TEE CHEMISTRY

SOLUTUONS

Part 1

1. a	6. b	11. b	16. d	21. c	26. b
2. b	7. a	12. a	17. c	22. c	27. a
3. c	8. b	13. c	18. c	23. b	28. c
4. b	9. a	14. c	19. d	24. d	29. a
5. d	10. d	15. d	20. b	25. a	30. d

Part 2

1. (a)
$$Fe^{3+}(aq) + Pb(s) \rightarrow Pb^{2+}(aq) + 2Fe^{2+}(aq)$$

Metal dissolves and the yellow/brown colour slowly fades (no ppt on metal and pale green colour of Fe²⁺ is unlikely to be observed).

- (b) $Ca^{2^+(aq)} + SO_4^{2^-(aq)} \rightarrow CaSO_4(s)$ White ppt formed. (Most likely solution will turn milky indicating a small amount of ppt).
- (c) $FeS(s) + 2H^{+}(aq) \rightarrow H_{2}S(g) + Fe^{2+}(aq)$ Solid dissolves, bubbles of colourless foul smelling gas produced. Smell is of rotten eggs.
- (d) $Cr_2O_3(s) + 2OH^-(aq) + 3H_2O(\ell) \rightarrow 2[Cr(OH)_4](aq)^-$ Green solid dissolves to form a deep green solution.
- 2. (a) Vinegar solution contains more H^+ (and H_3O^+) than water. As the $[H^+]$ and $[H_3O^+]$ increases, $[HCO_3^-]$ and $[CO_2(aq)]$ increases. This causes more $CO_2(g)$ to be produced. This means that less CO_2 needs to be dissolved for the solution to become saturated.
 - (b) Add a base. This will reduce $[H^+]$ and $[H_3O^+]$ and so reduce $[CO_{2(aq)}]$ allowing more $CO_{2(q)}$ to dissolve before the solution becomes saturated.

 * Reduce temperature.

1

3. 1,1,2-trichloroethene 4-chloro-2,2-dimethylpentane

4.

Describe test	Observation for sodium sulfate	Observation for sodium sulfite	
Add an acid	No observable reaction	May observe bubbles of	
eg. HC ℓ		colourless gas.	
		Detect an acrid smell	

Sulfuric acid solution and Hydrochloric acid solution

Describe test	Observation for sulfuric acid solution	Observation for Hydrochloric acid solution
Add a solution containing Ba ²⁺	White precipitate	Clear colourless solution.
[could also add solution containing Ca ²⁺ or Ag ⁺ but these must be concentrated to observe a ppt with SO ₄ ²⁻] OR	produced	
Dil Sol ⁿ if Ag ⁺	little or No ppt	Heavy white ppt.

- 5. Can be any 3 of: P^{3-} , S^{2-} , $C\ell^-$, Ar, K^+ , Ca^{2+} or Ga^{3+}
- 6. (a) Anode $Ag \rightarrow Ag^+ + e^-$ Cathode $Ag^+ + e^- \rightarrow Ag$
 - (b) Anode $Ni \rightarrow Ni^{2+} + 2e^{-}$ Cathode $Ni^{2+} + 2e^{-} \rightarrow Ni$
- 7. (a) Aluminium, $A\ell$ or Silicon, Si
 - (b) Oxygen, O₂
 - hydrogen sulfate, HSO₄ hydrogen sulfite, HSO₃ hydrogen sulfide, HS
 - (d) water, H₂O ammonia, NH₃
 - (e) sodium chloride, $NaC\ell$ hydrochloric Acid, $HC\ell$
 - (f) hydroden chloride, HCℓ hydroden bromide, HBr hydroden iodide, HI
 - (g) 1 propanol, CH₃CH₂CH₂OH

$$\begin{array}{cc} & & \text{OH} \\ 2-\text{propanol}, & \text{CH}_3\text{CHCH}_3 \end{array}$$

8. KOH is a strong base so $[OH^-] = 1 \times 10^{-5} \text{ mol L}^{-1}$ therefore $[H^+] = 1 \times 10^{-9}$ therefore pH = 9 KOH(s) \rightarrow K⁺(aq) + OH⁻(aq) - fully ionised

 NH_3 is a weak base $NH_3(aq) + H_2O(\ell) \rightleftarrows NH_4^+(aq) + OH^-$, low ionisation therefore $[OH^-] = 1 \times 10^{-5} \text{ mol } L^{-1}$ even though $[NH_3] = 1 \text{ mol } L^{-1}$

Note % ionisation of NH₃ =
$$\frac{10^{-5}}{1}$$
 100 = 0.001%

9.

Species	Structural formula showing all valence electrons	Draw shape of molecule or ion
Tellurium (IV) oxide TeO ₂	O: Te: O:	O Te O
Chloric acid $HC\ell O_3$. O H O . H O	O Chingo H
Germanate ion GeO ₃ ²⁻	$\begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}^{2-}$	$\begin{bmatrix} O \\ Ge \\ O \end{bmatrix}^{2-}$

- $10. \quad (a) \quad Fe_2O_3(s) \ + \ 3CO(g) \ \rightarrow \ 2Fe(\ell) \ + \ 3CO_2(g)$
 - (b) (i) Increase concentration of CO(g)
 - Operate at higher temperature (reaction is likely to be endothermic)
 - Remove CO₂(g)
 - (ii) Equilibrium never allow to become established
 - Increasing [CO] by increasing pressure will also increase [CO₂] by the same amount therefore no effect
 - Increasing [CO] by adding CO is not economically viable.
 - Higher temperature would require more energy, more expense in construction and more maintenance therefore not economical
 - (c) Remove carbon
 - Add other metals eg. W. Mo, V, Ni, Cr etc.
- 11. hydrogen bonding dispersion forces dipole dipole attraction

PART 3

(a)

1.

(b)
$$n(CO) = \frac{PV}{RT} = \frac{105.0 \times 3.00 \times 10^3}{8.315 \times 1223} = 30.98 \text{ mol}$$

 $n (TiO_2)_{pure} = \frac{1}{2} n (10) = \frac{1}{2} (30.98) = 15.45 \text{mol}$
 $m(TiO_2)_{pure} = nM = 15.45 \times 79.88 = 1237.17 \text{ g} \quad [M(TiO_2) = 79.88 \text{ g mol}^{-1}]$
 $m(Rutile) = \frac{100}{93} \times 1237.17 = 1300.29 \text{ g} = 1.33 \times 10^3 \text{ g} = 1.33 \text{ kg}$

 $TiO_2(s) + 2CO(g) + 2C\ell_2(g) \rightarrow TiC\ell_4(g) + 2CO_2(g)$

2. (a)
$$n(C) = n(CO_2) = \frac{V_{STP}}{22.41} = \frac{0.6047}{22.41} = 0.0269 \text{ mol}$$
 $m(C) = nM = 0.02698 \times 12.01 = 0.32407 \text{ g}$
 $\%C = \frac{0.32407}{1.376} \times 100 = 23.55\%$
 $m(H) = \frac{2.016}{18.016} \times 0.4052 = 0.04534 \text{ g}$
 $\%H = \frac{0.04534}{1.376} \times 100 = 3.2952\%$
 $n(OH) = n(KOH) = cV = 0.1845 \times 0.0573 = 0.01028 \text{ and } H^+ + OH^- \rightarrow H_2O \text{ and } HBr \rightarrow H^+ + Br^ n(Br^-) = n(H^+) = n(OH^-) = 0.01028 \text{ mol}$
 $m(Br) = nM = 0.01028 \times 79.90 = 0.821372 \text{ g}$
 $\%Br = \frac{0.821272}{1.573} \times 100 = 52.22\%$
 $\%O = 100 - (23.55 + 3.2952 + 52.23) = 20.935\%$

C H O Br
% 23.55 3.986 20.935 52.22
n in 100 g
$$\frac{23.55}{23.01} = 1.9608$$
 $\frac{3.986}{1.008} = 3.269$ $\frac{20.935}{16.00} = 1.3084$ $\frac{52.22}{79.90} = 0.6536$
Simplest ratio $\frac{1.9608}{0.6536} = 3.00$ $\frac{3.269}{0.6536} = 5.002$ $\frac{3.269}{0.6536} = 5.002$ $\frac{0.6536}{0.6536} = 1.00$

Empirical formula is C₃H₅O₂Br

(b)
$$n(Compd) = \frac{PV}{RT} = \frac{55.0 \times 0.6347}{8.315 \times 523} = 8.027 \times 10^{-3} \text{ mol}$$

$$M = \frac{m}{n} = \frac{1.228}{8.027 \times 10^{-3}} = 152.978 \text{ g mol}^{-1}$$

$$M(C_3H_5O_2Br) = 152.970 \text{ g mol}^{-1}$$

As the molecular mass is the same as the empirical formula mass then molecular formula is the same as the empirical formula ie $C_3H_5O_2Br$.

3. (a)

$$n(CaCO_3) = \frac{M}{M} = \frac{22.3}{100.09} = 0.2228 \text{ mol}$$
 [M(CaCO₃) = 100.09 g mol⁻¹]

$$n(HNO_3) = cV = 4.10 \times 98.0 \times 10^{-3} = 0.4018 \text{ mol}$$

$$2H^+ + CaCO_3 \rightarrow CO_2 + H_2O + Ca^{2+}$$

$$n(CaCO_3)_{to use all HNO_3} = \frac{1}{2} n(HNO_3) = \frac{1}{2} (0.4018) = 0.2009 mol$$

There is 0.2228 mol therefore CaCO₃ is in excess and HNO₃ is LR

$$n(CO_2)_{produced} = \frac{1}{2} n (HNO_3) = \frac{1}{2} (0.4018) = 0.2009 \text{ mol}$$

$$V(CO_2)_{STP \text{ produced}} = n \times 22.41 = 0.2009 \times 22.41 = 4.0502L$$

$$V(CO_2)_{\text{collected at STP}} = \frac{92.3}{100} \times 4.502 = 4.1551 = 4.16 L$$

(b)
$$n(CaCO_3)_{left} = n(CaCO_3)_{initial} - n(CaCO_3)_{used}$$

= 0.2228 - 0.2009
= 0.0219 mol

(d)
$$n(Rh) = \frac{m}{M} = \frac{0.281}{102.9} = 2.7308 \times 10^{-3} \text{ mol}$$

$$\begin{array}{l} n(e^{-}) \,=\, 3n(Rh) \,=\, 3(2.2308 \,\times\, 10^{-3}) \,=\, 8.1924 \,\times\, 10^{-3} \,\, mol \\ t \,=\, \frac{n(e^{-}) \,\times\, 96490}{I} \,=\, \frac{8.1924 \,\times\, 10^{-3} \,\times\, 96490}{15.0 \,\times\, 10^{-3}} \,=\, 52699 \,s = 878.3 \,\, minutes = 14.6 \,h \end{array}$$

4. (a)
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

(b)
$$n(Cu) = \frac{m}{M} = \frac{1.37}{63.55} = 0.02168 \text{ mol}$$

$$n(e^{-}) = 2n(Cu) = 2(0.02156) = 0.04312 \text{ mol}$$

$$n(e^{-}) = \frac{q}{96490} = \frac{It}{96490}$$

$$\therefore I = \frac{n(e^{-}) \times 96490}{t} = \frac{0.04312 \times 96490}{2.55 \times 60 \times 60}$$

(c)
$$n(Rh) = \frac{m}{M} = \frac{1.48}{102.8} = 0.01439 \text{ mol}$$

$$Rh^{x^+} + Xe^- \rightarrow Rh$$

$$n(e^{-}) = Xn(Rh) = 0.04312$$

 $X(0.1439) = 0.04312$

$$\therefore X = \frac{0.04312}{0.61439} = 2.996 \approx 3$$

The charge on the rhodium ion is +3

5.

	Rough Estimate (mL)	1 st trial (mL)	2 nd trial (mL)	3 rd trial (mL)	4 th trial (mL)
Initial reading	0.39	15.59	30.27	3.42	1.87
Final reading	15.59	30.27	44.56	18.15	16.51
Volume used	15.20	14.68	14.29	14.73	14.64

$$V_{\text{Average}} = \frac{14.68 + 14.73 + 14.64}{3} = 14.68 \,\text{mL}$$

$$6H^{+} + 2MnO_{4}^{-} + 5H_{2}C_{2}O_{4} \rightarrow 2Mn^{2+} + 10CO_{2} + 8H_{2}O_{4}$$

$$\begin{array}{lll} n(MNO_4^-) = cV = 5.00 \times 10^{-6} \times 14.68 \times 10^{-3} = 7.34 \times 10^{-8} \ mol \\ n(H_2C_2O_4)_{20mL} = \frac{5}{2} \times n(MnO_4^-) = 1.835 \times 10^{-7} \end{array}$$

$$n(H_2C_2O_4)_{\text{in sample}} = n(H_2C_2O_4)_{\text{in 250 mL Dil}} = \frac{250}{20} \times 1.835 \times 10^{-7} = 2.294 \times 10^{-6} \text{ mol}$$

$$m(H_2C_2O_4)_{in \text{ sample}} = nM = 2.294 \times 10^{-6} \times 90.036 = 2.065 \times 10^{-4} \text{ g}.$$

$$[M(H_2C_2O_4] = 90.036 \text{ g mol}^{-1}]$$

Conc in ppm =
$$\frac{2.065 \times 10^{-4} \times 10^{3}}{98.6 \times 10^{-3}} = 2.09 \text{ ppm}$$

For answers to Part 4 please see the Extended Answer Question Answers