Содержание

1	Вве	едение	1
2	Лин	нейное программирование	1
	2.1	Постановка задачи (ЛП), теоремы эквивалентности	1
	2.2	Каноническая задача ЗЛП. Базисные решения	2
	2.3	Симплекс-метод	
		2.3.1 Симплекс-метод для приведенной ЗЛП	
		Каноническая ЗЛП	
	2.5	Двойственность в ЛП	3
	2.6	Теоремы двойственности	4
	2.7	Критерий разрешимости ЛП	4
	2.8	Классификация пар двойственных задач	4

1 Введение

Определение (Методы оптимизации). раздел прикладной математики, содержание которого составляет теория и методы решения оптимизационных задач

Определение (Оптимизационная задача). задача выбора наилучшего варианта (в некотором смысле) из имеюшихся

Определение (Задача оптимизации).
$$\begin{cases} f(x) \to \min(\max) \\ x \in D \end{cases}$$

D - множество допустимых решений, $f:D \to \mathbb{R}$

Определение (Задача МП).
$$\begin{cases} (1)f(x) \to \min(\max)[extr](opt) \\ (2)g_i(x)\#0, i=1,\dots,m - \text{ограничения} \quad x = (x_1,...,x_n) \, f(x) : \mathbb{R}^n \to \mathbb{R}, \, g_i(x) : \mathbb{R}, \, g_i(x) : \mathbb{R}^n \to \mathbb{R}, \, g_i(x) : \mathbb{R}, \, g_i(x) : \mathbb{R}^n \to \mathbb{R}, \, g_i(x) : \mathbb{R},$$

 \mathbb{R}

Определение (Допустимое решение). $x \in \mathbb{R}^n$, удовл (2), называется допустимым решением задачи.

Определение (Оптимальное решение). Допустимое решение $x^* \in D$ задачи 1 - 3 называется оптимальным решением, если $f(x) \le f(x^*) \, \forall x \in D$ в случае задачи максимизации и $f(x) \ge f(x^*) \, \forall x \in D$ в случае задачи минимизации

Глобальный оптимум - x^*

Определение (Локальный оптимум). Допустимое решение $\widetilde{x} \in D$ задачи 1 - 3 называется локальным оптимумом, если $f(x) \leq f(\widetilde{x})$ для всех x из некоторой окрестности \widetilde{x} в случае задачи максимизации и $f(x) \geq f(\widetilde{x})$ для всех x из некоторой окрестности \widetilde{x} в случае задачи минимизации

Определение (Разрешимая/неразрешимая). Задача 1 - 3, которая обладает оптимальным решением, называется разрешимой, иначе неразрешимой

2 Линейное программирование

2.1 Постановка задачи ($\Pi\Pi$), теоремы эквивалентности

Определение (Общая задача ЛП).
$$\begin{cases} f(x) = c_0 + \sum_{j=1}^n c_j x_j \to \max(\min) \\ \sum_{j=1}^n a_{ij} x_j \# b_i, \ i=1,\dots,m \\ x_i > 0, \ j \in J \subseteq \{1,\dots,n\} \end{cases}, \ \text{где } x = (x_1,\dots,x_n) \in \mathbb{R}^n \text{ - вектор}$$

переменных

Матричная запись:

$$\begin{cases} f(x) = (c, x) \to \max(\min) \\ Ax \# b \\ x_j \ge 0, j \in J \subseteq \{1, \dots, n\} \end{cases}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Определение (Стандартная (симметрическая) форма). $\begin{cases} f(x) = c_0 + \sum_{j=1}^n c_j x_j \to \max(\min) \\ \sum_{j=1}^n a_{ij} x_j \le (\ge) b_i, \ i = 1, \dots, m \\ x_j \ge 0, j = 1, \dots, n \end{cases}$

Определение (КЗЛП).
$$\begin{cases} f(x) = c_0 + \sum_{j=1}^n c_j x_j \to \max \\ \sum_{j=1}^n a_{ij} x_j = b_i, \ i=1,\dots,m \\ x_j \geq 0, j=1,\dots,n \end{cases}$$

Определение (Основная задача ЛП).
$$\begin{cases} f(x) = c_0 + \sum_{j=1}^n c_j x_j \to \max \\ \sum_{j=1}^n a_{ij} x_j \le b_i, \ i = 1, \dots, m \end{cases}$$

Определение (Эквивалентные ЗЛП (ЗМП)). Две задачи ЛП P_1, P_2 называются эквивалентными, если любому допустимому решению задачи P_1 соответствует некоторое допустимое решение задачи P_2 и наоборот, причем оптимальному решению одной задачи соответствует оптимальное решение другой задачи.

Теорема 2.1 (Первая теорема эквивалентности). Для любой ЗЛП существует эквивалентная ей каноническая ЗЛП.

Теорема 2.2 (Вторая теорема эквивалентности). Для любой ЗЛП существует эквивалентная ей симметрическая ЗЛП.

2.2 Каноническая задача ЗЛП. Базисные решения

Определение (Базисное решение). Пусть \overline{x} - решение Ax = B. Тогда вектор \overline{x} называется базисным решением СЛАУ, если система вектор-столбцов матрицы A, соответствующая компонентам вектора \overline{x} , ЛНЗ

3амечание. Если система однородная, то $x=\overline{0}$ - базисное решение

Определение. Неотрицательное базисное решение СЛУ называется базисным решением канонической задачи ЛП

Определение (Вырожденное БР). \overline{x} - БР КЗЛП называется вырожденным, если число ненулевых компонент меньше ранга матрицы A, иначе невырожденное

Лемма 2.1. Если x и x' - Б.Р. $K3Л\Pi$, $x \neq x'$, mo

$$J(x) \neq J(x'), J(x) \subset J(x'), J(x) \supset J(x'),$$

$$\epsilon \partial e \ J(x) = \{j | x_j \neq 0, j = 1 \dots n\}$$

Теорема 2.3 (О конечности множества базисных решений). Число базисных решений КЗЛП конечно

Теорема 2.4 (О существовании оптимальных БР). Если КЗЛП разрешима, то существует ее оптимальное БР

2.3 Симплекс-метод

Рассмотрим КЗЛП.

2.3.1 Симплекс-метод для приведенной ЗЛП

Определение (Система с базисом). СЛАУ - СЛАУ с базисом, если в каждом уравнении имеется переменная с коэффициентом +1, отсутствующим в других уравнениях. Такие переменные будем называть базисными, остальные не базисными

Определение (ПЗЛП). КЗЛП называется приведенной, если

- 1. СЛАУ Ax = B является системой с базисом
- 2. Целевая функция выражена через небазисные переменные

Определение (Прямо допустимая симплексная таблица). СТ называется прямо допустимой, если $a_{i0} \geq 0, i = 1, \ldots, m$ (bшки)

Определение (Двойственно допустимая симплексная таблица). СТ называется двойственно допустимой, если $a_{0j} \geq 0, i = 1, \ldots, n + m$ (сшки)

Теорема 2.5. Если симплекс-таблица является прямо допустимой и $a_{0j} \ge 0, j = 1..., n+m$, то соответствующее базисное решение является оптимальным

Теорема 2.6. Если в симплекс-таблице существует $a_{0q} < 0, a_{iq} \le 0, \forall i = 1..., m,$ то задача неразрешима, потому что f неограничена на множестве допустимых решений

Теорема 2.7. Если ведущая строка выбирается из условия минимума ключевого отношения, то следующаяя симплексная таблица будет прямо допустимой

Теорема 2.8 (Об улучшении базисного решения). Если $\exists a_{0j} < 0, j = 1 \dots n + m$, то возможен переход к новой прямо допустимой симплекс таблице, причем $f(x) \le f(x')$, где x - BP старой таблицы, x'- BP новой таблицы, $f(x') = a_{00} - \frac{a_{p0}a_{0q}}{apq}, a_{p0} = 0$ - вырожденное решение

2.4 Каноническая ЗЛП

Метод искусственного базиса

Определение (искусственные). $t_i \ge 0$ - искусственные переменные

Замечание (Свойства ВЗЛП). 1. ВЗЛП почти приведенная (нужно выразить t_i)

- 2. $h(x,t) < 0 \quad \forall (x,t) \in \widetilde{D}$
- 3. $\widetilde{D} \neq 0$ (например, есть $(0, ..., n, b_1, ..., b_m)$, п нулей)
- 4. ВЗЛП всегда разрешима

Теорема 2.9 (О существовании допустимого решения исходной КЗЛП).

$$D \neq 0 \Leftrightarrow h^*(x,t) = 0$$

Теорема 2.10 (О преобразовании КЗЛП в эквивалентную ей приведенную). Если множество допустимых решений исходной КЗЛП непусто, то ПЗЛП, эквивалентная исходной КЗЛП, может быть получена из последней симплекс таблииы - таблииы ВЗЛП

2.5 Двойственность в ЛП

Определение. Будем говорить, что знаки линейных ограничений ЗЛП согласованы с целевой функцией, если в задаче на max ограничения неравенства имеют вид "≤ а в задаче на min ограничения на неравенство имеют вид ">"

Определение (Двойственная задача). Для ЗЛП І двойственной задачей ІІ является ЗЛП вида:

$$f(x) = \sum_{j=1}^{n} c_j x_j \to \max \leftrightarrow g(y) = \sum_{i=1}^{m} b_i y_i \to \min,$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, i = 1, \dots, l \leftrightarrow y_i \ge 0, i = 1 \dots l,$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, i = l+1, \dots m \leftrightarrow y_i \in \mathbb{R}, i = l+1, \dots, m,$$

$$x_j \ge 0, i = 1, \dots p \leftrightarrow \sum_{i=1}^{m} a_{ij} y_i \le c_j, j = 1, \dots, p$$

$$x_j \in \mathbb{R}, j = p+1, \dots n \leftrightarrow \sum_{i=1}^{m} a_{ij} y_i \le c_j, j = p+1, \dots, n$$

Задачу І называют прямой, а ІІ - двойственной. Стрелки соответствуют сопряженным ограничениям

Теорема 2.11 (Основное неравенство двойственности).

$$\forall x \in D_I, \forall y \in D_{II}, f(x) \leq g(y)$$

2.6 Теоремы двойственности

Лемма 2.2 (основная лемма). Пусть $\forall x \in D_I \neq \emptyset, f(x) \leq M < +\infty \implies \exists y \in D_{II} g(y) \leq M$

Теорема 2.12 (Первая теорема двойственности). Если одна из пары двойственных задач разрешима, то разрешима и другая, причем оптимальное значение целевых функций совпадают, т.е $f(x^*) = g(y^*)$, где x^*, y^* - оптимальные решения задач I, II соответственно

Определение (Условия дополняющей нежесткости). Будем говорить, что $x \in D_I, y \in D_{II}$ удовлетворяют УДН, если при подстановке в любую пару сопряженных неравенств хотя бы одно из них обращается в равенство. Это означает, что следующие характеристические произведения обращаются в 0:

$$(\sum_{j=1}^{n} a_{ij}x_j - b_i)y_i = 0, i = 1, \dots m$$

$$x_i(\sum_{i=1}^m a_{ij}y_i - c_j) = 0, j = 1, \dots n$$

Теорема 2.13 (Вторая теорема двойственности). $x^* \in D_I, y^* \in D_{II}$. оптимальны в задачах I, II тогда и только тогда, когда они удовлетворяют УДН.

2.7 Критерий разрешимости ЛП

Определение (Точная верхняя грань функции). M^* называется точной верхней гранью функции f(x) на множестве D, если

- 1. $\forall x \in D \quad f(x) \leq M^*$
- 2. $\forall M < M^* \quad \exists x \in D \quad f(x) > M$

Лемма 2.3 (О точной верхней грани функции g(y) на D_{II}). $M^* < +\infty$ - точная верхняя грань f(x) на D_I , тогда $\forall y \in D_{II} \quad g(y) \geq M^*$

Теорема 2.14 (Критерий разрешимости). Целевая функция задачи ЛП ограничена сверху (снизу) на непустом множестве допустимых решений тогда и только тогда, когда задача максимизации (минимизации) разрешима

2.8 Классификация пар двойственных задач

Теорема 2.15 (Малая теорема двойственности). Если $D_I \neq \varnothing, D_{II} \neq \varnothing \implies$ обе задачи точно разрешимы

Теорема 2.16 (О причинах неразрешимости $3\Pi\Pi$). $D_I \neq \varnothing$, целевая функция неограничена сверху на D_I тогда и только тогда, когда II неразрешима, так как $D_{II} = \varnothing$

Классификация

- 1. $D_I \neq \varnothing, D_{II} \neq \varnothing$ обе задачи разрешимы, т.к $f(x^*) = g(y^*)$
- 2. $D_I \neq \varnothing, D_{II} = \varnothing$ обе неразрешимы, т.к f(x) неограничена, $D_{II} = \varnothing$
- 3. $D_I=\varnothing, D_{II}\ne\varnothing$ обе неразрешимы, т.к $D_I=\varnothing, g\to +\infty$ на D_{II}
- 4. $D_I=\varnothing, D_{II}=\varnothing$ обе неразрешимы