Exercices

Exercice 1

Soient
$$E = \mathcal{M}_n(\mathbb{C})$$
 et $\varphi : \begin{cases} E \times E & \longrightarrow \mathbb{C} \\ (A, B) & \longmapsto \operatorname{tr}({}^t \overline{A} B) \end{cases}$

Montrer que φ est un produit scalaire sur E.

Exercice 2

Cet exercice vise à montrer que la définition des coefficients de Fourier $c_n(f)$ (d'une fonction f continue par morceaux et 2π -périodique de \mathbb{R} dans \mathbb{C}) est naturelle.

Soit $c_0 + \sum_{n \geqslant 1} (c_n e^{inx} + c_{-n} e^{-inx})$ une série de fonctions ¹ convergeant uniformément vers une fonction f sur \mathbb{R}

où les c_k sont des complexes.

En particulier, on a donc pour tout $x \in \mathbb{R}$,

$$f(x) = c_0 + \sum_{n=1}^{+\infty} (c_n e^{inx} + c_{-n} e^{-inx})$$
 (*)

1. En intégrant l'équation (*) entre 0 et 2π , montrer que

$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, \mathrm{d}x$$

2. Soit $k \in \mathbb{N}^*$. En multipliant l'équation (*) par e^{-ikx} puis en l'intégrant entre 0 et 2π , montrer que

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} \,\mathrm{d}x$$

Exercice 3

Montrer que la famille $(e_n)_{n\in\mathbb{Z}}$ est orthonormée dans $(\mathcal{D},<,>)$ où pour tout $(f,g)\in\mathcal{D}^2$,

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(x)} g(x) dx$$

Exercice 4

Soit f une fonction de classe C^1 et 2π -périodique de $\mathbb R$ dans $\mathbb C$.

Montrer que pour tout $n \in \mathbb{Z}^*$,

$$c_n(f) = \frac{1}{in} c_n(f')$$

^{1.} On utilise ici l'abus classique consistant à identifier, dans le cadre des séries trigonométriques, une série de fonctions avec sa série numérique associée.