More Applications

of

the Pumping Lemma

The Pumping Lemma:

- ullet Given a infinite regular language L
- there exists an integer p (critical length)
- for any string $w \in L$ with length $|w| \ge p$
- we can write w = x y z
- with $|xy| \le p$ and $|y| \ge 1$
- such that: $x y^{i} z \in L \quad i = 0, 1, 2, ...$

Theorem: The language

$$L = \{vv^R : v \in \Sigma^*\} \ \Sigma = \{a,b\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Let p be the critical length for L

Pick a string w such that: $w \in L$

and length $|w| \ge p$

We pick
$$w = a^p b^p b^p a^p$$

From the Pumping Lemma:

We can write:
$$w = a^p b^p b^p a^p = x y z$$

with lengths: $|x y| \le p$, $|y| \ge 1$

$$\mathbf{w} = xyz = a...aa...a...ab...bb...ba...a$$

Thus:
$$y = a^k$$
, $1 \le k \le p$

$$x y z = a^p b^p b^p a^p \qquad y = a^k, \quad 1 \le k \le p$$

From the Pumping Lemma:
$$x y^l z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^p b^p b^p a^p \qquad y = a^k, \quad 1 \le k \le p$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = a...aa...aa...aa...ab...bb...ba...a \in L$$

Thus:
$$a^{p+k}b^pb^pa^p \in L$$

$$a^{p+k}b^pb^pa^p \in L \quad k \ge 1$$

BUT:
$$L = \{vv^R : v \in \Sigma^*\}$$

$$a^{p+k}b^pb^pa^p \notin L$$

CONTRADICTION!

Therefore: Our assumption that L is a regular language is not true.

Conclusion: L is not a regular language.

END OF PROOF

Theorem: The language

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$
 is not regular.

Proof: Use the Pumping Lemma.

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Assume for contradiction that L is a regular language.

Since L is infinite we can apply the Pumping Lemma.

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Let p be the critical length of L

Pick a string w such that: $w \in L$ and

length
$$|w| \ge p$$

We pick
$$w = a^p b^p c^{2p}$$

From the Pumping Lemma:

We can write
$$w = a^p b^p c^{2p} = x \ y \ z$$
 with lengths $|x \ y| \le p, \ |y| \ge 1$

$$w = xyz = a...aa...aa...ab...bc...cc...c$$

Thus:
$$y = a^k$$
, $1 \le k \le p$

$$x y z = a^p b^p c^{2p}$$
 $y = a^k$, $1 \le k \le p$

From the Pumping Lemma: $x y^{l} z \in L$ i = 0, 1, 2, ...

Thus:
$$x y^0 z = xz \in L$$

$$x y z = a^p b^p c^{2p} \qquad y = a^k, \quad 1 \le k \le p$$

From the Pumping Lemma: $xz \in L$

$$xz = a...aa...ab...bc...cc...c \in L$$

Thus:
$$a^{p-k}b^pc^{2p} \in L$$

$$a^{p-k}b^pc^{2p} \in L \quad k \ge 1$$

BUT:
$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

$$a^{p-k}b^pc^{2p} \notin L$$

CONTRADICTION!

Therefore: Our assumption that L is a regular language is not true.

Conclusion: L is not a regular language.

END OF PROOF

Theorem: The language $L = \{a^{n!}: n \ge 0\}$ is not regular.

Proof: Use the Pumping Lemma.

$$L = \{a^{n!}: n \ge 0\}$$

Assume for contradiction that L is a regular language.

Since L is infinite we can apply the Pumping Lemma.

$$L = \{a^{n!}: n \ge 0\}$$

Let p be the critical length of L.

Pick a string w such that: $w \in L$

length
$$|w| \ge p$$

We pick
$$w = a^{p!}$$

From the Pumping Lemma:

We can write
$$w = a^{p!} = x y z$$

with lengths
$$|x y| \le p$$
, $|y| \ge 1$

Thus:
$$y = a^k$$
, $1 \le k \le p$

$$x y z = a^{p!} \quad y = a^k, \quad 1 \le k \le p$$

From the Pumping Lemma:
$$x y^l z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^{p!} \quad y = a^k, \quad 1 \le k \le p$$

From the Pumping Lemma: $x y^2 z \in L$

Thus:
$$a^{p!+k} \in L$$

$$a^{p!+k} \in L \quad 1 \le k \le p$$

Since:
$$L = \{a^{n!}: n \ge 0\}$$

There must exist Z such that:

$$p!+k=z!$$

However:
$$p!+k \le p!+p$$
 for $p>1$

$$\le p!+p!$$

$$< p! p + p!$$

$$= p!(p+1)$$

$$= (p+1)!$$

$$p!+k < (p+1)!$$

$$p!+k \ne z!$$
 for any z

for
$$p=1$$

we could pick string
$$w = a^{p'!}$$

where
$$p' > p$$

and we would obtain the same conclusion:

$$p'!+k \neq z!$$
 for any Z

$$a^{p!+k} \in L \quad 1 \le k \le p$$

BUT:
$$L = \{a^{n!}: n \ge 0\}$$

$$a^{p!+k} \notin L$$

CONTRADICTION!

Therefore: Our assumption that L is a regular language is not true.

Conclusion: L is not a regular language