### Attention and BERT

#### Alexandre Allauzen

Fall 2023









## Roadmap

Introduction to attention

Transformer architecture

Conclusion

References

### Outline

Introduction to attention

Transformer architecture

Conclusion

References

# From Embeddings to Contextualized Embeddings Static word embeddings



Contextualized representation with bi-recurrent encoder:



## Draw attention for classification



- $\mathbf{a} = (a_i), \sum_{i=1}^{L} a_i = 1 \text{ and } 0 \le a_i \le 1$
- a : attention vector for the "query" **q** and the "keys" **X**.
- q is a vector to be learnt [8, 5]

## Attention to weight inputs

•  $\mathbf{a} = X\mathbf{q}$  is the attention vector

$$\mathbf{h} = \sum_{i=1}^{L} a_i \mathbf{x}_i = \mathbf{a} \mathbf{X}$$

- A new vector, focused on the classification task (q)
- To summarize:

$$\mathbf{h} = \operatorname{softmax}(\mathbf{X}_{\mathbf{q}})\mathbf{X} \rightarrow \operatorname{classification}$$

#### Issues:

- Scale the dot product
- X is involved everywhere!

### Basic attention mechanism for classification

this movie was a great experience



$$\mathbf{h} = \operatorname{softmax} \left(\frac{\mathbf{Kq}}{\sqrt{d}}\right)^t \mathbf{V}$$

- X can be static emb.
- Derived from bi-LSTM
- **q** is learnt as a target for selection
- $pa = \mathbf{Kq}$ : selection in  $\mathbf{V}$

### In a few dates



8/26 Introduction to attention

## Bigger is ...



9/26 Introduction to attention

## Outline

Introduction to attention

Transformer architecture

Conclusion

References

## Contextualized word embeddings

### Consider the word driver:

the audio driver is really outdated the driver exceeded the speed limit

# Contextualized word embeddings

#### Consider the word driver:

| $_{ m the}$ | $\operatorname{audio}$  | $\operatorname{driver}$ | is          | really        | outdated               |
|-------------|-------------------------|-------------------------|-------------|---------------|------------------------|
| $_{ m the}$ | $\operatorname{driver}$ | exceeded                | $_{ m the}$ | $_{ m speed}$ | $\operatorname{limit}$ |

#### The context



11/26 Transformer architecture

### Self attention

#### Consider the word driver:



- $(\lambda_{i,j})$  are the attention coefficients,  $\sum_i \lambda_{i,j} = 1$ , and
- Reflects the influence of  $x_i$  on  $x_i$  (transformed version)

# Transformer : Queries, Keys, Values

the driver exceeded the speed limit



### Tranformer: Attention matrix

The distance matrix between Q and K



Scaled Dot-Product Attention

$$\mathbf{Z} = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\mathbf{t}}}{\sqrt{d}}\right)\mathbf{V} =$$

# QKV and Metric Learning

$$\begin{aligned} \mathbf{Q}\mathbf{K}^t &= \mathbf{X}\mathbf{W}_K \times (\mathbf{X}\mathbf{W}_K)^t = \mathbf{X}\mathbf{W}_Q \times (\mathbf{W}_K^t \mathbf{X}^t) \\ &= \mathbf{X}\mathbf{M}\mathbf{X}^t \end{aligned}$$

- If M would be PSD, it is a metric.
- Otherwise, it is a transformed similarity (bilinear similarity)

M is learnt: a transformer block learns its own similarity.

Multi-head attention (with 2 heads)



# Putting all together (with more tricks)

## Transformer block From [7]

- Inputs is **X**
- Positional embeddings
- Multihead attention
- Residual connections [4]
- Layer Normalization [2]
- Final filtering



# Positional embeddings



- Originally "absolute"
- Can be learnt [3, 1]
- Or relative [6]

(figure generated by the following code https://github.com/jalammar/jalammar.github.io/blob/master/notebookes/transformer/transformer\_positional\_encoding\_graph.ipynb)

## A Transformer layer



Transformer layers can be stacked!

## Pre-training as a (Masked) language model



20/26

### BERT Encoder for text classification



21/26

## Transformers / bi-lstm encoders

#### Reminder of bi-recurrent encoder



#### The difference

- Two different ways to encode the dependence
- Richer for attention since we stack transformers
- all the deep-learning tricks  $\Rightarrow$  over-parametrization

### Outline

Introduction to attention

Transformer architecture

Conclusion

References

23/26 Conclusion

# Transformers are everywhere

State of the art encoder

- For text!
- And also for speech, DNA, vision, ...

Also a powerful generator

- For text (GPT, ...)
- Speech, ... sequences

24/26 Conclusion

### Outline

Introduction to attention

Transformer architecture

Conclusion

References

25/26 References

- [1] Rami Al-Rfou et al. Character-Level Language Modeling with Deeper Self-Attention. 2018. arXiv: 1808.04444 [cs.CL].
- [2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. *Layer Normalization*. 2016. arXiv: 1607.06450 [stat.ML].
- [3] Jonas Gehring et al. "Convolutional Sequence to Sequence Learning". In: CoRR abs/1705.03122 (2017). arXiv: 1705.03122. URL: http://arxiv.org/abs/1705.03122.
- [4] Kaiming He et al. "Deep Residual Learning for Image Recognition". In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770-778. arXiv: 1512.03385 [cs.CV].
- [5] Zhouhan Lin et al. "A STRUCTURED SELF-ATTENTIVE SENTENCE EMBEDDING". In: International Conference on Learning Representations. 2017. URL: https://openreview.net/forum?id=BJC\_jUqxe.
- [6] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative Position Representations. 2018. arXiv: 1803.02155 [cs.CL].
- [7] Ashish Vaswani et al. "Attention is All you Need". In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 6000-6010. URL: http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.
- [8] Zichao Yang et al. "Hierarchical Attention Networks for Document Classification". In: Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL).

26/26 References