Boston University Department of Electrical and Computer Engineering

SC505 STOCHASTIC PROCESSES

$\mathbf{EXAM} \ \mathbf{1}$

October 7, 2002				
NAME:				
ID NUMBER:				
Honor Code: This exam represents o	nly my own work. I did not give or receive help on this exam.			
Signature:	Date:			
Instructions:				
• This is a closed-book exam, but or	ne $8\frac{1}{2}$ " × 11" sheet of notes (both sides) is allowed.			
• There are 4 problems on the exam	, approximately equally weighted.			
• The problems are not necessarily i	n order of difficulty.			
score will be based on a judgment	reasoning and show all relevant work for each problem. Your of your understanding as reflected by what you have written for a for answers with no explanation or that are unreadable.			
• All work you want graded must go	in this booklet. Use the blue books for scratch work only.			
, ,				
(3)				
(4)				

Total: _____

Problem #1:

Let W and Z be independent random variables, with W uniformly distributed and Z Gaussian distributed, as illustrated in the figure below. The stochastic process X(t) is defined on the interval [0,1] in terms of the random variables W and Z as shown on the right in the figure below.

- (a) Find the mean function $m_X(t)$ and autocovariance function $K_{XX}(t_1, t_2)$.
- (b) Find the first order probability density function $p_{X(t)}(x)$.
- (c) Is X(t) a Markov process? Explain.
- (d) Is X(t) strict-sense stationary process? Is X(t) a Gaussian random process? Explain.
- (e) Is X(t) an independent increments processes? Explain.

Answer #1:

Answer #1 (Continued):

SC505 Exam 1 Fall 2002

Problem #2:

Say whether each of the following statements is true or false and give a brief justification. One word answers will receive no credit.

3

- (a) If X(t) and Y(t) are independent increments processes that are independent of each other, then Z(t) = X(t) + Y(t) is an independent increments process.
- (b) If X(t) is a wide-sense stationary process, then the mean square integral process $Y(t) = \int_0^t X(s) ds$ is always wide-sense stationary.
- (c) If X(t) and Y(t) are independent processes then $R_{XY}(t_1, t_2) = 0$.
- (d) If X(t) is a Gaussian random process, then Y(t) = X(|t|) is a Gaussian random process.
- (e) For any jointly wide-sense stationary random processes X(t) and Y(t), the power spectral density of the process Z(t) = X(t) + Y(t) is given by $S_{ZZ}(f) = S_{XX}(f) + S_{YY}(f)$.

Answer #2:

Answer #2 (Continued):

5

Problem #3:

Let X(t) be a zero-mean, wide-sense stationary random process with autocovariance function given by:

$$K_{XX}(t_1, t_2) = \alpha \frac{\sin(t_2 - t_1)}{(t_2 - t_1)}$$

- (a) Find the power spectral density function $S_{XX}(f)$ and the value of α if the total average power in X(t) is $R_{XX}(0) = 1$.
- (b) Is X(t) mean-square continuous at time t=-1? Is X(t) mean-square differentiable at time t=4? Explain.
- (c) Is X(t) ergodic in the mean? Explain.

Answer #3:

Answer #3 (Continued):

SC505 Exam 1 Fall 2002 7

Problem #4:

Let $N_1(t)$ and $N_2(t)$ be two independent, standard Poisson counting processes with rates $\lambda_1 = 1$ and $\lambda_2 = 3$, respectively. Define the continuous-time random process: $X(t) = 3N_1(t) - N_2(t)$.

- (a) Is X(t) itself a standard Poisson counting process? Explain. If it is, specify its rate λ .
- (b) Find the mean process $m_X(t)$ and the autocorrelation function $R_{XX}(t_1, t_2)$. Is the process wide-sense stationary? Explain.
- (c) Is X(t) an independent increments process? Explain.

Answer #4:

Answer #4 (Continued)