<u>Step 2, Part 2:</u> Complete the "Data Science Opportunity Matrix" below by modeling each of the six projects in terms of feasibility (time & investment), business value impact, and likelihood of value capture

Foodics

Eligibility score for financial programs

Omar Al Khathlan
Data Scientist Leader

28/01/2023

Executive Summary

Purpose of 100-day plan

- Identifing data science opportunities
- Opportunities into roadmap
- Data and Data Architecture strtategy
- Machine learning strategy

Approach

- Iterative approach
- Getting user feedback often

Results

- Human Capital Strategy
- Data and Machine Learning infatstructure
- Data-Driven Culture Strategy
- Opportunities Roadmap

Scope of Work for First 100 Days

- Build out of data science team.
- Project 4: Restaurant industry insights and statistics.
- Project 1: Potential restaurant and customer Identification.
- Establishment of data-driven culture.

Candidate Data Science Projects

	Functional Area	Project Description
Project 1: Potential restaurant and customer Identification	marketing	Automatic generation of marketing leads.
Project 2: Digital assistant	product	Creation of new future growth opportunities for the company through new products into different sectors.
Project 3: Growth Prediction for the company	finance	Prediction of the company's growth based on current trajectories.
Project 4: Restaurant industry insights and statistics	product	Prediction of the what the market is like now and what is it likely to look like in the future.
Project 5: Supply chain optimization	supply chain	Prediction of inventory needs based on supply and demand.
Project 6: Eligibility score for financial programs	finance	Eligibility evaluation of a costumer to apply for a financial programs.

Step 2, Part 3: Complete the "Data Science Road Map" below with the first four data science projects chosen for implementation.

<u>Order</u>	<u>Project</u>	Order Justification		
1	Project 4: Restaurant industry insights and statistics	This will be an easy first project that will provide a stable revenue stream that will allow us to carry over our momentum to the next project.		
2	Project 1: Potential restaurant and customer Identification	This project requires more resources but will allow us to establish a data- based culture within the company after the success of the project.		
3	Project 6: Eligibility score for financial programs	This project be placed third since it is directly associated with finances, which has a high cost on failure.		
4	Project 3: Growth Prediction for the company	This project will be great after the trust of top management has been established and confidence levels are high.		

<u>Step 2, Part 3:</u> Complete the "Data Science Road Map" below with the first four data science projects chosen for implementation.

Our Highest-Priority Data Science Projects

Order		Direct Alignment with Strategic Goals? 1=Low; 5=High	Cost 1=High; 5=Low	Complexity of Implementation	Certainty of Value Capture 1=Low; 5=High	Magnitude of Benefit 1=Small; 5=Large
First	Project 4: Restaurant industry insights and statistics	5	4	4	5	5
Second	Project 1: Potential restaurant and customer Identification	5	3	3	4	4

Initial Structure of the Data Science Team

I have identified six strategies for promoting a data-driven culture in our business

Strategies for promoting a data-driven culture

Strategy 1: Ensure that top management is on-board for a data-driven culture.

Strategy 2: Ensuring that everyone has basic data-access.

Strategy 3: Starting the habit of explaining analytical choices.

Strategy 4: Quantifying uncertainty.

Strategy 5: Choosing metrics with care.

Strategy 6: Encourage data scientists to innovate and start initiatives.

Technical Infrastructure Needed to Support the Data Science Organization

Data Requirements		- Single data warehouse - ETL from cloud-based data stores - Relational data store	
Data Governance	Data Availability	Data available to all employeesAnnouncement of new dataset integrationsAllow dataset requests for unavailable datasets	
	Usability	 - A dictionary of the available data - Tags for easier searchability - A meta store alongside the data store 	
	Integrity	 Regular check-ups on datasets Reporting of issues by consumers of data Data quality scores Tracing of data Regular scheduled back-ups of data 	
	Security	 Training of employees Firewalls Encryption of data while moving Masking of user information 	

Technical Infrastructure Needed to Support the Data Science Organization

Technology	Data Architecture Components	 - A data store that is the single source of truth - Access through SQL queries or BI applications - Access through APIs that expose information of the data store
Skills and Capacity	Data literacy skills and organizational capacity	 - Just in time training - Publishing data updates to the whole company - Rewarding successful data-driven projects - Promote data exploration and experiments that use the available data
Support for Machine Learning	Machine learning architecture	- POC on local - Transition to cloud - API endpoints for access to ML models
Technology	Data Architecture Components	 - A data store that is the single source of truth - Access through SQL queries or BI applications - Access through APIs that expose information of the data store
Skills and Capacity	Data literacy skills and organizational capacity	 Just in time training Publishing data updates to the whole company Rewarding successful data-driven projects Promote data exploration and experiments that use the available data