

Lecture 7 Solving System of Non-Linear Equation using Newton-Raphson Method

DESIRED LEARNING OBJECTIVES: AFTER THIS LESSON STUDENTS WILL BE ABLE TO

- Solve system of non-linear equations using Newton Raphson method
- Establish an algorithm to implement Newton Raphson method

NEWTON'S METHOD (REVIEW)

Assumption s: f(x), f'(x), x_0 are available, $f'(x_0) \neq 0$

Newton's Method new estimate:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Problem:

 $f'(x_i)$ is not available,

or difficult to obtain analytically.

NEWTON RAPHSON METHOD - GRAPHICAL DEPICTION

Initial guess x_i , then the tangent $f'(x_i)$ is extended to find the estimate of the root at x_{i+1}

DERIVATION OF NEWTON'S METHOD

Given: x_i an initial guess of the root of f(x) = 0

Question: How do we obtain a better estimate x_{i+1} ?

Taylor Theorem : $f(x+h) \approx f(x) + f'(x)h$ Find h such that f(x+h) = 0.

$$\Rightarrow h \approx -\frac{f(x)}{f'(x)}$$

Newton – Raphson Formula

A new guess of the root : $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

NEWTON'S METHOD

▶ Tangent line function

$$f(x) = f(x_0) + (x - x_0)f'(x_0)$$

Iteration form

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Tangent plane function

$$f(x,y) = f(x_0, y_0) + (x - x_0) f_x(x_0, y_0) + (y - y_0) f_y(x_0, y_0) g(x,y) = g(x_0, y_0) + (x - x_0) g_x(x_0, y_0) + (y - y_0) g_y(x_0, y_0)$$

▶ Iteration using r, s

$$x - x \circ = r$$
$$y - y \circ = s$$

NEWTON'S METHOD (CONT')

$$f(x,y) = f(x_0,y_0) + (x-x_0)f_x(x_0,y_0) + (y-y_0)f_y(x_0,y_0)$$

$$g(x,y) = g(x_0,y_0) + (x-x_0)g_x(x_0,y_0) + (y-y_0)g_y(x_0,y_0)$$

$$x - x \circ = r$$
$$y - y \circ = s$$

▶Step1

$$r f_x(x_0, y_0) + s f_y(x_0, y_0) = -f(x_0, y_0)$$

$$r g_x(x_0, y_0) + s g_y(x_0, y_0) = -g(x_0, y_0)$$

►Step2

$$x_1 = x_0 + r$$
$$y_1 = y_0 + s$$

MATRIX-VECTOR NOTATION

► Step1

$$\begin{bmatrix} f_{x}(x_{0}, y_{0}) & f_{y}(x_{0}, y_{0}) \\ g_{x}(x_{0}, y_{0}) & g_{y}(x_{0}, y_{0}) \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} -f(x_{0}, y_{0}) \\ -g(x_{0}, y_{0}) \end{bmatrix}$$

$$F'(x_{old})y = -F(x_{old}), (where y = x_{new} - x_{old})$$

► Step2

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} r \\ s \end{bmatrix}$$

$$x_{new} = x_{old} + y$$

EXAMPLE INTERSECTION OF A CIRCLE AND A PARABOLA

$$f(x,y) = x^2 + y^2 - 1$$
$$g(x,y) = x^2 - y$$

(Circle) (Parabola)

EXAMPLE: INTERSECTION OF A CIRCLE AND A PARABOLA

$$\begin{bmatrix} f_x(x_0, y_0) & f_y(x_0, y_0) \\ g_x(x_0, y_0) & g_y(x_0, y_0) \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} -f(x_0, y_0) \\ -g(x_0, y_0) \end{bmatrix}$$

Step1
$$\begin{bmatrix} 2x & 2y \\ 2x & -1 \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} -f(x_0, y_0) \\ -g(x_0, y_0) \end{bmatrix}$$

► Initial estimate $(x_0,y_0) = (1/2, 1/2)$

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/4 \end{bmatrix}$$
 $r = 3/8, s = 1/8$

$$r = 3/8$$
, $s = 1/8$

EXAMPLE: INTERSECTION OF A CIRCLE AND A PARABOLA

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} r \\ s \end{bmatrix}$$

▶ The second approximate solution (x_1,y_1)

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 / 2 \\ 1 / 2 \end{bmatrix} + \begin{bmatrix} 3 / 8 \\ 1 / 8 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 7/8 \\ 5/8 \end{bmatrix}$$

INITIAL ESTIMATE AND 2 ITERATIONS OF NEWTON'S METHOD

itr	X	y	
O	0.5	0.5	
1	0.875	0.625	0.39528
2	0.79067	0.61806	0.084611

The true solution is (x, y) = (0.78615, 0.61803)

NEWTON'S METHOD FOR SYSTEM OF NON-LINEAR EQUATIONS

Given: X_0 an initial guess of the root of F(x) = 0Newton's Iteration

$$X_{k+1} = X_k - [F'(X_k)]^{-1} F(X_k)$$

$$F(X) = \begin{bmatrix} f_1(x_1, x_2, \dots) \\ f_2(x_1, x_2, \dots) \\ \vdots \end{bmatrix}, F'(X) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \vdots & \vdots \end{bmatrix}$$

SOLVE THE FOLLOWING SYSTEM OF EQUATIONS

$$y + x^{2} - x - 0.5 = 0$$

 $x^{2} - 5xy - y = 0$
Initial guess $x = 1$, $y = 0$

SOLVE THE FOLLOWING SYSTEM OF EQUATIONS

$$y + x^{2} - x - 0.5 = 0$$

 $x^{2} - 5xy - y = 0$
Initial guess $x = 1$, $y = 0$

$$F = \begin{bmatrix} y + x^2 - 0.5 - x \\ x^2 - 5xy - y \end{bmatrix}, F' = \begin{bmatrix} 2x - 1 & 1 \\ 2x - 5y & -5x - 1 \end{bmatrix}, X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

SOLUTION USING NEWTON'S METHOD

Iteration 1

$$F = \begin{bmatrix} y + x^{2} - 0.5 - x \\ x^{2} - 5xy - y \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

$$F' = \begin{bmatrix} 2x - 1 & 1 \\ 2x - 5y & -5x - 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -6 \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 2 & -6 \end{bmatrix}^{-1} \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} 1 .25 \\ 0.25 \end{bmatrix}$$

ûdemv

SOLUTION USING NEWTON'S METHOD

Iteration 2:

$$F = \begin{bmatrix} 0.0625 \\ -0.25 \end{bmatrix}, F' = \begin{bmatrix} 1.5 & 1 \\ 1.25 & -7.25 \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} 1.25 \\ 0.25 \end{bmatrix} - \begin{bmatrix} 1.5 & 1 \\ 1.25 & -7.25 \end{bmatrix}^{-1} \begin{bmatrix} 0.0625 \\ -0.25 \end{bmatrix} = \begin{bmatrix} 1.2332 \\ 0.2126 \end{bmatrix}$$

SOLVE THE FOLLOWING SYSTEM OF EQUATIONS

$$y + x^{2} - 1 - x = 0$$

 $x^{2} - 2y^{2} - y = 0$
Initial guess $x = 0$, $y = 0$

SOLVE THE FOLLOWING SYSTEM OF EQUATIONS

$$y + x^{2} - 1 - x = 0$$

 $x^{2} - 2y^{2} - y = 0$
Initial guess $x = 0$, $y = 0$

$$F = \begin{bmatrix} y + x^2 - 1 - x \\ x^2 - 2y^2 - y \end{bmatrix}, F = \begin{bmatrix} 2x - 1 & 1 \\ 2x & -4y - 1 \end{bmatrix}, X_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

EXAMPLE SOLUTION

Iteration	0	1	2	3	4	5
X_k	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -0.6 \\ 0.2 \end{bmatrix}$	[-0.5287 0.1969]	$\begin{bmatrix} -0.525\overline{7} \\ 0.1980 \end{bmatrix}$	$\begin{bmatrix} -0.525\overline{7} \\ 0.1980 \end{bmatrix}$

Estimates of the root of: $x-\cos(x)=0$.

0.600000000000 Initial guess

<u>0.7</u>4401731944598 1 correct digit

0.73909047688624 4 correct digits

0.73908513322147 10 correct digits

0.73908513321516 14 correct digits

In estimating the root of: x-cos(x)=0, to get more than 13 correct digits:

- 4 iterations of Newton ($x_0=0.8$)
- 43 iterations of Bisection method
- (initial interval [0.6, 0.8])

Example:

Solve the system of non-linear equations

$$x_1^2 + x_2^2 + x_3^2 - 1 = 0$$

$$x_1^2 + x_3^2 = \frac{1}{4}$$

$$x_1^2 + x_2^2 - 4x_3 = 0$$

$$f_1(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 1$$

$$f_2(x_1, x_2, x_3) = x_1^2 + x_3^2 - \frac{1}{4}$$

$$f_3(x_1, x_2, x_3) = x_1^2 + x_2^2 - 4x_3$$

Example

$$F'(X) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 & 2x_2 & 2x_3 \\ 2x_1 & 0 & 2x_3 \\ 2x_1 & 2x_2 & -4 \end{bmatrix}$$

Make an initial guess:

$$X_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$F(X_0) = \begin{bmatrix} 2\\1.75\\-2 \end{bmatrix}$$

$$F(X_0) = \begin{bmatrix} 2 \\ 1.75 \\ -2 \end{bmatrix} \qquad F'(X_0) = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & -4 \end{bmatrix}$$

$$X_1 = X_0 - [F'(X_0)]^{-1} F[X_0]$$

$$X_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & -4 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 1.75 \\ -2 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} 0.79167 \\ 0.87500 \\ 0.33333 \end{bmatrix}$$

$$X_2 = X_1 - [F'(X_1)]^{-1} F[X_1]$$

$$F(X_1) = \begin{bmatrix} 0.50348 \\ 0.48785 \\ 0.05905 \end{bmatrix}$$

$$F'(X_1) = \begin{bmatrix} 1.58334 & 1.75000 & 0.66666 \\ 1.58334 & 0 & 0.66666 \\ 1.58334 & 1.75000 & -4 \end{bmatrix}$$

$$X_2 = X_1 - [F'(X_1)]^{-1} F[X_1]$$

$$X_2 = \begin{bmatrix} 0.79167 \\ 0.87500 \\ 0.33333 \end{bmatrix} - \begin{bmatrix} 1.58334 & 1.75000 & 0.66666 \\ 1.58334 & 0 & 0.66666 \\ 1.58334 & 1.75000 & -4 \end{bmatrix} \begin{bmatrix} 0.50348 \\ 0.48785 \\ 0.05905 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} 0.52365 \\ 0.86607 \\ 0.23810 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} 0.52365 \\ 0.86607 \\ 0.23810 \end{bmatrix}$$
 $X_3 = \begin{bmatrix} 0.44733 \\ 0.86603 \\ 0.23607 \end{bmatrix}$

$$X_4 = \begin{bmatrix} 0.44081 \\ 0.86603 \\ 0.23607 \end{bmatrix}$$

A SYSTEM OF THREE EQUATIONS

$$f_1(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 1 = 0,$$

$$f_2(x_1, x_2, x_3) = x_1^2 + x_2^2 - 1/4 = 0,$$

$$f_3(x_1, x_2, x_3) = x_1^2 + x_2^2 - 4x_3 = 0$$

$$F(x) = \begin{bmatrix} x_1^2 + x_2^2 + x_3^2 - 1 \\ x_1^2 + x_2^2 - 1/4 \\ x_1^2 + x_2^2 - 4x_3 \end{bmatrix}$$

$$F'(x) = \begin{bmatrix} 2x_1 & 2x_2 & 2x_3 \\ 2x_1 & 0 & 2x_3 \\ 2x_1 & 2x_2 & 4 \end{bmatrix}$$

> :	> Newtor 0 1	n_sys('th 1 1	ree_equa	ition", "thr	ee_equation_j`,[1 1 1],0,00001,10).	;	
	1,0000	0,7917	0,8750	0,3333	0,7096		
	2,0000	0,5237	0,8661	0,2381	0,2846		
	3,0000	0,4473	0,8660	0,2361	0,0764		
	4,0000	0,4408	0,8660	0,2361	0,0065		
	5,0000	0,4408	0,8660	0,2361	0,0000		
	6,0000	0,4408	0,8660	0,2361	0,0000		
Newton method has converged							

Thank you

