

Programmierung 2 - SS16

Projekt 3 - C - Seamcarving

Autoren: Rebecca Eifler, Merlin Köhler, Kallistos Weis 25 Mai 2016

Universität des Saarlandes

Überblick

- 1. Motivation
- 2. Algorithmus
- 3. Bildformat
- 4. Einführung in das Programm

Git Projekt-Repository

Wir können das Projekt mit **git clone** unter folgender URL beziehen:

```
https://prog2scm.cdl.uni-saarland.de/git/project3/<NAME>
```

<NAME> = Euer Benutzername auf der Prog2-Website

Achtung!

Die Repositories sind nur innerhalb des Uninetzes erreichbar. Von außerhalb kann man eine VPN-Verbindung zum Uninetz einrichten.

Eine Anleitung steht auf der Website unter Software.

nahe dem englischen Dorf Broad-Bei guter Sicht können vom Turm

(Quelle: https://de.wikipedia.org/wiki/Broadway_

Tower)

nahe dem englischen Dorf Broad-Bei guter Sicht können vom Turm

(Quelle: https://de.wikipedia.org/wiki/Broadway_

Tower)

nahe dem englischen Dorf Broad-

(Quelle: https://de.wikipedia.org/wiki/Broadway_

Tower)

(a) Originalbild.

(b) Verkleinert durch seamcarving.

Seamcarving Idee

- · Zuschneiden von Bildern
- · Erhaltung von "wichtigen" Merkmalen
 - \rightarrow Kanten
- · Erhaltung von Proportionen
- \Rightarrow Geringe wahrnehmbare Verzerrungen

Algorithmus

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

- Berechnung der lokalen Energie jedes Pixels
 → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- · Entfernung der Pixel dieses Pfades

- Pixelwert $p_{x,y}$ an der Stelle (x,y)
- Graustufenbild: Werte $p_{x,y} \in [0; 5]$ (üblichwerweise $p_{x,y} \in [0; 255]$)

5	5	3	3	3
3	3	3	3	0
3	3	3	0	1
3	3	0	1	1
3	3	0	1	1

Abbildung 2: Originalbild.

Berechnung lokale Energie:

 Summe der quadrierten Differenz zum oberen und linken Nachbarn (falls vorhanden)

Berechnung lokale Energie:

 Summe der quadrierten Differenz zum oberen und linken Nachbarn (falls vorhanden)

5	5	3	3	3				
3	3	3	3	0	lokale			
3	3	3	0	1				
3	3	0	1	1	Energie			
3	3	0	1	1				

(a) Originalbild.

(b) Lokale Energie.

Berechnung lokale Energie:

 Summe der quadrierten Differenz zum oberen und linken Nachbarn (falls vorhanden)

5	5	3	3	3			
3	3	3	3	0			
3	3	3	0	1	lokale (18
3	3	0	1	1	Energie		
3	3	0	1	1			

(a) Originalbild.

(b) Lokale Energie.

Berechnung lokale Energie:

 Summe der quadrierten Differenz zum oberen und linken Nachbarn (falls vorhanden)

5	5	3	3	3
3	3	3	3	0
3	3	3	0	1
3	3	0	1	1
3	3	0	1	1

lokale Energie

	0	0	4	0	0
	4	4	0	0	18
	0	0	0	18	2
÷	0	0	18	2	0
	0	0	9	1	0

(a) Originalbild.

(b) Lokale Energie.

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

Akkumulierte Energie:

0	0	4	0	0
4	4	0	0	18
0	0	0	18	2
0	0	18	2	0
0	0	9	1	0

(a) Lokale Energie.

Akkumulierte Energie:

0	0	4	0	0
4	4	0	0	18
0	0	0	18	2
0	0	18	2	0
0	0	9	1	0

(a) Lokale Energie.

(b) Akkumulierte Energie.

Energie

Akkumulierte Energie:

(a) Lokale Energie.

0	0	4	0	0
4	4	0	0	18
4	0	0	18	2
0	0	18	2	2
0	0	9		

akkumulierte Energie

(b) Akkumulierte Energie.

Akkumulierte Energie:

(a) Lokale Energie.

0	0	4	0	0
4	4	0	0	18
4	0	0	18	2
0	0	18	2	2
0	0	9		

akkumulierte Energie

(b) Akkumulierte Energie.

Akkumulierte Energie:

(a) Lokale Energie.

0	0	4	0	0
4	4	0	0	18
4	0	0	18	2
0	0	18	2	2
0	0	9	3	

akkumulie<u>rte</u> Energie

(b) Akkumulierte Energie.

Akkumulierte Energie:

(a) Lokale Energie.

0	0	4	0	0
4	4	0	0	18
4	0	0	18	2
0	0	18	2	2
0	0	9	3	2

(b) Akkumulierte Energie.

akkumulie<u>rte</u>

Akkumulierte Energie:

(a) Lokale Energie.

(b) Akkumulierte Energie.

"Minimale Kosten von diesem Pixel nach oben."

[→] Akkumulierte Energie:

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

- Finde den Pixel mit minimaler Energie in der untersten Reihe
 - → Akkumulierte Energie:
 - "Minimale Kosten von diesem Pixel nach oben."
- Suche Pfad mit minimalen Kosten von diesem Pixel nach oben
 - → Zu entfernender Pfad

0	0	4	0	0
4	4	0	0	18
4	0	0	18	2
0	0	18	2	2
0	0	9	3	2

Abbildung 8: Akkumulierte Energie.

0	0	4	0	0
4	4	0	0	18
4	0	0	18	2
0	0	18	2	2
0	0	9	3	2

Abbildung 8: Akkumulierte Energie.

0	0	4	0	0
4	4	0	0	18
4	0	0	18	2
0	0	18	2	2
0	0	9	3	2

Abbildung 8: Akkumulierte Energie.

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

Entfernung Pixelpfad (Beispiel)

Abbildung 9: Originalbild.

Entfernung Pixelpfad (Beispiel)

Abbildung 10: Originalbild verkleinert.

Seamcarving Algorithmus Überblick

- · Berechnung der lokalen Energie jedes Pixels
 - → Kantenerkennng
- · Berechnung der Energie vertikaler Pixelpfade
- · Berechnung des Pfades mit minimaler Energie
- Entfernung der Pixel dieses Pfades

Realbeispiel

Realbeispiel

Realbeispiel

Bildformat

P3
3 2
255
255 0 0 0 255 0 0 0 255
255 255 0 255 255 0 0 0

Einführung in das Programm

Auswerten der Argumente

Schrittw. Verfeinerung

```
main.c — Edited

main.c — Edited
```

Schrittw. Verfeinerung

```
main.c — Edited

main.c — Edited

main.c — Edited

main.c — Edited

main.cude estdith.h>

main.cude estdith.h>

min.cude estdith.h.h

min.cude estdith.h.h.h

min.cude estdith.h.h.h

min.cude estdith
```

```
0 0 0
                                                                                                     image.c — Edited
                                                       h image.h
                                                                           > | image.c > [] image_init()
器 く > h image.h > No Selection
  #ifndef IMAGE H
                                                                      #include <assert.h>
  #define IMAGE H
                                                                      #include <stdbool.h>
                                                                      #include <stdlib.h>
                                                                      #include <string.h>
  #include <stdint.h>
  #include <stdio.h>
                                                                      #include "image.h"
  void image init(struct image* img, int w, int h);
                                                                      void image_init(struct image* img, int w, int h)
  #endif
```

