```
library(nlme)
library(stargazer)
data(ests_out)
tmp <- filter(ests_out, seg == '303') %>%
  select(z_cmax, long, lat)
modnl <- gls(z_cmax ~ 1, data = tmp)</pre>
mod1 <- gls(z_cmax ~ 1, correlation = corSpher(form = ~ long + lat, nugget = TRUE),</pre>
  data = tmp)
mod2 <- gls(z_cmax ~ 1, correlation = corLin(form = ~ long + lat, nugget = TRUE),</pre>
  data = tmp)
mod3 <- gls(z_cmax ~ 1, correlation = corRatio(form = ~ long + lat, nugget = TRUE),</pre>
  data = tmp)
mod4 <- gls(z_cmax ~ 1, correlation = corGaus(form = ~ long + lat, nugget = TRUE),</pre>
  data = tmp)
mod5 <- gls(z_cmax ~ 1, correlation = corExp(form = ~ long + lat, nugget = TRUE),</pre>
  data = tmp)
# AIC(modnl, mod1, mod2, mod3, mod4, mod5)
stargazer(modnl, mod1, mod2, mod3, mod4, mod5,
  title = 'Comparison of regression models with different correlation structures for gri
  column.labels = c('null', 'Spher', 'Lin', 'Ratio', 'Gaus', 'Exp'),
  model.numbers = F
  )
```

Table 1: Comparison of regression models with different correlation structures for grid locations.

	Dependent variable:								
	z_{cmax}								
	null	Spher	Lin	Ratio	Gaus	Exp			
Constant	2.382***	2.355***	2.271***	2.356***	2.364***	2.349***			
	(0.070)	(0.136)	(0.506)	(0.219)	(0.144)	(0.177)			
Observations	31	31	31	31	31	31			
Log Likelihood	-16.082	-7.722	-9.699	-8.044	-7.326	-8.639			
Akaike Inf. Crit.	36.165	23.445	27.399	24.088	22.652	25.279			
Bayesian Inf. Crit.	38.967	29.050	33.003	29.693	28.256	30.883			

Note:

*p<0.1; **p<0.05; ***p<0.01

```
data(choc_light)
data(irl_light)
data(tb_light)
choc_light <- select(choc_light, z_c_all, light, seg, Longitude, Latitude) %>%
  mutate(bay = 'choc')
irl_light <- select(irl_light, z_c_all, light, seg, Longitude, Latitude) %>%
  mutate(bay = 'irl')
tb_light <- select(tb_light, z_c_all, light, seg, Longitude, Latitude) %>%
  mutate(bay = 'tb')
all_light <- rbind(choc_light, irl_light, tb_light) %>%
  mutate(bay = factor(bay))
znl \leftarrow lme(z_c_all \sim 0 + bay, random = \sim 1 \mid bay, data = all_light)
zm1 \leftarrow lme(z_c_all ~ 0 + bay, random = ~ 1 | bay,
 correlation = corGaus(form = ~ Latitude + Longitude | bay, nugget = FALSE),
  data = all_light)
zm2 \leftarrow lme(z_c_all \sim 0 + bay, random = \sim 1 \mid bay,
  correlation = corGaus(form = ~ Latitude + Longitude | bay, nugget = TRUE),
  data = all_light)
lnl <- lme(light ~ 0 + bay, random = ~ 1 | bay, data = all_light)</pre>
lm1 \leftarrow lme(light ~ 0 + bay, random = ~ 1 | bay,
 correlation = corGaus(form = ~ Latitude + Longitude | bay, nugget = FALSE),
  data = all_light)
lm2 \leftarrow lme(light ~ 0 + bay, random = ~ 1 | bay,
 correlation = corGaus(form = ~ Latitude + Longitude | bay, nugget = TRUE),
 data = all_light)
```

```
## Linear mixed-effects model fit by REML
## Data: all_light
## AIC BIC logLik
## -87.99629 -59.64608 49.99814
##
## Random effects:
## Formula: ~1 | bay
## (Intercept) Residual
## StdDev: 0.04474165 0.2800867
```

```
## Correlation Structure: Gaussian spatial correlation
## Formula: ~Latitude + Longitude | bay
## Parameter estimate(s):
##
        range
## 0.007992795
## Fixed effects: z_c_all \sim 0 + bay
             Value Std. Error DF t-value p-value
## baychoc 2.124354 0.05637388 0 37.68330
## bayirl 1.073833 0.06374245 0 16.84643
                                              NaN
## baytb
         1.199982 0.04764828 0 25.18416
                                              NaN
## Correlation:
##
         baychc bayirl
## bayirl 0
## baytb 0
                0
##
## Standardized Within-Group Residuals:
                               Med
                     Q1
                                           QЗ
## -5.6196257 -0.5367480 0.2614813 0.9666520 7.3331159
## Number of Observations: 836
## Number of Groups: 3
summary(lm1)
## Linear mixed-effects model fit by REML
## Data: all_light
         AIC BIC
                        logLik
    5680.798 5709.149 -2834.399
##
##
## Random effects:
## Formula: ~1 | bay
          (Intercept) Residual
## StdDev:
            1.335232 8.35838
##
## Correlation Structure: Gaussian spatial correlation
## Formula: ~Latitude + Longitude | bay
## Parameter estimate(s):
##
        range
## 0.007154898
## Fixed effects: light ~ 0 + bay
            Value Std.Error DF t-value p-value
## baychoc 51.19770 1.640932 0 31.20037 NaN
```

```
## bayirl 17.83239 1.889493 0 9.43766
                                            NaN
## baytb
         41.65458 1.408418 0 29.57544
                                            NaN
## Correlation:
         baychc bayirl
##
## bayirl 0
## baytb 0
                0
##
## Standardized Within-Group Residuals:
           Min
                         01
                                    Med
                                                  03
                                                              Max
## -3.791201263 -0.554951340 -0.005255754 0.506392145 4.296715152
## Number of Observations: 836
## Number of Groups: 3
```

```
stargazer(znl, zm1, zm2, lnl, lm1, lm2,
  title = 'Inter-bay differences for median depth of colonization and light requirements
  column.labels = c('null', 'Gaus', 'Gaus, nug', 'null', 'Gaus', 'Gaus, nug'),
  model.numbers = F
  )
```

```
library(multcomp)
summary(glht(zm1, linfct = mcp(bay = 'Tukey')))
##
##
    Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme.formula(fixed = z_c_all ~ 0 + bay, data = all_light, random = ~1 |
      bay, correlation = corGaus(form = ~Latitude + Longitude |
##
      bay, nugget = FALSE))
## Linear Hypotheses:
                Estimate Std. Error z value Pr(>|z|)
## tb - choc == 0 -0.92437 0.07381 -12.523
                                           <1e-04 ***
## tb - irl == 0 0.12615
                          0.07958 1.585
                                           0.251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
```

Table 2: Inter-bay differences for median depth of colonization and light requirements. Null models do not include a grouped correlation structure. Gaussian models with and without nuggets for the spatial correlation structures are also shown.

	Dependent variable:								
	null	z_c_all Gaus	Gaus, nug	null	light Gaus	Gaus, nug			
baychoc	2.242 (0.059)	2.124 (0.056)	2.021 (0.110)	50.758 (1.528)	51.198 (1.641)	48.077 (3.012)			
bayirl	1.054 (0.075)	1.074 (0.064)	1.101 (0.096)	17.932 (1.946)	17.832 (1.889)	$17.664 \\ (2.591)$			
baytb	1.210 (0.057)	1.200 (0.048)	1.163 (0.081)	41.577 (1.474)	41.655 (1.408)	42.062 (2.202)			
Observations Log Likelihood Akaike Inf. Crit. Bayesian Inf. Crit.	836 -303.580 617.160 640.785	836 49.998 -87.996 -59.646	836 537.481 -1,060.961 -1,027.886	836 -3,011.239 6,032.477 6,056.103	836 -2,834.399 5,680.798 5,709.149	$ \begin{array}{r} 836 \\ -2,542.856 \\ 5,099.712 \\ 5,132.787 \end{array} $			

Note:

*p<0.1; **p<0.05; ***p<0.01

```
summary(glht(zm2, linfct = mcp(bay = 'Tukey')))
##
##
    Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme.formula(fixed = z_c_all ~ 0 + bay, data = all_light, random = ~1 |
      bay, correlation = corGaus(form = ~Latitude + Longitude |
##
##
      bay, nugget = TRUE))
##
## Linear Hypotheses:
                 Estimate Std. Error z value Pr(>|z|)
## tb - choc == 0 - 0.85789 0.13672 - 6.275
                                             <1e-05 ***
## tb - irl == 0 0.06176 0.12606
                                      0.490
                                              0.876
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(glht(lm1, linfct = mcp(bay = 'Tukey')))
##
##
    Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme.formula(fixed = light ~ 0 + bay, data = all_light, random = ~1 |
##
      bay, correlation = corGaus(form = ~Latitude + Longitude |
##
      bay, nugget = FALSE))
##
## Linear Hypotheses:
                 Estimate Std. Error z value Pr(>|z|)
                              2.503 -13.332 <1e-04 ***
## irl - choc == 0 -33.365
                              2.162 -4.413 <1e-04 ***
## tb - choc == 0
                   -9.543
## tb - irl == 0
                   23.822
                              2.357 10.108 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
```

```
summary(glht(lm2, linfct = mcp(bay = 'Tukey')))
##
##
    Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme.formula(fixed = light ~ 0 + bay, data = all_light, random = ~1 |
      bay, correlation = corGaus(form = ~Latitude + Longitude |
      bay, nugget = TRUE))
##
##
## Linear Hypotheses:
                  Estimate Std. Error z value Pr(>|z|)
                               3.973 -7.654 <1e-04 ***
## irl - choc == 0 -30.412
## tb - choc == 0 -6.014
                               3.731 -1.612
                                              0.239
## tb - irl == 0 24.398
                               3.400 7.175 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
```