1 Anexo

1.1 Ejercicio - Inferencia lógica de predicados

Algún estudiante en la sala no estudió para el examen. Todos los estudiantes de la sala pasaron el examen.

Algún estudiante pasó el examen y no estudió.

riigan obtaalante pase er ekamen y

¿Cómo modelamos este problema?

$$S(x) := x$$
 está en la sala

$$E(x) := x$$
 estudió para el examen

$$X(x) := x$$
 pasó el examen

Entonces, la consecuencia lógica quedaría así:

$$\frac{\exists x. S(x) \land \neg E(x)}{\forall x. S(x) \to X(x)}$$
$$\frac{\exists x. X(x) \land \neg E(x)}{\exists x. X(x) \land \neg E(x)}$$

¿Cómo inferimos esta consecuencia lógica?

- 1. $\exists x. S(x) \land \neg E(x)$ (Premisa)
- 2. $S(a) \wedge \neg E(a)$ (Instanciación Existencial 1.)
- 3. S(a) (Simplificación Conjuntiva 2.)
- 4. $\forall x.S(x) \to X(x)$ (Premisa)
- 5. $S(a) \to X(a)$ (Instanciación Universal 4.)
- 6. X(a) (Modus ponens 3. y 5.)
- 7. $\neg E(a)$ (Simplificación Conjuntiva 2.)
- 8. $X(a) \wedge \neg E(a)$ (Conjunción 6. y 7.)
- 9. $\exists x. X(x) \land \neg E(x)$ (Generalización Existencial 8.)

1.2 Demostración - Mínimo único

Si ${\cal S}$ tiene un elemento mínimo, entonces dicho elemento es único.

Sea $x_1^{\downarrow} \in S$ y $x_2^{\downarrow} \in S$ ambos mínimos y $x_1 \neq x_2$. ¿Es esto posible? Mediante la definición de mínimo, llegamos a que

$$\forall y \in S. x_1^{\downarrow} \leq y \quad ; \quad \forall y \in S. x_2^{\downarrow} \leq y$$

Esto nos lleva a que

Así, queda demostrado que el mínimo debe ser único.

Demostración - Si es mínimo, es minimal

Si x es mínimo, entonces x es minimal

Sea x^{\downarrow} un mínimo

Para realizar la demostración, se debe demostrar que $\forall z \in S.z \leq x^{\downarrow} \to z = x$ Suponga que $z \leq x^{\downarrow}$. Por definición de mínimo, se tiene que $x^{\downarrow} \leq z$. Entonces, considerando toda la información, se llega a que

$$\left. \begin{array}{c} z \preceq x^{\downarrow} \\ x^{\downarrow} \preceq z \end{array} \right\} z = x^{\downarrow}$$