"Convolución de secuencias"

Señales y Sistemas

Clase de problemas nº 7 15.11.2019

Material basado en el libro "Problemas resueltos de señales y sistemas" S. Marini, E. Gimeno y en los apuntes del profesor Stephan Marini.

Daniel Puerto

TEMA 3. SEÑALES Y SISTEMAS EN TIEMPO DISCRETO

Problema 1.3.1. Operaciones básicas con secuencias. Dada la señal de tiempo discreto, x[n] de la figura, calcula las señales que se piden a continuación: Ver apuntes de teoría, apartado 3.4.

n	x[n]
-1	1,5
0	1
1	1
2	1
3	0,5
4	0,5
5	0

$$x[n] = 1,5\delta[n+1] + 1\delta\delta[n] + 1\delta[n-1] + 1\delta[n-2] + 0,5\delta[n-3] + 0,5\delta[n-4] + 0\delta[n-5]$$

a) x(n-2). Desplazamiento en el tiempo

Si $n-2=0 \rightarrow n=2$. La señal se retrasa 2 utd.

$$x[n-2] = 1.5\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] + 0.5\delta[n-5] + 0.5\delta[n-6]$$

b) x[4 - n]. Inversión en el tiempo

Si 4-n=0 \rightarrow n=4. Primero se invierte y luego se desplaza en el tiempo.

$$x[4-n] = 0.5\delta[n] + 0.5\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] + 1.5\delta[n-5]$$

d) x[n] · u[2-n]. Multiplicación por la secuencia unidad más dos.

$$x[n] \cdot u[2 - n] = 1,5\delta[n + 1] + \delta[n] + \delta[n - 1] + \delta[n - 2]$$

e) $x[n+1] \cdot \delta[n-3]$. Multiplicación por otra secuencia.

Se multiplica la secuencia original por otra que solo tiene una utd

$$x[n+1] \cdot \delta[n-3] = \delta[n-3].$$

f) $x[n+1] * \delta[n-3]$. Convolución.

$$x[n+1]*\delta[n-3] = x[n+1-3] = x[n-2].$$

Por n+1 desplazamos 1 a la izquierda, y por n-3 desplazamos 3 a derecha. En definitiva, se desplaza 2 utd a la derecha.

$$x[n+1] \cdot \delta[n-3] = 1,5\delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4] + 0,5\delta[n-5] + 0,5\delta[n-6]$$

CÁLCULO DE CONVOLUCIONES

Dadas las señales x[n] e y[n], calcular la convolución z[n] = x[n] * y[n]

$$x[n] = 2\delta[n] + \delta[n-2] - \delta[n-3]$$

$$y[n] = \delta[n+1] + 2\delta[n] - 3\delta[n-1]$$

MÉTODO A.- SUPERPOSICIÓN DE IMPULSOS UNIDAD (δ [n])

Se sustituye cada secuencia por su expresión en función de señales impulsos unidad y se opera teniendo en cuenta las propiedades distributiva, escalado en amplitud y elemento neutro de la convolución.

Primero se calcula el instante discreto en el que comenzará y terminará z[n].

$$Z_{ini} = X_{ini} + Y_{ini} = 0 - 1 = -1$$

 $Z_{fin} = X_{fin} + Y_{fin} = 3 + 1 = 4$

El instante es **1** si tenemos $\delta[n-1]$

Por lo tanto
$$z[n] \neq 0$$
 para $-1 \leq n \leq 4$
O sea, entre $(n+1)$ y $(n-4)$

$$x[n] = 2\delta[n] + \delta[n-2] - \delta[n-3]$$

 $y[n] = \delta[n+1] + 2\delta[n] - 3\delta[n-1]$

Luego se realiza el cálculo, sustituyendo y luego multiplicando factor a factor:

$$z[n] = x[n] * y[n] = x[n] * (\delta[n+1] + 2\delta[n] - 3\delta[n-1]) = x[n+1] + 2x[n] - 3x[n-1] =$$

$$\begin{array}{lll} (2\delta[n+0]+\delta[n-2]-\delta[n-3]) \ ^* \ \delta[n+1] &= 2\delta[n+1]+\delta[n-2+1]-\delta[n-3+1]+\\ (2\delta[n+0]+\delta[n-2]-\delta[n-3]) \ ^* \ 2\delta[n] &= 4\delta[n]+2\delta[n-2]-2\delta[n-3]+\\ (2\delta[n+0]+\delta[n-2]-\delta[n-3]) \ ^* \ -3\delta[n-1] &= -6\delta[n-1]-3\delta[n-2-1]-3(-1)\delta[n-3-1]=\\ &= 2\delta[n+1]+\delta[n-1]-\delta[n-2]+\\ &= 4\delta[n]+2\delta[n-2]-2\delta[n-3]+\\ &= -6\delta[n-1]-3\delta[n-3]+3\delta[n-4]= \end{array}$$

$$= 2\delta[n+1] + 4\delta[n] - 5\delta[n-1] + \delta[n-2] - 5\delta[n-3] + 3\delta[n-4].$$

MÉTODO B.- MEDIANTE TABLA.

Para cada valor de $n_{z1} \le n \le n_{z2}$ se calcula la convolución organizando las secuencias en una tabla, y calculando el sumatorio de los productos de x[k] e y[n-k].

$$z[n]=x[n]*y[n] = z[n] = \sum_{k=-\infty}^{\infty} x[k]*y[n-k]$$

 $z[n] \neq 0$ para $-1 \leq n \leq 4$ O sea, entre (n+1) y (n-4)

$$x[n] = 2\delta[n] + \delta[n-2] - \delta[n-3]$$

$$y[n] = \delta[n+1] + 2\delta[n] - 3\delta[n-1]$$

y[n-k]·k	-3	-2	-1	0	1	2	3	4	5	6	7	n	z[n]	
x[k]				2 2δ[n-0]		1 1δ[n-2]	- 1 -1δ[n-3]							
y[-1-k]		-3	2	1								-1 (2·1=2	n+1
y[0-k]			- 3 -3δ[n-1]	2 2δ[n-0]	1 1δ[n+1]							0	2·2= 4	n
y[1-k]				-3	2	1						1	2(-3)+1·1=-6+1=-5	n-1
y[2-k]					-3	2	1					2	1.2+(-1).1=2-1=1	n-2
y[3-k]						-3	2	1				3	1(-3)+(-1)2=-5	n-3
y[4-k]							-3	2	1			4	(-1)(-3)=3	n-4

$$z[n] = 2\delta[n+1] + 4\delta[n] - 5\delta[n-1] + \delta[n-2] - 5\delta[n-3] + 3\delta[n-4]$$

MÉTODO C.- RESOLUCIÓN GRÁFICA.

Similar al anterior. Para cada valor de $n_{z1} \le n \le n_{z2}$ se calcula la convolución mediante la representación gráfica de x[k] e y[n - k]

$$z[n] = x[n] * y[n] = z[n] = \sum_{k=-\infty}^{\infty} x[k] * y[n-k]$$

 $z[n] \neq 0$ para $-1 \leq n \leq 4$ O sea, entre (n+1) y (n-4)

Para n=-1;
$$\mathbf{z}[-1] = \sum_{k=-\infty}^{\infty} x[k] * y[-1-k]$$

Para n=1;
$$\mathbf{z}[1] = \sum_{k=-\infty}^{\infty} x[k] * y[1-k]$$

$$z[n] = 2\delta[n+1] + 4\delta[n] - 5\delta[n-1] + \delta[n-2] - 5\delta[n-3] + 3\delta[n-4]$$