WINDOWING AND SHORT TIME FOURIER TRANSFORM

Windowing

- DFT is computed on finite-duration signal
- □ We may need to operate with infinite-duration signals:
 - Real time operation
 - Long time duration
- Windows are used to convert infinite duration signal to a set of finite duration signals
 - Dividing signals into blocks and multiplying it by a window signal
 - window (@WNAME, N) returns an N-point window of type @WNAME
 - column vector
- Let's window a signal and compute their DFT

Windowing

```
Fs=10000; f=510; N=512; n=(0:N-1)/Fs;
x = \exp(1i*2*pi*f*n); x = x.';
w=window(@bartlett,50);
w(N) = 0; % zero padding
XM=X.*W;
X=fft(x,N); % = delta(f-510)
W=fft(w,N);
XW=fft(xw,N); %= conv(W, delta(f-510))
F=linspace(0,Fs,N);
```


Causal windows

□ A window is usually a real and even signal in the time domain

- Therefore, it is real and even in the frequency domain
 - zero-phase signal
- For real time processing, we need that the window is causal,
 - \square w(n)=0 if n<0
 - the window is shifted by half of its length
 - a linear phase term is consequently introduced

Types of windows

□ The type and parameters of windows must be properly chosen to fulfill our requirements

- Matlab provides
 - w=window(@wname, N, opt)
 - Computes the N-points wname window
 - opt are the options that the window may need
 - window
 - Window Design and Analysis Tool
 - wtool (w1, w2, w3)
 - Graphical User Interface Tool to analyze and compare windows

Types of windows

- □ From requirements to choice of window's type and parameters
- Properties
 - □ Leakage factor: ratio of power in the side lobes to the total window power
 - □ Sidelobe attenuation: difference between the value of the main lobe peak and of the highest side lobe peak
 - □ Mainlobe width (-3dB): bandwidth where amplitude is -3dB with respect to the mainlobe peak
 - Roll-off: how much fast the sidelobes' energy decreases
- □ Write a function show win (win, N, name) that given a window win, it shows it in the time and N-point frequency domain (log magnitude)

Windowing

```
function [ ] = show win(win, N, name)
 M=length(win); win(N)=0; n=0:N-1;
  figure; subplot(1,2,1); plot(n, win);
 xlabel('n'); ylabel(['w {', name,'}']);
  title([name ' in the time domain']);
  WIN= 20*log10(abs(fft(win)));
  subplot(1,2,2); plot(n,WIN); xlabel('k');
 ylabel(['|W {', name,'}| [dB]']);
  title([name ' in the frequency domain']);
  xlim([0, N/2+1]);
end
% note that [] stacks strings in matlab
```

Types of window - Rectangular

- $\square W_R(k) = C \operatorname{sinc}_M(\omega T)$
 - zero crossing at multiple of N/M
- \square Main lobe width: 2 Ω_{M}
 - $\square \Omega_{M} = 2\pi/M$
- □ sidelobe attenutation: -13 dB

```
rect_win=window(@rectwin,N_win);
show_win(rect_win, N, 'rect');
```

Types of window – Bartlett (triangular)

$$w_{T}(n) = \begin{cases} \frac{2n}{M-1} & 0 \le n \le \frac{M-1}{2} \\ 2 - \frac{2n}{M-1} & \frac{M-1}{2} \le n \le M-1 \\ 0 & otherwise \end{cases}$$

- \square Main lobe width: 4 Ω_{M} ;
- □ side lobe attenuation: -27 dB

```
bart_win=window(@bartlett,N_win);
show_win(bart_win, N, 'bart');
```

Types of window – Hann

MMSP 1 - 06 STFT

$$w_{HANN}(n) = w_R(n) \left[\frac{1}{2} + \frac{1}{2} \cos(\Omega_M n) \right] = w_R(n) \cos^2\left(\frac{\Omega_M}{2}n\right)$$

 \square Main Lobe width: $4\Omega_{M}$

```
hann_win=window(@hann,N_win);
show_win(hann_win, N, 'Hann');
```

Types of window – Hamming

$$w_H(n) = w_R(n) [0.54 + 0.46 \cos(\Omega_M n)]$$

Hide sidelobe attenuation!

```
hamming_win=window(@hamming, N_win);
show_win(hamming_win, N, 'Hamming');
```

Types of window – Blackman-Harris

```
w_{BH}(n) = w_R(n) \sum_{l=0}^{L-1} \alpha_l \cos(l \Omega_M n)
```

- L=1: rectangular
- L=2: generalized Hamming
- L=3: Blackman ($\alpha_0 = 0.42$; $\alpha_1 = 0.5$; $\alpha_2 = 0.08$)

```
black_win=window(@blackman, N_win);
show_win(black_win, N, 'Blackman');
```

Types of window – Kaiser

$$w_{K}(n) = \begin{cases} I_{0} \left(\beta \sqrt{1 - \left(\frac{n}{M/2}\right)} \right) \\ I_{0}(\beta) \\ 0 & elsewhere \end{cases} - \frac{M-1}{2} \le n \le \frac{M-1}{2}$$

- \square I_0 is a Bessel function of the first kind
- Maximizes the energy in the main lobe

```
kaiser_win=window(@kaiser, N_win);
show_win(kaiser_win, N, 'Kaiser');
```

Types of window – Gaussian

MMSP 1 - 06 STFT

$$W_G(n) = e^{\frac{-t^2}{2\sigma^2}} \qquad W_G(\omega) = \sqrt{2\pi\sigma^2} e^{\frac{-\omega^2\sigma^2}{2}}$$

Infinite duration window truncated at M

```
gauss_win=window(@gausswin, N_win);
show_win(gauss_win, N, 'Gaussian');
```

Types of windows – sum up

Properties of the most frequently used windows (M=64)

Window	Main lobe width	Side lobe level	Roll Off (dB/decade)
Rectangular	2 Ω _M	-13.3 dB	-6
Hann	$4 \Omega_{M}$	-31.5 dB	-18
Hamming	$4 \Omega_{M}$	- 42.7 dB	-6
Blackman	6 Ω _M	- 58.1 dB	-18

$$\Omega_{\rm M}$$
=2 π/M [rad/sample]

Exercise on windows

- □ Given a signal $x = cos(\omega_1 n) + cos(\omega_2 n)$
 - omega1=2*pi*1000/N;
 - \square omega2=omega1 + 2*pi/40;

- \square Define $\Delta_{\omega} = |\omega_1 \omega_2|$
- □ We use a rectangular window with length M
- See how the DFT changes for changing M
 - \blacksquare M=[16, 32, 64, 128];

Exercise on windows

```
N=2^14; n=(0:N-1).'; M=[16, 32, 64, 128];
w norm=linspace (-1, 1, N);
omega1=2*pi*1000/N;
omega2 = omega1 + 2*pi/40;
x=\cos(omega1*n)+\cos(omega2*n);
figure;
for m = 1 : length(M);
    subplot (2,2,m); M i=M(m);
    w R=window(@rectwin,M i)/M i;
    w R(N) = 0; y = x.*w R; Y = fft(y,N);
    Y=fftshift(Y); %centered in 0
    plot(w norm, abs(Y)); % labels...
End
```


Choosing M to distinguish sinusoids

■ Main lobe width B_w decreases when M increases

□ Which is the lowest M that can be used to distinguish two sinusoids?

- $\square \Delta_{\omega} = |\omega_1 \omega_2| \ge B_w = 2L 2\pi/M$
 - L=1 for rectangular windows
 - L=2 for Hann and Hamming windows
 - L=3 for Blackman windows
- \square M \geq 2 L 2 π / Δ_{ω}
- □ Let's try with a rectangular window: L=1;
 - \blacksquare x=exp(1i*omega1*n)+exp(1i*omega2*n);
 - omega1=0.2*pi; omega2=0.24*pi;

Choosing M to distinguish sinusoids

 $N=2^14$; n=(0:N-1).'; w norm=linspace (-1,1,N); omega1=0.2*pi; omega2=0.24*pi; x=exp(1i*omega1*n)+exp(1i*omega2*n);Delta=abs(omega1-omega2); L=2; M=2*L*2*pi/Delta; % rectWin M=ceil(1.1*M); % adding a 10% of the value w R=window(@rectwin,M)/M; w R(N)=0; y=x.*w R; Y=fftshift(fft(y,N));figure; plot(w norm, 20*log10(abs(Y)));% labels...

M for different amplitude signals

- □ Given $x(n) = A e^{j\omega_1 n} + 0.1 \cdot A e^{j\omega_2 n}$
- □ Is the previously computed M still good?

```
% variables defined before ...
x2 = exp(1i*omega1*n) + 0.1*exp(1i*omega2*n);
y2=x2.*w R; Y2=fftshift(fft(y2,N));
figure;
plot(w norm, 20*log10(abs(Y2)));
% labels...
```


M for different amplitude signals

- □ Rectangular window provides a roll-off of -6dB/decade
- □ Let's try a Hamming window

```
L=2; M=2*L*2*pi/Delta; % rectWin
M=ceil(1.1*M); % adding a 10% of the value
w H=window(@hamming,M)/M; w_H(N)=0;
y3=x2.*w H; Y3=fftshift(fft(y3,N));
figure;
plot(w_norm, 20*log10(abs(Y3)));
% labels...
```


- \square Given a N-sample signal x and a K-tap filter h, y=conv(x,y) has $l_v =$ N+K-1 samples
 - For small K (≈12), time-domain convolution is faster
 - \blacksquare For larger K, DFT multiplication is faster
 - $lue{}$ For extremely large N or real time operation, we need to use block-level processing
- □ Windows are used to decompose an infinite-duration signal in a set of finite-duration blocks
 - Similar to the overlap and save methods

- \square The signal x is segmented into overlapping block x_m
 - $x_m(n) = x(mR:mR+M-1)$ with m = 1, 2, ..., N/R
 - M is the length of the block, N is the length of the signal, R = M-overlap is the hopsize in samples
- □ Each block is windowed as $x_{m,w}(n)=w(n).*x_m(n)$
- The hopsize value must be chosen so that it satisfies the Constant Overlap and Add condition (COLA): sum of all the overlapping windows must be constant N/M

$$\sum_{m=1}^{\infty} w(n - mR) = C$$

- □ Typical windows and their hopsize
 - Rectangular window with 0% overlap (R=M)
 - Rectangular window with 50% overlap (R=M/2)

- Bartlett window at 50% overlap (R=M/2)
- Hamming window at 50% overlap (R=M/2)
- Hamming window at 75% overlap (R=M/4)

 \square The N_{fft}-point DFT of $x_{m,w}(n)$ is computed

- $\square N_{fft} > M+K-1$
- K is the length of the filter h(n)
- $\square Y_m = X_m H \rightarrow y_m(n) = IDFT\{Y_m\}$
 - H is the N_{fft}-point DFT of h(n)
- \square y(mR:mR+M-1)=y(mR:mR+M-1)+y_m
- □ See the matlab code for a graphical example

- □ Load 'gb.wav' in x
- \square Define a filter h from H(z)=1-0.99z⁻¹ in K=1000 samples
- □ Use a Bartlett window with length of 50 ms and hopsize of 50%

- Choose Nfft accordingly
- ☐ Filter x with h using OLA

```
[x, Fs] = audioread('gb.wav'); N = length(x);
K=1000; delta=[1;0]; delta(K)=0;
h=filter(1,[1 -0.99],delta); y =conv(x,h);
M=floor(0.050*Fs); R=floor(M*0.5);
% frame of 50ms with 50% overlap
w=window(@bartlett,M); Nfft=2^ceil(log2(K+M-1));
H=fft(h, Nfft);
x(N+M+R+Nfft)=0; y=zeros(size(x));
for m=1:floor(N/R)+1
 mR = (m-1) *R+1; x m=x (mR:mR+M-1);
  x wm=x m.*w; X wm=fft(x wm, Nfft);
  Y m=X wm.*H; y m=ifft(Y m);
  y(mR:mR+Nfft-1)=y(mR:mR+Nfft-1)+y m;
end
y=y(1:N+K-1);
```

Comparison between OS and OLA

- Overlap and save
 - the blocks are not windowed (rectangular)
 - The first samples are neglected due to circular-convolution errors
 - The output is the result of a stacking operation

- Overlap and add
 - the blocks are windowed
 - The length of the FFT is properly chosen to create meaningful DFTmultiplication

- The output is the result of a sum operation
- Best for analysis and processing purposes

The Short Time Fourier Transform

The Short Time Fourier Transfrom

 \square The STFT of a signal x(n) is a matrix X(k,m) where

- k is the bin of the DFT
- m is the index of a frame (a block)
- Also called the spectrogram
- \square It is used to see the evolution in time of the DFT of x

The Short Time Fourier Transfrom

 \square The signal x(n) is segmented into overlapping frames x_m

$$x_m(n) = x(mR:mR+M-1)$$
 with $m = 1, 2, ..., N/R$

- \square Each x_m is multiplied by an analysis window w(n)
 - $\square x_{m,w} = w(n).*x_m(n)$
- $\hfill\Box$ The DFT of $x_{m,w}$ is computed and stored in the spectrogram
 - \square X(m,k)=X_{m,w}(k)
 - the positive frequency components are usually considered
- Matlab also provides the function spectrogram

The Short Time Fourier Transform

```
[x, Fs]=wavread('gb.wav');
N=length(x);
M=floor(0.050*Fs);
R=floor(M*0.5);
w=window(@bartlett,M);
Nfft=M;
x (N+M) = 0;
X=zeros(floor(Nfft/2+1),floor(N/R)+1);
for m=1:floor(N/R)+1
  mR = (m-1) *R+1; x m=x (mR:mR+M-1);
  x wm=x m.*w; X wm=fft(x wm, Nfft);
  X(:,m)=X wm(1:floor(Nfft/2+1));
end
X=flipud(X);
```


Switching magnitude and phases STFT

- \square Load 'fgi.wav' and 'wttj.wav' as x_f and x_w
 - convert them to mono (mean over the channels)
 - Trim them to a common length
- \square Compute the two spectrograms X_f and X_w
 - using any window and specifying Noverlap
- Switch phases

$$X_{fw} = |X_f| \exp(i \angle X_w)$$
 $X_{wf} = |X_w| \exp(i \angle X_f)$

- \square Use istft (defined by the teacher) to compute x_{fw} and x_{wf}
- □ How to they sound?

Switching magnitude and phases STFT

```
[y fgi,Fs]=audioread('fgi.wav'); y fgi=mean(y fgi.');
[y wttj,Fs]=audioread('wttj.wav'); y wttj=mean(y wttj.');
%mean converts mono to stereo
Nmin=min(length(y fgi),length(y wttj));
y fgi=y fgi(1:Nmin); y wttj=y wttj(1:Nmin);
logN=floor(log2(0.05*Fs)); N=2^logN; win=window(@hamming,N);
Noverlap=2^(logN-1); Nol=Noverlap % 50% overlap
Y fgi=spectrogram(y fgi, win, Nol);
Y wttj=spectrogram(y wttj, win, Nol);
Y fm wa=abs(Y fgi).*exp(li*angle(Y wttj));
Y wm fa=abs(Y wttj).*exp(1i*angle(Y fgi));
y wm fa=istft(Y wm fa, Nol); y fm wa=istft(Y fm wa, Nol);
sound(y fm wa,Fs); sound(y wm fa,Fs)
```