Learning Sum-Product Networks

Martin Trapp

Sum-Product Networks

Probabilistic Inference

	GANs	VAEs	Flows
Sampling	Υ	Υ	Υ
Density	N	N/Y	Υ
Marginals	N	Ν	?
Conditionals	N	Ν	?
Moments	N	Ν	?
MAP	Ν	Ν	?

 Table 1: Robert Peharz, Sum-Product Networks and Deep Learning: A Love Marriage. Talk at ICML, 2019.

Sum-Product Networks

- Sum-product networks (SPNs)¹ are a sub-class of so-called probabilistic circuits², that admit tractable probabilistic inference.
- Probabilistic circuits admit many probabilistic inference tasks, such as marginalisation, in linear time in their representation size.

¹H. Poon & P. Domingos: Sum-product networks: A new deep architecture. In UAI, 2011.

²Van den Broeck et al.: Tractable probabilistic models: Representations, algorithms, learning and applications. Tutorial at UAI, 2019.

Probabilistic Inference

	GANs	VAEs	Flows	SPNs
Sampling	Υ	Υ	Υ	Υ
Density	N	N/Y	Υ	Υ
Marginals	N	Ν	?	Υ
Conditionals	N	Ν	?	Υ
Moments	N	Ν	?	Υ
MAP	Ν	Ν	?	N/Y

 Table 2: Robert Peharz, Sum-Product Networks and Deep Learning: A Love Marriage. Talk at ICML, 2019.

What is a Sum-Product Network?

Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of random variables.

A probabilistic circuit over **X** is a tuple $S = (\mathcal{G}, \psi, \theta)$, where

- \mathcal{G} is a computational graph.
- ψ is a scope function.
- ullet is a set of parameters, e.g. sum-weights and leaf node parameters.

A Sum-Product Network (SPN) is a *smooth* (complete) and *decomposable* probabilistic circuit.

Computational Graph \mathcal{G}

 ${\cal G}$ is a rooted connected directed acyclic graph (DAG), containing: sum (S), product (P) and leaf nodes (L).

Computational Graph ${\mathcal G}$

 \mathcal{G} is a rooted connected directed acyclic graph (DAG), containing: sum (S), product (P) and leaf nodes (L).

$$S = \sum_{x \in (R)} w_{S,C}C(x)$$

$$C = \prod_{x \in C(x)} C(x)$$

 $L = p(x \mid \theta_1)$

Scope Function ψ

The scope function assigning each node N in a sub-set of \mathbf{X} , and has to fulfil the following properties:

- 1. If N is the root node, then $\psi(N) = X$.
- 2. If N is a sum or product, then $\psi(N) = \bigcup_{N' \in \mathbf{ch}(N)} \psi(N')$.

³This sub-set is often referred to as the scope of a node.

Scope Function ψ

The scope function assigning each node N in a sub-set of \mathbf{X} , and has to fulfil the following properties:

- 1. If N is the root node, then $\psi(N) = X$.
- 2. If N is a sum or product, then $\psi(N) = \bigcup_{N' \in \mathbf{ch}(N)} \psi(N')$.

In case of SPNs we also assume that:

- 1. For each $S \in S$ we have $\forall N, N' \in ch(S)$: $\psi(N) = \psi(N')$ (*smoothness*)
- 2. For each $P \in \mathbf{P}$ we have $\forall N, N' \in \mathbf{ch}(P) \colon \psi(N) \cap \psi(N') = \emptyset$ (decomposability).

³This sub-set is often referred to as the scope of a node.

Example SPN $S = (G, \psi, \theta)$

Note that we define L(x) := 1 for every x if and only if $\psi(L) = \emptyset$.

Learning Sum-Product Networks

Parameter Learning in SPNs

We can use backprop for parameter learning in SPNs.

More advanced approaches:

- Expectation Maximisation [R. Peharz et al.: On the latent variable interpretation of sum-product networks. TPAMI, 2017.]
- Variational Inference [H. Zhao et al.: Collapsed variational inference for sum-product networks. In ICML, 2016.]
- Bayesian moment matching [A. Rashwan et al.: Online and distributed Bayesian moment matching for parameter learning in SPNs. In AISTATS, 2016.]
- Safe Semi-Supervised Learning [M. Trapp et al.: Safe semi-supervised learning of sum-product networks. In UAI, 2017.]

Challenges in Structure Learning

- The structure has to be smooth and decomposable, i.e., a sparsely connected graph.
- Structure learning has to be efficient.
- How to learn structures that generalise well, many approaches learn deep trees that are prune to overfitting.
- What is a good SPN structure? or What is a good principle to derive an SPN structure?

Bayesian Structure

Why do we want Bayesian structure learning?

- Occam's razor effect prevents overfitting.
- Works on discrete, continuous and heterogeneous data domains.
- We can use nonparametric formulations, e.g. infinite SPNs, for continual learning.
- Structures can be inferred even in cases of missing values using exact marginalisation.

Bayesian Parameter Learning

The key insight for Bayesian parameter learning is that *sum nodes can be interpreted as latent variables*.

Bayesian Parameter Learning

The key insight for Bayesian parameter learning is that *sum nodes can be interpreted as latent variables*.

11

Bayesian Structure

Generative model for Bayesian learning of SPNs.

Bayesian Structure

Posterior inference using ancestral sampling within Gibbs.

Bayesian Structure - Missing Values Experiment

Performance under increasing amount of missing values.

Figure 1: Results on EachMovie (D: 500, N: 5526) dataset.

Bayesian Structure - Missing Values Experiment

Performance under increasing amount of missing values.

Figure 1: Results on EachMovie (D: 500, N: 5526) dataset.

Bayesian Structure - Missing Values Experiment

Performance under increasing amount of missing values.

Figure 1: Results on EachMovie (D: 500, N: 5526) dataset.

Applications

Existing Applications

Some existing applications of SPNs:

- Computer vision, e.g. image classification, medical image processing, attend-infer-repeat.
- Language processing, e.g. language modelling, bandwidth extension.
- Robotics, e.g. semantic mapping.
- Non-linear regression, and many more⁴

⁴https://github.com/arranger1044/awesome-spn

Gaussian Processes

A Gaussian Process (GP) is a collection of random variables indexed by an arbitrary covariate space \mathcal{X} , where any finite subset is Gaussian distributed.

A GP is a prior over functions, that admits exact posterior inference.

Gaussian Processes

A GP is uniquely specified by a *mean-function* $m: \mathcal{X} \to \mathbb{R}$ and a *covariance* function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

The posterior predictive distribution (used for predictions) of a GP is Gaussian, i.e.,

$$\rho(f^* \mid \mathbf{f}) = \mathcal{N}\left(k_{\mathbf{x}^*, \mathbf{X}}^T k_{\mathbf{X}, \mathbf{X}}^{-1} \mathbf{f}, k_{\mathbf{x}^*, \mathbf{x}^*} - k_{\mathbf{x}^*, \mathbf{X}} k_{\mathbf{X}, \mathbf{X}}^{-1} k_{\mathbf{x}^*, \mathbf{X}}^T\right)$$
(2)

The inversion of $k_{X,X}$ is computed using the Cholesky decomposition of $k_{X,X}$, which scales $\mathcal{O}(N^3)$.

Local Experts

Local experts to approximate the GP or approximate the computation of predictions.

A natural way is to partition \mathcal{X} into sub-sets $\mathcal{X}^{(k)}$, $k=1,\ldots,K$. This is called the naive-local-experts model.

Local Experts

Existing solutions to discontinuities.

- 1. Product-of-Experts (PoE) / Bayesian Committee Machine (BCM)
 - Instead of partition \mathcal{X} , partition \mathcal{X} into sub-sets $\mathcal{X}^{(k)}$.
 - Use an algorithm that works only on the sub-sets.
 - Problem: Not a stochastic process, results in over-conservative or over-confident estimates.
- 2. Mixture-of-Experts (MoE)
 - Use a gating network to assign observations to experts instead of hard boundaries.
 - Often intractable (due to the gating network).
- 3. Impose Continuity Constraints
 - Suffers from inconsistent variances and does not scale.

Deep Structured Mixtures of Gaussian Processes

Why not use a large (finite) mixture of NLEs?

Deep Structured Mixture of GPs (DSMGP)⁵:

- 1. A DSMGP is a hierarchically defined convex combination of product measures with Gaussian measures as base measure.
- 2. DSMGPs perform exact Bayesian model averaging over a large set of NLEs.

⁵M. Trapp et al.: Deep structure mixtures of Gaussian Processes. To appear in AISTATS, 2020.

Deep Structured Mixtures of Gaussian Processes

- DSMGPs are a sound stochastic process.
- We can perform exact posterior inference, efficiently.
- DSMGPs capture predictive uncertainties consistently better than existing approximations.
- In DSMGPs we can model non-stationary data and perform exact inference over kernel functions.

DSMGPs - Example

Thank you for your attention!