Definition 0.11. For any $T \in \mathcal{L}(V, W)$, set null $T = \{v \mid Tv = 0\}$ is called the **null space** of T.

This is also called the **kernal** of T in algebra.

Theorem 0.13. For any $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof.

- We have $0 \in \text{null } T$ since T0 = 0, which is the property of linear transformation.
- For any $a, b \in \text{null } T$, we have 0 = Ta + Tb = T(a + b), so $a + b \in \text{null } T$.
- For any $Ta \in \text{null } T$ and $\lambda \in F$, we have $\lambda Ta = T(\lambda a)$, so $\lambda a \in \text{null } T$.

Definition 0.15. For any $T \in \mathcal{L}(V, W)$, set range $T = T(V) = \{ Tv \mid v \in V \}$ is called the **range** of T.

This is also called the **image** of T in math.

Theorem 0.18. For any $T \in \mathcal{L}(V, W)$, range T is a subsapce of W.

Proof.

- We have $T(0) = 0 \in \text{range } T$.
- For any $Ta, Tb \in \operatorname{range} T$, $Ta + Tb = T(a + b) \in \operatorname{range} T$.
- For any $Ta \in \operatorname{range} T$ and $\lambda \in F$, $\lambda Ta = T(\lambda a) \in \operatorname{range} T$.

Theorem 0.21. Suppose V is finite and $T \in \mathcal{L}(V, W)$, then range T is finite, and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

Proof. Consider the basis v_0, \dots, v_k of null T, and the basis v_0, \dots, v_n of V that expand from v_0, \dots, v_k . We will show that $T(v_{k+1}), \dots, T(v_n)$ is the basis of range T.

We first show that $T(v_{k+1}), \dots, T(v_n)$ is linear independent. If it is linear independent, then

1

$$\lambda_1 T(v_{k+1}) + \dots + \lambda_i T(v_{k+i})$$

$$= T(\lambda_1 v_{k+1} + \dots + \lambda_i T(v_{k+i}))$$

$$= 0$$

That means a linear combation of v_{k+i} is in null T, which is span (v_0, \dots, v_k) , therefore the basis v_0, \dots, v_n is linear dependent.

Then we show that $T(v_{k+1}), \dots, T(v_n)$ spans range T. For any $Tv \in \operatorname{range} T$, there must be $v \in V$ such that Tv = Tv, then v can be written in form of the linear combination of v_0, \dots, v_n , and then $Tv = T(\lambda_0 v_0 + \dots + \lambda_n v_n)$. We can drop all terms with v_i where $i \leq k$, since they are in null T, so Tv is now represent by a linear combination of $T(v_{k+i})$ for all $0 < i \leq n - k$, therefore, it is a basis of range T and dim range T is finite.

Finally,
$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$
.

Definition 3.16 (Notation: v + U). Let $v \in V$ and $U \subseteq V$, then $v + U = \{v + u \mid u \in U\}$.

Such sets also called *coset* in group theory.

Definition 3.97 (Translate). Let $v \in V$ and $U \subseteq V$, we say v + U is a translate of U.

Definition 3.98 (Quotient Space). Let $U \subseteq V$ a subspace, then the quotient space V/U is a set with translates of U, that is:

$$V/U = \{ v + U \mid v \in V \}$$

Theorem 3.101. Let $U \subseteq V$ a subspace and $v, w \in V$, then the following statements are equivalent.

1.
$$v - w \in U$$

2.
$$v + U = w + U$$

3.
$$(v+U)\cap(w+U)\neq\emptyset$$

Proof.

• If $v-w \in U$, for any $v+u \in v+U$, we have $v+u = v+(v-w)-(v-w)+u = v-w+w+u = w+(v-w)+u \in w+U$ since $v-w \in U$. Similarly, for any $w+u \in w+U$, we have $w+u = w+(v-w)-(v-w)+u = v-v+w+u = v-(v-w)+u = v+(-(v-w)+u) \in v+U$.

- If v+U=w+U, then v=w+u since $v\in v+U$, therefore $v-w=u\in U$.
- if v + U = w + U, then $(v + U) \cap (w + U) = v + U = w + U \neq \emptyset$
- If $(v+U)\cap(w+U) \neq \emptyset$, then for any $v+u_0 = w+u_1 \in (v+U)\cap(w+U)$, we have $(v-w) + (u_0 u_1) = 0$ and then $v-w = u_1 u_0 \in U$, so v+U = w+U.

Definition 3.102. Let $U \subseteq V$, then addition and scalar multiplication on V/U is defined by:

$$(v+U) + (w+U) = (v+w) + U$$
$$\lambda(v+U) = (\lambda v) + U$$

Theorem 3.103. Let $U \subseteq V$ a subspace, then V/U is a vector space with addition and scalar multiplication we defined in previous definition.

Proof. We must first show that the addition and the sclar multiplication we introduce are functions.

For any $a, b, c, d \in V$, we will show (a+b)+U=(c+d)+U if a+U=c+U and b+U=d+U. We can show $(a+b)-(c+d)\in U$ by $a-c\in U$ and $b-d\in U$.

For any $v, w \in V$ and $\lambda \in F$, we will show $(\lambda v) + U = (\lambda w) + U$ if v + U = w + U. We know $v - w \in U$, then $\lambda(v - w) = \lambda v - \lambda w \in U$, therefore $(\lambda v) + U = (\lambda w) + U$.

We have identity of addition 0 + U and inverse of addition (-v) + U for all $v \in V$.

Definition 3.104. Let $U \subseteq V$ a subspace, the quotient map $\pi : V \to V/U$ is a linear mapping defined by:

$$\pi(v) = v + U$$

Proof. We will show π is a linear mapping, $\pi(v+w)=(v+w)+U=v+U+w+U=\pi(v)+\pi(w)$ and $\lambda\pi(v)=\lambda(v+U)=(\lambda v)+U=\pi(\lambda v)$.

Theorem 3.105. Let V finite and $U \subseteq V$ a subspace, show that $\dim(V/U) = \dim V - \dim U$.

Proof. We can rewrite the equation as $\dim V = \dim(V/U) + \dim U$, and it is easy to see that range $\pi = \dim(V/U)$ and $\operatorname{null} \pi = \dim U$.

Definition 3.106. Let $T \in \mathcal{L}(V, W)$, define $\tilde{T} : V/(\text{null } T) \to W$ by $\tilde{T}(v + \text{null } T) = Tv$.

Theorem 3.107. Let $T \in \mathcal{L}(V, W)$, then:

- 1. $\tilde{T} \circ \pi = T$
- 2. \tilde{T} is injective
- 3. range $\tilde{T} = \operatorname{range} T$
- 4. $V/(\operatorname{null} T) \cong \operatorname{range} T$

Proof.

- 1. For all $v \in V$, $\tilde{T}(\pi(v)) = \tilde{T}(v + \text{null } T) = Tv$
- 2. If $\tilde{T}(v + \text{null } T) = \tilde{T}(w + \text{null } T)$, then T(v w) = 0, which means $v w \in \text{null } T$, therefore v + null T = w + null T.
- 3. For any $Tv \in \operatorname{range} T$, we have $\tilde{T}(v + \operatorname{null} T) \in \operatorname{range} \tilde{T}$. For any $\tilde{T}(v + \operatorname{null} T) = Tv \in \operatorname{range} \tilde{T}$, we have $Tv \in \operatorname{range} T$.
- 4. Restrict the range of \tilde{T} on range T, say $\varphi(v + \text{null } T) = \tilde{T}(v + \text{null } T)$: $V/(\text{null } T) \to \text{range } T$, then φ is injective since (2) and surjective since (3), therefore φ is an isomorphism, thus $V/(\text{null } T) \simeq \text{range } T$.

Definition 3.110 (Dual Space). Let V a vector space, then we denote V' the dual space of V, where

$$V' = \mathcal{L}(V, F)$$

Theorem 3.111. Let V a finite vector space, then $\dim V' = \dim V$

Proof. dim
$$V' = \dim \mathcal{L}(V, F) = (\dim V)(\dim F) = \dim V$$

Definition 3.112 (Dual Basis). Let v_0, \dots, v_{m-1} a basis of V, then the dual basis of v_0, \dots, v_{m-1} is $\varphi_0, \dots, \varphi_{m-1}$ such that:

$$arphi_i(v_j) = egin{cases} 1 & & \textit{if } i = j \ 0 & & \textit{otherwise} \end{cases}$$

holes for any $0 \le i, j < m$.

We can see that the basis the dual basis extracts the coefficients of any vector in V.

Theorem 3.113. Let v_0, \dots, v_{m-1} a basis of V, and dual basis $\varphi_0, \dots, \varphi_{m-1}$ of which. Then for any $v \in V$,

$$v = \varphi_0(v)v_0 + \dots + \varphi_{m-1}(v)v_{m-1}$$

Proof. For any
$$i$$
, $\varphi_i(v) = \varphi_i(\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}) = \varphi_i(\lambda_i v_i) = \lambda_i \varphi_i(v_i) = \lambda_i \times 1$.

Theorem 3.116. Let V a finite space, then the dual basis of basis of V is a basis of V'.

Proof. Let v_0, \dots, v_{m-1} a basis of V, then its dual basis has the same length, therefore we only need to show its dual basis is linear independent.

Suppose $\lambda_0 \varphi_0 + \cdots + \lambda_{m-1} \varphi_{m-1} = 0$, then for any $0 \le i < m$, $(\lambda_0 \varphi_0 + \cdots + \lambda_{m-1} \varphi_{m-1})(v_i) = \lambda_i = 0$, therefore the dual basis is linear independent. \square

Definition 3.118 (Dual Map). Let $T \in \mathcal{L}(V, W)$. A dual map of T is a linear map $T' \in \mathcal{L}(W', V')$, such that for any $\varphi \in W'$:

$$T'(\varphi) = \varphi \circ T$$

Theorem 3.128. Let V, W are finite spaces and $T \in \mathcal{L}(V, W)$. Show that:

- 1. $\operatorname{null} T' = (\operatorname{range} T)^0$
- 2. $\dim \operatorname{null} T' = \dim \operatorname{null} T + \dim W \dim V$

Proof.

- null T' is a space $\{ \varphi \in \mathcal{L}(W, F) \mid \varphi \circ T = 0 \}$, which means range $T \subseteq \text{null } \varphi$. (range T)⁰ is a space $\{ \varphi \in \mathcal{L}(W, F) \mid \varphi(\text{range } T) = \{0\} \}$, which means range $T \subseteq \text{null } \varphi$. Therefore null $T' = (\text{range } T)^0$
- $\dim(\operatorname{range} T)^0 = \dim W \dim \operatorname{range} T = \dim W (\dim V \dim \operatorname{null} T)$

Theorem 3.129. Let V, W are finite spaces and $T \in \mathcal{L}(V, W)$. Show that

T is surjective $\iff T'$ is injective

Proof.

- Suppose T is surjective, then for any $T'(\varphi) = T'(\psi)$, we have $\varphi \circ T = \psi \circ T$. Since T is surjective, then T is an epimorphism (we proved this in E3B), therefore $\varphi = \psi$.
- Suppose T' is injective, then for any $\varphi, \psi \in \mathcal{L}(W, F)$ such that $\varphi \circ T = \psi \circ T$, we have $\varphi = \psi$ since T' is injective. Therefore T is epimorphism, thus surjective.

The last theorem is obviously true in category theory, but we haven't show that T' is a morphism in Vect' where Vect' \simeq Vect^{op}.

Theorem 3.130. Let V, W are finite and $T \in \mathcal{L}(V, W)$, show that:

- 1. $\dim \operatorname{range} T' = \dim \operatorname{range} T$
- 2. range $T' = (\text{null } T)^0$

Proof.

- $\dim \operatorname{range} T' = \dim W' \dim \operatorname{null} T' = \dim W' (\dim \operatorname{null} T + \dim W \dim V) = \dim V \dim \operatorname{null} T = \dim \operatorname{range} T$
- For any $\varphi \circ T \in \operatorname{range} T'$, $(\varphi \circ T)(\operatorname{null} T) = \varphi(\{0\}) = \{0\}$, therefore range $T' \subseteq (\operatorname{null} T)^0$. Since $\dim(\operatorname{null} T)^0 = \dim V \dim \operatorname{null} T = \dim \operatorname{range} T \dim \operatorname{range} T'$, therefore $\operatorname{range} T' = (\operatorname{null} T)^0$ since both of them are finite and $\operatorname{range} T' \subseteq (\operatorname{null} T)^0$.

Theorem 3.131. Let V, W are finite spaces and $T \in \mathcal{L}(V, W)$. Show

T is injective $\iff T'$ is surjective

Proof.

- $\dim \operatorname{range} T' = \dim \operatorname{range} T = \dim V = \dim V'$ since T is injective, therefore T' is surjective.
- $\dim \operatorname{range} T = \dim \operatorname{range} T' = \dim V' = \dim V$ therefore T is injective.

This chapter is much like a note, I will record some idea about polynomial and linear algebra.

One relationship is that a polynomial is a linear combination of the standard basis of $\mathcal{P}(F)$, that is, $1, x, x^2, \cdots$. This is important when we apply p to an operator of a vector space, say $T \in \mathcal{L}(V)$ and $p(T) = c_0 I + c_1 T + c_2 T^2 + \cdots$. If we apply p(T) to some $v \in V$, it becomes a linear combination of v, Tv, T^2v, \cdots .

Theorem 3.16. Let $p \in \mathcal{P}(\mathbb{R})$ is not constant, then p can be factorized into:

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M)$$

where $c, \lambda_1, \dots, \lambda_m, b_1, \dots, b_M, c_1, \dots, c_M \in \mathbb{R}$ and for any $1 \leq k \leq M$, $b_k^2 < 4c_k$.

I won't paste the proof here, but the statement can be considered as: any non-constant, real p can be factorized into:

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x - \lambda_{m+1}) \cdots (x - \lambda_{m+M})$$

where $c, \lambda_1, \dots, \lambda_1 \in \mathbb{R}$ and $\lambda_{m+1}, \dots, \lambda_{m+M} \in \mathbb{C}$. Those λ are zeros of p, however some are real, some are complex. This re-expression makes the statement more understandable. Note that λ_{m+k} is paired, since both λ_{m+k} and λ_{m+k} are zeros of p.

Theorem 3.39. Let $T \in \mathcal{L}(V)$ and v_0, \dots, v_{n-1} a basis of V, then the following statements are equivalent to each others.

- $\mathcal{M}(T)$ about v_0, \dots, v_{n-1} is upper-triangular matrix
- For any $k = 1, \dots, n$, span (v_0, \dots, v_{k-1}) is invariant under T.
- For any $k = 1, \dots, n, Tv_{k-1} \in \text{span}(v_0, \dots, v_{k-1}).$

Proof.

- (1) \Rightarrow (2) Induction on k. In breif, first k columns are in span (v_0, \dots, v_{k-1}) , therefore span (v_0, \dots, v_{k-1}) is invariant under T.
- (2) \Rightarrow (3) Trivial, $v_{k-1} \in \text{span}(v_0, \dots, v_{k-1})$ which is invariant under T.

• (3) \Rightarrow (1) Basically the definition of upper-triangular matrix, $Tv_{k-1} \in \text{span}(v_0, \dots, v_{k-1})$ means the k-th column of $\mathcal{M}(T)$ consists of first k number (the coefficients of Tv_{k-1}) and 0s.

Theorem 3.40. Let $T \in \mathcal{L}(V)$ and v_0, \dots, v_{n-1} a basis of V, such that $\mathcal{M}(T)$ is upper-triangular matrix, and $\lambda_0, \dots, \lambda_{n-1}$ are the numbers of its diagonal. Show that

$$(T - \lambda_0 I) \cdots (T - \lambda_{n-1} I) = 0$$

Proof. All numbers since i of $(T - \lambda_i I)v$ are 0 if numbers after i of v are 0. Thus $(T - \lambda_0 I) \cdots (T - \lambda_{n-1} I)$ makes n-1-th number 0, then n-2-th number and so on.

Theorem 3.41. Let $T \in \mathcal{L}(V)$ and $\mathcal{M}(T)$ about some basis of V is upper-triangular matrix. Show that the eigenvalues of T are the numbers in the diagonal.

Proof. Let v_0, \dots, v_{n-1} a basis of V and $\mathcal{M}(T)$ about this basis is upper-triangular matrix. For λ_i where $i = 0, \dots, n-1$, we will show that $T - \lambda_i I$ is not invertible.

We will see first i columns of $T - \lambda_i I$ is linear dependent, since they have at most i-1 non-zero numbers while the list they form has length i.

Another part of proof follows the book. Let $q(z) = (z - \lambda_0) \cdots (z - \lambda_{n-1})$, then q(T) = 0 by ??, thus q is polynomial multiple of the minimal polynomial of T, thus any zero of the minimal polynomial of T is also a zero of q, which means it belongs to the list $\lambda_0, \dots, \lambda_{n-1}$.

Theorem 3.44. Let V finite and $T \in \mathcal{L}(V)$. Show that $\mathcal{M}(T)$ is upper-triangular matrix about some basis of $V \iff$ the minimal polynomial of T is in form of $(z - \lambda_0) \cdots (z - \lambda_{n-1})$ where $\lambda_i \in F$.

Proof. This proof comes from the book.

The (\Rightarrow) part follows ??, $(z - \lambda_0) \cdots (z - \lambda_{m-1})$ $(\lambda_0, \cdots, \lambda_{m-1})$ are the numbers in the diagonal) is polynomial multiple of the minimal polynomial of T, then the minimal polynomial of T must in a similar form.

For (\Leftarrow) , we will induction on n.

• Base(n=0), the minimal polynomial of T is in form $(z-\lambda_0)$, thus $T=\lambda_0 I$.

• Ind(n = n + 1), the minimal polynomial of T is in form $p(z) = (z - \lambda_0) \cdots (z - \lambda_{n+1-1})$. Consider $T - \lambda_n I$, there is non-zero $v \in V$ such that $(T - \lambda_n I)v = 0$ since λ_n is a zero of p therefore an eigenvalue of T. We define $U = \text{range}(T - \lambda_n I)$, consider $q(z) = (z - \lambda_0) \cdots (z - \lambda_{n-1})$ and then $q(T|_U) = 0$, recall that $U = \text{range}(T - \lambda_n I)$, therefore for any $v \in U$, there is u such that $(T - \lambda_n I)u = v$. Thus $q(T|_U)u = q(T)(T - \lambda_n I)v = p(T)v = 0$ where $u = (T - \lambda_n I)v$ and $u, v \in U$. Thus the matrix of $T|_U$ is upper-triangular.

Then we consider u_0, \dots, u_{k-1} a basis of U, we will expand u_0, \dots, u_{k-1} to a basis of V, say $u_0, \dots, u_{k-1}v_0, \dots, v_{m-1}$. Then for any v_i where i, we have $Tv_i = Tv_i - \lambda_n v_i + \lambda_n v_i = (T - \lambda_n I)v_i + \lambda_n v_i$, where $(T - \lambda_n)v_i \in U$ (recall the definition of U), thus $Tv_i \in \text{span}(u_0, \dots, u_{k-1}, v_0, \dots, v_i)$, then by ??, we know $\mathcal{M}(T)$ is an upper-triangular matrix about the basis $u_0, \dots, u_{k-1}, v_0, \dots, v_{m-1}$.

One may confused that the "length" of u_i is greater than the size of $\mathcal{M}(T|_U) = \dim U$ (thus it won't be a square matrix but tall and thin), however, these two things are unrelated, a matrix only represents how to combine the basis, and doesn't care what the basis looks like.

Exercise 3.1. Suppose V is a finite vector space, Show that the only two ideal of $\mathcal{L}(V)$ is $\{0\}$ and $\mathcal{L}(V)$. A subspace \mathcal{E} of $\mathcal{L}(V)$ is called an ideal, if $TE \in \mathcal{E}$ and $ET \in \mathcal{E}$ for any $T \in \mathcal{L}(V)$ and $E \in \mathcal{E}$.

Proof. We will use the concept Matrix. Suppose $\lambda_0 v_0 + \cdots + \lambda_n v_v$ the basis of V. We want to construct T_i that $T(\lambda_0 v_0 + \cdots + \lambda_n v_n) = \lambda_i v_i$ for all $0 \le i < n$, which is a matrix with all zero but 1 at i, i.

For any matrix, we can always select a non-zero value at a, b and place it at i, b, this can be done by left multiply a matrix with 1 at i, a (this produce a vector at line i with values from line a), then right multiply a matrix with 1 at i, b (this produce a vector at column b with values from line i).

Also, we can always select a non-zero value at a, b and place it at a, i, this can be done by right multiply a matrix with 1 at b, i, then left multiply a matrix with 1 at a, i.

By combining these two operations, we calselect a non-zero value at a, b and place it at i, i. Now, consider any non-zero $E \in \mathcal{E}$, we can construct a matrix with non-zero value at i, i for every $0 \le i < \dim V$. These matrix are in \mathcal{E}

since \mathcal{E} is an ideal, then we can multiply an appropriate scalar to them so that they are matrices with 1 at i, i. By adds up these matrices, we get I, we know $I \in \mathcal{E}$ since \mathcal{E} is a vector space, and now all $T \in \mathcal{L}(V)$ is also in \mathcal{E} since \mathcal{E} is an ideal, then $\mathcal{E} = \mathcal{L}(V)$.

The only exception is $\mathcal{E} = \{0\}$, in this case we can't pick any non-zero element.

Another solution, hope this one is more simple.

Suppose \mathcal{E} an ideal of $\mathcal{L}(V)$ and non-zero, non-surjective $E \in \mathcal{E}$. Let v_0, \dots, v_{k-1} a basis of null E and v_k, \dots, v_{k+n} such that Tv_{k+i} is a basis of range E, then we have $n \neq 0$ and $k \neq 0$.

Define A a linear transformation which maps v_i to v_{k+i} for $0 \le i < \min\{k, n\}$ and maps others to 0, then dim range $EA = \min\{k, n\}$.

Expand the basis $w_i = Ev_{k+i}$ of range E to a basis of V, say w_0, \dots, w_{m-1} , define B maps Ev_{k+i} to $w_{\min\{k,n\}+i}$, we always have enough $w_{\min\{k,n\}+i}$ since $m-1 = \dim V = \dim \operatorname{null} E + \dim \operatorname{range} E$ while $\min k, n \leq \dim \operatorname{null} E$, then $\dim \operatorname{range} BE = \operatorname{range} E$ since we just re-map the range E.

Now consider S = EA + BE, we have $Sv_i = EAv_i = Ev_{k+i} = w_i \in \text{range } E$ for all $0 \le i < \min\{k, n\}$ and $Sv_{\min\{k, n\} + i} = BEv_{\min\{k, n\} + i} = w_{\min\{k, n\} + i} \in \text{range } BE$ for all $0 \le i < \dim \text{range } E$. We can see range $EA \cap \text{range } BE = \{0\}$ and $\dim \text{range}(EA + BE) = \text{range } E + \min\{k, n\}$, where k = null E and n = range E, the range of EA + BE gets larger and $EA + BE \in \mathcal{E}$ since $EA, BE \in \mathcal{E}$, if k > n (this is the only case that EA + BE is not surjective), then we continue this process with E = EA + BE, the procedure will finally terminate since $\mathcal{L}(V)$ is finite (cause V is finite).

Now we show that any \mathcal{E} with non-zero, non-surjective $E \in \mathcal{E}$ implies a surjective (thus injective and invertible) $T \in \mathcal{E}$.

For any ideal with an invertible element $E \in \mathcal{E}$, we have $E^{-1}E = I \in \mathcal{E}$, which causes $\mathcal{E} = \mathcal{L}(V)$ since IT = T for all $T \in \mathcal{L}(V)$.

Therefore, only $\{0\}$ and $\mathcal{L}(V)$ are ideals of $\mathcal{L}(V)$.

Exercise 3.7. Suppose vector space V and W are finite $(2 \le \dim V \le \dim W)$, show that $\{T \in \mathcal{L}(V, W) \mid T \text{ is not injective }\}$ is not a subspace.

Proof. Consider the basis $v_0 + \cdots + v_{(\dim V - 1)} \in V$, and $T(v_0 + \cdots + v_{(\dim V - 1)}) = (0 + 1_0 + \cdots + 1_{(\dim V - 1)})$ and $T'(v_0 + \cdots + v_{(\dim V - 1)}) = (v_0 + 0 + \cdots + v_{(\dim V - 1)})$. Then $(T + T')(\lambda_0 v_0 + \lambda_1 v_1 + \cdots + \lambda_{(\dim V - 1)} v_{(\dim V - 1)}) = \lambda_0 v_0 + \lambda_1 v_1 + \cdots + 2\lambda_{(\dim V - 1)} v_{(\dim V - 1)}$, which is obviously injective.

Exercise 3.11. Suppose V is finite and $T \in \mathcal{L}(V, W)$, show that there is a

subspace $U \subset V$ such that:

$$U \cap \text{null } T = \{0\} \quad and \quad \text{range } T = \{ Tu \mid u \in U \}$$

Proof. This is similar to the *isomorphism theorems* about groups! This can be done by the similar way we used in proving dim $V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

The next two exercises remind me the categorical injective and surjective, let try them first!

Exercise. For any $F \in \mathcal{L}(V, W)$, F is injective \iff for any $S, T \in \mathcal{L}(U, V)$, FS = FT implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(V, W)$ that FS = FT, then for any $u \in U$, we have F(Su) = F(Tu), since F is injective, we know Su = Tu, so S = T.
- (\Leftarrow) For any $v, w \in V$ such that Fv = Fw. Consider

$$S(\lambda) = \lambda v$$

$$T(\lambda) = \lambda w$$

in $\mathcal{L}(\mathbb{R}, V)$. Then for any $\lambda \in \mathbb{R}$, we have $FS\lambda = \lambda FS1 = \lambda Fv = \lambda Fw = \lambda FT1 = FT\lambda$. so FS = FT then S = T, which means v = S1 = T1 = w.

Exercise. Suppose W is finite, then for any $F \in \mathcal{L}(V, W)$, F is surjective \iff for any $S, T \in \mathcal{L}(W, U)$, SF = TF implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(W, U)$ such that SF = TF. For any $w \in W$, there is $v \in V$ such that Fv = w since F is surjective. Then we have SFv = TFv so Sw = S(Fv) = T(Fv) = Tw then S = T.
- (⇐) Consider

$$S = I$$
 and $T(\lambda_0 w_0 + \cdots + \lambda_n w_n) = \lambda_0 w_0 + \cdots + \lambda_k w_k$

where w_0, \dots, w_k is the basis of range F and w_0, \dots, w_n is the basis of W that expand from w_0, \dots, w_k .

(If we can use another way to construct T, then W is not need to be finite, for example, $W = \operatorname{range} T \oplus W_0$).

It is easy to show that T is a linear transformation. Then for any $v \in V$, we have TFv = Fv (since T acts like identity transformation on range F) and SFv = Fv, so S = T by the property of F. Since range S = W, so is range T, that means w_0, \dots, w_k spans W, so k = n, which means range F = W, therefore F is surjective.

Exercise 3.19. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is injective \iff there is $S \in \mathcal{L}(W, V)$ such that ST = I.

Proof.

- (\Rightarrow) Consider the basis v_0, \dots, v_n of V, then Tv_0, \dots, Tv_n is a basis of range T since T is injective. We denote Tv_i as w_i and w_0, \dots, w_m as the basis of W which expand from w_0, \dots, w_n . Define $S(\lambda_0 w_0 + \dots +$ $\lambda_m w_m = \lambda_0 w_0 + \cdots + \lambda_n w_n$, and then for any $v \in V$, $ST(\lambda_0 v_0 + \cdots + \lambda_n w_n) = \lambda_0 w_0 + \cdots + \lambda_n w_n$ $\lambda_n v_n = S(\lambda_0 w_0 + \cdots + \lambda_n w_n) = \lambda_0 v_0 + \cdots + \lambda_n v_n$, so ST = I.
- (\Leftarrow) Suppose $A, B \in \mathcal{L}(U, V)$, such that TA = TB, we will show that A = B. STA = IA = A and STB = IB = B and STA = STB since TA = TB. Then we know T is a monomorphism, and then T is injective.

Exercise 3.20. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is surjective \iff there is $S \in \mathcal{L}(W,V)$ such that TS = I.

Exercise 3.21. Suppose V is finite, $T \in \mathcal{L}(V, W)$, $U \subseteq W$ a subspace. Show that the inverse image of U: { $v \in V \mid Tv \in U$ } is a subspace of V, and

$$\dim\{v \in V \mid Tv \in U\} = \dim \operatorname{null} T + \dim(U \cap \operatorname{range} T)$$

Proof. The second part is quite easy, we can restrict the domain of T to $\{v \in V \mid Tv \in U\}$, say $T' \in \mathcal{L}(\{v \in V \mid Tv \in U\}, W)$, so that it is in form $\dim\{v \in V \mid Tv \in U\} = \dim \operatorname{null} T' + \dim \operatorname{range} T'$. Obviously range $T' = U \cap \operatorname{range} T$ and $\operatorname{null} T' = \operatorname{null} T$.

We will now show that $\{v \in V \mid Tv \in U\}$ is a subspace of V.

- $T0 \in U$.
- For any $v, w \in V$ such that $Tv, Tw \in U$, we have $T(v+w) = Tv + Tw \in U$.
- For any $v \in V$ such that $Tv \in U$ and $\lambda \in F$, we have $T(\lambda v) = \lambda Tv \in U$.

Therefore it is a subspace.

Exercise 3.22. Suppose U and V are finite, $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$, show that

$$\dim \operatorname{null} ST \leq \dim \operatorname{null} S + \dim \operatorname{null} T$$

Proof. Consider the inverse image of null S on T: $K = \{ v \in V \mid Tv \in \text{null } S \}$, which dimension: $\dim K = \dim \text{null } T + \dim(\text{null } S \cap \text{range } T)$, where $\dim(\text{null } S \cap \text{range } T)$ caps at $\dim \text{null } S$.

We know show that $\operatorname{null} ST = \operatorname{null} K$. For any STv = 0, we know S(Tv) = 0, so $Tv \in K$, therefore $\operatorname{null} ST \subseteq \operatorname{null} K$; For any $Tv \in \operatorname{null} S$, that means S(Tv) = 0, therefore $v \in \operatorname{null} ST$, therefore $\operatorname{null} ST \supseteq \operatorname{null} K$, and $\operatorname{null} ST = \operatorname{null} K$.

Exercise 3.25. Suppose V is finite, $S, T \in \mathcal{L}(V, W)$. Show that $\text{null } S \subseteq \text{null } T \iff \text{there is } E \in \mathcal{L}(W) \text{ such that } T = ES$.

Proof. We define E(S(v)) = Tv for any $v \in V$, so that $E \in \mathcal{L}(\text{range } S, W)$. We first show that E is a mapping, and also a linear transformation.

Suppose $Sv, Sw \in W$ such that Sv = Sw, we need to show that E(Sv) = E(Sw), or normalized Tv = Tw. We know $v - w \in \text{null } S$ since Sv = Sw, so $v - w \in \text{null } T$ since $\text{null } S \subseteq \text{null } T$, therefore T(v - w) = 0, and then Tv = Tw, so E is a mapping.

Now we show that E is a linear transformation.

• For any $Sv, Sw \in \text{range } S$, E(Sv) + E(Sw) = Tv + Tw = T(v + w) = E(S(v + w)) = E(Sv + Sw).

• For any $Sv \in \text{range } S$ and $\lambda \in F$, $\lambda E(Sv) = \lambda Tv = T(\lambda v) = E(S(\lambda v) = E(\lambda Sv))$.

therefore E is a linear transformation.

Now we can expand the domain of E to W such that E'v = Ev for any $v \in \text{range } S$ (this is proven in previous exercise). For any $v \in V$, we have ESv = E(Sv) = Tv, there fore T = ES.

For another direction, for any $v \in \text{null } S$, we have ESv = E0 = 0 = Tv, so $v \in \text{null } T$.

Exercise 3.26. Suppose V is finite, $S, T \in \mathcal{L}(V, W)$. Show that range $S \subseteq \text{range } T \iff \text{there is } E \in \mathcal{L}(V) \text{ such that } S = TE$.

Proof. Consider the inverse image of range S with basis w_0, \dots, w_n , say v_0, \dots, v_n , it is easy to show v_0, \dots, v_n is linear independent. Then $E(v) = \lambda_0 v_0 + \dots + \lambda_n v_n$ where $Sv = \lambda_0 w_0 + \dots + \lambda_n w_n$.

Exercise 3.27. Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$, show that $V = \text{null } P \oplus \text{range } P$.

Proof. Such element is called *idempotent* in algebra.

We will show null $P \oplus \text{range } P$ by showing null $P \cap \text{range } P = \{0\}$. For any $v \in \text{null } P \cap \text{range } P$, we know there is $w \in V$ such that Pw = v since $v \in rangevP$, then $P^2(v) = P(Pv) = P0 = 0$ since $v \in \text{null } P$ and $P^2(v) = P(Pv) = Pw$, so Pw = 0 while Pw = v therefore v = 0.

Then we have dim $V = \dim \operatorname{null} P + \dim \operatorname{range} P$ and dim(null $P \oplus \operatorname{range} P$) = dim null $P + \dim \operatorname{range} P - \dim\{0\}$, so $V = \operatorname{null} P \oplus \operatorname{range} P$.

Exercise 3.28. Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ such that for any non-constant polynomial $p \in \mathcal{P}(\mathbb{R})$, $\deg(Dp) = \deg p - 1$. Show that D is surjective.

Proof. We induction on n, starts from 1, to show that $D(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_{n-1}(\mathbb{R})$.

- Base: for any $p \in \mathcal{P}(\mathbb{R})$ where $\deg p = 1$, we know $\deg Dp = 0$, so $D(\mathcal{P}_1(\mathbb{R}))$ is a non-zero subspace of $\mathcal{P}_0(\mathbb{R})$, which is $\mathcal{P}_0(\mathbb{R})$.
- Induction: We have induction hypothesis: For any $i \leq n$, we have $D(\mathcal{P}_i(\mathbb{R})) = \mathcal{P}_{i-1}(\mathbb{R})$. We want to show that $D(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$. For any $p \in \mathcal{P}(\mathbb{R})$ with deg p = n+1, we can write p in form of $p = \lambda x^{n+1} + r$ where deg $r \leq n$, then $Dp = D(\lambda x^{n+1} + r) = D(\lambda x^{n+1}) + Dr$ where deg $D(\lambda x^{n+1}) = n$ and deg $Dr \leq n 1$. So $D(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$ since: $\mathcal{P}_n(\mathbb{R}) \subseteq D(\mathcal{P}_{n+1}(\mathbb{R}))$ and $D(\lambda x^{n+1}) \in D(\mathcal{P}_{n+1}(\mathbb{R}))$, it is sufficient to span $\mathcal{P}_n(\mathbb{R})$.

Exercise 3.29. For any $p \in \mathcal{P}(\mathbb{R})$, show that there is $q \in \mathcal{P}(\mathbb{R})$ such that 5q'' + 3q' = p.

Proof. We can rewrite the goal as 5DDq + 3Dq = p where D(p) = p', then 5DDq + 3Dq = D(5Dq) + D(3q) = D(5Dq + 3q) = p. We know D is surjective by the previous exercise, the goal is now showing that 5Dq + 3q = r where Dr = p. Then we continue rewrite the goal 5Dq + 3q = (5D)q + (3I)q = (5D + 3I)q = r, we will show that 5D + 3I is surjective, we use the same method in previous exercise.

We denote 5D+3I by F, and induction on $n \in \mathbb{N}$ to show that $F(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$.

- Base: We should show that $F(\mathcal{P}_0(\mathbb{R})) = \mathcal{P}_0(\mathbb{R})$, for any $p \in \mathcal{P}_0(\mathbb{R})$, we have Fp = 5Dp + 3p, where Dp = 0 since $\deg p = 0$, so Fp = 3p, which means we have $1 \in F(\mathcal{P}_0(\mathbb{R}))$ since p is literally a number and $\frac{1}{3p}Fp = 1$.
- Induction: We have induction hypothesis: $F(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$, and we want to show $F(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_{n+1}(\mathbb{R})$.

For any $p \in \mathcal{P}_{n+1}(\mathbb{R})$, we have Fp = 5Dp + 3p where $\deg 5Dp = n$ and $\deg 3p = n + 1$, then we can eliminate 5Dp and every term in p with degree less then n + 1 since $\mathcal{P}_n(\mathbb{R}) \subseteq \operatorname{range} F$, then we get z^{n+1} , thus $F(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_{n+1}(\mathbb{R})$.

Therefore there is q such that (5D+3I)q=r since 5D+3I is surjective. Another solution from internet: Define Tq=5q''+3q', we can see for any $q \in \mathcal{P}(\mathbb{R})$ we have $\deg Tq=\deg q-1$, so T is surjective. Then there is q such that Tq=5q''+3q'=p.

Exercise 3.30. Suppose $\varphi \in \mathcal{L}(V, F)$ not zero, and $u \in V$ that $u \notin \text{null } \varphi$, show that $V = \text{null } \varphi \oplus \{ au \mid a \in F \}$.

Proof. We can see φ is surjective since $\varphi u \neq 0$, then for any $i \in F$, we have $(i(\varphi u)^{-1})\varphi u = i$.

For any $v \in V$, since φ is surjective (in a particular way), so we have $a\varphi u$ such that $a\varphi u = \varphi v$, then $\varphi(au - v) = 0$ so $au - v \in \text{null } \varphi$. That means (-1)(au - v) + au = v where $(-1)(au - v) \in \text{null } \varphi$ and $au \in \{au \mid a \in F\}$, so $V = \text{null } \varphi + \{au \mid a \in F\}$.

Then $\operatorname{null} \varphi \oplus \{ au \mid a \in F \} \text{ since } u \notin \operatorname{null} \varphi.$

Exercise 3.31. Suppose V is finite (dim V > 1), show that if $\varphi : \mathcal{L}(V) \to F$ is a linear mapping with property $\varphi(ST) = \varphi(S)\varphi(T)$ for any $S, T \in \mathcal{L}(V)$, show that $\varphi = 0$.

Proof. Consider null φ , since dim V > 1 while dim F = 1, so φ cannot be injective, therefore null $\varphi \neq \{0\}$.

For any non-zero $S \in \text{null } \varphi$ and $T \in \mathcal{L}(V)$, we have $\varphi(ST) = \varphi(S)\varphi(T) = 0 = \varphi(T)\varphi(S) = \varphi(TS)$ since $S \in \text{null } \varphi$, thus $ST \in \text{null } \varphi$. We show that null φ is an ideal of $\mathcal{L}(V)$, recall that the property of $\mathcal{L}(V)$, the only ideal of $\mathcal{L}(V)$ is $\{0\}$ and LT(V), so null $\varphi = \mathcal{L}(V)$, which means $\varphi = 0$.

Exercise 3.32. Let V, W are vector spaces and $T \in \mathcal{L}(V, W)$, define $T_C : V_C \to W_C$:

$$T_C(u+iv) = Tu + iTv$$

for any $u, v \in V$.

- 1. Show that T_C is a (complex) linear mapping from V_C to W_C .
- 2. Show that T_C is injective \iff T is injective.
- 3. Show that range $T_C = W_C \iff \text{range } T = W$.

Proof.

1. For any $u, v, s, t \in V \ \lambda \in \mathbb{C}$, we have

$$T((u+iv) + (s+it))$$
= $T(u+s+i(v+t))$
= $T(u+s) + iT(v+t)$
= $Tu + Ts + iTv + iTt$
= $T(u+iv) + T(s+it)$

and

$$\lambda T(u+iv)$$

$$=\lambda (Tu+iTv)$$

$$=\lambda Tu+\lambda iTv$$

$$=T(\lambda u)+iT(\lambda v)$$

$$=T(\lambda u+i(\lambda v))$$

$$=T(\lambda u+i\lambda v)$$

$$=T(\lambda (u+iv))$$

I believe these are trivial, so the future me should be able to prove these without any effort. \Box

Exercise 3.4. Suppose $D(p) = p' : \mathcal{L}(\mathcal{P}_3(\mathbb{R})) \to \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$. Find a basis of $\mathcal{L}(\mathcal{P}_3(\mathbb{R}))$ and a basis of $\mathcal{L}(\mathcal{P}_2(\mathbb{R}))$, such that $\mathcal{M}(D)$ about these basis is:

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Proof. Consider $x, x^2, x^3, 1$ the basis of $\mathcal{P}_3(\mathbb{R})$ and $1, x, 2x^2$.

Exercise 3.5. Suppose V and W are finite and $T \in \mathcal{L}(V, W)$. Show that there are basis of V and W respectively, such that $\mathcal{M}(T, \text{those basis})$ is all zero except 1 at k, k $(1 \le k \le \dim \operatorname{range} T)$.

Proof. Consider the basis w_0, \dots, w_{k-1} of range T and the basis w_0, \dots, w_{m-1} of W which expands from w_0, \dots, w_{k-1} . Then there must be v_0, \dots, v_{k-1} such that $Tv_i = w_i$ for all $0 \le i < k$, we know v_0, \dots, v_{k-1} is linear independent since w_0, \dots, w_{k-1} is linear independent, so we can expand it to a basis of V, say v_0, \dots, v_{n-1} .

We claim that $\mathcal{M}(T, v_0, \dots, v_{n-1}, w_0, \dots, w_{m-1})$ is a matrix with all zero but 1 at k, k $(1 \leq k < \operatorname{range} T)$. For any $\lambda_0 v_0 + \dots + \lambda_{n-1} v_{n-1} \in V$, we have $T(\lambda_0 v_0 + \dots + \lambda_{n-1} v_{n-1}) = \lambda_0 w_0 + \dots + \lambda_{k-1} w_{k-1}$, note that all v_i where $i \geq k$ disappear, since they maps to 0. Therefore $\mathcal{M}(T)$ is all zero but 1 at k, k (since $\lambda_i w_i$ in the last equation).

Exercise 3.6. Show that $-^T: F^{m,n} \to F^{n,m}$ is a linear mapping.

Proof. Trivial, sorry.
$$\Box$$

Exercise 3.7. Show that $(AB)^T = B^T A^T$.

Proof. Suppose A is a $m \times n$ matrix and B is a $n \times p$ matrix, then for any $i \in [1, m]$ and $j \in [1, p]$, we have $(AB)_{i,j}^T = (AB)_{j,i} = \sum_{r=1}^n A_{j,r} B_{r,i} = \sum_{r=1}^n B_{i,r}^T A_{r,j}^T = (B^T A^T)_{i,j}$.

Exercise 3.8. Let A a $m \times n$ matrix, show that the rank of A is $1 \iff$ there is $c_0, \dots, c_{m-1} \in F^m$ and $d_0, \dots, d_{n-1} \in F^n$ such that $A_{j,k} = c_j d_k$ for all $j = 0, \dots, m-1$ and $k = 0, \dots, n-1$.

Proof. The right hand side is actually the external product of vectors, that is vw^T .

- (\Rightarrow) is easy since we can use the theorem that any $m \times n$ matrix A can be expressed by CR where C is a $m \times r$ matrix, R is a $r \times n$ matrix, r is the rank of A. In this case, r = 1, so C and R are just vectors.
- (\Leftarrow) is also easy since other column is a scalar multiple of the first column, therefore the rank of A is 1.

Exercise 3.9. Let $T \in \mathcal{L}(V)$, u_0, \dots, u_{n-1} and v_0, \dots, v_{n-1} are the bases of V, show that the following statements are equivalent:

- 1. T is injective
- 2. The columns of $\mathcal{M}(T)$ is linear independent
- 3. The columns of $\mathcal{M}(T)$ spans $F^{n,1}$
- 4. The lines of $\mathcal{M}(T)$ is linear independent
- 5. The lines of $\mathcal{M}(T)$ spans $F^{1,n}$

Proof. (2), (3) are obviously equivalent and (4), (5) too.

Although I want to make an arrow loop, but the arrow between (1) and (4), (5) is too hard, so I will show that $(1) \iff (2)$, (3) and (2), $(3) \iff (4)$, (5).

- (\Rightarrow) Let $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1} = [0, \dots, 0]$, then $T(\lambda_0 u_0 + \cdots + \lambda_{n-1} u_{n-1}) = 0$, so λ_i are 0 since T is injective, which means null $T = \{0\}$. (\Leftarrow) For any $T(\lambda_0 u_0 + \cdots + \lambda_{n-1} u_{n-1}) = 0$, we have the linear combination of v_i is 0 where the coefficients come from $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1}$ (w_i are the columns of $\mathcal{M}(T)$), therefore the coefficients are all 0 since v_i is linear independent, thus $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1} = 0$, which means λ_i are all 0 since w_i is linear independent.
- For any matrix, its line rank is equal to its column rank, so columns independent \iff lines independent.

Exercise 3.4. Let V a finite vector space with $\dim V > 1$, show that $S = \{ T \text{ is singular } | T \in \mathcal{L}(V) \}$ is **NOT** a subspace of $\mathcal{L}(V)$.

Proof. If S is a subspace of $\mathcal{L}(V)$, then it is an ideal of $\mathcal{L}(V)$ since for any $A \in S$ and $B \in \mathcal{L}(V)$, AB and BA are singular, therefore $AB, BA \in S$. However, we know the only two ideals of $\mathcal{L}(V)$ is $\{0\}$ and $\mathcal{L}(V)$, none of them is S.

Exercise 3.11. Let V finite vector space, and $S, T \in \mathcal{L}(V)$, show that

ST is invertible \iff S and T are invertible

Proof.

• (\Rightarrow) Suppose STW = WST = I, then S(TW) = (TW)S = I since $\dim V = \dim V$, therefore $S^{-1} = TW$, also (WS)T = T(WS) = I since $\dim V = \dim V$, therefore $T^{-1} = WS$.

• (⇐) Trivial.

Exercise 3.12. Let V finite vector space, and $S, T, U \in \mathcal{L}(V)$ such that STU = I, Show that $T^{-1} = US$.

Proof. Since STU = I we know U is invertible (since STU is invertible), then $ST = U^{-1}$. Since U^{-1} is invertible, we know S and T are invertible therefore $T = S^{-1}U^{-1}$ and $T^{-1} = US$.

Exercise 3.13. Show that the conclusion of previous exercise can be false if V is not finite.

Proof. Let $S(x_0, x_1, ...) = (x_1, ...)$ the backward-shift mapping and $U(x_0, x_1, ...) = (0, x_0, x_1, ...)$ the forward-shift mapping and T = I the identity mapping.

We have SU = I and $US \neq I$, T is clearly invertible with $T^{-1} = I$, but we know $US \neq I$, so $T^{-1} = US \neq I$.

In fact, this also disprove the infinite version of $\ref{eq:substant}$ since SU is invertible but neither S nor U is invertible. \Box

Exercise 3.17. Let V a finite vector space, $S \in \mathcal{L}(V)$, define $A \in \mathcal{L}(\mathcal{L}(V))$ by A(T) = ST, show that:

- 1. dim null $\mathcal{A} = (\dim V)(\dim \operatorname{null} S)$
- 2. dim range $\mathcal{A} = (\dim V)(\dim \operatorname{range} S)$

Proof. Since $A \in \mathcal{L}(\mathcal{L}(V))$, we know dim $\mathcal{L}(V) = \dim \text{null } A + \dim \text{range } A$, also, dim $\mathcal{L}(V) = (\dim V)^2$ and dim $V = \dim \text{null } S + \dim \text{range } S$. Therefore we have dim null $A + \dim \text{range } A = (\dim V)(\dim \text{null } S + \dim \text{range } S)$, which means we only need to prove one of (1) and (2).

We will show that dim null $\mathcal{A} = (\dim V)(\dim \operatorname{null} S)$. We found that $\dim \mathcal{L}(V, \operatorname{null} S) = (\dim V)(\dim \operatorname{null} S)$, so it would be nice if $\operatorname{null} \mathcal{A} = \mathcal{L}(V, \operatorname{null} S)$. For any $T \in \operatorname{null} \mathcal{A}$, we have ST = 0, which means range $T \subseteq \operatorname{null} S$, therefore $T \in \mathcal{L}(V, \operatorname{null} S)$. For any $T \in \mathcal{L}(V, \operatorname{null} S)$, we have ST = 0 since range $T \subseteq \operatorname{null} S$, so $T \in \operatorname{null} \mathcal{A}$, therefore $\operatorname{null} \mathcal{A} = \mathcal{L}(V, \operatorname{null} S)$, thus $\dim \operatorname{null} A = (\dim V)(\dim \operatorname{null} S)$.

Exercise 3.18. Show that V and $\mathcal{L}(F, V)$ are isomorphic.

Proof. This can be proven by dim $V = \dim \mathcal{L}(F, V) = 1(\dim V)$, but we can find $\varphi(v) = x \mapsto xv$ an isomorphism. For any $T \in \mathcal{L}(F, V)$, T is determined by T(1).

Exercise 3.1. Let $T: V \to W$, the graph of T is a subset of $V \times W$ such that

graph of
$$T = \{ (v, Tv) \mid v \in V \}$$

Show that T is a linear mapping \iff the graph of T is a subspace. Proof.

- $(0,T0) \in \text{graph of } T.$ (v,Tv) + (w+Tw) = (v+w,Tv+Tw) = (v+w,T(v+w)). $\lambda(v,Tv) = (\lambda v,\lambda Tv) = (\lambda v,T(\lambda v))$
- (v, Tv) + (w + Tw) = (v + w, T(v + w)) since the graph of T is a subspace, therefore Tv + Tw = T(v + w). Similarly, $\lambda Tv = T(\lambda v)$.

Exercise 3.3. Let V_i are vector spaces, show that $\mathcal{L}(V_0 \times \cdots \times V_{m-1}, W) \simeq \mathcal{L}(V_0, W) \times \cdots \times \mathcal{L}(V_{m-1}, W)$.

Proof. This can be proven by $A \times B$ is a categorical product, so we will show that for any A, B are vector spaces, $A \times B$ is a product.

In order to show that $A \times B$ is a product, or more specificly, $A \times B$ equipped with linear mappings

$$\pi_0(a,b) = a$$

$$\pi_1(a,b) = b$$

20

is a product, we have to show that for any C, $s \in \mathcal{L}(C, A)$ and $t \in \mathcal{L}(C, B)$, there is a unique $u \in \mathcal{L}(C, A \times B)$ such that $s = \pi_0 \circ u$ and $t = \pi_1 \circ u$.

Define $u(c) = (sc, tc) : C \to A \times B$, we will show that u is a linear mapping.

- For all $v, w \in C$, u(v) + u(w) = (sv, tv) + (sw, tw) = (sv + sw, tv + tw) = (s(v + w), t(v + w)) = u(v + w)
- For all $c \in C$ and $\lambda \in F$, $\lambda u(c) = \lambda(sc, tc) = (\lambda sc, \lambda tc) = (s(\lambda c), t(\lambda c)) = u(\lambda c)$.

Then we can see $\pi_0(u(c)) = \pi_0(sc, tc) = sc$ and $\pi_1(u(c)) = \pi_1(sc, tc) = tc$. Now we have to show that u is unique (which is trivial, I don't want to prove this, sorry).

Exercise 3.5. Let m a positive number, define $V^m = \underbrace{V \times \cdots \times V}_m$, show that $V^m \simeq \mathcal{L}(F^m, V)$.

Proof. Define $\varphi(v_0, \dots, v_{m-1}) = i_0, \dots, i_{m-1} \mapsto i_0 v_0 + \dots + i_{m-1} v_{m-1}$ which accept a list of vector and a list of coefficients then produce a linear combination.

For any $T \in \mathcal{L}(F^m, V)$, T is completely determined by $T(1, \dots, 1) = v_0 + \dots + v_{m-1}$, therefore $\varphi(v_0, \dots, v_{m-1}) = T$ and thus φ is surjective.

For any $(v_0, \dots, v_{m-1}), (w_0, \dots, w_{m-1}) \in V^m$ such that $\varphi(v_0, \dots, v_{m-1}) = \varphi(w_0, \dots, w_{m-1})$, then $w_0 = \varphi(v_0, \dots, v_{m-1})(1, 0, \dots, 0) = \varphi(v_0, \dots, v_{m-1})(1, 0, \dots, 0) = v_0$, same for other v_i and w_i , so $(v_0, \dots, v_{m-1}) = (w_0, \dots, w_{m-1})$, therefore φ is injective.

Exercise 3.6. Let $v, x \in V$ and $U, W \subseteq V$ are subspaces such that v + U = x + W. Show that U = W.

Proof. We know $v = x + w_0$ for some $w_0 \in W$ since v + U = x + W and $v \in v + U$, then for any $u \in U$, we have v + u = x + w for some $w \in W$, then $(x + w_0) + u = x + w$ therefore $u = x + w - x - w_0 = w - w_0 \in W$ thus $U \subseteq W$. Similarly $W \subseteq U$.

Exercise 3.7. Let $U = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + 5z = 0 \}$ and $A \subseteq \mathbb{R}^3$. Show that A is a translate of U (that is A = a + U) \iff there is c such that $A = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + 5z = c \}$.

Proof.

• (\Rightarrow) For any $(a_0, a_1, a_2) + (x, y, z) \in a + U$, we have $2(a_0 + x) + 3(a_1 + y) + 5(a_2 + z) = 2a_0 + 3a_1 + 5a_2$, therefore $c = 2a_0 + 3a_1 + 5a_2$.

• (\Leftarrow) We can see 2, 3 and 5 are coprime to each other, therefore there is $2a_0 + 3a_1 + 5a_2 = 1$ (I am not sure if this is true in generalized case, I just extends the theorem " $as+bt=1 \iff$ a coprime to b" to three elements case without checking), in this case we have 2(1) + 3(-2) + 5(1) = 1, then for any 2x + 3y + 5z = c, we have $2x + 3y + 5z = 2(ca_0) + 3(ca_1) + 5(ca_2)$, then $2(x - ca_0) + 3(y - ca_1) + 5(z - ca_2) = 0$, therefore $A = ((-c)(a_0, a_1, a_2)) + U$.

Exercise 3.8. Let $T \in \mathcal{L}(V, W)$ and $c \in W$, show that $\{v \in V \mid Tv = c\}$ is an empty set or a translate of null T. Then explain why the solutions of a system of linear equations is either an empty set or a translate of some subspace of F^n .

Proof. Let Ta = c for some $a \in V$, if no such a, then $\{v \in V \mid Tv = c\} = \varnothing$. We claim $\{v \in V \mid Tv = c\} = a + \text{null } T$. For any $v \in V$ such that Tv = c, then v = a + v - a and T(v - a) = Tv - Ta = c - c = 0, therefore $v - a \in \text{null } T$, thus $v \in a + \text{null } T$. In another direction, for any $a + v \in a + \text{null } T$, we have T(a + v) = Ta + Tv = c + 0 = c.

Exercise 3.9. Let $A \subseteq V$ a non-empty subset. Show that A is a translate of some subspace of $V \iff \lambda v + (1 - \lambda)w \in A$ for any $v, w \in A$ and $\lambda \in F$.

Proof.

- (\Rightarrow) Suppose A = a + U for some subspace $U \subseteq V$.
- (\Leftarrow) Let $w \in A$, we will show that (-w) + A is a subspace of V. For any a - w, $b - w \in (-w) + A$, we need to show that $a - w + b - w = (a + b - w) - w \in (-w) + A$ or equivalently $a + b - w \in A$. We found that the property $\lambda v + (1 - \lambda)w \in A$ gives us the ability to construct something like v - w. Since 2v + (1-2)w = 2v - w, we just let w = v + a then 2v - (v + a) = v - a. Therefore, we let $\lambda = 2$, v = a + b and w = a + b + w, and now $2(a + b) - (a + b + w) = a + b - w \in A$, so $a + b - w - w \in (-w) + A$.

For any $a - w \in (-w) + A$ and $\lambda \in F$, we need to show that $\lambda(a - w) \in (-w) + A$. $\lambda(a - w) = \lambda a - \lambda w = \lambda a - (\lambda - 1)w - w$. We let $\lambda = (-1)(\lambda - 1) = (1 - \lambda)$, v = w and w = a in $\lambda v + (1 - \lambda w) \in A$, then

 $(1-\lambda)w + (1-(1-\lambda))a = (-1)(\lambda-1)w + \lambda a = \lambda a - (\lambda-1)w \in A,$ therefore $\lambda a - (\lambda-1)w - w = \lambda a - \lambda w \in (-w) + A.$

Therefore (-w) + A is a subapce of V and w + (-w) + A is a translate.

Exercise 3.10. Let A = a + U and B = b + W where $a, b \in V$, $U, W \subseteq V$ are subspaces. Show that $A \cap B$ is either a translate of some subspace of V or an empty space.

Proof. Suppose $A \cap B \neq \emptyset$, we claim that $A \cap B$ is a translate of $U \cap W$, more specificly, for any $a+u_0 = b+w_0 \in A \cap B$, we claim that $A \cap B = (a+u_0)+U \cap W$.

For any $u = w \in U \cap W$, we have $(a + u_0) + u = a + (u_0 + u) \in a + U$, similarly, we have $(b + w_0) + w = b + (w_0 + w) \in b + W$, therefore $(a + u_0) + (U \cap W)$ subseteq $A \cap B$.

For any $a + u = b + w \in A \cap B$, we have $a + u - (a + u_0) = u - u_0 \in U$ and $b + w - (b + w_0) = w - w_0 \in W$, therefore $A \cap B \subseteq (a + u_0) + (U \cap W)$. \square

Exercise 3.12. Let $v_0, \dots, v_{m-1} \in V$ and

$$A = \{ \lambda_0 v_0 + \dots + \lambda_{m-1} v_{m-1} \mid \lambda_i \in F \text{ and } \lambda_0 + \dots + \lambda_i = 1 \}$$

- 1. Show that A is a translate of a subspace of V.
- 2. If B a translate of a subspace of V such that $v_0, \dots, v_{m-1} \in B$, show that $A \subseteq B$.
- 3. Base on (1), show that the dimension of such subspace is less then m.

Proof.

• If A is a translate of a subspace of V, say B, then for any $a \in A$, we have A = a + B. Therefore B = (-a) + A, we may pick $a = v_0$, we find that for any $b \in B$, it is in form $(-1)(v_0) + \lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}$ where $\lambda_0 + \cdots + \lambda_{m-1} = 1$, which implies $(-1) + \lambda_0 + \cdots + \lambda_{m-1} = 0$. Then we claim $B = \{ \lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1} \mid \lambda_0 + \cdots + \lambda_{m-1} = 0 \}$ is a subspace and $A = v_0 s + B$.

Exercise 3.16. Let $\varphi \in \mathcal{L}(V, F)$ where $\varphi \neq 0$, show that $\dim(V/(\operatorname{null} \varphi)) = 1$.

Proof. For any non-zero $v + \text{null } \varphi, w + \text{null } \varphi \in V/(\text{null } \varphi)$ (existence is guaranteed since $\varphi \neq 0$), since $\varphi(w) \in F$, then there is some λ such that $\lambda \varphi(w) = \varphi(v)$ cause $\varphi(v)$ and $\varphi(w)$ are non-zero, then $\varphi(\lambda w) = \varphi(v)$, which means $v + \text{null } T = (\lambda w) + \text{null } T$, therefore $\dim(V/\text{null } \varphi)$ cause any two (non-zero) vectors are linear dependent.

Exercise 3.17. Let $U \subseteq V$ a subspace such that $\dim(V/U) = 1$. Show that there is $\varphi \in \mathcal{L}(V, F)$ such that $\operatorname{null} \varphi = U$.

Proof. We know there is an isomorphism $i \in \mathcal{L}(V/U, F)$ since $\dim(V/U) = \dim F = 1$, then $\varphi = i \circ \pi$ where $\pi \in \mathcal{L}(V, V/U)$. Since i is injective, null $\varphi = \text{null } \pi = U$.

Exercise 3.18. Explain why a linear functional is either surjective or 0.

Proof. Cause dim
$$F = 1$$
.

Exercise 3.6. Let $\varphi, \beta \in V'$, show that null $\varphi \subseteq \text{null } \beta \iff \exists c \in F, \beta = c\varphi$. *Proof.*

• (\Rightarrow) For any $v \notin \text{null } \beta$, we have $\beta(v) = \beta(v)(\varphi(v))^{-1}\varphi(v)$ we claim that $\beta = \beta(v)(\varphi(v))^{-1}\varphi$. We may denote $\beta(v)(\varphi(v))^{-1}$ by c. For any $v, w \notin \text{null } \beta$, we have $\beta(v) = a\varphi(v)$ and $\beta(w) = b\varphi(w)$, we want to show that a = b, which can be proven by:

$$a = b$$

$$\frac{\beta(v)}{\varphi(v)} = \frac{\beta(w)}{\varphi(w)}$$

$$\beta(v)\varphi(w) = \beta(w)\varphi(v)$$

$$\beta(\varphi(w)v) = \beta(\varphi(v)w)$$

which is equivalent to $\varphi(w)v - \varphi(v)w \in \text{null }\beta$, then:

$$\varphi(\varphi(w)v - \varphi(v)w)$$

$$= \varphi(\varphi(w)v) - \varphi(\varphi(v)w)$$

$$= \varphi(w)\varphi(v) - \varphi(v)\varphi(w)$$

$$= 0$$

therefore $\varphi(w)v - \varphi(v)w \in \text{null } \varphi \subseteq \text{null } \beta$, thus a = b. The case $v \in \text{null } \beta$ is trivial.

• (\Leftarrow) For any $v \in \text{null } \varphi$, $\beta(v) = c\varphi(v) = 0$, therefore $v \in \text{null } \beta$, thus $\text{null } \varphi \subset \text{null } \beta$.

Exercise 3.7. Let V_0, \dots, V_{m-1} are vector spaces, show that $V'_0 \times \dots \times V'_{m-1}$ and $(V_0 \times \dots \times V_{m-1})'$ are isomorphic.

Proof. Define $\psi(\varphi) = v_0 \mapsto \varphi(v_0, 0, \cdots), \cdots, v_{m-1} \mapsto \varphi(\cdots, 0, v_{m-1})$ and $\psi^{-1}(\varphi_0, \cdots, \varphi_{m-1}) = (v_0, \cdots, v_{m-1}) \mapsto \varphi_0(v_0) + \cdots + \varphi_{m-1}(v_{m-1}).$ For any $\alpha, \beta \in (V_0 \times \cdots \times V_{m-1})'$ and $\lambda \in F$, we have

$$\psi(\alpha + \beta)_{i}$$

$$=v_{i} \mapsto (\alpha + \beta)(\cdots, v_{i}, \cdots)$$

$$=v_{i} \mapsto \alpha(\cdots, v_{i}, \cdots) + \beta(\cdots, v_{i}, \cdots)$$

$$=(v_{i} \mapsto \alpha(\cdots, v_{i}, \cdots)) + (v_{i} \mapsto \beta(\cdots, v_{i}, \cdots))$$

$$=\psi(\alpha)_{i} + \psi(\beta)_{i}$$

and $(\lambda \psi(\alpha))_i = \lambda(v_i \mapsto \alpha(v_i)) = v_i \mapsto \lambda \alpha(v_i) = \psi(\lambda \alpha)_i$ Therefore ψ is a linear map.

For any $\alpha, \beta \in V'_0 \times \cdots \times V'_{m-1}$ and $\lambda \in F$, we have:

$$\psi^{-1}(\alpha + \beta)
= (v_0, \dots, v_{m-1}) \mapsto (\alpha + \beta)(v_0) + \dots + (\alpha + \beta)(v_{m-1})
= (v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \beta(v_0) + \dots
= ((v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \dots) + ((v_0, \dots, v_{m-1}) \mapsto \beta(v_0) + \dots)
= \psi^{-1}(\alpha) + \psi^{-1}(\beta)$$

and

$$\lambda \psi^{-1}(\alpha)$$

$$= \lambda((v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \dots)$$

$$= (v_0, \dots, v_{m-1}) \mapsto \lambda(\alpha(v_0) + \dots)$$

$$= (v_0, \dots, v_{m-1}) \mapsto (\lambda \alpha(v_0)) + \dots$$

$$= \psi^{-1}(\lambda \alpha)$$

thus ψ^{-1} is a linear map.

We will show that ψ^{-1} is the inverse of ψ then ψ is an isomorphism. For any $\varphi \in (V_0 \times \cdots \times V_{m-1})'$,

$$\psi^{-1}(\psi(\varphi))$$

$$=v_0, \dots, v_{m-1} \mapsto \psi(\varphi)_0(v_0) + \dots$$

$$=v_0, \dots, v_{m-1} \mapsto \varphi(v_0, 0, \dots) + \dots + \varphi(\dots, 0, v_{m-1})$$

$$=v_0, \dots, v_{m-1} \mapsto \varphi(v_0, \dots, v_{m-1})$$

$$=\varphi$$

and for any $\varphi \in V'_0 \times \cdots \times V'_{m-1}$,

$$\psi(\psi^{-1}(\varphi))$$

$$=v_0 \mapsto \psi^{-1}(\varphi)(v_0, 0, \cdots), \cdots$$

$$=v_0 \mapsto \varphi_0(v_0), \cdots$$

$$=\varphi_0, \cdots, \varphi_{m-1}$$

$$=\varphi$$

Exercise 3.16. Let W a finite vector space, $T \in \mathcal{L}(V, W)$, show that

$$T' = 0 \iff T = 0$$

Proof.

- (\Rightarrow) Suppose $T \neq 0$, then we can always find $\varphi \in \mathcal{L}(W, F)$ which $\varphi(\operatorname{range} T) \neq 0$, then $\varphi \circ T \neq 0$.
- (⇐) Trivial.

Exercise 3.17. Let V, W are finite vector spaces, $T \in \mathcal{L}(V, W)$. Show that T is invertible $\iff T'$ is invertible.

Proof. Since T is invertible, then T is injective, therefore T' is surjective. Similarly, T' is injective since T is surjective. Therefore T' is invertible.

Exercise 3.18. Let V, W are finite vector spaces, show that the mapping $\varphi(T) = T'$ is an isomorphism between $\mathcal{L}(V, W)$ and $\mathcal{L}(W', V')$.

Proof. Since V and W are finite, we only need to show that φ is injective or surjective. We will show that φ is injective.

For any $\varphi(T) = T' \in \mathcal{L}(W', V')$, we know $T = 0 \iff T' = 0$, therefore null $\varphi = \{0\}$, thus φ is injective.

I was wonder if I can prove this by $\varphi(S)(\mathrm{id}) = \varphi(T)(\mathrm{id}) \Longrightarrow S = T$. This may work if the codomain restriction doesn't lose information, i.e. only restrict to a superset of its range, therefore the restriction is one-to-one.

Exercise 3.21. Let V finite and $U, W \subseteq V$ are subspaces.

- 1. Show that $W^0 \subseteq U^0 \iff U \subseteq W$
- 2. Show that $W^0 = U^0 \iff U = W$

Proof. The second statement can be easy proved by the first one.

- (\Rightarrow) We can always find a $f \in \mathcal{L}(W, F)$ such that null f = W, then $f(U) = \{0\}$ since $f \in W^0 \subseteq U^0$, therefore $U \subseteq \text{null } f = W$.
- (\Leftarrow) For any $\varphi \in W^0$, we know $W \subseteq \text{null } \varphi$, then $U \subseteq W \subseteq \text{null } \varphi$, therefore φinU^0 , thus $W^0 \subseteq U^0$.

Exercise 3.22. Let V finite and $U, W \subseteq V$ are subspaces. Show that:

- $\bullet \ (U+W)^0 = U^0 \cap W^0$
- $(U \cap W)^0 = U^0 + W^0$

Proof.

• For any $\varphi \in (U+W)^0$ we have $U+W \subseteq \operatorname{null} \varphi$, then $U \subseteq U+W \subseteq \operatorname{null} \varphi$ and $W \subseteq U+W$, therefore $\varphi \in U^0 \cap W^0$.

For any $\varphi \in U^0 \cap W^0$, we have $U \subseteq \text{null } \varphi$ and $W \subseteq \text{null } \varphi$. For any $u+w \in U+W$, we have $\varphi(u+w)=\varphi(u)+\varphi(w)=0+0=0$, therefore $U+W \subseteq \text{null } \varphi$, thus $\varphi \in (U+W)^0$.

• For any $su + tw \in U^0 + W^0$, for any $v \in U \cap W$, we have su(v) + tw(v) = s0 + t0 since $v \in U$ and $v \in W$. Therefore we have an injective map (also

linear, this map just produce what it receive) from $U^0 + W^0$ to $(U \cap W)^0$. We have:

$$\dim(U^0 + W^0)$$

$$= \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$$

$$= \dim V - \dim U + \dim V - \dim W - \dim(U + W)^0$$

$$= \dim V - \dim U + \dim V - \dim W - (\dim V - \dim(U + W))$$

$$= \dim V - \dim U - \dim W + (\dim U + \dim W - \dim(U \cap W))$$

$$= \dim V - \dim(U \cap W)$$

$$= \dim(U \cap W)^0$$

therefore $(U \cap W)^0 = U^0 + W^0$.

Exercise 3.23. Let V finite and $\varphi_0, \dots, \varphi_{m-1} \in V'$. Show that the following sets are equal to each others:

- span $(\varphi_0, \cdots, \varphi_{m-1})$
- $((\text{null }\varphi_0)\cap\cdots\cap(\text{null }\varphi_{m-1}))^0$
- { $\varphi \in V' \mid (\text{null } \varphi_0) \cap \cdots \cap (\text{null } \varphi_{m-1}) \subseteq \text{null } \varphi$ }

Proof.

• $((\operatorname{null} \varphi_0) \cap \cdots \cap (\operatorname{null} \varphi_{m-1}))^0 = (\operatorname{null} \varphi_0)^0 + \cdots + (\operatorname{null} \varphi_{m-1})^0$, then $\operatorname{span}(\varphi_i) \subseteq (\operatorname{null} \varphi_i)^0$ therefore $\operatorname{span}(\varphi_0, \cdots, \varphi_{m-1}) \subseteq ((\operatorname{null} \varphi_0) \cap \cdots \cap (\operatorname{null} \varphi_{m-1}))^0$.

For any $\varphi \in \operatorname{span}(\varphi_0, \dots, \varphi_{m-1})$, we have $\varphi(v) = \varphi_0(v) + \dots + \varphi_{m-1}(v) = 0 + \dots + 0 = 0$ for any $v \in (\operatorname{null} \varphi_0) \cap \dots \cap (\operatorname{null} \varphi_{m-1})$, therefore $\varphi \in ((\operatorname{null} \varphi_0) \cap \dots \cap (\operatorname{null} \varphi_{m-1}))^0$.

• Last two sets are definitional equal.

Exercise 3.24. Let V finite and $v_0, \dots, v_{m-1} \in V$. Define $\Gamma(\varphi) = (\varphi(v_0), \dots \varphi(v_{m-1})) : V' \to F^m$, show that:

• $v_0, \dots, v_{m-1} \text{ spans } V \iff \Gamma \text{ is injective.}$

• v_0, \dots, v_{m-1} is linear independent $\iff \Gamma$ is surjective.

Proof.

- (\Rightarrow) Suppose $\Gamma(\alpha) = \Gamma(\beta)$, then for all $v \in V$ can be factorized into $\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}$, then $\alpha(v) = \alpha(\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}) = \beta(\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}) = \beta(v)$ since $\Gamma(\alpha) = \Gamma(\beta)$ and α and β are linear map, thus $\alpha = \beta$.
 - (\Rightarrow) We first make v_0, \dots, v_{m-1} linear independent, say v_0, \dots, v_{k-1} , then for any $w \in V$ such that v_0, \dots, v_{k-1}, w is linear independent, then we have its dual basis $\varphi_0, \dots, \varphi_{k-1}, \psi$. Consider $\Gamma(\psi)$, by definition, we know $\Gamma(\psi) = (\psi(v_0), \dots) = (0, \dots)$ then $\psi = 0$ since Γ is injective, which contradicts our assumption. Therefore v_0, \dots, v_{k-1} spans V.
- (\Rightarrow) Consider the dual basis of v_0, \dots, v_{m-1} , then Γ is surjective since we have the standard basis of F^m .
 - (\Leftarrow) Γ is surjective implies we have $\varphi_0, \dots, \varphi_{m-1}$ such that $\Gamma(\varphi_i) = (\dots, 1, \dots)$, which means v_0, \dots, v_{m-1} is linear independent.

Exercise 3.25. Let V finite and $\varphi_0, \dots, \varphi_{m-1} \in V'$. Define $\Gamma(v) = (\varphi_0(v), \dots, \varphi_{m-1}(v)) : V \to F^m$. Show that

- $\varphi_0, \cdots, \varphi_{m-1} \text{ spans } V' \iff \Gamma \text{ is injective}$
- $\varphi_0, \cdots, \varphi_{m-1}$ is linear independent $\iff \Gamma$ is surjective

Proof.

- (\Rightarrow) Suppose $\Gamma(v) = \Gamma(w)$, then $\varphi_i(v) = \varphi_i(w)$, which means $\varphi_i(v-w) = 0$ for all i. If $v w \neq 0$, then $((\text{null }\varphi_0) \cap \cdots \cap (\text{null }\varphi_{m-1}))^0 \neq \{0\}$, thus $\varphi_0, \cdots, \varphi_{m-1}$ doesn't span V'.
 - (\Leftarrow) (null φ_0) $\cap \cdots \cap$ (null φ_{m-1}) = $\{0\}$ since Γ is injective. therefore $\operatorname{span}(\varphi_0, \cdots, \varphi_{m-1}) = ((\operatorname{null} \varphi_0) \cap \cdots \cap (\operatorname{null} \varphi_{m-1}))^0 = (\{0\})^0 = V'$
- (\Rightarrow) We may treat Γ as the following matrix:

$$\left[egin{array}{c} arphi_0 \ dots \ arphi_{m-1} \end{array}
ight]$$

which line rank is m since $\varphi_0, \dots, \varphi_{m-1}$ is linear independent, therefore its column rank is m, thus dim range $\Gamma = m = \dim F^m$, then Γ is surjective.

 (\Leftarrow) It seems the proof of (\Rightarrow) also works here.

Exercise 3.26. Let V finite, and $\Omega \subseteq V'$ a subspace. Show that

$$\Omega = \{ v \in V \mid \varphi(v) = 0 \quad \forall \varphi \in \Omega \}^0$$

Proof. This construction looks like an inverse of -0.

We may rewrite the equation to $\Omega = (\bigcap_{\varphi \in \Omega} \text{null } \varphi)^0$, then $\Omega = \text{span}(\varphi) \forall \varphi \in \Omega$, which is trivial.

Exercise 3.28. Let V finite and $\varphi_0, \dots, \varphi_{m-1}$ is linear independent. Show that

$$\dim((\operatorname{null}\varphi_0)\cap\cdots\cap(\operatorname{null}\varphi_{m-1}))=\dim V-m$$

Proof.

$$m = \dim \operatorname{span}(\varphi_0, \dots, \varphi_{m-1})$$

$$= \dim((\operatorname{null} \varphi_0) \cap \dots \cap (\operatorname{null} \varphi_{m-1}))^0$$

$$= \dim V - \dim((\operatorname{null} \varphi_0) \cap \dots \cap (\operatorname{null} \varphi_{m-1}))$$

Exercise 3.30. Let V finite and $\varphi_0, \dots, \varphi_{m-1}$ a basis of V'. Show that there is a basis of V which dual basis is $\varphi_0, \dots, \varphi_{m-1}$.

Proof. Since $\varphi_0, \dots, \varphi_{m-1}$ spans V' and linear independent, we know Γ is both injective and surjective. Consider v_0, \dots, v_{m-1} such that $\Gamma(v_i) = (\dots, 0, 1, 0, \dots)$. We claim v_0, \dots, v_{m-1} is a basis of V and which dual basis if $\varphi_0, \dots, \varphi_{m-1}$.

The second part is trivial by the way construct them. For the first part, v_0, \dots, v_{m-1} is linear independent since $(\dots, 0, 1, 0 \dots)$ is linear independent, and v_0, \dots, v_{m-1} spans V since dim $V = \dim V' = m$.

Exercise 3.31. Let $U \subseteq V$ a subspace and $i(u) = u : U \to V$. Then $i' \in \mathcal{L}(V', U')$, show that:

- 1. null $i' = U^0$
- 2. range i' = U' if V is finite
- 3. \tilde{i}' is an isomorphism between V'/U^0 and U' if V is finite

Proof.

• For any $\varphi \in \text{null } i'$, $\varphi \circ i = 0$, therefore range $i = U \subseteq \text{null } \varphi$, thus $\varphi \in U^0$.

For any $\varphi \in U^0$, $\varphi \circ i = 0$ since range $i = U \subseteq \text{null } \varphi$.

- Suppose V is finite, then i' is surjective since i' is injective, therefore range i' = U'.
- $\tilde{i}'(\varphi + U^0) = i'(\varphi)$ is surjective since i' is surjective. Then $\dim(V'/U^0) = \dim V' \dim U^0 = \dim V (\dim V \dim U) = \dim U = \dim U'$, therefore \tilde{i}' is an isomorphism.

Exercise 3.32. We denote V'' as the **double dual space of** V, defined by V'' = (V')'. Define $\Lambda(v)(\varphi) = \varphi(v) : V \to V''$ Show that:

- 1. $\Lambda \in \mathcal{L}(V, V'')$
- 2. Let $V \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$ where T'' = (T')'.
- 3. A is an isomorphism if V is finite.

Proof.

• For any $v, w \in V$ and $\lambda \in F$, we have $(\Lambda(v) + \Lambda(w))(\varphi) = \Lambda(v)(\varphi) + \Lambda(w)(\varphi) = \varphi(v) + \varphi(w) = \varphi(v+w) = \Lambda(v+w)(\varphi)$ and $(\lambda \Lambda(v))(\varphi) = \lambda(\Lambda(v)(\varphi)) = \lambda(\varphi(v)) = \varphi(\lambda v) = \Lambda(\lambda v)(\varphi)$.

• For any $v \in V$,

$$(T'' \circ \Lambda)(v)(\varphi)$$

$$=(T''(\Lambda(v)))(\varphi)$$

$$=((\Lambda(v)) \circ T')(\varphi)$$

$$=\Lambda(v)(T'(\varphi))$$

$$=\Lambda(v)(\varphi \circ T)$$

$$=(\varphi \circ T)(v)$$

$$=\varphi(T(v))$$

$$=\Lambda(T(v))(\varphi)$$

$$=(\Lambda \circ T)(v)(\varphi)$$

• Suppose $\Lambda(v) = \Lambda(w)$, that is, $\Lambda(v)(\varphi) = \varphi(v) = \varphi(w) = \Lambda(w)(\varphi)$ for all $\varphi \in V'$. Let $\varphi_0, \dots, \varphi_{m-1}$ the dual basis of some basis of V, then $v = \varphi_0(v)v_0 + \dots + \varphi_{m-1}(v)v_{m-1} = \varphi_0(w)v_0 + \dots + \varphi_{m-1}(w)v_{m-1} = w$. Therefore Λ is injective, thus surjective and isomorphism since dim $V = \dim V''$.

Exercise 3.33. Let $U \subseteq V$ a subspace and $\pi: V \to V/U$ the quotient map, then $\pi' \in \mathcal{L}((V/U)', V')$.

- 1. Show that π' is injective.
- 2. Show that range $\pi' = U^0$.
- 3. Conclude that π' is an isomorphism between (V/U)' and U^0 .

Proof.

• π is surjective, therefore π' is injective. The statement is true even V or V/U may be infinite, cause the proof about surjective-impliesepimorphism doesn't require that the codomain is finite but epimorphism-implies-surjective does.

We may prove those theorem again, but with weaker assumption. For any $\pi'(\varphi) = \pi'(\psi)$, we have $\varphi \circ \pi = \psi \circ \pi$. For any $v + U \in V/U$, there is $v \in V$ such that $\pi(v) = v + U$ since π is surjective. Therefore $\varphi(\pi(v)) = \psi(\pi(v))$ for all $\pi(v) = v + U \in V/U$, thus $\varphi = \psi$.

Therefore π' is injective.

- range $\pi' = (\operatorname{null} \pi)^0 = U^0$.
- Trivial.

Exercise 3.7. Let m a non-negative integer and $z_0, \dots, z_m \in F$ are different to each others, $w_0, \dots, w_m \in F$, show that there is a unique $p \in \mathcal{P}_m(F)$ such that $p(z_k) = w_k$ holds for all $0 \le k \le m$.

Proof. Define $\Gamma(p) = (p(z_0), \dots, p(z_m)) : \mathcal{P}_m(F) \to F^{m+1}$, we will show that Γ is injective, therefore an isomorphism.

Suppose $\Gamma(p) = \Gamma(q)$, then $p(z_k) = q(z_k)$ for all k, therefore $(p-q)(z_k) = 0$ for all k. This means p-q has m+1 zeros but $\deg(p-q) \leq m$, therefore p-q=0 and p=q.

Then there is a unique $p \in \mathcal{P}_m(F)$ such that $\Gamma(p) = (w_0, \dots, w_m)$.

Exercise 3.9. Let $P \in \mathcal{L}(V)$, such that $P^2 = P$. Suppose λ an eigenvalue of P, show that $\lambda = 0$ or $\lambda = 1$.

Proof. Suppose $P(v) = \lambda v$ for some non-zero $v \in V$, then $P(v) = PP(v) = P(\lambda v)$, therefore $P((\lambda - 1)v) = 0$. thus $(\lambda - 1)v \in \text{null } P$. We may suppose $\lambda \neq 1$, then $(\frac{1}{\lambda - 1})(\lambda - 1)v = v \in \text{null } P$, therefore P(v) = 0, thus $\lambda = 0$ cause $v \neq 0$.

Exercise 3.10. Let $T(p) = p' : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$. Find all eigenvalues and eigenvectors of T.

Proof. Suppose $T(p) = p' = \lambda p$, then $\deg p = 0$, otherwise the degree doesn't match. For any $p \in \mathcal{P}(\mathbb{R})$ such that $\deg p = 0$, we have p' = 0 = 0p.

Exercise 3.12. Let $V = U \oplus W$ where U and W are non-zero subspaces. Define P(u + w) = u for all $u \in U$ and $w \in W$. Find all eigenvalue and eigenvector of P.

Proof. We can see $P^2 = P$, since for any $u + w \in V$, we have P(P(u + w)) = P(u) = u = P(u + w), therefore $\lambda = 0$ and $\lambda = 1$ are eigenvalues of P, P(u) = 1u and P(w) = 0w are eigenvectors of P.

Exercise 3.13. Let $T \in \mathcal{L}(V)$ and $S \in \mathcal{L}(V)$, where S is invertible.

• Show that T has the same eigenvalue of $S^{-1}TS$.

• What is the relationship between the eigenvector of T and the eigenvector of $S^{-1}TS$.

Proof.

- For any $T(v) = \lambda v$ where $v \in V$ and $\lambda \in F$, let S(w) = v, then $S^{-1}TS(w) = S^{-1}(T(Sw)) = S^{-1}(\lambda v) = \lambda S^{-1}(v) = \lambda w$, thus λ is an eigenvalue of $S^{-1}TS$.
- S(w) = v where v is an eigenvector of T and w is the corresponding eigenvector of $S^{-1}TS$.

Exercise 3.15. Let V finite, $T \in \mathcal{L}(V)$, $\lambda \in F$. Show that λ is an eigenvalue of $T \iff \lambda$ is an eigenvalue of T'.

Proof.

• (\Rightarrow) Suppose $Tv = \lambda v$, we will show $T' - \lambda I$ is not surjective (Note that $I \in \mathcal{L}(V')$).

For any $\varphi \in V'$, we have:

$$(T' - \lambda I)(\varphi)$$

$$= T'(\varphi) - \lambda \varphi$$

$$= \varphi \circ T - \lambda \varphi$$

then

$$(\varphi \circ T - \lambda \varphi)(v)$$

$$= (\varphi \circ T)(v) - (\lambda \varphi)(v)$$

$$= \varphi(Tv) - \lambda(\varphi(v))$$

$$= \varphi(\lambda v) - \lambda(\varphi(v))$$

$$= 0$$

This means range $T' \neq V'$ cause any $\psi \in V'$ where $\psi(v) \neq 0$ is not in range T'. Therefore λ is an eigenvalue of T'.

Exercise 3.22. Let $T \in \mathcal{L}(V)$ and non-zero $v, w \in V$ such that

$$Tu = 3w$$
 and $Tw = 3u$

.

Show that 3 or -3 is the eigenvalue of T.

Proof. Since v and w are non-zero, then one of u + w and u - w is non-zero. We have T(u + w) = 3w + 3u = 3(u + w) and T(u - w) = 3w - (3u) = (-3)(u - w).

Exercise 3.23. Let V finite, and $S,T \in \mathcal{L}(V)$, show that ST and TS have the same eigenvalues.

Proof. For any $ST(v) = \lambda v$ where $v \neq 0$, we have $TST(v) = T(\lambda v)$ then $TS(Tv) = \lambda(Tv)$.

- If Tv = 0, then $STv = 0 = \lambda v$, thus $\lambda = 0$ since $v \neq 0$. then λ is an eigenvalue of TS since null $TS \neq 0$ (null $T \neq 0$, and S is an operator of V, therefore, S is injective or not doesn't affect our conclusion).
 - If $Tv \neq 0$, then $TS(Tv) = \lambda(Tv)$.

• Ditto.

Exercise 3.26. Let $T \in \mathcal{L}(V)$ and any non-zero $v \in V$ we have Tv = cv for some c. Show that $T = \lambda I$.

Proof. Let non-zero $v, w \in V$, we have Tv = sv and Tw = tw, then $T(v+w) = \lambda(v+w) = \lambda v + \lambda w = sv + tw = T(v) + T(w)$. Then $\lambda v + \lambda w - tw = sv$.

- If $w \in \text{span}(v)$, then w = cv, therefore Tw = T(cv) = tcv = cTv = csv, thus t = s.
- If $w \notin \text{span}(v)$, then $\lambda = t$ (otherwise $\lambda v + (\lambda t)w = sv$), therefore $\lambda v = sv$ and $\lambda = s$, thus s = t.

Exercise 3.27. Let V finite and $1 \le k \le \dim V - 1$. Let $T \in \mathcal{L}(V)$ such that any subspace of V with k dimension is invariant under T. Show that $T = \lambda I$ for some λ .

Proof. For any $v \in V$, we have Tv = w where $w \in \text{span}(v)$.

- If w = 0, then Tv = 0v.
- If $w \neq 0$, then $w = \lambda v$ since $w \in \text{span}(v)$, then $Tv = \lambda v$.

Thus $T = \lambda I$ by the previous exercise.

Exercise 3.30. Let $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I) = 0. Show that 2 or 3 or 4 is the eigenvalue of T.

Proof. Suppose 2 is not an eigenvalue of T, then (T-2I) is injective, thus (T-3T)(T-4I) must map all $v \in V$ to 0. Similarly, we can show that (T-4I) = 0 if 3 is not an eigenvalue of T.

Exercise 3.31. Find $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

Proof. We may treat -I as rotating the vector 180 degrees, then T rotates a vector 45 degrees, which matrix is:

$$\mathcal{M}(T) = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Exercise 3.32. Let $T \in \mathcal{L}(V)$ with no eigenvalue and $T^4 = I$. Show that $T^2 = -I$.

Proof. We will show that $T^2(v) = -v$ for any $v \in V$. Consider $T^2(T^2(v)+v) = v+T^2(v)$, we will show that $T^2(v)+v=0$. Suppose $w \in V$ and $T^2(w)=w$, we may let T(w)=u, then $T^2(w)=Tu=w$. Consider T(w+u)=T(w)+T(u)=u+w, then w+u=0 since T has no eigenvalue, therefore u=-w and T(w)=-w. Again w=0 since T has no eigenvalue. Therefore $T^2(w)=w$ implies w=0, thus $T^2(v)+v=0$ and $T^2(v)=-v$ for any $v \in V$.

Exercise 3.33. Let $T \in \mathcal{L}(V)$ and $m \in \mathbb{N}^+$.

- 1. Show that T is injective \iff T^m is injective
- 2. Show that T is surjective \iff T^m is surjective.

Proof. Recall that $T^0 = I$.

- (\Rightarrow) For any $T^m(v) = T^m(w)$ we have $T^{m-1}(v) = T^{m-1}(w)$ and so on, we will get v = w.
 - (\Leftarrow) For any T(v) = T(w), we have $T^{m-1}(T(v)) = T^{m-1}(T(w))$, then $T^m(v) = T^m(w)$ and v = w.
- (\Rightarrow) For any $w \in V$, we have T(v) = w, then we have T(u) = v and now T(T(u)) = w, continue this progress until we get $T^m(r) = w$.
 - (\Leftarrow) For any $w \in V$, we have $T^m(v) = w$, therefore $T(T^{m-1}(v)) = w$.

Exercise 3.34. Let V finite and $v_0, \dots, v_{m-1} \in V$. Show that v_0, \dots, v_{m-1} is linear independent \iff there is $T \in \mathcal{L}(V)$ such that v_0, \dots, v_{m-1} are eigenvectors of distinct eigenvalues of T.

Proof.

- (\Rightarrow) Consider v_0, \dots, v_{k-1} a basis of V, then $T(\lambda_0 v_0 + \dots + \lambda_{k-1} v_{k-1}) = 1\lambda_0 v_0 + 2\lambda_1 v_1 + \dots + m\lambda_{m-1} v_{m-1}$ where $T(v_i) = (i+1)v_i$.
- (\Leftarrow) Trivial, since eigenvectors of distinct eigenvalues are linear independent.

Exercise 3.37. Let V finite and $T \in \mathcal{L}(V)$. Define $\mathcal{A}(S) = TS : \mathcal{L}(V) \to \mathcal{L}(V)$. Show that T has the same eigenvalues as \mathcal{A} .

Proof.

- (\subseteq) For any eigenvalue λ of T, we can find $S \in \mathcal{L}(V)$ such that range $S = \{ v \in V \mid Tv = \lambda v \}$ (it is easy to show that such set is a subspace). Then for any $v \in V$, $(TS)v = T(Sv) = \lambda(Sv) = (\lambda S)v$ thus $\mathcal{A}(S) = TS = \lambda S$.
- (\supseteq) For any eigenvalue λ of \mathcal{A} , then we have $\mathcal{A}(S) = \lambda S$ for some non-zero $S \in \mathcal{L}(V)$. Then there is $v \in V$ such that $Sv \neq 0$, and $T(Sv) = (TS)v = (\lambda S)(v) = \lambda(Sv)$, thus λ is an eigenvalue of T.

Exercise 3.38. Let V finite and $T \in \mathcal{L}(V)$ and $U \subseteq V$ is invariant under T. A quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by:

$$(T/U)(v+U) = Tv + U$$

for any $v \in V$.

- 1. Show that T/U is well-defined and T/U is an operator over V/U.
- 2. Show that each eigenvalue of T/U is also an eigenvalue of T.

Proof.

• Suppose v+U=w+U, then (T/U)(v+U)=Tv+U and (T/U)(w+U)=Tw+U, we will show that $Tv-Tw\in U$. Note that v+U=w+U implies $v-w\in U$, then $T(v-w)\in U$ since U is invariant under T, that is, for any $u\in U$, $Tu\in U$. Thus Tv+U=Tw+U.

Now we will show that T/U is a linear map, we can see:

$$(T/U)(v + U) + (T/U)(w + U)$$

$$= (Tv + U) + (Tw + U)$$

$$= (Tv + Tw) + U$$

$$= T(v + w) + U$$

$$= (T/U)((v + w) + U)$$

and

$$\lambda(T/U)(v+U)$$

$$=\lambda(Tv+U)$$

$$=(\lambda(Tv))+U$$

$$=T(\lambda v)+U$$

$$=(T/U)((\lambda v)+U)$$

$$=(T/U)(\lambda(v+U))$$

• Suppose $(T/U)(v+U) = Tv + U = \lambda v + U$ where $v \notin U$, consider $T - \lambda I$, we will show that $T - \lambda I$ is not injective. We can see U is invariant under $T - \lambda I$, $Tu - \lambda u \in U$ cause U is invariant under T. We may suppose T is injective (thus surjective and invertible) on U (in other words, T(U) = U), otherwise the proof is complete. Then consider $(T - \lambda I)(v) = Tv - \lambda v \in U$ where $v \notin U$, thus $T - \lambda I$ is not injective.

Exercise 3.39. Let V finite and $T \in \mathcal{L}(V)$. Show that T has an eigenvalue \iff there is a subspace of V with dimension $\dim V - 1$ which is invariant under T.

Proof.

• This part is hinted by AI. Suppose $Tv = \lambda v$, then consider $T - \lambda I$, we know range $(T - \lambda I)$ is invariant under T, since for any $Tw - \lambda w$, we have $T(Tw - \lambda w) = T(Tw) - T(\lambda w) = T(Tw) - \lambda(Tw)$. Then $\dim \operatorname{range}(T - \lambda I) \leq \dim V - 1$ since $w \in \operatorname{null} T - \lambda I$. Then consider $\operatorname{null}(T - \lambda I) = \operatorname{span}(v) \oplus W$, we have $\operatorname{range}(T - \lambda I) \oplus W$ a subspace which is invariant under T.

The key is finding a smaller invariant subspace and expand it with null space, as any vector in null space always maps to 0, thus preserve the property of invariant.

- Suppose U is a subspace of V of dimension $\dim V 1$ such that U is invariant under T, then $V = U \oplus \operatorname{span}(v)$ for some $v \notin U$. We may suppose T is injective on U, otherwise the proof is complete (null $T \neq 0$). Consider T(v), there are three cases:
 - $-T(v) = \lambda v + 0u$, then the proof is complete.
 - -T(v) = 0v + u, then T is not injective since there is Tw = u where $w \in U$.
 - $T(v) = \lambda v + u$, then consider $T \lambda I$. We have U is invariant under $T \lambda I$ cause $Tu \lambda u \in U$ by $Tu \in U$. Again, if $T \lambda I$ is not injective on U, the proof is complete. Then $(T \lambda I)v = Tv \lambda v \in U = \lambda v + u \lambda v = u \in U$, thus $T \lambda I$ is not injective and λ is an eigenvalue of T.

Exercise 3.42. Let $T \in \mathcal{L}(F^n)$ defined by $T(x_1, x_2, \dots, x_n) = (x_1, 2x_2, \dots, nx_n)$.

- 1. Find all eigenvalues and eigenvectors of T.
- 2. Find all subspace of F^n which is invariant under T.

Proof.

- $1, 2, \dots, n$ and $(x_1, 0, \dots), (0, x_2, 0, \dots), \dots$
- We claim any subspace that is invariant under T is a direct sum of some spaces that spans by the standard basis, say $\operatorname{span}(x_0) \oplus \cdots \oplus \operatorname{span}(x_k)$. Let U a subspace that is invariant under T and $u \in U$, we have $T(u) = T(\lambda_1 x_1, \dots, \lambda_n x_n) = (\lambda_1 x_1, \dots, n\lambda_n x_n)$, then $T(u) - iu = ((1-i)(\lambda_1 x_1), (2-i)(\lambda_2 x_2), \dots, (n-1)(\lambda_i x_i)) \in U$ is a vector that is a linear combination of standard basis except x_i . Repeat this progress by apply T - jI to (T - iI)(u) with a different j, we can finally get a vector that is a scalar multiple of x_k . Thus $x_i \in U$ as long as there is $u \in U$ that the ith scalar of the linear combination of standard basis is not zero.

Exercise 3.43. Let $T \in \mathcal{L}(V)$. Show that 9 is an eigenvalue of $T^2 \iff 3$ or -3 is an eigenvalue of T.

Proof.

- (\Rightarrow) We have $T^2 9I$ is not injective since 9 is an eigenvalue of T^2 , then $(T 3I)(T + 3I) = T^2 9I$ is not injective means one of T 3I and T + 3I is not injective, thus 3 or -3 is an eigenvalue of T.
- (\Leftarrow) Similarly, we have $(T-3I)(T+3I)v = (T^2-9I)v = 0$ (if 3 is an eigenvalue of T) or $(T+3I)(T-3I)v = (T^2-9I)v = 0$ (if -3 is an eigenvalue of T).

Exercise 3.44. Let V a vector space over \mathbb{C} and $T \in \mathcal{L}(V)$ has no eigenvalue. Show that any subspace of V that is invariant under T is either $\{0\}$ or infinite dimension.

Proof. Let $U \subseteq V$ a subspace that is invariant under T, and non-zero $u \in U$. We can repeatly apply T to u, say u, Tu, T^2u, \cdots . Suppose k > 0 is minimum such that u, Tu, \cdots, T^ku is linear dependent, we have $p \in \mathcal{P}(\mathbb{C})$ with deg p = k such that p(T) = 0. Clearly p is not constants, thus it has a zero since p is a polynomial of complex coefficient. Thus such zero is an eigenvalue of T.

Exercise 3.45. Let n > 1 an integer, and $T \in \mathcal{L}(F^n)$ is defined by:

$$T(x_0, \dots, x_{n-1}) = (x_0 + \dots + x_{n-1}, \dots, x_0 + \dots + x_{n-1})$$

- Find all eigenvalue and eigenvector of T.
- Find the minimal polynomial of T.

Proof.

- Observe that range $T = \operatorname{span}((1, \dots, 1))$, thus $T(1, \dots, 1) = n(1, \dots, 1)$.
- Observe that $T(x_0, \dots, x_{n-1}) = (x_0 + \dots + x_{n-1})(1, \dots, 1)$ and $T^2(x_0, \dots, x_{n-1}) = n(x_0 + \dots + x_{n-1})(1, \dots, 1)$, thus $p(T) = nT T^2 = 0$.

Exercise 4 is kinda hard, sorry.

Exercise 3.6. Let $T \in \mathcal{L}(F^2)$ is defined by T(w,z) = (-z,w). Find the minimal polynomial of T.

Proof. Observe that $T^2(w,z) = T(-z,w) = (-w,-z) = (-1)(w,z)$, thus the minimal polynomial of T is $p(T) = I + T^2$.

Exercise 3.7. • Given an example that the minimal polynomial of ST is not equal to TS's.

• Suppose V is finite and $S, T \in \mathcal{L}(V)$. Show that the minimal polynomial of ST is equal to TS's if one of S and T is invertible.

Hint: Show that S is invertible and $p \in \mathcal{P}(F)$ implies $p(TS) = S^{-1}p(ST)S$. Proof.

• The idea is to find S, T such that $ST \neq 0$ but TS = 0. We can find S(x,y) = (x,0) and T(x,y) = (y,0) holds:

$$(ST)(x,y) = S(y,0) = (y,0)$$

 $(TS)(x,y) = T(x,0) = (0,0)$

Thus the minimal polynomial of ST is not 0 but TS one does.

• Suppose S is invertible and $p \in \mathcal{L}(F)$ is the minimal polynomial of TS, then $p(TS) = S^{-1}p(ST)S$ since i-th term of $S^{-1}p(ST)S$ has form $S^{-1}c_i(ST)^iS = c_i(S^{-1}S)(TS)^{i-1}(TS) = c_i(TS)^i$. Thus $S^{-1}p(ST)S = 0$ and then p(ST) = 0. We will show that p is the minimal polynomial of ST, suppose $q \in \mathcal{L}(F)$ such that q(ST) = 0, then $0 = S^{-1}q(ST)S = q(TS)$, therefore $\deg q = \deg p$. Hence p is the minimal polynomial of ST.

Exercise 3.8. Let $T \in \mathcal{L}(R^2)$ is the operator that "rotates 1 degree counter-clockwise", find the minimal polynomial of T.

Note that it is **NOT** $x^{180} + 1$ even $T^{180} = -I$.

Proof. Note that there is some λ such that $Tv - \lambda v = \alpha T^2 v$ (We can show that $\lambda = \alpha$), however the calculation is too complicate.

[scale=0.6]E5B-8-resource

 λ should be $\frac{\sin(1^{\circ})}{\sin(2^{\circ})}$, thus $p(T) = -\lambda I + T - \lambda T^2$.

We suppose all v below has length 1, thus $v = (\cos \theta, \sin \theta)$, this doesn't lose the generalizability since $p(T)(\alpha v) = \alpha(p(T)v)$.

For the first component of $p(T)v = -\lambda v + Tv - \lambda T^2v$, we have:

$$\frac{\sin(1^\circ)}{\sin(2^\circ)}(-\cos\theta - \cos(\theta + 2^\circ))$$

$$= \frac{\sin(1^\circ)}{\sin(2^\circ)}(-\cos\theta - (\cos\theta\cos(2^\circ) - \sin\theta\sin(2^\circ)))$$

$$= \frac{\sin(1^\circ)}{\sin(2^\circ)}(-\cos\theta - \cos\theta\cos(2^\circ)) + \sin\theta\sin(1^\circ)$$

$$= \cos\theta \frac{\sin(1^\circ)}{\sin(2^\circ)}(-1 - \cos(2^\circ)) + \sin\theta\sin(1^\circ)$$

where $\sin \theta \sin(1^\circ)$ cancels a part of $(Tv)_1 = \cos(\theta + 1^\circ) = \cos \theta \cos(1^\circ) - \sin \theta \sin(1^\circ)$. Thus we will show that $\frac{\sin(1^\circ)}{\sin(2^\circ)}(-1 - \cos(2^\circ)) = -\cos(1^\circ)$.

$$\frac{\sin(1^\circ)}{\sin(2^\circ)}(-1-\cos(2^\circ))$$

$$=\frac{\sin(1^\circ)}{2\sin(1^\circ)}(-(\cos^2(1^\circ)+\sin^2(1^\circ))-\cos^2(1^\circ)+\sin^2(1^\circ))$$

$$=\frac{1}{2\cos(1^\circ)}(-\cos^2(1^\circ)-\cos^2(1^\circ))$$

$$=\frac{1}{2\cos(1^\circ)}(-2\cos^2(1^\circ))$$

$$=-\cos(1^\circ)$$

For the second component of p(T)v, we have:

$$\begin{split} &\frac{\sin(1^\circ)}{\sin(2^\circ)}(-\sin\theta - \sin(\theta + 2^\circ))\\ =&\frac{\sin(1^\circ)}{\sin(2^\circ)}(-\sin\theta - \sin\theta\cos(2^\circ) - \cos\theta\sin(2^\circ))\\ =&\sin\theta\frac{\sin(1^\circ)}{\sin(2^\circ)}(-1 - \cos(2^\circ)) - \cos\theta\sin(1^\circ) \end{split}$$

similarly, we have $p(T)v_2 = \sin(\theta + 1^\circ) = \sin\theta\cos(1^\circ) + \cos\theta\sin(1^\circ)$ we will show that $\frac{\sin(1^\circ)}{\sin(2^\circ)}(-1-\cos(2^\circ)) = -\cos(1^\circ)$, which is proven above.

Exercise 3.9. Let $T \in \mathcal{L}(V)$ such that for some basis of V, $\mathcal{M}(T)$ consists of rational numbers. Try to explain why the coefficients of the minimal polynomial of T is rational numbers.

Proof. I don't know, because \mathbb{Q} is also a field?

Exercise 3.11. Let V a vector space and $\dim V = 2$ and $T \in \mathcal{L}(V)$ such that $\mathcal{M}(T)$ for some basis of V is $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Show that:

- $T^2 (a+d)T + (ad bc)I = 0$
- ullet the minimal polynomial of T is:

$$\begin{cases} z - a & \text{if } b = c = 0 \text{ and } a = d \\ z^2 - (a+d)z + (ad - bc) & \text{otherwise} \end{cases}$$

Proof.

•

$$\mathcal{M}(T^2 - (a+d)T + (ad - bc)I)$$

$$= \begin{bmatrix} a & c \\ b & d \end{bmatrix}^2 - (a+d) \begin{bmatrix} a & c \\ b & d \end{bmatrix} + (ad - bc)I$$

$$= \begin{bmatrix} a^2 + bc & ac + bd \\ ab + bd & bc + d^2 \end{bmatrix} - \begin{bmatrix} a^2 + ad & ac + cd \\ ab + bd & ad + d^2 \end{bmatrix} + \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix}$$

• If b = c = 0 and a = d, then T is a scalar multiple of identity operator, thus T = aI and p(T) = -aI + T = 0. Otherwise, $T^2 - (a+d)T + (ad - bc)I = 0$.

Exercise 3.13. Let V finite, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(F)$. Show that there is a unique $r \in \mathcal{P}(F)$ such that p(T) = r(T) where deg p is less than the degree of the minimal polynomial of T.

Proof. Let q the minimal polynomial of T.

If deg $p < \deg q$, then r = p. The uniqueness is guaranteed by deg $p < \deg q$ (try (p - s)(T) where p(T) = s(T) and deg $s < \deg q$).

If $\deg p >= \deg q$, then p = sq + r where $s, r \in \mathcal{P}(F)$ with $\deg r < \deg q$. Then p(T) = s(T)q(T) + r(T) = r(T) since q(T) = 0. The uniqueness is guaranteed by the property of division.

Exercise 3.14. Let V finite, $T \in \mathcal{L}(V)$ with minimal polynomial $p(z) = 4 + 5z - 6z^2 - 7z^3 + 2z^4 + z^5$. Find the minimal polynomial of T^{-1} .

Proof. Suppose p is the minimal polynomial of T, then we can repeatly apply T^{-1} to p(T), say $T^{-(\deg p)}(p(T))$, then it should be 0, and the coefficients are reversed, that is, $p_{\deg p}I + p_{\deg p-1}T^{-1} + \cdots + p_0(T^{-1})^{\deg p}$.

So the answer is
$$1 + 2z^1 - 7z^2 - 6z^3 + 5z^4 + 4z^5$$
.

Exercise 3.16. Let $a_0, \dots, a_{n-1} \in F$ and T an operator over F^n . Its matrix (about the standard basis) is:

$$\begin{bmatrix} 0 & & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & -a_2 \\ & & \ddots & & \vdots \\ & & 1 & 0 & -a_{n-2} \\ & & & 1 & -a_{n-1} \end{bmatrix}$$

. Show that the minimal polynomial of T is:

$$p(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n$$

Proof. We first need some property of this matrix, we will see it moves all number to the left when we repeatly self-multily T. We can see the k-th column of T^p is equal to k+1-th column of T^{p-1} , thus it is also equal to i-th column if T^j where $1 \le i, j \le n$ and i+j=k+p. In fact, j can be 0 and we have $T^0 = I$ and the property still holds.

Then, the *i*-th column of T^n is equal to *n*-th column (the last one) of T^i ,

and it is produced by
$$T^{i-1}\begin{bmatrix} -a_0 \\ -a_1 \\ \vdots \\ -a_{n-1} \end{bmatrix}$$
, which is equal to

$$T_i^n = -a_0 T_1^{i-1} - a_1 T_2^{i-1} - \dots - a_{n-1} T_n^{i-1}$$

which is equal to $T^n v_i$ where v_i is *i*-th standard basis of F^n , that is, $\begin{bmatrix} \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$. We

may rewrite the equation into

$$T^{n}v = -a_{0}T^{0}v - a_{1}T^{1}v - \dots - a_{n-1}T^{n-1}v$$

where $T^0v = T_i^0 = T_1^{i-1}$, $T^1v = T_i^1 = T_2^{i-1}$ and so on.

Thus all v vector in standard basis has p(T)v = 0, thus p(T) = 0.

For minimal, we can see T is invertible, thus $p(T)v_1 = 0$ (recall that T moves number to the left, thus the first column of T^i is the i-th columns of T). means there is a (non-zero) linear combination of columns of T that is equal to 0. Thus deg $p \ge n$ since T the columns are linear independent.

Exercise 3.17. Let V finite and $T \in \mathcal{L}(V)$ and p is the minimal polynomial of T. Let $\lambda \in F$, show that the minimal polynomial of $T - \lambda I$ is $q(z) = p(z + \lambda)$.

Proof. $q(T - \lambda I) = p((T - \lambda I) + \lambda I) = p(T) = 0$. Suppose r is the minimal polynomial of $T - \lambda I$, then $s(z) = r(z - \lambda)$ and $s(T) = r(T - \lambda I) = 0$, thus $\deg r = \deg p = \deg q$.

Exercise 3.18. Let V finite and $T \in \mathcal{L}(V)$, and p is the minimal polynomial of T. Let $\lambda \in F$ that $\lambda \neq 0$, show that the minimal polynomial of λT is $q(z) = \lambda^{\deg p} p(\frac{z}{\lambda})$.

Proof. $q(\lambda T) = \lambda^{\deg p} p(\frac{1}{\lambda}(\lambda T)) = \lambda^{\deg p} p(T) = 0$. $\lambda^{\deg p}$ only makes q a monic polynomial.

Suppose r is the minimal polynomial of λT , then $s(z) = \frac{1}{\lambda^{\deg p}} r(\lambda z)$ and $s(T) = \frac{1}{\lambda^{\deg p}} r(\lambda T) = 0$, thus $\deg s = \deg r = \deg p = \deg q$.

Exercise 3.19. Let V finite and $T \in \mathcal{L}(V)$. Let $\mathcal{E} \subseteq \mathcal{L}(V)$ a subspace, defined by

$$\mathcal{E} = \{ q(T) \mid q \in \mathcal{P}(F) \}$$

.

Show that dim \mathcal{E} is equal to the degree of the minimal polynomial of T.

Proof. We can see $I, T, T^2, \dots, T^{\deg p-1}$ is linear independent (since p is the minimal polynomial of T) where p is the minimal polynomial of T. For any $q \in \mathcal{P}(F)$ where $\deg q \geq \deg p$, then q = sp + r where $s, r \in \mathcal{P}(F)$ and $\deg r < \deg p$, therefore $q(T) = s(T)p(T) + r(T) = r(T) \in \operatorname{span}(I, T, T^2, \dots, T^{\deg p-1})$.

Exercise 3.20. let $T \in \mathcal{L}(F^4)$, which eigenvalues are 3, 5, 8. Show that $(T - 3I)^2(T - 5I)^2(T - 8I)^2 = 0$.

Proof. Suppose p is the minimal polynomial of T, then p(z) = c(z-3)(z-5)(z-8)q(z) since 3, 5, 8 are the eigenvalue of T, thus the zeros of p. Note that $\deg q \le 1$ since $\deg p \le \dim F^4 = 4$. Since there is no other eigenvalue (thus zero) than 3, 5, 8, q is either 1 or one of z-3, z-5, z-8, thus $(z-3)^2(z-5)^2(z-8)^2$ is polynomial multiple of p, therefore $(T-3I)^2(T-5I)^2(T-8I)^2 = 0$.

Exercise 3.21. Let V finite and $T \in \mathcal{L}(V)$. Show that the degree of the minimal polynomial of T caps at $1 + \dim \operatorname{range} T$.

$$Proof.$$
 IDk

Exercise 3.22. Let V finite and $T \in \mathcal{L}(V)$. Show that T is invertible \iff $I \in \text{span}(T, T^2, \dots, T^{\dim V})$.

Proof.

• (\Rightarrow) Suppose T is invertible, then the minimal polynomial p of T satisfies $p(0) \neq 0$ (since p(0) = 0 implies 0 is a eigenvalues of T). We know deg $p \leq \dim V$, thus there is a linear combination of $T, T^2, \dots, T^{\dim V}$ that is equal to a scalar multiple of I, therefore $I \in \operatorname{span}(T, T^2, \dots, T^{\dim V})$.

• (\Leftarrow) Suppose $I = \lambda_1 T + \lambda_2 T^2 + \cdots + \lambda_{\dim V} T^{\dim V}$, then $I = T(\lambda_1 I + \lambda_2 T + \cdots + \lambda_{\dim V} T^{\dim V - 1}) = (\lambda_1 I + \lambda_2 T + \cdots + \lambda_{\dim V} T^{\dim V - 1}) T$, thus T is invertible.

Exercise. Let V a vector space and $T \in \mathcal{L}(V)$, v, Tv, \dots, T^kv a list of linear independent vectors but $v, Tv, \dots, T^{k+1}v$ isn't. Show that $T^{k+i}v \in \text{span}(v, Tv, \dots, T^kv)$ for all 0 < i.

Proof. Induction on i.

- Base(i = 1): By assumption.
- Ind(i = i+1): $T^{k+i+1}v = T(T^{k+i}v)$, since $T^{k+i}v \in \text{span}(v, Tv, \dots, T^kv)$, thus it can be write as a linear combination of v, Tv, \dots, T^kv , say $T(\lambda_0v + \lambda_1Tv + \dots + \lambda_kT^kv)$, then $\lambda_0Tv + \lambda_1T^2v + \dots + \lambda_kT^{k+1}v \in \text{span}(v, Tv, \dots, T^kv)$ since $T^{k+1}v \in \text{span}(v, Tv, \dots, T^kv)$.

Exercise 3.23. Let V finite and $T \in \mathcal{L}(V)$. Let $n = \dim V$, show that for any $v \in V$, span $(v, Tv, \dots, T^{n-1}v)$ is invariant under T.

Proof. Note that the list $v, Tv, \dots, T^{n-1}v$ has length $n = \dim V$, thus for the list v, Tv, \dots, T^nv is linear dependent, thus T^nv must be a linear combination of $v, Tv, \dots, r^{n-1}v$.

- If $v, Tv, \dots, T^{n-1}v$ is linear dependent, then $T^nv \in \text{span}(v, Tv, \dots, T^{n-1}v)$ (by our lemma exercise).
- Otherwise, the list $v, Tv, \dots, T^n v$ is linear dependent while $v, Tv, \dots, T^{n-1}v$ isn't, therefore $T^n v$ is a linear combination of $v, Tv, \dots, T^{n-1}v$.

Theorem 3.29. $q(T) = 0 \iff q \text{ is a polynomial multiple of the minimal polynomial of <math>T$.

Proof. \bullet (\Rightarrow) Let p the minimal polynomial of T, consider q = sp + r where $\deg r < \deg p$, we may suppose $r \neq 0$. Then 0 = q(T) = s(T)p(T) + r(T) = r(T), which contradict to the assumption that p is the minimal polynomial of T.

• (⇐) Trivial.

Exercise 3.25. Let V finite, $T \in \mathcal{L}(V)$, subspace $U \subseteq V$ is invariant under T.

• Show that the minimal polynomial of T is polynomial multiple of the minimal polynomial of T/U.

• Show that

(the minimal polynomial of $T|_{U}$) × (the minimal polynomial of T/U)

is a polynomial multiple of the minimal polynomial of T.

- Proof. Let p the minimal polynomial of T, then p(T/U)(v+U) = p(T)v+U = 0 + U for any $v + U \in V/U$, thus p(T/U) = 0, therefore p is a polynomial multiple of the minimal polynomial of T/U.
 - Let p the minimal polynomial of $T|_U$ and q the minimal polynomial of T/U. Then (pq)(T)v = (p(T)q(T))v = p(T)(q(T)v) where $q(T)v \in U$, thus p(T)(q(T)v) = 0.

Exercise 3.26. Let V finite, $T \in \mathcal{L}(V)$, U is invariant under T. Show that the set of eigenvalues of T is equal to the union of eigenvalues of $T|_{U}$ and T/U.

Proof. This theorem separate the eigenvalues into two parts: eigenvectors in U and eigenvectors not in U (may have intersection).

- (\subseteq) For any $Tv = \lambda v$ where non-zero $v \in V$. If $v \in U$, then $T|_{U}(v) = Tv = \lambda v$. If $v \notin U$, then $(T/U)(v+U) = Tv + U = \lambda v + U = \lambda(v+U)$.
- (2) For any $T|_U(v) = \lambda v$, we have $T|_U(v) = Tv = \lambda v$. The case of T/U is proven in Exercise 5.38 of E5A.

We will use this conclusion several times, so we prove it first.

Exercise. Let p, q two non-constant **monic** polynomial and p = sq, q = tp where s, t two non-zero polynomial. Show that p = q.

Proof. We have p = stp, thus st = 1 and $\deg s = \deg t = 0$. Furthermore, we have p = sq where p and q are monic, thus s must be 1, similar to t, hence s = t = 1 and p = q.

Exercise 3.27. Let F = R and V finite and $T \in \mathcal{L}(V)$. Show that the minimal polynomial of T_C is equal to the T one.

Proof. Let p the minimal polynomial of T and q the minimal polynomial of T_C . We have:

$$p(T_C)(v + iu)$$

$$= p(T)v + ip(T)u$$

$$= 0v + i0u$$

$$= 0$$

and

$$q(T)(v)$$

$$=q(T_C)(v+i0)$$

$$=0$$

thus p = sq and q = tp where s, t are non-zero polynomials, therefore p = q.

Exercise 3.28. Let V finite and $T \in \mathcal{L}(V)$. Show that the minimal polynomial of $T' \in \mathcal{L}(V')$ is equal to the T one.

Proof. Let p the minimal polynomial of T and p' the minimal polynomial of T'

For any $\varphi \in V'$ and $v \in V$, we have $p(T')(\varphi)(v) = \varphi(p(T)v) = \varphi 0 = 0$ (since φ is linear), thus $p(T')(\varphi) = 0$, therefore p(T') = 0.

For any $v \in V$, $p'(T)v = \varphi_1(p'(T)v)v_1 + \cdots = p'(T')(\varphi)(v) + \cdots = 0$, where $v_0, \dots, v_{\dim V-1}$ is a basis of V and $\varphi_0, \dots, \varphi_{\dim V-1}$ is a dual basis. Thus p'(T) = 0.

Hence, p and p' are polynomial multiple to each other, therefore p = p'. \square

Exercise 3.29. Prove or disprove: $T \in \mathcal{L}(V)$ and $\mathcal{M}(T^2)$ is upper-triangular for some basis of V, then $\mathcal{M}(T)$ is upper-triangular for some basis of V (not necessary the same as the $\mathcal{M}(T^2)$ one).

Exercise 3.30. Let A, B are upper-triangular matrices with same size, the diagonal of A is $\alpha_0, \dots, \alpha_{n-1}$ and the diagonal of B is $\beta_0, \dots, \beta_{n-1}$. Show that

- A + B is upper-triangular and the diagonal is $\alpha_0 + \beta_0, \dots, \alpha_{n-1} + \beta_{n-1}$.
- AB is upper-triangular and the diagonal is $\alpha_0\beta_0, \cdots, \alpha_{n-1}\beta_{n-1}$.

Proof.

- Trivial.
- Take the standard basis of F^n , we have $Bv_i \in \text{span}(v_0, \dots, v_i)$ and then $A(Bv_i) \in \text{span}(v_0, \dots, v_i)$ since both A and B are upper-triangular, thus AB is upper-triangular. For the diagonal, we know $AB_{i,i} = A_{i,-}B_{-,i}$, however, components before i-th of $A_{i,-}$ are 0 and components since i-th of $B_{-,i}$ are 0, therefore $AB_{i,i} = A_{i,i}B_{i,i} = \alpha_i\beta_i$.

Exercise 3.31. Let $T \in \mathcal{L}(V)$ invertible, and $\mathcal{M}(T)$ with respect to the basis v_0, \dots, v_{n-1} of V is upper-triangular, while the diagonal is $\lambda_0, \dots, \lambda_{n-1}$. Show that $\mathcal{M}(T^{-1})$ with respect to that basis is also upper-triangular, and the diagonal is $\frac{1}{\lambda_0}, \dots, \frac{1}{\lambda_{n-1}}$.

Proof. For any $i = 1, \dots, n$, span (v_0, \dots, v_{i-1}) is invariant under T, thus it is invariant under T^{-1} since T^{-1} is the inverse of T.

For the diagonal, $TT^{-1} = I$, which diagonal is $1, \dots, 1$, which is equal to $\lambda_0 \beta_0, \dots, \lambda_{n-1} \beta_{n-1}$ where β_i is the diagonal of T^{-1} . Thus $\beta_i = \frac{1}{\lambda_i}$.

Exercise 3.32. Give an example that T an invertible operator, where the diagonal of $\mathcal{M}(T)$ is all 0.

Proof.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Exercise 3.33. Give an example that T an singular operator, where the diagonal of $\mathcal{M}(T)$ is all non-zero.

Proof.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Exercise 3.34. Let F = C and V finite, and $T \in \mathcal{L}(V)$. Show that $k = 1, \dots, \dim V$, then there is a k-dimension subspace of V that is invariant under T.

Proof. If F = C, then $\mathcal{M}(T)$ is upper-triangular for some basis of V. Thus $\operatorname{span}(v_0, \dots, v_{k-1})$ is invariant under T where v_i is such basis.

Exercise 3.35. Let V finite and $T \in \mathcal{L}(V)$ and $v \in V$. Show that:

- There is a unique monic polymonial p_v with minimal degree such that $p_v(T)v = 0$
- Show that the minimal polymonial of T is polymonial multiple of p_v .

Proof.

- p(T)v = 0, therefore we only need to show the uniqueness. Let s, t a monic polymonial with minimal degree such that s(T)v = t(T)v = 0, then (s-t)(T)v = 0, therefore s = t, otherwise there is a polymonial s-t with lower degree such that (s-t)(T)v = 0.
- We divide p by p_v , then $p = sp_v + r$ where $s, r \in \mathcal{P}(F)$ and $\deg r < \deg p_v$. Therefore r = 0, otherwise r is a lower polymonial such that r(T)v = 0, which contradict the property of p_v . Thus $p = sp_v$.

Exercise 3.36. Let V finite and $T \in \mathcal{L}(V)$, and non-zero $v \in V$ such that $T^2 + 2Tv + 2v = 0$. Show that

- If F = R, then $\mathcal{M}(T)$ is **NOT** upper-triangular for all basis of V.
- If F = C, then the diagonal of upper-triangular $\mathcal{M}(T)$ contains -1 + i and -1 i.

Proof.

- Note that $p_v(z) = z^2 + 2z + 2$ is a minimal polymonial of Tv, it is minimal since p_v has no zero, therefore cannot have lower degree.
 - Then the minimal polymonial p of T is a polymonial multiple of p_v , thus p is **NOT** in form of $(z \lambda_0) \cdots (z \lambda_{n-1})$ since p_v has no zero, thus there is no upper-triangular matrix for T for any basis of V.
- -1 + i and -1 i are two zeros of p_v , thus are zeros of p, therefore are in the diagonal.

Exercise 3.37. Let B square matrix with complex elements. Show that there is a square matrix A with complex elements such that $A^{-1}BA$ is a upper-triangular matrix.

Proof. We can find an operator T such that its matrix is B with respect to the standard basis. Then we can find a basis such that $\mathcal{M}(T)$ with respect to such basis is upper-triangular since B is complex. Then

 $A = \mathcal{M}(I, \text{standard basis}, \text{upper-trianguler basis}), \text{ and } A^{-1}BA \text{ is upper-triangular},$ this is the change-of-basis formula.

Exercise 3.38. Let $T \in \mathcal{L}(V)$ and v_0, \dots, v_{n-1} a basis of V, show that the following statements are equivalent:

- the matrix of T with respect to v_0, \dots, v_{n-1} is lower-triangular.
- For any $k = 1, \dots, n$, span $(v_{k-1}, \dots, v_{n-1})$ is invariant under T.
- For any $k = 1, \dots, n, Tv_{k-1} \in \text{span}(v_{k-1}, \dots, v_{n-1}).$

Proof. The proof is similar to the upper-triangular one.

- (1) \Rightarrow (2) For any $i \leq j$, $Tv_{j-1} \in \text{span}(v_{j-1}, \dots, v_{n-1}) \subseteq \text{span}(v_{i-1}, \dots, v_{n-1})$, thus $\text{span}(v_{k-1}, \dots, v_{n-1})$ is invariant under T.
- $(2) \Rightarrow (3)$ Tirival.
- $(3) \Rightarrow (1)$ Basically the definition.

Exercise 3.39. Let F = C and V finite. Show that $T \in \mathcal{L}(V)$, then $\mathcal{M}(T)$ is lower-triangular with respect to some basis of V.

Proof. Consider the dual map T', we know there is a basis of V' such that $\mathcal{M}(T')$ is upper-triangular, then $\mathcal{M}(T') = \mathcal{M}(T)^T$ which means $\mathcal{M}(T)^T$ is a upper-triangular, thus $(\mathcal{M}(T)^T)^T = \mathcal{M}(T)$ is lower-triangular.

Exercise 3.40. Let V finite and the matrix of $T \in \mathcal{L}(V)$ is upper-triangular with respect to some basis of V, and $U \subseteq V$ is invariant under T. Show that

- The matrix of $T|_{U}$ is upper-triangular with respect to some basis of U.
- The matrix of T/U is upper-triangular with respect to some basis of V/U.

Proof.

- Since $\mathcal{M}(T)$ is upper-triangular, then the minimal polymonial of T is in form of $p(z) = (z \lambda_0) \cdots (z \lambda_{n-1})$. Then $p(T|_U) = 0$, thus p is polymonial multiple of the minimal polymonial q of $T|_U$. therefore q is also in form of $(z \lambda_0) \cdots (z \lambda_{k-1})$. Thus there is a basis of U such that the matrix of $T|_U$ is upper-triangular.
- Let q the minimal polymonial of T/U, and p the minimal polymonial of T, then p is polymonial multiple of q (see Exercise 5.25 in E5B). Then follow the same step as last proof.

Exercise 3.41. Let V finite, $T \in \mathcal{L}(V)$, $U \subseteq V$ invariant under T, $\mathcal{M}(T|_U)$ is upper-triangular for some basis of U, $\mathcal{M}(T/U)$ is upper-triangular for some basis of V/U. Show that $\mathcal{M}(T)$ is upper-triangular for some basis of V.

Proof. We will use the conclusion of Exercise 5.25 in E5B:

st =(the minimal polymonial of $T|_{U}$) \times (the minimal polymonial of T/U)

is a polymonial multiple of the minimal polymonial p of T. Thus st is in form of $(z-\lambda_0)\cdots(z-\lambda_{n-1})$ since both $\mathcal{M}(T|_U)$ and $\mathcal{M}(T/U)$ are upper-triangular for some basis, therefore p is also in form of $(z-\lambda_0)\cdots(z-\lambda_{k-1})$, hence $\mathcal{M}(T)$ is upper-triangular for some basis of V.