Vorblatt

Transfernachweis

	ung eines Rake idigungssyste	etenmotors für den Flugkö ms. Vulcano"	örper des
Verfasser (Name			
Einzelarbeit:		Gruppenarbeit:	
im Rahmen eine	er Gruppenarb	eit:	
Mitverfasser 1 (l	Name, Vorname):	Junginger, Dirk	
Mitverfasser 2 (Name, Vorname):	Dr. Madlener, Klaus	
Mitverfasser 3 (Name, Vorname):	Hoffmann, Peter	
Die Arbeit ist E	Bestandteil de	r Zertifizierungsprüfung	IZR 10-396
Prüfungstag:	Prüfungso	rt:	Koordinator:
			Michael Buchert

Vorblatt zum Transfernachweis

Anleitung zum Transfernachweis Dok.-Nr. Z08 / Rev. 11 / Datum 20.07.2010

Projekthandbuch-Entwicklungsprojekt Lenkflugkörpermotor Vulcano

Transferprojekt basierend auf

PM-ZERT
Anleitung zum Transfernachweis IPMA Level D

DokNr. / Rev / Datum Z08 / 11 / 20.07.2010 Hoffmann, Peter
Junginger, Dirk
Dr. Madlener, Klaus

Inhaltsverzeichnis

Р	rojekt	/ Projektziele	4
1.1.	. Pro	ojektbeschreibung	4
1.2.	. Zie	elbeschreibung/Zielhierarchie	6
1	.2.1	Zielformulierung und Zielhierarchie	6
Р	rojekt	umfeld, Stakeholder	13
2.1.	. Pro	ojektumfeld, Umfeldfaktoren	13
2	.1.2	Beschreibung des sachlichen Umfeldes und der Schnittstellen	14
2.2.	. Sta	akeholder (Interested Parties)	15
R	isiken	und Chancen	19
3.1.	. Erí	fassung, Klassifizierung und Beschreibung der Risiken	19
3.2.	. Qı	antitative Bewertung der Risiken und Maßnahmen zur Risikobegegnung	20
Р	rojekt	organisation	22
4.1.	. Ko	mmunikation im Projekt	25
4	.1.1	Theorie	25
4	.1.2	Kommunikationsstrategie, Kommunikationsregeln	26
4	.1.3	Kommunikationsmatrix	26
Р	hasen	planung	29
5.1.	. Be	schreibung der Projektphasen und der Meilensteine	29
5.2.	. Ve	ranschaulichung der Projektphasen	31
Р	rojekt	strukturplan	32
6.1.	. Da	rstellung und Codierung des Projektstrukturplans (PSP)	32
6.2.	. Arl	peitspaketbeschreibung	32
Α	blauf-	und Terminplanung	36
7.1.	. Vo	rgangsliste	36
7.2.	. Ve	rnetzter Balkenplan	36
	1.1 1.2 1 P 2.1 2.2 R 3.1 3.2 P 4.1 4 4 P 5.1 5.2 P 6.1 6.2 A 7.1	1.1. Pro 1.2. Zie 1.2.1 Projekt 2.1. Pro 2.1.2 2.2. Sta Risiken 3.1. Erf 3.2. Qu Projekt 4.1. Ko 4.1.1 4.1.2 4.1.3 Phasen 5.1. Be 5.2. Ve Projekt 6.1. Da 6.2. Arl Ablauf- 7.1. Vo	1.1. Projektbeschreibung

8.	Eins	atzn	nittel-/Kostenplanung4	0
8	3.1.	Eins	satzmittelbedarf/ Einsatzmittelplan4	0
8	3.2.	Proj	jektkosten4	4
9.	Verh	nalte	enskompetenz4	8
(9.1.	Krea	ativität (Wahlthema 9.1)4	8
	9.1.	1	Theorie4	8
	9.1.	2	Kreativität im Projekt4	9
	9.1.	3	Erkenntnisse und Verbesserungen4	9
(9.2.	Erge	ebnisorientierung (Wahlthema 9.4)5	0
	9.2.	1	Definition5	0
	9.2.	2.	Ergebnisorientierung im Projekt5	0
	9.2.	3	Erkenntnisse und Verbesserung5	1
10	Wah	nlelei	mente5	3
	10.1.	P	rojektstart, Projektende (Wahlthema 10.4)5	3
	10.1	.1	Projektstart5	3
	10.1	.2	Projektabschluss5	5
11	Anh	ang	5	7
	11.1.	Α	.bkürzungsverzeichnis5	7
	11 2	٨	hhildungsverzeichnis 5	Ω

1. Projekt / Projektziele

1.1. Projektbeschreibung

Die Firma Dübel Rocket Motors GmbH (DRM) mit Sitz in Tettnang am Bodensee zählt mit derzeit 430 Mitarbeitern zu den europaweit 5 größten Herstellern von Raketenmotoren für Flugkörperantriebe. Ihre Kernkompetenz liegt in der Entwicklung und dem Vertrieb von Kohlefasertriebwerken bis zu einem Kaliber von 120mm.

Im Rahmen der Entwicklung des Flugkörpers für das Luftverteidigungssystem "Vulcano" zum Schutz von zivilen, bodengebundenen Einrichtungen vor terroristischen Angriffen aus der Luft wurde die Firma Dübel Rocket Motors GmbH vom Unternehmen Advanced Defence Systems AG (ADS) mit Sitz in Nürnberg beauftragt, einen Raketenmotor zu entwickeln. In einer vorangegangenen Ausschreibung mit Machbarkeitsstudie konnte sich die Fa. Dübel Rocket Motors gegen das hoch favorisierte Unternehmen Missile Systems Hessen (MSH) aus Frankfurt am Main durchsetzen.

Der Endnutzer des Gesamtsystems ist die Luftwaffe der deutschen Bundeswehr. Ein späterer Export in Drittländer wird angestrebt. Eine von Advanced Defence Systems AG durchgeführte Marktanalyse hatte ergeben, dass für ein solches Verteidigungssystem aufgrund der zunehmend terroristischen Bedrohung eine hohe Nachfrage besteht. Mit dem System Vulcano soll eine kostengünstigere Alternative zu dem von US-amerikanischen Produkt OD-900 (Object Defence 900) entwickelt werden. OD-900 ist weitaus komplexer aufgebaut, bietet vielseitige Einsatzmöglichkeiten auch im mobilen Einsatz und ist mit Flugkörpern hoher Reichweite ausgestattet. Im Gegensatz hierzu soll sich das System Vulcano auf den stationären Einsatz mit mittlerer Reichweite beschränken. Es kann daher kostengünstiger am Markt angeboten werden und ist mit deutlich geringeren Betriebs- und Wartungskosten verbunden.

Der zwischen der Advanced Defence Systems AG und Dübel Rocket Motors geschlossene Vertrag beinhaltet die Entwicklung und Verifikation eines Raketenmotors sowie die abschließende Lieferung von 10 Motoren für die von Advanced Defence Systems durchzuführende Qualifikation des Gesamtsystems Vulcano. Da unter anderem die Forderung nach Insensitiver Munition Bestandteil der Leistungsbeschreibung ist, soll das Motorgehäuse entsprechend den Kernkompetenzen der Firma Dübel Rocket Motors GmbH aus kohlefaserverstärktem Kunststoff gefertigt werden. Das Lastenheft und die Spezifikation für den Raketenmotor sowie alle mechanischen und elektrischen Schnittstellen sind vom Kunden definiert und vorgegeben.

Für die Umsetzung der vertraglich vereinbarten Leistungen sind ein Zeitraum von 24 Monaten und ein Vertragswert von 1,8 Mio. € festgesetzt. Die kalkulierten Selbstkosten betragen 1,408 Mio €.

Auf der folgenden Seite ist der zugehörige Projektsteckbrief dargestellt.

Eigene Rollen im Projekt:

Dr. Uwe Rauscher Projektleitung

Peter HoffmannLeiter Fertigung und MontageDirk JungingerProjektplanung und -steuerung

Dr. Klaus Madlener Technische Projektleitung

Projektleiter:
Dr. Uwe Rauscher

Projektsteckbrief

Projektnr.: P09

Projektbezeichnung:

Entwicklung eines Raketenmotors für den Flugkörper des Luftverteidigungssystems "Vulcano"

Projektinhalt

Im Auftrag des Unternehmens Advanced Defence Systems AG (ADS) soll ein Raketenmotor für den Flugkörper des Luftverteidigungssystem "Vulcano" bis zur Qualifikationsreife entwickelt werden. Aufgrund der Forderung nach Insensitiver Munition (IM Eigenschaften) soll das Motorgehäuse aus kohlefaserverstärktem Kunststoff hergestellt werden.

Projektziele

Entwicklung eines Raketenmotors gemäß Spezifikation bis zur Qualifikationsreife des Produktes

Lieferung von 10 Prototypen für Qualifikation auf Systemebene bei Kunden

Projektnutzen für Dübel Defence GmbH:

Zukünftige Auftragserwartung bei Markterfolg des Luftverteidigungssystems Vulcano

Technologieausbau im Bereich der Anwendung von kohlefaserverstärkten Kunststoffen für Raketenmotoren

Projektumfeld:

Projekt wird firmenintern durchgeführt, eine Infrastruktur sowie erforderliche Labore, Testanlagen und Rechnerkapazitäten stehen in ausreichendem Maße zur Verfügung

Projekt ist wehrtechnisches Projekt, KWKG und AWG sowie die Richtlinien des Geheimschutzes sind daher einzuhalten

Geplante Termine	Geplante Termine								
Projektstart: 02.05.2011 Geschätzter Aufwand (in Pe	termine: is 08.12.2011 is 18.07.2012 Abnahme/TDP bis 19.12.2012		2.2012	Fertigstellungstermin / Projektende: 23.04.2013					
Intern: 11077	davon PM-Aufwand: 3670			Extern: kein Fremdpersonal im Projekt					
Projektvolumen / Budget (E	Euro):								
Interne Kosten: 1107,7 T€			Externe Kosten: 300T€ (Material)						
Projektbeteiligte									
Projektleiter: Dr. U. Rauscher (Business Unit Raketenantriebe)					Lenkungsausschuss: Geschäftsführung DRM und ADS Projektleiter BWB				
					Machtpromotor: F. Müller (Leiter Business Unit Raketenantriebe)				

Externer Auftraggeber: Advanced Defence Systems AG	Fachpromotor: Dr. S. Wolf (Entwicklungsleiter)					
Mögliche Behinderungen / Risiken / Störungen: Finanzsituation des Bundes, Terminliche Konflikte bei Auslastung der Testanlagen, Technologiesprung						
Erforderliche Autorisierungen / Genehmigungen / Freigaben: KWKG/AWG Freigaben Transportgenehmigungen inländisch						
Sonstige Bemerkungen: keine						

Abbildung 1 - Projektsteckbrief

1.2. Zielbeschreibung/Zielhierarchie

Das Kerncharakteristikum eines Projekts ist aufgrund der bestehenden Ergebnisorientierung die Möglichkeit eines effizienten Projekterfolges. Dieser übergeordnete Projekterfolg wird durch weitere exakte Ziele neben den Kernzielen des "magischen Dreiecks" definiert. Ziele an sich, haben zudem mehrere positive Funktionen im Rahmen des Projektablaufs. Neben einer Kontroll-, Koordinations- und Orientierungsfunktion erlauben Sie im Rahmen eines Selektionskriteriums bei Entscheidungen eine Alternativenauswahl zur bestmöglichen Zielerreichung.

1.2.1 Zielformulierung und Zielhierarchie

Im Rahmen des Prozess der Zielfindung und -definition wurde eine Zielhierarchie für die Projektzielsetzung "Entwicklung eines CFK Raketenmotors" für den Flugkörper des Luftverteidigungssystems "Vulcano" erarbeitet. Es wurde dazu eine Klassifizierung in Ergebnis- und Vorgehensziele gewählt und die dafür zu erreichenden Zwischenergebnisse erarbeitet.

Die Struktur der Ergebnisziele im vorliegenden Projekt ist das Ergebnis der allgemeinen Anforderungen und Phasen eines Entwicklungsprozesses. Die verwendeten Vorgehensziele wiederum basieren weitgehend auf den Vorgaben des Kundenvertrages mit dem Systemhersteller, im Besonderen natürlich die Terminziele. Die Kostenziele haben ihren Ursprung in der Machbarkeitsanalyse der Vorprojektphase. Die Projektabwicklungsziele entsprechen überwiegend Realisierungsnebenbedingungen, die Aufgrund firmeninterner (Prozesse und Verfahren) als auch externer Vorgaben (Spezifikationen, Normen und Gesetze) bestehen.

Geprägt ist die vorliegende Zielhierarchie durch die zentralen Meilensteine im Projektablauf. Dies bedingte ein Top-down Verfahren bei der Zieldefinition. Die Detaillierung der Ziele und die Stufen wurden so gewählt, dass die Arbeitsgruppen ihre zentrale Leistung erkennen können und anhand der Vorgehensziele die wichtigsten Rahmenbedingungen kennen. Der Abschluss der Phasen Entwicklung und Verifikation erfordert eine zentrale Leistung.

Sollte eine Verwirklichung dieser nicht möglich sein, ist der Projekterfolg nicht mehr verwirklichbar. Diese Zwischenergebnisse sind somit auch definitive Muss-Ziele. Die Bewertung der Zielerfüllung erfolgt für alle technischen Ziele aufgrund der Leistungsspezifikation "Flugkörpersystem Vulcano" und den daraus resultierenden Raketenmotoranforderungen für die Qualifikation.

= Muss-Ziel

	Ziel klassen	Zielunter- klassen	Ziele	Unterziele	Kriterien	Ausmaß
1	Ergebnisziele	Technische Ziele	Konzeption des Motors durchgeführt	Strukturproben erstellt und geprüft	Labortest bestanden	Gemäß Spezifikation
2				Treibsatzzusammensetzung festgelegt und Prüfungen durchgeführt	Labortest bestanden	Gemäß Spezifikation
3			Entwicklung des Gesamtsystems Motor durchgeführt	Designdokumentation vorhanden	Vorläufiges TDP erstellt	
4				Test der Motorprototypen durchgeführt	Berstdruck Biegefestigkeit Abbrand- eigenschaften	Gemäß Spezifikation
5				Freigabe der Verifikationsphase erhalten	Bestandenes CDR	CDR Protokoll vom Kunden unterschrieben
6			Verifikation abgeschlossen	Testreihe zur Verifikation erfolgreich	Anforderungen Pflichtenheft erfüllt	
7				Finales-TDP steht zur Verfügung	Zeichnungssatz eingefroren	
8		Leistungsziele	Raketenmotoren aufgebaut	Vorserienmuster vorhanden	Fertigung abgeschlossen	13ea.
9			Abnahmetests erfolgreich	3 Tests gemäß Testspezifikation bestanden	Testprotokoll genehmigt	-
10			Lieferung Raketenmotoren	Auslieferung 10ea. Motoren	Abnahmeprotokoll unterschrieben	Ohne Einschränkungen
11		Nicht-Ziele	Keine Qualifikation des Raketenmotors			
12	Vorgehens- ziele	Kostenziele	Gesamtbudget eingehalten	Budgetgrenze Phase 1 eingehalten	Anteil vom Gesamtbudget	Max. 20% kum.
13				Budgetgrenze Phase 2 eingehalten	Anteil vom Gesamtbudget	Max. 50% kum.

	Ziel klassen	Zielunter- klassen	Ziele	Unterziele	Kriterien	Ausmaß
14				Budgetgrenze Phase 3 eingehalten	Anteil vom Gesamtbudget	Max. 90% kum.
15				Budgetgrenze Phase 4 eingehalten	Anteil vom Gesamtbudget	Max. 100% kum.
16		Terminziele	Termin Phasenabschluss eingehalten	PDR Termin bestanden	Protokoll x+7m	Protokoll ohne Mängel
17				CDR Termin bestanden	Protokoll x+14,5m	Protokoll ohne Mängel
18				Abnahme Design Nachweis zeitgerecht erfolgt	Protokoll x+19,5m	Protokoll ohne Mängel
19				Termingetreue Auslieferung der Qualifikationsmuster	Protokoll x+24m	Abnahmeprotokoll unterzeichnet
20			Liefergenehmigungen fristgerecht vorhanden	AWG/KWKG Freigabe erhalten	Amtliche Genehmigung	
21				ITAR Freigabedokument vorliegend	Dokument	Erhalten
22				Transportgenehmigungen erhalten	Dokument	Erhalten und in Spedition verfügbar
23			Lieferantenmanagement rechtzeitig durchgeführt	Rohstoffe Preise erhalten	X+1w	
24				Bestellungen Rohstoffe platziert	X+3w	
25				Zulieferungen der Rohstoffe erhalten	X+8w	
26		Projektabwicklung	Qualitätssicherung Maßnahmen durchgeführt3	Einhaltung der AQAP Kriterien	Kriterienkatalog	
27				EN ISO9001 umgesetzt	Kriterienkatalog	
28				QM Anweisungen beachtet	Checkliste	Vollständig abgearbeitet
29			Konfigurationsmanagement durchgeführt	Rechtzeitige Einbindung und Etablierung eines KonfiManagementsystems	X+14,5m	
30			Interne Prozesse Projektmanagement etabliert	Dokumentation und Reportingsystem ist nutzbar	Handbuch Datenbank	nutzbar

	Ziel klassen	Zielunter- klassen	Ziele	Unterziele	Kriterien	Ausmaß
31			Als Unterauftragnehmer qualifiziert	UA Audit bestanden	Zertifizierung durch QM ADS AG	
32			Reporting und Berichtssystem	Berichtswesen gemäß Kundenanforderungen vorhanden	siehe Vertrag	
33			Einbindung des Beschaffungssystems des Endnutzers	ständige Kommunikation mit BWB & TSK Vertreter	Mindestens 1x/M	

Abbildung 2 - Zieltabelle

Abbildung 3 - Zielhierarchie

1.2.2 Zielbeziehungen

Das herrschende Umfeld des Projektauftrages erlaubt im Rahmen des "magischen Dreiecks" eine Zielpriorisierung der Kosten zu Lasten der zu erbringenden Leistung und Termine. Es ist möglich eine Reduzierung bzw. Anpassung der Spezifikation in gegenseitigem Einvernehmen mit dem Kunden und dem Nutzer ("Ziel-Korrektur-Sitzungen") zu erhalten, bzw. bei gleichbleibender Spezifikation ein erweitertes Zeitfenster zur Leistungserbringung zu erhalten. Strikt einzuhalten sind jedoch die Budgetvorgaben, da eine Mittelaufstockung nur durch Haushaltsanpassungen des Nutzers möglich ist. Diese sind jedoch an umfangreiche parlamentarische Prozesse gebunden.

Beispielhaft für die Gesamtsituation sind im Folgenden drei Zielbeziehungen dargestellt.

Zielbeziehung Nr 1:

Einhaltung der AQAP Kriterien (Z 28) vs. Qualitätssicherung Maßnahmen durchgeführt (Z26) vs. UA Qualifizierung bestanden (Z31)

Zwischen diesen Zielen besteht eine <u>Zielkomplementarität</u>. Das Erreichen einer Zertifizierung des bestehenden Qualitätsmanagementsystems durch Einhaltung der AQAP (Allied Quality Assurance Publications) Qualitätsstandards ist sowohl ein Unterziel für das Ziel die Qualitätssicherung im Projekt zu garantieren, als auch das Ziel die Qualifizierung durch den Kunden als Unterauftragnehmer zu erhalten. AQAP Kriterien sind Q-Normen der NATO und für alle militärischen Aufträge zu erfüllen und sind somit eine Vorgabe im Beschaffungsprozess des Nutzers. Es besteht hier eine Zielmittelbeziehung durch Über-/Unterordnung, da die Erfüllung der Standards das Ziel Qualitätssicherung fördert, aber nicht alleiniger Einflusfaktor ist. Zur Qualitätssicherung ist nämlich ebenso die Einhaltung der EN ISO 9001 nötig.

Zielbeziehung Nr 2:

Strukturproben erstellt und geprüft (Z 1) vs. Budgetgrenze Phase 1 eingehalten (Z 12)

Diese zweite Zielbeziehung ist gekennzeichnet durch eine <u>Zielkonkurrenz</u>. Sie entsteht durch das klassische Spannungsverhältnis zwischen Leistungserbringung und Budgetvorgabe. Das Budget, abgebildet durch das Kostenziel Phase 1 erlaubt nur eine deutlich reduzierte Designphase und anschliessende Testphase der Strukturproben. Wäre das Budget höher, könnten mehr Strukturproben erstellt werden und die Chance erhöht werden, die technische beste Lösung zu erhalten. Eine Überschreitung des Phasenbudgets hätte jedoch negative Konsequenzen auf die Budgetgrenzen der Folgephasen und insgesamt das Gesamtbudget. Das Spannungsverhältnis könnte nur durch die Einbringung von Eigenmitteln gelöst werden.

Zielbeziehung Nr 3:

AWG/KWKG Freigabe erhalten (Z 20) vs. ITAR Freigabedokument vorliegend (Z 21)

Die Zielbeziehung zwischen diesen beiden Unterzielen des Ziels "Liefergenehmigungen fristgerecht" ist eine <u>Zielneutralität</u>. Dies ist dadurch bedingt, dass die Freigabe in verschiedenen Ländern, bzw. Rechtssystemen erfolgt. Die Verweigerung einer Freigabe nach AWG (Außenwirtschaftsgesetz)/KWKG (Kriegswaffenkontrollgesetz) hat keinen Einfluss auf die ITAR Freigabe und umgekehrt. Beide Unterziele haben im weitesten Sinne eine

Exportrelevanz. Das AWG beleuchtet den Sachverhalt allerdings nach den deutschen Exportrichtlinien und im Projektfall bezogen auf die Kriegswaffenrichtlinien des KWKG. Die ITAR Freigabe (International Traffic in Arms Regulations) ist jedoch eine Genehmigung der amerikanischen Behörden, nötig bei Verwendung amerikanischer militärischer Komponenten. Deren Entscheidung erfolgt nach anderen Kriterien. Eine AWG/KWKG Freigabe hat keinen Einfluss auf die amerikanische Entscheidung.

2. Projektumfeld, Stakeholder

2.1. Projektumfeld, Umfeldfaktoren

Das Projektumfeld des Entwicklungsprojektes Vulcano wurde analysiert und in den folgenden Abbildungen und Tabellen dargestellt. Die für das Projekt wichtigen Umfeldfaktoren und Schnittstellen sind in Abbildung 6 zusammengefasst, bewertet und kommentiert.

Abbildung 4 - Projektumfeld

Intern=außerhalb Projekt, innerhalb Organisation Extern=außerhalb Projekt, außerhalb Organisation

	Sachlich	Sozial
Intern	Betriebsvereinbarungen Umsatzerwartungen Ressourcen	Geschäftsführung Leiter der Fachabteilungen Mitarbeiter Entwicklung Betriebsrat
Extern	KWKG AWG Geheimschutz Vulcano Entwicklungsvertrag	Kunde ADS Nutzer Luftwaffe BWB Lieferanten Rüstungsgegner

Abbildung 5 - Matrix Umfeldfaktoren

2.1.2 Beschreibung des sachlichen Umfeldes und der Schnittstellen

Sachlich intern	Beschreibung und Schnittstellen
Betriebsvereinbarungen	Der Einsatz von Personalressourcen im Projekt unterliegt unter anderem den zwischen der Geschäftsführung DRM und dem Betriebsrat DRM vereinbarten und in Kraft gesetzten Betriebsvereinbarungen. So existieren beispielsweise Regelungen zu Mehrarbeit, zu Fragen der Arbeitssicherheit (z. B. Umgang mit Explosivstoffen), Qualifizierung von Personal für bestimmte Tätigkeiten etc. Die Linienvorgesetzten der Projektmitarbeiter und der Projektleiter sind für die Einhaltung der Vereinbarungen verantwortlich. Bei strittigen Fragen muss der Betriebsrat eingebunden werden. Schnittstelle: Projektleitung zum Betriebsrat und Personalabteilung. PL und die zuständigen Betriebsratsvertreter pflegen ein gutes Verhältnis untereinander und arbeiten sehr gut zusammen.
Gewinnerwartungen	Die Geschäftsführung DRM knüpft Gewinnerwartungen an das Projekt, die vom Projektteam zu erfüllen sind. Hauptverantwortlich für das Erreichen der Gewinnziele ist der PL. Die Zielerreichung soll durch ein effizientes Controlling und einer kostenbewussten Entwicklung (Design to Cost) sichergestellt werden Schnittstelle: PL zu Controlling, Fachabteilungen.
Ressourcen	Die für das Projekt Vulcano benötigten Ressourcen Personal, Laborkapazitäten und Versuchseinrichtungen werden in Abstimmung mit der Entwicklungsleitung und den zuständigen Fachabteilungen dem Projekt zugeteilt. Die Abstimmung mit den genannten Stellen erfolgt auf der Basis einer vom Projekt erarbeiteten detaillierten Ressourcenplanung. Da während der Laufzeit des Projektes Vulcano keine Projekte mit hohem Ressourcenbedarf parallel laufen, können die geplanten Ressourcen dem Projekt zur Verfügung gestellt werden Schnittstelle: PL zu Entwicklungsleitung und Fachabteilungsleitern
Sachlich extern	Beschreibung und Schnittstellen
KWKG, AWG	Der im Projekt entwickelte Raketenmotor ist ein wehrtechnisches Produkt und unterliegt den Vorschriften des Kriegswaffenkontrollgesetzes (KWKG) und des Außenwirtschaftsgesetzes (AWG). Das Projekt hat keine Einfluss-oder Steuerungsmöglichkeiten, da die Gesetze zwingend einzuhalten sind. Schnittstelle: PL u. Abteilung Exportkontrolle zu Bundeswirtschaftsministerium.
Geheimschutz	Teile des technischen Datenpakets des entwickelten Raketenmotors unterliegen dem Geheimschutz. Die einschlägigen Bestimmungen sind zwingend einzuhalten und der Zugang zu den eingestuften Dokumenten des TDP ist zu kontrollieren und zu protokollieren. Dies geschieht in enger Zusammenarbeit mit der Sicherheitsabteilung der Firma DRM. Da detaillierte Handbücher zur Handhabung von Verschlusssachen existieren und jeder Mitarbeiter im Umgang mit Verschlusssachen geschult ist, gehört der Umgang mit Verschlusssachen zu den Standardprozessen innerhalb der Firma DRM und erfordert keine besonderen Maßnahmen zur Etablierung geeigneter Prozesse. Schnittstelle: PL und Projektmitarbeiter über Sicherheitsabteilung zu BWB und Bundeswirtschaftsministerium

Entwicklungsvertrag

Der Entwicklungsvertrag zwischen den Firmen ADS und DRM regelt den Leistungsumfang, die Anforderungen an das zu entwickelnde Produkt und die kommerziellen und rechtlichen Bedingungen. Damit ist dem Projekt der Rahmen, innerhalb dessen eine Einflussnahme auf Projektverlauf und Projektergebnis möglich ist, vorgegeben. Der Projektleiter ist für die vertragskonforme Abwicklung des Projektes verantwortlich, von der GF wird aber ebenfalls erwartet, das die sich bietenden Spielräume ausgeschöpft werden und das Projektergebnis im Sinne der Firma DRM optimiert wird.

Schnittstelle: PL der Fa. DRM zu PL der Fa. ADS. Bei strittigen Fragen ist vom PL der Vertrieb und die Rechtsabteilung der DRM einzubinden

Abbildung 6 - Schnittstellenbeschreibung

2.2. Stakeholder (Interested Parties)

Die Umfeldanalyse des letzten Kapitels erlaubt eine systematische Einbeziehung dieser Erkenntnisse. Es ist dadurch die Möglichkeit gegeben, frühzeitig eventuell negative Einflüsse und potentielle Konflikte im Projektablauf zu berücksichtigen, aber auch Chancen zur Sicherstellung des Projekterfolges zu erkennen. Dieses Umfeldmanagement wird im Rahmen des Stakeholder-Managements durchgeführt und ist unabdingbar für ein exzellentes Projektmanagement.

Stakeholder oder Interessierte Parteien sind Personen oder Personengruppen, welche Umfeldfaktoren widerspiegeln. Eine Unterscheidung findet dabei statt, indem zwischen Projektbeteiligten, am Projektergebnis interessierten und durch das Bestehen des Projektes Betroffenen unterschieden wird. Stakeholder sind zumeist nach Projektende auch Nutzer des Projektergebnisses oder von diesem betroffen. Das Spektrum ihres Verhältnisses zum Projekt umfasst dabei die Spanne vom Projektgegner (Opponent) bis zum Projektförderer (Promotor).

Im Projektmanagement wird systematisches Stakeholder-Management durch kontinuierliches Abarbeiten folgender Stufen durchgeführt: Identifikation – Information & Analyse – Aktionsplanung – Monitoring.

Die Identifikation der Stakeholder erfolgte in einem Kernteam Workshop und basiert hauptsächlich auf Erfahrungen von früheren ähnlichen Projekten, da die Grundkonstellation Kunde **Systemhaus** und Nutzer Militär Bestandteil fast Ergebnisse DRM Projekte ist. Die der Information Analyse, sowie und die Aktionsplanung wurden in der folgenden Tabelle dargestellt.

Nr	Wer? (Individium/Gruppe)	Wodurch betroffen? Positiv [P]: Negativ [N]:	Betroffen heit	Woran interessiert? Wünsche [W]: Forderungen [F]:	Macht (hoch/mittel/gering) Einflussmöglichkeit	Befürworter - Kritiker (+3 bis -3) Erwünschtes Verhalten	Strategie? Maßnahmen?
1	Projektleiter	P: Projektauftrag N: Erfolgserwartung	3	F: Projekterfolg	Hoch Durchführung Projektmanagement	3+ Umsetzung des Projektauftrages	
2	Projektmitarbeiter	P: Projektauftrag N: Erfolgserwartung	3	W: Projekterfolg und effiziente Abwicklung	Hoch Durchführung der Arbeitspakete, TKL Kompetenz	3+ Motivierte Abarbeitung	Motivation PM-Organisation Transparenz
3	Fertigung	P: Erstellung der 10ea. Raketenmotoren, Zukunft Serienfertigung	2	W: Auslastung W: Klare Vorgaben, Planungssicherheit, F: Budget ausreichend	Gering Qualität der Lieferung Selbstkosten	2+ Effiziente Fertigung Bzgl.T&K	Einbindung Planung Projektbesprechungen
4	Leiter Entwicklung Dr. S. Wolf	P: Prestigegewinn N: Neues Design	2	W: Erfolgreiche Entwicklung	Hoch Machtpromotor	3+ Unterstützung bei CoC Leiter	Einbindung Planung Konsultation 1x/Monat
5	Leiter CoC Strukturmechanik Hr. Nudell	P: Know-How Gewinn N: Ressourcenproblematik	3	W: Erfolgreiches Design F: Ausreichendes Budget, Innovationsfreiheit	Hoch Designkomplexität	1+ Erfolgreiche Umsetzung des Arbeitspaketes	Motivation und vollständige Einbindung Besprechung 1x/w
6	Leiter Business Unit Munition Hr. Paul	P: Firmenprestige N: Ressourcenverteilung Entwicklung	1	W: Geringstmögliche Betroffenheit durch Projektabwicklung	Gering Einfluss auf Entwicklungsleiter	Neutral	Informelle Informationen über Projektfortschritt
7	Qualitätsmanagement	N: Hohe Qualitäts- anforderungen Lastenheft, strenge Sicherheitsnormen	2	F: Erfüllung Normen und Standards	Mittel Blockade Design und Abwicklung	Neutral	Einbindung Lastenheft Rechtzeitige Konsultation bei Entscheidungen
8	Leiter Versuchstechnik Hr. Müller	P: Auslastung durch das Projekt N: Ressourcenkonflikt	2	F: Rechtzeitige Kapazitätsplanung	Mittel Projekte Priorisierung	2+ Bevorzugung unseres Projektes	Regelmäßige Abstimmung Kapazitätsplanung und Berücksichtigung Wünsche
9	Geschäftsführung	P: Chance AE Serienfertigung, innovatives Neues Produkt N: Risiko Neudesign	3	W: Erfolgreiches Projekt, Zufriedener Kunde	Hoch Ressourcenverteilung	2+ Unterstützung bei Ressourcenengpass	Einbindung & Transparenz Reporting
10	Einkauf	P: Projekterfolg N: Materialkosten, neue Rohstoffe	1	W: Rechtzeitige und exakte Anforderung Rohstoffe und Zukaufteile bei Supply Chain	Mittel Kosten Zukaufteile	1+ Zeitgerechte und kostengünstigste Lösung	Abstimmung der Liefertermine, direkter Kontakt zu SC-Manager herstellen
11	Lieferanten	P: Umsatz (Jetzt/Zukunft) N: Geringes Anfangsvolumen, kurze Lieferzeit	2	W: Hohe Gewinnmarge W: Langfristige Auftragserwartung – Key Supplier	Gering (Second-Source vorhanden) Lieferverzögerung	1+ Rechtzeitige Lieferung Qualität und Lasten erfüllt	Langfristige Bindung Detaillierte Spezifikation
12	Kunde ADS (Grp)	P: Technologisches fortschrittlichster Raketenmotor am Markt N: Funktionsfähigkeit	3	W: Leistungsplus gegenüber Spezifikation F: Lieferung gemäß Vertrag innerhalb der geforderten Zeit.	Hoch Vertragskündigung	3+ Flexibilität bei der Vertragsauslegung	Einbindung Reviewplan erstellen Claim Management vorbereiten

Nr	Wer? (Individium/Gruppe)	Wodurch betroffen? Positiv [P]: Negativ [N]:	Betroffen heit	Woran interessiert? Wünsche [W]: Forderungen [F]:	Macht (hoch/mittel/gering) Einflussmöglichkeit	Befürworter - Kritiker (+3 bis -3) Erwünschtes Verhalten	Strategie? Maßnahmen?
13	Kunde ADS PL Hr. Nobel	P: Erfolgreiches Gesamtprojekt N: Komplexes Gesamtsystem	3	W: Problemlose, möglichst unaufwändige Zusammenarbeit F: Zulieferung im Zeitplan	Hoch Feedback auf GL Ebene	1+ Akzeptanz des Designs	"Beruhigen" Kommunikationsplan nach seinen Wünschen abstimmen
14	BWB (Grp)	P: Abwicklung erfolgreiches Großprojekt N: Entwicklungsrisiko Budget Bundeshaushalt	2	W: Reibungsloses Projektmanagement F: Verfahren CPM, Preisrecht einhalten,	Hoch Beendigung d.Gesamtprojekt, Ausschluss aus Projekt	2+ Promotor beim Kunden	Informationsloop Informelle Gespräche
15	BWB PL Herr Mauch	P: Abwicklung erfolgreiches Großprojekt N: Komplexes Gesamtsystem, Ansprüche Nutzer weitreichender	3	W: Gesamtprojekt im Budget F: Berücksichtigung aller Normen und Standards	Gering Empfehlung	2+ Promotor beim Kunden Akzeptanz Design	Enger Kontakt Einheitliche Sicht der Spezifikation herstellen
16	Nutzer Luftwaffe (Grp)	P: Modernstes LV-System mit Hochleistungsrakete N: Begrenzter Haushalt	3	W: Schließung Fähigkeitslücke W: Technologisch fortschrittlichste Lösung F: After-Sales Kosten möglichst gering (Wartungsaufwand)	Mittel Spezifikations-interpretaion	2+ Promotor beim Kunden für unsere Lösung	Informationsloop Informelle Gespräche
17	Leiter Geheimschutz Herr Sigfried	N: Neue Technologien sind spionagegefährdet	1	W: Sicherstellung Nationales Sicherheitsinteresse F: Hohe Standards bzgl. Geheimschutz	Hoch Strenge Vorgaben mit erhöhten Aufwänden	Neutral Klare Vorgaben für Projektmanagement	Aufwand begrenzen Absprache Projektablauf
18	Wettbewerber (Grp) MSH	N: Verlust Auftragseingang und langfristig Marktanteil	3	W: Stellung als Second-Source einnhemen	Gering PR Arbeit	2- Keine Störungen oder negative Public Relations	Offensives Kommunikations- modell, PR Arbeit
	MSH Business Development Hr. Reich	N: Verlust des Auftrags	2	W: Scheitern unseres Design	Gering Lobbying beim Kunden und Amsträgern	3- Keine Störungen oder Einflußnahme auf Entscheidungsträger	Demotiviation, Eigenen positiven Projektfortschritt ständig streuen
20	Initiative (Grp) Waffen am Bodensee	N: Rüstungsproduktion	3	W: Keine Herstellung von militärisch verwendbaren Raketenmotoren	Gering Lobbyarbeit über öffentliche Medien	3- Keine Störungen des Gesamtprojektes	Offenes transparentes Kommunikationsmodell PR einbinden
21	GPS d. Bw Prüfer Hr. Nau	P: Arbeitsvolumen N: Verantwortung Abnahme	1	W. Klar prüfbare Vorgaben von BWB F. Erfüllung der Prüfvorgaben	Hoch Verweigerung der Abnahme	Neutral Keine strengen Auflagen und reibungslose Prüfung	Informationsloop Einbeziehung ab Phase 2 und gute Vorbereitung Abnahme
22	TSK Marine (Grp)	N: Budgetmittel für Projekt Adler nicht verfügbar	3	W: Programmabruch Vulcano W: Reallokation der Mittel	Gering Lobbying Amtsintern	2- Keine Störung der Entwicklungsphase	Überzeugung Aufzeigen Nutzen Raketenmotor für eigene Projekte

Abbildung 7- Stakeholderanalyse

In den folgenden beiden Abbildungen wurde eine graphische Analyse des Stakeholder Portfolios bezüglich Betroffenheit, Macht und Einstellung zum Projekt vorgenommen. Zusammengefasst ist für das Projekt dadurch die folgende Situationsanalyse möglich: Es gibt eine große Gruppe von Stakeholdern mit einer hohen Betroffenheit (ca. 1/4 der betrachteten Stakeholder). Dies ist jedoch nicht kritisch, da die Anzahl der Promotoren deutlich überwiegt und diese Befürworter einen hohen Einfluss auf das Projekt ausüben können. Die Maßnahmenplanung zielt deshalb darauf ab, diese positive Grundsituation abzusichern und die Promotoren zufriedenzustellen. Ein kritischer Stakeholder der besondere Aufmerksamkeit erfordert wurde nicht identifiziert. Das Monitoring soll im Rahmen der monatlichen Teambesprechungen rollierend stattfinden.

Abbildung 8 - Stakeholderportfolio

Risiken und Chancen

Zum erfolgreichen Abschluss eines Projektes gehört neben der Berücksichtigung der berechenbaren Einflüsse, z.B. von Seiten der Stakeholder, auch die Berücksichtigung von ungeplanten Ereignissen. Diese können sowohl einen positiven (Chance), als auch einen negativen (Risiko) Einfluss auf den gedachten Ablauf des Projektes und somit auf den gesamten Projekterfolg haben. Diese Berücksichtigung ist durch ein systematisches, strukturiertes und kontinuierliches Risiko-/Chancenmanagement in einem dynamischen Prozess sicherzustellen.

Basierend auf den Betrachtungen "Chancen & Risiken" während der Vorphase und Machbarkeitsprüfung soll im Folgenden ein systematisches Risikomanagement für das Projekt durch die Einhaltung folgender Vorgehensweise verwirklicht werden:

- (1) Chancen-/Risikoidentifikation
- (2) Chancen-/Risikobewertung
- (3) Maßnahmenplanung
- (4) Neubewertung nach Maßnahme
- (5) Entscheidung über Maßnahmendurchführung
- (6) Einplanung Durchführung Überwachung der Maßnahme

3.1. Erfassung, Klassifizierung und Beschreibung der Risiken

Im Rahmen eines Expertengespräches (3 frühere, 1 aktueller Projektleiter aus dem Bereich Raketenmotoren und der Fertigungsleiter) wurden die Risiken unter Einbeziehung der aus der Vorphase existierenden Mind Map, der Erkenntnisse der erarbeiteten Zielhierarchie sowie der Stakeholderanalyse ergänzt und klassifiziert.

Die folgende Tabelle gibt verschiedene Risikoarten wieder. Die Auswahl aus dem Gesamtportfolio erfolgte nicht hierarchisch nach dem Kriterium des höchsten Risikos, sondern soll einen Auszug aus allen Risikoarten darzustellen:

Nr	Risiko	Risikoart	Ursache	Folge
R1	Rohstoffpreise steigen überproportional (>30%)	kaufmännisch	Der Treibsatz und einige Komponenten des Raketenmotors benötigen seltene Rohstoffe. Die Weltmarktpreise sind deshalb krisenanfällig und können explodieren".	Die Weltmarktpreise können über eine Schätzungenauigkeit weit hinausgehen. Nicht tragbare Mehrkosten entstehen.
R2	Motorleistung nicht gemäß Spezifikation	technisch kaufmännisch	Das eingefrorene Design erbringt bei den Tests nicht die prognostizierte Motorleistung wie in der Spezifikation gefordert.	Eine Nichterfüllung der Spezifikation kann bei gravierender Abweichung zum Vertragsende führen. Angenommen wird hier jedoch nur eine marginale Abweichung, die durch Nacharbeit ausgeglichen wird, und somit nur zu einer verspäteten Zahlung d. Meilenstein führt.
R3	Verspätung der Motorenlieferung an den Kunden - Vertragsstrafe	kaufmännisch	Aufgrund von Verzögerungen im Projektablauf oder fehlenden Genehmigungen erfolgt keine fristgerechte Auslieferung. (PSP P.09-4.6)	Die verspätete Auslieferung der Motoren (wichtige Komponente des Gesamtsystems) ist mit einer Konventionalstrafe (Formel/Tag) im Vertrag belegt.

R4	Lieferverzug beim Zulieferer für Anzünder	terminlich	Anzünder werden nur auf Bestellung gefertigt, keine Lagerhaltung beim Lieferanten. Anspruchsvoller Fertigungsprozess kann zu Verzug beim Liefertermin führen.	Verzögerung bzw. Ersatzbeschaffung notwendig.
R5	Haushaltskürzungen beim Nutzer	politisch	Der Nutzer Luftwaffe kann im Laufe des Projekts eine Haushaltskürzung auferlegt bekommen.	Dadurch ist er gezwungen das Projekt zeitlich zu strecken. Der Kunde kann dies an uns "durchreichen", und wir haben Mehrkosten/Auslastungsprobleme.
R6	PSP P09-2.4.4 Testeinrichtung WTD Abbrandtests nicht nutzbar	terminlich	Für die Abbrandtests muss auf die Infrastruktur des öAG zurückgegriffen werden. Die Einrichtungen der Wehrtechnischen Dienststellen können durch den öAG selbst belegt oder die Teststände defekt sein.	Die Abbrandtests sind Bedingung für die Endfertigung. Folge wäre ein Projektstillstand.
R7	Negative Schlagzeilen - "Vulcano" als Angriffswaffe	politisch sozial	Aufgrund fehlender Fachkenntnis kann das Gesamtprojekt von Rüstungsgegner als Angriffswaffe missverstanden wird.	Folge ist ein negatives Firmenimage.
R8	Parallelprojekt "Future Missile Defence" (Projektleiter Schmid) wird beauftragt	kapazitiv	Das sich im Moment in der Angebotsphase befindliche Parallelprojekt wird schneller als geplant beauftragt. Das Parallel- Projekt hätte eine doppelt so hohe Wertschöpfung.	Verschiebungen der Ressourcen im Unternehmen.
R9	CFK Raketenmotor ist ein Technologiesprung	technisch	Neuentwicklung in Verbindung mit fehlenden Daten und Erfahrungswerten führt zu unvorhersehbaren technischen Ergebnissen.	Diese Probleme führen zum Mehrbedarf an Mitteln/ Ressourcen.
R10	UA-Audit wird nicht bestanden	prozessual	Mangelhafte Einhaltung der Prozesse und Regelungen durch das Personal.	Wir bestehen das Audit des Kunden nicht und werden nicht als Zulieferer für das Gesamtsystem qualifiziert.

Abbildung 9 - Risiken Klassifizierung

3.2. Quantitative Bewertung der Risiken und Maßnahmen zur Risikobegegnung

Die folgende Tabelle gibt den Status nach Durchführung der Phase 5 - "Entscheidung über Maßnahmendurchführung" wieder, beinhaltet somit aber auch den Prozess von Phase 2-5. Exemplarisch soll der Prozess der Bewertung, Maßnahmenplanung und Neubewertung anhand der obigen Risiken, welche aus dem Risikoportfolio als zu bearbeitende Risiken identifiziert wurden, gezeigt werden.

Die Maßnahmenplanung wurde bevorzugt im Hinblick auf Minimierung der Kostenauswirkungen und terminlichen Risiken durchgeführt, da technische Risiken eher abgefangen werden können und die Problemfelder und somit auch mögliche Maßnahmen (Kernkompetenz der Firma) aus der Erfahrung bekannt sind.

Der Punkt 6 - "Durchführung und Überwachung der Maßnahmen", sowie ein Zyklusneubeginn wird durch ein monatliches Risikomanagementmeeting sichergestellt.

sindəp13	nichť o.k	¥	nichť o.k	¥	¥	¥	¥	¥	¥	nicht ok	
Verantwortlich	×	70.500 € Dr. Rauscher	×	Junginger	Junginger	16.000 € Dr. Madlener	37.500 € Dr. Madlener	41,000 € Dr. Rauscher	14.000 € Dr. Rauscher	×	
Effektivität der Risiko- prävention	-5.000€	70.500€	-4.000€	10.000€	37.000€	16.000€	37.500€	41.000 €	14.000€	-8.500€	208.500 €
Schadens-Kennzahl (Erwartungs-wert) in Euro nach Prävention		31.500 €	1.000 €	9 000.9	24.000 €		17.500 €		8.000€	14.500 €	102.500 €
Eintritts-wahrscheinlichkeit nach Prävention	10%	2%	10%	20%	30%	30%	2%	40%	10%	2%	
Schaden (Arbeit und Material) nach Prävention	9 0 €	630.000 €	9 0	30.000 €	80.000 €	€ 0	350.000 €	90	80.000 €	290.000 €	1.460.000 €
Rückstellung für Schadens- minderung / -behebung					50.000 €				20.000€		
Kosten der Prävention	15.000 €	24.000 €	8.000€	8.000 €	9 000 €	2.000 €	15.000 €	7.000 €	3.000 €	23.000 €	111.000 €
Geplante Maßnahme	Beschaffung mit Projektstart bzw. Sicherung der aktuellen Preise	monatliche Designüberprüfungen durchführen (5 Personen, 1 Tag, QM,PL,Entwickler für 6 Monate)	Anordnung von Überstunden zur Einhaltung der Lieferfristen	Ersatzbeschaffung bei Second Source zur Sicherstellung Fertigungszeitplan (vorbereiten)	Szenario erstellen für längere Projektlaufzeit Alternativen zur Auslastung des Personals prüfen	Vertragliche Regelung mit Kunde und Nutzer, welche Verzögerung kostenneutral für uns berücksichtigt	Pressekampagne und Informations- veranstaltungen mit dem Kunden initiieren, mit dem Ziel der Aufklärung über Leistungsspektrum "Vulcano"	Zusicherung der Geschäftsleitung über die Möglichkeit bei Kapazitätsengpässen auf externe Mitarbeiter zurückgreifen zu dürfen und dieses Szenario auszuplanen	(a) Erfahrungssicherung durch Sicherstellen der Einbindung Senior Engineers (präventiv) (b) Einplanung einer Entwicklungsinteration	Überprüfung interner Prozesse durch QM und anschliessende Prozessanpassung und Schulung.	
Strategie	Vermeiden (präventiv)	Verringern (präventiv)	Mindern (korrektiv)	Mindern (korrektiv)	Selbst tragen (korrektiv)	Überwälzen (präventiv)	Verringern (präventiv)	Mindern (korrektiv)	Verringern (präventiv) + Mindern (korrektiv)	Verringern (präventiv)	
Schadenskennzahl (Erwarlungs-wert) in Euro vor Prävention	10.000 €	126.000 €	5.000 €	24.000 €	117.000 €	18.000 €	70.000 €	48.000 €	45.000 €	29.000 €	492.000 €
Eintrittswahrscheinlichkeit in % ni	10%	20%	10%	20%	30%	30%	20%	40%	30%	10%	
Cchaden (Arbeit und Material) Onu3 ni	100.000€	630.000 €	50.000€	120.000€	390.000€	900.09€	350.000€	120.000€	150.000€	290.000€	2.260.000 €
NF, Storung (Risiko)	Rohstoffpreise steigen überproportional (>30%)	Motorleistung nicht gemäß Spezifkation (Zahlungsmeilensteine werden nicht erreicht)	Verspätung von Motorlieferungen (Vertragsstrafe)	Lieferverzug Zulieferer Anzünder	Haushaltskürzungen beim Nutzer	PSP P09-2.4.4 Testeinrichtung WTD Abbrandtests nicht nutzbar	Negative Schlagzeilen - "Vulcano" als Angriffswaffe	Parallelprojekt "Future Missile Defence" (Projektleiter Schmid) wird beauffragt	CFK Raketenmotor ist ein Technologiesprung	10 UA-Audit wird nicht bestanden	SUMME
										10	

Abbildung 10 - Risikoanalyse, quantitativ

4. Projektorganisation

Das folgende Organigramm Abbildung 11 zeigt die Gesamtorganisation der Dübel Rocket Motors GmbH (DRM). Die Gesamtorganisation ist eine Matrixorganisation und ist im DRM-internen Handbuch des Projektmanagements beschrieben.

Abbildung 11 - Organigramm Dübel Rocket Motors GmbH (DRM)

Die einzelnen Projekte sind organisatorisch zu Produktabteilungen mit spezifischen Produktausprägungen zusammengefasst, "Business Units" genannt.

Auch das Projekt "Vulcano" wird in einer Matrix-Projektorganisation durchgeführt. Es gehört zur Business Unit Raketenantriebe. Die nachfolgende Abbildung 12 zeigt die Projektorganisation für das Projekt "Vulcano".

Der Lenkungsausschuss besteht aus drei Mitgliedern, dem Geschäftsführer des externen Auftraggebers Advanced Defence Systems AG (ADS), dem Geschäftsführer unserer Firma Dübel Rocket Motors GmbH (Interner Auftraggeber) sowie einem Vertreter des Endkunden (BWB). Der Lenkungsausschuss ist das übergeordnete Entscheidungsgremium und berät und entscheidet über wichtige Projektthemen wie zum Beispiel Terminverzüge Budgetüberschreitungen ab einem bestimmten Schwellenwert, Verzug bei Zahlungsmeilensteinen oder wichtigen Leistungsabweichungen. Der Projektleiter berichtet in regelmäßigen Abständen über das Projekt und kann über Vorlagen Entscheidungen herbeiführen. Bei dringendem Entscheidungsbedarf kann sich der Projektleiter auch durch eine außerordentliche Vorlage an den Lenkungsausschuss wenden.

Abbildung 12 - Projektorganisation "Vulcano"

Alle Mitglieder der Projektorganisation bleiben ihren Fachabteilungen bzw. Business Units unterstellt. Da es sich um ein Entwicklungsprojekt handelt, gehört der Technische Projektleiter – obwohl nur mit diesem Projekt betraut – weiterhin der Entwicklungsabteilung an. Damit soll der direkte Zugriff auf die Ressourcen der Entwicklungsabteilung und damit ein möglichst reibungsloser Entwicklungsgang gewährleistet werden.

Die nachfolgende Abbildung 13 beschreibt kurz die jeweilige Rolle und die zugehörigen Aufgaben der einzelnen Projektteammitglieder.

Rolle	Aufgaben
Projektleiter	Der Projektleiter bindet je nach Projektanforderung die Unterstützungsfunktionen der DRM ein. Der Projektleiter ist der interne Projekt- Auftragnehmer. Er leitet das Projektleam. Der Projektleiter hat für die Dauer seines Projekts Weisungs- und Entscheidungsbefugnis gegenüber den Mitarbeitern seines Projektleams in allen projektrelevanten Fragen.
	Der Projektleiter berichtet dem Auftraggeber (intern und extern) regelmäßig durch ein vereinbartes Berichtswesen. Der Projektleiter vertritt das Projekt innerhalb der DRM und, in Abstimmung mit dem Leiter der Business Unit, gegenüber dem externen Kunden. Er verhandelt direkt mit den für das Projekt zuständigen Entscheidungsinstanzen, wie z.B. den Linienvorgesetzten der Fachabteilungen bezüglich der Projektressourcen.
Technischer Projektleiter	Der Technische Projektleiter ist für die technische Leistungserbringung verantwortlich. Er stellt die zentrale Schnittstelle zu den Entwicklungsabteilungen dar.
Baugruppenverantwortlicher Struktur	Er ist für die technische und leistungsbezogene Entwicklung der Strukturbaugruppen verantwortlich.
Baugruppenverantwortlicher Treibsatz	Er ist für die technische und leistungsbezogene Entwicklung des Treibsatzes verantwortlich.
Fertigungs- Ingenieur	Er ist sowohl für die Planung, Erstellung, Dokumentation und Freigabe der Fertigungslinie als auch für die Planung der Produktion des Raketenmotors verantwortlich.
Versuchstechnik	Der Versuchsverantwortliche (Mitglied der Entwicklung) ist für die Planung und Durchführung der Versuche verantwortlich.
Projektcontroller	Der Projektcontroller unterstützt den Projektleiter bei betriebswirtschaftlichen Fragestellungen. Er überwacht für den Projektleiter die Kosten- und Ressourcen-Planung, die Restzeit- und Restkosten-Situation. Er ist verantwortlich für die Pflege der Daten in den projektmanagementrelevanten Werkzeugen (SAP und Multi-Projektmanagement-System). In Zusammenarbeit mit dem Projektleiter erstellt und aktualisiert der Projektcontroller die Pläne in den Projektmanagement-Systemen.

Projektplanung und - Steuerung	Er unterstützt den Projektleiter, den technischen Projektleiter und die Baugruppenverantwortlichen im Projekt bei der Steuerung und liefert die internen Analysen und Berichte.
Qualitätsmanager	Er ist für die Qualitätssicherung des Projektes verantwortlich.
Konfigurations- und DataManager	Er ist für Abwicklungen der Änderungsausschusssitzungen verantwortlich und dass alle Dokumente des Technischen Datenpaketes im Dokumentenverwaltungssystem des SAP hinterlegt, klassifiziert und freigeben sind.

Abbildung 13 - Rollen und Aufgaben im Projektteam

4.1. Kommunikation im Projekt

Das Thema Kommunikation ist von zentraler Bedeutung für die erfolgreiche Abwicklung eines Projekts. Das gilt sowohl für die externe als auch für die interne Projektkommunikation. Es sind permanent Entscheidungen zu treffen, Absprachen vorzunehmen und regelmäßige Besprechungen, Audits und Reviews durchzuführen. Der Einfluss von Rückmeldungen ist dabei ebenso zu berücksichtigen wie das Geben von Feedback. Grundsätzlich geschieht Kommunikation überwiegend in mündlicher oder schriftlicher Form, seltener auch durch Handlungen.

4.1.1 Theorie

Unter Kommunikation versteht man in erster Linie die Übertragung und den Austausch von Informationen, wobei mindestens zwei Parteien beteiligt sind, eine sendende und eine empfangende Partei. Dieser als Interaktion bezeichnete Informationsaustausch, Sender übermittelt Information, Empfänger nimmt Information entgegen, wird in der theoretischen Forschung durch verschiedene Kommunikationsmodelle beschrieben. Beispielhaft seien hier zwei Modelle erwähnt, das Sender-Empfänger-Modell nach Shannon und Weaver sowie das Nachrichtenquadrat von Schulz von Thun.

Sender-Empfänger-Modell

Technisch orientiertes Kommunikationsmodell, spezifische Besonderheiten der menschlichen Kommunikation werden jedoch außer Acht gelassen.

Nachrichtenquadrat

Kommunikationsmodell, welches sich in vier Teilaspekte (vier Seiten des Quadrats) gliedert. Neben der Sachinformation werden noch drei andere Aspekte auf der Beziehungsebene übertragen (Beziehung zwischen den Gesprächspartnern, Selbstoffenbarung/Ich-Aussage, Appell).

Generell kann man sagen, dass jede Kommunikation sowohl auf der Sachebene als auch auf der Beziehungsebene stattfindet. Die Inhalte auf der Sachebene werden durch Verwendung von vereinbarten Zeichensystemen vermittelt, man spricht deshalb auch von einer digitalen Kommunikation. Im Gegensatz dazu wird auf der Beziehungsebene das Verhältnis der Kommunikationspartner zueinander betrachtet. Diese sogenannte analoge Kommunikation

erfolgt durch die Deutung des Verhaltens meines Gegenüber, d.h. Gestik, Mimik, Stimme, Raumverhalten.

Die Fähigkeit der Projektmitarbeiter und insbesondere die Projektleitung, Kommunikation effektiv einzusetzen, stellt einen wesentlichen Baustein für den Erfolg eines Projekts dar. Daher sollten sie sich der Komplexität dieses Sachverhalts ständig bewusst sein, sich das eigene Verhalten permanent vergegenwärtigen und reflektieren und so ihre Kommunikations-Kompetenz erhöhen.

4.1.2 Kommunikationsstrategie, Kommunikationsregeln

Die Kommunikationsstrategie beim Projekt "Vulcano" zielt auf den partnerschaftlichen Umgang und die aktive Einbeziehung der Stakeholder in das Projekt ab. Hierbei wird, je nach Zielgruppe, zwischen der reinen Information, der Beteiligung an der Projektarbeit und der Beteiligung an Entscheidungen differenziert.

Grundsätzlich soll die Stakeholderkommunikation frühzeitig, regelmäßig, ehrlich, proaktiv und interaktiv (FREPI-Prinzip) erfolgen. Dabei stellt die Ausrichtung der Projektkommunikation auf den Erhalt von Feedback ein wesentliches Element zur Unterstützung der Projektverfolgung und -steuerung ein.

Innerhalb des Projekts wurde zwischen den beteiligten Mitarbeiter festgelegt, offen und fair miteinander umzugehen und zu kommunizieren. Während des Kick-Off Meetings wurden dabei von der Projektleitung einige Kommunikationsregeln vorgestellt, welche diskutiert und gemeinsam festgelegt wurden, zum Beispiel Informationen nicht zurück zu halten, sondern den Projektbeteiligten zur Verfügung zu stellen, Bedenken klar zu äußern, Unklarheiten zu er- und hinterfragen, aufmerksames Zuhören, den andern aussprechen zu lassen und nicht zu unterbrechen, oder zum Beispiel pünktlich zu den Meetings zu erscheinen.

Alle Projektmitarbeiter haben sich verpflichtet, diese Regeln einzuhalten.

4.1.3 Kommunikationsmatrix

Das Konzept der Projektkommunikation für das Projekt "Vulcano" wurde in Form einer Kommunikationsmatrix (Abbildung 14) auf Grundlage der Stakeholderanalyse erarbeitet. Die Kommunikationsinstrumente umfassen Statusberichte, Einzelgespräche, Meetings und Projektnews.

Beim Statusbericht handelt es sich in erster Linie um einen standardisierten Bericht zur Information des Auftraggebers, welcher ebenfalls der Information interner Projektbeteiligter dient und den aktuellen Sachstand des Projekt widerspiegelt sowie einen Ausblick auf das weitere Vorgehen gibt. Die halbjährliche Statuspräsentation vor der Geschäftsleitung dient deren Information über den aktuellen Sachstand des Projekts und orientiert sich an den Vorgaben des Managementhandbuchs.

Die Projekt- und Teilprojektmeetings stellen für den Projekt- bzw. Teilprojektleiter das Werkzeug zur Informationsgewinnung und -weitergabe bzw. zur Projektverfolgung und - steuerung dar.

Einzelgespräche dienen anlassbezogen der Informationsgewinnung und der weiteren Koordination und Steuerung. Sie können sowohl formellen wie auch informellen Charakter haben.

Die Projektnews sollen die Projektmitarbeiter und weitere Stakeholder mittels kurzer, übersichtlicher Artikel via Email über aktuelle Ereignisse aus dem Projekt informieren und einen Ausblick auf das weitere Vorgehen bieten, wobei der Erscheinungsrythmus rein ereignisorientiert ist. Die Projektnews sollten jedoch nicht häufiger als 14-tägig erscheinen.

Wer?	Betroff- enheit	Maßnahme	Inhalte	Frequenz	Umfang
Projektmitarbeiter	3	ProjektmeetingsStatusberichtEinzelgesprächeProjektnews	gem. PLProjektstatusAnlassbezogenAnlassbezogen	wöchentlich.vierteljährlichbei Bedarfereignisorientiert	1,5 h 50 S. - ca. 1 S.
Fertigung	2	FertigungsmeetingsProjektnews	Stand ProjektAnlassbezogen	monatlichereignisorientiert	1,5 h ca. 1 S.
Leiter Entwicklung Dr. S. Wolf	2	StatusberichtProjektnews	ProjektstatusAnlassbezogen	vierteljährlichereignisorientiert	50 S. ca. 1 S.
Leiter CoC Strukturmechanik Hr. Nudel	3	StatusberichtProjektnews	ProjektstatusAnlassbezogen	vierteljährlichereignisorientiert	50 S. ca. 1 S.
Leiter Business Unit Munition Hr. Paul	1	- Statuspräsentation	- Projektstatus	- halbjährlich	1,5 h
Qualitätsmanagement	2	 Projektmeetings Projektnews	Stand ProjektAnlassbezogen	monatlichereignisorientiert	1,5 h ca. 1 S.
Leiter Versuchstechnik Hr. Müller		-		-	
Geschäftsführung	3	- Statuspräsentation	- Projektstatus	- halbjährlich	1,5 h
Einkauf	1	 Projektnews Einzelgespräche	AnlassbezogenAnlassbezogen	ereignisorientiertbei Bedarf	ca. 1 S.
Lieferanten	2	EinzelgesprächeProjektnews	AnlassbezogenAnlassbezogen	bei Bedarf/monatlichereignisorientiert	- ca. 1 S.
Kunde ADS	3	- Statuspräsentation	- Projektstatus	- halbjährlich	1,5 h
Kunde ADS PL Hr. Nobel	3	- Statuspräsentation	- Projektstatus	- halbjährlich	1,5 h
BWB (Grp)	2	- Einzelgespräche	- Anlassbezogen	- bei Bedarf	-
BWB PL Herr Mauch	3	- Einzelgespräche	- Anlassbezogen	- bei Bedarf	-
Nutzer Luftwaffe (Grp)	3	StatusberichtEinzelgespräche	 Projektstatus Anlassbezogen	vierteljährlichbei Bedarf	50 S.
Leiter Geheimschutz	1	- Projektnews	- Anlassbezogen	- ereignisorientiert	ca. 1 S.

Herr Sigfried		- Einzelgespräche	- Anlassbezogen	- bei Bedarf	-
Wettbewerber MSH (Grp)	3	- Einzelgespräche	- Anlassbezogen	- bei Bedarf	-
Business Development MSH Hr. Reich	2	- Einzelgespräche	- Anlassbezogen	- bei Bedarf	-
Initiative Waffen am Bodensee (Grp)	3	- Einzelgespräche	- Anlassbezogen	- bei Bedarf	-
GPS d. Bw Prüfer Hr. Nau	1	ProjektnewsEinzelgespräche	AnlassbezogenAnlassbezogen	ereignisorientiertbei Bedarf	ca. 1 S.
TSK Marine (Grp)	3	- Einzelgespräche	- Anlassbezogen	- bei Bedarf	-

Abbildung 14 - Kommunikationsmatrix

5. Phasenplanung

5.1. Beschreibung der Projektphasen und der Meilensteine

Das Projekt Vulcano ist ein wehrtechnisches Entwicklungsprojekt. Wehrtechnische Entwicklungsprojekte werden nach standardisierten Vorgehensmodellen (z.B. MIL-Standard, V-Modell) durchgeführt. Diese Vorgehensmodelle beinhalten einen definierten Phasenablauf und Nachweis- und Prüfprozesse, die die Kriterien und Vorgehensweisen für einen erfolgreichen Abschluss jeder Projektphase definieren. Die am Ende einer Phase liegenden Meilensteine und die zu diesen Zeitpunkten stattfindenden formellen Nachweis- und Prüfprozesse bilden bei erfolgreicher Durchführung den jeweiligen Phasenabschluss. Die Erfüllung der Phasenmeilensteine ist zwingend für den Eintritt in die Folgephase.

Für das Projekt Vulcano wurde ein Vorgehensmodell gemäß MIL-Standard gewählt, das folgende Phasen beinhaltet:

Konzeptionsphase Entwicklungsphase Verifikationsphase Fertigung

In der Konzeptionsphase wird das Grobdesign des Flugkörpermotors erarbeitet. Zu Beginn dieser Phase wird der formelle Projektstart durchgeführt. Die Konzeptionsphase wird mit dem Preliminary Design Review (PDR) abgeschlossen, in dem das Grobdesign des Triebwerks und die zugehörigen Phasendokumente einem Review unterzogen werden. Nach erfolgreicher Freigabe kann die Entwicklungsphase begonnen werden.

In der Entwicklungsphase wird das Feindesign des Motors ausgearbeitet und das technische Datenpaket entsprechend dem aktuellen Entwicklungsstand fortgeschrieben. Die Entwicklungsphase endet mit dem Critical Design Review (CDR), in dem das Feindesign des Triebwerks und die zugehörigen Phasendokumente einem Review unterzogen werden, und der Fertigung von Entwicklungsprototypen gemäß dem Konfigurationsstand des technischen Datenpaketes.

Verifikationsphase wird die Erfüllung der Motorspezifikation Entwicklungsprototypen nachgewiesen. Die Verifikationsphase endet mit der Finalisierung technischen Datenpaketes (TDP) und der Festschreibung des Konfigurationsstandes Nichterfüllung der wird (K-Stand). Bei Spezifikation Nachentwicklungsphase (Bestandteil der Entwicklungsphase) durchlaufen, in der durch Designanpassungen und Änderungen eine spezifikationskonforme Leistungserfüllung erreicht werden soll. Danach erfolgt wiederrum eine Verifikation mit dem geänderten K-Stand. Die Notwendigkeit einer solchen Nachentwicklungsphase ist aufgrund der bisherigen Erfahrungen bei Dübel Defence GmbH äußerst unwahrscheinlich und somit auch nicht eingeplant.

In der Fertigungsphase werden die vertraglich vereinbarten Motoren gemäß festgeschriebenem K-Stand gefertigt und an den Kunden ausgeliefert. Diese Phase endet mit dem formellen Projektabschluss.

Phasen- Nr.	Projektphasen	Phaseninhalt
1	Konzeption	 Analyse des Lastenheftes und Erstellung Pflichtenheft (Motorspezifikation) Erstellung Grobdesign Durchführung und Auswertung Vorversuche
2	Entwicklungsphase	 Konstruktion (Feindesign) Fertigung Entwicklungsprototypen Durchführung und Auswertung Entwicklungstests Erstellung und Anpassung Technisches Datenpaket (TDP)
3	Verifikation	 Durchführung und Auswertung der Nachweisversuche/ - untersuchungen Erstellung Nachweisdokumente Finales TDP erstellen
4	Fertigung/Lieferung	Fertigung 10 Motoren für QualifikationDurchführung Abnahmetests

Abbildung 15 - Inhalt der Projektphasen

MS- Nr.	Termin	Datum	Meilensteintitel/-inhalt
МО	• T0	• 02.05.2011	 Projektstart
M1	• T0 + 7 Mon	• 08.12.2011	PDR abgeschlossen
M2	• T0 + 14 Mon	• 18.07.2012	CDR abgeschlossen
M3	• T0 + 19 Mon	• 19.12.2012	Finales TDP freigegeben
M4	• T0 + 24 Mon	• 23.04.2013	Lieferung MotoreProjektabschluß

Abbildung 16 - Beschreibung der Meilensteine

	Phase 1 Konzeption	Phase 2 Entwicklungsphase	Phase 3 Verifikation	Phase 4 Fertigung/Lieferung
Phasen- ziel(e) / Meilenstein(e)	Pflichtenheft freigegeben Motorspezifikation freigegeben Grobdesign erstellt PDR abgeschlossen (M1)	Feindesign erstellt CDR abgeschlossen (M2)	Nachweisversuche durchgeführt Erprobungsbericht erstellt Finales TDP erstellt (M3)	Projektende (M4): Auslieferung 10 Motore für Qualifikation
Sach- aufgaben	Analyse der Anforderungen Erstellung Pflichtenheft und Motorspezifikation Grobdesign erstellen Durchführung und Auswertung Vorversuche	Konstruktion (Feindesign) Erstellung und Anpassung Technisches Datenpaket Designanpassungen Fertigung Prototypen Entwicklungsversuche Auswertung Versuche	Durchführung und Auswertung der Nachweisversuche Erstellung Designnachweisdokumente Erstellung finales TDP	Fertigung 10 Motore für Qualifikation Durchführung Abnahmetests Lieferung Motore
Konfigurations- management/ Dokumentation	Erstellung Konfigurations- managementplan	Überwachung Konfigurationsstand Änderungsmanagement	Überwachung Konfigurationsstand Änderungsmanagement Festschreibung K-Stand	Überwachung Konfigurationsstand
Qualitäts- management	Erstellung Qualitäts- managementplan Durchführung Reviews	Überwachung Qualität Prozessoptimierung	Überwachung Qualität Prozessoptimierung	Überwachung Qualität Prozessoptimierung
Projekt- management	Erstellung Projekthandbuch Ablauf- und Terminplanung Kosten-/Einsatzmittelplanung Durchführung Projektstart (Kick-Off) PDR durchführen	Fortschrittskontrolle Projektsteuerung Durchführung externer Reviews	Fortschrittskontrolle Kostenkontrolle Projektsteuerung	Projektabschluss Erstellung Projektabschlussbericht
Meilenstein- termine	M1: T0 + 7 Mon	M2 : T0 + 14 Mon	M3: T0 + 19 mon	M4 : T0 + 24 Mon

Abbildung 17 - Detaillierung der Projektphasen

5.2. Veranschaulichung der Projektphasen

Abbildung 18 - Projektphasen und Meilensteine

6. Projektstrukturplan

Durch den Prozess der Projektstrukturierung wird das Projekt in kleinere, überschaubare Einheiten zerlegt. Eine solche Strukturierung macht die weitere Planung und Steuerung des Projektes besser beherrschbar. Der Projektstrukturplan (PSP) ist in Teilaufgaben (TA) und Arbeitspakete (AP) aufgegliedert. Das Arbeitspaket ist hierbei das kleinste Element im PSP. Die zur Durchführung des Projektes erforderlichen Leistungen sind in den Arbeitspaketen beschrieben.

6.1. Darstellung und Codierung des Projektstrukturplans (PSP)

Für den ersten Entwurf des Projektstrukturplans wurde über eine aktivitätsorientierte Struktur nachgedacht (nicht dargestellt). Vorteil dieser Struktur wäre die Reduzierung der Gesamtanzahl der Arbeitspakete gewesen, da wiederkehrende Aktivitäten (wie z.B. "Fertigung Motorgehäuse", "Treibsatzfertigung und Befüllung", "Durchführung Abbrandtests" oder "Auswertung Abbrandtests") in einem gemeinsamen Arbeitspaket zusammengefasst gewesen wären.

Aufgrund der besseren Lesbarkeit des PSP und des darauf aufbauenden Ablauf- und Terminplans wurde jedoch eine (überwiegend) phasenorientierte Struktur gewählt. Im PSP für das Entwicklungsprojekt Vulcano (siehe Abbildung 19) sind somit die Teilaufgaben und Arbeitspakete der einzelnen Projektphasen abgebildet. Da die Leistungen aus dem Projektmanagement ebenfalls berücksichtigt sind, spricht man hier von einem gemischtorientierten aber überwiegend phasenorientierten PSP.

Für den Abschluss der einzelnen Phasen müssen die jeweils dazugehörigen Arbeitspakete abgeschlossen sein. Der Abschluss einer Phase ist verbunden mit dem Erreichen eines Zahlungsmeilensteins.

Die eindeutige Zuordnung der Arbeitspakete im PSP erfolgt durch eine numerische Codierung getrennt durch einen Bindestrich vom Präfix "P09" des Projekt-Wurzelelements.

6.2. Arbeitspaketbeschreibung

Das Arbeitspaket, als kleinstes Element im PSP, enthält Informationen über dessen Ziele, Aufgaben und das erwartete Ergebnis. Weiterhin werden dort die Dauer, die Kosten und die benötigten Ressourcen dokumentiert. Für jedes AP ist ein AP-Verantwortlicher genannt.

Für das Entwicklungsprojekt Vulcano sind auf den Seiten 34 und 35 exemplarisch zwei AP-Beschreibungen dargestellt.

Abbildung 19 - Projektstrukturplan Entwicklungsprojekt Vulcano

PSP-Code des AP: AP-Bezeichnung: AP-Verantwortlicher:
P09-1.2.2 Herstellung Treibsatzproben Dr. E. Loecke

Ziel(e) des AP:

Vorliegen von 18 Stück Treibsatzproben

Dokumentation der Rezeptur und Herstellparameter

Aufgaben / Vorgänge:

Ermittlung der vorläufigen Rezeptur des Treibsatzes im Hinblick auf die Erfüllung den Treibsatzanforderungen aus der Systemsimulation

Herstellung von insgesamt 18 verschiedenen Proben durch schrittweise Variation der Zusammensetzung sowie der Herstellparameter (Rührzeit, Temperatur)

Dokumentation der durchgeführten Arbeiten

Ergebnisunterlagen / Art der Ergebnisdarstellung:

Laborbericht mit Information über Rezeptur und Herstellprozess der Treibsatzproben

Fortschrittsmessung wie:	Abnahme durch wen:
Statusschrittmethode - Ermittlung Rezeptur (20% von AP Aufwand) - Herstellung (72% von AP Aufwand) - Dokumentation (8% von AP Aufwand)	Techn. Projektleiter (Dr. K. Madlener)
Inputs von Vorgänger-AP (welche?):	Outputs an Nachfolger-AP (welche?):
P09-1.2.1: Geforderte ballistische Eigenschaften des Treibsatzes	AP 1.2.3: Treibsatzproben für nachfolgende experimentelle Untersuchung (Labortests) der ballistischen Eigenschaften
Budget Personalkosten:	Budget Sachkosten:
4,5T€	23T€
Benötigte Ressourcen:	
- Personal: Chemieingenieur - Sonstiges: Laborkapazität	
Aufwand in Personentagen: 25 PT	Dauer (Tage): 25 Arbeitstage
Besonderheiten:	
keine	
Aufgestellt: Dr. E. Loecke, Dr. K. Madlener	Freigegeben (PL): Dr. U. Rauscher

Abbildung 20 - Arbeitspaketbeschreibung P09-1.2.2 Herstellung Treibsatzproben

PSP-Code des AP: AP-Bezeichnung: AP-Verantwortlicher: P09-3.6 **Auswertung Abbrandtests** Dr. K. Madlener Ziel(e) des AP: Ermittlung der Triebwerkperformance aus den Ergebnissen der Abbrandversuche in der Verifikationsphase Aufgaben / Vorgänge: Analyse und Auswertung der aus den Abbrandtests erzeugten Rohdaten Darstellung der ausgewerteten Daten in Diagramme und Tabellen Vergleich mit spezifizierten ballistischen Forderungen aus dem Pflichtenheft Dokumentation der durchgeführten Analysen und Auswertungen Ergebnisunterlagen / Art der Ergebnisdarstellung: Versuchsbericht mit Ergebnisanalyse Fortschrittsmessung wie: Abnahme durch wen: Statusschrittmethode Projektleiter (Dr. U. Rauscher) - Analyse (60% von AP Aufwand) - Darstellung (10% von AP Aufwand) - Vergleich (10% von AP Aufwand) - Dokumentation (20% von AP Aufwand) Inputs von Vorgänger-AP (welche?): Outputs an Nachfolger-AP (welche?): P09-3.5: Testergebnisse aus der Durchführung der Abbrandtests als P09-3.8: Ergebnisse der Analysen als Output für die Input Erstellung des Designnachweisdokuments **Budget Personalkosten: Budget Sachkosten:** 48T€ keine Benötigte Ressourcen: - Personal: Versuchsingenieure, PL - Sonstiges: ---Aufwand in Personentagen: 30 PT Dauer (Tage): 30 Tage Besonderheiten: keine Aufgestellt: Dr. K. Madlener, Dr. U. Rauscher Freigegeben (PL): Dr. U. Rauscher

Abbildung 21 - Arbeitspaketbeschreibung P09-3.6 Auswertung Abbrandtests

7. Ablauf- und Terminplanung

Die Ablauf- und Terminplanung basiert auf dem Phasenplan (Kap. 5) und dem Projektstrukturplan (Kap. 6). Die Ablauf- und Terminplanung besitzt den höchsten Detaillierungsgrad in der Planungsphase eines Projektes.

In der Ablauf- und Terminplanung werden die realistische Durchführungsdauer einzelner Aktivitäten (Vorgänge) und deren logische Reihenfolge festgelegt. Weiterhin werden die verfügbaren Ressourcen und die notwendigen Zeitabstände zwischen den einzelnen Vorgängen berücksichtigt. Zur vereinfachten Darstellung im Transferprojekt wird auf die Berücksichtigung der Urlaubszeiten und Feiertage verzichtet.

Ziel dieser Planungsphase ist es, allen Projektbeteiligten verbindliche Termine vorzugeben. Für den Projektleiter selbst ergeben sich hierbei noch weitere wichtige Informationen wie z. B. wo Zeitreserven vorhanden oder ggf. einzuplanen sind.

7.1. Vorgangsliste

Abbildung 22 zeigt die Vorgangsliste des Entwicklungsprojektes Vulcano. Die Aktivitäten aus den Arbeitspaketen sind mit Angabe der Durchführungsdauer und ihrer Anordnungsbeziehung zu anderen Vorgängen aufgelistet. Eine Anordnungsbeziehung beschreibt die zeitliche Beziehung eines Vorgangs zu seinem Vorgänger oder Nachfolger.

In der letzten Spalte der Tabelle sind die Vorgangsbeziehungen der Vorgänge zu ihren Vorgängern aufgeführt. Alle Vorgänge des vorliegenden Projektes wurden ausschließlich mit Normalfolgen (auch Ende-Anfang-Beziehung "EA" genannt) verknüpft. Das Ende des Vorgängers steht somit in Beziehung zum Anfang des Nachfolgers. Andere Anordnungsbeziehungen wie die Anfang-Anfang, die Ende-Ende oder die Sprungfunktion (Anfang-Ende) wurde für den Projektverlauf als nicht erforderlich betrachtet. Wurde eine zusätzliche Zeitreserve von x Tagen zwischen einzelnen Vorgängen als erforderlich betrachtet, so wird dies in der Tabelle mit [EA + x Tage] dargestellt.

7.2. Vernetzter Balkenplan

Um die Einhaltung der Termine überwachen und steuern zu können, dient die so genannte Netzplantechnik als Werkzeug für das Projektmanagement.

Der Netzplan informiert über die logische zeitliche Abfolge von Vorgängen, deren Dauer, deren frühst- und spätmöglichsten Start- und Endtermine sowie vorhandene Zeitpuffer. Die Darstellung des Ablauf- und Terminplans als Netzplan wird häufig als zu abstrakt und unübersichtlich empfunden. Die Darstellung als vernetztes Balkendiagramm (Gantt-Diagramm) kommt dem Wunsch nach einer besseren Visualisierung der Abläufe und Termine sehr entgegen und wird daher empfohlen.

Abbildung 23 auf der nächsten Seite stellt den Ablauf- und Terminplan des vorliegenden Projektes in der Form eines vernetzten Balkendiagramms dar. Die Auflistung beginnt mit den

Meilensteinen als Teil des Projektmanagements. Daran anschließend sind die Vorgänge der einzelnen Phasen mit Ihrer Zuordnung zum Projektstrukturplan (über PSP Code) aufgeführt. Die zum Zeitpunkt der Planung verbindlichen Anfangs- und Endtermine der Vorgänge stehen rechts neben den Vorgangsbezeichnungen.

Aktivitäten zur Beschaffung von Materialien besitzen keinen PSP Code da diese durch die Organisationseinheit Einkauf übernommen werden. Die dafür erforderliche Dauer muss jedoch im Projektablauf berücksichtigt werden.

Im rechten Teil der Abbildung sind die Vorgänge und Ihre Beziehungen untereinander als vernetztes Balkendiagramm dargestellt.

PSP Code		Dauer	PSP-Code von Vorganger
P09-1.1.1	häuse mit Festlegung der CFK Eigenschaften	30 Tage	P09-5.3.1
P09-1.1.2	Herstellung CFK Proben	7 Tage	P09-1.1.1
P09-1.1.3		25 Tage	P09-1.1.2
P09-1.2.1	Systemsimulation mit Festlegung Treibsatzeigenschaften	30 Tage	P09-5.3.1
P09-1.2.2		25 Tage	P09-1.2.1
P09-1.2.3	Labortests Treibsatzperformance	30 Tage	P09-1.2.2
P09-1.3		30 Tage	P09-1.1.3;P09-1.2.3
P09-1.4	Erstellung Pflichtenheft	40 Tage	P09-5.3.1
P09-2.1	Erstellung Testspezifikation für die Entwicklungsversuche	25 Tage	P09-5.3.2
P09-2.2	Fertigung Wickeldorn (Vorrichtung) für CFK-Motorgehäuse	30 Tage	P09-5.3.2
P09-2.3.1	Fertigung Motorgehäuse für Strukturfestigkeitstests (5 Stück)	7 Tage	P09-2.2
P09-2.3.2	Durchführung und Auswertung Biegeversuche	25 Tage	P09-2.3.1;P09-2.1
P09-2.3.3	Drucktests	15 Tage	P09-2.3.1;P09-2.3.2
P09-2.4.1	nwelt- und Abbrandtests (9 Stück)	10 Tage	P09-2.3
P09-2.4.2		3 Tage	P09-2.4.1
P09-2.4.3		6 Tage	P09-2.4.2
P09-2.4.4	Durchführung Abbrandtests (9 Motoren)	6 Tage	P09-2.4.3[EA+5 Tage]
P09-2.4.5	Auswertung Abbrandtests	20 Tage	P09-2.4.4
P09-2.5	Feinanpassung Design aufgrund Testergebnisse	10 Tage	P09-2.4.5
P09-3.1		10 Tage	P09-5.3.3
P09-3.2	g (9 Stück)	5 Tage	P09-3.1
P09-3.3	Endmontage 9 Motoren	9 Tage	P09-3.2
P09-3.4	elastungstests (6 Motoren)	20 Tage	P09-3.3[EA+5 Tage]
P09-3.5	n)	9 Tage	P09-3.4[EA+5 Tage]
P09-3.6		30 Tage	P09-3.5
P09-3.7	(onstruktion)	15 Tage	P09-3.6
P09-3.8	tung Abnahme-Review)	15 Tage	P09-3.6
P09-4.1		25 Tage	P09-5.3.4
P09-4.2	Produktion Treibstoff und Befüllung (13 Stück)	5 Tage	P09-4.1
P09-4.3	Endmontage 13 Motoren	9 Tage	P09-4.2
P09-4.4	Durchführung Abnahmetest (3 Motorabbrände)	3 Tage	P09-4.3[EA+5 Tage]
P09-4.5	Auswertung Abnahmetest (3 Motorabbrände)	6 Tage	P09-4.4
P09-4.6	Verpackung & Lieferung der Qualifikationshardware (10 Motoren)	25 Tage	P09-4.5
P09-5.3.1		2 Tage	
P09-5.3.2	Preliminary Design Review (mit Freigabe Entwicklungsphase)	2 Tage	P09-1.3[EA+10 Tage];P09-1.4[EA+10 Tage]
P09-5.3.3		2 Tage	P09-2.5[EA+10 Tage]
P09-5.3.4	nachweis (mit Freigabe Fertigung Qualifikationsmotoren)	2 Tage	P09-3.8
P09-5.3.5	Projektabschluss	1 Tag	P09-4.6[EA+10 Tage]

Abbildung 22 - Vorgangsliste Entwicklungsprojekt Vulcano

Abbildung 23 - Vernetzter Balkenplan Entwicklungsprojekt Vulcano

8. Einsatzmittel-/Kostenplanung

Leistungsgegenstand der Einsatzmittel- und Kostenplanung ist einen Überblick über die im Projekt entstehenden Kosten zu erhalten, mit dem Nutzen das Angebot und die Nachfrage nach Ressourcen innerhalb eines Unternehmens besser in Einklang bringen zu können. Es wird dabei zwischen folgenden Einsatzmitteln unterschieden: Personal, Material, Betriebsmittel und sonstige Leistungen. Ziel der Planung ist eine Übersicht über die Kosten pro Arbeitspaket sowie die Kosten im Zeitablauf zu erhalten.

8.1. Einsatzmittelbedarf/ Einsatzmittelplan

Die Einsatzmittelplanung steuert hierzu eine Bedarfsprognose an Ressourcen bei und kann Engpässe bei den Ressourcen im Vorfeld identifizieren. Ressourcenmanagement im wirtschaftlichen Unternehmen ist ein Muss. Es ist kein beliebiger Vorhalt für alle Projekte möglich, da z.B. die Personalkosten zu den größten Kostenpositionen gehören und ein ständiger Konflikt im Unternehmen zwischen der Projektorganisation und der Linienorganisation existiert.

Die folgenden Ausführungen konzentrieren sich auf die Einsatzmittelplanung der personellen Ressourcen, da Sie das zentrale Element fast aller Projekte sind.

Im vorliegenden Projekt wurde anhand der Teilaufgaben Bedarf an Personalressourcen mit folgenden Qualifikationen festgestellt:

Ressource	Projektanforderung Qualifiakation
Chemie-Ingenieur	Erweiterte Kenntnisse im Bereich Treibstoffaufbereitung und - herstellung.
Systemingenieur	Regelungstechnikingenieur. Tiefgehende Kenntnisse der Systemauslegung und der Modellentwicklung besitzen.
Strukturmechaniker (Ing.)	Kenntnisse zu Festigkeitslehre und Strukturmechanik.
Fertigungspersonal	Technische Grundausbildung mit erweiterten Kenntnissen in der Verarbeitung von kohlefaserverstärkten Materialien. Wo erforderlich, mit Befähigungsschein nach §20 SprengG.
Technischer Projektleiter	Ingenieur mit mehrjähriger Projekterfahrung. Er muss in der Lage sein, auf Basis der Anforderungen eine System Requirement Specification zu erstellen, diese umzusetzen und zu verifizieren.
Projektleiter	Mehrjährige Projekterfahrung. Zertifizierter Projekt-Manager vertraut mit den firmeninternen Prozessen.
Versuchsingenieur	Erweitertes Verständnis für die Anforderungen der Qualifikations- und Systemtests. Er sollte Erfahrung mit der Durchführung von Tests

	für die Zulassung von Geräten für Luftfahrzeuge besitzen.
Mechaniker	Technische Ausbildung im Bereich Feinmechanik. Mindestens 2 Personen mit Ausbildung für CNC Maschinensteuerung.
Konstrukteur (CAD)	Vertraut mit den im Unternehmen eingesetzten Programmen (CATIA) und Konfigurationsprozessen.

Abbildung 24 - Qualifikationsprofil Ressourcen

Die folgende Abbildung gibt einen Überblick,

- wo im Projektablauf die Personalressourcen benötigt werden
- wie deren Bedarf ermittelt wurde
- wie die Verfügbarkeit der Personalressourcen festgestellt und festgelegt wurde.

Nr.	PSP- Code	AP-Name	Ressourcenbedarf (Skills)	Bedarfsermittlung	Verfügbarkeitsermittlung
1	P09- 1.1.1	Strukturanalyse Motorgehäuse	Strukturmechaniker (Ing.)	Erfahrungswert Vorgängerprojekt	Planung Linienvorgesetzter
2	P09- 1.1.2	Herstellung CFK Proben	Techniker (Struktur)	Erfahrungswert Vorgängerprojekt	Planung Linienvorgesetzter
3	P09- 1.1.3	Durchführung & Auswertung Labortests CFK Proben	Strukturmechaniker	Schätzwert basierend auf Vergleichsproben	Laborbelegungsplan, Planungssystem
4	P09- 1.2.1	Systemsimulation mit Festlegung Treibsatzeigenschaften	Systemingenieur	Schätzung CoC Leiter	Planung CoC Leiter
5	P09- 1.2.2	Herstellung Treibsatzproben	Chemie-Ingenieur	Erfahrungswert Vorgängerprojekt	Internes Planungssystem
6	P09- 1.2.3	Durchführung & Auswertung Labortests Treibsatzperformance	Chemielaborant Chemiker	Vorgabe Standardprozess	Internes Planungssystem
7	P09- 1.3	Konstruktion & Designdokumentation	Konstrukteure (CAD)	Anpassung Standardprozess durch Schätzwert	Absparche Leiter KoBü
8	P09- 1.4	Erstellung Pflichtenheft	Projektleiter	Erfahrungswert Vorgängerprojekt	Vollständiges Projektmitglied
9	P09- 2.1	Erstellung Testspezifikation für die Entwicklungsversuche	Technischer Projektleiter	Erfahrungswert Vorgängerprojekt	Absprache Leiter Entwicklung
10	P09- 2.2	Fertigung Wickeldorn (Vorrichtung) für CFK-Motorgehäuse	Mechaniker (CNC)	Schätzklausur Fertigung und Entwicklung	Auslastungsplanung Fertigung
11	P09- 2.3.1	Fertigung Motorgehäuse für Strukturfestigkeitstests (5 Stück)	Fertigungspersonal	Erfahrungswert Vorgängerprojekt	Auslastungsplanung Fertigung
12	P09- 2.3.2	Durchführung und Auswertung Biegeversuche	Strukturmechaniker (Ing.)	Vorgabe Standardprozess	Planung Linienvorgesetzter
13	P09- 2.3.3	Durchführung und Auswertung Drucktests	Strukturmechaniker (Ing.)	Vorgabe Standardprozess	Planung Linienvorgesetzter
14	P09- 2.4.1	Fertigung Motorgehäuse für Umwelt- und Abbrandtests (9 Stück)	Fertigungspersonal	Schätzklausur Fertigung und Entwicklung	Auslastungsplanung Fertigung
15	P09- 2.4.2	Treibsatzproduktion und Befüllung (9 Motoren)	Chemie-Ingenieur Fertigungspersonal (Befähigung §20 SprengG)	Erfahrungswert Vorgängerprojekt	Internes Planungssystem Auslastungsplanung Fertigung

16	P09- 2.4.3	Endmontage 9 Motoren	Fertigungspersonal	Schätzklausur Fertigung und Entwicklung	Auslastungsplanung Fertigung
17	P09- 2.4.4	Durchführung Abbrandtests (9 Motoren)	Technischer Projektleiter Versuchsingenieure Mechaniker	Erfahrungswert Vorgängerprojekt	Absprache Leiter Entwicklung Planung Linienvorgesetzter Auslastungsplanung Fertigung
18	P09- 2.4.5	Auswertung Abbrandtests	Projektleiter Versuchsingenieure	Erfahrungswert Vorgängerprojekt	Vollständiges Projektmitglied Absprache Linienvorgesetzter
19	P09- 2.5	Feinanpassung Design aufgrund Testergebnisse	Konstrukteur (CAD)	Schätzung Leiter Konstruktionsbüro	Absprache Leiter KoBü
20	P09- 3.1	Fertigung Motorgehäuse (9 Stück)	Fertigungspersonal	Schätzklausur Fertigung und Entwicklung	Auslastungsplanung Fertigung
21	P09- 3.2	Produktion Treibstoff und Befüllung (9 Stück)	Chemie-Ingenieur Fertigungspersonal (Befähigung §20 SprengG)	Schätzklausur Fertigung und Entwicklung	Internes Planungssystem Auslastungsplanung Fertigung
22	P09- 3.3	Endmontage 9 Motoren	Fertigungspersonal	Schätzklausur Fertigung und Entwicklung	Auslastungsplanung Fertigung
23	P09- 3.4	Durchführung Umweltbelastungstests (6 Motoren)	Technischer Projektleiter Versuchsingenieure Mechaniker	Erfahrungswert Vorgängerprojekt	Absprache Leiter Entwicklung Planung Linienvorgesetzter Auslastungsplanung Fertigung
24	P09- 3.5	Durchführung Abbrandtests (9 Motoren)	Technischer Projektleiter Versuchsingenieure Mechaniker	Erfahrungswert Vorgängerprojekt	Absprache Leiter Entwicklung Planung Linienvorgesetzter Auslastungsplanung Fertigung
25	P09- 3.6	Auswertung Abbrandtests (9 Motoren)	Projektleiter Versuchsingenieure	Erfahrungswert Vorgängerprojekt	Vollständiges Projektmitglied Absprache Linienvorgesetzter
26	P09- 3.7	Erstellung Technisches Datenpaket (Konstruktion)	Konstrukteur (CAD)	Anpassung Standardprozess durch Schätzwert	Absprache Leiter KoBü
27	P09- 3.8	Erarbeitung Designnachweis- Dokument (Vorbereitung Abnahme- Review)	Projektleiter	Erfahrungswert Vorgängerprojekt	Vollständiges Projektmitglied
28	P09- 4.1	Fertigung Motorgehäuse (13 Stück)	Fertigungspersonal	Schätzklausur Fertigung und Entwicklung	Auslastungsplanung Fertigung
29	P09- 4.2	Produktion Treibstoff und Befüllung (13 Stück)	Chemie-Ingenieur Fertigungspersonal (Befähigung §20 SprengG)		Internes Planungssystem Auslastungsplanung Fertigung
30	P09- 4.3	Endmontage 13 Motoren	Fertigungspersonal	Schätzklausur Fertigung und Entwicklung	Auslastungsplanung Fertigung
31	P09- 4.4	Durchführung Abnahmetest (3 Motorabbrände)	Technischer Projektleiter Versuchsingenieure Mechaniker		Absprache Leiter Entwicklung Planung Linienvorgesetzter Auslastungsplanung Fertigung
32	P09- 4.5	Auswertung Abnahmetest (3 Motorabbrände)	Projektleiter Versuchsingenieure	Erfahrungswert Vorgängerprojekt	Vollständiges Projektmitglied Absprache Linienvorgesetzter
33	P09- 4.6	Verpackung & Lieferung der Qualifikationshardware (10 Motoren)	Fertigungspersonal Versandmitarbeiter	Erfahrungswert Vorgängerprojekt	Auslastungsplanung Fertigung Planung Versandleiter
34	P09-5	Projektmanagement	Projektleiter Projektplaner	Firmeninterner Kalkulationswert	Vollständige Projektmitglieder

Abbildung 25 - Personalressourcen

Basierend auf diesen Qualifikationsanforderungen haben die Arbeitspaketverantwortlichen ihren Aufwand geschätzt. Die Planung erfolgte dabei in Vollzeitäquivalenten auf Organisationseinheitsebene ohne konkrete Mitarbeiterzuordnung.

Problem dieses Planungsmodells ohne konkrete Mitarbeiterzuordnung ist allerdings, dass von einer vollständigen Austauschbarkeit der Mitarbeiter ausgegangen wird. Die Organisationsform der Entwicklung in CoC (Centre of Excellence) bringt einerseits eine hohe

Substituierbarkeit der Mitarbeiter mit sich, da jedoch ein Technologiesprung vollzogen werden soll, könnte sich der höhere Erfahrungswert einzelner Mitarbeiter als entscheidend auswirken. Da in der jetzigen Phase der Aufwandsschätzung noch nicht mit konkreten Mitarbeitern geplant werden kann, sollte sofort bei der Überarbeitung der Einsatzmittelplanung nach Projektbeginn Schlüsselpersonal identifiziert werden und diese wenigen Personen namentlich mit den Ressourcenmanagern festgelegt werden.

Bei diesem erneuten Planungsdurchlauf sollte ebenso über die Unterdeckung in Q1/2013 entschieden werden. Da es sich nur um 1 VZÄ handelt, sollte konkret entschieden werden, ob eine Überplanung des Projektablaufs notwendig ist oder allein durch die Nutzung von zwei Mitarbeitern mit höherem Arbeitswert/Erfahrung ausgeglichen werden kann.

		telplanung für Ressource Perso eiter Vollzeitäquivalent]	onal		20)11			20	12			20	13	
۷r	PSP- Code	AP-Name	Ressourcenbedarf (Skills)	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	C 4
	P09-1.1.1	Strukturanalyse Motorgehäuse	Strukturmechaniker (Ing.)		1										
2	P09-1.1.2	Herstellung CFK Proben	Techniker (Struktur)			2									
3	P09-1.1.3	Durchführung & Auswertung Labortests CFK Proben	Strukturmechaniker			2									
1	P09-1.2.1	Systemsimulation mit Festlegung Treibsatzeigenschaften	Systemingenieur		1										
5	P09-1.2.2	Herstellung Treibsatzproben	Chemie-Ingenieur			1									
5	P09-1.2.3	Durchführung & Auswertung Labortests	Chemielaborant		1										
		Treibsatzperformance	Chemiker		1	0,5									
,	P09-1.3	Konstruktion & Designdokumentation	Konstrukteure (CAD)			1									
	P09-1.4	Erstellung Pflichtenheft	Projektleiter		1										
)	P09-2.1	Erstellung Testspezifikation für die Entwicklungsversuche	Technischer Projektleiter				1	1							
0	P09-2.2	Fertigung Wickeldorn (Vorrichtung) für CFK-Motorgehäuse	Mechaniker (CNC)				1	2							
1	P09-2.3.1	Fertigung Motorgehäuse für Strukturfestigkeitstests (5 Stück)	Fertigungspersonal					2,5							
2	P09-2.3.2	Durchführung und Auswertung Biegeversuche	Strukturmechaniker (Ing.)					2							
3	P09-2.3.3	Durchführung und Auswertung Drucktests	Strukturmechaniker (Ing.)					1	1						
4	P09-2.4.1	Fertigung Motorgehäuse für Umwelt- und Abbrandtests (9 Stück)	Fertigungspersonal						5						
5	P09-2.4.2	Treibsatzproduktion und Befüllung (9	Chemie-Ingenieur						1						
		Motoren)	Fertigungspersonal (Befähigung §20 SprengG)						1						
6	P09-2.4.3	Endmontage 9 Motoren	Fertigungspersonal						4						
7	P09-2.4.4	Durchführung Abbrandtests (9 Motoren)	Technischer Projektleiter						1						
			Versuchsingenieure						1						
			Mechaniker						2						
8	P09-2.4.5	Auswertung Abbrandtests	Projektleiter						1						
			Versuchsingenieure						1						
9	P09-2.5	Feinanpassung Design aufgrund Testergebnisse	Konstrukteur (CAD)						1	1					
0	P09-3.1	Fertigung Motorgehäuse (9 Stück)	Fertigungspersonal							4					

21	P09-3.2	Produktion Treibstoff und Befüllung (9	Chemie-Ingenieur							1					
		Stück)	Fertigungspersonal (Befähigung §20 SprengG)							2					
22	P09-3.3	Endmontage 9 Motoren	Fertigungspersonal							4					
23	P09-3.4	Durchführung Umweltbelastungstests (6	Technischer Projektleiter							1					
		Motoren)	Versuchsingenieure							1					
			Mechaniker							2					
24	P09-3.5	Durchführung Abbrandtests (9 Motoren)	Technischer Projektleiter								1				
			Versuchsingenieure								1				
			Mechaniker								2				
25	P09-3.6	Auswertung Abbrandtests (9 Motoren)	Projektleiter								1				
			Versuchsingenieure								1				
26	P09-3.7	Erstellung Technisches Datenpaket (Konstruktion)	Konstrukteur (CAD)								2				
27	P09-3.8	Erarbeitung Designnachweis-Dokument (Vorbereitung Abnahme-Review)	Projektleiter								1				
28	P09-4.1	Fertigung Motorgehäuse (13 Stück)	Fertigungspersonal								1	4			
29	P09-4.2	Produktion Treibstoff und Befüllung	Chemie-Ingenieur									1			
		(13 Stück)	Fertigungspersonal (Befähigung §20 SprengG)									2			
30	P09-4.3	Endmontage 13 Motoren	Fertigungspersonal									3			
31	P09-4.4	Durchführung Abnahmetest (3	Technischer Projektleiter									4			
		Motorabbrände)	Versuchsingenieure									1			
			Mechaniker									2			
32	P09-4.5	Auswertung Abnahmetest (3	Projektleiter									1			
		Motorabbrände)	Versuchsingenieure									1			
33	P09-4.6	Verpackung & Lieferung der	Fertigungspersonal									2			
		Qualifikationshardware (10 Motoren)	Versandmitarbeiter									1	1		
34	P09-5	Projektmanagement	Projektleiter	1	1	1	1	1	1	1	1	1	1	1	
			Projektplaner	1	1	1	1	1	1	1	1	1	1	1	
		Summe benötigter Mitarbeiter		2	7	8,5	4	10,5	21	18	12	24	3	2	
		Max. Kapazität pro Monat in Mitarbeitern	(VZÄ)	2	12	9	15	23	23	18	23	23	12	2	
		Über-/Unterdeckung		0	5	0,5	11	12,5	2	0	11	-1	9	0	

Abbildung 26 - Einsatzmittelplanung

8.2. Projektkosten

Die für die jeweiligen Arbeitspakete geschätzten Aufwände für Personalstunden führen entsprechend der Ablauf- und Terminplanung zu einem zeitlichen Verlauf der Personalkosten. Für die Berechnung dieser Kosten in dem hier vorliegenden fiktiven Projekt wurden der Einfachheit halber die anfallenden Aufwände innerhalb der Arbeitspakete linear zwischen deren jeweiligen Anfangs- und Endtermine verteilt. Des Weiteren wurde ein einheitlicher Personenstundensatz von 100€ bei einer Regelarbeitszeit von 8 Stunden pro Tag angesetzt.

Neben den Personalkosten wurden noch die Kosten für das Rohmaterial berücksichtigt, da diese einen nicht unerheblichen Anteil ausmachen. Die quartalsweise anfallenden Kosten

(Personal und Material) sind in der nachfolgenden Tabelle sowie in der Abbildung 28 als Kostenganglinie dargestellt.

	T			F	Projektlaufze	it in Quartal	en		
PSP Code	AP Bezeichnung	Quartal 1	Quartal 2	Quartal 3	Quartal 4		_	Quartal 7	Quartal 8
P09-1.1.1	Strukturanalyse Motorgehäuse	12,0 T€							
P09-1.1.2	Herstellung CFK Proben	4,5 T€							1
P09-1.1.3	Labortests CFK Proben	20,0 T€							1
P09-1.2.1	Systemsimulation	24,0 T€							1
P09-1.2.2	Herstellung Treibsatzproben		20,0 T€						1
P09-1.2.3	Labortests Treibsatzperformance		18,4 T€	5,6 T€					1
P09-1.3	Konstruktion & Design			42,0 T€					1
P09-1.4	Erstellung Pflichtenheft	32,0 T€							
P09-2.1	Erstellung Testspezifikation			12,8 T€	7,2 T€				1
P09-2.2	Fertigung Wickeldornvorrichtung			25,6 T€	22,4 T€				1
P09-2.3.1	Fertigung Motorgehäuse				16,8 T€				
P09-2.3.2	Biegetest Motorgehäuse				40,0 T€				
P09-2.3.3	Drucktest Motorgehäuse				21,6 T€	14,4 T€			
P09-2.4.1	Fertigung Motorgehäuse					16,0 T€			
P09-2.4.2	Treibsatzmischung und Befüllung					7,2 T€			1
P09-2.4.3	Montage Motoren					18,4 T€			1
P09-2.4.4	Durchführung Abbrandtests					24,0 T€			1
P09-2.4.5	Auswertung Abbrandtests					48,0 T€			1
P09-2.5	Designanpassungen					14,2 T€	1,6 T€		1
P09-3.1	Fertigung Motorgehäuse						16,0 T€		
P09-3.2	Treibsatzmischung und Befüllung						12,0 T€		1
P09-3.3	Montage Motoren						14,8 T€		
P09-3.4	Umweltsimulationstests						64,0 T€		1
P09-3.5	Durchführung Abbrandtests							21,6 T€	
P09-3.6	Auswertung Abbrandtests							48,0 T€	
P09-3.7	Erstellung TDP							12,0 T€	
P09-3.8	Designnachweis-Dokument							24,0 T€	
P09-4.1	Fertigung Motorgehäuse							9,6 T€	8,2 T
P09-4.2	Treibsatzmischung und Befüllung								8,0 T€
P09-4.3	Montage Motoren								14,8 T€
P09-4.4	Durchführung Abbrandtests								7,2 T
P09-4.5	Auswertung Abbrandtests								9,6 T
P09-4.6	Verpackung & Lieferung								2,0 T
P09-5	Projektmanagement	39,6 T€	46,8 T€	46,8 T€	46,8 T€	46,8 T€	46,8 T€	46,8 T€	46,8 T
	Summe Personalkosten pro Quartal			132,8 T€			155,2 T€	162,0 T€	96,6 T
	zuzüglich Materialkosten pro Quartal				270,0 T€				
	gesamt Einsatzmittel pro Quartal	162,1 T€	85,2 T€	132,8 T€	424,8 T€	189,0 T€	155,2 T€	162,0 T€	96,6 T

Abbildung 27 - Kostenanfall

Im Folgenden stehen 3 Beispiele für die Berechnung der Personalkosten pro Quartal:

P09-1.1.1 "Strukturanalyse Motorgehäuse":

Die Strukturanalyse wird vom Strukturmechaniker Herrn Fischer durchgeführt. Da Herr Fischer in den ersten Wochen des Projektes noch in einem weiteren Projekt tätig ist, wird er nur zu 50% für das Entwicklungsprojekt Vulcano tätig sein können. Aus der Dauer multipliziert mit den anteiligen Arbeitsstunden und dem Stundensatz ergeben sich dann die Personalkosten für dieses AP.

*Kosten AP*1.1.1= $30Tage \cdot 8h/Tag \cdot 50\% \cdot 100$ €/ h = 12000€

P09-2.3.3 "Drucktest Motorgehäuse"

Für die Durchführung der Drucktests sind im genannten Zeitraum von 15 Tagen 2 Mechaniker zu 100% und auch der Strukturmechaniker P. Fischer mittlerweise zu 100% für das Projekt Vulcano tätig.

 $Kosten\ AP\ 2.3.3 = 15Tage \cdot 8h / Tag \cdot 3Personen \cdot 100 € / h = 36000 €$

Neun Tage davon werden im laufenden Projektquartal 4 und sechs Tage davon im Projektquartal 5 gearbeitet. Die anfallenden Personalkosten aus dem AP 2.3.3 betragen daher aufgeteilt auf die Quartale 4 und 5:

Quartal
$$4 = \frac{9}{15}$$
 · Kosten AP 2.3.3 = 21600€ Quartal $5 = \frac{6}{15}$ · Kosten AP 2.3.3 = 14400€

P09-2.4.4 "Durchführung Abbrandtests"

Für die Durchführung der Abbrandtests sind im genannten Zeitraum von 6 Tagen insgesamt 4 Mechaniker des Prüfstandspersonals sowie der Technische Projektleiter Vollzeit beschäftigt.

$$Kosten\ AP\ 2.4.4 = 6Tage \cdot 8h / Tag \cdot 5Personen \cdot 100 € / h = 24000 €$$

Abbildung 28 - Kostenganglinie

Aus der Kostenganglinie ist deutlich ersichtlich, dass die hohen Materialkosten einen erheblichen Mittelabfluss im Quartal 4 erfordern.

Der für das Entwicklungsprojekt Vulcano entstehende Plan-Kostenverlauf (Personal & Material) ist in der Abbildung 29 als Kostensummenlinie dargestellt (kumulierte Kostenganglinie). Während der Steuerung des Projektes wird dieser Plan-Verlauf mit den tatsächlichen Ist-Daten und der Restkostenschätzung verglichen.

				Projektlaufzei	t in Quartalen			
	Quartal 1	Quartal 2	Quartal 3	Quartal 4	Quartal 5	Quartal 6	Quartal 7	Quartal 8
Kostengang	162,1 T €	85,2 T€	132,8 T€	424,8 T€	189,0 T €	155,2 T€	162,0 T €	96,6 T€
Kostensumme	162,1 T €	247,3 T€	380,1 T €	804,9 T €	993,9 T €	1149,1 T €	1311,1 T €	1407,7 T €

Abbildung 29 - Kostensummenlinie

9. Verhaltenskompetenz

- 9.1. Kreativität (Wahlthema 9.1)
- 9.1.1 Theorie

Das Wort Kreativität kommt aus dem Lateinischen und bedeutet "erschaffen, hervorbringen, schöpferisch tätig sein = *creare*".

Prinzipiell ist der Mensch kreativ, jedoch häufig durch die Umwelt, Ausdrucksfähigkeit oder (Selbst-) Wahrnehmung, Firmenkultur, etc. blockiert.

Man unterscheidet zwischen operationeller Kreativität (z.B. Lösung von Problemen) und expressiver Kreativität (z.B. auf dem Gebiet der Kunst). In Projekten ist die operationelle Kreativität als eine Kombination von Phantasie und Logik gefragt.

Kann ein Mensch seine Blockaden überwinden, ist er kreativ, also offen, phantasievoll und risikobereit. Operationelle Kreativität beschreitet neue Wege, bringt neue Ideen und Produkte hervor, die in ihren wesentlichen Merkmalen neu sind. Wichtig ist es daher ein Umfeld zu schaffen, in dem Kreativität gelebt werden kann, Es liegt insbesondere in der Verantwortung des Projektleiters mit geeigneten Mitteln zur Förderung der Kreativität beizutragen, wobei für den Projekterfolg beide Komponenten wichtig sind, sowohl die Kreativität des Einzelnen als auch die des gesamten Projektteams. Man kann die Kreativität auch als Prozess verstehen und folgende Unterteilung vornehmen:

- 1. Präparation
- 2. Inkubation
- 3. Illumination
- 4. Verifikation

Bei Einsetzen kreativer Methoden in Gruppen müssen folgende Regeln eingehalten werden:

- 1. Keine Kritikäußerungen
- 2. Quantität vor Qualität
- 3. Ideen festhalten und visualisieren
- 4. Gegenseitige Anregungen aufnehmen (gegenseitige Befruchtung)

Eine Bewertung der Beiträge findet dabei erst ganz zum Schluss statt.

Hilfe beim Starten des Kreativitätsprozesses findet der Projektleiter durch verschiedene Kreativitätstechniken. Man sowohl intuitive Kreativitätstechniken als auch eine analytische Vorgehensweise wählen. Die intuitiven Techniken sind z.B. Brainstorming, Brainwriting, Reizwortanalyse, Bildkarten oder die Kopfstandmethode.

Die analytischen Techniken sind z.B. Osborne Checklist, Mind-Map und Morphologische Matrix. Dem Projektleiter fällt die Aufgabe der Moderation zu.

9.1.2 Kreativität im Projekt

Ein "Raketenmotor" – auch bedingt durch den Namen - zielt immer nur in eine Richtung, militärische Anwendung, mit den damit verbunden Restriktionen und Problemen.

Die verwendeten Technologien und Merkmale sollen nun auf zivile Anwendungsgebiete übertragen werden. Dabei spielt es erst einmal keine Rolle, welche Technologien, welche Merkmale und welche Märkte. Die Entwickler sind von Haus aus skeptisch und zu lange im militärischen Geschäft tätig, um neue innovative Ideen erarbeiten zu können.

Ein Workshop soll daher die Lösung sein.

Marketing und Vertrieb werden angewiesen, diesen Workshop durchzuführen.

Zur Förderung der Kreativität wird für ein angenehmes Ambiente abseits der nüchternen Firmenatmosphäre gesorgt, Meetingroom in einem Hotel, gutes Essen, Abendveranstaltung.

Neben Marketing und Vertrieb sind als weitere Teilnehmer die Projektleitung, die Mitarbeiter der Abteilung Geschäftsentwicklung, die Entwicklungsleitung sowie Mitarbeiter aus allen relevanten Entwicklungsabteilungen vertreten.

Wider Erwarten entstehen eine Menge Ideen. Entwicklungsabteilung und Marketing und Vertrieb befruchten sich gegenseitig. Brainstorming ist angesagt.

Der Projektleiter hat vorher die Regeln aufgestellt und erklärt, niemand wird für seine Idee kritisiert oder belächelt, alles darf angedacht und vorgeschlagen werden.

Alle Vorschläge und Ideen werden vom Projektleiter aufgeschrieben und dokumentiert.

Nach der Ideensammlung werden die Vorschläge gemeinsam kategorisiert und priorisiert. Das vom Projektleiter anschließend erstellte Workshop-Protokoll wird der Geschäftsleitung vorgelegt.

Danach passiert lange nichts. Die Workshop-Teilnehmer hegen schon die Befürchtung, die Geschäftsführung habe das Ergebnis des Workshops gar nicht bekommen.

Dann die Reaktion.

Nach reiflicher Überlegung habe sich die Geschäftsleitung entschlossen, die vorgeschlagenen neuen Wege nicht zu beschreiten. Man sei im Wehrtechnikgeschäft tätig und müsse versuchen, hier neue Aufträge zu akquirieren und Marktanteile zu gewinnen. Das Risiko eines zivilen Marktantritts sei zu groß.

9.1.3 Erkenntnisse und Verbesserungen

Die Geschäftsleitung hat nicht begriffen, dass neue Ideen natürlich immer ein gewisses Risiko bedeuten, gleichzeitig aber auch Chancen eröffnen. Sie stellt keine offene, wertschätzende Umgebung her, sondern urteilt vorschnell und intuitiv.

Über solch einen Workshop, mit seinen Ergebnissen, muss intensiver nachgedacht werden, vorschnelle Vorverurteilungen sollten nicht stattfinden. Von den Teilnehmern wurde der Workshop allerdings als sehr gut empfunden. Wenn das Ergebnis auch nicht als sehr erfolgreich eingestuft wurde, so hat er zumindest zu einem besseren Verständnis zwischen den einzelnen Abteilungen beigetragen und geholfen das Betriebsklima nachhaltig zu verbessern.

9.2. Ergebnisorientierung (Wahlthema 9.4)

9.2.1 Definition

Das Wort Ergebnisorientierung setzt sich zusammen aus Ergebnis und Orientierung.

Das heißt, es zählt das Resultat (Ergebnis) aus dem Projektprozess, aber unter Berücksichtigung und Integration sozialer Umfeldfaktoren. Ergebnisse können hierbei sein: Projektergebnisse, Kundenergebnisse, Mitarbeiterergebnisse und auf andere betroffene Interessierte Parteien bezogene Ergebnisse.

9.2.2. Ergebnisorientierung im Projekt

Bei der Ergebnisorientierung während eines Projekts sind zwei Aspekte zu berücksichtigen, zum einen der zeitliche Aspekt und zum anderen der inhaltliche.

Wichtig für den Projekterfolg ist Ergebnisorientierung während aller Phasen eines Projekts, beginnend mit der Planungsphase über die Realisierung bis hin zum Projektabschluss, wobei die Meinungen auseinander gehen, wann im Projektzyklus der Schwerpunkt der optimalen Ergebnisorientierung zu setzen ist. Der inhaltliche Aspekt setzt sich zusammen aus verschiedenen Betrachtungsebenen. Die Objektebene betrachtet das Objekt selbst, z.B. die Produktentwicklung, die Prozessoptimierung und ähnliches, also das "Was", während die Handlungsebene das "Wie" in den Vordergrund stellt, z.B. die eigentliche Abwicklung eines Projekts. Bei der Handlungsebene wird meist noch differenziert in die Ebene der Methodik und die Sozialebene.

Die Ergebnisorientierung liegt in der Verantwortung des Projektleiters und soll Orientierung zur optimalen Zielerreichung geben, eine Kontrollfunktion ausüben, um Abweichungen von der ursprünglichen Planung festzustellen, und nicht zuletzt motivierend wirken, um die Team-Performance zu steigern.

Im Projekt "Vulcano" wurde anhand einer Matrix die Ergebnisorientierung während der Projektphasen dargestellt. Die Matrix verknüpft den zeitlichen mit dem inhaltlichen Aspekt und beschreibt in welcher Projektphase und mit welcher Methode welches Objekt im jeweiligen Fokus der Ergebnisorientierung stand.

Phase	Objektebene "WAS"	Handlungsebene "WIE"
Planungsphase	 Auftragsklärung (Zieldefinition, Definition der Nichtziele Teamzusammenstellung Auswahl der Lieferanten 	 Entwicklungsprozess nach internen Standards Wahl der Mitglieder nach Erfahrungsschatz Nur Standardlieferant (nach internen Standards auditiert)
Realisierung	TeamführungFortschrittsmessungSteuerung des kritischen PfadsRisikomanagement	 Motivation, Kommunikation Reviews, Meilensteinabnahme Kostencontrolling Risikomonitoring (Komitee, Risikomanager)
Abschluß	LieferantenauswertungAbschlußbericht	LieferantenfragebogenDokumentenmanagement

Abbildung 30 - Matrix Ergebnisorientierung

Hierzu ein erlebtes Beispiel.

Während der sogenannten Definitionsphase eines Projekts wurden auch die verschiedenen Spezifikationen der Unterbaugruppen erstellt, wobei in einer der Spezifikationen von einem "Behälter" als Austauschmodul innerhalb der Unterbaugruppe die Rede war. Das Team, welches sich mit der Entwicklung dieser Unterbaugruppe befasste, war bei der Erstellung der Spezifikation noch nicht beteiligt, aber nun verantwortlich für die Umsetzung der Spezifikation. Für die schon vorher Beteiligten war klar, was mit dem Kunden besprochen worden war, und was dementsprechend mit diesem Behälter gemeint war. Niemand kam aber auf die Idee, dass das neu hinzu gekommene Team etwas anderes darunter verstehen könnte. Außerdem gab es eine große räumliche Distanz zwischen der Projektleitung und dem Entwicklungsteam, so dass regelmäßige Meetings und Reviews mit diesem Team über den Designfortschritt eher "stiefmütterlich" behandelt wurden. Lange Rede, kurzer Sinn, die zum vereinbarten internen Termin präsentierte Designlösung war zwar technisch höchst anspruchsvoll und entsprach dem Wortlaut nach der Spezifikation, war aber für den Kunden weder praktikabel noch finanziell darstellbar. Eine weitere Design-Iteration mit dem entsprechenden Kostenaufwuchs war die Folge.

9.2.3 Erkenntnisse und Verbesserung

Wie oben schon erwähnt zeichnet in erster Linie der Projektleiter für die Ergebnisorientierung verantwortlich. Jedoch nicht, ohne sein Team aktiv daran zu beteiligen. Wichtig für den Projekterfolg ist die Leistung des kompletten Projektleams.

Hier sehen wir im Rückblick noch Verbesserungspotential, das es auszuschöpfen gilt. Zwar wurde im Rahmen des Projektstarts das Projektteam zusammengestellt und gemeinsam die Zielerreichung erarbeitet und festgelegt, jedoch zeigte sich im Laufe der Realisierung, dass zu wenig miteinander kommuniziert wurde. Trotz regelmäßiger Projektmeetings waren teilweise einige Teammitglieder nicht oder nicht rechtzeitig über den Projektfortschritt informiert, andererseits wurden relevante Ergebnisse (z.B. Zielüberprüfungen) aus den

Reviewgesprächen mit dem Kunden nicht an alle wesentlichen Projektbeteiligten weitergegeben.

Hier muss der Projektleiter dafür sorgen, dass die interne Teamkommunikation – auch außerhalb der offiziellen Meetings - verbessert wird, gleichzeitig sollte die Frequenz der Projektmeetings erhöht werden.

Eine weitere Verbesserung sehen wir beim Projektabschluss. Hier ist es wichtig, nicht nur die Lieferanten über Fragebögen zum Projekterfolg und -ergebnis zu befragen, sondern die gleiche Fragestellung auch an das Team und den Kunden zu stellen.

Zum Schluss bleibt noch die Feststellung, dass die hier dargestellte Ergebnisorientierung im Projekt "Vulcano" nur einen Ausschnitt aus der Vielzahl der Aktivitäten der Ergebnisorientierung darstellt, teilweise finden sich dazu auch Aussagen im Kapitel 10 Projektabschluss.

10. Wahlelemente

10.1. Projektstart, Projektende (Wahlthema 10.4)

Die Prozessabläufe innerhalb der Startphase eines Projektes sind davon abhängig, ob es sich um ein internes Projekt oder ein im Kundenauftrag durchgeführtes Projekt handelt.

In der Startphase eines internen Projektes werden Struktur, Projektidentität und strategische Bedeutung festgelegt und es wird gegenüber seinem Umfeld abgegrenzt. Der Startprozess ist zweigeteilt, in den Projektstart im engeren Sinn, in dem die Projektvorbereitung noch nicht lösungsorientiert ist und in die konzeptionellen Phasen, in denen fachliche Arbeit geleistet wird.

Kundenprojekte erfordern einen anderen Einstieg als interne Projekte. Kundenprojekte führt ein Unternehmen im Auftrag eines externen Kunden gegen Entgelt aus. Bei Kundenprojekten werden wesentliche Grundlagen für eine erfolgreiche Projektabwicklung bereits in der Angebotsphase gelegt.

Der Projektabschluss ist die letzte Phase in einem Projektablauf und umfasst alle Tätigkeiten, die nach Fertigstellung des Projektgegenstandes durchgeführt werden müssen. Hierzu zählen:

Die Phase Projektabschluss gliedert sich in vier Prozessschritte mit folgenden Aktivitäten:

Produktabnahme:

Übergabe des Projektgegenstandes,

Projektabschlussanalyse:

Durchführung einer umfassenden Projektabschlussanalyse

Erfahrungssicherung:

Absicherung der im Projekt gesammelten Erfahrungen und erworbenen Kenntnisse

Projektauflösung:

Auflösung der Projektorganisation und der Projektressourcen

Projektberichte

10.1.1 Projektstart

Das Entwicklungsprojekt Vulcano ist ein Kundenprojekt und wird im Auftrag der Fa. ADS durchgeführt. Es basiert auf einem von der Fa. Dübel Rocket Motors nach einem Lastenheft und Spezifikationen der Fa. ADS erstellten Angebot und einem verhandelten Entwicklungsvertrag.

Da es sich um ein wehrtechnisches Entwicklungsprojekt handelt, wurde das gesamte Projekt schon in der Angebotsphase detailliert ausgeplant und strukturiert. Diese Vorgehensweise resultiert aus den haushälterischen Bestimmungen der Bundesrepublik Deutschland und wird vom Bundesamt für Wehrtechnik und Beschaffung für alle beteiligten Unterauftragnehmer gefordert, um detaillierte Wrtschaftlichkeitsbetrachtungen und Mengengerüst- und Preisprüfungen durchführen zu können.

In der Angebotsphase wurden folgende Schritte durchgeführt:

- 1. Ernennung eines Projektleiters, in diesem Fall für die Angebots-und Projektphase
- 2. Angebotsentscheidung vorbereiten und einholen
- 3. Festlegung Projektziele und strategische Einordnung des Projektes
- 4. Anforderungsanalyse (basierend auf Lastenheft und Spezifikationen)
- 5. Risikoanalyse
- 6. Erstellung Phasenplanung, Projektstrukturplan, Meilensteinplan und Ermittlung des Ressourcenbedarfs
- 7. Angebotskalkulation

Wesentliche planerische und konzeptionelle Aktivitäten, die üblicherweise in der Startphase eines Projektes durchgeführt werden, wurden im Falle des Projektes Vulcano bereits in der Angebotsphase abgearbeitet.

Da die Entwicklung des Raketenmotors zu den Kernkompetenzen der Fa. DRM zählt und der Entwicklungsgegenstand hinreichend spezifiziert war, wurde auf ein Brainstorming-Workshop verzichtet. Es wurden standardisierte Prozesse der Fa. DRM für die Angebotserstellung angewendet.

Nach der Auftragserteilung wurde der offizielle Projektstart mit der Festlegung des Projektteams und der Durchführung eines Kick-off Meeting mit allen Beteiligten initiiert. Das Projektteam besteht in großen Teilen als Mitarbeitern, die sehr viel Erfahrung mit der Entwicklung gleichartiger Raketenmotoren mitbringen.

Die bis zum Zeitpunkt des Kick-off Meetings ausgearbeitete Projektplanung, die strategische Bedeutung des Projektes für die Fa. DRM und detaillierte Informationen zu den vertraglichen Randbedingungen wurde dem Projektteam im Meeting präsentiert. Dabei wurde nach folgender Strukturierung vorgegangen:

Gliederung Projekt-Kick-Off
Vorstellung Projektleitung
Projektziele und strategische Bedeutung
Vertrag, Vertragsmanagement
Stakeholder und Projektumfeld
Projektorganisation
Produktstrukturplan
Projektstrukturplan

Meilensteinplan	
Phasenplanung	
Projektbudget und Ressourcenbedarf	
Übersicht der Arbeitspakete und der AP-Verantwortlichen	
Risikofaktoren & Maßnahmen	
Spezielle Projektregeln / Team-Vereinbarungen	

In einer To-Do Liste wurden die ersten Aktivitäten der Projektstartphase festgelegt:

- 1. Ausarbeitung detaillierte Zeitplanung mit Verknüpfung der Arbeitspakete
- 2. Detaillierte Ressourcenplanung
- 3. Überarbeitung von Projektstrukturplan, Produktstrukturplan und Meilensteinplan unter Berücksichtigung des Entwicklungsvertrages
- 4. detaillierte Finanzmittelplanung

Die gewählte Vorgehensweise in der Startphase (unter Einbeziehung der durchgeführten Aktivitäten der Angebotsphase) war aus folgenden Gründen dem Projekt angemessen:

- wesentliche Aktivitäten wurden bereits in der Angebotsphase durchgeführt.
- umfangreiche konzeptionelle Arbeiten waren nicht notwendig, da der Entwicklungsgegenstand hinreichend spezifiziert war und auf qualifizierte Komponenten und Verfahren zurückgegriffen werden konnte. Die Entwicklung wurde firmenintern als sehr risikoarm eingestuft

Insgesamt konnte durch die aufgeführten Randbedingungen die Projektstartphase stark verkürzt werden und die Entwicklung zügig begonnen werden.

10.1.2 Projektabschluss

Der Projektabschluss des Entwicklungsprojektes Vulcano wurde nach folgenden Prozessschritten durchgeführt:

Produktabnahme

Projektabschlussanalyse

Erfahrungssicherung

Projektauflösung

Projektberichte

Produktabnahme:

Der Abschlussprozess des Entwicklungsprojektes Vulcano wurde mit der Produktabnahme initiiert. Im Beisein des Auftraggebers wurde eine formelle Übergabe des Entwicklungsgegenstandes durchgeführt und protokollarisch dokumentiert. Alle notwendigen Nachweisdokumente (Leistung, Spezifikationskonformität, Sicherheit, Qualität) wurden dem Auftraggeber ausgehändigt. Der Auftraggeber bestätigte in Form eines Übernahmeprotokolls die Produktabnahme.

Projektabschlussanalyse:

Im Rahmen einer Projektabschlussanalyse wurde der Projektverlauf mit den ursprünglichen Planungen und Annahmen aus der Angebots- und Projektstartphase verglichen und bewertet. Es zeigte sich, dass es durch den Einsatz bewährter Komponenten und Verfahren bei der Motorentwicklung nur zu geringen Abweichungen gegenüber der Ursprungsplanung gekommen war. Die Abweichungen lagen in Problemen mit Unterlieferanten begründet. Dieses positive Ergebnis wurde unter anderem darauf zurückgeführt, dass während der Projektlaufzeit ein effizientes Projektcontrolling durchgeführt wurde, so dass bei erkennbaren Abweichungen im Projektverlauf rechtzeitig gegengesteuert werden konnte.

Im Hinblick auf den konsequenten Einsatz der GFK Technologie zeigte sich, dass bei der Verfahrensentwicklung zur Herstellung des Motorgehäuses ein Mehraufwand von 11 % notwendig war um spezifikationskonforme Komponenten herzustellen. Dieser Mehraufwand war im Hinblick auf das erworbenen Know-How und der damit verbundenen Absicherung der technologischen Basis für zukünftige Entwicklungen, gerechtfertigt. Vor diesem Hintergrund wurde der Projektverlauf abschließend als positiv bewertet.

Erfahrungssicherung:

Im Hinblick auf eine Erfahrungs-und Know-How Sicherung wurde von den Entwicklern der neu erarbeiteten und für zukunftsweisend erachteten Verfahren und Technologien detaillierte technische Berichte angefertigt und in der firmeninternen Technologie-Datenbank archiviert und damit für alle autorisierten Mitarbeiter verfügbar gemacht.

Projektauflösung:

Die formelle Projektauflösung wurde mit einer Projektabschlusssitzung eingeleitet, zu der die Geschäftsleitung der Fa. DRM als oberstes Entscheidungsgremium eingeladen wurde. Das Projekt, der Projektverlauf und die Zielerfüllung wurden detailliert dargestellt. Die erzielten Ergebnisse wurden von der Geschäftsführung positiv bewertet, da zukunftsweisende Verfahren und Technologien für DRM verfügbar gemacht wurden und trotz dieses technologischen Neulandes der Projektverlauf sehr positiv war.

Es wurde in dieser Phase ein umfangreicher Projektabschlussbericht erstellt, in dem unter anderem die noch beim Kunden im Rahmen der Flugkörperqualifikation durchzuführenden Unterstützungsarbeiten (mit Aufwandsschätzung) ausgewiesen wurden.

Die Überleitung des Projektpersonals in die Linienorganisation erfolgte bereits während der Endphase des Projektes, in dem Maße, wie Personalressourcen für die Restaufgaben nicht mehr benötigt wurden. Damit wurde ein sanfter Übergang bei der Freisetzung des Personals erreicht und rechtzeitige Einsatzplanungen für andere Projekte ermöglicht.

Projektberichte:

Im letzten Prozessschritt des Projektabschlusses wurden die nach den internen Bestimmungen der Fa. DRM vorgeschrieben Projektunterlagen und Berichte generiert, zusammengestellt und archiviert.

11. Anhang

11.1. Abkürzungsverzeichnis

ADS Advanced Defence Systems AG

AP Arbeitspaket

AQAP Allied Quality Assurance Publications

AWG Außenwirtschaftsgesetz

BWB Bundesamt für Wehrtechnik und Beschaffung

CDR Critical Design Review

CFK Carbon-faserverstärkter Kunststoff

CoC Centre of Competence

DRM Dübel Rocket Motors GmbH

ea. each

IM Insensitive Munition

ITAR International Traffic in Arms Regulations

K-Stand Konfigurationsstand

KWKG Kriegswaffenkontrollgesetz

MIL-STD Military Standard

MS Meilenstein

MSH Missile Systems Hessen

PDR Preliminary Design Review

PL Projektleiter

PSP Projektstrukturplan

PT Personentag(e)

TA Teilaufgabe

TDP Technical Data Package

TSK Teilstreitkraft

UA Unterauftragnehmer

V-Modell Vorgehensmodell

VZÄ Vollzeitäquivalent

11.2. Abbildungsverzeichnis

ABBILDUNG 1 - PROJEKTSTECKBRIEF	6
ABBILDUNG 2 - ZIELTABELLE	9
ABBILDUNG 3 - ZIELHIERARCHIE	10
ABBILDUNG 5 - MATRIX UMFELDFAKTOREN	13
ABBILDUNG 4 - PROJEKTUMFELD	13
ABBILDUNG 6 - SCHNITTSTELLENBESCHREIBUNG	15
Abbildung 7- Stakeholderanalyse	17
ABBILDUNG 8 - STAKEHOLDERPORTFOLIO	18
ABBILDUNG 9 - RISIKEN KLASSIFIZIERUNG	20
ABBILDUNG 10 - RISIKOANALYSE, QUANTITATIV	21
ABBILDUNG 11 - ORGANIGRAMM DÜBEL ROCKET MOTORS GMBH (DRM)	22
ABBILDUNG 12 - PROJEKTORGANISATION "VULCANO"	23
ABBILDUNG 13 - ROLLEN UND AUFGABEN IM PROJEKTTEAM	25
ABBILDUNG 14 - KOMMUNIKATIONSMATRIX	28
ABBILDUNG 15 - INHALT DER PROJEKTPHASEN	30
ABBILDUNG 16 - BESCHREIBUNG DER MEILENSTEINE	30
ABBILDUNG 17 - DETAILLIERUNG DER PROJEKTPHASEN	31
ABBILDUNG 18 - PROJEKTPHASEN UND MEILENSTEINE	31
ABBILDUNG 19 - PROJEKTSTRUKTURPLAN ENTWICKLUNGSPROJEKT VULCANO	33
ABBILDUNG 20 - ARBEITSPAKETBESCHREIBUNG P09-1.2.2 HERSTELLUNG TREIBSATZPROBEN	34
ABBILDUNG 21 - ARBEITSPAKETBESCHREIBUNG P09-3.6 AUSWERTUNG ABBRANDTESTS	35
ABBILDUNG 22 - VORGANGSLISTE ENTWICKLUNGSPROJEKT VULCANO	38
ABBILDUNG 23 - VERNETZTER BALKENPLAN ENTWICKLUNGSPROJEKT VULCANO	39
ABBILDUNG 24 - QUALIFIKATIONSPROFIL RESSOURCEN	41
ABBILDUNG 25 - PERSONALRESSOURCEN	42
ABBILDUNG 26 - EINSATZMITTELPLANUNG	44
ABBILDUNG 27 - KOSTENANFALL	45
ABBILDUNG 28 - KOSTENGANGLINIE	46
ABBILDUNG 29 - KOSTENSUMMENLINIE	47
ARRIUDLING 20 - MATRIX ERGERNISORIENTIERLING	51