(MATNA1902) Lineáris algebra 3. zárthelyi dolgozat

1. Adottak a következő mátrixok:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 \\ -2 & 2 & 1 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 1 & 3 \\ 2 & 5 \\ -1 & -1 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 2 \\ -1 & -1 & 0 \end{pmatrix}$$

Végezze el az alábbiak közül az elvégezhető műveleteket! (a) $|\mathbf{A}|$; $|\mathbf{C}|$; $|\mathbf{D}|$ (b) $\mathbf{A} + \mathbf{B}$; $\mathbf{B} + \mathbf{C}$; $\mathbf{C} + \mathbf{D}$; $4\mathbf{A} - \mathbf{B}$ (c) $\mathbf{A} \cdot \mathbf{B}$; $\mathbf{B} \cdot \mathbf{C}$; $\mathbf{B} \cdot \mathbf{D}$ (d) \mathbf{A}^T ; \mathbf{D}^T ; $\mathbf{A}^T \cdot \mathbf{B}$; (e) $\rho(\mathbf{B})$; $\rho(\mathbf{D})$; (f) \mathbf{A}^{-1} ; \mathbf{D}^{-1} (10 pont)

2. Oldja meg az $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$ mátrixegyenletet, ha

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5 \end{pmatrix}$$

(10 pont)

3. Oldja meg az alábbi lineáris egyenletrendszert!

$$x_1 + x_2 + x_3 = 3$$

$$2x_1 + 3x_2 + 2x_3 = 7$$

$$2x_1 + 2x_2 + 3x_3 = 6$$

(10 pont)

- 4. Lineárisan függetlenek-e az $\mathbf{a} = (-2, 0, 5)$, a $\mathbf{b} = (1, 2, 3)$ és a $\mathbf{c} = (-3, 2, 13)$ vektorok? (10 pont)
- 5. Lineáris altér-e az \mathbb{R}^4 -on az $L = \{(x_1, x_2, x_1, 2x_2) | x_1, x_2 \in \mathbb{R}\}$? (10 pont)
- 6. Adja meg meg az $\mathbf{a} = (1,0,0)$ vektort az (1,2,5); (3,7,8); (2,5,2) bázisban. (10 pont)
- 7. Adja meg a következő pontokon átmenő sík egyenletét: A(0,0,1), B(1,1,1), C(1,1,0). (10 pont)
- 8. Adja meg az alábbi mátrix sajátértékeit és a saját altereket, majd diagonizálja a mátrixot!

$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

(10 pont)

9. Az alábbi leképezések közül melyik lineáris? Adja meg a leképezés mátrixát is!

a.)

$$f(\mathbf{x}) = \begin{pmatrix} x_1 + 2x_2 \\ 2x_1 + x_2 \\ 3x_3 + 3_2 \\ x_3 \end{pmatrix} (\mathbf{x} \in \mathbb{R}^3)$$

b.)

$$g\left(\mathbf{x}\right) = \begin{pmatrix} 2x_1 \\ x_1 x_2 \\ 3x_2 \\ x_1 \end{pmatrix} \left(\mathbf{x} \in \mathbb{R}^2\right)$$

10. Írja át az alábbi vektorokat ortogonális bázissá a Gram-Schmidt ortogonalizáció segítségével!

$$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$

(10 pont)

A fenti feladatsor két részre oszlik. Az (1)-(5) feladatok megoldásával a első zárthelyit lehet javítani, illetve pótolni. A (6)-(10) feladatokkal pedig a másodikat. A zárthelyik osztályzása: 0-20 pont: elégtelen (1), 21-27 pont: elégséges (2), 28-35 pont: közepes (3), 36-42 pont: jó (4) és 43-50 pont: jeles (5). Mindkét témából zárthelyiből legalább elégségest (2) kell elérni a gyakorlati jegyhez.

 $\label{eq:Facskog} \textbf{Facskó} \; \textbf{Gábor} \\ \textit{facskog@gamma.ttk.pte.hu} \\$

Pécs, 2025. május 15.