King CS 331 17 October 2020

Homework Assignment 3

<u>Objectives</u>

The purpose of this assignment is to:

- Understand different number representations including signed, unsigned integers, hexadecimal and floating point numbers,
- Perform different binary arithmetic operations including addition, subtraction, multiplication, and division,
- Identify when arithmetic operations result in overflow or underflow conditions.

Guidelines

All question numbers refer to the exercises at the end of Chapter 3 of the textbook. Solutions for the following problems are to be completed independently. Type each answer and clearly show the work/steps. Make sure to write any formula you use, do not plug in numbers right away.

Questions

Exercise 2.12.1 to 2.12.4

Assume that registers \$50 and \$51 hold the values 0x8000 0000 and 0xD000 0000, respectively.

- 1. What is the value of \$t0 for the following assembly code? add \$t0, \$s0, \$s1
- 2. Is the result in \$t0 the desired result, or has there been overflow?
- 3. For the contents of registers \$s0 and \$s1 as specified above, what is the value of \$t0 for the following assembly code?

```
sub $t0, $s0, $s1
```

4. Is the result in \$t0 the desired result, or has there been overflow?

```
Given: s0=(8000 0000)_16, s1=(D000 0000)_16

1. t0 = (8000 0000)_16 + (D000 0000)_16
    t0 = (1000...0000)_2 + (1101...0000)_2 = (1 0101...0000)_2
    t0 = (0001 0101...0000)_2 = (0001 5000...0000)_16

2. Since the sum results in an overflow, t0 has the value (5000...0000) 16.
```

```
3. t0 = (8000 0000)_16 - (D000 0000)_16

t0 = (1000...0000)_2 - (1101...0000)_2

t0 = (1000...0000)_2 + (0011...0000)_2 = (1011...0000)_2

t0 = (B000...0000)_16
```

4. Since (8000 0000)_16 - (D000 0000)_16 should evaluate to a negative number and the computed difference in hexadecimal is a positive number (B000...0000) 16, an overflow has occurred.

Exercise 3.1

What is 5ED4 - 07A4 when these values represent unsigned 16-bit hexadecimal numbers? The result should be written in hexadecimal. Show your work.

```
Given: 5ED4 (E=14, D=13), 07A4 (A=10)

5ED4 - 07A4 = (5-0), (14-7), (13-10), (4-4) = 5730
```

Exercise 3.12 (Notice the numbers are octal (base 8) and pay attention to how many iterations are involved.)

Using a table similar to that shown in Figure 3.6, calculate the product of the octal unsigned 6-bit integers 62 and 12 using the hardware described in Figure 3.3. You should show the contents of each register on each step.

```
Given: (62)_{-8} \times (12)_{-8}

First convert operands from octal to binary, where each digit is represented by (0)_{-8} = (000)_{-2}
(1)_{-8} = (001)_{-2}
...
(6)_{-8} = (110)_{-2}
(7)_{-8} = (111)_{-2}:

(62)_{-8} = (110 \ 010)_{-2}
(12)_{-8} = (001 \ 010)_{-2}

Evaluate (110 \ 010) \ 2 \times (001 \ 010) \ 2:
```

Iter.	Step	Multiplier	Multiplicand	Product
0	Initial Values	001 010	000 000 110 010	000 000 000 000
1	1. 0->No operation	001 010	000 000 110 010	000 000 000 000

	2. Shift left Mcand	001 010	000 001 100100	000000 000 000
	3. Shift right Mplier	000 101	000 001 100 100	000000 000 000
2	1. 1->Prod=Prod+Mcand	000 101	000 001 100 100	000001 100 100
	2. Shift left Mcand	000 101	000 011 001 000	000001 100 100
	3. Shift right Mplier	000 010	000 011 001 000	000001 100 100
3	1. 0->No operation	000 010	000 011 001 000	000001 100 100
	2. Shift left Mcand	000 010	000 110 010 000	000001 100 100
	3. Shift right Mplier	000 001	000 110 010 000	000001 100 100
4	1. 1->Prod=Prod+Mcand	000 001	000 110 010 000	000111 110 100
	2. Shift left Mcand	000 001	001 100 100 000	000111 110 100
	3. Shift right Mplier	000 000	001 100 100 000	000111 110 100
5	1. 0->No operation	000 000	001 100 100 000	000111 110 100
	2. Shift left Mcand	000 000	011 001 000 000	000111 110 100
	3. Shift right Mplier	000 000	011 001 000 000	000111 110 100
6	1. 0->No operation	000 000	011 001 000 000	000111 110 100
	2. Shift left Mcand	000 000	110 010 000 000	000111 110 100
	3. Shift right Mplier	000 000	110 010 000 000	000111 110 100
			·	.

Thus, $(110\ 010)_2 \times (001\ 010)_2 = (000\ 111\ 110\ 100)_2 = (764)_8 = 500$

Exercise 3.21

If the bit pattern 0×0C000000 is placed into the Instruction Register, what MIPS instruction will be executed?

```
Given: bit pattern (0C00 0000)_16

(0C00 0000)_16 = (0000 1100 0000 0000 0000 0000 0000)_2

op = (0000 11)_2 = 3 = jal
imm = 0

The I-format instruction jal 0 will be executed.
```

Exercise 3.22

What decimal number does the bit pattern 0×0C000000 represent if it is a floating point number? Use the IEEE 754 standard.

Last Exercise

Given the following 32-bit binary sequences representing single precision IEEE 754 floating point numbers:

Perform the following arithmetic and show the final addition and multiplication results in both normalized binary format and IEEE 754 single-precision format. Show your steps (Do not convert a and b to decimal base, compute the addition and multiplication, then convert the results back to normalized binary and single precision).

```
a. a + b
b. a × b
```

- 3. Normalize result and check for under/overflow $1.100\ 101 \times 2^{+2}$
- 4. Round and normalize if necessary $1.1001 \ 0100 \times 2^{+2}$
- b. Floating-point multiplication, a \times b
 - 1. Add exponents $(2^+2) + (2^-2) = 2^0$
 - 2. Multiply significands
 - 3. Normalize result and check for under/overflow
 - 4. Round and normalize if necessary
 - 5. Determine sign of result from signs of operands