Euklidove vety

© Zuzana Hajduková, január 2007

Obsah

Podobnosť trojuholníkov

Euklidove vety

Euklidovské konštrukcie

Príklady k teórii

Podobnosť trojuholníkov

Zopakujme si vety o podobnosti trojuholníkov

 Špecifikujte podobnosť pravouhlých trojuholníkov

Vety o podobnosti trojuholníkov

Dva trojuholníky sú podobné práve vtedy, ak sa zhodujú:

- vo všetkých pomeroch dĺžok zodpovedajúcich si strán (sss)
- v pomere dĺžok dvoch zodpovedajúcich si strán a v jednom uhle nimi zovretom (sus)
- v dvoch uhloch (uu)

Čo je ešte dôležité?

Veľkosti odpovedajúcich si uhlov dvoch podobných trojuholníkov sú zhodné.

Veta uu pre pravouhlé trojuholníky

Dva pravouhlé trojuholníky sú podobné práve vtedy, ak sa zhodujú v jednom ostrom uhle.

[Majú zhodné 2 uhly (ostrý a pravý)]

Pravouhlý trojuholník

$$\triangle ABC$$
: $\alpha + \beta = 90^{\circ}$

$$\triangle APC : \alpha + |\angle ACP| = 90^{\circ} \Rightarrow |\angle ACP| = \beta$$

$$\Delta PBC : |\angle BCP| + \beta = 90^{\circ} \Rightarrow |\angle BCP| = \alpha$$

Popis:

ΔABC – pravouhlý s pravým uhlom pri vrchole C

v – výška na preponu

P – päta kolmice

c_a – úsek na prepone priľahlý k odvesne a

c_b – úsek na prepone priľahlý k odvesne b

$$C = C_a + C_b$$

Euklidova veta o odvesne

Každé dva pravouhlé trojuholníky sú podobné, lebo sú pravouhlé a navyše zhodujú sa v jednom ostrom uhle.

$$\Delta ACP \sim \Delta ABC \quad (uu)$$

$$\frac{c}{b} = \frac{b}{c_b}$$

$$b^2 = c.c_b$$

$$\Delta ABC \sim \Delta CBP \quad (uu)$$

$$\frac{a}{c} = \frac{c_a}{a}$$

$$a^2 = c.c_a$$

Euklidova veta o výške

Trojuholníky sú podobné, lebo sú pravouhlé a navyše zhodujú sa v ostrom uhle.

$$\Delta ACP \sim \Delta CBP \quad (uu)$$

$$\frac{v}{c_b} = \frac{c_a}{v}$$

$$v^2 = c_a.c_b$$

Úloha č.1

V pravouhlom trojuholníku ABC je dané: c_a=4cm, c_b=3cm.
Vypočítajte: dĺžky strán trojuholníka a výšku v_c.

Náčrt:

 $a=2.\sqrt{7}$ cm

Riešenie:

$$c = c_a + c_b$$
 $v^2 = c_a \cdot c_b$ $a^2 = c \cdot c_a$ $b^2 = c \cdot c_b$
 $c = 4 + 3$ $v^2 = 4.3$ $a^2 = 7.4$ $b^2 = 7.3$
 $c = 7 \text{ cm}$ $v = \sqrt{12}$ $a = \sqrt{28}$ $b = \sqrt{21 \text{ cm}}$

 $v = 2.\sqrt{3} cm$

Úloha č.2

 V pravouhlom trojuholníku ABC je dané: a=10cm, c=12,5cm, P je päta výšky v_c, M je päta ťažnice t_a.
 Vypočítajte obsah trojuholníka PBM.

Náčrt:

Riešenie:

 $c_a = 8cm$

$$a^{2} = c.c_{a}$$
 $10^{2} = 12,5.c_{a}$
 $c_{a} = \frac{100}{12,5}$

$$c_a + c_b = c$$

$$8 + c_b = 12,5$$

$$c_b = 12,5 - 8$$

$$\underline{c_b = 4,5 cm}$$

$$v^{2} = c_{a}.c_{b}$$

$$v^{2} = 8.4,5$$

$$v^{2} = 8.4,5$$

$$v^{2} = 36$$

$$S_{\Delta PBM} = \frac{1}{2}.c_{a}\frac{1}{2}v_{c}$$

$$S_{\Delta PBM} = \frac{8.3}{2}$$

$$v = 6 cm$$

$$S_{\Delta PBM} = 12 cm^{2}$$

Skúste sami

 V pravouhlom trojuholníku ABC sú dané úseky na prepone: c_a=4 cm, c_b=9cm.
 Vypočítajte obsah a obvod trojuholníka.

$$(o = 13 + 5.\sqrt{13} \, cm, S = 39 \, cm^2)$$

 Ku kružnici s polomerom 15 cm sú z bodu A vedené dve dotyčnice.
 Vzdialenosť obidvoch dotykových bodov je 18 cm.

Vypočítajte vzdialenosť bodu A od stredu kružnice.

(18,75cm)

Preskúšajme sa

Výpočet prvkov pravouhlého trojuholníka využitím Euklidovej vety

Kliknite na ikonu

Koniec prezentácie

Koniec

