Particulars:

Length: 70.8 m

Breadth: 11.4 m

Depth: 5.7 m

Draft: 4.4 m

Deadweight-Displacement Co-efficient: 0.7

Deadweight: 2000 tons

Displacement: 2660 tons

Material Factor, k: taking steel yield stress as 235MPa

$$k = 1$$

Web Frame Spacing: 1.8 m

Frame Spacing: $0.6 \text{ m} = 600 \text{mm}^{1}$ Ship Construction by DJ Eyer

Bottom Shell Plating

$$C_0 = \text{Wave Co-efficient} = \frac{L}{25} + 4.1 \times CR_W = 6.932$$

C_{RW} = 1, for Unlimited Service Range

$$C_L = Length Co-efficient = \sqrt{\frac{L}{90}}$$
 =.887

f = Probability Factor = **0.6**

 p_0 = Basic external dynamic load = $2.1(C_B+0.7) \times c_0 \times C_L \times f = 11.62 \text{ kN/m}^2$

$$p_B = Load$$
 on ship bottom = $2.6(C_B + 0.7) \times c_0 \times C_L = 24 \text{ kN/m}^2$

 $\underline{n_f} = \underline{\text{tansverse}}$ framing= 1

a = Frame spacing = 0.6

$$t_{\rm B1} = 1.9 \times n_{\rm f} \times a \sqrt{p_b \times k + t_k} = 7.58 \text{ mm}$$

The obtained value of minimum thickness, $t_{min} = (4.5 + 0.05 \cdot L_{200}) \cdot \sqrt{k}$ =8.41

Bottom Plate Thickness= 10 mm

Side Plate Thickness

z=.5 x (Depth-double bottom depth)+ double bottom depth = 3.23

$$p_s = \text{Load on sides} = 10(T - z) + p_0 \times c_f (1 + \frac{z}{T}) = 31.85 \text{ kN/m}^2$$

 t_{s1} = Thickness within .4L amidship = $1.9 \times n_f \times a \times \sqrt{p_s \times k} + t_K = 8.43$ mm

Minimum Thickness = $T + \frac{c_0}{2} = 7.9 \text{ mm}$

Side Plate Thickness = 10 mm

Bilge Plate Thickness

Bilge thickness is same as the bottom plate thickness, tB

i.e, Bilge thickness = 10 mm

Flat Keel Plate

Width of the flat keel, $b = 800 + 50 \times L = 4340 \text{ mm} = 4.34 \text{ m}$ $t_{FK} = Thickness \text{ for the flat keel plate} = t_B + 2 = (10 + 2)\text{mm} = 12 \text{ mm}$

Deck Plate

Table 4.1 Distribution factors for sea loads on ship's shell and weather decks

Range		c _D	c _F ¹
A	$0 \le \frac{x}{L} < 0.2$	$1.2 - \frac{x}{L}$	$1.0 + \frac{5}{C_B} \cdot \left(0.2 - \frac{x}{L}\right)$
М	$0.2 \le \frac{x}{L} < 0.7$	1.0	1.0
F	$0.7 \le \frac{\mathbf{x}}{\mathbf{L}} < 1.0$	$1.0 + \frac{\mathbf{c}}{3} \cdot \left(\frac{\mathbf{x}}{\mathbf{L}} - 0.7\right)$ $\mathbf{c} = 0.15 \cdot \mathbf{L} - 10$ $100 \text{ m} \le \mathbf{L} \le 250 \text{ m}$	$1.0 + \frac{20}{C_B} \cdot \left(\frac{\mathbf{x}}{\mathbf{L}} - 0.7\right)^2$

 $P_D = \text{Load on Weather Decks} = \frac{20 \times T}{(10 + z - T)H} \times c_D = 1.75 \text{ kN/m}^2$ (For aft) 1.75 kN/m² (For amidship)

 3.61 kN/m^2 (For forward)

Deck Plate(contd.)

$$v_0 = \sqrt{L} = 8.41 \, knot$$

$$F = .11 \times \frac{V_0}{\sqrt{L}} = 0.11$$

$$m_0 = 1.5 + F = 1.5 + 1.1 = 1.61$$

$$a_v = F \times m$$

$$m = m_0 - 5(m_0) \times \frac{x}{L}$$
 For $0 < x/L < 0.2 = 1$
= 1 For $.2 < x/L < 0.7 = 1$
= $1 + \frac{m_0 + 1}{.3} \times [\frac{x}{L} - .7]$ For $.7 < x/L < 0.1 = 3$

For
$$0 < x/L < 0.2$$

$$a_v$$
= .11
P_L= 16.65 kN/m²

Deck Plate(contd.)

```
For .2 < x/L < 0.7

a_v = .11

P_L = 16.65 \text{ kN/m}^2

t_{E2} = 4.7 \text{ mm}

For .7 < x/L < 0.1

a_v = .11

P_L = 16.65 \text{ kN/m}^2

t_{E2} = 4.7 \text{ mm}

For .7 < x/L < 0.1

a_v = .33

P_L = 19.9 \text{ kN/m}^2

t_{E2} = 4.95 \text{ mm}

T_{E,MIN} = (5.5 + .02 \times L) = 6.92 \text{ mm}
```

So, the deck plate thickness is taken as 7 mm

Sheerstrake

Width is not to be taken less than= $800 + 5 \times L = 4.34 \text{ m} = 5\text{m(app)}$ Thickness of the sheerstrake = $.5 \times (t_D + t_s) = 8.5 \text{ mm}$

So, thickness of the sheerstrake taken= 9mm

Bulkheads

Minimum plate thickness=
$$6 \times \sqrt{f}$$

= $6 \times \sqrt{1}$
= $6 mm$

Center Girder

The depth of center girder, $h = 350 + 45 \times l$; Where l = B=863.9 mm

$$Thickness = t_m = \frac{h}{h_a} \cdot \left(\frac{h}{100} + 1.0\right) \cdot \sqrt{k} \quad [mm]$$

Thickness= 9.8mm = 10 mm

Sectional Area of the faceplate of center girder $A_f = 0.7 \cdot L + 12 \text{ [cm}^2\text{]}$ Therefore, width of the girder= 840 mm

Web frame & Side Stringer

$$P_{\rm S} = 31.85 \, \text{kN/m}^2$$

No cross ties would be used, that is why $n_c=1$.

Section Modulus =0.55.e.l².P_s.n_c.k²

Unsupported span, l = 1.8

frame spacing, a = 0.6 m

Section Modulus, W=102.2 cm³

So the dimension chosen is = 180mm x 26mm x 2mm

Deck Web & Deck Girder

$$\begin{split} P_D &= 3.61 \ \underline{kN}/m^2 \\ \text{Section Modulus =c.e.l}^2.P_d.K = 15.8 \ cm3 \qquad ; c= 0.75 = \text{for girders and beams} \end{split}$$

So, the dimension chosen is $= 102 \text{mm} \times 102 \text{mm} \times 7 \text{ mm}$

Bottom Longitudinals

$$C_1 = 0.11$$
 $L_K = 55.4 \text{ mm}$
 $m_k = 0.94$
 $m = 0.814$
 $\sigma_{pr} = 230/k = 230/1 = 230$
Section Modulus $= \frac{83.3}{\sigma_{pr}} \times m \times a \times l^2 \times P_B^{40} = 6.65 \text{ cm}^3$

So, the dimension chosen is $= 76 \text{ mm } \times 76 \text{ mm } \times 6 \text{ mm}$

Side Longitudinals

$$P_s = 31.85 \text{ kN/m}^2$$

Section Modulus, $W = \frac{83.3}{\sigma pr} \times m \times a \times l^2 \times P_s$
 $= 2.21 \text{ cm}^3$

So, the dimension chosen is = 44mm x 44mm x 5mm

Deck Beam

$$P_D = 31.85 \, \text{kN/m}^2$$

Section Modulus, W = $c \times a \times l^2 \times k \times P_D = 5.3 \text{ cm}^3$

So the dimension chosen = $51 \text{mm} \times 51 \text{mm} \times 10 \text{mm}$

Bracket

$$t = c \times \sqrt[3]{\frac{W}{k_1} = t_k}$$

 $c = 1.2 \ for \ non = flanged \ bracket$

$$k_1 = 1$$

$$t_k = 2$$

$$W = n \times c \times a \times l^2 \times p \times k$$

$$P = P_B = 24 \, kN/m^2$$

$$c = .6$$
 n= .7

$$l = 1.8$$
 $a = .6$

$$W = n \times c \times a \times l^2 \times p \times k$$

$$= 19.59 cm^3$$

$$t = 1 \times \sqrt[3]{\frac{19.59}{1} + 2}$$

= 4.695 mm
= 5 mm

The arm length of bracket,
$$l = 46.2 \times \sqrt[3]{\frac{W}{k_1} \times \sqrt{k_2} \times \sqrt{\frac{4.695}{5}}}$$

$$= 120.68 \, mm$$

$$= 121 \, mm$$

Floor Plate

The thickness of plate floor = $t_k - 2 \times \sqrt{k}$ = 8 mm

PARTICULARS	DIMENSIONS	
MATERIAL FACTOR (K)	1	
WEB FRAME SPACING	1.8m	
YIELD STRENGTH	235 N/mm ²	
BOTTOM SHELL PLATING	10 mm	
Sheer Strake	8 mm	
Floor Plate	8 mm	
SIDE PLATE THICKNESS	10 mm	
BILGE THICKNESS	10 mm	
FLAT KEEL PLATE	12 mm	
DECK PLATE	6 mm	
BULKHEAD THICKNESS	6 mm	
CENTER GIRDER(WIDTH X HEIGHT X LENGTH)	840 mmx 900 mm x 1000 mm	
WEB-FRAME AND SIDE STRINGERS	T-180 x 25 x 5	
DECK WEB AND DECK GIRDER	T-100 x 100 x 5	
BOTTOM LONGITUDINAL	L- 75 x 75 x 5	
SIDE LONGITUDINAL	L- 45 x 45 x 5	
DECK BEAM	L- 50 x 50 x 10	
DIMENSIONS OF BRACKET	thickness = 5 mm	
	Arm Length= 121 mm	