

2. Small Signal Hybrid parameters

$$r_{T} = \frac{3 \, \text{H}}{I \, \text{ca}} = \frac{(100) \, (0.036)}{I \, \text{ms}} = 2.6 \, \text{K.R.}$$

$$\frac{A}{V} = \frac{V_0}{V_S} = -\left(g_{mn}R_c\right)\left(\frac{r_{\pi}}{r_{\pi}+R_S}\right) = \frac{-11.4}{2}$$

 $V_0 = -g_m V_H Re$ $V_H = \left(\frac{r_H}{r_{H+R}}\right) V_S$

Exe Using last example: ' VA = 50V

 $r_o = \frac{VA}{T_{CA}} = \frac{50}{100A} = 50k\Omega$

 $A_V = \frac{V_o}{V_S} = -g_m \left(\frac{R_c II I_o}{r_H + R_R} \right)$

 $= -(38.5)(5.36k)(\frac{2.6}{2.6.50}) = -10.2$

The output resistance to reduce the magnitude of Ar . Typically to >> Re, and in many cases can be neglected.

VBECON) = 0,02

FIND: Small signal YOUTHLE

RTH = RILRE = 5.9K.R

Ica = 18 Isa = 0.95 mA

$$T_{\pi} = \frac{V_{\Gamma}}{I_{RO}} = \frac{0.026}{9.5 \, \text{MA}} = \frac{2.74 \, \text{K.R.}}{9 \, \text{m}} = \frac{I_{CR}}{V_{T}} = \frac{36.5 \, \text{mA/V}}{2}$$

$$V_{\overline{H}} = V_S \left(\frac{R_{TH}/r_{\overline{H}}}{R_{TH}/r_{\overline{H}} + R_S} \right) = V_S \left(\frac{1.87}{2.32} \right) = 0.79 V_S$$

$$V_0 = (0.79)(207)V_S = -163V_S \Rightarrow |A_V = \frac{V_6}{V_S} = -163|$$

Notes". (1) R: = RIIRell r# = 1.87 k. R. this is relatively somell companed to the source resist. R=0.5 R and therefore put an appreciable load on the source.

Q IS IN FWO ACTIVE MODE

$$gm = \frac{T_{CR}}{V_T} = \frac{2.16}{26} = 83.1 \frac{MA}{V}$$
 $f_0 = \frac{V_A}{T_{CR}} = \infty$

All Rights Reserved

2 can you show that for Az = -B G Re

Av

of B do to addition of

3) The input resistance of the amplifier is also remade so that Vin & Vs. The sounce is not

heavily loaded.

Con Emitter by pass Capacitor

Those are times that the emittee resistor must be large for the purpose of de design, but the large value degrades the small-signal waltage goin too severely.

In such a case, an emitter bypass capacitor is used to short out all or part of RE as our by the ac signal.

Ex. Test Your Understanding $G_{Nen}: S=100$ $V_{AS(ON)}=0$ $V_{A}=100$ $V_{A}=100$

b) Ri seen by source? c) Ro looking back into Angle.

a) DC Analysis

BHE Loop: $I_{8}(100k) + 0.7 + (B+1)I_{8} 20k - 10^{V} = 0$ $I_{8} = \frac{9.3}{100k + 2020k} + \frac{4.4 \mu A}{100k + 2020k} \Rightarrow I_{60} = 0.44 \text{ ms}$

e = 100p: = 20 + Ice10k + NCEQ + 20k IER = 0

Vera = 20 - 4.4 - 8.8 = 6.8 V => Fno Active

AQ Parameter ; $r_{T} = \frac{V_{T}}{TRB} = 5.9 k$, $g_{max} = \frac{I_{CO}}{V_{T}} = 16.9 \frac{m^{4}}{V_{A}}$

 $O \circ \Delta L'_{c}(max) = 2(0.2^{mA}) = 0.4^{mA}$ peak - peak $\Delta V_{ce}(max) = \Delta L'_{c}(max) [R_{c} + R_{E}] = 4^{V}$ peak - peak See lead line eg $Z \rightarrow 6^{V}$

Note
$$r_{\pi} = \frac{V_{T}}{I_{RR}} = \frac{26 \, \text{m}}{Z u A} = 13 \, \text{k.C.}$$

