

## Table of contents **Data Modelling** 01 **Business Problems** 05 **Data Understanding** 02 **Model Deployment** 06 **Conclusions** 03 **Exploratory Data Analysis** 07 04 **Data Pre-Processing**



## **Business Problem**

Perusahaan sedang menghadapi kesulitan dalam menetapkan harga yang tepat dan sesuai.

Oleh karena itu perlu dilakukakan analisis terkait pendapatan calon konsumen untuk memahami dengan akurat tingkat pendapatan mereka dan mengelompokkannya ke dalam 2 kelompok yang berbeda.

Informasi yang diperoleh dari analisis tersebut akan digunakan untuk mengoptimalkan strategi penetapan harga produk perusahaan, dengan harapan dapat meningkatkan pendapatan perusahaan, memenuhi kebutuhan calon konsumen, dan meningkatkan daya saing produk di pasar.



# **Purpose**

Membangun model prediktif yang dapat memprediksi kategori pendapatan calon pelanggan.

Berdasarkan sejumlah variabel seperti umur, workclass, final weight, occupation, marital status, gender, dll sehingga dapat membantu perusahaan dalam memahami tingkat kemampuan beli pelanggan dan menyusun strategi harga yang lebih tepat.

- Mencari pola antara karakteristik calon pelanggan dengan kategori income-nya.
- Mengetahui pengaruh sejumlah variabel terhadap pendapatan calon pelanggan.

  Sehingga memungkinkan perusahaan dalam menyusun strategi pemasaran dan harga yang

Sehingga memungkinkan perusahaan dalam menyusun strategi pemasaran dan harga yang lebih terfokus untuk setiap segmen.



## **Dataset Information**

Data ini merupakan data yang didapatkan dan dikumpulkan dari Biro Sensus di Amerika Serikat.

Berikut informasi dasar dari dataframe:

- Terdapat 48.841 baris data dan 15 kolom.
- DataFrame terdiri dari 6 kolom numerik dan
   9 kolom kategorikal.
- Tidak ada value yang kosong di setiap kolom.

#info dasar dari dataframe
df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 48841 entries, 0 to 16279
Data columns (total 15 columns):
    Column
                   Non-Null Count Dtype
    Age
                   48841 non-null
                                   int64
    Workclass
                   48841 non-null
                                   object
    Final Weight
                   48841 non-null
                                   int64
    Education
                   48841 non-null object
    EducationNum
                   48841 non-null
                                   int64
    Marital Status
                   48841 non-null
                                   object
    Occupation
                   48841 non-null
                                   object
    Relationship
                   48841 non-null object
    Race
                   48841 non-null object
    Gender
                   48841 non-null
                                   object
    Capital Gain
                   48841 non-null int64
    capital loss
                   48841 non-null int64
12 Hours per Week 48841 non-null int64
    Native Country
                   48841 non-null object
                    48841 non-null object
14 Income
dtypes: int64(6), object(9)
memory usage: 6.0+ MB
```

# **Columns Explanation**

| Icome              | Level gaji dari penduduk, terdiri dari 2 kategori yaitu gaji<br>yang lebih dari 50,000 dollar dan gaji yang kurang dari<br>atau sama dengan 50,000 dollar, keduanya ditulis dengan<br>(>50K, <=50K). |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Workclass          | Tipe pekerjaan dari penduduk.                                                                                                                                                                        |
| Marital-<br>status | Status pernikahan.                                                                                                                                                                                   |
| Occupation         | Bidang pekerjaan atau jabatan.                                                                                                                                                                       |
| Relationship       | Status hubungan.                                                                                                                                                                                     |
| Race               | Ras dari penduduk.                                                                                                                                                                                   |
| Gender             | Gender dari penduduk.                                                                                                                                                                                |
| Capital-gain       | Jumlah keuntungan modal (financial profit).                                                                                                                                                          |
| Capital-Loss       | Jumlah kerugian modal.                                                                                                                                                                               |

| Native-<br>Country | Negara asal.                                                                |
|--------------------|-----------------------------------------------------------------------------|
| Age                | Umur dari individu.                                                         |
| Hours-per-<br>week | Jumlah jam kerja per-minggu.                                                |
| Occupation         | Bidang pekerjaan atau jabatan.                                              |
| Final weight       | Bobot nilai pada CPS yang diestimasi oleh Bureau<br>Census Amerika Serikat. |

## **Describe Dataset**

#### 1. Data Kategorikal

Memberikan gambaran awal mengenai distribusi atau nilai dalam setiap kolom kategorikal.

| [] | [ ] #Statistik dasar untuk semua kolom kategorikal df.describe(include='0') |           |           |                    |                |              |       |        |                |        |  |  |  |
|----|-----------------------------------------------------------------------------|-----------|-----------|--------------------|----------------|--------------|-------|--------|----------------|--------|--|--|--|
|    |                                                                             | Workclass | Education | Marital Status     | Occupation     | Relationship | Race  | Gender | Native Country | Income |  |  |  |
|    | count                                                                       | 48841     | 48841     | 48841              | 48841          | 48841        | 48841 | 48841  | 48841          | 48841  |  |  |  |
|    | unique                                                                      | 9         | 16        | 7                  | 15             | 6            | 5     | 2      | 42             | 4      |  |  |  |
|    | top                                                                         | Private   | HS-grad   | Married-civ-spouse | Prof-specialty | Husband      | White | Male   | United-States  | <=50K  |  |  |  |
|    | freq                                                                        | 33905     | 15784     | 22379              | 6172           | 19716        | 41762 | 32649  | 43831          | 24720  |  |  |  |

- **Count** : Jumlah entri dalam setiap kolom kategorikal.
- Unique : Menunjukkan jumlah nilai unik atau kategori yang berbeda.
- **Top** : Menunjukkan nilai atau kategori paling sering muncul.
- Freq : Menunjukkan seberapa sering nilai teratas muncul dalam setiap kolom.

#### 2. Data Numerik

Memberikan gambaran awal mengenai distribusi atau nilai dalam setiap kolom numerikal.

#Statistik dasar untuk semua kolom numerik
df.describe()

| ∃ |       | Age          | Final Weight | EducationNum | Capital Gain | capital loss | Hours per Week |
|---|-------|--------------|--------------|--------------|--------------|--------------|----------------|
|   | count | 48841.000000 | 4.884100e+04 | 48841.000000 | 48841.000000 | 48841.000000 | 48841.000000   |
|   | mean  | 38.643865    | 1.896634e+05 | 10.078152    | 1079.089720  | 87.504105    | 40.422391      |
|   | std   | 13.710511    | 1.056050e+05 | 2.570961     | 7452.093748  | 403.008483   | 12.391571      |
|   | min   | 17.000000    | 1.228500e+04 | 1.000000     | 0.000000     | 0.000000     | 1.000000       |
|   | 25%   | 28.000000    | 1.175490e+05 | 9.000000     | 0.000000     | 0.000000     | 40.000000      |
|   | 50%   | 37.000000    | 1.781420e+05 | 10.000000    | 0.000000     | 0.000000     | 40.000000      |
|   | 75%   | 48.000000    | 2.376460e+05 | 12.000000    | 0.000000     | 0.000000     | 45.000000      |
|   | max   | 90.000000    | 1.490400e+06 | 16.000000    | 99999.000000 | 4356.000000  | 99.000000      |



## **Data Preparation**

#### 1. Handling Duplicates & Missing Values

 Terdapat 29 baris data yang terduplikasi pada dataframe.

```
#menghapus duplicate values
df = df.drop_duplicates()

df.duplicated().sum()

df
```

• Tidak terdapat null values pada setiap kolom di dataframe.

```
df.isna().sum()
Age
Workclass
Final Weight
Education
EducationNum
Marital Status
Occupation
Relationship
Race
Gender
Capital Gain
capital loss
Hours per Week
Native Country
Income
dtype: int64
```

Terdapat beberapa kolom dengan value adalah '?' (tanda tanya).

#### 1. Kolom Workclass

```
#Memeriksa jumlah dari masing-masing values #isi '?' ke "others"
df['Workclass'].value counts()
Private
                     33878
Self-emp-not-inc
                      3861
Local-gov
                      3136
                      2799
State-gov
                      1981
Self-emp-inc
                      1694
Federal-gov
                      1432
Without-pay
                        21
Never-worked
                        10
Name: Workclass, dtype: int64
#mengganti value "?" pada workclass menjadi "other"
```

df['Workclass'] = df['Workclass'].replace(' ?', 'Other')

- Value "?" diganti ke "Other".
- Hal ini dilakukan untuk memberikan kategorisasi umum yang mungkin lebih sesuai untuk data yang tidak dapat diidentifikasi atau diklasifikasikan secara spesifik.

Terdapat beberapa kolom dengan value adalah '?' (tanda tanya).

#### 2. Kolom Occupation

```
#Memeriksa jumlah dari masing-masing values
df['Occupation'].value_counts()
Prof-specialty
                      6167
Craft-repair
                      6107
Exec-managerial
                      6084
Adm-clerical
                      5608
Sales
                      5504
Other-service
                      4919
Machine-op-inspct
                     3018
                      2809
Transport-moving
                      2355
Handlers-cleaners
                      2071
Farming-fishing
                      1487
Tech-support
                      1445
Protective-serv
                       983
Priv-house-serv
                       240
Armed-Forces
                        15
Name: Occupation, dtype: int64
#mengganti value "?" pada occupation menjadi "other"
df['Occupation'] = df['Occupation'].replace(' ?', ' Other-service')
```

Value "?" dimasukkan ke "Other-service".

Menyederhanakan values pada beberapa kolom

#### 3. Kolom Native Country

```
# Simplify Native Country
df["Native Country"] = np.where(df["Native Country"]==' United-States', 'USA', 'Non-USA')

Native_Country = df.groupby(["Native Country"]).size()

plt.title('Native Country Proportion')
plt.pie(Native_Country, labels=Native_Country.index, autopct=lambda p: f'{p:.2f}%')
plt.show();
```

- Karena 90% penduduk bernegara asal United States (USA) dan values yang lain (negara selain dari USA) berjumlah sangat sedikit.
- Maka dilakukan penggabungkan nilai-nilai minoritas menjadi satu kategori (non-USA).



Menyederhanakan values pada beberapa kolom

#### 3. Kolom Race

```
[ ] # Simplify Race
    df["Race"] = np.where(df["Race"]=='White', 'White', 'Non-White')

Race = df.groupby(["Race"]).size()

plt.title('Race Proportion')
    plt.pie(Race, labels=Race.index, autopct=lambda p: f'{p:.2f}%')
    plt.show();
```

 Karena 85% penduduk rasnya adalah white dan penduduk dengan ras yang lain berjumlah sangat sedikit, maka values yang lain akan digabungkan menjadi kategori (Non-White).



#### 5. Kolom Marital Status

```
[50] df['Marital Status'].unique()
     array(['Never-married', 'Married-civ-spouse', 'Divorced',
             'Married-spouse-absent', 'Separated', 'Married-AF-spouse',
            'Widowed'l, dtvpe=object)
[51] df["Marital Status"] = df["Marital Status"].replace(['Divorced', 'Separated', 'Widowed'], "Divorced")
[52] df["Marital Status"] = df["Marital Status"].replace(['Married-civ-spouse','Married-spouse-absent', 'Married-AF-spouse'], "Married")
```

- Menyederhanakan values pada beberapa kolom.
- Untuk memudahkan pengelompokan, maka beberapa values pada kolom Marital Status perlu di gabungkan.



Menghapus space di setiap kata awal data kategorikal

#### 6. Menghapus Space

```
Marital Status - (7) : ' Never-married' ' Married-civ-spouse' ' Divorced'
 ' Married-spouse-absent' ' Separated' ' Married-AF-spouse' ' Nidowed'] ,
                                                                                                      Sebelum
Occupation - (15) : [' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-specialty'
 'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
                                                                Begitupun dengan kolom Occupation
 ' Farming-fishing' ' Machine-op-inspct' ' Tech-support' ' ?'
 ' Protective-serv' ' Armed-Forces' ' Priv-house-serv'l .
[33] #menggunakan funcion str.strip.() untuk menghapus spasi
     for column in df:
                                                                                  Code
       if df[column].dtvpe == 'object':
         df[column] = df[column].str.strip()
Marital Status - (7): ['Never-married' 'Married-civ-spouse' 'Divorced' 'Married-spouse-absent'
 'Separated' 'Married-AF-spouse' 'Widowed'],
                                                                                                       Sesudah
Occupation - (14): ['Adm-clerical' 'Exec-managerial' 'Handlers-cleaners' 'Prof-specialty'
 'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
 'Farming-fishing' 'Machine-op-inspct' 'Tech-support' 'Protective-serv'
 'Armed-Forces' 'Priv-house-serv'],
```

Memperbaiki values pada kolom Income







Sesudah

Drop kolom numerik yang terlalu imbalance

#### 8. Kolom Capital Gain



Sebelum

 Kolom numerik yang sangat tidak seimbang dapat mempengaruhi performa model atau analisis, sehingga dilakukan penghapusan pada kolom ini.

Code

Sebelum

Drop kolom numerik yang terlalu imbalance

### 9. Kolom Capital Loss



[41] #menghapus kolom Capital Loss dari Dataframe
 df.drop(columns='capital loss', inplace=True)

Code

Drop salah satu kolom karena identik

#### 10. Education vs EducationNum

| Variable     | VIF |
|--------------|-----|
| EducationNum | inf |
| Education    | inf |

- Nilai "inf" pada kolom VIF menunjukkan bahwa ada indikasi kuat terjadinya masalah multikolineritas, dan juga menunjukkan bahwa kemungkinan variabel tersebut memiliki korelasi yang sangat tinggi dengan variabel lain. Artinya variabel Education dapat sepenuhnya dijelaskan oleh variabel EducationNum.
- Untuk menghindari masalah tersebut maka kolom Education akan dihapus dan EducationNum akan digunakan.

#Menghapus kolom Education
df.drop(columns='Education', inplace=True)

Code

Mengatasi outlier pada kolom numerik

#### 11. Kolom Final Weight

# 1.4 - 1.2 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 -

```
# Calculate the IQR
q1 = np.percentile(df["Final Weight"], 25)
q3 = np.percentile(df["Final Weight"], 75)
iqr = q3 - q1
# Find outliers
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
outliers = df["Final Weight"][(df["Final Weight"] < lower_bound) | (df["Final Weight"] > upper_bound)].

[69] outliers.count()

1453

Terdapat 1453 baris pada kolom final weight yang tergolong outlier

[70] #Mengatasi outlier dengan menggunakan cap method
# Cap outliers using the IQR method
df['Final Weight'] = np.clip(df['Final Weight'], lower_bound, upper_bound)
```



DataFrame setelah proses cleaning

| df.i      | nfo()                            |                                  |        |           | Age     | Workclass       | Final Weight | EducationNum | Marital Status | Occupation        | Relationship   | Race      | Gender | Hours per Week | Native Country | Incom |
|-----------|----------------------------------|----------------------------------|--------|-----------|---------|-----------------|--------------|--------------|----------------|-------------------|----------------|-----------|--------|----------------|----------------|-------|
| /cla      | ss 'nandas core                  | frame.DataFrame'                 |        | 0         | 39      | State-gov       | 77516        | 13           | Never-married  | Adm-clerical      | Not-in-family  | White     | Male   | 40             | USA            | <=50  |
| Int6      | 4Index: 48812 en                 | tries, 0 to 1627                 |        | 1         | 50 S    | elf-emp-not-inc | 83311        | 13           | Married        | Exec-managerial   | Husband        | White     | Male   | 13             | USA            | <=5   |
| Data<br># | columns (total<br>Column         | 12 columns):<br>Non-Null Count   | Dtype  | 2         | 38      | Private         | 215646       | 9            | Divorced       | Handlers-cleaners | Not-in-family  | White     | Male   | 40             | USA            | <=5   |
| 0         | Age                              | 48812 non-null                   |        | 3         | 53      | Private         | 234721       | 7            | Married        | Handlers-cleaners | Husband        | Non-White | Male   | 40             | USA            | <=5   |
| 1         | Workclass<br>Final Weight        | 48812 non-null<br>48812 non-null | _      | 4         | 28      | Private         | 338409       | 13           | Married        | Prof-specialty    | Wife           | Non-White | Female | 40             | Non-USA        | <=5   |
| 3         | EducationNum                     | 48812 non-null                   | int64  |           |         |                 |              |              |                |                   |                |           |        |                |                |       |
| 5         | Marital Status<br>Occupation     | 48812 non-null<br>48812 non-null | _      | 16275     | 39      | Private         | 215419       | 13           | Divorced       | Prof-specialty    | Not-in-family  | White     | Female | 36             | USA            | <=    |
| 6<br>7    | Relationship<br>Race             | 48812 non-null<br>48812 non-null |        | 16276     | 64      | Other           | 321403       | 9            | Divorced       | Other             | Other-relative | Non-White | Male   | 40             | USA            | <=    |
| 8         | Gender                           | 48812 non-null<br>48812 non-null | object | 16277     | 38      | Private         | 374983       | 13           | Married        | Prof-specialty    | Husband        | White     | Male   | 50             | USA            | <=    |
| _         | Hours per Week<br>Native Country | 48812 non-null                   | object | 16278     | 44      | Private         | 83891        | 13           | Divorced       | Adm-clerical      | Own-child      | Non-White | Male   | 40             | USA            | <=    |
|           | Income<br>es: int64(4), ob       | 48812 non-null<br>ject(8)        | object | 16279     | 35      | Self-emp-inc    | 182148       | 13           | Married        | Exec-managerial   | Husband        | White     | Male   | 60             | USA            | >     |
|           | ry usage: 4.8+ M                 |                                  |        | 48812 rov | ws × 12 | columns         |              |              |                |                   |                |           |        |                |                |       |

- Data awal sebanyak 48.841 baris data dan 15 kolom, setelah dilakukan proses cleaning data menjadi 48.812 baris data dan 12 kolom.
- Penghapusan kolom Education, Capital Gain, dan Capital Loss.
- Penghapusan duplicate value sebanyak 29 baris data.

## **Data Visualization**

#### 1. Distribusi Income berdasarkan Native Country, Race, Gender dan Workclass



## **Data Visualization**

#### 2. Distribusi Income berdasarkan Marital Status, Relationship dan Occupation







3 fitur ini memiliki pola yang sama, dimana distribusi income <=50 K dan >50K didominasi oleh dua values yang berbeda.

## **Data Visualization**

3. Distribusi Age, EducationNum, Final Weight dan Hours per Week berdasarkan Income



Titik rata-rata untuk tingkat income <=50K

Titik rata-rata untuk tingkat income >50K



# **Data Encoding**

#### 1. Label Encoding

Label Encoder dilakukan pada variabel target "Income" yang akan mengubah data:

- Values <=50K diberikan label 0</li>
- Values >50K diberikan label 1

```
Income
#income di ubah ke 0 dan 1
from sklearn.preprocessing import LabelEncoder
def label encoder(dataframe, binary col):
   encoders = {} # untuk menyimpan objek encoder untuk kolom-kolom vang di-encode
    labelencoder = LabelEncoder()
    dataframe[binary col] = labelencoder.fit transform(dataframe[binary col])
   encoders[binary_col] = labelencoder # Save the encoder for future use
    return dataframe, encoders
                                                                                                     16275
# Example usage:
# Replace 'df3' with your actual DataFrame and 'Income' with the binary column you want to encode.
                                                                                                     16276
df3, encoders = label_encoder(df3, 'Income')
                                                                                                     16277
                                                                                                     16278
# Display the transformed DataFrame
print(df3)
                                                                                                     16279
# To use the encoder later:
                                                                                                     [48812 rows x 12 columns]
# encoded values = encoders['Income'].transform(some values)
```

#### 2. One-Hot Encoding

Terdapat 7 fitur yang diberikan label menggunakan metode One-Hot Encoding, yaitu: Workclass, Marital Status, Occupation, Relationship, Race, Gender dan Native Country.

|       |     |                  |              |              |                | Sebelum           | :              |           |        |                |                |        |
|-------|-----|------------------|--------------|--------------|----------------|-------------------|----------------|-----------|--------|----------------|----------------|--------|
| f3    |     |                  | 1            |              |                |                   |                |           |        |                | 1              | E      |
|       | Age | Workclass        | Final Weight | EducationNum | Marital Status | Occupation        | Relationship   | Race      | Gender | Hours per Week | Native Country | Income |
| 0     | 39  | State-gov        | 77516        | 13           | Never-married  | Adm-clerical      | Not-in-family  | White     | Male   | 40             | USA            | C      |
| 1     | 50  | Self-emp-not-inc | 83311        | 13           | Married        | Exec-managerial   | Husband        | White     | Male   | 13             | USA            | (      |
| 2     | 38  | Private          | 215646       | 9            | Divorced       | Handlers-cleaners | Not-in-family  | White     | Male   | 40             | USA            | (      |
| 3     | 53  | Private          | 234721       | 7            | Married        | Handlers-cleaners | Husband        | Non-White | Male   | 40             | USA            |        |
| 4     | 28  | Private          | 338409       | 13           | Married        | Prof-specialty    | Wife           | Non-White | Female | 40             | Non-USA        | (      |
|       |     |                  |              |              |                |                   |                |           |        |                |                |        |
| 16275 | 39  | Private          | 215419       | 13           | Divorced       | Prof-specialty    | Not-in-family  | White     | Female | 36             | USA            | (      |
| 16276 | 64  | Other            | 321403       | 9            | Divorced       | Other-service     | Other-relative | Non-White | Male   | 40             | USA            | (      |
| 16277 | 38  | Private          | 374983       | 13           | Married        | Prof-specialty    | Husband        | White     | Male   | 50             | USA            | (      |
| 16278 | 44  | Private          | 83891        | 13           | Divorced       | Adm-clerical      | Own-child      | Non-White | Male   | 40             | USA            |        |
| 16279 | 35  | Self-emp-inc     | 182148       | 13           | Married        | Exec-managerial   | Husband        | White     | Male   | 60             | USA            |        |

- Dilakukan drop\_first=True menunjukkan bahwa penghapusan kolom pertama hasil one-hot encoding untuk menghindari multicollinearity.
- Multicollinearity adalah fenomena dimana dua atau lebih variabel bebas dalam model regresi memiliki tingkat korelasi yang tinggi satu sama lain.

|       |                  |        |                 |                |                      |          |                         | Sesud                      | ah:             |                   |                            |                                |              |
|-------|------------------|--------|-----------------|----------------|----------------------|----------|-------------------------|----------------------------|-----------------|-------------------|----------------------------|--------------------------------|--------------|
|       | f3 = p<br>rint(d |        |                 | s(df3, drop_fi | rst=Tru              | e) # one | hot encoding unto       | uk fitur kategorik         | al di dataset   |                   |                            |                                |              |
| (4    | 48812,           | 36)    |                 |                |                      |          |                         |                            |                 |                   |                            |                                |              |
|       |                  |        |                 |                |                      |          |                         |                            |                 |                   |                            |                                |              |
| [ ] d | f3               |        |                 |                |                      |          |                         |                            |                 |                   |                            |                                |              |
|       |                  | Age    | Final<br>Weight | EducationNum   | Hours<br>per<br>Week | Income   | Workclass_Local-<br>gov | Workclass_Never-<br>worked | Workclass_Other | Workclass_Private | Workclass_Self-<br>emp-inc | Workclass_Self-<br>emp-not-inc | Workclass_St |
|       | 0                | 39     | 77516           | 13             | 40                   | 0        | 0                       | 0                          | 0               | 0                 | 0                          | 0                              |              |
|       | 1                | 50     | 83311           | 13             | 13                   | 0        | 0                       | 0                          | 0               | 0                 | 0                          | 1                              |              |
|       | 2                | 38     | 215646          | 9              | 40                   | 0        | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |              |
|       | 3                | 53     | 234721          | 7              | 40                   | 0        | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |              |
|       | 4                | 28     | 338409          | 13             | 40                   | 0        | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |              |
|       |                  |        |                 |                |                      |          |                         |                            |                 |                   |                            |                                |              |
| 1     | 16275            | 39     | 215419          | 13             | 36                   | 0        | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |              |
| 1     | 16276            | 64     | 321403          | 9              | 40                   | 0        | 0                       | 0                          | 1               | 0                 | 0                          | 0                              |              |
| 1     | 16277            | 38     | 374983          | 13             | 50                   | 0        | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |              |
| 1     | 16278            | 44     | 83891           | 13             | 40                   | 0        | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |              |
| 1     | 16279            | 35     | 182148          | 13             | 60                   | 1        | 0                       | 0                          | 0               | 0                 | 1                          | 0                              |              |
| 48    | 8812 ro          | ws × 3 | 36 column       | ıs             |                      |          |                         |                            |                 |                   |                            |                                |              |

## **Splitting Dataset**



Dataset dibagi menjadi Data Train dan Data Test.

9763 rows × 35 columns

• Dengan rasio yang digunakan 80:20 atau Data Train (80%) dan Data Test (20%).

| X_test |     |                 |              |                      |                         |                            |                 |                   |                            |                                |      |
|--------|-----|-----------------|--------------|----------------------|-------------------------|----------------------------|-----------------|-------------------|----------------------------|--------------------------------|------|
|        | Age | Final<br>Weight | EducationNum | Hours<br>per<br>Week | Workclass_Local-<br>gov | Workclass_Never-<br>worked | Workclass_Other | Workclass_Private | Workclass_Self-<br>emp-inc | Workclass_Self-<br>emp-not-inc | Work |
| 6286   | 24  | 138938          | 10           | 40                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 11843  | 35  | 261646          | 9            | 40                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 7719   | 23  | 239539          | 10           | 40                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 25713  | 32  | 183304          | 11           | 99                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 19370  | 55  | 101468          | 9            | 40                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
|        |     |                 |              |                      |                         |                            |                 |                   |                            |                                |      |
| 718    | 35  | 179579          | 14           | 48                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 5432   | 29  | 176137          | 9            | 40                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 394    | 37  | 79586           | 9            | 60                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 7065   | 24  | 161092          | 13           | 40                   | 0                       | 0                          | 0               | 1                 | 0                          | 0                              |      |
| 29004  | 45  | 48495           | 13           | 42                   | 0                       | 0                          | 0               | 1                 | X_train                    |                                |      |

X\_test

Workclass\_Local- Workclass\_Never-

X\_train

|          | Age  | Weight    | Edd Cd C201114 | Week | gov | worked | Rezuss_center norkezu |   | emp-inc | emp-not-inc |
|----------|------|-----------|----------------|------|-----|--------|-----------------------|---|---------|-------------|
| 29265    | 36   | 148581    | 9              | 55   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 3249     | 40   | 227823    | 12             | 70   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 31055    | 54   | 222882    | 9              | 45   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 14883    | 48   | 193775    | 13             | 38   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 3846     | 29   | 57596     | 10             | 40   | 0   | 0      | 0                     | 1 | 0       | 0           |
|          |      |           |                |      |     |        |                       |   |         |             |
| 20411    | 48   | 246891    | 15             | 60   | 0   | 0      | 0                     | 0 | 0       | 1           |
| 15606    | 49   | 243190    | 11             | 40   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 2274     | 48   | 119565    | 9              | 40   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 12802    | 17   | 117549    | 6              | 12   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 6926     | 53   | 27166     | 9              | 40   | 0   | 0      | 0                     | 1 | 0       | 0           |
| 30040 1/ | WE Y | 35 column | 10             |      |     |        |                       |   |         |             |

Workclass\_Self- Workclass\_Self- Work

## **Feature Scaling**

Fitur-fitur di-scaling menggunakan robust scaler karena lebih tahan terhadap outlier dan cocok untuk data yang tidak terdistribusi normal.

```
[ ] from sklearn.preprocessing import RobustScaler
sc_X = RobustScaler()
X_train2 = pd.DataFrame(sc_X.fit_transform(X_train))
X_train2.columns = X_train.columns.values
X_train2.index = X_train.index.values
X_train = X_train2

X_test2 = pd.DataFrame(sc_X.transform(X_test))
X_test2.columns = X_test.columns.values
X_test2.index = X_test.index.values
X_test = X_test2
```

|               | Age   | Final<br>Weight        | Education | Num     | ours<br>per<br>Week | lass_Local- W | orkclass_            | Never-<br>Workclass     | _Other | workclass_Pr        | rivate | Workclass_Sel<br>emp-i | f- Workclass_Sel<br>nc emp-not-i |                      |     |     |
|---------------|-------|------------------------|-----------|---------|---------------------|---------------|----------------------|-------------------------|--------|---------------------|--------|------------------------|----------------------------------|----------------------|-----|-----|
| 29265         | -0.05 | -0.247711              | -0.333    | 1333    | 3.0                 | 0.0           |                      | 0.0                     | 0.0    |                     | 0.0    | 0                      | .0                               | .0                   |     |     |
| 3249          | 0.15  | 0.410785               | 0.666     | 667     | 6.0                 | 0.0           |                      | 0.0                     | 0.0    |                     | 0.0    | C                      | .0 0                             | .0                   |     |     |
| 31055         | 0.85  | 0.369725               | -0.333    | 1333    | 1.0                 | 0.0           |                      | 0.0                     | 0.0    |                     | 0.0    | C                      | .0                               | .0                   |     |     |
| 14883         | 0.55  | 0.127848               | 1.000     | 000     | -0.4                | 0.0           |                      | 0.0                     | 0.0    |                     | 0.0    | C                      | .0 0                             | .0                   |     |     |
| 3846          | -0.40 | -1.003789              | 0.000     | 000     | 0.0                 | 0.0           |                      | 0.0                     | 0.0    |                     | 0.0    | 0                      | .0 0                             | .0                   |     |     |
|               |       |                        |           |         |                     |               |                      |                         |        |                     |        |                        |                                  |                      |     |     |
| 20411         | 0.55  | 0.569238               | X_test    | 200     | 4.0                 | ^^            |                      | ^^                      | ^^     |                     |        |                        | ^                                | ^                    |     |     |
| 15606<br>2274 |       | 0.538483               |           | Age     | Final<br>Weight     | EducationNum  | Hours<br>per<br>Week | Workclass_Local-<br>gov | Workcl | ss_Never-<br>worked | Workc] | ass_Other Wo           | rkclass_Private                  | Workclass_Se<br>emp- |     |     |
| 6926          |       | -0.505584<br>-1.256660 | 6286      | -0.65   | -0.327843           | 0.000000      | 0.0                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       | 5 columns              | 11843     | -0.10   | 0.691851            | -0.333333     | 0.0                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 7719      | -0.70   | 0.508144            | 0.000000      | 0.0                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 25713     | -0.25   | 0.040835            | 0.333333      | 11.8                 | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 19370     | 0.90    | -0.639216           | -0.333333     | 0.0                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        |           | 111     | - 1                 |               | 1 100                | 111                     |        |                     |        | 422                    | 142                              |                      |     |     |
|               |       |                        | 718       | -0.10   | 0.009881            | 1.333333      | 1.6                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 5432      | -0.40   | -0.018722           | -0.333333     | 0.0                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 394       | 0.00    | -0.821054           | -0.333333     | 4.0                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 7065      | -0.65   | -0.143745           | 1.000000      | 0.0                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 29004     | 0.40    | -1.079418           | 1.000000      | 0.4                  | 0.0                     |        | 0.0                 |        | 0.0                    | 0.0                              |                      | 0.0 | 0.0 |
|               |       |                        | 9763 rov  | vs × 35 | columns             |               |                      |                         |        |                     |        |                        |                                  |                      |     |     |



## **Model Selection**

Pemilihan Model menggunakan metode K-fold Cross Validation dengan split sebanyak 5 kali.

|   | Algorithm                | ROC AUC Mean | ROC AUC STD | Accuracy Mean | Accuracy STD |
|---|--------------------------|--------------|-------------|---------------|--------------|
| 7 | XGBoost                  | 88.68        | 0.58        | 83.40         | 0.49         |
| 0 | Logistic Regression      | 88.47        | 0.51        | 78.77         | 0.34         |
| 1 | SVC                      | 87.97        | 0.63        | 83.06         | 0.48         |
| 6 | Random Forest            | 87.34        | 0.57        | 82.71         | 0.44         |
| 2 | Kernel SVM               | 86.87        | 0.84        | 83.69         | 0.40         |
| 4 | Gaussian NB              | 84.27        | 0.60        | 65.81         | 1.15         |
| 3 | KNN                      | 83.65        | 0.82        | 81.59         | 0.53         |
| 5 | Decision Tree Classifier | 69.99        | 0.50        | 77.73         | 0.37         |
|   |                          |              |             |               |              |

- Menggunakan ROC\_AUC Mean sebagai patokan karena ROC\_AUC Mean adalah rata-rata dari ROC AUC.
- Jadi ROC\_AUC Mean lebih akurat daripada ROC AUC.

## Distribusi nilai ROC AUC dengan K-fold Cross Validation. **ROC AUC Comparison** 0.90 0.85 0 0.80 0.75 0.70 -SVC KNN Decision Tree Classifier Random Forest XGBoost Logistic Regression Kernel SVM Gaussian NB

## **Model Evaluation**

**Classification Metrics** 

#### **Tanpa Hyperparameter**

| Model   | Accuracy | Precision | Recall | F1 Score | F2 Score | ROC-AUC |
|---------|----------|-----------|--------|----------|----------|---------|
| XGBoost | 0.84     | 0.70      | 0.59   | 0.64     | 0.61     | 0.75    |

#### **Dengan Hyperparameter**

| Model   | Accuracy | Precision | Recall | F1 Score | F2 Score | ROC-AUC |
|---------|----------|-----------|--------|----------|----------|---------|
| XGBoost | 0.85     | 0.72      | 0.59   | 0.65     | 0.61     | 0.76    |

- Terjadi sedikit peningkatan pada model XGBoost setelah dilakukan hyperparameter tuning.
- Selain itu, faktor datasetnya balanced atau imbalanced juga diperhitungkan. Jika data balanced accuracy akan menjadi utama, jika data imbalanced maka ROC AUC diutamakan.
- Karena data target imbalance, maka metrik evaluasi yang akan digunakan nanti adalah ROC/AUC.



## **Features Importants**

5 fitur dengan pengaruh terbesar terhadap kategori target





# **Tahap Model Deployment**

- Dalam proses model deployment, model machine learning yang sudah di-training dan dievaluasi yaitu XGBoost disimpan dalam file dengan format pickle.
- File pickle diimpor ke dalam code deployment yang kemudian diedit dalam code editor VS Code.
- Code deployment dan file kebutuhan deploy lainnya diupload ke repository Github yang sudah dikoneksikan ke framework Streamlit.
- Dalam tampilan UI dengan framework Streamlit, dibuat dua menu yaitu halaman "Home" yang menampilkan deskripsi dari app tersebut dan link sumber data yang digunakan, dan halaman "Machine Learning" yang menampilkan attribute info, form untuk input data baru yang akan diprediksi, dan hasil prediksinya.





## **Conclusions**

- Berdasarkan proses analisis mulai dari data cleaning sampai dengan modeling, didapatkan hasil bahwa untuk memprediksi tingkat income dari calon pelanggan, model yang paling bagus yaitu XGBoost dengan nilai ROC/AUC sebesar 0,75 dan ROC/AUC mean sebesar 0,88
- Berdasarkan proses EDA, value Marital Status "Never-married", Relationship "Not-in-family", dan Occupation "Other-service" memiliki pola dengan variabel income yang didominasi dengan income <=50K.
- Terdapat 5 karakteristik teratas yang mempengaruhi prediksi tingkat income, yaitu Marital Status "Married", EducationNum, Occupation\_"Handlers-cleaners", Occupation "Other-service", Occupation "Exec-managerial".



## Inne Andarini Herdianti S. Si



### **Data Science Enthusiast**

A bachelor of Science degree in Physics was obtained from the Bandung Institute of Technology. I'm eager to dive into the world of data science. Please check out some of the projects I've worked on my GitHub or LinkedIn. I'm excited about the opportunity to bring my skills and enthusiasm for Data Science!

#### **Contact:**



https://www.linkedin.com/in/inneandarini/

datascienceportfol.io/inneandarini

Explore my portfolio dashboard at



inneandarinii@gmail.com



https://github.com/inneandarinii

# Thanks!

**CREDITS:** This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>