Summer research with Dr Cameron Van Eck

Boris Elvis GBEASOR

University of Toronto

boris.gbeasor.1@ulaval.ca

August 23th, 2019

Overview

Polarisation and magnetism

Correcting RMtools code

3 Correcting bandwidth depolorisation

Polarisation and magnetism

Figure: Faraday rotation

Correcting some codes in RMtools

Figure: Github project

Rotation measure synthesis

Figure: Faraday rotation measurement

correcting bandwidth depolorisation

what is bandwidth depolorisation?

Figure: A channel with a top-hat response in wavelength squared

Figure: Sum of all the polarisation vectors along a channel

what is the problem with bandwidth depolorisation?

Figure: RM spectrum with depolorisation CORRECTED

Figure: RM spectrum with depolorisation NON-CORRECTED

Solutions

$$v_j = \int_{\lambda_{min}^2}^{\lambda_{max}^2} \frac{1}{(\lambda^2)^{\frac{3}{2}}} e^{-2iRM\lambda^2} d\lambda^2$$
 (2)

(derived from the paper: D.H.F.M. Schnitzeler, K.J. Lee. *Rotation measure synthesis revisited*, MNRAS, Nov 2014) is the sum of all the polarisation vector along a channel.

- $-v_j$ should simulate bandwidth depolorisation of a channel
- -Inside RMtools, $\frac{1}{v_j}$ should correct the loss of flux during RMs because of bandwidth depolorisation.

result 1

Figure: Decreasing of v_i vs RM

We numerically tested the solution of v_j vs RM and it works perfectly.

It shows that bandwidth depolorisation becomes stronger at large RM, as expected.

result 2

Figure: RM spectrum of 3000 rad/m^2 with the old RMtools non-corrected

Figure: RM spectrum of 3000 rad/ m^2 with the new RMtools corrected with $\frac{1}{v_i}$