

The World's Most Widely Applicable Modal Logic Theorem Prover and its Associated Infrastructure

Alexander Steen Freie Universität Berlin

RuleML Webinar September 29th

⁰jww C. Benzmüller, T. Gleißner

Talk outline

- 1. Motivation
- 2. Flavours of modal logics
- 3. How it works (roughly)
- 4. Evaluation

Reasoning in Non-Classical Logics

- Increasing interest in various fields
 - Artificial Intelligence (e.g. Agents, Knowledge)
 - ► Computer Linguistics (e.g. Semantics)
 - ► Mathematics (e.g. Geometry, Category theory)
 - ► Theoretical Philosophy (e.g. Metaphysics)
 - ► Legal Informatics (e.g. Computable/Smart contracts)
- Most powerful ATP/ITP: Classical logic only

Focus here: Modal logics

- Prover for (propositional) modal logics exist
 - ► ModLeanTAP, Molle, Bliksem, FaCT++
 - ► MOLTAP, KtSeqC, STeP, TRP
 - **.**..
- Only few for quantified variants
 - MleanTAP, MleanCoP, MleanSeP (J. Otten)
 - ► f2p+MSPASS

Reasoning in Non-Classical Logics

- Increasing interest in various fields
 - Artificial Intelligence (e.g. Agents, Knowledge)
 - ► Computer Linguistics (e.g. **Semantics**)
 - ► Mathematics (e.g. Geometry, Category theory)
 - Theoretical Philosophy (e.g. Metaphysics)
 - ► Legal Informatics (e.g. Computable/Smart contracts)
- Most powerful ATP/ITP: Classical logic only

Focus here: Modal logics

- Prover for (propositional) modal logics exist
 - ModLeanTAP, Molle, Bliksem, FaCT++
 - MOLTAP, KtSeqC, STeP, TRP
 - ▶ ..
- Only few for quantified variants
 - MleanTAP, MleanCoP, MleanSeP (J. Otten)
 - ► f2p+MSPASS

Reasoning in Non-Classical Logics

- Increasing interest in various fields
 - Artificial Intelligence (e.g. Agents, Knowledge)
 - ► Computer Linguistics (e.g. Semantics)
 - ► Mathematics (e.g. Geometry, Category theory)
 - ► Theoretical Philosophy (e.g. Metaphysics)
 - ► Legal Informatics (e.g. Computable/Smart contracts)
- Most powerful ATP/ITP: Classical logic only

Focus here: Modal logics

- Prover for (propositional) modal logics exist
 - ModLeanTAP, Molle, Bliksem, FaCT++,
 - MOLTAP, KtSeqC, STeP, TRP
 - ٠..
- Only few for quantified variants
 - MleanTAP, MleanCoP, MleanSeP (J. Otten)
 - ► f2p+MSPASS

- 1. First-order quantification is (sometimes) not enough
- 2. Semantic diversity/flexibility needed

See studies in Metaphysics, e.g.

- Gödel's Ontological Argument [BenzmüllerW.-Paleo,2017] and several variants of it
- Anderson-Hájek Controversy [Benzm.WeberW.-Paleo,2017]

- 1. First-order quantification is (sometimes) not enough
- 2. Semantic diversity/flexibility needed:

Properties of modal operators *necessary* (□) and *possibly* (◊)

... but that's not all of it!

- 1. First-order quantification is (sometimes) not enough
- 2. Semantic diversity/flexibility needed

Automation approach

- ► Indirect: Via encoding into (classical) HOL
- Use existing general purpose HOL reasoners

- 1. First-order quantification is (sometimes) not enough
- 2. Semantic diversity/flexibility needed

Automation approach

- Indirect: Via encoding into (classical) HOL
- Use existing general purpose HOL reasoners

Advantages

- Sophisticated existing systems
 - ATPs: TPS, agsyHOL, Satallax, LEO-II, Leo-III
 - Further: Isabelle, Nitpick
- Not fixed to any one proving system
- Semantic variations with minor adjustments
 - Axiomatization
 - Quantification semantics
 - ٠...

Higher Order Modal Logic - Syntax

- ▶ Simple types \mathcal{T} generated by base types and mappings (→)
- ▶ Usually, base types are *o* and *l*

- ▶ Simple types $\mathcal T$ generated by base types and mappings (→)
- ▶ Usually, base types are *o* and *ι*

Type of truth-values

- ▶ Simple types $\mathcal T$ generated by base types and mappings (→)
- ▶ Usually, base types are o and ι

Type of individuals

- ► Simple types T generated by base types and mappings (→)
- ▶ Usually, base types are o and ι
- Terms defined by

$$(\alpha, \beta \in \mathcal{T}, c_{\alpha} \in \Sigma, X_{\alpha} \in \mathcal{V}, i \in I)$$

$$s, t ::= c_{\alpha} \mid X_{\alpha}$$

- Allow infix notation for binary logical connectives
- Remaining logical connectives can be defined as usual
- ► Formulae of HOML are those terms with type o

- ▶ Simple types \mathcal{T} generated by base types and mappings (→)
- ▶ Usually, base types are o and ι
- ► Terms defined by $(\alpha, \beta \in \mathcal{T}, c_{\alpha} \in \Sigma, X_{\alpha} \in \mathcal{V}, i \in I)$

$$s, t ::= c_{\alpha} | X_{\alpha}$$

 $| (\lambda X_{\alpha}.s_{\beta})_{\alpha \to \beta} | (s_{\alpha \to \beta} t_{\alpha})_{\beta}$

- Allow infix notation for binary logical connectives
- Remaining logical connectives can be defined as usual
- ► Formulae of HOML are those terms with type o

- ► Simple types T generated by base types and mappings (→)
- ▶ Usually, base types are o and ι
- ► Terms defined by $(\alpha, \beta \in \mathcal{T}, c_{\alpha} \in \Sigma, X_{\alpha} \in \mathcal{V}, i \in I)$

$$\begin{array}{l}
s, t ::= c_{\alpha} \mid X_{\alpha} \\
\mid (\lambda X_{\alpha}.s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \\
\mid (\Box_{\alpha \to \alpha}^{i} s_{\alpha})_{\alpha}
\end{array}$$

- Allow infix notation for binary logical connectives
- Remaining logical connectives can be defined as usual
- ► Formulae of HOML are those terms with type o

- ▶ Simple types \mathcal{T} generated by base types and mappings (→)
- ▶ Usually, base types are o and ι
- ► Terms defined by

$$(\alpha,\beta\in\mathcal{T},\,c_{\alpha}\in\Sigma,\,X_{\alpha}\in\mathcal{V},\,i\in I)$$

$$\begin{array}{c}
s, t ::= c_{\alpha} \mid X_{\alpha} \\
\mid (\lambda X_{\alpha}.s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \\
\mid (\Box_{o \to o}^{i} s_{o})_{o}
\end{array}$$

- Allow infix notation for binary logical connectives
- Remaining logical connectives can be defined as usual
- ► Formulae of HOML are those terms with type o

- ► Simple types T generated by base types and mappings (→)
- ▶ Usually, base types are o and ι
- ► Terms defined by $(\alpha, \beta \in \mathcal{T}, c_{\alpha} \in \Sigma, X_{\alpha} \in \mathcal{V}, i \in I)$

$$s, t ::= c_{\alpha} \mid X_{\alpha}$$

$$\mid (\lambda X_{\alpha}.s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta}$$

$$\mid (\Box_{\alpha \to \alpha}^{i}s_{\alpha})_{o}$$

- Allow infix notation for binary logical connectives
- Remaining logical connectives can be defined as usual
- Formulae of HOML are those terms with type o

$$\mathcal{M} = \left(\,W\,,\, \{R^i\}_{i \in I} \,\,,\,\, \{\mathcal{D}_W\}_{W \in W} \,\,,\,\, \{\mathcal{I}_W\}_{W \in W}\,\,\right)$$

$$\mathcal{M} = \left(W, \{R^i\}_{i \in I}, \{\mathcal{D}_W\}_{W \in W}, \{\mathcal{I}_W\}_{W \in W} \right)$$

Set of possible worlds

$$\mathcal{M} = \left(W, \left\{R^i\right\}_{i \in I}, \left\{\mathcal{D}_W\right\}_{w \in W}, \left\{\mathcal{I}_W\right\}_{w \in W}\right)$$

Family of accessibility relations $R^i \subseteq W \times W$

$$\mathcal{M} = \left(\, W \, , \, \left\{ R^i \right\}_{i \in I} \, , \, \, \left\{ \mathcal{D}_W \right\}_{W \in W} \, , \, \, \left\{ \mathcal{I}_W \right\}_{W \in W} \, \right)$$

Family of frames, one for every world Notion of frames $\mathcal{D} = (D_{\tau})_{\tau \in \mathcal{T}}$ as in HOL:

$$D_{l} \neq \emptyset$$

$$D_{0} = \{T, F\}$$

$$D_{\tau \to \nu} = D_{\nu}^{D_{\tau}}$$

$$\mathcal{M} = \left(W, \, \left\{R^i\right\}_{i \in I} \, , \, \, \left\{\mathcal{D}_W\right\}_{W \in W} \, , \, \, \left\{\mathcal{I}_W\right\}_{W \in W} \, \right)$$

Family of interpretation functions \mathcal{I}_W $c_{\tau} \stackrel{\mathcal{I}_W}{\mapsto} d \in D_{\tau} \in \mathcal{D}_W$

Assume $\mathcal{I}_w(\neg)$, $\mathcal{I}_w(\lor)$... is standard.

$$\mathcal{M} = \left(\, W \, , \, \{ R^i \}_{i \in I} \, \, , \, \, \{ \mathcal{D}_W \}_{W \in W} \, \, , \, \, \{ \mathcal{I}_W \}_{W \in W} \, \, \right)$$

Value of a term (wrt. var. assignment *g*):

$$||X_{\tau}||^{\mathcal{M},g,w}=g_w(X)$$

: (not all shown here ...)

$$\|\Box_{o\to o}^i s_o\|^{\mathcal{M},g,w} = \begin{cases} T & \text{if } \|s_o\|^{\mathcal{M},g,v} = T \text{ for all } v \in W \text{ s.t. } (w,v) \in R^i \\ F & \text{otherwise} \end{cases}$$

Assume Henkin semantics

- 1. Axiomatization of \Box^i
- 2. Quantification
- 3. Rigidity
- 4. Consequence

- What properties does the box operators have?
- Depending on the application domain

Some popular axiom schemes:

Name	Axiom scheme	Condition on r^i	Corr. formula
K	$\Box^{i}(s\supset t)\supset (\Box^{i}s\supset \Box^{i}t)$	_	_
В	$s \supset \Box^i \Diamond^i s$	symmetric	$wR^iv\supset vR^iw$
D	$\Box^i s \supset \Diamond^i s$	serial	∃v.wR ⁱ v
T/M	$\Box^i s \supset s$	reflexive	wR ⁱ w
4	$\Box^i s \supset \Box^i \Box^i s$	transitive	$(wR^i \lor \land \lor R^i u) \supset wR^i u$
5	$\Diamond^i s \supset \Box^i \Diamond^i s$	euclidean	$(wR^i v \wedge wR^i u) \supset vR^i u$

- 2. Quantification
- 3. Rigidity
- 4. Consequence

What properties does the box operators have?

2. Quantification

- What is the meaning of ∀?
- Several popular choices exist
 - (1) Varying domains: As introduced (unrestricted frames)
 - (2) Constant domains: $\mathcal{D}_W = \mathcal{D}_V$ for all worlds $w, v \in W$
 - (3) Cumulative domains: $\mathcal{D}_W \subseteq \mathcal{D}_V$ whenever $(w, v) \in R^i$
 - (4) Decreasing domains: $\mathcal{D}_w \supseteq \mathcal{D}_v$ whenever $(w, v) \in R^i$

3. Rigidity

4. Consequence

What properties does the box operators have?

2. Quantification

What is the meaning of ∀?

3. Rigidity

- ▶ Do all constants $c \in \Sigma$ denote the same object at every world?
- Several popular choices exist
 - (1) Flexible constants: As introduced (unrestricted \mathcal{I}_{w})
 - (2) Rigid constants: $\mathcal{I}_W(c) = \mathcal{I}_V(c)$ for all worlds $w, v \in W$ and all $c \in \Sigma$

4. Consequence

What properties does the box operators have?

2. Quantification

What is the meaning of ∀?

3. Rigidity

▶ Do all constants $c \in \Sigma$ denote the same object at every world?

4. Consequence

- ▶ What is an appropriate notion of logical consequence \models^{HOML} ?
- Many choices exist, two of them are
 - (1) Local consequence: ... not displayed here ...
 - (2) Global consequence: ... not displayed here ...

What properties does the box operators have?

2. Quantification

What is the meaning of ∀?

3. Rigidity

▶ Do all constants $c \in \Sigma$ denote the same object at every world?

4. Consequence

▶ What is an appropriate notion of logical consequence \models^{HOML} ?

 \longrightarrow at least $10 \times 4 \times 2 \times 2 = 160$ distinct logics

What properties does the box operators have?

2. Quantification

What is the meaning of ∀?

3. Rigidity

▶ Do all constants $c \in \Sigma$ denote the same object at every world?

4. Consequence

▶ What is an appropriate notion of logical consequence \models^{HOML} ?

Example: Modal logic S5, constant domains, rigid symbols

Generated by **5**: $\Diamond^i s \supset \Box^i \Diamond^i s$

Theorems: all classical tautologies,

 $s \supset \Box^i \Diamond^i s$, $\square^{l} S \supset S$.

 $\forall X \sqcap^i f X \supset \sqcap^i \forall X f X$

(reflexive r^i)

(Barcan formula)

(symmetric r^i)

Automation approach: Encode HOML semantics within (classical) HOL

HOL (meta-logic): HOML (target logic):

Embedding of _____ in

in

(1) Introduce new type μ for worlds

HOML formulas s_o are mapped to HOL predicates $s_{\mu \to o}$

- (2) Introduce new constants $r_{\mu \to \mu \to 0}^i$ for each $i \in$
- (3) Connectives:

$$\neg_{0 \to 0} =$$

$$\lor_{0 \to 0 \to 0} =$$

$$\sqcap_{(T \to 0) \to 0}^{T} =$$

(4) Meta-logical notions:

Automation approach: Encode HOML semantics within (classical) HOL

HOL (meta-logic):s, t :=HOML (target logic):s, t :=

Embedding of _____ in ___

(1) Introduce new type μ for worlds

HOML formulas s_0 are mapped to HOL predicates $s_{\mu \to 0}$

- (2) Introduce new constants $r^i_{\mu \to \mu \to o}$ for each $i \in I$
- (3) Connectives:

$$\begin{array}{c}
\neg_{0\to 0} = \\
\lor_{0\to 0\to 0} = \\
\Pi^{\tau}_{(\tau\to 0)\to 0} = \\
\square_{0\to 0} =
\end{array}$$

(4) Meta-logical notions:

Automation approach: Encode HOML semantics within (classical) HOL

HOL (meta-logic):
$$s, t :=$$
HOML (target logic): $s, t :=$

Embedding of _____ in

in

- (1) Introduce new type μ for worlds
 - HOML formulas s_0 are mapped to HOL predicates $s_{\mu \to 0}$
- (2) Introduce new constants $r^i_{\mu \to \mu \to o}$ for each $i \in I$
- (3) Connectives:

$$\neg_{0 \to 0} =$$

$$\lor_{0 \to 0 \to 0} =$$

$$\sqcap_{(\tau \to 0) \to 0}^{\tau} =$$

$$\square_{0 \to 0} =$$

(4) Meta-logical notions:

Embedding procedure implemented as stand-alone tool

- Semantic specification is analyzed first
- (Meta-)logical notions are included as axioms/definitions
- Output format: "Plain THF" (TH0)
- Integrated as pre-processor into Leo-III

Evaluation setting:

- Translated all 580 mono-modal QMLTP problems to modal THF
- Semantic setting:
 - 1. Modal operator axiom system $\in \{K, D, T, S4, S5\}$
 - 2. Quantification semantics ∈ {constant, varying, cumul., decreasing}
 - 3. Rigid constants
 - 4. Consequence ∈ {local, global}
- Native modal logic prover: MleanCoP (J. Otten)
- ► HOL reasoners: Satallax, LEO-II, Nitpick
- ► Timeout 60s (2x AMD Opteron 2376 Quad Core/16 GB RAM)

Comments on evaluation result:

- ► MleanCoP not applicable to modal logic K
- MleanCoP not applicable to decreasing domains semantics
- MleanCoP not applicable to problems with equality symbol
- MleanCoP not applicable for global consequence
- ► Only first-order modal logic problems
- Embedding approach not restricted to benchmark settings

Evaluation setting:

- ► Translated all 580 mono-modal QMLTP problems to modal THF
- Semantic setting:
 - 1. Modal operator axiom system $\in \{K, D, T, S4, S5\}$
 - 2. Quantification semantics ∈ {constant, varying, cumul., decreasing}
 - 3. Rigid constants
 - 4. Consequence ∈ {local, global}
- Native modal logic prover: MleanCoP (J. Otten)
- ► HOL reasoners: Satallax, LEO-II, Nitpick
- ► Timeout 60s (2x AMD Opteron 2376 Quad Core/16 GB RAM)

Comments on evaluation result:

- MleanCoP not applicable to modal logic K
- MleanCoP not applicable to decreasing domains semantics
- MleanCoP not applicable to problems with equality symbol
- MleanCoP not applicable for global consequence
- Only first-order modal logic problems
- Embedding approach not restricted to benchmark settings

Result excerpt: Theorems

Result excerpt: Counter satisfiable (CSA)

Related work

- Generic theorem proving systems:
 The Logics Workbench, MetTeL2, LoTREC
- Embedding of further logics:
 Conditional logics, hybrid logics, many-valued logics, free logic, ...

Conclusion

- Provided a quite general semantics for HOML
- Presented a procedure that automatically converts HOML into HOL
- Implemented a stand-alone tool (e.g. as preprocessor)
 - standard HOL provers can be used to reason about problems encoded in the modal THF syntax
- Approach feasible (no evaluation for higher-order problems yet)
- Many new problems contributed in the modal THF format

Related work

- Generic theorem proving systems:
 The Logics Workbench, MetTeL2, LoTREC
- ► Embedding of further logics: Conditional logics, hybrid logics, many-valued logics, free logic, ...

Conclusion

- Provided a quite general semantics for HOML
- Presented a procedure that automatically converts HOML into HOL
- Implemented a stand-alone tool (e.g. as preprocessor)
 - standard HOL provers can be used to reason about problems encoded in the modal THF syntax
- Approach feasible (no evaluation for higher-order problems yet)
- Many new problems contributed in the modal THF format

Thank you for your attention!

HOL (meta-logic):s, t :=HOML (target logic):s, t :=

Embedding of in

(1) Introduce new type μ for worlds

HOML formulas s_o are mapped to HOL predicates $s_{\mu o o}$

- (2) Introduce new constants $r_{\mu \to \mu \to o}^{I}$ for each $i \in \mathbb{R}$
- (3) Connectives

HOL (meta-logic):s, t :=HOML (target logic):s, t :=

(1) Introduce new type u for worlds

- (1) Introduce new type μ for worlds
 - HOML formulas s_0 are mapped to HOL predicates $s_{\mu \to 0}$
- (2) Introduce new constants $r_{\mu \to \mu \to o}^{i}$ for each $i \in I$
- (3) Connectives

Embedding of in

(1) Introduce new type μ for worlds

HOML formulas s_0 are mapped to HOL predicates $s_{\mu \to o}$

- (2) Introduce new constants $r^i_{\mu \to \mu \to o}$ for each $i \in I$
- (3) Connectives:

HOL (meta-logic):s, t :=HOML (target logic):s, t :=

Embedding of _____ in

(1) Introduce new type μ for worlds

HOML formulas s_0 are mapped to HOL predicates $s_{\mu \to o}$

- (2) Introduce new constants $r_{\mu \to \mu \to o}^{i}$ for each $i \in I$
- (3) Connectives:

$$\neg_{o \to o} = \lambda S_{\mu \to o}.\lambda W_{\mu}. \neg (S W)
\lor_{o \to o \to o} = \lambda S_{\mu \to o}.\lambda T_{\mu \to o}.\lambda W_{\mu}. (S W) \lor (T W)
\Pi^{\tau}_{(\tau \to o) \to o} = \lambda P_{\tau \to \mu \to o}.\lambda W_{\mu}. \forall X_{\tau}. P X W
\square_{o \to o} = \lambda S_{\mu \to o}.\lambda W_{\mu}. \forall V_{\mu}. \neg (r^{i} W V) \lor S V$$

HOL (meta-logic):s, t :=HOML (target logic):s, t :=

Embedding of _____ in ___

(1) Introduce new type μ for worlds

HOML formulas s_0 are mapped to HOL predicates $s_{\mu \to 0}$

- (2) Introduce new constants $r^i_{\mu \to \mu \to o}$ for each $i \in I$
- (3) Connectives:

$$\neg_{o \to o} = \lambda S_{\mu \to o}.\lambda W_{\mu}. \neg (S W)
\lor_{o \to o \to o} = \lambda S_{\mu \to o}.\lambda T_{\mu \to o}.\lambda W_{\mu}. (S W) \lor (T W)
\sqcap^{\tau}_{(\tau \to o) \to o} = \lambda P_{\tau \to \mu \to o}.\lambda W_{\mu}. \forall X_{\tau}. P X W
$$\square_{o \to o} = \lambda S_{\mu \to o}.\lambda W_{\mu}. \forall V_{\mu}. \neg (r^{i} W V) \lor S V$$$$

valid =
$$\lambda s_{\mu \to o}$$
. $\forall W_{\mu}$. s W

- 1. Axiomatization of \Box^i
- 2. Quantification
- 3. Rigidity
- 4. Consequence

1. Axiomatization of \Box^i

Recall correspondences:

Name	Axiom scheme	Condition on r^i	Corr. formula
 B	 s ⊃ □ ⁱ ◊ ⁱ s	 symmetric	$wR^i v \supset vR^i w$

For each desired axiom scheme for \Box^i : Postulate frame condition on r^i as HOL axiom

- 2. Quantification
- 3. Rigidity
- 4. Consequence

1. Axiomatization of \Box^i

Postulate frame condition on r^i as HOL axiom

2. Quantification

Choose appropriate definition/axiomatization of quantifier: Constant domains quantifier:

$$\Pi_{(\tau \to o) \to o}^{\tau} = \lambda P_{\tau \to \mu \to o}.\lambda W_{\mu}. \forall X_{\tau}. PXW$$

Varying domains quantifier:

$$\Pi^{\tau_{(\tau \to 0) \to o}, Va} = \lambda P_{\tau \to \mu \to o}.\lambda W_{\mu}. \forall X_{\tau}. \ \neg(\text{eiw } X \ W) \lor (P \ X \ W)$$

Cumulative/decreasing domains quantifier:

Add axioms on eiw

- 3. Rigidity
- 4. Consequence

1. Axiomatization of \Box^i

Postulate frame condition on r^i as HOL axiom

2. Quantification

Choose appropriate definition/axiomatization of quantifier

3. Rigidity

Rigid constants:

Only translate Boolean types to predicates: $o = \mu \rightarrow o$

Rigid constants:

Also translate individuals types to predicates: $\iota = \mu \rightarrow \iota$

4. Consequence

- 1. **Axiomatization of** \Box^i Postulate frame condition on r^i as HOL axiom
- Quantification
 Choose appropriate definition/axiomatization of quantifier
- 3. **Rigidity**Appropriate type lifting
- 4. Consequence

Global consequence: Apply valid $_{(\mu \to o) \to o}$ to all translated $s_{\mu \to o}$

$$s_0 = \text{valid}_{(\mu \to 0) \to 0} s_{\mu \to 0}$$

Local consequence: Apply actuality operator ${\mathcal A}$ to all translated $s_{\mu o 0}$

$$s_0 = A_{(\mu \to 0) \to 0} s_{\mu \to 0}$$

where $A = \lambda S_{\mu \to o}$. s w_{actual} and w_{actual} is an uninterpreted symbol

(1) Formula syntax

```
thf( classical, axiom, ! [X:$i]: (p @ X)).
```

↓ Extend syntax with modalities

```
thf( modal, axiom, ! [X:$i]: ($box @ (p @ X))).
thf( multi_modal, axiom, ! [X:$i]: ($box_int @ 1 @ (p @ X))).
```

(2) Semantics configuration

Add "logic"-annotated statements to the problem:

```
thf(simple_s5, logic, ($modal := [
    $constants := $rigid,
    $quantification := $constant,
    $consequence := $global,
    $modalities := $modal_system_S5 ])).
```


(1) Formula syntax

```
thf( classical, axiom, ! [X:$i]: (p @ X)).
```

↓ Extend syntax with modalities

```
thf( modal, axiom, ! [X:$i]: ($box @ (p @ X))).
thf( multi_modal, axiom, ! [X:$i]: ($box_int @ 1 @ (p @ X))).
```

(2) **Semantics configuration**

Add "logic"-annotated statements to the problem:

```
thf(simple_s5, logic, ($modal := [
    $constants := $rigid,
    $quantification := $constant,
    $consequence := $global,
    $modalities := $modal_system_S5 ])).
```


(1) Formula syntax

```
thf( classical, axiom, ! [X:$i]: (p @ X)).
```

↓ Extend syntax with modalities

```
thf( modal, axiom, ! [X:$i]: ($box @ (p @ X))).
thf( multi_modal, axiom, ! [X:$i]: ($box_int @ 1 @ (p @ X))).
```

(2) Semantics configuration

Add "logic"-annotated statements to the problem:

```
thf(simple_s5, logic, ($modal := [
    $constants := $rigid,
    $quantification := $constant,
    $consequence := $global,
    $modalities := $modal_system_S5 ])).
```


(1) Formula syntax

```
thf( classical, axiom, ! [X:$i]: (p @ X)).
```

↓ Extend syntax with modalities

```
thf( modal, axiom, ! [X:$i]: ($box @ (p @ X))).
thf( multi_modal, axiom, ! [X:$i]: ($box_int @ 1 @ (p @ X))).
```

(2) Semantics configuration

Add "logic"-annotated statements to the problem:

```
thf( mydomain_type , type , ( human : $tType ) ).
thf( myconstant_declaration , type , ( myconstant : $i ) ).
thf( complicated_s5 , logic , ( $modal := [
    $constants := [ $rigid , myconstant := $flexible ] ,
    $quantification := [ $constant , human := $varying ] ,
    $consequence := [ $global , myaxiom := $local ] ,
    $modalities := [ $modal_system_S5, $box_int @ 1 := $modal_system_T ] ] ) ).
```