Topologie des espaces normés

Ouverts et fermés

Exercice 1 [01103] [Correction]

Montrer que tout fermé peut s'écrire comme intersection d'une suite décroissante d'ouverts.

Exercice 2 [01104] [Correction]

On désigne par p_1 et p_2 les applications coordonnées de \mathbb{R}^2 définies par $p_i(x_1, x_2) = x_i$.

- (a) Soit O un ouvert de \mathbb{R}^2 , montrer que $p_1(O)$ et $p_2(O)$ sont des ouverts de \mathbb{R} .
- (b) Soit $H = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$. Montrer que H est un fermé de \mathbb{R}^2 et que $p_1(H)$ et $p_2(H)$ ne sont pas des fermés de \mathbb{R} .
- (c) Montrer que si F est fermé et que $p_2(F)$ est borné, alors $p_1(F)$ est fermé.

Exercice 3 [01105] [Correction]

Montrer que si un sous-espace vectoriel F d'un espace normé E est ouvert alors F=E.

Exercice 4 [04076] [Correction]

Soient F une partie fermée non vide d'un espace normé E et $x \in E$. Montrer

$$d(x,F) = 0 \iff x \in F.$$

Exercice 5 [01107] [Correction]

Soit E une espace vectoriel normé.

(a) Soient F une partie fermée non vide de E et $x \in E$. Montrer

$$d(x, F) = 0 \iff x \in F.$$

(b) Soient F et G deux fermés non vides et disjoints de E. Montrer qu'il existe deux ouverts U et V tels que

$$F \subset U, G \subset V \text{ et } U \cap V = \emptyset.$$

Exercice 6 [01106] [Correction]

Soient A,B deux parties non vides d'un espace vectoriel normé E telles que

$$d(A, B) = \inf_{x \in A, y \in B} d(x, y) > 0.$$

Montrer qu'il existe deux ouverts disjoints U et V tels que $A \subset U$ et $B \subset V$.

Exercice 7 [01108] [Correction]

On munit le \mathbb{R} -espace vectoriel des suites réelles bornées de la norme

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|.$$

Déterminer si les sous-ensembles suivants sont fermés ou non :

 $A = \{\text{suites croissantes}\}, B = \{\text{suites convergeant vers 0}\}$

 $C = \{ \text{suites convergentes} \},$

 $D = \{$ suites admettant 0 pour valeur d'adhérence $\}$ et $E = \{$ suites périodiques $\}$.

Exercice 8 [01110] [Correction]

On note $\mathbb{R}^{(\mathbb{N})}$ l'ensemble des suites réelles nulles à partir d'un certain rang.

- (a) Montrer que $\mathbb{R}^{(\mathbb{N})}$ est un sous-espace vectoriel de l'espace $\mathcal{B}(\mathbb{N}, \mathbb{R})$ des suites réelles bornées.
- (b) $\mathcal{B}(\mathbb{N},\mathbb{R})$ étant normé par $\|\cdot\|_{\infty}$. Le sous-espace vectoriel $\mathbb{R}^{(\mathbb{N})}$ est-il une partie ouverte? une partie fermée?

Exercice 9 [02415] [Correction]

Soit A une partie non vide de \mathbb{R} telle que pour tout x réel il existe un et un seul $y \in A$ tel que |x - y| = d(x, A). Montrer que A est un intervalle fermé.

Exercice 10 [02770] [Correction]

On munit l'espace des suites bornées réelles $\mathcal{B}(\mathbb{N}, \mathbb{R})$ de la norme $||u||_{\infty} = \sup_{n}(|u_n|)$.

- (a) Montrer que l'ensemble des suites convergentes est un fermé de $\mathcal{B}(\mathbb{N},\mathbb{R}).$
- (b) Montrer que l'ensemble des suites (a_n) qui sont terme général d'une série absolument convergente n'est pas un fermé de $\mathcal{B}(\mathbb{N}, \mathbb{R})$.

Exercice 11 [02771] [Correction]

Soit E l'ensemble des suites $(a_n)_{n\geq 0}$ de $\mathbb C$ telles que la série $\sum |a_n|$ converge. Si $a=(a_n)_{n\geq 0}$ appartient à E, on pose

$$||a|| = \sum_{n=0}^{+\infty} |a_n|.$$

- (a) Montrer que $\|\cdot\|$ est une norme sur E.
- (b) Soit

$$F = \left\{ a \in E \mid \sum_{n=0}^{+\infty} a_n = 1 \right\}.$$

L'ensemble F est-il ouvert? fermé? borné?

Exercice 12 [03021] [Correction]

Soient E un espace vectoriel normé, F un sous-espace fermé de E et G un sous-espace vectoriel de dimension finie de E. Montrer que F+G est fermé

Exercice 13 [03037] [Correction]

Caractériser dans $\mathcal{M}_n(\mathbb{C})$ les matrices dont la classe de similitude est fermée. Même question avec \mathbb{R} au lieu de \mathbb{C}

Exercice 14 [02507] [Correction]

Soient $E = \mathcal{C}([0;1],\mathbb{R})$ normé par $\|\cdot\|_{\infty}$ et la partie

$$A = \left\{ f \in E \mid f(0) = 0 \text{ et } \int_0^1 f(t) \, \mathrm{d}t \ge 1 \right\}.$$

- (a) Montrer que A est une partie fermée.
- (b) Vérifier que

$$\forall f \in A, ||f||_{\infty} > 1.$$

Exercice 15 [03289] [Correction]

(a) Montrer que les parties

$$A = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\} \text{ et } B = \{0\} \times \mathbb{R}$$

sont fermées.

(b) Observer que A + B n'est pas une partie fermée.

Exercice 16 [03290] [Correction]

Montrer que \mathbb{Z} est une partie fermée de \mathbb{R} :

- (a) en observant que son complémentaire est ouvert;
- (b) par la caractérisation séquentielle des parties fermées;
- (c) en tant qu'image réciproque d'un fermé par une application continue.

Exercice 17 [03306] [Correction]

Dans $E = \mathbb{R}[X]$, on considère les normes

$$N_1(P) = \sup_{t \in [0;1]} |P(t)| \text{ et } N_2(P) = \sup_{t \in [1;2]} |P(t)|.$$

L'ensemble

$$\Omega = \{ P \in E \mid P(0) \neq 0 \}$$

est-il ouvert pour la norme N_1 ? pour la norme N_2 ?

Intérieur et adhérence

Exercice 18 [03279] [Correction]

Soit A une partie d'un espace vectoriel normé E. Établir

$$Vect(\overline{A}) \subset \overline{Vect A}$$
.

Exercice 19 [01116] [Correction]

Soit A une partie d'un espace vectoriel normé E. Établir que sa frontière Fr(A) est une partie fermée.

Exercice 20 [01117] [Correction]

Soit F une partie fermée d'un espace vectoriel normé E. Établir

$$Fr(Fr(F)) = Fr(F).$$

Exercice 21 [01118] [Correction]

Soient A un ouvert et B une partie d'un espace vectoriel normé E.

- (a) Montrer que $A \cap \overline{B} \subset \overline{A \cap B}$
- (b) Montrer que $A \cap B = \emptyset \implies A \cap \overline{B} = \emptyset$.

Exercice 22 [01119] [Correction]

On suppose que A est une partie convexe d'un espace vectoriel normé E.

- (a) Montrer que \overline{A} est convexe.
- (b) La partie A° est-elle convexe?

Exercice 23 [01120] [Correction]

Soient A et B deux parties non vides d'un espace vectoriel normé E. Établir

$$d(\overline{A}, \overline{B}) = d(A, B)$$

(en notant $d(A, B) = \inf_{x \in A, y \in B} d(x, y)$)

Exercice 24 [01121] [Correction]

Soient A_1, \ldots, A_n des parties d'un espace vectoriel normé E.

- (a) Établir $\overline{\bigcup_{i=1}^n A_i} = \bigcup_{i=1}^n \overline{A_i}$.
- (b) Comparer $\overline{\bigcap_{i=1}^n A_i}$ et $\bigcap_{i=1}^n \overline{A_i}$.

Exercice 25 [01122] [Correction]

Soient $f \colon E \to F$ continue bornée et $A \subset E$, A non vide. Montrer

$$||f||_{\infty,A} = ||f||_{\infty,\overline{A}}.$$

Exercice 26 [03026] [Correction]

Soit A une partie d'un espace normé E.

- (a) Montrer que la partie A est fermée si, et seulement si, $\operatorname{Fr} A \subset A$.
- (b) Montrer que la partie A est ouverte si, et seulement si, $A \cap \operatorname{Fr} A = \emptyset$

Exercice 27 [03470] [Correction]

Dans $\mathcal{M}_2(\mathbb{C})$, on introduit

$$\mathcal{U} = \left\{ M \in \mathcal{M}_2(\mathbb{C}) \mid \forall \lambda \in \operatorname{Sp} M, |\lambda| = 1 \right\} \text{ et}$$
$$\mathcal{R} = \left\{ M \in \mathcal{M}_2(\mathbb{C}) \mid \exists n \in \mathbb{N}^*, M^n = I_2 \right\}.$$

- (a) Comparer les ensembles \mathcal{R} et \mathcal{U} .
- (b) Montrer que \mathcal{U} est une partie fermée de $\mathcal{M}_2(\mathbb{C})$.
- (c) Montrer que \mathcal{U} est inclus dans l'adhérence de \mathcal{R} .
- (d) Qu'en déduire?

Continuité et topologie

Exercice 28 [01126] [Correction]

Pour $p \in \{0, 1, ..., n\}$, on note R_p l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ de rang supérieur à p.

Montrer que R_p est un ouvert de $\mathcal{M}_n(\mathbb{K})$.

Exercice 29 [01128] [Correction]

Montrer qu'un endomorphisme u d'un espace vectoriel normé E est continu si, et seulement si, la partie $\{x \in E \mid ||u(x)|| = 1\}$ est fermée.

Exercice 30 [03393] [Correction]

Soit $f: [0;1] \to [0;1]$ une application continue vérifiant

$$f \circ f = f$$
.

(a) Montrer que l'ensemble

$${x \in [0;1] \mid f(x) = x}$$

est un intervalle fermé et non vide.

- (b) Donner l'allure d'une fonction f non triviale vérifiant les conditions précédentes.
- (c) On suppose de plus que f est dérivable. Montrer que f est constante ou égale à l'identité.

Exercice 31 [02774] [Correction]

(a) Chercher les fonctions $f: [0;1] \to [0;1]$ continues vérifiant

$$f \circ f = f$$
.

(b) Même question avec les fonctions dérivables.

Exercice 32 [03285] [Correction]

Soient E un espace normé de dimension quel conque et u un endomorphisme de E vérifiant

$$\forall x \in E, \|u(x)\| \le \|x\|.$$

Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{n+1} \sum_{k=0}^n u^k.$$

- (a) Simplifier $v_n \circ (u \mathrm{Id})$.
- (b) Montrer que

$$\operatorname{Im}(u - \operatorname{Id}) \cap \operatorname{Ker}(u - \operatorname{Id}) = \{0\}.$$

(c) On suppose E de dimension finie, établir

$$\operatorname{Im}(u - \operatorname{Id}) \oplus \operatorname{Ker}(u - \operatorname{Id}) = E.$$

(d) On suppose de nouveau E de dimension quelconque. Montrer que si

$$\operatorname{Im}(u - \operatorname{Id}) \oplus \operatorname{Ker}(u - \operatorname{Id}) = E$$

alors la suite (v_n) converge simplement et l'espace Im(u - Id) est une partie fermée de E.

(e) Étudier la réciproque.

Exercice 33 [02773] [Correction]

Pour $n \in \mathbb{N}^*$, O_n désigne l'ensemble des polynômes réels de degré n scindés à racines simples et F_n l'ensemble des polynômes de $\mathbb{R}_n[X]$ scindés à racines simples. Ces ensemble sont-ils ouverts dans $\mathbb{R}_n[X]$?

Exercice 34 [03726] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant

- 1) $\forall [a;b] \subset \mathbb{R}, f([a;b])$ est un segment;
- 2) $y \in \mathbb{R}, f^{-1}(\{y\})$ est une partie fermée.

Montrer que f est continue.

Exercice 35 [03859] [Correction]

Soit E un \mathbb{R} -espace vectoriel normé de dimension finie.

Montrer que l'ensemble \mathcal{P} des projecteurs de E est une partie fermée de $\mathcal{L}(E)$.

Densité

Exercice 36 [01130] [Correction]

Montrer que $\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

On pourra considérer, pour $A \in \mathcal{M}_n(\mathbb{R})$, les matrices de la forme $A - \lambda I_n$.

Exercice 37 [01131] [Correction]

Soient E un espace vectoriel normé et F un sous-espace vectoriel de E.

- (a) Montrer que \overline{F} est un sous-espace vectoriel de E.
- (b) Montrer qu'un hyperplan est soit fermé, soit dense.

Exercice 38 [01132] [Correction]

Soient U et V deux ouverts denses d'un espace vectoriel normé E.

- (a) Établir que $U \cap V$ est encore un ouvert dense de E.
- (b) En déduire que la réunion de deux fermés d'intérieurs vides est aussi d'intérieur vide.

Exercice 39 [03058] [Correction]

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que

$$u_n \to +\infty, v_n \to +\infty$$
 et $u_{n+1} - u_n \to 0$.

- (a) Soient $\varepsilon > 0$ et $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|u_{n+1} u_n| \le \varepsilon$. Montrer que pour tout $a \ge u_{n_0}$, il existe $n \ge n_0$ tel que $|u_n - a| \le \varepsilon$.
- (b) En déduire que $\{u_n v_p \mid n, p \in \mathbb{N}\}$ est dense dans \mathbb{R} .
- (c) Montrer que l'ensemble $\{\cos(\ln n) \mid n \in \mathbb{N}^*\}$ est dense dans [-1;1].

Exercice 40 [03017] [Correction]

Montrer que $\{m - \ln n \mid (m, n) \in \mathbb{Z} \times \mathbb{N}^*\}$ est dense dans \mathbb{R} .

Exercice 41 [01133] [Correction]

Soit H un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$.

- (a) Justifier l'existence de $a = \inf\{x \in H \mid x > 0\}$.
- (b) On suppose a > 0. Établir $a \in H$ puis $H = a\mathbb{Z}$.
- (c) On suppose a=0. Établir que H est dense dans \mathbb{R} .

Exercice 42 [00023] [Correction]

- (a) Montrer que $\{\cos(n) \mid n \in \mathbb{N}\}$ est dense dans [-1;1].
- (b) Montrer que $\{\cos(\ln n) \mid n \in \mathbb{N}^*\}$ est dense dans [-1;1].

Exercice 43 [01135] [Correction]

Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 44 [01134] [Correction]

On note $\mathbb{R}^{(\mathbb{N})}$ l'ensemble des suites réelles nulles à partir d'un certain rang.

(a) Montrer que $\mathbb{R}^{(\mathbb{N})}$ est une partie dense de l'espace des suites sommables normé par

$$||u||_1 = \sum_{n=0}^{+\infty} |u_n|.$$

(b) $\mathbb{R}^{(\mathbb{N})}$ est-il une partie dense de l'espace des suites bornées normé par

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|?.$$

Exercice 45 [02780] [Correction]

On note E l'ensemble des fonctions réelles définies et continues sur $[0; +\infty[$ et dont le carré est intégrable. On admet que E est un espace vectoriel réel. On le munit de la norme

$$\|\cdot\|_2 \colon f \mapsto \sqrt{\int_0^{+\infty} f^2(t) \, \mathrm{d}t}.$$

On note E_0 l'ensemble des $f \in E$ telles que f est nulle hors d'un certain segment. On note F l'ensemble des fonctions de E du type $x \mapsto P(e^{-x})e^{-x^2/2}$ où P parcourt $\mathbb{R}[X]$. Montrer que E_0 est dense dans E puis que F est dense dans E.

Exercice 46 [02944] [Correction]

Soit A une partie convexe et partout dense d'un espace euclidien E. Montrer que A=E.

Exercice 47 [03018] [Correction]

Soit A une partie non vide de $\mathbb R$ vérifiant

$$\forall a, b \in A, \frac{a+b}{2} \in A.$$

Montrer que A est dense dans l'intervalle $\inf A$; sup A[.

Exercice 48 [03020] [Correction]

Soit A une partie non vide de \mathbb{R}_+^* vérifiant

$$\forall (a,b) \in A^2, \sqrt{ab} \in A.$$

Montrer que $A \cap (\mathbb{R} \setminus \mathbb{Q})$ est dense dans $\inf A$; sup A[.

Exercice 49 [03059] [Correction]

Soient $E = \mathcal{C}([0;1],\mathbb{R})$ et $\varphi \in E$. On note $N_{\varphi} \colon E \to \mathbb{R}$ l'application définie par

$$N_{\varphi}(f) = ||f\varphi||_{\infty}.$$

Montrer que N_{φ} est une norme sur E si, et seulement si, $\varphi^{-1}(\mathbb{R}^*)$ est dense dans [0;1].

Exercice 50 [03402] [Correction]

Soit (u_n) une suite de réels strictement positifs. On suppose

$$(u_n)$$
 strictement croissante, $u_n \to +\infty$ et $\frac{u_{n+1}}{u_n} \to 1$.

Montrer que l'ensemble

$$A = \left\{ \frac{u_m}{u_n} \mid m > n \right\}$$

est une partie dense dans l'intervalle $[1; +\infty[$

Exercice 51 [03649] [Correction]

Soient A et B deux parties denses d'un espace normé E.

On suppose la partie A ouverte, montrer que $A \cap B$ est une partie dense.

Continuité et densité

Exercice 52 [01136] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue vérifiant

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y).$$

Déterminer f.

Exercice 53 [01139] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que

$$\forall (x,y) \in \mathbb{R}^2, \ f\left(\frac{x+y}{2}\right) = \frac{1}{2} (f(x) + f(y)).$$

- (a) Montrer que $\mathcal{D} = \{ p/2^n \mid p \in \mathbb{Z}, n \in \mathbb{N} \}$ est dense dans \mathbb{R} .
- (b) Montrer que si f s'annule en 0 et en 1 alors f = 0.
- (c) Conclure que f est une fonction affine.

Exercice 54 [01137] [Correction]

Montrer que pour tout $A, B \in \mathcal{M}_n(\mathbb{C}), \chi_{AB} = \chi_{BA}$.

Exercice 55 [01138] [Correction]

Soit $n \geq 2$. Calculer $\det(\operatorname{Com}(A))$ pour $A \in \mathcal{M}_n(\mathbb{C})$.

Exercice 56 [03128] [Correction]

Soit $n \in \mathbb{N}$ avec $n \geq 2$.

- (a) Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $P \in GL_n(\mathbb{C})$. Exprimer la comatrice de $P^{-1}AP$ en fonction de P, P^{-1} et de la comatrice de A.
- (b) En déduire que les comatrices de deux matrices semblables sont elle-même semblables.

Exercice 57 [00750] [Correction]

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note \widetilde{A} la transposée de la comatrice de A.

- (a) Calculer $\det \widetilde{A}$.
- (b) Étudier le rang de \widetilde{A} .
- (c) Montrer que si A et B sont semblables alors \widetilde{A} et \widetilde{B} le sont aussi.
- (d) Calculer $\widetilde{\widetilde{A}}$.

Exercice 58 [03275] [Correction]

Montrer

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{Com}(AB) = \operatorname{Com}(A) \operatorname{Com}(B).$$

Exercice 59 [04170] [Correction]

Soit (u_n) une suite réelle telle que $u_{n+1} - u_n \to 0$ et $u_n \to +\infty$. Soit (v_p) une suite réelle telle que $v_p \to +\infty$.

- (a) On fixe deux réels a et b tels que a < b. Pour p et q dans \mathbb{N} , on pose $(w_n) = (u_{n+p} v_q)$. Montrer que l'on peut choisir p et q de telle sorte que l'on ait $w_0 \le a$ et, pour $n \in \mathbb{N}$, $|w_{n+1} w_n| \le (b-a)/2$.
- (b) Montrer que $\{u_n v_p \mid (n, p) \in \mathbb{N}^2\}$ est dense dans \mathbb{R} .
- (c) Déterminer l'adhérence de $\{\sin(u_n) \mid n \in \mathbb{N}\}.$
- (d) Déterminer l'adhérence de $\{u_n |u_n| \mid n \in \mathbb{N}\}$.
- (e) Quel est l'ensemble des valeurs d'adhérence de la suite $(u_n \lfloor u_n \rfloor)$?

Approximations uniformes

Exercice 60 [01142] [Correction]

Soit $f: [a; b] \to \mathbb{R}$ continue telle que $\int_a^b f(t) dt = 0$. Montrer qu'il existe une suite (P_n) de polynômes telle que

$$\int_{a}^{b} P_{n}(t) dt = 0 \text{ et } \sup_{t \in [a:b]} |f(t) - P_{n}(t)| \xrightarrow[n \to +\infty]{} 0.$$

Exercice 61 [01143] [Correction]

Soit $f: [a;b] \to \mathbb{R}$ continue telle que $f \ge 0$. Montrer qu'il existe une suite (P_n) de polynômes telle que $P_n \ge 0$ sur [a;b] et $\sup_{t \in [a;b]} |f(t) - P_n(t)| \xrightarrow[n \to +\infty]{} 0$.

Exercice 62 [01144] [Correction]

Soit $f: [a;b] \to \mathbb{R}$ de classe \mathcal{C}^1 . Montrer qu'il existe une suite (P_n) de polynômes telle que

$$N_{\infty}(f-P_n) \to 0 \text{ et } N_{\infty}(f'-P'_n) \to 0.$$

Exercice 63 [01145] [Correction]

(Théorème de Weierstrass : par les polynômes de Bernstein) Pour $n \in \mathbb{N}$ et $k \in \{0, ..., n\}$, on pose

$$B_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}.$$

(a) Calculer

$$\sum_{k=0}^{n} B_{n,k}(x), \sum_{k=0}^{n} k B_{n,k}(x) \text{ et } \sum_{k=0}^{n} k^{2} B_{n,k}(x).$$

(b) Soient $\alpha > 0$ et $x \in [0; 1]$. On forme

$$A = \{k \in [0; n] \mid |k/n - x| \ge \alpha\} \text{ et } B = \{k \in [0; n] \mid |k/n - x| < \alpha\}.$$

Montrer que

$$\sum_{k \in A} B_{n,k}(x) \le \frac{1}{4n\alpha^2}.$$

(c) Soit $f: [0;1] \to \mathbb{R}$ continue. On pose

$$f_n(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{n,k}(x).$$

Montrer que (f_n) converge uniformément vers f sur [0;1].

Exercice 64 [01146] [Correction]

(Théorème de Weierstrass : par convolution) n désigne un entier naturel. On pose

$$a_n = \int_{-1}^{1} (1 - t^2)^n \, \mathrm{d}t$$

et on considère la fonction $\varphi_n \colon [-1;1] \to \mathbb{R}$ définie par

$$\varphi_n(x) = \frac{1}{a_n} (1 - x^2)^n.$$

(a) Calculer $\int_0^1 t(1-t^2)^n dt$. En déduire que

$$a_n = \int_{-1}^{1} (1 - t^2)^n dt \ge \frac{1}{n+1}.$$

- (b) Soit $\alpha \in]0;1]$. Montrer que (φ_n) converge uniformément vers la fonction nulle sur $[\alpha;1]$.
- (c) Soit f une fonction continue de $\mathbb R$ vers $\mathbb R$ nulle en dehors de $[-1/2\,;1/2]$ Montrer que f est uniformément continue. On pose

$$f_n(x) = \int_{-1}^{1} f(x-t)\varphi_n(t) dt$$

pour tout $x \in \mathbb{R}$.

- (d) Montrer que f_n est une fonction polynomiale sur [-1/2; 1/2]
- (e) Montrer que

$$f(x) - f_n(x) = \int_{-1}^{1} (f(x) - f(x - t))\varphi_n(t) dt.$$

- (f) En déduire que f_n converge uniformément vers f sur \mathbb{R} .
- (g) Soit f une fonction réelle continue nulle en dehors de [-a;a]. Montrer que f est limite uniforme d'une suite de polynômes.
- (h) Soit f une fonction réelle continue sur [a;b]. Montrer que f est limite uniforme d'une suite de polynômes.

Exercice 65 [02828] [Correction]

Soit $f \in \mathcal{C}([a;b],\mathbb{R})$. On suppose que pour tout $n \in \mathbb{N}$,

$$\int_{a}^{b} x^{n} f(x) \, \mathrm{d}x = 0.$$

- (a) Montrer que la fonction f est nulle.
- (b) Calculer

$$I_n = \int_0^{+\infty} x^n e^{-(1-i)x} dx.$$

(c) En déduire qu'il existe f dans $\mathcal{C}([0;+\infty[,\mathbb{R})$ non nulle, telle que, pour tout n dans $\mathbb{N},$ on ait

$$\int_0^{+\infty} x^n f(x) \, \mathrm{d}x = 0.$$

Exercice 66 [02601] [Correction]

Soit $f \colon [a;b] \to \mathbb{R}$ continue par morceaux. On désire établir

$$\lim_{n \to +\infty} \left(\int_a^b f(x) |\sin(nx)| \, \mathrm{d}x \right) = \frac{2}{\pi} \int_a^b f(x) \, \mathrm{d}x.$$

- (a) Vérifier le résultat pour une fonction f constante.
- (b) Observer le résultat pour une fonction f en escalier.
- (c) Étendre au cas où f est une fonction continue par morceaux.

Corrections

Exercice 1 : [énoncé]

Soient F un fermé et pour tout $n \in \mathbb{N}^*$,

$$O_n = \bigcup_{a \in F} B(a, 1/n)$$

 O_n est un ouvert (car réunion d'ouverts) contenant F. Le fermé F est donc inclus dans l'intersection des O_n pour $n \in \mathbb{N}^*$.

Inversement si x appartient à cette intersection, alors, pour tout $n \in \mathbb{N}$, il existe $a_n \in F$ tel que $x \in B(a_n, 1/n)$. La suite (a_n) converge alors vers x et donc $x \in F$ car F est fermé.

Finalement F est l'intersection des O_n pour $n \in \mathbb{N}^*$.

Exercice 2 : [énoncé]

- (a) Soit $x \in p_1(O)$, il existe $y \in \mathbb{R}$ tel que $a = (x, y) \in O$. Comme O est ouvert, il existe $\varepsilon > 0$ tel que $B_{\infty}(a, \varepsilon) \subset O$ et alors $]x \varepsilon; x + \varepsilon[\subset p_1(O)$. Ainsi $p_1(O)$ et de même $p_2(O)$ est ouvert.
- (b) Soit $((x_n, y_n))_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ telle que $(x_n, y_n) \to (x, y)$. Comme $x_n y_n = 1$, à la limite xy = 1. Par la caractérisation séquentielle des fermés, H est fermé. $p_1(H) = \mathbb{R}^*$,

 $p_2(H) = \mathbb{R}^*$ ne sont pas fermés dans \mathbb{R} .

(c) Soit $(x_n)_{n\in\mathbb{N}}\in(p_1(F))^{\mathbb{N}}$ telle que $x_n\to x$. Pour $n\in\mathbb{N}$, il existe y_n tel que $(x_n,y_n)\in F$.

La suite $((x_n, y_n))$ est alors une suite bornée dont on peut extraire une suite convergente : $((x_{\varphi(n)}, y_{\varphi(n)}))$.

Notons $y = \lim y_{\varphi(n)}$. Comme F est fermé, $(x, y) = \lim(x_{\varphi(n)}, y_{\varphi(n)}) \in F$ puis $x = p_1((x, y)) \in p_1(F)$.

Exercice 3: [énoncé]

 $0_E \in F$ donc il existe $\alpha > 0$ tel que $B(0_E, \alpha) \subset F$.

Pour tout $x \in E$, on peut écrire

$$x = \lambda y$$

avec $y \in B(0_E, \alpha)$ et λ bien choisis

On a alors $y \in F$ puis $x \in F$ car F est un sous-espace vectoriel.

Ainsi F = E.

Exercice 4: [énoncé]

Rappelons

$$d(x, F) = \inf\{||x - y|| \mid y \in F\}$$

(\iff) Si $x \in F$ alors $0 \in \{||x - y|| \mid y \in F\}$ et donc d(x, F) = 0 (\implies) Si d(x, F) = 0 alors pour tout $n \in \mathbb{N}$, il existe $y_n \in F$ vérifiant

$$||x - y_n|| \le \frac{1}{n+1}.$$

En faisant varier n, cela détermine $(y_n) \in F^{\mathbb{N}}$ telle que $y_n \to x$.

Or F est une partie fermée, elle contient les limites de ses suites convergentes et par conséquent $x \in F$.

Exercice 5 : [énoncé]

(a) Rappelons

$$d(x, F) = \inf\{||x - y|| \mid y \in F\}$$

(\iff) Si $x \in F$ alors $0 \in \{||x - y|| \mid y \in F\}$ et donc d(x, F) = 0 (\implies) Si d(x, F) = 0 alors pour tout $n \in \mathbb{N}$, il existe $y_n \in F$ vérifiant

$$||x - y_n|| \le \frac{1}{n+1}.$$

En faisant varier n, cela déterminer $(y_n) \in F^{\mathbb{N}}$ telle que $y_n \to x$.

Or F est une partie fermée, elle contient les limites de ses suites convergentes et par conséquent $x \in F$.

(b) Soient

$$U = \bigcup_{x \in F} B\bigg(x, \frac{1}{2}d(x, G)\bigg) \text{ et } V = \bigcup_{x \in G} B\bigg(x, \frac{1}{2}d(x, F)\bigg).$$

Les parties U et V sont ouvertes car réunion de boules ouvertes et il est clair que U et V contiennent respectivement F et G.

S'il existe $y \in U \cap V$ alors il existe $a \in F$ et $b \in G$ tels que

$$d(a,y) < \frac{1}{2}d(a,G)$$
 et $d(b,y) < \frac{1}{2}d(b,F)$.

Puisque

$$d(a,G), d(b,F) \le d(a,b)$$

on a donc

$$d(a,b) \le d(a,y) + d(y,b) < d(a,b).$$

C'est absurde et on peut conclure

$$U \cap V = \emptyset$$
.

Exercice 6: [énoncé]

Les ensembles

$$U = \bigcup_{a \in A} B(a, d/2)$$
 et $V = \bigcup_{b \in B} B(b, d/2)$

avec d = d(A, B) sont solutions.

En effet U et V sont des ouverts (par réunion d'ouverts) contenant A et B. U et V sont disjoints car

$$U \cap V \neq \emptyset \implies \exists (a,b) \in A \times B, B(a,d/2) \cap B(b,d/2) \neq \emptyset \implies d(A,B) < d.$$

Exercice 7: [énoncé]

A est fermé car si $u^p = (u^p_n)$ est une suite d'éléments de A convergeant vers une suite $u = (u_n)$ pour la norme $\|\cdot\|_{\infty}$ alors pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u^p_n \le u^p_{n+1}$ qui donne à la limite $u_n \le u_{n+1}$ et donc $u \in A$.

B est fermé car si $u^p=(u^p_n)$ est une suite d'éléments de B convergeant vers une suite $u=(u_n)$ pour la norme $\|\cdot\|_{\infty}$ alors pour tout $\varepsilon>0$ il existe $p\in\mathbb{N}$ tel que $\|u-u^p\|_{\infty}\leq \varepsilon/2$ et puisque $u^p_n\xrightarrow[n]{}0$, il existe $N\in\mathbb{N}$ tel que

$$\forall n \geq N, \left| u_n^p \right| \leq \varepsilon/2$$

et donc

$$|u_n| \le |u_n - u_n^p| + |u_n^p| \le \varepsilon.$$

Ainsi $u \to 0$ et donc $u \in B$.

C est fermé. En effet si $u^p = (u^p_n)$ est une suite d'éléments de C convergeant vers une suite $u = (u_n)$ pour la norme $\|\cdot\|_{\infty}$ alors en notant ℓ^p la limite de u^p , la suite (ℓ^p) est une suite de Cauchy puisque $|\ell^p - \ell^q| \le \|u^p - u^q\|_{\infty}$. Posons ℓ la limite de la suite (ℓ^p) et considérons $v^p = u^p - \ell^p$. $v^p \in B$ et $v^p \to u - \ell$ donc $u - \ell \in B$ et $u \in C$.

D est fermé car si $u^p=(u^p_n)$ est une suite d'éléments de D convergeant vers une suite $u=(u_n)$ pour la norme $\|\cdot\|_{\infty}$ alors pour tout $\varepsilon>0$ il existe $p\in\mathbb{N}$ tel que $\|u-u^p\|_{\infty}\leq \varepsilon/2$ et puisque 0 est valeur d'adhérence de u^p , il existe une infinité de n tels que $|u^p_n|\leq \varepsilon/2$ et donc tels que

$$|u_n| \le |u_n - u_n^p| + |u_n^p| \le \varepsilon.$$

Ainsi 0 est valeur d'adhérence de u et donc $u \in D$.

E n'est pas fermé. Notons δ^p , la suite déterminée par $\delta^p_n=1$ si $p\mid n$ et 0 sinon. La suite δ^p est périodique et toute combinaison linéaire de suites δ^p l'est encore. Posons alors

$$u^p = \sum_{k=1}^p \frac{1}{2^k} \delta^k$$

qui est élément de E. La suite u^p converge car

$$||u^{p+q} - u^p||_{\infty} \le \sum_{k=p+1}^{p+q} \frac{1}{2^k} \le \frac{1}{2^p} \to 0$$

et la limite u de cette suite n'est pas périodique car

$$u_0 = \lim_{p \to +\infty} \sum_{k=1}^{p} \frac{1}{2^k} = 1$$

et que $u_n < 1$ pour tout n puisque pour que $u_n = 1$ il faut $k \mid n$ pour tout $k \in \mathbb{N}$.

Exercice 8 : [énoncé]

- (a) Les éléments de $\mathbb{R}^{(\mathbb{N})}$ sont bornés donc $\mathbb{R}^{(\mathbb{N})} \subset \mathcal{B}(\mathbb{N}, \mathbb{R})$. L'appartenance de l'élément nul et la stabilité par combinaison linéaire sont immédiates.
- (b) Si $\mathbb{R}^{(\mathbb{N})}$ est ouvert alors puisque $0 \in \mathbb{R}^{(\mathbb{N})}$ il existe $\alpha > 0$ tel que $B_{\infty}(0,\alpha) \subset \mathbb{R}^{(\mathbb{N})}$. Or la suite constante égale à $\alpha/2$ appartient à $B_{\infty}(0,\alpha)$ et n'est pas nulle à partir d'un certain rang donc $B_{\infty}(0,\alpha) \not\subset \mathbb{R}^{(\mathbb{N})}$ et donc $\mathbb{R}^{(\mathbb{N})}$ n'est pas ouvert.
- (c) Pour $N \in \mathbb{N}$, posons u^N définie par $u_n^N = \frac{1}{n+1}$ si $n \leq N$ et $u_n^N = 0$ sinon. $(u^N) \in \mathbb{R}^{(\mathbb{N})}$ et $u^N \to u$ avec u donné par $u_n = \frac{1}{n+1}$. En effet

$$||u^N - u||_{\infty} = \frac{1}{N+2} \to 0.$$

Mais $u \notin \mathbb{R}^{(\mathbb{N})}$ donc $\mathbb{R}^{(\mathbb{N})}$ n'est pas fermé.

Exercice 9: [énoncé]

Soit $(x_n) \in A^{\mathbb{N}}$ convergeant vers $x \in \mathbb{R}$. Il existe un unique $y \in A$ tel que |x-y| = d(x,A). Or d(x,A) = 0 donc $x = y \in A$. Ainsi A est fermé.

Par l'absurde supposons que A ne soit pas un intervalle. Il existe a < c < b tel que $a,b \in A$ et $c \notin A$.

Posons $\alpha = \sup\{x \in A \mid x \leq c\}$ et $\beta = \inf\{x \in A \mid x \geq c\}$. On a $\alpha, \beta \in A$, $\alpha < c < \beta$ et $]\alpha; \beta[\subset C_{\mathbb{R}}A$.

Posons alors $\gamma = \frac{\alpha + \beta}{2}$. On a $d(\gamma, A) = \frac{\beta - \alpha}{2} = |\gamma - \alpha| = |\gamma - \beta|$ ce qui contredit l'hypothèse d'unicité. Absurde.

Exercice 10: [énoncé]

- (a) Notons C l'espace des suites convergentes de $\mathcal{B}(\mathbb{N}, \mathbb{R})$. Soit (u^n) une suite convergente d'éléments de C de limite u^{∞} . Pour chaque n, posons $\ell^n = \lim u^n = \lim_{p \to +\infty} u_p^n$. Par le théorème de la double limite appliquée à la suite des fonctions u^n ,
 - Par le théorème de la double limite appliquée à la suite des fonctions u^n , on peut affirmer que la suite (ℓ^n) converge et que la suite u^{∞} converge vers la limite de (ℓ^n) . En particulier $u^{\infty} \in C$.
- (b) Notons A l'espace des suites dont le terme général est terme général d'une série absolument convergente. Soit (u^n) la suite définie par

$$\forall n \in \mathbb{N}^*, \forall p \in \mathbb{N}, u_p^n = \frac{1}{(p+1)^{1+1/n}}.$$

La suite (u^n) est une suite d'éléments de A et une étude en norme $\|\cdot\|_{\infty}$ permet d'établir que $u^n \to u^{\infty}$ avec $u_p^{\infty} = \frac{1}{p+1}$. La suite u^{∞} n'étant pas élément de A, la partie A n'est pas fermée.

Exercice 11: [énoncé]

(a) Par définition de l'ensemble E, l'application $\|\cdot\|: E \to \mathbb{R}_+$ est bien définie. Soient $(a_n)_{n>0}$, $(b_n)_{n>0}$ éléments de E et $\lambda \in \mathbb{R}$.

$$||a+b|| = \sum_{n=0}^{+\infty} |a_n + b_n| \le \sum_{n=0}^{+\infty} (|a_n| + |b_n|) = ||a|| + ||b||$$

avec convergence des séries écrites, et

$$\|\lambda.a\| = \sum_{n=0}^{+\infty} |\lambda a_n| = \sum_{n=0}^{+\infty} |\lambda| |a_n| = |\lambda| \sum_{n=0}^{+\infty} |a_n| = |\lambda| \|a\|.$$

Enfin, si ||a|| = 0 alors

$$\forall n \in \mathbb{N}, |a_n| < ||a|| = 0$$

donne $(a_n)_{n>0} = (0)_{n>0}$

(b) Considérons la forme linéaire

$$\varphi \colon (a_n)_{n \ge 0} \mapsto \sum_{n=0}^{+\infty} a_n.$$

On vérifie

$$\forall a = (a_n)_{n \ge 0} \in E, |\varphi(a)| = \left| \sum_{n=0}^{+\infty} a_n \right| \le \sum_{n=0}^{+\infty} |a_n| = ||a||.$$

La forme linéaire φ est donc continue.

Puisque $F = \varphi^{-1}(\{1\})$ avec $\{1\}$, la partie F est fermée en tant qu'image réciproque d'une partie fermée par une application continue.

Posons e = (1, 0, 0, ...) et un élément de F et

$$\forall \alpha > 0, e + \alpha e \notin F \text{ et } ||e - (e + \alpha e)|| = \alpha.$$

On en déduit que F n'est pas un voisinage de son élément e et par conséquent la partie F n'est pas ouverte.

Posons $\alpha^p = e + p.(1, -1, 0, 0, ...).$

$$\forall p \in \mathbb{N}, \alpha^p \in F \text{ et } \|\alpha^p\| \xrightarrow[p \to +\infty]{} +\infty.$$

La partie F n'est donc pas bornée.

Exercice 12: [énoncé]

Pour obtenir ce résultat, il suffit de savoir montrer F + Vect(u) fermé pour tout $u \notin F$.

Soit (x_n) une suite convergente d'éléments de F + Vect(u) de limite x.

Pour tout $n \in \mathbb{N}$, on peut écrire $x_n = y_n + \lambda_n u$ avec $y_n \in F$ et $\lambda_n \in \mathbb{K}$.

Montrons en raisonnant par l'absurde que la suite (λ_n) est bornée.

Si la suite (λ_n) n'est pas bornée, quitte à considérer une suite extraite, on peut supposer $|\lambda_n| \to +\infty$.

Posons alors $z_n = \frac{1}{\lambda_n} x_n = \frac{1}{\lambda_n} y_n + u$.

Puisque $||x_n|| \to ||x||$ et $|\lambda_n| \to +\infty$, on a $||z_n|| \to 0$ et donc $\frac{1}{\lambda_n} y_n \to -u$.

Or la suite de terme général $\frac{1}{\lambda_n}y_n$ est une suite d'éléments de l'espace fermé F, donc $-u \in F$ ce qui exclu.

Ainsi la suite (λ_n) est bornée et on peut en extraire une suite convergente $(\lambda_{\varphi(n)})$ de limite $\lambda \in \mathbb{K}$.

Par opérations, la suite $(y_{\varphi(n)})$ est alors convergente.

En notant y sa limite, on a $y \in F$ car l'espace F est fermé.

En passant la relation $x_n = y_n + \lambda_n u$ à la limite on obtient $x = y + \lambda u \in F + \text{Vect}(u)$.

Ainsi l'espace F + Vect(u) est fermé.

Exercice 13: [énoncé]

Cas $A \in \mathcal{M}_n(\mathbb{C})$ est diagonalisable.

Soit (A_p) une suite convergente de matrices semblables à A.

Notons A_{∞} la limite de (A_p) .

Si P est un polynôme annulateur de A, P est annulateur des A_p et donc P annule A_{∞} . Puisque A est supposée diagonalisable, il existe un polynôme scindé simple annulant A et donc A_{∞} et par suite A_{∞} est diagonalisable.

De plus $\chi_A = \chi_{A_p}$ donc à la limite $\chi_A = \chi_{A_{\infty}}$.

On en déduit que A et A_{∞} ont les mêmes valeurs propres et que celles-ci ont mêmes multiplicités. On en conclut que A et A_{∞} sont semblables.

Ainsi la classe de similitude de A est fermée.

Cas $A \in \mathcal{M}_n(\mathbb{C})$ non diagonalisable.

À titre d'exemple, considérons la matrice

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

Pour $P_p = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$, on obtient

$$P_p^{-1}AP_p = \begin{pmatrix} \lambda & 1/p \\ 0 & \lambda \end{pmatrix} \to \lambda I_2$$

qui n'est pas semblable à A.

De façon plus générale, si la matrice A n'est pas diagonalisable, il existe une valeur propre λ pour laquelle

$$\operatorname{Ker}(A - \lambda I_2)^2 \neq \operatorname{Ker}(A - \lambda I_2)$$

Pour $X_2 \in \text{Ker}(A - \lambda I_2)^2 \setminus \text{Ker}(A - \lambda I_2)$ et $X_1 = (A - \lambda I_2)X_2$, la famille (X_1, X_2) vérifie $AX_1 = \lambda X_1$ et $AX_2 = \lambda X_2 + X_1$. En complétant la famille libre (X_1, X_2) en une base, on obtient que la matrice A est semblable à

$$T = \begin{pmatrix} \lambda & 1 & (*) \\ 0 & \lambda & (*) \\ (0) & (0) & B \end{pmatrix}.$$

Pour $P_p = \operatorname{diag}(p, 1, \dots, 1)$, on obtient

$$P_p^{-1}TP_p = \begin{pmatrix} \lambda & 1/p & (*/p) \\ 0 & \lambda & (*) \\ (0) & (0) & B \end{pmatrix} \to \begin{pmatrix} \lambda & 0 & (0) \\ 0 & \lambda & (*) \\ (0) & (0) & B \end{pmatrix} = A_{\infty}.$$

Or cette matrice n'est pas semblable à T ni à A car $\operatorname{rg}(A_{\infty} - \lambda I_n) \neq \operatorname{rg}(T - \lambda I_n)$.

Ainsi, il existe une suite de matrices semblables à A qui converge vers une matrice qui n'est pas semblable à A, la classe de similitude de A n'est pas fermée. Cas $A \in \mathcal{M}_n(\mathbb{R})$

Si A est diagonalisable dans \mathbb{C} alors toute limite A_{∞} d'une suite de la classe de similitude de A est semblable à A dans $\mathcal{M}_n(\mathbb{C})$. Soit $P \in \mathrm{GL}_n(\mathbb{C})$ telle que $P^{-1}AP = A_{\infty}$. On a alors $AP = PA_{\infty}$. En introduisant les parties réelles et imaginaires de P, on peut écrire P = Q + iR avec $Q, R \in \mathcal{M}_n(\mathbb{R})$.

L'identité $AP = PA_{\infty}$ avec A et A_{∞} réelles entraîne $AQ = QA_{\infty}$ et $AR = RA_{\infty}$. Puisque la fonction polynôme $t \mapsto \det(Q + tR)$ n'est pas nulle (car non nulle en i) il existe $t \in \mathbb{R}$ tel que $P' = Q + tR \in \mathrm{GL}_n(\mathbb{R})$ et pour cette matrice $AP' = P'A_{\infty}$. Ainsi les matrices A et A_{∞} sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

Si A n'est pas diagonalisable dans \mathbb{C} .

Il existe une valeur propre complexe λ pour laquelle

 $\operatorname{Ker}(A - \lambda I_2)^2 \neq \operatorname{Ker}(A - \lambda I_2).$

Pour $X_2 \in \text{Ker}(A - \lambda I_2)^2 \setminus \text{Ker}(A - \lambda I_2)$ et $X_1 = (A - \lambda I_2)X_2$, la famille (X_1, X_2) vérifie $AX_1 = \lambda X_1$ et $AX_2 = \lambda X_2 + X_1$.

Si $\lambda \in \mathbb{R}$, il suffit de reprendre la démonstration qui précède.

Si $\lambda \in \mathbb{C} \setminus \mathbb{R}$, on peut écrire $\lambda = a + ib$ avec $b \in \mathbb{R}^*$.

Posons $X_3 = \overline{X}_1$ et $X_4 = \overline{X}_2$.

La famille (X_1, X_2, X_3, X_4) est libre car $\lambda \neq \overline{\lambda}$.

Introduisons ensuite $Y_1 = \operatorname{Re}(X_1)$, $Y_2 = \operatorname{Re}(X_2)$, $Y_3 = \operatorname{Im}(X_1)$ et $Y_4 = \operatorname{Im}(X_2)$.

Puisque $\operatorname{Vect}_{\mathbb{C}}(Y_1,\ldots,Y_4) = \operatorname{Vect}_{\mathbb{C}}(X_1,\ldots,X_4)$, la famille (Y_1,\ldots,Y_4) est libre et peut donc être complétée en une base.

On vérifie par le calcul $AY_1 = aY_1 - bY_3$, $AY_2 = aY_2 - bY_4 + Y_1$, $AY_3 = aY_3 + bY_1$ et $AY_4 = bY_2 + aY_4 + Y_3$. et on obtient que la matrice A est semblable dans $\mathcal{M}_n(\mathbb{R})$ à la matrice

$$\begin{pmatrix} T & * \\ O & B \end{pmatrix}$$

avec

$$T = \begin{pmatrix} a & 1 & b & 0 \\ 0 & a & 0 & b \\ -b & 0 & a & 1 \\ 0 & -b & 0 & a \end{pmatrix}.$$

Pour $P_p = \text{diag}(p, 1, p, 1, \dots 1)$, on obtient

$$P_p^{-1}TP_p \to \begin{pmatrix} T_\infty & *' \\ O & B \end{pmatrix} = A_\infty$$

avec

$$T_{\infty} = \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ -b & 0 & a & 0 \\ 0 & -b & 0 & a \end{pmatrix}.$$

Or dans $\mathcal{M}_n(\mathbb{C})$, la matrice A_{∞} est semblable est à diag $(\lambda, \lambda, \overline{\lambda}, \overline{\lambda}, B)$ qui n'est pas semblable à A pour des raisons de dimensions analogues à ce qui a déjà été vu. Les matrices réelles A et A_{∞} ne sont pas semblables dans $\mathcal{M}_n(\mathbb{C})$ ni a fortiori dans $\mathcal{M}_n(\mathbb{R})$.

On en déduit que la classe de similitude de A n'est pas fermée

Exercice 14: [énoncé]

(a) Soient (f_n) une suite convergente d'éléments de A et $f_{\infty} \in E$ sa limite. Puisque la convergence de la suite (f_n) a lieu pour la norme $\|\cdot\|_{\infty}$, cette convergence correspond à la convergence uniforme. En particulier, il y a convergence simple et

$$f_n(0) \to f_\infty(0)$$
.

On en déduit $f_{\infty}(0) = 0$.

Puisqu'il y a convergence uniforme de cette suite de fonctions continues, on a aussi

$$\int_0^1 f_n(t) \, \mathrm{d}t \to \int_0^1 f_\infty(t) \, \mathrm{d}t$$

et donc

$$\int_0^1 f_\infty(t) \, \mathrm{d}t \ge 1.$$

Ainsi $f_{\infty} \in A$ et la partie A est donc fermée en vertu de la caractérisation séquentielle des parties fermées.

(b) Par l'absurde, supposons qu'il existe $f \in A$ vérifiant $||f||_{\infty} \leq 1$. Puisque

$$\left| \int_0^1 f(t) \, dt \right| \le \int_0^1 |f(t)| \, dt \le \int_0^1 ||f||_{\infty} \, dt \le 1$$

on peut affirmer que

$$\int_0^1 f(t) \, \mathrm{d}t = 1$$

et donc

$$\int_0^1 \left(1 - f(t)\right) dt = 0.$$

Or la fonction $t \mapsto 1 - f(t)$ est continue et positive, c'est donc la fonction nulle.

Par suite f est la fonction constante égale à 1, or f(0) = 0, c'est absurde.

(a) Soit (u_n) une suite convergente d'éléments de A de limite $u_{\infty} = (x_{\infty}, y_{\infty})$. Pour tout $n \in \mathbb{N}$, on peut écrire $u_n = (x_n, y_n)$ avec $x_n y_n = 1$. À la limite on obtient $x_{\infty} y_{\infty} = 1$ et donc $u_{\infty} = 1$.

En vertu de la caractérisation séquentielle des parties fermées, on peut affirmer que A est fermée.

La partie B, quant à elle, est fermée car produit cartésien de deux fermées.

(b) Posons

$$u_n = (1/n, 0) = (1/n, n) + (0, -n) \in A + B.$$

Quand $n \to +\infty$, $u_n \to (0,0)$.

Or $(0,0) \notin A+B$ car le premier élément d'un couple appartenant à A+B ne peut pas être nul.

Exercice 16: [énoncé]

(a) On a

$$\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n \in \mathbb{Z}}]n; n+1[.$$

Puisque $\mathbb{R} \setminus \mathbb{Z}$ est une réunion d'ouverts, c'est un ouvert.

(b) Soit (x_n) une suite convergente d'entiers de limite ℓ . Pour $\varepsilon = 1/2$, il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n > N, |x_n - \ell| < 1/2$$

et alors

$$\forall m, n \ge N, |x_m - x_n| < 1.$$

Puisque les termes de la suite (x_n) sont entiers, on en déduit

$$\forall m, n \ge N, x_m = x_n.$$

La suite (x_n) est alors constante à partir du rang N et sa limite est donc un nombre entier.

(c) Considérons $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin(\pi x)$. La fonction f est continue et

$$\mathbb{Z} = f^{-1}(\{0\})$$

avec $\{0\}$ partie fermée de \mathbb{R} .

Exercice 17: [énoncé]

Posons $\varphi \colon E \to \mathbb{R}$ l'application définie par $\varphi(P) = P(0)$.

L'application φ est linéaire et puisque $|\varphi(P)| \leq N_1(P)$, cette application est continue. On en déduit que $\Omega = \varphi^{-1}(\mathbb{R}^*)$ est un ouvert relatif à E i.e. un ouvert de E pour la norme N_1 .

Pour la norme N_2 , montrons que la partie Ω n'est pas ouverte en observant qu'elle n'est pas voisinage de son point P=1. Pour cela considérons la fonction continue $f\colon [0\,;2]\to\mathbb{R}$ donnée par le graphe suivant : Par le théorème d'approximation de Weierstrass, il existe une suite (P_n) de polynômes vérifiant

$$\sup_{t \in [0;2]} \left| P_n(t) - f(t) \right| \to 0$$

et en particulier

$$P_n(0) \to 0 \text{ et } N_2(P_n - P) \to 0.$$

Considérons alors la suite de polynômes (Q_n) avec

$$Q_n = P_n - P_n(0).$$

Pour tout $n \in \mathbb{N}$, $Q_n(0) = 0$ donc $Q_n \notin \Omega$ et

$$N_2(Q_n) \le N_2(P_n - P) + |P_n(0)| \to 0$$

donc

$$Q_n \xrightarrow{N_2} P$$

Puisque la partie Ω n'est pas voisinage de chacun de ses points, elle n'est pas ouverte pour la norme N_2 .

Exercice 18: [énoncé]

Puisque $A \subset \text{Vect } A$, on a $\overline{A} \subset \overline{\text{Vect } A}$.

Puisque Vect A est un sous-espace vectoriel, on montrer aisément que $\overline{\text{Vect } A}$ l'est aussi. Puisqu'il contient \overline{A} , on obtient

$$\operatorname{Vect}(\overline{A}) \subset \overline{\operatorname{Vect} A}$$
.

Exercice 19 : [énoncé]

On a

$$\operatorname{Fr}(A) = \overline{A} \setminus A^{\circ} = \overline{A} \cap \mathbb{C}_E A^{\circ} = \overline{A} \cap \overline{\mathbb{C}_E A}.$$

On en déduit que Fr(A) est fermée par intersection de parties fermées

Exercice 20 : [énoncé]

On sait

$$\operatorname{Fr}(F) = \overline{F} \cap \overline{\mathsf{C}_E F}$$

donc

$$\operatorname{Fr}(\operatorname{Fr}(F)) = \operatorname{Fr}(F) \cap \overline{\mathbb{C}_E \operatorname{Fr}(F)}.$$

Or $\operatorname{Fr}(F) \subset \overline{F} = F$ donc $\mathbb{C}_E F \subset \mathbb{C}_E \operatorname{Fr}(F)$ puis $\overline{\mathbb{C}_E F} \subset \overline{\mathbb{C}_E \operatorname{Fr} F}$. De plus $\operatorname{Fr} F \subset \overline{\mathbb{C}_E F}$ donc $\operatorname{Fr} F \subset \overline{\mathbb{C}_E \operatorname{Fr} F}$ puis

$$Fr(Fr(F)) = Fr(F).$$

Exercice 21 : [énoncé]

- (a) Soit $x \in A \cap \overline{B}$. Il existe une suite $(b_n) \in B^{\mathbb{N}}$ telle que $b_n \to x$. Or $x \in A$ et A est ouvert donc à partir d'un certain rang $b_n \in A$. Ainsi pour n assez grand $b_n \in A \cap B$ et puisque $b_n \to x$, $x \in \overline{A \cap B}$.
- (b) Si $A \cap B = \emptyset$ alors $A \cap \overline{B} \subset \overline{A \cap B} = \overline{\emptyset} = \emptyset$.

Exercice 22 : [énoncé]

(a) Soient $a, b \in \overline{A}$. Il existe $(a_n) \in A^{\mathbb{N}}$ et $(b_n) \in A^{\mathbb{N}}$ telles que $a_n \to a$ et $b_n \to b$. Pour tout $\lambda \in [0; 1]$,

$$\lambda a + (1 - \lambda)b = \lim_{n \to +\infty} (\lambda a_n + (1 - \lambda)b_n)$$

avec
$$\lambda a_n + (1 - \lambda)b_n \in [a_n; b_n] \subset A \text{ donc } \lambda a + (1 - \lambda)b \in \overline{A}$$
.

(b) Soient $a,b \in A^{\circ}$. Il existe $\alpha_a,\alpha_b>0$ tel que $B(a,\alpha_a),B(b,\alpha_b)\subset A$. Posons $\alpha=\min(\alpha_a,\alpha_b)>0$. Pour tout $\lambda\in[0\,;1]$ et tout $x\in B(\lambda a+(1-\lambda)b,\alpha)$ on a $x=(\lambda a+(1-\lambda)b)+\alpha u$ avec $u\in B(0,1)$. $a'=a+\alpha u\in B(a,\alpha)\subset A$ et $b'=b+\alpha u\in B(b,\alpha)\subset A$ donc $[a'\,;b']\subset A$ puisque A est convexe donc $\lambda a'+(1-\lambda)b'=x\in A$. Ainsi $B(\lambda a+(1-\lambda)b,\alpha)\subset A$ et donc $\lambda a+(1-\lambda)b\in A^{\circ}$. Finalement A° est convexe.

Exercice 23: [énoncé]

 $A \subset \overline{A}, B \subset \overline{B} \text{ donc } d(\overline{A}, \overline{B}) \leq d(A, B).$

Pour tout $x \in \overline{A}$ et $y \in \overline{B}$, il existe $(a_n) \in A^{\mathbb{N}}$ et $(b_n) \in B^{\mathbb{N}}$ telles que $a_n \to x$ et $b_n \to y$.

On a alors $d(x,y) = \lim_{n \to +\infty} d(a_n,b_n)$ or $d(a_n,b_n) \ge d(A,B)$ donc à la limite $d(x,y) \ge d(A,B)$ puis $d(\overline{A},\overline{B}) \ge d(A,B)$ et finalement l'égalité.

Exercice 24: [énoncé]

- (a) $\bigcup_{i=1}^{n} \overline{A_i}$ est un fermé qui contient $\bigcup_{i=1}^{n} A_i$ donc $\overline{\bigcup_{i=1}^{n} A_i} \subset \bigcup_{i=1}^{n} \overline{A_i}$. Pour tout $j \in \{1, \dots, n\}$, $A_j \subset \overline{\bigcup_{i=1}^{n} A_i}$ et $\overline{\bigcup_{i=1}^{n} A_i}$ est fermé donc $\overline{A_j} \subset \overline{\bigcup_{i=1}^{n} A_i}$ puis $\overline{\bigcup_{i=1}^{n} \overline{A_i}} \subset \overline{\bigcup_{i=1}^{n} A_i}$.
- (b) $\bigcap_{i=1}^{n} \overline{A_i}$ est un fermé qui contient $\bigcap_{i=1}^{n} A_i$ donc $\overline{\bigcap_{i=1}^{n} A_i} \subset \underline{\bigcap_{i=1}^{n} \overline{A_i}}$. Il ne peut y avoir égalité : pour $A_1 = \mathbb{Q}$, $A_2 = \mathbb{R} \setminus \mathbb{Q}$ on a $\overline{A_1 \cap A_2} = \emptyset$ et $\overline{A_1} \cap \overline{A_2} = \mathbb{R}$.

Exercice 25 : [énoncé]

Pour tout $x \in A$, $x \in \overline{A}$ et donc $|f(x)| \leq ||f||_{\infty,\overline{A}}$. Ainsi

$$||f||_{\infty,A} \le ||f||_{\infty,\overline{A}}.$$

Soit $x \in \overline{A}$, il existe $(u_n) \in A^{\mathbb{N}}$ tel que $u_n \to x$ et alors $f(u_n) \to f(x)$ par continuité de f. Or $|f(u_n)| \le ||f||_{\infty,A}$ donc à la limite $|f(x)| \le ||f||_{\infty,A}$ puis

$$||f||_{\infty,\overline{A}} \leq ||f||_{\infty,A}$$

Exercice 26: [énoncé]

- (a) Si A est fermée alors $\overline{A} = A$ donc $\operatorname{Fr} A = A \setminus A^{\circ} \subset A$. Inversement, si $\operatorname{Fr}(A) = \overline{A} \setminus A^{\circ} \subset A$ alors puisque $A^{\circ} \subset A$ on a $\overline{A} \subset A$. En effet, pour $x \in \overline{A}$, si $x \in A^{\circ}$ alors $x \in A$ et sinon $x \in \operatorname{Fr} A$ et donc $x \in A$. Puisque de plus $A \subset \overline{A}$, on en déduit $A = \overline{A}$ et donc \overline{A} est fermé.
- (b) A est un ouvert si, et seulement si, $C_E A$ est un fermé i.e. si, et seulement si, $Fr(C_E A) \subset C_E A$. Or $Fr(C_E A) = Fr A$ donc A est un ouvert si, et seulement si, $Fr A \cap A = \emptyset$.

Exercice 27: [énoncé]

(a) Une matrice de \mathcal{R} est annulée par un polynôme de la forme X^n-1 dont les racines sont de module 1. Puisque les valeurs propres figurent parmi les racines des polynômes annulateurs

$$\mathcal{R} \subset \mathcal{U}$$
.

(b) Une matrice $M \in \mathcal{M}_2(\mathbb{C})$ admet deux valeurs propres comptées avec multiplicité λ, μ . Celles-ci sont déterminées comme les solutions du système

$$\begin{cases} \lambda + \mu = \operatorname{tr} M \\ \lambda \mu = \det M. \end{cases}$$

Pour alléger les notations, posons $p = (\operatorname{tr} M)/2$ et $q = \det M$. Les valeurs propres λ et μ sont les deux racines du polynôme

$$X^2 - pX + q$$

et en posant $\delta \in \mathbb{C}$ tel que $\delta^2 = p^2 - q$, ces racines sont

$$\lambda = p + \delta$$
 et $\mu = p - \delta$

de sorte que

$$|\lambda|^2 = |p|^2 + |\delta|^2 + 2\operatorname{Re}(\overline{p}\delta) \text{ et}$$

$$|\mu|^2 = |p|^2 + |\delta|^2 - 2\operatorname{Re}(\overline{p}\delta).$$

On en déduit que la fonction f qui à $M\in\mathcal{M}_2(\mathbb{C})$ associe le réel

$$(|\lambda|^2 - 1)^2 + (|\mu|^2 - 1)^2 = (|\lambda|^2 + |\mu|^2)^2 - 2(|\lambda|^2 + |\mu|^2 + |\lambda\mu|^2 - 1)$$

s'exprime par opérations à partir de $\operatorname{tr} M$ et $\det M$ sous la forme d'une fonction continue.

Puisque $\mathcal{U} = f^{-1}(\{0\})$ avec $\{0\}$ fermé, \mathcal{U} est une partie fermée de $\mathcal{M}_2(\mathbb{C})$.

(c) Soit $M \in \mathcal{U}$. La matrice M est trigonalisable et donc il existe $P \in GL_2(\mathbb{C})$ et $T \in \mathcal{T}_2^+(\mathbb{C})$ telle que

$$M = PTP^{-1}$$
 avec $T = \begin{pmatrix} \lambda & \nu \\ 0 & \mu \end{pmatrix}, |\lambda| = |\mu| = 1.$

On peut écrire $\lambda = e^{i\alpha}$ et $\mu = e^{i\beta}$ avec $\alpha, \beta \in \mathbb{R}$. Pour $n \in \mathbb{N}^*$, posons

$$\alpha_n = 2\pi \frac{\lfloor n\alpha/2\pi \rfloor}{n}$$
 et $\beta_n = 2\pi \frac{\lfloor n\beta/2\pi \rfloor + 1}{n}$

et considérons la matrice

$$M_n = PT_nP^{-1}$$
 avec $T_n = \begin{pmatrix} e^{i\alpha_n} & \nu \\ 0 & e^{i\beta_n} \end{pmatrix}$.

Par construction,

$$e^{i\alpha_n} \neq e^{i\beta_n}$$

au moins pour n assez grand et ce même lorsque $\alpha = \beta$.

On en déduit que pour ces valeurs de n la matrice T_n est diagonalisable.

De plus, puisque

$$\left(e^{i\alpha_n}\right)^n = \left(e^{i\beta_n}\right)^n = 1$$

on a alors $T_n^n = I_2$ et donc $M_n \in \mathcal{R}$.

Enfin, on a évidemment $M_n \to M$.

(d) \mathcal{U} est un fermé contenant \mathcal{R} donc $\overline{\mathcal{R}} \subset \mathcal{U}$ et par double inclusion $\overline{\mathcal{R}} = \mathcal{U}$.

Exercice 28: [énoncé]

Soit $A \in R_p$. La matrice A possède un déterminant extrait non nul d'ordre p. Par continuité du déterminant, au voisinage de A, toute matrice à ce même déterminant extrait non nul et est donc de rang supérieur à p. Ainsi la matrice A est intérieure à R_p .

Exercice 29: [énoncé]

Si u est continue alors

$$A = \{x \in E \mid ||u(x)|| = 1\} = f^{-1}(\{1\})$$

est l'image réciproque du fermé $\{1\}$ par l'application continue $f = \|\cdot\| \circ u$. La partie A est donc un fermé relatif à E, c'est donc une partie fermée.

Inversement, si u n'est pas continu alors l'application u n'est par bornée sur $\{x \in E \mid ||x|| = 1\}$. Cela permet de construire une suite $(x_n) \in E^{\mathbb{N}}$ vérifiant

$$||x_n|| = 1$$
 et $||u(x_n)|| > n$.

En posant

$$y_n = \frac{1}{\|u(x_n)\|} x_n$$

on obtient une suite $(y_n) \in A^{\mathbb{N}}$ vérifiant $y_n \to 0$. Or $0 \notin A$ donc la partie A n'est pas fermée.

Exercice 30: [énoncé]

(a) Notons

$$A = \{ x \in [0; 1] \mid f(x) = x \}.$$

On a évidemment $A \subset \operatorname{Im} f$, mais inversement, pour $x \in \operatorname{Im} f$, on peut écrire x = f(a) et alors

$$f(x) = f(f(a)) = f(a) = x.$$

Ainsi Im $f \subset A$, puis, par double inclusion, A = Im f.

On en déduit que A est un segment de \mathbb{R} de la forme $[\alpha; \beta]$ car image d'un compact par une fonction réelle continue.

- (b) Une fonction f d'allure suivante convient
- (c) Soit f solution dérivable.

Si $\alpha = \beta$ alors f est constante égale à cette valeur commune.

Si $\alpha < \beta$ alors $f'(\alpha) = f'_d(\alpha) = 1$ car f(x) = x sur $[\alpha; \beta]$.

Par suite, si $\alpha > 0$, f prend des valeurs strictement inférieur à α ce qui est contradictoire avec l'étude qui précède. On en déduit $\alpha = 0$.

De même on obtient $\beta = 1$ et on conclut $f: x \in [0; 1] \mapsto x$.

Exercice 31 : [énoncé]

(a) Soit f solution. Formons

$$A = \{ x \in [0; 1] \mid f(x) = x \}.$$

On a évidemment $A \subset \operatorname{Im} f$, mais inversement, pour $x \in \operatorname{Im} f$, on peut écrire x = f(a) et alors

$$f(x) = f(f(a)) = f(a) = x.$$

Ainsi Im $f \subset A$, puis, par double inclusion, $A = \operatorname{Im} f$

On en déduit que A est un segment de $\mathbb R$ de la forme $[\alpha;\beta]$ car c'est l'image d'un segment par une fonction réelle continue.

Pour tout $x \in [\alpha; \beta]$, f(x) = x et pour tout $x \in [0; \alpha[\cup]\beta; 1]$, $f(x) \in [\alpha; \beta]$. Inversement, une fonction continue vérifiant les deux conditions précédente est solution.

Cela peut apparaître sous la forme d'une fonction ayant l'allure suivante

(b) Soit f solution dérivable.

Si $\alpha = \beta$ alors f est constante égale à cette valeur commune.

Si $\alpha < \beta$ alors $f'(\alpha) = f'_d(\alpha) = 1$ car f(x) = x sur $[\alpha; \beta]$.

Par suite, si $\alpha > 0$, f prend des valeurs strictement inférieur à α ce qui est contradictoire avec l'étude qui précède. On en déduit $\alpha = 0$.

De même on obtient $\beta = 1$ et on conclut $f: x \in [0; 1] \mapsto x$.

Exercice 32: [énoncé]

(a) Par télescopage

$$\left(\sum_{k=0}^{n} u^{k}\right) \circ (u - \mathrm{Id}) = u^{n+1} - \mathrm{Id}$$

donc

$$v_n \circ (u - \mathrm{Id}) = \frac{1}{(n+1)} (u^{n+1} - \mathrm{Id}).$$

(b) Soit $x \in \text{Im}(u - \text{Id}) \cap \text{Ker}(u - \text{Id})$. On peut écrire x = u(a) - a et on a u(x) = x.

On en déduit

$$v_n \circ (u - \operatorname{Id})(a) = x.$$

Or

$$v_n \circ (u - \mathrm{Id})(a) = \frac{1}{n+1} (u^{n+1}(a) - a) \to 0$$

car

$$||u^{n+1}(a) - a|| \le ||u^{n+1}(a)|| + ||a|| \le 2||a||.$$

On en déduit x = 0.

(c) Par la formule du rang

$$\dim \operatorname{Im}(u - \operatorname{Id}) + \dim \operatorname{Ker}(u - \operatorname{Id}) = \dim E$$

et puisque les deux espaces sont en somme directe, ils sont supplémentaires.

(d) Soit $z \in E$. On peut écrire z = x + y avec $x \in \text{Im}(u - \text{Id})$ et $y \in \text{Ker}(u - \text{Id})$. On a alors $v_n(z) = v_n(x) + y$ avec, comme dans l'étude du b), $v_n(x) \to 0$. On en déduit $v_n(z) \to y$.

Ainsi la suite de fonctions (v_n) converge simplement vers la projection p sur Ker(u - Id) parallèlement à Im(u - Id).

Puisque pour tout $x \in E$, on a

$$||v_n(x)|| \le \frac{1}{n+1} \sum_{k=0}^n ||u^k(x)|| \le \frac{1}{n+1} \sum_{k=0}^n ||x|| = ||x||$$

on obtient à la limite $||p(x)|| \le ||x||$. On en déduit que la projection p est continue puis que Im(u - Id) = Ker p est une partie fermée.

(e) Supposons la convergence simple de la suite de fonctions (v_n) et la fermeture de Im(u - Id).

Soit $z \in E$. Posons $y = \lim_{n \to +\infty} v_n(z)$ et x = z - y.

D'une part, puisque

$$u(v_n(z)) = \frac{1}{n+1} \sum_{k=0}^{n} u^{k+1}(z) = v_n(z) + \frac{1}{n+1} (u^{n+1}(z) - z)$$

on obtient à la limite

$$u(y) = y$$

car l'application linéaire u est continue et $\|u^{n+1}(z)\| \le \|z\|$. On en déduit $y \in \text{Ker}(u-\text{Id})$.

D'autre part

$$z - v_n(z) = \frac{1}{n+1} \left(\sum_{k=0}^n (\text{Id} - u^k)(z) \right)$$

 $_{
m et}$

$$\operatorname{Im}(\operatorname{Id} - u^k) = \operatorname{Im}\left((\operatorname{Id} - u) \circ \sum_{\ell=0}^{k-1} u^{\ell-1}\right) \subset \operatorname{Im}(\operatorname{Id} - u) = \operatorname{Im}(u - \operatorname{Id})$$

donc $z-v_n(z)\in \text{Im}(u-\text{Id})$. On en déduit $x=\lim(z-v_n(z))\in \text{Im}(u-\text{Id})$ car Im(u-Id) est fermé.

Finalement, on a écrit z = x + y avec

$$x \in \text{Im}(u - \text{Id}) \text{ et } y \in \text{Ker}(u - \text{Id}).$$

Exercice 33: [énoncé]

Soit $P \in O_n$. En notant $x_1 < \ldots < x_n$ ses racines, on peut écrire

$$P = \alpha(X - x_1) \dots (X - x_n)$$

avec $\alpha \neq 0$.

Posons y_1, \ldots, y_{n-1} les milieux des segments $[x_1; x_2], \ldots, [x_{n-1}; x_n]$.

Posons aussi $y_0 \in]-\infty; x_1[$ et $y_n \in]x_n; +\infty[$.

 $P(y_0)$ est du signe de $(-1)^n \alpha$, $P(y_1)$ est du signe de $(-1)^{n-1} \alpha, \ldots, P(y_{n-1})$ est du signe de $(-1)\alpha$, $P(y_n)$ du signe de α . Pour simplifier l'exposé de ce qui suit, on va supposer $\alpha > 0$. La résolution se transposera aisément au cas $\alpha < 0$. Considérons l'application

$$f_i \colon Q \in \mathbb{R}_n[X] \mapsto Q(y_i).$$

L'application f_i est continue et donc $f_j^{-1}(\mathbb{R}_+^*)$ et $f_j^{-1}(\mathbb{R}_-^*)$ sont des parties ouvertes de $\mathbb{R}_n[X]$.

Considérons U l'intersection des ouverts

$$f_0^{-1}((-1)^n\mathbb{R}_+^*), f_1^{-2}((-1)^{n-1}\mathbb{R}_+^*), \dots, f_n^{-1}(\mathbb{R}_+^*).$$

Les éléments de U sont des polynômes réels alternant de signe entre $y_0 < y_1 < \ldots < y_n$. Par application du théorème des valeurs intermédiaires, un tel polynôme admet n racines distinctes et donc est scindé à racines simples. Ainsi $U \subset O_n$. Or $P \in U$ et U est ouvert donc U est voisinage de P puis O_n est voisinage de P.

Au final O_n est ouvert car voisinage de chacun de ses éléments.

Dans le cas n = 1: $F_n = O_n$ et donc F_n est ouvert.

Dans le cas n=2: F_n réunit les polynômes $P=aX^2+bX+c$ avec $b^2-4ac>0$ (que a soit égal à 0 ou non). L'application $P\mapsto b^2-4ac$ étant continue, on peut affirmer que F_n est encore ouvert car image réciproque d'un ouvert pas une application continue.

Dans le cas $n \ge 3$: $P_n = X(1 + X^2/n)$ est une suite de polynômes non scindés convergeant vers X scindé à racines simples. Par suite F_n n'est pas ouvert.

Exercice 34: [énoncé]

Par l'absurde, supposons f discontinue en $a \in \mathbb{R}$. On peut alors construire une suite (x_n) vérifiant

$$x_n \to a \text{ et } \forall n \in \mathbb{N}, |f(x_n) - f(a)| \ge \varepsilon$$

avec $\varepsilon > 0$ fixé.

Soit $n \in \mathbb{N}$, puisque $f([a; x_n])$ est un segment contenant f(a) et $f(x_n)$, il contient aussi l'intermédiaire $f(a) \pm \varepsilon$ (le \pm étant déterminé par la position relative de $f(x_n)$ par rapport à f(a)). Il existe donc a_n compris entre a et x_n vérifiant

$$|f(a_n) - f(a)| = \varepsilon.$$

La suite (a_n) évolue dans le fermé $f^{-1}(\{f(a) + \varepsilon\}) \cup f^{-1}(\{f(a) - \varepsilon\})$ et converge vers a donc $a \in f^{-1}(\{f(a) + \varepsilon\}) \cup f^{-1}(\{f(a) - \varepsilon\})$ ce qui est absurde.

Exercice 35: [énoncé]

Considérons l'application $\varphi \colon \mathcal{L}(E) \to \mathcal{L}(E)$ déterminée par $\varphi(f) = f^2 - f$. L'application φ est continue par opérations sur les fonctions continues, notamment parce que l'application $f \mapsto f \circ f$ est continue (elle s'obtient à partir du produit dans l'algèbre $\mathcal{L}(E)$).

Puisque $\{\tilde{0}\}$ est une partie fermée de $\mathcal{L}(E)$, l'ensemble $\mathcal{P} = \varphi^{-1}(\{\tilde{0}\})$ est un fermé relatif à $\mathcal{L}(E)$, donc un fermé de $\mathcal{L}(E)$.

Exercice 36: [énoncé]

L'application $\lambda \mapsto \det(A - \lambda I_n)$ est polynomiale non nulle en λ donc possède un nombre fini de racine.

Par suite : $\forall A \in \mathcal{M}_n(\mathbb{R}), \forall \alpha > 0, B(A, \alpha) \cap \operatorname{GL}_n(\mathbb{R}) \neq \emptyset$.

Exercice 37: [énoncé]

(a) Soient $u, v \in \overline{F}$ et $\lambda, \mu \in \mathbb{R}$. Il existe $(u_n), (v_n) \in F^{\mathbb{N}}$ telles que $u_n \to u$ et $v_n \to v$.

Comme $\lambda u_n + \mu v_n \to \lambda u + \mu v$ et $\lambda u_n + \mu v_n \in F$ on a $\lambda u + \mu v \in \overline{F}$.

(b) Soit H un hyperplan de E.

Si $\overline{H} = H$ alors H est fermé.

Sinon alors \overline{H} est un sous-espace vectoriel de E, contenant H et distinct de H.

Puisque H est un hyperplan $\exists a \notin H$ tel que $H \oplus \operatorname{Vect}(a) = E$. Soit $x \in \overline{H} \setminus H$. On peut écrire $x = h + \lambda a$ avec $h \in H$ et $\lambda \neq 0$. Par opération $a \in \overline{H}$ et puisque $H \subset \overline{H}$ on obtient $E \subset \overline{H}$. Finalement $\overline{H} = E$ et donc H est dense.

Exercice 38 : [énoncé]

(a) Pour tout $a \in E$ et tout $\varepsilon > 0$, $B(a, \varepsilon) \cap U \neq \emptyset$ car U est dense. Soit $x \in B(a, \varepsilon) \cap U$. Puisque $B(a, \varepsilon) \cap U$ est ouvert, il existe $\alpha > 0$ tel que $B(x, \alpha) \subset B(a, \varepsilon) \cap U$ et puisque V est dense $B(x, \alpha) \cap V \neq \emptyset$. Par suite

$$B(a,\varepsilon)\cap (U\cap V)\neq \emptyset.$$

(b) Soient F et G deux fermés d'intérieurs vides.

$$C_E(F \cup G)^{\circ} = \overline{C_E(F \cup G)} = \overline{C_EF \cap C_EG}$$

avec $C_E F$ et $C_E G$ ouverts denses donc

$$\overline{C_EF \cap C_EG} = E$$

puis

$$(F \cup G)^{\circ} = \emptyset.$$

Exercice 39 : [énoncé]

(a) Posons

$$A = \{ n \ge n_0 \mid a \ge u_n \}$$

A est une partie de \mathbb{N} , non vide car $n_0 \in A$ et majorée car $u_n \to +\infty$. La partie A admet donc un plus grand élément $n \geq n_0$ et pour celui-ci $u_n \leq a < u_{n+1}$.

Par suite $|u_n - a| \le |u_{n+1} - u_n| \le \varepsilon$ car $n \ge n_0$.

(b) Soient $x \in \mathbb{R}$ et $\varepsilon > 0$.

Puisque $u_{n+1} - u_n \to 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|u_{n+1} - u_n| \le \varepsilon$.

Puisque $v_n \to +\infty$, il existe $p \in \mathbb{N}$ tel que $x + v_p \ge u_{n_0}$.

Par l'étude précédente, il existe $n \in \mathbb{N}$ tel que $|u_n - (x + v_p)| \le \varepsilon$ i.e.

 $\left| (u_n - v_p) - x \right| \le \varepsilon.$

Par suite l'ensemble $\{u_n - v_p \mid n, p \in \mathbb{N}\}$ est dense dans \mathbb{R} .

(c) Remarquons que

$$A = \left\{ \cos(\ln n) \mid n \in \mathbb{N}^* \right\} = \left\{ \cos(\ln(n+1) - 2p\pi) \mid n, p \in \mathbb{N} \right\}.$$

Posons $u_n = \ln(n+1)$ et $v_n = 2n\pi$. Les hypothèses précédentes sont réunies et donc

$$B = \{u_n - v_p \mid n, p \in \mathbb{N}\} = \{\ln(n+1) - 2p\pi \mid n, p \in \mathbb{N}\}\$$

est dense dans \mathbb{R} .

Soient $x \in [-1; 1]$ et $\theta = \arccos x$.

Par densité, il existe une suite (θ_n) d'éléments de B convergeant vers θ et, par continuité de la fonction cosinus, la suite (x_n) de terme général $x_n = \cos(\theta_n)$ converge vers $x = \cos\theta$.

Or cette suite (x_n) est une suite d'éléments de $\cos(B) = A$ et donc A est dense dans [-1;1].

Exercice 40 : [énoncé]

Soient $x \in \mathbb{R}$ et $\varepsilon > 0$.

Il existe $n_0 \in \mathbb{N}^*$ tel que $1/n_0 \leq \varepsilon$.

Pour $a \ge \ln n_0$ et $n = E(e^a) \ge n_0$, on a $\ln n \le a \le \ln(n+1)$.

On en déduit

$$|a - \ln n| \le \ln(n+1) - \ln n = \ln(1+1/n) \le 1/n \le 1/n_0 \le \varepsilon.$$

Puisque $m-x \xrightarrow[m \to +\infty]{} +\infty$, pour m assez grand, on a $a=m-x \ge \ln n_0$ et donc il existe $n \in \mathbb{N}^*$ vérifiant $|a-\ln n| \le \varepsilon$ i.e.

$$|m - \ln n - x| \le \varepsilon.$$

Par suite $\{m - \ln n \mid (m, n) \in \mathbb{Z} \times \mathbb{N}^*\}$ est dense dans \mathbb{R} .

Exercice 41 : [énoncé]

- (a) Il existe $h \in H$ tel que $h \neq 0$ car H n'est pas réduit à $\{0\}$. Si h > 0 alors $h \in \{x \in H \mid x > 0\}$. Si h < 0 alors $-h \in \{x \in H \mid x > 0\}$. Dans les deux cas $\{x \in H \mid x > 0\} \neq \emptyset$. De plus $\{x \in H \mid x > 0\} \subset \mathbb{R}$ et $\{x \in H \mid x > 0\}$ est minoré par 0 donc $a = \inf\{x \in H \mid x > 0\}$ existe dans \mathbb{R} .
- (b) On suppose a > 0.

Si $a \notin H$ alors il existe $x, y \in H$ tel que a < x < y < 2a et alors y - x est élément de H et vérifie 0 < y - x < a ce qui contredit la définition de a. C'est absurde.

 $a \in H \text{ donc } a\mathbb{Z} = \langle a \rangle \subset H.$

Inversement, soit $x \in H$. On peut écrire x = aq + r avec $q \in \mathbb{Z}$, $r \in [0; a[$ (en fait q = E(x/a) et r = x - aq)

Puisque r = x - aq avec $x \in H$ et $aq \in a\mathbb{Z} \subset H$ on a $r \in H$.

Si r > 0 alors $r \in \{x \in H \mid x > 0\}$ et r < a contredit la définition de a.

Il reste r=0 et donc x=aq. Ainsi $H\subset a\mathbb{Z}$ puis l'égalité.

(c) Puisque $\inf\{x \in H \mid x > 0\} = 0$, on peut affirmer que pour tout $\alpha > 0$, il existe $x \in H$ tel que $0 < x < \alpha$.

Soient $a \in \mathbb{R}$ et $\alpha > 0$. Montrons $H \cap B(a, \alpha) \neq \emptyset$ i.e. $H \cap]a - \alpha$; $a + \alpha[\neq \emptyset]$ Il existe $x \in H$ tel que $0 < x < \alpha$. Posons n = E(a/x). On a a = nx + r avec $0 < r < \alpha$.

 $nx \in \langle x \rangle \subset H$ et $|a - nx| = r \langle \alpha \text{ donc } nx \in H \cap B(a, \alpha)$ et donc $H \cap B(a, \alpha) \neq \emptyset$.

Ainsi H est dense dans \mathbb{R} .

Exercice 42 : [énoncé]

(a) On a

$$\begin{aligned} \left\{ \cos(n) \mid n \in \mathbb{N} \right\} &= \left\{ \cos(n) \mid n \in \mathbb{Z} \right\} \\ &= \left\{ \cos(n + 2k\pi) \mid n, k \in \mathbb{Z} \right\} \\ &= \cos(\mathbb{Z} + 2\pi\mathbb{Z}). \end{aligned}$$

Puisque $\mathbb{Z}+2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R},+)$ et c'est un sous-groupe dense car il n'est pas monogène puisque π n'est pas rationnel; c'est en effet un résultat classique bien que en dehors du programme, les sous-groupes de $(\mathbb{R},+)$ sont monogènes ou denses.

Pour tout $x \in [-1; 1]$, il existe $\theta \in [0; \pi]$ tel que $\cos \theta = x$ et puisque $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} , il existe une suite d'éléments $\mathbb{Z} + 2\pi\mathbb{Z}$ convergeant vers θ . L'image de cette suite par la fonction continue cosinus détermine une suite d'élément de $\{\cos(n) \mid n \in \mathbb{N}\}$ convergeant vers x.

(b) En notant que les 2^p avec $p \in \mathbb{N}$ sont des naturels non nuls, on observe

$$\left\{\cos(p\ln 2) \mid p \in \mathbb{N}\right\} \subset \left\{\cos(\ln n) \mid n \in \mathbb{N}^*\right\}.$$

Ainsi

$$\cos(\ln 2.\mathbb{Z} + 2\pi\mathbb{Z}) \subset \{\cos(\ln n) \mid n \in \mathbb{N}^*\}.$$

Si π et $\ln 2$ ne sont pas commensurables, on peut conclure en adaptant la démarche précédente. Si en revanche π et $\ln 2$ sont commensurables (ce qui est douteux...), on reprend l'idée précédente avec $\ln 3$ au lieu de $\ln 2$... Assurément π et $\ln 3$ ne sont pas commensurables car s'ils l'étaient, $\ln 2$ et $\ln 3$ le seraient aussi ce qui signifie qu'il existe $p,q\in \mathbb{N}^*$ tels que $p\ln 2=q\ln 3$ soit encore $2^p=3^q$ ce qui est faux!

Exercice 43: [énoncé]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. La matrice A est trigonalisable donc il existe P inversible telle que $P^{-1}AP = T$ avec T triangulaire supérieure. Posons alors $T_p = T + \mathrm{diag}(1/p, 2/p, \ldots, n/p)$ et $A_p = PT_pP^{-1}$. Il est immédiat que $T_p \to T$ quand $p \to +\infty$ et donc $A_p \to A$. De plus, pour p assez grand, la matrice T_p est triangulaire supérieure à coefficients diagonaux deux à deux distincts, cette matrice admet donc n valeurs propres et est donc diagonalisable. Il en est de même pour A_p qui lui est semblable. Ainsi toute matrice de $M_n(\mathbb{C})$ est limite d'une suite de matrices diagonalisables.

Exercice 44: [énoncé]

(a) Soit u une suite sommable. On a

$$\sum_{n=N+1}^{+\infty} |u_n| \to 0$$

donc pour tout $\alpha > 0$, il existe N tel que

$$\sum_{n=N+1}^{+\infty} |u_n| < \alpha.$$

Considérons alors v définie par $v_n = u_n$ si $n \le N$ et $v_n = 0$ sinon. On a $v \in \mathbb{R}^{(\mathbb{N})}$ et $||v - u||_1 < \alpha$ donc $B(u, \alpha) \cap \mathbb{R}^{(\mathbb{N})} \neq \emptyset$.

(b) Non, en notant u la suite constante égale à $1, B_{\infty}(u, 1/2) \cap \mathbb{R}^{(\mathbb{N})} = \emptyset$.

Exercice 45: [énoncé]

Soit f une fonction élément de E. Pour tout $\varepsilon > 0$, il existe un réel A vérifiant

$$\int_{A}^{+\infty} f^{2}(t) \, \mathrm{d}t \le \varepsilon.$$

Considérons alors la fonction $\varphi \colon [0; +\infty[\to \mathbb{R} \text{ définie par } \varphi(t) = 1 \text{ pour } t \in [0; A],$ $\varphi(t) = 0 \text{ pour } t \geq A+1 \text{ et } \varphi(t) = 1-(t-A) \text{ pour } t \in [A; A+1].$ La fonction $f\varphi$ est éléments de E_0 et

$$||f - f\varphi||_2 \le \sqrt{\int_A^{+\infty} f^2(t) dt} \le \varepsilon.$$

Ainsi E_0 est dense dans E.

Pour montrer maintenant que F est dense dans E, nous allons établir que F est dense dans E_0 .

Soit f une fonction élément de E_0 . Remarquons

$$\int_0^{+\infty} (f(t) - P(e^{-t})e^{-t^2/2})^2 dt = \int_0^1 (f(-\ln u)e^{(\ln u)^2/2} - P(u))^2 \frac{e^{-(\ln u)^2}}{u} du.$$

La fonction $u \mapsto \frac{e^{-(\ln u)^2}}{u}$ est intégrable sur]0;1] car $\sqrt{u} \frac{e^{-(\ln u)^2}}{u} \xrightarrow[u \to 0]{} 0.$

La fonction $g: u \mapsto f(-\ln u) \mathrm{e}^{(\ln u)^2/2}$ peut-être prolongée par continuité en 0 car f est nulle en dehors d'un segment. Par le théorème de Weierstrass, pour tout $\varepsilon > 0$, il existe un polynôme $P \in \mathbb{R}[X]$ vérifiant $\|g - P\|_{\infty,[0;1]} \le \varepsilon$ et pour $\varphi: t \mapsto P(\mathrm{e}^{-t})\mathrm{e}^{-t^2/2}$ on a alors

$$||f - \varphi||_2 \le \lambda \varepsilon \text{ avec } \lambda = \sqrt{\int_0^1 \frac{e^{-(\ln u)^2}}{u} du}.$$

Cela permet de conclure à la densité proposée.

Exercice 46: [énoncé]

Par l'absurde supposons $A \neq E$.

Il existe un élément $a \in E$ tel que $a \notin A$. Par translation du problème, on peut supposer a = 0.

Posons $n = \dim E$.

Si Vect(A) est de dimension strictement inférieure à n alors A est inclus dans un hyperplan de E et son adhérence aussi. C'est absurde car cela contredit la densité de A.

Si $\operatorname{Vect}(A)$ est de dimension n, on peut alors considérer (e_1, \ldots, e_n) une base de E formée d'éléments de A.

Puisque $0 \notin A$, pour tout $x \in A$, on remarque : $\forall \lambda \in \mathbb{R}_{-}, -\lambda x \notin A$ (car sinon, par convexité, $0 \in A$).

Par convexité de $A: \forall \lambda_1, \dots, \lambda_n \geq 0, \lambda_1 + \dots + \lambda_n = 1 \implies \lambda_1 e_1 + \dots + \lambda_n e_n \in A$ et donc:

 $\forall \lambda \in \mathbb{R}_{-}, \forall \lambda_{1}, \dots, \lambda_{n} \geq 0, \lambda_{1} + \dots + \lambda_{n} = 1 \implies \lambda(\lambda_{1}e_{1} + \dots + \lambda_{n}e_{n}) \notin A.$ Ainsi $\forall \mu_{1}, \dots, \mu_{n} \leq 0, \mu_{1}e_{1} + \dots + \mu_{n}e_{n} \notin A.$

Or la partie $\{\mu_1 e_1 + \dots + \mu_n e_n \mid \mu_i < 0\}$ est un ouvert non vide de A et donc aucun de ses éléments n'est adhérent à A. Cela contredit la densité de A.

Exercice 47: [énoncé]

Soient $a < b \in A$.

Puisque $a, b \in A$, $\frac{a+b}{2} \in A$, puis $\frac{3a+b}{4} = \frac{a+(a+b)/2}{2} \in A$ et $\frac{a+3b}{4} \in A$ etc.

Par récurrence sur $n \in \mathbb{N}$, montrons $\forall k \in \{0, \dots, 2^n\}, \frac{ka + (2^n - k)b}{2^n} \in A$. La propriété est immédiate pour n = 0.

Supposons la propriété vraie au rang $n \geq 0$.

Soit $k \in \{0, \dots, 2^{n+1}\}$.

 $\operatorname{Cas} k \operatorname{pair}$:

k=2k' avec $k'\in\left\{0,\ldots,2^n\right\}$ et $\frac{ka+(2^{n+1}-k)b}{2^{n+1}}=\frac{k'a+(2^n-k')b}{2^n}\in A$ en vertu de l'hypothèse de récurrence.

 $\operatorname{Cas} k \text{ impair}:$

 $k = 2k' + 1 \text{ avec } k' \in \{0, \dots, 2^n - 1\} \text{ et}$

$$\frac{ka + (2^{n+1} - k)b}{2^{n+1}} = \frac{1}{2} \left(\frac{k'a + (2^n - k')b}{2^n} + \frac{(k'+1)a + (2^n - (k'+1))b}{2^n} \right) \in A$$

car par hypothèse de récurrence

$$\frac{k'a + (2^n - k')b}{2^n}, \frac{(k'+1)a + (2^n - (k'+1))b}{2^n} \in A.$$

La récurrence est établie.

Soit $x \in [\inf A; \sup A[$.

Il existe $a, b \in A$ tel que $x \in [a; b]$ ce qui permet d'écrire $x = \lambda a + (1 - \lambda)b$.

Soit $k_n = E(2^n \lambda)$ et $x_n = \frac{k_n a + (2^n - k_n)b}{2^n}$.

On vérifie aisément que $x_n \to x$ car $2^n k \to \lambda$ et pour tout $n \in \mathbb{N}$ $x_n \in A$ Ainsi A est dense dans]inf A; sup A[.

Exercice 48: [énoncé]

Considérons l'ensemble $B = \ln A = {\ln a \mid a \in A}.$

Pour tout $x, y \in B$, $\frac{x+y}{2} = \frac{\ln a + \ln b}{2} = \ln \sqrt{ab} \in B$.

En raisonnant par récurrence, on montre que pour tout $x, y \in B$, on a la propriété

$$\forall n \in \mathbb{N}, \forall k \in \left\{0, \dots, 2^n\right\}, \frac{kx + (2^n - k)y}{2^n} \in B.$$

Soit $x \in]\inf A$; sup A[. Il existe $a, b \in A$ tels que a < x < b.

On a alors $\ln a < \ln x < \ln b$ avec $\ln a, \ln b \in B$

On peut écrire $\ln x = \lambda \ln a + (1 - \lambda) \ln b$ avec $\lambda \in]0;1[$.

Posons alors k_n la partie entière de $\lambda 2^n$ et $x_n = \exp\left(\frac{k_n}{2^n} \ln a + \left(1 - \frac{k_n}{2^n}\right) \ln b\right)$

Il est immédiat que $x_n \to x$ avec pour tout $n \in \mathbb{N}$, $x_n \in A$.

Si, dans cette suite, il existe une infinité d'irrationnels, alors x est limite d'une suite d'éléments de $A \cap (\mathbb{R} \setminus \mathbb{Q})$.

Sinon, à partir d'un certain rang, les termes de la suite x_n sont tous rationnels. Le rapport x_{n+1}/x_n est alors aussi rationnel; mais

$$\frac{x_{n+1}}{x_n} = \left(\frac{a}{b}\right)^{\frac{k_{n+1}}{2^{n+1}} - \frac{k_n}{2^{n}}} \text{ avec } \frac{k_{n+1}}{2^{n+1}} - \frac{k_n}{2^n} = 0 \text{ ou } \frac{1}{2^{n+1}}.$$

S'il existe une infinité de n tels que $\frac{k_{n+1}}{2^{n+1}} - \frac{k_n}{2^n} = \frac{1}{2^{n+1}}$ alors il existe une infinité de $n \in \mathbb{N}$ tels que

$$\left(\frac{a}{b}\right)^{\frac{1}{2^n}} \in \mathbb{Q}$$

et puisque l'élévation au carré d'un rationnel est un rationnel, le nombre a/b est lui-même rationnel. Or les racines carrées itérés d'un rationnel différent de 1 sont irrationnelles à partir d'un certain rang.

Il y a absurdité et donc à parti d'un certain rang $k_{n+1} = 2k_n$. Considérons à la suite (x'_n) définie par

$$x'_{n} = \exp\left(\frac{k'_{n}}{2^{n}}\ln a + \left(1 - \frac{k'_{n}}{2^{n}}\right)\ln b\right) \text{ avec } k'_{n} = k_{n} + 1.$$

On obtient une suite d'éléments de A, convergeant vers x et qui, en vertu du raisonnement précédent, est formée d'irrationnels à partir d'un certain rang.

Exercice 49: [énoncé]

 $N_{\varphi} \colon E \to \mathbb{R}_{+}$ est bien définie et on vérifie immédiatement

$$N_{\varphi}(\lambda f) = |\lambda| N_{\varphi}(f) \text{ et } N_{\varphi}(f+g) \leq N_{\varphi}(f) + N_{\varphi}(g).$$

Il reste à étudier la véracité de l'implication

$$N_{\varphi}(f) = 0 \implies f = 0.$$

Supposons: $\varphi^{-1}(\mathbb{R}^*)$ dense dans [0;1].

Si $N_{\varphi}(f) = 0$ alors $f\varphi = 0$ et donc pour tout $x \in \varphi^{-1}(\mathbb{R}^*)$, on a f(x) = 0 car $\varphi(x) \neq 0$.

Puisque la fonction continue f est nulle sur la partie $\varphi^{-1}(\mathbb{R}^*)$ dense dans [0;1], cette fonction est nulle sur [0;1].

Supposons: $\varphi^{-1}(\mathbb{R}^*)$ non dense dans [0;1].

Puisque le complémentaire de l'adhérence est l'intérieur du complémentaire, la partie $\varphi^{-1}(\{0\})$ est d'intérieur non vide et donc il existe $a < b \in [0;1]$ tels que $[a;b] \subset \varphi^{-1}(\{0\})$.

Considérons la fonction f définie sur [0;1] par

$$f(x) = \begin{cases} (x-a)(b-x) & \text{si } x \in [a;b] \\ 0 & \text{sinon.} \end{cases}$$

Cette fonction f est continue sur [0;1], ce n'est pas la fonction nulle mais en revanche la fonction $f\varphi$ est la fonction nulle. Ainsi on a formé un élément f non nul de E tel que $N_{\varphi}(f) = 0$. On en déduit que N_{φ} n'est pas une norme.

Exercice 50: [énoncé]

Soit $[a;b] \subset [1;+\infty[$ avec a < b. Pour établir la densité de A, montrons que $A \cap [a;b]$ est non vide.

Considérons q > 1 tel que $qa \le b$.

Il existe $N \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, n \ge N \implies \frac{u_{n+1}}{u_n} \le q.$$

Considérons alors

$$E = \left\{ m \in \mathbb{N} \mid m > N \text{ et } \frac{u_m}{u_N} \le b \right\}$$

E est une partie de \mathbb{N} , non vide (car $N+1 \in E$) et majorée (car $u_n \to +\infty$). La partie E possède donc un plus grand élément M. Pour celui-ci, on a

$$\frac{u_M}{u_N} \le b \text{ et } \frac{u_{M+1}}{u_N} > b.$$

Or

$$u_{M+1} \le q u_M$$

donc

$$\frac{u_M}{u_N} > \frac{b}{q} \ge a.$$

Ainsi u_M/u_N est un élément de $A \cap [a;b]$.

Exercice 51: [énoncé]

Soient $x \in E$ et r > 0.

Puisque A est une partie dense, $B(a,r) \cap A \neq \emptyset$. On peut donc introduire $x \in B(a,r) \cap A$. Or par intersection d'ouverts, $B(a,r) \cap A$ est aussi une partie ouverte et donc il existe $\alpha > 0$ tel que $B(x,\alpha) \subset B(a,r) \cap A$. Puisque la partie B est dense, $B(x,\alpha) \cap B \neq \emptyset$ et finalement $B(a,r) \cap A \cap B \neq \emptyset$. On peut donc conclure que $A \cap B$ est une partie dense de E.

Exercice 52 : [énoncé]

Soit f une fonction solution.

On a
$$f(0+0) = f(0) + f(0)$$
 donc $f(0) = 0$

Par une récurrence facile

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(nx) = nf(x).$$

De plus, puisque f(-x+x) = f(-x) + f(x), on a f(-x) = -f(x). Par suite

$$\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, f(nx) = nf(x).$$

Pour $x = p/q \in \mathbb{Q}$, f(x) = pf(1/q) et f(1) = qf(1/q) donc f(x) = ax avec a = f(1).

Les fonctions $x \mapsto f(x)$ et $x \mapsto ax$ sont continues et coïncident sur \mathbb{Q} partie dense dans \mathbb{R} donc ces deux fonctions sont égales sur \mathbb{R} .

Au final f est une fonction linéaire.

Inversement, une telle fonction est évidemment solution

Exercice 53: [énoncé]

(a) Soit $x \in \mathbb{R}$. Puisque

$$u_n = \frac{\lfloor 2^n x \rfloor}{2^n} \to x$$

avec $u_n \in \mathcal{D}$, la partie \mathcal{D} est dense dans \mathbb{R} .

(b) Supposons que f s'annule en 0 et 1.

$$\frac{1}{2}\big(f(-x) + f(x)\big) = f(0)$$

donc la fonction f est impaire.

Par récurrence double, montrons $\forall n \in \mathbb{N}, f(n) = 0$.

Pour n = 0 ou n = 1: ok

Supposons la propriété établie aux rangs $n \ge 1$ et $n-1 \ge 0$.

$$\frac{f(n+1)+f(n-1)}{2}=f(n)$$

donne en vertu de l'hypothèse de récurrence : f(n+1) = 0.

 $R\'{e} currence \'{e} tablie.$

Par l'imparité

$$\forall p \in \mathbb{Z}, f(p) = 0.$$

Par récurrence sur $n \in \mathbb{N}$, montrons

$$\forall p \in \mathbb{Z}, f\left(\frac{p}{2^n}\right) = 0.$$

Pour n = 0: ok

Supposons la propriété établie au rang $n \in \mathbb{Z}$. Soit $p \in \mathbb{Z}$.

$$f\left(\frac{p}{2^{n+1}}\right) = f\left(\frac{1}{2}\left(0 + \frac{p}{2^n}\right)\right) = \frac{1}{2}\left(f(0) + f\left(\frac{p}{2^n}\right)\right) \underset{HR}{=} 0.$$

Récurrence établie.

Puisque f est continue et nulle sur une partie

$$\mathcal{D} = \left\{ \frac{p}{2^n} \mid p \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

dense dans \mathbb{R} , f est nulle sur \mathbb{R} .

(c) Posons $\beta = f(0)$ et $\alpha = f(1) - \beta$. La fonction $g: x \mapsto f(x) - \alpha x + \beta$ est continue et vérifie la propriété

$$g\left(\frac{x+y}{2}\right) = \frac{1}{2}(g(x) + g(y))$$

donc q est nulle puis f affine.

Exercice 54: [énoncé]

Soit $\lambda \in \mathbb{C}$. Si A est inversible

$$\chi_{AB}(\lambda) = \det(\lambda I_n - AB) = \det(A)\det(\lambda A^{-1} - B)$$

donc

$$\chi_{AB}(\lambda) = \det(\lambda A^{-1} - B) \det A = \det(\lambda I_n - BA) = \chi_{BA}(\lambda).$$

Ainsi les applications continues $A \in \mathcal{M}_n(\mathbb{C}) \mapsto \chi_{AB}(\lambda)$ et $A \in \mathcal{M}_n(\mathbb{C}) \mapsto \chi_{BA}(\lambda)$ coïncident sur la partie $GL_n(\mathbb{C})$ dense dans $\mathcal{M}_n(\mathbb{C})$, elles sont donc égales sur $\mathcal{M}_n(\mathbb{C})$.

Ainsi pour tout $\lambda \in \mathbb{C}$, $\chi_{AB}(\lambda) = \chi_{BA}(\lambda)$ et donc $\chi_{AB} = \chi_{BA}$.

Exercice 55: [énoncé]

On sait

$$^{t}(\operatorname{Com}(A))A = \det(A)\operatorname{I}_{n}$$

donc

$$\det(\operatorname{Com}(A))\det(A) = (\det(A))^n.$$

Si A est inversible on obtient

$$\det(\operatorname{Com}(A)) = \det(A)^{n-1}.$$

Puisque l'application $A \mapsto \det(\operatorname{Com}(A))$ est continue et qu'elle coïncide avec l'application elle aussi continue $A \mapsto \left(\det(A)\right)^{n-1}$ sur $\operatorname{GL}_n(\mathbb{C})$ qui est dense dans $\mathcal{M}_n(\mathbb{C})$, on peut affirmer $\det(\operatorname{Com}(A)) = \left(\det(A)\right)^{n-1}$ pour tout $A \in \mathcal{M}_n(\mathbb{C})$.

Exercice 56: [énoncé]

(a) Si A est inversible alors

$$A^{-1} = \frac{1}{\det A}^t(\operatorname{Com} A)$$

et donc

$$\operatorname{Com} A = \det(A)^t (A^{-1}).$$

De même

$$Com(P^{-1}AP) = det(A)^t(P^{-1}A^{-1}P)$$

ce qui donne

$$Com(P^{-1}AP) = {}^tP \operatorname{Com} A^t(P^{-1}).$$

Les fonctions $A \mapsto \operatorname{Com}(P^{-1}AP)$ et $A \mapsto {}^tP\operatorname{Com} A^t(P^{-1})$ sont continues sur $\mathcal{M}_n(\mathbb{C})$ et coïncident sur $\operatorname{GL}_n(\mathbb{C})$ partie dense dans $\mathcal{M}_n(\mathbb{C})$, c'est deux fonctions sont donc égales. Ainsi la relation

$$Com(P^{-1}AP) = {}^{t}P Com A^{t}(P^{-1})$$

est valable pour tout $A \in \mathcal{M}_n(\mathbb{C})$

(b) C'est immédiat sachant que ${}^t(P^{-1})$ est l'inverse de tP .

Exercice 57: [énoncé]

(a) On sait

$$\tilde{A}A = A\tilde{A} = \det A.I_n.$$

Si A est inversible alors

$$\det \tilde{A} \cdot \det A = (\det A)^n$$

donne

$$\det \tilde{A} = (\det A)^{n-1}.$$

L'application $A \mapsto \det \tilde{A}$ étant continue et coïncidant avec l'application elle aussi continue $A \mapsto (\det A)^{n-1}$ sur $GL_n(\mathbb{K})$ qui est dense dans $\mathcal{M}_n(\mathbb{K})$, on peut assurer que $\det \tilde{A} = (\det A)^{n-1}$ pour tout $A \in \mathcal{M}_n(\mathbb{K})$.

(b) Si A est inversible alors \tilde{A} aussi donc

$$rg(A) = n \implies rg(\tilde{A}) = n.$$

Si $\operatorname{rg}(A) \leq n-2$ alors A ne possède pas de déterminant extrait non nul d'ordre n-1 et donc $\tilde{A}=0$. Ainsi

$$\operatorname{rg}(A) \le n - 2 \implies \operatorname{rg}(\tilde{A}) = 0.$$

Si $\operatorname{rg}(A) = n - 1$ alors $\dim \operatorname{Ker} A = 1$ or $A\tilde{A} = \det A.I_n = 0$ donne $\operatorname{Im} \tilde{A} \subset \operatorname{Ker} A$ et donc $\operatorname{rg}(\tilde{A}) \leq 1$. Or puisque $\operatorname{rg}(A) = n - 1$, A possède un déterminant extrait d'ordre n - 1 non nul et donc $\tilde{A} \neq O$. Ainsi

$$rg(A) = n - 1 \implies rg(\tilde{A}) = 1.$$

(c) Soit P une matrice inversible. Pour tout $A \in GL_n(\mathbb{K})$,

$$(P^{-1}\tilde{A}P)(P^{-1}AP) = \det A.I_n$$

et $P^{-1}AP$ inversible donc

$$P^{-1}\tilde{A}P = \widetilde{P^{-1}AP}$$

Ainsi

$$\tilde{A} = P\widetilde{P^{-1}APP^{-1}}.$$

Les applications $A \mapsto \tilde{A}$ et $A \mapsto PP^{-1}APP^{-1}$ sont continues et coïncident sur la partie dense $GL_n(\mathbb{K})$ elles sont donc égales sur $\mathcal{M}_n(\mathbb{K})$.

Si A et B sont semblables alors il existe P inversible vérifiant $P^{-1}AP = B$ et par la relation ci-dessus $P^{-1}\tilde{A}P = P^{-1}AP = \tilde{B}$ donc \tilde{A} et \tilde{B} sont semblables.

(d) Si A est inversible alors $\tilde{A} = \det(A)A^{-1}$ et

$$\widetilde{\widetilde{A}} = \det(\widetilde{A})\widetilde{A}^{-1} = \det(A)^{n-2}A.$$

Par coïncidence d'applications continues sur une partie dense, pour tout $A \in \mathcal{M}_n(\mathbb{K})$,

$$\widetilde{\widetilde{A}} = \det(A)^{n-2}A.$$

Exercice 58: [énoncé]

Cas $A, B \in \mathrm{GL}_n(\mathbb{R})$

On sait

$$A^{-1} = \frac{1}{\det A}^t(\operatorname{Com} A), B^{-1} = \frac{1}{\det B}^t(\operatorname{Com} B)$$

 $_{
m et}$

$$(AB)^{-1} = \frac{1}{\det(AB)}^t(\operatorname{Com} AB) = B^{-1}A^{-1}$$

donc

$$(AB)^{-1} = \frac{1}{\det(AB)}^t(\operatorname{Com} AB) = \frac{1}{\det A \det B}^t(\operatorname{Com} B)^t(\operatorname{Com} A)$$

puis

$$^{t}(\operatorname{Com}(AB)) = ^{t}(\operatorname{Com}(A)\operatorname{Com}(B))$$

et enfin

$$Com(AB) = Com(A) Com(B)$$
.

Cas général

Posons

$$A_p = A + \frac{1}{p}I_n \text{ et } B_p = B + \frac{1}{p}I_n.$$

Pour p assez grand $A_p, B_p \in \mathrm{GL}_n(\mathbb{R})$ et donc

$$Com(A_pB_p) = Com(A_p) Com(B_p).$$

Or la fonction $M \to \operatorname{Com} M$ est continue donc par passage à la limite

$$Com(AB) = Com(A) Com(B)$$
.

Exercice 59 : [énoncé]

(a) Sachant $(u_{n+1} - u_n)$ de limite nulle, pour $\varepsilon = (b-a)/2 > 0$, il existe un rang $p \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \ n \geq p \implies |u_{n+1} - u_n| \leq \varepsilon$$

et alors

$$\forall n \in \mathbb{N}, |u_{n+p+1} - u_{n+p}| \leq \varepsilon.$$

Sachant (v_p) de limite $+\infty$, le terme $u_p - v_q$ tend vers $-\infty$ lorsque q tend vers $+\infty$ et il existe donc un rang q tel que $u_p - v_q \le a$.

Pour ces paramètres p et q, la suite de terme général $w_n = u_{n+p} - v_q$ vérifie les conditions requises.

(b) Posons

$$E = \{ u_n - v_p \mid (n, p) \in \mathbb{N}^2 \}.$$

La suite (u_n) étant de limite $+\infty$, la suite (w_n) l'est aussi et l'ensemble A des $n \in \mathbb{N}$ vérifiant $w_n \leq a$ est une partie de \mathbb{N} non vide et majorée. On peut alors introduire le plus grand entier N vérifiant $w_N \leq a$. On vérifie

$$w_{N+1} > a$$
 et $w_{N+1} \le w_N + \underbrace{|w_{N+1} - w_N|}_{\le (b-a)/2} < b$.

On a ainsi établi :

$$\forall (a, b) \in \mathbb{R}^2, a < b \implies \exists x \in E, x \in [a; b[.$$

La partie E est donc dense dans $\mathbb R$

(c) Introduisons $(v_p) = (2p\pi)$ de limite $+\infty$. La partie E est dense dans \mathbb{R} et l'image de celle-ci par la fonction sinus est $S = \{\sin(u_n) \mid n \in \mathbb{N}\}$.

Cette partie est incluse dans le fermé [-1;1] et donc \overline{S} aussi.

Inversement, tout élément de [-1;1] est le sinus d'un angle θ et il existe une suite d'éléments de E de limite θ . Par continuité de la fonction sinus, il existe une suite d'éléments de S de limite sin θ . Au final,

$$\overline{S} = [-1; 1].$$

(d) Introduisons $(v_p) = (p)$ de limite $+\infty$. La partie E est dense dans \mathbb{R} et l'image de celle-ci par la fonction $f \colon x \mapsto x - \lfloor x \rfloor$ est $F = \{u_n - \lfloor u_n \rfloor \mid n \in \mathbb{N}\}$. Cette partie est incluse dans le fermé [0;1] et donc \overline{F} aussi.

Inversement, tout élément de]0;1[est limite d'une suite d'éléments de E. Les termes de cette suite appartiennent à]0;1[à partir d'un certain rang et sont donc invariants par f: ils appartiennent à F. Ainsi

$$]0;1[\subset \overline{F}.$$

Enfin, \overline{F} étant une partie fermée, on a aussi

$$[0;1] \subset \overline{F}$$

puis l'égalité.

(e) L'ensemble des valeurs d'adhérence de (u_n) est

$$Adh(u) = \bigcap_{N \in \mathbb{N}} \overline{\{u_n \mid n \ge N\}}.$$

Par l'étude qui précède

$$\overline{\left\{u_n \mid n \ge N\right\}} = [0;1]$$

et l'ensemble des valeurs d'adhérence de u est exactement [0;1].

Exercice 60 : [énoncé]

Par le théorème de Weierstrass, il existe une suite (Q_n) de fonctions polynomiales telles $N_{\infty}(Q_n - f) \to 0$.

On a alors

$$\int_{a}^{b} Q_{n}(t) dt \xrightarrow[n \to +\infty]{} \int_{a}^{b} f(t) dt = 0.$$

Posons

$$P_n(t) = Q_n(t) - \frac{1}{b-a} \int_a^b Q_n(t) dt.$$

On vérifie alors sans peine que

$$\int_a^b P_n(t) dt = 0 \text{ et } N_\infty(f - P_n) \to 0.$$

Exercice 61: [énoncé]

Par le théorème de Weierstrass, il existe une suite (Q_n) de fonctions polynomiales telles $N_{\infty}(Q_n-f)\to 0$. Posons $m_n=\inf_{t\in[a;b]}Q_n(t)=Q_n(t_n)$ pour un certain $t_n\in[a;b]$. Montrons que $m_n\to m=\inf_{t\in[a;b]}f$. Notons que $\inf_{t\in[a;b]}f=f(t_{\infty})$ pour un certain $t_{\infty}\in[a;b]$. Pour tout $\varepsilon>0$, pour n assez grand, $N_{\infty}(Q_n-f)\leq\varepsilon$ donc $m_n=Q_n(t_n)\geq f_n(t_n)-\varepsilon\geq m-\varepsilon$ et $m=f(t_{\infty})\geq Q_n(t_{\infty})-\varepsilon\geq m_n-\varepsilon$ donc $|m_n-m|\leq\varepsilon$. Ainsi $m_n\to m$. Il suffit ensuite de considérer $P_n=Q_n-m_n+m$ pour obtenir une solution au problème posé.

Exercice 62: [énoncé]

Par le théorème de Weierstrass, il existe une suite (Q_n) de fonctions polynomiales telle $N_{\infty}(Q_n - f') \to 0$.

Posons alors $P_n(x) = f(a) + \int_a^x Q_n(t) dt$. L'inégalité

 $|P_n(x) - f(x)| \le \int_a^x |f'(t) - Q_n'(t)| dt$ permet d'établir que $N_\infty(f - P_n) \to 0$ et puisque $P_n' = Q_n$, la suite (P_n) est solution du problème posé.

Exercice 63: [énoncé]

(a) On a

$$\sum_{k=0}^{n} B_{n,k}(x) = (x + (1-x))^{n} = 1.$$

On a

$$\sum_{k=0}^{n} k B_{n,k}(x) = nx$$

via $k\binom{n}{k} = n\binom{n-1}{k-1}$ et la relation précédente De manière semblable

$$\sum_{k=0}^{n} k^{2} B_{n,k}(x) = \sum_{k=0}^{n} k(k-1) B_{n,k}(x) + \sum_{k=0}^{n} k B_{n,k}(x) = nx(1 + (n-1)x).$$

(b) On a

$$n^{2}\alpha^{2} \sum_{k \in A} B_{n,k}(x) \le \sum_{k \in A} (k - nx)^{2} B_{n,k}(x) \le \sum_{k \in [0:n]} (k - nx)^{2} B_{n,k}(x)$$

car les $B_{n,k}$ sont positifs sur [0;1].

Par suite

$$n^2 \alpha^2 \sum_{k \in A} B_{n,k}(x) \le nx(1-x)$$

d'où

$$\sum_{k \in A} B_{n,k}(x) \le \frac{1}{4n\alpha^2}.$$

(c) Pour tout $\varepsilon>0$, par l'uniforme continuité de f, il existe $\alpha>0$ tel que

$$\forall x, y \in [0, 1], |x - y| \le \alpha \implies |f(x) - f(y)| \le \varepsilon.$$

On a alors

$$|f(x) - f_n(x)| \le \sum_{x \in A} |f(x) - f(k/n)| B_{n,k}(x) + \sum_{x \in B} |f(x) - f(k/n)| B_{n,k}(x)$$

^{1.} L'ensemble des valeurs d'adhérence d'une suite n'est pas immédiatement l'adhérence de l'ensemble de ses termes, par exemple, pour $u_n = n$, la suite (u_n) n'a pas de valeurs d'adhérence!

donc

$$|f(x) - f_n(x)| \le 2||f||_{\infty} \sum_{x \in A} B_{n,k}(x) + \sum_{x \in B} \varepsilon B_{n,k}(x) \le \frac{||f||_{\infty}}{2n\alpha^2} + \varepsilon.$$

Pour n assez grand, on a

$$||f||_{\infty}/2n\alpha^2 \le \varepsilon$$

et donc $|f(x) - f_n(x)| \le 2\varepsilon$ uniformément en x.

Exercice 64: [énoncé]

(a) On a

$$\int_0^1 t(1-t^2)^n \, \mathrm{d}t = \frac{1}{2(n+1)}.$$

On en déduit

$$a_n = 2 \int_0^1 (1 - t^2)^n dt \ge 2 \int_0^1 t (1 - t^2)^n dt = \frac{1}{n+1}.$$

(b) Sur $[\alpha; 1]$,

$$|\varphi_n(x)| \le \frac{(1-\alpha^2)^n}{a_n} \le (n+1)(1-\alpha^2)^n \to 0.$$

(c) Sur le compact [-1;1], f est uniformément continue car f est continue. Ainsi :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x, y \in [-1; 1], |x - y| \le \alpha \implies |f(x) - f(y)| \le \varepsilon.$$

Pour $\alpha' = \min(\alpha, 1/2)$, on a pour tous $x, y \in \mathbb{R}$ tels que $|x - y| \le \alpha'$ Si $x, y \in [-1, 1]$ alors

$$|f(x) - f(y)| \le \varepsilon.$$

Sinon $x, y \in [1/2; +\infty[$ ou $x, y \in]-\infty; -1/2]$ et alors

$$|f(x) - f(y)| = 0 \le \varepsilon.$$

(d) On a

$$f_n(x) = \int_{x-1}^{x+1} f(u)\varphi_n(x-u) \, \mathrm{d}u.$$

Or

$$\varphi_n(x-u) = \sum_{k=0}^{2n} a_k(u) x^k$$

donc

$$f_n(t) = \sum_{k=0}^{2n} \left(\int_{x-1}^{x+1} f(u) a_k(u) \, du \right) x^k.$$

Mais

$$\int_{x-1}^{x+1} f(u)a_k(u) \, \mathrm{d}u = \int_{-1/2}^{1/2} f(u)a_k(u) \, \mathrm{d}u$$

pour $x \in [-1/2; 1/2]$ car $x - 1 \le -1/2$ et $x + 1 \ge 1/2$ alors que f est nulle en dehors que [-1/2; 1/2]. Il s'ensuit que f_n est polynomiale.

(e) On observe que

$$\int_{-1}^{1} \varphi_n(t) \, \mathrm{d}t = 1$$

et la relation proposée est alors immédiate sur [-1/2; 1/2].

(f) On a

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x, y \in \mathbb{R}, |x - y| \le \alpha \implies |f(x) - f(y)| \le \varepsilon$$

et alors

$$\left| f(x) - f_n(x) \right| \le \int_{-\alpha}^{\alpha} \left| f(x) - f(x - t) \right| \varphi_n(t) dt + 4\|f\|_{\infty} \int_{\alpha}^{1} \varphi_n(t) dt \le \varepsilon + 4\|f\|_{\infty} \int_{\alpha}^{1$$

Or

$$\int_{\alpha}^{1} \varphi_n(t) \, \mathrm{d}t \to 0$$

donc pour n assez grand

$$4\|f\|_{\infty} \int_{0}^{1} \varphi_n(t) \, \mathrm{d}t \leq \varepsilon$$

et alors

$$|f(x) - f_n(x)| \le 2\varepsilon.$$

- (g) Il suffit de commencer par approcher la fonction $x \mapsto f(2ax)$ qui vérifie les conditions de la question précédente.
- (h) Soit A > 0 tel que $[a;b] \subset [-A;A]$. Il suffit de prolonger f par continuité de sorte qu'elle soit nulle en dehors de [-A;A].

Exercice 65: [énoncé]

(a) Par le théorème de Weierstrass, pour tout $\varepsilon > 0$, il existe $P \in \mathbb{R}[X]$ tel que $\|f - P\|_{\infty} \leq \varepsilon$.

$$0 \le \int_{a}^{b} f^{2} = \int_{a}^{b} f(f - P) + \int_{a}^{b} fP = \int_{a}^{b} f(f - P) \le (b - a) ||f||_{\infty} \varepsilon.$$

En faisant $\varepsilon \to 0$, on obtient $\int_a^b f^2 = 0$ et donc f = 0.

(b) L'intégrale étudiée est bien définie. Par intégration par parties,

$$(n+1)I_n = (1-i)I_{n+1}.$$

Or $I_0 = \frac{1+i}{2}$ donc

$$I_n = \frac{(1+i)^{n+1}}{2^{n+1}} n!$$

(c) $I_{4p+3} \in \mathbb{R} \text{ donc}$

$$\int_0^{+\infty} x^{4p+3} \sin(x) e^{-x} dx = 0$$

puis

$$\int_0^{+\infty} u^p \sin(u^{1/4}) e^{-u^{1/4}} du = 0$$

pour tout $p \in \mathbb{N}$.

Exercice 66: [énoncé]

(a) Supposons f constante égale à C.

$$\int_a^b f(x) |\sin(nx)| \, \mathrm{d}x = C \int_a^b |\sin(nx)| \, \mathrm{d}x.$$

Posons $p = \left\lfloor \frac{an}{\pi} \right\rfloor + 1$ et $q = \left\lfloor \frac{bn}{\pi} \right\rfloor$.

$$\int_{a}^{b} \left| \sin(nx) \right| dx = \int_{a}^{\frac{p\pi}{n}} \left| \sin(nx) \right| dx + \sum_{k=p+1}^{q} \int_{\frac{(k-1)\pi}{n}}^{\frac{k\pi}{n}} \left| \sin(nx) \right| dx + \int_{\frac{q\pi}{n}}^{b} \left| \sin(nx) \right| dx.$$

On a

$$\left| \int_{a}^{\frac{p\pi}{n}} \left| \sin(nx) \right| \mathrm{d}x \right| \le \frac{\pi}{n}$$

donc

$$\int_{a}^{\frac{p\pi}{n}} \left| \sin(nx) \right| \mathrm{d}x \to 0$$

et aussi

$$\int_{\frac{q\pi}{n}}^{b} \left| \sin(nx) \right| \mathrm{d}x \to 0.$$

De plus

$$\sum_{k=p+1}^{q} \int_{\frac{(k-1)\pi}{n}}^{\frac{k\pi}{n}} \left| \sin(nx) \right| dx = \frac{(q-p)}{n} \int_{0}^{\pi} \sin t \, dt = \frac{2(q-p)}{n} \to \frac{2(b-a)}{\pi}.$$

Ainsi

$$\int_{a}^{b} \left| \sin(nx) \right| dx \to \frac{2}{\pi} (b - a)$$

puis

$$\int_a^b f(x) |\sin(nx)| dx = \frac{2}{\pi} \int_a^b f(x) dx.$$

(b) Supposons f en escalier.

Soit a_0, \ldots, a_n une subdivision adaptée à f. Par l'étude qui précède,

$$\int_{a_{k-1}}^{a_k} f(x) |\sin(nx)| \, \mathrm{d}x \to \frac{2}{\pi} \int_{a_{k-1}}^{a_k} f.$$

Puis en sommant par la relation de Chasles

$$\int_{a}^{b} f(x) |\sin(nx)| dx \to \frac{2}{\pi} \int_{a}^{b} f.$$

(c) Supposons enfin f continue par morceaux. Pour $\varepsilon > 0$, il existe φ en escalier vérifiant

$$||f - \varphi||_{\infty, [a;b]} \le \frac{\varepsilon}{b-a}.$$

Puisque

Or

$$\int_{a}^{b} \varphi(x) |\sin(nx)| \, \mathrm{d}x \to \frac{2}{\pi} \int_{a}^{b} \varphi$$

pour n assez grand, on a

$$\left| \int_{a}^{b} \varphi(x) |\sin(nx)| \, \mathrm{d}x - \frac{2}{\pi} \int_{a}^{b} \varphi \right| \leq \varepsilon.$$

 $\left| \int_{a}^{b} \varphi(x) |\sin(nx)| \, \mathrm{d}x - \int_{a}^{b} f(x) |\sin(nx)| \, \mathrm{d}x \right| \le \varepsilon$

 et

$$\left| \int_a^b \varphi - \int_a^b f \right| \le \varepsilon$$

donc

$$\left| \int_{a}^{b} f(x) |\sin(nx)| dx - \frac{2}{\pi} \int_{a}^{b} f | \leq 2\varepsilon + \frac{2}{\pi} \varepsilon.$$

Ainsi

$$\int_{a}^{b} f(x) |\sin(nx)| dx \to \frac{2}{\pi} \int_{a}^{b} f.$$