Smoothed Analysis of Tensor Decompositions and Learning

Aravindan Vijayaraghavan

CMU ⇒ Northwestern University

based on joint works with

Aditya Bhaskara Google Research Moses Charikar
Princeton

Ankur Moitra MIT

Factor analysis

Explain using few unobserved variables

d d

Assumption: matrix has a "simple

explanation"

• Sum of "few" rank one matrices (k < d)

$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_k \otimes b_k$$

Qn [Spearman]. Can we find the "desired" explanation?

The rotation problem

Any suitable "rotation" of the vectors gives a different decomposition

$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_k \otimes b_k$$

$$A \qquad B^T \qquad = \qquad A \qquad Q \qquad Q^T \qquad B^T$$

Often difficult to find "desired" decomposition..

Tensors

Multi-dimensional arrays

- t dimensional array \equiv tensor of order $t \equiv t$ -tensor
- Represent higher order correlations, partial derivatives, etc.
- Collection of matrix (or smaller tensor) slices

3-way factor analysis

Tensor can be written as a sum of few rank-one tensors

3-Tensors:

$$T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$$

Rank(T) = smallest k s.t. T written as sum of k rank-1 tensors

• Rank of 3-tensor $T_{d \times d \times d} \leq d^2$. Rank of t-tensor $T_{d \times \cdots \times d} \leq d^{t-1}$

Thm [Harshman'70, Kruskal'77]. Rank-k decompositions for 3-tensors (and higher orders) unique under mild conditions.

3-way decompositions overcome rotation problem!

Learning Probabilistic Models: Parameter Estimation

Question: Can given data be "explained" by a simple probabilistic model?

Mixture of Gaussians for clustering points

HMMs for speech recognition

Multiview models

Learning goal: Can the parameters of the model be learned from polynomial samples generated by the model?

- Algorithms have exponential time & sample complexity
- EM algorithm used in practice, but converges to local optima

Mixtures of (axis-aligned) Gaussians

Probabilistic model for Clustering in d-dims

Parameters

- Mixing weights: $w_1, w_2, ..., w_k$
- Gaussian $G_i:(\mu_i,\Sigma_i)$ mean μ_i , covariance $\Sigma_i:$ diagonal

Learning problem: Given many sample points, find (w_i, μ_i, Σ_i)

- Algorithms use $\mathbf{O}(\mathbf{exp}(k) \cdot \mathbf{poly}(d))$ samples and time [FOS'06, MV'10]
- Lower bound of $\Omega(\exp(k))$ [MV'10] in worst case

Aim: poly(k, d) guarantees in realistic settings

Method of Moments and Tensor decompositions

step 1. compute a tensor whose decomposition *encodes* model parameters

step 2. find decomposition (and hence parameters)

$$T = \sum_{i=1}^k w_i \ \mu_i \otimes \mu_i \otimes \mu_i$$

- Uniqueness \Rightarrow Recover parameters w_i and μ_i
- Algorithm for Decomposition \Rightarrow efficient learning

[Chang] [Allman, Matias, Rhodes] [Anandkumar, Ge, Hsu, Kakade, Telgarsky]

What is known about Tensor Decompositions?

Thm [Jennrich via Harshman'70]. Find unique rank-k decompositions for 3-tensors when $k \leq d$!

- Uniqueness proof is *algorithmic*!
- Called Full-rank case. No symmetry or orthogonality needed.
- Rediscovered in [Leurgans et al 1993] [Chang 1996]

Thm [Kruskal'77]. Rank-k decompositions for 3-tensors unique (non-algorithmic) when $k \le 3d/2$!

Thm [Chiantini Ottaviani'12].

Uniqueness (non-algorithmic) of 3-tensors of rank $k \leq c$. d^2 generically

Thm [DeLathauwer, Castiang, Cardoso'07].

Algorithm for 4-tensors of rank k generically when $k \leq c \cdot d^2$

Robustness to Errors

Beware: Sampling error

Empirical estimate $T =_{\epsilon} \sum_{i=1}^{k} w_i \ \mu_i \otimes \mu_i \otimes \mu_i$

With poly(d, k) samples, error $\epsilon \approx 1/\text{poly}(d, k)$

Uniqueness and Algorithms resilient to noise of 1/poly(d,k)?

Thm. Jennrich's polynomial time algorithm for Tensor Decompositions robust up to 1/poly(d,k) error

Thm [BCV'14]. Robust version of Kruskal Uniqueness theorem (non-algorithmic) with 1/poly(d,k) error

Open Problem: Robust version of generic results[De Lauthewer et al]?

Algorithms for Tensor Decompositions

Polynomial time algorithms when rank $k \leq d$ [Jennrich]

NP-hard when rank k > d in worst case [Hastad, Hillar-Lim]

This talk

Overcome worst-case intractability using Smoothed Analysis

- Polynomial time algorithms* for robust Tensor decompositions for rank k >> d (rank is any polynomial in dimension)
 - *Algorithms $poly(d, k, 1/\epsilon)$ for recovery up to ϵ error in $\|.\|_F$

Implications for Learning

Known only in restricted cases:

No. of clusters $k \leq No.$ of dims d

"Full rank" or "Non-degenerate" setting

Efficient Learning when no. of clusters/ topics $k \leq dimension d$

[Chang 96, Mossel-Roch 06, Anandkumar et al. 09-14]

- Learning Phylogenetic trees [Chang, MR]
- Axis-aligned Gaussians [HK]
- Parse trees [ACHKSZ,BHD,B,SC,PSX,LIPPX]
- HMMs [AHK,DKZ,SBSGS]
- Single Topic models [AHK], LDA [AFHKL]
- ICA [GVX] ...
- Overlapping Communities [AGHK] ...

Overcomplete Learning Setting

Number of clusters/topics/states $k \gg$ dimension d

Computer Vision

Speech

 $ilde{\hspace{-0.1cm} ilde{\hspace{-0.1cm} ilde{\hspace{-0.1cm} ext{}}}}$ Previous algorithms do not work when k>d!

Need polytime decomposition of Tensors of rank $k \gg d$?

Smoothed Analysis

Simplex algorithm solves LPs efficiently (explains practice).

[Spielman & Teng 2000]

Smoothed analysis guarantees:

- Worst instances are isolated
- Small random perturbation of input makes instances easy
- Best polytime guarantees in the absence of any worst-case guarantees

Today's talk: Smoothed Analysis for Learning [BCMV STOC'14]

First Smoothed Analysis treatment for Unsupervised Learning

Multiview models

Thm. Polynomial time algorithms for learning axis-aligned Gaussians, Multview models etc. even in ``overcomplete settings''.

based on

Thm. Polynomial time algorithms for tensor decompositions in smoothed analysis setting.

Smoothed Analysis for Learning

Learning setting (e.g. Mixtures of Gaussians)

Worst-case instances: Means $\{\mu_i\}$ in pathological configurations

Means not in adversarial configurations in real-world!

What if means $\{\mu_i\}$ perturbed slightly ?

 $\mu_i \bullet \bullet \widetilde{\mu}_i$

Generally, parameters of the model are perturbed slightly.

Smoothed Analysis for Tensor Decompositions

Factors of the Decomposition are perturbed

$$T_{d \times d \times \dots \times d} = \sum_{i=1}^{k} a_i^{(1)} \otimes a_i^{(2)} \otimes \dots \otimes a_i^{(t)}$$

- 2. $\tilde{a}_{i}^{(j)}$ is random ρ -perturbation of $a_{i}^{(j)}$
 - i.e. add independent (gaussian) random vector of length $\approx \rho$.
- 3. Input: \tilde{T} . Analyse algorithm on \tilde{T} .

$$\tilde{T} = \sum_{i=1}^{k} \tilde{a}_{i}^{(1)} \otimes \tilde{a}_{i}^{(2)} \otimes \dots \otimes \tilde{a}_{i}^{(t)} + \text{noise}$$

Algorithmic Guarantees

Thm [BCMV'14]. Polynomial time algorithm for decomposing t-tensor (d-dim) in smoothed analysis model when $rank \ k \le d^{(t-1)/2}$ w.h.p.

Running time, sample complexity =
$$poly_t(d, k, \frac{1}{\rho})$$
.

Guarantees for order-t tensors in d-dims (each)

Corollary. Polytime algorithms (smoothed analysis) for Mixtures of axis-aligned Gaussians, Multiview models etc. even in overcomplete setting i.e. no. of clusters $k \le \dim^{\mathbb{C}}$ for any constant C w.h.p.

Interpreting Smoothed Analysis Guarantees

Time, sample complexity =
$$poly_t\left(d, k, \frac{1}{\rho}\right)$$
.

Works with probability 1-exp(- $\rho d^{3^{-t}}$)

Exponential small failure probability (for constant order t)

Smooth Interpolation between Worst-case and Average-case

- $\rho = 0$: worst-case
- ρ is large: almost random vectors.
- Can handle ρ inverse-polynomial in d, k

Algorithm Details

AM I A HORSE?

Algorithm Outline

1. An algorithm for 3-tensors in the ``full rank setting" ($k \le d$).

Recall:
$$T = \sum_{i=1}^{k} A_i \otimes B_i \otimes C_i$$

Aim: Recover A, B, C

[Jennrich 70] A simple (robust) algorithm for 3-tensor T when:

$$\sigma_k(A), \sigma_k(B), \sigma_2(C) \ge 1/poly(d, k)$$

- Any algorithm for full-rank (non-orthogonal) tensors suffices
- 2. For higher order tensors using "tensoring / flattening".
 - Helps handle the over-complete setting $(k \gg d)$

Blast from the Past

[Jennrich via Harshman 70]

Algorithm for 3-tensor $T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$

- A, B are full rank (rank=k)
- C has rank ≥ 2
- Reduces to matrix eigen-decompositions

Qn. Is this algorithm robust to errors?

Yes! Needs perturbation bounds for eigenvectors. [Stewart-Sun]

Thm. Efficiently decompose $T =_{\epsilon} \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$ and recover A, B, C upto ϵ . poly(d, k) error when 1) A, B are min-singular-value $\geq 1/poly(d)$ 2) C doesn't have parallel columns.

Slices of tensors

Consider rank 1 tensor $x \otimes y \otimes z$

$$x \otimes y \otimes z$$

s'th slice:
$$y_s \cdot (x \otimes z)$$

$$T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$$

s'th slice:
$$\sum_{i=1}^{k} b_i(s) \cdot (a_i \otimes c_i)$$

All slices have a common diagonalization (A, C)!

Random combination
$$w$$
 of slices:
$$\sum_{i=1}^{k} \langle b_i, w \rangle. (a_i \otimes c_i)$$

Simultaneous diagonalization

Two matrices with common diagonalization (X, Y)

$$M_1 = XD_1Y^T$$

$$M_2 = XD_2Y^T$$

$$M_1M_2^{-1} = XD_1D_2^{-1}X^{-1}$$

- If 1) *X*, *Y* are invertible and
 - 2) D_1 , D_2 have unequal non-zero entries,

We can find *X*, *Y* by matrix diagonalization!

Decomposition algorithm [Jennrich]

$$T \approx_{\epsilon} \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$$

Algorithm:

- 1. Take random combination along w_1 as M_1 .
- 2. Take random combination along w_2 as M_2 .
- 3. Find eigen-decomposition of $M_1M_2^{\dagger}$ to get A. Similarly B,C.

Thm. Efficiently decompose $T = \sum_{i=1}^{k} a_i \otimes b_i \otimes c_i$ and recover

- A, B, C up to $\epsilon poly(d, k)$ error (in Frobenius norm) when
 - 1) A, B are full rank i.e. min-singular-value $\geq 1/\text{poly}(d)$
 - 2) C doesn't have parallel columns (in a robust sense).

Overcomplete Case

into Techniques

Mapping to Higher Dimensions

How do we handle the case rank $k = \Omega(d^2)$?

(or even vectors with "many" linear dependencies?)

f maps parameter/factor vectors to higher dimensions s.t.

- 1. Tensor corresponding to map f computable using the data x
- 2. $f(a_1), f(a_2), ..., f(a_k)$ are linearly independent (min singular value)
 - Reminiscent of Kernels in SVMs

A mapping to higher dimensions

Outer product / Tensor products:

$$\mathsf{Map}\, f(a_i) = a_i \otimes a_i$$

• Tensor is $E[x^{\otimes 2} \otimes x^{\otimes 2} \otimes x^{\otimes 2}]$

Basic Intuition:

- 1. $a_i \otimes a_i$ has d^2 dimensions.
- 2. For non-parallel unit vectors a_i and a_j , distance increases:

$$\langle a_i \otimes a_i, a_j \otimes a_i \rangle = \langle a_i, a_j \rangle^2 < |\langle a_i, a_j \rangle|$$

Qn: are these vectors $a_i \otimes a_i$ linearly independent? Is "essential dimension" $\Omega(d^2)$?

Bad cases

U, V have rank=d. Vectors $z_i = u_i \otimes v_i \in \mathbb{R}^{d^2}$

Lem. Dimension (K-rank) under tensoring is additive.

- Every d vectors of U and V are linearly independent
- But (2d-1) vectors of Z are linearly dependent!

Strategy does not work in the worst-case

But, bad examples are pathological and hard to construct!

Beyond Worst-case analysis

Can we hope for "dimension" to multiply "typically"?

Product vectors & linear structure

$$\mathsf{Map}\, f(a_i) = a_i^{\otimes t}$$

- Easy to compute tensor with $f(a_i)$ as factors / parameters (``Flattening'' of 3t-order moment tensor)
- New factor matrix is full rank using Smoothed Analysis.

Theorem. For any matrix
$$A_{d \times k}$$
, for $k < d^t/2$, $\sigma_k(\tilde{A}) \ge 1/poly\left(k,d,\frac{1}{\rho}\right)$ with probability 1- $exp(-poly(d))$.

Proof sketch (t=2)

Prop. For any matrix A, matrix U below $(k < d^2/2)$ has $\sigma_k(\tilde{A}) \ge 1/poly\left(k,d,\frac{1}{\rho}\right)$ with probability 1- exp(-poly(d)).

$$a_i
ightarrow \widetilde{a_i}$$
 $\widetilde{a_i} = a_i + arepsilon_i$
 k
 d^2
 $\widetilde{a_i} \otimes \widetilde{a_i}$

Main Issue: perturbation before product...

- easy if columns perturbed after tensor product (simple anti-concentration bounds)
 - only 2d bits of randomness in d^2 dims
 - Block dependencies

Technical component

show perturbed product vectors behave like random vectors in R^{d^2}

Projections of product vectors

Question. Given any vector $a \in \mathbb{R}^d$ and gaussian ρ -perturbation $\tilde{a} = a + \epsilon$, does $\tilde{a} \otimes \tilde{a}$ have projection $poly(\rho, \frac{1}{d})$ onto any given $d^2/2$ dimensional subspace $S \subset R^{d^2}$ with prob. $1 - \exp(-\sqrt{d})$?

Easy : Take d^2 dimensional x, ρ -perturbation to x will have projection $> 1/poly(\rho)$ on to S w.h.p.

anti-concentration for polynomials implies this with probability 1-1/poly

Much tougher for product of perturbations! (inherent block structure)

$$\tilde{a}(d) \otimes h$$

Projections of product vectors

Question. Given any vector $a, b \in \mathbb{R}^d$ and gaussian ρ -perturbation \tilde{a}, \tilde{b} , does $\tilde{a} \otimes \tilde{b}$ have projection $poly(\rho, \frac{1}{d})$ onto any given $d^2/2$ dimensional subspace $S \subset R^{d^2}$ with prob. $1 - \exp(-\sqrt{d})$?

 $\Pi_S(x)$ is a $rac{d^2}{2} imes d$ matrix $\widetilde{a}(1)\otimes\widetilde{b}$ $\Pi_S(\widetilde{b})$ Π_{S} is projection matrix onto S \prod_{S} $\tilde{a}(d) \otimes b$ d^2 dot product of block with b

Two steps of Proof..

1. W.h.p. (over perturbation of b), $\Pi_S(\tilde{b})$ has at least r eigenvalues $> poly(\rho, \frac{1}{d})$

will show with $r = \sqrt{d}$

2. If $\Pi_S(\tilde{b})$ has r eigenvalues $> poly(\rho, \frac{1}{d})$, then w.p. $1 - \exp(-r)$ (over perturbation of \tilde{a}), $\tilde{a} \otimes \tilde{b}$ has large projection onto S.

follows easily analyzing projection of a vector to a dim-k space

Structure in any subspace S

Suppose: Choose Π_S first $\sqrt{d} \times \sqrt{d}$ "blocks" in Π_S were orthogonal...

$$\Pi_{\mathcal{S}}(\tilde{b})|_{\sqrt{d}}=$$
 (restricted to \sqrt{d}

cols)

- Entry (i,j) is: $\langle v_{i,j}, b + \varepsilon \rangle$
- Translated i.i.d. Gaussian matrix!

has many big eigenvalues

Finding Structure in any subspace S

Main claim: every $c.d^2$ dimensional space S has $\sim \sqrt{d}$ vectors with such a structure..

Property: picked blocks (*d* dim vectors) have "reasonable" component orthogonal to span of rest..

Earlier argument goes through even with blocks not fully orthogonal!

Main claim (sketch)...

Idea: obtain "good" columns one by one..

crucially use the fact that we have a $\Omega(d^2)$ dim subspace

- Show there exists a block with many linearly independent "choices"
- Fix some choices and argue the same property holds, ...

Q.E.D.

Generalization: similar result holds for higher order products, implies main result.

Uses a delicate inductive argument

Summary

Smoothed Analysis for Learning Probabilistic models.

 Polynomial time Algorithms in Overcomplete settings:

Guarantees for order-t tensors in d-dims (each)

Rank of the t-tensor=k (number of clusters)

Flattening gets beyond full-rank conditions:
 Plug into results on Spectral Learning of Probabilistic models

Future Directions

Better Robustness to Errors

- Modelling errors?
- Tensor decomposition algorithms that more robust to errors?
 promise: [Barak-Kelner-Steurer'14] using Lasserre hierarchy

Better dependence on rank k vs dim d (esp. 3 tensors)

Next talk by Anandkumar: Random/ Incoherent decompositions

Better guarantees using Higher-order moments

Better bounds w.r.t. smallest singular value ?

Smoothed Analysis for other Learning problems?

Thank You!

Questions?

Algorithms?

Matrix Decompositions:

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} U \end{bmatrix} \begin{bmatrix} \Sigma \end{bmatrix} \begin{bmatrix} V^T \end{bmatrix}$$

- SVD: matrix toolkit
- Computable in polynomial time.

Tensor Decompositions?

- Most Tensor problems are NP-hard! [Hastad, HK]
- Particularly when rank k > d