DATA MINING

PATTERN AND ASSOCIATION MINING 1

OVERVIEW

Brief introduction to sets

Pattern-mining basics

Apriori algorithm

INTRODUCTION TO SETS

SETS

"A set is a gathering together into a whole of definite, distinct objects of our perception (Anschauung) or of our thought—which are called elements of the set."

—Georg Cantor 1895

SETS

"A set is a well-defined collection of distinct objects, considered as an object in its own right."

—Wikipedia 2017

SETS-EXAMPLES

$$A = \{3, 1, 5\}$$

$$A = \{3, 1, 5\}$$

 $IAI = 3$

•
$$\emptyset = \{\}$$

$$|\emptyset| = 0$$

- $\emptyset \equiv \{\}$ $|\emptyset| = 0$
- $N = \{0, 1, 2, ...\}$ $|N| = \infty$

- $\emptyset \equiv \{\}$ $|\emptyset| = 0$
- $N = \{0, 1, 2, ...\}$ $|N| = \infty$
- R ≡ { real numbers}IRI = ∞

- $\emptyset \equiv \{\}$ $|\emptyset| = 0$
- $N = \{0, 1, 2, ...\}$ $|N| = \infty$
- R = { real numbers}IRI = ∞
- IRI > INI

$$\mathbf{R} = \frac{-1}{1} \cdot \frac{0}{1} \cdot \frac{1}{2} \cdot \frac{3}{1}$$
 R_{1-2}

- **R** = { real numbers}
- $R_{1-2} = \{ x \in \mathbf{R} \mid 1 < x < 2 \}$
- There are elements in R that are NOT part of R₁₋₂

$$\mathbf{R} = \frac{-1}{1} \cdot \frac{0}{1} \cdot \frac{1}{2} \cdot \frac{3}{1}$$
 R_{1-2}

- **R** = { real numbers}
- $R_{1-2} = \{ x \in \mathbf{R} \mid 1 < x < 2 \}$
- There are elements in \mathbf{R} that are \mathbf{NOT} part of \mathbf{R}_{1-2}
- But $IR_{1-2}I = IRI$

SUBSET-SUPERSET

Subset

- A and B are sets
- All elements of A are also elements of B
- A ⊆ B

Superset

- If A is a subset of B, B is a superset of A
- B ⊇ A

SUBSET-SUPERSET

Proper Subset-superset

- A and B are sets
- All elements of A are also elements of B
- There is at least one element in B not in A
- $A \subseteq B$
- B ⊋ A

SUBSET-PROPER SUBSET

- If A is a subset of B, A and B may or may not be equal
- If A is a proper subset of B, A definitely does not equal B
- Sometimes ⊂ and ⊃ instead of ⊊ and ⊋
 (analogy to {<, >, ≤, ≥})

UNION

• "The union of A and B is the set of all things that are members of either A or B"

UNION

- $A \cup B = B \cup A$
- $A \cup (B \cup C) = (A \cup B) \cup C$
- $A \subseteq (A \cup B)$
- $A \cup A = A$
- $A \cup \emptyset = A$
- $A \subseteq B \Leftrightarrow A \cup B = B$

(From Wikipedia)

INTERSECTION

- All things that are members of both A and B
- If the intersection is null, the sets are called disjoint
- A ∩ B
- $\{1, 2\} \cup \{5, 2\} = \{2\}$

https://xkcd.com/747/

INTERSECTION

- $A \cap B = B \cap A$
- $A \cap (B \cap C) = (A \cap B) \cap C$
- $A \cap B \subseteq A$
- $A \cap A = A$
- A ∩ Ø = Ø
- $A \subseteq B \Leftrightarrow A \cap B = A$

(From Wikipedia)

PATTERN-MINING BASICS

FREQUENT-PATTERN MINING

What does it mean?

EXAMPLE: MARKET BASKET ANALYSIS

EXAMPLE: OVERWATCH TEAM COMPOSITION

SCIENCE

```
H (351) KSALKSAMAHDPISPVLSDPHLDAVDQRLLSVLATVKQCTDQFGMDTVLVEDRMPLSHL
C (351) KSALKSAMAHDPISPVLSEPHLDAVDQRLLSVLATVKQCTDQFGADTVLVEDRMPLSHL
M (351) KSALKSAMAHDPISPVLSDPHLDTVDQRLLNVLATIKQCTDQFGADTVLVEDRMPLSHL
R (351) KSALKSAMAHDPIAPVLSDPHLDTVDQRLLNVLATIKQCTDQFGMDTVLVEDRMPLSHL
F (351) SSAMRQAMAFDPIHPVLAEPHLAALDRRLSAVAATVKQCMETHGPDNTLIEDRMNLPHP
D (351) SSAMRQATAHDPAFPVLTCAHLTALDRRLNGVLATVRQCMETQGSENTLIEDRMNLPHP
Ci (401) TQLLEAAMANDPISPVLHPSHLNAVDVRLPTLIETMEKCIKDKTYNKVIIEKWNGL
```

- What DNA mutations are associated with a given condition?
- What DNA mutations occur together?
- Preserved DNA sequences through evolution
- Common amino acid sequences in proteins?
- Specific weather conditions previous to certain events?
- Seismic history for earthquake prediction?

FREQUENT-PATTERN MINING

Itemset

Set of items that occur together (e.g., computer **and** camera) Today

Subsequece

Sequential set (e.g., computer **then** camera) Later in the course

ITEMSET

- An item set with k items is a k-itemset
 E.g., the itemset {boat, circle, acid} is a 3-itemset
- Occurrence frequency

Number of times an itemset is in the data set

Other names: frequency, support count, count, absolute support

ASSOCIATION RULES

A way to represent frequent patterns (A, B)

Support

Percentage of tuples in the data set with both A and B, (A U B)

Also: relative support

Confidence

Of the tuples that have A, percentage that also have B

ASSOCIATION RULES

Notation

A \Rightarrow B [support = x%, confidence = y%] computer \Rightarrow antivirus software [support = 2%, confidence = 60%]

Threshold values for support and confidence
 Association rules that satisfy both: strong

ASSOCIATION RULES—CONFIDENCE

Of the tuples that have A, percentage that also have B, in other words probability of B given A:

$$confidence\left(A\Rightarrow B\right)=P\left(B\mid A\right)=\frac{support\left(A\cup B\right)}{support\left(A\right)}=\frac{support\;count\left(A\cup B\right)}{support\;count\left(A\right)}$$

ASSOCIATION RULES—CONFIDENCE

Of the tuples that have A, percentage that also have B, in other words probability of B given A:

$$confidence\left(A\Rightarrow B\right)=P\left(B\mid A\right)=\frac{support\left(A\cup B\right)}{support\left(A\right)}=\frac{support\;count\left(A\cup B\right)}{support\;count\left(A\right)}$$

Beware of loose notation

ASSOCIATION RULES

Notice!

 $A \Rightarrow B \neq B \Rightarrow A$

Client shopping list

Eyes, wand, spider leg

Shield, eyes, wand

Wand, robe, staff

Spider leg, green potion

Wand, truffles

Old wine, wand, eyes

ASSOCIATION RULES—EXERCISE

Find support and confidence

Support: % with set (A ∪ B)

Confidence: % of A with also B

Bread ⇒ Milk

```
[support = ?, confidence = ?]
```

Newspaper ⇒ Tomato

```
[support = ?, confidence = ?]
```

Client shopping list

- Bread, milk, butter, newspaper
- Bread, milk
- Butter, newspaper, asparagus
- Bread, milk, tortellini, batteries
- Tortellini, asparagus, mozzarella
- Bread, milk, butter
- Newspaper, asparagus, tomato
- Newspaper, tomato
- Asparagus, batteries, cigarettes
- Bread, milk

ASSOCIATION RULES—EXERCISE

Find support and confidence

Support: % with set (A ∪ B)

Confidence: % of A with B

Bread ⇒ Milk

[support = 50%, confidence = 100%]

Newspaper ⇒ Tomato

[support = 20%, confidence = 50%]

Client shopping list

- Bread, milk, butter, newspaper
- Bread, milk
- Butter, newspaper, asparagus
- Bread, milk, tortellini, batteries
- Tortellini, asparagus, mozzarella
- Bread, milk, butter
- Newspaper, asparagus, tomato
- Newspaper, tomato
- Asparagus, batteries, cigarettes
- Bread, milk

TWO-STEP ASSOCIATION-RULE MINING

Because

$$confidence\left(A\Rightarrow B\right)=P\left(B\mid A\right)=\frac{support\left(A\cup B\right)}{support\left(A\right)}=\frac{support\;count\left(A\cup B\right)}{support\;count\left(A\right)}$$

we **only need** to know the **support** of A and A \cup B to test if an association rule is strong.

TWO-STEP ASSOCIATION-RULE MINING

- 1. Find all frequent itemsets
- 2. Using support values, return strong association rules

TWO-STEP ASSOCIATION-RULE MINING

1. Find all frequent itemsets

Problem:

If an itemset is frequent, all its subsets are frequent!

TWO-STEP ASSOCIATION-RULE MINING

Example:

The 100-itemset {a1, a2, ..., a100} contains:

{a1}, ..., {a100}, {a1, a2}, {a1, a3}, ..., {a1, a100}, {a2, a3}, etc.

Total:

$$\begin{pmatrix} 100 \\ 1 \end{pmatrix} + \begin{pmatrix} 100 \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} 100 \\ 100 \end{pmatrix} = 2^{100} - 1 \approx 1.27 \times 10^{30}$$

TWO-STEP ASSOCIATION-RULE MINING

TOO MANY

Example:

The 100-itemset {a1, a2, ..., a100} contains:

{a1}, ..., {a100}, {a1, a2}, {a1, a3}, ..., {a1, a100}, {a2, a3}, etc.

Total:

$$\begin{pmatrix} 100 \\ 1 \end{pmatrix} + \begin{pmatrix} 100 \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} 100 \\ 100 \end{pmatrix} = 2^{100} - 1 \approx 1.27 \times 10^{30}$$

Closed itemset

"A" is closed in data set S if there is no proper superitemset B such that B has the same support as A

Maximal frequent itemset

"A" is frequent and there is no proper super-itemset B that is also frequent in S

CLOSED/MAXIMAL ITEMSET—EXERCISE

Itemset and support. Threshold 30%

- {A, B} 50%
- {A, B, C} 40%
- {A, B, C, D} 40%
- {A, B, C, D, E} 35%
- {A, B, C, D, E, F} 29%
- *(Consider no other itemsets)

- Closed itemset
 No proper super-itemset that
 has the same support
- Maximal frequent itemset
 No proper super-itemset
 that is also frequent

CLOSED/MAXIMAL ITEMSET—EXERCISE

Itemset and support. Threshold 30%

• {A, B} 50%	Closed, not maximal
--------------	---------------------

• {A, B, C} 40% Not closed, not maximal

• {A, B, C, D} 40%———Closed, not maximal

• {A, B, C, D, E} 35% Closed, maximal

• {A, B, C, D, E, F} 29%—Not frequent!

^{*(}Consider no other itemsets)

Note there can be more than one maximal itemset!

- {A, B} 50% Maximal sets
- {A, B, C} 12%
- {B, C, D} 40%
- {B, C, D, E} 25%

Are these itemsets closed?

- {Bread, milk}
- {Bread, butter}

Client shopping list

- Bread, milk, butter, newspaper
- Bread, milk
- Butter, newspaper, asparagus
- Bread, milk, tortellini, batteries
- Tortellini, asparagus, mozzarella
- Bread, milk, butter
- Newspaper, asparagus, tomato
- Newspaper, tomato
- Asparagus, batteries, cigarettes
- Bread, milk

Are these itemsets closed?

• {Bread, milk}

Yes

• {Bread, butter}

No

Client shopping list

- Bread, milk, butter, newspaper
- Bread, milk
- Butter, newspaper, asparagus
- Bread, milk, tortellini, batteries
- Tortellini, asparagus, mozzarella
- Bread, milk, butter
- Newspaper, asparagus, tomato
- Newspaper, tomato
- Asparagus, batteries, cigarettes
- Bread, milk

Are these itemsets closed?

• {Bread, milk}

Yes

{Bread, butter}No {Bread, butter, milk}

Client shopping list

- Bread, milk, butter, newspaper
- Bread, milk
- Butter, newspaper, asparagus
- Bread, milk, tortellini, batteries
- Tortellini, asparagus, mozzarella
- Bread, milk, butter
- Newspaper, asparagus, tomato
- Newspaper, tomato
- Asparagus, batteries, cigarettes
- Bread, milk

APRIORI ALGORITHM

APRIORI

A priori

"Relating to or denoting reasoning or knowledge which proceeds from theoretical deduction rather than from observation or experience."

—Google

APRIORI

Goal

To obtain all frequent itemsets

Apriori property

All non-empty subsets of a frequent itemset are also frequent

Pruning principle

If an itemset contains a subset that is not frequent it can be discarded

APRIORI—ALGORITHM IDEA

- Find frequent 1-itemsets
- Generate k-candidates using (only) frequent (k-1)-itemsets
- Test frequency of candidates
- Terminate if no more candidates or all candidates are infrequent

APRIORI—CANDIDATE GENERATION

Two-step process

- Join
- Prune

APRIORI—JOIN STEP

- Input: frequent (k-1)-itemsets: L_{k-1}
- Elements in each itemset are ordered
- Itemsets in L_{k-1} are combined if their first k-2 elements are the same. Only the last may differ!
- Example

```
L_3 = \{abc, abd, acd, ace, bcd\}

abc \cup abd \Rightarrow abcd

acd \cup ace \Rightarrow acde
```

JOIN STEP-NOTE

- Elements in each itemset are ordered
- You can choose how to order your itemset elements as long as you are consistent. This won't affect the results!

APRIORI—PRUNE STEP

- Some candidates can be discarded before testing!
- If any subset C_i is not frequent $(C_i \not\in L_{k-1})$ the candidate is **not** frequent, and is discarded

APRIORI—PRUNE STEP

Example (continues)

- $L_3 = \{abc, abd, acd, ace, bcd\}$
- Join returns two candidates: $C_1 = abcd$, $C_2 = acde$
- C₁, k-1 subset:
 abc, abd, acd, bcd
- C₂, k-1 subset:
 acd, ace, ade, cde
- C₂ is pruned!

TID	Items
10	A, C, D
20	В, С
30	A, B, C, E
40	B, E

Let us apply Apriori to this data set, containing a list of items for each transaction ID.

1. Scan for frequent 1-itemsets

TID	Items	C ₁	Support
10	A, C, D	{A }	2
20	В, С	 {B}	3
30	A, B, C, E	{C}	3
40	B, E	{ D }	1
40	D, L	{E}	2

2. Discard non frequent candidates: we have L₁

C ₁	Support	 L ₁
{A}	2	{A}
{B}	3	{B}
{C}	3	{C}
{D}	1	{E}
{E}	2	

3. Join step to produce k = 2 candidates

	C_2
L ₁	{A, B}
{A}	{A, C}
{B}	{A, E}
{C}	{B, C}
{E}	{B, E}
	{C, E}

4. Pruning (trivial for k = 2)

C_2
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

C_2	Subset	In L ₁ ?
{A, B}	{A}	yes
	{B}	yes
{A, C}	{A}	yes
	{C}	yes
{A, E}	{A}	yes
	{E}	yes
{B, C}	{B}	yes
	{C}	yes
{B, E}	{B}	yes
	{E}	yes
{C, E}	{C}	yes
	{E}	yes

5. Scan and discard non-frequent candidates: we have L₂

C ₂	Support	L_2	Support
{A, B}	1	 {A, C}	2
{A, C}	2	{B, C}	2
{A, E}	1	{B, E}	2
{B, C}	2	(=, =,	_
{B, E}	2		
{C, E}	1		

6. Join step to produce k = 3 candidates

L ₂	Support	C ₃
{A, C}	2	{B, C, E}
{B, C}	2	>
{B, E}	2	

7. Prune

C ₃	
{B, C, E}	

C ₃	Subset	In L ₂ ?
{B, C, E}	{B, C}	yes
	{B, E}	yes
	{C, E}	no

8. All C₃ candidates have been rejected. End and return L₁, L₂

TID	Items	L ₂	L ₁
	A, C, D	{A, C}	{A}
20	В, С	{B, C}	{B}
30	A, B, C, E	{B, E}	{ C }
40	B, E		{E}

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate generation.

Input:

- D, a database of transactions;
- min_sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

```
(1)
         L_1 = \text{find\_frequent\_1-itemsets}(D);
       for (k = 2; L_{k-1} \neq \phi; k++) {
(2)
(3) C_k = \operatorname{apriori\_gen}(L_{k-1});
           for each transaction t \in D { // scan D for counts
(4)
                 C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
(5)
                 for each candidate c \in C_t
(6)
(7)
                      c.count++;
(8)
           L_k = \{c \in C_k | c.count \ge min\_sup\}
(9)
(10)
(11)
         return L = \bigcup_k L_k;
```

```
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
        for each itemset l_1 \in L_{k-1}
(1)
(2)
           for each itemset l_2 \in L_{k-1}
                if (l_1[1] = l_2[1]) \land (l_1[2] = l_2[2]) \land ... \land (l_1[k-2] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1]) then {
(3)
(4)
                     c = l_1 \times l_2; // join step: generate candidates
(5)
                     if has_infrequent_subset(c, L_{k-1}) then
(6)
                         delete c; // prune step: remove unfruitful candidate
(7)
                     else add c to C_k;
(8)
(9)
        return C_k;
procedure has_infrequent_subset(c: candidate k-itemset;
           L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
        for each (k-1)-subset s of c
(1)
(2)
           if s \notin L_{k-1} then
(3)
                return TRUE;
(4)
        return FALSE;
```

ASSOCIATION RULES FROM FREQ. ITEMSETS

Remember:
$$confidence(A \Rightarrow B) = \frac{support(A \cup B)}{support(A)}$$

- For each frequent itemset l, generate all non-empty subsets s_i
- Generate rules: $s_i \Rightarrow l s_i$ (note $l - s_i = l \cap s_i$, e.g., ABC - A = BC = ABC \cap A)
- Because $s_i \cup (l \cap s_i) = l$, return the rule if $\frac{support\left(l\right)}{support\left(s_i\right)} > threshold$

BEYOND APRIORI

IMPROVING APRIORI

Sampling

Use a subset of the complete data

Faster, but may miss some frequent itemsets (tradeoff)

Use lower accuracy threshold to compensate!

Do you know what a **hash** is?

Idea:

- When calculating counts for k-candidates, make all (k+1)itemsets
 for each itemset
- Classify new (k+1)-itemsets with hash and increase count of each bucket every time one instance is added

Example

Currently counting support for k = 1

Support threshold: 2

TID	Items	
01	{B, D, E}	
02	{A, C}	
03	{B, D}	

Hash class	0	1	2
Count	2	2	1
	{B, D}	{B, E}	{A, C}
	{B, D}		

Hash class	0	1	2
Count	2	2	1
	{B, D}	{B, E}	{A, C}
	{B, D}	{B, E} {D, E}	
	•		

Conservative approach!

Why not each itemset its own bucket?

Hash class	0	1	2
Count	2	2	1
	{B, D}	{B, E}	{A, C}
	{B, D}	{D, E}	

IMPROVING APRIORI

Reduce data set in future iterations

Any itemset that does not contain any frequent k-itemset will **not** contain any (k+1)-itemsets!

BEYOND APRIORI

Other improvements and alternatives in the book

(Suggested: Mining frequent itemsets without candidate generation)

Read section 6.2.

THANKS FOR LISTENING!