Diego Di Carlo

November 29, 2020

PhD supervisors: Antoine Deleforge

Nancy Bertin

Jury members: Laurent GIRIN (reviewer - president)

Simon Doclo (reviewer)

Fabio Antonacci (Examiner) Renaud Seguier (Examiner)

Université de Rennes 1, IRISA/INRIA, Panama research group

Colophon: Metropolis Beamer Template based on Alexander Honorat and Antoine Chatalic. Icon from Flikon.com

Current Scenario

Sound

produced by sources

Current Scenario

- produced by sources
- recorded by (array of) microphones

Current Scenario

- produced by sources
- recorded by (array of) microphones
- corrupted by noise

Current Scenario

- produced by sources
- recorded by (array of) microphones
- corrupted by noise
- propagates in the space

Current Scenario

- produced by sources
- recorded by (array of) microphones
- corrupted by noise
- propagates in the space
- interacts with the room

Semantic information

on nature and content

Semantic information

on nature and content

Spatial information

on position and geometry

Semantic information

on nature and content

Spatial information

on position and geometry

Temporal information

on events activity

Semantic information

on nature and content

Spatial information

on position and geometry

Temporal information

on events activity

Audio Scene Analysis

Extraction and organization of all the information in the sound

Semantic information

on nature and content

Spatial information

on position and geometry

Temporal information

on events activity

Audio Scene Analysis

Extraction and organization of all the information in the sound

Signal Processing

Mathematical models, frameworks and tools to tackle and solve such problems

Signal Processing

Mathematical models, frameworks and tools to tackle and solve such problems

Some (inverse) problems

- Speaker Identification
- Sound Source Separation (SSS)
- Speech Enhancement (SE)
- Automatic Speech Recognition (ASR)

- Voice Activity Detection
- Diarization
- RT₆₀ estimation
- Acoustic Channel Estimation
- Wall Absorption Estimation

Signal Processing

Mathematical models, frameworks and tools to tackle and solve such problems

Some (inverse) problems

- Speaker Identification
- Sound Source Separation (SSS)
- Speech Enhancement (SE)
- Automatic Speech Recognition (ASR)

- Voice Activity Detection
- Diarization
- RT₆₀ estimation
- Acoustic Channel Estimation
- Wall Absorption Estimation

Sound interacts with indoor environment:

```
it is reflected,
specularly and diffusely

+ it is absorbed,
+ it is transmitted,
+ and other.
```

Acoustic Echoes

- Elements of reverberation
- Specular reflection standing out for time and strength
- Repetition of a sound but after
 - same content
 - delay ⇔ distance

Thesis title

Audio Scene Analysis

 $context\ and\ problems$

Thesis title

Audio Scene Analysis

context and problems models and frameworks

Signal Processing

Thesis title

Audio Scene Analysis

context and problems models and frameworks

Signal Processing

Echo-aware

better processing

Thesis title

Audio Scene Analysis

context and problems

Signal Processing

→ models and frameworks Echo-aware

better processing

Thesis content:

How to estimate them?

- Analytical method
- Learning-based method
 no parameter tuning
 no full sound modeling

How to use them?

- Source Localization
- Source Separation
- Speech Enhancement
- Room Geometry Estimation

Where to find them?

Echo-aware database for estimation and application

Problem Statement

6/8

Signal model

Sound propagation process \Leftrightarrow Source \rightarrow Filter \rightarrow Receiver model

A continuous time

Room Impulse Response (RIR)

- linear filtering effect of the sound
- acoustic response of a room to a (prefect) impulsive sound
- depends on spatial properties (room geometry, mic/src position)

Echoes in the RIR

RIR model

$$\tilde{h}_i(t) = \tilde{h}_i^{\rm d}(t) + \tilde{h}_i^{\rm e}(t) + \tilde{h}_i^{\rm Irev}(t) + \varepsilon_i(t)$$

Echoes can be modeled as sum of Dirac's delta

$$\tilde{h}_i^{\text{echoes}} = \tilde{h}_i^{\text{d}}(t) + \tilde{h}_i^{\text{e}}(t) \approx \sum_{r=0}^R \alpha_i^{(r)} \delta(t - \frac{\tau_i^{(r)}}{i})$$

 $\textbf{Goal:} \ \text{estimated the} \ \tau_{i_{i,r}}$

Challenges:

- α distortion (even if we know it \implies labeling)
- $\alpha \to \alpha(t)$ (sum of diracs \to sum of filters)
- h_l reverberation is included in the noise term

References i