

Rainwater Harvester System

Table of Contents

Introduction: Context & Recommendation

Alternative Configurations

Decision - making process

Justification & Suitability

Conclusion

Context

O1 Alleviate water stress in remote communities like Van Anda

Recommend a feasible decentralized
Rainwater Harvester System for
consumption and storage

Decision Making Process

Stakeholder consultation

Attribute analysis and simulation

Stakeholder satisfaction

Optimization & Final Recommendation

Stakeholder Satisfaction Attributes

Attribute	Weighting	System Req.
Consumption	10 %	Min. 155 L/day
Relative Cost	23 %	Max. 100% relative
Health and Environmental Risk Exposure	12 %	Max. 32
Power system Greenhouse Gas Emissions	5 %	Max. 100% relative to shipping water
Maintenance Occurrence	15%	Max. 72 / year
On-demand Flow Rate	10%	Min. 40 L/min
Reliability	15 %	Min. 250 days/ year of reliability
Land Use	10 %	% impact relative to worst case

Recommendation Outline

Rainwater collection	100 m² rain catchment	
	2.5 m³ collection tank	
Storage	26 m³ storage tank on 6.2 m tower	
Pumping	Pump B	
Filtration	3-step: 1 μm + 5 μm + 200 μm filters	
Disinfection	Ozone + UV	
Power System	9 HES - 260 Solar panels	
	4 12V Deep Cycle Wet Lead Acid Batteries	
	2.8kW DC - AC Power Inverter	

Recommendation Outline

Storage to consumption

Alternative Configurations

Energy system, chemical disinfection, land use, consumption

Prototyping & Simulations

We executed meticulous testing and simulation with Microsoft Excel Spreadsheets.

- Each recommended parameter was rigorously assessed to optimize stakeholder satisfaction.
- Utilized charts and graphs to visualize trends and interpret data.

Energy System

Recommendation: Solar

Pros

Low maintenance

No health and environmental risks associated

Cons

High upfront cost (\$205-\$500/panel)

High GHG emissions from production

Alternative: Diesel

Pros

Low upfront cost

Cons

Consistent shipments needed, \$325/shipment and frequent maintenance

Burning diesel has high GHG

Health and environmental risks associated with diesel

Chemical Disinfection

Recommendation: Ozone

Pros

Annual maintenance

No health and environmental risks associated

Cons

High upfront cost (\$4000)

High energy usage

Alternative: Chlorine

Pros

Low upfront cost

Cons

High cumulative costs (shipments are required almost biweekly)

Extreme health and environmental risks associated with chlorine

Frequent maintenance

Storage Tank Locations

Option 1:

Coordinates: (-11, -6) Elevation: 2.5 m

Pipe Length: 25.554 m

Option 2:

Coordinates: (-8, 42)

Elevation: 7.5 m

Pipe Length: 86.816 m

Option 3:

Coordinates: (37, 2)

Elevation: 5.0 m

Pipe Length: 74.780 m

Storage Tank Locations - Con't

Alternative

Option 1: Unchanged

- No extra cost needed, so relative cost is lower
- Significantly lower on-demand flow rate (satisfaction ~10%)

Recommendation

Option 2: Option 1 + 6.2m Tower

- High upfront cost (\$6875)
- Increases
 on-demand flow
 rate by over 200%
- Significant boost in satisfaction

Alternative

Option 3

- With the long pipe length, on-demand flow rate is reduced
- Satisfaction was lower than option 1 with the tower

Created separate spreadsheets for each parameter to be determined and measured satisfaction for all 8 attributes.

Estimated min & max water consumption per household → determine consumption value (initial)

Utilized rainfall data in weather station 1 in 2014 and 2015 →

- Selected multiple potential locations for storage tank placement → land use
- Evaluated pump performance for each pump (flow rate, pressure, efficiency)
 - Calculated energy usage for powering system
 - Examined maintenance for all filter combinations
 - On-demand flow rate
 - Calculated all associated costs (initial + maintenance)

Assessed risks and greenhouse gas emissions

Final Recommendation

Rainwater collection	100 m² rain catchment		
	2.5 m³ collection tank		
Storage	26 m³ storage tank on 6.2 m tower		
Pumping	Pump B		
Filtration	3-step: 1 μm + 5 μm + 200 μm filters		
Disinfection	Ozone + UV		
Power System	9 HES - 260 Solar panels		
	4 12V Deep Cycle Wet Lead Acid Batteries		
	2.8kW DC - AC Power Inverter		

Rainwater collection

Collection Tank

Capacity: 2500L

Cost: \$900

collects up to **5X** the amount of daily water consumption (500L), taking advantage of rainy seasons

Roof Catchment

Area: 100m² (whole roof)

Cost: \$350

reduces dry days, saving approximately \$5000 in water shipment costs alone

only uses the roof, **no extra space required** for
additional catchment area

Distribution and Storage

After testing all three pumps, **Pump B** resulted in the highest overall **stakeholder satisfaction**.

Pump B was selected for its **low maintenance** and **high flow rate**

Filtration

System Requirement

Reduces fouling rate of 1 µm filter

 $200\;\mu\text{m}$

Reduces fouling rate of 5 µm filter

Using all 3 filters reduces frequency for maintenance by 50%.

Disinfection

Ozone

- Annual maintenance
- No health and environmental risks associated

Ultra-Violet (UV)

50W UV System:

- Max treatable flow rate:40 LPM
- Insignificant relative energy and cost differences

Final Recommendation (Test Case)

Cost

Total cost over five years is \$50,000 relative to \$105,000 for the previous system

Maintenance & Risk

Around 16 maintenance days per year, and 0 health/environmental risk associated with ozone and solar

Reliability

Confident in providing clean, safe water for **over 90%** of the year

Greenhouse Gas (GHG)

Initial GHG emissions are **7932 kg** compared to **8339 kg** from the existing system

Stakeholder Satisfaction

Total Weighted Stakeholder Satisfaction: 82.3%

Conclusion

Thank you