Modelo de agrupamiento utilizando indicadores económicos

Introducción

El PIB (Producto Interno Bruto) es la suma del valor de todos los bienes y servicios de uso final que genera un país o entidad federativa durante un periodo (comúnmente un año o trimestre).

Es muy importante saber si la economía de un país está creciendo o no, es decir, si se produjo más o menos que el año anterior. El cambio del PIB a lo largo del tiempo es uno de los indicadores más importantes del crecimiento económico. **Un crecimiento en el PIB** significa que hay más dinero para construir edificios, casas o comprar maquinaria y que se producirán más bienes y servicios. Esto es beneficioso para todos porque habrá más empleo y más oportunidades para hacer negocios. Por el contrario, **una disminución en el PIB** significa que la producción y actividad económica del país disminuirá; en estas condiciones, es probable que haya desempleo y que esto afecte a muchas familias.

Una de las contribuciones al crecimiento/decrecimiento del PIB de México, se debe en gran parte a su actividad industrial; recordemos que la actividad industrial se define como la transformación de materias primas en productos de consumo final o intermedio. Las principales industrias en México son la automotriz, la petroquímica, la construcción y el cemento, la textil, la industria alimenticia y de bebidas, la minería y el turismo.

Cuando hablamos de actividad industrial, también hablamos de niveles de productividad; usualmente se nos da dicha información en unidades monetarias o en unidades porcentuales. México cuenta con una herramienta estadística llamada: **índice de volumen físico**, que se utiliza para medir los cambios en la cantidad de bienes y servicios producidos en una economía, independientemente de las fluctuaciones en los precios. Este índice es crucial para evaluar mensualmente el crecimiento económico real, ya que permite a los analistas y decisores entender cómo varía la producción sin que los resultados estén distorsionados por la inflación o deflación.

Para propósitos de este ejercicio. Se analizará la relación entre el **Índice del total** de la actividad industrial mexicana y el índice extracción de petróleo y gas para saber cuál es la k más óptima para ser aplicada en el método de clasficación KNN. Los datos de las variables se encuentran en las mismas unidades, por lo que no fue necesario normalizarlos, y fueron recopilados desde enero de 1993 hasta febrero del 2024 (índice base 2018 = 100) y descargados del banco de información económica (BIE) del Instituto Nacional de Estadística y Geografía (INEGI).

Modelo de agrupamiento

Índice base 2018 = 100 (%porcentaje) $\rightarrow \frac{\text{Cantidad producida en el año "n"}}{\text{Cantidad producida en el año 2018}} * 100$

Variable	Representación	Tipo				
TAI	Total de la actividad industrial (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales	Continua				
IEXPG	Índice de extracción de petróleo y gas (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales					
IMMN	Índice de minería de minerales metálicos y no metálicos excepto petróleo y gas (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales	Continua				
ΙE	Índice de edificación (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales					
ICOI	Índice de construcción de obras de ingeniería civil (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales	Continua				
IEA	Índice de elaboración de azúcares, chocolates, dulces y similares (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales	Continua				
IFVGO	Índice de conservación de frutas, verduras, guisos y otros alimentos preparados (%porcentaje) Valores tomados: 5.788261 a 245.3426 puntos porcentuales	Continua				
IIB	Índice de industria de las bebidas (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales	Continua				
IIT	Índice de industria del tabaco (%porcentaje) <u>Valores tomados</u> : 5.788261 a 245.3426 puntos porcentuales	Continua				

Modelo del codo

La gráfica nos indica que nuestro conjunto de datos empieza a perder variabilidad a partir del tercer punto del codo, lo que significa que el k más óptimo para trabajar es el 3.

Agrupamiento

A partir del k encontrado, podemos obervar como se comportan las interacciones, junto con sus centroides, entre la información del IEXPG y el TAI. Se observa como los puntos están divididos en 3 grupos de diferentes colores debido al valor k.

Modelo de clasificación con cross validation

En evidencias pasadas encontramos que el k óptimo para el modelo de knn de nuestro conjunto de datos es de: 5; estaba representada por esta información:

Accuracy (KNN): 0.7964601769911505

precision			recall f1-score			support	
C	0	.93	0.90	0	.92	30	
1	0	.79	0.90	0	.84	29	
2	2 0	.74	0.59	0	.65	29	
3	0	.71	0.80	0	.75	25	
accur	acy			0.	80	113	
macro	avg	0.7	9	08.0	0.7	9	113
weighte	d avg	0.8	80	0.80	0.	79	113

Interpretación:

El modelo nos indica que el 79.65% de las predicciones hechas son correctas. Es un buen modelo.

Modelo de clasificación con método del codo

Veamos ahora como se comporta dicho modelo usando el k óptimo encontrado por el método de codo (k = 3).

Accuracy (KNN): 0.8053097345132744								
	precision		on r	ecall	f1-sc	ore s	upp	ort
	•	0.0		0.00	0.0		00	
	0	8.0	8	0.93	0.9	0	30	
	1	0.7	7	0.83	0.8	0	29	
	2	8.0	34	0.55	0.6	57	29	
	3	0.7	' 4	0.92	0.8	2	25	
	accura	асу			0.8	1 1	113	
	macro	avg	0.81	0	.81	0.80		113
	weighted	lavg	8.0	1	0.81	0.80)	113

Interpretación:

El modelo nos indica que el 80.54% de las predicciones hechas son correctas. Es un buen modelo.

Conclusión: el método del codo nos da un mejor k para un mejor accuracy en el modelo KNN.