DPMV2450 模块规格书

Rev 0.8

2018.4

嘀拍科技

作者:

贡献者: 创建时间:2018-2-3 稳定程度:

修改历史

版本	日期	修订人	说明
0.1	2018-02-03	Luo	创建
0.5	2018-02-05	Xiao	修改补充
0.8	2018-04-08	Xiang	增加 DPMV2450-2

目录

1.	模块介绍	4
	1.1. 概述	4
	1.2. 主要技术指标	5
	1.3. 模块外观和外形尺寸	6
2.	模块硬件描述	7
	2.1. 电源特性	7
	2.2. 硬件接口说明	7
3.	模块软件描述	8
	3.1. 设备软件说明	8
	3.1.1. 设备软件环境	
	3.1.2. 设备软件功能	8
	3.2. 主机软件说明	9
	3.2.1. 上位机软件环境	
	3.2.2. DPSDK 功能	
	3.3. 连接方式	

1. 模块介绍

1.1. 概述

DPMV2450 是一款基于 USB 的、超低功耗、嵌入式人工智能芯片模组,可以在1瓦的功率下提供超过每秒 1000 亿次浮点运算的性能,可以在设备上直接运行实时深度神经网络(DNN)。它本质上是一个自包含的深度学习加速器和开发工具包,让深度学习推理应用程序和人工智能应用程序可以边缘部署。

它内置了 Movidius Myriad™ 2 视觉处理单元 (VPU),将深度神经网络 (DNN) 技术应用在场景分割、对象跟踪或对象分类和识别。它虽然外形小巧,却能提供高能效的深度神经网络推理。该设备运行在标准 USB 接口上,不需要额外的电源或硬件,让用户可以将产品部署到本地各种没有连接云的设备上。这使得各种人工智能应用都能离线部署,可适用于智能家居、智能安防监控、智能驾驶、无人机、机器人等视频与人工智能领域。

DPMV2450 共有两款模组。DPMV2450-1包含1颗500万高端安全监控摄像头,及用于抓取脸部数据的(8mm长焦)或用于抓取轨迹信息的(2.34mm短焦)的镜头; DPMV2450-2不包含摄像头及镜头,其它与DPMV2450-1一致。

DPSDK 提供了一个 API 框架,支持在 Linux、Android、Windows 平台上进行原生应用程序开发。开发人员可以使用这个框架将经过 DPMV2450 模组加速的实时深度神经网络集成到应用程序中。

1.2. 主要技术指标

主芯片	VPU	Movidius MA2450(内置 500MB LPDDR3)	
内部存储	Boot Memory	8MB SPI flash memory	
外部存储	eMMC(可选配)	4GB	
Camera	5M	OV5658, DPMV2450-1	
镜头	8mm 或 2.34mm	二选一,DPMV2450-1	
	算法	支持 caffemodel	
软件功能	USB 协议	USB 自定义接口协议、UVC 等	
	支持操作系统	Linux、android、windows	
系统更新	\ <u>\</u>	支持在线升级固件	
ᇪᇷ	USB2.0		
外部接口	Jtag	调试接口	
按键	复位按钮	支持	
供电	Usb 供电	最大不超过 5V/0.8A 供电	
功耗	功耗	<2W	
#	pcba 尺寸	38mm*38mm	
其它	安装方式	定位孔固定方式	
TT +ጟ ≤> ¥h	工作温度	(-30 度~50 度)	
环境参数	存储温度	-10 度~70 度	

1.3. 模块外观和外形尺寸

图 1: DPMV2450-1

图 2: DPMV2450-2

2. 模块硬件描述

2.1. 电源特性

本模块通过自定义 USB 接口 提供 5V 供电

2.2. 硬件接口说明

供电及复位控制连接器的信号定义为:

1	RST	模块复位输入脚
2	GND	系统地
3	USB_DP	USB2.0 的 D+
4	USB_DM	USB2.0 的 D-
5	GND	系统地
6	GND	系统地
7	5V_IN	5V 输入

8	5V IN	5V 输入
	_	

3. 模块软件描述

3.1. 设备软件说明

3.1.1. 设备软件环境

设备软件指运行在 DPMV2450 中的 Firmware 软件。本模块是包括 12 个 SHAVE 和 2 个 RISC processor,设备软件使用 Leon OS。在设备软件中,主要处理由上位 机发送来的命令,以及深度学习算法处理,并将数据返回上位机。上位机通过 USB 传输命令,设备软件通过 USB 返回数据。

3.1.2. 设备软件功能

CDLLZ	使用 Leon OS 操作系统,控制和管理其它外部接口,如 I2C,SPI, UART,
CPU 子 系统	GPIO, ETH 和 USB3.0.
杂 统	并作为主控模块,负责管理多媒体子系统和微处理器阵列等子系统。
多媒体	使用 Leon RT 操作系统,可控制和管理外接图像设备,如 camera 传感器,
子系统	LCD, HDMI 控制器等
SHAVE	SHAVE 子系统包含 12 个 SHAVE 向量处理器,能够执行并行的密集的计
子系统	算,因此可以支持高效的图像处理。支持汇编,C 和 C++开发。
USB 协	支持 UVC,CDC,HID,VSP,DFU, RNDIS 等 20 多种协议
议	

用户自

用户可以在将自定义的算法编译在软件中并在本模块上运行,利用 SHAVE

定义算

子系统可以实现高效的图形算法(如:人脸识别,物体检测等)

法

3.2. 主机软件说明

3.2.1. 上位机软件环境

本模组可支持标准 NCSDK, 也支持自定义 DPSDK。

如果针对 DPSDK,上位机软件环境可以为 Linux、Andorid 或 windows,使用 DPSDK 提供的 API 框架,进行原生应用程序开发。上位机集成的库控制模块设备,并接收和发送数据。

3.2.2. DPSDK 功能

目前,DPSDK 为上位机软件库提供了以下的功能,并不断拓展中:

功能	描述
初始化运行环境	
终止运行环境	
ping 设备	探测设备是否正常响应
获取设备版本	
设置摄像头参数	设置曝光等参数
获取摄像头参数	获取当前参数
设置运行模式	切换运行模式
获取当前运行模式	
更新算法模型	
更新固件	
截取一张照片并返回给主机	
获取 Camera 视频流	
加载 2 个算法,串行工作	

3.3. 连接方式

3.4. 参考资料

DPSDK 说明文档

