Enoncés: A. Bodin, F. Ridde Corrections: A. Bodin

Rappels

Logique, ensembles 1

Exercice 1

Soient f,g deux fonctions de \mathbb{R} dans \mathbb{R} . Traduire en termes de quantificateurs les expressions suivantes :

- 1. f est majorée;
- 2. f est bornée;
- 3. f est paire;
- 4. f est impaire;
- 5. f ne s'annule jamais;
- 6. f est périodique;
- 7. f est croissante;
- 8. f est strictement décroissante;
- 9. f n'est pas la fonction nulle;
- 10. f n'a jamais les mêmes valeurs en deux points distincts;
- 11. f atteint toutes les valeurs de \mathbb{N} ;
- 12. f est inférieure à g;
- 13. f n'est pas inférieure à g.

Correction ▼ Vidéo 📕 [000120]

Exercice 2

Montrer par contraposition les assertions suivantes, E étant un ensemble :

- 1. $\forall A, B \in \mathscr{P}(E) \quad (A \cap B = A \cup B) \Rightarrow A = B$,
- 2. $\forall A, B, C \in \mathscr{P}(E)$ $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Rightarrow B = C.$

Correction ▼

Vidéo 📕

[000122]

Exercice 3

Soit A, B deux ensembles, montrer $\mathbb{C}(A \cup B) = \mathbb{C}A \cap \mathbb{C}B$ et $\mathbb{C}(A \cap B) = \mathbb{C}A \cup \mathbb{C}B$.

Indication ▼

Correction ▼

Vidéo

[000123]

Exercice 4

Soient E et F deux ensembles, $f: E \longrightarrow F$. Démontrer que :

 $\forall A, B \in \mathscr{P}(E) \quad (A \subset B) \Rightarrow (f(A) \subset f(B)),$

 $\forall A, B \in \mathscr{P}(E) \quad f(A \cap B) \subset f(A) \cap f(B),$

 $\begin{array}{l} \forall A,B \in \mathscr{P}(E) \quad f(A \cup B) = f(A) \cup f(B), \\ \forall A,B \in \mathscr{P}(F) \quad f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), \\ \forall A \in \mathscr{P}(F) \quad f^{-1}(F \setminus A) = E \setminus f^{-1}(A). \end{array}$

Vidéo 📕 $\texttt{Correction} \; \blacktriangledown$

[000124]

2 Propriétés de \mathbb{R}

Exercice 5

- 1. Démontrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $r.x \notin \mathbb{Q}$.
- 2. Montrer que $\sqrt{2} \notin \mathbb{Q}$,
- 3. En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel.

Indication ▼

Correction ▼

[000451]

Exercice 6

Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[0,1] \cap \mathbb{Q}$$
, $]0,1[\cap \mathbb{Q}$, \mathbb{N} , $\left\{ (-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^* \right\}$.

Correction ▼ [000466]

Exercice 7

Soit A et B deux parties bornées de \mathbb{R} . Vrai ou faux ?

- 1. $A \subset B \Rightarrow \sup A \leqslant \sup B$,
- 2. $A \subset B \Rightarrow \inf A \leqslant \inf B$,
- 3. $\sup(A \cup B) = \max(\sup A, \sup B)$,
- 4. $\sup(A+B) < \sup A + \sup B$,
- 5. $\sup(-A) = -\inf A$,
- 6. $\sup A + \inf B \leq \sup (A + B)$.

Indication ▼ Correction ▼

[000477]

Exercice 8

Soit $f : \mathbb{R} \to \mathbb{R}$ telle que

$$\forall (x, y) \in \mathbb{R}^2$$
 $f(x+y) = f(x) + f(y)$.

Montrer que

- 1. $\forall n \in \mathbb{N}$ $f(n) = n \cdot f(1)$.
- 2. $\forall n \in \mathbb{Z}$ $f(n) = n \cdot f(1)$.
- 3. $\forall q \in \mathbb{Q}$ $f(q) = q \cdot f(1)$.
- 4. $\forall x \in \mathbb{R}$ $f(x) = x \cdot f(1)$ si f est croissante.

Indication ▼

Correction ▼

[000497]

Indication pour l'exercice 3 ▲

Il est plus facile de raisonner en prenant un élément $x \in E$. Par exemple, soit F, G des sous-ensembles de E. Montrer que $F \subset G$ revient à montrer que pour tout $x \in F$ alors $x \in G$. Et montrer F = G est équivalent à $x \in F$ si et seulement si $x \in G$, et ce pour tout x de E. Remarque : pour montrer F = G on peut aussi montrer $F \subset G$ puis $G \subset F$. Enfin, se rappeler que $x \in CF$ si et seulement si $x \notin F$.

Indication pour l'exercice 5 ▲

- 1. Raisonner par l'absurde.
- 2. Raisonner par l'absurde en écrivant $\sqrt{2} = \frac{p}{q}$ avec p et q premiers entre eux. Ensuite plusieurs méthodes sont possibles par exemple essayer de montrer que p et q sont tous les deux pairs.
- 3. Considérer $r + \frac{\sqrt{2}}{2}(r' r)$ (faites un dessin!) pour deux rationnels r, r'. Puis utiliser les deux questions précédentes.

Indication pour l'exercice 7 ▲

Deux propositions sont fausses...

Indication pour l'exercice 8 ▲

- 1. $f(2) = f(1+1) = \cdots$, faire une récurrence.
- 2. $f((-n)+n) = \cdots$.
- 3. Si $q = \frac{a}{b}$, calculer $f(\frac{a}{b} + \frac{a}{b} + \dots + \frac{a}{b})$ avec b terms dans cette somme.
- 4. Utiliser la densité de \mathbb{Q} dans \mathbb{R} : pour $x \in \mathbb{R}$ fixé, prendre une suite de rationnels qui croit vers x, et une autre qui décroit vers x.

Correction de l'exercice 1 A

```
1. \exists M \in \mathbb{R} \quad \forall x \in \mathbb{R}
                                               f(x) \leq M;
 2. \exists M \in \mathbb{R} \quad \exists m \in \mathbb{R} \quad \forall x \in \mathbb{R}
                                                              m \leq f(x) \leq M;
 3. \forall x \in \mathbb{R}
                            f(x) = f(-x);
 4. \forall x \in \mathbb{R}
                            f(x) = -f(-x);
 5. \forall x \in \mathbb{R}
                            f(x) \neq 0;
 6. \exists a \in \mathbb{R}^* \quad \forall x \in \mathbb{R}
                                               f(x+a) = f(x);
 7. \forall (x,y) \in \mathbb{R}^2
                                    (x \le y \Rightarrow f(x) \le f(y));
 8. \forall (x,y) \in \mathbb{R}^2
                                    (x \le y \Rightarrow f(x) > f(y));
 9. \exists x \in \mathbb{R}
                         f(x) \neq 0;
10. \forall (x,y) \in \mathbb{R}^2
                                   (x \neq y \Rightarrow f(x) \neq f(y));
11. \forall n \in \mathbb{N} \quad \exists x \in \mathbb{R} \qquad f(x) = n;
12. \forall x \in \mathbb{R}
                            f(x) \leq g(x);
13. \exists x \in \mathbb{R}
                             f(x) > g(x).
```

Correction de l'exercice 2 A

Nous allons démontrer l'assertion 1. de deux manières différentes.

- 1. Tout d'abord de façon "directe". Nous supposons que A et B sont tels que $A \cap B = A \cup B$. Nous devons montrer que A = B. Pour cela étant donné $x \in A$ montrons qu'il est aussi dans B. Comme $x \in A$ alors $x \in A \cup B$ donc $x \in A \cap B$ (car $A \cup B = A \cap B$). Ainsi $x \in B$.
 - Maintenant nous prenons $x \in B$ et le même raisonnement implique $x \in A$. Donc tout élément de A est dans B et tout élément de B est dans A. Cela veut dire A = B.
- 2. Ensuite, comme demandé, nous le montrons par contraposition. Nous supposons que $A \neq B$ et non devons montrer que $A \cap B \neq A \cup B$.
 - Si $A \neq B$ cela veut dire qu'il existe un élément $x \in A \setminus B$ ou alors un élément $x \in B \setminus A$. Quitte à échanger A et B, nous supposons qu'il existe $x \in A \setminus B$. Alors $x \in A \cup B$ mais $x \notin A \cap B$. Donc $A \cap B \neq A \cup B$.

Correction de l'exercice 3

$$x \in \mathbb{C}(A \cup B) \Leftrightarrow x \notin A \cup B$$

$$\Leftrightarrow x \notin A \text{ et } x \notin B$$

$$\Leftrightarrow x \in \mathbb{C}A \text{ et } x \in \mathbb{C}B$$

$$\Leftrightarrow x \in \mathbb{C}A \cap \mathbb{C}B.$$

$$x \in \mathbb{C}(A \cap B) \Leftrightarrow x \notin A \cap B$$

$$\Leftrightarrow x \notin A \text{ ou } x \notin B$$

$$\Leftrightarrow x \in \mathbb{C}A \text{ ou } x \in \mathbb{C}$$

$$\Leftrightarrow x \in \mathbb{C}A \cup \mathbb{C}B.$$

Correction de l'exercice 4 ▲

Montrons quelques assertions.

 $f(A \cap B) \subset f(A) \cap f(B)$.

Si $y \in f(A \cap B)$, il existe $x \in A \cap B$ tel que y = f(x), or $x \in A$ donc $y = f(x) \in f(A)$ et de même $x \in B$ donc $y \in f(B)$. D'où $y \in f(A) \cap f(B)$. Tout élément de $f(A \cap B)$ est un élément de $f(A \cap B)$ conc $f(A \cap B) \subset f(A) \cap f(B)$.

Remarque : l'inclusion réciproque est fausse. Exercice : trouver un contre-exemple.

$$f^{-1}(F \setminus A) = E \setminus f^{-1}(A).$$

$$x \in f^{-1}(F \setminus A) \Leftrightarrow f(x) \in F \setminus A$$

$$\Leftrightarrow f(x) \notin A$$

$$\Leftrightarrow x \notin f^{-1}(A) \quad \text{car } f^{-1}(A) = \{x \in E \mid f(x) \in A\}$$

$$\Leftrightarrow x \in E \setminus f^{-1}(A)$$

Correction de l'exercice 5

1. Soit $r = \frac{p}{q} \in \mathbb{Q}$ et $x \notin \mathbb{Q}$. Par l'absurde supposons que $r + x \in \mathbb{Q}$ alors il existe deux entiers p', q' tels que $r + x = \frac{p'}{q'}$. Donc $x = \frac{p'}{q'} - \frac{p}{q} = \frac{qp' - pq'}{qq'} \in \mathbb{Q}$ ce qui est absurde car $x \notin \mathbb{Q}$.

De la même façon si $r \cdot x \in \mathbb{Q}$ alors $r \cdot x = \frac{p'}{q'}$ Et donc $x = \frac{p'}{q'} \frac{q}{p}$. Ce qui est absurde.

2. Méthode "classique". Supposons, par l'absurde, que $\sqrt{2} \in \mathbb{Q}$ alors il existe deux entiers p,q tels que $\sqrt{2} = \frac{p}{q}$. De plus nous pouvons supposer que la fraction est irréductible (p et q sont premiers entre eux). En élevant l'égalité au carré nous obtenons $q^2 \times 2 = p^2$. Donc p^2 est un nombre pair, cela implique que p est un nombre pair (si vous n'êtes pas convaincu écrivez la contraposée "p impair $\Rightarrow p^2$ impair"). Donc $p = 2 \times p'$ avec $p' \in \mathbb{N}$, d'où $p^2 = 4 \times p'^2$. Nous obtenons $q^2 = 2 \times p'^2$. Nous en déduisons maintenant que q^2 est pair et comme ci-dessus que q est pair. Nous obtenons ainsi une contradiction car p et q étant tous les deux pairs la fraction $\frac{p}{q}$ n'est pas irréductible et aurait pu être simplifiée. Donc $\sqrt{2} \notin \mathbb{Q}$.

Autre méthode. Supposons par l'absurde que $\sqrt{2} \in \mathbb{Q}$. Alors $\sqrt{2} = \frac{p}{q}$ pour deux entiers $p, q \in \mathbb{N}^*$. Alors nous avons $q \cdot \sqrt{2} \in \mathbb{N}$. Considérons l'ensemble suivant :

 $\mathcal{N} = \left\{ n \in \mathbb{N}^* \mid n \cdot \sqrt{2} \in \mathbb{N} \right\}.$

Cet ensemble \mathscr{N} est une partie de \mathbb{N}^* qui est non vide car $q \in \mathscr{N}$. On peut alors prendre le plus petit élément de \mathscr{N} : $n_0 = \min \mathscr{N}$. En particulier $n_0 \cdot \sqrt{2} \in \mathbb{N}$. Définissons maintenant n_1 de la façon suivante : $n_1 = n_0 \cdot \sqrt{2} - n_0$. Il se trouve que n_1 appartient aussi à \mathscr{N} car d'une part $n_1 \in \mathbb{N}$ (car n_0 et $n_0 \cdot \sqrt{2}$ sont des entiers) et d'autre part $n_1 \cdot \sqrt{2} = n_0 \cdot 2 - n_0 \cdot \sqrt{2} \in \mathbb{N}$. Montrons maintenant que n_1 est plus petit que n_0 . Comme $0 < \sqrt{2} - 1 < 1$ alors $n_1 = n_0(\sqrt{2} - 1) < n_0$ et est non nul.

Bilan : nous avons trouvé $n_1 \in \mathcal{N}$ strictement plus petit que $n_0 = \min \mathcal{N}$. Ceci fournit une contradiction. Conclusion : $\sqrt{2}$ n'est pas un nombre rationnel.

3. Soient r, r' deux rationnels avec r < r'. Notons $x = r + \frac{\sqrt{2}}{2}(r' - r)$. D'une part $x \in]r, r'[$ (car $0 < \frac{\sqrt{2}}{2} < 1$) et d'après les deux premières questions $\sqrt{2}\left(\frac{r'-r}{2}\right) \notin \mathbb{Q}$ donc $x \notin \mathbb{Q}$. Et donc x est un nombre irrationnel compris entre r et r'.

Correction de l'exercice 6

- 1. $[0,1] \cap \mathbb{Q}$. Les majorants : $[1,+\infty[$. Les minorants : $]-\infty,0]$. La borne supérieure : 1. La borne inférieure : 0. Le plus grand élément : 1. Le plus petit élément 0.
-]0,1[∩Q. Les majorants : [1,+∞[. Les minorants :] -∞,0]. La borne supérieure : 1. La borne inférieure : 0. Il nexiste pas de plus grand élément ni de plus petit élément.
- 3. \mathbb{N} . Pas de majorants, pas de borne supérieure, ni de plus grand élément. Les minorants : $]-\infty,0]$. La borne inférieure : 0. Le plus petit élément : 0.
- 4. $\left\{(-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^*\right\}$. Les majorants : $\left[\frac{5}{4}, +\infty\right[$. Les minorants : $\left]-\infty, -1\right]$. La borne supérieure : $\frac{5}{4}$. La borne inférieure : -1. Le plus grand élément : $\frac{5}{4}$. Pas de plus petit élément.

Correction de l'exercice 7

- 1. Vrai.
- 2. Faux. C'est vrai avec l'hypothèse $B \subset A$ et non $A \subset B$.
- 3. Vrai.
- 4. Faux. Il y a égalité.
- 5. Vrai.
- 6. Vrai.

Correction de l'exercice 8

- 1. Calculons d'abord f(0). Nous savons f(1) = f(1+0) = f(1) + f(0), donc f(0) = 0. Montrons le résultat demandé par récurrence : pour n = 1, nous avons bien $f(1) = 1 \times f(1)$. Si f(n) = nf(1) alors f(n+1) = f(n) + f(1) = nf(1) + f(1) = (n+1)f(1).
- 2. 0 = f(0) = f(-1+1) = f(-1) + f(1). Donc f(-1) = -f(1). Puis comme ci-dessus f(-n) = nf(-1) = -nf(1).
- 3. Soit $q = \frac{a}{b}$. Alors $f(a) = f(\frac{a}{b} + \frac{a}{b} + \dots + \frac{a}{b}) = f(\frac{a}{b}) + \dots + f(\frac{a}{b})$ (b terms dans ces sommes). Donc $f(a) = bf(\frac{a}{b})$. Soit $af(1) = bf(\frac{a}{b})$. Ce qui s'écrit aussi $f(\frac{a}{b}) = \frac{a}{b}f(1)$.
- Fixons x ∈ ℝ. Soit (α_i) une suite croissante de rationnels qui tend vers x. Soit (β_i) une suite décroissante de rationnels qui tend vers x :

$$\alpha_1 \leq \alpha_2 \leq \alpha_3 \leq \ldots \leq x \leq \cdots \leq \beta_2 \leq \beta_1$$
.

Alors comme $\alpha_i \le x \le \beta_i$ et que f est croissante nous avons $f(\alpha_i) \le f(x) \le f(\beta_i)$. D'après la question précédent cette inéquation devient : $\alpha_i f(1) \le f(x) \le \beta_i f(1)$. Comme (α_i) et (β_i) tendent vers x. Par le "théorème des gendarmes" nous obtenons en passant à la limite : $xf(1) \le f(x) \le xf(1)$. Soit f(x) = xf(1).