Selected Solutions for Assignment 6

Machine Learning, Summer term 2014, Ulrike von Luxburg

Exercise 4.

In order to show that a function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is indeed a kernel function we have to show two things:

- 1. K is symmetric, i.e. K(x,y) = K(y,x) for all $x,y \in \mathcal{X}$.
- 2. K is positive definite, i.e. for all $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}, x_1, \ldots, x_n \in \mathcal{X}$ we have

$$\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) \ge 0.$$

(or in matrix notation: for kernel matrix $\mathbf{K} := [K(x_i, x_j)]_{ij}$ and any vector $\mathbf{c} \in \mathbb{R}^n$: $\mathbf{c}^T \mathbf{K} \mathbf{c} \geq 0$)

- $K = \alpha K_1$ for $\alpha > 0$
 - 1. $K(x,y) = \alpha K_1(x,y) = \alpha K_1(y,x) = K(y,x)$

2.

$$\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) = \sum_{i,j=1}^{n} c_i c_j \alpha K_1(x_i, x_j) = \underbrace{\alpha}_{>0} \underbrace{\sum_{i,j=1}^{n} c_i c_j K_1(x_i, x_j)}_{>0} \ge 0.$$

(or in matrix notation:
$$\mathbf{c}^T \mathbf{K} \mathbf{c} = \mathbf{c}^T (\alpha \mathbf{K}_1) \mathbf{c} = \underbrace{\alpha}_{>0} \underbrace{\mathbf{c}^T \mathbf{K}_1 \mathbf{c}}_{>0} \ge 0$$
)

- $K = K_1 + K_2$
 - 1. $K(x,y) = K_1(x,y) + K_2(x,y) = K_1(y,x) + K_2(y,x) = K(y,x)$

2.

$$\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) = \sum_{i,j=1}^{n} c_i c_j \left[K_1(x_i, x_j) + K_2(x_i, x_j) \right]$$

$$= \underbrace{\sum_{i,j=1}^{n} c_i c_j K_1(x_i, x_j)}_{>0} + \underbrace{\sum_{i,j=1}^{n} c_i c_j K_2(x_i, x_j)}_{>0} \ge 0.$$

(or in matrix notation:
$$\mathbf{c}^T \mathbf{K} \mathbf{c} = \mathbf{c}^T (\mathbf{K}_1 + \mathbf{K}_2) \mathbf{c} = \underbrace{\mathbf{c}^T \mathbf{K}_1 \mathbf{c}}_{>0} + \underbrace{\mathbf{c}^T \mathbf{K}_2 \mathbf{c}}_{>0} \ge 0$$
)

• $K = K_1 - K_2$

K is not necessarily a valid kernel function: If $\mathcal{X} = \mathbb{R}$, $K_1 = 0$ (i.e. K(x,y) = 0 for all $x, y \in \mathbb{R}$) and $K_2(x,y) = xy$ (think about that K_2 is indeed a valid kernel!), we have

$$K(x,x) = -K_2(x,x) = -x^2 < 0$$
 $\forall x \neq 0,$

which shows that K is not necessarily positive definite.

(another example: set $K_2 := 2K_1$ and get that $K = -K_1$ is no kernel for $K_1 \neq 0$)

- $K(x,y) = K_1(x,y)K_2(x,y)$
 - 1. $K(x,y) = K_1(x,y)K_2(x,y) = K_1(y,x)K_2(y,x) = K(y,x)$
 - 2. Showing that K is indeed positive definite is a bit more subtle than in the previous cases.

Let $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in \mathcal{X}$. Set

$$\mathbf{K}_1 = [K_1(x_i, x_j)]_{i,j=1}^n$$
 and $\mathbf{K}_2 = [K_2(x_i, x_j)]_{i,j=1}^n$.

Since K_1 and K_2 are kernel functions, the matrices \mathbf{K}_1 and \mathbf{K}_2 are symmetric positive semi-definite and hence - as a consequence of the spectral theorem - can be written as

$$\mathbf{K}_1 = A^T A \qquad \text{and} \qquad \mathbf{K}_2 = B^T B$$

for some real $n \times n$ -matrices A and B. Hence, we have

$$\begin{split} \sum_{i,j=1}^{n} c_{i}c_{j}K(x_{i},x_{j}) &= \sum_{i,j=1}^{n} c_{i}c_{j}K_{1}(x_{i},x_{j})K_{2}(x_{i},x_{j}) \\ &= \sum_{i,j=1}^{n} c_{i}c_{j}\widetilde{K}_{ij}^{1}\widetilde{K}_{ij}^{2} \\ &= \sum_{i,j=1}^{n} c_{i}c_{j} \left(A^{T}A\right)_{ij} \left(B^{T}B\right)_{ij} \\ &= \sum_{i,j=1}^{n} c_{i}c_{j} \left(\sum_{k=1}^{n} A_{ik}^{T}A_{kj}\right) \left(\sum_{l=1}^{n} B_{il}^{T}B_{lj}\right) \\ &= \sum_{i,j,k,l=1}^{n} c_{i}c_{j}A_{ki}A_{kj}B_{li}B_{lj} \\ &= \sum_{k,l=1}^{n} \sum_{i=1}^{n} c_{i}A_{ki}B_{li} \sum_{j=1}^{n} c_{j}A_{kj}B_{lj} \\ &= \sum_{k,l=1}^{n} \underbrace{\left(\sum_{i=1}^{n} c_{i}A_{ki}B_{li}\right)^{2}}_{>0} \ge 0. \end{split}$$

• $K(x,y) = f(x)K_1(x,y)f(y)$ for any function $f: \mathcal{X} \to \mathbb{R}$

1.
$$K(x,y) = f(x)K_1(x,y)f(y) = f(y)K_1(y,x)f(x) = K(y,x)$$

2.

$$\sum_{i,j=1}^{n} c_{i}c_{j}K(x_{i},x_{j}) = \sum_{i,j=1}^{n} c_{i}c_{j}f(x_{i})K_{1}(x_{i},x_{j})f(x_{j}) = \sum_{i,j=1}^{n} \underbrace{c_{i}f(x_{i})}_{\tilde{c}_{i}}\underbrace{c_{j}f(x_{j})}_{\tilde{c}_{i}}K_{1}(x_{i},x_{j}) \geq 0.$$

Remark: Note that we do not have to show that $f(x)K_1(x,y)f(y) \geq 0$ for all $x,y \in \mathcal{X}$, which indeed would not hold. Neither we have to show that $\sum_{i,j=1}^n c_i c_j f(x) K_1(x_i,x_j) f(y) \geq 0$, which would also not hold. Just plugin the definition $K(x,y) := f(x)K_1(x,y)f(y)$ into the definition of positive definiteness to get that we have to show that for all choices of $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{R}$, $x_1, \ldots x_n \in \mathcal{X}$ it holds that:

$$\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) = \sum_{i,j=1}^{n} c_i c_j f(x_i) K_1(x_i, x_j) f(x_j) \stackrel{!}{\geq} 0.$$

Let us for fun consider the following special case: Let $\mathcal{X} = \mathbb{R}$ and $K_1(x,y) = 1$ be a (quite trivial) kernel function. However, proving that it indeed is a kernel is not that trivial, since we

have to show that $\sum_{i,j=1}^{n} c_i c_j K_1(x_i,x_j) = \sum_{i,j=1}^{n} c_i c_j \stackrel{!}{\geq} 0$ for all choices of $c_1,\ldots,c_n \in \mathbb{R}$. One way to do this is by writing this double sum as

$$\sum_{i,j=1}^{n} c_i c_j = \sum_{i=1}^{n} c_i \sum_{j=1}^{n} c_j = s \cdot \sum_{i=1}^{n} c_i = s^2 \ge 0$$

Another way would be to see that the sum can be written in matrix notation as $\mathbf{c}^T \mathbf{1} \mathbf{1}^T \mathbf{c} = (\mathbf{1}^T \mathbf{c})^T (\mathbf{1}^T \mathbf{c}) = \|\mathbf{1}^T \mathbf{c}\|^2 \ge 0$. A third way is by noting that the $n \times n$ -all-ones-matrix $\mathbf{1} \mathbf{1}^T =: J$ has 0 as its onliest eigenvalue, thus, is positive definite, thus, $c^T J c \ge 0$ for all c. Indeed, $J = \mathbf{K}_1$ is the corresponding kernel matrix for any n points.

It is now a nice exercise to show explicitly for the special case K(x,y) = f(x)f(y) that it is indeed a kernel for any choice of f...