# Algorithmen und Datenstrukturen (Master) WiSe 19/20

# Benedikt Lüken-Winkels

December 11, 2019

# **Contents**

| 1 | Wörterbuchproblem                 |         |                                          |                             |   |
|---|-----------------------------------|---------|------------------------------------------|-----------------------------|---|
|   |                                   | 1.0.1   | <u>zu 1:</u>                             | 2                           |   |
|   |                                   | 1.0.2   | Definition: Randomized Search Tree (RST) | 2                           |   |
|   |                                   | 1.0.3   | Operationen                              |                             |   |
|   |                                   | 1.0.4   | Analyse des RST                          | 3                           |   |
|   |                                   | 1.0.5   | Lemma 1:                                 | 3                           |   |
| 2 | Hashing                           |         |                                          |                             |   |
|   | 2.1 Hashing mit offener Adressier |         | Hashir                                   | ng mit offener Adressierung | 7 |
|   | 2.2                               |         | ktes Hashing                             |                             |   |
|   |                                   | 2.2.1   | Datenstruktur                            | 11                          |   |
|   |                                   | 2.2.2   | Aufbauzeit der Datenstruktur             | 13                          |   |
|   |                                   | 2.2.3   | Zusammenfassung                          | 14                          |   |
| 3 | Übung                             |         |                                          | 15                          |   |
| 4 | Allgemeines                       |         |                                          | 17                          |   |
|   | 4.1                               | Einsch  | nub: Erwartungswerte                     | 17                          |   |
|   | 4.2                               | Integri | ierende Reihe                            | 18                          |   |

## 1 Wörterbuchproblem

Menge S mit n Schlüssln aus einem Universum U. Operationen: INSERT (darauf achten, dass die Balance nicht verloren geht), DELETE, LOOKUP (Im Baum runterlaufen, bis das Element gefunden wurde)

#### Situationen

- 1. U linear geordnet, also existiert ein  $\leq$ -Test  $\Rightarrow$  Suchbäume
- 2. U ist ein Intervall  $\{0,...,N-1\}$  der gesamten Zahlen  $\Rightarrow$  Hashing

#### 1.0.1 zu 1:

Randomisierte Suchbäume Idee: Benutze Zufallszahlen zur Balancierung eines binären Suchbaums

Binärer Suchbaum (Knoten-Orientiert) Schlüssel werden in den n Knoten eines binären Baums gespeichert, sodass im linken Unterbaum des Knotens mit Schlüssel x alle Schlüssel < x und im rechten Unterbaum alle > x. Balanciert  $\Rightarrow H\ddot{o}he(T) \leq logn$ . Degeneriert  $\Rightarrow H\ddot{o}he(T) = O(n)$ 

#### 1.0.2 Definition: Randomized Search Tree (RST)

Sei  $S = \{x_1, ..., x_n\}$  eine Menge von n Schlüsseln. Jedem  $x_i$  wird eine zusätzlich eine Zufallszahl (auch Priorität genannt)  $prio(x_i)$  zugeordnet.  $prio(x_i)$  sind gleichverteilte reelle Zufallszahlen  $\in [0, 1]$  (Implementierung wären int-Zahlen, zB 32-bit).

Ein RST für S ist eine binärer Suchbaum für die Paare  $(x_i, prio(x_i), 1 \le i \le n, \text{ sodass})$ 

- 1. normaler Knoten-orientierter Suchbaum für die Schlüssel  $x_i, ..., x_n$
- 2. Maximumsheap bzgl der Prioritäten. dh $prio(v) \ge prio(u)$ , falls v Parent. ((u,v) sind Knoten in einem Baum).  $\Rightarrow$  Wurzel enthält maximale Priorität.

Existenz durch Algorithmus zum Aufbau (rekursiv).

- Wurzel einthält  $(x_i, p_i)$  mit  $p_i = prio(x_i)$  maximal
- Linker Unterbaum: RST für  $\{(x_i, p_i) | x_i < x_i\}$
- Rechter Unterbaum: RST für  $\{(x_k, p_k)|x_k > x_i\}$

Beispiel:  $S = \{1, ..., 10\}$ 

- Schreibe Tabelle mit Prioriäten und Werten.
- Teile die Tabelle beim Maximum und schreibe es in die Wurzel. Wiederhole, bis alle Elemente geschrieben.

 $\Rightarrow$  Wenn sich die Prioritäten genauso oder umgekehrt, wie die Schlüssel verhalten, erhält man einen degenrierten Baum. (bzgl  $\leq$ ). zB  $prio(x_i) = x_i$ . Dieser Fall ist sehr unwahrscheinlich, wenn sich bei der Priorität um gleichverteilte Zufallszahlen handelt.

#### 1.0.3 Operationen

- Lookup(x): normale suche in binärem Baum. Kosten  $O(H\ddot{o}he(T))$
- Insert(x): Füge einen neuen Knoten v als Blatt (x, prio(x)) gemäß des Schlüssels in den binären Baum ein, wobei prio(x) neue Zufallszahl (kann die Prio-Ordnung zerstören). Dann: Rotiere v nach oben, bis die Heap-Eigenschaft gilt, also  $prio(v) \leq prio(parent(v))$ . Kosten: O(#Rotationen) = O(Höhe(T)). Alternativ: normales einfügen in binären Baum in absteigender Reihenfolge der Prioritäten.
- DELETE(x): Sei v der knoten mit Schlüssel x (v = Lookup(x)). Kosten: O(#Rotationen) = O(1 + |L| + |R|)
  - 1. Rotiere v nach unten, bis v ein Blatt ist. R = linkes Rückgrat des rechten Unterbaums von v. L = rechtes Rückgrat des linken Unterbaums.
  - 2. Entferne das Blatt.
- Split(y)  $\to S_1 = \{x \in S | x \leq y\}, S_2 = \{x \in S | x \geq y\}$  (Teile den Baum, indem y mit maximaler Priorität zur Wurzel rotiert wird)
  - 1. Insert $(y + \epsilon)$  mit Priorität  $\infty$
  - 2. Entferne die Wurzel
- Join $(T_1, T_2)$ :  $S \leftarrow S_1 \cup S_2$ .  $T_1$  RST für  $S_1$  und  $T_2$  RST für  $S_2$ 
  - 1. Konstruiere T (Füge y zwischen  $Max(S_1)$  und  $Min(S_2)$  ein. Voraussetzung:  $Max(S_1) < Min(S_2)$
  - 2. Lösche die Wurzel (Durch runterrotieren des eingefügten Knotens y)

#### 1.0.4 Analyse des RST

Wir analysieren die erwarteten Kosten einer Delete-Operation (Insert  $\rightarrow$  umgekehrtes Delete). Seit T ein RST für die Menge  $\{x_1,...,x_n\}mitx_1 < x_2 < ... < x_n$  der durch Inserts aufgebaut wurde. Bertrachte die Operation Delete $(x_k)$  für eine  $k, 1 \leq k \leq n$ . Für einen Knoten  $x_k$  im Baum T mit Suchpfad  $P_k$ ,  $L_k$  rechtes Rückgrad von  $T_l$  und  $R_k$  linkes Rückgrad von  $T_r$ . Kosten  $O(|P_k| + |L_k| + |R_k|)$ . Wir schätzen die Erwartungswerte

#### 1.0.5 Lemma 1:

• a)  $E(|P_k|) = H_k + H_{n-k+1} - 1$ 

$$k - te \ HarmonischeZahl = H_k = \sum_{i=1}^{k} \frac{1}{i} \ H_k \le ln(x) + 1$$

- b)  $E(|L_k|) = 1 \frac{1}{k}$
- c)  $E(|R_k|) = 1 \frac{1}{n-k+1}$

**Beweis** Betrachte eine Permutation  $\pi:[1..n] \to [1..n]$  (bijektive Abbildung), die die Schlüssel absteigend nach ihren Prio Werten sortiert. Dann gilt:

- 1. Jede Permutation  $\pi$  ist gleichwahrscheinlich (Wahrscheinlichkeit  $\frac{1}{n!}$ ), da die Prioritäten gleichverteilte Zufallszahlen sind.
- 2. Man erhält den selben binären Baum durh einfügen der Schlüssel in einen unbalancierten Baum in der Reihenfolge, die  $\pi$  angibt.  $\rightarrow$  gleiches Vehalten, wie ein zufälliger binärer Baum.
- 3. Baum wächst nur an den Blättern.

Trick: arbeite ab jetzt mit zufälliger Permutation statt den Prioritäten.  $\rightarrow$  normaler Binärbaum mit zufälliger Einfügereihenfolge.

**Teil a) des Lemmas**  $P_k$  ist Suchpfad für Knoten  $x_k$ . Seien  $P'_k$  und  $P''_k$  Teilfolgen von  $P_k$  mit:  $\forall v \in P'_k, key(v) \leq x_k$  und  $\forall u \in P''_k, key(u) \geq x_k$ .

Proof. Beobachtungen:

- 1.  $|P_k| = |P'_k| + |P''_k| 1$  ( $x_k$  in beiden Teilfolgen)
- 2.  $P'_k$  = Menge der knoten v mit:
  - $\bullet$ Wenn v eingefügt wird, gilt key(v) ist maximal mit key(v)  $\leq x_k$
- 3.  $P_k'' = \text{Menge der knoten u mit:}$ 
  - Wenn u eingefügt wird, gilt key(u) ist minimal mit key(u)  $\geq x_k$

Wir zeigen

- 1.  $E(|P'_k|) = H_k$
- 2.  $E(|P_k''|) = H_{n-k+1}$

zu 1) K mögliche Kandidaten für  $P'_k\{x_1,...,x_k\}$ . Spiel: Ziehe zufällig Schlüssel aus  $\overline{\{x_1,...,x_k\}}$ .  $\mathrm{E}(|P'_k|)=\mathrm{Erwartungswert}$ , wie of ein Kandidat gezogen wird, der  $\geq$  als alle vorher gezogenen ist (neues Maximum).  $A^k=E(|P'_k|)$  (Spiel A)

$$A^{k} = \sum_{i=1}^{k} \frac{1}{k} \cdot (1 + A^{k-i})$$

Im Zug  $x_i$  schließt  $x_1...x_i$  au. Dann gleiches Spiel mit K-i Kandidaten.

$$A^{k} = \frac{1}{k} (k + \sum_{i=1}^{k} A^{k-i})$$
$$= 1 + \frac{1}{k} \sum_{i=1}^{k} A^{k-i}$$

Wir zeigen durch Induktion über k, dass  $A^k = H_k$ 

IA

$$=1+\frac{1}{k}\sum_{i=0}^{k}H_{i}$$

Eigenschaften der harmonischen Zahlen:

1.

$$\sum_{i=0}^{k} H_i = k \cdot (H_k - 1)$$

2.

$$H_k \le 1 + lnk$$

aus 1) folgt:

$$A^{k} = 1 + \frac{1}{k} \cdot k \cdot (H_{k} - 1)$$
$$= 1 + H_{k} - 1$$
$$= H_{k}$$

Der Erwartungswert ist ist gleich der k-ten Harmonischen Zahl.  $E(P'_k) = H_k$ . Abschätzung von  $E(P''_k) =: B^k$ . (Spiel B) kandidaten  $\{x_k...x_n\}$ : Zähle, wie of ein neues Minimum gezogen wird. Dann sieht man leicht, dass

$$B^k = H_{n-k+1}$$

Beweis: symmetrisch.

$$E(|P_k|) = E(|P'_k|) + E(|P''_k|) - 1$$
$$= A^k + B^k - 1$$
$$= H_k + H_{n-k+1} - 1$$

#### Teil b) des Lemmas

*Proof.*  $L_k$  und  $R_k$  Seien  $L_k = v_1, ..., v_l$  und  $R_k = u_1, ..., u_m$ 

**Erwartungswerte** Spiel C: Ziehe zufällig Elemente aus  $\{x_1...x_n\}$ . Sobald  $x_k$  gezogen wird: ??? Trigger ??? Sei  $C^k$  der Erwartungswert dieses Spiels, dh  $C^k = E(|L_k|)$ .

$$C^{k} = \frac{1}{k} \cdot A^{k-1} + \sum_{i=1}^{k-1} \frac{1}{k} \cdot C^{k-i}$$

im 1. Zug  $x_k$ , dass Spiel mit k-1 Kandidaten (alle kleiner, als  $x_k$ ).

$$C^{k} = \frac{1}{k} (\cdot H_{k-1} + \sum_{i=0}^{k-1} \cdot C^{i})$$

Trick: Schätze die Differenz zweier aufeinanderfolgender  $C^i$ s =  $\delta_j = C^{j+1} - C^j$  ab.

$$\Rightarrow C^k = \sum_{j=1}^k \delta_j + C^0$$

Beatrachte:

$$(j+1) \cdot C^{j+1} - j \cdot C^{j}$$

$$= (j+1)\frac{1}{j+1}(H_j + \sum_{i=0}^{j} C^i) - j\frac{1}{j}(H_{j-1} + \sum_{i=0}^{j} C^i)$$

$$= H_j + \sum_{i=0}^{j} C^i - (H_{j-1} + \sum_{i=0}^{j} C^i)$$

$$= H_j - H_{j-1} + C^i$$

$$= \frac{1}{j} + C^j$$

Wir wissen nun, dass

$$(j+1) \cdot C^{j+1} - j \cdot C^{j} = \frac{1}{j} + C^{j}$$

$$\frac{1}{j} = (j+1)C^{j+1} - (j+1) \cdot C^{j}$$

$$\frac{1}{j(j+1)} = C^{j+1} - C^{j} = \delta_{j}$$

$$\Rightarrow \delta_{j} = \frac{1}{j(j+1)} = \frac{1}{j} - \frac{1}{j+1}$$

$$C^{k} = \sum_{j=1}^{k-1} \delta_{j} = \sum_{j=1}^{k-1} (\frac{1}{j} - \frac{1}{j+1})$$

$$= 1 - \frac{1}{k}$$

**Teil c) des Lemmas** Spiel  $D^k = E(|R_k|)$ : Wie oft wird ein neues Minimum größer  $x_k$  gezogen, nachdem  $x_k$  gezogen wurde (Trigger).

*Proof.* symmetrisch:

$$D^k = \frac{1}{n-k+1} \cdot B^{k-1} + \sum_{i=1}^{k-1??} \frac{1}{n+k-1} D^{i-k??}$$
 
$$D^k = 1 - \frac{1}{n-k+1}$$

Satz Sie T ein RST für eine Menge von n Schlüsseln. Dann gilt:

- 1. Die erwartete Laufzeit fpr Insert, Delete und Lookup ist O(logn)
- 2. Die erwartete Zahl der Rotationen bei Delete ist < 2

#### **Beweis**

- 1. Kosten von Lookup =  $O(|P_k|)$ , Insert und Delete =  $O(|P_k| + |L_k| + |R_k|)$  Kosten:  $O(H_k + H_{n-k+1} + 1 \frac{1}{k} + 1 \frac{1}{n-k+1}) = O(H_n) = O(\ln n) = O(\log n)$
- 2. Erwartete Zahl der Rotationen:  $E(|L_k|) + E(|R_k|) < 2$

# 2 Hashing

#### 2.1 Hashing mit offener Adressierung

Tafel T  $[0,...,m-1], m \leq n, |S| = n$  Verwende die Folge von Hashfunktionen  $h_0, h_1$ 

$$h_i(x) = f(x) + i \cdot g(x), i = 0, 1, ...$$

Häufig verwendet wird

$$h_i(x) = (x \cdot mod m + i) \cdot mod m$$

 $\rightarrow$  Linear Probing.

Idee



Figure 1: Idee: Offene Adressierungs-Tabelle

**Operationen** Tafelposition T[i] belegt oder frei.

- Init: alle frei
- Insert(x): betrachte die Tafelpositionen  $T[h_0(x)], T[h_1(x)], T[h_2(x)]$  bis  $T[h_i(x)]$  frei und speicher x dort ab.  $T[h_i(x)] \leftarrow x$  und markiere  $T[h_i(x)]$  als belegt. Voraussetzungen:
  - 1.  $m \le |S| = n$

- 2.  $h_i(x)$  frei i = 0, 1, 2, ... muss alle Tafelpoitionen durchlaufen
- Lookup(x): Teste die Tafelpoition  $T[h_i(x)]$  für i = 0, 1, 2, ... bis entweder  $T[h_i(x)] = x$  erfolgreich oder  $T[h_i(x)]$  ist frei. **Terminiert nicht**, wenn m=n und die Tafel voll ist und das gesuchte Element nicht vorhanden ist. Daher idR  $m \ge n$
- Delete(x): (Idee 1):
  - 1.  $j \leftarrow Lookup(x)$
  - 2.  $T[j] \leftarrow frei$ , dann sind auf j<br/> folgende Elemente nicht mehr erreichbar. Idee 2):
  - 1. Dritter Zustand: 'gelöscht' (Details: Übung)

#### 2.2 Perfektes Hashing

Situation: Statische Menge S von n Schlüsseln aus [0,...,N-1]. Ziel: Speichere S in einer Tafel der Größe O(n), sodass Lookup in Zeit O(1) realisiert werden kann (N » n, N sehr viel größer, als n). Andere Formulierung: Finde einer Hashfunktion  $h:[0,...,N-1] \rightarrow [0,...,S-1]$  mit

- 1. S = Größe der Tafel und <math>S = O(n)
- 2. h injektiv auf S

Zur Konstruktion oder Auswahl einer solchen Funktion Hashfunktion verwenden wir ein probabilitisches Verfahren (Zufallsverfahren).

Idee 2-stufiges Hashing-Schema (Hashing-Verfahren)



Figure 2: Idee: Perfekt Hashing Tabellen

Sei p<br/> eine Primzahl mit p > N und  $S \in \mathbb{N}$  (Tafelgröße). Betrachte folgende Hashfunktionen:

$$h_k: [0, ..., N-1] \to [0, ..., S-1]$$

mit  $h_k(x) = ((k \cdot x) mod p) mod s$  für alle  $1 \le k \le p-1$  (Modulo Primzahl ergibt einen Restkörper, zB Inverses der Multiplikation). Diese Funktionen sind im Allgemeinen nicht injekt, dh  $h_k$  verteilt die Menge S auf s Buckets  $W_0^k, W_1^k, W_{s-1}^k$ .

$$\Rightarrow W_i^k = \{x \in S | h_k(x) = i\}$$

 $h_k$  injektiv auf  $S \Leftrightarrow |W_i^k| \leq 1$  für  $0 \leq i \leq s-1$ 

**Lemma 1:** Für jede Menge  $S \subseteq \{0,...,N-1\}, |S| = n$  gilt  $\exists k, 1 \le k \le p-1 mit$ 

$$\sum_{i=0}^{s-1} \binom{|W_i^k|}{2} < \frac{n^2}{s}$$

(Anzahl der Kollisionen  $<\frac{n^2}{s}$ ).

Beweis zunächst: Behauptung.

$$\sum_{k=0}^{p-1} \sum_{i=0}^{s-1} \binom{|W_i^k|}{2} < (p-1)\frac{n^2}{s}$$

Daraus folgt das Lemma (indirekt). Annahme, das Lemma 1 gilt nicht, dh $\forall 1 \leq k \leq p-1$  :

$$\sum_{i=0}^{s-1} \binom{|W_i^k|}{2} \ge \frac{n^2}{s}$$

$$\Rightarrow \sum_{i=0}^{s-1} \binom{|W_i^k|}{2} \ge \frac{n^2}{s}$$

Widerspruch zur Behauptung!

Beweis zur Behauptung.

$$(1)\sum_{k=0}^{p-1}\sum_{i=0}^{s-1} \binom{|W_i^k|}{2}$$

= Anzahl der Paare  $(k, \{x, y\}, x \neq y \text{ und } h_k(x) = h_k(y) \text{ (Anzahl der Kollisionen)}.$ Wir schätzen zunächst den Betrag für 2 feste Werte  $x \neq y$  zur Behauptung ab.

Sei also  $x \neq y$ :

(1) = Anzahl aller Ks mit  $(k \cdot x \cdot modp)mods = (k \cdot y \cdot modp)mods$ 

$$\Leftrightarrow ((k \cdot x \cdot modp) - (k \cdot y \cdot modp))mods = 0$$

 $k \cdot x \cdot modp - k \cdot y \cdot modp = i \cdot s$  für ein  $i \in \mathbb{Z}$ 

$$k \cdot (x - y) mod p = i \cdot s$$

Es gibt maximal  $\frac{2(p-1)}{s}$  mögliche Lösungen. Da p<br/> eine Primzahl ( $\mathbb{Z}_p$  ist ein Körper) hat jede dieser Gleichungen höchstens 1<br/> Lösung für k.  $\Rightarrow$  Beitrag eines festen Paares  $x \neq y$  zu (1) ist maximal  $\frac{2(p-1)}{s}$ 

$$\Rightarrow (1) \le \binom{n}{2} \cdot \frac{2(p-1)}{s}$$

$$= \frac{n(n-1)}{2} \cdot \frac{2(p-1)}{s}$$

$$< \frac{n^2(p-1)}{s}$$

Folgerung 1 (aus Lemma 1)

Für s=n (dh Tafel der Größe n):

$$\exists k, 1 \le k \le p-1 \text{ mit } \sum_{i=0}^{n-1} |W_i^k|^2 < 3n$$

Beweis für Folgerung 1. Betrachte Lemma 1 für s=n

$$\exists k: \sum_{i=0}^{n-1} \binom{|W_i^k|}{2} < n \tag{1}$$

$$\sum_{i=0}^{n-1} \frac{|W_i^k| \cdot (|W_i^k| - 1)}{2} < n \tag{2}$$

$$\sum_{i=0}^{n-1} |W_i^k| \cdot (|W_i^k| - 1) < 2n \tag{3}$$

$$\sum_{i=0}^{n-1} |W_i^k|^2 < 2n + \sum_{i=0}^{n-1} |W_i^k| (=n)$$
(4)

$$<3n$$
 (5)

Folgerung 2 Für  $s=n^2$  d<br/>h quadratische Tafelgröße.

 $\exists k': 1 \leq k \leq p-1$ , sodass die Hashfunktion

$$k_{k'}: x \to (k'x \cdot modp)mods$$

injektiv auf S ist dh  $|W_i^k| \le 1$  für  $0 \le i \le s - 1$ .

⇒ Für Tafeln mit quadratische Größe existiert eine perfekte (injektive) Hashfunktion.

Beweis für Folgerung 2. Betrachte Lemma 1 mit  $s=n^2$ 

$$\exists k': \sum_{i=0}^{n^2 - 1} \binom{|W_i^k|}{2} < 1 \tag{6}$$

$$\Rightarrow |W_i^k| \le 1 \tag{7}$$

$$\Rightarrow h_{k'}$$
 ist injektiv auf S (8)

(zu 6): dh Keine Kollisionen, bzw Doppeltbelegung in den  $W_i^k$ 

Folgerung 2 zeigt Perfektes Hashing mit quadratischem Platz. Vermeidung des quadratischen Platzbedarfs durch ein 2-stufigen Hashing-Schema:

- $\bullet$  Stufe 1: Wähle ein k<br/> gemäß Folgerung 1, dh<br/> Tafelgröße s=n und Hashfunktion  $h_k$ mit<br/>  $\sum_{i=0}^{n-1}|W_i^k|<3n$
- Stufe 2: Für jedes nicht-leere Bucket  $W_i^k$  der ersten Stufe verwende iene Tafel der Größe  $s_i=|W_i^k|^2 (0\leq i\leq n-1)$  und wähle ein  $k_i$  gemäß Folgerung 2, dh  $h_{k_i}$  ist injektiv auf  $W_i^k$



Figure 3: Konzept 2-Stufen Hashing

#### 2.2.1 Datenstruktur

4 Felder + Variable k

• Variable k:  $(h_k \text{ der } 1. \text{ Stufe})$ 

• k[0,...,n-1]: k[i] ist  $k_i$  der 2. Stufe

- $\bullet$  Size[0,...,n-1]: Size[i] =  $|W_i^k|$  Bucketgrößen der 1. Stufe
- $\bullet$  Ptr[0,...,n-1]: Pointer auf die Hashtafeln der 2. Stufe. Ptr[i] zeigt auf die Tafel B[0,...,Size[i]^2-1]
- $\bullet$  T[0,...,3n]: Gesamtspeicherplatz aller B-Tafeln der 2. Stufe



Gesamtplatzbedarf 3n + 1 + 3n + = 6n-1 = O(n)

Figure 4: Datenstruktur: Perfekt Hashing

#### Abspeichern eines Elements x

$$i \leftarrow (k \cdot xmodp)modn \tag{9}$$

$$k' \leftarrow K[i] \tag{10}$$

$$s' \leftarrow Size[i]$$
 (11)

$$j \leftarrow (k' \cdot xmodp)mods' \tag{12}$$

$$Ptr[i][j] \leftarrow x \tag{13}$$

#### 2.2.2 Aufbauzeit der Datenstruktur

Wir findet man die k bzw k' Werte der ersten und zweiten Stufe (gemäß Folgerung 1 und 2). Aus Folgerungen 1 und 2 folgt: Es existiert immer mindestens ein Wert für k (dh eine geeignete Hashfunktion  $h_k$ ). **Aufbaualgorithmus:** Teste alle k-Werte. Auf 1. und 2. Stufe

```
\begin{array}{l} \textbf{def } \textit{Aufbau:} \\ & | \textbf{ for } k=1 \textbf{ to } p-1 \textbf{ do} \\ & | 1. \text{Stufe: Teste ob } \sum_{i=0}^{n-1} |W_i^k|^2 < 3n; \\ & | \textbf{end} \\ \\ \textbf{end} \\ & \text{Kostet im worst case } O(p \cdot n) = O(n \cdot N) \end{array}
```

2. Stufe für jedes Bucket  $W_i^k$ 

```
\begin{array}{l} \textbf{def } \textit{Aufbau:} \\ & | \textbf{ for } k' = 1 \textbf{ to } n \textbf{ do} \\ & | \text{ Teste ob } h_{k'} \text{ injektiv auf } W_i^k; \\ & | \textbf{ end} \\ \end{array}
```

Kostet für  $W_i^k O(p \cdot |W_i^k|$  für alle Buckets  $W_i^k (0 \le i \le n)$ . Gesamtlaufzeit:

$$O(\sum_{i=0}^{n-1} p \cdot |W_i^k|) \tag{14}$$

Eine genauere Analyse zeigt, dass es viele k-Werte mit den geforderten Eigenschaften gibt.

#### Folgerung 3 (aus Lemma 1)

Für mindestens die Hälfte aller k,  $0 \le k \le p-1$ , gilt

$$\sum_{i=0}^{n-1} |W_i^k|^2 < 5n(s=n)$$

#### Folgerung 4 (aus Lemma 1)

Für mindestens die Hälfte aller k',  $0 \le k' \le p - 1$ , gilt

$$h_{k'}: x \to (k' \cdot x \ mod p) mod 2 \cdot n^2$$

ist injektiv auf S (angedwandt:  $W_i^k s$ . Beweis analog zum Beweis der Folgerung 1 und 2.

Änderungen in der Datenstruktur Auf 2. Stufe Tafelgrößen verdoppeln, dh jeweils Größe  $2 \cdot |W_i^k|^2$ . Platzbedarf der 2. Stufe:

$$\sum_{i=0}^{n-1} 2 - |W_i^k|^2 = 2\sum_{i=0}^{n-1} |W_i^k|^2 < 10n$$

Insgesamt: Platz 13n = O(n).

**Aufbau** Stufe 1: Wähle ein zufälliges  $k \in \{1, ..., p-1\}$  bis Folgerung 3 erfüllt. Wahrscheinlichkeit daür ist jeweils  $\geq \frac{1}{2}$ . **Frage:** Wie hoch ist der Erwartungswert für die Anzahl der Tests. Analog zum Münzwurf: Wie viele Würfe, bis eine bestimmte Seite erscheint? Erwartungswert für diese Zahl (Integrierende Reihe):

$$\sum_{i=0}^{\infty} \frac{1}{2^i} \cdot i = \frac{0.5}{(1-0.5)^2} = 2$$

Erwartete Laufzeit für Stufe 1 ist dann  $O(2 \cdot |S|) = O(n)$ . Analog für Stufe 2: Erwartete Zahl der Tests = 2.  $\Rightarrow$  Gesamtlaufzeit O(n).

#### 2.2.3 Zusammenfassung

Man kann eine Menge S von <br/>n Schlüsseln aus [0,...,N-1] so abspeichern, dass gilt

- 1. Platubedarf ist O(n)
- 2. Erwartete Aufbauzeit O(n)
- 3. Zugriffszeit (Lookup) O(1) worst-case

Dynamisierung ist möglich (Dynmaic Perfect Hashing). Idee: Zeigen, dass die gewählten k-Werte mit großer Wahrscheinlichkeit für weitere Schlüssel funktionieren.

# 3 Übung

## Übung 3:

- 1) Durch entfernen von Kanten soll der Graph zerlegt werden. (Unions in umgekehrter Reihenfolge)
- 2) Zu zeigen:

$$a(z,n) \leq \lfloor \frac{4m}{n} \rfloor f \ddot{\mathbf{u}} r \ z = \alpha(m,n)$$

Definition von a und  $\alpha$ 

$$a(z,n) = min\{j|A(z,j) > logn\}$$

$$\alpha(m,n) = \min\{i | A(i, \lfloor \frac{4m}{n} \rfloor) > logn\}$$

Behauptung:

$$a(\alpha(m,n),n) \le \lfloor \frac{4m}{n} \rfloor$$

Beweis: indirekt. Annahme:

$$a(\alpha(m,n),n) > \lfloor \frac{4m}{n} \rfloor$$

$$\Rightarrow A(\alpha(m,n), \lfloor \frac{4m}{n} \rfloor) \leq log n$$

Widerspruch zur Definition von  $\alpha$  , denn

$$A(\alpha(m,n),\lfloor\frac{4m}{n}\rfloor) > logn$$

- **3.a)** Union-Split-Find. (van Emde-Boas aht Datenstruktur mit log log n für Union-Split-Find. ) Gegeben ist eine Array
  - Split(i): Markiere i
  - Find(x): Finde nächste Markierung
  - $\bullet$  Union(x): Lösche Markierung x

Balancierter (blatt-orientierter) Baum zur Speicherung der markierten Elemente. Einfügen der markierten Elemente als Blätte rdes Baums

- $\bullet$  Split = Insert
- Union = Delete
- Find = Locate

Platz = #Intervalle, Zeit O(logn)

#### 3.b)

- Insert = Split
- $\bullet$  Delete = Union
- FindMin = Find(1)

### Übung 4:

1) Rekursive Funktion zum Aufbau eines RST A[1,...,n] von Schlüsseln. P[1,...,n] Prioritäten

```
\begin{array}{l} \textbf{for } 1 \leftarrow 0 \textbf{ to } n \textbf{ do} \\ \mid P[i] \leftarrow random() \\ \textbf{end} \end{array}
```

Rekursice Funktion RST(A,P,l,r) baut einen RST für A[l,...,r] und liefert Pointer auf die Wurzel.

```
class rst_node {
     key
     prio
     left,right: rst_node
}
  def RST(A,P,l,r):
      if l > r then
       | return null;
      i \leftarrow max[P, l, r];
      q \leftarrow \text{new rstnode};
      q.key \leftarrow A[i];
      q.prio \leftarrow \mathbf{P[i]} \ ;
      q.left \leftarrow RST(A,P,l,i-1);
      q.right \leftarrow RST(A,P,i+1,r);
      return q;
  end
```

2) Spiel B symmetrisch zu Spiel A.

**3)** Implementiertung von Hashing mit Verkettung. Idee: Tafelgröße s beliebig. Hashfunktion  $h(x) = x \cdot mods$ 

```
def Insert(x):
end
def Lookup(x):
end
def Delete(x):
end
```

**4)** Belegungsfaktor  $\beta = \frac{n}{m}$  m = Tafelgröße. Bei Hashing mit Verkettung ist  $\beta =$  erwartete Länge einer Liste. Laufzeit für eine Operation  $O(1+\beta) = O(1)$  für  $\frac{1}{2} \le \beta \le 2$ 

Rehash Die Tabelle muss in eine größere Liste kopiert werden

```
\begin{array}{c|c} \mathbf{def} \; Insert(x) \mathbf{:} \\ & \dots \; ; \\ & n \leftarrow n+1 \; ; \\ & \mathbf{if} \; \frac{n}{m} > 2 \; \mathbf{then} \\ & \mid \; m_0 \leftarrow m \; ; \\ & \mid \; m \leftarrow 2m \; ; \\ & \mid \; T' \leftarrow new \; int[m] \\ & \text{Kopiere alte Tabelle in neue} \; ; \\ & \mathbf{end} \\ & \mathbf{def} \; Delete(x) \mathbf{:} \\ & \mid \; n \leftarrow n-1 \; \mathbf{if} \; \frac{n}{m} < \frac{1}{2} \; \mathbf{then} \\ & \mid \; \dots; \\ & \mid \; m \leftarrow \frac{m}{2}; \\ & \text{Kopiere alte Tabelle in neue} \; ; \\ & \mathbf{end} \end{array}
```

# 4 Allgemeines

#### 4.1 Einschub: Erwartungswerte

Situation: n Ereignisse, die mit einer gweissen Wahrscheinlichkeit prob(i) auftreten. Jedes Ereignis besitzt einen Wert val(i).

$$E(val) = \sum_{i_1}^{n} prob(i) \cdot val(i)$$

Spezialfall: Gleichverteilung:  $prob(i) = \frac{1}{n}f\ddot{\mathbf{u}}r \ 1 \leq i \leq n$ . Dann gilt:

$$E(val) = \frac{1}{n} \sum_{i=1}^{n} val(i) = Mittelwert$$

# 4.2 Integrierende Reihe

$$x \le 1$$

$$\sum_{i=0}^{\infty} x^i \cdot i = \frac{x}{(1-x)^2}$$