

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

THIS PAGE BLANK (USPTO)

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5 : A61K 37/64, C07K 5/02, 7/02		A1	(11) Internationale Veröffentlichungsnummer: WO 90/09191 (43) Internationales Veröffentlichungsdatum: 23. August 1990 (23.08.90)
 (21) Internationales Aktenzeichen: PCT/EP90/00219 (22) Internationales Anmeldedatum: 9. Februar 1990 (09.02.90) (30) Prioritätsdaten: P 39 04 040.2 10. Februar 1989 (10.02.89) DE		 (81) Bestimmungsstaaten: AT (europäisches Patent), BE (europäisches Patent), CH (europäisches Patent), DE (europäisches Patent), DK (europäisches Patent), ES (europäisches Patent), FR (europäisches Patent), GB (europäisches Patent), IT (europäisches Patent), JP, LU (europäisches Patent), NL (europäisches Patent), SE (europäisches Patent), US. Veröffentlicht Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist Veröffentlichung wird wiederholt falls Änderungen eintreffen.	
 (71)(72) Anmelder und Erfinder: SCHRAMM, Wolfgang [DE/DE]; Medizinische Kliniken Innenstadt der Universität München, Ziemssenstr. 1, D-8000 München 2 (DE). SCHRAMM, Hans, J. [DE/DE]; Max-Planck-Institut für Biochemie, Am Klopferspitz, D-8033 Martinsried (DE). (74) Anwalt: DEUFEL, Paul; Isartorplatz 6/IV, Postfach 26 02 47, D-8000 München 26 (DE).			
 (54) Title: AGENT FOR INHIBITING SYMMETRICAL PROTEINS, IN PARTICULAR ENZYMES (54) Bezeichnung: MITTEL ZUR HEMMUNG VON SYMMETRISCHEN PROTEINEN, INSbesondere VON ENZY-MEN (57) Abstract An agent for inhibiting symmetrical proteins, in particular enzymes, in particular for inhibiting HIV protease, consists of structurally symmetrical or almost symmetrical enzyme inhibitors. The molecules of these enzyme inhibitors have a structure with the same symmetry as the molecule of the enzyme to be inhibited or a structure with partly or approximately the same symmetry as the molecule of enzyme to be inhibited, but in any case with sufficient symmetry to ensure inhibition. (57) Zusammenfassung Die Erfindung betrifft ein Mittel zur Hemmung von symmetrischen Proteinen, insbesondere Enzymen, insbesondere zur Inhibition der HIV-Protease, in Form von strukturell symmetrisch oder fast symmetrisch gebauten Enzyminhibitoren, das sich dadurch auszeichnet, daß diese Enzyminhibitoren solche sind, deren Molekül in bezug auf das zu hemmende Enzymmolekül strukturell gleich-symmetrisch oder teilweise oder annähernd, jedoch zur Hemmung hinreichend, symmetrisch ist.			

-1-

Mittel zur Hemmung von symmetrischen Proteinen, insbesondere von Enzymen

- 1 Die Erfindung betrifft ein Mittel zur Hemmung von symmetrischen Enzymen, insbesondere zur Inhibition der HIV-Proteinase bzw. Protease, in Form von strukturell symmetrisch oder fast oder teilweise symmetrisch gebauten
5 Enzyminhibitoren.

Die spezifische Hemmung von Fremdenzymen (aus pathogenen Bakterien oder Viren) oder von körpereigenen Enzymen in pathologischen Zuständen ist ein wichtiges Anliegen der Medizin, da sie eine schonende Therapie von Erkrankungen erlaubt. Die Erfindung resultiert aus Versuchen, solche spezifischen Hemmstoffe für die Immunschwächekrankheit AIDS (Acquired Immune Deficiency Syndrome) zu finden. Sie erfolgten an der Proteinase, kurz auch "Protease" genannt, von HIV (Human Immunodeficiency Virus), einem spezifischen Enzym der AIDS verursachenden HI-Viren. Dieses Enzym ist für die Prozessierung der Vorläuferproteine verantwortlich. Es spaltet aus ihnen die fertigen Virusproteine heraus, aus denen dann das komplette Virus assembliert wird. Eine spezifische Hemmung der HIV-Protease sollte die Vermehrung der Viren unterbinden und die Symptome kurieren. Die Strategie der spezifischen Hemmung der Protease ist bei AIDS besonders bedeutungsvoll, da einmal immunologische Hemmansätze das Risiko in sich bergen, die restliche Immunabwehr des Körpers zu zerstören, und andererseits die Therapie unter Verwendung der bisher bekannten Hemmstoffe der Reversen Transkriptase von HIV (z.B. AZT, FLT, Suramin), einem anderen virusspezifischen Enzym, durch schwerste Nebenwirkungen beeinträchtigt ist. Auch die Therapie von AIDS mittels anderer Verbindungen (z.B. der polystylierten Polysaccharide) ist noch nicht überzeugend demonstriert worden oder auch mit schweren Nebenwirkungen belastet.

Es gibt zahlreiche Literatur über die HIV-Protease, wozu beispielsweise verwiesen sei auf

-3-

1 Es wurde festgestellt, daß strukturell symmetrisch gebaute
kurz "symmetrisch" genannte Enzyminhibitoren besonders gut
geeignet sind, um die Vermehrung von HI-Viren durch Hemmung
der symmetrischen (aus zwei identischen Halbmolekülen
5 bestehenden) viruskodierten Protease zu hemmen. Es wurde
ferner erkannt, daß auch andere symmetrische Enzyme auf
diese Weise gehemmt werden können. Symmetrische oder
teilweise symmetrische Enzyminhibitoren sind bekannt (z.B.
10 für eine Reverse Transkriptase, über deren Struktur und
Symmetrie jedoch noch nichts bekannt war), das vorliegende
Wirkungsprinzip der Zueinanderpassung von Symmetrie des
Enzyms und Symmetrie des Enzymhemmers jedoch nicht.
Symmetrische Inhibitoren auf Peptidbasis sind, soweit
bekannt, bisher nicht beschrieben worden und konnten auch
15 nicht erwartet werden, da die natürlichen Substrate von
Enzymen, auch von symmetrisch gebauten, nie symmetrisch
sind. Der Erfindung liegt die Erkenntnis zugrunde, daß bei
solchen Reaktionen (Bindung von unsymmetrischen Substraten
an symmetrische Enzyme, bzw. Hemmung von symmetrisch
20 gebauten Enzymen durch unsymmetrische Peptidinhibitoren)
entweder nur eine - gut passende - Hälfte des Peptids für
die Bindung verantwortlich ist und die andere Hälfte nur
eine Hilfsfunktion besitzt oder daß beide Seiten nicht
optimal passen, aber zusammen eine für die Hemmung
25 ausreichende Affinität ergeben. Gut passende symmetrische
Peptide und Peptidderivate (oder andere symmetrische,
organisch-chemische Verbindungen) sollten hingegen bei
symmetrischen Enzymen allgemein eine stärkere Bindung (und
gegebenenfalls Hemmung) vermitteln können als unsymmetrische
30 Peptide.

Es wurde ferner erkannt, daß aus Untereinheiten bestehende
Enzymkomplexe - symmetrische wie unsymmetrische - gebremst
werden können, wenn der Zusammenhalt der einzelnen
35 Untereinheiten durch geeignete Verbindungen gestört wird, so

-5-

1 Bei AIDS - wie auch bei anderen Krankheiten - sollte die
 hohe Spezifität und Bindungskraft der Inhibitoren eine
 relativ schonende Behandlung erlauben. Dies ist bei AIDS
 besonders wichtig, da dieses Krankheit eine sehr schonende
5 Behandlung benötigt, weil AIDS das Immunsystem schädigt und
 daher die Anfälligkeit des Körpers gegen Krankheiten aller
 Art drastisch zunimmt. Zum anderen wird gerade bei AIDS, das
 nicht kausal kuriert werden kann, da die Virus-Nukleinsäure
10 in das Genom eingebaut wird, eine lebenslängliche Therapie
 und damit eine sehr schonende und spezifische Behandlung
 nötig sein.

Ein solches Mittel zeichnet sich insbesondere dadurch aus,
daß das Peptid oder die peptidähnliche Struktur oder die
15 andere organisch-chemische Verbindung eine zentrale
 organisch-chemische Gruppe aufweist, die der Einfachheit
 halber M genannt werden soll, an die als Seitenketten Reste
 X, Y, Z, U, R gebunden sind, welche organische Reste sein
 können, insbesondere Aminosäuren oder Aminosäurederivate
20 oder Monosaccharide oder deren Derivate oder Fettsäurereste
 oder ihre Derivate, insbesondere aber Peptide, die jeweils
 gleich oder annähernd gleich und in bezug auf die Gruppe M
 symmetrisch oder annähernd symmetrisch sind, so daß sich
25 insgesamt eine symmetrische oder annähernd oder teilweise
 symmetrische Verbindung ergibt. Der Begriff "Symmetrie" ist
 hier im üblichen Sinn der Stereochemie zu verstehen, bezieht
 sich bei Proteinen also immer auf eine Drehachse.

Somit können durch solche Hemmstoffe Proteine, insbesondere
30 Enzyme gehemmt werden, wenn sie zumindest bezüglich des
 hemmbaren Molekülteils eine lokale Symmetrie besitzen. Dies
 sind z.B. Enzyme, die teilweise oder ganz aus gleichen
 Untereinheiten bestehen, obwohl sie zusätzliche
 Untereinheiten besitzen können. Neben HIV-Protease, von der
35 dies bekannt ist, gibt es auch andere virale Proteine,

- 1 Dies kann z.B. auf folgende Weise erreicht werden:
- 5 a) Wenn die Laufrichtung der Peptidketten in den beiden Hälften verschieden ist, dergestalt, daß in einer Hälfte vom Zentrum weg, dann muß in einer Hälfte durch Verwendung von Aminosäuren entgegengesetzter Chiralität (D statt L, bzw. umgekehrt) ein Ausgleich geschaffen werden. Der so entstandene Inhibitor ist dann bezüglich der Seitenketten noch annähernd symmetrisch, bezüglich der Peptidbindungen allerdings nicht. Dies genügt aber in aller Regel, daß der Hemmer für das zu hemmende Enzym noch hinreichend symmetrisch ist.
- 10 b) Wenn nicht alle Aminosäuren oder sonstige Reste des Inhibitors symmetrisch sind, sondern z.B. ein Tyrosin auf einer Seite durch ein Phenylalanin ergänzt wird, die restlichen Aminosäuren aber gleich und komplementär sind, ist immer noch mit einer hohen Hemmaktivität zu rechnen. Solche Hemmstoffe können sogar bezüglich der Löslichkeit, Membrangängigkeit und dergleichen günstiger sein als streng symmetrische Verbindungen. Für die Abweichung sind strukturelle und physikalisch-chemische Parameter wie Größe, Ladung, Hydrophilizität und dergleichen, maßgebend. So ist der Inhibitor
- 20 Phe-Thr-Ile-M-Leu-Ser-Tyr
bezüglich der genannten Eigenschaften "symmetrischer" als Ala-Arg-Gly-M-Gly-Asp-Ala (ungleiche Ladung, Arg/Asp)) oder Gly-Gly-Try-M-Gly-Gly-Gly (ungleiche Größe, Try/Gly), da der Unterschied, z.B. zwischen Thr einerseits und Ser andererseits geringer ist als zwischen Arg und Asp oder zwischen Try und Gly.

-9-

1

richtig

oben
unten

5

falsch

oben
unten

Die folgenden Beispiele zeigen teilweise oder annähernd symmetrische Peptide, die zu einer Hemmung der HI-Viren in H9-Zellen führen.

BEISPIEL 1

- 15 A) H-(D)-Asn-(D)-Leu-(D)-Thr-Gly-OH
 B) t-BOC-L-Leu-NH-CH₂-CHOH-CH₂-COOH
 C) Cl-CH₂-CO-Gly-Ala-Phe-Pro-Ile-Ala-OH
 D) CH₃CO-Thr-Leu-Asn-NH-CH₂-CHOH-CH₂-NH-Asn-Leu-Thr-COCH₃
 20 E) Ala-Asp-Thr-β-Naphthylamid
 F) CH₂-(-CH₂CO-(D)-Asn-(D)-Leu-(D)-Thr-Gly-OH)₂

Die Verbindungen (a), (b), (c), (d) wurden bei Molaritäten getestet, die von 0,1 μM bis 1000 μM reichten.
 25 Infektivitätsversuche wurden wie folgt durchgeführt: Eine HIV-1 Suspension mit einem Gehalt an 10² infektiösen Einheiten wurde auf 5 x 10⁶ H9 Zellen in einem Volumen von 1 mm für eine Zeitspanne von 2 h bei 4°C absorbiert. Nach dieser Zeitspanne wurden 9 ml an Gewebekulturmedium, welches 30 die geeignete Inhibitorkonzentration enthielt, zugegeben. Das Medium wurde jeden Tag gegen frisches Medium plus Inhibitor ausgetauscht. Zwei Kontrollkulturen ohne Inhibitor wurden mitangesetzt, eine, um den normalen Grad der Virusreplikation zu bestimmen sowie eine Kultur mit
 35

-11-

1 Acetyl-(D)-Ala-(D)-Val-(D)-Pro-(D)-Phe-(D)-Asn-(D)-Arg-NH₂

Acetyl-(D)-Gln-(D)-Val-(D)-Ile-(D)-Pro-(D)-Tyr-(D)-Asn-(D)-Gln-(D)-Arg-NH₂

5

Solche Verbindungen können bei sonst sehr substratähnlicher Struktur anstelle der spaltbaren -CONH-Peptidbindung eine nicht oder schwer spaltbare -NHCO-Bindung, also mit umgekehrter Richtung, besitzen, z.B. unter Verwendung des 10 retro-inverso-Prinzips unter gleichzeitiger Umkehrung von Laufrichtung der Sequenzen und der Konfiguration der Aminosäuren, z.B. nach den Formeln

(D)-A-NHCO-(D)-B-NHCO-(D)-C-NHCO-(D)-D-, anstelle eines natürlichen Substratpeptids der Formel

15

(L)-A-CONH-(L)-B-CONH-(L)-C-CONH-(L)-D-, wobei die Paare D und A, bzw. C und B, symmetrisch sein oder wenigstens eine strukturelle Ähnlichkeit (bezüglich Hydrophobizität, Ladung, Größe der Seitenketten etc.) zeigen sollen.

20

BEISPIEL 3

Acetyl-(D)-Arg-(D)-Ala-(D)-Gln-(D)-Leu-NH-CO-CH(C₄H₉)-CO-(L)-Gln-(L)-Ala-(L)-Arg-NH₂

25

Acetyl-(L)-Arg-(L)-Ala-(L)-Asn-(L)-Leu-NH-CH₂-CH(C₃H₇)-CO-(D)-Asn-(D)-Gln-(D)-Leu-NH₂

30

Acetyl-(D)-Arg-(D)-Ala-(D)-Gln-NH-CH₂-CO-CH₂-CO-(L)-Gln-(L)-Ala-(L)-Arg-NH₂

Acetyl-(D)-Arg-(D)-Ala-(D)-Asn-Statin-(L)-Asn-(L)-Ala-(L)-Arg-NH₂

35

1 Statinreste oder zwei verwandte Verbindungen so angeheftet werden, daß insgesamt eine räumlich-symmetrische oder annähernd symmetrische oder teilweise symmetrische Gesamtverbindung entsteht, wie dies auch für Beispiel 4
5 erläutert ist,

und daß in den verwendeten Verbindungen an eine zentrale organisch-chemische Gruppe mit zwei gleichen Substituenten zwei Peptide oder peptidähnliche Verbindungen mit gleicher oder annähernd gleicher und sich entsprechender Aminosäuresequenz und gleicher Konfiguration bzw. Chiralität, aber mit umgekehrter Laufrichtung der Peptidbindungen so angeheftet werden, daß insgesamt eine räumlich-symmetrische oder annähernd symmetrische oder teilweise symmetrische Gesamtverbindung entsteht, wie dies auch für Beispiel 7 gezeigt ist,

ferner, daß wie auch in Beispiel 8 gezeigt, in den verwendeten Verbindungen an eine zentrale organisch-chemische Gruppe mit zwei unterschiedlichen Substituenten zwei Peptide oder peptidähnliche Verbindungen mit gleicher oder annähernd gleicher und sich entsprechender Aminosäuresequenz mit gleicher Laufrichtung der Peptidbindungen, aber mit umgekehrter Chiralität der Aminosäuren so angeheftet werden, daß insgesamt eine räumlich-symmetrische oder annähernd oder teilweise symmetrische Gesamtverbindung entsteht,

und schließlich, daß in den verwendeten Verbindungen an eine symmetrische oder teilweise symmetrische oder annähernd symmetrische Verbindung chemisch reaktive Reste, z.B. entsprechend den Formeln XCH_2CO- , N_2CHCO- , $NC-CH_2-CO-$, RO_2C- , $CH_2=CR-$, RO_nS- , $HS-$, $RO(H_2N=)C^+$ - so angeheftet werden, daß die Verbindungen von Zielenzym reversibel oder irreversibel gebunden werden können. Hier

-15-

1 BEISPIEL 5

R-Asp-Thr-Gly-R' oder

5 R-Asp-Ser-Gly-R' oder

R-A-Asp-Thr-Gly-B-R' oder

10 Acetyl-Ile-Asp-Thr-Gly-Ala-NH₂ oder

Isovaleryl-Ile-Asp-Ser-Gly-Ala-NH-(CH₂)₃-CH₃ oder

Acetyl-Asp-Thr-Gly-Ala-NH₂

15 Chloracetyl-Asp-Thr-Gly-Ala-NH₂

Acetyl-Ile-Gly-Arg-Asn-NH₂

20 Acetyl-Ile-Gly-Gly-Arg-Asn-Ile-NH₂

25 Die verwendeten Verbindungen enthalten die Aminosäuresequenz Asp-Thr-Gly oder Asp-Ser-Gly oder verwandte oder ähnliche Aminosäuresequenzen oder strukturell ähnliche organisch-chemische Reste, die im Zielenzym zur Bildung eines funktionellen aktiven Zentrums aus gleichen oder entsprechenden Teilen verschiedener Untereinheiten der komplexen Enzyme beitragen oder verantwortlich sind, so daß die Verbindungen die Struktur oder die Stabilität des aktiven Zentrums beeinträchtigen oder die Bildung verhindern können.

30 BEISPIEL 6

35 Acetyl-Thr-Leu-Trp-Gln-Arg-Pro-Leu-Val-NH₂ oder

-17-

- 1 -S-S-, -S-, -O-,
 -CO-CHR-CH(OH)-CHR'-CO-, -NR-NR'-,
 -NH-CHR-CH(OH)-CHR'-NH-, -NH-CF₂-CO-CH₂-NH-,
 -NH-CF₂-CO-CF₂-NH-, -CO-(CH₂)₃-CO-,
 5 -NH-(CH₂)₃-NH-, -CO-CH₂-O-CH₂-CO-, -N(OR)-, -NR-,
 -P(O)_nOH-, -CO-CHR-CO-,
 -NH-CH₂-O-CH₂-NH-, -CO-CH₂-NR-CH₂-CO-,
 -N(C₅H₁₁)-CF₂-CO-CF₂-N(C₅H₁₁)-,
 -N(C₄H₉)-CH₂-CH(OH)-CH₂-N(C₄H₉)-,
 10 -(2S,3S)-NH-CH(CH₂C₆H₁₁)-CH(OH)-CH₂-NR-,
 oder ähnliche Verbindungen, wobei R und R' Wasserstoff oder
 Aryl- oder Alkylreste bis C₁₂ bedeuten und n die Zahl 1
 oder 2 bedeutet.
- 15 In den verwendeten Verbindungen werden an eine zentrale
 organisch-chemische Gruppe mit zwei gleichen Substituenten
 zwei Peptide oder peptidähnliche Verbindungen mit gleicher
 oder annähernd gleicher oder sich entsprechender
 Aminosäuresequenz und gleicher Konfiguration, aber mit
 20 umgekehrter Laufrichtung so angeheftet, daß insgesamt eine
 räumlich symmetrische oder annähernd symmetrische oder
 teilweise symmetrische Gesamtverbindung entsteht, z.B.
 entsprechend den Formeln
 (L)-A-CONH-(L)-B-CONH-(L)-C-CONH-M-NHCO-(L)-C-NHCO-
 25 (L)-B-NHCO-(L)-A oder
 (L)-C-NHCO-(L)-B-NHCO-(L)-A-NHCO-M-CONH-(L)-A-CONH-
 (L)-B-CONH-(L)-C oder
 (L)-A-CONH-(L)-B-CONH-(L)-C-CONH-NHCO-(L)-C-NHCO-
 (L)-B-NHCO-(L)-A oder
 30 (L)-C-NHCO-(L)-B-NHCO-(L)-A-NHCO-CONH-(L)-A-CONH-
 (L)-B-CONH-(L)-C oder
 (L)-A-CONH-(D)-B-CONH-(L)-C-CONH-M-NHCO-(L)-C-NHCO-
 (L)-B-NHCO-(L)-A oder
 (L)-C-NHCO-(L)-B-NHCO-(L)-A-NHCO-M-CONH-(L)-A-CONH-
 35 (L)-B-CONH-(D)-C oder

-19-

- 1 (D)-A-CONH-(D)-B-CONH-(D)-C-CONH-M-CONH-(L)-C-CONH-
 (L)-B-CONH-(L)-A, oder
 (D)-A-NHCO-(D)-B-NHCO-(D)-C-NHCO-M-NHCO-(L)-C-NHCO-
 (L)-B-NHCO-(D)-A
 5 wobei A, B, C Aminosäurereste und M eine zentrale Gruppe
 darstellen.

Bei den verwendeten Verbindungen wird im Falle von
 Proteinasen als Zielenzym die Enzymhemmung dadurch erreicht,
 daß sie anstelle der spaltbaren Peptidbindungen eine
 nichtspaltbare Bindung besitzen, z.B. nach den Formeln
 -CR₂-NH-, -CH(OH)-NH-, -CO-N(CH₃)-, -P(O)_n-NH-,
 -(3S,4S)-4-Amino-3-hydroxy-6-methylheptansäure- (Statin),
 -(3S,4S)-3-Hydroxy-4-amino-5-phenylpentansäure (AHPPA),
 15 oder ähnliche Verbindungen, wobei R und R' Wasserstoff oder
 Aryl- oder Alkylreste bis C₁₂ bedeuten und n die Zahl 1
 oder 2 bedeutet.

BEISPIEL 9

- 20 NH₂-Arg-Leu-Asn-CO-(CH₂)₃-CO-Asn-Leu-Lys-NH₂
 H₂N-(D)-Leu-(D)-Asn-CO-(CH₂)₃-CO-(D)-Asn-(D)-Ile-NH₂
 25 NH₂-Leu-Asn-CO-CH₂-NH-CH₂-CO-Asn-Leu-Arg-OR
 NH₂-Arg-Leu-Asn-CO-CH₂-CHOH-CH₂-CO-Asn-Leu-Arg-NH₂
 Acetyl-Arg-Leu-Asn-NH-CH₂-NH-CH₂-NH-Asn-Leu-Arg-Acetyl
 30 H-Leu-Leu-Asn-NH-CHF-CO-CHF-NH-Asn-Leu-Arg-H
 Acetyl-Arg-Leu-Asn-NH-CH₂-O-CH₂-NH-Asn-Leu-Arg-Acetyl
 35 Acetyl-Arg-Leu-Asn-NH-CH₂-CH(OH)-CH₂-NH-Asn-Leu-H

-21-

1 Beispiele für zentrale Gruppen:

-NH-CH(OH)-CH(OH)-NH-, -O-, Statin,
 -NH-CH(CH₂C₆H₁₁)-CH(OH)-CH₂-NH-,
 5 -NH-CH(C₄H₉)-CO-CH(C₄H₉)-NH-,
 -NH-CH₂-CH(OH)-CH₂-NH-,
 (1S,3S)-NH-CH(Cyclohexylmethyl)-CO-CH(Cyclohexylmethyl)-
 NH-, 2-Alkylstatin, -CH₂-, Ethylenepoxid, Thiophen,

10 Beispiele für Seitenketten:

Ac-Ser-Gln-Asn-Tyr-, H-His-Pro-His-Tyr-,
 Ac-Arg-Ser-Gln-His-Cha-, H-Ala-Ala-

15 Beispiele für ganze Inhibitoren:

tBoc-Arg-Ser-Gln-His-NR-CH₂-CH(OH)-CH₂-NR-His-Gln-Ser-Arg-tBoc,
 (R==CH₂-CH(CH₃)₂, -CH₂-C₆H₁₁ etc.)
 20 H-His-Pro-His-NH-CHR-CH(OH)-CH₂-NH-His-Pro-His-H
 (R==CH₂-C₆H₁₁ etc.)

25 AC-His-Pro-His-NH-CHR-CH(OH)-CH₂-CO-NH-D-His-D-Gln-OCH₃
 (R==CH₂-C₆H₁₁ etc.)

30 Ac-Arg-Ser-Gln-Asn-
 -NH-CH(CH₂C₆H₁₁)-CO-CH(CH₂C₆H₁₁)-NH-
 -Asn-Gln-Ser-Arg-Ac
 (zentrale Gruppe: 1S,3S; statt CO auch -CH(OH)-, -CO-CO-,
 -CH(OH)-CH(OH)-, Furan, Ethylenepoxid etc.)

tBoc-His-Pro-Phe-His-Leu-Statin-D-His-D-Phe-D-Pro-D-His- tBoc

1 Verbindungen, welche Peptide oder peptidanealoge Strukturen
enthalten oder von solchen Strukturen abgeleiteten
Verbindungen bestehen, wobei z.B.
folgende symmetrische oder teilweise symmetrische
5 Verbindungen in betracht gezogen werden:
 $X-Y-Z-M-Z-Y-X$, $Z-M-Z$, $X-Y-Z-Z-Y-X$, $X-Y-Z-M-Z-Y'$,
 $X-U-Y-X-Z-Z-X-Y'-X$, $Z-Z-Y-R$, $R-U-X-Y-Z-M-Z$, oder auch nur M,
wobei X,Y,Z,U,R organische Reste, insbesondere Aminosäuren
oder Derivate davon, Monosaccharide oder Derivate,
10 Fettsäurereste oder Derivate, sind, M die zentrale
organisch-chemische Gruppe darstellt und die beiden
Strukturen Y, die zu beiden Seiten der zentralen Gruppe
stehen, strukturell oder in ihren physikalisch-chemischen
Eigenschaften ähnliche Verbindungen sind, was zusätzlich
15 oder stattdessen auch für die anderen genannten Gruppen X,
Z, U oder R gelten kann. Bei guter Passung kann eine
symmetrische oder fast symmetrische Gruppe M zur Hemmung
ausreichen, z.B. ein Dipeptidanalogon, wie es auf Seite 20,
Zeile 18-20 für die Gruppe M von -NH-... bis ...-NH- gezeigt
20 ist.

Die Voraussetzung zur Bindung der verwendeten Verbindungen
an das Zielenzym kann z.B. dadurch geschaffen werden, daß in
ihnen typische Spaltsequenzen oder Bindungssequenzen der
natürlichen Substrate oder mit ihnen verwandten Strukturen
25 oder Strukturen dieser Art verwendet werden, die so
modifiziert wurden, daß sie dem Zielenzym nicht mehr als
Substrat dienen und als Inhibitoren wirken. In den
verwendeten Verbindungen können die Voraussetzungen zur
Hemmung der Zielenzyme auch dadurch erreicht werden, daß
30 Substrate oder substratähnliche Verbindungen so modifiziert
werden, daß sie anstelle der enzymatisch veränderbaren
Stellen nicht mehr veränderbare Stellen tragen und daher als
Inhibitoren wirken.

-25-

- 1 Gruppen vorhanden sind, die als Zentren der Symmetrie oder
 der annähernden Symmetrie wirken, oder die verwendeten
 Verbindungen besitzen zentrale organisch-chemische Gruppen
 mit zwei identischen oder in ihrer Funktion äquivalenten
5 organischen Substituenten, die mit zwei identischen oder
 teilweise identischen Peptiden oder peptidähnlichen
 Verbindungen so reagieren können, daß eine symmetrische oder
 teilweise symmetrische Gesamtverbindung entsteht, z.B.
10 entsprechend den Formeln
 C-CONH-B-CONH-A-CONH-M-NHCO-A-NHCO-B-NHCO-C
 oder
 C-NHCO-B-CHCO-A-NHCO-M-CONH-A-CONH-B-CONH-C,
 wobei A, B, C Aminosäurereste und M eine zentrale
 organisch-chemische Gruppe darstellen. Die verwendeten
15 Verbindungen können eine symmetrische oder annähernd
 symmetrische zentrale organisch-chemische Gruppe mit zwei
 identischen oder in ihrer Funktion äquivalenten organischen
 Substituenten besitzen, die in der Länge mindestens einem
 Dipeptid entsprechen und mit Peptiden oder peptidähnlichen
20 Verbindungen so reagieren können, daß eine symmetrische oder
 annähernd symmetrische oder teilweise symmetrische
 Gesamtverbindung entsteht. Falls das oben erstgenannte
 Formelbeispiel (...-NH-M-NH-...) einem guten Inhibitor
25 entspricht, muß im zweiten Beispiel (...-CO-M-CO-...) die
 Chiralität der verwendeten gleichen Aminosäuren (A,B,C)
 umgedreht werden ("D"-Formen), um eine ähnlich gute Passung
 und damit Hemmung zu erreichen.
- 30 Für den Fall einer zentralen organisch-chemischen Gruppe mit
 zwei ungleichen Substituenten, an die zwei gleiche oder
 annähernd gleiche oder sich entsprechende Peptide oder
 peptidähnliche Verbindungen angeheftet sind, seien als
 Beispiele die Formeln
 C-CONH-B-CONH-A-CONH-M-CONH-A-CONH-B-CONH-C
35 oder

1 In den verwendeten Verbindungen kann an ein Peptid oder an
eine peptidähnliche Verbindung ein Nichtpeptidrest so
gebunden werden, daß eine annähernd symmetrische oder
teilweise symmetrische Gesamtverbindung entsteht, z.B. in
5 bezug auf eine oder mehrere physikalisch-chemische
Eigenschaften wie Ladung, Hydrophilizität, Hydrophobizität
oder Größe der Seitenkette bzw. des Restes, oder in den
verwendeten Verbindungen ist an ein Peptid oder an eine
10 peptidähnliche Verbindung oder an ein Peptid mit einer
zentralen organisch-chemischen Gruppe eine Seitenkette oder
ein Nichtpeptidrest so gebunden, z.B. entsprechend den
Formeln B-A-M-A-R oder R-B-A-M-A oder R-C-B-A-B-A oder
B-A-M-R,
wobei A,B,C,D, Aminosäurerreste, M eine zentrale
15 organisch-chemische Gruppe und R einen organischen Rest
darstellt, dergestalt, daß insgesamt eine räumlich annähernd
symmetrische oder teilweise symmetrische Gesamtverbindung
entsteht, z.B. in bezug auf eine oder mehrere
physikalisch-chemische Eigenschaften, wie Ladung,
20 Hydrophilizität, Hydrophobizität oder Größe der Seitenkette
bzw. des Restes.
Es können aber an ein symmetrisches oder teilweise
symmetrisches oder annähernd symmetrisches Peptid oder eine
peptidähnliche Verbindung chemisch reaktive Reste, z.B.
25 entsprechend den Formeln XCH_2CO- , N_2CHCO- , $NC-CH_2-CO-$,
 RO_2C- , $CH_2=CR-$, RO_nS- , $HS-$, $RO(H_2N=)C^+-$, so
gebunden sein, daß die Verbindungen vom Zielenzym reversibel
oder irreversibel gebunden werden können. Auch hier bedeutet
n die Zahl 1 oder 2 und R ist ein üblicher Esterrest, wie
30 schon früher angegeben.
Die verwendeten Verbindungen können auch Aminosäuresequenzen
der Enzyme oder Proteine enthalten, die für die Assoziation
ihrer Untereinheiten oder Teilstrukturen oder die Stabilität
oder strukturelle Anordnung der funktionierenden Enzyme und
35 Proteine mitverantwortlich sind, oder verwandte oder

-29-

- 1 oder von körpereigenen Enzymen in pathologischen Zuständen,
durch stabile organisch-chemische Verbindungen gehemmt
werden, was zur Therapie dienen kann, wenn die verwendeten
Verbindungen Aminosäuresequenzen der strukturell
5 unsymmetrischen komplexen Zielenzyme oder verwandte oder
ähnliche Aminosäuresequenzen oder strukturell ähnliche
organisch-chemische Reste enthalten, die für die Assoziation
der Untereinheiten der Enzyme und die Bildung und den
Zusammenhang der funktionierenden Enzymkomplexe
10 mitverantwortlich sind, so daß die Verbindungen die Bildung
oder den Zusammenhalt oder die Stabilität der Enzymkomplexe
stören und ihre Aktivität beeinträchtigen oder verhindern
können.

15

20

25

30

35

-31-

1

	Day post infection	7	8	9	no inhibitor	12
HIV Control 1		12401	23708		18921	165540
HIV Control 2		4183	30054		13680	168620
C 1000 µM		7646	4308		5343	107640
100 µM		3838	6370		8860	96780
10 µM		5358	4398		8823	158800
1 µM		4575	3198		4186	164240
0,1 µM		5561	2314		7477	113340
D 1000 µM - Not tested						
100 µM		4393	2663		3022	1533
10 µM		4112	5411		2914	210720
1 µM		6777	2058		2227	213750
0,1 µM		5550	3844		2304	139610

ERSATZBLATT

-33-

35 30 25 20 15 10 5 1

Results: HIV-1 antigen production as measured in antigen capture ELISA, values
are o. D. H 9 cells readings.

Day post infection	no inhibitor											
	1	2	3	4	5	6	7	8	9	10	11	12
HIV Control 1	0,075	0,059	0,068	0,059	0,080	0,182	0,811	0,748	1,052	1,017		
HIV Control 2	0,074	0,062	0,063	0,059	0,053	0,115	0,498	0,698	1,938	1,048		
A 1000 µM	0,087	0,058	0,073	0,054	0,056	0,102	0,286	0,597	0,899	1,054		
100 µM	0,068	0,064	0,065	0,053	0,057	0,070	0,361	0,374	0,915	1,013		
10 µM	0,061	0,075	0,069	0,044	0,064	0,140	0,256	0,499	0,727	1,003		
1 µM	0,064	0,060	0,075	0,057	0,053	0,136	0,213	0,394	0,694	1,065		
0,1 µM	0,060	0,066	0,062	0,055	0,058	0,181	0,363	0,478	0,737	1,037		
B 1000 µM	0,076	0,068	0,050	0,050	0,063	0,075	0,279	0,577	0,811	1,050		
100 µM	0,068	0,070	0,063	0,052	0,052	0,099	0,359	0,260	0,890	0,960		
10 µM	0,063	0,060	0,059	0,047	0,055	0,087	0,303	0,342	0,645	1,038		
1 µM	0,063	0,060	0,061	0,050	0,052	0,105	0,186	0,237	0,745	0,970		
0,1 µM	0,061	0,063	0,039	0,063	0,055	0,149	0,389	0,232	0,700	1,047		
C 1000 µM	0,071	0,053	0,061	0,057	0,123	0,096	0,415	0,778	1,019	1,000		
100 µM	0,064	0,056	0,062	0,053	0,061	0,100	0,265	0,296	0,787	0,940		
10 µM	0,069	0,048	0,066	0,064	0,049	0,099	0,228	0,292	0,643	1,040		
1 µM	0,061	0,054	0,060	0,050	0,051	0,133	0,267	0,239	0,808	1,042		
0,1 µM	0,062	0,069	0,055	0,052	0,054	0,105	0,276	0,336	0,588	1,010		

ERSATZBLATT

1 Patentansprüche

1. Mittel zur Hemmung von symmetrischen Proteinen, insbesondere Enzymen, insbesondere zur Inhibition der HIV-Protease, in Form von strukturell symmetrisch oder fast symmetrisch gebauten Enzyminhibitoren, dadurch gekennzeichnet, daß diese Enzyminhibitoren solche sind, deren Molekül in bezug auf das zu hemmende Enzymmolekül strukturell gleich-symmetrisch oder teilweise oder annähernd, jedoch zur Hemmung hinreichend, symmetrisch ist.
2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß die Inhibitoren organisch-chemische Verbindungen, insbesondere Peptide sind oder peptidähnliche Struktur haben und eine zentrale organisch-chemische Gruppe M aufweisen, an die als Seitenketten organische Reste gebunden sind, insbesondere Aminosäuren oder Aminosäurerederivate, Monosaccharide oder deren Derivate oder Fettsäurereste oder ihre Derivate, insbesondere Peptide, die jeweils gleich oder annähernd gleich und in bezug auf die Gruppe M symmetrisch oder annähernd symmetrisch sind.
- 25 3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für die Hemmung von Proteinasen die Hemmverbindungen anstelle der spaltbaren Peptidbindungen eine nichtspaltbare Bindung besitzen.
- 30 4. Mittel nach Anspruch 3, dadurch gekennzeichnet, daß die Hemmverbindungen bei sonst sehr substratähnlicher Struktur anstelle der spaltbaren -CONH-Peptidbindung eine nicht oder schwierspaltbare -NHCO-Bindung (also mit umgekehrter Richtung) besitzen.

- 1 enthalten, die im Zielenzym zur Bildung eines
funktionellen aktiven Zentrum aus gleichen oder
entsprechenden Teilen verschiedener Untereinheiten der
komplexen Enzyme beitragen oder verantwortlich sind, so
5 daß die Verbindungen die Struktur oder die Stabilität
des aktiven Zentrums beeinträchtigen oder die Bildung
des aktiven Enzyms verhindern können.
9. Mittel nach einem oder mehreren der vorhergehenden
10 Ansprüche, dadurch gekennzeichnet, daß die verwendeten
Hemmverbindungen im Falle der HIV-Protease die
Aminosäuresequenzen Ile-Gly-Arg-Asn,
Trp-Lys-Pro-Lys-Met-Ile-Gly-Gly-Ile-Gly-
Gly-Phe-Ile-Lys-Val-Arg; Gln-Ile-Leu-Ile-Glu-Cys;
15 Val-Gly-Pro-Thr-Pro-Val-Asn; Ile-Gly-Arg-Asn;
Ala-Gly-Arg-Asn-Leu-Leu-Thr-Gln-Ile oder verwandte oder
ähnliche Aminosäuresequenzen oder strukturell ähnliche
organisch-chemische Reste enthalten, die im Zielenzym
zur Bildung eines funktionellen aktiven Zentrums aus
20 gleichen oder entsprechenden Teilen verschiedener
Untereinheiten der komplexen Enzyme beitragen oder
verantwortlich sind, so daß die Verbindungen die
Struktur oder die Stabilität des aktiven Zentrums
beeinträchtigen oder die Bildung des aktiven Enzyms
25 verhindern können.

30

35

International Application No. PCT/EP 90/00219

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Caption or Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
	line 27 - page 122, left hand column	

III.EINSCHLÄGIGE VERÖFFENTLICHUNGEN (Fortsetzung von Blatt 2)

Art *	Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile	Betr. Anspruch Nr.
	groups in the structure and function of HIV-1 protease as revealed by molecular modeling studies", Seiten 118-122, siehe Seite 121, rechte Spalte, Zeile 27 - Seite 122, linke Spalte, Zeile 7	