

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Probabilidad

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Índice general

1.	1. Relaciones de problemas		
	1.1.	ectores Aleatorios	,

Probabilidad Índice general

1. Relaciones de problemas

1.1. Vectores Aleatorios

Ejercicio 1.1.1. Asociadas al experimento aleatorio de lanzar un dado y una moneda no cargados, se define la variable X como el valor del dado y la variable Y, que toma el valor 0 si sale cara en la moneda, y 1 si sale cruz. Calcular la función masa de probabilidad y la función de distribución del vector aleatorio (X,Y).

Calculemos los recorreidos de X e Y:

$$E_X = \{1, 2, 3, 4, 5, 6\},\$$

 $E_Y = \{0, 1\}.$

Por tanto, tenemos que:

$$E_{(X,Y)} = \{(1,0), (1,1), (2,0), (2,1), (3,0), (3,1), (4,0), (4,1), (5,0), (5,1), (6,0), (6,1)\}.$$

La función masa de probabilidad es:

$$P_{(X,Y)}: E_{(X,Y)} \longrightarrow [0,1]$$

 $(x,y) \longmapsto \frac{1}{12}$

Para poder calcular la función de distribución, primero representamos los puntos del espacio muestral en el plano cartesiano:

La función de distribución es:

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x < 1 \text{ o } y < 0, \\ \frac{1}{12}, & x \in [1,2[\text{ y } y \in [0,1[, \\ \frac{2}{12}, & x \in [2,3[\text{ y } y \in [0,1[\text{ o } x \in [1,2[\text{ y } y \geqslant 1, \\ \frac{3}{12}, & x \in [3,4[\text{ y } y \in [0,1[, \\ \frac{4}{12}, & x \in [4,5[\text{ y } y \in [0,1[\text{ o } x \in [2,3[\text{ y } y \geqslant 1, \\ \frac{5}{12}, & x \in [5,6[\text{ y } y \in [0,1[\text{ o } x \in [3,4[\text{ y } y \geqslant 1, \\ \frac{6}{12}, & x \geqslant 6 \text{ y } y \in [0,1[\text{ o } x \in [3,4[\text{ y } y \geqslant 1, \\ \frac{8}{12}, & x \in [4,5[\text{ y } y \geqslant 1, \\ 10/12, & x \in [5,6[\text{ y } y \geqslant 1, \\ 1, & x \geqslant 6 \text{ y } y \geqslant 1. \end{cases}$$

Ejercicio 1.1.2. El número de automóviles utilitarios, X, y el de automóviles de lujo, Y, que poseen las familias de una población se distribuye de acuerdo a las siguientes probabilidades:

$$\begin{array}{c|ccccc} X \backslash Y & 0 & 1 & 2 \\ \hline 0 & ^{1}/_{3} & ^{1}/_{12} & ^{1}/_{24} \\ 1 & ^{1}/_{6} & ^{1}/_{24} & ^{1}/_{48} \\ 2 & ^{5}/_{22} & ^{5}/_{88} & ^{5}/_{176} \\ \end{array}$$

Calcular la función de distribución del vector (X, Y) en los puntos (0, 0); (0, 2); (1, 1) y (2, 1), y la probabilidad de que una familia tenga tres o más automóviles.

Para calcular la función de distribución en los puntos (0,0); (0,2); (1,1) y (2,1), representamos antes los elementos de $E_{(X,Y)}$ en el plano cartesiano:

La función de distribución en los puntos (0,0); (0,2); (1,1) y (2,1) es:

$$\begin{split} F_{(X,Y)}(0,0) &= P_{(X,Y)}(0,0) = \frac{1}{3}, \\ F_{(X,Y)}(0,2) &= P_{(X,Y)}(0,0) + P_{(X,Y)}(0,1) + P_{(X,Y)}(0,2) = \frac{1}{3} + \frac{1}{12} + \frac{1}{24} = \frac{11}{24}, \\ F_{(X,Y)}(1,1) &= P_{(X,Y)}(0,0) + P_{(X,Y)}(0,1) + P_{(X,Y)}(1,0) + P_{(X,Y)}(1,1) = \frac{1}{3} + \frac{1}{12} + \frac{1}{6} + \frac{1}{24} = \frac{5}{8}, \\ F_{(X,Y)}(2,1) &= F_{(X,Y)}(1,1) + P_{(X,Y)}(2,0) + P_{(X,Y)}(2,1) = \frac{5}{8} + \frac{5}{22} + \frac{5}{88} = \frac{10}{11}. \end{split}$$

La probabilidad de que una familia tenga tres o más automóviles es:

$$P[X + Y \ge 3] = P_{(X,Y)}(1,2) + P_{(X,Y)}(2,1) + P_{(X,Y)}(2,2) = \frac{1}{48} + \frac{5}{88} + \frac{5}{176} = \frac{7}{66}$$

Ejercicio 1.1.3. La función de densidad del vector aleatorio (X, Y), donde X denota los Kg. de naranjas, e Y los Kg. de manzanas vendidos al día en una frutería está dada por:

$$f(x,y) = \frac{1}{400}$$
; $0 < x < 20$; $0 < y < 20$.

siendo esta nula en caso contrario. Determinar la función de distribución de (X, Y) y la probabilidad de que en un día se vendan entre naranjas y manzanas, menos de 20 kilogramos.

Representamos los puntos de discontinuidad de la función de densidad en el plano cartesiano:

La función de distribución es:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

Estudiemos cada región por separado:

Para $x \le 0$ o $y \le 0$:
Tenemos que f(u, v) = 0 para $u \le x$ o $v \le y$, por lo que:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{-\infty}^{x} \int_{-\infty}^{y} 0 \, du \, dv = 0.$$

Para 0 < x < 20 y 0 < y < 20 (región R_1): Tenemos que:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{x} \int_{0}^{y} \frac{1}{400} \, du \, dv = \frac{xy}{400}.$$

■ Para 0 < x < 20 y $y \ge 20$ (región R_2):

Tenemos que:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{x} \int_{0}^{20} \frac{1}{400} \, du \, dv = \frac{20x}{400} = \frac{x}{20}.$$

Para $x \ge 20$ y 0 < y < 20 (región R_3): Tenemos que:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{20} \int_{0}^{y} \frac{1}{400} \, du \, dv = \frac{20y}{400} = \frac{y}{20}.$$

Para $x \ge 20$ y $y \ge 20$:
Tenemos que:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{20} \int_{0}^{20} \frac{1}{400} \, du \, dv = \frac{400}{400} = 1.$$

Por tanto, la función de distribución es:

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x \le 0 \text{ o } y \le 0, \\ \frac{xy}{400}, & 0 < x < 20 \text{ y } 0 < y < 20, \\ \frac{x}{20}, & 0 < x < 20 \text{ y } y \geqslant 20, \\ \frac{y}{20}, & x \geqslant 20 \text{ y } 0 < y < 20, \\ 1, & x \geqslant 20 \text{ y } y \geqslant 20. \end{cases}$$

Buscamos ahora la probabilidad de que en un día se vendan entre naranjas y manzanas, menos de 20 kilogramos. Para ello, buscamos la región del plano que cumple con la condición X + Y < 20. Tras representar la recta y = 20 - x, nos quedaremos con la región que queda por debajo de esta recta:

Por tanto, tenemos que P[X+Y<20] es la integral de la función de densidad en la región coloreada, $R=\{(x,y)\in\mathbb{R}^2; x+y<20\}$:

$$P[X+Y<20] = \int_{-\infty}^{+\infty} \int_{-\infty}^{20-x} f(x,y) \, dy \, dx = \int_{0}^{20} \int_{0}^{20-x} \frac{1}{400} \, dy \, dx =$$

$$= \int_{0}^{20} \frac{20-x}{400} \, dx = \frac{1}{400} \left[20x - \frac{x^{2}}{2} \right]_{0}^{20} = \frac{1}{400} \left[400 - 200 \right] = \frac{1}{2}.$$

Ejercicio 1.1.4. La renta, X, y el consumo, Y, de los habitantes de una población, tienen por funciones de densidad

$$f_X(x) = 2 - 2x; \quad 0 < x < 1; \quad f_{Y|X}(y \mid x) = \frac{1}{x}; \quad 0 < y < x.$$

Determinar la función de densidad conjunta del vector aleatorio (X, Y) y la probabilidad de que el consumo sea inferior a la mitad de la renta.

Tenemos que, para $R = \{(x,y) \in \mathbb{R}^2; 0 < x < 1, 0 < y < x\}$, la función de densidad conjunta es:

$$f_{Y|X}(y \mid x) = \frac{f_{(X,Y)}(x,y)}{f_{X}(x)} \Longrightarrow f_{(X,Y)}(x,y) = f_{X}(x) \cdot f_{Y|X}(y \mid x) = (2-2x) \cdot \frac{1}{x} = \frac{2-2x}{x}.$$

Tenemos ahora que:

$$P[Y < X/2] = \int_{-\infty}^{+\infty} \int_{-\infty}^{x/2} f_{(X,Y)}(x,y) \, dy \, dx = \int_{0}^{1} \int_{0}^{x/2} \frac{2 - 2x}{x} \, dy \, dx =$$

$$= \int_{0}^{1} \frac{2 - 2x}{x} \cdot \frac{x}{2} \, dx = \int_{0}^{1} 1 - x \, dx = \left[x - \frac{x^{2}}{2}\right]_{0}^{1} = 1 - \frac{1}{2} = \frac{1}{2}.$$

Ejercicio 1.1.5. Una gasolinera tiene Y miles de litros en su depósito de gasóleo al comienzo de cada semana. A lo largo de una semana se venden X miles de litros del citado combustible, siendo la función de densidad conjunta de (X,Y):

$$f(x,y) = \frac{1}{8}; \quad 0 < x < y < 4.$$

Se pide:

1. Probar que f(x, y) es función de densidad y obtener la función de distribución. En primer lugar, vemos que es no negativa. Veamos si es integrable:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx \, dy = \int_{0}^{4} \int_{x}^{4} \frac{1}{8} \, dy \, dx = \frac{1}{8} \int_{0}^{4} 4 - x \, dx =$$
$$= \frac{1}{8} \left[4x - \frac{x^{2}}{2} \right]_{0}^{4} = \frac{1}{8} \left[16 - 8 \right] = 1.$$

Tenemos por tanto que sí se trata de una función de densidad. Para obtener la función de distribución, representemos el conjunto en el que la función de densidad es no nula:

Para obtener la función de distribución, distinguimos casos:

■ Para x < 0 o y < 0:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = 0.$$

• Para 0 < x < y < 4:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{0}^{x} \int_{u}^{y} \frac{1}{8} \, dv \, du = \frac{1}{8} \int_{0}^{x} y - u \, du = \frac{1}{8} \left[yu - \frac{u^{2}}{2} \right]_{0}^{x} = \frac{1}{8} \left[xy - \frac{x^{2}}{2} \right] = \frac{2xy - x^{2}}{16}.$$

■ Para 0 < x < 4 y $y \geqslant 4$:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{0}^{x} \int_{u}^{4} \frac{1}{8} \, dv \, du = \frac{1}{8} \int_{0}^{x} 4 - u \, du = \frac{1}{8} \left[4u - \frac{u^{2}}{2} \right]_{0}^{x} = \frac{1}{8} \left[4x - \frac{x^{2}}{2} \right] = \frac{8x - x^{2}}{16}.$$

■ Para $x \ge y$ y $0 \le y < 4$:

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{0}^{y} \int_{0}^{v} \frac{1}{8} \, du \, dv = \frac{1}{8} \int_{0}^{y} v \, dv = \frac{1}{8} \left[\frac{v^{2}}{2} \right]_{0}^{y} = \frac{1}{8} \cdot \frac{y^{2}}{2} = \frac{y^{2}}{16}.$$

Para $x \ge 4$ y $y \ge 4$:
Hemos visto anteriormente que $F_{(X,Y)}(x,y) = 1$.

Por tanto,

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x < 0 \text{ o } y < 0, \\ \frac{2xy - x^2}{16}, & 0 < x < y < 4, \\ \frac{8x - x^2}{16}, & 0 < x < 4 \text{ y } y \geqslant 4, \\ \frac{y^2}{16}, & x \geqslant y \text{ y } 0 \leqslant y < 4, \\ 1, & x \geqslant 4 \text{ y } y \geqslant 4. \end{cases}$$

2. Probabilidad de que en una semana se venda más de la tercera parte de los litros de que se dispone al comienzo de la misma.

En este caso, nos piden calcular P[X > Y/3]. Para ello, representamos la recta y = 3x y nos quedamos con la región que queda por encima de esta recta:

Tenemos que integrar f(x,y) en la región coloreada:

$$\begin{split} P[X > {}^{Y/3}] &= \int_{0}^{4/3} \int_{x}^{3x} \frac{1}{8} \, dy \, dx + \int_{4/3}^{4} \int_{x}^{4} \frac{1}{8} \, dy \, dx = \\ &= \int_{0}^{4/3} \frac{3x - x}{8} \, dx + \int_{4/3}^{4} \frac{4 - x}{8} \, dx = \frac{1}{8} \int_{0}^{4/3} 2x \, dx + \frac{1}{8} \int_{4/3}^{4} 4 - x \, dx = \\ &= \frac{1}{8} \left[x^{2} \right]_{0}^{4/3} + \frac{1}{8} \left[4x - \frac{x^{2}}{2} \right]_{4/3}^{4} = \frac{1}{8} \left[\frac{16}{9} \right] + \frac{1}{8} \left[16 - \frac{16}{2} - \frac{16}{3} + \frac{16}{18} \right] = \\ &= \frac{2}{9} + \frac{4}{9} = \frac{6}{9} = \frac{2}{3}. \end{split}$$

3. Si en una semana se han vendido 3,000 litros de gasóleo, ¿cuál es la probabilidad de que al comienzo de la semana hubiese entre 3,500 y 3,750 litros de combustible?

En este caso, nos piden:

$$P[3.5 < Y < 3.75 \mid X = 3] = \int_{3.5}^{3.75} f_{Y|X=3}(y) \, dy.$$

Veamos el valor de $f_{Y|X=3}(y)$:

$$f_{Y|X=3}(y) = \frac{f_{(X,Y)}(3,y)}{f_X(3)}$$

Calculemos por tanto la marginal de X:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \int_x^4 \frac{1}{8} \, dy = \frac{1}{8} \left[y \right]_x^4 = \frac{4 - x}{8}$$

Por tanto, tenemos que:

$$f_{Y|X=3}(y) = \frac{f_{(X,Y)}(3,y)}{f_X(3)} = \frac{1/8}{1/8} = 1.$$

Por tanto, la probabilidad pedida es:

$$P[3,5 < Y < 3,75 \mid X = 3] = \int_{3,5}^{3,75} 1 \, dy = [y]_{3,5}^{3,75} = 3,75 - 3,5 = 0,25.$$

Ejercicio 1.1.6. Sea (X,Y) un vector aleatorio continuo con función de densidad

$$f(x,y) = k, \quad (x,y) \in R,$$

siendo R el rombo de vértices (3,0); (0,2); (-3,0); (0,-2). Calcular k para que f sea una función de densidad. Hallar las distribuciones marginales y condicionadas.

Representamos en el plano cartesiano el rombo R:

Para que f sea una función de densidad, tenemos que:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = 1.$$

Calculamos solo la integral en el primer cuadrante, ya que la función es simétrica. Para ello, calculamos la integral en el triángulo de vértices (0,0); (3,0); (0,2). La recta que une los puntos (3,0) y (0,2) es y = -2/3x + 2. Por tanto, tenemos:

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx \, dy = \int_{R} f(x,y) \, dx \, dy = 4 \cdot \int_{0}^{3} \int_{0}^{-2/3 \cdot x + 2} k \, dy \, dx = 4k \cdot \int_{0}^{3} \left[-\frac{2}{3} \cdot x + 2 \right] \, dx = 4k \cdot \left[-\frac{1}{3} \cdot x^{2} + 2x \right]_{0}^{3} = 4k \cdot \left[-\frac{1}{3} \cdot 9 + 6 \right] = 4k \cdot [-3 + 6] = 12k.$$

Por tanto, tenemos que k=1/12. En este caso, vemos que además $f_{(X,Y)}$ es no negativa e integrable.

Calculemos ahora la distribución marginal de X. Distinguimos:

• Si x < -3 o $x \ge 3$:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = 0.$$

• Si $-3 \leqslant x < 0$:

En este caso, tenemos que:

$$-\frac{2}{3} \cdot x - 2 \leqslant y \leqslant \frac{2}{3} \cdot x + 2.$$

Por tanto, tenemos:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \int_{-2/3 \cdot x - 2}^{2/3 \cdot x + 2} \frac{1}{12} \, dy = \frac{1}{12} \cdot \left[\frac{2}{3} \cdot x + 2 - \left(\frac{-2}{3} \cdot x - 2 \right) \right] = \frac{1}{12} \cdot \left[\frac{4}{3} \cdot x + 4 \right] = \frac{x}{9} + \frac{1}{3}.$$

• Si $0 \le x < 3$:

En este caso, tenemos que:

$$\frac{2}{3} \cdot x - 2 \leqslant y \leqslant -\frac{2}{3} \cdot x + 2.$$

Por tanto, tenemos:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \int_{\frac{2}{3} \cdot x - 2}^{\frac{-2}{3} \cdot x + 2} \frac{1}{12} \, dy = \frac{1}{12} \cdot \left[-\frac{2}{3} \cdot x + 2 - (\frac{2}{3} \cdot x - 2) \right] = \frac{1}{12} \cdot \left[-\frac{4}{3} \cdot x + 4 \right] = -\frac{x}{9} + \frac{1}{3}.$$

Por tanto, tenemos que:

$$f_X(x) = \begin{cases} 0, & x < -3 \text{ o } x \geqslant 3\\ \frac{x}{9} + \frac{1}{3}, & -3 \leqslant x < 0,\\ -\frac{x}{9} + \frac{1}{3}, & 0 \leqslant x < 3. \end{cases}$$

Calculemos ahora la distribución marginal de Y. Distinguimos:

 $\bullet \quad \underline{\text{Si } y < -2 \text{ o } y \geqslant 2}:$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = 0.$$

 $\bullet \underline{\text{Si } -2 \leqslant y < 0}:$

En este caso, tenemos que:

$$-\frac{3}{2} \cdot y - 3 \leqslant x \leqslant \frac{3}{2} \cdot y + 3$$

Por tanto, tenemos:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \, dx = \int_{-3/2 \cdot y - 3}^{3/2 \cdot y + 3} \frac{1}{12} \, dx = \frac{1}{12} \cdot \left[\frac{3}{2} \cdot y + 3 - \left(-\frac{3}{2} \cdot y - 3 \right) \right] = \frac{y/2 + 1}{2} = \frac{y}{4} + \frac{1}{2}.$$

 $\bullet \ \underline{\text{Si } 0 \leqslant y < 2}:$

En este caso, tenemos que:

$$\frac{3}{2} \cdot y - 3 \leqslant x \leqslant -\frac{3}{2} \cdot y + 3$$

Por tanto, tenemos:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx = \int_{3/2 \cdot y - 3}^{-3/2 \cdot y + 3} \frac{1}{12} \, dx = \frac{1}{12} \cdot \left[-3/2 \cdot y + 3 - (3/2 \cdot y - 3) \right] = \frac{-y/2 + 1}{2} = -\frac{y}{4} + \frac{1}{2}.$$

Por tanto, tenemos que:

$$f_Y(y) = \begin{cases} 0, & y < -2 \text{ o } y \geqslant 2, \\ \frac{y}{4} + \frac{1}{2}, & -2 \leqslant y < 0, \\ -\frac{y}{4} + \frac{1}{2}, & 0 \leqslant y < 2. \end{cases}$$

Calculemos ahora las distribuciones condicionadas. Dado $x^* \in]-3,3[$, tenemos:

$$f_{Y|X=x^*}(y) = \frac{f_{(X,Y)}(x^*,y)}{f_X(x^*)} = \begin{cases} \frac{1}{12} \cdot \frac{1}{x/9 + 1/3}, & -3 < x^* < 0, \\ \frac{1}{12} \cdot \frac{1}{-x/9 + 1/3}, & 0 \leqslant x^* < 3. \end{cases}$$

Por otro lado, dado $y^* \in]-2, 2[$, tenemos que:

$$f_{X|Y=y^*}(x) = \frac{f_{(X,Y)}(x,y^*)}{f_Y(y^*)} = \begin{cases} \frac{1}{12} \cdot \frac{1}{y/4 + 1/2}, & -2 < y^* < 0, \\ \frac{1}{12} \cdot \frac{1}{-y/4 + 1/2}, & 0 \leqslant y^* < 2. \end{cases}$$

Ejercicio 1.1.7. Sea (X,Y) un vector aleatorio continuo con función de densidad

$$f(x,y) = k, \quad x^2 \leqslant y \leqslant 1,$$

anulándose fuera del recinto indicado.

Hallar la constante k para que f sea una función de densidad.
 Representamos en el plano cartesiano el recinto en el que la función de densidad es no nula:

Para que f sea una función de densidad, tenemos que:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = 1.$$

Tenemos por tanto que:

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = \int_{-1}^{1} \int_{x^{2}}^{1} k \, dy \, dx = k \cdot \int_{-1}^{1} \left[y \right]_{x^{2}}^{1} \, dx = k \cdot \int_{-1}^{1} 1 - x^{2} \, dx = k \cdot \left[x - \frac{x^{3}}{3} \right]_{-1}^{1} = k \cdot \left[1 - \frac{1}{3} - \left(-1 + \frac{1}{3} \right) \right] = k \cdot \left[2 - \frac{2}{3} \right] = \frac{4}{3} k$$

Por tanto, tenemos que k = 3/4. En este caso, vemos que además $f_{(X,Y)}$ es no negativa e integrable.

2. Calcular la función de distribución de probabilidad.

Distinguimos casos:

• Si $x \leqslant -1$ o $y \leqslant 0$ o $x \in]-1,0[$ y $y \leqslant x^2$ (zona R_1):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = 0.$$

• Si $x^2 \leqslant y \leqslant 1$ (zona R_2):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{-\sqrt{y}}^{x} \int_{u^{2}}^{y} \frac{3}{4} \, dv \, du = \frac{3}{4} \int_{-\sqrt{y}}^{x} \left[y - u^{2} \right] \, du =$$

$$= \frac{3}{4} \left[yu - \frac{u^{3}}{3} \right]_{-\sqrt{y}}^{x} = \frac{3}{4} \left[xy - \frac{x^{3}}{3} + y\sqrt{y} - \frac{y^{3/2}}{3} \right] =$$

$$= \frac{3}{4} \left[xy - \frac{x^{3}}{3} + \frac{2}{3} \cdot y\sqrt{y} \right].$$

• Si $y \ge 1$ y $x \in]-1,1[$ (zona R_3):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{-1}^{x} \int_{u^{2}}^{1} \frac{3}{4} \, dv \, du = \frac{3}{4} \int_{-1}^{x} \left[1 - u^{2} \right] \, du =$$

$$= \frac{3}{4} \left[u - \frac{u^{3}}{3} \right]_{-1}^{x} = \frac{3}{4} \left[x - \frac{x^{3}}{3} + 1 - \frac{1}{3} \right] = \frac{3}{4} \left[x - \frac{x^{3}}{3} + \frac{2}{3} \right].$$

• Si $x \in]0,1[$ y $0 \le y \le x^2$ o $x \in]1,+\infty[$ y $y \in]0,1[$ (zona R_4):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{-\sqrt{y}}^{\sqrt{y}} \int_{u^{2}}^{y} \frac{3}{4} \, dv \, du = \frac{3}{4} \int_{-\sqrt{y}}^{\sqrt{y}} \left[y - u^{2} \right] \, du =$$

$$= \frac{3}{4} \left[yu - \frac{u^{3}}{3} \right]_{-\sqrt{y}}^{\sqrt{y}} = \frac{3}{4} \left[y\sqrt{y} - \frac{y^{3/2}}{3} + y\sqrt{y} - \frac{y^{3/2}}{3} \right] = y\sqrt{y}$$

• Si $x \ge 1$ y $y \ge 1$ (zona R_5):

$$F_{(X,Y)}(x,y) = 1.$$

Por tanto, tenemos que:

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x \leqslant -1 \text{ o } y \leqslant 0 \text{ o } x \in]-1,0[\text{ y } y \leqslant x^2, \\ \frac{3}{4} \left[xy - \frac{x^3}{3} + \frac{2}{3} \cdot y\sqrt{y} \right], & x^2 \leqslant y \leqslant 1, \\ \frac{3}{4} \left[x - \frac{x^3}{3} + \frac{2}{3} \right], & y \geqslant 1 \text{ y } x \in]-1,1[, \\ y\sqrt{y}, & x \in]0,1[\text{ y } 0 \leqslant y \leqslant x^2 \text{ o } x > 1 \text{ y } y \in]0,1[, \\ 1, & x \geqslant 1 \text{ y } y \geqslant 1. \end{cases}$$

3. Calcular $P(X \ge Y)$.

Para calcular $P(X \ge Y)$, representamos la recta y = x y nos quedamos con la región que queda por debajo de esta recta. Tenemos entonces que:

$$P(X \geqslant Y) = \int_0^1 \int_{x^2}^x \frac{3}{4} \, dy \, dx = \frac{3}{4} \int_0^1 \left[x - x^2 \right] \, dx = \frac{3}{4} \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 =$$
$$= \frac{3}{4} \left[\frac{1}{2} - \frac{1}{3} \right] = \frac{3}{4} \left[\frac{3 - 2}{6} \right] = \frac{3}{4} \left[\frac{1}{6} \right] = \frac{1}{8}.$$

4. Calcular las distribuciones marginales.

Para $x \in]-1,1[$, tenemos que:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \int_{x^2}^{1} \frac{3}{4} \, dy = \frac{3}{4} \left[y \right]_{x^2}^{1} = \frac{3}{4} \left[1 - x^2 \right].$$

Para $y \in]0,1[$, tenemos que:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \, dx = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{3}{4} \, dx = \frac{3}{4} \left[x \right]_{-\sqrt{y}}^{\sqrt{y}} = \frac{3}{4} \left[\sqrt{y} + \sqrt{y} \right] = \frac{3}{2} \sqrt{y}.$$

5. Calcular las distribuciones condicionadas.

Dado $x^* \in]-1,1[$, tenemos que:

$$f_{Y|X=x^*}(y) = \frac{f_{(X,Y)}(x^*,y)}{f_X(x^*)} = \frac{3/4}{3/4[1-(x^*)^2]} = \frac{1}{1-(x^*)^2}.$$

Dado $y^* \in]0,1[$, tenemos que:

$$f_{X|Y=y^*}(x) = \frac{f_{(X,Y)}(x,y^*)}{f_Y(y^*)} = \frac{3/4}{3/2\sqrt{y^*}} = \frac{1}{2\sqrt{y^*}}.$$

Ejercicio 1.1.8. Sea $k \in \mathbb{R}$. Consideramos la función de densidad de probabilidad

$$f(x,y) = \begin{cases} k \left[\frac{xy}{2} + 1 \right], & 0 < x < 1, -1 < y < 1, \\ 0, & \text{en otro caso.} \end{cases}$$

Calcular:

1. La constante k para que f sea una función de densidad.

Para que f sea una función de densidad, tenemos que:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = 1.$$

Tenemos por tanto que:

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = \int_{-1}^{1} \int_{0}^{1} k \left[\frac{xy}{2} + 1 \right] \, dx \, dy = k \int_{-1}^{1} \left[\frac{yx^{2}}{4} + x \right]_{0}^{1} = k \int_{-1}^{1} \left[\frac{y}{4} + 1 \right] \, dy = k \left[\frac{y^{2}}{8} + y \right]_{-1}^{1} = k \left[\frac{1}{8} + 1 - \left(\frac{1}{8} - 1 \right) \right] = 2k \Longrightarrow k = \frac{1}{2}.$$

Veamos ahora que, para dicho valor de k, f es no negativa. Para ello, tenemos que:

$$f(x,y) \geqslant 0 \iff xy > -2 \iff y > \frac{-2}{x}$$

Esto último es cierto, ya que $x \in]0,1[$ e $y \in]-1,1[$. Por tanto, f es no negativa. Además, es integrable, por lo que f es una función de densidad.

2. La función de distribución de probabilidad.

Representamos en el plano cartesiano la región en la que la función de densidad es no nula:

Distinguimos casos:

• Si $x \leqslant 0$ o $y \leqslant -1$ (zona R_1):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = 0.$$

• Si $x \in]0,1[yy \in]-1,1[(zona R_2):$

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{x} \int_{-1}^{y} \frac{1}{2} \left[\frac{uv}{2} + 1 \right] \, dv \, du =$$

$$= \int_{0}^{x} \left[\frac{uv^{2}}{8} + \frac{v}{2} \right]_{-1}^{y} \, du = \int_{0}^{x} \frac{uy^{2}}{8} + \frac{y}{2} - \frac{u}{8} + \frac{1}{2} \, du =$$

$$= \left[\frac{u^{2}y^{2}}{16} + \frac{y}{2}u - \frac{u^{2}}{16} + \frac{u}{2} \right]_{0}^{x} = \frac{x^{2}y^{2}}{16} + \frac{xy}{2} - \frac{x^{2}}{16} + \frac{x}{2}.$$

• Si $x \in]0,1[yy \ge 1 \text{ (zona } R_3):$

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{x} \int_{-1}^{1} \frac{1}{2} \left[\frac{uv}{2} + 1 \right] \, dv \, du =$$

$$= \int_{0}^{x} \left[\frac{uv^{2}}{8} + \frac{v}{2} \right]_{-1}^{1} \, du = \int_{0}^{x} \frac{u}{8} + \frac{1}{2} - \left(\frac{u}{8} - \frac{1}{2} \right) \, du = \int_{0}^{x} 1 \, du = x.$$

• Si $y \in]-1,1[y \ x \geqslant 1 \ (zona \ R_4):$

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{1} \int_{-1}^{y} \frac{1}{2} \left[\frac{uv}{2} + 1 \right] \, dv \, du =$$

$$= \int_{0}^{1} \left[\frac{uv^{2}}{8} + \frac{v}{2} \right]_{-1}^{y} \, du = \int_{0}^{1} \frac{uy^{2}}{8} + \frac{y}{2} - \frac{u}{8} + \frac{1}{2} \, du =$$

$$= \left[\frac{u^{2}y^{2}}{16} + \frac{y}{2}u - \frac{u^{2}}{16} + \frac{u}{2} \right]_{0}^{1} = \frac{y^{2}}{16} + \frac{y}{2} + \frac{7}{16}$$

• Si $y \ge 1$ y $x \ge 1$ (zona R_5):

$$F_{(X,Y)}(x,y) = 1$$

Por tanto, tenemos que:

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x \leqslant 0 \text{ o } y \leqslant -1, \\ \frac{x^2y^2}{16} + \frac{xy}{2} - \frac{x^2}{16} + \frac{x}{2}, & x \in]0,1[\text{ y } y \in]-1,1[, \\ x, & x \in]0,1[\text{ y } y \geqslant 1, \\ \frac{y^2}{16} + \frac{y}{2} + \frac{7}{16}, & y \in]-1,1[\text{ y } x \geqslant 1, \\ 1, & y \geqslant 1 \text{ y } x \geqslant 1. \end{cases}$$

3. Las distribuciones marginales.

Para $x \in]0,1[$, tenemos que:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, dy = \int_{-1}^{1} \frac{1}{2} \left[\frac{xy}{2} + 1 \right] \, dy = \frac{1}{2} \left[\frac{xy^2}{4} + y \right]_{-1}^{1} = \frac{1}{2} \left[\frac{x}{4} + 1 - \frac{x}{4} + 1 \right] = 1$$

Para $y \in]-1,1[$, tenemos que:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \, dx = \int_0^1 \frac{1}{2} \left[\frac{xy}{2} + 1 \right] \, dx = \frac{1}{2} \left[\frac{x^2y}{4} + x \right]_0^1 = \frac{1}{2} \left[\frac{y}{4} + 1 \right]$$

Ejercicio 1.1.9. Sea (X,Y) un vector aleatorio bidimensional continuo, con función de densidad de probabilidad

$$f(x,y) = \begin{cases} k, & 0 < x + y < 1, |y| < 1, 0 < x < 1, \\ 0, & \text{en otro caso.} \end{cases}$$

Responder a los siguientes apartados:

1. Hallar la constante k para que f sea una función de densidad de probabilidad. Para que f sea una función de densidad, tenemos que:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = 1.$$

Tenemos por tanto que:

$$1 = \int_0^1 \int_{-x}^{1-x} k \, dx \, dy = k \int_0^1 \left[y \right]_{-x}^{1-x} \, dx = k \int_0^1 1 - x + x \, dx = k \int_0^1 1 \, dx = k$$

Por tanto, tenemos que k=1. En este caso, vemos que además $f_{(X,Y)}$ es no negativa e integrable.

2. Calcular la función de distribución de probabilidad.

Dividimos el plano cartesiano en las distintas regiones:

Distinguimos casos:

• Si $x \leq 0$ o $x + y \leq 0$ (zona R_3):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = 0.$$

• Si $x \in]0,1[$ y $y \in]0,1[$ y $x+y \leq 1$ (zona R_1):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{0}^{x} \int_{-u}^{y} 1 \, dv \, du = \int_{0}^{x} [v]_{-u}^{y} \, du =$$

$$= \int_{0}^{x} y + u \, du = \left[yu + \frac{u^{2}}{2} \right]_{0}^{x} = xy + \frac{x^{2}}{2}.$$

• Si $x \in]0,1[$ y $y \in]-1,0[$ y $x+y \ge 0$ (zona R_2):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{-y}^{x} \int_{-u}^{y} 1 \, dv \, du = \int_{-y}^{x} [v]_{-u}^{y} \, du =$$

$$= \int_{-y}^{x} y + u \, du = \left[yu + \frac{u^{2}}{2} \right]_{-y}^{x} = xy + \frac{x^{2}}{2} - y(-y) - \frac{y^{2}}{2} =$$

$$= yx + \frac{x^{2} + y^{2}}{2} = \frac{(x+y)^{2}}{2}.$$

• Si $x \in]0,1[$ y $y \in]0,1[$ y $x+y \ge 1$ (zona R_4):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv =$$

$$= \int_{0}^{1-y} \int_{0}^{y} 1 \, dv \, du + \int_{1-y}^{x} \int_{0}^{1-u} 1 \, dv \, du + \int_{0}^{x} \int_{-u}^{0} 1 \, dv \, du =$$

$$= \int_{0}^{1-y} y \, du + \int_{1-y}^{x} 1 - u \, du + \int_{0}^{x} u \, du =$$

$$= \left[yu \right]_{0}^{1-y} + \left[u - \frac{u^{2}}{2} \right]_{1-y}^{x} + \left[\frac{u^{2}}{2} \right]_{0}^{x} =$$

$$= y(1-y) + \left(x - \frac{x^{2}}{2} \right) - \left(1 - y - \frac{(1-y)^{2}}{2} \right) + \frac{x^{2}}{2} =$$

$$= y - y^{2} + x - 1 + y + \frac{(1-y)^{2}}{2} = -(1-y)^{2} + x + \frac{(1-y)^{2}}{2} =$$

$$= x - \frac{(1-y)^{2}}{2}$$

• Si $x \in]0,1[$ y $y \in]1,\infty[$ (zona R_5):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{x} \int_{-u}^{1-u} 1 \, dv \, du =$$
$$= \int_{0}^{x} [v]_{-u}^{1-u} \, du = \int_{0}^{x} 1 - u + u \, du = \int_{0}^{x} 1 \, du = x.$$

• Si $x \in]1, \infty[$ y $y \in]0, 1[$ (zona R_6):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv =$$

$$= \int_{0}^{1} \int_{-u}^{0} 1 \, dv \, du + \int_{0}^{1-y} \int_{0}^{y} 1 \, dv \, du + \int_{1-y}^{1} \int_{0}^{1-u} 1 \, dv \, du =$$

$$= \int_{0}^{1} u \, du + \int_{0}^{1-y} y \, du + \int_{1-y}^{1} 1 - u \, du =$$

$$= \left[\frac{u^{2}}{2} \right]_{0}^{1} + \left[yu \right]_{0}^{1-y} + \left[u - \frac{u^{2}}{2} \right]_{1-y}^{1} =$$

$$= \frac{1}{2} + y(1-y) + 1 - \frac{1}{2} - \left[1 - y - \frac{(1-y)^{2}}{2} \right] =$$

$$= y - y^{2} + y + \frac{(1-y)^{2}}{2} = 1 - \frac{(1-y)^{2}}{2}$$

• Si $x \in]1, \infty[$ y $y \in]-1, 0[$ (zona R_7):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv =$$

$$= \int_{-y}^{1} \int_{-u}^{y} 1 \, dv \, du = \int_{-y}^{1} [v]_{-u}^{y} \, du = \int_{-y}^{1} y + u \, du =$$

$$= \left[yu + \frac{u^{2}}{2} \right]_{-u}^{1} = y + \frac{1}{2} + y^{2} - \frac{y^{2}}{2} = y + \frac{y^{2} + 1}{2}$$

• Si $x \in]1, \infty[$ y $y \in]1, \infty[$ (zona R_8):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = 1$$

Por tanto, tenemos que:

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x \leqslant 0 \text{ o } x + y \leqslant 0, \ (R_3), \\ xy + \frac{x^2}{2}, & x \in]0,1[\text{ y } y \in]0,1[\text{ y } x + y \leqslant 1, \ (R_1), \\ \frac{(x+y)^2}{2}, & x \in]0,1[\text{ y } y \in]-1,0[\text{ y } x + y \geqslant 0, \ (R_2), \\ x - \frac{(1-y)^2}{2}, & x \in]0,1[\text{ y } y \in]0,1[\text{ y } x + y \geqslant 1, \ (R_4), \\ x, & x \in]0,1[\text{ y } y \geqslant 1, \ (R_5), \\ 1 - \frac{(1-y)^2}{2}, & x \in]1,\infty[\text{ y } y \in]0,1[, \ (R_6), \\ y + \frac{y^2+1}{2}, & x \in]1,\infty[\text{ y } y \in]-1,0[, \ (R_7), \\ 1, & x \in]1,\infty[\text{ y } y \geqslant 1, \ (R_8). \end{cases}$$

3. Calcular las distribuciones marginales.

Para $x \in]0,1[$, ya que la función de densidad es constante, tenemos que:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, dy = \int_{-x}^{1-x} 1 \, dy = [y]_{-x}^{1-x} = 1 - x + x = 1.$$

Para $y \in [0, 1]$, ya que la función de densidad es constante, tenemos que:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \, dx = \int_{0}^{1-y} 1 \, dx = [x]_{0}^{1-y} = 1 - y.$$

Para $y \in]-1,0[$, ya que la función de densidad es constante, tenemos que:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx = \int_{-y}^{1} 1 \, dx = [x]_{-y}^{1} = 1 + y.$$

Por tanto, tenemos que, para $y \in]-1,1[$:

$$f_Y(y) = 1 - |y|.$$

4. Calcular las distribuciones condicionadas.

Dado $x^* \in]-1,1[$, tenemos para $y \in]0,1[$, $0 < x^* + y < 1$:

$$f_{Y|X=x^*}(y) = \frac{f_{(X,Y)}(x^*,y)}{f_X(x^*)} = \frac{1}{1} = 1.$$

Dado $y^* \in [-1, 1[$, tenemos para $x \in [0, 1[$, $0 < x + y^* < 1$:

$$f_{X|Y=y^*}(x) = \frac{f_{(X,Y)}(x,y^*)}{f_Y(y^*)} = \frac{1}{1-|y^*|}.$$

Ejercicio 1.1.10. Sea (X, Y) un vector aleatorio bidimensional continuo, con distribución de probabilidad uniforme sobre el triángulo de vértices (0,0); (0,1); (1,1). Determinar:

1. La función de densidad de probabilidad.

Veamos en primer lugar el triángulo en cuestión:

La función de densidad de probabilidad es constante, por lo que:

$$f(x,y) = \begin{cases} k, & x \in [0,1], x \leqslant y \leqslant 1, \\ 0, & \text{en otro caso.} \end{cases}$$

Para que f sea una función de densidad, tenemos que:

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy = \int_{0}^{1} \int_{x}^{1} k \, dy \, dx = k \int_{0}^{1} \left[y \right]_{x}^{1} \, dx =$$
$$= k \int_{0}^{1} 1 - x \, dx = k \left[x - \frac{x^{2}}{2} \right]_{0}^{1} = k \left(1 - \frac{1}{2} \right) = \frac{k}{2} \Longrightarrow k = 2.$$

2. La función de distribución de probabilidad.

Distinguimos casos:

• Si $x \leqslant 0$ o $y \leqslant 0$ (zona R_1):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = 0.$$

• Si $x \in]0,1[$ y x < y < 1 (zona R_2):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{x} \int_{u}^{y} 2 \, dv \, du = \int_{0}^{x} 2(y-u) \, du =$$

$$= 2 \left[yu - \frac{u^{2}}{2} \right]_{0}^{x} = 2 \left(xy - \frac{x^{2}}{2} \right) = 2xy - x^{2}.$$

• Si $y \in]0, 1, \infty[$ y x > y (zona R_3):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{y} \int_{u}^{y} 2 \, dv \, du = \int_{0}^{y} 2(y-u) \, du =$$

$$= 2 \left[yu - \frac{u^{2}}{2} \right]_{0}^{y} = 2 \left(y^{2} - \frac{y^{2}}{2} \right) = 2 \cdot \frac{y^{2}}{2} = y^{2}.$$

• Si $x \in]0,1[$ y $y \ge 1$ (zona R_4):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = \int_{0}^{x} \int_{u}^{1} 2 \, dv \, du = \int_{0}^{x} 2(1-u) \, du =$$

$$= 2 \left[u - \frac{u^{2}}{2} \right]_{0}^{x} = 2 \left(x - \frac{x^{2}}{2} \right) = 2x - x^{2}.$$

• $\underline{\text{Si } x, y \geqslant 1}$ (zona R_5):

$$F_{(X,Y)}(x,y) = 1.$$

Por tanto, tenemos que:

$$F_{(X,Y)}(x,y) = \begin{cases} 0, & x \leq 0 \text{ o } y \leq 0, (R_1), \\ 2xy - x^2, & x \in]0, 1[\text{ y } x < y < 1, (R_2), \\ y^2, & y \in]0, 1[\text{ y } x > y, (R_3), \\ 2x - x^2, & x \in]0, 1[\text{ y } y \geqslant 1, (R_4), \\ 1, & x, y \geqslant 1, (R_5). \end{cases}$$

3. Las distribuciones marginales.

Para $x \in [0,1[$, ya que la función de densidad es constante, tenemos que:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy = \int_{-\infty}^{1} 2 \, dy = 2 \, [y]_x^1 = 2(1 - x).$$

Para $y \in [0, 1]$, ya que la función de densidad es constante, tenemos que:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx = \int_0^y 2 \, dx = 2 [x]_0^y = 2y.$$

4. Las distribuciones condicionadas.

Dado $x^* \in]0,1[$, tenemos para $y \in]0,1[$, $x^* < y < 1$:

$$f_{Y|X=x^*}(y) = \frac{f_{(X,Y)}(x^*,y)}{f_X(x^*)} = \frac{2}{2(1-x^*)} = \frac{1}{1-x^*}.$$

Dado $y^* \in]0, 1[$, tenemos para $x \in]0, 1[$, $x < y^* < 1$:

$$f_{X|Y=y^*}(x) = \frac{f_{(X,Y)}(x,y^*)}{f_Y(y^*)} = \frac{2}{2y^*} = \frac{1}{y^*}.$$

Ejercicio 1.1.11. Sea (X, Y) una variable aleatoria bidimensional con distribución uniforme en el recinto

$$C = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 < 1; x \ge 0, y \ge 0\}.$$

Calcular:

1. La función de densidad conjunta.

La función de densidad conjunta es constante, por lo que:

$$f(x,y) = \begin{cases} k, & x^2 + y^2 < 1, x, y \geqslant 0\\ 0, & \text{en otro caso.} \end{cases}$$

Para que f sea una función de densidad, tenemos que:

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dx \, dy$$

Hay dos opciones:

Integrando de la forma usual: Es necesario que:

$$\int_0^1 \int_0^{\sqrt{1-x^2}} k \, dy \, dx = k \int_0^1 \sqrt{1-x^2} \, dx$$

Haciendo el cambio de variable x = sen(t), tenemos que:

$$1 = k \int_0^{\frac{\pi}{2}} \cos(t) \cos(t) dt = k \int_0^{\frac{\pi}{2}} \cos^2(t) dt = k \int_0^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} dt = k \left[\frac{t}{2} + \frac{\sin(2t)}{4} \right]_0^{\frac{\pi}{2}} = k \left[\frac{\pi}{4} \right] \Longrightarrow k = \frac{4}{\pi}.$$

Razonando la forma de C: Sabemos que C es un cuarto de círculo de radio 1, por lo que su área es $\pi/4$. Por tanto, tenemos que:

$$1 = \int_C f(x, y) = k \int_C 1 = k \cdot \lambda(C) = k \cdot \frac{\pi}{4} \Longrightarrow k = \frac{4}{\pi}.$$

2. La función de distribución conjunta.

Dividimos el plano cartesiano en las distintas regiones:

Distinguimos casos:

• Si $x \leqslant 0$ o $y \leqslant 0$ (zona R_1):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = 0.$$

• Si $x \in]0,1[$ y $y \in]0,\sqrt{1-x^2}[$ (zona R_2):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{0}^{x} \int_{0}^{y} \frac{4}{\pi} \, dv \, du = \int_{0}^{x} \frac{4}{\pi} y \, du =$$

$$= \frac{4}{\pi} \left[yu \right]_{0}^{x} = \frac{4}{\pi} \cdot xy$$

• Si $x \in]0,1[$ y $y \in]\sqrt{1-x^2},1[$ (zona R_3):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du =$$

$$= \int_{0}^{\sqrt{1-y^2}} \int_{0}^{y} \frac{4}{\pi} \, dv \, du + \int_{\sqrt{1-y^2}}^{x} \int_{0}^{\sqrt{1-u^2}} \frac{4}{\pi} \, dv \, du =$$

$$= \int_{0}^{\sqrt{1-y^2}} \frac{4}{\pi} y \, du + \int_{\sqrt{1-y^2}}^{x} \frac{4}{\pi} \sqrt{1-u^2} \, du$$

Para resolver la segunda integral, hacemos el cambio de variable dado

por $u = \operatorname{sen}(t)$, $du = \cos(t)dt$:

$$F_{(X,Y)}(x,y) = \frac{4}{\pi}y\sqrt{1-y^2} + \frac{4}{\pi}\int_{\arctan(x)-(\sqrt{1-y^2})}^{\arctan(x)}\cos^2(t)\,dt =$$

$$= \frac{4}{\pi}y\sqrt{1-y^2} + \frac{4}{\pi}\int_{\arctan(x)-(\sqrt{1-y^2})}^{\arctan(x)}\frac{1+\cos(2t)}{2}\,dt =$$

$$= \frac{4}{\pi}y\sqrt{1-y^2} + \frac{4}{\pi}\left[\frac{t}{2} + \frac{\sin(2t)}{4}\right]_{\arctan(x)-(\sqrt{1-y^2})}^{\arctan(x)} =$$

$$= \frac{4}{\pi}y\sqrt{1-y^2} + \frac{4}{\pi}\left[\frac{\arcsin(x)}{2} + \frac{\sin(2\arcsin(x))}{4} - \frac{\arcsin(\sqrt{1-y^2})}{4} - \frac{\arcsin(\sqrt{1-y^2})}{2} - \frac{\sin(2\arcsin(\sqrt{1-y^2}))}{4}\right]$$

Veamos cuánto vale anteriormente sen(2 arc sen(x)) para cierto $x \in \mathbb{R}$:

$$\operatorname{sen}(2\operatorname{arc}\operatorname{sen}(x)) = 2\operatorname{sen}(\operatorname{arc}\operatorname{sen}(x))\operatorname{cos}(\operatorname{arc}\operatorname{sen}(x)) = 2x\sqrt{1-x^2}.$$

Por tanto, tenemos que:

$$F_{(X,Y)}(x,y) = \frac{4}{\pi} y \sqrt{1 - y^2} + \frac{4}{\pi} \left[\frac{\arcsin(x)}{2} + \frac{2x\sqrt{1 - x^2}}{4} - \frac{\arcsin(\sqrt{1 - y^2})}{2} - \frac{2\sqrt{1 - y^2}\sqrt{y^2}}{4} \right] =$$

$$= \frac{4}{\pi} y \sqrt{1 - y^2} + \frac{2}{\pi} \arcsin(x) + \frac{2}{\pi} x \sqrt{1 - x^2} -$$

$$- \frac{2}{\pi} \arcsin(\sqrt{1 - y^2}) - \frac{2}{\pi} y \sqrt{1 - y^2}.$$

• Si $x \in]0,1[$ y $y \geqslant 1$ (zona R_4):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du = \int_{0}^{x} \int_{0}^{\sqrt{1-u^2}} \frac{4}{\pi} \, dv \, du =$$
$$= \int_{0}^{x} \frac{4}{\pi} \sqrt{1-u^2} \, du$$

Para resolver la integral, de nuevo hacemos el cambio de variable dado

por $u = \operatorname{sen}(t)$, $du = \cos(t)dt$:

$$F_{(X,Y)}(x,y) = \frac{4}{\pi} \int_0^{\arccos(x)} \cos^2(t) dt =$$

$$= \frac{4}{\pi} \int_0^{\arcsin(x)} \frac{1 + \cos(2t)}{2} dt =$$

$$= \frac{4}{\pi} \left[\frac{t}{2} + \frac{\sin(2t)}{4} \right]_0^{\arcsin(x)} =$$

$$= \frac{4}{\pi} \left[\frac{\arcsin(x)}{2} + \frac{\sin(2 \arcsin(x))}{4} \right] =$$

$$= \frac{4}{\pi} \left[\frac{\arcsin(x)}{2} + \frac{2x\sqrt{1 - x^2}}{4} \right] =$$

$$= \frac{2}{\pi} \arcsin(x) + \frac{2}{\pi} x\sqrt{1 - x^2}.$$

• Si $y \in]0,1[$ y $x \ge 1$ (zona R_5):

$$F_{(X,Y)}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du =$$

$$= \int_{0}^{\sqrt{1-y^2}} \int_{0}^{y} \frac{4}{\pi} \, dv \, du + \int_{\sqrt{1-y^2}}^{1} \int_{0}^{\sqrt{1-u^2}} \frac{4}{\pi} \, dv \, du =$$

$$= \int_{0}^{\sqrt{1-y^2}} \frac{4}{\pi} y \, du + \int_{\sqrt{1-y^2}}^{1} \frac{4}{\pi} \sqrt{1-u^2} \, du$$

Para resolver la segunda integral, de nuevo hacemos el cambio de variable dado por u = sen(t), $du = \cos(t)dt$:

$$F_{(X,Y)}(x,y) = \frac{4}{\pi}y \left[u\right]_0^{\sqrt{1-y^2}} + \frac{4}{\pi} \int_{\arccos(\sqrt{1-y^2})}^{\pi/2} \cos^2(t) dt =$$

$$= \frac{4}{\pi}y\sqrt{1-y^2} + \frac{4}{\pi} \int_{\arccos(\sqrt{1-y^2})}^{\pi/2} \frac{1+\cos(2t)}{2} dt =$$

$$= \frac{4}{\pi}y\sqrt{1-y^2} + \frac{4}{\pi} \left[\frac{t}{2} + \frac{\sin(2t)}{4}\right]_{\arccos(\sqrt{1-y^2})}^{\pi/2} =$$

$$= \frac{4}{\pi}y\sqrt{1-y^2} + \frac{4}{\pi} \left[\frac{\pi/2}{2} + \frac{\sin(\pi)}{4} - \frac{\arcsin(\sqrt{1-y^2})}{2} - \frac{\sin(2\arccos(\sqrt{1-y^2}))}{4}\right] =$$

$$= \frac{4}{\pi}y\sqrt{1-y^2} + 1 - \frac{2}{\pi}\arcsin(\sqrt{1-y^2}) - \frac{2}{\pi}y\sqrt{1-y^2} =$$

$$= \frac{2}{\pi}y\sqrt{1-y^2} + 1 - \frac{2}{\pi}\arcsin(\sqrt{1-y^2})$$

• $\operatorname{Si} x, y \geqslant 1$ (zona R_6):

$$F_{(X,Y)}(x,y) = 1.$$

3. Las funciones de densidad marginales.

Para $x \in [0,1]$, ya que la función de densidad es constante, tenemos que:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, dy = \int_0^{\sqrt{1-x^2}} \frac{4}{\pi} \, dy = \frac{4}{\pi} [y]_0^{\sqrt{1-x^2}} = \frac{4}{\pi} \cdot \sqrt{1-x^2}.$$

Para $y \in [0, 1]$, ya que la función de densidad es constante, tenemos que:

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \, dx = \int_0^{\sqrt{1-y^2}} \frac{4}{\pi} \, dx = \frac{4}{\pi} \left[x \right]_0^{\sqrt{1-y^2}} = \frac{4}{\pi} \cdot \sqrt{1-y^2}.$$

4. Las funciones de densidad condicionadas.

Dado $x^* \in [0, 1]$, tenemos para $y \in [0, \sqrt{1 - (x^*)^2}]$:

$$f_{Y|X=x^*}(y) = \frac{f_{(X,Y)}(x^*,y)}{f_{X}(x^*)} = \frac{\frac{4/\pi}{4}}{\frac{4}{\pi} \cdot \sqrt{1-(x^*)^2}} = \frac{1}{\sqrt{1-(x^*)^2}}.$$

Dado $y^* \in [0, 1]$, tenemos para $x \in [0, \sqrt{1 - (y^*)^2}]$:

$$f_{X|Y=y^*}(x) = \frac{f_{(X,Y)}(x,y^*)}{f_Y(y^*)} = \frac{4/\pi}{\frac{4}{\pi} \cdot \sqrt{1-(y^*)^2}} = \frac{1}{\sqrt{1-(y^*)^2}}.$$

Ejercicio 1.1.12. Sea la función de densidad del vector (X, Y) dada por:

$$f(x,y) = \begin{cases} k \left[\frac{xy}{2} + 1 \right] & 0 < x < 1, \ -1 < y < 1, \\ 0 & \text{en otro caso.} \end{cases}$$

Se considera la transformación Z = X - Y, T = X + 2Y. Hallar la función de densidad de probabilidad conjunta de la variable transformada (Z, T).

Buscamos en primer lugar el valor de k:

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx \, dy = \int_{0}^{1} \int_{-1}^{1} k \left[\frac{xy}{2} + 1 \right] \, dy \, dx =$$

$$= k \int_{0}^{1} \left[\frac{xy^{2}}{4} + y \right]_{-1}^{1} \, dx = k \int_{0}^{1} \left[\frac{x}{4} + 1 - \frac{x}{4} + 1 \right] \, dx =$$

$$= k \int_{0}^{1} 2 \, dx = k \left[2x \right]_{0}^{1} = 2k \Longrightarrow k = \frac{1}{2}$$

Definimos ahora la función:

$$g: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2 \\ (X,Y) \quad \longmapsto \quad (Z,T) = (X-Y,X+2Y)$$

Para obtener g^{-1} , buscamos obtener X, Y en función de Z, T:

$$\left\{ \begin{aligned} Z &= X - Y, \\ T &= X + 2Y. \end{aligned} \right\} \Longrightarrow Z - T = -3Y \Longrightarrow Y = \frac{T - Z}{3} \Longrightarrow X = \frac{2Z + T}{3}.$$

Por tanto, tenemos que:

$$g^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(Z,T) \longmapsto (X,Y) = \left(\frac{2Z+T}{3}, \frac{T-Z}{3}\right)$$

Tenemos que todas las componentes de g^{-1} son derivables:

$$\begin{split} \frac{\partial X}{\partial Z}(T,Z) &= 2/3, & \frac{\partial X}{\partial T}(Z,T) &= 1/3, \\ \frac{\partial Y}{\partial Z}(Z,T) &= -1/3, & \frac{\partial Y}{\partial T}(Z,T) &= 1/3. \end{split}$$

Además, tenemos que:

$$\det Jg^{-1}(z,t) = \begin{vmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{vmatrix} = \frac{1}{3^2} \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} = \frac{1}{3^2} (2 - (-1)) = \frac{3}{3^2} = \frac{1}{3} \neq 0 \qquad \forall (z,t) \in \mathbb{R}^2.$$

Por tanto, (Z,T) = g(X,Y) es un vector aleatorio continuo. Buscamos ahora la función de densidad de probabilidad de (Z,T):

$$f_{(Z,T)}(z,t) = f_{(X,Y)}\left(\frac{2z+t}{3}, \frac{t-z}{3}\right) \cdot \left| \det Jg^{-1}(z,t) \right| = \begin{cases} \frac{1}{3} \cdot \frac{1}{2} \left[\frac{2z+t}{3} \cdot \frac{t-z}{3} + 1 \right] = \frac{1}{6} \left[\frac{(2z+t)(t-z)}{18} + 1 \right] & 0 < \frac{2z+t}{3} < 1, \ -1 < \frac{t-z}{3} < 1, \\ 0 & \text{en otro caso.} \end{cases}$$

Por tanto, la función de densidad de probabilidad de (Z,T) es:

$$f_{(Z,T)}(z,t) = \begin{cases} \frac{1}{6} \left[\frac{(2z+t)(t-z)}{18} + 1 \right] & 0 < 2z+t < 3, \ -3 < t-z < 3, \\ 0 & \text{en otro caso.} \end{cases}$$

Ejercicio 1.1.13. Sea (X, Y) un vector aleatorio bidimensional con función de densidad de probabilidad

$$f(x,y) = \begin{cases} \exp(-x-y) & x > 0, \ y > 0, \\ 0 & \text{en otro caso.} \end{cases}$$

Calcular la función de densidad de probabilidad de la variable aleatoria Z = X + 2Y, a partir del cálculo de la densidad de probabilidad conjunta de la variable aleatoria bidimensional transformada (Z, T), siendo Z = X + 2Y, y T = Y.

Definimos la transformación:

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(X,Y) \longmapsto (Z,T) = (X+2Y,Y)$

Para obtener g^{-1} , buscamos obtener X, Y en función de Z, T:

$$\begin{cases} Z = X + 2Y, \\ T = Y. \end{cases} \Longrightarrow \begin{cases} X = Z - 2T, \\ Y = T. \end{cases}$$

Por tanto, tenemos que:

$$g^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(Z,T) \longmapsto (X,Y) = (Z-2T,T)$

Tenemos que todas las componentes de g^{-1} son derivables:

$$\begin{split} \frac{\partial X}{\partial Z}(Z,T) &= 1, & \frac{\partial X}{\partial T}(Z,T) &= -2, \\ \frac{\partial Y}{\partial Z}(Z,T) &= 0, & \frac{\partial Y}{\partial T}(Z,T) &= 1. \end{split}$$

Además, tenemos que:

$$\det Jg^{-1}(z,t) = \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} = 1 \neq 0 \qquad \forall (z,t) \in \mathbb{R}^2.$$

Por tanto, (Z,T) = g(X,Y) es un vector aleatorio continuo. Buscamos ahora la función de densidad de probabilidad de (Z,T):

$$f_{(Z,T)}(z,t) = f_{(X,Y)}(z-2t,t) \cdot \left| \det Jg^{-1}(z,t) \right| = \begin{cases} \exp(-(z-2t)-t) = \exp(-z+t) & z-2t > 0, \ t > 0, \\ 0 & \text{en otro caso.} \end{cases}$$

Finalmente, hallamos la marginal de Z. Para todo z > 0:

$$f_Z(z) = \int_{-\infty}^{+\infty} f_{(Z,T)}(z,t) dt = \int_0^{+\infty} \exp(-z+t) dt =$$

$$= \int_0^{z/2} \exp(-z+t) dt = e^{-z} \left[\exp(t) \right]_0^{z/2} = e^{-z} \left[e^{z/2} - 1 \right]$$

Por tanto, la función de densidad de probabilidad de Z es:

$$f_Z(z) = \begin{cases} e^{-z} \left[e^{z/2} - 1 \right] & z > 0, \\ 0 & \text{en otro caso.} \end{cases}$$

Ejercicio 1.1.14. Sea (X,Y) un vector aleatorio bidimensional con función de densidad de probabilidad

$$f(x,y) = \begin{cases} k & 0 < x < 1, \ 0 < y < 1, \\ 0 & \text{en otro caso.} \end{cases}$$

1. Calcular k para que f sea función de densidad de probabilidad de un vector aleatorio continuo (X,Y).

Para que f sea función de densidad de probabilidad, necesitamos que:

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx \, dy = k \int_{0}^{1} \int_{0}^{1} \, dy \, dx = k \int_{0}^{1} 1 \, dx = k \left[x \right]_{0}^{1} = k.$$

2. Calcular la función de densidad de probabilidad conjunta del vector bidimensional (Z,T)=(X+Y,X-Y).

Definimos la transformación:

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(X,Y) \longmapsto (Z,T) = (X+Y,X-Y)$

Para obtener g^{-1} , buscamos obtener X, Y en función de Z, T:

$$\begin{cases} Z = X + Y, \\ T = X - Y. \end{cases} \Longrightarrow \begin{cases} X = \frac{Z + T}{2}, \\ Y = \frac{Z - T}{2}. \end{cases}$$

Por tanto, tenemos que:

$$g^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(Z,T) \longmapsto (X,Y) = \left(\frac{Z+T}{2}, \frac{Z-T}{2}\right)$$

Tenemos que todas las componentes de g^{-1} son derivables:

$$\begin{split} \frac{\partial X}{\partial Z}(Z,T) &= 1/2, & \frac{\partial X}{\partial T}(Z,T) &= 1/2, \\ \frac{\partial Y}{\partial Z}(Z,T) &= 1/2, & \frac{\partial Y}{\partial T}(Z,T) &= -1/2. \end{split}$$

Además, tenemos que:

$$\det Jg^{-1}(z,t) = \begin{vmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{vmatrix} = \frac{1}{2^2} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = \frac{1}{2^2} (-1-1) = -\frac{2}{2^2} = -\frac{1}{2} \neq 0 \qquad \forall (z,t) \in \mathbb{R}^2.$$

Por tanto, (Z,T)=g(X,Y) es un vector aleatorio continuo. Veamos el valor de g(X,Y) para $X,Y\in [0,1]$:

$$g(X,Y) = \left\{ (z,t) \in \mathbb{R}^2 \mid 0 < \frac{z+t}{2} < 1, \ 0 < \frac{z-t}{2} < 1 \right\} =$$
$$= \left\{ (z,t) \in \mathbb{R}^2 \mid 0 < z+t < 2, \ 0 < z-t < 2 \right\}$$

Veámoslo gráficamente:

Buscamos ahora la función de densidad de probabilidad de (Z, T):

$$f_{(Z,T)}(z,t) = f_{(X,Y)}\left(\frac{z+t}{2}, \frac{z-t}{2}\right) \cdot \left| \det Jg^{-1}(z,t) \right| =$$

$$= \begin{cases} k \cdot \frac{1}{2} & (z,t) \in g(X,Y), \\ 0 & \text{en otro caso.} \end{cases}$$

Por tanto, la función de densidad de probabilidad de (Z,T) es:

$$f_{(Z,T)}(z,t) = \begin{cases} \frac{1}{2} & 0 < z + t < 2, \ 0 < z - t < 2, \\ 0 & \text{en otro caso.} \end{cases}$$

3. Determinar las funciones de densidad de probabilidad marginales del vector transformado (Z,T).

Para $z \in [0, 2]$, tenemos que:

$$f_Z(z) = \int_{-\infty}^{+\infty} f_{(Z,T)}(z,t) dt$$

Los límites de integración los vemos claros en la gráfica anterior. Distinguimos en función del valor de z:

• Si $z \in [0, 1]$, entonces:

$$f_Z(z) = \int_{-z}^{z} \frac{1}{2} dt = \frac{1}{2} [t]_{-z}^{z} = \frac{1}{2} (z - (-z)) = z.$$

• Si $z \in [1, 2]$, entonces:

$$f_Z(z) = \int_{z-2}^{2-z} \frac{1}{2} dt = \frac{1}{2} [t]_{z-2}^{2-z} = \frac{1}{2} (2 - z - (z - 2)) = \frac{1}{2} (4 - 2z) = 2 - z.$$

Por tanto, la función de densidad de probabilidad de Z es:

$$f_Z(z) = \begin{cases} z & 0 < z < 1, \\ 2 - z & 1 < z < 2, \\ 0 & \text{en otro caso.} \end{cases}$$

Para $t \in [-1, 1]$, tenemos que:

$$f_T(t) = \int_{-\infty}^{+\infty} f_{(Z,T)}(z,t) dz$$

Los límites de integración los vemos claros en la gráfica anterior. Distinguimos en función del valor de t:

• Si $t \in [-1, 0]$, entonces:

$$f_T(t) = \int_{-t}^{2+t} \frac{1}{2} dz = \frac{1}{2} [z]_{-t}^{2+t} = \frac{1}{2} (2+t-(-t)) = 1+t.$$

• Si $t \in [0, 1]$, entonces:

$$f_T(t) = \int_t^{2-t} \frac{1}{2} dz = \frac{1}{2} [z]_t^{2-t} = \frac{1}{2} (2-t-t) = 1-t.$$

Por tanto, la función de densidad de probabilidad de T es:

$$f_T(t) = \begin{cases} 1+t & -1 < t < 0, \\ 1-t & 0 < t < 1, \\ 0 & \text{en otro caso.} \end{cases}$$

4. Determinar la función de distribución de probabilidad de ^X/Y y XY. Definimos la transformación:

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(X,Y) \longmapsto (Z,T) = (X/Y,XY)$

Para obtener g^{-1} , buscamos obtener X, Y en función de Z, T:

$$\begin{cases} Z = X/Y, \\ T = XY. \end{cases} \Longrightarrow \begin{cases} X = ZY = \sqrt{ZT}, \\ Y = \sqrt{T/Z}. \end{cases}$$

Como X, Y > 0, entonces Z, T > 0, por lo que la inversa está bien definida.

$$g^{-1}: \mathbb{R}^+ \times \mathbb{R}^+ \longrightarrow \mathbb{R}^2$$

 $(Z,T) \longmapsto (X,Y) = (\sqrt{ZT}, \sqrt{T/Z})$

Tenemos que todas las componentes de g^{-1} son derivables:

$$\begin{split} \frac{\partial X}{\partial Z}(Z,T) &= \frac{T}{2\sqrt{ZT}} = \frac{\sqrt{T}}{2\sqrt{Z}}, & \frac{\partial X}{\partial T}(Z,T) = \frac{\sqrt{Z}}{2\sqrt{T}}, \\ \frac{\partial Y}{\partial Z}(Z,T) &= \frac{-\frac{T}{Z^2}}{2\sqrt{T/Z}} = -\frac{\sqrt{T}}{2Z\sqrt{Z}}, & \frac{\partial Y}{\partial T}(Z,T) = \frac{1}{2Z\sqrt{T/Z}} = \frac{1}{2\sqrt{TZ}}. \end{split}$$

Además, tenemos que:

$$\det Jg^{-1}(z,t) = \begin{vmatrix} \frac{\sqrt{T}}{2\sqrt{Z}} & \frac{\sqrt{Z}}{2\sqrt{T}} \\ -\frac{\sqrt{T}}{2Z\sqrt{Z}} & \frac{1}{2\sqrt{TZ}} \end{vmatrix} = \frac{1}{4Z} + \frac{1}{4Z} = \frac{1}{2Z} > 0 \qquad \forall (z,t) \in \mathbb{R}^+ \times \mathbb{R}^+.$$

Por tanto, (Z,T) = g(X,Y) es un vector aleatorio continuo. Estudiamos ahora el conjunto g(X,Y):

$$g(X,Y) = \left\{ (z,t) \in \mathbb{R}^+ \times \mathbb{R}^+ \mid 0 < \sqrt{ZT} < 1, \ 0 < \sqrt{T/Z} < 1 \right\} =$$

$$= \left\{ (z,t) \in \mathbb{R}^+ \times \mathbb{R}^+ \mid 0 < ZT < 1, \ 0 < T < Z \right\}$$

Veamos el conjunto g(X,Y) gráficamente:

Buscamos ahora la función de densidad de probabilidad de (Z, T):

$$\begin{split} f_{(Z,T)}(z,t) &= f_{(X,Y)}\left(\sqrt{ZT},\sqrt{^T/z}\right) \cdot \left| \det Jg^{-1}(z,t) \right| = \\ &= \begin{cases} \frac{1}{2z} & (z,t) \in g(X,Y), \\ 0 & \text{en otro caso.} \end{cases} \end{split}$$

Por tanto, la función de densidad de probabilidad de (Z,T) es:

$$f_{(Z,T)}(z,t) = \begin{cases} \frac{1}{2z} & 0 < ZT < 1, \ 0 < T < Z, \\ 0 & \text{en otro caso.} \end{cases}$$

Para obtener la función de densidad de probabilidad de Z = X/Y, tenemos que:

$$f_Z(z) = \int_{-\infty}^{+\infty} f_{(Z,T)}(z,t) dt$$

Los límites de integración los vemos claros en la gráfica anterior. Distinguimos en función del valor de z:

• Si $z \in [0, 1]$, entonces:

$$f_Z(z) = \int_0^z \frac{1}{2z} dt = \frac{1}{2z} [t]_0^z = \frac{1}{2z} z = \frac{1}{2}.$$

• Si $z \in [1, +\infty[$, entonces:

$$f_Z(z) = \int_0^{1/z} \frac{1}{2z} dt = \frac{1}{2z} [t]_0^{1/z} = \frac{1}{2z^2}.$$

Por tanto, la función de densidad de probabilidad de Z es:

$$f_Z(z) = \begin{cases} \frac{1}{2} & 0 < z < 1, \\ \\ \frac{1}{2z^2} & 1 < z, \\ 0 & \text{en otro caso} \end{cases}$$

Para obtener la función de densidad de probabilidad de T=XY, tenemos que:

$$f_T(t) = \int_{-\infty}^{+\infty} f_{(Z,T)}(z, w) dz$$

Los límites de integración los vemos claros en la gráfica anterior. Para $t \in]0,1]$, tenemos que:

$$f_T(t) = \int_t^{1/t} \frac{1}{2z} dz = \frac{1}{2} \left[\ln(z) \right]_t^{1/t} = \frac{1}{2} \left[\ln(1/t) - \ln(t) \right] = \frac{1}{2} \left[\ln(1) - 2 \ln(t) \right] = -\ln(t)$$

Por tanto, la función de densidad de probabilidad de T es:

$$f_T(t) = \begin{cases} -\ln(t) & 0 < t < 1, \\ 0 & \text{en otro caso.} \end{cases}$$

Una vez tenemos ambas marginales, es fácil obtener la función de distribución de cada una. Respecto de Z, distinguimos en función del valor de z:

• Si $z \in [0, 1]$, entonces:

$$F_Z(z) = \int_{-\infty}^{z} f_Z(z) dz = \int_{0}^{z} \frac{1}{2} dz = \frac{1}{2} [z]_{0}^{z} = \frac{z}{2}$$

• Si $z \in [1, +\infty[$, entonces:

$$F_Z(z) = \int_{-\infty}^z f_Z(z) dz = \int_0^1 \frac{1}{2} dz + \int_1^z \frac{1}{2z^2} dz = \frac{1}{2} - \frac{1}{2} \left[\frac{1}{z} \right]_1^z =$$
$$= \frac{1}{2} - \frac{1}{2} \left(\frac{1}{z} - 1 \right) = 1 - \frac{1}{2z}$$

Por tanto, la función de distribución de probabilidad de Z = X/Y es:

$$F_Z(z) = \begin{cases} \frac{z}{2} & 0 < z < 1, \\ 1 - \frac{1}{2z} & 1 < z, \\ 0 & \text{en otro caso.} \end{cases}$$

Respecto de T, para $t \in [0,1]$, tenemos que:

$$F_T(t) = \int_{-\infty}^t f_T(t) dt = \int_0^t -\ln(t) dt = -\left[t \ln(t) - t\right]_0^t =$$
$$= -t \ln(t) + t + \lim_{t \to 0} t \ln(t) = -t \ln(t) + t$$

Por tanto, la función de distribución de probabilidad de T = XY es:

$$F_T(t) = \begin{cases} 0 & t \leq 0, \\ -t \ln(t) + t & 0 < t < 1, \\ 1 & 1 \leq t, \end{cases}$$

5. Determinar la función de distribución de probabilidad de máx(X,Y), y del mín(X,Y).

Dado $x \in \mathbb{R}$, tenemos que:

$$P[\max(X,Y) \leqslant x] = P[X \leqslant x, Y \leqslant x] = P[(X,Y) \leqslant (x,x)]$$

Calculamos por tanto dicho valor sabiendo $f_{(X,Y)}$. Para $z \in [0,1]$, tenemos que:

$$P[(X,Y) \le (z,z)] = \int_0^z \int_0^z k \, dy \, dx = k \int_0^z z \, dx = kz \, [x]_0^z = kz^2 = z^2$$

Por tanto, la función de distribución de probabilidad de máx(X,Y) es:

$$F_{\max(X,Y)}(z) = \begin{cases} 0 & z \le 0, \\ z^2 & 0 < z < 1, \\ 1 & 1 \le z. \end{cases}$$

Respecto del mín(X,Y), dado $z \in \mathbb{R}$, tenemos que:

$$P[\min(X, Y) \leq z] = 1 - P[\min(X, Y) > z] = 1 - P[(X, Y) > z]$$

Calculamos dicho valor sabiendo $f_{(X,Y)}$. Distinguimos en función de z:

- Si $z \leq 0$, entonces P[(X, Y) > z] = 1.
- Si 0 < z < 1, entonces:

$$P[(X,Y) > z] = \int_{z}^{1} \int_{z}^{1} k \, dy \, dz = k \int_{z}^{1} (1-z) \, dz = k(1-z) \left[x\right]_{z}^{1} = (1-z)^{2}$$

• Si $z \geqslant 1$, entonces P[(X, Y) > z] = 0.

Por tanto, la función de distribución de probabilidad de mín(X,Y) es:

$$F_{\min(X,Y)}(z) = 1 - P[(X,Y) > z] = \begin{cases} 0 & z \le 0, \\ 1 - (1-z)^2 & 0 < z < 1, \\ 1 & 1 \le z. \end{cases}$$

6. Determinar la función de distribución de probabilidad conjunta del máx(X,Y), y del mín(X,Y).

Dado $z, t \in \mathbb{R}$, distinguimos casos:

• Si $z \leq t$, como mín $(X,Y) \leq \max(X,Y)$, entonces:

$$P[\max(X,Y) \leqslant z, \min(X,Y) \leqslant t] = P[\max(X,Y) \leqslant z] = F_{\max(X,Y)}(z)$$

Distinguimos en función de z:

- Si $z \leq 0$, entonces $F_{\max(X,Y)}(z) = 0$.
- Si 0 < z < 1, entonces $F_{\max(X,Y)}(z) = z^2$.
- Si $z \ge 1$, entonces $F_{\max(X,Y)}(z) = 1$.
- Si z > t, entonces:

$$\begin{split} P[\max(X,Y) \leqslant z, \min(X,Y) \leqslant t] \\ &= P[\max(X,Y) \leqslant z] - P[\max(X,Y) \leqslant z, \min(X,Y) > t] = \\ &= P[\max(X,Y) \leqslant z] - P[t < X \leqslant z, t < Y \leqslant z] \end{split}$$

Distinguimos en función de z:

• Si $z \leq 0$, entonces $P[\max(X, Y) \leq z] = 0$. Además, $t < z \leq 0$. Por tanto:

$$P[t < X \leqslant z, t < Y \leqslant z] = 0$$

Por tanto, $P[\max(X, Y) \leq z, \min(X, Y) \leq t] = 0.$

- Si 0 < z < 1, entonces $P[\max(X, Y) \le z] = z^2$. Además, sabemos que t < z < 1. Distinguimos en función de t:
 - \circ Si $t \leq 0$, entonces:

$$P[t < X \le z, t < Y \le z] = \int_0^z \int_0^z k \, dy \, dx = kz^2 = z^2$$

Por tanto, $P[\max(X, Y) \leq z, \min(X, Y) \leq t] = z^2 - z^2 = 0.$

• Si 0 < t < z, entonces:

$$P[t < X \le z, t < Y \le z] = \int_{t}^{z} \int_{t}^{z} k \, dy \, dx = k(z - t)^{2} = (z - t)^{2}$$

Por tanto, tenemos que:

$$P[\max(X,Y) \leqslant z, \min(X,Y) \leqslant t] = z^2 - (z-t)^2 = z^2 - z^2 + 2zt - t^2 = 2zt - t^2$$

- Si $z \geqslant 1$, entonces $P[\max(X,Y) \leqslant z] = 1$. Distinguimos en función de t:
 - \circ Si $t \leq 0$, entonces:

$$P[t < X \le z, t < Y \le z] = \int_0^1 \int_0^1 k \, dy \, dx = k = 1$$

Por tanto, $P[\max(X, Y) \leq z, \min(X, Y) \leq t] = 1 - 1 = 0.$

 \circ Si 0 < t < 1, entonces:

$$P[t < X \le z, t < Y \le z] = \int_{t}^{1} \int_{t}^{1} k \, dy \, dx = k(1-t)^{2} = (1-t)^{2}$$

Por tanto,

$$P[\max(X,Y) \leqslant z, \min(X,Y) \leqslant t] = 1 - (1-t)^2 = 1 - 1 + 2t - t^2 = 2t - t^2$$

 \circ Si $t \ge 1$, t < z, entonces:

$$P[t < X \leqslant z, t < Y \leqslant z] = 0$$

Por tanto, $P[\max(X, Y) \leq z, \min(X, Y) \leq t] = 1 - 0 = 1$.

Por tanto, la función de distribución de probabilidad conjunta de máx(X,Y) y mín(X,Y) es:

$$F_{\text{máx}(X,Y),\text{mín}(X,Y)}(z,t) = \begin{cases} 0 & z \leqslant 0 \lor t \leqslant 0 \\ z^2 & z \leqslant t \land 0 < z < 1, \\ 2zt - t^2 & 0 < t < z < 1, \\ 2t - t^2 & 0 < t < 1 \leqslant z, \\ 1 & 1 \leqslant t \land 1 \leqslant z \end{cases}$$

Ejercicio 1.1.15. Sea (X,Y) un vector aleatorio bidimensional discreto, cuya función masa de probabilidad conjunta se calcula como el producto de las funciones masa de probabilidad marginales de X e Y. Las variables aleatorias X e Y se distribuyen según una Poisson con parámetro $\lambda > 0$. Calcular la función de distribución de probabilidad marginal del máximo y del mínimo, así como la distribución conjunta del máximo y del mínimo.

Tenemos que:

$$P[X = x, Y = y] = P[X = x] \cdot P[Y = y]$$

Como $X, Y \sim \mathcal{P}(\lambda)$, tenemos que:

$$P[X = x, Y = y] = P[X = x] \cdot P[Y = y] =$$

$$= \frac{e^{-\lambda} \lambda^x}{x!} \cdot \frac{e^{-\lambda} \lambda^y}{y!} =$$

$$= \frac{e^{-2\lambda} \lambda^{x+y}}{x!y!}$$

Calculemos la marginal del máximo. Para $n \in \mathbb{N}$, tenemos que:

$$\begin{split} P[\max(X,Y) \leqslant n] &= P[X \leqslant n, Y \leqslant n] = P[(X,Y) \leqslant (n,n)] = \\ &= \sum_{i=0}^{n} \sum_{j=0}^{n} P[X = i, Y = k] = \\ &= \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{e^{-2\lambda} \lambda^{i+j}}{i!j!} = \\ &= e^{-2\lambda} \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{\lambda^{i+j}}{i!j!} = e^{-2\lambda} \sum_{i=0}^{n} \frac{\lambda^{i}}{i!} \sum_{i=0}^{n} \frac{\lambda^{j}}{j!} \end{split}$$

Ejercicio 1.1.16. Sea (X,Y) un vector aleatorio con función de densidad de probabilidad

$$f(x,y) = \begin{cases} 2 & 0 < x < 1, \ 0 < y < x, \\ 0 & \text{en otro caso.} \end{cases}$$

Calcular la densidad de probabilidad de las variables Z = aX + bY, T = X/Y, a partir de la densidad de probabilidad conjunta de (Z, T) = (aX + bY, X/Y), a, b > 0.

Definimos la transformación:

$$g: E_{(X,Y)} \longrightarrow \mathbb{R}^2$$

 $(X,Y) \longmapsto (Z,T) = (aX + bY, X/Y)$

Para obtener g^{-1} , buscamos obtener X, Y en función de Z, T:

$$\left\{ \begin{aligned} Z &= aX + bY, \\ T &= X/Y. \end{aligned} \right\} \Longrightarrow \left\{ \begin{aligned} X &= \frac{TZ}{aT + b}, \\ Y &= \frac{Z}{aT + b}. \end{aligned} \right.$$

Notemos que a, b > 0, y como X, Y > 0, entonces T > 0. Por tanto, aT + b > 0, por lo que está bien definida la transformación.

Por tanto, tenemos que:

$$g^{-1}: g(E_{(X,Y)}) \longrightarrow E_{(X,Y)}$$

 $(Z,T) \longmapsto (X,Y) = \left(\frac{TZ}{aT+b}, \frac{Z}{aT+b}\right)$

Tenemos que todas las componentes de g^{-1} son derivables:

$$\begin{split} \frac{\partial X}{\partial Z}(Z,T) &= \frac{T}{aT+b}, & \frac{\partial X}{\partial T}(Z,T) &= \frac{bZ}{(aT+b)^2}, \\ \frac{\partial Y}{\partial Z}(Z,T) &= \frac{1}{aT+b}, & \frac{\partial Y}{\partial T}(Z,T) &= \frac{-aZ}{(aT+b)^2}. \end{split}$$

Además, tenemos que:

$$\det Jg^{-1}(z,t) = \begin{vmatrix} \frac{T}{aT+b} & \frac{bZ}{(aT+b)^2} \\ \frac{1}{aT+b} & \frac{-aZ}{(aT+b)^2} \end{vmatrix} = \frac{1}{(aT+b)^4} \begin{vmatrix} T(aT+b) & bZ \\ aT+b & -aZ \end{vmatrix} = \frac{1}{(aT+b)^4} (aT+b)(-TaZ-bZ) = -\frac{Z}{(aT+b)^2} \neq 0 \qquad \forall (z,t) \in g(E_{(X,Y)}).$$

Por tanto, (Z,T)=g(X,Y) es un vector aleatorio continuo. Veamos ahora el valor de g(X,Y) para $X \in [0,1], Y \in [0,X]$:

$$g(X,Y) = \left\{ (z,t) \in \mathbb{R}^2 \mid 0 < \frac{tz}{at+b} < 1, \ 0 < \frac{z}{at+b} < \frac{tz}{at+b} \right\} =$$

$$= \left\{ (z,t) \in \mathbb{R}^2 \mid 0 < tz < at+b, \ 0 < 1 < t \right\} =$$

$$= \left\{ (z,t) \in \mathbb{R}^2 \mid 0 < z < a + \frac{b}{t}, \ 1 < t \right\}$$

Veamos este conjunto gráficamente:

La densidad de probabilidad de (Z,T) es:

$$f_{(Z,T)}(z,t) = f_{(X,Y)}\left(\frac{tz}{at+b}, \frac{z}{at+b}\right) \cdot \left| -\frac{Z}{(aT+b)^2} \right| =$$

$$= \begin{cases} \frac{2z}{(at+b)^2} & (z,t) \in g(X,Y), \\ 0 & \text{en otro caso.} \end{cases}$$

Por tanto, la densidad de probabilidad de (Z,T) es:

$$f_{(Z,T)}(z,t) = \begin{cases} \frac{2z}{(at+b)^2} & (z,t) \in g(X,Y), \\ 0 & \text{en otro caso.} \end{cases}$$

Calculemos ahora la densidad de probabilidad de Z=aX+bY. Para $z\in]a,a+b[$, tenemos que:

$$\begin{split} f_Z(z) &= \int_{-\infty}^{+\infty} f_{(Z,T)}(z,t) \, dt = \int_{1}^{\frac{b}{z-a}} \frac{2z}{(at+b)^2} \, dt = \\ &= -\frac{2z}{a} \left[\frac{1}{at+b} \right]_{1}^{\frac{b}{z-a}} = -\frac{2z}{a} \left[\frac{1}{\frac{ba}{z-a}+b} - \frac{1}{a+b} \right] = -\frac{2z}{a} \left[\frac{z-a}{bz} - \frac{1}{a+b} \right] = \\ &= -\frac{2z}{a} \left[\frac{(z-a)(a+b)-bz}{bz(a+b)} \right] = -\frac{2}{a} \left[\frac{az+bz-a^2-ab-bz}{b(a+b)} \right] = \\ &= 2 \cdot \left[\frac{a+b-z}{b(a+b)} \right] \end{split}$$

Por tanto, la densidad de probabilidad de Z = aX + bY es:

$$f_Z(z) = \begin{cases} 2 \cdot \left[\frac{a+b-z}{b(a+b)} \right] & z \in]a, a+b[, \\ 0 & \text{en otro caso.} \end{cases}$$

Calculemos ahora la densidad de probabilidad de T = X/Y. Para t > 1, tenemos que:

$$f_T(t) = \int_{-\infty}^{+\infty} f_{(Z,T)}(z,t) dz = \int_a^{a+\frac{b}{t}} \frac{2z}{(at+b)^2} dz =$$

$$= \frac{1}{(at+b)^2} \left[z^2 \right]_a^{a+\frac{b}{t}} = \frac{1}{(at+b)^2} \left[\left(a + \frac{b}{t} \right)^2 - a^2 \right] =$$

$$= \frac{1}{(at+b)^2} \left[\frac{2ab}{t} + \frac{b^2}{t^2} \right] = \frac{b}{(at+b)^2} \left[\frac{2at+b}{t^2} \right]$$

Por tanto, la densidad de probabilidad de T = X/Y es:

$$f_T(t) = \begin{cases} \frac{b}{(at+b)^2} \left[\frac{2at+b}{t^2} \right] & t > 1, \\ 0 & \text{en otro caso.} \end{cases}$$

Ejercicio 1.1.17. Sea (X,Y) un vector aleatorio, cuya función de densidad de probabilidad conjunta se calcula como producto de las funciones de densidad de probabilidad marginales de X e Y, siendo $X \sim \exp(\lambda)$ e $Y \sim \exp(\mu)$. Calcular la función de distribución de probabilidad conjunta del vector aleatorio

$$(Z,T) = (\min(X,Y),T), \qquad T = \begin{cases} 0 & Y < X \\ 1 & X < Y \end{cases}$$

Como $X \sim \exp(\lambda)$ e $Y \sim \exp(\mu)$, tenemos que:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \geqslant 0, \\ 0 & x < 0, \end{cases}$$
 $f_Y(y) = \begin{cases} \mu e^{-\mu y} & y \geqslant 0, \\ 0 & y < 0. \end{cases}$

Por tanto, la función de densidad de probabilidad conjunta de (X,Y) es:

$$f_{(X,Y)}(x,y) = f_X(x) \cdot f_Y(y) = \begin{cases} \lambda \mu e^{-\lambda x - \mu y} & x, y \geqslant 0, \\ 0 & \text{en otro caso.} \end{cases}$$

Tenemos que $E_X = E_Y = \mathbb{R}^+$, por lo que $E_Z = \mathbb{R}^+$. Además, $E_T = \{0, 1\}$. Tenemos por tanto la siguiente situación:

Calculamos la función de distribución de probabilidad conjunta de (Z,T):

$$P[Z \leqslant z, T \leqslant t] = P[\min(X, Y) \leqslant z, T \leqslant t]$$

Dados $z, t \in \mathbb{R}$, distinguimos casos:

• Si $z \leq 0$ o t < 0, (es decir, $(z, t) \in R_0$), entonces:

$$P[\min(X, Y) \leqslant z, T \leqslant t] = 0$$

• Si z > 0 y $t \in [0, 1[$, (es decir, $(z, t) \in R_1)$, entonces:

$$\begin{split} P[\min(X,Y) \leqslant z, T \leqslant t] &= P[\min(X,Y) \leqslant z, T = 0] = P[\min(X,Y) \leqslant z, Y < X] = \\ &= P[Y \leqslant z, Y < X] = \int_0^z \int_y^{+\infty} f_{(X,Y)}(x,y) \, dx \, dy = \\ &= \int_0^z \int_y^{+\infty} \lambda \mu e^{-\lambda x - \mu y} \, dx \, dy = \int_0^z \mu e^{-\mu y} \int_y^{+\infty} \lambda e^{-\lambda x} \, dx \, dy = \\ &= \int_0^z \mu e^{-\mu y} \left[-e^{-\lambda x} \right]_y^{+\infty} \, dy = \int_0^z \mu e^{-\mu y} e^{-\lambda y} \, dy = \\ &= \mu \int_0^z e^{-(\lambda + \mu)y} \, dy = \mu \left[\frac{e^{-(\lambda + \mu)y}}{-(\lambda + \mu)} \right]_0^z = \\ &= -\frac{\mu}{\lambda + \mu} \left[\exp(-(\lambda + \mu)z) - 1 \right] \end{split}$$

■ Si z > 0 y $t \ge 1$, (es decir, $(z,t) \in R_2$), entonces: Tenemos dos opciones para calcular $P[\min(X,Y) \le z, T \le t]$:

Opción 1) Como $E_T = \{0, 1\}$, sabemos que:

$$P[\min(X,Y)\leqslant z,T\leqslant t]=P[\min(X,Y)\leqslant z]$$

Por tanto, calculamos $P[\min(X, Y) \leq z]$:

$$\begin{split} P[\min(X,Y) \leqslant z] &= 1 - P[\min(X,Y) > z] = 1 - P[X > z, Y > z] = \\ &= 1 - \int_{z}^{+\infty} \int_{z}^{+\infty} f_{(X,Y)}(x,y) \, dy \, dx = \\ &= 1 - \int_{z}^{+\infty} \int_{z}^{+\infty} \lambda \mu e^{-\lambda x - \mu y} \, dy \, dx = \\ &= 1 - \int_{z}^{+\infty} \lambda e^{-\lambda x} \, dx \, \int_{z}^{+\infty} \mu e^{-\mu y} \, dy = \\ &= 1 - \left[-e^{-\lambda x} \right]_{z}^{+\infty} \left[-e^{-\mu y} \right]_{z}^{+\infty} = 1 - \left[e^{-\lambda z} - 0 \right] \left[e^{-\mu z} - 0 \right] = \\ &= 1 - (e^{-\lambda z})(e^{-\mu z}) = 1 - \exp(-(\lambda + \mu)z) \end{split}$$

Opción 2) Como $E_T = \{0, 1\}$, sabemos que:

$$P[\min(X,Y)\leqslant z,T\leqslant t]=P[\min(X,Y)\leqslant z,T=0]+P[\min(X,Y)\leqslant z,T=1]$$

La primera ya la hemos obtenido anteriormente, por tanto, calculamos la segunda probabilidad:

$$\begin{split} P[\min(X,Y)\leqslant z,T=1] &= P[\min(X,Y)\leqslant z,X < Y] = P[X\leqslant z,X < Y] = \\ &= \int_0^z \int_x^{+\infty} f_{(X,Y)}(x,y) \, dy \, dx = \int_0^z \int_x^{+\infty} \lambda \mu e^{-\lambda x - \mu y} \, dy \, dx = \\ &= \int_0^z \lambda e^{-\lambda x} \int_x^{+\infty} \mu e^{-\mu y} \, dy \, dx = \int_0^z \lambda e^{-\lambda x} \left[-e^{-\mu y} \right]_x^{+\infty} \, dx = \\ &= \int_0^z \lambda e^{-\lambda x} e^{-\mu x} \, dx = \lambda \int_0^z e^{-(\lambda + \mu)x} \, dx = \lambda \left[\frac{e^{-(\lambda + \mu)x}}{-(\lambda + \mu)} \right]_0^z = \\ &= -\frac{\lambda}{\lambda + \mu} \left[\exp(-(\lambda + \mu)z) - 1 \right] \end{split}$$

Sumando ambos resultados, tenemos que:

$$P[\min(X,Y) \leqslant z, T \leqslant t] = \left[\exp(-(\lambda + \mu)z) - 1\right] \left(-\frac{\mu}{\lambda + \mu} - \frac{\lambda}{\lambda + \mu}\right) = 1 - \exp(-(\lambda + \mu)z)$$

En cualquier caso, la función de distribución de probabilidad conjunta (Z,T) es:

$$F_{(Z,T)}(z,t) = \begin{cases} 0 & z \leq 0 \text{ o } t < 0, \\ -\frac{\mu}{\lambda + \mu} \left[\exp(-(\lambda + \mu)z) - 1 \right] & z > 0 \text{ y } t \in [0, 1[, 1], \\ 1 - \exp(-(\lambda + \mu)z) & z > 0 \text{ y } t \geq 1. \end{cases}$$

Ejercicio 1.1.18. Sea (X,Y) un vector aleatorio, cuya función de densidad de probabilidad conjunta se calcula como en el problema anterior, considerando $\lambda = \mu$. Calcular la distribución de probabilidad de:

1.
$$|X - Y|$$
,

Del apartado anterior, tenemos que:

$$f_{(X,Y)}(x,y) = \begin{cases} \lambda^2 e^{-\lambda(x+y)} & x,y \geqslant 0, \\ 0 & \text{en otro caso.} \end{cases}$$

Buscamos calcular $P[|X-Y| \leq z]$ para todo $z \in \mathbb{R}$. Si $z \leq 0$, tenemos que $P[|X-Y| \leq z] = 0$, por lo que sea $z \in \mathbb{R}^+$. Tenemos que:

$$P[|X - Y| \leqslant z] = P[-z \leqslant X - Y \leqslant z]$$

Sabiendo que $X, Y \ge 0$, tenemos que la situación es la siguiente:

Por tanto, tenemos que:

$$\begin{split} &P[|X-Y|\leqslant z] = P[-z\leqslant X-Y\leqslant z] = \\ &= \int_0^z \int_0^{x+z} f_{(X,Y)}(x,y) \, dy \, dx + \int_z^{+\infty} \int_{x-z}^{x+z} f_{(X,Y)}(x,y) \, dy \, dx = \\ &= \int_0^z \int_0^{x+z} \lambda^2 e^{-\lambda(x+y)} \, dy \, dx + \int_z^{+\infty} \int_{x-z}^{x+z} \lambda^2 e^{-\lambda(x+y)} \, dy \, dx = \\ &= \int_0^z \lambda e^{-\lambda x} \int_0^{x+z} \lambda e^{-\lambda y} \, dy \, dx + \int_z^{+\infty} \lambda e^{-\lambda x} \int_{x-z}^{x+z} \lambda e^{-\lambda y} \, dy \, dx = \\ &= \int_0^z \lambda e^{-\lambda x} \left[-e^{-\lambda y} \right]_0^{x+z} \, dx + \int_z^{+\infty} \lambda e^{-\lambda x} \left[-e^{-\lambda y} \right]_{x-z}^{x+z} \, dx = \\ &= \int_0^z \lambda e^{-\lambda x} \left[1 - e^{-\lambda(x+z)} \right] \, dx + \int_z^{+\infty} \lambda e^{-\lambda x} \left[e^{-\lambda(x-z)} - e^{-\lambda(x+z)} \right] \, dx = \\ &= \int_0^z \lambda (e^{-\lambda x} - e^{-\lambda(2x+z)}) \, dx + \int_z^{+\infty} \lambda (e^{-\lambda(2x-z)} - e^{-\lambda(2x+z)}) \, dx = \\ &= \left[-e^{-\lambda x} + \frac{1}{2} e^{-\lambda(2x+z)} \right]_0^z + \frac{1}{2} \left[-e^{-\lambda(2x-z)} + e^{-\lambda(2x+z)} \right]_z^{+\infty} = \\ &= -e^{-\lambda z} + \frac{1}{2} e^{-\lambda(3z)} + 1 - \frac{1}{2} e^{-\lambda z} + \frac{1}{2} \left[0 + e^{-\lambda(z)} - e^{-\lambda(3z)} \right] = 1 - e^{-\lambda z} \end{split}$$

Por tanto, la distribución de probabilidad de |X - Y| es:

$$P[|X - Y| \le z] = \begin{cases} 0 & z \le 0, \\ 1 - e^{-\lambda z} & z > 0. \end{cases}$$

2. $máx(X, Y^3)$,

Buscamos calcular $P[\max(X, Y^3) \leqslant z]$ para todo $z \in \mathbb{R}$.

$$P[\max(X,Y^3)\leqslant z]=P[X\leqslant z,Y^3\leqslant z]=P[X\leqslant z,Y\leqslant \sqrt[3]{z}]$$

Para $z \leq 0$, como $X, Y \geq 0$, tenemos que $P[\max(X, Y^3) \leq z] = 0$. Por tanto, sea z > 0.

$$\begin{split} P[\max(X, Y^3) \leqslant z] &= P[X \leqslant z, Y \leqslant \sqrt[3]{z}] = \int_0^z \int_0^{\sqrt[3]{z}} f_{(X,Y)}(x, y) \, dy \, dx = \\ &= \int_0^z \int_0^{\sqrt[3]{z}} \lambda^2 e^{-\lambda(x+y)} \, dy \, dx = \int_0^z \lambda e^{-\lambda x} \, dx \int_0^{\sqrt[3]{z}} \lambda e^{-\lambda y} \, dy = \\ &= \left[-e^{-\lambda x} \right]_0^z \left[-e^{-\lambda y} \right]_0^{\sqrt[3]{z}} = (1 - e^{-\lambda z})(1 - e^{-\lambda \sqrt[3]{z}}) \end{split}$$

Por tanto, la distribución de probabilidad de máx (X, Y^3) es:

$$P[\max(X, Y^3) \le z] = \begin{cases} 0 & z \le 0, \\ (1 - e^{-\lambda z})(1 - e^{-\lambda \sqrt[3]{z}}) & z > 0. \end{cases}$$

3. $\min(X^5, Y)$.

Buscamos calcular $P[\min(X^5, Y) \leq z]$ para todo $z \in \mathbb{R}$.

$$\begin{split} P[\min(X^5,Y) \leqslant z] &= 1 - P[\min(X^5,Y) > z] = 1 - P[X^5 > z, Y > z] = \\ &= 1 - P[X > \sqrt[5]{z}, Y > z] \end{split}$$

Para $z \leq 0$, como $X, Y \geq 0$, tenemos que $P[\min(X^5, Y) \leq z] = 0$. Por tanto, sea z > 0.

$$P[\min(X^{5}, Y) \leqslant z] = 1 - P[X > \sqrt[5]{z}, Y > z] = 1 - \int_{\sqrt[5]{z}}^{+\infty} \int_{z}^{+\infty} f_{(X,Y)}(x, y) \, dy \, dx =$$

$$= 1 - \int_{\sqrt[5]{z}}^{+\infty} \int_{z}^{+\infty} \lambda^{2} e^{-\lambda(x+y)} \, dy \, dx = 1 - \int_{\sqrt[5]{z}}^{+\infty} \lambda e^{-\lambda x} \, dx \int_{z}^{+\infty} \lambda e^{-\lambda y} \, dy =$$

$$= 1 - \left[-e^{-\lambda x} \right]_{\sqrt[5]{z}}^{+\infty} \left[-e^{-\lambda y} \right]_{z}^{+\infty} = 1 - \left[0 - e^{-\lambda \sqrt[5]{z}} \right] \left[0 - e^{-\lambda z} \right] =$$

$$= 1 - (e^{-\lambda \sqrt[5]{z}})(e^{-\lambda z}) = 1 - \exp(-\lambda(\sqrt[5]{z} + z))$$

Por tanto, la distribución de probabilidad de mín (X^5, Y) es:

$$P[\min(X^5, Y) \leqslant z] = \begin{cases} 0 & z \leqslant 0, \\ 1 - \exp(-\lambda(\sqrt[5]{z} + z)) & z > 0. \end{cases}$$

Ejercicio 1.1.19. Sea (X,Y) un vector aleatorio discreto con función masa de probabilidad

$$P[X = x, Y = y] = \frac{k}{2^{x+y}}, \qquad x, y \in \mathbb{N}$$

Observación. Consideramos $\mathbb{N} = \mathbb{N} \cup \{0\}$.

1. Calcular el valor de k para que la ecuación anterior defina la función masa de probabilidad de un variable aleatoria bidimensional discreta.

Tenemos que la suma de una serie geométrica de razón $r \in]-1,1[$ es:

$$\sum_{n=0}^{+\infty} r^n = \frac{1}{1-r}$$

Para que la función masa de probabilidad sea válida, tenemos que:

$$1 = \sum_{x,y=0}^{+\infty} P[X = x, Y = y] = \sum_{x,y=0}^{+\infty} \frac{k}{2^{x+y}} = k \sum_{x=0}^{+\infty} \frac{1}{2^x} \sum_{y=0}^{+\infty} \frac{1}{2^y} = k \cdot \frac{1}{1 - \frac{1}{2}} \cdot \frac{1}{1 - \frac{1}{2}} = k \cdot 2 \cdot 2 = 4k \Longrightarrow k = \frac{1}{4}$$

2. Calcular las funciones masa de probabilidad marginales y condicionadas. La función masa de probabilidad marginal de X es:

$$P[X = x] = \sum_{y=0}^{+\infty} P[X = x, Y = y] = \sum_{y=0}^{+\infty} \frac{1}{4 \cdot 2^{x+y}} = \frac{1}{4} \sum_{y=0}^{+\infty} \frac{1}{2^{x+y}} = \frac{1}{4} \sum_{y=0}^{+\infty} \frac{1}{2^{x+y}} = \frac{1}{4} \sum_{y=0}^{+\infty} \frac{1}{2^{x}} \frac{1}{2^{y}} = \frac{1}{4} \frac{1}{2^{x}} \frac{1}{1 - \frac{1}{2}} = \frac{1}{4} \frac{1}{2^{x}} \frac{1}{\frac{1}{2}} = \frac{1}{2^{x+1}}$$

De forma análoga, la función masa de probabilidad marginal de Y es:

$$P[Y = y] = \frac{1}{2^{y+1}}$$

La función masa de probabilidad condicionada de X dado $Y=y^*\in\mathbb{N}$ es:

$$P[X = x \mid Y = y^*] = \frac{P[X = x, Y = y^*]}{P[Y = y^*]} = \frac{\frac{1}{4 \cdot 2^{x+y^*}}}{\frac{1}{2^{y^*+1}}} = \frac{1}{4 \cdot 2^{x+y^*}} \cdot \frac{2^{y^*+1}}{1} = \frac{2^{y^*+1}}{1} = \frac{2^{y^*+1}}{2^{x+y^*}} = 2^{-(x+1)} \quad \forall x \in \mathbb{N}$$

La función masa de probabilidad condicionada de Y dado $X=x^*\in\mathbb{N}$ es análoga, y es:

$$P[Y = y \mid X = x^*] = 2^{-(y+1)} \quad \forall y \in \mathbb{N}$$

3. Calcular la función masa de probabilidad de X + Y.

Notamos Z = X + Y. Definimos las transformación:

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(X,Y) \longmapsto Z = X + Y$

Como Z=X+Y, y $X,Y\in\mathbb{N},$ tenemos que $Z\in\mathbb{N}.$ Busquemos la función masa de probabilidad de Z:

$$P[Z = z] = \sum_{\substack{x,y \in \mathbb{N} \\ x+y=z}} P[X = x, Y = y] = \sum_{\substack{x,y \in \mathbb{N} \\ x+y=z}} \frac{1}{4 \cdot 2^{x+y}} = \sum_{x=0}^{z} \frac{1}{4 \cdot 2^{x+z-x}} = \sum_{x=0}^{z} \frac{1}{4 \cdot 2^{z}} = \sum_{x=0}^{z} \frac{1}{4$$

4. Calcular la función masa de probabilidad de X - Y.

Notamos T = X - Y. Definimos las transformación:

$$\begin{array}{cccc} h: & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ & (X,Y) & \longmapsto & T = X - Y \end{array}$$

Como T=X-Y, y $X,Y\in\mathbb{N},$ tenemos que $T\in\mathbb{Z}.$ Busquemos la función masa de probabilidad de T:

$$P[T=t] = \sum_{\substack{x,y \in \mathbb{N} \\ x-y=t}} P[X=x, Y=y] = \sum_{\substack{x,y \in \mathbb{N} \\ x-y=t}} \frac{1}{4 \cdot 2^{x+y}} = \sum_{x=0}^{+\infty} \frac{1}{4 \cdot 2^{x+x-t}} = \frac{1}{4} \sum_{x=0}^{+\infty} \frac{1}{2^{2x-t}} = \frac{1}{4 \cdot 2^{x-t}} = \frac{1}{4 \cdot 2^{-t}} \sum_{x=0}^{+\infty} \frac{1}{4^x} = \frac{1}{4 \cdot 2^{-t}} \frac{1}{1 - \frac{1}{4}} = \frac{1}{4 \cdot 2^{-t}} \frac{1}{\frac{3}{4}} = \frac{1}{3 \cdot 2^{-t}}$$

Ejercicio 1.1.20. El vector aleatorio (X,Y) se distribuye según una uniforme sobre el recinto

$$R_1 = \{(x, y); 0 < x < y < 1\}.$$

Calcular:

- 1. Su función generatriz de momentos conjunta.
- 2. Las distribuciones generatrices de momentos marginales.
- 3. La covarianza de X e Y.