Question 1 [5 marks] Given the truth table below, draw the minimum cost logic circuit where you can only use two-input NAND gates, two-input AND gates, and two-input OR gates. The inputs are only A, B and C while the output is Y.

	Output		
Α	В	C	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Question 2 [5 marks] For the Karnaugh map given below, determine the minimum cost Sum-of-Products (SOP) expression. Inverted signals have a cost.

X_1	(2			
X_3 X_4	0 0	0 1	1 1	1 0
0 0	1	0	0	0
0 1	1	1	0	0
1 1	0	1	1	0
1 0	0	0	0	0

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_3 + x_2 x_3 x_4 + \overline{x}_1 x_2 x_4$$

Question 3 [5 marks] Determine the minimum cost **Product of Sums** (**POS**) expression using the Karnaugh Map below. Inverted signals have a cost and d is don't-care.

$\langle x_1 \rangle$	(2			
X_3 X_4	0 0	0 1	1 1	1 0
0 0	1	1	d	0
0 1	d	d	0	d
1 1	0	1	1	0
1 0	d	1	0	0

$$f = (x_3 + x_2)(x_3 + \overline{x_1})(x_4 + \overline{x_1})$$

Question 4 [10 marks] Replace the logic circuit given below with its minimum cost logic circuit. Inverters have a cost.

Question 5 [15 marks total] Using basic gates (AND, OR, NOT, NAND, NOR, XOR, XNOR) and flip-flops and latches, draw the circuit for each of the following portions of Verilog code.

```
a) (2 marks)

module test (a, b, f);

input [1:0] a;

input [1:0] b;

output [1:0] f;

assign f = a+b;

endmodule

aLiJ
bLiJ
```

b) (2 marks)
module test2 (clock, s, r, f);
input clock, s, r;
output reg f;
always@(posedge clock)
begin

f <= s^r;
end

endmodule


```
c) (4 marks)
module test3 (clock, s, r, resetn, f);
input clock, s, r, resetn;
output reg f;

always@(*)
begin
if (clock == 1'b0)
if (~resetn)
    f = s & r;
else
    f = s | r;
end
```

endmodule

Question 6 [10 marks total] Suppose you have a system which in each clock period produces a signal 'w' that is set to 0 or 1. The system produces useful output in batches. A batch begins with a pair of 1s (i.e. 11) on the output 'w'. After the pair of 1s, the system sends a 3-bit message, which is only valid if the message represents an odd 3-bit number. An example of an arbitrary batch is: 11011. An example of an arbitrary pair of batches is: 1101111010.

Design a Finite State Machine (FSM) with minimal number of states that takes 'w' as input and produces two outputs; 'r' and 'v'. Output 'r' is asserted for one clock period once a complete batch has been detected and output 'v' is asserted at the same time if the message is valid.

Answer the following questions:

- a) (2 marks) Write a state table to describe your state machine.
- b) (2 marks) Create a state-assigned table for your FSM, using as few bits as possible for your state encoding.
- c) (4 marks) Show logic expressions for your next-state logic and your outputs.

a)			0010	
0 0)	PS	W=0	uel	A.
	A	A	ß	00
	B	A	C	00
	C	D	Ð	00
	0	E	E	00
	E	F	લ	00
	F	A	B	10
	9	A	B	1 1

Addi	tional space	for questi	on 6 /VYV			
4)	(4, 9, 4,)	U=0	N2 (13 1/7 1/7)	v	· V	
	000	000	001	•	Ø	
	001	000	010	0	0	
	010	011	011	Ò	٥	
	011	loo	(00	0	9	
	100	101	(1)	0	0	
	(31	000	001	1	0	
	110	(2.2.2			1	

()	/ 3	45 45	1	la (1./ ,	. / ۵
	•	00	00	101	1	0
		01				0
		11	1	0	4	1
		10				
Y		TITI	l	- (

<th>929,</th> <th>93</th> <th>+</th> <th>9291</th>	929,	93	+	9291
	-	~		•

Y	cyyz					
	4241	00	01	111	10	1
	00		(1)			1
	01			(1)		
	11		d	XX		
	10	0		U	Q	

Y	wys				
. [424	00	61	11	10
	00				
	01				
	11		d	d	
	10				
1					-