Topología Algebraica

Ejercicios para Entregar - Prácticas 4 y 5

Guido Arnone

Sobre los Ejercicios

Elegí el ejercicio (4) de la práctica 4 y los ejercicios (1) y (5) de la práctica 5.

Observación. Si notamos I : Top \rightarrow hTop al funtor que es la identidad en objetos y envía cada función continua a su clase de homotopía, para cada espacio topológico X tenemos un funtor al componer con hTop(X, -),

Concretamente, éste envía cada espacio Y a [X, Y] y cada función continua $f: Y \rightarrow Z$ a

$$[f]_*:[h]\in[X,Y]\mapsto[fh]\in[X,Z].$$

En particular, si f es una equivalencia homotópica entonces If es un isomorfismo y por lo tanto así lo es $[f]_*$.

Lema 1. Sea (X,A) un CW-par, $n \in \mathbb{N}$ y (Z,Y) un par topológico. Si $f:(X,A) \to (Z,Y)$ es una función continua de pares que satisface $f(X^{(n-1)} \cup A) \subset Y$ y $\pi_n(Z,Y) = 0$, entonces existe otra función continua $g: X \to Z$ tal que $g(X^{(n)} \cup A) \subset Y$ y $f \simeq g$ relativa a A.

Demostración. Tomemos una n-celda e de $X^{(n)}$ que no sea una celda de A, y sea $\xi:\mathbb{D}^n\to e$ su correspondiente función de adjunción. Como

$$f\xi(\partial \mathbb{D}^n) \subset f(X^{(n-1)}) \subset Y$$
,

la función $f\xi:\mathbb{D}^n\to Z$ representa a una clase de equivalencia de $\pi_n(Z,Y)$.

Al ser $\pi_n(Z,Y)=0$, existe una homotopía $H:\mathbb{D}^n\times I\to Z$ entre $f\xi$ y g relativa a $\partial\mathbb{D}^n$ con im $H_1\subset Y$. Puesto que la homotopía H es relativa al borde del disco, pasa al cociente por las identificaciones que hace ξ , y tenemos entonces $\tilde{H}:e\times I\to Z$ tal que

conmuta.

Esto en particular dice que

$$\operatorname{im} \tilde{H}_1 = \tilde{H}_1(e) = \tilde{H}_1 \xi(\mathbb{D}^n) = H_1(\mathbb{D}^n) \subset Y \tag{1}$$

y $f\xi=H_0=\tilde{H}_0\xi$. De aquí vemos que $\tilde{H}_0=f$, pues ξ es sobreyectiva, y como \tilde{H} es relativa a \dot{e} (ya que H es relativa a $\partial \mathbb{D}^n$) sabemos que $\tilde{H}_t|_{\dot{e}}=f|_{\dot{e}}$ para todo $t\in I$.

Esto nos dice que para cada n-celda e^n_β de $X^{(n)}$ que no es una celda de A, existe una homotopía $H^n_\beta:e^n_\beta\times I\to Z$ relativa a e^n_β que satisface

- $(H_{\beta}^{n})_{0} = f|_{e_{\beta}^{n}}$,
- $\operatorname{im}(H_{\beta}^n)_1 \subset Y$,
- $(H_{\beta}^n)_t|_{\dot{e}_{\beta}^n} = f|_{\dot{e}_{\beta}^n}$ para todo $t \in I$.

En virtud de que dos n-celdas distintas se intersecan a lo sumo en sus bordes y allí cada homotopía H^n_g coincide con f, por el lema de pegado está bien definida la función continua

$$H: X^{(n)} \cup A \times I \to Z$$

que cumple $H|_A \equiv f|_A$ y $H|_{e^n_\beta} \equiv H^n_\beta$ en cada n-celda e^n_β que no es una celda de A. Además, por construcción es $H_0 = f|_{X^{(n)} \cup A}$ y im $H_1 \subset Y$.

Finalmente, como la inclusión del subcomplejo $X^{(n)} \cup A \hookrightarrow X$ es una cofibración, existe una homotopía $\tilde{H}: X \times I \to Z$ que coincide con H en $X^{(n)} \cup A$ y satisface $\tilde{H}_0 = f$. En particular, es $\tilde{H}_1(X^{(n)} \cup A) = \operatorname{im} H_1 \subset Y$, así que basta tomar $g := \tilde{H}_1$.

Probamos ahora un caso particular del lema crucial,

Lema 2. Sea (X,A) un CW-par y (Z,Y) un par topológico tal que $\pi_n(Z,Y)=0$ para todo $n\geq 1$. Si $f:(X,A)\to (Z,Y)$ es una función continua de pares, entonces existe otra función continua $g:X\to Z$ tal que $g(X)\subset Y$ y $f\simeq g$ relativa a A.

Ejercicio 4. Probar que una equivalencia débil $f: Y \to Z$ induce biyecciones $[X, Y] \to [X, Z]$ para todo CW-complejo X.

Demostración. En primer lugar, notemos que f se factoriza a través de Mf,

donde la inclusión i es una cofibración y j es equivalencia homotópica. Esto a su vez da un diagrama en Set,

y como j es equivalencia homotópica, la función $[j]_*$ es biyectiva. Por lo tanto, $[f]_*$ es biyectiva sí y solo si $[i]_*$ lo es. Del mismo modo, f es una equivalencia débil si y sólo si lo es i.

Esto nos dice que sin pérdida de generalidad podemos probar el enunciado en el caso de $i: Y \to Z$ la inclusión de un subespacio Y en un espacio topológico Z.

Ahora, como por hipótesis i induce isomorfismos en los grupos de homotopía, de la suceción exacta larga de pares

$$\cdots \to \pi_n(Y,y) \xrightarrow{i_*} \pi_n(Z,y) \to \pi_n(Z,Y,y) \to \ldots$$

vemos que debe ser $\pi_n(Z, Y, y) = 0$ para todo $n \in N$ e $y \in Y$.

Por lo tanto, si $g: X \to Z$ es una función continua, es una función de pares de (X, \emptyset) a (Z, Y). Por el Lema 2, sabemos entonces que existe $h: X \to Z$ continua tal que $h \simeq g$ y $h(X) \subset Y$. En consecuencia, correstringiendo h a Y vemos que

$$[i]_*([h|^Y]) = [ih|^Y] = [h] = [g],$$

lo que prueba la sobreyectividad de i_{*}.

Ahora veamos la inyectividad. Sean h_0 , $h_1: X \to Y$ funciones continuas tales que $ih_0 \simeq ih_1$ y veamos que h_0 y h_1 son homotópicas. Por hipótesis, sabemos que existe una homotopía $H: ih_0 \simeq ih_1$, que puede ser vista como una función de pares de $(X \times I, X \times \partial I)$ a (Z, Y), ya que tanto ih_0 como ih_1 tienen imagen en Y.

Una vez más, por el Lema 2 existe una función continua $K:(X\times I,X\times \partial I)\to (Z,Y)$ y una homotopía $\Gamma:K\simeq H$ relativa a $X\times \partial I$ tal que $K(X\times I)\subset Y$. En particular H y K coinciden en $X\times \partial I$, así que si $S\in \{0,1\}$ entonces

$$h_s(x) = H(x,s) = K(x,s)$$

para todo $x \in X$. Por lo tanto la correstricción $K|^Y : X \times I \to Y$ de K es una función continua que satisface $K_s = h_s$, y consecuentemente h_0 y h_1 son homotópicas.

Lema 3. Sea $n \in \mathbb{N}$ y $f: \mathbb{S}^{2n} \to \mathbb{S}^{2n}$ una función continua. Si f no tiene puntos fijos, entonces deg f=-1.

Demostración. Notemos que como la homología de S²ⁿ es trivial excepto en grado 0 y 2n, es

$$\begin{split} \lambda(f) &= \sum_{q \geq 0} (-1)^q \cdot tr(H_n f) = tr(H_0 f) + (-1)^{2n} \, tr(H_{2n} f) \\ &= 1 + (-1)^{2n} \, deg \, f = 1 + deg \, f. \end{split}$$

Como f no tiene puntos fijos debe ser $\lambda(f) = 0$, lo que nos dice que deg f = -1.

Ejercicio 1. Probar que \mathbb{Z}_2 es el único grupo no trivial que puede actuar libremente en una esfera de dimensión par.

Demostración. Sea $n \in \mathbb{N}$ y G un grupo que actúa libremente en S^{2n} . Esto es equivalente a que para cada $g \in G$ distinto de la unidad la función

$$m_g: \mathbb{S}^{2n} \to \mathbb{S}^{2n}$$

$$x \longmapsto g \cdot x$$

no tenga puntos fijos. Por el Lema 3 sabemos entonces que deg $m_g=-1$ para todo $g\neq 1$. Si ahora tomamos $g,h\in G\setminus\{1\}$ tenemos que

$$deg \, m_{qh} = deg \, m_q \circ m_h = deg \, m_q \cdot deg \, m_h = (-1)^2 = 1,$$

asi que el contrarrecíproco del Lema 3 dice que m_{gh} tiene puntos fijos: como la acción es libre, debe ser gh = 1.

Dado que G no es trivial, existe algún elemento $g \in G \setminus \{1\}$. Si ahora $h \in G \setminus \{1\}$ es arbitrario, de $gh^{-1} = 1$ obtenemos h = g para cualquier $h \neq 1$. Por lo tanto es $G = \{1, g\}$. $g \in G$ en consecuencia, $G \simeq \mathbb{Z}_2$.

Lema 4. Sea G un grupo. Si $x \in \mathbb{Z}[G]$ es no nulo y G-invariante, entonces G es finito y existe $k \in \mathbb{Z}$ tal que $x = k \cdot \sum_{g \in G} g$.

Demostración. Como $x \in \mathbb{Z}[G] \setminus \{0\}$, existen finitos elementos $g_1, \ldots, g_n \in G$ y enteros a_1, \ldots, a_n con $a_1 \neq 0$ tales que

$$x = a_1 g_1 + \cdots + a_n g_n$$
.

Para cada $g \in G$, es

$$a_1g_1 + \dots + a_ng_n = x = gg_1^{-1}x = a_1g + a_2gg_1^{-1}g_2 + \dots + a_ngg_1^{-1}g_n$$
 (2)

así que por la unicidad de la escritura en combinaciones formales, necesariamente $g \in \{g_1, \dots, g_n\}$. Esto prueba que $G = \{g_1, \dots, g_n\}$, y en particular G resulta finito.

Ahora, si para cada $i \in [n]$ ponemos $g = g_i$ en la igualdad (1), se tiene que

$$a_1g_1+\cdots+a_ng_n=a_1g_i+\cdots+a_ng_ig_1^{-1}g_n.$$

Una vez más, por la unicidad de la escritura existe $k := a_1 \in \mathbb{Z}$ tal que $k = a_1 = \cdots = a_n$ y consecuentemente

$$x = a_1g_1 + \dots a_ng_n = kg_1 + \dots kg_n = k \cdot \sum_{g \in G} g.$$

Ejercicio 5. Probar que cd(G) = 0 si y sólo si G es el grupo trivial.

Demostración. Una implicación es clara: si G=1, un $\mathbb{Z}[1]$ -módulo es simplemente un \mathbb{Z} módulo, y entonces la sucesión

$$0 \to \mathbb{Z} \xrightarrow{id} \mathbb{Z} \to 0$$

es una resolución libre (en particular, proyectiva) de \mathbb{Z} como $\mathbb{Z}[1]$ -módulo trivial que tiene longitud cero.

Recíprocamente, supongamos que existe una resolución proyectiva

$$0 \to P_0 \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$

de $\mathbb Z$ como $\mathbb Z[G]$ -módulo trivial. En particular $\mathbb Z$ resulta un $\mathbb Z[G]$ -módulo proyectivo y por lo tanto, el epimorfismo

$$r: \sum_{g \in G} k_g \cdot g \in \mathbb{Z}[G] \mapsto \sum_{g \in G} k_g \in \mathbb{Z}$$

tiene una sección $s: \mathbb{Z} \to \mathbb{Z}[G]$. Como la acción de G en \mathbb{Z} es trivial, es

$$g \cdot s(1) = s(g \cdot 1) = s(1)$$

para cada $g \in G$, y además $s(1) \neq 0$ pues al ser sección s es inyectiva. Esto dice que s(1) es no nulo y G-invariante, así que por el Lema 4 existe $k \in \mathbb{Z}$ tal que $s(1) = k \cdot \sum_{g \in G} g$.

Aplicando r se obtiene

$$1 = rs(1) = r\left(k \cdot \sum_{g \in G} g\right) = k \cdot \sum_{g \in G} 1 = k|G|,$$

lo que implica |G| = k = 1. Por lo tanto, necesariamente G es el grupo trivial.