Quadratic optimization with quantum computing

Biweekely Presentation IV

Bálint Hantos

Supervisor: Péter Rakyta

Mathematical background

- Expected value of a matrix: $\langle {\bf b}|{\bf Q}|{\bf b}\rangle$ $\langle 10010|{\bf Q}|10010\rangle = \ {\rm scalar}$
- \mathbf{Q} is a symmetric matrix (n x n)
- **b** is a **binary** vector (n)

Mathematical background

- Expected value of a matrix: $\langle {\bf b}|{\bf Q}|{\bf b}\rangle$ $\langle 10010|{\bf Q}|10010\rangle = \ {\rm scalar}$
- **Q** is a symmetric matrix (n x n)
- **b** is a **binary** vector (n)

- Find $|\mathbf{b}\rangle$ such that $\min(\langle \mathbf{b} | \mathbf{Q} | \mathbf{b} \rangle)$
 - Explicitly (calculate **all** $\langle \mathbf{Q} \rangle$)
 - \bigstar By sampling $ho(\langle \mathbf{Q} \rangle)$

Mathematical background

- Expected value of a matrix: $\langle {\bf b}|{\bf Q}|{\bf b}\rangle$ $\langle 10010|{\bf Q}|10010\rangle = \ {\rm scalar}$
- **Q** is a symmetric matrix (n x n)
- **b** is a **binary** vector (n)

- Find $|\mathbf{b}\rangle$ such that $\min(\langle \mathbf{b} | \mathbf{Q} | \mathbf{b} \rangle)$
 - Explicitly (calculate **all** $\langle \mathbf{Q} \rangle$)
 - \bigstar By sampling $\rho(\langle \mathbf{Q} \rangle)$
- Better than random sampling?
 - Optimizing is hard, because $|\mathbf{b}\rangle$ is discrete
 - Need to find **continuus parameters** to repr $|\mathbf{b}\rangle$

• Need to find **continous parameters** to repr $|\mathbf{b}\rangle$

• Need to find **continous parameters** to repr $|\mathbf{b}\rangle$

• Need to find **continous parameters** to repr $|\mathbf{b}\rangle$

Continous variables ϑ_i and ψ_j

Need to find continous parameters to repr

Distribution of quantum states:

$$P_S(\vartheta, \psi) = |\alpha_S|^2$$

Setup

- Piquasso simulator for photonic quantum computations
- **Piquassoboost** for performance improvement

- Personal use:
 - **Ubuntu on Docker** for a separated application environment
- Simulating a Boson Sampler is computationally expensive
- Budapest Quantum Computing Group server:
 - 64 Core CPU
 - FPGA server

Results: break minimization

- **Break:** team plays at the same place two times in a row
- Compared energy and number of breaks
- Expected a linear connection between breaks and energy (<Q> = <E>)
- The lowest energy configuration paired with a min-break → quantum annealing is viable
- The global minimum (6) was successfully **found** with the **Piquasso** model

Results: Max-cut

Side note: Barabási-Albert graph

- Last report: How can there be a such a lonely node?
- Parameters: n final num of nodes
 m edges from new nodes

initial_graph [Graph or None (default)] Initial network for Barabási—Albert algorithm. It should be a connected graph for most use cases. A copy of initial_graph is used. If None, starts from a star graph on (m+1) nodes.

Darabasi_albert_graph (n, m, seed=None, initial_graph=None)

Returns a random graph using Barabási-Albert preferential attachment

A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to existing nodes with high degree.

Parameters

n [int] Number of nodes

m [int] Number of edges to attach from a new node to existing nodes

seed [integer, random_state, or None (default)] Indicator of random number generation state. See Randomness.

initial_graph [Graph or None (default)] Initial network for Barabási-Albert algorithm. It should be a connected graph for most use cases. A copy of initial_graph is used. If None, starts from a star graph on (m+1) nodes.

Returns

G [Graph]

NetworkXError If m does not satisfy 1 <= m < n, or the initial graph number of nodes m0

NetworkX reference - networkx — NetworkX documentation. (n.d.). Retrieved April 26, 2022, from https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf

does not satisfy m <= m0 <= n.