CSE4203: Computer Graphics Chapter – 4 (part - C) Ray Tracing

Mohammad Imrul Jubair

Outline

- Ray-tracing
- Camera Frame
- Image Plane and Raster Image
- Computing Viewing Rays
- Ray-sphere Intersection
- Shading

Ray-Tracing Algorithm

Camera Frame (1/11)

Camera Frame (2/11)

Camera Frame (3/11)

- ray origin = $\mathbf{e} + u \mathbf{u} + v \mathbf{v}$
 - ray direction = -w

Camera Frame (4/11)

Camera Frame (5/11)

Camera Frame (6/11)

Camera Frame (7/11)

Camera Frame (8/11)

Camera Frame (9/11)

Camera Frame (10/11)

Camera frame: (Camera coordinate)

Camera Frame (11/11)

Orthographic:

ray direction = -w

Image Plane (1/4)

Image Plane (2/4)

16

Image Plane (3/4)

Image Plane (4/4)

Q: determine the <u>area</u> of the image plane in terms of *l*, *r*, *t* and *b*.

Raster Image \leftrightarrow Image Plane (1/8)

Raster Image \leftrightarrow Image Plane (2/8)

Raster Image \leftrightarrow Image Plane (3/8)

Raster Image \leftrightarrow Image Plane (4/8)

Raster Image \leftrightarrow Image Plane (5/8)

Raster Image \leftrightarrow Image Plane (6/8)

Raster Image \leftrightarrow Image Plane (7/8)

Raster Image \leftrightarrow Image Plane (8/8)

Computing Viewing Rays (1/4)

Computing Viewing Rays (2/4)

Computing Viewing Rays (3/4)

Computing Viewing Rays (4/4)

 We can use t to determine the intersection point p

Ray - Sphere Intersection (1/8)

We have, p = e + t (s - e) = e + t d

Ray - Sphere Intersection (2/8)

Q: How?

Ray - Sphere Intersection (3/8)

Ray - Sphere Intersection (4/8)

Ray - Sphere Intersection (5/8)

$$t = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

- $B^2 4AC$, is called the discriminant and if it is
 - negative: its square root is imaginary and the line and sphere do not intersect.
 - positive: there are two solutions
 - one solution where the ray enters the sphere.
 - one where it leaves.
 - zero: the ray grazes the sphere, touching it at exactly one point.

Ray - Sphere Intersection (6/8)

Ray - Sphere Intersection (7/8)

Orthographic:

- ray direction = -w
- ray origin = e + u u + v v

Ray - Sphere Intersection (8/8)

Perspective:

- ray direction = -d w + u u + v v >
- ray origin = e

Shading (1/3)

Normal vector at point p:

- gradient $\mathbf{n} = 2 (\mathbf{p} \mathbf{c})$.
- unit normal is (p c)/R.

[See section 2.5.4]

Shading (2/3)

Lambertian Shading: $L = k_d P max (0, n \cdot I)$

where,

- L = pixel color
- k_d = surface color
- P = intensity of the light source.

Shading (3/3)

Q: Are we considering angle in this formula? If yes – how?

Lambertian Shading: $L = k_d P max (0, n \cdot I)$

where,

- L = pixel color
- k_d = surface color
- P = intensity of the light source.

Additional Reading

• 4.6: A Ray-Tracing Program

Practice Problem (1/2)

Camera frame (orthographic):

- $\mathbf{e} = [4, 4, 6]; \mathbf{u} = [1, 0, 0]; \mathbf{v} = [0, 1, 0]; \mathbf{w} = [0, 0, 1]$
 - Plot the camera frame on the given axis.

Viewing Ray:

- ray₁.origin = e + 2u + 2v; ray₁.end = [6, 6, 0]
- ray₂.origin = $\mathbf{e} 1\mathbf{u} + 1\mathbf{v}$; ray₂.end = [4, 4, 0]
 - Plot the origins for ray₁ and ray₂.

Sphere:
$$f(x, y, z) = x^2 + y^2 + z^2 - (4)^2 = 0$$

- 1. What are the intersecting points for ray₁ and ray₂?
- 2. Plot the intersecting points.

Practice Problem (2/2)

Camera frame (orthographic):

• $\mathbf{e} = [4, 4, 8]; \mathbf{u} = [1, 0, 0]; \mathbf{v} = [0, 1, 0]; \mathbf{w} = [0, 1, 0]$

Image Plane:

• left: u = -5; right: u = 5; top: v = 4; bottom: v = -4

- 1. Plot the image plane on the given axis.
- 2. For a 10×10 image matrix M, what is the position on the image plane for the ray origin at M(4,3)?
- 3. Will it intersect $f(x, y, z) = x^2 + y^2 + z^2 5^2 = 0$?

Exercise

• Textbook exercise

- no: 1