DEPARTMENT OF THE INTERIOR

CANADA

HON. W. J. ROCHE, Minister.

W. W. CORY, C.M.G., Deputy Minister.

PUBLICATIONS

OF THE

Dominion Observatory

BECOLE POLITICAL MONTREAL

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. I, No. 9

Orbit of o Geminorum

BY

W. E. HARPER, M. A.

D

CA1 MT 403 P01-09 OTTAWA GOVERNMENT PRINTING BUREAU 1914

DEPARTMENT OF THE INTERIOR

CANADA

HON. W. J. ROCHE, Minister.

W. W. CORY, C.M.G., Deputy Minister.

PUBLICATIONS

OF THE

Dominion Observatory

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. I, No. 9

Orbit of o Geminorum

BY

(omidien)

W. E. HARPER, M. A.

OTTAWA GOVERNMENT PRINTING BUREAU 1914

60177-1

12

CA1 M7 403 Por-09

48-035-226

ORBIT OF G GEMINORUM.

BY W. E. HARPER, M.A.

This star ($\alpha = 7$ h. $37 \cdot 0$ m., $\delta = +29^{\circ}$ 07', photographic magnitude $5 \cdot 4$) was announced* as a spectroscopic binary by Reese in 1903. The four measures given about cover the total range in its velocity.

During 1907, 1910 and the present year thirty-eight spectrograms of this star have been obtained. Numbers 628 and 654 were made on Seed 27 plates using the Universal Spectroscope, dispersion at $H\gamma$ 18.6 tenthmetres per millimetre; numbers 3182 and 3237 on Sigma plates with a three-prism of the same dispersion, while numbers 3286, 3309 and 3335 were made on Sigma plates with three-prism dispersion of 20.2 tenthmetres per millimetre. The remaining plates were made on Seed 27 emulsion with the single-prism instrument having a dispersion at the same region of 33.4 tenth-metres per millimetre.

The spectrum is of K-type and should yield measurements with a small probable error. The probable error of a plate of $\pm 2\cdot 17$ km. per sec. obtained from our observations is larger than one should expect for a star of this type but there are many ways in which this may be accounted for. The use of the coarse grained plates when three-prism dispersion was used, made necessary from the faintness of the star; the low dispersion for the great majority of the spectrograms with consequent blending of the spectral lines, and the fact that none of the plates, however poor, have been rejected may be given as possible reasons for the large probable error of an observation. Reese's comment upon the spectrum, in announcing it as a binary was: "Numerous lines, hazy yet trustworthy."

^{*} Lick Observatory Bulletin 2, 31, 1903.

An attempt was made to measure the plates on the spectro-comparator which in the case of stars having many spectral lines, is faster and regarded as more satisfactory than the ordinary method. However, from lack of intensity of the negatives and consequent diffuseness of the lines, the writer abandoned this in favour of the ordinary method. After several plates had been reduced in which all available lines had been measured in the region used, viz: from \$\lambda 4600\$ down to \$\lambda 4250\$, a table was constructed of the residuals of each line from the mean given by the plate. The object of this was to determine a working wave-length for two or three lines which were among the best measurable but whose wave-length was unknown. The wave-lengths determined in this way were:

λλ 4494·580 4430·517 4282·833

None of the other lines at this time gave evidences of a need of revision. Later, when all plates had been reduced, it was found that several would have given better agreement if a slight change in wave-length were adopted but from the thirteen plates used in this connection this was not noticeable. Probably the different dispersions for the plates masked the general trend of the residuals. A selection of thirteen lines of wave-lengths given below was accordingly used in the determination of the velocities.

LINES USED IN G GEMINORUM

λλ 4586	-163	4531 - 202	4430 - 517	4340 - 634
4571		4522-855	4415 - 293	4282 - 833
4549		4494 - 580	4404.927	4271.760
4535		Thir one		

The observational data of the plates and the measures according to the above wave-lengths follow. The phases are reckoned from periastron

passage J. D. 2,415,824.019 using the period 19.605 which seemed to suit all observations best. The residuals in the last column are scaled from the curve representing the final elements. After this table are given the detailed measures of the plates.

TABLE OF OBSERVATIONS OF σ GEMINORUM.

Plate.	Obser- ver.*	Date.	Exposure.	Julian Date.	Phase.	Velc y.	Weight	U-C.
		1907						- 1.5
628	P	Feb. 22	85	2,417,629-667	1.988	+78-9	9	- 7-2
654	P	Mar. 8	106	7,643.586	15-907	33.0	9	
3183	P	Feb. 10	85	8,713-667	7.713	32.7	9	+ 0.1
3237	P	Feb. 25	70	728-673	3-114	72.3	6	- 3.7
3286	P	Mar. 5	60	736 - 673	11-114	8.0	4	- 4.4
3309	P	Mar. 10	65	741 - 664	16-103	42.0	9	- 0.5
3335		Mar. 17		8,748-603	3-441	74.8	9	+ 0.5
3976	C-P1	Jan. 30	80	9,087-753	8.909	18-1	5	- 4.4
3998	H	Feb. 15		083 - 785	5-336	56.0	7	- 1.5
4022	_	Feb. 27		095-671	17.222	59-0	4	+ 4.0
4032		Feb. 28		096 - 633	18-184	67.3	7	+ 2.0
4047	1	Mar. 3		099 - 517	1.463	76-8	5	- 3.8
4055	1	Mar. 4		100.518	2.464	74-1	6	- 5.1
4070	-	Mar. 7		103 - 680	5.626	55.5	6	+ 1.0
4080	-	Mar. 8		104.719	6-665	49.3	6	+ 6.0
4089	-	Mar. 10		106-541	8 - 587	27.7	8	+ 2.7
4102	1	Mar. 13		100-669	11-615	16.5	7	+ 4.0
4128		Mar. 14		110.668	12-614	9.0	6	- 5.5
4120	-	Mar. 16		112-687	14-633	28.3	8	+ 0.8
4134		Mar. 20		116-631	18 - 577	68-6	8	+ 0.1
4137		Mar. 24		120 - 642	2.983	79-6	8	+ 2.6
4144		Mar. 28		124 - 719	7.060	35.6	5	- 3.4
4153		April 2	1	129 - 709	12.050	12.0	5	- 0.7
4162		April 3		130 - 700	13-041	18.6	7	+ 2.3
4173		April 9		136 - 670	19-011	70-7	7	- 1.6
4177		April 10		137 - 597	-333	83.8	8	+ 6.0
4180		April 11		138 - 590	1.326	80.6	8	0.6
4196		April 14	1	141-619	4.355	67.6	7	+ 0
420		April 18		145 - 593	8-329	27.6	5	+ 0.0
421		April 19		146 - 568	9.304	21.0	8	+ 1.
422		April 20		147 - 630	10.366	8-8	3	- 5.
422		April 21		148 - 599	11.335	9.9	6	- 2-
424		April 24	1	151 - 597	14-333	25.3	6	+ 0.
425		April 25		152-548	15-284	31-1	7	- 2
426		April 26	1	153 - 609	16-345	46.8	5	+ 1.
427	-	April 28		155 - 552	18 - 288	69.7	4	+ 4-
428	-	May 3	1	160 - 566	3.697	73.4	5	+ 0-
428		May 4		9.161-555	4.686	+68.2	7	+ 4.

^{*}P = Plaskett, H = Harper, P1 = Parker, C = Cannon.

MEASURES OF σ GEMINORUM

	628	654	3182	3237	3286	3309	3335
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. W
4586 4571 4549 4535 4531 4522 4494 4430 4415 4404 4282 4271	+ 85·7 1 87·9 1 106·6 1 104·2 1 101·7 1 97·2 1 102·1 1 100·3 1 + 107·5 1	+ 49·7 1 55·8 1½ 70·4 1 71·5 1 52·0 1 57·0 1 56·6 1 52·0 1	+ 58·8 ½ 53·5 ½ 52·5 1 44·4 ½ 50·2 1 44·5 ½ 43·2 ½ 49·2 1	+ 93·6 1 97·1 1 93·9 ½ 97·2 ½ 92·3 ½ 93·8 1 97·8 1 + 75·9 ½	+ 53·1 ½ 24·3 ½ 22·4 ¾ 37·3 ½ 36·5 ½	+ 64·3 1 61·3 1½ 61·4 1½ 68·2 1 70·3 1 .5·6 1½ 71·4 1 + 71·1 ½	+ 103·5 109·3 1 90·0 1 102·2 1 103·7 1 112·7 1 97·5 1
Weighted mean Vs Vd Curv.	+ 99·24 - 19·69 - ·11 - ·50	+ 57·96 - 24·39 - ·02 - ·50	+ 47·79 - 14·77 - ·05 - ·28	+ 93·66 - 20·91 - ·13 - ·28	+ 32·05 - 23·60 - 15 - 28	+ 67·47 - 25·05 - ·16 - ·28	+101·90 - 26·73 - 11 - 28
Radial Velocity	+ 78.9	+ 33.0	+ 32.7	+ 72.3	+ 8.0	+ 42.0	+ 74

MEASURES OF σ GEMINORUM-Continued.

	3976	3998	4022	4032	4047	4055	4070
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
4586 4571 4549 4535 4531 4522 4494 44130 4415 4404 4340 4282 4271	+ 41·4 ½ 29·4 ½ 25·6 ½ 33·7 1 36·6 ½ 28·0 1 33·3 ½ 17·8 1 + 13·3 ½	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 82·1 ½ 78·5 ½ 64·0 ½ 83·4 ½ 87·3 ½ 85·6 ½ 79·1 1 + 86·7 1	+ 95.5 1 96.4 1 91.4 1 78.9 4 	+ 78·5 ½ 108·6 ¼ 119·0 ¾ 85·1 ½ 118·9 ½ 95·7 ½ 84·3 ½ 103·2 1 91·4 1 + 104·6 1	+ 88·3 ½ 91·8 ½ 92·0 ½ 102·4 ½ 102·4 ½ 97·8 ½ 96·9 ¼ 106·4 ½ 97·7 ½ 99·1 ¼	+ 80·4 1 72·0 1 64·9 1 86·1 1 72·0 1 86·1 1 72·0 1 85·4 1 107·6 1 72·5 1 + 87·4 1
Weighted mean V_a V_d Curv.	+ 28·04 - 9·48 - ·14 - ·28	+ 73·42 - 16·91 - ·18 - ·28	+ 80·68 - 21·54 - ·12 - ·28	+ 89·51 - 21·88 - ·07 - ·28	+ 99·81 - 22·85 + ·11 - ·28	+ 97·49 - 23·17 + ·11 - ·28	+ 80·02 - 24·12 - ·17 - ·28
Radial Velocity	+ 18.1	+ 56.0	+ 58.8	+ 67-3	+ 76.8	+ 74.1	+ 55.5

MEASURES OF σ GEMINORUM—Continued.

	4080	4089	4102	4128	4120	4134	4137
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
4586 4571 4549 4535 4531 4522 4494 4430 4415 4404 4340 4282 4271	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 61 \cdot 4 & \frac{1}{2} \\ 67 \cdot 2 & 1 \\ 40 \cdot 7 & \frac{1}{2} \\ 53 \cdot 0 & 1\frac{1}{2} \\ 47 \cdot 6 & 1\frac{1}{2} \\ 61 \cdot 7 & 1 \\ 45 \cdot 9 & \frac{1}{2} \\ 52 \cdot 3 & 1 \\ 44 \cdot 3 & 1 \\ 51 \cdot 2 & 1 \\ 61 \cdot 8 & 1 \\ 53 \cdot 2 & 1 \\ + & 47 \cdot 8 & 1 \\ \end{array}$	+ 47·5 1 27·4 1 34·7 1 47·9 1 47·0 1½ 42·0 ½ 42·8 1½ 49·0 1 + 43·4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 59 \cdot 8 & \frac{7}{4} \\ 59 \cdot 4 & \frac{17}{49 \cdot 0} & 1 \\ 54 \cdot 2 & \frac{7}{4} \\ 58 \cdot 6 & 1 \\ 64 \cdot 8 & \frac{7}{4} \\ 56 \cdot 5 & 11 \\ 49 \cdot 3 & 1 \\ 46 \cdot 0 & 1 \\ 62 \cdot 6 & 1 \\ 45 \cdot 0 & 1 \\ + & 58 \cdot 9 & 1 \\ \end{array}$	$\begin{array}{c} + & 95 \cdot 7 & 1 \\ 92 \cdot 7 & 1 \\ 89 \cdot 4 & 1\frac{1}{2} \\ 106 \cdot 5 & \frac{1}{2} \\ 82 \cdot 5 & 1 \\ \\ \hline \\ 100 \cdot 5 & 1\frac{1}{2} \\ 109 \cdot 9 & 1\frac{1}{2} \\ 101 \cdot 8 & 1 \\ 100 \cdot 9 & 1 \\ 93 \cdot 7 & 1\frac{1}{2} \\ + & 87 \cdot 0 & 1 \\ \end{array}$	+ 105·5 99·6 102·3 1 90·1 134·5 1 118·0 108·1 1 103·0 1 106·0 1 101·0 1 + 112·6
Weighted mean V_a V_d Curv.	+ 74·25 - 24·44 - ·22 - ·28	+ 53·15 - 25·07 - · · · · · · · · · · · · · · · · · · ·	+ 42·69 - 25·76 - ·17 - ·28	+ 35·40 - 26·00 - ·17 - ·28	+ 55·27 - 26·48 - ·20 - ·28	+ 96·33 - 27·29 - ·15 - ·28	+108·05 - 27·99 - ·18 - ·28
Radial Velocity	+ 49.3	+ 27.7	+ 16.5	+ 9.0	+ 28.3	+ 68.6	+ 79

MEASURES OF σ GEMINORUM—Continued.

	1144	4155	4162	4173	4177	4186	4196
λ	Vel. → Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
4586 4571 4549 4535 4531 1522 4494 1430 4415 1404 1340 4282 4271	+ 66·2· 1 71·8 ¹ 3 69·5· 1 56·0 2 64·1· 1 62·6· 1 55·6· 1 58·1· 1 88·5· 1 88·5· 1 63·9· 1 4 59·1· 3	+ 44·6 1 41·3 1 30·3 2 40·5 1 51·3 1 44·4 2 39·6 1 35·4 1 40·9 1 51·2 1 + 39·7 1	56·0 1 48·6 1 46·3 ½ 38·7; ¼ 46·4 1 39·8 ¾ 42·9 ¼ 39·4 1 50·0 1 46·9 1 59·0 ¾	$\begin{array}{c} +\ 109 \cdot 0 & 1 \\ 103 \cdot 4 & \frac{1}{2} \\ 101 \cdot 9 & \frac{1}{4} \\ 107 \cdot 9 & \frac{1}{4} \\ 107 \cdot 9 & 1 \\ 100 \cdot 8 & \frac{1}{2} \\ 92 \cdot 6 & 1\frac{1}{2} \\ 99 \cdot 2 & 1 \\ 108 \cdot 8 & \frac{3}{4} \\ 92 \cdot 4 & \frac{3}{4} \\ +\ 104 \cdot 0 & 1 \\ \end{array}$	$\begin{array}{c} +\ 114\cdot 9 & 3 \\ 114\cdot 7 & \frac{1}{2} \\ 115\cdot 7 & 1 \\ 108\cdot 1 & 1\frac{1}{4} \\ 116\cdot 1 & \frac{3}{4} \\ 108\cdot 5 & \frac{1}{2} \\ 116\cdot 1 & 1 \\ 116\cdot 0 & 1\frac{1}{2} \\ 118\cdot 7 & 1 \\ 105\cdot 7 & 1 \\ +\ 114\cdot 8 & 1\frac{1}{2} \end{array}$	$\begin{array}{c} +\ 110 \cdot 9 & 1 \\ 93 \cdot 4 & \frac{1}{2} \\ 102 \cdot 8 & 1 \\ 111 \cdot 0 & 1 \\ \\ 128 \cdot 8 & \frac{1}{2} \\ 110 \cdot 0 & 1\frac{1}{2} \\ 110 \cdot 5 & 1\frac{1}{2} \\ 108 \cdot 5 & 1 \\ 118 \cdot 9 & \frac{1}{2} \\ 111 \cdot 7 & 1\frac{1}{2} \\ +\ 113 \cdot 5 & 1 \\ \end{array}$	$\begin{array}{c} + & 94 \cdot 2 & \frac{1}{2} \\ 99 \cdot 5 & \frac{1}{2} \\ 85 \cdot 9 & 1 \\ 88 \cdot 0 & 1 \\ 106 \cdot 0 & 1 \\ 108 \cdot 8 & 1 \\ 108 \cdot 5 & \frac{1}{2} \\ 105 \cdot 4 & 1 \\ 83 \cdot 0 & 1 \\ 95 \cdot 7 & \frac{1}{2} \\ 91 \cdot 4 & \frac{1}{2} \\ 100 \cdot 9 & 1 \\ + & 105 \cdot 7 & \frac{1}{2} \end{array}$
Weighted mean Va Vd Curv.	+ 64·68 - 28·56 - ·26 - ·28	+ 41·62 29·07 ·27 ·28	+ 48·26 - 29·14 - ·26 - ·28	+100·60 - 29·41 - ·25 - ·28	+113·72 - 29·43 - ·18 - ·28	+110·51 - 29·45 - 16 - ·28	+ 97 55 - 29 40 - 22 - 28
Radial Velocity	+ 35.6	+ 12.0	+ 18-6	+ 70.7	+ 83.8	+ 80.6	+ 67.6

MEASURES OF \(\sigma\) GEMINORUM-Continued.

	1202	4211	4221	4228	4247	4253	4263
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
\$586 \$571 \$549 \$535 \$331 \$522 \$494 \$430 \$1415 \$404 \$1282 \$1271	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + & 48 \cdot 9 \cdot \frac{1}{4} \\ & 53 \cdot 4 \cdot 1 \\ & 57 \cdot 0 \cdot 1\frac{1}{4} \\ & 43 \cdot 1 \cdot 1 \\ & 52 \cdot 0 \cdot \frac{1}{2} \\ & 49 \cdot 3 \cdot 1\frac{1}{2} \\ & 47 \cdot 7 \cdot 1\frac{1}{2} \\ & 49 \cdot 4 \cdot 1 \\ & 52 \cdot 8 \cdot \frac{3}{4} \\ & 51 \cdot 6 \cdot 1\frac{1}{4} \\ & + & 54 \cdot 0 \cdot 1 \end{array}$	+ 39·2 ½ 37·7 ½ 34·5 ½ 33·3 ¼ 48·5 ½ 37·7 ¼ 1.5 ½ 39·7 ½ 33·2 ½	+ 46·4 3 46·0 1 30·3 1 33·7 7 4 41·3 1 33·2 1 38·9 1 42·3 1 42·3 1 44·7 1 1 1 1	+ 51·4 1 53·0 1 46·9 ½ 60·8 ½ 66·3 ½ 51·8 ½ 62·0 1 50·6 1 61·8 1 46·9 ½ 46·9 1 + 58·0 ½	1	+ 76·8
Weighted mean V ₄ V ₂ Curv.	+ 57·32 - 29·24 - · 20 - · 28	+ 50·72 - 29·20 - ·17 - ·28	+ 38·38 - 29·11 - ·25 - ·28	+ 39·44 - 29·03 - ·22 - ·28	+ 54·56 - 28·74 - ·22 - ·28	+ 60·16 - 28 64 - ·16 - ·28	+ 75·86 28·54 ·24 ·28
Radial Velocity	+ 27.6	+ 21.0	÷ 8·8	+ 9-9	+ 25.3	+ 31·1	+ 46.8

MEASURES OF σ GEMINORUM—Concluded.

	1271	4280	1283								
λ	Vel 1Wt.	Vel. Wt	Vel. Wt	Vel	W t	Vel	Wit	Vel	W t	Vel	Wt.
4586 4571 4549 4585 1581 4522 4194 4430 4415 4404 1340 4282 4271	120·1 1 108·7 4 78·8 2 86*2, 3 91·7 1 104·1 3 99·3, 1 101·4; 3 102·7; 1 + 100·2, 2	+ 100·** 1 108·0 1 110·1 1 99·5 1 119·7 1 105·8 1 80·6 2 94·0 1 107·2 2 96·5' 11 + 101·4 1	+ 101·4 1 82·4 1 88·0 1 104·1 1 92·5 1 95·6: 1 95·6: 1 94·7 1 101·3 1 94·6: 1 + 107·9 1								
Weighted mean V_d V_d Curv.	+ 98·40 - 28·24 - ·19 - ·28	+101·40 - 27·45 - ·22 - ·28	+ 95·98 - 27·27 - ·21 - ·28					. ,			
Radiał Velocity	+ 69.7	+ 73-4	+ 68.2								

For convenience of reference the Liek observations are given here.

OBSERVATIONS OF σ GEMINORUM AT LICK OBSERVATORY

Date.	Jelian Date.	Phase.	Velocity.		Residual from Ottawa Curve		
1902 Mar. 16. 1903 Jan. 12. Jan. 13. Feb. 15.	2,415,825·7° 6,127·7 6,128·7 6,161·7	1·7 9·6 10·6 4·4		+ 74· 12 9· + 69·		- 6 5. - 4 + 2	

* The decimal of a day is assumed

A slight increase in the period with the introduction of a correction for possible systematic differences in the measures would cause the residuals from the curve to become very much smaller but the increase of period would affect our second observation making the residual, already large, much greater. Hence the period decided upon, 19605 days, was an attempt to equalize these discrepancies.

With this period the observations were grouped, according to phase, into sixteen normal places, and weights assigned to the groups which were in general the sums of the weights of the individual plates.

NORMAL PLACES

	Mean Phase	Mear, Velocity	We ight	() ('		Mean Phase	Mean Velocity	Weight ,	0-C
•				-					"
,	1 379	- 79 14	1.5	- 1 45	9	10 381	-13-61	2.5	61
1	2 457	77 (0)	2 .5	-1 23	10	12 068	12 71	2.0	05
-	3 407	73 70	$\frac{1}{2} = 0$	7.7	1.1	13 637	21 70	1.5	± 2.09
- 1		67 20	1.5	+2.19	12	14 936	29 61	1.5	50
1	4 521			-60	1.3	16 (10)6	37 50	1.5	-4 10
.5	5 470		1 5	-1 34	1 1	16 735	52 22	1 0	+2 49
15	6 544	43 07	1 ()			15 370	65 35	2.0	+1 51
-	7 1915 5	30 55	1.5	+ 12	15			1.5	+2 12
~	> 711	+ 24 - 01	1.5	+ 02	1h	19 505	+77 69	1 ()	7 4 14

The observations are well represented by a sine curve; the eccentricity is so small that it cannot be differentiated from zero by graphical methods, hence the values of ω and T are indeterminate in this way.

Recourse was had to the method of least-squares for finding the most probable values of the elements. Since the number of unknowns remained constant it was assumed that the elements which gave the least value for Σpvv would be the most probable. Several solutions were made using the following preliminary values:

Using the notation* of Lehmann-Filhés and adding a term with coefficient unity for the velocity of the system, observation equations were formed for each of these three sets of preliminary values. A previous solution with ω equal to 190° had given a negative value for the eccentricity showing that the major axis should be rotated in the neighbourhood of 90°. In each solution δT was considered =0 and substitutions were as follows:

 $x = \delta \gamma$ $y = \delta K$ $z = K \cdot \delta e$ $u = K \cdot \delta \omega$

^{*}Astronomische Nachrichten 3242.

OBSERVATION EQUATIONS FOR σ GEMINORUM, ω =270'.

	11.14				,				1	-n
-									-	
,	2.0		1-000		980		394		+ -201	. ()_ =()
2	1.5	į	1.000		761		987		+ 645	-1 (i1
1	1.5		1 - 000		434		742		+·901	+ 1 49
	1 .		1 - 000		- 106		211	•	+-994	+ 1 h7
.5	1.0		1.000		+ 127		+ -252		+ -992	2.48
ñ	2.0		1-000		+ -606		+ 964		+ -795	-113
7	1 5		1.000		+ 850		+ 896		+ .527	3 27
Q.	1.5		1.000		+ .997		+ -163	,	+ -0%2	- 2.5
9	2.5		1.000		+ .965		504		261	4.3
10	2.0		1.000		+ -843		907		538	- 111
11	1-5		1-000		+ 602		961		— ·799	1 %5
12	1.5		1.000	1	+ -335		631			+1 2%
13	1.0		1.000	i	099		+ -196		995	← thi
1.1	1 1		1.000		133		+ .781		901	+
	1.5		E 000		642		+ -985	1	767	· ();
16	2.5		1.000		— ·943	1	+ -626		— ⋅332	30

whence the normal equations,

$$26 \cdot 500x + 1 \cdot 633y - 1 \cdot 041z - 955u - 2 \cdot 450 = 0$$
$$14 \cdot 004y - 1 \cdot 864z - 519u - 6 \cdot 492 = 0$$
$$13 \cdot 570z + 467u - 9 \cdot 007 = 0$$
$$12 \cdot 486u - 1 \cdot 145 = 0$$

The solution of these gave as corrections.

$$\delta \gamma = + \cdot 09 \text{ km.}$$

$$\delta K = + \cdot 56 \text{ km.}$$

$$\delta e = + \cdot 022$$

$$\delta \omega = + 0^{\circ} \cdot 17$$

and a value of Σpvi for the normal places of $70\cdot 5$.

OBSERVATION EQUATIONS FOR σ GEMINORUM, ω =360

	Weight	1	2	и		2	Ī	10	ŧ	- 11
	-			-	- ~				-	
1 .	2.0	1	1.000	980	1	+ .919	1	+ · 201		02 = 0
2	1.5	1	1.000	- ⋅761		+ - 160	-	+ . 648		-1.64
3	1.5		1.000	434	1	623	1	+ .901		+1.49
4	1.5		1.000	106	!	-·977		+ . 994	1	+4-67
5 .	1.0		1.000	+ 127	1	- · 968		+ 992		-2-18
6 :	2.0		1-000	+ - 606	-	264	1	+ .795		$-2 \cdot 13$
7	1.5		1.000	+ .850	1	+ .443		+ .527	1	-3.27
8	1.5	1	1-000	+ - 997	- [+ - 987		+ .082	!	+ -25
0	2.5		1.000	+ - 965	1	+ -867	i i	- ·261		+ -43
10	2.0	1	1.000	+ -843	1	+ . 421		538		+ .49
11	1.5	1	1.000	+ -602	1	276	-	799	-	-1.85
12	1.5	i	1.000	+ .335	1	776		942	1	+1.28
13	1.0		1.000	099	1	981		995	1	65
14	1.5		1.000	433	1	625	1	901	1	+ .25
15	1.5		1-000	642		175		767		+ .07
16	2.5	1	1.000	943	1	+.780		332	1	+ .30

whence the normal equations,

$$\begin{array}{r} 26\cdot 500x \ + \ 1\cdot 633y \ + \ 1\cdot 528z \ - \cdot 955u \ - 2\cdot 450 = 0 \\ 14\cdot 004y \ + \ 1\cdot 171z \ - \cdot 519u \ - 6\cdot 492 = 0 \\ 12\cdot 936z \ - \cdot 900u \ - 5\cdot 638 = 0 \\ 12\cdot 486u \ - 1\cdot 145 = 0 \end{array}$$

The solution of these gave as corrections,

$$\begin{split} &\delta\gamma &= + \cdot 05 \text{ km.} \\ &\delta K &= + \cdot 43 \text{ km.} \\ &\delta e &= + \cdot 012 \\ &\delta\omega &= + 0^{\circ} \cdot 24 \end{split}$$

and a value of Σpvr for the normal places of 73.8.

OBSERVATION EQUATIONS FOR σ GEMINORUM, ω =330°.

	Weight	ž	y	2	и	-n
		× *				
1	2.0	1.000	980	+ - 599	+ 201	→ ·02 = 0
2	1.5	1.000	761	355	+ 648	-1-64
3	1.5	1.000	- 434	931	+ 901	+1.49
4	1.5	1.000	106	-·952	+ 994	+4-67
5	1.0	1.000	+ 127	712	+ . 992	$-2 \cdot 18$
6	2.0	1.000	+ - 606	+ 253	+.795	$-2 \cdot 13$
7	1.5	1.000	+-850	+ 832	+ . 527	-3.27
8	1.5	1.000	+ 997	+ .936	+.082	+ .25
9	2.5	1.000	+ 965	+ .496	-·261	+ .43
10	2.0	1.000	+ 843	089	538	+ -49
11	1.5	1-000	+ . 602	720	799	-1.85
12	1.5	1-000	+ 335	988	942	+1.28
13	1.0	1.000	099	751	- 995	65
14	1.5	1.000	433	151	901	+ -25
15	1.5	1.000	- 642	+ .340	767	+ .07
16	2.5	1 - 000	943	+ 988	332	+ .30

whence the normal equations,

The solution of these gave as corrections,

$$\delta \gamma = + \cdot 05 \text{ km.}$$
 $\delta K = + \cdot 46 \text{ km.}$
 $\delta e = + \cdot 022$
 $\delta \omega = + 0^{\circ} \cdot 25$

and a value of Σpvv for the normal places of $68\cdot 6$.

The following table shows the main result of the solutions. For a circular orbit $\Sigma pvv = 79 \cdot 1$.

W	δε	\sum_{piv}
270°	·022	70·5
330°	·022	68·6
360°	·012	73·8

The values of the other elements varied but little in each solution. In none of the solutions did the residuals as obtained by computing directly and by substituting in the observation equations differ more than $\cdot 05$ km. Though there is little to choose between the various cases it was decided to accept that one for which ω was equal to 330° as a preliminary value.

The resulting values of the elements with their probable errors are then as follows:

$$P = 19 \cdot 605 \text{ days.}$$
 $e = \cdot 022 \pm \cdot 018$
 $\omega = 330^{\circ} 15' \pm 1^{\circ} 03'$
 $K = 34 \cdot 21 \text{ km.} \pm \cdot 58 \text{ km.}$
 $\gamma = + 45 \cdot 80 \text{ km.} \pm \cdot 42 \text{ km.}$
 $T = J. D. 2,415,824 \cdot 019$
 $A = 34 \cdot 86 \text{ km.}$
 $B = 33 \cdot 56 \text{ km.}$

 $a \sin i = 9,220,400 \text{ km}.$

The curve shown represents these final values.

After the determination of the orbit was completed it occurred to the writer to test the effect on the orbital elements of a change in the wavelengths of the lines used in obtaining the velocities. It was mentioned that thirteen of the earlier plates had been used to obtain wave-lengths

for three lines which seemed to be blends of two or more separate lines and yet were among the best measurable. The entire thirty-eight plates were now considered and the average residual of each line from the mean of the plate was determined. The three previously mentioned and two others $\lambda 4531 \cdot 202$ and $\lambda 4404 \cdot 927$ gave negligible residuals; the others are as follows:

Wave-Length.	Residual.	Corresponding $d\lambda$	Corrected Wave-Length.
4586-163	-4·18 km.	+ .064 $+ .037$ 059 064 $+ .105$ 070 $+ .069$ $+ .047$	4586-227
4571-763	-2·46 km.		4571-800
4549-766	+3·91 km.		4549-707
4535-965	+4·22 km.		4535-901
4522-855	-6·93 km.		4522-901
4415-293	+4·74 km.		4415-223
4340-634	-4·77 km.		4340-703
4271-760	-2·93 km.		4271-807

The necessary changes being made, new velocities were obtained for each plate, the average numerical difference in the results not exceeding 0.5 km. It seemed almost useless to pursue the subject further; nevertheless the observations were combined into the same grouping and a least-squares solution performed.

Without giving the observation and normal equations, as the results were not used, it will suffice to state the differences between the newly derived elements and those previously accepted where the preliminary value of ω was 330°.

Differences in
$$\gamma = .06$$
 km.
" " $K = .07$ km.
" " $e = .000$
" " $\omega = 0^{\circ} .22$.

These differences being of an infinitesimal order would seem to show that the question of wave-length is not a vital one. Better agreement among the various lines will be secured by adopting an arbitrary set of wave-lengths but any resulting changes in the orbit will generally be small.

Though the results obtained from the revised system of wave-lengths have not been made use of in this case the extra labour is not necessarily valueless as the wave-lengths here determined for K-type stars will be useful for future work.

Dominion Observatory, Ottawa, June, 1911.

Velocity Curve of σ Geminorum.