SOLVE

BRAC UNIVERSITY

CSE 350

Quiz-4, Section 8

Fall 2024

Marks: 20

Name:

ID:

1. Design an inverting Schmitt trigger circuit having a center voltage of 4V and Hysteresis width of 1 V. Assume VH = +10V and VL = -10V. Draw the circuit and transfer curve with proper labeling.

Here,
$$V_{H} = +10^{\circ}$$
, $V_{L} = -10^{\circ}$, $V_{g} = 4^{\circ}$, $V_{HW} = 1^{\circ}$
 $V_{TH} = V_{S} + V_{HW} = 4 + \frac{1}{2} = 4 \cdot 5^{\circ}$
 $V_{TL} = V_{S} - V_{HW} = 4 - \frac{1}{2} = 3 \cdot 5^{\circ}$

We know,

 $V_{H} = 2^{\circ}$
 $V_{H} = 2^{\circ}$
 $V_{H} = 2^{\circ}$
 $V_{H} = 2^{\circ}$

We know,

$$V_S = V_{REF} \frac{P_2}{P_1 + P_2}$$
, $V_{HW} = 2V_H \frac{P_1}{P_1 + P_2}$

From (1),
$$1 = 2 \times 10 \times \frac{R_{1}}{R_{1} + R_{2}}$$

$$\Rightarrow \frac{R_{1}}{R_{1} + R_{2}} = \frac{1}{20}$$

$$\Rightarrow \frac{R_{1}}{R_{2}} = \frac{1}{19}$$

$$\text{if, } R_{2} = 38 \text{ k} \Omega$$

$$\frac{R_{1}}{38 \text{ k}} = \frac{1}{19} \Rightarrow R_{1} = 2 \text{ k} \Omega$$

From D,
$$4 = \frac{38}{38+1}$$
 \$\infty\$

\(\text{VREF} = 4.1\times\$

- 2.a) For the given circuit, determine the duty cycle.
- b) Plot the voltage of capacitor (Vx) and output voltage with respect to time on the same graph with proper labeling.

(Given:
$$R_x = 1 k\Omega$$
 and $C_x = 10 \mu F$)

2.a)
$$P_{1}=10L$$
, $P_{2}=30L$,
 $V_{H}=8V$, $V_{L}=-16V$,
 $V_{TH}=8X \frac{10}{10+30} = 2V$,
 $V_{TL}=-16X \frac{10}{10+30} = -4V$
 $T_{1}=R_{\chi}C_{\chi}\ln\frac{V_{H}-V_{TL}}{V_{H}-V_{TL}}$
 $=R_{\chi}C_{\chi}\ln\frac{V_{H}-V_{TL}}{V_{H}-V_{TL}}$
 $=R_{\chi}C_{\chi}\ln\frac{V_{L}-V_{TL}}{V_{L}-V_{TL}}$
 $=R_{\chi}C_{\chi}\ln\frac{V_{L}-V_{L}-V_{L}}{V_{L}-V_{L}}$
 $=R_{\chi}C_{\chi}\ln\frac{V_{L}-V_{L}-V_{L}}{V_{L}-V_{L}-V_{L}}$
 $=R_{\chi}C_{\chi}\ln\frac{V_{L}-V_{L}-V_{L}}{V_{L}-V_{L}-V_{L}}$
 $=R_{\chi}C_{\chi}\ln\frac{V_{L}-V_{L}-V_{L}-V_{L}}{V_{L}-V_{L}-V_{L}-V_{L}}{V_{L}-V_{L}-V_{L}-V_{L}-V_{L}-V_{L}-V_{L}}{V_{L}-V_{L$

