# Smart Embedded Vision with Quantized Neural Networks

zsc@megvii.com



# Why Smart Embedded Vision?



- Human Consumption
- Human Decision Making
- Autonomous Action





# Challenges

- Vast amount of computations
- Power Consumption and Cooling

|                      | Full load (TDP Watts)                   | FLOPS                               | Source        |
|----------------------|-----------------------------------------|-------------------------------------|---------------|
| ARM (Snapdragon 835) | 4.5 (2 (CPU) + 2 (GPU) + 0.5)           | < <u>0.06T (FP32),</u><br>4+4 cores | 3rd party     |
| TX1 (module)         | 15                                      | 1T (FP16)                           | <u>NVidia</u> |
| FPGA (7030)          | 7.5 (5.8 (chip) + 1 (DDR) + 0.7(power)) | 0.9T (2w2f)                         | Face++        |



# Quantized Neural Networks (QNNs)

Parameters/Activations/Gradients are quantized to discrete values.



# Impact of Quantization

- Pro
  - Can exploit bitwise operations for speeding up computations.
    - XNOR-popent kernel instead of multiply-add
  - Smaller storage size and memory footprint
- Con
  - Often less accurate in predictions, especially when bitwidth less than 4





3-by-3 filters in a QNN, the weights are 1-bit hence black and white.



### QNN at Megvii (Face++)

- DoReFa-net <a href="https://arxiv.org/abs/1606.06160">https://arxiv.org/abs/1606.06160</a>
  - Stochastic Quantization of Gradients for ImageNet
- Quantization of RNN <a href="https://arxiv.org/abs/1611.10176">https://arxiv.org/abs/1611.10176</a>
- Quantization of FCN <a href="http://cn.arxiv.org/pdf/1612.00212v1">http://cn.arxiv.org/pdf/1612.00212v1</a>
- Balanced Quantization <a href="https://arxiv.org/abs/1706.07145">https://arxiv.org/abs/1706.07145</a>
  - State-of-the-art in 4-bit quantization of GoogleNet/ImageNet and RNN/PTB



# DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients

- Uniform stochastic quantization of gradients
  - 6 bit for ImageNet, 4 bit for SVHN
- Simplified scaled binarization: only scalar
  - Forward and backward multiplies the bit matrices from different sides.
  - Using scalar binarization allows using bit operations
- Floating-point-free inference even when with BN
  - Comparison with floating point thresholds can be scaled to be comparison with integers
- Future work
  - BN requires FP computation during training
  - Require FP weights for accumulating gradients



#### Effective Quantization Methods for Recurrent Neural Networks 2016 Balanced Quantization: An Effective and Efficient Approach to Quantized

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

**Neural Networks 2017** 

| Model                          | weight-bits | activation-bits | balanced   | PPW<br>unbalanced | 0.4 -                                                                                                    |
|--------------------------------|-------------|-----------------|------------|-------------------|----------------------------------------------------------------------------------------------------------|
| LSTM<br>LSTM                   | 2 2         | 2 3             | 152<br>142 | 164<br>155        | 0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                       |
| LSTM<br>(Hubara et al., 2016a) | 2           | 3               |            | 220               | (a) floating point copy of weights in (b) imbalanced quantization (no equaliza-QNN after 60 epochs tion) |
| LSTM<br>(Hubara et al., 2016a) | 4           | 4               |            | 100               |                                                                                                          |
|                                |             |                 |            |                   | 0.2 - 0.1 - 0.1 - 0.1 - 0.0                                                                              |



# Training Bit Fully Convolutional Network for Fast

# **Semantic Segmentation 2016**

| bit-width (W / A) | mean IoU | Complexity - 64 |  |
|-------------------|----------|-----------------|--|
| 32 / 32           | 69.8%    |                 |  |
| 8/8               | 69.8%    |                 |  |
| 4/4               | 68.6%    | 16              |  |
| 3/3               | 67.4%    | 9               |  |
| 2/2               | 65.7%    | 4               |  |
| 1/4               | 64.4%    | 4               |  |
| 4/1               | diverge  | 4               |  |
| 1/2               | 62.8%    | 2               |  |

Table 5: Results of different bit-width allocated to weight and activation on PASCAL VOC 2012 val set.



Figure 4: Examples on PASCAL VOC 2012.





Demo at CVPR 2016

#### QNN on FPGA

- FPGA is made up of LUT's
- Bit-convolution kernel can be implemented by LUT





#### **Smart Camera**

- Benefits
  - Local processing
    - Low latency and high availability
  - High Frame Rate Conditional Capture
    - Less storage and bandwidth
    - High FPS = larger candidate set



Sort by Clearness



Sort by pose (frontal face)



# Backup after this slide

zsc@megvii.com

job@megvii.com

