAX = FOCAL)

LENGTH PLUS 5 INCHES

Area = AREA OF CORRESPONDING FACET

R = RADIUS OF EFFECTIVE CIRCULAR APERTURE

R.pr = RADIUS OF PROJECTED EFFECTIVE CIRCULAR APERTURE

B = ANGLE BETWEEN OUTGOING BEAM AND THE DISC

δ = HALF-ANGLE SUBTENDED BY EFFECTIVE PROJECTED

CIRCULAR APERTURE

E.L = LAMBERTIAN LIGHT COLLECTION EFFICIENCY

FIG. 10G2

$$R_{pr} := \sqrt{\frac{\text{Area sinB}}{\pi}}$$
 $\delta := \text{atan} \left[\frac{R_{pr}}{Z}\right]$

 E_L : = $(\sin(\delta))^2$

FIG. 10G3

TRACTURING # 4-0, 48 Transcribon energyes to redesse conversion tactor: Transcribon energyes. Effect of transcales on the diffraction limited aport also of a Gassalem basin Ohen the tear and term persentiars, this apressables will calculate the shript of function on the beam. The Stat Seath I have calculated of the beam opping of the appreciate the set with the set of

		mon to preference.																
Sony BLD1137VS	Westergth (tex) their-P (thgree) their-E (thgree) Adignation (aferons)	g-x-		••	H a Moyst; K a Kodak; P is Philiper; G a GelTach (Abernate cholese - from Tom's Labbe)	odak; P h P.	hilipe; G » G ont's (abbe)	F F										
Lengt	focal langels (aver) Numerical Aperture	0.0504.00 8 0.15		11 10 10	M/A41 01.00	8.8 0.3	9 4	P/AC325 P/AC320 HVA129	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 to 10 to	HA42 0.67	MAAMI P. S. S. S. S. S. S. S. S. S. S. S. S. S.	PIAC335 6.25	18A81	10 S.A.	8/A378 4.6	G.1 6.1
18-equand bear	Chee Aperture (mm) (= 2 x f x NA) 1/b-equared been dismaler at lens (mm)]	5 6	23	- ;	8. ÷	32	22	32	25	32	= =	3 %	22	32	- 2	3 =	4.
	Aperture factor (m)	1.243		m = 1 % Mr-equered truncation	ed investion													
± £	19-equated been redius (for normalized aperture)	0 712		m > 2 is essentisfly no truncation	ly no truncation	_												
Truncation factor,	1219		Ĭ	Sheequared radius at focal plane is 'Increased by this factor due to truncation.	tane ta to truncation.													
 QMohylozhrihun RMohylozhri RMohylozhri RMohylozhri RMohylozhri 	20: 3.078 (ACD/AC)/*2 = 6.1352563 (ACD/AC)/*2 = -2.200000001		20 cm	To determine the effective dismeter, very ZD until (AZXS)A(8))**2 = 0.1353535 c., optimisershy, until Li((AZX)A(8))**2j2 Trie can most easily be dese by widing the SO, VER famotion of Exoc Tools:	Anoter, 6.1353353 or, A(D)/*21—4 by seeing i Toole:											•		
Effective demotor.			T O	Target calt a \$C\$31; Value a -2 Change calt a \$C\$29	7	,												
Spredsheet value:	1.10		5 P	This is the effective beam diameter that te linked to the Geus apreedsheet and the metr disk dealers appearable.	fresh that													

The remaining part of this spreadsheat is simply the numerical brings attom of the diffusion equation for ALS from the Maricad programmer. If the chiracide programmer is the first of the manufactions of the functions (ALZYAON) 2 and LANAMARY.

3		1£-04 0.000289 0.000289 0.000399 0.000597 0.000593 0.000789 0.000789 0.000789 0.000789
2		1E-04 0.000299 0.000299 0.000299 0.000299 0.000299 0.000299 0.000299 0.000299 0.000299
2		18-04 0,0002 0,00029 0,000299 0,000299 0,000299 0,000299 0,0002991 0,0002991 0,0002991 0,0002991 0,0002991 0,0002991
3		18-04 6-5002 0-5002 0-500239 0-500339 0-500339 0-500339 0-500339 0-500339 0-500339
-		16-04 0.0002 0.00039 0.000398 0.000398 0.000398 0.000399 0.000399 0.000399 0.000399
. 3		18-04 0-0003 0-0003 0-00038 0-00038 0-00038 0-00038 0-00038 0-00038 0-00038 0-00038 0-00038 0-00038 0-00038 0-00038
8		18-04 6.0002 6.0003 0.000458 0.000458 0.000454 0.000454 0.000457 0.000452 0.001752 0.001752 0.001752 0.001752
6		18-04 6-0002 6-0003 6-0003 6-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003 8-0003
3		16-64 0.0002 0.00038 0.00038 0.00038 0.00038 0.00038 0.00088 0.00088 0.00088 0.00088 0.00088
9.0		1.E04 0.4000 0.4000 0.4000 0.60000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.60000 0.6000
3		16-40 0.0022 0.002 0.002 0.0022 0.0022 0.002 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.002
3	ŧ	16-04 0.0002 0.0002 0.00029 0.000297 0.000292 0.000924 0.000924 0.000924 0.000924 0.000924
3	(B)	1E-04 0.0000 0.00000 0.00000000 0.00000000
2	Ę.	1E-04 0.0002 0.0003 0.00039 0.000387 0.000883 0.000884 0.000884 0.000884 0.000884 0.000884
95	A(Z1)	6.2021924 6.2021924 6.20219291 6.20219291 6.20219291 6.2021927 6.2021927 6.2021927 6.2021927 6.2021927 6.2021927
Catho 2		
	e~(rM0)^2	2 C C C C C C C C C C C C C C C C C C C
		6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
	ì	5

F19 11A1

F16. 11A2

F16 1181

F16.1182

F16.1183

F16.1262

F1G, 12D

4
∞
5
Ü

		_	٠,	_	1:	.1	<u>.</u>	۱ م		1.	<u>.</u>	~	-	T.	νI.	ای	~	~	21	_	_	٦
7					2 09325	0 13498	2.1049	2.131/5	2.27208	10000	2.00017	2.72286	2 71960	20071	2./4022	2.09325	2.28883	00000	2.2000	2.44999		
_					0 10005	0.10323	0000	0.02059	0.31915	10,00	/010c.F-	-2.02254	271174	1	-2.14515	0.10925	-0.57134	A 57404	-C.57 154	-1.12321		
I	6	?	Facet	12	2 75 35 8	0.7000	3.45010	3.44555	2 44051		2.54066	3.56179	2 EA/30	3	3.86380	3.75358	3 82454	72700	3.62424	3.81937		
9	1				70000	200807	2.14166	2.14166	0 02642	2.50025	2.65801	2.71697	71607	2.7.1037	2.74265	2.09937	2 2000	20000	2,30000	2.45580		
u					0,020,0	0.0//18	-0.02665	-0.02665	00000	20300	-1.72489	200108	30,00	-2.02100	-2.15005	0.07718	0.85344	7.05.01	-0.62341	-1 1 KRRO		
		2	Facet	Ş	2	3.83250	3.53978	3 53978	70000	2.88384	3.02644	2 ROAKE		3.69455	3.98553	3.83250	20000	3.06641	3.92247	2 00034	2:05	
-						2.12380	2.16443	2 14098		2.2888/	2.62907	71007	2.7 1001	2.69504	2.71758	2 12380	201	2.311/4	2,31174	O AEOEO	C.40C30	
ļ	د					-0.02294	-0.12038	0 03500	4,000	-0.40575	-1.59304	1,000	-4.04-3/1	-1.96478	-2 08452	100000	0.06607	-0.67817	-0.67817	1000	1.1030/	
	8	-		Lace	8	3.94874	3.65113	0.04504	3.01001	2.64691	2 79472		3.81418	3.82907	4 13065	72070	0.04014	4.02545	4 02545	200	4.04162	-
	⋖					Point 1	Point 2		Point 3	Point 4	Point &	3	- Court 6	Point 7	Doint 8		- 1	Start of scan line	Middle of mtation	7 Į.	End of scan line	
		75	2	16	77 G1	78	ļ ļ	8)	8	1	18	K	ස _	22	5 8	3	88	87	98	8	68	06

MR:

Facet	٦			2.74420 2.96322	2.64904 3.05579	2.66095 3.06217	2.34705 3.35743	-0.10460 2.44937	-0.61969 1.80401	-0.60869 1.80582	-0.77127 1.59994	2.74420 2.96322	1.40993 2.40874	0.50549 2.02503	0.18290 1.90064	
Facet	н	Facet	11	3.80802	3.58337	3.58162	2.85731	2.54140	3.23044	3.23562	3.45674	3.80802	3.73628	3.70069	3.66728	֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
Point 1				2.76685	2.86040	2.86040	3.06533	2.17660	1.74867	1.74867	1.54830	2.76685	2,29108	2.00000	1.85024	
Point 1	ш				2.36537	2.36537	2.17226	-0.34045	-0.70440	-0.70440	-0.87482	2.45353	1.25640	0.54210	0.14315	
Point 1	E	Facet	6	3.91799	3.69690	3.69690	3.21262	2.81913	3.25935	3.25935	3.46547	3.91799	3.81752	3.76954	3.72144	
Point 1	٥			2.58609	2.69195	2.73451	3.05003			1.69797	1.50046	2.58609	2.19201	1.97459	1.79899	
Point 1 Point 2 Point 3 Point 4 Point 4 Point 4 Point 6 Point 6 Point 6 Point 6 Point 6 Point 6 Point 7 Point 8 Point 9 Start of scan line	ပ			2.19033	2.11753	2.20453	1.92230	-0.27369	-0.84215	-0.76438	-0.93172	2.19033	1.13139	0.57926	0.09914	
	8	Facet	7	4.02247	3.79236	3.78639	3.05197	2.64347	3.25774	3.29896	3.50262	4.02247		3.83943	3.77386	
	<			Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	Start of scan line	Middle of rotation	End of scan line	
		-	2 62		4	2	9	12	8	6	2	=	200	8	7	

F16 13A2

Z Z

	A	8	o	٥	u	ı.	5	н	-	ſ	×	٦,	M
8		Facet			Facel			Facet			Facet		
107/03	8	_			CI			3			4		
8	Point 1	5.11617	1.95380	1,89155	5.01400	1,88093	1.96716	4.92433	1.81870	2.03365	4.82799	1.75935	2.10578
8	Point 2	4.98460	1.86904	1,98969	4.88136	1.79109	2.06571		1.72980	2.14196	4.68407	1.66502	2.21288
9	Point 3	4.94695	2.08109	2.03847	4.88064	1.79549	2.08687	4.76362	1.86942	2.17507	4.68407	1.66502	221298
Ε	Point 4	İ	1.69707	2.31642	4.46955	1,51422	2.37191	4.31720	1.51260	2.49402	4.34215	1.44090	2.46771
=	Point 5		-1,63559	2,18575	4.29296	-1.52325	2.24765	4.14486	-1.55897	2.36336	4.17995	-1.53667	2.33666
=	Point 6	4,71038	-2.01784	1.86940	4.68022	-1.80322	1.91239	4.54753	-1.91413	2.00915	4.50148	-1.76326	2.05933
₹	Point 7		-1.80820	1.83693	4.68147	-1.79883	1.91177	4.59009	-1.77513	1.98718	4.50148	-1.76326	2.05933
116	Point 8	4.89971	-1.89083	1.72862	4.80732	-1.88882	1.80291	4.72784	1.86391	1,86903	4.63750	-1.85821	1.94186
18	Point 9	5.11617	1,95380	1 89155	5.01400	1.88093	1.96715		1.81870	2.03365	4.82799	1.75935	2.10576
Ξ	Start of scen line	6.11614	1.00830	1.80878	5.02116	0.94389	1.87635	4.92928	0.88565	1.94798	4.84129	0.83137	2.01383
118	Middle of rotation	5.03523	0.00000	1.78542	4.85474	000000	1.85000	4.87537	0.00000	1.91369	4.79689	0.0000	1.97666
118	End of scen line	5.00607	-0.96140	1.72464	4.92129	-0.94701	1.79383	4.83778	-0.91710	1,86356	4.75656	-0.89961	1.83026
120													

F16.1343

Station 1 M1- XY Plane

		_ ~						0.50201	10100	/9095.0	0.38888	0 07000	מימיני	0.98868	1 60614	2	1.60276	1.80981	A E0004	0.3020	0.83500	0 83500	2000	1.04001	
	-							-1.69543	4 02070		-1.92684	-2 R3007		-3.82416	-3.46214	20,00	2.404.5	-3.33064	-1 GOEA2	2	-2.05611	-2.05611	COVAT C.	F 040E	-
	3		<u></u>		Face	1		4.64314	4.484AE	4 4007	4.40338	4.00469	200.00	0.000	4.23639	A 2300E	C6003.	4.38465	4.64314	A SOAES	10,00	4.60451	4.48974		•
	9						00000		0.57304	0 57304	30.00	0.38592	1 33026	2	1.72614	1.72614		CISIS.	0.66301	0000	3	1.00000	1.47458		
	ц,						.1 63003	l	-1.86587	-1.86587	00100	7.33083	-3.53306	00000	3.30509	90508.9	20201	C. 19393	-1.63993	-2.00000	0	0000.5	-2.64637		-
	ш	·	7	Facet		10	4.73669	1	4.36926	4.58926	A Space	1.50500	4.08790	4 2020	EC200-1	4.36259	4 49850	A 79660	4.73003	4.70000	4 7000	335	4.30033		İ
	٥						0.84115	72787	70.7	0.69779	0.44377	0.00	1.250/8	1.84087	10.00	4/510.	2.00617	0 84118	2	1.15/86	1.15786	1 66094	5		
ļ	د						1.58877	-1 81884		98/9/	-2.50841	O EDEOD	350365	3.18384	3 12/00	2	-3.01193	-1.58677	1 04034	3	94831	-2.50111	†		
٥	٥		Const	Tacal Tacal	œ	1 0000	4.05010	4.68429	A 87070	4.07070	4.22223	4 OFRED	3	4.40417	4.48187	100,000	4.02128	4.83616	4 70136	2010	4.79136	4.69056	-		
						Doint 4	5	Pont 2	Point 3		4	Point 5	Dolate	3	Point 7	Doine	0 110	Point 9	of scan line	o of patention	o o o o o	of scan line			
*																			Start	Mirtri		E			
	75	78	0	77 131		80	62	1	2	_	2	1	<u></u>		-	2	8			8					

F14. 13B1

2

1382
4
II

		හ													
A			Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	8 8	Middle of rotation	, 0	
œ	Facet	2	3.38194	3.16298	3.16739	2.50443	1.39822	1.81707	1.85962	2.00251	3.38194	3.14045	2.81784	2.37758	
ပ			4.20092	4.26385	4.30137	4.46930	2.79582	2.39729	2.41646	2.29151	4.20092	3.84670	3.26851	2.63817	
۵			1,75395	1.78738	1.83403	1.90767	-0.35302	-0.75633	-0.72451	-0.84867	1.75395	127398	0.50471	-0.35149	
ш	Facet	6	3.24016	3.03125	3.03125	2.59900	1.44696	1.73748	1 73748	1.87437	324016	3 00728	2 60000	2 22734	
Ŀ			4.43917	4.49361	4.49361	4.60627	2.82994	2.57459	2 57459	2 45426	4 43917	4.05126	00000	2 77020	
Ø			2.01655	2.04162	2 04162	2.09349	-0.30174	-0.55577	0.65577	-0.67647	201855	1 49710	0.0000	22004	
I	Facet	+	3 11010	2 ARRES	2 ARGR3	221545	1 08385	1 56833	1 57414	1 73101	4 11010	2 88348	2 27304	2 08728	3
			4.72655	4 78740	4 7025B	4 97231	3 11226	2 7144B	271714	2 58805	A 79ARE	4.75000	2 22260	9 50549	2.000.7
	,		2 34142	0 37 140	2 37774	2 48415	0.00018	0.02310	44420	0.41422	0.0000	4 75054	1.7.3004	0.4851	700000

MR2

	•	80	<u>۔</u>	٥	u	Ŀ	e	3			,	•	
20		Faced			Fores			Posed		1			2
Š			Ì		3			100			Lacer		
≥Ĭ	3	•			~			8			*		
3	Point 1	4.36645	2.65376	0.19632	4,13039	2.57839	0.16458	3.89207	2 57 127	0.13138	3 83985	2 40018	0.00794
109	Point 2	4.22328	2.62785	0.17673	3.98981	2.54937	0.14541	3.72893	2 54598	0 10807	3 48484	2 48024	0,000
110	Point 3	4.17479	2.80928	0.18688	3.98888	2.55291	0.14522	3.89351	2.68181	0 10005	2 48464	2 48024	0.07010
111	Point 4	-	2.62732	0.11577	3.58353	2.48410	0.09002	3 24 144	2 41989	0 04122	1 1 207 4	2 40074	0.07010
112	Point 5		-1,89846	0.18825	3.42901	-1.80124	0.14108	3 10957	-1 84718	81.000	303036	1 70740	0.06030
113	Point 6		-2.16622	0.22737	3,86105	-1.97527	0.20449	3 58373	2 08100	0.16740	3 40750	1 00000	0.0048
114	Point 7	l	-1.99138	0.23359	3.86230	-1 97181	0.20480	9 82849	-1 86902	0.17186	9 40762		2000
118	Point 8	l	-2.04816	0.25597	4.01328	-2 03180	0 22675	9 80102	POBCO C	0 10714	0 57700	1.00474	2000
116	Point 9		2.85378	0.19832	4.13089	2.57839	0.18458	3.89207	2 57127	23186	3 83008	2 40010	0.0470
117	Start of acan line	4.40361	1.87032	0.21487	4.17745	1.84317	0.18369	3 94222	1 82248	0.15114	32002	1 0000	0.0973
118	noilator to eithigh	4.29670	0.23013	0.22786	4.10000	0.25000	0.20000	3.89313	0.22090	0.17070	2 67.474	70000	9000
9	End of scan line	4.30920	-1.28070	0.25535	4.10701	.1.28789	0.22718	3.89234	1.28997	0.10686	2 68000	1 97078	0 48E7E
8											20000	2/0/2	6.100
						1							

F14. 1383

MR2

305/335

Station 1 M2- XY Plane

Station 1

MR2.xy

Station 1

306/335

MR2.yz

								•		
	A	6 0	ပ	۵	ш	ı	9	E		7
78		Facet			Facet			Facet		
2					ç			12		
	5	٥	0,000	20000	727.2	4 70056	V 67047	7 10007	1 8120E	0.33975
78	Point 1	1,20537	-1.67340	0.8328/	4,3434	0070/1-	1.2/04/	2.10007	00710'1	2000
8	Point 2	1.50717	-1.82194	0.77007	2.01252	-1.90575	0.52600	2.50076	-1.97962	0.28421
8	Point 3	1.53373	-1.80077	0.73570	2.01252	-1.90575	0.52600	2.50470	-1.97622	0.27888
ě	Point 4	2.71992	-2.40114	0.50283	2.72609	-2.27331	0.39129	3.72651	-2.62604	0.06549
2	Point 5	2.86809	-3.52973	1.36131	2.87153	-3.57274	1.39541	3.86534	-3.82116	0.98584
8	Point 6	1.66004	-3.29877	1.91900	2.13984	-3.43596	1.73579	2.62296	-3.60007	1.57321
2	Point 7	1.63442	-3.25853	1.90105	2.13984	-3.43596	1.73579	2.61924	-3.59386	1.57029
i K	Point 8	132257	-3.19447	2.04127	1.85089	-3.38194	1.87021	2.29384	-3.53522	1.72352
æ	Point 9	1.20537	-1.67340	0.83287	1.73454	-1.76256	0.57847	2.18607	-1.81295	0.33975
3	Start of scan line	1.19058	-1.90430	1.03659	1.70000	-2.00000	0.80000	2.15170	-2.08486	0.59022
8	Middle of rotation	1.19058	-1.90430	1.03659	1.70000	-2.00000	0.80000	2.15170	-2.08486	0.59022
8	End of scan line	1.33110	-2.85916	1.75349	1.84105	-3.01433	1.58667	2.29073	-3.10310	1.36142
8										
8										

F14.13C1

Σ

304/335

	A	8	၁	۵	Е	Ŧ	ŋ	Ŧ	-	7
75		1			2			3		
76		Facet			Facet			Facet		
1	61	80			10			12		
78	Point 1	1.20537	-1.67340	0.83287	1.73454	-1.76258	0.57847	2.18607	-1.81295	0.33975
79	Point 2	1.50717	-1.82194	0.77007	2.01252	-1.90575	0.52600	2.50076	-1.97962	0.28421
8	Point 3	1.53373	-1.80077	0.73570	2.01252	-1,90575	0.52600	2.50470	-1.97622	0.27888
8	Point 4	2.71992	-2.40114	0.50283	2.72609	-2.27331	0.39129	3.72651	-2.62604	0.06549
ଞ	Point 5	2.86809	-3.52973	1.36131	2.87153	-3.57274	1.39541	3.86534	-3.82116	0.98584
8	Point 6	1.66004	-3.29877	1.91900	2.13984	-3.43596	1.73579	2.62296	-3.60007	1.57321
84	Point 7	1.63442	-3.25853	1.90105	2.13984	-3.43596	1.73579	2.61924	-3.59386	1.57029
85	Point 8	1.32257	-3.19447	2.04127	1.85089	-3.38194	1.87021	2.29384	-3.53522	1.72352
88	Point 9	1.20537	-1.67340	0.83287	1.73454	-1.76256	0.57847	2.18607	-1.81295	0.33975
87	Start of scan line	1.19058	-1.90430	1.03659	1.70000	-2.00000	0.80000	2.15170	-2.08488	0.59022
88	Middle of rotation	1.19068	-1.90430	1.03659	1.70000	-2.00000	0.80000	2.15170	-2.08486	0.59022
68	End of scan line	1.33110	-2.85916	1.75349	1.84105	-3.01433	1.56667	2.29073	-3.10310	1.36142
8				-						
١										

FIG. 13DI

MR4

ľ	t	c	-	_			ī	-	-	¥	1	2	2	0	۵	σ	6	6
	+	,			T	+												
	4																	
ď	Facet			Facet			Facet			100			1908			Š,		
	=			2			6			4		1	1	ł	١	ō		
1	MANA	0 6247R	1.76914	ľ	0.55167	1,81997	4 85731	0.53694	19696.1	4.76146						Ì	0.60383	2.12116
ľ		0.000	:	Γ	O ABRES	1.01818	4.67548	0.45660		ľ	Ī					Ì	0.51160	22383
ľ	1	10000	1	1	047110	1 91867	4 85020	0.60088	1]	ľ		l		Ì	0.51160	22383
Ţ	3 8	00000	04040	Т	0 20012	222481	4.09186	0 25949	ľ			``	١		Ĺ	-	0.34144	2.48421
J		1 6/0/1	47.00	П	4 66747	779060	1,000	5.7100	Γ	1	ľ	ľ	L	ľ	Ĺ		-1.27109	2.48410
,		a october	0.744	П	0 17640	1 GAMPA	4 59410	0 15769	P COREGA		ľ	ľ	Ŀ	ľ		4.13935	1.47056	2.26390
ı	7	0.000	1 0000	Т	0,64,6	1 04.701	A ANSTER	.2 0196A	Γ	ľ	Ι.		L	ľ			-1.47056	2.2639
ı		4 10000	0.000	Τ	0	10790	4 785.00	2011762	1	ľ	ľ		L	ľ		ľ	1.87861	2.17661
1		0.00	. 7001.4	Ţ	0 54167	1 81807	4.667.11	0.55894	l	l				ı			0 60393	2,12116
1			17.22	Т	000000	1.62778	4.63786	000000		4.74986	0,00000	1.83106	4.57806	000000	2,03027	ľ	000000	2,126%
,			1	T	O COUNTY	1 82773	4 83785	000000	1,89000	4.74906	ľ		١.	1		4,41147	000000	2,12656
Т	A ONCE	077	1 76120	4 86268	1.22689	1,80788	4.85422	1,09332	Ī	4,76001	l.		4,67039			ľ	-0.64218	2.1324
1	ı			ı		I	l											
	نــ					1	1										1	

F1G. 14A

		ſ	7	_	Т	7	_	13	ţĮ,	S	5	e	į.	5	1	75	-	ं र	7	₹¢	T	5 1	ā	_
		١	٥					900		412	0.122	5		5	0.440	10000		3	6600	0.0430	1	3	0 3702	
								0.44901		20/00	2	0.24044			1,74831	1 74871	***	9310	1	00000	2	3	145074	
		•			300	1	•	3.60125	9	3	900	2.98100	******	ì	347106	247168	2000		3.02123	3.50687	9 AGESTY		30/00	-
		•	1		ľ			905200	A MTPRA		4.00663	999010	O ENDED		200	0.70712	0 77.68		8	0.15125	20310	0.00	2	_
		0	İ					28	ORIGINA		30/97	0 15541	2 Onner	3	2.15630	-2.15186	22000	1	5	00000	000000	- ASSESS		_
		z	1		Facet	-	1	3.80962	3 74647	27,46.00	2010	35.75.38	3.291A7		71000	3 86651	60030	3 07060	3	3.06663	3 90033	4 CHARTS		_
	-	*						0.12563	0.10044	77004		0.04286	0.78628	1	00100	0.91486	0.07193	0 12561		0.2820	025306	0 75509		
	-	•				_		3	037427	0,000		0.2020	-2.41913		BOOM	-2.52955	2.57881	0.46964		COMMO	00000	1.71403	ł	-
	,	•	-		100	-	1	e l	4.14124	4.14194		a e	3.80183	4 00000		, C2087	4.41114	4.30775	1	3	4.32801	4.47185		-
	-	,		ı					0.15017	0.11104	1		0.74453	00000		0.9000	0.98529	23	-	3000	D SCOOL	0.74880	1	
	L		_				0.44440		0.37132	0.48536	47740	Name of the last	7.24807	.2.48001	0000	7	2.30463	0.44 EB	7		O'CONTO	1 53617		
	×				2	7	4 49170		2.31942	7.88	2 70510		3300	4.37431	40.00	3	4.07811	4.49179	4 80000	7	3	4 62 188	-	
	9				1		0.22157	77.00		5	13371	0000	Bass	0.88272	C 000 C		1	0.22/57	0.34528	0.54530		0.052507	-	
	_						0.4481	A 4776.68		0.37701	0.15472	0.000	200	2	PRABA C.	*****	5	4	00000	O COMPANY	7	CIOSTI-	_	
	ш			Fecel		1	8	4 KAIM	3	* 200.5	404652	4 174m			4.60077	7	100000	1 00000	0000	4 68490	4 000040			
ľ	0	l					0.28378	0.24659	97.00	2/01/2	250	O BARDE		1,0000	0.99034	4 04300	20000	0/207	0.38806	0.38907	20000	3		
ŀ	,						1	0.30083	0.0000		0.22763	2 24548	2000	(0)	4 30630	2.28178	0.44997	1	00000	0,0000	1 83167			
١.	٩		1		-	27.50	B	4,06974	4 62710		4.00	4.29176	A ROLL	1	4.74710	C24697	4 80400	4	Ž	4.12442	198361			
ľ		-			-	1		S E	Potent St		Ě	Part	Polys			Point 8	Point	Dark of second land		MEDIDIO OF POSSION	End of secon line	1		
•																		1			Ego			
_	Ş	3	900		0/0	Ş	ŀ	3	2	1111		1			1		9=	-13			=	2		

F14. 14B1

	٧	6	၁	٥	3	1	0	×		r	×	1	3	z	0	٩	0		8
		Fecet			Facet		L	Facet	H		Fecer			Facet			FROM		
9		7			~	L		85	L		+	-		9			6	ľ	
	Point (4.62496	0.44237	0.26978	4.65503	0.44811	0.22157	4.49179	0.44469	0.17770	4.30775	0.44954	0.12583	3.83962	24834	9052010		0.44691	0.06994
	Potra	4.66874	0.36963	0.24852	4.50103	0.37345	0.19944	4.31949	0.37132	0.15017	4 14124	0.37427	0.10044	3.74647	0.37386	984000		0.37322	-0.12337
	Point 3	4.62719	0.54611	0,18748	4.50022	0.37701	0.19626	4.28011	0.48536	0.11104	4.14124	0.37427	0.10044	3.74516	0.37600	0 00833	ı	0.37322	0.12337
	Point 4	4.16842	0.22763	0.15289	4.04652	0.15472	0.13371	3,79612	0.20147	0.06234	3.76359	0.20365	0.04285	3.17536	0.15541	-0.10508		0.24084	-0.18162
	Point 6	4.29176	-2.24568	0.84926	4.17480	-2.32518	0 83856	3.80727	-2.24907	0.74455	3.89183	-2A1913	0.78626	329187	-2.00085	0.50866	3,10607	1.64117	0.38043
	Point	4.69167	2.49257	1,02567	4.59519	2.46863	0.99272	4.57431	-2.45821	925280	4.25097	-2.52956	0.01468	3.86617	-2.15630	9.707B4		-1.74831	0.48974
	Pott	4,74716	2.30630	0.99034	4.50627	2,48498	0.98200	4,41150	-2,33743	0.90686	4.25097	-2.52965	0.91466	3,86651	-2.15186	0,70712		1.74831	0.48974
	Point 6	4.89443	-2.36176	1.04332	4.74099	2.51361	1,04484	4.57811	-2.38443	0 96529	441114	-2.57881	0.97183	4.06339	420028	0.77535		-1.81036	0.86463
	Potra 9	4.62496	0.44237	0.26978	4.65503	0.44811	0.22157	4,48179	0.44489	0.17770	4.30775	0.44364	0.12583	3.09962	0,44834	0.02505		0.44801	0.06994
	Start of econ line	4.8342	0.00000	0.38906	4.66490	000000	0.94626	4.50000	-0.00001	000000	4.32901	000000	0 25305	3.96863	000000	0.15225		0,0000	0.04380
	Middle of rotation	4.82442	0000000	0.36607	4.66490	0.0000	0.34526	4.50000	0,00000	030000	4,22801	000000	0.25305	3.86563	0.0000	0.15325		000000	0.04380
	End of scan line	4.04361	-1.51167	0.82996	4 80210	-1.65515	0 62967	4,62168	-1.53617	0.7480	4.47166	-1.71403	0.75509	4.00637	-1.40033	0 56426	1	-1,09574	037020
			-			H	ŀ	L	ŀ			l	l	l	l	ľ			

FIG. MC

_	,	_		-	7	Ξ,		70	110	1)-			7	51		2	ar.	51	8	_	,
Ø				66900		4015	0.1233	41818	ACRE O		0.400	0.4887	993		96900	0.0038	2	3	0370		
Œ				0.44801		0.37.52.5	0.377822	0.24094	1 64117		1.74831	1. 74KM	. 0.000	1.00	044891	OUUO O	9	0.0000	-1.08674	I	
0		recen	9	3 52125		3,32,508	3.32506	2 540150	S shorts	3	347	S 47166		2000	3.62.23	2 550057		3.56687	3.67905	t	1
-			-	OPPROR		0.00764	0.00003	A 1656	90000		20704	0.70712		G-77050	905200	A 16.20K		0.15	ACAAN A		1
Ļ		_		75877		37385	0.37803	0 08841		0	2.15630	5 4Ktob		2000	0.44834	2000		0000	4 Annes		-
		Face.	ľ	ľ		_	ľ	A CHEST	T	1	Ť	ľ	1	•	ľ	ľ		_	ľ	1	
_		_		l	1		L	4 4400				Ĺ			L	l	1		L	١	
	1			1	1		ĺ	ľ	١		ľ	ļ	ı		l	ļ	ı		l	ı	-
-	-			ı	1		l	20000	١	1	ľ	ı	1		Į		١		ĺ	1	
,	4	1		1			l	2	1		ľ	ı	1		١		ı	ļ	١		
	,			I		ľ	T		1	_		1		Γ	ľ		-	ľ	I	1	
	-		Ī		0.4459	0.140		0.000	0.20147	2200	.000	,	2.33/4.3	CA 400 C.	2	2	00000	Ommo		1.53817	
l	.	202		7	Š	070167		1102	2,79612	3.90727		2	5	7 6964		2	2,5000	A RAMON		4.62166	
	9	1	1	1	025	44000		0,3850	0.13371	0 83855		T.000	8888	2000	į	623.03	97728	0.04670	2	0.02867	
		-	1		0.4481	20000	2	107/20	0.15472	11300		2.46063	6496		5 0	0.44811	000000	90000	333	1.66516	-
			No.	8	1 45503		3	1,50022	204625	17490		915051	1 59627		8	1,65503	1.66490		00000	1,90210	-
-		-			36078	2000	ž	0 16746	15299	84004	O TOTAL	0220	PBU34		222	28978	30692		1000	82008	-
	L				0 28677				0.22763 0	l		2.48257		l		0.44237	000001	ļ	88	0 14913	
	בי ר	1	Foot	_	A01/09	ľ	٦	_	18842) 0.2	ľ	1		ľ	I	277	70 969/20	COTO	ľ	00	11.	
	-	1	Z.		•	1	*	3 4.62718				•	ľ	Ί	•	7	,		•	4 9436	
					4	Ē	Popular	Point 3	Port 6	1	Ē	Ę	1		2	Port B	Chart of aron for		little of rotation	and of some	
		١													!		á	8	뒬		1
				53											į						
		J	8	ē	1	8	8	2	1	ľ	12	113	ľ		=	Ë	Ŀ		116	Ė	ľ

F1G- 14D1

317/335
1/335

				5.95933	6.07464	6.07461	6.43794	7.12079	6.90578	6.90349	6.83568	5.95933	6.03397	6.10220	6.68100	_
_																
-				-0.71341	-0.80763	-0.80078	-1.10154	-4.40584	-4.56037	-4.55423	-4.60159	-0.71341	-1.19501	-1.52325	-3.93033	
H	3	Facet	12	5.57831	5.42747	5.42531	4.95130	4.94319	5.33088	5.33250	5.45432	5.57831	5.61623	5.61481	5.48105	
ŋ				5.84633	5.95052	5.95052	6.17433	6.82654	6.69722	6.69722	6.63764	5.84633	5.91380	000009	6.50794	
u.				-0.72344	-0.81564	-0.81564	-1.01369	-4.30055	-4.39100	-4.39100	-4.43267	-0.72344	-1.19815	-1.62630	-3.84809	
ш	2	Facet	10	5.75912	5.62511	5.62511	5.33722	6.37166	5.60403	5.60403	5.71110	5.75912	5.80609	5.80862	5.72650	
٥				5.72516	5.83575	5.83618	6.18430	6.76631	6.55370	6.53803	6.46837	5.72516	5.79678	5.89717	6.34386	
0				-0.72592	-0.82205	-0.77284	-1.10363	-4.23150	4.38204	-4.33627	-4.37550	-0.72592	-1.21758	-1.72998	-3.76722	
8	-	Facet	80	5.95032	5.80752	6.79099	5.35054	5.44408	5.82668	5.83655	5.95867	5.95032	5.99623	6.00363	5.95828	
				Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	Start of scan line	Middle of rotation	End of scan line	
			61		-											
L	12	9	1	18	8	8	ě	8	8	2	8	8	8	8	8	8

F19. 15A

Γ		Γ	88	8	78	2	¥	5	ヌ	छ	8	8	ଛ	6	Γ
7			6.83568	6.90349	6.90578	7.12079	6.43794	6.07461	6.07484	5.95933	6.83568	6.68100	6.10220	6.03397	
_			4.60159	4.55423	4.56037	4.40584	1.10154	0.80078	0.80763	0.71341	4.60159	3.93033	1.52325	1.19501	
I	Facet	-	5.45432	5.33250	5.33088	4.94319	4.95130	5.42531	5.42747	5.57831	5.45432	5.48105	5.61481	5.61623	
5			6.63764	6.69722	6.69722	6.82654	6.17433	5.95052	5.95052	5.84633	6.63764	6.50794	6.00000	5.91380	
ī.			4.43267	4.39100	4.39100	4.30055	1.01369	0.81564	0.81564	0.72344	4.43267	3.84809	1.62630	1.19815	
Ш	Facet	6	5.71110	5.60403	5.60403	5.37166	5.33722	5.62511	5.62511	5.75912	5.71110	5.72650	5.80862	5.80609	
a			6.46837	6.53803	6.55370	6.76631	6.18430	5.83618	5.83575	5.72516	6.46837	6.34386	5.89717	5.79678	
၁			4.37550	4.33627	4.38204	4.23150	1.10363	0.77284	0.82205	0.72592	4.37550	3.76722	1.72998	1,21758	
В	Facet	7	5.95867	5.83655	5.82668	5.44408	5.35054	5.79099	5.80752	5.95032	5.95867	5.95828	6.00363	5.99623	
A			Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	Start of scan line	Middle of rotation	End of scan line	
	91	92 G2	93	94	95	86	97	98	66	100	101	102	103	8	05

F14. 15A2

-					_				_	}	A CORRE		`	_				_	Ľ	1		
•					0.34612	0.243081		87/85	0.18544	3.08048	anoct 6		3 2800	-3.16838	CLANCO	2000	3	00000	20 PA 24			
c		100	•		6.67159	A A 17D1		2012	8.72143	822148	16740		2842	B.32024	A MT14GB		1	6.62143	14891			
•					4,74102	A AAASS		100	5.31804	177007	90100		4,40112	4.34377	CW+74.7		4.6000	4.69679	1	2		
	Ì		ļ		0.35981	91000	3		0.12498	CANNA O.		X X	2.91719	2 06743	O Demos	200	0.00007	000000		3		
	2	Faced	ľ	8		1	١		ļ	1				l	١	١		١	ļ	ı		
ľ			Ī		ľ	l	1		ı	ı		1		١	ı	١		ı	١	ı		•
	1				L	١	1	١	L	I	,	•	ľ		1		•	L	l	_		
ļ	2			_	ľ	ſ			ľ	I	0.00131	_	ľ	Т	١	١		ľ				
	<u>-</u>				ľ	1	1	ľ	ľ	1	4.178.53		ľ	T	1		ľ	ľ	1	•		
	_			_	ŧ	ļ		ı	1	١	-2.72000		ı	ļ	ı			ł	1			
	T		HOS		ľ	1		ľ	ľ	١	6.61108	_	ľ		1		ľ	ţ		ľ		
	9				ľ	_		ľ	1	1	3,63654		ľ			-	ľ	T		Γ		
-								١	1	Ì	4.94072	ľ	١	1	1		Ì	١		ľ	l	
			Face		ľ	7.3(606	ľ	ľ	1	"	6.56259	Γ	1	٦	_	ľ	ľ	1	_	Γ	1	
	١				4	_	Ļ	ł	1		3.69330	ı	1	-		l	١	_	_	Ļ		
	ļ	,	-			5965 5	0.000	١	-	1	2.71194	ı	I	١		ı	i	0.000	_	ľ		
	٩	•	Face			7,38463	ľ	ľ	_		6.78168	ľ	٦	•		ľ	ľ	7.55.30	7.22.0	10177		
						Port	C Parks		Ë	Poest	Point	7	X.	S. F	Potra	T.		THOUSE IN	the of mission	of or one		
	1	<																8	4		0	
					103																	

F1G. 15A3

				_							_					_
ſ				3.23954	3.28909	3.28633	3.44252	6.68618	6.69231	6.68785	6.68904	3.23954	3.45169	3.90711	6.27163	
_				-3.02504	-3.07489	-3.07385	-3.22989	4.94977	4.83496	-4.83220	-4.79243	-3.02504	-3.12422	-3.35150	-4.57920	
I	3	Facet	12	3.24420	3.16721	3.16395	2.92561	4.61719	5.13524	5.13464	5.31142	3.24420	3.41287	3.71220	5.05851	
5				3.24153	3.28365	3.28365	3.37382	6.48702	6.49349	6.49349	6.49668	3.24153	3.42658	4.00000	6.12962	
T.				-2.92223	-2.96298	-2.96298	-3.05022	-4.70247	-4.63666	-4.63666	-4.60417	-2.92223	-3.00957	-3.30000	-4.41413	
E	2	Facet	10	3.69818	3.63983	3.63983	3.51489	5.13129	5.43660	5.43660	5.58735	3.69818	3.84166	4.20000	5.37598	
0				3.18258	3.23834	3.21628	3.40306	6.41511	6.42964	6.39515	6.39317	3.18258	3.42532	4.08689	5.99609	
၁				-2.79379	-2.84817	-2.83938	-3.01427	-4.63324	-4.52709	-4.50585	-4.46565	-2.79379	-2.91167	-3.25182	-4.26040	
8	1	Facet	8	4.09124	4.01214	3.98793	3.75453	5.22942	5.73352	5.72839	5.89808	4.09124	4.26503	4.65630	5.66800	
A				Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	Start of scan line	Middle of rotation	End of scan line	
	75	76	77 G1	78	79	8	81	88	88	28	85	98	87	88	68	06

F14. 15B1

Г	Т	Т	_	T =	110	- I	- 0	اماد	i en	10	गस	ान	. [·1-	. ~	
-,				6.68904	6.68785	6.6923	6.68618	3.44252	3.28633	3 28909	3 23954	6.68904	6 27163	3 9071	3 45169	
				4.79243	4.83220	4.83496	4.84977	3.22999	3.07385	3.07489	3.02504	4.79243	4 57920	3.35150	3.12422	
Ŧ		Favet	1	5.31142	5.13464	5.13524	4.61719	2.92561	3.16395	3.16721	3.24420	5.31142	5.05851	3.71220	3.41287	
9				6.49668	6.49349	6.49349	6.48702	3.37382	3.28365	3,28365	3.24153	6.49668	6.12962	4.00000	3.42658	
L				4.60417	4.63666	4.63666	4.70247	3.05022	2.96298	2.96298	2.92223	4.60417	4.41413	3.30000	3.00957	
Ш		Facet	6	5.58735	5.43660	5.43660	5.13129	3.51489	3.63983	3.63983	3.69818	5.58735	5.37598	4.20000	3.84166	
٥				6.39317	6.39515	6.42964	6.41511	3.40306	3.21628	3.23834	3.18258	6.39317	5.99609	4.08689	3.42532	
ပ				4.48565	4.50585	4.52709	4.63324	3.01427	2.83938	2.84817	2.79379	4.46565	4.26040	3.25182	2.91167	
8		Facet	7	5.89808	5.72839	6.73352	5,22942	3.75453	3.98793	4.01214	4.09124	5.89808	5.66800	4.65630	4.26503	
A				Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	Start of scan line	Middle of rotation	End of scan line	
	8	91	82 G2	83	ቖ	95	96	97	86	8	18	101	102	103	104	105

F14. 15B2

8 1 8	Facet	19	1	6.81701	6.81701	6.72143 0.18544	6.22 (46 -3.06048 6.23686	6.28421 -3.12902	6.28421 -3.12902	A 3000 A. 16838	6.67150 0.34512	A. 22 144	W 92149	SCAN C	L	
٥			0.35981 4,74102				2 80040	Ľ	L		ľ	Ľ			4.400m	
z	Facet		L		L	L	771		l	l	1	L	l	1	DACAGO PROCESS	
3			0.35064	0.90100	20,000	0 18604	1 C G 67774	4 00000	A voero	0.000	70000		20000	nmm	-2.39464	
×	100		ı	ı	1	١	4 17070 A FERTIN	l	١	ı	1	Į	İ	ı		
-	-		00000	Noor o	A STATE OF	O Section	0 20000	4-74V03	4.0000	×.//011	2000	2000	0.000	000000	2.14504	
-			1	ı	ŀ	1	4.76627	Ţ	1	١	١	ı	ı	3.78335 7.1924	3,41071 6,8786	
1 3 1		Taxon.	.1	1	1		0.12287	1	1	1	1		1			
4	֓֞֜֜֜֜֜֜֓֓֓֓֓֓֓֓֟֜֜֟֓֓֓֓֓֟֜֟֓֓֓֟֓֓֓֟֓֓֓֟		١	I		I	4,09666 7,13404	٦	٦	1	1	1				
ļ	,	Į.				0.45214	_	271194	_	j		_	0.00061	25 0,00000	71 -2.11473	
		8	_	Poem 1 7,36453	Point 2 7,2366	Point 3 7,3608	^	Pornt 5. 6.76168	٦	٦	Point B 6.8905	Point 8 7.3848	240 line 7.3238	1,3232	2017	
	4		89	•	†		•		•	*	•		Start of ecen litra	notation of rotation	End of scen lin	

F14.1583

	A	8	0	0	ш	ц.	9	Ή	-	٦
1		-			2			3	- , -	
		Facet			Facet			Facet		
ı		8			10			12		
	Point 1	4.09124	-2.79379	3.18258	3.69818	-2.92223	3.24153	3.24420	-3.02504	3.23954
1	Point 2	4.01214	-2.84817	3,23834	3.63983	-2.96298	3,28365	3.16721	-3.07489	3.28909
1	Point 3	3.98793	-2.83938	3.21628	3.63983	-2.96298	3.28365	3.16395	-3.07385	3.28633
	Point 4	3.75453	-3.01427	3.40306	3.51489	-3.05022	3.37382	2.92561	-3.22999	3.44252
	Point 5		-4.63324	6.41511	5.13129	-4.70247	6.48702	4.61719	4.94977	6.68618
	Point 6			6.42964	5.43660	-4.63666	6.49349	5.13524	4.83496	6.69231
	Point 7			6.39515	5.43660	-4.63666	6.49349	5.13464	4.83220	6.68785
1	Point 8	5 89808	-4.46565	6.39317	5.58735	-4.60417	6.49668	5.31142	-4.79243	6.68904
1	Point 9	4.09124	-2.79379	3.18258	3.69818	-2.92223	3.24153	3.24420	-3.02504	3.23954
1	Start of scan line	4 26503	-2.91167	3.42532	3.84166	-3.00957	3.42658	3.41287	-3.12422	3.45169
	Middle of rotation	4.65630	-3.25182	4.08689	4.20000	-3.30000	4.00000	3.71220	-3.35150	3.90711
	End of scan line		ľ	5.99609	5.37598	-4.41413	6.12962	5.05851	-4.57920	6.27163
	A									

F14. 15C1

			Γ	A GROOM	20000	8 6	0.09231	6.55618	3.44252	3 28633	3 20000		0.2000	0.00304	0.27.103	3.90/11
								0	м К	3.5	6	2 6	200	9	9 0	5
-	-			4 79243	A B3220	4 02400	4.00430	4.848//	3.22999	3.07385	9 07489	0.00	4 70049	4.73243	2 25450	0.35150
		Facet	=	5 31142	5 13464	K 42624	101740	4:01/18	2.92561	3.16395	3 18721	3 24420	F 31 142	A 060E4	3.03031	0.7 1660
0	,			6.49668	6 49349	6 40940	20000	20,407.02	3.37.382	3.28365	3.28385	3 24153	6 40668	A 12062	4 0000	40000
u	-			4.60417	4.63666	4 R3RAR	77007 4	4.70247	3,05022	2.96298	2.96298	2 92223	4 60417	4 41413	33000	20067
1	,	racet	0	5.58735	5.43660	5.43660	5 13120	2 54 400	0.01403	3.63983	3.63983	3.69818	5.58735	5.3759R	4 2000	3 84166
0				6.39317	6.39515	6.42964	6.41511	2 40306	0000	3.21628	3.23834	3.18258	6.39317	5.99609	4.08689	3 42532
ပ				4.46565	4.50585	4.52709	4 63324	201407	20172	2.83938	2.84817	2.79379	4.46565	4.26040	3.25182	291187
8	Forms	במפר	7	5.89808	5.72839	5.73352	5.22942	3 75453	3	3.98793	4.01214	4.09124	5.89808	5.66800	4.65630	4.26503
¥				Point 1	Point 2	Point 3	Point 4	Point 5		Point 6	Point 7	Point 8	Point 9	Start of scan line	Middle of rotation	End of scan line
	5	30	25 26	93	\$	95	96	97	80	90	35	100	101	02	ಣ	ষ্ঠ

F14. 15C2

7	Г	T	7	3]	81	8	6	19	1		90	2]	Į.	121			Ž	Γ	1	
0				8.26S		2	Ş	ľ	9000	٦	4.868	4.99	ľ		•	8.21	4 9643	3	*			
I				0.34419		0.28706	0.25708	A 18644		2000	3,12902	C 1000		3	0.34612	0,000		3	8			
_	1		•	2011	8	81701	10218	2000	2		2863	10000		5	167159	771.00		2	44831	l	1	
_	ŀ		_		١	_	ľ	Γ	1	180441	_	ľ					l			l	-	
_	١			ľ	1	ľ	ľ	I				١	١			١	I		l	١		
c	1				9	0.3001	3		0.124	2 80040	2000			Ś	2000		3	0000	A 547A			
-	1	1			8	A 97894	0 00000	000	6.91296	6.36746	A ATRAC		24/10	51493	400		20/2/2	£.97901	34040			
		_			2	36008		8/8	86313	1,222,1	60000		2000	64679	1	2	822	252.60		500		
ľ	1	_	-	ı	•	Γ	1	1	_	ľ	ľ	Ì			l	١		ľ	ł			
				إ	ı	l	١	1	ĺ	2 04734	ĺ	1	Ĭ	ľ	1		ľ	l	Ī		L	
	¥	Fores		•	7 1780	9	2000	7,300	7,0005	4 64121	2	0.61000	6,61696	0 0 4040	2000	7,1700)	7,12369	00000		6.730X		
ŀ	_	1	-		4 M944K	2	1000	4.10794	4 57120	0000	R	3,601/4	9.78090		0,040,0	8	4 00001	1	333	3,06967		
	_			_	S	200	0220	3888	2476		3	2000	1881		ST S	5869	70.00		2000	14004	-	1
		١	ķ	•	١	١		l	l	١	1	•	Ι.	١			ı	١		l	l	1
	2	1	18081		ł	-		ļ	۱	2	-		١	1			L	١		L	Ł	
	ľ	1				3.91936	3.95269	4 04474		4.20027	3,63654	3.511A		8	3,40022	2 81036		7	3,78336	14100		
	-		_	l		0.36437	D 29548	2		0.12287	2.04072	0 047977		2 0000	2.00436	0 00497	3	90000	000000	740.00	3	1
	-		Pacer	1	1		ı	١	1	7.13404	ľ	ľ	1		ľ	l	١		l			
	ľ	1	Ē	1	1		l	I	١		ı	ļ	1		١	Į	١		l	١	ı	
	ļ	_				160%		4	768	4 09695	3.69.5		7	222	4016		2	3.573				L
		ů				0.39621			0.45714	0.19066	A 74104		251744	2,76529	ODE OF		0.36621	0,00081	3		2.11473	
		_		8	=	28682		207	35066	69661		3	800	86186		5	2010	1000		ŝ	1410	l
		_			_	,		/		100		1	of R G	Solve 7	ľ	2	~	1		ě	~	L
							1	2	Pot	1			2	3		Ē	2	1		De 0/ 70	up of Boar	
		•																l	5	1	T	

325/335

F14. 15C3

•	32	:/ما	33	5
1				

_						3.23954	000000	50507	3.28633	3 44252	0000	0.000.0	6.69231	6 68785		6.68904	3.23954	9 45169		3.90/1	6.27163		
_	-					3.02504 3			3.07385 3	2 22000		17848.4	4.83496 6			4.79243 6	3.02504 3			3.35150 3	4.57920		
	_	က		Facet	12	3 24420		3.16721	3.16395	Ĺ		4.61719	5 13524	ľ		5.31142	9 24420			3.71220	5 05851	L	
-	5					2 04162	3.541.50	3.28365	3 28365	00000	3.3/382	6.48702	6 40340	0,000	D.4004.0	6.49668	0 04452	3.521.00	3.42656	4.00000	6 10062	0.12302	
	<u> </u>					00000	-Z.32223	-2.96298	90090	2.305.00	-3.05022	-4.70247	4 00000	1.0000	99999	A 60417	00000	-2.32220	-3.00957	-3.30000	07777	4.41413	
	ш	6		Facet	Ç	2 300	3.69618	3.63983	00000	3.00300	3.51489	5 13129	2000	2.43000	5.43660	E 59795	20,000	3.69818	3.84166	A 20000	1.5000	5.37598	
	_	,					3.18258	2 22834	20070	3.21020	3.40306	A 415.11	1011	6.42964	6.30515	0.0000	0.33317	3.18258	3.42532	00000	4.00003	5.99609	
	١	,					-2.79379	0 0.047	10407-	-2.83938	-3.01427	VOCCO V	**20202**	4.52709	A ENERE	20000	-4.46565	-2.79379	-2 01167	201100	20102.5	-4.26040	
	c	٥	=	1000	LECEL	80	4.09124	7,0,0	4.014	3.98793	3 75453	2000	5.22342	5.73352	10000	5.72039	5.89808	4.09124	A DEEDS	4.50505	4.65630	5.66800	
							Point 1	3	FOINT Z	Point 3	Doint 4	5	Point 5	Point 6		Fom /	Point 8	Point 9	4 26 22 112	Start of scar line	Middle of rotation	End of scan line	
		4																	6	STBI	Z	E	
						<u>G</u> 1																	
			7,5	3	92	F	1	P	29	٤	3 3	2	8	ě	3	8	85	ő	ఠ	87	88	8	8

F14. 15D1

Γ	Γ	Τ	Ş	83	3	8	S	8	8	25	8	ន	F	69	Τ
3			6.68904	6.68785	6.69231	6.68618	3.44252	3.28633	3.28909	3.23954	6.68904	6.27163	3.9071	3.45169	
_			4.79243	4.83220	4.83496	4.94977	3.22999	3.07385	3,07489	3.02504	4.79243	4.57920	3.35150	3.12422	
I	Facet	-	5.31142	5.13484	5.13524	4.61719	2.92561	3.16395	3.16721	3.24420	5.31142	5.05851	3.71220	3.41287	
တ			6.49668	6.49349	6.49349	6.48702	3.37382	3.28365	3.28365	3.24153	6.49668	6.12962	4.00000	3,42658	
u			4.60417	4.63666	4.63666	4.70247	3.05022	2.96298	2.96298	2.92223	4.60417	4.41413	3.30000	3.00957	
Ш	Facet	6	5.58735	5.43660	5.43660	5.13129	3.51489	3.63983	3.63983	3.69818	5.58735	5.37598	4.20000	3.84166	
۵			6.39317	6.39515	6.42964	6.41511	3.40308	3.21628	3.23834	3.18258	6.39317	5.99609	4.08689	3.42532	
၁			4.46565	4.50585	4.52709	4.63324	3.01427	2.83938	2.84817	2.79379	4.46565	4.26040	3.25182	2.91167	
В	Facet	2	5.89808	5.72839	5.73352	5.22942	3.75453	3.98793	4.01214	4.09124	5.89808	5.66800	4.65630	4.26503	
A			Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	Start of scan line	Middle of rotation	End of scan line	
		G2													
- 1	91	35	8	ठ	92	8	6	8	8	휭	흔	9	<u>ဗ</u>	ই	105

FIG 15D2

	7	_			7-	511	ð	đ	116	81		10	51	5	7	ī÷	7	8	2	ח
œ				8.2854	COUT N	2	5.4068	5. AAA.7		3	4.9005	7 000		4,84610	2004	60110	-	5.2112	7/25	
•				034812		200	0.26708	0.18544		2000	312802			9299	0.34512	2		00000	3 67.18	
٥	1	Tacal Tacal	9	A 67150		200	6.81701	672143		0.222	A SPACE		17076	\$305°	6.8715.9		0.00	6.62143	R 44971	
•				474100		2000	486784	20167	1	4864	4 49106		4.407172	4.34377	4.74102	1	4,0000	4.60679	A GEOOD	4,000
	,			A 24084		030016	0.30254	90761	3	7,000	12 CO 67		4. C. C.	2.85743	200		OUMO,	000000	A 76365	20.00
•		Fecet				6.97054	6.97821	90000	3	200	4 47004		6.47738	6.51483	7 03508		200	106/6	97079	0.000
ľ				l	ł			l	ļ		1	١		3.64679	l	١		ı	ł	
	,			20000	8	0.20192	0.29182		5	2000	A ASSEA	200	2000	3.08818	72000		988	00000		
ļ	4	Facet	•	2000	/00/1-/	200	7 13000		STORY /	6.66131	4	001000	661639	8.84813	1.000	/88/11/	22.5	12300		Q / / 30€
	,		T		3	4.50042	A9794		4.5/132	4.17039		2000	3,78090	3 RAATE	20000	3	98	4		7.66907
ľ	_			1	0.000	03030	A TORON		0.18475	2,72089		7.00007	2.79811	S America	90000	2	80000			\$
	×	Const		2	7,25212	7,20014	7 00000	-	7,04802	4 41100		6.68200	6.71818	A TROOP		7.202.1	7.10246	3 400.46		9
I	9		1		3.61836	9 832989	74400		4.28827	1 BORKA		351194	3.61120	0000		3.01636	2700		3	5
	u	I		ı		ı	ı	١		ľ	١	•	ľ		١		ı	l	ı	
	w	1	T BOB	2	7.31636	7 27018	47000	200	7.180	A BOTOOD	3	2000	A 77743		0.78008	7,31636	10000 C		2000	6,000,00
	-				3,60327	20000		3.70040	4.09695	0 40000	200.0	\$ 26219	****		24 (44)	3,60227	A 8794.K		100	4 97479
	į	1			1282	1		45214	Q 19089	A STAKE		2.91744	9	1	20.00	23660	0 0000	1	00000	54711 6
	-	•	ě	•	7.39483	-		2000	7,10060	ľ	1	0.82336	ľ	8	1000	7.30483		3		11/4/11/4
					Point S	3	1	2	T d		2	Point 6	1		Port	Ports			Logie of rotation	A come los
						١													Š	3

328/335

F14, 1503

В

CREATE 3-D GEOMETRICAL MODEL OF HOLOGRAPHIC LASER SCANNER BASED ON PARAMETERS OBTAINED FROM PRIOR STAGES OF SCANNER DESIGN METHOD, EXCLUDING PARABOLIC LIGHT COLLECTION MIRRORS AND PHOTODETECTORS

PERFORM BRAGG SENSITIVITY ANALYSIS ON EACH
HOLOGRAPHIC FACET USING THE HSD WORKSTATION TO
DETERMINE THE RANGE OF INCIDENCE ANGLES OFF BRAGG,
AT WHICH LIGHT RAYS REFLECTED OFF THE PARABOLIC MIRROR
WILL BE TRANSMITTED THROUGH THE FACETS WITH
MINIMUM DIFFRACTION (I.E. MAXIMUM TRANSMISSION)
TOWARDS THE PHOTODETECTOR DURING LIGHT COLLECTION
OPERATIONS

USE THE HSD WORKSTATION TO TRACE ALL INCOMING LIGHT RAYS REFLECTED OFF A BAR CODE SYMBOL ANYWHERE IN THE SPECIFIED SCANNING VOLUME ONTO THE FACETS OF THE PREDESIGNED SCANNING DISC, AND BASED ON THIS ANALYSIS, IDENTIFY A POINT(S) ABOVE THE SCANNING DISC AND BELOW TOP EDGE OF ASSOCIATED BEAM FOLDING MIRROR, WHICH IS FREE OF INCOMING LIGHT RAYS

LOCATE THE POSITION (I.E. CENTER AND OPTICAL AXIS ORIENTATION) OF THE PHOTODETECTORS USING THE "RAY FREE POINT" INFORMATION ACQUIRED DURING BLOCK C ABOVE

F1G. 16A

F1G. 16B

F14.16C

F16.178

Will death the terms and the second second that the second second state and the second

F14. 17C

F16.18

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.