Dynamic Control of Infeasibility for Nonlinear Programming

Abel Soares Siqueira Francisco A. M. Gomes

April 22, 2013

Project financed by Fapesp

- Objectives:
 - Extend the Dynamic Control of Infeasibility (DCI) for Equalities to handle inequalities;
 - Implement a C++ software with a CUTEr interface, easily available online;

CUTEr problem:

$$\begin{array}{llll}
\min & f(x) \\
\text{s.t.} & c_E(x) & = & 0, \\
& c_L & \leq & c_I(x) & \leq & c_U, \\
& b_L & \leq & x & \leq & b_U,
\end{array} \tag{1}$$

where
$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$
, $c_E: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_E}$, $c_I: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_I}$, $f, c_E, c_I \in C^2$, $c_{U_i}, b_{U_i} \in \mathbb{R} \cup \{\infty\}$, $c_{L_i}, b_{L_i} \in \mathbb{R} \cup \{-\infty\}$.

min
$$f(x)$$

s.t. $c_E(x) = 0,$
 $c_I(x) - s = 0,$
 $b_L \le x \le b_U,$
 $c_L \le s \le c_U,$ (2)

$$z = \left[\begin{array}{c} x \\ s \end{array} \right] \qquad h(z) = \left[\begin{array}{c} c_E(x) \\ c_I(x) - s \end{array} \right]$$

 $\beta(z)$ boundary barrier

$$\min_{\mathbf{s.t.}} \quad \varphi(z,\mu) = f(x) + \mu\beta(z)$$

$$\mathbf{s.t.} \quad h(z) = 0,$$
(3)

$\Lambda(z)$ scaling matrix

$$\begin{split} g(z,\mu) &= \Lambda(z) \nabla \varphi(z,\mu) \\ A(z) &= \nabla h(z) \Lambda(z), \\ \Gamma(z,\mu) &= \Lambda(z) \nabla^2 \varphi(z,\mu) \Lambda(z) \\ W(z,\lambda,\mu) &= \lambda(z) \nabla_{zz}^2 L(z,\lambda,\mu) \Lambda(z) \end{split}$$

$$C(\rho) = \{ z \in \mathbb{R}^N : ||h(z)|| \le \rho \}$$

$$L(z,\lambda,\mu) = g(z,\mu) + \sum_{i=1}^{m} h_i(z)\lambda_i$$

$$\begin{array}{lll} \min & f(x) \\ \text{s.t.} & c_E(x) & = & 0, \\ & c_I(x) & \geq & 0, \end{array} \tag{4}$$

min
$$f(x)$$

s.t. $c_E(x) = 0,$
 $c_I(x) - s = 0,$
 $s \ge 0.$ (5)

$$\Lambda(z) = \left[\begin{array}{cc} I & 0 \\ 0 & S \end{array} \right]$$

$$\lambda_{LS}(z,\mu) = \arg\min_{\lambda} \left\{ \frac{1}{2} \|g(z,\mu) + A(z)^T \lambda\|^2 \right\}$$

$$\lambda_i^k = \left\{ \begin{array}{ll} \lambda_{LS}(z_c^k, \mu_c^k)_i, & \text{se } i \in E \\ \min\{\lambda_{LS}(z_c^k, \mu_c^k)_i, \alpha(\mu_c^k)^n\}, & \text{se } i \in I \end{array} \right.$$

$$g_p(z,\mu) = g(z,\mu) + A(z)^T \lambda_{LS}(z,\mu).$$

$$g_p^k = g(z_c^k, \mu_c^k) + A(z_c^k)^T \lambda^k$$

$$\rho^k = \mathcal{O}(\|g_p^k\|)$$

Horizontal Step

$$\min \qquad q_k(\delta) = \frac{1}{2} \delta^T B^k \delta + \delta^T g_p(z_c^k, \mu^k),$$
$$\nabla h(z_c^k) \delta = 0, \|\delta\| \le \Delta_H$$

Vertical Step

$$\begin{aligned} & \min \quad \ \, \frac{1}{2} \|h(z)\|^2 \\ & \text{s.t.} \quad l \leq z \leq u \end{aligned}$$

Algorithm 1 Outline of the k-th step of DCICPP

- 1: Given z^{k-1}
- 2: $z_c^k, \rho^k \leftarrow VertStep$ $(z_c^k \in \mathcal{C}(\rho^k))$
- 3: Compute λ^k and μ^k
- 4: if $\|g_n^k\| < \varepsilon$ and $\|h(z_c^k)\| < \varepsilon$ and $\mu^k < \varepsilon$. then
- 5: **STOP** with $z^* = z_a^k$.
- 6: end if
- 7: Update k.
- 8: $\delta_t \leftarrow$ HorizStep
- 9: if $z_c^k + \delta_t \not\in C(\rho^k)$, or No Sufficient Decrease then
- Decrease Δ_H and return to the previous step. 10.
- 11 end if
- 12: Optionally make a Second Order Correction δ_{soc}
- 13: Define $z^k = z_c^k + \Lambda(z_c^k)(\delta_t + \delta_{soc})$

$$\begin{aligned} & \min \quad f(x) = \tfrac{1}{2}(x_1^2 + x_2^2) \\ & \text{s.t.} \qquad x_2 = x_1^2 + 1 \end{aligned}$$

$$x^{k-1} = \left[\begin{array}{c} 2\\3 \end{array} \right]$$

Method Vertical Step

From z^{k-1} , we make steps that try to solve approximately

$$\min r(z) = \frac{1}{2} \|h(z)\|^2 \qquad \text{s. a} \qquad l \leq z \leq u$$

For this problem, we use a modification of the method proposed by Francisco, Krejić, and Martínez [2]

Vertical Step

Algorithm 2 VertStep

- 1: Given z^{k-1} , define $z_c = z^{k-1}$ and $\rho = \rho^{k-1}$.
- 2: while $\|h(z_c)\|>
 ho$ do
- 3: $z_c \leftarrow InnerVertStep$ $(z_c \in \mathcal{C}(\rho))$
- 4: Update ρ .
- 5: if $\|h(z_c)\| > \varepsilon$ and $\|\nabla h(z_c)^T h(z_c)\| < \varepsilon$ then
- 6: STOP $z^* = z_c$ an infeasibility stationary point.
- 7: end if
- 8: end while
- 9: Define $z_c^k = z_c$ and $\rho^k = \rho$.

Vertical Step

Algorithm 3 InnerVertStep

- 1: while $||h(z_c)|| > \rho$ do
- 2: Define $m(d) = \frac{1}{2} \|\nabla h(z_c)d + h(z_c)\|^2$
- 3: Compute $g = \nabla m(0) = \nabla h(z_c)^T h(z_c)$
- 4: Define the matrix $D = diag(v_1, \ldots, v_N)$, where

$$v_i = \left\{ \begin{array}{ll} (u_i - z_i)^{-1/2}, & \text{se } g_i < 0 \text{ e } u_i < \infty \\ (z_i - l_i)^{-1/2}, & \text{se } g_i > 0 \text{ e } l_i > -\infty \\ 1, & \text{otherwise} \end{array} \right.$$

- 5: Define $d = -D^{-2}g$
- 6: Define $l_{\varepsilon} = l + \varepsilon_{\mu}(z_c l) z_c$ and $u_{\varepsilon} = u \varepsilon_{\mu}(u z_c) z_c$.
- 7: Define $\beta(d) = \arg \max\{t \geq 0 : l_{\varepsilon} \leq td \leq u_{\varepsilon}\}.$
- 8: Compute $\alpha_{CP} = \arg\min_{\alpha} \{ m(\alpha d) : \alpha ||Dd|| \le \Delta_V \}$

21: end while

Vertical Step

```
 \text{Define } P(d) = \left\{ \begin{array}{ll} d, & \text{if } \beta(d) > 1 \\ \max\{\theta, 1 - \|d\|\}\beta(d)d, & \text{otherwise} \end{array} \right. 
 9:
            Define d_{CP} = P(\alpha_{CP}d).
10:
            Define \rho_C(d) = \frac{m(0) - m(d)}{m(0) - m(d_{CP})} e \rho_h(d) = \frac{r(z_c) - r(z_c + d)}{m(0) - m(d)}.
11:
            Compute \tilde{d}_N, approximate solution of \min_d \{ m(d) : ||Dd|| \leq \Delta_V \}.
12:
            Define d_N = P(d_N).
13:
            Find \tilde{d} convex combination of d_{CP} and d_N such that \rho_C(\tilde{d}) > \beta_1.
14.
            if \rho_h(d) > \beta_2 then
15:
                  \Delta_V \leftarrow 2\Delta_V
16.
                  z_c \leftarrow z_c + d.
17.
            else
18.
                  \Delta_V \leftarrow \Delta_V/4.
19:
            end if
20.
```


Horizontal Step

$$\begin{aligned} & \min \qquad & q(\delta) = \frac{1}{2} \delta^T B^k \delta + \delta^T g(z_c^k) \\ & \text{s.t.} & & A(z_c^k) \delta = 0, \\ & & \tilde{l} \leq \Lambda(z_c^k) \delta \leq \tilde{u}, \end{aligned}$$

where $B^k pprox W(z_c^k, \lambda^k, \mu_c^k)$ and

$$\tilde{l}_i = \begin{bmatrix} -\Delta_H e \\ \max\{-\Delta_H e, (\varepsilon_\mu - 1) s_c^k \} \end{bmatrix} \qquad \tilde{u} = \Delta_H e$$

This method is solved with a modification of Steihaug's method [5].

12:

13: end while

Method Horizontal Step

Algorithm 4 Inner Horizontal Step

```
1: Given r^0 = q_n^k, p^0 = r^0, j = 0, \delta^0 = 0, \theta^0 = \langle r^0, r^0 \rangle.
 2: while \theta^j > \varepsilon e \theta^k > \varepsilon \theta^0 do
 3: if \langle \delta^j, B^k \delta^j \rangle < \varepsilon \theta^j then
                    Define \delta_t = \delta^j + \nu p^j such that \tilde{l} < \Lambda(z_a^k) \delta_t < \tilde{u} and \nu mini-
       mizes q(\delta^j + \nu p^j).
      end if
 5:
 6: \alpha^j = \theta^j / \langle \delta^j, B^k \delta^k \rangle
 7: if \delta^j + \alpha^j p^j < \tilde{l} OR \delta^j + \alpha^j p^j > \tilde{u} then
                    Define \delta_t = \delta^j + \overline{\nu} p^j, where \overline{v} = \arg \max \{ \nu : \tilde{l} < \Lambda(z_c^k) \delta_t < 1 \}
 8:
      \tilde{u} \}.
             end if
 9:
        \delta^{j+1} = \delta^j + \alpha^j p^j.
10.
       r^{j+1} = \operatorname{proj}_{\mathcal{N}(A(z^k))}(r^j - \alpha^j B^k p^j)
11:
```

 $\theta^{j+1} = \langle r^{j+1}, r^{j+1} \rangle; \quad \beta^{k+1} = \theta^{j+1}/\theta^j; \quad p^{j+1} = r^{j+1} - \beta^j p^j.$

- H1 f, c_E and c_I are C^2 .
- H2 The sequences $\{z_c^k\}$ and $\{z^k\}$, the approximations B^k and the multipliers $\{\lambda^k\}$ remain uniformly limited.
- H3 The restoration never fails and $\mathcal{Z}=\{z_c^k\}$ remains far from the singular set of h, i.e., h is regular in the closure of \mathcal{Z} . Furthermore, if the generated sequence $\{z_c^k\}$ is infinity, then

$$||z_c^{k+1} - z^k|| = \mathcal{O}(||h(z^k)||)$$
 (6)

H4
$$\|\delta_{soc}^k\| = \mathcal{O}(\|\delta_t^k\|^2)$$

Theorem Under H0-H4, DCI stops at a stationary point for (4), in a finite number of iterations, or generates a sequence with stationary points in its accumulation set. Furthermore, if the conditions

C1
$$||z^k - z_c^k|| = \mathcal{O}(||g_p(z_c^k, \mu_c^k)||)$$

C2
$$\|\lambda^k - \lambda_{LS}(z_c^k, \mu_c^k)\| = \mathcal{O}(\|g_p(z_c^k, \mu_c^k)\|)$$

C3
$$\lambda_{LS}(z_c^{k+1}, \mu_c^{k+1})^T (s_c^{k+1} - s^k) = \mathcal{O}(\|g_p(z_c^k, \mu_c^k)\|\rho^k)$$

are satisfied, then every accumulation point of z_c^k is stationary for (4).

Let $\{z^k\}$ and $\{z^k_c\}$ be generated from the algorithm, converging to z^* , $\{\lambda^k\}$ convergent to $\lambda^*=\lambda_{LS}(z^*,0)$. From the algorithm, we have

$$\begin{cases} \nabla f(x^*) + \nabla c(x^*)^T \lambda^* &= 0, \\ c_E(x^*) &= 0, \\ c_I(x^*) &\geq 0, \\ c_I(x^*)^T \lambda_I^* &= 0, \\ \lambda_I^* &\leq 0. \end{cases}$$

Define $\mathcal{A}(x) = \{i \in E \cup I : c_i(x) = 0\}$, and $\mathcal{A}^* = \mathcal{A}(x^*)$. Define λ_A^k and λ_A^* as the component of λ^k e λ^* , respectivally, corresponding to the active constraints.

Convergence

Local Convergence

Suppose that $V = \{\nabla c_i(x^*) : i \in \mathcal{A}^*\}$ is linearly independent and that there is $\theta_1 > 0$, such that

$$y^{T} \left[\nabla^{2} f(x^{*}) + \sum_{i \in \mathcal{A}^{*}} \nabla^{2} c_{i}(x^{*}) \lambda_{i}^{*} \right] y \ge \theta_{1} ||y||^{2},$$

for $y\in T=\{w:w^T\nabla c_i(x^*)=0:i\in E\cup J\}$, where $J=\{i\in I:\lambda_i^*<0\}$. Define the matrix $\nabla c_A(x)$ whose lines are the vectors of V. In a neighbourhood of x^* , $\nabla c_A(x)$ has full rank. Hence, we can define

$$\lambda_{A}(x) = -[\nabla c_{A}(x)\nabla c_{A}(x)^{T}]^{-1}\nabla c_{A}(x)\nabla f(x),$$

$$g_{A}(x) = \nabla f(x) + \nabla c_{A}(x)^{T}\lambda_{A}(x),$$

$$H_{A}(x,\lambda) = \nabla^{2}f(x) + \sum_{i \in \mathcal{A}^{*}} \nabla^{2}c_{i}(x)\lambda_{i}$$

$$P(x) = I - \nabla c_{A}(x)^{T}[\nabla c_{A}(x)\nabla c_{A}(x)^{T}]^{-1}\nabla c_{A}(x),$$

Convergence

Local Convergence

A1
$$\|\lambda^k - \lambda_{LS}(z_c^k, \mu_c^k)\| = \mathcal{O}(\|g_p(z_c^k, \mu_c^k)\|),$$

 $\lambda_{LS}(z_c^{k+1}, \mu_c^{k+1})^T (s_c^{k+1} - s^k) = \mathcal{O}(\|g_p(z_c^k, \mu_c^k)\|\rho^k)$

A2 B^k is assimptotically uniformly positive definite on $\mathcal{N}(A(x_c^k))$, that is, in some neighbourhood of z^* , we can define $\theta_2>0$ and redefine θ_1 so that

$$\|\theta_1\|y\|^2 \le y^T B^k y \le \theta_2 \|y\|^2,$$

for $y \in \mathcal{N}(A(z_c^k))$.

A3 For k sufficiently large,

$$\begin{aligned} \|g_A(x_c^k)\| &=& \Theta(\|g_p^k\|), \\ \|c_A(x_c^k)\| &=& \Theta(\|h(z_c^k)\|), \\ \|c_A(x^k)\| &=& \Theta(\|h(z^k)\|), \\ \|x_c^{k+1} - x^k\| &=& \mathcal{O}(\|c_A(x^k)\|). \end{aligned}$$

A4 Define the matrix Z_A^k whose columns form an orthonormal basis for the null space of $\nabla c_A(x_c^k)$. Define

$$\begin{array}{lcl} \delta_{x}^{k} & = & -Z_{A}^{k}[(Z_{A}^{k})^{T}B_{x}^{k}Z_{A}^{k}]^{-1}(Z_{A}^{k})^{T}g_{A}(x_{c}^{k}), \\ \delta_{s}^{k} & = & (S_{c}^{k})^{-1}\nabla c_{I}(x_{c}^{k})\delta_{x}^{k}, \end{array}$$

and

$$\delta_A^k = \left[\begin{array}{c} \delta_x^k \\ \delta_s^k \end{array} \right].$$

Note that if $s^k_{c_i} \longrightarrow 0$, that is, $i \in \mathcal{A}^*$, then the corresponding component of δ^k_s is zero, therefore δ^k_s is limited. In addition, we define $s_{\min} > 0$ such that if $i \not\in \mathcal{A}^*$, then $s^k_{c_i} \geq s_{\min}$. We assume that δ^k_A is the first step tried by the algorithm whenever $\|\delta^k_A\| \leq \Delta$ and $s^k_c + S^k_c \delta^k_s \geq \varepsilon_\mu s^k_c$. Besides, we assume that

$$P(x_c^k)[B_x^k - H_A(x^*, \lambda^*)]\delta_x^k = o(\|\delta_x^k\|).$$

Local Convergence

A5 Each vertical step $\delta_V^{k+1}=z_c^{k+1}-z^k$ is obtained taking one or more steps in the form

$$\delta_V^+ = -J^T (JJ^T)^{-1} h(z_c),$$

where J satisfies

$$||J - \nabla h(z_c)|| = \mathcal{O}(||g_p^k||).$$

Convergence

Local Convergence

Theorem With assumption H1-H4 and A1-A5, x^k and x^k_c are 2-step superlinearly convergent to x^* . If a restoration is made at every x^k , then $\{x^k\}$ converges superlinearly to x^* .

If the problem is infeasible, the restoration phase can't find a feasible point. However, the method will find a stationary point for the infeasibility, that is, for the problem

$$\min \|c_E(x)\|^2 + \|c_I^-(x)\|^2.$$

The method we are using in the vertical step assure us that with the following assumptions:

- I1 The sequence generated by the vertical algorithm is limited.
- I2 Let L be a convex, open and limited set containing all points tried in the vertical algorithm. Then, for all $x,y\in L$, we have

$$\|\nabla h(x) - \nabla h(y)\| \le 2\gamma_0 \|x - y\|.$$

- A C++ implementation of the method, called DCICPP, was created.
- DCICPP was built on top of the Cholesky library.
- GPL licensed, avaible online on Github.
- Used the following libraries
 - CHOLMOD [1] (Cholesky);
 - METIS [4] (permutation library for Cholesky);
 - GotoBLAS2 [6]
 - base_matrices (C++ wrapper for Cholesky);
 - CUTEr [3] (testing);

- 767 problems from CUTEr small selection
- Problems with fixed constraints were removed

ExitFlag	Total	
	N°	%
Converged	698	91.00
Maximum	17	2.22
small $ ho_{ m max}$	21	2.74
Max Time	15	1.96
Infeasible	7	0.91
Unlimited	6	0.78
Other fail	3	0.39
Total	767	100.00

Table: DCICPP results

Performance Profile

Next Steps

- Implement fixed variable support;
- Investigate each failed problem for a possible general solution;
- Experiment with singular jacobians;
- Investigate how to make it more efficient.

Bibliografia

- Y. Chen, T. A. Davis, W. W. Hager, and S. Raamanickam. Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software, 35(3), 887.
- [2] J. B. Francisco, N. Krejić, and J. M. Martínez. An interior-point method for solving box-constrained underdetermined nonlinear system. *Journal of Computational and Applied Mathematics*, 177:67–88, 2005.
- [3] N. Gould, D. Orban, and Ph. L. Toint. Cuter, a constrained and unconstrained testing environment, revisited. *Transactions of the American Mathematical Society on Mathematical Software*, 29(4):373–394, 2003.
- [4] Karypis Lab. Metis serial graph partitioning and fill-reducing matrix ordering. http://www-users.cs.umn.edi/ karypis/metis.
- [5] Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal of Numerical Analysis, 20(3):626–637, 1983.
- [6] TACC: Texas Advanced Computing Center. GotoBLAS2. http://www.tacc.utexas.edu/tacc-projects/gotoblas2/.

