

École Polytechnique de l'Université de Tours 64, Avenue Jean Portalis 37200 TOURS, FRANCE Tél. +33 (0)2 47 36 14 14 www.polytech.univ-tours.fr

Département Informatique 5^e année 2010 - 2011

Projet de réalité virtuelle

Construction en Kapla

Encadrant
Sebastien Aupetit
aupetit@univ-tours.fr
Emmanuel Néron

emmanuel.neron@univ-tours.fr

Université François-Rabelais, Tours

Étudiants
Guillaume Smaha
guillaume.smaha@etu.univ-tours.fr
Pierre Vittet

pierre.vittet@etu.univ-tours.fr

DI5 2010 - 2011

Table des matières

1	Introduction					
	1.1 Présentation du projet	. 6				
	1.2 Objectifs					
	1.3					
2	Choix techniques					
	2.1 Contexte					
	2.2 Liste des outils	. 7				
_	Réalisation					
	3.1 Gestion des évènements claviers/souris	. 8				
	3.2 Gestion de la caméra	. 8				
	3.3 Gestion de la physique des briquettes	. 8				
4	Conclusion	9				
5	Bibliographie	10				

Table des figures

Liste des tableaux

Introduction

1.1 Présentation du projet

L'objectif du projet est de proposer un environnement 3D dans lequel un utilisateur peut positionner un ensemble de briquettes afin de créer des structures. A partir d'une table, l'utilisateur doit essayer d'obtenir une structure qui est la flèche la plus grande possible (c'est à dire qui soit éloigné autant que possible du bord de la table. Bien sur, chaque briquette est soumis à la force de gravité rendant plus complexe l'élaboration de structures stables.

1.2 Objectifs

1.3

Aprés avoir discuter avec notre encadrant, nous nous sommes données les objectifs suivants :

- Un menus permettant de gérer différents niveaux de difficulté. Dans un premier temps la seul différence viendra du nombre de briquettes disponibles, mais il est également possible de travailler sur le poid ou la taille des briquettes.
- Saisis des objets et déplacement des briquettes via la souris
- Possibilité de revenir à un état précédant ou sucesseur du jeu : Aprés chaque placement de briquette,
 l'état du jeu est mémorisé et on permet d'y revenir.

Choix techniques

2.1 Contexte

L'encadrant de projet nous à laissé libre de choisir les technologies et les outils que l'on souhaitait utilisé pour le projet. Nos choix techniques ont été pris de manière à offrir un logiciel facilement utilisable sur différentes plateformes mais également en vue d'aller aussi loins que possible dans le projet en considérant le temps imparti. Nous avons fait le choix de réutiliser autant que possible les outils que nous connaissions déja. Cela nous à permis d'avoir une vue d'ensemble et une maitrise que nous n'aurions pas eu autrement.

2.2 Liste des outils

- Ogre^[2]: Moteur 3D open source (http://www.ogre3d.org/) supportant aussi bien OpenGL que Direct3D.
- CEGUI^[3]: Crazy Eddie's GUI System (http://www.cegui.org.uk) fournissant des outils de créations de menus et de fenetre dans un environnement 3D.
- Bullet^[4]: Librairie de simulation de la physique http://bulletphysics.org/

Réalisation

3.1 Gestion des évènements claviers/souris

Nous utilisons une classe PlayerControl qui redirige l'ensemble des évènements claviers et souris en des évènements logiques. C'est cette classe qui permet de lier les touches à des actions, permettant d'abstraire la configuration des touches par la suite.

3.2 Gestion de la caméra

Dans ce projet, il n'y a pas besoin de fournir de multiples caméras à l'utilisateur. Nous avons convenu que la caméra la plus adapté serait une caméra capable de pivoter autours de la table. La caméra est toujours orienté vers le point central de la table, cela permet d'avoir une orientation correcte, de plus son axe de lacet est fixé sur l'axe Z de façon à ce que la table soit toujours vue droite. Les rotations se font à l'aide de la souris, il est également possible de zoomer à l'aide des touches du clavier. introduire des translations de la caméra pourrait être intéressant mais cela est complexe car il faut alors reprendre l'orientation de la caméra et les rotations ne se font plus alors autours du centre de la table mais d'un autre point qu'il faut déplacer en conséquence. On aurait également pu imaginer un système ou la caméra plutôt que de s'orienter vers le centre de la table, s'oriente sur la dernière briquette sélectionné, mais cela peut également désorienté l'utilisateur.

3.3 Gestion de la physique des briquettes

La physique est géré avec la librairie Bullet. La technique consite à lier à l'objet d'Ogre, un 'corps' particulier à bullet sur lequel s'exerceront des forces et sur lequel on surveillera les possibles collisions. Bullet permet de rajouter une force d'attraction globale au monde et un poid à chacun des objets. Une des difficultés était de pouvoir outre-passer la gestion de la physique offerte par bullet lors de la sélection des briquettes pour les replacer. Pour cela il a faut désactiver l'ensemble des forces s'exercant sur l'objet, permettre les deplacements de l'objet (lorsqu'un objet est stable, et qu'il n'y a pas de risque que celui ci subisse de nouvelle collision, bullet le bloque de façon à ne pas avoir à contrôler continuellement son état), et enfin empécher la mise à jour de l'objet et l'application des nouvelles forces avant que l'utilisateur n'est fini de positionner l'objet.

On utilise en réalité Bullet via OgreBullet pour l'intégrer avec Ogre, cependant OgreBullet est limité dans ces possiblités et il nous a parfois fallut travailler directement sur l'objet Bullet pour pouvoir obtenir le comportement souhaité.

Conclusion

Bibliographie

- [1] Ogre Wiki, *Utilisation des quaternions dans Ogre*, http://www.ogre3d.org/tikiwiki/Quaternion+and+Rotation+Primer
- [2] Ogre Documentation, Documentation Doxygen d'Ogre, http://www.ogre3d.org/docs/api/html/index.html
- [3] CEGUI Wiki, Utilisation de CEGUI, http://www.cegui.org.uk/wiki/index.php/Main_Page
- [4] Bullet Wiki, Utilisation de Bullet, http://bulletphysics.org/wordpress/
- [5] Ogre Wiki, Tutorial d'utilisation d'OgreBullet, http://www.ogre3d.org/tikiwiki/OgreBullet
- [6] Site du Zéro, Signaux avec QT, http://www.siteduzero.com/tutoriel-3-11268-les-signaux-et-les-slots.html

Construction en Kapla

Département Informatique 5^e année 2010 - 2011

Projet de réalité virtuelle

Résumé: Ce rapport présentera notre projet de construction de Kapla. L'objectif de ce projet était de développer une simulation physique d'un jeu de Kapla. Nous y expliquerons les différentes techniques utilisées (signaux, déplacements, ...) pour obtenir le résultat le plus réaliste possible.

Mots clefs: Ogre3D, Bullet, Kapla, simulation

Abstract: This report will describe our project of construction Kapla. The main goal of this project was to develop a physic simulation of a Kapla game. We will describe the different techniques (signals, movement, ...) used to obtain the most realistic result.

Keywords: Ogre3D, Bullet, Kapla, simulation

Encadrant
Sebastien Aupetit
aupetit@univ-tours.fr
Emmanuel Néron
emmanuel.neron@univ-tours.fr

Étudiants
Guillaume Smaha
guillaume.smaha@etu.univ-tours.fr
Pierre Vittet
pierre.vittet@etu.univ-tours.fr