Zusatzaufgabe 1 (wird nicht in der Übung besprochen)

Betrachten Sie ein abstraktes Relationenschema $R = \{M, N, V, T, P, PN\}$ mit den FDs

- $\begin{array}{l} \textbf{-} \ \{\ M\ \} \rightarrow \{\ M\ \} \\ \textbf{-} \ \{\ M\ \} \rightarrow \{\ N\ \} \\ \textbf{-} \ \{\ V\ \} \rightarrow \{\ T, P, PN\ \} \\ \textbf{-} \ \{\ P\ \} \rightarrow \{\ PN\ \} \\ \end{array}$
- (a) Bestimmen Sie alle Kandidatenschlüssel.

```
V kommt auf keiner rechten Seite der FDs vor. 
 AttrH\"ulle(R, \{V\}) = \{V, T, P, PN\} \neq R 
 AttrH\"ulle(R, \{V, M\}) = \{V, M, N, T, P, PN\} = R 
 AttrH\"ulle(R, \{V, P\}) = \{V, P, T, PN\} \neq R 
 V, M ist Schl\"usselkandidat
```

(b) In welcher Normalform befindet sich die Relation?

- $\{P\} \rightarrow \{PN\}$

1NF weil nichtprimäre Attribute von einer echten Teilmenge des Schlüsselkandidaten abhängen (z. B. $\{M\} \rightarrow \{N\}$).

- (c) Bestimmen Sie zu den gebenen FDs die kanonische Überdeckung.
 - (i) Linkreduktion bleibt aus

 (ii) Rechtsreduktion: PN ist doppelt $AttrH\"ulle(R-(V\to T,P,PN)\cup(V\to T,P),\{V\})=\{V,T,P,PN\}$ $-\{M\}\to\{M\}$ $-\{M\}\to\{N\}$ $-\{V\}\to\{T,P\}$ $-\{P\}\to\{PN\}$ (iii) Leere Klausel streichen

 (iv) Vereinigung $-\{M\}\to\{N\}$ $-\{V\}\to\{T,P\}$
- (d) Falls nötig, überführen Sie die Relation verlustfrei und abhängigkeitsbewahrend in die dritte Normalform.