Foundations of Data Science & Analytics: Hyperparameter Tuning

Ezgi Siir Kibris

Introduction to Data Mining, 2nd Edition bν

Tan, Steinbach, Karpatne, Kumar

A black box **optimization** process:

- Search within a decision space
 - E.g. criterion and max_depth of a decision tree learner
- To find the set of decisions that generate optimal (or suboptimal) objectives
 - E.g. f1 score and runtime

A **black box** optimization process:

• Optimize $\max y = f(x)$

where x = decisions (hyperparameters) y = objectives (performance metrics)

Which one is better?

• Single objective:

No problem

• Multi-objective:

- Binary domination
- A binary dominates B if
 - A is not worse than B in any objective

AND

A is better than B in at least one objective

How to find the optimal decisions for multiple objectives?

- Grid search
- Random search
- Evolutionary algorithm

Grid search

- Exhaustive search of the decision space
- Embarrassingly parallel
- Curse of dimensionality

- max_depth = {1, 2, 3, 4, 5, 6, 7, 8}
- criterion = {gini, entropy}
- 8 * 2 = 16 evaluations

Random search

- Random sample from the decision space
- Embarrassingly parallel
- Outperforms grid search in problems of low intrinsic dimensionality (only a few decisions affect the objectives)

Evolutionary algorithm

Continuity Assumption:

Two points are close in decision space -> also close in objective space

Exploitation:

Evaluate points that are similar to the current best performing ones.

Exploration:

Evaluate points in the most unseen regions (or just randomly)

Genetic Algorithm (GA)

Selection: only the best ones survive

Initialization

Random sample without replacement K points from the decision space to form **Generation 0.**

Initialization

Evaluation

- Cross-validation:
 - Train model with each set of decisions as parameters.
 - Test on validation set to collect performance metrics
- Summarize objectives

Evaluation

Selection

- Single objective:
 - Select M points that achieve best objective (e.g. M = 0.5 K).
- Multi-objective:
 - Select points that are NOT dominated (Pareto Frontier) by any point.

Selection

Selection

Crossover (exploitation)

- Single-point crossover
 - o random a number 0<k<n
 - o to k-1 bit from A, k to n bit from B
- Uniform crossover
 - each bit has equal probability from A or B

Crossover (exploitation)

- Randomly select two points A and B
- Crossover and generate C
- Repeat until size of generation is K

Crossover

Mutation (exploration)

Chromosome A

Chromosome A'

- Each bit has equal probability of being mutated
- To a random valid value except the original one

Mutation (exploration)

Mutation (exploration)

Evaluation

Replace

Replace

Stop

- When generation i is the same as generation i-1
- Or when best point stays unchanged for generations

Evolutionary algorithm

Advantage:

 More efficient (than random and grid search): find better solution with fewer evaluations when decision space is large.

Disadvantage:

- Does not guarantee global optimum.
- Needs communication in parallelization.