IPEIO – Teste Resolução

Felipe B. Pinto 61387 – MIEQB

7 de junho de 2023

Conteúdo

Questão 1	2	Questão 4							5
Questão 2	3	Questão 5							6
Ouestão 3	4								

	Numero mínimo
Periodo do dia	de consultores
	necessários
8h-12h	4
12h-16h	8
16h-20h	10
20h-24h	6

- Consultores tempo inteiro ou parcial
- Tempo inteiro=> 8h consecultivas:
 - 8h-16h
 - 12h-20h
 - 16h-24h
- Tempo inteiro são pagos 40EUR/h
- · Tempo parcial, periodos na tabela
- · Tempo parcial são pagos 30EUR/h
- min 2 Tempo inteiro a cada 1 parcial
- $C_{i,j}$ Numero de consultores em tempo inteiro no horario { 1: 8h–16h, 2:12h–20h, 3:16h–24h }
- $C_{p,j}$ Numero de consultores em tempo parcial no horario { 1: 8h–12h, 2: 12h–16h, 3: 16h–20h, 4: 20h–24h }

Minimizar
$$C=40*8\sum_{j=1}^3 c_{i,j}+30*4\sum_{j=1}^4 c_{p,j}$$
 $\begin{cases} c_{i,1}/2 \geq c_{p,1} \\ (c_{i,1}+c_{i,2})/2 \geq c_{p,2} \\ (c_{i,2}+c_{i,3})/2 \geq c_{p,3} \\ c_{i,3}/2 \geq c_{p,4} \end{cases}$ Sujeito a $\begin{cases} c_{p,1}+c_{i,1} \geq 4 \\ c_{p,2}+c_{i,1}+c_{i,2} \geq 8 \\ c_{p,3}+c_{i,2}+c_{i,3} \geq 10 \\ c_{p,4}+c_{i,3} \geq 6 \end{cases}$ $c_{p,j},c_{i,j} \in \mathbb{N}$

$$\max z = 5\,x + 3\,y$$

$$s.a. egin{cases} x & \leq 4 \ y & \leq 6 \ 3\,x + 2\,y & \leq 18 \ x + y & \leq 2 \ x, y & \leq 0 \end{cases}$$

Q2 a.

Região adm

Ε

Q2b.

Vertice ótimo e sba

$$0 = 5x + 3y \implies y = \frac{5}{3}x$$

Percebemos uma reta de declive crescente (5/3) que tende sempre a almentar, podemos ver que o vertice (x,y)=(0,6) é solução por estar mais a cima e a esquerda possível

• Vértice: (0,6)

• S.b.a: (x,y) = (0,6)

Q2 c.

Variavéis do vertice (2,6)

$$(x,y,f_2,f_3)$$

Q2 d.

Nova função

$$z' = c x + 3 y$$

- 1. c=2000: F, solução sempre limi- 3. c=9/2: F, se for positiva vai tada sempre dar (0,6)
- 4. c < 0: F, existe uma margem q 2. c = 1: V, declive positívo resulta em (4,y>0)

Resposta, b)

Questão 3

Simplex

x_1	x_2	x_3	f_1	f_2	T.I
$-5 + \alpha$	0	$2-2\alpha$	0	$-3-\alpha$	18
$\alpha - 1$	1	1	0	-1	$10 - \alpha$
3	0	1	1	1	$6-\alpha$

Q3 a.

 $\alpha=3$ e minimizar, sol otima é $(x_1^*,x_2^*,x_3^*)=(0,7,0)$

x_1	x_2	x_3	f_1	f_2	T.I
-5 + 3	0	2 - 2 * 3	0	-3 - 3	18
3 - 1	1	1	0	-1	10 - 3
3	0	1	1	1	6 - 3
-2	0	-4	0	-6	18
2	1	1	0	-1	7
3	0	1	1	1	3

Falsa

Q3 b.

 $\alpha=1$ e max, sol não ótima, x_1 vira básica e f_1 vira não básica

$\overline{x_1}$	x_2	x_3	f_1	f_2	T.I
-5 + -1	0	2 - 2 * -1	0	-3 + 1	18
-1 - 1	1	1	0	-1	10 + 1
3	0	1	1	1	6 + 1
-6	0	4	0	-2	18
-2	1	1	0	-1	11
3	0	1	1	1	7

Falsa

Q3 c.

 $\alpha=3$ e max, é sol ótima

x_1	x_2	x_3	f_1	f_2	T.I
-2	0	-4	0	-6	18
2	1	1	0	-1	7
3	0	1	1	1	3

Verdadeira

Q3 d.

Max e $\alpha=5$, mais q
 uma sol otima

x_1	x_2	x_3	f_1	f_2	T.I
-5 + 5	0	2 - 2 * 5	0	-3 - 5	18
5 - 1	1	1	0	-1	10 - 5
3	0	1	1	1	6 - 5
0	0	-8	0	-8	18
4	1	1	0	-1	4
3	0	1	1	1	1

Verdadeira, anula x_1

Q3 e.

 $x_1 = -5 + \alpha$

Falsa, esse é o escalar multiplicando o numero

Questão 4

Projeto

Q4 a.

Desenho

Q4 b.

Duração total e caminho crítico médio

- caminho: $B \rightarrow C \rightarrow D \rightarrow F \rightarrow G$
- · Tempo: 60 dias

Q4 c.

Prob de exceder 52 dias

$$\sigma = \sqrt{0.8 + 0.6 + 1.2 + 0.8 + 0.6} = \sqrt{4} = 2$$

$$P(x \ge 57) = 1 - P(x \le 57) = 1 - P\left(z \le \frac{60 - 57}{2}\right) = 1 - P(z \le 1.5) \cong 1 - 0.9332 = 0.0668$$

Questão 5

Prog lin inteira

$$?? \quad z = 4 \, x_1 + 8 \, x_2 \ s.a egin{cases} 8 \, x_1 + 3 \, x_2 & \leq 52 \ 2 \, x_1 + 7 \, x_2 & \leq 46 \ x_1, x_2 & \in \mathbb{N} \end{cases}$$

- 1. F
- 2. F
- 3. V
- 4. F
- 5. V