

Support vector machines (SVM) Duality

Kernels
SVM with kernels

Definition: Geometric margin

The **geometric margin** of a vector z with respect to a linear separator w is the distance from z to the plane $w \cdot x = 0$.

The margin equals $\frac{|w \cdot z|}{||w||}$.

When the data is **linearly separable**, the "support vector machine" (SVM) algorithm finds the linear separator with maximum margin.

Theorem

Suppose the input data to the perceptron algorithm is linearly separable with a margin of γ . Also, suppose the data points lie in a ball of radius R. Then the Perceptron algorithm makes at most $(R/\gamma)^2$ mistakes before it converges.

Suppose $\{(x_1, y_1), ..., (x_m, y_m)\}$ is a set of labeled vectors that are **linearly separable**.

The linear separator w with the largest margin is the solution to:

maximize min
$$\frac{|\mathbf{x}_i \cdot \mathbf{w}|}{||\mathbf{w}||}$$

such that $x_i \cdot w > 0$ if $y_i = 1$ and $x_i \cdot w < 0$ if $y_i = -1$.

The linear separator w with the largest margin is the solution to:

$$\text{maximize min} \frac{|\pmb{x}_i \cdot \pmb{w}|}{||\pmb{w}||}$$
 such that $\pmb{x}_i \cdot \pmb{w} > 0$ if $y_i = 1$ and $\pmb{x}_i \cdot \pmb{w} < 0$ if $y_i = -1$.

In the homework, you'll show that this is equivalent to the quadratic program you saw in class:

minimize
$$||w||^2$$

such that $y_i(x_i \cdot w) \ge 1$.

Support vector machines (SVM) Duality

Kernels
SVM with kernels

Hard SVM

$$\begin{aligned} & & \text{minimize} \frac{\|\boldsymbol{w}\|^2}{2} \\ & & \text{such that } y_i(\boldsymbol{x_i} \cdot \boldsymbol{w}) \geq 1 \end{aligned}$$

Question:

Let x be a vector and let y be a label in $\{-1,1\}$.

If
$$y(\mathbf{w} \cdot \mathbf{x}) \ge 1$$
, what is $\max_{\alpha \ge 0} \alpha (1 - y(\mathbf{w} \cdot \mathbf{x}))$?

Answer:

0.

Question:

Let x be a vector and let y be a label in $\{-1,1\}$.

If
$$y(\mathbf{w} \cdot \mathbf{x}) < 1$$
, what is $\max_{\alpha \ge 0} \alpha (1 - y(\mathbf{w} \cdot \mathbf{x}))$?

Answer:

 ∞ .

Question.

Suppose $\{(x_1, y_1), ..., (x_m, y_m)\}$ is a set of labeled vectors that are **linearly separable**.

$$g(\mathbf{w}) = \max_{\alpha \in \mathbb{R}^m, \alpha \ge \mathbf{0}} \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i))$$

Answer.

Suppose $\{(x_1, y_1), ..., (x_m, y_m)\}$ is a set of labeled vectors that are **linearly separable**.

$$g(\mathbf{w}) = \max_{\alpha \in \mathbb{R}^m, \alpha \ge 0} \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i))$$

$$= \begin{cases} 0 & \text{if } \forall i, y_i(\boldsymbol{w} \cdot \boldsymbol{x_i}) \ge 1 \\ \infty & \text{otherwise} \end{cases}$$

Question.

Hard SVM

How can we rewrite Hard SVM using g(w)?

Answer.

Hard SVM

$$\min \operatorname{iminize} \left(\frac{\|\boldsymbol{w}\|^2}{2} + g(\boldsymbol{w}) \right)$$

$$= \min \operatorname{iminize} \left(\frac{\|\boldsymbol{w}\|^2}{2} + \max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \sum_{i=1}^m \alpha_i (1 - y_i(\boldsymbol{w} \cdot \boldsymbol{x_i})) \right)$$
"Lagrange multipliers"

Question.

Fact (Strong duality)

$$\min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \max_{\alpha \in \mathbb{R}^m, \alpha \ge 0} \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right)$$

$$= \max_{\alpha \in \mathbb{R}^m, \alpha \ge 0} \left\{ \min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right) \right\}$$

Suppose we've figured out the α that maximizes

$$\min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^{m} \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right)$$

What w minimizes this expression?

Suppose we've figured out the α that maximizes

$$\min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^{m} \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right)$$

What w minimizes this expression?

Answer.

Take the gradient and set it to **0**:

$$\mathbf{w} - \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i = \mathbf{0} \qquad \Longrightarrow \qquad \mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$$

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^m \alpha_i (1 - y_i (\mathbf{w} \cdot \mathbf{x}_i)) \right) \right\}, \mathbf{w} = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i$$

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \frac{1}{2} \left\| \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i \right\|^2 + \sum_{i=1}^m \alpha_i \left(1 - y_i \left(\sum_{j=1}^m \alpha_j y_j \mathbf{x}_j \right) \cdot \mathbf{x}_i \right) \right\}$$

$$= \max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j) \right\}$$

We only have to care about dot products!

Support vector machines (SVM) Duality

Kernels
SVM with kernels

Question:

Consider this set of points labeled points.

Are they **linearly separable**?

У

-3	-1

3 -1

Answer:

No.

Question:

Consider this set of points labeled points.

Is there a way to map these points into \mathbb{R}^2 so that they become linearly separable?

X	<u>y</u>
-3	-1
-2	-1
-1	1
0	1
1	1
2	1
3	-1

Answer:

Yes.
$$\Phi(x) = (x, x^2)$$
.

$$\Phi(x) = (x, x^2)$$

Definition: Kernel

The function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if it can be written as an inner product:

• There exists a mapping $\Phi: \mathcal{X} \to \mathbb{R}^d$ such that $K(x,y) = \Phi(x) \cdot \Phi(y)$ for all $x,y \in \mathcal{X}$.

Question:

Let the original instance space be \mathbb{R} . Consider the mapping Φ where for each integer $n \geq 0$, there is a component

$$\Phi(x)_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n$$

What is the corresponding kernel $K: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$? In other words, what is $K(x,y) = \Phi(x) \cdot \Phi(y)$ for any $x,y \in \mathbb{R}$?

You can use the fact that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Answer:

$$K(x,y) = \Phi(x) \cdot \Phi(y)$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{n!}} e^{-\frac{x^2}{2}} x^n \right) \left(\frac{1}{\sqrt{n!}} e^{-\frac{y^2}{2}} y^n \right)$$

$$= e^{-\frac{x^2 + y^2}{2}} \sum_{n=0}^{\infty} \frac{(xy)^n}{n!}$$

$$=e^{-\frac{(x-y)^2}{2}}$$

More generally, given a scalar $\sigma > 0$, the **Gaussian kernel** (also known as the Radial Basis Function (RBF) kernel) is defined to be

$$K(\mathbf{x}, \mathbf{y}) = e^{-\frac{||\mathbf{x} - \mathbf{y}||^2}{2\sigma}}$$

Let Φ be the mapping such that $K(x, y) = \Phi(x) \cdot \Phi(y)$. Then Φ maps to an infinite-dimensional space but K(x, y) requires very few computations.

Support vector machines (SVM) Duality

Kernels

SVM with kernels

Hard SVM

Hard SVM is equivalent to:

$$\min \operatorname{iminize} \left(\frac{\|\boldsymbol{w}\|^2}{2} + g(\boldsymbol{w}) \right)$$

$$= \min \operatorname{iminize} \left(\frac{\|\boldsymbol{w}\|^2}{2} + \max_{\alpha \in \mathbb{R}^m, \alpha \geq 0} \sum_{i=1}^m \alpha_i (1 - y_i(\boldsymbol{w} \cdot \boldsymbol{x_i})) \right)$$
"Lagrange multipliers"

Question.

Fact (Strong duality)

$$\min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \max_{\alpha \in \mathbb{R}^m, \alpha \ge 0} \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right)$$

$$= \max_{\alpha \in \mathbb{R}^m, \alpha \ge 0} \left\{ \min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^m \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right) \right\}$$

Suppose we've figured out the α that maximizes

$$\min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^{m} \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right)$$

What w minimizes this expression?

Suppose we've figured out the α that maximizes

$$\min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^{m} \alpha_i (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i)) \right)$$

What w minimizes this expression?

Answer.

Take the gradient and set it to **0**:

$$\mathbf{w} - \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i = \mathbf{0} \qquad \Longrightarrow \qquad \mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$$

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \min_{\mathbf{w}} \left(\frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^m \alpha_i (1 - y_i (\mathbf{w} \cdot \mathbf{x}_i)) \right) \right\}, \mathbf{w} = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i$$

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \frac{1}{2} \left\| \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i \right\|^2 + \sum_{i=1}^m \alpha_i \left(1 - y_i \left(\sum_{j=1}^m \alpha_j y_j \mathbf{x}_j \right) \cdot \mathbf{x}_i \right) \right\}$$

$$= \max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j) \right\}$$

We only have to care about dot products!

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j) \right\}$$

$$\max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j \left(\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \right) \right\}$$

$$= \max_{\alpha \in \mathbb{R}^m, \alpha \geq \mathbf{0}} \left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \right\}$$

Question:

Suppose we have learned a good linear separator

$$w = \sum_{i=1}^{m} \alpha_i y_i \Phi(x_i)$$

Suppose we want to calculate $w \cdot \Phi(x)$ for some new instance x. How can we write this in terms of the kernel function K?

Answer:

$$w \cdot \Phi(x)$$

$$= \left(\sum_{i=1}^{m} \alpha_i y_i \Phi(x_i)\right) \cdot \Phi(x)$$

$$= \sum_{i=1}^{m} \alpha_i y_i \Phi(x_i) \cdot \Phi(x)$$

$$= \sum_{i=1}^{m} \alpha_i y_i K(x_i, x)$$