

INTRODUCTION

The Billionaires Dataset Motive

- Though many of the billionaires in our dataset are not a popular celebrity, their wealth raises them to a higher status in the public eye
- 81 billionaires combined have more wealth than 50% of the world combined
 - o https://www.globalcitizen.org/en/content/wealth-inequality-oxfam-billionaires-elon-musk/
- Understanding how the bulk of wealth is distributed by billionaires across countries is necessary to understand the country's economic state
 - Are Americans wealthy or does the U.S. just have a lot of billionaires?
- Wealth can be self-made, but often is inherited from the previous generation

FORBES REAL-TIME BILLIONAIRES LIST

Variable Explanations					
age	Billionaire's age				
finalWorth	Net worth of the billionaire (in millions)				
_country	Given metric in the billionaire's country				
срі	Consumer Price Index				
selfMade	Wether the billionaire is self-made or if the wealth is inherited				
industries	What industry the billionaire's wealth is from				

VARIABLE SUMMARIES AND CORRELATION

WHAT IS THE TOP BILLIONAIRE PRODUCING INDUSTRY,
AND BASED ON THIS ANSWER, WHAT ARE THE AGE
DISTRIBUTIONS OF THIS INDUSTRY WITHIN THE TOP IO
BILLIONAIRE PRODUCING COUNTRIES?

TOP 5 INDUSTRIES AND TOP 10 COUNTRIES

AGE DISTRIBUTION OF BILLIONAIRES IN FINANCE INDUSTRY

BASED ON PERSONAL CHARACTERISTICS AND COUNTRY'S ECONOMIC FACTORS, CAN WE PREDICT A BILLIONAIRE'S FINAL WORTH?

DATA VISUALIZATION - MLR I

MULTIPLE LINEAR REGRESSION I

PARAMETER SELECTION:

- LEAST SQUARES
 WITH STEP AIC
- VARIABLE TRANSFORMATIONS
- CATEGORICAL PREDICTORS

ASSUMPTIONS FAILED

MODEL PREDICTORS:

- AGE
- TOTAL TAX RATE
- LIFE EXPECTANCY
- LOG GDP PER CAPITA

CREATED FROM EXISTING DATA

MULTIPLE LINEAR REGRESSION I

- R-SQUARED: 0.013
- RMSE: 9985.89 (9.98 BILLION)
 - USING A 5-FOLD CV
- ALL VIFS UNDER 5
 - NO MULTICOLLINEARITY

★ MOST SIGNIFICANT PREDICTOR: LOG GDP PER CAPITA

MODEL PREDICTORS:

- AGE
- TOTAL TAX RATE
- LIFE EXPECTANCY
- LOG GDP PER CAPITA

CREATED FROM EXISTING DATA

MOST SIGNIFICANT PREDICTOR: LOG GDP PER CAPITA

MULTIPLE LINEAR REGRESSION I

OPRAH WINFREY: \$2.5 BILLION ACTUAL WORTH

PREDICTION: \$5.8I BILLION

• CI: (5.12, 6.51)

GIORGIO ARMANI: \$II.I BILLION ACTUAL

PREDICTION: \$3.38 BILLION

CI: (2.00, 4.76)

HANNAH VALENTY: ?? BILLION ACTUAL

PREDICTION: \$4.09 BILLION

PI: (-15.88, 24.06)

CONCLUSIONS - MLR I

- While this model was not the best predictor, it guided us to create the GDP per capita feature
- Perhaps a future question about final worth could be asked using data about more localized regions, removing the constraint of repeated country values

FOR BOTH SELF-MADE AND NON-SELF-MADE BILLIONAIRES, WHICH FACTORS SEPARATE OLDER BILLIONAIRES FROM YOUNGER ONES?

- LOGISTIC REGRESSION -

VARIABLE EXPLORATION-LOGISTIC REGRESSION

MODEL I - SELF MADE BILLIONAIRES

```
summary(sm_logit_model3_lasso)
Call:
glm(formula = older ~ is_not_fin_tech + is_not_us_ch + log_worth +
    cpi_country + cpi_change_country + tax_revenue_country_country +
    total_tax_rate_country, family = "binomial", data = sm_logit)
Deviance Residuals:
    Min
              10 Median
                                       Max
-2.0234 -0.9875 -0.4730
                           0.9514 2.5790
Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
(Intercept)
                             0.767322
                                       0.470619 1.630 0.103006
                                       0.125318 8.502 < 2e-16 ***
is_not_fin_techTRUE
                             1.065439
is not us chTRUE
                             2.824790
                                       0.270516 10.442 < 2e-16 ***
                                       0.066613 3.512 0.000444 ***
loa worth
                             0.233976
cpi_country
                                       0.004521 -9.644 < 2e-16 ***
                            -0.043595
cpi_change_country
                             0.412706
                                       0.036817 11.210 < 2e-16 ***
tax_revenue_country_country -0.049606
                                       0.014958 -3.316 0.000912 ***
                             0.018539
                                       0.007047 2.631 0.008517 **
total_tax_rate_country
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2341.4 on 1692 degrees of freedom
Residual deviance: 2032.1 on 1685 degrees of freedom
AIC: 2048.1
Number of Fisher Scoring iterations: 4
```


Area under the curve: 0.7366

MODEL I EVALUATION-LOGISTIC REGRESSION

0.696402


```
# model predicts Mark Cuban correctly
mark_cuban<-sm_logit[592,c(29,28,24,15,16,21,22)]
|
predict(sm_logit_model3, mark_cuban, type="response")
```</pre>
```

table(predictions\$pred, predictions\$obs)

younger older younger 665 299 older 230 499

Accuracy: 0.688

True Positive Rate (TPR): 0.743 True Negative Rate (TNR): 0.625 False Positive Rate (FPR): 0.287 False Negative Rate (FNR): 0.257

### **MODEL 2 - NON SELF-MADE BILLIONAIRES**

```
summary(nsm_logit_model)
Call:
glm(formula = older ~ gender + is_not_fin_tech + finalWorth +
 total_tax_rate_country + population_country, family = "binomial",
 data = nsm_logit)
Deviance Residuals:
 Min
 10 Median
-1.993 -1.226 0.794 1.023 1.669
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 1.803e-01 3.770e-01 0.478 0.632341
(Intercept)
genderM
 3.570e-01 1.727e-01 2.067 0.038714 *
is_not_fin_techTRUE
 6.051e-01 2.265e-01 2.672 0.007551 **
finalWorth
 2.830e-05 1.211e-05 2.337 0.019460 *
total_tax_rate_country -2.309e-02 7.417e-03 -3.113 0.001854 **
 6.918e-10 1.929e-10 3.586 0.000336 ***
population_country
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 968.17 on 713 degrees of freedom
Residual deviance: 929.03 on 708 degrees of freedom
AIC: 941.03
Number of Fisher Scoring iterations: 4
```







### **MODEL 2 EVALUATION- LOGISTIC REGRESSION**





# model predicts Trudy Cathy White correctly
trudy\_cathy\_white<-sm\_logit[126,c(1,11,29,22,23)]</pre>

predict(nsm\_logit\_model, trudy\_cathy\_white, type="response")

126 0.7338769 Actual
Predicted younger older
younger 149 135
older 146 284

Accuracy: 0.606

True Positive Rate (TPR): 0.678
True Negative Rate (TNR): 0.505
False Positive Rate (FPR): 0.495
False Negative Rate (FNR): 0.322

<sup>\*\*</sup> Balance between overfitting and low accuracy\*\*

### **CONCLUSIONS - LOGISTIC REGRESSION**

- For self-made billionaires, economic data about their countries is important in predicting their age (compared to non-self-made billionaires)
- 2. Industry is an important predictor for both
  - Billionaires in the tech and finance industries are less likely to be older
- Einancial worth is an important predictor for both
  - 。 Richer billionaires are more likely to be older

# AGGREGATION: WHAT ECONOMIC FACTORS LEAD TO A COUNTRY HAVING A LOT OF BILLIONAIRES?

### PRINCIPAL COMPONENT ANALYSIS - DATA EXPLORATION

75 COUNTRIES IN THE DATASET, BUT ONLY 64 HAVE COUNTRY STATISTICS

NOTABLE COUNTRIES MISSING STATISTICS: HONG KONG, MONACO, TAIWAN

THE PROBLEM OF SUCH A SMALL DATASET LED US TO PCR







### PRINCIPAL COMPONENT ANALYSIS - MODEL SELECTION

#### **MODEL I: ALL 64 COUNTRIES**

- MAE (IO COMPONENTS): 15.55
- RMSE (IO COMPONENTS): 24.06



# MODEL 2: REMOVED COUNTRIES WITH OUTLIER CPI STATISTICS (ARGENTINA, NIGERIA, EGYPT)

- MAE (IO COMPONENTS): 16.77
- RMSE (IO COMPONENTS): 22.70

### PRINCIPAL COMPONENT ANALYSIS - PREDICTION

_	country	count <sup>‡</sup>	prediction	residual <sup>‡</sup>	cpi_country <sup>‡</sup>	gdp_country <sup>‡</sup>	total_tax_rate_country	population_country
1	Australia	43	38	5	119.80	1.392681e+12	47.4	25766605
2	Bahrain	1	21	-20	117.59	3.857407e+10	13.8	1501635
3	China	523	572	-49	125.08	1.991000e+13	59.2	1397715000
4	Colombia	1	3	-2	140.95	3.238028e+11	71.2	50339443
5	India	157	113	44	180.44	2.611000e+12	49.7	1366417754
6	Japan	38	123	-85	105.48	5.081770e+12	46.7	126226568
7	New Zealand	2	2	0	114.24	2.069288e+11	34.6	4841000
8	Qatar	2	-12	14	115.38	1.834662e+11	11.3	2832067
9	Russia	79	56	23	180.75	1.699877e+12	46.2	144373535
10	Singapore	46	14	32	114.41	3.720625e+11	21.0	5703569
11	Spain	25	30	-5	110.96	1.394116e+12	47.0	47076781
12	Sweden	26	32	-6	110.51	5.308329e+11	49.1	10285453
13	United Kingdom	82	75	7	119.62	2.827113e+12	30.6	66834405
14	United States	754	687	67	117.24	2.142770e+13	36.6	328239523

- ❖ SEEMS TO PREDICT TRADITIONALLY FIRST-WORLD COUNTRIES REASONABLY WELL, WITH SOME EXCEPTIONS
- ❖ POTENTIAL TO CONSTRAIN THE MODEL TO SOME EXTENT — NEGATIVE NUMBERS DON'T MAKE SENSE
- ❖ WHY ARE BAHRAIN AND QATAR SO DIFFERENT?
- ❖ WHY DOES THE MODEL DO SUCH A POOR JOB PREDICTING JAPAN AND SINGAPORE? POTENTIAL CLUES TO BE FOUND IN A MULTILINEAR REGRESSION MODEL?

### LIMITATIONS AND FUTURE WORK

- Some assumptions were not met to be able to create accurate models
- More data about the billionaires and the source of their wealth
- More data about the wealth distributions and demographics in the countries
- If the data was available, we could investigate at what age people became a billionaire and see if including that would change our models