Bin packing, linear programming and rounding

Algorithm - large items

Assume: sizes > capacity * ϵ Sort sizes Make groups of cardinality $n \times \epsilon^2$ Round up to max size in group Solve rounded problem U Output corresponding packing

But how good is it?

Value(Output) = OPT(U)

Must relate OPT(U) to OPT(I)

l: Input

U: Round up: max of group

Relating input to rounded input

Observe: Increasing sizes can only increase OPT

 $OPT(D) \leq OPT(I) \leq OPT(U)$

U and D are similar!

Combine:

$$OPT(D) \leq OPT(I) \leq OPT(U)$$

$$OPT(U)-OPT(D) \leq n \epsilon^2$$

$$OPT(U) \leq OPT(I) + n \epsilon^2$$

Additive error $n \epsilon^2$

Lower bound OPT

n items max #items per bin: $1/\epsilon$

min #hins: ϵn

$$\mathbf{n}\epsilon^2 \le \epsilon \times (\mathbf{n}\epsilon) \le \epsilon \mathbf{OPT}$$

Theorem

When all sizes are > ϵB algorithm, in polynomial time gives packing s.t. Value(Output) < OPT * $(1+\epsilon)$

Bin packing, linear programming and rounding

