

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination

11 December 2023

Max. Marks: 100

Duration: 3Hrs

Class: FYMCA

Semester: I

Name of the Course: Linear Algebra

Course Code: MA501

Instruction:

(1) All questions are compulsory.

(2) Assume suitable data if necessary.

(3) Use of scientific calculator is allowed.

Q No.		Max. Marks	CO	BL
Q.1	(a) Find the value of λ and μ such that the system	8	CO1	2
	$x + 2y + \lambda z = 1$			
	$x + 2\lambda y + z = \mu$			
	$\lambda x + 2y + z = 1$			
	have (i) no solution (ii) only one solution, (iii) many solutions.			
	(b) For what values of k , the following system has non-trivial solution:	8	CO1	2
	2x + 3ky + (3k + 4)z = 0 x + (k + 4)y + (4k + 2)z = 0 x + 2(k + 1)y + (3k + 4)z = 0.			
Q.2	(a) Solve the following system of equations using Gauss Jordan method:	8	CO2	2
	2x + y + 2z + w = 6 $6x - 6y + 6z + 12 = 36$ $4x + 3y + 3z - 3w = -1$ $2x + 2y - z + w = 10.$			
	(b) Solve the following system of equations using the Gauss-Seidel method up to four iterations:	8	CO2	2
	10x + y + z = 12 $x + 10y + 2 = 12$ $x + y + 10z = 12.$			

		8	CO3	3
	(c) Solve the following system of equations using LU Decomposition method:			
	x + 2y + 4z = 3			
	3x + 8y + 14z = 13			
	2x + 6y + 13z = 4			
	Or			
	(c) A traffic circle has five one-way streets, and vehicles enter and leave as shown in the following diagram.			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Then (i) compute the possible flows, and (ii) conclude which road has the heaviest flow.			
Q.3	Consider the key matrix	5	CO ₃	3
	$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$			
	(i) Encode the message NOW_STUDY using the above key matrix modulo 27.			
	(ii) Decode the message BOW_LTYDY using the above key matrix modulo 27.	5	CO3	3
Q.4	(a) Let A be an $m \times n$ matrix. For which column b in \mathbf{R}^m is $U = \{x : x \in \mathbf{R}^m, Ax = b\}$ a subspace of \mathbf{R}^n . Justify your answer.	5	CO4	2
	(b) Which of the following subsets U of V are linearly independent? Justify.	5	CO4	2
	(i) $V = P_3$, $U = \{x^2 - x + 3, 2x^2 + x + 5, x^2 + 5x + 1\}$			
		5	CO4	2
	(ii) $V = M_{22}, U = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$			

		7	CO4	2
	(c) Find the least square approximating line $y = mx + c$ for the following sets of data point:	,	004	_
	$(1,1),\ (3,2),\ (4,3),\ (6,4)$			
	Or			
	(c) Using Gram-Schmidt algorithm find orthogonal basis for $U=\{(1,1,1),(0,1,1).$ Find the vector in U closest to $x=(-1,2,1).$			
Q.5	(a) Find eigen values and eigen vectors of $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$.	7	CO5	2
S# -	(b) Using Cayley Hamilton theorem, find A^{-1} for	7	CO5	3
	$A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$			
	(c) Find e^A for $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$.	7	CO6	3
	(c) Solve the following system of differential equations:			
	$f_1' = -f_1 + 5f_2,$ $f_2' = f_1 + 3f_2$			3-
	under the conditions $f_1(0) = 1$ and $f_2(0) = -1$.			
Q.6	(a) Find the normal form of a matrix	7	CO6	3
	$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}.$			
	Hence conclude its rank.			

