Name: Vivi Student ID: 24S153073Grade:

Problem 1 Score: _____. The sphere is a smooth manifold Let us turn $\mathcal{M} = \mathbb{S}^{d-1}$ into a smooth manifold. Let $p = (0, \cdots, 0, 1) \in \mathbb{R}^d$, and define

$$\mathcal{U}_{+} = \mathbb{S}^{d-1} \setminus \{p\}, \quad \mathcal{U}_{-} = \mathbb{S}^{d-1} \setminus \{-p\},$$

$$\phi_{+}: \mathcal{U}_{+} \to \mathbb{R}^{d-1}, \quad \phi_{+}(x) = \left(\frac{x_{1}}{1 - x_{d}}, \cdots, \frac{x_{d-1}}{1 - x_{d}}\right)$$
$$\phi_{-}: \mathcal{U}_{-} \to \mathbb{R}^{d-1}, \quad \phi_{-}(x) = \left(\frac{x_{1}}{1 + x_{d}}, \cdots, \frac{x_{d-1}}{1 + x_{d}}\right).$$

- (1) Show that (\mathcal{U}_+, ϕ_+) and (\mathcal{U}_-, ϕ_-) are each (d-1)-dimensional charts for \mathbb{S}^{d-1} .
- (2) Show that the charts (\mathcal{U}_+, ϕ_+) and (\mathcal{U}_-, ϕ_-) are compatible.
- (3) Deduce that $\mathcal{A} = \{(\mathcal{U}_+, \phi_+), (\mathcal{U}_-, \phi_-)\}$ is an atlas for \mathbb{S}^{d-1} .
- (4) Let \mathcal{A}^+ be the maximal atlas abtained from \mathcal{A} . Show that the atlas topology associated to \mathcal{A}^+ is hausdorff and second-countable. Conclude that \mathbb{S}^{d-1} is a smooth manifold.

Solution: (1) As \mathcal{U}_+ and \mathcal{U}_- are open subsets of \mathbb{S}^{d-1} , and \mathbb{R}^{d-1} is open, and ϕ_+ and ϕ_- are clearly smooth, it suffices to show that ϕ_+ and ϕ_- are bijections.

Let $x, y \in \mathcal{U}_+$, such that $\phi_+(x) = \phi_+(y)$. Taking the squared norm of $\phi_+(x)$, we have

$$\|\phi_{+}(x)\|^{2} = \sum_{i=1}^{d-1} \left(\frac{x_{i}}{1 - x_{d}}\right)^{2}$$

$$= \frac{\|x\|^{2} - x_{d}^{2}}{(1 - x_{d})^{2}}$$

$$= \frac{1 - x_{d}^{2}}{(1 - x_{d})^{2}}$$

$$= \frac{1 + x_{d}}{1 - x_{d}}.$$

Similarly, we have

$$\|\phi_+(y)\|^2 = \frac{1+y_d}{1-y_d}.$$

Since $\phi_+(x) = \phi_+(y)$, we have

$$\|\phi_{+}(x)\|^{2} = \|\phi_{+}(y)\|^{2}$$

$$\frac{1+x_{d}}{1-x_{d}} = \frac{1+y_{d}}{1-y_{d}}$$

$$y_{d}-x_{d} = x_{d}-y_{d}$$

$$x_{d} = y_{d}.$$

Then we have x=y, which implies that ϕ_+ is injective. Next, let $y\in\mathbb{R}^{d-1},$ and define x_d as

$$x_d = \frac{\|y\|^2 - 1}{\|y\|^2 + 1} \in [-1, 1),$$

and

$$(x_1, \cdots, x_{d-1}) = (1 - x_d)y.$$

Then we have

$$||x||^{2} = ||(x_{1}, \dots, x_{d-1}, x_{d})||^{2}$$

$$= ||(1 - x_{d})y||^{2} + x_{d}^{2}$$

$$= \frac{4||y||^{2}}{(||y||^{2} + 1)^{2}} + \frac{(||y||^{2} - 1)^{2}}{(||y||^{2} + 1)^{2}}$$

$$= \frac{(\|y\|^2 + 1)^2}{(\|y\|^2 + 1)^2}$$
$$= 1,$$

which implies that $x \in \mathcal{U}_+$. Therefore, ϕ_+ is surjective. Then ϕ_+ is a bijection with ϕ_+^{-1} given by

$$\phi_{+}^{-1}(y) = \left(\frac{2y_1}{\|y\|^2 + 1}, \cdots, \frac{2y_{d-1}}{\|y\|^2 + 1}, \frac{\|y\|^2 - 1}{\|y\|^2 + 1}\right).$$

Same argument can be applied to ϕ_- , and we can show that ϕ_- is a bijection with ϕ_-^{-1} given by

$$\phi_{-}^{-1}(y) = \left(\frac{2y_1}{\|y\|^2 + 1}, \cdots, \frac{2y_{d-1}}{\|y\|^2 + 1}, \frac{1 - \|y\|^2}{\|y\|^2 + 1}\right).$$

Therefore, (\mathcal{U}_+, ϕ_+) and (\mathcal{U}_-, ϕ_-) are each (d-1)-dimensional charts for \mathbb{S}^{d-1} .

(2) Note that $\phi_+(\mathcal{U}_+ \cap \mathcal{U}_-) = \phi_-(\mathcal{U}_+ \cap \mathcal{U}_-) = \mathbb{R}^{d-1} \setminus \{0\}$ which is open in \mathbb{R}^{d-1} . Moreover, for all $y \in \mathbb{R}^{d-1} \setminus \{0\}$, we have

$$\phi_{+} \circ \phi_{-}^{-1}(y) = \phi_{+} \left(\frac{2y_{1}}{\|y\|^{2} + 1}, \cdots, \frac{2y_{d-1}}{\|y\|^{2} + 1}, \frac{1 - \|y\|^{2}}{\|y\|^{2} + 1} \right)$$

$$= \left(\frac{y_{1}}{\|y\|^{2}}, \cdots, \frac{y_{d-1}}{\|y\|^{2}} \right)$$

$$= \frac{y}{\|y\|^{2}} \in C^{\infty}(\mathbb{R}^{d-1} \setminus \{0\}).$$

Similarly, we have $\phi_- \circ \phi_+^{-1}(y) = \frac{y}{\|y\|^2} \in C^\infty(\mathbb{R}^{d-1} \setminus \{0\}).$

Therefore, the charts (\mathcal{U}_+, ϕ_+) and (\mathcal{U}_-, ϕ_-) are compatible.

(3) Since (\mathcal{U}_+, ϕ_+) and (\mathcal{U}_-, ϕ_-) are compatible (d-1)-dimensional charts for \mathbb{S}^{d-1} , and $\mathcal{U}_+ \cup \mathcal{U}_- = \mathbb{S}^{d-1}$, we have $\mathcal{A} = \{(\mathcal{U}_+, \phi_+), (\mathcal{U}_-, \phi_-)\}$ is an atlas for \mathbb{S}^{d-1} .

(4)

Problem 2 Score: _____. Intersection of g-convex sets

The intersection of two convex subsets of a Euclidean space is convex. However, in general, the intersection of two g-convex sets is not g-convex.

(1) Give an example of a Riemannian manifold $(\mathcal{M}, \langle \cdot, \cdot \rangle)$ and two g-convex sets $S_1, S_2 \subseteq \mathcal{M}$ such that $S_1 \cap S_2$ is not g-convex.

If we make additional assumptions, then the intersection of two g-convex sets is g-convex. A subset $S \subseteq \mathcal{M}$ is geodesically strongly convex if for any two points $x, y \in S$, among all geodesics segments $\gamma : [0, 1] \to S$ with $\gamma(0) = x$ and $\gamma(1) = y$, exactly one of them is minimizing and this minimizing geodesic lies entirely in S.

(2) Let $S_1, S_2 \subseteq \mathcal{M}$ be two geodesically strongly convex sets. Show that $S_1 \cap S_2$ is geodesically strongly convex.

Solution: (1) Let $\mathcal{M} = \mathbb{S}^1$ be the unit circle in \mathbb{R}^2 with the standard metric. Define the following two g-convex sets:

$$S_1 = \mathbb{S}^1 \setminus \{(0,1)\}$$

 $S_2 = \mathbb{S}^1 \setminus \{(0,-1)\}.$

Then S_1 and S_2 are g-convex sets. However, the intersection $S_1 \cap S_2 = \mathbb{S}^1 \setminus \{(0,1), (0,-1)\}$ is not g-convex because it's not connected.

(2) Let $x, y \in S_1 \cap S_2$ and $\gamma : [0,1] \to S_1 \cap S_2$ be the unique geodesic segment with $\gamma(0) = x$ and $\gamma(1) = y$. Since S_1, S_2 are geodesically strongly convex, $\gamma(t) \in S_1$ and $\gamma(t) \in S_2$ for all $t \in [0,1]$. Therefore, $\gamma(t) \in S_1 \cap S_2$ for all $t \in [0,1]$, which implies that $S_1 \cap S_2$ is geodesically strongly convex.

Problem 3 Score: _____. Fréchet mean on hemisphere

Write some code to generate random points x_1, \dots, x_n on a hemisphere

$$\mathbb{S}^{d-1}_{\perp} := \{ x = (x^{(1)}, \cdots, x^{(d)}) \in \mathbb{R}^d : x^{(d)} > 0, ||x|| = 1 \}$$

near the north pole, and implement the cost function for the intrinsic averaging, that is

$$f: \mathbb{S}^{d-1}_+ \to \mathbb{R}, \quad f(x) = \frac{1}{2n} \sum_{i=1}^n \text{dist}(x, x_i)^2.$$

A global minimizer of f is called the Fréchet mean of x_1, \dots, x_n . Recall that the squared distance between two points $x, y \in \mathbb{S}^{d-1}_+$ is given by

$$\operatorname{dist}(x, y)^2 = \arccos^2(x^\top y),$$

and the Riemannian gradient of the squared distance is given by

$$\operatorname{grad}\left(x\mapsto\frac{1}{2}\operatorname{dist}(x,y)\right)(x)=\frac{\operatorname{dist}(x,y)}{\sin(\operatorname{dist}(x,y))}(\cos(\operatorname{dist}(x,y))x-y).$$

Problem 4 Score: ______. Robust covariance estimation Consider n points $x_1, \dots, x_n \in \mathbb{R}^d$ sampled independently and identically distributed from a distribution P with zero mean. We want to estimate the covariance matrix of P. If P is a zero-mean normal distribution with covariance $\Sigma_{true} \in \mathbb{R}^{d \times d}$, then the maximum likelihood estimation amounts to minimizing the negative log-likelihood

$$\Sigma \mapsto \log(\det \Sigma) + \frac{1}{n} \sum_{j=1}^{n} x_j^{\top} \Sigma^{-1} x_j$$

over the $d \times d$ positive definite matrices

$$\mathcal{P}_d = \{ \Sigma \in \mathbb{R}^{d \times d} : \Sigma = \Sigma^\top, \Sigma \succ 0 \}.$$

The sample covariance matrix $\Sigma^* = \frac{1}{n} \sum_{j=1}^n x_j x_j^{\top}$ is a minimizer of this nagetive log-likelihood. The sample covariance is not robust to outliers. So if P is not normal but some heavy-tailed distribution, then the sample covariance is not suitable. We can obtain a robust estimation of the covariance by minimizing the function

$$f: \mathcal{P}_d \to \mathbb{R}, \quad f(\Sigma) = \log(\det \Sigma) + \frac{1}{n} \sum_{j=1}^n d \log(x_j^{\top} \Sigma^{-1} x_j),$$

which places less emphasis on outliers (points far from the mean). A minimizer of this function is called "Tyler's Mestimator of scatter". It does not have a closed form solution, and the cost function f is non-convex in the Euclidean sense. However, it is g-convex in an appropriate metric, and so a minimizer can be found efficiently (e.g., with RGD). We consider $\mathcal{M} = \mathcal{P}_d$ as an open subset of the symmetric $d \times d$ matrices, and endow it with the Fisher-Rao metric

$$\langle \dot{\Sigma}_1, \dot{\Sigma}_2 \rangle_{\Sigma} = \text{Tr}(\Sigma^{-1} \dot{\Sigma}_1 \Sigma^{-1} \dot{\Sigma}_2),$$

for $\Sigma \in \mathcal{P}_d$ and $\dot{\Sigma}_1, \dot{\Sigma}_2 \in \mathcal{T}_{\Sigma} \mathcal{P}_d = \{\dot{\Sigma} \in \mathbb{R}^{d \times d} : \dot{\Sigma} = \dot{\Sigma}^{\top}\}$. In this Riemannian metric, \mathcal{P}_d is complete and geodesically strongly convex. For every $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, there is a unique geodesic segment between them, given by

$$\gamma(t) = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2}, \quad t \in [0, 1].$$

This geodesic segment is minimizing. Alternatively, for every $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, there exists an invertible $V \in \mathbb{R}^{d \times d}$ and a diagonal $D \in \mathcal{P}_d$ such that $\Sigma_0 = VV^{\top}, \Sigma_1 = VDV^{\top}$. In this case,

$$\gamma(t) = VD^tV^\top, \quad t \in [0, 1].$$

- (1) Show that the function $\Sigma \mapsto \log(\det \Sigma)$ is g-convex.
- (2) Show that if $g: \mathcal{P}_d \to \mathbb{R}$ is g-convex, then the function $h(\Sigma) = g(\Sigma^{-1})$ is g-convex.
- (3) Show that if $x \in \mathbb{R}^d$, then the function $\Sigma \mapsto \log(x^{\top}\Sigma x)$ is g-convex.

(4) Conclude that the function f is g-convex.

Solution: (1) Let $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, then the unique geodesic segment between Σ_0 and Σ_1 is given by

$$\gamma(t) = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2}, \quad t \in [0, 1].$$

For all $t \in [0,1]$, we have

$$\begin{split} \log(\det \gamma(t)) &= \log(\det(\Sigma_0^{1/2}(\Sigma_0^{-1/2}\Sigma_1\Sigma_0^{-1/2})^t\Sigma_0^{1/2})) \\ &= \log\left(\det(\Sigma_0^{1/2})\det(\Sigma_0^{-1/2}\Sigma_1\Sigma_0^{-1/2})^t\det(\Sigma_0^{1/2})\right) \\ &= \log(\det(\Sigma_0)) + t\log(\det(\Sigma_0^{-1/2}\Sigma_1\Sigma_0^{-1/2})) \\ &= \log(\det(\Sigma_0)) + t\log\left(\det(\Sigma_0^{-1/2})\det(\Sigma_1)\det(\Sigma_0^{-1/2})\right) \\ &= \log(\det(\Sigma_0)) + t\log(\det(\Sigma_1)) - t\log(\det(\Sigma_0)) \\ &= (1-t)\log(\det(\Sigma_0)) + t\log(\det(\Sigma_1)) \end{split}$$

Therefore, $\log(\det \Sigma)$ is g-convex. Moreover, it's g-affine.

(2) Let $\Sigma_0, \Sigma_1 \in \mathcal{P}_d$, then the unique geodesic segment between Σ_0 and Σ_1 is given by

$$\gamma(t) = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2}, \quad t \in [0, 1].$$

Let $g: \mathcal{P}_d \to \mathbb{R}$ be g-convex, then for all $t \in [0,1]$, we have

$$h(\gamma(t)) = g(\gamma(t)^{-1})$$

$$\leq (1 - t)g(\Sigma_0^{-1}) + tg(\Sigma_1^{-1})$$

$$= (1 - t)h(\Sigma_0) + th(\Sigma_1).$$

Therefore, h is g-convex.

(3) Fix $x \in \mathbb{R}^d \setminus \{0\}$ and $F : \mathcal{P}_d \to \mathbb{R}$ given by $F(\Sigma) = \log(x^{\top}\Sigma x)$. Let $\Sigma \in \mathcal{P}_d$ and $\dot{\Sigma} \in \mathcal{T}_{\Sigma}\mathcal{P}_d$, then the differential of F at Σ in the direction $\dot{\Sigma}$ is given by

$$DF(\Sigma)(\dot{\Sigma}) = \frac{d}{dt} \log(x^{\top} (\Sigma + t\dot{\Sigma})x) \Big|_{t=0}$$
$$= (x^{\top} \Sigma x)^{-1} x^{\top} \dot{\Sigma} x$$
$$= (x^{\top} \Sigma x)^{-1} \operatorname{Tr}(\dot{\Sigma} x x^{\top}).$$

Then the Euclidean gradient of F at Σ is given by

$$\operatorname{grad}_{\mathcal{E}} F(\Sigma) = \frac{xx^{\top}}{x^{\top}\Sigma x}.$$

The Euclidean Hessian of F at Σ is given by

$$\begin{split} \operatorname{Hess}_{\mathcal{E}} F(\Sigma)(\dot{\Sigma}) &= D \operatorname{grad}_{\mathcal{E}} F(\Sigma)(\dot{\Sigma}) \\ &= D \left(\frac{x x^\top}{x^\top \Sigma x} \right) (\dot{\Sigma}) \\ &= -\frac{x x^\top x^\top \dot{\Sigma} x}{(x^\top \Sigma x)^2}. \end{split}$$

Then the Riemannian Hessian of F at Σ is given by

$$\begin{split} \operatorname{Hess}_{\mathcal{M}} F(\Sigma)(\dot{\Sigma}) &= \Sigma \operatorname{Hess}_{\mathcal{E}} F(\Sigma)(\dot{\Sigma}) \Sigma + \frac{\dot{\Sigma} \operatorname{grad}_{\mathcal{E}} F(\Sigma) \Sigma + \Sigma \operatorname{grad}_{\mathcal{E}} F(\Sigma) \dot{\Sigma}}{2} \\ &= -\frac{\Sigma x x^\top x^\top \dot{\Sigma} x \Sigma}{(x^\top \Sigma x)^2} + \frac{\dot{\Sigma} x x^\top \Sigma + \Sigma x x^\top \dot{\Sigma}}{2 x^\top \Sigma x} \\ &= \frac{1}{2 x^\top \Sigma x} (\dot{\Sigma} x x^\top \Sigma + \Sigma x x^\top \dot{\Sigma} - \frac{2 \Sigma x x^\top x^\top \dot{\Sigma} x \Sigma}{x^\top \Sigma x}). \end{split}$$

To show the Riemannian Hessian is positive semidefinite,

$$\langle \operatorname{Hess}_{\mathcal{M}} F(\Sigma)(\dot{\Sigma}), \dot{\Sigma} \rangle_{\Sigma} = \operatorname{Tr} \left(\Sigma^{-1} \operatorname{Hess}_{\mathcal{M}} F(\Sigma)(\dot{\Sigma}) \Sigma^{-1} \dot{\Sigma} \right)$$

$$= \frac{1}{2x^{\top} \Sigma x} \operatorname{Tr} \left(\Sigma^{-1} (\dot{\Sigma} x x^{\top} \Sigma + \Sigma x x^{\top} \dot{\Sigma} - \frac{2\Sigma x x^{\top} x^{\top} \dot{\Sigma} x \Sigma}{x^{\top} \Sigma x}) \Sigma^{-1} \dot{\Sigma} \right)$$

$$= \frac{1}{2x^{\top} \Sigma x} \operatorname{Tr} \left(\Sigma^{-1} \dot{\Sigma} x x^{\top} \dot{\Sigma} + x x^{\top} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} - \frac{2x x^{\top} x^{\top} \dot{\Sigma} x \dot{\Sigma}}{x^{\top} \Sigma x} \right)$$

$$= \frac{1}{x^{\top} \Sigma x} \left(x^{\top} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} x - \frac{(x^{\top} \dot{\Sigma} x)^{2}}{x^{\top} \Sigma x} \right)$$

$$= \frac{1}{(x^{\top} \Sigma x)^{2}} \left[(x^{\top} \Sigma x) (x^{\top} \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} x) - (x^{\top} \dot{\Sigma} x)^{2} \right] \geq 0.$$

Therefore, $F(\Sigma) = \log(x^{\top}\Sigma x)$ is g-convex.

(4) As shown in (1), (2), and (3), the functions $\log(\det \Sigma)$, $\log(\det \Sigma^{-1})$, and $\log(x^{\top}\Sigma x)$ are g-convex. Therefore, the function f is g-convex as a non-negative combination of g-convex functions.