

Model the density of the probability from which x is drawn. $\mathbf{x} \sim p(\mathbf{x}; \mathbf{w})$, where \mathbf{w} represents an unknown parameter vector that needs to be learned.

Decision theory, abnormal event detection.

Density Estimation

How do we obtain the model parameters? Which model is the best?

Suppose we have a *family* of probability models for $\mathbf{x} \sim p(\mathbf{x}; \mathbf{w})$, where \mathbf{w} represents an unknown parameter vector.

We will consider two forms of learning:

- o Maximum Likelihood
- o Bayesian learning

We will consider Gaussians models. Formally

Let
$$X = \{x_1, x_2, ..., x_N\}$$
 we wish to fit a density $p(x) = N_x(\mu, \Sigma)$.

$$x_n \in \mathbb{R}^d, \mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d}$$

Maximum Likelihood estimation

Assuming samples are independent...

$$p(\mathbf{\chi} \mid \mathbf{w}) = \prod_{n=1}^{N} p(\mathbf{x}_n \mid \mathbf{w}) = L(\mathbf{w})$$

 $\mathsf{L}(w)$ is the likelihood of the observed data given the parameter w

Intuitively choosing \mathbf{w} that makes $L(\mathbf{w})$ large is good (makes the data more likely). So ...

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \ \mathsf{L}(\mathbf{w})$$
 (maximum likelihood)

we could argue (and will) that $p(\mathbf{x} \mid \mathbf{w})$ is not the relevant quantity (we know the data exists with probability 1!)

Maximum Likelihood fitting

In practice we minimise:

$$E = -\ln L(\mathbf{w}) = -\sum_{\mathbf{n}} \ln p(\mathbf{x}_{\mathbf{n}} \mid \mathbf{w})$$

the negative log likelihood.

General ML estimates will require *numerical optimization*. Depending on model structure we could use:

- Gradient descent (back prop.)
- Analytically solve for $\frac{\nabla L}{\nabla w}$ = 0

or alternatives (not covered in ELEM041):

- Levenberg Marquardt
- Conjugate gradient

ML fitting a signle Gaussians

A simple example of *unsupervised learning* is fitting a Gaussian distribution to some data. In one dimension:

let $\chi = \{x_1, x_2, ..., x_N\}$ we wish to fit a density $p(x) = N_x(\mu, \sigma^2)$

$$E = -\ln L(\mathbf{w}) = \sum_{n} \left(\frac{(x_n - \mu)^2}{2\sigma^2} + \ln \sigma + \frac{1}{2} \ln 2\pi \right).$$

Quadratic in μ , hence ML estimate $\hat{\mu}$:

$$\left. \frac{\partial E}{\partial \mu} \right|_{\hat{\mu}} = -\sum_{n} \frac{(x_n - \hat{\mu})}{\sigma^2} = 0$$

$$\rightarrow \qquad \hat{\mu} = \frac{1}{N} \sum_{n} x_{n} \qquad \text{(sample mean!)}$$

ML fitting a single Gaussian

To solve for ML estimate of σ we use the fact that we already know $\hat{\mu}$:

$$\frac{\partial E}{\partial \sigma} = \sum_{n} \left(\frac{1}{\sigma} - \frac{(\mathbf{x}_{n} - \hat{\mathbf{\mu}})^{2}}{\sigma^{3}} \right)$$

Equating to zero gives:

$$\sigma^2 = \frac{1}{N} \sum_{n} (\mathbf{x}_n - \hat{\mu})^2$$
 (sample variance)

Recall that the sample variance is a *biased* estimate for variance. However such ML estimates are consistent and asymptotically optimal.

ML fitting a signle Gaussians

In higher dimensions
$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

we get the similar results of:

ML estimate for mean $\hat{\mu}$:

$$\hat{\mathbf{\mu}} = \frac{1}{N} \sum_{n} \mathbf{x_n}$$
 (sample mean)

and ML estimate for covariance matrix:

$$\hat{\Sigma} = \frac{1}{N} \sum_{n} (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}})^{T}$$
 (sample covariance)

Overfitting in ML (regression)

Given a limited data set maximising $\mathcal{L}(\mathbf{w})$ may lead to *overfitting*. If the model order (dim. \mathbf{w}) is large enough we can 'exactly' fit model to data.

10th order polynomial fit

Overfitting in ML density estimation

Let $X = \{x_1, x_2, ..., x_N\}$ we wish to fit a density $p(x) = N_x(\mu, \Sigma)$. $x_n \in \Box^d, \mu \in \Box^d, \Sigma \in \Box^{d \times d}$

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

In the case that the data dimensionality is higher than the data samples the covariance matrix is singular. Non invertible, zero determinant.

Overfitting in ML density estimation

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

1. Put constraints in the form of the covariance matrix. E.g.

It constraints in the form of the covariance matrix. E.g.
$$\Sigma = \sigma I = \begin{bmatrix} \sigma & \sigma \\ \sigma & \sigma \end{bmatrix} \qquad \sigma^2 = \sum_n \left(x_n - \mu \right)^T \left(x_n - \mu \right)$$

$$\sigma^2 = \sum_{n} \left(x_n - \mu \right)^T \left(x_n - \mu \right)$$

Overfitting in ML density estimation

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \mid \Sigma \mid^{1/2}} e^{-\frac{1}{2}(x-\mu) \cdot \Sigma \cdot (x-\mu)}$$
2. Put constraints in the form of the covariance matrix. E.g.
$$\Sigma = [\sigma_1 \quad ... \quad \sigma_d] I = \begin{bmatrix} \varsigma_r \\ \vdots \\ \varsigma_d \end{bmatrix}$$

$$\sigma_j^2 = \sum_n \left(x_n(j) - \mu(j) \right)^2$$
Ares aligned ellipse

$$\sigma_{j}^{2} = \sum_{n} \left(x_{n}(j) - \mu(j) \right)^{2}$$

Overfitting in ML density estimation

$$p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

2. Regularise the covariance matrix by adding a diagonal matrix $\; \Sigma_0 = \sigma_0^{\; 2} I \;$

$$\hat{\Sigma} = \sum_{n} \left(x_{n} - \mu \right) \left(x_{n} - \mu \right)^{T} + \sigma_{0}^{2} I = \begin{bmatrix} \sum_{n} \left(x_{n}(t) - \widehat{\lambda}(t) \right)^{2} + G_{0} \\ \sum_{n} \left(x_{n}(t) - \widehat{\lambda}(t) \right)^{2} + G_{0} \end{bmatrix}$$

Leads to "thicker" Gaussian. Equivalent to adding zero mean Gaussian noise (with $\Sigma_0=\sigma_0^{~2}I$) to the original dataset.

Bayesian learning I

ML generates an estimator \mathbf{w} for $p(\mathbf{x})$ from a family of densities $p(\mathbf{x} \mid \mathbf{w})$ by optimizing $L(\mathbf{w})$. However the data already exists!

We are really interested in the probability of \mathbf{w} given the data. This extends the notion of RV to the parameter \mathbf{w} .

Bayes rule gives:

$$p(\mathbf{w} \mid \mathbf{\chi}) = \frac{p(\mathbf{\chi} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathbf{\chi})}$$

Requires a prior distribution on $\mathbf{w},\ p(\mathbf{w})$. Note also the role played by the likelihood, $p(\chi \mid \mathbf{w})$.

Bayesian learning II

We can also evaluate the probability of new data

$$p(x^{(\text{new})} \mid \chi) = \int p(x \mid \mathbf{w}) p(\mathbf{w} \mid \chi) d\mathbf{w}$$

Not just one value of w is used, instead a weighted average of values (this is the basis of the popular Kalman filter).

Bayesian Inference → Integration NOT optimization

In practice integrating and combining densities is difficult. One option is to use $conjugate\ priors\ (\mathbf{p(w)})$ is a conjugate prior if the posterior $\mathbf{p(w|\chi)}$ has the same functional form – see the Gaussian example below).

Modern Bayesian methods have concentrated on using Monte Carlo integration (computationally intensive but very general).

Bayesian learning: 1-d Gaussians

Suppose $p(x | \mu) \sim N_x(\mu, \sigma^2)$ where σ^2 is known. We wish to estimate μ from data. Assume Gaussian prior on μ :

$$p(\mu) \sim N_{\mu}(\mu_0, \sigma_0^2)$$

(intuitively we believe that μ belongs within some range of values)

Inferring μ given some data : $\chi = \{x_1, x_2, ..., x_N\}$:

$$p(\mu \mid \chi) = \frac{p(\chi \mid \mu)p(\mu)}{p(\chi)}$$

Product of Gaussians = Gaussian (why?)

$$-\ln(\mu \mid \chi) = \left[\sum_{n} \frac{(x_n - \mu)^2}{2\sigma^2}\right] + \left[\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right] + const.$$

$$-\log(\mu \mid \chi) = \left[\sum_{n} \frac{(x_n - \mu)^2}{2\sigma^2}\right] + const.$$

Still quadratic in μ , hence Gaussian : $p(\mu \mid \chi) = N_{\mu}(\mu_N, \sigma_N^2)$

Bayesian learning: 1-d Gaussians

Equating the quadratic terms, μ^2 :

$$\frac{\mu^2}{2\sigma_N^2} = \frac{N\mu^2}{2\sigma^2} + \frac{\mu^2}{2\sigma_0^2}$$

giving

$$\sigma_N^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1}$$

and the linear terms, μ :

$$\frac{2\mu_{N}\mu}{2\sigma_{N}^{2}} = \frac{2\mu_{0}\mu}{2\sigma_{0}^{2}} + \frac{1}{2\sigma^{2}} \sum_{n} 2x_{n}\mu$$

giving:

$$\mu_N = \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \overline{x} + \frac{\sigma^2 \mu_0}{N\sigma_0^2 + \sigma^2}$$

ELEM041 Machine Learning

Bayesian choice of w

Often we may wish to get a single value for \mathbf{w} as an estimate from some data. From a Bayesian perspective this involves defining a loss function (c.f. Bayesian decision theory). 2 common choices are:

1. Posterior Mean:

$$\mathbf{w} = E\{\mathbf{w} \mid \mathbf{\chi}\} = \int \mathbf{w} \, p(\mathbf{w} \mid \mathbf{\chi}) \, d\mathbf{w}$$

this comes from a Mean Squared Error loss function.

2. Maximum a Posteriori (MAP) estimates:

$$\mathbf{w} = \underset{\dots}{\operatorname{argmax}} [p(\mathbf{w} \mid \mathbf{\chi})]$$

closely related to ML estimation – not really *very* Bayesian (comes from a 0-1 loss function)

ELEM041 Machine Learning

The Bayes - ML link

We can see that ML and Bayesian learning are linked through the likelihood:

$$p(\mathbf{w} \mid \chi) \propto L(\mathbf{w}) p(\mathbf{w})$$

If prior is very 'weak' (i.e., σ_0^2 is large) then likelihood dominates.

Typically as $N \to \infty$

$$p(\mathbf{w} \mid \chi) \rightarrow L(\mathbf{w})$$

Also, as $N \to \infty$, $L(\mathbf{w})$ becomes

very narrow (variance $\rightarrow 0$), so

the maximum value characterises

the distribution well.

Likelihood ≈ posterior

Gaussian Classifiers

- Assume some training data $X = \{(x_i, y_i)\}.$
 - Produce a model y=f(x*) that can classify new data

$$P(y = j|x) = \frac{p(x|y = j)p(j)}{p(x)}$$

Assign the new data point to class j iff

$$P(y=j|x) \geq P(y=i|x) \forall i \neq j$$

$$p(x|y=j)p(j) \geq p(x|y=i)p(i) \forall i \neq j$$

Gaussian Classifiers

Assign the new data point to class j iff

$$p(x|y=j)p(j) \ge p(x|y=i)p(i) \forall i \ne j$$

- How to get p(x|y=i)? Maximum Likelihood Estimation:
 - Fit a multivariate normal to {x_i}_i where y_i=1
 - Fit a multivariate normal to $\{x_i\}_i$ where $y_i=2$

Maximum Likelihood Estimation

Suppose we want to fit $p(x|\theta)$ given data

$$X = \{x_1, ..., x_n\}:$$

- Use samples X to estimate
- Differentiate likelihood p(X|θ) wrt
- Set to zero and solve for θ
- In the case of Gaussians, this is:

$$\hat{u} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} - \hat{u})^{T} (\mathbf{x}_{i} - \hat{u})$$

Gaussian Conditional Classifier

1. Fit Gaussians from Data

$$\hat{u} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \hat{u})^T (\mathbf{x}_i - \hat{u})$$

 2. Evaluate the posterior of each class for the new point, and pick the max

$$P(y = j|x) = \frac{p(x|y = j)p(j)}{p(x)}$$

Other Classifiers...

- Change the likelihood according to the data type:
- For continuous data: p(x/w) is commonly Gaussian.

$$\hat{u} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \qquad \hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i} - \hat{u})^{T} (\mathbf{x}_{i} - \hat{u})$$

- For discrete data: p(x/w) is Bernoulli / multinomial
 - Common for: spam classifiers, sentiment recognition, etc.

$$\theta = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$w_{jk} = N_{jk} / \sum_{j} N_{jk}$$

$$N_{jk} = \sum_{i} I(x_{ik} = j)$$

Anomaly Detection: Motivation

- Sometimes you are interested in finding unusual items
 - "Anomalies", "Outliers"
- ...As a pre-processing step
 - E.g., algorithms that use Sum-Squared objectives are not robust to outliers. Use outlier detection first to find and discard such rows
- ...As an end goal.

Anomaly Detection: Motivation

Applications

- Fraud detection
- Cyber-security
- Machine / Factory maintenance
- Data-center maintenance
- Process-control
- Security and surveillance
- Anti-terrorism

Anomaly Detection: Example

- Example: Manufacturing Quality Control: Aircraft Engines
 - $x_1 = \text{heat}, x_2 = \text{vibration}.$

Anomaly Detection:

- Continuous variables: Gaussian
 - x is real vector. u is a real vector. S is a matrix.

$$p(\mathbf{x}; \mathbf{u}, S) = \frac{1}{Z} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u})^T S^{-1}(\mathbf{x} - \mathbf{u})\right) \quad \mathbf{u} = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \quad S = \frac{1}{N} \sum_{i} (\mathbf{x} - \mathbf{u})(\mathbf{x} - \mathbf{u})^T$$

- Tells us:
 - For a specified Gaussian:
 - What data do we expect?
 - How likely is any particular piece of data?
 - For a specified Dataset:
 - What Gaussian best explains it?
- Algorithm:
 - Anomaly if p(x)<T</p>

x = length

Anomaly Detection Algorithm

- Algorithm:
 - Read in normal training data, {x}
 - Compute the Gaussian (u,S) that best explains the data {x}

$$\mathbf{u} = \frac{1}{N} \sum_{i} \mathbf{x}_{i} \qquad S = \frac{1}{N} \sum_{i} (\mathbf{x} - \mathbf{u}) (\mathbf{x} - \mathbf{u})^{T}$$
$$p(\mathbf{x}; \mathbf{u}, S) = \frac{1}{Z} \exp\left(-\frac{1}{2} (\mathbf{x} - \mathbf{u})^{T} S^{-1} (\mathbf{x} - \mathbf{u})\right)$$

- Given a new example x and estimated u,S, compute p(x)
- If p(x)<T, then Anomaly else Ok</p>

Summary

- o Introduced the notion of Learning probability models.
- o Maximum Likelihood method:
 - Solved through optimization
 - There is a danger of overfitting
- o Bayesian method:
 - Uses a distribution of parameters
 - Full Bayesian estimators involve integration
 - ML and Bayesian methods linked through likelihood function
- o Overfitting of models is a important practical concern