

Investigating the Space Weather Impact of the 2003 Halloween Geomagnetic Storm by the Ground Magnetic Field Variations: a Global View

By: Hongyi Hu

Introduction

- * **Space Weather** is the phenomenon of solar storms and other events in space that can have an impact on Earth
- * Corona Mass Ejection (CME)
- * Solar Flare
- * Impact on our society

Purpose

- * Understanding the impact of space weather on the modern society and mitigate the hazards cause by space weather.
- * Power blackout on Hydro-Québec's power grid tripped by geomagnetic storm in March 1989

Aurora over Colorado - October 29, 2003 (Photo by Ginger Mayfield)

Research question

- * How did the 2003 Halloween storm impact the regions of the Earth in the point of view of magnetic field variations?
- * What is the correlation between the magnitude of impact between the different latitude and longitude regions?
- * Are there regions impacted more than the others?

Methodology and Data

- * Global map of magnetic field variations (Kriging Interpolation)
- * Cross-correlation
- * Geomagnetic variation: SuperMAG
- * Solar storm/solar wind conditions: NASA satellite

Resultsdal Map 1

- * Started near Norway and B15 (Antarctic Station)
- * Moved to France and Australia
- * Lasted almost 2 hours

(All Figures can be found on https://www.github.com/PythonOrC/SpaceWeather)

Resultsdal Map 2

- * Multiple Substorms
- * Started near two poles
- * Move to Russia and Australia
- * More than 2 hours

Result&Correlation

- * correlation and delay show global effects in mid- and lowlatitude regions.
- * Impacts at high-latitude regions are different.

17:24 After Midnight X Correlation Lag

(Presented is the Storm-2 after-midnight chain)

17:24 After Midnight X Correlation

Result&Correlation

* Localized patterns in highlatitude and regions of intense impact (Storm-1 Prenoon, Storm-2 Pre-midnight, high-latitude chains)

Limitations

- * accuracy of Kriging Interpolation is limited by the sparse stations
- * Ideally 1-second temporal resolution with 100km-by-100km coverage
- * Expecting data of higher quality in the future

- * The global view shows where the impact starts, how large the regions of impact are, and where it affects the most during the 2003 Halloween Storm.
 - * Impact starts in high-latitude, expands to mid-low-latitude
 - * Impact is most intense in high-latitude
 - * Regional signature in high-latitude
 - * Global signature in mid- low-latitude

Discussion

* Contribution to space weather community: The global maps will be made available to the public as a tool for storm events study.

- * Historical events study
- * Prediction model results verification
- * Combine with other GIS info to provide comprehensive insights to nation's critical infrastructure

2.3 GEI Backbone Grid