SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

YEAR 11 PRELIMINARY HSC

ASSESSMENT TASK II

JULY 2011

General Instructions:

- Working time allowed 70 minutes.
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working should be shown.
- Start each question on a new page.
- Attempt all questions.

NAME:	 	
TEACHER:	 	

	Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	TOTAL
	/10	/0	/0	/9	/10	/10	/57
į	/10	/9	/9	/9	/10	/10	/5/

Question 1			Marks
a)	i)	Convert 40° to radians.	1
	ii)	Solve $\sin \theta = -\frac{\sqrt{3}}{2} for \ 0 \le x \le 2\pi$	2
b)	i)	Write the expansion of $\cos (A + B)$.	1
	ii)	Hence find the value of cos 75° in simplest exact form.	2

c)

Points A,B,C are on

level, horizontal ground.

A vertical tower BT is observed due north of A at a distance of 40 m. It is also observed from C, 30 m away and on a bearing of 050° from B, with an angle of of elevation of 35°.

i) Find BT. 1
 ii) Find ∠BAT (to 1 dec. place). 1
 iii) Find AC (to 1 dec. place). 2

Question 2 (start a new page)

a) Solve
$$\cos 2\theta = \cos \theta$$
 for $0^{\circ} \le \theta \le 360^{\circ}$.

b) If $\sin \theta = 0.3$, where θ is acute, find without a calculator, the value of $\sin 2\theta$. 2 Leave your answer in exact form.

c) Use the "t results" to:

i) solve
$$\cos \theta - \sin \theta = 1$$
 for $0^{\circ} \le \theta \le 360^{\circ}$,

ii) find the exact value of
$$\frac{2 \tan 22.5^{\circ}}{1+\tan^2 22.5^{\circ}}$$

1

Question 3 (start a new page)

- a) Given that $3 \sin \theta 2 \cos \theta = A \sin(\theta \alpha)$,
 - i) find A and α .

2

ii) Hence, solve $3 \sin \theta - 2 \cos \theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$.

2

(answer to 1 decimal place)

iii) Find the first positive θ such that $3 \sin \theta - 2 \cos \theta$ has a maximum value.

1

b) i) Write the expansion of $\tan 2\theta$.

1

ii) Hence, find the value of tan 22.5° in simplest exact form.

3

Question 4 (start a new page)

a) Find the equation of this line:

2

b) Point P divides the interval A(-2, 3), B(6, -1) externally in the ratio 1:3.

i) Show the relative positions of A, B, P using the given ratio. There is no need to plot A and B on a number plane.

2

1

ii) Find the coordinates of P.

2

c) Find the acute angle, <u>correct to 1 decimal place</u>, between:

i) the lines
$$y = 3x + 2$$
 and $2x + 2y - 5 = 0$,

2

ii) the line
$$y = 3x + 2$$
 and the y axis.

2

Question 5

- Given A(0,0), B(4,-2), C(3,3) and D(9,7). P is the midpoint of AB and Q is a) the midpoint of CD.
 - Find the equation of the perpendicular bisector of PQ. 3 i) Give your answer in general form.
 - ii) Find the coordinates of a point E such that ABCE is a parallelogram. 1
- Differentiate: i) $y = \frac{1}{\sqrt{4x-2}}$ b) 2 ii) $y = \frac{2x+1}{(4x-9)^4}$ Leave your answer fully simplified. 3 Evaluate $\lim_{x \to \infty} \frac{x^2 - 5x + 2}{2x^2 + 3x}$ 1 c)

Question 6 (start a new page)

b)

- Explain the essential geometrical distinction between $\frac{f(x+h)-f(x)}{h}$ 1 a) and $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$
- Use first principles to find the derivative of $y = \frac{1}{r^2}$. Find the equation of the normal to the curve $y = \frac{1}{2x}$ at the point where x = 1. c) 3

3

Find the values of k such that the line 3x - 4y + k = 0 intersects twice with the d) 3 circle $(x-4)^2 + y^2 = 4$.

SOLUTIONS

ii)
$$\cos 75 = \cos (45 + 30)$$

= $\cos 45 \cos 30 - \sin 45 \sin 30$
= $\frac{1}{12} \times \frac{1}{2} - \frac{1}{12} \times \frac{1}{2}$
= $\frac{13-1}{2\sqrt{2}}$

· · · · · · · · · · · · · · ·

(.-) a)
$$2\cos^2\theta - 1 = \cos\theta$$

 $2\cos^2\theta - \cos\theta - (=0)$
 $(2\cos\theta + 1)(\cos\theta - 1) = 0$
 $\cos\theta = -\frac{1}{2}$ or 1
 $\theta = 60^{\circ}(2nd, 3rd, quads), 0^{\circ}, 360^{\circ}$
 $= (20^{\circ}, 240^{\circ}, 0^{\circ}, 360^{\circ})$

$$\frac{10}{\sqrt{91}} = 2 \times \frac{3}{10} \times \frac{\sqrt{91}}{10}$$

$$= \frac{6\sqrt{91}}{100}$$
or $3\sqrt{91}$
or $0.6\sqrt{0}$.

c) i)
$$\frac{1-t^2}{1+t^2} - \frac{2t}{1+t^2} = 1$$

$$\frac{1}{1+t^2} - \frac{2t}{1+t^2} = 1$$

$$-2t - 2t - 2t > 0$$

$$-2t(t+1) = 0$$

$$t = 0 \text{ or } -1$$

$$t = 0^{\circ}, (80^{\circ}, 360^{\circ}, 135^{\circ}, 315^{\circ})$$

$$\frac{2}{2} = 0^{\circ}, (80^{\circ}, 360^{\circ}, 270^{\circ})$$

$$\frac{1}{2} = 0^{\circ}, 360^{\circ}, 270^{\circ}$$

$$\frac{11}{14t^2} = sin \theta \left(t = tan \frac{45}{2}\right)$$

$$= sin 45$$

$$= \frac{1}{52}$$

(3) a) i)
$$A = \sqrt{13}$$

 $3 \sin \theta - 2 \cos \theta = \sqrt{3} \sin(\theta - d)$
 $\frac{3}{\sqrt{13}} \sin \theta - \frac{2}{\sqrt{3}} \cos \theta = \sin(\theta - d)$
 $= \sin \theta \cos d - \cos \theta \sin d$
i. $\cos d = \frac{3}{\sqrt{3}}$ [st quad.
 $\sin d = \frac{2}{\sqrt{3}}$ $d = 33.7^{\circ}$
ii) $\sqrt{13} \sin(\theta - 33.7^{\circ}) = 1$
 $\sin(\theta - 33.7^{\circ}) = \frac{1}{\sqrt{3}}$
i. $\theta - 33.7 = (6.1^{\circ}(154, 2nd, quad.))$

i. 0 = 49.8° or 197.6°

(11) max. value is when sin (0 -33.7°) = 1

= (6·1' or 163·9"

· · O-33·7° = 90°

 $0 = (23.7)^{\circ}$

$$|x| = \sqrt{3} \sin(\theta - d)$$

$$= \tan(21.5)$$

$$= -\tan(22.5)$$

$$= -2 \pm 2.5$$

$$= -2 \pm 2.5$$

$$= -2 \pm 2.5$$

$$= -1 \pm 5.2$$

$$= -1 \pm 5.2$$

$$= \tan(22.5) = -1 + 5.2$$

: egn. of line is
$$y-0=-\frac{1}{53}(x-4)$$

$$\frac{1}{15} = \frac{-2}{55} + \frac{4}{55}$$
 (or $2+53y-4=0$)

iii)
$$-2,3$$
 $6,-1$

$$-1,3$$

$$x = -6-6, y = 9+1$$

$$P is (-6,5)$$

e) i)
$$m_1 = 3$$
, $m_2 = -1$
 $fan \theta = \left| \frac{3 - (-1)}{1 + 3(-1)} \right|$
 $= \left| \frac{4}{-2} \right|$

(ii)
$$y = 1 = 3$$

$$-\frac{71.6^{\circ}}{2}$$

$$\frac{9}{10.4^{\circ}}$$

$$\frac{9}{10.4^{\circ}}$$

$$P = (2,-1)$$
 $Q = (6,5)$

$$m_2 = -\frac{2}{3}$$
 and use $m \cdot p \cdot (4, 2)$

i. eqn. perp. bisector is
$$y-2=-\frac{2}{3}(x-4)$$

 $3y-6=-2x+8$
 $2x+3y-14=0$

$$\begin{array}{l} (4x-2)^{-\frac{1}{2}} \\ \frac{dy}{dx} &= -\frac{1}{2} \left(4x-2 \right)^{-\frac{3}{2}} \times 4 \\ &= \frac{-2 \left(4x-2 \right)^{-\frac{3}{2}}}{\left(\text{or equiv.} \right)} \end{array}$$

(ii)
$$\frac{dy}{dx} = 2(4x-9)^4 - 4(4x-9)^3 \times 4 \times (2x+1)$$

$$= 2(4x-9)^4 - (6(2x+1)(4x-9)^3$$

$$= (4x-9)^4$$

c)
$$\lim_{n\to\infty} \frac{1-\frac{5}{x}+\frac{2}{x^2}}{2+\frac{3}{x}}$$

$$= 2(4x-9)^{3}$$

$$= 2(4x-9) - (6(2x+1))$$

$$= 8x - (8 - 32x - 16)$$

$$= -24x - 34$$

$$= (4x-9)^{5}$$

Second is gradient of cure, of

$$h) \frac{dy}{dx} = \lim_{h \to 0} \frac{1}{(\alpha + h)^2} - \frac{1}{x^2}$$

$$= \lim_{h \to 0} \frac{x^2 - (\alpha + h)^2}{x^2(x + h)^2} \times \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{x^2 - x^2 - 2xh - h^2}{x^2(x + h)^2} \times \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{\left((-2x - h) \right)}{x^2(x + h)^2} \times \frac{1}{h}$$

$$= -\frac{2x}{x^4} = -\frac{2}{x^3}$$

C)
$$y = \frac{1}{2}x^{-1}$$

$$\frac{dy}{dx} = -\frac{1}{2}x^{-2}$$

$$= \frac{-1}{2x^{2}}$$
when $x = 1$, $M_{T} = -\frac{1}{2}$

and point is (1, /2)

$$y - \frac{1}{2} = 2(x-1)$$

= $2x - 2$
 $\frac{y}{2} = \frac{2x - 1}{2}$

d) p.d. of 3x-ky+k=0 from (4,0) < 2 units (radius)

$$\frac{13\times4+0+k}{\sqrt{3^2+4^2}}$$
 < 2

|12+k| < 2 |12+k| < 10

(2+K <10 or -12-K < 10

K < -2 or -k < 22

k > -22