Билет 1.

1. Основы механики жидкости: Закон Паскаля. Давление в неподвижных жидкостях и газах. Принцип работы гидравлического пресса. Закон сообщающихся сосудов. Закон Архимеда. Движение тел в жидкости и газах: число Рейнольдса, ламинарное и турбулентное течение, закон Ньютона для вязкого трения, формула Стокса.

Билет 2.

1. Уравнение неразрывности для несжимаемой жидкости. Идеальная жидкость. Уравнение Бернулли. Формула Торричелли.

Билет 3.

1. Молекулярно-кинетическая теории (МКТ). Основные положения. Основные понятия: Система, Окружающая среда, Параметры системы, Относительная молекулярная масса, моль, количество вещества, число Авогадро. Равновесное и неравновесное состояние. Уравнение состояния. Равновесный процесс. Функция Состояния. Температура.

Билет 4.

1. Уравнение состояния идеального газа. Изотермический процесс, закон Бойля—Мариотта. Изобарный процесс, закон Гей-Люссака, закон Шарля. Уравнение Менделеева—Клапейрона. Кинетическая теория идеального газа. Основное уравнение молекулярно-кинетической теории газов.

Билет 5.

1. Распределение энергии по степеням свободы молекулы. Закон Больцмана о равнораспределении энергии по степеням свободы. Внутренняя энергия газа. Смеси газов. Закон Дальтона.

Билет 6.

1. Реальные газы. Уравнение Ван-Дер-Ваальса. Изотермы. Критическая Точка.

Билет 7.

1. Распределение молекул по скоростям (Распределение Максвелла). функция распределения Максвелла для модуля вектора скорости. Опыт Штерна.

Билет 8.

1. Характерные скорости молекул: наиболее вероятная скорость, средняя арифметическая скорость, среднеквадратичная скорость. Барометрическая формула.

Билет 9.

1. Распределение Больцмана (Распределение концентрации). Распределению Максвелла — Больцмана по энергиям молекул

Билет 10.

1. Внутренняя энергия, работа, количество теплоты, теплообмен (конвекция, теплопроводность, излучение).

Первое начало термодинамики

Билет 11.

1. Применение первого начала термодинамики к изопроцессам. Работа идеального газа в различных процессах (изохорный, изобарный, изотермический).

Билет 12.

1. Теплоемкость газа. Теплоемкость при постоянном давлении. Теплоемкость при постоянном объеме. соотношением Майера. Адиабатный процесс.

Билет 13.

1. Циклы и КПД тепловых машин. Цикл Карно. Цикл Отто.

Билет 14.

1. Второе начало термодинамики. Энтропия

Билет 14.

1. Явления переноса: Диффузия. Вязкость. Теплопроводность.

Задача 1.

10.1. Пылинки, взвешенные в воздухе, имеют массу $m=10^{-18}$ г. Во сколько раз уменьшится их концентрация n при увеличении высоты на $\Delta h=10$ м? Температура воздуха T=300 К.

Задача 2.

10.18. Найти вероятность W того, что данная молекула идеального газа имеет скорость, отличную от $2\vartheta_{\text{в}}$ не более чем на 1 %.

Задача 3.

10.36. Определить долю ω молекул, энергия которых заключена в пределах от ε_1 =0 до ε_2 =0,011kT.

Задача 4.

10.53. Найти число N всех соударений, которые происходят в течение t=1 с между всеми молекулами водорода, занимающего при нормальных условиях объем V=1 мм³.

Задача 5.

10.62. Вычислить диффузию D азота: 1) при нормальных условиях; 2) при давлении p=100 Па и температуре T=300 К.

Задача 6.

10.70. Определить зависимость динамической вязкости η от давления p при следующих процессах: 1) изотермическом; 2) изохорном. Изобразить эти зависимости на графиках.

Задача 7.

10.74. Вычислить теплопроводность λ гелия при нормальных условиях.

Задача 8.

8.12. Одна треть молекул азота массой m=10 г распалась на атомы. Определить полное число N частиц, находящихся в газе.

Задача 9.

8.31. Газ при температуре T=309 К и давлении p=0,7 МПа имеет плотность ρ =12 кг/м³. Определить относительную молекулярную массу Mr газа.

Задача 10.

8.40. Газовая смесь, состоящая из кислорода и азота, находится в баллоне под давлением p=1 МПа. Определить парциальные давления p_1 кислорода и p_2 азота, если массовая доля ω_1 кислорода в смеси равна 0,2.

Задача 11.

9.16. В колбе вместимостью V=100 см 3 содержится некоторый газ при температуре T=300 К. На сколько понизится давление p газа в колбе, если вследствие утечки из колбы выйдет N= 10^{20} молекул?

Задача 12.

9.31. Во сколько, раз средняя квадратичная скорость $<9_{\mbox{\tiny KB}}>$ молекул кислорода больше средней квадратичной скорости пылинки массой m= 10^{-8} г, находящейся среди молекул кислорода?

Задача 13.

11.4. Определить удельную теплоемкость c_v смеси газов, содержащей V_1 =5 л водорода и V_2 =3 л гелия. Газы находятся при одинаковых условиях.

Задача 14.

11.14. Определить показатель адиабаты γ частично диссоциировавшего газообразного азота, степень диссоциации α которого равна 0,4.

Задача 15.

11.30. Азот нагревался при постоянном давлении, причем ему было сообщено количество теплоты Q=21 кДж. Определить работу A, которую совершил при этом газ, и изменение ΔU его внутренней энергии.

Задача 16.

11.66. Идеальный газ совершает цикл Карно. Работа A_1 изотермического расширения газа равна 5 Дж. Определить работу A_2 изотермического сжатия, если термический КПД η цикла равен 0,2.

Задача 17.

11.69. Смешали воду массой m_1 =5 кг при температуре T_1 =280 К с водой массой m_2 =8 кг при температуре T_2 =350 К. Найти: 1) температуру θ смеси; 2) изменение ΔS энтропии, происходящее при смешивании.

Задача 18.

12.3. В сосуде вместимостью V=0,3 л находится углекислый газ, содержащий количество вещества v=1 моль при температуре T=300 К. Определить давление p газа: 1) по уравнению Менделеева — Клапейрона; 2) по уравнению Ван-дер-Ваальса.