Valeurs et vecteurs propres

Exercice 1. Calculer les valeurs propres de l'opérateur linéaire de \mathbb{R}^5 qui applique les vecteurs e_1 , e_2 , e_3 , e_4 , e_5 de la base canonique sur $2e_1$, $5e_1 + 2e_2$, $4e_3 + 3e_4$, $2e_3 + 5e_4$ et $7e_5$ respectivement.

Exercice 2. Déterminer les valeurs propres et les vecteurs propres des matrices réelles suivantes, et calculer la dimension des sous-espaces propres correspondants :

$$\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}, \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}.$$

Pour celles de ces matrices qui sont diagonalisables, donner une base dans laquelle elles sont diagonales, ainsi que la matrice du changement de base correspondante.

Exercice 3. Comparer les valeurs propres d'une matrice carrée a et de sa transposée a^T .

Exercice 4. Un opérateur linéaire A admet la valeur propre 0 si et seulement si A n'est pas inversible. Vrai ou faux?

Exercice 5. Si λ est une valeur propre d'une matrice inversible a, peut-on conclure que λ^{-1} est valeur propre de a^{-1} ?