Data Mining:
A statistical analysis of superconductors' terminal temperature

Rappe Julien

https://github.com/rjulien1994/SuperConductorAnalysis

May 20th, 2020

Introducing the data

Objective:

We want to estimate the critical temperature of different superconductors based on their physical characteristics.

Data Set:

The original data set had 82 variables and 21263 records with no missing data.

Predictors:

The 81 attributes were collected in a lab environment and each record is already the result of averaging many experiments.

Out of the 81 predictors, 40 were removed as they were the weighted statistic of other predictors

Response Variable:

The original distribution of the critical temperatures had an inverse distribution and thus I took the logarithm for more accurate results

Tuning our lambda for regression

None of the cross-validation curves has a local minimum

Model Comparison based on R-squared

- Random Forest seems to be the best model
- Always more variation for the test than training data
- For regression, test average R-squared is closer to the training one than for random forest
- All least-square methods don't seem to do well

Looking at the residuals

- The range of residuals for the random forest is smaller than the others
- There doesn't seem to be a large difference between test and training
- The residuals are well centered and do not seem unbalanced

Estimation of coefficients

- Ridge regression has the smallest coefficient
- 2 of the 3 variables considered important in the rf have small weight in Lasso and Elastic
- Range fie, Atomic radius and Thermal conductivity are the most important variables according to the random forest model

Importance and estimation of coefficients

Summary of the analysis process

- Random Forest model is the most accurate model
- Regression overall doesn't seem to be efficient to predict the critical temperature of superconductors
- Ridge, Elastic-net and Lasso have close to the same run time and a log complexity
- Random Forest seem to have an exponential complexity
- Overall classification seems to be a better method to estimate critical temperature

		Ridge	Elastic-net	Lasso	Random Forest
	N=2000	0.25 sec	0.43 sec	0.41 sec	0.66 sec
	N=5000	0.39 sec	0.63 sec	0.54 sec	2.39 sec
	N=21263	0.98 sec	0.95 sec	0.97 sec	20.25 sec
	MSE	0.90	0.86	0.86	0.38