

Laboratório - Estudo de condutividade

Química Geral

Arthur Cadore Matuella Barcella Gustavo Briance Mengue Mena

1 de Setembro de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	Intro	dução	4
	1.1.	Objetivos	4
	1.2.	Condutivímetro	4
2.	Expe	rimento prático	4
	2.1.	Parte 1 - Tabela de condutividade	4
	2.2.	Parte 2 - Tabela de condutividade	5
3.	Ques	tões	5
	3.1.	Por que a água da rede publica de abastecimento tem maior condutividade que a	
		água destilada?	5
	3.2.	É sabido que o cloreto de sódio no estado sólido comporta-se como isolante	
		elétrico.	5
		3.2.1. Explique essa afirmação sabendo que o mesmo é representado através de	
		modelos como Na ⁺ Cl ⁻	5
		3.2.2. Explique usando equações de reações e as teorias de ligação e estrutura	
		quimica, a condutividade elétrica e o processo quimico que ocorre quando	
		se dissolve cloreto de sódio em agua.	6
		3.2.3. Que espécies iônicas podem ser encontradas na água do mar?	6
	3.3.	Que espécies quimicas estão presentes em soluções de NaOH e HCl (0,01 M/L)?	
		Escreva equações para descrever as reações que produzem tais espécies	6
	3.4.	Como você classificaria os alcoois etanol e propanol (eletrólitos fortes, fracos ou	
		não eletrólitos)? Considere as condutividades registradas para os alcoois puros e	
		dissolvidos em água e justifique sua resposta	6
	3.5.	Descreva e explique em forma de texto e também usando equações de reações	
		quimicas, as propriedades de condutividade elétrica do ácido acético glacial e do	
		mesmo dissolvido em água. Você classificaria o ácido acético como eletrólito forte,	
		fraco ou não eletrólito? Justifique sua resposta.	6
	3.6.	Você classificaria a sacarose como eletrólito forte, fraco ou não eletrólito?	
		Justifique sua resposta.	7
	3.7.	Comparando os dados obtidos para as medidas de condutividade de ácido acético	
		glacial, ácido acético em propanol e ácido acético em ága, explique a influência	
		dos solventes nas propriedades químicas dos sistemas e descreva suas respectivas	_
	0.0	representações através de equações químicas.	/
	3.8.	Comparando qualitativamente a velocidade das reações 11 [30 mL HCl (6 M/L) +	
		${ m CaCO_3}$] e 12 [30 mL Ácido Acético (6 M/L) + ${ m CaCO_3}$], explique a relação entre	
		as velocidades observadas e os dados de condutividade obtidos para os sistemas	
		químicos 9 [60 mL HCl (6 M/L)] e 10 [60 mL Ácido Acético (6 M/L)]. Faça o	
		mesmo para as reações 13 [30 mL HCl (6 M/L) + Zn(s)] e 14 [30 mL Ácido Acético	
		(6 M/L) + Zn(s)], também comparando com as condutividades obtidas nas reações	
		9 [60 mL HCl (6 M/L)] e 10 [60 mL Ácido Acético (6 M/L)]	
		3.8.1. Reações 11 e 12 ($CaCO_3$ + HCl e $CaCO_3$ + Ácido Acético)	
		3.8.2. Reações 13 e 14 (Zn(s) + HCl e Zn(s) + Ácido Acético)	8

3.9.	Explique, usando equações de reações químicas e as teorias de força e eletrólitos as
	diferenaçs de condutividade observadas para os reagentes em separado e para os
	produtos formados nas reações 16 [15 mL HCl (0,01 M/L) + 15 mL NaOH (0,01 M/L
	L)] e 17 [30 mL Ácido Acético (0,1 M/L) + 15 mL NH $_3$ (0,1 M/L)]
3.10	Explique como você sabe que está usando corretamente o condutivimetro? 8

1. Introdução

Condutividade é a capacidade de um material conduzir corrente elétrica. Em sistemas de telecomunicações, a condutividade é um fator crítico que afeta a eficiência e a qualidade da transmissão de sinais. Materiais com alta condutividade, como cobre e alumínio, são comumente utilizados em cabos e componentes eletrônicos para garantir uma transmissão eficaz de dados.

1.1. Objetivos

Os objetivos deste laboratório são:

- Compreender os princípios da condutividade elétrica.
- Analisar a condutividade de diferentes materiais.
- Avaliar o impacto da condutividade na transmissão de sinais em sistemas de telecomunicações.

1.2. Condutivímetro

O condutivímetro é um instrumento utilizado para medir a condutividade elétrica de materiais. Ele funciona aplicando uma tensão elétrica ao material e medindo a corrente resultante. A relação entre a tensão e a corrente permite calcular a condutividade do material. Em laboratório, o condutivímetro é uma ferramenta essencial para experimentos que envolvem a análise de propriedades elétricas de diferentes substâncias.

2. Experimento prático

2.1. Parte 1 - Tabela de condutividade

Resultado das medidas de condutividade realizados em sala:

Substância	Condutividade $\mu S/\mathrm{cm}$	Temperatura (°C)
Água Destilada	4,64	23,3
Água de Abastecimento	71,8	21,9
Água mineral	84,00	22,3
Água do mar	43540,0	22,6
NaCL (0,01 M/L)	6960,0	23,3
HcL (0,01 M/L)	39200,0	23,3
NaOH (0,01 M/L)	21210,0	23,4
Etanol	7,18	23,4
Propanol	7,85	23,4
Sacarose	28,24	23,5
Etanol + Água Destilada	8,05	23,4
Propanol + Água Destilada	8,27	23,4

Substância	Condutividade $\mu S/\mathrm{cm}$	Temperatura (°C)	
Ácido Acético (0,1 M/L)	418,08	23,8	
Ácido Acético (6 M/L)	13,68	23,3	
Ácido Acético (17 M/L)	7,94	22,8	

2.2. Parte 2 - Tabela de condutividade

Resultado das medidas de condutividade realizados em sala:

Substância	Condutividade $\mu S/{\rm cm}$	Temp. (°C)
30 mL Ácido Acético (17 M/L)	7,94	22,8
15 mL Ácido Acético (17 M/L) + 15 mL Propanol	8,81	22,7
15 mL Ácido Acético (17 M/L) + 15 mL Água	294,1	22,8
60 mL HCl (6 M/L)	182,3	22,8
60 mL Ácido Acético (6 M/L)	6,30	21,5
30 mL HCl (6 M/L) + $CaCO_3$	203100,0	21,6
30 mL Ácido Acético (6 M/L) + ${ m CaCO_3}$	12,73	21,7
30 mL HCl (6 M/L) + Zn(s)	1000-30000	21,7
30 mL Ácido Acético (6 M/L) + Zn(s)	3,74	21,7
15 mL HCl (0,01 M/L) + 15 mL NaOH (0,01 M/L)	2660	21,7
$30 \mathrm{~mL}$ Ácido Acético $(0,1 \mathrm{~M/L}) + 15 \mathrm{~mL}$ $\mathrm{NH_3}$ $(0,1 \mathrm{~M/L})$	2190	21,8

3. Questões

3.1. Por que a água da rede publica de abastecimento tem maior condutividade que a água destilada?

A água da rede pública tem maior condutividade (71,8 μ S/cm) que a água destilada (4,64 μ S/cm) porque contém íons dissolvidos como cálcio (Ca²+), magnésio (Mg²+), sódio (Na+), cloreto (Cl⁻) e bicarbonato (HCO₃⁻). Esses íons são condutores de corrente elétrica. Já a água destilada é praticamente pura, com mínima presença de íons, resultando em baixa condutividade.

3.2. É sabido que o cloreto de sódio no estado sólido comporta-se como isolante elétrico.

3.2.1. Explique essa afirmação sabendo que o mesmo é representado através de modelos como $\rm Na^+Cl^-$

No estado sólido, os íons Na⁺ e Cl⁻ estão fortemente ligados em uma rede cristalina rígida, sem mobilidade para transportar carga elétrica, atuando como isolante.

3.2.2. Explique usando equações de reações e as teorias de ligação e estrutura quimica, a condutividade elétrica e o processo quimico que ocorre quando se dissolve cloreto de sódio em agua.

Quando o NaCl se dissolve em água, ocorre a dissociação iônica:

$$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$
 (1)

A água, sendo um solvente polar, estabiliza os íons por hidratação, permitindo que se movimentem livremente e conduzam corrente elétrica.

3.2.3. Que espécies iônicas podem ser encontradas na água do mar?

Na água do mar, além de Na⁺ e Cl⁻, encontramos íons como $\rm Mg^2+, Ca^2+, K^+, SO_4^{2-}, HCO_3^{-}$ e Br⁻.

3.3. Que espécies quimicas estão presentes em soluções de NaOH e HCl (0,01 M/L)? Escreva equações para descrever as reações que produzem tais espécies.

Em solução aquosa, ou seja, dissolvida em água, as espécies químicas são:

• NaOH se dissocia completamente:

$$NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$
 (2)

• HCl se ioniza completamente:

$$HCl(g) + H_2O(l) \rightarrow H_3O^{\dagger}(aq) + Cl^{-}(aq)$$
 (3)

3.4. Como você classificaria os alcoois etanol e propanol (eletrólitos fortes, fracos ou não eletrólitos)? Considere as condutividades registradas para os alcoois puros e dissolvidos em água e justifique sua resposta.

Tanto o etanol (7,18 μ S/cm) quanto o propanol (7,85 μ S/cm) são não eletrólitos quando puros, pois não formam íons significativos. Quando dissolvidos em água, há um pequeno aumento na condutividade (8,05 μ S/cm e 8,27 μ S/cm, respectivamente), mas ainda assim são considerados não eletrólitos, pois não sofrem ionização significativa em água.

3.5. Descreva e explique em forma de texto e também usando equações de reações quimicas, as propriedades de condutividade elétrica do ácido acético glacial e do mesmo dissolvido em água. Você classificaria o ácido acético como eletrólito forte, fraco ou não eletrólito? Justifique sua resposta.

O ácido acético é um eletrólito fraco. Em solução aquosa, ele sofre ionização parcial:

$$CH_3COOH(aq) \rightarrow CH_3COO^-(aq) + H^+(aq)$$
 (4)

Isso é evidenciado pelos valores de condutividade:

- Solução 0,1 M/L: 418,08 $\frac{\mu S}{\rm cm}$ Solução 6 M/L: 13,68 $\frac{\mu S}{\rm cm}$
- Solução 17 M/L (glacial): 7,94 $\frac{\mu S}{cm}$

A condutividade não aumenta proporcionalmente com a concentração, característica de um eletrólito fraco.

3.6. Você classificaria a sacarose como eletrólito forte, fraco ou não eletrólito? Justifique sua resposta.

A sacarose é um não eletrólito, como mostra sua baixa condutividade (28,24 $\frac{\mu S}{\text{cm}}$), muito próxima à da água pura. Ela não se ioniza em solução aquosa, mantendo-se como moléculas neutras.

- 3.7. Comparando os dados obtidos para as medidas de condutividade de ácido acético glacial, ácido acético em propanol e ácido acético em ága, explique a influência dos solventes nas propriedades químicas dos sistemas e descreva suas respectivas representações através de equações químicas.
- Ácido acético glacial (17 M/L). Baixa condutividade (7,94 $\frac{\mu S}{cm}$), pouca autoionização.
- Ácido acético em propanol (1:1). Condutividade similar (8,81 $\frac{\mu S}{\text{cm}}$), o propanol não favorece a ionização.
- Ácido acético em água (1:1). Maior condutividade (294,1 $\frac{\mu S}{\rm cm}$), a água promove a ionização:

$$\mathrm{CH_{3}COOH(aq)} + \mathrm{H_{2}}O(\mathrm{l}) \rightarrow \mathrm{CH_{3}COO^{\text{-}}(aq)} + \mathrm{H_{3}}O^{\text{+}}(\mathrm{aq}) \tag{5}$$

- 3.8. Comparando qualitativamente a velocidade das reações 11 [30 mL $HCl (6 M/L) + CaCO_3$] e 12 [30 mL Ácido Acético (6 M/L) + $CaCO_3$], explique a relação entre as velocidades observadas e os dados de condutividade obtidos para os sistemas químicos 9 [60 mL HCl (6 M/L)] e 10 [60 mL Ácido Acético (6 M/L)]. Faça o mesmo para as reações 13 [30 mL HCl (6 M/L) + $\mathrm{Zn}(\mathrm{s})$] e 14 [30 mL Ácido Acético (6 M/L) + Zn(s)], também comparando com as condutividades obtidas nas reações 9 [60 mL HCl (6 M/L)] e 10 [60 mL Ácido Acético (6 M/L)
- 3.8.1. Reações 11 e 12 ($CaCO_3$ + HCl e $CaCO_3$ + Ácido Acético)
- Reação 11 (HCl + $CaCO_3$). Reação rápida, condutividade inicial alta (182,3 μ S/cm):

$$2\mathrm{HCl}(\mathrm{aq}) + \mathrm{CaCO}_3(\mathrm{aq}) \rightarrow \mathrm{CaCl}_2(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) + \mathrm{CO}_2(\mathrm{g}) \tag{6}$$

• Reação 12 (CH $_3$ COOH + CaCO $_3$). Reação mais lenta, condutividade inicial baixa (6,30 μ S/cm):

$$2\mathrm{CH_3COOH(aq)} + \mathrm{CaCO_3(aq)} \rightarrow \mathrm{(CH_3COO)_2Ca(aq)} + \mathrm{H_2O(l)} + \mathrm{CO_2(g)} \quad (7)$$

3.8.2. Reações 13 e 14 (Zn(s) + HCl e Zn(s) + Ácido Acético)

• Reação 13 (HCl(aq) + Zn(s)). Reação rápida, condutividade inicial alta:

$$2HCl(aq) + Zn(s) \rightarrow ZnCl_2(aq) + H_2(g)$$
(8)

• Reação 14 ($\mathrm{CH_3COOH(aq)} + \mathrm{Zn(s)}$). Reação muito lenta, condutividade inicial baixa:

$$2CH3COOH(aq) + Zn(s) \rightarrow (CH3COO)2Zn(aq) + H2(g)$$
 (9)

3.9. Explique, usando equações de reações químicas e as teorias de força e eletrólitos as diferenaçs de condutividade observadas para os reagentes em separado e para os produtos formados nas reações 16 [15 mL HCl (0,01 M/L) + 15 mL NaOH (0,01 M/L)] e 17 [30 mL Ácido Acético (0,1 M/L) + 15 mL NH₃ (0,1 M/L)]

Reação 16 (HCl(aq) + NaOH(aq)). Condutividade inicial alta (devido aos íons H^+ e OH^-) que diminui durante a reação (formação de água) e depois aumenta novamente (excesso de Na^+ e Cl^-).

$$H^{+}(aq) + Cl^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq) + H_{2}O(l)$$
 (10)

Reação 17 ($\rm CH_3COOH(aq) + NH_3(aq)$). Condutividade inicial baixa (poucos íons) que aumenta durante a reação (formação de $\rm CH_3COO^-$ e $\rm NH_4^+$):

$$CH3COOH(aq) + NH3(aq) \rightarrow CH3COO-(aq) + NH4+(aq)$$
(11)

3.10. Explique como você sabe que está usando corretamente o condutivimetro?

- 1. Calibrar o aparelho com solução padrão
- 2. Lavar o eletrodo com água destilada entre as medidas
- 3. Secar suavemente o excesso de água sem esfregar
- 4. Mergulhar o eletrodo na solução até a marca indicada
- 5. Aguardar estabilização da leitura
- 6. Anotar o valor junto com a temperatura

A condutividade é afetada pela temperatura, então é importante registrar a temperatura durante as medições para correções posteriores, se necessário.