Chapitre 5 - Transferts thermiques

Exercice 1

Énoncé

D'après Hachette (2020).

- **a.** Dans un fluide, le transfert thermique a lieu principalement par
 - 1. convection
 - 2. conduction
 - 3. travail
- **b.** Les trois modes de transfert thermique entre un système et le milieu extérieur
 - 1. peuvent avoir lieu simultanément
 - 2. nécessitent tous un milieu matériel
 - contribuent à la variation d'énergie interne du système
- **c.** Voir figure 1. Q étant le transfert thermique échangé par le système { air intérieur }, le flux thermique Φ est
 - 1. négatif
 - 2. positif
 - plus la cloison favorise le transfert thermique
 - 2. plus le flux thermique traversant la cloison est petit $T_2 T_1$ étant fixé
 - 3. plus le flux thermique traversant la cloison est grand T_2-T_1 étant fixé
- f. La loi de Newton s'écrit

$$\Phi = h \times S \times (\theta_{e} - \theta)$$

avec h le coefficient d'échange cpnvectif et S la surface d'échange entre le système à la température θ et l'extérieur à la température θ_e . Elle s'applique pour

- la convection entre un système incompressible et le milieu extérieur, l'un des deux étant fluide
- la conduction entre un système incompressible, et le milieu extérieur, l'un des deux étant fluide
- 3. tous les transferts entre un système incompressible, et le milieu extérieur, l'un des deux étant fluide
- g. Dans la loi de Newton de la question précédente, le flux convectif est
 - 1. reçu par le système si $\theta > \theta_e$

Figure 1 – Transfert thermique à travers une cloison

- 3. nul
- **d.** Le flux thermique à travers une paroi plane
 - est l'énergie transférée à travers la paroi
 - correspond à un transfert d'énergie de la source chaude vers la source froide par unité de temps
 - est l'énergie transférée à travers la paroi par unité de temps
- e. Plus la résistance thermique R_{th} du matériau constituant la cloison (voir figure 1)) est grande

- 2. proportionnel à θ
- 3. cédé par le système si $\theta > \theta_e$

 ${\bf h.}$ Le coefficient d'échange convectif h s'exprime en

- 1. $K.W^{-1}.m^{-2}$
- 2. $W.K^{-1}.m^2$
- 3. $W.K^{-1}.m^{-2}$

i. L'équation différentielle

$$\frac{d\theta}{dt} = -\frac{h \times S}{m \times c} \times \theta + \frac{h \times S}{m \times c} \times \theta_e$$

a pour solution

1.
$$\theta = K \times e^{-\frac{h \times S}{m \times c}t} - \theta_e$$

2.
$$\theta = K \times e^{-\frac{h \times S}{m \times c}t} + \theta_e$$

3.
$$\theta = K \times e^{-\frac{h \times S}{m \times c}t}$$

Chapitre 5 - Transferts thermiques

Exercice 4

Énoncé

D'après Hachette (2020).

Le flux thermique Φ à travers le mur d'une habitation est égal à 30~W. La température intérieure de l'habitation est $\theta_i=19^oC$ et la température extérieure $\theta_e=10^oC$.

- a. Schématiser la situation en faisant apparaître Φ .
- ${\bf b}.$ Calculer la résistance thermique ${\cal R}_{th}$ du mur extérieur.

Exercice 6

Énoncé

D'après Hachette (2020).

Un mur est constitué d'une cloison de plâtre de résistance thermique R_{th1} collée à une couche de laine de verre de résistance thermique R_{th2} . L'ensemble est fixé à une paroi de béton de résistance thermique R_{th3} . La surface du mur est $S=20\ m^2$, la température à l'intérieur de la pièce est $20^{o}C$ et celle du milieu extérieur $5^{o}C$. La résistance thermique totale d'un mur constitué de plusieurs couches est la somme des résistances thermiques des couches.

On précise les résistances thermiques en ${}^{o}C.W^{-1}$ pour $S=20~m^{2}$

- plâtre 0.039
- laine de verre 0.125
- béton 0.013
- a. Schématiser la situation en indiquant par une flèche le sens des transferts thermiques à travers le mur.

Exercice 5

Énoncé

D'après Hachette (2020).

La paroi d'un système incompressible à la température $T=323\,K$ est mise en contact avec un fluide à la température constante $T_e=293\,K$.

On suppose ici que le coefficient d'échange convectif h du fluide entre le système et le fluide est $10 \ W.m^{-2}.K^{-1}$.

Calculer le flux convectif Φ entre le système et l'extérieur à travers une paroi dont la surface est $S=1.0~m^2$.

On rappelle la loi de Newton:

$$\Phi = h \times S \times (T_e - T)$$

- **b.** Indiquer le mode de transfert thermique mis en jeu.
- **c.** Calculer la résistance thermique totale du mur R_{th} .
- **d.** Calculer le flux thermique Φ traversant le
- e. Comparer ce flux thermique Φ avec le flux thermique traversant une simple paroi de béton pour une même différence de température.

Chapitre 5 - Transferts thermiques

Exercice 7

Énoncé

D'après Hachette (2020).

On étudie le refroidissement d'un chocolat initialement à une température $\theta_i=70^{o}C$. La température supposée constante où se trouve le chocolat est $\theta_e=20^{o}C$. On néglige tout transfert thermique autre que convectif. Une sonde placée dans la tasse permet de mesurer l'évolution de la température en fonction du temps . Voir figure 4. La température θ du chocolat en fonction du temps t est donnée par la relation

$$\theta = (\theta_i - \theta_e) \times e^{\frac{t}{\tau}} + \theta_e$$

au est le temps caractéristique de l'évolution de la température du système.

- **a.** Déterminer le temps caractéristique τ en utilisant le graphique et l'expression de θ .
- **b.** Indiquer les affirmations fausses et les corriger
 - 1. la température du chocolat dans la tasse n'évolue plus au bout de 10 mi-

Figure 4 – Température du chocolat en fonction du temps

nutes après la préparation du choco-

- la vitesse de refroidissement du chocolat est constante
- au bout d'une heure la température du chocolat dans la tasse peut devenir inférieur à 20°C

