PracticaProbabilidad

Práctica 2 - Modelos de distribución de probabilidad

Ejercicio 1

```
library(scales)
library(PASWR2)

## Loading required package: lattice

## Loading required package: ggplot2
datos <- BATTERY</pre>
```

Histograma Relizamos un histograma sobre la variable "Lifetime".

Histograma sobre el tiempo de vida de las baterias

Conjuntos de datos Separamos los datos en función del campo "Facility".

```
datos_a <- datos[which(datos$facility=='A'),]
datos_b <- datos[which(datos$facility=='B'),]</pre>
```

Histogramas independientes Procedemos a crear un histograma para cada conjunto de datos y observar sus resultados.

Histograma sobre el tiempo de vida de las baterias A

Histograma sobre el tiempo de vida de las baterias B

Como podemos observar, a simple vista ya se puede apreciar que ambos histogramas siguen una distribución normal.

Histograma sobre el tiempo de vida de las baterias

Análisis de histogramas

Histograma sobre el tiempo de vida de las baterias B

Gráficos quantil-quantil Representando los gráficos quantil-quantil, también podemos ver como sigue una distribución normal.

```
qqnorm(datos_a$lifetime, pch = 20, col =alpha("red4", 0.5),las = 1)
grid()
qqline(datos_a$lifetime, lwd = 2)
```

Normal Q-Q Plot


```
qqnorm(datos_b$lifetime, pch = 20, col =alpha("red4", 0.5),las = 1)
grid()
qqline(datos_b$lifetime, lwd = 2)
```

Normal Q-Q Plot

Ejercicio 2

Estimación puntual de media y desviación típica. Calculamos la media y desviación típica en ambos conjuntos de datos.

```
mean_a = mean(datos_a$lifetime)
sd_a = sd(datos_a$lifetime)

mean_b = mean(datos_b$lifetime)
sd_b = sd(datos_b$lifetime)
```

```
length(which(datos_a$lifetime > 210))/length(datos_a$lifetime)
```

Probabilidad de que una bateria del tipo A dure más de 210 horas.

[1] 0

```
length(which(datos_b$lifetime < 175))/length(datos_b$lifetime)</pre>
```

Probabilidad de una batería del tipo B dure menos de 175 horas.

[1] 0.02

```
quantile(datos_b$lifetime, 0.03)
```

Cuantil 0.03

3% ## 175.6279