臺北區 107 學年度第二學期 指定科目第一次模擬考試

化學考科

--作答注意事項--

考試範圍:高一~高三(上)原子構造、化學鍵結、水溶液中酸

鹼鹽的平衡、氧化還原反應

考試時間:80分鐘

作答方式:

- •選擇題用 2B 鉛筆在「答案卡」上作答;更正時,應以 橡皮擦擦拭,切勿使用修正液(帶)。
- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上 作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或 未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨 認機器掃描後之答案者,其後果由考生自行承擔。

參考資料

說明:下列資料,可供回答問題之參考

一、元素週期表(1~36號元素)

1	1																2
lμ																	He
1.0																	4.0
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
11	12											13	14	15	16	17	18
Na	Mg											Αl	Si	Р	S	Cl	Ar
23.0	24.3											27.0	28.1	31.0	32.1	35.5	40.0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8

- 二、理想氣體常數 $R = 0.0820 L atm K^{-1} mol^{-1} = 8.31 J K^{-1} mol^{-1}$
- 三、酚酞變色範圍:pH=8(無色)~10(紅色)
- $\square \cdot \log 2 = 0.3 \cdot \log 3 = 0.5$

祝考試順利

版權所有·翻印必究

第 1 頁 $_{_{rac{4}{2}}}$ purinmoon.blogspot.tw

第壹部分:選擇題(占80分)

一、單選題(占 60 分)

說明:第1.題至第20.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. $A \times B$ 兩中性基態原子之電子排列分別為(2,8,2)和(2,6)。有關 A 和 B 所形成的化合物,下列何者正確?
 - (A)水溶液為酸性
 - (B)兩原子間以共用價電子方式結合
 - (C)化學式為 AB
 - (D)液態時不導電
 - (E)在常溫、常壓下為黃色固體
- 2. 下列有關各物質性質的比較,何者正確?

(A)酸性:HClO>HClO₂>HClO₃>HClO₄

(B)酸性:HF>HCl>HBr>HI

(C)鹼性: NaCN>NaClO₄>NH₄Cl

(D)沸點:HI>HBr>HCl>HF

(E)熔點:SiO₂>S₈>Na>NaCl

- 3. 已知 XO₄²⁻ 與 YO₄⁻ 兩個離子皆含有 58 個電子,則下列敘述何者錯誤?
 - (A) 元素的原子序: Y>X
 - (B)基態 X 原子與基態 Y 原子的電子組態, d 軌域皆填有 5 個電子
 - (C)基態 X 原子與基態 Y 原子,所含未成對電子數目:Y>X
 - (D) XO₄²⁻(aq) 與 YO₄ (aq) 皆具有顏色
 - (E) YO4⁻ 離子只能當作氧化劑
- 4. 有關 N₂H₄ 和 C₂H₄ 兩分子的敘述,下列何者正確?
 - (A) N₂H₄ 為平面分子
 - (B) C₂H₄ 分子中含有孤對電子
 - (C) N₂H₄ 為極性分子
 - (D) C₂H₄ 分子中具有幾何異構物
 - (E) N₂H₄ 中氮原子間的鍵能大於 C₂H₄ 中碳原子間的鍵能

5. 毒奶粉事件與非法添加三聚氰胺($C_3H_6N_6$)有關,其結構如圖 1,工業上合成三聚氰胺主要使用尿素為原料,在加熱和一定壓力下,依下式分解生成三聚氰胺: $6(NH_2)_2CO \rightarrow C_3H_6N_6+6NH_3+3CO_2$ 。試問下列選項何者正確?(分子量: $NH_3=17$ 、 $CO_2=44$ 、 $(NH_2)_2CO=60$ 、 $C_3H_6N_6=126$)

- (A) 此反應為複分解反應
- (B)三聚氰胺環狀中的氮原子混成鍵結軌域為 sp
- (C)三聚氰胺為平面分子
- (D)三聚氰胺結構中,具有6對π電子
- (E)合成三聚氰胺的原子使用效率 35%
- 6. 取相同質量的氣體甲和氧氣,分別置入兩相同體積的密閉容器中,測 其壓力與溫度之關係如圖 2 所示,試問氣體甲可能為下列何者?

- $(B) N_2$
- (C) CO₂
- (D) NO₂
- (E) SO₂

- 7. 有關化學反應速率之敘述,下列何者錯誤?
 - (A)催化劑可改變反應途徑,增快反應速率
 - (B)催化劑可使活化能降低,增快反應速率
 - (C)溫度變化不會改變反應的活化能和反應途徑
 - (D)溫度升高,放熱反應的反應速率隨之降低
 - (E)增加反應物濃度可使得碰撞頻率增加,而加快反應速率
- 8. 笑氣(N_2O)在金粉上熱分解的反應式: $2N_2O_{(g)} \rightarrow 2N_{2(g)} + O_{2(g)}$ 。若將 12.0 atm 的 N_2O 置入一真空且固定體積和溫度的容器中,笑氣(N_2O) 壓力隨時間之變化關係如圖 3 所示。已知當系統總壓達 13.0 atm 時, 共耗時 50 秒,試問下列敘述何者正確?

- (A)第 100 秒時,系統總壓增為 14.0 atm
- (B)第 100 秒時,系統總壓增為 16.5 atm
- (C)當 N₂O 壓力降為 4.0 atm 時, 共歷經 75 秒
- (D)當 N₂O 壓力降為 4.0 atm 時, 共歷經 150 秒
- (E)可由顏色變化判斷反應是否達平衡

9. 小華將 A、B 兩金屬及含對應金屬離子的水溶液 A²⁺_(aq)、B²⁺_(aq)組成一個電池。在常溫、常壓時,改變兩金屬離子的濃度比值,並測量電池電壓的變化,如圖 4 所示。已知 A、B 兩金屬必為鋅、鎳及銅其中兩種, 其標準還原電位如下:

$$Zn^{2+} + 2e^{-} \rightleftharpoons Zn$$
 $E^{\circ} = -0.76 \text{ V}$

$$Ni^{2+} + 2e^- \rightleftharpoons Ni \quad E^\circ = -0.23 \text{ V}$$

$$Cu^{2+} + 2e^{-} \rightleftharpoons Cu \quad E^{\circ} = 0.34 \text{ V}$$

關於此電池的反應,下列敘述何者正確?

- (A)小華所組裝的電池為鋅鎳電池
- (B) B^{2+} 為 Zn^{2+}
- (C)金屬 A 為銅
- (D)金屬 B 為正極
- (E)金屬 A 為還原劑
- 10. 人體的血液(37 ℃)中主要為碳酸的緩衝系統,使血液的 pH 值能夠維持在 7.4 左右,其中血紅素(Hb)在血液中扮演輸送氧氣的重要角色,血紅素、氧氣及氫離子間的平衡關係: $HbH^{+}+O_{2} \rightleftharpoons HbO_{2}+H^{+}$ 。已知在 37 ℃ 時 $H_{2}CO_{3}$ 的 $K_{a_{1}}=4\times10^{-7}$ 、 $K_{a_{2}}=5\times10^{-11}$,根據以上資料,下列推論何者較為合理?
 - (A)運動後血液的 CO₂ 濃度增加,血紅蛋白與氧氣結合的能力亦增加
 - (B)血液中主要的共軛酸鹼對為 HCO_3^-/CO_3^{2-}
 - (C)若某病人血液緩衝系統失調導致血液過鹼,可能會造成缺氧窒息
 - D)正常人攝入酸性或鹼性食物時,會大幅度改變血紅蛋白乘載氧氣的量
 - (E)當血液 pH 值在 7.4 時,緩衝系統中的 $\frac{[H_2CO_3]}{[HCO_3^-]}=0.1$
- 11. 定溫下,將足量的 AgCl 固體分別放入裝有下列 ① ~ ④ 溶液的燒杯中,則 AgCl 固體溶解 度由大到小的排列順序為何?
 - ① 50 mL 0.01 M \geq AgNO_{3(aq)}
 - \bigcirc 50 mL 0.01 M \gtrsim CaCl_{2(aq)}

 - ④ 50 mL 蒸餾水
 - (A) (3) > (4) > (1) > (2)
 - (B) 3>2>1>4
 - (C) (1) > (1) > (2)
 - (D) (1) > (3) > (2) > (1)
 - (E) (1) > (2) > (3) > (4)

12. 一容器內裝有理想氣體,以可自由滑動且絕熱之活塞將容器分割成甲、乙、丙三室,在 27 ℃平衡時,三室體積均為 V,如圖 5 所示。今將甲室緩慢加熱至 127 ℃,乙室緩慢加熱至 77 ℃,而丙室溫度維持不變。試問達新平衡後甲、乙、丙三室體積分別為何?

(A)
$$V_{\mathbb{P}} = \frac{3}{2} V \cdot V_{\mathbb{Z}} = V \cdot V_{\mathbb{P}} = \frac{1}{2} V$$

(B)
$$V_{\text{F}} = \frac{4}{3} V \cdot V_{\text{Z}} = \frac{2}{3} V \cdot V_{\text{F}} = \frac{1}{3} V$$

$$(C) V_{\text{F}} = \frac{6}{5} V \cdot V_{\text{Z}} = \frac{3}{5} V \cdot V_{\text{F}} = \frac{1}{5} V$$

(D)
$$V_{\text{P}} = \frac{8}{7} V \cdot V_{\text{Z}} = V \cdot V_{\text{PS}} = \frac{6}{7} V$$

- (E) $V_{\mathbb{H}} = V \cdot V_{\mathbb{Z}} = V \cdot V_{\mathbb{M}} = V$
- 13. 在一密閉容器中發生下列反應: $N_{2(g)}+3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$,圖 6 是某一段時間間隔,反應速率與反應過程時間的關係曲線圖,若分別在 $t_1 \cdot t_3 \cdot t_4$ 三個時間點上加入不同的改變因素,使反應重新達到新平衡。已知 t_1 時的改變因素為升高溫度,則下列敘述何者正確?

- (A) N_{2(g)}+3H_{2(g)} ⇌ 2NH_{3(g)} 之正反應為吸熱反應
- (B) t₂ 時的平衡常數大於舊平衡的平衡常數
- (C) t3 為加入催化劑使正、逆反應速率等量增加
- (D) t4 時的改變因素可能為降溫
- (E) t4 時的改變因素可能為加壓
- 14. 甲、乙、丙、丁為第二至第四週期的主族元素,已知甲、乙、丙同週期,根據表 1 中的數據(單位:kJ/mol)判斷,下列敘述何者正確?

表1

元素代號	第一游離能	第二游離能	第三游離能	第四游離能
甲	496	4562	6910	9543
乙	578	1817	2745	11577
丙	738	1451	7733	10542
丁	590	1145	4912	6491

(A)價電子數:丙>乙>甲

(B)在週期表中,丁最可能和乙同族

(C)中性原子半徑:丁>乙>丙>甲

(D) 氫氧化物鹼性:丁>丙

(E)中性原子電負度:丙>乙>甲

15. 圖 7 中的 I 和 II 區可能為氫原子光譜之紫外光區或可見光區,關於 $a \sim f$ 六條譜線的敘述,下列何者正確?

- (A) a 為可見光區的最後一條譜線
- (B)六條譜線中,d的能量最高
- (C)若氫原子的游離能為 1312 kJ/mol,則 b 譜線能量為 1312 $\times \frac{8}{9}$ kJ/mol
- (D) b 譜線能量與 d 譜線能量總和等於 f 譜線之能量
- (E) a 譜線波長與 d 譜線波長總和等於 e 譜線之波長
- - (A)食品中適當添加防腐劑可抑制有害微生物的繁殖,避免造成食物的腐敗
 - (B)大部分無機防腐劑毒性較強
 - (C)硼酸具有羧基,所以為酸性
 - (D)苯甲酸與苯甲酸鈉互為共軛酸鹼對
 - (E)山梨酸屬於不飽和酸

17.、18. 題為題組

氨基甲酸銨(NH₂COONH₄)為一種白色晶狀粉末,在室溫下略有揮發性,59 $^{\circ}$ C 時容易分解產生氨氣與二氧化碳。將一定量純的氨基甲酸銨置於一密閉真空容器中(固體體積忽略不計),反應式:NH₂COONH_{4(s)} \rightleftharpoons 2NH_{3(g)}+CO_{2(g)} Δ H>0。(分子量:NH₃=17,CO₂=44,NH₂COONH₄=78)

- 17. 定溫、定容下,下列哪一項觀察結果可以判斷此一反應已經達到平衡?
 - (A)密閉容器中顏色不變
 - (B)密閉容器中密度不變
 - (C) 氨氣生成速率等於二氧化碳生成速率的兩倍
 - (D)密閉容器中二氧化碳的體積百分率不變
 - (E)密閉容器中氨氣的分壓不變

- 18. 定溫(27 $^{\circ}$ $^{\circ}$)、定容下,該反應達平衡時,若測得氨氣壓力為 $^{\circ}$ 月,則下列敘述何者正確?
 - (A) $K_p = 0.5P^3$
 - $(B) K_p < K_c$
 - (C)混合氣體平均分子量為 30.5
 - (D)容器内,NH3平均動能為CO2的兩倍
 - (E)容器內每一個氣體粒子的運動速率皆相同

19.、20. 題為題組

甲生取了某種油脂3克想做皂化實驗,並且想利用此實驗測出油脂分子量,實驗步驟如下:

- ① 配製 1 M、80.00 mL 氫氧化鈉水溶液後, 連同適量的乙醇一同倒入此油脂。
- ② 加熱混合液,使混合液維持在高溫並且加以攪拌。(假設此過程只發生皂化反應)
- ③ 反應完成後,倒入飽和食鹽水溶液並靜置數分鐘,待肥皂完全析出。
- ④ 將肥皂全部取出後,剩餘溶液的體積共有 150 mL,用 0.5 M 鹽酸中和過量的氫氧化鈉,反應完成後共用去鹽酸 140 mL。

已知此皂化反應式:
$$R-C-O-CH_2$$
 已知此皂化反應式: $R-C-O-CH_2$ $R-C-O-CH_2$ $R-C-O-CH_2$ $R-C-O-CH_2$ $R-C-O-CH_2$

19. 依據上文敘述,試判斷此油脂的分子量大約為多少?

- (A) 550
- (B) 670
- (C) 750
- (D) 900
- (E) 1200
- 20. 當肥皂內的 R 為以下何種結構時,排放至河流最不易產生持久性的泡沫?

(A) $\{ n \}$

二、多選題(占20分)

說明:第21.題至第25.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得4分; 答錯1個選項者,得2.4分;答錯2個選項者,得0.8分;答錯多於2個選項或所有選 項均未作答者,該題以零分計算。

- 21. 將 8.4 克的某液態化合物置於 8.2 升體積固定的密閉真空容器中,自 280 K 開始加熱,溫度逐漸升至 360 K。將容器內氣體壓力隨溫度的變化記錄於圖 9 中,試問下列選項哪些正確?
 - (A)此化合物的分子量約為 100
 - (B)在 290 K 時,此化合物以液態和氣態存在
 - (C)在310 K 時,此化合物的飽和蒸氣壓為200 mmHg
 - (D)在 330 K 時,此化合物的飽和蒸氣壓為 250 mmHg
 - (E)分別在圖中甲、乙、丙三溫度下,容器中氣體的莫耳數大小關係為甲<乙=丙

圖 9

- 22. 進行秒錶反應實驗時,先將甲溶液(碘酸鉀 KIO3)與乙溶液(亞硫酸氫鈉 NaHSO3)的濃度控制在一定範圍內,再將上述兩種溶液以一定的比例與澱粉溶液混合,可觀察溶液變為藍色。相關反應式如下:
 - $IO_3^- + 3HSO_3^- \rightarrow I^- + 3SO_4^{2^-} + 3H^+ \cdots$ 式(1); $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O \cdots$ 式(2)下列有關此實驗的敘述,哪些正確?
 - (A)此實驗欲觀察到藍色的產生,則碘酸鉀莫耳數至少為亞硫酸氫鈉莫耳數的3倍以上
 - (B)溫度愈高, 反應速率愈快, 欲使藍色更快生成, 可將實驗溫度加至 90 ℃以上
 - (C)碘酸根與碘離子在鹼性溶液中可生成碘
 - (D)亞硫酸氫鈉在空氣中不安定,因此若未立即做實驗,可改以焦亞硫酸鈉溶於水配製
 - (E)取同濃度的甲液和乙液分別 3 mL 和 1 mL, 加水 15 mL 後混合均匀, 可觀察到藍色的產生
- 23. 在適當條件下,進行氧化還原滴定實驗,於過錳酸鉀溶液中先加入少量稀硫酸,再緩慢滴加過氧化氫溶液,已知其反應式: $H_2O_2 + MnO_4^- + H^+ \rightarrow O_2 + Mn^{2+} + H_2O$ (未平衡)。則下列敘述哪些正確?
 - (A) H₂O₂ 發生氧化反應,其產物為 O₂
 - (B)反應式的最簡單係數和為28
 - (C)此實驗應加入指示劑,才能觀察實驗結果
 - (D)改變溶液的 pH 值,使其 pH>7,亦不會影響產物種類
 - (E)若以稀鹽酸取代稀硫酸,不會影響反應
- 24. 依據各選項的實驗目的,有關實驗操作或實驗裝置圖,下列哪些正確?
 - (A)以蒸餾法分離食鹽水溶液時,裝置應如圖 10 所示
 - (B)從茶水中萃取咖啡因,可用丙酮為溶劑
 - (C)配製 1.2 M 稀鹽酸時,應以分度吸量管+安全吸球準確量取 12 M 濃鹽酸 10 毫升,放入容量瓶中,再加入 100 毫升的水
 - (D)若以 0.1 M 氫氧化鈉滴定未知濃度醋酸 20 毫升時,滴定管和錐形瓶皆須以待裝液潤洗後再進行實驗

溫度計

- (E)在鐵製品上鍍銅時,銅線應置於正極,鐵製品應置於負極,且以硝酸銅為電解液進行電鍍
- 25. 反應 $CaCO_{3(s)} = CaO_{(s)} + CO_{2(g)}$,在 1000 K 達平衡時,平衡常數 $K_p = 380$ mmHg,今於 41 升真空容器中,加入下列物質,並加熱至 1000 K。有關平衡移動方向及是否達成平衡的判斷結果,下列哪些狀況完全正確?

狀況	各物質	質之莫耳數 (1	mol)	平衡移動的方向	經長時間後是否達平衡					
	$CaCO_{3(s)}$	CaO _(s)	$CO_{2(g)}$							
(A)	0	0.5	0.2	往左	未平衡					
(B)	0.5	0	0.5	不移動	未平衡					
(C)	0.4	0	0	往右	未平衡					
(D)	0.4	0.1	0	往右	達平衡					
(E)	0.1	0.1	0.1	往右	未平衡					

第貳部分:非選擇題(占20分)

說明:本部分共有兩大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號(1.、2.、……),作答時不必抄題,若因字跡潦草、未標示題號、標錯題 號等原因,致評閱人員無法清楚辨識,其後果由考生自行承擔。計算題必須寫出計算 過程,最後答案應連同單位劃線標出。作答務必使用筆尖較粗之黑色墨水的筆書寫, 且不得使用鉛筆。每一子題配分標於題末。

一、小華在 1 atm、25 ℃下,做了一個簡單的電解實驗:利用銅棒和鉑 棒當作電極,電解 500 mL Na₂SO_{4(aq)},將電解槽與電池組連接,如 圖 11 所示(不考慮水解和溶液體積變化)。已知標準氧化半電位:

$$H_2O_{(\ell)} \rightarrow \frac{1}{2}O_{2(g)} + 2H^+_{(aq)} + 2e^- \quad E^\circ = -0.81 \text{ V}$$

$$H_{2(g)} + 2OH^{-}_{(aq)} \rightarrow 2H_{2}O_{(\ell)} + 2e^{-} \quad E^{\circ} = 0.41 \text{ V}$$

 $Cu_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2e^{-} \quad E^{\circ} = -0.34 \text{ V}$

- 2. 寫出 X 電極附近的半反應式(2分)
- 3. 若通電 0.2 A, 歷時 16 分 5 秒電解後, 溶液之 pH 值為何? (3 分)
- 4. 若要產生電解反應,至少需要外加電壓多少 V? (3分)

二、今以 $0.1\ M\ NaOH_{(aq)}$ 滴定未知濃度的 $HA_{(aq)}$ (單質子酸, $K_a=3\times10^{-5}$) $40\ mL$,實驗步驟與記錄如下:

步驟(一):取一乾燥的錐形瓶裝入 40 mL HA(aq)。

步驟二:滴加2~3滴酚酞於錐形瓶中。

步驟三:取一乾燥的滴定管裝入 NaOH(aq) 標準溶液。

步驟四:記錄滴定管中溶液的體積,如圖 12 所示。

步驟田:將 NaOH(aq) 緩慢滴加於 HA(aq) 中,見錐形瓶內溶液變色即停止動作。

步驟於:記錄滴定管中所剩 NaOH(aq) 的體積,如圖 13 所示。

回答下列問題:

- 1. 步驟知停止動作後,錐形瓶內所見顏色為何?(2分)
- 2. 步驟 內滴定結束後,滴定管內 NaOH(aq) 體積的讀數為多少 mL? (2分)
- 3. HA_(aq) 的初始濃度為多少 M? (2分)
- 4. 加入 $NaOH_{(aq)}$ 的體積為 $10 \, mL$ 時,測量錐形瓶內溶液的 pH 值應為多少?(2 分)
- 5. 加入 40 mL NaOH_(aq) 時,錐形瓶內溶液的 [OH⁻] 為多少 M? (2分)

化學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(C)	(C)	(C)	(C)	(E)	(B)	(D)	(A)	(C)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(E)	(A)	(D)	(C)	(D)	(D)	(C)	(E)	(A)
題號	19.	20.	21.	22.	23.	24.	25.		
答案	(D)	(A)	(B)(E)	(D)(E)	(A)(B)	(A)(E)	(B)(D)(E)		

第壹部分: 選擇題

一、單選題

1. (C)

出處:基礎化學(一) 原子結構與性質、化學反應; 基礎化學(二) 物質的構造與特性

目標:理解化學資料的能力

內容:測驗學生化學式、離子晶體的特性、元素的 分類及原子中電子排列的概念

解析:此化合物應為氧化鎂 MgO。

(A) 此化合物水溶液為鹼性。

(B) 此化合物為離子化合物,原子間以得失價電子方式結合。

(D) 液態時會導電。

(E) 此化合物常温、常壓下為白色固體。

2. (C)

出處:選修化學(上) 化學鍵結、水溶液中酸、鹼、 鹽的平衡

目標:分析、歸納、演繹及創造的能力

內容:測驗學生分子間作用力、氫鍵與凡得瓦力、 酸鹼度及鹽的概念

解析:(A) ∴ $HClO=(HO)Cl \cdot HClO_2=(HO)ClO \cdot$ $HClO_3=(HO)ClO_2 \cdot HClO_4=(HO)ClO_3$

∴酸性:HClO₄>HClO₃>HClO₂>HClO

(B) :: 同族非金屬氫化物,原子序愈大,酸性 愈強

∴酸性:HI>HBr>HCl>HF

(C) HCN、HClO₄ 為酸性物質,酸性:HClO₄ >HCN,故共軛鹼的鹼性:CN¯>ClO₄¯; 而 NH₃ 為鹼性物質,故 NH₄⁺ 為共軛酸。 ∴鹼性:NaCN>NaClO₄>NH₄Cl

(D) HF 分子間有氫鍵,沸點最大; HCl、HBr、HI中, HI 的總電子數最多,凡得瓦力最強; HCl 總電子數最少,凡得瓦力最弱。 ∴沸點: HF>HI>HBr>HCl

(E) 熔點:共價網狀固體>離子晶體>金屬晶體>分子固體。

∴熔點:SiO₂>NaCl>Na>S₈

3. (C)

出處:基礎化學(一) 原子的構造與性質; 選修化學(上) 原子構造、氧化還原反應

目標:基本的化學規則、學說及定律

內容:測驗學生原子核的組成與原子序、電子組態、 多電子原子的電子組態及氧化數的定義

解析: X 原子的電子數 + 4×8 + 2 = 58, X 原子的電子數為 24, 原子序為 24, X 為 Cr。

V 原子的電子數 | 4×8 + 1 = 58, Y 原子的零

Y 原子的電子數+4x8+1=58,Y 原子的電子數為 25,原子序為 25,Y 為 Mn。

(A) 元素的原子序: Y>X。

(B)(C) 基態 X 原子的電子組態為 $[Ar]3d^54s^1$, d 軌域填有 5 個電子,未成對電子數共 有 6 個;基態 Y 原子的電子組態為 $[Ar]3d^54s^2$,d 軌域填有 5 個電子,未成 對電子數共有 5 個。

未成對電子數目:X>Y。

(D) CrO₄²⁻_(aq) 為黃色,MnO₄ _(aq) 為紫色。

(E) MnO_4 中,Mn 的氧化數為+7,已達最高氧化數,故只能當作氧化劑。

4. (C)

出處:基礎化學(二) 物質的構造與特性、有機化 合物;

選修化學(上) 化學鍵結

目標:基本的化學規則、學說及定律

內容:測驗學生分子極性與分子形狀、幾何異構物 及分子化合物特性的概念

解析: $H-\ddot{N}-\ddot{N}-H$ 、C=C H

(A) N_2H_4 分子中,N 的混成軌域為 sp^3 ,為三度空間角錐形,不是平面分子。

(B) C_2H_4 分子中,沒有孤對電子,lp=0。

(C) N₂H₄ 分子中,各鍵偶極矩的向量和不為零,為極性分子。

(D) C₂H₄ 分子中,碳的周圍均為 H ,因此沒有幾何異構物(順反異構物)。

(E) N_2H_4 中氦原子間為單鍵,而 C_2H_4 中碳原子間為雙鍵。鍵級愈大,鍵能愈強,因此 C_2H_4 中碳原子間的鍵能較大。

5. (E)

出處:基礎化學(一) 化學反應; 選修化學(上) 化學鍵結

目標:了解化學與生活之關係

內容:測驗學生化學反應中質量關係、分子極性與 分子形狀、共振結構及混成軌域的概念 解析:(A) 此反應為分解反應。

(B) 三聚氰胺環狀中的氮原子應有 1 對孤對電子,所以混成鍵結軌域為 sp²。

- (C) 三聚氰胺的 NH_2 中,N 有 1 對孤對電子, 混成鍵結軌域 sp^3 為立體分子。
- (D) 三聚氰胺結構中,具有3對π電子。
- (E) 尿素分子量=60,三聚氰胺分子量=126, 可知合成三聚氰胺的原子使用效率=

$$\frac{126}{60\times6}$$
 ×100% = 35% °

6. (B)

出處:基礎化學(三) 氣 體

目標:分析、歸納、演繹及創造的能力

內容:測驗學生關於理想氣體方程式的應用

解析:依據理想氣體方程式 PV=nRT,定溫、定容下, $P \propto n$,又質量相同時,莫耳數與分子量成反比

$$\therefore P \approx \frac{1}{M}$$

$$\frac{445}{389} = \frac{32}{M_{\text{H}}} \Rightarrow M_{\text{H}} = 28$$

7. (D)

出處:基礎化學(三) 化學反應速率

目標:基本的化學名詞、定義及現象

內容:測驗學生關於影響反應速率的因素——濃度、 溫度、催化劑

解析: (D) 溫度升高,超越低限能粒子數增加,不論 吸熱或放熱反應,速率皆增快。

8. (A)

出處:基礎化學(三) 化學反應速率

目標:分析、歸納、演繹及創造的能力;化學計算 的能力

內容:測驗學生反應速率——零級反應的概念

解析:因題圖為斜直線,反應物壓力隨時間呈現等 差級數的變化,推知此為零級反應,反應速 率與反應物濃度無關。

$$\begin{array}{cccc} 2N_2O_{(g)} & \rightarrow 2N_{2(g)} + & O_{2(g)} \\ 12.0 & 0 & 0 \\ -x & +x & +0.5x \\ \hline 12.0 - x & x & 0.5x \end{array}$$

總壓= (12.0-x) + x + 0.5x = 13.0 (atm)

故反應經過 50 秒, $P_{N_2O} = 10.0$ (atm)

(A)(B) 反應至第 100 秒時:

∴
$$x=2.0\times2=4.0$$

∴ $x=2.0\times2=4.0$
∴ $x=14.0$ (atm)

- (C)(D) 當 N₂O 的壓力降為 4.0 atm 時:
 - ∵壓力每降 2.0 atm 需耗時 50 秒
 - ∴當 N_2O 的壓力下降量為 8.0 atm 時,

共耗時 $\frac{8.0}{2}$ ×50=200 (秒)

(E) $N_2O \cdot N_2 \cdot O_2$ 三者皆為無色氣體。

9. (C)

出處:選修化學(上) 氧化還原反應

目標: 化學實驗之觀察、記錄、分析及解釋能力; 化學計算的能力

內容:測驗學生電池半反應式的概念

解析:(A) 由題圖可知,當 $\frac{[B^{2+}]}{[A^{2+}]}$ =1 時,電壓為 0.57 V,故該電池應由鎳銅所組成。 陽極:Ni \rightarrow Ni²⁺+2e⁻ E° =0.23 V 陰極:Cu²⁺+2e⁻ \rightarrow Cu E° =0.34 V

全反應: $Ni + Cu^{2+} \rightarrow Ni^{2+} + Cu$ E° 電池= 0.57 V

(B)(C) 由題圖可知,當 $\frac{[B^{2+}]}{[A^{2+}]}$ 比值愈大,電壓愈小,即 $[B^{2+}]$ ↑或 $[A^{2+}]$ ↓時,反應向左。依據全反應:Ni+Cu²⁺→Ni²⁺+Cu可知, $[Ni^{2+}]$ ↑或 $[Cu^{2+}]$ ↓時,反應向左,故 A^{2+} 為 Cu^{2+} 、 B^{2+} 為 Ni^{2+} ,A為銅、B為線。

- (D) 金屬 B 為 Ni,發生氧化反應:Ni \rightarrow Ni²⁺ +2e⁻,為陽極(負極)。
- (E) A²⁺ 為 Cu²⁺, 發生還原反應: Cu²⁺+2e⁻
 → Cu, 作為氧化劑。

10. (E)

出處:選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:了解化學與其他學科的關係;理解化學資料 的能力

內容:測驗學生有關緩衝溶液的形成與應用

解析:(A) CO_2 濃度增加時,導致血液中的 $[H^+]$ 些 微增加,根據勒沙特列原理: $HbH^++O_2 \rightleftharpoons HbO_2 + H^+$

反應平衡向左移, HbO_2 降低。

- (B) pH=7.4 時, $[H^+]=4\times10^{-8}$ M,因 $[H^+]$ 較 靠近 K_{a_1} ,可知溶液中主要的共軛酸鹼對 應為 H_2CO_3 / HCO_3 。
- (C) 血液過鹼會導致 $HbH^+ + O_2 \rightleftharpoons HbO_2 + H^+$ 反應向右移, HbO_2 增加不會造成缺氧。
- (D) 正常人的血液緩衝系統是正常的, $[H^{+}]$ 的值不會有大幅度變動, HbO_{2} 亦不會有大幅度變動。
- (E) pH=7.4 時, $[H^+]=4\times10^{-8}$ M 代入 $[H^+]=K_{a_1}\times\frac{[H_2CO_3]}{[HCO_3^-]}$

可得
$$\frac{[\mathrm{H_2CO_3}]}{[\mathrm{HCO_3}^-]} = \frac{[\mathrm{H}^+]}{\mathrm{K_{a_1}}} = \frac{4 \times 10^{-8}}{4 \times 10^{-7}} = 0.1$$

11. (A)

出處:基礎化學(三) 化學平衡

目標: 化學計算的能力; 分析、歸納、演繹及創造 的能力

內容:測驗學生同離子效應的概念

解析: $AgCl_{(s)} \rightleftharpoons Ag^+_{(aq)} + Cl^-_{(aq)}$,由於 $K_{sp} = [Ag^+][Cl^-]$, $[Cl^-]$ 或 $[Ag^+]$ 愈大,愈能抑制 AgCl 的溶解,AgCl 的溶解度就愈小。 ①中 $[Ag^+] = 0.01$ M,②中 $[Cl^-] = 0.02$ M,依據同離子效應, Ag^+ 或 Cl^- 濃度由小到大的順序為①<②,故 AgCl 的溶解度為④>①>②。因 $AgCl_{(s)}$ 可溶於氨水溶液,反應式為 $AgCl_{(s)}$ + $2NH_{3(aq)} \rightleftharpoons Ag(NH_3)_2^+_{(aq)} + Cl^-_{(aq)}$,可知在 氨水中的溶解度較在純水中大,故 AgCl 的溶解度為③>④。

綜合上述,AgCl 的溶解度由大到小的排列順序為③>④>①>②。

12. (D)

出處:基礎化學(二) 氣 體

目標:基本的化學規則、學說及定律;化學計算的 能力

內容:測驗學生有關氣體——查理定律的概念

解析:甲、乙、丙三室在定溫下達平衡,可知三室 壓力相等,且平衡後體積均為 V,推知三室 所含氣體莫耳數相同。

> 將甲、乙兩室改變溫度,甲、乙和丙三室重新 達平衡後,壓力相等。

> 依據理想氣體方程式 PV = nRT,在定量、定 壓下, $V \propto T$ (查理定律)

$$\frac{V_{\mathbb{P}}}{273+127} = \frac{V_{\mathbb{Z}}}{273+77} = \frac{V_{\mathbb{P}}}{273+27}$$

日容器總體積= $3V$

故
$$V_{\mathbb{P}} = \frac{8}{7} \mathbf{V} \cdot \mathbf{V}_{\mathbb{Z}} = \mathbf{V} \cdot \mathbf{V}_{\mathbb{P}} = \frac{6}{7} \mathbf{V}$$

13. (C)

出處:基礎化學(三) 化學平衡

目標:分析、歸納、演繹及創造的能力

內容:測驗學生影響平衡的因素和濃度、壓力對平 衡的影響——勒沙特列原理的概念

解析:(A)(B) 在 t_1 時,升高溫度使正、逆反應速率都增大,但逆反應增加較多,則表示平衡向左移動,平衡常數變小,因此向左為吸熱反應,故正反應為放熱反應($N_{2(g)}$ $+3H_{2(g)}$ $\rightleftharpoons 2NH_{3(g)}$ +熱)。

- (C) 若 t_3 時加入催化劑,正、逆反應速率等量增加,平衡不移動,故 $\mathbf{r}'_{\mathbb{H}} = \mathbf{r}'_{\mathbb{H}}$ 。
- (D) 若 t₄ 時降低溫度,正、逆反應速率都減小,平衡向右移,故 r""之 r", 。
- (E) 若在 t4 時加壓,正、逆反應速率都減小, 平衡向右移,故 r"ェ>r"並。

14. (D)

出處:選修化學(上) 化學鍵結

目標:理解化學資料的能力

內容:測驗學生元素的原子半徑、游離能及電負度 的週期性 解析:甲之第二游離能與第一游離能差值最大,故 甲為IA族,價電子數等於1;乙之第四游離 能與第三游離能差值最大,故乙為IIIA族, 價電子數等於3;丙、丁之第三游離能與第二 游離能差值最大,故丙、丁為IIA族,價電子 數等於2,又第一游離能:丙>丁,則丁為 丙的下一週期同族元素,原子序:丁>丙。

- (A) 價電子數:乙>丙>甲。
- (B) 在週期表中,丁最可能和丙同族。
- (C) 同族原子序愈大,半徑愈大;同週期原子 序愈大,半徑愈小,所以中性原子半徑: 丁>甲>丙>乙。
- (D) 丙、丁為同族金屬,原子序愈大,金屬氫 氧化物鹼性愈大:丁>丙。
- (E) 同週期原子序愈大,電負度愈大,所以中性原子電負度:乙>丙>甲。

15. (D)

出處:選修化學(上) 原子構造

目標:基本的化學名詞、定義及現象;理解化學資 料的能力

內容:測驗學生波耳氫原子模型和氫原子能階的概念

解析:(A) a 為可見光區的第一條譜線。

- (B) 六條譜線中,f的能量最高。
- (C) 若氫原子的游離能為 1312 kJ/mol,則 b 譜線(n=4 \rightarrow n=2)能量為 1312x($\frac{1}{2^2}$ $-\frac{1}{4^2}$)kJ/mol。
- (D) b 譜線 $(n=4 \to n=2)$ 能量與 d 譜線 $(n=2 \to n=1)$ 能量總和等於 f 譜線 $(n=4 \to n=1)$ 之能量,即 $E_b+E_d=E_f$ 。
- (E) a 譜線(n=3 → n=2)能量與 d 譜線(n =2 → n=1)能量總和等於 e 譜線(n=3 → n=1)之能量,即 $E_a + E_d = E_e$,又波長與能量成反比,故 $\frac{1}{\lambda_a} + \frac{1}{\lambda_d} = \frac{1}{\lambda_a}$ 。

16. (C)

出處:基礎化學(二) 化學與化工

目標:了解化學與生活之關係;應用化學原理解決 問題的能力

內容:測驗學生關於生活中的化學

解析:(A) 食品中若適當添加防腐劑,可延長食品的保存期限。

- (B) 亞硫酸鹽、焦亞硫酸鹽、二氧化硫及硝酸鹽等毒性強的防腐劑均屬於無機化合物。
- (C) 硼酸(H₃BO₃)為無機酸,不具有羧基。
- (D) 苯甲酸與苯甲酸鈉互為弱酸與其鹽,故互 為共軛酸鹼對。
- (E) 山梨酸因含有雙鍵,故屬於不飽和酸。

17. (E)

出處:基礎化學(三)化學平衡

目標:理解化學資料的能力;基本的化學規則、學 說及定律

內容:測驗學生可逆反應及動態平衡的概念

解析:(A) $NH_{3(g)}$ 與 $CO_{2(g)}$ 皆為無色,故無法由顏色 變化判斷反應何時達平衡。

- (B) 密閉容器之體積與質量皆不變(質量守恆 定律),故無法由密度變化判斷反應何時 達平衡。
- (C) 反應進行中,氨氣生成速率恆為二氧化碳 生成速率的兩倍,故無法判斷反應何時達 平衡。
- (D) 密閉容器中氣體的體積相同。
- (E) 密閉容器中氨氣開始生成至分壓不變時, 反應已經達到平衡。

18. (A)

出處:基礎化學(一) 化學反應;

基礎化學(三) 化學反應速率、化學平衡

目標:基本的化學規則、學說及定律;理解化學資料的能力

內容:測驗學生化學反應的碰撞理論、分子量、平 衡定律式及平衡常數

解析:(A) 定溫($27 \,^{\circ}$)、定容下,達平衡時測得氨 氣壓力為 P,則二氧化碳壓力為 0.5P, $\therefore K_p = P^2 \times 0.5P = 0.5P^3$

(B) 由反應程式知

$$\begin{split} \Delta n &= (2+1) - 0 = 3 \\ K_p &= K_c (RT)^{\Delta n} = K_c (RT)^3 \\ &= K_c (0.082 \times 300)^3 = K_c (24.6)^3 \\ \therefore K_p &> K_c \end{split}$$

(C) 氨氣壓力為 P,則二氧化碳壓力為 0.5P, 因此氨氣的莫耳分率為 $\frac{2}{3}$,二氧化碳的莫

耳分率為 $\frac{1}{3}$,混合氣體平均分子量為17x

$$\frac{2}{3} + 44 \times \frac{1}{3} = 26$$

- (D) 定溫下,氣體的平均動能相同。
- (E) 定溫下,氣體的平均速率相同,但每個粒子的運動速率不同。

19. (D)

出處:基礎化學(二) 有機化合物

目標:化學實驗之觀察、記錄、分析及解釋能力; 了解化學與生活之關係

內容:測驗學生關於醇、醚、醛、酮、酸、酯、胺 與醯胺的官能基

解析: NaOH 共有 1 Mx0.08 L=0.08 mol, 皂化反應 後可用 0.5 Mx0.14 L=0.07 mol 的 HCl 中和剩 餘的 NaOH,代表皂化反應時用去 0.08-0.07 =0.01 (mol) 的 NaOH。 根據下列反應式:

$$\begin{array}{c|c} O \\ R-C-O-CH_2 \\ O \\ |I| \\ R-C-O-CH + 3NaOH \rightarrow 3RCOONa+ \\ O \\ |I| \\ R-C-O-CH_2 \\ C_3H_5(OH)_3 \end{array}$$

油脂和 NaOH 的係數比=1:3,可知油脂用 去了 $(0.01 \times \frac{1}{3})$ mol。

$$\frac{3}{M} = 0.01 \times \frac{1}{3} \Rightarrow M = 900$$

20. (A)

出處:基礎化學(二) 化學與化工

目標:化學實驗之觀察、記錄、分析及解釋能力; 了解化學與生活之關係

內容:測驗學生關於生活中的化學

解析:脂肪碳鏈若有支鏈則較難被微生物分解。

二、多選題

21. (B)(E)

出處:基礎化學(三) 氣 體

目標:分析、歸納、演繹及創造的能力

內容:測驗學生關於氣體——理想氣體方程式及其 應用、氣體——道耳頓分壓定律及飽和蒸氣壓

解析: 280 K 至 310 K 為液態化合物的飽和蒸氣壓 曲線,液態逐漸汽化,此時液態與氣態共存 310 K 時,液態恰好完全汽化。

> 推知題圖中,甲呈現液氣共存;乙、丙以氣 態存在。

- (A) 在丙點時,P=250 mmHg,T=330 K代人理想氣體方程式 PV=nRT $\frac{250}{760} \times 8.2 = \frac{8.4}{M} \times 0.082 \times 330$ ∴M=84.27
- (B) 在 290 K 時, 甲點呈現液氣共存。
- (C) 在 310 K 時,乙點為液態恰好完全汽化, 與丙點時所含氣體莫耳數相同 依據理想氣體方程式 PV=nRT,定量、 定容下, $P \propto T$

$$\frac{P}{250} = \frac{310}{330}$$

$$\therefore P = 235$$

因恰好完全汽化,故氣體壓力即為飽和蒸 氣壓。

- (D) 在 330 K 時,丙點以氣態存在,但因在 310 K 恰好完全汽化,當溫度持續上升, 應可承受更大蒸氣壓力,故 P=250 mmHg 並非飽和蒸氣壓,即 330 K 時,飽和蒸氣壓大於 250 mmHg。
- (E) 因在 310 K 恰好完全汽化,故甲點時液體 未完全汽化,故容器中氣體莫耳數:甲< 乙三丙。

22. (D)(E)

出處:基礎化學(三) 化學反應速率;實驗 秒錶反應

目標:化學實驗之觀察、記錄、分析及解釋能力

內容:測驗學生關於秒錶反應、碘酸鉀與亞硫酸氫

鈉的反應速率

解析: (A) 式(1)中的 HSO₃ 被耗盡時,過量的 IO₃

和 I^- 反應生成 I_2 ,因此 $\frac{n_{IO_3}{}^-}{n_{HSO_3}{}^-}$ 的比值需

大於 $\frac{1}{3}$,才會出現藍色。

- (B) 溫度不宜超過 40 ℃, 碘-澱粉錯合物不穩定, 藍色可能消失。
- (C) 由式(2)可知,在酸中可生成 I_2 。

(E)
$$\frac{n_{\text{IO}_3}^-}{n_{\text{HSO}_3}^-} = \frac{C \times 3}{C \times 1} = 3 > \frac{1}{3}$$
,藍色產生。

23. (A)(B)

出處:選修化學(上) 氧化還原反應

目標:化學實驗之觀察、記錄、分析及解釋能力

內容:測驗學生關於化學式的平衡和氧化還原滴定

解析:(A) H_2O_2 產物為 O_2 ,發生氧化反應,為還原劑。

- (B) 反應式為 $5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$,係數和為 28。
- (C) 過錳酸鉀溶液為紫紅色,實驗過程中,當 達當量點時,即可觀察溶液顏色由紫色變 成無色,故此實驗不需加入指示劑(此為 自我指示劑)。
- (D) MnO₄ 障著 pH 值的不同,產物不同。
- (E) 稀鹽酸會參與反應, Cl^- 會被氧化成 Cl_2 , 而影響反應。

24. (A)(E)

出處:基礎化學(一) 物質的組成;

選修化學(上) 水溶液中酸、鹼、鹽的平衡、 氧化還原反應

目標: 化學實驗儀器、裝置的認識及操作

內容:測驗學生物質的分離與純化、溶液配製、酸 鹼滴定及電鍍的概念

解析:(B) 茶水中萃取咖啡因,應以乙醚(可與咖啡 因互溶,但不溶於水)作為溶劑;丙酮 (與咖啡因和水皆可互溶,無法分層)

不適合作為此實驗之溶劑。

- (C) 應以分度吸量管+安全吸球,量取 12 M 濃鹽酸 10 毫升,放入容量瓶中,再加水 至總體積為 100 毫升。
- (D) 滴定管需以 NaOH 潤洗,以維持 [NaOH] = 0.1 M;但錐形瓶不可以 CH₃COOH 潤洗,否則會影響 CH₃COOH 莫耳數。

25. (B)(D)(E)

出處:基礎化學(三) 氣體、化學平衡

目標:分析、歸納、演繹及創造的能力

內容:測驗學生關於理想氣體方程式及其應用、反 應商與反應進行的方向 解析: $K_p = 380 \, \text{mmHg} = P_{CO_3}$

∴平衡時,二氧化碳的壓力為 380 mmHg (0.5 atm) ,換算為莫耳數, $0.5 \times 41 = n_{\text{CO}_2} \times 0.082 \times 1000$, $n_{\text{CO}_2} = 0.25$ (mol)

(A) $CaCO_{3(s)} \Rightarrow CaO_{(s)} + CO_{2(g)}$ 反應前(mol) 0 0.5 0.2 反應缺少 $CaCO_{3(s)}$,無法再往右,故平衡不移動,無法達平衡。

(B) $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ 反應前(mol) 0.5 0 0.5 反應缺少 $CaO_{(s)}$,無法往左反應以消耗 $CO_{2(g)}$,故平衡不移動,無法達平衡。

(C) $CaCO_{3(s)} \Rightarrow CaO_{(s)} + CO_{2(g)}$ 反應前(mol) 0.4 0 0 反應(mol) -0.25 + 0.25 + 0.25 平衡後(mol) 0.15 0.25 0.25 反應可以往右進行以產生 0.25 mol 之 $CO_{2(g)}$,故平衡往右移動,可達平衡。

(D) $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ 反應前(mol) 0.4 0.1 0 反應(mol) -0.25 + 0.25 + 0.25 平衡後(mol) 0.15 0.35 0.25 反應可以往右進行以產生 0.25 mol 之 $CO_{2(g)}$,故平衡往右移動,可達平衡。

(E) $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ 反應前(mol) 0.1 0.1 0.1 \bigcirc 反應(mol) \bigcirc 0.1 \bigcirc +0.1 \bigcirc +0.1 \bigcirc 平衡後(mol) 0 0.2 0.2 \bigcirc 反應可以往右進行以產生 0.2 mol 之 \bigcirc \bigcirc CO_{2(g)},故平衡往右移動,但未達平衡。

第貳部分:非選擇題

1. 陽極 2. 2H₂O_(ℓ)+2e⁻ → H_{2(g)}+2OH⁻_(aq)
 3. 11.6 4. 0.75

出處:選修化學(上) 氧化還原反應

目標:化學實驗儀器、裝置的認識及操作

內容: 測驗學生關於法拉第電解定律、電解電鍍及 其應用和電池半反應式

解析:因金屬活性銅>鉑,故銅為陽極,鉑為陰極 電解 Na₂SO_{4(aq)}

陰極(一): $2H_2O_{(\ell)} + 2e^- \rightarrow H_{2(g)} + 2OH^-_{(aq)}$ 陽極(+): $Cu_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2e^-$

1. 銅棒 Y 在陽極,發生氧化反應。

2. 陰極為鉑棒 X,其反應式為 $2H_2O_{(\ell)}+2e^- \to H_{2(g)}+2OH^-_{(aq)}$

3. 由 $2H_2O_{(\ell)} + 2e^- \rightarrow H_{2(g)} + 2OH^-_{(aq)}$ 可知, e^- 莫耳數 $=OH^-$ 莫耳數

$$e^{-}$$
 莫耳數為: $\frac{I(A) \times t(s)}{96500} =$

$$\frac{0.2\times(16\times60+5)}{96500}$$
 = 0.002 = OH^- 莫耳數

$$[OH^{-}] = \frac{0.002}{0.5} = 0.004 = 4 \times 10^{-3} \text{ M}, \text{ pOH}$$
$$= 3 - \log 4 = 3 - 2 \log 2 = 2.4, \text{ pH} = 14 - 2.4$$
$$= 11.6$$

- 4. $Cu_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2e^{-}$ $E^{\circ} = -0.34 \text{ V}$ $2H_2O_{(\ell)} + 2e^{-} \rightarrow H_{2(g)} + 2OH^{-}_{(aq)}$ $E^{\circ} = -0.41 \text{ V}$ 總電壓為-0.75 V,因此發生反應,至少需 0.75 V \circ
- 二、1. (粉)紅色 2. 20.8 3. 0.05 4. 4.5 5. 0.025

出處:選修化學(上) 水溶液中酸、鹼、鹽的平衡

目標:化學實驗之觀察、記錄、分析及解釋能力

內容: 測驗學生酸鹼強度、酸鹼滴定及滴定曲線圖 的應用

解析:1. 錐形瓶內溶液從弱酸性變成鹼性,故顏色 由無色變為(粉)紅色。

- 2. 由題圖 13 可知滴定結束後,滴定管內 NaOH_(au) 體積的讀數為 20.8 mL。
- 3. 由題圖 12 和題圖 13 可知,達當量點時所加入 $NaOH_{(aq)}$ 的體積為 20.8-0.8=20 (mL) 。

又當量點時 H^+ $mol = OH^-$ mol 假設 HA 的初始濃度=c (M) cx40=0.1x20 $\therefore c=0.05$ (M)

- HA + NaOH → NaA + H₂O 0.05×40 0.1×10 $\frac{-1}{1} \frac{-1}{0} + \frac{1}{1}$ [H⁺] = (3×10⁻⁵) × $\frac{\frac{1}{50}}{\frac{1}{50}}$ = 3×10⁻⁵ (M)
- pH=5-log3=5-0.5 =4.5

NaOH(強鹼)、NaA(弱鹼)同時存在時,pH 值由鹼性強者決定。

[NaOH]=[OH⁻]=
$$\frac{2}{40+40}$$
=0.025 (M)

※非選擇題評分標準

- 一、1. 完全正確給2分。
 - 2. 完全正確給2分。
 - 3. 算出 e^- 莫耳數,得 1 分;算出 $[OH^-]$ 或 $[H^+]$,得 1 分;算出 pH 值,得 1 分。
 - 4. 為計算題,若無計算過程,則不予計分。
- 二、1. 完全正確給 2 分。
 - 2. 若未寫明估計值亦算全對。
 - 3. 為計算題,若無計算過程,則不予計分。
 - 4. 若算出 $[H^{+}]=3\times10^{-5}$ (M) ,得 1 分;算出 pH 值,得 1 分。
 - 5. 若求出 $OH^-=0.002 \text{ mol}$,得 1 分;算出 $[OH^-]$,得 1 分。