

An Analysis of Performance Variability in AWS Virtual Machines

Miguel de Lima¹, Luan Teylo² e Lúcia Drummond¹

Universidade Federal Fluminense¹, INRIA Bordeaux²

Agenda

- Motivação e Objetivos
- Ambiente de Avaliação
- Resultados
- Conclusão e Trabalhos Futuros

Motivação

- A Cloud já se provou como um ambiente viável para vários tipos de aplicações
- Provedores de Nuvens públicas estão focando no público de HPC
- Aplicações de HPC e Machine Learning estão sendo executadas na Cloud

Essas aplicações executam por bastante tempo e demandam bastante poder

computacional!

Objetivo

O desempenho computacional da cloud é sempre consistente?

Ambiente de Avaliação

- NAS Parallel Benchmarks EP (class D)
- Amazon EC2
 - US-EAST-1 (EUA) e SA-EAST-1 (Brasil)
- Spot e On-demand
- Ubuntu 24.04
- OMP_SET_NUM_THREADS=24

Instance Type	CPU Model	On-demand Price USD	
		us-east-1	sa-east-1
c5.12xlarge	2nd Intel Xeon (Cascade Lake 8275CL)	2.04	3.14
c6i.12xlarge	3rd Intel Xeon (Ice Lake 8375C)	2.04	3.14
c7i.12xlarge	4th Intel Xeon (Sapphire Rapids 8488C)	2.14	3.30
c5a.12xlarge	2nd AMD EPYC (7R32)	1.84	2.83
c6a.12xlarge	3rd AMD EPYC (7R13)	1.83	2.82
c7a.12xlarge	4th AMD EPYC (9R14)	2.46	 9
c6g.12xlarge	AWS Graviton2 (Arm)	1.63	2.51
c7g.12xlarge	AWS Graviton3 (Arm)	1.74	2.66

Ambiente de Avaliação

- AWSBENCH: utilizada para coletar os dados
 - https://github.com/migueluff/awsbench
- Coletas realizadas a cada 2 horas
- 150 testes por intervalo de tempo
- 15.185 testes com sucesso (23 de junho até 23 de julho)

- Considerando o mesmo tipo de VM, o desempenho é consistente entre as diferentes regiões?
- Como a evolução das VMs impactam no desempenho?
- O desempenho de uma VM On-demand é o mesmo observado em uma VM Spot do mesmo tipo?
- Existe uma variação de desempenho ao longo dos dias?

Desempenho entre diferentes regiões

- Considerando o mesmo tipo de VM, o desempenho é consistente entre as diferentes regiões?
 - A variação de desempenho parece ser influenciada principalmente pela arquitetura do processador.
- Como a evolução das VMs impactam no desempenho?
- O desempenho de uma VM On-demand é o mesmo observado em uma VM Spot do mesmo tipo?
- Existe uma variação de desempenho ao longo dos dias?

- Considerando o mesmo tipo de VM, o desempenho é consistente entre as diferentes regiões?
 - A variação de desempenho parece ser influenciada principalmente pela arquitetura do processador.
- Como a evolução das VMs impactam no desempenho?
- O desempenho de uma VM On-demand é o mesmo observado em uma VM Spot do mesmo tipo?
- Existe uma variação de desempenho ao longo dos dias?

*Desempenho considerando as gerações das VMs

^{*} apenas região US-EAST-1 (on-demand)

*Desempenho considerando as gerações das VMs

C6 para C7 Intel:

- +12,83% no desempenho médio
- +7,89% no preço por hora

AMD:

- +8,30% no desempenho médio
- +24.66% no preço por hora

Graviton:

- +33,39% no desempenho médio
- +7,16% no preço por hora

^{*} apenas região US-EAST-1 (on-demand)

- Considerando o mesmo tipo de VM, o desempenho é consistente entre as diferentes regiões?
 - A variação de desempenho parece ser influenciada principalmente pela arquitetura do processador.
- Como a evolução das VMs impactam no desempenho?
 - Para aplicações similares a EP, a última geração da Graviton apresentou a melhor relação de custo desempenho
- O desempenho de uma VM On-demand é o mesmo observado em uma VM Spot do mesmo tipo?
- Existe uma variação de desempenho ao longo dos dias?

- Considerando o mesmo tipo de VM, o desempenho é consistente entre as diferentes regiões?
 - A variação de desempenho parece ser influenciada principalmente pela arquitetura do processador.
- Como a evolução das VMs impacta no desempenho?
 - Para aplicações similares a EP, a última geração da Graviton apresentou a melhor relação de custo desempenho
- O desempenho de uma VM On-demand é o mesmo observado em uma VM Spot do mesmo tipo?
- Existe uma variação de desempenho ao longo dos dias?

*Variação entre Spot e On-demand

^{*} apenas região US-EAST-1

*Variação entre Spot e On-demand

*11,47% das requisições da instância c7i.12xlarge Spot foram negadas.

^{*} apenas região US-EAST-1

*Variação entre Spot e On-demand

^{*} apenas região US-EAST-1

- Considerando o mesmo tipo de VM, o desempenho é consistente entre as diferentes regiões?
 - A variação de desempenho parece ser influenciada principalmente pela arquitetura do processador.
- Como a evolução das VMs impactam no desempenho?
 - Para aplicações similares a EP, a última geração da Graviton apresentou a melhor relação de custo desempenho.
- O desempenho de uma VM On-demand é o mesmo observado em uma VM Spot do mesmo tipo?
 - VMs spots oferecem o mesmo desempenho de VMs on-demand a custos até 90% menores que on-demands.
- Existe uma variação de desempenho ao longo dos dias?

Variação ao longo dos dias

^{*} apenas região US-EAST-1

- Considerando o mesmo tipo de VM, o desempenho é consistente entre as diferentes regiões?
 - A variação de desempenho parece ser influenciada principalmente pela arquitetura do processador.
- Como a evolução das VMs impactam no desempenho?
 - Para aplicações similares a EP, a última geração da Graviton apresentou a melhor relação de custo desempenho
- O desempenho de uma VM On-demand é o mesmo observado em uma VM Spot do mesmo tipo?
 - VMs spots oferecem o mesmo desempenho de VMs on-demand a custos até 90% menores que on-demands
- Existe uma variação de desempenho ao longo dos dias?
 - A variação de desempenho parece ser influenciada principalmente pela arquitetura do processador, não foi observado um fenômeno que afetou as VMs de uma mesma região.

Conclusão

- O desempenho foi consistente entre as regiões us-east-1 e sa-east-1
- As Spot apresentaram desempenho similar às On-demand
- Processadores Graviton (c6g.12xlarge e c7g.12xlarge) apresentam quase nenhuma variação
- ☐ A instância c7g.12xlarge apresentou a melhor relação custo-benefício

Trabalhos Futuros

- Estender a análise para outras famílias de instâncias e regiões
- Explorar o impacto de diferentes tipos de workloads, como aplicações distribuídas e I/O-bound na variação de desempenho
- Investigar o impacto do overhead de comunicação em ambientes de nuvem usando kernels MPI disponíveis no NAS benchmark
- Estender o estudo para instâncias que são otimizadas para network-intensive workloads, como a c6gn e a c7gn

An Analysis of Performance Variability in AWS Virtual Machines

Miguel de Lima¹, Luan Teylo² e Lúcia Drummond¹

Universidade Federal Fluminense¹, INRIA Bordeaux² miguel_flj@id.uff.br

Trabalho financiado pelo projeto CNPq/AWS 421828/2022-6, Brazil.

