Application of differentiation 15/11 - finding local extreme values -> finding global extreme values F, a are continuous on [a,6] & differentiable on (a,6) Thm f'(x) = g'(x) $\forall x \in (a,b)$ $\Leftrightarrow f(x) - g(x)$ is constant $= C \forall x \in [a,b]$ Proof First simplify: Consider h(x) = f(x) - g(x) still continuous h'(x) = f'(x) - g'(x) and differentiable So we have to show $h'(x) = 0 \forall x \iff h(x) \text{ is constant}$ (=) If $h(x) = c \forall x, h'(x) = 0$ =>) Use the mean value theorem $\frac{for h: [c,d] \rightarrow \mathbb{R}}{2^{e}}$ $\frac{h(d) - h(c)}{d - c} = h'(z) = 0 \Rightarrow h(c) = h(d)$

So derivative always 0 =>
$\forall c < d, h(c) = h(d)$
so h is constant
50 h 13 constant
Theorem $h'(x) > 0$ for all $x \in (a,b)$
> his strictly in creasing
Same proof: it, we choose,
Same proof: if we choose any CKd between a 66
the MVT says 77 between c Cd
h(d) - h(c) = f'(z) > 0
<u> </u>
=) h(d) - h(c) > 0 whenever
=) h(d)-h(c)> O whenever =) h strictly in creasing. C <d.< th=""></d.<>
Theorem h'(x) < 0 => strictly
Theorem h'(x) < 0 => strictly decreasing.
J
Finding mase & min values
110000000000000000000000000000000000000

f: [a,6] -> R ds $f':(a,b)\rightarrow\mathbb{R}$ exists Fhas a local maximum at x = c $\frac{1}{2} \frac{\delta > 0}{2} : \frac{c - \delta < x < c}{2}$ $\Rightarrow f(x) < f(c)$ $c < x < c + \delta$ $\Rightarrow f(x) \leq f(c)$ fhon a local minimum at x = c $\frac{1}{1} \frac{1}{1} \frac{1}$ (local max /x \Rightarrow f(x)>0 $\forall x \in (c-\delta,c)$ $f'(x) \leq 0 \forall x \in (c,c+\delta)$ (local min) \Rightarrow $f'(x) \leq 0 \forall x \in (c-\delta,c)$ f'(x) >, 0 \x \in (c, cdd) Local extreme value) \Rightarrow f'(c) = 0 & if f'(c) exists

Gilobal Extreme Values E.V.T. $f:[a,b] \rightarrow \mathbb{R}$ ets => 7 c, d $f(c) \leq f(x) \leq f(d)$ min max Global extreme value could be 1) >(= 01 2) $\chi = 6$ f(c) 3 at x=c with f not ? critical differentiable at x=c 4) at x= c with f'(c) = 0f:[0,1] -> R $f(x) = x^2$ f(x) = |x|x=0 global MWIMM