CPSC429/529: Machine Learning

Lecture 06: Ensemble Learning

Dongsheng Che
Computer Science Department
East Stroudsburg University

Introduction

Training sets Hypotheses Ensemble hypothesis

Ensemble Learning Algorithms

- Voting
- Bagging
- Random Forest
- Boosting

Introduction

Voting

Voting

- Generally combine different classifiers
- Classifiers use identical dataset

where
$$h_i(\mathbf{x}) = \hat{y}_i$$

Why voting?

Given three hypotheses, h_1 , h_2 , h_3 with $h_i(\mathbf{x}) \in \{-1,1\}$

Suppose each h_i has 60% generalization accuracy, and assume errors are independent.

Now suppose $H(\mathbf{x})$ is the majority vote of h_1 , h_2 , and h_3 . What is probability that H is correct?

h_1	h ₂	h_3	Н	probability
correct	correct	correct	correct	.6*.6*.6=.216
correct	correct	incorrect	correct	.6*.6*.4=.144
correct	incorrect	correct	correct	.6*.4*.6=.144
correct	incorrect	incorrect	incorrect	.6*.4*.4=.096
Incorrect	correct	correct	correct	.4*.6*.6=.144
Incorrect	correct	incorrect	incorrect	.4*.6*.4=.096
Incorrect	incorrect	correct	incorrect	.4*.4*.6=.096
incorrect	incorrect	incorrect	incorrect	.4*.4*.4=.064

Hard Voting vs. Soft Voting

- Hard-voting: the majority output is chosen to be the final result of the model.
- Soft-voting: sums the predicted probabilities for class lables and returns the final classification with the largest sum probability.

Voting Example

```
In [5]:
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.ensemble import VotingClassifier
         from sklearn.linear model import LogisticRegression
         from sklearn.svm import SVC
         log_clf = LogisticRegression(solver="lbfgs", random_state=42)
         rnd clf = RandomForestClassifier(n estimators=100, random state=42)
         svm clf = SVC(gamma="scale", random state=42)
         voting clf = VotingClassifier(
             estimators=[('lr', log clf), ('rf', rnd clf), ('svc', svm clf)],
             voting='hard')
In [6]:
         voting clf.fit(X train, y train)
```

Voting Accuracy

```
In [7]:
    from sklearn.metrics import accuracy_score
    for clf in (log_clf, rnd_clf, svm_clf, voting_clf):
        clf.fit(X_train, y_train)
        y_pred = clf.predict(X_test)
        print(clf.__class__.__name__, accuracy_score(y_test, y_pred))

LogisticRegression 0.864
RandomForestClassifier 0.896
```

SVC 0.896

VotingClassifier 0.912

Voting

Bagging (Bootstrap Aggregating)

Bagging

Figure 7-4. Bagging and pasting involves training several predictors on different random samples of the training set

Bootstrap Sampling

Training Sets

Bagging Example

Decision Boundary of Bagging

Figure 7-5 compares the decision boundary of a single Decision Tree with the decision boundary of a bagging ensemble of 500 trees (from the preceding

code), both trained on the moons dataset. As you can see, the ensemble's predictions will likely generalize much better than the single Decision Tree's predictions: the ensemble has a comparable bias but a smaller variance (it makes roughly the same number of errors on the training set, but the decision boundary is less irregular).

Bagging (Bootstrap Aggregating)

Random Forest

Random Forest

- Is a variant of bagging algorithm (i.e., bootstrap sampling)
- The base classifiers are decision trees.
- Use a random feature subset at each node split

$$f = \sqrt{F} (total _ features)$$

Random Forest v.s. Bagging Tree

Random forests-Only m<M features considered for each node for split

Node 1_RF

m can be selected via out-of-bag error, but m = sqrt(M) is a good value to start with

Node 3 RF

Bagging Trees--

All of M features considered for each node for a split

Node 2 RF

Random Forest Example

```
In [21]: from sklearn.ensemble import RandomForestClassifier
In [22]: rnd clf = RandomForestClassifier(n estimators=500, max leaf nodes=16, n jobs=-1)
In [23]: rnd clf.fit(X train, y train)
Out[23]: RandomForestClassifier(max leaf nodes=16, n estimators=500, n jobs=-1)
In [24]: y pred rf = rnd clf.predict(X val)
           • The following BaggingClassifier is roughly equivalent to the previous
              RandomForestClassifier:
In [25]: bag clf = BaggingClassifier(
             DecisionTreeClassifier(splitter='random', max leaf nodes=16),
              n estimators=500, max samples=1.0, bootstrap=True, n jobs=-1
```

Extremely Randomized Trees

	Decision Tree	Random Forest	Extra Trees	
Number of trees	1	Many	Many	
No of features considered for	All Fastures	Dandam subset of Feetunes	Bandon subset of Sections	
split at each decision node	All Features	kandom subset of Features	Random subset of Features	
Boostrapping(Drawing Sampling	Nick condition	Vac	No	
without replacement)	Not applied	Yes		
How split is made	Best Split	Best Split	Random Split	

 Using random threshold for each feature rather than searching for the best possible threshold

Random Forest

Boosting

AdaBoost

Figure 7-7. AdaBoost sequential training with instance weight updates

AdaBoost General Procedure

Train Base Classifiers:

- Initialize a weight vector with uniform weights
- 2. Loop:
 - Apply weak learner to weighted training examples (instead of orig. training set, may draw bootstrap samples with weighted probability)
 - increase weight for misclassified examples

Ensemble Predictor:

Weighted majority voting on trained classifiers

Adaboost algorithm

Train Base Classifiers:

- 1. Given $S = \{(x_1, y_1), ..., (x_N, y_N)\}$ where $\mathbf{x} \in X$, $y_i \in \{+1, -1\}$
- 2. Initialize $\mathbf{w}_1(i) = 1/N$. (Uniform distribution over data)
- 3. For t = 1, ..., K:
 - a) Select new training set S_t from S with replacement, according to \mathbf{w}_t
 - b) Train L on S_t to obtain hypothesis h_t
 - c) Compute the training error ε_t of h_t on **S**:

$$e_{t} = \bigotimes_{j=1}^{N} \mathbf{w}_{t}(j) \, \mathcal{O}(y_{j}^{-1} \, h_{t}(\mathbf{x}_{j})), \text{ where}$$

$$\mathcal{O}(y_{j}^{-1} \, h_{t}(\mathbf{x}_{j})) = \begin{cases} 1 & \text{if } y_{j}^{-1} \, h_{t}(\mathbf{x}_{j}) \\ 0 & \text{otherwise} \end{cases}$$

d) Compute coefficient

$$\alpha_{t} = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_{t}}{\varepsilon_{t}} \right)$$
 Error is small, then coefficient is small

Incorrect prediction on its instance leads to large value in the box

e) Compute new weights on data:

For i = 1 to N

$$\mathbf{w}_{t+1}(i) = \frac{\mathbf{w}_t(i) \exp(-\partial_t y_i h_t(\mathbf{x}_i))}{Z_t}$$

where Z_t is a normalization factor chosen so that \mathbf{w}_{t+1} will be a probability distribution:

$$Z_t = \bigotimes_{i=1}^{N} \mathbf{w}_t(i) \exp(-\partial_t y_i h_t(\mathbf{x}_i))$$

Ensemble Prediction:

$$H(\mathbf{x}) = \operatorname{sgn} \mathop{\overset{K}{\stackrel{}{\circ}}}_{t=1} \partial_t h_t(\mathbf{x})$$

A Hypothetical Example

$$S = \left\{ \begin{matrix} \mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \mathbf{X}_4, \mathbf{X}_5, \mathbf{X}_6, \mathbf{X}_7, \mathbf{X}_8, \end{matrix} \right\}$$
 where { $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \mathbf{X}_4$ } are class +1 { $\mathbf{X}_5, \mathbf{X}_6, \mathbf{X}_7, \mathbf{X}_8$ } are class -1

t = 1:

$$\mathbf{w}_1 = \{1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8\}$$

$$S_1 = \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_2, \mathbf{x}_5, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8 \}$$
 (notice some repeats)

Train classifier on S_1 to get h_1

Run h_1 on **S**. Suppose classifications are: $\{1, -1, -1, -1, -1, -1, -1, -1\}$

Calculate error:

$$e_1 = \bigotimes_{j=1}^{N} \mathbf{w}_t(j) \mathcal{O}(y_j^{-1} h_t(\mathbf{x}_j)) = \frac{1}{8} (3) = .375$$

Calculate α 's:

$$a_1 = \frac{1}{2} \ln \frac{\partial (1 - \theta_t)^0}{\partial \theta_t} = .255$$

Calculate new w's:

$$\mathbf{w}_{t+1}(i) = \frac{\mathbf{w}_{t}(i) \exp(-\partial_{t} y_{i} h_{t}(\mathbf{x}_{i}))}{Z_{t}}$$

$$\hat{\mathbf{w}}_2(1) = (.125) \exp(-.255(1)(1)) = 0.1$$

$$\hat{\mathbf{w}}_2(2) = (.125) \exp(-.255(1)(-1)) = 0.16$$

 $\hat{\mathbf{w}}_2(3) = (.125) \exp(-.255(1)(-1)) = 0.16$

$$\hat{\mathbf{w}}_{2}(4) = (.125) \exp(-.255(1)(-1)) = 0.16$$

$$\hat{\mathbf{w}}_2(5) = (.125) \exp(-.255(-1)(-1)) = 0.1$$

$$\hat{\mathbf{w}}_2(6) = (.125) \exp(-.255(-1)(-1)) = 0.1$$

$$\hat{\mathbf{w}}_{2}(7) = (.125) \exp(-.255(-1)(-1)) = 0.1$$

$$\hat{\mathbf{w}}_2(8) = (.125) \exp(-.255(-1)(-1)) = 0.1$$

$$Z_1 = \sum_i \hat{\mathbf{w}}_2(i) = .98$$

 $\mathbf{w}_{2}(1) = 0.1/.98 = 0.102$

$$\mathbf{w}_2(2) = 0.163$$

 $\mathbf{w}_2(3) = 0.163$

$$\mathbf{w}_2(4) = 0.163$$

 $\mathbf{w}_2(5) = 0.102$

$$\mathbf{w}_2(6) = 0.102$$

$$\mathbf{w}_2(7) = 0.102$$

$$\mathbf{w}_2(8) = 0.102$$

t = 2:

$$w_2 = \{0.102, 0.163, 0.163, 0.163, 0.102, 0.102, 0.102, 0.102\}$$

$$S_2 = \{x_1, x_2, x_2, x_3, x_4, x_4, x_7, x_8\}$$

Run classifier on S₂ to get h₂

Calculate error:

$$e_2 = \mathop{\tilde{a}}_{j=1}^{N} \mathbf{w}_t(j) \mathcal{O}(y_j^{-1} h_t(\mathbf{x}_j))$$
$$= (.102) \cdot 4 = 0.408$$

Calculate α 's:

$$\mathcal{A}_2 = \frac{1}{2} \ln \left(\frac{\mathcal{X}_1 - \mathcal{C}_t}{\mathcal{C}_t} \right) = .186$$

Calculate w's:

$$\mathbf{w}_{t+1}(i) = \frac{\mathbf{w}_{t}(i) \exp(-\partial_{t} y_{i} h_{t}(\mathbf{x}_{i}))}{Z_{t}}$$

$$\hat{\mathbf{w}}_3(1) = (.102) \exp(-.186(1)(1)) = 0.08$$

 $\hat{\mathbf{w}}_3(2) = (.163) \exp(-.186(1)(1)) = 0.13$

$$\hat{\mathbf{w}}_3(2) = (.163) \exp(-.186(1)(1)) = 0.135$$

$$\hat{\mathbf{w}}_3(3) = (.163) \exp(-.186(1)(1)) = 0.133$$

$$\hat{\mathbf{w}}_3(3) = (.163) \exp(-.186(1)(1)) = 0.135$$

$$\hat{\mathbf{w}}_3(4) = (.163) \exp(-.186(1)(1)) = 0.135$$

$$\hat{\mathbf{w}}_3(3) = (.163) \exp(-.186(1)(1)) = 0.135$$

 $\hat{\mathbf{w}}_3(4) = (.163) \exp(-.186(1)(1)) = 0.135$

$$\hat{\mathbf{w}}_3(3) = (.163) \exp(-.186(1)(1)) = 0.135$$

 $\hat{\mathbf{w}}_3(4) = (.163) \exp(-.186(1)(1)) = 0.135$

$$\hat{\mathbf{w}}_3(5) = (.102) \exp(-.186(-1)(1)) = 0.122$$

 $\hat{\mathbf{w}}_3(6) = (.102) \exp(-.186(-1)(1)) = 0.122$

$$\hat{\mathbf{w}}_3(6) = (.102) \exp(-.186(-1)(1)) = 0.122$$

 $\hat{\mathbf{w}}_3(7) = (.102) \exp(-.186(-1)(1)) = 0.122$

 $\hat{\mathbf{w}}_{2}(8) = (.102) \exp(-.186(-1)(1)) = 0.122$

$$Z_2 = \sum \hat{\mathbf{w}}_2(i) = .973$$

$$\mathbf{w}_3(1) = 0.08 / .973 = 0.082$$

 $\mathbf{w}_3(2) = 0.139$

$$\mathbf{w}_3(2) = 0.139$$

 $\mathbf{w}_3(3) = 0.139$

$$\mathbf{w}_3(4) = 0.139$$

$$\mathbf{w}_3(5) = 0.125$$

 $\mathbf{w}_3(6) = 0.125$

$$\mathbf{w}_3(7) = 0.125$$

$$\mathbf{w}_3(8) = 0.125$$

t =3:

$$W_3 = \{0.082, 0.139, 0.139, 0.139, 0.125, 0.125, 0.125, 0.125\}$$

$$S_3 = \{x_2, x_3, x_3, x_3, x_5, x_6, x_7, x_8\}$$

Run classifier on S₃ to get h₃

Calculate error:

$$e_3 = \bigotimes_{j=1}^{N} \mathbf{w}_t(i) \, d(y_j^{-1} \, h_t(\mathbf{x}_j))$$
$$= (.139) + (.125) = 0.264$$

• Calculate α 's:

$$a_3 = \frac{1}{2} \ln \frac{\partial (1 - e_t)}{\partial e_t} = .512$$

Ensemble classifier:

$$H(\mathbf{x}) = \operatorname{sgn} \sum_{t=1}^{K} \alpha_{t} h_{t}(\mathbf{x})$$

$$H(\mathbf{x}) = \operatorname{sgn} \sum_{t=1}^{\infty} \alpha_t n_t(\mathbf{x})$$
$$= \operatorname{sgn} \left(.255 \times h_1(\mathbf{x}) + .186 \times h_2(\mathbf{x}) + .512 \times h_3(\mathbf{x})\right)$$

Example	Actual class	h_1	h ₂	h ₃
\mathbf{x}_1	1	1	1	1
X ₂	1	-1	1	1
X ₃	1	-1	1	-1
\mathbf{x}_4	1	1	1	1
x ₅	-1	-1	1	-1
x ₆	-1	-1	1	-1
x ₇	-1	1	1	1
x ₈	-1	-1	1	-1

Recall the training set:

$$S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8, \}$$

where $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ are class +1 $\{\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\}$ are class -1

What is the accuracy of *H* on the training data?

$$H(\mathbf{x}) = \operatorname{sgn} \stackrel{T}{\underset{t=1}{\overset{T}{\bigcirc}}} \partial_t h_t(\mathbf{x})$$
$$= \operatorname{sgn} \left(.255 \stackrel{f}{\longrightarrow} h_1(\mathbf{x}) + .186 \stackrel{f}{\longrightarrow} h_2(\mathbf{x}) + .512 \stackrel{f}{\longrightarrow} h_3(\mathbf{x})\right)$$

Boosting Example

```
In [36]: from sklearn.ensemble import AdaBoostClassifier
In [37]: ada clf = AdaBoostClassifier
                                      base estimator=DecisionTreeClassifier(max depth=1),
                                      n estimators=200, algorithm='SAMME.R',
                                      learning rate=0.5)
In [38]: ada clf.fit(X train, y train)
Out[38]: AdaBoostClassifier(base estimator=DecisionTreeClassifier(max depth=1),
                            learning rate=0.5, n estimators=200)
In [39]:
         from sklearn.metrics import accuracy score
         accuracy_score(ada_clf.predict(X_val), y_val)
In [40]:
Out[40]: 0.8196969696969697
```

Summary of ensemble learning methods:

Methods	Features	Data	Weights
Voting	All features	All data	same
Bagging	All features	Bootstrap sampling	same
Random Forest	Subspace sampling	Bootstrap sampling	same
Boosting	All features	Bootstrap sampling	Miss-classified instances have high weights

Boosting