1. Consider the language

EQ = { M # N | M and N are Turing machines with $\mathcal{L}(M) = \mathcal{L}(N)$ }.

(a) Prove that EQ is not recursive.

M halts on
$$\times$$

$$\chi(N_1) = \chi(N_2) = \Sigma$$
M does not halt on \times

$$\chi(N_1) = \Sigma, \chi(N_2) \neq \Sigma$$

$$= \emptyset$$

(b) Is EQ recursively enumerable?

 $\frac{1}{HP} \leq EQ$ $M \# x \mapsto N_1 \# N_2$

NI, on infort VI, accepts (and halfs).

N2, on infont V2) does? 1. simulate M on x for [V2] steps.

2. If the rimulation halts, reject and halt. else accept and halt.

M does not halt on R

 $=) \quad \times (N_1) = \times (N_2) = \sum_{x} (N_1)$

M halts on x (in s steps)

 $= \sum_{i=1}^{4} \chi(N_i) = \sum_{i=1}^{4} \chi(N_i) + \sum_{i=1}^{4} \chi(N_i) = \sum_{i=1}^{4} \chi(N_i) + \sum_{i=$

 $|v_2| < 5$

2. Let L be a recursively enumerable language which is not recursive. What type of language is each of the following?

\[\frac{1}{L} \text{ is not RE.} \quad \text{(L could be AP, MP,)} \]

(a) $A = \{ 0w \mid w \in L \}$

On infont x, check whether the first symbol of x 40. If not, reject and halt.
Otherwise x = 0wSimulate Ton W Accept if Taccepts/Reject if T vejects.

(b)
$$B = \{0w \mid w \notin L\} = \{0w \mid \omega \in L\}$$

$$\frac{Not RE}{L}$$

$$U \mapsto 0\omega$$

(c)
$$C = AUB = \begin{cases} 0\omega \mid \omega \in L \text{ or } \omega \notin L \end{cases} = 0 \begin{cases} + \text{ in regular} \\ + \text{ of } c \end{cases}$$

$$\Rightarrow c \end{cases}$$

(d) $D = \{ 0w \mid w \in L \} \cup \{ 1w \mid w \notin L \}$

- 3. Let L be a language over Σ , R a recursive language over Σ , and L' = L R. Prove/Disprove:
- (a) If L is RE, then L' is RE. True

L'= L - R

Take
$$R = \sum_{k=1}^{\infty} x^{k}$$

$$L' = A$$

$$L = AP$$

(c) If L is RE but not recursive, then L' is RE but not recursive.

$$R = \sum_{i=1}^{\infty}$$

$$R = \sum_{i=1}^{\infty}$$

(d) If L' is RE but not recursive, then L is RE but not recursive. L'nnon-RE L'u RE Int not Recursive A -> RE not R

$$A \rightarrow RE \text{ not } R$$

$$L = \{0\omega | \omega \in A\} \cup \{1\omega | \omega \notin A\}$$

$$R = 1\Sigma^{*}$$

$$L' = \{0\omega | \omega \in A\}.$$

- 4. Let CFL be the set of all Turing machines whose languages are context-free.
- (a) Using Rice's theorem, prove that neither CFL nor its complement is RE.

(b) Without using Rice's theorem, prove that neither CFL nor its complement is RE.

5. Let M be a Turing machine.

(a) Decidable or not: Whether $\mathcal{L}(M) = \mathcal{L}(M)^R$?

Rices thewen

(b) Semidecidable or not: Whether $\mathscr{L}(M) = \mathscr{L}(M)^R$?

6. (a) State and prove Rice's theorem (Part 1) for pairs of RE languages.

$$RE^{2} = \left\{ \left(L_{1}, L_{2} \right) \middle| L_{1}, L_{2} \in RE \right\}$$

$$Property of RE^{2} \qquad P: RE^{2} \rightarrow \left\{ T, F \right\}$$

$$\left(L_{1}, L_{2} \right) \rightarrow rhecified by M_{1} \# M_{2} \quad r.t.$$

$$\chi(M_{1}) = L_{1} \text{ and } \chi(M_{2}) = L_{2}.$$

$$Trivial \qquad P(L_{1}, L_{2}) = T \quad \forall L_{1}, L_{2}$$

$$P(L_{1}, L_{2}) = F \quad \forall L_{1}, L_{$$

HIP
$$\leq \Pi$$

M#x \mapsto M, #M₂

P (φ , φ) = F

P (A , B) = T
 $\chi(N_1)$ $\chi(N_2)$

M halton x, $P\left(\mathcal{L}\left(M_{1}\right), \mathcal{L}\left(M_{2}\right) \right) = T$ M does not halt on 2, $P\left(\chi(M_1),\chi(M_2)\right)=\overline{F}$ $\mathcal{L}(M_1) = \mathcal{L}(N_1) = A$ $\mathcal{L}(M_2) = \mathcal{L}(N_2) = B$ $\chi(M_1) = \emptyset$ $\chi(M_2) = \emptyset$ (b) Prove that $\{M \# N \mid \mathcal{L}(M) = \mathcal{L}(N)\}$ is not recursive.

EQ = in a non-trivial property.

7. Let M be a Turing machine. Prove that it is decidable whether M, on a given input w, moves left at least 2021 times.

Simple to M on M for

If 2021 left movements found, accept

8. Let A be a language over Σ , and B a language over Λ . Suppose that $A \leq_m B$ under a reduction map $\Sigma^* \to \Lambda^*$ which is onto (surjective). Prove that $B \leq_m A$.

$$g: X \to \Sigma$$

$$\omega \mapsto \alpha \text{ breimage}$$
of ω
under f .
Criven ω , α total TM

$$Can compute $g(\omega)$ and halt.$$

- 9. Prove that the following problems about DFA D, D₁, D₂ are decidable.
- (a) Whether $\mathcal{L}(D) = \emptyset$.
- (b) Whether $\mathcal{L}(D) = \Sigma^*$.
- (c) Whether $\mathcal{L}(D_1) = \mathcal{L}(D_2)$.
 - (a) Check whether any accept state is reachable (b) non-accept state is reachable fraversal
 - (c) Let $A = K(D_1)$ and $B = K(D_2)$ Bouild a DFA for $A \triangle B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$ A = B if and only if $A \triangle B = \emptyset$