Activation 2

Réglage de correcteurs P et AP

Ressources de P. Dupas.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{1}{\left(1+10p\right)\left(1+0,1p\right)\left(1+0,2p\right)}$ placé dans une boucle à retour unitaire.

Question 1 Calculer la précision du système ε_S pour une entrée échelon unitaire.

Question 2 Tracer dans le diagramme de Bode la fonction de transfert en boucle ouverte du système.

Question 3 Déterminer K pour avoir une marge de phase de 45°. Indiquer alors la valeur de la marge de gain. Indiquer la valeur de l'écart statique.

Question 4 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

1.
$$\varepsilon_S = \frac{1}{2}$$

3.
$$\omega_{-135}^{\circ} = 2,95 \,\text{rad/s}.$$

4.
$$\omega_{0 \, dB} = 7.17 \, rad/s$$
 et $M_G = 38 \, dB$ soit $K_P = 79$.

Correcteur à avance de phase

Soit un système de fonction de transfert $G(p)=\frac{100}{\left(p+1\right)^2}$ placé dans une boucle à retour unitaire. On souhaite corrige ce système en utilisant un correcteur à avance de phase de la forme $C(p)=K\frac{1+a\tau p}{1+\tau p}$.

Question 1 *Tracer le diagramme de Bode de* G(p).

Question 2 Corriger ce système de sorte que sa marge de phase soit égale à 45°.

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

1.
2.
$$C(p) = 0.53 \frac{1 + 3.54 \cdot 0.053 p}{1 + 0.053 p}$$

3.

Activation 2

Réglage de correcteurs P et AP

Ressources de P. Dupas.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{1}{\left(1+10p\right)\left(1+0,1p\right)\left(1+0,2p\right)}$ placé dans une boucle à retour unitaire.

Question 4 Calculer la précision du système ε_S pour une entrée échelon unitaire.

Question 5 Tracer dans le diagramme de Bode la fonction de transfert en boucle ouverte du système.

Question 6 Déterminer K pour avoir une marge de phase de 45°. Indiquer alors la valeur de la marge de gain. Indiquer la valeur de l'écart statique.

Question 7 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

Correcteur à avance de phase

Soit un système de fonction de transfert $G(p) = \frac{100}{\left(p+1\right)^2}$ placé dans une boucle à retour unitaire. On souhaite corrige ce système en utilisant un correcteur à avance de phase de la forme $C(p) = K \frac{1+a\tau p}{1+\tau p}$.

Question 1 Tracer le diagramme de Bode de G(p).

Question 2 Corriger ce système de sorte que sa marge de phase soit égale à 45°.

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

Activation 2 – Corrigé

Réglage de correcteurs P et AP

Ressources de P. Dupas.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{1}{(1+10p)(1+0,1p)(1+0,2p)}$ placé dans une boucle à retour unitaire.

Question 4 Calculer la précision du système ε_S pour une entrée échelon unitaire.

Correction Le système est de classe 0. L'entrée est de type échelon. $K_{BO} = 1$. L'écart statique est de $\frac{1}{1+1} = \frac{1}{2}$.

Question 5 Tracer dans le diagramme de Bode la fonction de transfert en boucle ouverte du système.

Question 6 Déterminer K pour avoir une marge de phase de 45°. Indiquer alors la valeur de la marge de gain. Indiquer la valeur de l'écart statique.

Correction

- On résout $\varphi(\omega) = -135^\circ$: $\varphi(\omega) = -\arctan 10\omega \arctan 0, 1\omega \arctan 0, 2\omega$. $\varphi(\omega) = -135^\circ \iff \omega = 2,95 \text{ rad s}^{-1} \text{ (solveur Excel)}.$
- Calculons $G_{\text{dB}}(\omega) = -20\log\left(\sqrt{1+10^2\omega^2}\right) 20\log\left(\sqrt{1+0,1^2\omega^2}\right) 20\log\left(\sqrt{1+0,2^2\omega^2}\right) = -31\,\text{dB}$. Il faut donc augmenter le gain de 31 dB soit $K_P = 10^{31/20} = 35,48$.
- On a alors un écart statique de $\frac{1}{1+35,48} = 0,027$.
- Pour déterminer la marge de gain, il faut résoudre $\varphi(\omega) = -180^\circ$. On obtient $\omega = 7,17 \,\text{rad/s}$ et $M_G = 12 \,\text{dB}$.

Question 7 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

Correction • On commence par résoudre $\varphi(\omega) = -180^\circ$. On obtient $\omega = 7,17 \,\text{rad/s}$ et $M_G = 44 \,\text{dB}$.

- Il faut augmenter le gain de 38 dB soit $20 \log K_P = 38 \Rightarrow K_P = 10^{38/20} = 79$.
- On a alors un écart statique de $\frac{1}{1+79} = 0.0125$.
- La marge de phase est alors de 19°.

Correcteur à avance de phase

Soit un système de fonction de transfert $G(p) = \frac{100}{\left(p+1\right)^2}$ placé dans une boucle à retour unitaire. On souhaite corrige ce système en utilisant un correcteur à avance de phase de la forme $C(p) = K \frac{1 + a\tau p}{1 + \tau n}$.

Question 1 *Tracer le diagramme de Bode de* G(p).

Question 2 Corriger ce système de sorte que sa marge de phase soit égale à 45°.

Correction

- $\bullet \ \ G_{\mathrm{dB}}(\omega) = 20\log(100) 20\log\left(1 + \omega^2\right). \ G_{\mathrm{dB}}(\omega) = 0 \\ \Longleftrightarrow \\ \frac{100}{1 + \omega^2} = 1 \\ \Longleftrightarrow \\ \omega = \pm\sqrt{99} \\ \Rightarrow \\ \omega = 9,95 \ \mathrm{rad/s}.$
- $\varphi(\omega) = -2 \arctan \omega$ et $\varphi(9,95) = -2,94 \operatorname{rad} = -169^{\circ}$ soit une marge de phase de 11°; le correcteur doit donc apporter un complément de phase de 34°.
- $\varphi_{\max} = \arcsin\left(\frac{a-1}{a+1}\right) \Rightarrow \sin\left(\varphi_{\max}\right) = \frac{a-1}{a+1} \Rightarrow a = -\frac{\sin\left(\varphi_{\max}\right) + 1}{\sin\left(\varphi_{\max}\right) 1} = 3,54.$
- $\tau = \frac{1}{9.95\sqrt{3.54}} = 0.053 \,\mathrm{s}.$

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

1. 2. $C(p) = 0.53 \frac{1+3.54}{1+0.0}$

