IB. Tech. - II semester

$(19BT2BS01) \ \textbf{TRANSFORMATION TECHNIQUES AND LINEAR ALGEBRA}$

(Common to EEE, ECE, EIE, CE, ME, CSE, CSSE & IT) MID-I (QUESTION BANK)

Question 1	
Which of the following is an even function of x ?	
(A) x^2	
(B) $x^2 - 4x$	Easy
$(C) \sin(2x) + 3x$	
(D) $x^3 + 6$	
Ans:A	
Question 2	
A periodic function $f(x)$ with period T satisfies	
(A) f(x+T) = f(2x)	
(B) $f(x+2T) = f(x)$	Easy
(C) $f(x+T) = -f(x)$	
(D) $f(x+T) = -f(2x)$	
Ans:B	
Question 3	
Question 5	
If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ then the value of b_n where $x \in (0, 2\pi)$ is	
If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ then the value of b_n where	
If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ then the value of b_n where $x \in (0, 2\pi)$ is	Easy
If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ then the value of b_n where $x \in (0, 2\pi)$ is $(A) \frac{1}{\pi} \int_0^{2\pi} f(x) dx$	Easy
If $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$ then the value of b_n where $x \in (0, 2\pi)$ is $(A) \frac{1}{\pi} \int_0^{2\pi} f(x) dx$ $(B) \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx$	Easy

Question 4	
If $f(x) = e^{-x}$ in (-1,1) then the value of a_0 is	
(A) 0	
(B) 2cosh1	Medium
(C) 2sinh1	
(D) 2	
Ans:C	
Question 5	
If $f(x)$ is even function in $(-l,l)$ then the Fourier coefficient b_n is	
(A) $\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n\pi x}{l} dx$	
(B) $\frac{1}{l} \int_{0}^{l} f(x) \cos \frac{n\pi x}{l} dx$ (C) $\frac{2}{l} \int_{0}^{l} f(x) dx$	Easy
(C) $\frac{2}{l} \int_{0}^{l} f(x) dx$	
(D) 0	
Ans:D	
Question 6	
The finite Fourier cosine transform of $f(x) = 1$, where $0 < x < \pi$ is	
$(A) \frac{1-(-1)^n}{n}$	
(B) 0	Medium
(C) $\frac{1+(-1)^n}{n}$	
(D) $1-(-1)^n$	
Ans:B	
Question 7	
The Fourier sine transform of e^{-ax} is	
(A) $\frac{a}{p^2 + a^2}$	Easy
(B) $\frac{p}{p^2 - a^2}$	

(C) $\frac{1}{p^2 + a^2}$ (D) $\frac{p}{p^2 + a^2}$	
(D) $\frac{p}{p^2 + a^2}$	
Ans:D	
Question 8	
If $f(x)$ $\begin{cases} 1 & \text{if } 0 \le x \le a \\ 0 & \text{if } x > a \end{cases}$ then the value of Fourier cosine transform $F_C[f(x)] = 0$	
(A) $\frac{\sin sa}{s}$	
(B) $\frac{\cos sa}{s}$	Easy
(C) $\frac{e^{as}}{s}$ (D) $\frac{1}{s}$	
(D) $\frac{1}{s}$	
Ans:A	
Question 9	
At the point of discontinuity $x = 0$, the limit of the function $f(x)$ can be defined as	
(A) $\frac{1}{2} [f(x+0) - f(x-0)]$	
(B) $\frac{1}{2} [f(x+0) + f(x-0)]$	Easy
(C) $\frac{1}{4} [f(x+0) - f(x-0)]$	
(D) $\frac{1}{4} [f(x+0) + f(x-0)]$	
Ans:B	
Question 10	
Which of the following is not Dirichlet's condition for the Fourier series expansion?	
(A) $f(x)$ is periodic, single valued and finite	Easy
(B) $f(x)$ has finite number of discontinuities in only one period	

(C) f(x) has finite number of maxima and minima(D) f(x) is a non-periodic, single valued and infinite	
(D) $f(x)$ is a non-periodic, single valued and infinite	
Ans:D	
Question 1 1	
The value of the Fourier coefficient a_0 for the function $f(x) = x$ in $(0,3)$ is	
1.10 (u.u. 0 0 1.10 1 0 0 0 1.10 1 0 1 0 1 0 1 0	
(A) 0	
(B) 1	ım
(C) 2	
(D) 3	
Ans:D	
Question 12	
For the function $f(x) = x^2$ in $(-2,2)$, the value of the Fourier coefficient a_0 is	
(A) 4/3	
(B) 1/3 Mediu	ım
(C) 2/3	
(D) 8/3	
Ans:D	
Question 13	
The period of $\sin x$ is	
(A) π	
(B) 2π	
Easy	
(C) $\frac{\pi}{2}$	
(D) $\frac{\pi}{3}$	
Ans:B	
Question 14	
If $f(x) = x^3$ where $x \in (-\pi, \pi)$ then the value of the Fourier coefficient a_n is	
Easy	
(A) 0	
(B) 1	

(C) 2	
(D) - 1	
Ans:A	
Question 15	
If $f(x)$ can be expanded as a half-range cosine series in $(0,l)$, then the Fourier	
coefficient a_0 is	
$(A) \frac{1}{l} \int_{0}^{2l} f(x) dx$	
(B) $\frac{2}{l} \int_{0}^{l} f(x) dx$	Easy
(C) $\frac{1}{l} \int_{-l}^{l} f(x) dx$	
(D) $\frac{1}{l} \int_{0}^{l} f(x) dx$	
Ans:B	
Question 16	
The integral $f(x) = \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} \cos p(t-x) f(t) dt dp$ is	
(A) Fourier Cosine integral	
(B) Fourier Sine integral	Easy
(C) Fourier integral theorem	
(D) None	
Ans:C	
Question 17	
Which of the following is an infinite Fourier transform of $f(x)$?	
(A) $\frac{1}{\pi} \int_{-\infty}^{\infty} f(x) e^{ipx} dx$	Easy
(B) $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{ipx} dx$	

(C) $\int_{0}^{\infty} f(x) e^{ipx} dx$	
(C) $\int_{-\infty}^{\infty} f(x)e^{ipx} dx$ (D) $\frac{1}{\pi} \int_{0}^{\infty} f(x)e^{ipx} dx$	
Ans:C	
Question 18	
The property $F[af(x)+bg(x)]=aF(p)+bG(p)$, where $F(p)$ and $G(p)$ is the Fourier	
transforms of $f(x)$ and $g(x)$ is known as	
(A) Linearity Property	
(B) First Shifting Property	Easy
(C) Modulation Property	
(D) Change of Scale Property	
Ans:A	
Question 19	
The value of the integral $\int_{-\pi}^{\pi} \cos mx \cos nx \ dx$ when $m = 0$ and $n = 0$ is	
(A) 0	
(B) π	Easy
$(C) 2\pi$	
(D) $\pi/2$	
Ans:C	
Question 20	
The value of $\int_{-\pi}^{\pi} \sin mx \sin nx dx$ when $m = n = 0$ is	
(A) 0	
(B) π	Easy
(C) 2π	
(D) $\pi/2$	
Ans:A	

Question 21	
The value of $\cos 2n\pi$ where n is a positive integer is	
(A) 1	
$(A) 1$ $(B) (1)^n$	
(B) (-1)	Easy
(B) $\left(-1\right)^{n}$ (C) $\left(-\frac{1}{2}\right)^{n}$ (D) $\left(\pi\right)^{-n}$	
(D) $(\pi)^{-n}$	
Ans:A	
Question 22	
The period of $\tan x$ is	
(A) π	
(B) 2π	
(C) $\frac{\pi}{2}$	Easy
(D) $\frac{\pi}{3}$	
Ans:A	
Question 23	
If $f(x)$ is an odd function, then the value of $\int_{-a}^{a} f(x) dx$ is	
$(A) \ 2\int_{0}^{a} f(x) dx$	
(A) $2\int_{0}^{a} f(x) dx$ (B) $\int_{0}^{a} f(x) dx$	Easy
(C) 0	
(D) 1	
Ans:C	
Question 24 For the function $f(x)$ we six we where $x \in (-7, 7)$ then the value of k in the Fourier	
For the function $f(x) = x \sin x$ where $x \in (-\pi, \pi)$ then the value of b_n in the Fourier series of $f(x)$ is	
	Easy
(A) -1	
(B) 1	

(C) 2sin1	
(D) 0	
Ans:D	
Question 25	
The half-range sine series for $f(x)$ in $(0, l)$ is	
(A) $\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$	
(B) $\sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$	Easy
(C) $\sin \frac{n\pi x}{l}$	
(D) $\cos \frac{n\pi x}{l}$	
Ans:A	
Question 26	
Which of the following is the Fourier sine integral of $f(x)$?	
$(A) \int_{0}^{\infty} \sin px \int_{0}^{\infty} f(t) \sin pt dt dp$	
(B) $\frac{2}{\pi} \int_{0}^{\infty} \cos px \int_{0}^{\infty} f(t) \cos pt dt dp$	Easy
(C) $\frac{2}{\pi} \int_{0}^{\infty} \sin px \int_{0}^{\infty} f(t) \sin pt dt dp$	
(D) $\int_{0}^{\infty} \cos px \int_{0}^{\infty} f(t) \cos pt dt dp$	
Ans:C	
Question 27	
The value of $\int_{0}^{\infty} e^{-2x} \cos x dx$ is	
(A) 2/5	Medium
(B) 1/5	
(C) 3/5	

(D) 1	
Ans:A	
O	
Question 28	
For the function $f(x) = x $ in $(-2,2)$, the Fourier coefficient a_0 is	
(A) 0	
(B) -1	Medium
(C) 2	
(D) -2	
Ans:C	
Question 29	
If $f(x) = \cos x $, then $f(x)$ is	
(A) an even function	
(B) a odd function	Easy
(C) neither even nor odd	
(D) cannot be decided	
Ans:A	
Question 30	
The value of $\sin n\pi$ where n is a positive integer is	
(A) 1	
(B) $\left(-1\right)^n$	Easy
(C) $\left(-\frac{1}{2}\right)^n$	
(D) 0 Ans:D	

Question 31	
The value of $L \left[e^{-3t} \right]$ is	
$(A)\frac{s}{s+3}$	
$(B)\frac{1}{s-3}$	
s-3	Easy
(C) s	Lasy
$(C)\frac{s}{s-3}$	
1	
$(D)\frac{1}{s+3}$	
Ans:D	
Question 32 If $I[f(x)] = \overline{f}(x)$ then $I[x]^{-3t} = [x]^{-3t}$ is	
If $L[f(t)] = \overline{f}(s)$, then $L[e^{-3t} \sin t]$ is	
(A) $\frac{1}{(s+3)^2+1}$	
$(s+3)^2+1$	
$\langle \mathbf{p} \rangle$ s	
(B) $\frac{s}{\left(s+3\right)^2+1}$	
	Medium
(C) $\frac{s}{(s-3)^2+1}$	
$(s-3)^2+1$	
(D) 1	
(D) $\frac{1}{(s-3)^2+1}$	
Ans:A	
Question 33 The value of $I[\sin t]$ when $s=0$ is	
The value of $L[\sin t]$ when $s = 0$ is	
(A) 0	
(B) 1	Easy
(C) 2	
(D) 3	
Ans:B	
Question 34	
If $L[\cos t] = \frac{s}{s^2 + 1}$ then $L\left[\cos\left(\frac{t}{3}\right)\right]$ is	
$(A) \frac{3s}{3s^2 + 1}$	Medium
$(B) \frac{9s}{3s^2 + 1}$	
38 +1	

$(C) \qquad \frac{9s}{9s^2 + 1}$	
$(D) \frac{3s}{3s^2 - 1}$	
Ans:C	
Question 35	
If $L[f(t)] = \overline{f}(s)$, then $L\left[\frac{f(t)}{t}\right]$ is	
(A) $\int_{0}^{t} \overline{f}(s) ds$	
(B) $\int_{0}^{t} s \overline{f}(s) ds$	Easy
(C) $\int_{s}^{\infty} \overline{f}(s) ds$	
(D) $\int_{0}^{\infty} \overline{f}(s) ds$	
Ans:C	
Question 36	
The value of $L[t \sin t]$ is	
(A) $\frac{2s}{\left(s^2+1\right)^2}$	
(B) $\frac{s}{\left(s^2+1\right)^2}$	Medium
(C) $\frac{2s}{\left(s^2-1\right)^2}$	
(D) $\frac{2}{\left(s^2+1\right)^2}$	
Ans:A Question 37	
Laplace transform of function $f(t) = t^3$ where $t \ge 0$ is	
$(A) \frac{3}{s^4}$	
(B) $\frac{6}{s^3}$ (C) $\frac{3}{s^3}$	Easy
(C) $\frac{3}{s^3}$	

(D) $\frac{6}{s^4}$	
Ans:D	
Question 38	
If $L\left[e^{-at}\right] = \frac{1}{s+a}$, then $L\left[\int_{0}^{t} e^{-at} dt\right]$ is	
(A) $\frac{1}{s+a}$	
(B) $\frac{1}{s(s+a)}$	Eggy
	Easy
(C) $\frac{1}{s(s-a)}$	
s(s-a)	
(D) $\frac{1}{s-a}$	
$\frac{(D)}{s-a}$	
Ans:B	
Question 39	
The period of $\cos 2t$ is (A) π	
(B) 2π	
	Easy
(C) $\frac{\pi}{2}$	
(D) none of these	
Ans:A	
Question 40	
The value of the integral $\int_{0}^{\infty} e^{-t} \cos 3t dt$ by using Laplace transform is	
(A) $\frac{1}{10}$	
10	
(B) 10 (C) $\frac{3}{10}$ (D) $\frac{10}{3}$	Medium
$(C) \frac{3}{10}$	
10	
(D) $\frac{10}{3}$	
Ans:A	

Question 41	
The Laplace transform of $\cos 3t$ is	
(A) $\frac{s}{s^2+9}$	
(B) $\frac{s}{s^2 - 9}$	
(C) $\frac{3}{s^2 + 9}$	Easy
(D) $\frac{3}{s^2-9}$	
Ans:A	
Question 42 If $L\lceil f(t) \rceil = \overline{f}(s)$, then $L\lceil t^n f(t) \rceil$ is	
(A) $\left(-1\right)^{n+1} \frac{d^n}{ds^n} \left[\overline{f}(s) \right]$	
(B) $\frac{d^n}{ds^n} \Big[\overline{f}(s) \Big]$	Easy
(C) $\left(-1\right)^{n} \frac{d^{n}}{ds^{n}} \left[\overline{f}\left(s\right)\right]$	
(D) $\left(-1\right)^{n-1} \frac{d^n}{ds^n} \left[\overline{f}(s)\right]$	
Ans:C Question 43	
The value of $\Gamma\left(\frac{3}{2}\right)$ is	
(A) $\frac{\sqrt{\pi}}{2}$	
(B) $\sqrt{\pi}$	Easy
(C) $2\sqrt{\pi}$	
(C) $2\sqrt{\pi}$ (D) $-\frac{\sqrt{\pi}}{2}$	
Ans:A	

Question 44	
The Laplace transform of $e^{-t}\cos 2t$ is	
$(A) \frac{s}{s^2 + 4}$	
(B) $\frac{s-1}{s^2+2s+5}$	Medium
(C) $\frac{s+1}{s^2-2s-5}$	
(D) $\frac{s+1}{s^2+2s+5}$	
Ans:D	
Question 45 If $L[f(t)] = \overline{f}(s)$ then $L\begin{bmatrix} \int_{0}^{t} f(u) du \end{bmatrix}$ is	
(A) $\overline{f}(s)$	
(B) $\frac{1}{s}\overline{f}(s)$	Easy
(C) $\frac{1}{s^2}\overline{f}(s)$	
(D) $\frac{1}{s^3} \overline{f}(s)$	
Ans:B	
Question 46 The Laplace transform of $t^{\frac{3}{2}}$ is $\frac{3\sqrt{\pi}}{4s^{\frac{5}{2}}}$. Then $L\left[e^{-t}t^{\frac{3}{2}}\right]$ is	
(A) $\frac{\sqrt{\pi}}{4s^{5/2}}$	
(B) $\frac{3\sqrt{\pi}}{4(s+1)^{5/2}}$	Easy
(A) $\frac{\sqrt{\pi}}{4s^{\frac{5}{2}}}$ (B) $\frac{3\sqrt{\pi}}{4(s+1)^{\frac{5}{2}}}$ (C) $\frac{\sqrt{\pi}}{4(s+1)^{\frac{5}{2}}}$ (D) $\frac{3\sqrt{\pi}}{4s^{\frac{5}{2}}}$	
$(D) \frac{3\sqrt{\pi}}{4s^{5/2}}$	
Ans:B	

Question 47	
The value of $L\left[\int_{0}^{t} \cosh 2t dt\right]$	
(A) $\frac{1}{s^2 - 4}$	
(B) $\frac{1}{s}$	Easy
$(C) \frac{1}{s(s^2-4)}$	•
(D) $\frac{1}{s^2(s^2-4)}$	
Ans:A	
Question 48	
If $L\left[\frac{1-\cos at}{t}\right] = \frac{1}{2}\log\left(\frac{s^2+a^2}{s^2}\right)$; then the value of $L\left[\frac{1-\cos t}{t}\right]$ is	
(A) $\log\left(\frac{s^2+1}{s^2}\right)$	
(B) $\frac{1}{2}\log\left(\frac{s^2+1}{s^2}\right)$	Easy
(C) $\log\left(\frac{1}{s^2}\right)$	
(D) $\frac{1}{2}\log\left(\frac{s^2+1}{s^2+2}\right)$	
Ans:B	
Question 49	
If $t \to \infty$ $e^{-3t} t^2 = 0$ then the function $f(t) = t^2$ is of	
(A) exponential order 0	
(B) exponential order 2	Easy
(C) exponential order 3	
(D) is not of exponential order	
Ans:C	
	I

Question 50	
The Laplace transform of sinh at is	
$(A) \frac{s}{s^2 + a^2}$	
(B) $\frac{a}{s^2 + a^2}$	Easy
$(C) \frac{1}{s^2 + a^2}$	
(D) $\frac{a}{s^2 - a^2}$	
Ans:D	
Question 51	
If $L[f(t)] = \overline{f}(s)$ and $L[g(t)] = \overline{g}(s)$ then $L[c_1 f(t) + c_2 g(t)]$ is	
(A) $c_1 \overline{f}(s) + c_2 \overline{g}(s)$	
(B) $\frac{1}{c_1} \overline{f}(s) + \frac{1}{c_2} \overline{g}(s)$	Easy
(C) $L\{c_1 f(t)\}.L\{c_2 g(t)\}$	
(D) $c_1 \overline{f}(s).c_2 \overline{g}(s)$	
Ans:A Question 52	
The value of $L[e^{2t} + 4t^3]$ is	
$(A) \frac{s}{s+2} + \frac{9}{s^3}$	
(B) $\frac{1}{s-2} + \frac{11}{s^4}$	Easy
(C) $\frac{1}{s-2} + \frac{24}{s^4}$	
(D) $\frac{1}{s+2} + \frac{4}{s^4}$	
Ans:C	
	1

Question 53	
The Laplace transform of $f(t)$ is $\overline{f}(s)$, then the Laplace transform of $f(at)$ is	
(A) $a \bar{f} \left(\frac{s}{a} \right)$	
(B) $a \overline{f}(as)$	Easy
(C) $\frac{1}{a}\overline{f}(as)$	240)
(D) $\frac{1}{a}\overline{f}\left(\frac{s}{a}\right)$	
Ans:D	
Question 54	
The value of $L\begin{bmatrix} \int_0^t t^2 dt \end{bmatrix}$	
(A) $\frac{2}{s^4}$	
(B) $\frac{1}{s^4}$	Medium
(B) $\frac{1}{s^4}$ (C) $\frac{2}{s^3}$	
(D) $\frac{1}{s^3}$	
Ans:A	
Question 55	
If $L(\cos 2t) = \frac{s}{s^2 + 4}$ then $L(t\cos 2t) =$	
(A) $\frac{s^2 - 4}{\left(s^2 + 4\right)^2}$	
(B) $\frac{s^2 - 3}{\left(s^2 + 3\right)^2}$	Easy
$(C) \frac{2s}{\left(s^2+4\right)^2}$	
$(D) \frac{4s}{\left(s^2+4\right)^2}$	
Ans:A	

Question 56	
The Laplace Transform of unit step function $u(t-a)$ is	
$(A)\frac{e^{-as}}{s}$	
$(\mathrm{B})e^{-as}$	Easy
(C) $s.e^{-as}$	
(D) $\frac{e^{-as}}{s^2}$	
Ans:A	
Question 57	
If $L[f(t)] = \overline{f}(s)$ then $L[e^{at}f(t)]$ is equal to	
(A) $\overline{f}(s-a)$	
(B) $\overline{f}(s+a)$	Easy
(C) $a \overline{f}(s)$	Easy
(D) $\frac{1}{a} \overline{f}(s)$	
Ans:A	
Question 58	
The Laplace transform of $f(t)$ is $\overline{f}(s)$ then the Laplace transform of $f'(t)$ is (A) $s\overline{f}(s)$	
(B) $s^2 \overline{f}(s)$	
	Easy
(C) $s\bar{f}(s)-f(0)$	Lusy
(D) $s^2 \overline{f}(s) - sf(0)$	
Ans:C	
Question 59	
Given that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, the value of $L\left[\frac{1}{\sqrt{t}}\right]$ is	
(A) $\frac{\pi}{s}$	Modium
(B) $\sqrt{\frac{\pi}{s}}$ (C) $\frac{\sqrt{\pi}}{s}$	Medium
(C) $\frac{\sqrt{\pi}}{s}$	

(D) $s.\sqrt{\pi}$	
Ans:B	
Question 60	
If $L[f(t)] = \overline{f}(s)$ and $g(t) = \begin{cases} f(t-a), t > a \\ o, t < a \end{cases}$ then $L[g(t)]$ is	
(A) $e^{s} \bar{f}\left(\frac{s}{a}\right)$	
(B) $e^{-as}\overline{f}(s)$	Easy
(B) $e^{-as}\overline{f}(s)$ (C) $\frac{1}{a}\overline{f}(as)$	
(D) $\frac{1}{a}\overline{f}\left(\frac{s}{a}\right)$	
Ans:B	