Lecture 11 Part 2

Back Propagation

Abrar Hasan Lecturer Dept. of Software Engineering

Back Propagation

Remember Gradient Descent?

Gradient descent is an optimization algorithm commonly used to train machine learning models and neural networks.

Chain Rule

$$\frac{dy}{dx} = \frac{dy}{dx} = \frac{da}{dx}$$

< T 1 >

Chain Rule

$$y = 5x + 3$$
$$x = t^2$$

Now we have to find $\frac{dy}{dt}$

What generally we do,

$$y = 5x + 3$$

= 5(t²)+3
= 5t²+3

$$\frac{dy}{dt} = \frac{d(5t^2+3)}{dt}$$
$$= 10t$$

y = 5x + 3 $x = t^{2}$ $\frac{dy}{dt} = ?$

• Y is function of X
• X is a function of T

Instead of doing this
$$\frac{dy}{dt} = \frac{d(5t^2+3)}{dt}$$

$$\frac{dy}{dt} = \frac{d(5t^2+3)}{dt}$$

$$\frac{dy}{dt} = \frac{dx}{dt}$$

y = 5x + 3

 $x = t^2$

 $\frac{d}{dx}(5x+3) * \frac{d}{dt}(t^2)$

=5 *2t = 10t

Chain Rule

this

But in chain rule we see

Total Error =
$$\frac{1}{2}$$
 (T₁-outy₁)² + $\frac{1}{2}$ (T₂-outy₂)²+ $\frac{1}{2}$ (T₃-outy₃)²

Outy₁= activation($w_{10}x_1 + w_{11}x_2$)

$$\frac{dError}{dW_{11}} = \frac{dError}{douty_1} * \frac{douty_1}{dy_1} * \frac{dy_1}{dw_{11}}$$

< T 1 >

< T 1 >

$$H_1 = x_1^* w_1 + x_2^* w_2 + b_1$$
 $H_2 = x_1^* w_3 + x_2^* w_4 + b_2$
output_ $H_1 = \frac{1}{1 + e^{-H_1}}$ output_ $H_2 = \frac{1}{1 + e^{-H_2}}$

$$y_1 = out_H_1 * w_5 + out_H_2 * w_6 + b_3$$
 $y_1 = out_H_1 * w_7 + out_H_2 * w_8 + b_4$

output_y _1 = $\frac{1}{1 + e^{-y_1}}$

$$W_4$$
 W_8 W_8 $W_1 = outH_1 * W_7 + outH_1 * W_7 + outH_1 * W_1 + outH_2 * W_2 + outH_2 * W_3 + outH_4 * W_1 + outH_4 * W_1 + outH_4 * W_2 + outH_4 * W_3 + outH_4 * W_1 + outH_4 * W_2 + outH_4 * W_3 + outH_4 * W_1 + outH_4 * W_2 + outH_4 * W_3 + outH_5 * W$

output_ $y_1 = \frac{1}{1 + e^{-y_1}}$

What we just learnt is called forward pass

Now Lets see a mathematical example

$$H_1 = x_1^* W_1 + x_2^* W_2 + b_1$$
 output_ $H_1 = \frac{1}{1 + e^{-H_1}}$
 $H_1 = .05 * .15 + .1 * .2 + .35$ = .5932

 H_2 = .3925 output_H $_2$ = .59688

$$y_1 = out_H_1 * w_5 + out_H_2 * w_6 + b_3$$
 output_y $y_1 = \frac{1}{1 + e^{-y_1}}$

= .7513

= 1.1056

= .5932 *.4 + .59688 *.45 +.6

y2 = 1.22 output_y₁ = .77

Total Error =
$$\frac{1}{2} (T_1 - \text{outy}_1)^2 + \frac{1}{2} (T_2 - \text{outy}_2)^2$$

$$\frac{dError}{dW_5} = \frac{dError}{douty_1} * \frac{douty_1}{dy_1} * \frac{dy_1}{dw_5}$$

$$\frac{dError}{d\ outy_1} = \frac{d}{d\ outy_1} \left(\frac{1}{2} \left(T_1 - \text{outy}_1\right)^2 + \frac{1}{2} \left(T_2 - \text{outy}_2\right)^2\right)$$

$$= 2^* \frac{1}{2} * (T_1 - \text{outy}_1) * (0-1) + 0$$

 $= -(T_1 - \text{outy}_1)$

Total Error = $\frac{1}{2}(T_1 - \text{outy}_1)^2 + \frac{1}{2}(T_2 - \text{outy}_2)^2$

 $\frac{d \ outy_1}{dy_1} = Derivative of Sigmoid$

 $=_{outy_1} *(1 - outy_1)$

Derivative of Sigmoid

 $\frac{d\mathbf{O}(x)}{dy_1} = \mathbf{O}(x) * (1 - \mathbf{O}(x))$

$$\frac{dError}{dW_5} = \frac{dError}{douty_1} * \frac{douty_1}{dy_1} * \frac{dy_1}{dw_5}$$

< T 1 >

Total Error =
$$\frac{1}{2}(T_1-outy_1)^2 + \frac{1}{2}(T_2-outy_2)^2$$

$$\frac{dError}{dW_5} = \frac{dError}{douty_1} * \frac{douty_1}{dy_1} * \frac{dy_1}{dw_5}$$

$$\frac{dW_5}{dW_5} = \frac{douty_1}{douty_1} + \frac{dy_1}{dw_5}$$

$$\frac{dy_1}{dx_1} = \frac{d}{dx_2} (\text{out } H_1 * w_5 + \text{out } H_2 * w_6 + b_3)$$

$$\frac{dy_1}{dw_5} = \frac{d}{dw_5} (\text{out}_{-H_1} *_{W_5} + \text{out}_{-H_2} *_{W_6} + b_3)$$

 $= out H_1 + 0 + 0$

= out H_1

$$\frac{dy_1}{dw_5} = \frac{d}{dw_5}$$

Total Error =
$$\frac{1}{2}$$
(T₁-outy₁)² + $\frac{1}{2}$ (T₂-outy₂)²

$$\frac{dError}{dW_5} = -(\frac{dError}{\frac{1}{d} \frac{-outy_1}{outy_1}}) * \frac{douty_1}{\frac{outy_1}{dy_1}} * \frac{dy_1}{\frac{outy_1}{dw_5}} H_1$$

Do the same for all weight

