Cours representation entier relatif

March 23, 2021

Rappel: un entier relatif est un nombre entier (sans virgule) qui peut être positif ou négatif. (Ne pas croire que les entiers relatifs sont uniquement les entiers négatifs)

1 Le complément à 2^n

Les entiers relatifs s'écrivent en binaire en utilisant un système d'encodage appelé **complément à** 2.

IMPORTANT : L'encodage en complément à 2 n'a de sens que si on DEFINIT A L'AVANCE LE NOMBRE DE BITS sur lequel on souhaite écrire ce nombre en binaire

Dans cet encodage, les entiers relatifs s'écrivent comme les entiers positifs à ceci près que le bit de poids fort (le plus à gauche) a un poids négatif. Bien sûr les nombres écrits en complément à 2 peuvent aussi s'écrire en base hexadécimale.

Exemple : Soient les nombres $1010_{(C2)}$ et $0110_{(C2)}$ écrits sur 4 bits en complément à 2

	1	0	1	n
	1	0		
poids	-2^{3}	2^{2}	2^1	2^0
poids	-8	4	2	1

On a donc $1010_{(C2)} = -8 + 2 = -6 = A(16)$

	0	1	1	0
poids	-2^{3}	2^2	2^1	2^{0}
poids	-8	4	2	1

On a donc $0110_{(C2)} = 4 + 2 = 6 = 6(16)$

2 Avantages du compléments à 2

- 1. Le MSB (bit le plus à gauche) permet de connaître le signe de l'entier :
 - MSB = 1: Entier négatif

- MSB = 0: Entier positif
- 2. Le complément à 2 respecte les opérations arithmétiques classiques (comme si on avait des entiers positifs), ce qui permet d'utiliser les mêmes structures matérielles dans l'**ALU** (voir TD)
- 3. Il suffit de duppliquer le MSB à gauche autant de fois que nécessaire pour écrire l'entier sur un nombres de bits plus importants.
- 4. L'entier nul possède une seule représentation en complément à 2 : "Une suite de 0"
- 5. L'entier -1 est représenté par "Une suite de 1" en complément à 2

3 Le complément à 2 en machine.

Pour calculer l'opposé d'un entier, la machine (c'est-à-dire son **Unité Arithmétique et Logique**) réalise successivement ces 2 opérations basiques :

- 1. Inverser tous les bits de la représentation binaire de cet entier
- 2. Ajouter 1 à cet entier

Exemple sur 4 bits:

$$6 = 0110_{(C2)} \xrightarrow{inversion} 1001_{(C2)} \xrightarrow{+1} 1010_{(C2)} = -6$$
$$-6 = 1010_{(C2)} \xrightarrow{inversion} 0101_{(C2)} \xrightarrow{+1} 0110_{(C2)} = 6$$

Sur n bits en compléments à 2, une machine peut représenter 2^n nombres dont :

- le minimum = $100...00 = -2^{n-1}$
- le maximum = $011...11 = 2^{n-1} 1$

Exemple sur 4 bits (n = 4):

Complément à 2	décimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	$maximum = 7 = 2^{4-1} - 1$
1 000	minimum = $-8 = -2^{4-1}$
1 001	-7
1 010	-6
1 011	-5
1 100	-4
1 101	-3
1 110	-2
1 1111	-1