Heinrich-von-Kleist-Schule Eschborn	Fach: Klas- se/Kurs:	
Arbeitsblatt 0 — Einführung	Datum:	
Thema: Information, Repräsentation, Abstraktion, Bits/Bytes,	Name:	
, 1	raine.	
Textkodierung		

Bearbeitungshinweise

- Antworte präzise in ganzen Sätzen, wo sinnvoll mit Skizzen/Beispielen.
- Kennzeichne Ergebnisse klar. Rechenschritte und Begründungen angeben.
- Nutze bei Bedarf Quellenangaben (URL, Zugriffstag) für Rechercheaufgaben.

Präsenzaufgaben

Aufgabe 1: Begriff klären: Information vs. Daten.

[6BE]

Erkläre mit eigenen Worten den Unterschied zwischen Daten und Information. Gib zwei Beispiele, in denen dieselben Daten je nach Kontext unterschiedliche Information bedeuten.

Aufgabe 2: Repräsentation oder Abstraktion?

[8BE]

Ordne die folgenden Tätigkeiten zu und begründe jeweils kurz ($Repr\"{a}sentation = Information \rightarrow Daten, Abstraktion = Daten \rightarrow Information)$:

- Aufgabe 2:a) Ein Sensor wandelt Temperatur in eine Zahl in Grad Celsius um.
- Aufgabe 2:b) Ein Bildbetrachter zeigt aus einer PNG-Datei ein Foto an.
- Aufgabe 2:c) Ein MP3-Encoder erzeugt aus einer WAV-Datei eine komprimierte Datei.
- Aufgabe 2:d) Ein Statistiktool erkennt in Messwerten einen Trend.

Aufgabe 3: Bits, Bytes, Wortbreite.

[8BE]

- Aufgabe 3:a) Warum liest/schreibt die Hardware Daten gruppenweise? Nenne zwei Gründe.
- Aufgabe 3:b) Erkläre "Wortbreite" und gib typische Werte an. Was ändert sich beim Übergang von 32-Bit zu 64-Bit?
- **Aufgabe 3:**c) Ein System nutzt 64-Bit-Register, aber der Speicher ist *byteweise* adressierbar. Ist das ein Widerspruch? Begründe.

Aufgabe 4: "Pipeline" vom Phänomen zur Information.

[8BE]

Beschreibe für das Beispiel "Foto mit dem Smartphone" die Schritte $Messung \rightarrow Re-$ präsentation $\rightarrow Verarbeitung \rightarrow Abstraktion$ stichpunktartig (Sensor, A/D-Wandlung, Dateiformat, Anzeige/Erkennung …).

Aufgabe 5: Textkodierung - ASCII vs. Unicode.

[10BE]

- **Aufgabe 5:**a) Nenne **drei** Zeichen, die in ASCII fehlen, und erkläre, warum verschiedene 8-Bit-Codepages (ISO-8859-1, Windows-1252 ...) zu Problemen führten.
- **Aufgabe 5:**b) Was unterscheidet *Codepunkt* und *Kodierung*? Erkläre an einem Beispiel (z. B. Buchstabe "ä").
- Aufgabe 5:c) Worin liegt der Vorteil von UTF-8 gegenüber einer festen 8-Bit-Kodierung?

Hausaufgaben

Aufgabe 1: Recherche: Mojibake in freier Wildbahn.

[8BE]

Finde **zwei** reale Beispiele (Screenshot, Link oder kurze Beschreibung), in denen Text falsch dargestellt wurde (z. B. "ä" statt "ä"). Erkläre die Ursache in 2–3 Sätzen (welche Kodierung wurde vermutlich geschrieben, welche beim Lesen angenommen?).

Aufgabe 2: UTF-8 zum Anfassen.

[10BE]

Bestimme die UTF-8-Bytefolgen (hexadezimal) für die Zeichen: A, ä, €. Beschreibe jeweils in 1–2 Sätzen, warum die Länge 1, 2 bzw. 3 Bytes beträgt.

Aufgabe 3: Datenmenge einschätzen.

[8BE]

Ein Graustufenbild hat 800×600 Pixel, 8 Bit pro Pixel.

- Aufgabe 3:a) Wie groß ist die unkomprimierte Datei in Byte/KiB?
- Aufgabe 3:b) Wie groß wäre dasselbe Bild als RGB (24 Bit pro Pixel)?
- Aufgabe 3:c) Warum kann eine PNG-Datei trotzdem deutlich kleiner sein?

Aufgabe 4: Transferaufgabe: Abstraktion bewusst wählen.

[10BE]

Du entwickelst eine App, die Schritte zählt und "Aktivitätslevel" anzeigt.

- Aufgabe 4:a) Welche Rohdaten könnten erfasst werden? (mind. 3)
- Aufgabe 4:b) Wie würdest du daraus ein Modell bauen (welche Features, welche Stufen)?
- **Aufgabe 4:**c) Wo liegen Risiken falscher Abstraktionen?

Bezug: Kapitel 1 "Einführung". Dieses Blatt vertieft die Inhalte zu Information Daten, Repräsentation/Abstraktion, Bits/Bytes und Textkodierung.