## Stabilizatori napona sa bipolarnim tranzistorima



$$V_{out} = V_{zd} - V_{be} \qquad I_{R1} = \frac{V_{in} - V_{zd}}{R_1} = I_{zd} + I_b \qquad R_1 \le \frac{V_{in\_min} - V_{zd}}{I_{out\_max} / h_{FE\_min} + I_{zd\_min}}$$

#### Primer 1

 Projektovati stabilizator napona sa tranzistorom za izlazni napon 5V i potrošač ćija se struja menja od 0,1 do 1A, ukoliko je poznato da se ulazni napon menja u granicama od 8 do 10V.

- Prvo je neophodno odrediti napon zenerove diode:
- $V_{zd} = V_{out} + V_{be} = 5V + 0.6V = 5.6V$

#### Izbor tranzistora

- Nakon toga potrebno je odrediti maksimalnu snagu disipacija na tranzistoru kako bi se odabrao odgovarajući model tranzistora
- $P_{d_{-}max} = (V_{in_{-}max} V_{out}) \cdot I_{out_{-}max} = (10V 5V) \cdot 1A = 5W$
- Dakle potreban nam je tranzistor sa sledečim parametrima:
   V<sub>br</sub>>10V, I<sub>c max</sub>>1A, P<sub>d max</sub>>5W i h<sub>FF</sub>>100.
- Tranzistor koji zadovoljava ove uslove je na primer 2SCR574D: V<sub>br</sub>=V<sub>CEO</sub>=80V, I<sub>c\_max</sub>=2A, P<sub>d\_max</sub>=10W i h<sub>FE</sub>=120 do 390.

#### Proračuni komponenti

• 
$$R_1 \le \frac{V_{in\_min} - V_{zd}}{I_{out\_max}/h_{FE\ min} + I_{zd\_min}} = \frac{8V - 5.6V}{1A/120 + 5mA} = 180\Omega$$

• 
$$P_{zd_{max}} = V_{zd} \cdot \left( \frac{V_{in\_max} - V_{zd}}{R_1} - \frac{I_{out\_min}}{h_{FE\_max}} \right) =$$

$$= 5.6V \cdot \left(\frac{10V - 5.6V}{180\Omega} - \frac{0.1A}{390}\right) = 0.135W$$

#### Prekostrujna zaštita



$$I_{R1} = I_b + I_{zd} + I_{c2}$$
 
$$I_{out\_CL} = 1,1 \cdot I_{out\_max}$$
 
$$R_{CS} = \frac{V_{be}}{I_{out\_CL}}$$

#### Dejstvo strujnog ograničenja

- Pri dostizanju vrednosti strujnog ograničenja za napon na čvoru a V<sub>a</sub> važi sledeća jednakost:
- $V_a = R_2 \cdot I_{out_{CL}} + V_{CS} + V_{be} = R_2 \cdot I_{out_{CL}} + 1,2V = V_{zd}$
- za  $R_2 \le \frac{V_{zd}-1,2V}{I_{out\_CL}}$  zener dioda izlazi iz proboja
- Za R<sub>2</sub> = 0, snaga disipacije na Q<sub>1</sub> je maksimalna i data je izrazom:
- $P_{dmax} = I_{out\_CL} \cdot (V_{in\_max} V_{CS}) = I_{out\_CL} \cdot (V_{in\_max} 0.6V)$

#### Tranzistor Q2

- $V_{ce2\_max} = V_{CS} + V_{be} = 1.2V$
- $I_{c2\_max} = \frac{V_{in\_max} V_{be} V_{CS}}{R_1} \frac{I_{out\_CL}}{h_{FE\_max}}$
- $P_{d2\_max} = V_{ce2\_max} \cdot I_{c2\_max}$

 Nedostatak koje ima opisano kolo je povećanje izlazne otpornosti uvođenjem otpornika R<sub>CS</sub>.

## Prekostrujna zaštita i naponskom povratnom spregom sa izlaza



#### Proračun komponenti

• Za  $I_{R_4-R_5} \gg I_{b3}$  razdelnik možemo smatrati idealnim

• 
$$V_{fb} = \frac{R_5}{R_4 + R_5} \cdot V_{out} = V_{zd} + V_{be3}$$

$$\Rightarrow V_{out} = \left(1 + \frac{R_4}{R_5}\right) \cdot \left(V_{zd} + V_{be3}\right)$$

R<sub>1</sub> obezbeđuje baznu struju tranzistora Q<sub>1</sub>

• 
$$R_1 < \frac{V_{in\_min} - V_{out} - V_{CS\_max} - V_{be1}}{(I_{out\_CL} + I_S) / h_{FE\ min}}$$

 R<sub>3</sub> obezbeđuje potrebnu struju da bi zener dioda sigurno bila u proboju

• 
$$R_3 \leq \frac{V_{in\_min} - V_{zd}}{I_{zd\ min}}$$

#### Strujni izvori – strujni regulatori



$$\bullet \quad V_1 = V_{be} + I_e \cdot R_2$$

• 
$$I_e = \frac{V_1 - V_{be}}{R_2} = const$$

- Za veliko h<sub>FE</sub>
- $I_c = I_e$
- $V_{cc} R_1 \cdot I_c V_{ce} R_2 \cdot I_e = 0$

• 
$$0 \le R_1 < \left(\frac{V_{cc} - V_{ce\_sat}}{I_c} - R_2\right)$$

## Realizacija



#### Transmiter za Pt100



 $V_{out} = I_c \cdot R(T)$  pri čemu je  $I_c = const$ 

#### Polarizacija tranzistora





$$V_t = V_{cc} \cdot \frac{R_3}{R_2 + R_3}$$
  $i$   $R_t = \frac{R_2 \cdot R_3}{R_2 + R_3}$ 

$$R_t = \frac{R_2 \cdot R_3}{R_2 + R_3}$$

$$I_{bo} = \frac{V_t - V_{be}}{R_t}$$

$$I_{co} = h_{FE} \cdot I_{bo} = h_{FE} \cdot \frac{V_t - V_{be}}{R_t} \qquad i \qquad V_{ceo} = V_{cc} - R_1 \cdot I_{co}$$

# Kapacitivna sprega za naizmenične signale





## Puš-pul pojačavač 1





## Puš-pul pojačavač 2





#### NPN tranzistor kao prekidač



#### PNP tranzistor kao prekidač



Table 37-7. I/O pin characteristics.

| Symbol                                      | Parameter                         | Condition                    |                        | Min.                | Тур.                 | Max.                 | Units |
|---------------------------------------------|-----------------------------------|------------------------------|------------------------|---------------------|----------------------|----------------------|-------|
| I <sub>OH</sub> (1)/<br>I <sub>OL</sub> (2) | I/O pin source/sink current       |                              |                        | -20                 |                      | 20                   | mA    |
| $V_{IH}$                                    | High level input voltage          | V <sub>CC</sub> = 2.7 - 3.6V |                        | 2                   |                      | V <sub>CC</sub> +0.3 |       |
|                                             |                                   | V <sub>CC</sub> = 2.0 - 2.7V |                        | 0.7*V <sub>CC</sub> |                      | V <sub>CC</sub> +0.3 |       |
|                                             |                                   | V <sub>CC</sub> = 1.6 - 2.0V |                        | 0.7*V <sub>CC</sub> |                      | V <sub>CC</sub> +0.3 |       |
| V <sub>IL</sub>                             | Low level input voltage           | V <sub>CC</sub> = 2.7- 3.6V  |                        | -0.3                |                      | 0.3*V <sub>CC</sub>  |       |
|                                             |                                   | V <sub>CC</sub> = 2.0 - 2.7V |                        | -0.3                |                      | 0.3*V <sub>CC</sub>  |       |
|                                             |                                   | V <sub>CC</sub> = 1.6 - 2.0V |                        | -0.3                |                      | 0.3*V <sub>CC</sub>  |       |
| V <sub>ОН</sub>                             | High level output voltage         | V <sub>CC</sub> = 3.0 - 3.6V | I <sub>OH</sub> = -2mA | 2.4                 | 0.94*V <sub>CC</sub> |                      | V     |
|                                             |                                   | V <sub>CC</sub> = 2.3 - 2.7V | I <sub>OH</sub> = -1mA | 2.0                 | 0.96*V <sub>CC</sub> |                      |       |
|                                             |                                   |                              | I <sub>OH</sub> = -2mA | 1.7                 | 0.92*V <sub>CC</sub> |                      |       |
|                                             |                                   | V <sub>CC</sub> = 3.3V       | I <sub>OH</sub> = -8mA | 2.6                 | 2.9                  |                      |       |
|                                             |                                   | V <sub>CC</sub> = 3.0V       | I <sub>OH</sub> = -6mA | 2.1                 | 2.6                  |                      |       |
|                                             |                                   | V <sub>CC</sub> = 1.8V       | I <sub>OH</sub> = -2mA | 1.4                 | 1.6                  |                      |       |
| V <sub>OL</sub>                             | Low level output voltage          | V <sub>CC</sub> = 3.0 - 3.6V | I <sub>OL</sub> = 2mA  |                     | 0.05*V <sub>CC</sub> | 0.4                  |       |
|                                             |                                   | V <sub>CC</sub> = 2.3 - 2.7V | I <sub>OL</sub> = 1mA  |                     | 0.03*V <sub>CC</sub> | 0.4                  |       |
|                                             |                                   |                              | I <sub>OL</sub> = 2mA  |                     | 0.06*V <sub>CC</sub> | 0.7                  |       |
|                                             |                                   | V <sub>CC</sub> = 3.3V       | I <sub>OL</sub> = 15mA |                     | 0.4                  | 0.76                 |       |
|                                             |                                   | V <sub>CC</sub> = 3.0V       | I <sub>OL</sub> = 10mA |                     | 0.3                  | 0.64                 |       |
|                                             |                                   | V <sub>CC</sub> = 1.8V       | I <sub>OL</sub> = 5mA  |                     | 0.3                  | 0.46                 |       |
| I <sub>IN</sub>                             | Input leakage current             |                              |                        |                     | <0.001               | 0.1                  | μA    |
| $R_P$                                       | I/O pin Pull/Buss keeper resistor |                              |                        |                     | 25                   |                      | kΩ    |
| R <sub>RST</sub>                            | Reset pin pull-up resistor        |                              |                        |                     | 25                   |                      |       |
| t <sub>r</sub>                              | Pad rise time                     | No load                      |                        |                     | 4.0                  |                      | ns    |
|                                             |                                   |                              | slew rate limitation   |                     | 7.0                  |                      |       |

Notes:

The sum of all I<sub>OH</sub> for PORTA, PORTC, PORTD, PORTF, PORTH, PORTJ, PORTK must for each port not exceed 200mA. The sum of all I<sub>OH</sub> for PORTB must not exceed 100mA.

The sum of all I<sub>OH</sub> for PORTQ, PORTR and PDI must not exceed 100mA.

The sum of all I<sub>OL</sub> for PORTA, PORTC, PORTD, PORTF, PORTH, PORTJ, PORTK must for each port not exceed 200mA.
The sum of all I<sub>OL</sub> for PORTB must not exceed 100mA.
The sum of all I<sub>OL</sub> for PORTQ, PORTR and PDI must not exceed 100mA.

### Induktivni potrošači

Zaštitno kolo

**Vload** Lload D -Vcc =3,3V Rload R1 Q1 NPN Rb Q BC337-40 Re R2 Q2 NPN

