Advantages of Non-dimensionalization

The initial location of the object is z_0 and its initial velocity is w_0 in the z-direction.

Dimensional result:

$$z = z_0 + w_0 t - \frac{1}{2} g t^2$$

Nondimensionalized variables:

$$z^* = \frac{z}{z_0} \qquad t^* = \frac{w_0 t}{z_0}$$

$$\frac{d^2z}{dt^2} = \frac{d^2(z_0z^*)}{d(z_0t^*/w_0)^2} = \frac{w_0^2}{z_0} \frac{d^2z^*}{dt^{*2}} = -g \qquad \to \qquad \frac{w_0^2}{gz_0} \frac{d^2z^*}{dt^{*2}} = -1$$

$$Fr = \frac{w_0}{\sqrt{gz_0}}$$

Nondimensionalized equation of motion:

$$\frac{d^2z^*}{dt^{*2}} = -\frac{1}{\text{Fr}^2}$$

Nondimensional result:

$$z^* = 1 + t^* - \frac{1}{2Fr^2}t^{*2}$$

A complete data set for three parameters with five levels of each parameter would require 5^3 =125 experiments. Non-dimensionalization reduces the number of parameters from three to one - a total of only 5^1 =5 experiments are required for the same resolution.

Name	Definition	Ratio of Significance
Archimedes number	$Ar = \frac{\rho_s g L^3}{\mu^2} (\rho_s - \rho)$	Gravitational force Viscous force
Aspect ratio	$AR = \frac{L}{W} \text{or} \frac{L}{D}$	$\frac{\text{Length}}{\text{Width}}$ or $\frac{\text{Length}}{\text{Diameter}}$
Biot number	$Bi = \frac{hL}{k}$	Surface thermal resistance Internal thermal resistance
Bond number	$Bo = \frac{g(\rho_f - \rho_v)L^2}{\sigma_s}$	Gravitational force Surface tension force
Cavitation number	Ca (sometimes σ_c) = $\frac{P - P_v}{\rho V_c^2}$	Pressure – Vapor pressure Inertial pressure
	$\left(\text{sometimes } \frac{2(P - P_v)}{\rho V_{\cdot}^2}\right)$	
Darcy friction factor	$f = \frac{8\tau_w}{\rho V^2}$	Wall friction force Inertial force
Drag coefficient	$C_D = \frac{F_D}{\frac{1}{2}\rho V^2 A}$	Drag force Dynamic force

Eckert number	$Ec = \frac{V^2}{c_P T}$	Kinetic energy Enthalpy
Euler number	$Eu = \frac{\Delta P}{\rho V^2} \left(\text{sometimes } \frac{\Delta P}{\frac{1}{2}\rho V^2} \right)$	Pressure difference Dynamic pressure
Fanning friction factor	$C_f = \frac{2\tau_w}{\rho V^2}$	Wall friction force Inertial force
Fourier number	Fo (sometimes τ) = $\frac{\alpha t}{L^2}$	Physical time Thermal diffusion time
Froude number	$Fr = \frac{V}{\sqrt{gL}} \left(\text{sometimes } \frac{V^2}{gL} \right)$	Inertial force Gravitational force
Grashof number	$Gr = \frac{g\beta \Delta T L^3 \rho^2}{\mu^2}$	Buoyancy force Viscous force
Jakob number	$Ja = \frac{c_p(T - T_{\text{sat}})}{h_{fg}}$	Sensible energy Latent energy
Knudsen number	$\operatorname{Kn} = \frac{\lambda}{L}$	Mean free path length Characteristic length
Lewis number	$Le = \frac{k}{\rho c_p D_{AB}} = \frac{\alpha}{D_{AB}}$	Thermal diffusion Species diffusion
Lift coefficient	$C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A}$	Lift force Dynamic force

Name	Definition	Ratio of Significance
Mach number	Ma (sometimes M) = $\frac{V}{c}$	Flow speed Speed of sound
Nusselt number	$Nu = \frac{Lh}{k}$	Convection heat transfer Conduction heat transfer
Peclet number	$Pe = \frac{\rho LVc_p}{k} = \frac{LV}{\alpha}$	Bulk heat transfer Conduction heat transfer
Power number	$N_P = \frac{\dot{W}}{\rho D^5 \omega^3}$	Power Rotational inertia
Prandtl number	$\Pr = \frac{\nu}{\alpha} = \frac{\mu c_p}{k}$	Viscous diffusion Thermal diffusion
Pressure coefficient	$C_p = \frac{P - P_{\infty}}{\frac{1}{2}\rho V^2}$	Static pressure difference Dynamic pressure
Rayleigh number	$Ra = \frac{g\beta \Delta T L^3 \rho^2 c_p}{k\mu}$	Buoyancy force Viscous force
Reynolds number	$Re = \frac{\rho VL}{\mu} = \frac{VL}{v}$	Inertial force Viscous force
Richardson number	$Ri = \frac{L^5 g \Delta \rho}{\rho \dot{V}^2}$	Buoyancy force Inertial force

Schmidt number $Sc = \frac{\mu}{m} = \frac{\nu}{m}$		Viscous diffusion
Schilligt Humber	$Sc = \frac{\mu}{\rho D_{AB}} = \frac{\nu}{D_{AB}}$	Species diffusion
Sherwood number	$Sh = \frac{VL}{D_{AB}}$	Overall mass diffusion
	D_{AB}	Species diffusion
Specific heat ratio	$k ext{ (sometimes } \gamma) = \frac{c_p}{c_n}$	Enthalpy
opecine near ratio	c_{ν}	Internal energy
Stanton number	St = h	Heat transfer
Stanton number	$St = \frac{h}{\rho c_p V}$	Thermal capacity
	$ ho_p D_p^2 V$	Particle relaxation time
Stokes number	Stk (sometimes St) = $\frac{\rho_p D_p^2 V}{18\mu L}$	Characteristic flow time
	fL	Characteristic flow time
Strouhal number	St (sometimes S or Sr) = $\frac{fL}{V}$	Period of oscillation
	$\rho V^2 I$	Inertial force
Weber number	We = $\frac{\rho V^2 L}{r}$	
	σ_{s}	Surface tension force

^{*} A is a characteristic area, D is a characteristic diameter, f is a characteristic frequency (Hz), L is a characteristic length, t is a characteristic time, T is a characteristic (absolute) temperature, V is a characteristic velocity, W is a characteristic width, \dot{W} is a characteristic power, ω is a characteristic angular velocity (rad/s). Other parameters and fluid properties in these Π 's include: c = speed of sound, c_p , c_v = specific heats, D_p = particle diameter, D_{AB} = species diffusion coefficient, h = convective heat transfer coefficient, h_{fg} = latent heat of evaporation, k = thermal conductivity, P = pressure, T_{sat} = saturation temperature, \dot{V} = volume flow rate, α = thermal diffusivity, β = coefficient of thermal expansion, λ = mean free path length, μ = viscosity, ν = kinematic viscosity, ρ = fluid density, ρ_f = liquid density, ρ_p = particle density, ρ_s = solid density, ρ_v = vapor density, σ_s = surface tension, and τ_w = shear stress along a wall.