PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 09

MAT1106 — Introducción al Cálculo Fecha: 2020-09-29

Problema 1:

Determine si las siguientes proposiciones son verdaderas o falsas. Si es verdadero demuestre, en caso contrario de contraejemplo.

- (a) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son acotadas, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es acotada.
- (b) Si $\{x_n\}_{n\in\mathbb{N}}$ y $\{y_n\}_{n\in\mathbb{N}}$ son acotadas, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es acotada.
- (c) Si $\{x_n\}_{n\in\mathbb{N}}$ es acotada y $x_n\neq 0$ para todo n, entonces $\{(\frac{1}{x})_n\}_{n\in\mathbb{N}}$ es acotada.

Solución problema 1:

- (a) Se tiene que $|x_n| \le M_1$, $|y| \le M_2$ ve que $|x_n + y_n| \le |x_n| + |y_n| \le M_1 + M_2$, por lo que es acotada.
- (b) Se tiene que $|x_n| \le M_1$, $|y| \le M_2$ ve que $|x_n \cdot y_n| = |x_n| \cdot |y_n| \le M_1 \cdot M_2$, por lo que es acotada.
- (c) Se ve que $x_n = \frac{(-1)^n}{n}$ es un contraejemplo.

Problema 2:

Demuestre que $x_n = \sqrt{n}$ no está acotada.

Solución problema 2: Si es acotada se tiene que $x_n^2 = n$ es acotada por el problema 1 lo que es una contradicción.

Problema 3:

Demuestre que las siguientes propiedades son equivalentes:

- (a) Para todo $x \in \mathbb{R}$, existe un $n \in \mathbb{N}$ tal que x < n.
- (b) Para todo $\varepsilon > 0$ existe, un $n \in \mathbb{N}$ tal que $\frac{1}{n} < \varepsilon$.
- (c) Para todos $\alpha, \varepsilon \in \mathbb{R}$ con $\varepsilon > 0$, existe un $n \in \mathbb{N}$ tal que $\alpha < n\varepsilon$.

Solución problema 3:

- $a \implies c$: Sea $\alpha \in \mathbb{R}$ y $\varepsilon > 0$ se tiene que $x = \frac{\alpha}{\varepsilon} \in \mathbb{R}$, por lo que existe un $n \in \mathbb{N}$ tal que x < n, o equivalentemente existe un $n \in \mathbb{N}$ tal que $\alpha < n\varepsilon$.
- $c \implies b$: Sea $\varepsilon > 0$, se toma $\alpha = 1$, por lo que existe un $n \in \mathbb{N}$ tal que $\alpha < n\varepsilon$, o equivalentemente $\frac{1}{n} < \varepsilon$.
- $b \implies a$ Se tienen dos casos, si $x \le 0$ se tiene que n = 1 cumple, si x > 0 se toma $\varepsilon = x$ y se tiene que existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < \varepsilon$, que es equivalente a x < n.

Problema 4:

Considere los intervalos de la forma $J_n = [3, 3 + \frac{1}{n}]$ con $n \in \mathbb{N}$. Use la pregunta anterior para demostrar que $\bigcap_{n \in \mathbb{N}} J_n = \{3\}$.

Solución problema 4: Sea $S = \bigcap_{n \in \mathbb{N}} J_n$, si existe $a \in S$ tal que $a \neq 3$, se tiene que a > 3, por lo que $\varepsilon = a - 3$ nos da que existe $n \in \mathbb{N}$ tal que $3 + \frac{1}{n} < 3 + \varepsilon = 3 + a - 3 = a$, lo que es una contradicción.

Problema 5:

Sean $\alpha, \beta \in \mathbb{R}$ tal que $\beta > 0$. Dado $x_0 = a$ tal que $\alpha + \beta \cdot a \ge 0$, se define recursivamente $x_{n+1} = \sqrt{\alpha + \beta x_n}$. Demuestre que es una sucesión monótona y acotada.

Solución problema 5: Se ve lo siguiente:

$$x_n \le x_{n+1}$$

$$\beta x_n \le \beta x_{n+1}$$

$$\alpha + \beta x_n \le \alpha + \beta x_{n+1}$$

$$\sqrt{\alpha + \beta x_n} \le \sqrt{\alpha + \beta x_{n+1}}$$

$$x_{n+1} \le x_{n+2}$$

Se nota, que esto funciona para \geq , ahora por tricotomía se tiene que $x_1 \leq x_2$ o $x_2 \geq x_1$, por lo que usando ese paso inductivo se tiene que x_n es monótona. Para ver que es acotada se tienen dos casos, si es decreciente es trivialmente acotada, $x_n \geq \min(0, x_0)$ y $x_n \leq x_0$. Si es creciente, se ve lo siguiente

$$x_n = \sqrt{\alpha + \beta x_{n-1}}$$

$$x_n^2 = \alpha + \beta x_{n-1}$$

$$x_n \cdot x_{n-1} \le x_n^2 = \alpha + \beta x_{n-1}$$

$$x_n \le \frac{\alpha}{x_{n-1}} + \beta \le \frac{\alpha}{x_1} + \beta$$

Con lo que tenemos que es acotada.