

A Performance and Energy Study of the Hyperbolic PDE Solver Engine ExaHyPE

Master's Thesis in Computational Science and Engineering

Fabian Güra

Department of Informatics
Technische Universität München
September 2016

Supervisor: Univ.-Prof. Dr. Michael Bader Dr. Tobias Weinzierl

Advisor: Dr. Vasco Varduhn

A Performance and Energy Study of the Hyperbolic PDE Solver Engine ExaHyPE

Master's Thesis in Computational Science and Engineering

Fabian Güra

Department of Informatics
Technische Universität München
September 2016

Supervisor: Univ.-Prof. Dr. Michael Bader Dr. Tobias Weinzierl

Advisor: Dr. Vasco Varduhn

Abstract

... ...

Contents

Co	nten	its		iii
1	Intr	oductio	on	1
2	The	-		3
	2.1		dimensional ADER-DG scheme with MUSCL-Hancock teriori subcell limiting for non-linear hyperbolic conser-	
			n laws	3
		2.1.1	Notation	3
		2.1.2	122	3
		2.1.3		4
			Weak formulation	4
		2.1.5	r	5
		2.1.6	Space-time predictor	7
		2.1.7	Mappings	8
		2.1.8	Orthogonal bases for the finite-dimensional spatial and	
			space-time function spaces	9
	2.2	Profil	ing and Energy-aware Computing	11
3	A p	rofiling	g infrastructure for ExaHyPE	13
4	Pre	liminar	ry profiling results, case studies	15
5	Cor	clusio	n and Outlook	17
6	Ack	nowle	dgment	19

Introduction

- Challenges of exascale
- The ExaHyPE project (numerics, resilience, profiling) as an answer
- On the importance of profiling and performance measuring

Theory

2.1 A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Arbitrary High Order Derivatives Discontinuous Galerkin (ADER-DG)

2.1.1 Notation

We use vector notation whenever possible. Advantage: Complete derivation, direct conversion to code.

2.1.2 PDE

Task: Solve the PDE

$$\frac{\partial}{\partial t} [\mathbf{u}]_v + \frac{\partial}{\partial x_d} [\mathbf{F}(\mathbf{u})]_{vd} = [\mathbf{s}(\mathbf{u})]_v \text{ on } \mathbf{\Omega} \times (0, T)$$
 (2.1)

with initial conditions

$$[u(x,0)]_v = [u_0(x)]_v \,\forall x \in \Omega, \tag{2.2}$$

and boundary conditions

$$[u(x,t)]_v = [u_B(x,t)]_v \,\forall x \in \partial \Omega, t \in (0,T), \tag{2.3}$$

for all $v \in \{1, 2, ..., V\}$, where V is the number of quantities involved in the system, $\Omega \subset \mathbb{R}^D$ is the spatial domain, D the number of space dimensions, and (0, T) a time interval. The function $F : \mathbb{R}^V \to \mathbb{R}^{V \times D}$, $u \mapsto F(u) = [f_1(u), f_2(u), ..., f_D(u)]$ is called the flux function.

For the problem to be hyperbolic we require that all Jacobian matrices $A_d(x,t)$, $d \in \{1,2,\ldots,D\}$, defined as

$$[A_d]_{ij} = \frac{\partial [f_d]_i}{\partial x_i},\tag{2.4}$$

have *D* real eigenvalues in each admissible state $(x, t) \in \Omega \times (0, T)$.

2.1.3 Mesh

Let \mathcal{T}_h be a quadrilateral partition of Ω , i.e.

$$K \cap J = \emptyset \, \forall K, J \in \mathcal{T}_h, K \neq J$$
 (2.5)

$$\bigcup_{K \in \mathcal{T}_h} K = \mathbf{\Omega}. \tag{2.6}$$

Let $\{t_i\}_{i=0,1,...I}$ be a partition of the time interval (0,T) such that

$$0 = t_0 < t_1 < \dots < t_I = T, (2.7)$$

where *I* is the number of sub intervals. We furthermore define

$$\Delta t_i = t_{i+1} - t_i, i \text{ in } \{0, 1, \dots, I - 1\},$$
 (2.8)

so that the interval (t_i, t_{i+1}) can be written as $(t_i, t_i + \Delta t_i)$.

2.1.4 Weak formulation

Let $L^2(\mathbf{\Omega})^V$ be the space of vector-valued, square-integrable functions on $\mathbf{\Omega}$, i.e.

$$L^{2}(\mathbf{\Omega})^{V} = \left\{ \boldsymbol{w} : \mathbf{\Omega} \to \mathbb{R}^{V} \mid \int_{\mathbf{\Omega}} \|\boldsymbol{w}\| \, d\boldsymbol{x} < \infty \right\}. \tag{2.9}$$

Let $w \in L^2(\Omega)^V$ be a spatial test function. Multiplication of the original PDE (2.1) and integration over a space-time cell $K \times (t_i, t_i + \Delta t_i)$ yields a weak, element local formulation of the problem

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\boldsymbol{u} \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{F}(\boldsymbol{u}) \right]_{vd} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt = \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\boldsymbol{u}) \right]_{v} \left[\boldsymbol{w} \right]_{v} d\boldsymbol{x} dt, \tag{2.10}$$

which we require to hold for $v \in \{1, 2, ..., V\}$, $w \in L^2(\Omega)^V$, $K \in \mathcal{T}_h$ and $i \in \{0, 1, ..., I-1\}$.

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

Integration by parts of the spatial integral in the second term yields

$$\int_{K} \frac{\partial}{\partial x_{d}} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} d\mathbf{x} =$$

$$\int_{K} \frac{\partial}{\partial x_{d}} \left(\left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \right) d\mathbf{x} - \int_{K} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\mathbf{w} \right]_{v} d\mathbf{x}.$$
(2.11)

Application of the divergence theorem to the first term on the right-hand side of (2.11) yields

$$\int_{K} \frac{\partial}{\partial x_{d}} \left(\left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \right) d\mathbf{x} = \int_{\partial K} \left[\mathbf{F}(\mathbf{u}) \right]_{vd} \left[\mathbf{w} \right]_{v} \left[\mathbf{n} \right]_{d} ds(\mathbf{x}), \tag{2.12}$$

where $n \in \mathbb{R}^D$ is the unit-length, outward-pointing normal vector at a point x on the surface of K, which we denote by ∂K .

Inserting eqs. (2.11) and (2.12) into eq. (2.10) yields the following weak, element-local formulation of the original equation (2.1):

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\boldsymbol{u}\right]_{v} \left[\boldsymbol{w}\right]_{v} d\boldsymbol{x} dt - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{F}(\boldsymbol{u})\right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}\right]_{v} d\boldsymbol{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{F}(\boldsymbol{u})\right]_{vd} \left[\boldsymbol{w}\right]_{v} \left[\boldsymbol{n}\right]_{d} ds(\boldsymbol{x}) dt = \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\boldsymbol{u})\right]_{v} \left[\boldsymbol{w}\right]_{v} d\boldsymbol{x} dt. \tag{2.13}$$

Again we require the weak formulation to hold for all $v \in \{1, 2, ..., V\}$, $w \in L^2(\Omega)^V$, $K \in \mathcal{T}_h$ and $i \in \{0, 1, ..., I-1\}$.

2.1.5 Restriction to finite-dimensional function spaces

To discretize eq. (2.13) we need to impose the restriction that both test and ansatz functions come from a finite-dimensional space. First, let $\mathbb{Q}_N(K)^V$ and $\mathbb{Q}_N(K \times (t_i, t_i + \Delta t_i))^V$ be the space of vector-valued, multivariate polynomials of degree less or equal N in each variable on K and $K \times (t_i, t_i + \Delta t_i)$, respectively. We then make the following choices:

For spatial functions we restrict ourselves to

$$\mathbb{W}_h = \left\{ \boldsymbol{w}_h \in L^2(\mathbf{\Omega})^V : \boldsymbol{w}_h|_K := \boldsymbol{w}_h^K \in \mathbb{Q}_N(K)^V \, \forall K \in \mathcal{T}_h \right\}. \tag{2.14}$$

• For space-time functions we restrict ourselves to

$$\widetilde{\mathbf{W}}_{h}^{i} = \left\{ \widetilde{\mathbf{w}}_{h}^{i} \in L^{2} \left(\mathbf{\Omega} \times (t_{i}, t_{i} + \Delta t_{i}) \right) : \\
\widetilde{\mathbf{w}}_{h}^{i} \Big|_{K} := \widetilde{\mathbf{w}}_{h}^{Ki} \in \mathbb{Q}_{N} \left(K \times (t_{i}, t_{i} + \Delta t_{i}) \right) \forall K \in \mathcal{T}_{h} \right\}$$
(2.15)

for all $i \in \{0, 1, ..., I - 1\}$.

Replacing w by $w_h \in \mathbb{W}_h$ and u by $\tilde{u}_h^i \in \tilde{\mathbb{W}}_h^i$ in eq. (2.13) yields a finite-dimensional approximation of the weak formulation

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{u}}_{h}^{Ki} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{F}(\tilde{\boldsymbol{u}}_{h}^{Ki}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt + \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}}(\tilde{\boldsymbol{u}}_{h}^{Ki}, \tilde{\boldsymbol{u}}_{h}^{K+i}, \boldsymbol{n}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} ds(\boldsymbol{x}) dt = \int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\boldsymbol{s}(\tilde{\boldsymbol{u}}_{h}^{Ki}) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt, \tag{2.16}$$

which now has to hold for all $w_h \in W_h$, $K \in \mathcal{T}_h$ and $i \in \{0,1,\ldots,I-1\}$. Since for a cell $K \in \mathcal{T}_h$ and one of its Voronoi neighbors $K' \in \mathcal{V}(K)$ one has

$$\tilde{\boldsymbol{u}}_{h}^{Ki}(\boldsymbol{x}) \neq \tilde{\boldsymbol{u}}_{h}^{K'i}(\boldsymbol{x}), \, \boldsymbol{x} \in K \cap K', \tag{2.17}$$

i.e. \tilde{u}_h^i is double-valued at the interface between K and K', in order to compute the surface integral we need to introduce the numerical flux function $\mathcal{G}(\tilde{u}_h^{Ki}, \tilde{u}_h^{K'i}, n)$. The numerical flux at a position $x \in K \cap K'$ on the interface is obtained by (approximately) solving a Riemann problem in normal direction.

Integration by parts in time of the first term of eq. (2.16) and noting that w_h is constant in time yields the following one-step update scheme for the cell-local time-discrete solution \tilde{u}_h^{Ki} :

$$\int_{K} \left[\left. \tilde{\boldsymbol{u}}_{h}^{Ki} \right|_{t_{i} + \Delta t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} = \int_{K} \left[\left. \tilde{\boldsymbol{u}}_{h}^{Ki} \right|_{t_{i}} \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} + \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{F} \left(\tilde{\boldsymbol{u}}_{h}^{Ki} \right) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{\partial K} \left[\boldsymbol{\mathcal{G}} \left(\tilde{\boldsymbol{u}}_{h}^{Ki}, \tilde{\boldsymbol{u}}_{h}^{K+i}, \boldsymbol{n} \right) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt - \\
\int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{u}}_{h}^{Ki} \right) \right]_{v} \left[\boldsymbol{w}_{h}^{K} \right]_{v} d\boldsymbol{x} dt . \tag{2.18}$$

Again we require eq. (2.18) to hold for all $v \in \{1, 2, ..., V\}$, $w_h \in W_h$, $K \in \mathcal{T}_h$ and $i \in \{0, 1, ..., I - 1\}$.

Problem: We only have $\tilde{u}_h^i\Big|_t$ at the discrete time steps $t \in \{t_i, t_i + \Delta t_i\}$, not within the open interval, i.e. for $t \in (t_i, t_i + \Delta t_i)$.

Idea: Replace \tilde{u}_h in $K \times (t_i, t_i + \Delta t_i)$ by an approximation $\tilde{q}_h^i \in \tilde{W}_h^i$ which we call space-time predictor.

2.1.6 Space-time predictor

To derive a procedure to compute the space-time predictor $\tilde{q}_h^i \in \tilde{W}_h^i$ we again start from the original PDE (2.1), but this time we do not use a spatial test function $w_h \in W_h$, but a space-time test function $\tilde{w}_h^i \in \tilde{W}_h^i$. If we furthermore replace the solution u by the the space-time predictor $\tilde{q}_h^i \in \tilde{W}_h^i$, integrate over the space-time element $K \times (t_i, t_i + \Delta t_i)$ and apply the divergence theorem analogously to eq. (2.12) we obtain the following relation:

$$\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \frac{\partial}{\partial t} \left[\tilde{\mathbf{q}}_{h}^{Ki} \right]_{v} \left[\tilde{\mathbf{w}}_{h}^{Ki} \right]_{v} d\mathbf{x} dt - \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\mathbf{F}(\tilde{\mathbf{q}}_{h}^{Ki}) \right]_{vd} \frac{\partial}{\partial x_{d}} \left[\tilde{\mathbf{w}}_{h}^{Ki} \right]_{v} d\mathbf{x} dt + \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{\partial K} \left[\mathbf{G}\left(\tilde{\mathbf{q}}_{h}^{Ki}, \tilde{\mathbf{q}}_{h}^{K+i}, \mathbf{n} \right) \right]_{v} \left[\tilde{\mathbf{w}}_{h}^{Ki} \right]_{v} ds(\mathbf{x}) dt = \\
\int_{t_{i}}^{t_{i}+\Delta t_{i}} \int_{K} \left[\mathbf{S}\left(\tilde{\mathbf{q}}_{h}^{Ki} \right) \right]_{v} \left[\tilde{\mathbf{w}}_{h}^{Ki} \right]_{v} d\mathbf{x} dt. \tag{2.19}$$

We require eq. (2.19) to hold for all $v \in \{1, 2, ..., V\}$, $\tilde{w}_h^i \in \tilde{W}_h^i$, $K \in \mathcal{T}_h$ and $i \in \{0, 1, ..., I-1\}$.

The assumption that the solution is balanced, i.e. that there is no net inflow or outflow for cell $K \in \mathcal{T}_h$ allows us to drop the third term. Together with integration by parts in time of the first term this yields

$$\int_{K} \left[\left. \tilde{\boldsymbol{q}}_{h}^{Ki} \right|_{t_{i} + \Delta t_{i}} \right]_{v} \left[\left. \tilde{\boldsymbol{w}}_{h}^{Ki} \right|_{t_{i} + \Delta t_{i}} \right]_{v} d\boldsymbol{x} - \int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\tilde{\boldsymbol{q}}_{h}^{Ki} \right]_{v} \frac{\partial}{\partial t} \left[\tilde{\boldsymbol{w}}_{h}^{Ki} \right]_{v} d\boldsymbol{x} dt =$$

$$\int_{K} \left[\left. \tilde{\boldsymbol{q}}_{h}^{Ki} \right|_{t_{i}} \right]_{v} \left[\left. \tilde{\boldsymbol{w}}_{h}^{Ki} \right|_{t_{i}} \right]_{v} d\boldsymbol{x} + \int_{t_{i}}^{t_{i} + \Delta t_{i}} \int_{K} \left[\boldsymbol{s} \left(\tilde{\boldsymbol{q}}_{h}^{Ki} \right) \right]_{v} \left[\tilde{\boldsymbol{w}}_{h}^{Ki} \right]_{v} d\boldsymbol{x} dt, \tag{2.20}$$

which we require to hold for all $v \in \{1, 2, ..., V\}$, $\tilde{w}_h^i \in \tilde{W}_h^i$, $K \in \mathcal{T}_h$ and $i \in \{0, 1, ..., I-1\}$. Together with the initial condition

$$\left. \tilde{\mathbf{q}}_{h}^{Ki} \right|_{t_{i}} = \left. \tilde{\mathbf{u}}_{h}^{K} \right|_{t_{i}} \tag{2.21}$$

and an initial guess

$$\left. \tilde{q}_{h}^{Ki} \right|_{t} = \left. \tilde{u}_{h}^{K} \right|_{t_{i}} \forall t \in (t_{i}, t_{i} + \Delta t_{i})$$
 (2.22)

this relation can be used as a fixed-point iteration to find $\left. \tilde{q}_h^{Ki} \right|_t \forall t \in (t_i, t_i + \Delta t_i)$.

In the following two sections we will introduce mappings from space-time elements $K \times (t_i, t_i + \Delta t_i)$ to reference space-time cells and orthogonal bases

for the spaces W_h and \tilde{W}_h^i . We will then insert these results into eq. (2.20) and derive a fully-discrete iterative method to compute the space-time predictor \tilde{q}_h^{Ki} .

2.1.7 Mappings

Let $\hat{K} = (0,1)^D$ be the spatial reference element and $\xi \in \hat{K}$ be a point in the reference element. Let (0,1) be the reference time interval and $\tau \in (0,1)$ be a point in time in reference time.

We can then introduce the following mappings:

Spatial mappings: Let $K \in \mathcal{T}_h$ be a cell in global coordinates with extent Δx^K and "lower-left corner" P_K , more precisely that is

$$\left[\Delta x^{K}\right]_{d} = \max_{\mathbf{x} \in K} \left[\mathbf{x}\right]_{d} - \min_{\mathbf{x} \in K} \left[\mathbf{x}\right]_{d} \tag{2.23}$$

and

$$[\mathbf{P}_K]_d = \min_{\mathbf{x} \in K} [\mathbf{x}]_d \tag{2.24}$$

for $d \in \{1, 2, ..., D\}$. We can then define a mapping

$$\mathcal{X}_K: \hat{K} \to K, \xi \mapsto \mathcal{X}_K(\xi) = x$$
 (2.25)

via the relation

$$[\mathbf{x}]_d = \left[\mathbf{\mathcal{X}}_K(\xi) \right]_d = \left[\mathbf{P}_K \right]_d + \left[\Delta \mathbf{x} \right]_d \left[\xi \right]_d \tag{2.26}$$

for $v \in \{1, 2, ..., V\}$ (i.e. no summation on v) and for all $x \in K$, $\xi \in \hat{K}$ and $K \in \mathcal{T}_h$.

Temporal mappings: Let $(t_i, t_i + \Delta t_i), i \in \{0, 1, ..., I - 1\}$ be an interval in global time. The mapping

$$\mathcal{T}_i: (0,1) \to (t_i, t_i + \Delta t_i), \tau \mapsto \mathcal{T}_i(\tau) = t_i + \Delta t_i \tau = t$$
 (2.27)

maps a point in reference time $\tau \in (0,1)$ to a point in global time $t \in (t_i, t_i + \Delta t_i)$ for all $i \in \{0, 1, ..., I - 1\}$.

The inverse mappings, the Jacobian matrices and the Jacobi determinants of the mappings are given in the following:

Spatial mappings: The inverse spatial mappings

$$\boldsymbol{\mathcal{X}}_{K}^{-1}: K \to \hat{K}, \boldsymbol{x} \mapsto \boldsymbol{\mathcal{X}}_{K}^{-1}(\boldsymbol{x}) = \boldsymbol{\xi}$$
 (2.28)

2.1. A *D*-dimensional ADER-DG scheme with MUSCL-Hancock a-posteriori subcell limiting for non-linear hyperbolic conservation laws

are defined via the relation

$$\left[\boldsymbol{\xi}\right]_{d} = \left[\boldsymbol{\mathcal{X}}_{K}^{-1}(\boldsymbol{x})\right]_{d} = \frac{1}{\left[\Delta \boldsymbol{x}^{K}\right]_{d}} \left(\left[\boldsymbol{x}\right]_{d} - \left[\boldsymbol{P}_{K}\right]_{d}\right) \tag{2.29}$$

for $v \in \{1, 2, ..., V\}$ and for all $\boldsymbol{\xi} \in \hat{K}$, $\boldsymbol{x} \in K$ and $K \in \mathcal{T}_h$. The Jacobian of $\boldsymbol{\mathcal{X}}_K$ is found to be

$$\left[\frac{\partial \mathcal{X}_K}{\partial \xi}\right]_{dd'} = \frac{\partial \left[\mathcal{X}_K\right]_d}{\partial \xi_{d'}} = \left[\Delta x^K\right]_d \delta_{dd'},\tag{2.30}$$

where $d, d' \in \{1, 2, ... D\}$ (i.e. no summation on d) and for all $K \in \mathcal{T}_h$. As usual $\delta_{dd'}$ denotes the Kronecker delta defined as

$$\delta_{dd'} = \begin{cases} 0 & \text{if } d \neq d' \\ 1 & \text{if } d = d'. \end{cases}$$
 (2.31)

The Jacobi determinant of \mathcal{X}_K for $K \in \mathcal{T}_h$ then simply is

$$J_{\mathcal{X}_K} = \|\frac{\partial \mathcal{X}_K}{\partial \xi}\| = \prod_{d=1}^D \left[\Delta x^K\right]_d, \tag{2.32}$$

i.e. the determinant is constant for all $x \in K$.

Temporal mappings: The inverse temporal mappings are given as

$$\mathcal{T}_i^{-1}: (t_i, t_i + \Delta t_i) \to (0, 1), t \mapsto \mathcal{T}_i^{-1}(t) = \frac{t - t_i}{\Delta t_i} = \tau$$
 (2.33)

for all $\tau \in (0,1)$, $t \in (t_i, t_i + \Delta t_i)$ and $i \in \{1,2,\ldots, I-1\}$. In the trivial case of a one-dimensional mapping the Jacobian of \mathcal{T}_i is a scalar which in turn is its own determinant. One finds

$$\frac{d\mathcal{T}_i}{\partial \tau} = \Delta t_i = J_{\mathcal{T}_i} \tag{2.34}$$

which again is constant for all $t \in (t_i, t_i + \Delta t_i)$ for a fixed $i \in \{0, 1, ..., I - 1\}$.

2.1.8 Orthogonal bases for the finite-dimensional spatial and spacetime function spaces

Lagrange interpolation

Let $f \in \mathbb{Q}_N((0,1))$ be a polynomial of degree N and let $\{\hat{x}_n\}_{n \in \{0,1,\dots,N\}}$ be a set of distinct nodes in (0,1). The the Lagrange interpolation of f,

$$\hat{f}(x) = \sum_{n=0}^{N} L_n(x) f(x_n)$$
 (2.35)

with Lagrange functions

$$L_n(x) = \prod_{m=0, m \neq n}^{N} \frac{x - \hat{x}_m}{\hat{x}_n - \hat{x}_m}$$
 (2.36)

is exact, i.e.

$$f(x) = \hat{f}(x) \,\forall x \in (0,1). \tag{2.37}$$

Since every polynomial $f \in \mathbb{Q}_N((0,1))$ can be represented as a linear combination of the Legendre polynomials L_n the set of functions $\{L_n\}_{n\in\{0,1,\ldots,N\}}$ is a basis of $Q_N((0,1))$.

The following observation is an important property of the Lagrange polynomials:

$$L_n(\hat{x}_{n'}) = \delta_{nn'}, \tag{2.38}$$

i.e. at each node \hat{x}_n only L_n has value 1 and all other polynomials evaluate to 0.

Legendre polynomials and Gauss-Legendre integration

Let $P_0: (-1,1) \to \mathbb{R}$, $x \mapsto 1$ and $P_1: (-1,1) \to \mathbb{R}$, $x \mapsto x$ be the zeroth and the first Legendre polynomial, respectively. Then the N+1-st Legendre polynomial can be defined via the following recurrence relation:

$$P_{N+1}(x) = \frac{1}{N+1} \left((2N+1)P_N(x) - nP_{N-1}(x) \right). \tag{2.39}$$

Let $\{\tilde{x}_n\}_{n\in\{0,1,\dots,N\}}$ be the roots of the N+1-st Legendre polynomial $L_{N+1}(x)$. Then $\{\hat{x}_n\}_{n\in\{0,1,\dots,N\}}$ with

$$\hat{x}_n = \frac{1}{2}(\tilde{x}_n + 1) \tag{2.40}$$

are the roots of the N+1-st Legendre polynomial linearly mapped to the interval (0,1). In conjunction with a set of suitable weights $\{\hat{w}_n\}_{n\in\{0,1,...N\}}$ Gauss-Legendre integration can be used to integrate polynomials of degree up to 2N+1 over the integral [0,1] exactly, i.e.

$$\int_0^1 f(x) dx = \sum_{n=0}^N \hat{w}_n f(\hat{x}_n) \, \forall f \in \mathbb{Q}_{2N+1} \left([0,1] \right). \tag{2.41}$$

A script on how to find the weights $\{\hat{w}_n\}_{n\in\{0,1,\dots,N\}}$ can be found in appendix XXX.

1d basis functions

Let $\{\psi_n\}_{n\in\{0,1,\dots,N\}}$ be the set of N+1 Lagrange polynomials with nodes at the roots of the N+1-st Legendre polynomial linearly mapped to the interval (0,1), i.e.

$$\psi_n(x) = \sum_{n'=0}^{N} \frac{x - \hat{x}_{n'}}{\hat{x}_n - \hat{x}_{n'}}$$
 (2.42)

for $n \in \{0,1,\ldots,N\}$. Since $\{\psi_n\}_{n \in \{0,1,\ldots,N\}}$ are Lagrange polynomials and the roots $\{\hat{x}_n\}_{n \in \{0,1,\ldots,N\}}$ are distinct the set is a basis of $\mathbb{Q}_N\left([0,1]\right)$. Since furthermore

$$\langle \psi_n, \psi_m \rangle_{L^2((0,1))} = \int_0^1 \psi_n(x) \psi_m(x) \, d\mathbf{x} = \sum_{n'=0}^N \hat{w}'_n \psi_n(\hat{x}_{n'}) \psi_m(\hat{x}_{n'}) = \hat{w}_n \delta_{mn}$$
(2.43)

for all $m, n \in \{0, 1, ..., N\}$ (i.e. no summation over n) the set is even an orthogonal basis of $\mathbb{Q}_N([0,1])$ with respect to the L^2 -scalar product defined as above. In the derivation above we used the fact that $\phi_n \phi_m$ has degree 2N and that Gauss-Legendre integration with N+1 nodes is exact for polynomials up to degree 2N+1.

2.2 Profiling and Energy-aware Computing

A profiling infrastructure for ExaHyPE

- General architecture
- Architecture profiling
- Functionality

Preliminary profiling results, case studies

- Analytic benchmark: Introduction, derivation
- Pie-chart per kernel
- $\bullet \ \, \text{Case-study: Cache-misses, compile-time } (\to \text{Toolkit philosophy})$
- ullet Degree o Wallclock, Energy (AMR)
- Static mesh $\Delta x \rightarrow$ Error for polynomials (convergence tables)

Conclusion and Outlook

- PA is important
- ExaHyPE as an answer to exascale challenges
- Applications

Acknowledgment