Exercice 1

On cherche à calculer l'intégrale

$$I_n = \int_0^1 \frac{x^n}{10+x} dx, \quad n \in \mathbb{N}$$

et à estimer la stabilité du calcul numérique de cette intégrale.

- a) Calculer I_0 et établir une relation de récurrence entre I_n et I_{n-1} .
- b) En supposant les calculs exacts, comment se propage au calcul de I_n une erreur faite sur l'évaluation de I_0 ?
- c) Montrer que la suite I_n est décroissante. Donner un encadrement pour la valeur de I_n et en déduire la valeur de l'erreur relative $\Delta I_n/I_n$ que l'on fait lorsque l'on utilise les deux bornes de cet encadrement pour évaluer grossièrement I_n .
 - d) Exprimez I_{n-1} en fonction de I_n
- e) Si on cherche à approcher par exemple la valeur de I_{36} , est-il plus précis de partir du calcul de I_0 avec une précision de 10^{-10} et d'effectuer la récurrence établie au a) ou bien d'utiliser une valeur approchée de I_{46} issue de l'encadrement du c) et d'effectuer la récurrence "descendante" établie au d)?
 - f) Montrer qu'en fait pour I_n on a l'encadrement plus précis suivant :

$$\frac{1}{11(n+1)} \le I_n \le \frac{1}{11(n+1)} + \frac{1}{110(n+1)(n+2)}$$

g) En déduire une nouvelle erreur relative (plus faible) sur I_n et une estimation de l'erreur finale sur I_{36} lorsqu'on la calcule par récurrence descendante à partir de la valeur approchée de I_{46} .

Exercice 2

On se propose d'étudier les itérées d'une fonction au voisinage d'un point fixe dans le cas critique où la dérivée vaut 1 en ce point.

Soit $\phi: \mathbb{R} \to \mathbb{R}_+$ une fonction de classe C^1 . On suppose que $\phi(0) = 0$ et $\phi'(0) = 1$ et que ϕ admet un développement limité

$$\phi(s) = x - ax^k + x^k \varepsilon(x)$$

avec

$$a > 0, k > 1, \lim_{x \to 0^+} \varepsilon(x) = 0.$$

a) montrer qu'il existe h > 0 tel que, $\forall x_0 \in]0, h]$, la suite $x_{n+1} = \phi(x_n)$ converge vers 0.

- b) Pour $m \in \mathbb{R}$, on pose $u_n = x_n^m$. Déterminer un équivalent de $(u_{n+1} u_n)$ en fonction de x_n .
- c) Montrer qu'il existe une valeur de m pour laquelle $(u_{n+1}-u_n)$ possède une limite finie non nulle. En déduire un équivalent de x_n .
- d) Pour $\phi(x)=\sin x$ et $x_0=1,$ estimer le nombre d'itérations nécessaires pour atteindre $x_n<10^{-5}.$