Geometria B

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2016/2017 6 febbraio 2018

Si svolgano i seguenti quattro esercizi. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Si risponda ai seguenti quesiti:

- (1a) Sia X uno spazio topologico e siano A e B due sottoinsiemi di X. Indichiamo con $\operatorname{int}(A)$, $\operatorname{int}(B)$ e $\operatorname{int}(A \cap B)$ rispettivamente le parti interne in X di A, B e $A \cap B$. Si dimostri che $\operatorname{int}(A) \cap \operatorname{int}(B) = \operatorname{int}(A \cap B)$. Si costruisca inoltre un esempio esplicito di X, A e B tale che $\operatorname{int}(A) \cup \operatorname{int}(B) \neq \operatorname{int}(A \cup B)$.
- (1b) Sia $f: X \to Y$ una applicazione continua e surgettiva tra spazi topologici X e Y. Si dimostri che, se D è un sottoinsieme denso di X, allora f(D) è un sottoinsieme denso di Y.

SOLUZIONE: (1a) Evidentemente $\operatorname{int}(A \cap B) \subset \operatorname{int}(A)$ e $\operatorname{int}(A \cap B) \subset \operatorname{int}(B)$, dunque $\operatorname{int}(A \cap B) \subset \operatorname{int}(A) \cap \operatorname{int}(B)$. Sia τ la topologia di X. Se $x \in \operatorname{int}(A) \cap \operatorname{int}(B)$ allora esistono $U, V \in \mathcal{N}_{\tau}(x)$ tali che $U \subset A$ e $V \subset B$. Poiché $U \cap V \subset A \cap B$ e $U \cap V \in \mathcal{N}_{\tau}(x)$, segue che $x \in \operatorname{int}(A \cap B)$. Dunque $\operatorname{int}(A) \cap \operatorname{int}(B) \subset \operatorname{int}(A \cap B)$ e quindi $\operatorname{int}(A) \cap \operatorname{int}(B) = \operatorname{int}(A \cap B)$.

Se l'insieme $X := \{a, b\}$ è dotato della topologia banale, $A := \{a\}$ e $B := \{b\}$, allora $int(A) \cup int(B) = \emptyset \neq X = int(A \cup B)$.

(1b) Sia U un aperto non-vuoto di Y. Dobbiamo provare che $f(D) \cap U \neq \emptyset$. Poiché f è continua e surgettiva, $f^{-1}(U)$ è un aperto non-vuoto di X. Poiché D è denso in X, segue che $D \cap f^{-1}(U) \neq \emptyset$ e quindi anche $f(D) \cap U \neq \emptyset$, come desiderato.

Esercizio 2. Sia $X := \{n \in \mathbb{N} \mid n \ge 2\}$. Per ogni $n \in X$, definiamo

$$B_n := \{ m \in X \mid m \text{ è un multiplo di } n \}.$$

Denotiamo con \mathcal{B} la famiglia $\{B_n \in \mathcal{P}(X) \mid n \in X\}$ di sottoinsiemi di X.

- (2a) Si dimostri che \mathcal{B} è la base di una topologia τ di X. Si dica inoltre se (X,τ) è connesso e/o compatto.
- (2b) Sia τ la topologia su X definita in (2a). Definiamo una relazione di equivalenza \Re su X ponendo: $m \Re n$ se e soltanto se n-m=2k per qualche $k \in \mathbb{Z}$. Indichiamo con $(X/_{\Re}, \eta)$ lo spazio topologico quoziente di (X, τ) modulo \Re . Si determinino tutti gli aperti di η .

SOLUZIONE: (2a) \mathcal{B} è un ricoprimento di X in quanto $n \in B_n$ per ogni $n \in X$. Per ogni $m, n \in X$, si ha che $B_m \cap B_n = B_{\text{mcm}(m,n)}$, dunque \mathcal{B} è la base di una (unica) topologia τ di X.

Proviamo che (X, τ) è connesso. Siano $A, B \in \tau \setminus \{\emptyset\}$ e siano $m \in A$ e $n \in B$. Vale che $B_m \subset A$ e $B_n \subset B$ (perché?) e quindi $mn \in B_m \cap B_n \subset A \cap B$. Segue che $A \cap B \neq \emptyset$, dunque (X, τ) è connesso.

Osserviamo che $\{B_p\}_{p \text{ primo}}$ è un ricoprimento aperto di X dal quale non si può estrarre alcun sottoricoprimento finito. Dunque (X, τ) non è compatto.

(2b) Sia $\pi: X \to X/_{\mathcal{R}}$ la proiezione al quoziente. Osserviamo che $X/_{\mathcal{R}} = \{\pi(2), \pi(3)\}$ e $\pi^{-1}(\pi(2)) = B_2 \in \tau$. Inoltre $\pi^{-1}(\pi(3)) = \{3 + 2k \in X \mid k \in \mathbb{N}\} \notin \tau$ in quanto $3 \in \pi^{-1}(\pi(3))$, ma $3 \in B_3 \notin \pi^{-1}(\pi(3))$. Segue che $\eta = \{\emptyset, \{\pi(2)\}, X/_{\mathcal{R}}\}$.

Esercizio 3. Si considerino i due sottospazi topologici di \mathbb{R}^2 rappresentati in figura: lo spazio topologico O ("occhiali") e il suo sottospazio M ("montatura").

- (3a) Calcolare il gruppo fondamentale di O.
- (3b) Stabilire se M è un retratto/retratto di deformazione di O.

SOLUZIONE: (3a) Lo spazio topologico O è un CW complesso che si può ottenere a partire da sette 0-celle $\{P_1, \ldots, P_7\}$, nove 1-celle $\{\ell_1, \ell_2, \ldots, \ell_9\}$ e due 2-celle $\{L_1, L_2\}$ (vedi figura).

Il sottocomplesso C di O formato dalle sette 0-celle, dalle 1-celle $\{\ell_2, \ldots, \ell_9\}$ e dalle due 2-celle è contraibile. Dunque O è omotopicamente equivalente a X/C. D'altra parte X/C è omeomorfo alla 1-cella ℓ_1 con gli estremi P_2 e P_4 identificati. Segue che X/C è omeomorfo a \mathbb{S}^1 e quindi $\pi_1(X) = \pi_1(X/C) = \mathbb{Z}$.

(3b) Si osservi che il sottocomplesso D di M formato dalle sette 0-celle e dalle 1-celle $\{\ell_2, \ell_3, \ell_4, \ell_7, \ell_8, \ell_9\}$ è contraibile. Dunque M è omotopicamente equivalente a X/D, e quindi a $\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^1$. Segue che $\pi_1(M) = \pi_1(M, P_3) = \mathbb{Z} * \mathbb{Z} * \mathbb{Z} \not\simeq \mathbb{Z}$ (infatti $\mathrm{Ab}(\mathbb{Z} * \mathbb{Z} * \mathbb{Z}) = \mathbb{Z}^3 \not\simeq \mathbb{Z} = \mathrm{Ab}(\mathbb{Z})$), dunque M non è un retratto di deformazione di O.

Si osservi che $\pi_1(M, P_3)$ è il gruppo libero generato dalle classi di omotopia $[\alpha]_M, [\beta]_M, [\gamma]_M$ relativa a $\{0,1\}$ di tre lacci α, β, γ in M, dove

- α parametrizza (in successione) le 1-celle ℓ_2, ℓ_3, ℓ_5
- β parametrizza le 1-celle ℓ_6, ℓ_8, ℓ_9 ,

• γ parametrizza le 1-celle ℓ_2, ℓ_1, ℓ_9 .

Sia $i_*: \pi_1(M, P_3) \to \pi_1(O, P_3)$ l'omomorfismo indotto dall'inclusione $i: M \hookrightarrow O$. Poiché α è omotopa al laccio costante $(\equiv P_3)$ relativamente a $\{0,1\}$ (per mezzo di una omotopia a valori in L_1), vale: $i_*([\alpha]_M) = [\alpha]_O = 1 \in \pi_1(O, P_3)$. Segue che l'omomorfismo i_* non è iniettivo e quindi M non è neanche un retratto di O.

Esercizio 4.

(4a) Calcolare l'integrale

$$\int_{\gamma} \frac{z^2 - 2}{(z - 1)(z + 1)^3} dz$$

lungo la circonferenza γ di centro l'origine e raggio 2 percorsa in senso antiorario.

(4b) Sia $u(x,y): \mathbb{R}^2 \to \mathbb{R}$ la funzione così definita:

$$u(x,y) = x^2 - y^2 + e^{kx}\cos y\sin y.$$

Stabilire per quali $k \in \mathbb{R}$ la funzione u(x, y) è parte reale di una funzione olomorfa.

SOLUZIONE: (4a) La funzione meromorfa $f(z) = \frac{z^2-2}{(z-1)(z+1)^3}$ ha due poli: uno semplice per z=1 e uno triplo per z=-1. Entrambi i poli sono interni alla curva γ , per cui il Teorema dei residui fornisce l'integrale: $I=2\pi i \left(\operatorname{Res}_1(f)+\operatorname{Res}_{-1}(f)\right)$.

I residui sono 1/8 in z = -1 e -1/8 in z = 1, per cui I = 0. Infatti

Res₁(f) = Res₁
$$\left(\frac{1}{z-1} \frac{z^2-2}{(z+1)^3}\right) = \frac{z^2-2}{(z+1)^3}_{|z=1} = -\frac{1}{8}$$

e

$$\operatorname{Res}_{-1}(f) = \frac{1}{2} \lim_{z \to -1} \left(((z+1)^3 f(z))^{(2)} \right) = \frac{1}{2} \lim_{z \to -1} \left(\left(\frac{z^2 - 2}{z - 1} \right)^{(2)} \right) = \frac{1}{2} \lim_{z \to -1} \frac{-2}{(z - 1)^3} = \frac{1}{8}.$$

(4b) Condizione necessaria e sufficiente affinché u sia (localmente) parte reale di una funzione olomorfa è che u sia armonica. Essendo

$$\Delta u(x,y) = \frac{\partial^2 u}{\partial x} + \frac{\partial^2 u}{\partial y} = (k^2 - 4)e^{kx}\cos y \sin y,$$

u è armonica se e solo se $k = \pm 2$.