Complex Root Clustering

Joint works with V. Pan¹, M. Pouget², C. Yap³

 $^{^{1}}$ Lehman College, City University of New York, USA 2 INRIA Nancy - Grand Est, France

³ Courant Institute of Mathematical Sciences, New York University, USA

Example: Bernoulli pol. of deg 16: $\sum B_i z^i$, where B_i are Bernoulli numb.

Root approximation problem

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, a size $\varepsilon > 0$

Output: d disks $\Delta^1, \ldots, \Delta^d$ of radii $\leq \varepsilon$ each containing a root of feach complex root contained in a disk

1.5 -

Example: Bernoulli pol. of deg 16: $\sum B_i z^i$, where B_i are Bernoulli numb.

Root approximation problem

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, a size $\varepsilon > 0$

Output: d disks $\Delta^1, \ldots, \Delta^d$ of radii $\leq \varepsilon$ each containing a root of feach complex root contained in a disk

Mignotte-like polynomial: $z^d - (2^{\sigma}z - 1)^2$, where $d = 16, \sigma = 4$ Example:

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, (a size $\varepsilon > 0$)

Output: ℓ pairwise disjoint disks $\Delta^1, \ldots, \Delta^\ell$ (of radii $\leq \varepsilon$) each containing a unique root of f each complex root contained in a disk

Example: Mignotte-like polynomial: $z^d - (2^{\sigma}z - 1)^2$, where $d = 16, \sigma = 4$

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, (a size $\varepsilon > 0$)

Output: ℓ pairwise disjoint disks $\Delta^1, \ldots, \Delta^\ell$ (of radii $\leq \varepsilon$) each containing a unique root of f each complex root contained in a disk

Problem: deciding Zero Are two roots equal or not?

Example: Mignotte-like polynomial: $z^d - (2^{\sigma}z - 1)^2$, where $d = 16, \sigma = 4$

isolation problem Root

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, (a size $\varepsilon > 0$ and either a lower bound for the sep. of the roots, or $f \in \mathbb{Z}[z]$

Output: ℓ pairwise disjoint disks $\Delta^1, \ldots, \Delta^\ell$ (of radii $\leq \varepsilon$) each containing a unique root of feach complex root contained in a disk

Problem: deciding Zero Are two roots equal or not?

Mignotte-like polynomial: $z^d - (2^{\sigma}z - 1)^2$, where $d = 16, \sigma = 4$ Example:

Root clustering problem

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, a size $\varepsilon > 0$

Output: ℓ pairs $(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)$ where:

- the Δ^j 's are pairwise disjoint disks of radii $\leq arepsilon_{_{2 au}}$

-
$$m^j = \#(\Delta^j, f)$$

-
$$Z(\mathbb{C}, f) \subseteq \bigcup \Delta^j$$

Notations: Z(S, f) := roots of f in set S#(S, f) := nb of roots of f in set S, count. with mult.

Root clustering problem

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, a size $\varepsilon > 0$

Output: ℓ pairs $(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)$ where:

- the Δ^j 's are pairwise disjoint disks of radii $\leq \varepsilon_{2}$

$$-m^{j} = \#(\Delta^{j}, f) = \#(3\Delta^{j}, f)$$

-
$$Z(\mathbb{C}, f) \subseteq \bigcup \Delta^j$$

Notations: Z(S, f) := roots of f in set S $\#(\mathcal{S}, f) := \mathsf{nb} \mathsf{ of roots of } f \mathsf{ in set } \mathcal{S}, \mathsf{ count. with mult.}$

Global root clustering problem

Input: a polynomial $f \in \mathbb{C}[z]$ of degree d, a size $\varepsilon > 0$

Output: ℓ pairs $(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)$ where:

- the Δ^j 's are pairwise disjoint disks of radii $\leq \varepsilon$

-
$$m^j = \#(\Delta^j, f) = \#(3\Delta^j, f)$$

$$-Z(\mathbb{C},f)\subseteq\bigcup\Delta^{j}$$

Notations: Z(S, f) := roots of f in set S $\#(\mathcal{S}, f) := \mathsf{nb} \mathsf{ of roots of } f \mathsf{ in set } \mathcal{S}, \mathsf{ count. with mult.}$

Local root clustering problem

```
Input: a polynomial f \in \mathbb{C}[z] of degree d, a size \varepsilon > 0
        a Region of Interest (RoI) B (a box)
```

Output:
$$\ell$$
 pairs $(\Delta^1, m^1), \ldots, (\Delta^\ell, m^\ell)$ where:

- the Δ^j 's are pairwise disjoint disks of radii $\leq \varepsilon$

$$-m^{j} = \#(\Delta^{j}, f) = \#(3\Delta^{j}, f)$$

$$-Z(B,f) \subseteq \bigcup \Delta^j \subseteq Z(\delta B,f), \ \delta > 1$$

Problem: deciding Zero Is a root on ∂B ?

Notations: Z(S, f) := roots of f in set S $\#(\mathcal{S}, f) := \text{nb of roots of } f \text{ in set } \mathcal{S}, \text{ count. with mult.}$

Root finding problems . . .

f can be represented:

- exactly, when $f \in \mathbb{Z}[z]$ (or $\mathbb{Q}[z]$):
- by an oracle, when $f \in \mathbb{C}[z]$:

Definition: Oracle for f: function $\mathcal{O}_f: \mathbb{Z} \to \mathbb{C}[z]$ s.t. $\|\mathcal{O}_f(L) - f\|_{\infty} < 2^{-L}$

Root finding problems . . .

f can be represented:

- exactly, when $f \in \mathbb{Z}[z]$ (or $\mathbb{Q}[z]$): \rightarrow root isolation is meaningful
- by an oracle, when $f \in \mathbb{C}[z]$: → if lower bound for root's separation: isolation is meaningful

Definition: Oracle for f: function $\mathcal{O}_f: \mathbb{Z} \to \mathbb{C}[z]$ s.t. $\|\mathcal{O}_f(L) - f\|_{\infty} < 2^{-L}$

Root finding problems . . .

f can be represented:

- exactly, when $f \in \mathbb{Z}[z]$ (or $\mathbb{Q}[z]$): \rightarrow root isolation is meaningful
- by an oracle, when $f \in \mathbb{C}[z]$:
 - ightarrow if lower bound for root's separation: isolation is meaningful
 - ightarrow otherwise only root clustering is meaningful

Definition: Oracle for f: function $\mathcal{O}_f: \mathbb{Z} \to \mathbb{C}[z]$ s.t. $\|\mathcal{O}_f(L) - f\|_{\infty} < 2^{-L}$

Root finding problems . . .

f can be represented:

- exactly, when $f \in \mathbb{Z}[z]$ (or $\mathbb{Q}[z]$): \rightarrow root isolation is meaningful
- by an oracle, when $f \in \mathbb{C}[z]$:
 - → if lower bound for root's separation: isolation is meaningful
 - → otherwise only root clustering is meaningful

Pros of Local root finding:

• the Rol B may contain a few roots of f

Root finding problems . . .

f can be represented:

- exactly, when $f \in \mathbb{Z}[z]$ (or $\mathbb{Q}[z]$): \rightarrow root isolation is meaningful
- by an oracle, when $f \in \mathbb{C}[z]$:
 - \rightarrow if lower bound for root's separation: isolation is meaningful
 - → otherwise only root clustering is meaningful

Pros of Local root finding:

- the Rol B may contain a few roots of f
- $|\alpha_1(f)|$ increases with $\frac{\|f\|_{\infty}}{|\mathsf{lcf}(f)|}$

Notations: $\alpha_1(f)$: a root of f with greatest norm lcf(f): the leading coefficient of f

Root finding problems . . .

f can be represented:

- exactly, when $f \in \mathbb{Z}[z]$ (or $\mathbb{Q}[z]$): \rightarrow root isolation is meaningful
- by an oracle, when $f \in \mathbb{C}[z]$:
 - \rightarrow if lower bound for root's separation: isolation is meaningful
 - → otherwise only root clustering is meaningful

Pros of Local root finding:

- the Rol B may contain a few roots of f
- $|\alpha_1(f)|$ increases with $\frac{\|f\|_{\infty}}{||\mathrm{lcf}(f)||}$

```
Problem: deciding Zero
When f is oracle. Is lcf(f) = 0? (Is ||\alpha_1(f)|| = +\infty?)
                   f has nominal degree d. What is it's true degree?
Notations: \alpha_1(f): a root of f with greatest norm
            lcf(f): the leading coefficient of f
```

Root finding problems ... and algorithms

 Root approximation: Schönage-Pan[Pan02], global, no implementation

[Pan02] Victor Y Pan.

Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding.

Journal of Symbolic Computation, 33(5):701–733, 2002.

Root finding problems ... and algorithms

Root approximation: Schönage-Pan[Pan02], global, no implementation Ehrlich iterations, global, implemented[BR14] MPSolve

[BR14] Dario A Bini and Leonardo Robol.

Solving secular and polynomial equations: A multiprecision algorithm.

Journal of Computational and Applied Mathematics, 272:276–292, 2014.

Root finding problems . . . and algorithms

- Root approximation: Schönage-Pan[Pan02], global, no implementation Ehrlich iterations, global, implemented[BR14] MPSolve
- Root isolation, real case Sagraloff et al.[SM16], local, implemented[KRS16]

- Alexander Kobel, Fabrice Rouillier, and Michael Sagraloff. [KRS16] Computing real roots of real polynomials ... and now for real! ISSAC '16, pages 303-310, New York, NY, USA, 2016, ACM,
- [SM16] Michael Sagraloff and Kurt Mehlhorn. Computing real roots of real polynomials. J. of Symb. Comp., 73:46-86, 2016.

Root finding problems ... and algorithms

- Root approximation: Schönage-Pan[Pan02], global, no implementation Ehrlich iterations, global, implemented[BR14] MPSolve
- Root isolation, real case
 Sagraloff et al.[SM16], local, implemented[KRS16]
- Root clustering: Becker et al.[BSS+16]: local, implemented[IPY18]
 - [BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In ISSAC 16, pages 71–78. ACM, 2016.
 - [IPY18] Rémi Imbach, Victor Y. Pan, and Chee Yap.
 Implementation of a near-optimal complex root clustering algorithm.
 In Mathematical Software ICMS 2018, pages 235–244, Cham, 2018.

Root finding problems ... and algorithms

- Root approximation: Schönage-Pan[Pan02], global, no implementation Ehrlich iterations, global, implemented[BR14] MPSolve
- Root isolation, real case
 Sagraloff et al.[SM16], local, implemented[KRS16]
- Root clustering: Becker et al.[BSS+16]: local, implemented[IPY18]

Bit complexity:

$$\widetilde{O}(d^2\sigma)$$

$$\widetilde{O}(d^2(d+\sigma))$$

$$\widetilde{O}(d^2(d+\sigma))$$

Benchmark problem: Isolate all roots of $f \in \mathbb{Z}[z]$ squarefree d: degree, σ : $\log \|f\|_{\infty}$ Notation: \widetilde{O} : O without logarithmic factor

$$\begin{cases} p_1(z_1, z_2, \dots, z_n) &= 0 \\ p_2(z_1, z_2, \dots, z_n) &= 0 \\ \dots \\ p_n(z_1, z_2, \dots, z_n) &= 0 \end{cases}$$

$$\begin{cases} p_1(z_1, z_2) &= 0 \\ p_2(z_1, z_2) &= 0 \end{cases}, p_i \in \mathbb{Z}[z_1, z_2]$$

$$\begin{cases} p_1(z_1, z_2) &= 0 \\ p_2(z_1, z_2) &= 0 \end{cases}, p_i \in \mathbb{Z}[z_1, z_2]$$

$$\downarrow \quad \text{symbolic step}$$

$$\left\{ \begin{array}{lll} \ldots, & \left\{ \begin{array}{ll} f_1(z_1) & = & 0 \\ f_2(z_1, z_2) & = & 0 \end{array}, \deg_{z_i}(f_i) \geq 1, & \ldots \end{array} \right\}$$

Multivariate root finding, bivariate case

$$\left\{\begin{array}{ll} p_1(z_1,z_2)&=&0\\ p_2(z_1,z_2)&=&0\\ \end{array}\right.,p_i\in\mathbb{Z}[z_1,z_2]$$

$$\downarrow \quad \text{symbolic step}$$

$$\left\{\begin{array}{ll} \dots,&\left\{\begin{array}{ll} f_1(z_1)&=&0\\ f_2(z_1,z_2)&=&0 \end{array}\right.,\deg_{z_i}(f_i)\geq 1,&\dots\right\}\\ & \quad \text{numeric step: univariate root finding} \end{array}\right.$$

- 1. find roots of $f_1 \in \mathbb{Z}[z_1]$
- 2. find roots of $f_2(\alpha, z_2) \in \mathbb{C}[z_2]$ for α root of f_1 ; $f_2(\alpha, z_2)$ known as an oracle

Multivariate root finding, bivariate case

$$\begin{cases} p_1(z_1, z_2) &= 0 \\ p_2(z_1, z_2) &= 0 \end{cases}, p_i \in \mathbb{Z}[z_1, z_2]$$

$$\downarrow \text{ symbolic step}$$

$$\left\{\begin{array}{cccc} \dots, & \left\{\begin{array}{ll} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \end{array}\right., \deg_{z_i}(f_i) \geq 1, & \dots \right\} \\ & & \downarrow & \text{numeric step: univariate root finding} \end{array}\right.$$

- 1. find roots of $f_1 \in \mathbb{Z}[z_1]$
- 2. find roots of $f_2(\alpha, z_2) \in \mathbb{C}[z_2]$ for α root of f_1 ; $f_2(\alpha, z_2)$ known as an oracle

Problem: deciding Zero Is $\mathrm{lcf}(f_2(\alpha,z_2))=0$? $f_2(\alpha,z_2)$ has nominal degree $\deg_{z_2}(f_2)$. What is it's true degree?

R. Imbach

Multivariate root finding, bivariate case

$$\left\{ \begin{array}{ll} p_1(z_1,z_2) &=& 0\\ p_2(z_1,z_2) &=& 0 \end{array} \right., p_i \in \mathbb{Z}[z_1,z_2]$$

$$\downarrow \quad \text{symbolic step}$$

$$\left\{\begin{array}{cccc} \dots, & \left\{\begin{array}{ccc} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \end{array}\right., \deg_{z_i}(f_i) \geq 1, & \dots \right\} \\ & & \downarrow & \text{numeric step: univariate root finding} \end{array}\right.$$

- 1. find roots of $f_1 \in \mathbb{Z}[z_1]$
- 2. find roots of $f_2(\alpha, z_2) \in \mathbb{C}[z_2]$ for α root of f_1 ; $f_2(\alpha, z_2)$ known as an oracle

Usual assumption: $f_1 = f_2 = 0$ is regular (ensured by symbolic step)

$$\forall \alpha \in Z(\mathbb{C}, f_1), \ \deg_{z_2}(f_2) = \deg_{z_2}(f_2(\alpha, z_2)) \ge 1$$

0 - Univariate case:

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial.

In ISSAC 16, pages 71-78. ACM, 2016.

0 - Univariate case:

1 - Multivariate triangular case

[IPY20] Rémi Imbach, Marc Pouget, and Chee Yap.

Clustering complex zeros of triangular systems of polynomials.

Mathematics in Computer Science, pages 1–22, 2020.

$$\left\{ \begin{array}{lcl} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \end{array} \right., \deg_{z_i}(f_i) \geq 1,$$

0 - Univariate case:

1 - Multivariate triangular case

[IPY20] Rémi Imbach, Marc Pouget, and Chee Yap.

Clustering complex zeros of triangular systems of polynomials.

Mathematics in Computer Science, pages 1-22, 2020.

$$\left\{ \begin{array}{lcl} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \end{array} \right., \deg_{z_i}(f_i) \geq 1,$$

Usual assumption: $f_1 = f_2 = 0$ is regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \quad \deg_{z_2}(f_2) = \deg_{z_2}(f_2(\alpha, z_2)) \ge 1$$

0 - Univariate case:

1 - Multivariate triangular case

[IPY20] Rémi Imbach, Marc Pouget, and Chee Yap.

Clustering complex zeros of triangular systems of polynomials.

Mathematics in Computer Science, pages 1–22, 2020.

$$\left\{ \begin{array}{lcl} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \end{array} \right., \deg_{z_i}(f_i) \geq 1,$$

Usual assumption: $f_1 = f_2 = 0$ is regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \quad \deg_{z_2}(f_2) = \deg_{z_2}(f_2(\alpha, z_2)) \ge 1$$

Weaker assumption: $f_1 = f_2 = 0$ is weakly regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \ \deg_{z_2}(f_2(\alpha, z_2)) \geq 1$$

- 0 Univariate case:
- 1 Multivariate triangular case
- 2 Back to univariate case

[IP20] Rémi Imbach and Victor Y. Pan.

New progress in univariate polynomial root finding.

ISSAC '20, page 249-256, New York, NY, USA, 2020. ACM.

Numerical methods are fast but not robust to Zero problems

Zero problems can be tackled with exact computation in only a few cases

Soft exact computation (for instance local root clustering) is a middle path?
avoids Zero problem

Oracle numbers and polynomials

Let $\alpha \in \mathbb{C}$.

Oracle for
$$\alpha$$
: function $\mathcal{O}_{\alpha}: \mathbb{Z} \to \square \mathbb{C}$
s.t. $\alpha \in \mathcal{O}_{\alpha}(L)$ and $w(\mathcal{O}_{\alpha}(L)) \leq 2^{-L}$

Notations: $\square \mathbb{C}$: set of complex interval

Oracle numbers and polynomials

```
Let \alpha \in \mathbb{C}.
Oracle for \alpha: function \mathcal{O}_{\alpha}: \mathbb{Z} \to \mathbb{DC}
                                   s.t. \alpha \in \mathcal{O}_{\alpha}(L) and w(\mathcal{O}_{\alpha}(L)) < 2^{-L}
Let f \in \mathbb{C}[z]
Oracle for f: function \mathcal{O}_f: \mathbb{Z} \to \mathbb{DC}[z]
                                   s.t. f \in \mathcal{O}_f(L) and w(\mathcal{O}_f(L)) < 2^{-L}
                                                                                             \simeq oracles for the coeffs of f
```

Notations: $\square \mathbb{C}$: set of complex interval $\square \mathbb{C}[z]$: polynomials with coefficients in $\square \mathbb{C}$

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) > 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Outline of [BSS⁺16]

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) > 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

8/30

Outline of [BSS+16]

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) > 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Outline of [BSS+16]

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0 \Rightarrow \#(\Delta, f) = 0$

Subdivision approach:

Outline of [BSS+16]

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0 \Leftrightarrow P^*(\Delta, \mathcal{O}_f) = 0$

Subdivision approach:

8/30

Outline of [BSS+16]

Root counter:
$$P^*: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0, \dots, d\}$$

 $P^*(\Delta, \mathcal{O}_f) \geq 0 \Rightarrow \#(\Delta, f) = m$

Exclusion test:
$$P^0: (\Delta, \mathcal{O}_f) \mapsto m \in \{-1, 0\}$$

 $P^0(\Delta, \mathcal{O}_f) = 0$

Subdivision approach:

Bounding the depth of the subdivision tree: no root in $2B \Rightarrow P^*(\Delta(B), \mathcal{O}_f)$ returns 0

The Pellet's test

Pellet's Theorem: Let \triangle be a disc centered in c and radius r. Let $f \in \mathbb{C}[z]$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

Notations: $(f)_m$: coeff. of the monomial of degree m of f

The Pellet's test

Pellet's Theorem: Let \triangle be a disc centered in c and radius r. Let $f \in \mathbb{C}[z]$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

If f has no root in this annulus \rightarrow $\exists m$ s.t. eq. (1) holds.

Notations: $(f)_m$: coeff. of the monomial of degree m of f

The Pellet's test

Pellet's Theorem: Let Δ be a disc centered in c and radius r. Let $f \in \mathbb{C}[z]$ and $f_{\Delta} = f(c + rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

$PelletTest(\Delta, f)$

 $//Output in \{-1, 0, 1, ..., d\}$

- **1.** compute f_{Δ}
- 2. for m from 0 to d do
- 3. if $|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i|$
- 4. return m

//m roots (with mult.) in Δ

5. return -1

//roots near the boundary of Δ

Introduction Pellet's test

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $\Box f \in \Box \mathbb{C}[z]$ and $\Box f_{\Delta} = \Box f(c+rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$|(\Box f_{\Delta})_m| > \sum_{i \neq k} |(\Box f_{\Delta})_i|$$

then any $f \in \Box f$ has exactly m roots in Δ .

The soft Pellet's test: for interval polynomials

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $\Box f \in \Box \mathbb{C}[z]$ and $\Box f_{\Delta} = \Box f(c+rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$|(\Box f_{\Delta})_m| > \sum_{i \neq k} |(\Box f_{\Delta})_i|$$

then any $f \in \Box f$ has exactly m roots in Δ .

SoftPelletTest(Δ , $\Box f$) //Output in $\{-2, -1, 0, 1, \dots, d\}$

- **1.** compute $\Box f_{\Delta}$
- 2. for m from 0 to d do
- 3. if $|(\Box f_{\Delta})_m| > \sum_{i \neq b} |(\Box f_{\Delta})_i|$
- **4.** return m //any $f \in \Box f$ has m roots in Δ
- **5.** if $|(\Box f_{\Delta})_m|$ and $\sum_{i \neq j} |(\Box f_{\Delta})_i|$ overlap
- **6.** return -2 //not enough precision on $\Box f$ **7.** return -1 //roots near the boundary of Δ

The soft Pellet's test: for oracle polynomials

Loop on precision:

```
\mathsf{SoftPelletTest}(\Delta, \square f)
                                           //Output in \{-2, -1, 0, 1, \dots, d\}
1. compute \Box f_{\wedge}
2. for m from 0 to d do
             if |(\Box f_{\Delta})_m| > \sum |(\Box f_{\Delta})_i|
3.
4.
                                                   //any f \in \Box f has m roots in \Delta
                       return m
5.
             if |(\Box f_\Delta)_m| and \sum |(\Box f_\Delta)_i| overlap
6.
                                                      //not enough precision on \Box f
                       return -2
7. return -1
                                                    //roots near the boundary of \Delta
```

The soft Pellet's test: for oracle polynomials

Loop on precision:

```
P^*(\Delta, \mathcal{O}_f)
                                                      //Output in \{-1, 0, 1, ..., d\}
1. L \leftarrow 53, \Box f \leftarrow \mathcal{O}_f(L), m \leftarrow \mathsf{SoftPelletTest}(\Delta, \Box f)
2. while m=-2 do
           L \leftarrow 2L, \ \Box f \leftarrow \mathcal{O}_f(L), \ m \leftarrow \mathsf{SoftPelletTest}(\Delta, \Box f)
4. return m
SoftPelletTest(\Delta, \Box f)
                                               //Output in \{-2, -1, 0, 1, ..., d\}
1. compute \Box f_{\wedge}
2. for m from 0 to d do
               if |(\Box f_{\Delta})_m| > \sum |(\Box f_{\Delta})_i|
3.
4.
                                                         //any f \in \Box f has m roots in \Delta
                         return m
5.
              if |(\Box f_\Delta)_m| and \sum |(\Box f_\Delta)_i| overlap
6.
                         return -2
                                                             //not enough precision on \Box f
                                                          //roots near the boundary of \Delta
7. return -1
```

Univariate root clustering algorithms

ClusterOracle: solves the Local Clustering Problem (LCP) in 1D ([BSS+16])

> P^* embedded in a subdivision framework accepts oracle polynomials in input

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In ISSAC 16, pages 71-78. ACM, 2016.

Univariate root clustering algorithms

ClusterOracle: solves the Local Clustering Problem (LCP) in 1D

 $([BSS^{+}16])$

 P^{st} embedded in a subdivision framework

accepts oracle polynomials in input

ClusterInterval: solves the LCP in 1D Input: interval polynomial

Output: a flag in {success,fail}, a list of natural clusters

SoftPelletTest embedded in a subdivision framework

returns fail when SoftPelletTest returns -2

[BSS⁺16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap.

Complexity analysis of root clustering for a complex polynomial.

In ISSAC 16, pages 71-78. ACM, 2016.

0 - Univariate case:

1 - Multivariate triangular case

[IPY20] Rémi Imbach, Marc Pouget, and Chee Yap.

Clustering complex zeros of triangular systems of polynomials.

Mathematics in Computer Science, pages 1–22, 2020.

$$\left\{ \begin{array}{lll} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \end{array} \right., \deg_{z_i}(f_i) \geq 1, \quad f_i \in \mathbb{Q}[z_1,z_2]$$

Usual assumption: $f_1 = f_2 = 0$ is regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \quad \deg_{z_2}(f_2) = \deg_{z_2}(f_2(\alpha, z_2)) \ge 1$$

```
\begin{array}{ll} \text{Input:} & \text{a polynomial map } \boldsymbol{f}:\mathbb{C}^2\to\mathbb{C}^2,\\ & \text{a polybox } \boldsymbol{B}\subset\mathbb{C}^2, \text{ the Region of Interest (Rol)},\\ & \varepsilon>0 \end{array}
```

Output:

```
Notations: {m f}=(f_1,f_2), {m B}=(B_1,B_2) where the B_i's are square complex boxes
```

```
a polynomial map f: \mathbb{C}^2 \to \mathbb{C}^2,
Input:
            a polybox B \subset \mathbb{C}^2, the Region of Interest (RoI),
            \varepsilon > 0
```

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

• the Δ^j s are pairwise disjoint polydiscs of radius $r(\Delta^j) < \varepsilon$,

```
Notations: \mathbf{f} = (f_1, f_2),
                \boldsymbol{B} = (B_1, B_2) where the B_i's are square complex boxes
                \Delta^j = (\Delta_1^j, \Delta_2^j) where the \Delta_i^j's are complex discs
                r(\mathbf{\Delta}^j) = \max_i r(\Delta_i^j)
```

```
Input:
            a polynomial map f: \mathbb{C}^2 \to \mathbb{C}^2,
            a polybox B \subset \mathbb{C}^2, the Region of Interest (RoI),
            \varepsilon > 0
```

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^j s are pairwise disjoint polydiscs of radius $r(\Delta^j) < \varepsilon$,
- $m^j = \#(\Delta^j, f) = \#(3\Delta^j, f)$ for all $1 < j < \ell$, and

```
Notations: \mathbf{f} = (f_1, f_2),
               \boldsymbol{B} = (B_1, B_2) where the B_i's are square complex boxes
               \Delta^j = (\Delta_1^j, \Delta_2^j) where the \Delta_i^j's are complex discs
               r(\mathbf{\Delta}^j) = \max_i r(\Delta_i^j)
               \#(S, f): nb. of sols (with mult.) of f(z) = 0 in S
```

```
\begin{array}{ll} \text{Input:} & \text{a polynomial map } \boldsymbol{f}: \mathbb{C}^2 \to \mathbb{C}^2, \\ & \text{a polybox } \boldsymbol{B} \subset \mathbb{C}^2, \text{ the Region of Interest (RoI)}, \\ & \varepsilon > 0 \end{array}
```

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^{\ell}, m^{\ell})\}$ where:

- the ${f \Delta}^j$ s are pairwise disjoint polydiscs of radius $r({f \Delta}^j) \leq arepsilon$,
- $m^j = \#(\boldsymbol{\Delta}^j, \boldsymbol{f}) = \#(3\boldsymbol{\Delta}^j, \boldsymbol{f})$ for all $1 \leq j \leq \ell$, and
- $Z(\boldsymbol{B}, \boldsymbol{f}) \subseteq \bigcup_{j=1}^{\ell} Z(\boldsymbol{\Delta}^{j}, \boldsymbol{f}) \subseteq Z(\delta \boldsymbol{B}, \boldsymbol{f})$ for $\delta > 1$

```
Notations: m{f} = (f_1, f_2), m{B} = (B_1, B_2) where the B_i's are square complex boxes m{\Delta}^j = (\Delta_1^j, \Delta_2^j) where the \Delta_i^j's are complex discs r(m{\Delta}^j) = \max_i r(\Delta_i^j) \#(S, m{f}): nb. of sols (with mult.) of m{f}(m{z}) = m{0} in S Z(S, m{f}): sols of m{f}(m{z}) = m{0} in S
```

 $\begin{array}{ll} \text{Input:} & \text{a polynomial map } \boldsymbol{f}:\mathbb{C}^2\to\mathbb{C}^2,\\ & \text{a polybox } \boldsymbol{B}\subset\mathbb{C}^2, \text{ the Region of Interest (RoI),}\\ & \varepsilon>0 \end{array}$

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^{\ell}, m^{\ell})\}$ where:

- the ${f \Delta}^{j}$ s are pairwise disjoint polydiscs of radius $r({f \Delta}^{j}) \leq arepsilon$,
- $m^j = \#(\mathbf{\Delta}^j, \mathbf{f}) = \#(3\mathbf{\Delta}^j, \mathbf{f})$ for all $1 \leq j \leq \ell$, and
- $Z(\boldsymbol{B}, \boldsymbol{f}) \subseteq \bigcup_{j=1}^{\ell} Z(\boldsymbol{\Delta}^{j}, \boldsymbol{f}) \subseteq Z(\delta \boldsymbol{B}, \boldsymbol{f})$ for $\delta > 1$

Definition: a pair (Δ, m) is called natural cluster (relative to f) when it satisfies:

$$m = \#(\boldsymbol{\Delta}, \boldsymbol{f}) = \#(3\boldsymbol{\Delta}, \boldsymbol{f}) \ge 1$$

if $r(\Delta) < \epsilon$, it is a natural ϵ -cluster

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma}) (z_1 + 2^{-\sigma}) = 0 \\ (z_2 + 2^{\sigma} z_1^2) (z_2 - 1) z_2 = 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$egin{aligned} & m{a}^1 = (2^{-\sigma} & , & 0) \\ & m{a}^2 = (2^{-\sigma} & , & 1) \\ & m{a}^3 = (-2^{-\sigma} & , & 1) \\ & m{a}^4 = (-2^{-\sigma} & , & 0) \\ & m{a}^5 = (-2^{-\sigma} & , & -2^{-\sigma}) \\ & m{a}^6 = (2^{-\sigma} & , & -2^{-\sigma}) \end{aligned}$$

$$m{a}^6 = (2^{-\sigma} \ , \ -2^{-\sigma})$$

$$a^6 = (2^{-\sigma}, -2^{-\sigma})$$

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma}) (z_1 + 2^{-\sigma}) = 0 \\ (z_2 + 2^{\sigma} z_1^2) (z_2 - 1) z_2 = 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$egin{array}{lll} m{a}^1 = (2^{-\sigma} & , & 0) & \leftarrow m(m{a}^1, m{f}) = 1 \ m{a}^2 = (2^{-\sigma} & , & 1) & \leftarrow m(m{a}^2, m{f}) = 1 \ m{a}^3 = (-2^{-\sigma} & , & 1) & \leftarrow m(m{a}^3, m{f}) = 1 \ m{a}^4 = (-2^{-\sigma} & , & 0) & \leftarrow m(m{a}^4, m{f}) = 1 \ m{a}^5 = (-2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(m{a}^5, m{f}) = 1 \ m{a}^6 = (2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(m{a}^6, m{f}) = 1 \end{array}$$

Natural clusters:

$$(\boldsymbol{\Delta}^1, 4)$$

 $(\boldsymbol{\Delta}^2, 2)$

Notations: m(a, f): multiplicity of a as a sol. of f

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$egin{array}{lll} m{a}^1 = (2^{-\sigma} & , & 0) & \leftarrow m(m{a}^1, m{f}) = 2 \ m{a}^2 = (2^{-\sigma} & , & 1) & \leftarrow m(m{a}^2, m{f}) = 2 \ m{a}^3 = (-2^{-\sigma} & , & 1) & \leftarrow m(m{a}^3, m{f}) = 1 \ m{a}^4 = (-2^{-\sigma} & , & 0) & \leftarrow m(m{a}^4, m{f}) = 1 \ m{a}^5 = (-2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(m{a}^5, m{f}) = 2 \ m{a}^6 = (2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(m{a}^6, m{f}) = 4 \ \end{array}$$

Natural clusters:

$$({f \Delta}^1, {\color{red} 9}) \ ({f \Delta}^2, {\color{red} 3})$$

Notations: m(a, f): multiplicity of a as a sol. of f

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Notation: $f_2(\alpha_1) \in \mathbb{C}[z_2]$: partial specialization of $f_2 \in \mathbb{Q}[z_1, z_2]$ in $\alpha_1 \in \mathbb{C}$

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proof: direct consequence of

Theorem [ZFX11]: Let $\alpha \in Z(\mathbb{C}^2, f)$, $\alpha = (\alpha_1, \alpha_2)$. Then

$$m(\boldsymbol{\alpha}, \boldsymbol{f}) = m(\alpha_2, f_2(\alpha_1)) \times m(\alpha_1, f_1)$$

[ZFX11] Zhihai Zhang, Tian Fang, and Bican Xia.

Real solution isolation with multiplicity of zero-dimensional triangular systems. *Science China Information Sciences*, 54(1):60–69, 2011.

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions:
$$f(z) = 0$$
 has 6 solutions, all real:

$$\begin{array}{lll} \boldsymbol{a}^{1} = (2^{-\sigma} & , & 0) & \leftarrow m(\boldsymbol{a}^{1}, \boldsymbol{f}) = 2 = 1 \times 2 \\ \boldsymbol{a}^{2} = (2^{-\sigma} & , & 1) & \leftarrow m(\boldsymbol{a}^{2}, \boldsymbol{f}) = 2 = 1 \times 2 \\ \boldsymbol{a}^{3} = (-2^{-\sigma} & , & 1) & \leftarrow m(\boldsymbol{a}^{3}, \boldsymbol{f}) = 1 = 1 \times 1 \\ \boldsymbol{a}^{4} = (-2^{-\sigma} & , & 0) & \leftarrow m(\boldsymbol{a}^{4}, \boldsymbol{f}) = 1 = 1 \times 1 \\ \boldsymbol{a}^{5} = (-2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(\boldsymbol{a}^{5}, \boldsymbol{f}) = 2 = 2 \times 1 \\ \boldsymbol{a}^{6} = (2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(\boldsymbol{a}^{6}, \boldsymbol{f}) = 4 = 2 \times 2 \end{array}$$

Natural clusters:

$$(\boldsymbol{\Delta}^1, 9)$$

 $(\boldsymbol{\Delta}^2, 3)$

Notations: m(a, f): multiplicity of a as a sol. of f

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions:
$$f(z) = 0$$
 has 6 solutions, all real:

$$\begin{array}{lll} \boldsymbol{a}^1 = (2^{-\sigma} & , & 0) & \leftarrow m(\boldsymbol{a}^1, \boldsymbol{f}) = 2 = 1 \times 2 \\ \boldsymbol{a}^2 = (2^{-\sigma} & , & 1) & \leftarrow m(\boldsymbol{a}^2, \boldsymbol{f}) = 2 = 1 \times 2 \\ \boldsymbol{a}^3 = (-2^{-\sigma} & , & 1) & \leftarrow m(\boldsymbol{a}^3, \boldsymbol{f}) = 1 = 1 \times 1 \\ \boldsymbol{a}^4 = (-2^{-\sigma} & , & 0) & \leftarrow m(\boldsymbol{a}^4, \boldsymbol{f}) = 1 = 1 \times 1 \\ \boldsymbol{a}^5 = (-2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(\boldsymbol{a}^5, \boldsymbol{f}) = 2 = 2 \times 1 \\ \boldsymbol{a}^6 = (2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(\boldsymbol{a}^6, \boldsymbol{f}) = 4 = 2 \times 2 \end{array}$$

Natural clusters:

$$(\Delta^1, 9) \leftarrow 9 = 3 \times 3$$

 $(\Delta^2, 3) \leftarrow 3 = 1 \times 3$

Notations: m(a, f): multiplicity of a as a sol. of f

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- $(ii) \ \, \forall \alpha_1 \in Z(\Delta_1,f_1) \text{, } f_2(\alpha_1) \text{ has } m_2 \text{ roots in } \Delta_2 \text{ with multiplicity}$

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$

Let $\Delta = (\Delta_1, \Delta_2)$ and $m = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha_1 \in Z(\Delta_1, f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$

Corollary 2: If (Δ, m) is a natural tower, f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Let $\Delta = (\Delta_1, \Delta_2)$ and $\boldsymbol{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- $(ii) \ \ \forall \alpha_1 \in Z(\Delta_1,f_1)$, $f_2(\alpha_1)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural arepsilon-tower (relative to f) if

- (i) (Δ_1,m_1) is a natural arepsilon-cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural ε -cluster relative to $f_2(\alpha_1)$

Corollary 2: If (Δ, m) is a natural tower, f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\begin{array}{lll} \boldsymbol{a}^1 = (2^{-\sigma} & , & 0) & \leftarrow m(\boldsymbol{a}^1, \boldsymbol{f}) = 2 = 1 \times 2 \\ \boldsymbol{a}^2 = (2^{-\sigma} & , & 1) & \leftarrow m(\boldsymbol{a}^2, \boldsymbol{f}) = 2 = 1 \times 2 \\ \boldsymbol{a}^3 = (-2^{-\sigma} & , & 1) & \leftarrow m(\boldsymbol{a}^3, \boldsymbol{f}) = 1 = 1 \times 1 \\ \boldsymbol{a}^4 = (-2^{-\sigma} & , & 0) & \leftarrow m(\boldsymbol{a}^4, \boldsymbol{f}) = 1 = 1 \times 1 \\ \boldsymbol{a}^5 = (-2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(\boldsymbol{a}^5, \boldsymbol{f}) = 2 = 2 \times 1 \\ \boldsymbol{a}^6 = (2^{-\sigma} & , & -2^{-\sigma}) & \leftarrow m(\boldsymbol{a}^6, \boldsymbol{f}) = 4 = 2 \times 2 \end{array}$$

Natural clusters:

$$(\mathbf{\Delta}^1, 9) \leftarrow 9 = 3 \times 3$$

 $(\mathbf{\Delta}^2, 3) \leftarrow 3 = 1 \times 3$

Natural towers:

$$(\mathbf{\Delta}^1, (3,3))$$

 $(\mathbf{\Delta}^2, (1,3))$

Pellet's test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- $(ii) \ \ orall lpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(lpha_1)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Pellet's test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

- (i) SoftPelletTest(Δ_1, f_1) returns $m_1 \geq 1$
- (ii) SoftPelletTest($\Delta_2, f_2(\Box \Delta_1)$) returns $m_2 \geq 1$

Then (Δ, m) is a natural tower relative to f.

Notation: $f_2(\square \alpha_1) \in \square \mathbb{C}[z_2]$: partial specialization of $f_2 \in \mathbb{Q}[z_1, z_2]$ in $\square \alpha_1 \in \mathbb{C}$

Pellet's test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- $(ii) \ \forall \alpha_1 \in \Delta_1, \ (\Delta_2, m_2)$ is a natural cluster relative to $f_2(\alpha_1)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

- (i) SoftPelletTest(Δ_1, f_1) returns $m_1 \geq 1$
- (ii) SoftPelletTest($\Delta_2, f_2(\square \Delta_1)$) returns $m_2 > 1$

Then (Δ, m) is a natural tower relative to f.

Notation: $f_2(\square \alpha_1) \in \square \mathbb{C}[z_2]$: partial specialization of $f_2 \in \mathbb{Q}[z_1, z_2]$ in $\square \alpha_1 \in \mathbb{C}$

Pellet's test and natural towers

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha_1 \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha_1)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose

- (i) SoftPelletTest(Δ_1, f_1) returns $m_1 \geq 1$
- (ii) SoftPelletTest($\Delta_2, f_2(\square \Delta_1)$) returns $m_2 \ge 1$

Then (Δ, m) is a natural tower relative to f.

Notation: $f_2(\square \alpha_1) \in \square \mathbb{C}[z_2]$: partial specialization of $f_2 \in \mathbb{Q}[z_1, z_2]$ in $\square \alpha_1 \in \mathbb{C}$

Main data structure

B

- ullet $oldsymbol{B}=(B_1,B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called **precision**

Main data structure

A tower is a triple $\mathcal{T} = \langle \ell, m{B}, m{L} \rangle$ where

- ℓ is an integer in $\{0,1,2\}$ called **level**
- $\boldsymbol{B} = (B_1, B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called **precision**

We will garantee that if $\ell = 1$, $\exists m_1$ so that:

(i) $(\Delta(B_1),m_1)$ is a natural 2^{-L_1} cluster

Main data structure

A **tower** is a triple $\mathcal{T} = \langle \ell, \boldsymbol{B}, \boldsymbol{L} \rangle$ where

- ℓ is an integer in $\{0,1,2\}$ called **level**
- $\boldsymbol{B} = (B_1, B_2)$ is a polybox called **domain**
- $L = (L_1, L_2)$ is a vector in $(\mathbb{Z})^2$ called **precision**

We will garantee that if $\ell = 2$, $\exists m$ so that:

- $(i) \ (\Delta(B_1), m_1)$ is a natural 2^{-L_1} cluster
- (ii) $(\Delta({m B}),{m m})$ is a natural 2^{-L_2} tower (relative to ${m f}$)

Lift of a tower from level 0 to level 1

Cluster1(f, \mathcal{T})

 $m{f} = (f_1, f_2)$, $m{\mathcal{T}} = \langle \ell, m{B}, m{L}
angle$ a tower

Output: a list of towers at level 1

1. call ClusterOracle for f_1 , B_1 , 2^{-L_1}

Cluster2($m{f}, \mathcal{T}$)

Input: $f = (f_1, f_2), \ \mathcal{T} = \langle \ell, \boldsymbol{B}, \boldsymbol{L} \rangle$ a tower at level 1

Output: a flag in {success, fail} and a list of towers at level 2

1. call ClusterInterval for $f_2(\Box \Delta(B_1))$, B_2 , 2^{-L_2} fail if SoftPelletTest returns -2 (i.e. not enough prec. on $\Box \Delta(B_1)$)

Main algorithm

$\mathsf{ClusterTri}(\boldsymbol{f}, \boldsymbol{B}, L)$

Input: a triangular system f(z) = 0, a polybox B, L > 0

Output: a set of natural 2^{-L} -towers solving the LCP

1. ... //interleave Cluster1 and Cluster2

Our implementation

Ccluster: library in C based on

- FLINT¹: arithmetic for the geometric algorithm
- (5(s)) Arb²: arbitrary precision floating arithmetic with error bounds

Available at https://github.com/rimbach/Ccluster

```
Ccluster.jl: package for julia^{_3} based on \mathbb{N}e^m\mathcal{O}_{^4}
```

- interface for Ccluster
- Tcluster: implementation of ClusterTri

Available at https://github.com/rimbach/Ccluster.jl

¹https://github.com/wbhart/flint2

²http://arblib.org/

https://julialang.org/

⁴http://nemocas.org/

Benchmark: systems

Type of a triangular system:

$$f(z) = 0$$
 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

type					
Systems with only sim	ple solutions				
(9,9,9)					
(6,6,6,6)					
(9,9,9,9)					
(6,6,6,6,6)					
(9,9,9,9,9)					
(2,2,2,2,2,2,2,2) Systems with multiple					
Systems with multiple	solutions				
(9,9)					
(6,6,6)					
(9,9,9)					
(6,6,6,6)					

Benchmark: local vs global comparison

Type of a triangular system:

$$f(z) = 0$$
 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster lo	cal	Tcluster glo	bal	ll ll	
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)		
Systems with only sim	ple solutions					
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21		
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73		
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	12.9		
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1		
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113		
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42		
Systems with multiple	solutions					
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.15		
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24		
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.06		
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28		

Tcluster **local** : $B = ([-1,1] + i[-1,1])^n$, $\varepsilon = 2^{-53}$

Tcluster **global**: B chosen with upper bound for roots

Type of a triangular system:

$$m{f}(m{z}) = m{0}$$
 has type (d_1, \dots, d_n) if f_i has degree d_i in z_i , $orall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster local		Tcluster global		HomCont.jl		
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)	#Sols	t (s)	
Systems with only sim	ple solutions						
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21	729	4.21	
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73	1296	4.70	
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	12.9	6561	14.0	
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1	7776	11.5	
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113	59049	116	
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42	1024	4.84	
Systems with multiple	solutions						
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.15	33.6	3.27	
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24	53.2	2.75	
(9,9,9)	(113: 37.6)	0.22	(729 : 225)	1.06	159	28.4	
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28	134	8.06	

Tcluster local : $\boldsymbol{B} = ([-1,1] + \imath [-1,1])^n$, $\varepsilon = 2^{-53}$

Tcluster $oldsymbol{\mathsf{global}}$: B chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl

Benchmark:

Type of a triangular system:

$$m{f}(m{z}) = m{0}$$
 has type (d_1, \dots, d_n) if f_i has degree d_i in z_i , $orall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster local		Tcluster global		HomCont.jl			
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)	#Sols	t (s)		
Systems with only simple solutions								
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21	729	4.21		
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73	1296	4.70		
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	12.9	6561	14.0		
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1	7776	11.5		
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113	59049	116		
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42	1024	4.84		
Systems with multiple	solutions							
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.15	33.6	3.27		
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24	53.2	2.75		
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.06	159	28.4		
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28	134	8.06		

Tcluster local : $\boldsymbol{B} = ([-1,1] + \imath [-1,1])^n$, $\varepsilon = 2^{-53}$

Tcluster $oldsymbol{\mathsf{global}}$: B chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl

Benchmark:

Type of a triangular system:

$$m{f}(m{z}) = m{0}$$
 has type (d_1, \dots, d_n) if f_i has degree d_i in z_i , $orall 1 \leq i \leq n$

Table: for each type, average on 5 random dense systems seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz

	Tcluster local		Tcluster global		HomCont.jl		triang.	solve.
type	(#Clus, #Sols)	t (s)	(#Clus, #Sols)	t (s)	#Sols	t (s)	#Sols	t (s)
Systems with only simple solutions								
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.21	729	4.21	729	0.37
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	1.73	1296	4.70	1296	0.93
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	12.9	6561	14.0	6561	8.57
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	11.1	7776	11.5	7776	19.1
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	113	59049	116	59049	702
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.42	1024	4.84	1024	3.9
Systems with multiple	solutions							
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.15	33.6	3.27	45	0.03
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.24	53.2	2.75	54	0.05
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.06	159	28.4	225	0.23
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.28	134	8.06	162	0.15

Tcluster **local** : $B = ([-1, 1] + i[-1, 1])^n$, $\varepsilon = 2^{-53}$

Tcluster ${f global}$: B chosen with upper bound for roots

HomCont.jl: HomotopyContinuation.jl

triang_solve: Singular solver for triangular systems

Implementation

Bit complexity of ClusterTri(f, B, L):

Usual assumption: $f_1 = f_2 = 0$ is regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \quad \deg_{z_2}(f_2) = \deg_{z_2}(f_2(\alpha, z_2)) \geq 1$$

i.e. any root α_1 of f_1 can be extended to $\deg_{z_2}(f_2)$ solutions of f

Ongoing and future works

Bit complexity of ClusterTri(f, B, L):

Usual assumption: $f_1 = f_2 = 0$ is regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \quad \deg_{z_2}(f_2) = \deg_{z_2}(f_2(\alpha, z_2)) \ge 1$$

i.e. any root α_1 of f_1 can be extended to $\deg_{z_2}(f_2)$ solutions of f

Weaker assumption: $f_1=f_2=0$ is weakly regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \ \deg_{z_2}(f_2(\alpha, z_2)) \ge 1$$

i.e. any root $lpha_1$ of f_1 can be extended to at least 1 solution of f

```
Bit complexity of ClusterTri(f, B, L):
```

Usual assumption: $f_1 = f_2 = 0$ is regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \quad \deg_{z_2}(f_2) = \deg_{z_2}(f_2(\alpha, z_2)) \geq 1$$

i.e. any root α_1 of f_1 can be extended to $\deg_{z_2}(f_2)$ solutions of f

Weaker assumption: $f_1 = f_2 = 0$ is weakly regular

$$\forall \alpha \in Z(\mathbb{C}, f_1), \ \deg_{z_2}(f_2(\alpha, z_2)) \ge 1$$

i.e. any root $lpha_1$ of f_1 can be extended to at least 1 solution of f

ightarrow compute clusters of roots of $f \in \mathbb{C}[z_2]$

with nominal degree $d = \deg_{z_2}(f_2)$ with true degree $d' \le d$ (unknown)

 \rightarrow but the bit complexity of [BSS+16] is stated for $1/2 \le lcf(f) < 1$

Ongoing and future works

Bit complexity of ClusterTri(f, B, L):

Application to planar curve topology via CAD:

$$\{ p(z_1, z_2) = 0$$

requires to solve

$$f_1(z_1) = p(z_1, z_2) = 0$$
 which is weakly regular

where
$$f_1 = \operatorname{Res}_{z_2}(p, \frac{\partial p}{\partial z_2})$$

ToC

- 0 Univariate case:
- 1 Multivariate triangular case
- 2 Back to univariate case

Cauchy's theorem: if no root of f on $\partial \Delta$,

$$\#(\Delta, f) = \frac{1}{2\pi i} \int_{\partial \Delta} \frac{f'(z)}{f(z)} dz$$

[IP20] Rémi Imbach and Victor Y. Pan.

New progress in univariate polynomial root finding.

ISSAC '20, page 249-256, New York, NY, USA, 2020. ACM.

ToC

- 0 Univariate case:
- 1 Multivariate triangular case
- 2 Back to univariate case

Cauchy's theorem: if no root of f on $\partial \Delta$,

$$\#(\Delta, f) = \frac{1}{2\pi i} \int_{\partial \Delta} \frac{f'(z)}{f(z)} dz$$

- \rightarrow close approximation by sampling f'/f on $O(\log d)$ points on $\partial \Delta$
- → Cauchy root counter and exclusion test
- [IP20] Rémi Imbach and Victor Y. Pan.

New progress in univariate polynomial root finding.

ISSAC '20, page 249-256, New York, NY, USA, 2020. ACM.

Let $\Delta = D(c,r)$ be a disk, $f \in \mathbb{C}[z]$ of degree d Let $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of f in Δ (non necessarily distinct)

h-th power sum of f in Δ :

$$s_h(\Delta, f) = \alpha_1^h + \ldots + \alpha_{d_\Delta}^h$$

Notation: D(c, r): disk centered in c with radius r

Let $\Delta = D(c,r)$ be a disk, $f \in \mathbb{C}[z]$ of degree d Let $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of f in Δ (non necessarily distinct)

h-th power sum of f in Δ :

$$s_h(\Delta, f) = \alpha_1^h + \ldots + \alpha_{d_\Delta}^h$$

(i)
$$\#(\Delta, f) = s_0(\Delta, f)$$

Notation: D(c,r): disk centered in c with radius r

Let $\Delta = D(c,r)$ be a disk, $f \in \mathbb{C}[z]$ of degree d Let $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of f in Δ (non necessarily distinct)

h-th power sum of f in Δ :

$$s_h(\Delta, f) = \alpha_1^h + \ldots + \alpha_{d_\Delta}^h$$

- (i) $\#(\Delta, f) = s_0(\Delta, f)$
- (ii) $\#(\Delta, f) = 0 \Rightarrow s_h(\Delta, f) = 0$ for any h

Notation: D(c, r): disk centered in c with radius r

Cauchy root counter

Power Sums

Let $\Delta = D(c,r)$ be a disk, $f \in \mathbb{C}[z]$ of degree d Let $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of f in Δ (non necessarily distinct)

h-th power sum of f in Δ :

$$s_h(\Delta, f) = \alpha_1^h + \ldots + \alpha_{d_\Delta}^h$$

Remarks:

(i)
$$\#(\Delta, f) = s_0(\Delta, f)$$

(ii)
$$\#(\Delta, f) = 0 \Rightarrow s_h(\Delta, f) = 0$$
 for any h

Let
$$f_{\Delta} = f(c + rz)$$
:

(iii)
$$\#(\Delta, f) = s_0(D(0, 1), f_\Delta)$$

(iv)
$$\#(\Delta, f) = 0 \Rightarrow s_h(D(0, 1), f_\Delta) = 0$$
 for any h

Notation: D(c,r): disk centered in c with radius r; D(0,1): unit disk

Let $\Delta = D(c,r)$ be a disk, $f \in \mathbb{C}[z]$ of degree d Let $\alpha_1, \ldots, \alpha_{d_{\Delta}}$ be the roots of f in Δ (non necessarily distinct)

h-th power sum of f in Δ :

$$s_h(\Delta, f) = \alpha_1^h + \ldots + \alpha_{d_\Delta}^h$$

Remarks:

(i)
$$\#(\Delta, f) = s_0(\Delta, f)$$

(ii)
$$\#(\Delta, f) = 0 \Rightarrow s_h(\Delta, f) = 0$$
 for any h

Let
$$f_{\Delta} = f(c + rz)$$
:

(iii)
$$\#(\Delta, f) = s_0(D(0, 1), f_\Delta)$$

(iv)
$$\#(\Delta, f) = 0 \Rightarrow s_h(D(0, 1), f_\Delta) = 0$$
 for any h

Notation: D(c,r): disk centered in c with radius r; D(0,1): unit disk

Let $\Delta=D(c,r)$ be a disk, $f\in\mathbb{C}[z]$ of degree dLet $\alpha_1,\ldots,\alpha_{d_\Delta}$ be the roots of f in Δ (non necessarily distinct)

h-th power sum of f in Δ :

$$s_h(\Delta, f) = \alpha_1^h + \ldots + \alpha_{d_\Delta}^h$$

Definition: $\Delta = D(c,r)$ is ρ isolated, for $\rho > 1$, if $D(c,r\rho) \setminus D(c,\frac{r}{\rho})$ ρ : isolation ratio of Δ contains no root

Power sums approximation

Cauchy root counter

Approximation of the Power Sums of f in D(0,1)

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{q=0}^{q-1} \zeta^{g(h+1)} \frac{f'(\zeta^g)}{f(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Power sums approximation

Cauchy root counter

Approximation of the Power Sums of f in D(0,1)

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{q=0}^{q-1} \zeta^{g(h+1)} \frac{f'(\zeta^g)}{f(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Power sums approximation

Cauchy root counter

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{f'(\zeta^g)}{f(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Theorem [Sch82]: Let $\rho > 1$; suppose D(0,1) is ρ -isolated. Then

(i)
$$|s_h^* - s_h(D(0,1), f)| \le \frac{d\theta^{q-h}}{1-\theta^q}$$
 where $\theta = \frac{1}{\rho}$

25/30

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{f'(\zeta^g)}{f(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

(ii) If
$$q = \lceil \log_{\rho}(4d+1) \rceil + h$$
 then $|s_h^* - s_h(D(0,1), f)| \le 1/4$.

[Sch82] Arnold Schönhage.

The fundamental theorem of algebra in terms of computational complexity. Manuscript. Univ. of Tübingen, Germany, 1982.

Approximation of the Power Sums of f in D(0,1)

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{1}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{f'(\zeta^g)}{f(\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Theorem [Sch82]: Let $\rho > 1$; suppose D(0,1) is ρ -isolated. Then

(i)
$$|s_h^* - s_h(D(0,1), f)| \le \frac{d\theta^{q-h}}{1-\theta^q}$$
 where $\theta = \frac{1}{\rho}$

(ii) If
$$q = \lceil \log_{\rho}(4d+1) \rceil + h$$
 then $|s_h^* - s_h(D(0,1), f)| \le 1/4$.

Remark: $s_0(D(0,1), f)$ is an integer, thus error 1/4 is enough

Example: when $\rho = 2$ and d = 500, q = 11 allows to recover $s_0(D(0,1), f)$

Approximation of the Power Sums of f_{Λ} in D(0,1)

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{f'(c+r\zeta^g)}{f(c+r\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Approximation of the Power Sums of f_{Λ} in D(0,1)

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{f'(c+r\zeta^g)}{f(c+r\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Theorem [Sch82]: Let $\rho > 1$; suppose $\Delta = D(c,r)$ is ρ -isolated. Then

(i)
$$|s_h^* - s_h(D(0,1), f_\Delta)| \le \frac{d\theta^{q-h}}{1-\theta^q}$$
 where $\theta = \frac{1}{\rho}$

(ii) If
$$q = \lceil \log_o(4d+1) \rceil + h$$
 then $|s_h^* - s_h(D(0,1), f_{\Delta})| \le 1/4$.

Approximation of the Power Sums of f_{Λ} in D(0,1)

Let $h \in \mathbb{Z}$, $q \in \mathbb{N}_*$ s.t. q > h and define

$$s_h^* = \frac{r}{q} \sum_{g=0}^{q-1} \zeta^{g(h+1)} \frac{f'(c+r\zeta^g)}{f(c+r\zeta^g)}$$

where ζ is a primitive q-th root of unity.

Theorem [Sch82]: Let $\rho > 1$; suppose $\Delta = D(c,r)$ is ρ -isolated. Then

(i)
$$|s_h^* - s_h(D(0,1), f_\Delta)| \le \frac{d\theta^{q-h}}{1-\theta^q}$$
 where $\theta = \frac{1}{\rho}$

(ii) If
$$q = \lceil \log_{\rho}(4d+1) \rceil + h$$
 then $|s_h^* - s_h(D(0,1), f_{\Delta})| \le 1/4$.

Remark: Approximating $s_h(D(0,1), f_{\Delta})$ does **not** require to compute the coefficients of $f_{\wedge} = f(c + rz)$

Cauchy root counter

$$C^*(f,\Delta,
ho)$$
 //Output in $\{0,1,\ldots,d\}$

Input: $f \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

- **1.** compute s_0^* s.t. $|s_0^* s_0(D(0,1), f_\Delta)| \leq \frac{1}{4}$
- **2. return** the unique integer in $D(s_0^*, \frac{1}{4})$

Root counter and exclusion test

$$C^*(f,\Delta,
ho)$$
 //Output in $\{0,1,\ldots,d\}$

Input: $f \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

- **1.** compute s_0^* s.t. $|s_0^* s_0(D(0,1), f_{\Delta})| \leq \frac{1}{4}$
- **2. return** the unique integer in $D(s_0^*, \frac{1}{4})$

$$C^0(f,\Delta,\rho) \hspace{1cm} /\!/ \textit{Output in} \hspace{0.1cm} \{ \hspace{0.1cm} \textbf{true, false} \hspace{0.1cm} \}$$

Input: ...

Output: true iff f has no root in Δ

1. return $C^*(f, \Delta, \rho) == 0$

$$C^*(f,\Delta,
ho)$$
 //Output in $\{0,1,\ldots,d\}$

Input: $f \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

- **1.** compute s_0^* s.t. $|s_0^* s_0(D(0,1), f_{\Delta})| \leq \frac{1}{4}$
- **2. return** the unique integer in $D(s_0^*, \frac{1}{4})$

Remarks:

1. if $\rho \simeq 2$, costs an $O(\log d)$ evaluations of f and f' \to can be very fast when f can be evaluated fast

$$C^*(f,\Delta,
ho)$$
 //Output in $\{0,1,\ldots,d\}$

Input: $f \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

- **1.** compute s_0^* s.t. $|s_0^* s_0(D(0,1), f_{\Delta})| \leq \frac{1}{4}$
- **2. return** the unique integer in $D(s_0^*, \frac{1}{4})$

Remarks:

- 1. if $\rho \simeq 2$, costs an $O(\log d)$ evaluations of f and f' \to can be very fast when f can be evaluated fast
- 2. do not require to know the coeffs of f \to a (fast) procedure for evaluation of f is sufficient

$$C^*(f,\Delta,
ho)$$
 //Output in $\{0,1,\ldots,d\}$

Input: $f \in \mathbb{C}[z]$ of degree d, $\rho > 1$, Δ a ρ -isolated disk

Output: $\#(\Delta, p)$

- **1.** compute s_0^* s.t. $|s_0^* s_0(D(0,1), f_{\Delta})| \leq \frac{1}{4}$
- **2. return** the unique integer in $D(s_0^*, \frac{1}{4})$

Remarks:

- 1. if $\rho \simeq 2$, costs an $O(\log d)$ evaluations of f and f' \to can be very fast when f can be evaluated fast
- 2. do not require to know the coeffs of f \to a (fast) procedure for evaluation of f is sufficient
- 3. when exclusion test is applied to a box of a subdivision tree, the isolation ratio is unknown

Question: What if ρ is unknown?

Unsure Exclusion Test

$\widetilde{C}^0(f,\Delta,k)$

Input: $f \in \mathbb{C}[z]$ of degree d, Δ a disk, k integer ≥ 0 **Output:** in $\{$ **true**, **can not decide** $\}$

- **0.** Let $\rho = \frac{4}{3}$, and assume Δ is ρ -isolated
- **2.** for h = 0, ..., k do
- **3.** compute s_h^* s.t. $|s_h^* s_h(D(0,1), f_{\Delta})| \leq \frac{1}{4}$
- **4.** if $D(s_h^*, \frac{1}{4})$ does not contain zero
- 5. return can not decide
- 6. return true

Unsure Exclusion Test

$\widetilde{C}^0(f,\Delta,k)$

Input: $f \in \mathbb{C}[z]$ of degree d, Δ a disk, k integer ≥ 0 Output: in { true, can not decide }

- **0.** Let $\rho = \frac{4}{3}$, and assume Δ is ρ -isolated
- **2.** for h = 0, ..., k do
- 3. compute s_h^* s.t. $|s_h^* s_h(D(0,1), f_\Delta)| \leq \frac{1}{4}$
- **4.** if $D(s_h^*, \frac{1}{4})$ does not contain zero
- 5. return can not decide
- 6. return true

Why $\rho = 4/3$? to have:

If 2B contains no root, then $C^0(f,\Delta(B),k)$ returns **true**

Unsure Exclusion Test

$\widetilde{C}^0(f,\Delta,k)$

Input: $f \in \mathbb{C}[z]$ of degree d, Δ a disk, k integer ≥ 0 **Output:** in $\{$ **true**, **can not decide** $\}$

- **0.** Let $\rho = \frac{4}{3}$, and assume Δ is ρ -isolated
- **2.** for h = 0, ..., k do
- 3. compute s_h^* s.t. $|s_h^* s_h(D(0,1), f_{\Delta})| \le \frac{1}{4}$
- **4.** if $D(s_h^*, \frac{1}{4})$ does not contain zero
- 5. return can not decide
- 6. return true

Why $\rho = 4/3$? to have:

If 2B contains no root, then $\widetilde{C}^0(f,\Delta(B),k)$ returns **true**

Remark: When the output of $\widetilde{C}^0(p,\Delta,k)$ is **true**, it may be wrong

		P^0 -tests	C^0 -test	s, $k = 0$					
d	n	t_0/t (%)	t_1/t_0	#F					
100 ra	100 random dense polynomials per degree								
64	116302	87.2	1.0	4					
128	227842	90.5	.54	21					
191	340348	92.0	.42	26					
100 rs	100 random sparse (10 monomials) polynomials per degree								
64	115850	86.2	.90	10					
128	226266	91.3	.36	11					

11

Legend: d: degree

191

331966

n: number of exclusion tests in [BSS+16]

92.1

.25

t: sequential time of [BSS+16] t_0 : time spent in P^0 -tests t_1 : time spent in \widetilde{C}^0 -tests #F: nb of wrong res. in \widetilde{C}^0 -tests

11

		P^0 -tests	$\widetilde{C^0}$ -tests, $k=0$	
d	n	t_0/t (%)	t_1/t_0 #F	

100 random dense polynomials per degree

64	116302	87.2	1.0	4	
128	227842	90.5	.54	21	
191	340348	92.0	.42	26	

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	
128	226266	91.3	.36	11	
191	331966	92.1	.25	11	

Legend: d: degree

n: number of exclusion tests in [BSS+16]

t: sequential time of [BSS+16] t_0 : time spent in P^0 -tests t_1 : time spent in $\widetilde{C^0}$ -tests #F: nb of wrong res. in $\widetilde{C^0}$ -tests

		P^0 -tests	$\widetilde{C^0}$ -test	s, $k=0$					
d	n	t_0/t (%)	t_1/t_0	#F					
100 ra	100 random dense polynomials per degree								
64	116302	87.2	1.0	4					
128	227842	90.5	.54	21					
191	340348	92.0	.42	26					

100 random sparse (10 monomials) polynomials per degree

64	112820	80.2	.90	10	
128	226266	91.3	.36	11	
191	331966	92.1	.25	11	

Legend: d: degree

n: number of exclusion tests in [BSS+16]

t: sequential time of [BSS+16] t_0 : time spent in P^0 -tests t_1 : time spent in \widetilde{C}^0 -tests #F: nb of wrong res. in \widetilde{C}^0 -tests

		P^0 -tests	$\widetilde{C^0}$ -test	s, $k=0$	
d	n	t_0/t (%)	t_1/t_0	#F	

100 random dense polynomials per degree

64	116302	87.2	1.0	4	
128	227842	90.5	.54	21	
191	340348	92.0	.42	26	

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	
128	226266	91.3	.36	11	
191	331966	92.1	.25	11	

Legend: d: degree

n: number of exclusion tests in [BSS+16]

t: sequential time of [BSS+16] t_0 : time spent in P^0 -tests t_1 : time spent in \widetilde{C}^0 -tests #F: nb of wrong res. in \widetilde{C}^0 -tests

		P^0 -tests	$\widetilde{C^0}$ -tests,	k = 0		
d	n	t_0/t (%)	t_1/t_0	#F		
100 -	andom done	a nalunamial	s por dograd			

100 random dense polynomials per degree

64	116302	87.2	1.0	4	
128	227842	90.5	.54	21	
191	340348	92.0	.42	26	

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	
128	226266	91.3	.36	11	
191	331966	92.1	.25	11	

Legend: d: degree

n: number of exclusion tests in [BSS+16]

t: sequential time of [BSS+16] t_0 : time spent in P^0 -tests t_1 : time spent in $\widetilde{C^0}$ -tests #F: nb of wrong res. in $\widetilde{C^0}$ -tests

Unsure Exclusion Test: Experiments

		P^0 -tests	$\widetilde{C^0}$ -test	s, $k=0$	$\widetilde{C^0}$ -test	s, $k=1$	$\widetilde{C^0}$ -test	s, $k=2$
d	n	t_0/t (%)	t_1/t_0	#F	t_1'/t_0	#F'	t_1''/t_0	#F"

100 random dense polynomials per degree

64	116302	87.2	1.0	4	1.0	0	1.1	0
128	227842	90.5	.54	21	.57	0	.59	0
191	340348	92.0	.42	26	.43	1	.45	0

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	.95	0	.98	0
128	226266	91.3	.36	11	.37	0	.40	0
191	331966	92.1	.25	11	.26	2	.28	0

Legend: d: degree

n: number of exclusion tests in [BSS+16]

t: sequential time of [BSS+16]

 t_0 : time spent in P^0 -tests

 t_1 : time spent in C^0 -tests

 t_1' : time spent in C^0 -tests with k=1

 $\# {\sf F}'$: nb of wrong res. in C^0 -tests with k=1 t_1'' : time spent in C^0 -tests with k=2

#F": nb of wrong res. in C^0 -tests with k=2#F: nb of wrong res. in C^0 -tests with k=0

Unsure Exclusion Test: Experiments

		P^0 -tests	$\widetilde{C^0}$ -test	s, $k=0$	$\widetilde{C^0}$ -test	ts, $k=1$	$\widetilde{C^0}$ -test	s, $k=2$
d	n	t_0/t (%)	t_1/t_0	#F	t_1'/t_0	#F'	t_1''/t_0	#F"

100 random dense polynomials per degree

64	116302	87.2	1.0	4	1.0	0	1.1	0
128	227842	90.5	.54	21	.57	0	.59	0
191	340348	92.0	.42	26	.43	1	.45	0

100 random sparse (10 monomials) polynomials per degree

64	115850	86.2	.90	10	.95	0	.98	0
128	226266	91.3	.36	11	.37	0	.40	0
191	331966	92.1	.25	11	.26	2	.28	0

Legend: d: degree

n: number of exclusion tests in [BSS+16]

t: sequential time of [BSS $^+$ 16]

 t_0 : time spent in P^0 -tests

 t_1 : time spent in C^0 -tests

#F': nb of wrong res. in C^0 -tests with k=1 t_1'' : time spent in C^0 -tests with k=2

 t_1' : time spent in C^0 -tests with k=1

#F": nb of wrong res. in C^0 -tests with k=2

#F: nb of wrong res. in C^0 -tests with k=0

Subdivision Algorithm with Unsure Exclusion Test

- for the (global) Root Clustering Problem
- uses $\widetilde{C^0}$ -test with k=2
- always terminates, but may fail: in this case, reports failure
- implemented in C within Ccluster: CclusterF

- for the (global) Root Clustering Problem
- uses \widetilde{C}^0 -test with k=2
- always terminates, but may fail: in this case, reports failure
- implemented in C within Ccluster: CclusterF
- faster for sparse and procedural polynomial

 $\textbf{Procedure: } \texttt{Mandelbrot}_{\ell}(z)$

Input: $\ell \in \mathbb{N}^*, z \in \mathbb{C}$

Output: $\alpha \in \mathbb{C}$

- 1. if $\ell = 1$ then
- 2. return z
- 3. else
- 4. return zMandelbrot $_{\ell-1}(z)^2+1$

Results:

	Ccluster		Ccl	usterF
d	t	#Fails	t'	t^{\prime}/t (%)

100 random dense polynomials per degree

64	31.5	0	41.2	130
128	222	0	149	67.3
191	665	0	340	51.1

100 random sparse (10 monomials) polynomials per degree								
64	27.9	0	31.7	113				
128	216	0	100	46.3				
191	638	0	209	32.7				

Mandelbrot polynomials

127	3.46	0	0.56	16.1			
255	18.4	0	1.79	9.70			
511	118	0	7.61	6.42			

Legend: t, t': seq. times in s. on an

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux

Results:

	Ccluster	CclusterF				
d	t	#Fails	t'	t'/t (%)		

100 random dense polynomials per degree

64	31.5	0	41.2	130
128	222	0	149	67.3
191	665	0	340	51.1

100 random sparse (10 monomials) polynomials per degree 64 27.9 0 31.7 113 128 216 0 100 46.3

101 629 0 200 22.7	128 216	128	0	100	46.3	
191 036 0 209 32.7	191 638	191	0	209	32.7	

Mandelbrot polynomials

127	3.46	0	0.56	16.1
255	18.4	0	1.79	9.70
511	118	0	7.61	6.42

Legend: t, t': seq. times in s. on an

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux

Subdivision Algorithm with Unsure Exclusion Test

Results:

	Ccluster		Co	lusterF
d	t	#Fails	t'	t'/t (%)

100 random dense polynomials per degree

64	31.5	0	41.2	130
128	222	0	149	67.3
191	665	0	340	51.1

100 r	andom sparse	(10 mond	omials) po	lynomials per degree
64	27.9	0	31.7	113
128	216	0	100	46.3

64	27.9	0	31.7	113
120	216	0	100	46.3
191	638	0	209	32.7

Mandelbrot polynomials

127	3.46	0	0.56	16.1
255	18.4	0	1.79	9.70
511	118	0	7.61	6.42

Legend: t, t': seq. times in s. on an

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux

Deterministic support for the Cauchy root counter with unknown ρ \rightarrow now requires O(d) evaluations ... can we afford this in practice?

Cauchy subdivision root finder

- \rightarrow without coefficients of f
- \rightarrow only black box for evaluation of f and f'

Soft Exact computation

Numerical methods are fast but not robust to Zero problems

Zero problems can be tackled with exact computation in only a few cases

Soft exact computation (for instance local root clustering) is a middle path?
avoids Zero problem