Ayrık Matematik

Bağıntılar ve Fonksiyonlar

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2010

Lisans

©2001-2010 T. Uyar, A. Yayımlı, E. Harmancı

You are free:

- to Share to copy, distribute and transmit the work
- to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
- Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Konular

- 1 Bağıntılar
 - Giriş
 - Küme İçi Bağıntılar
 - Eşdeğerlilik
- 2 Fonksiyonlar
 - Giriş
 - Güvercin Deliği İlkesi
 - Rekürsiyon

Bağıntı

Tanım

bağıntı:
$$\alpha \subseteq A \times B \times C \cdots \times N$$

- bağıntının her bir elemanı bir çoklu
- iki küme üzerindeyse: *ikili bağıntı* $\alpha \subset A \times B$
- gösterilim:
 - çizerek
 - matrisle

Bağıntı Örneği

Örnek

$$A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3\}$$

$$\alpha = \{(a_1, b_1), (a_1, b_3), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3), (a_4, b_1)\}$$

	b_1	b_2	<i>b</i> ₃
a_1	1	0	1
a_2	0	1	1
<i>a</i> ₃	1	0	1
<i>a</i> ₄	1	0	0

$$M_{\alpha} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix}$$

Bağıntı Bileşkesi

Tanım

bağıntı bileşkesi:

$$\alpha \subseteq A \times B \wedge \beta \subseteq B \times C$$

$$\Rightarrow \alpha\beta = \{(a, c) | a \in A, c \in C, \exists b \in B[a\alpha b \wedge b\beta c)]\}$$

 $M_{\alpha\beta} = M_{\alpha} \times M_{\beta}$

Bağıntı Bileşkesi Örneği

Bileşke Matrisi Örneği

Örnek

$$M_{lpha} = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} \hspace{1cm} M_{eta} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \end{bmatrix} \hspace{1cm} M_{lphaeta} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \ 1 & 1 & 1 & 0 \end{bmatrix}$$

Birleşme Özelliği

Teorem

$$(\alpha\beta)\gamma = \alpha(\beta\gamma) = \alpha\beta\gamma$$

Birleşme Özelliği

Tanıt.

$$(a,d) \in (\alpha\beta)\gamma$$

$$\Leftrightarrow \exists c[(a,c) \in \alpha\beta \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists c[\exists b[(a,b) \in \alpha \land (b,c) \in \beta] \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists b[(a,b) \in \alpha \land \exists c[(b,c) \in \beta \land (c,d) \in \gamma]]$$

$$\Leftrightarrow \exists b[(a,b) \in \alpha \land (b,d) \in \beta\gamma]$$

$$\Leftrightarrow (a,d) \in \alpha(\beta\gamma)$$

Bileşke Özellikleri

- $\alpha(\beta \cup \gamma) = \alpha\beta \cup \alpha\gamma$
- $\alpha(\beta \cap \gamma) \subseteq \alpha\beta \cap \alpha\gamma$
- $(\alpha \cup \delta)\beta = \alpha\beta \cup \delta\beta$
- $(\alpha \cap \delta)\beta \subseteq \alpha\beta \cap \delta\beta$

Bileşke Özellikleri

$$\alpha(\beta \cup \gamma) = \alpha\beta \cup \alpha\gamma.$$

$$(x,y) \in \alpha(\beta \cup \gamma)$$

$$\Leftrightarrow \exists z[(x,z) \in \alpha \land (z,y) \in (\beta \cup \gamma)]$$

$$\Leftrightarrow \exists z[(x,z) \in \alpha \land ((z,y) \in \beta \lor (z,y) \in \gamma)]$$

$$\Leftrightarrow \exists z[((x,z) \in \alpha \land (z,y) \in \beta) \land ((x,z) \in \alpha \land (z,y) \in \gamma)]$$

$$\Leftrightarrow (x,y) \in \alpha\beta \lor (x,y) \in \alpha\gamma$$

$$\Leftrightarrow (x,y) \in \alpha\beta \cup \alpha\gamma$$

Evrik Bağıntı

Tanım

$$\alpha^{-1}:\{(y,x)|(x,y)\in\alpha\}$$

$$M_{\alpha^{-1}} = M_{\alpha}^T$$

Evrik Bağıntının Özellikleri

$$(\alpha^{-1})^{-1} = \alpha$$

$$(\alpha \cup \beta)^{-1} = \alpha^{-1} \cup \beta^{-1}$$

$$(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}$$

$$\overline{\alpha}^{-1} = \overline{\alpha^{-1}}$$

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}$$

$$\quad \blacksquare \ \alpha \subset \beta \Rightarrow \alpha^{-1} \subset \beta^{-1}$$

Evrik Bağıntı Teoremleri

$$\overline{\alpha}^{-1} = \overline{\alpha^{-1}}.$$

$$(x,y) \in \overline{\alpha}^{-1}$$

$$\Leftrightarrow (y,x) \in \overline{\alpha}$$

$$\Leftrightarrow (y,x) \notin \alpha$$

$$\Leftrightarrow (x,y) \notin \alpha^{-1}$$

$$\Leftrightarrow (x,y) \in \overline{\alpha}^{-1}$$

Evrik Bağıntı Teoremleri

$$(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}.$$

$$(x,y) \in (\alpha \cap \beta)^{-1}$$

$$\Leftrightarrow (y,x) \in (\alpha \cap \beta)$$

$$\Leftrightarrow (y,x) \in \alpha \land (y,x) \in \beta$$

$$\Leftrightarrow (x,y) \in \alpha^{-1} \land (x,y) \in \beta^{-1}$$

$$\Leftrightarrow (x,y) \in \alpha^{-1} \cap \beta^{-1}$$

Evrik Bağıntı Teoremleri

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}$$
.

$$(\alpha - \beta)^{-1} = (\alpha \cap \overline{\beta})^{-1}$$
$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$
$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$
$$= \alpha^{-1} - \beta^{-1}$$

Bileşke Evriği

Teorem

$$(\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$$

Tanıt.

$$(c, a) \in (\alpha\beta)^{-1}$$

$$\Leftrightarrow (a, c) \in \alpha\beta$$

$$\Leftrightarrow \exists b[(a, b) \in \alpha \land (b, c) \in \beta]$$

$$\Leftrightarrow \exists b[(c, b) \in \beta^{-1} \land (b, a) \in \alpha^{-1}]$$

$$\Leftrightarrow (c, a) \in \beta^{-1}\alpha^{-1}$$

Bileşke Evriğinin Matrisi

$$M_{(\alpha\beta)^{-1}} = M_{\beta^{-1}} \times M_{\alpha^{-1}}$$

$$M_{\alpha\beta}^T = M_{\beta}^T \times M_{\alpha}^T$$

Bileşke Evriğinin Matrisi Örnekleri

Örnek

$$M_{lpha} = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} \hspace{1cm} M_{eta} = egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \end{bmatrix} \ M_{lphaeta^{-1}} = egin{bmatrix} 1 & 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Kümeiçi Bağıntı

$$\alpha \subseteq A \times A$$

- birim bağıntı $E = \{(x, x) | x \in A\}$
- bileşke: $\alpha\alpha = \alpha^2$
 - $\alpha \alpha \dots \alpha = \alpha^n$

Kümeiçi Bağıntı Özellikleri

- yansıma
- bakışlılık
- geçişlilik

Yansıma

yansımalı

$$\alpha \subseteq A \times A$$
$$\forall a \ [a\alpha a]$$

- yansımasız:
 - $\exists a \ [\neg(a\alpha a)]$
- ters yansımalı:

$$\forall a \left[\neg (a\alpha a) \right]$$

Yansıma Örnekleri

Örnek

$$\mathcal{R}_1 \subseteq \{1,2\} \times \{1,2\}$$

 $\mathcal{R}_1 = \{(1,1),(2,2)\}$

 \blacksquare \mathcal{R}_1 yansımalı

Örnek

$$\begin{aligned} \mathcal{R}_2 &\subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R}_2 &= \{(1,1),(2,2)\} \end{aligned}$$

 \blacksquare \mathcal{R}_2 yansımasız

Yansıma Örnekleri

Örnek

$$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$
$$\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$$

 \blacksquare \mathcal{R} ters yansımalı

Yansıma Örnekleri

Örnek

$$\mathcal{R}\subseteq \mathbb{Z}\times \mathbb{Z}$$

$$(a,b)\in\mathcal{R}\equiv ab\geq 0$$

 \blacksquare \mathcal{R} yansımalı

Bakışlılık

bakışlı

$$\alpha \subseteq A \times A$$

$$\forall a, b[(a = b) \lor (a\alpha b \land b\alpha a) \lor (\neg(a\alpha b) \land \neg(b\alpha a))]$$

$$\forall a, b[(a = b) \lor (a\alpha b \leftrightarrow b\alpha a)]$$

- bakışsız: $\exists a, b[(a \neq b) \land (a\alpha b \land \neg(b\alpha a)) \lor (\neg(a\alpha b) \land b\alpha a))]$
- ters bakışlı:

$$\forall a, b \ [(a = b) \lor \neg(a\alpha b) \lor \neg(b\alpha a)]$$

$$\Leftrightarrow \forall a, b \ [\neg(a\alpha b \land b\alpha a) \lor (a = b)]$$

$$\Leftrightarrow \forall a, b \ [(a\alpha b \land b\alpha a) \rightarrow (a = b)]$$

Bakışlılık Örnekleri

Örnek

$$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$
$$\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$$

lacksquare $\mathcal R$ bakışsız

Bakışlılık Örnekleri

Örnek

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $(a,b) \in \mathcal{R} \equiv ab \geq 0$

■ R bakışlı

Bakışlılık Örnekleri

Örnek

$$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$

$$\mathcal{R} = \{(1, 1), (2, 2)\}$$

lacksquare $\mathcal R$ bakışlı ve ters bakışlı

Geçişlilik

geçişli

$$\alpha \subseteq A \times A$$

$$\forall a, b, c \ [(a\alpha b \wedge b\alpha c) \rightarrow (a\alpha c)]$$

- geçişsiz: $\exists a, b, c \ [(a\alpha b \land b\alpha c) \land \neg (a\alpha c)]$
- ters geçişli: $\forall a, b, c \ [(a\alpha b \land b\alpha c) \rightarrow \neg (a\alpha c)]$

Geçişlilik Örnekleri

Örnek

$$\mathcal{R} \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$$
$$\mathcal{R} = \{(1, 2), (2, 1), (2, 3)\}$$

■ R ters geçişli

Geçişlilik Örnekleri

Örnek

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$(a,b)\in\mathcal{R}\equiv ab\geq 0$$

■ R geçişsiz

Evrik Bağıntı

Teorem

Yansıma, bakışlılık ve geçişlilik özellikleri evrik bağıntıda korunur.

Örtüler

■ yansımalı örtü:

$$r_{\alpha} = \alpha \cup E$$

■ bakışlı örtü:

$$s_{\alpha} = \alpha \cup \alpha^{-1}$$

■ geçişli örtü:

$$t_{\alpha} = \bigcup_{i=1...n} \alpha^i = \alpha \cup \alpha^2 \cup \alpha^3 \cup \cdots \cup \alpha^n$$

Özel Bağıntılar

önce gelen - sonra gelen

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $(a,b) \in \mathcal{R} \equiv a-b=1$

- lacksquare $\mathcal R$ ters yansımalı
- R ters bakışlı
- R ters geçişli

bitişiklik

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $(a,b) \in \mathcal{R} \equiv |a-b| = 1$

- lacksquare $\mathcal R$ ters yansımalı
- R bakışlı
- R ters geçişli

dar sıra

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $(a,b) \in \mathcal{R} \equiv a < b$

- lacksquare $\mathcal R$ ters yansımalı
- R ters bakışlı
- R geçişli

kısmi sıra

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $(a,b) \in \mathcal{R} \equiv a \leq b$

- R yansımalı
- lacksquare $\mathcal R$ ters bakışlı
- R geçişli

önsıra

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$(a,b)\in\mathcal{R}\equiv|a|\leq|b|$$

- R yansımalı
- lacksquare $\mathcal R$ bakışsız
- R geçişli

sınırlı fark

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

 $(a,b) \in \mathcal{R} \equiv |a-b| \leq m$

- R yansımalı
- R bakışlı
- R geçişsiz

karşılaştırılabilirlik

$$\mathcal{R} \subseteq \mathbb{U} \times \mathbb{U}$$

 $(a,b) \in \mathcal{R} \equiv (a \subseteq b) \lor (b \subseteq a)$

- R yansımalı
- R bakışlı
- R geçişsiz

kardeşlik

- ters yansımalı
- bakışlı
- geçişli
- bir bağıntı bakışlı, geçişli ve ters yansımalı olabilir mi?

Uyuşma

Tanım

uyuşma bağıntısı: γ

- yansımalı
- bakışlı
- çizerek gösterilim yönsüz
- matris gösterilimi merdiven şeklinde
- \bullet $\alpha \alpha^{-1}$ bir uyuşma bağıntısıdır

Uyuşma Örnekleri

Örnek

$$A = \{a_1, a_2, a_3, a_4\}$$

$$\mathcal{R} = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_1, a_2), (a_2, a_1), (a_2, a_4), (a_4, a_2), (a_3, a_4), (a_4, a_3)\}$$

Uyuşma Örnekleri

Örnek ($\alpha \alpha^{-1}$)

A: kişiler, B: diller

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

$$B = \{b_1, b_2, b_3, b_4, b_5\}$$

$$\alpha \subseteq A \times B$$

$$M_{lpha} = egin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 \ \end{array}$$

$$M_{\alpha^{-1}} = egin{array}{ccccccc} 1 & 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ \end{array}$$

Uyuşma Örnekleri

Örnek ($\alpha \alpha^{-1}$)

$$\alpha \alpha^{-1} \subseteq A \times A$$

Uyuşanlar Sınıfı

Tanım

uyuşanlar sınıfı: $C \subseteq A$ $\forall a, b \ [a \in C \land b \in C \rightarrow a\gamma b]$

- en üst uyuşanlar sınıfı:
 başka bir uyuşanlar sınıfının altkümesi değil
- bir eleman birden fazla EÜS'ye girebilir
- eksiksiz örtü: C_{γ} tüm EÜS'lerin oluşturduğu küme

Uyuşanlar Sınıfı Örnekleri

Örnek $(\alpha \alpha^{-1})$

$$C_1 = \{a_4, a_6\}$$

$$C_2 = \{a_2, a_4, a_6\}$$

•
$$C_3 = \{a_1, a_2, a_4, a_6\}$$
 (EÜS)

$$C_{\gamma}(A) = \{ \{a_1, a_2, a_4, a_6\}, \{a_3, a_4, a_6\}, \{a_4, a_5\} \}$$

Eşdeğerlilik

Tanım

eşdeğerlilik bağıntısı: ϵ

- yansımalı
- bakışlı
- geçişli
- eşdeğerlilik sınıfları
- her eleman tek bir eşdeğerlilik sınıfına girer
- eksiksiz örtü: *C*_e

Bölmeleme

- her eşdeğerlilik bağıntısı tanımlandığı kümeyi ayrık eşdeğerlilik sınıflarına bölmeler
- her bölmeleme bir eşdeğerlilik bağıntısına karşı düşer

Eşdeğerlilik Örnekleri

Örnek

$$\mathcal{R}\subseteq\mathbb{Z}\times\mathbb{Z}$$

$$(a,b) \in \mathcal{R} \equiv 5 \mid |a-b|$$

 $x \mod 5$ işlemi $\mathbb Z$ kümesini yukarıdaki bağıntıya göre

5 eşdeğerlilik sınıfına bölmeler

Kaynaklar

Grimaldi

- Chapter 5: Relations and Functions
 - 5.1. Cartesian Products and Relations
- Chapter 7: Relations: The Second Time Around
 - 7.1. Relations Revisited: Properties of Relations
 - 7.4. Equivalence Relations and Partitions

Yardımcı Kitap: O'Donnell, Hall, Page

■ Chapter 10: Relations

Fonksiyon

Tanım

fonksiyon: $f: X \to Y$

$$\forall x \in X \ \forall y_1, y_2 \in Y \ (x, y_1), (x, y_2) \in f \Rightarrow y_1 = y_2$$

- X: tanım kümesi, Y: değer kümesi
- $(x,y) \in f \equiv y = f(x)$
- y, x'in f altındaki görüntüsü

Altküme Görüntüsü

Tanım

altküme görüntüsü:

$$f:X\to Y\wedge X_1\subseteq X$$

$$f(X_1) = \{y | y \in Y, x \in X_1 \land y = f(x)\}$$

Altküme Görüntüsü Örnekleri

Örnek

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x^2$$

- $f(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$
- $A = \{-2, 1\}$ $f(A) = \{1, 4\}$

Birebir Fonksiyon

Tanım

 $f: X \to Y$ fonksiyonu birebir:

 $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Birebir Fonksiyon Örnekleri

Örnek

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 3x + 7$$

$$f(x_1) = f(x_2)$$

$$\Rightarrow 3x_1 + 7 = 3x_2 + 7$$

$$\Rightarrow 3x_1 = 3x_2$$

$$\Rightarrow x_1 = x_2$$

Karşı Örnek

$$g: \mathbb{Z} \to \mathbb{Z}$$

 $g(x) = x^4 - x$
 $g(0) = 0^4 - 0 = 0$
 $g(1) = 1^4 - 1 = 0$

Örten Fonksiyon

Tanım

 $f: X \to Y$ fonksiyonu örten:

$$\forall y \in Y \ \exists x \in X \ f(x) = y$$

f(X) = Y

Örten Fonksiyon Örnekleri

Örnek

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x^3$$

Karşı Örnek

$$f:\mathbb{Z}\to\mathbb{Z}$$

$$f(x)=3x+1$$

Bijektif Fonksiyon

Tanım

 $f: X \to Y$ fonksiyonu bijektif:

f fonksiyonu birebir ve örten

Altküme Görüntüsü Özellikleri

- $f: A \rightarrow B \land A_1, A_2 \subseteq A$:
 - $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
 - $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - f birebir ise:

$$f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$$

Fonksiyon Bileşkesi

Tanım

$$f: X \to Y, g: Y \to Z$$

 $g \circ f: X \to Z$
 $(g \circ f)(x) = g(f(x))$

- değişme özelliği göstermez
- birleşme özelliği gösterir: $f \circ (g \circ h) = (f \circ g) \circ h$

Fonksiyon Bileşkesi Örnekleri

Örnek (değişme özelliği)

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x^{2}$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) = x + 5$$

$$g \circ f: \mathbb{R} \to \mathbb{R}$$

$$(g \circ f)(x) = x^{2} + 5$$

$$f \circ g: \mathbb{R} \to \mathbb{R}$$

$$(f \circ g)(x) = (x + 5)^{2}$$

Fonksiyon Bileşkesi Teoremleri

Teorem

```
f: X \to Y, g: Y \to Z:
 f birebir \land g birebir \Rightarrow g \circ f birebir
```

Tanıt.

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

$$\Rightarrow g(f(a_1)) = g(f(a_2))$$

$$\Rightarrow f(a_1) = f(a_2)$$

$$\Rightarrow a_1 = a_2$$

Fonksiyon Bileşkesi Teoremleri

Teorem

Tanıt.

$$\forall z \in Z \exists y \in Y \ g(y) = z$$

$$\forall y \in Y \ \exists x \in X \ f(x) = y$$

$$\Rightarrow \forall z \in Z \ \exists x \in X \ g(f(x)) = z$$

Birim Fonksiyon

Tanım

birim fonksiyon: 1_X

 $1_X:X\to X$

 $1_X(x) = x$

Evrik Fonksiyon

Tanım

$$f: X \to Y$$
 fonksiyonu evrilebilir:

$$\exists f^{-1}: Y \rightarrow X \ f^{-1} \circ f = 1_X \wedge f \circ f^{-1} = 1_Y$$

• f^{-1} : f fonksiyonunun evriği

Evrilebilir Fonksiyon Örnekleri

Örnek

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 2x + 5$$

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

$$f^{-1}(x) = \frac{x - 5}{2}$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(2x + 5) = \frac{(2x + 5) - 5}{2} = \frac{2x}{2} = x$$

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\frac{x - 5}{2}) = 2\frac{x - 5}{2} + 5 = (x - 5) + 5 = x$$

Fonksiyon Evriği

Teorem

Bir fonksiyon evrilebilirse evriği tektir.

Tanıt.

 $f \cdot X \rightarrow Y$

$$g, h: Y \to X$$

 $g \circ f = 1_X \land f \circ g = 1_Y$
 $h \circ f = 1_X \land f \circ h = 1_Y$

$$h = h \circ 1_Y = h \circ (f \circ g) = (h \circ f) \circ g = 1_X \circ g = g$$

Evrilebilir Fonksiyon

Teorem

Bir fonksiyon yalnız ve ancak birebir ve örten ise evrilebilir.

Evrilebilir Fonksiyon

Evrilebilir ise birebirdir.

$$f:A\to B$$

$$f(a_1) = f(a_2)$$

 $\Rightarrow f^{-1}(f(a_1)) = f^{-1}(f(a_2))$
 $\Rightarrow (f^{-1} \circ f)(a_1) = (f^{-1} \circ f)(a_2)$
 $\Rightarrow 1_A(a_1) = 1_A(a_2)$
 $\Rightarrow a_1 = a_2$

Evrilebilir ise örtendir.

$$f:A\to B$$

$$= 1_B(b)$$

$$= (f \circ f^{-1})(b)$$

$$= f(f^{-1}(b))$$

Evrilebilir Fonksiyon

Birebir ve örten ise evrilebilir.

$$f:A\to B$$

- f örten $\Rightarrow \forall b \in B \ \exists a \in A \ f(a) = b$
- lacksquare g: B o A fonksiyonu a = g(b) ile belirlensin
- $g(b) = a_1 \neq a_2 = g(b)$ olabilir mi?
- $f(a_1) = b = f(a_2)$ olması gerekir
- olamaz: f birebir

Permutasyonlar

permutasyon: küme içi bijektif bir fonksiyon

$$\left(\begin{array}{cccc}
a_1 & a_2 & \dots & a_n \\
p(a_1) & p(a_2) & \dots & p(a_n)
\end{array}\right)$$

■ *n* elemanlı bir kümede *n*! permutasyon tanımlanabilir

Permutasyon Örnekleri

$$A = \{1, 2, 3\}$$

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \quad p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Çevrimli Permutasyon

- *çevrimli permutasyon*:
 - elemanların bir altkümesi bir çevrim oluşturuyor
 - diğerleri yer değiştirmiyor

$$(a_i, a_j, a_k) =$$
 $\begin{pmatrix} \cdots & a_i & \cdots & a_n & \cdots & a_j & \cdots & a_k & \cdots \\ \cdots & a_j & \cdots & a_n & \cdots & a_k & \cdots & a_i & \cdots \end{pmatrix}$

■ transpozisyon: 2 uzunluklu çevrimli permutasyon

Çevrimli Permutasyon Örnekleri

$$A=\{1,2,3,4,5\}$$

$$(1,3,5) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{array}\right)$$

Permutasyon Bileşkesi

permutasyon bileşkesi değişme özelliği göstermez

$$A = \{1, 2, 3, 4, 5\}$$

$$(4, 1, 3, 5) \diamond (5, 2, 3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} \diamond \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

$$(5, 2, 3) \diamond (4, 1, 3, 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix} \diamond \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

Çevrimli Permutasyon Bileşkesi

 çevrimli olmayan her permutasyon ayrık çevrimlerin bileşkesi olarak yazılabilir

$$A = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 6 & 5 & 2 & 1 & 8 & 7 \end{pmatrix} = (1, 3, 6) \diamond (2, 4, 5) \diamond (7, 8)$$

Transpozisyon Bileşkesi

çevrimli her permutasyon transpozisyon bileşkesi olarak yazılabilir

$$A = \{1, 2, 3, 4, 5\}$$

$$(1,2,3,4,5) = (1,2) \diamond (1,3) \diamond (1,4) \diamond (1,5)$$

Güvercin Deliği İlkesi

Tanım

güvercin deliği ilkesi (Dirichlet kutuları): m adet güvercin n adet deliğe yerleşirse ve m > n ise en az bir delikte birden fazla güvercin vardır

- $f: X \to Y \land |X| > |Y|$ ise f birebir bir fonksiyon olamaz
- $\exists x_1, x_2 \in X \ x_1 \neq x_2 \land f(x_1) = f(x_2)$

- 367 kişinin bulunduğu bir yerde en az iki kişinin doğum günü aynıdır
- 0 ile 100 arasında notlar alınan bir sınavda en az iki öğrencinin aynı notu alması için sınava kaç öğrenci girmiş olmalıdır?

Genelleştirilmiş Güvercin Deliği İlkesi

Tanım

genelleştirilmiş güvercin deliği ilkesi:

m adet nesne n adet kutuya dağıtılırsa en az bir kutuda en az $\lceil m/n \rceil$ adet nesne olur

Örnek

100 kişinin bulunduğu bir yerde en az $\lceil 100/12 \rceil = 9$ kişi aynı ayda doğmuştur

Teorem

 $S = \{1,2,3,\ldots,9\}$ kümesinin 6 elemanlı herhangi bir altkümesinde toplamı 10 olan iki sayı vardır.

Teorem

S kümesi en büyüğü 14 olabilen 6 elemanlı bir pozitif tamsayılar kümesi olsun. S'nin boş olmayan altkümelerinin elemanlarının toplamlarının hepsi birbirinden farklı olamaz.

Tanıt Denemesi

 $A \subset S$

 $s_A:A'$ nın elemanlarının toplamı

delik:

$$1 \le s_A \le 9 + \cdots + 14 = 69$$

■ güvercin: $2^6 - 1 = 63$

Tanıt.

 $|A| \leq 5$ olan altkümelere bakalım.

delik:

$$1 \leq s_A \leq 10 + \cdots + 14 = 60$$

güvercin: $2^6 - 2 = 62$

Teorem

 $S = \{1, 2, 3, \dots, 200\}$ kümesinden seçilecek 101 elemanın içinde en az bir çift vardır ki çiftin bir elemanı diğerini böler.

Tanıt Yöntemi

- $\forall n \exists ! p \ (n = 2^r p \land r \ge 0 \land \exists t \in \mathbb{Z} \ p = 2t + 1)$ olduğu gösterilecek
- bu teorem kullanılarak asıl teorem tanıtlanacak

Teorem

$$\forall n \; \exists ! p \; (n = 2^r p \land r \ge 0 \land \exists t \in \mathbb{Z} \; p = 2t + 1)$$

Varlık Tanıtı.

$$n = 1$$
: $r = 0$, $p = 1$
 $n = 2$: $r = 1$, $p = 1$
 $n \le k$: $n = 2^{r}p$
 $n = k + 1$:
 $n \text{ asal}$: $r = 0$, $p = n$
 $\neg(n \text{ asal})$: $n = n_{1}n_{2}$
 $n = 2^{r_{1}}p_{1} \cdot 2^{r_{2}}p_{2}$
 $n = 2^{r_{1}+r_{2}} \cdot p_{1}p_{2}$

Teklik Tanıtı.

tek değilse:

$$n = 2^{r_1}p_1 = 2^{r_2}p_2$$

 $\Rightarrow 2^{r_1-r_2}p_1 = p_2$
 $\Rightarrow 2|p_2$
celiski

Teorem

 $S = \{1, 2, 3, ..., 200\}$ kümesinden seçilecek 101 elemanın içinde en az bir çift vardır ki çiftin bir elemanı diğerini böler.

Tanıt.

- $T \subseteq S$, T kümesi S kümesinin bütün tek elemanlarından oluşan altkümesi olsun: |T| = 100
- $f: S \to T, (s,t) \in f \equiv s = 2^r t \land r \ge 0$
 - S'den 101 eleman seçilirse en az ikisinin T'deki görüntüsü aynı olur: $f(s_1) = f(s_2) \Rightarrow 2^{m_1}t = 2^{m_2}t$

$$\frac{s_1}{s_2} = \frac{2^{m_1}t}{2^{m_2}t} = 2^{m_1-m_2}$$

Rekürsif Fonksiyonlar

Tanım

rekürsif fonksiyon:

kendisi cinsinden tanımlanan fonksiyon

$$f(n) = h(f(m))$$

 tümevarımla tanımlanan fonksiyon: her rekürsiyonda boyut azalıyor

$$f(n) = \begin{cases} k & n = 0 \\ h(f(n-1)) & n > 0 \end{cases}$$

Rekürsif Fonksiyon Örnekleri

Örnek
$$f91(n) = \begin{cases} n-10 & n > 100 \\ f91(f91(n+11)) & n \le 100 \end{cases}$$

Tümevarımla Tanımlanan Fonksiyon Örnekleri

Örnek (faktöryel)

$$f(n) = \begin{cases} 1 & n = 0 \\ n \cdot f(n-1) & n > 0 \end{cases}$$

Örnek (fonksiyon kuvveti)

$$f^n = \begin{cases} f & n = 1 \\ f \circ f^{n-1} & n > 1 \end{cases}$$

Euclid Algoritması

Örnek (ortak bölenlerin en büyüğü)

$$333 = 3 \cdot 84 + 81$$

$$84 = 1 \cdot 81 + 3$$

$$81 = 27 \cdot 3 + 0$$

$$obeb(333, 84) = 3$$

$$obeb(a, b) = \begin{cases} b & b | a \\ obeb(b, a \mod b) & b \nmid a \end{cases}$$

Fibonacci Dizisi

Fibonacci dizisi

$$F_n = fib(n) = \begin{cases} 1 & n = 1 \\ 1 & n = 2 \\ fib(n-1) + fib(n-2) & n > 2 \end{cases}$$

Fibonacci Dizisi

Teorem

$$\sum_{i=1}^n F_i^2 = F_n \cdot F_{n+1}$$

Tanıt.

$$n = 2: \qquad \sum_{i=1}^{2} F_{i}^{2} = F_{1}^{2} + F_{2}^{2} = 1 + 1 = 1 \cdot 2 = F_{2} \cdot F_{3}$$

$$n = k: \qquad \sum_{i=1}^{k} F_{i}^{2} = F_{k} \cdot F_{k+1}$$

$$n = k+1: \qquad \sum_{i=1}^{k+1} F_{i}^{2} = \sum_{i=1}^{k} F_{i}^{2} + F_{k+1}^{2}$$

$$= F_{k} \cdot F_{k+1} + F_{k+1}^{2}$$

$$= F_{k+1} \cdot (F_{k} + F_{k+1})$$

$$= F_{k+1} \cdot F_{k+2}$$

Ackermann Fonksiyonu

Ackermann fonksiyonu

$$ack(x,y) = \begin{cases} y+1 & x=0\\ ack(x-1,1) & y=0\\ ack(x-1,ack(x,y-1)) & x>0 \land y>0 \end{cases}$$

Kaynaklar

Grimaldi

- Chapter 5: Relations and Functions
 - 5.2. Functions: Plain and One-to-One
 - 5.3. Onto Functions: Stirling Numbers of the Second Kind
 - 5.5. The Pigeonhole Principle
 - 5.6. Function Composition and Inverse Functions

Yardımcı Kitap: O'Donnell, Hall, Page

■ Chapter 11: Functions