CASE STUDY: PROGETTAZIONE DI VITIMETALLICHE ENDOSSEE

osseointegrazione

Scopo della ricerca

Obiettivo della ricerca è la messa a punto di una metodologia per la progettazione di impianti endossei che permettano:

- una migliore integrazione tra impianto e tessuto ospite
- una migliore e più rapida guarigione

Base di partenza

Evidenze di partenza:

- □ comprovata biocompatibilità del titanio
- ☐ importanza della **morfologia superficiale** nel permettere

l'adesione degli osteoblasti

□ capacità di alcune **sequenze peptidiche** di favorire i

processi fisiologici coinvolti nell'osteointegrazione

Procedura sperimentale

- ☐ applicazione di trattamenti meccanici e chimici di modifica superficiale
- □ caratterizzazione delle superfici ottenute (SEM, AFM e profilometro)
- ☐ progettazione e sintesi del peptide di adesione
- ☐ individuazione di un carrier riassorbibile per veicolare il peptide di adesione
- ☐ determinazione della cinetica di rilascio
- ☐ test in vitro (colture cellulari)
- ☐ test in vivo (modello animale)

Dimensioni dei cilindri in Ti:

 $Ø_{\text{int}} = 2.56 \text{ mm}$

 \emptyset_{est} = 3.04 mm

h = 14.08 mm

I cilindri sono stati:

- > trattati con tecniche di modifica superficiale;
- ➤ rivestiti (dip-coating) con un film sottile di SiO₂ arricchito con il peptide di adesione.

Trattamento superficiale

È noto che la rugosità rappresenta uno dei principali parametri che controllano il processo di osteointegrazione; conseguentemente i cilindri in Ti sono stati trattati per riprodurre opportune caratteristiche morfologiche

Rivestimento

SOL-GEL

Si realizzano *network* inorganici usando come monomeri alcossidi di silicio:

- ➤ idrolisi dell'alcossido
- > formazione sospensione colloidale
- > condensazione di una fase gel

DIP-COATING

VANTAGGI

- ➤ basse temperature di processo;
- > comportamento bioattivo del film di silice;
- > esatta quantificazione del peptide di adesione nello strato depositato.

Analisi superficiale: SEM

SUPERFICIE SL

La superficie sabbiata presenta:

- > profili irregolari e distinguibili
- > rugosità grossolana
- > imperfezioni di diverse dimensioni

SUPERFICIE SLA

L'attacco acido produce:

- ➤ appiattimento della topografia
- ➤ doppio livello di rugosità
- > tessitura compatta e uniforme
- > struttura alveolare microporosa

Analisi superficiale: AFM

Cilindro SLA

Attacco con miscela di acidi minerali

dip-coating

Principali parametri di rugosità misurati all'AFM

CAMPIONE	S _a [nm]	S _q [nm]	S _z [nm]	S _{sk} []	S _{ku} []	S _{ds} [1/μm]	S _{sc} [1/nm]	S _{dq} [1/nm]	S _{dr} [%]
SL (1° misura)	746	932	7038	0.642	2.81	0.178	0.000135	1.14	23.4
SL (2° misura)	726	876	5674	0.613	2.53	0.243	0.000104	0.815	24.1
SLA (1° misura)	843	1044	6342	0.128	2.77	0.228	0.000078	0.874	35.7
SLA (2° misura)	862	1048	6419	0.106	2.38	0.167	0.000064	1.11	31.1
${\rm SLA+filmSiO}_2$	1074	1322	8360	0.273	2.73	0.578	0.0002	1.43	64.3

Parametri di rugosità

Parametro	Descrizione	Unità di misura
S _a	Rugosità media	[nm]
$\mathbf{S_q}$	Rugosità media quadratica	[nm]
$\mathbf{S}_{\mathbf{z}}$	Rugosità media in cinque punti	[nm]
$\mathbf{S_{sk}}$	Asimmetria del profilo	[]
$\mathbf{S}_{\mathbf{ku}}$	Curtosi del profilo (descrive la distribuzione del profilo)	[]
$\mathbf{S}_{\mathbf{ds}}$	Densità degli altipiani di profilo	[1/µm²]
S _{sc}	Raggio di curvatura medio dei picchi	[1/nm]
$\mathbf{S}_{ ext{dq}}$	Media quadratica della pendenza del profilo	[1/nm]
$\mathbf{S_{dr}}$	Rapporto tra l'area della superficie e l'area della superficie proiettata	[%]

rugosità: parametri di ampiezza

misure di caratteristiche verticali delle deviazioni della

superficie

- □ l₁ − l₅ sono **lunghezze di campionamento** uguali e consecutive (il profilo viene suddiviso in lunghezze di campionamento l che sono lunghe a sufficienza per includere un numero statisticamente significativo di dati)
- □ la **lunghezza di valutazione** è definita come la lunghezza del profilo utilizzato per la misura dei parametri di rugosità o finitura superficiale 5 lunghezze di campionamento sono prese come standard

rugosità: parametri di ampiezza

- \square $\mathbf{R_a}(\mathbf{S_a} \text{ nel caso 3D})$ media aritmetica delle distanze assolute del profilo di rugosità rispetto alla linea media
 - $Ra = \frac{1}{l} \int_0^l |z(x)| dx$
- \square $\mathbf{R_q}$ ($\mathbf{S_q}$ nel caso 3D) scarto quadratico medio del profilo reale rispetto al valore medio

$$Rq = \sqrt{\frac{1}{l} \int_0^l z^2(x) dx}$$

dà informazioni simili a R_a , ponendo una maggiore attenzione sugli elementi più alti e su quelli più bassi

rugosità: parametri di ampiezza

 \square $\mathbf{R}_{\mathbf{z}}$ ($\mathbf{S}_{\mathbf{z}}$ nel caso 3D)

media aritmetica dei cinque picchi più alti e delle cinque valli più basse copre in tutto dieci elementi morfologici in un dato intervallo è definito anche parametro verticale e può fornire informazioni sulla tipologia delle irregolarità

 \square $\mathbf{R_t}$ ($\mathbf{S_t}$ nel caso3D) distanza massima tra il picco più alto e la valle più bassa nel profilo o sulla superficie

rugosità: parametri spaziali

misure di caratteristiche orizzontali delle deviazioni della superficie

- \square R_{sk} (S_{sk} nel caso 3D) asimmetria misura della simmetria del profilo rispetto alla linea media questo parametro identifica le differenze di simmetria su profili aventi il medesimo valore di R_a o R_a
- □ R_{ku} (S_{ku} nel caso 3D) **curtosi** misura dell'acutezza del profilo

rugosità: parametri spaziali

- □ **S**_{ds} densità di picchi per unità di superficie
- lacksquare $\mathbf{S_{sc}}$ raggio di curvatura medio dei picchi
- □ **S**_{dr} [%]
 rapporto tra l'area della superficie e l'area della superficie proiettata fornisce l'incremento dell'area superficiale (grazie a trattamento che aumenti la rugosità) rispetto a quella di partenza **S**_{dr} = 100% → l'area della superficie doppia rispetto all'area della superficie proiettata

Analisi superficiale: confronto

CONFRONTO TRA SUPERFICI SL E SLA

- > S_a , S_q , S_z aumentano
- ightharpoonup S_{sk} diminuisce pur registrando valori positivi
- ➤ S_{dr} aumenta sensibilmente

CONFRONTO TRA SUPERFICIE SLA E SLA RICOPERTA

- $\gt S_a$, S_q , S_z aumentano
- ightharpoonup S_{sk} aumenta rispetto a SLA restando inferiore ai valori di SL
- ightharpoonup S_{ds} , S_{dq} , S_{sc} riportano un incremento sensibile
- ➤ S_{dr} cresce notevolmente

Analisi superficiale: confronto

- ➤ l'attacco acido produce un secondo livello di microrugosità che si sovrappone alla precedente tessitura
- ➢ il rivestimento con film di SiO₂ pur non alterando la morfologia, determina una topografia più frastagliata e disomogenea

Analisi superficiale: profilometro

Principali parametri di rugosità misurati al profilometro

CAMPIONE	S _a [μm]	S _q [Å]	S _z [Å]	S _{sk} []	S _{ku} []	S _{∆q} [°]	$egin{aligned} \mathbf{S_{ds}} \ [1/ ext{A}^2] \end{aligned}$
SLA	3.120	41079	196779	-1.00	4.55	5.01	5.30E-11
SLA + film di SiO ₂	3.197	40770	196745	-0.667	4.08	4.92	5.30E-11

Rilascio da carrier

La tendenza all'adsorbimento del peptide è stata preliminarmente valutata impiegando diverse combinazioni di materiali:

- il polietilene non è adatto per effettuare saggi di rilascio
- il teflon risulta inerte al peptide
- la sequenza mostra elevata affinità per il vetro e per il ricoprimento in SiO₂

Il *network* di silice non rilascia il peptide nel tempo sperimentale impostato e si può quindi ipotizzare che:

- ➤ il peptide d'adesione resti disponibile all'interfaccia impianto-tessuto osseo e...
- > ... non si generino fenomeni d'inibizione.

Saggi in vitro

Sono stati utilizzati come substrato dischetti in Ti con le stesse caratteristiche superficiali dei cilindri:

Il test *in vitro* consente di:

- ➤ indagare la relazione dose-risposta;
- ➤ determinare la concentrazione superficiale ottimale del peptide di adesione.

Saggi in vitro

Saggi in vitro

- ➤ il solo film di SiO₂ aumenta l'adesione;
- > il peptide promuove l'adesione degli osteoblasti;
- ➤ la concentrazione influenza la bioattività (max 0.23 mM)

Saggi in vivo

Modello animale: conigli maschi razza White New Zealand

Inserimento dei cilindri nei femori dx e sin

- > sacrificio degli animali a 2 e a 4 settimane dall'intervento
- > inclusione dei segmenti ossei in araldite
- osservazione in luce UV di reperti istologici prelevati ad altezze corrispondenti

Saggi in vivo: chirurgia

artrotomia

lussazione della rotula creazione sede implantare

inserimento cilindri in Ti

Saggi in vivo: chirurgia

Saggi in vivo: risultati a due settimane

Saggi in vivo: risultati a due settimane

Il marcatore osseo rileva una attività osteogenica più diffusa nei campioni arricchiti col peptide d'adesione

Saggi in vivo: risultati a quattro settimane

Saggi in vivo: risultati a quattro settimane

La differenza in termini di attività osteogenica tra campioni arricchiti e non arricchiti risulta meno marcata

Conclusioni

- ➢ il rivestimento in film di SiO₂ non altera la morfologia superficiale
- ➤ il peptide d'adesione, intrappolato nel *network* di silice, resta disponibile all'interfaccia impianto-tessuto
- > il peptide d'adesione favorisce l'adesione cellulare *in vitro*
- > il peptide d'adesione promuove l'osteogenesi in vivo

I risultati ottenuti consentono di:

- > validare l'approccio progettuale alla fabbricazioni di viti metalliche bioattive
- > estendere l'attività sperimentale a modelli animali più complessi