Name: Harshitha MU

Roll no: J076

Grid Search CV Api write up

Grid Search CV

Exhaustive search over specified parameter values for an estimator. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Exhaustive search means it tries each and every possible combination and selects the best combination

Code:

sklearn.model_selection.**GridSearchCV**($estimator, param_grid, *, scoring=None, n_j obs=None, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, re turn_train_score=False)$

Important Parameters:

estimator:

This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a score function, or scoring must be passed.

param_grid:

Dictionary with parameters names (str) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings.

Scoring:

Strategy to evaluate the performance of the cross-validated model on the test set.

Cv:

Determines the cross-validation splitting strategy.

Important Attributes are:

best estimator:

Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. See refit parameter for more information on allowed values.

best score:

Mean cross-validated score of the best_estimator
For multi-metric evaluation, this is present only if refit is specified.

This attribute is not available if refit is a function.

best_params:

Parameter setting that gave the best results on the hold out data. For multi-metric evaluation, this is present only if refit is specified.

Application:-

Important Methods: -

Fit(X, y)- fit the linear model.

Predict(X)-predict using linear model.

Score(X,y)-returns the coefficient of determination R^2 of the prediction.