Teoría de algoritmos

Capítulo 1

Properties of Algorithms

A given problem can be solved by many different algorithms. Which ALGORITHMS will be useful in practice?

A working definition: (Jack Edmonds, 1962)

- Efficient: polynomial time for ALL inputs.
- Inefficient: "exponential time" for SOME inputs.

Robust definition has led to explosion of useful algorithms for wide spectrum of problems.

. Notable exception: simplex algorithm.

Our goal is to find **efficient** algorithms for some problems. What does "efficient algorithm" mean?

In our framework we looks for algorithms that run as fast as possible

The computation model must be **computer independent** so that time is referred to elemental operations.

- Access to memory is an operation (reading, writing)
- Real arithmetic operations (sum, substraction, multiplication, division) and comparisons are elemental operations.
- Some elemental function evaluations (trigonometric, n-th radical ...) can be considered elemental operations.

We are only interested in:

- Worst case behavior (there are other ways to analyze problem complexity: average, best case ...)
- Asymptotic analysis when the data size goes to infinity: O(|size|) notation.

Assume that one elemental operation takes 10^{-6} seconds.

	100	1000	10000	100000
O(n)	$10^{-4}s$.	$10^{-3}s$.	10^{-2} s.	10^{-1} s.
$O(n \log n)$	$2 \times 10^{-4} s$.	$3 \times 10^{-3} s$.	4×10^{-2} s.	0.5 s.
$O(n^2)$	10^{-2} s.	1 s.	1 m. 40 s.	2.77 h.
$O(n^3)$	1 s.	pprox 17 m.	11.5 d.	31,7 y.
$O(n^4)$	1m. 40 s.	11.5 d.	31.7 y.	3×10^6 y.

Exponential Growth

Exponential growth dwarfs technological change.

- Suppose each electron in the universe had power of today's supercomputers.
- And each works for the life of the universe in an effort to solve TSP problem using N! algorithm.

Some Numbers	
Quantity	Number
Home PC instructions / second	10 ⁹
Supercomputer instructions / second	1012
Seconds per year	10 ⁹
Age of universe †	10 ¹³
Electrons in universe †	1079

† Estimated

Will not succeed for 1,000 city TSP!

1000! >> 10^{1000} >> $10^{79} \times 10^{13} \times 10^{9} \times 10^{12}$

Properties of Problems

Which PROBLEMS will we be able to solve in practice?

- Those with efficient algorithms.
- How can I tell if I am trying to solve such a problem?
 - Theory of NP-completeness helps.

Yes	Probably No
Shortest path	Longest path
Euler cycle	Hamiltonian cycle
Min cut	Max cut
2-SAT	3-SAT
PLANAR-2-COLOR	PLANAR-3-COLOR
PLANAR-4-COLOR	PLANAR-3-COLOR
Matching	3D-Matching
Baseball elimination	Soccer elimination
Bipartite vertex cover	Vertex cover

Unknown	
]
Factoring	
Graph isomorphism	

Decision problem X.

- . X is a (possibly infinite) set of binary strings.
- Instance: finite binary string s, of length |s|.
- Algorithm A solves X if A(s) = YES ⇔ s ∈ X.

Polynomial time.

 Algorithm A runs in polynomial-time if for every instance s, A terminates in at most p(s) "steps", where p is some polynomial.

Definition of P.

 Set of all decision problems solvable in polynomial time on a deterministic Turing machine.

Examples:

- MULTIPLE: Is the integer y a multiple of x?
- RELPRIME: Are the integers x and y relatively prime?
- PERFECT-MATCHING: Given graph G, is there a perfect matching?

Strong Church-Turing Thesis

Definition of P fundamental because of SCT.

Strong Church-Turing thesis:

 P is the set of decision problems solvable in polynomial time on REAL computers.

Evidence supporting thesis:

- True for all physical computers.
- Can create deterministic TM that efficiently simulates any real general-purpose machine (and vice versa).

Possible exception?

Quantum computers: no conventional gates.

Efficient Certification

Certification algorithm.

 Design an algorithm that checks whether proposed solution is a YES instance.

Algorithm C is an efficient certifier for X if:

- C is a polynomial-time algorithm that takes two inputs s and t.
- There exists a polynomial p() so that for every string s, s ∈ X ⇔ there exists a string t such that |t| ≤ p(|s|) and C(s, t) = YES.

Intuition.

- Efficient certifier views things from "managerial" viewpoint.
- It doesn't determine whether s ∈ X on its own.
- Rather, it evaluates a proposed proof t that s ∈ X.
- Accepts if and only if given a "short" proof of this fact.

COMPOSITE: Given integer s, is s composite?

Observation. s is composite ⇔ there exists an integer 1 < t < s such that s is a multiple of t.

YES instance: s = 437,669.

- certificate t = 541 or 809 (a factor)

s is a YES instance

no conclusion

COMPOSITE: Given integer s, is s composite?

Observation. s is composite ⇔ there exists an integer 1 < t < s such that s is a multiple of t.

- YES instance: s = 437,669.
 - certificate t = 541 or 809 (a factor)
- NO instance: s = 437,677.
 - no witness can fool verifier into saying YES
- . Conclusion: COMPOSITE ∈ NP.

s is a YES instance

no conclusion

CLIQUE: Given an undirected graph, is there a subset S of k nodes such that there is an arc connecting every pair of nodes in S?

s is a YES instance

no conclusion

Justo Puerto, Dep. Estadística e I.O. Univ. Sevilla

UNIVERSIDAD DE SEVILLA

3-COLOR: Given planar map, can it be colored with 3 colors?

Certifier:

- 1. Check that s and t describe same map.
- 2. Count number of distinct colors in t.
- 3. Check all pairs of adjacent states.

3-COLOR ∈ NP.

s is a YES instance

no conclusion

Justo Puerto, Dep. Estadística e I.O. Univ. Sevilla

UNIVERSIDAD DE SEVILLA

NP

Definition of NP:

Does NOT mean "not polynomial."

Definition of NP:

- Set of all decision problems for which there exists an efficient certifier.
- Definition important because it links many fundamental problems.

Claim: P ⊆ NP.

Proof: Consider problem X ∈ P.

- Then, there exists efficient algorithm A(s) that solves X.
- Efficient certifier B(s, t): return A(s).

NP

Definition of EXP:

 Set of all decision problems solvable in exponential time on a deterministic Turing machine.

Claim: NP C EXP.

Proof: Consider problem X ∈ NP.

- Then, there exists efficient certifier C(s, t) for X.
- To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|).
- Return YES, if C(s, t) returns YES for any of these.

Useful alternate definition of NP:

- Set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine.
- Intuition: act of searching for t is viewed as a non-deterministic search over the space of possible proofs. Nondeterministic TM can try all possible solutions in parallel.

Does P = NP? (Edmonds, 1962)

- Is the original DECISION problem as easy as CERTIFICATION?
- Does nondeterminism help you solve problems faster?

Most important open problem in computer science.

- If yes, staggering practical significance.
- Clay Foundation Millennium \$1 million prize.

Justo Puerto, Dep. Estadística e I.O. Univ. Sevilla

Generator (P)

- Factor integer s.
- Color a map with minimum # colors.
- Design airfoil of minimum drag.
- Prove a beautiful theorem.
- Write a beautiful sonnet.
- Devise a good joke.
- Vinify fine wine.
- Orate a good lecture.
- Ace an exam.

Certifier (NP)

- Is a multiple of t?
- Check if all adjacent regions have different colors.
- Compute drag of airfoil.
- Understand its proof.
- Appreciate it.
- . Laugh at it.
- Be a wine snob.
- Know when you've heard one.
- Verify TA's solutions.

Imagine the wealth of a society that produces optimal planes, bridges, rockets, theorems, art, music, wine, jokes.

Does P = NP?

Is the original DECISION problem as easy as CERTIFICATION?

If yes, then:

- Efficient algorithms for 3-COLOR, TSP, FACTOR, . . .
- Cryptography is impossible (except for one-time pads) on conventional machines.
- Modern banking system will collapse.
- Harmonial bliss.

If no, then:

- Can't hope to write efficient algorithm for TSP.
- But maybe efficient algorithm still exists for FACTOR

Does P = NP?

Is the original DECISION problem as easy as CERTIFICATION?

Probably no, since:

- Thousands of researchers have spent four frustrating decades in search of polynomial algorithms for many fundamental NP problems without success.
- Consensus opinion: P ≠ NP.

But maybe yes, since:

No success in proving P ≠ NP either.

Polynomial Transformation

Problem X polynomial reduces (Cook-Turing) to problem Y ($X \leq_p Y$) if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Problem X polynomial transforms (Karp) to problem Y if given any input x to X, we can construct an input y such that x is a YES instance of X if and only if y is a YES instance of Y.

We require |y| to be of size polynomial in |x|.

Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X.

Note: all previous reductions were of this form!

NP-Complete

Definition of NP-complete:

- A problem Y in NP with the property that for every problem X in NP,
 X polynomial transforms to Y.
- "Hardest computational problems" in NP.

NP-Complete

Definition of NP-complete:

A problem Y in NP with the property that for every problem X in NP,
 X polynomial transforms to Y.

Significance.

- Efficient algorithm for any NP-complete problem ⇒ efficient algorithm for every other problem in NP.
- Links together a huge and diverse number of fundamental problems:

```
- TSP, 3-COLOR, CNF-SAT, CLIQUE, . . . . . . . .
```

Can implement any computer program in 3-COLOR.

Notorious complexity class.

- Only exponential algorithms known for these problems.
- Called "intractable" unlikely that they can be solved given limited computing resources.

Some NP-Complete Problems

Most natural problems in NP are either in P or NP-complete.

Six basic genres and paradigmatic examples of NP-complete problems.

- Packing problems: SET-PACKING, INDEPENDENT-SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, CLIQUE.
- Constraint satisfaction problems: SAT, 3-SAT.
- Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.

Caveat: FACTOR not known to be NP-complete.

Prime is in P

Establishing NP-Completeness

Definition of NP-complete:

A problem Y ∈ NP with the property that for every problem X in NP,
 X polynomial transforms to Y.

Cook's theorem. CNF-SAT is NP-complete.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y ∈ NP.
- Step 2. Show that CNF-SAT (or any other NP-complete problem) transforms to Y.

Example: CLIQUE is NP-complete.

- ✓ Step 1. CLIQUE ∈ NP.
- ✓ Step 2. CNF-SAT polynomial transforms to CLIQUE.

- Satisfiability problem (SAT):
 - Given: a formula φ with m clauses C_1, \dots, C_m over n variables.

Example: $x_1 \vee x_2 \vee x_5$, $x_3 \vee \neg x_5$

 Check if there exists TRUE/FALSE assignments to the variables that makes the formula satisfiable

- Clique:
 - Input: undirected graphG=(V,E), K
 - Output: is there a subset C of V, |C|≥K, such that every pair of vertices in C has an edge between them

- Given a SAT formula $\varphi = C_1, ..., C_m$ over $x_1, ..., x_n$, we need to produce G = (V, E) and K, such that φ satisfiable iff G has a clique of size $\geq K$.
- Notation: a literal is either x_i or $\neg x_i$
- For each literal t occurring in φ, create a vertex v_t
- Create an edge $v_t v_t$, iff:
 - -t and t' are not in the same clause, and
 - -t is not the negation of t'

- Formula: $x_1 \lor x_2 \lor x_3$, $\neg x_2 \lor \neg x_3$, $\neg x_1 \lor x_2$
- Graph:

• Claim: ϕ satisfiable iff G has a clique of size $\geq m$

- "→" part:
 - Take any assignment that satisfies φ .

E.g.,
$$x_1 = F$$
, $x_2 = T$, $x_3 = F$

- Let the set C contain one satisfied literal per clause
- -C is a clique

- Take any clique C of size $\geq m$ (i.e., = m)
- Create a set of equations that satisfies selected literals.

E.g.,
$$x_3 = T$$
, $x_2 = F$, $x_1 = F$

 The set of equations is consistent and the solution satisfies φ

CONCLUSION

- We constructed a reduction that maps:
 - YES inputs to SAT to YES inputs to Clique
 - − NO inputs to SAT to NO inputs to Clique
- The reduction works in poly time
- Therefore, SAT ≤ Clique → Clique NP-hard
- Clique is in NP → Clique is NP-complete

Algoritmos aproximados Capítulo 2

Approximation Algorithms for NP-Complete Problems

- Approximation ratios
- Polynomial-Time Approximation Schemes
- 2-Approximation for Vertex Cover
- 2-Approximation for TSP special case
- Log n-Approximation for Set Cover

Approximation Ratios

- Optimization Problems
 - We have some problem instance x that has many feasible "solutions".
 - We are trying to minimize (or maximize) some cost function c(S) for a "solution" S to x. For example,
 - Finding a minimum spanning tree of a graph
 - . Finding a smallest vertex cover of a graph
 - Finding a smallest traveling salesperson tour in a graph
- ♦ An approximation produces a solution T
 - T is a k-approximation to the optimal solution OPT if c(T)/c(OPT) ≤ k (assuming a min. prob.; a maximization approximation would be the reverse)

Polynomial-Time Approximation Schemes

- A problem L has a polynomial-time approximation scheme (PTAS) if it has a polynomial-time (1+ε)-approximation algorithm, for any fixed ε >0 (this value can appear in the running time).
- \bullet 0/1 Knapsack has a PTAS, with a running time that is O(n³/ ϵ).

Knapsack is NP-Hard

KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a desired value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} W_i \leq W$$

$$\sum_{i \in S} V_i \geq V$$

SUBSET-SUM: Given a finite set X, nonnegative values u_i , and an integer t, is there a subset $S \subseteq X$ whose elements sum to t?

Claim. SUBSET-SUM ≤ P KNAPSACK.

Proof: Given instance (X, t) of SUBSET-SUM, create KNAPSACK instance:

$$\sum_{i \in S} u_i \leq t$$

$$\sum_{i \in S} u_i \geq t$$

Knapsack: Dynamic Programming Solution 2

OPT(n, v) = min knapsack weight that yields value exactly v using subset of items {1, . . . , n}.

- Case 1: OPT selects item n.
 - new value needed = v v_n
 - OPT selects best of {1, 2, . . . , n − 1} using new value
- Case 2: OPT does not select item n.
 - OPT selects best of {1, 2, . . . , n − 1} that achieves value v

$$OPT(n,v) = \begin{cases} 0 & \text{if } n = 0 \\ OPT(n-1,v) & \text{if } v_n > v \\ \min \left\{ OPT(n-1,v), & w_n + OPT(n-1,v-v_n) \right\} & \text{otherwise} \end{cases}$$

Directly leads to O(N V *) time algorithm.

- V* = optimal value.
- Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values down to lie in smaller range.
- Run O(N V*) dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

Item	Value	Weight
1	134,221	1
2	656,342	2
3	1,810,013	5
4	22,217,800	6
5	28,343,199	7

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	222	6
5	283	7

W = 11

W = 11

Original Instance

Rounded Instance

Justo Puerto, Dep. Estadística e I.O. Univ. Sevilla

UNIVERSIDAD DE SEVILLA

Knapsack: FPTAS

Knapsack FPTAS.

- Round all values:
 - V = largest value in original instance
 - = precision parameter
 - -θ = scaling factor = ε V / N
- Bound on optimal value V *:

$$V \leq V^* \leq NV$$
 assume $w_n \leq W$ for all n

Running Time

$$O(N \overline{V}^*) \in O(N(N \overline{V}))$$

$$\in O(N^2(V/\theta))$$

$$\in O(N^3 \frac{1}{\varepsilon})$$

= largest value in rounded instance

 \overline{V} = largest value in rounded instance \overline{V}^{\star} = optimal value in rounded instance

Knapsack: FPTAS

Knapsack FPTAS.

- Round all values: $\overline{v_n} = \left| \frac{v_n}{\theta} \right|$
 - V = largest value in original instance
 - ε = precision parameter
 - θ = scaling factor = ε V / N
- Bound on optimal value V *:

$$V \leq V^* \leq NV$$

 S^* = opt set of items in original instance

 \overline{S}^* = opt set of items in rounded instance

Proof of Correctness

$$\sum_{n \in S^{+}} v_{n} \geq \sum_{n \in S^{+}} \theta \overline{v_{n}}$$

$$\geq \sum_{n \in S^{+}} \theta \overline{v_{n}}$$

$$\geq \sum_{n \in S^{+}} (v_{n} - \theta)$$

Special Case of the Traveling Salesperson Problem

- OPT-TSP: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.
 - OPT-TSP is NP-hard
 - Special case: edge weights satisfy the triangle inequality (which is common in many applications):
 - $w(a,b) + w(b,c) \ge w(a,c)$

A 2-Approximation for TSP Special Case

Euler tour P of MST M

Output tour T

Algorithm TSPApprox(G)

Input weighted complete graph G, satisfying the triangle inequality

Output a TSP tour T for G

 $M \leftarrow$ a minimum spanning tree for G

P ← an Euler tour traversal of M, starting at some vertex s

 $T \leftarrow$ empty list

for each vertex v in P (in traversal order)

if this is v's first appearance in P then
 T.insertLast(v)

T.insertLast(s)

return T

A 2-Approximation for TSP Special Case - Proof

- ♦ The optimal tour is a spanning tour; hence |M| < |OPT|.</p>
- ♦ The Euler tour P visits each edge of M twice; hence |P|=2|M|
- ◆ Each time we shortcut a vertex in the Euler Tour we will not increase the total length, by the triangle inequality (w(a,b) + w(b,c) ≥ w(a,c)); hence, |T| ≤ |P|.
- ♦ Therefore, |T|≤|P|=2|M|≤2|OPT|

(at most the cost of P)

Euler tour P of MST M(twice the cost of M)

Optimal tour OPT (at least the cost of MST M)

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP.

CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- M
 — min cost perfect matching of odd degree nodes in T.
- G' ← union of spanning tree and matching edges.
- E ← Eulerian tour in G'.

Justo Puerto, Dep. Estadística e I.O. Univ. Sevilla

UNIVERSIDAD DE SEVILLA

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP.

CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- M ← min cost perfect matching of odd degree nodes in T.
- G' ← union of spanning tree and matching edges.
- E ← Eulerian tour in G'.
- H ← short-cut version of Eulerian tour in E.

E = Eulerian tour in G'

Hamiltonian Cycle H

Justo Puerto, Dep. Estadística e I.O. Univ. Sevilla

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP. Proof. Let H* denote an optimal tour. Need to show $c(H) \le 1.5 c(H^*)$.

- c(T) ≤ c(H*) as before.
- $c(M) \le \frac{1}{2} c(\Gamma^*) \le \frac{1}{2} c(H^*)$.
 - second inequality follows from ∆-inequality
 - even number of odd degree nodes
 - Hamiltonian cycle on even # nodes comprised of two matchings

Optimal Tour Γ^* on Odd Nodes

Matching M

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP. Proof. Let H* denote an optimal tour. Need to show $c(H) \le 1.5 c(H^*)$.

- c(T) ≤ c(H*) as before.
- c(M) ≤ ½ c(Γ*) ≤ ½ c(H*).
- Union of MST and and matching edges is Eulerian.
 - every node has even degree
- Can shortcut to produce H and c(H) ≤ c(M) + c(T).

Hamiltonian Cycle H

