Automated Adjoints of Finite Element Discretizations

S. W. Funke, P. E. Farrell, D. A. Ham, M. E. Rognes

Imperial College London Simula Research Laboratory

February 28, 2013

Introduction

Automated adjoints

The core idea
Optimal checkpointing

Automated PDE-constrained optimisation

The core idea Application example

Conclusions

Vision

Vision

Building tools with a high degree of automation for solving:

Vision

Vision

Building tools with a high degree of automation for solving:

Traditional approach

Traditional approach

Fundamental idea of AD

A model is a sequence of elementary instructions.

Differentiate each in turn, and compose with the chain rule.

Traditional approach

 $\begin{array}{c} \text{discrete forward PDE} & \xrightarrow{\text{implement model by hand}} & \text{forward code} \\ \\ \text{algorithmic differentiation (AD)} \\ \\ \text{adjoint code} \end{array}$

Problematic for AD

pointers
expressions with side effects
preprocessor directives

external libraries mixed-language programming parallel directives

Our approach

Our approach

```
\begin{array}{c} \text{discrete forward equations (UFL)} & \xrightarrow{\text{code generation (FEniCS)}} & \text{forward code} \\ \\ \downarrow \text{symbolic manipulation (dolfin-adjoint)} \\ \\ \text{discrete adjoint equations (UFL)} & \xrightarrow{\text{code generation (FEniCS)}} & \text{adjoint code} \\ \end{array}
```

FEniCS

Advection-diffusion equation (variational formulation)

$$(a \cdot \nabla u, v) + \nu (\nabla u, \nabla v) = 0 \quad \forall v$$

Advection-diffusion equation (UFL)

F = inner(a*grad(u), v)*dx + nu*inner(grad(u), grad(v))*dx solve(F == 0, u)

Automated adjoints in FEniCS

Key steps performed by dolfin-adjoint:

- 1. Building the tape
- 2. Symbolic derivation of the adjoint equations
- 3. Solve the adjoint equations

Code

Tape

Equation (UFL) | Solution

Code

Equation (UFL)	Solution
F1 = inner() = 0	u1 = (0.1, 1.2,)

Code

Equation (UFL)	Solution
F1 = inner() = 0	u1 = (0.1, 1.2,)

Code

Equation (UFL)	Solution
F1 = inner() = 0	u1 = (0.1, 1.2,)
F2 = inner() = 0	u2 = (1.1, 2.2,)

Code

F1 = inner(...) solve(F1 == 0, u1)

Equation (UFL)	Solution
F1 = inner() = 0	u1 = (0.1, 1.2,)
F2 = inner() = 0	u2 = (1.1, 2.2,)

Code

F1 = inner(...) solve(F1 == 0, u1)

Equation (UFL)	Solution
F1 = inner() = 0	u1 = (0.1, 1.2,)
F2 = inner() = 0	u2 = (1.1, 2.2,)
F3 = inner() = 0	u3 = (3.4, 0.6,)

Automated adjoints in FEniCS

Key steps performed by dolfin-adjoint:

- 1. Building the tape
- 2. Symbolic derivation of the adjoint equations
- 3. Solving the adjoint equations

Cahn-Hilliard equation

$$\frac{\partial c}{\partial t} - \nabla \cdot M \left(\nabla \left(\frac{df}{dc} - \epsilon^2 \nabla^2 c \right) \right) = 0$$

$$t=0$$

t = 0.00025

Code

```
# Code for solving the Cahn-Hilliard equation
# ...

J = Functional(...)
m = InitialConditionParameter(c)
dJdm = compute_gradient(J, m)
```

Cahn-Hilliard equation

$$\frac{\partial c}{\partial t} - \nabla \cdot M \left(\nabla \left(\frac{df}{dc} - \epsilon^2 \nabla^2 c \right) \right) = 0$$

$$t = 0$$

$$t = 0.00025$$

	Runtime (s)	Ratio
Forward model (5 Newton iter.)	103.9	
Forward $+$ adjoint model	127.1	1.22

Fully automated adjoint derivation.

Fully automated adjoint derivation.

Assumes the forward model can be expressed in UFL.

Fully automated adjoint derivation.

Assumes the forward model can be expressed in UFL.

Works naturally in parallel.

Fully automated adjoint derivation.

Assumes the forward model can be expressed in UFL.

Works naturally in parallel.

Adjoint model is very efficient.

Fully automated adjoint derivation.

Assumes the forward model can be expressed in UFL.

Works naturally in parallel.

Adjoint model is very efficient.

Tangent linear and second order adjoint model work the same way:

Code

```
h = hessian(J, m)(delta_m)
```


Recomputation cost	# checkpoints	Max. # timesteps
$\times 2$	50	1, 000
$\times 2$	100	5, 000
$\times 3$	50	23, 000
$\times 3$	100	177, 000

Logarithmic growth of computation and spatial complexity in the number of time levels can be achieved (Griewank, 1992).

Optimal checkpointing

Code

Gray-Scott equations

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u - uv^2 + F(1 - u),$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + uv^2 - (F + k)v,$$

	Forward steps	Runtime of forward steps
Without checkpointing	100	21 s
With 7 checkpoints	255	54 s
Ratio	2.55	2.60

General problem

$$\min_{u,m} J(u,m)$$
 subject to $F(u,m) = 0$

Notation

J(u,m) Functional F(u,m)=0 Forward PDE u PDE solution m Control u(m) Solution operator

General problem

$$\min_{u,m} J(u,m)$$
subject to $F(u,m) = 0$

Notation

J(u,m) Functional F(u,m)=0 Forward PDE u PDE solution m Control u(m) Solution operator

Reduced problem

$$\min_{m} \hat{J}(m) \equiv J(u(m), m)$$

Simple optimisation loop

Choose initial m

do

Compute functional J

Compute the gradient dJ/dm

Update optimisation variables \boldsymbol{m} by performing a line seach

while tolerance not reached

Simple optimisation loop

Choose initial m

do

Compute functional J

ightarrow by replaying the tape

Compute the gradient dJ/dm

 \rightarrow by deriving the adjoint PDE

Update optimisation variables \boldsymbol{m} by performing a line seach

 \rightarrow by updating tape

while tolerance not reached

Code

```
Jhat = ReducedFunctional(J, m)
m_opt = minimize(Jhat)
```

18 / 24

High degree of automation

High degree of automation Optimisation algorithms

SQP

L-BFGS-B

Newton-CG (using Hessian information)

Multigrid optimisation

. . .

High degree of automation

Optimisation algorithms

SQP

L-BFGS-B

Newton-CG (using Hessian information)

Multigrid optimisation

. . .

Constraints

Control bounds (In-)Equality constraints

Optimal placement of tidal turbines

Domain and turbine site

Velocity

Initial turbine layout

Optimised turbine layout

Conclusion and future work

Summary

Automated adjoints for finite element discretisations.

Supports coupled, nonlinear and time-dependent problems.

Framework for solving **PDE-constrained optimisation** problems.

Future work

Advanced multigrid and reduced order optimisation methods.

Automated shape derivatives and optimisation.

Further applications.

. . .

Conclusions

dolfin-adjoint

http://dolfin-adjoint.org

Multigrid optimisation

Solve the optimisation problem iteratively on different mesh resolutions.

Multigrid optimisation

Solve the optimisation problem iteratively on different mesh resolutions.

Idea

Replace the underlying meshes on the tape!

```
m_opt = minimize(Jhat, method = "successive", levels = 2)
```

Bilinear elliptic equation (problem from M. Vellejos, 2010)

$$\min_{u,m} \frac{1}{2} ||u - z||^2 + \frac{\nu}{2} ||m||^2$$

subject to:
$$-\nabla^2 u - um = f$$

Single grid

# Iterations	Runtime (s)
10	329

Multigrid, 2 levels

Refinement	# Iterations	Runtime (s)
Level 2	11	40
Level 1	2	76
Total		116