Physics 137B Lecture (Not sure)

Keshav Balwant Deoskar

March 4, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

1	March 4 - Applications of the Fermi Gas Model		
	1.1	Recap - Fermi Gas Model	2
	1.2	Finite Temperature	2
	1.3	Application - Stellar Evolution	2
	1 4	White Dwarfs	3

1 March 4 - Applications of the Fermi Gas Model

1.1 Recap - Fermi Gas Model

- Last time, we began studying the Fermi Gas Model, which is the large N limit of a system comprised of N spin-1/2 fermions in a box.
- We calculated the number of states corresponding to each momentum k and then integrated over k space:

$$dn = 2\left(\frac{L}{2\pi}\right)^3 d\Omega \ k^2 dk$$

• We found the **Fermi Energy**, E_F and the **Total Energy**, F_T

$$E_T = N \cdot \frac{3}{2} E_F$$

where
$$E_f = \left(\rho 3\pi^2\right)^{2/3} \cdot \frac{\hbar^2}{2m}$$

- Notably, however, we only considered the system at T = 0K.
- The Fermi surface is the surface which bounds the sphere in n-space [Write better explanation later]

1.2 Finite Temperature

- At T = 0K, the system collapses to the ground state.
- \bullet At T>0K, particles have enough energy to jump up to higher energy levels aka. jump the Fermo Surface. We find that

$$\langle n(E) \rangle = \frac{1}{\exp\left[\frac{E - E_F}{T}\right] - 1}$$

• Finite Temperature stuff is beyond the scope of this course, however, so we'll stick to the T=0K case.

1.3 Application - Stellar Evolution

- In the early stages, stars are mainly composed of Hydrogen.
- The thing that drives energy production in the stars is nuclear fusion, and the primary reaction that takes place is

$$p + p \to \underbrace{d}_{n,p} + e^{+} + \overline{\nu}_{e}$$

$$d + p \to He_{3} + \gamma$$

$$He_{3} + He_{3} \to p + p + He_{4}$$

$$\vdots$$

• What keeps the Star stable is the gravitational pull due to the immense mass of the star, which conflicts with the radiation pressure due to the nuclear reactions.

- Eventually, however, run out of nuclear fuel and gravity wins out. At that point, depending on the size of the star, various things can happen.
- Stars with masses $M < M_{sun} \times 1.5$ can form white dwarfs $[e^-]$ when gravity wins out.
- For stars with masses much greater than the sun, it is more energetically neutral for the reaction $e^- + p \rightarrow n + \overline{\nu}_e$, hence they are called neutron stars.

1.4 White Dwarfs

We can crudely model white dwarfs are seas of Fermi Elections.

Energy of the system: $E_T = E_{kin} + E_{grav}$ where $E_{kin} = N\frac{3}{5}E_F$ Write rest of the notes from recording, just pay attention in class.