## **Bayesian Statistics**

Fabio Sigrist

ETH Zurich, Autumn Semester 2019

## Today's topics

- Non-informative priors
- Improper priors
- Jeffreys prior

Fabio Sigrist 1/14

## Non-informative priors

Fabio Sigrist 2/14

Prior distributions Non-informative priors

### Non-informative priors

- ► Goal: reduce the subjective element in Bayesian analysis
- ► (Too) simple solution: define a uniform prior on Θ
- This has two potential drawbacks:
  - The uniform distribution on Θ is a probability distribution only if Θ has finite volume
  - 2. The uniform distribution is not invariant under reparametrizations

Fabio Sigrist 3/14

# Uniform distribution is not invariant under reparametrizations

- Assume  $\tau = g(\theta)$  where g is invertible and differentiable
- If  $\theta$  has density  $\pi$ , then by the change-of-variables formula  $\tau = g(\theta)$  has density

$$\lambda(\tau) = \pi\left(g^{-1}(\tau)\right) \left| \det Dg^{-1}(\tau) \right|,$$

where  $Dg^{-1}$  is the Jacobi matrix whose (ij)-th entry is  $\partial g_i^{-1}/\partial \theta_j$ 

- ▶ Hence, if  $\pi$  is constant and g is not linear, then  $\lambda$  is not constant
- See example on blackboard

Fabio Sigrist 4/14

## Improper priors

► We call a ( $\sigma$ -finite) measure  $\pi$  on  $\Theta$  which is **not a probability** measure, i.e.,

$$\int_{\Theta} \pi(\theta) d\theta = \infty,$$

#### an improper prior

- ▶ Depending on the likelihood,  $\pi(\theta)f(x \mid \theta)$  can have both finite or infinite total mass if  $\pi(\theta)$  has infinite mass
- If the total mass is finite, then we have by formal analogy the posterior density

$$\pi(\theta \mid \mathbf{x}) = \frac{\pi(\theta)f(\mathbf{x} \mid \theta)}{\int \pi(\theta')f(\mathbf{x} \mid \theta')d\theta'}$$

and we can construct Bayesian point estimates, tests and credible intervals

Fabio Sigrist 5/14

## Improper priors

- Often, improper priors with proper posteriors can be justified as follows:
  - 1. Approximate an improper prior by a sequence of proper priors  $\pi_k$
  - 2. Show that the associated sequence of posteriors  $\pi_k(\theta \mid x)$  converges to  $\pi(\theta \mid x)$
- In complicated models, it can be difficult to check whether  $\pi(\theta)f(x \mid \theta)$  has finite total mass

Clicker question

Fabio Sigrist 6/14

## Jeffreys prior

Fabio Sigrist 7/14

## Jeffreys prior

#### For **Jeffreys prior**, we take

$$\pi(\theta) \propto \det(I(\theta))^{1/2}$$

 $\triangleright$   $I(\theta)$  is the Fisher information matrix

$$I(\theta) = \mathbb{E}_{\theta} \left( \frac{\partial}{\partial \theta} \log f(X \mid \theta) \left( \frac{\partial}{\partial \theta} \log f(X \mid \theta) \right)^T \right)$$

or, equivalently,\*

$$I(\theta) = -\mathbb{E}_{\theta} \left( \frac{\partial^2}{\partial \theta \partial \theta^T} \log f(X \mid \theta) \right)$$

See examples on blackboard

<sup>\*</sup>Assuming regularity conditions

## Intuition for Jeffreys prior

- ▶  $I(\theta)^{-1}$  is the asymptotic variance of the MLE. Hence,  $I(\theta)$  can be seen as an indicator of the amount of information of the data about  $\theta$
- ▶ Jeffreys prior  $\pi(\theta) \propto \det(I(\theta))^{1/2}$  gives larger (smaller) weight to values of  $\theta$  for which the information in the data  $I(\theta)$  is larger (smaller)
- ➤ The influence of the prior on the posterior is therefore small and the prior is considered as non-informative

Fabio Sigrist 9/14

### Equivariance of Jeffreys prior

#### Jeffreys prior is equivariant under different parametrizations

▶ I.e., for a mapping  $\tau = g(\theta)$  that is one-to-one and differentiable the following holds true:

First transforming the parameter  $\tau = g(\theta)$  and then calculating the Jeffreys prior for  $\tau$  is equivalent to first calculating the Jeffreys prior for  $\theta$  and then transforming the corresponding density



Fabio Sigrist 10/14

## Equivariance of Jeffreys prior: 1d example

#### Example:

Assume  $X \sim \mathcal{N}(0, \sigma^2)$  with the four parametrizations:

- $\bullet \theta = \sigma \text{ (standard deviation)}$
- $\theta = \sigma^2$  (variance)
- $ightharpoonup heta = \sigma^{-2}$  (precision)
- $\theta = \log(\sigma)$

Fabio Sigrist 11/14

## Equivariance of Jeffreys prior: 1d example

#### We obtain the following results:

| Parameter               | $\frac{\partial^2 \log f(x \theta)}{\partial \theta^2}$ | $I(\theta)$           | Jeffreys prior                               | $\frac{{\sf d}\sigma}{{\sf d}\theta}$ |
|-------------------------|---------------------------------------------------------|-----------------------|----------------------------------------------|---------------------------------------|
| $\theta = \sigma$       | $\frac{\theta^2-3x^2}{\theta^4}$                        | $\frac{2}{\theta^2}$  | $\propto rac{1}{	heta} = rac{1}{\sigma}$   | 1                                     |
| $\theta = \sigma^2$     | $\frac{\theta-2x^2}{2\theta^3}$                         | $\frac{1}{2\theta^2}$ | $\propto rac{1}{	heta} = rac{1}{\sigma^2}$ | $\frac{1}{2\sqrt{\theta}}$            |
| $\theta = \sigma^{-2}$  | $-\frac{1}{2\theta^2}$                                  | $\frac{1}{2\theta^2}$ | $\propto rac{1}{	heta} = \sigma^2$          | $-\frac{1}{2\theta^{3/2}}$            |
| $\theta = \log(\sigma)$ | $-2e^{-2\theta}x^2$                                     | 2                     | ∝ 1                                          | $e^{	heta}$                           |

See blackboard

Fabio Sigrist 12/14

Prior distributions Non-informative priors

# Equivariance of Jeffreys prior for the multiparameter case

- ▶ Denote by  $Dg^{-1}$  the Jacobi matrix of  $g^{-1}$
- We can show that
  - 1. directly calculating Jeffreys prior for au

$$\pi( au) \propto \det(I_{ au}( au))^{1/2}$$

2. and first calculating Jeffreys prior  $\pi(\theta)$  for  $\theta$  and then applying the change-of-variables formula

$$\pi(\tau) = \pi(g^{-1}(\tau))|\det Dg^{-1}(\tau)|$$

yield the same result

See blackboard

Fabio Sigrist 13/14

Prior distributions Non-informative priors

## Jeffreys prior: concluding remarks

- Jeffreys prior is usually a good choice for scalar parameters
- It often leads to improper priors
- However, it violates the likelihood principle because the Fisher information contains an integral over X
- For vector parameters, it can have undesirable features

See example on blackboard

Clicker question

Fabio Sigrist 14/14