

Morphing

Ryan Bouchou, X X, X X

Cursus ingénieur Première année Génie informatique

20 janvier 2024

Tuteur entreprise : ÉLISABETH X prénom.nom@entreprise.com

Résumé

Table des matières

1	Morphing de formes courbes 1.1 Propédeutique au morphing de courbes splines			
		1.1.1 Splines	3	
		1.1.2 Courbes B-Splines	3	
	1.2	Morphing de courbes B-splines	4	
Annexes				
Références				

1 Morphing de formes courbes

Les polylignes à courbure nulle ne permettent pas une représentation précise de formes courbes. Pour pallier ce problème, nous allons nous appuyer sur les courbes B-splines, couramment utilisées en CAO pour représenter des formes courbes [1].

Propédeutique au morphing de courbes splines 1.1

1.1.1 **Splines**

Définition 1.1. Considérons des réels $u_0 < u_1 < \ldots < u_m$, et $p \in \mathbb{N}$. On définit les fonction B-Splines $B_{i,p}$ par récurrence sur p et i dans \mathbb{N} comme suit :

$$\begin{cases}
Pour \ 0 \le i \le m - 1 \\
B_{i,0}(u) = 1 \text{ si } u \in [u_i, u_{i+1}[, B_{i,0}(u) = 0 \text{ sinon} \end{cases}$$
(1)

$$\begin{cases}
\text{Pour } 0 \le i \le m - 1 \\
B_{i,0}(u) = 1 \text{ si } u \in [u_i, u_{i+1}[, B_{i,0}(u) = 0 \text{ sinon}]
\end{cases}$$

$$\begin{cases}
\text{Pour } 0 \le i \le m - 1 \\
B_{i,p}(u) = \frac{u - u_i}{t_{i+p} - t_i} B_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} B_{i+1,p-1}(u)
\end{cases}$$
(2)

Notation. Soit j = 1, ..., m + 1 - i, on note : $\begin{cases} \omega_{i,j}(u) = \frac{u - u_i}{u_{i+j} - u_i} & \text{si } u_i < u_{i+1}, \\ \omega_{i,j} = 0 & \text{sinon.} \end{cases}$

Convention. Pour la suite, toute fonction dont le dénominateur est nul sera considérée comme nulle.

Définition 1.2. Ainsi, on a pour $i \in \{0, ..., m-p-1\}$ et $p \in \mathbb{N}$:

$$B_{i,0}(u) = 1 \quad \text{pour} \quad t \in [u_i, t_{i+1}] = 0,$$

$$B_{i,p}(u) = \sum_{j=1}^{m+1-i} \omega_{i,j}(u) B_{i,p-1}(u) \quad \text{pour } p > 0.$$

1.1.2Courbes B-Splines

Définition 1.3. Soit $m \in \mathbb{N}$. On appelle $(u_i)_{0 \le i \le m}$, vecteur de noeuds, et p, degré de la B-spline. On considère aussi des points de contrôle $\mathbf{P}_1, \dots, \mathbf{P}_m$ de \mathbb{R}^n . De fait, $(\mathbf{P}_i)_{0 \le i \le m}$ forme un polygone de contrôle. La courbe B-Spline d'ordre p associée à ces données est définie par :

$$u \longmapsto C(u) = \sum_{i=0}^{m} B_{i,p}(u) \mathbf{P}_{i}.$$
 (3)

Propriété 1.1. Supposons que C(u) soit une courbe B-spline de degré p définie comme suit:

$$C(u) = \sum_{i=0}^{n} B_{i,p}(u) \mathbf{P}_{i}$$

Soit le point de contrôle P_i déplacé vers une nouvelle position $P_i + v$. Alors, la nouvelle courbe B-spline D(u) de degré p est la suivante [1] :

$$D(u) = C(u) + N_{i,p}(u)\mathbf{v}$$
(4)

ING1 Morphing 3

DÉMONSTRATION:

$$D(u) = \sum_{i=0}^{n} B_{i,p}(u)(\mathbf{P}_{i} + \mathbf{v})$$

$$= \sum_{i=0}^{n} B_{i,p}(u)\mathbf{P}_{i} + \sum_{i=0}^{n} B_{i,p}(u)\mathbf{v}$$

$$= C(u) + \sum_{i=0}^{n} B_{i,p}(u)\mathbf{v}$$

$$= C(u) + N_{i,p}(u)\mathbf{v}$$
o.\varepsilon.\delta.

En pratique Desormais, il nous est possible, sur la base de points de contrôle, d'un vecteur de noeud et du degré de la B-spline, de générer une courbe B-spline comme ci-dessous :

Figure 2 – Courbes B-splines

Lemme 2. — Soit C = (U, P, d) une courbe B-Spline. Alors, C est une courbe fermée si et seulement si $\mathbf{P}_0 = \mathbf{P}_m$, où m = ord(P).

1.2 Morphing de courbes B-splines

ING1 Morphing 4

Liste des Algorithmes

Table	des	figures
	<u>~~~</u>	

Annexes

Références

 $\left[1\right]$ Pierre Pansu. Courbes b-splines, 2004. Accessed : 2024-05-30.

ING1 Morphing 8