СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 Проектирование сетевой инфраструктуры
1.2 Оборудование
2. Организация сетевого администрирования6
2.1 Настройка провайдеров
2.2 Настройка филиалов 6
3. Управление сетевыми сервисами
3.1 Настройка VRRP 9
3.2 Настройка GRE тоннелей
3.3 Настройка OSPF 12
3.4 Настройка VLAN
3.5 Настройка NAT
3.6 Настройка DNS сервера
4 Модернизация сетевой инфраструктуры
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ19
ПРИЛОЖЕНИЕ А
ПРИЛОЖЕНИЕ Б
ПРИЛОЖЕНИЕ В

					УП.09.02.	\bigcap	5 (ን 1	ΙПЗ	
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.	V	J.\	<i>J</i> .		
Разраб	5.	Смирнов С. И.				Лі	ит.		Лист	Листов
Пров.		Попов И. Д.							4	
					Отчет по учебной					
Н. кон	пр.				практике			(ФСПО 1	ГУАП
Утв.					приктике		ФСПО ГУАП			

ВВЕДЕНИЕ

Я, Смирнов Сергей Игоревич, проходил учебную практику по профессиональному модулю «ПМ.01 ВЫПОЛНЕНИЕ РАБОТ ПО ПРОЕКТИРОВАНИЮ СЕТЕВОЙ ИНФРАСТРУКТУРЫ» в организации ФСПО ГУАП, лаб. сетевых технологий. По мере прохождения практики я выполнял такие виды работ как:

Проектирование сетевой инфраструктуры

Организация сетевого администрирования

Управление сетевыми сервисами

Модер низация сетевой инфраструктуры

Все виды работ я выполнял для учебной лаборатории сетевых технологий.

Изм.	Лист	№ докум.	Подп.	Дата

1 Проектирование сетевой инфраструктуры

В ВУЗе есть лаборатория сетевых технологий, также лаборатория есть на факультете СПО этого же учебного заведения. Учебная лаборатория в самом ВУЗе является главным филиалом. Там установлен сервер виртуализации, а также весь трафик, перед тем как попасть в интернет, проходит через главный филиал. Адреса в лабораториях выдаются динамически локальными маршрутизаторами. Каждый компьютер в лаборатории должен находиться в отдельном VLAN. Главный филиал подключен к двум провайдерам, чтоб в случае выхода из строя одного из провайдеров, трафик направлялся в другого провайдера

Схема сети L1 показана в приложении A.

Схема сети L2 показана в приложении Б.

Схема сети L3 показана в приложении В

Таблица 1 – ІР-план главного офиса

№ докум.

Полп.

	Главный офис		
Оборудование	Интерфейс	IP-адрес	Маска
Mikrotik 7.14.2 (M10)	Loopback	10.10.10.10	32
	ether1	DHCP (200.18.1.2)	24
	Ether2	200.18.10.1	24
	Vrrp1	200.18.10.10	24
	gre-tunnell2	200.18.30.1	24
Mikrotik 7.14.2 (M11)	Loopback	11.11.11.11	32
	Ether1	DHCP (200.18.2.2)	24
	Ether2	200.18.10.2	24
	vrrp	200.18.10.10	24
	gre-tunnell1	200.18.20.1	24
Mikrotik 7.14.2 (M13)	Loopback	13.13.13.13	32
	Ether1	DHCP (200.18.10.11)	24
	Vlan 10	200.18.110.1	24
	Vlan 20	200.18.120.1	24
	Vlan 30	200.18.130.1	24
	Vlan 40	200.18.100.1	24

УП.09.02.06.01ПЗ

<u>Лист</u>

server		DHCP	
	Ens4	(200.18.100.100)	24
PC1		DHCP	
	Ens4	(200.18.130.100)	24
PC2		DHCP	
	Ens4	(200.18.120.100)	24

Таблица 2 – IP-план Факультета СПО

Факультет СПО						
Оборудование	Интерфейс	IP-адрес	Маска			
Mikrotik 7.5 (M12)	Loopback	12.12.12.12	32			
	ether1	DHCP (200.18.3.2)	24			
	Gre-tunnel1	200.18.20.2	24			
	Gre-tunnel2	200.18.30.2	24			
	Vlan 10	200.18.140.1	24			
	Vlan 20	200.18.150.1	24			

PC4		DHCP	
	Ens4	(200.18.140.100)	24
PC5		DHCP	
	Ens4	(200.18.150.100)	24

1.2 Оборудование

В процессе построения схемы также настраивались сети провайдера. Вот, какое оборудование было использовано.

Таблица 3 — Оборудование провайдера

Оборудование провайдеров						
Кол-во	Наименование					
4	Mikrotik 7.5					
5	Mikrotik 7.14.2					

Таблица 4 – Оборудование учебных лабораторий

	Оборудование филиалов						
Кол-во	Наименование						
3	Mikrotik 7.14.2						
1	Mikrotik 7.5						
5	PC						
2	Коммутатор Cisco						

						Лист
					УП.09.02.06.01ПЗ	4
Изм.	Лист	№ докум.	Подп.	Дата	911.09.02.00.01113	4

1						
	1			Proxmox		
			, .			,
Лист	№ доку	тм. Подп.	Дата	УП.09	.02.06.01ПЗ	Лист 5

2. Организация сетевого администрирования

2.1 Настройка провайдеров

На схеме имеется 3 автономные сети провайдера. В верхней автономной системе AS C в качестве протокола динамической маршрутизации выбран IS-IS, в остальных автономных системах протоколом маршрутизации выбран OSPF. Для связи между автономными системами использовался протокол ВGP

2.2 Настройка филиалов

В филиале вуза маршрутизатор получил от провайдера адрес по DHCP, все остальные адреса на маршрутизаторе прописаны статически

Список адресов М13 показан на рисунке 1

DHCР клиент M13 показан на рисунке 2

Рисунок 1 – Address list M13

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 2 – DHCP client M13

Адреса на конечные устройства выдавались мар шрутизаторами На рисунках 3-6 показаны настройки DHCP на M12 и M13

Рисунок 3 — Настройка DHCP сервера М13

Name /	Interface	Relay A	Lease Time	Address Pool	Ad ▼
dhcp1	Vlan10		00:10:00	dhcp_pool17	no
dhcp2	vlan20		00:10:00	dhcp_pool18	no

Рисунок 4 — Настройка DHCP сервера М12

Каждому конечному устройству был присвоен статический адрес, который выдавался по DHCP, для дальнейшего использования статического DNS сервера.

Address A	MAC Address /	Client ID	Server	Active Address	Active MAC Addre	
200.18.110.100	00:0C:29:F8:DE:89	1:0:c:29:f8:de:89	dhcp1			
200.18.100.100	0C:14:9C:03:00:00	ff:9c:3:0:0:0:1:0:1	dhcp4	200.18.100.100	0C:14:9C:03:00:00	del
200.18.120.100	0C:4D:A9:FD:00:00	ff:a9.fd:0:0:0:1:0:	dhcp2	200.18.120.100	0C:4D:A9:FD:00:00	del
 200.18.130.100	0C:72:AE:F0:00:00	ff:ae.f0:0:0:0:1:0:	dhcp3	200.18.130.100	0C:72:AE:F0:00:00	del

Рисунок 5 – Привязка IP к МАС адресу устройства на М13

						Лист
					УП.09.02.06.01ПЗ	7
Изм.	Лист	№ докум.	Подп.	Дата	У11.09.02.06.01113	/

				15
200.18.150.100	0C:1F:50:F3:00:00	ff:50.f3:0:0:0:1:0:	dhcp2	1
200.18.140.100	0C:06:D6:B2:00:00	ff:d6:b2:0:0:0:1:0:	dhcp1	1

Рисунок 6 – Привязка IP к MAC адресу устройства на M12

Изм.	Лист	№ докум.	Подп.	Дата

3. Управление сетевыми сервисами

3.1 Настройка VRRP

Для отказоустойчивости сети маршрутизаторы М10 и М11 были подключены к разным провайдерам, а между ними настроен VRRP, чтоб при выходе из строя одного из провайдеров трафик мог проходить через другого. На рисунках 7-8 показаны настройки VRRP

Рисунок 7 — Настройка VRRP интерфейса на одном из мар шрутизаторов

Рисунок 8 – Адрес VRRР интерфейса

Аналогично настроен соседний маршрутизатор (М11)

3.2 **Настройка GRE** тоннелей

Для того, чтобы трафик от лаборатории СПО шел «напрямую» в главный офис, было настроено GRE туннелирование. Также это было сделано для того, чтобы трафик, перед тем как попадать в интернет из лаборатории СПО, проходил через главный офис для полного контроля сетевого трафика.

						Лист
					VII 09 02 06 01 II 3	
Изм.	Лист	№ докум.	Подп.	Дата	311.09.02.00.01113	9

GRE тоннели были реализованы от M10 и M11 к M12, чтобы при выходе из строя одного из маршрутизаторов трафик проходил через другой тоннель

На рисунках 9-12 показана настройка GRE тоннелей для M10-12

Рисунок 9 — Настройка GRE тоннеля на M10

Рисунок 10 – Настройка GRE тоннеля на M11

Изм.	Лист	№ докум.	Подп.	Дата

УП.09.02.06.01ПЗ

Рисунок 11 – Настройка GRE тоннеля 1 на M12

Рисунок 12 – Настройка GRE тоннеля 2 на M12

На рисунках 13-14 показана доступность устройства из другого филиала, а также GRE метка в ICMP пакете

```
traceroute to 200.18.120.100 (200.18.120.100), 30 hops max, 60 byte packets 1 200.18.150.1 (200.18.150.1) 1.201 ms 0.896 ms 0.782 ms 2 200.18.20.1 (200.18.20.1) 5.005 ms 6.532 ms 6.519 ms 3 200.18.10.11 (200.18.10.11) 8.312 ms 8.301 ms 8.290 ms 4 lab1PC2.prak (200.18.120.100) 8.777 ms 8.664 ms 8.562 ms debian@debian:~$
```

Рисунок 13 – Прохождение трафика через GRE тоннель

						Лист
					VII 09 02 06 01II3	11
Изм.	Лист	№ докум.	Подп.	Дата	911.09.02.00.01113	11

```
Internet Protocol Version 4, Src: 200.18.2.2, Dst: 200.18.3.2

Generic Routing Encapsulation (IP)

> Flags and Version: 0x0000

Protocol Type: IP (0x0800)

Internet Protocol Version 4, Src: 200.18.100.100, Dst: 200.18.150.100
```

Рисунок 14 – GRE заголовок в ICMP пакете

3.3 Настройка OSPF

На М10 и М11 по OSPF распространяется информация только о GRE тоннелях, в маршрутизаторах, граничащих с конечными устройствами, были распространены следующие маршруты:

Эти маршруты были показаны на рисунках 15-16, а на рисунке 17 показан OSPF Hello пакет

Рисунок 15 – Настройка OSPF на M12

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 16 – Настройка OSPF на M13

```
✓ Open Shortest Path First

> OSPF Header

✓ OSPF Hello Packet

Network Mask: 255.255.255.0

Hello Interval [sec]: 10

> Options: 0x02, (E) External Routing

Router Priority: 128

Router Dead Interval [sec]: 40

Designated Router: 200.18.10.1

Backup Designated Router: 200.18.10.2
```

Рисунок 17 – OSPF hello packet

3.4 Настройка VLAN

Для разграничения и более удобного контроля сетевого трафика, каждое конечное устройство было помещено в отдельный VLAN

Настройка VLAN в лаборатории ВУЗа

На рисунках 17-19 показана настройка VLAN, а на рисунке 20 показан ICMP пакт с данными о VLAN

Изм.	Лист	№ докум.	Подп.	Дата

УП.09.02.06.01ПЗ

Лист

Рисунок 18 – Создание VLAN интерфейсов M13

#	Interface	Bridge	Horizon	Trusted	Priority (h	PVID	Role	Actu ▼
0	👛 vlan 10	vlan10		no	80	1	designated port	2
1	👛 vlan 20	vlan20		no	80	1	designated port	2
2	👛 vlan 30	vlan30		no	80	1	designated port	2
3	👛 vlan 40	vlan40		no	80	1	designated port	2

Рисунок 19 – Создание bridge портов для интерфейсов VLAN

```
802.10 Virtual LAN, PRI: 0, DEI: 0, ID: 20
000. ... = Priority: Best Effort (default) (0)
...0 ... = DEI: Ineligible
... 0000 0001 0100 = ID: 20
Type: IPv4 (0x0800)
```

Рисунок 20 – Метка VLAN в ICMР пакете

3.5 Настройка NAT

Для того, чтобы конечные устройства имели выход в интернет, на маршрутизаторах главного филиала был настроен NAT

На рисунке 21 была показана его настройка

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 21 – Настройка NAT на M13

На М11 и М10, а также на маршрутизаторе провайдера М1 NAT был настроен аналогично

3.6 Настройка DNS сервера

В локальной сети, для более удобного обращения к устройствам им были выданы доменные имена. Доменные имена выдавались мар шрутизатором главного филиала статически.

На рисунках 22-23 показана настройка DNS сервера

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 22 – Настройка статических записей DNS

Рисунок 23 — Настройка адресов DNS сервера

Первый адрес является адресом локального DNS сервера, второй же нужен для того, чтоб обращаться по доменным именам к серверам из Интернета

На рисунке 24 показано Обращение к устройству из локальной сети и к cep веру Google

УП.09.02					
911.09.02	Дата	Подп.	№ докум.	Лист	Изм.

```
debian@debian:~$ ping prepod.prak
PING prepod.prak (200.18.100.100) 56(84) bytes of data.
64 bytes from prepod.prak (200.18.100.100): icmp_seq=1 ttl=61 time=8.73 ms
64 bytes from prepod.prak (200.18.100.100): icmp_seq=2 ttl=61 time=9.73 ms 64 bytes from prepod.prak (200.18.100.100): icmp_seq=3 ttl=61 time=8.98 ms
64 bytes from prepod.prak (200.18.100.100): icmp_seq=4 ttl=61 time=10.2 ms
--- prepod.prak ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3006ms
rtt min/avg/max/mdev = 8.734/9.407/10.189/0.581 ms
debian@debian:~$ ping google.com
PING google.com (142.250.150.138) 56(84) bytes of data.
64 bytes from la-in-f138.lel00.net (142.250.150.138): icmp_seq=1 ttl=102 time=19.3 ms
64 bytes from la-in-f138.lel00.net (142.250.150.138): icmp_seq=2 ttl=102 time=17.6 ms
64 bytes from la-in-f138.le100.net (142.250.150.138): icmp_seq=3 ttl=102 time=16.9 ms
64 bytes from la-in-f138.le100.net (142.250.150.138): icmp_seq=4 ttl=102 time=17.6 ms
64 bytes from la-in-f138.lel00.net (142.250.150.138): icmp_seq=5 ttl=102 time=16.8 ms 64 bytes from la-in-f138.lel00.net (142.250.150.138): icmp_seq=6 ttl=102 time=16.9 ms 64 bytes from la-in-f138.lel00.net (142.250.150.138): icmp_seq=7 ttl=102 time=17.0 ms
64 bytes from la-in-f138.le100.net (142.250.150.138): icmp_seq=8 ttl=102 time=18.3 ms
```

Рисунок 24 – Обращение к устройству из локальной сети и к серверу Google

Изм.	Лист	№ докум.	Подп.	Дата

4 Модернизация сетевой инфраструктуры

Установка ProxmoxVE

На рисунке 25 была показана настройка адресации сервера

Management Interface:	ens192 - 00:50:56:8a:bb:c9 (vmxnet3) ▼
Hostname (FQDN):	pve.dmosk.local
IP Address:	192.168.1.55
Netmask:	255.255.255.0
Gateway:	192.168.1.1
DNS Server:	192.168.1.1

Рисунок 25 – Выдача ІР адреса серверу

* Данный скриншот был взят из Интернета в качестве примера настройки

На рисунке 26 был показан Web интерфейс Proxmox

Рисунок 26 – Web интерфейс севера proxmox

Также на сервер были загружены образы российских маршрутизаторов Eltex для дальнейшего изучения.

							Лист
						УП.09.02.06.01ПЗ	10
V	Изм.	Лист	№ докум.	Подп.	Дата	311.03.02.00.01113	18

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Настройка DHCP сервера

URL: https://mikrotik.wiki/wiki/Для_начинающих:Настройка_DHCP-сервера Дата обращения 10.04.2024

2. Настройка VLAN

URL: https://настройка-микротик.yкp/nastrojka-vlan-v-mikrotik-trunk-i-access-porty/

Дата обращения 11.04.2024

3. Настройка NAT

URL: https://help.mikrotik.com/docs/display/ROS/NAT

Дата обращения 20.04.2024

Proxmox

URL: https://pve.proxmox.com/pve-docs/

Дата обращения 24.04.2024

Изм.	Лист	№ докум.	Подп.	Дата

ПРИЛОЖЕНИЕ А

Схема L1

ПРИЛОЖЕНИЕБ

Схема L2

ПРИЛОЖЕНИЕ В

Схема L3

