

NORMALITY TEST

HYPOTHESIS TESTING

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Shapiro-Wilk

Anderson-Darling

SHAPIRO-WILK

SHAPIRO-WILK

Shapiro-Wilk is a statistical test used to assess whether a given dataset follows a <u>normal</u> <u>distribution</u>. It is particularly effective for sample size $n \le 50$.

Hypothesis

 H_o : Normal data

 H_a : Non-normal data (p-value $\leq \alpha$)

Assumption

Continuous data

<u>syntax</u>

```
from scipy import stats
w_stat, p_value = stats.shapiro(data)
```


EXERCISE

Perform <u>Shapiro-Wilk</u> normality test for the given dataset.

dataset

"<u>defects-data-30-samples.csv</u>"

Solution

Let
$$\alpha = 0.05$$

Hypothesis

 H_o : Normal data

 H_a : Non-normal data (p-value ≤ 0.05)

ANDERSON-DARLING

ANDERSON-DARLING

Anderson-Darling is a statistical test used to assess whether a given dataset follows a <u>normal</u> <u>distribution</u>. It is particularly effective for sample size n > 50.

Hypothesis

 H_o : $A^2 \le \text{critical value}$ (Normal data)

 H_a : $A^2 >$ critical value (Non-normal data)

Assumption

Continuous data

<u>syntax</u>

```
from scipy import stats
a2_stat, critical_values, alpha =
    stats.anderson(data)
```


EXERCISE

Perform **Anderson-Darling** normality test for the given dataset.

dataset

"<u>defects-dataset.csv</u>"

Solution

Let
$$\alpha = 0.05$$

Hypothesis

$$H_o$$
: $A^2 \le \text{critical value}$ (Normal data)

$$H_a$$
: $A^2 >$ critical value (Non-normal data)

LABORATORY

