Лабораторная работа №4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Нехаев Александр 654гр.

13 декабря 2018 г.

Содержание

1.	Введение	1
2.	Экспериментальная установка	2
3.	Ход работы	3
4.	Вывод	5

1. Введение

Бета-распад это самопроизвольное преваращение ядер, при котором их массовове число не изменяется, а заряд изменяется на единицу. В данной работе мы будем иметь дело с электронным распадом:

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой макимальной энергии, высвобождаемой при распаде.

Вероятность $d\omega$ того, что электрон вылетит с имульсом d^3p , а нейтрино с импульсом d^3k равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии.

$$E_e - E - ck = 0 (2)$$

Энергия электрона связана с импульсом обычным образом:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2 \tag{3}$$

Таким образом, вероятность $d\omega$ принимает вид:

$$d\omega = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\tilde{\nu}}$$
(4)

D можно считать с хорошей точностью константой. В этом случае можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино. В этом случае δ -функция исчезнет, а ck всюду заменится на E_e-E . После умножения на полное число распадов выражение примет вид:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp$$
 (5)

В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{dN}{dE} \simeq \sqrt{E}(E_e - E)^2 \tag{6}$$

Рис. 1: Форма спектра β -частиц при разрешенных переходах

2. Экспериментальная установка

Энергия определяется с помощью β -спектрометров. В работе используется магнитный спектрометр с короткой линзой. Как показывает расчет, для заряженных частиц тонкая

Рис. 2: Схема β -спектрометра с короткой линзой

катушка эквивалентна линзе:

$$\frac{1}{f} \simeq \frac{I^2}{p_e^2} \tag{7}$$

При заданной силе тока на входное окно счетчика собираются электроны с определенным импульсом.

3. Ход работы

Снимем точки β -спектра. Фоновое излучение равно $N_b=0.8098$. С учетом этого пересчитаем число частиц, зарегистрированных счетчиком.

Таблица 1: Значения, полученные в ходе эксперимента

#	J, A	N	$N-N_b$	p , кэ $\mathrm{B/c}$	T, кэ B	mkFermi
1	0	0.88	0.0702	0.	0	0
2	0.2	0.8	-0.0098	49.2619	2.36901	0.
3	0.4	0.84	0.0302	98.5238	9.41134	177.702
4	0.6	0.93	0.1202	147.786	20.9414	192.976
5	0.8	0.98	0.1702	197.048	36.6759	149.15
6	1	1.33	0.5202	246.31	56.2649	186.579
7	1.2	1.799	0.9892	295.571	79.325	195.726
8	1.4	2.459	1.6492	344.833	105.467	200.55
9	1.6	3.249	2.4392	394.095	134.316	199.628
10	1.8	3.719	2.9092	443.357	165.526	182.707
11	2	3.929	3.1192	492.619	198.785	161.531
12	2.2	4.219	3.4092	541.881	233.82	146.376
13	2.3	4.279	3.4692	566.512	251.927	138.134
14	2.4	4.489	3.6792	591.143	270.391	133.456
15	2.5	4.539	3.7292	615.774	289.187	126.379
16	2.6	4.199	3.3892	640.405	308.292	113.597
17	2.7	4.029	3.2192	665.036	327.686	104.618
18	2.8	4.239	3.4292	689.667	347.348	102.244
19	2.9	3.719	2.9092	714.298	367.261	89.3445
20	3	3.289	2.4792	738.929	387.408	78.3885
21	3.1	2.559	1.7492	763.559	407.774	62.6838
22	3.2	2.259	1.4492	788.19	428.343	54.4023
23	3.4	1.739	0.9292	837.452	470.045	39.7754
24	3.6	1.37	0.5602	886.714	512.418	28.3463
25	3.8	1.29	0.4802	935.976	555.383	24.1999
26	3.85	1.999	1.1892	948.292	566.209	37.3435
27	3.9	3.449	2.6392	960.607	577.066	54.5654
28	3.95	4.739	3.9292	972.923	587.954	65.3183
29	4	6.038	5.2282	985.238	598.872	73.9374
30	4.2	4.699	3.8892	1034.5	642.825	59.2699
31	4.25	4.659	3.8492	1046.82	653.88	57.9269
32	4.3	3.469	2.6592	1059.13	664.959	47.3098
33	4.35	2.159	1.3492	1071.45	676.064	33.1194
34	4.4	1.53	0.7202	1083.76	687.191	23.7862
35	4.5	0.8	-0.0098	1108.39	709.515	0.
36	4.6	0.43	-0.3798	1133.02	731.926	0.

Для наглядности построим график зависимости N(J), полученный во время измерений.

Рис. 3: Полученная зависимость N(J)

Знаем, что пик, наблюдаемый при силе тока около 4 A — пик внутренней конверсии $^{137}\mathrm{Cs}$. Его энергия соотвествует значению 634 кэВ. Согласно формуле (3), выражая p, получаем, что этот пик соотвествует значению импульса электрона $p_{\mathrm{конв}}=1024.6476$ кэВ/c. Зависимость импульса электрона от тока имеет вид

$$p = kI. (8)$$

В качестве пика возьмем величину 4.16 А. Тогда $k=246.31~{\rm кэB/(A}c)$. Таким образом с помощью формул (8) и (3) можем добавить значения импульса и энергии в таблицу 1. Теперь можем посчитать значение последнего столбца таблицы 1 по формуле

$$F = \frac{\sqrt{n - n_b \cdot 10^6}}{p^{3/2}}. (9)$$

Используя эту форумлу определим значения последнего столбца. Построим график Ферми-Кюри.

Рис. 4: График Ферми-Кюри

Аппроксимируя участок графика получим уравнение прямой

$$y = 256.886 - 0.460457x$$

По точке пересечения графика с осью абсцисс определим максимальную энергию электронов в β -спектре. $E_{max} = 557.9$ кэВ.

4. Вывод

В проделанной работе было исследовано явление β -распада ^{137}Cs . Выявлен «полудискретный» характер спектра: непрерывная часть обеспечивается за счет рождения двух частиц, дискретный пик — рождение конверсионных электронов. Непрерывность спектра доказывает существование антинейтрино и его рождение в процессе β^- распада. Также было выяснено существование конверсионных электронов — частиц, испускаемых в результате перехода ядра на более низкий энергетический уровень. Их энергетический спектр является уже дискретным, т.к. их энергия строго привязана к энергиям жлектронных уровней в атоме.