1

Line Assignment

kanekal kousar

I. QUESTION

Class 11, Exercise 10.1, Q(9): Without using distance formula, show that points (-2, -1), (4, 0), (3, 3) and (-3, 2) are the vertices of a parallelogram.

II. SOLUTION

Figure 1: paralellogram ABCD

We can prove that the points are the vertices of a parallelogram if $AB \parallel DC$, and $BC \parallel AD$.

Theorm: if θ is the angle between \vec{a} and \vec{b} , then $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta$

corollary: The two non-zero vectors \vec{a} and \vec{b} are

parallel to each other, if their product is a zero vector

Consider Parallelogram ABCD, where

$$\vec{A} = \begin{pmatrix} -2 \\ -1 \end{pmatrix} \qquad \vec{B} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
$$\vec{C} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \vec{D} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

let $\vec{P} = \vec{B} - \vec{A} = \begin{pmatrix} 6 \\ 1 \end{pmatrix} \quad \vec{Q} = \vec{C} - \vec{D} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$ $\vec{R} = \vec{A} - \vec{C} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \quad \vec{S} = \vec{A} - \vec{D} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

A. proof for $AB \parallel DC$

$$\vec{P} \times \vec{Q} = |(\vec{B} - \vec{A}) \times (\vec{C} - \vec{D})| = \begin{vmatrix} \hat{i} & \hat{j} \\ 6 & 1 \\ 6 & 1 \end{vmatrix} = 0\hat{k}$$

$$|\vec{P} \times \vec{Q}| = ||(\vec{B} - \vec{A}) \times (\vec{C} - \vec{D})|| = 0$$
so, according to corollary AB||CD

B. proof for $BC \parallel AD$

$$\vec{P} \times \vec{Q} = |(\vec{B} - \vec{C}) \times (\vec{A} - \vec{D})| = \begin{vmatrix} \hat{i} & \hat{j} \\ 1 & -3 \\ 1 & -3 \end{vmatrix} = 0\hat{k}$$

$$|\vec{P} \times \vec{Q}| = ||(\vec{B} - \vec{C}) \times (\vec{A} - \vec{D})|| = 0$$
so, according to corollary BC||AD

since the opposite lines are parallel the points (-2, -1), (4, 0), (3, 3) and (-3, 2) forms the vertices of a parallelogram

CONSTRUCTION

Symbol	Value	Description
$ec{A}$	$\begin{pmatrix} -2 \\ -1 \end{pmatrix}$	Vertex A
\vec{B}	$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	Vertex B
$ec{C}$	$\binom{3}{3}$	Vertex C
$ec{D}$	$\begin{pmatrix} -3 \\ 2 \end{pmatrix}$	Vertex D
$ec{P}$	$\binom{1}{6}$	vector AB
$ec{Q}$	$\binom{1}{6}$	vector DC
\vec{R}	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	vector BC
$ec{S}$	$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$	vector AD

Get the python code of the figures from

https://github.com/kkousar/KOUSAR_FWC/blob/main/matrices/line/code/line.py