Effects of the Velo drift on the mass distributions

General remarks and settings

- The goal is to estimate the size of the impact of VELO movements on the reconstructed mass distributions
- Tested on both **Tx** and **Ry** for the VELO C-side: effect of Ry proved to be negligible
- Tests run over the full set of B0->D*π MC samples from /eos/lhcb/user/l/lohenry/ClusterBias/DigiSamples clusterFix
 - The samples include the cluster bias fix
- Alignment degrees of freedom: Tx and Rz
- Alignables: LongModules
- Lagrange constraints:
 - Tx, Rz and Szx (shear of x vs z) are constrained to 0 across the whole SciFi
 - The average Tx of the modules in the last layer (T3X2) is also constrained to be 0
- Running using the new **Alignment/master** and the new PrKalman filter

Data selection

Well reconstructed primary vertices with a threshold on the number of reconstructed tracks to reduce combinatorics

```
def VPPrimaryVertices(input_pvs):
    from PyConf.Algorithms import VertexListRefiner
    selected_pvs = VertexListRefiner(
        name='VertexListRefinerVPPrimaryVertices',
        MaxChi2PerDoF=5,
        MinNumTracks=15,
        MaxNumTracks=50,
        MinNumLongTracks=0,
        InputLocation=input_pvs).OutputLocation
    return selected_pvs
```

- A further set of cuts looking for D0 -> Kπ
 candidates are applied to the selected tracks
 and vertices
 - The selection of candidates is aligned with the HLT1 D0 line

Using only well reconstructed long tracks

```
GoodLongTracks(input tracks):
myTrackSelector = TrackSelector(
    TrackTypes=["Long"],
    MinPCut=5000,
    MaxPCut=200000,
    MinPtCut=200.
    MaxNTHoles=1.
    MaxChi2Cut=5,
    MaxChi2PerDoFMatch=5,
    MaxChi2PerDoFVelo=5,
    MaxChi2PerDoFDownstream=5)
selected tracks = TrackListRefiner(
    name='TrackListRefinerGoodLongTracks',
    inputLocation=input tracks,
    Selector=myTrackSelector).outputLocation
return selected tracks
```

Sample fit results

$Tx = 20 \mu m$

Evolution of the mean

Tx in [0, 20] µm

Tx in [0, 200] µm

Note: Jobs run for the range [0, 200] µm have less statistics (8k events) to speed up testing

Evolution of the width

Tx in [0, 20] µm

Tx in [0, 200] µm

Note: Jobs run for the range [0, 200] µm have less statistics (8k events) to speed up testing

Effect of the alignment algorithm

Heidelberg University 7 Miguel Ruiz Díaz

Further checks

Larger number of PVs due to the appearance of clone vertices in the two VP halves when one of the halves is displaced

Test of alignment quality

Alignment settings

- Initially we wanted to check the impact of the UT on the general alignment algorithm with the new PrKalman filter
- Running over the full set of MC events from /eos/lhcb/user/l/lohenry/ClusterBias/MinBias/ZehuaFix
 - The sample includes the fix to remove the cluster bias
- Test are run assuming a fully aligned detector and employing a D0 mass constrain
- Degrees of freedom: Tx and Rz
- Alignables: LongModules
- Lagrange constraints:
 - Tx, Rz and Szx (shear of x vs z) are constrained to 0 across the whole SciFi
 - The average Tx of the modules in the last layer (T3X2) is also constrained to be 0

Tests with UT

Tests without UT

Rz across SciFi layers

Tx across SciFi module positions

Without UT

On going work

- Null tests so far are run using the DetDesc detector geometry. I'm currently re-running them using DD4Hep to check for the presence of bugs
- I am looking into possible biases present in the reconstruction sequence that could explain these results