Señales y Sistemas I cod: 2016506

Claudia Caro Ruiz

20 de octubre de 2021

Sistemas

• Es algo que cambia en el tiempo debido a fuerzas externas

Definición

Un sistema es un proceso en el cual existen relaciones de causa-efecto matemáticamente un sistema se define como un funcional.

• Considere una vez más el sistema MRA, donde nos interesa observar la posición de la masa "M".

• Para propósitos ingenieriles, la causa es la entrada (señales exógenas) al sistema, en este caso la señal de fiferza F(t)Señales y Sistemas I cod: 2016506

20 de octubre de 2021

- El efecto es la señal observada (salida), que en nuestro caso es el desplazamiento horizontal.
- El sistema es el "Modelo Matemático" que me transforma las funciones de entrada en funciones de salida, tal que, si definimos la salida como la posición del sistema, i.e. y(t) = x(t).

$$y(t) = G(u(t), t)$$

donde G(.) es el sistema

- Los sistemas, por lo general, se representan por medio de una serie de ecuaciones diferenciales.
- Para el sistema **MRA**, definiendo la entrada como u(t) = F(t) y y(t) = x(t), los siguientes ecuaciones representan el modelo:

$$\ddot{x} = -\frac{B}{M}\dot{x} - \frac{k}{M}x - \frac{1}{M}u$$

y = x

Señales y Sistemas I cod: 2016506

Interconexión de Sistemas

- Considere las tres operaciones básicas: (i) transformación (mapa) de una señal, (ii) la suma y (iii)la multiplicación
- Su representación en diagrama de Bloques está dada por:

• Existen dos interconexiones básicas: Paralelo y Cascada.

Paralelo

Cascada

Nota

La definición dada asume que la interconexión de sistemas no afecta las características de los sistemas originales.

• Un ejemplo es la interconexión de circuitos eléctricos.

• El seguidor de voltaje garantiza que la entrada a G_2 no se vea afectada por "absorción" de corriente en el segundo sistema. En otras palabras, si retiramos el seguidor de voltaje, V_{C_1} para el sistema original, no es igual a V_{C_1} para el sistema interconectado.

6 / 21

Los sistemas en lazo cerrado o "realimentación" es una de las interconexiones más importantes.

Ejemplo

- Asuma que $u(t) = C(e(t)) = k_1 e(t)$
- Asuma que $y_m(t) = H(y(t)) = H_1 y(t)$
- \bullet $e(t) = r(t) y_m(t) = r(t) H_1 y(t)$
- \bullet Asuma que el sistema a "controlar" es un derivador $y(t)=G(u(t))=\frac{du(t)}{dt}$
- $u(t) = k_1 e(t) = k_1 (r(t) H_1 u(t)) = k_1 r(t) k_1 H_1 u(t)$
- $\bullet \Rightarrow y(t) = \frac{du(t)}{dt} = H_1 \frac{dr(t)}{dt} k_1 H_1 \frac{dy(t)}{dt}$
- $\bullet \Rightarrow k_1 H_1 \frac{dy(t)}{dt} = -y(t) + H_1 \frac{dr(t)}{dt}$ Señales y Sistemas I cod: 2016506

Propiedades de los Sistemas

- En esta sección definiremos ciertas propiedades de los sistemas.
- De ahora en adelante asumiremos la notación

$$T:u(t)\to y(t)$$

como el mapa de una función de entrada "u(t)" a una función de salida "y(t)".

• A continuación definiremos las propiedades básicas de los sistemas

Memoria

Memoria: Se dice que un sistema NO tiene memoria (es estático) si el valor actual $y(t_c)$ depende únicamente de la señal de entrada en el instante de tiempo " t_c ", i.e. $u(t_c)$.

De lo contrario, el sistema tiene memoria (es dinámico).

- El sistema $y(t) = k_1 u(t)$, con k_1 una constante, es un sistema estático ("memory-less").
- Si Consideramos el voltaje de carga de un capacitor ante una fuente de corriente i(t).

$$v(t_c) = \frac{1}{C} \int_{-\infty}^{t_c} i(t)dt$$

El voltaje depende de valores de la corriente anteriores a $t < t_c$.

• El sistema $y(t) = x^2(t)$ es estático.

Ejercicio

El Sistema y(t) = x(t+5) es estático o dinámico?

Invertibilidad

Invertibilidad: Un sistema es invertible si la entrada u(t) resulta en una salida y(t) única y vice-versa.

 \bullet En otras palabras, la entrada u(t) puede ser determinada de la salida y(t) y es única.

Ejemplo

Considere el sistema $y(t)=u^2(t),$ tal que $u(t)=\pm\sqrt{y(t)}$ para $y(t)>0 \forall t>0$

- ullet El sistema no es invertible ya que la solución de u(t) no es única.
- Para realizar una mejor definición de un sistema inverso, hacemos uso del "Sistema Identidad".

Definición

Sistema Identidad Es un sistema en el cual la salida es igual a la entrada.

Sistema Inverso

Un <u>Sistema Inverso</u> del sistema T(u(t)) es un segundo sistema $T_i(u(t))$ tal que la conexión en cascada de estos sistemas es un sistema identidad.

Nota

La señal de salida de un sistema inverso, por lo general, no tiene las mismas unidades de la señal de entrada u(t), pero si tiene la misma magnitud.

Causalidad

Un sistema es causal si la salida y(t) depende únicamente de información de la entrada en instantes de tiempo $t \leq t_c$.

Causalidad

Un sistema es causal si la salida y(t) depende únicamente de información de la entrada en instantes de tiempo $t \leq t_c$.

- Un sistema causal también se conoce como un sistema no-anticipatorio.
- Debido a una desconocimiento del "futuro", todos los sistemas físicos son causales.
- En aplicaciones de filtrado de señales, se pueden obtener mejores resultados si conocemos el pasado $(t < t_c)$, el presente $(t = t_c)$ y el futuro $(t > t_c)$.
- Es importante resaltar que dichos filtros "anticipativos" no se pueden implementar "en-linea" o en "Tiempo-Realza que no podemos conocer el futuro

Ejemplo

- $y(t) = u(t-2) \Rightarrow \text{Causal}$
- $y(t) = u(t+2) \Rightarrow \text{No Causal}$
- Considere la interconexión en serie descrita por $y_1(t) = u(t-30)$ y $y_2(t) = y_1(t+25)$. El sistema resultante es causal ya que $y_2(t) = u(t-30+25) = \underbrace{u(t-5)}$

causal

Estabilidad "BIBO"

- Un sistema es BIBO estable si para una entrada acotada, la salida es acotada.
- La señal x(t) es acotada si existe una constante $\beta < \infty$ tal que

$$||x(t)|| \le \beta \quad \forall t$$

donde $||\cdot||$ es una norma (i.e. en nuestro caso podemos tomar la norma euclidiana)

Definición

Un sistema es BIBO estable si existe un escalar β , tal que

$$||y(t)|| \le B(\beta)$$
 $\forall t, B(\beta)$ const

para toda señal de entrada acotada de la forma

$$||x(t)|| \le \beta \quad \forall t$$

Nota

Es importante resaltar que BIBO estabilidad significa que "si" la entrada es acotada, la salida es acotada.

• Es importante resaltar que si la entrada NO es acotada, la salida puede no estar acotada. En otras palabras, el sistema es estable si se usa con responsabilidad.

Ejercicio

Considere un sistema donde la salida es la corriente medida en una bobina "L", y la entrada es una fuente de voltaje v(t)

$$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$$

- Determine si el sistema es BIBO estable (utilice una señal escalón)
- Ahora considere que la señal de entrada está dada por $v(t) = e^{-\alpha t} \hat{u}(t)$. Determine si la salida es acotada.

Nota

Observe que el sistema no es BIBO estable para el caso general. Sin embargo, ya que la salida si está acotada para ciertas entradas, el sistema es "Marginalmente Estable".

Invarianza ante el Tiempo

• Un sistema es invariante ante el tiempo (Time Invariant) si un corrimiento en tiempo de la señal de entrada, se traduce en exactamente el mismo corrimiento en la señal de salida.

$$y(t) = G(u(t)) \xrightarrow{TI} y(t - t_0) = G(u(t - t_0))$$

• Otra forma de ver la propiedad de invarianza es la siguiente

Nota

- Ambas representaciones son equivalentes si el sistema es invariante ante el tiempo, i.e. $y(t-t_0) = y_d(t)$.
- Un sistema que no es invariante, es variante ante el tiempo.

Ejercicio

- Determine si el sistema $y(t) = e^{u(t)}$ es invariante ante el tiempo.
- Determine si el sistema $y(t) = e^{-t}u(t)$ es invariante ante el tiempo.
- Considere el sistema de revertimiento en tiempo

$$y(t) = u(-t)$$

determine si este sistema es invariante ante el tiempo.

Ejemplo

Considere el sistema mecánico

$$F(t) = M(t) \cdot \frac{d^2x(t)}{dt^2}$$

• Observe que si el coeficiente M(t) varía con el tiempo, el sistema es variante ante el tiempo.

Ejemplo

Considere el sistema mecánico

$$F(t) = M(t) \cdot \frac{d^2x(t)}{dt^2}$$

- Observe que si el coeficiente M(t) varía con el tiempo, el sistema es variante ante el tiempo.
- ullet Sin embargo, si M es constante, el sistema es invariante ante el tiempo.

Linealidad

- La propiedad de linealidad es una de las propiedades más importantes.
- Un sistema es lineal si cumple dos criterios.
 - **1** Aditividad:

$$y_1 = G(u_1(t))$$
 $y_2 = G(u_2(t))$
 $\Rightarrow y_1 + y_2 = G(u_1 + u_2)$

Homogeneidad:

$$y_1 = G(u_1(t)) \Rightarrow \alpha y_1 = G(\alpha u_1(t))$$

• Los dos criterios juntos se conocen como la propiedad de superposición.

Principio de Superposición

$$y = \alpha y_1 + \alpha y_2 = G(\alpha u_1 + \beta u_2) = \alpha G(u_1) + \beta G(u_2)$$

Ejemplo

• Considere el sistema estático y(t) = ku(t). Demuestre que el sistema es lineal

$$y(t) = ku(t)$$
 \Rightarrow $\hat{y} = k[\alpha u_1 + \beta u_2] = k\alpha u_1 + k\beta u_2$
= $\alpha y_1 + \beta y_2$

• Considere el sistema $y(t) = u^2(t)$. Demuestre que el sistema es no lineal $y(t) = u^{2}(t) \Rightarrow \hat{y} = [\alpha u_{1} + \beta u_{2}]^{2} \neq \alpha u_{1}^{2} + \beta u_{2}^{2}$

Ejercicio

Demuestre que el sistema descrito por $v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$ es lineal

Ejercicio

Caracterice (determine las propiedades) del sistema

$$y(t) = \sin(t) \cdot u(t)$$