Modern Symmetric Key Ciphers

Part II: Fiestel Ciphers and the DES

Priyank Kalla
Professor
Electrical & Computer Engineering

Product Ciphers

- Product Cipher: Combines S-Boxes, P-Boxes and Mixers, and may use multiple rounds for encipherment
- Two types of Product Ciphers
 - Feistel Cipher: Includes invertible and noninvertible components
 - DES = Feistel Cipher (uses non-invertible mixers and compression P-Boxes)
 - Non-Feistel Cipher: Includes only invertible components
 - AES = Non-Feistel Cipher

Example Product Cipher

Key Mixer: P[7:0] XOR K1[7:0]

A product cipher made of two rounds

- Mixer: Use a non-invertible function f(K): can be linear or polynomial in \mathbb{F}_{2^k}
- But the Mixer is "self-invertible":

$$C = P \oplus f(K)$$

• $P = C \oplus f(K)$

Encryption: $C_1 = P_1 \oplus f(K)$

Decryption: $P_2 = C_2 \oplus f(K) = C_1 \oplus f(K) = P_1 \oplus f(K) \oplus f(K) = P_1 \oplus (00...0) = P_1$

Example of Diffusion and Confusion

- Diffusion:
 - Bit-8 in P has affected bits 1,
 3, 6,7 in C
 - Similarly, each bit in C is affected by several bits in P
- Confusion:
 - Bits 1, 3, 6, 7 in C affected by bit 8 in K_1 and bits 2, 4 in K_2

An Example Product Cipher: Feistel Cipher

Data Encryption Standard (DES)

- DES was published by NIST ~1977, original proposal by IBM
- 64-bit block cipher (64-bit data block), and 56-bit key
- Proof (by IBM?) that the 56-bit partial size key cipher is not a subgroup of the full size key

High-Level Structure of DES

Initial Permutation	Final Permutation		
58 50 42 34 26 18 10 02	40 08 48 16 56 24 64 32		
60 52 44 36 28 20 12 04	39 07 47 15 55 23 63 31		
62 54 46 38 30 22 14 06	38 06 46 14 54 22 62 30		
64 56 48 40 32 24 16 08	37 05 45 13 53 21 61 29		
57 49 41 33 25 17 09 01	36 04 44 12 52 20 60 28		
59 51 43 35 27 19 11 03	35 03 43 11 51 19 59 27		
61 53 45 37 29 21 13 05	34 02 42 10 50 18 58 26		
63 55 47 39 31 23 15 07	33 01 41 09 49 17 57 25		

- Output bit 1 = input bit 58, and so on...
- There's been debate on the security significance of initial and final permutations — don't seem to add to security
- Each DES Round = Feistel Cipher
- 16 DES Rounds

DES Round & Mixer Function

A Round in DES

The Mixer Function in DES

- The Expansion P-Box has a specified table (routing)
- Each of the 8 S-boxes has a separate 6-bit → 4-bit table
- The last P-box is also a permutation table (routing)

Details of DES Function: Expansion P-Box

- The Expansion Permutation P-Box of the DES function
- It's just wiring...

Details of DES Function: S-Boxes

- Each S-Box is a different polynomial function: $\mathbb{F}_{2^6} \to \mathbb{F}_{2^4}$
- Or as a truth table of a 6-input, 4 output Boolean function: $\mathbb{B}^6 \to \mathbb{B}^4$
- Each of the 8 truth tables are different are provided in the DES Spec

- The Final DES
 Cipher and
 Reverse Cipher
- Round 16 does not have a swap

Key Generation for Each Round

- Key Generator takes a 56-bit Key (K)
- Keys are usually provided with 8 parity bits: Adds 8 parity bits to get 64-bit key after every 7 key bits
- These parity bits are dropped before the real key generation
- Generates 16 48-bit Keys (K1, ..., K16) from K

Key Generation View

- Shifts = circular shifts
- All compression P-Box Truth Tables are specified
- Verilog Code for DES is available on the internet
- Never been a good HW problem:)
- I have a DES.blif logic circuit (which can transformed into Verilog)

Other Aspects of DES

- IBM released the design rationale for choices of DES blocks ~1994, as well as their effects
- Avalanche effects: Small change in input, significant change in the output:

Plaintext: 0000000000000000 Key: 22234512987ABB23

Ciphertext: 4789FD476E82A5F1

Ciphertext: 0A4ED5C15A63FEA3

- Completeness effect: Each bit in C depends on various bits of P
- Various publications have also found weaknesses in DES
- Significant criticism came about Key size & Weak Keys

Weakness in DES w.r.t. Keys

- Key size is considered to be small
- Brute force attack: in 1977, RSA Labs threw up a key-challenge
- Networked computers reverse engineered the key in 120 days, and a super computer broke the cipher in 112 hours in 1998
- Weak Keys: 4 out of 2^{56} keys are weak
- All 0 key: Each round key is the same
 - 1st Key: All round keys are 0s
 - 2nd key: Same pattern as the cipher Key
 - Half 0s and half 1s

Actual key (56 bits)			
0000000	0000000		
0000000	FFFFFFF		
FFFFFFF	0000000		
FFFFFFF	FFFFFFF		

Weak Key Issues

Double encryption and decryption with a weak key

- Each weak key = inverse of itself
- $E_k(E_k(P)) = P$
- Avoid weak keys, of course

Key: 0x0101010101010101

Plaintext: 0x1234567887654321 Ciphertext: 0x814FE938589154F7

Key: 0x0101010101010101

Plaintext: 0x814FE938589154F7 Ciphertext: 0x1234567887654321

Semi-Weak Key

Round key 1

Round key 2

First key in the pair	Second key in the pair	
01FE 01FE 01FE 01FE	FE01 FE01 FE01	
1FE0 1FE0 0EF1 0EF1	E01F E01F F10E F10E	
01E0 01E1 01F1 01F1	E001 E001 F101 F101	
1FFE 1FFE OEFE OEFE	FE1F FE1F FE0E FE0E	
011F 011F 010E 010E	1F01 1F01 0E01 0E01	
EOFE EOFE F1FE F1FE	FEEO FEEO FEF1 FEF1	

Encrypt using the first key-pair

Round key 3	6EAC1ABCE642	9153E54319BD
Round key 4	6EAC1ABCE642	9153E54319BD
Round key 5	6EAC1ABCE642	9153E54319BD
Round key 6	6EAC1ABCE642	9153E54319BD
Round key 7	6EAC1ABCE642	9153E54319BD
Round key 8	6EAC1ABCE642	9153E54319BD
Round key 9	9153E54319BD	6EAC1ABCE642
Round key 10	9153E54319BD	6EAC1ABCE642
Round key 11	9153E54319BD	6EAC1ABCE642
Round key 12	9153E54319BD	6EAC1ABCE642
Round key 13	9153E54319BD	6EAC1ABCE642
Round key 14	9153E54319BD	6EAC1ABCE642
Round key 15	9153E54319BD	6EAC1ABCE642
Round key 16	6EAC1ABCE642	9153E54319BD

9153E54319BD

6EAC1ABCE642

6EAC1ABCE642

9153E54319BD

Key Complements

• 2^{56} keys: Actually, only 2^{55} Keys; others are bit-vector complements

$$C = E(K, P) \rightarrow \overline{C} = E(\overline{K}, \overline{P})$$

 $\bullet \ \, {\rm Brute\text{-}force\ or\ known\text{-}plaintext\ attack:}\ 2^{55}\ {\rm keys}$

	Original	Complement
Key	123412341234	EDCBEDCBEDCB
Plaintext	12345678ABCDEF12	EDCBA987543210ED
Ciphertext	E112BE1DEFC7A367	1EED41E210385C98

Multiple DES

- DES is not known to be a permutation group
- Double DES with Two Keys: Was used in the Banking sector
- Tripple DES with 2 or 3 keys: Used in PGP (secure emails)
 - K1 = K2 = K3: compatibility with single DES

Will study Differential and Linear Cryptanalysis after AES

AES

- NIST Standard ~2001
- Based on Rijndael Proposal: J. Daemen & V. Rijment
- 128-bit Block Cipher, and 128-bit internal round keys
- Number of round keys: $N_r + 1$

Data Units in AES

- Bits, Byte, Word (32 bits), Block (128 bit), and State
- State = Block, but inside the stages of AES, it is called a State; operations are performed as matrices

Blocks and States in Matrices

Block-to-state and state-to-block transformation

