Computational Principles for High-dim Data Analysis

(Lecture Three)

Yi Ma

EECS Department, UC Berkeley

September 2, 2021

Relaxing the Sparse Recovery Problem

- 1 Convex Functions and Convexification
- 2 ℓ^1 Norm as Convex Surrogate for ℓ^0 Norm
- ${f 3}$ Simple Algorithm for ℓ^1 Minimization
- **4** Sparse Error Correction via ℓ^1 Minimization

Why Convexification?

Intuitive reasons why ℓ^0 minimization:

$$\min \|x\|_0$$
 subject to $Ax = y$. (1)

is very challenging:

Not amenable to local search methods such as gradient descent.

Convex versus Nonconvex Functions

For minimizing a generic function:

$$\min f(x), \quad x \in \mathsf{C} \text{ (a convex set)},$$
 (2)

conduct **local gradient descent search:** (Appendix D)

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t\nabla f(\boldsymbol{x}_k). \tag{3}$$

Intuitively, convexity lends to global optimality.

Convex Functions [Appendix B]

Definition (Convex Function)

A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for every pair of points $x, x' \in \mathbb{R}^n$ and $\alpha \in [0, 1]$ it satisfies the Jensen's inequality:

$$f(\alpha x + (1 - \alpha)x') \le \alpha f(x) + (1 - \alpha)f(x').$$
 (4)

5 / 25

Global Optimality

Proposition

Any local minimum of a convex function is also a global minimum.

Proof.

Let \bar{x} be a local minimum: $\forall x: \|x - \bar{x}\|_2 \le \epsilon$, we have $f(\bar{x}) \le f(x)$.

Assume x_{\star} is the global minimum and $f(\bar{x}) > f(x_{\star})$.

Choose λ such that $x_{\lambda} = \lambda \bar{x} + (1 - \lambda)x_{\star}$ satisfies $\|x_{\lambda} - \bar{x}\|_{2} \leq \epsilon$. Then

$$f(\bar{x}) \leq f(x_{\lambda})$$

$$\leq f(\lambda \bar{x} + (1 - \lambda)x_{\star})$$

$$\leq \lambda f(\bar{x}) + (1 - \lambda)f(x_{\star})$$

$$< f(\bar{x}).$$

Convex Envelope

Definition (Lower Convex Envelope)

A function $f_c(x)$ is said to be a (lower) **convex envelope** of f(x) if for all convex functions $g \leq f$ we have $g \leq f_c$.

Lower convex envelope f_c is well and uniquely defined and is equivalent to the **convex biconjugate** function f^{**} of f.

The ℓ^1 Norm as Envelope of ℓ^0 Norm

$$\forall x \in \mathbb{R}^n : \|x\|_0 = \sum_{i=1}^n \mathbb{1}_{x(i) \neq 0}, \|x\|_1 = \sum_{i=1}^n |x(i)|.$$
 (5)

Figure: Convex surrogates for the ℓ^0 norm. |x| is the *convex envelope* of $||x||_0$ on [-1,1].

The ℓ^1 Norm as Envelope of ℓ^0 Norm

Theorem

The function $\|\cdot\|_1$ is the convex envelope of $\|\cdot\|_0$, over the set $\mathsf{B}_\infty = \{x \mid \|x\|_\infty \leq 1\}$ of vectors whose elements all have magnitude at most one.

Proof.

Consider the cube $C = [0,1]^n$ with vertex vectors $\sigma \in \{0,1\}^n$. For any convex function $f \leq \|\cdot\|_0$,

$$f(\boldsymbol{x}) = f\left(\sum_{i} \lambda_{i} \boldsymbol{\sigma}_{i}\right) \leq \sum_{i} \lambda_{i} f(\boldsymbol{\sigma}_{i}) \qquad \text{[Jensen's inequality]}$$

$$\leq \sum_{i} \lambda_{i} \|\boldsymbol{\sigma}_{i}\|_{0} = \sum_{i} \lambda_{i} \|\boldsymbol{\sigma}_{i}\|_{1} \qquad [\boldsymbol{\sigma}_{i} \text{ are binary}]$$

$$= \|\boldsymbol{x}\|_{1}. \tag{6}$$

Repeat the argument for each orthants.

Sparsity Promoting Property of Norms

A Toy Problem: given a vector

$$\vec{v}(t) = [t, t-1, t-1]^* \in \mathbb{R}^3,$$

find t such that \vec{v} is sparse.

Strategy: given a certain norm $\|\cdot\|$,

$$\min_{t} f(t) = \|\vec{\boldsymbol{v}}(t)\|.$$

Figure courtesy of Carlos Fernandez of NYU.

Minimizing the ℓ^1 Norm

Replace ℓ^0 minimization:

$$\min \|x\|_0$$
 subject to $Ax = y$ (7)

with the relaxed ℓ^1 minimization:

$$\min \|x\|_1$$
 subject to $Ax = y$. (8)

Two technical difficulties:

- Nontrivial constraints: Unlike the general unconstrained problem (2), in the problem (8) the solution x must satisfy Ax = y.
- Nondifferentiable objective: ℓ^1 norm in (8) is not differentiable. So around points of interest the gradient $\nabla f(x)$ does not exist.

ℓ^1 Minimization via Linear Programming

$$\min \|\boldsymbol{x}\|_1$$
 subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}$. (9)

Let

$$x^+ = \max\{x, 0\}, \text{ and } x^- = \max\{-x, 0\}.$$

Let $z = \begin{bmatrix} x^+ \\ x^- \end{bmatrix} \in \mathbb{R}^{2n}$ and we have:

$$\|x\|_1 = \mathbf{1}^*(x^+ + x^-) = \mathbf{1}^*z$$
 and $Ax = [A, -A]z$. (10)

Then ℓ^1 minimization is equivalent to an LP problem:

$$\min_{oldsymbol{z}} \mathbf{1}^* oldsymbol{z} \quad ext{subject to} \quad [oldsymbol{A}, -oldsymbol{A}] oldsymbol{z} = oldsymbol{y}, \; oldsymbol{z} \geq oldsymbol{0}. \tag{11}$$

This LP problem can be solved in polynomial time.

Minimizing the ℓ^1 Norm via Local Greedy Descent

For minimizing a function with **constraints** (Appendix C& D):

$$\min f(x)$$
, subject to $x \in C$ (a convex set), (12)

Basic Strategy: projected gradient descent (PGD):

$$\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathsf{C}} \left[\boldsymbol{x}_k - t_k \nabla f(\boldsymbol{x}_k) \right]. \tag{13}$$

where \mathcal{P}_{C} projects

a point, say z, to the nearest point in C:

$$\mathcal{P}_{\mathsf{C}}[z] = \arg\min_{x \in \mathsf{C}} \frac{1}{2} \|z - x\|_2^2 \equiv h(x).$$
 (14)

C

Projection on a Convex Set

How to find the nearest point $\hat{x} = \mathcal{P}_{\mathsf{C}}[x]$ to a point x in a set $\mathsf{C} = \{z \mid h(z) \leq c\}$?

Fact: \hat{x} satisfies two conditions:

- **1** Feasibility: $h(\hat{x}) \leq c$;
- Optimality:
 - $-\nabla h(\hat{x})$ is orthogonal to C at \hat{x} .

Project onto a flat: $C = \{x \mid Ax = y\}$

In this special case, \hat{x} satisfies two conditions:

- **1** Feasibility: $A\hat{x} = y$;
- **2** Optimality: $z \hat{x} \perp \text{null}(A)$.

From these conditions, we have:

$$\hat{x} = \mathcal{P}_{\{x|Ax=y\}}[z] = z - A^* (AA^*)^{-1} [Az - y].$$
 (15)

Directly check? Or derive alternatively? (exercise 2.11)

Minimizing the ℓ^1 Norm: Nondifferentiability

Try to solve:

$$\min \|x\|_1$$
 subject to $Ax = y$. (16)

using projected gradient descent:

$$\min f(\boldsymbol{x}): \quad \boldsymbol{x}_{k+1} = \mathcal{P}_{\mathsf{C}}\left[\boldsymbol{x}_k - t_k \nabla f(\boldsymbol{x}_k)\right]. \tag{17}$$

But $||x||_1$ is not differentiable.

differentiable

nondifferentiable

Design Strategies for All Local Descent Methods

Minimization via local descent (Appendix D):

$$\min f(oldsymbol{x}): oldsymbol{x}_k
ightarrow oldsymbol{x}_{k+1}$$
 such that $f(oldsymbol{x}_k) \geq f(oldsymbol{x}_{k+1}).$

At current iterate x_k , find a local surrogate $\hat{f}(x, x_k) \approx f(x)$ such that

$$x_{k+1} = \arg\min_{x \in C} \hat{f}(x, x_k)$$
 easy to find! (18)

where $\hat{f}(x, x_k)$ could be linear, quadratic, higher-order; or upper-bound (conservative) or lower-bound (accelerating).

Subgradient and Subdifferential

Generalizing the gradient $\nabla f(x)$ at x_0 with the property:

$$f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle, \quad \forall \ x \in \mathbb{R}^n.$$
 (19)

Definition (Subgradient and Subdifferential)

Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex function. A *subgradient* of f at x_0 is any vector $u \in \mathbb{R}^n$ satisfying

$$f(x) \ge f(x_0) + \langle u, x - x_0 \rangle, \quad \forall x.$$
 (20)

The *subdifferential* of f at x_0 is the set of all subgradients of f at x_0 :

$$\partial f(\boldsymbol{x}_0) = \{ \boldsymbol{u} \mid \forall \, \boldsymbol{x} \in \mathbb{R}^n, \ f(\boldsymbol{x}) \ge f(\boldsymbol{x}_0) + \langle \boldsymbol{u}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle \}.$$
 (21)

Subgradient and Subdifferential of ℓ^1 Norm

Lemma (Subdifferential of $\|\cdot\|_1$)

Let $x \in \mathbb{R}^n$, with I = supp(x),

$$\partial \|\cdot\|_1(\boldsymbol{x}) = \{ \boldsymbol{v} \in \mathbb{R}^n \mid \boldsymbol{P}_1 \boldsymbol{v} = \operatorname{sign}(\boldsymbol{x}), \|\boldsymbol{v}\|_{\infty} \le 1 \}.$$
 (22)

Figure: In blue, purple, and red, three linear lower bounds, taken at $x_0=0$, with slope $u=-\frac{1}{2},\frac{1}{3}$, and $\frac{2}{3}$, respectively. Any slope $u\in[-1,1]$ defines a linear lower bound on f(x) around $x_0=0$. So, $\partial|\cdot|(0)=[-1,1]$. For $x_0>0$, the only linear lower bound has slope u=1; for $x_0<0$, the only linear lower bound has slope u=1. So, $\partial|\cdot|(x)=\{-1\}$ for x<0 and $\partial|\cdot|(x)=\{1\}$ for x>0.

Minimizing the ℓ^1 Norm: Projected Subgradient

To solve:

$$\min \|x\|_1$$
 subject to $Ax = y$. (23)

using projected subgradient descent:

$$\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathsf{C}}[\boldsymbol{x}_k - t_k \boldsymbol{g}_k], \quad \boldsymbol{g}_k \in \partial f(\boldsymbol{x}_k).$$
 (24)

Algorithm (ℓ^1 Minimization via Projected Subgradient Descent):

- 1: **Input:** a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $y \in \mathbb{R}^m$.
- 2: Compute $\Gamma \leftarrow I A^*(AA^*)^{-1}A$, and $ilde{x} \leftarrow A^\dagger y = A^*(AA^*)^{-1}y$.
- 3: $\boldsymbol{x}_0 \leftarrow \boldsymbol{0}$.
- 4: $t \leftarrow 0$.
- 5: repeat many times
- 6: $t \leftarrow t + 1$;
- 7: $\boldsymbol{x}_t \leftarrow \tilde{\boldsymbol{x}} + \boldsymbol{\Gamma} \left(\boldsymbol{x}_{t-1} \frac{1}{t} \operatorname{sign}(\boldsymbol{x}_{t-1}) \right);$
- 8: end while

Minimizing the ℓ^1 Norm: Simulations

Solve:
$$\min \|x\|_1$$
 s.t. $Ax = y$. (25)

 \boldsymbol{A} is of size 200×400 . Fraction of success across 50 trials.

Error Correction via ℓ^1 Minimization

Let $F \in \mathbb{C}^{n \times n}$ be the **Discrete Fourier Transform** (DFT), and $B \in \mathbb{C}^{n \times (d+1)}$ be a submatrix of the d lowest-frequency elements of this basis and their conjugates:

$$\boldsymbol{B} = \left[\boldsymbol{f}_{-\frac{d-1}{2}} \mid \dots \mid \boldsymbol{f}_{\frac{d-1}{2}} \right] \in \mathbb{C}^{n \times (d+1)}, \tag{26}$$

$$y = x_o + e_o$$
, where $x_o = Bw_o$ and $\|e_o\|_0 \le k$. (27)

Discrete Logan's Theorem:

$$\min \|\boldsymbol{y} - \boldsymbol{x}\|_1 \quad \text{s.t.} \quad \boldsymbol{x} \in \operatorname{col}(\boldsymbol{B}). \tag{28}$$

Error Correction via ℓ^1 Minimization

Let A be the (left) orthogonal complement to B: AB=0. Then:

$$\bar{\boldsymbol{y}} = \boldsymbol{A}\boldsymbol{y} = \boldsymbol{A}(\boldsymbol{x}_o + \boldsymbol{e}_o) = \boldsymbol{A}\boldsymbol{e}_o. \tag{29}$$

To solve for e_o :

$$\min \|e\|_1 \quad \text{s.t.} \quad Ae = \bar{y}. \tag{30}$$

According to Logan's Theorem, this succeeds if $d \times k \leq c^{\frac{\pi}{2}}$.

What about other frequency components of F?

Next: Towards a Rigorous Justification

Given $y = Ax_o$ with x_o sparse:

NP:
$$\min \|x\|_0$$
 subject to $Ax = y$ (31)

P:
$$\min \|x\|_1$$
 subject to $Ax = y$. (32)

When and Why does ℓ^1 minimization work?

Assignments

- Reading: Section 2.3 of Chapter 2.
- Reading: Appendix C & D.
- Programming Homework # 1.