HOMEWORK SET #2 / CO2

Summer, 2015

June 22, 2015

- 1. Give an example of a bipartite graph G such that for a certain ordering of its vertices, the greedy algorithm uses 1000 colors for the proper coloring of G.
- 2. Prove that finite planes of order at least 3 have proper 2-colorings.
- 3. Suppose that $\mathcal{H} = (V, \mathcal{E})$ has no singleton edges and $|e \cap f| \neq 1$ for all $e, f \in \mathcal{E}$. Prove that the greedy algorithm colors V with at most two colors (in every ordering of V).
- 4. Prove that Steiner triple systems have no proper 2-colorings.
- 5. Prove that the *n*-element subsets of a (2n + k)-element ground set can be partitioned into k + 2 classes so that each class has pairwise intersecting sets.

Extra Problems, due July 6^{th}

- **E3.** Prove that the Mycielski graph M_i has no proper coloring with i-1 colors.
- **E4.** Modify the definition of Zykov graph Z_{n+1} so that instead of n copies of Z_n one copy of Z_i is used for i = 1, 2, ... n. Show that $\chi(Z_n) = n$ is still true.