

- ・ST マイクロエレクトロニクスの STM32 マイコンを搭載したマイコンボード 『STBee』 エス・ティー・ビーです。
- ・ARM 社の Cortex-M3 を採用した高性能マイコンですから、趣味のエレクトロニクスからビジネスでの試作・研究開発まで幅広い層にお使いいただける商品です。
- ・USB インターフェース内蔵でプログラムは USB から書き込み、ユーザプログラムでも USB を利用したアプリケーションが簡単に作成できます。
- ·STBee 対応のオプションボードも準備中です。

■特徴

- ・組み込み用 ARM コア Cortex-M3 を採用した世界標準のマイコン
- ・512Kバイトとフラッシュメモリと64Kバイトの SRAM を内蔵
- 内部 72MHz 高速クロック
- ・最大 18MHz でトグルできる高速 I/O ポート
- ・USB からプログラムの書き込みができ、別途ライター・JTAG ツールを用意する必要がありません。このボードだけで開発できます。
- ・最大 5ch の USART, 最大 3ch の SPI, 最大 2ch の I2C のインターフェース
- ・12 ビット ADC, 12 ビット DAC, I2S, PWM, CAN, SDIO, 外部バスなどの各種周辺回路内蔵

■仕様

STM32F103VET6	ST マイクロエレクトロニクス STM32 マイコン
512K バイト	ブートローダー(DFU)書き込み済のためユーザ領域は 500K バイト
64K バイト	このクラスではかなりのサイズです。
3.3V	入力は 5V トレラント対応
12 ビット	最大
12 ビット	最大 2ch
12MHz	内部6逓倍で 72MHz 動作
32.768kHz	RTC 用クロックも搭載
USB または外部電源	USB バスパワー5V あるいは外部電源(4.5V~12V)で動作が可能
50m4 ~ 60m4 程度	CPUのクロック設定、周辺機能の設定によって大きく変わります。
50IIIA~60IIIA 程度	サンプルプログラムを動作させた場合の目安
主要ピンは 5V トレラント	詳細は末尾のピン配置図をご覧ください。
50ピン×2箇所	CPUのI/Oポート・リセット・電源等
20ピン	JTAG 端子
プッシュスイッチ(1)	リセットスイッチ
プッシュスイッチ(2)	DFU とユーザプログラムの実行切り替え
LED(緑)	電源 LED あるいはユーザ LED(切り替え可)
LED(赤)	ユーザLED
	512K バイト 64K バイト 3.3V 12 ピット 12 ピット 12 ピット 12MHz 32.768kHz USB または外部電源 50mA~60mA 程度 主要ピンは 5V トレラント 50ピン×2箇所 20ピン プッシュスイッチ(1) プッシュスイッチ(2) LED(緑)

■部品表

このキットの内容品は次の通りです。この商品はハンダ付けが必要な組み立てキットです。

STBee 基板 (マイコン含め抵抗・コンデンサ類ハンダ付け済み)

スイッチ・コネクタ類 (タクトスイッチ, USB, ピンフレーム, ピンヘッダ, ジャンパピン)

※改良のため写真のものと形状・色が異なる場合があります。

※それ以外の部品につきましてはお客様のお使いになられる用途・場所に応じてご用意ください。

■組み立て

ICはハンダ付け済みですので、①USBコネクタ,②リセッタブル・ヒューズ,③ジャンパ端子,⑦⑧タクトスイッチ2個をハンダ付けすれば最低限動作できるボードに完成します。写真は標準の組み立て状態とします。最初はこのように組み立てしてください。極性がある部品はありません。ピンヘッダ(オス側端子)は必要な長さに切断してお使いください。余った部分は自由にお使いください。

① USB(CN1)

パソコンと通信するための端子です。プログラムを書き込むため、あるいは仮想 COM ポートとして通信するプログラムを作成することができます。このボードの重要な要素の1つです。

② リセッタブル・ヒューズ(過電流保護素子) (F1)

このマイコンボードは USB バスパワーで動作するようになっています。 使い方や不注意により電源をショートさせてしまうとパソコン側に損傷を与える恐れがあることから、この素子を入れています。 電源のショートがあるとリセッタブル・ヒューズが高温になり電流を遮断します。 温度が下がるとまた電流を流すことができる、交換不要なヒューズです。 約1Aの電流で遮断されます。 F1 の場所(赤丸の箇所)にハンダ付けしてください。

③ BOOT0, BOOT1 ジャンパ

STM32 の動作モードを設定するためのものです。写真の左が1, 右がOです。詳しくは後ろの解説をご覧ください。本マイコンボードで は原則両方とも O(右側にジャンパ)にして使います。なお BOOT1 ピ ンは I/O ポート PB2 と共用になっています。

④ 2色 LED

赤と緑の2色入っている LED です。 DFU モードに入ると赤 LED が 点滅します。 赤 LED は PD4 に繋がっています。 0 に引っ張ると点灯 します。

⑤ 電源 LED ジャンパ

写真のジャンパをハンダでショートしますと、電源(3.3V)と前記2色 LED の緑が繋がり、電源ランプとして利用できるようになっています。 電源 LED として使用しない場合は、LED 下のランドからユーザポートなどに配線してお使いいただくこともできます(0 に引っ張ると点灯)

6 USB-JP

USB の接続検出のためのジャンパです。ここをジャンパすると USB バスパワーを検出して、PC4 ポートが 1 になります。この機能はオプシ

ョンですので、必要ない場合はオープン(ハンダ付けしない)とします。

⑦ ユーザスイッチ(DFU 切り替えスイッチ) (PAO に接続)

このスイッチはユーザが入力として自由に使えるよう設けられたスイッチです。リセット直後にはDFUとユーザプログラムの切り替えにも利用します。

⑧ リセットスイッチ (nRST)

このスイッチを押すとマイコンがリセットされます。

⑨ CN3, CN4(I/O端子)

STM32 の各ピンが配線されています。2.54mm ピッチで2列x25 ピン(=50ピン)の端子で他の回路・基板に接続できます。ピン配置は別表をご覧ください。

⑩ CN2(JTAG端子) <オプション>

JTAG 用の端子です。 各社 ARM 用 JTAG ライターや ICE などを接続してお使いいただけます。 この商品では JTAG を使用せずにプログラムを書き換えができるようになっていますので、 標準では使いません。

⑪ USART1 端子

CN4 にも同じ信号が配線されておりますが、通信モニターのために、 別に3ピン端子で配線できるようパターンを用意しています。

電源も必要な方のために RX ピンの隣に 3.3V の電源も用意しています。 JTAG 端子にボックス付きコネクタを利用した場合この 3.3V 端子が隠れますのでご了承ください。

① JREF-JP(基板裏面) <オプション>

外部 VREF のためのジャンパです。初期状態では接続されていますので VREF+=VDD(3.3V)となります。外部電源リファレンスを利用する場合はこのパターンを切断し、横のランドに VREF+電圧を与えます。VREFーは GND に繋がっているため、このボードでは変更できません。詳細はアプリケーションノート参照のこと

■外部回路との接続

付属のコネクタを使ってユニバーサル基板などと組み合わせてお使いください。オス・メス向きは自由です。

STM32の I/O ポートのレベルは 0V~3.3V になっています。そのため 5V 用の回路とのインターフェースには電圧不足の関係で問題を生じる可能性があります。動作マージンに支障がある場合はレベル変換ロジック IC を使ってください。なお入力ポートとして使う場合、5V が受けられるピン(5V トレラントピン)と受けられないピンがありますのでピン配置図をご覧ください。

■外部電源動作(注意事項がありますのでよくお読みください)

このマイコンボードは USB バスパワー以外に外部電源(ACアダプタ、バッテリーなど)で動作させることもできます。外部電源を利用する場合は リセッタブル・ヒューズを取り外し、基板の+と一端子の部分に電源を供給してください。外部電源電圧範囲は約 DC4.5V~最大 DC12V まで で安定化している必要はありません。逆接続の保護回路は入っていませんので、極性を間違えないようご注意ください。

リセッタブル・ヒューズを取り外すのは外部電源端子とUSBの電源端子が基板内でつながっているためです。

◆警告:リセッタブル・ヒューズを取り外さないと、USBで接続した際に外部電源がパソコンに加わってしまいパソコンを破損させてしまいます。 逆流防止のダイオードをつけることで両方を併用することもできます。この方法については当社アプリケーションノートをご覧ください。

電源電圧が高い場合や全体の消費電流が大きい場合レギュレータ IC(U2)が発熱します。マイコンを含めた全体の消費電流が 100mA で約 12V まで、200mA で約 8V、300mA で約 6V、500mA で約 5V 動作までを目安にしてください。周辺温度 25℃時

■使い方

(準備)

デバイスドライバを当社ウェブページからダウンロードしておいてください。⇒ um0412.zip

ST 本社サイトからも同じものをダウンロードすることができます。適当なフォルダにファイルを展開しておいてください。

展開すると DfuSe Demo V3.0 Setup.exe というファイルが現れますので、これを実行してインストールしてください。

C:\Program Files\STMicroelectronics\Software\DfuSe

にデバイスドライバや各種ツールがインストールされます。

(ボードのセット)

BOOT0, BOOT1 のジャンパピンは両方とも 0 にセットしてください。

パソコンと USB ケーブルで接続します。パソコンがデバイスを認識します。

基板上の赤色 LED が点滅します。(基板上のジャンパをハンダ付けしている場合は緑 LED も点灯します。)

赤色 LED が点滅しない場合はユーザスイッチとリセットスイッチを両方押し、リセットスイッチを離した後に、ユーザスイッチを離してください。 一度ユーザプログラムを書き込んだボードはユーザプログラムが動作してしまうため、毎回この手順が必要です。

デバイスドライバをインストールする画面が出ましたら、先ほど展開した

C:\Program Files\STMicroelectronics\Software\DfuSe\Driver

を指定してください。ドライバのインストールが完了します。

ドライバのインストールが完了するまで、ボードを外したり、リセットしたりしないようにしてください。

(サンプル)

書き込み手順の練習としてLEDピカピカを用意してありますので、当社ウェブサイトからダウンロードしてください。

※CQ 出版社 デザインウェーブ 2008 年 5 月号(既に完売です)に STM32 が付録となりましたが、この付録ボードへの書き込み手順と同じように扱えます。 当時の本をお持ちの方は参考になさってください。

■STBee のプログラム書き込みについて

通常、出荷時のマイコンにはプログラムが何も書き込まれていないため、市販の JTAG ライターを使ってプログラムを書き込む必要があります。 しかしそれではお金がかかるし、毎回ライターを接続する手間がかかるので不便です。そこで当社のSTBee マイコンボードにはデバイス・ファームウェア・アップグレード(以下 DFU)というブートローダーを全製品書き込み済みで出荷しています。この DFU というプログラムが書き込まれていることにより、お客様が USB を通してパソコンに接続すると、自動でマイコンボードを認識し、パソコンと通信することができるようになっています。

DFU によってパソコンと通信し、専用のソフトでユーザプログラムを内蔵フラッシュに書き込むことにより JTAG ライター等を使わずに開発ができます。 つまりこのマイコンボード以外のハードウェアがなくてもマイコン開発ができるようになっています。

不利な点として DFU のプログラムの長さ分だけユーザプログラムの領域としては使えなくなってしまいます。STBee では内蔵 512K バイトのうち DFU に 12K バイト使いますので、実際ユーザが使える領域は 500K バイトとなります。DFU が利用する領域は全体の 2.5%程度とわずかです。 内蔵フラッシュの書き換え能力は1万回以上ですので、何度もプログラムを作って書き換えしても大丈夫です。

■DFU の仕組み

DFU はフラッシュの先頭アドレス 0x0800 0000~0x0800 2FFF までの位置にあります。

ユーザが利用できる領域はそれ以降の 0x0800 3000~0x0807 FFFF までになります。 なお 0x0000 0000 のアドレスは 0x0800 0000 にマップされているため、 0x0000 0000 へのメモリアクセスは 0x0800 0000 にアクセスしたのと同じです。

・マイコンの電源が入る(リセットされる)と DFU の先頭アドレスからスタックポインタとプログラムカウンタを拾ってマイコンが動作を開始します。 最初、プログラムカウンタは DFU 内を指し、DFU が実行されます。次にユーザSWの状態を読み取ります。

・ユーザSWが 1(押下されている)なら USB の初期化ルーチンを実行し、これからパソコンと USB で通信する準備をします。これが USB を経由してフラッシュメモリの書き換えをするモードです。

・ユーザSWが 0(押されていない)なら 0x0800 3000 以降のアドレスにユーザプログラムが書き込まれているかチェックします。ユーザプログラムが書き込まれていないなら、前記と同じ USB の初期化ルーチンを実行してパソコンと通信する準備をします。

・ユーザプログラムが書き込まれていたら、0x0800 3000 からスタックポインタとプログラムカウンタをロードして、プログラムを実行します。これがユーザプログラムの実行です。後はユーザプログラムの通りに動作をします。

ここで注意が必要なのは割り込みベクタについてです。本来は割り込みベクタアドレスを 0x0800 0000(0x0000 0000)として開発しなければならないのですが、STBee では既に DFU が書き込んであるため、0x0800 0000 にすることができません。ですからユーザは DFU のサイズ分シフトした 0x0800 3000 に割り込みベクタが来るように開発しなければなりません。GNU gcc ではずらして開発することができますが、他の評価版コンパイラではこの設定ができないベンダーもありますのご注意ください。

ユーザプログラムが実行されても割り込みベクタが DFU 内を指していてはユーザプログラム内の割り込み処理が呼び出されなくなってしまいます。そのため Cortex-M3 では割り込みベクタの先頭アドレスを変更することができるようになっています。これにより DFU が邪魔をせずユーザプログラムが実行できるようになっています。

間違ってプログラムの先頭アドレスを 0x0800 0000 にしたプログラムを書き込んでもエラーが出るだけで DFU は壊れません。

DFU が消えてしまいますと USB からの再書き込みが不可になってしまいますから、通常の取り扱いでは消えないようになっています。

ユーザプログラムでフラッシュメモリを書き換えるソフトを作られる場合は消してしまう可能性があります。該当領域を消去しないようご注意ください。

■モードの切り替え

STM32 は起動時に3つのモードを選べます。このモードの設定を BOOT0, BOOT1 ピンで行います。

このマイコンボードでは「メインフラッシュメモリ」からの起動以外はあまり使いません。

BOOT1ピン	BOOT0ピン	ブートモード	詳細	
Х	0	メインフラッシュメモリ	フラッシュメモリから起動します。 DFU が最初に実行され、その後ユーザプログラムが走ります。	
0	1	システムメモリ	STM32 内蔵のシステムメモリから起動します。 システムメモリには USART 経由でプログラムを書き込むインターフェースが備わっています。(JTAG なしでもプログラムの書き込みができる)	
1	1	SRAM	SRAM 領域から起動します。	

・BOOT0ピンは専用ピンでコネクタには引き出されていません。

・BOOT1 ピンは PB2 ピンと共用になっています。

■ピン配置図

各 I/O ポートは 16 本順番通りにコネクタに並んでいますので、扱いやすくなっています。PB ポートのみPB0~7とPB8~15に分断されます。

NC は未接続を表します。

◆CN3 ※ポート名の後の*は5Vトレラント入力を示します。*がないものは5V受けられません。VDD(=3.3V)までです。

•	,	1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 2		0 - 0	18:01 21, 34:01 210 112 (0:01) 01
1	GND		2	GND	
3	5V		4	5V	
5	3.3V		6	3.3V	
7	PD0*	FSMC_D2	8	PD1*	FSMC_D3
9	PD2*	TIM3_ETR, UART5_RX, SDIO_CMD	10	PD3*	FSMC_CLK
11	PD4*	FSMC_NOE < <i>赤 LED</i> >	12	PD5*	FSMC_NWE
13	PD6*	FSMC_NWAIT	14	PD7*	FSMC_NE1, FSMC_NCE2
15	PD8*	FSMC_D13	16	PD9*	FSMC_D14
17	PD10*	FSMC_D15	18	PD11*	FSMC_A16
19	PD12*	FSMC_A17	20	PD13*	FSMC_A18
21	PD14*	FSMC_D0	22	PD15*	FSMC_D1
23	PB0	ADC12_IN8, TIM3_CH3, TIM8_CH2N	24	PB1	ADC12_IN9, TIM3_CH4, TIM8_CH3N
25	PB2*	BOOT1	26	PB3*	SPI3_SCK, I2S3CK, JTDO
27	PB4*	SPI3_MISO, NJTRST	28	PB5	I2C1_SMBA, SPI3_MOSI, I2S3_SD
29	PB6*	I2C1_SCL, TIM4_CH1	30	PB7*	I2C1_SDA, FSMC_NADV, TIM4_CH2
31	1 GND		32	GND	
33	PC0	ADC123_IN10	34	PC1	ADC123_IN11
35	PC2	ADC123_IN12	36	PC3	ADC123_IN13
37	PC4	ADC123_IN14 < USB DETECT>	38	PC5	ADC123_IN15
39	PC6*	I2S2_MCK, TIM8_CH1, SDIO_D6	40	PC7*	I2S3_MCK, TIM8_CH2, SDIO_D7
41	PC8*	TIM8_CH3, SDIO_D0	42	PC9*	TIM8_CH4, SDIO_D1
43	PC10*	UART4_TX, SDIO_D2	44	PC11*	UART4_RX, SDIO_D3
45	PC12*	UART5_TX, SDIO_CK	46	PC13	TAMPER_RTC
47	VBAT		48	NRST(~	RESET)
49	GND		50	GND	

◆CN4 ※ポート名の後の * は 5V トレラント入力を示します。* がないものは 5V 受けられません。VDD(=3.3V)までです。

1	GND		2	GND	
3	PA0	WKUP, USART2_CTS, ADC123_IN0, <ューザSW>	4	PA1	USART2_RTS, ADC123_IN1,
		TIM2_CH1_ETR, TIM5_CH1, TIM8_ETR			TIM5_CH2, TIM2_CH2
5	PA2	USART2_TX, TIM5_CH3, ADC123_IN2,	6	PA3	USART2_RX, TIM5_CH4, ADC123_IN3,
		TIM2_CH3			TIM2_CH4
7	PA4	SPI1_NSS, USART2_CK, DAC_OUT1,	8	PA5	SPI1_SCK, DAC_OUT2, ADC12_IN5
		ADC12_IN4			
9	PA6	SPI1_MISO, TIM8_BKIN, ADC12_IN6,	10	PA7	SPI1_MOSI, TIM8_CH1N, ADC12_IN7,
		TIM3_CH1			TIM3_CH2
11	PA8*	USART1_CK, TIM1_CH1, MCO	12	PA9*	USART1_TX, TIM1_CH2
13	PA10*	USART1_RX, TIM1_CH3	14	NC 💥	基板中央付近に PA11 端子を設けてあります
15	NC ※	基板中央付近に PA12 端子を設けてあります	16	PA13*	JTMS SWDIO
17	PA14*	JTCK SWCLK	18	PA15*	SPI3_NSS, I2S3_WS, JTDI
19	GND		20	GND	
21	PE0*	TIM4_ETR, FSMC_NBL0	22	PE1*	FSMC_NBL1
23	PE2*	TRACKCK, FSMC_A23	24	PE3*	TRACKD0, FSMC_A19
25	PE4*	TRACKD1, FSMC_A20	26	PE5*	TRACKD2, FSMC_A21
27	PE6*	TRACKD3, FSMC_A22	28	PE7*	FSMC_D4
29	PE8*	FSMC_D5	30	PE9*	FSMC_D6
31	PE10*	FSMC_D7	32	PE11*	FSMC_D8
33	PE12*	FSMC_D9	34	PE13*	FSMC_D10
35	PE14*	FSMC_D11	36	PE15*	FSMC_D12
37	PB8*	TIM4_CH3, SDIO_D4	38	PB9*	TIM4_CH4, SDIO_D5
39	PB10*	I2C2_SCL, USART3_TX	40	PB11*	I2C2_SDA, USART3_RX
41	PB12*	SPI2_NSS, I2S2_WS, I2C2_SMBA,	42	PB13*	SPI2_SCK, I2S2_CK, USART3_CTS,
		USART3_CK, TIM1_BKIN			TIM1_CH1N
43	PB14*	SPI2_MISO, TIM1_CH2N, USART3_RTS	44	PB15*	SPI2_MOSI, I2S2_SD, TIM1_CH3N
45	3.3V		46	3.3V	
47	5V		48	5V	
49	GND		50	GND	

※PA11, PA12 は USB の Dー,D+に配線されているため、コネクタには引き出されていません。

※1つのピンに多数の機能が割り当てられています。同時に利用できないケースがありますので詳しくはデータシートをご覧ください。

■CN2 (JTAG コネクタ)

1	VDD	2	VDD
3	NTRST	4	GND
5	TDI	6	GND
7	TMS	8	GND
9	TCK	10	GND
11	RTCK	12	GND
13	TDO	14	GND
15	RST	16	GND
17	DBGRQ※	18	GND
19	DBGACK※	20	GND

※本ボードでは未使用

■USART1

■LED

■USER スイッチ(ユーザスイッチ)

■リセットスイッチ

■BOOT1

■メモリマップ

Cortex-M3 は 32 ビット(4G バイト)のメモリ空間となっております。

0xFFFF FFFF	内部レジスタ	
0xE000 0000	アリロレンスス	
0xDFFF FFFF	(土住田)	
0xC000 0000	(未使用)	
Oxbfff ffff	は 女 パココン・トローリ	
0xA000 0000	外部バスコントロール	
0x9FFF FFFF	外部バス	外部バスとして利用できます。
0x8000 0000	かかハス	が部へ入として利用できます。
0x7FFF FFFF	Li +α ιζ-	니 to ital Lagrange * *
0x6000 0000	外部バス	外部バスとして利用できます。
0x5FFF FFFF	FF >T 14% ()h	I/O、タイマ、USART、USB など全ての周辺機能コントロール
0x4000 0000	周辺機能	レジスタがある。
0x3FFF FFFF		内蔵の SRAM が先頭部分に置かれる
0x2000 0000	SRAM	
		>
0x1FFF FFFF	Code(プログラム)	フラッシュメモリが置かれます。
0x0000 0000	Code (プログプム)	

■トラブルシューティング

⇒USB が認識されないときは下記項目を調べてみてください。

- ・USB コネクタの端子がしっかり基板にハンダ付けされているか?
- ・リセッタブル・ヒューズが正しい位置にハンダ付けされているか? 異常に熱くなっていないか?
- ・LED ジャンパ(④参照)をハンダ付けして緑 LED は点灯しますか?
- •BOOT0, BOOT1 ジャンパが 0 になっているか?
- ・他の回路などを接続している場合は全て取り外す
- ・USER スイッチを押しながら RESET スイッチを押し、RESET スイッチを離した後に USER スイッチを離します。
- ・赤 LED が点滅しますか?

■使用上の注意・免責事項など

- ・本キットは主にエンジニアの方を対象にした製品です。
- ・本キットを使用したことによる、損害・損失については一切補償できません。
- ・製造上の不良がございましたら、良品とお取替えいたします。それ以外の責についてはご容赦ください。
- ・主要部品は鉛フリー(RoHS 適合)ですが、プリント基板および製造プロセスは有鉛ラインで製造しています。

Copyright © 2010 Strawberry Linux Co., Ltd. 株式会社ストロベリー・リナックス 2010年4月 第1版 無断転載を禁止します