Course Code	Course Title	L	Т	Р	С
PMCA501P	IP Data Structures and Algorithms Lab			2	1
Pre-requisite	NIL	Syllabus version			
		1.0			

Course Objectives:

- 1. To become more familiar with basic understanding of the algorithmic techniques and also to master the implementation of different data structures.
- 2. To learn and implement several sorting and graph algorithms.

Course Outcomes:

- 1. Categorize appropriate data structures as per the given problem definition
- 2. Solve problems using linear and non-linear data structures
- 3. Demonstrate operations like searching, insertion, deletion and traversing mechanism on various data structures

Indicative Experiments					
1.	Linear Data Structures - Stacks, Queues and Linked Lists				
	Implement stack functions using arrays	9 hours			
	Implement multiple stacks				
	Implementation of multiple queue				
	Implement queue functions using arrays				
	Implementation of circular queue				
	Reversing a queue				
	Reverse a singly linked list				
	Merge two linked list				
	Remove duplicate nodes from sorted linked list				
	Program to find size of doubly linked list				
	Rotate circular linked list by n nodes				
	Find nth node from the end of circular linked list				
2.	Non Linear Data Structures - Trees and Graphs	9 hours			
	Merge two binary trees				
	Determine whether the given two binary trees are identical or not				
	Implement backtracking using depth first search				
	Detecting a cycle in the graph				
	Determine the height of a binary search tree				
	Identify if the given binary search tree is valid or not.				
3.	Greedy Approach	4 hours			
	Implement kruskal's algorithm				
	Implement prim's algorithm				
4.	Dynamic Programming	4 hours			
	Implement floyd-warshall algorithm				
	Implement knapsack problem				
5.	Divide and Conquer Approach	4 hours			
	Quick sort				
	Merge sort				

		T	otal Lab	oratory Hours	30 hours		
Text Book(s)							
1.	Thomas H. Cormen, Charles E. L	eiserson, Ronald L. Rivest and Clifford Stein,					
	"Introduction to Algorithms", 2022, 4 th Edition, MIT Press, USA.						
Reference Books							
1.	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 2019, 4th						
	Edition, Pearson Education, Delhi.						
2.	Michael T. Goodrich, Roberto Ta	lichael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser, "Data					
	structures and Algorithms in Python", 2013, John Wiley and Sons, Inc., United						
	States of America.						
Mode of assessment: CAT, Exercises, FAT							
Recommended by Board of Studies		04-05-2023					
App	Approved by Academic Council		Date	24-06-2023			