## Claims

|   |    | <b>\</b>                                          |
|---|----|---------------------------------------------------|
|   | 1. | A \method for the purification, stabilization     |
|   |    | or/and isolation of nucleic acids from biological |
| 5 |    | materials, in which an extraction buffer and an   |
|   |    | adsorption matrix for binding contaminations are  |
|   |    | added to the nucleic acid-containing sample and   |
|   |    | the nucleic acids are subsequently removed from   |
|   |    | the adsorption matrix,                            |
|   |    | <b>\</b>                                          |

## 10 characterized in that

the extraction buffer contains

- (a) a pH in the range from 2-8,
- (b) a salt concentration of at least 100 mM or/and
- 15 (c) a phenol-neutralizing substance.
  - 2. The method as claimed in claim 1, characterized in that an extraction buffer of pH 4-6.5 is used.

3. The method as claimed in claim 1 or 2, characterized in that an extraction buffer with KCl or/and NaCl at a concentration of at least 100 mM is used.

4. The method as claimed in any of the preceding claims,

## characterized in that

an extraction buffer with at least 0.5% polyvinylpyrrolidone as henol-neutralizing substance is used.

5. The method as claimed in any of the preceding claims,

an insoluble carbohydrate-based adsorption matrix is used.

s a b

20

25

6. The method as claimed in any of the preceding claims,

characterized in that

- potato flour or components thereof, where
  appropriate mixed with other carbohydrates, is
  used.
  - 7. The method as claimed in any of the preceding claims,
- the nucleic acid-containing sample is taken from feces.
- 8. The method as claimed in any of the preceding claims,

  characterized in that

  the sample is incubated in the extraction buffer prior to contacting with the adsorption matrix.
- 20 9. The method as claimed in Claim 8, characterized in that the incubation temperature is ≤ 10°C.
- 10. The method as claimed in claim 8,

  characterized in that

  the incubation is carried out under conditions which are beneficial to a release of the nucleic acids.
- 30 11. The method as claimed in claim 10 characterized in that the incubation temperature is ≥ 50 °C.
- 12. The method as claimed in any of the preceding claims,

characterized in that

the sample is directed over the adsorption matrix by centrifugation, by applying reduced pressure or/and by means of gravity. 5

10

- 14. A reagent kit for purification, stabilization or/and isolation of nucleic acids from biological materials comprising
- (a) an extraction buffer as defined in any of claims 1 to 4, which is suitable for taking up a nucleic acid containing sample, and
  - (b) an adsorption matrix for binding contaminations of the biological materials.

ADD /

The state of the s