CS217 - Data Structures & Algorithm Analysis (DSAA)

Lecture #7

► Sorting in Linear Time

Prof. Pietro S. Oliveto Department of Computer Science and Engineering Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn https://faculty.sustech.edu.cn/olivetop

Reading: Chapter 8

CSE217: Data Structures & Algorithm Analysis

Linear-Time Sorting

- The lower bound of $\Omega(n \log n)$ is bad news for applications where comparisons are the only source of information.
- However, it suggests a way out: where possible, use more information than mere comparisons!
- Elements to be sorted are often numbers or strings, which reveal more information.

► Aims of this lecture

- To show how to sort numbers in a bounded range in linear time.
- Two algorithms use operations other than comparisons so the $\Omega(n \log n)$ runtime will not apply to them
- CountingSort
- RadixSort

1

COM1009 Introduction to Algorithms and Data Structures

2

▶ CountingSort: Idea

- Assume that the input elements are integers in $\{0, ..., k\}$.
- For each element x, CountingSort counts the number of elements less than x.
 - For instance, if 17 elements are smaller than x, then x belongs in output position 18.
- Caveat: need to make sure that equal elements are put in different output positions.
- CountingSort uses an array C[0...k] for counting and an array B[1 ... n] for writing the output.

► CountingSort

- Initialise counter array
- Count elements
- Running sum: #elements < i
- Write elements to output

CountingSort (A, B, k)
1: let $C[0k]$ be a new array
2: for $i = 0$ to k do
3: C[i] = 0
4: for $j = 1$ to A.length do
5: $C[A[j]] = C[A[j]] + 1$
6: for $i = 1$ to k do
7: $C[i] = C[i] + C[i-1]$
8: for $j = A$.length downto 1 do
9: $B[C[A[j]]] = A[j]$
10: $C[A[j]] = C[A[j]] - 1$

COM1009 Introduction to Algorithms and Data Structures

► CountingSort: Runtime

•	Initialise	counter	array
•	Initialise	counter	array

- Count elements
- Running sum: #elements ≤
- Write elements to output

	COUNTINGSORT (A, B, k)	Time
	1: let $C[0k]$ be a new array	
	2: for $i = 0$ to k do	$\Theta(k)$
	C[i] = 0	0 (.0)
	4: for $j = 1$ to A.length do	0()
	5: $C[A[j]] = C[A[j]] + 1$	$\Theta(n)$
<ii< th=""><th>6: for $i = 1$ to k do</th><th></th></ii<>	6: for $i = 1$ to k do	
	7: $C[i] = C[i] + C[i-1]$	$\Theta(k)$
	8: for $j = A$.length downto 1 do	
	9: $B[C[A[j]]] = A[j]$	$\Theta(n)$
	10: $C[A[j]] = C[A[j]] - 1$	

8

- Runtime is $\Theta(n+k)$
 - Depends on two input parameters instead of just the problem size n.
 - This is O(n) if k = O(n).

▶ CountingSort

▶ CountingSort: Correctness

• Loop Invariant:

"At the start of each iteration j of the last for loop, the elements A[j+1..n] are in the right position in B and the last element in A that has not yet been copied in B, with value A[j]=i, belongs to B[C[i]]."

Initialisation:

At the start of the loop j=n and no elements have been copied. The array C provides for each element, the number of elements in A that are smaller or equal to it. So the last element of A, A[n] = i, naturally goes in position B[C[i]].

CountingSort: Correctness

Loop Invariant:

"At the start of each iteration *i* of the last for loop, the elements A[j + 1...n] are in the right position in B and the last element in A that has not yet been copied in B, with value A[i] = i, belongs to B[C[i]]."

```
CountingSort(A, B, k)
1: let C[0...k] be a new array
2: for i = 0 to k do
       C[i] = 0
 4: for j = 1 to A.length do
       C[A[j]] = C[A[j]] + 1
 6: for i = 1 to k do
        C[i] = C[i] + C[i-1]
 8: for j = A.length downto 1 do
       B[C[A[j]]] = A[j]
       C[A[j]] = C[A[j]] - 1
10:
```

Maintenance:

At iteration *j*, the loop invariant tells us that the element A[i] = i goes in B[C[i]] and we copy it in. Since the next element equal to i in A that has not vet been copied in B should go in position B[C[i] - 1], we decrement C[i] re-stablishing the loop invariant (the array C is updated such that each element i of A still to be copied in is indexed correctly again)

10

1 2 3 4 5 6 7 8

CSE217: Data Structures & Algorithm Analysis

Stability in Sorting

- CountingSort is **stable**: numbers with the same value appear in the output in the same order as they do in the input array.
 - The order of equal elements is preserved.
 - This property is relevant when satellite data (e.g. Java objects) is attached to keys being sorted.
 - We may think of the original order being used to break ties between elements with equal keys.
 - Works well for sorting emails according to (1) read/unread and (2) date.
- How do we prove stability of CountingSort?
- Can I be faster if I don't care about stability?

CountingSort: Correctne

Loop Invariant:

"At the start of each iteration *i* of the last for loop, the elements A[i+1..n] are in the right position in B and the last element in A that has not yet been copied in B, with value A[i] = i, belongs to B[C[i]]."

	CountingSort (A, B, k)
SS	1: let $C[0k]$ be a new array
	2: for $i = 0$ to k do
	3: C[i] = 0
	4: for $j = 1$ to A.length do
	5: $C[A[j]] = C[A[j]] + 1$
t	6: for $i = 1$ to k do
-	7: $C[i] = C[i] + C[i-1]$
IS	8: for $j = A$.length downto 1 do
	9: $B[C[A[j]]] = A[j]$

C[A[j]] = C[A[j]] - 1

Termination:

When the loop terminates j = 0. The loop invariant tells us that all the elements of A [1..n] are in the right position in B thus there are no more elements to be copied.

1 2 3 4 5 6 7 8

10:

CSE217: Data Structures & Algorithm Analysis

11

Counting Sort: advantages & disadvantages

- Sorts in linear time n integers in the range $\{0..k\}$ if k=O(n)
- Is stable (preserves original ordering for breaking ties)
- Does not sort in place
- What if $k = \omega(n)$ (or $k \gg n$)? (eg., I have to sort n=100 numbers between 0 and 1 billion)
- Is there a way of limiting the size of k?

► Radix Sort

- How many different integers can appear in a digit in a number of x digits?
- How many different letters can appear in a word written using a latin (eg., English) alphabet?
- Can we sort digit by digit (or letter by letter)?
- Stability helps for sorting numbers digit by digit (or English words letter by letter).

▶ Radix Sort

• Assume that each array element has *d* digits (from lowest significance to highest significance)

RadixSort(A, d)

1: for i = 1 to d do

use a stable sort to sort array A on digit i

COM1009 Introduction to Algorithms and Data Structures

14

COM1009 Introduction to Algorithms and Data Structures

► Radix Sort: Example

RadixSort	A.	d
TOTAL STORY	(,	~ ,

1: for i = 1 to d do

2: use a stable sort to sort array A on digit i

329 457 657 839	720 355 436 457	<u>)</u>]p-	720 329 436 839	jjp-	329 355 436 457
436	657		355		657
720 355	329 839		457 657		720 839

► Radix Sort: Correctness

RadixSort(A, d)

1: for i = 1 to d do

use a stable sort to sort array A on digit i

Correctness follows from stability and induction on columns.

Loop Invariant: "At each iteration of the **for** loop, the array is sorted on the last *i-1* digits"

Initialisation: The array is trivially sorted on the empty set of digits for i=0

329

457

15

► Radix Sort: Correctness

RadixSort(A, d)	
1: for $i = 1$ to d do	
2: use a stable sort to sort array A on digit i	720
Correctness follows from stability and induction on columns.	329
Loop Invariant: "At each iteration of the for loop, the array is sorted on the last <i>i-1</i> digits"	436 839
Maintenance: The invariant tells us that the array is sorted on the last i-1 digits. Now we sort the i_th digit re-establishing the loop invariant, since our stable sort ensures that elements	355 457
with same i_th digit remain in the same order as before sorting.	657

CSE217: Data Structures & Algorithm Analysis

► Radix Sort: Runtime

|--|

- 1: for i = 1 to d do
- 2: use a stable sort to sort array A on digit i
- Given n d-digit numbers in which each digit can take up to k possible values, RadixSort using CountingSort sorts these numbers in time $\Theta(d(n+k))$.
 - This is just the runtime of running CountingSort *d* times.
- Advantage to CountingSort?
- The support array has only size [0..9] for numbers, [A..Z] for words with latin letters (*k* is not too large)

Radix Sort: Correctness

RadixSort(A, d)	
1: for $i = 1$ to d do	_
2: use a stable sort to sort array A on digit i	329
Correctness follows from stability and industion on solumns	
Correctness follows from stability and induction on columns.	355
Loop Invariant: "At each iteration of the for loop, the array is	436
sorted on the last i-1 digits"	450
•	457
The state of the land to be stated as the state of the st	657
Termination: The loop terminates when i=d+1. Then the loop	037
invariant states that the array is completely sorted.	720
	0.00
	839

► Radix Sort: Application

Task: Sort n integers in the range 0 to $n^3 - 1$

- Runtime of a ComparisonSort algorithm?
- Runtime of CountingSort?

CSE217: Data Structures & Algorithm Analysis

• Runtime of RadixSort?

A number n^3 -1 requires $\lceil \log_{10} n^3 \rceil = \lceil 3 \log_{10} n \rceil = O(\log n)$ digits

Eg.
$$n = 10$$
, then $n^3 - 1 = 999$, and $[3 \log_{10} n] = 3$

Eg.
$$n = 20$$
, then $n^3 - 1 = 7999$, and $[3 \log_{10} n] = 4$

So RadixSort has runtime $\Theta(d(n+k)) = \Theta(\log n(n+10)) = \Theta(n\log n)$

Turn the numbers to base n (eg., n=20 range: [0..JJJ]

$$\Rightarrow$$
 $[3 \log_n n] = O(1)$, and $T(n) = O(n+k) = O(n+k) = O(n)$

Caveat? I have to make sure I can convert bases and back in time O(1)

18

19

▶Summary

- CountingSort sorts numbers in a bounded range $\{0,\dots,k\}$ in time $\Theta(n+k)$.
- RadixSort uses a stable sorting algorithm to sort digit by digit.
 - Stability preserves the order of equal elements.
 - The time for sorting d-digit numbers is $\Theta(d(n+k))$.
 - This is $\Theta(n)$ when d = O(1) and k = O(n).