

Founded 1991 by Md. Alimullah Miyan

Assignment On DFA

Topic Name: A Smart Building Access Control System

Course Name: Theory of Computation

Course Code: CSC397

Submitted To

Md Nazir Ahmed

Lecturer

Department of Computer Science & Engineering

Submitted By

Shuvo Chakrobortty ID:22203229

Section: J

Submitted Date: 25/09/2025

A Smart Building Access Control System

Introduction to DFA and the access control system:

A **Deterministic Finite Automaton (DFA)** is a state machine where each input leads to exactly one next state, ensuring predictable outcomes. In a smart building access control system, DFA models authentication as a sequence of events such as card swipes, fingerprints, retina scans, or PIN entries. Each zone (Lobby, Server Room, Vault, etc.) has a unique multistep policy represented by a DFA path. Correct sequences reach an accepting state (access granted), while any wrong or out-of-order input leads to a trap state (access denied). This makes DFA a secure and transparent way to enforce access rules.

Problem Analysis & Constraint Resolution Approach:

1. Requirement-Level Analysis

- o **Unique Sequences per Zone:** Each access zone must have its own distinct sequence of at least four authentication events. To address this, the DFA design assigns separate accepting states for each zone (e.g., q4 for Lobby, q6 for Laboratory, etc.), ensuring no overlap in authentication paths.
- Multi-Factor Authentication: Since the minimum sequence length is four, each zone's path integrates at least four distinct authentication methods (e.g., Card → PIN → Face Recognition → Voice for the Lobby). This enforces strong security.
- o **Immediate Rejection of Invalid Sequences:** Any wrong or unexpected input symbol at any step transitions the system directly to the trap state (qt), which represents denial of access. This guarantees that partially correct or tampered sequences cannot bypass security.

2. Technical-Level Analysis

- Determinism: The DFA ensures one and only one transition for each input symbol in every state. This is enforced in both the transition table and the Java implementation, where the nextState method maps each input to a single next state.
- Variable-Length Sequences: The system supports sequences of varying lengths across different zones (but not fewer than four). The DFA design accommodates this by defining separate state chains for each zone's required sequence while still maintaining determinism.
- Scalability: The modular structure of the transition table allows easy
 extension to new zones or authentication methods. Adding a new zone simply
 involves appending new states and transitions without affecting existing logic.

Resolution Approach:

- To resolve **conflicts between zones**, the DFA explicitly separates their sequences, preventing ambiguity.
- To handle **out-of-order inputs**, transitions are designed to route invalid attempts directly into the trap state.

- To balance **security and usability**, each authentication sequence is deterministic and strictly defined, minimizing user confusion while upholding strong protection.
- The Java program implementation reinforces these constraints by checking each input step in real time and providing immediate feedback (Access Granted / Access Denied).

Thus, the approach ensures that all requirement-level and technical-level constraints are systematically addressed, resulting in a secure, deterministic, and extensible access control DFA.

1. Alphabets (Authentication Symbols):

С	Card Swipe
F	Fingerprint Scan
R	Retina Scan
P	PIN Entry
V	Voice Recognition
F _c	Face Recognition
В	Biometric Combination
A	Admin Override

2. Zones & Unique Authentication Sequences:

Zone	Authentication Sequence (Inputs)	Accepting State
Lobby	$C \rightarrow P \rightarrow Fc \rightarrow V$	q4
Laboratory	$C \to P \to B \to R$	q6
Research Wing	$C \to P \to V \to R$	q8
Server Room	$P \to F \to R \to A$	q12
Executive Room	$P \rightarrow F \rightarrow Fc \rightarrow C$	q14
Data Center	$P \rightarrow F \rightarrow R2 \rightarrow Fc$	q16
Admin Room	$A \to R \to Fc \to B$	q20
Vault	$A \to R \to C \to B$	q22

DFA State Diagram:

DFA State Diagram:

Figure: DFA Diagram for Smart Building Access Control System

1. Transition Table of DFA:

Current State	Input Symbol	Next State	Description
q0	С	q1	Start of Lobby sequence
q1	P	q2	Lobby authentication continues
q2	Fc	q3	Lobby sequence
q3	V	q4	Lobby → Accepting State
q2	В	q5	Laboratory path
q 5	R	q6	Laboratory → Accepting State
q2	V	q7	Research Wing path
q7	R	q8	Research Wing → Accepting State
q0	P	q9	Server Room path
q9	F	q10	Server Room authentication continues
q10	R	q11	Server Room authentication continues
q11	A	q12	Server Room → Accepting State
q10	Fc	q13	Executive Room path
q13	С	q14	Executive Room → Accepting State
q10	R2	q15	Data Center path
q15	Fc	q16	Data Center → Accepting State
q0	A	q17	Admin Room path
q17	R	q18	Admin authentication continues
q18	Fc	q19	Admin authentication continues
q19	В	q20	Admin Room → Accepting State
q18	С	q21	Vault path
q21	В	q22	Vault → Accepting State
Any	Invalid	qt	Trap state (Access Denied)

• **Another way** Transition Table of DFA:

State	C	P	Fc	V	В	F	R	R2	A
q0	q1	q9	_		_		_	_	q17
q1	_	q2	_		_	_	_	_	_
q2	_	_	q3	q7	q5		_	_	_
q3	_	_	_	q4	_		_	_	_
q4									_
q5							q6	_	
q 6									
q 7							q8		
q8									
q 9			—			q10			
q10			q13				q11	q15	
q11									q12
q12									
q13	q14								
q14									
q15			q16						
q16			—				—		
q17							q18		
q18	q21		q19						
q19					q20				
q20									
q21					q22				
q22									
qt	qt	qt	qt	qt	qt	qt	qt	qt	qt

Accepting States:

```
q4 — Lobby
q6 — Laboratory
q8 — Research Wing
q12 — Server Room
q14 — Executive Room
q16 — Data Center
q20 — Admin Room
q22 — Vault
```

<u>**Trap State:**</u> qt (Any transition not listed above can be treated as going to the trap state).

1. Step-by-step Authentication By Java Code:

```
import java.util.*;
public class SmartBuildingDFA Interactive {
  static String startState = "q0";
  static String trapState = "qt";
  static Map<String, Map<String, String>> transitions = new HashMap<>();
  static Map<String> zoneAcceptingStates = new HashMap<>();
  public static void main(String[] args) {
     buildTransitionTable();
     Scanner sc = new Scanner(System.in);
     String currentState = startState;
     int step = 1;
    boolean trap = false;
     while (step \leq 4) {
       System.out.print("Enter authentication step " + step + ": ");
       String symbol = sc.nextLine().trim();
       currentState = nextState(currentState, symbol);
       if (currentState.equals(trapState)) {
         System.out.println("Wrong authentication! Access Denied.");
         trap = true;
         break;
       } else {
         System.out.println("Step " + step + " authentication successful.");
       step++;
```

```
if (!trap && zoneAcceptingStates.containsKey(currentState)) {
    System.out.println("Access Granted → Zone: " + zoneAcceptingStates.get(currentState));
  } else if (!trap) {
    System.out.println("Authentication sequence incomplete or invalid. Access Denied.");
}
private static void buildTransitionTable() {
  // Lobby
  add("q0", "C", "q1");
  add("q1", "P", "q2");
  add("q2", "Fc", "q3");
  add("q3", "V", "q4");
  zoneAcceptingStates.put("q4", "Lobby");
  // Laboratory
  add("q2", "B", "q5");
  add("q5", "R", "q6");
  zoneAcceptingStates.put("q6", "Laboratory");
  // Research Wing
  add("q2", "V", "q7");
  add("q7", "R", "q8");
  zoneAcceptingStates.put("q8", "Research Wing");
  // Server Room
  add("q0", "P", "q9");
  add("q9", "F", "q10");
  add("q10", "R", "q11");
  add("q11", "A", "q12");
  zoneAcceptingStates.put("q12", "Server Room");
  // Executive Room
  add("q10", "Fc", "q13");
  add("q13", "C", "q14");
  zoneAcceptingStates.put("q14", "Executive Room");
  // Data Center
  add("q10", "R2", "q15");
  add("q15", "Fc", "q16");
  zoneAcceptingStates.put("q16", "Data Center");
  // Admin Room
  add("q0", "A", "q17");
  add("q17", "R", "q18");
  add("q18", "Fc", "q19");
  add("q19", "B", "q20");
  zoneAcceptingStates.put("q20", "Admin Room");
  // Vault
  add("q18", "C", "q21");
```

2. Output:

```
Output

Enter authentication step 1: C
? Step 1 authentication successful.
Enter authentication step 2: P
? Step 2 authentication successful.
Enter authentication step 3: Fc
? Step 3 authentication successful.
Enter authentication successful.
Enter authentication step 4: V
? Step 4 authentication successful.
? Access Granted ? Zone: Lobby

=== Code Execution Successful ===
```

Figure: Lobby Access (Input: $C \rightarrow P \rightarrow Fc \rightarrow V \rightarrow Access Granted$)

```
Output

Enter authentication step 1: P
? Step 1 authentication successful.
Enter authentication step 2: F
? Step 2 authentication successful.
Enter authentication step 3: R
? Step 3 authentication successful.
Enter authentication step 4: A
? Step 4 authentication successful.
? Access Granted ? Zone: Server Room

=== Code Execution Successful ===
```

Figure: Server Room Access (Input: $P \rightarrow F \rightarrow R \rightarrow A \rightarrow$ Access Granted)

Figure: Server Room Access (Input: $P \rightarrow F \rightarrow R \rightarrow V \rightarrow$ Access Denied)

3. Testing and Result:

Test	Input Sequence	Expected Output	Actual Output	Result
Case				
1	$C \to P \to Fc \to V$	Access Granted → Lobby	Access Granted → Lobby	Pass
2	$P \rightarrow F \rightarrow R \rightarrow A$	Access Granted → Server	Access Granted → Server	Pass
		Room	Room	
3	$P \rightarrow F \rightarrow R \rightarrow V$	Access Denied	Access Denied	Pass
4	$A \to R \to Fc \to B$	Access Granted → Admin	Access Granted → Admin	Pass
		Room	Room	
5	$A \rightarrow R \rightarrow C \rightarrow B$	Access Granted → Vault	Access Granted → Vault	Pass

4. Conclusion:

This DFA-based access control system effectively controls building access through multiple steps authentication. The customized version demonstrates how easily the system can be scaled to include new zones and authentication sequences, making it adaptable for future use cases.

CEP Justification:

Complex Engineering Criteria	Knowledge Profile	Justification by mentioning Section number/ line number of code/chapter number			
	К2	I applied DFA theory while defining the input symbols (like C, F, R, etc.) and the states (q0-q22). These were taken directly from the course concepts and then used in my design and transition table.			
P1		I designed the DFA transitions in a way that ensures each zone has own unique authentication sequence. Any wrong or out-of-or input immediately goes to the trap state qt . In my Java code, this p is handled through the next State method.			
		I tested the DFA thoroughly to ensure all valid sequences reach the correct zones and any wrong input immediately goes to the trap st. This confirms that the system works as intended and handles all carreliably.			
P2			I designed the system logic to handle multiple sequences efficiently, ensuring each step follows the required order. All transitions are clearly defined to prevent errors and maintain smooth operation.		
Р3			I verified that all components work together as intended and that errors are handled appropriately. Testing confirmed that the system behaves consistently in all scenarios.		

Assignment Assessment Rubric (PO(b) – Problem Analysis)

Criteria	Excellent	Proficient	Adequate	Limited	Insufficient
Application of	All required	Most required	Some	Few required	No score
Engineering	engineering	engineering	required	fundamental	awarded if
Knowledge	fundamental	fundamental	fundamental		
(10%)	ideas &	ideas &	ideas and topics are		evidence is
	knowledge	knowledge	topics are	present.	presented or
	are present.	are present.	present.	Access mostly	irrelevant
	Access	Access	Access not	irrelevant	discussion is
	enough	enough	enough	resources to	included.
	resources to	resources to	resources to	understand the	
	understand	understand	understand	problem.	
	the problem	the problem	the problem.	1	
	including	including			
	mathematical	mathematical			
	approaches.	approaches.			
Depth of	Proposed	Proposed	Proposed	Proposed	_
Analysis (20%)	solution	solution	solution	solution	
	reflects	reflects	reflects some	reflects very	
	sufficient	reasonable	abstract	little abstract	
	abstract	abstract	thinking and	thinking and	
	thinking and	thinking and	in-depth	in-depth	
	in-depth	in-depth	analysis.	analysis.	
	analysis.	analysis.			
Addressing	Proposed	Proposed	Proposed	Proposed	
Conflicting	solution	solution	solution	solution	
Requirements	addresses all	addresses	addresses	addresses very	
(20%)	conflicting	most	some	few conflicting	
	requirements.	conflicting	conflicting	requirements.	
		requirements.	requirements.		
DFA Solution	DFA solution	DFA solution	DFA solution	DFA solution	
Design (30%)	design	design	design	design satisfies	
	satisfies all	satisfies most	satisfies some	very few	
	mentioned	mentioned	mentioned	mentioned	
	constraints.	constraints.	constraints.	constraints.	
Documentation	Student	Student	Student	Student	_
/	conveys	conveys	conveys	conveys	
Demonstration	knowledge	knowledge	knowledge	knowledge and	
(20%)	and analytical	and analytical	and analytical	analytical	
	skills with	skills with	skills with	skills with	
	exceptional	moderate	average	poor approach;	
	approach;	approach;	approach;	logic/flow	
	logically	logically	logic/flow	largely	
	structured.	structured.	sometimes	unrecoverable.	
			unclear.		