

Kontextuelle und Temporale Einflüsse auf Abstrakte Kognitive Kontrolle

Disputation - Moritz Schiltenwolf

Prüfer:

D. Dignath – A. Kiesel – H. Leuthold – B. Kaup

Einleitung – Kognitive Kontrolle

Attentionale Gewichtung: Priorisierung bestimmter Wahrnehmungsinhalte gegenüber anderer.

Einleitung – Kognitive Kontrolle

Kontrollzustand:
Kognitive Kontrolle, die zu einem bestimmten
Zeitpunkt implementiert ist.

Einleitung – Kontrolle messen

Einleitung – Kontrolle messen

Einleitung – Kontext-spezifische CSE

Kontext-spezifischer CSE

Zentrale Fragen meiner Promotion

Test der zeitlichen Stabilität von Kontrolle
 ← Kontext Bindings.

Publiziert als: Schiltenwolf, M., Kiesel, A., Frings, C., & Dignath, D. (2023). Memory for abstract control states does not decay with increasing retrieval delays. Psychological Research, 1-15.

2. Test des *Retrieval*-Prozesses als Ursache für die Kontextspezifizität des CSE.

3. Generalisierung von Kontrolle↔ Kontext Bindings auf Aufgabenkontrolle.

Publiziert als: Schiltenwolf, M., Dignath, D., & Hazeltine, E. (2024). Binding of response-independent task rules. Psychonomic bulletin & review, 1-12.

Studie I – Zeitliche Stabilität von Kontrolle↔Kontext Bindings

Studie I – Zeitliche Stabilität von Kontrolle↔Kontext Bindings

Studie I – Methode und Analyse

H₁ Zeitlicher Verfall: Der kontext-spezifische CSE ist geringer bei längeren ITIs. H₀ Zeitliche Stabilität: Der kontext-spezifische CSE variiert nicht als Funktion des ITI.

Bayesianischer Ansatz:
$$BF_{10} = \frac{p(data|Model\ Zeitlicher\ Verfall)}{p(data|Model\ Zeitliche\ Stabilität)}$$

 $BF_{10} = 5$; Daten 5x so wahrscheinlich unter H_1 wie unter H_0 $BF_{10} = 1/5$; Daten 5x so wahrscheinlich unter H_0 wie unter H_1

Model Zeitlicher Verfall: CSE ~ Kontexttransition + ITI Dauer + 2-fach Interaktion + Subjektintercept Model Zeitliche Stabilität: CSE ~ Kontexttransition + ITI Dauer + Subjektintercept

Model Zeitlicher Verfall: CSE ~ Kontexttransition + ITI Dauer + 2-fach Interaktion +
Experiment + Subjektintercept
Model Zeitliche Stabilität: CSE ~ Kontexttransition + ITI Dauer +
Experiment+ Subjektintercept

"Retrieval bezieht sich auf den Prozess der Reaktivierung aller Merkmale eines Bindings, wenn ein oder mehrere der gebundenen Merkmale erneut angetroffen werden."

Frings et al. (2024)

Alternativ Kontroll-Erhalt und <u>Unterbrechung</u>:

Alternativ Kontroll-Erhalt und <u>Unterbrechung</u>:

Phänomen Kontext-Spezifischer CSE 2 Erklärungen:

Vorhersage Kontroll-Retrieval:

N-2 CSE bei Kontextwiederholung

größer als

N-2 CSE bei Kontextwechsel.

Vorhersage Kontroll-Unterbrechung:

Kein Einfluss von Kontexttransition auf N-2 CSE.

Studie II – Analyse

Test der Hypothesen Kontroll-Retrieval vs. Kontroll-Unterbrechung

Bayesianischer Modellvergleich:

H₁ Model (Vorhersage Kontroll-Retrieval)

N-2 CSE bei Kontextwiederholung größer als N-2 CSE bei

Kontextwechsel.

H₁ model: RT~

3-fach Interaktion (N-2 Kongr.: N Kongr.: N-2→N Kontext-Trans.)

+ Alle anderen Haupt und Interaktionseffekte (N-2, N Kongr., N-2 →N Kontext-Trans.)

+ Subjektintercept + Subjektslopes

H₀ Model

(Vorhersage Kontroll-Unterbrechung)

Kein Einfluss von Kontexttransition auf N-2 CSE.

H₀ model: **RT~**

- + Alle anderen Haupt und Interaktionseffekte (N-2, N Kongr., N-2 →N Kontext-Trans.)
- + Subjektintercept + Subjektslopes

BF₁₀ > 1 Evidenz für Kontroll-Retrieval ${\rm BF_{10}} < 1$ Evidenz für Kontroll-Unterbrechung

Studie III – Generalisierung Kontrolle → Kontext Bindings

Aufgabenkontrolle:
Die kognitive Repräsentation
von Aufgabenregeln

Aufgabe 1 "Im Uhrzeigersinn"

Aufgabe 2 "Gegen den Uhrzeigersinn"

Aufgabe 3 "Über Kreuz"

Trial 1

 Kontext & Aufgabe können sich von Trial zu Trial wiederholen oder wechseln.

Trial 2

 Kontext & Aufgabe können sich von Trial zu Trial wiederholen oder wechseln

Trial 3

- Aufgaben nutzen den gleichen Handlungspool.
- Handlungen wiederholen sich nicht zwischen 2 Trials.
- → Wechselkosten durch abstrakte Aufgabenkontrolle.

 Kontext & Aufgabe können sich von Trial zu Trial wiederholen oder wechseln

Frequentistische Analyse: RM-ANOVA RT ~ Aufgabenrelation x Kontextrelation

Zusammenfassung der Studien

- Test der zeitlichen Stabilität von Kontrolle ← Kontext Bindings:
 - → Analyse aller Daten ergibt Evidenz für zeitliche Stabilität von Kontrolle ↔ Kontext Bindings.
 - → Aber einzelne Experimente blieben inkonklusiv.
- 2. Test des Retrieval-Prozesses als Ursache für die Kontextspezifizität des CSE:
 - → In 3 Experimenten Evidenz gegen Kontroll-Retrieval und für Kontroll-Unterbrechung.
- 3. Generalisierung von Kontrolle → Kontext Bindings auf Aufgabenkontrolle:
 - → Kontrolle ← Kontext Bindings lassen sich nicht nur für Gewichtung von Aufmerksamkeit sondern auch für Augabenkontrolle beobachten.

Vielen Dank für Ihre Aufmerksamkeit!

Hannah Dames

Andrea Kiesel

Eliot Hazeltine

David Dignath

Christina Pfeuffer

Christian Frings

Literatur

- Carlén, M. (2017). What constitutes the prefrontal cortex?. Science, 358(6362), 478-482.
- Dignath, D., Johannsen, L., Hommel, B., & Kiesel, A. (2019). Reconciling cognitive-control and episodic-retrieval accounts of sequential conflict modulation: Binding
 of control-states into event-files. Journal of Experimental Psychology: Human Perception and Performance, 45(9), 1265.
- Grant, L. D., Cerpa, S. R., & Weissman, D. H. (2022). Rethinking attentional reset: Task sets determine the boundaries of adaptive control. Quarterly Journal of Experimental Psychology, 75(6), 1171-1185.
- Hommel, B., Frings, C. The disintegration of event files over time: Decay or interference?. Psychon Bull Rev 27, 751–757 (2020). https://doi.org/10.3758/s13423-020-01738-3
- Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and brain sciences, 24(5), 849-878.
- Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual review of neuroscience, 24(1), 167-202.
- Schiltenwolf, M., Kiesel, A., & Dignath, D. (2023a). No temporal decay of cognitive control in the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(8), 1247.
- Schiltenwolf, M., Kiesel, A., Frings, C., & Dignath, D. (2023b). Memory for abstract control states does not decay with increasing retrieval delays. Psychological Research, 1-15.
- Schiltenwolf, M., Dignath, D., & Hazeltine, E. (2024). Binding of response-independent task rules. Psychonomic bulletin & review, 1-12.

Studie I – kontext-spezifischer CSE RTs

Studie III – Hierarchische Aufgabenkontrolle

Studie III – Hierarchische Aufgabenkontrolle

Basierend auf Oberauer et al. (2013)

EEG Bindings

Representiational Similarity Analysis (RSA) Kikumoto & Mayr (2023)

Steady State Visual Evoked Potential (SSVEP)

Dignath et al. (2019)

Studie II – Analyse

Test der Hypothesen Kontroll-Retrieval vs. Kontroll-Unterbrechung

Bayesianischer Modellvergleich:

Vorhersage Kontroll-Retrieval: H₁ model: RT~

3-fach Interaktion (N-2 Kongr.: N Kongr.: N-2→N Kontext-Trans.)

+ Alle anderen Haupt und Interaktionseffekte (N-2, N Kongr., N-2→N Kontext-Trans.)

+ Subjektintercept + Subjektslopes

Vorhersage Kontroll-Unterbrechung:

N-2 CSE bei Kontextwiederholung

größer als

N-2 CSE bei

H₀ model: **RT~**

+ Alle anderen Haupt und Interaktionseffekte (N-2, N Kongr., N-2 →N Kontext-Trans.)

+ Subjektintercept + Subjektslopes

Kein Einfluss von Kontexttransition auf N-2 CSE.

Kontextwechsel.

Studie II – Analyse

- Bayesian Generalized Mixed Model (brms)
- RTs modelled as shifted log-normal distribution
 - µ varied between conditions.
- Max random effect structure
- Informed prior based on previous studies
 - Intercept (~645ms)
 - Shift (~200ms)
 - Moderately informative priors for fixed and random effects.
 - · Replicated identical analysis with default priors
- No-U-Turn Sampler (NUTS) for posterior estimation.
- Decisive BF10/01 of 3

Probability-Densityfunction of Theta (shift) μ (mean) = 0; σ (SD of logRT) = 1 Rouder (2005)

CSPC

- Bsp:
 - Ziffer = 75 % inc; 25 % con
 - Zahlwort = 25 % inc; 75 % con

