Análisis numérico de elementos finitos

Dr. Stefan Frei Department of Mathematics University College London

Curso compacto, Parte II Universidad Nacional Agraria La Molina Agosto 2-8, 2017

Overview

Método de Galerkin

2 Elementos finitos

Aspectos prácticos

Formulación variacional

Hallar $u \in V$ tal que

$$a(u,\phi)=(f,\phi)_{\Omega}\quad\forall\phi\in V$$

Condiciones:

• Coercividad: $a(u, u) \ge \alpha ||u||_V^2$

• Continuidad: $a(u, \phi) \le c ||u||_V ||\phi||_V$

Problema: El espacio V tiene dimensión **infinito**, pero la computadora es **finita**

Método de Galerkin

• Sea $V_h \subset V$ un espacio finito (discretización **conforme**)

• Problema discreto: Hallar $u_h \in V_h$ tal que

$$a(u_h, \phi_h) = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in V_h$$

• Existencia y unicidad por el teorema de Lax-Milgram

Formulación variacional

Hallar $u \in V$ tal que

$$a(u,\phi)=(f,\phi)_{\Omega} \quad \forall \phi \in V$$

Condiciones:

• Coercividad: $a(u, u) \ge \alpha ||u||_V^2$

• Continuidad: $a(u, \phi) \le c \|u\|_V \|\phi\|_V$

Problema: El espacio V tiene dimensión **infinito**, pero la computadora es **finita**

Método de Galerkin:

- Sea $V_h \subset V$ un espacio finito (discretización **conforme**)
- Problema discreto: Hallar $u_h \in V_h$ tal que

$$a(u_h, \phi_h) = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in V_h$$

• Existencia y unicidad por el teorema de Lax-Milgram

Ortogonalidad de Galerkin

 $V_h \subset V$: discretización **conforme**

Subtraer el problema discreto del problema continuo resulta en

Ortogonalidad de Galerkin

$$a(u-u_h,\phi_h)=0 \quad \forall \phi \in V_h$$

Nota: Solo es valida para una discretización conforme

Propriedad de la mejor aproximación

Suponemos que $a(\cdot,\cdot)$ es simétrica: a(u,v)=a(v,u)Entonces, $a(\cdot,\cdot)$ es un producto escalar y

$$||u||_a := a(u,u)^{1/2}$$

define una norma, llamado norma de energía.

La ortogonalidad implica la

Propriedad de la mejor aproximación

$$|u - u_h||_a = \min_{\phi_h \in V_h} ||u - \phi_h||_a$$

Prueba: Para cada $\phi_h \in V_h$ tenemos

$$||u - u_h||_a^2 = a(u - u_h, u - u_h) = a(u - u_h, u - u_h) + \underbrace{a(u - u_h, u_h - \phi_h)}_{=0}$$
$$= a(u - u_h, u - \phi_h) \le ||u - u_h||_a ||u - \phi_h||_a$$

Entonces también para el mínimo

$$|u-u_h||_a \leq \min_{\phi_h \in V_h} ||u-\phi_h||_a.$$

Propriedad de la mejor aproximación

Suponemos que $a(\cdot,\cdot)$ es simétrica: a(u,v)=a(v,u) Entonces, $a(\cdot,\cdot)$ es un producto escalar y

$$||u||_a := a(u,u)^{1/2}$$

define una norma, llamado norma de energía.

La ortogonalidad implica la

Propriedad de la mejor aproximación

$$||u - u_h||_a = \min_{\phi_h \in V_h} ||u - \phi_h||_a$$

Prueba: Para cada $\phi_h \in V_h$ tenemos

$$||u - u_h||_a^2 = a(u - u_h, u - u_h) = a(u - u_h, u - u_h) + \underbrace{a(u - u_h, u_h - \phi_h)}_{=0}$$
$$= a(u - u_h, u - \phi_h) \le ||u - u_h||_a ||u - \phi_h||_a.$$

Entonces también para el mínimo

$$||u-u_h||_a\leq \min_{\phi_h\in V_h}||u-\phi_h||_a.$$

Error en la norma de V

Estimación: Utilizando la coercividad y continuidad tenemos

$$||u - u_h||_V \le \frac{1}{\sqrt{\alpha}} ||u - u_h||_{a} \le \frac{1}{\sqrt{\alpha}} \min_{\phi_h \in V_h} ||u - \phi_h||_{a}$$
$$\le \frac{\sqrt{c}}{\sqrt{\alpha}} \min_{\phi_h \in V_h} ||u - \phi_h||_{V}$$

El error de la discretización se reduce a **propiedades de aproximación** de espacios $V_h \subset V!$

Problema de Laplace

Problema de Laplace:

$$||u||_a := ||\nabla u||_{\Omega}$$

es una norma en el espacio $H_0^1(\Omega)$.

• Propriedad de la mejor aproximacíon:

$$\|\nabla(u-u_h)\|_{\Omega} = \min_{\phi_h \in V_h} \|\nabla(u-\phi_h)\|_{\Omega}$$

• Estimación en la norma de $H^1(\Omega)$:

$$\begin{aligned} \|u - u_h\|_{H^1(\Omega)} &\leq \sqrt{1 + c_P^2} \|\nabla(u - u_h)\|_{\Omega} \leq \sqrt{1 + c_P^2} \min_{\phi_h \in V_h} \|\nabla(u - \phi_h)\|_{\Omega} \\ &\leq \sqrt{1 + c_P^2} \min_{\phi_h \in V_h} \|u - \phi_h\|_{H^1(\Omega)} \end{aligned}$$

Overview

Método de Galerkin

2 Elementos finitos

Aspectos prácticos

Construcción de V_h

Métodos espectrales de Galerkin:

(i) Polinomios globales

$$V_h := \left\{ p(x,y) = \sum_{i,j=0}^m c_{ij} x^i y^j \right\}, \quad h = 1/m$$

(ii)

$$V_h := \left\{ t(x,y) = \sum_{i,j=0}^m c_{ij} \sin(i\pi x) \sin(j\pi y)
ight\}, \quad h = 1/m$$

Problema: Implementación de condiciones de frontera en dominios complejos

$$u|_{\partial\Omega}=0 \quad \forall u \in V_h$$

Elementos finitos

Triangulación \mathcal{T}_h del dominio Ω :

$$\overline{\Omega} = \cup_{T \in \mathcal{T}_h} \overline{T}$$

Utilizamos un espacio polinomial en cada célula T

(iii) Elementos finitos

$$V_h := \left\{ v \in \mathit{C}(\Omega) \,\middle|\, v|_T \in \mathit{P}(T) \,orall T \in \mathcal{T}_h, \, v = 0 \,\, ext{en} \,\, \partial \Omega
ight\}$$

Espacios polinomiales

• 2d:
$$P(T) = P_m(x, y) = \sum_{i+j \le m} c_{ij} x^i y^j$$
, $Q_m(x, y) = \sum_{i,j \le m} c_{ij} x^i y^j$

• 3d:
$$P(T) = P_m(x, y, z) = \sum_{i+j+k \le m} c_{ijk} x^i y^j z^k$$
,
 $Q_m(x, y, z) = \sum_{i,i,k \le m} c_{ijk} x^i y^j z^k$

Espacios conformes

• Método conforme: $V_h \subset V$

• Para el problema de Laplace $V = H_0^1(\Omega)$

• Ecuación de la placa: $V = H_0^2(\Omega)$

Lema (Regularidad)

Sea $v: \Omega \to \mathbb{R}$ con $v_{|T} \in C^{\infty}(T)$ para cada célula T de una triangulación con $\overline{\Omega} = \cup_{T \in \mathcal{T}_b} \overline{T}$. Para $k \geq 1$, tenemos

$$v \in C^k(\Omega) \Leftrightarrow v \in H^{k+1}(\Omega)$$
.

• Para el problema de Laplace: Espacio conforme

$$V_h := \left\{ v \in C(\Omega) \,\middle|\, v|_T \in P(T) \,\forall T \in \mathcal{T}_h, \ v = 0 \ \text{en} \ \partial \Omega \right\}$$

• Para la ecuación de la place: Espacio conforme

$$V_h := \left\{ v \in C^1(\Omega) \,\middle|\, v|_T \in P(T) \,orall T \in \mathcal{T}_h, \; v = \partial_n v = 0 \; ext{en} \; \partial\Omega
ight\}$$

Espacios conformes

- Método conforme: $V_h \subset V$
- Para el problema de Laplace $V = H_0^1(\Omega)$
- Ecuación de la placa: $V = H_0^2(\Omega)$

Lema (Regularidad)

Sea $v: \Omega \to \mathbb{R}$ con $v_{|T} \in C^{\infty}(T)$ para cada célula T de una triangulación con $\overline{\Omega} = \cup_{T \in \mathcal{T}_b} \overline{T}$. Para $k \geq 1$, tenemos

$$v \in C^k(\Omega) \Leftrightarrow v \in H^{k+1}(\Omega)$$
.

• Para el problema de Laplace: Espacio conforme

$$V_h := \left\{ v \in C(\Omega) \,\middle|\, v|_T \in P(T) \,\forall T \in \mathcal{T}_h, \ v = 0 \ \text{en} \ \partial \Omega \right\}$$

• Para la ecuación de la place: Espacio conforme

$$V_h := \left\{ v \in C^1(\Omega) \,\middle|\, v|_T \in P(T) \,\forall T \in \mathcal{T}_h, \ v = \partial_n v = 0 \ \text{en} \ \partial \Omega
ight\}$$

Ejemplo: Elementos finitos P_1

 \bullet Triangulación del dominio $\Omega\subseteq\mathbb{R}^2$ con triángulos:

$$\mathcal{T}_h = \{\mathit{T}_1, \mathit{T}_2, \dots\}$$

Polinomios lineales

$$P_1 := \{p(x,y) = c_0 + c_1x + c_2y\}$$

Espacio finito

$$V_h := \left\{ v_h \in C(\overline{\Omega}) : v_h|_T \in P_1 \, \forall \, T \in \mathcal{T}_h, v = 0 \, \, \text{en} \, \, \partial \Omega
ight\}$$

Base

Sistema lineal

Hallar $u_h \in V_h$ tal que

$$a(u_h, \phi_h) = (f, \phi_h)_{\Omega} \quad \forall \phi_h \in V_h$$

Sea $\{\phi_i, i=1...N\}$ una base de V_h y $u_h = \sum_{j=1}^N u_j \phi_j$ con valores $u_j \in \mathbb{R}$.

El sistema se escribe equivalentemente

$$\sum_{j=1}^{N} u_j a(\phi_j, \phi_i) = (f, \phi_i)_{\Omega} \quad i = 1...N$$

Definiendo una matrix $A \in \mathbb{R}^{N \times N}$ y un vector $b \in \mathbb{R}^N$ con elementos

$$a_{ij} = a(\phi_j, \phi_i),$$

 $b_i = (f, \phi)$

obtenemos el sistema lineal

$$Au = t$$

Sistema lineal

Hallar $u_h \in V_h$ tal que

$$a(u_h,\phi_h)=(f,\phi_h)_{\Omega} \quad \forall \phi_h \in V_h$$

Sea $\{\phi_i, i=1...N\}$ una base de V_h y $u_h=\sum_{j=1}^N u_j\phi_j$ con valores $u_j\in\mathbb{R}$.

El sistema se escribe equivalentemente

$$\sum_{j=1}^{N} u_j a(\phi_j, \phi_i) = (f, \phi_i)_{\Omega} \quad i = 1...N$$

Definiendo una matrix $A \in \mathbb{R}^{N \times N}$ y un vector $b \in \mathbb{R}^N$ con elementos

$$a_{ij} = a(\phi_j, \phi_i),$$

 $b_i = (f, \phi)$

obtenemos el sistema lineal

$$Au = f$$

Ejemplo: Problema de Poisson con elementos P_1

Calculamos la matríz A para el problema de Poisson

$$a_{ij} = a(\phi_j, \phi_i) = (\nabla \phi_j, \nabla \phi_i)_{\Omega}$$

con elementos P1 en una triangulación uniforme

Matríz

Obtenemos

$$a_{ij} = \left\{ egin{array}{ll} 4 & ext{si } i=j \ -1 & ext{si } i=j\pm 1 \ ext{o} \ i=j\pm m \ 0 & ext{else}. \end{array}
ight.$$

Como matríz

$$\begin{pmatrix} 4 & -1 & \dots & -1 & & & \\ -1 & 4 & -1 & & & -1 & & & \\ & \ddots & \ddots & \ddots & & & \ddots & \\ -1 & & -1 & 4 & -1 & & & -1 \\ & \ddots & & \ddots & \ddots & \ddots & & \\ & & & & -1 & 4 & -1 \\ & & & -1 & & -1 & 4 \end{pmatrix}$$

- La matríz es dispersa por la definición de la base
- Muy importante para memoría y eficiencía de algoritmos para solucionar el sistema

Overview

Método de Galerkin

2 Elementos finitos

Aspectos prácticos

Triangulación general

En el caso de triángulos arbitrarios la calculación no es tan facil.

Utilizamos una **transformación** $\xi_T:\hat{T}\to T$ desde el triángulo de referencia \hat{T} para calcular los integrales allí

$$\xi_T(s,t) = x^0 + s(x^1 - x^0) + t(x^2 - x^0)$$

Su derivada está dado por

$$F = \nabla \xi_T = \left(x^1 - x^0, \quad x^2 - x^0 \right)$$

Definimos las funciones

$$\hat{\phi}(s,t) := \phi(\xi_T(s,t))$$

Transformación a la célula de referenica resulta en

$$\int_{T} \nabla \phi_{i} \cdot \nabla \phi_{j} \, dx = \int_{\hat{T}} |\det(F)| \left(F^{-T} \hat{\nabla} \hat{\phi}_{i} \right) \left(F^{-T} \hat{\nabla} \hat{\phi}_{j} \right) \, d(s, t)$$

Triangulación general

En el caso de triángulos arbitrarios la calculación no es tan facil.

Utilizamos una **transformación** $\xi_T:\hat{T}\to T$ desde el triángulo de referencia \hat{T} para calcular los integrales allí

$$\xi_{\tau}(s,t) = x^{0} + s(x^{1} - x^{0}) + t(x^{2} - x^{0})$$

Su derivada está dado por

$$F = \nabla \xi_T = \left(x^1 - x^0, \quad x^2 - x^0 \right)$$

Definimos las funciones

$$\hat{\phi}(s,t) := \phi(\xi_T(s,t))$$

Transformación a la célula de referenica resulta en

$$\int_{\mathcal{T}} \nabla \phi_i \cdot \nabla \phi_j \, d\mathsf{x} = \int_{\hat{\mathcal{T}}} \left| \det(\mathsf{F}) \right| \left(\mathsf{F}^{-\mathsf{T}} \hat{\nabla} \hat{\phi}_i \right) \left(\mathsf{F}^{-\mathsf{T}} \hat{\nabla} \hat{\phi}_j \right) \, d(\mathsf{s}, \mathsf{t})$$

Solucionar el sistema lineal

Considera una discretización con elementos P_1 con $N=10^6$ nodos en 2d

- Memória:
 - Matríz densa: $N^2 = 10^{12}$ elementos ($\approx 8TB$, 1 double $\approx 8B$)
 - Matríz dispersa: $cN=c10^6$ elementos, aquí c=5 ($\approx 40MB$, 1 double $\approx 8B$)
- Solución directo con eliminación de Gauss
 - Matríz densa: $\mathcal{O}(N^3) = \mathcal{O}(10^{18})$ operaciones aritméticas
 - Matríz dispersa: $\mathcal{O}(m^2N) = \mathcal{O}(N^2) = \mathcal{O}(10^{12})$ operaciones aritméticas
- Solución iterativo:
 - Métodos de Jacobi, Gauss-Seidel: convergencia muy lenta para problemas de este típo
 - Método del gradiente conjugado, Método multi-malla
 - ullet En 3 dimensiones normalmente $\gg 10^6$ nodos

Condiciones de Dirichlet

Posibilidad 1: Aumentar el sistema con condiciones adicionales

$$U \in \mathbb{R}^{N+M}$$
: $\widetilde{A}U = \widetilde{F}$

donde

$$\widetilde{A} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & I \end{pmatrix}$$
, $\widetilde{F} = \begin{pmatrix} F_1 \\ u_0 \end{pmatrix}$

- Desconocidos son los (N + M) puntos (interiores+exteriores)
- Matrix pierde la simetría

Posibilidad 2: Eliminación de las desconocidas en la frontera y añadir sus contribuciones al lado derecho

$$V \in \mathbb{R}^N$$
: $AV = F_{u_0}$

- Desconocidos son los (N) puntos interiores.
- Matríz simétrica (si $a(\cdot, \cdot)$ es simétrica).

Conclusión

• Método de Galerkin: Hallar $u_h \in V_h \subset V$ tal que

$$a(u_h, \phi_h) = (f, \phi_h) \quad \forall \phi_h \in V_h$$

Ortogonalidad de Galerkin

$$a(u-u_h,\phi_h)=0 \quad \forall \phi_h \in V_h$$

• Propriedad de la mejor aproximación

$$\|u - u_h\|_a = \min_{\phi_h \in V_h} \|u - \phi_h\|_a, \quad \|u - u_h\|_V \le \frac{\sqrt{c}}{\sqrt{\alpha}} \min_{\phi_h \in V_h} \|u - \phi_h\|_V$$

- Lo que falta:
 - Estimación de las propiedades de aproximación de los espacios $V_h \subset V$ dependiendo del tamaño de las celulas h

$$\min_{\phi_h \in V_h} \|u - \phi_h\|_V \le Ch^2 \|u\|_2$$

• Estimación del error en diferentes normas (norma de $L^2(\Omega)$)

Conclusión II

- Elementos finitos basados en espacios polinomiales en elementos
- Sistema lineal con matrizes dispersas
- Lo que falta: Construcción de elementos/espacios finitos y ejemplos