Fraud Detection

Chuheng Yu, Linting Wang Yuhan Wang, Tyler Christoforo

Notebook link:

https://colab.research.google.com/drive/1fk3YjF9j8xl893SzFtUWxx75jpKv8y6C?usp=sharing

Recap

- Objective:
 - Determine online fraudulent payment patterns within existing dataset
- Data Source:
 - From Medium.com made public by Edgar Alonso Lopez-Rojas
- Columns within the dataset:
 - String: nameOrig, nameDest
 - Numerical: step, amount, oldbalanceOrg, newbalanceOrig, oldbalanceDest, newbalanceDest
 - Categorical: type
 - Target column: isFraud

Problems to resolve

Correlation Heatmap

Data preparation

Column examination

Check Null values

Check correlation

Check patterns of fraud

Check column types

Feature engineering

•00

errorDest = amount + oldbalancedest newbalancedest
errorOrig = amount + newbalanceorig - oldbalanceorig
transferPercentage = amount/oldbalanceorig x 100

Detail management

Drop rows with 0 as the amount

Replace all infinite values from division error

Drop columns that we used for feature

extraction

Pipeline construction

- Column Transformer
- Imputer
 - Median for Numerical
 - Mode for Categorical
- Oversample
 - Sampling strategy: 0.1
- Undersample
 - Sampling strategy: majority

Model Selection

Benchmark score before tuning

0%

25%

50%

75%

100%

Hyper-parameter Tuning

set the possible combinations

Grid Search

expand the possible range 1-20

Random Search

Compared Refine Hyper-Parameter

Halving Search

Decision Tree Random Forest

	max_depth	min_samples_leaf		
Grid	[2, 5, 8]	[2, 5, 7, 8]		
Random	randint(1,20)	randint(1,20)		
halving	[15, 17,19]	[8,10,11]		

Cross-validation

Grid Search

	param_rando m_forestma x_depth	param_random _forestmin_s amples_leaf	split0_test _score	split1_test _score	split2_tes t_score	mean_te st_score	std_test _score
5	5	5	0.996716	0.997863	0.998541	0.997707	0.000753
4	5	2	0.996715	0.997863	0.998542	0.997706	0.000754
6	5	7	0.996716	0.997861	0.998542	0.997706	0.000753
7	5	8	0.996712	0.997862	0.998541	0.997705	0.000755
8	8	2	0.996716	0.997866	0.998314	0.997632	0.000673

Random Search

	param_rando m_forestma x_depth	param_random _forestmin_ samples_leaf	split0_test_ score	split1_test _score	split2_test_ score	mean_test _score	std_test_s core
4	4	8	0.996711	0.998091	0.998538	0.997780	0.000778
1	11	8	0.996716	0.997863	0.998313	0.997631	0.000672
6	12	6	0.996716	0.997862	0.998313	0.997630	0.000672
2	7	19	0.996715	0.997860	0.998314	0.997630	0.000673
3	111	11	0.996716	0.997862	0.998311	0.997630	0.000672

Halving Search S

	param_random _forestmax_ depth	param_random _forestmin_s amples_leaf	split0_test _score	split1_test _score	split2_test _score	mean_test_ score	std_test_sc ore
12	17	8	0.996715	0.997857	0.998308	0.997627	0.000671
10	17	8	0.997164	0.996560	0.998554	0.997426	0.000835
9	19	11	0.997165	0.996559	0.998554	0.997426	0.000835
11	15	8	0.997164	0.996554	0.998558	0.997425	0.000839
0	15	8	0.995994	0.997890	0.997634	0.997173	0.000840

Final Workflow

numerical

categorical

Imputer: median

Imputer: most frequent

Standard Scaler

One-Hot Encoder

Random Undersampler

max depth: 17

min samples leaf: 8

Performance Summary

test data

Confusion Matrix

Closing Remarks

Unresolved Challenges

Cost matrix
Feature engineering within pipeline
Runtime optimization & parameter search

Summary

Model Selection & Best Parameter Metric Evaluation

Conclusion

The implemented machine-learning model effectively identifies fraud within the dataset, and will reduce the risk of fraud and efficiently advise customers of potential fraud. However, the column limitation can restrict its broader impact.

RandomForest:

```
[ ] 1 print("Print R2 score of Test:",r2_score(y_test, final_pred_rf))
2 print("Print R2 Score of Training",r2_score(y_train, train_pred_rf))
Print R2 score of Test: 0.85826772417139
Print R2 Score of Training 0.8638074528286463
```

DecisionTree:

```
[ ] 1 print("Print R2 score of Test:",r2_score(y_test, final_pred_dt))
2 print("Print R2 Score of Training",r2_score(y_train, train_pred_dt))
Print R2 score of Test: 0.5693049376759911
Print R2 Score of Training 0.5770702290755052
```