Primer on Semiconductors

Unit 1: Material Properties

Lecture 1.4: Properties of common semiconductors

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Semiconductors

http://en.wikipedia.org/wiki/Periodic_table

III-V semiconductors

http://en.wikipedia.org/wiki/Periodic_table

II-VI semiconductors

http://en.wikipedia.org/wiki/Periodic_table

Two key numbers

Intrinsic Si

$$E_G(\mathrm{Si}) = 1.1 \,\mathrm{eV}$$

$$n_i(\mathrm{Si}) = 1 \times 10^{10} \,\mathrm{cm}^{-3} \quad (T = 300 \,\mathrm{K})$$

$$n_i \propto e^{-E_G/2k_BT}$$

A few common semiconductors

Semiconductor	Band gap (eV)	intrinsic density
Ge	0.663	2.0x10 ¹³ cm ⁻³
Si	1.125	1.0x10 ¹⁰ cm ⁻³
InP	1.344	
GaAs	1.422	2.3x10 ⁶ cm ⁻³
CdTe	1.5	
6H SiC	2.99	
4H SiC	3.26	
GaN	3.4	

Later, we will learn how to calculate n_i .

Why is Si so common in electronics?

Inside the crystal, each atom has four nearest neighbors and all bonds are satisfied.

Surfaces are defects with many "dangling bonds".

Silicon has a "native oxide" (SiO₂) that ties up dangling bonds and "passivates" the surface.

Recombination

Other properties

How fast do charge carriers move (mobility)?

What is the thermal conductivity?

At what electric field does the semiconductor "break down"?

Effective mass?

etc.

Summary

Silicon is the most commonly used semiconductor because it has a native oxide that passivates the surface.

Other semiconductors are used when Si isn't suitable (e.g. to make light-emitting devices).

The bandgap and intrinsic carrier concentration are two key (related) parameters for a semiconductor. We will encounter several other important parameters later.