

Lunar Base Scenario Cost Estimates

(BASA+CR-172103) LUNAR BASE SCENARIO COST ESTIMATES: LUNAR FASE SYSTEMS STUDY TASK 6.1 (Fagle Engineering) CSCL 13B

N89-15286

Unclas 0185493

NASA Contract No. NAS9-17878 Eagle Eng. Report No. 88-215 October 31, 1988

Lunar Base Scenario Cost Estimates

National Aeronautics and Space Administration Lyndon B. Johnson Space Center Advanced Projects Office

Lunar Base Systems Study Task 6.1

Prepared by: Eagle Engineering, Inc. Houston, Texas

NASA Contract NAS9-17878 Eagle Engineering Report No. 88-211

Foreword

The Lunar Base Scenario Cost Estimation Task was performed as a part of the Advanced Space Transportation Support Contract (ASTS), which is part of a NASA study to address planning for a Lunar Base near the year 2000. This report describes the projected development and production costs of each of the base's systems, and estimates unit costs for transporting the systems to the Lunar surface and for setting up the systems.

Dr. John Alred was the NASA Technical Monitor for the overall contract and also the task manager for the cost estimation task.

Mr. Bill Stump was the Eagle Project Manager for the ASTS contract. Mr. Steve Erickson was the Eagle Task Manager for this study, with significant contribution from Ms. Lisa Guerra. Other contributors include:

Gil Chisholm (Eagle Engineering)
Eric Christiansen (Eagle Engineering)
John Hirasaki (Eagle Engineering)
Owen Morris (Eagle Engineering)
Don Osgood (Eagle Engineering)
Paul Phillips (Eagle Technical Services)
Don Sullivan (Eagle Engineering)
Richard Whitlock (NASA JSC Space Station Projects Office)

Artwork by:

Mark Dowman (Eagle Engineering)
John Lowrey (Eagle Engineering)
Doug McLeod (Eagle Engineering)
Pat Rawlings (Eagle Engineering)
Mike Stovall (Eagle Engineering)

LUNAR BASE SCENARIO COST ESTIMATES TABLE OF CONTENTS

1.0	Executive Summary	1
2.0	Introduction	3
3.0	System-Wide Assumptions	4
4.0	Lunar Lander Costs	5
5.0	Lunar Oxygen Pilot Plant Costs	15
6.0	Unpressurized Lunar Rover Costs 3	3
7.0	Pressurized Lunar Rover Costs	35
8.0	Solar Power Plant Costs	59
9.0	Logistics Module Costs	77
10.0	Storm Shelter Costs	31
11.0	Space Transportation Node Costs	37
12.0	Surface Construction Equipment Costs)3

13.0	Fuel (Cell Power Cart Costs	
	13.1	Fuel Cell Power Cart Assumptions	97
	13.2	Fuel Cell Power Cart Subsystems Costs	99
14.0	Suppl	emental Cooling Cart Costs	101
	14.1	Supplemental Cooling Cart Assumptions	
	14.2	* * · · · · · · · · · · · · · · · · · ·	
15.0	Orbita	al Transfer Vehicle Costs	105
	15.1	Orbital Transfer Vehicle Assumptions	
	15.2	Orbital Transfer Vehicle Subsystem Costs	
16.0	Low l	Earth Orbit Launcher Costs	115
17.0	Landi	ing Pad Costs	117
		Landing Pad Assumptions	
	17.2	Landing Pad Subsystems Costs	121
18.0	Trans	portation Costs	123
19.0	Setup	Costs	125
	_		
20.0	Refer	ences	127
Apper	ndix A		129

LIST OF TABLES

Table 1-1, Summary of Lunar Base Scenario Estimated Costs (\$Millions)	
Table 1-2, Summary of Lunar Base Scenario Transport and Setup Costs	2
Table 4.1-1, Lunar Lander Structures Subsystem Assumptions	5
Table 4.1-2, Lunar Lander Engines Subsystem Assumptions	
Table 4.1-3, Lunar Lander RCS Distribution Subsystem Assumptions,	
Table 4.1-4, Lunar Lander RCS Nozzle Cluster Subsystem Assumptions	
Table 4.1-5, Lunar Lander Landing Subsystem Assumptions	
Table 4.1-6, Lunar Lander Thermal Protection Subsystem Assumptions	
Table 4.1-7, Lunar Lander LO ₂ Tank Subsystem Assumptions	
Table 4.1-8, Lunar Lander H, Tank Subsystem Assumptions	
Table 4.1-9, Lunar Lander DMS/GN&C Subsystem Assumptions	10
Table 4.1-10, Lunar Lander Electrical Power Subsystem Assumptions	11
Table 4.1-11, Lunar Lander Airlock/Tunnel Subsystem Assumptions	11
Table 4.1-12, Lunar Lander Crew Module Shell Subsystem Assumptions	12
Table 4.1-13, Lunar Lander Crew Module ECLSS Subsystem Assumptions	12
Table 4.1-14, Lunar Lander Crew Module Controls Subsystem Assumptions	13
Table 4.1-15, Lunar Lander Crew Module Hatches Subsystem Assumptions	13
Table 4.2-1, Lunar Lander Subsystem Estimated Costs (\$Millions)	14
Table 5.1-1, Lunar Oxygen Pilot Plant Feed Bin Subsystem Assumptions	15
Table 5.1-2, Lunar Oxygen Pilot Plant Primary Jaw Crusher Subsystem Assumptions	17
Table 5.1-3, Lunar Oxygen Pilot Plant Coarse Screen Subsystem Assumptions	17
Table 5.1-4, Lunar Oxygen Pilot Plant Secondary Crusher Subsystem Assumptions	18
Table 5.1-5, Lunar Oxygen Pilot Plant Secondary Screen Subsystem Assumptions	18
Table 5.1-6, Lunar Oxygen Pilot Plant Ball Mill Subsystem Assumptions	19
Table 5.1-7, Lunar Oxygen Pilot Plant Fine Vibratory Screen Subsystem Assumptions	19
Table 5.1-8, Lunar Oxygen Pilot Plant Storage Hopper Subsystem Assumptions	20
Table 5.1-9, Lunar Oxygen Pilot Plant Magnetic Separator Subsystem Assumptions	20
Table 5.1-10, Lunar Oxygen Pilot Plant Low Pressure Feed Hopper Subsystem Assump-	
tions	21
Table 5.1-11, Lunar Oxygen Pilot Plant High Pressure Feed Hopper Subsystem Assump-	
	21
Table 5.1-12, Lunar Oxygen Pilot Plant Reactor Subsystem Assumptions	22
Table 5.1-13, Lunar Oxygen Pilot Plant Electric Heater Subsystem Assumptions	22
Table 5.1-14, Lunar Oxygen Pilot Plant Electrolysis Cell Subsystem Assumptions	23
Table 5.1-15, Lunar Oxygen Pilot Plant Blower Subsystem Assumptions	
Table 5.1-16, Lunar Oxygen Pilot Plant Cyclone Separators Subsystem Assumptions	24
Table 5.1-17, Lunar Oxygen Pilot Plant Discharge Hopper Subsystem Assumptions	
Table 5.1-18, Lunar Oxygen Pilot Plant Tailings Conveyor Subsystem Assumptions	25
Table 5.1-19, Lunar Oxygen Pilot Plant Oxygen Liquefier Subsystem Assumptions	25
Table 5.1-20, Lunar Oxygen Pilot Plant LO ₂ Storage Tanks Subsystem Assumptions	26
Table 5.1-21, Lunar Oxygen Pilot Plant Radiator/TCS Subsystem Assumptions	
Table 5.1-22, Lunar Oxygen Pilot Plant Liquid Hydrogen Tank Subsystem Assumptions	27
Table 5.1-23, Lunar Oxygen Pilot Plant Hydrogen Heater Subsystem Assumptions	27
Table 5.1-24, Lunar Oxygen Pilot Plant Hydrogen Blower Subsystem Assumptions	28

Table 5.1-25, Lunar Oxygen Pilot Plant 3cm ID Pipe Subsystem Assumptions	. 28
Table 5.1-26, Lunar Oxygen Pilot Plant 0.25cm Pipe Subsystem Assumptions	29
Table 5.1-27, Lunar Oxygen Pilot Plant PV Power System Assumptions	
Table 5.1-28, Lunar Oxygen Pilot Plant Regenerative Fuel Cell Subsystem Assumptions	30
Table 5.2-1, Lunar Oxygen Pilot Plant Subsystem Estimated Costs (\$Millions)	31
Table 7.1-1, MOSAP PCRV Hydrogen Tanks Subsystem Assumptions	37
Table 7.1-2, MOSAP PCRV Oxygen Tanks Subsystem Assumptions	37
Table 7.1-3, MOSAP PCRV Water Tanks Subsystem Assumptions	38
Table 7.1-4, MOSAP PCRV Non-regenerative Fuel Cells Subsystem Assumptions	38
Table 7.1-5, MOSAP PCRV Power Distribution Subsystem Assumptions	39
Table 7.1-6, MOSAP PCRV Wheels and Locomotion Subsystem Assumptions	39
Table 7.1-7, MOSAP PCRV Man Locks Subsystem Assumptions	
Table 7.1-8, MOSAP PCRV Galley Subsystem Assumptions	40
Table 7.1-9, MOSAP PCRV Personal Hygiene Subsystem Assumptions	41
Table 7.1-10, MOSAP PCRV Emergency Equipment Subsystem Assumptions	41
Table 7.1-11, MOSAP PCRV Avionics Subsystem Assumptions	
Table 7.1-12, MOSAP PCRV ECLSS Subsystem Assumptions	42
Table 7.1-13, MOSAP PCRV Drive Stations Subsystem Assumptions	43
Table 7.1-14, MOSAP PCRV Workstation Subsystem Assumptions	
Table 7.1-15, MOSAP PCRV Sleep Quarters Subsystem Assumptions	44
Table 7.1-16, MOSAP PCRV Inner Shell Subsystem Assumptions	44
Table 7.1-17, MOSAP PCRV Outer Shell Subsystem Assumptions	45
Table 7.1-18, MOSAP PCRV Other Structure Subsystem Assumptions	45
Table 7.1-19, MOSAP PCRV Insulation Subsystem Assumptions	
Table 7.1-20, MOSAP PCRV Radiator Subsystem Assumptions	
Table 7.1-21, MOSAP PCRV Thermal Pump Subsystem Assumptions	
Table 7.1-22, MOSAP PCRV Heat Exchanger Subsystem Assumptions	
Table 7.1-23, MOSAP PCRV Thermal System Piping Subsystem Assumptions	
Table 7.1-24, MOSAP HTU Hydrogen Tanks Subsystem Assumptions	
Table 7.1-25, MOSAP HTU Oxygen Tanks Subsystem Assumptions	
Table 7.1-26, MOSAP HTU Water Tanks Subsystem Assumptions	
Table 7.1-27, MOSAP HTU Non-regenerative Fuel Cells Subsystem Assumptions	50
Table 7.1-28, MOSAP HTU Power Distribution Subsystem Assumptions	
Table 7.1-29, MOSAP HTU Wheels and Locomotion Subsystem Assumptions	
Table 7.1-30, MOSAP HTU Man Locks Subsystem Assumptions	
Table 7.1-31, MOSAP HTU Galley Subsystem Assumptions	. 52
Table 7.1-32, MOSAP HTU Personal Hygiene Subsystem Assumptions	. 52
Table 7.1-33, MOSAP HTU Shower Subsystem Assumptions	
Table 7.1-34, MOSAP HTU Emergency Equipment Subsystem Assumptions	
Table 7.1-35, MOSAP HTU Avionics Subsystem Assumptions	. 54
Table 7.1-36, MOSAP HTU ECLSS Subsystem Assumptions	. 54
Table 7.1-37, MOSAP HTU Workstation Subsystem Assumptions	
Table 7.1-38, MOSAP HTU Inner Shell Subsystem Assumptions	
Table 7.1-39, MOSAP HTU Outer Shell Subsystem Assumptions	
Table 7.1-40, MOSAP HTU Other Structure Subsystem Assumptions	. 56
Table 7.1-41, MOSAP HTU Insulation Subsystem Assumptions	
Table 7.1-42, MOSAP HTU Radiator Subsystem Assumptions	. 57

Table 7.1-43, MOSAP HTU Thermal Pump Subsystem Assumptions	8
Table 7.1-44, MOSAP HTU Heat Exchanger Subsystem Assumptions	
Table 7.1-45, MOSAP HTU Thermal System Piping Subsystem Assumptions	9
Table 7.1-46, MOSAP EST Bed Subsystem Assumptions	9
Table 7.1-47, MOSAP EST Remote Manipulator Subsystem Assumptions	0
Table 7.1-48, MOSAP EST Hydrogen Tanks Subsystem Assumptions	0
Table 7.1-49, MOSAP EST Oxygen Tanks Subsystem Assumptions 6	1
Table 7.1-50, MOSAP EST Water Tanks Subsystem Assumptions	1
Table 7.1-51, MOSAP EST Non-regenerative Fuel Cells Subsystem Assumptions 6	2
Table 7.1-52, MOSAP EST Cart Subsystem Assumptions	2
Table 7.1-53, MOSAP APC Hydrogen Tanks Subsystem Assumptions	3
Table 7.1-54, MOSAP APC Oxygen Tanks Subsystem Assumptions	3
Table 7.1-55, MOSAP APC Water Tanks Subsystem Assumptions	
Table 7.1-56, MOSAP APC Fuel Cells Subsystem Assumptions	
Table 7.1-57, MOSAP APC Cart Subsystem Assumptions	
Table 7.2-1, MOSAP Primary Control Research Vehicle Subsystem Estimated Costs 6	
Table 7.2-2, MOSAP Habitation Trailer Unit Subsystem Estimated Costs (\$Millions) 6	
Table 7.2-3, MOSAP Experiment and Sample Trailer Subsystem Estimated Costs 6	
Table 7.2-4, MOSAP Auxiliary Power Cart Subsystem Estimated Costs (Millions) 6	
Table 8.1-1, Solar Power Plant Regenerative Fuel Cells Subsystem Assumptions	
Table 8.1-2, Solar Power Plant Electrolysis Cells Subsystem Assumptions	
Table 8.1-3, Solar Power Plant Radiator Subsystem Assumptions	
Table 8.1-4, Solar Power Plant Oxygen Tanks Subsystem Assumptions	
Table 8.1-5, Solar Power Plant Oxygen Tank Lining Subsystem Assumptions	
Table 8.1-6, Solar Power Plant Hydrogen Tanks Subsystem Assumptions	
Table 8.1-7, Solar Power Plant Hydrogen Tank Lining Subsystem Assumptions	
Table 8.1-8, Solar Power Plant Water Tanks Subsystem Assumptions	
Table 8.2-1, Solar Power Plant Subsystem Estimated Costs (\$Millions)	
Table 9.1-1, Logistics Supply Module Subsystem Assumptions	
Table 9.1-2, Fluid Shipping Module Subsystem Assumptions	
Table 9.1-3, Logistics Module Pallets Subsystem Assumptions	
Table 9.2-1, Logistics Module Subsystem Estimated Costs (\$Millions)	
Table 10.1-1, Partial Protection Garment Subsystem Assumptions	
Table 10.1-2, Four-Man Storm Shelter Subsystem Assumptions	
Table 10.2-1, Storm Shelter Subsystem Estimated Costs (\$Millions)	.5
Table 11.1-1, Space Transportation Node Hangar Facility Subsystem Assumptions 8	
Table 11.1-2, Space Transportation Node Hangar Tunnel Subsystem Assumptions 8	
Table 11.1-3, Space Transportation Node Storage Tanks Subsystem Assumptions	
Table 11.1-4, Space Transportation Node Propellant Transfer Lines Subsystem Assump-	•
tions 9	M
Table 11.1-5, Space Transportation Node HLLV Resupply Interface Subsystem Assump-	v
tions 9	1
Table 11.1-6, Space Transportation Node Lander/OTV Prop Interface Subsystem	1
Assumptions 9	1
Table 11.2-1, Space Transportation Node Subsystem Estimated Costs (\$Millions)	
Table 12.2-1, Space Transportation Node Subsystem Estimated Costs (\$Millions) 9 Table 12.2-1, Surface Construction Equipment Subsystem Estimated Costs (\$Millions) 9	
Table 13.1-1. Fuel Cell Power Cart Subsystem Assumptions	
TABLE 1.7. IVI. THE LEH FOWELLAND SUDSVIEW ASSUUMUNGS	1

Table 13.2-1, Fuel Cell Power Cart System Estimated Costs (\$Millions)	99
Table 14.1-1, Supplemental Cooling Cart Subsystem Assumptions	101
Table 14.2-1, Supplemental Cooling Cart System Estimated Costs (\$Millions)	103
Table 15.1-1, OTV Structures Subsystem Assumptions	105
Table 15.1-2, OTV Engines Subsystem Assumptions	107
Table 15.1-3, OTV RCS Distribution Subsystem Assumptions	107
Table 15.1-4, OTV RCS Nozzle Cluster Subsystem Assumptions	
Table 15.1-5, OTV Thermal Protection Subsystem Assumptions	
Table 15.1-6, OTV Oxygen Tank Subsystem Assumptions	109
Table 15.1-7, OTV Hydrogen Tank Subsystem Assumptions	109
Table 15.1-8, OTV DMS/GN&C Subsystem Assumptions	
Table 15.1-9, OTV Electrical Power Subsystem Assumptions	
Table 15.1-10, OTV Crew Module Shell Subsystem Assumptions	111
Table 15.1-11, OTV Crew Module ECLSS Subsystem Assumptions	111
Table 15.1-12, OTV Crew Module Controls Subsystem Assumptions	
Table 15.1-13, OTV Crew Module Hatches Subsystem Assumptions	112
Table 15.1-14, OTV Aerobrake Shell Subsystem Assumptions	113
Table 15.1-15, OTV Aerobrake Structure Subsystem Assumptions	
Table 15.2-1, Orbital Transfer Vehicle Subsystems Estimated Costs (\$Millions)	
Table 16.0-1, Low Earth Orbit Launcher Subsystem Estimated Costs (\$Millions)	115
Table 17.1-1, Landing Pad Markers Subsystem Assumptions	117
Table 17.1-2, Landing Pad Electric Cord Power Supply Subsystem Assumptions	119
Table 17.1-3, Landing Pad Propellant Refill Vehicle Subsystem Assumptions	119
Table 17.1-4, Landing Pad Transfer Tunnel Subsystem Assumptions	
Table 17.2-1, Lunar Landing Pad Subsystem Estimated Costs (\$Millions)	121
Table 18.0-1, Summary of Transportation Costs to Emplace 25 MT on the Lunar Surface	124

LIST OF FIGURES

Figure 4.1-1, Lunar Lander	6
Figure 5.1-1, Lunar Oxygen Pilot Plant	6
Figure 6.1-1, Unpressurized Lunar Rover	14
Figure 7.1-1, Pressurized Lunar Rover	6
Figure 8.1-1, Solar Power Plant	0
Figure 9.1-1, Logistics Supply Module	8
Figure 9.1-2, Fluid Shipping Module	/8
Figure 9.1-3, Logistics Module Pallets	/8
Figure 10.1-1, Partial Protection Garment	32
Figure 10.1-2, Four-Man Storm Shelter	13
Figure 11.1-1, Space Transportation Node	8
Figure 12.1-1, Crane, Front-End Loader, and Hauler	
Figure 12.1-2, Trailers 9	
Figure 13.1-1, Fuel Cell Power Cart	8
Figure 14.1-1, Supplemental Cooling Cart	
Figure 15.1-1, Orbital Transfer Vehicle)(
Figure 17.1-1, Landing Pad	8

1.0 Executive Summary

This report describes the estimated development and production costs, in constant 1988 dollars, of each of the systems conceptually designed under the Advanced Space Transportation Support Contract. In addition, estimates were derived for a unit cost (dollars per kilogram) to transport the systems from Earth to the Lunar surface and for a unit cost (dollars per EVA and IVA hour) to set up the systems on the Lunar surface. These estimates do not include the cost of spares, consumables, new facilities for system development and production, or ongoing operations on the lunar surface.

The ASTS contract did not include provisions for designing crew habitation and laboratory modules, nor for costing them. However, a price tag for the entire lunar system would not be complete without their inclusion. Solely for the purpose of providing a more complete picture of lunar system costs, gross cost estimates were made for these modules, using a cost estimating relationship developed for estimating space station module costs [14]. The projected pressurized volume is 658.17 m³, and includes two habitation modules, one laboratory, one node, and two airlocks. The projected cost for pressurized volume is \$4028/m³, or \$2,651,000,000 for the entire system. The development to production cost ratio was assumed to be 3:1 for these modules.

Table 1-1 summarizes the total system hardware costs, and Table 1-2 summarizes the unit costs for transport and setup.

Table 1-1, Summary of Lunar Base Scenario Estimated Costs (\$Millions)

System	Development	Production	Total
Lunar Lander	\$ 1,415	\$ 649	\$ 2,064
Lunar Oxygen Pilot Plant	732	122	854
Unpressurized Lunar Rover	140	47	187
Pressurized Lunar Rover	474	184	658
Solar Power Plant	314	118	432
Logistics Module	242	108	350
Storm Shelter	241	70	311
Transportation Node	7,219	2,361	9,580
Surface Construction Equipment	350	79	429
Fuel Cell Cart	70	13	82
Supplemental Cooling Cart	45	7	52
Orbital Transfer Vehicle	1,464	1,059	2,523
Low Earth Orbit Launcher	4,162	13,166	17,328
Lunar Landing Pad	581	104	685
Surface Habitats/Labs	1,988	663	2,651
Total	\$19,437	\$18,750	\$38,186

Table 1-2, Summary of Lunar Base Scenario Transport and Setup Costs

Unit Cost	
\$ 23,732/kg	
\$ 84,237/hour	
\$ 29,483/hour	

As a point of comparison, the Apollo program cost \$80 Billion in 1985 dollars, or \$93 Billion in 1988 dollars [20]. It has been estimated that a manned Mars mission would cost \$27 Billion in 1986 dollars, or \$30 Billion in 1988 dollars [21].

2.0 Introduction

Lunar base scenario cost estimates were developed primarily with the aid of PRICE-H, a parametric cost model developed and operated by RCA. PRICE-H estimates development and production costs for a system by using the following fundamental data:

- Quantities of equipment to be developed
- Schedules for development and production
- Size and weight of structural and electronic elements
- Amount of new design required and complexity of the development engineering task
- Hardware structural and electronic design repeat
- · Operational environment of the hardware
- Type and manufacturing complexity of the structural/mechanical and electronics portion of the hardware

The outputs of these cost model runs can be found in Appendix A. Each page of output represents the estimated cost beakdown of one subsystem.

There are some subsystems for which the PRICE-H model was not used to estimate costs. In these cases, the rationale for estimating the cost is explained in the appropriate section of the report. Generally, these were cases where the subsystems were similar to Apollo or Freedom Space Station subsystems, in which case estimates could be derived directly from historical costs; or design data in the system's conceptual design report was insufficient to provide PRICE-H with the parameters necessary to perform the estimation, in which case less detailed cost estimating relationships were used.

While the PRICE-H model provides cost estimates for the development and production of system hardware, it does not evaluate the costs associated with system software. The development and production costs for software were not considered in this analysis. Exceptions include the software for the Guidance, Navigation and Control Systems and Data Management Systems onboard the lunar lander and orbital transfer vehicles. These system costs are further explained in the appropriate sections of the report.

3.0 System-Wide Assumptions

The following assumptions, unless specifically overridden for a particular subsystem, apply to all the systems whose costs were estimated.

- No systems are presumed to be government or contractor furnished, or direct purchase with no modification.
- All costs are stated in constant 1988 dollars.
- All masses are in kilograms and all volumes are in cubic decimeters.
- All development is presumed to begin in January, 1995.
- All production is presumed to begin in January, 2000.
- All design is presumed to be new design, but within an established product line, continuing the state of the art.
- The engineers are presumed to have normal experience, having previously completed similar type designs.
- No spares or consumables are included in the costs.
- The costs do not include new facilities costs.
- Operations costs are not included.
- The governing tolerances for fabricated parts or assemblies is 0.002".
- For machined or fabricated items, the assembly tolerances are presumed to be the same as the parts tolerances.
- The organization developing the integration plans knows how to integrate systems, but has never integrated this type of system before. Although the process is understood, no existing drawings, plans, or procedures can be used.
- Development will generally include the construction of one fully-operational prototype; the equivalent of a half a prototype to test integration with the launch vehicle; and the equivalent of one full prototype to account for the development of subsystem subassemblies. In addition, for systems that are to be integrated on the moon or in orbit, development will include the construction of the equivalent of a half a prototype for integration testing on the Earth.
- Integration costs include only those costs to integrate whole subsystems to one another. They do not include intra-subsystem integration, nor integration that occurs on the surface of the moon or in orbit (which is covered in the EVA/IVA unit costs).

4.0 Lunar Lander Costs

4.1 Lunar Lander Assumptions

The Lunar Lander is a single stage, multi-purpose vehicle designed for reuse and maintenance in space. It can carry cargos or crew to the lunar surface and will be returned to the LEO space station after each mission for refurbishment and propellant loading [1]. See Figure 4.1-1.

Tables 4.1-1 through 4.1-15 summarize the characteristics assumed for each of the Lunar Lander subsystems. For the purposes of costing, it was presumed that seven prototype vehicle equivalents would be produced during the development phase, three of which would be fully-functioning vehicles. Ten production vehicles would be manufactured. In some cases, additional prototypes of subsystems would be developed that would not be a part of a full prototype vehicle.

The software development and production costs for the Guidance, Navigation and Control System (GN&C) and the Data Management System (DMS) were not estimated with the Price-H model. Based on guidelines used to project flight software requirements for the CERV, the software for the Lander systems was estimated to contain 143,000 lines of code [2]. Projecting 3000 lines per man-year for coding and debugging (which is about 15% of the total software development effort) the total estimated effort would occupy 317 man-years. At \$100K per man-year the cost would be \$31.7M. Sixty percent of the total cost is attributed to development, or \$19.02M, and 40% of the total cost is for production, or \$12.68M.

Table 4.1-1, Lunar Lander Structures Subsystem Assumptions

Number of Prototypes:	7
Production Quantity:	10
Number of Subsystems Per System:	1
Structural Integration Complexity:	New, but familiar and routine
Primary Structural Material:	Filament wound tubes
Estimated Number of Parts Per Subsystem:	30
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	40%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Figure 4.1-1, Lunar Lander

Table 4.1-2, Lunar Lander Engines Subsystem Assumptions

Number of Prototypes: 18 (12 for 3 proto vehicles + 6)

Production Quantity:

Number of Subsystems Per System: 4
Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Titanium alloy equivalent

Estimated Number of Parts Per Subsystem: 300

Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: Difficult, requiring matching or timing

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Assembly tolerances about 2X tighter than

build tolerances of parts. New, state of the

art technology being advanced.

Table 4.1-3, Lunar Lander RCS Distribution Subsystem Assumptions

Number of Prototypes: 10 (6 for 3 proto vehicles + 4)

Production Quantity: 20
Number of Subsystems Per System: 2

Structural Integration Complexity: Difficult, requiring alignment or matching

Primary Structural Material: Copper equivalent

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 50%

Electronics Integration Complexity: New, but familiar and routine

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 4.1-4, Lunar Lander RCS Nozzle Cluster Subsystem Assumptions

Number of Prototypes: 16 (12 for 3 proto vehicles + 4)

Production Quantity: Number of Subsystems Per System: 4

Structural Integration Complexity: Routine

Primary Structural Material: Titanium alloy equivalent

Estimated Number of Parts Per Subsystem: 50 Percent of Structure That Is New Design: 75% Percentage of Structural Parts That Are Repeated: 80% **Electronics Integration Complexity:** N/A Electronics Technology: N/A

Percent of Electronics That Is New Design: N/A Percentage of Electronics Boards Repeated: N/A

Table 4.1-5, Lunar Lander Landing Subsystem Assumptions

Number of Prototypes: 28 (7 proto vehicles)

Production Quantity: 40 Number of Subsystems Per System:

Structural Integration Complexity: New, but familiar and routine

Primary Structural Material: 2024 Aluminum

Estimated Number of Parts Per Subsystem: 15 Percent of Structure That Is New Design: 100% Percentage of Structural Parts That Are Repeated: 0% **Electronics Integration Complexity:** N/A **Electronics Technology:** N/A

Percent of Electronics That Is New Design: N/A N/A

Percentage of Electronics Boards Repeated:

Table 4.1-6, Lunar Lander Thermal Protection Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 10
Number of Subsystems Per System: 1

Structural Integration Complexity: Difficult, requiring alignment or matching

Primary Structural Material: Aluminized Kapton foil

Estimated Number of Parts Per Subsystem:
Percent of Structure That Is New Design:
Percentage of Structural Parts That Are Repeated:
50%
Electronics Integration Complexity:
N/A
Electronics Technology:
Percent of Electronics That Is New Design:
N/A
Percentage of Electronics Boards Repeated:
N/A

Table 4.1-7, Lunar Lander LO₂ Tank Subsystem Assumptions

Number of Prototypes: 14 (7 proto vehicles)

Production Quantity: 20 Number of Subsystems Per System: 2

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 25
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 15%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 4.1-8, Lunar Lander H. Tank Subsystem Assumptions

Number of Prototypes: 14 (7 proto vehicles)

Production Quantity: 20 Number of Subsystems Per System: 2

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 25
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 15%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 4.1-9, Lunar Lander DMS/GN&C Subsystem Assumptions

Number of Prototypes: 5 (3 proto vehicles +2)

Production Quantity: 10
Number of Subsystems Per System: 1

Structural Integration Complexity: Difficult, requiring alignment or matching

Primary Structural Material: N/A
Estimated Number of Parts Per Subsystem: N/A
Percent of Structure That Is New Design: 20%

Percent of Structure That Is New Design: 20%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: State of the art, requiring calibration

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Other Assumptions: New, state of the art technology being

advanced.

Table 4.1-10, Lunar Lander Electrical Power Subsystem Assumptions

Number of Prototypes: 5 (3 proto vehicles + 2)

Production Quantity: 10
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 1000
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 50%

Electronics Integration Complexity: State of the art, requiring adjustments

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 4.1-11, Lunar Lander Airlock/Tunnel Subsystem Assumptions

Number of Prototypes: 7
Production Quantity: 10
Number of Subsystems Per System: 1

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 4.1-12, Lunar Lander Crew Module Shell Subsystem Assumptions

Number of Prototypes: 7
Production Quantity: 7
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 4.1-13, Lunar Lander Crew Module ECLSS Subsystem Assumptions

Number of Prototypes: 5 (3 proto vehicles + 2)

Production Quantity: 7

Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

N/A

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 1500
Percent of Structure That Is New Design: 80%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A

Percentage of Electronics Boards Repeated:

Table 4.1-14, Lunar Lander Crew Module Controls Subsystem Assumptions

Number of Prototypes: 5 (3 proto vehicles + 2)

Production Quantity:
Number of Subsystems Per System:

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: State of the art, requiring adjustments

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 90%
Percentage of Electronics Boards Repeated: 0%

Table 4.1-15, Lunar Lander Crew Module Hatches Subsystem Assumptions

Number of Prototypes: 8 (4 proto vehicles)

Production Quantity: 14
Number of Subsystems Per System: 2

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 30
Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A
Electronics Technology: N/A

Percent of Electronics That Is New Design: N/A

Percentage of Electronics Boards Repeated: N/A

4.2 Lunar Lander Subsystem Costs

Table 4.2-1 summarizes development and production costs for each of the Lunar Lander's subsystems. These costs are based on the assumptions outlined in section 4.1. A detailed breakout of these costs can be found in Appendix A.

Table 4.2-1, Lunar Lander Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Structures	\$ 127.754	\$ 90.297	\$ 218.051
Engines	613.580	189.323	802.903
RCS Distribution	23.628	18.747	42.375
RCS Nozzle Cluster	3.465	4.895	8.360
Landing System	30.091	16.092	46.182
Thermal Protection	20.562	15.049	35.610
Oxygen Tanks	80.142	44.929	125.071
Hydrogen Tanks	45.881	24.346	70.227
DMS/GN&C (hw/electrical)	87.891	35.115	123.006
DMS/GN&C (sw)	19.020	12.680	31.700
Electrical Power	64.262	57.704	121.966
Airlock/Tunnel	28.843	13.316	42.159
Crew Module Shell	82.140	34.370	116.510
Crew Module ECLSS	118.522	69.063	187.585
Crew Module Controls	17.668	5.706	23.374
Crew Module Hatches	2.965	1.650	4.614
Integration	48.456	15.902	64.358
Total	\$ 1414.867	\$ 649.181	\$2064.047

5.0 Lunar Oxygen Pilot Plant Costs

5.1 Lunar Oxygen Pilot Plant Assumptions

The Lunar Oxygen Pilot Plant is designed as a predecessor to a larger scale production facility. The pilot plant will produce two metric tons of oxygen per month using the method of hydrogen reduction of ilmenite. Using extensive automation and robotics applications, the plant will be operated for continuous periods without on-site human attention [3]. See Figure 5.1-1.

Tables 5.1-1 through 5.1-28 summarize the characteristics assumed for each of the Lunar Oxygen Pilot Plant subsystems. For the purposes of costing, it was presumed that three equivalent prototype plants would be produced during the development phase. One production system would be manufactured. The cost to integrate each of the major subsystems is not included in this estimate, as it is presumed that integration will occur on the Lunar surface, and Lunar setup costs are addressed elsewhere in this report.

Table 5.1-1, Lunar Oxygen Pilot Plant Feed Bin Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	50
Percent of Structure That Is New Design:	25%
Percentage of Structural Parts That Are Repeated:	25%
Electronics Integration Complexity:	N/A
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	100%
Percentage of Electronics Boards Repeated:	0%

Figure 5.1-1, Lunar Oxygen Pilot Plant

Table 5.1-2, Lunar Oxygen Pilot Plant Primary Jaw Crusher Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Alloy Steel
Estimated Number of Parts Per Subsystem:	100
Percent of Structure That Is New Design:	50%
Percentage of Structural Parts That Are Repeated:	10%
Electronics Integration Complexity:	N/A

Electronics Technology:

Percent of Electronics That Is New Design:

Percentage of Electronics Boards Repeated:

0%

Digital LSI
100%
0%

Table 5.1-3, Lunar Oxygen Pilot Plant Coarse Screen Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Alloy Steel
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	50%
Percentage of Structural Parts That Are Repeated:	10%
Electronics Integration Complexity:	N/A

Electronics Technology:

Percent of Electronics That Is New Design:

Percentage of Electronics Boards Repeated:

0%

Digital LSI

100%

0%

Table 5.1-4, Lunar Oxygen Pilot Plant Secondary Crusher Subsystem Assumptions

Number of Prototypes:

Production Quantity:

Number of Subsystems Per System:

Structural Integration Complexity:

Primary Structural Material:

Estimated Number of Parts Per Subsystem:

Percent of Structural Parts That Are Repeated:

10%

Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 10%
Electronics Integration Complexity: N/A
Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-5, Lunar Oxygen Pilot Plant Secondary Screen Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Alloy Steel

Estimated Number of Parts Per Subsystem: 25
Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 10%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Table 5.1-6, Lunar Oxygen Pilot Plant Ball Mill Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A

Primary Structural Material: Alloy Steel

Estimated Number of Parts Per Subsystem: 200
Percent of Structure That Is New Design: 80%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A

Electronics Technology:

Percent of Electronics That Is New Design:

Percentage of Electronics Boards Repeated:

0%

Digital LSI

100%

Table 5.1-7, Lunar Oxygen Pilot Plant Fine Vibratory Screen Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Alloy Steel

Estimated Number of Parts Per Subsystem: 200
Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 10%

Percent of Structure That is New Design.

Percentage of Structural Parts That Are Repeated: 10%

Electronics Integration Complexity: N/A

Electronics Technology:

Percent of Electronics That Is New Design:

Percentage of Electronics Boards Repeated:

0%

Digital LSI

100%

Table 5.1-8, Lunar Oxygen Pilot Plant Storage Hopper Subsystem Assumptions

Number of Prototypes:3Production Quantity:1Number of Subsystems Per System:1Structural Integration Complexity:N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 25%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-9, Lunar Oxygen Pilot Plant Magnetic Separator Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 300
Percent of Structure That Is New Design: 80%
Percentage of Structural Parts That Are Repeated: 10%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Table 5.1-10, Lunar Oxygen Pilot Plant Low Pressure Feed Hopper Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 25%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-11, Lunar Oxygen Pilot Plant High Pressure Feed Hopper Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Iron Base Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 25%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI Percent of Electronics That Is New Design: 100%

Percent of Electronics That is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-12, Lunar Oxygen Pilot Plant Reactor Subsystem Assumptions

Number of Prototypes: 5
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Iron Base Alloy

Estimated Number of Parts Per Subsystem: 1000
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 40%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-13, Lunar Oxygen Pilot Plant Electric Heater Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: N/A

Primary Structural Material: Iron Base Alloy

Estimated Number of Parts Per Subsystem: 150
Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-14, Lunar Oxygen Pilot Plant Electrolysis Cell Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Iron Base Alloy
Estimated Number of Parts Per Subsystem:	150
Percent of Structure That Is New Design:	50%
Percentage of Structural Parts That Are Repeated:	25%
Electronics Integration Complexity:	N/A

Electronics The gration Complexity.

Electronics Technology:

Digital LSI
Percent of Electronics That Is New Design:

100%

Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Build tolerances = .001"

Table 5.1-15, Lunar Oxygen Pilot Plant Blower Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Iron Base Alloy
Estimated Number of Parts Per Subsystem:	50
Percent of Structure That Is New Design:	25%
Percentage of Structural Parts That Are Repeated:	10%
Electronics Integration Complexity:	N/A
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	100%
Percentage of Electronics Boards Repeated:	0%

Table 5.1-16, Lunar Oxygen Pilot Plant Cyclone Separators Subsystem Assumptions

Number of Prototypes: 3 **Production Quantity:** 3 Number of Subsystems Per System: 3 Structural Integration Complexity: N/A Primary Structural Material: Iron Base Alloy Estimated Number of Parts Per Subsystem: 20 Percent of Structure That Is New Design: 50% Percentage of Structural Parts That Are Repeated: 40% **Electronics Integration Complexity:** N/A Electronics Technology: N/A

Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 5.1-17, Lunar Oxygen Pilot Plant Discharge Hopper Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Iron Base Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 25%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-18, Lunar Oxygen Pilot Plant Tailings Conveyor Subsystem Assumptions

3 Number of Prototypes: 1 **Production Quantity:** Number of Subsystems Per System: 1 N/A Structural Integration Complexity:

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 300 Percent of Structure That Is New Design: 70% Percentage of Structural Parts That Are Repeated: 40% **Electronics Integration Complexity:** N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100% Percentage of Electronics Boards Repeated: 0%

Table 5.1-19, Lunar Oxygen Pilot Plant Oxygen Liquefier Subsystem Assumptions

Number of Prototypes: 3 1 **Production Quantity:** Number of Subsystems Per System: 1 Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 300 Percent of Structure That Is New Design: 50% Percentage of Structural Parts That Are Repeated: 10% **Electronics Integration Complexity:** N/A Electronics Technology:

Digital LSI Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Table 5.1-20, Lunar Oxygen Pilot Plant LO₂ Storage Tanks Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 2
Number of Subsystems Per System: 2
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 150
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 15%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-21, Lunar Oxygen Pilot Plant Radiator/TCS Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 1000
Percent of Structure That Is New Design: 80%
Percentage of Structural Parts That Are Repeated: 40%
Electronics Integration Complexity: N/A
Electronics Technology: Digit

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 5.1-22, Lunar Oxygen Pilot Plant Liquid Hydrogen Tank Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 15%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI
Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Table 5.1-23, Lunar Oxygen Pilot Plant Hydrogen Heater Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Iron Base Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 5.1-24, Lunar Oxygen Pilot Plant Hydrogen Blower Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Iron Base Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 25%
Percentage of Structural Parts That Are Repeated: 10%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0

Table 5.1-25, Lunar Oxygen Pilot Plant 3cm ID Pipe Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Iron Base Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 5.1-26, Lunar Oxygen Pilot Plant 0.25cm Pipe Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Iron Base Alloy
Estimated Number of Parts Per Subsystem:	150
Percent of Structure That Is New Design:	25%
Percentage of Structural Parts That Are Repeated:	75%
Electronics Integration Complexity:	N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 5.1-27, Lunar Oxygen Pilot Plant PV Power System Assumptions

Number of Prototypes:	4
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	N/A
Estimated Number of Parts Per Subsystem:	N/A
Percent of Structure That Is New Design:	75%
Percentage of Structural Parts That Are Repeated:	50%
Electronics Integration Complexity:	N/A
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	100%
Percentage of Electronics Boards Repeated:	0%

Table 5.1-28, Lunar Oxygen Pilot Plant Regenerative Fuel Cell Subsystem Assumptions

Number of Prototypes:3Production Quantity:1Number of Subsystems Per System:1Structural Integration Complexity:N/A

Primary Structural Material: Laminate Composite Estimated Number of Parts Per Subsystem: 250

Estimated Number of Parts Per Subsystem: 250
Percent of Structure That Is New Design: 75%
Percentage of Structural Parts That Are Repeated: 50%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI
Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Build tolerance = .001"

5.2 Lunar Oxygen Pilot Plant Subsystems Costs

Table 5.2-1 summarizes development and production costs for each of the Lunar Oxygen Pilot Plant's subsystems. These costs are based on the assumptions outlined in section 5.1. A detailed breakout of these costs can be found in Appendix A.

Table 5.2-1, Lunar Oxygen Pilot Plant Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Feed Bin	\$ 4.263	\$.841	\$ 5.104
Primary Jaw Crusher	25.868	5.474	31.342
Coarse Screen	.323	.038	.361
Secondary Crusher	10.785	2.086	12.871
Secondary Screen	.323	.038	.361
Ball Mill	74.330	14.230	88.560
Fine Vibrating Screen	22.502	5.155	27.656
Storage Hopper	1.015	.175	1.191
Magnetic Separator	15.468	2.466	17.934
Low Pressure Feed Hopper	. 622	.093	.715
High Pressure Feed Hopper	2.384	.504	2.889
Reactor	256.608	26.986	283.594
Electric Heater	7.816	1.704	9.520
Electrolysis Cell	11.361	2.471	13.832
Blower	1.579	.367	1.946
Cyclone Separators	.087	.029	.116
Discharge Hopper	2.872	.637	3.509
Tailings Conveyor	1.955	.322	2.278
Oxygen Liquefier	10.275	2.066	12.341
LOX Storage Tanks	6.150	1.121	7.272
Radiator/TCS	65.605	13.846	79.451
Liquid Hydrogen Tanks	1.306	.110	1.417
Hydrogen Heater	.022	.002	.024
Hydrogen Blower	.496	.077	.574
3 Cm ID Pipe	5.352	1.307	6.659
.25 Cm ID Pipe	3.312	.824	4.136
Photovoltaic Power System	54.861	6.895	61.757
Regenerative Fuel Cell	144.275	32.434	176.709
Total	\$ 731.815	\$ 122.318	\$ 854.133

6.0 Unpressurized Lunar Rover Costs

A subsystem weight and volume breakout was not provided in the conceptual design of the LOTRAN vehicle, so the PRICE-H cost model was not used to estimate costs for this system. Instead, a gross estimate was performed based on historical development and production costs for the Apollo Lunar Rover [4]. See Figure 6.1-1.

Total development and production costs for prototypes and four production vehicles was \$39,591,000 in 1969 dollars. Accounting for inflation, that would be \$156,068,000 in 1988 dollars. A projected ratio of development costs to production costs for an equal number of prototypes and production vehicles was 3:1 [5]. Applying this ratio to the Apollo Lunar Rover program, costs could be broken out as follows:

Development -\$117,051,000 Production - <u>39,017,000</u> \$156,068,000

The Lunar Rover mass was 209.5 kg [6]. The LBSS Unpressurized Vehicle mass is estimated to be 550 kg, or 63% larger than the Lunar Rover [7]. An in-house cost-estimating relationship was used to scale up the costs to account for the increase in mass. The weight to cost relationship is log-log, and for structures a 60% increase in weight corresponds to approximately 20% increase in cost.

Applying this to the Lunar Rover costs, and presuming four prototype and four production vehicles will be manufactured, the Unpressurized Vehicle costs are estimated to be:

Production - \$140,000,000 \$187,000,000

Figure 6.1-1, Unpressurized Lunar Rover

7.0 Pressurized Lunar Rover Costs

7.1 Pressurized Lunar Rover Assumptions

The Pressurized Lunar Rover system is comprised of the Primary Control Research Vehicle (PCRV), the Habitation Trailer Unit (HTU), the Auxiliary Power Cart (APC), and the Experiment and Sample Trailer (EST) [7]. Collectively, this is known as MOSAP, or Mobile Surface Applications Traverse Vehicle. The complete rover assembles in a train configuration capable of traverses up to 1,500 km from the base. The pressurized rover missions would involve numerous stops and crew surface excursions, with an estimated trip time of 42 days. See Figure 7.1-1.

Tables 7.1-1 through 7.1-23 summarize the characteristics assumed for each of the PCRV subsystems. Tables 7.1-24 through 7.1-45 summarize the characteristics assumed for each of the HTU subsystems. Tables 7.1-46 through 7.1-52 summarize the characteristics assumed for each of the EST subsystems. The 1.5 megawatt-hour EST was chosen for costing. Tables 7.1-53 through 7.1-57 summarize the characteristics assumed for each of the APC subsystems.

For the purposes of costing, it was presumed that 4.5 prototype PCRV's, 3.5 prototype HTU's, 3.5 prototype EST's, and 1 prototype APC would be produced during the development phase. (The APC's are nearly identical to the Fuel Cell Power Cart described in Section 13, so additional prototypes were not deemed necessary). One production PCRV, one production HTU, five production EST's, and seven production APC's would be manufactured.

Many subsystems are similar or identical across these four vehicles. In such cases, the majority of the development work was arbitrarily assigned to the PCRV. New design was estimated to be 10% for the remaining vehicles for these subsystems.

Figure 7.1-1, Pressurized Lunar Rover

Table 7.1-1, MOSAP PCRV Hydrogen Tanks Subsystem Assumptions

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum alloy
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-2, MOSAP PCRV Oxygen Tanks Subsystem Assumptions

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum alloy
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-3, MOSAP PCRV Water Tanks Subsystem Assumptions

Number of Prototypes: 4.5 **Production Quantity:** 1 Number of Subsystems Per System: 1 Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum allov Estimated Number of Parts Per Subsystem: 25 Percent of Structure That Is New Design: 100% Percentage of Structural Parts That Are Repeated: 15%

Percentage of Structural Parts That Are Repeated: 15%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A

Percentage of Electronics Boards Repeated: N/A

Table 7.1-4, MOSAP PCRV Non-regenerative Fuel Cells Subsystem Assumptions

Number of Prototypes: 6
Production Quantity: 2
Number of Subsystems Per System: 2

Structural Integration Complexity: Routine interface

Primary Structural Material: Laminate composite, filament wound case

Estimated Number of Parts Per Subsystem: 250
Percent of Structure That Is New Design: 20%
Percentage of Structural Parts That Are Repeated: 50%

Electronics Integration Complexity:

Advanced state of the art interfaces

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 50%
Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Build tolerance = .001"

Table 7.1-5, MOSAP PCRV Power Distribution Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 1000
Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 50%

Electronics Integration Complexity: Advanced state of the art interfaces

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-6, MOSAP PCRV Wheels and Locomotion Subsystem Assumptions

Number of Prototypes: 18
Production Quantity: 4
Number of Subsystems Per System: 4

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Steel 100 Estimated Number of Parts Per Subsystem: 100% Percent of Structure That Is New Design: Percentage of Structural Parts That Are Repeated: 50% **Electronics Integration Complexity:** N/A **Electronics Technology:** N/A Percent of Electronics That Is New Design: N/A Percentage of Electronics Boards Repeated: N/A

Table 7.1-7, MOSAP PCRV Man Locks Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 2
Number of Subsystems Per System: 2

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Moderately difficult, requiring alignment

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-8, MOSAP PCRV Galley Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Routine interfaces

Electronics Technology: Digital LSI Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Table 7.1-9, MOSAP PCRV Personal Hygiene Subsystem Assumptions

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	100
Percent of Structure That Is New Design:	50%
Percentage of Structural Parts That Are Repeated:	2%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A

Percentage of Electronics Boards Repeated:

Table 7.1-10, MOSAP PCRV Emergency Equipment Subsystem Assumptions

N/A

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Simple interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	50
Percent of Structure That Is New Design:	10%
Percentage of Structural Parts That Are Repeated:	0%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-11, MOSAP PCRV Avionics Subsystem Assumptions

Number of Prototypes: 9
Production Quantity: 2
Number of Subsystems Per System: 2

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: N/A
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Routine interfaces Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-12, MOSAP PCRV ECLSS Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New, but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 1500
Percent of Structure That Is New Design: 80%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: New, but familiar and routine interface

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-13, MOSAP PCRV Drive Stations Subsystem Assumptions

Number of Prototypes:9Production Quantity:2Number of Subsystems Per System:2

Structural Integration Complexity:

New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: New but familiar and routine interfaces

Electronics Technology: Digital VLSI, display with CRT

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-14, MOSAP PCRV Workstation Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New, but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: New, but familiar and routine interface

Electronics Technology: Digital VLSI, display with CRT

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-15, MOSAP PCRV Sleep Quarters Subsystem Assumptions

Number of Prototypes:	9
Production Quantity:	2
Number of Subsystems Per System:	2
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	10
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	0%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-16, MOSAP PCRV Inner Shell Subsystem Assumptions

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Simple interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	10
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	80%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-17, MOSAP PCRV Outer Shell Subsystem Assumptions

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Simple interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	10
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	80%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-18, MOSAP PCRV Other Structure Subsystem Assumptions

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Simple interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	500
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	50%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-19, MOSAP PCRV Insulation Subsystem Assumptions

Number of Prototypes:

Production Quantity:

Number of Subsystems Per System:

Structural Integration Complexity:

Primary Structural Material:

4.5

1

Routine interface
Aluminized Kapton Foil

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

N/A

Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 7.1-20, MOSAP PCRV Radiator Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 7.1-21, MOSAP PCRV Thermal Pump Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 10
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: New but familiar and routine interface

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-22, MOSAP PCRV Heat Exchanger Subsystem Assumptions

Number of Prototypes: 4.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 10
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 7.1-23, MOSAP PCRV Thermal System Piping Subsystem Assumptions

4.5 Number of Prototypes: **Production Quantity:** 1 Number of Subsystems Per System: Structural Integration Complexity: Routine interface **Aluminum Alloy** Primary Structural Material: Estimated Number of Parts Per Subsystem: 500 100% Percent of Structure That Is New Design: 60% Percentage of Structural Parts That Are Repeated: **Electronics Integration Complexity:** N/A N/A **Electronics Technology:** Percent of Electronics That Is New Design: N/A Percentage of Electronics Boards Repeated: N/A

Table 7.1-24, MOSAP HTU Hydrogen Tanks Subsystem Assumptions

3.5 Number of Prototypes: **Production Quantity:** 1 Number of Subsystems Per System: 1 Routine interface Structural Integration Complexity: **Primary Structural Material: Aluminum Alloy** 25 Estimated Number of Parts Per Subsystem: 10% Percent of Structure That Is New Design: Percentage of Structural Parts That Are Repeated: 15% N/A **Electronics Integration Complexity:** N/A **Electronics Technology:** Percent of Electronics That Is New Design: N/A Percentage of Electronics Boards Repeated: N/A

Table 7.1-25, MOSAP HTU Oxygen Tanks Subsystem Assumptions

3.5
1
1
Routine interface
Aluminum Alloy
25
10%
15%
N/A
N/A
N/A
N/A

Table 7.1-26, MOSAP HTU Water Tanks Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	10%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-27, MOSAP HTU Non-regenerative Fuel Cells Subsystem Assumptions

Number of Prototypes:3.5Production Quantity:2Number of Subsystems Per System:2

Structural Integration Complexity: Routine interface
Primary Structural Material: Laminate compos

Primary Structural Material:

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Laminate composite, filament wound case

250

10%

Percentage of Structural Parts That Are Repeated: 50%
Electronics Integration Complexity: Advanced state of the art interfaces

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Build tolerance = .001"

Table 7.1-28, MOSAP HTU Power Distribution Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 1000
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 50%

Electronics Integration Complexity:

Advanced state of the art interfaces

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-29, MOSAP HTU Wheels and Locomotion Subsystem Assumptions

3.5 Number of Prototypes: **Production Quantity:** 4 Number of Subsystems Per System: 4 Structural Integration Complexity: Moderately difficult, requiring alignment Primary Structural Material: Estimated Number of Parts Per Subsystem: 100 Percent of Structure That Is New Design: 10% Percentage of Structural Parts That Are Repeated: 50% **Electronics Integration Complexity:** N/A Electronics Technology: N/A Percent of Electronics That Is New Design: N/A Percentage of Electronics Boards Repeated: N/A

Table 7.1-30, MOSAP HTU Man Locks Subsystem Assumptions

Number of Prototypes:

Production Quantity:

Number of Subsystems Per System:

Structural Integration Complexity:

Primary Structural Material:

3.5

2

Moderately difficult, requiring alignment

Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Moderately difficult, requiring alignment

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-31, MOSAP HTU Galley Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Routine interfaces

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-32, MOSAP HTU Personal Hygiene Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 2%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 7.1-33, MOSAP HTU Shower Subsystem Assumptions

Number of Prototypes:	4.5
Production Quantity:	1
Number of Subsystems Per System:	1

Structural Integration Complexity: Simple interface
Primary Structural Material: Laminate composite

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 7.1-34, MOSAP HTU Emergency Equipment Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	1
Number of Subsystems Per System:	1

Structural Integration Complexity: Simple interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 7.1-35, MOSAP HTU Avionics Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 2
Number of Subsystems Per System: 2

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: N/A
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Routine interfaces
Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-36, MOSAP HTU ECLSS Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New, but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 1500
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: New, but familiar and routine interface

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-37, MOSAP HTU Workstation Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New, but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: New, but familiar and routine interface

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-38, MOSAP HTU Inner Shell Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: Simple interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 7.1-39, MOSAP HTU Outer Shell Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Simple interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	10
Percent of Structure That Is New Design:	5%
Percentage of Structural Parts That Are Repeated:	80%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-40, MOSAP HTU Other Structure Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	Simple interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	500
Percent of Structure That Is New Design:	5%
Percentage of Structural Parts That Are Repeated:	50%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-41, MOSAP HTU Insulation Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	1
Number of Subsystems Per System:	1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 7.1-42, MOSAP HTU Radiator Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	1
Number of Subsystems Per System:	1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 90%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 7.1-43, MOSAP HTU Thermal Pump Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 10
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: New but familiar and routine interface

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-44, MOSAP HTU Heat Exchanger Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 1
Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 7.1-45, MOSAP HTU Thermal System Piping Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	1
Number of Subsystems Per System:	1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 500
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 60%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 7.1-46, MOSAP EST Bed Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	5
Number of Subsystems Per System:	1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 7.1-47, MOSAP EST Remote Manipulator Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 5
Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Advanced state of the art interfaces

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-48, MOSAP EST Hydrogen Tanks Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 5
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

N/A

Percent of Electronics That is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 7.1-49, MOSAP EST Oxygen Tanks Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	5
Number of Subsystems Per System:	1
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-50, MOSAP EST Water Tanks Subsystem Assumptions

Number of Prototypes:	3.5
Production Quantity:	5
Number of Subsystems Per System:	1
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-51, MOSAP EST Non-regenerative Fuel Cells Subsystem Assumptions

Number of Prototypes: 2.5
Production Quantity: 5
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Laminate composite

Estimated Number of Parts Per Subsystem: 250
Percent of Structure That Is New Design: 10%
Percentage of Structural Parts That Are Repeated: 50%

Electronics Integration Complexity: Advanced state of the art interfaces

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 10%
Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Build tolerance = .001"

Table 7.1-52, MOSAP EST Cart Subsystem Assumptions

Number of Prototypes: 3.5
Production Quantity: 5
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 20
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 40%

Electronics Integration Complexity: Routine interface

Electronics Technology: Digital VLSI Percent of Electronics That Is New Design: 100%

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 7.1-53, MOSAP APC Hydrogen Tanks Subsystem Assumptions

Number of Prototypes: 1	
Production Quantity: 28	
Number of Subsystems Per System: 4	
Structural Integration Complexity: Routine	e interface
Primary Structural Material: Graphic	te/epoxy, filament wound
Estimated Number of Parts Per Subsystem: 3	-
Percent of Structure That Is New Design: 50%	
Percentage of Structural Parts That Are Repeated: 0%	
Electronics Integration Complexity: N/A	
Electronics Technology: N/A	
Percent of Electronics That Is New Design: N/A	
Percentage of Electronics Boards Repeated: N/A	

Table 7.1-54, MOSAP APC Oxygen Tanks Subsystem Assumptions

Production Quantity: 28	
Number of Subsystems Per System: 4	
Structural Integration Complexity: Routine interface	
Primary Structural Material: Graphite/epoxy, filament wou	nd
Estimated Number of Parts Per Subsystem: 3	
Percent of Structure That Is New Design: 50%	
Percentage of Structural Parts That Are Repeated: 0%	
Electronics Integration Complexity: N/A	
Electronics Technology: N/A	
Percent of Electronics That Is New Design: N/A	
Percentage of Electronics Boards Repeated: N/A	

Table 7.1-55, MOSAP APC Water Tanks Subsystem Assumptions

Number of Prototypes:	1
Production Quantity:	28
Number of Subsystems Per System:	4
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	3
Percent of Structure That Is New Design:	50%
Percentage of Structural Parts That Are Repeated:	0%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 7.1-56, MOSAP APC Fuel Cells Subsystem Assumptions

Table 7.1-50, WOOM THE CT dol Colls Subsystem	2 issumptions
Number of Prototypes:	0
Production Quantity:	28
Number of Subsystems Per System:	4
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Laminate composite
Estimated Number of Parts Per Subsystem:	250
Percent of Structure That Is New Design:	50%
Percentage of Structural Parts That Are Repeated:	30%
Electronics Integration Complexity:	Advanced state of the art interfaces
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	50%
Percentage of Electronics Boards Repeated:	30%

Table 7.1-57, MOSAP APC Cart Subsystem Assumptions

Number of Prototypes:	2
Production Quantity:	7
Number of Subsystems Per System:	1
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	20
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	40%
Electronics Integration Complexity:	Routine interface
Electronics Technology:	Digital VLSI
Percent of Electronics That Is New Design:	100%
Percentage of Electronics Boards Repeated:	0%

7.2 Pressurized Lunar Rover Subsystems Costs

Tables 7.2-1 through 7.2-4 summarize development and production costs for each of the Pressurized Lunar Rover's subsystems. These costs are based on the assumptions outlined in section 7.1. A detailed breakout of these costs can be found in Appendix A.

Table 7.2-1, MOSAP Primary Control Research Vehicle Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	<u>Total</u>
Inner Shell	\$ 10.661	\$ 1.240	\$ 11.901
Outer Shell	10.836	1.262	12.097
Other Structure	19.042	2.478	21.519
Insulation	1.515	.297	1.812
Radiator	5.708	.861	6.568
Thermal Pump	3.885	.254	4.139
Heat Exchanger	5.213	.305	5.518
Thermal System Piping	9.779	1.277	11.056
Hydrogen Tanks	3.485	.268	3.752
Oxygen Tanks	2.818	.211	3.029
Water Tanks	5.825	.472	6.297
Fuel Cell	7.152	2.641	9.793
Power Distribution	16.218	2.934	19.152
Wheels and Locomotion	13.903	2.362	16.266
Man Locks	32.526	5.309	37.836
Galley	13.079	1.223	14.302
Personal Hygiene	7.133	1.037	8.169
Emergency Equipment	1.197	.326	1.523
Avionics	12.206	1.513	13.719
ECLSS	48.358	8.399	56.756
Drive Stations	24.943	3.872	28.815
Work Stations	20.720	2.846	23.567
Sleep Quarters	4.238	.330	4.568
Integration	11.242	1.163	12.405
Total	\$ 291.679	\$ 42.883	\$ 334.562

Table 7.2-2, MOSAP Habitation Trailer Unit Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Inner Shell	\$ 5.294	\$ 1.264	\$ 6.558
Outer Shell	5.379	1.299	6.678
Other Structure	7.387	2.600	9.987
Insulation	1.312	.302	1.614
Radiator	3.605	.870	4.474
Thermal Pump	.715	.267	.982
Heat Exchanger	1.120	.318	1.437
Thermal System Piping	4.218	1.319	5.537
Hydrogen Tanks	.421	.101	.522
Oxygen Tanks	.334	.080	.413
Water Tanks	.736	.180	.916
Fuel Cell	3.708	2.743	6.451
Power Distribution	6.575	3.083	9.659
Wheels and Locomotion	2.524	2.477	5.001
Man Locks	8.229	5.752	13.980
Galley	2.955	1.291	4.246
Personal Hygiene	2.971	1.079	4.050
Shower	12.571	1.178	13.749
Emergency Equipment	1.027	.332	1.360
Avionics	1.963	1.680	3.643
ECLSS	18.927	9.049	27.976
Work Stations	4.730	3.045	7.775
Integration	9.680	1.051	10.731
Total	\$ 106.381	\$ 41.359	\$ 147.740

Table 7.2-3, MOSAP Experiment and Sample Trailer Subsystem Estimated Costs (\$Millions)

Subsystem	De	velopment	Pro	duction	Tot	tal
Bed	\$	6.732	\$	1.121	\$	7.852
Remote Manipulator System		9.597		2.343		11.940
Fuel Cell		2.689		4.386		7.074
Hydrogen Tank		.702		.107		.809
Oxygen Tank		.702		.107		.809
Water Tank		.702		.107		.809
Cart		14.119		4.219		18.338
Integration		1.874		.349		2.223
Total	\$	37.115	\$	12.739	\$	49.854

Table 7.2-4, MOSAP Auxiliary Power Cart Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Oxygen Tanks	\$ 3.567	6.034	9.601
Hydrogen Tanks	4.690	8.385	13.075
Water Tanks	3.567	6.034	9.061
Fuel Cell	8.789	59.882	68.671
Cart	11.792	5.078	16.870
Integration	6.039	2.060	8.099
Total	\$ 38.444	\$ 87.473	\$ 125.917

- **8.0** Solar Power Plant Costs
- **8.1** Solar Power Plant Assumptions

The Solar Power Plant consists of a fixed flat array of gallium arsenide cells for solar collection and a regenerative fuel cell system for lunar night energy storage. The fuel/electrolysis cell modules and associated tanks are sized for 25 kW. The plant is configured with four modules for a total of 100 kW [8]. See Figure 8.1-1.

Tables 8.1-1 through 8.1-8 summarize the characteristics assumed for each of the Solar Power Plant subsystems. For the purposes of costing, it was presumed that six prototype equivalents would be produced during the development phase. One production system would be manufactured.

The PRICE-H cost model was not used to cost the solar arrays. Rather, a cost per watt calculation was performed based on an equation developed for the Space Station [9]. The projected total cost in 1983 dollars for a Gallium Arsenide array was \$100-150 per watt, or \$129-193 per watt in 1988 dollars. Using the upper end of the range, solar array cost for a 100 kW system would be \$19,305,000.

Figure 8.1-1, Solar Power Plant

Table 8.1-1, Solar Power Plant Regenerative Fuel Cells Subsystem Assumptions

Number of Prototypes: 6
Production Quantity: 4
Number of Subsystems Per System: 4
Structural Integration Complexity: N/A

Primary Structural Material: Laminate composite

Estimated Number of Parts Per Subsystem: 250
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 50%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI
Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Build tolerance = .001"

Table 8.1-2, Solar Power Plant Electrolysis Cells Subsystem Assumptions

Number of Prototypes: 6
Production Quantity: 4
Number of Subsystems Per System: 4
Structural Integration Complexity: N/A

Primary Structural Material: Iron base alloy

Estimated Number of Parts Per Subsystem: 150
Percent of Structure That Is New Design: 25%
Percentage of Structural Parts That Are Repeated: 25%
Electronics Integration Complexity: N/A
Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Build tolerance = .001"

Table 8.1-3, Solar Power Plant Radiator Subsystem Assumptions

Number of Prototypes:	6
Production Quantity:	4
Number of Subsystems Per System:	4
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	100
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	90%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 8.1-4, Solar Power Plant Oxygen Tanks Subsystem Assumptions

Number of Prototypes:	6
Production Quantity:	4
Number of Subsystems Per System:	4
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Laminate composite
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 8.1-5, Solar Power Plant Oxygen Tank Lining Subsystem Assumptions

Number of Prototypes:	6 -
Production Quantity:	4
Number of Subsystems Per System:	4
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	3
Percent of Structure That Is New Design:	75%
Percentage of Structural Parts That Are Repeated:	0%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 8.1-6, Solar Power Plant Hydrogen Tanks Subsystem Assumptions

6
4
4
Routine interface
Laminate composite
25
100%
15%
N/A
N/A
N/A
N/A

Table 8.1-7, Solar Power Plant Hydrogen Tank Lining Subsystem Assumptions

Number of Prototypes:	6
Production Quantity:	4
Number of Subsystems Per System:	4
Structural Integration Complexity:	Routine interface
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	3
Percent of Structure That Is New Design:	75%
Percentage of Structural Parts That Are Repeated:	0%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 8.1-8, Solar Power Plant Water Tanks Subsystem Assumptions

m Alloy
·

8.2 Solar Power Plant Subsystems Costs

Table 8.2-1 summarizes development and production costs for each of the Solar Power Plant's subsystems. These costs are based on the assumptions outlined in section 8.1. A detailed breakout of these costs can be found in Appendix A.

Table 8.2-1, Solar Power Plant Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	<u>Total</u>
Fuel Cells	\$ 32.487	\$ 13.416	\$ 45.903
Electrolysis Cells	40.409	18.393	58.802
Radiators	32.149	15.971	48.120
Solar Array	7.722*	11.583*	19.305
Oxygen Tanks	66.249	19.946	86.195
Oxygen Tank Lining	2.016	.412	2.428
Hydrogen Tanks	100.513	30.971	131.484
Hydrogen Tank Lining	2.016	.412	2.428
Water Tank	16.112	3.635	19.747
Integration	14.100	3.603	17.704
Total	\$ 313.773	\$ 118.342	\$ 432.116

^{* 40%} of total has been allocated to development and 60% to production, the same ratio as the other Solar Power Plant subsystems.

9.0 Logistics Module Costs

9.1 Logistics Module Assumptions

In the case of permanent lunar base occupancy, Logistics Modules will be developed to deliver spares and consumables to the lunar surface. The design for the logistic supply module evolved into three module types depending on the requirements of the payload. These include a pressurized supply module, a tank module, and pallet modules [10]. See Figure 9.1-1.

Tables 9.1-1 through 9.1-3 summarize the characteristics assumed for each of the Logistics Module subsystems. For the purposes of costing, it was presumed that 2.5 prototype module equivalents of the Supply and Fluid Shipping Modules would be produced during development, but no prototypes of the Pallets is necessary because they have already been developed. One production version of the Supply and Fluid Shipping Modules would be manufactured, and three production Pallets would be manufactured.

Table 9.1-1, Logistics Supply Module Subsystem Assumptions

Number of Prototypes:	2.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	350
Percent of Structure That Is New Design:	40%
Percentage of Structural Parts That Are Repeated:	50%
Electronics Integration Complexity:	N/A
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	0%
Percentage of Electronics Boards Repeated:	15%

PRECEDING PAGE BLANK NOT FILMED

Figure 9.1-1 Logistics Supply Module

Figure 9.1-2 Fluid Shipping Module

Figure 9.1-3 Logistics Module Pallets

Table 9.1-2, Fluid Shipping Module Subsystem Assumptions

Number of Prototypes:	2.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
D . C 134 1	A 1

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 350
Percent of Structure That Is New Design: 60%
Percentage of Structural Parts That Are Repeated: 30%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 0%
Percentage of Electronics Boards Repeated: 15%

Table 9.1-3, Logistics Module Pallets Subsystem Assumptions

Number of Prototypes:	0
Production Quantity:	3
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 100
Percent of Structure That Is New Design: 0%
Percentage of Structural Parts That Are Repeated: 80%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

9.2 Logistics Module Subsystems Costs

Table 9.2-1 summarizes development and production costs for each of the Logistics Module subsystems. These costs are based on the assumptions outlined in section 9.1. A detailed breakout of these costs can be found in Appendix A.

Table 9.2-1, Logistics Module Subsystem Estimated Costs (\$Millions)

Subsystem	D	evelopment	Pr	oduction	To	otal
Logistics Supply Module Fluid Shipping Module Logistics Module Pallets	\$	161.439 80.806	\$	42.650 23.616 41.274	\$	204.089 104.422 41.274
Total	\$	242.245	\$	107.540	\$	349.785

10.0 Storm Shelter Costs

10.1 Storm Shelter Assumptions

The Earth-fabricated Storm Shelter is capable of supporting four men for a period of up to 10 days, while a solar flare is in progress. This type of shelter is considered applicable for missions of up to 30 days duration. A Partial Protection Garment is recommended for exposure to high radiation fields during surface operations performed in a spacesuit [11]. See Figures 10.1-1 and 10.1-2.

Tables 10.1-1 and 10.1-2 summarize the characteristics assumed for the solar protection system. For the purposes of costing, it was presumed that four prototype Partial Protection Garments and 3.5 prototype Four-Man Storm Shelters would be produced during the development phase. Five production garments and two production shelters would be manufactured.

Figure 10.1-1, Partial Protection Garment

Figure 10.1-2, Four-Man Storm Shelter

Table 10.1-1, Partial Protection Garment Subsystem Assumptions

Number of Prototypes:	4
Production Quantity:	5
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Laminate composites
Estimated Number of Parts Per Subsystem:	3
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	0%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 10.1-2, Four-Man Storm Shelter Subsystem Assumptions

Number of Prototypes: Production Quantity: Number of Subsystems Per System: Structural Integration Complexity: Primary Structural Material: Estimated Number of Parts Per Subsystem: Percent of Structure That Is New Design: Percentage of Structural Parts That Are Repeated: Electronics Integration Complexity: Electronics Technology:	3.5 2 1 N/A Aluminum Alloy 20 100% 10% N/A Digital LSI
	N/A Digital LSI 15% 10%

10.2 Storm Shelter Subsystems Costs

Table 10.2-1 summarizes development and production costs for each of the Storm Shelter subsystems. These costs are based on the assumptions outlined in section 10.1. A detailed breakout of these costs can be found in Appendix A.

Table 10.2-1, Storm Shelter Subsystem Estimated Costs (\$Millions)

Subsystem		Development		Production		otal
Partial Protection Garment Four-Man Shelter	\$	11.227 229.709	\$	3.994 66.432	\$	15.221 296.141
Total	\$	240.936	\$	70.426	\$	311.362

11.0 Space Transportation Node Costs

11.1 Space Transportation Node Assumptions

The low Earth orbit Space Transportation Node is intended to support a reusable transportation system for lunar flights. The node is oriented exclusively toward the assembly, refurbishment, maintenance, propellant loading, checkout, and repeated reuse and launch of cargo and piloted vehicles going to the lunar surface. The STN will support up to eight flights per year to the lunar surface and a fleet mainly consisting of reusable OTVs that deliver reusable lander/launchers to low lunar orbit [12]. See Figure 11.1-1.

Tables 11.1-1 through 11.1-6 summarize the characteristics assumed for the Space Transportation Node subsystems unique to the LBSS design analysis. For the purposes of costing, it was presumed that three prototypes of each subsystem would be produced during the development phase. One Space Transportation Node would be manufactured for orbital operations.

The remaining subsystems that comprise the node are derived from the current Freedom Space Station design configuration. These subsystems include the truss/mobile transporter/airlock structures, habitation modules, nodes, solar power generation system, thermal control system, data management system, communications/tracking, GN&C, propulsion, mechanisms, utilities and EVA systems. The cost estimates for the common node subsystems were derived from current Space Station cost analyses [13].

However, projected cost ratios were used for estimating the power and pressurized volume costs. Cost per watt and cost per cubic meter calculations were performed based on equations developed for the Space Station [14]. The projected total cost for the solar power system in 1988 dollars is \$8.17K/watt. For the Space Transportation Node requirement of 65,809 watts, the power system cost would be \$537,660K. The projected total cost for pressurized volume in 1988 dollars is \$4028K/m³. Note that pressurized volumes include the habitation modules and the nodes. For the Space Transportation Node requirement of five modules and ten nodes, totalling 1617 m³, the pressurized volume cost would be \$6,513,276K.

PRECEDING PAGE BLANK NOT FILMED

Figure 11.1-1, Space Transportation Node

Table 11.1-1, Space Transportation Node Hangar Subsystem Assumptions

3
1
1
N/A
Aluminum Alloy
75
100%
50%

Electronics Integration Complexity:

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 11.1-2, Space Transportation Node Hangar Tunnel Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 11.1-3, Space Transportation Node Storage Tanks Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	8
Number of Subsystems Per System:	4
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	300
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A

Percentage of Electronics Boards Repeated:

Table 11.1-4, Space Transportation Node Propellant Transfer Lines Subsystem Assumptions

N/A

Number of Prototypes:	3
Production Quantity:	8
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	100
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	50%
Electronics Integration Complexity:	N/A
Electronics Technology:	N/A
Percent of Electronics That Is New Design:	N/A
Percentage of Electronics Boards Repeated:	N/A

Table 11.1-5, Space Transportation Node HLLV Resupply Interface Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 11.1-6, Space Transportation Node Lander/OTV Prop Interface Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 150
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

2. ح

11.2 Space Transportation Node Subsystems Costs

Table 11.2-1 summarizes development and production costs for each of the Space Transportation Node subsystems. These costs are based on the assumptions outlined in section 11.1. A detailed breakout of these costs can be found in Appendix A.

Table 11.2-1, Space Transportation Node Subsystem Estimated Costs (\$Millions)

Subsystem	Development	<u>Production</u>	Total
Hangar	\$ 210.223	\$ 31.947	\$ 242.170
Hangar Tunnel	29.045	2.894	31.938
Storage Tanks	262.983	130.549	393.532
Propellant Transfer Lines	189.590	28.519	218.109
HLLV Tanker Resupply Intf.	11.730	1.138	12.868
Lander/OTV Prop Boom & Intf.	30.392	3.668	34.060
Truss, mbl transp., airlock	66.488	22.163	88.651
Habitation Modules & Nodes	4884.957	1628.319	6513.276
Solar Power System	403.245	134.415	537.660
Thermal Control Sys/Radiators	139.185	46.395	185.580
DMS	248.550	82.850	331.400
Communications & Tracking	266.573	88.858	355.431
GN&C	84.510	28.170	112.680
Propulsion/Attitude control	80.160	26.720	106.880
Mechanisms	64.620	21.540	86.160
Utilities	14.910	4.970	19.880
EVA Systems	232.295	77.465	309.860
Total	\$7219.456	\$2360.58	\$9580.036

12.0 Surface Construction Equipment Costs

12.1 Surface Construction Equipment Assumptions

The equipment for lunar surface construction includes one crane, one loader, two haulers, and three trailers. See Figures 12.1-1 and 12.1-2. Subsystem weight and volume breakdowns were not provided in the conceptual design report; therefore, the Price H cost model was not used to estimate costs for the construction equipment [15]. Instead, a gross estimate was performed based on comparisons with the development and unit production costs for the Unpressurized Lunar Rover.

The crane, consisting of two booms and a stationary/mobile platform, has a projected development cost ratio to the rover of 1:1 and a production cost ratio to the rover of 1.5:1. The front-end loader with manned controls has an estimated development cost ratio to the rover of 0.5:1 and a production cost ratio of 1:1. The haulers, or mobile repository bins, have a development cost ratio of 0.5:1 and a production cost ratio of 0.9:1. The trailer, consisting of a module caddy on a mobile platform, has a development ratio to the rover of 0.5:1 and a production ratio of 0.75:1.

Figure 12.1-1, Crane, Front-End Loader, and Hauler

Figure 12.1-2, Trailers ORIGINAL PAGE IS OF POOR QUALITY

12.2 Surface Construction Equipment Subsystems Costs

Table 12.2-1 summarizes development and production costs for each piece of surface construction equipment. These costs are based on the assumptions outlined in section 12.1.

Table 12.2-1, Surface Construction Equipment Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Cranes	\$140	\$18	\$158
Front-End Loaders	70	12	82
Haulers	70	22	92
Trailers	70	27	97
Total	\$350	\$79	\$429

13.0 Fuel Cell Power Cart Costs

13.1 Fuel Cell Power Cart Assumptions

The Fuel Cell Power Cart provides portable, supplemental power to vehicles stationed at the landing pad. The power system primarily consists of cryogenic hydrogen and oxygen tanks, liquid water tanks, and a fuel cell system mounted on a four-wheeled cart [16]. See Figure 13.1-1.

Table 13.1-1 summarizes the characteristics assumed for the Fuel Cell Power Cart system. For the purposes of costing, it was presumed that 2.5 prototype carts would be produced during the development phase, while one production cart would be manufactured.

Table 13.1-1, Fuel Cell Power Cart System Assumptions

Number of Prototypes:	2.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 500
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 15%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100% Percentage of Electronics Boards Repeated: 20%

Figure 13.1-1, Fuel Cell Power Cart

13.2 Fuel Cell Power Cart System Costs

Table 13.2-1 summarizes development and production costs for the Fuel Cell Power Cart system. These costs are based on the assumptions outlined in section 13.1. A detailed breakout of these costs can be found in Appendix A.

Table 13.2-1, Fuel Cell Power Cart System Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Fuel Cell Power Cart	\$ 69.813	\$ 13.310	\$82.123

14.0 Supplemental Cooling Cart Costs

14.1 Supplemental Cooling Cart Assumptions

The Supplemental Cooling Cart provides additional cooling capability to piloted vehicles on the landing pad. A supplemental cooling system will add radiator surface area to the lander so the vehicle can handle the extensive heat loads experienced during lunar day [16]. See Figure 14.1-1.

Table 14.1-1 summarizes the characteristics assumed for the Supplemental Cooling Cart system. For the purposes of costing, it was presumed that 2.5 prototype carts would be produced during the development phase, while one production cart would be manufactured.

Table 14.1-1, Supplemental Cooling Cart System Assumptions

Number of Prototypes:	2.5
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	150
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	100%

Percentage of Electronics Boards Repeated:

PRECEDING PAGE BLANK NOT FILMED

0%

Figure 14.1-1, Supplemental Cooling Cart

14.2 Supplemental Cooling Cart Systems Costs

Table 14.2-1 summarizes development and production costs for the Supplemental Cooling Cart system. These costs are based on the assumptions outlined in section 14.1. A detailed breakout of these costs can be found in Appendix A.

Table 14.2-1, Supplemental Cooling Cart System Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Supplemental Cooling Cart	\$ 45.067	\$ 7.183	\$ 52.250

15.0 Orbital Transfer Vehicle Costs

15.1 Orbital Transfer Vehicle Assumptions

The Orbital Transfer Vehicle is a multi-purpose vehicle designed for reuse and maintenance in space. Its payload capability includes crew or cargo to be transported from low Earth orbit to low lunar orbit. The OTV is intended to be returned to the LEO space station after each mission for refurbishment and refueling [17]. See Figure 15.1-1.

Tables 15.1-1 through 15.1-15 summarize the characteristics assumed for each of the Orbital Transfer Vehicle subsystems. For the purposes of costing, it was presumed that seven prototype vehicle equivalents would be produced during the development phase, three of which would be fully-functioning vehicles. Ten production vehicles would be manufactured. In some cases, additional prototypes of subsystems would be developed that would not be a part of a full prototype vehicle.

The software development and production costs for the Guidance, Navigation and Control System (GN&C) and the Data Management System (DMS) were not estimated with the Price-H model. Based on guidelines used to project flight software requirements for the CERV, the software for the OTV systems was estimated to contain 123,000 lines of code [2]. Projecting 3000 lines per man-year for coding and debugging, (which is about 15% of the total software development effort) the total estimated effort would occupy 273 man-years. At \$100K per man-year the cost would be \$27.3M. Sixty percent of the total cost is attributed to development, or \$16.38M, and 40% of the total cost is for production, or \$10.92M.

7

Table 15.1-1, OTV Structures Subsystem Assumptions

realization of receipted.	•
Production Quantity:	10
Number of Subsystems Per System:	1
Structural Integration Complexity:	New, but familiar and routine
Primary Structural Material:	Laminate composites
Estimated Number of Parts Per Subsystem:	30
Percent of Structure That Is New Design:	100%

Percent of Structure That Is New Design: 1009
Percentage of Structural Parts That Are Repeated: 50%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

PRECEDING PAGE BLANK NOT FILMED

Number of Prototypes:

Figure 15.1-1, Orbital Transfer Vehicle

Table 15.1-2, OTV Engines Subsystem Assumptions

Number of Prototypes: 18 (12 for 3 proto vehicles + 6)

Production Quantity: 40

Number of Subsystems Per System: 4
Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Titanium alloy equivalent Estimated Number of Parts Per Subsystem: 300

Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: Difficult, requiring matching or timing

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Other Assumptions: Assembly tolerances about 2X tighter than

build tolerances of parts. New, state of the

art technology being advanced.

Table 15.1-3, OTV RCS Distribution Subsystem Assumptions

Number of Prototypes: 10 (6 for 3 proto vehicle, OTV Thermal

Protection Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 10
Number of Subsystems Per System: 1

Structural Integration Complexity: Difficult, requiring alignment or matching

Primary Structural Material: Aluminized Kapton foil

Estimated Number of Parts Per Subsystem: N/A
Percent of Structure That Is New Design: 75%
Percentage of Structural Parts That Are Repeated: 50%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A

Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 15.1-4, OTV RCS Nozzle Cluster Subsystem Assumptions

Number of Prototypes: 36 (24 for 3 proto vehicles + 4) Production Quantity: 80

Number of Subsystems Per System: 8

Structural Integration Complexity: Routine
Primary Structural Material: Titanium alloy equivalent

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 75%
Percentage of Structural Parts That Are Repeated: 67%
Electronics Integration Complexity: N/A
Electronics Technology: N/A

Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 15.1-5, OTV Thermal Protection Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 10
Number of Subsystems Per System: 1

Structural Integration Complexity: Difficult, requiring alignment or matching

Primary Structural Material: Aluminized Kapton foil

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 15.1-6, OTV Oxygen Tank Subsystem Assumptions

Number of Prototypes: 14 (7 proto vehicles)

Production Quantity: Number of Subsystems Per System: 2

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum allov

Estimated Number of Parts Per Subsystem: Percent of Structure That Is New Design: 100% Percentage of Structural Parts That Are Repeated: 15% **Electronics Integration Complexity:** N/A **Electronics Technology:** N/A

Percent of Electronics That Is New Design: N/A Percentage of Electronics Boards Repeated: N/A

Table 15.1-7, OTV Hydrogen Tank Subsystem Assumptions

Number of Prototypes: 14 (7 proto vehicles)

Production Quantity: 20 Number of Subsystems Per System:

Structural Integration Complexity: Routine interface Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 25 Percent of Structure That Is New Design: 100% Percentage of Structural Parts That Are Repeated: 15% **Electronics Integration Complexity:** N/A

Electronics Technology: N/A Percent of Electronics That Is New Design: N/A Percentage of Electronics Boards Repeated:

N/A

Table 15.1-8, OTV DMS/GN&C Subsystem Assumptions

Number of Prototypes:

5 (3 proto vehicles + 2)

Production Quantity:

Number of Subsystems Per System:

1

Structural Integration Complexity:

Difficult, requiring alignment or matching

Primary Structural Material:

N/A

Estimated Number of Parts Per Subsystem: Percent of Structure That Is New Design:

20%

Percentage of Structural Parts That Are Repeated:

0%

Electronics Integration Complexity:

State of the art, requiring calibration

Electronics Technology:

Digital VLSI

Percent of Electronics That Is New Design:

100%

Percentage of Electronics Boards Repeated:

0%

Other Assumptions:

New, state of the art technology being

advanced.

Table 15.1-9, OTV Electrical Power Subsystem Assumptions

Number of Prototypes:

5 (3 proto vehicles + 2)

Production Quantity:

10

Number of Subsystems Per System:

1

Structural Integration Complexity: Primary Structural Material:

Routine interface Aluminum alloy

Estimated Number of Parts Per Subsystem:

1000

Percent of Structure That Is New Design:

100%

Percentage of Structural Parts That Are Repeated:

50%

Electronics Integration Complexity:

State of the art, requiring adjustments Digital VLSI

Electronics Technology:

Percent of Electronics That Is New Design:

100%

Percentage of Electronics Boards Repeated:

0%

Table 15.1-10, OTV Crew Module Shell Subsystem Assumptions

Number of Prototypes: 7
Production Quantity: 7
Number of Subsystems Per System: 1

Structural Integration Complexity: Routine

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

Table 15.1-11, OTV Crew Module ECLSS Subsystem Assumptions

Number of Prototypes: 5 (3 proto vehicles + 2)

Production Quantity: 7
Number of Subsystems Per System: 1

Structural Integration Complexity: New but familiar and routine interface

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 1500
Percent of Structure That Is New Design: 80%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 15.1-12, OTV Crew Module Controls Subsystem Assumptions

Number of Prototypes: 5 (3 proto vehicles + 2)

Production Quantity:

Number of Subsystems Per System: 1
Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 50
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 0%

Electronics Integration Complexity: State of the art, requiring adjustments

Electronics Technology: Digital VLSI

Percent of Electronics That Is New Design: 90%
Percentage of Electronics Boards Repeated: 0%

Table 15.1-13, OTV Crew Module Hatches Subsystem Assumptions

Number of Prototypes: 8 (4 proto vehicles)

Production Quantity: 14
Number of Subsystems Per System: 2

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Aluminum alloy

Estimated Number of Parts Per Subsystem: 30
Percent of Structure That Is New Design: 50%
Percentage of Structural Parts That Are Repeated: 0%
Electronics Integration Complexity: N/A

Electronics Technology: N/A

Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Table 15.1-14, OTV Aerobrake Shell Subsystem Assumptions

Number of Prototypes: 3
Production Quantity: 10
Number of Subsystems Per System: 1

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Shuttle-type tiles

Estimated Number of Parts Per Subsystem: 4000
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 85%
Electronics Integration Complexity: N/A
Electronics Technology: N/A
Percent of Electronics That Is New Design: N/A
Percentage of Electronics Boards Repeated: N/A

Other Assumptions: New, state of the art technology being

advanced. Build tolerance = .001"

Table 15.1-15, OTV Aerobrake Structure Subsystem Assumptions

Number of Prototypes:3Production Quantity:10Number of Subsystems Per System:1

Structural Integration Complexity: Moderately difficult, requiring alignment

Primary Structural Material: Laminate composites

Estimated Number of Parts Per Subsystem:

Percent of Structure That Is New Design:

Percentage of Structural Parts That Are Repeated:

Electronics Integration Complexity:

N/A

Electronics Technology:

Percent of Electronics That Is New Design:

N/A

Percentage of Electronics Boards Repeated:

N/A

15.2 Orbital Transfer Vehicle Subsystem Costs

Table 15.2-1 summarizes development and production costs for the Orbital Transfer Vehicle subsystems. These costs are based on the assumptions outlined in section 15.1. A detailed breakout of these costs can be found in Appendix A.

Table 15.2-1, Orbital Transfer Vehicle Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
Structures	\$ 136.791	\$ 104.315	\$ 241.106
Engines	303.331	130.969	434.300
RCS Distribution	23.628	18.747	42.375
RCS Nozzle Cluster	7.022	8.549	15.571
Thermal Protection	20.562	15.049	35.610
Oxygen Tanks	79.387	44.467	123.854
Hydrogen Tanks	45.881	24.346	70.227
DMS/GN&C (hw/electrical)	87.891	35.115	123.006
DMS/GN&C (sw)	16.380	10.920	27.300
Electrical Power	39.678	26.470	66.148
Aerobrake Shell	373.631	469.473	843.103
Aerobrake Structure	58.756	41.394	100.150
Crew Module Shell	82.140	34.370	116.510
Crew Module ECLSS	101.399	54.604	156.002
Crew Module Controls	17.668	5.706	23.374
Crew Module Hatches	2.965	1.650	4.614
Integration	66.754	32.580	99.334
Total	\$ 1463.862	\$1058.723	\$ 2522.584

16.0 Low Earth Orbit Launcher Costs

The Low Earth Orbit Launcher was not included in the LBSS design analyses; however, the launcher cost is discussed here in order to provide a more thorough estimate of the lunar transportation systems. The Saturn V rocket, stages S-IC and S-II, was selected as a reference since it has a history of lifting large masses into low Earth orbit, and development and production costs are available for this vehicle. Table 16.0-1 provides the relevant cost information in 1988 dollars for the subsystems of the two Saturn stages.

The Saturn-IC and Saturn-II combination were capable of delivering approximately 152,000 kg into low Earth orbit [18].

The production cost estimate accounts for the procurement of 47 expendable vehicles. Twenty-five of the 47 launches to low Earth orbit are dedicated to delivering ten OTV/lander stacks with accompanying propellant in addition to 250 mt of lunar base cargo. The remaining 22 launches are required to deliver 338 mt of cargo and the necessary OTV/lander propellant. Note that the total mass estimate for all the lunar base systems, excluding the OTV's and landers, equals approximately 588 mt, and one stack of OTV/lander propellant equals approximately 151 mt, or one Saturn V launch.

Table 16.0-1, Low Earth Orbit Launcher (Saturn V) Subsystem Estimated Costs (\$Millions)

Subsystem	Development	Production	Total
SATURN-IC	<u>-</u>		
Structures	\$ 1252.914	\$ 4449.302	\$ 5702.216
Avionics	345.216	400.675	745.891
5 F1 Engines	1015.907	1880.000	2895.907
SATURN-II			
Structures	1113.335	3992.556	5105.891
Avionics	98.603	512.206	610.809
5 J2 Engines	336.230	1930.995	2267.225
Total	\$4,162.205	\$13,165.734	\$17,327.939

17.0 Landing Pad Costs

17.1 Landing Pad Assumptions

The Landing Pad for an initial, manned lunar base requires a variety of facilities and equipment to assist in landing and launch operations [16]. The Landing Pad Markers are designed to assist flight crews in visually locating the pad. The Transfer Tunnel functions as a pressurized crew transport facility capable of interfacing between the lander and the pressurized rover. The Propellant Refill Vehicle is used for loading and unloading propellants, either liquid hydrogen or liquid oxygen, from tanks on board the lander vehicle. The Electric Cord Power Supply system allows for supplemental power to the landing pad. The system consists of a 1-kilometer long cord on a spool which is mounted on a cart for extension capability to the central, lunar-base, power supply. See Figure 17.1-1.

Tables 17.1-1 through 17.1-4 summarize the characteristics assumed for each of the Landing Pad subsystems. For the purposes of costing, it was presumed that 3 prototype equivalents of the Markers and Transfer Tunnel and 2.5 prototype equivalents of the Electric Cord Power Supply and the Propellant Refill Vehicle would be produced during development. One production version of the Landing Pad subsystems would be manufactured, except for the Markers which would be manufactured in quantities of eight.

Table 17.1-1, Landing Pad Markers Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	8
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	25
Percent of Structure That Is New Design:	50%
Percentage of Structural Parts That Are Repeated:	0%
Electronics Integration Complexity:	N/A
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	100%
Percentage of Electronics Boards Repeated:	0%

Figure 17.1-1, Landing Pad

PIGINAL PAGE IS OF POOR QUALITY

Table 17.1-2, Landing Pad Electric Cord Power Supply Subsystem Assumptions

Number of Prototypes: 2.5 **Production Quantity:** 1 Number of Subsystems Per System: 1 Structural Integration Complexity: N/A Primary Structural Material: Copper Estimated Number of Parts Per Subsystem: 150 Percent of Structure That Is New Design: 100% Percentage of Structural Parts That Are Repeated: 15% **Electronics Integration Complexity:** N/A Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%

Percentage of Electronics Boards Repeated: 0%

Table 17.1-3, Landing Pad Propellant Refill Vehicle Subsystem Assumptions

Number of Prototypes: 2.5
Production Quantity: 1
Number of Subsystems Per System: 1
Structural Integration Complexity: N/A

Primary Structural Material: Aluminum Alloy

Estimated Number of Parts Per Subsystem: 150
Percent of Structure That Is New Design: 100%
Percentage of Structural Parts That Are Repeated: 15%
Electronics Integration Complexity: N/A

Electronics Technology: Digital LSI

Percent of Electronics That Is New Design: 100%
Percentage of Electronics Boards Repeated: 0%

Table 17.1-4, Landing Pad Transfer Tunnel Subsystem Assumptions

Number of Prototypes:	3
Production Quantity:	1
Number of Subsystems Per System:	1
Structural Integration Complexity:	N/A
Primary Structural Material:	Aluminum Alloy
Estimated Number of Parts Per Subsystem:	300
Percent of Structure That Is New Design:	100%
Percentage of Structural Parts That Are Repeated:	15%
Electronics Integration Complexity:	N/A
Electronics Technology:	Digital LSI
Percent of Electronics That Is New Design:	100%
Percentage of Electronics Boards Reneated:	15%

17.2 Landing Pad Subsystems Costs

Table 17.2-1 summarizes development and production costs for the Landing Pad subsystems. These costs are based on the assumptions outlined in section 17.1. A detailed breakout of these costs can be found in Appendix A.

Table 17.2-1, Lunar Landing Pad Subsystem Estimated Costs (\$Millions)

Subsystem	De	evelopment	Pr	oduction	To	otal
Pad Markers	\$.927	\$.327	\$	1.254
Electric Cord Power Supply		39.210		6.287		45.497
Propellant Refill Vehicle		372.064		64.496		436.560
Transfer Tunnel		169.145		32.928		202.073
Total	\$	581.346	\$	104.038	\$	685.384

18.0 Transportation Costs

The cost to transport hardware from the Earth's surface to the lunar surface was estimated based on a five-stage process:

- an expendable heavy lift vehicle (HLV, described in section 16 of this report) would place the payload into Earth orbit, along with the propellants required to transport it to the moon;
- the payload would be moved to an Orbital Transfer Vehicle/Lander combination (described in sections 15 and 4, respectively), which would haul the Lander's propellant and the payload from Earth orbit to lunar orbit;
- the Lander would bring the payload to the surface of the moon, where it would be off-loaded;
- the Lander would ascend from the lunar surface and re-dock with the OTV;
- the OTV/Lander combination would return to low-Earth orbit.

The process is presumed to be essentially unmanned. Human physical intervention would occur at the Earth-orbiting transportation node to assist in transferring the payload to the OTV and to fuel the OTV and lander; and at the lunar surface, to assist in off-loading the payload. These human intervention costs are not included in the transportation costs (see section 19.0, Setup Costs).

An OTV/Lander combination can carry a 25 MT payload from LEO to the lunar surface, and return empty, using 150 MT of propellant [1]. The capacity of the HLV is 152 MT (see section 16 of this report). Therefore, seven HLV flights are required to deliver into orbit enough payload and propellant for six OTV/Lander flights. In order to calculate the per-kilogram transportation cost, a cost was derived for a 25 MT mission (one OTV/Lander and 7/6 of an HLV) and the result divided by 25 MT.

The transportation costs are comprised of:

- launch and flight operations costs;
- propellant costs;
- vehicle hardware costs:
- contractor administration costs:
- research & program management, or R&PM costs (civil service institutional costs);
- and tracking network support costs.

Each of these is discussed in turn. A summary of transportation costs is provided in table 18.0-1.

Operations costs include such items as mission planning, vehicle assembly, payload processing and integration, launch control, and mission control. We assumed that operations activities would be similar to those presumed by the Congressional Office of Technology Assessment for the proposed Titan V heavy-lift ELV, whose per-launch operations costs were estimated to be

\$157M [22]. Ten percent was added to this number to account for flight operations costs beyond Earth orbit.

Propellant estimates for the HLV were derived from Saturn V specifications, which used LO₂/RP-1 in a 2.55:1 ratio for the first stage, and LO₂/LH₂ in a 6:1 ratio for the second stage. The first stage used 2,085,736 kg of propellant, and the second stage used 441,218 kg. Therefore, the HLV is presumed to consume 1,876,392 kg of LO₂ (at \$0.12 per kg), 63,031 kg of LH₂ (at \$7.06 per kg), and 587,531 kg of RP-1 (at \$0.52 per kg). The total propellant cost for one LEL flight is \$975,682. Propellant cost for 7/6 of a LEL flight is \$1,138,296.

The 150,000 kg of propellant required for the OTV/Lander is comprised of 128,571 kg of LO₂ and 21,429 kg of LH₂, costing a total of \$194,500.

The entire hardware cost of the HLV is included in the transportation cost. Production cost for 47 vehicles was estimated to be \$13,165,734,000, or \$280,122,000 per vehicle. Seven-sixths of this is \$326,809,000.

Although reusable, the OTV and Lander have a finite lifetime over which their production costs are spread. This amortized production cost is included in the transportation costs. It was presumed that these vehicles would be used ten times before refurbishment and maintenance costs would equal the cost of a whole new vehicle, therefore their production costs are spread over ten flights.

Contractor administration costs for the Shuttle are estimated to be 0.53% of operations and hardware costs. R&PM costs for the Shuttle are 13.5% of operations, hardware, and network support costs [23]. These same percentages were used for the HLV.

Network support costs were assumed to be approximately the same as for the Shuttle, which was estimated to be \$2,555,098 per flight [23].

Table 18.0-1, Summary of Transportation Costs To Emplace 25 MT on the Lunar Surface

Operations	\$172,700,000		
Propellant			
- 1st Stage To LEO	566,184		
- 2nd Stage to LEO	572,113		
- OTV and Lander	194,500		
Hardware			
- HLV	326,809,000		
- OTV	10,587,230		
- Lander	6,491,810		
Contractor Administration	2,737,917		
R&PM	70,084,324		
Network Support	<u>2,555,098</u>		
Total	\$593,298,176	Cost per Kilogram: \$23	3,732

19.0 Setup Costs

The setup costs to emplace systems on the lunar surface include the hours associated with extravehicular activity (EVA) and intravehicular activity (IVA). Any activity requiring the use of an extravehicular mobility unit (EMU) and portable life support system constitutes an EVA; whereas an activity performed in a pressurized volume is considered an IVA.

The cost estimate for an EVA hour was based on the current rates charged by NASA for EVA performance during a National Space Transportation System mission [19]. The EVA optional service is divided into two types: a planned payload EVA, which is incorporated into the mission timeline, and a contingency payload EVA, which is not incorporated into the mission timeline but may be required for mission success. A planned EVA requires more extensive crew training and integrated simulations and includes the cost of EMU refurbishment and expendables. Because of the uncertainty of a contingency EVA, the price does not include the costs for premission integrated simulations, refurbishments, or expendables. With respect to the setup of a lunar base, it is assumed that a lunar EVA qualifies for the planned category.

NSTS EVA's are further classified by level of complexity: simple, intermediate, and complex. For the purposes of extrapolating for a lunar scenario, the EVA complexity is estimated as the equivalent of an NSTS intermediate. An intermediate EVA requires development of new payload-unique tools and equipment. Existing procedures and techniques require modifications and more extensive crew training in order to accomplish the tasks. A lunar surface EVA was not considered complex since the designated activities are performed in a gravity environment, therefore access or restraint problems and mobility aids are not as important an issue as in zero gravity.

The cost for an NSTS planned, intermediate (two-person) EVA is \$505,420 in 1988 dollars. Using an average EVA duration of six hours, the cost is \$84,237 per hour. This EVA unit cost does not include extensive training, such as the practice sessions performed in the wet facility. It is assumed that extensive crew training in specialized facilities will not be required for a lunar EVA; rather the crew will be generally trained for a variety of surface activities. Note that the projected EVA costs do not include the procurement of EVA equipment, such as EMU's, portable life support systems, and tools. An estimate for EVA system costs is not provided here since the crew size and EVA equipment designs have not been defined.

The projected unit cost for a Space Station EVA is quoted as \$58,000 per hour and an accompanying IVA unit cost of \$20,000 per hour [14]. The Space Station comparison of EVA cost to IVA cost, approximately 35%, was used to derive the IVA unit cost for a lunar base. For the setup of the lunar base, IVA cost is estimated at \$29,483 per hour.

20.0 References

- 1. <u>Lunar Lander Conceptual Design</u>, NASA Contract #NAS9-17878, EEI Report #88-181, March 30, 1988.
- 2. Don Osgood, <u>CERV Flight Software Position Paper</u>, Eagle Engineering, Inc., June 17, 1988.
- 3. <u>Conceptual Design of a Lunar Oxygen Production Plant</u>, NASA Contract #NAS9-17878, EEI Report #88-182, July 1, 1988.
- 4. An Illustrated Chronology of the NASA Marshall Center and MSFC Programs, May 1974, p231.
- 5. <u>Interim Study Report Lunar Logistic Vehicle</u>, Boeing Document Number D2-100042, December 10, 1962.
- 6. Kenneth Gatland, <u>The Illustrated Encyclopedia of Space Technology</u>, Harmony Books, New York, 1981, p161.
- 7. <u>Lunar Surface Transportation Systems Conceptual Design</u>, NASA Contract #NAS9-17878, EEI Report #88-188, July 7, 1988.
- 8. <u>Conceptual Design of a Lunar Base Solar Power Plant</u>, NASA Contract #NAS9-17878, EEI Report #88-199, August 14, 1988.
- 9. <u>Space Station Study Report Electrical Power</u>, NASA-Marshall Space Flight Center, PD14, December, 1983.
- 10. <u>Maintenance and Supply Options</u>, NASA Contract #NAS9-17878, EEI Report #87-173, May, 1988.
- 11. <u>Lunar Storm Shelter Conceptual Design</u>, NASA Contract #NAS9-17878, EEI Report #88-189, May 1, 1988.
- 12. <u>Transportation Node Space Station Conceptual Design</u>, NASA Contract #NAS9-17878, EEI Report #88-207, September 30, 1988.
- 13. Richard Whitlock, Personal Communication, NASA-JSC Space Station Projects Office, October 11, 1988.
- 14. J.J. Spaeth, <u>Program Integration Review-Node/Airlock ATCS Study</u>, McDonnell Douglas, August 22, 1988.
- 15. <u>Lunar Surface Construction and Assembly Equipment Study</u>, NASA Contract #NAS9-17878, EEI Report #88-194, September 1, 1988.

- 16. <u>Lunar Base Launch and Landing Facility Conceptual Design</u>, NASA Contract #NAS9-17878, EEI Report #88-178, March 25, 1988.
- 17. A. J. Petro, <u>Lunar Transportation System</u>, NASA-JSC Advanced Programs Office, October 4, 1988.
- 18. <u>Assembly of Phobos Mission Spacecraft in Low Earth Orbit</u>, NASA Contract #NAS-17900, EEI/Lemsco Report #88-198, August 22, 1988.
- 19. <u>Optional Services Pricing Manual</u>, National Space Transportation System, NASA, JSC-20109, October, 1984.
- Gordon R. Woocock, <u>Mission and Operations Modes For Lunar Basing</u>, Lunar Bases and Space Activities of the 21st Century, a public symposium, October 29-31, 1984.
- 21. <u>Manned Mars Mission, Volume II</u>, Working Group Papers, Marshall Space Flight Center, NASA M002, June 1986.
- 22. <u>Launch Options For The Future, Special Report,</u> Office of Technology Assessment, Congressional Board of the 100th Congress, July, 1988.
- 23. POP 88 Shuttle Cost Per Flight Review presentation, H. Renfro, NSTS Program Control Office, July 28, 1988.

Appendix A - PRICE-H Cost Model Subsystem Cost Reports

- - - PRICE HARDWARE MODEL METRIC - - -MECHANICAL ITEM

INPUT FILENAME: LA 17-OCT-88 13:57 (188225)

TIME	LANDER	-	STRUCTURES
INDIAR	LIMBILITIES	_	つていいてていばいつ

HONAR HANDER - SIROCIO	/REO		
PRODUCTION QUANTITY	10 UN	IT WEIGHT 1681.00	MODE 2
PROTOTYPE QUANTITY		IT VOLUME 74999.98	QUANTITY/NHA 1
_			
UNIT PROD COST 6204.76	5	MONT	HLY PROD RATE 0.58
PROGRAM COST (\$ 1000)	DEVELOPMEN	r PRODUCTION	TOTAL COST
ENGINEERING	10000	660	10698.
DRAFTING	10038.	660.	37695.
DESIGN	34807.	2888.	37695. 4488.
SYSTEMS	4488.	- 6401.	13664.
PROJECT MGMT	7263.	6674.	8728.
DATA	2054.	• • • • •	75273.
SUBTOTAL (ENG)	58650.	16623.	/52/3.
MANUFACTURING			
PRODUCTION		62048.	62048.
PROTOTYPE	63522.	02040.	63522.
TOOL-TEST EQ	5582.	11626.	17209.
SUBTOTAL (MFG)		73674.	142778.
SOBIOTAL (FE G)	03104.	75074.	132770.
TOTAL COST	127754.	90297.	218051.
202112 0002		332311	
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	1681.000		COMPLEXITY 1.000
DENSITY	0.022*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	8.370	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.400	YEAR OF TEC	HNOLOGY 1995*
ENGINEERING CHANGES	0.021*	RELIABILITY F.	ACTOR 1.0
INTEGRATION LEVEL		MTBF (FIELD)	5538*
		,	
SCHEDULE STA	ART	FIRST ITEM	FINISH
DEVELOPMENT JAN	7 95 (30)	JUN 97* (13)	JUL 98* (43)
	1 00 (30)	JUN 02* (16)	OCT 03* (46)
	• •		
SUPPLEMENTAL INFORMATI	ON		
ECONOMIC BASE	188	TOOLING & PROC	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	8269.73*	PRODUCTION T	OOLING 1.00
AMORTIZED UNIT COST	9029.68*	RATE TOOLING	9 0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR 0.9	
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.872*

- - - PRICE HARDWARE MODEL METRIC - - -ELECTRONIC ITEM

INPUT FILENAME: LA 17-OCT-88 13:57

DEV COST MULTIPLIER 1.00*
PROD COST MULTIPLIER 1.00*

(188225)

LUNAR LANDER - ENGINES

PRODUCTION QUANTITY	40	UNIT WEIGHT	400.50	MODE	1
PROTOTYPE QUANTITY	18.000	UNIT VOLUME	3000.00	QUANTITY/NHA	4

UNIT PROD COST 3526.33 MONTHLY PROD RATE 1.12

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	39278.	867.	40145.
DESIGN	193009.	4217.	197227.
SYSTEMS	57506.	_	57506.
PROJECT MGMT	74078.	11487.	85564.
DATA	29235.	11823.	41058.
SUBTOTAL (ENG)	393106.	28395.	421501.
MANUFACTURING			
PRODUCTION	_	141053.	141053.
PROTOTYPE	195113.	-	195113.
TOOL-TEST EQ	25361.	19875.	45236.
SUBTOTAL (MFG)	220474.	160928.	381402.
TOTAL COST	613580.	189323.	802903.
DESIGN FACTORS ELECT	PRONTO MECHANICAL	PRODUCT DESCRIE	PTORS
	500* 400.000		COMPLEXITY 2.300
		PROTOTYPE SUP	
	.320 9.160		LE FACTOR 0.250*
		ELECT VOL FRA	
DESIGN REPEAT 0.00	0.000		2.500
ENGINEERING CHANGES 0			NOLOGY 1995*
HW/SW INTEG. LEVEL 0.0		RELIABILITY FA	
INTEGRATION LEVEL 0.	484 0.350	MTBF (FIELD)	
SCHEDULE START	rir:	ST ITEM	FINISH
DEVELOPMENT JAN 9	5 (61) JAN	00* (40)	MAY 03* (101)
PRODUCTION JAN (02* (35)	MAR 05* (63)
SUPPLEMENTAL INFORMATION	Ī		
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT I	
	5995.43*	PRODUCTION TO	
AMORTIZED UNIT COST	4733.07*	RATE TOOLING	0
DEV COST MILTERITED			MENT EXCTOR 0 052*

PRICE IMPROVEMENT FACTOR 0.953* UNIT LEARNING CURVE 0.872*

--- PRICE HARDWARE MODEL METRIC --- ELECTRONIC ITEM

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - RCS DISTRIBUTION

LUNAR LANDER - RCS DISTRIB	OTTON		
PRODUCTION OHANTITY	20 UNIT W	VETGHT 156.00	MODE 1
PRODUCTION QUANTITY PROTOTYPE QUANTITY	10.000 UNIT V	OLUME 1000.00	
INOTOTILE COUNTILL	10.000 01.11	2000	2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
UNIT PROD COST 672.64		MONTE	ILY PROD RATE 1.02
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	2104.	203.	2307.
DESIGN	7908.	874.	8782.
Systems	845.	-	845.
PROJECT MGMT	1235.	1211.	2446.
DATA	351.	1252.	1603.
SUBTOTAL (ENG)	12442.	3540.	15983.
MANUFACTURING			
PRODUCTION		13453.	13453.
PROTOTYPE	9940.	13433.	9940.
TOOL-TEST EQ	1245.	1754.	2999.
SUBTOTAL (MFG)	11186.	15207.	26392.
TOTAL COST	23628.	18747.	42375.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
	0* 155.000	FNCTNFFPING (OMPLEXITY 1 000
WEIGHT 1.00 DENSITY 10.00	0 0.155*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 10.32	0 8.240	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.000	1.000	ELECT VOL FRA	CTION 0.000*
DESIGN REPEAT 0.000	0.500	PLATFORM	2.500
ENGINEERING CHANGES 0.05		YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.000		RELIABILITY FA	
INTEGRATION LEVEL 0.26	3 0.484	MTBF (FIELD)	270803*
000000000000000000000000000000000000000		OM THEM	WTNT CU
SCHEDULE START DEVELOPMENT JAN 95			FINISH (31)
	(20) AUG	· · · · · · · · · · · · · · · · · · ·	JUL 97* (31) FEB 03* (38)
PRODUCTION JAN 00	(20) AUG	9 01* (18)	FEB U3~ (30)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST 9	58.21*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST 9	37.35*	RATE TOOLING	0
DEV COST MULTIPLIER 1.00*		PRICE IMPROVE	MENT FACTOR 0.955*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.888*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - RCS	NOZZLE	CLUSTER				
PRODUCTION QUANTI	TY	40 UN	IT WEIGHT	25.00	MODE	2
PROTOTYPE QUANTIT			IT VOLUME			_
						
UNIT PROD COST 9	2.38			MONTH	HLY PROD RA	re 3.64
PROGRAM COST (\$ 100 ENGINEERING	00)	DEVELOPMEN	T PROD	UCTION	TOTAL CO	ST
DRAFTING		118.		9.	126.	•
DESIGN		414.		36.	450	
Systems		53.		-	53.	•
PROJECT MGMI	•	200.	:	313.	512.	
DATA		44.	;	323.	366.	•
SUBTOTAL (E	NG)	828.		680.	1508	•
MANUFACTURING						
PRODUCTION		_	3(695.	3695.	
PROTOTYPE		2436.		-	2436.	•
TOOL-TEST EQ)	201.	ţ	519.	720.	•
SUBTOTAL (M	IFG)	2637.	4:	215.	6852.	•
TOTAL COST	•	3465.	48	895.	8360.	
DESIGN FACTORS	M	ECHANICAL	PRODUC	CT DESCRIP	TORS	
WEIGHT	_	25.000				1.000
DENSITY		0.200*		TOTYPE SUP	-	1.0
MFG. COMPLEXITY		8.070	=		LE FACTOR	
NEW DESIGN		0.750	PLATI			2.500
DESIGN REPEAT		0.800		AR OF TECH		1995*
ENGINEERING CHANG	ES	0.023*			0	
INTEGRATION LEVE		0.201		F(FIELD)		21997*
CCURDIT T	C#3.5#		BTD 08 TMM.		m=\\	
SCHEDULE	START		FIRST ITEM		FINISH	
DEVELOPMENT			•			(25)
PRODUCTION	JAN 00	(14)	FEB 01* (11)	JAN 02*	(25)
SUPPLEMENTAL INFOR	MATION					
ECONOMIC BASE		188	TOOLI	NG & PROCE	SS FACTORS	
ESCALATION		0.00	DEVI	ELOPMENT T	OOLING	1.00
T-1 COST		46.97*	PROI	OUCTION TO	OLING	1.00
AMORTIZED UNIT C	OST 1	.22.36*	RAT	E TOOLING		0
DEV COST MULTIPLI		1.00*	PRIC	CE IMPROVE	MENT FACTOR	0.933*
PROD COST MULTIPL	IER	1.00*		LEARNING		0.887*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - LANDING SYSTEM

LUNAR LANDER - LANI	DING SISTEM			
PRODUCTION OUANTI	TY 40	UNIT WEIGHT	196.00 MODI	E 2
PRODUCTION QUANTITE PROTOTYPE QUANTITE	y 28.000	UNIT VOLUME	8000.00 QUA	NTITY/NHA 4
UNIT PROD COST 29	6.00		MONTHLY P	ROD RATE 2.82
PROGRAM COST (\$ 1000 ENGINEERING	0) DEVELOPM	IENT PRODU	CTION TO	OTAL COST
DRAFTING	2485	i. 1	.09.	2594.
DESIGN	8629		23.	9053.
SYSTEMS	1150	-	-	1150.
PROJECT MGMT			53.	3087.
DATA	544	. 10	189.	1633.
SUBTOTAL (E)	NG) 14842	26	75.	17517.
MANUFACTURING				
PRODUCTION	_		40.	11840.
PROTOTYPE	14256		-	14256.
TOOL-TEST EQ	993	. 15	76.	2570.
SUBTOTAL (M	FG) 15249	. 134	17.	28666.
TOTAL COST	30091	. 160	92.	46182.
DESIGN FACTORS	MECHANICAL	PRODUC	T DESCRIPTORS	
WEIGHT	196.000	ENGI	NEERING COMPL	EXITY 1.000
DENSITY	0.025*	PROT	OTYPE SUPPORT	1.0
MFG. COMPLEXITY	7.400	•		ACTOR 0.250*
NEW DESIGN	1.000	PLATF		2.500
DESIGN REPEAT			R OF TECHNOLOG	
ENGINEERING CHANGE			BILITY FACTOR	
INTEGRATION LEVEL	0.263	MTBF	(FIELD)	15650*
SCHEDULE	START	FIRST ITEM	FINI	
DEVELOPMENT	JAN 95 (18)	JUN 96* (13) JUL !	
PRODUCTION	JAN 00 (17)	MAY 01* (14) JUL (02* (31)
SUPPLEMENTAL INFORM	MATION			
ECONOMIC BASE	188	TOOLIN	G & PROCESS FA	ACTORS
ESCALATION	0.00		LOPMENT TOOLI	
T-1 COST	469.72*	PROD	UCTION TOOLING	1.00
AMORTIZED UNIT CO			E TOOLING	0
DEV COST MULTIPLIE				FACTOR 0.937*
PROD COST MULTIPLE	ER 1.00*	UNIT	LEARNING CURV	0.888*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - THERMAL PROTECTION

	MAND INCIDENTION		
PRODUCTION QUANTITY PROTOTYPE QUANTITY	TY 10 UN Y 3.000 UN	IT WEIGHT 2017.00 IT VOLUME 49999.99	MODE 2 OUANTITY/NHA 1
UNIT PROD COST 102			THLY PROD RATE 1.21
PROGRAM COST (\$ 1000 ENGINEERING	0) DEVELOPMEN	T PRODUCTION	TOTAL COST
DRAFTING	2684.	153.	2838.
DESIGN	8232.		8755.
SYSTEMS	1389.		1389.
PROJECT MGMT			2503.
DATA	508.		1676.
SUBTOTAL (E			17161.
MANUFACTURING			
PRODUCTION	_	10273.	10273.
PROTOTYPE	5918.		5918.
TOOL-TEST EQ			2258.
SUBTOTAL (ME			18449.
TOTAL COST	20562.	15049.	35610.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	2017.000		COMPLEXITY 1.000
DENSITY	0.040*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	6.510	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	0.750	PLATFORM	2.500
DESIGN REPEAT	0.500	VEXD OF MEC	HNOLOGY 1995*
ENGINEERING CHANGE	ES 0.017*	RELIABILITY F.	ACTOR 1.0
INTEGRATION LEVEI	L 0.350	MTBF (FIELD)	
SCHEDULE	START		FINISH
	JAN 95 (20)		FEB 97* (26)
PRODUCTION	JAN 00 (20)	AUG 01* (7)	MAR 02* (27)

SUPPLEMENTAL INFORMATION ECONOMIC BASE

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS
ESCALATION	0.00	DEVELOPMENT TOOLING 1.00
T-1 COST	1312.05*	PRODUCTION TOOLING 1.00
AMORTIZED UNIT COST	1504.86*	RATE TOOLING (
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR 0.952
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE 0.891*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - 02	TANK						
PRODUCTION QUANTIT	ry	20	UNIT	WEIGHT	1012.	.00 MODE	2
PROTOTYPE QUANTITY	<u>r</u>	14.000	UNIT	VOLUME	6000.	.00 QUANTIT	Y/NHA 2
UNIT PROD COST 1600	0.66				MC	ONTHLY PROD	RATE 1.23
PROGRAM COST (\$ 1000))	DEVELOP	MENT	PF	RODUCTION	TOTAL	COST
ENGINEERING			_				
DRAFTING		702			353.	· -	78.
DESIGN		2411	-		1391.		08.
SYSTEMS		3255					55. 77.
PROJECT MGMT DATA		518° 1460			3090. 3210.		70.
	TC)	_			8043.		87.
SUBTOTAL (E	16)	4104	4.		0043.	490	07.
MANUFACTURING							
PRODUCTION		-	-		32013.	320	13.
PROTOTYPE		36434	4.		-	364	34.
TOOL-TEST EQ		2664	4.		4872.	75	36.
SUBTOTAL (ME	rg)	39098	3.		36886.	759	84.
TOTAL COST		80142	2.		44929.	1250	71.
DESIGN FACTORS	M	ECHANICAI	<u>L</u>	PRO	DUCT DESC	CRIPTORS	
WEIGHT		012.000		E	NGINEERIN	NG COMPLEXIT	Y 1.000
DENSITY		0.169*		P	ROTOTYPE	SUPPORT	1.0
MFG. COMPLEXITY		7.550			PROTO SCH	HEDULE FACTO	R 0.250*
NEW DESIGN		1.000		PI	ATFORM		2.500
DESIGN REPEAT		0.150			YEAR OF T	TECHNOLOGY	1995*
ENGINEERING CHANGE	s	0.017*		RE	LIABILITY	FACTOR	1.0
INTEGRATION LEVEL	,	0.201		M	TBF (FIELD)	8969*
SCHEDULE	START		F T	RST ITE	:M	FINISH	
DEVELOPMENT		(23)		v 96*	(14)	JAN 98*	(37)
PRODUCTION	JAN 00	(23)		V 01*	(16)	MAR 03*	(39)
SUPPLEMENTAL INFORM	(A TT (N)						
ECONOMIC BASE	MITON	188		TP()C	TIME & DE	ROCESS FACTO	PQ
ESCALATION		0.00				NT TOOLING	1.00
T-1 COST	22	25.66*				TOOLING	1.00
AMORTIZED UNIT CO		46.44*		-	RATE TOOL		0
DEV COST MULTIPLIE		1.00*				ROVEMENT FAC	•
PROD COST MULTIPLE		1.00*		-	IIT LEARNI		0.882*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - H2 TANK

PRODUCTION QUANTITY	20 UNIT	WEIGHT	500.00	MODE	2
PROTOTYPE QUANTITY	14.000 UNIT	VOLUME	33999.99	QUANTITY/NHA	2
UNIT PROD COST 860.89			MONTH	LY PROD RATE	1.46

PROGRAM COST (\$ 1000) DEVELOPMENT PRODUCTION TOTAL COST ENGINEERING DRAFTING 4281. 218. 4499. DESIGN 14695. 861. 15556. SYSTEMS 1984. 1984. PROJECT MGMT 2996. 4669. 1673. DATA 861. 2599. 1738. SUBTOTAL (ENG) 24817. 4490. 29306. MANUFACTURING PRODUCTION 17218. 17218. PROTOTYPE 19623. _ 19623. TOOL-TEST EQ 2639. 1441. 4080. SUBTOTAL (MFG) 21064. 19857. 40921. TOTAL COST 45881. 24346. 70227.

DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	500.000	ENGINEERING COMPLEXITY	1.000
DENSITY	0.015*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	7.550	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECHNOLOGY	1995*
ENGINEERING CHANGES	0.018*	RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	11082*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(20)	AUG 96* (13)	SEP 97* (33)
PRODUCTION	JAN 00	(21)	SEP 01* (13)	OCT 02* (34)

SUPPLEMENTAL INFORMATION

ECONOMI	C BASE	188	TOOLING & PROCESS FACTORS	
ESCALAT	CION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COS	ST	1242.80*	PRODUCTION TOOLING	1.00
AMORTIZ	ED UNIT COST	1217.32*	RATE TOOLING	0
DEV COST	MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	0.948*
PROD COS	T MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.884*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

	(•	
LUNAR LANDER - DMS/GN&C			
PRODUCTION QUANTITY	10 UNIT W	EIGHT 150.00	MODE 1
PROTOTYPE QUANTITY	5.000 UNIT V	-	QUANTITY/NHA 1
UNIT PROD COST 2243.32		MONT	HLY PROD RATE 0.66
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	6265.	675.	6941.
	29423.	2940.	32362.
DESIGN	9428.	2940.	9428.
SYSTEMS			13405.
PROJECT MGMT	11010.	2395.	6945.
DATA	4456.	2489.	
SUBTOTAL (ENG)	60582.	8499.	69080.
MANUFACTURING			
PRODUCTION	_	22433.	22433.
PROTOTYPE	22715.	-	22715.
TOOL-TEST EQ	4594.	4183.	8777.
SUBTOTAL (MFG)	27309.	26616.	53926.
SOBIOTAL (FE G)	27303.	20010.	33320.
TOTAL COST	87891.	35115.	123006.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT 5.00	0* 145.000	ENGINEERING	COMPLEXITY 2.300
DENSITY 43.00		PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY 10.32		PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.00		ELECT VOL FR	
DESIGN REPEAT 0.00		PLATFORM	2.500
ENGINEERING CHANGES 0.04			
HW/SW INTEG. LEVEL 0.50		RELIABILITY	
INTEGRATION LEVEL 0.30		MTBF (FIELD)	
INIBORALION BRADE 0.50	0.131	11121 (1122)	3332
SCHEDULE START	FIR	ST ITEM	FINISH
DEVELOPMENT JAN 95	(34) OCT	97* (13)	NOV 98* (47)
PRODUCTION JAN 00	(25) JAN	02* (14)	MAR 03* (39)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT	
	91.53*	PRODUCTION T	
AMORTIZED UNIT COST 35	11.50*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*	PRICE IMPROV	EMENT FACTOR 0.963*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.887*

- - - PRICE HARDWARE MODEL METRIC - - -THRU-PUT COST

INPUT FILENAME: LA

17-OCT-88 13:57 GLOBAL FILENAME: (188225) ESCALATION FILENAME:

LUNAR LANDER - DMS/GN&C THRUPUT

CATEGORY 3

MODE 8

PROGRAM COST

DEVELOPMENT

PRODUCTION

TOTAL COST

THRU-PUT COST

19020.

12680.

31700.

INPUT FILENAME: LA 17-OCT-88 13:57 (188225)

TINAR	LANDER	_	ELECTRICAL	POWER

PRODUCTION QUANTITY	10 UNIT W		•
PROTOTYPE QUANTITY	5.000 UNIT V	OLUME 1000.00	QUANTITY/NHA 1
UNIT PROD COST 3954.42		MONTH	LY PROD RATE 0.50
PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	5687.	613.	6300.
DESIGN	20801.	2684.	23485.
SYSTEMS	2321.	_	2321.
PROJECT MGMT	3177.	3925.	7102.
DATA	948.	4080.	5028.
SUBTOTAL (ENG)	32934.	11302.	44237.
, , ,			
MANUFACTURING			
PRODUCTION	_	39544.	39544.
PROTOTYPE	27800.	_	27800.
TOOL-TEST EQ	3528.	6858.	10385.
SUBTOTAL (MFG)	31327.	46402.	77729.
TOTAL COST	64262.	57704.	121966.
DESIGN FACTORS ELECTRON:	IC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 3.000		ENGINEERING C	OMPLEXITY 1.000
DENSITY 30.000	0.475*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 10.320	8.970	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.000	1.000	ELECT VOL FR	
DESIGN REPEAT 0.000	0.500	PLATFORM	2.500
ENGINEERING CHANGES 0.056	* 0.030*	YEAR OF TECH	
HW/SW INTEG. LEVEL 0.000		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.843	0.201	MTBF (FIELD)	92273*
	===	.coco.	m_v_
SCHEDULE START			FINISH
DEVELOPMENT JAN 95	•		FEB 98* (38)
PRODUCTION JAN 00	(28) APR	(18)	OCT 03* (46)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
	0.00	DEVELOPMENT T	
	0.45*	PRODUCTION TO	_
	0.41*	RATE TOOLING	0
	1.00*		MENT FACTOR 0.967*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.887*

--- PRICE HARDWARE MODEL METRIC --- MECHANICAL ITEM

INPUT FILENAME: LA 17-OCT-88 13:57 (188225)

LUNAR LANDER - AIRLOCK/TUNNEL

PRODUCTION QUANTITY	10	UNIT WEIGHT	455.00	MODE	2
PROTOTYPE OHANTITY	7 000	UNITE VOLUME	24000 00	OHANTTTV/NHA	1

UNIT PROD COST 879.81 MONTHLY PROD RATE 1.09

PROGRAM COST (\$ 100	0) DEVELOPMEN	T PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	3246.	177.	3423.
DESIGN	10890.	703.	11593.
SYSTEMS	1523.	-	1523.
PROJECT MGMT	1851.	961.	2812.
DATA	592.	1003.	1595.
SUBTOTAL (E	NG) 18102.	2844.	20946.
MANUFACTURING			
PRODUCTION	_	8798.	8798.
PROTOTYPE	9973.	-	9973.
TOOL-TEST EQ	768.	1674.	2442.
SUBTOTAL (M	FG) 10741.	10472.	21213.
TOTAL COST	28843.	13316.	42159.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCR	IPTORS
WEIGHT	455.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	0.019*	PROTOTYPE SU	UPPORT 1.0
MFG. COMPLEXITY	7.610	PROTO SCHEI	OULE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.300	YEAR OF TEC	CHNOLOGY 1995*
ENGINEERING CHAN	GES 0.021*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVE	L 0.350	MTBF (FIELD)	11115*
SCHEDULE	START	FIRST ITEM	FINISH
DEVELOPMENT		AUG 96* (9)	MAY 97* (29)
PRODUCTION	JAN 00 (20)	AUG 01* (9)	MAY 02* (29)
SUPPLEMENTAL INFOR	MATION		
ECONOMIC BASE	188	TOOLING & PROC	CESS FACTORS
ESCALATION	0.00	DEVELOPMENT	
T-1 COST	1142.49*	PRODUCTION T	
AMORTIZED UNIT CO		RATE TOOLIN	•
DEV COST MULTIPL			VEMENT FACTOR 0.954*
PROD COST MULTIP	LIER 1.00*	UNIT LEARNIN	NG CURVE 0.884*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - CREW MODULE SHELL

LONAR DANDER - CREW NO	DONE SHEDD		
PRODUCTION QUANTITY	7 UN:	T WEIGHT 1200.00	MODE 2
PROTOTYPE QUANTITY		T VOLUME 24000.00	
PROTOTIFE QUANTITI	7.000 014.	24000.00	2011111111111111
UNIT PROD COST 3116.30		MONTE	HLY PROD RATE 0.63
0.11 1.00 0001 0110.00		5552.25	
PROGRAM COST (\$ 1000)	DEVELOPMEN'	r PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	8241.	508.	8750.
DESIGN	28110.	2285.	30395.
Systems	3775.	-	3775.
PROJECT MGMT	5008.	2535.	7543.
DATA	1535.	2653.	4188.
SUBTOTAL (ENG)	46670.	7981.	54651.
MANUFACTURING			
PRODUCTION	-	21814.	21814.
PROTOTYPE	32811.	-	32811.
TOOL-TEST EQ	2659.	4575.	7233.
SUBTOTAL (MFG)	35470.	26389.	61859.
TOTAL COST	82140.	34370.	116510.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	1200.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	0.050*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	7.980	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.250	YEAR OF TECH	
ENGINEERING CHANGES	0.021*	RELIABILITY F	FACTOR 1.0
INTEGRATION LEVEL	0.097	MTBF (FIELD)	7138*
SCHEDULE STA	RT	FIRST ITEM	FINISH
DEVELOPMENT JAN	95 (26)	FEB 97* (12)	FEB 98* (38)
PRODUCTION JAN	00 (26)	FEB 02* (10)	DEC 02* (36)
	017		
SUPPLEMENTAL INFORMATION		TOOLING & PROCE	ree Exemone
ECONOMIC BASE	188 0.00	DEVELOPMENT	
ESCALATION T-1 COST	0.00 3891.84*	PRODUCTION TO	
		RATE TOOLING	
AMORTIZED UNIT COST DEV COST MULTIPLIER	1.00*		EMENT FACTOR 0.963*
		UNIT LEARNING	
PROD COST MULTIPLIER	1.00*	UNII LEARNING	5 CURVE 0.0//~

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - CREW MODULE	ECLSS		
PRODUCTION QUANTITY		WEIGHT 1390.00	
PROTOTYPE QUANTITY	5.000 UNI	F VOLUME 5000.00	QUANTITY/NHA 1
UNIT PROD COST 6208.93		MONT	HLY PROD RATE 0.50
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	12265.	1162.	13427.
DESIGN	42165.	4993.	47158.
Systems	5484.	_	5484.
PROJECT MGMT	6785.	5027.	11812.
DATA	2149.	5254.	7403.
SUBTOTAL (ENG)	68849.	16436.	85284.
MANUFACTURING			
PRODUCTION	-	43463.	43463.
PROTOTYPE	45483.		45483.
TOOL-TEST EQ	4190.	9165.	13355.
SUBTOTAL (MFG)	49673.	52628.	102301.
TOTAL COST	118522.	69063.	187585.
DESIGN FACTORS M	ECHANICAL	PRODUCT DESCRI	PTORS
	390.000	ENGINEERING (
DENSITY	0.278*	PROTOTYPE SUI	
MFG. COMPLEXITY	8.510	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	0.800	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	
ENGINEERING CHANGES	0.024*	RELIABILITY I	
INTEGRATION LEVEL	0.120	MTBF (FIELD)	5559*
SCHEDULE START		'IRST ITEM	FINISH
DEVELOPMENT JAN 95		UN 97* (11)	MAY 98* (41)
PRODUCTION JAN 00	(30) 3	UN 02* (12)	JUN 03* (42)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT :	rooling 1.00
T-1 COST 78	35.69*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST 98	66.20*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVI	EMENT FACTOR 0.968*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.871*

INPUT FILENAME: LA 17-OCT-88 13:57 (188225)

LUNAR LANDER - CREW MODULE CONTROLS

PRODUCTION QUANTITY	<i>t</i>	7	UNIT W	VEIGHT	55.00	MODE	1
PROTOTYPE QUANTITY		5.000	V TINU	OLUME	50.00	QUANTITY/	NHA 1
UNIT PROD COST 376	.12				MONT	HLY PROD RA	TE 1.28
PROGRAM COST(\$ 1000) ENGINEERING	DE	EVELOPM	1ENT	PROD	UCTION	TOTAL C	OST
DRAFTING		2654	١.		314.	2969	٠.
DESIGN		9710).	1	.256.	10966	.
SYSTEMS		1083	3.		_	1083	١.
PROJECT MGMT		984	١.		400.	1384	
DATA		351			417.	767	,
SUBTOTAL (EN	3)	14782	2.	2	2387.	17169).
, , , , , , , , , , , , , , , , , , , ,	-,						
MANUFACTURING							
PRODUCTION		-		2	633.	2633	١.
PROTOTYPE		2545	· .		_	2545	•
TOOL-TEST EQ		341	. .		685.	1026	5.
Subtotal (MF)	3)	2886	5.	3	318.	6204	.
TOTAL COST		17668	· .	5	706.	23374	١.
DESIGN FACTORS E	ELECTRONIC	. MECHA	NICAL	PRODU	CT DESCRIE	TORS	
WEIGHT	5.000*		000			COMPLEXITY	1.000
DENSITY	40.000		000*		TOTYPE SUE		1.0
MFG. COMPLEXITY	10.320		.760	PR	OTO SCHEDU	JLE FACTOR	0.250*
NEW DESIGN	0.900		.000	EL	ECT VOL FE	RACTION	0.002*
DESIGN REPEAT	0.000	0.	000	PLA	TFORM		2.500
ENGINEERING CHANGE			.024*	YE	AR OF TECH	INOLOGY	1995*
HW/SW INTEG. LEVEI				REI	JABILITY H	FACTOR	1.0
INTEGRATION LEVEL	0.305	0.	.151	MT	BF (FIELD)		55932*
SCHEDULE	START		FIF	RST ITEM		FINISH	
DEVELOPMENT C	JAN 95	(20)	AUG	3 96* (7)	MAR 97*	(27)
PRODUCTION	JAN 00	(17)	MA	č 01* (5)	OCT 01*	(22)
SUPPLEMENTAL INFORM							
ECONOMIC BASE		188				ESS FACTORS	
ESCALATION		.00			ELOPMENT 1		1.00
T-1 COST	451.				DUCTION TO		1.00
AMORTIZED UNIT COS		.07*			TE TOOLING		0
DEV COST MULTIPLIE		.00*				EMENT FACTO	
PROD COST MULTIPLE	ER 1.	.00*		UNI	T LEARNING	CURVE	0.899*

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - CREW MODULE	HATCHES		
PRODUCTION QUANTITY	14 UNIT	WEIGHT 29.00	MODE 2
PROTOTYPE QUANTITY	8.000 UNIT		-
-			
UNIT PROD COST 76.01		MONTH	HLY PROD RATE 2.54
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	337.	29.	366.
DESIGN	1136.	115.	1251.
SYSTEMS	158.	<u>-</u>	158.
PROJECT MGMT	193.	116.	308.
DATA	61.	120.	182.
SUBTOTAL (ENG)	1885.	380.	2265.
MANUFACTURING		•	
PRODUCTION	-	1064.	1064.
PROTOTYPE	1000.	-	1000.
TOOL-TEST EQ	79.	206.	285.
Subtotal (MFG)	1080.	1270.	2350.
TOTAL COST	2965.	1650.	4614.
DESIGN FACTORS M	ECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	29.000		COMPLEXITY 1.000
DENSITY	0.029*	PROTOTYPE SUP	-
MFG. COMPLEXITY	7.610		LE FACTOR 0.250*
NEW DESIGN	0.500	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	NOLOGY 1995*
ENGINEERING CHANGES	0.023*	RELIABILITY F	
INTEGRATION LEVEL	0.151	MTBF (FIELD)	
SCHEDULE START	רים	IRST ITEM	FINISH
DEVELOPMENT JAN 95			SEP 96* (21)
PRODUCTION JAN 00	• •		JUN 01* (18)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST 1	01.55*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST 1	17.84*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.939*
	1.00*	UNIT LEARNING	

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

LUNAR LANDER - CREW MODULE INTEGRATION

LUNAR LANDER - CREW MODULE	INTEGRATION		
PRODUCTION QUANTITY	7 UNIT W	EIGHT 65.71	MODE 1
PROTOTYPE QUANTITY	7.000 UNIT V	OLUME 270.21	QUANTITY/NHA 1
UNIT PROD COST 197.29		MONTH	LY PROD RATE 1.15
• • • • • • • • • • • • • • • • • • • •	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	4464	70	1041
DRAFTING	1161.	79.	1241.
DESIGN	4202. 488.	314.	4516. 488.
SYSTEMS	520.	101	701.
PROJECT MGMT DATA	172.	181. 189.	360.
	6542.	763.	7305.
SUBTOTAL (ENG)	0342.	763.	7305.
MANUFACTURING			
PRODUCTION	- -	1381.	1381.
PROTOTYPE	2272.	-	2272.
TOOL-TEST EQ	261.	375.	636.
SUBTOTAL (MFG)	2533.	1756.	4289.
TOTAL COST	9076.	2519.	11595.
DESIGN FACTORS ELECTRON	NIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 0.786	64.926*	ENGINEERING C	OMPLEXITY 1.000
DENSITY 0.582	2* 0.240*		PORT 1.0
MFG. COMPLEXITY 9.54		PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 0.700	0.700	ELECT VOL FRA	CTION 0.005
DESIGN REPEAT 0.000	0.000	PLATFORM	2.500
ENGINEERING CHANGES 0.034	1* 0.015*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.000)	RELIABILITY F	
INTEGRATION LEVEL 3.000	0.500	MTBF (FIELD)	274850*
SCHEDULE START	FTD	ST ITEM	FINISH
DEVELOPMENT JAN 95			DEC 96* (24)
PRODUCTION JAN 97*	* *	· · · · · · · · · · · · · · · · · · ·	SEP 98* (21)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT	TOOLING 1.00*
T-1 COST 2	33.90*	PRODUCTION T	OOLING 1.00*
AMORTIZED UNIT COST 35	59.85*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	MENT FACTOR 0.900*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.905*

- - - PRICE HARDWARE MODEL METRIC - - - HARDWARE SOFTWARE INTEGRATION

INPUT FILENAME: LA

17-OCT-88 13:57

(188225)

LUNAR LANDER - DMS/GN&C INTEGRATION

MODE 52

LANGUAGE Ada SOURCE CODE 143000 NON-EXECUTABLE SLOC 0.01

APPLICATION 10.95 MGMT COMPLEXITY 1.00

PROGRAM COST (\$ 1000) DEVELOPMENT
ENGINEERING
DRAFTING 686.

DESIGN 5802.
SYSTEMS 1264.
PROJECT MGMT 915.
DATA 456.

TOTAL COST 9123.

SCHEDULE START END
DEVELOPMENT JAN 99 (31) JUL 01*

SUPPLEMENTAL INFORMATION

ECONOMIC BASE 199*

ESCALATION 0.00 DEV COST MULTIPLIER 1.00*

- - - PRICE HARDWARE MODEL METRIC - - -INTEGRATION AND TEST

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

T.IINAP	T.ANDER	INTEGRATION

LUNAR LANDER INTEGRATION			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	10 INT WEIGHT 7.000 INT VOLUME		
UNIT PROD COST 817.27		MONTHLY PROD	RATE 0.86
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION TOTA	AL COST
DRAFTING	3381.	278.	3659.
DESIGN	12261.		3382.
SYSTEMS	1415.		1415.
PROJECT MGMT	1679.	931.	2609.
DATA	528.		1497.
SUBTOTAL (ENG)	19264.		2563.
MANUFACTURING PRODUCTION PROTOTYPE	- 9872.		8173. 9872.
TOOL-TEST EQ	1121.	1912.	3032.
SUBTOTAL (MFG)	10992.	10084. 2:	1077.
TOTAL COST	30257.	13383. 4	3640.
DESIGN FACTORS ELECTRO WEIGHT 1.8 DENSITY 0.56 MFG. COMPLEXITY 9.62 NEW PLANS LEVEL 0.70 ENGINEERING CHANGES 0.03 INTEGRATION LEVEL 0.00	07* 310.261* 51* 0.240* 22* 7.942* 00 0.700 35* 0.016*	RODUCT DESCRIPTORS ENGINEERING COMPLET PROTOTYPE SUPPORT PROTO SCHEDULE FACT ELECT VOL FRACTION PLATFORM YEAR OF TECHNOLOGY RELIABILITY FACTOR MTBF (FIELD)	1.0 TOR 0.250* 0.002 2.500 1999*
SCHEDULE START DEVELOPMENT JAN 99 PRODUCTION JUL 01*	(20) AUG 00*	(10) JUN 01:	* (30)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188 TO	OOLING & PROCESS FAC	TORS
ESCALATION	0.00	DEVELOPMENT TOOLING	
	338.28*	PRODUCTION TOOLING	
DEV COST MULTIPLIER	1.00*	1 KODOCITOR TOOLING	1.00
PROD COST MULTIPLIER	1.00*		
ENOD COST MUDITEDIER	1.00.		

- - - PRICE HARDWARE MODEL METRIC - - - SYSTEM COST SUMMARY

INPUT FILENAME: LA

17-OCT-88 13:57 (188225)

TOTAL COST, WITH INTEGRATION COST

PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	111935.	6409.	118345.
DESIGN	456312.	27622.	483934.
SYSTEMS	97610.	-	97610.
PROJ MGMT	126501.	42814.	169315.
DATA	46304.	44450.	90754.
SUBTOTAL (ENG)	838663.	121295.	959958.
MANUFACTURING			
PRODUCTION	-	440896.	440896.
PROTOTYPE	501714.	_	501714.
TOOL-TEST EQ	55470.	74311.	129780.
PURCH ITEMS	0.	0.	0.
SUBTOTAL (MFG)	557184.	515206.	1072390.
TOTAL COST	1395847.	636501.	2032347.
THRU-PUT COSTS	DEVELOPMENT	PRODUCTION	TOTAL COST
FIELD SUPPORT	0.	0.	0.
FIELD TEST	0.	0.	0.
SOFTWARE	19020.	12680.	31700.
OTHER	0.	0.	0.
TOTAL THRU-PUT COST	19020.	12680.	31700.
TOTAL COST, WITH THRU-PUT	COSTS		
	DEVELOPMENT	PRODUCTION	TOTAL COST
	1414867.	649181.	2064047.

INPUT FILENAME: LOX 10-OCT-88 12:01

10-OCT-88 12:01 (188012)

O2 PLANT - FEED BIN

O2 PLANT - FEED BIN			
PRODUCTION QUANTITY PROTOTYPE QUANTITY		IT WEIGHT 215.00 IT VOLUME 22700.00	
UNIT PROD COST 371.44	1	MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMEN!	r PRODUCTION	TOTAL COST
DRAFTING	388.	68.	456.
DESIGN	1349.	256.	1606.
SYSTEMS	167.	_	167.
PROJECT MGMT	211.	77.	288.
DATA	67.	39.	106.
SUBTOTAL (ENG)	2183.	440.	2623.
MANUFACTURING PRODUCTION		371.	371.
PROTOTYPE	1849.	_	1849.
TOOL-TEST EQ	230.	30.	260.
SUBTOTAL (MFG)	2079.	401.	2481.
TOTAL COST	4263.	841.	5104.
DESIGN FACTORS ELE	ECTRONIC MECHANIC	CAL PRODUCT DESCRI	PTORS
WEIGHT	0.500* 214.50) ENGINEERING	COMPLEXITY 1.000
DENSITY	0.220 0.00	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	9.560 7.23	0 PROTO SCHEDI	JLE FACTOR 0.250*
NEW DESIGN	1.000 0.25	0 ELECT VOL F	RACTION 0.000*
DESIGN REPEAT	0.000 0.25) PLATFORM	2.000
ENGINEERING CHANGES	0.075* 0.02	8* YEAR OF TECH	HNOLOGY 1995*
HW/SW INTEG. LEVEL	0.000	RELIABILITY 1	FACTOR 1.0
INTEGRATION LEVEL	0.000 0.00	0 MTBF (FIELD)	656461*
SCHEDULE STA		FIRST ITEM	FINISH
	N 95 (15) N 00 (17)	MAR 96* (3) MAY 01* (0)	JUN 96* (18) MAY 01* (17)

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING 1.0)0
T-1 COST	371.26*	PRODUCTION TOOLING 1.0)0
AMORTIZED UNIT COST	841.05*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR 1.0)00 *
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE 0.9	926*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02 PLANT - PRIMARY JAW CRUSHER

OL LIMIT INTERNA	CAN CROOM	ar.		
PRODUCTION QUANT	TY	1 UNIT	WEIGHT 724.00	MODE 1
PROTOTYPE QUANTIT		3.000 UNIT		
UNIT PROD COST 249	6.15		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 100)(1)	EVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	, o, b.	I V ELLOT PERIVE	PRODUCTION	IOIAL COOI
DRAFTING		2328.	385.	2713.
DESIGN		8091.	1627.	9718.
Systems		1001.	-	1001.
PROJECT MGMT	?	1279.	500.	1778.
DATA		404.	251.	655.
SUBTOTAL (E	NG)	13104.	2762.	15866.
MANUFACTURING				
PRODUCTION		-	2496.	2496.
PROTOTYPE		11434.	-	11434.
TOOL-TEST EQ SUBTOTAL (M	-	1330. 12764.	216. 2712.	1545. 15476
SUBICIAL (F	EG)	12/04.	2/12.	15476.
TOTAL COST	•	25868.	5474.	31342.
			0.17.20	000 100
DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIE	TORS
WEIGHT	1.500*		ENGINEERING O	COMPLEXITY 1.000
DENSITY	37.500	1.806*	PROTOTYPE SUF	PORT 1.0
MFG. COMPLEXITY		8.070	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	1.000	0.500	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT	0.000		PLATFORM	2.000
ENGINEERING CHAN		0.034*		
HW/SW INTEG. LEV			RELIABILITY F	
INTEGRATION LEVE	L 0.000	0.000	MTBF (FIELD)	223681*
SCHEDULE	START	FI	RST ITEM	FINISH
DEVELOPMENT	JAN 95			APR 97* (28)
PRODUCTION	JAN 00	•		JAN 02* (25)
SUPPLEMENTAL INFOR				
ECONOMIC BASE		.88	TOOLING & PROCE	
ESCALATION		00	DEVELOPMENT T	
T-1 COST	2494.		PRODUCTION TO	
AMORTIZED UNIT C		08*	RATE TOOLING	
DEV COST MULTIPL		00*		MENT FACTOR 1.000*
PROD COST MULTIP	TIEK I.	00*	UNIT LEARNING	CURVE 0.918*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02	PT.ANT	_	COARSE	SCREEN

02 PLANT - COARSE SCREEN			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT WEI 3.000 UNIT VOL	GHT 3.00 LUME 40.00	
UNIT PROD COST 13.77		MONTH	LY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	47.	3.	50.
DESIGN	162.	14.	176.
SYSTEMS	20.		20.
PROJECT MGMT	18.	3.	21.
DATA	7.	2.	8.
SUBTOTAL (ENG)	253.	23.	276.
MANUFACTURING			
PRODUCTION	-	14.	14.
PROTOTYPE	62.	-	62.
TOOL-TEST EQ	8.	1.	10.
SUBTOTAL (MFG)	71.	15.	86.
TOTAL COST	323.	38.	361.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 0.01		ENGINEERING C	OMPLEXITY 1.000
DENSITY 2.50		PROTOTYPE SUP	
MFG. COMPLEXITY 9.56		PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.00		ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.00		PLATFORM	2.000
ENGINEERING CHANGES 0.07		YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.00		MTBF (FIELD)	30352644*
SCHEDULE START	FIRST	: ITEM	FINISH
DEVELOPMENT JAN 95	(10) OCT 9		JAN 96* (13)
PRODUCTION JAN 00	(9) SEP 0		SEP 00* (9)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	13.76*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST	37.83*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.995*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.931*

INPUT FILENAME: LOX 10-OCT-88 12:01

(188012)

O2 PLANT - SECONDA	RY CRUSHER			
PRODUCTION QUANTI	TΥ	1 UNIT W	EIGHT 239.00	MODE 1
PROTOTYPE QUANTIT		3.000 UNIT V		QUANTITY/NHA 1
UNIT PROD COST 94	6.47		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 100 ENGINEERING	0) DE	VELOPMENT	PRODUCTION	TOTAL COST
DRAFTING		1071.	162.	1233.
DESIGN		3719.	610.	4329.
SYSTEMS		461.	-	461.
PROJECT MGMT		544.	190.	735.
DATA		177.	95.	273.
SUBTOTAL (E	NG)	5972.	1058.	7030.
MANUFACTURING				
PRODUCTION		-	946.	946.
PROTOTYPE		4290.	-	4290.
TOOL-TEST EQ		522.	82.	604.
SUBTOTAL (M	FG)	4813.	1028.	5841.
TOTAL COST		10785.	2086.	12871.
DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIE	PTORS
WEIGHT	0.500*	238.500	ENGINEERING (COMPLEXITY 1.000
DENSITY	20.833	0.994*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	9.560	8.070	PROTO SCHEDU	ILE FACTOR 0.250*
NEW DESIGN	1.000	0.500	ELECT VOL FF	ACTION 0.000*
DESIGN REPEAT	0.000	0.100	PLATFORM	2.000
ENGINEERING CHANGE	GES 0.070*	0.035*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEV	EL 0.000		RELIABILITY E	FACTOR 1.0
INTEGRATION LEVE	L 0.000	0.000	MTBF (FIELD)	656461*
SCHEDULE	START	FIR	ST ITEM	FINISH
DEVELOPMENT	JAN 95		96* (5)	DEC 96* (24)
PRODUCTION	JAN 00	,,	01* (0)	SEP 01* (21)
SUPPLEMENTAL INFORM	MATION			
ECONOMIC BASE	1	88	TOOLING & PROCE	SS FACTORS
ESCALATION	0.	00	DEVELOPMENT T	COOLING 1.00
T-1 COST	945.	97*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT CO	OST 2086.	05*	RATE TOOLING	0
DEV COST MULTIPLE	IER 1.	00*	PRICE IMPROVI	EMENT FACTOR 1.000*
PROD COST MULTIP	LIER 1.	00*	UNIT LEARNING	CURVE 0.920*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02 PLANT - SECONDARY SCREEN

PRODUCTION QUANTITY	1	UNIT WEIGH	T 3.00	MODE 1
PROTOTYPE QUANTITY		UNIT VOLUM	E 40.00	QUANTITY/NHA 1
_				
UNIT PROD COST 13.7	7		MONT	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000)	DEVELOP	MENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING	_	7.	3.	50.
DESIGN	16	- ·	14.	176.
Systems	_	0.	-	20.
PROJECT MGMT		8.	3.	21.
DATA		7.	2.	8.
SUBTOTAL (ENG)	25	3.	23.	276.
MANUFACTURING				
PRODUCTION		_	14.	14.
PROTOTYPE		2.	-	62. 10.
TOOL-TEST EQ		8.	1. 15.	86.
SUBTOTAL (MFG)	′	1.	15.	00.
TOTAL COST	32	2	38.	361.
TOTAL COST	32	J.	50.	301.
DESIGN FACTORS ELI	ECTRONIC MECH	ANICAL P	RODUCT DESCRI	PTORS
WEIGHT		.990	ENGINEERING (
DENSITY		.075*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY		7.640	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN		500	ELECT VOL FI	RACTION 0.000*
DESIGN REPEAT		.100	PLATFORM	2.000
ENGINEERING CHANGES		.034*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL	0.000		RELIABILITY I	FACTOR 1.0
INTEGRATION LEVEL	0.000	.000	MTBF (FIELD)	30352644*
SCHEDULE STA	ART	FIRST I		FINISH
DEVELOPMENT JAI	N 95 (10)	OCT 95*	(3)	JAN 96* (13)
PRODUCTION JAI	N 00 (9)	SEP 00*	(0)	SEP 00* (9)
SUPPLEMENTAL INFORMAT		_		
ECONOMIC BASE	188	Т	OOLING & PROC	
ESCALATION	0.00		DEVELOPMENT	
T-1 COST	13.76*		PRODUCTION TO	
AMORTIZED UNIT COST			RATE TOOLING	
DEV COST MULTIPLIER				EMENT FACTOR 0.995*
PROD COST MULTIPLIE	R 1.00*		UNIT LEARNING	G CURVE 0.931*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

O2 PLANT - BALL MILL

PRODUCTION QUANTITY	1 UNIT WEIGHT	1914.00	MODE	1
PROTOTYPE QUANTITY	3.000 UNIT VOLUME	400.00	QUANTITY/NHA	1

UNIT PROD COST 7426.27 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)		DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		6534.	784.	7319.
DESIGN		22711.	3419.	26130.
Systems		2809.	-	2809.
PROJECT MGMT		3656.	1297.	4953.
DATA		1148.	651.	1798.
Subtotal (Eng	5)	36858.	6151.	43009.
MANUFACTURING				
PRODUCTION		_	7426.	7426.
PROTOTYPE		33640.	-	33640.
TOOL-TEST EQ		3832.	653.	4485.
SUBTOTAL (MFG	•)	37472.	8079.	45551.
·	•			
TOTAL COST		74330.	14230.	88560.
DESIGN FACTORS E	LECTRO	VIC MECHANICAL	PRODUCT DESCRI	IPTORS
WEIGHT	4.000	* 1910.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	41.000	4.775*	PROTOTYPE SU	
MFG. COMPLEXITY	9.56		PROTO SCHED	OULE FACTOR 0.250*
NEW DESIGN	1.00	0.800	ELECT VOL F	
DESIGN REPEAT	0.000	0.250	PLATFORM	2.000
ENGINEERING CHANGE	s 0.060	* 0.032*	YEAR OF TEC	HNOLOGY 1995*
HW/SW INTEG. LEVEL	0.000)	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.000	0.000	MTBF (FIELD)	85542*
SCHEDULE S	TART	FI	RST ITEM	FINISH
DEVELOPMENT J.	AN 95	(29) MA	<i>t</i> 97* (8)	JAN 98* (37)
PRODUCTION J.	AN 00	(31) JUI	L 02* (0)	JUL 02* (31)
SUPPLEMENTAL INFORMA	TION			
ECONOMIC BASE		188	TOOLING & PROC	ESS FACTORS
ESCALATION		0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	742	2.01*	PRODUCTION T	COOLING 1.00
AMORTIZED UNIT COS	T 1422	9.85*	RATE TOOLING	
DEV COST MULTIPLIE	R	1.00*	PRICE IMPROV	EMENT FACTOR 1.000*
PROD COST MULTIPLI	ER	1.00*	UNIT LEARNIN	G CURVE 0.915*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

O2 PLANT - FINE VIBRATING SCREEN

PRODUCTION QUANTITY PROTOTYPE QUANTITY		1 UI 3.000 UI	NIT WE:		500.00 9000.00	MODE QUANTITY/	1 NHA 1
UNIT PROD COST 2288.1	9				MONTE	LY PROD RA	TE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DE	VELOPMEN	NT	PRODUC	CTION	TOTAL C	OST
DRAFTING		1969.		34	16.	2315	
DESIGN		6841.		161	4.	8455	•
SYSTEMS		847.			_	847	•
PROJECT MGMT		1106.		47	70.	1576	•
DATA		347.			36.	583	
SUBTOTAL (ENG)		11110.		266		13776	•
MANUFACTURING							
PRODUCTION		_		228	38.	2288	•
PROTOTYPE		10221.			-	10221	•
TOOL-TEST EQ		1171.		20)1.	1371	•
SUBTOTAL (MFG)		11391.		248	39.	13880	•
TOTAL COST		22502.		515	55.	27656	•
DESIGN FACTORS EL	ECTRONIC				DESCRIP		
WEIGHT	1.000*	499.00	00			OMPLEXITY	
DENSITY	1.111		55*		TYPE SUP		1.0
MFG. COMPLEXITY	9.560		00			LE FACTOR	0.250*
NEW DESIGN	1.000	0.5			T VOL FR	ACTION	0.000*
DESIGN REPEAT	0.000	0.10	00	PLATE	FORM		2.000
ENGINEERING CHANGES	0.068*	0.0	37*		OF TECH		1995*
HW/SW INTEG. LEVEL	0.000			RELIA	BILITY F	ACTOR	1.0
INTEGRATION LEVEL	0.000	0.0	00	MTBF	(FIELD)		332812*
SCHEDULE ST	ART		FTDC	T ITEM		FINISH	
	n 95	(22)	OCT		6)	APR 97*	(28)
	N 95 N 00	(25)	JAN (•	0)	JAN 02*	(25)
SUPPLEMENTAL INFORMAT				•	, 		
ECONOMIC BASE	_	88				SS FACTORS	
ESCALATION		00			OPMENT I		1.00
T-1 COST	2286.	-			CTION TO	OLING	1.00
AMORTIZED UNIT COST					TOOLING		0
DEV COST MULTIPLIER		00*				MENT FACTO	
PROD COST MULTIPLIE	R 1.	00*		UNIT	LEARNING	CURVE	0.917*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

	(100012)		
02 PLANT - STORAGE HOPPER			
PRODUCTION QUANTITY	1 UNIT WE	IGHT 32.00	MODE 1
PROTOTYPE QUANTITY	3.000 UNIT VO		
•••••			
UNIT PROD COST 72.65		MONTH	LY PROD RATE 0.00
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING DRAFTING	111	15.	127.
	111. 387.	15. 57.	127. 444.
DESIGN		57. -	48.
SYSTEMS PROJECT MGMT	48. 52.	16.	68.
DATA	18.	8.	26.
		97.	713.
SUBTOTAL (ENG)	616.	97.	713.
MANUFACTURING			
PRODUCTION	_	73.	73.
PROTOTYPE	353.	_	353.
TOOL-TEST EQ	46.	6.	52.
SUBTOTAL (MFG)	399.	78.	478.
, ,			
TOTAL COST	1015.	175.	1191.
DESIGN FACTORS ELECTRO	ONIC MECHANICAL	PRODUCT DESCRIP	TORS
	00* 31.900	ENGINEERING C	
DENSITY 0.0	86 0.003*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 9.5	60 7.230	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.0	00 0.250	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.00	00 0.250	PLATFORM	2.000
ENGINEERING CHANGES 0.0	77* 0.029*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00	00	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.0	0.000	MTBF (FIELD)	3178122*
SCHEDULE START	PTRS	T ITEM	FINISH
DEVELOPMENT JAN 95	(11) NOV		FEB 96* (14)
PRODUCTION JAN 00	(12) DEC		DEC 00* (12)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	72.62*	PRODUCTION TO	
	175.19*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	
			-

INPUT FILENAME: LOX 10-OCT-88 12:01

10-OCT-88 12:01 (188012)

O2 PLANT - MAGNETIC SEPARATOR

OZ FLANI - MAGNETIC SEFARA	OK		
PRODUCTION QUANTITY	1 UNIT W	EIGHT 248.00	MODE 1
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT WI 3.000 UNIT VO	OLUME 200.00	
-			
UNIT PROD COST 1138.38		MONTH	LY PROD RATE 0.00
			mama: 000m
	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	1 770	107	1056
DRAFTING	1770.	187.	1956.
DESIGN	6148.	70 4 .	6852. 761.
SYSTEMS	761.	225.	1031.
PROJECT MGMT	806.	113.	388.
DATA	275.	1228.	10988.
SUBTOTAL (ENG)	9760.	1220.	10900.
MANUFACTURING			
PRODUCTION	_	1138.	1138.
PROTOTYPE	5092.		5092.
TOOL-TEST EQ	617.	99.	716.
SUBTOTAL (MFG)	5708.	1238.	6946.
, ,			
TOTAL COST	15468.	2466.	17934.
DESIGN FACTORS ELECTRON			
WEIGHT 0.500			OMPLEXITY 1.000
DENSITY 25.000	1.237*	PROTOTYPE SUP	PORT 1.0 LE FACTOR 0.250*
MFG. COMPLEXITY 9.56	0 8.220	PROTO SCHEDU	
NEW DESIGN 1.00		ELECT VOL FR	
DESIGN REPEAT 0.000	0.100	PLATFORM	2.000
ENGINEERING CHANGES 0.069			
HW/SW INTEG. LEVEL 0.000		RELIABILITY F.	
INTEGRATION LEVEL 0.000	0.000	MTBF (FIELD)	656461*
SCHEDULE START	TTR:	ST ITEM	FINISH
DEVELOPMENT JAN 95	(21) SEP		FEB 97* (26)
PRODUCTION JAN 00			OCT 01* (22)
	(22, 001	V V V	(==,
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	OOLING 1.00
T-1 COST 113	37.77*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST 240	65.75*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	MENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.919*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

O2 PLANT - LOW PRESS. FEED HOPPER

PRODUCTION QUANTITY	1 UNIT WEIGHT	12.00	MODE	1
PROTOTYPE QUANTITY	3.000 UNIT VOLUME	2700.00	QUANTITY/NHA	1

UNIT PROD COST 33.22 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	81.	9.	90.
DESIGN	282.	35.	317.
SYSTEMS	35.	_	35.
PROJECT MGMT	34.	9.	42.
DATA	12.	4.	16.
SUBTOTAL (ENG)	444.	57.	501.
MANUFACTURING			
PRODUCTION	_	33.	33.
PROTOTYPE	157.	_	157.
TOOL-TEST EQ	21.	3.	24.
SUBTOTAL (MFG)	179.	36.	214.
TOTAL COST	622.	93.	715.

DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	0.100*	11.900	ENGINEERING COMPLEXITY	1.000
DENSITY	0.370	0.004*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	9.560	7.230	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	0.250	ELECT VOL FRACTION	0.000*
DESIGN REPEAT	0.000	0.250	PLATFORM	2.000
ENGINEERING CHANG	ES 0.079*	0.030*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEVE	L 0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.000	0.000	MTBF (FIELD)	3178338*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(10)	OCT 95* (3)	JAN 96* (13)
PRODUCTION	JAN 00	(10)	OCT 00* (0)	OCT 00* (10)

SUPPLEMENTAL INFORMATION	J		
ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	33.20*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	92.92*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	0.997*
PROD COST MULTIPLIER	1.00*	HINTT LEARNING CHRVE	N 931*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

O2 PLANT - HIGH PRESS. FEED HOPPER

PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT 1	WEIGHT 77.00 VOLUME 2700.00	
UNIT PROD COST 218.84		MONTH	LY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	218.	40.	258.
DESIGN	757.	158.	916.
SYSTEMS	94.	_	94.
PROJECT MGMT	118.	46.	164.
DATA	38.	23.	61.
SUBTOTAL (ENG)	1225.	267.	1492.
MANUFACTURING			
PRODUCTION	-	219.	219.
PROTOTYPE	1031.	-	1031.
TOOL-TEST EQ	128.	18.	146.
SUBTOTAL (MFG)	1159.	237.	1396.
TOTAL COST	2384.	504.	2889.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
)*	ENGINEERING C	
DENSITY 0.74	0.028* 0 7.590	PROTOTYPE SUP	
MFG. COMPLEXITY 9.56	0 7.590	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.00			
DESIGN REPEAT 0.00	0.250	PLATFORM YEAR OF TECH	2.000
ENGINEERING CHANGES 0.07		YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00	0	RELIABILITY F	
INTEGRATION LEVEL 0.00	0.000	MTBF (FIELD)	1611243*
AGUMBUT M. GEL		DOM THEM	PTNTCU
SCHEDULE START			FINISH (18)
	(14) FE		JUN 96* (18)
PRODUCTION JAN 00	(15) MA	R 01* (0)	MAR 01* (15)
SUPPLEMENTAL INFORMATION			
TOOLOGICA DAGE		MOOTING C DROCE	CC #3/70/DC
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	188 0.00	DEVELOPMENT T	OOLING 1.00
ESCALATION T-1 COST 2:	18.73*	DEVELOPMENT TO PRODUCTION TO	OOLING 1.00 OLING 1.00
ESCALATION T-1 COST 2:	18.73*	DEVELOPMENT TO PRODUCTION TO	OOLING 1.00 OOLING 1.00
ESCALATION T-1 COST 2:	18.73* 04.10* 1.00*	DEVELOPMENT TO PRODUCTION TO	OOLING 1.00 OLING 1.00 OMENT FACTOR 1.000*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02 PLANT - REACTOR

PRODUCTION QUANTITY	1	UNIT	WEIGHT	1963.00	MODE	1
PROTOTYPE QUANTITY	5.000	UNIT	VOLUME	4400.00	QUANTITY/NHA	1

UNIT PROD COST16680.74 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	12310.	927.	13237.
DESIGN	43903.	4145.	48048.
Systems	5214.	_	5214.
PROJECT MGMT	9800.	2457.	12257.
DATA	3056.	1233.	4289.
SUBTOTAL (ENG)	74284.	8761.	83045.
MANUFACTURING			
PRODUCTION	-	16681.	16681.
PROTOTYPE	169724.	_	169724.
TOOL-TEST EQ	12600.	1545.	14144.
SUBTOTAL (MFG)	182324.	18225.	200549.
TOTAL COST	256608.	26986.	283594.

DESIGN FACTORS E	LECTRONIC	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	4.000*	1959.000	ENGINEERING COMPLEXITY	1.000
DENSITY	9.091	0.445*	PROTOTYPE SUPPORT	1.5
MFG. COMPLEXITY	9.560	9.050	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	1.000	ELECT VOL FRACTION	0.000*
DESIGN REPEAT	0.000	0.400	PLATFORM	2.000
ENGINEERING CHANGE	S 0.043*	0.029*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEVEL	0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.000	0.000	MTBF (FIELD)	85542*

SCHEDULE	START	FIRST ITEM	FINISH
DEVELOPMENT	JAN 95 (45)	SEP 98* (17)	FEB 00* (62)
PRODUCTION	JAN 00 (36)	DEC 02* (0)	DEC 02* (36)

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	16670.48*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	26986.36*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.911*

INPUT FILENAME: LOX 10-OCT-88 12:01

(188012)

02 PLANT - ELECTRIC HEATER

O2 PLANT - ELECTRIC HEATER			
PRODUCTION QUANTITY	1 UNIT WE	IGHT 134.00	MODE 1
PROTOTYPE QUANTITY	3.000 UNIT VOI	TUME 700.00	QUANTITY/NHA 1
UNIT PROD COST 789.48		монтн	LY PROD RATE 0.00
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			01.6
DRAFTING	701.	114.	816.
DESIGN	2437.	498.	2934.
Systems	302.	-	302.
PROJECT MGMT	386.	155.	542.
DATA	122.	78.	200.
SUBTOTAL (ENG)	3948.	845.	4793.
MANUFACTURING			(
PRODUCTION	-	789.	789.
PROTOTYPE	3459.	-	3459.
TOOL-TEST EQ	408.	70.	478.
SUBTOTAL (MFG)	3868.	859.	4727.
TOTAL COST	7816.	1704.	9520.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 0.30	0* 133.700	ENGINEERING C	OMPLEXITY 1.000
DENSITY 4.28	6 0.191*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 9.56	0 8.390	PROTO SCHEDU	
NEW DESIGN 1.00	0 0.500	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.00	0 0.250	PLATFORM	2.000
ENGINEERING CHANGES 0.07	0* 0.039*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.00	0.000	MTBF (FIELD)	1082786*
SCHEDULE START	FIRST		FINISH
DEVELOPMENT JAN 95	(20) AUG 9		JAN 97* (25)
PRODUCTION JAN 00	(20) AUG (01* (0)	AUG 01* (20)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	OOLING 1.00
	89.06*	PRODUCTION TO	OLING 1.00
	04.46*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	MENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

O2 PLANT - ELECTROLYSIS CELL

PRODUCTION QUANTITY PROTOTYPE QUANTITY			MODE 1 QUANTITY/NHA 1
UNIT PROD COST 1187.47		MONTH	LY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	976.	166.	1142.
DESIGN	3391.	675.	4066.
SYSTEMS	420.	-	420.
PROJECT MGMT	557.	225.	782.
DATA	174.	113.	286.
SUBTOTAL (ENG)	5517.	1178.	6696.
MANUFACTURING			
PRODUCTION	-	1187.	1187.
PROTOTYPE	5223.	-	5223.
TOOL-TEST EQ	621.	105.	726.
SUBTOTAL (MFG)	5844.	1292.	7136.
TOTAL COST	11361.	2471.	13832.
DESIGN FACTORS ELECTRO	ONIC MECHANICAL	PRODUCT DESCRIPT	TORS
WEIGHT 0.5	00* 212.500	ENGINEERING CO	MPLEXITY 1.000
DENSITY 12.5	00 0.531*	PROTOTYPE SUPI	PORT 1.0
MFG. COMPLEXITY 9.5	60 8.390	PROTO SCHEDUI	E FACTOR 0.250*
NEW DESIGN 1.0	00 0.500	ELECT VOL FRA	CTION 0.000*
	00 0.250	PLATFORM	2.000
ENGINEERING CHANGES 0.0	69* 0.039*	YEAR OF TECHN	OLOGY 1995*
HW/SW INTEG. LEVEL 0.00	00	RELIABILITY FA	ACTOR 1.0

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(21)	SEP 96* (5)	FEB 97* (26)
PRODUCTION	JAN 00	(22)	OCT 01* (0)	OCT 01* (22)

4

656461*

1.0

RELIABILITY FACTOR

MTBF (FIELD)

SUPPLEMENTAL INFORMATION

HW/SW INTEG. LEVEL 0.000

INTEGRATION LEVEL 0.000 0.000

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	1186.82*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	2470.72*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.918*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02	PLANT	_	BLOWER
----	-------	---	--------

02 PLANT - BLOWER			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT WEIG 3.000 UNIT VOLU		
UNIT PROD COST 144.77		MONTH	LY PROD RATE 0.00
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING DRAFTING	153.	31.	183.
DESIGN	530.	129.	659.
Systems	66.		66.
PROJECT MGMT	79.	34.	113.
DATA	26.	17.	42.
SUBTOTAL (ENG)	854.	210.	1064.
002101111 (21.0)	001.		
MANUFACTURING			
PRODUCTION	-	145.	145.
PROTOTYPE	645.	-	645.
TOOL-TEST EQ	80.	12.	92.
SUBTOTAL (MFG)	725.	157.	882.
TOTAL COST	1579.	367.	1946.
DESIGN FACTORS ELECTRON	NIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 0.100		ENGINEERING C	
DENSITY 41.000	2.890*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 9.56		PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.00	0 0.250	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.000	0.100	PLATFORM	2.000
ENGINEERING CHANGES 0.07	5* 0.037*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.000)	RELIABILITY F.	ACTOR 1.0
INTEGRATION LEVEL 0.00	0.000	MTBF (FIELD)	3178230*
SCHEDULE START	FIRST	ITEM	FINISH
DEVELOPMENT JAN 95	(14) FEB 96		JUN 96* (18)
PRODUCTION JAN 00	(15) MAR 01	•	MAR 01* (15)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST 1	44.70*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST 3	67.32*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	MENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.924*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

O2 PLANT - CYCLONE SEPAR	ATORS		
PRODUCTION QUANTITY	3 UNI	r WEIGHT 1.00	MODE 2
PROTOTYPE QUANTITY	3.000 UNI		
Indicates goingial	3.000 0112	10.00	Zolavilli, was
UNIT PROD COST 5.31		MONT	HLY PROD RATE 2.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	11.	1.	12.
DESIGN	36.	3.	39.
SYSTEMS	5.	_	5.
PROJECT MGMT	5.	2.	8.
DATA	2.	1.	3.
SUBTOTAL (ENG)	59.	7.	67.
MANUFACTURING			•
PRODUCTION	_	16.	16.
PROTOTYPE	25.	_	25.
TOOL-TEST EQ	3.	5.	8.
SUBTOTAL (MFG)	28.	21.	49.
, -,			
TOTAL COST	87.	29.	116.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	1.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	0.100*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	7.740	PROTO SCHEDU	ULE FACTOR 0.250*
NEW DESIGN	0.500	PLATFORM	2.000
DESIGN REPEAT	0.400	YEAR OF TECH	HNOLOGY 1995*
ENGINEERING CHANGES	0.036*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.000	MTBF (FIELD)	100904*
SCHEDULE START	1	FIRST ITEM	FINISH
DEVELOPMENT JAN 9!	5 (9) :	SEP 95* (3)	DEC 95* (12)
PRODUCTION JAN 00	0 (8) 1	AUG 00* (0)	AUG 00* (8)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCI	ESS FACTORS
	0.00	DEVELOPMENT	
T-1 COST	5.80*	PRODUCTION TO	
AMORTIZED UNIT COST	9.53*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 0.931*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	

INPUT FILENAME: LOX 10-OCT-88 12:01

10-OCT-88 12:01 (188012)

O2 PLANT - DISCHARGE HOPPER

PRODUCTION QUANTITY	1 UNIT W		
PROTOTYPE QUANTITY	3.000 UNIT V	OLUME 1600.00	QUANTITY/NHA 1
UNIT PROD COST 277.53		MONTE	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	248.	48.	295.
DESIGN	860.	201.	1061.
SYSTEMS	107.	-	107.
PROJECT MGMT	141.	58.	199.
DATA	44.	29.	73.
SUBTOTAL (ENG)	1399.	336.	1736.
MANUFACTURING			
PRODUCTION	_	278.	278.
PROTOTYPE	1313.	_	1313.
TOOL-TEST EQ	160.	23.	183.
Subtotal (MFG)	1473.	300.	1773.
TOTAL COST	2872.	637.	3509.
DESIGN FACTORS ELECTRON	IC MECHANICAL	PRODUCT DESCRIE	TORS
WEIGHT 0.200		ENGINEERING C	
DENSITY 1.250			
MFG. COMPLEXITY 9.56	0.064* 0 7.590	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.00			ACTION 0.000*
DESIGN REPEAT 0.000	0.250	PLATFORM	2.000
ENGINEERING CHANGES 0.07	5* 0.032*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.000		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.00	0.000	MTBF (FIELD)	1611243*
0.0000000000000000000000000000000000000		CM TMWW	TINICU
SCHEDULE START		·	FINISH
DEVELOPMENT JAN 95	(15) MAR		JUN 96* (18)
PRODUCTION JAN 00	(16) APR	. 01* (0)	APR 01* (16)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT I	
T-1 COST 2	77.40*	PRODUCTION TO	OOLING 1.00
		RATE TOOLING	0
DEV COST MULTIPLIER	36.74* 1.00*	PRICE IMPROVE	EMENT FACTOR 1.000*
PROD COST MULTIPLIER			

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

	02	PLANT	_	TAILINGS	CONVEYOR
--	----	-------	---	----------	----------

PRODUCTION QUANTITY	1 UNIT WEIGHT	23.00	MODE	1
PROTOTYPE QUANTITY	3.000 UNIT VOLUME	300.00	QUANTITY/NHA	1
UNIT PROD COST 142.84		MONTH	LY PROD RATE	0.00

	.			
PROGRAM COST (\$ 100	U) DE	VELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		228.	22.	250.
DESIGN		791.	101.	892.
SYSTEMS		98.	_	98.
PROJECT MGMT		102.	29.	132.
DATA		35.	15.	50.
SUBTOTAL (E	NG)	1255.	167.	1422.
MANUFACTURING				
PRODUCTION		-	143.	143.
PROTOTYPE		624.	-	624.
TOOL-TEST EQ		76.	12.	88.
SUBTOTAL (M	FG)	700.	155.	856.
TOTAL COST		1955.	322.	2278.
DESIGN FACTORS WEIGHT	ELECTRONIC 0.100*	MECHANICAL 22.900	PRODUCT DESCRIPTION OF THE PROPERTY OF THE PRO	
	0.100	22.500	DIGINDERING C	CHEMORIT I.C

DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	0.100*	22.900	ENGINEERING COMPLEXITY	1.000
DENSITY	3.333	0.076*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	9.560	8.220	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	0.700	ELECT VOL FRACTION	0.000*
DESIGN REPEAT	0.000	0.400	PLATFORM	2.000
ENGINEERING CHANGI	ES 0.074*	0.039*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEVE	L 0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.000	0.000	MTBF (FIELD)	3178230*

SCHEDULE	START		FIRST ITEM	FINISH	
DEVELOPMENT	JAN 95	(16)	APR 96* (4)	AUG 96* (20))
PRODUCTION	JAN 00	(15)	MAR 01* (0)	MAR 01* (15	5)

SUPPLEMENTAL INFORMATION

_				
	ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
	ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
	T-1 COST	142.77*	PRODUCTION TOOLING	1.00
	AMORTIZED UNIT COST	322.28*	RATE TOOLING	0
	DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
	PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.924*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02 PLANT - OXYGEN LIOUIFIER

02 PLANT - OXYGEN LIQUIFIE	R		
PRODUCTION QUANTITY	1 UNIT WE	EIGHT 199.00	MODE 1
PROTOTYPE QUANTITY	3.000 UNIT VO		
-			
UNIT PROD COST 938.80		MONTH	LY PROD RATE 0.00
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	DEVELOPMENT	INODUCTION	101112 0001
DRAFTING	998.	158.	1156.
DESIGN	3468.	605.	4072.
SYSTEMS	429.	-	429.
PROJECT MGMT	516.	188.	705.
DATA	167.	95.	262.
SUBTOTAL (ENG)	5578.	1046.	6624.
142 100 m a CM100 T110			
MANUFACTURING PRODUCTION	_	939.	939.
PROTOTYPE	4189.	-	4189.
TOOL-TEST EQ	508.	82.	590.
SUBTOTAL (MFG)	4697.	1021.	5718.
•			
TOTAL COST	10275.	2066.	12341.
	NIC MECHANICAL	PRODUCT DESCRIP	TODS
DESIGN FACTORS ELECTRON WEIGHT 0.40		ENGINEERING C	
DENSITY 20.003		PROTOTYPE SUP	+ =
MFG. COMPLEXITY 9.56			LE FACTOR 0.250*
NEW DESIGN 1.00		ELECT VOL FR	
DESIGN REPEAT 0.000		PLATFORM	2.000
ENGINEERING CHANGES 0.07		YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.00	0.000	MTBF (FIELD)	816867*
SCHEDULE START	TTD C	ST ITEM	FINISH
DEVELOPMENT JAN 95			JAN 97* (25)
PRODUCTION JAN 00	• •	, - ,	SEP 01* (21)
21.02001201. 012. 00	(/	12 (1)	
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT I	
	38.30*	PRODUCTION TO	2
	66.31*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		MENT FACTOR 1.000* CURVE 0.920*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CORVE U.92U^

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02 PLANT - LOX STORAGE	TANKS		
PRODUCTION QUANTITY	2 UNIT W	WEIGHT 109.50	MODE 1
PROTOTYPE QUANTITY	3.000 UNIT V		QUANTITY/NHA 2
INTER PROPERTY 279 21		MONTHUIT	'
UNIT PROD COST 278.31		MONTHI	LY PROD RATE 0.53
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	852.	57.	909.
DESIGN	2959.	225.	3184.
SYSTEMS	366.	_	366.
PROJECT MGMT	337.	96.	433.
DATA	123.	48.	171.
SUBTOTAL (ENG)	4636.	426.	5063.
MANUFACTURING			
PRODUCTION	-	557.	557.
PROTOTYPE	1347.	-	1347.
TOOL-TEST EQ	167.	138.	305.
SUBTOTAL (MFG)	1514.	695.	2209.
TOTAL COST	6150.	1121.	7272.
DESIGN FACTORS ELEC	TRONIC MECHANICAL	PRODUCT DESCRIPT	ORS
	.200* 109.300	ENGINEERING CO	
DENSITY 0	0.392 0.021*	PROTOTYPE SUPP	ORT 1.0
	9.560 7.550	PROTO SCHEDUL	
NEW DESIGN 1	1.000 1.000	ELECT VOL FRA	CTION 0.000*
DESIGN REPEAT 0	.000 0.150	PLATFORM	2.000
ENGINEERING CHANGES 0	0.073* 0.031*	YEAR OF TECHN	OLOGY 1995*
HW/SW INTEG. LEVEL 0	.000	RELIABILITY FA	CTOR 1.0
INTEGRATION LEVEL 0	0.000	MTBF (FIELD)	1611243*
SCHEDULE STAR	T FIR	RST ITEM F	INISH
DEVELOPMENT JAN	95 (17) MAY	. 96* (4) S	EP 96* (21)
PRODUCTION JAN	, ,	· ·	UN 01* (18)
SUPPLEMENTAL INFORMATION	N		
ECONOMIC BASE	188	TOOLING & PROCES	S FACTORS
ESCALATION	0.00	DEVELOPMENT TO	OLING 1.00
T-1 COST	288.90*	PRODUCTION TOO	LING 1.00
AMORTIZED UNIT COST	560.69*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEM	ENT FACTOR 0.966*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.925*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02	PLANT	_	RADIATOR/	CS
----	-------	---	-----------	----

PRODUCTION QUANTITY PROTOTYPE QUANTITY		TINU 1 TINU 000.E	WEIGHT VOLUME	1362.00 700.00	MODE QUANTITY/I	1 NHA 1
UNIT PROD COST 7713	3.50			MONTH	LY PROD RA	re 0.00
PROGRAM COST (\$ 1000 ENGINEERING)) DE	VELOPMENT	PRODUC	CTION	TOTAL CO	ST
DRAFTING		4847.	6.	41.	5488	_
DESIGN		16844.	-	09.	19753	
SYSTEMS		2084.	23	-	2084	
PROJECT MGMT		3127.	12	58.	4385	
DATA		932.		31.	1563	
	TC)	27833.	=	40.	33273	
SUBTOTAL (EN	(6)	21033.	34	•0.	33273	•
MANUFACTURING						
PRODUCTION		_	77:	13.	7713	
PROTOTYPE		33929.	•	_	33929	•
TOOL-TEST EQ		3843.	6	93.	4536	
SUBTOTAL (ME	rg)	37772.	84	07.	46178	
002101112 (12		0				
TOTAL COST		65605.	138	46.	79451	•
DESIGN FACTORS	ELECTRONIC	MECHANICA	L PRODUC	r DESCRIP	TORS	
WEIGHT	3.000*	1359.000	ENGI	NEERING C	OMPLEXITY	1.000
DENSITY	41.000	1.941	PROT	OTYPE SUP	PORT	1.0
MFG. COMPLEXITY	9.560	8.620	PRO	ro schedu:	LE FACTOR	0.250*
NEW DESIGN	1.000	0.800	ELEC	CT VOL FR	ACTION	0.000*
DESIGN REPEAT	0.000	0.400	PLAT	FORM		2.000
ENGINEERING CHANC	SES 0.060*	0.036	* YEAR	R OF TECHI	NOLOGY	1995*
HW/SW INTEG. LEVE	EL 0.000		RELI	ABILITY F.	ACTOR	1.0
INTEGRATION LEVEL	0.000	0.000	MTB	r(FIELD)		113402*
SCHEDULE	START	F	FIRST ITEM		FINISH	
	- -			•		

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	7708.97*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	13846.25*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.914*

JAN 98*

JUL 02*

(37) (31)

DEVELOPMENT JAN 95 (29) MAY 97* (8)
PRODUCTION JAN 00 (31) JUL 02* (0)

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02 PLANT - LIQUID H2 TANK

PRODUCTION QUANTITY	1 UNIT WEIGHT	12.00		1
PROTOTYPE QUANTITY	3.000 UNIT VOLUME	600.00	QUANTITY/NHA	1
IINTT PROD COST 39 60		момти	T.V DDOD DATE	0.00

PROGRAM COST (\$ 1000)	DEVELOPM	ENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING	203	•	11.	214.
DESIGN	705		42.	747.
Systems	87	•	-	87.
PROJECT MGMT	74	•	10.	84.
DATA	28	•	5.	33.
SUBTOTAL (ENG)	1098	•	68.	1165.
MANUFACTURING				
PRODUCTION	_		40.	40.
PROTOTYPE	184	•	-	184.
TOOL-TEST EQ	25	•	3.	28.
SUBTOTAL (MFG)	209	•	43.	251.
TOTAL COST	1306		110.	1417.
DESIGN FACTORS ELI	ECTRONIC MECHAI	NICAL I	PRODUCT DESCRI	PTORS
WEIGHT	0.100* 11.9	900	ENGINEERING	COMPLEXITY 1.000
DENSITY	1.667 0.0	20*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	9.560 7.	430	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	1.000 1.	000	ELECT VOL F	RACTION 0.000*
DESIGN REPEAT	0.000 0.3	L50	PLATFORM	2.000
ENGINEERING CHANGES	0.076* 0.	031*	YEAR OF TECH	HNOLOGY 1995*
HW/SW INTEG. LEVEL	0.000		RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.000 0.	000	MTBF (FIELD)	3178338*
SCHEDULE STA		FIRST :		FINISH
development jan	V 95 (13)	JAN 96	* (3)	APR 96* (16)
PRODUCTION JAM	00 (11)	NOV 00	* (0)	NOV 00* (11)
SUPPLEMENTAL INFORMATI	ON			
ECONOMIC BASE	188	•	TOOLING & PROC	ESS FACTORS
ESCALATION	0.00		DEVELOPMENT	TOOLING 1.00
T-1 COST	39.58*		PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST			RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		PRICE IMPROV	EMENT FACTOR 0.998*
PROD COST MULTIPLIER	1.00*		UNIT LEARNING	G CURVE 0.930*

INPUT FILENAME: LOX 10-OCT-88 12:01

(188012)

		(====	,		
O2 PLANT - H2 HEAT	ER				
PRODUCTION QUANTIT	ΓY	1 UNI	T WEIGHT 0.	10 MODE 2	
PROTOTYPE QUANTITY				00 QUANTITY/NHA 1	
-	0.99		Mo	ONTHLY PROD RATE 0.00	
PROGRAM COST(\$ 1000	0)	DEVELOPMENT	PRODUCTION	TOTAL COST	
ENGINEERING DRAFTING		3.	0.	3.	
DESIGN		10.	1.	11.	
SYSTEMS		1.	-	1.	
PROJECT MGMT		1.	0.	2.	
DATA		0.	0.	1.	
SUBTOTAL (E)	NG)	17.	1.	18.	
000101111 (11	,		_,		
MANUFACTURING					
PRODUCTION		-	1.	1.	
PROTOTYPE		4.	-	4.	
TOOL-TEST EQ		1.	0.	1.	
SUBTOTAL (M	FG)	5.	1.	6.	
TOTAL COST		22.	2.	24.	
DESIGN FACTORS	M	ECHANICAL	PRODUCT DESC	PIPTORS	
WEIGHT	I.	0.100		NG COMPLEXITY 1.000	
DENSITY		0.100*		SUPPORT 1.0	
MFG. COMPLEXITY		8.030		HEDULE FACTOR 0.250*	
NEW DESIGN		0.500	PLATFORM 2.00		
DESIGN REPEAT		0.250		TECHNOLOGY 1995*	
ENGINEERING CHANG	GES	0.040*		TY FACTOR 1.0	
INTEGRATION LEVE		0.000	MTBF (FIEI		
SCHEDULE	START		FIRST ITEM	FINISH	
DEVELOPMENT			JUL 95* (1)	AUG 95* (8)	
PRODUCTION		(6)	JUN 00* (0)	JUN 00* (6)	
SUPPLEMENTAL INFORM	MATION				
ECONOMIC BASE		188	TOOLING & PI	ROCESS FACTORS	
ESCALATION		0.00	DEVELOPME	NT TOOLING 1.00	
T-1 COST		0.99*	PRODUCTION	N TOOLING 1.00	
AMORTIZED UNIT C	OST	2.26*	RATE TOOL		
DEV COST MULTIPL	IER	1.00*		ROVEMENT FACTOR 0.987*	
PROD COST MULTIP	LIER	1.00*	UNIT LEAR	NING CURVE 0.905*	

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

O2 PLANT - H2 BLOWER

PRODUCTION QUANTITY	1 UNIT WEIGHT	3.00 MODE	. 1
PROTOTYPE QUANTITY	3.000 UNIT VOLUME	1.00 QUAN	TITY/NHA 1

UNIT PROD COST 22.61 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	71.	8.	79.
DESIGN	247.	34.	282.
SYSTEMS	31.	-	31.
PROJECT MGMT	27.	7.	35.
DATA	10.	4.	14.
SUBTOTAL (ENG)	387.	53.	440.
MANUFACTURING			
PRODUCTION	-	23.	23.
PROTOTYPE	97.	-	97.
TOOL-TEST EQ	13.	2.	15.
SUBTOTAL (MFG)	109.	25.	134.
TOTAL COST	496.	77.	574.

DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	0.100*	2.900	ENGINEERING COMPLEXITY	1.000
DENSITY	41.000	2.900*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	9.560	8.030	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	0.250	ELECT VOL FRACTION	0.002*
DESIGN REPEAT	0.000	0.100	PLATFORM	2.000
ENGINEERING CHANG	GES 0.078*	0.039*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEVE	EL 0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVE	0.000	0.000	MTBF (FIELD)	3178311*

i	SCHEDULE	START		FIRST ITEM	1		FINISH		
	DEVELOPMENT	JAN 95	(11)	NOV 95*	(3)	FEB 96*	(14)
	PRODUCTION	JAN 00	(10)	OCT 00*	(0)	OCT 00*	(10)

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS
ESCALATION	0.00	DEVELOPMENT TOOLING 1.00
T-1 COST	22.60*	PRODUCTION TOOLING 1.00
AMORTIZED UNIT COST	77.44*	RATE TOOLING 0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR 0.997*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE 0.928*

INPUT FILENAME: LOX 10-OCT-88 12:01 (188012)

Ω2	PT.ANT	- 3	CM T	ח י	DTDE:
11/	PLANI		1 141		- 1-6

O2 PLANT - 3 CM ID PIPE	E		
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNI 3.000 UNI	T WEIGHT 302.00 CT VOLUME 60.00	
UNIT PROD COST 864.97		MONTE	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	131.	36.	167.
DESIGN	426.	148.	575.
Systems	62.	-	62.
PROJECT MGMT	259.	123.	381.
DATA	61.	62.	123.
SUBTOTAL (ENG)	939.	369.	1308.
MANUFACTURING			
PRODUCTION	_	865.	865.
PROTOTYPE	4056.	-	4056.
TOOL-TEST EQ	357.	73.	430.
SUBTOTAL (MFG)	4414.	938.	5351.
TOTAL COST	5352.	1307.	6659.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	302.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	5.033*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	7.800	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	0.250	PLATFORM	2.000
DESIGN REPEAT	0.750	YEAR OF TECH	inology 1995*
ENGINEERING CHANGES	0.033*	RELIABILITY I	
INTEGRATION LEVEL	0.000	MTBF (FIELD)	17749*
SCHEDULE STAF	RT	FIRST ITEM	FINISH
DEVELOPMENT JAN	95 (17)	MAY 96* (5)	OCT 96* (22)
PRODUCTION JAN	00 (20)	AUG 01* (0)	AUG 01* (20)
SUPPLEMENTAL INFORMATIO			
ECONOMIC BASE	188	TOOLING & PROCI	
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	864.20*	PRODUCTION TO	
AMORTIZED UNIT COST	1306.81*	RATE TOOLING	•
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.882*

INPUT FILENAME: LOX

AMORTIZED UNIT COST 824.41*

DEV COST MULTIPLIER

PROD COST MULTIPLIER

10-OCT-88 12:01 (188012)

02 PLANT - 0.25 CM ID PI	PE					
PRODUCTION QUANTITY	1 finte	WEIGHT 151.00	MODE 2			
PROTOTYPE QUANTITY	2 000 111111111111111111111111111111111	VOLUME 0.60				
PROTOTIPE QUANTITI	3.000 UNII	VOLUME 0.00	QUANTITI/NHA I			
UNIT PROD COST 540.61		MONTI	HLY PROD RATE 0.00			
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST			
DRAFTING	86.	24.	110.			
DESIGN	281.	98.	379.			
SYSTEMS	40.	-	40.			
PROJECT MGMT	159.	77.	236.			
DATA	38.	39.	77.			
SUBTOTAL (ENG)	604.	238.	842.			
MANUFACTURING						
PRODUCTION	-	541.	541.			
PROTOTYPE	2482.	-	2482.			
TOOL-TEST EQ	226.	46.	272.			
SUBTOTAL (MFG)	2708.	587.	3294.			
TOTAL COST	3312.	824.	4136.			
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	TOPS			
WEIGHT	151.000		COMPLEXITY 1.000			
DENSITY	251.667*	PROTOTYPE SUE				
MFG. COMPLEXITY	7.930		LE FACTOR 0.250*			
NEW DESIGN	0.250	PLATFORM	2.000			
DESIGN REPEAT	0.750	YEAR OF TECH				
ENGINEERING CHANGES	0.035*	RELIABILITY F				
INTEGRATION LEVEL	0.000	MTBF (FIELD)				
	0.000	11101 (11010)	20,25			
SCHEDULE START	F	IRST ITEM	FINISH			
DEVELOPMENT JAN 9	5 (16) A	PR 96* (4)	AUG 96* (20)			
PRODUCTION JAN 0	0 (19) ј	UL 01* (0)	JUL 01* (19)			
SUPPLEMENTAL INFORMATION						
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS			
ESCALATION	0.00	DEVELOPMENT T				
T-1 COST	540.13*	PRODUCTION TO	OOLING 1.00			

1.00*

1.00*

PRICE IMPROVEMENT FACTOR 1.000*

UNIT LEARNING CURVE 0.883*

PRODUCTION TOOLING

RATE TOOLING

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02 PLANT - PV POWER S	YSTEM					
PRODUCTION QUANTITY PROTOTYPE QUANTITY		1 UNI	T WEIGH			1 IHA 1
PROTOTIFE QUANTITI		4.000 0142	I VOLORI	15200.00	, gointill,	-
UNIT PROD COST 3588.6	4			MON	THLY PROD RAT	E 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DE	VELOPMENT	:	PRODUCTION	TOTAL CO	ST
DRAFTING		5026.		443.	5468.	
DESIGN		17738.		1639.	19376.	
SYSTEMS		2141.		-	2141.	
PROJECT MGMT		2804.		632.	3435.	
DATA		866.		317.	1183.	
SUBTOTAL (ENG)		28574.		3030.	31604.	
				,		
MANUFACTURING				2500	2500	
PRODUCTION		- 23479.		3589. -	3589. 23 4 79.	
PROTOTYPE TOOL-TEST EQ		2808.		277.	3084.	
SUBTOTAL (MFG)		26287.		3865.	30152	
SUBTOTAL (MEG)		20207.		5005.	30132	•
TOTAL COST		54861.		6895.	61757.	
DESIGN FACTORS EL	ECTRONIC	MECHANIC	CAL P	RODUCT DESCRI	PTORS	
	12.000*			ENGINEERING	COMPLEXITY	1.000
DENSITY	9.091	0.432	*	PROTOTYPE ST	JPPORT	1.0
MFG. COMPLEXITY	9.560	6.70	0	PROTO SCHEI	ULE FACTOR	0.250*
NEW DESIGN	1.000	0.75	0	ELECT VOL E	TRACTION	0.000*
DESIGN REPEAT	0.000	0.500)	PLATFORM		2.000
ENGINEERING CHANGES	0.060*	0.01	9*	YEAR OF TEC		1995*
HW/SW INTEG. LEVEL				RELIABILITY		1.0
INTEGRATION LEVEL	0.000	0.00	0	MTBF (FIELD)		29147*
			m.r.n.cm	7917D A	#TMTCU	
	ART	/ 25)	FIRST I JAN 97*		FINISH SEP 97*	(33)
	N 95 N 00	(25) (25)	JAN 02*	• • •		(25)
PRODUCTION JA	N OO	(25)	UAIN UZ"	(0)	UAN UZ	(25)
SUPPLEMENTAL INFORMAT	ION					
ECONOMIC BASE	1	88	T	OOLING & PROC	CESS FACTORS	
ESCALATION	0.	00		DEVELOPMENT		1.00
T-1 COST	3586.	83*		PRODUCTION 7		1.00
AMORTIZED UNIT COST				RATE TOOLIN		0
DEV COST MULTIPLIER		00*			VEMENT FACTOR	
PROD COST MULTIPLIE	R 1.	00*		UNIT LEARNII	NG CURVE	0.923*

INPUT FILENAME: LOX

10-OCT-88 12:01 (188012)

02	DT.AMT	_	REGENERATIVE	FIIFT.	CRIT
UZ	PLANT	_	KEGENEKALIVE	rubb	C.P. L.L.

PRODUCTION QUANTITY	1	UNIT	WEIGHT	3285.00	MODE	1
PROTOTYPE QUANTITY	3.000	UNIT	VOLUME	101999.98	QUANTITY/NHA	1
UNIT PROD COST20048.70				MONTH	LY PROD RATE	0.00
*						

PROGRAM COST (\$ 100	O) DEV	ELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		7738.	1090.	8828.
DESIGN		26896.	5047.	31944.
SYSTEMS		3326.		3326.
PROJECT MGMT		6555.	2947.	9502.
DATA		1791.	1478.	3270.
SUBTOTAL (E	NG)	46307.	10562.	56869.
MANUFACTURING				
PRODUCTION		-	20049.	20049.
PROTOTYPE		88114.	-	88114.
TOOL-TEST EQ		9854.	1824.	11677.
SUBTOTAL (M	FG)	97968.	21872.	119840.
TOTAL COST	1	44275.	32434.	176709.
DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCR	IPTORS
WEIGHT	7.000*	3278.000	ENGINEERING	COMPLEXITY 1.00
DRMOTMY	0 606	0 000+		1 0

		MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	7.000*	3278.000	ENGINEERING COMPLEXITY	1.000
DENSITY	0.686	0.032*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	9.560	8.790	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	0.750	ELECT VOL FRACTION	0.000*
DESIGN REPEAT	0.000	0.500	PLATFORM	2.000
ENGINEERING CHANG	ES 0.052*	0.033*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEVE	L 0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.000	0.000	MTBF (FIELD)	49430*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(35)	NOV 97* (9)	AUG 98* (44)
PRODUCTION	JAN 00	(37)	JAN 03* (0)	JAN 03* (37)

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	20036.51*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	32434.00*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.911*

INPUT FILENAME: PCR 10-OCT-88 12:10

(188012)

MOSAP	DCDV	_	TMMED	SHELL
MUSAP	PURV	_	INNER	опепп

MOSAP PCRV - INNER SHELI	L .		
PRODUCTION QUANTITY	1 UNIT	WEIGHT 490.00	MODE 2
PROTOTYPE QUANTITY	4.500 UNIT		QUANTITY/NHA 1
UNIT PROD COST 767.20		MONTE	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	821.	35.	857.
DESIGN	2667.	134.	2802.
SYSTEMS	398.	_	398.
PROJECT MGMT	634.	109.	743.
DATA	187.	116.	303.
SUBTOTAL (ENG)	4707.	395.	5102.
MANUFACTURING			
PRODUCTION	-	767.	767.
PROTOTYPE	5530.	_	5530.
TOOL-TEST EQ	424.	78.	502.
SUBTOTAL (MFG)	5955.	845.	6800.
TOTAL COST	10661.	1240.	11901.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	PTORS
WEIGHT	490.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	0.006*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	7.280	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.800	YEAR OF TECH	
ENGINEERING CHANGES	0.021*	RELIABILITY F	
INTEGRATION LEVEL	0.134	MTBF (FIELD)	12527*
SCHEDULE START			FINISH
DEVELOPMENT JAN		UN 96* (7)	JAN 97* (25)
PRODUCTION JAN (00 (19) J	UL 01* (0)	JUL 01* (19)
SUPPLEMENTAL INFORMATION	1		
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT 3	
T-1 COST	766.55*	PRODUCTION TO	
AMORTIZED UNIT COST	1240.14*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	3 CURVE 0.886*

INPUT FILENAME: PCR

AMORTIZED UNIT COST 1261.65* DEV COST MULTIPLIER 1.00*
PROD COST MULTIPLIER 1.00*

PROD COST MULTIPLIER

10-OCT-88 12:10 (188012)

MOSAP PCRV - OUTER SHELL			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT 4.500 UNIT	WEIGHT 500.00 VOLUME 86199.98	MODE 2 QUANTITY/NHA 1
UNIT PROD COST 780.67		MONTH	LY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	833.	36.	869.
DESIGN	2705.	137.	2842.
SYSTEMS	403.	_	403.
PROJECT MGMT	644.	111.	755.
DATA	189.	118.	308.
SUBTOTAL (ENG)	4775.	402.	5177.
MANUFACTURING			
PRODUCTION	_	781.	781.
PROTOTYPE	5629.	_	5629.
TOOL-TEST EQ	432.	79.	511.
SUBTOTAL (MFG)	6060.	860.	6920.
TOTAL COST	10836.	1262.	12097.
TOTAL COST	10050.	1202.	12097.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	500.000	ENGINEERING CO	- · · ·
DENSITY	0.006*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY	7.280	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.800	YEAR OF TECH	NOLOGY 1995*
ENGINEERING CHANGES	0.021*	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL	0.134	MTBF (FIELD)	12452*
SCHEDULE START	FI	RST ITEM	FINISH
DEVELOPMENT JAN 95	່ (18) ປັບ	IN 96* (7)	JAN 97* (25)
PRODUCTION JAN 00) (19) JU	· ·	JUL 01* (19)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCES	SS FACTORS
ESCALATION	0.00	DEVELOPMENT TO	
T-1 COST	780.01*	PRODUCTION TO	

1.00*

PRODUCTION TOOLING RATE TOOLING

PRICE IMPROVEMENT FACTOR 1.000*

UNIT LEARNING CURVE 0.886*

1 UNIT WEIGHT 200.00 MODE

2

INPUT FILENAME: PCR 10-OCT-88 12:10

PRODUCTION QUANTITY

(188012)

MOSAP PCRV - OTHER STRUCTURE

PROTOTYPE QUANTITY	4.500 UN	IT VOLUME 6000.00	QUANTITY/NHA 1
UNIT PROD COST 1194.9	97	MON	THLY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMEN	T PRODUCTION	TOTAL COST
DRAFTING	1956.	131.	2086.
DESIGN	6688.	582.	7270.
SYSTEMS	877.	-	877.
PROJECT MGMT			1291.
	244	226	
SUBTOTAL (ENG)	10945.	1150.	12095.
MANUFACTURING			
PRODUCTION	-	1195.	1195.
PROTOTYPE	7400.		7400.
TOOL-TEST EQ		133.	830.
SUBTOTAL (MFG)	8097.	1328.	9425.
TOTAL COST	19042.	2478.	21519.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	
WEIGHT	200.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	0.033*	PROTOTYPE SU PROTO SCHEI PLATFORM	JPPORT 1.0
MFG. COMPLEXITY	8.510	PROTO SCHEI	OULE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.500		CHNOLOGY 1995*
ENGINEERING CHANGES	0.030*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.134	MTBF (FIELD)	9946*
SCHEDULE SI	TART	FIRST ITEM OCT 96* (8)	FINISH JUN 97* (30)
PRODUCTION JA	N 00 (22)	OCT 01* (0)	OCT 01* (22)
PRODUCTION UP	14 00 (22)	001 01 (0)	001 01 (22)
SUPPLEMENTAL INFORMAT			
ECONOMIC BASE	188	TOOLING & PROC	CESS FACTORS
ECONOMIC BASE ESCALATION	0.00	DEVELOPMENT PRODUCTION	TOOLING 1.00
T-1 COST AMORTIZED UNIT COST	1193.84*	PRODUCTION T RATE TOOLIN	rooling 1.00
AMORTIZED UNIT COST	2477.71*	RATE TOOLIN	G 0
DEV COST MULTIPLIER	₹ 1.00*	PRICE IMPROV	VEMENT FACTOR 1.000*
PROD COST MULTIPLIE	ER 1.00*	UNIT LEARNIN	NG CURVE 0.877*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

	•	•	
MOSAP PCRV - INSULATION			
PRODUCTION QUANTITY	1 UNIT	WEIGHT 130.00 MODE	E 2
PROTOTYPE QUANTITY	4.500 UNIT		NTITY/NHA 1
UNIT PROD COST 112.40		MONTHLY P	ROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION TO	OTAL COST
DRAFTING	107.	27.	134.
DESIGN	334.	92.	426.
Systems	55.	-	55.
PROJECT MGMT	96.	27.	122.
DATA	28.	29.	56.
SUBTOTAL (ENG)	619.	174.	794.
MANUFACTURING			
PRODUCTION	-	112.	112.
PROTOTYPE	833.	-	833.
TOOL-TEST EQ	63.	11.	73.
SUBTOTAL (MFG)	895.	123.	1018.
TOTAL COST	1515.	297.	1812.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	130.000	ENGINEERING COMPLI	EXTTY 1.000
DENSITY	13.000*	PROTOTYPE SUPPORT	
MFG. COMPLEXITY	6.510	PROTO SCHEDULE FA	
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECHNOLOG	
ENGINEERING CHANGES		RELIABILITY FACTOR	
INTEGRATION LEVEL	0.201	MTBF (FIELD)	
		, ,	
SCHEDULE START	·	IRST ITEM FINIS	3H
DEVELOPMENT JAN 9	5 (10) 0	CT 95* (3) JAN 9	96* (13)
PRODUCTION JAN 0	0 (13) J	AN 01* (0) JAN ()1* (13)
SUPPLEMENTAL INFORMATION	,		
ECONOMIC BASE	188	TOOLING & PROCESS FA	ACTORS
ESCALATION	0.00	DEVELOPMENT TOOLIN	
T-1 COST	112.32*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	297.29*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT	
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURY	7E 0.899*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - RADIATOR			
PRODUCTION QUANTITY	1 UNIT	WEIGHT 160.00	MODE 2
PROTOTYPE QUANTITY	4.500 UNI	VOLUME 1000.00	QUANTITY/NHA 1
UNIT PROD COST 574.48		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	261.	14.	275.
DESIGN	872.	58.	930.
SYSTEMS	121.	-	121.
PROJECT MGMT	301.	74.	375.
DATA	77.	79.	156.
SUBTOTAL (ENG)	1632.	225.	1856.
MANUFACTURING			
PRODUCTION	-	574.	574.
PROTOTYPE	3751.	-	3751.
TOOL-TEST EQ	325.	61.	387.
SUBTOTAL (MFG)	4076.	636.	4712.
TOTAL COST	5708.	861.	6568.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	160.000	ENGINEERING (
DENSITY	0.160*	PROTOTYPE SUI	• • • • • • • • • • • • • • • • • • • •
MFG. COMPLEXITY	7.980	PROTO SCHEDU	
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.900	YEAR OF TECH	HNOLOGY 1995*
ENGINEERING CHANGES	0.027*	RELIABILITY I	
INTEGRATION LEVEL	0.263	MTBF (FIELD)	13064*
SCHEDULE START	-	IRST ITEM	FINISH
DEVELOPMENT JAN 9	, = -,	TUN 96* (7)	JAN 97* (25)
PRODUCTION JAN 0	00 (19)	TUL 01* (0)	JUL 01* (19)
SUPPLEMENTAL INFORMATION	ī		
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT :	
T-1 COST	573.98*	PRODUCTION TO	
AMORTIZED UNIT COST	860.55*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.883*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

	(100012	,	
MOSAP PCRV - THERMAL PUME	•		
PRODUCTION QUANTITY	1 UNIT W	EIGHT 20.00	MODE 1
PROTOTYPE QUANTITY	4.500 UNIT V		
			200000000000000000000000000000000000000
UNIT PROD COST 60.42		MONTE	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	623.	30.	653.
DESIGN	2244.	114.	2358.
SYSTEMS	259.	_	259.
PROJECT MGMT	223.	21.	245.
DATA	82.	23.	105.
SUBTOTAL (ENG)	3433.	188.	3620.
Manuel Centro Tro			
MANUFACTURING PRODUCTION	_	60.	60.
PROTOTYPE	399.	- -	399.
TOOL-TEST EQ	53.	6.	60.
SUBTOTAL (MFG)	452.	67.	519.
OUDIOIAL (EL G)	452.	07.	515.
TOTAL COST	3885.	254.	4139.
DESIGN FACTORS ELECTR	ONIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 0.2	250* 19.750	ENGINEERING C	OMPLEXITY 1.000
DENSITY 43.0	9.875*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 9.9	7.280	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.0	1.000	ELECT VOL FR	ACTION 0.003*
DESIGN REPEAT 0.0	0.000	PLATFORM	2.500
ENGINEERING CHANGES 0.0	0.022*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.0		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.2	263 0.263	MTBF (FIELD)	952465*
SCHEDULE START	FIR	ST ITEM	FINISH
DEVELOPMENT JAN 95			JUL 96* (19)
PRODUCTION JAN 00	,,	• •	NOV 00* (11)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	60.39*	PRODUCTION TO	
	254.36*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.999*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	
			·

INPUT FILENAME: PCR 10-OCT-88 12:10

10-OCT-88 12:10 (188012)

MOSAP PCRV - HEAT EXCHANGER

PRODUCTION QUANTITY PROTOTYPE QUANTITY		IT WEIGHT 50.00 IT VOLUME 4.00	· · ·
UNIT PROD COST 107.20	ı	MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMEN	T PRODUCTION	TOTAL COST
DRAFTING	826.	27.	853.
DESIGN	2680.	104.	2785.
SYSTEMS	400.	-	400.
PROJECT MGMT	359.	27.	386.
DATA	134.	29.	163.
SUBTOTAL (ENG)	4399.	187.	4587.
AAR AARIM A CIMAND TAYO			
MANUFACTURING PRODUCTION	_	107.	107.
PROTOTYPE	752.	_	752.
TOOL-TEST EQ	61.	11.	72.
SUBTOTAL (MFG)	814.	118.	932.
TOTAL COST	5213.	305.	5518.
IOIAL COSI	5215.	303.	3310.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	
WEIGHT	50.000	ENGINEERING	
DENSITY	12.500*	PROTOTYPE SU	
MFG. COMPLEXITY	7.280	PROTO SCHED	
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TEC	
ENGINEERING CHANGES	0.022*	RELIABILITY	
INTEGRATION LEVEL	0.263	MTBF (FIELD)	24845*
SCHEDULE STA	RT	FIRST ITEM	FINISH
DEVELOPMENT JAN	95 (15)	MAR 96* (6)	SEP 96* (21)
PRODUCTION JAN	00 (13)	JAN 01* (0)	JAN 01* (13)
SUPPLEMENTAL INFORMATI	ON		
ECONOMIC BASE	188	TOOLING & PROC	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT	
T-1 COST	107.12*	PRODUCTION T	
AMORTIZED UNIT COST		RATE TOOLING	
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER		UNIT LEARNIN	

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - THERMAL	SYSTEM PIPING		
PRODUCTION QUANTITY	1 UN	IT WEIGHT 100.0	00 MODE 2
PROTOTYPE QUANTITY		IT VOLUME 8.0	
Titololila gomitali	4.000 010	11 102011	oo gomilli, mm
UNIT PROD COST 648.	76	MOI	NTHLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMEN	T PRODUCTION	TOTAL COST
DRAFTING	962.	61.	1023.
DESIGN	3289.	270.	3559.
SYSTEMS	432.	_	432.
PROJECT MGMT	550.	109.	659.
DATA	173.	116.	289.
SUBTOTAL (ENG		557.	5961.
,	,		
MANUFACTURING			
PRODUCTION	-	649.	649.
PROTOTYPE	3994.	-	3994.
TOOL-TEST EQ	380.	72.	452.
SUBTOTAL (MFG	4374.	721.	5095.
TOTAL COST	9779.	1277.	11056.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCR	TDTOPS
WEIGHT	100.000		COMPLEXITY 1.000
DENSITY	12.500*	PROTOTYPE S	
MFG. COMPLEXITY	8.510		DULE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.600	YEAR OF TE	
ENGINEERING CHANGE		RELIABILITY	
INTEGRATION LEVEL	0.201	MTBF (FIELD	
	0.201	MIDE (FIEDD	12245
SCHEDULE S	TART	FIRST ITEM	FINISH
DEVELOPMENT J	AN 95 (21)	SEP 96* (7)	APR 97* (28)
PRODUCTION J	AN 00 (20)	AUG 01* (0)	AUG 01* (20)
	, _,,	, ,	(22,
SUPPLEMENTAL INFORMAT	TION		
ECONOMIC BASE	188	TOOLING & PRO	CESS FACTORS
ESCALATION	0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	648.16*	PRODUCTION	
AMORTIZED UNIT COST	1277.45*	RATE TOOLI	NG 0
DEV COST MULTIPLIE	1.00*	PRICE IMPRO	VEMENT FACTOR 1.000*
PROD COST MULTIPLIE	ER 1.00*	UNIT LEARNI	ING CURVE 0.879*

INPUT FILENAME: PCR 10-OCT-88 12:10

(188012)

MOSAP PCRV - HYDROGEN TANKS

PRODUCTION QUANTITY PROTOTYPE QUANTITY		T WEIGHT 20.00 T VOLUME 100.00	
UNIT PROD COST 96.06		MONTH	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	522.	22.	544.
DESIGN	1747.	91.	1838.
SYSTEMS	242.	_	242.
PROJECT MGMT	224.	23.	247.
DATA	81.	25.	106.
SUBTOTAL (ENG)	2815.	161.	2976.
0021021111 (2110)			
MANUFACTURING			
PRODUCTION	-	96.	96.
PROTOTYPE	613.	-	613.
TOOL-TEST EQ	56.	10.	66.
SUBTOTAL (MFG)	669.	106.	776.
TOTAL COST	3485.	268.	3752.
DEGTON ENGENDE	MEGHANTCAT	PRODUCT DESCRIE	omope
DESIGN FACTORS	MECHANICAL 20.000	ENGINEERING (
WEIGHT	0.200*	PROTOTYPE SUE	• • • • • • • • • • • • • • • • • • • •
DENSITY	8.010	PROTO SCHEDU	
MFG. COMPLEXITY		PLATFORM	2.500
NEW DESIGN	1.000 0.150	YEAR OF TECH	
DESIGN REPEAT	0.150	RELIABILITY E	
ENGINEERING CHANGES		MTBF (FIELD)	24089*
INTEGRATION LEVEL	0.201	MIBF (FIELD)	24009"
SCHEDULE START			FINISH
DEVELOPMENT JAN 9		APR 96* (5)	SEP 96* (21)
PRODUCTION JAN 0	0 (14)	FEB 01* (0)	FEB 01* (14)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	95.98*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST	267.56*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.888*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

	•		
MOSAP PCRV - OXYGEN TANK	S		
PRODUCTION QUANTITY	1 UNIT	WEIGHT 15.00 MODE	2
PROTOTYPE QUANTITY	4.500 UNIT	VOLUME 100.00 QUANTIT	Y/NHA 1
UNIT PROD COST 74.69		MONTHLY PROD	RATE 0.00
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION TOTAL	COST
ENGINEERING			
DRAFTING	426.		44.
Design	1427.		500.
Systems	197.		.97.
PROJECT MGMT	181.	18. 2	200.
DATA	66.	20.	86.
SUBTOTAL (ENG)	2298.	128. 24	27.
MANUFACTURING			
PRODUCTION	-		75.
PROTOTYPE	476.	- 4	76.
TOOL-TEST EQ	43.		51.
SUBTOTAL (MFG)	519.	83.	502.
TOTAL COST	2818.	211. 30	29.
DEGECT BLOWNS			
	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	15.000	ENGINEERING COMPLEXIT	
DENSITY	0.150*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	8.010	PROTO SCHEDULE FACTO	
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECHNOLOGY	1995*
ENGINEERING CHANGES	0.028*	RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	26260*
SCHEDULE START	pr.	IRST ITEM FINISH	
DEVELOPMENT JAN 95	=	AR 96* (6) SEP 96*	(21)
PRODUCTION JAN 00	• •	AN 01* (0) JAN 01*	(13)
INDUSTION OIM O	(15) 0.	AN UI (U) UAN UI	(13)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCESS FACTO	RS
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	74.62*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	211.17*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FAC	-
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.889*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP	DCDU	_	WATER	TANKS
MUSAP	PURV	_	WAILER	IANKS

MOSAP PCRV - WATER TA	nks		
PRODUCTION QUANTITY	1 UN	IT WEIGHT 40.00	MODE 2
PROTOTYPE QUANTITY	4.500 UN	IT VOLUME 100.00	QUANTITY/NHA 1
UNIT PROD COST 176.1	1	MONT	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMEN'	r PRODUCTION	TOTAL COST
DRAFTING	849.	39.	888.
DESIGN	2843.	153.	2996.
SYSTEMS	393.	_	393.
PROJECT MGMT	371.	41.	412.
DATA	134.	44.	178.
SUBTOTAL (ENG)	4590.	277.	4868.
MANUFACTURING			
PRODUCTION	_	176.	176.
PROTOTYPE	1132.	_	1132.
TOOL-TEST EQ	103.	19.	122.
SUBTOTAL (MFG)	1235.	195.	1430.
TOTAL COST	5825.	472.	6297.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	40.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	0.400*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	8.010	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TEC	
ENGINEERING CHANGES	0.027*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	19566*
0011701117		RIDOR IMMV	# TAT 011
	ART	FIRST ITEM	FINISH
	N 95 (17)	MAY 96* (6)	NOV 96* (23) MAR 01* (15)
PRODUCTION JA	N 00 (15)	MAR 01* (0)	MAR U1^ (15)
SUPPLEMENTAL INFORMAT			
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT	
T-1 COST	175.96*	PRODUCTION T	_
AMORTIZED UNIT COST		RATE TOOLING	
DEV COST MULTIPLIER			EMENT FACTOR 1.000* G CURVE 0.886*
PROD COST MULTIPLIE	R 1.00*	UNIT LEARNIN	G CURVE U.000^

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - FUEL CELL

PRODUCTION QUANTITY	2 UNIT WEIGHT	45.00	MODE	1
PROTOTYPE QUANTITY	6.000 UNIT VOLUME	200.00	QUANTITY/NHA	2

UNIT PROD COST 530.35

MONTHLY PROD RATE 0.58

PROGRAM COST (\$ 100	0)	DEVELOPME	NT	PRODUCTION	TOTAL (COST
ENGINEERING	0,	D2 V220112		211020012011		3001
DRAFTING		429.		128.	55	7.
DESIGN		1565.		587.	215	2.
SYSTEMS		177.		_	17	7.
PROJECT MGMT		346.		208.	555	5.
DATA		91.		219.	310).
SUBTOTAL (E	NG)	2609.		1142.	3750).
MANUFACTURING						
PRODUCTION		-		1061.	1063	l.
PROTOTYPE		4052.		_	4052	2.
TOOL-TEST EQ		491.		439.	930).
SUBTOTAL (M	FG)	4543.		1500.	6043	3.
TOTAL COST		7152.		2641.	9793	3.
DESIGN FACTORS	ELECTRO	NIC MECHAN	ICAL	PRODUCT DESCI	RIPTORS	
WEIGHT	1.00	0* 44.0	00	ENGINEERING	G COMPLEXITY	1.000
DENSITY	43.00	0 0.2	20*	PROTOTYPE :	SUPPORT	1.0
MFG. COMPLEXITY	9.96	50 8.9	970	PROTO SCHI	EDULE FACTOR	0.250*
NEW DESIGN	0.50	0.2	200	ELECT VOL	FRACTION	0.000*
DESIGN REPEAT	0.00	0 0.5	00	PLATFORM		2.500
ENGINEERING CHAN	GES 0.05	8* 0.0	34*	YEAR OF TE	ECHNOLOGY	1995*
HW/SW INTEG. LEV				RELIABILIT	Y FACTOR	1.0
INTEGRATION LEVE	L 0.84	13 0.2	:01	MTBF (FIELD))	244812*
SCHEDULE	START		FIRST		FINISH	
DEVELOPMENT	JAN 95	(19)	JUL 96		MAR 97*	(27)
PRODUCTION	JAN 00	(19)	JUL 01	L* (2)	SEP 01*	(21)
SUPPLEMENTAL INFORM	MATION					
ECONOMIC BASE		188		TOOLING & PRO	OCESS FACTORS	3
ESCALATION		0.00		DEVELOPMENT	r tooling	1.00
T-1 COST	_	52.49*		PRODUCTION		1.00
AMORTIZED UNIT CO		20.61*		RATE TOOLI	- -	0
DEV COST MULTIPL:	IER	1.00*		PRICE IMPRO	OVEMENT FACTO	R 0.965*

PROD COST MULTIPLIER 1.00* UNIT LEARNING CURVE 0.918*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - POWER DISTRIBUTION

PRODUCTION QUANTITY PROTOTYPE QUANTITY		1 UI 4.500 UI	VIT WEI		.00 MODE .00 QUANTITY/	1 'NHA 1
UNIT PROD COST 93	8.62			М	ONTHLY PROD RA	ATE 0.00
PROGRAM COST (\$ 1000 ENGINEERING)) DE	VELOPME	I T	PRODUCTION	TOTAL (COST
DRAFTING		1756.		248.	2004	1_
DESIGN		6391.		1137.	7528	
SYSTEMS		719.			719	
PROJECT MGMT		827.		244.	1071	•
DATA		266.		259.	525	
SUBTOTAL (EI	4G)	9959.		1888.	11847	
SUBTOTAL (E	NG)	3333.		1000.	1104	•
MANUFACTURING					•	
PRODUCTION				939.	939	,
PROTOTYPE		5542.			5542	
TOOL-TEST EQ		717.		107.	824	
SUBTOTAL (M	rc)	6259.		1046.	7305	- -
SOBIOTAL (FI	. G)	0239.		1040.	,500	•
TOTAL COST		16218.		2934.	19152	2.
DESIGN FACTORS	ELECTRONIC	MECHANI	CAL	PRODUCT DESC	CRIPTORS	
WEIGHT	2.500*	97.50	_		G COMPLEXITY	1.000
DENSITY	43.000		50*	PROTOTYPE		1.0
MFG. COMPLEXITY	10.320		50		EDULE FACTOR	0.250*
NEW DESIGN	1.000	= -	00	ELECT VOI		0.006*
DESIGN REPEAT	0.000		00	PLATFORM		2.500
ENGINEERING CHANG			33*	YEAR OF T	ECHNOLOGY	1995*
HW/SW INTEG. LEVI				RELIABILIT		1.0
INTEGRATION LEVEL	•	0.2	Λ1	MTBF (FIEL		110324*
INIEGRATION DEVE	0.045	V.2	01	HIDI (I IDD	,	110021
SCHEDULE	START		FIRST	ITEM	FINISH	
DEVELOPMENT	JAN 95	(21)	SEP 9		APR 97*	(28)
PRODUCTION	JAN 00	(21)	SEP 0	• , ,	SEP 01*	(21)
11020011011	01111	(/	J	_ (5 _5	(/
SUPPLEMENTAL INFORM	MATION					
ECONOMIC BASE	1	88		TOOLING & PR	ROCESS FACTORS	3
ESCALATION	0.	00		DEVELOPMEN	TOOLING	1.00
T-1 COST	938.	10*		PRODUCTION	1 TOOLING	1.00
AMORTIZED UNIT CO				RATE TOOL		0
DEV COST MULTIPLE		00*		PRICE IMPE	ROVEMENT FACTO	R 1.000*
PROD COST MULTIP					- ·	
PROD COST MODILE	LIEK L.	00*		UNIT LEARN	NING CURVE	0.917*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - WHEELS AND	LOCOMOTION			
PRODUCTION QUANTITY PROTOTYPE QUANTITY		IT WEIGHT 75.0		
PROTOTYPE QUANTITY	18.000 UN	IT VOLUME 1000.0	00 QUANTITY/NHA 4	
UNIT PROD COST 329.33		MON	NTHLY PROD RATE 1.04	
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMEN'	r PRODUCTION	TOTAL COST	
DRAFTING	892.	42.	933.	
DESIGN	3161.	186.	3346.	
SYSTEMS	396.	-	396.	
PROJECT MGMT	840.	184.	1024.	
DATA	211.	193.	404.	
SUBTOTAL (ENG)	5500.	604.	6104.	
MANUFACTURING				
PRODUCTION	-	1317.	1317.	
PROTOTYPE	7762.	-	7762.	
TOOL-TEST EQ	641.	441.	1082.	
SUBTOTAL (MFG)	8403.	1759.	10161.	
TOTAL COST	13903.	2362.	16266.	
DESIGN FACTORS	MECHANICAL	PRODUCT DESCR	RIPTORS	
WEIGHT	75.000		COMPLEXITY 1.000	
DENSITY	0.075*	PROTOTYPE S	SUPPORT 1.0	
MFG. COMPLEXITY	8.160	PROTO SCHE	DULE FACTOR 0.250*	
NEW DESIGN	1.000	PLATFORM	2.500	
DESIGN REPEAT	0.500	YEAR OF TE	CHNOLOGY 1995*	
ENGINEERING CHANGES	0.022*	RELIABILITY FACTOR 1.0		
INTEGRATION LEVEL	0.350	MTBF (FIELD) 15269*	
SCHEDULE STAR	·m	FIRST ITEM	FINISH	
DEVELOPMENT JAN		JUN 96* (13)	JUL 97* (31)	
PRODUCTION JAN	•	MAY 01* (3)	AUG 01* (20)	
PRODUCTION DAN	00 (17)	MAI UI" (3)	AUG 01" (20)	
SUPPLEMENTAL INFORMATIO				
ECONOMIC BASE	188	TOOLING & PRO		
ESCALATION	0.00	DEVELOPMENT		
T-1 COST	377.68*	PRODUCTION		
AMORTIZED UNIT COST	590.62*	RATE TOOLI		
DEV COST MULTIPLIER	1.00*		VEMENT FACTOR 0.954*	
PROD COST MULTIPLIER	1.00*	UNIT LEARNI	NG CURVE 0.883*	

INPUT FILENAME: PCR 10-OCT-88 12:10

(188012)

MOSAP PCRV - MAN LOCKS			
PRODUCTION QUANTITY	2 UNIT W	EIGHT 230.00	MODE 1
PROTOTYPE QUANTITY	4.500 UNIT V	OLUME 4000.00	QUANTITY/NHA 2
UNIT PROD COST 911.96		MONTH	ILY PROD RATE 0.38
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	4678.	382.	5060.
DESIGN	16847.	1701.	18548.
Systems	1945.	-	1945.
PROJECT MGMT	1812.	420.	2232.
DATA	642.	443.	1085.
SUBTOTAL (ENG)	25924.	2946.	28870.
MANUFACTURING			
PRODUCTION	_	1824.	1824.
PROTOTYPE	5879.	· -	5879.
TOOL-TEST EQ	723.	540.	1263.
SUBTOTAL (MFG)	6603.	2364.	8966.
	20726	5200	37836.
TOTAL COST	32526.	5309.	3/836.
DESIGN FACTORS ELECTI	RONIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 4.0	000* 226.000	ENGINEERING C	COMPLEXITY 1.000
DENSITY 10.0	000 0.057*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 9.	960 7.980	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 1.	000 1.000	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.0	0.000	PLATFORM	2.500
ENGINEERING CHANGES 0.	060* 0.026*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.0	000	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.	350 0.350	MTBF (FIELD)	62924*
SCHEDULE START	#TR	ST ITEM	FINISH
DEVELOPMENT JAN 95		-	APR 97* (28)
PRODUCTION JAN 0		' '	NOV 01* (23)
	(20, 1100	 ()	(,
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	948.87*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST	2654.72*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.972*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.920*

INPUT FILENAME: PCR 10-OCT-88 12:10 (188012)

MOSAP PCRV - GALLEY

PRODUCTION QUANTITY	1 UNIT	WEIGHT	70.00	MODE	1
PROTOTYPE QUANTITY	4.500 UNIT	VOLUME	1700.00	QUANTITY/NHA	1

UNIT PROD COST 317.96 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	1956.	128.	2084.
DESIGN	7044.	531.	7575.
SYSTEMS	814.	_	814.
PROJECT MGMT	737.	103.	839.
DATA	265.	109.	374.
SUBTOTAL (ENG)	10815.	870.	11686.
MANUFACTURING			
PRODUCTION	-	318.	318.
PROTOTYPE	2010.	_	2010.
TOOL-TEST EQ	253.	35.	288.
SUBTOTAL (MFG)	2264.	353.	2616.
TOTAL COST	13079.	1223.	14302.
	CTRONIC MECHANICAL	PRODUCT DESCRI	

DESIGN FACTORS EI	LECTRONIC	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	1.000*	69.000	ENGINEERING COMPLEXITY	1.000
DENSITY	5.882	0.041*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	9.960	7.980	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	1.000	ELECT VOL FRACTION	0.000*
DESIGN REPEAT	0.000	0.000	PLATFORM	2.500
ENGINEERING CHANGES	0.062*	0.027*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEVEL	0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.201	0.201	MTBF (FIELD)	244814*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(18)	JUN 96* (6)	DEC 96* (24)
PRODUCTION	JAN 00	(16)	APR 01* (0)	APR 01* (16)

SUPPLEMENTAL INFORMATION

_				
	ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
	ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
	T-1 COST	317.80*	PRODUCTION TOOLING	1.00
	AMORTIZED UNIT COST	1222.85*	RATE TOOLING	0
	DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
	PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.923*

5-3

INPUT FILENAME: PCR 10-OCT-88 12:10

(188012)

MOSAP PCRV - PERSONAL HYGIENE

PRODUCTION QUANTITY PROTOTYPE QUANTITY		IT WEIGHT 90.00 IT VOLUME 1700.00	
UNIT PROD COST 347.41	L	MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMEN	T PRODUCTION	TOTAL COST
DRAFTING	853.	85.	938.
DESIGN	2852.	381.	3233.
SYSTEMS	396.	-	396.
PROJECT MGMT	435.	90.	525.
DATA	146.	96.	243.
Subtotal (Eng)	4682.	652.	5334.
MANUFACTURING			
PRODUCTION	_	347.	347.
PROTOTYPE	2256.	_	2256.
TOOL-TEST EQ	194.	37.	231.
SUBTOTAL (MFG)	2451.	385.	2835.
TOTAL COST	7133.	1037.	8169.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	
WEIGHT	90.000	ENGINEERING	
DENSITY	0.053*	PROTOTYPE SU	
MFG. COMPLEXITY	7.980	PROTO SCHED	
NEW DESIGN	0.500	PLATFORM	2.500
DESIGN REPEAT	0.020	YEAR OF TEC	
ENGINEERING CHANGES	0.027*	RELIABILITY	
INTEGRATION LEVEL	0.201	MTBF (FIELD)	15526*
SCHEDULE STA	ART	FIRST ITEM	FINISH
· · · · · · · · · · · · · · · · · · ·	1 95 (17)	MAY 96* (7)	DEC 96* (24)
	1 00 (17)	MAY 01* (0)	MAY 01* (17)
		, ,	• •
SUPPLEMENTAL INFORMATI	ON		
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT	
T-1 COST	347.11*	PRODUCTION T	
AMORTIZED UNIT COST	1036.92*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNIN	G CURVE 0.884*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - EMERGENCY E	QUIPMENT		
PRODUCTION QUANTITY	1 UNIT	WEIGHT 30.00	MODE 2
PROTOTYPE QUANTITY	1 UNIT 4.500 UNIT	VOLUME 800.00	QUANTITY/NHA 1
UNIT PROD COST 107.15		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	72.	30.	102.
DESIGN	239.	120.	359.
Systems	34.	-	34.
PROJECT MGMT	66.	29.	95.
DATA	18.	30.	49.
SUBTOTAL (ENG)	430.	208.	638.
MANUFACTURING			•
PRODUCTION	_	107.	107.
PROTOTYPE	705.	_	705.
TOOL-TEST EO	61.	11.	73.
SUBTOTAL (MFG)	767.	118.	885.
TOTAL COST	1197.	326.	1523.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	30.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	0.037*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	7.760	PROTO SCHED	JLE FACTOR 0.250*
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	HNOLOGY 1995*
ENGINEERING CHANGES	0.027*	RELIABILITY I	FACTOR 1.0
INTEGRATION LEVEL	0.134	MTBF (FIELD)	23607*
SCHEDULE START	, <u>s</u> r	IRST ITEM	FINISH
DEVELOPMENT JAN 9	_	-	MAR 96* (15)
PRODUCTION JAN 0	•		FEB 01* (14)
SUPPLEMENTAL INFORMATION	1		
ECONOMIC BASE	188	TOOLING & PROCI	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT :	rooling 1.00
T-1 COST	107.06*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST	326.46*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROV	EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.890*

INPUT FILENAME: PCR 10-OCT-88 12:10

(188012)

MOSAP PCRV - AVIONICS			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	2 UNIT WI 9.000 UNIT VO	-	
UNIT PROD COST 185.24		MONTH	ILY PROD RATE 1.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	1748.	139.	1887.
DESIGN	6548.	554.	7102.
SYSTEMS	704.	_	704.
PROJECT MGMT	696.	119.	816.
DATA	235.	126.	360.
SUBTOTAL (ENG)	9931.	937.	10868.
302101111 (21.0)	77721		
MANUFACTURING			
PRODUCTION	_	370.	370.
PROTOTYPE	2014.	_	2014.
TOOL-TEST EQ	261.	205.	466.
SUBTOTAL (MFG)	2275.	576.	2851.
•			
TOTAL COST	12206.	1513.	13719.
DESIGN FACTORS ELECTRON	VIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 2.500		ENGINEERING C	
DENSITY 14.70		PROTOTYPE SUP	
MFG. COMPLEXITY 10.32		PROTO SCHEDU	- · · · · · · · · · · · · · · · · · · ·
NEW DESIGN 1.00		ELECT VOL FR	
DESIGN REPEAT 0.000		PLATFORM	2.500
ENGINEERING CHANGES 0.059		YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.000		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.20		MTBF (FIELD)	110324*
	- 00	, , , , , , , , , , , , , , , , , , , ,	
SCHEDULE START	FIRS	ST ITEM	FINISH
DEVELOPMENT JAN 95	(19) JUL	96* (9)	APR 97* (28)
PRODUCTION JAN 00	(15) MAR	•	APR 01* (16)
SUPPLEMENTAL INFORMATION	(20, ====	, <u>-</u> ,	,,
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
	92.69*	PRODUCTION TO	
	56.54*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.953*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	
ENOD COOL MUNITERIES	±.00°	OHII BBRIGATING	0.521

INPUT FILENAME: PCR 10-OCT-88 12:10

(188012)

MOSAP PCRV - ECLSS

PRODUCTION QUANTITY	1 U	NIT WEIGHT	200.00	MODE	1
PROTOTYPE QUANTITY	4.500 U	NIT VOLUME	2600.00	QUANTITY/NHA	1

UNIT PROD COST 2830.01 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DI	EVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		5319.	616.	5935.
DESIGN		19154.	3172.	22326.
Systems		2212.	-	2212.
PROJECT MGMT		2524.	703.	3227.
DATA		817.	745.	1562.
SUBTOTAL (ENG)	30025.	5236.	35261.
MANUFACTURING				
PRODUCTION		-	2830.	2830.
PROTOTYPE		16376.	-	16376.
TOOL-TEST EQ		1956.	333.	2289.
SUBTOTAL (MFG)	18332.	3163.	21495.
TOTAL COST		48358.	8399.	56756.
DESIGN FACTORS E	LECTRONIC	MECHANICAL	PRODUCT DESCRIE	PTORS
WEIGHT	2.000*	198.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	7.692	0.076*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	9.960	9.340	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	1.000	0.800	ELECT VOL FF	RACTION 0.000*
DESIGN REPEAT	0.000	0.000	PLATFORM	2.500
ENGINEERING CHANGE	8 0.053*	0.034*	YEAR OF TECH	INOLOGY 1995*
HW/SW INTEG. LEVEL			RELIABILITY E	FACTOR 1.0
INTEGRATION LEVEL	0.263	0.263	MTBF (FIELD)	124115*
-	TART		ST ITEM	FINISH
	AN 95 AN 00	(27) MAR (26) FEB	- ,,	JAN 98* (37)
PRODUCTION J	AN UU	(26) FEB	02* (0)	FEB 02* (26)
SUPPLEMENTAL INFORMA	CION			
ECONOMIC BASE	1	88	TOOLING & PROCE	SS FACTORS
ESCALATION	0.	00	DEVELOPMENT 1	COOLING 1.00
T-1 COST	2828.	34*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COS	r 8398.	96*	RATE TOOLING	0
DEV COST MULTIPLIE		00*	PRICE IMPROVE	EMENT FACTOR 1.000*
PROD COST MULTIPLI	ER 1.	00*	UNIT LEARNING	CURVE 0.913*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - DRIVE STATIONS

PRODUCTION QUANTITY PROTOTYPE QUANTITY		WEIGHT 40.00 VOLUME 2500.00	MODE 1 QUANTITY/NHA 2
UNIT PROD COST 556.17		MONT	HLY PROD RATE 0.58
	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	2100	300	3488.
DRAFTING	3188.	300. 1374.	13319.
DESIGN	11945. 1282.	13/4.	1282.
SYSTEMS		305.	1690.
PROJECT MGMT	1386.	305.	769.
DATA	448.		20549.
SUBTOTAL (ENG)	18248.	2301.	20349.
MANUTE COURT THE			
MANUFACTURING PRODUCTION		1112.	1112.
PROTOTYPE	5943.		5943.
TOOL-TEST EQ	752.	459.	1211.
SUBTOTAL (MFG)	6695.	1572.	8267.
BOBIOTAD (FE G)	0033.	20,2.	02071
TOTAL COST	24943.	3872.	28815.
DESIGN FACTORS ELECTRO	NIC MECHANICA	L PRODUCT DESCRI	PTORS
WEIGHT 5.00			
DENSITY 20.00			
MFG. COMPLEXITY 10.29			JLE FACTOR 0.250*
NEW DESIGN 1.00		- · ·	
DESIGN REPEAT 0.00		-	2.500
ENGINEERING CHANGES 0.05			NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00		RELIABILITY	
INTEGRATION LEVEL 0.26		MTBF (FIELD)	55472*
		, , , , , , , , , , , , , , , , , , , ,	
SCHEDULE START	F	IRST ITEM	FINISH
DEVELOPMENT JAN 95		UG 96* (11)	JUL 97* (31)
PRODUCTION JAN 00	· · · · · · · · · · · · · · · · · · ·	AY 01* (2)	JUL 01* (19)
	(= . ,		, ,
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT :	TOOLING 1.00
T-1 COST 5	79.55*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST 19	936.18*	RATE TOOLING	9
DEV COST MULTIPLIER	1.00*	PRICE IMPROV	EMENT FACTOR 0.965*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.917*

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

MOSAP PCRV - WORKSTATIONS

PRODUCTION QUANTITY	1 UNIT WEIGHT	40.00	MODE	1
PROTOTYPE QUANTITY	4.500 UNIT VOLUME	1700.00	QUANTITY/NHA	1
UNIT PROD COST 572.62		MONTH	ILY PROD RATE	0.00

PROGRAM COST (\$ 1000) DEVELOPMENT PRODUCTION TOTAL COST ENGINEERING DRAFTING 3073. 308. 3381. DESIGN 11189. 12599. 1409.

SYSTEMS 1257. 1257. PROJECT MGMT 1141. 237. 1378. DATA 408. 252. 660. 19276. SUBTOTAL (ENG) 17069. 2207. MANUFACTURING PRODUCTION 573. 573. PROTOTYPE 3227. 3227. 424. 67. TOOL-TEST EQ 491. SUBTOTAL (MFG) 3651. 640. 4291.

TOTAL COST 20720. 2846. 23567.

DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	5.000*	35.000	ENGINEERING COMPLEXITY	1.000
DENSITY	29.412	0.021*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	10.290	8.750	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	1.000	ELECT VOL FRACTION	0.000*
DESIGN REPEAT	0.000	0.000	PLATFORM	2.500
ENGINEERING CHANG	GES 0.066*	0.033*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEVI	EL 0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVE	L 0.263	0.263	MTBF (FIELD)	55472*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(20)	AUG 96* (7)	MAR 97* (27)
PRODUCTION	JAN 00	(17)	MAY 01* (0)	MAY 01* (17)

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	572.30*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	2846.48*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.917*

INPUT FILENAME: PCR 10-OCT-88 12:10

10-OCT-88 12:10 (188012)

MOSAD	DCR17	_	SLEED	OUARTERS
MULDAR	PI.RV	_	OLDER	CONTRACT

PROD COST MULTIPLIER 1.00*

MOSAF FCRV - SHEEF	QOARTER			
PRODUCTION QUANTI	TY	2 UNI	r weight 30	.00 MODE 2
PROTOTYPE QUANTIT		2 UNIT 9.000 UNIT	r VOLUME 6800	.00 QUANTITY/NHA 2
	_			
UNIT PROD COST	6.59		Mo	ONTHLY PROD RATE 1.00
				_
PROGRAM COST (\$ 100	00)	DEVELOPMENT	PRODUCTION	TOTAL COST
Engineering				
DRAFTING		598.	17.	615.
DESIGN		1998.	65.	2063.
Systems		285.	-	285.
PROJECT MGMT	•	297.	28.	324.
DATA		101.	29.	131.
SUBTOTAL (E	ing)	3279.	139.	3419.
MANUFACTURING			122	133.
PRODUCTION PROTOTYPE		892.	133.	892.
		67.	58.	124.
TOOL-TEST EQ	-	959.	191.	1150.
SUBTOTAL (M	IF G)	333.	191.	1130.
TOTAL COST	?	4238.	330.	4568.
		ma	PRODUCT DESC	CD T DMOD &
DESIGN FACTORS	M	ECHANICAL 30.000		NG COMPLEXITY 1.000
WEIGHT		0.004*	PROTOTYPE	_
DENSITY		7.280		HEDULE FACTOR 0.250*
MFG. COMPLEXITY		1.000		2.500
NEW DESIGN			PLATFORM	rechnology 1995*
DESIGN REPEAT		0.000		TY FACTOR 1.0
ENGINEERING CHAN		0.020*		
INTEGRATION LEVE	ىلان	0.201	MTBF (FIEI	ענ) 20333"
SCHEDULE	START	1	rirst item	FINISH
DEVELOPMENT		(15)		OCT 96* (22)
PRODUCTION	JAN 00		DEC 00* (1)	JAN 01* (13)
SUPPLEMENTAL INFOR	MATTON			
ECONOMIC BASE	WINT TON	188	TOOT.TNG & PI	ROCESS FACTORS
ESCALATION		0.00	DEVELOPME!	
T-1 COST		70.21*	PRODUCTION	
AMORTIZED UNIT		65.22*	RATE TOOL	
DEV COST MULTIPI		1.00*		ROVEMENT FACTOR 0.945*
DEA COST MOTITAL	TEK	1.00~	FRICE IMP	MOVEMENT PACTOR 0.345"

UNIT LEARNING CURVE 0.895*

- - - PRICE HARDWARE MODEL METRIC - - - INTEGRATION AND TEST

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

PCRV INTEGRATION

PRODUCTION QUANTITY	1 INT WEIGHT	73.480* MODE	5
PROTOTYPE QUANTITY	4.500 INT VOLUME	294.774* QUANTITY/NHA	0

UNIT PROD COST 335.80

MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	1610.	117.	1727.
DESIGN	5722.	470.	6192.
SYSTEMS	682.	-	682.
PROJECT MGMT	640.	98.	739.
DATA	227.	104.	331.
SUBTOTAL (ENG)	8881.	790.	9671.
MANUFACTURING			
PRODUCTION	-	336.	336.
PROTOTYPE	2109.	-	2109.
TOOL-TEST EQ	252.	37.	289.
SUBTOTAL (MFG)	2361.	372.	2733.
TOTAL COST	11242.	1163.	12405.
DESIGN FACTORS ELECT	RONIC MECHANICAL	PRODUCT DESCRIPTO	PRS
WEIGHT 2	.652* 70.828*	ENGINEERING CO	MPLEXITY 1.000*
	561* 0.240*	PROTOTYPE SUPPO	PRT 1.0
	.601* 7.926*	PROTO SCHEDULE	FACTOR 0.250*
	700 0.700	ELECT VOL FRACT	
ENGINEERING CHANGES 0.		PLATFORM	2.500
INTEGRATION LEVEL 0.	.000 0.000	YEAR OF TECHNO	
		RELIABILITY FAC	
		MTBF (FIELD)	84788*
SCHEDULE START	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SCHEDULE START DEVELOPMENT JAN 9			NISH V 00* (23)
PRODUCTION DEC 0			V 00* (23) R 02* (17)
PRODUCTION DEC 0	(17) APR 02	(U) AP	K 02" (17)
SUPPLEMENTAL THEODMATTON	•		

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00*
AMORTIZED UNIT COST	1162.57*	PRODUCTION TOOLING	1.00*
DEV COST MULTIPLIER	1.00*		
PROD COST MULTIPLIER	1.00*		

- - - PRICE HARDWARE MODEL METRIC - - -SYSTEM COST SUMMARY

INPUT FILENAME: PCR

10-OCT-88 12:10 (188012)

TOTAL COST, WITH INTEGRATION COST

PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	34358.	2979.	37337.
DESIGN	122153.	13495.	135648.
Systems	14680.	_	14680.
PROJ MGMT	16409.	3541.	19951.
DATA	5371.	3749.	9120.
SUBTOTAL (ENG)	192970.	23765.	216735.
MANUFACTURING			
PRODUCTION	-	15860.	15860.
PROTOTYPE	89278.	_	89278.
TOOL-TEST EQ	9431.	3257.	12688.
PURCH ITEMS	0.	0.	0.
SUBTOTAL (MFG)	98709.	19118.	117827.
TOTAL COST	291679.	42883.	334562.

*	*****	*****	******	*****	******	***	**
*	SYSTEM	WT		3334.99	SYSTEM WS	3299.24	*
*	SYSTEM	SERIES MT	BF HRS.	826	AV SYSTEM COST	42883	*
*	SYSTEM	QUANTITY		1			*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - INNER SHELL

PRODUCTION QUANTITY	1 UN	IT WEIGHT	490.00	MODE	2
PROTOTYPE QUANTITY	3.500 UN	IT VOLUME	86199.98	QUANTITY/NHA	1
UNIT PROD COST 769.66			монтн	LY PROD RATE	0.00

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	40.	39.	79.
DESIGN	130.	148.	278.
SYSTEMS	20.	-	20.
PROJECT MGMT	264.	111.	375.
DATA	55.	118.	173.
SUBTOTAL (ENG)	508.	416.	925.
MANUFACTURING			
PRODUCTION	-	770.	770.
PROTOTYPE	4433.	-	4433.
TOOL-TEST EQ	353.	78.	431.
SUBTOTAL (MFG)	4786.	848.	5634.
TOTAL COST	5294.	1264.	6558.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	TORS
WEIGHT	490.000	ENGINEERING (COMPLEXITY 1.0
DENSITY	0.006*	PROTOTYPE SUE	PPORT 1.0
MFG. COMPLEXITY	7.280	PROTO SCHEDU	JLE FACTOR 0.
NEW DESIGN	0.050	PLATFORM	2.5

DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	490.000	ENGINEERING COMPLEXITY	1.000
DENSITY	0.006*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	7.280	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	0.050	PLATFORM	2.500
DESIGN REPEAT	0.800	YEAR OF TECHNOLOGY	1995*
ENGINEERING CHANGES	0.025*	RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.134	MTBF (FIELD)	12527*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(11)	NOV 95* (3)	FEB 96* (14)
PRODUCTION	JAN 00	(19)	JUL 01* (0)	JUL 01* (19)

			
SUPPLEMENTAL INFORMATIO	=-	MOOTING & BROOMER MICHORE	
ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	769.01*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	1263.96*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.886*

INPUT FILENAME: HTU 10-OCT-88 12:16 (188012)

MOSAP HTU - OUTER SHELL			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT 3.500 UNIT	WEIGHT 500.00 VOLUME 8620.00	
UNIT PROD COST 783.19		MONT	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	41.	40.	81.
DESIGN	132.	161.	292.
SYSTEMS	20.	_	20.
PROJECT MGMT	268.	114.	382.
DATA	56.	122.	177.
SUBTOTAL (ENG)	516.	436.	952.
505101111 (1110)			
MANUFACTURING			
PRODUCTION	_	783.	783.
PROTOTYPE	4512.	_	4512.
TOOL-TEST EQ	351.	79.	430.
SUBTOTAL (MFG)	4863.	863.	5726.
TOTAL COST	5379.	1299.	6678.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	500.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	0.058*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	7.280	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	0.050	PLATFORM	2.500
DESIGN REPEAT	0.800	YEAR OF TECH	HNOLOGY 1995*
ENGINEERING CHANGES	0.025*	RELIABILITY 1	
INTEGRATION LEVEL	0.134	MTBF (FIELD)	12452*
SCHEDULE START	F	IRST ITEM	FINISH
DEVELOPMENT JAN 9	5 (11) N	ov 95* (3)	FEB 96* (14)
PRODUCTION JAN 0	0 (19) J	UL 01* (0)	JUL 01* (19)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCI	
ESCALATION	0.00	DEVELOPMENT :	
T-1 COST	782.52*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST	1298.52*	RATE TOOLING	, 0
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.886*

INPUT FILENAME: HTU 10-OCT-88 12:16 (188012)

MOSAP HTU - OTHER STRUCTURE

PRODUCTION QUANTITY	1	UNIT WEIGHT	200.00	MODE	2
PROTOTYPE QUANTITY	3.500	UNIT VOLUME	6000.00	QUANTITY/NHA	1

UNIT PROD COST 1201.84 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMEN	T PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	96.	148.	244.
DESIGN	325.	658.	983.
SYSTEMS	44.	-	44.
PROJECT MGMT	335.	222.	557.
DATA	72.	236.	308.
SUBTOTAL (ENG)	872.	1264.	2136.
MANUFACTURING			
PRODUCTION	-	1202.	1202.
PROTOTYPE	5944.	-	5944.
TOOL-TEST EQ	571.	133.	705.
SUBTOTAL (MFG)	6516.	1335.	7851.
TOTAL COST	7387.	2600.	9987.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	IPTORS
WEIGHT	200.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	0.033*	PROTOTYPE SU	JPPORT 1.0
MFG. COMPLEXITY	8.510	PROTO SCHED	OULE FACTOR 0.250*
NEW DESIGN	0.050	PLATFORM	2.500
DESIGN REPEAT	0.500	YEAR OF TEC	CHNOLOGY 1995*
ENGINEERING CHANGES	0.035*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.134	MTBF (FIELD)	9946*
SCHEDULE STA		FIRST ITEM	FINISH
DEVELOPMENT JAN			MAY 96* (17)
PRODUCTION JAN	00 (22)	OCT 01* (0)	OCT 01* (22)
SUPPLEMENTAL INFORMATION	ис		
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT	
T-1 COST	1200.70*	PRODUCTION T	COOLING 1.00
AMORTIZED UNIT COST	2599.72*	RATE TOOLIN	
DEV COST MULTIPLIER	1.00*	PRICE IMPROV	TEMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNIN	IG CURVE 0.877*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

	(100	012/	
MOSAP HTU - INSULATION			
PRODUCTION QUANTITY	1 UNI	T WEIGHT 130.00	MODE 2
PROTOTYPE QUANTITY	3.500 UNI		QUANTITY/NHA 1
UNIT PROD COST 112.49		MONTH	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	105.	28.	133.
DRAFTING DESIGN	325.	26. 95.	420.
Systems	54.	95.	54.
PROJECT MGMT	82.	27.	109.
DATA	25.	29.	54.
SUBTOTAL (ENG)	592.	179.	771.
bobioird (BRG)	332.	173.	,,2:
MANUFACTURING			
PRODUCTION	-	112.	112.
PROTOTYPE	666.	-	666.
TOOL-TEST EQ	54.	11.	64.
SUBTOTAL (MFG)	720.	123.	843.
TOTAL COST	1312.	302.	1614.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	OTO PS
WEIGHT	130.000	ENGINEERING O	
DENSITY	13.000*	PROTOTYPE SUE	
MFG. COMPLEXITY	6.510	PROTO SCHEDU	
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	
ENGINEERING CHANGES	0.019*	RELIABILITY F	
INTEGRATION LEVEL	0.201	MTBF (FIELD)	26675*
	0.202	,	
SCHEDULE START	1	FIRST ITEM	FINISH
DEVELOPMENT JAN 9	5 (10)	OCT 95* (2)	DEC 95* (12)
PRODUCTION JAN 0	0 (13)	JAN 01* (0)	JAN 01* (13)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	COOLING 1.00
T-1 COST	112.40*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST	301.75*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.899*

	III CIIII I CI			
INPUT FILENAME: HTU	10-0CT-88 (18801			
MOSAP HTU - RADIATOR				
PRODUCTION QUANTITY	1 UNIT	WEIGHT 160.00	MODE	2
PROTOTYPE QUANTITY	3.500 UNIT	VOLUME 1000.00	QUANTITY/N	HA 1
UNIT PROD COST 576.32		FINOM	HLY PROD RAT	E 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL CO	ST
DRAFTING	26.	15.	41.	
DESIGN	85.	62.	147.	
SYSTEMS	12.	_		
PROJECT MGMT	169.	75.	75. 244.	
DATA	35.	80. 114.		
SUBTOTAL (ENG)	326.	232.	558.	
MANUFACTURING				
PRODUCTION	-	576.	576.	
PROTOTYPE	3010.	_	3010.	
TOOL-TEST EQ	268.	62.	330.	
SUBTOTAL (MFG)	3279.	638.	3917.	
TOTAL COST	3605.	870.	4474.	
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS	
WEIGHT	160.000	ENGINEERING	COMPLEXITY	1.000
DENSITY	0.160*	PROTOTYPE SU	PPORT :	1.0
MFG. COMPLEXITY	7.980	PROTO SCHED	ULE FACTOR	0.250*
NEW DESIGN	0.100	PLATFORM	2	2.500
DESIGN REPEAT	0.900	YEAR OF TEC	HNOLOGY	1995*
ENGINEERING CHANGES	0.030*	RELIABILITY	FACTOR 3	L.0
INTEGRATION LEVEL	0.263	MTBF (FIELD)		13064*
	_			
SCHEDULE START	r FI	RST ITEM	FINISH	

001122022	OTMIL		TINOT TIDE	TO11	
DEVELOPMENT	JAN 95	(13)	JAN 96* (4) MAY	96* (17)
PRODUCTION	JAN 00	(19)	JUL 01* (0) JUL	01* (19)
SUPPLEMENTAL INFOR	MATION				
ECONOMIC BASE		188	TOOLING & PROCESS	FACTORS	
ESCALATION	1	0.00	DEVELOPMENT TOOL	ING	1.00
T-1 COST	57	5.81*	PRODUCTION TOOLI	NG	1.00
AMORTIZED UNIT C	OST 86	9.71*	RATE TOOLING		0
DEV COST MULTIPL	IER	1.00*	PRICE IMPROVEMEN	T FACTOR	1.000*
PROD COST MULTIP	LIER	1.00*	UNIT LEARNING CU	RVE	0.883*

INPUT FILENAME: HTU 10-OCT-88 12:16 (188012)

MOSAP HTU - THERMAL PUMP			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT W 3.500 UNIT V	WEIGHT 20.00 VOLUME 2.00	- -
UNIT PROD COST 60.62		MONTH	LY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	61.	32.	93.
DESIGN	218.	122.	341.
SYSTEMS	26.	_	26.
PROJECT MGMT	35.	22.	57.
DATA	11.	24.	34.
SUBTOTAL (ENG)	351.	200.	551.
(23.0)	•		
MANUFACTURING			
PRODUCTION	_	61.	61.
PROTOTYPE	320.	-	320.
TOOL-TEST EQ	44.	6.	51.
SUBTOTAL (MFG)	364.	67.	431.
502101112 (11 0)	501.	• • •	1011
TOTAL COST	715.	267.	982.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 0.25		ENGINEERING C	
DENSITY 43.00			
MFG. COMPLEXITY 9.96		PROTO SCHEDU	- · · · · · · · · · · · · · · · · · · ·
NEW DESIGN 0.10		ELECT VOL FR	
DESIGN REPEAT 0.00		PLATFORM	2.500
ENGINEERING CHANGES 0.07		YEAR OF TECH	
HW/SW INTEG. LEVEL 0.00		RELIABILITY F	
•			
INTEGRATION LEVEL 0.26	3 0.263	MTBF (FIELD)	932403^
SCHEDULE START	FIF	RST ITEM	FINISH
DEVELOPMENT JAN 95	(9) SEE	? 95* (3)	DEC 95* (12)
PRODUCTION JAN 00	(11) NOV	7 00* (0)	NOV 00* (11)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	OOLING 1.00
T-1 COST	60.59*	PRODUCTION TO	OLING 1.00
	67.16*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.999*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	

10-OCT-88 12:16 (188012)

	(2000)	,	
MOSAP HTU - HEAT EXCHANGE	ER		
PRODUCTION QUANTITY	1 UNIT	WEIGHT 50.00	MODE 2
PRODUCTION QUANTITY PROTOTYPE QUANTITY	3.500 UNIT	VOLUME 4.00	QUANTITY/NHA 1
UNIT PROD COST 107.46		MONTH	ILY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	81.	29.	111.
DESIGN	261.	112.	373.
SYSTEMS	40	-	40.
PROJECT MGMT	64.	28.	92.
DATA	19.	30.	49.
Subtotal (Eng)	465.	199.	664.
MANUFACTURING			
PRODUCTION	_	107.	107.
PROTOTYPE	603.	_	603.
TOOL-TEST EQ	52.	11.	63.
SUBTOTAL (MFG)	655.	118.	773.
MOMAT. COCH	1100	210	1.40
TOTAL COST	1120.	318.	1437.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	50.000		OMPLEXITY 1.000
DENSITY	12.500* 7.280	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY	7.280		LE FACTOR 0.250*
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT ENGINEERING CHANGES	0.000	YEAR OF TECH	NOLOGY 1995*
		RELIABILITY F	
INTEGRATION LEVEL	0.263	MTBF (FIELD)	24845*
SCHEDULE START		RST ITEM	FINISH
DEVELOPMENT JAN 95			
PRODUCTION JAN 00	(13) JA	N 01* (0)	JAN 01* (13)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00		OOLING 1.00
T-1 COST	107 38*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST	317.61*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		MENT FACTOR 1.000*
DDOD COOM MITMEDITED	1 00+		C11D118 0 000+

PRICE IMPROVEMENT FACTOR 1.000* UNIT LEARNING CURVE 0.893*

DEV COST MULTIPLIER 1.00* PROD COST MULTIPLIER 1.00*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - THERMAL SYSTEM PIPING

PRODUCTION QUANTITY	1 tin	T WEIGHT 100.00	MODE 2
PROTOTYPE QUANTITY		T VOLUME 8.00	
Indicated Sounties	5.550 0		
UNIT PROD COST 651.50		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	95.	67.	161.
DESIGN	320.	296.	616.
SYSTEMS	43.	-	43.
PROJECT MGMT	196.	113.	308.
DATA	45.	120.	164.
SUBTOTAL (ENG)	698.	595.	1293.
MANUFACTURING			
PRODUCTION	-	651.	651.
PROTOTYPE	3209.	-	3209.
TOOL-TEST EQ	312.	72.	384.
Subtotal (MFG)	3521.	724.	4244.
TOTAL COST	4218.	1319.	5537.
TOTAL COST	4210.	1319.	5557.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	100.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	12.500*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	8.510	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.600	YEAR OF TECH	inology 1995*
ENGINEERING CHANGES	0.035*	RELIABILITY 1	FACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	12245*
			##W###################################
SCHEDULE STAI			FINISH (10)
DEVELOPMENT JAN	95 (15)		JUL 96* (19) AUG 01* (20)
PRODUCTION JAN	00 (20)	AUG 01* (0)	AUG 01~ (20)
SUPPLEMENTAL INFORMATION	ON		
ECONOMIC BASE	188	TOOLING & PROC	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT '	rooling 1.00
T-1 COST	650.90*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST		RATE TOOLING	0
DEV COST MULTIPLIER		PRICE IMPROV	EMENT FACTOR 1.000*
PROD COST MULTIPLIER		UNIT LEARNING	
	-		

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - HYDROGEN TANK	:S		
PRODUCTION QUANTITY	1 UNIT W	EIGHT 20.00	MODE 2
PROTOTYPE QUANTITY	3.500 UNIT V		
UNIT PROD COST 38.29		MONTH	ILY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	32.	9.	41.
DESIGN	101.	32.	133.
SYSTEMS	16.	-	16.
PROJECT MGMT	25.	9.	34.
DATA	7.	10.	17.
SUBTOTAL (ENG)	181.	59.	240.
MANUFACTURING			
PRODUCTION	_	38.	38.
PROTOTYPE	220.	-	220.
TOOL-TEST EQ	19.	4.	23.
SUBTOTAL (MFG)	240.	42.	282.
	101		
TOTAL COST	421.	101.	522.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	20.000	ENGINEERING C	OMPLEXITY 1.000
DENSITY	0.200*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY	7.030	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECH	NOLOGY 1995*
ENGINEERING CHANGES	0.023*	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	36575*
SCHEDULE START	:#T#	ST ITEM	FINISH
DEVELOPMENT JAN 95		-	NOV 95* (11)
PRODUCTION JAN 00	, .,	• •	NOV 00* (11)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	OOLING 1.00
T-1 COST	38.26*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST	101.15*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	MENT FACTOR 0.998*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.898*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - OXYGEN TANKS			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT 3.500 UNIT	WEIGHT 15.00 VOLUME 100.00	
UNIT PROD COST 29.92		MONTH	LY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	26.	7.	33.
DESIGN	82.	25.	108.
SYSTEMS	13.	_	13.
PROJECT MGMT	20.	7.	27.
DATA	6.	8.	14.
SUBTOTAL (ENG)	147.	47.	194.
MANUFACTURING			
PRODUCTION	-	30.	30.
PROTOTYPE	171.	_	171.
TOOL-TEST EQ	15.	3.	18.
SUBTOTAL (MFG)	187.	33.	219.
TOTAL COST	334.	80.	413.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	15.000	ENGINEERING C	
DENSITY	0.150*	PROTOTYPE SUP	
MFG. COMPLEXITY	7.030	PROTO SCHEDU	
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECH	
ENGINEERING CHANGES	0.130	RELIABILITY F	
INTEGRATION LEVEL	0.201	MTBF (FIELD)	39871*
SCHEDULE START	B' T	RST ITEM	FINISH
DEVELOPMENT JAN 95		-	NOV 95* (11)
PRODUCTION JAN 00	• •	• • •	OCT 00* (10)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	COOLING 1.00
T-1 COST	29.90*	PRODUCTION TO	
AMORTIZED UNIT COST	79.56*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.997*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - WATER TANKS			
PRODUCTION QUANTITY	1 UNIT	r weight 40.00	MODE 2
PROTOTYPE QUANTITY	3.500 UNI		
INOTOTILE QUANTITI	J.500 UNI	100.00	gomilli, min
UNIT PROD COST 69.38		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	52.	16.	68.
DESIGN	164.	55.	220.
SYSTEMS	26.	-	26.
PROJECT MGMT	43.	16.	59.
DATA	13.	17.	30.
SUBTOTAL (ENG)	298.	104.	402.
0021011111 (2110)	250.	202.	1021
MANUFACTURING			
PRODUCTION	_	69.	69.
PROTOTYPE	402.	_	402.
TOOL-TEST EO	35.	7.	42.
SUBTOTAL (MFG)	438.	76.	514.
,			
TOTAL COST	736.	180.	916.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	40.000	ENGINEERING (
DENSITY	0.400*	PROTOTYPE SUI	
MFG. COMPLEXITY	7.030	PROTO SCHEDU	
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECH	
ENGINEERING CHANGES	0.023*	RELIABILITY E	
INTEGRATION LEVEL	0.201	MTBF (FIELD)	29708*
	0.202	11121 (1 1222)	25,00
SCHEDULE START	F	TIRST ITEM	FINISH
DEVELOPMENT JAN 9	5 (9) 5	SEP 95* (3)	DEC 95* (12)
PRODUCTION JAN 0	0 (12) I	DEC 00* (0)	DEC 00* (12)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT 7	COOLING 1.00
T-1 COST	69.33*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST	180.38*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*	PRICE IMPROVI	EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

		•	•	
MOSAP HTU - FUEL C	ELLS			
PRODUCTION QUANTI	TY	2 UNIT	WEIGHT 45.00	MODE 1
PROTOTYPE QUANTIT		3.500 UNIT 1		
_				
UNIT PROD COST 53	3.38		MONT	HLY PROD RATE 0.58
PROGRAM COST (\$ 100	ום (10	EVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		132.	141.	274.
DESIGN		470.	651.	1121.
SYSTEMS		55.	-	55.
PROJECT MGMT		160.	216.	376.
DATA		39.	227.	267.
SUBTOTAL (E	NG)	857.	1235.	2092.
MANUFACTURING				
PRODUCTION		-	1067.	1067.
PROTOTYPE		2533.	-	2533.
TOOL-TEST EQ	!	318.	441.	759.
SUBTOTAL (M	ifg)	2851.	1508.	4359.
TOTAL COST	ı	3708.	2743.	6451.
DESIGN FACTORS	ET ECTRONIC	MECHANICAL	PRODUCT DESCRI	DTOP S
WEIGHT	1.000*		ENGINEERING	
DENSITY	43.000	0.220*		
MFG. COMPLEXITY	9.960	8.970		
NEW DESIGN	0.100	0.100	ELECT VOL F	
DESIGN REPEAT	0.000	0.500	PLATFORM	2.500
ENGINEERING CHAN				HNOLOGY 1995*
HW/SW INTEG. LEV			RELIABILITY	
INTEGRATION LEVE	L 0.843	0.201	MTBF (FIELD)	244812*
SCHEDULE	START			FINISH
DEVELOPMENT		•		AUG 96* (20)
PRODUCTION	JAN 00	(19) JUI	L 01* (2)	SEP 01* (21)
SUPPLEMENTAL INFOR	MATION			
ECONOMIC BASE	1	188	TOOLING & PROC	ESS FACTORS
ESCALATION	0.	.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	555.	. 65*	PRODUCTION T	OOLING 1.00

RATE TOOLING
PRICE IMPROVEMENT FACTOR 0.965*
0.918*

AMORTIZED UNIT COST 1371.64*
DEV COST MULTIPLIER 1.00*
PROD COST MULTIPLIER 1.00*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - POWER DISTIBUTION

PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 3.500	-	WEIGHT VOLUME	100.00 10.00	MODE QUANTITY/NHA	1
UNIT PROD COST 942.96				MONTH	LY PROD RATE	0.00

PROGRAM COST(\$ 1000)) ne-	VELOPMENT	PRODUCTION	TOTAL C	O S TT
ENGINEERING	,, 55	VELOPPENI	PRODUCTION	TOTAL	031
DRAFTING		238.	270.	508	
DESIGN		855.	1235.	2089	=
SYSTEMS		98.	-	98	•
PROJECT MGMT		278.	256.	534	•
DATA		68.	272.	340	
SUBTOTAL (EN	IG)	1536.	2033.	3569	
MANUFACTURING					
PRODUCTION		-	943.	943	•
PROTOTYPE		4453.	-	4453	•
TOOL-TEST EQ		585.	108.	693	•
SUBTOTAL (MF	'G)	5039.	1051.	6090	•
TOTAL COST		6575.	3083.	9659	•
DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIP	TORS	
WEIGHT	2.500*	97.500	ENGINEERING C	OMPLEXITY	1.000
DENSITY	43.000	9.750*	PROTOTYPE SUP	PORT	1.0
MFG. COMPLEXITY	10.320	8.750	PROTO SCHEDU	LE FACTOR	0.250*
NEW DESIGN	0.100	0.100	ELECT VOL FR	ACTION	0.006*
DESIGN REPEAT	0.000	0.500	PLATFORM		2.500
ENGINEERING CHANG		0.037*	YEAR OF TECH	NOLOGY	1995*
HW/SW INTEG. LEVE	L 0.000		RELIABILITY F	ACTOR	1.0
INTEGRATION LEVEL	0.843	0.201	MTBF (FIELD)		110324*
SCHEDULE	START	FIRST	ITEM	FINISH	

SCHEDULE	START		FIRST ITEM		FINISH	
DEVELOPMENT	JAN 95	(16)	APR 96* (4)	AUG 96* (20)
PRODUCTION	JAN 00	(21)	SEP 01* (0)	SEP 01* (21)

SUPPLEMENTAL INFORMATION ECONOMIC BASE

ESCALATION	0.00	DEVELO
T-1 COST	942.44*	PRODUC
AMORTIZED UNIT COST	3083.39*	RATE
DEV COST MULTIPLIER	1.00*	PRICE
PROD COST MULTIPLIER	1.00*	UNIT I

188

TOOLING & PROCESS FACTORS DEVELOPMENT TOOLING 1.00 PRODUCTION TOOLING 1.00 RATE TOOLING 0

ICE IMPROVEMENT FACTOR 1.000*
IT LEARNING CURVE 0.917*

INPUT FILENAME: HTU 10-OCT-88 12:16

(188012)

MOSAP HTU - WHEELS & LOCOMOTION

PRODUCTION QUANTITY PROTOTYPE QUANTITY	4 UNIT WEIGH		MODE 2 QUANTITY/NHA 4
UNIT PROD COST 337.67		монтні	LY PROD RATE 1.04
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	82.	53.	136.
DESIGN	274.	238.	512.
SYSTEMS	38.	-	38.
PROJECT MGMT	124.	190.	314.
DATA	30.	200.	230.
SUBTOTAL (ENG)	547.	682.	1229.
0021011111 (1110)	• • • • • • • • • • • • • • • • • • • •		
MANUFACTURING			
PRODUCTION	_	1351.	1351.
PROTOTYPE	1811.	-	1811.
TOOL-TEST EQ	166.	445.	611.
SUBTOTAL (MFG)	1977.	1796.	3772.
TOTAL COST	2524.	2477.	5001.
DESIGN FACTORS	MECHANICAL E	PRODUCT DESCRIPT	
WEIGHT	75.000	ENGINEERING CO	
DENSITY	0.075*	PROTOTYPE SUPI	-
MFG. COMPLEXITY	8.160	PROTO SCHEDUI	
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.500	YEAR OF TECH	
ENGINEERING CHANGES	0.032*	RELIABILITY FA	_
INTEGRATION LEVEL	0.350	MTBF (FIELD)	15269*
SCHEDULE START	FIRST 1	ITEM 1	FINISH
DEVELOPMENT JAN 95			MAY 96* (17)
PRODUCTION JAN 00	(17) MAY 01	` -/	AUG 01* (20)
INODUCTION UM VU	(17) 1212 01	(0,	, _ , ,
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE		rooling & Proce:	
ESCALATION	0.00	DEVELOPMENT TO	
	387.23*	PRODUCTION TO	
	619.33*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.954*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.883*

INPUT FILENAME: HTU 10-OCT-88 12:16 (188012)

MOSAP HTU - MAN LOCKS

PRODUCTION QUANTITY	2	UNIT WEIGHT	230.00	MODE	1
PROTOTYPE OUANTITY	3.500	UNIT VOLUME	4000 00	OIIANTTTY/NHA	2

UNIT PROD COST 933.88 MONTHLY PROD RATE 0.38

PROGRAM COST (\$ 100	(O) D	EVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		474.	439.	913.
DESIGN		1685.	1957.	3642.
Systems		198.		198.
PROJECT MGMI		374.	455.	828.
DATA		102.	479.	581.
SUBTOTAL (E	ing)	2833.	3330.	6163.
MANUFACTURING				
PRODUCTION		-	1868.	1868.
PROTOTYPE		4794.	-	4794.
TOOL-TEST EQ	<u> </u>	601.	554.	1155.
SUBTOTAL (M	FG)	5395.	2422.	7817.
TOTAL COST		8229.	5752.	13980.
DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	4.600*	225.400	ENGINEERING	COMPLEXITY 1.000
DENSITY	11.500	0.056*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	9.960	7.980	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	0.100	0.100	ELECT VOL F	RACTION 0.000*
DESIGN REPEAT	0.000	0.000	PLATFORM	2.500
ENGINEERING CHAN		0.029*	YEAR OF TEC	HNOLOGY 1995*
HW/SW INTEG. LEV			RELIABILITY	FACTOR 1.0
INTEGRATION LEVE	L 0.350	0.350	MTBF (FIELD)	54868*
SCHEDULE	START		ST ITEM	FINISH
DEVELOPMENT	JAN 95	(15) MAR	• • •	JUL 96* (19)
PRODUCTION	JAN 00	(20) AUG	01* (3)	NOV 01* (23)
SUPPLEMENTAL INFOR	MATION			
ECONOMIC BASE	1	.88	TOOLING & PROC	ESS FACTORS
ESCALATION	0.	00	DEVELOPMENT	TOOLING 1.00
T-1 COST	971.	74*	PRODUCTION T	OOLING 1.00
AMORTIZED UNIT C	OST 2875.	81*	RATE TOOLING	9 0
DEV COST MULTIPL		00*	PRICE IMPROV	EMENT FACTOR 0.972*
PROD COST MULTIP	LIER 1.	00*	UNIT LEARNIN	G CURVE 0.920*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

	(100012)		
MOSAP HTU - GALLEY			
PRODUCTION QUANTITY	1 UNIT WEIG	GHT 70.00	MODE 1
PROTOTYPE QUANTITY	3.500 UNIT VOLU		
-		MONTH	LY PROD RATE 0.00
UNIT PROD COST 319.17		PONIA	LI PROD RAIL 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	193.	138.	331.
DESIGN	685.	575.	1260.
SYSTEMS	81.	-	81.
PROJECT MGMT	137.	108.	245.
DATA	39.	115.	153.
SUBTOTAL (ENG)	1134.	937.	2071.
MANUFACTURING			
PRODUCTION	-	319.	319.
PROTOTYPE	1613.	-	1613.
TOOL-TEST EQ	208.	35.	243.
SUBTOTAL (MFG)	1821.	354.	2175.
TOTAL COST	2955.	1291.	4246.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 1.00	00* 69.000	ENGINEERING C	OMPLEXITY 1.000
DENSITY 5.88	0.041*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 9.9	60 7.980	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 0.10	00 0.100	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.00	0.000	PLATFORM	2.500
ENGINEERING CHANGES 0.07	70* 0.030*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00	10	RELIABILITY F.	ACTOR 1.0
INTEGRATION LEVEL 0.20	0.201	MTBF (FIELD)	244814*
SCHEDULE START	FIRST	TTEM	FINISH
DEVELOPMENT JAN 95	(13) JAN 96		MAY 96* (17)
PRODUCTION JAN 00	(16) APR 01	- \ -/	APR 01* (16)
SUPPLEMENTAL INFORMATION	·		
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT T	
	319.01*	PRODUCTION TO	
AMORTIZED UNIT COST 12	290.68*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.923*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - PERSONAL HY	GIENE		
PRODUCTION QUANTITY	1 UNIT	WEIGHT 90.00	MODE 2
PROTOTYPE QUANTITY			
	0.000 0	1,00.00	201111111111111111111111111111111111111
UNIT PROD COST 348.41		MONTH	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	168.	91.	259.
DESIGN	555.	409.	963.
SYSTEMS	78.	-	78.
PROJECT MGMT	156.	94.	250.
DATA	43.	100.	143.
SUBTOTAL (ENG)	1000.	694.	1694.
MANUFACTURING			
PRODUCTION	-	348.	348.
PROTOTYPE	1811.	-	1811.
TOOL-TEST EQ	160.	37.	197.
SUBTOTAL (MFG)	1971.	386.	2357.
TOTAL COST	2971.	1079.	4050.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	90.000	ENGINEERING C	
DENSITY	0.053*	PROTOTYPE SUP	
MFG. COMPLEXITY	7.980	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.020	YEAR OF TECH	NOLOGY 1995*
ENGINEERING CHANGES	0.030*	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	15526*
SCHEDULE STAR	r fi	RST ITEM	FINISH
DEVELOPMENT JAN	95 (13) JA	N 96* (4)	MAY 96* (17)
PRODUCTION JAN (00 (17) MA	Y 01* (0)	MAY 01* (17)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	348.11*	PRODUCTION TO	
AMORTIZED UNIT COST	1079.32*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.884*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - SHOWER			
PRODUCTION QUANTITY		WEIGHT 80.00 VOLUME 2000.00	
PROTOTYPE QUANTITY	4.500 UNIT	VOLUME 2000.00	QUANIIII/NHA I
UNIT PROD COST 402.45		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	1805.	98.	1904.
DESIGN	6101.	423.	6524.
SYSTEMS	824.	-	824.
PROJECT MGMT	785.	102.	887.
DATA	281.	108.	390.
SUBTOTAL (ENG)	9796.	732.	10528.
MANUFACTURING			
PRODUCTION	_	402.	402.
PROTOTYPE	2543.	-	2543.
TOOL-TEST EQ	232.	44.	276.
Subtotal (MFG)	2775.	446.	3221.
TOTAL COST	12571.	1178.	13749.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	80.000	ENGINEERING	
DENSITY	0.040*	PROTOTYPE SU	
MFG. COMPLEXITY	8.230	PROTO SCHED	
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	HNOLOGY 1995*
ENGINEERING CHANGES	0.028*	RELIABILITY 1	FACTOR 1.0
INTEGRATION LEVEL	0.134	MTBF (FIELD)	14572*
SCHEDULE START		IRST ITEM	FINISH
DEVELOPMENT JAN 95		UL 96* (7)	FEB 97* (26)
PRODUCTION JAN 00) (18) J	UN 01* (0)	JUN 01* (18)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT '	
T-1 COST	402.09*	PRODUCTION TO	
AMORTIZED UNIT COST	1177.88*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNIN	G CURVE 0.882*

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

MOSAP HTU - EMERGENCY EQ	UIPMENT		
PRODUCTION QUANTITY	1 UNI	r WEIGHT 30.00	MODE 2
PROTOTYPE QUANTITY		r VOLUME 800.00	
UNIT PROD COST 107.28		MONT	HLY PROD RATE 0.00
PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	71.	31.	102.
DESIGN	233.	123.	356.
SYSTEMS	34.	-	34.
PROJECT MGMT	56.	29.	85.
DATA	16.	31.	47.
SUBTOTAL (ENG)	410.	214.	624.
MANUFACTURING			
PRODUCTION	-	107.	107.
PROTOTYPE	566.	_	566.
TOOL-TEST EQ	51.	11.	63.
SUBTOTAL (MFG)	617.	119.	736.
TOTAL COST	1027.	332.	1360.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTOPS
WEIGHT	30.000		COMPLEXITY 1.000
DENSITY	0.037*	PROTOTYPE SUI	
MFG. COMPLEXITY	7.760		JLE FACTOR 0.250*
NEW DESIGN	0.100	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	
ENGINEERING CHANGES	0.029*	RELIABILITY E	
INTEGRATION LEVEL	0.134	MTBF (FIELD)	23607*
	0.20.	1122 (1 1225)	23007
SCHEDULE START	1	'IRST ITEM	FINISH
DEVELOPMENT JAN 95	-		FEB 96* (14)
PRODUCTION JAN 00	• •		FEB 01* (14)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	107.19*	PRODUCTION TO	
AMORTIZED UNIT COST	332.15*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

	,	•	
MOSAP HTU - AVIONICS			
PRODUCTION QUANTITY	י זואדד או 2	EIGHT 45.00	MODE 1
PROTOTYPE QUANTITY	3.500 UNIT V	OLUME 1700.00	QUANTITY/NHA 2
The second secon			
UNIT PROD COST 188.66		MONTE	LY PROD RATE 1.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	166.	165.	331.
DESIGN	597.	659.	1256.
SYSTEMS	68.	wi#	68.
PROJECT MGMT	93.	132.	225.
DATA	28.	139.	167.
SUBTOTAL (ENG)	952.	1095.	2047.
, ,			
MANUFACTURING			
PRODUCTION	-	377.	377.
PROTOTYPE	886.	_	886.
TOOL-TEST EQ	125.	208.	333.
Subtotal (MFG)	1011.	585.	1596.
TOTAL COST	1963.	1680.	3643.
DESIGN FACTORS ELECTRON	IC MECHANICAL	PRODUCT DESCRIP	TORS
	* 42. 500	ENGINEERING C	OMPLEXITY 1.000
DENSITY 14.706	0.025*	PROTOTYPE SUP	PORT 1.0 LE FACTOR 0.250* ACTION 0.000*
MFG. COMPLEXITY 10.320	6.850	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 0.100	0.100	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.000	0.000	PLATFORM	2.500
ENGINEERING CHANGES 0.076	5* 0.020*		
HW/SW INTEG. LEVEL 0.000	1	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.201	0.201	MTBF (FIELD)	110324*
SCHEDULE START	FIR	ST ITEM	FINISH
DEVELOPMENT JAN 95	(13) JAN	96* (4)	MAY 96* (17)
		01* (1)	
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT I	
	6.25*	PRODUCTION TO	_
	10.00*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.953*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.921*

INPUT FILENAME: HTU 10-OCT-88 12:16 (188012)

MOSAP HTU - ECLSS

PRODUCTION QUANTITY	1	UNIT WEIGHT	200.00	MODE	1
PROTOTYPE QUANTITY	3.500	UNIT VOLUME	2600.00	QUANTITY/NHA	1

UNIT PROD COST 2849.81 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DE	VELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		634.	701.	1335.
DESIGN		2256.	3606.	5862.
Systems		266.	_	266.
PROJECT MGMT		812.	756.	1568.
DATA		196.	802.	998.
SUBTOTAL (ENG)		4163.	5864.	10028.
MANUFACTURING				
PRODUCTION		_	2850.	2850.
PROTOTYPE		13173.		13173.
TOOL-TEST EO		1591.	335.	1926.
SUBTOTAL (MFG)		14764.	3185.	17949.
302101112 (12 3)		11/01.	3103.	1/343.
TOTAL COST		18927.	9049.	27976.
DESIGN FACTORS EL	ECTRONIC	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	2.000*	198.000	ENGINEERING C	OMPLEXITY 1.000
DENSITY	7.692	0.076*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY	9.960	9.340	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	0.100	0.100	ELECT VOL FR	
DESIGN REPEAT	0.000	0.000	PLATFORM	2.500
ENGINEERING CHANGES	0.064*	0.041*	YEAR OF TECH	
HW/SW INTEG. LEVEL	0.000		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL	0.263	0.263	MTBF (FIELD)	124115*
SCHEDULE ST	ART	FIRS	ST ITEM	FINISH
DEVELOPMENT JA	ท 95	(20) AUG	96* (6)	FEB 97* (26)
PRODUCTION JA	N 00	(26) FEB	02* (0)	FEB 02* (26)
SUPPLEMENTAL INFORMAT	ION			
ECONOMIC BASE	18	88	TOOLING & PROCE	SS FACTORS
ESCALATION	0.0	00	DEVELOPMENT T	OOLING 1.00
T-1 COST	2848.3	12*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST	9049.	22*	RATE TOOLING	0
DEV COST MULTIPLIER	1.0	00*	PRICE IMPROVE	MENT FACTOR 1.000*
PROD COST MULTIPLIE	R 1.0	00*	UNIT LEARNING	CURVE 0.913*

INPUT FILENAME: HTU 10-OCT-88 12:16

(188012)

MOSAP HTU - WORKSTATION			
PRODUCTION QUANTITY	1 UNIT W	EIGHT 40.00	MODE 1
PROTOTYPE QUANTITY	3.500 UNIT VO		QUANTITY/NHA 1
UNIT PROD COST 576.19		MONTH	ILY PROD RATE 0.00
	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING DRAFTING	303.	337.	640.
DESIGN	1088.	1541.	2630.
SYSTEMS	125.	1341.	125.
PROJECT MGMT	213.	254.	467.
DATA	60.	269.	329.
SUBTOTAL (ENG)	1789.	2401.	4190.
MANUFACTURING			
PRODUCTION		576.	576.
PROTOTYPE	2594.	-	2594.
TOOL-TEST EQ	347.	68.	415.
SUBTOTAL (MFG)	2941.	644.	3584.
TOTAL COST	4730.	3045.	7775.
DESIGN FACTORS ELECTRON	C MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 5.000		ENGINEERING C	OMPLEXITY 1.000
DENSITY 29.412	0.021*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY 10.290	8.750	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN 0.100	0.100	ELECT VOL FR	
DESIGN REPEAT 0.000	0.000	PLATFORM	2.500
ENGINEERING CHANGES 0.075	* 0.038*	YEAR OF TECH	
HW/SW INTEG. LEVEL 0.000		RELIABILITY F	
INTEGRATION LEVEL 0.263	0.263	MTBF (FIELD)	55472*
SCHEDULE START	FIRS	ST ITEM	FINISH
DEVELOPMENT JAN 95	(14) FEB	96* (5)	JUL 96* (19)
PRODUCTION JAN 00	(17) MAY	01* (0)	MAY 01* (17)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
	0.00	DEVELOPMENT I	
	5.87*	PRODUCTION TO	_
	5.02*	RATE TOOLING	
	L.00*		MENT FACTOR 1.000* CURVE 0.917*
PROD COST MULTIPLIER	L.00*	UNIT LEARNING	CURVE U.91/^

- - - PRICE HARDWARE MODEL METRIC - - -INTEGRATION AND TEST

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

HTU INTEGRATION

PRODUCTION QUANTITY	1 INT WEIGHT	70.887* MODE	5
PROTOTYPE QUANTITY	3.500 INT VOLUME	286.178* QUANTITY/NHA	0

UNIT PROD COST 307.27

PROD COST MULTIPLIER 1.00*

1.00*

DEV COST MULTIPLIER

MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 100	0)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	•	· <u>-</u> ·		
DRAFTING		1456.	105.	1561.
DESIGN		5101.	421.	5522.
Systems		623.	_	623.
PROJECT MGMT		550.	89.	639.
DATA		203.	94.	297.
SUBTOTAL (E	NG)	7931.	710.	8642.
MANUFACTURING				
PRODUCTION		_	307.	307.
PROTOTYPE		1559.	_	1559.
TOOL-TEST EQ		190.	33.	223.
SUBTOTAL (M	FG)	1749.	341.	2089.
TOTAL COST		9680.	1051.	10731.
DESIGN FACTORS	ELECTRON	IC MECHANICAL	PRODUCT DESCRI	IPTORS
WEIGHT	2.12	5* 68.763*	ENGINEERING	COMPLEXITY 1.000*
DENSITY	0.561	* 0.240*	PROTOTYPE SU	JPPORT 1.0
MFG. COMPLEXITY	9.549	7.901 *	PROTO SCHEI	ULE FACTOR 0.250*
NEW PLANS LEVEL	0.700	0.700	ELECT VOL F	RACTION 0.013
ENGINEERING CHANG	GES 0.038	* 0.018*	PLATFORM	2.500
INTEGRATION LEVE	L 0.000	0.000	YEAR OF TEC	HNOLOGY 1999*
			RELIABILITY	FACTOR 1.0
			MTBF (FIELD)	103732*
SCHEDULE	START		RST ITEM	FINISH
DEVELOPMENT		(17) MA	\ -,	OCT 00* (22)
PRODUCTION	NOV 00*	(16) FE	B 02* (0)	FEB 02* (16)
SUPPLEMENTAL INFORM	MATION			•
ECONOMIC BASE		188	TOOLING & PROC	CESS FACTORS
ESCALATION		0.00	DEVELOPMENT	TOOLING 1.00*
AMORTIZED UNIT CO	OST 105	0.67*	PRODUCTION	TOOLING 1.00*

- - - PRICE HARDWARE MODEL METRIC - - -SYSTEM COST SUMMARY

INPUT FILENAME: HTU

10-OCT-88 12:16 (188012)

TOTAL COST, WITH INTEGRATION COST

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	6377.	2999.	9376.
DESIGN	22041.	13605.	35646.
Systems	2801.	_	2801.
PROJ MGMT	5236.	3425.	8661.
DATA	1448.	3628.	5076.
SUBTOTAL (ENG)	37904.	23657.	61561.
MANUFACTURING			
PRODUCTION	-	14917.	14917.
PROTOTYPE	61827.	_	61827.
TOOL-TEST EQ	6650.	2785.	9435.
PURCH ITEMS	0.	0.	0.
SUBTOTAL (MFG)	68477.	17702.	86179.
TOTAL COST	106381.	41359.	147740.

* SYSTEM WT 3274.99 SYSTEM WS 3248.04 * * SYSTEM SERIES MTBF HRS. 883 AV SYSTEM COST 41359 * * SYSTEM QUANTITY 1	*	*****	******	******	*****
ording desired mid:	*	SYSTEM WT	3274.99	System ws	3248.04 *
* SYSTEM QUANTITY 1	*	SYSTEM SERIES MTB	r HRS. 883	AV SYSTEM COS	T 41359 *
	*	SYSTEM QUANTITY	1		*

INPUT FILENAME: EST

10-OCT-88 12:19 (188012)

MOSAP EST - Bed

PRODUCTION QUANTITY	5	UNIT	WEIGHT	130.00	MODE	2
PROTOTYPE QUANTITY	3.500	UNIT	VOLUME	1.00	QUANTITY/NHA	1

UNIT PROD COST 118.63

MONTHLY PROD RATE 1.92

PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPME	NT PRODUCTION	TOTAL COST
DRAFTING	1132.	35.	1167.
DESIGN	3522.	121.	3644.
SYSTEMS	578.	-	578.
PROJECT MGMT	487.	88.	575.
DATA	192.	93.	284.
SUBTOTAL (ENG)	5911.	337.	6248.
MANUFACTURING			
PRODUCTION	_	593.	593.
PROTOTYPE	760.	_	760.
TOOL-TEST EQ	61.	190.	252.
SUBTOTAL (MFG)	821.	784.	1604.
TOTAL COST	6732.	1121.	7852.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCR	IPTORS
WEIGHT	130.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	130.000*	PROTOTYPE SU	JPPORT 1.0
MFG. COMPLEXITY	6.640	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	INOLOGY 1995*
ENGINEERING CHANGES	0.019*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	25039*
SCHEDULE ST	ART	FIRST ITEM	FINISH
DEVELOPMENT JAI	N 95 (15)	MAR 96* (4)	JUL 96* (19)
PRODUCTION JAI	N 00 (13)	JAN 01* (2)	MAR 01* (15)
SUPPLEMENTAL INFORMAT	ION		
ECONOMIC BASE	188	TOOLING & PROC	CESS FACTORS
ESCALATION	0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	137.14*	PRODUCTION 1	COOLING 1.00
AMORTIZED UNIT COST	224.13*	RATE TOOLING	9
DEV COST MULTIPLIER	1.00*	PRICE IMPROV	EMENT FACTOR 0.944*
PROD COST MULTIPLIE	1.00*	UNIT LEARNIN	G CURVE 0.897*

INPUT FILENAME: EST

10-OCT-88 12:19 (188012)

MOSAP EST - Remote Manipulator System

PRODUCTION QUANTITY PROTOTYPE QUANTITY	5 UNIT 3.500 UNIT	WEIGHT 40.00 VOLUME 100.00	MODE 1 QUANTITY/NHA 1
UNIT PROD COST 212.50			HLY PROD RATE 0.80
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	1521.	142.	1663.
DESIGN	5466.	567.	6033.
SYSTEMS	627.	_	627.
PROJECT MGMT	529.	170.	699.
DATA	198.	177.	375.
SUBTOTAL (ENG)	8341.	1056.	9396.
MANUFACTURING			
PRODUCTION		1063.	1063.
PROTOTYPE	1104.	_	1104.
TOOL-TEST EQ	153.	225.	378.
Subtotal (MFG)	1257.	1287.	2544.
TOTAL COST	9597.	2343.	11940.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
	00* 39.000	ENGINEERING C	
DENSITY 40.00			
MFG. COMPLEXITY 10.33			LE FACTOR 0.250*
			2000
NEW DESIGN 1.00	00 1.000	ELECT VOL FR	ACTION 0.000*
DESIGN REPEAT 0.00	0.000	PLATFORM	2.500
ENGINEERING CHANGES 0.07	72* 0.029*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVEL 0.00	10	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL 0.84		MTBF (FIELD)	270801*
SCHEDULE START	FI	RST ITEM	FINISH
DEVELOPMENT JAN 95	(17) MA	Y 96* (5)	OCT 96* (22)
PRODUCTION JAN 00	•	R 01* (5)	AUG 01* (20)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
	242.00*	PRODUCTION TO	
	168.63*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.959*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	
THOS COOL HOUSE BILL	00	V.1.2.2 22222414140	0.500

INPUT FILENAME: EST 10-OCT-88 12:19 (188012)

MOSAP EST - Fuel Cells

PRODUCTION QUANTITY	5	UNIT	WEIGHT	40.00	MODE	1
PROTOTYPE QUANTITY	2.500	UNIT	VOLUME	60.00	QUANTITY/NHA	1

UNIT PROD COST 466.32 MONTHLY PROD RATE 0.78

1112 11102 0001 4				PA	MIRLI PROD R	ALE U. /
PROGRAM COST (\$ 10	00)	DEVELOPME	NT	PRODUCTION	TOTAL (COST
ENGINEERING						
DRAFTING		123.		155.	278	3.
DESIGN		429.		666.	1095	
Systems		52.		-	52	
PROJECT MGM	T	114.		317.	431	
DATA		30.		332.	362	
SUBTOTAL (ENG)	747.		1470.	2218	3.
MANUFACTURING						
PRODUCTION		_		2332.	2332	2.
PROTOTYPE		1715.			1715	-
TOOL-TEST E	Q	226.		583.	810	
SUBTOTAL (MFG)	1942.		2915.	4857	
TOTAL COS	T	2689.		4386.	7074	· .
DESIGN FACTORS	ELECTRO	NIC MECHAN	CAL	PRODUCT DESC	RIPTORS	
WEIGHT	1.00				G COMPLEXITY	1.000
DENSITY	43.00	0 0.6	50*	PROTOTYPE	SUPPORT	1.0
MFG. COMPLEXITY	9.96		70		EDULE FACTOR	
NEW DESIGN	0.10	0 0.1	00	ELECT VOL		0.000
DESIGN REPEAT	0.00	0 0.5	00	PLATFORM		2.500
ENGINEERING CHA	NGES 0.07	3* 0.0	43*	YEAR OF TI	ECHNOLOGY	1995
HW/SW INTEG. LEV	VEL 0.00	0		RELIABILIT		1.0
INTEGRATION LEV	EL 0.84	3 0.2	01	MTBF (FIELI)	244812
SCHEDULE	START			'ITEM	FINISH	
DEVELOPMENT		(15)		• •	JUN 96*	(18)
PRODUCTION	JAN '00	(19)	JUL 0	1* (5)	DEC 01*	(24)
SUPPLEMENTAL INFO	RMATION					
ECONOMIC BASE		188		TOOLING & PRO	OCESS FACTORS	
ESCALATION		0.00		DEVELOPMEN'	T TOOLING	1.00
T-1 COST		35.06*		PRODUCTION		1.00
	COST 8	77.11*		RATE TOOLI		(
AMORTIZED UNIT	0001	, , , , , ,				
AMORTIZED UNIT (DEV COST MULTIPI		1.00*			OVEMENT FACTO	R 0.959*

INPUT FILENAME: EST 10-OCT-88 12:19

(188012)

MOSAP EST - Hydrogen Tanks

PRODUCTION QUANTITY PROTOTYPE QUANTITY	5 UNIT W 3.500 UNIT V		MODE 2 QUANTITY/NHA 1
UNIT PROD COST 10.58		MONTH	LY PROD RATE 3.88
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	120.	3.	123.
DESIGN	381.	11.	392.
SYSTEMS	60.	_	60.
PROJECT MGMT	49.	8.	58.
DATA	20.	9.	28.
SUBTOTAL (ENG)	630.	31.	661.
505101112 (5110)	333.	52.	772.
MANUFACTURING			
PRODUCTION	_	53.	53.
PROTOTYPE	66.	-	66.
TOOL-TEST EQ	6.	23.	29.
SUBTOTAL (MFG)	72.	76.	148.
TOTAL COST	702.	107.	809.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	5.000	ENGINEERING CO	OMPLEXITY 1.000
DENSITY	0.077*	PROTOTYPE SUP	= -
MFG. COMPLEXITY	7.030	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECHI	NOLOGY 1995*
ENGINEERING CHANGES	0.022*	RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	55437*
OCUMDIII M OMAN		ST ITEM	FINISH
SCHEDULE START DEVELOPMENT JAN 95			
			· · · · · · · · · · · · · · · · · · ·
PRODUCTION JAN 00) (9) SEP	00* (1)	OCT 00* (10)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT TO	
T-1 COST	12.14*	PRODUCTION TO	
AMORTIZED UNIT COST	12.14 [*] 21.40* 1.00*	RATE TOOLING	
DEV COST MULTIPLIER			MENT FACTOR 0.932*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.903*

INPUT FILENAME: EST

10-OCT-88 12:19 (188012)

MOSAP EST - Oxygen Tanks			
PRODUCTION QUANTITY PROTOTYPE QUANTITY	5 UNIT V 3.500 UNIT V		MODE 2 QUANTITY/NHA 1
UNIT PROD COST 10.58		MONTH	LY PROD RATE 3.88
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	120.	3.	123.
DESIGN	381.	11.	392.
SYSTEMS	60.	-	60.
PROJECT MGMT	49.	8.	58.
DATA	20.	9.	28.
SUBTOTAL (ENG)	630.	31.	661.
MANUFACTURING			
PRODUCTION	-	53.	53.
PROTOTYPE	66.	-	66.
TOOL-TEST EQ	6.	23.	29.
SUBTOTAL (MFG)	72.	76.	148.
TOTAL COST	702.	107.	809.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIPT	rors
WEIGHT	5.000	ENGINEERING CO	OMPLEXITY 1.000
DENSITY	0.077*	PROTOTYPE SUPI	PORT 1.0
MFG. COMPLEXITY	7.030	PROTO SCHEDUI	LE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECHN	OLOGY 1995*
ENGINEERING CHANGES	0.022*	RELIABILITY FA	ACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	55437*
SCHEDULE START	FIR:	ST ITEM B	rinish
DEVELOPMENT JAN 95			APR 96* (16)
PRODUCTION JAN 00	• • •	• • • •	OCT 00* (10)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCES	SS FACTORS
ESCALATION	0.00	DEVELOPMENT TO	OLING 1.00
T-1 COST	12.14*	PRODUCTION TOO	LING 1.00
AMORTIZED UNIT COST	21.40*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEN	MENT FACTOR 0.932*

PROD COST MULTIPLIER 1.00* UNIT LEARNING CURVE 0.903*

INPUT FILENAME: EST

10-OCT-88 12:19 (188012)

MOSAP EST - Water Tanks			
PRODUCTION QUANTITY	5 UNIT	WEIGHT 5.00	MODE 2
PROTOTYPE QUANTITY	3.500 UNIT		QUANTITY/NHA 1
2010 201 201			-
UNIT PROD COST 10.58		MONTHI	LY PROD RATE 3.88
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	120.	3.	123.
DESIGN	381.	11.	392.
SYSTEMS	60.	-	60.
PROJECT MGMT	49.	8.	58.
DATA	20.	9.	28.
SUBTOTAL (ENG)	630.	31.	661.
, , ,			
MANUFACTURING			
PRODUCTION	_	53.	53.
PROTOTYPE	66.	-	66.
TOOL-TEST EQ	6.	23.	29.
Subtotal (MFG)	72.	76.	148.
TOTAL COST	702.	107.	809.
DESIGN FACTORS M	ECHANICAL	PRODUCT DESCRIPT	rors
WEIGHT	5.000	ENGINEERING CO	OMPLEXITY 1.000
DENSITY	0.077*	PROTOTYPE SUPE	PORT 1.0
MFG. COMPLEXITY	7.030	PROTO SCHEDUI	E FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECHN	OLOGY 1995*
ENGINEERING CHANGES	0.022*	RELIABILITY FA	ACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	55437*
SCHEDULE START	B-T-1	RST ITEM B	rinish
SCHEDULE START DEVELOPMENT JAN 95			APR 96* (16)
PRODUCTION JAN 00	,,		CT 00* (10)
randoction dan ou	(), 011	. 00 (1/	(10,
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCES	
ESCALATION	0.00	DEVELOPMENT TO	
T-1 COST	12.14*	PRODUCTION TOO	
AMORTIZED UNIT COST	21.40*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.932*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.903*

INPUT FILENAME: EST

10-OCT-88 12:19 (188012)

	(10001.	-,	
MOSAP EST - Cart			
PRODUCTION QUANTITY	5 UNIT	WEIGHT 150.00	MODE 1
PROTOTYPE QUANTITY	3.500 UNIT	VOLUME 4000.00	QUANTITY/NHA 1
UNIT PROD COST 423.62		MONTH	ILY PROD RATE 0.58
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	2087.	219.	2306.
DESIGN	7500.	874.	8375.
Systems	861.	-	861.
PROJECT MGMT	762.	305.	1068.
DATA	278.	319.	597.
SUBTOTAL (ENG)	11488.	1718.	13206.
MANUFACTURING			
PRODUCTION	_	2118.	2118.
PROTOTYPE	2315.	=	2315.
TOOL-TEST EQ	316.	383.	699.
SUBTOTAL (MFG)	2631.	2501.	5133.
TOTAL COST	14119.	4219.	18338.
DESIGN FACTORS ELECT	DONTE MECURNICAL	PRODUCT DESCRIP	mone.
	000* 148.000	ENGINEERING C	
_ ·	000 0.037*		
	.320 7.490		LE FACTOR 0.250*
	.000 1.000	ELECT VOL FR	
	000 1.000	PLATFORM	2.500
ENGINEERING CHANGES 0.			
HW/SW INTEG. LEVEL 0.		RELIABILITY F.	
	201 0.201	MTBF (FIELD)	
SCHEDULE START			FINISH
DEVELOPMENT JAN 9	•	* *	DEC 96* (24)
PRODUCTION JAN 0	0 (17) MAY	7 01* (7)	DEC 01* (24)
SUPPLEMENTAL INFORMATION	1		
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	OOLING 1.00
T-1 COST	482.25*	PRODUCTION TO	OLING 1.00
AMORTIZED UNIT COST	843.85*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	MENT FACTOR 0.965*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.908*

- - - PRICE HARDWARE MODEL METRIC - - -INTEGRATION AND TEST

INPUT FILENAME: EST

10-OCT-88 12:19 (188012)

EST INTEGRATION			
PRODUCTION QUANTITY	5 INT WEIG	HT 7.511*	MODE 5
PROTOTYPE QUANTITY	3.500 INT VOLU		QUANTITY/NHA 0
2			-
UNIT PROD COST 29.88		MONTHL	Y PROD RATE 1.93
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	310.	19.	329.
DESIGN	1084.	71.	1155.
SYSTEMS	133.	_	133.
PROJECT MGMT	109.	26.	135.
DATA	42.	27.	69.
SUBTOTAL (ENG)	1677.	143.	1820.
MANUFACTURING			
PRODUCTION	-	149.	149.
PROTOTYPE	173.	-	173.
TOOL-TEST EQ	23.	56.	80.
SUBTOTAL (MFG)	196.	206.	402.
TOTAL COST	1874.	349.	2223.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
	08* 7.103*		COMPLEXITY 1.000*
		PROTOTYPE SUP	
MFG. COMPLEXITY 9.54	5* 7.374*	PROTO SCHEDU	LE FACTOR 0.250*
NEW PLANS LEVEL 0.70	0 0.700	ELECT VOL FRA	CTION 0.025
ENGINEERING CHANGES 0.03	8* 0.015*	PLATFORM	2.500
INTEGRATION LEVEL 0.00	0.000	YEAR OF TECH	NOLOGY 1999*
		RELIABILITY F.	ACTOR 1.0
		MTBF (FIELD)	521579*
SCHEDULE START	FIRST	ITEM	FINISH
DEVELOPMENT JAN 99	(12) DEC 9		APR 00* (16)
PRODUCTION MAY 00*	· · · · · · · · · · · · · · · · · · ·	1* (2)	APR 01* (12)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCES	SS FACTORS
ESCALATION	0.00	DEVELOPMENT !	
AMORTIZED UNIT COST	69.80*	PRODUCTION TO	
DEV COST MULTIPLIER	1.00*		
PROD COST MULTIPLIER	1.00*		

- - - PRICE HARDWARE MODEL METRIC - - -SYSTEM COST SUMMARY

INPUT FILENAME: EST

10-OCT-88 12:19 (188012)

TOTAL COST, WITH INTEGRATION COST

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	5533.	579.	6112.
DESIGN	19143.	2333.	21476.
SYSTEMS	2430.	-	2430.
PROJ MGMT	2149.	931.	3080.
DATA	798.	974.	1772.
SUBTOTAL (ENG)	30054.	4817.	34871.
MANUFACTURING			
PRODUCTION	-	6414.	6414.
PROTOTYPE	6264.	_	6264.
TOOL-TEST EQ	798.	1508.	2305.
PURCH ITEMS	0.	0.	0.
SUBTOTAL (MFG)	7062.	7921.	14983.
TOTAL COST	37115.	12739.	49854.

INPUT FILENAME: APC 10-OCT-88 12:22 (188012)

MOSAP APC - OXYGEN TANKS

MOSAP APC - OXYGEN TAN	IKS		
PRODUCTION QUANTITY	28 UNIT	WEIGHT 130.00	MODE 2
PROTOTYPE QUANTITY		VOLUME 100.00	QUANTITY/NHA 4
UNIT PROD COST 152.57	1	MONTH	HLY PROD RATE 3.00
PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	635.	81.	717.
DESIGN	1846.	261.	2107.
SYSTEMS	331.	-	331.
PROJECT MGMT	221.	402.	623.
DATA	103.	417.	520.
SUBTOTAL (ENG)	3136.	1161.	4296.
MANUFACTURING			
PRODUCTION	_	4272.	4272.
PROTOTYPE	379.	_	379.
TOOL-TEST EQ	52.	601.	654.
Subtotal (MFG)	432.	4873.	5305.
TOTAL COST	3567.	6034.	9601.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	PTORS
WEIGHT	130.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	1.300*	PROTOTYPE SUE	PPORT 1.0
MFG. COMPLEXITY	7.030	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	0.500	PROTO SCHEDU PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	INOLOGY 1995*
ENGINEERING CHANGES		RELIABILITY FA	
INTEGRATION LEVEL		MTBF (FIELD)	20859*
SCHEDULE STA	ART F		FINISH
DEVELOPMENT JAN	195 (14) F	EB 96* (0)	FEB 96* (14)
PRODUCTION JAN			DEC 01* (24)
SUPPLEMENTAL INFORMATI	ON		
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	224.53*	PRODUCTION TO	
AMORTIZED UNIT COST	215.50*	RATE TOOLING	
DEV COST MULTIPLIER			EMENT FACTOR 0.936*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	

INPUT FILENAME: APC

10-OCT-88 12:22 (188012)

MOSAP APC - HYDROGEN TANKS

SUPPLEMENTAL INFORMATION ECONOMIC BASE

DEV COST MULTIPLIER

PROD COST MULTIPLIER

AMORTIZED UNIT COST 299.47*

ESCALATION

T-1 COST

PRODUCTION QUANTITY PROTOTYPE QUANTITY	28 UNIT WEIGHT 1.000 UNIT VOLUME		MODE 2 QUANTITY/NHA 4
UNIT PROD COST 212.49		MONTH	LY PROD RATE 2.73
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT PR	ODUCTION	TOTAL COST
DRAFTING	830.	111.	940.
DESIGN	2410.	362.	2772.
Systems	432.	-	432.
PROJECT MGMT	290.	558.	848.
DATA	135.	579.	714.
SUBTOTAL (ENG)	4096.	1610.	5706.
MANUFACTURING			
PRODUCTION	-	5950.	5950.
PROTOTYPE	525.	_	525.
TOOL-TEST EQ	69.	825.	894.
SUBTOTAL (MFG)	594.	6775.	7369.
TOTAL COST	4690.	8385.	13075.
DESIGN FACTORS	MECHANICAL PRO	DUCT DESCRIPTO	ORS
WEIGHT	190.000 E	NGINEERING CON	MPLEXITY 1.000
DENSITY	0.950* P	ROTOTYPE SUPPO	ORT 1.0
MFG. COMPLEXITY	7.030	PROTO SCHEDULE	FACTOR 0.250*
NEW DESIGN	0.500 P	LATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECHNO	DLOGY 1995*
ENGINEERING CHANGES	0.028* R	ELIABILITY FAC	CTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	18615*
SCHEDULE START		: =	INISH
DEVELOPMENT JAN 95	,,	,	AR 96* (15)
PRODUCTION JAN 00) (16) APR 01*	(9) J2	AN 02* (25)

TOOLING & PROCESS FACTORS

PRODUCTION TOOLING

RATE TOOLING

DEVELOPMENT TOOLING 1.00

PRICE IMPROVEMENT FACTOR 0.938*

UNIT LEARNING CURVE 0.892*

188

0.00

314.00*

1.00*

1.00*

INPUT FILENAME: APC 10-OCT-88 12:22

.0-OCT-88 12:22 (188012)

MOSAP	APC	- WATER	TANKS

MOSAP APC - WAISK TANKS			
PRODUCTION QUANTITY	28 UNT	r WEIGHT 130.00	MODE 2
PROTOTYPE QUANTITY	1.000 UNI		QUANTITY/NHA 4
21.0101112 20			
UNIT PROD COST 152.57		MON	THLY PROD RATE 3.00
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
Engineering			74.7
DRAFTING	635.	81.	717.
DESIGN	1846.	261.	2107.
SYSTEMS	331.	-	331.
PROJECT MGMT	221.	402.	623.
DATA	103.	417.	520.
SUBTOTAL (ENG)	3136.	1161.	4296.
MANUFACTURING			
PRODUCTION		4272.	4272.
PROTOTYPE	379.	-	379.
TOOL-TEST EQ	52.	601.	654.
SUBTOTAL (MFG)	432.	4873.	5305.
TOTAL COST	3567.	6034.	9601.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	130.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	1.300*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	7.030		JLE FACTOR 0.250*
NEW DESIGN	0.500	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECH	HNOLOGY 1995*
ENGINEERING CHANGES	0.028*	RELIABILITY 1	FACTOR 1.0
INTEGRATION LEVEL	0.201	MTBF (FIELD)	20859*
SCHEDULE START	1	FIRST ITEM	FINISH
DEVELOPMENT JAN 9	5 (14) 1	FEB 96* (0)	FEB 96* (14)
PRODUCTION JAN 0			DEC 01* (24)
SUPPLEMENTAL INFORMATION		moot tug t ppos	HOC HACHODS
ECONOMIC BASE	188	TOOLING & PROCI	= =
ESCALATION	0.00	DEVELOPMENT : PRODUCTION TO	
T-1 COST	224.53*	-	
AMORTIZED UNIT COST	215.50*	RATE TOOLING	EMENT FACTOR 0.936*
DEV COST MULTIPLIER	1.00* 1.00*	UNIT LEARNING	
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CORVE U.095"

INPUT FILENAME: APC

10-OCT-88 12:22 (188012)

MOSAP APC - NON-REGENERATIVE FUEL CELLS

PRODUCTION QUANTITY	28	UNIT WEIGHT	180.00	MODE 1
PROTOTYPE QUANTITY	0.000	UNIT VOLUME	400.00	OUANTITY/NHA 4

UNIT PROD COST 1541.17

MONTHLY PROD RATE 1.25

PROGRAM COST (\$ 1000))	DEVELOPMENT	PRODUCTI	ON TOTAL CO	ST	
ENGINEERING						
DRAFTING		1717.	566.	2283.		
Design		5519.	2488.	8008.		
SYSTEMS		769.	-	769.		
PROJECT MGMT		476.	3714.	4189.		
DATA		222.	3835.	4058.	4058.	
SUBTOTAL (E)	i G)	8703.	10603.	19306.		
MANUFACTURING						
PRODUCTION		-	43153.	43153.		
PROTOTYPE		0.	-	0.		
TOOL-TEST EQ		86.	6126.	6212.		
SUBTOTAL (ME	rG)	86.	49279.	49364.		
TOTAL COST		8789.	59882.	68671.		
DESIGN FACTORS	ELECTR	ONIC MECHANIC	AL PRODUCT D	ESCRIPTORS		
WEIGHT	3.6	00* 176.400	ENGINEE	RING COMPLEXITY	1.000	
DENSITY 43.000		00 0.441	* PROTOTY	PROTOTYPE SUPPORT 1.0		
MFG. COMPLEXITY 9.560		60 8.97	O PROTO S	SCHEDULE FACTOR	0.250*	
NEW DESIGN	0.500 0.500		O ELECT V	ELECT VOL FRACTION 0.00		
DESIGN REPEAT	0.3		PLATFOR	4	2.500	
ENGINEERING CHANG			2* YEAR OF	TECHNOLOGY	1995*	
HW/SW INTEG. LEVE				LITY FACTOR	1.0	
INTEGRATION LEVEL	0.8	43 0.201	L MTBF (FI	ELD)	62070*	
SCHEDULE	START		FIRST ITEM	FINISH		
	JAN 95		MAR 96* (0)		15)	
	JAN 00	•	DEC 01* (21)	•	45)	
SUPPLEMENTAL INFORM	ATION					
ECONOMIC BASE 188 TOOLING & PROCESS FACTORS						
ESCALATION 0.00			DEVELOPMENT TOOLING 1.00			
T-1 COST 2392.99*				PRODUCTION TOOLING 1.00		
AMORTIZED UNIT CO		138.63*	RATE TO		0	
		1.00*	-	APROVEMENT FACTOR	-	
PROD COST MULTIPL	IER	1.00*		ARNING CURVE	0.879*	

INPUT FILENAME: APC

10-OCT-88 12:22 (188012)

MOSAP APC - CART							
PRODUCTION QUANTITY	7 UNIT WE	EIGHT 150.00	MODE 1				
PROTOTYPE QUANTITY	2.000 UNIT VO	OLUME 4000.00					
			DDOD DAME 0 71				
UNIT PROD COST 404.58		MONT	HLY PROD RATE 0.71				
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST				
ENGINEERING			0.1.0.0				
DRAFTING	1915.	212.	2128.				
DESIGN	6568.	838.	7406. 821.				
SYSTEMS	821.	250	996.				
PROJECT MGMT	637.	359. 375.	629.				
DATA	255. 10196.	1784.	11980.				
SUBTOTAL (ENG)	10196.	1/04.	11900.				
MANUFACTURING							
PRODUCTION	_	2832.	2832.				
PROTOTYPE	1402.	-	1402.				
TOOL-TEST EQ	193.	462.	655.				
SUBTOTAL (MFG)	1596.	3294.	4890.				
TOTAL COST	11792.	5078.	16870.				
DESIGN FACTORS ELECTRONIC MECHANICAL PRODUCT DESCRIPTORS							
	0* 148.000		COMPLEXITY 1.000				
DENSITY 5.00		PROTOTYPE SUE					
MFG. COMPLEXITY 9.87			LE FACTOR 0.250*				
NEW DESIGN 1.00		ELECT VOL FR					
DESIGN REPEAT 0.00		PLATFORM	2.500				
ENGINEERING CHANGES 0.07		YEAR OF TECH	NOLOGY 1995*				
HW/SW INTEG. LEVEL 0.00		RELIABILITY F	ACTOR 1.0				
INTEGRATION LEVEL 0.20		MTBF (FIELD)	120948*				
SCHEDULE START	r TD	ST ITEM	FINISH				
DEVELOPMENT JAN 95	(17) MAY		AUG 96* (20)				
PRODUCTION JAN 00	• •	01* (8)	JAN 02* (25)				
	(= - / = = = =	3	, ,,,				
SUPPLEMENTAL INFORMATION							
ECONOMIC BASE	188	TOOLING & PROCESS FACTORS					
ESCALATION	0.00	DEVELOPMENT TOOLING 1.00					
T-1 COST 480.64*		PRODUCTION TOOLING 1.00					
	25.46*	RATE TOOLING					
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 0.961*				
PROD COST MULTIPLIER 1.00* UNIT LEARNING CURVE 0.904*							

- - - PRICE HARDWARE MODEL METRIC - - INTEGRATION AND TEST

INPUT FILENAME: APC 10-

10-OCT-88 12:22 (188012)

APC INTEGRATION

PRODUCTION QUANTITY	7	INT WEIGHT	53.020* MODE	5
PROTOTYPE QUANTITY	2.000	INT VOLUME	211.583* OUANTITY/NHA	0

UNIT PROD COST 150.30 MONTHLY PROD RATE 1.45

PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	1027.	80.	1108.
DESIGN	3399.	311.	3710.
SYSTEMS	464.	-	464.
PROJECT MGMT	353.	150.	503.
DATA	144.	156.	301.
SUBTOTAL (ENG)	5388.	698.	6085.
MANUFACTURING			
PRODUCTION	-	1052.	1052.
PROTOTYPE	579.	_	579.
TOOL-TEST EQ	72.	310.	382.
Subtotal (MFG)	652.	1362.	2014.
TOTAL COST	6039.	2060.	8099.

DESIGN FACTORS E WEIGHT	LECTRONIC 2.181*	MECHANICAL 50.839*	PRODUCT DESCRIPTORS ENGINEERING COMPLEXITY	1.000*
DENSITY	0.561*	0.240*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	8.884*	7.636*	PROTO SCHEDULE FACTOR	0.250*
NEW PLANS LEVEL	0.700	0.700	ELECT VOL FRACTION	0.018
ENGINEERING CHANGE	S 0.035*	0.018*	PLATFORM	2.500
INTEGRATION LEVEL	0.000	0.000	YEAR OF TECHNOLOGY	1999*
			RELIABILITY FACTOR	1.0
			MTBF (FIELD)	82195*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 99	(15)	MAR 00* (3)	JUN 00* (18)
PRODUCTION	JUL 00*	(14)	AUG 01* (4)	DEC 01* (18)

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00*
AMORTIZED UNIT COST	294.27*	PRODUCTION TOOLING	1.00*
DEV COST MULTIPLIER	1.00*		
PROD COST MULTIPLIER	1.00*		

- - - PRICE HARDWARE MODEL METRIC - - -SYSTEM COST SUMMARY

INPUT FILENAME: APC

10-OCT-88 12:22 (188012)

TOTAL COST, WITH INTEGRATION COST

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	6760.	1132.	7892.
DESIGN	21587.	4522.	26109.
SYSTEMS	3146.	_	3146.
PROJ MGMT	2198.	5584.	7782.
DATA	962.	5778.	6741.
SUBTOTAL (ENG)	34654.	17016.	51670.
MANUFACTURING			
PRODUCTION	-	61530.	61530.
PROTOTYPE	3266.	-	3266.
TOOL-TEST EQ	524.	8926.	9450.
PURCH ITEMS	0.	0.	0.
SUBTOTAL (MFG)	3790.	70457.	74247.
TOTAL COST	38444.	87473.	125917.

* SYSTEM SERIES MTBF HRS. 1464 AV SYSTEM COST 12496	*	*****	*****	*****	******	*****
	*	SYSTEM	WT	2670.00	SYSTEM WS	2653.60 *
* SYSTEM OHANTITY 7	*	SYSTEM	SERIES MTBF	HRS. 1464	AV SYSTEM COST	12496 *
OIDIEM COMMITT	*	SYSTEM	QUANTITY	7		*

- - - PRICE HARDWARE MODEL METRIC - - -ELECTRONIC ITEM

INPUT FILENAME: SPP

13-OCT-88 12:24

(188012)

Solar Power Plant - Fue	el Cells		
PRODUCTION QUANTITY	4 UNIT	WEIGHT 215.00	MODE 1
PROTOTYPE QUANTITY	6.000 UNIT		
_		3333	201111111111111111111111111111111111111
UNIT PROD COST 2139.30		MONT	HLY PROD RATE 0.50
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	2231.	269.	2499.
DESIGN	8020.	1171.	9191.
Systems	940.	-	940.
PROJECT MGMT	1647.	1077.	2724.
DATA	450.	534.	984.
SUBTOTAL (ENG)	13288.	3051.	16339.
MANUFACTURING			
PRODUCTION	_	8557.	8557.
PROTOTYPE	17273.	-	17273.
TOOL-TEST EO	1927.	1808.	3735.
SUBTOTAL (MFG)	19199.	10365.	29564.
002101112 (12 0)	13133.	10303.	29304.
TOTAL COST	32487.	13416.	45903.
DESIGN FACTORS ELEC	TRONIC MECHANICAL	PRODUCT DESCRIP	TORS
	.300* 210.700	ENGINEERING C	
	.000 0.554*		·
	.560 8.970	PROTO SCHEDUL	· · ·
	.000 1.000	ELECT VOL FRA	
	.000 0.500	PLATFORM	2.000
ENGINEERING CHANGES 0		=	
	.000	RELIABILITY F	
	.000 0.000	MTBF (FIELD)	79687*
•		MIDE (FIELD)	79087
SCHEDULE STAR	ידים ידי	RST ITEM	FINISH
DEVELOPMENT JAN			NOV 97* (35)
PRODUCTION JAN		•	JUL 02* (31)
	00 (20) 02	(0)	001 02. (31)
SUPPLEMENTAL INFORMATION	N		
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	2397.71*	PRODUCTION TO	
AMORTIZED UNIT COST	3354.04*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		MENT FACTOR 0.968*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	
		OHII DEARWING	U.302"

INPUT FILENAME: SPP 13-OCT-88 12:24

13-OCT-88 12:24 (188012)

Solar Power Plant - Electrolysis Cells

Solar Power Plant - Election	Orysis Cerrs		
PRODUCTION QUANTITY	4 UNIT WEIGH	HT 560.00	MODE 1
PROTOTYPE QUANTITY	4 UNIT WEIGH	ME 850.00	
INCIOITE GOANTIII	0.000 0M11 1020		
UNIT PROD COST 2844.13		MONTE	ILY PROD RATE 0.40
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	2289.	547.	2836.
DESIGN	8229.	2203.	10432.
Systems	965.	-	965.
PROJECT MGMT	1998.	1480.	3479.
DATA	518.	733.	1251.
Subtotal (Eng)	13999.	4964.	18963.
MANUFACTURING PRODUCTION	_	11377.	11377.
PROTOTYPE	23745.	-	23745.
TOOL-TEST EQ	2665.	2053.	4717.
SUBTOTAL (MFG)	26410.	13429.	39839.
000101111 (11 0)			
TOTAL COST	40409.	18393.	58802.
			mong
DESIGN FACTORS ELECTRO	NIC MECHANICAL 1 0* 548.800	PRODUCT DESCRIE	COMPLEXITY 1.000
		PROTOTYPE SUE	
		PROTO SCHEDUI	
MFG. COMPLEXITY 9.56 NEW DESIGN 1.00		ELECT VOL FRA	
DESIGN REPEAT 0.00		PLATFORM	2.000
ENGINEERING CHANGES 0.05	9* 0.033*	YEAR OF TECHN	
HW/SW INTEG. LEVEL 0.00		RELIABILITY E	
INTEGRATION LEVEL 0.00		MTBF (FIELD)	
		(,	
SCHEDULE START	FIRST		FINISH
DEVELOPMENT JAN 95	(22) OCT 96		JUL 97* (31)
PRODUCTION JAN 00	(25) JAN 02	* (8)	SEP 02* (33)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION		DEVELOPMENT 7	
	80.00*	PRODUCTION TO	
	98.29*	RATE TOOLING	
			EMENT FACTOR 0.972*
PROD COST MULTIPLIER		UNIT LEARNING	

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

PRODUCTION QUANTIT	ry 4	UNIT WEI	GHT 1000.	00 MODE	2
PROTOTYPE QUANTITY		0 UNIT VOL			_
UNIT PROD COST 2840	0.05		МО	NTHLY PROD R	ATE 0.53
PROGRAM COST (\$ 1000 ENGINEERING)) DEVELO	PMENT	PRODUCTION	TOTAL (COST
DRAFTING	5	53.	43.	59	6
DESIGN	-	79.	163.	204	
SYSTEMS		54.	-	25	
PROJECT MGMT		44.	1327.	297:	· ·
DATA		46.	659.	100	5.
SUBTOTAL (EN	IG) 46	76.	2192.	686	8.
MANUFACTURING					
PRODUCTION		-	11360.	11360	0.
PROTOTYPE	253	33.	_	25333	3.
TOOL-TEST EQ	21	40.	2419.	4559	9.
SUBTOTAL (MF	'G) 274	73.	13779.	41253	3.
TOTAL COST	321	49.	15971.	48120	o.
DESIGN FACTORS	MECHANIC.	AL	PRODUCT DESC	RIPTORS	
WEIGHT	1000.000		ENGINEERIN	G COMPLEXITY	1.000
DENSITY	0.667		PROTOTYPE :	SUPPORT	1.0
MFG. COMPLEXITY	7.980		PROTO SCHE	DULE FACTOR	0.250*
NEW DESIGN	1.000		PLATFORM		2.000
DESIGN REPEAT	0.900		YEAR OF TE	•	1995*
ENGINEERING CHANG	· · · · · ·		RELIABILIT		1.0
INTEGRATION LEVEL	0.000		MTBF (FIELD))	11520*
	START	FIRST		FINISH	
	JAN 95 (23)		6* (10)	SEP 97*	(33)
PRODUCTION	JAN 00 (26)	FEB 02	2* (5)	JUL 02*	(31)
SUPPLEMENTAL INFORM	ATION				
ECONOMIC BASE	188		TOOLING & PRO	OCESS FACTORS	3
ESCALATION	0.00		DEVELOPMEN:	_	1.00
T-1 COST	3279.86*		PRODUCTION	TOOLING	1.00
AMORTIZED UNIT CO			RATE TOOLII		0
DEV COST MULTIPLI			_	OVEMENT FACTO	
PROD COST MULTIPL	IER 1.00*		UNIT LEARN		0.877*

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

SOLAR POWER PLANT - OXYGEN TANKS

PRODUCTION QUANTITY PROTOTYPE QUANTITY		T WEIGHT 1774.60 T VOLUME 50302.99	_
UNIT PROD COST 3223.28		MONTE	HLY PROD RATE 0.53
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	5911.	392.	6303.
DESIGN	19764.	1565.	21329.
SYSTEMS	2774.		2774.
PROJECT MGMT	4014.	1678.	5693.
DATA	1202.	835.	2037.
SÚBTOTAL (ENG)	33666.	4469.	38135.
0021011111 (1110)	330001		
MANUFACTURING			
PRODUCTION	_	12893.	12893.
PROTOTYPE	30241.	_	30241.
TOOL-TEST EO	2342.	2583.	4926.
SUBTOTAL (MFG)	32583.	15476.	48060.
•			
TOTAL COST	66249.	19946.	86195.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	TORS
WEIGHT	1774.599	ENGINEERING (
DENSITY	0.035*	PROTOTYPE SUE	PPORT 1.0
MFG. COMPLEXITY	7.630	PROTO SCHEDUI	LE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.000
DESIGN REPEAT	0.150	YEAR OF TECHN	NOLOGY 1995*
ENGINEERING CHANGES	0.024*	RELIABILITY F	PACTOR 1.0
INTEGRATION LEVEL	0.097	MTBF (FIELD)	11196*
		• •	
SCHEDULE STAF	₹ T	FIRST ITEM	FINISH
DEVELOPMENT JAN	95 (25)	JAN 97* (11)	DEC 97* (36)
PRODUCTION JAN		FEB 02* (6)	AUG 02* (32)
	,,	• •	•
SUPPLEMENTAL INFORMATIO)N		
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	COOLING 1.00
T-1 COST	3713.43*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST		RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	EMENT FACTOR 0.967*
PROD COST MULTIPLIER	7.7.7.7	UNIT LEARNING	

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

SOLAR POWER PLANT -	OXYGEN TANK LINI	NG	
PRODUCTION QUANTITY	4 U	NIT WEIGHT 40.4	5 MODE 2
PRODUCTION QUANTITY PROTOTYPE QUANTITY	6.000 UI	NIT VOLUME 15.0	
			-
UNIT PROD COST 58.	19	MON	THLY PROD RATE 2.21
PROGRAM COST (\$ 1000)	DEVELOPMEN	NT PRODUCTION	TOTAL COST
ENGINEERING			1011111 0001
DRAFTING	253.	11.	264.
DESIGN	817.	41.	858.
SYSTEMS	125.	_	125.
PROJECT MGMT		35.	174.
DATA	47.	18.	64.
SUBTOTAL (ENG) 1380.	105.	1485.
, -	, =====		
MANUFACTURING			
PRODUCTION	-	233.	233.
PROTOTYPE	592.	-	592.
TOOL-TEST EQ	44.	75.	119.
SUBTOTAL (MFG	636.	307.	944.
·	,		
TOTAL COST	2016.	412.	2428.
DESIGN FACTORS	MECHANICAL		
WEIGHT	40.450		COMPLEXITY 1.000
DENSITY	2.697* 6.930	PROTOTYPE SU	
MFG. COMPLEXITY	6.930	PROTO SCHED	JLE FACTOR 0.250*
NEW DESIGN	0.750	PLATFORM	2.000
DESIGN REPEAT	0.000	YEAR OF TECH	HNOLOGY 1995*
ENGINEERING CHANGES	\$ 0.023*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.097	MTBF (FIELD)	47365*
SCHEDULE S'	TART	FIRST ITEM	FINISH
DEVELOPMENT J		DEC 95* (5)	MAY 96* (17)
	AN 00 (12)	DEC 00* (1)	JAN 01* (13)
	(/	(-,	(10,
SUPPLEMENTAL INFORMAT	rion		
ECONOMIC BASE	188	TOOLING & PROC	CESS FACTORS
ESCALATION	0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	65.58*	PRODUCTION 1	rooling 1.00
AMORTIZED UNIT COST	r 103.06*	RATE TOOLING	9 0
DEV COST MULTIPLIE	R 1.00*		VEMENT FACTOR 0.941*
PROD COST MULTIPLIE	ER 1.00*	UNIT LEARNIN	

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

SOLAR POWER PLANT - HYDROGEN TANKS

PRODUCTION QUANTITY PROTOTYPE QUANTITY	4 UNIT 6.000 UNIT	WEIGHT 2995.60 VOLUME 86639.36	_
UNIT PROD COST 5087.80		MONTE	HLY PROD RATE 0.45
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING DRAFTING	8538.	558.	9096.
DESIGN	28549.	2230.	30779.
SYSTEMS	4006.		4006.
PROJECT MGMT	6043.	2608.	8650.
DATA	1781.	1297.	3078.
SUBTOTAL (ENG)	48917.	6692.	55610.
SUBTUTAL (ENG)	40317.	0032.	000201
MANUFACTURING			
PRODUCTION	-	20351.	20351.
PROTOTYPE	47907.	_	47907.
TOOL-TEST EQ	3689.	3927.	7616.
Subtotal (MFG)	51596.	24279.	75875.
TOTAL COST	100513.	30971.	131484.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	PTORS
WEIGHT	2995.599	ENGINEERING (COMPLEXITY 1.000
DENSITY	0.035*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	7.630	PROTO SCHEDUI	LE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.000
DESIGN REPEAT	0.150	YEAR OF TECH	NOLOGY 1995*
ENGINEERING CHANGES	0.022*	RELIABILITY F	FACTOR 1.0
INTEGRATION LEVEL	0.097	MTBF (FIELD)	9568*
SCHEDULE STAR	T	IRST ITEM	FINISH
DEVELOPMENT JAN	-	PR 97* (12)	APR 98* (40)
PRODUCTION JAN	•	PR 02* (7)	NOV 02* (35)
PRODUCTION DAN	00 (20) A	ER 02" (//	100 02 (33)
SUPPLEMENTAL INFORMATION	N		
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	5871.61*	PRODUCTION TO	
AMORTIZED UNIT COST	7742.76*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 0.969*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.878*

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

SOLAR POWER PLANT	- HYDROGEN !	FANK LINING	}		
PRODUCTION QUANTI	ry	4 UNIT	WEIGHT 4	0.45 MODE	2
PROTOTYPE QUANTIT		5.000 UNIT		5.00 QUANTITY	_
				_	
UNIT PROD COST 5	3.19			MONTHLY PROD R	ATE 2.21
PROGRAM COST (\$ 1000)) DE	/ELOPMENT	PRODUCTIO	N TOTAL	COST
ENGINEERING					
DRAFTING		253.	11.	26	4.
DESIGN		817.	41.	85	8.
SYSTEMS		125.	-	12	5.
PROJECT MGMT		138.	35.	17	4.
DATA		47.	18.	6	4.
SUBTOTAL (E	1G)	1380.	105.	148	5.
MANUFACTURING					
PRODUCTION		_	233.	23	3.
PROTOTYPE		592.		59	
TOOL-TEST EQ		44.	75.	11	_ •
SUBTOTAL (MI		636.	307.	94	
•	•				
TOTAL COST		2016.	412.	242	8.
DESIGN FACTORS	MECHA	NICAL	PRODUCT DE	SCRIPTORS	
WEIGHT	40.	450	ENGINEER	ING COMPLEXITY	1.000
DENSITY	2.	697*	PROTOTYP	E SUPPORT	1.0
MFG. COMPLEXITY	6.	930		HEDULE FACTOR	0.250*
NEW DESIGN	0.	750	PLATFORM		2.000
DESIGN REPEAT		000	YEAR OF	TECHNOLOGY	1995*
ENGINEERING CHANG	ES 0.	023*	RELIABIL:	ITY FACTOR	1.0
INTEGRATION LEVEL	. 0.	097	MTBF (FIE	LD)	47365*
SCHEDULE	START	т т	RST ITEM	FINISH	
DEVELOPMENT			C 95* (5)	MAY 96*	(17)
PRODUCTION	-	· -	C 00* (1)	JAN 01*	(13)
		•	, ,		
SUPPLEMENTAL INFORM	= "	_			
ECONOMIC BASE		8		PROCESS FACTORS	=
ESCALATION	0.0			ENT TOOLING	1.00
T-1 COST		8*		ON TOOLING	1.00
AMORTIZED UNIT CO		-	RATE TOO		0
DEV COST MULTIPLI		-		PROVEMENT FACTO	
PROD COST MULTIPI	IER 1.0	U*	UNIT LEAI	RNING CURVE	0.898*

INPUT FILENAME: SPP 13-OCT-88 12:25

13-0CT-88 12:25 (188012)

SOLAR POWER PLANT - H2O TANKS

PRODUCTION QUANTITY PROTOTYPE QUANTITY		WEIGHT 564.00 VOLUME 4644.20	
UNIT PROD COST 562.61		MONTE	HLY PROD RATE 1.03
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	1828.	83.	1911.
DESIGN	5912.	306.	6218.
SYSTEMS	901.	-	901.
PROJECT MGMT	1083.	312.	1394.
DATA	354.	155.	509.
SUBTOTAL (ENG)	10077.	856.	10933.
MANUFACTURING		0050	2252
PRODUCTION	- 5641.	2250.	2250. 5 64 1.
PROTOTYPE	394.	528.	922.
TOOL-TEST EQ		2779.	8814.
SUBTOTAL (MFG)	6035.	2779.	0014.
TOTAL COST	16112.	3635.	19747.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	PTORS
WEIGHT	564.000	ENGINEERING O	
DENSITY	0.121*	PROTOTYPE SUE	PPORT 1.0
MFG. COMPLEXITY	6.930	PROTO SCHEDUI	LE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.000
DESIGN REPEAT	0.150	YEAR OF TECHN	1995*
ENGINEERING CHANGES	0.021*	RELIABILITY F	FACTOR 1.0
INTEGRATION LEVEL	0.000	MTBF (FIELD)	21485*
SCHEDULE START	F	IRST ITEM	FINISH
DEVELOPMENT JAN 9		AY 96* (8)	JAN 97* (25)
PRODUCTION JAN 0	0 (18) л	UN 01* (3)	SEP 01* (21)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT 1	
T-1 COST	639.88*	PRODUCTION TO	
AMORTIZED UNIT COST	908.72*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 0.955*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.890*

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

SPP OXYGEN TANK INTEGRATION

SPP OXYGEN TANK INTE	GRATION		
PRODUCTION QUANTITY		NIT WEIGHT 139.81	MODE 2
PROTOTYPE QUANTITY	6.000 U	NIT VOLUME 581.87	QUANTITY/NHA 0
UNIT PROD COST 194.	82	MONTH	ILY PROD RATE 1.85
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPME	NT PRODUCTION	TOTAL COST
DRAFTING	624.	28.	652.
DESIGN	2036.	100.	2137.
SYSTEMS	304.	_	304.
PROJECT MGMT	372.	122.	494.
DATA	120.	61.	181.
SUBTOTAL (ENG	3457.	311.	3768.
MANUFACTURING			
PRODUCTION	_	779.	779.
PROTOTYPE	2050.	-	2050.
TOOL-TEST EQ		331.	484.
SUBTOTAL (MFG		1110.	3313.
TOTAL COST	5660.	1421.	7081.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT	139.810*	ENGINEERING C	OMPLEXITY 1.000
DENSITY	0.240*	PROTOTYPE SUP	PORT 1.0
MFG. COMPLEXITY	7.132	PROTO SCHEDUL	E FACTOR 0.250*
NEW DESIGN	0.700	PLATFORM	2.000
DESIGN REPEAT		YEAR OF TECHN	OLOGY 1999*
ENGINEERING CHANGE		RELIABILITY F	ACTOR 1.0
INTEGRATION LEVEL	0.000	MTBF (FIELD)	29786*
SCHEDULE S	TART	FIRST ITEM	FINISH
DEVELOPMENT J	AN 99 (15)	MAR 00* (6)	SEP 00* (21)
PRODUCTION O	CT 00* (15)	DEC 01* (2)	FEB 02* (17)
SUPPLEMENTAL INFORMA	TION		
ECONOMIC BASE	188	TOOLING & PROCE	SS FACTORS
ESCALATION	0.00	DEVELOPMENT T	
T-1 COST	221.09*	PRODUCTION TO	OLING 1.00*
AMORTIZED UNIT COS	T 355.20*	RATE TOOLING	0
DEV COST MULTIPLIE	R 1.00*	PRICE IMPROVE	MENT FACTOR 0.900*
PROD COST MULTIPLI	ER 1.00*	UNIT LEARNING	CURVE 0.892*

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

SPP HYDROGEN TANK INTEGRATION

PRODUCTION QUANTI	TY Y	4 UN 6.000 UN	IIT WEIGHT	234.07 974.14	MODE QUANTITY/	2 NHA 0
UNIT PROD COST 30	3.55			MONT	HLY PROD RA	TE 1.61
PROGRAM COST (\$ 100	0) DE	VELOPMEN	IT PI	RODUCTION	TOTAL C	OST
DRAFTING		897.		43.	940	_
DESIGN		2927.		154.	3082	
SYSTEMS		437.		_	437	
PROJECT MGMT	1	551.		187.	739	
DATA		176.		93.	269	•
SUBTOTAL (E	NG)	4988.		478.	5466	
MANUFACTURING						
PRODUCTION		_		1214.	1214	•
PROTOTYPE		3215.		-	3215	•
TOOL-TEST EQ		237.		491.	728	•
SUBTOTAL (M	FG)	3452.		1705.	5157	•
TOTAL COST		8440.		2182.	10623	•
DESIGN FACTORS	MECH	ANICAL	PRO	ODUCT DESCRI	PTORS	
WEIGHT		.067*		ENGINEERING		1.000
DENSITY		.240*	1	PROTOTYPE SU	PPORT	1.0
MFG. COMPLEXITY	7	.132	1	PROTO SCHEDU	LE FACTOR	0.250*
NEW DESIGN		.700	1	PLATFORM		2.000
DESIGN REPEAT	0	000	•	YEAR OF TECH	NOLOGY	1999*
ENGINEERING CHAN	GES 0	0.015*		RELIABILITY FACTOR		1.0
INTEGRATION LEVE	L 0	.000	1	MTBF (FIELD)		25510*
SCHEDULE	START		FIRST IT	EM	FINISH	
DEVELOPMENT	JAN 99	(16)	APR 00*	(7)	NOV 00*	(23)
PRODUCTION	DEC 00*	(16)	MAR 02*	(2)	MAY 02*	(18)
SUPPLEMENTAL INFOR	MATION					
ECONOMIC BASE		88	TO	DLING & PROC	ESS FACTORS	
ESCALATION	0.		1	DEVELOPMENT	TOOLING	1.00*
T-1 COST	345.		1	PRODUCTION T	OOLING	1.00*
AMORTIZED UNIT C			1	RATE TOOLING		0
DEV COST MULTIPL			1	PRICE IMPROV	EMENT FACTO	R 0.900*
PROD COST MULTIP		00*	1	UNIT LEARNIN	G CURVE	0.890*

- - - PRICE HARDWARE MODEL METRIC - - - INTEGRATION AND TEST

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

SOLAR POWER PLANT INTEGRATION

SOLAR POWER PLANT INTEG	RATION		
PRODUCTION QUANTITY	1 INT	* WEIGHT 208.732*	MODE 5
PROTOTYPE QUANTITY	6.000 INT	VOLUME 868.705*	QUANTITY/NHA 0
UNIT PROD COST 335.88		MONTHL	Y PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	864.	39.	903.
DESIGN	2828.	143.	2971.
SYSTEMS	418.	-	418.
PROJECT MGMT	529.	61.	590.
DATA	168.	31.	199.
SUBTOTAL (ENG)	4807.	275.	5081.
MANUFACTURING			
PRODUCTION	-	336.	336.
PROTOTYPE	3120.	-	3120.
TOOL-TEST EQ	234.	27.	260.
SUBTOTAL (MFG)	3354.	362.	3716.
TOTAL COST	8161.	637.	8798.
DESIGN FACTORS	MECHANICAL.	PRODUCT DESCRIP	TORS
WEIGHT	208.732*	ENGINEERING CO	
DENSITY	0.240*	PROTOTYPE SUP	
MFG. COMPLEXITY	7.212*	PROTO SCHEDULI	- - - ··
NEW PLANS LEVEL	0.700	PLATFORM	2.000
ENGINEERING CHANGES	0.015*	YEAR OF TECHNO	
INTEGRATION LEVEL	0.000	RELIABILITY FA	
		MTBF (FIELD)	25480*
SCHEDULE STAR	m,	FIRST ITEM 1	FINISH
	99 (16)		NOV 00* (23)
			MAR 02* (16)
	,,		
SUPPLEMENTAL INFORMATION	N		
ECONOMIC BASE	188	TOOLING & PROCES	SS FACTORS
ESCALATION	0.00	DEVELOPMENT TO	OOLING 1.00*
AMORTIZED UNIT COST		PRODUCTION TO	OLING 1.00*
DEV COST MULTIPLIER	1.00*		
PROD COST MULTIPLIER	1.00*		

- - - PRICE HARDWARE MODEL METRIC - - -SYSTEM COST SUMMARY

INPUT FILENAME: SPP

13-OCT-88 12:25 (188012)

TOTAL COST, WITH INTEGRATION COST

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	24240.	2024.	26264.
DESIGN	81779.	8116.	89896.
SYSTEMS	11248.	-	11248.
PROJ MGMT	18158.	8924.	27082.
DATA	5209.	4433.	9642.
SUBTOTAL (ENG)	140635.	23497.	164132.
MANUFACTURING			
PRODUCTION	-	69584.	69584.
PROTOTYPE	159709.	-	159709.
TOOL-TEST EQ	13869.	14316.	28185.
PURCH ITEMS	0.	0.	0.
SUBTOTAL (MFG)	173577.	83900.	257477.
TOTAL COST	314212.	107397.	421609.

- - - PRICE HARDWARE MODEL METRIC - - -ELECTRONIC ITEM

INPUT FILENAME: LOG

10-OCT-88 12:33 (188012)

MAINTENANCE & SUPPLY-LOGISTICS SUPPLY MODULE

PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT WEIGHT 2.500 UNIT VOLUME	14891.00 MODE 1 87459.98 QUANTITY/NHA 1	
UNIT PROD COST26213.64		MONTHLY PROD RATE 0.00)

PROGRAM COST (\$ 1000)	DEV	ELOPMENT	PRODUC	CTION	TOTAL (COST
ENGINEERING DRAFTING		6201	1.65	• •	0000	_
DESIGN		6381.	165		8032	
Design Systems		21950.	6/2	28.	28678	
		2758.	200	-	2758	
PROJECT MGMT		6899.		92.	10791	
DATA		1794.		52.	3746	-
SUBTOTAL (ENG)		39782.	1422	23.	54005	· .
MANUFACTURING						
PRODUCTION		-	2621	.4.	26214	١.
PROTOTYPE	10	09158.		-	109158	3.
TOOL-TEST EQ	;	12498.	221	.4.	14712	2.
SUBTOTAL (MFG)	1:	21656.	2842	27.	150084	١.
TOTAL COST	1	61439.	4265	60.	204089	·.
DESIGN FACTORS EL	ECTRONIC 1	MECHANICAL	PRODUCT	DESCRIPTOR	s	
	29.781* 1			EERING COMP		1.000
DENSITY	3.405	0.170*	PROTO	TYPE SUPPOR	T	1.0
MFG. COMPLEXITY	9.560	7.800	PROT	O SCHEDULE	FACTOR	0.250*
NEW DESIGN	0.000	0.400	ELEC	T VOL FRACT	ION	0.000*
DESIGN REPEAT	0.150	0.500	PLATF		-	2.000
ENGINEERING CHANGES	0.054*	0.025*		OF TECHNOL	OGY	1995*
HW/SW INTEG. LEVEL	0.000			BILITY FACT		1.0
INTEGRATION LEVEL		0.000		(FIELD)		11960*
SCHEDULE ST	ART	FIF	RST ITEM	FIN	ISH	
DEVELOPMENT JA	N 95 (36) DEC	97* (7) JUL	98*	(43)
PRODUCTION JA	и 00 (38) FEE	3 03* (O) FEB	03*	(38)
SUPPLEMENTAL INFORMAT	ION					
ECONOMIC BASE	188	3	TOOLING	& PROCESS	FACTORS	;
ESCALATION	0.00)		OPMENT TOOL		1.00
T-1 COST	26198.52			CTION TOOLI		1.00
AMORTIZED UNIT COST				TOOLING		0
DEV COST MULTIPLIER				IMPROVEMEN	T FACTO	R 1.000*
PROD COST MULTIPLIE				LEARNING CU		0.915*

INPUT FILENAME: LOG

10-OCT-88 12:33 (188012)

MAINTENANCE & SUPPLY-FLUID SHIPPING MODULE

PRODUCTION QUANTI			WEIGHT 4576.00	
PROTOTYPE QUANTIT	Y	2.500 UNIT	VOLUME 33759.99	QUANTITY/NHA 1
UNIT PROD COST1069	7.85		MONT	HLY PROD RATE 0.00
PROGRAM COST (\$ 100 ENGINEERING	0) D	EVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING		5779.	1705.	7484.
DESIGN		19882.	7057.	26939.
SYSTEMS		2497.	_	2497.
PROJECT MGMT		3739.	2156.	5894.
DATA		1127.	1081.	2209.
SUBTOTAL (E	NG)	33024.	12000.	45024.
, , , , , , , , , , , , , , , , , , , ,	,			
MANUFACTURING				
PRODUCTION		-	10698.	10698.
PROTOTYPE		42795.	_	42795.
TOOL-TEST EQ		4988.	918.	5905.
SUBTOTAL (M	FG)	47782.	11616.	59398.
TOTAL COST	ı	80806.	23616.	104422.
DESIGN FACTORS	ELECTRONI	C MECHANICAI	L PRODUCT DESCRI	PTORS
WEIGHT	91.521*		ENGINEERING	
DENSITY	27.109	0.133*		
MFG. COMPLEXITY	9.560	7.800	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	0.000	0.600	ELECT VOL F	RACTION 0.000*
DESIGN REPEAT	0.150	0.300	PLATFORM	2.000
ENGINEERING CHAN		0.029*	YEAR OF TECH	HNOLOGY 1995*
HW/SW INTEG. LEV			RELIABILITY :	FACTOR 1.0
INTEGRATION LEVE		0.000	MTBF (FIELD)	3980*
SCHEDULE	START	## ·	IRST ITEM	FINISH
	JAN 95		JN 97* (6)	DEC 97* (36)
DEVELOPMENT PRODUCTION	JAN 95 JAN 00	,,	JL 02* (0)	JUL 02* (31)
PRODUCTION	JAN 00	(31)	JL 02" (0)	001 02 (31)
SUPPLEMENTAL INFOR	MATION			
ECONOMIC BASE		188	TOOLING & PROC	ESS FACTORS
ESCALATION	0	.00	DEVELOPMENT	
T-1 COST	10691	.81*	PRODUCTION T	OOLING 1.00
AMORTIZED UNIT C	OST 23615	.75*	RATE TOOLING	9 0
DEV COST MULTIPL	IER 1	.00*	PRICE IMPROV	EMENT FACTOR 1.000*
PROD COST MULTIP	LIER 1	.00*	UNIT LEARNIN	G CURVE 0.916*

INPUT FILENAME: LOG

10-OCT-88 12:33 (188012)

MAINTENANCE & SUPPLY-LOGISTICS MODULE PALLETS

PRODUCTION QUANTITY	3	UNIT WEIGHT UNIT VOLUME	7852.00 21020.00	MODE QUANTITY/NHA	2 1
UNIT PROD COST 9832.82			MONTH	LY PROD RATE	0.32

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	_	212.	212.
DESIGN	_	782.	782.
Systems	-	_	-
PROJECT MGMT	_	3551.	3551.
DATA		1769.	1769.
SUBTOTAL (ENG)	-	6315.	6315.
MANUFACTURING			
PRODUCTION	_	29498.	29498.
PROTOTYPE	_	-	-
TOOL-TEST EQ	_	5460.	5460.
SUBTOTAL (MFG)	-	34959.	34959.
TOTAL COST	-	41274.	41274.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIPTO	RS

DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	7851.998	PLATFORM	2.000
DENSITY	0.374*	YEAR OF TECHNOLOGY	1995*
MFG. COMPLEXITY	7.420	RELIABILITY FACTOR	1.0
ENGINEERING CHANGES	0.012*	MTBF (FIELD)	7836*
INTEGRATION LEVEL	0.000		

SCHEDULE	START		FIRST ITEM	FINISH
PRODUCTION	JAN 95	(32)	AUG 97* (6)	FEB 98* (38)

SUPPLEMENTAL INFORMATION

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	PRODUCTION TOOLING	1.00
T-1 COST	10952.02*	RATE TOOLING	0
AMORTIZED UNIT COST	13757.85*	PRICE IMPROVEMENT FACTOR	1.000
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.877*

INPUT FILENAME: SHELTR 10-OCT-88 12:35

10-OCT-88 12:35 (188012)

STORM SHELTER-PARTIAL PROTECTION GARMENT

PROD COST MULTIPLIER 1.00*

STORM SHELTER-PARTIAL F	ROTECTION GARMEN	IT	
PRODUCTION QUANTITY	5 UNIT	WEIGHT 170.00	
PROTOTYPE QUANTITY	4.000 UNIT	VOLUME 556.23	QUANTITY/NHA 1
UNIT PROD COST 496.21		MONTE	HLY PROD RATE 1.01
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	1433.	99.	1532.
DESIGN	4737.	389.	5126.
SYSTEMS	672.	-	672.
PROJECT MGMT	694.	327.	1022.
DATA	242.	162.	404.
SUBTOTAL (ENG)	7779.	978.	8756.
MANUFACTURING			
PRODUCTION	_	2481.	2481.
PROTOTYPE	3172.		3172.
TOOL-TEST EQ	277.	536.	812.
SUBTOTAL (MFG)	3448.	3017.	6465.
TOTAL COST	11227.	3994.	15221.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	PT∩RS
WEIGHT	170.000	ENGINEERING (
DENSITY	0.306*	PROTOTYPE SUI	
MFG. COMPLEXITY	7.810		JLE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.000
DESIGN REPEAT	0.000	YEAR OF TECH	INOLOGY 1995*
ENGINEERING CHANGES	0.031*	RELIABILITY E	FACTOR 1.0
INTEGRATION LEVEL	0.000	MTBF (FIELD)	21002*
SCHEDULE STAR	-		FINISH
DEVELOPMENT JAN		JUL 96* (6)	JAN 97* (25)
PRODUCTION JAN	00 (18)	TUN 01* (4)	OCT 01* (22)
SUPPLEMENTAL INFORMATIO	N		
ECONOMIC BASE	188	TOOLING & PROCE	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT T	TOOLING 1.00
T-1 COST	584.75*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST	798.86*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVI	EMENT FACTOR 0.955*

UNIT LEARNING CURVE

0.884*

INPUT FILENAME: SHELTR

10-OCT-88 12:35 (188012)

FOUR-MAN STORM SHELTER

AMORTIZED UNIT COST 33216.23*

DEV COST MULTIPLIER 1.00*

PROD COST MULTIPLIER 1.00*

PRODUCTION QUANTITY	2	UNIT WEIGHT	14700.00	MODE	1
PROTOTYPE QUANTITY	3.500	UNIT VOLUME	7507.08	QUANTITY/NHA	1

UNIT PROD COST17667.63 MONTHLY PROD RATE 0.11

PROGRAM COST (\$ 100	0)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		21734.	3595.	25328.
DESIGN		77315.	13912.	91227.
Systems		9098.	-	9098.
PROJECT MGMT		11334.	5666.	16999.
DATA		3575.	2821.	6396.
SUBTOTAL (E	NG)	123055.	25994.	149049.
MANUFACTURING				
PRODUCTION		-	35335.	35335.
PROTOTYPE		94952.	-	94952.
TOOL-TEST EQ		11701.	5104.	16805.
SUBTOTAL (M	FG)	106653.	40439.	147092.
TOTAL COST		229709.	66432.	296141.
DESIGN FACTORS	ELECTRON	IC MECHANICAL	PRODUCT DESCRIE	TORS
WEIGHT	294.000	* 14405.998	ENGINEERING O	COMPLEXITY 1.000
DENSITY	40.000	1.919*	PROTOTYPE SUE	
MFG. COMPLEXITY	9.960	7.050	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	0.150		ELECT VOL FF	
DESIGN REPEAT	0.100	0.100	PLATFORM	2.000
ENGINEERING CHAN	GES 0.052	* 0.016*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEV	EL 0.000		RELIABILITY F	TACTOR 1.0
INTEGRATION LEVE	L 0.000	0.000	MTBF (FIELD)	1425*
SCHEDULE	START	FIR	ST ITEM	FINISH
DEVELOPMENT	JAN 95	(36) DEC	97* (11)	NOV 98* (47)
PRODUCTION	JAN 00	(32) AUG	02* (8)	APR 03* (40)
SUPPLEMENTAL INFOR	MATION			
ECONOMIC BASE		188	TOOLING & PROCE	SS FACTORS
ESCALATION	(0.00	DEVELOPMENT T	
T-1 COST		6.32*	PRODUCTION TO	

RATE TOOLING

PRICE IMPROVEMENT FACTOR 0.994*

UNIT LEARNING CURVE 0.916*

INPUT FILENAME: STN

12-OCT-88 17:53 (188012)

SPACE	TRANSPORTATION	NODE	_	HANGAR
SPACE	TUMBLOUTHION	NODE	_	TUTAL

SPACE TRANSPORTATI	ON NODE -	- HANGAR			
PRODUCTION QUANTI	TY	1 UNI	T WEIGHT 219	35.00 MODE	2
PRODUCTION QUANTI PROTOTYPE QUANTII	Y.	3.000 UNI	T VOLUME 437499		
_				_	
UNIT PROD COST2099	2.46			MONTHLY PROD R	ATE 0.00
PROGRAM COST(\$ 100	0)	DEVELOPMENT	PRODUCTION	ON TOTAL	COST
ENGINEERING					•
DRAFTING		16637.	965.	1760	
DESIGN		53045.	3699.	5674	
SYSTEMS		8126.	-	812	
PROJECT MGMT		11954.	3060.		
DATA		3692.	1543.		
SUBTOTAL (E	NG)	93453.	9267.	10272	1.
MANUEL CHURTH					
MANUFACTURING PRODUCTION		_	20992.	2099	2
PROTOTYPE		108616.	20992.	10861	
TOOL-TEST EQ	1	8154.	1687.		
SUBTOTAL (M		116770.	22679.	13944	
002101112 (1.	20,	2207701	220751	20011	
TOTAL COST	•	210223.	31947.	24217	0.
DESIGN FACTORS		CHANICAL		ESCRIPTORS	
WEIGHT	219	934.996		RING COMPLEXITY	
DENSITY		0.001*		PE SUPPORT	1.0
MFG. COMPLEXITY		7.320		CHEDULE FACTOR	*
NEW DESIGN		1.000	PLATFOR		2.000
DESIGN REPEAT		0.500		TECHNOLOGY	1995*
ENGINEERING CHAN		0.018*		LITY FACTOR	1.0
INTEGRATION LEVE	L	0.000	MTBF (FI	ELD)	6013*
SCHEDULE	START		FIRST ITEM	FINISH	
DEVELOPMENT			APR 98* (10)	FEB 99*	(50)
PRODUCTION	JAN 00	(36)	DEC 02* (0)	DEC 02*	(36)
SUPPLEMENTAL INFOR	MATION				
ECONOMIC BASE		188	TOOLING &	PROCESS FACTOR	s
ESCALATION		0.00	DEVELOPI	MENT TOOLING	1.00
T-1 COST	2097	12.35*	PRODUCT	ION TOOLING	1.00
AMORTIZED UNIT C	OST 3194	16.55*	RATE TO	OLING	0
DEV COST MULTIPL	IER	1.00*	PRICE II	MPROVEMENT FACT	OR 1.000*
		4 004			0 076+

UNIT LEARNING CURVE 0.876*

1.00*

PROD COST MULTIPLIER

INPUT FILENAME: STN

12-OCT-88 17:53 (188012)

SPACE TRANSPORTATION NODE - HANGAR TUNNEL

PRODUCTION QUANTITY	1	UNIT	WEIGHT	1390.00	MODE	2
PROTOTYPE QUANTITY	3.000	UNIT	VOLUME	549999.88	QUANTITY/NHA	1

UNIT PROD COST 1386.11 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 100 ENGINEERING	0)	DEVELOPMEN	T i	PRODUCTION	TOTAL C	OST
DRAFTING		4041.		210.	4251	
DESIGN		12682.		769.	13451	•
Systems		2021.		-	2021	•
PROJECT MGMT	•	1910.		280.	2190	
DATA		711.		141.	852	
SUBTOTAL (E	NG)	21365.		1400.	22765	•
MANUFACTURING						
PRODUCTION		-		1386.	1386	•
PROTOTYPE		7130.		-	7130	•
TOOL-TEST EQ		550.		108.	657	•
SUBTOTAL (M	FG)	7680.		1494.	9174	•
TOTAL COST		29045.		2894.	31938	•
DESIGN FACTORS	м	ECHANICAL	PI	RODUCT DESCR	RIPTORS	
WEIGHT	1	390.000		ENGINEERING	COMPLEXITY	1.000
DENSITY		0.003*		PROTOTYPE S	SUPPORT	1.0
MFG. COMPLEXITY		7.000		PROTO SCHEI	ULE FACTOR	0.250*
NEW DESIGN		1.000		PLATFORM		2.000
DESIGN REPEAT		0.000		YEAR OF TEC	CHNOLOGY	1995*
ENGINEERING CHAN	ges	0.024*		RELIABILITY	FACTOR	1.0
INTEGRATION LEVE	L	0.000		MTBF (FIELD)		15873*
SCHEDULE	START		FIRST I	rem	FINISH	
DEVELOPMENT	JAN 95	(21)	SEP 96*	(6)	MAR 97*	(27)
PRODUCTION	JAN 00	(21)	SEP 01*	(0)	SEP 01*	(21)
SUPPLEMENTAL INFORM	MATION					
ECONOMIC BASE		188	TO	OOLING & PRO	CESS FACTORS	
ESCALATION		0.00		DEVELOPMENT	TOOLING	1.00
T-1 COST		84.94*		PRODUCTION		1.00
AMORTIZED UNIT C		93.78*		RATE TOOLIN	· -	0
DEV COST MULTIPL		1.00*			VEMENT FACTO	
PROD COST MULTIP	LIER	1.00*		UNIT LEARNI	ING CURVE	0.887*

INPUT FILENAME: STN 12-OCT-88 17:53

(188012)

SPACE TRANSPORTATION NODE - STORAGE TANKS	SPACE	TRANSPORTATION	NODE -	STORAGE	TANKS
---	-------	----------------	--------	---------	-------

UNIT PROD COST22272.68 PROGRAM COST (\$ 1000) DEVELOPMENT PRODUCTION TOTAL COST ENGINEERING DRAFTING 25604. 1725. 27329. DESIGN 83237. 7263. 90500. SYSTEMS 12149 12149. PROJECT MGMT 14968. 10962. 25930. DATA 4907. 5449. 10356. SUBTOTAL (ENG) 140865. 25400. 166266. MANUFACTURING PRODUCTION - 89091. 89091.
ENGINEERING DRAFTING DRAFTING DESIGN 83237. 7263. 90500. SYSTEMS 12149. PROJECT MGMT 14968. DATA 4907. SUBTOTAL (ENG) 140865. MANUFACTURING PRODUCTION - 89091. 89091.
DRAFTING 25604. 1725. 27329. DESIGN 83237. 7263. 90500. SYSTEMS 12149 12149. PROJECT MGMT 14968. 10962. 25930. DATA 4907. 5449. 10356. SUBTOTAL (ENG) 140865. 25400. 166266. MANUFACTURING PRODUCTION - 89091. 89091.
DESIGN 83237. 7263. 90500. SYSTEMS 12149 12149. PROJECT MGMT 14968. 10962. 25930. DATA 4907. 5449. 10356. SUBTOTAL (ENG) 140865. 25400. 166266. MANUFACTURING PRODUCTION - 89091. 89091.
SYSTEMS 12149 12149. PROJECT MGMT 14968. 10962. 25930. DATA 4907. 5449. 10356. SUBTOTAL (ENG) 140865. 25400. 166266. MANUFACTURING PRODUCTION - 89091. 89091.
PROJECT MGMT 14968. 10962. 25930. DATA 4907. 5449. 10356. SUBTOTAL (ENG) 140865. 25400. 166266. MANUFACTURING PRODUCTION - 89091. 89091.
DATA 4907. 5449. 10356. SUBTOTAL (ENG) 140865. 25400. 166266. MANUFACTURING PRODUCTION - 89091. 89091.
SUBTOTAL (ENG) 140865. 25400. 166266. MANUFACTURING PRODUCTION - 89091. 89091.
MANUFACTURING PRODUCTION - 89091. 89091.
PRODUCTION - 89091. 89091.
PROTOTYPE 112998 112998.
TOOL-TEST EQ 9120. 16057. 25177.
SUBTOTAL (MFG) 122118. 105148. 227266.
TOTAL COST 262983. 130549. 393532.
DESIGN FACTORS MECHANICAL PRODUCT DESCRIPTORS
WEIGHT 13937.748 ENGINEERING COMPLEXITY 1.000
DENSITY 0.093* PROTOTYPE SUPPORT 1.0
MFG. COMPLEXITY 7.750 PROTO SCHEDULE FACTOR 0.250*
NEW DESIGN 1.000 PLATFORM 2.000
DESIGN REPEAT 0.150 YEAR OF TECHNOLOGY 1995*
ENGINEERING CHANGES 0.021* RELIABILITY FACTOR 1.0
INTEGRATION LEVEL 0.000 MTBF (FIELD) 5739*
111111111111111111111111111111111111111
SCHEDULE START FIRST ITEM FINISH
DEVELOPMENT JAN 95 (40) APR 98* (10) FEB 99* (50)
PRODUCTION JAN 00 (37) JAN 03* (11) DEC 03* (48)
SUPPLEMENTAL INFORMATION
ECONOMIC BASE 188 TOOLING & PROCESS FACTORS
ESCALATION 0.00 DEVELOPMENT TOOLING 1.00
T-1 COST 25870.29* PRODUCTION TOOLING 1.00
AMORTIZED UNIT COST 32637.15* RATE TOOLING 0
DEV COST MULTIPLIER 1.00* PRICE IMPROVEMENT FACTOR 0.978*
PROD COST MULTIPLIER 1.00* UNIT LEARNING CURVE 0.872*

INPUT FILENAME: STN

12-OCT-88 17:53 (188012)

SPACE TRANSPORTATION NODE - PROPELLANT TRANSFER LINES

PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT WEIGHT 3.000 UNIT VOLUME	17222.00 10000.00	MODE QUANTITY/NHA	2 1
			- 	

UNIT PROD COST19045.43

MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 100	0)	DEVELOPMEN	T PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		14784.	885.	15669.
DESIGN		47353.	2947.	50301.
Systems		7172.	***	7172.
PROJECT MGMT		10661.	2724.	13385.
DATA		3275.	1373.	4648.
SUBTOTAL (E	NG)	83246.	7929.	91175.
MANUFACTURING				
PRODUCTION		-	19045.	19045.
PROTOTYPE		98501.	-	98501.
TOOL-TEST EQ		7843.	1545.	9388.
SUBTOTAL (M	FG)	106344.	20590.	126935.
TOTAL COST		189590.	28519.	218109.
DESIGN FACTORS	M	ECHANICAL	PRODUCT DESCR	TPTORS
WEIGHT		221.996		COMPLEXITY 1.000
DENSITY		1.722*	PROTOTYPE S	
MFG. COMPLEXITY		7.420	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN		1.000	PLATFORM	2.000
DESIGN REPEAT		0.500	YEAR OF TEC	HNOLOGY 1995*
ENGINEERING CHANG	ges	0.019*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVE	L	0.000	MTBF (FIELD)	6191*
SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(38)	FEB 98* (10)	DEC 98* (48)
PRODUCTION	JAN 00	(36)	DEC 02* (0)	DEC 02* (36)
SUPPLEMENTAL INFORM	ATION			
ECONOMIC BASE		188	TOOLING & PRO	CESS FACTORS
ESCALATION		0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST		27.10*	PRODUCTION	TOOLING 1.00
AMORTIZED UNIT CO		19.49*	RATE TOOLIN	G 0
DEV COST MULTIPLE		1.00*	PRICE IMPRO	VEMENT FACTOR 1.000*
PROD COST MULTIPE	LIER	1.00*	UNIT LEARNI	NG CURVE 0.875*

INPUT FILENAME: STN 12-OCT-88 17:53

(188012)

SPACE	TRANSPORTATION	NODE	_	HT.T.37	TANKER	RESIIPPLY	TNTERFACE

SPACE TRANSPORTATI	ON NODE - HLL	V TANKER I	RESUPPLY	INTERFACE		
PRODUCTION QUANTI	TY :	L UNIT V	WEIGHT	337.00	MODE	2
PROTOTYPE QUANTIT						
UNIT PROD COST 51	8.99			MONTE	HLY PROD RA	TE 0.00
PROGRAM COST(\$ 100	0) DEVE	LOPMENT	PROD	UCTION	TOTAL CO	OST
ENGINEERING	,			0.7	1767	
DRAFTING		1680. 5326.		87. 327.	1767 5653	-
Design Systems	;	827.		321.	827	
PROJECT MGMT		763.		109.	873	
DATA		286.		55.	341	=
SUBTOTAL (E	NG)	3883.		578.	9460	
0051011111 (5	,			0,0.	3.00	•
MANUFACTURING						
PRODUCTION		-		519.	519	•
PROTOTYPE		2632.		-	2632	
TOOL-TEST EQ		216.		41.	257	-
SUBTOTAL (M	FG) 2	2847.		560.	3408	•
TOTAL COST	13	1730.	1	138.	12868	
DESIGN FACTORS	MECHAN	ICAL	PRODU	CT DESCRIE	PTORS	
WEIGHT	337.00				COMPLEXITY	1.000
DENSITY)4*	PRO	TOTYPE SUE	PORT	1.0
MFG. COMPLEXITY	7.2	20	PR	OTO SCHEDU	JLE FACTOR	0.250*
NEW DESIGN	1.00	00	PLA	TFORM		2.000
DESIGN REPEAT	0.0	00	YE.	AR OF TECH	INOLOGY	1995*
ENGINEERING CHAN	GES 0.02	27*	REL	IABILITY F	ACTOR	1.0
INTEGRATION LEVE	L 0.0	00	MT	BF (FIELD)		21992*
SCHEDULE	START	8 71	RST ITEM		FINISH	
DEVELOPMENT			N 96* (4)	_	(22)
PRODUCTION			N 01* (7	JUN 01*	(18)
	, .	,	•	- •		,
SUPPLEMENTAL INFOR	MATION					
ECONOMIC BASE	188	_		-	ESS FACTORS	
ESCALATION	0.00			ELOPMENT 1		1.00
T-1 COST	518.56			DUCTION TO		1.00
AMORTIZED UNIT C				TE TOOLING		0
DEV COST MULTIPL					EMENT FACTO	
PROD COST MULTIP	LIER 1.00	•	UNI	T LEARNING	; CURVE	0.888*

INPUT FILENAME: STN

12-OCT-88 17:53 (188012)

SPACE TRANSPORTATION NODE - LANDER/OTV PROP BOOM & INTERFACE

PRODUCTION QUANTITY	1	UNIT WEIGHT	909.00	MODE	2
PROTOTYPE QUANTITY	3.000	UNIT VOLUME	89999.98	QUANTITY/NHA	1

UNIT PROD COST 1712.25

MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMEN	T PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	3984.	261.	4245.
DESIGN	12825.	1029.	13854.
Systems	1919.	-	1919.
PROJECT MGMT	1883.	349.	2232.
DATA	682.	176.	858.
SUBTOTAL (ENG	21293.	1815.	23108.
MANUFACTURING			
PRODUCTION	-	1712.	1712.
PROTOTYPE	8403.	_	8403.
TOOL-TEST EQ	696.	140.	836.
SUBTOTAL (MFG	9099.	1853.	10952.
TOTAL COST	30392.	3668.	34060.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	909.000	Engineering	COMPLEXITY 1.000
DENSITY	0.010*	PROTOTYPE SU	JPPORT 1.0
MFG. COMPLEXITY	7.540	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.000
DESIGN REPEAT	0.000	YEAR OF TEC	HNOLOGY 1995*
ENGINEERING CHANGES	0.029*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.000	MTBF (FIELD)	14214*
SCHEDULE S:	TART	FIRST ITEM	FINISH
DEVELOPMENT J	AN 95 (22)	OCT 96* (6)	APR 97* (28)
PRODUCTION J	AN 00 (23)	NOV 01* (0)	NOV 01* (23)
SUPPLEMENTAL INFORMAT	TION		
ECONOMIC BASE	188	TOOLING & PROC	ESS FACTORS
ESCALATION	0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	1710.73*	PRODUCTION T	COOLING 1.00
AMORTIZED UNIT COST		RATE TOOLING	G 0
DEV COST MULTIPLIER		PRICE IMPROV	EMENT FACTOR 1.000*
PROD COST MULTIPLIE	IR 1.00*	UNIT LEARNIN	IG CURVE 0.882*

INPUT FILENAME: FCCART

AMORTIZED UNIT COST 13309.78*

DEV COST MULTIPLIER 1.00*

PROD COST MULTIPLIER

10-OCT-88 12:37 (188012)

		(· /	
FUEL CELL POWER CA	RT			
PRODUCTION QUANTI	TY	1 UNIT	WEIGHT 1290.00	MODE 1
PROTOTYPE QUANTIT	¥	1 UNIT 2.500 UNIT	VOLUME 7267.00	QUANTITY/NHA 1
UNIT PROD COST 586				HLY PROD RATE 0.00
PROGRAM COST (\$ 1000	0) DE	VELOPMENT	PRODUCTION	TOTAL COST
DRAFTING		8237.	953.	9190.
DESIGN		28335.	4152.	32487.
SYSTEMS		3561.	_	3561.
PROJECT MGMT		3591.	1213.	4805.
DATA		1263.	609.	1871.
SUBTOTAL (E)	MC)	44987.	6927.	51914.
SOBIOTAL (E	149)	44307.	0327.	32321.
MANUFACTURING				
PRODUCTION		_	5864.	5864.
PROTOTYPE		22233.	_	22233.
TOOL-TEST EQ		2593.	520.	3113.
SUBTOTAL (M	FG)	24826.	6383.	31209.
TOTAL COST		69813.	13310.	83123.
DESIGN FACTORS		MECHANICAL		
WEIGHT		1264.200		
DENSITY	35.503	0.174*		PPORT 1.0
MFG. COMPLEXITY	9.560	8.340		ULE FACTOR 0.250*
NEW DESIGN	1.000	1.000		
DESIGN REPEAT		0.150		2.000
ENGINEERING CHAN	GES 0.065*	0.035*		
HW/SW INTEG. LEV			RELIABILITY	
INTEGRATION LEVE	L 0.000	0.000	MTBF (FIELD)	13766*
SCHEDULE	START	FI	RST ITEM	FINISH
DEVELOPMENT	JAN 95			OCT 97* (34)
PRODUCTION	-	•	•	MAY 02* (29)
1		,,	:=	, ,
SUPPLEMENTAL INFOR	MATION			
ECONOMIC BASE		88	TOOLING & PROC	ESS FACTORS
ESCALATION	0.	00	DEVELOPMENT	TOOLING 1.00
T-1 COST	5860.	22*	PRODUCTION T	OOLING 1.00
			_	

1.00*

RATE TOOLING

PRICE IMPROVEMENT FACTOR 1.000*

UNIT LEARNING CURVE 0.916*

INPUT FILENAME: RADCAR 10-OCT-88 12:36

10-OCT-88 12:36 (188012)

SUPPLEMENTAL COOLING CART

PRODUCTION QUANTITY	1 UNIT	WEIGHT 1170.00	MODE	1
PROTOTYPE QUANTITY	2.500 UNIT	VOLUME 22000.00	QUANTITY/NHA	1

UNIT PROD COST 2542.84

MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 100	0)	DEVELOPMENT	r Pi	RODUCTION	TOTAL C	OST
ENGINEERING	-,					
DRAFTING		6216.		657.	6874	•
DESIGN		21383.		2782.	24165	•
SYSTEMS		2687.		-	2687	•
PROJECT MGMI	•	2418.		657.	3075	•
DATA		895.		330.	1225	=
SUBTOTAL (E	NG)	33600.		4426.	38026	•
MANUFACTURING						
PRODUCTION		-		2543.	2543	•
PROTOTYPE		10245.		-	10245	•
TOOL-TEST EQ	!	1223.		214.	1437	-
SUBTOTAL (M	FG)	11467.		2757.	14225	•
TOTAL COST	•	45067.		7183.	52250	•
DESIGN FACTORS	ELECTRO	NIC MECHANIC	CAL PRO	DUCT DESCR	IPTORS	
WEIGHT	23.40	0* 1146.600) <u> </u>	ENGINEERING	COMPLEXITY	1.000
DENSITY	10.63		!* E	PROTOTYPE S	UPPORT	1.0
MFG. COMPLEXITY	9.5	7.52	0	PROTO SCHE	DULE FACTOR	0.250*
NEW DESIGN	1.00		-	ELECT VOL	FRACTION	0.000*
DESIGN REPEAT	0.00		E	LATFORM		2.000
ENGINEERING CHAN			9*	YEAR OF TE	CHNOLOGY	1995*
HW/SW INTEG. LEV			_	RELIABILITY	FACTOR	1.0
INTEGRATION LEVE	L 0.00	0.000		MTBF (FIELD)		15148*
SCHEDULE	START		FIRST ITE	PM	TINICU	
DEVELOPMENT	JAN 95		NOV 96*		FINISH APR 97*	(28)
PRODUCTION	JAN 00		NOV 90"	(0)		(23)
SUPPLEMENTAL INFOR	матт∩и					
ECONOMIC BASE		188	ጥ ርር	T.TNG & PRO	CESS FACTORS	
ESCALATION		0.00		EVELOPMENT		1.00
T-1 COST	25	41.48*		RODUCTION		1.00
AMORTIZED UNIT C		83.28*		RATE TOOLIN	•	0
DEV COST MULTIPL		1.00*			VEMENT FACTO	-
PROD COST MULTIP		1.00*		NIT LEARNI		0.920*

INPUT FILENAME: OTVSYS

17-OCT-88 13:57 (188225)

OTV - STRUCTURES			
PRODUCTION QUANTITY	10 UN	VIT WEIGHT 2000.0	0 MODE 2
PROTOTYPE QUANTITY		VIT VOLUME 74999.9	
UNIT PROD COST 7239.	32	MON	THLY PROD RATE 0.55
PROGRAM COST (\$ 1000)	DEVELOPMEN	NT PRODUCTION	TOTAL COST
ENGINEERING			40055
DRAFTING	9450.	605.	10055.
DESIGN	32770.	2646.	35416.
Systems	4225.		4225.
PROJECT MGMT	7641.	7397.	15038.
DATA	2080.	7712.	9792.
SUBTOTAL (ENG	56167.	18359.	74526.
MANUFACTURING	•		
PRODUCTION	_	72393.	72393.
PROTOTYPE	74118.	-	74118.
TOOL-TEST EQ	6506.	13563.	20069.
SUBTOTAL (MFG		85956.	166581.
TOTAL COST	136791.	104315.	241106.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCR	RIPTORS
WEIGHT	2000.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	0.027*	PROTOTYPE S	SUPPORT 1.0
MFG. COMPLEXITY	8.370	PROTO SCHE	DULE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.500	YEAR OF TE	CHNOLOGY 1995*
ENGINEERING CHANGE	s 0.020*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.263	MTBF (FIELD	5256*
SCHEDULE S'	TART	FIRST ITEM	FINISH
DEVELOPMENT J.		· · · · · =	SEP 98* (45)
PRODUCTION J		JUL 02* (16)	NOV 03* (47)
11020011011 0.	00 (02)	(= 1,	, , ,
SUPPLEMENTAL INFORMA	TION		
ECONOMIC BASE	188	TOOLING & PRO	
ESCALATION	0.00	DEVELOPMENT	
T-1 COST	9659.09*	PRODUCTION	
AMORTIZED UNIT COS	T 10431.52*	RATE TOOLI	
DEV COST MULTIPLIE	R 1.00*		OVEMENT FACTOR 0.966*
PROD COST MULTIPLE	ER 1.00*	UNIT LEARNI	ING CURVE 0.872*

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

17-OCT-88 13:57 (188225)

OTV - ENGINES

PRODUCTION QUANTITY	40	UNIT WEIGHT	250.00	MODE	1
PROTOTYPE QUANTITY	18.000	UNIT VOLUME	3000.00	QUANTITY/NHA	4

UNIT PROD COST 2412.44

MONTHLY PROD RATE 1.26

PROGRAM COST (\$ 100	0)	DEVELOPMEN	T 1	PRODUCTION	TOTAL CO	ST
ENGINEERING						
DRAFTING		19171.		809.	19980.	
DESIGN		94239.		4062.	98300.	
SYSTEMS		28055.		_	28055.	
PROJECT MGMT		40702.		8005.	48707.	
DATA		14496.		8240.	22735.	
SUBTOTAL (E	NG)	196662.		21115.	217777.	
MANUFACTURING						
PRODUCTION		_		96497.	96497.	
PROTOTYPE		89370.		-	89370.	
TOOL-TEST EQ		17299.		13356.	30655.	
SUBTOTAL (M	FG)	106669.		109853.	216523.	
TOTAL COST		303331.		130969.	434300.	
DESIGN FACTORS	ELECTRO	ONIC MECHANIC	CAL PR	RODUCT DESCR	IPTORS	
WEIGHT	5.00	00* 245.00	0	ENGINEERING	COMPLEXITY	2.300
DENSITY	16.66	0.08	2*	PROTOTYPE S	UPPORT	1.0
MFG. COMPLEXITY	10.3	20 9.16	0	PROTO SCHE	DULE FACTOR	0.250*
NEW DESIGN	1.0	00 1.00	0	ELECT VOL	FRACTION	0.000*
DESIGN REPEAT	0.00	0.00	כ	PLATFORM		2.500
ENGINEERING CHANG	SES 0.03	39* 0.02	2*	YEAR OF TEC	CHNOLOGY	1995*
HW/SW INTEG. LEVI	EL 0.00	0		RELIABILITY	FACTOR	1.0
INTEGRATION LEVE	0.60	0.35	0	MTBF (FIELD)		55932*
SCHEDULE	START		FIRST IT	rem	FINISH	
DEVELOPMENT	JAN 95	(39)	MAR 98*	(27)	JUN 00* (66)
PRODUCTION	JAN 00	(26)	FEB 02*	(31)	SEP 04* (57)
SUPPLEMENTAL INFORM	ATION					
ECONOMIC BASE		188	TC	OLING & PRO	CESS FACTORS	
ESCALATION		0.00		DEVELOPMENT	TOOLING	1.00
T-1 COST	40	80.28*		PRODUCTION S	TOOLING	1.00
AMORTIZED UNIT CO	ST 32	274.22*		RATE TOOLIN	r G	0
DEV COST MULTIPL	ER	1.00*		PRICE IMPRO	VEMENT FACTOR	0.951*
PROD COST MULTIPE	LIER	1.00*		UNIT LEARNI	NG CURVE	0.873*

- - - PRICE HARDWARE MODEL METRIC - - -ELECTRONIC ITEM

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

(188225)

OTT.	 PCC	DISTRIBUTION	
OTIV	 RU.S	DISTRIBUTION	

PRODUCTION QUANTITY PROTOTYPE QUANTITY	20 UNIT WEI 10.000 UNIT VOI		MODE QUANTITY/NHA	1 2
UNIT PROD COST 672.64		MONTH	LY PROD RATE	1.02

PROGRAM COST (\$ 1000) DE	VELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	,			
DRAFTING		2104.	203.	2307.
DESIGN		7908.	874.	8782.
SYSTEMS		845.	_	845.
PROJECT MGMT		1235.	1211.	2446.
DATA		351.	1252.	1603.
SUBTOTAL (EN	G)	12442.	3540.	15983.
MANUTURA CITURA TANC				
MANUFACTURING PRODUCTION		_	13453.	13453.
PRODUCTION		9940.	-	9940.
TOOL-TEST EQ		1245.	1754.	2999.
SUBTOTAL (MF	G)	11186.	15207.	26392.
OUDIOIAL (FE	9,	11100.	202071	
TOTAL COST		23628.	18747.	42375.
DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	1.000*	155.000	ENGINEERING (COMPLEXITY 1.000
DENSITY	10.000	0.155*	PROTOTYPE SUI	PPORT 1.0
MFG. COMPLEXITY	10.320	8.240	PROTO SCHEDU	JLE FACTOR 0.250*
NEW DESIGN	1.000	1.000	ELECT VOL FI	RACTION 0.000*
DESIGN REPEAT	0.000	0.500	PLATFORM	2.500
ENGINEERING CHANG	ES 0.056*	0.024*	YEAR OF TECH	NOLOGY 1995*
HW/SW INTEG. LEVE	L 0.000		RELIABILITY 1	
INTEGRATION LEVEL	0.263	0.484	MTBF (FIELD)	270803*
		m.T.D.	Om 70014	BINICU
	START		ST ITEM	FINISH JUL 97* (31)
	JAN 95	, -,	96* (11) 01* (18)	FEB 03* (38)
PRODUCTION	JAN 00	(20) AUG	01* (18)	FEB 03" (30)
SUPPLEMENTAL INFORM	ATION			
ECONOMIC BASE	1	88	TOOLING & PROC	ESS FACTORS
ESCALATION	0.	00	DEVELOPMENT !	rooling 1.00
T-1 COST	958.	21*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT CO			RATE TOOLING	
DEV COST MULTIPLI	ER 1.	00*	PRICE IMPROV	EMENT FACTOR 0.955*
PROD COST MULTIPL	IER 1.	00*	UNIT LEARNING	G CURVE 0.888*

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

17-OCT-88 13:57 (188225)

OTV - RCS NOZZLE CLUSTER

PRODUCTION QUANTITY	80 UNIT WEIGHT	25.00	MODE	2
PROTOTYPE QUANTITY	36.000 UNIT VOLUME	125.00	QUANTITY/NHA	8

UNIT PROD COST 82.37 MONTHLY PROD RATE 5.49

PROGRAM COST (\$ 100	00)	D EVEL OPMEN	T PRODUCTI	ON TOTAL	COST
ENGINEERING					
DRAFTING		200.	14.	21	4.
DESIGN		718.	59.	77'	7.
Systems		88.		. 81	3.
PROJECT MGMT	?	423.	519.	94:	1.
DATA		86.	533.	619	9.
SUBTOTAL (E	ing)	1515.	1125.	2640	0.
MANUFACTURING		•			
PRODUCTION		-	6590.	6590).
PROTOTYPE		5099.	-	5099	9.
TOOL-TEST EQ	?	409.	834.	1243	3.
SUBTOTAL (M	IFG)	5508.	7424.	12932	2.
TOTAL COST		7022.	8549.	15571	L.
DESIGN FACTORS	ME	CHANICAL	PRODUCT D	ESCRIPTORS	
WEIGHT	:	25.000	ENGINEE	RING COMPLEXITY	1.000
DENSITY		0.200*	PROTOTY	PE SUPPORT	1.0
MFG. COMPLEXITY		8.070	PROTO	SCHEDULE FACTOR	0.250*
NEW DESIGN		0.750	PLATFOR	M	2.500
DESIGN REPEAT		0.670	YEAR O	F TECHNOLOGY	1995*
ENGINEERING CHAN		0.021*	RELIABI	LITY FACTOR	1.0
INTEGRATION LEVE	L	0.201	MTBF (F	IELD)	21997*
SCHEDULE	Cm3.pm		######################################		
DEVELOPMENT	START	/ 15)	FIRST ITEM	FINISH	, oo
PRODUCTION		(15) (14)	MAR 96* (13) FEB 01* (15)	• .	(28) (29)
SUPPLEMENTAL INFOR	MATTON				
ECONOMIC BASE	MATION	188	TOOT THE S	PROCESS FACTORS	,
ESCALATION	(0.00		MENT TOOLING	1.00
T-1 COST		5.73*		ION TOOLING	1.00
AMORTIZED UNIT C		5.86*	RATE TO		1.00
DEV COST MULTIPL		00*		MPROVEMENT FACTO	-
PROD COST MULTIP		00*		ARNING CURVE	0.887*
		=			

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

(188225)

OTV -	THERMAL.	PROTECTION

	(200	,	
OTV - THERMAL PROTECTION			
PRODUCTION QUANTITY	10 UNI	T WEIGHT 2017.00	MODE 2
PROTOTYPE QUANTITY	3.000 UNI	T VOLUME 49999.99	QUANTITY/NHA 1
UNIT PROD COST 1027.31		MONT	HLY PROD RATE 1.21
PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	2684.	153.	2838.
DESIGN	8232.	522.	8755.
SYSTEMS	1389.	-	1389.
PROJECT MGMT	1387.	1116.	2503.
	508.	1168.	1676.
DATA			17161.
SUBTOTAL (ENG)	14201.	2960.	1/161.
MANUFACTURING			
PRODUCTION	_	10273.	10273.
PROTOTYPE	5918.	_	5918.
TOOL-TEST EQ	442.	1816.	2258.
SUBTOTAL (MFG)	6360.	12089.	18449.
	00001		
TOTAL COST	20562.	15049.	35610.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	2017.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	0.040*	PROTOTYPE SU	
MFG. COMPLEXITY	6.510		ULE FACTOR 0.250*
NEW DESIGN	0.750	PLATFORM	2.500
	0.500	YEAR OF TEC	
DESIGN REPEAT			
ENGINEERING CHANGES	0.017*	RELIABILITY	
INTEGRATION LEVEL	0.350	MTBF (FIELD)	11718*
SCHEDULE START		FIRST ITEM	FINISH
DEVELOPMENT JAN 9	5 (20)	AUG 96* (6)	FEB 97* (26)
PRODUCTION JAN 0		AUG 01* (7)	MAR 02* (27)
Thobotion out o	(20)	,	,
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT	
T-1 COST	1312.05*	PRODUCTION T	OOLING 1.00
AMORTIZED UNIT COST	1504.86*	RATE TOOLING	3 0
DEV COST MULTIPLIER	1.00*	PRICE IMPROV	EMENT FACTOR 0.952*
PROD COST MULTIPLIER	1.00*	UNIT LEARNIN	

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

17-OCT-88 13:57 (188225)

OTV - OXYGEN TANKS

PRODUCTION QUANTITY	20 UNIT WEIGHT	1000.00	MODE	2
PROTOTYPE QUANTITY	14.000 UNIT VOLUME	6000.00	OUANTITY/NHA	2

UNIT PROD COST 1583.96

MONTHLY PROD RATE 1.23

PROGRAM COST (\$ 100)O) I	EVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		6966.	350.	7317.
DESIGN		23916.	1381.	25297.
Systems		3228.	-	3228.
PROJECT MGMI	•	5139.	3058.	8197.
DATA		1447.	3176.	4624.
SUBTOTAL (F	ing)	40696.	7966.	48662.
MANUFACTURING				
PRODUCTION		_	31679.	31679.
PROTOTYPE		36055.	-	36055.
TOOL-TEST EQ	<u>!</u>	2636.	4822.	7458.
SUBTOTAL (M	IFG)	38691.	36501.	75192.
TOTAL COST	•	79387.	44467.	123854.
DESIGN FACTORS	MEC	HANICAL	PRODUCT DESC	CRIPTORS
WEIGHT	100	0.000	ENGINEERIN	G COMPLEXITY 1.000
DENSITY		0.167*	PROTOTYPE	SUPPORT 1.0
MFG. COMPLEXITY		7.550	PROTO SCH	IEDULE FACTOR 0.250*
NEW DESIGN		1.000	PLATFORM	2.500
DESIGN REPEAT		0.150	YEAR OF T	ECHNOLOGY 1995*
ENGINEERING CHAN	GES	0.017*	RELIABILIT	Y FACTOR 1.0
INTEGRATION LEVE	L	0.263	MTBF (FIEL	D) 9001*
0000000				
SCHEDULE	START	· ·	FIRST ITEM	FINISH
DEVELOPMENT		•	NOV 96* (14)	JAN 98* (37)
PRODUCTION	JAN 00	(23)	NOV 01* (16)	MAR 03* (39)
SUPPLEMENTAL INFOR	MATION			
ECONOMIC BASE		188	TOOLING & PR	COCESS FACTORS
ESCALATION	0	.00	DEVELOPMEN	T TOOLING 1.00
T-1 COST	2301		PRODUCTION	TOOLING 1.00
AMORTIZED UNIT C		.35*	RATE TOOL:	ING 0
DEV COST MULTIPL		.00*		ROVEMENT FACTOR 0.951*
PROD COST MULTIP	LIER 1	.00*	UNIT LEARN	ING CURVE 0.882*

INPUT FILENAME: OTVSYS

ECONOMIC BASE

DEV COST MULTIPLIER

PROD COST MULTIPLIER

AMORTIZED UNIT COST 1217.32*

ESCALATION

T-1 COST

17-OCT-88 13:57 (188225)

OTV	 UVD	PACEN	TANKS

OTV - HYDROGEN TANKS			
PRODUCTION QUANTITY	20 UN	VIT WEIGHT 500.00	MODE 2
PROTOTYPE QUANTITY	_ ·	VIT VOLUME 33999.99	·
INCIOIIID GOINGILI	11.000 0.	.11 (0201	
UNIT PROD COST 860.8	39	MONTI	HLY PROD RATE 1.46
PROGRAM COST(\$ 1000)	DEVELOPMEN	T PRODUCTION	TOTAL COST
ENGINEERING	DB v HIOT FIBE	TRODUCTION	101112 0001
DRAFTING	4281.	218.	4499.
DESIGN	14695.	861.	15556.
SYSTEMS	1984.	_	1984.
PROJECT MGMT	2996.	1673.	4669.
DATA	861.	1738.	2599.
SUBTOTAL (ENG)	24817.	4490.	29306.
MANUFACTURING			15010
PRODUCTION	10622	17218.	17218. 19623.
PROTOTYPE TOOL-TEST EQ	19623. 1441.	2639.	4080.
SUBTOTAL (MFG)		19857.	40921.
SODICIAL (FE G)	21004.	13037.	40,22.
TOTAL COST	45881.	24346.	70227.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	
WEIGHT	500.000 0.015*	ENGINEERING (PROTOTYPE SUI	• • • • • • • • • • • • • • • • • • • •
DENSITY MFG. COMPLEXITY	7.550	PROTO SCHEDU	
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.150	YEAR OF TECH	
ENGINEERING CHANGES		RELIABILITY I	
INTEGRATION LEVEL	0.263	MTBF (FIELD)	11082*
		, ,	
COURDINE CO	na na	FIRST ITEM	FINISH
	TART AN 95 (20).	AUG 96* (13)	SEP 97* (33)
	AN 00 (21)	SEP 01* (13)	OCT 02* (34)
			() - /
SUPPLEMENTAL INFORMAT	TION		

TOOLING & PROCESS FACTORS

PRODUCTION TOOLING

RATE TOOLING

DEVELOPMENT TOOLING 1.00

PRICE IMPROVEMENT FACTOR 0.948*

UNIT LEARNING CURVE 0.884*

188 0.00

1242.80*

1.00*

1.00*

INPUT FILENAME: OTVSYS 17-OCT-88 13:57 (188225)

OTV - DMS/GN&C

PRODUCTION QUANTITY	10	UNIT	WEIGHT	150.00	MODE	1	
PROTOTYPE QUANTITY	5.000	UNIT	VOLUME	130.00	QUANTITY/NHA	1	

UNIT PROD COST 2243.32 MONTHLY PROD RATE 0.66

PROGRAM COST (\$ 1000)	DEVELO	PMENT	PRODUCTION	TOTAL COST
ENGINEERING				301111 0001
DRAFTING 6265.		65.	675.	6941.
DESIGN 29423.		23.	2940. 32362.	
SYSTEMS 9428.		28.	- 9428.	
PROJECT MGMT 11010.		10.	2395.	13405.
DATA 4456.		56.	2489.	6945.
SUBTOTAL (ENG)	605	82.	8499.	69080.
MANUFACTURING				
PRODUCTION		-	22433.	22433.
PROTOTYPE 22715.		15.	-	22715.
TOOL-TEST EQ 4594.			4183.	8777.
SUBTOTAL (MFG)			26616.	53926.
, -,				000201
TOTAL COST	878	91.	35115.	123006.
DESIGN FACTORS EI	ECTRONIC MEC	HANICAL P	RODUCT DESCRI	PTORS
WEIGHT	5.000* 14	5.000	ENGINEERING	COMPLEXITY 2.300
DENSITY	43.000	1.115*	PROTOTYPE SU	PPORT 1.0
MFG. COMPLEXITY	10.320	9.400	PROTO SCHEDI	ULE FACTOR 0.250*
NEW DESIGN	1.000	0.200	ELECT VOL FI	RACTION 0.001*
DESIGN REPEAT	0.000	0.000	PLATFORM	2.500
ENGINEERING CHANGES	0.045*	0.027*	YEAR OF TECH	HNOLOGY 1995*
HW/SW INTEG. LEVEL	0.500		RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.305	0.151	MTBF (FIELD)	55932*
	ART	FIRST I		FINISH
	N 95 (34)		•	NOV 98* (47)
PRODUCTION JA	N 00 (25)	JAN 02*	(14)	MAR 03* (39)
SUPPLEMENTAL INFORMATION				
ECONOMIC BASE	188	T	OOLING & PROCI	ESS FACTORS
ESCALATION	0.00		DEVELOPMENT :	rooling 1.00
T-1 COST 2891.53*			PRODUCTION TOOLING 1.00	
AMORTIZED UNIT COST 3511.50* RATE TOOLING			0	
DEV COST MULTIPLIER 1.00*			PRICE IMPROVEMENT FACTOR 0.963*	
PROD COST MULTIPLIE	R 1.00*		UNIT LEARNING	G CURVE 0.887*

- - - PRICE HARDWARE MODEL METRIC - - -THRU-PUT COST

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

(188225)

OTV - DMS/GN&C THRUPUT

CATEGORY 3

MODE 8

PROGRAM COST DEVELOPMENT PRODUCTION TOTAL COST THRU-PUT COST 16380. 10920. 27300.

- - - PRICE HARDWARE MODEL METRIC - - - ELECTRONIC ITEM

INPUT FILENAME: OTVSYS 17-OCT-88 13:57 (188225)

OTV - ELECTRIC POWER

PRODUCTION QUANTITY	10	UNIT WEIGHT	478.00	MODE	1
PROTOTYPE QUANTITY	5.000	UNIT VOLUME	1000.00	QUANTITY/NHA	1

UNIT PROD COST 1782.41 MONTHLY PROD RATE 0.54

			_	
PROGRAM COST (\$ 100	ת (0(EVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	2		11.02001101	101111 0001
DRAFTING		4306.	458.	4764.
DESIGN		15749.	1829.	17577.
SYSTEMS		1758.	-	1758.
PROJECT MGM	<u>.</u>	2042.	1804.	3846.
DATA		651.	1875.	2526.
SUBTOTAL (ENG)	24505.	5966.	30471.
MANUFACTURING				
PRODUCTION		-	17824.	17824.
PROTOTYPE		13436.	-	13436.
TOOL-TEST EQ	2	1736.	2680.	4416.
SUBTOTAL (M	IFG)	15172.	20505.	35677.
TOTAL COST	?	39678.	26470.	66148.
DESIGN FACTORS	ELECTRONIC	C MECHANIC	AL PRODUCT DESCR	RIPTORS
WEIGHT	3.000*			G COMPLEXITY 1.000
DENSITY	30.000	0.475	* PROTOTYPE S	SUPPORT 1.0
MFG. COMPLEXITY	10.320	8.150	PROTO SCHE	DULE FACTOR 0.250*
NEW DESIGN	1.000	1.000	ELECT VOL	FRACTION 0.000*
DESIGN REPEAT	0.000	0.500	PLATFORM	2.500
ENGINEERING CHAN	GES 0.061*	0.026	* YEAR OF TE	CHNOLOGY 1995*
HW/SW INTEG. LEV	EL 0.000		RELIABILITY	FACTOR 1.0
INTEGRATION LEVE	L 0.843	0.201	MTBF (FIELD	92273*
COURDING III	0 77. D. T.	_		
SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT PRODUCTION		•	NOV 96* (8) NOV 01* (17)	JUL 97* (31) APR 03* (40)
PRODUCTION	UAN UU	(23)	NOV 01^ (17)	APR 03^ (40)
SUPPLEMENTAL INFOR	MATION			
ECONOMIC BASE	-	188	TOOLING & PRO	CESS FACTORS
ESCALATION	0.	.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	2263.	14*	PRODUCTION	TOOLING 1.00
AMORTIZED UNIT C			RATE TOOLI	NG 0
DELL COOM PARTMENT	TMD 1	00+		

PRICE IMPROVEMENT FACTOR 0.966*
UNIT LEARNING CURVE 0.893*

DEV COST MULTIPLIER 1.00* PROD COST MULTIPLIER 1.00*

INPUT FILENAME: OTVSYS

17-OCT-88 13:57 (188225)

OTV	_	7	T D	AB.	א ס	K D	SHELL	
OTV	_	A	Ŀк	UB	KA	nr.	SMELLI	e

	(100	,223,	
OTV - AEROBRAKE SHELL			
PRODUCTION QUANTITY	10 UNI	T WEIGHT 455.00	MODE 2
PROTOTYPE QUANTITY			QUANTITY/NHA 1
UNIT PROD COST32629.04		MONT	HLY PROD RATE 0.37
PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	7200.	643.	7843.
DESIGN	34225.	3788.	38013.
SYSTEMS	10418.	-	10418.
PROJECT MGMT	37639.	30985.	68625.
DATA	10778.	32150.	42927.
SUBTOTAL (ENG)	100259.	67566.	167825.
MANUFACTURING			
PRODUCTION	_	326290.	326290.
PROTOTYPE	220353.	-	220353.
TOOL-TEST EQ	53019.	75616.	128635.
SUBTOTAL (MFG)	273372.	401906.	675278.
TOTAL COST	373631.	469473.	843103.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT	455.000	ENGINEERING	
DENSITY	0.000*	PROTOTYPE SU	
MFG. COMPLEXITY	11.000	PROTO SCHED	
NEW DESIGN	1.000	PLATFORM	2.500
DESIGN REPEAT	0.850	YEAR OF TECH	
ENGINEERING CHANGES	0.046*	RELIABILITY	
INTEGRATION LEVEL	0.151	MTBF (FIELD)	3418*
INIBORALION BEVER	V. 131	mbi (t 1888)	3120
SCHEDULE STA		FIRST ITEM	FINISH
DEVELOPMENT JAN	• •	MAR 99* (14)	MAY 00* (65)
PRODUCTION JAN	00 (41)	MAY 03* (25)	JUN 05* (66)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROC	
ESCALATION	0.00	DEVELOPMENT '	
T-1 COST	45696.31*	PRODUCTION TO	
AMORTIZED UNIT COST		RATE TOOLING	-
DEV COST MULTIPLIER	1.00*		EMENT FACTOR 0.973*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.851*

INPUT FILENAME: OTVSYS

17-OCT-88 13:57 (188225)

OTV - AEROBRAKE STRUCTURE

PRODUCTION QUANTITY PROTOTYPE QUANTITY		WEIGHT 1545.00 VOLUME 59999.98	MODE 2 QUANTITY/NHA 1
UNIT PROD COST 2753.08		MONTH	LY PROD RATE 0.77
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	8050.	550.	8600.
DESIGN	26025.	2200.	28225.
SYSTEMS	3851.	_	3851.
PROJECT MGMT	3651.	2977.	6628.
DATA	1342.	3108.	4450.
SUBTOTAL (ENG)	42919.	8834.	51753.
MANUFACTURING			
PRODUCTION	_	27531.	27531.
PROTOTYPE	14626.	-	14626.
TOOL-TEST EQ	1211.	5029.	6240.
SUBTOTAL (MFG)	15837.	32560.	48397.
TOTAL COST	58756.	41394.	100150.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIP	rors
WEIGHT	1545.000	ENGINEERING C	OMPLEXITY 1.000
DENSITY	0.026*	PROTOTYPE SUP	
MFG. COMPLEXITY	7.670	PROTO SCHEDU	LE FACTOR 0.250*
NEW DESIGN	1.000	PLATFORM	2.500
			-

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(26)	FEB 97* (6)	AUG 97* (32)
PRODUCTION	JAN 00	(25)	JAN 02* (12)	JAN 03* (37)

YEAR OF TECHNOLOGY

RELIABILITY FACTOR

MTBF (FIELD)

1995*

7511*

1.0

0.250

0.023*

0.151

SUPPLEMENTAL INFORMATION

ENGINEERING CHANGES

INTEGRATION LEVEL

DESIGN REPEAT

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	3608.51*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	4139.39*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	0.960*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.879*

INPUT FILENAME: OTVSYS

17-OCT-88 13:57 (188225)

	(100	52237		
OTV - CREW MODULE SHELL	L			
PRODUCTION QUANTITY	7 UN	T WEIGHT 1200.00	MODE 2	
PROTOTYPE QUANTITY		T VOLUME 24000.00		
201010101010101010101010101010101010101			_	
UNIT PROD COST 3116.30		INOM	THLY PROD RATE 0.63	
PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST	
ENGINEERING	00.4	500	0.75.0	
DRAFTING	8241.	508.	8750. 30395.	
DESIGN	28110.	2285.	30393. 3775.	
SYSTEMS	3775.	2535.	7543.	
PROJECT MGMT DATA	5008. 1535.	2653.	4188.	
SUBTOTAL (ENG)	46670.	7981.	54651.	
SUBTOTAL (ENG)	40070.	7901.	34031.	
MANUFACTURING				
PRODUCTION	_	21814.	21814.	
PROTOTYPE	32811.	-	32811.	
TOOL-TEST EQ	2659.	4575.	7233.	
SUBTOTAL (MFG)	35470.	26389.	61859.	
TOTAL COST	82140.	34370.	116510.	
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRI	PTORS	
WEIGHT	1200.000		COMPLEXITY 1.000	
DENSITY	0.050*	PROTOTYPE SU		
MFG. COMPLEXITY	7.980	PROTO SCHED		
NEW DESIGN	1.000	PLATFORM	2.500	
DESIGN REPEAT	0.250	YEAR OF TECHNOLOGY 1995		
ENGINEERING CHANGES	0.021*	RELIABILITY FACTOR 1.0		
INTEGRATION LEVEL	0.097	MTBF (FIELD)	7138*	
SCHEDULE STA	੨ ਾ	FIRST ITEM	FINISH	
DEVELOPMENT JAN		FEB 97* (12)	FEB 98* (38)	
PRODUCTION JAN	*	FEB 02* (10)	DEC 02* (36)	
11.0000111.	· · · · · · · · · · · · · · · · · · ·	· ,		
SUPPLEMENTAL INFORMATION	ON			
ECONOMIC BASE	188	TOOLING & PROC	ESS FACTORS	
ESCALATION	0.00	DEVELOPMENT		
T-1 COST	3891.84*	PRODUCTION I	COOLING 1.00	
AMORTIZED UNIT COST	4910.03*	RATE TOOLIN		
DEV COST MULTIPLIER	1.00*	PRICE IMPROV	TEMENT FACTOR 0.963*	
PROD COST MULTIPLIER	1.00*	UNIT LEARNIN	IG CURVE 0.877*	

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

17-OCT-88 13:57 (188225)

OTV - CREW MODULE ECLSS

PRODUCTION QUANTITY	7	UNIT	WEIGHT	1390.00	MODE	2
PROTOTYPE QUANTITY	5.000	UNIT	VOLUME	5000.00	QUANTITY/NHA	1

UNIT PROD COST 4876.16

MONTHLY PROD RATE 0.54

PROGRAM COST (\$ 1000)	DEVELOPMEN	T PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	11031.	994.	12025.
DESIGN	37566.	4152.	41718.
Systems	5002.	=	5002.
PROJECT MGMT	5967.	3996.	9963.
DATA	1925.	4179.	6103.
SUBTOTAL (ENG	61491.	13320.	74811.
MANUFACTURING			
PRODUCTION	-	34133.	34133.
PROTOTYPE	36668.	-	36668.
TOOL-TEST EQ	3241.	7150.	10391.
Subtotal (MFG	39908.	41283.	81191.
TOTAL COST	101399.	54604.	156002.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCR	IPTORS
WEIGHT	1390.000	ENGINEERING	COMPLEXITY 1.000
DENSITY	0.278*	PROTOTYPE S	UPPORT 1.0
MFG. COMPLEXITY	8.280	PROTO SCHE	DULE FACTOR 0.250*
new design	0.800	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TEC	CHNOLOGY 1995*
ENGINEERING CHANGE	S 0.024*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVEL	0.120	MTBF (FIELD)	6069*
_	TART	FIRST ITEM	FINISH
-	AN 95 (28)	APR 97* (11)	MAR 98* (39)
PRODUCTION J	AN 00 (29)	MAY 02* (11)	APR 03* (40)
SUPPLEMENTAL INFORMA	TION		
ECONOMIC BASE	188	TOOLING & PRO	CESS FACTORS
ESCALATION	0.00	DEVELOPMENT	TOOLING 1.00
T-1 COST	6128.07*	PRODUCTION !	rooling 1.00
AMORTIZED UNIT COS		RATE TOOLIN	rG 0
DEV COST MULTIPLIE		PRICE IMPRO	VEMENT FACTOR 0.966*
PROD COST MULTIPLI	ER 1.00*	UNIT LEARNI	NG CURVE 0.874*

INPUT FILENAME: OTVSYS

17-OCT-88 13:57 (188225)

OTTS	_	CDWW	MODITE	CONTROLS
UTV	-	CREW	MODULE	CONTROLS

OTV - CREW MODULE CONTROLS			
PRODUCTION QUANTITY	7 UNIT WEI	IGHT 55.00	MODE 1
PROTOTYPE QUANTITY	5.000 UNIT VOL		
UNIT PROD COST 376.12		MONTH	LY PROD RATE 1.28
PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING	2654	314.	2969.
DRAFTING	2654.	1256.	10966.
DESIGN	9710.	1256.	1083.
SYSTEMS	1083.	400.	1384.
PROJECT MGMT	984.		767.
DATA	351.	417.	17169.
SUBTOTAL (ENG)	14782.	2387.	17169.
MANUFACTURING			
PRODUCTION	-	2633.	2633.
PROTOTYPE	2545.	_	2545.
TOOL-TEST EQ	341.	685.	1026.
SUBTOTAL (MFG)	2886.	3318.	6204.
TOTAL COST	17668.	5706.	23374.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIP	TORS
WEIGHT 5.00		-	COMPLEXITY 1.000
DENSITY 43.00		PROTOTYPE SUP	
MFG. COMPLEXITY 10.32			LE FACTOR 0.250*
NEW DESIGN 0.90		ELECT VOL FR	
DESIGN REPEAT 0.00		PLATFORM	2.500
ENGINEERING CHANGES 0.06		YEAR OF TECH	
HW/SW INTEG. LEVEL 0.00		RELIABILITY F	
INTEGRATION LEVEL 0.30		MTBF (FIELD)	
INIEGRATION LEVEL 0.50	5 0.131	HIDE (FIBID)	3332
SCHEDULE START	FIRST	T ITEM	FINISH
DEVELOPMENT JAN 95	(20) AUG 9	96* (7)	MAR 97* (27)
PRODUCTION JAN 00	(17) MAY (OCT 01* (22)
	, ,	, ,	
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT I	
T-1 COST 4	51.38*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST 8	15.07*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*	PRICE IMPROVE	EMENT FACTOR 0.951*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	CURVE 0.899*

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

(188225)

OTV - CREW MODULE HATCHES

PRODUCTION QUANTITY	14 UNIT WEIGHT	29.00	MODE	2
PROTOTYPE QUANTITY	8.000 UNIT VOLUME	1000.00	QUANTITY/NHA	2
UNIT PROD COST 76.01		MONTE	ILY PROD RATE	2.54

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	337.	29.	366.
DESIGN	1136.	115.	1251.
Systems	158.	-	158.
PROJECT MGMT	193.	116.	308.
DATA	61.	120.	182.
SUBTOTAL (ENG)	1885.	380.	2265.
MANUFACTURING			
PRODUCTION	_	1064.	1064.
PROTOTYPE	1000.	-	1000.
TOOL-TEST EQ	79.	206.	285.
SUBTOTAL (MFG)	1080.	1270.	2350.
TOTAL COST	2965.	1650.	4614.
DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIE	TORS

DESIGN FACTORS	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	29.000	ENGINEERING COMPLEXITY	1.000
DENSITY	0.029*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	7.610	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	0.500	PLATFORM	2.500
DESIGN REPEAT	0.000	YEAR OF TECHNOLOGY	1995*
ENGINEERING CHANGES	0.023*	RELIABILITY FACTOR	1.0
INTEGRATION LEVEL	0.151	MTBF (FIELD)	25386*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(14)	FEB 96* (7)	SEP 96* (21)
PRODUCTION	JAN 00	(13)	JAN 01* (5)	JUN 01* (18)

CUDDI EMEMBE TAMONIA ETA			
SUPPLEMENTAL INFORMATIO		7001 5110 4 5500500 510050	
ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	101.55*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	117.84*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	0.939*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.892*

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

(188225)

OTV - CREW MODULE INTEGRATION

PRODUCTION QUANTITY		7 UNIT	WEIGHT	64.64	MODE	1
PROTOTYPE QUANTITY			VOLUME			NHA O
1110101112 2011111					-	
UNIT PROD COST 169.5	2			MONTH	ILY PROD RA	TE 1.18
PROGRAM COST (\$ 1000)	DEVE	LOPMENT	PRODU	CTION	TOTAL C	OST
ENGINEERING						
DRAFTING		1063.		73.	1137	
DESIGN		3790.	2	84.	4074	-
Systems		451.		_	451	-
PROJECT MGMT		432.	_	57.	589	-
DATA		151.	-	63.	315	-
Subtotal (Eng)	Į.	5887.	6	77.	6564	•
MANUFACTURING			•	07	1187	,
PRODUCTION		- 1468.		87. -	1468	
PROTOTYPE		174.		14.	489	
TOOL-TEST EQ		1/4. L642.		01.	3143	
SUBTOTAL (MFG)	•	1042.	13	01.	3143	•
TOTAL COST	•	7529.	21	78.	9707	•
242						
DESIGN FACTORS EI	ECTRONIC M	ECHANICAL		T DESCRIE		
WEIGHT	0.786*	63.851*		NEERING C	COMPLEXITY	
DENSITY	0.591*	0.240*		OTYPE SUE		1.0
MFG. COMPLEXITY	9.548	7.635	PRO	TO SCHEDU	JLE FACTOR	0.250*
NEW DESIGN	0.700	0.700		T VOL FRA	ACTION	0.005
DESIGN REPEAT	0.000	0.000	PLAT	FORM		2.500
ENGINEERING CHANGES	0.036*	0.015*	YEA	R OF TECH	NOLOGY	1999*
HW/SW INTEG. LEVEL	0.000		RELI	ABILITY E	FACTOR	1.0
INTEGRATION LEVEL	0.000	0.000	MTB	F(FIELD)		274855*
SCHEDULE ST	ART	r.	RST ITEM		FINISH	
DEVELOPMENT JA					OCT 00*	(22)
					JUN 02*	(20)
PRODUCTION NO	,	LO) UE	u 02 ··· (3,	0011 02	(20)
SUPPLEMENTAL INFORMAT	CION					
ECONOMIC BASE	188		TOOLIN	G & PROCE	SS FACTORS	3
ESCALATION	0.00		DEV	ELOPMENT	TOOLING	1.00*
T-1 COST	200.57		PRO	DUCTION 1	COOLING	1.00*
AMORTIZED UNIT COST	311.15	*	RAT	E TOOLING	}	0
DEV COST MULTIPLIER	1.00	*	PRIC	E IMPROVI	EMENT FACTO	R 0.900*
PROD COST MULTIPLIE	R 1.00	k	TINU	LEARNING	CURVE	0.906*

- - - PRICE HARDWARE MODEL METRIC - - -HARDWARE SOFTWARE INTEGRATION

INPUT FILENAME: OTVSYS

17-OCT-88 13:57

(188225)

OTV - DMS/GN&C INTEGRATION

MODE 52

LANGUAGE Ada

SOURCE CODE 123000 NON-EXECUTABLE SLOC 0.01

APPLICATION 10.95

MGMT COMPLEXITY

1.00

PROGRAM COST (\$ 1000) DEVELOPMENT ENGINEERING

> DRAFTING 656. DESIGN 5546. SYSTEMS 1155. PROJECT MGMT 868. DATA 433.

TOTAL COST 8657.

SCHEDULE START END DEVELOPMENT JAN 99 (30) JUN 01*

SUPPLEMENTAL INFORMATION

ECONOMIC BASE 199* ESCALATION

0.00 DEV COST MULTIPLIER 1.00*

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

(188225)

OTV-AEROBRAKE INTEGRATION

PRODUCTION QUANTITY PROTOTYPE QUANTITY	10 UNIT WEIGHT 3.000 UNIT VOLUME	66.93 278.56	MODE QUANTITY/NHA	0

UNIT PROD COST 719.20

MONTHLY PROD RATE 1.22

PROGRAM COST (\$ 100	0)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING				
DRAFTING		1664.	191.	1854.
DESIGN		5720.	896.	6616.
Systems		727.	-	727.
PROJECT MGMT		714.	860.	1574.
DATA		253.	895.	1148.
SUBTOTAL (E	NG)	9077.	2842.	11919.
MANUFACTURING				
PRODUCTION		-	7192.	7192.
PROTOTYPE		3627.	-	3627.
TOOL-TEST EQ		400.	2308.	2708.
SUBTOTAL (M		4027.	9500.	13527.
TOTAL COST		13104.	12342.	25446.
DESIGN FACTORS		MECHANICAL	PRODUCT DESCRI	PTORS
WEIGHT		66.932*	ENGINEERING	COMPLEXITY 1.000
DENSITY		0.240*	PROTOTYPE SU	
MFG. COMPLEXITY		9.207	PROTO SCHED	OULE FACTOR 0.250*
NEW DESIGN		0.700	PLATFORM	2.500
DESIGN REPEAT		0.000	YEAR OF TEC	HNOLOGY 1999*
ENGINEERING CHAN	GES	0.027*	RELIABILITY	FACTOR 1.0
INTEGRATION LEVE		0.000	MTBF (FIELD)	10735*
SCHEDULE	STARI	?	FIRST ITEM	FINISH
DEVELOPMENT	JAN 9	9 (23)	NOV 00* (6)	MAY 01* (29)
PRODUCTION	JUN ()1* (21)	FEB 03* (8)	OCT 03* (29)
SUPPLEMENTAL INFOR	MATION	ī		
ECONOMIC BASE		188	TOOLING & PROC	CESS FACTORS
ESCALATION		0.00	DEVELOPMENT	TOOLING 1.00*
T-1 COST		956.53*	PRODUCTION	TOOLING 1.00*
AMORTIZED UNIT C	OST	1234.21*	RATE TOOLIN	G 0
DEV COST MULTIPL		1.00*	PRICE IMPROV	MEMENT FACTOR 0.900*
PROD COST MULTIP		1.00*	UNIT LEARNIN	NG CURVE 0.873*

- - - PRICE HARDWARE MODEL METRIC - - INTEGRATION AND TEST

INPUT FILENAME: OTVSYS

PRODUCTION

ECONOMIC BASE

ESCALATION

SUPPLEMENTAL INFORMATION

DEV COST MULTIPLIER

PROD COST MULTIPLIER

AMORTIZED UNIT COST 1806.05*

17-OCT-88 13:57 (188225)

OTV INTEGRATION

011 11111011111011			
PRODUCTION QUANTITY	10 INT W	WEIGHT 313.15	2* MODE 5
PROTOTYPE QUANTITY			
UNIT PROD COST 1086.97		MONT	HLY PROD RATE 0.84
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	4081.	383.	4465.
DESIGN	14818.	1597.	16416.
Systems	1705.	_	1705.
PROJECT MGMT	2063.	1254.	3317.
DATA	643.	1305.	1948.
SUBTOTAL (ENG)	23311.	4540.	27850.
MANUFACTURING			
PRODUCTION	-	10870.	10870.
PROTOTYPE	12709.	-	12709.
TOOL-TEST EQ	1445.	2651.	4096.
SUBTOTAL (MFG)	14154.	13521.	27674.
TOTAL COST	37464.	18060.	55525.
DESIGN FACTORS ELEC			
	3.715* 309.437*		G COMPLEXITY 1.000*
		PROTOTYPE S	
MFG. COMPLEXITY			
NEW PLANS LEVEL (
ENGINEERING CHANGES (
INTEGRATION LEVEL (0.000		
		RELIABILITY MTBF (FIELD)	
SCHEDULE STAR		RST ITEM	FINISH
DEVELOPMENT JAN	99 (22) 00	T 00* (10)	AUG 01* (32)

188

0.00

1.00*

1.00*

SEP 01* (22) JUN 03* (10) APR 04* (32)

TOOLING & PROCESS FACTORS

PRODUCTION TOOLING

DEVELOPMENT TOOLING

1.00*

1.00*

- - - PRICE HARDWARE MODEL METRIC - - -SYSTEM COST SUMMARY

INPUT FILENAME: OTVSYS 17-OCT-88 13:57

17-0CT-88 13:57 (188225)

TOTAL COST, WITH INTEGRATION COST

PROGRAM COST(\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	100404.	7172.	107576.
DESIGN	394294.	31745.	426039.
Systems	79324.	_	79324.
PROJ MGMT	130094.	70457.	200551.
DATA	42407.	73173.	115580.
SUBTOTAL (ENG)	746523.	182546.	929070.
MANUFACTURING			
PRODUCTION	-	721074.	721074.
PROTOTYPE	602082.	-	602082.
TOOL-TEST EQ	98877.	144182.	243059.
PURCH ITEMS	0.	0.	0.
SUBTOTAL (MFG)	700959.	865256.	1566215.
TOTAL COST	1447482.	1047803.	2495284.
THRU-PUT COSTS	DEVELOPMENT	PRODUCTION	TOTAL COST
FIELD SUPPORT	0.	0.	0.
FIELD TEST	0.	Õ.	0.
SOFTWARE	16380.	10920.	27300.
OTHER	0.	0.	0.
V 1	••		-
TOTAL THRU-PUT COST	16380.	10920.	27300.
TOTAL COST, WITH THRU-PUT	COSTS		
	DEVELOPMENT	PRODUCTION	TOTAL COST
	1463862.	1058723.	2522584.

--- PRICE HARDWARE MODEL METRIC --ELECTRONIC ITEM

INPUT FILENAME: LANPAD 13-OCT-88 12:26 (188012)

LANDING PAD - MARKERS

PRODUCTION QUANTITY	8	UNIT WEIGHT	10.00	MODE	1
PROTOTYPE QUANTITY	3.000	UNIT VOLUME	25.00	QUANTITY/NHA	1

UNIT PROD COST 24.15 MONTHLY PROD RATE 1.77

PROGRAM COST (\$ 100	0)	DEVELOPMENT	ף	PRODUCTION	TOTAL COST
ENGINEERING	•,		•	11.020011011	1011111 0001
DRAFTING		145.		15.	160.
DESIGN		504.		55.	559.
SYSTEMS		62.		_	62.
PROJECT MGMT		53.		25.	77.
DATA		20.		12.	32.
SUBTOTAL (E	NG)	783.		107.	890.
MANUFACTURING					
PRODUCTION		_		193.	193.
PROTOTYPE		126.		193.	126.
TOOL-TEST EQ		18.		27.	45.
SUBTOTAL (M		144.		220.	364.
CODICIAL (II	19,	177.		220.	304.
TOTAL COST		927.		327.	1254.
DESIGN FACTORS	ELECTRO	NIC MECHANIC	AL P	RODUCT DESCR	IPTORS
WEIGHT	0.200)* 9.800)	ENGINEERING	COMPLEXITY 1.000
DENSITY	40.000	0.392	*	PROTOTYPE S	UPPORT 1.0
MFG. COMPLEXITY	9.560	7.000)	PROTO SCHED	ULE FACTOR 0.250*
NEW DESIGN	1.000	0.500	t	ELECT VOL F	RACTION 0.000*
DESIGN REPEAT	0.000	0.000)	PLATFORM	2.000
ENGINEERING CHAN		* 0.027	*	YEAR OF TEC	HNOLOGY 1995*
HW/SW INTEG. LEV	EL 0.000)		RELIABILITY	FACTOR 1.0
INTEGRATION LEVE	L 0.000	0.000	•	MTBF (FIELD)	1611339*
SCHEDULE	START		FIRST I	TEM	FINISH
DEVELOPMENT	JAN 95	(10)	OCT 95*	(3)	JAN 96* (13)
PRODUCTION	JAN 00	(9)	SEP 00*	(4)	JAN 01* (13)
SUPPLEMENTAL INFOR	MATION				
ECONOMIC BASE		188	T	OOLING & PRO	CESS FACTORS
ESCALATION		0.00		DEVELOPMENT	
T-1 COST	2	8.66*		PRODUCTION	
AMORTIZED UNIT CO	_	0.88*		RATE TOOLIN	
DEV COST MULTIPL		1.00*			VEMENT FACTOR 0.945*
PROD COST MULTIP		1.00*		UNIT LEARNI	

- - - PRICE HARDWARE MODEL METRIC - - - ELECTRONIC ITEM

INPUT FILENAME: LANPAD

13-OCT-88 12:26 (188012)

LANDING PAD - ELECTRIC CORD POWER SUPPLY

PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT WE 2.500 UNIT VO		MODE 1 QUANTITY/NHA 1
UNIT PROD COST 2385.00		MONTH	ILY PROD RATE 0.00
PROGRAM COST (\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	5305.	572.	5877.
DESIGN	18245.	2263.	20508.
SYSTEMS	2293.	-	2293.
PROJECT MGMT	2092.	575.	2667.
DATA	770.	288.	1058.
SUBTOTAL (ENG)	28705.	3698.	32403.
MANUFACTURING			
PRODUCTION	_	2385.	2385.
PROTOTYPE	9371.	-	9371.
TOOL-TEST EQ	1134.	204.	1338.
SUBTOTAL (MFG)	10505.	2589.	13094.
TOTAL COST	39210.	6287.	45497.
DESIGN FACTORS ELECTRO	NIC MECHANICAL	PRODUCT DESCRIPT	ors
WEIGHT 16.40	0* 803.600	ENGINEERING CO	MPLEXITY 1.000
DENSITY 40.00	0.261*	PROTOTYPE SUPP	ORT 1.0
MFG. COMPLEXITY 9.56	7.800	PROTO SCHEDULE	FACTOR 0.250*
NEW DESIGN 1.00	1.000	ELECT VOL FRAC	*0.000
DESIGN REPEAT 0.00	0.150	PLATFORM	2.000
ENGINEERING CHANGES 0.07	0* 0.032*	YEAR OF TECHNO	LOGY 1995*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(23)	NOV 96* (5)	APR 97* (28)
PRODUCTION	JAN 00	(24)	DEC 01* (0)	DEC 01* (24)

RELIABILITY FACTOR

MTBF (FIELD)

1.0

21461*

SUPPLEMENTAL INFORMATION

HW/SW INTEG. LEVEL 0.000

INTEGRATION LEVEL 0.000 0.000

ECONOMIC BASE	188	TOOLING & PROCESS FACTORS	
ESCALATION	0.00	DEVELOPMENT TOOLING	1.00
T-1 COST	2383.71*	PRODUCTION TOOLING	1.00
AMORTIZED UNIT COST	6287.26*	RATE TOOLING	0
DEV COST MULTIPLIER	1.00*	PRICE IMPROVEMENT FACTOR	1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING CURVE	0.919*

- - - PRICE HARDWARE MODEL METRIC - - - ELECTRONIC ITEM

INPUT FILENAME: LANPAD

13-OCT-88 12:26 (188012)

LANDING PAD - PROPELLANT REFILL VEHICLE

PRODUCTION QUANTITY	1	UNIT	WEIGHT	14000.00	MODE	1
PROTOTYPE QUANTITY	2.500	UNIT	VOLUME	15000.00	QUANTITY/NHA	1

UNIT PROD COST32835.78 MONTHLY PROD RATE 0.00

PROGRAM COST (\$ 1000)	DEVELOPMENT	PRODUCTION	TOTAL COST
ENGINEERING			
DRAFTING	40974.	4218.	45192.
DESIGN	140995.	15734.	156729.
Systems	17704.	_	17704.
PROJECT MGMT	18801.	5897.	24698.
DATA	6464.	2958.	9423.
SUBTOTAL (ENG)	224938.	28808.	253745.
MANUFACTURING			
PRODUCTION	_	32836.	32836.
PROTOTYPE	131799.	_	131799.
TOOL-TEST EQ	15326.	2853.	18179.
Subtotal (MFG)	147126.	35688.	182814.
TOTAL COST	372064.	64496.	436560.

DESIGN FACTORS	ELECTRONIC	MECHANICAL	PRODUCT DESCRIPTORS	
WEIGHT	279.999* 1	3719.998	ENGINEERING COMPLEXITY	1.000
DENSITY	40.000	0.915*	PROTOTYPE SUPPORT	1.0
MFG. COMPLEXITY	9.560	7.960	PROTO SCHEDULE FACTOR	0.250*
NEW DESIGN	1.000	1.000	ELECT VOL FRACTION	0.000*
DESIGN REPEAT	0.000	0.150	PLATFORM	2.000
ENGINEERING CHAN	GES 0.048*	0.023*	YEAR OF TECHNOLOGY	1995*
HW/SW INTEG. LEV	EL 0.000		RELIABILITY FACTOR	1.0
INTEGRATION LEVE	L 0.000	0.000	MTBF (FIELD)	1330*

SCHEDULE	START		FIRST ITEM	FINISH
DEVELOPMENT	JAN 95	(41)	MAY 98* (9)	FEB 99* (50)
PRODUCTION	JAN 00	(39)	MAR 03* (0)	MAR 03* (39)

SUPPLEMENTAL INFORMATION ECONOMIC BASE 188 TOOLING & PROCESS FACTORS ESCALATION 0.00 DEVELOPMENT TOOLING T-1 COST 32816.48* PRODUCTION TOOLING

ESCALATION 0.00 DEVELOPMENT TOOLING 1.00
T-1 COST 32816.48* PRODUCTION TOOLING 1.00
AMORTIZED UNIT COST 64495.96* RATE TOOLING 0
DEV COST MULTIPLIER 1.00* PRICE IMPROVEMENT FACTOR 1.000*
PROD COST MULTIPLIER 1.00* UNIT LEARNING CURVE 0.914*

INPUT FILENAME: LANPAD 13-OCT-88 12:26

(188012)

LANDING PAD - TRANSFER TUNNEL

PRODUCTION QUANTITY PROTOTYPE QUANTITY	1 UNIT V 3.000 UNIT V	WEIGHT 2780.00 7OLUME 41999.99	
UNIT PROD COST15473.66		MONTE	iLY PROD RATE 0.00
PROGRAM COST(\$ 1000) ENGINEERING	DEVELOPMENT	PRODUCTION	TOTAL COST
DRAFTING	16618.	1994.	18612.
DESIGN	58611.	9584.	68195.
SYSTEMS	6992.	-	6992.
PROJECT MGMT	8279.	2981.	11260.
DATA	2685.	1494.	4179.
SUBTOTAL (ENG)	93185.	16054.	109239.
MANUFACTURING			
PRODUCTION	-	15474.	15474.
PROTOTYPE	67776.	-	67776.
TOOL-TEST EQ	8185.	1401.	9585.
SUBTOTAL (MFG)	75961.	16874.	92835.
TOTAL COST	169145.	32928.	202073.
DESIGN FACTORS ELECTR	ONIC MECHANICAL		
WEIGHT 55.6	00* 2724.399	ENGINEERING (
DENSITY 13.2			=
MFG. COMPLEXITY 9.5	960 8.610	PROTO SCHEDU	
NEW DESIGN 1.0	1.000	ELECT VOL FI	
DESIGN REPEAT 0.1	.50 0.150	PLATFORM	2.000
ENGINEERING CHANGES 0.0	0.032*		
HW/SW INTEG. LEVEL 0.0		RELIABILITY F	
INTEGRATION LEVEL 0.0	0.000	MTBF (FIELD)	7291*
SCHEDULE START	FI	RST ITEM	FINISH
DEVELOPMENT JAN 95		r 97* (9)	JUL 98* (43)
PRODUCTION JAN 00	, + -,	7 02* (0)	NOV 02* (35)
SUPPLEMENTAL INFORMATION			
ECONOMIC BASE	188	TOOLING & PROCE	
ESCALATION	0.00	DEVELOPMENT :	
T-1 COST 15	464.42*	PRODUCTION TO	OOLING 1.00
AMORTIZED UNIT COST 32	2927.98*	RATE TOOLING	
DEV COST MULTIPLIER	1.00*	PRICE IMPROVI	EMENT FACTOR 1.000*
PROD COST MULTIPLIER	1.00*	UNIT LEARNING	G CURVE 0.913*