Econometria I Modelo da Função de Esperança Condicional Linear

Victor Oliveira

Núcleo de Economia Internacional e Desenvolvimento Econômico

PPGDE - 2024

Sumário

- ① CEF
- 2 Variância da Regressão
- Melhor Preditor
- 4 Variância Condicional
- 5 Homocedasticidade e Heterocedasticidade
- 6 Função de Esperança Condicional Linear
- Modelo CEF Linear
- 8 Melhor Preditor Linear e Erro de Projeção
- 9 Propriedades do Erro de Projeção
- 🔟 Propriedades do Modelo de Projeção Linear

Victor Oliveira FECL PPGDE -2024 2/50

Definição

• A função esperança condicional (CEF) do erro ε é definida como a diferença entre y avaliada no vetor aleatório x,

$$\varepsilon = y - m(\boldsymbol{x}) \tag{1}$$

• Por construção, ela vem da fórmula:

$$y = m(\mathbf{x}) + \varepsilon \tag{2}$$

- É útil entender que o termo de erro ε é derivado da distribuição conjunta de (y, x) e, assim, suas propriedades também são derivadas dessa construção.
- \bullet A principal propriedade da CEF do erro é de que ele possui média condicional igual a zero. $$^{3/50}$$

Propriedades

Demonstração.

Para ver isso, vamos considerar a linearidade da esperança condicional, a definição $m(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$ e o teorema do condicionamento

$$\mathbb{E}[\varepsilon|\boldsymbol{x}] = \mathbb{E}[(y - m(\boldsymbol{x}))|\boldsymbol{x}]$$
$$= \mathbb{E}[y|\boldsymbol{x}] - \mathbb{E}[m(\boldsymbol{x})|\boldsymbol{x}]$$
$$= m(\boldsymbol{x}) - m(\boldsymbol{x}) = 0$$

• Este fato pode ser combinado com a lei das expectativas iteradas para mostrar que a média incondicional também é zero:

$$\mathbb{E}[\varepsilon] = \mathbb{E}\left[\mathbb{E}\left[\varepsilon|\boldsymbol{x}\right]\right] = \mathbb{E}[0] = 0 \tag{3}$$

Victor Oliveira FECL PPGDE - 2024 4 / 50

Teorema: Propriedades da CEF

Teorema.

- $Se \mathbb{E}|y| < \infty \ ent\tilde{a}o$:
 - $\bullet \ \mathbb{E}[\varepsilon | \boldsymbol{x}] = 0$
 - $\mathbb{E}[\varepsilon] = 0$
 - **3** Se $\mathbb{E}|y|^r < \infty$ para $r \geq 1$, então $\mathbb{E}|\varepsilon|^r < \infty$
 - \bullet para qualquer função h(x) tal que $\mathbb{E}|h(x)\varepsilon| < \infty$, então $\mathbb{E}[h(x)\varepsilon] = 0$
- A propriedade 4 diz que "ε" é não correlacionado com qualquer função dos regressores. PROVE!

Demonstração.

Pela desigualdade de Minkowski, temos que:

$$\left[\mathbb{E}|\varepsilon|^{r}\right]^{1/r} = \left[\mathbb{E}|y - m(\boldsymbol{x})|^{r}\right]^{1/r}$$

$$\leq \left[\mathbb{E}|y|^{r}\right]^{1/r} + \left[\mathbb{E}|m(\boldsymbol{x})|^{r}\right]^{1/r} < \infty \tag{4}$$

em que as duas partes do lado direito são finitas porque $[\mathbb{E}|y|^r] < \infty$ por hipótese e $[\mathbb{E}|m(\boldsymbol{x})|^r] < \infty$ pela desigualdade da expectativa condicional^a.

Assim,
$$[\mathbb{E}|\varepsilon|^r]^{1/r} \Longrightarrow [\mathbb{E}|\varepsilon|^r] < \infty$$
.

^aPara qualquer $r \geq 1$ e para quaisquer variáveis aleatórias $(Y,X) \in \mathbb{R} \times \mathbb{R}^k$ tal que $\mathbb{E}|y|^r < \infty$, então $\mathbb{E}|\mathbb{E}(y|x)|^r \leq \mathbb{E}|y|^r < \infty$.

Média Condicional

As equações

$$y = m(\mathbf{x}) + \varepsilon \tag{5}$$

7/50

$$\mathbb{E}[\varepsilon|\boldsymbol{x}] = 0 \tag{6}$$

juntas implicam que m(x) é a CEF de y dado x. Isso é importante para entender que isto não é uma restrição. Estas equações mantemse verdadeiras por definição.

- A condição $\mathbb{E}[\varepsilon|\boldsymbol{x}] = 0$ está implícito na definição de ε como a diferença entre y e a CEF $m(\boldsymbol{x})$.
- A equação $\mathbb{E}[\varepsilon|x] = 0$ é as vezes chamada de restrição da média condicional, porque a média condicional do erro ε é igual a zero.

Victor Oliveira FECL PPGDE - 2024 7/50

Figura 1: Simulação: Soma dos Erros é Zero

Variância da Regressão

• Uma importante medida de dispersão sobre a função CEF é a variância não condicional da CEF do erro ε . Ela pode ser escrita como:

$$\sigma^2 = \operatorname{var}(\varepsilon) = \mathbb{E}\left[\left(\varepsilon - \mathbb{E}[\varepsilon]\right)^2\right] = \mathbb{E}\left[\varepsilon^2\right]$$
 (7)

Teorema

$$Se~\mathbb{E}\left[y^2\right]<\infty,~ent\tilde{a}o~\sigma^2<\infty.$$

- \bullet Podemos chamar σ^2 a variância da regressão ou a variância do erro da regressão.
- A magnitude de σ^2 mede a quantidade da variação em y que **não** é "**explicada**" ou mensurada pela média condicional $\mathbb{E}[y|x]$.

Variância Condicional

ullet A variância da regressão depende do $oldsymbol{x}$. Para ver isso, considere duas regressões:

$$y = \mathbb{E}(y|\mathbf{x}_1) + \varepsilon_1 \tag{8}$$

$$y = \mathbb{E}(y|\boldsymbol{x}_1, \boldsymbol{x}_2) + \varepsilon_2 \tag{9}$$

em que ε_1 e ε_2 são diferentes. Mudar as informações do condicionante, muda a média condicional e portanto, o erro da regressão também.

• Pelas expectativas iteradas, aumentar o conjunto de condicionante, a esperança condicional revela maior detalhes sobre a distribuição de y. Qual é a implicação para o termo de erro?

- Há uma simples relação! Podemos pensar a média condicional $\mathbb{E}(y|\boldsymbol{x})$ como a "parte explicada" de y e $\varepsilon = y \mathbb{E}(y|\boldsymbol{x})$ como a "parte não explicada".
- A relação que derivamos mostra que a variância desta parte não explicada decresce quando condicionamos em mais variáveis. A relação é monotônica no sentido de que ao aumentar a quantidade de informação a variância da parte não explicada irá reduzir.

Teorema

$$Se \ \mathbb{E}(y)^2 < \infty, \ ent \tilde{ao} \ var(y) \geq var(y - \mathbb{E}(y|\boldsymbol{x}_1)) \geq var(y - \mathbb{E}(y|\boldsymbol{x}_1,\boldsymbol{x}_2)).$$

• Esse teorema diz que a variância da diferença entre y e sua média condicional (fracamente) decresce quando uma variável adicional é incluída na informação condicionante.

 $\frac{11/50}{11/50}$

Predição

- Suponha que dado um valor realizado de x, queremos gerar uma previsão de y.
- Podemos escrever qualquer preditor como uma função g(x) de x. O erro de previsão é a diferença realizada y - g(x).
- Uma medida não estocástica da magnitude do erro de previsão é a esperança do seu quadrado:

$$\mathbb{E}\left(y - g(\boldsymbol{x})\right)^2\tag{10}$$

12/50

- Podemos definir o melhor preditor como a função g(x) que minimiza $\mathbb{E}(y-g(\boldsymbol{x}))^2$.
- Qual função é o melhor preditor? Acontece que a resposta é CEF m(x). Isso é válido independentemente da distribuição conjunta de $(y, \boldsymbol{x}).$

FECL PPGDE - 202412 / 50

Demonstração.

Para ver isso, note que o erro quadrado médio de um preditor $g(\boldsymbol{x})$ é dado por:

$$\mathbb{E}[y - g(\boldsymbol{x})]^{2} = \mathbb{E}[\varepsilon + m(\boldsymbol{x}) - g(\boldsymbol{x})]^{2}$$

$$= \mathbb{E}[\varepsilon]^{2} + 2\mathbb{E}[\varepsilon(m(\boldsymbol{x}) - g(\boldsymbol{x}))] + \mathbb{E}[m(\boldsymbol{x}) - g(\boldsymbol{x})]^{2}$$

$$= \mathbb{E}[\varepsilon]^{2} + \mathbb{E}[m(\boldsymbol{x}) - g(\boldsymbol{x})]^{2}$$

$$\geq \mathbb{E}[\varepsilon]^{2}$$

$$= \mathbb{E}[y - m(\boldsymbol{x})]^{2}$$
(11)

em que $y = m(\mathbf{x}) + \varepsilon$.

Teorema (Média condicional como melhor preditor)

Se $\mathbb{E}(y)^2 < \infty$, então para qualquer preditor g(x),

$$\mathbb{E}[y - g(\boldsymbol{x})]^2 \ge \mathbb{E}[y - m(\boldsymbol{x})]^2$$
(12)

quando $m(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}].$

- Embora a média condicional seja uma boa medida da localização de uma distribuição condicional, ela não fornece informações sobre a extensão da distribuição.
- Uma medida comum da dispersão é a variância condicional.

Definição

Se $\mathbb{E}(y)^2 < \infty$, a variância condicional de y dada por \boldsymbol{x} é:

$$\sigma^{2} = \operatorname{var}(y|\boldsymbol{x})$$

$$= \mathbb{E}\left[\left(y - \mathbb{E}(y|\boldsymbol{x})\right)^{2} \middle| \boldsymbol{x}\right]$$

$$= \mathbb{E}(\varepsilon^{2}|\boldsymbol{x})$$
(13)

• O desvio-padrão condicional é $\sigma(x) = \sqrt{\sigma^2(x)}$.

 A variância não condicional e a variância condicional são relacionadas pela lei das expectativas iteradas.

$$\sigma^{2} = \mathbb{E}\left(\varepsilon^{2}\right) = \mathbb{E}\left(\mathbb{E}\left(\varepsilon^{2}|\boldsymbol{x}\right)\right)$$
$$= \mathbb{E}\left(\sigma^{2}(\boldsymbol{x})\right)$$
(14)

isto é, a variância não condicional é a média da variância condicional.

- Um resultado interessante que normalmente usamos em análise de regressão: $\mathbb{E}(u) = 0$ e $\sigma^2 = 1$.
- Dado a variância condicional podemos definir o erro da seguinte forma.

$$u = \frac{\varepsilon}{\sigma(\mathbf{x})} \tag{15}$$

 \bullet Podemos fazer essa conta, uma vez que $\sigma(\boldsymbol{x})$ é uma função de \boldsymbol{x} :

$$\mathbb{E}(u|\mathbf{x}) = \mathbb{E}\left[\frac{\varepsilon}{\sigma(\mathbf{x})}\middle|\mathbf{x}\right]$$

$$= \frac{1}{\sigma(\mathbf{x})}\mathbb{E}(\varepsilon|\mathbf{x})$$

$$= 0$$
(16)

• Para a variância temos:

$$\operatorname{var}(u|\boldsymbol{x}) = \mathbb{E}\left(u^{2}|\boldsymbol{x}\right)$$

$$= \mathbb{E}\left[\frac{\varepsilon^{2}}{\sigma^{2}(\boldsymbol{x})}|\boldsymbol{x}\right]$$

$$= \frac{1}{\sigma^{2}(\boldsymbol{x})}\mathbb{E}\left(\varepsilon^{2}|\boldsymbol{x}\right)$$

$$= \frac{\sigma^{2}(\boldsymbol{x})}{\sigma^{2}(\boldsymbol{x})}$$

$$= 1 \tag{17}$$

• Então *u* possui uma média condicional zero e uma variância condicional igual a 1.

Homocedasticidade e Heterocedasticidade

• Um caso especial importante que obtemos é quando a variância condicional $\sigma^2(x)$ é uma constante e independente de x.

Definição

O erro é homocedástico se $\mathbb{E}\left(\varepsilon^{2}|\boldsymbol{x}\right)=\sigma^{2}$. Isto é, não depender de \boldsymbol{x} .

• No caso geral onde $\sigma^2(x)$ depende de x, dizemos que o erro é heterocedástico.

Definição

O erro é **heterocedástico** se $\mathbb{E}(\varepsilon^2|x) = \sigma^2(x)$. Isto é, depende de x.

• Por definição, a variância não condicional σ^2 é uma constante e independente dos regressores \boldsymbol{x} . Assim, quando pensamos na variância como função dos regressores, estamos falando na variância condicional $\sigma^2(\boldsymbol{x})$.

Observação

Definir heterocedasticidade como o caso onde "a variância de e varia entre as observações" é uma forma pobre e confusa de definição.

• É mais elegante/construtivo entender que heterocedasticidade significa que a variância condicional $\sigma^2(\boldsymbol{x})$ depende das observáveis.

Observação

Visão de que homocedasticidade é o componente e uma especificação correta da regressão e descrever heterocedasticidade como uma exceção ou desvio.

• A visão correta é que heterocedasticidade é genérico e "padrão", enquanto homocedasticidade é incomum e excepcional. O padrão no trabalho empírico deve ser assumir que os erros são heteroscedásticos, e não o contrário.

Função de Esperança Condicional Linear

- Um caso especial é quando a CEF é linear em \boldsymbol{x} , isto é, $m(\boldsymbol{x}) = \mathbb{E}(y|\boldsymbol{x})$.
- Podemos escrever a equação média como:

$$m(\mathbf{x}) = x_1 \beta_1 + x_2 \beta_2 + \dots + x_k \beta_k + \beta_{k+1}$$
 (18)

- \bullet Para facilitar a notação, podemos escrever a eq. (18) como uma função do vetor $\boldsymbol{x}.$
- Para isso, temos de aumentar o vetor \boldsymbol{x} listando o número $\boldsymbol{1}$ como um elemento. Vamos chamar de constante e o coeficiente associado será chamado de intercepto.

• Vamos assumir que o último elemento do vetor \boldsymbol{x} é o intercepto, então $x_k = 1$. Assim, redefinimos o vetor \boldsymbol{x} como vetor $k \times 1$

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{k-1} \\ 1 \end{pmatrix} \tag{19}$$

• Com essa redefinição, a CEF passa a ser:

$$m(\mathbf{x}) = x_1 \beta_1 + x_2 \beta_2 + \dots + x_k \beta_k = \mathbf{x}' \boldsymbol{\beta}$$
 (20)

• Temos que

$$\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} \tag{21}$$

é um vetor de coeficiente $k \times 1$.

- Este é o modelo da função de esperança condicional linear.
- É também chamado de **modelo de regressão linear** ou regressão de y e \boldsymbol{x} .

• No modelo CEF linear, a derivada da regressão é simplesmente o vetor de coeficientes, isto é:

$$\nabla m(\boldsymbol{x}) = \beta \tag{22}$$

 Uma das vantagens desse modelo é poder interpretar o coeficiente como efeito marginal de uma variável, mantendo as demais constantes.

Modelo CEF Linear

• Seja

$$y = \mathbf{x}'\beta + \varepsilon \tag{23}$$

$$\mathbb{E}(\varepsilon|\boldsymbol{x}) = 0 \tag{24}$$

• Se o erro for homocedástico, temos um modelo CEF homocedástico linear, isto é,

$$y = \mathbf{x}'\beta + \varepsilon \tag{25}$$

$$\mathbb{E}(\varepsilon|\boldsymbol{x}) = 0 \tag{26}$$

$$\mathbb{E}\left(\varepsilon^2|\boldsymbol{x}\right) = \sigma^2 \tag{27}$$

- O Teorema do Melhor Preditor mostrou que a média condicional m(x) é o melhor preditor no sentido de que ele possui o menor erro ao quadrado entre todos os preditores.
- Podemos definir uma aproximação para a CEF pela função linear com o menor erro quadrado entre todos preditores lineares.
- Para fazermos essa derivação vamos precisar das condições de regularidade:

CR.1
$$\mathbb{E}(y^2) < \infty$$

CR.2 $||x|| < \infty$

CR.3 $\mathbf{Q}_{xx} = \mathbb{E}(xx')$, em que Q_{xx} é positiva definida

PPGDE - 2024

- Na condição de regularidade 2, usamos a notação $\|x\|$ para denotar o comprimento euclidiano do vetor x.
- As condições de regularidade 1 e 2 implicam que as variáveis y e xtem média, variância e covariância finitas.
- A condição de regularidade 3 equivale impor que as colunas da $Q_{xx} = \mathbb{E}(xx')$ são linearmente independentes. Isto é, a matriz Q_{xx} tem inversa.
- Um preditor linear para y é uma função da forma $x'\beta$ para algum $\boldsymbol{\beta} \in \mathbb{R}^k$

• O melhor preditor do erro quadrático médio é:

$$S(\boldsymbol{\beta}) = \mathbb{E}[y - \boldsymbol{x'}\boldsymbol{\beta}]^2 \tag{28}$$

• O melhor preditor linear de y dado x, escrito como $\mathcal{P}(y|x)$, é obtido selecionando o vetor β que minimiza $S(\beta)$.

A partir dessas informações podemos ter a seguinte definição.

Definição

O melhor preditor linear de y dado x é

$$\mathcal{P}(y|\boldsymbol{x}) = \boldsymbol{x'\beta} \tag{29}$$

em que β minimiza o erro quadrático médio predito.

 \bullet O minimizador $\boldsymbol{\beta} = \arg\min_{\boldsymbol{b} \in \mathbb{R}^k} S(\boldsymbol{b})$ é chamado de **coeficiente de** projeção linear.

• O erro quadrático médio de predição pode ser escrito como uma função quadrática de β :

$$S(\beta) = \mathbb{E}y^2 - 2\beta' \mathbb{E}(xy) + \beta' \mathbb{E}(xx')\beta$$
 (30)

• Derivando com relação a β , encontramos a CPO:

$$\frac{\partial}{\partial \boldsymbol{\beta}} S(\boldsymbol{\beta}) = 0 \quad \Longleftrightarrow \quad -2\mathbb{E}(\boldsymbol{x}\boldsymbol{y}) + 2\mathbb{E}(\boldsymbol{x}\boldsymbol{x}')\boldsymbol{\beta} = 0 \tag{31}$$

• Podemos reescrevendo a (31) como:

$$2\mathbb{E}(\boldsymbol{x}y) = 2\mathbb{E}(\boldsymbol{x}\boldsymbol{x}')\boldsymbol{\beta} \tag{32}$$

• Assim,

$$Q_{xy} = Q_{xx}\beta \tag{33}$$

em que $Q_{xy} = \mathbb{E}(xy)$ é um vetor $k \times 1$ e $Q_{xx} = \mathbb{E}(xx')$ é um vetor $k \times k$.

ullet A solução é obtida invertendo a matriz $oldsymbol{Q}_{xx}$ e fazendo:

$$\beta = Q_{xx}^{-1} Q_{xy}$$

$$\beta = [\mathbb{E}(xx')]^{-1} \mathbb{E}(xy)$$
(34)

32/50

Observação

A condição de regularidade 3 é fundamental para que eq. (34) possa existir!

Victor Oliveira FECL PPGDE - 2024 32 / 50

Melhor Preditor Linear e Erro de Projeção

• Temos uma solução explícita para o melhor preditor linear:

$$\mathcal{P}(y|\mathbf{x}) = \mathbf{x}' \left[\mathbb{E}(\mathbf{x}\mathbf{x}') \right]^{-1} \mathbb{E}(\mathbf{x}y)$$
 (35)

- Essa expressão podemos chamar de **projeção linear** de y em x.
- O erro de projeção é dado por

$$\varepsilon = y - x'\beta \tag{36}$$

Projeção

- Formalmente, uma projeção \mathcal{P} é uma função linear em um espaço vetorial, de modo que, quando aplicada a si mesma, obtém-se o mesmo resultado, ou seja, $\mathcal{P}^2 = \mathcal{P}$.
- Considere um vetor ν em duas dimensões. ν é uma linha reta finita apontando em uma determinada direção.
- ullet Suponha que haja algum ponto x que não está nessa linha reta, mas no mesmo espaço bidimensional.
- A projeção de x, isto é, $\mathcal{P}x$, é uma função que retorna o ponto "mais próximo" de x ao longo da linha vetorial ν .
- Esse ponto será denotado por \bar{x} .
- Na maioria dos contextos, o mais próximo refere-se à distância euclidiana, ou seja, $\sqrt{\sum_i (x_i \bar{x}_i)^2}$.

Figura 2: Projeção Ortogonal

- Resumindo, a projeção é uma forma de simplificar algum espaço n-dimensional comprimindo informações em um (hiper)plano.
- Isso é útil especialmente em ambientes de ciências sociais onde a complexidade dos fenômenos que estudamos significa que a previsão exata é impossível.
- Em vez disso, muitas vezes queremos construir modelos que comprimam dados e variáveis em explicações mais simples e parcimoniosas.
- A projeção é o método estatístico para conseguir isso ela pega todo o espaço e o simplifica em relação a um certo número de dimensões.
- Embora a Figura acima seja (razoavelmente) intuitiva, vale a pena explicar a matemática por trás da projeção, até porque ajuda a demonstrar a conexão entre projeção linear e regressão linear.

• Para começar, podemos pegar algum ponto no espaço n-dimensional, x, e a reta vetorial ν ao longo da qual queremos projetar x. O objetivo é o seguinte:

$$\arg\min_{c} (\|\bar{x} - x\|) = \arg\min_{c} \sqrt{\sum_{i} (\bar{x}_{i} - x_{i})^{2}} \text{ [pela norma } L^{2}\text{]}$$

$$= \arg\min_{c} \sum_{i} (\bar{x}_{i} - x_{i})^{2} \text{ [}\sqrt{\cdot} \text{ \'e monotônica}\text{]}$$

$$= \arg\min_{c} \sum_{i} (c\nu_{i} - x_{i})^{2} \text{ [}\bar{x} = c\nu\text{]}$$

37/5037 / 50

ullet Esta forma é quadrática em c, então atinge mínimo quando:

$$\frac{d}{dc} \sum_{i} (c\nu_i - x_i)^2 = \sum_{i} 2\nu_i (c\nu_i - x_i)$$

$$= 2 \left(\sum_{i} c\nu_i^2 - \sum_{i} \nu_i x_i \right)$$

$$= 2 \left(c\nu'\nu - \nu'x \right) \tag{37}$$

no mínimo, $\frac{d}{dc} \sum 2 (c\nu'\nu - \nu'x) = 0.$

• Logo,

$$c\nu'\nu = \nu'x$$

$$c = (\nu'\nu)^{-1}\nu'x$$
(38)

38/50

em que $\bar{x} = \nu c = \nu (\nu' \nu)^{-1} \nu' x = \mathcal{P} x e \mathcal{P}_{\nu} = \nu (\nu' \nu)^{-1} \nu'.$

Intuição Gráfica para a Projeção Linear

- Caso 1: y está no espaço coluna de x.
- Isso significa que y pode ser expresso exatamente como uma combinação linear das colunas de x.
- Exemplo: considere que x_1 , x_2 e y são vetores com a terceira coordenada igual (isto é, estão no mesmo hiperplano).

• Graficamente, temos:

Figura 3: Caso 1, y está no espaço coluna de \boldsymbol{x}

Intuição Gráfica para a Projeção Linear

- Caso 2: y não está no espaço coluna de x.
- Isso significa que y não pode ser expresso como uma combinação linear das colunas de x. Ou seja, não há um vetor b.
- Mas podemos escrever:

$$y = x'\beta + \varepsilon \tag{39}$$

em que " ε " é dado por $\varepsilon = y - x'\beta$.

• Exemplo: considere que x_1 e x_2 são vetores com a terceira coordenada igual a zero. Considere ainda que y é um vetor com a terceira coordenada não nula.

> 41/5041 / 50

Victor Oliveira FECL

• Graficamente, temos:

Figura 4: Caso 2, y não está no espaço coluna de \boldsymbol{x}

Propriedades do Erro de Projeção

• Considere a decomposição de y entre preditor linear e o erro:

$$y = \mathbf{x}'\beta + \varepsilon \tag{40}$$

• Da eq. (40) podemos chamar $x'\beta$ de melhor preditor linear de y em x ou projeção linear de y em x. Ela frequentemente também é chamada de **regressão** de y em x.

Observação

Propriedade 1

$$\mathbb{E}(\boldsymbol{x}\varepsilon) = \mathbf{0} \tag{41}$$

43/50

Victor OliveiraFECLPPGDE -202443/50

Demonstração.

Veja que

$$\mathbb{E}(\boldsymbol{x}\varepsilon) = \mathbb{E}[\boldsymbol{x}(y - \boldsymbol{x}'\beta)]$$

$$= \mathbb{E}(\boldsymbol{x}y) - \mathbb{E}(\boldsymbol{x}\boldsymbol{x}')\mathbb{E}[\boldsymbol{x}\boldsymbol{x}']^{-1}\mathbb{E}(\boldsymbol{x}y) = \mathbf{0}$$
(42)

A eq. (42) é um conjunto de k equações, uma para cada regressor:

$$\mathbb{E}(\boldsymbol{x}_{j}\varepsilon) = \mathbf{0} \tag{43}$$

para j = 1, ..., k. O regressor \boldsymbol{x} contém uma constante, isto é $x_k = 1$. Neste caso, para j = k é o mesmo que

$$\mathbb{E}(\varepsilon) = 0 \tag{44}$$

Assim, o erro de projeção tem uma média zero quando o regressor contém uma constante.

• É útil observar que:

$$cov(x_j, \varepsilon) = \mathbb{E}(x_j \varepsilon) - \mathbb{E}(x_j) \mathbb{E}(\varepsilon)$$
 (45)

• Considerando o resultado da eq. (43) e (44) temos que x_j e ε são não correlacionadas.

45/50

Propriedades do Modelo de Projeção Linear

- **O** Os momentos $\mathbb{E}(xx')$ e $\mathbb{E}(xy)$ existe com elementos finitos.
- ${\color{red} {\mathfrak O}}$ O coeficiente de projeção linear, $\beta,$ existe, é único, e igual

$$\beta = [\mathbb{E}(xx')]^{-1}\mathbb{E}(xy) \tag{46}$$

 $oldsymbol{0}$ O melhor preditor linear de y dado $oldsymbol{x}$ é

$$\mathcal{P}(y|\mathbf{x}) = \mathbf{x}'(\mathbb{E}(\mathbf{x}\mathbf{x}'))^{-1}\mathbb{E}(\mathbf{x}y)$$
(47)

46/50 46/50

0 O erro de projeção $\varepsilon = y - x'\beta$ existe e satisfaz

$$\mathbb{E}\left(\varepsilon^2\right) < \infty \tag{48}$$

 \mathbf{e}

$$\mathbb{E}(\boldsymbol{x}\varepsilon) = \mathbf{0} \tag{49}$$

 \bullet Se x contém uma constante, então

$$\mathbb{E}(\varepsilon) = 0 \tag{50}$$

6 Se $\mathbb{E}|y|^r < \infty$ e $\mathbb{E}||\boldsymbol{x}||^r < \infty$ para $r \ge 1$, então $\mathbb{E}|\varepsilon|^r < \infty$.

47/50

Simulação

Econometria I Modelo da Função de Esperança Condicional Linear

Victor Oliveira

Núcleo de Economia Internacional e Desenvolvimento Econômico

PPGDE - 2024