实验 4.2: 网络通信测试

<mark>V1.1</mark>

实验背景

被黑客入侵并植入病毒的分布式网络被修好了。现在,控制中枢想通过链路状态(LS)路由算法掌握整个网络的拓扑结构和链路费用信息,了解它发送一次信息之后多久才会被所有节点收到。

说人话的部分

- 1. 本次实验是代码抄写实验。要求: 使用 Dijkstra 算法计算节点 0 到最远节点的距离。
- 2. 输入: 若干行。
 - a. 第1行: 网络节点数量 n。本行以回车结束。
 - b. 第2行: 网络边的数量 e。本行以回车结束。
 - c. 第3~第e+2行: 每条边的起点、终点, 和权值。三个值用空格隔开, 每行用回车隔开。

3. 输出:

- a. 第一行: 距离 0 号节点最远的节点。如果有多个节点满足条件、请输出节点编号最小的那个。
- b. 第二行: 0号节点到离它最远的节点的距离。不要输出回车。

4. 提示与要求:

- a. 节点编号为0到n-1, 且n>1;
- b. 图保证为连通图, 且不含负权值的边;
- c. 每条边的起点、终点均存在。
- d. int 可以处理所有数据, 无需考虑溢出问题。
- e. "最远"指以权和计算的最短路径最大。
- f. 图是无向图。
- g. 通过测点数量与最终得分的映射关系暂未确定,之后会发布。

由于 4.1 难度较大(有一说一,其实也不算难),两道题的分值占比会进行动态分配。具体占比暂时不会公布,但是可以确定的是,4.1 ac 的人越多,占比越高。

我们按过的测试点数量给分,而不是按用时、尝试次数、board 排名等给分。但我们鼓励各位写出简洁、优美、高效的代码。

h. 本次实验不准使用 STL。

5. 数据规模说明:

30%的测点满足: $1 < n \le 10$, $0 < e \le 20$ 。
70%的测点满足: $1 < n \le 100$, $0 < e \le 2000$ 。
100%的测点满足: $1 < n \le 9970$, $0 < e \le 200000$ 。

输入输出样例

输入	输出	图的示意
3	2	0 1
2	9	
014		
215		(2)

4	2	
4	9	0 — 1
017		\downarrow \downarrow
132		
132 029 234		(2)—(3)
2 3 4		

除非实验要求出了 bug 导致实验要求需要更新,我们不会提供其他测试样例。

Deadline

2019-11-26 23:59 (UTC+08:00)。这是最终确定的 deadline。 除非后续由老师说明,本次实验无实验报告。

提交方式

在 oj.ustc.edu.cn 上提交。