

Aluno: Jhonatan Guilherme de Oliveira Cunha RA: 2135590

Disciplina: Algoritmo e Estrutura de Dados 2

## 2) Anote os resultados na Tabela abaixo em milissegundos (ms).

|                    | 1000   | 10000  | 100000  | 500000   | 1000000  |
|--------------------|--------|--------|---------|----------|----------|
| RadixSort(BASE 2)  | 0,0000 | 3,0000 | 15,0000 | 186,0000 | 371,0000 |
| RadixSort(BASE 10) | 0,0000 | 2,0000 | 38,0000 | 133,0000 | 203,0000 |

## 3. Analisando os resultados obtidos, qual versão foi mais rápida? Por quê?

Em vetores menores a utilização do RadixSort em base 2 foi mais rápida que o outro algoritmo, porém ao aumentar o tamanho desse vetor tal vantagem não é mais verdadeira. Isto se deve ao fato do meu processador ser bem antigo, e como a função de couting sort na base 2 é chamada bem mais vezes que na base 10, temos que invocar a memcpy muito mais vezes, o que torna a vantagem da escovação de bits nula.