

时间数列的速度分析

授课教师: 曾菊英

浙江财经大学数据科学学院

增长速度

平均发展速度

平均增长速度

环比发展速度与定基发展速度

环比发展速度

$$\frac{a_1}{a_0}$$
, $\frac{a_2}{a_1}$, ..., $\frac{a_n}{a_{n-1}}$ a_0 , a_1 , ..., a_{n-1} , a_n

$$a_0$$
, a_1 , \cdots , a_{n-1} , a_n

定基发展速度 (总速度)

$$\frac{a_{1}}{a_{0}}, \frac{a_{2}}{a_{0}}, \cdots, \frac{a_{n}}{a_{0}}$$

环比发展速度与定基发展速度的关系

1 某段时期内各环比发展速度的连乘积等于该时期内的定基发展速度

$$\frac{a_1}{a_0} \times \frac{a_2}{a_1} \times \cdots \times \frac{a_{n-1}}{a_{n-2}} \times \frac{a_n}{a_{n-1}} = \frac{a_n}{a_0}$$

2 相邻的两个定基发展速度之商,等于相应的环比发展速度

$$\frac{a_{i}}{a_{0}} \div \frac{a_{i-1}}{a_{0}} = \frac{a_{i}}{a_{0}} \times \frac{a_{0}}{a_{i-1}} = \frac{a_{i}}{a_{i-1}} \quad (i = 1, 2, \dots, n)$$

其他发展速度指标

1 速度比 = $\frac{a 现 象 发 展 速 度}{b 现 象 发 展 速 度} = \frac{a_n / a_0}{b_n / b_0} = \frac{a_n / b_n}{a_0 / b_0} = \frac{(a / b)_n}{(a / b)_0}$

2 年距发展速度= 报告年某月(季)发展水平 上年同月(季)发展水平

增长速度

平均发展速度

平均增长速度

2 环比增长速度
$$\frac{a_i - a_{i-1}}{a_{i-1}} = \frac{a_i}{a_{i-1}} - 100 \%$$

3 定基增长速度
$$\frac{a_i - a_0}{a_0} = \frac{a_i}{a_0} - 100 \%$$

4 年距增长速度
$$\frac{a_{i+L} - a_i}{a_i} = \frac{a_{i+L}}{a_i} - 100 \%$$

增长速度

平均发展速度

平均增长速度

定义

1 平均发展速度

各期环比发展速度的序时平均数

2 平均增长速度

平均增长速度 = 平均发展速度-1

水平法计算平均发展速度

$$a_{1}' = a_{0} \cdot \overline{x}, \ a_{2}' = a_{1}' \cdot \overline{x} = a_{0} \cdot \overline{x}^{2}, \\ \cdots, \ a_{n}' = a_{n-1}' \cdot \overline{x} = a_{0} \cdot \overline{x}^{n} = a_{n}$$

- **1** 已知期末水平除以期初水平: $\overline{x} = \sqrt[n]{a_n/a_0}$
- **2** 已知总速度 (用R表示): $\overline{x} = \sqrt[n]{R}$
- **3** 已知逐年的环比发展速度 x_i : $\overline{x} = \sqrt[n]{x_1 x_2 \cdots x_n}$

水平法计算平均发展速度

某企业2020年计划在2000年产值的基础上翻2番。问年平均增长 速度至少为多少才能达此目标?

$$\overline{x} - 1 = \sqrt[n]{R} - 1 = \sqrt[20]{4} - 1 = 7.177 \%$$

累计法 (方程式法) 计算平均发展速度

思路: 各期实际水平之和等于各期推算水平之和

$$a'_{1} = a_{0} \cdot \overline{X}, a'_{2} = a'_{1} \cdot \overline{X} = a_{0} \cdot \overline{X}^{2}, \dots, a'_{n} = a'_{n-1} \cdot \overline{X} = a_{0} \cdot \overline{X}^{n}$$

②
$$:: \sum$$
 实际水平 $= \sum$ 推算水平, $:: \sum_{i=1}^n a_i = \sum_{i=1}^n a_i' = a_0 \sum_{i=1}^n \overline{X}^i$, 即 $\overline{X}^n + \overline{X}^{n-1} + \dots + \overline{X}^2 + \overline{X} = \sum_{i=1}^n a_i / a_0$

有关指标的推算

推算最末水平an

已知 $a_0 \setminus x$ 和 n,则最末水平 $a_n = a_0 \cdot x$

$$a_n = a_0 \cdot \overline{x}$$

预测达到一定水平所需时间n

已知 $a_0 \times x$ 和 a_n ,则达到最末水平

$$n = \frac{\lg a_n - \lg a_0}{\lg x}$$

速度指标计算

例:

根据全国医疗卫生机构数数据,计算各年的环比发展速度和增长速度,及以第1年为基期的定基发展速度和增长速度。

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
医疗卫生机构数 (个)	918097	912263	891480	916571	936927	954389	950297	974398	981432	983528
逐期增量		-5834	-20783	25091	20356	17462	-4092	24101	7034	2096
累计增量		-5834	-26617	-1526	18830	36292	32200	56301	63335	65431
环 比 发 展 速 度 (%)		99.36	97.72	102.81	102.22	101.86	99.57	102.54	100.72	100.21
定 基 发 展 速 度 (%)		99.36	97.10	99.83	102.05	103.95	103.51	106.13	106.90	107.13
环 比 增 长 速 度 (%)		-0.64	-2.28	2.81	2.22	1.86	-0.43	2.54	0.72	0.21
定 基 増 长 速 度 (%)		-0.64	-2.90	-0.17	2.05	3.95	3.51	6.13	6.90	7.13

速度指标计算

例:

1 年平均发展速度

$$\overline{R} = \sqrt[n]{\prod \frac{Y_i}{Y_{i-1}}}$$

 $= \sqrt[9]{99.36\%} \times 97.72\% \times 102.81\% \times 102.22\% \times 101.86\% \times 99.57\% \times 102.54\% \times 100.72\% \times 100.21\%$

$$=\sqrt[9]{107.13} = 100.77\%$$

2 年平均增长率

100.77% - 1 = 0.77%