Descriptive_analysis

December 17, 2018

1 Descriptive analysis

Here is a little insight in to how the dataset looks

Most of this code is taken from:

https://www.kaggle.com/gloriahristova/a-walkthrough-eda-vizualizations-unigram-model/notebook

1.0.1 Imports

```
In [1]: # Data processing
        import pandas as pd
        import json
        from collections import Counter
        from itertools import chain
        from sklearn.feature_extraction.text import TfidfVectorizer
        import numpy as np
        import re
        # Data vizualizations
        import random
        import plotly
        from plotly import tools
        from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
        init_notebook_mode(connected=True)
        import plotly.offline as offline
        import plotly.graph_objs as go
```

1.0.2 Reading in the data file

```
indian 13162 [black pepper, shallots, cornflour, cayenne pe...

In [3]: print("The training data consists of {} recipes".format(len(train_data)))

The training data consists of 39774 recipes
```

A function for producing random colors for plots:

1.0.3 Number of recipes in each cuisine

```
In [5]: trace = go.Table(
                        header=dict(values=['Cuisine','Number of recipes'],
                        fill = dict(color=['#EABEBO']),
                        align = ['left'] * 5),
                        cells=dict(values=[train_data.cuisine.value_counts().index,train_data.
                       align = ['left'] * 5))
        layout = go.Layout(title='Number of recipes in each cuisine category',
                           titlefont = dict(size = 20),
                           width=500, height=650,
                           paper_bgcolor = 'rgba(0,0,0,0)',
                           plot_bgcolor = 'rgba(0,0,0,0)',
                           autosize = False,
                           margin=dict(1=30,r=30,b=1,t=50,pad=1),
        data = [trace]
        fig = dict(data=data, layout=layout)
        iplot(fig)
```

1.1 Percentage of each cuisine

```
percent = (i/sum(train_data.cuisine.value_counts()))*100
   percent = "%.2f" % percent
   percent = str(percent + '%')
    labelpercents.append(percent)
trace = go.Bar(
            x=train data.cuisine.value counts().values[::-1],
            y= [i for i in train_data.cuisine.value_counts().index][::-1],
            text =labelpercents[::-1], textposition = 'outside',
            orientation = 'h',marker = dict(color = random_colours(20)))
layout = go.Layout(title='Number of recipes in each cuisine category',
                   titlefont = dict(size = 25),
                   width=1000, height=450,
                   plot_bgcolor = 'rgba(0,0,0,0)',
                   paper_bgcolor = 'rgba(255, 255, 255, 0.88)',
                   margin=dict(1=75,r=110,b=50,t=60),
data = [trace]
fig = dict(data=data, layout=layout)
iplot(fig, filename='horizontal-bar')
```

So the italian and the mexican cuisine represents around 36% of the data and the bottom 10 cuisines represents around 18% of the training data. We can expect from our predictors that when it is uncertain it might predict italian or mexican by "default", since it will be more right to guess there than other cuisines.

1.1.1 Distribution of the Recipe Length

So the recipes has a mean around 10 ingridients and there are very few recipes which contains ingridients more than 30 ingridients.

1.2 Abnormal recipes

Some recipes have very short recipes with only 1 or two ingridients. There are 22 recipes with only one ingridient:

Explore the ingredients in the shortest recipes in our training set:

	cuisine	id	ingredients
940	japanese	4734	[sushi rice]
2088	vietnamese	7833	[dried rice noodles]
6787	indian	36818	<pre>[plain low-fat yogurt]</pre>
7011	indian	19772	[unsalted butter]
8181	japanese	16116	[udon]
8852	thai	29738	[sticky rice]
8990	indian	41124	[butter]
10506	mexican	32631	[corn tortillas]
13178	thai	29570	[grained]
17804	southern_us	29849	[lemonade concentrate]
18136	thai	39186	[jasmine rice]
18324	indian	14335	[unsalted butter]
21008	italian	39221	[cherry tomatoes]
22119	french	41135	[butter]
22387	indian	36874	[cumin seed]
23512	french	35028	[haricots verts]
26887	mexican	18593	[vegetable oil]
29294	spanish	7460	[spanish chorizo]
30636	spanish	32772	[sweetened condensed milk]
32105	japanese	12805	[water]
34531	greek	10816	[phyllo]
37220	indian	27192	[unsalted butter]

1.3 Most common ingridients

Lets have a look at the most common ingridients.

```
countingr = Counter()
for ingr in allingredients:
     countingr[ingr] += 1
# Extract the first 20 most common ingredients in order to vizualize them for better u
mostcommon = countingr.most_common(20)
mostcommoningr = [i[0] for i in mostcommon]
mostcommoningr_count = [i[1] for i in mostcommon]
trace = go.Bar(
            x=mostcommoningr_count[::-1],
            y= mostcommoningr[::-1],
            orientation = 'h',marker = dict(color = random_colours(20),
))
layout = go.Layout(
    xaxis = dict(title= 'Number of occurences in all recipes (training sample)', ),
    yaxis = dict(title='Ingredient',),
    title= '20 Most Common Ingredients', titlefont = dict(size = 20),
    margin=dict(l=150,r=10,b=60,t=60,pad=5),
    width=800, height=500,
)
data = [trace]
fig = go.Figure(data=data, layout=layout)
iplot(fig, filename='horizontal-bar')
```

We can tell that salt is the most common ingridient by far. We can also assume that salt isn't very specific for a certain cuisine, so it will probably not be a good predicator.