

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/62, 15/31, 15/54, 1/21, A61K 38/45		A2	(11) International Publication Number: WO 95/04151
(21) International Application Number: PCT/GB94/01647		(43) International Publication Date: 9 February 1995 (09.02.95)	
(22) International Filing Date: 29 July 1994 (29.07.94)		(74) Agents: HUTCHINS, Michael, Richard et al.; Fry Heath & Spence, St. Georges House, 6 Yattendon Road, Horley, Surrey RH6 7BS (GB).	
(30) Priority Data: PCT/GB93/01617 30 July 1993 (30.07.93) WO (34) Countries for which the regional or international application was filed: GB et al. 9401787.8 31 January 1994 (31.01.94) GB		(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD).	
(71) Applicant (for all designated States except US): MEDEVA HOLDINGS B.V. [NL/NL]; Churchill-Laan 223, NL-1078 ED Amsterdam (NL).		Published Without international search report and to be republished upon receipt of that report.	
(72) Inventors; and (75) Inventors/Applicants (for US only): KHAN, Mohammed, Anjam [GB/GB]; Cambridge University Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP (GB); HOR-MAECHE, Carlos, Estenio [GB/GB]; Cambridge University Dept. of Pathology, Tennis Court Road, Cambridge CB2 1QP (GB); CHATFIELD, Steven, Neville [GB/GB]; Medeva Vaccine Research Unit, Dept. of Biochemistry, Imperial College of Science and Technology, London SW7 2AY (GB); DOUGAN, Gordon [GB/GB]; Medeva Vaccine Research Unit, Dept. of Biochemistry, Imperial College of Science and Technology, London SW7 2AY (GB).			
(54) Title: VACCINE COMPOSITIONS			
(57) Abstract			
<p>The invention provides a DNA construct comprising a DNA sequence encoding a fusion protein of the formula: TetC-(Z)_a-Het, wherein: TetC is the C fragment of tetanus toxin, or a protein comprising the epitopes thereof; Het is a heterologous protein, Z is an amino acid, and _a is zero or a positive integer, provided that (Z)_a does not include the sequence Gly-Pro. The invention also provides replicable expression vectors containing the constructs, bacteria transformed with the constructs, the fusion proteins <i>per se</i> and vaccine compositions formed from the fusion proteins or attenuated bacteria expressing the fusion proteins.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

VACCINE COMPOSITIONS

This invention relates to DNA constructs, replicable expression vectors containing the constructs, bacteria containing the constructs and vaccines containing the bacteria or fusion proteins expressed therefrom. More particularly, the invention relates to novel DNA constructs encoding the C-fragment of tetanus toxin, and to fusion proteins containing tetanus toxin C-fragment.

It is known to prepare DNA constructs encoding two or more heterologous proteins with a view to expressing the proteins in a suitable host as a single fusion protein. However, it has often been found that fusing two proteins together in this way leads to an incorrectly folded chimaeric protein which no longer retains the properties of the individual components. For example, the B-subunits of the Vibrio cholerae (CT-B) and E. coli (LT-B) enterotoxins are powerful mucosal immunogens but genetic fusions to these subunits can alter the structure and properties of the carriers and hence their immunogenicity (see M. Sandkvist et al. J. Bacteriol. 169, pp4570-6, 1987, Clements et al. 1990 and M. Lipscombe et al. Mol. Microbiol. 5, pp 1385, 1990). Moreover, many heterologous proteins expressed in bacteria are not produced in soluble

properly folded or active forms and tend to accumulate as insoluble aggregates (see C. Schein et al. Bio/Technology 6, pp 291-4, 1988 and R. Halenbeck et al. Bio/Technology 7, pp 710-5, 1989.

In our earlier unpublished international patent application PCT/GB93/01617, it is disclosed that by providing a DNA sequence encoding tetanus toxin C-fragment (TetC) linked via a "hinge region" to a second sequence encoding an antigen, the expression of the sequence in bacterial cells is enhanced relative to constructs wherein the C-fragment is absent. For example, the expression level of the full length P28 glutathione S-transferase protein of S. mansoni when expressed as a fusion to TetC from the nirB promoter was greater than when the P28 protein was expressed alone from the nirB promoter. The TetC fusion to the full length P28 protein of S. mansoni was soluble and expressed in both E. coli and S. typhimurium. In addition, the TetC-P28 fusion protein was capable of being affinity purified by a glutathione agarose matrix, suggesting that the P28 had folded correctly to adopt a conformation still capable of binding to its natural substrate. It was previously considered that a hinge region, which typically is a sequence encoding a high proportion of proline and/or glycine amino acids, is essential for promoting the independent folding of both the TetC and the antigenic protein fused thereto. However, it has now been discovered, surprisingly in view of the previous studies on CT-B and LT-B referred to above, that

when the hinge region is omitted between the TetC and a second antigen such as P28, the proteins making up the fusion do exhibit correct folding as evidenced by affinity purification on a glutathione agarose matrix.

Accordingly, in a first aspect, the invention provides a DNA construct comprising a DNA sequence encoding a fusion protein of the formula TetC-(Z)_a-Het, wherein TetC is the C fragment of tetanus toxin, or a protein comprising the epitopes thereof; Het is a heterologous protein; Z is an amino acid, and a is zero or a positive integer, provided that (Z)_a does not include the sequence Gly-Pro.

Typically (Z)_a is a chain of 0 to 15 amino acids, for example 0 to 10, preferably less than 6 and more preferably less than 4 amino acids.

In one embodiment (Z)_a is a chain of two or three amino acids, the DNA sequence for which defines a restriction endonuclease cleavage site.

In another embodiment, a is zero.

Usually the group (Z)_a will not contain, simultaneously, both glycine and proline, and generally will not contain either glycine or proline at all.

In a further embodiment, (Z)_a is a chain of amino acids provided that when a is 6 or more, (Z)_a does not contain glycine or proline.

The group (Z)_a may be a chain of amino acids substantially devoid of biological activity.

In a second aspect the invention provides a replicable expression vector, for example suitable for use in

bacteria, containing a DNA construct as hereinbefore defined.

In another aspect, the invention provides a host (e.g. a bacterium) containing a DNA construct as hereinbefore defined, the DNA construct being present in the host either in the form of a replicable expression vector such as a plasmid, or being present as part of the host chromosome, or both.

In a further aspect, the invention provides a fusion protein of the form TetC-(Z)_j-Het as hereinbefore defined, preferably in substantially pure form, said fusion protein being expressible by a replicable expression vector as hereinbefore defined.

In a further aspect the invention provides a process for the preparation of a bacterium (preferably an attenuated bacterium) which process comprises transforming a bacterium (e.g. an attenuated bacterium) with a DNA construct as hereinbefore defined.

The invention also provides a vaccine composition comprising an attenuated bacterium, or a fusion protein, as hereinbefore defined, and a pharmaceutically acceptable carrier.

The heterologous protein "Het" may for example be a heterologous antigenic sequence, e.g. an antigenic sequence derived from a virus, bacterium, fungus, yeast or parasite.

Examples of viral antigenic sequences are sequences derived from a type of human immunodeficiency virus (HIV) such as HIV-1 or HIV-2, the CD4 receptor binding site from

HIV, for example from HIV-1 or -2., hepatitis A, B or C virus, human rhinovirus such as type 2 or type 14, Herpes simplex virus, poliovirus type 2 or 3, foot-and-mouth disease virus (FMDV), rabies virus, rotavirus, influenza virus, coxsackie virus, human papilloma virus (HPV), for example the type 16 papilloma virus, the E7 protein thereof, and fragments containing the E7 protein or its epitopes; and simian immunodeficiency virus (SIV).

Examples of antigens derived from bacteria are those derived from Bordetella pertussis (e.g. P69 protein and filamentous haemagglutinin (FHA) antigens), Vibrio cholerae, Bacillus anthracis, and E.coli antigens such as E.coli heat Labile toxin B subunit (LT-B), E.coli K88 antigens, and enterotoxigenic E.coli antigens. Other examples of antigens include the cell surface antigen CD4, Schistosoma mansoni P28 glutathione S-transferase antigens (P28 antigens) and antigens of flukes, mycoplasma, roundworms, tapeworms, Chlamydia trachomatis, and malaria parasites, eg. parasites of the genus plasmodium or babesia, for example Plasmodium falciparum, and peptides encoding immunogenic epitopes from the aforementioned antigens.

Particular antigens include the full length Schistosoma mansoni P28, and oligomers (e.g. 2, 4 and 8-mers) of the immunogenic P28 aa 115-131 peptide (which contains both a B and T cell epitope), and human papilloma virus E7 protein, Herpes simplex antigens, foot and mouth disease virus antigens and simian immunodeficiency virus

antigens.

The DNA constructs of the present invention may contain a promoter whose activity is induced in response to a change in the surrounding environment. An example of such a promoter sequence is one which has activity which is induced by anaerobic conditions. A particular example of such a promoter sequence is the nirB promoter which has been described, for example in International Patent Application PCT/GB92/00387. The nirB promoter has been isolated from E.coli, where it directs expression of an operon which includes the nitrite reductase gene nirB (Jayaraman et al, J. Mol. Biol. 196, 781-788, 1987), and nirD, nirC, cysG (Peakman et al, Eur. J. Biochem. 191, 315323, 1990). It is regulated both by nitrite and by changes in the oxygen tension of the environment, becoming active when deprived of oxygen, (Cole, Biochem, Biophys. Acta. 162, 356-368, 1968). Response to anaerobiosis is mediated through the protein FNR, acting as a transcriptional activator, in a mechanism common to many anaerobic respiratory genes. By deletion and mutational analysis the part of the promoter which responds solely to anaerobiosis has been isolated and by comparison with other anaerobically regulated promoters a consensus FNR-binding site has been identified (Bell et al, Nucl, Acids. Res. 17, 3865-3874, 1989; Jayaraman et al, Nucl, Acids, Res. 17, 135-145, 1989). It has also been shown that the distance between the putative FNR-binding site and the -10 homology region is critical (Bell et al, Molec. Microbiol.4, 1753-

1763, 1990). It is therefore preferred to use only that part of the nirB promoter which responds solely to anaerobiosis. As used herein, references to the nirB promoter refer to the promoter itself or a part or derivative thereof which is capable of promoting expression of a coding sequence under anaerobic conditions. The preferred sequence, and which contains the nirB promoter is:

AATTCAAGTAAATTTGATGTACATCAAATGGTACCCCTTGCTGAATCGTTAAGG
TAGGCGGTAGGGCC (SEQ ID NO: 1)

In a most preferred aspect, the present invention provides a DNA molecule comprising the nirB promoter operably linked to a DNA sequence encoding a fusion protein as hereinbefore defined.

In another preferred aspect of the invention, there is provided a replicable expression vector, suitable for use in bacteria, containing the nirB promoter sequence operably linked to a DNA sequence encoding a fusion protein as hereinbefore defined.

The DNA molecule or construct may be integrated into the bacterial chromosome, e.g. by methods known per se, and thus in a further aspect, the invention provides a bacterium having in its chromosome, a DNA sequence or construct as hereinbefore defined.

Stable expression of the fusion protein can be obtained in vivo. The fusion protein can be expressed in an attenuated bacterium which can thus be used as a vaccine.

The attenuated bacterium may be selected from the genera Salmonella, Bordetella, Vibrio, Haemophilus, Neisseria and Yersinia. Alternatively, the attenuated bacterium may be an attenuated strain of enterotoxigenic Escherichia coli. In particular the following species can be mentioned: S.typhi - the cause of human typhoid; S.typhimurium - the cause of salmonellosis in several animal species; S.enteritidis - a cause of food poisoning in humans; S.choleraesuis - a cause of salmonellosis in pigs; Bordetella pertussis - the cause of whooping cough; Haemophilus influenzae - a cause of meningitis; Neisseria gonorrhoea the cause of gonorrhoea; and Yersinia - a cause of food poisoning.

Examples of attenuated bacteria are disclosed in, for example EP-A-0322237 and EP-A-0400958, the disclosures in which are incorporated by reference herein.

An attenuated bacterium containing a DNA construct according to the invention, either present in the bacterial chromosome, or in plasmid form, or both, can be used as a vaccine. Fusion proteins (preferably in substantially pure form) expressed by the bacteria can also be used in the preparation of vaccines. For example, a purified TetC-P28 fusion protein in which the TetC protein is linked via its C-terminus to the P28 protein with no intervening hinge region has been found to be immunogenic on its own. In a further aspect therefore, the invention provides a vaccine composition comprising a pharmaceutically acceptable carrier or diluent and, as active ingredient, an attenuated

bacterium or fusion protein as hereinbefore defined.

The vaccine may comprise one or more suitable adjuvants.

The vaccine is advantageously presented in a lyophilised form, for example in a capsular form, for oral administration to a patient. Such capsules may be provided with an enteric coating comprising, for example, Eudragit "S", Eudragit "L", Cellulose acetate, Cellulose acetate phthalate or Hydroxypropylmethyl Cellulose. These capsules may be used as such, or alternatively, the lyophilised material may be reconstituted prior to administration, e.g. as a suspension. Reconstitution is advantageously effected in buffer at a suitable pH to ensure the viability of the organisms. In order to protect the attenuated bacteria and the vaccine from gastric acidity, a sodium bicarbonate preparation is advantageously administered before each administration of the vaccine. Alternatively, the vaccine may be prepared for parenteral administration, intranasal administration or intramammary administration.

The attenuated bacterium containing the DNA construct or fusion protein of the invention may be used in the prophylactic treatment of a host, particularly a human host but also possibly an animal host. An infection caused by a microorganism, especially a pathogen, may therefore be prevented by administering an effective dose of an attenuated bacterium according to the invention. The bacterium then expresses the fusion protein which is

capable of raising antibody to the micro-organism. The dosage employed will be dependent on various factors including the size and weight of the host, the type of vaccine formulated and the nature of the fusion protein.

An attenuated bacterium according to the present invention may be prepared by transforming an attenuated bacterium with a DNA construct as hereinbefore defined. Any suitable transformation technique may be employed, such as electroporation. In this way, an attenuated bacterium capable of expressing a protein or proteins heterologous to the bacterium may be obtained. A culture of the attenuated bacterium may be grown under aerobic conditions. A sufficient amount of the bacterium is thus prepared for formulation as a vaccine, with minimal expression of the fusion protein occurring.

The DNA construct may be a replicable expression vector comprising the nirB promoter operably linked to a DNA sequence encoding the fusion protein. The nirB promoter may be inserted in an expression vector, which already incorporates a gene encoding one of the heterologous proteins (e.g. the tetanus toxin C fragment), in place of the existing promoter controlling expression of the protein. The gene encoding the other heterologous protein (e.g. an antigenic sequence) may then be inserted. The expression vector should, of course, be compatible with the attenuated bacterium into which the vector is to be inserted.

The expression vector is provided with appropriate

transcriptional and translational control elements including, besides the nirB promoter, a transcriptional termination site and translational start and stop codons. An appropriate ribosome binding site is provided. The vector typically comprises an origin of replication and, if desired, a selectable marker gene such as an antibiotic resistance gene. The vector may be a plasmid.

The invention will now be illustrated but not limited, by reference to the following examples and the accompanying drawings, in which:

Figure 1 is a schematic illustration of the construction of plasmid pTECH1;

Figure 2 illustrates schematically the preparation of the plasmid pTECH1-28 from the starting materials pTECH1 and PUC19-P28;

Figure 3 illustrates schematically the preparation of the plasmid pTECH3-P28 from the starting materials plasmids pTECH1-P28 and pTETnir15;

Figures 4 and 5 are western blots obtained from bacterial cells harbouring the pTECH3-P28 construct; and

Figure 6 illustrates the glutathione affinity purification of TetC fusions as determined by SDS-PAGE and Coomassie Blue Staining.

In accordance with the invention a vector was constructed to allow genetic fusions to the C-terminus of the highly immunogenic C fragment of tetanus toxin, without the use of a heterologous hinge domain. A fusion was constructed, with the gene encoding the protective 28kDa

12

glutathione S-transferase from Schistosoma mansoni. The recombinant vector was transformed into *Salmonella typhimurium* (SL338; rm^+). The resulting chimeric protein was stably expressed in a soluble form in salmonella as assessed by western blotting with fragment C and glutathione S-transferase antisera. Furthermore it was found that the P28 component of the fusion retains the capacity to bind glutathione.

The construction of the vector and the properties of the fusion protein expressed therefrom are described in more detail below.

EXAMPLE 1

Preparation of pTECH1

The preparation of pTECH1, a plasmid incorporating the nirB promoter and TetC gene, and a DNA sequence encoding a hinge region and containing restriction endonuclease sites to allow insertion of a gene coding for a second or guest protein, is illustrated in Figure 1. Expression plasmid pTETnir15, the starting material shown in Figure 1, was constructed from pTETtac115 (Makoff *et al*, Nucl. Acids Res. 17 10191-10202, 1989); by replacing the EcoRI-ApaI region (1354bp) containing the lacI gene and tac promoter with the following pair of oligos 1 and 2:

Oligo-1 5' AATTCAAGGTAAATTTGATGTACATCAAATGGTACCCCTTGCTGAAT
CGTTAAGGTAGGCAGGTAGGGCC-3' (SEQ ID NO: 2)

Oligo-2 3' -GTCCATTAAACTACATGTAGTTACCATGGGAAACGACTTA
GCAATTCCATCCGCCATC-5' (SEQ ID NO: 3)

The oligonucleotides were synthesised on a Pharmacia Gene Assembler and the resulting plasmids confirmed by sequencing (Makoff et al, Bio/Technology 7, 1043-1046, 1989).

The pTETnir15 plasmid was then used for construction of the pTECH1 plasmid incorporating a polylinker region suitable as a site for insertion of heterologous DNA to direct the expression of fragment C fusion proteins. pTETnir15 is a known pAT153-based plasmid which directs the expression of fragment C. However, there are no naturally occurring convenient restriction sites present at the 3'-end of the TetC gene. Therefore, target sites, preceded by a hinge region, were introduced at the 3'-end of the TetC coding region by means of primers SEQ ID NO: 4 and SEQ ID NO: 5 tailored with "add-on" adapter sequences (Table 1), using the polymerase chain reaction (PCR) [K. Mullis et al, Cold Spring Harbor Sym. Quant. Biol. 51, 263-273 1986]. Accordingly, pTETnir15 was used as a template in a PCR reaction using primers corresponding to regions covering the SacII and BamHI sites. The anti-sense primer in this amplification was tailored with a 38 base 5'-adaptor sequence. The anti-sense primer was designed so that a sequence encoding novel XbaI, SpeI and BamHI sites were incorporated into the PCR product. In addition, DNA sequences encoding additional extra amino acids including proline were incorporated (the hinge regions) and a translation stop codon signal in frame with the fragment C open reading frame.

The PCR product was gel-purified and digested with SacII and BamHI, and cloned into the residual 2.8 kb vector pTETnir15 which had previously been digested by SacII and BamHI. The resulting plasmid purified from transformed colonies and named pTECH 1 is shown in Figure 1. Heterologous sequences such as the sequence encoding the Schistosoma mansoni P28 glutathione S-transferase (P28) were cloned into the XbaI SpeI and BamHI sites in accordance with known methods.

The DNA sequence of the plasmid pTECH1 is shown in the sequence listing as SEQ ID NO: 6.

TABLE 1

DNA SEQUENCES OF OLIGONUCLEOTIDES UTILISED IN THE CONSTRUCTION OF THE TETC-HINGE VECTORS

A). Primer 1. Sense PCR (21mer). (SEQ ID NO: 4)

SacII

5' AAA GAC TCC GCG GGC GAA GTT -3'

TETANUS TOXIN C FRAGMENT SEQ.

B).Primer 2. Anti-Sense PCR Primer (64mer). (SEQ ID NO: 5)

BamHI STOP SpeI XbaI KpnI NcoI

5' - CTAT GGA TCC TTA ACT AGT GAT TGT AGA TTT CCC AAG CCT

GTC GTT GGT CCA ACC TTC ATC GGT -3'

TETANUS TOXIN C FRAGMENT SEQ. 3'-END

EXAMPLE 2

Construction of pTECH1-P28

A P28 gene expression cassette was produced by PCR

using pUC19-P28 DNA (a kind gift from Dr R Pierce, Pasteur Institute, Lille) as template. Oligonucleotide primers were designed to amplify the full length P28 gene beginning with the start codon and terminating with the stop codon. In addition, the sense and antisense primers were tailored with the restriction sites for XbaI and BamHI respectively. The primers are shown in the sequence listing as SEQ ID NO: 7 and SEQ ID NO: 8.

The product was gel-purified and digested with XbaI and BamHI and then cloned into pTECH1 which had previously been digested with these enzymes and subsequently gel-purified. The DNA sequence of pTECH1 - P28 is shown in sequence listing as SEQ ID NO: 9.

Expression of the TetC-Hinge-P28 fusion protein

Several bacterial strains, namely S. typhimurium strains SL 5338 (A. Brown *et al*, J.Infect.Dis. 155, 86-92, 1987) and SL3261 and E. coli (TG2) were transformed with pTECH1-P28 by means of electroporation. SL3261 strains harbouring the pTECH1-P28 plasmid have been deposited at the National Collection of Type Cultures, 61 Colindale Avenue, London, NW9 5HT, UK under the accession number NCTC 12833. A strain of SL3261 containing the pTECH1 plasmid has been deposited under accession number NCTC 12831. The identity of recombinants was verified by restriction mapping of the plasmid DNA harboured by the cells. Further expression of the TetC-P28 fusion protein was then evaluated by SDS-PAGE and western blotting of bacterial cells harbouring the construct. It was found that the

fusion protein remains soluble, cross-reacts with antisera to both TetC and P28, and is also of the expected molecular weight, 80kDal, for a full length fusion.

The fusion protein was stably expressed in E.coli (TG2) and S. typhimurium (SL5338,SL3261) as judged by SDS-PAGE and western blotting. Of interest was a band of 50kDal which co-migrates with the TetC-Hinge protein alone and cross-reacts exclusively with the anti-TetC sera is visible in a western blot. As the codon selection in the hinge region has been designed to be suboptimal, the rare codons may cause pauses during translation which may occasionally lead to the premature termination of translation, thus accounting for this band.

Affinity purification of the TetC-P28 fusion

Glutathione is the natural substrate for P28, a glutathione S-transferase. The amino acid residues involved in binding glutathione are thought to be spatially separated in the primary structure of the polypeptide and brought together to form a glutathione binding pocket in the tertiary structure (P. Reinemer et al. EMBO, J8, 1997-2005, 1991). In order to gauge whether the P28 component of the fusion has folded correctly to adopt a conformation capable of binding glutathione, its ability to be affinity purified on a glutathione-agarose matrix was tested. The results obtained (not shown) demonstrated that TetC-P28 can indeed bind to the matrix and the binding is reversible, as the fusion can be competitively eluted with free glutathione.

EXAMPLE 3Construction of pTECH3-P28

The plasmid pTECH1-P28 directs the expression of the S. mansoni P28 protein as a C-terminal fusion to fragment C from tetanus toxin separated by a heterologous hinge domain. Expression of the fusion protein is under the control of the nirB promoter. The vector pTECH3-P28 was in part constructed from the plasmid pTETnir15 by the polymerase chain reaction (PCR) using the high fidelity thermostable DNA polymerase from Pyrococcus fusorius, which possesses an associated 3'5' exonuclease proofreading activity. The sequence of steps is summarised in Figure 5. In order to generate a TetC-hingeless replacement cassette, the segment of DNA from the unique SacII site within the TetC gene to the final codon was amplified by means of the PCR reaction, using pTETnir15 as template DNA. The primers used in the PCR amplification are shown in the sequence listing as SEQ ID NO: 10 and SEQ ID NO: 11. The antisense primer in this amplification reaction was tailored with an XbaI recognition sequence.

The amplification reaction was performed according to the manufacturer's instructions (Stratagene, La Jolla, CA, USA). The product was gel-purified, digested with SacII and XbaI, and then cloned into the residual pTECH1-P28 vector which had been previously digested with the respective enzymes SacII and XbaI. The resulting vector was designated pTECH3-P28. The DNA sequence of pTECH3-P28 is shown in the sequence listing as SEQ ID NO: 12.

EXAMPLE 4Transformation of S. typhimurium SL5338 (galE r^m) with pTECH3-P28, and Analysis of the Transformants

S. typhimurium SL5338 (galE r^m) were cultured in either L or YT broth and on L-agar with ampicillin (50 g/ml) if appropriate and were transformed with the pTECH3-P28 plasmid. The transformation protocol was based on the method described by MacLachlan and Sanderson. (MacLachlan PR and Sanderson KE, 1985. Transformation of Salmonella typhimurium with plasmid DNA : differences between rough and smooth strains. J. Bacteriology 161, 442-445).

A 1ml overnight culture of S. typhimurium SL5338 (r^m; Brown A, Hormaeche CE, Demarco de Hormaeche R, Dougan G, Winther M, Maskell D, and Stocker BAD, 1987. J. Infect. Dis. 155, 86-92) was used to inoculate 100 ml of LB broth and shaken at 37°C until the culture reached OD₆₅₀ = 0.2. The cells were harvested at 3000 x g and resuspended in 0.5 volumes of ice-cold 0.1M MgCl₂. The cells were pelleted again and resuspended in 0.5 volumes of ice-cold CaCl₂. This step was repeated once more and the cells resuspended in 1 ml of 0.1M CaCl₂ to which was added 50 µl of TES (50 mM Tris, 10 mM EDTA, 50 mM NaCl, pH 8.0). The cells were incubated on ice for 45 to 90 minutes. To 150µl of cells was added 100ng of plasmid DNA in 1 - 2µl. The mixture was incubated on ice for 30 minutes prior to heat-shock at 42°C for 2 minutes, and immediate reincubation on ice for 1 minute. To the transformed mixture was added 2 ml of LB broth and incubated for 1.5 hours to allow

expression of the ampicillin drug resistance gene, B-lactamase. Following incubation 20 µl and 200 µl of cells were spread on to LB agar plates containing 50 µg/ml of ampicillin. The plates were dried and incubated at 37°C overnight.

The identity of recombinants was verified by restriction mapping of the plasmid DNA and by western blotting with antisera directed against TetC and P28.

SDS-PAGE and Western Blotting

Expression of the TetC fusions was tested by SDS-PAGE and western blotting. S. typhimurium SL5338 (galE r^m^+) bacterial cells containing the pTECH3-P28 plasmid and growing in mid-log phase, with antibiotic selection, were harvested by centrifugation and the proteins fractionated by 10% SDS-PAGE. The proteins were transferred to a nitrocellulose membrane by electroblotting and reacted with either a polyclonal rabbit antiserum directed against TetC or the full length P28 protein. The blots were then probed with goat anti-rabbit Ig conjugated to horse-radish peroxidase (Dako, High Wycombe, Bucks, UK) and developed with 4-chloro-1-naphthol). The results of the western blotting experiments are shown in Figures 4 and 5; Figure 4 illustrating the results of probing with rabbit anti-TetC polyclonal antiserum and Figure 5 illustrates the results of probing with rabbit anti-P28 polyclonal antiserum. In each case lanes 1, 2 and 3 are independent clones of SL5338 (pTECH3-P28), lanes 4, 5 and 6 are SL5338 (pTECH1-P28) and

20

lane 7 is SL5338 (pTETnirl5). The molecular weight markers are indicated. From the results, it is evident that the fusion protein remains soluble, reacts with antisera to both TetC and P28, and is also of the expected molecular weight, 80 kDa, for a full length fusion (Figure 4). Furthermore the fusion protein appears to be stably expressed.

Glutathione-Agarose Affinity Purification

Glutathione is the natural substrate for P28, a glutathione S-transferase. The amino acid residues involved in binding glutathione are thought to be spatially separated in the primary structure of the polypeptide and brought together to form a glutathione binding pocket in the tertiary structure. In order to gauge whether the P28 component of the fusion has folded correctly to adopt a conformation capable of binding glutathione, we tested its ability to be affinity purified on a glutathione agarose matrix.

Bacterial cells containing pTECH3-P28 and expressing the TetC full length P28 gene fusion were grown to log phase, chilled on ice, and harvested by centrifugation at 2500 x g for 15 min at 4°C. The cells were resuspended in 1/15th the original volume of ice-cold phosphate buffered saline (PBS) and lysed by sonication in a MSE Soniprep 150 (Gallenkamp, Leicester, UK). The insoluble material was removed by centrifugation and to the supernatant was added 1/6 volume of a 50% slurry of pre-swollen glutathione-agarose beads (Sigma, Poole, Dorset, UK). After mixing

gently at room temperature for 1 hour the beads were collected by centrifugation at 1000 x g for 10 secs. The supernatant was discarded and the beads resuspended in 20 volumes of cold PBS-0.5% Triton X100 and the beads collected again by centrifugation. The washing step was repeated three more times. The fusion protein was eluted by adding 1 volume of SDS-PAGE sample buffer. For comparison purposes, a similar procedure was followed with bacterial cells containing the PTECH1-P28 plasmid from which TetC-hinge-P28 fusion protein is expressed. Extracts from clones containing either plasmid were compared using SDS-PAGE and the results are shown in Figure 6. In Figure 6, lanes 1, 2 and 3 are clones of SL5338 (pTECH1-P28) whereas lanes 4, 5 and 6 are independent clones of SL 5338 (pTECH3-P28).

The results suggest that the TetC-P28 fusion protein can indeed bind to the matrix and the binding is reversible regardless of the absence of a heterologous hinge domain (data not shown). It is possible that a peptide sequence present at the C-terminus of TetC may in fact impart flexibility to this particular region.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: MEDEVA HOLDINGS BV
- (B) STREET: CHURCHILL-LAAN 223
- (C) CITY: AMSTERDAM
- (E) COUNTRY: THE NETHERLANDS
- (F) POSTAL CODE (ZIP): 1078 ED

(ii) TITLE OF INVENTION: VACCINES

(iii) NUMBER OF SEQUENCES: 20

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(vi) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: PCT/GB93/01617
- (B) FILING DATE: 30-JUL-1993

(vi) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: GB 9401787.8
- (B) FILING DATE: 31-JAN-1994

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 68 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Escherichia coli

(ix) FEATURE:

- (A) NAME/KEY: promoter
- (B) LOCATION: 1..61

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AATTCAAGGTA AATTTGATGT ACATCAAATG GTACCCCTTG CTGAATCGTT AAGGTAGGCG 60
GTAGGGCC 68

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 68 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

AATTCAAGGTA AATTTGATGT ACATCAAATG GTACCCCTTG CTGAATCGTT AAGGTAGGCG 60
GTAGGGCC 68

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 60 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GTCCATTAA ACTACATGTA GTTTACCATG GGGAACGACT TAGCAATTCC ATCCGCCATC 60

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

AAAGACTCCG CGGGCGAAGT T

21

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 64 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTATGGATCC TTAACTAGTG ATTCTAGAGG GCCCCGGCCC GTCGTTGGTC CAACCTTCAT

60

CGGT

64

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 3754 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

TTCAGGTAAA TTTGATGTAC ATCAAATGGT ACCCCTTGCT GAATCGTTAA GGTAGGCGGT	60
AGGGCCCGAGA TCTTAATCAT CCACAGGAGA CTTTCTGATG AAAAACCTTG ATTGTTGGGT	120
CGACAAACGAA GAAGACATCG ATGTTATCCT GAAAAAGTCT ACCATTCTGA ACTTGGACAT	180
CAACAAACGAT ATTATCTCCG ACATCTCTGG TTTCAACTCC TCTGTTATCA CATATCCAGA	240
TGCTCAATTG GTGCCGGGCA TCAACGGCAA AGCTATCCAC CTGGTTAACAA CGAATCTTC	300
TGAAGTTATC GTGCACAAGG CCATGGACAT CGAATAACAAAC GACATGTTCA ACAACTTCAC	360
CGTTAGCTTC TGGCTGCGCG TTCCGAAAGT TTCTGCTTCC CACCTGGAAC AGTACGGCAC	420
TAACGAGTAC TCCATCATCA GCTCTATGAA GAAACACTCC CTGTCCATCG GCTCTGGTTG	480
GTCTGTTCC CTGAAGGGTA ACAACCTGAT CTGGACTCTG AAAGACTCCG CGGGCGAAGT	540
TCGTCAGATC ACTTTCCCGCG ACCTGCCGGA CAAGTTCAAC GCGTACTGG CTAACAAATG	600
GGTTTTCATC ACTATCACTA ACGATCGTCT GTCTTCTGCT AACCTGTACA TCAACGGCGT	660
TCTGATGGGC TCCGCTGAAA TCACTGGTCT GGGCGCTATC CGTGAGGACA ACAACATCAC	720
TCTTAAGCTG GACC GTTGC A ACAACAAACAA CCAGTACGTA TCCATCGACA AGTTCCGTAT	780
CTTCTGCAAA GCACTGAACC CGAAAGAGAT CGAAAAAACTG TATACCAGCT ACCTGTCTAT	840
CACCTTCCTG CGTACTTCT GGGGTAACCC SCTGCGTTAC GACACCGAAT ATTACCTGAT	900
CCC GG TAGCT TCTAGCTCTA AAGACGTTCA GCTGAAAAAC ATCACTGACT ACATGTACCT	960
GACCAACGCG CCGTCCTACA CTAACGGTAA ACTGAACATC TACTACCGAC GTCTGTACAA	1020
CGGCCTGAAA TTCATCATCA AACGCTACAC TCCGAACAAAC GAAATCGATT CTTCTGTTAA	1080
ATCTGGTGAC TTCATCAAAC TGTACGTTTC TTACAACAAAC AACGAACACA TCGTTGGTTA	1140
CCCGAAAGAC GGTAAACGCTT TCAACAAACCT GGACAGAATT CTGCGTGTG GTTACAACGC	1200
TCCGGGTATC CCGCTGTACA AAAAAATGGA AGCTGTTAAA CTGCGTGACC TGAAAACCTA	1260
CTCTGTTCAAG CTGAAACTGT ACGACGACAA AAACGCTTCT CTGGGTCTGG TTGGTACCCA	1320
CAACGGTCAG ATCGGTAACG ACCCGAACCG TGACATCCTG ATCGCTTCTA ACTGGTACTT	1380
CAACCACCTG AAAGACAAAA TCCTGGTTG CGACTGGTAC TTGCTCCGA CCGATGAAGG	1440

TTGGACCAAC GACGGGCCGG GGCCCTCTAG AATCACTAGT TAAGGATCCG CTAGCCCCGC	1500
TAATGAGCGG GCTTTTTTTT CTCGGGCAGC GTTGGGTCTT GGCCACGGGT GCGCATGATC	1560
GTGCTCTGT CGTTGAGGAC CCGGCTAGGC TGGCGGGGTT GCCTTACTGG TTAGCAGAAT	1620
GAATCACCGA TACGCGAGCG AACGTGAAGC GACTGCTGCT GCAAAACGTC TGCGACCTGA	1680
GCAACAACAT GAATGGTCTT CGGTTCCGT GTTCTGAAAC GTCTGAAAC GCGGAAGTCA	1740
GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG GTCGTTGGC TGCGCGAGC	1800
GGTATCAGCT CACTCAAAGG CGGTAATAACG GTTATCCACA GAATCAGGGG ATAACGCAGG	1860
AAAGAACATG TGAGCAAAAG GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT	1920
GGCCTTTTC CATAGGCTCC GCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA	1980
GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT	2040
CGTGGCTCT CCTGGTCCGA CCCTGCCGCT TACCGGATAC CTGTCGGCCT TTCTCCCTTC	2100
GGGAAGCGTG GCGCTTTCTC AATGCTCACG CTGTAGGTAT CTCAGTTGG TGTTAGGTCGT	2160
TCGCTCCAAG CTGGGCTGTG TGCACGAACC CCCCGTTCAAG CCCGACCGCT GCGCCTTATC	2220
CGGTAACAT CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATGCCAC TGGCAGCAGC	2280
CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG	2340
GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT ATCTGCGCTC TGCTGAAGCC	2400
AGTTACCTTC GGAAAAGAG TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG	2460
CGGTGGTTT TTTGTTGCA AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA	2520
TCCTTGTATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT	2580
TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CTTTAAATT AAAAAATGAAG	2640
TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT GACAGTTACC AATGCTTAAT	2700
CAGTGAGGCA CCTATCTCAG CGATCTGTCT ATTCGTTCA TCCATAGTTG CCTGACTCCC	2760
CGTCGTGTAG ATAACCTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT	2820
ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA ATAAACCAGC CAGCCGGAAG	2880
GGCCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC ATCCAGTCTA TTAATTGTTG	2940
CCGGGAAGCT AGAGTAAGTA GTTCCAGT TAATAGTTG CGCAACGTTG TTGCCATTGC	3000
TGCAGGCATC GTGGTGTAC GCTCGTCGTT TGGTATGGCT TCATTAGCT CCGGTTCCCA	3060

ACGATCAAGG CGAGTTACAT GATCCCCAT GTTGTGAAA AAAGCGGTTA GCTCCTTCGG	3120
TCCTCCGATC GTTGTGAGAA GTAAGTTGGC CGCAGTGTGTTA TCACTCATGG TTATGGCAGC	3180
ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC TTTTCTGTGA CTGGTGAGTA	3240
CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG AGTTGCTCTT GCCCGGCGTC	3300
AACACGGGAT AATACCGCGC CACATAGCAG AACTTTAAAAA GTGCTCATCA TTGGAAAACG	3360
TTCTTCGGGG CGAAAACCTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC	3420
CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC ACCAGCGTTT CTGGGTGAGC	3480
AAAAAACAGGA AGGCAAAATG CCGCAAAAAAA GGGATAAGG GCGACACGGA AATGTTGAAT	3540
ACTCATACTC TTCCCTTTTC AATATTATTG AAGCATTAT CAGGGTTATT GTCTCATGAG	3600
CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC	3660
CCGAAAAGTG CCACCTGACG TCTAAGAAC CATTATTATC ATGACATTAA CCTATAAAAAA	3720
TAGGCGTATC ACGAGGCCCT TTCGTCTTCA AGAA	3754

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

TAGTCTAGAA TGGCTGGCGA GCATATCAAG

30

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(i-iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

TTAGGATCCT TAGAAGGGAG TTGCAGGCCT

30

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4378 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

TTCAGGTAAA TTTGATGTAC ATCAAATGGT ACCCCTTGCT GAATCGTTAA GGTAGGCGGT

60

AGGGCCCAA TCTTAATCAT CCACAGGAGA CTTTCTGATG TET C GENE START CODON
AAAAACCTTG ATTGTTGGGT

120

CGACAACGAA GAAGACATCG ATGTTATCCT GAAAAAGTCT ACCATTCTGA ACTTGGACAT

180

CAACAACGAT ATTATCTCCG ACATCTCTGG TTTCAACTCC TCTGTTATCA CATATCCAGA

240

TGCTCAATTG GTGCCGGGCA TCAACGGCAA AGCTATCCAC CTGGTTAAC ACGAATCTTC

300

TGAAGTTATC GTGCACAAGG CCATGGACAT CGAATACAAC GACATGTTCA ACAACTTCAC

360

CGTTAGCTTC TGGCTGCGCG TTCCGAAAGT TTCTGCTTCC CACCTGGAAC AGTACGGCAC

420

TAACGAGTAC TCCATCATCA GCTCTATGAA GAAACACTCC CTGTCCATCG GCTCTGGTTG

480

SacII
GTCTGTTCC CTGAAGGGTA ACAACCTGAT CTGGACTCTG AAAGACTCCG CGGGCGAAGT

540

TCGTCAGATC ACTTTCCGCG ACCTGCCGGA CAAGTTCAAC GCGTACCTGG CTAACAAATG

600

GGTTTTCATC ACTATCACTA ACGATCGTCT GTCTTCTGCT AACCTGTACA TCAACGGCGT

660

TCTGATGGGC TCCGCTGAAA TCACTGGTCT GGGCGCTATC CGTGAGGACA ACAACATCAC

720

TCTTAAGCTG GACCGTTGCA ACAACAACAA CCAGTACGTA TCCATCGACA AGTTCCGTAT	780
CTTCTGAAA GCACTGAACC CGAAAGAGAT CGAAAAACTG TATAACCAGCT ACCTGTCTAT	840
CACCTTCCTG CGTGACTTCT GGGGTAACCC GCTGCCTTAC GACACCGAAT ATTACCTGAT	900
CCCGGTAGCT TCTAGCTCTA AAGACGTTCA GCTGAAAAAC ATCACTGACT ACATGTACCT	960
GACCAACGCG CCGTCCTACA CTAACGGTAA ACTGAACATC TACTACCGAC GTCTGTACAA	1020
CGGCCTGAAA TTCATCATCA AACGCTACAC TCCGAACAAC GAAATCGATT CTTTCGTTAA	1080
ATCTGGTGAC TTCATCAAAC TGTACGTTTC TTACAACAAC AACGAACACA TCGTTGGTTA	1140
CCCGAAAGAC GGTAACGCTT TCAACAACCT GGACAGAATT CTGCGTGTG GTTACAACGC	1200
TCCGGGTATC CCGCTGTACA AAAAATGGA AGCTGTTAAA CTGCGTGACC TGAAAACCTA	1260
CTCTGTTCAAG CTGAAACTGT ACGACGACAA AAACGCTTCT CTGGGTCTGG TTGGTACCCA	1320
CAACGGTCAG ATCGGTAAACG ACCCGAACCG TGACATCCTG ATCGCTTCTA ACTGGTACTT	1380
CAACCACCTG AAAGACAAAAA TCCTGGGTTG CGACTGGTAC TTCGTTCCGA CCGATGAAGG	1440
 HINGE DOMAIN XbaI S.Mansoni P28 GENE START	
TTGGACCAAC GAC <u>GGGGCCGG</u> <u>GGCCCTCTAG</u> AATGGCTGGC GAGCATATCA AGGTTATCTA	1500
TTTGACGGA CGCGGACGTG CTGAATCGAT TCGGATGACT CTTGTGGCAG CTGGTGTAGA	1560
CTACGAAGAT GAGAGAATTA GTTTCCAAGA TTGGCCAAAA ATCAAACCAA CTATTCCAGA	1620
CGGACGATTG CCTGCAGTGA AAGTCACTGA TGATCATGGG CACGTGAAAT GGATGTTAGA	1680
GAGTTGGCT ATTGCACGGT ATATGGCGAA GAAACATCAT ATGATGGGTG AAACAGACGA	1740
GGAAATACTAT AGTGTGAAA AGTTGATTGG TCATGCTGAA GATGTAGAAC ATGAATATCA	1800
CAAAACTTTG ATGAAGCCAC AAGAAGAGAA AGAGAAGATA ACCAAAGAGA TATTGAACGG	1860
CAAAGTTCCA GTTCTCTCA ATATGATCTG CGAATCTCTG AAAGGGTCGA CAGGAAAGCT	1920
GGCTGTTGGG GACAAAGTAA CTCTAGCTGA TTTAGTCCTG ATTGCTGTCA TTGATCATGT	1980
GACTGATCTG GATAAAGGAT TTCTAACTGG CAAGTATCCT GAGATCCATA AACATCGAGA	2040
AAATCTGTTA GCCAGTTCAC CGCGTTGGC GAAATATTAA TCGAACAGGC CTGCAACTCC	2100
 STOP BamHI	
CTT <u>CTAAGGA</u> TCCGCTAGCC CGCCTAATGA GCGGGCTTTT TTTTCTCGGG CAGCGTTGGG	2160
TCCTGGCCAC GGGTGCGCAT GATCGTGCTC CTGTCGTTGA GGACCCGGCT AGGCTGGCGG	2220
GGTTGCCTTA CTGGTTAGCA GAATGAATCA CCGATACGCG AGCGAACGTG AAGCGACTGC	2280

TGCTGCAGAA	CGTCTGGGAC	GTGAGGAACA	ACATGAATGG	TCTTCGGTTT	CCGTGTTTCG	2340
TAAAGTCTGG	AAACGCGGAA	GTCAGCGCTC	TTCCGCTTCC	TCGCTCACTG	ACTCGCTGCG	2400
CTCGGTCTGGT	CGGCTGCCGC	GAGCGGTATC	AGCTCACTCA	AAGGCGTAA	TACGGTTATC	2460
CACAGAATCA	GGGGATAACG	CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	2520
GAACCGTAAA	AAGGCCCGT	TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC	CTGACGAGCA	2580
TCACAAAAAT	CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT	AAAGATAACCA	2640
GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG	CTCTCCTGTT	CCGACCCCTGC	CGCTTACCGG	2700
ATACCTGTCC	GCCTTTCTCC	CTTCGGGAAG	CGTGGCGCTT	TCTCAATGCT	CACGCTGTAG	2760
GTATCTCAGT	TCGGTGTAGG	TCGTTGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT	2820
TCAGCCCCGAC	CGCTGCGCCT	TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	CGGTAAGACA	2880
CGACTTATCG	CCACTGGCAG	CAGCCACTGG	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	2940
CGGTGCTACA	GAGTTCTTGA	AGTGGTGGCC	TAACTACGGC	TACACTAGAA	GGACAGTATT	3000
TGGTATCTGC	GCTCTGCTGA	AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC	3060
CGGCAAACAA	ACCACCGCTG	GTAGCGGTGG	TTTTTTGTT	TGCAAGCAGC	AGATTACGCG	3120
CAGAAAAAAA	GGATCTCAAG	AAGATCCTTT	GATCTTTCT	ACGGGGTCTG	ACGCTCAGTG	3180
GAACGAAAAC	TCACGTTAAG	GGATTTGGT	CATGAGATTA	TCAAAAAGGA	TCTTCACCTA	3240
GATCCTTTA	AATTAAAAAT	GAAGTTTAA	ATCAATCTAA	AGTATATATG	AGTAAACTTG	3300
GTCTGACAGT	TACCAATGCT	TAATCAGTGA	GGCACCTATC	TCAGCGATCT	GTCTATTCG	3360
TTCATCCATA	GTTGCCTGAC	TCCCCGTCGT	GTAGATAACT	ACGATAACGGG	AGGGCTTACC	3420
ATCTGGCCCC	AGTGCTGCAA	TGATACCGCG	AGACCCACGC	TCACCGGCTC	CAGATTTATC	3480
AGCAATAAAC	CAGCCAGCCG	GAAGGGCCGA	GCGCAGAAGT	GGTCCTGCAA	CTTTATCCGC	3540
CTCCATCCAG	TCTATTAATT	GTTGCCGGGA	AGCTAGAGTA	AGTAGTTCGC	CAGTTAATAG	3600
TTTGCACAC	GTTGTTGCCA	TTGCTGCAGG	CATCGTGGTG	TCACGCTCGT	CGTTTGGTAT	3660
GGCTTCATTC	AGCTCCGGTT	CCCAACGATC	AAGGCGAGTT	ACATGATCCC	CCATGTTGTG	3720
CAAAAAAGCG	GTTAGCTCCT	TCGGTCCTCC	GATCGTTGTC	AGAAGTAAGT	TGGCCGCAGT	3780
GTTATCACTC	ATGGTTATGG	CAGCACTGCA	TAATTCTCTT	ACTGTCATGC	CATCCGTAAAG	3840
ATGCTTTCT	GTGACTGGTG	AGTACTCAAC	CAAGTCATTG	TGAGAATAGT	GTATGCGGCG	3900

ACCGAGTTGC TCTTGCCCCG CGTCAACACG GGATAATACC GCGCCACATA GCAGAACTTT	3960
AAAAGTGCTC ATCATTGGAA AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT	4020
GTTGAGATCC AGTTCGATGT AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC	4080
TTTCACCAGC GTTTCTGGGT GAGCAAAAAC AGGAAGGCCA AATGCCGCAA AAAAGGGAAT	4140
AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT	4200
TTATCAGGGT TATTGTCTCA TGAGCGGATA CATATTTGAA TGTATTAGA AAAATAAACAA	4260
AATAGGGGTT CCGCGCACAT TTCCCCGAAA AGTGCCACCT GACGTCTAAG AAACCATTAT	4320
TATCATGACA TTAACCTATA AAAATAGGCG TATCACGAGG CCCTTCGTC TTCAAGAA	4378

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

AAAGACTCCG CGGGCGAAGT T

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

TTATCTAGAG TCGTTGGTCC AACCTTCATC

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4366 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: circular

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TTCAGGTAAA TTTGATGTAC ATCAAATGGT ACCCCTTGCT GAATCGTTAA GGTAGGCGGT	60
<u>TET C GENE START CODON</u>	
AGGGCCCAGA TCTTAATCAT CCACAGGAGA CTTTCT <u>GATG</u> AAAAAACCTTG ATTGTTGGGT	120
CGACAACGAA GAAGACATCG ATGTTATCCT GAAAAAGTCT ACCATTCTGA ACTTGGACAT	180
CAACAACGAT ATTATCTCCG ACATCTCTGG TTTCAACTCC TCTGTTATCA CATATCCAGA	240
TGCTCAATTG GTGCCGGGCA TCAACGGCAA AGCTATCCAC CTGGTTAACCA CGAACATCTTC	300
TGAAGTTATC GTGCACAAGG CCATGGACAT CGAATAAACAC GACATGTTCA ACAACTTCAC	360
CGTTAGCTTC TGGCTGCGCG TTCCGAAAGT TTCTGCTTCC CACCTGGAAC AGTACGGCAC	420
TAACGAGTAC TCCATCATCA GCTCTATGAA GAAACACTCC CTGTCCATCG GCTCTGGTTG	480
<u>SacII</u>	
GTCTGTTCC CTGAAGGGTA ACAACCTGAT CTGGACTCTG AAAGACTCCG CGGGCGAAGT	540
TCGTCAGATC ACTTTCCGCG ACCTGCCGGA CAAGTTAAC GCGTACCTGG CTAACAAATG	600
GGTTTTCATC ACTATCACTA ACGATCGTCT GTCTTCTGCT AACCTGTACA TCAACGGCGT	660
TCTGATGGGC TCCGCTGAAA TCACTGGTCT GGGCGCTATC CGTGAGGACA ACAACATCAC	720
TCTTAAGCTG GACCCTTGCA ACAACAACAA CCAGTACGTA TCCATCGACA AGTTCCGTAT	780
CTTCTGCAAA GCACTGAACC CGAAAGAGAT CGAAAAACTG TATACCAGCT ACCTGTCTAT	840

CACCTTCCTG CGTGACTTCT GGGGTAACCC GCTGCCTTAC GACACCGAAT ATTACCTGAT	900
CCCGGTAGCT TCTAGCTCTA AAGACGTTCA GCTGAAAAAC ATCACTGACT ACATGTACCT	960
GACCAACGCG CCGTCCTACA CTAACGGTAA ACTGAACATC TACTACCGAC GTCTGTACAA	1020
CGGCCTGAAA TTCATCATCA AACGCTACAC TCCGAACAAC GAAATCGATT CTTTCGTTAA	1080
ATCTGGTGAC TTCATCAAAC TGTACGTTTC TTACAACAAC AACGAACACA TCGTTGGTTA	1140
CCCGAAAGAC GGTAACGCTT TCAACAACCT GGACAGAATT CTGCGTGTG GTTACAACGC	1200
TCCGGGTATC CCGCTGTACA AAAAAATGGA AGCTGTTAAA CTGCGTGACC TGAAAACCTA	1260
CTCTGTTCAAG CTGAAAATGT ACGACGACAA AAACGCTTCT CTGGGTCTGG TTGGTACCCA	1320
CAACGGTCAG ATCGGTAACG ACCCGAACCG TGACATCCTG ATCGCTTCTA ACTGGTACTT	1380
CAACCACCTG AAAGACAAAA TCCTGGGTTG CGACTGGTAC TTCGTTCCGA CCGATGAAGG	1440
 XbaI S.Mansonii P28 GENE START	
TTGGACCAAC GACTCTAGAA <u>TGGCTGGCGA</u> SCATATCAAG GTTATCTATT TTGACGGACG	1500
CGGACGTGCT GAATCGATTC GGATGACTCT TGTGGCAGCT GGTGTAGACT ACGAAGATGA	1560
GAGAATTAGT TTCCAAGATT GGCCAAAAAT CAAACCAACT ATTCCAGACG GACGATTGCC	1620
TGCAGTGAAA GTCACTGATG ATCATGGCA CGTGAATGG ATGTTAGAGA GTTGGCTAT	1680
TGCACGGTAT ATGGCGAAGA AACATCATAT GATGGGTGAA ACAGACGAGG AATACTATAG	1740
TGTTGAAAAG TTGATTGGTC ATGCTGAAGA TGTAGAACAT GAATATCACA AAACCTTGAT	1800
GAAGCCACAA GAAGAGAAAG AGAAGATAAC CAAAGAGATA TTGAACGGCA AAGTTCCAGT	1860
TCTTCTCAAT ATGATCTGCG AATCTCTGAA AGGGTCGACA GGAAAGCTGG CTGTTGGGGA	1920
CAAAGTAACT CTAGCTGATT TAGCCTGAT TGCTGTCATT GATCATGTGA CTGATCTGGA	1980
TAAAGGATTCTAACTGGCA AGTATCCTGA GATCCATAAA CATCGAGAAA ATCTGTTAGC	2040
 <u>STOP BamHI</u>	
CAGTTCACCG CGTTGGCGA AATATTATC GAACAGGCCT GCAACTCCCT <u>TCTAAGGATC</u>	2100
CGCTAGCCCCG CCTAATGAGC GGGCTTTTT TTCTCGGGCA GCGTTGGTC CTGGCCACGG	2160
GTGCGCATGA TCGTGCTCCT GTCGTTGAGG ACCCGGCTAG GCTGGGGGG TTGCCTTACT	2220
GGTTAGCAGA ATGAATCACC GATACGCGAG CGAACGTGAA GCGACTGCTG CTGCAAAACG	2280
TCTGCGACCT GAGCAACAAC ATGAATGGTC TTGGTTTCC GTGTTCGTA AAGTCTGGAA	2340
ACGCGGAAGT CAGCGCTCTT CCGCTTCCTC GCTCACTGAC TCGCTGCGCT CGGTCGTTCG	2400

GCTGGGGCGA	GCGGTATCAG	CTCACTCAAA	GGCGGTATAA	CGGTTATCCA	CAGAACATCAGG	2460
GGATAACGCA	GGAAAGAACAA	TGTGAGCAAA	AGGCCAGCAA	AAGGCCAGGA	ACCGTAAAAAA	2520
GGCCGCGTTG	CTGGCGTTTT	TCCATAGGCT	CCGCCCCCCT	GACGAGCATIC	ACAAAAAATCG	2580
ACGCTCAAGT	CAGAGGTGGC	GAAACCCGAC	AGGACTATAA	AGATACCAGG	CGTTTCCCCC	2640
TGGAAGCTCC	CTCGTGCCTC	CTCCTGTTCC	GACCCCTGCCG	CTTACCGGAT	ACCTGTCCGC	2700
CTTTCTCCCT	TCGGGAAGCG	TGGCGCTTTC	TCAATGCTCA	CGCTGTAGGT	ATCTCAGTTC	2760
GGTGTAGGTC	GTTCGCTCCA	AGCTGGGCTG	TGTGCACGAA	CCCCCCGTTTC	AGCCCGACCG	2820
CTGCGCCTTA	TCCGGTAACT	ATCGTCTTGA	GTCCAACCCG	GTAAGACACG	ACTTATCGCC	2880
ACTGGCAGCA	GCCACTGGTA	ACAGGATTAG	CAGAGCGAGG	TATGTAGGCG	GTGCTACAGA	2940
GTTCTTGAAG	TGGTGGCCTA	ACTACGGCTA	CACTAGAAGG	ACAGTATTTG	GTATCTGCGC	3000
TCTGCTGAAG	CCAGTTACCT	TCGGAAAAAG	AGTTGGTAGC	TCTTGATCG	GCAAACAAAC	3060
CACCGCTGGT	AGCGGTGGTT	TTTTTGTGTTG	CAAGCAGCAG	ATTACCGCGA	GAAAAAAAGG	3120
ATCTCAAGAA	GATCCTTGA	TCTTTCTAC	GGGGTCTGAC	GCTCAGTGGA	ACGAAAACCTC	3180
ACGTTAAGGG	ATTTTGGTCA	TGAGATTATC	AAAAAGGATC	TTCACCTAGA	TCCTTTAAA	3240
TTAAAAATGA	AGTTTTAAAT	CAATCTAAAG	TATATATGAG	TAAACTTGGT	CTGACAGTTA	3300
CCAATGCTTA	ATCAGTGAGG	CACCTATCTC	AGCGATCTGT	CTATTCGTT	CATCCATAGT	3360
TGCCTGACTC	CCCCTCGTGT	AGATAACTAC	GATACTGGAG	GGCTTACCAT	CTGGCCCCAG	3420
TGCTGCAATG	ATACCGCGAG	ACCCACGCTC	ACCGGCTCCA	GATTTATCAG	CAATAAACCA	3480
GCCAGCCGGA	AGGGCCGAGC	GCAGAAAGTGG	TCCTGCAACT	TTATCCGCCT	CCATCCAGTC	3540
TATTAATTGT	TGCCGGGAAG	CTAGAGTAAG	TAGTCGCCA	GTAAATAGTT	TGCGCAACGT	3600
TGTTGCCATT	GCTGCAGGCA	TCGTGGTGT	ACGCTCGTCG	TTGGTATGG	CTTCATTCA	3660
CTCCGGTTCC	CAACGATCAA	GGCGAGTTAC	ATGATCCCC	ATGTTGTGCA	AAAAAGCGGT	3720
TAGCTCCTTC	GGTCCTCCGA	TCGTTGTCA	AAGTAAGTTG	GCCGCAGTGT	TATCACTCAT	3780
GGTTATGGCA	GCACTGCATA	ATTCTCTTAC	TGTCTGCCA	TCCGTAAGAT	GCTTTTCTGT	3840
GAATGGTGAG	TACTCAACCCA	AGTCATTCTG	AGAATAGTGT	ATGCGGCGAC	CGAGTTGCTC	3900
TTGCCCGGCG	TCAACACGGG	ATAATACCGC	GCCACATAGC	AGAACTTTAA	AAAGTGTCTCAT	3960
CATTGGAAAA	CGTTCTTCGG	GGCGAAAAC	CTCAAGGATC	TTACCGCTGT	TGAGATCCAG	4020

TTCGATGTAA CCCACTCGTG CACCCAACTG ATCTTCAGCA TCTTTACTT TCACCAGCGT	4080
TTCTGGGTGA GCAAAAACAG GAAGGCAGAA TGCCGCAAAA AAGGGAATAA GGGCGACACG	4140
GAAATGTTGA ATACTCATAAC TCTTCCTTT TCAATATTAT TGAAGCATTG ATCAGGGTTA	4200
TTGTCTCATG AGCGGATACA TATTTGAATG TATTTAGAAA AATAAACAAA TAGGGGTTCC	4260
GCGCACATTT CCCCCGAAAAG TGCCACCTGA CGTCTAAGAA ACCATTATTA TCATGACATT	4220
AACCTATAAA AATAGGCGTA TCACGAGGCC CTTTCGTCTT CAAGAA	4366

CLAIMS

1. A DNA construct comprising a DNA sequence encoding a fusion protein of the formula TetC-(Z)_a-Het, wherein TetC is the C fragment of tetanus toxin, or a protein comprising the epitopes thereof; Het is a heterologous protein, Z is an amino acid, and a is zero or a positive integer, provided that (Z)_a does not include the sequence Gly-Pro.
2. A DNA construct according to Claim 1 wherein (Z)_a is a chain of 0 to 15 amino acids.
3. A DNA construct according to Claim 2 wherein (Z)_a is a chain of less than 4 amino acids.
4. A DNA construct according to Claim 3 wherein (Z)_a is a chain of two or three amino acids, the DNA sequence for which defines a restriction endonuclease cleavage site.
5. A DNA construct according to Claim 2 wherein a is zero.
6. A DNA construct according to Claim 2 in which (Z)_a is free from glycine and/or proline.
7. A DNA construct according to any one of the preceding

Claims wherein the heterologous protein Het is an antigenic sequence derived from a virus, bacterium, fungus, yeast or parasite.

8. A DNA construct according to Claim 7 wherein the heterologous protein Het is the Schistosoma mansoni P28 glutathione *S*-transferase antigen.
9. A replicable expression vector, for example suitable for use in bacteria, containing a DNA construct as defined in any one of Claims 1 to 8.
10. A host, for example, a bacterium, having integrated into the chromosomal DNA thereof a DNA construct as defined in any one of Claims 1 to 8.
11. A fusion protein as defined in any one of Claims 1 to 8.
12. A process for the preparation of a bacterium (preferably an attenuated bacterium), which process comprises transforming a bacterium with a DNA construct as defined in any one of Claims 1 to 8.
13. A vaccine composition comprising a fusion protein, or an attenuated bacterium expressing said fusion protein, the fusion protein being as defined in any one of Claims 1 to 8; and a pharmaceutically

acceptable carrier.

14. A method of immunising a patient, e.g. a human patient, which comprises administering to the patient an effective immunising amount of a vaccine composition as defined in Claim 13.

FIG.2

3/5

FIG. 3

4/5

5/5

FIG. 6

THIS PAGE BLANK (USPTO)