Geometry of standard stereo

$$\frac{u_1}{f} = \frac{h - X}{Z}$$
$$-\frac{u_2}{f} = \frac{h + X}{Z}$$
$$v_1 = v_2$$

$$Z = \frac{2hf}{u_1 - u_2} = \frac{bf}{d}$$

$$X = -\frac{b(u_1 + u_2)}{2d}$$

$$Y = \frac{bv_1}{d} = \frac{bv_2}{d}$$

 $d \doteq u_1 - u_2$ disparity

Precision of depth estimation

- If $d \to 0$, and $Z \to \infty$
 - Disparity of distant points are small.
- Relation between disparity and precision of depth estimation

$$\frac{|\Delta Z|}{Z} = \frac{|\Delta d|}{|d|}$$

- larger the disparity, smaller the relative depth error
- → precision is increasing
- Influence of base length

$$d=\frac{bf}{Z}$$

- For larger b, same depth value yields larger disparity
- → Precision of depth estimation increasing
- → more pixels → precision of diparity increasing

Types of stereo reconstruction

- Fully calibrated reconstruction
 - Known intrinsic and extrinsic camera parameters
 - reconstruction by triangulation
 - known baseline → known scale
- Metric (Euclidean) reconstruction
 - knonw intrinsic camera parameters, n ≥ 8 point correspondences given
 - Extrinsic camera parameters obtained from essential matrix
 - Reconstruction up to a similarity transformation
 - → up to a scale
- Projective reconstruction
 - **unknown** camera parameters, $n \ge 8$ point correspondences are given
 - Composition of projective matrices from a fundamental matrix
 - reconstruction can be computed up to a projective transformation

Overview

- Image-based 3D reconstruction
- @ Geometry of stereo vision
 - Epipolar geometry
 - Essential and fundamental matrices
 - Estimation of the fundamental matrix
- Standard stereo and rectification
 - Triangulation for standard stereo
 - Retification of stereo images
- 4 3D reconstruction from stereo images
 - Triangulation and metric reconstruction
 - Projective reconstruction
 - Planar Motion
- Summary

Triangulation

Task:

- Two calibrated cameras are given, including both intrinsic and extrinsic parameters, and
- ullet Locations $oldsymbol{u}_1,oldsymbol{u}_2$ of the projection of spatial point $oldsymbol{X}$ are given
- Goal is to estimate spatial location X.
- Two calibration matrices are known, therefore
 - for a projection matrix: $\mathbf{K}^{-1}\mathbf{P} = [\mathbf{R}| \mathbf{t}]$ and
 - for calibrated (aka. normalized) coordinates: $\mathbf{p} = \mathbf{K}^{-1}\mathbf{u}$.
- For the sake of simplicity, the first camera gives the world coordinate system
 - non-homogeneous coordinates are used
 - $ightarrow \mathbf{p_2} = \mathbf{R}(\mathbf{p_1} \mathbf{t}), \mathbf{p_1} = \mathbf{t} + \mathbf{R}^\mathsf{T}\mathbf{p_2}$
- Image points are bask-projected to 3D space
 - two rays obtained, they usually do not intersect each other due to noise/calibration error
 - \rightarrow task is to give an estimate for spatial point **X**.

Linear triangulation: geometry

- Line X_1X_2 perpendicular to both r_1 and r_2 .
- Estimate X is the middle point of section X₁X₂
- Vector w is parallel to X₁X₂.

Linear triangulation: notations

- $\alpha \mathbf{p}_1$ is a point on ray \mathbf{r}_1 ($\alpha \in \Re$)
- t + βR^Tp₂ a point on other ray r₂ (β ∈ ℜ)
 → coordinate system fixed to the first camera
- Let $\mathbf{X}_1 = \alpha_0 \mathbf{p}_1$, $\mathbf{X}_2 = \mathbf{t} + \mathbf{R}^\mathsf{T} (\beta_0 \mathbf{p}_2 \mathbf{t})$

Linear triangulation: solution

- Task is to determine
 - the middle point of the line section X₁X₂
 - \rightarrow determination of α_0 and β_0 required
- Remark that
 - Vector $\mathbf{w} = \mathbf{p}_1 \times \mathbf{R}^T(\mathbf{p}_2 \mathbf{t})$ perpendicular to both \mathbf{r}_1 and \mathbf{r}_2 .
 - Line $\alpha \mathbf{p_1} + \gamma \mathbf{w}$ parallel to \mathbf{w} and contain the point $\alpha \mathbf{p_1}$ ($\gamma \in \Re$).
- $\rightarrow \alpha_0, \beta_0$ (as well as γ_0) are given by the solution of the following linear system: :

$$\alpha \mathbf{p}_1 + \mathbf{t} + \beta \mathbf{R}^{\mathsf{T}}(\mathbf{p}_2 - \mathbf{t}) + \gamma [\mathbf{p}_1 \times \mathbf{R}^{\mathsf{T}}(\mathbf{p}_2 - \mathbf{t})] = 0$$
 (7)

- Triangulated point is obtained, e.g by $\alpha_0 \mathbf{p}_1$
- There is no solution if r₁ and r₂ are parallel

Linear triangulation: an algebraic solution

• Two projected locations of spatial point X are given:

$$\lambda_1 \mathbf{u}_1 = \mathbf{P}_1 \mathbf{X}$$

 $\lambda_2 \mathbf{u}_2 = \mathbf{P}_2 \mathbf{X}$

• λ_1 and λ_2 can be eliminated. 2 + 2 equations are obtained:

$$u\mathbf{p}_3^T\mathbf{X} = \mathbf{p}_1^T\mathbf{X}$$

 $v\mathbf{p}_3^T\mathbf{X} = \mathbf{p}_2^T\mathbf{X}$

- where \mathbf{p}_i^T is the i-th row of projection matrix \mathbf{P} .
- Both projections yield 2 equations. Only vector **X** is unknown.
- Solution for X is calculated by solving the homogeneous linear system of equations.
- Important remark: solution is obtained in homogeneous coordinates.

Refinement by minimizing the reprojection error

- Linear algorithm yield points X_i , i = 1, 2, ..., n if n point pairs are given
- The solution should be refined
 - minimization of reprojection error yields more accurate estimate
- For minimizing the reprojection error, the following parameters have to be refined:
 - Spatial points X_i
 - Rotation matrix R and baseline vector t
 - ightarrow intrinsic camera parameters are usually fixed as cameras are pre-calibrated
- Initial values for numerical optimization
 - Spatial points X_i from linear triangulation
 - Initial rotation matrix R and baseline vector t by decomposing the essential matrix

Metric reconstruction by decomposing the essential matrix

- Intrinsic camera matrices K_1 and K_2 given, fundamental matrix computed from $n \ge 8$ point correpondences
 - E can be retrieved from F, K₁ and K₂.
 - from E, extrinsic parameters can be obtained by decomposition
- Unknown baseline → unknown scale
 - baseline normalized to 1
 - → Euclidean reconstruction possible up to a similarity transformation
- It is assumed that world coordinate is fixed to the first camera
 - \rightarrow Therefore, $P_1 = [I | \mathbf{0}]$, where I is the identity matrix
- Position of second camera computed from essential matrix E by SVD.
 - Four solutions obtained,
 - only one is correct.

Camera pose estimation by SVD

- The Singular Value Decomposition of **E** is $\mathbf{E} = \mathbf{UDV}^T$, where $\mathbf{D} = \mathrm{diag}(\delta, \delta, \mathbf{0})$
 - → E has two equal singuar values
- Four solutions can be obtained as follows:

$$\begin{aligned} \textbf{R}_1 &= \textbf{U} \textbf{W} \textbf{V}^\mathsf{T} & \textbf{R}_2 &= \textbf{U} \textbf{W}^\mathsf{T} \textbf{V}^\mathsf{T} \\ [\textbf{t}_1]_\times &= \delta \textbf{U} \textbf{Z} \textbf{U}^\mathsf{T} & [\textbf{t}_2]_\times &= -\delta \textbf{U} \textbf{Z} \textbf{U}^\mathsf{T} \end{aligned}$$

where

$$\mathbf{W} \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{Z} \doteq \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- Combination of 2-2 candidates for translation and rotation yield 4 solutions.
- Determinants of \mathbf{R}_1 and \mathbf{R}_2 have to be positive, otherwise matrices should be multiplied by -1.

Visualization of the four solutions

- Left and right: camera locations replaces
- Top and bottom: mirror to base lane
- 3D point is in front of the cameras only in the top-left case.