

# Link Classification and Clustering in Signed Graphs Géraud Le Falher Géraud Le Falher

Inria Lille – Nord Europe, Magnet, France

#### What it is a signed graph?

- Graphs model relationships between entities
- homophily assumption: linked entities tend to share common properties
- $\blacktriangleright$  the strength of these relations is quantified by weights  $w_{u,v} \in \mathbb{R}^+$
- allowing weights to be negative gives new semantics to edges:
  - dissimilarity
  - distrust
  - enmity

# Problems and applications

- 1. Link classification: predict the signs of a set of edges, given the graph structure and the signs of the other edges. Applications in:
  - understanding trust dynamic and communities formation
  - testing social theories at a large scale
  - recommending products



Figure: Youtube users/votes/videos bipartite signed graph

- 2. Correlation Clustering: find a partition of the nodes minimizing the number of disagreement edges (i.e. positive edges between clusters and negative edges within clusters). Used in:
  - image segmentation
  - solving co-reference task in natural language processing
  - identifying genes relationship
  - entity resolution
  - aggregation of clusterings



Figure: The optimal clustering of this signed graph has a cost of 2.

#### Link classification: current approaches

- Batch setting
  - train logistic regression on triangle patterns [7]
  - train logistic regression on higher order cycles [3]
  - train SVM on frequent subgraphs [9]

Achieve good generalization but require a large training set

Active setting: Parsimoniously select a training set to minimize the prediction error on the testing set [2]

### Link classification: our goals

- Devise efficient graph sparsifiers T
  - $\triangleright$  In the p-stochastic two clusters case, all the signs of T are queried
  - $\triangleright$  For any  $(u, v) \in E$ , predict  $\hat{y}_{u,v} = \prod_{e \in path_{u,v}^T} y_e$
  - $\triangleright$  Thus we want  $path_{u,v}^T$  to be short for all  $(u,v) \in E$
- ▶ Be adaptive, i.e. select at each step the edges adding the more information given those already revealed

#### Link classification: preliminary results

- T is a spanning tree of G
- $ightharpoonup E_{test} = E \setminus T$
- $ightharpoonup stretch = \frac{1}{|E_{test}|} \sum_{(u,v) \in E_{test}} |path_{u,v}^T|$
- ► The lower the stretch, the better the prediction
- Use Matthews Correlation Coefficient to assess binary prediction



$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} = \pm \sqrt{\frac{\chi^2}{n}}$$

Table: MCC on 3 real datasets. Our method is more robust, albeit slightly less accurate

|                       | Wikipedia   | Slashdot    | EPINION     |
|-----------------------|-------------|-------------|-------------|
| V                     | 7 065       | 82 052      | 119 070     |
| <i>E</i>              | 99 936      | 498 527     | 701 569     |
| fraction of $+$ edges | 78.5%       | 76.4%       | 83.2%       |
| Breadth First Tree    | .185 (.075) | .159 (.074) | .255 (.115) |
| Our Tree              | .164 (.045) | .169 (.028) | .216 (.030) |
|                       |             |             |             |



#### Correlation Clustering: current approaches

- APX-hard problem
- On complete graphs, KWIKCLUSTER algorithm provides a simple and efficient combinatorial 3-approximation [1]

function KWIKCLUSTER(G = (V, E)) while not all nodes are clustered do  $pivot \leftarrow pick a node in V at random$ put pivot in its own cluster add all its positive neighbors remove them from *G* 

 $\triangleright$  On general graphs, the approximation ratio is  $O(\log n)$  and is obtained by solving a large SDP.

#### Correlation Clustering: our goals

- A combinatorial algorithm for general graphs, retaining the optimal  $O(\log n)$  approximation ratio
- An idea would be to complete the graph through simple rules drawn from strong balance theory [5]
- Address the scalability issue, by studying parallel [8] and distributed (MapReduce or Pregel-like framework) [4] versions of KWIKCLUSTER, as well as parallelized BOEM post processing [6]

## **Correlation Clustering: preliminary results**

- ► Planted model: k clusters of roughly n nodes each and consistent edge signs
- Flip the signs of 7% edges and assume it is the optimal number of errors  $\phi$

Table: The ratio of our number of mistakes to  $\phi$  is constant

| k     | 5   | 2   | 30  | 2   | 20  | 10  | 15  |
|-------|-----|-----|-----|-----|-----|-----|-----|
| $n_i$ | 15  | 65  | 6   | 100 | 12  | 25  | 35  |
| nodes | 75  | 130 | 180 | 200 | 240 | 250 | 525 |
| ratio | 2.2 | 2.6 | 1.6 | 3.0 | 1.7 | 2.1 | 1.9 |

#### References

- 1. Ailon et al. 2008, Aggregating inconsistent information. Journal of the ACM, 55(5)
- Cesa-Bianchi et al. 2012, A linear time active learning algorithm for link classification. NIPS'12
- Chiang et al. 2014, Prediction and Clustering in Signed Networks: A Local to Global Perspective. JMLR
- 4. Chierichetti et al. 2014, Correlation clustering in MapReduce. KDD'14
- Davis, 1967, Clustering and structural balance in graphs. Human Relations, 20
- Elsner et al. 2009, Bounding and comparing methods for correlation clustering beyond ILP, NAACL HLT'09
- Leskovec et al., 2010, Predicting positive and negative links in online social networks. WWW'10
- 8. Pan et al., 2014, Scaling up Correlation Clustering through Parallelism and Concurrency Control. NIPS'14 Workshop
- Papaoikonomou et al. 2014, Predicting Edge Signs in Social Networks Using Frequent Subgraph Discovery. IEEE Internet Computing, 18(5)