Chapitre 2: Exercices de synthèse

Exercice 1: le condensateur

Un condensateur est un composant électronique qui permet de stocker de l'énergie électrique pour la restituer plus tard.

Le graphique ci-après montre l'évolution de la tension mesurée aux bornes d'un condensateur en fonction du temps lorsqu'il est en charge.

- S'agit-il d'une situation de proportionnalité ? Justifier.
- 2 Quelle est la tension mesurée au bout de 0,2 s?
- Au bout de combien de temps la tension aux bornes du condensateur aura-t-elle atteint 60 % de la tension maximale qui est estimée à 5 V?

Source : DNB France métropolitaine, 2017

Exercice 2: lectures graphiques

La fonction **g** est définie par cette courbe.

- **1.** Quelle est l'image de -2 par \mathbf{g} ?
- 2. Quel est l'antécédent de 2 par g?
- **3.** Quelle est la valeur de g(3)?
- **4.** Donner un encadrement par deux entiers consécutifs de l'antécédent de 0 par **g**.
- **5.** Combien le nombre 3,5 a-t-il d'antécédent(s) par la fonction **g** ? En donner des valeurs approchées.

Exercice 3: Programme de calcul et fonction

• Choisir un nombre.

• Soustraire le carré

Ajouter 1 à ce nombre.
Calculer le carré du résultat.

du nombre de départ

au résultat précédent.

• Écrire le résultat.

Voici un programme de calcul:

- On choisit 4 comme nombre de départ.

 Prouver par le calcul que le résultat obtenu avec le programme est 9.

 1 pt
- 2 On note x le nombre choisi.
- a. Exprimer le résultat du programme en fonction de x.
- **b.** Prouver que ce résultat est égal à 2x + 1.
- Soit f la fonction définie par f(x) = 2x + 1.
- a. Calculer l'image de 0 par f.
- **b.** Déterminer par le calcul l'antécédent de 5 par f.
- **c.** Tracer la droite représentative de la fonction f sur le graphique ci-dessous.

Source: DNB Nouvelle-Calédonie, 2017

d. Par lecture graphique, déterminer le résultat obtenu en choisissant -3 comme nombre de départ dans le programme de calcul. Laisser les traits de construction apparents.

Exercice 4: Course en moto-cross

Lors d'une course en moto-cross, après avoir franchi une rampe, Gaëtan a effectué un saut record en moto.

Le saut commence dès que Gaëtan quitte la rampe.

On note t la durée (en secondes) de ce saut.

La hauteur (en mètres) est déterminée en fonction de la durée t par la fonction h suivante :

$$h: t \mapsto (-5t - 1,35)(t - 3,7)$$

Voici la courbe représentative de cette fonction h.

Les affirmations suivantes sont-elles vraies ou fausses? Justifier en utilisant soit le graphique, soit des calculs.

1 En développant et en réduisant l'expression de h, on obtient $h(t) = -5t^2 - 19,85t - 4,995$.

2 Lorsqu'il quitte la rampe, Gaëtan est à 3,8 m de hauteur.

3 Le saut de Gaëtan dure moins de 4 secondes.

4 Le nombre 3,5 est un antécédent du nombre 3,77 par la fonction h.

Source : Inde, avril 2016

Exercice 6: Fonction et tableur

On considère les fonctions f et g définies par :

$$f(x) = 2x + 1$$
 et $g(x) = x^2 + 4x - 5$.

Léa souhaite étudier les fonctions f et g à l'aide d'un tableur. Elle a donc rempli les formules qu'elle a ensuite étirées pour obtenir le calcul de toutes les valeurs.

Voici une capture d'écran de son travail :

В3		= B1*B1 + 4*B1 - 5						
	A	В	C	D	E	F	G	Н
1	x	-3	-2	- 1	0	1	2	3
2	f(x)	- 5	- 3	- 1	1	3	5	7
3	g(x)	- 8		-8	- 5	0	7	16
4								

Exercice 5: La cuisson des macarons

Pour cuire des macarons, la température du four doit être impérativement de 150 °C.

Depuis quelque temps, le responsable de la boutique n'est pas satisfait de la cuisson de ses pâtisseries. Il a donc décidé de vérifier la fiabilité de son four en réglant sur 150 °C et en prenant régulièrement la température à l'aide d'une sonde.

Voici la courbe représentant l'évolution de la température de son four en fonction du temps.

Évolution de la température du four en fonction du temps

1 La température du four est-elle proportionnelle au temps?

2 Quelle est la température atteinte au bout de 3 minutes? *Aucune justification n'est demandée*.

De combien de degrés Celsius la température a-t-elle augmenté entre la deuxième et la septième minute?

Au bout de combien de temps la température de 150 °C nécessaire à la cuisson des macarons est-elle atteinte?

Dassé ce temps, que peut-on dire de la température du four? Expliquer pourquoi le responsable n'est pas satisfait de la cuisson de ses macarons.

Source: Centres étrangers, juin 2016

- \blacksquare Quelle est l'image de 3 par la fonction f?
- 2 Calculer le nombre qui doit apparaître dans la cellule C3.
- 3 Ouelle formule Léa a-t-elle saisie dans la cellule B2?
- \blacksquare À l'aide de la copie d'écran et sans justifier, donner une solution de l'inéquation $2x + 1 < x^2 + 4x 5$.
- 5 Déterminer un antécédent de 1 par la fonction f.

Source : Asie, juin 2016

Corrigé des exercices

Exercice 1:

1/ Non, car au bout de 0,1 s, la tension est de 3,2 V et devrait être de 6,4 V au bout de 0,2 s ce qui n'est pas le cas. Remarque : une situation de proportionnalité est représentée par une droite passant par l'origine, ce n'est pas le cas.

2/ La tension mesurée au bout de 0,2 s est de 4,4 V.

3/60% de 5 V est de 3 V. Ce seuil est atteint au bout de 0,9 V.

Exercice 2:

1/g(-2) = 4.

2/L'antécédent de 2 par la fonction q est 0.

3/g(3) = -1.

4/ L'antécédent de 0 par la fonction g est compris entre 1 et 2.

5/ Les deux antécédents de 3,5 sont environ -1,5 et −3.

Exercice 3:

 $1/4 - (+1) -> 5 - (au\ carré) -> 25 - (-4^2)-> 9.$

 $2/x - (+1) - (x + 1) - (au \ carré) - (x + 1)^2 - (x + 1)^2 - x^2$

On développe $(x + 1)^2 - x^2$

 $x^{2} + 2x + 1 - x^{2} = 2x + 1$. On obtient bien 2x + 1.

 $3/a) f(0) = 2 \times 0 + 1 = 1.$

b) 2x + 1 = 5 soit 2x = 4 soit x = 2.

c) Voir à droite

d) f(-3) = -5 (voir tracé)

Remarque : on peut vérifier le résultat en calculant f(-3).

Exercice 4 :

1/ On développe (-5t – 1,35)(t – 3,7)

 $-5t \times t + (-5t) \times (-3,7) + (-1,35 \times t) + (-1,35) \times (-3,7)$

 $-5t^2 + 18,5t - 1,35t + 4,995$

-5t² + 17,15t + 4,995

L'affirmation est fausse.

2/ Il est à 5 m à ce moment. L'affirmation est fausse.

3/ Il touche le sol à environ 3,7 s. L'affirmation est vraie.

4/ On calcule f(3,5).

 $f(3,5) = -5 \times (3,5)^2 + 17,15 \times 3,5 + 4,995$

f(3,5) = 3,77. L'affirmation est vraie.

Exercice 5:

1/ Non, car la température du four décroît entre 10 et 12 minutes.

<u>Remarque</u>: d'autres justifications sont possibles.

2/ Le four atteint environ 70°C au bout de 3 minutes.

3/ Le four atteint 50°C au bout de 2 minutes et 140°C au

bout de 7 minutes. L'augmentation est de 90°C.

4/ Elle est atteinte au bout de 8 minutes.

5/ La température n'est pas constante et varie entre

145°C et 155°C environ. Le gérant est donc mécontent

puisqu'il faut une température de 150°C.

Exercice 6:

1/ On lit dans le cellule H2 que f(3) = 7. <u>Remarque</u>: on peut aussi calculer f(3) directement.

2/ Dans la cellule C3, il s'agit de g(-2) et $g(-2) = (-2)^2 + 4 \times (-2) - 5$ soit g(-2) = 4 - 8 - 5 = -9.

 $3/Elle \ a \ saisi \ B2 = 2*B1 + 1$

4/ Pour x = 2, on obtient f(2) = 5 (cellule G2) et g(2) = 7 (cellule G3). On a bien $2x + 1 < x^2 + 4x - 5$ pour x = 2.

5/ On lit dans la cellule E1 que 0 est un antécédent de 1 par la fonction f.