Supplementary Materials

Supplementary Material A

A1: The detailed simulation of the once-through reactor methanol production

HYSYS Documentation

The decision variables in this case are

Pressure of the equilibrium reactor (ERV-100): 70 bar

Temperature of the equilibrium reactor (ERV-100): 190 $^{\circ}\text{C}$

Temperature of cooler (E-101): 60 °C

Fluid package: Peng Robinson

Component: CO₂, Hydrogen, Methanol, CO, H₂O

Reactions:

Set-1

Rxn-1 Type: Equilibrium	Stoich Coeff
CO ₂	-1
H ₂ O	1
Methanol	1
Hydrogen	-3
Rxn-2 Type: Equilibrium	Stoich Coeff
СО	-1
Methanol	1
Methanol Hydrogen	1 -2
	-
Hydrogen	-2
Hydrogen Rxn-3 Type: Equilibrium	-2 Stoich Coeff
Hydrogen Rxn-3 Type: Equilibrium CO ₂	-2 Stoich Coeff -1

Streams:

Hydrogen

Composition Mole fraction

Hydrogen 1.0000

Temperature = 25° C

Pressure = 20 bar

Carbon dioxide

Composition Mole fraction

CO₂ 1.0000

Temperature = 40° C

Pressure = 20 bar

Compressed feed (decision variable)

Pressure = 70 bar

Heated feed (decision variable)

Temperature = 190°C

Water_in

Composition Mole fraction

H₂O 1.0000

Temperature = 20° C

Pressure = 1 bar

Water_out

Composition Mole fraction

H₂O 1.0000

Temperature = 35° C

Pressure = 1 bar

Cooled product (decision variable)

Temperature = 60° C

Vessel:

ERV-100

Reaction Set: Set-1

Towers:

```
T-100
```

Number of stages: 10

Inlet Stream

Stream: Cooled product (decision variable)

Inlet Stage: 5_Main Tower

Condenser: Full Reflux

Condenser Pressure = 4 bar

Condenser Delta P = 0 bar

Reboiler Pressure = 4 bar

Reboiler Delta P = 0 bar

Specifications:

Condenser Temperature = 25°C

Reflux Ratio = 0.6

T-101

Number of stages: 10

Inlet Stream

Stream: Methanol-water

Inlet Stage: 5_Main Tower

Condenser: Total

Condenser Pressure = 4 bar

Condenser Delta P = 0 bar

Reboiler Pressure = 4 bar

Reboiler Delta P = 0 bar

Specifications:

Comp Fraction

Stage: Condenser

Flow Basis: Mole Fraction

Phase: Liquid

Spec Value: 0.9950

Component: Methanol

Reflux Ratio = 30

Heat Exchanger:

For all heat exchangers:

Heat Exchanger Model: Simple Weighted

Tube Side Dalta P = 0 bar

Shell Side Delta P = 0 bar

Mixer:

MIX-100

Feed

Composition Mole fraction

Hydrogen 0.7500

 CO_2 0.2500

A2: The detailed simulation of the methanol production with a recycle

HYSYS Documentation

The decision variables in this case are

Pressure of the equilibrium reactor (ERV-100): 70 bar

Temperature of the equilibrium reactor (ERV-100): 190 °C

Temperature of a separator (E-101): 60°C

Recycle ratio (RCY-1): 1

Fluid package: Peng Robinson

Component: CO₂, Hydrogen, Methanol, CO, H₂O

Reactions:

Set-1

Rxn-1 Type: Equilibrium	Stoich Coeff
CO ₂	-1
H ₂ O	1
Methanol	1
Hydrogen	-3

KXII-2 Type. Equilibrium Stoich Coeff	Rxn-2 Type:	Equilibrium	Stoich Coeff
---------------------------------------	-------------	-------------	--------------

CO -1

Methanol 1

Hydrogen -2

Rxn-3 Type: Equilibrium Stoich Coeff

CO₂ -1

CO 1

Methanol 1

Hydrogen -1

Streams:

Hydrogen

Composition Mole fraction

Hydrogen 1.0000

Temperature = 25° C

Pressure = 20 bar

Carbon dioxide

Composition Mole fraction

CO₂ 1.0000

Temperature = 40° C

Pressure = 20 bar

Compressed feed (decision variable)

Pressure = 70 bar

Heated feed (decision variable)

Temperature = 190°C

Water_in

Composition Mole fraction

H₂O 1.0000

Temperature = 20° C

Pressure = 1 bar

```
Water_out
```

Composition Mole fraction

H₂O 1.0000

Temperature = 35° C

Pressure = 1 bar

Cooled product (decision variable)

Temperature = 60° C

Vessel:

ERV-100

Reaction Set: Set-1

Towers:

T-100

Number of stages: 10

Inlet Stream

Stream: Cooled product (decision variable)

Inlet Stage: 5_Main Tower

Condenser: Full Reflux

Condenser Pressure = 4 bar

Condenser Delta P = 0 bar

Reboiler Pressure = 4 bar

Reboiler Delta P = 0 bar

Specifications:

Condenser Temperature = 25°C

Reflux Ratio = 0.6

T-101

Number of stages: 10

Inlet Stream

Stream: Methanol-water

Inlet Stage: 5_Main Tower

Condenser: Total

Condenser Pressure = 4 bar

Condenser Delta P = 0 bar

Reboiler Pressure = 4 bar

Reboiler Delta P = 0 bar

Specifications:

Comp Fraction

Stage: Condenser

Flow Basis: Mole Fraction

Phase: Liquid

Spec Value: 0.9950

Component: Methanol

Reflux Ratio = 30

Heater:

Inlet Stream: Mixed feed

Outlet: Heated feed

Delta P: 0 bar

Heat Exchanger:

For all heat exchangers:

Heat Exchanger Model: Simple Weighted

Tube Side Dalta P = 0 bar

Shell Side Delta P = 0 bar

Mixer:

MIX-100

Feed

Composition Mole fraction

Hydrogen 0.7500

CO₂ 0.2500

MIX-101

Mixed feed

Composition Mole fraction

Hydrogen 0.8053

CO₂ 0.1886

CO 0.0013

Methanol 0.0039

H₂O 0.0009

MIX-102

Combined product

Composition Mole fraction

Hydrogen 0.0025

 CO_2 0.0154

CO 0.0000

Methanol 0.4911

H₂O 0.4910

TEE:

TEE-100

Split Fraction

To recycle = 1.00

To mixer = 0.00

Recycle:

RCY-1

Inlet Stream: To recycle

Outlet Stream: Recycle

Valves:

VLV-101

Inlet stream: To mixer

Outlet stream:

Pressure = 4 bar

VLV-102

Inlet stream: Liquid_product

Outlet stream

Pressure = 4 bar

A3: The detailed simulation of the methanol production with two reactors in series

HYSYS Documentation

The decision variables in this case are

Pressure of the first equilibrium reactor (ERV-100): 70 bar

Temperature of the first equilibrium reactor (ERV-100): 190 °C

Temperature of a separator after the first equilibrium reactor (E-101): 60°C

Pressure of the second equilibrium reactor (ERV-101): 140 bar

Outlet temperature of the liquid stream cooler after the second equilibrium reactor: 60 °C

Stoich Coeff

Fluid package: Peng Robinson

Component: CO₂, Hydrogen, Methanol, CO, H₂O

Rxn-1 Type: Equilibrium

Reactions:

Set-1

Storen Coen
-1
1
1
-3
Stoich Coeff
1
-1
1
1
1 -2
1 -2 Stoich Coeff

Streams:

Hydrogen

Composition Mole fraction

Hydrogen 1.0000

Temperature = 25° C

Pressure = 20 bar

Carbon dioxide

Composition Mole fraction

 CO_2 1.0000

Temperature = 40° C

Pressure = 20 bar

Compressed feed (decision variable)

Pressure = 70 bar

Heated feed (decision variable)

Temperature = 190°C

Water_in_E-101

Composition Mole fraction

H₂O 1.0000

Temperature = 20° C

Pressure = 1 bar

Water_out_E-101

Composition Mole fraction

H₂O 1.0000

Temperature = 35° C

Pressure = 1 bar

Water_in_E-102

Composition Mole fraction

H₂O 1.0000

Temperature = 20° C

Pressure = 1 bar

Water_out_E-102

Composition Mole fraction

H₂O 1.0000

Temperature = 80° C

Pressure = 1 bar

 $Water_in_E\text{-}103$

Composition Mole fraction

H₂O 1.0000

Temperature = 20° C

Pressure = 1 bar

Water_out_E-103

Composition Mole fraction

H₂O 1.0000

Temperature = 40° C

Pressure = 1 bar

Cooled product (decision variable)

Temperature = 60° C

Cooled_vapor_product

Temperature = 190° C

Cooled_vapor_product

Temperature = 190°C

Vessel:

ERV-100

Reaction Set: Set-1

ERV-101

Reaction Set: Set-1

Towers:

T-100

Number of stages: 10

Inlet Stream

Stream: Cooled product (decision variable)

Inlet Stage: 5_Main Tower

Condenser: Full Reflux

Condenser Pressure = 4 bar

Condenser Delta P = 0 bar

Reboiler Pressure = 4 bar

Reboiler Delta P = 0 bar

Specifications:

Condenser Temperature = 25°C

Reflux Ratio = 0.6

T-101

Number of stages: 10

Inlet Stream

Stream: Methanol-water

Inlet Stage: 5_Main Tower

Condenser: Total

Condenser Pressure = 4 bar

Condenser Delta P = 0 bar

Reboiler Pressure = 4 bar

Reboiler Delta P = 0 bar

Specifications:

Comp Fraction

Stage: Condenser

Flow Basis: Mole Fraction

Phase: Liquid

Spec Value: 0.9950

Component: Methanol

Reflux Ratio = 30

Heater:

Inlet Stream: Mixed feed

Outlet: Heated feed

Delta P: 0 bar

Heat Exchanger:

For all heat exchangers:

Heat Exchanger Model: Simple Weighted

Tube Side Dalta P = 0 bar

Shell Side Delta P = 0 bar

Mixer:

MIX-100

Feed

Composition Mole fraction

Hydrogen 0.7500

 CO_2 0.2500

MIX-101

Mixed_product

Composition Mole fraction

Hydrogen 0.0041

CO₂ 0.0145

CO 0.0000

Methanol 0.5116

 H_2O 0.4698

MIX-102

Purge

Composition Mole fraction

Hydrogen 0.9966

 CO_2 0.0001

CO 0.0000

Methanol 0.0030

H₂O 0.0003

Valves:

VLV-100

Inlet stream: Liquid_product

Outlet stream

Pressure = 4 bar

VLV-101

Inlet stream: Liquid_product3

Outlet stream

Pressure = 4 bar

VLV-102

Inlet stream: Liquid_product4

Outlet stream

Pressure = 4 bar

Supplementary Material B B1: An artificial neural network with eight nodes for the once-through methanol production

Mean square errors:

Data set	MSE
Training	6.88E-05
Validation	2.71E-03
Testing	1.01E-03

Weight 1, W1rn

Neurons	Input nodes		
Neurons	1	2	3
1	0.01838	-1.70034	-1.20367
2	-1.68858	1.95475	0.00519
3	-0.08469	2.77145	-2.02880
4	-0.27928	3.05352	0.98175
5	1.21379	-2.16699	0.51323
6	-0.87896	-1.12092	2.95081
7	-0.94691	-0.92281	2.73080
8	1.99345	0.69224	1.74543

Weight 2, W2r

, ,	1
Neurons	Output node
1	-0.22146
2	-1.71827
3	0.08519
4	-0.06928
5	-0.14825
6	0.73373
7	-0.64427
8	0.03067

Bias 1, *B*1*r*

Neurons	Output node
1	-3.47132
2	2.46352
3	0.92364
4	-0.04140
5	1.52651
6	-1.48586
7	-1.48669
8	2.84496

Bias 2, <i>B</i> 2	0.62038

B2: An artificial neural network with eight nodes for the methanol production with a recycle Mean square errors:

Data set	MSE
Training	8.72E-21
Validation	1.16E-02
Testing	1.42E-03

Weight 1, W1rn

Neurons	Input nodes			
Neurons	1	2	3	4
1	-1.00968	1.73126	-0.10196	0.75399
2	1.11953	-0.31624	1.09309	1.26681
3	-1.42018	-1.63466	-1.01587	-0.06575
4	0.11041	-0.09164	0.17686	-0.41533
5	-1.86229	3.54757	-0.26787	-1.78728
6	-1.88872	0.45065	-2.79983	-1.75360
7	-0.82886	0.56948	-0.12020	-1.32130
8	-1.94827	-1.58476	1.28377	-1.77149

Weight 2, W2r

Neurons	Output node
1	-2.80948
2	-1.15408
3	0.61432
4	0.20542
5	-1.10762
6	-1.68792
7	-1.05462
8	2.49677

Bias 1, *B*1_r

Neurons	Output node	
1	-2.80948	
2	-1.15408	
3	0.61432	
4	0.20542	
5	-1.10762	
6	-1.68792	
7	-1.05462	
8	2.49677	

Bias 2, <i>B</i> 2	-0.33351

B3: An artificial neural network with eight nodes for the methanol production with two reactors in series

Mean square errors:

-	
Data set	MSE
Training	4.71E-03
Validation	1.62E-02
Testing	7.21E-03

Weight 1, W1rn

vergitt 1, vviiii					
Neurons	Input nodes				
Neurons	1	2	3	4	5
1	1.6740	0.8355	0.9769	0.3482	1.0151
2	0.9246	0.1406	-0.9624	-1.6217	-0.9027
3	1.0726	-0.0086	-0.3173	1.4694	0.9207
4	-0.4479	0.2063	-1.2073	1.4524	1.1261
5	0.8234	-1.2615	-0.4674	0.2023	-1.9366
6	0.1548	-0.3474	-0.0050	-0.6043	-0.1140
7	-1.2164	0.1393	-1.5386	-0.1769	-1.3954
8	0.9263	-0.9053	1.4689	0.3428	-0.4674

Weight 2, W2r

Neurons	Output node
1	-0.23179
2	0.09440
3	-0.04781
4	0.11484
5	0.15391
6	-1.20436
7	0.15647
8	0.13893

Bias 1, *B*1*r*

Neurons	Output node	
1	-2.70132	
2	-1.22765	
3	-1.84862	
4	0.22289	
5	0.09772	
6	0.36272	
7	-1.60834	
8	2.25577	

Bias 2, <i>B</i> 2 -0.08487
