

Links:

STM32L4+ Discovery kit IoT node, low-power wireless

https://www.st.com/en/evaluation-tools/b-l4s5i-iot01a.html

STM32L4S5VI

https://www.st.com/en/microcontrollers-microprocessors/stm32l4s5vi.html

Schematic

en.MB1297-L4S5VI-E03 Schematic

Table 4. Button and LED control port

Reference	Color	Name	Comment				
B1	Black	Reset	-				
R2	Rlue	Wake-un	Wake-up alternate function				
LD1	Green	LED1	PA5 (Alternate with ARD.D13)				
LD2	Green	LED2	PB14				
LD3	Yellow	LED3 (Wi-Fi [®])	PC9, Wi-Fi® activity				
LD4	Blue	LED4 (BLE)	PC9, Bluetooth® activity				
LD5	Green	5V Power	5 V available				
LD6	Bicolor (Red and green)	ST-LINK COM	Green during communication				
LD7	Red	Fault Power	Current higher than 750 mA				
LD8	Red	V _{BUS} OCRCR	PE3				
LD9	Green	V _{BUS} OK	5 V USB available				


```
/* USER CODE BEGIN 2 */
 char status = 0;
 /* USER CODE END 2 */
 /* Infinite loop */
 /* USER CODE BEGIN WHILE */
 while (1)
   /* USER CODE END WHILE */
   /* USER CODE BEGIN 3 */
 status = HAL_GPIO_ReadPin(myButton_GPIO_Port, myButton_Pin);
 if (status == 0)
 HAL_GPIO_WritePin(myLed_GPIO_Port, myLed_Pin, GPIO_PIN_SET);
 else
 HAL GPIO WritePin(myLed GPIO Port, myLed Pin, GPIO PIN RESET);
  /* USER CODE END 3 */
```


Links:

STM32L4S5VI

https://www.st.com/en/microcontrollers-microprocessors/stm32l4s5vi.html

Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS, up to 1MB Flash, 128 KB SRAM, USB OTG FS, analog, audio

https://www.st.com/resource/en/datasheet/stm32l476je.pdf

21.4.34 Monitoring the internal voltage reference

Figure 156. V_{REFINT} channel block diagram

1. The VREFEN bit into ADCx_CCR register must be set to enable the conversion of internal channels (V_{REFINT}).

3.15.2 Internal voltage reference (VREFINT)

Table 9. Internal voltage reference calibration values

Calibration value name	Description	Memory address		
VREFINT	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x1FFF 75AA - 0x1FFF 75AB		

Figure 87. ADC block diagram

21.4.32 Temperature sensor

Figure 154. Temperature sensor channel block diagram

6.3.23 Temperature sensor characteristics

Table 77. TS characteristics

Table 11. 10 characteristics							
Symbol	Parameter	Min	Тур	Max	Unit		
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C		
Avg_Slope ⁽²⁾	Average slope	2.3	2.5	2.7	mV/°C		
V ₃₀	Voltage at 30°C (±5 °C) ⁽³⁾	0.742	0.76	0.785	V		
t _{START} (TS_BUF) ⁽¹⁾	Sensor Buffer Start-up time in continuous mode ⁽⁴⁾	-	8	15	μs		
t _{START} (1)	Start-up time when entering in continuous mode ⁽⁴⁾	-	70	120	μs		
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	5	-	-	μs		
I _{DD} (TS) ⁽¹⁾	Temperature sensor consumption from V _{DD} , when selected by ADC	-	4.7	7	μA		

- 1. Guaranteed by design.
- 2. Guaranteed by characterization results.
- Measured at V_{DDA} = 3.0 V ±10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 8: Temperature sensor calibration values.
- 4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

You need to study document for setting ADC parameters.

Figure 87. ADC block diagram

Steps:

- 1. Download documents:
 - 1. Chip document
 - 2. HAL driver document
- 2. Study section 21.4.32 from chip document
- 3. Follow steps for reading the temperature
 - 1. Consider the "NOTE" section.
- 4. Using HAL functions for writing your program
- 5. Calibration coefficient is on:

https://www.st.com/resource/en/datasheet/stm32l476je.pdf

These values are stored in memory, you need to read them.

Figure 87. ADC block diagram

Table 127. ADC internal input/output signals

Internal signal name	Signal type	Description	
EXT[15:0]	Inputs	Up to 16 external trigger inputs for the regular conversions (can be connected to on-chip timers). These inputs are shared between the ADC master and the ADC slave.	
JEXT[15:0]	Inputs	Up to 16 external trigger inputs for the injected conversions (can be connected to on-chip timers). These inputs are shared between the ADC master and the ADC slave.	
ADC_AWDx_OUT	Output	Internal analog watchdog output signal connected to on-chip timers (x = Analog watchdog number 1,2,3)	
V _{TS}	Input	Output voltage from internal temperature sensor	
dac_out1	Input	DAC internal channel 1	
V _{REFINT}	Input	Output voltage from internal reference voltage	
dac_out2	Input	DAC internal channel 2	
V _{BAT}	Input supply	External battery voltage supply	

21.2 ADC main features

- High-performance features
 - Up to 2 ADCs which can operate in dual mode:
 ADC1 is connected to 16 external channels + 3 internal channels
 ADC2 is connected to 16 external channels + 2 internal channels
 - 12, 10, 8 or 6-bit configurable resolution
 - ADC conversion time is independent from the AHB bus clock frequency
 - Faster conversion time by lowering resolution
 - Manage single-ended or differential inputs
 - AHB slave bus interface to allow fast data handling
 - Self-calibration
 - Channel-wise programmable sampling time
 - Up to four injected channels (analog inputs assignment to regular or injected channels is fully configurable)
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching
 - Data alignment with in-built data coherency
 - Data can be managed by DMA for regular channel conversions
 - Data can be routed to DFSDM for post processing
 - 4 dedicated data registers for the injected channels

21.4.11 Channel selection (SQRx, JSQRx)

There are up to 19 multiplexed channels per ADC:

- 5 fast analog inputs coming from GPIO pads (ADCx_INP/INN[1:5])
- Up to 11 slow analog inputs coming from GPIO pads (ADCx_INP/INN[6:16])
- The ADCs are connected to the following internal analog inputs:
 - The internal reference voltage (V_{REFINT}) is connected to ADC1_INP0.
 - The internal temperature sensor (V_{TS}) is connected to ADC1_INP17.
 - The V_{BAT} monitoring channel (V_{BAT}/3) is connected to ADC1_INP18.
 - The DAC1 internal channel 1 is connected to ADC2_INP17.
 - The DAC1 internal channel 2 is connected to ADC2_INP18.

Consider sampling time of ADC and input signal

UM1884

Description of STM32L4/L4+ HAL and low-layer drivers

Execution of ADC conversions

- Optionally, perform an automatic ADC calibration to improve the conversion accuracy using function HAL_ADCEx_Calibration_Start().
- 2. ADC driver can be used among three modes: polling, interruption, transfer by DMA.
 - ADC conversion by polling:
 - Activate the ADC peripheral and start conversions using function HAL ADC Start()
 - Wait for ADC conversion completion using function HAL ADC PollForConversion()
 - Retrieve conversion results using function HAL_ADC_GetValue()
 - Stop conversion and disable the ADC peripheral using function HAL ADC Stop()
 - ADC conversion by interruption:
 - Activate the ADC peripheral and start conversions using function HAL_ADC_Start_IT()
 - Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() (this function must be implemented in user program)
 - Retrieve conversion results using function HAL ADC GetValue()
 - Stop conversion and disable the ADC peripheral using function HAL ADC Stop IT()
 - ADC conversion with transfer by DMA:
 - Activate the ADC peripheral and start conversions using function HAL_ADC_Start_DMA()
 - Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() (these functions must be implemented in user program)
 - Conversion results are automatically transferred by DMA into destination variable address.
 - Stop conversion and disable the ADC peripheral using function HAL ADC Stop DMA()

Lab 2 summary:

First part

Push button and LED

Second part

Read reference voltage

Third part

Read temperature sensor

Fourth part

Combining all three previous steps

