Database Systems and Database System Design

Normalization

Objective of this lecture

- Understand the concept of normalization.
- Be able to apply the normalization with the table.

Purpose of the normalization

Normalization is

"A technique for producing a set of relations with desirable properties, given the data requirements of an enterprise."

- The normalization process is to identify a **suitable** set of relation that support the data requirements of an enterprise.
- The aim of the normalization is to avoid unnecessary duplication of data.

Purpose of the normalization

- There are 2 ways to use the normalization.
- Approach 01
 - Bottom up approach
 - Not suitable for large database
- Approach 02
 - Validation technique
 - Check the structure of the database

Well-designed relation

Minimum Null Value

• The NULL value in the database represent the unknown value.

• A good database should structurally allow the smallest number of NULL value.

Minimum Null Value

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	E F	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB	4	NULL

Minimum Null Value

Data Redundancy

- Data redundancy means there are more than one copy of information in the DB.
 - Waste of space
 - Risk of conflict (just like the file-based system)
- Every insert, update and delete operation needs to perform at every copy of the data.

- Some information might lose forever.
- This operations could lead to **anomaly**.

Data Redundancy

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB	4	NULL

Data Redundancy

Delete Anomaly

 When you delete a tuple from a table, some information might lost forever.

- In poor design, the data tends to group together in one place.
 - If you delete a data, other data might be effected.

Delete Anomaly

Delete the student but the course get deleted, too.

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB	4	NULL

- To insert the a new tuple, we must insert detail of all information into the table.
 - The data must be consistent with the existing information.
- For a relation with redundant data, we have to insert the data which is exactly the same with other one.

 There is a chance that the new data is not consistent with the original data.

Insert {2069, X Y, 212, Web ui, 4, 101}

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB	4	NULL

Insert {2069, X Y, 212, Web ui, 4, 101}

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB		NULL
2069	XY	212	Web ui		101

- To insert the a new tuple, we must insert detail of all information into the table.
 - The data must be consistent with the existing information.
- To insert a new tuple with some partially unknown, we must insert the NULL value.
 - The allowance of NULL value is a poor design.

Insert {2069, I J, 231, OOP, 4, NULL}

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB	4	NULL

Insert {2069, I J, 231, OOP, 4, NULL}

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	E F	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB	4	NULL
2069	IJ	231	OOP	4	NULL

Update Anomaly

• When you update a tuple from a table, you need to update the value at every position.

• If you miss some place, the data in the table will be inconsistent.

Update Anomaly

[2001, "A B"] **→** [2001, "Z Y"]

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	I J	212	DB	4	NULL

Update Anomaly

{2001, "A B"} = {2001, "Z Y"}

stu_id	stu_name	crs_id	crs_name	crs_credit	lec_id
2001	АВ	103	Logic	3	101
2001	ΖY	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	IJ	212	DB	4	NULL

Problem

STUDENT_LARGE

stu_id	stu_name	crs_id	crs_name	cr redit	lec_id
2001	АВ	103	Logic	3	101
2001	АВ	104	Web ui	3	NULL
2020	C D	103	Logic	3	101
2050	EF	211	Com org	3	102
2060	G H	104	Web ui	3	NULL
2069	J	212	DB	4	NULL

Problem

Problem

"Split the table into smaller table"

STUDENT

stu_id	stu_name
2001	АВ
2020	C D
2050	E F
2060	G H
2069	IJ

COURSE

crs_id	crs_name	crs_credit	lec_id
103	Logic	3	101
104	Web ui	3	NULL
211	Com org	3	102
212	DB	4	NULL

ENROLLMENT

	stu_id	crs_id
	2001	103
	2001	104
	2020	103
	2050	211
	2060	104
),	2069	212

• Consider the insert, update, delete anomaly in the new diagram.

What about the redundancy?

• What about the NULL value?

- Decompose a large relation into a smaller atomic relations.
- Important properties :
 - Lossless-join

"Any tuple of the original relation could be identified from the decomposed relation."

Dependency preservation

"Any constraint of the original relation is maintain in the decomposed relation."

Normalization

DATA SOURCE

Normalization

Normalization

1st Normal Form

First normal form

"A relation in which the intersection of each row and column contains one and only one value"

- Vert important !!!!
- Does not allow variable length lists
- Does not allow repeated fields.

EMPLOYEE_SKILL

emp_id	emp_name	dept_id	emp_skill	dept_name
001	AA BB	01	{swimming, typing}	sale
002	CC DD	04	{typing}	marketing
003	EE FF	01	{music,art,draw ing}	sale

OR

EMPLOYEE_SKILL

emp_id	emp_name	dept_id	emp_skill	dept_name
001	AA BB	01	swimming	sale
			typing	
002	CC DD	04	typing	marketing
003	EE FF	01	music	sale
			art	
			drawing	

1NF: Approach 1

- Decompose into a new set of relations.
- Extract the primary key of the original table and repeating value.
 - Treat each repeating values as a new tuple
- Separate them into a new relation and set all of them to be a new primary key.

emp_id	emp_name	dept_id	emp_skill	dept_name	
001			{swimming,	sale	
			typing}		
002	CC DD	04	{typing}	marketing	
003	EE FF	01	{music,art,draw	sale	

EMPLOYEE

emp_id	emp_name	dept_id	dept_name
001	AA BB	01	sale
002	CC DD	04	marketing
003	EE FF	01	sale

SKILL

emp_id	emp_skill
001	swimming
001	typing
002	typing
003	music
003	art
003	drawing

1NF: Approach 2

- Change the primary key
- Separate the repeated value into a new tuple
- Fill in the empty value with the corresponding value
- Use the repeating value attribute to be a primary key

EMPLOYEE_SKILL

emp_id	emp_name	dept_id	emp_skill	dept_name
001	AA BB	01	swimming	Sale
001	AA BB	01	typing	Sale
002	CC DD	04	typing	marketing
003	EE FF	01	music	Sale
003	EE FF	01	art	Sale
003	EE FF	01	drawing	Sale

1NF: Approach 3

• Change the structure of the attribute to cope with the repeating value.

- Determine the maximum repeated value and create the new attributes according to the possible value.
- Do not recommended !!!!!!!!!!
 - Use the many-to-many relationship (Approach 1)
 - DO not use!!!!!!!!!

EMPLOYEE_SKILL

emp_id	emp_nam e	dept_id	emp_skil l_1	emp_skil	emp_skil	dept_na me
001	AA BB	01	swimming	typing		Sale
002	CC DD	04	typing			marketing
003	EE FF	01	music	art	drawing	Sale

1st Normal Form

- Rule of Thumb
 - Look for repeating group
 - If there is no primary key, you must assign one.
 - You can choose one of the 2 approaches (1 and 2) but you have to think about the context and performance.

Example: 1NF

PROJ_	NUM PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
		101	John G. News	Database Designer	\$105.00	19.4
		105	Alice K. Johnson *	Database Designer	\$105.00	35.7
		106	William Smithfield	Programmer	\$35.75	12.6
	***************************************	102	David H. Senior	Systems Analyst	\$96.75	23.8
18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
		118	James J. Frommer	General Support	\$18.36	45.3
		104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4
		112	Darlene M. Smithson	DSS Analyst	\$45.95	44.0
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.7
		104	Anne K. Ramoras	Systems Analyst	\$96.75	48.4
		113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.6
		111	Geoff B. Wabash	Clerical Support	\$26.87	22.0
		106	William Smithfield	Programmer	\$35.75	12.8
25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.6
		115	Travis B. Bawangi	Systems Analyst	\$96.75	45.8
		101	John G. News *	Database Designer	\$105.00	56.3
		114	Annelise Jones	Applications Designer	\$48.10	33.1
		108	Ralph B. Washington	Systems Analyst	\$96.75	23.6
		118	James J. Frommer	General Support	\$18.36	30.5
		112	Darlene M. Smithson	DSS Analyst	\$45.95	41.4

Example: 1NF

Tab	le name: R	PT_FORMAT			Database name	: Ch05_Con	structCo
	PROJ_NUM	PROJ_NAME	EMP NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
>	15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
			101	John G. News	Database Designer	\$105.00	19.4
			105	Alice K. Johnson *	Database Designer	\$105.00	35.7
			106	William Smithfield	Programmer	\$35.75	12.6
			102	David H. Senior	Systems Analyst	\$96.75	23.8
	18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
	***************************************		118	James J. Frommer	General Support	\$18.36	45.3
			104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4
	***************************************		112	Darlene M. Smi Repeat	ing ialyst	\$45.95	44.0
	22	Rolling Tide	105	Alice K. Johnst group	se Designer	\$105.00	64.7
			104	Anne K. Ramor	,,s Analyst	\$96.75	48.4
			113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.6
			111	Geoff B. Wabash	Clerical Support	\$26.87	22.0
		7	106	William Smithfield	Programmer	\$35.75	12.8
	25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.6
			115	Travis B. Bawangi	Systems Analyst	\$96.75	45.8
			101	John G. News *	Database Designer	\$105.00	56.3
			114	Annelise Jones	Applications Designer	\$48.10	33.1
		iponenia de la compania de la compa	108	Ralph B. Washington	Systems Analyst	\$96.75	23.6
			118	James J. Frommer	General Support	\$18.36	30.5
			112	Darlene M. Smithson	DSS Analyst	\$45.95	41.4

1NF: Approach 1

- Decompose into a new set of relations.
- Extract the primary key of the original table and repeating value.
 - Treat each repeating values as a new tuple
 - Remove the value in the original

PROJ_NUM is a primary key

EMP_NUM is a repeating group

 Separate them into a new relation and set primary key of the original table and repeating value to be a new primary key.

EMP_NAME, JOB_CLASS and CHO_HOUR is related to EMP_NUM

ſ	proj_num	proj_name	emp_num	emp_name	job_class	cho_hour	hours
- 1							

proj_num	proj_name
----------	-----------

<u>proj_num</u> <u>emp_num</u> emp_name job_class cho_hour hours
--

1NF: Approach 2

Change the primary key

• Separate the repeated value into a new tuple

 Use the repeating value attribute to be a another primary key

EMP_NUM

pr	oj_num	proj_name	emp_num	emp_name	job_class	cho_hour	hours

proj_num	proj_name	emp_num	emp_name	job_class	cho_hour	hours

2nd Normal Form

Second normal form

"A relation that is in the First Normal Form and every non-primarykey attribute is fully functionally dependent on the primary key"

- In other word, there is no partial functional dependency on the primary key.
- The partial functional dependency means
 - The primary key has more than one attribute.
 - Some attributes in the primary key uniquely refer to other attributes.

emp_id	emp_name	dept_id	emp_skill	dept_name
001	AA BB	01	swimming	Sale
001	AA BB	01	typing	Sale
002	CC DD	04	typing	marketing
003	EE FF	01	music	Sale
003	EE FF	01	art	Sale
003	EE FF	01	drawing	Sale

l <u>emp_ia</u> emp_name dept_ia <u>emp_skiii</u> dept_name	emp_id	emp_name		emp_skill	dept_name
---	--------	----------	--	-----------	-----------

<u>client_id</u>	property_id	rent_start	rent_end
001	01	1/1/2017	2/1/2017
002	01	1/2/2017	2/2/2017
001	02	1/3/2017	2/3/2017

fully functional dependency

If you remove any attribute from the key, the fully functional dependency does not hold anymore.

client_id	property_id
001	01
002	01
001	02

fully functional dependency

You <u>cannot</u> use only the client_id or property_id to refer to a record. You need both!!!!

emp_id	emp_name	dept_id	emp_skill	dept_name
001	AA BB	01	swimming	Sale
001	AA BB	01	typing	Sale
002	CC DD	04	typing	marketing
003	EE FF	01	music	Sale
003	EE FF	01	art	Sale
003	EE FF	01	drawing	Sale

partial functional dependency

If you remove any attribute from the key, the partial functional dependency still hold.

	emp_name	dept_id	dept_name
emp_id			
001	AA BB	01	Sale
002	CC DD	04	marketing
003	EE FF	01	Sale

partial functional dependency

Emp_id can uniquely refer to Emp_name.

(Emp_skill is not needed!!!!)

Problem

• Data redundancy

			•	
<u>e.</u>	ei. ame	dept	emp_skill	dept_i
001	AA BB	01	swimming	Sale
001	AA BB	01	typing	Sale
002	CC DD	04	typing	marketing
003	EE FF	01	music	Sale
003	EE FF	01	art	Sale
003	EE FF	01	drawing	Sale

Approach

- Decompose the problematic relation into a smaller one.
- Extract the partial functional dependency from the original relation.

• The primary key and non-related attribute remain the same.

Approach

- Decompose the problematic relation into a smaller one.
- Identify the fully functional dependency and partial functional dependency
- Extract the partial functional dependency from the original relation.
 - The primary key of the partial functional dependency remain the same.

emp_id emp_name, dept_id,dept_name

• The remaining set of attribute remains the same.

emp_id,emp_skill

EMPLOYEE

emp_id	emp_name	dept_id	dept_name
001	AA BB	01	sale
002	CC DD	04	marketing
003	EE FF	01	sale

SKILL

emp_id	emp_skill
001	swimming
001	typing
002	typing
003	music
003	art
003	drawing

Primary Key Primary Key Table na. c: DATA_ORG_1NF Database name: Ch05 ConstructCo PROJ NUM PROJ_NAME EMP_NUM EMP NAME JOB CLASS CHG HOUR **HOURS** 15 Evergreen 103 June E. Arbough \$84.50 Elect. Engineer 23.8 15 Evergreen 101 John G. News \$105.00 Database Designer 19.4 15 Evergreen 105 Alice K. Johnson * Database Designer \$105.00 35.7 15 Evergreen 106 William Smithfield \$35.75 Programmer 12.6 15 Evergreen 102 David H. Senior Systems Analyst \$96.75 23.8 18 Amber Wave 114 Annelise Jones Applications Designer \$48.10 24.6 18 Amber Wave 118 James J. Frommer General Support \$18.36 45.3 18 Amber Wave 104 Anne K. Ramoras * Systems Analyst \$96.75 32.4 18 Amber Wave 112 Darlene M. Smithson DSS Analyst \$45.95 44.0 22 Rolling Tide 105 Alice K. Johnson Database Designer \$105.00 64.7 22 Rolling Tide 104 Anne K. Ramoras Systems Analyst \$96.75 48.4 22 Rolling Tide 113 Delbert K. Joenbrood * Applications Designer \$48.10 23.6 22 Rolling Tide 111 Geoff B. Wabash Clerical Support \$26.87 22.0 22 Rolling Tide 106 William Smithfield Programmer \$35.75 12.8 25 107 Maria D. Alonzo Starflight Programmer \$35.75 24.6 25 115 Starflight Travis B. Bawangi Systems Analyst \$96.75 45.8 101 25 John G. News * Starflight Database Designer 56.3 \$105.00 114 25 Annelise Jones Applications Designer Starflight \$48.10 33.1 108 25 Starflight Ralph B. Washington Systems Analyst 23.6 \$96.75 James J. Frommer 118 25 Starflight General Support 30.5 \$18.36 Starflight 112 Darlene M. Smithson DSS Analyst 25 \$45.95 41.4

Result

PROJ_NUM	EMP_NUM	HOURS
----------	---------	-------

PROJ_NUM	PROJ_NAME
----------	-----------

EMP_NUM	EMP_NAME	JOB_CLASS	CHO_HOUR

Challenge #1

part_id	part_name	warehouse_id	warehouse_address	quantity
1	Battery	1	Chiang Mai	1,000
2	Wheel	1	Chiang Mai	500
1	Battery	2	Lampang	500
4	Rear lamp	3	Lamphun	250

Challenge #1 Solution

<u>part_id</u>	warehouse_id	quantity
1	1	1,000
2	1	500
1	2	500
4	3	250

<u>part_id</u>	part_name
1	Battery
2	Wheel
4	Rear lamp

warehouse_id	warehouse_address
1	Chiang Mai
2	Lampang
3	Lamphun

3rd Normal Form

Third normal form

"A relation that is in first and second normal form and in which no nonprimary-key attribute is transitively dependent on the primary key"

- The transitive functional dependency means
 - A implies B and B implies C
 - A will also implies C
- In other word, there is no partial functional dependency on the non-primary key.

Transitive functional dependency

EMPLOYEE

emp_id	emp_name	dept_id	dept_name
001	AA BB	01	sale
002	CC DD	04	marketing
003	EE FF	01	sale

Emp_id is uniquely pointed to Dept_id

transitive functional dependency

- Dept_id is uniquely pointed to Dept_name
- Emp_id is uniquely pointed to Dept_name

Problem

Approach

- Identify the transitive dependency
- Identify the primary key of the transitive dependency
- Extract the transitive relation from the original relation.
- The key of the transitive relation remains the same in the original relation as a foreign key.

transitive functional dependency

Result

emp_id		emp_name		dept_id	
	em	p id	emp_	_name	dept_id
	00′	Ī	AA BE	3	01
	002	2	CC DI)	04
	003	3	EE FF		01

dept_id	dept_name
---------	-----------

dept_id	dept_nam e
01	sale
04	marketing

Primary Key

Table nan OB

		JOB_CODE	JOB_DESCRIPTION	JOB_CHG_HOUR
•	+	500	Programmer	\$35.75
	+	501	Systems Analyst	\$96.75
	(+)	502	Database Designer	\$105.00
	+	503	Electrical Engineer	\$84.50
	\pm	504	Mechanical Engineer	\$67.90
	±	505	Civil Engineer	\$55.78
	\pm	506	Clerical Support	\$26.87
	+	507	DSS Analyst	\$45.95
	+	508	Applications Designer	\$48.10
	Ŧ	509	Bio Technician	\$34.55
	\pm	510	General Support	\$18.36
	$ \pm$	511	Programmer	\$35.75

<u>Job_code</u>	Job_description	n	Job_chg_hour	

Job_code	Job_description
----------	-----------------

Job_description	Job_chg_hour
-----------------	--------------

Challenge # 2

Boyce-Codd Normal form

Boyce-Codd Normal form

"A relation is in Boyce-Codd Normal form (BCNF), if every determinant is a candidate key."

- The determinant is a attribute / a set of attribute that is uniquely referred to a certain value.
 - The determinant is candidate key.
- In other word, there is no non-primary key attribute uniquely referred to the key.

Emp_num	Emp_specialty	manager
0001	C++	А
0001	JAVA	В
0002	XML	C
0003	JAVA	В
0003	XML	E

manager is uniquely referred to Emp_specialty.

Problem

The non-key attribute uniquely referred to the key attribute .

Data Redundancy

Emp_num	Emp_specialty	manager
0001	C++	А
0001	JAVA	В
0002	XML	С
0003	JAVA	В
0003	XML	Е

Problem

Emp_num	Emp_specialty	manager
0001	C++	А
0001	JAVA	В
0002	XML	С
0003	JAVA	В
0003	XML	Е

Approach

- Extract the problematic non-key attribute and key attribute.
- Create a new relation
 - Set the non-key attribute that uniquely points to the key in the original relation to be a primary key in the new relation.
 - The pointed key in original relation is converted to be only attribute.

 Use the non-key attribute to be a new key in the original relation.

Result

<u>manager</u>	Emp_specialt y
А	C++
В	JAVA
С	XML
E	XML

Emp_num	<u>manager</u>
0001	А
0001	В
0002	С
0003	В
0003	Е

Example

determines part of the p....

is not transitive!) Thus, the table structure in Fig. meets the 3NF requirements. Yet the condition causes the table to fail to meet the BCNF requirer

To convert the table structure in Figure 5.7 into table structures that are in 3NF and in BCNF, first change the key to A + C. That is an appropriate action because the dependency $C \to B$ means that C is, in effect, a significant $C \to B$ means that C is $C \to B$. B. At this point, the table is in 1NF because it contains a partial dependency $C \rightarrow B$. Next, follow the decomposition procedures to produce the results shown in Figure 5.8.

actual problem, examine the sample data in Table 5.4. procedure Primary Key Primary Key

Sa	ample Date	₩F Conversion	
STU_ID	STAFF ID	CLASS_CODE	ENROLL_GRADE
125	25	21334	A
125	20	32456	C
135	20	28458	В
144	25	27563	C
144	20	32456	В

<u> </u>		<u>Stu_id</u>	<u>Class_code</u>	Enroll_grade
----------	--	---------------	-------------------	--------------

stu_id stu_name cour		course_id	course_name	grade	Semester
620051001	Somchai Jingjai	961001	Aj Yam Study	F	1/64
				А	2/64
620051002	Somying Naja	961002	Aj Earth Study	С	1/64
620051003	Somsri sawasdee	961003	Aj Maggie Study	D	2/64

course_id	course_name	Sec_num	classroom	capacity	Semester
961001	1 Aj Yam Study 001		C301	50	1/64
					2/64
961002	Aj Earth Study	002	C302	25	1/64
961003	Aj Maggie Study	003	B303	30	2/64
961004	Aj Don Study	001	C301	50	2/64

<u>manufacturer</u>	model	Sub_model	<u>distributor</u>	Shop_id
Factory AA	Coupe	AAO1	Company A	S1
Factory AA	Coupe	AA02	Company C	S1
Factory BB	Coupe	BAO1	Company A	S2
Factory BB	Sedan	BAO2	Company A	S1
Factory CC	Wagon	C04	Company B	S3
Factory CC	Sedan	C05	Company D	S4

stu_id	stu_firstname	stu_lastname	stu_phone	stu_faculty	advisor_name	advisor_phone	advisor_status
001	1 Somchai Somchaimak 1111111111	1111111111	SE	Earth	053123456	Not active	
			DII	Maggie	053123457	Active	
002	Somying	Jingjai	22222222	SE	Don	053123458	Active
003 Somjai	Somjai Naja 33333333 3		MMIT	Earth	053123456	Not active	
			3	SE	Maggie	053123457	Active