Pr?ctico_2_curaci?n

August 20, 2019

Universidad Nacional de Córdoba - Facultad de Matemática, Astronomía, Física y Computación

Diplomatura en Ciencia de Datos, Aprendizaje Automático y sus Aplicaciones

Práctico 2 - Curación

Análisis Exploratorio y Curación de Datos - 2019

Integrante:

• Tarletta Juan

Trabajaremos con un dataset que contiene muestras de aceite extraidas a camiones de minería. Estas muestras son extraíadas a diferentes componentes de los camiones (Motor, Diferencial, etc)

Las muestras se envían a un laboratorio que analiza los diferentes componentes químicos de las mismas (Hierro, Cromo, presencia de Agua, horas de utitización, etc), luego de analizarlas emiten un informe indicando el estado de la muesta, lo que permite a los analistas encontar posibles fallas en los equipos, previmiendo futuras roturas.

El dataset cuenta con X features, siendo las más importantes

- Componente: Indica a que componente pertenece la muestra
- Horas Funcionamiento: Indica la cantidad de horas de funcionamiento del camión (sería como el kilometraje de los camiones)
- Horas del Aceite: Representa la cantidad de horas de utilización del aceite (este dato es importante dado que a medida que, a mayor horas de uso del aceite, el mismo comienza a desgastarse)
- Resultado: (El laboratorio indica si la muestra de aceite está Bien = 1, Regular=2, Mal=3)
- St: Presencia de Hollin en el Aceite
- Al: Presencia de Aluminio en el Aceite
- Fe Presencia de Hierro en el Aceite
- Si Presencia de Silicio en el Aceite
- Na Presencia de Sodio en el Aceite
- Visco: Viscosidad del aceite

NOTA: se modifica le dataset y se incluyen el feature * Fecha de Análisis: Indica cuando fué analizada la muestra por el laboratorio

```
[1]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn
from IPython.display import display, Markdown
```

```
[2]: seaborn.__version__
```

[2]: '0.9.0'

```
[3]: dataset = pd.read_csv('OilDataSetCuracion.csv')
important_cols= ['Equipo', 'Componente', 'Resultado', 'Horas
→Funcionamiento', 'Horas del Aceite', 'St', 'Al', 'Fe', 'Si', 'Na']
dataset[important_cols]
```

C:\Users\Juan\Anaconda3\envs\diplodatos\lib\sitepackages\IPython\core\interactiveshell.py:3049: DtypeWarning: Columns (0) have
mixed types. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)

[2].		Fauino	Componento	Pogul+odo	\
[3]:	0	Equipo 1355	Componente Mando Final TD	1.0	\
		1355	Mando Final TD		
	1			3.0	
	2	1355	Masa Derecha	3.0	
	3	1355	Motor	3.0	
	4	1355	Sist de Dirección	1.0	
	5	1355	Sist. Hidráulico	1.0	
	6	1355	Sist. Hidráulico	3.0	
	7	1356	Mando Final TI	1.0	
	8	1356	Masa Izquierda	1.0	
	9	1356	Sist de Dirección	1.0	
	10	1356	Sist. Hidráulico	3.0	
	11	1356	Sist. Hidráulico	3.0	
	12	1357	Motor	1.0	
	13	1359	Convertidor	1.0	
	14	1359	Convertidor	1.0	
	15	1359	Convertidor	1.0	
	16	1359	Diferencial Trasero	1.0	
	17	1359	Diferencial Trasero	1.0	
	18	1359	Diferencial Trasero	3.0	
	19	1359	Mando Final TD	1.0	
	20	1359	Mando Final TD	3.0	
	21	1359	Mando Final TD	3.0	
	22	1359	Mando Final TD	3.0	
	23	1355	Diferencial Trasero	1.0	
	24	1355	Diferencial Trasero	2.0	
	25	1355	Masa Derecha	2.0	
	26	1355	Masa Izquierda	1.0	
	27	1355	Transmisión	1.0	
	28	1356	Diferencial Trasero	1.0	
	29	1356	Motor	3.0	
	23		riotor		
	01402	0001	D:f		
	21403	2061	Diferencial Trasero	2.0	

21404	206:	1 Diferencial Tra	asero		2.0		
21405	206:	1 Mando Fina	al TD		2.0		
21406	206:	1 Mando Fina	al TD		2.0		
21407	206	1 Mando Fina	al TD		2.0		
21408	206	1 Mando Fin	al TI		1.0		
21409	206	1 Mando Fin	al TI		1.0		
21410	206:				2.0		
21411	206				2.0		
21412	206				2.0		
21413	206:				2.0		
21414	206				2.0		
21415	206	-			2.0		
21416	206:	_			2.0		
21417	206	•			2.0		
21417	206:	_	Motor		3.0		
21419	206:		Motor		3.0		
21420	206		Motor		2.0		
21421	206:		Motor		2.0		
21422	206:				1.0		
21423	206:				1.0		
21424	206:				1.0		
21425	206:				2.0		
21426	206:				2.0		
21427	206:				2.0		
21428	206:	1 Transm	isión		1.0		
21429	206:	1 Transm	isión		2.0		
21430	206:	1 Transm	isión		1.0		
21431	206:	1 Transm	isión		2.0		
21432	(21432 row(s) affected))	NaN		NaN		
	Horas Funcionamiento l	Horas del Aceite	St	Al	Fe	Si	Na
0	21950.0	409.0	0.0	0.0	15.0	7.0	8.0
1	23153.0	424.0	0.0		55.0	9.0	9.0
2	22349.0		NaN	28.0			16.0
3	21950.0	409.0	57.0	3.0	74.0	6.0	15.0
4	22349.0	808.0	NaN	2.0	3.0	6.0	4.0
5	21950.0	409.0	NaN	1.0	8.0	22.0	4.0
6	28295.0	NaN	NaN	1.0	164.0	18.0	3.0
7	28295.0	NaN	0.0	0.0	11.0	8.0	5.0
8	27624.0	663.0	NaN	0.0	9.0		0.0
9	27624.0	258.0	NaN	1.0		4.0	4.0
10	27624.0	187.0	NaN	1.0	407.0		19.0
11	28377.0	82.0	NaN	1.0	58.0	11.0	0.0
12	27876.0	263.0	24.0	1.0	12.0	2.0	8.0
13	43742.0	448.0	NaN	1.0	6.8	9.1	3.6
13 14	47386.0	512.0	NaN	2.7		7.1	2.6
1 4 15	48300.0					8.3	
10	40300.0	914.0	NaN	0.1	5.6	0.3	3.7

16	44460.0	NaN	${\tt NaN}$	0.0	20.0	5.0	7.0
17	43505.0	2618.0	NaN	0.1	43.0	4.3	6.7
18	48626.0	326.0	NaN	0.1	15.1	3.3	5.8
19	44006.0	3119.0	NaN	0.1	39.9	0.8	8.1
20	46670.0	2374.0	NaN	0.1	39.1	5.3	8.2
21	48626.0	326.0	NaN	0.1	16.1	3.0	5.6
22	48940.0	640.0	NaN	0.1	22.7	1.4	5.5
23	21950.0	409.0	0.0	0.0	16.0	7.0	9.0
24	22729.0	1188.0	0.0	0.0	35.0	10.0	8.0
25	21950.0	409.0	NaN	11.0	42.0	55.0	11.0
26	23153.0	424.0	NaN	0.0	15.0	10.0	5.0
27	22729.0	380.0	NaN	1.0	4.0	6.0	1.0
28	27624.0	258.0	NaN	1.0	9.0	10.0	2.0
29	28295.0	NaN	77.0	4.0	90.0	9.0	13.0
		4007.0					
21403	30057.0	1037.0	NaN	0.0	50.0	1.0	4.0
21404	3315.0	1295.0	NaN	0.0	46.0	6.0	6.0
21405	30057.0	1037.0	NaN	0.0	49.0	1.0	4.0
21406	4131.0	2111.0	NaN	0.0	65.0	8.0	7.0
21407	4422.0	291.0	NaN	0.0	28.0	3.0	6.0
21408	477.0	221.0	NaN	0.0	17.0	8.0	6.0
21409	2275.0	255.0	NaN	0.0	30.0	6.0	5.0
21410	30057.0	1037.0	NaN	0.0	50.0	1.0	4.0
21411	256.0	256.0	NaN	0.0	28.0	36.0	6.0
21412	2275.0	255.0	NaN	0.0	33.0	4.0	4.0
21413	3872.0	285.0	NaN	0.0	38.0	2.0	4.0
21414	3587.0	530.0	NaN	1.0	52.0	8.0	4.0
21415	4131.0	544.0	NaN	0.0	48.0	5.0	5.0
21416	4422.0	291.0	NaN	0.0	25.0	3.0	5.0
21417	5164.0	496.0	NaN	0.0	41.0	3.0	3.0
21418	2020.0	511.0	40.0	2.0	65.0	5.0	17.0
21419	2541.0	521.0	53.0	2.0	69.0	6.0	9.0
21420	2733.0	192.0			23.0	8.0	
21421	4668.0	537.0	72.0	2.0	47.0	6.0	6.0
21422	758.0	502.0	NaN	1.0	2.0	3.0	5.0
21423	1781.0	272.0	NaN	1.0	2.0	2.0	5.0
21424	2020.0	272.0	NaN	1.0	2.0	3.0	5.0
21425	256.0	256.0	NaN	1.0	11.0	21.0	3.0
21426	3872.0	3395.0	NaN	2.0	11.0	22.0	8.0
21427	4668.0	4191.0	NaN	2.0	10.0	13.0	6.0
21428	758.0	281.0	NaN	1.0	4.0	3.0	4.0
21429	2020.0	511.0	NaN	1.0	4.0	2.0	3.0
21430	30057.0	516.0	NaN	0.0	4.0	0.0	1.0
21431	4915.0	247.0	NaN	1.0	4.0	2.0	2.0
21432	NaN	NaN	NaN	NaN	NaN	NaN	NaN

[21433 rows x 10 columns]

Observamos que la última fila es inutil, entonces la eliminamos

- 2) Obtener el tipo de dato de cada feature
- Verificar si las fechas son tomasdas como fechas y en caso contrario convertir a fecha
- Verificar si los números son tomados como números)

[4]: dataset.dtypes

	V -	
[4]:	Equipo	object
	Componente	object
	Id	float64
	Resultado	float64
	Horas Funcionamiento	float64
	Horas del Aceite	float64
	Fecha de Análisis	object
	В	float64
	Nit	float64
	Oxi	float64
	Sul	float64
	St	float64
	V	float64
	Al	float64
	Cr	float64
	Cu	float64
	Fe	float64
	Pb	float64
	Мо	float64
	Ni	float64
	Sn	float64
	Si	float64
	K	float64
	Na	float64
	W	object
	F	object
	A	object
	ISO	object
	PQI	float64
	Ba	float64
	Ca	float64
	Mg	float64
	Mn	float64
	P	float64
	Zn	float64
	Ag	float64
	Ti	float64
	V40	float64
	V100	float64
	TBN	float64

```
TAN float64
IS014 float64
IS04 float64
IS06 float64
```

dtype: object

Observamos que los números son números con decimales, exceptuando "equipo", "componente", que son objetos. Y la fecha de análisi que es tomada como objeto y no como fecha. (No tenemos en cuenta W,F,A)

```
[5]: # Convertimos a la "Fecha de Análisis" en formato datatime

dataset2 = pd.read_csv('OilDataSetCuracion.csv', parse_dates= ["Fecha de

→Análisis"])

dataset2.dtypes
```

	dataset2.dtypes					
[5]:	Equipo Componente	object object				
	Id	float64				
	Resultado	float64				
	Horas Funcionamiento	float64				
	Horas del Aceite	float64				
	Fecha de Análisis	datetime64[ns]				
	В	float64				
	Nit	float64				
	Oxi	float64				
	Sul	float64				
	St	float64				
	V	float64				
	Al	float64				
	Cr	float64				
	Cu	float64				
	Fe	float64				
	Pb	float64				
	Mo	float64				
	Ni	float64				
	Sn	float64				
	Si	float64				
	K	float64				
	Na	float64				
	W	object				
	F	object				
	A	object				
	ISO	object				
	PQI	float64				
	Ba	float64				
	Ca	float64				
	Mg	float64				
	Mn	float64				
	P	float64				

```
Zn
                                  float64
                                  float64
Ag
Τi
                                  float64
V40
                                  float64
V100
                                  float64
TBN
                                  float64
TAN
                                  float64
IS014
                                  float64
IS04
                                  float64
IS06
                                  float64
dtype: object
```

3) Verificar entre que fechas hay muestras de aceite

```
[6]: primer_analisis = dataset2[['Fecha de Análisis']].min()
ultimo_analisis = dataset2[['Fecha de Análisis']].max()
display('El primer análisis se registra en: ',primer_analisis[0], 'El últimou
análisis se registra en: ',ultimo_analisis[0])

'El primer análisis se registra en: '

Timestamp('2017-10-29 00:00:00')

'El último análisis se registra en: '

Timestamp('2019-06-03 00:00:00')
```

4) Verificar si existen registros duplicados

```
[7]: dataset2[dataset2.duplicated()]
```

[7]: Empty DataFrame

Columns: [Equipo, Componente, Id, Resultado, Horas Funcionamiento, Horas del Aceite, Fecha de Análisis, B, Nit, Oxi, Sul, St, V, Al, Cr, Cu, Fe, Pb, Mo, Ni, Sn, Si, K, Na, W, F, A, ISO, PQI, Ba, Ca, Mg, Mn, P, Zn, Ag, Ti, V40, V100, TBN, TAN, ISO14, ISO4, ISO6]
Index: []

[0 rows x 44 columns]

[8]: dataset2[dataset2.index.duplicated()]

[8]: Empty DataFrame

Columns: [Equipo, Componente, Id, Resultado, Horas Funcionamiento, Horas del Aceite, Fecha de Análisis, B, Nit, Oxi, Sul, St, V, Al, Cr, Cu, Fe, Pb, Mo, Ni,

```
Sn, Si, K, Na, W, F, A, ISO, PQI, Ba, Ca, Mg, Mn, P, Zn, Ag, Ti, V40, V100, TBN,
     TAN, ISO14, ISO4, ISO6]
     Index: []
     [0 rows x 44 columns]
       No se observan datos duplicados
      5) Despersonalización de Datos.
       Vamos a suponer que los id de los camiones que se presetan en el datast son datos que permiten
    identificar a los mismos y por un tema de confidencialidad necestiamos despersonalizar este dato
    para hacer público su análisis. Aplicar dos técnicas de despersonalización de datos sobre el dataset
 [9]: #Datos sin anonimizar
     display(dataset2[['Id']].head(5))
              Ιd
       273615.0
    1 294763.0
    2 278700.0
    3 273586.0
    4 278549.0
[10]: #Creamos una funcion para anonimizar
     def anoni1 (column):
         return ((column/3333)-np.mod(13,7))
[11]: #Anonimizamos los datos
     dataset2[['Id']].apply(anoni1).head(5)
[11]:
     0 76.092709
     1 82.437744
     2 77.618362
     3 76.084008
     4 77.573057
[12]: #Creamos otra funcion para anonimizar
     def anoni2 (column):
         return ((column/2222)-np.mod(14,6))
[13]: dataset2[['Id']].apply(anoni2).head(5)
[13]:
                 Ιd
     0 121.139064
```

1 130.656616
 2 123.427543
 3 121.126013

4 123.359586

```
[14]: #Le aplicamos la anonimidad a todo el data set
     dataset2[['Id']] = dataset2[['Id']].apply(anoni1)
```

Vale aclarar que existen diferentes (infinitas) formas de "Anonimizar" los datos, ya que a fin de cuenta lo que se aplica es una 'función' que transforme los mismos. Ej: MD5,SHAx,HILL...

6) Revisar las etiquetas de los feature y renombrar aquellas que contengan caracteres "no ascci" que pudieran traer probleams en el procesamiento

```
[15]: columnas_antes = dataset2.columns.astype('unicode')
     columnas_antes.values
[15]: array(['Equipo', 'Componente', 'Id', 'Resultado', 'Horas Funcionamiento',
            'Horas del Aceite', 'Fecha de Análisis', 'B', 'Nit', 'Oxi', 'Sul',
            'St', 'V', 'Al', 'Cr', 'Cu', 'Fe', 'Pb', 'Mo', 'Ni', 'Sn', 'Si',
            'K', 'Na', 'W', 'F', 'A', 'ISO', 'PQI', 'Ba', 'Ca', 'Mg', 'Mn',
            'P', 'Zn', 'Ag', 'Ti', 'V40', 'V100', 'TBN', 'TAN', 'ISO14',
            'ISO4', 'ISO6'], dtype=object)
[16]: #Modificamos las columnas a "ascii", remplazando los caracteres que nos traerán
      →problemas con un signo de pregunta '?'
     columnas_despues = columnas_antes.str.encode("ascii", errors = "replace")
     columnas_despues.values
[16]: array([b'Equipo', b'Componente', b'Id', b'Resultado',
            b'Horas Funcionamiento', b'Horas del Aceite', b'Fecha de An?lisis',
            b'B', b'Nit', b'Oxi', b'Sul', b'St', b'V', b'Al', b'Cr', b'Cu',
            b'Fe', b'Pb', b'Mo', b'Ni', b'Sn', b'Si', b'K', b'Na', b'W', b'F',
            b'A', b'ISO', b'PQI', b'Ba', b'Ca', b'Mg', b'Mn', b'P', b'Zn',
            b'Ag', b'Ti', b'V40', b'V100', b'TBN', b'TAN', b'IS014', b'IS04',
            b'ISO6'], dtype=object)
       7) Valores faltantes
       Determinar que porcentaje de datos faltantes existen en el feature Fe y Na Completar los datos
    faltantes con la media
[17]: dataset[['Id', 'Fe', 'Na']].count()
[17]: Id
           21432
```

```
Fe
      20693
Na
      20690
dtype: int64
```

[18]: dataset[dataset.duplicated(['Id'])]

[18]: Empty DataFrame Columns: [Equipo, Componente, Id, Resultado, Horas Funcionamiento, Horas del Aceite, Fecha de Análisis, B, Nit, Oxi, Sul, St, V, Al, Cr, Cu, Fe, Pb, Mo, Ni, Sn, Si, K, Na, W, F, A, ISO, PQI, Ba, Ca, Mg, Mn, P, Zn, Ag, Ti, V40, V100, TBN, TAN, ISO14, ISO4, ISO6] Index: []

```
[0 rows x 44 columns]
```

```
[19]: total_datos = dataset[['Id']].count().values[0]+1
     total_Fe = dataset[['Fe']].dropna().count().values[0]
     total_Na = dataset[['Na']].dropna().count().values[0]
     porc_falt_Fe = abs(((100*total_Fe)/total_datos)-100)
     porc_falt_Na = abs(((100*total_Na)/total_datos)-100)
     display('Total de datos',total_datos, 'Total de datos de Hiero', total_Fe, u
      →'Porcentaje faltante de datos de Hierro (Fe)', porc_falt_Fe, 'Total de datos<sub>U</sub>
      →de Sodio',total_Na, 'Porcentaje faltante de datos de Sodio⊔
      →(Na)',porc_falt_Na)
    'Total de datos'
    21433
    'Total de datos de Hiero'
    20693
    'Porcentaje faltante de datos de Hierro (Fe)'
    3.452619791909669
    'Total de datos de Sodio'
    20690
    'Porcentaje faltante de datos de Sodio (Na)'
    3.46661689917417
[20]: | #Completamos los datos faltantes de hierro y Sodio con sus respectivas medias
     display(dataset[['Na']].fillna(dataset[['Na']].mean()).dropna().
      -count(),dataset[['Fe']].fillna(dataset[['Fe']].mean()).dropna().count())
     dataset2[['Na']] = dataset[['Na']].fillna(dataset[['Na']].mean()).dropna()
     dataset2[['Fe']] = dataset[['Fe']].fillna(dataset[['Fe']].mean()).dropna()
```

Na 21433 dtype: int64

Fe 21433 dtype: int64

```
[21]: #'Eliminamos' la última fila y guardamos
dataset2 = dataset2.iloc[:21432,]
dataset2.to_csv('dataset_intro.csv')
```

Eliminamos la última fila (solo nos aporta ruido), y guardamos nuestro dataset para utilizarlo en el próximo práctico