

## Centrifugeuse humaine

**Xavier Pessoles** 

Savoirs et compétences :

Afin d'analyser les effets de l'accélération sur le corps humaine, le CNRS / MEDES a développé une centrifugeuse humaine. On donne ci-dessous la modélisation cinématique de la centrifugeuse.



Le paramétrage de la centrifugeuse est donnée ci dessous:



## Exercice 1 - Parallélépipède\*

## B2-10

La matrice d'inertie d'un cylindre d'axe  $(G, \overline{k})$  de rayon R et de hauteur H et de masse m est donnée en son centre d'inertie par  $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\overrightarrow{l}, \overrightarrow{l}, \overrightarrow{l}, \overrightarrow{k}}$ 

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right) \text{ et } C = m\frac{R^2}{2}.$$

La matrice d'inertie d'un parallélépipède de cotés a, b et c et de masse m est donnée en son centre d'iner-

$$b$$
 et  $c$  et de masse  $m$  est donnée en son centre d'inertie par  $I_G(1)=\begin{pmatrix}A&0&0\\0&B&0\\0&0&C\end{pmatrix}_{\left(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)}$  avec  $A=m\frac{b^2+c^2}{12}$ ,  $B=m\frac{a^2+c^2}{12}$ ,  $C=m\frac{a^2+b^2}{12}$ .

Soit la pièce suivante.

Les paramètres constants du système sont les sui-

- $\overrightarrow{O_0O_1} = a \overrightarrow{i_1}$ ;  $\overrightarrow{O_1G} = b \overrightarrow{i_2} + c \overrightarrow{k_2}$ .

## **Trajectographie**

**Question** 1 Donner la trajectoire du point G dans le repère  $\mathcal{R}_0$ .

## Cinématique

**Question 2** Calculer  $V(G, S_2/S_0)$ .

#### **Accélération**

1

**Question 3** Calculer  $\Gamma(G, S_2/S_0)$ .



On pose 
$$\overrightarrow{OA} = \frac{a}{2}\overrightarrow{x} + \frac{c}{2}\overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 1.

## TD 02



## Magic Arms Florestan Mathurin Savoirs et compétences :

La manège Magic Arms dont la modélisation ainsi qu'un extrait de cahier des charges fonctionnel est composé d'une structure métallique d'environ 12 m de haut avec deux bras mobiles. Les passagers s'assoient sur 39 pièces disposées sur une plate-forme tournante. Dès que tous les passagers sont assis et attachés, la nacelle tourne autour de son axe, le bras principal (bras 1) et le bras secondaires (bras 2), liés l'un à l'autre au début du cycle, commencent à tourner. Après 9 secondes, le maximum de hauteur est atteint et les deux bras se désindexent et se mettent à tourner indépendamment l'un de l'autre. Tous les mouvements sont pilotés par ordinateur.



Le manège, schématisé ci-dessus, comporte :

- un bras principal 1 assimilé à une barre  $AO_1O_2$ . Il est en liaison pivot parfait d'axe  $(O_1, \overline{z_1})$  caractérisée par le paramètre  $\alpha$  avec le bâti  $\mathbf{0}$ . On pose  $\overrightarrow{O_1} \overrightarrow{O_2} = -l_1 \overrightarrow{y_1};$
- un bras secondaire 2 assimilé à une barre  $BO_2O_3$ . Il est en liaison pivot parfait d'axe  $(O_2, \overrightarrow{z_2})$  caractérisée par le paramètre  $\beta$  avec le bras principal 1. On pose  $O_2 O_3 = -l_2 \overrightarrow{y_2}$ ;
- une nacelle 2 assimilée à un disque de centre  $O_3$ et de rayon R. Elle est en liaison parfaite d'axe  $(O_3, \overrightarrow{y_2})$  caractérisée par le paramètre  $\varphi$  avec le bras 2. On s'intéresse plus particulièrement à un passager considéré comme un point matériel P tel que  $\overrightarrow{O_3P} = -R\overrightarrow{z_3}$ .

Question 1 Construire les figures planes associées au schéma cinématique.

**Question 2** Calculer  $\Omega(1/0)$ ,  $\Omega(2/1)$  et  $\Omega(3/2)$ .

**Question 3** Calculer  $\Omega(2/0)$  et  $\Omega(3/0)$ .

Question 4 Calculer les produits vectoriels suivants:  $\overrightarrow{z_2} \wedge \overrightarrow{z_3}$ ,  $\overrightarrow{x_3} \wedge \overrightarrow{x_2}$ ,  $\overrightarrow{x_3} \wedge \overrightarrow{z_2}$ ,  $\overrightarrow{z_2}$ ,  $\overrightarrow{z_2}$ ,  $\overrightarrow{z_1}$ ,  $\overrightarrow{x_2} \wedge \overrightarrow{x_0}$ ,  $\overrightarrow{x_3} \wedge \overrightarrow{z_0}$ .

**Question** 5 Calculer  $\overrightarrow{V(O_2,2/0)}$ ,  $\overrightarrow{V(O_3,3/0)}$  et V(P, 3/0).

On donne l'évolution des vitesses angulaires des moteurs du manège en fonction du temps.



**Question 6** Déterminer les valeurs des paramètres  $\dot{\alpha}$ ,  $\dot{\beta}$  et  $\dot{\varphi}$  puis l'expression analytique des positions angulaires  $\alpha(t)$  et  $\beta(t)$  et  $\varphi(t)$  dans l'intervalle de temps [17;27] secondes en sachant qu'à l'instant t = 17 s, on a  $\alpha = 10.5 \,\text{rad}, \, \beta = 3.76 \,\text{rad} \, et \, \varphi = -10.676 \,\text{rad}.$ 

Question 7 Déterminer les valeurs numériques à *l'instant*  $t_1 = 19,8$  *s de*  $\alpha$ ,  $\beta$  *et*  $\varphi$ .

Question 8 On pose  $\overrightarrow{V(P,3/0)} = V_{x2} \overrightarrow{x_2} + V_{y2} \overrightarrow{y_2} +$  $V_{z2}\overrightarrow{z_2}$ . Déterminer les expressions littérales de  $V_{x2}$ ,  $V_{x2}$ ,  $V_{z2}$ puis les valeurs numériques de à  $t_1 = 19,8 s$ . (On donne :  $l_1 = 3.9 m$ ,  $l_2 = 2.87 m$ , R = 2.61 m.)

**Question 9** *Calculer*  $\Gamma(P \in 3/0)$ .

**Question 10** Calculer  $\Gamma(P \in 3/0)$  dans l'intervalle de temps [17;27] secondes pour lequel les vitesses angu-



laires sont constantes.

Le graphe ci-dessous, obtenu par simulation numérique, présente le module de la vitesse du passager P par rapport au bâti 0 ainsi que le module de l'accélération du passager P par rapport au bâti 0 en fonction du temps.



## Exercice 2 - Parallélépipède percéx

#### B2-10

La matrice d'inertie d'un cylindre d'axe  $(G, \vec{k})$  de rayon R et de hauteur H et de masse m est donnée en son centre d'inertie par  $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}}$ 

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et  $C = m\frac{R^2}{2}$ .

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

centre d'inertie par 
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec 
$$A = m \frac{b^2 + c^2}{12}, B = m \frac{a^2 + c^2}{12}, C = m \frac{a^2 + b^2}{12}.$$

Question 11 Comparer les résultats obtenus à la question 6 à ceux du graphe pour le temps  $t_1 = 19.8 \text{ s...}$ 

Question 12 Relever l'accélération maximale subie par le passager et conclure vis-à-vis du CdCF.



On pose 
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G.

Corrigé voir 2.

# Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Révision cinématique - Résolution cinématique

Sciences
Industrielles de
l'Ingénieur

**TD 03** 



#### Danse avec les robots

ICNA 2017

Savoirs et compétences :

« Danse avec les robots » est une attraction du Futuroscope de Poitiers. Le principe consiste à attacher deux personnes au bout d'un bras de robot 5 axes. Les personnes sont ainsi remués au rythme de la musique.

On appelle nacelle l'ensemble de solides composé des sièges, des harnais de sécurité et des 2 volontaires.



On donne sur la figure suivant le schéma cinématique spatial d'un des robots avec le paramétrage associé aux différents solides et aux liaisons.



L'ensemble des repères sont considérés orthonormés directs.

- On note  $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$  le repère supposé galiléen associé au sol de la salle de spectacle, appelé bâti **0**.
- On note  $\mathcal{R}_1 = (O_0; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$  le repère associé à la chaise  $\mathbf{1}$  et  $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$  l'angle de rotation de la chaise  $\mathbf{1}$  par rapport au bâti  $\mathbf{0}$ .
- On note  $\Re_2 = (A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$  le repère associé à l'épaule **2**,  $\overrightarrow{O_0A} = a\overrightarrow{z_0} + b\overrightarrow{x_1}$  et  $\theta_2 = (\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{z_1}, \overrightarrow{z_2})$  l'angle de rotation de l'épaule **2** par rapport à la chaise **1**.

- On note  $\mathcal{R}_3 = (B; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$  le repère associé à l'avant-bras  $\mathbf{3}$ ,  $\overrightarrow{AB} = c \overrightarrow{x_2}$  et  $\theta_3 = (\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{z_2}, \overrightarrow{z_3})$  l'angle de rotation de l'avant-bras  $\mathbf{3}$  par rapport à l'épaule  $\mathbf{2}$ .
- On note  $\mathcal{R}_4 = (C; \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$  le repère associé au bras  $\mathbf{4}$ ,  $\overrightarrow{BC} = d\overrightarrow{x_3}$  et  $\theta_4 = (\overrightarrow{x_3}, \overrightarrow{x_4}) = (\overrightarrow{y_3}, \overrightarrow{y_4})$  l'angle de rotation du bras  $\mathbf{4}$  par rapport à l'avant-bras  $\mathbf{3}$ .
- On note  $\mathcal{R}_5 = (D; \overrightarrow{x_5}, \overrightarrow{y_5}, \overrightarrow{z_5})$  le repère associé à la nacelle  $\mathbf{5}$ ,  $\overrightarrow{CD} = e \overrightarrow{x_4}$  et  $\theta_5 = (\overrightarrow{y_4}, \overrightarrow{y_5}) = (\overrightarrow{z_4}, \overrightarrow{z_5})$  l'angle de rotation de la nacelle  $\mathbf{5}$  par rapport au bras  $\mathbf{4}$ .

Le centre de gravité de la nacelle 5 (siège + volontaire + harnais) est tel que  $\overrightarrow{DG} = f\overrightarrow{x_4} + h\overrightarrow{z_5}$ .

On définit la position du point G dans la base  $\mathscr{B}_0 = (\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$  telle que  $\overrightarrow{O_0G} = x\overrightarrow{x_0} + y\overrightarrow{y_0} + z\overrightarrow{z_0}$ .

**Question** 1 Tracer les figures planes de changement de repère.

**Question 2** Exprimer la position du point G suivant  $\overrightarrow{x_0}$ .

**Objectif** Valider que l'exigence d'accélération est satisfaite : l'accélération ressentie doit être au maximum de 3,5 g.

**Question 3** Exprimer la vitesse du point G dans son mouvement par rapport au repère galiléen associé à  $\mathbf{0}$ , notée V(G, 5/0).

On limite désormais l'étude dans au cas où  $\dot{\theta}_2 = 1,45\,\mathrm{rad}\,\mathrm{s}^{-1},\,\theta_3=\theta_4=\theta_5=0.$ 

**Question** 4 Exprimer l'accélération du point G dans son mouvement par rapport au repère galiléen associé à 0, notée  $\Gamma(G,5/0)$ .

**Question 5** Conclure quant au respect de l'exigence d'accélération ressentie.



## Exercice 3 - Cylindre percé \*

## **B2-10** Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe  $\left(G,\overrightarrow{k}\right)$  de rayon R et de hauteur H et de masse m est donnée en son centre d'inertie par  $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{t},\overrightarrow{j},\overrightarrow{k}\right)}$  avec  $A = m \left(\frac{R^2}{4} + \frac{H^2}{12}\right) \text{ et } C = m \frac{R^2}{2}.$ 

Soit la pièce suivante.



On pose 
$$\overrightarrow{OA} = -\frac{R}{2}\overrightarrow{x}$$
.

**Question 1** Déterminer la position du centre d'inertie G du solide.

**Question 2** Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir 3.

# Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Révision cinématique – Résolution cinématique

**Sciences** Industrielles de l'Ingénieur

TD 04



## Robot de peinture

Pôle Chateaubriand - Joliot Curie Savoirs et compétences :

## Robot de peinture

On étudie un robot de peinture de voiture. Ce robot se déplace par rapport à une carrosserie de voiture, et projette dessus de la peinture. L'objectif est de déterminer les lois du mouvement du robot, pour lui permettre de vérifier le critère de vitesse de déplacement relatif (entre le robot et la carrosserie de voiture) du cahier des charges.



| Exigences techniques | Critère                              | Niveau               |
|----------------------|--------------------------------------|----------------------|
| 1.7                  | Vitesse de<br>déplacement<br>relatif | Vitesse<br>constante |

La modélisation cinématique du robot est donnée sur la figure suivante:



Le chariot  $S_1$ , auquel on associe le repère  $\mathcal{R}_1(A, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$  est en mouvement de translation de direction  $\overrightarrow{y_0}$  par rapport au bâti  $S_0$  de repère  $\mathcal{R}_0(A, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}).$ 

Le corps  $S_2$ , auquel on associe le repère  $\mathcal{R}_2(A, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$  est en mouvement de rotation autour de l'axe  $(B, \overrightarrow{z_0})$  avec le chariot  $S_1$ .

## Exercice 4 - Cylindre percé \*

#### **B2-10** Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe  $(G, \overline{k})$  de rayon R et de hauteur H et de masse m est donnée en

Le bras  $S_3$ , auquel on associe le repère  $\mathcal{R}_3(B, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$  est en mouvement de rotation autour de l'axe  $(B, \overrightarrow{y_2})$  avec le corps  $S_2$ .

On a 
$$\overrightarrow{OD} = b \overrightarrow{y_0}$$
 avec  $b = \sqrt{L^2 - H^2}$ .

Question 1 Construire les figures planes de repérage/paramétrage puis exprimer les vecteurs vitesse instantanée de rotation  $\Omega(1/0)$ ,  $\Omega(2/1)$ ,  $\Omega(3/2)$ .

**Question 2** Déterminer V(P, 3/0).

**Question 3** *Déterminer*  $\Gamma(P,3/0)$ .

On désire que P décrive la droite  $(D, \overrightarrow{x_0})$  à vitesse constante V, conformément au cahier des charges.

**Question 4** Représenter sur une figure dans le plan  $(O, \overrightarrow{x_0}, \overrightarrow{y_0})$ , puis sur une figure dans le plan  $(O, \overrightarrow{x_0}, \overrightarrow{y_0})$ , les positions des points O, D, A, B et P du robot lorsque celuici est en position extrême (A est en D).

Question 5 Traduire, à l'aide de l'expression de V(P,3/0) le fait que P se déplace à la vitesse V selon  $\overrightarrow{x_0}$ . En déduire  $\dot{\beta}$ .

**Question 6** Exprimer alors  $\dot{\lambda}$  et  $\dot{\alpha}$  en fonction de L, V,  $\alpha$  et  $\beta_0$ .

Question 7 A l'aide de la figure précédente, expri $mer \beta_0$  en fonction de b et L.

**Question 8** Exprimer  $\lambda$  et  $\dot{\alpha}$  en fonction de V, b et

son centre d'inertie par 
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec 
$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right) \text{ et } C = m\frac{R^2}{2}.$$



Soit la pièce suivante constituée d'un grand cylindre noté  ${\bf 1}$  de rayon R.  ${\bf 1}$  est percé d'un cylindre de diamètre de rayon r. On colnsidère que  ${\bf 1}$  est constitué d'un matériau homgène de masse volumique  $\rho$ .

On note 
$$\overrightarrow{OA} = -\frac{R}{2}\overrightarrow{x}$$
.



**Question 1** Déterminer la position du centre d'inertie G du solide.

**Question 2** Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir 4.

# Modéliser le comportement linéaire et non linéaire des systèmes multiphysiques

Révision cinématique – Résolution cinématique **Sciences** Industrielles de l'Ingénieur

TD 05



## Robot de peinture

Pôle Chateaubriand - Joliot Curie Savoirs et compétences :

#### Mise en situation

On s'intéresse à un robot soudeur dont le schéma cinématique lié à cette étude est proposé ci-dessous. Sur ce schéma, les « flèches » au dessus des vecteurs unitaires ne sont pas représentées.



Ce robot est constitué de cinq solides :

- le bâti 0, fixé au sol de l'atelier, de repère associé  $\mathcal{R}_0 = (O_0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$  tel que  $\overrightarrow{z_0}$  vertical ascendant;
- le fût 1, de repère associé  $\mathcal{R}_1 = (O_1, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$  tel que  $\overrightarrow{z_1} = \overrightarrow{z_0}$ ;
- le bras 2, de repère associé  $\mathcal{R}_2 = (O_2, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$  tel que  $\overrightarrow{x_1} = \overrightarrow{x_2}$ ;
- l'avant-bras 3, de repère associé  $\Re_3$   $(O_3, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$  tel que  $\overrightarrow{x_2} = \overrightarrow{x_3}$ ;
- la buse 4, de repère associé  $\mathcal{R}_4 = (O_4, \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$  tel que  $\mathcal{B}_4 = \mathcal{B}_3$ .

Chaque articulation possède son propre actionneur, le mouvement qui lui est associé peut donc être réalisé indépendamment des autres.

Paramètres du mouvement:

- $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1});$
- $\theta_2 = (\overrightarrow{y_1}, \overrightarrow{y_2});$   $\theta_3 = (\overrightarrow{y_2}, \overrightarrow{y_3});$

Caractéristiques géomé-

Les figures de changement de base sont donnés cidessous.



On donne ci-dessous un extrait du cahier des charges :

- exigence 1 : afin d'assurer la sécurité de l'environnement, la buse doit rester en permanence à l'intérieur d'une sphère de centre  $O_0$  et de rayon R.
- exigence 2 : en phase d'utilisation normale, la buse doit se déplacer par rapport au bâti suivant la droite  $(O_0, \overrightarrow{y_0})$ : réalisation d'un cordon de soudure linéaire.
- exigence 3 : pour que le cordon de soudure linéaire suivant  $\overrightarrow{y_0}$  soit correctement réalisé, l'orientation de la buse 4 par rapport à la direction verticale doit être constante, et la vitesse de la buse doit être constante : V.

Objectif Déterminer les relations à imposer entre les valeurs instantanées des paramètres de mouvement et de leurs dérivées lors de la réalisation d'un cordon de soudure.

**Question** 1 Préciser une condition sur le vecteur position du point O<sub>4</sub> dans le repère lié à 0 qui traduit l'exigence Ex1 du cahier des charges. En déduire une relation à imposer aux paramètres de mouvement.

Question 2 Préciser deux conditions sur le vecteur position du point O<sub>4</sub> dans le repère lié à 0 qui traduisent l'exigence Ex2 du cahier des charges. En déduire une relation à imposer aux paramètres de mouvement.

**Question 3** Déterminer le torseur  $\{ \mathcal{V}(4/0) \}$  au point  $O_4$  puis calculer  $\Gamma(O_4, 4/0)$ .

**Question 4** Déterminer le torseur  $\{\mathcal{V}(4/0)\}_{impose}$ qui traduit l'exigence Ex3.



**Question 5** On se place dans le cas où le moteur de l'articulation entre 0 et 1 est arrêté dans la position  $\theta_1 = 0$ , traduire alors la condition  $\{\mathcal{V}(4/0)\} = \{\mathcal{V}(4/0)\}_{impose}$  en deux relations vectorielles.

**Question 6** En déduire 3 relations scalaires imposées entre les paramètres de mouvement et/ou leurs dérivées.

## Exercice 5 - Disque \*\*

B2-10 Pas de corrigé pour cet exercice.

Soit un secteur de disque de rayon R, d'épaisseur négligeable et de masse surfacique  $\mu$ .



**Question 1** Déterminer la position du centre d'inertie G du solide.

**Question 2** Déterminer la matrice d'inertie du solide en O.

Corrigé voir 5.