2. ХАРАКТЕРИСТИКА ИСХОДНОГО СЫРЬЯ, МАТЕРИАЛОВ, РЕАГЕНТОВ, ИЗГОТАВЛИВАЕМОЙ ПРОДУКЦИИ

2.1 Продукция промысла

Продукцией Газопромыслового управления является пластовая газожидкостная смесь, добытая из продуктивного пласта.

Пластовая смесь (Технологический проект разработки Астраханского ГКМ) характеризуется как высокосернистая, со сложным составом.

Состав пластового газа приведён в таблице 2.1:

Таблица 2.1

№ п/п	Наименование показателей	Содержание
1	2	3
1.	Пластовая смесь (газ сепарации и нестабильный конденсат), в т.ч.	
1.1.	Компонентный состав	
1.1.1.	Гелий, Не, % мольн.	0,00 - 0,02
1.1.2.	Водород, Н _{2,} % мольн.	0,00 - 0,01
1.1.3.	Азот, N_2 , % мольн.	0,18 - 1,50
1.1.4.	Сероводород, H ₂ S, % мольн.	19,00 -33,00
1.1.5.	Углерода диоксид, СО2, % мольн.	12,00 - 16,00
1.1.6.	Углерода оксид, СО, % мольн.	0,07
1.1.7.	Метан (СН ₄), % мольн.	44,00 - 61,00
1.1.8.	Этан (C_2H_6), % мольн.	1,8 - 2,8
1.1.9.	Пропан (C_3H_8), % мольн.	0,8 - 1,50
1.1.10.	Бутан (i-C ₄ H ₁₀), % мольн.	0,15 - 0,6
1.1.11.	Бутан (n-C ₄ H ₁₀), % мольн.	0,5 - 0,9
1.1.12.	Пентан (i-C ₅ H ₁₂), % мольн.	0,2-0,45
1.1.13.	Пентан (n-C ₅ H ₁₂), % мольн.	0,20 - 0,60
1.1.14.	Гексаны ($\Sigma C_6 H_{14}$), % мольн.	0,3 - 1,0
1.1.15.	Гептаны ($\Sigma C_7 H_{16}$), % мольн.	С _{7+выше} 2,0 - 3,3
1.1.16.	Октан (C_8H_{18}), % мольн.	0,55-1,2
1.1.17.	Hонан (C ₉ H ₂₀), % мольн.	0,15-0,4
1.1.18.	Декан + высшие, % мольн.	2-3,2
1.1.19.	Сероорганические соединения, в т.ч.	
1.1.19.1.	в пересчете на серу, г/нм ³	10
1.1.19.2.	меркаптаны, RSH, г/м ³ в т.ч.	2,2-3,0
1.1.19.3.	метил-меркаптан, CH ₃ SH, % мольн.	0,0167
1.1.19.4.	этил-меркаптан, C ₂ H ₅ SH, % мольн.	0,0284
1.1.19.5.	і-пропил/меркаптан, С ₃ Н ₇ SH, % мольн.	0,0285
1.1.19.6.	n-пропил/меркаптан n-C ₄ H ₉ SH, % мольн.	0,0075

Продолжение таблицы 2.1		
№ п/п	Наименование показателей	Содержание
1	2	3
1.1.19.7.	і-бутил/меркаптан і-С ₄ Н ₉ SH, % мольн.	0,0252
1.1.19.8.	n-бутил/меркаптан n-C ₄ H ₉ SH, % мольн.	0,0194
1.1.19.9.	меркаптаны (C_{5+})SH, г/ст.м ³	0,4
1.1.20	углерода дисульфид, CS_2 , г/м 3	до 10
1.1.21.	углерода сероокись, COS	около 1 г/м ³
1	2	3
1.1.22.	сера остаточная / элементарная расч., S, г/нм ³	до 3,98 / 2
1.1.23.	сульфиды и дисульфиды, мг/дм ³	6,4
1.1.24.	Потенциальное содержание $C_{5+выше,}$ г/м 3 газа сепарации / пластового газа (стаб.)	210 - 290 / 190 - 260
1.1.25	Потенциальное содержание $C_{5+выше,}$ г/м ³ пластового газа (нестаб.)	350
1.2.	Молекулярная масса	30,1 - 31,2
1.3.	Плотность пластового газа, кг/м ³	1,25 - 1,27
1.3.1.	Плотность пластового газа по воздуху	0,97 - 0,98
1.4.	Метанол, г/нм ³	до 1,0
1.5.	Механические примеси, г/нм ³	до 0,1
1.6.	Утяжеленный буровой раствор удельного веса 2,2 г/см 3 , г/нм 3	до 0,1
1.7.	Содержание ингибитора коррозии	
1.7.1.	в углеводородной фазе, мг/дм ³	от 25 до 300
1.8.	Соляная кислота, 30% масс., г/нм ³	до 1,0
1.9.	Стабильный конденсат	
1.9.1.	Плотность дегазированного конденсата, кг/м ³	790-805
1.9.2.	Молекулярная масса дегазированного конденсата, г/моль	138 - 156
1.9.3.	Фракционный состав конденсата	
	фр. 150-160 % мольн./% вес.	0,24 / 0,57
	фр. 160-170 % мольн./% вес.	0,25 / 0,68
	фр. 170-180 % мольн./% вес.	0,2 / 0,75
	фр. 180-190 % мольн./% вес.	0,16 / 0,86
	фр. 190-200 % мольн./% вес.	0,1 / 0,93
	фр. 200-210 % мольн./% вес.	0,09 / 1,11

№ п/п	Наименование показателей	
		Содержание
1	2	3
	фр. 210-220 % мольн./% вес.	0,09 / 0,98
	фр. 220-230 % мольн./% вес.	0,09 / 1,11
	фр. 230-240 % мольн./% вес.	0,1 / 1,14
	фр. 240-250 % мольн./% вес.	0,07 / 1,55
	фр. 250-300 % мольн./% вес.	0,42 / 2,0
	фр. 300-350 % мольн./% вес.	0,28 / 3,3
	фр. 350-450 % мольн./% вес.	0,31 / 3,3
	фр. 450 и выше % мольн./% вес.	0,2 / 3,3
1.9.4.	Содержание смол,% масс.	1,5
1.9.5.	Содержание асфальтенов,% масс.	0,02-0,19
1.9.6.	Ароматические углеводороды, % масс.	до 34,2
1.9.7.	Сера общая, % масс.	1,1 -1,5
1	2	3
1.9.8.1.	Сера меркаптановая, % масс.	0,1 - 0,2
1.9.8.2.	Сера сероводородная, % масс.	0,002 - 0,07
1.9.9.	Твердые парафины, % масс.	1,1 - 3,3
1.9.10.	Молекулярный вес C_{10+} , кг/мол.	215
2.	Попутно добываемая вода, г/ст.м3	
2.1.	Конденсационная вода	
2.1.1.	Минерализация, г/дм ³	до 10
2.1.2.	Плотность, г/см ³	не более 1,005
2.2.	Пластовая минерализованная вода	
2.2.1.	минерализация, г/дм ³	до 110
2.2.2.	Плотность, г/см ³	1,05 -1,14
2.3.	Ионный состав:	
	натрий- ион, г/дм ³	до 34
	калий- ион, г/дм ³	до 0,8
	кальций- ион, г/дм ³	до 8,5
	магний- ион, г/дм ³	до 1,1
	хлор- ион, г/дм ³	до 71
	сульфат-ион, г/дм ³	до 2,4
	щелочность I / II ступени, г-экв/дм ³	не нормируется
	гидрокабонат- ион, г/дм ³	до 4,3
2.4.	Микроэлементы:	
	бор, мг/дм ³	414

Продолжение таблицы 2.1		
№ п/п	Наименование показателей	Содержание
1	2	3
	аммоний, мг/дм ³	до 200
	йод, мг/дм ³	до 28
	бром, м Γ /дм 3	до 99
	сероводород+гидросульфиды, г/дм ³	1,254
2.5.	Показатель рН пластовых вод	3,0 - 8,5
2.6.	Органические кислоты:	
2.6.1.	уксусная, мг/дм ³	150
2.6.2.	щавелевая кислота, мг/дм ³	133,5
2.6.3.	масляная+пропионовая, мг/дм ³	44
2.7.	Содержание воды в пластовой смеси, г/нм ³	до 50,0

Пластовая система АГКМ находится в однофазном газообразном состоянии и недонасыщена тяжелыми углеводородами.

Среднее давление начала конденсации пластового газа АГКМ составляет 40 МПа.

Давление максимальной конденсации 10,0 МПа.

С газом может выноситься до 50 г/нм3 пластовой воды, которая по своему составу относится к хлоркальциевому типу с общей минерализацией до 120 г/дм3, плотностью до 1,14 г/см3 и рН $3 \div 3,5$.

Кроме названых выше компонентов, в пластовой смеси могут содержаться (Технологический проект разработки Астраханского ГКМ):

Таблица 2.2

Механические примеси	до 0,1 г/нм ³
Глинистый раствор (периодически)	до 0,1 г/нм ³
Соляная кислота	до 1,0 г/нм ³
(концентрация 30% вес. Периодически.)	
Метанол	до 1,0 г/нм ³
Ингибитор коррозии в конденсате ¹	от 25 до 300 мг/дм ³

Пластовый газ характеризуется высокой температурой образования гидратов. Условия образования гидратов (Проект «Подключение дополнительных скважин к существующим мощностям 1 и 2 очередей Астраханского ГКМ (этап 2») приведены в таблице 2.3:

Таблица 2.3

Давление, МПа	Температура гидратообразования, ⁰ С
30,0	31,0
20,0	30,0
15,0	29,0
10,0	28,0
9,0	27,8
8,0	27,4

 1 Данные приведены для ингибитора "ДОДИГЕН 4482-1". При использовании другого ингибитора концентрации могут быть иными.

Продолжение таблицы 2.3	
Давление, МПа	Температура гидратообразования, 0 С
7,0	27,0
6,0	26,5

2.2 Химические реагенты

В технологическом процессе добычи, сбора и транспорта ГЖС используются:

- ингибитор коррозии;
- диэтиленгликоль;
- метанол;
- дизельное топливо;
- раствор ингибитора коррозии;
- соляная кислота;
- PB-3Π-1;
- RX-380;
- BAPΠ/WARP;
- Поглотитель сероводорода ПС;
- ВНПП-ЭМ.
- HW-FLUID

2.2.1 Ингибитор коррозии

Для защиты промыслового оборудования и коммуникаций от агрессивной пластовой смеси, на момент написания регламента, используется ингибитор коррозии DODIGEN 4482-1 conc. Производство фирмы Clariant (ТУ 2458-003-78928795-2013)

Могут использоваться и другие ингибиторы коррозии, прошедшие испытания на промысле и совместимые с технологией АГПЗ (основные требования к ингибиторам коррозии см. раздел 7, таблица 7.1, строчка 6).

<u>DODIGEN 4482 - 1</u> — продукт конденсации полиаминов и алкилкарбоновых кислот в растворе изобутанола. В его состав входит антивспениватель.

Физико-химические свойства DODIGEN 4482- 1 conc.:

Таблииа 2.4

Цвет	темно - коричневый
Температура застывания	<-35 °C
Температура начала кипения	108 °C
Температура вспышки	28 °C (закрытый тигель)
Температура самовоспламенения	430 °C
Плотность при 20 °C	0,910-0,940 г/см ³
Вязкость при 20 °C	$250-450 \text{ mm}^2/\text{c}$
Растворимость в:	
воде	диспергируется
метаноле	растворим
углеводородах	растворим в любой пропо

2.2.2 Диэтиленгликоль

Диэтиленгликоль (ГОСТ 10136-77) применяется как теплоноситель в устьевых подогревателях и нагревателях на площадках УППГ.

Физико-химические свойства ДЭГ:

Таблица 2.5

Внешний вид	бесцветная или желтоватая прозрачная жидкость без ме- ханических примесей
Массовая доля диэтиленгликоля	99,5%
Относительная молекулярная масса	106,12
Плотность при 20 °C	1,116-1,117г/см ³
Вязкость при 20° C	35,7 сПз
Температура кипения	241-244° C
Температура начала разложения	164,5° C
Температура самовоспламенения	345° C
Предел воспламенения паров	1,7 ÷ 10,6% об.
Температура замерзания	-8 °C

2.2.3 Метанол

Метанол (ГОСТ 2222-95) применяется для предупреждения образования гидратов в пусковой период и при проведении некоторых видов интенсификации скважин.

Физико-химические свойства метанола:

Таблица 2.6

Запах	спиртовый
Цвет	Бесцветная прозрачная жид-
	кость
Плотность при 20° С	$0.791 - 0.792 \text{г/cm}^3$
Вязкость при 20° С	0,85 Па∙с
Температура вспышки	6 °C
Температура самовоспламенения	440 °C
Температура кипения	64,0 – 65,5 °C
Температура застывания	−97,7 °C
Предел взрываемости	6,98 ÷ 35,5% об.
Растворимость в воде	во всех пропорциях
Массовая доля воды	не более 0,05 ÷ 0,08%
Массовая доля метанола	до 99,95%

2.2.4 Дизельное топливо

Дизельное топливо (ГОСТ Р 52368-2005 (ЕН590:2009)) используется в качестве химического реагента для приготовления раствора ингибитора коррозии, при интенсификации скважин, внутритрубной дефектоскопии технологических трубопроводов, ликвидации межколонных проявлений и ликвидации водопритока в скважины.

Физико-химические свойства дизельного топлива:

Таблица 2.7

Фракционный состав:	
при температуре 250°C,%(по объему), менее	65
при температуре 350°C,%(по объему), не менее	85
95%(по объему) перегоняется при температуре, °С,	
не выше	360
Температура вспышки, °С,	37

Продолжение таблицы 2.7	
Содержание серы, мг/кг, не более	350
Содержание воды, мг/кг, не более	200
Вязкость кинематическая при 40 °C, мм ² /с	2,00 – 4,50
Плотность при 15 °С кг/м ³	820 - 845

2.2.5 Соляная кислота

Кислота соляная ингибированная для нефтяной и газовой промышленности (ТУ 2122-066-53501222-2007, ТУ 2122-074-53501222-2009) применяется для интенсификации притока ГЖС при освоении скважин после бурения, капитального ремонта и в процессе эксплуатации.

Физико-химические свойства соляной кислоты:

Таблица 2.8

Внешний вид	жидкость от светло-желтого
	до коричневого цвета
Содержание:	
Хлористого водорода, HCl, в пределах	20-23%
Фтористый водород, % не более	0,5
Железо, % не более	0,03
Плотность	$1,10-1,12 \text{ r/cm}^3$
Скорость растворения стали Ст3 при 20 °C, г/м ² ч, не более	
	0,2

2.2.6 Реагент РВ-3П-1

Реагент «РВ-3П-1» используется в нефтегазодобывающей промышленности при изоляции водопритока к скважинам, особенно при обработке карбонатных пластов.

Реагент «РВ-3П-1» должен соответствовать требованиям настоящих технических условий, утвержденным в установленном порядке и указанным в таблице 2.9 (ТУ 2458-001-14702906-08).

Таблица 2.9

Наименование показателя	Значение	Метод испытания
Плотность при 20°C, кг/м ³	1150-1300	По ГОСТ 18995.1-73
Температура замерзания, °С, не выше	-30	По ГОСТ 18995.5-73
Водородный показатель, (рН)	2,0-3,5	По ГОСТ 22567.5-77
		п.п.5.2. ТУ

2.2.7 Реагент RX-380

Реагент «RX-380» используют для стабилизации водонефтяных эмульсий, эмульсий промывочных жидкостей, в составе различных эмульсий и суспензий для обработки скважин, а также в качестве пеногасителя в нефтяной и газовой промышленности.

По своим физико-химическим показателям реагент «RX-380» должен соответствовать требованиям и нормам, указанным в таблице 2.10 (ТУ 2458-001-38518981-2012).

Таблица 2.10

Наименование показателей	Норма	Методы анализа	
Внешний вид	Порошок от белого до	Визуально	
	розового цвета		
Водородный показатель (рН) суспензии	3,0-11,0	По п. 5.3 ТУ	
Гидрофобность, %	5,0 – 99,9	По п. 5.4 ТУ	
Насыпная плотность*, г/дм ³	20-90	По п. 5.5 ТУ	
*насыпная плотность свежеизготовленного материала			

2.2.8 Технологическая жидкость BAPП/WARP

ВАРП – новое поколение утяжеленных растворов на углеводородной основе, созданных с использованием нано технологий, предназначенных для бурения и глушения скважин. ВАРП представляет собой дисперсию частиц барита субмикронного размера в минеральном масле. Согласно санитарно-эпидемиологическому заключению № 77.01.03.249.П.046020.06.07 от 22.06.2007, выданному Управлением Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по городу Москве, ВАРП относится к 4 классу опасности (мало опасное вещество). ВАРП — жидкость от черного/серого до коричневого/красного цвета с запахом углеводородов (ТУ 0258-009-57518521-03)

Физико-химические свойства технологической жидкости WARP:

Таблица 2.11

Содержание:	
Сульфат бария	60-90(масс.%);
дистилляты нефти	10-25 (масс.%);
эфир дипропиленгликоль-монометила	до 1 (масс.%);
кальция гидроокись	до 1 (масс.%);
Плотность	2,0 ÷ 2,4 г/см3

2.2.9 Поглотитель сероводорода ПС

Поглотитель сероводорода ПС выпускается ЗАО «Полиэкс» и должен соответствовать требованиям ТУ 2458-049-53501222-2005. Реагент представляет собой смесь гетероциклических карбонильных и азотсодержащих соединений с добавлением ПАВ. Поглотитель сероводорода ПС кроме нейтрализующей по отношению к сероводороду способности обладает бактерицидными свойствами. ПС относится к 3 классу опасности.

По физико-химическим показателям реагент должен соответствовать требованиям и нормам, приведенным в таблице 2.12.

Таблица 2.12

Памиломоромия моморомо ид	Значение для марок		марок	Managara	
Наименование показателя	ПС-1		ПС-2	Методы испытаний	
Внешний вид	жидкость	OT	светло-		
	желтого	до	темно-	по п.4.2 ТУ	
	коричневого цвета с ха-		ета с ха-	110 11.4.2 1 y	
	рактерным	запах	OM		

Продолжение таблицы 2.12				
Помисиования мамадата ид	Значение для марок		Mamara	
Наименование показателя	ПС-1	ПС-2	Методы испытаний	
Плотность при 20°C, в пределах	1,15-1,17	0,95-1,00	по ГОСТ 18995.1	
Поглотительная способность по отношению к сероводороду, г/см3, не менее	0,33	0,06	по п4.3 ТУ (определяется по требованию заказчика)	

2.2.10 Реагент ВНПП-ЭМ

Реагент ВНПП-ЭМ, марок А и Б, предназначен для приготовления гидрофобных эмульсий, применяющихся для обработки скважин с целью повышения эффективности эксплуатации газовых и газоконденсатных месторождений. Реагент марки А отличается от реагента марки Б содержанием воды и жирных кислот. Приготовленные гидрофобные эмульсии из ВНПП-ЭМ марок А и Б могут быть в равной степени эффективно использованы для обработки скважин. Реагент ВНПП-ЭМ готовится на основе жирных кислот с добавлением ингибитора коррозии (ТУ 0258-009-57518521-03).

По физико-химическим показателям реагент должен соответствовать требованиям и нормам, приведенным в таблице 2.13.

Таблица 2.13

Наименование	Норм	Метод	
показателя	Марка А Марка Б		испытания
Внешний вид	Однородная густая вязкая масса от светло-желтого до темно-коричневого цвета.	Однородная вязкая жидкость от светло-желтого до темно-коричневого цвета.	ГОСТ 6243
Температура капле- падения, °С, не выше	70	-	ГОСТ 6793
Высокая эмульгирующая активность и стабилизирующая способность	Образовывание соляно- кислотных эмульсий при содержании в них эмульга- тора от 1,5 мас. % (ко всей массе жидкости).	Образовывание соляно - кислотных эмульсий при содержании в них эмульгатора от 1,5 мас. % (ко всей массе жидкости).	П 6.2. ТУ

2.2.11 Компонент бурового раствора HW-FLUID

Компонент применяют в качестве премикса для приготовления бурового раствора и для увеличения плотности растворов на углеводородной основе для бурения и заканчивания скважин в нефтегазодобывающей отрасли промышленности.

Пример обозначения компонента при заказе или при указании в документации: Компонент бурового раствора HW-FLUID, ТУ 2458-013-81840845-2014.

Компонент должен соответствовать требованиям и нормам, указанным в таблице 2.14.

Таблица 2.14

№	Наименование показателя	Норма	Метод испытания
1	Внешний вид	Вязкая жидкость темного цвета с	П. 5.1. наст. ТУ
		характерным запахом углеводо-	
		родов	
2	Плотность, $\kappa \Gamma / M^3$	2100-2300	П. 5.2. наст. ТУ
3	Пластическая вязкость по	22-40	П. 5.3. наст. ТУ
	ОГТЕ900 при 50 0С, сП		
4	Динамическое напряжение	3-16	П. 5.3. наст. ТУ
	сдвига, фунт/ 100 фт ²		

2.3 Горюче-смазочные материалы

Для смазки деталей узлов, насосно-компрессорного оборудования и запорнорегулирующей арматуры промыслового оборудования и в гидравлических системах применяют следующие горюче-смазочные материалы:

2.3.1 Гидравлическое масло ВМГЗ

Всесезонное гидравлическое масло применяется в гидравлических системах станций управления подземным клапаном-отсекателем и в гидропневматических приводах BIFFI, RASSPE шаровых кранов "Cameron"(ГОСТ 17479.3-85).

Масло должно соответствовать требованиям и нормам, указанным в таблице 2.15. *Таблица 2.15*

Наименование показателя	Норма
Плотность при 20° С	Не более 0,865 г/см ³
Вязкость кинематическая при +50 °C	Не менее $10,0 \text{ мм}^2/\text{c}$
при -50 °C	Не более 1600 мм ² /с
Температура застывания	- 55 °C
Температура вспышки, определяемая в открытом тигле °C	Не ниже 135 °C
Индекс вязкости	Не менее 130

2.3.2 Macло ISO VG 220, VG 100 (SAE 75W90, SAE 80W90)

Масло используется в дозировочных плунжерных насосах подачи ингибитора коррозии. Данное масло применяют для смазки червячной пары в редукторах насосов "DKM Clextral KL 40pp12", "DKM Clextral KL 40pp8", "DKM Clextral GD-60", "Bran & Lubbe NP-31", "Bran & Lubbe NP-34" (ГОСТ 23652-79 п.2.2).

Масло должно соответствовать требованиям и нормам, указанным в таблице 2.16. *Таблица 2.16*

Наименование показателя	Норма
Плотность при 15° С	Не более 0,905 г/см ³
Вязкость кинематическая при +50° C	He menee $54,5 \text{ mm}^2/\text{c}$
Температура застывания	- 48 °C
Температура вспышки, определяемая в открытом тигле ° С	Не ниже 219 °C

2.3.3 Масло SAE 10W30

Масло используется в плунжерных насосах факельного сепаратора. Данное масло применяют для смазки коленчатого вала и шатунов в картере насосов "Wortington KCA 1 1/2"х3", "THYSSEN RDP 403/650-36". Масло SAE 10W30 также используется как промывочное масло картера плунжерных насосов (ГОСТ Р 51634-2000 п.3.1).

Масло должно соответствовать требованиям и нормам, указанным в таблице 2.17.

Таблица 2.17

Технические характеристики Стандарт SAE 10W-30			
Наименование показателя	Норма		
Вязкость при 100 °C, мм ² /с	9,3-12,5		
Индекс вязкости, min	120		
Температура вспышки в открытом тигле °C, min	205		
Температура застывания °С, тах	-35		
Щелочное число, мг КОН/1г масла,min	5,5		
Зольность сульфатная, %, тах	1,3		
Вязкость при 100 °C, мм ² /с	12,5-16,3		

2.3.4 Macло ISO VG 46, 68 (SAE 10W30)

Масло используется в центробежных насосах УПИКа. Данное масло применяют для смазки подшипников насосов "Sulzer CZ 32-160", "Sulzer CZ 40-200" (Γ OCT P 51634-2000 п.3.1).

Масло должно соответствовать требованиям и нормам, указанным в таблице 2.18. *Таблица 2.18*

Наименование показателя	Метод	Норма	Макс.
Плотность, 15 °C, кг/л	ASTM D1298	0.842	0.846
Вязкость кинематическая, 40 °C	ISO 3104	46	68
Вязкость кинематическая,100 °C	ISO 3104	8.1	10.3
Индекс вязкости	ISO 2909	136	138
Температура вспышки, ⁰ C	ISO 2592	230	232
Температура застывания, ⁰ С	ISO 3016	-59	-59

2.3.5 Смазка Литол - 24

Является пластичной консистентной смазкой. Применяется для смазки подшипников шиберных задвижек 2 1/16", 3 1/16", 4 1/16" 10000 рsi фонтанной арматуры всех фирм, эксплуатируемых на АГКМ, а также шиберных задвижек 4" 2500 RTJ фирм «FMC Technologies», «Malbranque», редукторов шаровых кранов, различных резьбовых соединений и узлов (ГОСТ 21150-87).

Смазка должна соответствовать требованиям и нормам, указанным в таблице 2.19. Таблица 2.19

Наименование показателя	Норма
Внешний вид	Однородная мазь от св. жел-
	того до коричнего цвета
Температура каплепадения	Не ниже 185 °C
Предел прочности на сдвиг при 20 °C, Па	630
при 185 °C	231
Пенетрация при 25 °C, с перемеш, мм -1	220-250
Испаряемость при 120 °C	Не более 6%

Продолжение таблицы 2.19	
Наименование показателя	Норма
Коллоидальная стабильность, %	Не более 12%
Коррозионное воздействие на металлы	Выдерживает
Индекс вязкости	Не менее 130

2.3.6 Смазка ТОМФЛОН НГ 220

Является пластичной консистентной смазкой для смазки арматуры. ТОМФЛОН НГ 220 ТУ 0254-030-12435252-04 применяется для закачки в полость шиберных задвижек 2 1/16", 3 1/16", 4 1/16" 10000 рsi фонтанной арматуры всех фирм, эксплуатируемых на АГКМ, а также шиберных задвижек 4" 2500 RTJ фирм «FMC Technologies», «Malbranque» (ТУ 0254-030-76643964-05).

Смазка должна соответствовать требованиям и нормам, указанным в таблице 2.20. Таблица 2.20

Наименование показателя	Норма
Внешний вид	Однородная мазь от белого до
	светло коричневого цвета
Температура каплепадения	Не ниже 250 °C
Предел прочности на сдвиг при 20 °C, Па	910
при 185 °C	190
Пенетрация при 25 °C, с перемеш, мм -1	235
Испаряемость при 200 °C	Не более 5%
Коллоидальная стабильность, %	Не более 12%
Коррозионное воздействие на металлы	Выдерживает
Вязкость, Па*с (П)	
при – 30 °C и среднем градиенте скорости деформации	
10 c ⁻¹ , не более	2180
при 0 °С и среднем градиенте скорости деформации	
10 c ⁻¹ , не более	230

2.3.7 Паста 131-435 КГУ тип 8.

Паста используется для технического обслуживания и устранения негерметичностей фонтанной и другой арматуры, работающей под высоким давлением до 63,0 МПа, (ТУ 2257-001-60565518-2009).

Паста должна соответствовать требованиям и нормам, указанным в таблице 2.21. *Таблица 2.21*

Наименование показателя	Норма
Рабочая температура, °С	- 60 - + 200
Пенетрация при 20 °C	140 - 265
Коллоидная стабильность, %, не более	3
Массовая доля воды, %, не более	0,1