

Lógica para Programação

Solução do Exame de 2ª Época 30 de Junho de 2016

1.	(1.0) Para cada uma das seguintes afirmações, diga se é verdadeira (V) ou falsa (F) Cada resposta correcta vale 0.5 valores e <i>cada resposta errada desconta</i> 0.2 <i>valores</i> .
	(a) Se o número 2 é ímpar, então todos os elefantes que sabem programar são azuis.
	Resposta:
	Resposta:
	<u>V</u>
	(b) O seguinte argumento é válido:
	Numa lógica completa todos os argumentos demonstráveis são válidos Numa lógica completa nenhum argumento não válido é demonstrável
	Resposta:
	Resposta:
	<u>V</u>
2.	Considere os seguintes predicados:
	Inteiro(x) = x é um número inteiro $Maior(x,y) = x$ é maior que y $Suc(x,y) = y$ é o sucessor de x $Entre(x,y,z) = y$ está entre x e z ($x < y < z$)
	Represente em Lógica de Primeira Ordem as seguintes proposições:
	(a) (0.5) Se um inteiro n está entre 2 inteiros n_1 e n_2 , então n_2 é maior do que n_1 .

(b) (0.5) O sucessor de qualquer inteiro par é um inteiro ímpar.

(b) $\forall x, y [(Inteiro(x) \land Par(x) \land Suc(x, y)) \rightarrow (Inteiro(y) \land \acute{I}mpar(y))]$

(a) $\forall x, y, z [(Inteiro(x) \land Inteiro(y) \land Inteiro(z) \land Entre(x, y, z)) \rightarrow Maior(z, x)]$

Resposta:

3. (2.0) Demonstre o seguinte teorema

$$\exists x [P(x) \land Q(x)] \rightarrow (\exists x [P(x)] \land \exists x [Q(x)])$$

usando o sistema dedutivo da Lógica de Primeira Ordem (apenas pode usar as regras de premissa, hipótese, repetição, reiteração, e as regras de introdução e eliminação de cada um dos símbolos lógicos).

Resposta:

1		$\exists x [P(x) \land Q(x)]$		Hip
2	a	x_0	$P(x_0) \wedge Q(x_0)$	Hip
3			$P(x_0)$	E∧, 2
4			$Q(x_0)$	E∧, 2
5			$\exists x[P(x)]$	I∃, 3
6			$\exists x[Q(x)]$	I∃, 4
7			$\exists x [P(x)] \land \exists x [Q(x)]$	I∧, (5, 6)
8		$\exists x$	$[P(x)] \wedge \exists x [Q(x)]$	E∃, (1, (2, 7))
9	$\exists x[1]$	P(z)	$(x) \land Q(x)] \to (\exists x [P(x)] \land \exists x [Q(x)])$	$I\rightarrow$, (1, 8)

4. (1.5) Considere o seguinte conjunto de *fbfs* (em que x, y e z são variáveis e a é uma constante)

$$\{P(x, f(z), z), P(y, y, a)\}$$

Preencha as linhas necessárias da seguinte tabela, de forma a seguir o algoritmo de unificação para determinar se as *fbfs* são unificáveis. Em caso afirmativo, indique o unificador mais geral; caso contrário, indique que as *fbfs* não são unificáveis.

Conjunto de fbfs	Conjunto de desacordo	Substituição

Unificador mais geral (se existir):

Resposta:

Conjunto de fbfs	Conjunto de	Substituição
	desacordo	
$\{P(x, f(z), z), P(y, y, a)\}$	$\{x,y\}$	$\{x/y\}$
$\{P(x, f(z), z), P(x, x, a)\}$	$\{f(z),x\}$	$\{f(z)/x\}$
P(f(z), f(z), z), P(f(z), f(z), a)	$\{a,z\}$	$\{a/z\}$
$\{P(f(a), f(a), a)\}$		

Unificador mais geral (se existir):

$$\{x/y\}\circ \{f(z)/x\}\circ \{a/z\}=\{f(z)/y,f(z)/x\}\circ \{a/z\}=\{f(a)/y,f(a)/x,a/z\}$$

5. (2.0) Demonstre que

$$\{ \forall x [P(x) \to R(x)] \lor \forall x [Q(x) \to R(x)] \} \vdash \forall x [(P(x) \land Q(x)) \to R(x)]$$

usando resolução, e fazendo uma prova por refutação.

Resposta:

Vamos fazer uma prova por refutação:

• Passagem à forma clausal:

```
 (\forall x[P(x) \rightarrow R(x)] \lor \forall x[Q(x) \rightarrow R(x)]) \land \neg (\forall x[(P(x) \land Q(x)) \rightarrow R(x)]) \\ (\forall x[\neg P(x) \lor R(x)] \lor \forall x[\neg Q(x) \lor R(x)]) \land \neg (\forall x[\neg (P(x) \land Q(x)) \lor R(x)]) \\ (\forall x[\neg P(x) \lor R(x)] \lor \forall x[\neg Q(x) \lor R(x)]) \land \exists x[\neg (\neg (P(x) \land Q(x)) \lor R(x)] \\ (\forall x[\neg P(x) \lor R(x)] \lor \forall x[\neg Q(x) \lor R(x)]) \land \exists x[\neg \neg (P(x) \land Q(x)) \land \neg R(x)] \\ (\forall x[\neg P(x) \lor R(x)] \lor \forall x[\neg Q(x) \lor R(x)]) \land \exists x[P(x) \land Q(x) \land \neg R(x)] \\ (\forall x[\neg P(x) \lor R(x)] \lor \forall y[\neg Q(y) \lor R(y)]) \land \exists x[P(x) \land Q(x) \land \neg R(x)] \\ (\forall x[\neg P(x) \lor R(x)] \lor \forall y[\neg Q(y) \lor R(y)]) \land P(a) \land Q(a) \land \neg R(a) \\ \text{(em que $a$ \'e uma constante de Skolem)} \\ (\neg P(x) \lor R(x) \lor \neg Q(y) \lor R(y)) \land P(a) \land Q(a) \land \neg R(a) \\ \{\{\neg P(x), R(x), \neg Q(y), R(y)\}, \{P(a)\}, \{Q(a)\}, \{\neg R(a))\}\}
```

• Prova:

```
\{\neg P(x), R(x), \neg Q(y), R(y)\}
                                      Prem
    \{P(a)\}
                                       Prem
                                      Prem
3
   \{Q(a)\}
4
   \{\neg R(a)\}
                                      Prem
5
   \{R(a), \neg Q(y), R(y)\}
                                      Res, (1,2), \{a/x\}
6
   \{R(a)\}
                                       Res, (3,5), \{a/y\}
                                       Res, (4, 6), \{\}
```

6. (1.0) Demonstre que

$$\{ \forall x [P(x) \to R(x)] \lor \forall x [Q(x) \to R(x)] \} \models \forall x [(P(x) \land Q(x)) \to R(x)] \}$$

usando o método de Herbrand. Sugestão: use a passagem à forma clausal da questão 5.

Resposta:

Provaremos que o conjunto

$$\{\{\neg P(x), R(x), \neg Q(y), R(y)\}, \{P(a)\}, \{Q(a)\}, \{\neg R(a)\}\}\}$$

não é satisfazível, mostrando que um conjunto finito de instâncias das cláusulas do conjunto não é satisfazível. O conjunto

$$\{\{\neg P(a), R(a), \neg Q(a)\}, \{P(a)\}, \{Q(a)\}, \{\neg R(a)\}\}\}$$

não é satisfazível, pois qualquer interpretação que satisfaça as 3 últimas cláusulas não satisfaz a primeira.

7. Considere que o OBDD abaixo, designado por $OBDD_{\alpha}$, representa a *fbf* α :

(a) (1.0) Aplique o algoritmo reduz ao $OBDD_{\alpha}$. Resposta:

Tabela associativa:

(b) (1.0) Aplique o algoritmo compacta ao resultado obtido na alínea anterior. Resposta:

(c) (1.0) Considere que o OBDD abaixo, designado por $OBDD_{\beta}$, representa a fbf β :

Determine o OBDD resultante de $aplica(\to, OBDD_\alpha, OBDD_\beta)$. O que pode concluir sobre a $fbf \ \alpha \to \beta$? Justifique a sua resposta.

Resposta:

Todas as folhas são \overline{V} , logo o OBDD reduzido consiste na folha \overline{V} . A $\mathit{fbf} \ \alpha \to \beta$ é uma tautologia, porque o seu OBDD reduzido é a folha \overline{V} .

8. (2.0) Considere o seguinte conjunto de *fbfs*:

$$\{P \to Q, P, \neg Q\}$$

Use o algoritmo de propagação de marcas para determinar se o conjunto é satisfazível. Em caso afirmativo apresente uma testemunha.

Resposta:

Eliminação da implicação:

$$\neg (P \land \neg Q) \land (P \land \neg Q)$$

A propagação das marcas no sentido ascendente leva a uma contradição, logo o conjunto dado não é satisfazível.

9. Considere o seguinte programa em PROLOG:

```
gosta(ana, X) :-
    comida(X),
    \+ queijo(X).

queijo(camembert).
queijo(chevre).

carne(iscas).
carne(lombo).

comida(X) :- queijo(X).
comida(X) :- carne(X).
```

(a) (1.0) Quais as respostas do PROLOG ao objectivo ?- gosta(ana, iscas)? Desenhe a árvore SLD gerada, indicando em cada ramo a cláusula usada e respectiva substituição.

Resposta:

A resposta do PROLOG ao objectivo ?- gosta (ana, iscas) é true.

(b) (0.5) Quais as respostas do PROLOG ao objectivo ?- comida(X), \+ carne(X)? Resposta:

X = camembert
X = chevre

(c) (0.5) Quais as respostas do PROLOG ao objectivo ?- \+ queijo(X), comida(X)? Resposta:

false

10. (a) (1.0) Defina o predicado substitui/4 tal que substitui(X, Y, L1, L2) tem o valor verdadeiro se a lista L2 corresponder à lista L1 onde as ocorrências de X são substituídas por Y. Por exemplo, substitui(2, 4, [1, 2, 3], [1, 4, 3]) tem o valor verdadeiro. (Assuma que L1 é uma lista de inteiros.)

Resposta:

```
substitui(_, _, [], []). substitui(X, Y, [X|T1], [Y|T2]) :- substitui(X, Y, T1, T2). substitui(X, Y, [H|T1], [H|T2]) :- H = X, substitui(X, Y, T1, T2).
```

(b) (1.0) Considere o predicado xpto/4 definido abaixo.

```
xpto(X,Y,L1,L3) := substitui(X, Y, L1, L2), substitui(Y, X, L2, L3).
```

Diga que é devolvido pela avaliação que se segue:

```
?- xpto(6, 8, [6, 3, 8], L).

Resposta:
L = [6, 3, 6].
```

- 11. No contexto do projecto:
 - (a) (1.5) Defina o predicado dir/3, tal que dir (Pos1, Pos2, Dir) significa que, para ir da posição Pos1 para a posição Pos2, sendo Pos1 e Pos2 duas posições adjacentes, é necessário fazer um movimento na direcção Dir. Se Pos1 e Pos2 não forem adjacentes, dir (Pos1, Pos2, Dir) é falso. Por exemplo:

(b) (1.5) Usando o predicado dir da alínea anterior, escreva o predicado adjacentes/1, tal que adjacentes(Lst_Pos), em que Lst_Pos é uma lista não vazia de posições, significa que quaisquer duas posições seguidas na lista são adjacentes. Por exemplo,

```
?- adjacentes([(1,1), (2,1), (3,1), (3,2), (3,3)]).
true.
?- adjacentes([(1,1), (2,2), (3,1), (3,2), (3,3)]).
false.
```

Resposta:

!.