MachLe - Olivier D'Ancona

Evaluation Metrics

Evaluation Metrics
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TP}{TN + FP}$$

$$Fscore = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

$$error \ rate = 1 - accuracy$$

$$macro \ average = \frac{1}{n} \sum_{i=1}^{n} avg_{i}$$

Activation Functions

Sigmoid: $\sigma(x) = \frac{1}{1 + e^{-x}}$

Hyperbolic tangent : $\frac{e^x - e^{-x}}{e^x + e^{-x}}$

 $\mathbf{Relu}: \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$

Gaussian : e^{-x^2} Softmax: $\frac{1}{\sum_{k=1}^{K} e^{z_k}}$

Neural Network

-Structure

Biais: b, An extra weight that can be learned using a learning algorithm. The purpose is to replace threshold.

Input Weights: W, Vector of weights

Learning algorithm

- 1. Randomly initialize weights
- 2. Compute the neuron's output for a fiven input vector X
- 3. Update weights: $W_i(t+1) = W_i(t) +$ $\eta(\hat{y}_i - y)x$ with η the learning rate and \hat{y}_i the desired output.
- 4. Repeat steps 2 and 3 for the number of epochs you need or until the error is smaller than a threshold.

KNN

Hyperparameters:

- Number of neighbours k
- Distance metric — normalization type
- strategy if no majority

 $\operatorname{Rio} k$.

Logistic Regression

 $h_{\theta}(x_n) = \sigma(x\theta^T)$

- $h_{\theta}(x_n)$: predicted value
- $-\theta$: model's parameters
- -X: input vector

Goal: Find the θ that maximizes the like-— $P(C_k)$: Probabilité a priori de la classe lihood of the data.

$$J(\beta) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log(h_{\theta}(x_n)) + (1 - y_i) \log(1 - h_{\theta}(x_n))$$

Normalization

Min-max [0,1]: $x' = \frac{(x - x_{min})}{(x_{max} - x_{min})}$

Min-max [-1,1]: $x' = 2 \cdot min \quad max(x) - 1$ min-max doesn't handle outliers.

 $\mathbf{Z\text{-}norm}: x' = \frac{(x-\mu)}{}$

Support Vector Machine

Concept : SVM finds the hyperplane that best separates different classes by maximizing the margin between the closest points of different classes (support vectors).

$$hw(x) = sign(b + wx)$$

Formulation -

$$\max_{\omega,b} \frac{1}{\|\omega\|} \quad \text{s.t.} \quad y_i(\omega \cdot x_i + b) \ge 1 \,\forall i$$

- $-\omega$: Normal vector to the hyperplane
- -b: Bias term
- $-x_i, \overline{y_i}$: Training data points and labels

– Kernel Trick –

SVM can be extended to non-linearly separable data using kernel functions, which implicitly map input space to a higherdimensional feature space

Common Kernels -

- Linear : $\langle x, x' \rangle$
- Polynomial : $(\gamma \langle x, x' \rangle + r)^d$
- Gaussian (RBF) : $e^{(-\gamma ||x-x'||^2)}$
- (+) Effective in high-dimensional spaces, Memory efficient, Versatile (different kernel) functions)
- (-) Sensitive to the choice of kernel and regularization parameters, Not suitable for very large datasets

hinge loss: $max(0, 1 - y_i(w \cdot x_i + b))$ (0 if correct classification) (1 if falls on the hyperplane) (>1 if misclassified)

- Objective function to min —

$$\min_{\omega,b} \quad \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\omega \cdot x_i + b))$$

where C nutch the hinge loss term (how far are we predicting from ground truth) and regularization term (impeach big value, min w => maximize margin)

Linear Regression

can be changed

Bayes

avec

 $P(C_k|x) = \frac{P(x|C_k) \cdot P(C_k)}{P(x)}$

 $P(x|C_k)$: probability of observing x

— $P(C_k|x)$: Probabilité a posteriori de

la classe C_k après observation de x

- P(x): Probabilité de l'évidence x

 $P(x) = \sum_{\text{toutes classes } C_k} P(x|C_k) \cdot P(C_k)$

Classifier H/F: -

 $p(x) = 0.2 \times \frac{4}{70} + 0.8 \times \frac{66}{70}$

 $P(C_f|x) = \frac{0.2 \times \frac{4}{70}}{p(x)}, \quad P(C_g|x) = \frac{0.8 \times \frac{66}{70}}{p(x)}$

 $-P(C_f) = \frac{4}{70}, P(C_a) = \frac{66}{70}$

— Calcul de p(x):

 $-p(x|C_q) = 0.8, p(x|C_f) = 0.2$

— Calcul de $P(C_f|x)$ et $P(C_g|x)$:

 C_k : Classe ciblée

x: Évidence

given class i

Soit un tableau de données :

Solve the tableau de dollness:

$$x = \text{Surface(g)}, y = \text{Price(cm)}, x \cdot y, x^2$$

 $X = [1, Surface]$

(+)Can deal with imbalanced dataset, prior

$$X^TX = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = \begin{bmatrix} 7 & 38.5 \\ 38.5 & 218.95 \end{bmatrix}$$

$$X^T y = \begin{bmatrix} \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i y_i \end{bmatrix} = \begin{bmatrix} 348 \\ 1975 \end{bmatrix}$$

$$\hat{\theta} = (X^T X)^{-1} X^T y = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} -2.67 \\ 9.51 \end{bmatrix}$$
$$\hat{y} = \theta_0 + \theta_1 x$$

Matrix Inversion (2x2)

Similarity Measures

Pearson =
$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y}_i)^2}$$

$$Euclidian = \sqrt{\sum (I_1 - I_2)^2}$$

$$Manhattan = \sum |I_1 - I_2|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$$

$$cosine \ similarity = \frac{A \cdot B}{\|A\| \cdot \|B\|}$$

 $WSS = \sum_{i=1}^{k} \sum_{x \in C_i} d(x, \mu_i)^2$ Within-cluster-sum (distortion) is the sum of the squared distances between each point in a cluster x_i and its cluster center.

K-Means

- 1. Initialize k centroids randomly.
- 2. Assign each point to the nearest cen-
- 3. Recompute centroids as the mean of assigned points.
- 4. Repeat steps 2-3 until convergence.

minimize distortion :
$$J = \sum_{i=1}^{k} d(x_n, \mu_c)$$

- (+) Will converge
- (-) Sensitive to initial conditions(size, density, distribution), Finds a local optimum

Mean Shift Clustering

- 1. Choose bandwidth and initialize cen-
- 2. Shift each centroid to the mean of points within the bandwidth.
- 3. Repeat until centroids converge.
- robust to outliers.
- (-) Computationally intensive; bandwidth parameter can be tricky to set.

DB-Scan

- 1. Classify points as core, border, or noise based on density.
- 2. Form clusters around core points.
- 3. Assign border points to clusters or mark as noise.
- (+) Identifies clusters of varying shapes; robust to noise.
- (-) Sensitive to parameters; struggles with zero is the lowest possible score. Values clovarying density clusters.

Hierarchical Clustering

Algorithm (Agglomerative):

- 1. Start with each point as a separate
- Merge the closest pair of clusters.
- 3. Repeat step 2 until desired number of clusters is reached.
- (+) No need to specify the number of clus ters; intuitive dendrogram representation.
- (-) Computationally expensive for large datasets; sensitive to outliers.

Clustering

Clustering partitions data into clusters with high intra-class similarity and low inter-class similarity.

Needs: distance measure, criterion, algorithm.

Partitions

Distortion: How close are we to a "centroid" defining the partition?

Connectivity of points : How are points each other

- Elbow Method

Heuristic used in determining the number of clusters in a data set. It selects the value of k that corresponds to the elbow of the curve (#cluster WSS)

-Silhouette Coefficient -

$$s = \frac{b - a}{\max(a, b)}$$

- a is the mean distance between a sample and all other points in the same class (cohesion)
- b is the mean distance between a (-) sample and all other points in the next nearest cluster (isolation)

s range is [-1,1]. A high value indicates that the object is well matched to its own (+) Can find clusters of arbitrary shape: cluster and poorly matched to neighboring clusters.

Davies-Bouldin Index -

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \frac{R_i + R_j}{d(C_i, C_j)}$$

- R_i is the average distance between a point in cluster C_i and all points in C_i (cluster diameter))
- $d(C_i, C_j)$ is the distance between the centroids of C_i and C_i

ser to zero indicate a better partition.

Decision Tree

A flowchart-like structure in which each internal node represents a test on a feature. Each leaf node represents a class label (decision taken after computing all features).

Boosting -

Build additional trees while considering earlier trees to compensate for their weaknesses

- Bagging -

Build a lot of trees using different parts of the data without looking at earlier ones. A very popular algorithm that is close to this Gini Gain(big=good): $Gini_{set} - Gini_{split}$ approach is called "Random Forests"

– Example -

Première feuille :

$$Gini = 1 - \left(\frac{3}{3+2}\right)^2 - \left(\frac{2}{3+2}\right)^2 = \frac{12}{25}$$

Deuxième feuille :

$$Gini = 1 - \left(\frac{2}{2+1}\right)^2 - \left(\frac{1}{2+1}\right)^2 = \frac{4}{9}$$

Pruning: Removing sections of the tree that provide little power to classify instances.

Gini Impurity

Gini Set $:G(X) = 1 - \sum_{i=1}^{n} p(x_i)^2$ where — $p(x_i)$: is the proportion of points in a

set that belongs to a class $i: \frac{N_i}{N}$. — G = 0.5: maximum value of impurity,

classes are balanced in the set. G = 0: minimum value of impurity,

all the values belong to a single class.

Gini Split :
$$\sum_{i=1}^{n} \frac{N_i}{N} G(X_i)$$

Example -

 $\mathbf{Gini} \ \mathbf{set} :$

$$Gini = 1 - \left(\frac{5}{10}\right)^2 - \left(\frac{5}{10}\right)^2 = \frac{1}{2}$$

Left Set:

$$Gini = 1 - \left(\frac{3}{3}\right)^2 - \left(\frac{0}{3}\right)^2 = 0$$

Right Set:

$$Gini = 1 - \left(\frac{2}{7}\right)^2 - \left(\frac{5}{7}\right)^2 = \frac{20}{49}$$

Gini Split:

$$Gini = \frac{3}{10} \times 0 + \frac{7}{10} \times \frac{20}{49} = \frac{2}{7}$$

Gini Gain:

$$Gini = \frac{1}{2} - \frac{2}{7} = \frac{3}{14}$$

Entropy

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

where

— $p(x_i)$: Probability of class x_i

Information Gain:

$$IG(X,Y) = H(X) - H(X|Y)$$

where

-H(X): Entropy of the parent node

-H(X|Y): Entropy of the child node

XG-Boost

Instead of yes/no leaf outputs, we have real-valued weights.

If $\sigma(w_i) > 0.5$ then output yes, else no Use a loss function that considers the output errors and adapt the weights

Principal Component Analysis

-Kmeans -

- Hierarchical clustering -

Autoencoders

-Kmeans -

- Hierarchical clustering -

Convolutional Neural Networks

Recurrent Neural Networks

Dimensionality Reduction

Reinforcement Learning

- Computational Complexity of ML Algorithms

Comparational Complexity of the Higgs terms			
Algorithm	Assumption	Train Time/Space	Inference Time/Space
KNN (Brute Force)	Similar things exist in close proximity	O(knd) / O(nd)	O(knd) / O(nd)
KNN (KD Tree)	Similar things exist in close proximity	$O(nd\log(n)) \ / \ O(nd)$	$O(k \log(n)d) / O(nd)$
Naive Bayes	Features are conditionally independent	$O(ndc) \ / \ O(dc)$	O(dc) / O(dc)
Logistic Regression	Classes are linearly separable	$\mid O(nd) \mid O(nd)$	O(d) / O(d)
Linear Regression	Linear relationship between variables	$\mid O(nd) \mid O(nd)$	$\mid O(d) \mid O(d)$
SVM	Classes are linearly separable	$O(n^2d^2) \ / \ O(nd)$	O(kd) / O(kd)
Decision Tree	Feature selection by information gain	$O(n \log(n)d) / O(\text{nodes})$	$O(\log(n)) / O(\text{nodes})$
Random Forest	Low bias and variance trees	$O(kn\log(n)d) / O(\text{nodes} \times k)$	$O(k \log(n)) / O(\text{nodes} \times k)$
GBDT	High bias, low variance trees	$O(Mn\log(n)d) / O(\operatorname{nodes} \times M + \gamma_m)$	$O(M \log(n)) / O(\operatorname{nodes} \times M + \gamma_m)$