# IfI Summer School 2018 on Machine Learning Deep Learning #2 – PyTorch's Tensors

François Fleuret http://fleuret.org/ifi/ June 26, 2018





What is a tensor?

A tensor is a generalized matrix, a finite table of numerical values indexed along several discrete dimensions.

- A 0d tensor is a scalar.
- A 1d tensor is a vector (e.g. a sound sample),
- A 2d tensor is a matrix (e.g. a grayscale image),
- A 3d tensor can be seen as a vector of identically sized matrix (e.g. a multi-channel image),
- A 4d tensor can be seen as a matrix of identically sized matrix, or a sequence of 3d tensors (e.g. a sequence of multi-channel images),
- etc.

Tensors are used to encode the signal to process, but also the internal states and parameters of models.

Manipulating data through this constrained structure allows to use CPUs and GPUs at peak performance.

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

3 / 47

PyTorch is a Python library built on top of torch's THNN computational backend.

Its main features are:

- Efficient tensor operations on CPU/GPU,
- automatic on-the-fly differentiation (autograd),
- · optimizers,
- data I/O.

"Efficient tensor operations" encompass both standard linear algebra and, as we will see later, deep-learning specific operations (convolution, pooling, etc.)

A key specificity of PyTorch is the central role of autograd to compute derivatives of *anything!* We will come back to this.

```
>>> import torch
>>> x = torch.zeros(5)
>>> x.size()
torch.Size([5])
>>> x.fill_(1.125)
tensor([ 1.1250,   1.1250,   1.1250,   1.1250,   1.1250])
>>> x.mean()
tensor(1.1250)
>>> x.std()
tensor(0.)
>>> x.sum()
tensor(5.6250)
>>> x.sum().item()
5.625
```

The default tensor type is a 32 bits single precision float, and it is located in the CPU memory.

In-place operations are suffixed with an underscore, and a 0d tensor can be converted back to a Python scalar with item().

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

5 / 47

As in numpy, the : symbol allows to take slices of tensors

PyTorch provides interfacing to standard linear operations, such as linear system solving or Eigen-decomposition.

François Fleuret

If Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

7 / 47

Example: linear regression

Given a list of points

$$(x_n, y_n) \in \mathbb{R} \times \mathbb{R}, \ n = 1, \dots, N,$$

can we find the "best line"

$$f(x; a, b) = ax + b$$

going "through the points", e.g. minimizing the mean square error

$$\underset{a,b}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \left( \underbrace{ax_n + b}_{f(x;a,b)} - y_n \right)^2.$$

Such a model would allow to predict the y associated to a new x, simply by calculating f(x; a, b).

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

```
bash> cat systolic-blood-pressure-vs-age.dat
39 144
47 220
45 138
    145
65 162
46 142
67 170
42 124
67
    158
56
    154
64
    162
56 150
    140
34 110
42
    128
48 130
    135
45
17
    114
20 116
    124
    142
39 120
21 120
44 160
53 158
63 144
29
    130
25
    125
```



 $\mathsf{data} \in \mathbb{R}^{N \times 2}$ 

If Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

$$\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_N & y_N \end{pmatrix} \simeq \begin{pmatrix} x_1 & 1.0 \\ x_2 & 1.0 \\ \vdots & \vdots \\ x_N & 1.0 \end{pmatrix} \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\alpha \in \mathbb{R}^{2 \times 1}} \simeq \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$

 $x \in \mathbb{R}^{N \times 2}$ 

```
import torch, numpy
data = torch.tensor(numpy.loadtxt('systolic-blood-pressure-vs-age.dat'))
nb = data.size(0)
x, y = torch.empty(nb, 2), torch.empty(nb, 1)
x[:,0] = data[:,0]
x[:,1] = 1
y[:,0] = data[:,1]
alpha, _ = torch.gels(y, x)
a, b = alpha[0, 0].item(), alpha[1, 0].item()
```

11 / 47

 $y \in \mathbb{R}^{N \times 1}$ 



If Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

# Manipulating high-dimension signals

François Fleuret

The tensor coefficients can be of several types:

- torch.float16, torch.float32, torch.float64,
- torch.uint8,
- torch.int8, torch.int16, torch.int32, torch.int64

And can be located either in the CPU's or in a GPU's memory.

Operations on tensors located in a GPU memory are done by the GPU. We will come back to that later.

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

```
15 / 47
```

```
>>> import torch
>>> x = torch.zeros(2, 3, dtype = torch.int64)
>>> x.dtype
torch.int64
>>> x.device
device(type='cpu')
>>> x
>>> x.dtype
torch.float32
>>> x.device
device(type='cpu')
>>> x
>>> x.dtype
torch.float32
tensor([ 2, 3], dtype=torch.int8, device='cuda:1')
```

#### The default tensor type can be set with torch.set\_default\_dtype.

```
>>> import torch
>>> x = torch.empty(2, 3)
>>> x.dtype
torch.float32
>>> torch.set_default_dtype(torch.float64)
>>> x = torch.empty(2, 3)
>>> x.dtype
torch.float64
```

François Fleuret

If Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

17 / 47

#### 2d tensor (e.g. grayscale image)



#### 3d tensor (e.g. rgb image)



#### 4d tensor (e.g. sequence of rgb images)



François Fleuret

Here are some examples from the vast library of tensor operations:

#### Creation

- torch.empty(size)
- torch.zeros(size)
- torch.tensor(sequence)
- torch.from\_numpy(array)

#### Indexing, Slicing, Joining, Mutating

- torch.Tensor.view(\*args)
- torch.Tensor.expand(\*sizes)
- torch.Tensor.narrow(dimension, start, length)
- torch.cat(inputs, dimension=0)
- torch.chunk(tensor, chunks, dim=0)[source]
- torch.index\_select(input, dim, index, out=None)
- torch.t(input, out=None)
- torch.transpose(input, dim0, dim1, out=None)

#### **Filling**

- Tensor.fill\_(value)
- torch.bernoulli\_(input, out=None)
- torch.normal\_()

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

19 / 47

#### Pointwise math

- torch.abs(input, out=None)
- torch.add()
- torch.cos(input, out=None)
- torch.sigmoid(input, out=None)
- (+ many operators)

#### Math reduction

- torch.dist(input, other, p=2, out=None)
- torch.mean()
- torch.norm()
- torch.std()
- torch.sum()

#### **BLAS** and **LAPACK** operations

- torch.eig(a, eigenvectors=False, out=None)
- torch.gels(B, A, out=None)
- torch.inverse(input, out=None)
- torch.mm(mat1, mat2, out=None)
- torch.mv(mat, vec, out=None)



If Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors



#### PyTorch offers simple interfaces to standard image data-bases.

```
import torch, torchvision

# Get the CIFAR10 train images, download if necessary
cifar = torchvision.datasets.CIFAR10('./data/cifar10/', train=True, download=True)

# Converts the numpy tensor into a PyTorch one
x = torch.from_numpy(cifar.train_data).transpose(1, 3).transpose(2, 3)

# Prints out some info
print(x.dtype, x.size(), x.min().item(), x.max().item())
```

#### prints

Files already downloaded and verified torch.uint8 torch.Size([50000, 3, 32, 32]) 0 255



François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

```
# Narrow to the first images, make the tensor Float, and move the
# values in [-1, 1]
x = x.narrow(0, 0, 48).float().div(255)

# Save these samples as a single image
torchvision.utils.save_image(x, 'images-cifar-4x12.png', nrow = 12)
```



## # Switch the row and column indexes x.transpose\_(2, 3)

torchvision.utils.save\_image(x, 'images-cifar-4x12-rotated.png', nrow = 12)



François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

25 / 47

## # Kill the green (1) and blue (2) channels $x.narrow(1, 1, 2).fill_(-1)$

torchvision.utils.save\_image(x, 'images-cifar-4x12-rotated-and-red.png', nrow = 12)



## Broadcasting

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

27 / 47

**Broadcasting** automagically expands dimensions of size 1 by replicating coefficients, when it is necessary to perform operations.

```
A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B
```



IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

29 / 47

#### Precisely, broadcasting proceeds as follows:

- 1. If one of the tensors has fewer dimensions than the other, it is reshaped by adding as many dimensions of size 1 as necessary in the front; then
- 2. for every mismatch if one of the two sizes is one, the tensor is expanded along this axis by replicating coefficients.

If there is a tensor size mismatch for one of the dimension and neither of them is one, the operation fails.

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

31 / 47

## Tensor internals

A tensor is a view of a storage, which is a low-level 1d vector.

```
>>> q = torch.zeros(2, 4)
>>> q.storage()
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
[torch.FloatStorage of size 8]
>>> s = q.storage()
>>> s[4] = 1.0
>>> s
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
[torch.FloatStorage of size 8]
>>> q
```

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

33 / 47

Multiple tensors can share the same storage. It happens when using operations such as view(), expand() or transpose().

The first coefficient of a tensor is the one at storage\_offset() in storage(). To increment index k by 1, you have to move by stride(k) elements in the storage.



François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

35 / 47

We can explicitly create different "views" of the same storage

This is in particular how transpositions and broadcasting are implemented.

#### This organization explains the following (maybe surprising) error

```
>>> x = torch.empty(100, 100)
>>> y = x.t()
>>> y.view(-1)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
RuntimeError: invalid argument 2: view size is not compatible with input tensor's size
        and stride (at least one dimension spans across two contiguous subspaces). Call .
        contiguous() before .view(). at /opt/conda/conda-bld/pytorch_1524584710464/work/
        aten/src/TH/generic/THTensor.cpp:280
>>> y.stride()
(1, 100)
```

t() creates a tensor that shares the storage with the original tensor. It cannot be "flattened" into a 1d contiguous view without a memory copy.

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

37 / 47

## Using GPUs

The size of current state-of-the-art networks makes computation a critical issue, in particular for training and optimizing meta-parameters.

Although they were historically developed for mass-market real-time CGI, their massively parallel architecture is extremely fitting to signal processing and high dimension linear algebra.

Their use is instrumental in the success of deep-learning.

François Fleuret

If Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors



A standard NVIDIA GTX 1080 has 2,560 single-precision computing cores clocked at 1.6GHz, and deliver a peak performance of  $\simeq$  9 TFlops.

The precise structure of a GPU memory and how its cores communicate with it is a complicated topic that we will not cover here.

TABLE 7. COMPARATIVE EXPERIMENT RESULTS (TIME PER MINI-BATCH IN SECOND)

|           |       | Desktop CPU (Threads used) |        |        |        | Server CPU (Threads used) |        |        |        |        |        | Single GPU |       |       |
|-----------|-------|----------------------------|--------|--------|--------|---------------------------|--------|--------|--------|--------|--------|------------|-------|-------|
|           |       | 1                          | 2      | 4      | 8      | 1                         | 2      | 4      | 8      | 16     | 32     | G980       | G1080 | K80   |
| FCN-S     | Caffe | 1.324                      | 0.790  | 0.578  | 15.444 | 1.355                     | 0.997  | 0.745  | 0.573  | 0.608  | 1.130  | 0.041      | 0.030 | 0.071 |
|           | CNTK  | 1.227                      | 0.660  | 0.435  | -      | 1.340                     | 0.909  | 0.634  | 0.488  | 0.441  | 1.000  | 0.045      | 0.033 | 0.074 |
|           | TF    | 7.062                      | 4.789  | 2.648  | 1.938  | 9.571                     | 6.569  | 3.399  | 1.710  | 0.946  | 0.630  | 0.060      | 0.048 | 0.109 |
|           | MXNet | 4.621                      | 2.607  | 2.162  | 1.831  | 5.824                     | 3.356  | 2.395  | 2.040  | 1.945  | 2.670  | -          | 0.106 | 0.216 |
|           | Torch | 1.329                      | 0.710  | 0.423  | -      | 1.279                     | 1.131  | 0.595  | 0.433  | 0.382  | 1.034  | 0.040      | 0.031 | 0.070 |
| AlexNet-S | Caffe | 1.606                      | 0.999  | 0.719  | -      | 1.533                     | 1.045  | 0.797  | 0.850  | 0.903  | 1.124  | 0.034      | 0.021 | 0.073 |
|           | CNTK  | 3.761                      | 1.974  | 1.276  | -      | 3.852                     | 2.600  | 1.567  | 1.347  | 1.168  | 1.579  | 0.045      | 0.032 | 0.091 |
|           | TF    | 6.525                      | 2.936  | 1.749  | 1.535  | 5.741                     | 4.216  | 2.202  | 1.160  | 0.701  | 0.962  | 0.059      | 0.042 | 0.130 |
|           | MXNet | 2.977                      | 2.340  | 2.250  | 2.163  | 3.518                     | 3.203  | 2.926  | 2.828  | 2.827  | 2.887  | 0.020      | 0.014 | 0.042 |
|           | Torch | 4.645                      | 2.429  | 1.424  | -      | 4.336                     | 2.468  | 1.543  | 1.248  | 1.090  | 1.214  | 0.033      | 0.023 | 0.070 |
| RenNet-50 | Caffe | 11.554                     | 7.671  | 5.652  | -      | 10.643                    | 8.600  | 6.723  | 6.019  | 6.654  | 8.220  | -          | 0.254 | 0.766 |
|           | CNTK  | -                          | -      | -      | -      | -                         | -      | -      | -      | -      | -      | 0.240      | 0.168 | 0.638 |
|           | TF    | 23.905                     | 16.435 | 10.206 | 7.816  | 29.960                    | 21.846 | 11.512 | 6.294  | 4.130  | 4.351  | 0.327      | 0.227 | 0.702 |
|           | MXNet | 48.000                     | 46.154 | 44.444 | 43.243 | 57.831                    | 57.143 | 54.545 | 54.545 | 53.333 | 55.172 | 0.207      | 0.136 | 0.449 |
|           | Torch | 13.178                     | 7.500  | 4.736  | 4.948  | 12.807                    | 8.391  | 5.471  | 4.164  | 3.683  | 4.422  | 0.208      | 0.144 | 0.523 |
| FCN-R     | Caffe | 2.476                      | 1.499  | 1.149  | -      | 2.282                     | 1.748  | 1.403  | 1.211  | 1.127  | 1.127  | 0.025      | 0.017 | 0.055 |
|           | CNTK  | 1.845                      | 0.970  | 0.661  | 0.571  | 1.592                     | 0.857  | 0.501  | 0.323  | 0.252  | 0.280  | 0.025      | 0.017 | 0.053 |
|           | TF    | 2.647                      | 1.913  | 1.157  | 0.919  | 3.410                     | 2.541  | 1.297  | 0.661  | 0.361  | 0.325  | 0.033      | 0.020 | 0.063 |
|           | MXNet | 1.914                      | 1.072  | 0.719  | 0.702  | 1.609                     | 1.065  | 0.731  | 0.534  | 0.451  | 0.447  | 0.029      | 0.019 | 0.060 |
|           | Torch | 1.670                      | 0.926  | 0.565  | 0.611  | 1.379                     | 0.915  | 0.662  | 0.440  | 0.402  | 0.366  | 0.025      | 0.016 | 0.051 |
| AlexNet-R | Caffe | 3.558                      | 2.587  | 2.157  | 2.963  | 4.270                     | 3.514  | 3.381  | 3.364  | 4.139  | 4.930  | 0.041      | 0.027 | 0.137 |
|           | CNTK  | 9.956                      | 7.263  | 5.519  | 6.015  | 9.381                     | 6.078  | 4.984  | 4.765  | 6.256  | 6.199  | 0.045      | 0.031 | 0.108 |
|           | TF    | 4.535                      | 3.225  | 1.911  | 1.565  | 6.124                     | 4.229  | 2.200  | 1.396  | 1.036  | 0.971  | 0.227      | 0.317 | 0.385 |
|           | MXNet | 13.401                     | 12.305 | 12.278 | 11.950 | 17.994                    | 17.128 | 16.764 | 16.471 | 17.471 | 17.770 | 0.060      | 0.032 | 0.122 |
|           | Torch | 5.352                      | 3.866  | 3.162  | 3.259  | 6.554                     | 5.288  | 4.365  | 3.940  | 4.157  | 4.165  | 0.069      | 0.043 | 0.141 |
| RenNet-56 | Caffe | 6.741                      | 5.451  | 4.989  | 6.691  | 7.513                     | 6.119  | 6.232  | 6.689  | 7.313  | 9.302  | -          | 0.116 | 0.378 |
|           | CNTK  | -                          | -      | -      | -      | -                         | -      | -      | -      | -      | -      | 0.206      | 0.138 | 0.562 |
|           | TF    | -                          | -      | -      | -      | -                         | -      | -      | -      | -      | -      | 0.225      | 0.152 | 0.523 |
|           | MXNet | 34.409                     | 31.255 | 30.069 | 31.388 | 44.878                    | 43.775 | 42.299 | 42.965 | 43.854 | 44.367 | 0.105      | 0.074 | 0.270 |
|           | Torch | 5.758                      | 3.222  | 2.368  | 2.475  | 8.691                     | 4.965  | 3.040  | 2.560  | 2.575  | 2.811  | 0.150      | 0.101 | 0.301 |
| LSTM      | Caffe | -                          | -      | -      | -      | -                         | -      | -      | -      | -      | -      | -          | -     | -     |
|           | CNTK  | 0.186                      | 0.120  | 0.090  | 0.118  | 0.211                     | 0.139  | 0.117  | 0.114  | 0.114  | 0.198  | 0.018      | 0.017 | 0.043 |
|           | TF    | 4.662                      | 3.385  | 1.935  | 1.532  | 6.449                     | 4.351  | 2.238  | 1.183  | 0.702  | 0.598  | 0.133      | 0.065 | 0.140 |
|           | MXNet | -                          | -      | -      | -      | -                         | -      | -      | -      | -      | -      | 0.089      | 0.079 | 0.149 |
|           | Torch | 6.921                      | 3.831  | 2.682  | 3.127  | 7.471                     | 4.641  | 3.580  | 3.260  | 5.148  | 5.851  | 0.399      | 0.324 | 0.560 |

Note: The mini-batch sizes for FCN-S, AlexNet-S, ResNet-50, FCN-R, AlexNet-R, ResNet-56 and LSTM are 64, 16, 16, 1024, 1024, 128 and 128 respectively.

(Shi et al., 2016)

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

41 / 47

The current standard to program a GPU is through the CUDA ("Compute Unified Device Architecture") model, defined by NVIDIA.

Alternatives are OpenCL, backed by many CPU/GPU manufacturers, and more recently AMD's HIP ("Heterogeneous-compute Interface for Portability").

Google developed its own processor for deep learning dubbed TPU ("Tensor Processing Unit") for in-house use. It is targeted at TensorFlow and offers excellent flops/watt performance.

In practice, as of today (27.01.2018), NVIDIA hardware remains the default choice for deep learning, and CUDA is the reference framework in use.

From a practical perspective, libraries interface the framework (e.g. PyTorch) with the "computational backend" (e.g. CPU or GPU)

- BLAS ("Basic Linear Algebra Subprograms"): vector/matrix products, and the cuBLAS implementation for NVIDIA GPUs,
- LAPACK ("Linear Algebra Package"): linear system solving, Eigen-decomposition, etc.
- cuDNN ("NVIDIA CUDA Deep Neural Network library") computations specific to deep-learning on NVIDIA GPUs.

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 - PyTorch's Tensors

43 / 47

The use of the GPUs in PyTorch is done by moving tensors in their memory.

Apart from copy\_(), operations cannot mix different tensor types or devices, and an operation done on tensors in a given device's memory is executed by the said device:

François Fleuret

Operations maintain the type of the tensors, so you generally do not need to worry about making your code generic regarding the tensor types.

However, if you have to explicitly create a new tensor, the best is to use new\_\*() methods.

François Fleuret

If Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

45 / 47

The method torch.cuda.is\_available() returns a Boolean value indicating if a GPU is available.

The Tensor's' method cuda() returns a clone on the GPU if the tensor is not already there or returns the tensor itself if it was already there, keeping the bit precision. Conversely the method cpu() makes a clone on the CPU if needed.

They both keep the original tensor unchanged.



Moving data between the CPU and the GPU memories is far slower than moving it inside the GPU memory.



If multiple GPUs are available, cross-GPUs operations are not allowed by default, with the exception of  $copy_{-}()$ .

An operation between tensors in the same GPU produces a results in the same GPU also.

Each GPU has a numerical id, and torch.cuda.device(id) allows to specify where GPU tensors should be created by cuda(). An explicit GPU id can also be provided to the latter.

torch.cuda.device\_of(obj) selects the device to that of the specified tensor or storage.

François Fleuret

IfI Summer School 2018 on Machine Learning / Deep Learning #2 – PyTorch's Tensors

# 47 / 47

#### References

S. Shi, Q. Wang, P. Xu, and X. Chu. Benchmarking state-of-the-art deep learning software tools. CoRR, abs/1608.07249, 2016.