Simulation without basal fluid source, performed with initial stress defined as $\sigma_1 = \sigma_3$, a fault permeability equal to 10^9 m², and Λ =0.7 MPa/°C.

Data in Folder "q0_0":

- **Mean_shearStress**: tangential stress " τ " (Pa) fluctuation at 12.75 km depth on the fault during the seismic cycle.
- **velocity**: fault velocity "Vf" (m/s) fluctuation at 12.75 km depth on the fault during the seismic cycle
- **Anomaly_temperature**: Thermal anomalies (°C) fluctuation at 12.75 km depth on the fault during the seismic cycle
- Pore_fluid: Pore-fluid factor (λ) fluctuation at 12.75 km depth on the fault during the seismic cycle
- **Apparent_friction**: apparent friction coefficient fluctuation at 12.75 km depth on the fault during the seismic cycle
- mean_slip: mean slip along the fault during the seismic cycles.
- Time2: Time variable (yrs) for Mean_shearStress, velocity,
 Anomaly_temperature, Pore_fluid, Apparent_friction and Mean_slip data.

 Data was printed every 0.1 second during the coseismic period, and every 1 year during the interseismic period.

q0_0.mp4: video file showing the pore-fluid factor (λ) in the crust during an earthquake. Video used to create Figure 6 in the article.