C. Ene

Exercices

Exercise 1

We recall the rules of the Deduction System for Dolev Yao theory: $T_0 \vdash s$, where $\{ \}_{-}$ are represents a symmetric encryption scheme, $\{ \}_{-}$ an asymmetric encryption scheme, and we suppose that pr(u) is the inverse secret key associated to pk(u):

(A)
$$\frac{u \in T_0}{T_0 \vdash u}$$
 (UL) $\frac{T_0 \vdash \langle u, v \rangle}{T_0 \vdash u}$

(P)
$$\frac{T_0 \vdash u \quad T_0 \vdash v}{T_0 \vdash \langle u, v \rangle}$$
 (UR)
$$\frac{T_0 \vdash \langle u, v \rangle}{T_0 \vdash v}$$

(C)
$$\frac{T_0 \vdash u \quad T_0 \vdash v}{T_0 \vdash [\![u]\!]_v}$$
 (D)
$$\frac{T_0 \vdash [\![u]\!]_v \quad T_0 \vdash v}{T_0 \vdash u}$$

(AD)
$$\frac{T_0 \vdash \{u\}_{pk(v)} \quad T_0 \vdash pr(v)}{T_0 \vdash u}$$
 (AC)
$$\frac{T_0 \vdash u \quad T_0 \vdash pk(v)}{T_0 \vdash \{u\}_{pk(v)}}$$

Prove or disprove that a passive Dolev Yao intruder can deduce the message s with the initial knowledge T_0 .

1.)
$$T_0 = \{a, k\}$$
 and $s = \langle a, [a]_k \rangle$

$$2.) \ T_0 = \{a,k,n1, [\![k2]\!]_{\langle n1,n2\rangle}, [\![\langle n2, [\![n1]\!]_{\langle n3,n3\rangle}\rangle]\!]_k\} \ \text{and} \ s = k2$$

3.)
$$T_0 = \{a, b, k1, k2, [\![k4]\!]_{\langle k1, k3 \rangle}, [\![\langle k2, n \rangle\!]_{\langle k2, k1 \rangle}\} \text{ and } s = k4$$

Exercise 2

Consider the following protocol:

$$\begin{array}{ll} A \to B: & \langle [\![\langle K, N \rangle]\!]_{sk(A,B)}, A \rangle \\ B \to A: & [\![\langle N, S \rangle]\!]_K \end{array}$$

Assume that sk(a, b) is a shared secret key between honest participants a and b. Consider a session $R_A(a, b, n_a, k)||R_B(b, s)$ between a and b and show that s (the instantiation of variable S in this session) remains secret in presence of a passive Dolev-Yao intruder.

Exercise 3

Consider the following protocol:

1.
$$A \rightarrow B : \{A, N_a\}_{pk(B)}$$

2. $B \rightarrow A : \{N_a, N_b\}_{pk(A)}$
3. $A \rightarrow B : \{N_b\}_{pk(B)}$

Assume that $\{ \ _{-} \}_{-}$ is an asymmetric encryption scheme, pk(x) (respectively pr(x)) is the public key (respectively private key) of participant x.

- 1.) Give the role based specification $R_1(A, B, N_a)||R_2(B, N_b)$ of the protocol (denote by act_1, act'_1 the actions associated to role R_1 , and by act_2, act'_2 the actions associated to role R_2).
- 2.) Consider the scenario $R_1(a, i, n_a)||R_2(b, n_b)$ corresponding to a session of a as initiator with i, and to a session of b as responder (where at the end b will thinks that he is talking and sharing a secret value n_b with a this will be highlighted by b sending $ok(a, b, n_b)^1$ as part of action $act'_2(s2)$). Give the constraint system associated to the interleaving $act_1(s1) < act_2(s2) < act'_1(s1) < act'_2(s2)$, where $act_1(s1), act'_1(s1)$ are the actions made by a in the first session, and $act_2(s2), act'_2(s2)$ are the actions made by b in the second session.
- 3.) Suppose that the initial knowledge of the intruder i is the set $T_1 = \{a, b, pk(a), pk(b), pk(i), pr(i), init\}$ Solve the constraint system and find an attack where the intruder i learn n_b .

¹ The message $ok(a, b, n_b)$ is just a symbolic message, it does not reveal anything about its content to the intruder.