The Value 1 Problem for Probabilistic Automata

Nathanaël Fijalkow

LIAFA, Université Denis Diderot - Paris 7, France Institute of Informatics, Warsaw University, Poland nath@liafa.univ-paris-diderot.fr

May 27th, 2014

Probabilistic automata (Rabin, 1963)

 $\mathbb{P}_{\mathcal{A}}:A^*\to [0,1]$

 $\mathbb{P}_{\mathcal{A}}(w)$ is the probability that a run for w ends up in F

This talk is about the value 1 problem:

INPUT: \mathcal{A} a probabilistic automaton OUTPUT: for all $\varepsilon > 0$, there exists $w \in A^*$, $\mathbb{P}_{\mathcal{A}}(w) \geq 1 - \varepsilon$.

In other words, define $val(A) = \sup_{w \in A^*} \mathbb{P}_A(w)$, is valA = 1?

This talk is about the value 1 problem:

INPUT: \mathcal{A} a probabilistic automaton OUTPUT: for all $\varepsilon > 0$, there exists $w \in A^*$, $\mathbb{P}_{\mathcal{A}}(w) \geq 1 - \varepsilon$.

In other words, define $val(A) = \sup_{w \in A^*} \mathbb{P}_A(w)$, is valA = 1? It is undecidable (Gimbert and Oualhadj, 2010).

But to what extent?

Construct an algorithm to decide the value 1 problem, which is *often* correct.

Construct an algorithm to decide the value 1 problem, which is *often* correct.

Quantify how often.

Construct an algorithm to decide the value 1 problem, which is *often* correct.

Quantify how often.

Argue that you cannot do more often than that.

- 1 A first attempt: get rid of numerical values
- 2 A second attempt: the Markov Monoid Algorithm
- 3 On the optimality of the Markov Monoid Algorithm
- 4 Implementation of the Markov Monoid Algorithm

- 1 A first attempt: get rid of numerical values
- 2 A second attempt: the Markov Monoid Algorithm
- 3 On the optimality of the Markov Monoid Algorithm
- 4 Implementation of the Markov Monoid Algorithm

Does the *undecidability* come from the *numerical* values?

Does the *undecidability* come from the *numerical* values?

Consider *numberless* probabilistic automata:

Two decision problems:

- for all Δ , val($\mathcal{A}[\Delta]$) = 1,
- there exists Δ , such that val $(A[\Delta]) = 1$.

Theorem (F., Horn, Gimbert and Oualhadj)

There is no algorithm such that:

On input A (a non-deterministic automaton),

- if for all Δ , $val(A[\Delta]) = 1$ then "YES",
- if for all Δ , $val(A[\Delta]) < 1$ then "NO",
- anything in the other cases.

- 1 A first attempt: get rid of numerical values
- 2 A second attempt: the Markov Monoid Algorithm
- 3 On the optimality of the Markov Monoid Algorithm
- 4 Implementation of the Markov Monoid Algorithm

Stabilization monoids (Colcombet)

This is an algebraic structure with two operations:

- binary composition
- stabilization, denoted #.

$$\langle a \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \langle b \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$I \cdot \langle u \rangle \cdot F = 1$$
 if and only if $\mathbb{P}_{\mathcal{A}}(u) > 0$

Defining stabilization

$$\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.

Defining stabilization

$$\langle a \rangle = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \qquad \langle a^{\sharp} \rangle = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right)$$

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.

Defining stabilization

$$\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \langle a^{\sharp} \rangle = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.

$$M^{\sharp}(s,t) = \left\{ egin{array}{ll} 1 & \mbox{if } M(s,t) = 1 \mbox{ and } t \mbox{ recurrent in } M, \\ 0 & \mbox{otherwise.} \end{array} \right.$$

Compute a monoid inside the **finite** monoid $\mathcal{M}_{Q\times Q}(\{0,1\},\vee,\wedge)$.

• Compute $\langle a \rangle$ for $a \in A$:

$$\langle a \rangle(s,t) = \begin{cases} 1 & \text{if } \mathbb{P}_{\mathcal{A}}(s \xrightarrow{a} t) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Close under product and stabilization.

Compute a monoid inside the **finite** monoid $\mathcal{M}_{Q\times Q}(\{0,1\},\vee,\wedge)$.

• Compute $\langle a \rangle$ for $a \in A$:

$$\langle a \rangle(s,t) = \begin{cases} 1 & \text{if } \mathbb{P}_{\mathcal{A}}(s \xrightarrow{a} t) > 0, \\ 0 & \text{otherwise.} \end{cases}$$

- Close under product and stabilization.
- If there exists a matrix M such that

$$\forall t \in Q$$
, $M(s_0, t) = 1 \Rightarrow t \in F$

then "A has value 1", otherwise "A does not have value 1".

Correctness

Theorem

If there exists a matrix M such that

$$\forall t \in Q, \quad M(s_0, t) = 1 \Rightarrow t \in F$$

then A has value 1.

Correctness

Theorem

If there exists a matrix M such that

$$\forall t \in Q$$
, $M(s_0, t) = 1 \Rightarrow t \in F$

then A has value 1.

But the value 1 problem is undecidable, so...

No completeness

Left and right parts are symmetric, so for all *M*:

$$M(0,L_2)=1 \Longleftrightarrow M(0,R_2)=1.$$

Yet: it has value 1 if and only if $x > \frac{1}{2}$.

There is a leak from 1 to 2.

There is a leak from 1 to 2.

Definition

An automaton A is leaktight if it has no leak.

Leaktight automata

Theorem (F.,Gimbert and Oualhadj 2012)

The algorithm is complete for leaktight automata. Hence, the value 1 problem is decidable for leaktight automata.

The proof relies on Simon's factorization forest theorem.

Other decidable subclasses: in 2012

Other decidable subclasses: today

(F.,Gimbert,Kelmendi and Oualhadj 2013)

leaktight

So far,

the Markov Monoid Algorithm is the *most correct* algorithm known to solve the value 1 problem.

So far, the Markov Monoid Algorithm is the *most correct* algorithm known to solve the value 1 problem.

But for *how long*?

Outline

- 1 A first attempt: get rid of numerical values
- 2 A second attempt: the Markov Monoid Algorithm
- 3 On the optimality of the Markov Monoid Algorithm
- 4 Implementation of the Markov Monoid Algorithm

What it misses: different convergence speeds

$$\lim_{n} \mathbb{P}_{\mathcal{A}} \left(b(a^{n}b)^{f(n)} \right) = 1$$
 if and only if $\lim_{n} f(n) \cdot \left(\frac{3}{4} \right)^{n} = \infty$

What it misses: different convergence speeds

so $f(n) = 2^n$ works but f(n) = n does not.

A characterization

 A^* is the space of prostochastic words.

$$A^* \, = \, \widetilde{A^*}[0] \, \subsetneq \, \widetilde{A^*}[1] \, \subsetneq \, \widetilde{A^*}[2] \, \subsetneq \, \cdots \, \subsetneq \, \widetilde{A^*} \, .$$

Lemma

The following are equivalent:

- The value 1 problem over finite words,
- The emptiness problem over prostochastic words.

A characterization

 A^* is the space of prostochastic words.

$$A^* = \widetilde{A^*}[0] \subsetneq \widetilde{A^*}[1] \subsetneq \widetilde{A^*}[2] \subsetneq \cdots \subsetneq \widetilde{A^*}.$$

Lemma

The following are equivalent:

- The value 1 problem over finite words,
- The emptiness problem over prostochastic words.

Theorem

- ① The Markov Monoid Algorithm answers "YES" if and only if there exists $x \in \widetilde{A}^*[1]$ accepted by A,
- 2 The following problem is undecidable: determine whether there exists $x \in \widehat{A}^*[2]$ accepted by A.

Prostochastic words

Definition

 $(u_n)_{n\in\mathbb{N}}$ converges if for every \mathcal{A} , the limit $\lim_n \mathbb{P}_{\mathcal{A}}(u_n)$ exists.

Prostochastic words

Definition

 $(u_n)_{n\in\mathbb{N}}$ converges if for every \mathcal{A} , the limit $\lim_n \mathbb{P}_{\mathcal{A}}(u_n)$ exists.

Definition

Two (converging) sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are equivalent if for every A,

$$\lim_{n} \mathbb{P}_{\mathcal{A}}(u_n) > 0 \iff \lim_{n} \mathbb{P}_{\mathcal{A}}(v_n) > 0.$$

Prostochastic words

Definition

 $(u_n)_{n\in\mathbb{N}}$ converges if for every \mathcal{A} , the limit $\lim_n \mathbb{P}_{\mathcal{A}}(u_n)$ exists.

Definition

Two (converging) sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are equivalent if for every \mathcal{A} ,

$$\lim_{n} \mathbb{P}_{\mathcal{A}}(u_n) > 0 \iff \lim_{n} \mathbb{P}_{\mathcal{A}}(v_n) > 0.$$

Definition

A prostochastic word is an equivalence class of converging sequences.

The ω operators

Definition

Let u be a converging sequence. u^{ω_1} is the converging sequence $(u_n^{n!})_{n \in \mathbb{N}}$.

The ω operators

Definition

Let u be a converging sequence. u^{ω_1} is the converging sequence $(u_n^{n!})_{n \in \mathbb{N}}$.

Definition

Let u be a converging sequence.

 u^{ω_k} is the converging sequence $(u_n^{(n!)^k})_{n\in\mathbb{N}}$.

The ω operators

Definition

Let u be a converging sequence. u^{ω_1} is the converging sequence $(u_n^{n!})_{n \in \mathbb{N}}$.

Definition

Let u be a converging sequence.

 u^{ω_k} is the converging sequence $(u_n^{(n!)^k})_{n\in\mathbb{N}}$.

Example

The prostochastic words $(a^{\omega_1}b)^{\omega_1}$ and $(a^{\omega_1}b)^{\omega_2}$ are not equal.

An equivalent characterization

Theorem

The Markov Monoid Algorithm answers "YES" if and only if there exists a regular sequence $(u_n)_{n\in\mathbb{N}}$ of finite words such that $\lim_n \mathbb{P}_A(u_n) = 1$.

The regular sequences are described by the following grammar:

$$u = a \mid u \cdot u \mid (u_n^n)_{n \in \mathbb{N}}$$
.

In some sense,

the Markov Monoid Algorithm is the *most correct* algorithm to solve the value 1 problem.

Outline

- 1 A first attempt: get rid of numerical values
- 2 A second attempt: the Markov Monoid Algorithm
- 3 On the optimality of the Markov Monoid Algorithm
- 4 Implementation of the Markov Monoid Algorithm

The tool ACME (Automata with Counters, Monoids and Equivalence) has been written in OCaml by Nathanaël Fijalkow and Denis Kuperberg.

Automata that are leaktight and do not have value 1: 540 Automata that are leaktight and have value 1: 133 Automata that are not leaktight and may have value 1: 17 Automata that are not leaktight and have value 1: 310