Задача 11-2 «Монгольфьер и шарльер».

Часть 1. Стандартная атмосфера.

1.1 Для расчета плотности воздуха следует воспользоваться уравнением состояния идеального газа

$$PV = \frac{m}{M}RT\tag{1}$$

Из которого следует, что плотность газа рассчитывается по формуле

$$\rho = \frac{m}{V} = \frac{PM}{RT} \,. \tag{2}$$

Подстановка численных значений для уровня моря дает следующее численное значение:

$$\rho_0 = \frac{1,013 \cdot 10^5 \, \Pi a \cdot 28,97 \cdot 10^{-3} \frac{\kappa z}{MOЛb}}{8,314 \frac{\cancel{\cancel{\square}} \cancel{\cancel{MO}}}{MOЛb \cdot \cancel{\cancel{K}}} \cdot (15,00 + 273,16) \cancel{\cancel{K}}} = 1,225 \frac{\kappa z}{\cancel{\cancel{M}}^3}.$$
 (3)

1.2 Описание стандартной атмосферы позволяет записать зависимость температуры от высоты в виде

$$T = T_0 - \frac{\Delta t^{\circ}}{\Delta z} z = T_0 \left(1 - \left(\frac{1}{T_0} \frac{\Delta t^{\circ}}{\Delta z} \right) z \right). \tag{4}$$

Сравнивая с формулой $T(z) = T_0 \left(1 - \frac{z}{h} \right)$, приведенной в условии задачи, видим, что параметр

h определяется формулой

$$h = T_0 \left(\frac{\Delta t^{\circ}}{\Delta z}\right)^{-1} = \frac{288,16K}{6,500 \cdot 10^{-3} \frac{K}{M}} = 4,433 \cdot 10^4 M$$
 (5)

Величина $T_0 = 15,00 + 273,16 = 288,16\,K$ - абсолютная температура на уровне моря.

1.3 Для получения зависимости давления от высоты следует учесть, что плотность воздуха также изменяется с высотой. Однако при изменении высоты на малую величину Δz изменением плотности в пределах слоя Δz можно пренебречь. В этом случае уменьшение давления с высотой описывается формулой (для гидростатического давления)

$$\Delta z$$

$$\Delta P = -\rho g \Delta z \,. \tag{6}$$

Здесь ρ - плотность воздуха на высоте z . Для плотности воздуха следует воспользоваться формулой (2) и найденной зависимостью температуры от высоты, поэтому

$$\rho = \frac{PM}{RT_0 \left(1 - \frac{z}{h}\right)} \,.$$
(7)

Таким образом, уравнение для определения зависимости давления от высоты имеет вид:

$$\frac{\Delta P}{\Delta z} = -\frac{Mg}{RT_0 \left(1 - \frac{z}{h}\right)} P. \tag{8}$$

1.4 Используем указанную зависимость давления от высоты. Не сложно получить, что если

$$P(z) = P_0 \left(1 - \frac{z}{h} \right)^{\alpha}, \text{ To}$$

$$\frac{\Delta P}{\Delta z} = -\frac{\alpha P_0}{h} \left(1 - \frac{z}{h} \right)^{\alpha - 1} \tag{9}$$

Отметим, что эту формулу можно получить как производную от функции P(z), так и с помощью приближенной формулы, приведенной в условии задачи. С помощью этой формулы можно найти, что

$$\begin{split} P(z+\Delta z) &= P_0 \bigg(1 - \frac{z+\Delta z}{h}\bigg)^{\alpha} = P_0 \bigg(1 - \frac{z}{h} - \frac{\Delta z}{h}\bigg)^{\alpha} = P_0 \bigg(1 - \frac{z}{h}\bigg)^{\alpha} \bigg(1 - \frac{\Delta z}{h\bigg(1 - \frac{z}{h}\bigg)}\bigg)^{\alpha} \approx \\ &\approx P_0 \bigg(1 - \frac{z}{h}\bigg)^{\alpha} \bigg(1 - \alpha \frac{\Delta z}{h\bigg(1 - \frac{z}{h}\bigg)}\bigg) = P_0 \bigg(1 - \frac{z}{h}\bigg)^{\alpha} - \frac{\alpha P_0}{h} \bigg(1 - \frac{z}{h}\bigg)^{\alpha - 1} \Delta z \end{split}$$

Откуда и следует формула (9)

Подставляя найденные выражения в уравнение (8), получим:

$$-\frac{\alpha P_0}{h} \left(1 - \frac{z}{h} \right)^{\alpha - 1} = -\frac{Mg}{R} \frac{P_0 \left(1 - \frac{z}{h} \right)^{\alpha}}{T_0 \left(1 - \frac{z}{h} \right)} = -\frac{Mg}{RT_0} P_0 \left(1 - \frac{z}{h} \right)^{\alpha - 1}. \tag{10}$$

Из этой формулы следует, что, во-первых, указанная в условии функция, действительно является решением уравнения (8); во-вторых, показатель степени в этой формуле равен

$$\alpha = \frac{Mgh}{RT_0} = 5,257\tag{11}$$

Зависимость плотности от высоты описывает следующая функция

$$\rho = \frac{PM}{RT} = \frac{P_0 \left(1 - \frac{z}{h}\right)^{\alpha} M}{RT_0 \left(1 - \frac{z}{h}\right)} = \frac{P_0 M}{RT_0} \left(1 - \frac{z}{h}\right)^{\alpha - 1} = \rho_0 \left(1 - \frac{z}{h}\right)^{\alpha - 1}.$$
 (12)

Следовательно, показатель степени в этой зависимости равен

$$\beta = \alpha - 1 = \frac{Mgh}{RT_0} - 1 = 4,257. \tag{13}$$

1.5 Требуемые графики показаны на рисунке.

Зависимости температуры (1), давления (2), плотности (3) от высоты z

Часть 2. Шарльер.

2.1 В соответствии с законом Архимеда максимальная масса шара равна массе воздуха, вытесненного шаром, т.е.

$$m_{\text{max}} = \rho_0 V = 1{,}225 \frac{\kappa^2}{M^3} \cdot 400 M^3 = 490 \kappa^2.$$
 (14)

2.2 Так как оболочка закрыта, то масса водорода остается неизменной. Кроме того, в условии оговорено, что объем оболочки остается постоянным, поэтому и средняя плотность воздушного шара также остается неизменной.

На максимальной высоте масса вытесненного воздуха равна $(m_{\text{max}} - m_{\text{l}})$, при этом выполняется условие:

$$\rho(z_{\text{max}})V = (m_{\text{max}} - m_1), \tag{15}$$

из которого следует уравнение:

$$\rho_0 \left(1 - \frac{z_{\text{max}}}{h} \right)^{\beta} = \left(m_{\text{max}} - m_1 \right). \tag{16}$$

Разделим это уравнение на равенство (14), в результате чего получим

$$\left(1 - \frac{z_{\text{max}}}{h}\right)^{\beta} = \left(1 - \frac{m_1}{m_{\text{max}}}\right).$$
(17)

Откуда находим максимальную высоту подъема

$$z_{\text{max}} = h \left(1 - \left(1 - \frac{m_1}{m_{\text{max}}} \right)^{\frac{1}{\beta}} \right) \approx 2.0 \kappa M \tag{18}$$

Допустимо и приближенное решение уравнения (16), с использованием приближенной формулы $\left(1-\frac{z_{\max}}{h}\right)^{\beta} \approx 1-\beta\frac{z_{\max}}{h}$. B этом приближении уравнение имеет вид $1-\beta\frac{z_{\max}}{h}=1-\frac{m_1}{m_{\max}}$, а его решение $z_{\max}=\frac{h}{\beta}\frac{m_1}{m_{\max}}=1,9$ км.

Также можно воспользоваться построенным графиком зависимости $\rho(z)$. Для этого нужно рассчитать среднюю плотность шара $\overline{\rho} = \frac{m_{\max} - m_1}{V} \approx 1{,}00 \frac{\kappa z}{M^3}$ и ее отношение к плотности воздуха на уровне моря $\frac{\overline{\rho}}{\rho_0} \approx 0{,}82$. По графику не сложно найти, что плотность воздуха опускается до этого значения на высоте примерно равной 2,0 км.

Отметим, что согласно историческим данным Ж. Шарль поднялся на высоту в 3 км, возможно, наша оценка оказалась заниженной, потому что при расчетах не принималось во внимание расширение оболочки шара по мере подъема.

Часть 3. Монгольфьер.

3.1 Так как оболочка монгольфьера открыта, то на любой высоте одинаковыми будут давления воздуха внутри шара и снаружи. Масса воздуха внутри оболочки не будет изменяться при изменении его температуры и давления.

Используя закон Архимеда, можно записать условие равновесия шара на произвольной высоте $\rho Vg = mg + \rho_1 Vg , \qquad (19)$

Где ρ - плотность атмосферного воздуха на произвольной высоте z, ρ_1 - плотность воздуха внутри шара на той же высоте, $V=2200\, m^3$ - объем шара, m - масса шара без массы воздуха внутри его. Это соотношение удобно переписать в виде

$$(\rho - \rho_1)V = m, \tag{19}$$

Так как давления воздуха внутри и вне оболочки одинаковы, то разность плотностей можно представить в виде

$$(\rho - \rho_1) = \frac{PM}{RT} - \frac{PM}{R(T + \Delta T)} = \frac{PM}{RT} \left(1 - \frac{T}{(T + \Delta T)} \right) = \rho \frac{\Delta T}{T + \Delta T}$$
(20)

Тогда условие равновесия шара принимает вид

$$\rho V \frac{\Delta T}{T + \Delta T} = m. \tag{21}$$

В частности, на уровне моря, это выражение позволяет рассчитать общую массу монгольфьера

$$m = \rho_0 V \frac{\Delta T_0}{T_0 + \Delta T_0} = 1,22 \frac{\kappa z}{M^3} \cdot 2200 M^3 \frac{30}{288 + 30} = 2,5 \cdot 10^2 \kappa z.$$
 (22)

3.2 С помощью соотношений (21) и (22) можно получить уравнение для нахождения максимальной высоты подъема:

$$\rho(z) \frac{\Delta T_1}{T(z) + \Delta T_1} = \rho_0 \frac{\Delta T_0}{T_0 + \Delta T_0}. \tag{23}$$

Преобразуем его к виду

$$\frac{\rho(z)}{\rho_0} = \frac{\Delta T_0}{T_0 + \Delta T_0} \frac{T(z) + \Delta T_1}{\Delta T_1} = \frac{\Delta T_0}{\left(1 + \frac{\Delta T_0}{T_0}\right) \Delta T_1} \frac{T(z)}{T_0} + \frac{\Delta T_0}{\left(T_0 + \Delta T_0\right)}.$$
 (24)

Это уравнение слишком сложно для аналитического решения. Поэтому необходимо использовать приближенные методы. Одним из возможных способов такого решения является графический. Заметим, что функция, стоящая в правой части, является линейной

$$f(z) = \frac{\Delta T_0}{\left(1 + \frac{\Delta T_0}{T_0}\right) \Delta T_1} \frac{T(z)}{T_0} + \frac{\Delta T_0}{\left(T_0 + \Delta T_0\right)} = \frac{\Delta T_0}{\left(1 + \frac{\Delta T_0}{T_0}\right) \Delta T_1} \left(1 - \frac{z}{h}\right) + \frac{\Delta T_0}{\left(T_0 + \Delta T_0\right)}.$$

Рассчитаем коэффициенты этой линейной зависимости

$$f(z) = b - cz$$

$$b = \frac{\Delta T_0}{\left(1 + \frac{\Delta T_0}{T_0}\right) \Delta T_1} + \frac{\Delta T_0}{\left(T_0 + \Delta T_0\right)} = \frac{\Delta T_0}{\left(T_0 + \Delta T_0\right)} \frac{T_0 + \Delta T_1}{\Delta T_1} \approx 0,77.$$

$$c = \frac{1}{h} \frac{\Delta T_0}{\left(1 + \frac{\Delta T_0}{T_0}\right) \Delta T_1} \approx \frac{0,68}{h} = 0,015 \kappa M^{-1}$$
(25)

Далее на Бланке с графиком зависимости плотности атмосферы от высоты следует построить график этой функции f(z) (см. на рисунке) и найти точку их пересечения. Координата этой точки и дает максимальную высоту подъема монгольфьера

$$z_{\text{max}} \approx 3.2 \kappa M$$
 (26)

Другой способ приближенного расчета – воспользоваться приближением для функции

$$\frac{\rho}{\rho_0} = \left(1 - \frac{z}{h}\right)^{\beta} \approx 1 - \beta \frac{z}{h}.$$

Тогда уравнение (24) становиться линейным и решается элементарно. Значение высоты в этом приближении оказывается равным $z_{\rm max} \approx 2.8$ км.