CENG 506 Deep Learning

Lecture 2 - Image Classification

Image Classification

- A core task in computer vision
- Given a set of discrete labels, such as dog, cat, truck, plane, etc., our task is to predict the class of a given image.

Image Classification

The problem: Semantic gap

121 50 246 250 194 219 134 48 213 186 59 202 241 175 161 55 157 27 140 198 6 120 215 12 207 89 221 185

Images are represented as 3D arrays of numbers, with integers between [0,255]. Example: 300 x 100 x 3 (3 for 3 color channels in RGB)

Viewpoint

Illumination

Deformations

Occlusion

Background clutter

Image Classification

 Unlike tasks like sorting or searching, there is no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Data-driven approach:

- Collect a dataset of images and labels.
- Use Machine Learning to train an image classifier.
- Evaluate the classifier on a withheld set of test images.

Our first approach for image classification: Nearest Neighbor Classifier

Note: This classifier has nothing to do with CNNs and rarely used in practice.

Example dataset: CIFAR-10

- 10 labels
- 50000 training images of size 32x32
- 10000 test images

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

NN Classifier Result: For every test image (first column), top ten nearest neighbors in rows:

- The notion of being the "nearest" brings about a comparison among the images.
- So, how do we compare the images? What is the distance metric?

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

32	10	18
23	128	133
26	178	200
0	255	220
	32 23 26	23 128 26 178

test image

training	image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

46	12	14	1	
82	13	39	33	
12	10	0	30	→ 456
2	32	22	108	

For every test image:

- Find nearest train image with L1 distance
 - calculate the distances from the test image to all training images
 - find the minimum of these distances
- Predicted label is the label of nearest training image

Python code for reference:

```
Xtr, Ytr, Xte, Yte = load_CIFAR10('data/cifar10/') # a magic function we provide
# flatten out all images to be one-dimensional
Xtr_rows = Xtr.reshape(Xtr.shape[0], 32 * 32 * 3) # Xtr_rows becomes 50000 x 3072
Xte_rows = Xte.reshape(Xte.shape[0], 32 * 32 * 3) # Xte_rows becomes 10000 x 3072
```

```
nn = NearestNeighbor() # create a Nearest Neighbor classifier class
nn.train(Xtr_rows, Ytr) # train the classifier on the training images and labels
Yte_predict = nn.predict(Xte_rows) # predict labels on the test images
# and now print the classification accuracy, which is the average number
# of examples that are correctly predicted (i.e. label matches)
print 'accuracy: %f' % ( np.mean(Yte_predict == Yte) )
```

NearestNeighbor class for reference

```
class NearestNeighbor(object):
 def init (self):
   pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
   self.vtr = v
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num_test = X.shape[0]
   # Lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

- The classification speed depends <u>linearly</u> on the size of training data!
- This is the opposite of what we like:
 - test time performance is usually much more important in practice.
 - time spent for training is less critical.
 - CNNs flip this: expensive training, cheap test evaluation
- The choice of distance is a hyperparameter. Common choices are:

L1 (Manhattan) distance

L2 (Euclidean) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

- Find the k nearest images
 - k is a user-defined constant
- Have them vote on the label
- An unlabeled vector (a query or test point) is classified by assigning the label which is most frequent among the k training samples nearest to that query point.

• What can you tell about the accuracy of the k - nearest neighbor classifier on the training data, when k = 1 and k = 5?

- How do we set the hyperparameters?
 - What is the best distance to use?
 - What is the best value of k to use?
- Very problem-dependent.
 - Must try them all out and see what works best.
 - Best on test set?

- Very bad idea! The test set is a proxy for the generalization performance!
- Use only VERY SPARINGLY, at the end!

- Example of 5-fold cross-validation for the value of k
- Each point: single outcome
- The line goes through the mean, bars indicate standard deviation

Seems that $k \sim = 7$ works best for this data

- Not very useful with images!
 - Terrible performance at test time
 - Distance metrics on level of whole images can be very unintuitive

All 3 images have the same L2 distance to the original one.

Summary

- **Image Classification:** Given a training set of labeled images, we are asked to predict labels on a test set. Accuracy of the predictions (fraction of correctly predicted images) is reported.
- The **k-Nearest Neighbor Classifier** is introduced, which predicts the labels based on nearest images in the training set
- The choice of distance and the value of k are hyperparameters that are tuned using a validation set, or through cross-validation if the size of the data is small.
- Once the best set of hyperparameters is chosen, the classifier is evaluated once on the test set, and reported as the performance of kNN on that data.

Summary

Images that are nearby in this image are considered to be near based on the L2 distance. Notice the strong effect of background rather than semantic class differences.

Our second approach for image classification: Linear Classification

- In the graph below, every point is described by two features.
- In building mathematical models for classifying, if we focus on dividing these points with a straight line, this is called linear classification.

A linear classifier makes a classification decision based on the value of a **linear combination** of the characteristics, which are also known as feature values.

- It is parametric approach, we are going to build a model (a classifier).
- We will no longer need to remember all of the training data.

Example with a 2x2 image and 3 classes:

0.2	-0.5	0.1	2.0
1.5	1.3	2.1	0.0
0.0	0.25	0.2	-0.3

56	
231	
24	
2	

437.9

61.95

$$W$$
 b $f(x,W,b)$

- What does a linear classifier do?
- What would be a hard set of classes for a linear classifier to distinguish?

Linear Classification Result on CIFAR-10

$$f(x,W,b) = Wx + b$$

A linear score function

Example trained weights of a linear classifier trained on CIFAR-10:

- How do we find the "best" parameters?
- What do we mean by the "best" parameters?

- We have to define a loss function that quantifies how satisfied we are with the scores across the training data.
- We have to come up with a way of efficiently finding the parameters that minimize the loss function, which is called **optimization**.

- Suppose: 3 training examples, 3 classes.
- With some W, the scores f(x,W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) :

- where x_i is the image
- where y_i is the (integer) label,
- and using the shorthand $s = f(x_i, W)$ for the scores vector,

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- Suppose: 3 training examples, 3 classes.
- With some W, the scores f(x,W) = Wx are:

2.9

loss

		A CONTRACTOR OF THE PARTY OF TH	1
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) :

- where x_i is the image
- where y_i is the (integer) label,
- and using the shorthand $s = f(x_i, W)$ for the scores vector,

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1-3.2+1) + \max(0, -1.7-3.2+1)$

 $= \max(0, 2.9) + \max(0, -3.9) = 2.9 + 0 = 2.9$

- Suppose: 3 training examples, 3 classes.
- With some W, the scores f(x,W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
loss	2.9	0	

Multiclass SVM loss:

Given an example (x_i, y_i) :

- where x_i is the image
- where y_i is the (integer) label,
- and using the shorthand $s = f(x_i, W)$ for the scores vector,

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3-4.9+1) + \max(0, 2.0-4.9+1)$

$$= \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$$

- Suppose: 3 training examples, 3 classes.
- With some W, the scores f(x,W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
loss	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) :

- where x_i is the image
- where y_i is the (integer) label,
- and using the shorthand $s = f(x_i, W)$ for the scores vector,

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

= max(0, 2.2-(-3.1)+1) + max(0, 2.3-(-3.1)+1)= max(0, 5.3) + max(0, 5.6) = 5.3 + 5.6 = 10.9

- Suppose: 3 training examples, 3 classes.
- With some W, the scores f(x,W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
loss	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) :

- where x_i is the image
- where y_i is the (integer) label,
- and using the shorthand $s = f(x_i, W)$ for the scores vector,

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$
= (2.9 + 0 + 10.9) / 3
= **4.6**

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- What if the sum was instead over all classes? (including $j = y_i$)
- What if we used a mean instead of a sum?
- What if we used the square of the max value?
- What is the min/max possible loss?
- Usually at initialization W are small numbers, so all s \sim = 0. What is the loss?

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Example numpy code:

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

Linear Classification

• f(x,W) = Wx

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

- There is a problem!
- Suppose that we found a W such that L = 0. Is this W unique?
- When L = 0, what happens if we multiply all elements of W by 2?

Linear Classification

- Suppose: 3 training examples, 3 classes.
- With some W, the scores f(x,W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
loss	2.9	0	

Multiclass SVM loss:

Given an example (x_i, y_i) :

- where x_i is the image
- where y_i is the (integer) label,
- and using the shorthand $s = f(x_i, W)$ for the scores vector,

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3-4.9+1) + \max(0, 2.0-4.9+1)$

 $= \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$

With W twice as large:

 $= \max (0, 2.6-9.8+1) + \max(0, 4.0-9.8+1)$

 $= \max(0, -6.2) + \max(0, -4.8) = 0 + 0 = 0$

Linear Classification - Regularization

Weight regularization:

regularization strength (hyperparameter)
$$\uparrow$$
 $y_i+1)+\lambda R(W)$

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+rac{1}{\lambda}R(W)$$
 data loss regularization loss

$$ullet$$
 L2 regularization $\longrightarrow R(W) = \sum_k \sum_l W_{k,l}^2$

$$ullet$$
 L1 regularization $\longrightarrow R(W) = \sum_k \sum_l |W_{k,l}|$

$$ullet$$
 Elastic net (L1 + L2) $\longrightarrow R(W) = \sum_k \sum_l eta W_{k,l}^2 + |W_{k,l}|$

- Max norm regularization
- **Dropout**

Linear Classification - Regularization

- Regularization tends to improve generalization. It means that no input dimension can have a very large influence on the scores all by itself.
- Motivation (L2 regularization example)

$$x = [1,1,1,1]$$

$$W_1 = [1,0,0,0]$$

$$W_2 = [0.25,0.25,0.25,0.25]$$
 $W_1^T x = W_2^T x = 1$

- L2 penalty of W_1 is 1.0 while the L2 penalty of W_2 is only 0.25.
- Since the weights in W_2 are smaller and more diffuse, the final classifier is encouraged to take into account all input dimensions to small amounts rather than a few input dimensions and very strongly.

Softmax Classifier

- Softmax classifier brings a loss alternative to SVM loss
- Scores serve as unnormalized log probabilities of the classes

$$s = f(x_i; W)$$
 Softmax function $P(Y = k | X = x_i) = \underbrace{\frac{e^{s_k}}{\sum_j e^{s_j}}}$ Softmax function

 We want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

In summary:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Softmax Classifier

scores = unnormalized log probabilities of the classes

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat 3.2 24.5 0.13
$$\longrightarrow$$
 $L_i = -\log(0.13) = 0.89$ car 5.1 $\xrightarrow{\text{exp}}$ 164.0 $\xrightarrow{\text{normalize}}$ 0.87 frog -1.7 0.18 0.00 unnormalized unnormalized normalized probabilities probabilities

Realize that softmax classifier also has a probabilistic interpretation

Softmax Classifier

- What is the min/max possible loss?
- Usually at initialization W are small numbers, so all s ~= 0.
 What is the loss?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat 3.2 24.5 0.13
$$\longrightarrow$$
 $L_i = -\log(0.13) = 0.89$ car 5.1 $\xrightarrow{\exp}$ 164.0 $\xrightarrow{\operatorname{normalize}}$ 0.87 frog -1.7 0.18 0.00 unnormalized unnormalized normalized probabilities probabilities

SVM vs. Softmax

SVM vs. Softmax

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

• Suppose we take a datapoint and changing its score slightly.

What happens to the loss in both classifiers?

Assum

Recap

- We have some dataset of (x,y)
- We have a score function: s = f(x, W) = Wx
- We have a loss function: $L_i + R(W)$ where:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ SVM

How to find the best W?

Strategy 1: Random Search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
  if loss < bestloss: # keep track of the best solution
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Strategy 1: Random Search

Lets see how well this works on the test set:

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! (State-of-the-art is ~95%)

Strategy 2: Follow down the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

 In multiple dimensions, the gradient is the vector of (partial derivatives) along each direction.

Strategy 2: Follow down the slope

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Current W	W + h (1st dimension)
0.34	0.34 + 0.0001
-1.11	-1.11
0.78	0.78
0.12	0.12
0.55	0.55
2.81	2.81
-3.1	-3.1
-1.5	-1.5
0.33	0.33
Loss 1.25347	1.25322

Gradient dW

-2.5 (1.25322 - 1.25347)/0.0001= -2.5

Strategy 2: Follow down the slope

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Current W	W + h (2 nd dimension)	Gradient dW	
0.34	0.34	-2.5	
-1.11	-1.11 + 0.0001	0.6	(1.25353 - 1.25347)/0.0001= 0.6
0.78	0.78		
0.12	0.12		
0.55	0.55		
2.81	2.81		
-3.1	-3.1		
-1.5	-1.5		
0.33	0.33		
Loss 1.25347	1.25353		

Strategy 2: Follow down the slope

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Current W	W + h (3 rd dimension)	Gradient dW	
0.34	0.34	-2.5	
-1.11	-1.11	0.6	
0.78	0.78 + 0.0001	0	(1.25347 - 1.25347)/0.0001 = 0
0.12	0.12		
0.55	0.55		
2.81	2.81		
-3.1	-3.1		
-1.5	-1.5		
0.33	0.33		
Loss 1.25347	1.25347		

Strategy 2: Follow down the slope

- The approach we used is called 'numerical gradient'.
- It is slow, approximate but easy

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

```
def eval numerical gradient(f, x):
  a naive implementation of numerical gradient of f at x
  - f should be a function that takes a single argument
  - x is the point (numpy array) to evaluate the gradient at
  fx = f(x) # evaluate function value at original point
  grad = np.zeros(x.shape)
  h = 0.00001
  # iterate over all indexes in x
  it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
  while not it.finished:
    # evaluate function at x+h
    ix = it.multi index
   old value = x[ix]
    x[ix] = old value + h # increment by h
    fxh = f(x) # evalute f(x + h)
    x[ix] = old value # restore to previous value (very important!)
    # compute the partial derivative
   grad[ix] = (fxh - fx) / h # the slope
    it.iternext() # step to next dimension
  return grad
```

Strategy 2: Follow down the slope (analytic gradient)

In fact, the loss is just a function of W.

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= \mathsf{f}(x, \mathcal{W}) = \mathcal{W} x \end{aligned}$$

- We want $\nabla_w L$, the derivate of loss w.r.t W
- Use calculus to compute an analytic gradient
- → Analytical gradient: Exact, fast, error-prone!
 In practice, always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Strategy 2: Follow down the slope (analytic gradient)

Current W 0.34 -1.11 0.78 0.12 0.55 2.81 -3.1 -1.5	$\frac{\partial L}{\partial W}$	Gradient dW -2.5 0.6 0 0.2 0.7 -0.5 1.1 1.3
0.33		-2.1
 Loss 1.25347		

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Mini-batch Gradient Descent

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

- Only use a small portion of the training set to compute the gradient.
- Common mini-batch sizes are 32/64/128 examples.
- When mini-batch contains only a single example, the process is called Stochastic Gradient Descent (SGD)

Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.)

Mini-batch Gradient Descent

```
# Vanilla Minibatch Gradient Descent

while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

The effect of step size (or learning rate)

