Chapter 27: Circuits

Rylan Polster

December 12, 2020

General

Quantities

R = resistance

i = current

 $\mathcal{E} = \text{electromotive force (EMF)}$

 $V_{AB} = \text{terminal voltage}$

1 Single-Loop Circuits

Loop Rule The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

Resistance Rule For a move through a resistance in the direction of the current, the change in potential is -iR; in the opposite direction it is +iR.

EMF Rule For a move through an ideal emf device in the direction of the emf arrow, the change in potential is $+\mathcal{E}$; in the opposite direction it is $-\mathcal{E}$.

Terminal Voltage and Internal Resistance

$$V_{\rm AB} = \mathcal{E} - iR \tag{1}$$

2 Resistors in Parallel and in Series

Resistance In Parallel

$$R_{\rm eq} = \sum_{j=1}^{n} \frac{1}{R_j} \tag{2}$$

Resistance In Series

$$R_{\rm eq} = \sum_{j=1}^{n} R_j \tag{3}$$

3 The Ammeter and the Voltmeter

Ammeters Ammeters must be placed in series with the component whose current is being measured. The ammeters should have a resistance that is as low as possible $(R_{\text{ammeter}} \approx 0 \,\Omega)$.

Voltmeters Voltmeters must be placed in parallel with the component whose voltage is being measured. The voltmeter should have a resistance that is as high as possible $(R_{\text{voltmeter}} \approx \infty)$.