

Normal Distribution

Prof. Uma D

Department of Computer Science and Engineering

Normal Distribution

Prof. Uma D

Topics to be covered...

Normal Distribution

Standard Normal Distribution

Continuous Probability Distribution

There are many different types of continuous random variables

PES UNIVERSITY ONLINE

- We try to pick a model that
 - Fits the data well
 - Allows us to make the best possible inferences using the data.
- One important continuous random variable is the normal random variable and the corresponding distribution is Normal distribution.
- Most commonly used continuous distribution is Normal Distribution.

Normal Distribution

- German mathematician and scientist
- Contributions in many fields of mathematics and science
- Referred to as the "Prince of Mathematicians"
- Credited with the use of the probability distribution now known as the normal or Gaussian distribution (bell curve)

Carl Friedrich Gauss (1777–1855)

Normal Distribution

Extremely important continuous probability distribution.

Rises frequently in theory and practice.

We say that a random variable is normally distributed with mean μ and standard deviation σ if the **probability density**

function is given by

Probability Density Function – Normal Distribution

PES UNIVERSITY ONLINE

Probability Density Function

The formula that generates the normal probability distribution is :

Normal Distribution

PES UNIVERSITY ONLINE

Examples of Normal Distribution

- Heights of People
- Test Scores
- Errors in measurements
- Blood Pressure
- Size of things produced by machines

Normal Distribution

PES UNIVERSITY

Why to know Standard Deviation?

Any value is

- Likely to be within 1 standard deviation of the mean.
- Very Likely to be within 2 standard deviations.
- Almost certainly within 3 standard deviations.

The Normal Distribution and Standard Scores

CABT Statistics & Probability - Grade 11 Lecture Presentation

Source Image: www.slideshare.net

Normal Distribution

The Properties of a Normal Distribution

- Mean=Median=Mode
- Symmetry about the center(mean) μ.
- 50% of the values less than the mean and 50 greater than the mean.
- Changing **u** shifts the distribution left or right.
- Changing σ increases or decreases the spread.

Normal Distribution

Normal Distribution

The Properties of a Normal Distribution

- Approximately 68% of the area is within 1 standard deviation.
- Approximately 95% of the area is within 2 standard deviations.
- Approximately 99.7% of the area is within
 3 standard deviations.

The Normal Distribution and Standard Scores

The Distribution of Area

Under the Normal Curve

CABT Statistics & Probability - Grade 11 Lecture Presentatio

Source Image: www.slideshare.net

Normal Distribution

How good is rule for real data?

SAT scores roughly follow a Suppose normal distribution(with range restricted to 200-800), and the average math SAT is 500 with a standard deviation of 50, then:

- •68% of students will have scores between 450 and 550.
- •95% will be between 400 and 600.
- •99.7% will be between 350 and 650.

What if you wanted to know the math SAT score corresponding to the 95th percentile(=95% of students are lower)?

Source Image: www.slideshare.net

Standard Normal Distribution

The Standard Normal(Z): "Universal Currency"

The formula for the Standardized Probability Density Function is

Standard Normal Distribution

- Is a Normal distribution with mean 0 and variance 1.
- Random Variable that has standard normal distribution is referred using letter Z.

$$Z \sim N(0, 1)$$

 Probabilities associated with Normal Variates can be calculated by using transformations to the Standard Normal Variate (z) – using z-table.

Source Image: SpringerLink 0

Standardizing Normally Distributed Random Variables

We can convert a Random Variable X having a Normal distribution with any mean and Standard deviation in to the Random variable that has a Standard Normal Distribution.

$$X \sim N(\mu, \sigma^2)$$

Standardizing X: using a basic linear

transformation:

$$z = (x - \mu) / \sigma$$

THANK YOU

Prof. Uma D

Department of Computer Science and Engineering