Where Should I Live?

IBM DATA SCIENCE PROFESSIONAL CERTIFICATE

CAPSTONE PROJECT – THE BATTLE OF NEIGHBOURHOODS

Business Problem

- ▶ According to INSEE, in France, in 2013, about one household in five changed housing at least once between 2009 and 2013.
- A common question remains: which neighbourhoods are the best place for them to start their new adventure?
- A household has several criterions on which it bases its choice, and they are often complex, sometimes incompatible

Business Solution

- Provide households with a decision-making tool
- Guide households in their choice of their future neighbourhood

HOW

 Comparing and reconciling the characteristics of each city's neighbourhood

Data acquisition and cleaning

- Three sources of data
 - ► Foursquare, gives us access to all the facilities near the neighbourhood. We will just extract the families of the categories. One can find the Foorsquare families' tree there.
 - ▶ INSEE, the French National Institute of Statistics and Economic Studies which will provide to us distribution of ages and professional categories for each neighbourhood. You can find the data there.
 - ▶ IGN, French National Institute of Geographic information, which provides a breakdown of the French territory into districts, with geometric contours. You can find the data there.

Geographic limitation

We have chosen to limit our analysis to four cities of the South of France: Aix-en-Provence, Arles, Avignon, Marseille

Methodology

- Clustering the indicators
 - ▶ Clustering algorithm
 - Optimization: Elbow method
 - Suggested 4 clusters for each indicator

Clustering age groups

- 4 clusters
- ► Cluster 0: student districts
- ► Cluster 1: retirement districts
- ► Cluster 2: business districts
- ► Custer 3: family districts

Clustering Professional groups

- ▶ 4 clusters
- Cluster 0: Upper-middle class districts
- ► Cluster 1: retirement districts
- Cluster 2: low-middle class districts
- Custer 3: mixed professional districts

- Pensioners
- Workmen
- Employees
- Intermediate professions
- Executives, intellectual professions
- Craftsmen, shopkeepers, entrepreneurs
- Farmers

Clustering Professional groups

- 4 clusters
- ► Cluster 0: restaurant district
- ► Cluster 1: shopping districts
- ► Cluster 2: travel districts (hotels, ...)
- ► Custer 3: complete districts

Discussion (1)

 Clustering is based on proportions. These two examples would be in the same category

	Young	Student	Active	Retired	Total
X	100	50	200	100	450
X _{weight}	22.2%	11.1%	44.5%	22.2%	
Y	1000	500	2000	1000	4500
Y _{weight}	22.2%	11.1%	44.5%	22.2%	

Discussion (2)

- Choices are limited to three indicators: the age distribution, the professional distribution and the facilities' categories distribution. However, households' choices are more complex.
- ► The age distribution could bias the analysis. Indeed, the presence of one retirement residence could sharply increase the proportion of retired people, mischievously transforming the neighbourhood to a "retirement district".
- ▶ This method can lead to an incomplete picture

Results & Conclusions

▶ To each neighbourhood is assigned a cluster based on prefessional activity, age distribution, and facilities presence.

- Next step:
 - Consolidate the three indicators
 - Get a houselhod wish based on our criteria
 - Extract most similar neighbourhoods, with the Jaccard similarity