LAGraph table test

Test site

Table

peration/method	description	notation
nxm	matrix-matrix multiplication	$\mathbf{C}\langle \mathbf{M} \rangle \odot = \mathbf{A} \oplus . \otimes \mathbf{B}$
×m	vector-matrix multiplication	$\mathbf{w}^{T} \langle \mathbf{m}^{T} \rangle \odot = \mathbf{u}^{T} \oplus . \otimes \mathbf{A}$
×v	matrix-vector multiplication	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{A}\oplus.\otimes\mathbf{u}$
iseAdd	element-wise addition using operator op	$\mathbf{C}\langle \mathbf{M}\rangle \odot = \mathbf{A} \cup [op] \ \mathbf{B}$
	on elements in the set union of structures of \mathbf{A}/\mathbf{B} and \mathbf{u}/\mathbf{v}	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{u}\cup[op]\ \mathbf{v}$
/iseMult	element-wise multiplication using operator op	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}\cap[op]\;\mathbf{B}$
	on elements in the set intersection of structures of ${\bf A}/{\bf B}$ and ${\bf u}/{\bf v}$	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{u}\cap\![op]\;\mathbf{v}$
xtract	extract submatrix from matrix ${f A}$ using indices ${m i}$ and indices ${m j}$	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}(\pmb{i},\pmb{j})$
	extract the i th row vector from matrix ${f A}$	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{A}(i,:)$
	extract the j th column vector from matrix ${f A}$	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{A}(:,j)$
	extract subvector from ${f u}$ using indices ${m i}$	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{u}(\mathbf{i})$
assign	assign matrix to submatrix with mask for ${f C}$	$\mathbf{C}\langle\mathbf{M}\rangle(\pmb{i},\pmb{j})\odot=\mathbf{A}$
	assign scalar to submatrix with mask for ${f C}$	$\mathbf{C}\langle\mathbf{M}\rangle(\pmb{i},\pmb{j})\odot=s$
	assign vector to subvector with mask for $\ensuremath{\mathbf{w}}$	$\mathbf{w}\langle\mathbf{m} angle(\mathbf{\emph{i}})\odot=\mathbf{u}$
	assign scalar to subvector with mask for ${f w}$	$\mathbf{w}\langle\mathbf{m}\rangle(\mathbf{i})\odot=s$

operation/method	description	notation
apply	apply unary operator f with optional thunk k	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathrm{f}(\mathbf{A},k)$
		$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathrm{f}(\mathbf{u},k)$
select	apply select operator f with optional thunk \boldsymbol{k}	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}\langle\mathrm{f}(\mathbf{A},k)\rangle$
		$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{u}\langle\mathrm{f}(\mathbf{u},k)\rangle$
reduce	row-wise reduce matrix to column vector	$\mathbf{w}\langle\mathbf{m}\rangle\bigcirc=[\oplus_j\mathbf{A}(:,j)]$
	reduce matrix to scalar	$s \odot = [\oplus_{i,j} \mathbf{A}(i,j)]$
	reduce vector to scalar	$s \odot = [\oplus_i \mathbf{u}(i)]$
transpose	transpose	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}^T$
kronecker	Kronecker multiplication using operator op	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathrm{kron}(\mathbf{A},op,\mathbf{B})$

GraphBLAS operations and methods. Notation: Matrices and vectors are typeset in bold, starting with uppercase (\mathbf{A}) and lowercase (\mathbf{u}) letters, respectively. Scalars including indices are lowercase italic (k, i,j) while arrays are lowercase bold italic (\mathbf{x},i,j). \oplus and \otimes are the addition and multiplication operators forming a semiring and default to conventional arithmetic + and \times operators. \odot is the accumulator operator. Operations can be modified via a descriptor; matrices can be transposed (\mathbf{B}^{T}), the mask can be complemented ($\mathbf{C}\langle\neg\mathbf{M}\rangle$), and the mask can be valued (shown above) or structural ($\mathbf{C}\langle s(\mathbf{M})\rangle$). A structural mask can also be complemented ($\mathbf{C}\langle\neg s(\mathbf{M})\rangle$). The result can be cleared (replaced) after using it as input to the mask/accumulator step ($\mathbf{C}\langle\mathbf{M},\mathbf{r}\rangle$). Not all methods are listed (creating new operators, monoids, and semirings, clearing a matrix/vector, etc.).