

Discretionary Access Control

- Modelo usado por la mayoría de los sistemas operativos
- Los usuarios tienen el control (discreción) sobre sus ficheros y programas
- Los programas se ejecutan bajo los privilegios de un usuario
- El superusuario/root tiene todo el control
- El objetivo de un atacante es vulnerar un programa que se ejecute con privilegios de root

Once a security exploit gains access to priveleged system component, the entire system is compromised.

Mandatory Access Control
Kernel policy defines application
rights, firewalling applications from
compromising the entire system.

Mandatory Access Control

- Las aplicaciones seguras requieren un SO seguro
- La política de seguridad es el último árbitro de todas la decisiones de acceso; los usuarios no pueden ignorar/anular la política
- Suplementa a DAC
- Múltiples modelos: Type Enforcement, RBAC, Multi-Level Security
- Beneficios: integridad y/o confidencialidad

Discretionary Access Control

Once a security exploit gains access to priveleged system component, the entire system is compromised.

Mandatory Access Control
Kernel policy defines application
rights, firewalling applications from
compromising the entire system.

Discrecional versus Obligatorio

- Discretionary Access Control El dueño de un objeto define el acceso al mismo
 - Este es el modelo actual de Linux
 - chmod, open, rename, write, ptrace (!)
- Mandatory Access Control La seguridad es definida mediante una política centralizada
 - La política no puede evitarse ni accidental ni deliberadamente por software o usuarios maliciosos
 - Previene fugas de información o escalado de privilegios incluso a causa de una mala configuración
 - El administrador de seguridad puede asegurar que dos dominios nunca interactúen, incluso si ambos han sido comprometidos
 - Por ejemplo, el servidor web y la base de datos raw
 - La política es centralizada, lo que permite un fácil análisis
 - Permite protección contra código no confiable

SELinux – Cómo funciona

Estudio de caso: GPG

- Ejemplo de política estricta
- A veces se requiere que una aplicación que se ejecute por un usuario tenga un contexto de seguridad diferente
- Por ejemplo, GPG se ejecuta en un dominio distinto de modo que el dominio principal del usuario no pueda acceder a la clave secreta (para hacer más difícil robar la clave).
- Si el usuario ejecuta 'gpg' una transición automática al usuario _gpg_t desde user_t toma lugar:
 - domain_auto_trans(\$1_t, gpg_exec_t, \$1_gpg_t)
- Los ficheros GPG están protegidos de manera que sólo el binario GPG ejecutado por el propietario individual tiene acceso a los ficheros. El usuario no puede soslayar este comportamiento.

Agenda

- ¿Qué puedo hacer con SELinux?
 - Limitar los privilegios de los programas
 - Proteger de ataques
 - Prevenir acceso del sistema a detalles privados de los usuarios

¿Qué es SELinux?

- Mandatory vs. Discretionary Access Control
 - DAC mecanismo estándar de Linux
 - Todos los procesos se ejecutan con un usuario y grupo. Si ese usuario/grupo tiene acceso a los ficheros, también el proceso
 - Root y usuarios tienen la capacidad (discreción) de cambiar o soslayar la seguridad con chmod, chown y otras utilidades
 - Procesos que corren como root (por ejemplo servicios de aplicación) pueden acceder a *todo*

¿Qué es SELinux?

- Mandatory vs. Discretionary Access Control
 - MAC SELinux es una implementación MAC
 - Permisos de granularidad fina en todos los procesos, ficheros, dispositivos, sockets, puertos, etc.
 - Política definida administrativamente
 - Decisiones de seguridad tomadas en base a toda la información, no sólo identidad
 - Procesos ejecutándose como root pueden únicamente acceder a aquellas áreas que la política permite.

¿Qué puedo hacer con SELinux?

- Limitar los privilegios de los programas
 - Los programas son confinados en su propio contexto, incluso programas corriendo como root no pueden acceder a información fuera de su propio contexto de seguridad

¿Qué puedo hacer con SELinux?

- Prevenir accesos del sistema a detalles privados de los usuarios
 - Aún los procesos comprometidos no pueden acceder a los directorios home o ficheros de correo

Herramientas SELinux

- system-config-selinux
- chcon
- restorecon
- setfiles
- fixfiles
- setenforce
- getenforce
- newrole
- getsebool
- setsebool
- sealert
- setroubleshoot

Valores lógicos de las políticas (Policy Booleans)

- Permiten modificación de la política en tiempo de ejecución
- Cada una tiene un valor por omición, usualmente falso
- 'getsebool' y 'setsebool' para manejarlos
- 'setsebool -P' recompila con los cambios
- Escribe los cambios a:
 - /etc/selinux/targeted/modules/active/booleans.local

Valores lógicos de las políticas (Policy Booleans)

 Se puede mostrar todos los booleanos usando 'getsebool -a' (hay cientos de ellos)

```
File Edit View Terminal Tabs Help
[root@host175 ~]# getsebool -a | grep httpd
allow httpd anon write --> off
allow httpd bugzilla script anon write --> off
allow httpd mod auth pam --> off
allow httpd nagios script anon write --> off
allow httpd squid script anon write --> off
allow httpd sys script anon write --> off
httpd builtin scripting --> on
httpd can network connect --> off
httpd can network connect db --> off
httpd can network relay --> off
httpd disable trans --> off
httpd enable cgi --> on
httpd enable ftp server --> off
httpd enable homedirs --> on
httpd rotatelogs disable trans --> off
httpd ssi exec --> off
httpd suexec disable trans --> off
httpd tty comm --> on
httpd unified --> on
[root@host175 ~]#
```


Información de Contexto de Seguridad

- Casi todos los comandos aceptan el argumento -Z
 - Is -Z
 - id -Z or secon
 - ps -Z
 - mkdir -Z
 - install -Z
 - cp -Z
 - find -context

Información de Contexto de Seguridad

- ¡Notese que usando 'su' NO se cambia el contexto correctamente!
- Ejemplo: |

```
<u>File Edit View Terminal Tabs Help</u>
[tcameron@tct60 ~]$ ssh -Y 192.168.122.254
tcameron@192.168.122.254's password:
Last login: Tue Sep 9 19:53:00 2008 from 192.168.122.1
[tcameron@host175 ~]$ id -Z
user u:system r:unconfined t
[tcameron@host175 ~]$ su -
Password:
[root@host175 ~]# id -Z
user u:system r:unconfined t
[root@host175 ~]# ∏
```


Información de Contexto de Seguridad

En este ejemplo, root entra mediante ssh:

• Ejemplo:

```
Edit View Terminal Tabs Help
[tcameron@tct60 ~]$ ssh -Y root@192.168.122.254
root@192.168.122.254's password:
Last login: Tue Sep 9 19:53:21 2008 from 192.168.122.1
[root@host175 ~]# id -Z
root:system r:unconfined t:SystemLow-SystemHigh
[root@host175 ~]# □
```


Ejemplos SELinux

```
File Edit View Terminal Tabs Help
[tcameron@host175 ~]$ echo "This is my page" > index.html
[tcameron@host175 ~]$ ls -Z index.html
rw-rw-r-- tcameron tcameron user u:object r:user home t
                                                              index.html
[tcameron@host175 ~]$ mv index.html public html/
[tcameron@host175 ~]$ ls -Z public html/index.html
-rw-rw-r-- tcameron tcameron user u:object r:user home t
                                                             public html/index
html
[tcameron@host175 ~]$
```


Ejemplos SELinux

Usar 'chcon' para cambiar manualmente el contexto

```
File Edit View Terminal Tabs Help
[tcameron@host175 ~]$ chcon -u user_u -r object_r -t httpd_sys_content_t public
html/index.html
[tcameron@host175 ~]$ ls -Z public html/index.html
rw-rw-r-- tcameron tcameron user u:object r:httpd sys content t public html/in
dex.html
[tcameron@host175 ~]$ ☐
```


Ejemplos SELinux

O hacerlo de la manera fácil con 'restorecon':

```
File Edit View Terminal Tabs Help
[tcameron@host175 ~]$ rm -rf public html/
[tcameron@host175 ~]$ mkdir public html
[tcameron@host175 ~]$ echo foo > index.html
[tcameron@host175 ~]$ mv index.html public html/
[tcameron@host175 ~]$ ls -Z public html/index.html
rw-rw-r-- tcameron tcameron user u:object r:user home t
                                                               public html/index
html
[tcameron@host175 ~]$ /sbin/restorecon -vR public html/
sbin/restorecon reset /home/tcameron/public html/index.html context user u:obje/
ct r:user home t:s0->user u:object r:httpd sys content t:s0
[tcameron@host175 ~]$
```


Pensamientos finales

- ¡No lo apagues!
- SELinux puede realmente salvarte en el caso de una brecha de seguridad
- Es *mucho* más sencillo usar SELinux hoy que apenas hace unos meses
- Seguridad del nivel de la NSA está disponible sin coste extra -¡úsala!