Optimal Service Elasticity in Large-Scale Distributed Systems

Noah Johnson

ELE 549 Final Project

7 December 2018

Outline

- Problem Statement
- 2 Goals and Control Variables
- 3 Summary of Key Results
- Proofs of TABS Optimality
 - Notation Overview
 - (3.1) System Behavior as $N \to \infty$
 - (3.3) Interchange of Limits
 - Mathematics

Problem Statement

Question: Given a system consisting of N queues for identical servers, and a single dispatcher, can we develop an automatic load-balancing scheme that:

- a) does not rely on a centralized system queue or any global queue length information,
- b) maintains constant overhead as $N \to \infty$,
- c) remains competitive with related schemes

Solution: Token-Based Auto Balance Scaling (TABS)

Control Variables

Each of N servers in the system should not always be on. They

Token-Based Auto Balance Scaling (TABS)

TABS is a token-based feedback protocol that tracks the state of all servers in the system

Servers can be in one of four states:

Idle-off (server is off)

Standby (server is in setup period)

Idle-on (server is on, queue is empty)

Busy (server is on, queue contains at least one job)

Protocol can be visualized by the following state diagram

TABS Decision Rules

Results

For some constant arrival rate λ and any $\mu > 0, \nu > 0$, as $N \to \infty$,

- (a) $\mathbb{E}[W^{(N)}] \to 0$
- (b) $\mathbb{E}[Z^{(N)}] \to 0$

By using the TABS schema, both the mean waiting time and wasted energy vanish in the limit!

Derivation of System State Space

Let:

 $q_i^{(N)}(t)$: the fraction of servers with at least queue length i at time t

 $\Delta_0^{(N)}(t)$: the fraction of servers in idle-off mode at time t

 $\Delta_1^{(N)}(t)$: the fraction of servers in standby mode at time t for notational simplicity, let:

$$q^{(N)}(t)\triangleq(q_i^{(N)}(t)|i=1,2,\ldots,B),\,\text{and }\delta^{(N)}(t)\triangleq(\delta_0^{(N)}(t),\delta_1^{(N)}(t))$$

Now define E to be the space of all possible states the system can occupy:

$$E = \{(q, \delta) \in [0, 1]^{B+2}\}$$

such that:

$$q_i \geq q_{i+1} \forall i$$
, and $\delta_0 + \delta_1 + \sum_{i=1}^B q_i \leq 1$

ex. 1: System State Space for N = 2, B = 1

Q: What are the possible job states in the system at a given time *t*?

A: {0 jobs, 1 job, 2 jobs}

$$q^{(N=2)}(t) = \left\{ \frac{0}{2}, \frac{1}{2}, \frac{2}{2} \right\}$$

Q: What are the possible server states in the system?

A: {both servers on, 1 in standby, 1 off}

$$\delta_0^{(N=2)}(t) = \delta_1^{(N=2)}(t) = \left\{ \frac{0}{2}, \frac{1}{2} \right\}$$

$$\delta^{(N=2)}(t) = \left\{ (0,0), (0, \frac{1}{2}), (\frac{1}{2}, 0), (\frac{1}{2}, \frac{1}{2}) \right\}$$

Q: What is E for this scenario?

A: E is all combinations of $q^{(N=2)}(t)$ and $\delta^{(N=2)}(t)$

Deterministic Nature of System as $N \to \infty$

Assume that: $(q^N(0), \delta^N(0))$ converges to $(q^\infty, \delta^\infty)$

Proposition 3.3: Interchange of Limits

Use tabular for basic tables — see Table 1, for example.

You can upload a figure (JPEG, PNG or PDF) using the files menu.

To include it in your document, use the includegraphics command (see the comment below in the source code).

Item	Quantity
Widgets	42
Gadgets	13

Table 1: An example table.

Readable Mathematics

Let $X_1, X_2, ..., X_n$ be a sequence of independent and identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.