測度論的確率論 2018 S1S2

Homework 1

池上 慧 (2918009)

April 12, 2018

1 問1

まずAが field であることを示す。そのためには以下の三つの確認をすれば良い。

- 1. $X^c = \phi$ であり、空集合はの要素数は 0 で有限なのでこれは有限集合。よって $X = \mathbb{N} \in A$ である。
- 2. $A,B\in A$ を任意に取ってくる。この和集合が A に入っていることを確かめる。A,B 共に有限集合の時はその和集合も当然有限集合であり、A に入る。片方がその補集合が有限集合である時は、一般性を失わずに A^c が有限集合であるとすると、 $(A\cup B)^c=A^c\cap B^c$ であり、これは有限集合である A^c の部分集合であるので有限集合である。従ってこの場合も和集合が A に入る。最後にどちらも補集合が有限集合である場合を考える。この時は $(A\cup B)^c=A^c\cap B^c$ であり、有限集合の部分集合となっているので、和集合は A に入る。以上より、A からどのような二つの要素を取ってきてもその和集合は A に入っている。
- 3. $A \in A$ を任意にとる。 A^c が有限集合のケースは定義より $A^c \in A$ である。A が有限集合のケースは、 $(A^c)^c = A$ なので、 A^c の補集合が有限集合であるので $A^c \in A$ である。従って A の要素の補集合は必ず A に入っている。

次に A が σ -field でないことを示す。このためには可算無限個の和集合について A が閉じていないことを確認すれば良い。 $i=1,2\dots$ について $A_i=\{2i-1\}$ を X の部分集合として取ってくることを考える。これは全ての i について要素が一つの有限集合なので A に入っている。

今、 $\bigcup_{i=1}^\infty A_i = \{2i-1 \mid i=1,2,3,\dots\}$ であり、これは奇数全体を表す。この集合は有限集合デアはなく、またその補集合である偶数全体も有限集合ではない。従って $\bigcup_{i=1}^\infty A_i \not\in A$ である。ゆえに可算無限個の和集合について閉じていないので A は σ -field ではない。

2 問2

m,n を逆にすれば同じ議論が成り立つので、 $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}a_{n,m}=\sup\left\{\sum_{m=1}^{M}\sum_{n=1}^{N}a_{n,m}\mid M,N\in\mathbb{N}\right\}$ のみを示す。 左を p、右を q と記す。まず、上限の定義より、任意の $M,N\in\mathbb{N}$ で $\sum_{m=1}^{M}\sum_{n=1}^{N}a_{n,m}\leq q$ が成立している。大小関係は極限において保存されるので、左辺で M,N を順番に $+\infty$ まで飛ばしても大小関係は保たれる。従って $p\leq q$ が得られる。

さらに逆向きの不等号も成立することを示すことで題意を示す。 $a_{m,n}\geq 0$ であるので、任意の $M,N\in\mathbb{N}$ について $\sum_{m=1}^{M}\sum_{n=1}^{N}a_{n,m}\leq p$ が成立する。この時 M,N について左辺の上限を取った時に、p を上回ったとすると、上限の定義より p よりも大きく上限よりも小さい値をとる M,N の組みが存在することになる。しかし先の不等号は任意の M,N について成立しているのでこれはあり得ない。従って左辺の上限を取っても大小関係は保存される。よって $q\leq p$ であり、逆むきの不等号も示された。以上より p=q である。