Part III-B: Medicine Outline

Lecture by 邓军 Note by THF

2024年9月25日

目录

1	绪论		2
	1.1	药学概念	2
	1.2	药学的起源与发展	4
		1.2.1 药学起源	4
		1.2.2 现代药学发展	5
	1.3	药学的任务	7
	1.4	药学地位	8
	1.5	总结	9
2	中药	、生药与天然药物化学	9
	2.1	中药的起源和发展	9
	2.2	中药学	11
	2.3	生药学	14
	2.4	生药学研究内容和任务	16
	2.5	鉴定生药	16
	2.6	天然药物化学	18
3	药物		21
	3.1	基本定义、研究内容和任务 2	21

课程简介

教师邮箱: jdeng@cqu.edu.cn

教师微信: ytyr88

教师电话: 18223244276

成绩组成(100%) = 出勤,课堂小测试(<20%) + 课堂表现(10%) + 课后作业(10%) + 期末考试(>60%)

缺勤三次取消成绩

教材需求: 药学概论第五版, 共8节

共 16 节课, 32 学时, 1-8 周

考试为闭卷考试,有选择、名词解释、材料分析等题型

1 绪论

1.1 药学概念

Question. 什么是药物? 什么是药学?

东汉《说文解字》有"药,治病草也",将药分作草、木、虫、石、谷五种药的定义广泛,作动词为治疗,作名词为花名、火药等

Notation. 今天所说的药物:用于防病、治病、诊断疾病的物质

药物通常具有明确的适应症、禁忌症、用法和用量 药物的基本属性为安全性和有效性(在一定剂量内) 在我国药品专指人用药品

Notation. 药品分为处方药 (R-receptor, Rx) 和非处方药 (over the counter, OTC), 红标 OTC/甲类 OTC 药物只能在医院与药房购买

Notation. 药物具有双重性:治疗作用和不良反应

坏血病: 牙龈出血, 牙齿松动脱落, 手指关节肿痛等 林德发现维生素 C 可以治疗坏血病 Example. 维生素 C 适量摄入可以提升人体免疫力、治疗坏血病、缓解关节疼痛、预防癌症,但过量摄入将导致一系列不良反应:腹泻,胃酸增加,溶血等

Example. 肾上腺皮质分泌的可的松可以治疗炎症、免疫抑制等,但过度使用会导致身体对类固醇的依赖加强、溃疡、免疫功能下降、骨质疏松等不良反应

Example. 吗啡由德国化学家 Serturner 于 1805 年首次从鸦片中分离,具有镇痛作用,但大量长期使用成瘾,吗啡双乙酰化后成为海洛因,成瘾性更强

Question. 药物与保健食品的区别:

- 1. 保健食品是具有特定保健功能的**食品**,不限定剂量,包装管理为国食健 字 G (J),无药用价值,无适应症
 - 2. 药品包装管理为国药准字 H (或 Z,S,J,B,F)

Notation. 药学是以现代化学和医学为主要指导,研究、开发、生产、销售、使用、管理用于预防、治疗、诊断疾病的药物的科学

药学的主要学科:

药物化学药理学药物分析学药剂学

微生物与生化药学

Question. 药学与化学、医学的关系:

Notation. 研究药学要以化学为基础: 人体本质上是化学物质的组合 研究药物要以临床医学为指导: 先有病后有药 药学是医学和化学的桥梁

Example. 帕金森病的发病机理是缺少多巴胺(快乐因子), 5-羟色胺用于抑制情绪:爱情催化剂

Example. 阿尔茨海默病由临床发现脑内胆碱是神经系统退化,因此研制乙酰胆碱酯酶抑制剂延缓

1.2 药学的起源与发展

1.2.1 药学起源

现代药学起源可追溯至远古时代

Example. 公元前 6 世纪通过酒曲治疗胃病,利用酵母菌促进消化,发展为如今的酵母片

Example. 现代黑猩猩学会利用特定植物来治疗肠道疾病

Notation. 最早记载人类医学活动: 巴比伦时代(公元前 2600 年)

埃及的《Papyrus Ebers》记载于公元前 1500 年前,记录了 800 个处方,700 种药物

第一家私人药店:阿拉伯人于公元8世纪开创了医药的分家

第一个国家药店: 北宋与公元 1076 年开办的熟药所

第一部官方组织编篡的药典:公元 659 年唐政府颁布《新修本草》或《唐本草》

第一个从植物中提取的活性成分: 吗啡 (1805 →1809, 由德国药剂师 Sertuner 从鸦片中提取)

著名药学典籍:

Notation. 神农本草经: 东汉出版,由多方补充而成,共三卷 收录 365 种药物(252 种植物药,67 种动物药,46 种矿物药)

Notation. 本草纲目:由李时珍在明代历时 30 年完成,成书于 1578 年,全书共 52 卷,约 190 万字

共收录 1892 种药物, 11000 余处方, 插图 1160 幅

李时珍对生物学、化学、矿物学、地质学也有贡献,是一个杰出的科学家, 药学家

Notation. 现代医学之父:希波克拉底

古希腊医师,提出了"四体液学说":人体由四属性的体液组成提出了《希波克拉底誓言》:医学与药学学生入学

Notation. 盖伦: 古罗马医师

主要贡献:提倡使用生药制剂(盖伦制剂,多为膏剂),强调按季节、地区和气候用药,在欧洲盛名

Notation. 阿维森纳:著有《医典》,是医学史上最著名的系统的医药学百科学书

与盖伦和希波克拉底共称为西方医学三巨匠

Notation. 药剂学之父: 席勒/舍勒

制备 O_2 , Cl_2 , 发现众多金属元素, 从自然界提取多种有机酸, 开创了近代以 天然药物为原料的药剂学基础

Notation. 药理学之父: 施来台德勒

微生物学奠基者: 巴斯德, 发明了巴氏消毒法和微生物纯培养法, 首次实现了手性化合物的分离

细菌学奠基者: 科赫,主要研究结核杆菌,提出的方法用于验证细菌与病害的关系

巴斯德和科赫奠定了微生物学最基本的原理和方法,为微生物学发展指明了 方向

1.2.2 现代药学发展

现代药学发展分为以下时期:

- 1. 古代至 19 世纪末: 利用天然药物
- 2. 19 世纪末: 药物合成 (1910 年, 德国科学家 Paul Ehrlich 合成 606 用于 杀灭梅毒杆菌)

Notation. Paul Ehrlich (欧立希): 化学疗法的先驱,合成梅毒特驱药 606 并改 进为 914

Notation. 百浪多息:一种磺胺染料,对链球菌和金黄色葡萄球菌感染有特效,是第一个对任何全身细菌性感染有效的化学治疗剂,由克拉尔于 1932 年合成,由多马克发现疗效

Notation. 法国夫妇特雷福埃尔发现百浪多息并不能在体外抗菌, 其真正的抗菌物质是在人体内转换后的对氨基苯磺酰胺(磺胺), 二人研究了相似的结构发现具有类似效果(SD,ST,SMZ,SDM), 提出了构象关系理论

Notation. 西德公司生产的一对手性分子 (R/S)-Thalidomide 所组成的药物 "反应停", (R)-Thalidomide 有镇定疗效, (S)-Thalidomide 有生理毒性, 产生了大量畸形胎儿.

- 3. 20 世纪 40-60 年代: 合成药物大量上市
- 4. 20 世纪 70 年代至今: 生物药学时期(医学、化学、生物学、计算化学等相互结合,多学科交叉渗透)

Notation. 我国药学发展仅次于美国,是世界原料药生产的第二大国 我国 97% 以上的药物是外国研制,仅在国内仿制生产 1993 年转为以创新为主,仿制为辅

药物化学现状

- 1. 随机合成、逐个合成 → 计算机辅助设计、定向合成
- 2. 多步骤液相合成 → 一步固相合成

药物制剂现状

- 1. 一般制剂 → 缓释、控释、速释
- 2. 工艺为主 → 与生物相结合

Notation. 现在我国已生产 3000 余种制剂,中成药制剂 9600 余种

药理学现状

- 1. 新药筛选 → 高质量的机器人筛选、酶、细胞、受体筛选
- 2. 作用机理: 整体、器官、细胞 → 分子、量子水平

Notation. 陈克恢院士进行了对麻黄碱的研究,成为中国药理学的奠基人 我国在心血管药理、神经药理、生化药理等一部分已达到国际先进水平

药物分析现状

- 1. 化学比色 →HPLC, GC (气相色谱), MS (质谱)
- 2. 对体内药物分析的灵敏度不断提高

Notation. 理化测试、分析仪器和计算机技术的发展大大促进了药物分析的发展

生物技术与生物制药现状

- 1. 广泛应用生物技术、转基因生产药物
- 2. 酶不断分离纯化
- 3. 基因治疗

抗生素现状

- 1. 单纯的开发抗菌药物 → 以微生物为主要来源的研究
- 2. 产生了酶抑制剂、免疫调节剂、受体阻断剂等

Notation. 1929 年亚历山大弗莱明发现了第一个抗生素:青霉素(盘尼西林)中国抗生素历史:

1949 前 (完全依赖进口) → 抗日战争间 (汤飞凡开始研究) → 1950 (陈毅 批准建立青霉素试验所) → 1950.9 (得到青霉素钾结晶) → 1953.5.1 (正式生产) → 氯霉素 (沈家祥) → 至今 (广开菌源,应用新的筛选体系及基因工程技术)

中药与天然药物现状

- 1. 形态学、显微水平 → 化学、基因水平
- 2. 陆地药物 → 海洋药物

1.3 药学的任务

研究新药

原有的非主要致命性疾病成为主要致命疾病 (癌症)

阐明药物的作用机理

Example. 消炎痛 (吲哚美辛): 副作用胃溃疡

COX (环氧化酶) 分为 COX1,COX2

COX1 (结构型): 副作用胃溃疡

COX2 (诱导型): 副作用心血管疾病

研究新的制剂

制定药品的质量标准、控制药品质量

开拓医药市场,规范药品管理

药物具有一般性 (可以购买) 和特殊性 (使用不当将造成不可挽救的结果)

Notation. 研究过程的各种规范:

- 1. 药用植物栽培: GAP
- 2. 临床前研究: GLP
- 3. 临床研究: GCP
- 4. 生产: GMP(Good Manufacture Practice, 药品生产质量管理规范)
- 5. 销售: GSP

1.4 药学地位

- 1. "医药不分家"
- 2. "药食同源"
- 3. 药学是独立的一级学科

Notation. 研究一种新药需要 10-15 年, 10-20 亿美元, 途径临床前、临床 1、2、3 期, 临床末期 (4 期)、FDA 审核

药学"三高一长": 高技术、高投入、高风险、长周期

表 1: 药学课程				
专业基本课程	专业课程	拓展课程		
化学	药工	药概		
高数	药理	药剂		
	•••			

药学和其他学科的关联

1.5 总结

一药学的定义 研究任务 学科关系 药学地位

课后作业:从以上四个方面谈谈对药学的认识,500 字以上,第 3 周周二前提交至 djyxgl@163.com

2 中药、生药与天然药物化学

2.1 中药的起源和发展

我国历史上的本草著作:《神农本草经》、《唐本草》、《本草纲目》等

Notation. 《神农本草经》: 3 卷, 东汉 25-200 年, 载药 365 种

上药: 120 种为君, 养命以应天中药: 120 种为臣, 养性以应人下药: 120 种佐使, 治病以应地

Notation. 《本草纲目》: 1892 种药物, 11000 附方分为 16 部纲, 62 目, 参考书籍 800 余本正名为纲, 附释名为目, 故命名为《本草纲目》

Example. 胎盘可入药

中药现代化:屠呦呦与青蒿素(由黄花蒿乙醚萃取而来)

Notation. 青蒿素可以杀疟虫的关键: 过氧键

Definition. 中药:依据中医学理论和中医临床药物,应用于医疗保健的药物

Definition. 生药:来源于植物、动物和矿物的新鲜品或经过简单加工,直接用于医疗保健或作为医药用原料药的天然药物

 表 2: 生药分类

 植物生药
 植物中制取
 动物生药
 动植物中制取
 矿物生药

 人参、洋地黄
 淀粉、挥发油
 水蛭
 油脂、蜡
 朱砂

Notation. 一些医用敷料、滤材以及具有杀虫作用的草也属于生药

Definition. 天然药物:在现代医学理论体系指导下,来自于天然植物、动物和矿物中的、非化学单体的药物(本质上为生药)

民族药用资源:

藏药: 2805 种

蒙药: 1340 种

壮药: 2076 种

维药: 1917 种

.

Notation. 保护中药: 以保护求发展

就地保护、迁地保护结合 天然更生、人工培育结合

Notation. 中药资源创新:

- 1. 转基因植物生产活性物质(转基因烟草、甘草等)
- 2. 细胞组织培养(人参、三七、丹参等)

2.2 中药学

Definition. 中药学是研究中药的基本理论和各味中药的来源、性味、功效和应用方法的学科

Notation. 道地药材:又称地道药材,是指经过中医临床长期应用优选出来的产在特定领域,疗效更好、质量更高,具有较高知名度的药材,如陈皮、四大怀药等

Notation. 四大怀药: 怀菊花、怀帝黄、怀山药、怀牛膝

中药的采收

1. 植物药材的采收:

全草类: 生长、枝叶茂盛的花前期、刚开花时

叶类: 开花蕾时 花类: 开花时 果实、种子类: 果实成熟后、将成熟时

根茎类: 阴历二、八月

树皮、根皮类:清明至夏至期间剥皮

2. 动物药物的采收: 种类和部位不同, 采集事件不同

中草药贮存

Notation. 不科学保存可能出现的现象: 霉烂、虫蛀、变色、泛油等

中药的药性

Definition. 药性: 药物的性味和功能,包含对机体的反应和对疾病的疗效,包 括四气、五味、升降沉浮、归经

表 3: 四气 (四性)				
寒性	凉性	温性 热性		
石膏、	黄连、栀	子 附子、干姜		
治	疗热性病	治疗寒性病	治疗寒性病	
清热	泻火、阴性	温里散寒、阳恒	生	

表 4: 五味(药物作用的标志)					
辛	甘	酸	苦	咸	
发散、行气、行血	补益、和中	收敛、固涩	燥湿、泻降	软坚、泻下	

Definition. 归经: 药物对于机体某部分的选择作用 以脏腑、经络为基础

Notation. 寒性药物:清肺热、心热、胃热(清热)

炮制中药

炮制中药以中医基础理论位置的,依据医疗、制剂和调剂的不同要求对原药 材进行各种加工处理的总称

经过加工炮制后的中药称为中药饮片

Notation. 炮制中药的作用 (易考):

- 1. 降低、消除药物的毒性或副作用
- 2. 转变药物的功能
- 3. 增强疗效
- 4. 改变、增强药物作用的部位和倾向
- 5. 适应调剂制剂的需要
- 6. 保证药物纯度, 利于保存
- 7. 便于服用

Example. 马钱子中包含士的宁(疗效好)和马钱子碱(有毒),使用马钱子需要通过沙烫或油炙,由于士的宁分解温度高达 286 摄氏度,马钱子碱仅在 178 摄 氏度分解,因此可以去除毒性

Example. 麻黄:挥发油可治感冒,生物碱可治疗气管炎

通过使用蜂蜜炒制(蜜炙),可以使挥发油降低 🖟,生物碱含量不降,以此 增强治疗气管炎的疗效

Example. 元胡:有效成分为生物碱,通过使用醋炒制,形成有机酸盐,提高提 取率

Example. 黄柏树皮可入药,使用酒炙后治疗部位转变

Example. 石决明: 为壳状, 经煅烧、捣碎后质地疏松, 药物易于溶出

Example. 动物类药物有腥味,通过酒炙可除去

单行: 单味药

相须: 性能功效相类似的药物配合

相使:一药为主另一药为辅

相畏: 药物的毒性或副作用可以被另一种药消除

中药配伍 { 相杀: 一种药能减轻另一种药的毒性

相恶: 在另一种药物下药效降低、消失

相合:一种药使另一个药物毒性增强

十八反: 剧烈毒性

十九畏: 同上

2.3 生药学

Notation. 古代"生药"与"熟药"相对,均属中药

生药最早由德国提出 (pharmakognosie),由日本翻译,1905 年由中国学者带 回中国

生药分类:

Notation. 生药发展分三个时期:

- 1. 有生药记载 (公元前 $4000^{-}4500$ 年) 到 19 世纪中叶: 研究医疗效用,凭感官和实践经验
- 2. 近代商品生药学时期: 生药成为国际贸易的特殊商品,研究内容为商品 生药的来源(生物、地理)和鉴定商品生药的真伪、优劣,研究手段主要为形态 学、化学(显微观察、定性定量方法),标志为**吗啡的分离**
- 3. 20 世纪 60 年代至今 (现代生药学时期): 研究内容和研究手段增加, 形成了海洋生药学等新的学科

表 6: 近代生药提取物

表 · . 是 N 上 的 是 N 的				
年代	提取物	生药		
1806	morphine	阿片		
1816	emetine	吐根		
1818	strychnine	番木鳖		
1820	quinine,caffeine	金鸡纳树皮,咖啡豆		
1828	nicotnie	烟草		
1829	atropine	颠茄根		
1860	cocaine	古柯		
1864	eserine	毒扁豆		
1887	ephedrine	麻黄		

生药学的发展方向:

道地药材的研究、建立生产基地、制定生产标准 生药制剂科学研究

生药智能化

开发利用生药资源

细胞培养、细胞工程、基因工程利用

2.4 生药学研究内容和任务

准确识别、鉴定

大量同名异物、同物异名, 掺假造假

同名: 桂皮(肉桂/天竺桂的皮)

同物:三七

调查考证生药资源

未在古籍中记载而发现的新生药:长春新碱、紫杉醇、喜树碱

评价生药的品质,制定标准

生产规范化

执行 GAP 标准、实现生产规范化

Definition. 中药标准化: Traditional Chinese Medicines Standardization 包括中药材标准化(基础)、饮片标准化、中成药标准化

2.5 鉴定生药

基原鉴定

用分类学的方法把各种动植物来源鉴定清楚,确定学名和药用部位

Notation. 必须要用完整的标本

性状鉴定

利用看、摸、闻、尝等描述中药的性状

Example. 党参:皮松肉紧,似"狮子盘头"

松贝:如"怀中抱月"

海马: 马头蛇尾瓦楞身

黄芪: 菊花心 苍术: 朱砂点 何首乌: 云锦纹

显微鉴定

使用显微技术对细胞、组织进行观察

Notation. 组织鉴定:观察切片或磨片,适合于完整的药材或粉末特征相似的药材

粉末鉴定: 观察粉末制片或解离片, 观察分子及内涵物的特征, 适合于破碎、粉末状的药材或中成药

理化鉴定

通过物理和化学的方法对生药所含成分的定性定量分析

Notation. 部分鉴定方法:

紫外分光光度法

红外分光光度法

高效液相色谱

气象色谱

荧光分析

质谱

DNA 分子鉴定

比较 DNA 的差异鉴别物种

Notation. 利用了:

遗传稳定性 遗传多样性 化学稳定性

鉴定技术包含:

杂交基础鉴定 聚合酶链式 PCR 分子标记 重复序列分子标记 mDNA 分子标记 DNA 序列分析

2.6 天然药物化学

Definition. 天然药物化学: 运用现代科学理论与方法研究天然药物化学成分的 学科

研究内容: 天然药物中的化学成分(活性成分/药效成分)的结构特点、理化性质、提取分离方法、结构鉴定、合成途径

Example. 人参:

提取:人参皂苷

结构鉴定:人参皂苷类

结构鉴定 → 理化性质 → 提取分离方法

结构特点 → 生物合成路径

Notation. 苯丙素类: 一个苯环与三个直链连在一起形成单元 C_6 – C_3 的化合物,再分为苯丙酸类、香豆素类、本脂素类

Notation. 醌类:通常由酚氧化而来,分为:苯醌、萘醌、菲醌、蒽醌等

Example. 苯醌: 辅酶类

萘醌: 胡桃醌

菲醌: 丹参醌 IIA

蒽醌: 大黄素

表 : 大然约物化字成分的主要分尖					
化学结构	酸碱性	溶解性	有无活性	生物合成途径	
苯丙素类 醌类 酮类 萜类	酸性 碱性 中性 两性	【非极性 中等极性 极性	{活性成分 无效成分	{一次代谢 【二次代谢	

表 7: 天然药物化学成分的主要分类

Notation. 黄酮类: 两个具有酚羟基的苯环通过中央三碳原子相互连接的化合物 $C_6-C_3-C_6$

萜类: 甲戊二甲酸的衍生物且为 $(C_5H_x)_n$ 甾体: 含环戊烷并多氢菲母核的化合物

生物碱:含氮原子,多有复杂的环状结构、呈碱性,可与酸成盐,具有显著而特殊的生物活性

主要研究内容

- 1. 物理化学性质
- 2. 提取分离方法 (研发新药)
- 3. 结构鉴定(IR、NMR、MR等,可以预测性质)
- 4. 生物合成途径(仿生合成)

主要任务

1. 研究开发创新药物:

Notation. 创新药物研究的一般过程:

原生生物活性成分研究: 药效学筛选 \rightarrow 粗分确定有效成分 \rightarrow 分离追踪活性成分 \rightarrow 确定活性单体结构 \rightarrow 药理、毒理、临床评价 \rightarrow 结构修饰 前体活性成分的研究

2. 推进中药现代化、使中药早日进入国际医药主流市场

研究开发服用方便、安全有效、质量可靠的中药 降低毒性、提高疗效、科学用药 扩大范围

Notation. 我国是最早进行天然药物化学研究的国家: 1575 年李挺著,《医学入门》,五倍子 \rightarrow 没食子酸

3. 天然产物的结构修饰

Example. 根皮苷 \rightarrow 达格列净 \rightarrow 列净类药物

作业:中药的现代化-屠呦呦与青蒿素:屠呦呦发现青蒿素及青蒿素药品的 研制成功对整理发掘中药资源的启示

3 药物化学

3.1 基本定义、研究内容和任务

Definition. 药物化学:关于药物发现、发展和确证,并在分子水平研究药物作用方式的一门学科

药物化学基于化学,涵盖生物学、医学和药学等学科

药物化学涉及的阶段:

- 1. 新药研究的发现阶段(Discovery)
- 2. 新药研究的开发阶段 (Development)

Definition. 化学药物:已知确切结构的单一化合物

新药:新的化学实体 (New Chemical Entities, NCE),指从前没有用于人体治疗并注定可用作处方药的产品

新分子实体 (New Molecular Entities, NME): 指具有某种生物活性的化学结构,由于活性不强、选择性底、吸收性差、毒性较大等特点不能直接药用,但可用对其进行改造优化修饰生产新的药物