MATH 240: Discrete Structures - Assignment 3

Liam Scalzulli liam.scalzulli@mail.mcgill.ca

October 11, 2022

Problem 1

(a)

Proof. Suppose $P(x) = 2x^2 - 4x + 3$ where $x \in \mathbb{R}$.

$$2x^{2} - 4x + 3 = 2(x^{2} - 2x + 1) + 1$$
$$= 2((x - 1)(x - 1)) + 1$$
$$= 2(x - 1)^{2} + 1$$

Notice that $x^2 \ge 0 \,\forall \, x \in R$.

It follows that $2(x-1)^2 + 1 > 0 \ \forall x \in R$.

So
$$2x^2 - 4x + 3 > 0 \ \forall \ x \in \mathbb{R}$$
.

(b)

Proof. Suppose $x \in \mathbb{Z}$ is odd.

$$x = 2k + 1, k \in \mathbb{Z}$$

= $1 \times (2k + 1)$
= $(k + 1 + k)(k + 1 - k)$

Let a = k + 1, b = k.

Then
$$2k + 1 = (a + b)(a - b) = a^2 - b^2$$
.

Problem 2

(a)

Proof. Suppose $x \in \mathbb{Z}$ is even.

Then we can write $x = 2k, k \in \mathbb{Z}$.

$$x^{3} - 2x + 3 = (2k)^{3} - 2(2k) + 3$$
$$= 8k^{3} - 4k + 3$$
$$= 8k^{3} - 4k + 2 + 1$$
$$= 2(4k^{3} - 2k + 1) + 1$$

Let $l = 4k^3 - 2k + 1, l \in \mathbb{Z}$.

Then $x^3 - 2x + 3 = 2l + 1$, and is odd by definition.

(b)

Proof. Suppose log_25 is rational.

Then we can write $log_2 5 = \frac{m}{n}$, where $m, n \in \mathbb{Z}$.

$$5 = 2^{\left(\frac{m}{n}\right)}$$
$$5^n = 2^m$$

Since all 5^n , $n \in \mathbb{Z}$ are odd and all 2^m , $m \in \mathbb{Z}$ are even, we've reached a contradiction.

Problem 3

(a)

Proof. Let $P(n) = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$.

Base case: n = 1

$$\frac{1}{(1\times3)} = \frac{1}{3}$$

$$\frac{n}{2n+1} = \frac{1}{2(1)+1} = \frac{1}{3}$$

Induction step: Assume P(n) holds for some $n \leq k$.

Then
$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2k-1)\times (2k+1)} = \frac{k}{2k+1}$$

$$\frac{k}{2k+1} + \frac{1}{(2(k+1)-1)(2(k+1)+1)} = \frac{k(2k+3)+1}{(2k+1)(2k+3)}$$

$$= \frac{2k^2+3+1}{(2k+1)(2k+3)}$$

$$= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$$

$$= \frac{k+1}{2k+3}$$

Notice that $\frac{k+1}{2k+3}$ is just P(k+1), \therefore we've shown that $k \implies k+1$.

(b)

Proof. Let $P(n) = \overline{A_1 \cup A_2 \cup ... \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_n}$.

Base case:

$$\overline{A_1 \cup A_2} = \overline{A_1} \cap \overline{A_2}$$

Which is true by DeMorgan's Law.

Induction step: Assume P(n) holds for some $n \leq k$.

Then
$$\overline{A_1 \cup A_2 \cup ... \cup A_k} = \overline{A_1} \cap \overline{A_2} \cap ... \cap \overline{A_k}$$

$$\overline{(A_1 \cup A_2 \cup \dots \cup A_k) \cup A_{k+1}} = \overline{(A_1 \cup A_2 \cup \dots \cup A_k)} \cap \overline{A_{k+1}} \qquad [De Morgan]$$

$$= (\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_k}) \cap \overline{A_{k+1}} \qquad [Induction Hypothesis]$$

$$= \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_k} \cap \overline{A_{k+1}}$$

Therefore we've shown that we can reach k+1 from k.

Problem 4

Proof. Let $a, b, c \in \mathbb{N}$.

Suppose $a \mid (b+c)$ and gcd(b,c) = 1.

We can then write ma = b + c, $m \in \mathbb{N}$, and by Bézout's Identity we have 1 = bu + cv where $b, c \in \mathbb{N}$.

Case 1: Showing gcd(a, b) = 1

$$1 = bu + cv$$

$$1 = bu + (ma - b)v$$

$$1 = mav - bv + bu$$

$$1 = a(mv) + b(u - v)$$

Since mv, $u - v \in \mathbb{N}$, by Bézout's Identity gcd(a, b) = 1.

Case 2: Showing gcd(a, c) = 1

$$1 = bu + cv$$

$$1 = (ma - c)u + cv$$

$$1 = uma - cu + cv$$

$$1 = a(um) + c(v - u)$$

Since $um, v - u \in \mathbb{N}$, by Bézout's Identity gcd(a, c) = 1.