Auto-Complete Query Retrieval System

Team: No Direction

Dice Challenge 2.0

The Challenge: Real-Time Auto-Complete at Scale

Goal

Suggest the top 150 most likely query completions for any user prefix.

Dataset & Constraints:

- 522,726 test prefixes
- 4.2M candidate queries
- 5.3M query features
- Time limit: 90 minutes
- Memory: 32GB RAM
- CPU: 32 cores available

Evaluation: Hit@150 target: 70–80% (competition goal).

Initial Attempt: Only BM25 (Character Trigrams)

- Tokenize queries into character n-grams (n=3) to handle typos.
- Build BM25 index on 4.2M queries and retrieve top 150 candidates per prefix.

Catastrophe: 24 DAYS Runtime

- Processing speed: 0.25 prefixes/second
- Total time needed: $522,726 \div 0.25 = 2,090,904$ seconds 24.2 days!
- Root causes: single-threaded pipeline, large candidate pool, validation overhead, execution on Laptop CPU (no parallelization)

Character Trigrams — Why We Used Them

- Handle typos and partial words more gracefully than word tokens.
- Example (partial word): $smar \rightarrow trigrams [sma, mar]$ match smartphone.
- ullet Example (typo): blak o overlaps with black via bla.

Used as the lexical backbone for BM25 candidate generation; later complemented by prefix-aware heuristics and fuzzy matching.

Optimization 1: Parallelization + Aggressive Sampling

- Used 32 CPU cores (multiprocessing.Pool) using SSH.
- ullet Reduced candidate pool: 4.2M ightarrow 50K (random sampling).
- Disabled expensive validation during runs to prioritize throughput.

Result: 72 Minutes (1600x Speedup)

- Processing speed: 138 prefixes/second
- Total time: 72 minutes
- Output: submission.csv (1.5GB)

The Sampling Dilemma

Pitfall: Very less matched in many cases.

Random 50K sampling produced prefixes with **zero** relevant candidates (e.g., "sopt ha").

Analysis:

- 50K sample = 1.2% coverage of 4.2M queries
- Random sampling doesn't guarantee inclusion of rarer but relevant queries
- Result: Poor Results despite fast runtime

Problem: Speed Without Quality

Quality Crisis

Results from the 50K sample were largely irrelevant for many prefixes.

Examples of poor matches (50K pool):

	,
Prefix	Pure BM25 Result
"sopt ha" "harf pent" "pink partywear s" "black farshi salwar"	"cotton saree pink sopt" "q pental penpencil 07" "partywear sofa" "printed farshi salwar suit"
black faisin saiwai	printed raisin salwar sait

Root cause: BM25 matches trigrams anywhere; no prioritization of prefix-starting candidates.

Memory Crisis: Full 4.2M Pool Attempt

- BM25 index size (4.2M): ~4.5GB
- 32 workers \times 4.5GB = **144GB** required
- System crashed / thrashing; process killed by OS

Conclusion

Full pool per worker is infeasible under memory constraints (32GB total).

Solution: Bucketing + Balanced Sampling

Bucketing by Match Type

Categorize candidates first, then rank within each bucket.

Three priority buckets:

- Exact Matches: candidate.startswith(prefix)
- Contains Matches: prefix in candidate
- BM25 Alternatives: lexical similarity / typos

Top 150 composition used:

Top
$$150 = exact[: 100] + contains[: 40] + others[: 10]$$

Balanced Pool: 500K Sweet Spot

- Increased candidate pool to 500K (10x of 50K)
- Memory per worker: ~200MB (manageable)
- Coverage: 12% of full pool (vs 1.2%)
- Expected quality improvements: 40–80/150 exact matches (varies by prefix)

Resulting runtime: 65 minutes, stable (within 90 minute limit).

Performance Evolution

Approach	Time	Speed	Quality / Status
Pure BM25 (initial)	Too Long	0.25/s	Failed
+ Parallel (50K pool)	72 min	138/s	Low (poor quality)
+ Smart reranking	83 min	138/s	Medium (better)
+ Full pool (4.2M)		_	OOM crash
+ 500K pool (final)	65 min	134/s	Good (Success)

Quality Comparison: 50K vs 500K Pool

Prefix	50K Pool (Top-5 exact)	500K Pool (Top-5 exact)
"black farshi salwar"	1/5	4/5
"sopt ha"	0/5	2/5
"pink partywear s"	0/5	4/5
"dress for"	2/5	5/5
Average Top-5 Average Top-150	20% 30%	80% 60–75%

Sample Output: Before vs. After

Before (50K pool):

```
Prefix: 'black farshi salwar'
Top 5:

[] printed farshi salwar
[] parsi salwar set
[] chunni salwar colour
[] karachi suit salwar
[] toy wali salwar
]

[] 0/5 exact | 0/150 total
```

After (500K pool):

```
1 Prefix: 'black farshi salwar'
2 Top 5:
3 [ ] black farshi salwar suit
4 [ ] black farshi salwar kameez
5 [ ] black farshi salwar set
6 [ ] printed black farshi salwar
7 [ ] dark farshi salwar
8
9 3/5 exact | 65/150 total
```

Best Results

Main Idea: Combine multiple ways of thinking about similarity

- BM25 (Text Match): Looks at overlapping words or characters good for exact matches and prefixes.
- Semantic Model: Uses deep learning embeddings (Sentence Transformers) to find meaning-based matches, even if words differ.
- Popularity: Gives higher priority to queries people click or buy from more often.
- Memorization: If a prefix has been seen before in training data, boost those known results.

Process

How it works

- Build two models: a fast text-based (BM25) and a meaning-based (semantic) one (all-MiniLM-L6-v2)
- For each prefix:
 - Find matching or similar queries.
 - Score them by combining text, meaning, and popularity.
 - Boost known good ones and keep the top few suggestions.
- Save the ranked results for use in an autocomplete system.

But, 1.3sec/iteration, which is impractical for real world usage.

Top 3 Candidate Queries

Prefix: full sleeve mehendi st

1 full sleeve mehendi stick

full sleeve mehendi stencil

full sleeve mehendi sticker

Prefix: vridavan dress

uridavan dress

vridavan dress for girl

vrindavan dress

Prefix: lucifer w

lucifer watch

lucifer watch combo

Iucifer watch chain

Prefix: parryware

parryware toilet

parryware tap cleaner

parryware toilet seat cover

Prefix: suzume

suzume

suzume novel

Suzume 3 manga

Prefix: heavy readymad

heavy readymade suit

heavy readymade blouse

6 heavy readymade salwar suit

Prefix: orange_color_su

orange color suit

Orange color suits

3 orange color suit pant

Prefix: mars_moisturize

mars moisturizer

2 moisturize

6 moisturize oil

New Approach: A Two-Stage "Filter & Rank" Pipeline

- Stage 1: Candidate Generation (Recall-Focused)
 - Cast a wide net to retrieve ~500 potentially relevant queries.
 - Goal: Ensure the correct query is captured in this initial set.
 - Methods: Hybrid approach using Lexical and Semantic search.

New Approach: A Two-Stage "Filter & Rank" Pipeline

- Stage 1: Candidate Generation (Recall-Focused)
 - Cast a wide net to retrieve ~500 potentially relevant queries.
 - Goal: Ensure the correct query is captured in this initial set.
 - Methods: Hybrid approach using Lexical and Semantic search.
- Stage 2: Re-Ranking (Precision-Focused)
 - Intelligently score and sort the ~500 candidates.
 - Goal: Push the single best query to the top of the final list of 150.
 - Method: A powerful LightGBM machine learning model.

Ideal Solution Pipleine

Figure: The complete two-stage pipeline from prefix to final ranked list.

Stage 1 Deep Dive: Hybrid Candidate Generation

Lexical Search: The Typo Catcher

Method: BM25 with Character N-grams (we used tri-grams)

Why?: By breaking words into small character chunks (e.g., "shoes" → ['sho', 'hoe', 'oes']), this method finds matches even with severe typos.

Example: A typo like "shos" will still have a high score for the query "shoes".

Semantic Search: The Meaning Matcher

Sentence-BERT + FAISS

Why?: This understands the user's intent, not just the letters they typed. It finds queries with similar meanings, even if they use different words.

Example: A prefix like "clothing for ladies" will find the query "dress for women".

Improvement: Smart Reranking with Prefix Bonus

Insight

Autocomplete should prioritize **prefix matches** over arbitrary substring matches.

Hybrid scoring (applied to BM25 candidates):

```
for candidate, bm25_score in bm25_candidates:
    if candidate.startswith(prefix):
        final_score = bm25_score * 2.0

elif prefix in candidate:
        final_score = bm25_score * 1.5

else:
    final_score = bm25_score * 0.8
```

Stage 2 Deep Dive: Precision Re-Ranking

The "Expert Judge": LightGBM Model

We trained a LightGBM model to act as an expert judge. It analyzes each of the $^{\sim}500$ candidates and assigns a precise relevance score.

Key Features (The Evidence)

The model's decisions are based on a rich set of features:

- Semantic Similarity: The cosine similarity between prefix and candidate embeddings.
- Lexical Score: The relevance score from our BM25 index.
- Popularity Metrics: Historical performance data like orders, clicks, and volume from the provided datasets.
- String Features: Simple but effective metrics like length ratios and character overlap.

Final Approach: Multi-Strategy, Prefix-First Retrieval

Core Idea

Prioritize reliable prefix candidates, then expand with fuzzy/lexical fallbacks.

Retrieval strategies (in order):

- Historical matches (highest weight): learn which queries users actually searched for given a prefix historically.
- Oirect prefix index: fast lookup for queries starting with prefix (trie-like behavior).
- Shorter-prefix expansion: try shorter prefixes to improve recall.
- Fuzzy matches: lightweight fuzzy matching (e.g., rapidfuzz) for typos.
- Popular queries fallback: global popular queries if above yield few results.

Results Summary

- Runtime: 65 minutes (within 90 min limit)
- Throughput: 134 prefixes/second
- Memory: Stable (no crashes)
- Output: submission_fast.csv (1.5GB)
- Speedup from baseline: 531x (24 days \rightarrow 65 minutes)