Sums of squares

Reading None

The first result will prove which primes can be written as the sum of two squares. Note $1^2 + 1^2 = 2$, and if a is a positive integer such that $a \equiv 3 \pmod{4}$, then a cannot be written as the sum of two squares.

Proposition 1. Let $m, n \in \mathbb{Z}$ with m, n > 0. If m and n can be written as the sums of two squares of integers, then mn can be written as the sum of two squares of integers.

Proof Let $m, n \in \mathbb{Z}$ with m, n > 0 and assume that there exists $a, b, c, d \in \mathbb{Z}$ such that $m = a^2 + b^2$ and $n = c^2 + d^2$. Then

$$\begin{split} mn &= (a^2 + b^2)(c^2 + d^2) = a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2 \\ &= a^2c^2 + 2abcd + b^2d^2 + a^2d^2 - 2abcd + b^2c^2 \\ &= (ac + bd)^2 + (ad - bc)^2. \end{split}$$

We need two lemmas to prove

Theorem 1. Let $n \in \mathbb{Z}$ with n > 0. Then n is expressible as the sum of two squares if and only if every prime factor congruent to 3 modulo 4 occurs to an even power in the prime factorization of n.

Lemma 1. If p is a prime such that $p \equiv 1 \pmod{4}$, then there are integers x, y such that $x^2 + y^2 = kp$ for some $k \in \mathbb{Z}$ with 0 < k < p.

Proof Since $p \equiv 1 \pmod{4}$, we have that $\left(\frac{-1}{p}\right) = 1$. Thus, there exists $x \in \mathbb{Z}$ with $0 < x \le \frac{p-1}{2}$ such that $x^2 \equiv -1 \pmod{p}$. Then, $p \mid x^2 + 1$, and we have that $x^2 + 1 = kp$ for some $k \in \mathbb{Z}$. Thus, we found x and y = 1. Since $x^2 + 1$ and p are positive, so is k. Also,

$$kp = x^2 + y^2 < \left(\frac{p}{2}\right)^2 + 1 < p^2$$

implies k < p.

Proposition 2. A prime p can be written as the sum of two squares if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Proof If $p \equiv 3 \pmod 4$, then p cannot be written as the sum of two squares. Since the squares modulo 4 are 0 and 1, the integers that can be written as a sum of two squares are congruent to $0^2 + 0^2 \equiv 0 \pmod 4$, $1^2 + 0^2 \equiv 1 \pmod 4$ or $1^2 + 1^2 \equiv 2 \pmod 4$, so no integer that is congruent to $3 \pmod 4$ can be written as the sum of two squares. Thus, if p can be written as the sum of two squares, $p \not\equiv 3 \pmod 4$. That is, p = 2 or $p \equiv 1 \pmod 4$.

We will prove the other direction with two cases. When p = 2, then $1^2 + 1^2 = 2$. It remains to show that every prime $p \equiv 1 \pmod{4}$ can be written as the sum of two squares.

Let $p \equiv 1 \pmod 4$, and let m be the least integer such that there exists $x, y \in \mathbb{Z}$ with $x^2 + y^2 = mp$ and 0 < m < p as in the previous theorem. We show that m = 1. Assume, by way of contradiction, that m > 1. Let $a, b \in \mathbb{Z}$ such that

$$a \equiv x \pmod{m}, \quad \frac{-m}{2} < a \le \frac{m}{2}$$

Learning outcomes:

Author(s): Claire Merriman

and

$$b \equiv y \pmod{m}, \quad \frac{-m}{2} < b \le \frac{m}{2}.$$

Then

$$a^2 + b^2 \equiv x^2 + y^2 = mp \equiv 0 \pmod{m},$$

and so there exists $k \in \mathbb{Z}$ with k > 0 such that $a^2 + b^2 = km$. (Why?)

Now.

$$(a^2 + b^2)(x^2 + y^2) = (km)(mp) = km^2p.$$

By , $(a^2 + b^2)(x^2 + y^2) = (ax + by)^2 + (ay - bx)^2$, so $(ax + by)^2 + (ay - bx)^2 = km^2p$. Since $a \equiv x \pmod{m}$ and $b \equiv y \pmod{m}$,

$$ax + by \equiv x^2 + y^2 \equiv 0 \pmod{m}$$

and

$$ay - bx \equiv xy - yx \equiv 0 \pmod{m}$$

so
$$\frac{ax + by}{m}$$
, $\frac{ay - bx}{m} \in \mathbb{Z}$ and

$$\left(\frac{ax+by}{m}\right)^2 + \left(\frac{ay-bx}{m}\right)^2 = \frac{km^2p}{m^2} = kp.$$

Now, $\frac{-m}{2} < a \le \frac{m}{2}$ and $\frac{-m}{2} < b \le \frac{m}{2}$ imply that $a^2 \le \frac{m^2}{4}$ and $b^2 \le \frac{m^2}{4}$. Thus, $km = a^2 + b^2 \le \frac{m^2}{2}$. Thus, $k \le \frac{m}{2} < m$, but this contradicts that m is the smallest such integer.

Thus, m = 1 and p can be written as the sum of two squares of integers.