# Bayes Theorem in Machine (Deep) Learning 딥러닝에 어떻게 적용될까?

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

## What happens in Deep Learning?

딥러닝에서 발생한 상황,

무작정 파라미터  $\theta = \{a, b\}$  찾으라고?? 정답과 가장 가까운 출력을 생성하는 6 뭐래! 장난하냐? 파라미터 집합  $\theta$ 를 찾아라! 가장 큰 확률값 아... 데이터셋 D는 줄게 $\sim\sim$ 갖는 녀석을 정답으로 예측 0.8 0.2  $L(\theta)$ 적절하게 모든 파라미터  $\theta$ 를 업데이트 교수님 $\sim$  파라미터  $\theta$  찾는거량 Bayes Theorem하고 무슨 상관이래요?

y = ax + b??

### Where is Bayes Theorem in Deep Learning?

■ 앞에서 설명한 상황을 Bayes Theorem으로 생각하면?

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$
 Dataset  $D = \{(x_i, y_i)\}_{i=1}^n$ 

| bedrooms |     | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | <br>grade | sqft_above | sqft_basement | price    | type |
|----------|-----|-----------|-------------|----------|--------|------------|------|-----------|------------|---------------|----------|------|
| ſ        | 3   | 1.00      | 1180        | 5650     | 1.0    | 0          | 0    | <br>7     | 1180       | 0             | 221900.0 | 아파트  |
|          | 3   | 2.25      | 2570        | 7242     | 2.0    | 0          | 0    | <br>7     | 2170       | 400           | 538000.0 | 빌라   |
| n -      | 2   | 1.00      | 770         | 10000    | 1.0    | 0          | 0    | <br>6     | 770        | 0             | 180000.0 | 전원주택 |
|          | 4   | 3.00      | 1960        | 5000     | 1.0    | 0          | 0    | <br>7     | 1050       | 910           | 604000.0 | 다가구  |
|          | _ 3 | 2.00      | 1680        | 8080     | 1.0    | 0          | 0    | <br>8     | 1680       | 0             | 510000.0 | 아파트  |

$$P(y|x) = P(정답|데이터)$$
 데이터가 주어졌을 때 정답 맞출 확률을 최대화 Dataset  $D$  주어졌을 때 정답 맞출 확률을 최대화하는 파라미터  $\theta$ 

$$P( heta|D)$$
Bayes Theorem 적용 $P( heta|D) = rac{P(D| heta) imes P( heta)}{P(D)}$ 

## Possible Learning in Bayesian

#### Maximum Likelihood Estimation (MLE)

- Same as frequentist!
- Dataset only!

$$P(\theta|D) = \frac{P(D|\theta) \times P(\theta)}{P(D)} \approx P(D|\theta)$$

#### Maximum A Posterior (MAP)

- *P*(*D*): 알고(given) 있다고 가정(상수 취급)
  - · argmax 과정에서 관계없으므로 생략
- Overfitting에 강함
- Bayesian 관점

#### 목표: Likelihood + Posterior 최대화

$$P(\theta|D) = \frac{P(D|\theta) \times P(\theta)}{P(D)} \approx P(D|\theta) \times P(\theta)$$

목표: 오직 Likelihood만 최대화

- Likelihood, Posterior, Evidence 모두 고려
- Computing P(D) is intractable
- Alternatively, using Variational Inference
- $P(\theta|D)$  계산이 어렵기 때문에 우리가 알고 있는 함수를 이용하여 잘 모사하도록 접근

$$P(\theta|D) = \frac{P(D|\theta) \times P(\theta)}{P(D)} \approx Q(\theta|\theta')$$

목표: P를 잘 흉내내는 Q의 파라미터  $\theta'$ 찾기



수고하셨습니다 ..^^..