Assignment 1

Garvit Shah [U21CS089]

January 2023

Hardware Details

• Memory: 8 GB 1600 MHz DDR3

• Processor: 1.8 GHz Dual-Core Intel Core i5

Software Details

• Apple clang version 14.0.0 clang-1400.0.29.202

• xcode-select version 2395.

1 Insertion Sort

1.1 Algorithm

- 1. Create a file pointer and Open the File
- 2. Read the number from the file and put it in an array.
- 3. Start from second element and compare it with previous elements.
- 4. If found appropriate position, insert at that position.

1.2 Observations

Time Complexity for Insertion Sort		
File Name	No. of Entries	Average Case
File-1	1024	0.003174
File-2	4096	0.048634
File-3	16384	0.777577
File-4	65536	12.446997
File-5	262144	199.183045
File-6	1048576	3187.061125
File-7	2097152	12748.334020
File-8	4194304	50993.515653
File-9	8883608	228757.176227
File-10	16777216	815898.409093

Table 1: Time taken for Insertion Sort

1.3 Graph

1.4 Conclusion

The graph for the worst case is a quadratic. A quadratic curve implies that the change in time taken is quadratically dependent on the change in the no. of elements in the file, as the line is given by $y = 4ax^2$. Therefore, it can be concluded that the time complexity for Insertion Sort is $O(n^2)$. Theoretically also time complexity comes out to be $O(n^2)$. Thus the conclusion matches to the theoretical value of the time complexity.

Time Complexity = $\theta(n)$