A general property of exact differentials :

consider f(x, y) and df = gdx + hdy, where $g \equiv g(x, y)$ and $h \equiv h(x, y)$

consider f(x, y) and df = gdx + hdy, where $g \equiv g(x, y)$ and $h \equiv h(x, y)$ e.g., for

U(S, V), dU = TdS - pdV

A general property of exact differentials:

consider
$$f(x, y)$$
 and $df = gdx + hdy$, where

consider f(x, y) and df = gdx + hdy, where $g \equiv g(x, y)$ and $h \equiv h(x, y)$ e.g., for

$$U(S, V)$$
, $dU = TdS - pdV$ when df is an exact differential,
$$\left(\frac{\partial g}{\partial y}\right)_x = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \left(\frac{\partial h}{\partial x}\right)_y$$

both x and y, vary

Maxwell relations : for reversible changes in systems with no non-mechanical work dU = TdS - pdV

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V}$$

Maxwell relations : for reversible changes in systems with no non-mechanical work dU = TdS - pdV

$$\left(\frac{\partial T}{\partial V}\right)_{\mathcal{S}} = -\left(\frac{\partial p}{\partial \mathcal{S}}\right)_{V}$$

$$dH = TdS + Vdp$$

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$$

Maxwell relations: for reversible changes in systems with no non-mechanical work dU = TdS - pdV

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V}$$

$$dH = TdS + Vdp$$

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$$

$$\left(\frac{\partial T}{\partial \rho}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{\rho}$$

$$dA = -SdT - pdV$$

$$\left(\frac{\partial p}{\partial T}\right) = \left(\frac{\partial S}{\partial V}\right)$$

$$\left(\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$$

Maxwell relations: for reversible changes in systems with no non-mechanical work dU = TdS - pdV

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V}$$

$$dH = TdS + Vdp$$

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$$

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$$

 $\left(\frac{\partial V}{\partial T}\right)_{p} = -\left(\frac{\partial S}{\partial p}\right)_{T}$

$$\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$$

$$\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$$

$$dG = Vdp - SdT$$

$$dA = -SdT - pdV$$

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$$

$$\left(\frac{\partial V}{\partial S}\right)_p$$

Another definition of temperature

$$dU = TdS - pdV \implies \boxed{\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_V}$$

$$dU = TdS - pdV \implies \boxed{\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_V}$$

 $dH = TdS + Vdp \implies \frac{1}{T} = \left(\frac{\partial S}{\partial H}\right)_p$

$$dU = TdS - pdV \implies \boxed{\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)}$$

Thermodynamic equation of state:

$$dU = TdS - pdV$$

dU = TdS - pdV

 $\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$ or, $\pi_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$

Thermodynamic equation of state:

$$dU = TdS - pdV$$

$$T\left(\frac{\partial S}{\partial V}\right)_T - p$$
 or, $\pi_T = T\left(\frac{\partial S}{\partial V}\right)_T - \infty$
xwell relation $\left(\frac{\partial p}{\partial T}\right)_T = \left(\frac{\partial S}{\partial V}\right)_T$

$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$$
 or, $\pi_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$
Using Maxwell relation $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$

$$p$$
 or, $\pi_T = T \left(rac{\partial S}{\partial V}
ight)_T - 1$ or $\left(rac{\partial p}{\partial T}
ight)_V = \left(rac{\partial S}{\partial V}
ight)_T$

 $\pi_T = T \left(\frac{\partial p}{\partial T} \right)_V - p$

Thermodynamic equation of state: dU = TdS - pdV

$$\begin{pmatrix} \frac{\partial U}{\partial V} \end{pmatrix}_T = T \begin{pmatrix} \frac{\partial S}{\partial V} \end{pmatrix}_T - p \quad \text{or, } \pi_T = T \begin{pmatrix} \frac{\partial S}{\partial V} \end{pmatrix}_T - p$$
 Using Maxwell relation
$$\begin{pmatrix} \frac{\partial p}{\partial T} \end{pmatrix}_V = \begin{pmatrix} \frac{\partial S}{\partial V} \end{pmatrix}_T$$

 $\pi_T = T \left(\frac{\partial p}{\partial T} \right)_V - p$

$$\pi_T = T \left(\frac{\partial p}{\partial T} \right)_V - p$$

For perfect gas, show that this leads to $\pi_T = 0$

Thermodynamic equation of state: dU = TdS - pdV

$$-pdV$$

 $\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$ or, $\pi_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$

$$\left(\frac{\partial \mathcal{O}}{\partial \mathcal{V}}\right)_T = I\left(\frac{\partial \mathcal{S}}{\partial \mathcal{V}}\right)_T - \rho$$
 or, $\pi_T = I\left(\frac{\partial \mathcal{S}}{\partial \mathcal{V}}\right)_T - V$
Using Maxwell relation $\left(\frac{\partial \mathcal{P}}{\partial \mathcal{T}}\right)_V = \left(\frac{\partial \mathcal{S}}{\partial \mathcal{V}}\right)_T$

$$\pi_T = T \left(\frac{\partial p}{\partial T} \right)_V - p$$

For perfect gas, show that this leads to
$$\pi_{\mathcal{T}}=0$$

Find for van der Waals gas., $\pi_T = a \frac{n^2}{V^2}$

Thermodynamic equation of state:

$$dU = TdS - pdV$$

 $\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$ or, $\pi_T = T\left(\frac{\partial S}{\partial V}\right)_T - p$

Using Maxwell relation
$$\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$$

$$\pi_T = T \left(\frac{\partial p}{\partial T} \right)_V - p$$

For perfect gas, show that this leads to
$$\pi_{\mathcal{T}}=0$$

Find for van der Waals gas., $\pi_T = a \frac{n^2}{V^2} > 0 \implies \left(\frac{\partial U}{\partial V}\right)_T > 0$

Gibbs' Free energy and entropy

Gibbs' Free energy and entropy

$$\left(\frac{\partial G}{\partial T}\right)_p = -S < 0$$

Gibbs' Free energy and entropy

$$\left(\frac{\partial G}{\partial T}\right)_{p} = -S < 0$$

$$\left(\frac{\partial G}{\partial p}\right)_{T} = V > 0$$

chemical potential and phase equilibrium : $\left(rac{\partial \mu}{\partial T} ight)_p = -S_m$

$$\left(\frac{\partial G}{\partial T}\right)_p = \frac{G - H}{T}$$

$$\left(\frac{\partial G}{\partial T}\right)_p = \frac{G - H}{T}$$

Use this to show :
$$\left(\frac{\partial \left[\frac{c}{T}\right]}{\partial T}\right)_p = -\frac{H}{T^2}$$

$$\left(\frac{\partial \left[\frac{G}{T}\right]}{\partial T}\right) =$$

Change in G with $p: G(p_f) = G(p_i) + \int\limits_{p_i}^{p_f} Vdp$

Change in G with $p: G(p_f) = G(p_i) + \int\limits_{p_i}^{p_f} Vdp$

for condensed phases

gases

Change in G with $p: G(p_f) = G(p_i) + \int_{n}^{p_f} Vdp$

for condensed phases

Change in G with
$$p: G(p_f) = G(p_i) + \int_{p_i}^{p_f} V dp$$

for condensed phases

$$G_m(p_f) = G_m(p_i) + V_m(p_f - p_i)$$

$$G_m(p_f) = G_m(p_i) + V_m(p_f - p_i)$$
 $G_m(p_f) = G_m(p_i) + RT \int_{p_i}^{p_f} \frac{dp}{p} = G_m(p_i) + RT \ln \frac{p_f}{p_i}$

molar Gibbs energy vs p : $G_m(p) = G_m^\circleddash + RT \ln rac{p}{p^\circleddash}$

molar Gibbs energy vs p : $G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}$; f (fugacity) = $\underbrace{\phi}_{\text{fugacity coeff}}$.p

molar Gibbs energy vs p :
$$G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}$$
; f (fugacity) = $\underbrace{\phi}_{p^{\odot}} .p$

 $\int\limits_{p'}^{p} V_m dp = G_m(p) - G_m(p') = \left\{ G_m^{\odot} + RT \ln \frac{f}{p^{\odot}} \right\} - \left\{ G_m^{\odot} + RT \ln \frac{f'}{p^{\odot}} \right\}$

nolar Gibbs energy vs p :
$$G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}$$
; f (fugacity) = ϕ .

molar Gibbs energy vs p : $G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}; \quad f \text{ (fugacity)} = \underbrace{\hspace{1cm} \phi}_{} .p$

molar Gibbs energy vs p:
$$G_m(p) = G_m^{\odot} + RT \ln \frac{r}{p^{\odot}}$$
; f (fugacity) = $\underbrace{\phi}_{\text{fugacity coeff}}$. $\underbrace{f}_{\text{fugacity coeff}}$ $\underbrace{f}_{\text{fugacity coeff}}$ $\underbrace{f}_{\text{fugacity coeff}}$ $\underbrace{f}_{\text{fugacity coeff}}$ $\underbrace{f}_{\text{fugacity coeff}}$ $\underbrace{f}_{\text{fugacity coeff}}$

$$\int_{p'}^{p} V_{\text{perfect}, m} dp = RT \int_{p'}^{p} \frac{dp}{p} = RT \ln \frac{p}{p'}$$

molar Gibbs energy vs p : $G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}; \quad f \text{ (fugacity)} = \underbrace{\hspace{1cm} \phi}_{} .p$

molar Gibbs energy vs p:
$$G_m(p) = G_m^{\ominus} + RT \ln \frac{r}{p^{\ominus}}$$
; f (fugacity) $= \underbrace{\phi}_{\text{fugacity coeff}}$. f

$$\int_{-\infty}^{p} V_m dp = G_m(p) - G_m(p') = \left\{ G_m^{\ominus} + RT \ln \frac{f}{p^{\ominus}} \right\} - \left\{ G_m^{\ominus} + RT \ln \frac{f'}{p^{\ominus}} \right\}$$

$$\int\limits_{p'}^{p} V_{\mathsf{perfect},\,m} dp = RT \int\limits_{p'}^{p} \frac{dp}{p} = RT \ln \frac{p}{p'}$$

$$\int\limits_{p'}^{p} \left(V_m - V_{\mathsf{perfect},\,m} \right) dp = RT \left(\ln \frac{f}{f'} - \ln \frac{p}{p'} \right)$$

molar Gibbs energy vs p : $G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}; \quad f \text{ (fugacity)} = \underbrace{\phi} .p$

fugacity coeff
$$\int_{-\infty}^{p} V_m dp = G_m(p) - G_m(p') = \left\{ G_m^{\odot} + RT \ln \frac{f}{p^{\odot}} \right\} - \left\{ G_m^{\odot} + RT \ln \frac{f'}{p^{\odot}} \right\}$$

$$\begin{split} &\int\limits_{p'}^{p} V_{\mathsf{perfect},\,m} dp = RT \int\limits_{p'}^{p} \frac{dp}{p} = RT \ln \frac{p}{p'} \\ &\int\limits_{p'}^{p} \left(V_m - V_{\mathsf{perfect},\,m} \right) dp = RT \left(\ln \frac{f}{f'} - \ln \frac{p}{p'} \right) \\ &\mathsf{or,} \ln \frac{f}{p} - \ln \frac{f'}{p'} = \frac{1}{RT} \int\limits_{p'}^{p} \left(V_m - V_{\mathsf{perfect},\,m} \right) dp \end{split}$$

molar Gibbs energy vs p : $G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}; \quad f$ (fugacity)= ϕ .p

molar Gibbs energy vs p:
$$G_m(p) = G_m^{\circ} + RT \ln \frac{f}{p^{\odot}}; \quad f \text{ (fugacity)} = \underbrace{\phi}_{\text{fugacity coeff}}.$$

$$\int_{-p}^{p} V_m dp = G_m(p) - G_m(p') = \left\{ G_m^{\odot} + RT \ln \frac{f}{p^{\odot}} \right\} - \left\{ G_m^{\odot} + RT \ln \frac{f'}{p^{\odot}} \right\}$$

$$\begin{split} &\int\limits_{p'}^{p} V_{\mathrm{perfect},\,m} dp = RT \int\limits_{p'}^{p} \frac{dp}{p} = RT \ln \frac{p}{p'} \\ &\int\limits_{p'}^{p} \left(V_{m} - V_{\mathrm{perfect},\,m} \right) dp = RT \left(\ln \frac{f}{f'} - \ln \frac{p}{p'} \right) \\ &\text{or, } \ln \frac{f}{p} - \ln \frac{f'}{p'} = \frac{1}{RT} \int\limits_{p'}^{p} \left(V_{m} - V_{\mathrm{perfect},\,m} \right) dp \end{split}$$

 $\underset{p\to 0}{\mathcal{L}t} f \to p$

molar Gibbs energy vs p : $G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}$; f (fugacity) = ϕ .p

 $\int\limits_{-r}^{p} V_{m} dp = G_{m}(p) - G_{m}(p') = \left\{ G_{m}^{\odot} + RT \ln \frac{f}{p^{\odot}} \right\} - \left\{ G_{m}^{\odot} + RT \ln \frac{f'}{p^{\odot}} \right\}$

$$\int_{p'}^{p} V_{\text{perfect}, m} dp = RT \int_{p'}^{p} \frac{dp}{p} = RT \ln \frac{p}{p'}$$

$$\int_{p'}^{p} (V_m - V_{\text{perfect}, m}) dp = RT \left(\ln \frac{f}{f'} - \ln \frac{p}{p'} \right)$$
or, $\ln \frac{f}{p} - \ln \frac{f'}{p'} = \frac{1}{RT} \int_{p'}^{p} (V_m - V_{\text{perfect}, m}) dp$

$$\mathcal{L}t f \to p \implies \ln \frac{f}{p} = \frac{1}{RT} \int_{0}^{p} (V_m - V_{\text{perfect}, m}) dp$$

molar Gibbs energy vs p : $G_m(p) = G_m^{\odot} + RT \ln \frac{f}{p^{\odot}}$; f (fugacity) = ϕ fugacity coeff

$$\begin{split} &\int\limits_{p'}^{p} V_{\mathrm{perfect},\,m} dp = RT \int\limits_{p'}^{p} \frac{dp}{p} = RT \ln \frac{p}{p'} \\ &\int\limits_{p'}^{p} \left(V_{m} - V_{\mathrm{perfect},\,m} \right) dp = RT \left(\ln \frac{f}{f'} - \ln \frac{p}{p'} \right) \\ &\text{or, } \ln \frac{f}{p} - \ln \frac{f'}{p'} = \frac{1}{RT} \int\limits_{p'}^{p} \left(V_{m} - V_{\mathrm{perfect},\,m} \right) dp \\ &\mathcal{L}t \, f \to p \implies \ln \frac{f}{p} = \frac{1}{RT} \int\limits_{0}^{p} \left(V_{m} - V_{\mathrm{perfect},\,m} \right) dp \\ &\text{or, } \ln \phi = \int\limits_{0}^{p} \frac{Z - 1}{p} dp \end{split}$$

phase : form of matter that is uniform throughout in chemical composition and physical state P=# phases in a system

Phase equilibria - triple point (T_3) and critical point (T_C)

phase : form of matter that is uniform throughout in chemical composition and physical state P=# phases in a system

Phase equilibria - triple point (T_3) and critical point (T_C)

For water : $T_3 = 273.16$ K and 611 Pa (6.11 mbar)

- Triple point marks the lowest pressure at which a liquid phase can exist
- ▶ If the slope of the solid—liquid phase boundary is positive
- then triple point also marks the lowest temperature at which the liquid

can exist

the critical temperature is the upper limit

F=# degrees of freedom, C=# components, P=# phases

F = #degrees of freedom, C = #components, P = #phases

single-component, single-phase

F = #degrees of freedom, C = #components, P = #phases

single-component, single-phase

$$F = 1 - 1 + 2 = 2$$

F = #degrees of freedom, C = #components, P = #phases

 $single-component,\ single-phase$

$$F = 1 - 1 + 2 = 2$$
 single-component, two-phases

F = #degrees of freedom, C = #components, P = #phases

single-component, single-phase

$$F = 1 - 1 + 2 = 2$$

single-component, two-phases
 $F = 1 - 2 + 2 = 1$

F = #degrees of freedom, C = #components, P = #phases

single-component, single-phase

$$F=1-1+2=2$$
 single-component, two-phases $F=1-2+2=1$ phases α and β in equilibr. at given $p,\ T$ $\mu_{\alpha}\left(p,\ T\right)\!=\!\mu_{\beta}\left(p,\ T\right)$ eqn. relates p and T ,

so only one variable is independent

F = #degrees of freedom, C = #components, P = #phases

single-component, single-phase

$$F=1-1+2=2$$
 single-component, two-phases $F=1-2+2=1$ phases α and β in equilibr. at given $p,\ T$ $\mu_{\alpha}\left(p,\ T\right)=\mu_{\beta}\left(p,\ T\right)$ eqn. relates p and T , so only one variable is independent

single-component

F = # degrees of freedom, C = # components, P = # phases

 $single-component,\ single-phase$

F = 1 - 1 + 2 = 2

single-component, two-phases
$$F=1-2+2=1$$
 phases α and β in equilibr. at given $p,\ T$ $\mu_{\alpha}\left(p,\ T\right)\!=\!\mu_{\beta}\left(p,\ T\right)$ eqn. relates p and T ,

so only one variable is independent

single-component three-phases

F = # degrees of freedom, C = # components, P = # phases

single-component, single-phase

F = 1 - 1 + 2 = 2

single-component, two-phases
$$F=1-2+2=1$$
 phases α and β in equilibr. at given $p,\ T$ $\mu_{\alpha}\left(p,\ T\right)\!=\!\mu_{\beta}\left(p,\ T\right)$ eqn. relates p and T ,

so only one variable is independent

 $\begin{aligned} & \text{single-component} \\ & \text{three-phases} \\ & \textit{F} = 1 - 3 + 2 = 0 \end{aligned}$

F = # degrees of freedom, C = # components, P = # phases

 $single-component,\ single-phase$

F = 1 - 1 + 2 = 2

single-component, two-phases
$$F=1-2+2=1$$
 phases α and β in equilibr. at given $p,\ T$ $\mu_{\alpha}\left(p,\ T\right)\!=\!\mu_{\beta}\left(p,\ T\right)$ eqn. relates p and T , so only one variable is independent

single-component three-phases F=1-3+2=0 phases α , β and γ in equilibr. at given p, T, $\mu(\alpha, p, T)=\mu(\beta, p, T)$ $=\mu(\gamma, p, T)$

F = #degrees of freedom, C = #components, P = #phases

 $single-component,\ single-phase$

$$F=1-1+2=2$$
 single-component, two-phases $F=1-2+2=1$ phases α and β in equilibr. at given $p,\ T$ $\mu_{\alpha}\left(p,\ T\right)=\mu_{\beta}\left(p,\ T\right)$ eqn. relates p and T , so only one variable is independent

single-component three-phases F=1-3+2=0 phases α , β and γ in equilibr. at given p, T, $\mu(\alpha, p, T)=\mu(\beta, p, T)$ $=\mu(\gamma, p, T)$

two eqns. for two unknowns $\it p$ and $\it T$

F = #degrees of freedom, C = #components, P = #phases

single-component, single-phase

$$F=1-1+2=2$$
 single-component, two-phases $F=1-2+2=1$ phases α and β in equilibr. at given p, T $\mu_{\alpha}\left(p, T\right) = \mu_{\beta}\left(p, T\right)$ eqn. relates p and T , so only one variable is independent

single-component three-phases F=1-3+2=0 phases α , β and γ in equilibr. at given p, T, $\mu\left(\alpha,\,p,\,T\right)=\mu\left(\beta,\,p,\,T\right)=\mu\left(\gamma,\,p,\,T\right)$ two eqns. for two unknowns p and T fixed soln.

so no variation possible

Typical phase diagram

Experimental phase diagrams

Experimental phase diagrams

Experimental phase diagrams

${\color{blue} Phase \ transition: Thermal \ analysis \ and \ Cooling \ curve}$

 $\begin{array}{c} \textbf{P}_{\textbf{h}} \textbf{ase}_{\textbf{transition}}: \textbf{Thermal analysis and Cooling curve} \\ \end{array}$

metastable phases: Kinetic barriers

Response of melting to applied pressure

Response of melting to applied pressure

pressure-dependence of chemical potential : $\left(rac{\partial \mu}{\partial
ho}
ight)_T = V_m$

usual liquids :
$$V_m(I) > V_m(s)$$

water: $V_m(I) < V_m(s)$

$$G_m(p) = G_m^{\odot} + RT \ln rac{p}{p^{\odot}}$$

$$G_m(p) - G_m + KT \prod$$

 $\implies \mu(p) = \mu^{\odot} + RT \ln \frac{p}{p^{\odot}} \stackrel{p^{\odot}=1}{=} \mu^{\odot} + RT \ln p$

location of phase boundaries : $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T = \frac{\Delta_{\mathrm{trs}}S}{\Delta_{\mathrm{trs}}V}$

location of phase boundaries : $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T = \frac{\Delta_{\mathsf{trs}}S}{\Delta_{\mathsf{trs}}V}$

solid/liq.: $\frac{dp}{dT} = \frac{\Delta_{\text{fus}}H}{T\Delta_{\text{fus}}V}$

ocation of phase boundaries :
$$\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T = \frac{1}{\Delta}$$

location of phase boundaries :
$$\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T = \frac{\Delta_{\mathsf{trs}}S}{\Delta_{\mathsf{trs}}V}$$

When pressure is applied to a system with two phases in equilibrium (at a), the equilibrium is disturbed It can be restored by changing
$$T$$
, moving state of system to b

solid/liq.: $\frac{dp}{dT} = \frac{\Delta_{\text{fus}}H}{T\Delta_{\text{f}}V}$

location of phase boundaries :
$$\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T = \frac{\Delta_{trs}S}{\Delta_{trs}V}$$

solid/liq. :
$$\frac{dp}{dT} = \frac{\Delta_{\text{fus}}H}{T\Delta_{\text{fus}}V}$$

When pressure is applied to a system with two phases in equilibrium (at a), the equilibrium is disturbed It can be restored by changing T, moving state of system to b

relation between dp and dT ensures that system remains in equilibrium as either variable is changed

