PROBABILIDADES Y ESTADÍSTICA (C)

SIMULACIÓN PRÁCTICA 7 - PARTE 1

Sea $(X_i)_{i\geq 1}$ una muestra aleatoria con distribución F. Denotemos con X a un elemento con misma distribución que X_i . Asuma que estamos interesados en estimar el la probabilidad de que X sea mayor a uno: $\theta(F) := \mathbb{P}_F(X > 1)$.

Estimador 1:

- 1.1 Proponga un estimador $\widehat{\theta}_n$ consistente para $\theta(F) = \mathbb{P}_F(X > 1)$.
- 1.2 Implemente una función **est1** que tenga por argumento un conjunto de datos (x_1, \ldots, x_n) y devuelva el valor de la estimación obtenida utilizando $\widehat{\theta}_n$.
- 1.3 Calcule el valor de $\widehat{\theta}_n$ en el siguiente conjunto de datos:

 $12.23 \quad 6.37 \quad 6.10 \quad 0.70 \quad 3.48 \quad 2.82 \quad 9.55 \quad 2.21 \quad 0.72 \quad 9.09.$

Mundo Exponencial: Calentando motores

1.4 Sea X una variabe aleatoria con distribución F, exponencial de parámetro $\lambda=0.2$: $X\sim\mathcal{E}(0.2)$. Indique el valor de

$$\mathbb{E}(X) = \dots$$
, $\mathbb{V}(X) = \dots$, $\mathbb{P}(X > 1) = \dots$, cuando $X \sim \mathcal{E}(0.2)$.

1.5 Sea ahora X una variabe aleatoria con distribución F pertenecinete a la familia exponencial: es decir, $X \sim \mathcal{E}(\lambda)$ con λ DESCONOCIDO. Exprese cada uno de los siguientes objetos en función de λ :

$$\mathbb{E}(X) = \dots$$
, $\mathbb{V}(X) = \dots$, $\mathbb{P}(X > 1) = \dots$, cuando $X \sim \mathcal{E}(\lambda)$.

Mundo Exponencial: Haciendo Estadística

Sean $(X_i)_{i\geq 1}$ i.i.d., con misma distribución que X. Asuma ahora que F pertenece a la familia exponencial; es decir, $X \sim \mathcal{E}(\lambda)$, con λ DESCONOCIDO.

1.6 Proponga un nuevo estimador $\widetilde{\theta}_n$ consistente para $\theta(F) = \mathbb{P}_F(X > 1)$ bajo este nuevo escenario. Es decir, defina $\widetilde{\theta}_n = f_n(X_1, \dots, X_n)$ de forma tal que

$$\widetilde{\theta}_n = f_n(X_1, \dots, X_n) \xrightarrow{p} e^{-\lambda} \text{ cuando } X_i \sim \mathcal{E}(\lambda), \forall \lambda > 0.$$

- 1.7 Implemente una función **est2** que tenga por argumento un conjunto de datos (x_1, \ldots, x_n) y devuelva el valor de la estimación obtenida utilizando $\widetilde{\theta}_n$.
- 1.8 Calcule el valor de $\widetilde{\theta}_n$ en el siguiente conjunto de datos:

$$12.23 \quad 6.37 \quad 6.10 \quad 0.70 \quad 3.48 \quad 2.82 \quad 9.55 \quad 2.21 \quad 0.72 \quad 9.09.$$

Simulación 1:. A lo largo de esta simulación generaremos variables con distribución exponencial de paramétro $\lambda=0.2$.

- 1.9 Indique cual es el veradero valor que estamos queriendo estimar: $\theta_0 = \mathbb{P}(X > 1)$, siendo $X \sim \mathcal{E}(0.2)$.
- 1.10 Genere un conjunto de n=50 datos y calcule cada uno de los estimadores.
- 1.11 Genere Nrep=1000 conjunto de datos de tamaño n=50 y guarde los valores de cada uno de los dos estimadores calculados en cada uno de los Nrep=1000 conjuntos de datos.
- 1.12 Realize un histograma de cada uno de los estimadores propuestos con los valores obtenidos en el item anterior. Comente los gráficos realizados. Indique que etimador prefiere en este escenario y explique a que atribuye sus bondades.

Recuerde que el error cuadrático medio de un estimador $\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$ está dado por

$$ECM = \mathbb{E}\{(\widehat{\theta}_n - \theta)^2\}. \tag{0.1}$$

Para obtener el ECM en el punto θ necesitamos conocer la distribución de $\widehat{\theta}_n$. Sin embargo, cuando simulamos y generamos datos, podemos estimar el ECM con su versión empírica,(ECME) haciendo

ECME =
$$\frac{1}{Nrep} \sum_{i=1}^{Nrep} (\widehat{\theta}_{n,i} - \theta)^2, \qquad (0.2)$$

siendo que $\widehat{\theta}_{n,i}$ la estimación obtenida en la *i*-ésima replicación.

1.13 Represente en una tabla el error cuadrático medio (estimado) de los estimadores $\widehat{\theta}_n$ y $\widetilde{\theta}_n$ para muestras de tamaño $n{=}150, n{=}200, n{=}500$ y $n{=}1000,$ utilizando Nrep=1000 replicaciones en cada caso. ¿Qué estimador prefiere bajo este escenario?

Mundo Normal: Ojo al Piojo! Considere ahora variables aleatorias X_i i.i.d. con distribución normal de media $\mu = 1/0.2$ y $\sigma^2 = 1/0.2^2$.

- 1.14 Calcule la probabilidad de que X_i supere el valor 1: $\mathbb{P}(X_i > 1)$
- 1.15 Calcule el valor de cada uno de los siguientes límites:

$$\lim_{n\to\infty}\widehat{\theta}_n(X_1,\ldots,X_n)=\ldots,\quad \lim_{n\to\infty}\widetilde{\theta}_n(X_1,\ldots,X_n)=\ldots$$

1.16 Propongo un nuevo estimador $\theta_n^* = \theta_n^*(X_1, \dots, X_n)$ para $\theta(F) = \mathbb{P}_F(X_i > 1)$, asumiendo asumiendo ahora que F pertenece a la normal: $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

Simulación 2: A lo largo de esta simulación generaremos variables con distribución normal de media $\mu = 1/0.2$ y $\sigma^2 = 1/0.2^2$. Represente en una tabla el error cuadrático medio (estimado) de los estimadores $\hat{\theta}_n$, $\tilde{\theta}_n$ y θ_n^* para muestras de tamaño $n{=}150$, $n{=}200$, $n{=}500$ y $n{=}1000$, utilizando Nrep=1000 replicaciones en cada caso. Analice los resultados obtenidos y explique que estimador elegiría bajo este escenario.