Ejercicios Tema 2 - Estimación. Taller 3

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Curso completo de estadística inferencial con R y Python

Contenidos

1	stimación taller 3	1
	1 Ejercicio 1	1
	2 Ejercicio 2	1
	3 Ejercicio 3	1
	4 Ejercicio 4	1

1 Estimación taller 3

1.1 Ejercicio 1

Supongamos que X_1, X_2, \ldots, X_6 es una muestra aleatoria de una variable aleatoria normal con media μ y varianza σ^2 . Hallar la constante C tal que

$$C \cdot ((X_1 - X_2)^2 + (X_3 - X_4)^2 + (X_5 - X_6)^2),$$

sea un estimador sin sesgo de σ^2 .

1.2 Ejercicio 2

Supongamos que Θ_1 y Θ_2 son estimadores sin sesgo de un parámetro desconocido θ , con varianzas conocidas σ_1^2 y σ_2^2 , respectivamente. Demostrar que $\Theta = (1-a) \cdot \Theta_1 + a \cdot \Theta_2$ también es insesgado para cualquier valor de $a \neq 0$.

1.3 Ejercicio 3

Sea X_1, \ldots, X_{2n} una muestra aleatoria simple de una variable aleatoria $N(\mu, \sigma)$. Sea:

$$T = C\left(\left(\sum_{i=1}^{2n} X_i\right)^2 - 4n\sum_{i=1}^n X_{2i}X_{2i-1}\right)$$

un estimador del parámetro σ^2 . ¿Cuál es el valor de C para que T sea un estimador insesgado?

1.4 Ejercicio 4

Una variable aleatoria X sigue la distribución de Rayleigh con parámetro $\theta > 0$ si es una variable aleatoria con valores x > 0 y función de densidad:

$$f(x) = \frac{x}{\theta} e^{-\frac{x^2}{2\theta}}.$$

Hallar el estimador máximo verosímil del parámetro θ .