Amendments to the Specification:

Page 9, amend the paragraph beginning on line 18 as follows.

It is desired that a time Δt_{OD} when the current value I_2 not smaller than the current value I_1 necessary for the phosphors to emit light with the predetermined luminance is applied to the light emitting tube, a ratio N of the current value I_2 to the current value I_1 , and a rise response time τ_{on} of a fastest luminance response phosphor of the phosphors belonging to the light emitting tube, satisfy a relationship of Expression 1:

$$\Delta t_{\text{OD}} \leq \{-\tau_{\text{on}}/\text{ln10}\} \times \text{ (1-1/N)} \quad \dots \text{(Expression 1)}$$

$$\Delta t_{\text{OD}} \leq \{-\tau_{\text{on}}/\text{ln10}\} \times \text{ ln (1-1/N)} \qquad \dots \text{(Expression 1)}$$
 where N=I₂/I₁.

Page 21, amend the paragraph beginning on line 17 as follows.

It should be noted here that the response time of a fast luminance response phosphor (first phosphor) is also shortened by the large current applied. In this event, as shown in Fig. 3A for explaining a drive idea in Embodiment 1 which will be described later, the luminance of the fast luminance response phosphor overshoots in some time Δt_{OD} when the large current is applied. As a result, the difference in luminance factor area (color misregistration) is increased adversely. In order to prevent such an adverse effect from occurring, it is necessary

for the time Δt_{OD} to satisfy (Expression 4). Here, τ_{on} designates a time required for the luminance of the fast luminance response phosphor to reach 90% from 0%.

$$\Delta t_{OD} \leq (-\tau_{OD}/\ln 10) \times (1-1/N) \dots (Expression 4)$$

$$\Delta t_{\text{OD}} \!\! \leq \!\! \{ -\tau_{\text{on}} / \text{ln10} \} \! \times \text{ ln (1-1/N)} \qquad \dots \text{(Expression 4)}$$
 where N=I_2/I_1.