CS Homework 5 Problem 3

Jacob Johns

October 26 2018

Question 3 [label=]

(30 points) Using a hash table T of size m=11 (i.e., $T[0\cdots 10]$) with hash function hash(x)=x%m, show the hash table that results after the following keys are inserted in the given order: 26 42 5 44 92 59 40 36 12. For each of the following probing methods, show the resulting hash table.

a. Linear probing, i.e., $h_i(x) = (hash(x) + i)\%m$, for $i = 0, 1, 2, \ldots$

Index k	l .									10
Value H[k]	44	12	36	26	5	92	59	40	42	

b. Quadratic probing, i.e., $h_i(x) = (hash(x) + i^2)\%m$, for $i = 0, 1, 2, \ldots$

Index i	0	1	2	3	4	5	6	7	8	9	10
Value H[i]	44	59	12	36	26	5	92	40		42	

c. Double hashing using the secondary hash function hash2(x) = x%9 + 1, i.e., $h_i(x) = (hash(x) + i \cdot hash_2(x))\%m$, for $i = 0, 1, 2, \ldots$ Note that this secondary hash function does not follow the style we discussed in class, but theoretically we can pick any function as the secondary hash function.

Index i	0	1	2	3	4	5	6	7	8	9	10
Value H[i]	44	12		36	26	5	40	92		42	59