PROJETO E SIMULAÇÃO DE UM MANIPULADOR ROBÓTICO COM 5 GRAUS DE LIBERDADE E SISTEMA DE VISÃO INTEGRADO

Jéssica Lima Motta¹, Leonardo Mendes de Souza Lima², Miguel Felipe Nery Vieira³, Vinicius José Gomes de Araújo Felismino⁴; Tiago Pereira de Souza⁵, Lucas Cruz da Silva⁶

¹Bolsista; Programa novos talentos - competência robótica e sistemas autônomos; jessica.motta@fbter.org.br

²Bolsista; Programa novos talentos - competência robótica e sistemas autônomos; leonardo.lima@fbter.org.br

³Bolsista; Programa novos talentos - competência robótica e sistemas autônomos; miguel.vieira@fbter.org.br

⁴Bolsista; Programa novos talentos - competência robótica e sistemas autônomos;

vinicius.felismino@fbter.org.br

⁵Engenheiro Eletricista; Centro Universitário SENAI CIMATEC; Salvador-BA; tiago.souza@fieb.org.br

⁶Mestre em Engenharia Elétrica; Centro Universitário SENAI CIMATEC; Salvador-BA; lucas.cs@fieb.org.br

RESUMO

Timon-HM é um manipulador projetado, simulado e construído com o intuito de atender às demandas relacionadas ao reconhecimento de marcadores visuais e acionamento de interruptores, chaves ou botões. Posteriormente, este mesmo manipulador robótico será integrado ao robô *Warthog*, desenvolvido pela *Clearpath Robotics*, com o propósito de realizar a atividade de investigação em ambiente externo, desta vez participando de uma simulação de busca e desarme de bombas. O pacote de simulação do manipulador foi construído através do software *Gazebo* aliado ao *Movelt* e a ferramenta de visualização *Rviz*. Testes foram realizados considerando diferentes posições e orientações do alvo, verificando-se a capacidade do sistema de atender à demanda solicitada.

PALAVRAS-CHAVE: Manipulador; ROS; Gazebo; Reconhecimento visual; Movelt.

1. INTRODUÇÃO

A distinção entre um robô industrial e automação fixa ainda está indefinida, porém tem-se que se um dispositivo mecânico é flexível à programação podendo realizar diversas aplicações, então, provavelmente este é um robô industrial.¹ O aumento do uso de robôs industriais é em consequência do seu custo que vem sofrendo grande declínio nas últimas décadas.² Hoje, além de serem mais eficientes, estão mais rápidos, flexíveis e precisos. A utilização de robôs nas tarefas permite mais segurança aos seres humanos e confere maior confiabilidade, repetibilidade e qualidade no trabalho.

Muitas pesquisas vêm sendo realizadas na área de manipuladores robóticos. Em (HERNANDEZ-MENDEZ et al., 2017) é descrito o desenvolvimento de um manipulador robótico com 3 DoF (*Degrees of Freedom* - Graus de Liberdade) e dois dedos independentes. Este robô foi desenvolvido com o propósito de manipular objetos, cujas localizações são conhecidas e transportá-los de uma localidade para outra utilizando ROS. Este trabalho serviu de base para a concepção e modelagem de manipuladores como o Timon-HM. O manipulador descrito neste trabalho foi desenvolvido com o intuito de complementar o rol de estudos dedicados a manipuladores robóticos autônomos. Utilizou-se o *Movelt* para tratar do planejamento de trajetória e o *Rviz* como ferramenta de visualização.³

O propósito deste projeto é fazer com que este braço robótico possua a capacidade de reconhecer um marcador por meio de uma câmera RGB e em sequência realizar intervenções no ambiente. A escolha do framework Robot Operating System (ROS)⁴ se deu por conta de o mesmo possuir suficiente conjunto de bibliotecas e ferramentas, código aberto e uma grande comunidade disponível na web. Para o componente de reconhecimento, a biblioteca ArUco ofereceu todos os dicionários e recursos para a implementação do código de detecção. Ao final do projeto, é esperado que este dispositivo seja capaz de realizar todas as funções projetadas tanto em ambiente simulado quanto no mundo real. Consequentemente, apresentará, como benefícios, a capacitação de profissionais pertencentes à área de desenvolvimento e operação de manipuladores robóticos e também contribuirá para a criação de outros manipuladores com características e objetivos semelhantes.

2. METODOLOGIA

Este trabalho tem caráter teórico e experimental. A técnica de modelagem e simulação adotada permite criar, em computadores, ambientes virtuais os quais imitam o comportamento de praticamente qualquer tipo de sistema.⁵

Todos os desenhos foram feitos em 3D com a ajuda do software *OnShape*⁶, um sistema CAD 2D/3D em nuvem que permite que todos em uma equipe trabalhem juntos usando apenas um navegador da Internet.⁷ Em seguida, um arquivo URDF foi construído contendo todos os elementos presentes no robô, incluindo características de sensores e parâmetros de montagem.

Os modelos virtuais do manipulador e do laboratório foram utilizados para simular a execução de tarefas no *Gazebo^{8,} Rviz*⁹ e *Movelt*¹⁰, simuladores de robótica capazes de realizar cálculos e captar informações a respeito do ambiente virtual. Para resolver a cinemática inversa, utilizou-se no *Movelt* o plugin TRAC-IK, um método alternativo ao habitual uso da inversa Jacobiana. Este método se adequa bem a manipuladores que possuam limitações em suas juntas, ao contrário de algoritmos baseados no teorema de Newton. Foi utilizado o OMPL (*Open Motion Planning Library*), uma coleção de algoritmos de planejamento de movimentação geralmente usada no *Movelt*.

Testes em ambiente simulado possibilitam a previsão de problemas que possam surgir no mundo real e assim solucionar virtualmente complicações relacionadas ao limite de movimentos em cada junta, evitando que a estrutura física seja danificada.

Com o fim da realização dos testes virtuais, o modelo será implementado fisicamente e controlado pelo ROS, framework empregado no manipulador.

3. RESULTADOS E DISCUSSÃO

Através dos softwares mencionados, foram definidas as principais características presentes no manipulador. O alcance máximo de 979 mm de distância indica até onde o braço pode chegar carregando na ponta um peso que não pode ultrapassar 1,94 kg. A tensão de operação de 24 V segue as especificações presentes nos motores Dynamixel empregados. Por meio dos softwares de simulação citados, foi possível encontrar o peso estimado de 7,38 kg para o manipulador que pode ser visto na Figura 1 (a). Na imagem, o mesmo está em cima da mesa de operação, em posição inicial e de frente para o seu objetivo.

Foram realizados alguns testes de planejamento de trajetória e resultados promissores para o cumprimento da tarefa foram encontrados como o descrito na Figura 1 (b). Uma sequência de poses foi enviada, planejada e executada a partir da classe *MoveGroupInterface*, que proporciona diversas operações e configurações de objetivos para juntas ou poses, planeja movimentos e é capaz de adicionar objetos ao ambiente e ao robô. A imagem da câmera foi extraída e é exibida na Figura 1 (c), sendo utilizada para determinação da pose do botão em relação ao *end effector* do manipulador.

Figura 1: (a) Manipulador realizando tarefa no *Gazebo*, (b) Planejamento de trajetória com *Movelt*, (c) Visão a partir da câmera integrada (*Rviz*).

4. CONSIDERAÇÕES FINAIS

Os métodos empregados neste projeto apresentaram resultados esperados em ambientes gerados pelo *Gazebo*, *Movelt* e *Rviz*, sendo o manipulador capaz de acionar o painel elétrico a partir da detecção de um marcador visual, pendente a realização dos testes no mundo real. Necessitam-se ainda verificações do manipulador robótico em diferentes tarefas, como realizar movimentos mais complexos e procurar por outros pontos que estejam dentro ou fora do seu espaço de trabalho. Adiante, propõe-se finalizar o desenvolvimento e integração do sistema de visão que será aplicado, assim como a montagem final utilizando partes reais. A eficácia

do efetuador final será avaliada conforme resultados encontrados e ajustes serão realizados caso este não atenda as especificações desejadas.

5. REFERÊNCIAS

- ¹ CRAIG, John J. Robótica. 3ª edição. Rev. Atual, 2012.
- ² HERNÁNDEZ-ORDOÑEZ, Martín et al. An education application for teaching robot arm manipulator concepts using augmented reality. **Mobile Information Systems**, v. 2018, 2018.
- ³ HERNANDEZ-MENDEZ, Sergio et al. Design and implementation of a robotic arm using ROS and Movelt!. In: **2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)**. IEEE, 2017. p. 1-6.
- ⁴ SIMPLÍCIO, Paulo Victor Galvão; LIMA, Beatriz Rêgo. Manipuladores robóticos industriais. **Caderno de Graduação-Ciências Exatas e Tecnológicas-UNIT**, v. 3, n. 3, p. 85, 2016.
- ⁵ ROS. Ros, 2010. Disponível em: https://www.ros.org/. Acesso em: 03 de abril de 2020.
- ⁶ ONSHAPE. Capterra, 2019. Disponível em: https://www.capterra.com.br/software/164681/onshape. Acesso em: 02 de abril de 2020.
- ⁷ FREITAS, Paulo J. de. Introdução a modelagem e Simulação de Sistemas. **Florianópolis, SC, Brasil: Visual Books**, p. 2-14, 2001.
- ⁸ GAZEBO. Gazebo, 2002. Disponível em: http://gazebosim.org/. Acesso em: 03 de abril de 2020.
- ⁹ RVIZ. Rviz, 2010. Disponível em: http://wiki.ros.org/rviz. Acesso em: 03 de abril de 2020.
- ¹⁰ MOVEIT. Movelt, 2016. Disponível em: https://moveit.ros.org/. Acesso em: 03 de abril de 2020.