CSE460: VLSI Design

A. Course General Information:

Course Code:	CSE460
Course Title:	VLSI Design
Credit Hours (Theory+Lab):	3 + 0
Contact Hours (Theory+Lab):	3 + 3
Category:	Program Core/Elective
Туре:	Required, Engineering, Lecture + Laboratory
Prerequisites:	CSE260 Digital Logic Design

B. Course Catalog Description (Content):

Introduction to VLSI (Very Large Scale Integration) design: history, IC trends, technology & design approaches. Moore's law. Review of digital logic design.

Introduction to logic circuit families: n-MOS, p-MOS, pseudo n-MOS and CMOS technologies. Introduction to CMOS logic. Pull-up and pull-down networks, implementation using series and parallel MOSFETs. Combinational logic circuit design using CMOS. Complex gate design using CMOS such as And-Or-Invert or Or-And-Invert. Implementation of different circuit elements like basic gates. Multiplexers, encoder, latch, flip-flops using CMOS.

Introduction to FSM (Finite State Machine): Moore type & Mealy type FSM hardware implementation. State encoding & minimization techniques.

DC Response of CMOS gates: n-MOS & p-MOS pass transistors. Logic levels and noise margins. DC transfer characteristics.

CMOS Power: instantaneous and average power, energy. Power analysis of circuit elements (R, C, DC Supply). Switching waveforms of an inverter. Static power and Dynamic power. Activity factor. Power reduction techniques: Clock gating, Power gating, Dynamic voltage scaling.

Transient response of CMOS gates. Delay definitions: rise time, fall time, propagation delay and

contamination delay, RC delay model. Effective resistance & capacitance. Elmore delay. Parasitic and effort delay. Fan-in and fan-out. Layout comparisons.

Physical design of ICs: floorplanning, partitioning, routing, clock tree synthesis, KL Algorithm for partitioning, Lee's algorithm for global routing.

C. Course Objective:

- a. The objectives of this course are to give a brief introduction to the complete process of chip designing
- b. provide background knowledge to design, simulate and implement combinational & sequential CMOS circuits
- c. teach theoretical concepts to critically analyze the cost & performance of an IC
- d. expose the students to the physical design aspects of CMOS IC design
- e. introduce the necessary programming language/softwares such as: Verilog (programming language), Quartus II, Microwind & DSCH2 to design, simulate, visualize and verify CMOS logic circuits and layouts

D. Course Outcomes (COs):

Upon successful completion of this course, students will be able to

SI.	CO Description	Weightage (%)
CO1	Design combinational and sequential circuits in CMOS by demonstrating the current voltage relationship and the dc response, and compute the noise margin of CMOS circuits.	30%
CO2	Construct system design process using finite state machines and hardware description language.	25%
CO3	Analyze the power dissipation and propagation delay of CMOS circuits.	25%
CO4	Devise algorithms to design and optimize the physical layout of an IC.	20%

E. Mapping of CO-PO-Taxonomy Domain & Level- Delivery-Assessment Tool:

SI.	CO Description	PLOs	Bloom's taxonomy domain/leve	Delivery methods and activities	Assessment tools
CO1	Design combinational and sequential circuits in CMOS by demonstrating the current voltage relationship and the dc response, and compute the noise margin of CMOS circuits.	PLO2	Cognitive/Ev aluate	Lectures, Notes, Labs, Assignments	Quiz, Exam, Assignments, Lab Assessment
CO2	Illustrate the system design process using finite state machines and construct them using a hardware description language.	PLO5	Cognitive/Ev aluate	Lectures, Notes, Labs, Assignments	Quiz, Exam, Assignments, Lab Assessment
CO3	Analyze the power dissipation and propagation delay of CMOS circuits.	PLO1	Cognitive/An alyze	Lectures, Notes, Assignments	Quiz, Exam, Assignments
CO4	Devise algorithms to design and optimize the physical layout of an IC.	PLO4	Cognitive/Cr eate	Lectures, Notes, Assignments	Quiz, Exam, Assignments

F. Course Materials:

i. Text and Reference Books:

SI.	Title	Author(s)	Publication Year	Edition	Publisher	ISBN
1	CMOS VLSI Design: A Circuits and Systems Perspective	Neil H. E. Weste & David Money Harris	2011	4 th ed.	Addison-Wesley	ISBN 13: 978-0-321-5477 4-3
2	Fundamentals of Digital Logic with Verilog Design	Stephen Brown & Zvonko Vranesic	2014	3 rd ed.	McGraw-Hill	ISBN 978-0-07-3380 54-4
3	Algorithms for VLSI Physical Design Automation	Naveed A. Sherwani	1998	3 rd ed.	Springer	ISBN 978-1-4757-221 9-2

ii. Other materials (if any)

- a. Lecture notes and presentation slides
- b. Class notes
- c. Lab handouts and presentation slides
- d. Softwares: Quartus II, DSCH2

G. Lesson Plan:

i. Theory (2 lectures/week, 1 hour 20 minutes each)

No	Topic	Week/Lecture#	Related CO (if any)
1	 Introduction to VLSI (Very Large Scale Integration) design: history, IC trends, technology & design approaches. Moore's law. Review of digital electronics 	Week 1/Lecture 1-2	CO1
2	 Logic circuit families: n-MOS, p-MOS, pseudo n-MOS and CMOS technologies. Introduction to CMOS logic. Pull-up and pull-down networks, implementation using series and parallel MOSFETs. Implementation of combinational logic blocks and sequential elements in CMOS technology 	Week 2/Lecture 3-4	CO1
3	 Pass transistor DC characteristics Complex gate design and Implementation of different circuit elements like basic gates, multiplexers, encoders, latch, flip-flops using CMOS pass transistors and transmission gates Quiz 1 		CO1
4	 FSM Introduction FSM moore and mealy type machine 	Week 4/Lecture 7-8	CO2

5	 System design using Moore and Mealy type finite state machines Different hardware implementation techniques Quiz 2 	Week 5/Lecture 9-10	CO2
6	Reserved for Quiz 1+2	Week 6	CO1, CO2
7	Midterm Exam	Week 7	CO1, CO2
8	 Physical design: floor planning, partitioning, routing, clock tree synthesis. KL algorithm for partitioning. 	Week 8/Lecture 11-12	CO4
9	Lee's maze algorithm for global routing	Week 9/Lecture 13-14	CO4
10	 Transient response of CMOS gates. Delay definitions: rise time, fall time, propagation delay and contamination delay, RC delay model. Effective resistance. MOS Capacitance. Quiz 3 	Week 10-/Lecture 15-16	CO3
11	Elmore delay. Parasitic and effort delay. Fan-in and fan-out. Layout comparisons	Week 11/Lecture 17-18	CO3
12	 CMOS Power: Instantaneous and Average power, Energy. Power in circuit elements analysis (R, C, DC Supply). Switching waveforms of an inverter. Static power and Dynamic power. Activity factor. Power reduction techniques: Clock gating, Power gating, Dynamic voltage scaling. Quiz 4 	Week 12/Lecture 19-20	CO3
13	Reserved for Quiz 3+4	Week 13	CO3, CO4
14	Final Exam	Week 14	CO3, CO4

ii. Lab (1 lecture/week, 2 hours 20 minutes each)

No	Topic	Week/Lecture#	Related CO (if any)
1	No lab	Week 1	-
2	Experiment 1: CMOS Schematic Circuit Design in DSCH2	Week 2	CO1
3	Experiment 2: Introduction to Verilog; Verilog Design Part 1 (combinational logic)	Week 3	CO1
4	Experiment 3: Verilog Design Part 2 (sequential logic)	Week 4	CO1
5	Midterm		
6	Lab Test-1	Week 5	CO1
7	Experiment 4: Verilog Design Part 3 (FSMs)	Week 6	CO2
8	Experiment 5: Verilog Design Part 4 (FSMs)	Week 7	CO2
9	Lab Test-2	Week 8	CO2
10	No lab	Week 9	

H. Assessment Tools:

Assessment Tools	Weightage (%)
Class Performance & Attendance	5
Assignments	5
Quizzes	15
Lab	25
Midterm Exam	25
Final Exam	25

I. CO Assessment Plan:

Assessment	Course Outcomes				
Tools	CO1	CO2	CO3	CO4	
Quizzes	√	√	√	√	
Assignments	√	√	√	√	
Lab	√	√			
Midterm exam	√	√			
Final Exam			√	√	