TRUE or FALSE. Justify.

- (1) There is a continuous function $f:[2,3] \to \mathbb{R}$ with range [3,5].
- (2) There is a continuous function $f:[2,3]\to\mathbb{R}$ with range (3,5].
- (3) There is a continuous function $f:[2,3]\to\mathbb{R}$ with range $[3,4]\cup[5,6]$.
- (4) Every continuous function is differentiable.
- (5) Every differentiable function is continuous.
- (6) If f'(r) < 0, then there is some $\delta > 0$ such that f(x) > f(r) whenever $r \delta < x < r$.
- (7) If f'(r) < 0, then there is some $\delta > 0$ such that f(x) > f(r) whenever $r < x < r + \delta$.
- (8) The function $f(x) = x^3 2x^2 + 5$ is increasing on the interval (1, 2).
- (9) The function $f(x) = x^3 2x^2 + 5$ is decreasing on the interval (1,2).
- (10) If f is differentiable on \mathbb{R} , and f'(x) > 0 for all $x \in \mathbb{R}$, then f(a) < f(b) for all a < b.
- (11) The function $f(x) = \begin{cases} x^3 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ is differentiable on \mathbb{R} .
- (12) If f'(x) = 0 for all x in a subset $S \subseteq \mathbb{R}$, then there is some $c \in \mathbb{R}$ such that f(x) = c for all $x \in S$.
- (13) The function $f(x) = \begin{cases} \frac{x}{2} + x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is differentiable on all of \mathbb{R} .
- (14) There is some $\delta > 0$ such that $\frac{x}{2} + x^2 \sin(\frac{1}{x}) > 0$ whenever $0 < x < \delta$. (Use derivatives to explain.)
- (15) There is some $\delta > 0$ such that the function $f(x) = \begin{cases} \frac{x}{2} + x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is increasing on $(-\delta, \delta)$.

1

- (16) Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, and $\{c_n\}_{n=1}^{\infty}$ be sequences. The negation of the statement "If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ converge, then $\{c_n\}_{n=1}^{\infty}$ converges" is "If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ converge, then $\{c_n\}_{n=1}^{\infty}$ diverges".
- (17) The commutative property/axiom of addition says that (x + y) + z = x + (y + z).
- (18) Every nonempty set of real numbers that is bounded above has a maximum element.
- (19) If S is a set of real numbers and $\sup(S) \in S$ then $\sup(S)$ is the maximum element of S.
- (20) Every nonempty set of natural numbers that is bounded below has a minimum element.
- (21) Every nonempty set of integers that is bounded above has a maximum element.
- (22) The supremum of the set $\{x \in \mathbb{Q} \mid x < \pi\}$ is π .
- (23) The supremum of the set $\{x \in \mathbb{Q} \mid x > \pi\}$ is π .
- (24) If a sequence $\{a_n\}_{n=1}^{\infty}$ converges to L, then there is some $N \in \mathbb{R}$ such that for all natural numbers n > N, $a_n = L$.
- (25) For every real number L there is a strictly decreasing sequence of rational numbers that converges to L.
- (26) A sequence of negative numbers can converge to a positive number.
- (27) Every decreasing sequence is convergent.
- (28) Every convergent sequence is bounded.
- (29) If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are convergent sequences, then $\{3a_n^2 + a_nb_n 6b_n\}_{n=1}^{\infty}$ is a convergent sequence.
- (30) If for every $\varepsilon > 0$, there is some $N \in \mathbb{R}$ such that $|a_n a_{n+1}| < \varepsilon$ for all n > N, then $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence.
- (31) If $\lim_{x\to -1} f(x) > 5$, then there is some $\delta > 0$ such that f(x) > 5 whenever $x \in (-1-\delta, -1+\delta) \setminus \{-1\}$.
- (32) If $\lim_{x\to -1} f(x) \geq 5$, then there is some $\delta > 0$ such that $f(x) \geq 5$ whenever $x \in (-1-\delta, -1+\delta) \setminus \{-1\}$.

- (33) If $\{a_n\}_{n=1}^{\infty}$ converges to 1 and $\{b_n\}_{n=1}^{\infty}$ converges to -2, then $\{a_{3n-1}b_n b_{n^2}/4\}_{n=1}^{\infty}$ converges to $-5 = (3 \cdot 1 1)(-2) (-2)^2/4$.
- (34) There is a sequence without any convergent subsequence.
- (35) Every convergent sequence is a bounded sequence.
- (36) If a sequence diverges to ∞ , then it is not bounded above.
- (37) If a sequence is not bounded above, then it diverges to ∞ .
- (38) If f and g are functions defined on \mathbb{R} , and f(x) = g(x) for all $x \neq a$, and f has a limit as x approaches a, then $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$.
- (39) If $\lim_{x\to 0} f(x) = 3$, then the sequence $\{a_n\}_{n=1}^{\infty}$ converges to 0, where $a_n = f(1/n)/n$.
- (40) If f and g are continuous on (-7,7), and g(4)=-1, then $\lim_{x\to 4}(f\circ g)(x)=f(-1)$.
- (41) The sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = n \cdot \sqrt{2}$ the largest integer that is less than $n \cdot \sqrt{2}$ has a convergent subsequence.
- (42) If two different subsequences of $\{a_n\}_{n=1}^{\infty}$ converge, then $\{a_n\}_{n=1}^{\infty}$ converges.
- (43) The function $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$ is continuous on \mathbb{R} .
- (44) If the domain of f is \mathbb{R} , then f is continuous at some point.
- (45) The function $f(x) = |x^2 |x^3 3||$ is continuous on \mathbb{R} .
- (46) If f(x) is continuous at x = a then $\lim_{x\to a} f(x)$ exists.
- (47) If f is continuous on \mathbb{R} and a < b, and y > f(a) > f(b), then there is no $c \in [a, b]$ such that f(c) = y.
- (48) If f is continuous on \mathbb{R} and a < b, and f(a) > y > f(b), then there is no $c \in [a, b]$ such that f(c) = y.
- (49) There is a sequence $\{a_n\}_{n=1}^{\infty}$ such that $\{r \in \mathbb{R} \mid r \text{ is a limit of a subseq. of } a_n\} = [0,7]$.
- (50) There is a sequence $\{a_n\}_{n=1}^{\infty}$ such that $\{r \in \mathbb{R} \mid r \text{ is a limit of a subseq. of } a_n\} = (0,7)$.