1.2 Quantum bits

The *bit* is the fundamental concept of classical computation and classical information. Quantum computation and quantum information are built upon an analogous concept, the *quantum bit*, or *qubit* for short. In this section we introduce the properties of single and multiple qubits, comparing and contrasting their properties to those of classical bits.

What is a qubit? We're going to describe qubits as *mathematical objects* with certain specific properties. 'But hang on', you say, 'I thought qubits were physical objects.' It's true that qubits, like bits, are realized as actual physical systems, and in Section 1.5 and Chapter 7 we describe in detail how this connection between the abstract mathematical point of view and real systems is made. However, for the most part we treat qubits as abstract mathematical objects. The beauty of treating qubits as abstract entities is that it gives us the freedom to construct a general theory of quantum computation and quantum information which does not depend upon a specific system for its realization.

What then is a qubit? Just as a classical bit has a state- either 0 or 1- a qubit also has a state. Two possible states for a qubit are the states $|0\rangle$ and $|1\rangle$, which as you might guess correspond to the states 0 and 1 for a classical bit. Notation like ' $|\rangle$ ' is called the *Dirac notation*, and we'll be seeing it often, as it's the standard notation for states in quantum mechanics. The difference between bits and qubits is that a qubit can be in a state *other* than $|0\rangle$ or $|1\rangle$. It is also possible to form *linear combinations* of states, often called *superpositions*:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle. \tag{1.1}$$

The numbers α and β are complex numbers, although for many purposes not much is lost by thinking of them as real numbers. Put another way, the state of a qubit is a vector in a two-dimensional complex vector space. The special states $|0\rangle$ and $|1\rangle$ are known as computational basis states, and form an orthonormal basis for this vector space.

We can examine a bit to determine whether it is in the state 0 or 1. For example, computers do this all the time when they retrieve the contents of their memory. Rather remarkably, we cannot examine a qubit to determine its quantum state, that is, the values of α and β . Instead, quantum mechanics tells us that we can only acquire much more restricted information about the quantum state. When we measure a qubit we get either the result 0, with probability $|\alpha|^2$, or the result 1, with probability $|\beta|^2$. Naturally, $|\alpha|^2 + |\beta|^2 = 1$, since the probabilities must sum to one. Geometrically, we can interpret this as the condition that the qubit's state be normalized to length 1. Thus, in general a qubit's state is a unit vector in a two-dimensional complex vector space.

This dichotomy between the unobservable state of a qubit and the observations we can make lies at the heart of quantum computation and quantum information. In most of our abstract models of the world, there is a direct correspondence between elements of the abstraction and the real world, just as an architect's plans for a building are in correspondence with the final building. The lack of this direct correspondence in quantum mechanics makes it difficult to intuit the behavior of quantum systems; however, there is an indirect correspondence, for qubit states can be manipulated and transformed in ways which lead to measurement outcomes which depend distinctly on the different properties of the state. Thus, these quantum states have real, experimentally verifiable consequences, which we shall see are essential to the power of quantum computation and quantum information.

The ability of a qubit to be in a superposition state runs counter to our 'common sense' understanding of the physical world around us. A classical bit is like a coin: either heads or tails up. For imperfect coins, there may be intermediate states like having it balanced on an edge, but those can be disregarded in the ideal case. By contrast, a qubit can exist in a *continuum* of states between $|0\rangle$ and $|1\rangle$ – until it is observed. Let us emphasize again that when a qubit is measured, it only ever gives '0' or '1' as the measurement result – probabilistically. For example, a qubit can be in the state

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \,, \tag{1.2}$$

which, when measured, gives the result 0 fifty percent $(|1/\sqrt{2}|^2)$ of the time, and the result 1 fifty percent of the time. We will return often to this state, which is sometimes denoted $|+\rangle$.

Despite this strangeness, qubits are decidedly real, their existence and behavior extensively validated by experiments (discussed in Section 1.5 and Chapter 7), and many different physical systems can be used to realize qubits. To get a concrete feel for how a qubit can be realized it may be helpful to list some of the ways this realization may occur: as the two different polarizations of a photon; as the alignment of a nuclear spin in a uniform magnetic field; as two states of an electron orbiting a single atom such as shown in Figure 1.2. In the atom model, the electron can exist in either the so-called 'ground' or 'excited' states, which we'll call $|0\rangle$ and $|1\rangle$, respectively. By shining light on the atom, with appropriate energy and for an appropriate length of time, it is possible to move the electron from the $|0\rangle$ state to the $|1\rangle$ state and vice versa. But more interestingly, by reducing the time we shine the light, an electron initially in the state $|0\rangle$ can be moved 'halfway' between $|0\rangle$ and $|1\rangle$, into the $|+\rangle$ state.

Figure 1.2. Qubit represented by two electronic levels in an atom.

Naturally, a great deal of attention has been given to the 'meaning' or 'interpretation' that might be attached to superposition states, and of the inherently probabilistic nature of observations on quantum systems. However, by and large, we shall not concern ourselves with such discussions in this book. Instead, our intent will be to develop mathematical and conceptual pictures which are predictive.

One picture useful in thinking about qubits is the following geometric representation.

Because $|\alpha|^2 + |\beta|^2 = 1$, we may rewrite Equation (1.1) as

$$|\psi\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle\right),$$
 (1.3)

where θ , φ and γ are real numbers. In Chapter 2 we will see that we can *ignore* the factor of $e^{i\gamma}$ out the front, because it has *no observable effects*, and for that reason we can effectively write

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle.$$
 (1.4)

The numbers θ and φ define a point on the unit three-dimensional sphere, as shown in Figure 1.3. This sphere is often called the *Bloch sphere*; it provides a useful means of visualizing the state of a single qubit, and often serves as an excellent testbed for ideas about quantum computation and quantum information. Many of the operations on single qubits which we describe later in this chapter are neatly described within the Bloch sphere picture. However, it must be kept in mind that this intuition is limited because there is no simple generalization of the Bloch sphere known for multiple qubits.

Figure 1.3. Bloch sphere representation of a qubit.

How much information is represented by a qubit? Paradoxically, there are an infinite number of points on the unit sphere, so that in principle one could store an entire text of Shakespeare in the infinite binary expansion of θ . However, this conclusion turns out to be misleading, because of the behavior of a qubit when observed. Recall that measurement of a qubit will give *only* either 0 or 1. Furthermore, measurement *changes* the state of a qubit, collapsing it from its superposition of $|0\rangle$ and $|1\rangle$ to the specific state consistent with the measurement result. For example, if measurement of $|+\rangle$ gives 0, then the post-measurement state of the qubit will be $|0\rangle$. Why does this type of collapse occur? Nobody knows. As discussed in Chapter 2, this behavior is simply one of the *fundamental postulates* of quantum mechanics. What is relevant for our purposes is that from a single measurement one obtains only a single bit of information about the state of the qubit, thus resolving the apparent paradox. It turns out that only if infinitely many