Internal Adjunctions

December 24, 2023

011N	Create	tags:
------	--------	-------

1.	https://www.google.com/search?q=mate+of+an+adjunction
2.	Moreover, by uniqueness of adjoints (Internal Adjunctions, Item 2 of Proposition 1.2.1.4), this implies also that $S = f^{-1}$.
3.	define bicategory $Adj(\mathcal{C})$
4.	walking monad
5.	proposition: 2-functors preserve unitors and associators
6.	$https://ncatlab.org/nlab/show/2-category+of+adjunctions. \ Is \ there \ a$

- $7. \ https://ncatlab.org/nlab/show/free+monad$
- 8. https://ncatlab.org/nlab/show/CatAdj
- 9. https://ncatlab.org/nlab/show/Adj
- $10. \ \mathsf{Adj}(\mathsf{Adj}(\mathcal{C}))$

3-category too?

Contents

1 Internal Adjunctions			2
	1.1	The Walking Adjunction	2
	1.2	Internal Adjunctions	4
	1.3	Internal Adjoint Equivalences	10
	1.4	Mates	12

	2 N	Morphisms of Internal Adjunctions	15
	2.	.1 Lax Morphisms of Internal Adjunctions	15
	2.	.2 Oplax Morphisms of Internal Adjunctions	16
		3 Strong Morphisms of Internal Adjunctions	
	2.	.4 Strict Morphisms of Internal Adjunctions	18
	3 2	-Morphisms Between Morphisms of Internal Adjunctions.	18
		 2-Morphisms Between Lax Morphisms of Internal Adjunctions. 2-Morphisms Between Oplax Morphisms of Internal Adjunc- 	18
			19
		3 2-Morphisms Between Strong Morphisms of Internal Adjunc-	20
		4 2-Morphisms Between Strict Morphisms of Internal Adjunc-	20
	tions	3	20
	4 B	Sicategories of Internal Adjunctions in a Bicategory	2 1
	A O	Other Chapters	21
)11P	1	Internal Adjunctions	
)11Q	1.1	The Walking Adjunction	
)11R	11R Definition 1.1.1.1. The walking adjunction is the bicategory Adj f generated by ¹		ely
	•	Objects. A pair of objects A and B ;	
	•	Morphisms. A pair of morphisms	
		$L \colon A \to B$,	
		$R \colon B \to A;$	

 $\eta \colon \mathrm{id}_A \to R \circ L,$ $\epsilon \colon L \circ R \to \mathrm{id}_B;$

• 2-Morphisms. A pair of 2-morphisms

¹See [SS86] for an explicit description of the 2-category (as opposed to a bicategory) version of Adj in terms of finite ordinals, similar to the description of the 2-category version of the walking monad (??) as a subcategory of Δ .

subject to the equalities

of pasting diagrams, which are equivalent to the following conditions:

1. The Left Triangle Identity. The diagram

commutes.

2. The Right Triangle Identity. The diagram

011S 1.2 Internal Adjunctions

Let C be a bicategory.

- 011T Definition 1.2.1.1. An internal adjunction in $C^{2,3}$ is a 2-functor $Adj \rightarrow C$.
- 011U Remark 1.2.1.2. In detail, an internal adjunction in C consists of
 - Objects. A pair of objects A and B of C;
 - Morphisms. A pair of morphisms

$$L \colon A \to B,$$

 $R \colon B \to A$

of C;

• 2-Morphisms. A pair of 2-morphisms

$$\eta: \mathrm{id}_A \to R \circ L,$$
 $\epsilon: L \circ R \to \mathrm{id}_B$

of C;

subject to the equalities

²Further Terminology: Also called an **adjunction internal to** C.

³Further Terminology: In this situation, we also call (g, f) an adjoint pair, f the left adjoint of the pair, g the right adjoint of the pair, g the unit of the adjunction, and e

of pasting diagrams in C, which are equivalent to the following conditions:⁴

1. The Left Triangle Identity. The diagram

commutes.

2. The Right Triangle Identity. The diagram

- **Example 1.2.1.3.** Here are some examples of internal adjunctions.
- 011W 1. Internal Adjunctions in Cats₂. The internal adjunctions in the 2category Cats₂ of categories, functors, and natural transformations are precisely the adjunctions of Categories, ??.

the **counit** of the adjunction.

⁴When C is a 2-category, these diagrams take the following form:

- 011X 2. Internal Adjunctions in **Rel**. The internal adjunctions in **Rel** are precisely the relations of the form $Gr(f) \dashv f^{-1}$ with f a function; see Relations, Item 4 of Proposition 2.5.1.1.
- 011Y 3. Internal Adjunctions in Span. The internal adjunctions in Span are precisely the spans of the form

with ϕ an isomorphism; see Spans, Item 4 of Proposition 2.5.1.1.

- **011Z** Proposition 1.2.1.4. Let C be a bicategory.
- 0120 1. Duality. Let (f, g, η, ϵ) be an internal adjunction in C.
 - (a) The quadruple (g, f, η, ϵ) is an internal adjunction in C^{op} .
 - (b) The quadruple (g, f, ϵ, η) is an internal adjunction in C^{co} .
 - (c) The quadruple (f, g, η, ϵ) is an internal adjunction in C^{coop} .
- 0121 2. Uniqueness of Adjoints. Let (f, g, η, ϵ) and $(f, g', \eta', \epsilon')$ be internal adjunctions in C. We have a canonical isomorphism⁵

$$g \xrightarrow{(\lambda_g^C)^{-1}} \mathrm{id}_A \circ g \xrightarrow{\eta' \circ \mathrm{id}_g} (g' \circ f) \circ g \xrightarrow{\alpha_{g',f,g}^C} g' \circ (f \circ g) \xrightarrow{\mathrm{id}_{g'} \circ \epsilon} g' \circ \mathrm{id}_B \xrightarrow{(\rho_{g'}^C)^{-1}} g'$$
 with inverse

$$g' \xrightarrow{(\lambda_{g'}^{\mathcal{C}})^{-1}} \operatorname{id}_{B} \circ g' \xrightarrow{\eta \circ \operatorname{id}_{g'}} (g \circ f) \circ g' \xrightarrow{\overset{\alpha_{g',f,g}^{\mathcal{C}}}{=g',f,g}} g \circ (f \circ g') \xrightarrow{\operatorname{id}_{g} \circ \epsilon'} g \circ \operatorname{id}_{B} \xrightarrow{(\lambda_{g}^{\mathcal{C}})^{-1}} g.$$

0122 3. Carrying Internal Adjunctions Through Pseudofunctors. Let $F: C \longrightarrow \mathcal{D}$ be a pseudofunctor and (f, g, η, ϵ) be an internal adjunction in C. There is an induced internal adjunction⁶

$$(F(f), F(g), \overline{\eta}, \overline{\epsilon})$$

in \mathcal{D} , where:

 $^{^5}Slogan$: Left adjoints are unique up to canonical isomorphism. Dually, so are right adjoints.

 $^{^6}$ Warning: Lax or oplax functors which are not pseudofunctors need not preserve

(a) The unit

$$\overline{\eta} : \mathrm{id}_{F(A)} \Longrightarrow F(g) \circ F(f)$$

is the composition

$$\mathrm{id}_{F(A)} \xrightarrow{F_A} F(\mathrm{id}_A) \xrightarrow{F(\eta)} F(g \circ f) \xrightarrow{F_{g,f}^{-1}} F(g) \circ F(f).$$

(b) The counit

$$\overline{\epsilon} \colon F(f) \circ F(g) \Longrightarrow \mathrm{id}_{F(B)}$$

is the composition

$$F(f) \circ F(g) \xrightarrow{F_{f,g}} F(f \circ g) \xrightarrow{F(\epsilon)} F(\mathrm{id}_B) \xrightarrow{F_B} \mathrm{id}_{F(B)}.$$

Proof. Item 1, Duality: Omitted.⁷

Item 2, Uniqueness of Adjoints: ⁸Consider the diagram (if you *really* want to consider it I fear you will need to zoom in)

In this diagram:

internal adjunctions.

⁷Reference: [JY21, Exercise 6.6.2].

⁸Reference: [JY21, Lemma 6.1.6].

- 1. The morphisms in green are the composition $g \stackrel{\cong}{\Longrightarrow} g' \stackrel{\cong}{\Longrightarrow} g$;
- 2. The morphisms in red are equal to $\lambda_g^{\mathcal{C}}$ by the right triangle identity for (f, g, η, ϵ) . Hence the composition of the morphism in blue with the morphisms in red is the identity;
- 3. Subdiagrams (1), (2), (10), (11), (29), (31), and (43) commute by the naturality of the left unitor of C and its inverse;
- 4. Subdiagrams (8), (19), and (21) commute by the naturality of the right unitor of C and its inverse;
- 5. Subdiagrams (6), (13), (17), (18), (20), (22), (32), (33), (36), (38), (40), (41), and (45) commute by the naturality of the associator of C and its inverse;
- 6. Subdiagrams (37), (39), and (42) commute by the pentagon identity for C;
- 7. Subdiagrams (3), (4), (7), (12), (25), (30), and (48) commute by Bicategories, ?? of ??;
- 8. Subdiagrams (5), (14), (23), (24), (34), and (35) commute by middle-four exchange;
- 9. Subdiagrams (9), (15), (16), (27), (28), (44), (46), (49), and (50) commute trivially;
- 10. Subdiagram (26) commutes by Bicategories, ???? of ??;
- 11. Subdiagram (47) commutes by Bicategories, ?? of ?? and the naturality of the left unitor of right unitor of C.

Hence $g \cong g'$.

Item 3, Carrying Internal Adjunctions Through Pseudofunctors: ⁹We claim that the left and right triangle identities for $(F(f), F(q), \overline{\eta}, \overline{\epsilon})$ hold:

1. The left triangle identity for $(F(f), F(g), \overline{\eta}, \overline{\epsilon})$ is the condition that the

⁹Reference: [JY21, Proposition 6.1.7].

boundary diagram of the diagram (you may need to zoom in)

commutes. Since

- (a) Subdiagrams (1) and (7) commute by applying middle-four exchange twice,
- (b) Subdiagrams (2) and (8) commute by the left and right lax unity conditions for F,
- (c) Subdiagrams (3) and (6) commute by the naturality of the lax functoriality constraints of F,
- (d) Subdiagram (4) commutes by the lax associativity condition for F, and
- (e) Subdiagram (5) commutes by the left triangle identity for (f, g, η, ϵ) , so does the boundary diagram.
- 2. The right triangle identity for $(F(f), F(g), \overline{\eta}, \overline{\epsilon})$ is the condition that

the boundary diagram of the diagram (you may need to zoom in)

commutes. Since

- (a) Subdiagrams (1) and (7) commute by applying middle-four exchange twice,
- (b) Subdiagrams (2) and (8) commute by the left and right lax unity conditions for F,
- (c) Subdiagrams (3) and (6) commute by the naturality of the lax functoriality constraints of F,
- (d) Subdiagram (4) commutes by the lax associativity condition for F, and
- (e) Subdiagram (5) commutes by the right triangle identity for (f, g, η, ϵ) ,

so does the boundary diagram.

0123 1.3 Internal Adjoint Equivalences

Let C be a bicategory.

This finishes the proof.

- **Definition 1.3.1.1.** An internal adjunction (f, g, η, ϵ) in C is an **internal adjoint equivalence** if η and ϵ are isomorphisms in C.
- **©125** Example 1.3.1.2. Here are some examples of internal adjoint equivalences.
- 0126 1. Internal Adjoint Equivalences in Cats₂. The internal adjoint equivalences in the 2-category Cats₂ of categories, functors, and natural transformations are precisely the adjoint equivalences of Categories, ?? 10
- 2. Internal Adjoint Equivalences in Mod. The internal adjoint equivalences in Mod are precisely the invertible R-modules; see ??. 11
- 3. Internal Adjoint Equivalences in PseudoFun(C, \mathcal{D}). The internal adjoint equivalences in PseudoFun(C, \mathcal{D}) are precisely the invertible strong transformations; see ??.¹²
 - 4. Internal Adjoint Equivalences in **Rel**. The internal adjoint equivalences in **Rel** are precisely the relations of the form $Gr(f) \dashv f^{-1}$ with f an isomorphism; see ??.
 - 012A 5. Internal Adjoint Equivalences in Span. The internal adjoint equivalences in Span are precisely the spans of the form $A \stackrel{\phi}{\leftarrow} S \stackrel{\psi}{\rightarrow} B$ with ϕ and ψ isomorphisms; see ??.
 - **Old Proposition 1.3.1.3.** Let C be a bicategory.
 - 012C 1. Carrying Internal Adjoint Equivalences Through Pseudofunctors. Let $F \colon C \longrightarrow \mathcal{D}$ be a pseudofunctor and (f,g,η,ϵ) be an internal adjunction in C. If (f,g,η,ϵ) is an internal adjoint equivalence in C, then the induced internal adjunction

$$(F(f), F(g), \overline{\eta}, \overline{\epsilon})$$

in $\mathcal D$ of Item 3 of Proposition 1.2.1.4 is an internal adjoint equivalence as well.

2. Internal Adjunctions Always Refine to Internal Adjoint Equivalences.

Let (f, g, η, ϵ) be an internal adjunction in C. If f is an equivalence,

¹⁰Reference: [JY21, Examples 6.2.5].

¹¹Reference: [JY21, Examples 6.2.6].

¹²Reference: [JY21, Examples 6.2.7].

1.4 Mates 12

then there exist 2-morphisms

$$\overline{\eta} : \mathrm{id}_A \Longrightarrow g \circ f$$
 $\overline{\epsilon} : f \circ g \Longrightarrow \mathrm{id}_B$

of C such that $(f, g, \overline{\eta}, \overline{\epsilon})$ is an internal adjoint equivalence.

Proof. <u>Item 1</u>, Carrying Internal Adjoint Equivalences Through Pseudofunctors: See [JY21, Proposition 6.2.3].

Item 2, Internal Adjunctions Always Refine to Internal Adjoint Equivalences: See [JY21, Proposition 6.2.4]. □

012E 1.4 Mates

Let C be a bicategory, let (f, g, η, ϵ) and $(f', g', \eta', \epsilon')$ be adjunctions, and let h and k be morphisms of C as in the diagram

$$\begin{array}{c|c}
A & \xrightarrow{f} & B \\
\downarrow h & & \downarrow k \\
C & \xrightarrow{f'} & D.
\end{array}$$

Olivical Definition 1.4.1.1. The **mates** of a pair of 2-morphisms

$$\begin{array}{cccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow & \omega : f' \circ h \Longrightarrow k \circ f, \\
\downarrow & & \nu : h \circ g \Longrightarrow g' \circ k
\end{array}$$

$$\begin{array}{cccc}
A & \xleftarrow{g} & B \\
\downarrow & & \downarrow & \downarrow \\
C & \xrightarrow{f'} & D$$

are the 2-morphisms

$$\begin{array}{c|c} A \xleftarrow{g} B \\ \downarrow & \downarrow & \omega^{\dagger} : h \circ g \Longrightarrow g' \circ k, \\ L \xleftarrow{g'} D \end{array} \qquad \begin{array}{c|c} A \xrightarrow{f} B \\ \downarrow & \downarrow & \downarrow \\ U^{\dagger} : f' \circ h \Longrightarrow k \circ f \end{array} \qquad \begin{array}{c|c} A \xrightarrow{f} B \\ \downarrow & \downarrow & \downarrow \\ L & \downarrow & \downarrow \\ C \xrightarrow{g'} D \end{array}$$

1.4 Mates 13

defined as the pastings of the diagrams¹³

- **Q12G** Proposition 1.4.1.2. Let $\omega \colon f' \circ h \Longrightarrow k \circ f$ and $\nu \colon h \circ g \Longrightarrow g' \circ k$ be 2-morphisms.
- **012H** 1. The Mate Correspondence. The map

$$(-)^{\dagger} \colon \mathrm{Hom}_{\mathsf{Hom}_{\mathcal{C}}(A,C)}(f' \circ h, k \circ f) \longrightarrow \mathrm{Hom}_{\mathsf{Hom}_{\mathcal{C}}(B,D)}(h \circ g, g' \circ k)$$

$$\omega \longmapsto \omega^{\dagger}$$

is a bijection.

Proof. Item 1, The Mate Correspondence: Here we give a proof for 2-categories (which indirectly proves also the general case by Bicategories, ??). A proof for general bicategories can be found in [JY21, Lemma 6.1.13].

 $^{^{13} \}mathrm{If} \ C$ is a 2-category, these pasting diagrams become the following:

1.4 Mates 14

Let

$$\nu \colon h \circ g \Longrightarrow g' \circ k \qquad A \xleftarrow{g} B$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow k$$

$$C \xleftarrow{g'} D$$

be a 2-morphism of C. The mate ν^{\dagger} of ν is then given by

and the mate of ν^{\dagger} is the 2-morphism $(\nu^{\dagger})^{\dagger} \colon f' \circ h \Longrightarrow k \circ f$ given by

and the mate of
$$\nu^{\dagger}$$
 is the 2-morphism $(\nu^{\dagger})^{\dagger} \colon f' \circ h \Longrightarrow k \circ f$ given by

$$A \xleftarrow{g} B \qquad A \Rightarrow B \qquad$$

Similarly, $(\omega)^{\dagger^{\dagger}} = \omega$.

012J 2 Morphisms of Internal Adjunctions

012K 2.1 Lax Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

- 012L **Definition 2.1.1.1.** A lax morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is a lax transformation between these viewed as 2-functors from the walking adjunction.
- **Remark 2.1.1.2.** In detail, a **lax morphism of internal adjunctions** from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ consists of
 - 1-Morphisms. A pair of 1-morphisms

$$\phi \colon A \to A',$$
$$\psi \colon B \to B'$$

of C;

• 2-Morphisms. A pair of 2-morphisms

$$A \xrightarrow{F} B$$

$$\downarrow \phi \qquad \downarrow \psi \qquad \alpha: F' \circ \phi \Rightarrow \psi \circ F,$$

$$A' \xrightarrow{F'} B'$$

$$A : G' \circ \phi \Rightarrow \psi \circ G$$

$$\downarrow \phi \qquad \downarrow \psi \qquad \downarrow \psi$$

of C;

satisfying the following conditions:

1. Compatibility With Units. We have an equality

of pasting diagrams in C;

2. Compatibility With Counits. We have an equality

of pasting diagrams in C.

012N 2.2 Oplax Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

- 012P Definition 2.2.1.1. An oplax morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is an oplax transformation between these viewed as 2-functors from the walking adjunction.
- 012Q Remark 2.2.1.2. In detail, an oplax morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ consists of
 - 1-Morphisms. A pair of 1-morphisms

$$\phi \colon A \to A',$$
$$\psi \colon B \to B'$$

of C;

• 2-Morphisms. A pair of 2-morphisms

of C;

satisfying the following conditions:

1. Compatibility With Units. We have an equality

of pasting diagrams in C;

2. Compatibility With Counits. We have an equality

of pasting diagrams in C.

012R 2.3 Strong Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

- 0128 **Definition 2.3.1.1.** A strong morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is a strong transformation between these viewed as 2-functors from the walking adjunction.
- **Remark 2.3.1.2.** In detail, a **strong morphism of internal adjunctions** from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is equivalently:
 - 1. A lax morphism of internal adjunctions as in Remark 2.1.1.2 whose 2-morphisms are invertible.
 - 2. An oplax morphism of internal adjunctions as in Remark 2.2.1.2 whose 2-morphisms are invertible.

012U 2.4 Strict Morphisms of Internal Adjunctions

Let C be a bicategory and let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C.

- 012V Definition 2.4.1.1. A strict morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is a strict transformation between these viewed as 2-functors from the walking adjunction.
- 012W Remark 2.4.1.2. In detail, a strict morphism of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$ is equivalently:
 - 1. A lax morphism of internal adjunctions as in Remark 2.1.1.2 whose 2-morphisms are identities.
 - 2. An oplax morphism of internal adjunctions as in Remark 2.2.1.2 whose 2-morphisms are identities.

3 2-Morphisms Between Morphisms of Internal Olividad Adjunctions

3.1 2-Morphisms Between Lax Morphisms of Internal Ad-012Y junctions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be lax morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

- O127 Definition 3.1.1.1. A 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as lax transformations.
- 0130 Remark 3.1.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ consist of 2-morphisms

$$\Gamma \colon \phi_1 \Rightarrow \phi_2$$

$$\Sigma \colon \psi_1 \Rightarrow \psi_2$$

of C such that we have equalities

of pasting diagrams in C.

3.2 2-Morphisms Between Oplax Morphisms of Internal Adjunctions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be oplax morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

- 0132 **Definition 3.2.1.1.** A **2-morphism from** $(\phi_1, \psi_1, \alpha_1, \beta_1)$ **to** $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as oplax transformations.
- 0133 Remark 3.2.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ consist of 2-morphisms

$$\Gamma \colon \phi_1 \Rightarrow \phi_2$$

$$\Sigma \colon \psi_1 \Rightarrow \psi_2$$

of C such that we have equalities

of pasting diagrams in C.

3.3 2-Morphisms Between Strong Morphisms of Internal Adonutions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be strong morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

- 0135 **Definition 3.3.1.1.** A **2-morphism from** $(\phi_1, \psi_1, \alpha_1, \beta_1)$ **to** $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as strong transformations.
- 0136 Remark 3.3.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is equivalently:
 - A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as lax transformations as in Remark 3.1.1.2.
 - A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as oplax transformations as in Remark 3.2.1.2.

3.4 2-Morphisms Between Strict Morphisms of Internal Adjunctions

Let C be a bicategory, let $(A, B, F, G, \eta, \epsilon)$ and $(A', B', F', G', \eta', \epsilon')$ be internal adjunctions in C, and let $(\phi_1, \psi_1, \alpha_1, \beta_1)$ and $(\phi_2, \psi_2, \alpha_2, \beta_2)$ be lax morphisms of internal adjunctions from $(A, B, F, G, \eta, \epsilon)$ to $(A', B', F', G', \eta', \epsilon')$.

- 0138 **Definition 3.4.1.1.** A **2-morphism from** $(\phi_1, \psi_1, \alpha_1, \beta_1)$ **to** $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is a modification between these viewed as strict transformations.
- 0139 Remark 3.4.1.2. In detail, a 2-morphism from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ is equivalently:
 - A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as lax transformations as in Remark 3.1.1.2.
 - A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as oplax transformations as in Remark 3.2.1.2.
 - A 2-morphism (Γ, Σ) from $(\phi_1, \psi_1, \alpha_1, \beta_1)$ to $(\phi_2, \psi_2, \alpha_2, \beta_2)$ viewed as strong transformations as in Remark 3.3.1.2.
- 4 Bicategories of Internal Adjunctions in a Bicate-913A gory

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Relations
- 6. Spans
- 7. Posets

Indexed and Fibred Sets

7. Indexed Sets

- 8. Fibred Sets
- 9. Un/Straightening for Indexed and Fibred Sets

Category Theory

- 11. Categories
- 12. Types of Morphisms in Categories
- 13. Adjunctions and the Yoneda Lemma
- 14. Constructions With Categories
- 15. Kan Extensions

Bicategories

- 17. Bicategories
- 18. Internal Adjunctions

Internal Category Theory

19. Internal Categories

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups

- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes