



# NAN SAT LAB Unitary Test

MOHAMED BENOMAR EL KATI INTRODUCTION TO RESEARCH (IR) Q2-2020/2021

# **Table of Contents**

| 1.   | Description                                       | 1  |
|------|---------------------------------------------------|----|
| 2.   | EPS v2 Test                                       | 4  |
| 2.1  | U1: ACHS-7121 (Current Sensor)                    |    |
| 2.1  | 1.1 Pinout                                        | 4  |
| 2.1  | 1.2 Description                                   | 4  |
| 2.1  | 1.3 Validation                                    | 4  |
| 2.1  | 1.4 Results                                       | 5  |
| 2.2  | U2: LTC3128EUFD#PBF (SuperCap Charger)            |    |
| 2.2  | 2.1 Pinout                                        |    |
| 2.2  | 2.2 Description                                   | 6  |
| 2.2  | 2.3 Validation                                    | 7  |
| 2.2  | 2.4 Results                                       | 7  |
| 2.3  | U3: LTC4006EGN-2#PBF (Li-ion Battery Charger)     | 8  |
| 2.3  | 3.1 Pinout                                        |    |
| 2.3  | 3.2 Description                                   |    |
| 2.3  | 3.3 Validation                                    |    |
| 2.3  | 3.4 Validation                                    |    |
| 2.4  | U4/U6/U9: TPS2121 (Power Multiplexer/Switch)      | 10 |
|      | 4.1 Pinout                                        |    |
| 2.4  | 4.2 Description                                   |    |
| 2.4  | 4.3 Validation                                    |    |
| 2.4  | 4.4 Results                                       | 10 |
| 2.5  | U5: LTC2944IDD#PBF (Coulomb Counter)              | 11 |
| 2.5  | ,                                                 |    |
| 2.5  | 5.2 Description                                   | 11 |
| 2.5  | 5.3 Validation                                    | 11 |
| 2.5  | 5.4 Results                                       | 11 |
| 2.6  | U7/U8: TPS2121 (Boost Converter 12V)              |    |
| 2.6  |                                                   |    |
| 2.6  | 6.2 Description                                   | 12 |
| 2.6  | 6.3 Validation                                    | 12 |
| 2.6  | 6.4 Results                                       | 12 |
| 2.7  | U10: LTC3890IUH-2#TRPBF (5V/3V3 Converter)        | 13 |
| 2.7  | 7.1 Pinout                                        | 13 |
| 2.7  | 7.2 Description                                   |    |
| 2.7  | 7.3 Validation                                    | 14 |
| 2.7  | 7.4 Results                                       | 14 |
| 3.   | Issues                                            | 15 |
| 3.1  | Pinout U1: ACHS-7121 (Current Sensor)             |    |
| 3.2  | Pinout U4/U6/U9: TPS2121 (Multiplexer/Switch)     |    |
| 3.3  | V BATT Line                                       |    |
| 3.4  | V_BATT Lifte                                      |    |
| 3.5  | V_SC LineSerial Wire Debugger (SWD) for STM32-MCU |    |
| ر. ی | JCHILL VVIIC DEDUKKEL (JVVD) IOI JHVIJZ-IVICU     | ⊥∪ |

# 1. Description

The first step is to identify the different ICs on the PCB.



Figure 1 – PCB description

To facilitate the work and to understand better the system and its functionality, it has been organized and labeled the symbols and connections of the schematic diagram of the design.









#### 2. EPS v2 Test

#### 2.1 U1: ACHS-7121 (Current Sensor)

#### 2.1.1 Pinout

|    | 1 | IP+    | Torminal for current being campled |  |  |
|----|---|--------|------------------------------------|--|--|
|    | 2 | IP+    | Terminal for current being sampled |  |  |
|    | 3 | IP-    | Terminal for current being sampled |  |  |
| U1 | 4 | IP-    | reminarior current being sampled   |  |  |
| 01 | 5 | GND    | Output side ground                 |  |  |
|    | 6 | FILTER | Filter pin to set bandwidth        |  |  |
|    | 7 | VOUT   | Output Voltage                     |  |  |
|    | 8 | VDD    | Supply voltage relative to GND     |  |  |

#### 2.1.2 Description



$$\begin{split} V_{out} &= 185 \cdot I + 2600 \ [mV] \quad \rightarrow \quad \pm 10A \\ V_{out_A} &= [12 \ bits \ ADC] = \frac{V_{out_D} \cdot 5200}{2^{12}} \ [mV] \\ I &= \frac{V_{out_A} - 2600}{185} = \frac{\frac{V_{out_D} \cdot 5200}{4096} - 2600}{185} = \frac{V_{out_D} \cdot 5200 - 10649600}{757760} \ [A] \\ I &= V_{out_D} \cdot 0,00686233 - 14,0540541 \ [A] \end{split}$$

#### 2.1.3 Validation

The aim of this test is to check the current sensor detects the current as specified by their datasheet. To test it is needed to connect it to the power supply, and a Multimeter to check the voltage that indicates the current passing through the current sensor. To simulate the load, is used a  $4.9\Omega$  power resistor and a power supply to change the voltage to vary the current flowing through the resistor.

The aim is to check the output voltage when there is flowing 0.2A, 0.6A, 0.9A, 1.2A and 2.1A. By the Ohm's Law, the voltages that supply the resistor should be 0.98V, 2.94V, 4.41V, 5.88V and 10.29V.

After checking the output voltage with a multimeter, the performance and sensitivity will be checked by an ADC of the STM32L4 microcontroller.

#### 2.1.4 Results

| ID      | Designator Co                 |                   | Conditions | Date      | Result   | Judgement | Comments          | Expected Value |
|---------|-------------------------------|-------------------|------------|-----------|----------|-----------|-------------------|----------------|
| 3.1.4   | Current Sensor (Vout)         |                   |            |           |          |           |                   |                |
| 3.1.4.1 | Sensitivity =                 | 185 mV/A          | I = 0.20 A | 22/3/2021 | 2460 mV  | ОК        | Vsupply = 0.98 V  | 2437 mV        |
| 3.1.4.2 | Vdd =                         | 4.8 V             | I = 0.60 A | 22/3/2021 | 2535 mV  | ОК        | Vsupply = 2.94 V  | 2511 mV        |
| 3.1.4.3 | Vout =                        | 185*A + 2400 [mV] | I = 0.90 A | 22/3/2021 | 2590 mV  | ОК        | Vsupply = 4.41 V  | 2566.5 mV      |
| 3.1.4.4 | R =                           | 4.9 Ω             | I = 1.20 A | 22/3/2021 | 2630 mV  | OK        | Vsupply = 5.88 V  | 2622 mV        |
| 3.1.4.5 |                               |                   | I = 2.10 A | 22/3/2021 | 2790 mV  | OK        | Vsupply = 10.29 V | 2788.5 mV      |
| 3.1.4.6 | Real Sensor Sensitivity STM32 |                   |            | 22/3/2021 | 200 mV/A | OK        |                   | 185 mV/A       |

#### 2.2 U2: LTC3128EUFD#PBF (SuperCap Charger)

#### 2.2.1 Pinout

|    | 1  | SW1   | Inductor pin 1                     | Inductor pin                             |
|----|----|-------|------------------------------------|------------------------------------------|
|    | 2  | RSENP | Sense Resistor Power Output        | Connect other loads if necessary         |
|    | 3  | RSENS | Sense Resistor Power In            | Connected to RSENSP                      |
|    | 4  | RUN   | Logic-Controlled Shutdown Input    | Run >=1.2V Nor. Op. & <= 0.3V Shutdown   |
|    | 5  | PROG  | Average Input Current Limit        | Rprog = 11/Ilim & Cprog = 1600/Rprog     |
|    | 6  | NC    | (Tied to GND)                      |                                          |
|    | 7  | VIN   | Input Supply Pin                   |                                          |
|    | 8  | *PFO  | Power Fail Output                  | Sinks current when supply < Vth          |
|    | 9  | PFI   | Power Fail Input                   | Supply to be monitored (Input)           |
|    | 10 | MAXV  | Maximum voltage across supercap.   | R <sub>MAXV</sub> =50*V <sub>MAXV</sub>  |
| U2 | 11 | FB    | Output Voltage Feedback            | Vout = 0.58*(1+R2/R1)                    |
|    | 12 | PGOOD | Power Good Indicator               | Low when Vout < Voutprog*96.75%          |
|    | 13 | MID   | Output for active charger balancer | Tie to the junction of the two supercaps |
|    | 14 | VOUTS | Output Sense Input                 | Tie to the Vout supercapacitor           |
|    | 15 | VOUTP | Output Synchronous Rectifier       | Tie to the Vout supercapacitor           |
|    | 16 | VOUTP | Output Synchronous Rectifier       | Tie to the Vout supercapacitor           |
|    | 17 | SW2   | Inductor pin 2                     | Inductor pin                             |
|    | 18 | SW2   | Inductor pin 2                     | Inductor pin                             |
|    | 19 | SW1   | Inductor pin 1                     | Inductor pin                             |
|    | 20 | NC    | (Tied to GND)                      |                                          |
|    | 21 | GND   | Ground                             |                                          |

#### 2.2.2 Description



#### 2.2.3 Validation

The aim of this test is to check the correct functioning of the SCAP charger module. To validate it will be connecting a power supply with 5.4V and connect the SC\_TOP output pin to externals resistors put in series and check the current that goes through, to check the current at which is charging the SCAP. It should be around 0.9 A, as it was limited by R1 and C1. With help of a chronometer, and a Multimeter check occasionally how long it takes to charge.

Also, it will be checked the monitoring pins of the charging state with the microcontroller.

#### 2.2.4 Results

| ID      | Designator              | Conditio     | ns Date     | Result | Judgement | Comments | Expected Value |
|---------|-------------------------|--------------|-------------|--------|-----------|----------|----------------|
| 3.2.4   | Super Capacitor Charger |              |             |        |           |          |                |
| 3.2.4.1 | Check charging sta      | e Vin = 12   | V 3/3/2021  |        |           |          | 12 V           |
| 3.2.4.2 | NCHG Pin State Che      | ck Vnchg = 2 | 2V 3/3/2021 |        |           |          | 0 V            |
| 3.2.4.3 | Imax = 2                | I = 0.50 /   | A 3/3/2021  |        |           |          | 0.52925 V      |
| 3.2.4.4 | Sensitivity = 0.440     | 5 I = 1.20 / | A 3/3/2021  |        |           |          | 0.8376 V       |

#### 2.3 U3: LTC4006EGN-2#PBF (Li-ion Battery Charger)

#### 2.3.1 Pinout

|    | 1  | DCIN  | External DC Power Input      |                                            |  |  |
|----|----|-------|------------------------------|--------------------------------------------|--|--|
|    | 2  | *CHG  | Charge Status Output         | Low when the battery is being charged      |  |  |
|    | 3  | *SHDN | AC Adapter indicator         | High if the AC adapter voltage is adequate |  |  |
|    | 4  | RT    | Timer Resistor               | Timer = 1h*RT/154k                         |  |  |
|    | 5  | GND   | Ground                       |                                            |  |  |
|    | 6  | NTC   | Thermistor network           | Indicates if battery temp. is safe         |  |  |
|    | 7  | ITH   | Current Mode PWM Control     | Higher ITH volt> higher charg. current     |  |  |
| U3 | 8  | IMON  | Current Monitoring Output    | Liniear indication of charg. current       |  |  |
| 03 | 9  | CSP   | Current Amp. CA1 Input       | Supply to be monitored (Input)             |  |  |
|    | 10 | BAT   | Battery Sense Input          | Battery pin and shunt resistor             |  |  |
|    | 11 | CLP   | In+ Sup. Curr. Lim. Amp. CL1 | Vout = 0.58*(1+R2/R1)                      |  |  |
|    | 12 | CLN   | In- Sup. Curr. Lim. Amp. CL1 | Low when Vout < Voutprog*96.75%            |  |  |
|    | 13 | TGATE | Drives Top PMOS              | For the battery charger buck converter     |  |  |
|    | 14 | PGND  | Ground Return BGATE Driver   | Tie to the Vout supercapacitor             |  |  |
|    | 15 | BGATE | Drives Bottom NMOS           | For the battery charger buck converter     |  |  |
|    | 16 | INFET | Drives Gate Input PFET       | For the battery charger buck converter     |  |  |

#### 2.3.2 Description



$$V_{I_{MON}} = \frac{0,881}{I_{MAX}} \cdot I + 0,309 [V]$$
 
$$I = \frac{V_{I_{MON}} - 0,309}{0,881} \cdot I_{MAX} [A]$$

#### 2.3.3 Validation

The aim of this test is to check the correct functioning of the battery charger module. The design is implemented for 2A Li-Ion Batteries, as the typical application of the charger datasheet.

Power supply the DCIN pin by 12V and check the charge state of the batteries by measuring their voltage referred to GND and the state of the \*CHG pin, high when charging.

Check the current monitoring by measuring the voltage of IMON pin and the voltage drop on the shunt resistor and finally apply the correspondent conversion. And likewise calculate its sensitivity by changing the current.

Check the time of charging and discharging by a help of a chronometer.

#### 2.3.4 Validation

| ID      | Designator           |                      | Conditions | Date     | Result | Judgement | Comments | Expected Value |
|---------|----------------------|----------------------|------------|----------|--------|-----------|----------|----------------|
| 3.3.4   |                      | Battery Charge       | er         |          |        |           |          |                |
| 3.3.4.1 | Check                | charging state       | Vin = 12 V | 3/3/2021 |        |           |          | 12 V           |
| 3.3.4.2 | NCHG Pin State Check |                      | Vnchg = 2V | 3/3/2021 |        |           |          | 0 V            |
| 3.3.4.3 | lmax =               | 2                    | I = 0.50 A | 3/3/2021 |        |           |          | 0.52925 V      |
| 3.3.4.4 | Sensitivity =        | 0.4405               | I = 1.20 A | 3/3/2021 |        |           |          | 0.8376 V       |
| 3.3.4.5 | V_Imon =             | 0.4405*I + 0.309 [V] | I = 2.00 A | 3/3/2021 |        |           |          | 1.19 V         |
| 3.3.4.6 | Ch                   | arging time          | I = 0.00 A | 3/3/2021 |        |           |          | 60 s           |

#### 2.4 U4/U6/U9: TPS2121 (Power Multiplexer/Switch)

#### 2.4.1 Pinout

|    | 1  | OUT | Power Output                                                |
|----|----|-----|-------------------------------------------------------------|
|    | 2  | IN2 | Power Input Source 2                                        |
|    | 3  | CP2 | Enables Comparator Operation                                |
|    | 4  | OV2 | Enables IN2 Overvoltage Protection                          |
|    | 5  | OV1 | Enables IN2 Overvoltage Protection                          |
| Ux | 6  | PR1 | Enables Priority Operation                                  |
| UX | 7  | IN1 | Power Input Source 1                                        |
|    | 8  | OUT | Power Output                                                |
|    | 9  | ST  | Status Output                                               |
|    | 10 | ILM | Output Current Limiting                                     |
|    | 11 | SS  | Adjusts Input Setting Delay Time and Output Soft Start Time |
|    | 12 | GND | Ground                                                      |

#### 2.4.2 Description



$$I_{LM} = \frac{65,2}{R_{ILM}^{0,861}} \rightarrow R_{ILM}[k\Omega]$$

#### 2.4.3 Validation

The aim of this test is to measure the time it takes to change paths of this component by applying the corresponding conditions.

Supply both inputs with two different power supplies and force the change of input selection and by a help of an oscilloscope trigger the instant of changing and measure the time and check the ST pin for the output status.

#### 2.4.4 Results

Unable to test operation due to a design problem, see section 3.2 for details.

#### 2.5 U5: LTC2944IDD#PBF (Coulomb Counter)

#### 2.5.1 Pinout

|    | 1 | SENSE+ | Positive Current Sense Input and Power Supply (3,6V – 60V)         |  |  |  |  |  |
|----|---|--------|--------------------------------------------------------------------|--|--|--|--|--|
|    | 2 | GND    | Ground                                                             |  |  |  |  |  |
|    | 3 | GND    | Ground                                                             |  |  |  |  |  |
|    | 4 | SCL    | Serial Bus Clock I2C Input                                         |  |  |  |  |  |
| U5 | 5 | SDA    | Serial Bus Data I2C Input                                          |  |  |  |  |  |
|    | 6 | *ALCC  | Alert Output and Charge Complete Input                             |  |  |  |  |  |
|    | 7 | GND    | Ground                                                             |  |  |  |  |  |
|    | 8 | SENSE- | Negative Current Sense Input (Negative Side Shunt Resistor) +-50mV |  |  |  |  |  |
|    | 9 | GND    | Ground                                                             |  |  |  |  |  |

#### 2.5.2 Description



$$\begin{split} R_{SENSE} & \leq \frac{50mV}{I_{MAX}} \\ q_{LSB} & = 0,34 \; mAh \cdot \frac{50m\Omega}{R_{SENSE}} \cdot \frac{M}{4096} \quad M: Prescaler \; Coulomb \; Counter \quad 1mAh = 3,6C \\ & \text{If} \; Q_{BAT} > I_{MAX} \cdot 22h \quad \rightarrow \quad R_{SENSE} \leq \frac{0,34mAh \cdot 2^{16}}{Q_{BAT}} \cdot 50m\Omega \end{split}$$

#### 2.5.3 Validation

The aim of this test is to test the I2C bus data. Connect the Li-Ion batteries with a known load and check the voltage drop on the shunt resistor and compare with the I2C bus data by a help of an oscilloscope in decoder mode.

#### 2.5.4 Results

| ID      | Designator   | Conditions  | Date     | Result | Judgement | Comments | Expected Value |
|---------|--------------|-------------|----------|--------|-----------|----------|----------------|
| 3.5.4   | Coulon       |             |          |        |           |          |                |
| 3.5.4.1 | Voltage Drop | Vbat = 3.2V | 3/3/2021 |        |           |          | 0 V            |
| 3.5.4.2 | SDA Current  | Iload = 2A  | 3/3/2021 |        |           |          | 0 V            |

#### 2.6 U7/U8: TPS2121 (Boost Converter 12V)

#### 2.6.1 Pinout

|    | 1  | SW   | Converter Switch, connected to power inductor             |  |  |  |  |
|----|----|------|-----------------------------------------------------------|--|--|--|--|
|    | 2  | VDD  | Internal bias supply. If VIN > 3.4V, IC is powered by VIN |  |  |  |  |
|    | 3  | SS   | Soft-Start Programming                                    |  |  |  |  |
|    | 4  | COMP | Internal Error Amplifier Output                           |  |  |  |  |
|    | 5  | FB   | Feedback input, connected a resistor divider.             |  |  |  |  |
|    | 6  | AGND | Analog Ground                                             |  |  |  |  |
| Ux | 7  | PGND | Power Ground                                              |  |  |  |  |
|    | 8  | VOUT | Output                                                    |  |  |  |  |
|    | 9  | FTY  | Connected to GND                                          |  |  |  |  |
|    | 10 | MODE | Mode selection. Floating:USM, High:FCCM and Low: PSM      |  |  |  |  |
|    | 11 | EN   | Chip Enable Control. For auto start-up, connect to Vin    |  |  |  |  |
|    | 12 | VIN  | Input Supply                                              |  |  |  |  |
|    | 13 | BST  | Bootstrap. Cap beetwen BST and SW, power the sync. HS-FET |  |  |  |  |

#### 2.6.2 Description



#### 2.6.3 Validation

The aim of this test is to check that the converters are working appropriately. Connect a power supply with 5.4 V and 2.7V and check the output voltage of the converter is 12V.

#### 2.6.4 Results

| ID      | Designator    | Conditions  | Date      | Result  | Judgement | Comments | Expected Value |
|---------|---------------|-------------|-----------|---------|-----------|----------|----------------|
| 3.6.4   | 12V Converter |             |           |         |           |          |                |
| 3.6.4.1 | V_SC          | Vin = 5.4 V | 23/3/2021 | 12.14 V | ОК        |          | 12 V           |
| 3.6.4.2 | V_SC          | Vin = 2.7 V | 23/3/2021 | 11.91 V | ОК        |          | 12 V           |
| 3.6.4.3 | V_Batt        | Vin = 5.4 V | 23/3/2021 | 12.16 V | ОК        |          | 12 V           |
| 3.6.4.4 | V_Batt        | Vin = 2.7 V | 23/3/2021 | 11.95 V | ОК        |          | 12 V           |

## 2.7 U10: LTC3890IUH-2#TRPBF (5V/3V3 Converter)

## 2.7.1 Pinout

|     | 1  | SENSE1-    | In- Differential Current Comp.1                                     |  |  |  |  |
|-----|----|------------|---------------------------------------------------------------------|--|--|--|--|
|     | 2  | FREQ       | Freq. Control internal VCO                                          |  |  |  |  |
|     | 3  | PHASMD     | Control Input to Phase Selector                                     |  |  |  |  |
|     | 4  | CLKOUT     | Output Clock Signal                                                 |  |  |  |  |
|     | 5  | PLLIN/MODE | External Synch. Input to Phase Detector and Forced Cont. Mode Input |  |  |  |  |
|     | 6  | SGND       | Small-signal Ground                                                 |  |  |  |  |
|     | 7  | RUN1       | Digital Run Control Input Controller 1                              |  |  |  |  |
|     | 8  | RUN2       | Digital Run Control Input Controller 2                              |  |  |  |  |
|     | 9  | SENSE2-    | In- Differential Current Comp.2                                     |  |  |  |  |
|     | 10 | SENSE2+    | In+ Differential Current Comp.2                                     |  |  |  |  |
|     | 11 | VFB2       | Receives the remotely sensed feedback voltage from Controller 2     |  |  |  |  |
|     | 12 | ITH2       | Error Amplifier Outputs and Switching Regulator Compensation Points |  |  |  |  |
|     | 13 | TRACK/SS2  | External Tracking and Soft-Start Input                              |  |  |  |  |
|     | 14 | PGOOD2     | Open-Drain Logic Output. Low when VFB2 < ±10% of its set point.     |  |  |  |  |
|     | 15 | TG2        | High Current Gate Drives for Top NMOSFET                            |  |  |  |  |
| U10 | 16 | SW2        | Switch Node Connections to Inductors                                |  |  |  |  |
|     | 17 | BOOST2     | Bootstrapped Supplies to the Topside Floating Drivers               |  |  |  |  |
|     | 18 | BG2        | High Current Gate Drives for Bottom (Synchronous) NMOSFET           |  |  |  |  |
|     | 19 | INTVCC     | Output of the Internal Linear Low Dropout Regulator                 |  |  |  |  |
|     | 20 | EXTVCC     | External Power Input to an Internal LDO Connected to INTVCC         |  |  |  |  |
|     | 21 | PGND       | Driver Power Ground                                                 |  |  |  |  |
|     | 22 | VIN        | Main Supply Pin                                                     |  |  |  |  |
|     | 23 | BG1        | High Current Gate Drives for Bottom (Synchronous) NMOSFET           |  |  |  |  |
|     | 24 | BOOST1     | Bootstrapped Supplies to the Topside Floating Drivers               |  |  |  |  |
|     | 25 | SW1        | Switch Node Connections to Inductors                                |  |  |  |  |
|     | 26 | TG1        | High Current Gate Drives for Top NMOSFET                            |  |  |  |  |
|     | 27 | PGOOD1     | Open-Drain Logic Output. Low when VFB1 < ±10% of its set point.     |  |  |  |  |
|     | 28 | ILIM       | Current Comparator Sense Voltage Range Inputs                       |  |  |  |  |
|     | 29 | TRACK/SS1  | External Tracking and Soft-Start Input                              |  |  |  |  |
|     | 30 | ITH1       | Error Amplifier Outputs and Switching Regulator Compensation Points |  |  |  |  |
|     | 31 | VFB1       | Receives the remotely sensed feedback voltage from Controller 1     |  |  |  |  |
|     | 32 | SENSE1+    | In+ Differential Current Comp.1                                     |  |  |  |  |

### 2.7.2 Description



#### 2.7.3 Validation

The aim of this test is to check that the converter is working appropriately. Connect a power supply with 5.4 V and 2.7V and check both output voltages of the converter are 5V and 3.3V.

#### 2.7.4 Results

| ID      | Designator | Conditions        | Date      | Result | Judgement | Comments | Expected Value |
|---------|------------|-------------------|-----------|--------|-----------|----------|----------------|
| 3.7.4   | 5V ar      | nd 3,3V Converter |           |        |           |          |                |
| 3.7.4.1 | V_5V       | Vin = 5.4 V       | 23/3/2021 | 0.06 V | NOK       |          | 5 V            |
| 3.7.4.2 | V_5V       | Vin = 2.7 V       | 23/3/2021 | 0 V    | NOK       |          | 5 V            |
| 3.7.4.3 | V_3V3      | Vin = 5.4 V       | 23/3/2021 | 0.09 V | NOK       |          | 3.3 V          |
| 3.7.4.4 | V_3V3      | Vin = 2.7 V       | 23/3/2021 | 0 V    | NOK       |          | 3.3 V          |

#### 3. Issues

#### 3.1 Pinout U1: ACHS-7121 (Current Sensor)

The pinout in the design do not corresponds to the datasheet pinout.



The correct pinout is as the following figure extracted from the sensor datasheet:



#### **Solution**:

Cut the traces and rework the connections with the correct pins.

#### 3.2 Pinout U4/U6/U9: TPS2121 (Multiplexer/Switch)

The pinout in the design footprint do not corresponds to the datasheet pinout.



The footprint is flipped horitzontally.

#### **Solution**:

???

#### 3.3 V\_BATT Line

U6-Pin1 [Switch BAT-Out] should be connected to U8-Vin, Q6-Pin5, Q4-Pin5 and U10-Pin22.



The U6-Pin1 corresponds to the output of the switcher that select the supply from PV or the battery, this switch-output feeds the power converters (3.3V, 5V and 12V).

#### **Solution**:

Solder a cable between both traces (VBATT\_IN and V\_BATT\_OUT).

#### **3.4 V\_SC Line**

U4-Pin1 [Switch SC-Out] should be connected to U7-Vin.



The U4-Pin1 corresponds to the output of the switcher that select the supply from PV or the SuperCapacitor, this switch-output feeds the power converter of 12V.

#### **Solution**:

Solder a cable between both traces (VBATT IN and V BATT OUT).

#### 3.5 Serial Wire Debugger (SWD) for STM32-MCU

Missing the traces and connector to program the STM32L4 by the SWD pins.

| STM32        | STLINK (Programmer) |
|--------------|---------------------|
| VDD          | 3V3                 |
| VSS          | <b>GND</b>          |
| PA13 (Pin34) | SWDIO               |
| PA14 (Pin37) | SWCLK               |

#### **Solution:**

Solder wires directly from the STM32 pins to a connector used to plug-in to the STLINK of a NUCLEO board.