Clasificación

Dr. Mauricio Toledo-Acosta mauricio.toledo@unison.mx

Diplomado Ciencia de Datos con Python

Table of Contents

1 Introducción: La tarea de clasificación

Métricas de desempeño

asificación May 24, 2024 2 / 19

3/19

¿Qué tienen en común las siguientes tareas?

4 / 19

¿Qué tienen en común las siguientes tareas?

Hello Friends! We hope you had a pleasant week. Last weeks trivia questions was:	No Spam
What do these 3 films have in common: One Crazy Summer, Whispers in the Dark, Moby Dick?	
Answer: Nantucket Island	
IMPORTANT INFORMATION:	Spam
The new domain names are finally available to the general public at discount prices. Now you can	
register one of the exciting new .BIZ or .INFO domain names, as well as the original .COM and .NET	
names for just \$14.95. These brand new domain extensions were recently approved by ICANN and have	
the same rights as the original .COM and .NET domain names. The biggest benefit is of-course that	
the .BIZ and .INFO domain names are currently more available. i.e. it will be much easier to register	
an attractive and easy-to-remember domain name for the same price. Visit: http://www.affordable-	
domains.com today for more info.	
If you have an internal zip drive (not sure about external) and you bios supports using a zip as floppy	No Spam
drive, you could use a bootable zip disk with all the relevant dos utils.	

Clasificación

Problema supervisado en el cual el objetivo es asignar una etiqueta o categoría a cada ejemplo de un conjunto de datos.

La tarea de clasificación consiste en entrenar un modelo para predecir a qué clase pertenece una nueva observación. Esto lo hacemos basándonos en un conjunto de datos etiquetados donde las categorías son conocidas.

• Clasificación Binaria: Dos etiquetas, mutuamente exclusivas.

Clasificación

Problema supervisado en el cual el objetivo es asignar una etiqueta o categoría a cada ejemplo de un conjunto de datos.

La tarea de clasificación consiste en entrenar un modelo para predecir a qué clase pertenece una nueva observación. Esto lo hacemos basándonos en un conjunto de datos etiquetados donde las categorías son conocidas.

- Clasificación Binaria: Dos etiquetas, mutuamente exclusivas.
- Clasificación Multi-clase: Varias etiquetas mutuamente excluyentes.

Clasificación

Problema supervisado en el cual el objetivo es asignar una etiqueta o categoría a cada ejemplo de un conjunto de datos.

La tarea de clasificación consiste en entrenar un modelo para predecir a qué clase pertenece una nueva observación. Esto lo hacemos basándonos en un conjunto de datos etiquetados donde las categorías son conocidas.

- Clasificación Binaria: Dos etiquetas, mutuamente exclusivas.
- Clasificación Multi-clase: Varias etiquetas mutuamente excluyentes.
- Clasificación Multi-etiqueta: Cada instancia tiene varias etiquetas.

Clasificación Binaria

Hello Friends! We hope you had a pleasant week. Last weeks trivia questions was:	No Spam
What do these 3 films have in common: One Crazy Summer, Whispers in the Dark, Moby Dick?	
Answer: Nantucket Island	
IMPORTANT INFORMATION:	Spam
The new domain names are finally available to the general public at discount prices. Now you can	
register one of the exciting new .BIZ or .INFO domain names, as well as the original .COM and .NET $$	
names for just \$14.95. These brand new domain extensions were recently approved by ICANN and have	
the same rights as the original .COM and .NET domain names. The biggest benefit is of-course that	
the .BIZ and .INFO domain names are currently more available. i.e. it will be much easier to register	
an attractive and easy-to-remember domain name for the same price. Visit: http://www.affordable-	
domains.com today for more info.	
If you have an internal zip drive (not sure about external) and you bios supports using a zip as floppy	No Spam
drive, you could use a bootable zip disk with all the relevant dos utils.	

Clasificación Binaria

Texto	ℓ
Hello Friends! We hope you had a pleasant	0
week. Last weeks trivia questions was	
IMPORTANT INFORMATION: The new do-	1
main names are finally available to the gen-	
eral	

Clasificación Binaria

w_1	 w _M	ℓ
2	 0	1

Clasificación Multi-clase

Clasificación Multi-clase

p_1	 <i>p</i> ₇₈₄	ℓ
0	 57	0

Clasificación Multi-etiqueta

Un ejemplo trabajado con código

Clasificación Multi-etiqueta

Texto	Action	Adventure	Fantasy	Romance
While on a journey of	1	1	1	0
physicial and spiritual				
healing, a brilliant				

Un ejemplo trabajado con código

Clasificación

Más ejemplos de clasificación

- Clasificación de imágenes (identificar objetos en fotos).
- Diagnóstico médico (clasificar si un tumor es benigno o maligno). Esto puede ser por medio de imágenes, mediciones, etc.
- Reconocimiento de voz (identificar palabras habladas).
- Detección de fraude (identificar transacciones fraudulentas).
- Detección de tópicos (Identificar el tópico de un documento escrito).
- Análisis de sentimientos (Identificar el sentimiento detrás de un texto).

La tarea de clasificación: Planteamiento matemático

Datos de entrada en la clasificación binaria:

$$X = \underbrace{\{x_1,...,x_n\}}_{ ext{Datos de entrada}} \subset \mathbb{R}^D, \quad Y = \underbrace{\{y_1,...,y_n\}}_{ ext{Etiqueta de cada dato}}$$

donde $y_i \in \{0, 1\}$.

asificación May 24, 2024 10 / 19

La tarea de clasificación: Planteamiento matemático

Datos de entrada en la clasificación binaria:

$$X = \underbrace{\{x_1,...,x_n\}}_{ ext{Datos de entrada}} \subset \mathbb{R}^D, \quad Y = \underbrace{\{y_1,...,y_n\}}_{ ext{Etiqueta de cada dato}}$$

donde $y_i \in \{0, 1\}$.

- Enforque ML: Un clasificador asigna etiquetas a cada dato de entrada.
- **Enfoque geométrico:** Es decir, separa los datos de entrada *X* en regiones de decisión cuyos límites se llaman fronteras de decisión.

sificación Clasificación May 24, 2024 10 / 19

La geometría

La geometría

El algoritmo buscará encontrar la frontera de decisión de acuerdo a diferentes criterios.

11 / 19

sificación Clasificación May 24, 2024

Algoritmos

Hay varios métodos:

- SVM (Support Vector Machine)
- Regresión Logística
- Árboles de decisión y árboles aleatorios.
- Naive-Bayes
- K-nearest neighbors.
- Perceptron (Módulo siguiente)
- Redes Neuronales (Módulo siguiente)

Algunos algoritmos no soportan la clasificación multiclase, sólo la binaria. En estos casos hay dos estrategias para convertir una clasificación multiclase (con k clases diferentes) en varios problemas de clasificaciones binarias:

 One vs all (OVA) o one vs rest (OVR). Se divide una clasificación multiclase en un problema de clasificación binaria por cada clase. En cada clasificación binaria se analiza si la entidad pertenece a la clase j-sima o no.

13 / 19

Algunos algoritmos no soportan la clasificación multiclase, sólo la binaria. En estos casos hay dos estrategias para convertir una clasificación multiclase (con k clases diferentes) en varios problemas de clasificaciones binarias:

- One vs all (OVA) o one vs rest (OVR). Se divide una clasificación multiclase en un problema de clasificación binaria por cada clase. En cada clasificación binaria se analiza si la entidad pertenece a la clase j-sima o no.
- One vs one (OVO). Se divide una clasificación multiclase en un problema de clasificación binaria por cada par de clases. En cada clasificación binaria se analiza si la entidad pertenece a la clase i-sima o a la clase j-sima.

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs rest (OVR).
 - Clasificación binaria 1: Rojo, (azul, verde).
 - Clasificación binaria 2: Azul, (rojo, verde).
 - Clasificación binaria 3: Verde, (azul, rojo).

objeto	color
objeto 1	rojo
objeto 2	verde

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs rest (OVR).
 - Clasificación binaria 1: Rojo, (azul, verde).
 - Clasificación binaria 2: Azul, (rojo, verde).
 - Clasificación binaria 3: Verde, (azul, rojo).

objeto	rojo	verde	azul
objeto 1	1	0	0
objeto 2	0	1	0

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs one (OVO).
 - Clasificación binaria 1: Rojo, azul.
 - Clasificación binaria 2: Rojo, verde.
 - Clasificación binaria 3: Azul, verde.

objeto	color
objeto 1	rojo
objeto 2	verde

Un ejemplo ilustrativo...

Supongamos que tenemos un conjunto de datos en el que cada instancia puede ser de clase rojo, verde o azul.

- One vs one (OVO).
 - Clasificación binaria 1: Rojo, azul.
 - Clasificación binaria 2: Rojo, verde.
 - Clasificación binaria 3: Azul, verde.

objeto	rojo/azul	rojo/verde	azul/verde
objeto 1	1	1	-
objeto 2	_	0	0

Un ejemplo ilustrativo...

Table of Contents

1 Introducción: La tarea de clasificación

2 Métricas de desempeño

asificación May 24, 2024 16 / 19

Matriz de Confusión Binaria

		Predicted condition			
	Total population = P + N	Positive (PP)	Negative (PN)		
condition	Positive (P)	True positive (TP)	False negative (FN)		
Actual co	Negative (N)	False positive (FP)	True negative (TN)		

sificación Clasificación May 24, 2024 17 / 19

Métricas de desempeño

Accuracy: De todos la población, ¿cuántos predije correctamente?

$$A = \frac{TP + TN}{\mathsf{Total}}.$$

 Recall: De todos la población positiva, ¿cuántos predije correctamente como positivos?

$$R = \frac{TP}{TP + FN}.$$

 Precision: De todos los que predije como positivos, ¿cuántos son realmente positivos?

$$P = \frac{TP}{TP + FP}.$$

• **F1 score**: Media armónica de la precisión y el recall:

$$2\frac{P\cdot R}{P+R}$$

Ejemplo

Tenemos la siguiente población $\{++---\}$:

• Si nuestro clasificador predice todo como —:

real	+	+	-	-	-	-
predicho	-	-	ı	-	-	ı

Accuracy: 0.66, Recall: 0, Precision: 0.

• Si nuestro clasificador predice todo como +:

real	+	+	_	-	_	-
predicho	+	+	+	+	+	+

Accuracy: 0.33, Recall: 1, Precision: 0.33.

Una métrica alta no pinta el panorama completo.