SURF-Face: Face Recognition Under Viewpoint Consistency Constraints

Philippe Dreuw, Pascal Steingrube, Harald Hanselmann and Hermann Ney Human Language Technology and Pattern Recognition, RWTH Aachen University, Aachen, Germany

Introduction

- ▶ Most face recognition approaches are sensitive to registration errors ▶ rely on a very good initial alignment and illumination
- ▶ We propose/analyze:
 - grid-based and dense extraction of local features
 - block-based matching accounting for different viewpoints and registration errors

Feature Extraction Orig. Grid ► Interest point based feature extraction images/vionlages/vionlages/violages/violages/violages/vionlages/violages/vi ► SIFT or SURF interest point detector ▶ leads to a very sparse description ► Grid-based feature extraction overlaid regular grid images/vionlages ▶ leads to a dense description

Feature Description

- Scale Invariant Feature Transform (SIFT)
- ▶ 128-dimensional descriptor, histogram of gradients, scale invariant
- Speeded Up Robust Features (SURF)
- ▶ 64-dimensional descriptor, histogram of gradients, scale invariant
- ▶ face recognition: invariance w.r.t. rotation is often not necessary
- ▶ rotation dependent upright-versions U-SIFT, U-SURF-64, U-SURF-128

Feature Matching

- Recognition by Matching
- nearest neighbor matching strategy
- ▶ descriptor vectors extracted at keypoints in a test image **X** are compared to all descriptor vectors extracted at keypoints from the reference images $Y_n, n = 1, \dots, N$ by the Euclidean distance
- decision rule:

$$\mathbf{X} \rightarrow \mathbf{r(X)} = \arg\max_{\mathbf{c}} \left\{ \max_{\mathbf{n}} \left\{ \sum_{\mathbf{x_i} \in \mathbf{X}} \delta(\mathbf{x_i}, \mathbf{Y_{n,c}}) \right\} \right\}$$

- ightharpoonup additionally, a ratio constraint is applied in $\delta(x_i, Y_{n,c})$
- Viewpoint Matching Constraints
- maximum matching: unconstrained
- grid-based matching: absolute box constraints
- grid-based best matching: absolute box constraints, overlapping
- Postprocessing
 - ► RANSAC-based outlier removal
 - ► RANSAC-based system combination

Databases

- ► AR-Face
- variations in illumination
- many different facial expressions
- ► CMU-PIE
 - variations in illumination (frontal images from the illumination subset)

Results: Manually Aligned Faces

► AR-Face: 110 classes, 770 train, 770 test

Extraction	# Features	Error Rates [%]		
		Maximum	Grid	Grid-Best
IPs	164×5.6 (avg.)	80.64	84.15	84.15
IPs	$128 \times 633.78 (avg.)$	1.03	95.84	95.84
64x64-2 grid	164×1024	0.90	0.51	0.90
64x64-2 grid	128×1024	0.90	0.51	0.38
64x64-2 grid	128×1024	11.03	0.90	0.64
64x64-2 grid	164×1024	0.90	1.03	0.64
64x64-2 grid	128×1024	1.55	1.29	1.03
64x64-2 grid	128×1024	0.25	0.25	0.25
	IPs IPs 64x64-2 grid 64x64-2 grid 64x64-2 grid 64x64-2 grid 64x64-2 grid 64x64-2 grid	IPs $164 \times 5.6 \text{ (avg.)}$ IPs $128 \times 633.78 \text{ (avg.)}$ $64\times64-2 \text{ grid}$ 164×1024 $64\times64-2 \text{ grid}$ 128×1024 $64\times64-2 \text{ grid}$ 128×1024 $64\times64-2 \text{ grid}$ 164×1024 $64\times64-2 \text{ grid}$ 164×1024 $64\times64-2 \text{ grid}$ 128×1024	IPs $164 \times 5.6 \text{ (avg.)}$ 80.64 IPs $128 \times 633.78 \text{ (avg.)}$ 1.03 $64 \times 64 - 2 \text{ grid}$ 164×1024 0.90 $64 \times 64 - 2 \text{ grid}$ 128×1024 0.90 $64 \times 64 - 2 \text{ grid}$ 128×1024 11.03 $64 \times 64 - 2 \text{ grid}$ 164×1024 0.90 $64 \times 64 - 2 \text{ grid}$ 164×1024 0.90 $64 \times 64 - 2 \text{ grid}$ 128×1024 1.55	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

► CMU-PIE: 68 classes, 68 train ("one-shot" training), 1360 test

Descriptor	Extraction	# Features	Error Rates [%		[%]
			Maximum	Grid	Grid-Best
SURF-64	IPs	$\overline{164 \times 6.80 \text{ (avg.)}}$	93.95	95.21	95.21
SIFT	IPs	$128 \times 723.17 \text{ (avg.)}$	43.47	99.33	99.33
SURF-64	64x64-2 grid	164×1024	13.41	4.12	7.82
SURF-128	64x64-2 grid	128×1024	12.45	3.68	3.24
SIFT	64x64-2 grid	128×1024	27.92	7.00	9.80
U-SURF-64	64x64-2 grid	164×1024	3.83	0.51	0.66
U-SURF-128	64x64-2 grid	128×1024	5.67	0.95	0.88
U-SIFT	64x64-2 grid	128×1024	16.28	1.40	6.41

Results: Unaligned Faces

► Automatically aligned by Viola & Jones

	•		
Descriptor	Error Rates [%]		
	AR-Face	CMU-PIE	
SURF-64	5.97	15.32	
SURF-128	5.71	11.42	
SIFT	5.45	8.32	
U-SURF-64	5.32	5.52	
U-SURF-128	5.71	4.86	
U-SIFT	4.15	8.99	

- Manually aligned faces
- Unaligned faces

Results: Partially Occluded Faces

► AR-Face: 110 classes, 110 train ("one-shot" training), 550 test

Descriptor	Error Rates [%]							
	AR1scarf	AR1sun	ARneutral	AR2scarf	AR2sun	Avg.		
SURF-64	2.72	30.00	0.00	4.54	47.27	16.90		
SURF-128	1.81	23.63	0.00	3.63	40.90	13.99		
SIFT	1.81	24.54	0.00	2.72	44.54	14.72		
U-SURF-64	4.54	23.63	0.00	4.54	47.27	15.99		
U-SURF-128	1.81	20.00	0.00	3.63	41.81	13.45		
U-SIFT	1.81	20.90	0.00	1.81	38.18	12.54		
U-SURF-128+R	1.81	19.09	0.00	3.63	43.63	13.63		
U-SIFT+R	2.72	14.54	0.00	0.90	35.45	10.72		
U-SURF-128+U-SIFT+F	0.90	16.36	0.00	2.72	32.72	10.54		

Matching Examples for the AR-Face and CMU-PIE Database

Feature	Maximum	Grid	Grid-Best	Maximum	Grid	Grid-Best	Feature
SIFT							SURF
U-SIFT							U-SURF

- ► Matching results for the AR-Face (left) and the CMU-PIE database (right)
 - maximum matching show false classification examples
 - grid matchings show correct classification examples
 - upright descriptor versions reduce the number of false matches

Conclusions

- ► Grid-based local feature extraction instead of interest points
- ► Local descriptors:
 - upright descriptor versions achieved better results
 - ▶ SURF-128 better than SURF-64
- System robustness: manually aligned/unaligned/partially occluded faces
 - ► SURF more robust to illumination
- ▶ SIFT more robust to changes in viewing conditions
- ► RANSAC-based system combination and outlier removal