Pr. Cabri 792

Enunciado

Dado un triángulo ABC cuyos lados miden a =BC, b=CA, c= AB, demuestre que a^2 - b^2 =bc si y solo si < CAB = 2 < ABC.

De Diego y otros (2014):Problemas de oposiciones al Cuerpo de Enseñanza Secundaria.

Solución por César Beade Franco

Del teorema del coseno sabemos que $a^2=b^2+c^2-2bcCosA$ y $b^2=a^2+c^2-2acCosB$. Restando la segunda ecuación de la primera y agrupando términos obtenemos $a^2-b^2=acCosB-bcCosA$ (*).

Si suponemos que $a^2-b^2=bc$, la expresión (*) se transforma en $bc=acCosB-bcCosA \Rightarrow b=aCosB-bCosA \Rightarrow b(1+CosA)=aCosB \Rightarrow CosA = \frac{aCosB}{b}-1 \Rightarrow CosA = \frac{SenACosB}{SenB}-1$, pues del

teorema del seno sabemos que $\frac{a}{b} = \frac{SenA}{SenB}$, así que CosASenB=SenACosB-SenB

 \Rightarrow SenB=SenACosB-CosASenB \Rightarrow SenB=Sen(A-B) \Rightarrow B=A-B \Rightarrow A=2B.

Recíprocamente si en (*) suponemos que A=2B, esta expresión se transforma en $a^2-b^2=c(aCosB-bCosA)=c(aCosB-bCos2B)$. Del teorema del seno deducimos que

 $\frac{a}{b} = \frac{\text{Sen2B}}{\text{SenB}} = 2\text{CosB} \Rightarrow a = 2b\text{CosB}$, con lo que la igualdad anterior queda $a^2 - b^2 = c(2b\text{Cos}^2\text{B-b}(\text{Cos}^2\text{B-Sen}^2\text{B})) = cb(2\text{Cos}^2\text{B-Cos}^2\text{B+Sen}^2\text{B}) = bc$.