## Paper Title

Diego Lupi, Pedro Nieto, and Huaira Gómez

FaMAF - Universidad Nacional de Córdoba, Córdoba, Argentina

Resumen Easycrypt[1] es una herramienta automatizada que soporta la construccion y verificacion de pruebas de seguridad de sistemas criptograficos. Permite mejorar la confianza en sistemas criptograficos mediante la entrega de pruebas verificadas formalmente que resultan en sus metas propuestas. Provee una plataforma versatil que soporta pruebas automatizadas pero tambien permite al usuario realizar puebas complejas de manera interactiva entrelazando la verificacion del programa con la formalizacion de las matematicas, hecho fundamental al formalizar pruebas criptograficas.

**Keywords:** Easycrypt  $\cdot$  Game-based cryptographic proofs  $\cdot$  Probabilistic.

## 1. First Section

## 1.1. A Subsection Sample

Please note that the first paragraph of a section or subsection is not indented. The first paragraph that follows a table, figure, equation etc. does not need an indent, either.

Subsequent paragraphs, however, are indented.

Sample Heading (Third Level) Only two levels of headings should be numbered. Lower level headings remain unnumbered; they are formatted as run-in headings.

Sample Heading (Fourth Level) The contribution should contain no more than four levels of headings. Table 1 gives a summary of all heading levels.

Cuadro 1. Table captions should be placed above the tables.

|                   | *                                    | Font size and style |
|-------------------|--------------------------------------|---------------------|
|                   |                                      | 14 point, bold      |
| 1st-level heading | 1 Introduction                       | 12 point, bold      |
| 2nd-level heading | 2.1 Printing Area                    | 10 point, bold      |
| 3rd-level heading | Run-in Heading in Bold. Text follows | 10 point, bold      |
| 4th-level heading | Lowest Level Heading. Text follows   | 10 point, italic    |

Displayed equations are centered and set on a separate line.

$$x + y = z \tag{1}$$

Please try to avoid rasterized images for line-art diagrams and schemas. Whenever possible, use vector graphics instead (see Fig. 1).



**Figura 1.** A figure caption is always placed below the illustration. Please note that short captions are centered, while long ones are justified by the macro package automatically.

**Theorem 1.** This is a sample theorem. The run-in heading is set in bold, while the following text appears in italics. Definitions, lemmas, propositions, and corollaries are styled the same way.

*Demostración*. Proofs, examples, and remarks have the initial word in italics, while the following text appears in normal font.

For citations of references, we prefer the use of square brackets and consecutive numbers. Citations using labels or the author/year convention are also acceptable. The following bibliography provides a sample reference list with entries for journal articles, an LNCS chapter [2], a book [3], proceedings without editors [4], and a homepage [5]. Multiple citations are grouped [1,2,3], [1,3,4,5].

## Referencias

- Gilles Barthe, Juan Manuel Crespo, Benjamin Gregoire, Cesar Kunz, Santiago Zanella Beguelin. Computer-Aided Cryptographic Proofs. Third International Conference, 2012.
- 2. Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) CONFERENCE 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016). https://doi.org/10.10007/1234567890

- 3. Author, F., Author, S., Author, T.: Book title. 2nd edn. Publisher, Location (1999)
- 4. Author, A.-B.: Contribution title. In: 9th International Proceedings on Proceedings, pp. 1–2. Publisher, Location (2010)
- $5.\ \ LNCS\ Homepage,\ http://www.springer.com/lncs.\ Last\ accessed\ 4\ Oct\ 2017$