Project Title:

Reliable Data Transmission using Go-Back-N Protocol over UDP

1. Objective

This project implements the **Go-Back-N (GBN)** sliding window protocol using **UDP sockets** in Python to simulate reliable data transfer. Since UDP does not guarantee delivery, order, or integrity, GBN ensures:

- Reliable and ordered transmission
- Retransmission on loss/corruption
- ACK/NACK handling
- Sliding window optimization

2. Features Implemented

- Custom packet structure with:
 - o Sequence number
 - Corruption flag
 - o ACK flag
 - o CRC32 checksum for error detection
- Sender-side sliding window with configurable size
- Three simulated scenarios:
- 1. Normal transmission (no loss or corruption)
- 2. **Packet loss** (by skipping send)
- 3. **Packet corruption** (modifying data before send)
 - Timeout retransmission (resends all unACKed packets)
 - Fast retransmit (triggered by 3 duplicate ACKs; resends only the suspected packet)

3. Tools & Technologies

- Python 3
- UDP Sockets (socket module)
- CRC32 Checksum (zlib.crc32)
- Modular design using separate Header.py for packet utilities

4. System Design

Sender (Client)

- Generates packets with headers + CRC
- Maintains a window of unacknowledged packets
- Simulates loss/corruption using sets
- Listens for ACKs, handles duplicates, and retransmits if needed

Receiver (Server)

- Validates packet with CRC
- Accepts only in-order packets
- Sends cumulative ACK for last correctly received packet
- Ignores out-of-order/corrupted packets

5. Packet Format

6. Results

Scenario	Outcome
No packet loss/corruption	All packets ACKed in order
Simulated packet loss	Timeout triggers retransmission
Simulated packet corruption	CRC fails → packet ignored → retransmit
Corrupted/lost ACKs	Handled by duplicate ACKs or timeout
3 duplicate ACKs	Fast retransmit successfully triggered

7. Conclusion

This project demonstrates the real-world application of the Go-Back-N protocol for **reliable transmission over unreliable networks** like UDP. Key takeaways include understanding **retransmission strategies, sliding windows, timeout handling**, and the importance of **error detection** with CRC.