Introducere

Definiție

Fie $B = \{0, 1\}.$

Se numește algebră booleană un sistem $(B, \vee, \wedge, -)$ unde:

- $\mathbf{0} \ \lor : B \times B \to B$ se numește disjuncție (sumă logică);
- \bullet $A: B \times B \to B$ se numește conjuncție (produs logic);
- $\mathbf{3} : B \rightarrow B$ se numește negație.

Tabelele de adevăr ale acestor operații sunt:

Α	В	$A \lor B$	$A \wedge B$	\overline{A}
0	0	0	0	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	0

Proprietăți și axiome ale unei algebre booleene

- $a \lor (b \lor c) = (a \lor b) \lor c, (\forall) a, b, c \in B$ (asociativitate)
- $a \wedge (b \wedge c) = (a \wedge b) \wedge c, (\forall) a, b, c \in B$ (asociativitate)
- $a \lor b = b \lor a$, $a \land b = b \land a$, $(\forall)a, b \in B$ (comutativitate)
- $a \lor 0 = a, (\forall) a \in B$ (0 elem. neutru față de \lor)
- $a \wedge 1 = a, (\forall) a \in B$ (1 elem. neutru față de \wedge)
- $a \land (b \lor c) = (a \land b) \lor (a \land c), (\forall) a, b, c \in B$ (distributivitate)
- $a \lor (b \land c) = (a \lor b) \land (a \lor c), (\forall) a, b, c \in B$ (distributivitate)
- $a \vee \overline{a} = 1, (\forall) a \in B$
- $a \wedge \overline{a} = 0, (\forall) a \in B$
- $a \lor a = a, a \land a = a(\forall)a \in B$ (idempotența)
- $\overline{a \lor b} = \overline{a} \land \overline{b}$, $\overline{a \land b} = \overline{a} \lor \overline{b}$ (legile lui De Morgan)

Definiție

Fie $B=\{0,1\}$ și $n\in\mathbb{N}^*$. O funcție $f:B^n\to B$ se numește funcție booleană.

Observație

O funcție booleană poate fi reprezentată în modul următor:

o ramojno zoonoama				p 0 a 0 0 op . o = o o
x_1	x_2		x_n	$ f(x_1, x_2, x_n) $
0		0	0	b_1
0		0	1	b_2
0		1	1	$b_{2^{n}-1}$
1		1	1	b_{2^n}

$$b_k \in B, k \in \{1, ..., 2^n\}$$

Definiție

Se numește produs elementar un produs de variabile sau negații ale lor.

Definiție

Se numește sumă elementară o sumă de variabile sau negații ale lor.

- Condiția necesară și suficientă pentru ca o sumă elementară să fie identic adevărată (să aibă valoarea 1) este ca aceasta să conțină cel puțin doi termeni, unul fiind negația celuilalt.
- Condiția necesară și suficientă pentru ca un produs elementar să fie identic fals (să aibă valoarea 0) este ca acesta să conțină cel puțin doi termeni, unul fiind negația celuilalt.

Definiție

Se numește formulă în algebra propozițională, orice propoziție compusă obținută din propoziții elementare prin aplicarea operațiilor logice.

Definiție

Se numește formă normală disjunctivă (FND) a unei formule, o formulă echivalentă care este o sumă de produse elementare ce contine aceleași variabile ca și formula inițială.

Definiție

Se numește formă normală conjunctivă (FNC) a unei formula, o formulă echivalentă care este un produs de sume elementare ce contine aceleași variabile ca și formula inițială.

Definiție

Se numește formă normală disjunctivă perfectă (FNDP) a unei formule, o formă normală disjunctivă care satisface condițiile:

- nu conține doi termeni identici;
- niciun termen nu conține doi factori identici;
- niciun termen nu conține simultan un factor și negația lui;
- în fiecare termen sunt prezente toate variabilele direct sau prin negația lor

Exemplu

$$f(x_1, x_2, x_3) = x_1 \overline{x_2} x_3 \vee \overline{x_1} x_2 x_3 \vee x_1 x_2 x_3$$

Definiție

Se numește formă normală conjunctivă perfectă (FNCP) a unei formule, o formă normală conjunctivă care satisface condițiile:

- nu conține doi factori identici;
- niciun factor nu conține doi termeni identici;
- niciun factor nu conține simultan un termen și negația lui;
- în fiecare factor sunt prezente toate variabilele direct sau prin negația lor

Exemplu

$$f(x_1, x_2, x_3) = (x_1 \vee \overline{x_2} \vee x_3)(\overline{x_1} \vee x_2 \vee x_3)(x_1 \vee x_2 \vee x_3)$$

Definiție

O funcție booleană este în formă canonică disjunctivă (FCD), dacă $f(x_1,x_2,...,x_n) = \forall f(i_1,i_2,...,i_n) x_1^{i_1} x_2^{i_2}...x_n^{i_n}$, unde $i_k \in \{0,1\}, x_k^0 = \overline{x_k}, \ x_k^1 = x_k, k \in \{1,2,...,n\}.$

Observație

Termenii în care $f(i_1, i_2, ..., i_n) = 0$ nu se mai scriu deoarece 0 este element neutru pentru disjuncție.

Fie funcția $f: B^3 \to B$ dată prin tabela de adevăr

The fulletia j . B T B data j			
x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Pentru fiecare valoare 1 a lui f se va insera un termen corespunzător:

•
$$x_1 = 0, x_2 = 0, x_3 = 0 \to \overline{x_1} \ \overline{x_2} \ \overline{x_3} = 1;$$

•
$$x_1 = 0, x_2 = 1, x_3 = 1 \rightarrow \overline{x_1}x_2x_3 = 1;$$

- $x_1 = 1, x_2 = 1, x_3 = 0 \rightarrow x_1 x_2 \overline{x_3} = 1;$
- $x_1 = 1, x_2 = 0, x_3 = 1 \rightarrow x_1 \overline{x_2} x_3 = 1;$

 $\textit{FCD a lui } f \colon f(x_1, x_2, x_3) = \overline{x_1} \ \overline{x_2} \ \overline{x_3} \lor \overline{x_1} x_2 x_3 \lor x_1 \overline{x_2} x_3 \lor x_1 x_2 \overline{x_3}.$

Exemplu

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

FCD a lui $f: f(x_1, x_2, x_3) = \overline{x_1} \ \overline{x_2} x_3 \lor x_1 \ \overline{x_2} \ \overline{x_3} \lor x_1 x_2 x_3.$

Definiție

O funcție booleană este în formă canonică conjunctivă (FCC) dacă $f(x_1,x_2,...,x_n)=\wedge f(i_1,i_2,...,i_n)\vee x_1^{i_1}x_2^{i_2}...x_n^{i_n}$, unde $i_k\in\{0,1\}, x_k^0=\overline{x_k},\ x_k^1=x_k, k\in\{1,2,...,n\}.$

Observație

Factorii în care $f(i_1, i_2, ..., i_n) = 1$ nu se mai scriu deoarece 1 este element neutru pentru conjuncție.

Fie funcția $f: B^3 \to B$ dată prin tabela de adevăr

The fulletia j . B T B data j			
x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Pentru fiecare valoare 0 a lui f se va insera un termen corespunzător:

•
$$x_1 = 0, x_2 = 0, x_3 = 1 \rightarrow x_1 \lor x_2 \lor \overline{x_3} = 0;$$

•
$$x_1 = 0, x_2 = 1, x_3 = 0 \rightarrow x_1 \lor \overline{x_2} \lor x_3 = 0;$$

•
$$x_1 = 1, x_2 = 0, x_3 = 0 \rightarrow \overline{x_1} \lor x_2 \lor x_3 = 0;$$

•
$$x_1 = 1, x_2 = 1, x_3 = 1 \rightarrow \overline{x_1} \lor \overline{x_2} \lor \overline{x_3} = 0;$$

FCC a lui f:

$$f = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}).$$

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

FCC a lui f:

$$f(x_1, x_2, x_3) = (x_1 \vee x_2 \vee x_3)(x_1 \vee \overline{x_2} \vee \overline{x_3})(\overline{x_1} \vee \overline{x_2} \vee x_3)$$

Definitie

Fie $f: B^n \to B$ o funcție booleană de n variabile. Atunci f se numește minterm dacă $(\exists)!(x_1,...x_n) \in B^n$ a.î. $f(x_1,...x_n) = 1$.

- Există 2^n mintermi pentru n variabile.
- Mintermii sunt de fapt produse logice ale tuturor variabilelor din domeniul unei funcții booleene, cu proprietatea ca variabilele care iau valoarea 0 sunt negate în argumentul în care funcția ia valoarea 1.

Pentru n=3, mintermii posibili sunt: $x_1x_2x_3$, $x_1x_2\overline{x_3}$, $x_1\overline{x_2}x_3$,

$$\overline{x_1}x_2x_3$$
 , $x_1\overline{x_2}$ $\overline{x_3}$, $\overline{x_1}x_2\overline{x_3}$, $\overline{x_1}$ $\overline{x_2}x_3$, $\overline{x_1}$; $\overline{x_2}$ $\overline{x_3}$.

De exemplu, un minterm poate fi $f(x_1, x_2, x_3) = x_1x_2x_3$.

Pentru
$$(x_1, x_2, x_3) = (1, 1, 1) \rightarrow f(x_1, x_2, x_3) = 1$$
.

Definiție

Fie $f: B^n \to B$ o funcție booleană de n variabile. Atunci f se numește maxterm dacă $(\exists)!(x_1,...x_n) \in B^n$ a.î. $f(x_1,...x_n) = 0$.

- Exista 2^n maxtermi pentru n variabile.
- Maxtermii sunt de fapt sume logice ale tuturor variabilelor din domeniul unei funcții booleene, cu proprietatea ca variabilele care iau valoarea 1 sunt negate în argumentul în care funcția ia valoarea 0.

Pentru n=3, maxtermii posibili sunt: $x_1\vee x_2\vee x_3$, $x_1\vee x_2\vee \overline{x_3}$, $x_1\vee \overline{x_2}\vee x_3$, $\overline{x_1}\vee x_2\vee x_3$, $\overline{x_1}\vee \overline{x_2}\vee \overline{x_3}$, $\overline{x_1}\vee \overline{x_2}\vee \overline{x_3}$, $\overline{x_1}\vee \overline{x_2}\vee \overline{x_3}$, $\overline{x_1}\vee \overline{x_2}\vee \overline{x_3}$. De exemplu, un maxterm poate fi $f(x_1,x_2,x_3)=x_1\vee x_2\vee x_3$.

Pentru $(x_1, x_2, x_3) = (0, 0, 0) \rightarrow f(x_1, x_2, x_3) = 0.$

- Mintermii sunt produse elementare, iar maxtermii sunt sume logice elementare.
- Orice funcție booleană, cu excepția funcției constante 0, poate fi scrisă sub formă canonică disjunctivă (FCD).
- Orice funcție booleană, cu excepția funcției constante 1, poate fi scrisă sub formă canonică conjunctivă (FCC).
- Pentru o funcție booleană dată, formele canonice sunt unice.
- Funcțiile booleene pot descrie funcționarea unui sistem de elemente care pot la un moment dat să se afle într-una din două stări posibile.