

Intelligent Wireless Robotics Lab on PID Control

Pengxia Wu

Toy Experiment – Parking at destination (1)

Imagine you are the controller, write some code to drive the car from starting position to the end position

- 1. Control inputs: pedal, steering
- 2. Fill in the control method *control* (*self, state*) to control the car to move from the startting position to the end position. Try to perfectly stop at the destination pose $[x, y, \theta]$ *stop* $pose = [x, y, \theta] = [10, 0, 0]$

Copyright © Pengxia Wu

Toy Experiment – Parking at destination (2)

Imagine you are the controller, write some code to drive the car from starting position to the end position

- 1. Control inputs: pedal, steering
- 2. Fill in the control method *control* (*self, state*) to control the car to move from the startting position to the end position. Try to perfectly stop at the destination pose $[x, y, \theta]$ *stop* $pose = [x, y, \theta] = [10, 2, 3.14/2]$

Copyright © Pengxia Wu

PID for a self-driving car on 1D trajectory

Copyright © Pengxia Wu

PID for a self-driving car on 1D trajectory

- Apply PID controller to 1D self-driving car
 - Drive the car from starting position [0, 0, 0] to end position ref = [10, 0, 0]
 - **Control Inputs**: u = [pedal, steering], where pedal is in the range [-1, 1] = [full brake, full throttle]
 - Starter code: car_controller_pid_st.py
 - Think about what's the difference if the car moves with the following two motion model?

Motion Model 1:

$$x_{t+1} = x_t + \dot{x} dt$$

$$\dot{x} = v_t$$

$$v_{t+1} = v_t + \dot{v} \, dt$$

$$\dot{v} = pedal_t * 5$$

Motion Model 2:

$$x_{t+1} = x_t + \dot{x} \, dt$$

$$\dot{x} = v_t$$

$$v_{t+1} = v_t + \dot{v} \, dt - v_t / 25$$
 $\dot{v} = pedal_t * 5$

$$\dot{v} = pedal_t * 5$$

Motion Model 3:

$$x_{t+1} = x_t + \dot{x} dt$$

$$\dot{x} = v_t$$

$$v_{t+1} = v_t + \dot{v} dt - v_t / 25$$
 $\dot{v} = pedal_t * 5 - 0.5$

$$\dot{v} = pedal_t * 5 - 0.5$$