Grundzüge der Theoretischen Informatik 17.12.2021

Markus Bläser Universität des Saarlandes

Kapitel 19: Komplexitätsklassen

Deterministische Zeitkomplexität

- Sei M eine DTM, M halte auf x.
- ▶ Es gibt eine (eindeutige) haltende Konfiguration C_t mit $SC(x) \vdash_M^* C_t$
- ▶ Sei $SC(x) \vdash_M C_1 \vdash_M \cdots \vdash_M C_t$ die Berechnung von M auf x.
- ▶ t ist die Anzahl der Schritte von M auf x, $t =: Time_M(x)$.
- ► Es sei $\mathrm{Time}_{\mathsf{M}}(\mathfrak{n}) := \max\{\mathrm{Time}_{\mathsf{M}}(x) \mid |x| = \mathfrak{n}\}, \ \mathfrak{n} \in \mathbb{N}.$

Definition

Sei $t : \mathbb{N} \to \mathbb{N}$.

M ist t-zeitbeschränkt, falls $\mathrm{Time}_M(n) \leq t(n)$ für alle n.

"worst-case-Komplexität"

Deterministische Platzkomplexität

► Zu einer Konfiguration $C = (q, (p_1, x_1), ..., (p_k, x_k))$ sei $Space(C) = \max_{1 \le k \le k} |x_k|$,

 $L = \{x \in \{0,1\}^* \mid \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{1en} \ \mathsf{in} \ x \ \mathsf{ist} \ \mathsf{gleich} \ \mathsf{der} \ \mathsf{Anzahl} \ \mathsf{der} \ \mathsf{0en} \}$ kann mit Platz $\mathrm{O}(\log \mathfrak{n})$ erkannt werden.

Problem: Eingabe ist n lang.

- Extra-Eingabeband, read-only,
- zählt bei der Berechnung von Space(C) nicht mit.

Deterministische Platzkomplexität (2)

- ► Sei M eine DTM, M halte auf x.
- ▶ Sei $SC(x) \vdash_M C_1 \vdash_M \cdots \vdash_M C_t$ die Berechnung von M auf x.
- $\qquad \qquad \mathbf{Space}_{M}(x) = \max\{\mathbf{Space}(C_{\tau}) \mid 1 \leq \tau \leq t\}.$
- ► Falls M nicht auf x hält, dann wird über das Maximum über unendlich viele Konfigurationen genommen.
- ▶ $\operatorname{Space}_{M}(x) = \infty$, falls das Maximum nicht existiert.
- ▶ $\operatorname{Space}_{M}(n) := \max\{\operatorname{Space}_{M}(x) \mid |x| = n\}$ für $n \in \mathbb{N}$.

Definition

Sei $s: \mathbb{N} \to \mathbb{N}$

M ist s-platzbeschränkt, falls $\operatorname{Space}_M(n) \leq s(n)$ für alle n.

[&]quot;worst-case-Komplexität"

Deterministische Zeitklassen

- ▶ L ist deterministisch t zeit-entscheidbar, falls es eine DTM M gibt, so dass L = L(M) und $\mathrm{Time}_M(n) \leq t(n)$ für alle n.
- Zeitbeschränkte DTMs halten immer.

▶ Zu einer Menge T von Funktionen $\mathbb{N} \to \mathbb{N}$ sei DTime(T) = $\bigcup_{t \in T} DTime(t)$.

Deterministische Platzklassen

- ▶ L ist deterministisch s-platz-erkennbar, falls es eine DTM M gibt, so dass L = L(M) und $\operatorname{Space}_{M}(n) \leq s(n)$ für alle n.
- ightharpoonup Eine platz-beschränkte DTM muss nicht auf $x \notin L(M)$ halten.

Definition (19.3)

Sei $s: \mathbb{N} \to \mathbb{N}$.

$$\begin{split} \mathsf{DSpace}(s) &= \{L \mid L \text{ ist deterministisch } s\text{-platz-erkennbar}\}, \\ \mathsf{DSpace}_k(s) &= \{L \mid es \text{ gibt eine } s\text{-platz-beschränkte} \\ &\quad k\text{-Band-DTM } M \text{ mit } L = L(M)\}. \end{split}$$

In der Definition von $\mathsf{DSpace}(s)$ haben die TMs ein Extra-Eingabeband.

▶ Zu einer Menge S von Funktionen $\mathbb{N} \to \mathbb{N}$ sei DSpace(S) = $\bigcup_{s \in S} \mathsf{DSpace}(s)$.

Nichtdeterministische Turingmaschinen

Statt

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, S, R\}^k$$

nun

$$\delta: Q \times \Gamma^k \to \mathcal{P}(Q \times \Gamma^k \times \{L, S, R\}^k).$$

- Eine Konfiguration hat nun mehrere Nachfolgekonfigurationen.
- ightharpoonup Berechnungsbaum auf Eingabe x:
 - ightharpoonup Wurzel ist mit SC(x) beschriftet.
 - Ist ein Knoten mit C beschriftet und sind C_1, \ldots, C_s die Nachfolge-Konfigurationen von C, so sind die Kinder mit C_1, \ldots, C_s beschriftet.

Beispiel

Nichtdeterministische Komplexität

- Ein Pfad zu der Wurzel zu einem Blatt heißt Berechnungspfad.
- Der Pfad heißt akzeptierend, falls die Konfiguration im Blatt akzeptierend ist.
- Ist die Konfiguration verwerfend, so heißt der Pfad verwerfend.
- Unendliche Pfade sind verwerfend.
- Eine NTM M akzeptiert eine Eingabe x, falls der Berechnungsbaum auf x einen akzeptierenden Pfad hat.
- ▶ $L(M) = \{x \in \Sigma^* \mid M \text{ akzeptiert } x\}.$
- ▶ Bei DTMs sind Berechnungsbäume Pfade.

Nichtdeterministische Zeitklassen

- ► $Time_M(x)$ ist die Länge einer kürzesten Berechnung von M auf x.
- $\qquad \qquad \text{Time}_{M}(\mathfrak{n}) = \max\{\text{Time}_{M}(x) \mid |x| = \mathfrak{n}, \ x \in L(M)\}.$
- ▶ Sei $t: \mathbb{N} \to \mathbb{N}$. M ist schwach t-zeit-beschränkt, falls $\mathrm{Time}_M(n) \leq t(n)$ für alle n.

Definition (19.5)

Sei $t: \mathbb{N} \to \mathbb{N}$.

 $\label{eq:ntime} \begin{aligned} \mathsf{NTime}(\mathsf{t}) = & \{ \mathsf{L} \mid \mathsf{es} \ \mathsf{gibt} \ \mathsf{eine} \ \mathsf{schwach} \ \mathsf{t}\text{-}\mathsf{zeit}\text{-}\mathsf{beschränkte} \\ & \mathsf{NTM} \ \mathsf{M} \ \mathsf{mit} \ \mathsf{L} = \mathsf{L}(\mathsf{M}) \}, \end{aligned}$

 $\mathsf{NTime}_k(\mathsf{t}) = \{\mathsf{L} \mid \mathsf{es} \ \mathsf{gibt} \ \mathsf{eine} \ \mathsf{schwach} \ \mathsf{t}\text{-}\mathsf{zeit}\text{-}\mathsf{beschränkte} \\ \mathsf{k}\text{-}\mathsf{Band}\text{-}\mathsf{NTM} \ \mathsf{M} \ \mathsf{mit} \ \mathsf{L} = \mathsf{L}(\mathsf{M})\}.$

Nichtdeterministische Platzklassen

- Space_M(x) ist das Minimum über alle akzeptierenden Pfade des maximalen Platzverbrauchs auf diesem Pfad.
- ▶ Sei $s : \mathbb{N} \to \mathbb{N}$. M ist schwach s-platz-beschränkt, falls $\operatorname{Space}_M(\mathfrak{n}) \leq s(\mathfrak{n})$ für alle \mathfrak{n} .

Definition (19.6)

Sei $s: \mathbb{N} \to \mathbb{N}$.

 $\label{eq:NSpace} \begin{aligned} \mathsf{NSpace}(s) = \{ L \mid \mathsf{es} \ \mathsf{gibt} \ \mathsf{eine} \ \mathsf{schwach} \ s\mathsf{-platz-beschränkte} \\ \mathsf{NTM} \ M \ \mathsf{mit} \ L = L(M) \}, \end{aligned}$ $\mathsf{NSpace}_k(s) = \{ L \mid \mathsf{es} \ \mathsf{gibt} \ \mathsf{eine} \ \mathsf{schwach} \ s\mathsf{-platz-beschränkte} \\ k\mathsf{-Band-NTM} \ M \ \mathsf{mit} \ L = L(M) \}. \end{aligned}$

Kapitel 20: Bandreduktion, Kompression und Beschleunigung

Bandreduktion

Definition (20.1)

Eine DTM M simuliert eine TM M', falls L(M) = L(M') und für alle Eingaben x hält M genau dann, wenn M' hält.

Theorem

Jede DTM M kann durch eine 1-Band-DTM S simuliert werden.

Beweis

- ▶ Wir stellen uns das Band in 2k-Spuren aufgeteilt vor.
- $\qquad \Gamma' = (\Gamma \times \{*, -\})^k \cup \Sigma \cup \{\square\}.$

Beweis (2)

Evigale & IX

- S ersetzt die Eingabe x, d.h. x_1 wird durch $(x_1, *, \square, *, \dots, \square, *)$ und jedes andere x_{ν} durch $(x_{\nu}, -, \square, -, \dots, \square, -)$ ersetzt.
- ▶ S speichert den Zustand von M in seiner endlichen Kontrolle.
- ► Solange M nicht hält, wiederholt S das folgende:
 - S geht nach rechts bis zum ersten Blank und speichert in seiner endlichen Kontrolle, welche Zeichen M liest.
 - S simuliert nun einen Schritt von M. Der neue Zustand von M wird gespeichert.
 - ➤ S geht nun nach links bis zum ersten Blank, ersetzt die gelesenen Zeichen und bewegt die Köpfe von M durch Neupositionieren der *.
 - Bewegt S einen Marker * auf eine Zelle mit einem \square , dann wird dies vorher durch $(\square, -, \dots, \square, -)$ ersetzt.
- Falls M akzeptiert, so akzeptiert S. Sonst verwirft S.

Implementierungsdetails

Beispiel: Erste Phase von S

Zustände haben die Form $\{\text{collect}\} \times Q \times (\Gamma \cup \{/\})^k$.

$$\delta'((\text{collect}, q, \gamma_1, \dots, \gamma_k), (\eta_1, \dots, \eta_{2k})) \qquad \begin{array}{c} \gamma_{n} = \text{ disk}, \\ \gamma_{n}$$

für alle $q \in Q, \gamma_1, \ldots, \gamma_k \in \Gamma \cup \{/\}$, wobei

$$\gamma_{\kappa}' = \begin{cases} \gamma_{\kappa} & \text{if } \eta_{2\kappa} = -\\ \eta_{2\kappa-1} & \text{if } \eta_{2\kappa} = * \end{cases}$$

Bandreduktion

Definition (20.6)

Seien $t, s : \mathbb{N} \to \mathbb{N}$.

$$\label{eq:defDTimeSpace} \begin{split} \mathsf{DTimeSpace}(t,s) = & \{L \mid \mathsf{es\ gibt\ eine\ } t\text{-}\mathsf{zeit\text{-}beschränkte\ und\ } \\ s\text{-}\mathsf{platz\text{-}beschränkte\ } \\ \mathsf{DTM\ } M \ \mathsf{mit\ } L = L(M) \}. \end{split}$$

Ebenso DTimeSpace_k(t, s) und NTimeSpace(t, s), ...

Bandreduktion (2)

Theorem (20.7)

Für alle $t, s : \mathbb{N} \to \mathbb{N}$ gilt

 $\mathsf{DTimeSpace}(\mathsf{t},s) \subseteq \mathsf{DTimeSpace}_1(\mathsf{O}(\mathsf{t}s),\mathsf{O}(s)),$ $\mathsf{NTimeSpace}(\mathsf{t},s) \subseteq \mathsf{NTimeSpace}_1(\mathsf{O}(\mathsf{t}s),\mathsf{O}(s)).$

Falls s(n) = O(n), dann hat die 1-Band-TM ein Extra-Eingabeband.

Corollary (20.8)

Für alle $t : \mathbb{N} \to \mathbb{N}$ gilt

$$\mathsf{DTime}(\mathsf{t}) \subseteq \mathsf{DTime}_1(\mathsf{O}(\mathsf{t}^2)),$$

$$NTime(t) \subseteq NTime_1(O(t^2)).$$

Die Sprache COPY

COPY =
$$\{w \# w \mid w \in \{0, 1\}^*\}$$

- ► COPY kann von einer $O(n^2)$ -zeit-beschränkten 1-Band-DTM erkannt werden.
- ► COPY kann von einer O(n)-zeit-beschränkten 2-Band-DTM erkannt werden
- ▶ Es gibt keine $o(n^2)$ -zeit-beschränkte 1-Band-DTM für COPY.

Fun fact: $\overline{\mathsf{COPY}}$ kann von einer 1-Band-NTM in Zeit $\mathrm{O}(n \log n)$ erkannt werden.

Bandreduktion auf zwei Bänder

Theorem (Hennie & Stearns, ohne Beweis)

Jede t-zeit- und s-platz-beschränkte k-Band-DTM kann durch eine $O(t \log t)$ -zeit- und O(s)-platz-beschränkte 2-Band-DTM simuliert werden.

Offene Problem:

- Geht dies besser? Vielleicht mit drei Bändern?
- Superlineare untere Schranke für die Zeitkomplexität einer "einfachen" und "natürlichen" Sprache.
 - → Zeithierarchie-Satz

Bandkompression

Theorem (20.9)

Für alle $0<\varepsilon\leq 1$ und $s:\mathbb{N}\to\mathbb{N}$ gilt

 $\mathsf{DSpace}(s(n)) \subseteq \mathsf{DSpace}_1(\lceil \epsilon s(n) \rceil),$ $\mathsf{NSpace}(s(n)) \subseteq \mathsf{NSpace}_1(\lceil \epsilon s(n) \rceil).$

Falls s(n) = O(n), dann hat die 1-Band-TM ein Extra-Eingabeband.

Beweis

- ightharpoonup Sei $c = \lceil 1/\epsilon \rceil$
- Sei M eine k-Band-DTM mit Bandalphabet Γ.
- lackbox Die simulierende DTM M' hat Bandalphabet $\Gamma' = \Gamma^c \cup \Sigma \cup \{\Box\}$
- c Zellen von M werden in einer Zelle von M' gespeichert.
- ► Falls M kein Extra-Eingabeband hat, dann muss zuerst die Eingabe in das komprimierte Format gebracht werden.

Alphabetreduktion

Space - Alphabet grafte

Aufgabe

Für jede s-platz- und t-zeit-beschränkte TM M mit Eingabealphabet $\{0,1\}$ gibt es eine O(s)-platz- und O(t)-zeit-beschränkte TM mit Arbeitsalphabet $\{0,1,\square\}$.

Aufgabe

Für alle $k \geq 2$, alle $t : \mathbb{N} \to \mathbb{N}$ und alle $0 < \varepsilon \leq 1$ gilt

$$\mathsf{DTime}_k(t(n)) \subseteq \mathsf{DTime}_k(n + \varepsilon(n + t(n)))$$

 $\mathsf{NTime}_k(t(n)) \subseteq \mathsf{NTime}_k(n+\varepsilon(n+t(n))).$

