Graphs and Unordered Collections

2501ICT Logan

Contents

- Definition
- Graph Representations
- Basic Operations
 - Graph Traversals
 - Topological Sort
 - Trees within Graphs
- Unordered Collections

Graph Definition

- Multiple Successors/Predecessors
 - Lists: *one* successor, *one* predecessor
 - Trees: several successors, one predecessor
- A Graph is a
 - Set of points connected by line segments
 - Points are called vertices (V) or nodes
 - Lines are called edges (E)

Unlabelled Graphs

• Each Edge $e \in E$ connects two Nodes $v \in V$

Labelled Vertices

Weighted Graph

Labelled Vertices and Edges

Disconnected Graph

One or more Nodes not connected

Connected Graph

 A Path from each to every other Vertex

Complete Graph

- For a Set of *n* Nodes:
 - *n-1* Edges for each Node

Connected Component

Cycles

Directed Graph

 Contains directed Edges between Sources and Destinations

Cyclic Digraph

Directed Acyclic Graph

DAG

Bidirectional Connector

Graph Representations

- Adjacency Matrix
 - E.g., in a two-dimensional array of booleans
 - A cell [i, j] contains a '1' value if there is an edge from vertex i to vertex j, '0' otherwise

J'								
	j	0	1	2	3	4		
i		A	В	C	D	E		
0	A		1					
1	В	1						
2	С -		1		1			
3	D	1		1				
4	E							

Graph Representations (2)

- Weighted Graphs
 - Store weight instead of just 1 (true) or 0 (false)

	j	0	1	2	3	4
i		A	В	C	D	E
0	A					
1	В	2				
2	C		3		4	
3	D	7		1		
4	E					

Graph Representations (3)

Adjacency List

- Store the information about a graph in an array of linked lists
- The ith linked list contains all Vertices that receive an Edge from Vertex i

Graph Representations (4)

- Adjacency List (2)
 - Possible Edge weights may be included in the Nodes of the List
 - Space Efficiency: good for sparse graphs, i.e. graphs without many edges

→NULL

Complexity Analysis

• Check existing Edge between any two given vertices v_1 and v_2

Matrix: index operation
 O(1)

• List: follow links O(n)

- Find all v_i adjacent to given v₁
 - Matrix: always visit all N cells
 - List: simply visit the list for the given vertex (less than N for sparse graphs)

Complexity Analysis (2)

- Iterate across all neighbours of v₁
 - Number of edges in a complete graph with N vertices
 - Directed: N * (N-1)
 - Undirected: N * (N-1) / 2
 - Matrix: worst case

 $O(n^2)$

- List: depends on number of neighbours
 - sparse graphs:

O(n)

• dense graphs:

 $O(n^2)$

Traversals

- Remember Tree traversals:
 - Start at top, visit all nodes
- Graph:
 - Start from a given vertex, visit all vertices to which it connects
- Complexity
 - Matrix: iterate across the row: O(n)
 - List: traverse the vertex's linked list: O(n)

Traversal Example

```
void traverseFromVertex(Graph *G, Vertex *start)
 mark_unvisited(G);  // all vertices:
                                  O(n)
 insert start in empty collection // O(1)
 for each vertex in collection {      // O(n)
   if (!vertex.visited()) {
                        // 0(1)
    vertex.setVisited();
                         // 0(1)
    collection.add(vertex.adjacent());//o(n)
```

Traversal Types

- Depth First (DFT)
 - Go deeply into the graph before backtracking on another path
 - Use a Stack as the collection
 - >Use recursion
- Breadth First (BFT)
 - Visit each adjacent vertex first
 - Use a Queue as the collection

Recursive Depth-First Example

```
void traverseFromVertex(Graph *G, Vertex *start)
 mark_unvisited(G);  // all vertices: O(n)
  depth first(G, start);
void depth first(Graph *G, Vertex *v)
  v.setVisited();
 do_something(v);
  for each w in vertex.adjacent()
    if (!w.visited())
      depth first(G, w);
```

Trees within Graphs

- Traversal from a vertex
 - Only includes a sub-graph of the main graph
 - E.g., a depth-first traversal creates a depth-first search tree
- Spanning Tree
 - A sub-graph containing the minimum number of edges possible while retaining the connection between all the vertices in the sub-graph

Minimum Spanning Tree

- Minimum Spanning Tree
 - Traversal using a minimum number of edges
 - For weighted edges: minimising the sum of edge's weights
- (Minimum) Spanning Forest
 - Repeatedly apply the (minimum) spanning tree on all graph components

Minimum Spanning Tree (2)

```
void minimumSpanningTree(Graph *G)
 mark_unvisited(G);  // all vertices: O(n)
 mark some vertex v as visited
 for (k = 1; k < n; k++) // for each vertex
   find the smallest weight from a visited
        vertex to an unvisited vertex w
   mark the edge and w as visited

    Complexity: O(n*m)
```

Topological Orders

- DAGs may have certain orderings among the vertices
 - Topological Orders

Topological Sort

• Find a topological order of vertices using a traversal (DFT, BFT)

Topological Sort (2)

• Find a topological order of vertices using a traversal (DFT, BFT)

Topological Sort (3)

• Multiple possible (equivalent) orderings, e.g.

Shortest Path Problems

- Single-Source Shortest Path
 - Shortest Poth from a given vertex to all other vertices
 - ➤ Dijkstra's algorithm:

 $O(n^2)$

- All Pairs Shortest Path
 - Set of all the shortest paths in a graph
 - Floyd's algorithm:

 $O(n^3)$

Dijkstra's Algorithm

Inputs

- DAG with edge-weights > 0
- Single source vertex s

Output: two-dimensional array:

- N rows: Vertices
- Three columns: Vertex #, Distance from source, Predecessor
- Temporary array of booleans: vertex included in path

Two steps

Initialisation and Computation

Initialisation

```
for each vertex v in the graph (each row in results) {
 vertexnumber[row] = v;
 if v == source vertex s {
                                      // source node
   distance[row] = 0;
   path[row] = undefined;
   included[row] = true; }
 else if there is an edge from s to v {// nodes
   distance[row] = edge weight(s,v); // adjacent
   path[row] = s;
                                     // to source
   included[row] = false;
 else {
   distance[row] = infinite;
                                  // all other
   path[row] = undefined;
                                     // nodes
   included[row] = false; }
```

Initialisation Results

included[]

• All cells are *false* except for source vertex cell

• distance[]

```
• == 0 (source vertex)
```

• > 0 (adjacent vertices)

• infinity (all other vertices)

• path[]

Source vertex (adjacent vertices) or undefined

Computation

```
do {
  find vertex F that is not yet included and has
       minimal difference
  included[F] = true;
  for each other vertex T not included {
    if there is an edge from F to T {
      newdist = distance[F] + edge_weight(F,T);
      if newdist < distance[T] {</pre>
        distance[T] = newdist;
        path[T] = F;
} while not all vertices are included;
```

Shortest Path Complexity

- Critical Step
 - Nested if statement
 - Resets distance and predecessor for an uniculuded vertex if a new minimal distance has been found
- Initialisation: every vertex O(n)
- Computation: nested loops $O(n^2)$
- Total: $O(n^2)$

Graph Interface

Needs to define

- Mutators: Adding/removing edges and vertices
- Accessors: checking/returning edges/weights
- Iterators
 - Over vertices, labels, adjacent vertices
 - Over edges, edges connected to a specific vertex
- Other interfaces
 - Getting/Setting labels, weights, etc.

Array Implementation

```
class Graph {
  char **vertex; // array of vertices
  int *edge; // array of edges with weight
  int n, size; // number of vertices
public:
  Graph(int N)
                   // in real life: check errors!
      vertex = (char **)malloc(N*sizeof(char *));
      edge
              = (int *)malloc(N*N * sizeof int);
      size
              = N;
              = 0; // no actual vertices yet
      \mathbf{n}
  P3 Lecture #09
                  Copyright © 2002-2006 René Hexel.
```

April 2006

Adding a Vertex/Edge

```
void Graph::addVertex(char *label)
  /* remove all edges pointing to new vertex */
  memset(edge + n * size, 0,
         size * sizeof (int *));
  vertex[n++] = label;
void Graph::addEdge(int from, int to, int w)
  edge[from + size * to] = w;
```

Retrieving Data

```
int Graph::getEdge(int from, int to)
/* return weight of edge (0 if no edge) */
 return edge[from + size * to];
char *Graph::findVertex(char *label)
 int i;
 for (i = 0; i < n; i++)
   if (strcmp(vertex[i], label) == 0)
      return vertex[i];
 return NULL;
```

Other Functions/Methods

- deleteVertex()
 - Remove vertex from array
 - Remove Gap!
- deleteEdge()
 - Same as addEdge(from, to, 0);
- numVertices() return n;
- numEdges()
 - number of edges with weight > 0

Unordered Collections

- > Items in no particular position
- Set
 - Unique items in no particular order
- Counted Set (Multi Set, Bag)
 - Items in no particular order
 - Same item can be present multiple times
- Dictionary (Map)
 - Values associated with unique keys

Implementations

- Standard Template Library (STL)
 - Unique Set:
 - set
 - Bag:
 - multiset
 - Dictionary:
 - map
 - multimap

Hash Tables Revisited

- Each Item has a unique hash value
 - Used as index into an array
- Hash value
 - Is computed in constant time
 - Computed by a hash function
- Makes insertion, access, and removal O(1)
 - Used to implement Dictionaries as Arrays

References

- Lambert, K. A., & Osborne, M. (2004): A Framework for Program Design and Data Structures: Brooks/Cole.
 - Chapter 13-14
- http://en.wikipedia.org/wiki/Graph_%28mathematics%29
- http://www.math.uni-hamburg.de/home/diestel /books/graph.theory/GraphTheoryIII.pdf
- http://students.ceid.upatras.gr/~papagel /project/contents.htm

References

- Lambert, K. A., & Osborne, M. (2004): *A Framework* for Program Design and Data Structures: Brooks/Cole. Chapter 13-14
- Scott Meyers. Effective STL. Addison-Wesley, 2001.
- Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, 1999.
- Bjarne Stroupstrup. The C++ Programming Language, 3rd Edition. Addison-Wesley, 1997.
- http://www.sgi.com/tech/stl
- http://www.cppreference.com/cppstl.html

Appendix

Plain C Examples

Array Graph Implementation

```
typedef struct arrayGraph {
 char **vertex; // array of vertices
 int *edge; // array of edges with weight
 int n, size; // number of vertices
} Graph;
Graph *newGraph(int N)
                   // in real life: check errors!
 Graph *graph
                   = malloc(sizeof Graph);
 graph->vertex = malloc(N * sizeof(char *));
 graph->edge = malloc(N*N * sizeof(int));
 graph->size = N;
                   = 0; // no actual vertices yet
 graph->n
 return graph;
```

Adding a Vertex/Edge

```
void addVertex(Graph *g, char *label)
  /* remove all edges pointing to new vertex */
 memset(g->edge + g->size * g->n, 0,
         g->size * sizeof (int *));
  q->vertex[q->n++] = label;
void addEdge(Graph *g, int from, int to, int w)
 g->edge[from + g->size * to] = w;
```

Retrieving Data

```
int getEdge(Graph *g, int from, int to)
/* return weight of edge (0 if no edge) */
 return g->edge[from + g->size * to];
char *findVertex(Graph *g, char *label)
 int i;
 for (i = 0; i < g->n; i++)
    if (strcmp(g->vertex[i], label) == 0)
      return g->vertex[i];
 return NULL;
```

Other Functions/Methods

- deleteVertex()
 - Remove vertex from array
 - Remove Gap!
- deleteEdge()
 - Same as addEdge(g, from, to, 0);
- numVertices() return g->n;
- numEdges()
 - number of edges with weight > 0

Appendix

Objective-C Examples

Array Graph Interface

```
@interface Graph: NSObject {
  id *vertex;
                  // array of vertices
  int *edge; // array of edges with weight
  int n, size; // number of vertices
- initWithSize:(int) N;
- (void) addVertex: label;
- (void) addEdgeFrom: (int) src to: (int) dst
              weight: w;
- (int) getEdgeFrom: (int) src to: (int) dst;
- findVertex: label;
@end
  P3 Lecture #09
                  Copyright © 2002-2006 René Hexel.
```

Array Graph Interface

```
@implementation Graph
- initWithSize:(int) N
      // in real life: add error checking!
      [super init];
      vertex = malloc(N * sizeof(id));
     edge = malloc(N*N * sizeof(int));
     size = N;
            = 0; // no actual vertices yet
     n
     return self;
```

Adding a Vertex/Edge

```
(void) addVertex: label
  /* remove all edges pointing to new vertex */
 memset(edge + size * n, 0,
          size * sizeof (int *));
  vertex[n++] = label;
- (void) addEdgeFrom: (int) src to: (int) dst
               weight: (int) w
  edge[src + size * dst] = w;
  P3 Lecture #09
                   Copyright © 2002-2006 René Hexel.
    April 2006
```

57

Retrieving Data

```
- (int) getEdgeFrom: (int) src to: (int) dst
// return weight of edge (0 means no edge)
 return edge[src + size * dst];
- findVertex: label
 int i;
 for (i = 0; i < n; i++)
   if ([vertex[i] isEqual: label])
     return vertex[i];
 return nil;
```

Other Functions/Methods

-deleteVertex:

- Remove vertex from array
- Remove Gap!
- -deleteEdgeFrom:To:
 - Same as addEdgeFrom: To: Weight: 0;
- -numVertices
 - return n;
- -numEdges
 - number of edges with weight > 0