Probabilistic Hyperproperties with Rewards

NASA Formal Methods 2022

Oyendrila Dobe #, Lukas Wilke*, Erika Ábrahám*, Ezio Bartocci **,
Borzoo Bonakdarpour #

#Michigan State University (USA), *RWTH Aachen (Germany), **TU-Wien (Austria)

May 27, 2022

Conclusion

Trace Property vs Hyperproperty¹

•0000

1. 'Hyperproperties', Clarkson and Schneider, 2010.

•0000

9 AM 11 AM 1 PM 3 PM 5PM

Monday **(b)**

Hyperproperties

•0000

Tuesday (***)

Wednesday () () () ()

Thursday (***)

Friday

1. 'Hyperproperties', Clarkson and Schneider, 2010.

Conclusion

11 AM 1 PM 3 PM5PM

Monday

Tuesday

Wednesday

Thursday

Friday

Trace property:

I drink tea everyday - 🔷 🍲 🗸

9 AM11 AM 1 PM 3 PM5PM

Monday

Hyperproperties

●0000

Tuesday

Wednesday

Thursday

Friday

Trace property:

- I drink tea everyday 🔷 🍲 🗸
- I drink tea at the same time everyday X

9 AM11 AM 1 PM 3 PM 5PM

Monday

Hyperproperties

●0000

Tuesday

Wednesday

Thursday

Friday

Trace property:

- I drink tea everyday 🔷 🍲 🗸
- I drink tea at the same time everyday X

Hyperproperty:

9 AM11 AM 1 PM 3 PM5PM

Monday

Tuesday

Wednesday

Thursday

Friday

Trace property:

- I drink tea everyday 🔷 🍅 🗸
- I drink tea at the same time everyday X

Hyperproperty:

I drink tea at the same time everyday

$$\forall \pi . \forall \pi' . \square (\mathbf{\acute{e}} \leftrightarrow \mathbf{\acute{e}}) \checkmark$$

Trace Property vs Hyperproperty (contd.)

0000

Conclusion

Trace Property vs Hyperproperty (contd.)

Fig. 1: Satisfaction of trace and hyper properties*

Conclusion

Trace Property vs Hyperproperty (contd.)

Fig. 1: Satisfaction of trace and hyper properties*

Conclusion

Applications

Conclusion

00

Hyperproperties

Applications

Methodology OOOO

Conclusion

Hyperproperties^{1,2} in Action

Hyperproperties

- 1. 'Hyperproperties', Clarkson and Schneider, 2010.
- 2. 'Temporal Logics for Hyperproperties', Clarkson, et al., POST 2014

Hyperproperties^{1,2} in Action

- 1. 'Hyperproperties', Clarkson and Schneider, 2010.
- 2. 'Temporal Logics for Hyperproperties', Clarkson, et al., POST 2014
- 3. 'Security policies and security models', Goguen and Meseguer.
- 4. 'Hyperproperties for Robotics', Wang, Nalluri, Pajic, ICRA 2020.

Conclusion

Hyperproperties^{1,2} in Action

- 1. 'Hyperproperties', Clarkson and Schneider, 2010.
- 2. 'Temporal Logics for Hyperproperties', Clarkson, et al., POST 2014
- 3. 'Security policies and security models', Goguen and Meseguer.
- 4. 'Hyperproperties for Robotics', Wang, Nalluri, Pajic, ICRA 2020.

Conclusion

Hyperproperties^{1,2} in Action

Side-channel attacks:

```
void mexp(){
// b is secret
c=0;
if (b(i) = 1){
// changes to c
}
...
}
```

Should observe same execution times for different secrets

- 1. 'Hyperproperties', Clarkson and Schneider, 2010.
- 2. 'Temporal Logics for Hyperproperties', Clarkson, et al., POST 2014

- 3. 'Security policies and security models', Goguen and Meseguer.
- 4. 'Hyperproperties for Robotics', Wang, Nalluri, Pajic, ICRA 2020.

Conclusion

Methodology OOOO

Hyperproperties^{1,2} in Action

Side-channel attacks:

```
void mexp(){
// b is secret
c=0;
if (b(i) = 1){
// changes to c
}
...
}
```

Should observe same execution times for different secrets

'Hyperproperties', Clarkson and Schneider, 2010.
 'Temporal Logics for Hyperproperties', Clarkson, et al., POST 2014

Robotics path planning4:

Finding paths: shortest, robustness, opaqueness

- 3. 'Security policies and security models', Goguen and Meseguer.
- 4. 'Hyperproperties for Robotics', Wang, Nalluri, Pajic, ICRA 2020.

00000

Conclusion

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Hyperproperties

00000

Conclusion

000

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

000

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Hyperproperties

00000

Fig 2: A Differential Privacy protocol

Flip a coin

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

Conclusion

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

000

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Hyperproperties

00000

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

Conclusion

000

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Hyperproperties

00000

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

Conclusion

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

Methodology

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

- Motivation: Uncertainty and randomization.
- Probabilistic relation between traces.

Fig 2: A Differential Privacy protocol

- 1. 'HyperPCTL', Ábrahám and Bonakdarpour, QEST 2018.
- 2. 'The algorithmic foundations of differential privacy', Dwork and Roth.

Cannot handle non-determinism!

0000

Conclusion

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

0000

Conclusion

Argues over combination of schedulers.

0000

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

Conclusion

Argues over combination of schedulers.

Hyperproperties

0000

• [1] introduces PHL extending HyperCTL* and has path quantification.

Conclusion

^{1. &#}x27;Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.

^{2. &#}x27;Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

- Argues over combination of schedulers.
- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

Probabilistic Hyperproperties with Non-determinism^{1,2}

Argues over combination of schedulers.

Hyperproperties

0000

- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.

Conclusion

^{1. &#}x27;Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.

^{2. &#}x27;Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

Probabilistic Hyperproperties with Non-determinism^{1,2}

Argues over combination of schedulers.

Hyperproperties

- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

 $\{h>0\}$

 $\{h \leq 0\}$

Probabilistic Hyperproperties with Non-determinism^{1,2}

Argues over combination of schedulers.

0000

- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.

 s_0

^{1. &#}x27;Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.

^{2. &#}x27;Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

 s_0

 $\{h>0\}$

 $\{h \leq 0\}$

Probabilistic Hyperproperties with Non-determinism^{1,2}

Argues over combination of schedulers.

Hyperproperties

- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

Argues over combination of schedulers.

- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.
 - Model checking problem for MDPs is undecidable.

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

 s_0

 $\{h>0\}$

 $\{h \leq 0\}$

- Argues over combination of schedulers.
- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.
 - Model checking problem for MDPs is undecidable.
 - In [2], restricted schedulers to memoryless and non-probabilistic.

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

- Argues over combination of schedulers.
- [1] introduces PHL extending HyperCTL* and has path quantification.
- [2] extends HyperPCTL and has state quantification.
 - Model checking problem for MDPs is undecidable.
 - In [2], restricted schedulers to memoryless and non-probabilistic.

Does not support reward models!

- 1. 'Probabilistic Hyperproperties of Markov Decision Processes', Dimitrova, Finkbeiner, Torfah, ATVA 2020.
- 2. 'Probabilistic Hyperproperties with Nondeterminism', Ábrahám, Bartocci, Bonakdarpour, Dobe, ATVA 2020.

Applications

Methodology

Applications

Side-Channel timing leaks

Hyperproperties

Conclusion

```
Figure: Snippet of Modular
  exponentiation in RSA.
void mexp(){
  c = 0; d = 1; i = k;
  while (i >= 0)
    i = i-1; c = c*2;
    d = (d*d) \% n;
    if (b(i) = 1)
       c = c + 1;
      d = (d*a) \% n;
```

Hyperproperties

```
Modeled
 Figure: Snippet of Modular
  exponentiation in RSA.
                                   as non-
void mexp(){
                                 deterministic
  c = 0; d = 1; i = k;
                                    choice
  while (i >= 0)
     i = i - 1; c = c
     d = (d*d) \% \mathbf{A}
       c = c + 1;
       d = (d*a) \% n;
```

Hyperproperties

```
Modeled
  Figure: Snippet of Modular
   exponentiation in RSA.
                                    as non-
void mexp(){
                                  deterministic
   c = 0; d = 1; i = k;
                                     choice
   while (i >= 0)
     i = i - 1; c = c
     d = (d*d) \% \mathbf{A}
        c = c + 1;
        d = (d*a) \% n;
Lack of code in
 else causes
    failure
```

Hyperproperties

```
Modeled
  Figure: Snippet of Modular
    exponentiation in RSA.
                                                   as non-
                                                deterministic
void mexp(){
    c = 0; d = 1; i = k;
                                                    choice
    while (i >= 0)
                                                   \forall \hat{\sigma} . \forall \hat{s}(\hat{\sigma}) . \forall \hat{s}'(\hat{\sigma}) . \left( \mathbb{R}_{\hat{s}}(\lozenge \text{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\lozenge \text{end}_{\hat{s}'}) \right)
        i = i - 1; c = q
       d = (d*d) \% M;
        if (b(i) = 1)
           c = c + 1;
           d = (d*a) \% n;
Lack of code in
  else causes
      failure
```

```
Modeled
   Figure: Snippet of Modular
     exponentiation in RSA.
                                                      as non-
                                                  deterministic
void mexp(){
    c = 0; d = 1; i = k;
                                                      choice
    while (i >= 0)
                                                     \forall \hat{\sigma} . \forall \hat{s}(\hat{\sigma}) . \forall \hat{s}'(\hat{\sigma}) . \left( \mathbb{R}_{\hat{s}}(\lozenge \text{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\lozenge \text{end}_{\hat{s}'}) \right)
        i = i - 1; c =
        d = (d*d) \% \mathbf{A}
            c = c + 1;
            d = (d*a) \% n
Lack of code in
  else causes
      failure
```

Hyperproperties

Probabilistic Conformance

Conclusion

Figure: (Left) Model of a fair 6-sided dice. (Right) Model of the Knuth-Yao algorithm to simulate the dice.

Hyperproperties

Probabilistic Conformance

Hyperproperties

00000

Figure: (Left) Model of a fair 6-sided dice. (Right) Model of the Knuth-Yao algorithm to simulate the dice.

Hyperproperties

00000

Figure: (Left) Model of a fair 6-sided dice. (Right) Model of the Knuth-Yao algorithm to simulate the dice.

$$\exists \hat{\sigma} \,.\, \forall \hat{s}(\hat{\sigma}) \,.\, \exists \hat{s}'(\hat{\sigma}) \,.\, \mathsf{dieInit}_{\hat{s}} \to \left(\phi \land \mathbb{R}_{\hat{s}'}(F(\bigvee_{l=1}^{6} (die=l)_{\hat{s}'})) < 4 \right)$$

$$\phi = \operatorname{coinInit}_{\hat{s}'} \wedge \bigwedge_{l=1}^{6} \left(\mathbb{P}(F(die = l)_{\hat{s}}) = \mathbb{P}(F(die = l)_{\hat{s}'}) \right)$$

Probabilistic Conformance

Figure: (Left) Model of a fair 6-sided dice. (Right) Model of the Knuth-Yao algorithm to simulate the dice.

$$\exists \hat{\sigma} \,.\, \forall \hat{s}(\hat{\sigma}) \,.\, \exists \hat{s}'(\hat{\sigma}) \,.\, \mathsf{dieInit}_{\hat{s}} \to \left(\phi \land \mathbb{R}_{\hat{s}'}(F(\bigvee_{l=1}^{6} (die=l)_{\hat{s}'})) < 4 \right)$$

$$\phi = \operatorname{coinInit}_{\hat{s}'} \land \bigwedge^{6} \left(\mathbb{P}(F(die = l)_{\hat{s}}) = \mathbb{P}(F(die = l)_{\hat{s}'}) \right)$$

Probability distribution of die faces should be the same

Probabilistic Conformance

Figure: (Left) Model of a fair 6-sided dice. (Right) Model of the Knuth-Yao algorithm to simulate the dice.

Modeled as nondeterministic choices from each state

imiting solutions to within 4 tosses! $\exists \hat{\sigma} \,.\, \forall \hat{s}(\hat{\sigma}) \,.\, \exists \hat{s}'(\hat{\sigma}) \,.\, \mathsf{dieInit}_{\hat{s}} \to \left(\phi \land \mathbb{R}_{\hat{s}'}(F(\bigvee (die = l)_{\hat{s}'})) < 4 \right)$ $\phi = \operatorname{coinInit}_{\hat{s}'} \land \bigwedge \left(\mathbb{P}(F(die = l)_{\hat{s}}) = \mathbb{P}(F(die = l)_{\hat{s}'}) \right)$

Rewards helped us filter efficient solutions

Probability distribution of die faces should be the same

Methodology

Applications

Hyperproperties

Conclusion

Multi-agent path planning

Applications

Multi-agent path planning

Hyperproperties

$$\begin{split} \varphi_{target} &= \forall \hat{\sigma} \,.\, \forall \hat{s}(\hat{\sigma}) \,.\, \forall \hat{s}'(\hat{\sigma}) \,.\, \psi \to \left(\mathbb{R}_{\hat{s}}(\lozenge \mathsf{end}_{\hat{s}}) < \mathbb{R}_{\hat{s}'}(\lozenge \mathsf{end}_{\hat{s}'})\right) \\ \psi &= \left(\mathsf{start}_{1\hat{s}} \,\land\, \mathsf{start}_{2\hat{s}'} \,\land\, \mathbb{P}(\lozenge \mathsf{end}_{\hat{s}}) = 1 \,\land\, \mathbb{P}(\lozenge \mathsf{end}_{\hat{s}'}) = 1\right) \end{split}$$

Hyperproperties

00000

$$\begin{split} \varphi_{target} &= \forall \hat{\sigma} \,.\, \forall \hat{s}(\hat{\sigma}) \,.\, \forall \hat{s}'(\hat{\sigma}) \,.\, \psi \to \left(\mathbb{R}_{\hat{s}}(\lozenge \mathsf{end}_{\hat{s}}) < \mathbb{R}_{\hat{s}'}(\lozenge \mathsf{end}_{\hat{s}'})\right) \\ \psi &= \left(\mathsf{start}_{1\hat{s}} \,\land\, \mathsf{start}_{2\hat{s}'} \,\land\, \mathbb{P}(\lozenge \mathsf{end}_{\hat{s}}) = 1 \,\land\, \mathbb{P}(\lozenge \mathsf{end}_{\hat{s}'}) = 1\right) \end{split}$$

Ensures both

robots reach goal

state

Hyperproperties

Figure: The maze on the top satisfies φ_{target} , while the bottom one violates it.

Hyperproperties

00000

Ensures both robots reach goal state

Multi-agent path planning

Hyperproperties

00000

Ensures both robots reach goal state

Hyperproperties

00000

Rewards helped us analyze cost of path planning

Ensures both

robots reach goal

state

Methodology

Conclusion

Hyperproperties

$$\begin{split} \exists \hat{\sigma}_1 \,.\, \exists \hat{\sigma}_2 \,.\, \forall \hat{s}(\hat{\sigma}_1) \,.\, \forall \hat{s}'(\hat{\sigma}_2) \,.\, \Big((h > 0)_{\hat{s}} \,\wedge\, (h \leq 0)_{\hat{s}'} \Big) \to \\ \Big(\mathbb{R}_{\hat{s}}(\lozenge \,\operatorname{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\lozenge \,\operatorname{end}_{\hat{s}'}) \Big) \end{split}$$

Hyperproperties

$$\begin{split} \exists \hat{\sigma}_1 \,.\, \exists \hat{\sigma}_2 \,.\, \forall \hat{s}(\hat{\sigma}_1) \,.\, \forall \hat{s}'(\hat{\sigma}_2) \,.\, \Big((h > 0)_{\hat{s}} \,\wedge\, (h \leq 0)_{\hat{s}'} \Big) \to \\ \Big(\mathbb{R}_{\hat{s}}(\lozenge \,\operatorname{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\lozenge \,\operatorname{end}_{\hat{s}'}) \Big) \end{split}$$

Hyperproperties

$$\begin{split} \exists \hat{\sigma}_1 \,.\, \exists \hat{\sigma}_2 \,.\, \forall \hat{s}(\hat{\sigma}_1) \,.\, \forall \hat{s}'(\hat{\sigma}_2) \,.\, \Big((h > 0)_{\hat{s}} \,\wedge\, (h \leq 0)_{\hat{s}'} \Big) \to \\ \Big(\mathbb{R}_{\hat{s}}(\lozenge \,\operatorname{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\lozenge \,\operatorname{end}_{\hat{s}'}) \Big) \end{split}$$

When
$$\hat{s} = s_0$$
 When $\hat{s}' = s_1$ $\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{3}{4} * 1 + \frac{1}{4} * 1 = 4$ $\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{2}{3} * 1 + \frac{1}{3} * 1 = 4$

Hyperproperties

00000

$$\begin{split} \exists \hat{\sigma}_1 \,.\, \exists \hat{\sigma}_2 \,.\, \forall \hat{s}(\hat{\sigma}_1) \,.\, \forall \hat{s}'(\hat{\sigma}_2) \,.\, \Big((h > 0)_{\hat{s}} \,\wedge\, (h \leq 0)_{\hat{s}'} \Big) \to \\ \Big(\mathbb{R}_{\hat{s}}(\diamondsuit \, \operatorname{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\diamondsuit \, \operatorname{end}_{\hat{s}'}) \Big) \end{split}$$

When
$$\hat{s} = s_0$$
 When $\hat{s}' = s_1$
$$\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{3}{4} * 1 + \frac{1}{4} * 1 = 4$$

$$\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{2}{3} * 1 + \frac{1}{3} * 1 = 4$$

Conclusion

✓ Compare rewards across computation trees.

$$\mathbb{R}_{\hat{s}}(F \operatorname{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(F \operatorname{end}_{\hat{s}'})$$

$$\begin{split} \exists \hat{\sigma}_1 \,.\, \exists \hat{\sigma}_2 \,.\, \forall \hat{s}(\hat{\sigma}_1) \,.\, \forall \hat{s}'(\hat{\sigma}_2) \,.\, \Big((h>0)_{\hat{s}} \,\wedge\, (h\leq 0)_{\hat{s}'} \Big) \to \\ \Big(\mathbb{R}_{\hat{s}}(\diamondsuit \, \operatorname{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\diamondsuit \, \operatorname{end}_{\hat{s}'}) \Big) \end{split}$$

When
$$\hat{s} = s_0$$
 When $\hat{s}' = s_1$
$$\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{3}{4} * 1 + \frac{1}{4} * 1 = 4$$

$$\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{2}{3} * 1 + \frac{1}{3} * 1 = 4$$

$$\begin{split} \exists \hat{\sigma}_1 \,.\, \exists \hat{\sigma}_2 \,.\, \forall \hat{s}(\hat{\sigma}_1) \,.\, \forall \hat{s}'(\hat{\sigma}_2) \,.\, \Big((h>0)_{\hat{s}} \,\wedge\, (h\leq 0)_{\hat{s}'} \Big) \to \\ \Big(\mathbb{R}_{\hat{s}}(\diamondsuit \, \operatorname{end}_{\hat{s}}) = \mathbb{R}_{\hat{s}'}(\diamondsuit \, \operatorname{end}_{\hat{s}'}) \Big) \end{split}$$

When
$$\hat{s} = s_0$$
 When $\hat{s}' = s_1$ $\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{3}{4} * 1 + \frac{1}{4} * 1 = 4$ $\mathbb{R}_{\hat{s}}(\lozenge \text{ end}_{\hat{s}}) = 3 + \frac{2}{3} * 1 + \frac{1}{3} * 1 = 4$

- Different Cases:
 - ✓ Compare rewards across computation trees.

$$\mathbb{R}_{\hat{\mathfrak{s}}}(F \operatorname{end}_{\hat{\mathfrak{s}}}) = \mathbb{R}_{\hat{\mathfrak{s}}'}(F \operatorname{end}_{\hat{\mathfrak{s}}'})$$

✓ Compute rewards in one tree until we reach a state in another.

$$\mathbb{R}_{\hat{s}} \left(\mathsf{good}_{\hat{s}} \ U \ \mathsf{end}_{\hat{s}'} \right) < 4$$

Conclusion

00

$$\mathbb{R}(\bigcirc \text{good}) = 3 + \frac{1}{3} * 3 + \frac{1}{3} * 1 + ? = \text{undefined}$$

Hyperproperties

00000

$$\mathbb{R}(\bigcirc \text{good}) = 3 + \frac{1}{3} * 3 + \frac{1}{3} * 1 + ? = \text{undefined}$$

Rewards is undefined if reachability probability is

$$\mathbb{R}(\bigcirc \text{good}) = 3 + \frac{1}{3} * 3 + \frac{1}{3} * 1 + ? = \text{undefined}$$

Rewards is undefined if reachability probability is

Challenge: Propagation of this undefinedness

$$\mathbb{R}(\bigcirc \text{good}) = 3 + \frac{1}{3} * 3 + \frac{1}{3} * 1 + ? = \text{undefined}$$

Rewards is undefined if reachability probability is

- Challenge: Propagation of this undefinedness
- Easy Solution:

Any component of a property undefined → overall result is undefined.

$$\mathbb{R}(\bigcirc \text{good}) = 3 + \frac{1}{3} * 3 + \frac{1}{3} * 1 + ? = \text{undefined}$$

Rewards is undefined if reachability probability is

- Challenge: Propagation of this undefinedness
- Easy Solution:

Any component of a property undefined → overall result is undefined.

• Our guiding concept:

Overall definedness can be concluded from partial definedness of a property.

$$\mathbb{R}(\bigcirc \text{good}) = 3 + \frac{1}{3} * 3 + \frac{1}{3} * 1 + ? = \text{undefined}$$

Rewards is undefined if reachability probability is

- Challenge: Propagation of this undefinedness
- Easy Solution:

Any component of a property undefined → overall result is undefined.

• Our guiding concept:

Overall definedness can be concluded from partial definedness of a property.

Methodology

Hyperproperties

Conclusion

Overview of Algorithm

Input MDP satisfies the HyperPCTL formula

iff

SMT encoding is satisfied

Overview of Algorithm

Input MDP satisfies the HyperPCTL formula

iff

SMT encoding is satisfied

Hyperproperties

Conclusion

Methodology

Encoding for
$$\varphi$$
 = Encoding for $\mathbb{P}(\bigcirc \text{ end}_{\hat{s}}) \land (\text{val}_{s_0,\mathbb{P}(\bigcirc \text{ end}_{\hat{s}})} \neq 1 \lor \neg \text{def}_{s_0,\mathbb{P}(\bigcirc \text{ end}_{\hat{s}})}) \leftrightarrow \neg \text{def}_{s_0,\varphi} \land \dots$

$$[\text{def}_{s_0,\varphi} \land \text{act}_{s_0} = \alpha] \rightarrow [\text{val}_{s_0,\varphi} = 3 + (\frac{3}{4} * 1 + \frac{1}{4} * 1)] \land \dots$$

$$[\text{def}_{s_0,\varphi} \land \text{act}_{s_0} = \beta] \rightarrow [\text{val}_{s_0,\varphi} = 3 + (\frac{1}{2} * 1 + \frac{1}{2} * 1)] \land \dots$$

Encoding for
$$\varphi = \operatorname{Encoding} \text{ for } \mathbb{P}(\bigcirc \operatorname{end}_{\hat{s}}) \bigwedge$$

$$(\operatorname{val}_{s_0,\mathbb{P}(\bigcirc} \operatorname{end}_{\hat{s}}) \neq 1 \vee \neg \operatorname{def}_{s_0,\mathbb{P}(\bigcirc} \operatorname{end}_{\hat{s}})) \leftrightarrow \neg \operatorname{def}_{s_0,\varphi} \bigwedge \dots$$

$$[\operatorname{def}_{s_0,\varphi} \wedge \operatorname{act}_{s_0} = \alpha] \to [\operatorname{val}_{s_0,\varphi} = 3 + (\frac{3}{4} * 1 + \frac{1}{4} * 1)] \bigwedge$$

$$[\operatorname{def}_{s_0,\varphi} \wedge \operatorname{act}_{s_0} = \beta] \to [\operatorname{val}_{s_0,\varphi} = 3 + (\frac{1}{2} * 1 + \frac{1}{2} * 1)] \bigwedge \dots$$

Hyperproperties

00000

Hyperproperties

00000

Case		$\mathbf{V}\mathbf{R}$	Running time (s)		#SMT	#states	#transitions	
study			Encoding	Solving	Total	variables		
та	1-bit key	×	0.11	0.01	0.12	344	8	10
	16-bit key	×	16.41	3.69	20.10	19244	68	100
	30-bit key	×	143.49	44.64	188.13	62868	124	184
	45-bit key	×	774.53	1304.98	2079.51	137448	184	274
PC	s=(0)	✓	5.03	2.03	7.06	7281	20	186
	s=(0,1,2)	✓	6.66	8.91	15.57	7281	20	494
FC	s=(0,,4)	✓	8.82	35	43.82	7281	20	802
	s=(0,,6)	✓	11.64	53.05	64.69	7281	20	1110
	3x3	✓	0.87	0.05	0.92	2179	18	66
	3x3	×	0.93	0.05	0.98	2179	18	66
	4x4	✓	3.55	0.28	3.83	6561	32	160
RO	4x4	×	3.43	0.25	3.68	6561	32	148
100	5x5	✓	13.07	0.5	13.57	15651	50	250
	5x5	×	13.19	0.98	14.17	15651	50	250
	6x6	√	44.52	1.04	45.56	32041	72	398
	6x6	×	44.65	7.48	52.13	32041	72	398
HS	n=3	✓	0.1	0.01	0.11	489	8	28
	n=5	√	0.95	0.13	1.08	2369	32	244
	n=3	✓	0.08	0.01	0.09	169	7	21
IJ	n=4	√	0.24	0.04	0.28	601	15	56
	n=5	✓	0.89	0.33	1.22	2233	31	140
	n=6	✓	3.93	19.39	23.32	8569	63	336

Experimental results: VR: Verification result. TA: Timing attack. PC: Probabilistic conformance. RO: Robotics example. HS: Herman's algorithm. IJ: Israeli-Jaflon's algorithm. ✓: the result is true. X: the result is false.

Case		VR	Running time (s)			#SMT	#states	#transitions
study			Encoding	Solving	Total	variables	"	
TA	1-bit key	×	0.11	0.01	0.12	344	8	10
	16-bit key	×	16.41	3.69	20.10	19244	68	100
	30-bit key	×	143.49	44.64	188.13	62868	124	184
	45-bit key	×	774.53	1304.98	2079.51	137448	184	274
PC	s=(0)	✓	5.03	2.03	7.06	7281	20	186
	s=(0,1,2)	✓	6.66	8.91	15.57	7281	20	494
	s=(0,,4)	✓	8.82	35	43.82	7281	20	802
	s=(0,,6)	√	11.64	53.05	64.69	7281	20	1110
RO	3x3	√	0.87	0.05	0.92	2179	18	66
	3x3	×	0.93	0.05	0.98	2179	18	66
	4x4	✓	3.55	0.28	3.83	6561	32	160
	4x4	×	3.43	0.25	3.68	6561	32	148
	5x5	✓	13.07	0.5	13.57	15651	50	250
	5x5	×	13.19	0.98	14.17	15651	50	250
	6x6	✓	44.52	1.04	45.56	32041	72	398
	6x6	×	44.65	7.48	52.13	32041	72	398
HS	n=3	✓	0.1	0.01	0.11	489	8	28
HS	n=5	✓	0.95	0.13	1.08	2369	32	244
	n=3	✓	0.08	0.01	0.09	169	7	21
IJ	n=4	✓	0.24	0.04	0.28	601	15	56
10	n=5	✓	0.89	0.33	1.22	2233	31	140
	n=6	✓	3.93	19.39	23.32	8569	63	336

Experimental results: VR: Verification result. TA: Timing attack. PC: Probabilistic conformance. RO: Robotics example. HS: Herman's algorithm. IJ: Israeli-Jaflon's algorithm. ✓: the result is true. ×: the result is false.

Case		VR	Running time		s)	#SMT	#states	#transitions
study			Encoding	Solving	Total	variables		
та	1-bit key	×	0.11	0.01	0.12	344	8	10
	16-bit key	×	16.41	3.69	20.10	19244	68	100
	30-bit key	×	143.49	44.64	188.13	62868	124	184
	45-bit key	×	774.53	1304.98	2079.51	137448	184	274
PC	s=(0)	✓	5.03	2.03	7.06	7281	20	186
	s=(0,1,2)	✓	6.66	8.91	15.57	7281	20	494
1.0	s=(0,,4)	√	8.82	35	43.82	7281	20	802
	s=(0,,6)	√	11.64	53.05	64.69	7281	20	1110
	3x3	✓	0.87	0.05	0.92	2179	18	66
	3x3	×	0.93	0.05	0.98	2179	18	66
	4x4	√	3.55	0.28	3.83	6561	32	160
RO	4x4	×	3.43	0.25	3.68	6561	32	148
I NO	5x5	√	13.07	0.5	13.57	15651	50	250
	5x5	×	13.19	0.98	14.17	15651	50	250
	6x6	✓	44.52	1.04	45.56	32041	72	398
	6x6	×	44.65	7.48	52.13	32041	72	398
HS	n=3	✓	0.1	0.01	0.11	489	8	28
	n=5	✓	0.95	0.13	1.08	2369	32	244
	n=3	✓	0.08	0.01	0.09	169	7	21
IJ	n=4	√	0.24	0.04	0.28	601	15	56
	n=5	✓	0.89	0.33	1.22	2233	31	140
	n=6	✓	3.93	19.39	23.32	8569	63	336

Experimental results: VR: Verification result. TA: Timing attack. PC: Probabilistic conformance. RO: Robotics example. HS: Herman's algorithm. IJ: Israeli-Jaflon's algorithm. ✓: the result is true. X: the result is false.

Conclusion

Logic

Extended HyperPCTL to express reward operators 00

Logic

Extended HyperPCTL to express reward operators

Algorithm

Provided algorithms to evaluate state-based reward operators

Logic

Extended HyperPCTL to express reward operators

Algorithm

Provided algorithms to evaluate state-based reward operators

Implementation

Extended our tool
HyperPROB¹ to accommodate
restricted rewards.

1. 'HYPERPROB: A Model Checker for Probabilistic Hyperproperties', Dobe, Ábrahám, Bartocci, Bonakdarpour, FM 2021.