A Study on the Impedance Calculation by using Equivalent Model in Catenary System

Minkyu Kim*, Minseok Kim**, Daehwan Kim*** and Jongwoo Lee[†]

Abstract

Electric railroad systems consist of rolling stock, track, signal and catenary system. In the catenary system, one of the most important factors is the impedance according to the design and characteristic. Before the catenary system is designed, the impedance should be precedently researched. The railroad catenary system is complex system which is composed by five conductors. The five conductors classify up and down feeders, up and down contact wire group, rail group. Therefore, we should compose the catenary system of the equivalent five-conductors model. In this paper, we suggest a geometrical model and a equivalent conductor model by using geometric mean radius of five conductors in the catenary system. Also, we calculate demanded parameter values in the model. By using those, line constants of five conductors are analyzed by applying the equivalent method called as the condensed joint matrix.

Keywords: Impedance, Catenary system, Line constants, Conductor model, Electric railroad

1. Introduction

A catenary system is the most important in the electric railroad. Impedance is a electrical factor of the catenary system and influenced upon the system characteristic. Therefore, impedance is estimated by preceding research. The catenary system is considered by the equivalent five-conductors model in the electrical aspect. Five-conductors consist of up and down feeders, up and down contact wire group, rail group. Contact and messenger wires are included in the contact wire group because of a conductor by using droppers. Also, rails, overhead protection wires and ground wires are included in the rail group due to common earth [1].

On account of existing five conductors, the impedance divides into the self impedance and mutual impedance. The self impedance defines a drop of electric pressure rates per unit length regarding the feedback current to the ground through the catenary. The mutual impedance

defines the induced voltage rates from the current of a conductor to another conductor [2].

There is a modeling method from many conductors to one equivalent conductor by using the geometric mean radius. In case of rail group in the catenary system, distance between conductors is far. So, the method using the geometric mean radius is not able to be used.

This thesis shows the reducing process about the real system of the filed by using the proposed theory. Namely, the catenary system is showed by the matrix and applied to the condensed joint matrix. Also, the impedance of reduced system is provided.

2. Composition of Catenary System

Fig. 1 is geometric structures in the catenary system. As shown Fig. 1, up and down rails, overhead protection wires and ground wires are connected by the common earth [3]. As shown Fig. 2, the contact wire and messenger wire are connected at intervals of 4.50[m] or 6.75[m].

2.1 Self Impedance on Feeder and Wires

As shown Fig. 3, self impedance on a feeder and wires is calculated by using Carson law. The self impedance is gained by using length of imagined earth return path.

[†] Corresponding author: Professor, Graduate School of Railroad, Seoul National University of Technology, Seoul, Korea

E-mail: saganlee@snut.ac.kr

^{*} Senior staff, Seoulmetro Corporation, Seoul, Korea

^{**} Ph. D. Candidate, Graduate School of Railroad, Seoul National University of Techn-Logy, Seoul, Korea

^{***} Senior staff, Seoul Metropolitan Rapid Transit Corporation, Seoul, Korea

Fig. 1 Geometric structure in catenary system

Fig. 2 Internals of droppers

Fig. 3 Relation for self impedance among feeder, wires and earth

The complex depth of earth return method assumes that the current in conductor returns through an imagined earth path located directly under the original conductor at a depth of (h+2p) as shown Fig. 3, in which prime(') refers to the imagined earth return conductor of conductor and p to the skin depth of the ground [4].

The length of imagined earth return path is the sum of twice height from the earth to a conductor and the skin depth of ground. As shown (11), unit on the skin depth of ground is complex. So, the length of imagined earth return path is complex. Equation (1) \sim (5) are the self impedance on a feeder and wires [5].

$$Z_{f} = R_{f} + j\omega \frac{\mu_{0}}{2\pi} ln \frac{2(h_{f} + \rho)}{r_{f}}$$
 (1)

$$Z_{c} = R_{c} + j\omega \frac{\mu_{0}}{2\pi} ln \frac{2(h_{c} + \rho)}{r_{c}}$$
 (2)

$$Z_{m} = R_{m} + j\omega \frac{\mu_{0}}{2\pi} ln \frac{2(h_{m} + \rho)}{r_{m}}$$
(3)

$$Z_{p} = R_{p} + j\omega \frac{\mu_{0}}{2\pi} ln \frac{2(h_{p} + \rho)}{r_{p}}$$
 (4)

$$Z_{g} = R_{g} + j \omega \frac{\mu_{0}}{2\pi} ln \frac{2(h_{g} + \rho)}{r_{g}}$$
 (5)

$$R_{\rm f} = \frac{1_{\rm f}}{\sigma_{\rm e} S_{\rm f}} \tag{6}$$

$$R_{c} = \frac{1_{c}}{\sigma_{c} S_{c}} \tag{7}$$

$$R_{\rm m} = \frac{1_{\rm m}}{\sigma_{\rm m} S_{\rm m}} \tag{8}$$

$$R_{p} = \frac{1_{p}}{\sigma_{p} S_{p}} \tag{9}$$

$$R_{g} = \frac{1_{g}}{\sigma_{g} S_{g}} \tag{10}$$

$$\rho = \sqrt{\frac{p}{j\omega\mu_0}} \tag{11}$$

 $R_{\rm f},\,R_{\rm c},\,R_{\rm m},\,R_{\rm p}$ and $R_{\rm g}$ are the resistance on a feeder, contact, messenger, overhead protection and ground wire. Second term means the self inductance in (1). ω is the angular frequency and $\sigma_{\rm f}$ $\sigma_{\rm c},\,\sigma_{\rm m},\,\sigma_{\rm p}$ and $\sigma_{\rm g}$ are the conductivity of a feeder, contact, messenger, overhead protection and ground wire. $l_{\rm f},\,l_{\rm c},\,l_{\rm m},\,l_{\rm p}$ and $l_{\rm g}$ are the length of a feeder, contact,

Fig. 4 Earth return path

messenger, overhead protection and ground wire. S_f , S_c , S_m , S_p and S_g are the cross section on a feeder, contact, messenger, overhead protection and ground wire. μ_0 is the permeability in free space. ρ is the skin depth of ground and r_f , r_c , r_m , r_p and r_g are the radius of a feeder, contact, messenger, overhead protection and ground wire. ρ is the resistance rate on ground. Fig. 4 is the imagined earth return path.

2.2 Self Impedance on Rail

Equation (12) is the resistance of a rail [6].

$$R_{r} = \frac{l_{r}}{\sigma_{r} S_{r}} \tag{12}$$

where l_r is the length of a rail and σ_r is the conductivity of a rail. S_r is the cross section on a rail. Equation (13) is self inductance on a rail by using the Ampere law [6].

$$L_{r} = \frac{l_{r}\mu}{8\pi} + \frac{l_{r}\mu_{0}}{2\pi} ln \left(\frac{b_{r} - r_{r}}{r_{r}}\right)$$
 (13)

where b_r is the distance between rails and r_r is the radius of cross section on a rail. μ is the permeability of a rail. Equation (14) is the self impedance on a rail.

$$Z_{r} = R_{r} + j\omega L_{r} \tag{14}$$

2.3 Mutual Impedance Between Feeder and Wires

Equation $(15) \sim (24)$ are the mutual impedance between a feeder and wires with reference to Fig. 5 [7].

$$Z_{fc} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_f + h_c + 2\rho)^2 + x_{fc}^2}}{\sqrt{(h_f - h_c)^2 + x_{fc}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{fe}}{D_{fc}}$$
(15)

$$Z_{fm} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_f + h_m + 2\rho)^2 + x_{fm}^2}}{\sqrt{(h_f - h_m)^2 + x_{fm}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{fm}}{D_{fm}}$$
 (16)

$$Z_{fp} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_f + h_p + 2\rho)^2 + x_{fp}^2}}{\sqrt{(h_f - h_c)^2 + x_{fp}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{fp}}{D_{fp}}$$
(17)

Fig. 5 Relation for mutual impedance among feeder, wires and earth

$$Z_{fg} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_f + h_g + 2\rho)^2 + x_{fg}^2}}{\sqrt{(h_f - h_g)^2 + x_{fg}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{fg}}{D_{fg}}$$
(18)

$$Z_{cm} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_f + h_m + 2\rho)^2 + x_{cm}^2}}{\sqrt{(h_c - h_m)^2 + x_{cm}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{cm}}{D_{cm}}$$
(19)

$$Z_{\rm cp} = j\omega \frac{\mu_0}{2\pi} \ln \frac{\sqrt{(h_{\rm c} + h_{\rm p} + 2\rho)^2 + x_{\rm cp}^2}}{\sqrt{(h_{\rm c} - h_{\rm p})^2 + x_{\rm cp}^2}} = j\omega \frac{\mu_0}{2\pi} \ln \frac{D'_{\rm cp}}{D_{\rm cp}}$$
(20)

$$Z_{cg} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_c + h_g + 2\rho)^2 + x_{cg}^2}}{\sqrt{(h_c - h_g)^2 + x_{cg}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{cg}}{D_{cg}}$$
(21)

$$Z_{mp} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_m + h_p + 2\rho)^2 + x_{mp}^2}}{\sqrt{(h_m - h_p)^2 + x_{mp}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{mp}}{D_{mp}} (22)$$

$$Z_{mg} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_m + h_g + 2\rho)^2 + x_{mg}^2}}{\sqrt{(h_m - h_g)^2 + x_{mg}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{mg}}{D_{mg}}$$

$$Z_{pg} = j\omega \frac{\mu_0}{2\pi} ln \frac{\sqrt{(h_p + h_g + 2\rho)^2 + x_{pg}^2}}{\sqrt{(h_p - h_g)^2 + x_{pg}^2}} = j\omega \frac{\mu_0}{2\pi} ln \frac{D'_{pg}}{D_{pg}}$$
(24)

2.4 Mutual Impedance Among Feeder, Wires and Rails

As shown Fig. 6, the model for calculating mutual impedance is as below.

Return current which flows to the opposite direction of the feeders and wires is considered to calculate mutual impedance among feeder, wires and rails [8]. Equation $(25)\sim(30)$ are the mutual impedance among a feeder,

Fig. 6 Relation among feeder, wires and rails

wires and a rail with reference to Fig. 6.

$$Z_{fr} = j\omega \frac{\mu_0 l_r}{\pi} ln \left(\frac{D_{fr} - r_f}{r_r} \right)$$
 (25)

$$Z_{cr} = j\omega \frac{\mu_0 l_r}{\pi} ln \left(\frac{D_{cr} - r_c}{r_r} \right)$$
 (26)

$$Z_{mr} = j\omega \frac{\mu_0 l_r}{\pi} ln \left(\frac{D_{mr} - r_m}{r_r} \right)$$
 (27)

$$Z_{pr} = j\omega \frac{\mu_0 l_r}{\pi} ln \left(\frac{D_{pr} - r_p}{r_r} \right)$$
 (28)

$$Z_{gr} = j\omega \frac{\mu_0 l_r}{\pi} ln \left(\frac{D_{gr} - r_g}{r_r} \right)$$
 (29)

$$Z_{rr} = j\omega \frac{\mu_0 l_r}{\pi} ln \left(\frac{D_{rr} - r_r}{r_r} \right)$$
 (30)

3. Equivalent Circuit for Catenary System

There are three equivalent circuit models. One is the self impedance in equivalent conductor model. Another is the mutual impedance between conductor group and a conductor. The other is the mutual impedance between conductor group and conductor group [9].

3.1 Self Impedance in Equivalent Conductor Model

As shown Fig. 7, two conductors are replaced with a conductor. In other words, the self impedance and mutual impedance in two conductors are substituted for self impedance [9,10].

Equation (31) is the self impedance in case that the cate-

Fig. 7 Equivalent model for two conductors

Fig. 8 Equivalent model between conductor group and conductor

nary system consists of the contact wire and messenger wire $(Z_1 \neq Z_2)$.

$$Z_{\rm T} = \frac{Z_{\rm c} \cdot Z_{\rm m} \cdot Z_{\rm cm}^2}{Z_{\rm c} + Z_{\rm m} - 2Z_{\rm cm}}$$
 (31)

Equation (32) is the self impedance in case of rails $(Z_1 = Z_2)$.

$$Z_{\mathrm{T}} = \frac{Z_r + Z_{rr}}{2} \tag{32}$$

3.2 Mutual Impedance between Conductor Group and Conductor

Fig.8 is the equivalent model between conductor group and a conductor [9,11].

Equation (33) is the mutual impedance between the contact wire group which consists of a contact and messenger wire and a feeder.

$$Z_{T3} = \frac{Z_{cf}(Z_{m} - Z_{cm}) + (Z_{mf}(Z_{c} - Z_{cf}))}{Z_{c} + Z_{m} - 2Z_{cm}}$$
(33)

Equation (34) is the mutual impedance for the rails and feeder.

$$Z_{T3} = \frac{Z_{rf_left} + Z_{rf_right}}{2}$$
 (34)

 $Z_{\rm rf_left}$ is the mutual impedance between a rail located on left and a feeder. $Z_{\rm rf_right}$ is the mutual impedance between a rail located on right and a feeder.

Fig. 9 Equivalent model between conductor groups

3.3 Mutual Impedance between Conductor Groups

Fig. 9 is the model for analyzing mutual impedance between conductor groups [9,12].

When there are the contact wire group and rails, (35) is the mutual impedance.

$$Z_{TT} = \frac{Z_{lr_left}(Z_m - Z_{cm}) + Z_{lr_right}(Z_c - Z_{cm})}{Z_c + Z_m - 2Z_{cm}}$$
(35)

 $Z_{\rm lr_left}$ is the mutual impedance between the contact wire group and a rail located on left. $Z_{\rm lr_right}$ is the mutual impedance between the contact wire group and a rail located on right. Equation (36) is the mutual impedance between up rails and down rails.

$$Z_{TT} = \frac{Z_{rr}_{1} + Z_{rr}_{2} + Z_{rr}_{3} + Z_{rr}_{4}}{4}$$
 (36)

 $Z_{\rm rr}$ is the mutual impedance between a up rail located on left and a down rail located on left. $Z_{\rm rr}$ is the mutual impedance between a up rail located on left and a down rail located on right. $Z_{\rm rr}$ is the mutual impedance between a up rail located on right and a down rail located on left. $Z_{\rm rr}$ is the mutual impedance between a up rail located on right and a down rail located on right.

Fig. 10 shows the self and mutual impedance on the feeder, contact wire and messenger wire. As the contact wire and messenger wire is connected by the dropper, the electric potential is same.

Equation (37) is the relation between the voltage and current.

$$\begin{bmatrix} V_{f} \\ V_{c} \\ 0 \end{bmatrix} = \begin{bmatrix} Z_{f} & Z_{fc} & Z_{fc} - Z_{fm} \\ Z_{cf} & Z_{c} & Z_{c} - Z_{cm} \\ Z_{cf} - Z_{mf} Z_{c} - Z_{mc} Z_{c} - Z_{mc} \end{bmatrix} \begin{bmatrix} I_{f} \\ I_{c} + I_{m} \\ -I_{m} \end{bmatrix}$$
(37)

Kron law called as the condensed joint matrix is applied to remove factors in three by three. So, the impedance on the messenger wire is included on the self impedance on the equivalent contact wire group and mutual impedance between the feeder and contact wire. Equation (38) is the self impedance and mutual impedance on the equivalent

Fig. 10 Equivalent model between feeder and contact wire group

Table 1 Geometric Structure in Catenary System

Up line	X[m]	Y[m]
rail_left	-2.87	0.6
$rail_{right}$	-1.43	0.6
feeder	-3.75	8.06
contact wire	-2.15	5.8
messenger wire	-3.75	6.76
overhead protection wire	-5.28	6.1
ground wire	-6.15	-0.75
Down line	X[m]	Y[m]
rail_ _{left}	1.43	0.6
$rail\{right}$	2.87	0.6
feeder	3.75	8.06
contact wire	2.15	5.8
messenger wire	2.15	6.76
overhead protection wire	5.28	6.1
ground wire	6.15	0.75

conductor group [9,13].

$$\begin{bmatrix} \mathbf{V}_{\mathbf{f}} \\ \mathbf{V}_{\mathbf{c}} \end{bmatrix} = \begin{bmatrix} \mathbf{Z'}_{\mathbf{f}} & \mathbf{Z'}_{\mathbf{fc}} \\ \mathbf{Z'}_{\mathbf{cf}} & \mathbf{Z'}_{\mathbf{c}} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{\mathbf{f}} \\ \mathbf{I}_{\mathbf{c}} + \mathbf{I}_{\mathbf{m}} \end{bmatrix}$$
(38)

$$Z'_{f} = Z_{f} - \frac{(Z_{cf} - Z_{mf}) + (Z_{fc} - Z_{fm})}{Z_{c} + Z_{m} - 2Z_{cm}}$$
(39)

$$Z'_{c} = Z_{f} - \frac{(Z_{c} - Z_{mc}) + (Z_{c} - Z_{cm})}{Z_{c} + Z_{m} - 2Z_{cm}}$$
(40)

$$Z'_{fc} = Z'_{c} - \frac{(Z_{c} - Z_{mc}) + (Z_{fc} - Z_{fm})}{Z_{c} + Z_{m} - 2Z_{cm}}$$
(41)

$$Z'_{cf} = Z'_{fc} \tag{42}$$

Table 1 Geometric Structure in Catenary System

Up line	X[m]	Y[m]
rail_ _{left}	-2.87	0.6
$rail_{right}$	-1.43	0.6
feeder	-3.75	8.06
contact wire	-2.15	5.8
messenger wire	-3.75	6.76
overhead protection wire	-5.28	6.1
ground wire	-6.15	-0.75
Down line	X[m]	Y[m]
rail_ _{left}	1.43	0.6
rail_ _{right}	2.87	0.6
feeder	3.75	8.06
contact wire	2.15	5.8
messenger wire	2.15	6.76
overhead protection wire	5.28	6.1
ground wire	6.15	0.75

 Table 2 Conductor Characteristic

Parameter	Resistance $(m\Omega/m)$	Material	Cross section (mm ²)	Radius (cm)
rail	0.126	60 kg/m	76.9	3.85
feeder	0.1173	$Cu150\;mm^2$	150	0.68
contact wire	0.1173	$Cu150\;mm^2$	150	0.68
messenger wire	0.4474	$Bz65 \text{ mm}^2$	65.49	0.525
overhead protection wire	0.239	$Cu75 \text{ mm}^2$	75.25	0.555
ground wire	0.484	Cu38 mm ²	37.16	0.39

4. Simulation

The impedance on the equivalent circuit model in the catenary system is estimated. The frequency is 60[Hz] and resistance rate on ground is $100[\Omega \cdot m]$. As shown Fig. 1, the geometric structure on catenary system is Table 1 in the Cartesian coordinates [14].

Table 2 is the conductor characteristic.

Table 3 Conductor Characteristic

Para meter	Up feeder	Down feeder	Up messen ger wire	Up contact wire	Down messen ger wire	Down contact wire	Up rail_left	Up rail_right	Down rail_left		Up overhead tprotection wire		Up ground wire	Down ground wire
Up feeder	0.570	0.563	0.463	0.453	0.573	0.563	0.563	0.553	0.543	0.543	0.444	0.543	0.523	0.553
Down feeder	0.563	0.570	0.573	0.573	0.483	0.453	0.543	0.543	0.563	0.553	0.543	0.444	0.553	0.523
Up messen ger wire	0.463	0.573	1.051	0.513	0.404	0.404	0.573	0.573	0.563	0.563	0.424	0.563	0.553	0.553
Up contact wire	0.453	0.573	0.513	0.912	0.404	0.404	0.553	0.553	0.563	0.573	0.424	0.563	0.553	0.563
Down messen ger wire	0.573	0.483	0.404	0.404	1.051	0.513	0.553	0.563	0.573	0.573	0.563	0.424	0.553	0.553
Down contact wire	0.563	0.453	0.404	0.404	0.513	0.912	0.563	0.573	0.553	0.553	0.563	0.424	0.563	0.553
Up rail_left	0.563	0.543	0.573	0.553	0.553	0.563	2.640	0.454	0.553	0.404	0.573	0.543	0.543	0.424
Up rail_right	0.553	0.543	0.573	0.553	0.563	0.573	0.454	2.640	0.404	0.454	0.573	0.563	0.563	0.593
Down rail_left	0.543	0.563	0.563	0.563	0.573	0.553	0.553	0.404	2.640	0.454	0.543	0.573	0.424	0.543
Down rail_right	0.543	0.553	0.563	0.573	0.573	0.553	0.404	0.454	0.454	2.640	0.553	0.573	0.593	0.563

	Continue	
Table	Commune	u

Para meter	Up feeder	Down feeder	Up messen ger wire	Up contact wire	Down messen ger wire	Down contact wire	Up rail_left	Up rail_right	Down rail_left		Up overhead tprotection wire		Up ground wire	Down ground wire
Up overhead protection wire	0.444	0.543	0.424	0.424	0.563	0.563	0.573	0.573	0.543	0.553	1.047	0.553	0.523	0.573
Down overhead protection wire	0.543	0.444	0.563	0.563	0.424	0.424	0.543	0.563	0.573	0.573	0.553	1.047	0.573	0.523
Up ground wire	0.523	0.553	0.553	0.553	0.553	0.563	0.543	0.563	0.424	0.593	0.523	0.573	0.993	0.323
Down ground wire	0.553	0.523	0.553	0.563	0.553	0.553	0.424	0.593	0.543	0.563	0.573	0.523	0.323	0.993

Fig. 11 Catenary system model in Maxwell program

lopelane Unit of		Equit Soldi	V.											
	lge roe		_											
	f jag	qall	gjakórje	Ú JESKÝ NE	gg))	óm,eij1	dw priednyje	pu tessária	ówjej!	don leds	ów odat je	ų orld vie	dur goud vie	O good sie
lő jesp.	636E-06,000563	3705401,240540	1116-02/1505-00	FEEFEL ETMENT	1995-02)-1905-10	1,000-00,1000-00	10000 10000	7505421,5954507	8000E02; 8 60E07	\$14E40\$360E40	100E40,422E68	2007640, 8307640	4.89E-00_138EE-08	10510,410508
10.18 <u>1</u> 1	1006451745500	1265-16 (101567	29964231046407	42 45 425,420500	100003,1650	197E03,597E07	525E40, 840E40	207400,100000	102E02;122E00	460E-0E;100E-02	112204100600	1860,1006	600E-0250E-03	409E04,429E09
g potetor jak	1896-02 1905-00	2005-00,6006-00	686606 E01505	26/74/2E (1906/0)	470645,293E10	-UTEAN ASSESS	4505HD,4305HD	40/202/452909	1535402,4546.00	100000000000000000000000000000000000000	1576-1614-10	1505-02-1355-08	10000103000	MEN HER
ió resià ne	500E40, 874E40	428E45,497E10	267E02;155E00	686E106649E05	HEREAU, JACKS 11	45055-0(14055-03	220E00,1539E08	1262402,39074-00	3902503,5705307	106E-04 (250E-01)	28/200,146/20	1206-01,756-03	10000010000	1506-00,14155-105
opl2	738E-01,438E-01	400E45,18E40	47306106, 2591600	EUREVE UNDEAD	189E-16,188E-16	(786EQ)(55EH)	51316404,1538600	1947-00,1195E-10	\$10E423530EVI	12666106,14772603	296504,486E01	6956E04,505E10	400E04452E08	13602510E08
bnjalj1	THE OF THE RE	ISVEROLENIEN	417E-02355E07	4305-04/1465-08	(1964)(1964)	61666-06 1003NE	102E-02,000045	INSERT EVENT	SHOUSER	410E-02,420E-01	{400E40,4500E407	20042-01,50002-07	482E-07,122E-07	498E02100E00
ów jakóa jeż	1406-02,1506-08	520E40,440E40	850640, 500500	220E04153E08	51296404,25266400	4103F4Z 1000AE	689E-06,000276	55XE423,322XE3U	1200000215703081	179E-02(538E-0)	200E-02,588E-07	1866-01,950-6-07	11786-001, 62586-007	17675-00,23005-00
ON TESTS VIE	D300 53000	307630,139540	10250 96550	1265-01307507	HATELLINEEN	1902-02/10230	FEMALES SERVERS	1865-05,000305	105E-02,000000	357E-0(-150E-0)	200500,48540	11076-02/30286-07	HOEAL HOEAU	\$0\\\0,150\\0,150\\0,0
bnjal2	ED005423.8662500	30E01-30E08	18E-02-15VE-08	330E04570E07	50E-01530E-01	EXECUSION OF	120642157606	10E-02/100005	60000130-3003	?260E-00,250E-01	450E02,259E00	1,655.0(4,546.0)	247E-02,8596E-07	1885-025005-07
ów jestr	574E425360E412	490E45,50E40	170642700610	106544 2566 02	136645,107510	400E4E3 4200E40	1798E-01 5305E-01	3500,45601	1886-03-15055-01	1866-06-1045-05	1205405104-00	£11602,4506405	4885-04,51806-00	200E-02 (ASE O
den potad eie	STEED LIVE ON	HTZERLINERB	1506457408403	230 E421, 2490E48	1965-04,196E-10	1,00E-07,1521E-07	2000EAD SHIELDS	2005-07,4825-07	4510E400, 2500E407	13340116468	100517,00056	4750E405,4110E405	455-01,645-07	\$100E-007-23-0E-007
io carbol vie	2007600, 6204600	100402,462640	19869,1980	12566-021,15966-08	1985-04:156:00	10545-07,5058-07	1865-01,95006-07	100E40,100E40	1676-01,6246-07	2715-02, 650/5-08	170203410205	0.02707,000274	2075-101,4506-06	0391,03B)
bn jod ik	1496-01,1666-08	60E00150E08	\$180E423,75E48	15045401,1202508	100E03,45E45	1062E401, 2009E407	1776540, 6256507	350E01,50XE10	1610,49610	4885-0451805-00	15510(66510	285560,450606	1006107,0006675	748E-00,-171EE-05
ią pod nie	1005401,4076301	400E-04,420E-05	80E01,3E03	15555-021,84555-08	136-025105-08	4385-021070-07	1358-101,2908-00	40 EE CO, 150 EE CO	1855-00,500 M O	2008-00,4008E-01	\$185E02 238E00	1060/9950	74EE00, {173E-05	100717,1006273

Fig. 12 Simulation results

Table 3 is the results of the amplitude of impedance by using impedance equations in reference to Table 1 and Table 2.

Fig.11 is the catenary system model in Maxwell program with reference to Table 1 and Table 2. Fig.12 is the results of Maxwell program [15].

As compared between Table 3 and simulation results, error rate is about $7\sim10[\%]$. Table 4 is the results of self

Table 4 Impedance in Equivalent Model

Para meter	Up contact wire group	Up feeder group	Rail group	Down contact wire group	Down feeder group
Up contact wire group	0.751	0.444	0.374	0.404	0.374
Up feeder group	0.444	0.927	0.365	0.374	0.365
Rail group	0.374	0.365	0.482	0.374	0.365
Down contact wire group	0.404	0.374	0.374	0.751	0.444
Down feeder group	0.374	0.365	0.365	0.444	0.927

and mutual impedance on five-conductor in the equivalent circuit model.

5. Conclusion

In this paper, the geometric structure in the catenary system is presented and a equivalent conductor is suggested by using matrix including five-conductor in the catenary system.

Error rates between numerical analysis and simulation analysis is about $7\sim10[\%]$ due to the earth return method. The impedance on rails is the highest and the impedance

on a feeder is the lowest in the conductor. While the impedance on feeder group is the highest and the impedance on a rail group is the lowest in the conductor group. As feeder group is connected by a series circuit, the impedance on feeder group is high. As rail group is connected by a parallel circuit, the impedance on rail group is low. This thesis is applied to the line constant calculation in the catenary system, current distribution, a drop of electric pressure and harmonic analysis.

Reference

- 1. Ladislav, F. (1985). "Thermal interaction of long welded rails with railway bridges," Rail International, Vol. 16, No. 3, March, pp. 5-24.
- Lee, C.B., Kim, W.G. and Lee, J.W. (2004). "A study on the line impedance calculation method in electrified railway system," Proceedings of the Spring Conference for Railway, The Korean Society for Railway, pp. 82-88.
- Lee, H.M. (2000). "Equivalent circuit model of catenary for estimating line constants," Proceedings of the Autumn Conference for Railway, The Korean Society for Railway, pp. 613-619.
- Lee, C.B., Kim, W.G. and Lee, J.W. (2004). "A study on electrified railway traction system impedance calculation," Proceedings of the Autumn Conference for Railway The Korean Society for Railway, pp. 105-110.
- Wang, Y.-J. and Liu, S.-J. (2001). "A review of method for calculation of frequency-dependant impedance of overhead power transmission lines," Proc. Natl. Conc. ROC(A) Vol. 25, No. 6, pp. 329-338.
- Loyka, Sergey L. (1999). "On calculation of the ground transient resistance of overhead lines", IEEE Transaction on Electromagnetic Compatibility, Vol. 41, pp. 193-195.

- Kim, M.S. and Lee, J.W. (2008). "The influence of frequency on wayside transmitter of ATP system upon reinforcing bars in concrete slab track," The Korean Society for Railway, Vol. 11, No. 6, pp. 536-542.
- Deri, A. et al. (1981). "The complex ground return plane a simplified model for homogeneous and multi-layer earth return," IEEE Transactions on Power Apparatus and Systems, Vol. 100, No. 8, pp. 3686-3693.
- Jordan, E.C. and Balmain, K.G. (1968). "Electromagnetic waves and radiating systems," Prentice-Hall, Second Edition, pp. 488-490.
- Lee, H.M. (2004). "A reduced equivalent model of the catenary system," The transaction of the Korean Institute of Electrical Engineers, Vol. 53, No. 8, pp. 421-431.
- Jang, Gilsu (2002). "Development and application for analysis model on the AC catenary system in the metro by using PSCAD/EMTDC," Korea Railroad Research Institute, pp. 152-160.
- Ahn, B.L. (2008). "A study on temperature variation of contact wire by de-icing system," The Korean Institute of Illuminating and Electrical Installation Engineers, Vol. 22, No. 9, pp. 69-74.
- Oh, K.H. (2006). "Measurement method for catenary line constant," The Korean Society for Railway, Vol. 9, No. 6, pp. 620-627.
- Chang, S.H. (2001). "Analysis of voltage unbalance in the electric railway depot using two-port network model," Korean Institute of Electrical Engineers, Vol. 50A, No. 5, pp. 248-254.
- Jung, H.S. (2003). "Analysis for catenary voltage of the ATs-Fed AC electric railroad system," Korean Institute of Electrical Engineers, Vol. 52A, No. 9, pp. 493-499.
- 16. Han, E.-S. (2006). "Maxwell 2D and 3D," Ansoft-Korea, Inc., pp. 102-110.