DÉPARTEMENT DE MATHÉMATIQUES

1^{er}A. Master

_____T.D.3 (Modèles ARIMA)_____

EXERCICE 1. Calculer la moyenne, la variance et les autocovariances du modèle stationnaire suivant:

$$X_t = \mu + \xi_t + \alpha \xi_{t-1} + \beta \xi_{t-3}, \quad \text{où } \xi_t \sim BB(0, \sigma^2),$$

en déduire qu'il s'agit d'une moyenne mobile MA(q) (à préciser l'ordre q).

Puis calculer la densité spectrale de X_t .

EXERCICE 2. Soit $X_t \sim AR(2)$ défini comme solution de:

$$X_t = \theta X_{t-1} + \theta^2 X_{t-2} + \xi_t, \qquad \xi_t \sim BB(0, \sigma^2).$$

- 1) Pour quelles valeurs de θ une solution stationnaire existe-t- elle?
- 2) Les estimateurs des moments suivants ont été obtenus après l'observation de $X_1,...,X_{100}$:

$$\hat{\gamma}(0) = 6.06, \quad \hat{\rho}(1) = 0.687 \quad et \quad \hat{\rho}(2) = 0.610.$$

Donner une estimation de θ et σ^2 .

3) Calculer la densité spectrale de X_t .

EXERCICE 3. Considérons le modèle ARIMA(2,0,2)

$$X_t - \frac{5}{6}X_{t-1} + \frac{1}{6}X_{t-2} = \xi_t - \xi_{t-1} + \frac{1}{4}\xi_{t-2}, \qquad \xi_t \sim BB(0, \sigma^2).$$

- a) Est-ce que ce processus est stationnaire? Si oui, Donner sa fonction d'autocorrélation.
- b) Montrer que cette représentation n'est pas minimale (canonique).
- c) Donner alors, la représentation minimale ARIMA(1,0,1) de ce modèle.
- d) Calculer les inverses des polynômes A(L) et M(L) qui on resultent.
- e) Donner les représentation $AR(\infty)$ et $MA(\infty)$ du modèle canonique.
- f) Calculer la densité spectrale de X_t .

DÉPARTEMENT DE MATHÉMATIQUES

1^{ER}A. Master

_____T.D.4 (Prévision de BOX - JENKINS des Modèles ARIMA)_____

EXERCICE 1. Montrer que la prévision \hat{X}_{T+h} d'un modèle AR(1) centré, satisfait la recursion de YULE WALKER :

$$\hat{X}_{T+h} = \alpha \hat{X}_{T+h-1} = \alpha^h X_T.$$

Qelle est la forme de \hat{X}_{T+h} dans un modèle AR(1) de moyenne μ ?

EXERCICE 2. Considérons le modèle AR(2):

$$\Psi(L) X_t = (1 - \alpha L)(1 - \beta L) X_t = \xi_t,$$

avec α, β étant les racines de $\Psi(z) = 0$.

1) Montrer que les prévisions de BOX - JENKINS \hat{X}_{T+h} au temps T satisfait:

$$\hat{X}_{T+h} = (\alpha + \beta) \, \hat{X}_{T+h-1} - \alpha \beta \hat{X}_{T+h-2}.$$

En déduire qu'ils peuvent s'éxprimer sous la forme

$$\hat{X}_{T+h} = A(T) \cdot \alpha^h + B(T) \cdot \beta^h$$
.

2) Que deviendera cette valeur quand h tend vers ∞ .

EXERCICE 3. Considérons le modèle ARMA(1,0,1) stationnaire et canonique:

$$(1 - \alpha L) X_t = (1 - \beta L) \xi_t, \quad |\alpha| < 1 \text{ et } |\beta| < 1.$$

On s'interèsse pour $t \in \mathbb{Z}$ à la prévision optimale d'horizon 1, i.e., \hat{X}_{T+1} .

1) Montrer qu'il existe une série absolument convergente $\sum a_k$ telle que

$$X_{T+1} = \sum_{k=1}^{+\infty} a_k X_{T+1-k},$$

et donner sont terme générale.

2) Montrer que

$$\hat{X}_{T+h} = \alpha^{h-1} X_{T+1}, \qquad h \ge 1,$$

$$\hat{X}_{T+1} = \alpha X_T + \beta \xi_T = (\alpha + \beta) \sum_{j=0}^{+\infty} \beta^j X_{T-j}.$$

Est ce que ces résultats restent vrais pour $\alpha = 1$?