Instruction register

Label	Input/Output	Description
CLK [1 bit]	Input	Clock signal. Executes actions on rising edges.
W bus [8 bit]	Input	Takes 8 bits with the most significant 4 bits representing the opcode and the least significant 4 bits representing any other necessary value. Write them to the instruction register.
\overline{L}_{l} [1 bit]	Input	Control signal that decides whether to read from the bus
\overline{E}_1 [1 bit]	Input	Control signal that decides tri-state buffer output to bus (drive register value if enabled, Z if disabled)
CLR [1 bit]	Input	Clears the instruction register's data.
Instruction register[3:0] [4 bit]	Output	Output to W bus
Instruction register[7:4] [4 bit]	Output	Output to controller/sequences

Pinouts when instruction register is selected

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in [4]	\overline{L}_{l}
uio_in [5]	\overline{E}_1
rst_n	CLR
uio_out[3:0]	Instruction register[7:4]
uo_out[3:0]	Instruction register[3:0]

Note: All simulations pictured in this document were run using 10 ns clock. Actual design will have a 100 ns clock. Simulations were run using a smaller clock to better show propagation delays in our non-ideal waveforms.

Test input connections (as seen in waveform)

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in [1]	\overline{L}_1
uio_in [2]	\overline{E}_1
uio_in [0]	CLR
uio_out[3:0]	Instruction register[7:4]
uo_out[3:0]	Instruction register[3:0]

Output register

Label	Input/Output	Description
CLK [1 bit]	Input	Clock signal. Executes actions on rising edges.
W bus [8 bit]	Input	Data from the bus lines that are to be written to the Output register.
\overline{L}_{O} [1 bit]	Input	Control signal that decides whether to read from the bus and load onto the output register.
Output register [8 bit]	Output	Register data that will be written to the binary display.

Pinouts when output register is selected

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in[4]	\overline{L}_{O}
uo_out[7:0]	Output register

Test input connections (as seen in waveform)

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in [0]	\overline{L}_{O}
uo_out[7:0]	Output register

B register

	1	
Label	Input/Output	Description
CLK [1 bit]	Input	Clock signal. Executes actions on rising edges.
W bus [8 bit]	Input	Data from the bus lines that are to be written to the B register.
\overline{L}_{B} [1 bit]	Input	Control signal that decides whether to read from the bus and load onto the B register.
B register [8 bit]	Output	Register data that will be written to adder/subtractor.

Pinouts when b register is selected

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in [4]	\overline{L}_{B}
uo_out[7:0]	Output register

Signals	Waves																								
Time	,		10 us	20	us	30 us	40	us	50 1	us	€0	us	70	15	80	us	90	us	100	us	110	us	120	16	130 us
clk																									
ui_in[7:0]	3636	00		AA							55				FF										
uio_in[0]																									
uo_out[7:0]	3636		00					AA								25									
rst_n																									
ena																									

Test input connections (as seen in waveform)

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in [0]	\overline{L}_{B}
uo_out[7:0]	Output register

Input and MAR

Label	Input/Output	Description
CLK [1 bit]	Input	Clock signal. Executes actions on rising edges.
W bus [8 bit]	Input	Data from the bus lines that are to be written either Input or MAR register. If writing to the MAR register, only 4 least significant bits are taken, the rest are discarded.
\overline{L}_{MD} [1 bit]	Input	Control signal that decides if W bus data is to be written to the Input register. Should not be active at the same time as the $\overline{L}_{\text{MA.}}$ control signal.
\overline{L}_{MA} [1 bit]	Input	Control signal that decides if W bus data is to be written to the MAR register. Should not

		be active at the same time as the $\overline{L}_{\rm MD.}$ control signal.
Input register [8 bit]	Output	Register data to be written to memory.
MAR [4 bit]	Output	Register data taken by RAM that controls where the data is to be written.

Pinouts when input and mar register is selected

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in [4]	\overline{L}_{MD}
uio_in [5]	\overline{L}_{MA}
uo_out[7:0]	Input register
uio_out[3:0]	MAR

Test input connections (as seen in waveform)

Test Input	Name
clk	CLK
ui_in[7:0]	W bus
uio_in [0]	\overline{L}_{MD}
uio_in [1]	\overline{L}_{MA}
uo_out[7:0]	Input register
uio_out[3:0]	MAR