CALCOLO NUMERICO E MATLAB

Docenti: C. Canuto, S. Falletta, S. Pieraccini

Esercitazione 2

Argomento: Aritmetica del calcolatore

1. I seguenti numeri vengono introdotti in un calcolatore nel quale i numeri vengono rappresentati in aritmetica floating-point, con base N=10 e t=5 cifre riservate alla mantissa (tecnica di arrotondamento (ii)):

$$a = 1.483593,$$

$$b = 1.484111.$$

Utilizzare il comando chop di MATLAB per determinare il risultato $\bar{s} = \bar{a} \ominus \bar{b} = \mathrm{fl}(\mathrm{fl}(a) - \mathrm{fl}(b))$, ove $\mathrm{fl}(x)$ indica l'operazione di arrotondamento, nella suddetta aritmetica, di x a numero macchina \bar{x} e \ominus denota l'operazione di macchina corrispondente all'operazione aritmetica della sottrazione. Confrontare \bar{s} con c = a - b e calcolare l'errore relativo corrispondente.

2. Si consideri la serie armonica generalizzata $\sum_{k=1}^{\infty} \frac{1}{k^2}$ la cui somma è pari a $\pi^2/6$. Si scriva

una function che, dato in input il numero intero positivo m, calcoli la quantità $y = \sum_{k=1}^{m} \frac{1}{k^2}$, simulando una aritmetica di macchina in virgola mobile normalizzata a t=4 cifre decimali per la mantissa (tecnica di arrotondamento (ii)). Si calcoli la somma y e l'errore relativo $|y-\pi^2/6|/(\pi^2/6)$:

- (a) eseguendo un ciclo for k=1:m;
- (b) eseguendo un ciclo inverso for k=m:-1:1.

Si confrontino e si commentino i risultati ottenuti.

3. Valutare le espressioni

$$f_1(x) = \frac{1 - \cos(x)}{x^2},$$
 $f_2(x) = \frac{1 - e^x}{x},$
 $f_3(x) = 1 - \sqrt{1 - x^2},$ $f_4(x) = \frac{(x+1)^2 - 1}{x}$

in $x = 10^{-n}$ per n = 1, 2, ..., 16. Successivamente riformulare le funzioni assegnate al fine di evitare il fenomeno della cancellazione numerica e, assumendo come valori esatti quelli che si ottengono mediante la riformulazione proposta, calcolare i corrispondenti errori relativi e confrontarli con la precisione di macchina. Stampare e graficare per ogni valore di x il corrispondente errore relativo.

4. Si consideri la successione

$$x_1 = 2$$

 $x_n = 2^{n-1/2} \sqrt{1 - \sqrt{1 - 4^{1-n} x_{n-1}^2}}, \quad n \ge 2$

1

per il calcolo approssimato di π . Scrivere una function che, dato in input il numero massimo N di termini della successione, calcoli e salvi in un vettore gli errori relativi $|x_n - \pi|/\pi$ per $n=1,\ldots,N$. Visualizzare inoltre il grafico del logaritmo dell'errore al variare di n. Trovare un'espressione equivalente per la successione $\{x_n\}_{n\geq 1}$ in modo tale da evitare il fenomeno della cancellazione numerica. Studiare anche in questo caso l'andamento dell'errore relativo e confrontare i risultati con quelli precedenti.

5. Data la funzione $f(x) = e^x$, vogliamo approssimare f'(x) con il seguente rapporto incrementale

$$f'(x) \approx r(x) = \frac{f(x+h) - f(x-h)}{2h}$$

scegliendo $h = 2^{-k}$, k = 1, 2, ... 32. Esaminare il comportamento dell'errore relativo |f'(x) - r(x)|/|f'(x)| e commentare i risultati.