(2012 年度前期 担当:佐藤)

問題 4.1.

(1)
$$A = \begin{pmatrix} 3 & -6 \\ -6 & -6 \end{pmatrix}$$

(2) $A = \begin{pmatrix} 3 & -6 & -3 \\ -6 & -6 & -6 \\ -3 & -6 & 13 \end{pmatrix}$

- (3) $\Delta = \det(A) = -54$, $\Delta_0 = \det(A_0) = -972$
- (4) $\det(A) \neq 0$ より、適当に座標の平行移動をすることにより、 $\varphi(x,y) = 0$ は $a\bar{x}^2 + 2h\bar{x}\bar{y} + b\bar{y}^2 + \bar{c} = 0$ と表すことができる。実際に $x = \bar{x} \frac{1}{3}$, $y = \bar{y} \frac{2}{3}$ と すると、 $3\bar{x}^2 12\bar{x}\bar{y} 6\bar{y}^2 + 18 = 0$ となる(定数項は $\det(A_0)/\det(A)$ に等しいことに注意).

問題 4.2.

- (1) $x^2 xy + y^2 + 2x + 2y 1 = 0$ $\Delta = \frac{3}{4} \neq 0$ であるから、有心 2 次曲線である。実際に、 $x = \bar{x} 2$ 、 $y = \bar{y} 2$ と 座標変換すると、 $\bar{x}^2 \bar{x}\bar{y} + \bar{y}^2 5 = 0$ となる。
- (2) $16x^2-24xy+9y^2+5x-10y+5=0$ $\Delta=0$ であるから、無心 2 次曲線である。実際に、 $\varphi(x,y)=16x^2-24xy+9y^2+5x-10y+5$ とおくと、 $\varphi(\bar x+\lambda,\bar y+\mu)$ の 1 次の項は

$$8\left(4\lambda - 3\mu + \frac{5}{8}\right)\bar{x} - 6\left(4\lambda - 3\mu + \frac{5}{3}\right)\bar{y}$$

となり、 \bar{x}, \bar{y} の係数がともに0となることはない。