CANCER GENE EXPRESSION DATA 1 OPOLOGICAL TEATURES IN

Bala Krishnamoorthy Svetlana Lockwood

Washington State University

PSB, 2015;

arXiv: 1410.3198

samples GENE genes, lok's

ANCER GIENE TXPR.


```
* 10s to a few 100 samples
                                        * ~50,000 genes
```

ANCER (JIENE HXPR.

- * ~50,000 genes
- 10s to a few 100 samples
- select a few biologically relevant genes

* too many degrees of freedom HE CHALLENGE

H CHALLENGE

* concentration of measure in high dim * too many (Beyer et al, 1999) degrees of freedom

CHALLENGE

* concentration of measure in high dim * too many degrees of freedom X clustering, PCA, ... might not work (Beyer et al, 1999)

CHALLENGE

- * concentration of measure in high dim * too many degrees of freedom (Beyer et al, 1999) might not work
- * higher order" method X clustering, PCA, ...

dualize" the data genes in samples space ESURT

SURT

use dualize the data persistent homology genes in samples space

SUR

280 dualize" the data persistent homology genes in samples space

genes torming loops implicated in cancer

SUR

Sec. dualize" the data persistent homology genes in samples space

genes tormina method for data exploration... loops implicated in cancer

HIGHER-URDER STRUCTURES

2D illustration

*

HIGHER-URDER STRUCTURES

* 2D illustration

traditional apprach
eg. clustering
- local structure

*

HIGHER-URDER STRUCTURES

- * 2D illustration
- * traditional appraish local structure
- * miss higher order structure (loop)

*

use

HI-DM:

* * gene expressions considered use across patients HI-DM: DUAL SPACE samples

genes

HI-DM: DUAL SPACE

X * paironise distances aire * gene expressions considered use much more meaningful across patients

PERSISTENT HOMOLOGY

* characterizes significant hi-dimensional "holes"

PERSISTENT HOMOLOGY

* points->painwise distances-> simplicial complex * characterizes significant hi-dimensional "holes" -> filtration -> persistence diagrams/barcodes

'ERSISTENT HOMOLOGY

* points->painwise distances-> simplicial complex * characterizes significant hi-dimensional "holes" -> filtration -> persistence diagrams/barcodes

dim 0: connected components books (around Koles) enclosed voids

ERSISTENT HOMOLOGY

* characterizes significant hi-dimensional "holes" * points -> painwise distances -> simplicial complex

WITNESS COMPLEX

de Silva & Carlsson, 2004

* size of complex grows fast w/ # points in data D

WITNESS COMPLEX

de Silva & Carlsson, 2004

* define complex on LCD, subset of landmarks * size of complex grows fast w/ # points in data D -edge [1,1] is in complex if $\exists v \in D$ s.t. $b, l, \in L$ are 2 nearest neighbors of v

WITNESS COMPLEX

de Silva & Carlsson, 2007

* size of complex grows fast w/ # points in data D

* define complex on LCD, subset of landmarks -edge [$l_0 l_1$] is in complex if $\exists v \in D$ s.t. $l_0 l_1 \in L$ are 2 nearest neighbors of v

p-simplex [262,...4] is in complex if $\exists v \in D$ s.t. 2,..., LeL are (pt) nearest neighbors of v

WITNESS (OMPLEX

de Silva & Carlsson, 2004

- * size of complex grows fast w/ # points in data D
- * define complex on LCD, subset of landmarks -edge [$l_0 l_1$] is in complex if $\exists v \in D$ s.t. $l_0 l_1 \in L$ are 2 nearest neighbors of v
- p-simplex [Lol,....4] is in complex if I vel)
 s.t. Lo,..., LeL are (pt) nearest neighbors of v v is the witness for the p-simplex

* for breast cancer (54,613 genes, 47 samples) 同しよりせ dim-1 barcode

0.2 0.4 breast ancer (54,613 genes, 47 samples) 0.6 0.8 1.2 1.4 L = 70 x 10⁴ # genes = 7c barcode

breast ancer (54,613 genes, 47 samples,

genes = 70

barcode

genes = 110

bheast ancer (54,613 genes,

barcode

genes = 110

L = 130

* for breast cancer (54,613 genes, 47 samples) barcode

* pick the longest (S)

2000

genes = 110

METHOD D

米 ま breast cancer (54,613 genes, 47 samples) barcode

* pick the longest 100p(s)

genes = 110

the genes in loop(s) relevant for concer?

* for breast cancer (54,613 genes, 47 samples) 川上りり dim-1 barcode

* genes in the breast cancer loop:

Relation to Cancer Prognostic biomarker in breast cancer Downregulated in apoptotic breast carcinoma cells
--

* analyzed five different cancer datasets

Dataset	#Genes	#Samples	#Loops
Brain	46201	46	1
Breast	54613	47	1
Ovarian	54613	28	1
AML188	54613	188	2
AML170	12558	170	2

RESULTS

* analyzed five different cancer datasets

Dataset	#Genes	#Samples	#Loops
Brain	46201	46	1
Breast	54613	47	1
Ovarian	54613	28	1
AML188	54613	188	2
AML170	12558	170	2

* majority of boop genes implicated in cancer in all cases

RESULTS

* analyzed five different cancer datasets

	AML188 54613 188	Ovarian 54613 28	Breast 54613 47	Brain 46201 46	Dataset #Genes #Samples #L
2	2	1	1	1	s #Loops

- * majority of boop genes implicated in cancer in all cases
- * selected landmarks (L), as well as loop genes do not have extreme expression values

* small groups (6-13) of genes forming loops annot be found by other methods OPEN QUESTIONS

OPEN QUESTIONS

* small groups (6-13) of genes forming loops annot be found by other methods * Does Does loop connectedness of genes imply functional connectedness?

OPEN QUESTIONS

* Does * small groups (6-13) of genes founing loops annot be found by other methods Does loop connectedness of genes imply functional connectedness? - hand to study coexpression of multiple genes

OPEN GUESTIONS

- * small groups (6-13) of genes forming loops annot be found by other methods
- * Does Does loop connectedness of genes imply functional connectedness? - hand to study coexpression of multiple genes
- * Does dualization affect ability to prove results on structure/stability of data?

OPEN QUESTIONS

* a few relevant genes not included in loops

DPEZ GUESTIONS

* a few relevant genes not included in loops

DREN GUESTIONS

* a few relevant genes not included in loops

* Can we identify loops with "all critical genes"?

) PEZ GUESTIONS

* a few relevant genes not included in loops

- * Can we identify loops with "all critical genes"?
- * Apply to other classes of data sets?