Assignment 3 - MAT257

David Knott Student #999817685

September 30, 2013

- 1. a) Since A is closed this means A^c will be open. This implies for every $x \notin A$ there is an epsilon-neighborhood around x that does not intersect with A. This epsilon will be less than or equal to the distance between x and any $y \in A$, since if the distance were less, then y would be in the epsilon-neighborhood of x that doesn't intersect with A and that's a contradiction.
 - b) Suppose there doesn't exist an $\epsilon > 0$. Consider the set $S_{\epsilon} = \{x \in \mathbb{R}^n \mid \forall y \in B.d(x,y) < \epsilon\}$. If there's no epsilon, then $S_{\epsilon} \cap A \neq \emptyset$ for any $\epsilon > 0$. If we take the sequence $\{x_n\}$ where x_n is a point in the set $S_{1/n} \cap A$ then we have a convergent sequence to a point in the border of B. Since A is closed, then the point that $\{x_n\}$ converges to must also be in A. But it's given that $B \cap A = \emptyset$. So we have a contradiction.
- 2. Since K is compact, it must be closed and bounded. Since $K \subset U$, then all points x in K will have an epsilon-neighborhood around x that's completely contained within U. Suppose ϵ_x denotes the size of the neighborhood around the point x that satisfies the above condition. If we take the minimum of ϵ_x for all $x \in K$, call it ϵ_{min} , then for all $x \in K$, $B(x, \epsilon_{min}) \subset U$.

Notice that $\bigcup_{x\in K} B(x,\epsilon_{min})$ is an open set contained completely within U that covers K. If we take the closure of that set, however, it might be that it's border lies outside of U. So, we prove the lemma that $B(x,\epsilon/2) \subset B(x,\epsilon)$ for any x or ϵ .

Lemma 0.1 At any point x, the closed ball of size ϵ is contained within an open ball of size ϵ' if $\epsilon < \epsilon'$.

Proof Assume that $\epsilon < \epsilon'$. Since the norm of every point in the closed ball is less than or equal to ϵ and $\epsilon < \epsilon'$, then every point in the closed ball must be in the open ball of larger size.

Using this lemma, we show that $\bigcup_{x\in K} B(x,\epsilon_{min})$ covers $\bigcup_{x\in K} \overline{B(x,\epsilon_{min}/2)}$ (I'll call these sets A and B respectively.) Since any $x\in B$ is in a closed ball of radius $\epsilon/2$ centered around some point in K, it must be in the open ball of radius ϵ around the same point, and thus in A. Therefore $B\subset A$. Furthermore, since $A\subset U$, then $B\subset U$. Also B bounded, since each point is only $\epsilon/2$ distance away from the furthest point in the bounded set K. Therefore, B is a closed and bounded set, which makes it compact. Also, the interior of B covers K. Therefore for any closed set K in an open set K, there exists a closed set in K who's interior covers K.

- 3. a) To prove that this function is a metric on \mathbb{R}^n we must show that it satisfies the metric properties. Namely, we show that:
 - i. $\rho(x,y) = \rho(y,x)$
 - ii. $\rho(x,y) \geq 0$ with equality when x=y
 - iii. $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

To prove i., note that since d(x,y) = d(y,x) we can simply do the following:

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

$$= \frac{d(y,x)}{1 + d(y,x)}$$
$$= \rho(y,x)$$

For ii., we once again base our proof on the fact that ρ is simply a function of d. If x=y then d(x,y)=0, and hence $\rho(x,y)=\frac{0}{1}=0$. If $x\neq y$ then d(x,y)>0 and so $\rho(x,y)$ must be greater than zero since it's a positive number divided by a positive number.

To prove iii., note that the function $f(x) = \frac{x}{x+1}$ is monotonically increasing for all $x \ge 0$. Also note that $f(x+y) \le f(x) + f(y)$ since if x = y = 0 then f(x+y) = f(x) + f(y) = 0. If $x \ne 0$ and y = 0 then f(x+y) = f(x) = f(x) + f(y). If $x, y \ne 0$ then the equation $\frac{xy(x+y+2)}{(x+1)(y+1)(x+y+1)}$ is positive, so the following holds:

$$\begin{split} f(x+y) &= \frac{x+y}{1+x+y} \\ &\leq \frac{x+y}{1+x+y} + \frac{xy(x+y+2)}{(x+1)(y+1)(x+y+1)} \\ &= \frac{x}{1+x} + \frac{y}{1+y} = f(x) + f(y) \end{split}$$

Also $f(d(x,y)) = \rho(x,y)$.

Since $d(x,y) \ge 0$ for any $x,y \in \mathbb{R}^n$, we can apply f to both sides of the inequality $d(x,z) \le d(x,y) + d(y,z)$ like so:

$$\begin{aligned} d(x,z) &\leq d(x,y) + d(y,z) \implies \\ f(d(x,z)) &\leq f(d(x,y) + d(y,z)) \implies \\ f(d(x,z)) &\leq f(d(x,y)) + f(d(y,z)) \implies \\ \rho(x,z) &\leq \rho(x,y) + \rho(y,z) \end{aligned}$$

So ρ is a metric on \mathbb{R}^n

b) since $\rho(x,y)=f(d(x,y))$ and $d(x,y)\geq 0$ for all $x,y\in\mathbb{R}^2$ we simply show that f is bounded for all $x\geq 0$. This is a simple task, since f is a division of two positive numbers, where the denominator is larger than the numerator, f must be always less than 1. Therefore, the metric (\mathbb{R}^2,ρ) is bounded by 1.