Firm Heterogeneity in Production-Based Asset Pricing: the Role of Habit Sensitivity and Lumpy Investment

Zhiting Wu

The University of St Andrews zw36@st-andrews.ac.uk

October 7th, 2020

Evidence: Risky and Risk-Free Assets

Figure 1: Risky and Risk-Free Asset

- $r^e r^f$ is High and Volatile
- rf is Low and Smooth
- 1st Challenge: Equity Premium & Volatility Puzzle, and Risk-Free Rate Puzzle

Evidence: Asset Prices & Real Economy

Figure 2: Macro-Asset Pricing Dynamics

- Market Excess Return is Volatile but Consumption is Smooth ⇒ 2nd Challenge
- ullet Market Excess Return and Investment Dynamics are Volatile \Rightarrow 3rd Challenge

Evidence: Size Premiums

Figure 3: Size Premiums

- Small Firms earn Higher Expected Return than Big Firms ⇒ Size Premiums
- Size Premiums are no Small (0.66% Quarterly or 2.5%-7% Annually) and Volatile (8.69% Quarterly or 17-20%Annually) ⇒ 4th Challenge

Motivation: Two Aspects of Asset Pricing Puzzles

Challenges: The G.E. Model Has Difficulty in.....

- Matching Equity Risk Premiums and Risk-Free Rate jointly
 - Inter-temporal Effects on Risk-Free Rate Dominates...
- Matching Macro Quantities and Equity Risk Premiums jointly
 - Consumption Smoothing ⇒ Stochastic Discount Factor Less Volatile
 ⇒ Underestimate 1st/2nd-Order Moments of Risk Premiums
 - Adjustment Costs ⇒ Risk Premiums ↑ and Investment Volatility ↓
- Adjustinent Costs -> Misk Fremiums | and investment volatility
- Replicating the Time-Series and Cross-Sectional Stock Return jointly
 - ullet Lumpy Investment Model + Decreasing Return to Scale
 - ⇒ High Prod. Firms have High Market-to-Book Ratio but More Risky
 - ⇒ Value Premiums might be Negative (Favilukis & Lin 2010WP)

Inconsistency:

- Most Production-Based Models Rely on Convex Costs ⇒ Empirically Rejected
- G.E. Models of Fixed Costs Fail to Explain Premiums

What I Did: Resolve Four Challenges in Both Aspects

Build a G.E. Heterogeneous Firm Macro Model with Following Ingredients:

- Campbell & Cochrane (1999JPE)'s Habit + GHH Structure
- Khan & Thomas (2008Ecta)'s Fixed Capital Adjustment Costs
- New Habit Sensitivity Function: $\lambda^S = \frac{1}{\overline{S}} 1$ vs. $\lambda^S = \frac{1}{\log S} 1$

Results: The Model Replicates

Table 1: Compare to Previous Literature

Facts	Equity +Premium + Volatility	Business Cycle	Micro Lumpy Investment	Cross-Sectional Stock Return
Cooper et al. (2006JF)		×		
Herskovic (2020WP)	$\sqrt{}$	×	×	$\sqrt{}$
Favilukis&Lin (2013JME)	×	\checkmark	\checkmark	×
Favilukis&Lin (2015RFS)	\checkmark	$\sqrt{}$	×	×
Chen (2017RFS,2018RAPS)	$\sqrt{}$	$\sqrt{}$	×	×
Winberry(2020AER)	×	$\sqrt{}$	\checkmark	×
This Paper	√	<u>√</u>	<u>√</u>	√

Micro Foundation:

• Fixed Capital Adjustment Costs + Reasonable Calibrated Values

Key Mechanism

Key Mechanism:

- A New Habit Sensitivity Function with a Logarithm Surplus-Consumption Ratio
 - 1st Challenge: Precautionary Savings Offset EIS \Rightarrow Low/Smooth r^f
 - 2nd Challenge: Smooth Consumption and Volatile SDF
- Khan & Thomas (2008Ecta) Economy
 - Fixed Costs ⇒ Equity Premiums ↑ but Investment Volatility ↓
 - Idiosyncratic Shock ⇒ Equity Premiums ↑ and Investment Volatility ↑
 ⇒ Avoid Excessively Smooth of Investment ⇒ 3rd Challenge
 - Constrained Firms
 - Have Small Market Capital ⇒ Do not Adjust
 - Distribute Dividend ⇒ Future Dividend ↑ ⇒ Cash Flow Risks ↑
 - \Rightarrow Small Firms Earn Higher Return \Rightarrow 4th Challenge

Literature Review

Asset Pricing with Habits:

Boldrin et al. (1999AER), Jermann (1998JME); Campbell & Cochrane (1999JPE); Chen (2017RFS, RAPS), Luo (2019WP)

Macro Implications of Non-Convex Costs:

Khan & Thomas (2008Ecta), House (2014JME), Clementi et al. (2017WP), Mongey Williams (2017WP), Winberry (2020AER), Koby & Wolf (2020WP)

Asset Pricing with Non-Convex Costs:

Kogan (2004JFE), Carlson et al. (2004JF), Zhang (2005JF); Cooper(2006JF), Herskovic et al. (2020WP); Favilukis & Lin (2010WP)

G.E. Model with Heterogeneous Firms:

Luo (2019WP); Ai et al. (2013RFS), Favilukis & Lin (2010WP, 2015RFS), Chen (2018RAPS), Tong&Ying(2019WP); Gomes et al. (2003JPE), Garleanu et al. (2012JF)

Outline

- Model Set Up
 - Physical Environment, Firm, and Households Problem
 - Equilibrium Conditions and Numerical Algorithm
- Solution to Challenges
 - Four Challenges
 - One Debate
- Benchmark Calibration
 - Target Moments
 - Sensitivity Function
- Model Evaluation
 - Time-Series Implications
 - Cross-Sectional Implications
- Conclusion
- Appendix

9 / 57

Model Set Up

Environment: Discrete Time and Infinite Horizons

Household:

- Consumes Consumption Good C_t
- Supplies Labor N_t at Competitive Wage W_t
- Receives Aggregate Dividends Π_t from Firms

Firms: Continuum of Firms, Each with Idiosyncratic State $\mu_{i,t} = \mu(k_{i,t}, z_{i,t}, \xi_{i,t})$

- Hire Labour $n_{i,t}$ at Competitive Wage W_t ,
- Produce Goods with Labour $n_{i,t}$ and Capital Stock $k_{i,t}$
 - Production Function with Decreasing Returns to Scale

$$y_{i,t} = e^{z_{i,t}} e^{x_t} k_{i,t}^{\theta} n_{i,t}^{\nu}$$

- Choose whether to Adjust Capital or not
 - if Adjust \Rightarrow Pay $\xi_{i,t}$ and Choose next Period's Capital Stock $k_{i,t+1}$
- Pay Out Firm-Level Dividends π_t

Shock:

- Aggregate Shock: $x_{t+1} = \log X_{t+1} = \rho^X \log X_t + \varepsilon^X_{i,t+1}, \varepsilon^X_{i,t+1} \backsim N(0,\sigma_X)$
- Firm-Level Shock: $z_{i,t+1} = \log Z_{i,t+1} = \rho^Z \log Z_{i,t} + \varepsilon_{i,t+1}^z, \varepsilon_{i,t+1}^z \backsim N(0,\sigma_z)$

Firm Problem

- The Firm's Aggregate State is $(k_{i,t}, z_{i,t}, \xi_{i,t}; \Omega_t)$
- Let $V(k_{i,t}, z_{i,t}, \xi_{i,t}; \Omega_t)$ be the Discounted Present Value of the Firm.
- Firm Chooses to Adjust or Not

$$V(k_{i,t}, z_{i,t}, \xi_{i,t}; \Omega_t) = \lambda^c(\Omega_t) \max_{n} \left\{ e^{z_{i,t}} e^{x_t} k_{i,t}^{\theta} n_{i,t}^{\nu} - w(\Omega_t) n_t \right\}$$

$$+ \max_{i} \left\{ V^a(k_{i,t}, z_{i,t}; \Omega_t) - \lambda^c(\Omega_t) \xi_{i,t} w(\Omega_t), V^n(k_{i,t}, z_{i,t}; \Omega_t) \right\}$$
(1)

- Decision Threshold: $\tilde{\xi} = \frac{V^{a}(k_{i,t},z_{i,t};\Omega_{t}) V^{n}(k_{i,t},z_{i,t};\Omega_{t})}{\lambda^{c}w(\Omega_{t})}$
- $\bullet \ \, \mathsf{Range} \,\, \mathsf{of} \,\, \mathsf{The} \,\, \mathsf{Threshold} \colon \, \hat{\xi}(k_{i,t},z_{i,t};\!\Omega_t) = \mathsf{arg} \, \mathsf{min} \, \Big\{ \mathsf{max} \, \Big\{ 0, \tilde{\xi}(k_{i,t},z_{i,t};\!\Omega_t) \Big\} \,, \bar{\xi} \Big\}$
- ullet Adjustment Probability: $rac{\hat{\xi}(k_{i,t},z_{i,t};\Omega_t)}{ar{\xi}} \in [0,1]$
- Firm Value

$$\hat{V}(k_{i,t}, z_{i,t}; \Omega_t) = \lambda^c(\Omega_t) \max_n \left\{ e^{z_{i,t}} e^{x_t} k_{i,t}^{\theta} n_{i,t}^{\nu} - w(\Omega_t) n_t \right\}
+ \frac{\hat{\xi}(k_{i,t}, z_{i,t}; \Omega_t)}{\bar{\xi}} \left\{ V^a(k_{i,t}, z_{i,t}; \Omega_t) - \lambda^c(\Omega_t) w(\Omega_t) \frac{\hat{\xi}(k_{i,t}, z_{i,t}; \Omega_t)}{2} \right\}
+ \left(1 - \frac{\hat{\xi}(k_{i,t}, z_{i,t}; \Omega_t)}{\bar{\xi}} \right) V^n(k_{i,t}, z_{i,t}; \Omega_t)$$
(2)

Household Problem

• Habit Formation:

$$U = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \frac{\left(C_t - H_t - \psi \frac{N_t^{1+\alpha}}{1+\alpha} \right)^{1-\sigma}}{1-\sigma} \right\}$$
(3)

• Surplus Consumption Ratio: $S_t \equiv \frac{C_t - H_t}{C_t}$

$$s_{t+1} = \log S_{t+1} = \left(1 - \rho^{S}\right) \log \overline{S} + \rho^{S} \log S_{t} + \lambda^{S} \log\left(\frac{C_{t+1}}{C_{t}}\right) \tag{4}$$

- Habit Sensitivity Function: $\lambda^{S} = \frac{1}{\log S} 1$
- $\textbf{ Stochastic Discount Factor: } M_{t,t+1} = \beta \left(\frac{C_{t+1}S_{t+1} \psi \frac{N_{t+1}^{1+\alpha}}{1+\alpha}}{C_tS_t \psi \frac{N_t^{1+\alpha}}{1+\alpha}} \right)^{-\sigma}$

Equilibrium Conditions

An Equilibrium of This Model Consists of

- Firms' Value Function: $V(k_{i,t}, z_{i,t}, \xi_{i,t}; \Omega_t)$
- Firms' Policy Functions: $k(k_{i,t}, z_{i,t}; \Omega_t)$, $n(k_{i,t}, z_{i,t}; \Omega_t)$, and $\hat{\xi}$
- Households' Policies $C(\Omega_t)$, $N(\Omega_t)$, and Stochastic Discount Factor $M(\Omega_{t+1}|\Omega_t)$
- a Wage $W(\Omega_t)$
- a Law of Motion for the Distribution of Firm $g(k_{i,t}, z_{i,t}; \Omega_t)$

such that

- the Firms' Policies are Optimal
- the Households' Policies are Optimal
- the Labour Market Clears

$$\left(\frac{w(\Omega_t)}{\chi}\right)^{\frac{1}{\alpha}} = \int \left(n(k_{i,t}, z_{i,t}; \Omega_t) + \frac{\hat{\xi}(k_{i,t}, z_{i,t}; \Omega_t)^2}{2\bar{\xi}}\right) g(k, z) dz dk \tag{5}$$

the Law of Motion of the Distribution is Consistent with the Firm's Policies

Algorithm: Reiter (2009JEDC) & Winberry (2018QE)

Numerical Method: Projection+Perturbation Method

- A G.E. Production-Based Asset Pricing Model:
 - The Cross-Section Distribution of Firms is a State Variable
- Step One: Projection in Stationary Distribution
 - Approximate the Cross-Sectional Distribution with Finite Dimension
 Parametric Family ⇒ Reduce Dimension
 - Capture the Law of Motion of Distribution
 - Compute the Stationary Equilibrium with Projection Method
- Step Two: Perturbation in Aggregate Dynamics—Second-Order Perturbation

Solution to Challenges & Debate

Equity Premium & Risk-Free Rate Puzzle

- Challenge: High & Volatile Equity Premium and Low & Smooth Risk-Free Rate
- Reason: the Intertemporal Substitution Effects on Risk-Free Rate
- Solution: Precautionary Saving Motivations Offset the Intertemporal Effects
- Intuition: Same Story in Chen (2017RFS, 2018RAPS)
 - SDF Decomposition $\frac{C_{t+1}S_{t+1}}{C.S.}$ Plays a Key Role
 - Take Logarithm and Extend the $\frac{C_{t+1}S_{t+1}}{C.S.}$

$$\left\{ \left(-\sigma\right) \left[\left(\rho^{S}-1\right) \left(\log \bar{S} - \log S_{t}\right) + \frac{1}{\log \bar{S}} \mu(g_{c}) \right] + \frac{(-\sigma)^{2}}{2(\log \bar{S})^{2}} \sigma(g_{c}) \right\}$$

• $-\frac{\sigma}{\log S}$ and $\frac{(-\sigma)^2}{2(\log S)^2}$ are Opposite \Rightarrow Low & Smooth Risk-Free Rate

2. Equity Premium & Volatility Puzzle

- Challenge: High & Volatile Equity Premium under Consumption Smoothing
- Reason: Household Endogenously Smoothes Consumption in a G.E. Model
- Solution: Novel Habit Sensitivity Produces Volatile SDF
- Intuition: Habit Destruction and Negative Habit

Figure 4: λ^{S} and SDF: the Way to Replicate Equity Volatility

Compare to Chen (2017RFS)'s Work: Discussion

- $S(\Omega_t) > \log S(\Omega_t)$ in My Calibration
- $C(\Omega_t) H(\Omega_t) = C(\Omega_t)S(\Omega_t)$ and $S(\Omega_t) > 1$
 - $\Rightarrow H(\Omega_t)$ is often Negative
 - ⇒ The Agent Destroys Her Habit Periodically (Ljungqvist & Uhlig 2009, 2015)
 - ⇒ Chen (2017RFS)'s Work has Potential But not Exactly to Be (Discuss Later)
- Consumption is Smooth but Marginal Utility is Volatile
 - ⇒ SDF is Volatile
 - \Rightarrow Risk Premiums are High: $E_t[R_{t+1}^e R_{t+1}^f] = -Cov_t(R_{t+1}^e R_{t+1}^f, \lambda_{t+1})$
 - \Rightarrow Risk Premiums are Volatile: $R_{t+1}^e = \frac{V_{t+1} + D_{t+1}}{V_t}$
 - ⇒ A Solution for the 2nd Challenge

Compare to Chen (2017RFS)'s Work: A Paradox

- ullet Traditional Habit Sensitivity $\lambda^{\mathcal{S}}=rac{1}{\overline{\mathcal{S}}}-1$
 - Large \bar{S} to Make the Agent Destroys Her Habit Periodically $\Rightarrow \lambda^S \downarrow$ Assign a Small Weight to $\frac{(-\sigma)^2}{2(\log \bar{S})^2}$ \Rightarrow Equity Volatility \downarrow
 - A Small \bar{S} Cannot Produce a Volatile SDF under Lumpy Economics \Rightarrow Equity Volatility \downarrow

This Paper: Take the Advantages of Both Mechanisms with $\lambda^{\mathcal{S}} = \frac{1}{\log \overline{\mathcal{S}}} - 1$

- Picking Small $\log \bar{S} \iff$ Picking Large \bar{S} to Make the Habit Destruction \Rightarrow but λ^S still \uparrow
- Why Traditional Model Fails to....?
 - Numerical Method: Reiter (2009JEDC) and Winberry (2018QE)
 - Misspecified: Oh (2011WP) with Krusell & Smith (1998JPE)

→□▶→□▶→□▶→□▶ □ ♥Q♥

3. High Risk Premiums with Volatile Aggregate Investment

Equity Premium Puzzle in the Production-Based Asset Pricing Literature

- Challenge: High Risk Premiums with Volatile Aggregate Investment
- Reason: Asset Prices rather than Investment Absorb the Productivity Shock
- Intuition: Idiosyncratic Risks Offset the Fixed Adjustment Costs
- Solution: A Story in Khan & Thomas (2008Ecta)

Micro Frictions: Adjustment Probabilities $\downarrow \Rightarrow$ Risk Premiums \uparrow

- Have Similar Implications on Risk Premiums
 - Upper Bound of Fixed Costs ↑ ⇒ Adjustment Probabilities ↓
 - Idiosyncratic Risks $\uparrow \Rightarrow$ Adjustment Probabilities \downarrow
- Have Opposite Implications on Aggregate Investment
 - Upper Bound of Fixed Costs ↑ ⇒ Investment Volatility ↓
 - Idiosyncratic Risks ↑ ⇒ Adjustment Probabilities ↑

4. High Cross-Sectional Stock Return

- I Specify on the Lumpy Investment Model
- Challenge: Cross-Sectional Stock Return—Size and Value
- ullet Reason: Operational Leverage \Rightarrow Negative Value Premiums
- Solution: Change the Direction to Size Premium
- Intuition: Small Firms Absorb More Productivity Shock

Figure 5: The Impulse Response Function of TFP to Return on Big/Small Firm

5. Debate on Irrelevance

- Debate: Micro Frictions Has (Marginal) Effects on Aggregate Investment
- Reason: Procyclical Risk-Free Rate Offset the Aggregate Investment Demand
 ⇒ Irrelevance
- Solution: Novel Habit Sensitivity Produces Robust IRF of TFP
- Intuition: The Similar Story in Winberry (2020AER)
 - IRF of TFP to Risk-Free Rate is Negative
 - ⇒ Counter-Cyclical Risk-Free Rate
 - ⇒ Investment Demand ↑
 - IRF of TFP to Aggregate Investment is Robustly Positive
 - ⇒ Procyclical Investment
 - ⇒ Investment Volatility ↑

Counter-Cyclical Risk-Free Rate ⇒ Investment Demand ↑

Figure 7: Investment IRFs: (log) Steady-State Surplus-Consumption Ratio

U-Shaped IRF ⇒ Counter-Cyclical & Smooth Investment Dynamics

Benchmark Calibration

Table 2: Benchmark Identification: Target Moments

Parameter	Value	Target Moments	Model	Data
ρ^X	0.95	$\sigma(y_t)$	1.56%	1.51%
σ^{X}	0.007	$\sigma(i_t)/\sigma(y_t)$	2.92	2.89
$ar{\xi}$	0.25	$\rho(i_t, y_t)$	0.82	0.88
$\log ar{\mathcal{S}}$	0.1	$E(r^e-r^f)$	1.79%	1.54%
$ ho^{\mathcal{S}}$	0.975	$\sigma(r^e-r^f)$	7.72%	7.74%
λ^{s}	$rac{1}{\log ar{S}} - 1$	$\frac{E(r^e - r^f)}{\sigma(r^e - r^f)}$	0.23	0.20

- Strategy & Targets
 - Asset Pricing: Moments of Risky Assets
 - Macroeconomics: Moments of Investment Cyclicity and Volatility
- Just-Identified: 6 Parameters vs. 6 Moments

Benchmark Calibration

Table 3: Investment Dynamics and Risk Premiums: Different Sensitivity Functions

Parameters	Moments	Benchmark	$\log \overline{S} = 0.65$	$\overline{\xi} = 0.44$	Data
			$\rho^{S} = 0.95$	$\rho^z = 0.90$	
$\frac{\frac{1}{5}-1}{}$	$\sigma(y_t)$	1.61%	1.61%	1.61%	1.51%
3	$\rho(i_t, y_t)$	-0.65	-0.40	0.09	0.88
	$\sigma(i_t)/\sigma(y_t)$	0.51	0.37	0.35	2.89
	$E(r^e-r^f)$	1.56%	1.59%	1.73%	1.54%
	$std(r^e-r^f)$	1.43%	1.72%	1.43%	7.74%
	$E(r^e - r^f)/\sigma(r^e - r^f)$	1.09	0.92	1.21	0.20
$\frac{1}{\log \bar{S}} - 1$	$\sigma(y_t)$	1.56%	1.59%	1.56%	1.51%
1-8-	$\rho(i_t, y_t)$	0.82	0.98	0.89	0.88
	$\sigma(i_t)/\sigma(y_t)$	2.92	0.52	3.09	2.89
	$E(r^e-r^f)$	1.79%	1.93%	173.07%	1.54%
	$std(r^e-r^f)$	7.73%	1.30%	245.33%	7.74%
	$E(r^e - r^f)/\sigma(r^e - r^f)$	0.23	1.49	0.71	0.20

Traditional Habit Sensitivity

- Has Potential to Generate (Smooth) and Counter-Cyclical Investment Dynamics
- Fails to Generate Volatile Risk Premiums

Model Evaluation

Using Non-target Moments to Evaluate Performances

- Time-Series Implications
 - Asset Prices Dynamics
 - Asset Prices Moments
 - IRF of TFP to Asset Prices
 - The Predictability of Market Excess Return
 - Macroeconomic Implications
 - Business Cycle Moments
 - IRF of TFP to Macro Variables
- Cross-Sectional Implications
 - The Cross-Sectional Distribution of Investment Rate
 - Size Premiums

Table 4: Benchmark Model: Time-Series Asset Pricing Moments

Equity	Benchmark	Data
$E(r^e-r^f)$	1.79%	1.54%
$\sigma(r^{e}-r^{f})$	7.72%	7.74%
$E(r^e-r^f)/\sigma(r^e-r^f)$	0.23	0.20
T-Bills		
$E(r^f)$	0.88%	0.40%
$\sigma(r^f)$	0.57%	0.99%

What to Take Home: Successfully Avoids Risk-Free Rate Puzzle

Figure 8: Impulse Response Function of TFP Shock to Asset Return

Implications

- Marginal Utility is Counter-Cyclical
- Ex-Post Return is Pro-Cyclical⇒Expected Return is Positive

•
$$E_t[R_{t+1}^e - R_{t+1}^f] = -Cov_t(R_{t+1}^e - R_{t+1}^f, \lambda_{t+1})$$

- First-Order and Second-Order Perturbation
 - Second-Order Perturbation is Non-Smooth
 - ⇔ Captures Infra-Marginal Properties of Value Function & Investment

Table 5: Benchmark Model: Return Prediction of Dividend-Price Ratio

	Benchmark		Full Sample 1952-2018	
Horizons	Coefficients	R^2	Coefficients	R^2
1 Quarter	0.0462	0.0034	0.0178	0.0087
1 Year	0.2295	0.0255	0.0811	0.0377
2 Year	0.5739	0.0405	0.1401	0.0577
3 Year	1.0473	0.0610	0.1652	0.0640
4 Year	1.5592	0.0777	0.1745	0.0582
5 Year	1.9942	0.0832	0.2142	0.0683

$$E_t[r_{t+k}] - r_{t+k}^f = a + \beta_{dp} \times \frac{d_t}{\rho_t} + \epsilon_{t+k}$$
(6)

What to Take Home: Predicts the Correct Sign and Trend

- Regressive Fitness Rises with the Increases in Investment Horizons
- Dividend Yields Positively Associate with Risk Premiums
- Magnitudes of Simulated Results are Comparable to Empirical Evidence

Table 6: Benchmark Model: Macroeconomic Implications

		Benchmark		
Variables	$\sigma(x_t)$	$\sigma(x_t)/\sigma(y_t)$	$\rho(x_t, y_t)$	$\rho(x_t, x_{t-1})$
Уt	1.56%	1	1	0.71
c_t	1.28%	0.82	0.93	0.70
i_t	4.54%	2.92	0.82	0.76
n_t	1.04%	0.67	1.00	0.71
		Data		
y _t	1.51%	1	1	0.85
c_t	1.20%	0.80	0.85	0.81
i_t	4.35%	2.89	0.88	0.80
n _t	1.84%	1.21	0.87	0.90

What to Take Home: Similar to a Single Shock RBC Model

- Matches Volatilities of Consumption, Investment, and Output
- Underestimates Co-movements and Overestimates Persistence

Figure 9: Impulse Response Function of TFP Shock to Business Cycle

GHH Utility

- Amplifies Aggregate Consumption, Investment, and Output
- Has Marginal Effects on Wages and Hours Worked

Table 7: Benchmark Model: Microeconomic Moments

Benchmark	Data
9.93%	10.4%
12.03%	16.0%
3.08	3.60
12.36	17.6
15%	14.4%
85%	85.6%
	9.93% 12.03% 3.08 12.36

What to Take Home: Assumes Non-negative Investment Rate ⇒Spike

- Uses Depreciation Rate to Match Average Investment Rate
- Replicates Key Moments of Distribution and Patterns of Micro Investment

Table 8: Benchmark Model: Cross-Sectional Asset Pricing Moments

	Model		Data		
Moments	Half-Sort	Half-Sort	3 Portfolios	5 Portfolios	10 Portfolios
$E(r^s)$	3.02%	3.47%	3.39%	3.34%	3.33%
$E(r^b)$	1.91%	3.01%	2.76%	2.73%	2.68%
$E(r^s-r^b)$	1.11%	0.46%	0.63%	0.61%	0.66%
$std(r^s)$	6.74%	10.78%	11.51%	11.88%	12.27%
$std(r^b)$	7.13%	7.85%	7.76%	7.67%	7.61%
$std(r^s-r^b)$	4.48%	5.09%	6.76%	7.66%	8.69%
$\rho(r^s, r^b)$	0.79	0.89	0.82	0.78	0.71

What to Take Home:

- Matches Risk Premiums of Small Firms and Most Second-Order Moments
- Underestimates Risk Premiums of Large Firms⇒Overestimates Size Premiums

What to Take Home

Challenges: Lumpy Investment in G.E. Resolves Challenges Below

Table 9: Compare to Previous Literature

Facts	Equity +Premium + Volatility	Business Cycle	Micro Lumpy Investment	Cross-Sectional Stock Return
Cooper et al. (2006JF)		×	√	$\overline{}$
Herskovic (2020WP)	$\sqrt{}$	×	×	$\sqrt{}$
Favilukis&Lin (2013JME)	×	\checkmark	\checkmark	×
Favilukis&Lin (2015RFS)	\checkmark	$\sqrt{}$	×	×
Chen (2017RFS,2018RAPS)		$\sqrt{}$	×	×
Winberry(2020AER)	×	\checkmark	\checkmark	×
This Paper	\checkmark	\checkmark	\checkmark	\checkmark

- Novel Habit Sensitivity
 - $-\frac{\sigma}{\log \bar{S}}$ and $\frac{(-\sigma)^2}{2(\log \bar{S})^2}$ are Opposite
 - Habit Destruction ⇒ Unconditional Vol. of the SDF ↑ and Robust IRF
- lacktriangle Micro Frictions: Adjustment Probabilities $\downarrow \Rightarrow$ Risk Premiums \uparrow
 - Have Similar (Opposite) Implications on Risk Premiums (Aggregate Investment)
 - $\bullet \;\; \mathsf{Small} \;\; \mathsf{Firms} \Rightarrow \mathsf{Un\text{-}adjust} \Rightarrow \mathsf{Higher} \;\; \mathsf{Cash} \;\; \mathsf{Flow} \;\; \mathsf{Risks} \Rightarrow \mathsf{Size} \;\; \mathsf{Premiums}$

Appendix

Table 10: Parameters Selection: Microeconomic Structure

Parameter	Description	Value
λ^{e}	Debt-to-Equity Ratio	0.54
β	Discount Factor	0.99
σ	Curvature	1
α	Inverse Frisch Elasticity	1/2
Ν	Stationary Work Hour	1/3
ψ	Labour Disutility	1
θ	Capital Share	0.21
u	Labour Share	0.64
δ	Depreciation	0.025
[-b,b]	Bound of Region	0.011
$ ho^Z$	Persistence of Idio. Shock	0.859
σ^Z	s.d. of Idio. Shock	0.015

Derivations of Mechanism

SDF Decomposition

$$\log M_{t+1} = \log \beta + (-\sigma) \left\{ \log \left(\frac{C_{t+1}S_{t+1}}{C_t S_t} \right) + \log \left(\frac{C_{t+1}S_{t+1} - \frac{\psi}{1+\alpha} \times N_{t+1}^{1+\alpha}}{C_t S_t - \frac{\psi}{1+\alpha} \times \frac{C_{t+1}S_{t+1}}{C_t S_t} \times N_t^{1+\alpha}} \right) \right\}$$

$$= \log \beta + \left\{ (-\sigma) \left[\left(\rho^S - 1 \right) \left(\log \overline{S} - \log S_t \right) + \frac{1}{\log \overline{S}} \mu(g_c) \right] + \frac{(-\sigma)^2}{2(\log \overline{S})^2} \sigma(g_c) \right\}$$

$$+ (-\sigma) \log \left(\frac{C_{t+1}S_{t+1} - \frac{\psi}{1+\alpha} \times N_{t+1}^{1+\alpha}}{C_{t+1}S_{t+1} - \frac{\psi}{1+\alpha} \times \frac{C_{t+1}S_{t+1}}{C_t S_t} \times N_t^{1+\alpha}} \right)$$
(7)

- $\bullet \ \frac{C_{t+1}S_{t+1}}{C_tS_t} \ \text{shares the same sign of } \log \left(\frac{C_{t+1}S_{t+1} \frac{\psi}{1+\alpha} \times N_{t+1}^{1+\alpha}}{C_{t+1}S_{t+1} \frac{\psi}{1+\alpha} \times \frac{C_{t+1}S_{t+1}}{C_tS_t} \times N_t^{1+\alpha}} \right)$
- $-\frac{\sigma}{\log \bar{S}}$ and $\frac{(-\sigma)^2}{2(\log \bar{S})^2}$ are Opposite

→ロト ←個 ト ← 差 ト ← 差 ・ りへで

Value Function

$$\hat{V} = \lambda^c \max_n \left\{ e^z e^x k^\theta n^\nu - wn \right\} + \frac{\hat{\xi}}{\bar{\xi}} \left\{ V^a - \lambda^c w \frac{\hat{\xi}}{2} \right\} + \left(1 - \frac{\hat{\xi}}{\bar{\xi}} \right) V^n$$

where

$$\begin{split} \tilde{\xi} &= \frac{V^a - V^n}{\lambda^c w} \\ \hat{\xi} &= \arg\min\left\{\max\left\{0, \tilde{\xi}\right\}, \bar{\xi}\right\} = \arg\min\left\{\max\left\{0, \frac{V^a - V^n}{\lambda^c w}\right\}, \bar{\xi}\right\} \end{split}$$

- If $\bar{\xi}<\tilde{\xi}$ then $\hat{\xi}=\bar{\xi}$, only Adjusted Firms are Considered and the Adjustment Probability is One
- If $\hat{\xi} = \tilde{\xi} = \frac{v^3 v^n}{\lambda^c w} < \bar{\xi} \Rightarrow$ the Relative Weights Assigned to Adjusted and Constraint Firms are $\frac{\hat{\xi}}{\hat{\xi}}$ and $1 \frac{\hat{\xi}}{\hat{\xi}} \Rightarrow \frac{\hat{\xi}}{\hat{\xi}}$ is Adjustment Probability
- $\bar{\xi} \uparrow \Rightarrow$ Adjustment Probability $\frac{\hat{\xi}}{\hat{\xi}} \uparrow \Rightarrow$ Assign Higher Weights on Constraint Firms \Rightarrow Future Dividends \uparrow Risk Premiums \uparrow

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Recall the value function:

$$\begin{split} \hat{V}(k_{i,t}, z_{i,t}; & \Omega_t) = \lambda^c(\Omega_t) \underset{n}{\text{max}} \left\{ e^{z_{i,t}} e^{x_t} k_{i,t}^{\theta} n_{i,t}^{\nu} - w(\Omega_t) n_t \right\} \\ & + \frac{\hat{\xi}(k_{i,t}, z_{i,t}; \Omega_t)}{\bar{\xi}} \left\{ V^s(k_{i,t}, z_{i,t}; \Omega_t) - \lambda^c(\Omega_t) w(\Omega_t) \frac{\hat{\xi}(k_{i,t}, z_{i,t}; \Omega_t)}{2} \right\} \\ & + \left(1 - \frac{\hat{\xi}(k_{i,t}, z_{i,t}; \Omega_t)}{\bar{\xi}} \right) V^n(k_{i,t}, z_{i,t}; \Omega_t) \end{split}$$

The return on unconstrained (big) firm and constrained (small) firm is given by:

$$R^{a}(\Omega_{t+1}|\Omega_{t}) = \frac{\frac{\hat{\xi}}{\hat{\xi}} \int V^{a}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + \frac{\hat{\xi}}{\hat{\xi}} D(\Omega_{t+1})}{\frac{\hat{\xi}}{\hat{\xi}} \int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t}) di}$$

$$= \frac{\int V^{a}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})}{\int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di}$$

$$R^{n}(\Omega_{t+1}|\Omega_{t}) = \frac{\left(1 - \frac{\hat{\xi}}{\hat{\xi}}\right) \int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + \left(1 - \frac{\hat{\xi}}{\hat{\xi}}\right) D(\Omega_{t+1})}{\left(1 - \frac{\hat{\xi}}{\hat{\xi}}\right) \int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})}$$

$$= \frac{\int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})}{\int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di}$$

$$= \frac{\int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})}{\int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di}$$
(8)

◆ロト ◆個ト ◆意ト ◆意ト ■ める○

The return spread between small and big firm is:

$$R^{n}(\Omega_{t+1}|\Omega_{t}) - R^{a}(\Omega_{t+1}|\Omega_{t})$$

$$= \frac{\int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})}{\int V^{n}(k_{i,t}, z_{i,t}; \Omega_{t}) di} - \frac{\int V^{a}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})}{\int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di}$$

$$= \frac{\left[\int V^{n}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})\right] \int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di}{\int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di \int V^{n}(k_{i,t}, z_{i,t}; \Omega_{t}) di}$$

$$- \frac{\left[\int V^{a}(k_{i,t+1}, z_{i,t+1}; \Omega_{t+1}) di + D(\Omega_{t+1})\right] \int V^{n}(k_{i,t}, z_{i,t}; \Omega_{t}) di}{\int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di \int V^{n}(k_{i,t}, z_{i,t}; \Omega_{t}) di}$$

$$= \frac{\int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di D(\Omega_{t+1}) - \int V^{n}(k_{i,t}, z_{i,t}; \Omega_{t}) di}{\int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di \int V^{n}(k_{i,t}, z_{i,t}; \Omega_{t}) di}$$

$$= \frac{\int \left[V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) - V^{n}(k_{i,t}, z_{i,t}; \Omega_{t})\right] di D(\Omega_{t+1})}{\int V^{a}(k_{i,t}, z_{i,t}; \Omega_{t+1}) di \int V^{n}(k_{i,t}, z_{i,t}; \Omega_{t}) di} > 0$$

Inspecting the Mechanism

Figure 10: Asset Pricing Moments: Conditional on log S

- $\log \bar{S} \uparrow \Rightarrow$ U-Shaped Risk Premium and Volatility \Leftrightarrow When $\log \bar{S} > 0.25$, $E(r^e r^f) > std(r^e r^f)$
- $\log \bar{S} \uparrow \Rightarrow E(r^f) \uparrow \text{ and } std(r^f) \downarrow$

Figure 11: The Mechanism of $\log \bar{S}$

- The Weight between Precautionary Saving Motivations and EIS Plays a Key Role
- Consumption Volatility Plays another Key Role

Figure 12: Asset Pricing Moments: Conditional on $\bar{\xi}$

- $\bar{\xi} \uparrow \Rightarrow E(r^e r^f)$, $std(r^e r^f)$, and Sharp Ratio \uparrow
- ullet $ar{\xi} \uparrow \Rightarrow {\it E}(r^{\it f}) \downarrow$ and Investment Smooth
- Small $\bar{\xi} \Rightarrow$ All Firms Adjust \Rightarrow Equity is Less Risky than T-Bill \Rightarrow Negative Premiums

4 D F 4 D F 4 D F 900

Figure 13: The Mechanism of $\bar{\xi}$

$$ar{\xi}\uparrow\Rightarrow \mathsf{Adjustment}\ \mathsf{Probability}\xi(\epsilon,k)=rac{\hat{\xi}}{\xi}\downarrow$$
 \Rightarrow Firms Choose Inaction \Rightarrow Future Dividend $\uparrow\Rightarrow$ Risk Premiums \uparrow

4 D > 4 D > 4 E > 4 E > E 990

Figure 14: Macro-Asset Pricing Moments: Conditional on σ_z

- $\sigma_z \uparrow \Rightarrow E(r^e r^f)$, $std(r^e r^f)$, Sharp Ratio, and $\sigma(i_t) \uparrow$
- $\bar{\xi} \uparrow \Rightarrow E(r^f) \downarrow$

◆ロ → ← 同 → ← 三 → り へ ○

Figure 15: The Mechanism of σ_z

Idiosyncratic Risks $\sigma_z \uparrow \Rightarrow$ Adjustment Probability $\xi(\epsilon, k) = \frac{\hat{\xi}}{\xi} \downarrow \Rightarrow$ Cash Flow Risks \Rightarrow Risk Premiums \uparrow

40 > 40 > 42 > 42 > 2 90

Comparative Statistics

Alternative Preferences: Keeping Up with the Joneses

Recall the Utility Function:

$$U = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \frac{\left(C_t - H_t - \psi \frac{N_t^{1+\alpha}}{1+\alpha} \right)^{1-\sigma}}{1-\sigma} \right\}$$

Habit with Actual Consumption

$$H_t = \tau C_{t-1}$$

$$\lambda_t^c = \left(C_t - \tau C_{t-1} - \psi \frac{N_t^{1+\alpha}}{1+\alpha} \right)^{-\sigma}$$

Habit with Net Consumption

$$H_t = \tau \left(C_{t-1} - \psi \frac{N_{t-1}^{1+\alpha}}{1+\alpha} \right)$$

$$\lambda_t^c = \left(C_t - \psi \frac{N_t^{1+\alpha}}{1+\alpha} - \tau \left(C_{t-1} - \psi \frac{N_{t-1}^{1+\alpha}}{1+\alpha} \right) \right)^{-\sigma}$$

Table 11: Habit Formation: Moment Comparisons

Models	CC		KJ		No Habits	Data
	$rac{1}{\log ar{S}} - 1$	$\frac{1}{\overline{5}}-1$	C_t	$C_t - \psi rac{N_t^{1+lpha}}{1+lpha}$		
$\sigma(y_t)$	1.56%	1.61%	1.78%	1.59%	1.58%	1.51 %
$\sigma(c_t)/\sigma(y_t)$	0.82	1.23	1.16	0.60	0.77	0.80
$\sigma(i_t)/\sigma(y_t)$	2.92	0.73	4.40	3.39	2.38	2.88
$\sigma(n_t)/\sigma(y_t)$	0.67	0.67	0.67	0.67	0.67	1.21
$\rho(c_t, y_t)$	0.93	0.99	0.80	0.99	0.99	0.85
$\rho(i_t, y_t)$	0.82	-0.47	0.33	0.99	0.99	0.88
$ ho(n_t, y_t)$	1.00	1.00	1.00	1.00	1.00	0.87
$\rho(c_{t-1}, c_t)$	0.70	0.73	0.94	0.77	0.72	0.81
$\rho(i_{t-1},i_t)$	0.76	0.84	0.76	0.68	0.71	0.80
$ \rho(n_{t-1},n_t) $	0.71	0.72	0.67	0.72	0.72	0.90
$ ho(y_{t-1},y_t)$	0.71	0.72	0.76	0.72	0.72	0.85
$E(r^e-r^f)$	1.79%	1.59%	1.78%	6.05%	1.77%	1.54%
$std(r^e-r^f)$	7.72%	1.43%	1.58%	11.31%	1.18%	7.74%
$E(r^f)$	0.88%	1.01%	1.02%	0.90%	0.98%	0.40%
$std(r^f)$	0.57%	0.09%	0.15%	0.26%	0.12%	0.99%
$\frac{E(r^{e}-r^{f})}{\sigma(r^{e}-r^{f})}$	0.23	1.12	1.13	0.53	1.51	0.20

Additional Micro Frictions

Investment-Specific Shock

$$k_{i,t+1} = (1 - \delta)k_{i,t} + e^{q_t}i_{i,t} q_{t+1} = \rho^q q_t + \sigma^q \varepsilon_{t,t+1}^q + \sigma^{qx} \varepsilon_{t,t+1}^{qz}$$
(10)

Uncertainty Shock

$$z_{i,t+1} = \rho^{Z} z_{i} + \varepsilon_{i,t+1}^{Z}, \quad \varepsilon_{i,t+1}^{Z} \backsim \mathcal{N}(0, X_{t}^{U} \bar{\sigma})$$

$$X_{t+1}^{U} = \rho^{U} \log X_{t}^{U} + \varepsilon_{t+1}^{U}, \quad \varepsilon_{t+1}^{U} \backsim \mathcal{N}(0, \sigma^{U})$$
(11)

Convex Costs

$$\Phi(I_{i,t}/k_{i,t}) = \frac{\lambda_x}{2} \left(\frac{I_{i,t}}{k_{i,t}}\right)^2 k_{i,t}$$
(12)

and its Value Function

$$\hat{V} = \lambda^{c} \max_{n} \left\{ e^{z} e^{x} k^{\theta} n^{\nu} - wn \right\} + \frac{\hat{\xi}}{\bar{\xi}} \left\{ V^{a} - \lambda^{c} w \frac{\hat{\xi}}{2} \right\} + \left(1 - \frac{\hat{\xi}}{\bar{\xi}} \right) V^{n}$$

$$- \lambda^{c} \frac{\hat{\xi}}{\bar{\xi}} \times \frac{\lambda_{x}}{2} \left(\frac{k^{a}}{k} - (1 - \delta) \right)^{2} - \lambda^{c} \left(1 - \frac{\hat{\xi}}{\bar{\xi}} \right) \times \frac{\lambda_{x}}{2} \left(\frac{k^{n}}{k} - (1 - \delta) \right)^{2}$$

$$(13)$$

↑□ → ← = → ← = →) へ(→

Table 12: The Microeconomic Frictions: Comparisons

Models	Benchmark	IST	Uncertainty Shock	Convex Costs	Data
$\sigma(y_t)$	1.56%	1.58%	1.58 %	1.58 %	1.51 %
$\sigma(c_t)/\sigma(y_t)$	0.82	0.80	0.80	0.73	0.80
$\sigma(i_t)/\sigma(y_t)$	2.92	2.79	2.67	2.97	2.88
$\sigma(n_t)/\sigma(y_t)$	0.67	0.67	0.67	0.67	1.21
$\rho(c_t, y_t)$	0.93	0.95	0.96	0.94	0.85
$ ho(i_t, y_t)$	0.82	0.88	0.88	0.85	0.88
$\rho(n_t, y_t)$	1.00	1.00	1.00	1.00	0.87
$\rho(c_{t-1},c_t)$	0.70	0.70	0.70	0.71	0.81
$\rho(i_{t-1},i_t)$	0.76	0.76	0.76	0.74	0.80
$\rho(n_{t-1},n_t)$	0.71	0.71	0.71	0.71	0.90
$\rho(y_{t-1},y_t)$	0.71	0.71	0.71	0.71	0.85
$E(r^e-r^f)$	1.79%	1.57%	1.39%	2.66%	1.54%
$std(r^e-r^f)$	7.72%	5.70%	4.95%	7.76%	7.74%
$E(r^f)$	0.88%	0.96%	0.97%	0.88%	0.40%
$std(r^{f})$	0.59%	0.48%	0.45%	0.49%	0.99%
$\frac{E(r^e-r^f)}{\sigma(r^e-r^f)}$	0.23	0.27	0.28	0.34	0.20

Additional Micro Frictions have merely Marginal Contribution