Class10 - Structural Bioinformatics Part 1

Juliette Bokor (PID: A16808121)

What is in the PDB databse

The main repository of biomolecular structure info is in the PDB < www.rcsb.org > Let's see what this database contains:

```
stats <- read.csv("Data Export Summary.csv", row.names=1)
stats</pre>
```

	V	EW	MMD	M1+1	M+	0+1
	X.ray	EM	NMK	Multiple.methods	Neutron	utner
Protein (only)	163,468	13,582	12,390	204	74	32
Protein/Oligosaccharide	9,437	2,287	34	8	2	0
Protein/NA	8,482	4,181	286	7	0	0
Nucleic acid (only)	2,800	132	1,488	14	3	1
Other	164	9	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	189,750					
Protein/Oligosaccharide	11,768					
Protein/NA	12,956					
Nucleic acid (only)	4,438					
Other	206					
Oligosaccharide (only)	22					

We have to get rid of the commas in the data so it can be read as numeric instead of characters.

- we can use the sub() function which is a type of "find and replace" function

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
x <- stats$X.ray
sum(as.numeric(sub(",", "", x)))</pre>
```

[1] 184362

Now we need to turn this into a function so it can be used for the other columns of data using apply()

```
sumcomma <- function(x) {
   sum(as.numeric(sub(",", "", x)))
}
sumcomma(stats$X.ray)</pre>
```

[1] 184362

Applying the function to each column for the whole table (the two indicates column)

```
apply(stats, 2, sumcomma)
```

X.ray	EM	NMR	Multiple.methods
184362	20191	14237	234
Neutron	Other	Total	
79	37	219140	

```
n.total <- sumcomma(stats$Total)
n.total</pre>
```

[1] 219140

These are the percentages of structures solved by each method.

```
apply(stats, 2, sumcomma)/n.total
```

X.ray	EM	NMR	Multiple.methods
0.8412978005	0.0921374464	0.0649676006	0.0010678105
Neutron	Other	Total	
0.0003605001	0.0001688418	1.0000000000	

#applying the sumcomma function to each column in the table, and then dividing by the total

Q2: What proportion of structures in the PDB are protein?

```
n.protein <- sumcomma(stats[1,"Total"])
n.protein</pre>
```

[1] 189750

n.protein/n.total

[1] 0.8658848

Visualizing the HIV-1 protease structure

 Mol^* viewer is now everywhere. The homepage is https://molstar.org/viewer/ . I want to insert my image from Mol^* here.

Figure 1: The first molecular image

Working with the bio3d package

```
library(bio3d)
  pdb <- read.pdb("1hsg")</pre>
 Note: Accessing on-line PDB file
  pdb
       read.pdb(file = "1hsg")
Call:
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                     Х
                                                                  z o
1 ATOM
          1
                N < NA >
                         PRO
                                       1 <NA> 29.361 39.686 5.862 1 38.10
                                 Α
2 ATOM
          2
               CA <NA>
                         PRO
                                 Α
                                       1 <NA> 30.307 38.663 5.319 1 40.62
                C <NA>
                                      1 <NA> 29.760 38.071 4.022 1 42.64
3 ATOM
          3
                         PRO
                                 Α
                                      1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
               O <NA>
                         PRO
                                 Α
                                       1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
                         PRO
              CB <NA>
```

```
6 ATOM
           6
                 CG <NA>
                           PRO
                                          1 <NA> 29.296 37.591 7.162 1 38.40
                                    Α
  segid elesy charge
  <NA>
            N
                 <NA>
   <NA>
            С
                 <NA>
            C <NA>
3
  <NA>
   <NA>
            O <NA>
5
  <NA>
            C
                <NA>
   <NA>
                 <NA>
  pdbseq(pdb)[25]
 25
"D"
Predicting functional motions of a single strcture
We can do bioinformatics prediction of functional motions (flexibility/dynamics):
```

```
pdb <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

pdb

Call: read.pdb(file = "6s36")

Total Models#: 1
   Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)

   Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

   Non-protein/nucleic Atoms#: 244 (residues: 244)
   Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]

Protein sequence:</pre>
```

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

nma is normal mode analysis

Building Hessian... Done in 0.047 seconds. Diagonalizing Hessian... Done in 0.359 seconds.

plot(m)

Saving a pdb file to the directory - we can open this in Mol*