Statistical Machine Learning

Instructor: Jie Shen

Dept. of Computer Science

February 14, 2020

Gradient Descent

Consider minimization without constraints:

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}), \ \boldsymbol{w} \in \mathbb{R}^d$$

Gradient Descent:

- 1. Initialize \mathbf{w}^0 arbitrarily, e.g. $\mathbf{w}^0 = \mathbf{0}$
- 2. For t = 1, 2, ...

$$\mathbf{w}^t = \mathbf{w}^{t-1} - \eta_t \nabla F(\mathbf{w}^{t-1}) \tag{1}$$

Goal:

- ullet $oldsymbol{w}^t
 ightarrow oldsymbol{w}^*$, where $oldsymbol{w}^* = rg \min F(oldsymbol{w})$
- in few iterations (cheap computation)

Informal Analysis

Why GD "decreases" objective value (under proper conditions)?

Smoothness

Smooth: F(w) is smooth if for any $w_1, w_2 \in \mathbb{R}^d$

$$\left\|\nabla F(\boldsymbol{w}_{2}) - \nabla F(\boldsymbol{w}_{1})\right\|_{2} \leq \frac{L}{L} \left\|\boldsymbol{w}_{2} - \boldsymbol{w}_{1}\right\|_{2}$$

Examples:

When GD fails to find global optimum

when it terminates

when it gets stuck at a non-optimal point

The Big Picture

Convex Optimization

Convex set: $\mathcal{C} \subset \mathbb{R}^d$ is said to be a convex set if for any $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d$ and any $0 \le \lambda \le 1$, $\lambda \boldsymbol{u} + (1 - \lambda) \boldsymbol{v} \in \mathcal{C}$

• illustration, examples

Convex Function

Convex function: $F(\mathbf{w})$ is said to be a convex function if the set $\mathcal{E} = \{(\mathbf{w}, y) : y \geq F(\mathbf{w})\}$ is convex

- \mathcal{E} is called the epigraph of $F(\mathbf{w})$
- illustration

Characterization of Convex Functions

Theorem 1

Suppose that $F: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. The following are equivalent:

- F is convex;
- ② $F(\mathbf{w}_2) \geq F(\mathbf{w}_1) + \langle \nabla F(\mathbf{w}_1), \mathbf{w}_2 \mathbf{w}_1 \rangle$;
- **3** $\nabla^2 F(\mathbf{w})$ is positive semi-definite.

Typically use 3 to check the convexity.

Let f and h be convex functions.

- $a \cdot f + b \cdot h$ is convex when $a \ge 0$ and $b \ge 0$
- f(h) may NOT be convex

Convex Program

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}), \quad \boldsymbol{w} \in \mathcal{C}.$$

Convex Program: both F(w) and C are convex

- optimality: local optimum ←⇒ global optimum
- works well
- easy to solve

Convergence Analysis

Theorem 2

Suppose $F(\mathbf{w})$ is convex and L-smooth. Pick $0 < \eta \le 1/L$. Then for all $t \ge 1$,

$$F(\mathbf{w}^t) - F(\mathbf{w}^*) \leq \frac{\|\mathbf{w}^0 - \mathbf{w}^*\|_2^2}{2\eta} \cdot \frac{1}{t}$$

In particular, picking $\eta=1/L$ gives

$$F(\mathbf{w}^t) - F(\mathbf{w}^*) \le \frac{2L \|\mathbf{w}^0 - \mathbf{w}^*\|_2^2}{t}.$$

1.
$$F(\mathbf{w}^t) - F(\mathbf{w}^*)$$
 v.s. $\|\mathbf{w}^t - \mathbf{w}^*\|_2$

2. Iteration complexity

3. Estimate L

Faster Rate of Convergence

Strongly Convex: for any $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^d$

$$\|\nabla F(\boldsymbol{w}_2) - \nabla F(\boldsymbol{w}_1)\|_2 \ge \frac{\alpha}{\alpha} \|\boldsymbol{w}_2 - \boldsymbol{w}_1\|_2$$

- functions satisfying SC
- not satisfying

Theoretical Guarantee

Theorem 3

Suppose $F(\mathbf{w})$ is α -strongly convex and L-smooth. Let $\{\mathbf{w}^t\}_{t\geq 1}$ be the iterates generated by GD where $0 < \eta \leq 2/(\alpha + L)$. Then for all $t \geq 1$,

$$\left\| \boldsymbol{w}^{t} - \boldsymbol{w}^{*} \right\|_{2} \leq \sqrt{1 - \frac{2\eta \alpha L}{\alpha + L}} \left\| \boldsymbol{w}^{t-1} - \boldsymbol{w}^{*} \right\|_{2}.$$

In particular, picking $\eta = 2/(\alpha + L)$ gives

$$\|\mathbf{w}^{t} - \mathbf{w}^{*}\|_{2} \le \left(1 - \frac{2}{c+1}\right) \|\mathbf{w}^{t-1} - \mathbf{w}^{*}\|_{2}$$

where $c \stackrel{\text{def}}{=} L/\alpha$ is the condition number.

- converges linearly / geometric rate of convergence
- typically the best one can hope

16/29

For all $t \geq 1$,

$$\|\mathbf{w}^{t} - \mathbf{w}^{*}\|_{2} \le \left(1 - \frac{2}{c+1}\right)^{t} \|\mathbf{w}^{0} - \mathbf{w}^{*}\|_{2}$$

$$\le e^{-\frac{2t}{c+1}} \|\mathbf{w}^{0} - \mathbf{w}^{*}\|_{2} \qquad \text{(by } 1 + x \le e^{x}\text{)}$$

For any pre-defined error $0 < \epsilon < 1$,

$$\underbrace{t = c \log \frac{\left\| \mathbf{w}^0 - \mathbf{w}^* \right\|_2}{\epsilon}}_{\text{iteration complexity}} \Longrightarrow \left\| \mathbf{w}^t - \mathbf{w}^* \right\|_2 \le \epsilon$$

3. Estimate α

Overall Computational Complexity

Below #Iter hides the dependence on $\|\mathbf{w}^0 - \mathbf{w}^*\|_2$, $c = L/\alpha$

Condition	Guarantee	#Iter
α -SC, L -smooth L -smooth	$\ \mathbf{w}^t - \mathbf{w}^*\ _2 \le \epsilon$ $F(\mathbf{w}^t) - F(\mathbf{w}^*) \le \epsilon$	$\frac{c \log(1/\epsilon)}{L/\epsilon}$

illustration

• GD solves linear regression efficiently

$$d^2(n+d)$$
 v.s. $nd \cdot c \log(1/\epsilon)$

19 / 29

• note on c

Improve Gradient Descent

Program

$$\min_{\boldsymbol{w}} F(\boldsymbol{w}), \quad \text{s.t. } \boldsymbol{w} \in \mathbb{R}^d.$$

- $F(\mathbf{w}) = \|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2$ for $y \in \mathbb{R}$
- $F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \max\{1 y_i \mathbf{x}_i \cdot \mathbf{w}, 0\} + 0.5\lambda \|\mathbf{w}\|_2^2 \text{ for } y \in \{+1, -1\}$

GD:

- O(nd) to evaluate $\nabla F(\mathbf{w})$
- always converges to opt

If computational cost is major concern,

can we boost the efficiency?

Explore the problem structure

20 / 29

Investigate Problem Structure

Suppose

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

linear regression

$$F(\mathbf{w}) = \frac{1}{n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2, \quad f_i(\mathbf{w}) = (y_i - \mathbf{x}_i \cdot \mathbf{w})^2$$

SVM

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \max\{1 - y_i \mathbf{x}_i \cdot \mathbf{w}, 0\} + 0.5\lambda \|\mathbf{w}\|_2^2$$

$$f_i(\mathbf{w}) = \max\{1 - y_i \mathbf{x}_i \cdot \mathbf{w}, 0\} + 0.5\lambda \|\mathbf{w}\|_2^2$$

any sample-wise loss

21/29

Stochastic Gradient Descent

- Initialize \mathbf{w}^0 , say $\mathbf{w}^0 = \mathbf{0}$
- **2** For t = 1, 2, ...

Uniformly draw i_t from $\{1, 2, ..., n\}$, and update

$$\mathbf{w}^{t} = \mathbf{w}^{t-1} - \eta_{t} \nabla f_{i_{t}}(\mathbf{w}^{t-1})$$
 (2)

- example, intuition
- time cost per iteration is O(d) (GD needs nd)
- total time = cost/iter · #iter

Convergence Rate for SGD

 α -SC, Lipschitz

$$\eta_t \leq rac{1}{lpha t}, \quad \mathbb{E} ig[\left\| oldsymbol{w}^t - oldsymbol{w}^*
ight\|_2 ig] \leq rac{\log t}{t}$$

convex, Lipschitz

$$\eta_t \leq \frac{1}{\sqrt{t}}, \quad \mathbb{E}\big[F(\boldsymbol{w}^t) - F(\boldsymbol{w}^*)\big] \leq \frac{\log t}{\sqrt{t}}$$

We can modify SGD for faster rate (a rich literature).

Table 1: Overall computational cost to obtain ϵ opt. error

GD	SGD
$\frac{n\log(1/\epsilon)}{n/\epsilon}$	$1/\epsilon (1/\epsilon)^2$

SGD wins if

• large-scale data

GD wins if

- small data set
- need high accuracy (i.e. ϵ is small)

In Practice...

SGD is used in

and more...

Other Practical Concerns

Storage

• real-time decision-making

Online Learning

Initialize the model.

for
$$t = 1, 2, ...$$

- receive x_t
- make prediction $\hat{\boldsymbol{y}}_t$
- receive \mathbf{y}_t
- ullet evaluate loss $\ell(\hat{m{y}}_t, m{y}_t)$
- update model

Compare to SGD

Mid-term

March 12, 18:30 - 21:00 EST

- linear algebra, calculus
- advanced probability
- linear regression
- gradient descent
- stochastic gradient
- online learning
- statistical machine learning (Mar. 5)