Risk and Ambiguity in Educational Choices

Philipp Eisenhauer

April 12, 2016

Ambiguity in Dynamic Models of Educational Choices

- Plausible
 - better description of agent decision problem
- Meaningful
 - reinterpretation of economic phenomenon
 - reevaluation of policy interventions
- ▶ Tractable

Starting point ...

Keane, M. P. and Wolpin, K. I. (1994a). The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence. *The Review of Economics and Statistics*, 76(4):648–672.

Transparency, Recomputability, and Extensibility

https://github.com/robustToolbox/package

- Documentation
 - Source Codes
 - ► Test Suite
- Teaching Material

Basic Model under Risk

Ingredients

- Objectives
- Constraints
 - Institutions
 - ▶ Information
- ⇒ Optimal Decision

Notation

$$k=1,\ldots,K$$
 Alternative $t=1,\ldots,T$ Time $S(t)$ State Space at Time t $R_k(S(t),t)$ Rewards for Alternative k at Time t $d_k(t)$ Indicator for Alternative k at Time t δ Discount Factor

Decision Tree

Timing of Events

Agents' Objective under Risk

$$V(S(t),t) = \max_{\{d_k(t)\}_{k \in K}} E\left[\sum_{\tau=t}^T \delta^{\tau-t} \sum_{k \in K} R_k(\tau) d_k(\tau) \middle| S(t)\right]$$

Bellman Equations

$$V(S(t),t) = \max_{k \in K} \{V_k(S(t),t)\},$$

where for all but the final period:

$$V_k(S(t), t) = R_k(S(t), t) + \delta E[V(S(t+1), t+1) \mid S(t), d_k(t) = 1]$$

Calibrated Example

Agent Characteristics

 $x_{1,t}$ Experience in Occupation A at Time t

 $x_{2,t}$ Experience in Occupation B at Time t

 s_t Years of Schooling at Time t

Occupation A

$$R_1(t) = \exp\{\alpha_{10} + \alpha_{11}s_t + \alpha_{12}x_{1,t} - \alpha_{13}x_{1,t}^2 + \alpha_{14}x_{2,t} - \alpha_{15}x_{2,t}^2 + \epsilon_{1,t}\}$$

Parameters	α_{10}	α_{11}	α_{12}	α_{13}	$lpha_{14}$	α_{15}
Values	9.21	0.04	0.033	0.0005	0.00	0.00

Occupation B

$$R_2(t) = \exp\{\alpha_{20} + \alpha_{21}s_t + \alpha_{22}x_{1,t} - \alpha_{23}x_{1,t}^2 + \alpha_{24}x_{2,t} - \alpha_{25}x_{2,t}^2 + \epsilon_{2,t}\}$$

Parameters	$lpha_{20}$	α_{21}	α_{22}	α_{23}	α_{24}	α_{25}
Values	8.20	0.08	0.022	0.0005	0.067	0.001

Wages and Experience

Wages and Schooling

School

Home

$$R_4(t) = \gamma_0 + \epsilon_{4,t}$$

Parameter	γ_0
Value	14,500

State Space

▶ at time *t*

$$S(t) = \{s_t, x_{1,t}, x_{2,t}, d_3(t-1), \epsilon_{1,t}, \epsilon_{2,t}, \epsilon_{3,t}, \epsilon_{4,t}\}$$

laws of motion

$$egin{aligned} x_{j,t+1} &= x_{j,t} + d_j(t) & orall & j \in \{1,2\} \ \\ s_{t+1} &= s_t + d_3(t) \ \\ f(\epsilon_{t+1} \mid S(t), d_k(t)) &= f(\epsilon_{t+1} \mid ar{S}(t), d_k(t)) \end{aligned}$$

Shocks

$$\begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \\ \epsilon_{3,t} \\ \epsilon_{4,t} \end{pmatrix} \sim \mathcal{N}_0 \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 16 \times 10^{-4} & 0.00 & 0.00 & 0.00 \\ 0.00 & 25 \times 10^{-2} & 0.00 & 0.00 \\ 0.00 & 0.00 & 36 \times 10^6 & 0.00 \\ 0.00 & 0.00 & 0.00 & 36 \times 10^6 \end{pmatrix} \end{bmatrix}$$

Choices over Time

Basic Model under Ambiguity

- Modeling Ambiguity
- Understanding Economic Mechanism
- Assessing Model Misspecification

Modeling Ambiguity

To fix ideas, let us study the decision problem of *Agent Blue* in the second to last period:

- 9 Years of Experience in Occupation A
- 20 Years of Experience in Occupation B
- 1 Year of Additional Schooling

Set of Admissible Beliefs

$$\mathbb{N} = \{ \mathcal{N} \in \mathcal{Q} : D_{KL}(\mathcal{N}_0 \mid \mathcal{N}) \leq \theta \}$$

Distribution of Labor Market Shocks

$$\begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \end{pmatrix} \sim \mathcal{N} \left[\begin{pmatrix} \mu_{\epsilon_{1,t}} \\ \mu_{\epsilon_{2,t}} \end{pmatrix}, \begin{pmatrix} 16 \times 10^{-4} & 0.00 \\ 0.00 & 25 \times 10^{-2} \end{pmatrix} \right]$$

Exploring Set of Admissible Beliefs

Exploring Admissible Value Functions

Agents' Objective under Ambiguity

$$V^*(S(t),t) = \max_{\{d_k(t)\}_{k \in K}} \left\{ \min_{\mathcal{N} \in \mathbb{N}} E_{\mathcal{N}} \left[\sum_{\tau=t}^T \delta^{\tau-t} \sum_{k \in K} R_k(\tau) d_k(\tau) \middle| S(t) \right] \right\}$$

See: Epstein and Schneider (2003), Hansen and Sargent (2007)

Bellman Equations

$$V^*(S(t), t) = \max_{k \in K} \{V_k^*(S(t), t)\},$$

where for all but the final period:

$$V_k^*(S(t),t) = R_k(S(t),t) + \delta \min_{\mathcal{N} \in \mathbb{N}} \mathcal{E}_{\mathcal{N}} \left[V^*(S(t+1),t+1) \mid \cdot
ight]$$

See: Iyengar (2005)

Understanding Economic Mechanism

Quantifying Level of Ambiguity

Ambiguity	Lifetime Value	Relative Change	θ
Absent	\$405,258	_	0.0000
Low	\$395,129	-2.5%	0.0033
High	\$384,988	-5.0%	0.0142

Changing Schooling Investment

Changing Occupational Sorting

	Share in Occupation		
Ambiguity	А	В	
Absent	55%	39%	
Low	57%	35%	
High	60%	32%	

Assessing Model Misspecification

Ambiguity and Psychic Costs

Absent

Low High

Modeling Trade-off

Model Misspecification and Psychic Costs Estimates

	Psychic Costs		
Ambiguity	True	Estimate	Discrepancy
Absent	10,000	10,000	_
Low	9,550	10,000	450
High	9,075	10,000	925

Model Misspecification and Policy Assessment

		Average Schooling		
Ambiguity	True	Estimate	Discrepancy	
Absent	1.18	1.18	_	
Low	1.12	1.18	0.06	
High	1.10	1.18	0.08	

Conclusion

Ambiguity in Dynamic Models of Educational Choices

- Plausible
 - better description of agent decision problem
- Meaningful
 - reinterpretation of economic phenomenon
 - reevaluation of policy interventions
- ► Tractable

Appendix

Content

- ► Contact
- References

Contact

Philipp Eisenhauer

Mail eisenhauer@policy-lab.org

Web http://www.policy-lab.org/peisenha

Repository https://github.com/peisenha

Project http://www.policy-lab.org/structRobust

References

- Eisenhauer, P., Heckman, J. J., and Mosso, S. (2015). Estimation of Dynamic Discrete Choice Models by Maximum Likelihood and Simulated Method of Moments. *International Economic Review*, 56(2):331–357.
- Epstein, L. G. and Schneider, M. (2003). Recursive Multiple Priors. Journal of Economic Theory, 113(1):1–31.
- Epstein, L. G. and Schneider, M. (2007). Learning Under Ambiguity. *Review of Economic Studies*, 74(4):1275–1303.

- Epstein, L. G. and Schneider, M. (2010). Ambiguity and Asset Markets. *Annual Review of Financial Economics*, 2(1):315–346.
- Gilboa, I. and Schmeidler, D. (1989). MaxMin Expected Utility With Non-Unique Priors. *Journal of Mathematical Economics*, 18(2):141–153.
- Hansen, L. P. and Sargent, T. J. (2007). Robustness. Princeton University Press, Princeton, NJ.

- Heckman, J. J., Lochner, L. J., and Todd, P. E. (2006). Earnings functions, rates of return and treatment effects: The mincer equation and beyond. In Hanushek, E. A. and Welch, F., editors, Handbook of the Economics of Education, volume 1, pages 307–485. North-Holland Publishing Company.
- Iyengar, G. N. (2005). Robust Dynamic Programming. *Mathematics* of Operations Research, 30(2):257–280.

- Keane, M. P. and Wolpin, K. I. (1994a). The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence. *The Review of Economics and Statistics*, 76(4):648–672.
- Keane, M. P. and Wolpin, K. I. (1994b). The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence. Federal Reserve Bank of Minneapolis, No. 181.
- Mincer, J. (1974). Schooling, Experience and Earnings. National Bureau of Economic Research, New York, NY.

- Mincer, J. A. (1958). Investment in Human Capital and Personal Income Distribution. *Journal of Political Economy*, 66(4):281–302.
- Navarro, S. (2011). Using Observed Choices to Infer Agent's Information: Reconsidering the Importance of Borrowing Constraints, Uncertainty and Preferences in College Attendence. CIBC Working Paper Series.
- Stoye, J. (2012). New Perspective on Statistical Decisions Under Ambiguity. *Annual Review of Economics*, 4:257–282.