

Д.В. Опарин

ПРАКТИКУМ ПО ОСНОВАМ АЛГЕБРЫ ЛОГИКИ

Часть І. Логические операции над высказываниями, формулы и функции алгебры логики

Электронное текстовое издание

Учебно-методическое пособие для студентов всех форм обучения направлений подготовки 02.03.02 — Фундаментальная информатика и информационные технологии и 09.03.03 — Прикладная информатика

Научный редактор: доц., канд. техн. наук В.Г. Томашевич

Подготовлено кафедрой интеллектуальных информационных технологий

Представлены краткие теоретические сведения и задачи из раздела курса, посвященного алгебре логики. Все задачи снабжены ответами и решениями.

Екатеринбург 2015

СОДЕРЖАНИЕ

1. ВЫСКАЗЫВАНИЯ И ЛОГИЧЕСКИЕ ОПЕРАЦИИ НАД НИМИ	3
Задачи для самостоятельного решения	5
2. ФОРМУЛЫ АЛГЕБРЫ ЛОГИКИ	7
Задачи для самостоятельного решения	7
3. РАВНОСИЛЬНЫЕ ФОРМУЛЫ АЛГЕБРЫ ЛОГИКИ	9
Задачи для самостоятельного решения	10
4. ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ	12
Задачи для самостоятельного решения	13
ОТВЕТЫ И РЕШЕНИЯ	15
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	25

1. ВЫСКАЗЫВАНИЯ И ЛОГИЧЕСКИЕ ОПЕРАЦИИ НАД НИМИ

Теоретическая часть. Высказывание — это повествовательное предложение, о котором можно сказать, истинно оно или ложно в данном месте и в данное время. Логические значения высказываний — 1 («истина») или 0 («ложь»).

Погические операции над высказываниями: отрицание (унарная операция), конъюнкция, дизъюнкция, импликация, эквивалентность (бинарные операции).

Отрицанием высказывания x называется высказывание x, которое истинно, если x ложно, и ложно, если x истинно. Читается «не x» или «неверно, что x».

Конъюнкцией высказываний x и y называется высказывание x & y, которое истинно, если x и y истинны, и ложно, если хотя бы одно из них ложно. Читается $(x \ u \ y)$.

Дизъюнкцией высказываний x и y называется высказывание $x \lor y$, которое истинно, если хотя бы одно из высказываний x или y истинно, и ложно, если оба они ложны. Читается $\langle x \rangle$ или $y \rangle$.

Импликацией высказываний x и y называется высказывание $x \to y$, которое ложно, если x истинно, а y ложно, и истинно во всех остальных случаях. Читается «из x следует y» или «если x, то y».

Эквивалентностью высказываний x и y называется высказывание $x \leftrightarrow y$, которое истинно, если оба высказывания x и y одновременно истинны или ложны, и ложно во всех остальных случаях. Читается «для того, чтобы x, необходимо и достаточно, чтобы y» или «x тогда и только тогда, когда y».

Значения логической операции можно описать с помощью таблицы, связывающей значения операндов и операции. Такая таблица называется таблицей истинности.

Таблица истинности для логических операций:

х	у	$-\frac{1}{x}$	x & y	$x \vee y$	$x \to y$	$x \leftrightarrow y$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Высказывания подразделяются на элементарные и составные.

Задача 1. Среди приведенных ниже предложений указать те, которые являются высказываниями, и те, которые не являются:

- 1) Екатеринбург столица Урала;
- 2) студент Уральского федерального университета;
- 3) Луна спутник Земли;
- 4) x < 0;
- 5) число $\sqrt{5}$ иррациональное.

Решение. 1) Является высказыванием; 2) не является высказыванием; 3) является высказыванием; 4) не является высказыванием; 5) является высказыванием.

Задача 2. Среди следующих высказываний указать элементарные и составные, в составных высказываниях выделить грамматические связки:

- 1) число 9 не делится на 3;
- 2) число 21 делится на 3 и на 7;
- 3) число 3 является делителем числа 27;
- 4) если число 15 делится на 5, то оно делится на 3;
- 5) число 18 делится на 9 тогда и только тогда, когда 9 делится на 3.

Решение. 1) Элементарное высказывание — «число 9 делится на 3», составное — «число 9 не делится на 3», грамматическая связка — «не».

- 2) Элементарные высказывания «число 21 делится на 3» и «число 21 делится на 7», составное «число 21 делится на 3 и на 7», грамматическая связка «и».
 - 3) Элементарное высказывание.
- 4) Элементарные высказывания «число 15 делится на 5» и «число 15 делится на 3», составное «если число 15 делится на 5, то оно делится на 3», грамматическая связка «если ..., то ...».
- 5) Элементарные высказывания «число 18 делится на 9» и «число 9 делится на 3», составное «число 18 делится на 9 тогда и только тогда, когда 9 делится на 3», грамматическая связка «тогда и только тогда».

Задачи для самостоятельного решения

- **1.1.** Среди следующих предложений выделить высказывания, установить, истинны они или ложны: 1) река Исеть впадает в Каспийское море; 2) пейте апельсиновый сок; 3) все люди братья; 4) математическая логика увлекательная наука; 5) 5 < 4; 6) $x^2 5x + 9$; 7) $x^2 5x + 9 = 0$; 8) для всех натуральных чисел x и y верно равенство x + y = y + x.
- **1.2.** Являются ли высказываниями следующие утверждения, установить, истинны они или ложны: 1) сумма корней любого приведенного квадратного уравнения равна свободному члену; 2) сумма корней приведенного квадратного уравнения равна свободному члену; 3) существует приведенное квадратное уравнение, сумма корней которого равна свободному члену.
- **1.3.** Пусть x высказывание «Студент Сидоров изучает информатику», y высказывание «Студент Сидоров успевает по математической логике». Дать словесную формулировку следующих высказываний: 1) x & y, 2) $y \leftrightarrow x$, 3) $x \to y$.
- **1.4.** Обозначить элементарные высказывания буквами и записать следующие высказывания с помощью символов алгебры логики: 1) $\sqrt{4} = 2$ или $\sqrt{4} = -2$; 2) если число 24 делится на 3 и 4, то оно делится на 12; 3) 18 кратно 3

и 15 не кратно 3; 4) 18 кратно 3 и 15 кратно 3; 5) число 15 — двухзначное и кратно 3 или 5, 6) $e \le \pi$.

- **1.5.** Пусть x и y обозначают элементарные высказывания: x «я учусь в Институте фундаментального образования»; y «я люблю математическую логику». Прочитать следующие составные высказывания: 1) $\stackrel{=}{x}$; 2) x & y; 3) $x \& \stackrel{=}{y}$; 4) $\stackrel{=}{x} \& \stackrel{=}{y}$; 5) $\overline{x \& y}$.
- **1.6.** Выяснить истинность или ложность следующих импликаций: 1) если $2 \cdot 2 = 4$, то 4 > 5; 2) если $2 \cdot 2 = 4$, то 4 < 5; 3) если $2 \cdot 2 = 5$, то 4 > 5; 4) если $2 \cdot 2 = 5$, то 4 < 5.
- **1.7.** Выяснить, при каких значениях у следующие данные противоречивы: 1) x = 0, x & y = 1; 2) x = 0, $x \lor y = 1$; 3) x = 1, x & y = 0; 4) x = 1, $x \lor y = 0$.
- **1.8.** Пусть x, y, z и w означают соответственно элементарные высказывания «3 простое число», «3 составное число», «4 простое число», «4 составное число». Какие из следующих составных высказываний истинны, а какие ложны: 1) $x \lor z$, $x \lor w$, $y \lor z$, $y \lor w$; 2) $x \cdot w \cdot w$, $y \cdot w \cdot w \cdot w \cdot w \cdot w \cdot w$?

2. ФОРМУЛЫ АЛГЕБРЫ ЛОГИКИ

Теоретическая часть. Составное высказывание, которое может быть получено из элементарных высказываний путем применения логических операций, называется формулой алгебры логики.

Порядок выполнения бинарных логических операций: сначала — конъюнкция, затем — дизъюнкция и в последнюю очередь — импликация и эквивалентность. Логические значения формулы алгебры логики могут быть описаны с помощью таблицы истинности.

Формула, истинная при всех значениях входящих в нее переменных, называется тождественно истинной или тавтологией.

Формула, ложная при всех значениях входящих в нен переменных, называется тождественно ложной или противоречием.

Формула, истинная хотя бы на одном наборе значений входящих в нее переменных и не являющаяся тождественно истинной, называется *выполнимой* или *опровержимой*.

Задача 3. Составить таблицу истинности для формулы $\bar{x} \vee \bar{y}$.

Решение. Таблица истинности будет иметь следующий вид:

X	у	\bar{x}	y	$-{x}\sqrt{y}$
1	1	0	0	0
1	0	0	1	1
0	1	1	0	1
0	0	1	1	1

Задачи для самостоятельного решения

2.1. Проверить, не используя таблиц истинности, являются ли следующие формулы тождественно истинными: 1) $x \vee \overline{x}$; 2) $\overline{x \otimes x}$; 3) $x \leftrightarrow \overline{x}$; 4) $x \leftrightarrow x \otimes (\overline{x} \to x \otimes x)$; 5) $x \otimes (x \leftrightarrow \overline{x})$.

- **2.2.** Найти логические значения x и y, при которых выполняются следующие равенства: 1) $x \lor y = \overline{y}$; 2) $1 \to \overline{x} \to y = 0$.
- **2.3.** 1) Пусть x истинно, чему равны значения импликаций $x \to y \& z$ и $x \& y \to y \lor z$? 2) Пусть эквивалентность $x \leftrightarrow y$ и импликация $y \to x$ ложны, чему равно значение импликации $x \to y$? 3) Пусть импликация $x \to y$ истинна, чему равны значения импликаций $x \to y$ и $x \to y \to z$?
- **2.4.** Пусть x = 1, y = 1, z = 0. Определить логические значения следующих формул: 1) x & y & z, 2) $x \lor y \lor z$, 3) $x \to (y \to z)$, 4) $x \to y \to z$, 5) $x \lor y \to z$.
- **2.5.** Составить таблицы истинности для следующих формул: 1) $x \& \overline{y}$, 2) $x \& y \lor z$, 3) $x \& \overline{y} \to (\overline{x} \lor y \to \overline{z})$, 4) $x \to \overline{y} \to \overline{x \lor y} \& \overline{z}$.
- **2.6.** Установить, какие из следующих формул являются тождественно истинными, а какие тождественно ложными:
 - 1) $\bar{x} \to (x \to y)$,
 - 2) $\overline{x \to (y \to x)}$,
 - 3) $y \to x \to (x \to y)$,
 - 4) $(x \rightarrow y) & (y \rightarrow z) \rightarrow (x \rightarrow z)$,
 - 5) $\overline{x \to z \to (y \to z \to (x \lor y \to z))}$, 6) $x \to (y \to z) \to (x \to y \to (x \to z))$.

3. РАВНОСИЛЬНЫЕ ФОРМУЛЫ АЛГЕБРЫ **ЛОГИКИ**

Теоретическая часты. Две формулы алгебры логики называются равносильными, если они принимают одинаковые логические значения на любом наборе значений входящих в них элементарных высказываний.

Равносильность формул L_1 и L_2 обозначается как $L_1 \equiv L_2$.

Основные равносильности:

1.
$$x \& 0 = 0$$
,

1.
$$x \& 0 \equiv 0$$
,
2. $x \& 1 \equiv x$,

3.
$$x \& x \equiv x$$
,

4.
$$x \& x \equiv 0$$
.

5.
$$x \& (y \lor x) \equiv x$$
,

$$3. \ x \& (y \lor x) \equiv x,$$

6.
$$x \lor y \& x \equiv x$$
,

7.
$$x \vee 0 \equiv x$$
,

8.
$$x \vee 1 \equiv 1$$
,

9.
$$x \lor x \equiv x$$
,

10.
$$x \vee \overline{x} \equiv 1$$
,

$$11. \ \overset{=}{x} \equiv x.$$

Равносильности, выражающие одни логические операции через другие:

1.
$$\overline{x \& y} \equiv \overline{x} \vee \overline{y}$$
,

$$2. x \& y \equiv \overline{x \lor y},$$

3.
$$x \rightarrow y \equiv x \lor y$$
,

4.
$$\overline{x \vee y} \equiv \overline{x} \& \overline{y}$$
,

$$5. \ x \lor y \equiv \overline{x \& y},$$

6.
$$x \leftrightarrow y \equiv (x \rightarrow y) \& (y \rightarrow x)$$
.

Равносильности, выражающие основные законы алгебры логики:

1.
$$x \& y \equiv y \& x$$
,

2.
$$x \& (y \& z) \equiv (x \& y) \& z$$
,

3.
$$x & (y \lor z) \equiv x & y \lor x & z$$

$$4. \ x \lor y \equiv y \lor x \,,$$

5.
$$x \lor (y \lor z) \equiv (x \lor y) \lor z$$
,

3.
$$x \& (y \lor z) \equiv x \& y \lor x \& z$$
, 6. $x \lor y \& z \equiv (x \lor y) \& (x \lor z)$.

Задача 4. Упростить формулу $x \to x \to x$.

Решение.
$$x \to x \to x \equiv x \lor x \to x \equiv 1 \to x \equiv 0 \lor x \equiv x$$
.

Задача 5. Доказать равносильность формул $x \& y \to 0$ и $x \to y$.

Решение.
$$x \& y \to 0 \equiv x \& y \lor 0 \equiv x \& y \equiv x \lor y \equiv x \lor y \equiv x \to y$$
.

9

Задача 6. Доказать тождественную ложность формулы $x \to (x \to y)$.

Решение.
$$\overrightarrow{x} \to (x \to y) \equiv \overrightarrow{x} \to \overrightarrow{x} \lor y \equiv \overrightarrow{x} \lor \overrightarrow{x} \lor y \equiv \overrightarrow{x} \lor \overrightarrow{x} \lor y \equiv \overrightarrow{1} \lor y \equiv 0$$
.

Задачи для самостоятельного решения

- **3.1.** Найти z, если $x \lor z \lor x \lor z \equiv y$.
- **3.2.** Выразить все основные логические операции: 1) через конъюнкцию и отрицание; 2) через дизъюнкцию и отрицание; 3) через импликацию и отрицание.
 - 3.3. Выразить дизъюнкцию через импликацию.
 - 3.4. Упростить следующие формулы:
 - 1) $x \vee x \& y$;
 - 2) $x \rightarrow (x \rightarrow y)$;
 - 3) $(x \lor y) \& (x \lor y)$;
 - 4) $(x \leftrightarrow y) \& (x \lor y)$;
 - 5) $(\overline{x \vee y} \rightarrow x \vee y) \& y$;
 - 6) $\overline{x \& y} \lor (x \to y) \& x;$
 - 7) $(x \lor y \to (z \to y \lor y \lor x)) \& x \to y$.
 - 3.5. Доказать равносильность следующих формул:
 - 1) $\overline{x \rightarrow y}$ u $x \& \overline{y}$;
 - 2) $x \rightarrow y \quad y \quad y \rightarrow x$,
 - 3) $x \leftrightarrow y$ $u \xrightarrow{x} \leftrightarrow y$;
 - 4) $x \vee x \& y u x \vee y$;
 - 5) $(x \lor y) \& (x \lor y)$ и x;
 - 6) $x \rightarrow (y \rightarrow z)$ и $x \& y \rightarrow z$;
 - 7) $x \& y \lor x \& y \lor x \& y \lor x \Leftrightarrow y \lor x \to y;$
 - 8) $x \& y \lor (x \lor y) \& (\overline{x} \lor \overline{y}) \text{ if } x \lor y$;

- 9) $x \& (z \to y) \lor (x \to z) \& y \text{ if } (x \lor y) \& (y \lor \overline{z});$
- 10) $x \& y \& z \lor x \& y \& \overline{z} \lor x \& y \& z \lor x \& y \& \overline{z}$ и x.

3.6. Доказать тождественную истинность следующих формул:

- 1) $x \& y \rightarrow x$;
- 2) $x \rightarrow (y \rightarrow x)$;
- 3) $\stackrel{-}{y} \rightarrow \stackrel{-}{x} \rightarrow (x \rightarrow y)$;
- 4) $(x \rightarrow y) \& (x \rightarrow y) \rightarrow x$;
- 5) $x \rightarrow (y \rightarrow z) \rightarrow (x \& y \rightarrow z)$;
- 6) $x \& y \rightarrow z \rightarrow (x \rightarrow (y \rightarrow z))$;
- 7) $(x \rightarrow y) \& (y \rightarrow z) \rightarrow (x \rightarrow z)$;
- 8) $x \to z \to (y \to z \to (x \lor y \to z))$;
- 9) $x \to y \to (y \to z \to (x \lor y \to z))$;
- 10) $x \rightarrow (y \rightarrow z) \rightarrow (x \rightarrow y \rightarrow (x \rightarrow z))$.

3.7. Доказать тождественную ложность следующих формул:

- 1) $x \vee \overline{x} \rightarrow y \& \overline{y}$;
- 2) $x \& (x \to y) \& (x \to y)$;
- 3) $\overline{x \& x \rightarrow y} \rightarrow z \rightarrow w \& w;$
- 4) $\overline{x \rightarrow y \rightarrow (x \& z \rightarrow y \& z)}$;
- 5) $x \& y \& z \& (x \lor y \lor z \to w) \& w$.

4. ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ

Теоретическая часть. Функцией алгебры логики $f(x_1, x_2, ..., x_n)$ от n переменных $x_1, x_2, ..., x_n$ называется функция, принимающая значения 1 или 0, аргументы которой также принимают значения 1 или 0.

Любая формула алгебры логики есть функция алгебры логики, причем тождественно истинные и тождественно ложные формулы представляют собой постоянные функции.

Любую функцию алгебры логики можно представить в виде формулы алгебры логики:

$$\begin{split} f(x_1, x_2, ..., x_n) &\equiv f(1, 1, ..., 1) \;\&\; x_1 \;\&\; x_2 \;\&\; ... \;\&\; x_n \;\vee\\ &\vee\; f(1, 1, ..., 0) \;\&\; x_1 \;\&\; x_2 \;\&\; ... \;\&\; x_{n-1} \;\&\; \overline{x_n} \;\vee\; ... \;\vee\\ &\vee\; f(0, 0, ..., 0) \;\&\; \overline{x_1} \;\&\; \overline{x_2} \;\&\; ... \;\&\; \overline{x_{n-1}} \;\&\; \overline{x_n} \;. \end{split}$$

Соответствующую функции $f(x_1,x_2,...,x_n)$ формулу алгебры логики можно получить с помощью таблицы истинности этой функции. Для этого для всех наборов значений переменных, на которых функция $f(x_1,x_2,...,x_n)$ принимает значение 1, записывается конъюнкция переменных высказываний, причем за член конъюнкции берется x_i , если на указанном наборе значений переменных x_i равно 1, и $-\overline{x_i}$, если на указанном наборе значений переменных x_i равно 0. Дизъюнкция всех полученных таким образом конъюнкций и будет искомой формулой алгебры логики.

Задача 7. Найти формулу, которая определяет функцию f(x, y) по следующей таблице истинности:

x	у	f(x, y)
1	1	0
1	1	1
1	0	1
1	0	0

Решение. Воспользуемся правилом получения формулы алгебры логики из таблицы истинности для функции f(x, y). Получим:

$$f(x, y) \equiv x \& y \lor x \& y.$$

Упростим полученную формулу:

$$x \& y \lor x \& y \equiv (x \lor x) \& y \equiv 1 \& y \equiv y$$
.

Задача 8. Найти формулу, которая определяет функцию f(x, y, z) по следующей таблице истинности:

x	y	Z	f(x, y, z)
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

Решение. Воспользуемся правилом получения формулы алгебры логики из таблицы истинности для функции f(x, y, z). В результате получим:

$$f(x, y, z) \equiv x \& y \& \overline{z} \lor x \& y \& z \lor \overline{x} \& y \& \overline{z} \lor \overline{x} \& \overline{y} \& \overline{z}.$$

Упростим полученную формулу:

$$x \& y \& \overline{z} \lor x \& \overline{y} \& z \lor \overline{x} \& y \& \overline{z} \lor \overline{x} \& \overline{y} \& \overline{z} \equiv$$

$$\equiv x \& (y \& \overline{z} \lor \overline{y} \& z) \lor \overline{x} \& (y \& \overline{z} \lor \overline{y} \& \overline{z}) \equiv$$

$$\equiv x \& (y \& \overline{z} \lor \overline{y} \& z) \lor \overline{x} \& \overline{z} \& (y \lor \overline{y}) \equiv$$

$$\equiv x \& (y \& \overline{z} \lor \overline{y} \& z) \lor \overline{x} \& \overline{z} \& 1 \equiv x \& (y \& \overline{z} \lor \overline{y} \& z) \lor \overline{x} \& \overline{z}.$$

Задачи для самостоятельного решения

4.1. Выписать все функции алгебры логики одной переменной.

- 4.2. Выписать все функции алгебры логики двух переменных.
- **4.3.** По таблицам истинности найти формулы, определяющие функции f_1 , $f_2,\ f_3,\ f_4,\ f_5\ (f_i\equiv f_i(x,y,z)),$ и придать им более простой вид:

x	У	z.	f_1	f_2	f_3	f_4	f_5
1	1	1	1	1	1	0	1
1	1	0	1	0	1	1	0
1	0	1	0	1	0	1	0
1	0	0	0	1	0	1	0
0	1	1	0	0	0	0	1
0	1	0	1	0	1	0	1
0	0	1	0	1	1	1	1
0	0	0	0	0	0	0	1

- 4.4. Пусть функция алгебры логики:
- 1) $f_1(x,y,z)$ принимает значение 1 тогда и только тогда, когда только одна из её переменных принимает значение 1;
- 2) $f_2(x, y, z)$ принимает значение 1 тогда и только тогда, когда одновременно две её переменных принимают значение 1;
- 3) $f_3(x,y,z)$ принимает значение, совпадающее со значением, которое принимает большинство её переменных.

Составить таблицы истинности для этих функций, найти формулы алгебры логики, определяющие их, и придать этим формулам более простой вид.

ОТВЕТЫ И РЕШЕНИЯ

- **1.1.** 1) Ложное высказывание; 2) не является высказыванием; 3) ложное высказывание; 4) не является высказыванием; 5) ложное высказывание; 6) не является высказыванием; 7) не является высказыванием; 8) истинное высказывание.
- **1.2.** 1) Утверждение является высказыванием, оно ложно, что доказывает контрпример $x^2 4 = 0$; 2) утверждение не является высказыванием; 3) утверждение является высказыванием, оно истинно при условии, что в приведённом квадратном уравнении свободный член равен коэффициенту при x в первой степени, взятому с обратным знаком. Например, сумма корней уравнения $x^2 2x + 2 = 0$ равна свободному члену.
- **1.3.** 1) «Студент Сидоров изучает информатику и не успевает по математической логике»; 2) «студент Сидоров не успевает по математической логике тогда и только тогда, когда он не изучает информатику»; 3) «если студент Сидоров изучает информатику, то он успевает по математической логике».
- **1.4.** Обозначим буквами следующие высказывания: $a \sqrt[4]{4} = 2$ »; $b \sqrt[4]{4} = -2$ »; $c \sqrt[4]{4} = 2$, $c \sqrt[4]{4} = 2$ »; $c \sqrt[4]{4} =$

Тогда требуемые высказывания запишутся так: 1) $a \lor b$; 2) $c \& d \to e$; 3) f & g; 4) f & g; 5) $h \& (g \lor k)$; 6) l.

1.5. 1) Неверно, я не учусь в Институте фундаментального образования; 2) я учусь в Институте фундаментального образования и люблю математическую логику; 3) я учусь в Институте фундаментального образования и не люблю математическую логику; 4) я не учусь в Институте фундаментального образования и не люблю математическую логику; 5) неверно, что я учусь в Институте фундаментального образования и люблю математическую логику.

- **1.6.** 1) Высказывание ложно; 2) высказывание истинно; 3) высказывание истинно; 4) высказывание истинно.
- **1.7.** 1) Противоречивы при любом y; 2) противоречивы при y = 0; 3) противоречивы при y = 1; 4) противоречивы при любом y.
- **1.8.** 1) Высказывания $x \lor z$, $x \lor w$, $y \lor w$ истинны, а $y \lor z$ ложно; 2) высказывание y & z истинно, а x & z, x & w, y & w ложны.
- **2.1.** 1) Тождественно истинная формула; 2) тождественно истинная формула; 3) не тождественно истинная формула; 4) тождественно истинная формула; 5) не тождественно истинная формула.
 - **2.2.** 1) x = 1, y = 0;
 - 2) x = 0, y = 0.
 - **2.3.** 1) Импликации $x \to y \& z$ и $x \& y \to y \lor z$ истинны.
 - 2) Импликация $x \rightarrow y$ истинна.
 - 3) Импликации $\overline{z \to (x \to y)}$ ложна, а $\overline{x \to y} \to z$ истинна.
- **2.4.** 1) Значение формулы ложно; 2) значение формулы истинно; 3) значение формулы ложно; 4) значение формулы ложно; 5) значение формулы ложно.
 - 2.5. Таблицы истинности будут иметь следующий вид:

1)

X	у	y	$x \& \overline{y}$
1	1	0	0
1	0	1	1
0	1	0	0
0	0	1	0

х	у	z	x & y	$x \& y \lor z$
1	1	1	1	1
1	1	0	1	1
1	0	1	0	1
1	0	0	0	0
0	1	1	0	1
0	1	0	0	0
0	0	1	0	1
0	0	0	0	0

3)

x	у	z	\bar{x}	y	_ 	$\overline{x} \vee y$	$x \lor y \to \overline{z}$	x & y	$x \& \overline{y} \to (\overline{x} \lor y \to \overline{z})$
1	1	1	0	0	0	1	0	0	1
1	1	0	0	0	1	1	1	0	1
1	0	1	0	1	0	0	1	1	1
1	0	0	0	1	1	0	1	1	1
0	1	1	1	0	0	1	0	0	1
0	1	0	1	0	1	1	1	0	1
0	0	1	1	1	0	1	0	0	1
0	0	0	1	1	1	1	1	0	1

4)

х	у	z	_ y	_ 	$x \vee y$	$\overline{x \vee y}$	$\overline{x \vee y} \& \overline{z}$	$x \to \overline{y}$	$x \to \overline{y} \to \overline{x \vee y} \& \overline{z}$
1	1	1	0	0	1	0	0	0	1
1	1	0	0	1	1	0	0	0	1
1	0	1	1	0	1	0	0	1	0
1	0	0	1	1	1	0	0	1	0
0	1	1	0	0	1	0	0	1	0
0	1	0	0	1	1	0	0	1	0
0	0	1	1	0	0	1	0	1	0
0	0	0	1	1	0	1	1	1	1

- 2.6. 1) Формула тождественно истинна; 2) формула тождественно ложна;
- 3) формула тождественно истинна; 4) формула тождественно истинна;
- 5) формула тождественно ложна; 6) формула тождественно истинна.

3.1. Выполним равносильные преобразования:

Следовательно, $z \equiv y$ и $z \equiv \overline{y}$.

3.2. 1)
$$x \vee y \equiv \overline{x} \& \overline{y}$$
,

$$x \to y \equiv x \lor y \equiv x \& y \equiv x \& y,$$

$$x \leftrightarrow y \equiv \overline{x \& y} \& \overline{y \& x}$$

2)
$$x \& y = \overline{x \lor y}$$
,

$$x \to y \equiv x \lor y ,$$

$$x \leftrightarrow y \equiv (x \to y) \& (y \to x) \equiv (x \lor y) \& y \lor x) \equiv x \lor y \lor y \lor x,$$

3)
$$x \vee y \equiv x \rightarrow y$$
,

$$x \& y \equiv \overline{x \lor y} \equiv \overline{x \to y}$$
,

$$x \leftrightarrow y \equiv (x \to y) \& (y \to x) \equiv (x \lor y) \& (y \lor x) \equiv x \lor y \lor y \lor x \equiv x \to y \to y \to x.$$

3.4. Подвергнем указанные формулы равносильным преобразованиям. В результате получим:

1)
$$x \vee x \& y = (x \vee x) \& (x \vee y) = 1 \& (x \vee y) = x \vee y$$
;

2)
$$x \rightarrow (x \rightarrow y) \equiv x \rightarrow x \lor y \equiv x \lor x \lor y \equiv x \lor y$$
;

3)
$$(x \lor y) \& (x \lor y) \equiv x \lor y \& y \equiv x \lor 0 \equiv x$$
;

4)
$$(x \leftrightarrow y) \& (x \lor y) \equiv (x \to y) \& (y \to x) \& (x \lor y) \equiv$$

5)
$$(\overline{x \lor y} \to x \lor y) \& y \equiv (\overline{x \lor y} \lor x \lor y) \& y \equiv (x \lor y \lor x \lor y) \& y \equiv (x \lor y) \& y \Longrightarrow (x \lor y) \&$$

6)
$$\overline{x \& y} \lor (x \to y) \& x \equiv x \lor y \lor (\overline{x} \lor y) \& x \equiv x \lor y \lor \overline{x} \& x \lor y \& x \equiv x \lor y \lor 0 \lor y \& x \equiv x \lor y \& x \lor y \equiv x \lor y;$$

7)
$$(x \lor y \to (z \to y \lor y \lor x)) \& x \to y \equiv (x \lor y \to (z \to 1 \lor x)) \& x \to y \equiv x \lor y \to (z \to 1)) \& x \to y \equiv x \to y \equiv x \lor y$$
.

3.5. Для доказательства равносильности каждой пары формул подвергнем первую из них равносильным преобразованиям:

1)
$$\overline{x \to y} \equiv \overline{x \lor y} \equiv \overline{x} \& \overline{y} \equiv x \& \overline{y};$$

2)
$$x \rightarrow \overline{y} = \overline{x} \lor \overline{y} = \overline{y} \lor \overline{x} = y \rightarrow \overline{x}$$
;

3)
$$x \leftrightarrow y \equiv (x \to y) \& (y \to x) \equiv (x \lor y) \& (y \lor x) \equiv (x \lor y) \& (y \lor x) \equiv$$

$$= (y \lor x) \& (x \lor y) \equiv (y \to x) \& (x \to y) \equiv (x \to y) \& (y \to x) \equiv x \leftrightarrow y;$$

4)
$$x \vee x \& y = (x \vee x) \& (x \vee y) = 1 \& (x \vee y) = x \vee y$$
;

5)
$$(x \lor y) \& (x \lor y) \equiv (x \lor y) \& x \lor (x \lor y) \& y \equiv$$

 $\equiv x \& (y \lor x) \lor y \& x \lor y \& y \equiv x \lor y \& x \lor 0 \equiv x \lor y \& x \equiv x;$

6)
$$x \rightarrow (y \rightarrow z) \equiv x \rightarrow \overline{y} \lor z \equiv \overline{x} \lor \overline{y} \lor z \equiv \overline{x} \& y \lor z \equiv x \& y \rightarrow z$$
;

7)
$$x \& y \lor x \& y \lor x \& y \equiv x \& y \lor x \& (y \lor y) \equiv x \& y \lor x \& 1 \equiv$$

 $\equiv x \lor x \& y \equiv (x \lor x) \& (x \lor y) \equiv 1 \& (x \lor y) \equiv x \lor y \equiv x \to y;$

8)
$$x \& y \lor (x \lor y) \& (\overline{x} \lor \overline{y}) \equiv x \& y \lor (x \lor y) \& \overline{x} \lor (x \lor y) \& \overline{y} \equiv$$

$$\equiv x \& y \lor \overline{x} \& x \lor \overline{x} \& y \lor x \& \overline{y} \lor y \& \overline{y} \equiv x \& y \lor 0 \lor \overline{x} \& y \lor x \& \overline{y} \lor 0 \equiv$$

$$\equiv x \& (y \lor \overline{y}) \lor \overline{x} \& y \equiv x \& 1 \lor \overline{x} \& y \equiv x \lor \overline{x} \& y \equiv (x \lor \overline{x}) \& (x \lor y) \equiv$$

$$= 1 & (x \lor y) = x \lor y;$$
9) $x & (z \to y) \lor (x \to z) & y = x & (\overline{z} \lor y) \lor y & (\overline{x} \lor z) =$

$$= x & \overline{z} \lor x & y \lor y & \overline{x} \lor y & z = x & \overline{z} \lor y & (x \lor \overline{x}) \lor y & z =$$

$$= x & \overline{z} \lor y & 1 \lor y & z = x & \overline{z} \lor y \lor y & z = x & \overline{z} \lor y = (x \lor y) & (y \lor \overline{z});$$
10) $x & y & z \lor x & y & \overline{z} \lor x & \overline{y} & z \lor x & \overline{y} & \overline{z} =$

$$= x & (y & z \lor y & \overline{z} \lor \overline{y} & z \lor \overline{y} & z \lor x & \overline{y} & \overline{z} =$$

$$= x & (y & z \lor y & \overline{z} \lor \overline{y} & z \lor \overline{y} & \overline{z}) = x & (y & (z \lor \overline{z}) \lor \overline{y} & (z \lor \overline{z})) =$$

3.6. Для доказательства тождественной истинности указанных формул подвергнем их равносильным преобразованиям. В результате получим:

 $\equiv x \& (y \& 1 \lor y \& 1) \equiv x \& (y \lor y) \equiv x \& 1 \equiv x$.

1)
$$x \& y \to x = \overline{x \& y} \lor x = \overline{x} \lor y \lor x = \overline{x} \lor y \lor x = 1 \lor y = 1$$
;
2) $x \to (y \to x) = \overline{x} \lor y \lor x = \overline{x} \lor x \lor y = 1 \lor y = 1$;
3) $y \to \overline{x} \to (x \to y) = \overline{y} \lor x \to \overline{x} \lor y = \overline{y} \lor x \lor x \lor y = \overline{y} \& x \lor x \lor y \lor x = \overline{x} \Leftrightarrow \overline{y} \lor x \lor x \lor y \lor x = \overline{x} \& \overline{y} \lor x \& y \lor x = \overline{x} \& \overline{y} \lor x \& y \lor x = \overline{x} \& \overline{y} \lor x \& y \lor x = \overline{x} \& \overline{y} \lor x \& y \lor x = \overline{x} \& \overline{y} \lor x \& y \lor x = \overline{x} \& \overline{y} \lor x \& y \lor x = \overline{x} \& \overline{y} \lor x \Leftrightarrow \overline{y} \lor x = \overline{x} \& \overline{y} \lor x \Leftrightarrow \overline{y} \lor x = \overline{x} \& \overline{y} \lor x \Leftrightarrow \overline{y} \lor x = \overline{x} \Leftrightarrow \overline{y} \lor x \Leftrightarrow \overline{y} \lor x = \overline{x} \Leftrightarrow \overline{y} \lor x \Leftrightarrow \overline{y} \lor x = \overline{x} \Leftrightarrow \overline{y} \lor x \Leftrightarrow \overline{y} \lor x \Rightarrow \overline{x} \& \overline{y} \lor x \Rightarrow \overline{x} \Leftrightarrow \overline{y} \Leftrightarrow \overline{x} \Leftrightarrow \overline{$

 $\equiv 1 \& (x \lor y) \lor (y \lor z) \& 1 \equiv x \lor y \lor y \lor z \equiv x \lor 1 \lor z \equiv 1$

8)
$$x \to z \to (y \to z \to (x \lor y \to z)) \equiv \overline{x} \lor z \to (\overline{y} \lor z \to \overline{x} \lor \overline{y} \lor z) \equiv$$

$$= \overline{x} \lor z \to \overline{y} \lor \overline{z} \lor \overline{x} \lor \overline{y} \lor z = \overline{x} \lor \overline{z} \lor \overline{y} \lor \overline{z} \lor \overline{x} \lor \overline{y} \lor z =$$

$$= \overline{x} \& \overline{z} \lor \overline{y} \& \overline{z} \lor \overline{x} \lor \overline{y} \lor z = \overline{z} \& (x \lor y) \lor \overline{z} \& \overline{x} \lor \overline{y} =$$

$$= \overline{z} \& (x \lor y) \lor \overline{z} \& (x \lor y) = 1;$$
9) $x \to y \to (y \to z \to (x \lor y \to z)) \equiv$

$$= \overline{x} \lor y \to (\overline{y} \lor z \to \overline{x} \lor \overline{y} \lor z) = \overline{x} \lor \overline{y} \lor \overline{y} \lor \overline{z} \lor \overline{x} \lor \overline{y} \lor z =$$

$$= \overline{x} \& \overline{y} \lor \overline{y} \& \overline{z} \lor \overline{x} \& \overline{y} \lor z = x \& \overline{y} \lor \overline{x} \& \overline{y} \lor y \& \overline{z} \lor z =$$

$$= (x \lor x) \& \overline{y} \lor (y \lor z) \& (z \lor \overline{z}) = \overline{y} \lor y \lor z = 1 \lor z = 1;$$
10) $x \to (y \to z) \to (x \to y \to (x \to z)) = x \to \overline{y} \lor z \to (\overline{x} \lor y \to \overline{x} \lor z) =$

$$= \overline{x} \lor \overline{y} \lor z \to \overline{x} \lor \overline{y} \lor \overline{x} \lor z = x \lor \overline{y} \lor z \to x \& \overline{y} \lor \overline{x} \lor z =$$

$$= \overline{x} \lor \overline{y} \lor z \to (\overline{x} \lor x) \& (\overline{x} \lor \overline{y}) \lor z = \overline{x} \lor \overline{y} \lor z \to 1 \& (\overline{x} \lor \overline{y}) \lor z =$$

$$= \overline{x} \lor \overline{y} \lor z \to \overline{x} \lor \overline{y} \lor z = \overline{x} \lor \overline{y} \lor z \to x \lor \overline{y} \lor z \to 1 \& (\overline{x} \lor \overline{y}) \lor z =$$

$$= \overline{x} \lor \overline{y} \lor z \to \overline{x} \lor \overline{y} \lor z = \overline{x} \lor \overline{y} \lor z \to x \lor \overline{y} \lor z \to 1 \& (\overline{x} \lor \overline{y}) \lor z =$$

3.7. Для доказательства тождественной ложности формул выполним равносильные преобразования:

2)
$$x \& (x \to y) \& (x \to y) \equiv x \& (x \lor y) \& (x \lor y) \equiv$$

$$\equiv (x \& x \lor x \& y) \& (x \lor y) \equiv (0 \lor x \& y) \& x \& y \equiv x \& y \& x \& y \equiv 0;$$

3)
$$\overline{x \& x \to y} \to z \to w \& \overline{w} = \overline{0 \to y} \to z \to 0 = \overline{1 \lor y} \to z \to 0 =$$

$$\equiv 0 \to z \to 0 = 1 \lor z \to 0 = 1 \to 0 = 0;$$

4)
$$\overline{x \rightarrow y \rightarrow (x \& z \rightarrow y \& z)} \equiv \overline{x} \lor y \rightarrow \overline{x \& z} \lor y \& z \equiv$$

$$\equiv \overline{x \lor y \lor x \lor z \lor y \& z} \equiv \overline{x \& y \lor x \lor z \lor y \& z} \equiv$$

$$\equiv \overline{(x \lor x) \& (\overline{y} \lor \overline{x}) \lor (\overline{z} \lor y) \& (\overline{z} \lor z)} \equiv \overline{1 \& (\overline{x} \lor \overline{y}) \lor (y \lor \overline{z}) \& 1} \equiv$$

$$\equiv \overline{x \vee y \vee y \vee z} \equiv \overline{x \vee 1 \vee z} \equiv 0,$$

1) $x \vee x \rightarrow y \& y \equiv 1 \rightarrow 0 \equiv 0$;

5)
$$x \& y \& z \& (x \lor y \lor z \to \overline{w}) \& w \equiv x \& y \& z \& (\overline{x \lor y \lor z} \lor \overline{w}) \& w \equiv$$

$$= x & y & z & (w & \overline{x \lor y \lor z} \lor w & \overline{w}) = x & y & z & w & \overline{x \lor y \lor z} =$$

$$= x & y & z & w & \overline{x \lor y} & \overline{z} = x & y & 0 & w & \overline{x \lor y} = 0 .$$

4.1. Таблица истинности для всевозможных функций одной переменной ($f_i \equiv f_i(x)$) имеет вид:

х	f_1	f_2	f_3	f_4
1	1	1	0	0
0	1	0	1	0

Аналитические выражения для этих функций могут быть записаны следующим образом: $f_1 \equiv 1, \ f_2 \equiv x, \ f_3 \equiv x, \ f_4 \equiv 0.$

4.2. Таблица истинности для всевозможных функций двух переменных ($f_i \equiv f_i(x,y)$) имеет вид:

x	у	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

Аналитические выражения для этих функций могут быть записаны следующим образом: $f_1 \equiv 1, \ f_2 \equiv x \lor y, \ f_3 \equiv y \to x, \ f_4 \equiv x, \ f_5 \equiv x \to y, \ f_6 \equiv y,$ $f_7 \equiv x \leftrightarrow y, \ f_8 \equiv x \& y, \ f_9 \equiv \overline{x \& y}, \ f_{10} \equiv \overline{x \leftrightarrow y}, \ f_{11} \equiv \overline{y}, \ f_{12} \equiv \overline{x \to y}, \ f_{13} \equiv \overline{x},$ $f_{14} \equiv \overline{y \to x}, \ f_{15} \equiv \overline{x \lor y}, \ f_{16} \equiv 0.$

4.3. Воспользуемся правилом получения формулы алгебры логики из таблицы истинности для функции $f_i(x,y,z)$. Полученные таким образом формулы упростим:

1)
$$f_1 = x \& y \& z \lor x \& y \& \overline{z} \lor \overline{x} \& y \& \overline{z} \equiv$$

$$= x \& y \& (z \lor \overline{z}) \lor \overline{x} \& y \& \overline{z} = x \& y \lor \overline{x} \& y \& \overline{z} \equiv y \& (x \lor \overline{x} \& \overline{z}) \equiv$$

$$= y \& (x \lor \overline{x}) \& (x \lor \overline{z}) \equiv y \& (x \lor \overline{z});$$

2)
$$f_2 = x \& y \& z \lor x \& z \lor y \& (z \& z \lor x \& z);$$

$$= x \& z \& (y \lor y) \lor y \& (x \& z \lor x \& z) = x \& z \lor y \& (x \& z \lor x \& z);$$
3) $f_3 = x \& y \& z \lor x \& y \lor x \lor x \& y \& x \lor x$

4.4. Составим таблицы истинности для функций $f_1(x,y,z)$, $f_2(x,y,z)$ и $f_3(x,y,z)$, из них найдём соответствующие этим функциям формулы алгебры логики. Полученные формулы упростим.

х	у	Z	$f_1(x, y, z)$	$f_2(x, y, z)$	$f_3(x, y, z)$
1	1	1	0	0	1
1	1	0	0	1	1
1	0	1	0	1	1
1	0	0	1	0	0
0	1	1	0	1	1
0	1	0	1	0	0
0	0	1	1	0	0
0	0	0	0	0	0

1)
$$f_1(x, y, z) = x \& \overline{y} \& \overline{z} \lor \overline{x} \& y \& \overline{z} \lor \overline{x} \& \overline{y} \& z =$$

$$\equiv z \& (x \& y \lor x \& y) \lor x \& y \& z;$$

2)
$$f_2(x, y, z) = x \& y \& \overline{z} \lor x \& y \& z \lor \overline{x} \& y \& z =$$

$$\equiv x \& (y \& \overline{z} \lor y \& z) \lor \overline{x} \& y \& z;$$

3)
$$f_3(x, y, z) = x \& y \& z \lor x \& y \& \overline{z} \lor x \& \overline{y} \& z \lor \overline{x} \& y \& z =$$

$$\equiv x \& (y \& z \lor y \& \overline{z} \lor \overline{y} \& z) \lor x \& y \& z \equiv$$

$$\equiv x \& (y \& (z \lor z) \lor y \& z) \lor x \& y \& z \equiv x \& (y \lor y \& z) \lor x \& y \& z \equiv$$

$$\equiv x \& (y \lor y) \& (y \lor z) \lor x \& y \& z \equiv x \& (y \lor z) \lor x \& y \& z \equiv$$

$$\equiv x \& y \lor x \& z \lor x \& y \& z \equiv x \& y \lor z \& (x \lor x \& y) \equiv$$

$$\equiv x \& y \lor z \& (x \lor x) \& (x \lor y) \equiv x \& y \lor z \& (x \lor y) \equiv$$

$$\equiv x \& y \lor x \& z \lor y \& z \equiv x \& (y \lor z) \lor y \& z.$$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Γ индикин, $C.\Gamma$. Алгебра логики в задачах / $C.\Gamma$. Гиндикин. M.: Наука, Γ л. ред. физ.-мат. лит., 1972. 288 с.
- 2. 3амятин, A. Π . Математическая логика: учеб. пособие / A. Π . Замятин. Екатеринбург: Изд-во Урал ун-та, 2004. 140 с.
- 3. *Лавров, И.А.* Задачи по теории множеств, математической логике и теории алгоритмов: учеб. изд. / И.А. Лавров, Л.Л. Максимова. 5-е изд. М.: Физматлит, 2004. 256 с.
- 4. $\mathit{Лихтарников}$, $\mathit{Л.М.}$ Математическая логика : учеб. пособие для вузов / $\mathit{Л.М.}$ Лихтарников, Т.Г. Сукачёва. 4-е изд. СПб. : Лань, 2009. 288 с.

Учебное электронное текстовое издание

Опарин Дмитрий Всеволодович

ПРАКТИКУМ ПО ОСНОВАМ АЛГЕБРЫ ЛОГИКИ

Часть I. Логические операции над высказываниями, формулы и функции алгебры логики

Редактор *Н.В. Лутова* .

Компьютерная верстка авторская

Рекомендовано Методическим советом ФГАОУ ВПО УрФУ Разрешено к публикации 22.05.2015 Электронный формат – pdf Объем 1,26 уч.-изд. л.

620002, Екатеринбург, ул. Мира, 19 ЦНОТ ИТОО УрФУ