ASSESSING THE SPATIAL INEQUALITY OF HEALTHCARE ACCESSIBILITY

Lingbo Liu lingboliu@fas.harvard.edu

Future Data Lab

Key Points

2SFCA and I2SFCA models
Uncertainty in Accessibility Issue

Data Source

Textbook: Quantitative Methods and Socioeconomic Applications in GIS

https://github.com/UrbanGISer/Quantitative-Methods-and-Socioeconomic-Applications-in-GIS

Workflow

Local Version: G2SFCA.knwf;

Cloud Version: G2SFCAWeb.knwf;

Data

G2SFCA.zip

trt2k.zip trtcent.zip zipcent.zip

KNIME Package Requirements

Python Packages

#Basic
pandas
matplotlib
shapely
mapclassify
#GIF
imageio
cv2

Contents

Health Economics
Equity and Efficiency in Health Geography
ISSUES ON ACCESSIBILITY
Accessibility Model
Distance Decay Parameter

Case study
Flow Chart
Workflow Implementation
The Outputs from the Workflow
Step by Step Workflow Execution
Discussion

Health Economics

Health Economics

Scarcity

Supply and demand

Need and demand

Opportunity cost

Discounting

Time horizons

Margins

Efficiency and equity

Needs are things that satisfy the basic requirement. Wants are requests directed to specific types of items. Demands are requests for specific products that the buyer is willing to and able to pay for.

Economic analysis usually judges the way in which resources are used according to two main criteria: efficiency and equity.

Efficiency refers to obtaining the greatest output for a given set of resources. Equity refers to a fair distribution of that output amongst the population.

Equity and Efficiency in Healthcare

Trade-off between equity and efficiency: the central issue of healthcare spatial distribution

Equity WHO initiated a strategy for universal coverage of healthcare.

Hierarchical Diagnosis and Treatment (HTD) reform in China.

Efficiency Healthcare allocation under limited resource constraints

Optimize spatial distribution of medical resources to obtain a supply-demand equilibrium with lower cost and higher input-output efficiency.

WHO: 1 Physician per 1000 persons

Equity and Efficiency in Healthcare

law of diminishing marginal utility

Weighted Marginal Utility=

Population x Marginal Utility

ISSUES ON ACCESSIBILITY

Number of physicians per 1,000 population

More Doctors or Better Care?

Source: Physician-to-population ratios from 2005 OECD Health Data for 2002/03. Avoidable mortality as reported by Nolte and McKee (2008).

Equity and Efficiency in Health Geography

An increase of 10 primary care physicians per 100 000 population was associated with a reduction in cardiovascular mortality by 30.4 deaths per million (95% CI, –52.4 to–8.4; a 0.9% reduction)

Spatial Heterogeneity: Primary Care Physician Versus Population Mortality

Association of Primary Care Physician Supply With Population Mortality in the United States, 2005-2015 doi: 10.1001/jamainternmed.2018.7624

Characteristics of the Study Sample of 3142 US Counties, 2005-2015						
Characteristic	Mean (95% CI)					
	2005	2010	2015	Within-County Change, 2005 to 2015 ^a		
Independent Predictor Variables						
Physicians per 100 000 populationb						
Total	114.6 (0.0 to 425.7)	111.6 (0.0 to 434.9)	112.8 (0.0 to 461.3)	_1.9 (_64.0 to 67.1)		
Primary care	46.6 (0.0 to 114.6)	44.0 (0.0 to 113.7)	41.4 (0.0 to 108.6)	-5.2 (-44.6 to 28.8)		
Specialist	68.0 (0.0 to 326.7)	67.6 (0.0 to 327.5)	71.3 (0.0 to 356.2)	3.4 (_40.1 to 58.9)		
Nonmetro area, %	67.3	73.0	73.0	5.7		
Population in poverty, %c,d	15.3 (5.6 to 31.4)	16.8 (7.0 to 31.8)	16.3 (6.9 to 32.0)	1.0 (_4.2 to 5.6)		
Median household income, 2015 \$US	54 038.4 (34 370.7 to 90 744.6)	53 068.2 (34 523.4 to 87 779.4)	48 600.6 (30 622.5 to 80 641.5)	-5448 (-15 011.1 to 6711.5)		
Population with less than high school education, %	17.8 (6.4 to 37.7)	15.4 (5.5 to 32.3)	13 (3.2 to 29.2)	_4.8 (_16.7 to 4.3)		
Population ≥65 y, %	14.8 (7.6 to 24.1)	15.8 (8.5 to 25.2)	18.0 (10.0 to 27.9)	3.1 (_1.4 to 7.9)		
Population female, %	50.3 (45.1 to 53.0)	49.8 (43.3 to 53.6)	50.0 (43.9 to 52.8)	-0.3 (-3.1 to 1.5)		
Population black, %	9.0 (0.0 to 53)	9.1 (0.2 to 53.1)	9.3 (0.3 to 53.2)	0.3 (_2.7 to 3.1)		
Population Hispanic, %	7.1 (0.5 to 46.9)	8.1 (0.8 to 50.4)	9.2 (0.9 to 53.6)	2.1 (-0.1 to 7.5)		
Unemployment rate, %	5.6 (2.8 to 12.3)	9.4 (3.7 to 17.5)	5.7 (2.5 to 12.4)	0.1 (_2.3 to 3.1)		
Uninsured among persons aged <65 y, %	25.0 (13.0 to 40.4)	18.5 (9.3 to 30.7)	12 (4.7 to 23.2)	-13.0 (-25.4 to -4.0)		
Hospital beds per 100 000 population	358.6 (0.0 to 1733.0)	324.3 (0.0 to 1462.3)	294.7 (0.0 to 1336.0)	_63.2 (_592.9 to 185.9)		
Medicare enrollment, %	16.3 (7.0 to 26.4)	18.3 (8.7 to 28.2)	20.6 (9.8 to 32.0)	4.3 (-1.4 to 10.6)		
Geographic variation in terms of per capita medical costs, 2015, \$US	8946.3 (5734.3 to 13 002.4)	9395.5 (7311.4 to 12 394.6)	9843.4 (7790.6 to 12 676.8)	898.4 (-2914.8 to 4608.3)		
Adult tobacco smoking, %	17.9 (12.7 to 25.6)	21.3 (11.0 to 33.0)	21.3 (11.0 to 33.0)	3.4 (_5.9 to 12.2)		
Adult obesity, %	27.5 (19.0 to 34.0)	30.7 (21.0 to 39.0)	32.1 (21.0 to 42.7)	4.5 (-3.0 to 13.0)		
High pollution days, %	4.7 (0.0 to 24.3)	1.3 (0.0 to 9.3)	6.2 (0.0 to 34.6)	1.5 (_16.5 to 26.3)		
Median home value 2015, \$US	158 526.7 (60 822.4 to 462 389.7)	143 960.4 (63 335.6 to 371 204.1)	129 446.3 (55 081.0 to 293 371.5)	_29 080.4 (_192 909.3 to 45 054.4)		
Dependent Outcome Variables						
Life expectancy at birth, age-standardized years	76.8 (72.5 to 80.5)	77.7 (73.2 to 81.5)	77.8 (72.9 to 82.0)	1.0 (0.1 to 1.9)		
Age-adjusted deaths per 100 000 population						
Cancer	214.1 (162.2 to 271.7)	204.2 (149.8 to 264.1)	206.9 (148.2 to 273.6)	_7.2 (_21.9 to 8.0)		
Cardiovascular disease	317.2 (215.7 to 439.7)	278.4 (185.4 to 397.2)	277.6 (179.6 to 406.6)	-39.6 (-66.6 to -12.9)		
Infectious diseases	38.8 (22.2 to 63.2)	34.6 (18.3 to 58.8)	34.8 (17.0 to 61.4)	_4.0 (_9.9 to 2.7)		
Respiratory tract diseases	62.3 (38.1 to 93.1)	62.1 (35.5 to 95.0)	64.2 (34.3 to 102.2)	1.8 (-7.5 to 13.7)		
Substance use or injury	30.4 (16.3 to 53.8)	33.3 (17.4 to 59.8)	35.5 (17.9 to 64.7)	5.1 (_1.3 to 15.1)		
Interpersonal violence	5.3 (1.6 to 15.2)	4.9 (1.5 to 14.6)	5.0 (1.6 to 14.7)	-0.3 (-1.9 to 0.7)		

Equity and Efficiency in Health Geography

Accessibility Issue

Uneven Spatial Distribution

Population Healthcare Capacity Spatial barrier(time, distance)

ISSUES ON ACCESSIBILITY

可达性问题 ISSUES ON ACCESSIBILITY RASP

> 隐性可达性 Potential the probable utilization of a service

Khan, 1992

P•••

Spatial 空间可达性

the importance of spatial separation between supply and demand as a barrier or a facilitator

Joseph and Phillips, 1984

R_o o

Revealed 显性可达性 actual use of a service

•

Aspatial 非空间可达性

Non geographic barriers or facilitators

Demographics :age, sex, and ethnicity

Socioeconomic: poverty, income; education Environment: basic amenities: transportation

Potential Spatial Accessibility

隐性空间可达性

Accessibility Model

可达性传统模型

Traditional Model of ACCESSIBILITY

■ supply-oriented accessibility 単供给模型 minimum travel time

■ Cumulative opportunities 累计机会法 gravity-based potential model

■ simple supply-demand ratio method 供需比例法 jobs-housing balance approach Rational service area

regional availability measure regional accessibility measure based on a gravity model

SHORTCOMINGS

Spatial variations within an area unit Impermeable boundaries

Accessibility Model

移动搜索法 FCA

两步移动搜索法 2SFCA

Distance decay parameter

Distance Decay Parameter

Generalized 2SFCA

Toolkit: Power, Exponential, and Gaussian

Case Study

Title Measuring spatial accessibility to primary care physicians in Chicago region

Objectives Spatial inequality in Healthcare

Methodology 2SFCA & Gravity-Based Accessibility Model

Data

Shapefile	Туре	File Detail	Key Fields	Key Variable	Data Source
trtcent	Point	census tract centroids	POPU	Population in each census tract	2000 US census
Zipcent	Point	zip code area centroids	DOC00	number of primary care physicians in each zip code area	2000 Physician Master File of the American Medical Association (AMA)
trt2k	Polygon	Base map for plotting			Tiger line shapefile in US census data 2000

Flowchart for Case Study

Flowchart for 2SFCA

The Workflow Implementation

Data Preprocessing |

Data Preprocessing |

Accessibility Modelling

Accessibility Modelling

Accessibility Modelling

Evaluation

Sensitive Analysis

Equality in Primary Care

Average=2.68/1000

Evaluation

Distance=20Mile

Evaluation

Weighted Marginal Utility (WMU)

2.68 Physicians per 1000 person

Accessibility Models

Model

Different model

Different spatial cost – street network

Distance Decay Models

Model

Distance Decay Parameters

Parameters

Model

Kernel Parameters

Kernels

Function

Laplacian

$$K(x, y) = \exp\left(-\frac{\|x - y\|}{\sigma}\right)$$

Rational

Quadratic K

$$K(x, y) = 1 - \frac{\|x - y\|^2}{\|x - y\|^2 + c}$$

$$k(x, y) = \sqrt{\|x - y\|^2 + c}$$

$$K(x, y_j) = \frac{\theta}{\|x - y\|} \sin \frac{\|x - y\|}{\theta}$$

$$K(x, y) = -\|x - y\|^d$$

$$K(x, y) = -\log ||x - y||^d + 1$$

Bessel

$$K(x,y) = \frac{J_{\nu+1}(\sigma ||x-y||)}{||x-y||^{-n(\nu+1)}}$$

Cauchy

$$K(x, y) = \frac{1}{1 + \frac{\left\|x - y\right\|^d}{d}}$$

Wavelet

$$K(x, y) = \prod_{m=1}^{N} h\left(\frac{x_i - c}{a}\right) h\left(\frac{y_i - c}{a}\right)$$

Examples of popular kernel functions:

• Gaussian kernel:
$$K(x_i, x_j) = e^{\frac{|\mathbf{x}_i - \mathbf{x}_j|^2}{2\sigma^2}}$$

• Laplacian kernel:
$$K(x_i, x_j) = \frac{\theta}{\|\mathbf{x}_i - \mathbf{x}_j\|} \sin \frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{\theta}$$

• Polynomial kernel:
$$K(x_i, x_j) = (ax_i^T x_j + b)^d$$

Exploration and Validation

Conventional Distance Decay Curves for Retail Activities

Public Facilities

https://transportgeography.org/contents/methods/market-area-analysis/retail-distance-decay-curve-conventional/

