

IN THE CLAIMS:

1 1. (original) A brake drum for a wet-type band
2 brake having a large number of grooves substantially
3 along the circumferential direction on a slide contact
4 surface with the brake band, wherein:

5 each adjacent grooves are smoothly linked to each
6 other through a substantially convex arcuate cross
7 sectional-portion.

1 2. (original) A brake drum for a wet-type band
2 brake having a large number of grooves substantially
3 along the circumferential direction on a slide contact
4 surface with the brake band, wherein:

5 a land is formed between each adjacent grooves and
6 said land and said grooves are smoothly linked to each
7 other through a substantially convex arcuate cross
8 sectional-portion.

1 3. (currently amended) A rotatory drum for a wet-
2 type brake band according to Claim 1 or 2, wherein said
3 grooves are formed by cutting work while said
4 substantially convex arcuate cross sectional-portion is
5 formed by rolling process.

1 4. (currently amended) A rotatory drum for a wet-
2 type brake band according to Claim 1 or 2, wherein said
3 grooves and said substantially convex arcuate cross
4 sectional-portion are both formed by rolling process.

1 5. (currently amended) A brake drum for a wet-type
2 band brake according to Claim 1 or 2, wherein said
3 grooves are formed at a pitch of 0. 05mm to 0. 3mm in a
4 dimensional range of 0. 5µm to 50µm in depth and of 0.
5 05mm to 0. 3mm in width.

1 6. (original) A brake drum for a wet-type band
2 brake according to Claim 3, wherein said grooves are
3 formed at a pitch of 0. 05mm to 0. 3mm in a dimensional
4 range of 0. 5µm to 50µm in depth and of 0. 05mm to 0. 3mm
5 in width.

1 7. (original) In a method for manufacturing a
2 brake drum for a wet-type band brake having a large
3 number of grooves substantially along the circumferential
4 direction on a slide contact surface with the brake band,

5 a method for processing the surface of the brake drum
6 comprises the steps of:
7 forming the grooves by cutting work; and
8 forming a border portion between each adjacent
9 grooves in a substantially convex arcuate cross section
10 by plastic working using a forming roller.

1 8. (original) In a method for manufacturing a
2 brake drum for a wet-type band brake having a large
3 number of grooves substantially along the circumferential
4 direction on a slide contact surface with the brake band,
5 a method for processing the surface of the brake drum
6 comprises the steps of:
7 forming the grooves by cutting work; and
8 forming a border portion between a land existing
9 between each adjacent grooves and said grooves in a
10 substantially convex arcuate cross section by plastic
11 working using a forming roller.

1 9. (original) In a method for manufacturing a
2 brake drum for a wet-type band brake having a large
3 number of grooves substantially along the circumferential
4 direction on a slide contact surface with the brake band,

5 a method for processing the surface of the brake drum
6 comprises the steps of:

7 forming said grooves and, at the same time, forming
8 a border portion between each adjacent grooves in a
9 substantially convex arcuate cross section by plastic
10 working using a forming roller.

1 10. (original) In a method for manufacturing a
2 brake drum for a wet-type band brake having a large
3 number of grooves substantially along the circumferential
4 direction on a slide contact surface with the brake band,
5 a method for processing the surface of the brake drum
6 comprises the steps of:

7 forming said grooves and, at the same time, forming
8 a border portion between a land existing between each
9 adjacent grooves and said grooves in a substantially
10 convex arcuate cross section by plastic working using a
11 forming roller.

1 11. A method for processing the surface of a brake
2 drum for a wet-type band brake according to any one of
3 Claims 7 to 10 Claim 7, wherein said grooves are formed at

4 a pitch of 0. 05mm to 0. 3mm in a dimensional range of 0.
5 $5\mu\text{m}$ to $50\mu\text{m}$ in depth and of 0. 05mm to 0. 3mm in width.

Please add the following claims:

1 12. (New) A rotatory drum for a wet-type brake
2 band according to Claim 2, wherein said grooves are
3 formed by cutting work while said substantially convex
4 arcuate cross sectional-portion is formed by rolling
5 process.

1 13. (New) A brake drum for a wet-type band brake
2 according to Claim 12, wherein said grooves are formed at
3 a pitch of 0. 05mm to 0. 3mm in a dimensional range of 0.
4 $5\mu\text{m}$ to $50\mu\text{m}$ in depth and of 0. 05mm to 0. 3mm in width.

1 14. (New) A rotatory drum for a wet-type brake
2 band according to Claim 2, wherein said grooves and said
3 substantially convex arcuate cross sectional-portion are
4 both formed by rolling process.

1 15. (New) A brake drum for a wet-type band brake
2 according to Claim 2, wherein said grooves are formed at

3 a pitch of 0. 05mm to 0. 3mm in a dimensional range of 0.
4 5 μ m to 50 μ m in depth and of 0. 05mm to 0. 3mm in width.

1 16. (New) A method for processing the surface of a
2 brake drum for a wet-type band brake according to Claim 8,
3 wherein said grooves are formed at a pitch of 0. 05mm to 0.
4 3mm in a dimensional range of 0. 5 μ m to 50 μ m in depth and
5 of 0. 05mm to 0. 3mm in width.

1 17. (New) A method for processing the surface of a
2 brake drum for a wet-type band brake according to Claim 9,
3 wherein said grooves are formed at a pitch of 0. 05mm to 0.
4 3mm in a dimensional range of 0. 5 μ m to 50 μ m in depth and
5 of 0. 05mm to 0. 3mm in width.

1 18. (New) A method for processing the surface of a
2 brake drum for a wet-type band brake according to Claim 10,
3 wherein said grooves are formed at a pitch of 0. 05mm to 0.
4 3mm in a dimensional range of 0. 5 μ m to 50 μ m in depth and
5 of 0. 05mm to 0. 3mm in width.