Lecture - 03

Electrocardiogram

The Heart: Structures

- Four chambers
 - Two **atria**
 - Upper chambers
 - Left and right
 - Separated by interatrial septum

- Two ventricles
 - Lower chambers
 - Left and right
 - Separated by interventricular septum

Atrio-ventricular septum separates the atria from the ventricles.

The Heart: Structures (cont.)

- Tricuspid valve prevents blood from flowing back into the right atrium when the right ventricle contracts
- Bicuspid valve prevents blood from flowing back into the left atrium when the left ventricle contracts
- Pulmonary valve prevents blood from flowing back into the right ventricle
- Aortic valve prevents blood from flowing back into the left ventricle

The Heart: Cardiac Cycle

- One heartbeat = one cardiac cycle
 - Atria contract and relax
 - Ventricles contract and relax
 - Right atrium contracts
 - Tricuspid valve opens
 - Blood fills right ventricle
 - Right ventricle contracts
 - Tricuspid valve closes
 - Pulmonary semilunar valve opens
 - Blood flows into pulmonary artery

- Left atrium contracts
 - Bicuspid valve opens
 - Blood fills left ventricle
- Left ventricle contracts
 - Bicuspid valve closes
 - Aortic semilunar valve opens
 - Blood pushed into aorta

The Heart: Blood Flow

The Heart: Heart Sounds

- One cardiac cycle two heart sounds (lubb and dubb) when valves in the heart snap shut
 - Lubb First sound
 - When the ventricles contract, the tricuspid and bicuspid valves snap shut.
 - Dubb Second sound
 - When the atria contract and the pulmonary and aortic valves snap shut.

CARDIAC ACTION POTENTIAL

The Heart: Cardiac Conduction System

- Group of structures that send electrical impulses through the heart
- Sino atrial node (SA node)
 - Wall of right atrium
 - Generates impulse
 - Natural pacemaker
 - Sends impulse to AV node
- Atrioventricular node (AV node)
 - Between atria just above ventricles
 - Atria contract
 - Sends impulse to the bundle of His

Bundle of His

- Between ventricles
- Two branches
- Sends impulse to Purkinje fibers

Purkinje fibers

- Lateral walls of ventricles
- Ventricles contract

Electrocardiogram

- Variations in electrical potential radiate from the heart
- ECG records electrical events in the heart.

Purpose of ECG

- Picture of electrical events
- Established electrode pattern results in specific tracing pattern
- Health of heart can be examined using EKG
- Electrical pattern reveals blood supply problems

ECG

- 3 distinct waves are produced during cardiac cycle
- P wave caused by atrial depolarization
- QRS complex caused by ventricular depolarization

T wave results from ventricular repolarization

(e) QRS complex: Ventricles depolarize and contract

Repolarization

Cardiac Intervals

Different Segments of ECG

P wave: the sequential activation (depolarization) of the right and left atria

QRS complex: right and left ventricular depolarization (normally the ventricles are activated *simultaneously*)

ST-T wave: ventricular repolarization

U wave: origin for this wave is not clear - but probably represents "after depolarization's in the ventricles

PR interval: time interval from onset of atrial depolarization (P wave) to onset of ventricular depolarization (QRS complex)

QRS duration: duration of ventricular muscle depolarization

QT interval: duration of ventricular depolarization and repolarization

RR interval: duration of ventricular cardiac cycle (an indicator of ventricular rate)

PP interval: duration of atrial cycle (an indicator or atrial rate)

How to Read an ECG

VERTICAL
AXIS

1 Small Square = 1mm (0.1mV)
1 Large Square = 5mm (0.5mV)
2 Large Squares = 1mV

HORIZONTAL
AXIS

1 Small Square = .04 sec (40 m sec)
1 Large Square = .2 sec (200 m sec)
5 Large Squares = 1 sec (1000 m sec)

Heart rate from the ECG strip

- When the <u>rhythm is regular</u>, the heart rate is 300 divided by the number of large squares between the QRS complexes.
- For example, if there are 4 large squares between regular QRS complexes, the heart rate is 75 (300/4=75).

Heart rate from the ECG strip

- To estimate the rate for an <u>irregular rhythm</u>, Count the number of R waves in a 6 second strip and multiply by 10.
- For example, if there are 7 R waves in a 6 second strip, the heart rate is 70 (7x10=70).

Abnormal ECG Deflection Wave Patterns

Sinus Arrhythmia

Sinus arrhythmia means there is an irregularity in the heart rhythm, originating at the sinus node.

Sinus Bradycardia

Rate = 40-59 b.p.m.

Sinus Tachycardia

Rate = 101-160 b.p.m.

Sinus Arrest

Pause > 3 seconds

Atrial Flutter

Heart's upper chambers (atria) beat too quickly. This causes the heart to beat in a fast, but usually regular, rhythm.

Atrial Fibrillation (A-fib)

An irregular and often very rapid heart rhythm- the heart's upper chambers (the atria) beat chaotically and irregularly.

AV Block

Partial or complete interruption of impulse transmission from the atria to the ventricles.

Ventricular Tachycardia (V-tach)

A wide QRS complex heart rhythm- a QRS duration beyond 120ms

Ventricular Fibrillation (V-fib)

Disordered electrical activity causes the heart's lower chambers (ventricles) to quiver, or fibrillate, instead of contracting (or beating) normally.

Asystole

Informally referred to as "flatline", represents the cessation of electrical and mechanical activity of the heart.

ECG Leads

ECG is recorded as the difference between two potentials on the body surface, called an "ECG lead". Each lead is said to look at the heart from a different angle.

12-Lead ECG measurement

- Most widely used ECG measurement setup in clinical environment
- Signal is measured non-invasively with 10 electrodes
- Well-known measurement and diagnosis practices

Einthoven leads: I, II & III

Goldberger augmented leads: V_R, V_L & V_F

Precordial leads: V₁-V₆

1 anterior axillary line (AAL),

Chest leads

V1: 4th intercostal space, right

sternal edge.

V2: 4th intercostal space, left

sternal edge.

V3: between the 2nd and 4th

electrodes.

V4: 5th intercostal space in the

midclavicular line.

V5: on 5th rib, anterior axillary line.

V6: in the midaxillary line.

CHEST LEADS

- 6 UNIPOLAR LEADS
- V1
- V2
- V3
- V4
- V5
- V6

CHEST LEADS

The chest electrodes are labelled "V" and are numbered from 1 to 6.

- The placement of these electrodes needs to be exact to give the optimum information as possible.
- If the electrodes are placed incorrectly on the chest, the tracing will reveal duplication of some information, while other areas will not be represented properly.