МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра методов оптимального управления

МЕТОДЫ УПРАВЛЕНИЯ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ НА ОСНОВЕ ДАННЫХ

Курсовая работа

Кулешова Владислава Вячеславовича студента 3 курса, специальность «прикладная математика»

Научный руководитель: канд. физ.-мат. наук доцент Н.М. Дмитрук

ОГЛАВЛЕНИЕ

	Ċ.
ВВЕДЕНИЕ	3
ГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ОБЗОР ЛИТЕРАТУ-	
РЫ	4
1.1 Теория управления по прогнозирующей модели	
1.2 Задачи оптимального управления	6
1.3 Представление входных и выходных сигналов дискретных стацио-	
нарных линейных систем на основе матрицы Ганкеля	8
ГЛАВА 2 Управление по прогнозирующей модели на основе данных: точные данные	11
ГЛАВА 3 Управление по прогнозирующей модели на основе	
данных: неточные данные	12
ГЛАВА 4 Числинные эксперементы	13
ЗАКЛЮЧЕНИЕ	14
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	15

ВВЕДЕНИЕ

В западной литературе управление в реальном времени представлено теорией управления по прогнозирующей модели — Model Predictive Control (MPC). Основными приложениями теории являются задачи стабилизации динамических систем. Современная теория нелинейного MPC предлагает основанные на решении задач оптимального управления методы построения обратных связей для нелинейных объектов.

В главе 1 происходит ознакомление с управлением по прогнозирующей модели, представление модели через матрицу Ганкеля, а также рассматриваются задачи оптимального управления и их классификация. В главе 2 исследуются методы решения простейшей прогнозирующей задачи на основе данных и задачи с терминальными ограничениями-равенствами. В главе 3 применена схема МРС из главы 2, рассмотрена программная реализация алгоритма и приведён полученный результат.

ГЛАВА 1

ОСНОВНЫЕ ПОНЯТИЯ И ОБЗОР ЛИТЕРАТУРЫ

В настоящей глава описываются основные понятия MPC. Приводится классификация принципов управления, используемых в современной теории управления. А также рассматривается вохможность представления входных и выходных сигналов дискретных стационарных линейных систем на основе матрицы Ганкеля для MPC.

1.1 Теория управления по прогнозирующей модели

Главная идея MPC [1] – использование математической модели управляемого процесса в пространстве состояний для предсказания и оптимизации будущего поведения системы. Рассмотрим задачу стабилизации нелинейной системы

$$x(t+1) = f(x(t), u(t)), t = 0, 1, \dots,$$
 (1.1)

где

 $x = x(t) \in \mathbb{R}^n$ – состояние системы в момент времени t;

 $u=u(t)\in\mathbb{R}^r$ — значение управляющего воздействия в момент времени t; $f:\mathbb{R}^n\times\mathbb{R}^r\to\mathbb{R}^n$ — заданная функция.

Пусть f(0,0)=0, следовательно точка равновесия системы находится в начале координат, и при тривиальном управлении $u\equiv 0$ система остаётся в состоянии покоя.

При заданном управлении $u(\cdot)$, траектория системы (1.1) обозначается как $x(t|0,z,u(\cdot)),\,t=0,1,\ldots$, где начальное состояние системы в момент времени t=0 задаётся условием x(0)=z.

Управление $u(\cdot)$ будем выбирать так, чтобы максимально приблизить траектории $x(t|0,x_0,u(\cdot)), t=0,1,\ldots,N$, к началу координат.

Определение 1 Стоимость этапа – функция l(x(t), u(t)) вдоль траектории $x(\cdot)$ и управления $u(\cdot)$, с помощью которой для всех моментов времени $t = 0, 1, \ldots$ оценивается качество выбранного урпавления $u(\cdot)$.

Чаще всего стоимость этапа l выбирается следующим образом:

1. Взвешенная сумма расстояний до начала координат:

$$l(x,u) = \parallel x \parallel^2 + \lambda \parallel u \parallel^2, \quad \lambda \ge 0$$
 – параметр, $\parallel \cdot \parallel$ – евклидова норма.

2. Квадратичные функции

$$l(x, u) = x'Qx + u'Ru$$

R,Q>0 – положительно-определённые матрицы.

Таким образом задача оптимального управления состоит в минимизации функционала, где минимум ищем вдоль траекторий $x(t|0,x^*(\tau),u(\cdot)),t=0,1,\ldots,N-1$, системы (1.1) с начальным состоянием, совпадающим с текущим состоянием объекта $x(0)=x^*(\tau)$ и при некоторых ограничениях:

$$J(x^*(\tau)) = \min_{u(\cdot)} \sum_{t=0}^{N-1} l(x(t|0, x^*(\tau), u(\cdot)), u(t)).$$
 (1.2)

Ограничения для задачи (1.2) состояит из двух групп:

- 1. Физические ограничения системы (например, неотрицательность переменных, максимальное ограничение на управляющее воздействие и другие);
- 2. Ограничения, накладываемые алгоритмом MPC (например, терминальное ограничение вида x(N) = 0 или принадлежность x(N) множеству X_f).

Обозначим оптимальное программное решение задачи (1.2) через $u^0(\cdot|x^*(\tau))$. Для построения обратных связей будем считать, что на объект управления подано первое значение оптимальной программы

$$\mu(x^*(\tau)) = u^0(0|x^*(\tau)).$$

Далее в момент времени $\tau+1$ процесс повторяется для состояния $x^*(\tau+1)$. Тогда в этот момент времени решается задача о минимизации следующего функционала:

$$J(x^*(\tau+1)) = \min_{u(\cdot)} \sum_{t=0}^{N-1} l(x(t|0, x^*(\tau+1), u(\cdot)), u(t)).$$

При этом будет получено очередное значение обратной связи:

$$\mu(x^*(\tau+1)) = u^0(0|x^*(\tau+1)).$$

После процесс повторяется при $\tau+2, \tau+3$ и так далее. Таким образом, алгоритм управления по прогнозирующей модели, в каждый момент времени $\tau=0,1,\ldots$ состоит из следующих шагов:

- 1. Измеряется текущее состояние $x^*(\tau)$
- 2. Находится оптимальное программное решение $u^0(t|x^*(\tau))$ задачи (1.2).
- 3. Подаётся на объект системы управляющее воздействие

$$\mu^*(\tau) \equiv \mu(x^*(\tau)) = \mu^0(0|x^*(\tau)).$$

Идея упрваления по прогнозирущей модели заключается в оптимизации будущего поведения системы в каждый момент времени, нахождение оптимального управления и его использования в качестве значений обратной связи для следующего момента времени.

1.2 Задачи оптимального управления

Задачи оптимального управления классифицируются [2]

- По промежутку управления:
 - задачи оптимального управления разделяются на непрерывные $T=[t_0,t_f]$ и дискретные, в которых динамический процесс рассматривается в дискретные моменты времени $k=0,1,\ldots,N,\ N$ натуральное число.
 - задачи различаются по продолжительности процесса с фиксированным и нефиксированном t_f .
- По ограничениям на траекторию, которые в общем виде имеют следующий вид:

$$x \in \mathbb{X}(t), t \in [t_0, t_f].$$

Ограничения на траекторию могут накладываться:

- на правом конце траектории(терминальные ограничения), т.е. $x(t_f) \in \mathbb{X}_f;$
- на левом конце, т.е. $x(t_0) \in \mathbb{X}_0$;
- в промежуточные моменты времени, т.е. $x(t_i) \in \mathbb{X}_i, t_i \in [t_0, t_f], i = 1, ..., l$, при этом $t_0 < t_1 < \cdots < t_l < t_f$.

Также существуют смешанные ограничения на траекторию.

- По критерию качества:
 - Терминальный критерий качества типа Майера

$$J(u) = \varphi(x(t_f)),$$

$$\varphi: \mathbb{R}^n \to \mathbb{R}$$
.

– Интегральный критерий типа Лагранжа

$$J(u) = \int_{t_0}^{t_f} f_0(x(t), u(t), t) dt,$$

$$f_0: R^n \times R^r \times R \to R.$$

– Критерий качества типа Бальса

$$J(u) = \varphi(x(t_f)) + \int_{t_0}^{t_f} f_0(x(t), u(t), t) dt.$$

- Критерий быстродействия

$$J(u) = t_f - t_0 \to \min.$$

Принцип максимума – классическое необходимое условие оптимальности для задач оптимального управления. Оно является самым сильным из известных необходимых условий оптимальности первого порядка.

Для формулировки принципа максимума введем гамильтониан:

$$H(x, \psi, u, t) = \psi' f(x, u, t) = \sum_{j=1}^{n} \psi_j f_j(x, u, t)$$

Рассмотрим простейшую задачу оптимального управления на промежутке времени $[t_0,t_f]$ в классе кусочно-непрерывных управлений:

$$J(u) = \phi(x(t_f)) \to \min,$$

$$\dot{x} = f(x, u, t), x(t_0) = x_0,$$

$$u(t) \in \mathbb{U}, t \in [t_0, t_f].$$

Пусть $u^0(t), t \in [t_0, t_f]$, – оптимальное управление, $x^0(t), t \in [t_0, t_f]$, – оптимальная траектория, $\psi^0(t), t \in [t_0, t_f]$ – сопряжённая траектория – решение сопряженного уравнения

$$\dot{\psi} = -\frac{\partial H(x^0(t), \psi, u^0(t), t)}{\partial x},$$

$$\psi = -\frac{\partial \varphi(x^0(t_f))}{\partial x}.$$

Тогда выполняется условие максимума гамильтониана:

$$H(x^{0}(t), \psi^{0}(t), u^{0}(t), t) = \max_{u \in \mathbb{U}} H(x^{0}(t), \psi^{0}(t), u, t), t \in [t_{0}, t_{f}].$$

1.3 Представление входных и выходных сигналов дискретных стационарных линейных систем на основе матрицы Ганкеля

1.3.1 Построение матрицы Ганкеля

Рассмотрим систему [4] с $u(k) \in \mathbb{R}^l, y(k) \in \mathbb{R}^m, x(k) \in \mathbb{R}^n$:

$$x(k+1) = Ax(k) + Bu(k)$$

$$y(k) = Cx(k) + Du(k)$$
(1.3)

где $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times l}, C \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{m \times l}$ – матрицы системы, $k \in [1,T], T \in \mathbb{N}$. Траектория сигналов $z_d = (z(1),\ldots,z(k),\ldots,z(T)) \in (\mathbb{R}^{n_z})^T$ линейной многомерной системы P. Система P удовлетворяет $P \subset (\mathbb{R}^{n_z})^T$ с сегментом входа-выхода $z = \begin{bmatrix} u \\ y \end{bmatrix} \in P$, где $u \in (\mathbb{R}^m)^N$ – входной сигнал, $y \in (\mathbb{R}^l)^N$ – выходной. Матрица Ганкеля $H(z_d)$ с N строками и T-N столбцами составленная из ограниченного сигнала $z_d \in (\mathbb{R}^{z_n})^T$ обозначается как:

$$H(z_d) = \begin{pmatrix} z(1) & z(2) & \cdots & z(T-N+1) \\ z(2) & z(3) & \cdots & z(T-N+2) \\ \vdots & \vdots & \cdots & \vdots \\ z(N) & z(N+1) & \cdots & z(T) \end{pmatrix}.$$
(1.4)

Построенная матрица будет использоваться в МРС вместо модели без какихлибо промежуточных шагов.

1.3.2 Прогнозирование на основе матрицы Ганкеля

Для произвольного момента времени k, принятого за текущее время, ограничение $P|_T$ поведения P для интервала [1,T] определяется с использованием траектории сигнала как $z_d=(z(1),\ldots,z(t),\ldots,z(T)),z(t)\in\mathbb{R}^{n_z}$. Вектор столбец данных на горизонте управления для выхода и входа z определяется как

$$z_{p} = z_{k-N|k} = \begin{bmatrix} y(k-N) \\ \vdots \\ y(k) \\ u(k-N) \\ \vdots \\ u(k) \end{bmatrix} \in \mathbb{R}^{(l+m)N}, \tag{1.5}$$

$$z_{f} = z_{k|k+N-1} = \begin{bmatrix} z(k) \\ z(k+1) \\ \vdots \\ z(k+N-1) \end{bmatrix} \in \mathbb{R}^{(l+m)N_{1}}.$$
 (1.6)

Далее, индекс p обозначает относительное «прошлое», а f - «будущее» соответственно. Чтобы избежать промежуточного шага для идентификации представления системы, прогнозирование траектории выполняется с помощью матрицы Ганкеля данных $H(z_d)$. При построении ганкелевой матрицы $H(z_d)$ все данные можно разделить на две части. Прошлый и будущий входной блок ганкелевых матриц определяется следующим образом:

$$U_{p} = \begin{bmatrix} u(1) & u(2) & \dots & u(j) \\ u(2) & u(3) & \dots & u(j+1) \\ \vdots & \vdots & \ddots & \vdots \\ u(N-1) & u(N) & \dots & u(N+j-1) \end{bmatrix},$$
(1.7)

$$U_{f} = \begin{bmatrix} u(N) & u(N+1) & \dots & u(N+j-1) \\ u(N+1) & u(N+2) & \dots & u(N+j) \\ \vdots & \vdots & \ddots & \vdots \\ u(2N-1) & u(2N) & \dots & u(2N+j-2) \end{bmatrix}.$$
(1.8)

Обозначения «прошлого» и «будущего» можно понять по первому столбцу. Матрица Ганкеля «будущего» блока следует за данными матрицы Ганкеля

«прошлого» блока во временной последовательности. Число N - это размерность строки блоков векторов данных, а j - номер строки матрицы Ханкеля, которая должна быть достаточно большой. Это соотношение справедливо для всех столбцов. Размерность строки U_f может отличаться от размерности U_p , что обеспечит дополнительную степень свободы для настройки предложенного алгоритма прогнозного управления. Прошлый и будущий выходной блок-ганкелевых матриц Y_p и Y_f определяются аналогично. В данной работе используются следующие сокращенные обозначения:

$$H_p = \begin{bmatrix} Y_p \\ U_p \end{bmatrix}, H_f = \begin{bmatrix} Y_f \\ U_f \end{bmatrix}. \tag{1.9}$$

Наблюдения z также можно разделить на две части:

$$z^T = \begin{bmatrix} z_p^T & z_f^T \end{bmatrix}, \tag{1.10}$$

где z_p – известные данные, а z_f – вектор будущих данных. Матрица проекции также может быть разделена на две части таким же образом:

$$z = \begin{bmatrix} z_p \\ z_f \end{bmatrix} = [H_p, H_f] g, \tag{1.11}$$

если известная часть данных z_p используется для параметра g оценки \widehat{g} , получается следующее соотношение.

$$\widehat{g} = (H_p^T H_p)^{-1} H_p^T z_p, \tag{1.12}$$

где $\widehat{g}=[g-0,g_1,\ldots,g_r]$ – вектор оцененного вектора изображения. Тогда оценки траекторий всех переменных для предсказания z_f :

$$\widehat{z}_f = H_f \widehat{g} = H_f (H_p^T H_p)^{-1} H_p^T z_p$$
(1.13)

Оценка $\hat{z}_f = [y_f^T \ u_f^T]^T$ с использованием матриц данных H_f , H_p и z_p эффективна для будущих траекторий. Он выполняет ту же роль, что и оценки состояния (Фильтры Калмана и т. Д.) для прогнозирования будущих траекторий в традиционных подходах МРС. Эти методы используют прошлые данные до текущего момента времени для оценки будущих данных. Для управляемых систем можно рассчитать значения будущих траекторий на горизонте управления.

ГЛАВА 2

УПРАВЛЕНИЕ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ НА ОСНОВЕ ДАННЫХ: ТОЧНЫЕ ДАННЫЕ

ГЛАВА 3

УПРАВЛЕНИЕ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ НА ОСНОВЕ ДАННЫХ: НЕТОЧНЫЕ ДАННЫЕ

ГЛАВА 4 ЧИСЛИННЫЕ ЭКСПЕРЕМЕНТЫ

ЗАКЛЮЧЕНИЕ

В данной работе описанны основные определения теории управления по прогнозирующей модели, проанализированы схемы управления по прогнозирующей модели и показаны способы решений простейшей прогнозирующей задачи и задачи с терминальными ограничениями-равенствами,в которых для прогнозирования используются только прошлые измеренные данные без какого-либо предварительного шага идентификации системы. Также показано, что замкнутый контур в схеме управления по прогнозирующей модели рекурсивно допустим и практически экспоненциально устойчив.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1 Rawlings, J.B. Model Predictive Control: Theory and Design / J.B. Rawlings, D.Q. Mayne. Madison: Nob Hill Publishing, 2009. 576 p.
- 2 Методы оптимизации. Учебное пособие / В.В. Альсевич [и др.] Мн.: «Четыре четверти», 2011.
- 3 Berberich, J. A trajectory-based framework for data-driven system analysis and control / J. Berberich, F. Allg?wer // arXiv, 2019 6p. (preprint arXiv:1903.10723).
- 4 Yang, H. A data-driven predictive controller design based on reduced hankel matrix / H. Yang, S. Li // Asian Control Conference: proc. of the 10th ACC 2015. 7p.
- 5 Coulson, J. Data-enabled predictive control: in the shallows of the DeePC / J.Coulson, J. Lygeros, F. D?rfler // European Control Conference: proc of the 18thECC. -2019. -P. 307-312.