Quadric Surfaces

Cylinder -- A surface that is generated by moving a straight line along a given planar curve while holding the line parallel to a given fixed line. The curve used is called the generating curve.

Definition: Quadric Surface

A **quadric surface** is the graph in space of a second-degree equation in x, y, and z. They can be expressed in the form

$$Ax^2+By^2+Cz^2+Dxy+Exz+Fyz+Gx+Hy+Jz+K=0$$

Shape	Formula	Image
Elliptical Paraboloid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$	
Ellipsoid	$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 1$	
Elliptical Cone	$rac{x^2}{a^2} + rac{y^2}{b^2} = rac{z^2}{c^2}$	

3D Interactive Example:

 $arprojling extbf{Elliptical Paraboloids:} \ rac{x^2}{a^2} + rac{y^2}{b^2} = rac{z}{c} \
ightarrow$

 $arprojlim egin{array}{c} arproplim egin{array}{c} arproplim egin{array}{c} \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} + \dfrac{z^2}{c^2} = 1 \end{array}
ightarrow$

 $arprojling egin{aligned} & arprojling & egin{aligned} & arprojling & arprojlin$

arprojling Hyperboloid of One Sheet: $rac{x^2}{a^2} + rac{y^2}{b^2} - rac{z^2}{c^2} = 1
ightarrow$

arprojlim Hyperboloid of Two Sheet: $rac{z^2}{c^2} - rac{x^2}{a^2} - rac{y^2}{b^2} = 1
ightarrow$

arprojling Hyperbolic Paraboloid: $rac{y^2}{b^2}-rac{x^2}{a^2}=rac{z}{c}$, c>0