Московский Физико-Технический Институт

Кафедра общей физики Лабораторная работа №3.3.1

Измерение удельного заряда электрона методами магнитной фокусировки и магнетрона

Автор: Ришат ИСХАКОВ

Преподаватель: Александр Александрович Казимиров

1 Цель работы

Определение отношения заряда электрона к его массе двумя методами.

Метод магнитной фокусировки

В работе используются: электронно-лучевая трубка и блок питания к ней; источник постоянного тока; соленоид; электростатический вольтметр; милливеберметр; ключи.

Если поместить электронно-лучевую трубку вынутую из осциллографа в длинный солено-ид, который будет создавать магнитное поле, направленное вдоль оси трубки, то электроны, вылетающие из катода, ускоряемые анодным напряжением $V_{\rm уск}$, пройдя сквозь две узкие диафрагмы, окажутся с примерно с одинаковыми продольными скоростями. Небольшое напряжение на отклоняющие пластины будет изменять только поперечную составляющую скорости, потому что продольная составляющая параллельна вектору магнитной индукции \overrightarrow{B} . Затем постепенно увеличиваем магнитное поле, вследствие чего увеличится сила Лоренца, действующая на электрон и линия будет постепенно стягиваться в точку. Это будет соответствовать положению фокуса. Увеличивая магнитное поле дальше заметим, что электрон будет описывать несколько витков. Используем это для определения удельного заряда электрона.

Метод Магнетрона

В работе используются: электронная лампа с цилиндрическим анодом; соленоид; источники питания лампы и соленоида; вольтметр постоянного тока; миллиамперметр.

В данном эксперименте используется конфигурация магнитного и электрического полей. В соленоид помещается двухэлектродная лампа с цилиндрическим анодом. В качестве катода используется тонкая вольфрамовая проволока. Нить разогревается переменным током от источника питания. На вылетающие электроны действует сила, возникающая в электрическом поле и сила Лоренца. Увеличение магнитного поля приводит к отклонению траектории электрона от прямой. После преодолевания критического значения магнитной индукции электрон перестает долетать до анода и, соответственно, падает анодный ток.

Рис. 1: Ожидаемая зависимость тока от величины магнитной индукции

2 Работа и измерения

Метод магнитной фокусировки

Параметры установки:

 $SN = 3000 \text{ cm}^2$

 $l=26,5~\mathrm{cm}$

Магнитную индукцию будем рассчитывать по формуле:

$$B = \frac{\Phi}{SN}$$

Рис.	2:	Схема	уста	новки
для	изм	ерений	e/m	мето-
дом 1	магі	нитной (фокус	сиров-
КИ				

Φ_1, mWb	Φ_2, mWb	$\Phi_2 - \Phi_1, mWb$	I, A	B, MT
1.0	5.8	4.8	3.53	16.0
0.7	5.6	4.9	3.65	16.3
1.5	5.5	4.0	2.98	13.3
2.1	5.4	3.3	2.51	11.0
2.7	5.3	2.6	1.90	8.7
2.9	5.2	2.3	1.66	7.7
3.3	5.1	1.8	1.31	6.0
3.6	5.0	1.4	1.02	4.7
4.0	4.9	0.9	0.82	3.0
4.6	4.8	0.2	0.18	0.7

Таблица 1: Полученные значения

Рис. 3: Зависимость B = f(I) в прямом направлении

Рис. 4: Зависимость B=f(I) в обратном направлении

По полученным уравнениям можно найти уравнение, которое потом используем для нахождения магнитной индукции от произвольного значения тока в цепи:

$$B(I) = \frac{4.54 + |-4.69|}{2}I - \frac{0.16 + 0.1}{2} = 4.61I - 0.13$$

$V_{ m yc\kappa}$, к $ m B$	Направление	I_{Φ}, A	n	B, MT	ΔB , MT	$e/m, 10^{11}~{ m K}{ m J/k}{ m f}$
		0.59	1	2.59	0.16	1.58
		1.18	2	5.31	0.20	1.56
	1	1.67	3	7.57	0.25	1.55
		2.40	4	10.93	0.29	1.41
0.94		3.02	5	13.79	0.33	1.39
0.34		0.61	1	2.68	0.05	1.47
		1.20	2	5.40	0.09	1.45
	2	1.81	3	8.21	0.12	1.41
		2.37	4	10.80	0.16	1.45
		2.96	5	13.52	0.19	1.45
		0.55	1	2.41	0.05	1.55
		1.09	2	4.89	0.08	1.50
	1	1.67	3	7.57	0.11	1.41
		2.21	4	10.06	0.15	1.42
		2.70	5	12.32	0.18	1.48
0.8		0.54	1	2.36	0.16	1.62
		1.10	2	4.94	0.20	1.47
	2	1.70	3	7.71	0.24	1.36
	<u> </u>	2.27	4	10.33	0.28	1.35
		2.79	5	12.73	0.32	1.39
		3.39	6	15.50	0.36	1.35

Таблица 2: Данные измерения зависимости номера фокуса от тока

Используя формулу найдем значение удельного заряда:

$$\frac{e}{m} = \frac{8\pi^2 V n^2}{l^2 B_{\Phi}^2}$$

Полученное значение удельного заряда: $\frac{e}{m} = (1.55 \pm 0.4) \cdot 10^{11} \; \mathrm{K} \mathrm{J/kr}$

3 Метод магнетрона

Параметры установки:

Рис. 5: Схема установки

Í

$$k = 0.035 \,\mathrm{T/A}$$

$$r_a = 12 \text{ mm}$$

Для разных потенциалов V на анодной лампе снимем зависимость анодного тока I_a от тока $I_{\rm m}$ через соленоид. По коэффициенту установки найдем значение магнитной индукции в зависимости от тока через соленоид: $B=kI_m$

Таблица 3: $V = 70 \; \mathrm{B}$

I_a , M.	A 0.23	0.23	0.23	0.23	0.22	0.22	0.19	0.10	0.02	0.01	0.08	0.22	0.22	0.20	0.16	0.12	0.10	0.18	0.01	0.09	0.06	0.04
I_m , I	A 0.10	0.06	0.05	0.09	0.12	0.12	0.12	0.13	0.13	0.14	0.13	0.10	0.11	0.12	0.13	0.13	0.13	0.13	0.14	0.13	0.13	0.13
B, M'	Γ 3.5	2.1	1.68	3.08	4.2	4.2	4.34	4.48	4.55	4.76	4.48	3.36	3.78	4.34	4.41	4.48	4.48	4.41	4.83	4.48	4.48	4.48

Рис. 6: Зависимость $B=f(I_a)$ для $V=70~\mathrm{B}$

Таблица 4: $V = 80 \; \mathrm{B}$

I_a , мА			l					l				1					l	
I_m, A	0.00	0.02	0.04	0.06	0.08	0.10	0.12	0.13	0.13	0.13	0.13	0.13	0.14	0.14	0.14	0.14	0.14	0.13
B, MT	0.0	0.7	1.4	2.1	2.8	3.5	4.2	4.69	4.62	4.62	4.62	4.69	4.76	4.76	4.83	4.9	5.04	4.62

Рис. 7: Зависимость $B=f(I_a)$ для $V=80~\mathrm{B}$

Таблица 5: $V = 90 \; \mathrm{B}$

	I_a , мА	0,23	0,24	0,24	0,24	0,24	0,24	0,24	0,22	0,20	0,17	0,14	0,10	0,07	0,05	0,03	0,02	0,01	0,01
	I_m, A	0,00	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,14	0,14	0,14	0,14	0,14	0,15	0,15	0,15	0,15	0,16
ſ	B , ${ m MT}$	0	0,7	1,4	2,1	2,8	3,5	4,2	4,9	4,97	4,97	5,04	5,04	5,04	5,11	5,11	5,18	5,32	5,46

Рис. 8: Зависимость $B=f(I_a)$ для $V=90~\mathrm{B}$

Таблица 6: $V = 100 \,\mathrm{B}$

	I_a , мА	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.23	0.22	0.20	0.16	0.14	0.10	0.08	0.05	0.03	0.02	0.01
	I_m, A	0.00	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16	0.16	0.16
Ī	B, м T	0	0.7	1.4	2.1	2.8	3.5	4.2	4.9	5.18	5.25	5.25	5.25	5.32	5.32	5.32	5.46	5.6	5.74

Рис. 9: Зависимость $B=f(I_a)$ для $V=100~\mathrm{B}$

Таблица 7: $V = 110 \; \mathrm{B}$

I	$_a$, м A	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,23	0,23	0,19	0,16	0,13	0,05	0,11	0,07	0,04	0,03	0,02	0,01	0,01
Ì	T_m, A	0,00	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,15	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,17	0,17	0,18
I	3, мТ	0	0,7	1,4	2,1	2,8	3,5	4,2	4,9	5,32	5,46	5,53	5,53	5,6	5,6	5,6	5,67	5,74	5,88	6,02	6,16

Рис. 10: Зависимость $B=f(I_a)$ для $V=110~\mathrm{B}$

Таблица 8: $V=120~{\rm B}$

I_a , MA	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,24	0,23	0,21	0,17	0,15	0,13	0,11	0,09	0,07	0,05	0,03	0,02	0,01	0,01
I_m , A	0,00	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,16	0,16	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,18	0,18	0,18
B, MT	0	0.7	1,4	2,1	2.8	3.5	4.2	4.9	5.6	5.74	5.81	5.81	5.88	5,88	5.88	5.88	5.95	6.02	6.16	6.3	6,44

Рис. 11: Зависимость $B=f(I_a)$ для $V=120~\mathrm{B}$

По графикам определим значение $B_{\rm kp}$ и построим таблицу:

$B_{\rm \kappa p}$, м ${ m T}$	V, B	$B_{\mathrm{\kappa p}}^2, (\mathrm{MT})^2$	$\Delta B_{\mathrm{\kappa p}}^2, (\mathrm{MT})^2$
4,5	70	20,07	0,90
4,7	80	21,62	0,93
5,1	90	25,50	1,01
5,3	100	28,09	1,06
5,6	110	30,80	1,11
5,9	120	34,81	1,18

Рис. 12: Зависимость $B_{\rm kp}^2$ от V

Тогда по формуле найдем удельный заряд электрона в данном методе

$$\frac{e}{m} = \frac{8V}{B_{
m kp}r_a^2} = (1.87 \pm 0.17) \cdot 10^{11} \ {
m K}$$
л/кг

4 Вывод

Полученное двумя способами значение удельного заряда электрона с учетом погрешности соответствует действительности.

В первом эксперименте основную погрешность измерения составляет ошибка, связанная с калибровкой электромагнита: имеется внешнее магнитное поле, которое нельзя считать постоянным и поэтому невозможно полностью избавиться от него в конечном результате с помощью полусуммы. Еще больший вклад в ошибку добавляет невозможность полностью определить момент, при котором линия полностью стягивается в точку. При значениях порядкового номера фокуса ≥ 3 становится сложно определить точный момент.

Во втором эксперименте погрешность измерения меньше, так как исключается влияние внешних факторов. Основная погрешность обусловлена достаточно старыми приборами, в которых перемещение стрелки при маленьких изменениях ограничивается силой трения.