Masaryk University Faculty of Informatics

«title»

Bachelor's Thesis

«author»

Brno, Fall 2020

Replace this page with a copy of the official signed thesis assignment and a copy of the Statement of an Author.

Declaration

Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source.

«author»

Advisor: «advisor»

Abstract

«abstract»

Keywords

«keywords»

Contents

1	Intr	oduction	1
2	Prel	iminaries	3
	2.1	Büchi Automaton	3
	2.2	Markov Decision Processes	4
	2.3	Good-for-MDP (GFM) Automata	5
		to be defined	
		2.4.1 xd	
	2.5	Algorithms	5
3	Imp	lementation	7
	3.1	Technologies	7
	3.2	Implementation inside Seminator	7
4	Eva	luation	9
	4.1	Alternative Algorithm	9
	4.2	Different Implementation - ePMC	9
	4.3		9
5	Con	aclusion	11

List of Tables

List of Figures

1 Introduction

2 Preliminaries

2.1 Büchi Automaton

A nondeterministic Büchi automaton (BA) is a tuple $A = (\Sigma, Q, q_0, \Delta, \Gamma)$, where

- Σ is a finite alphabet
- *Q* is finite set of states
- $q_0 \in Q$ is the initial state
- $\Delta \subseteq Q \times \Sigma \times Q$ are transitions
- $\Gamma \subseteq \Delta$ is the transition-based acceptance condition

run A run r of A on $w \in \Sigma^{\omega}$ is an ω -word $r_0, w_0, r_1, w_1, ...$ in $(Q \times \Sigma)^{\omega}$ such that $r_0 = q_0 \wedge \forall i > 0, (r_{i-1}, w_{i-1}, r_i) \in \Delta$ $o\omega o$

 $\inf(\mathbf{r})$ We write $\inf(r) \subseteq \Delta$ for the set of transitions that appear infinitely often in the run r.

accepting run A run *r* is accepting if $inf(r) \cap \Gamma \neq \emptyset$

language The language $L_A \subseteq \Sigma^{\omega}$ is recognized by A. $\forall w \in L_A \exists r \text{ on } w \text{ such that } r \text{ is accepting.}$

 ω -regular language A language is ω -regular if it is accepted by BA.

deterministic automaton
$$A = (\Sigma, Q, q_0, \Delta, \Gamma)$$
 is deterministic if $(q, \rho, q'), (q, \rho, q'') \in \Delta \implies q' = q''$

complete automaton *A* is complete if, $\forall w \in \Sigma, \forall q \in Q, \exists (q, w, q') \in \Delta$. A word in Σ^{ω} has exactly one run in a deterministic, complete automaton.

2.2 Markov Decision Processes

A Markov decision process (MDP) M is a tuple (S, A, T, Σ, L) , where

- *S* is a finite set of states
- *A* is a finite set of actions
- $T: S \times A \rightarrow D(S)$, where D(S) is set of probability distributions over S, is the probabilistic transition (partial) function
- Σ is an alphabet
- $L: S \times A \times S \rightarrow \Sigma$ is the labeling function of the set of transitions. For a state $s \in S$, A(s) denotes the set of actions available in s.

run A run of M is an ω -word $s_0, a_1, ... \in A = S \times (A \times S)^{\omega}$ such that $Pr(s_{i+1}|s_i, a_{i+1}) > 0$ for all i >= 0. A finite run is a finite such sequence.

labeled run We define labeled run as $L(r) = L(s_0, a_1, s_1), L(s_1, a_2, s_2), ... \in \Sigma^{\omega}$.

paths We write $\Omega(M)(Paths(M))$ for the set of runs (finite runs) of M and $\Omega_s(M)(Paths_s(M))$ for the set of runs (finite runs) of M starting from state s. When the MDP is clear from the context we drop the argument M.

strategy A strategy in M is a function $\mu: Paths \to D(A)$ such that $supp(\mu(r)) \subseteq A(last(r))$, where supp(d) is the support of d and last(r) is the last state of r. Let Ω^M_μ denote the subset of runs Ω^M that correspond to strategy μ and initial state s. Let Π_M be the set of all strategies.

pure strategy We say that a strategy μ is pure if $\mu(r)$ is a point distribution for all runs $r \in Paths$.

behavior The behavior of an MDP M under a strategy μ with starting state s is defined on a probability space $(\Omega_s^{\mu}, F_s^{\mu}, Pr_s^{\mu})$ over the set of infinite runs of μ from s.

2.3 Good-for-MDP (GFM) Automata

2.4 to be defined

 ω -word?, point distribution?, what is F_s^μ in 'pure strategy' paragraph?, TGBA, describe Semi-determistic as I am going to compare them with SBA

2.4.1 xd

GF MDP, model checking

2.5 Algorithms

BP + both slim

- 3 Implementation
- 3.1 Technologies
- 3.2 Implementation inside Seminator

4 Evaluation

- 4.1 Alternative Algorithm
- 4.2 Different Implementation ePMC
- 4.3 Semi-deterministic Automata

Conclusion