COM SCI 161A HW 5 Solution

Ashish Kumar Singh (UID:105479019)

May 1, 2022

Problem 1. Equivalent sentences

Solution 1a. $P \implies \neg Q, Q \implies \neg P$ are equivalent

We can convert implies into following sentences: $\neg P \lor \neg Q$, $\neg Q \lor \neg P$. Building truth tables with these gives,

Worlds	Р	Q	$\neg P \lor \neg Q$	$\neg Q \lor \neg P$
w_1	0	0	1	1
w_2	0	1	1	1
w_3	1	0	1	1
w_4	1	1	0	0

 $M[\neg P \lor \neg Q] = \{w_1, w_2, w_3\}$ and $M[\neg Q \lor \neg P] = \{w_1, w_2, w_3\}$. Since the models for both the sentences are same, the sentences are equivalent.

Solution 1b. $P \iff \neg Q$, $((P \land \neg Q) \lor (\neg P \land Q))$ are equivalent We can convert equivalence into following: $((\neg P \lor \neg Q) \land (Q \lor P))$. Building truth tables

We can convert equivalence into following: $((\neg P \lor \neg Q) \land (Q \lor P))$. Building truth tables gives,

Worlds	Р	Q	$((\neg P \vee \neg Q) \wedge (Q \vee P))$	$((P \land \neg Q) \lor (\neg P \land Q))$
w_1	0	0	0	0
w_2	0	1	1	1
w_3	1	0	1	1
w_4	1	1	0	0

 $M[((\neg P \lor \neg Q) \land (Q \lor P))] = \{w_2, w_3\}$ and $M[((P \land \neg Q) \lor (\neg P \land Q))] = \{w_2, w_3\}$. Since the models for both the sentences are same, the sentences are equivalent.

Problem 2. Valid, unsatisfiable or neither

Solution 2a. $(Smoke \implies Fire) \implies (\neg Smoke \implies \neg Fire)$ is neither valid nor unsatisfiable,

Removing implies gives us following;

$$(\neg Smoke \lor Fire) \implies (Smoke \lor \neg Fire)$$
$$\neg (\neg Smoke \lor Fire) \lor (Smoke \lor \neg Fire)$$
$$(Smoke \land \neg Fire) \lor (Smoke \lor \neg Fire)$$

Worlds	Smoke	Fire	$(Smoke \land \neg Fire) \lor (Smoke \lor \neg Fire)$
w_1	0	0	1
w_2	0	1	0
w_3	1	0	1
w_4	1	1	1

Sentence is satisfiable in world w_1 , w_3 and w_4 but is not valid as it doesn't satisfy all the worlds.

Solution 2b. $(Smoke \implies Fire) \implies ((Smoke \lor Heat) \implies Fire)$ is neither valid nor unsatisfiable,

Removing implies gives us following;

$$(\neg Smoke \lor Fire) \implies (\neg (Smoke \lor Heat) \lor Fire)$$
$$\neg (\neg Smoke \lor Fire) \lor ((\neg Smoke \land \neg Heat) \lor Fire)$$
$$(Smoke \land \neg Fire) \lor ((\neg Smoke \land \neg Heat) \lor Fire)$$

Worlds	Smoke	Fire	Heat	$(Smoke \land \neg Fire) \lor ((\neg Smoke \land \neg Heat) \lor Fire)$
w_1	0	0	0	1
w_2	0	0	1	0
w_3	0	1	0	1
w_4	0	1	1	1
w_5	1	0	0	1
w_6	1	0	1	1
w_7	1	1	0	1
w_8	1	1	1	1

Sentence is satisfiable in all worlds except w_2 hence it is not valid.

Solution 2c. $((Smoke \land Heat) \implies Fire) \iff ((Smoke \implies Fire) \lor (Heat \implies Fire))$ is valid,

Removing implies and equivalence gives us following;

$$(\neg(Smoke \land Heat) \lor Fire) \iff ((\neg Smoke \lor Fire) \lor (\neg Heat \lor Fire))$$

$$(\neg S \lor \neg H \lor F) \iff (\neg S \lor F \lor \neg H))$$

$$((\neg S \lor \neg H \lor F) \implies (\neg S \lor F \lor \neg H)) \land ((\neg S \lor F \lor \neg H) \implies (\neg S \lor \neg H \lor F))$$

$$(\neg(\neg S \lor \neg H \lor F) \lor (\neg S \lor F \lor \neg H)) \land (\neg(\neg S \lor F \lor \neg H) \lor (\neg S \lor \neg H \lor F))$$

$$((S \land H \land \neg F) \lor (\neg S \lor F \lor \neg H)) \land ((S \land \neg F \land H) \lor (\neg S \lor \neg H \lor F))$$

Worlds	Smoke	Fire	Heat	$ ((S \land H \land \neg F) \lor (\neg S \lor F \lor \neg H)) \land ((S \land \neg F \land H) \lor (\neg S \lor \neg H \lor F)) $
w_1	0	0	0	1
w_2	0	0	1	1
w_3	0	1	0	1
w_4	0	1	1	1
w_5	1	0	0	1
w_6	1	0	1	1
w_7	1	1	0	1
w_8	1	1	1	1

Sentence is satisfiable in all worlds hence it is valid.

Problem 3. Unicorn problem

Solution 3a. Knowledge Base

We consider following definition of symbols for the unicorn: A: Mythical, B: Mortal, C: Mammal, D: Horned, E: Magical. Then our Knowledge base consists of following:

- 1. $A \implies \neg B$
- $2. \neg A \implies (B \land C)$
- 3. $(\neg B \lor C) \implies D$
- $4. D \implies E$

Solution 3b. CNF

Using KB to convert to CNF form by removing implies and simplifying not and or,

$$(A \Longrightarrow \neg B) \land (\neg A \Longrightarrow (B \land C)) \land ((\neg B \lor C) \Longrightarrow D) \land (D \Longrightarrow E)$$

$$(\neg A \lor \neg B) \land (A \lor (B \land C)) \land (\neg (\neg B \lor C) \lor D) \land (\neg D \lor E)$$

$$(\neg A \lor \neg B) \land ((A \lor B) \land (A \lor C)) \land ((B \land \neg C) \lor D) \land (\neg D \lor E)$$

$$(\neg A \lor \neg B) \land (A \lor B) \land (A \lor C) \land (B \lor D) \land (\neg C \lor D) \land (\neg D \lor E)$$

Solution 3c i. Unicorn is not Mythical

We represent KB in CNF form as Δ and query as α , then we do resolution of $\Delta \wedge \neg \alpha$ to check for unsatisfiability,

- 1. $(\neg A \lor \neg B)$
- $2. \ (A \vee B)$
- $3. \ (A \lor C)$
- $4. \ (B \vee D)$
- 5. $(\neg C \lor D)$
- 6. $(\neg D \lor E)$
- 7. $\neg A$ $(\neg \alpha)$
- 8. B (2,7)
- 9. C (3,7)
- 10. D (5,9)
- 11. E (6,10)

We see that no more resolution can be done and it is satisfiable, hence unicorn is not mythical.

Solution 3c ii. Unicorn is Magical

We define Δ similar to previous,

1.
$$(\neg A \lor \neg B)$$

- 2. $(A \lor B)$
- 3. $(A \lor C)$
- 4. $(B \lor D)$
- 5. $(\neg C \lor D)$
- 6. $(\neg D \lor E)$
- 7. $\neg E$ $(\neg \alpha)$
- 8. $\neg D$ (6,7)
- 9. $\neg C$ (5,8)
- 10. B (4,8)
- 11. $\neg A$ (1,10)
- 12. C (3,11)
- 13. Contradiction (9,12)

We see that resolution leads to unsatisfiability hence, unicorn is magical.

Solution 3c iii. Unicorn is Horned

We define Δ similar to previous,

- 1. $(\neg A \lor \neg B)$
- $2. (A \vee B)$
- 3. $(A \lor C)$
- 4. $(B \lor D)$
- 5. $(\neg C \lor D)$
- 6. $(\neg D \lor E)$
- 7. $\neg D$ $(\neg \alpha)$
- 8. B (4,7)
- 9. $\neg C$ (5,7)
- 10. A (3,9)
- 11. $\neg B$ (1,10)
- 12. Contradiction (8,11)

We see that resolution leads to unsatisfiability hence, unicorn is horned.

Problem 4. NNF

Solution 4a. Figure 1 is decomposable, not deterministic and not smooth

Figure 1 is decomposable because all the AND gates inputs do not share variables.

Figure 1 is not deterministic, because the world with {A=1, B=0, C=1, D=0} shows that the inputs to top OR gate is not mutually exclusive. This is the only assignment that is common for top OR gate.

Figure 1 is not smooth because the second OR gate in third row has input $\{C, (\neg C \land \neg D)\}$ i.e. do not share variable.

Solution 4b. Figure 2 is decomposable, not deterministic and smooth

Figure 2 is decomposable because all the AND gates inputs do not share variables.

Figure 2 is not deterministic, because the first OR gate in third row has same inputs, i.e. not mutually exclusive.

Figure 2 is smooth because the all OR gates share variables.

Problem 5. Weighted Model Count

Solution 5a. $(\neg A \land B) \lor (\neg B \land A)$

Worlds	Α	В	$(\neg A \land B) \lor (\neg B \land A)$
w_1	0	0	0
w_2	0	1	1
w_3	1	0	1
w_4	1	1	0

Weighted Model Count = $\omega(w_2) + \omega(w_3)$

Weighted Model Count = $\omega(\neg A)\omega(B) + \omega(\neg B)\omega(A)$

Weighted Model Count = 0.9 * 0.3 + 0.7 * 0.1 = 0.34

Solution 5b. Figure 3

The count on the root would be $\omega(\neg A)\omega(B) + \omega(\neg B)\omega(A) = 0.34$ which is **equal** to the Weighted Model count from previous question.

Solution 5c. Figure 4

The Weighted Model count for Figure 4 is 0.5. See below figure for computation,

