Constitutive modeling

Kinematics of strain

"2D geometric strain" by Sanpaz. Licensed under Public Domain via Wikimedia Commons.

Strain tensor

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix}$$

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$$
 for $i = 1, 2, 3$ $j = 1, 2, 3$

Volumetric strain

$$\varepsilon_{vol} = \operatorname{tr}(\boldsymbol{\varepsilon}) = \varepsilon_{11} + \varepsilon_{33} + \varepsilon_{33}$$

Material constants for isotropic materials

Young's modulus

$$E = \frac{S_{11}}{\varepsilon_{vol}} = \frac{S_{11}}{\varepsilon_{11}}$$

Bulk modulus

$$K = \frac{S_{11} + S_{22} + S_{33}}{3\varepsilon_{vol}}$$

Shear Modulus

$$G = \frac{1}{2} \frac{S_{13}}{\varepsilon_{13}}$$

Poisson's ratio

$$\nu = \frac{\varepsilon_{33}}{\varepsilon_{11}}$$

Typical Young's modulus values

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Typical Poissons' modulus values

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Generalized Hooke's law

$$\vec{\sigma} = C\vec{\varepsilon}$$

For isotropic materials

$$\left\{egin{array}{l} \sigma_{11} \ \sigma_{22} \ \sigma_{33} \ \sigma_{12} \ \sigma_{13} \ \sigma_{23} \end{array}
ight\}$$

$$=\frac{E}{(1+\nu)(1-2\nu)}\begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) \end{bmatrix}\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \\ 2\varepsilon_{13} \\ 2\varepsilon_{23} \end{bmatrix}$$

Relationships between constants

	<i>K</i> =	E =	$\lambda =$	G =	$\nu =$	M =
(K, E)	K	E	$\frac{3K(3K-E)}{9K-E}$	3 <i>KE</i> 9 <i>K–E</i>	$\frac{3K-E}{6K}$	$\frac{3K(3K+E)}{9K-E}$
(K, λ)	K	$\frac{9K(K-\lambda)}{3K-\lambda}$	λ	$\frac{3(K-\lambda)}{2}$	$\frac{\lambda}{3K-\lambda}$	$3K-2\lambda$
(K, G)	K	$\frac{9KG}{3K+G}$	$K-\frac{2G}{3}$	G	$\frac{3K-2G}{2(3K+G)}$	$K + \frac{4G}{3}$
(K, ν)	K	$3K(1 - 2\nu)$	$\frac{3K\nu}{1+\nu}$	$\frac{3K(1-2\nu)}{2(1+\nu)}$	ν	$\frac{3K(1-\nu)}{1+\nu}$
(K, M)	K	$\frac{9K(M-K)}{3K+M}$	$\frac{3K-M}{2}$	$\frac{3(M-K)}{4}$	$\frac{3K-M}{3K+M}$	M
(E, λ)	$\frac{E+3\lambda+R}{6}$	E	λ	$\frac{E-3\lambda+R}{4}$	$\frac{2\lambda}{E + \lambda + R}$	$\frac{E-\lambda+R}{2}$
(E, G)	EG 3(3G-E)	E	$\frac{G(E-2G)}{3G-E}$	G	$\frac{E}{2G}-1$	$\frac{G(4G-E)}{3G-E}$
(E, ν)	$\frac{E}{3(1-2\nu)}$	E	$\frac{E\nu}{(1+\nu)(1-2\nu)}$	$\frac{E}{2(1+\nu)}$	ν	$\frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$
(E, M)	$\frac{3M-E+S}{6}$	E	$\frac{M-E+S}{4}$	$\frac{3M+E-S}{8}$	$\frac{E - M + S}{4M}$	M
(λ, G)	$\lambda + \frac{2G}{3}$	$\frac{G(3\lambda + 2G)}{\lambda + G}$	λ	G	$\frac{\lambda}{2(\lambda+G)}$	$\lambda + 2G$
(λ, ν)	$\frac{\lambda(1+\nu)}{3\nu}$	$\frac{\lambda(1+\nu)(1-2\nu)}{\nu}$	λ	$\frac{\lambda(1-2\nu)}{2\nu}$	υ	$\frac{\lambda(1-\nu)}{\nu}$

Siesmic wave velocity $V_p = \sqrt{\frac{M}{\rho}}, \qquad V_s = \sqrt{\frac{G}{\rho}}$

$$V_p = \sqrt{\frac{M}{\rho}},$$

$$V_s = \sqrt{\frac{G}{
ho}}$$