Fyzika II

Jaderná fyzika

o Čtyři základní fyzikální interakce

Typ interakce	Relativní	Dosah	Zprostředkující	
	síla	(m)	částice	
elektromagnetická	10^{-2}	∞	γ foton	
gravitační	10^{-38}	∞	G graviton	
slabá	10^{-13}	10^{-18}	$\mathrm{W}^{\pm},\mathrm{Z}^{0}$ intermediální	
			bosony	
silná	1	10^{-15} ∞		
		(hadrony) (kvarky)	g gluony	

o Leptony

- o Částice nepodstupující silnou interakci
- o Fermiony (s = $\frac{1}{2}$)
- o Částice bez další vnitřní struktury

Název	Symbol	Náboj	Antičástice
leptonu		(e)	
Elektron	e ⁻	-1	e ⁺ (pozitron)
Elektronové neutrino	$ u_e$	0	$ar{ u}_e$
Mion	μ^-	-1	μ^+
Mionové neutrino	$ u_{\mu}$	0	$ar{ u}_{\mu}$
Tauon	$ au^-$	-1	$ au^+$
Tauonové neutrino	$\nu_{ au}$	0	$ar{ u}_{ au}$

o Hadrony

- o Postupují silné interakce
- Tvořeny kvarky
- o Mají vnitřní strukturu -> jedná se o složené částice
- o Mezony = hadrony, jež jsou zároveň bosony
- o Baryony = hadrony, jež jsou zároveň fermiony (např. protony, neutrony)

Jméno	Značka	Kvarkové	Náboj	Kvantové spinové	
hadronu		složení	(e)	číslo (s)	
proton	p ⁺	uud	1	1/2	
neutron	n ⁰	udd	0	1/2	
omega	Ω^-	SSS	-1	3/2	
pion	π^+	ud	+1	0	
kaon	K-	${ m s}ar{ m d}$	-1	0	
ro	$ ho^+$	${ m d}ar{ m b}$	+1	1	

o Standardní model

- O Veškerá známá hmota ve vesmíru se skládá ze šesti druhů kvarků a šesti druhů leptonů a všechny jevy, které ve vesmíru pozorujeme, dovedeme vysvětlit pomocí čtyř druhů interakcí.
- Klasifikace kvarků

Jméno	Značka	Hmotnost	Náboj	Antikvark
kvarku		(MeV)	(e)	
down (dolů)	d	5	-1/3	ā
up (nahoru)	u	3	+2/3	ū
strange (podivný)	s	95	-1/3	īs
charm (půvabný)	С	1300	+2/3	ē
bottom (spodní)	b	4200	-1/3	Б
top (svrchní)	t	173000	+2/3	ī

- Formální značení jádra
- $_{Z}^{A}X$, např. $_{92}^{235}U$ (U je značka uranu)
- o X značka prvku
- o Z protonové číslo (počet protonů v jádře)
- o A nukleonové číslo (počet protonů a neutronů v jádře)
- o N neutronové číslo (počet neutronů v jádře) A = N + Z
- o Empirický vztah pro poloměr jádra $rpprox 1, 3\cdot 10^{-15}A^{rac{1}{3}}=r_0A^{rac{1}{3}}$ m
 - Poloměr jádra roste s počtem nukleonů v jádře
- o Hmotnost jádra $m_j = A \cdot m_u$
 - Atomová hmotnostní jednotka $m_u=\frac{1}{12}m\left(^{12}_6C\right)\approx 1,6604\cdot 10^{-27}~{
 m kg}$
 - Vyjádření hmotnosti protonu a neutronu z hmotnosti jádra

$$m_n \approx 1,6748 \cdot 10^{-27} \text{ kg} \approx 1,0086654 \cdot m_u$$

$$m_p \approx 1,6725 \cdot 10^{-27} \text{ kg} \approx 1,0072766 \cdot m_u$$

- o Hustota jádra $ho_j=rac{m_j}{V_j}=rac{Am_u}{rac{4}{3}\pi r^3}pprox 10^{17}~{
 m kg~m}^{-3}$
- o Definice pojmů
 - o Prvek skupina atomů se stejným Z
 - o Nuklid atom o dané hodnotě A a Z
 - Nestabilní nuklidy radionuklidy
 - o Izotop nuklidy se stejným Z a různými A (resp. N)
 - o Izobar nuklidy se stejným A a různými Z
 - o Izoton nuklidy se stejným N a různými Z
- o Hmotnostní úbytek $\Delta m = Z m_p + (A-Z) m_n m_j
 eq 0$
- o Vazební energie $E_V = \Delta mc^2$
- o Magická čísla
 - O Jádra atomů, jejichž počet protonů či neutronů se rovná magickému číslu, jsou ta nejstabilnější
 - o 2, 8, 20, 28, 50, 82, (pro neutron) 126

- o Kapkový model atomového jádra
 - o Analogie mezi kapkou kapaliny a atomovým jádrem
 - o Jádro je kapka kapaliny, v níž se projevují objemové a povrchové síly
 - Nukleony představují molekuly vody (naráží, konají tepelný pohyb)
 - \circ Objemová energie jádra $E_o=6AU$ $E_o=a_1A$
 - o Povrchová energie jádra $E_{po}=-a_2A^{rac{2}{3}}$
 - Celková vazební energie (Weizächerův semiempirický vzorec vazební energie)
 - Součet objemové, povrchové, coulombické energie a symetrizačního členu

$$E_V = a_1 A - a_2 A^{\frac{2}{3}} - a_3 \frac{Z(Z-1)}{A^{\frac{1}{3}}} - a_4 \frac{N-Z)^2}{A}$$

- o Slupkový model atomového jádra
 - Snaží se vysvětlit existenci magických čísel a jiných jaderných vlastností na základě interakce jednotlivých nukleonů se silovým polem ostatních nukleonů
 - o Užívá se funkce potenciální energie pravoúhlé jámy se zaoblenými rohy
 - Neutrony a protony obsazují odlišné skupiny dovolených stavů
- o Kolektivní model atomového jádra
 - o Kombinace obou předchozích modelů
 - o Počítá již i s možností kmitání a rotací jádra jako celku
 - o Výrazně složitější
- o Radioaktivní rozpad
 - o 270 nuklidů stabilních
 - o Cca 1200 nuklidů nestabilních radionuklidy
 - Radioaktivita
 - Spontánní jaderná přeměna radionuklidů doprovázena emisí radioaktivního záření
 - Přirozená X umělá
 - o Jaderná přeměna
 - Proces, při němž dochází ke změně ve složení atomového jádra (mění se hodnota Z nebo N)
 - o Radioaktivní zářiče
 - Látky a předměty obsahující radionuklidy

o Rozpadový zákon (
$$\lambda$$
 – rozpadová konstanta) $N(t) = N_0 e^{-\lambda t}$

o Rychlost rozpadu (aktivita)
$$R=R_0e^{\,-\,\lambda t}$$
 $R=\lambda N(t)$

$$\circ$$
 Poločas rozpadu $T_{1/2}=rac{\ln 2}{\lambda}$

- o Střední doba života jádra $au=1/\lambda$
- \circ Základní (hmotnostní) podmínka $m({
 m X}) > m({
 m Y}) + m({
 m \check{c}stice})$
 - o Přeměnová energie $Q = [m({
 m X}) m({
 m Y}) m({
 m \check{c}stice})]c^2$
- o Radioaktivita (rozpad) α
 - o Převážně u nuklidů těžkých prvků
 - o Při rozpadu se tvoří α částice, která představuje jádro hélia

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + \alpha (_{2}^{4}He)$$

 Aby mohlo k radioaktivitě dojít, musí být splněna podmínka

$$m(X) > m(Y) + m(\alpha)$$

o Přeměnová energie
$$Q=K_Y+K_lpha=rac{1}{2}m_Yv_Y^2+rac{1}{2}m_lpha v_lpha^2$$

- o Radioaktivita β
 - o Nejčastější a nejdůležitější druh radioaktivity
- o Radioaktivita β
 - o Nukleonové číslo je konstantní
 - o Protonové číslo se zvýší o 1
 - Při rozpadu se tvoří elektron a elektronové antineutrino

$$^{A}_{Z}X\rightarrow\,^{A}_{Z+1}Y+\beta^{-}(\mathrm{e}^{-})+\bar{\nu}_{e}$$

o Aby mohlo k radioaktivitě dojít, musí být splněna podmínka

$$m(X) > m(Y) + m_e$$

- o Vyskytuje se u jader s přebytkem neutronů
- o Volný neutron je nestabilní
 - lacktriangle Přebytečný neutron podstoupí přeměnu ${
 m n}^0
 ightarrow {
 m p}^+ + {
 m e}^- + ar
 u_e$
- o Přeměnová energie $Q=[m({
 m X})-m({
 m Y})-m_e]c^2=K_{eta^-}+K_{ar
 u_e}>0$
- o Radioaktivita β+
 - o Stejný počet nukleonů
 - o Protonové číslo se sníží o 1
 - Při rozpadu se tvoří pozitron a elektronové neutrino

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + \beta^{+}(e^{+}) + \nu_{e}$$

o Aby mohlo k radioaktivitě dojít, musí být splněna podmínka

$$m(X) > m(Y) + m_e$$

- o Vyskytuje se u jader s přebytkem protonů
 - lacktriangle Přebytečný proton podstoupí přeměnu ${
 m p}^+
 ightarrow {
 m n}^0 + {
 m e}^+ +
 u_e$

- o Elektronový záchyt (druh β radioaktivity)
 - o Elektron z K (nebo L) slupky atomu je zachycen jádrem

$${}_Z^AX + e^- \rightarrow {}_{Z-1}^AY + \nu_e$$

 Aby mohlo k radioaktivitě dojít, musí být splněna podmínka

$$m(X) + m_e > m(Y)$$

o Jádro se zbavuje přebytečných protonů, že dojde k jeho reakci s elektronem

$$p^+ + e^- \rightarrow n^0 + \nu_e$$

Radioaktivita γ

- Neexistují žádné čisté přirozené γ zářiče
- o Většina radionuklidů jsou smíšené zářiče ($\alpha \gamma$ nebo $\beta \gamma$)

o Jaderná reakce

o Jaderná přeměna vyvolaná vnějším zásahem (interakcí s další částici / jádrem)

$$a + X \rightarrow Y + b$$

kde a značí nalétající (ostřelující) částici (příp. jádro), X ostřelované (terčíkové) jádro, Y je složené jádro a b je emitovaná částice.

- o Jaderné reakce musí splňovat následující tři zákony zachování
 - Zachování nukleonového čísla A, tj. celkový počet nukleonů musí stejný před reakcí, tak po reakci.
 - Zachování náboje, tj. součet nábojů před reakcí se musí rovnat součtu nábojů po reakci.
 - Zachování energie, hybnosti a momentu hybnosti. Tyto veličiny se zachovávají, protože jaderná rekce zahrnuje jen vnitřní síly mezi terčíkovým jádrem a ostřelující částicí (příp. jádrem).
- o Reakční energie $Q=(K_Y+K_b)-K_a=(m_X+m_a-m_Y-m_b)c^2$

Je-li reakční energie Q kladná, tak hovoříme o exoenergetické (exotermické) reakci, naopak jeli reakční energie Q záporná, tak hovoříme o endoenergetické (endotermické) reakci.

- o Dělení reakcí
 - o Interakce probíhají dvěma způsoby (víc info str. 326)
 - Přímý proces
 - Proces složeného jádra
 - o Mezi další jednoduché jaderné reakce patří (víc info str. 327)
 - Radiační záchyt
 - Fotojaderná reakce
 - o Dělení reakcí podle typu ostřelujících částic
 - Reakce s nabitými částicemi
 - Reakce s neutrony
 - Reakce s fotony
 - Štěpná jaderná reakce
 - Termojaderná reakce
 - Vždy nemusí docházet k jaderným reakcím, ale jen např. k interakci na úrovni rozptylu
 - Pružný rozptyl $\mathbf{a} + \mathbf{X} \to \mathbf{X}' + \mathbf{a}'$
 - Nepružný rozptyl $\mathbf{a} + \mathbf{X} \to \mathbf{X}^* + \mathbf{a}'$

o Štěpení atomových jader (popis procesu štěpení)

- 1. Těžké jádro zachytí neutron.
- 2. Tento záchyt má za následek, že se zvýší počet nukleonů v daném jádře (zvýší se nukleonové číslo), nové jádro se velmi krátkou dobu se dostane do excitovaného stavu (značeno hvězdičkou) a počne oscilovat.
- 3. Jádro se počne deformovat, protony z obou polovin jádra se začnou výrazně odpuzovat, čímž podpoří deformaci jádra do tvaru jakési "činky", vibrace se stávají nestabilními, dochází k zaškrcování "krku" mezi oběma polovinami.
- Pokračující zaškrcování vede následně k rozštěpení těžkého jádra na dva fragmenty (lehčí jádra) X a Y, což je současně doprovázeno emitováním několika neutronů.

o Řetězová jaderná reakce
$$n(t) = n_0 e^{rac{k-1}{ au_n}t}$$

- Multiplikační faktor k
- o Střední doba neutronového cyklu τ_n
- o Rozdělení reakcí
 - Neřízená reakce (jaderná bomba) k>1
 - Řízená reakce (jaderný reaktor) k=1
- Syntéza lehkých jader
 - O Oproti získávání energie štěpením jader mnoho výhod (čistota, bezpečnost)
 - o Exoenergetická reakce

$$Q = E_{Vf} - E_{Vi} = \overline{E}(A_1 + A_2) - A_1\overline{E}_1 + A_2\overline{E}_2 = A_1(\overline{E} - \overline{E}_1) + A_2(\overline{E} - \overline{E}_2) > 0$$

- o Střední vazební energie na nukleon $\overline{E} = \frac{E_V}{A}$
- o Příklad využití: deuterium a tritium

$$^2_1\mathrm{H} + ^3_1\mathrm{H} \rightarrow ^4_2\mathrm{He}(3,5~\mathrm{MeV}) + \mathrm{n}^0(14,1~\mathrm{MeV}) \quad \Rightarrow$$
 celkový výtěžek 17,6 MeV