1 Monomials

A compilation of integral lemmas, not rigorously proved.

Lemma 1. Let $w:[0,t_{\mathrm{f}}]\to\mathbb{R}^m$ be Riemann integrable.

$$\int_{0}^{t} w(\tau) d\tau = 0 \quad \forall t \in [0, t_{\mathrm{f}}] \quad \Rightarrow \quad w \equiv 0$$
 (1)

Proof. Define $\Delta t = t_f/N$ sufficient small and N_t such that $N_t\Delta t = t$. Then

$$\lim_{N \to \infty} \Delta t \sum_{k=0}^{N_t} w(k\Delta t) = 0 \quad \forall N_t$$
 (2)

which means

$$w(0) = 0 \tag{3}$$

$$w(0) + w(\Delta t) = w(\Delta t) = 0 \tag{4}$$

$$w(0) + w(\Delta t) + w(2\Delta t) = w(2\Delta t) = 0$$
(5)

: (6)

Corollary. Assume there is a function w such that

$$\int_{0}^{t} w(\tau) d\tau = \int_{0}^{t} \tau w(\tau) d\tau \quad \forall t$$
 (7)

which is equivalent to

$$\int_{0}^{t} w(\tau)(1-\tau) d\tau = 0 \quad \forall t \quad . \tag{8}$$

By the preceding lemma we know $w(\tau)(1-\tau)=0 \ \forall \tau$ and hence w(t)=0 a.e. and because w is Riemann integrable $w\equiv 0$. With $\tilde{w}(\tau)=\tau\,w(\tau)$ we get $\tau\,w(\tau)(1-\tau)=0\ \forall \tau$. Thus if for any N and for all t

$$\int_{0}^{t} \tau^{N} w(\tau) \, \mathrm{d}\tau = 0 \tag{9}$$

then $w \equiv 0$.

2 Hidden Input Observability

Consider the linear system $\mathcal S$

$$\dot{x} = Ax + Bu + Dw \tag{\mathcal{S}1}$$

$$y = Cx \tag{92}$$

$$x(0) = x_0 \tag{93}$$

where $x:[0,t_f]\to\mathbb{R}^n$, $u:[0,t_f]\to\mathbb{R}^{m'}$, $w:[0,t_f]\to\mathbb{R}^m$ and $y:[0,t_f]\to\mathbb{R}^r$. Furthermore $A\in\mathbb{R}^{n\times n}$, $B\in\mathbb{R}^{n\times m'}$, $D\in\mathbb{R}^{n\times m}$ and $C\in\mathbb{R}^{r\times n}$. It is well known that

$$y(t) = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)} (Bu(\tau) + Dw(\tau)) d\tau$$
 (10)

is a solution of \mathcal{S} .

Definition 1 (Hidden Input Observability). Let w_1 and w_2 be admissible functions and let y_1 and y_2 be the solutions of $\mathscr S$ with w_1 and w_2 , respectively. The system is called *hidden input observable*, if

$$w_1 \neq w_2 \quad \Rightarrow \quad y_1 \neq y_2 \quad . \tag{11}$$

Theorem 1 (Target Controllability). For the system $\mathcal S$ with B=0 define the matrix

$$M_k = [CD, CAD, CA^2D, ..., CA^{k-1}D]$$
 (12)

By the Cayley-Hamilton theorem we know that this system is target controllable, i.e. any $y_f \in \mathbb{R}^r$ can be reached within a finite time interval, if and only if

$$rank M_n = r . (13)$$

Remark. Since M_n is a $r \times nm$ matrix, the rank condition (13) needs $r \leq nm$. Obviously only $m \leq n$ makes sense and hence $r \leq n^2$.

We now search for a sufficient or necessary condition for hidden input observability. Let y_1 and y_2 be solutions of $\mathscr S$ with w_1 and w_2 , respectively. If we define $y = y_1 - y_2$ and $w = w_1 - w_2$, then

$$y(t) = C \int_{0}^{t} e^{A(t-\tau)} Dw(\tau) d\tau$$
 (14)

is a solution of $\mathscr S$ with B=0 and $x_0=0$. We call this simplified system $\mathscr S'$. Furthermore $w_1\neq w_2\Leftrightarrow w\not\equiv 0$ and for y analogous.

2.1 necessary condition

Assume the system is hidden input observable, i.e. $w \not\equiv 0 \Rightarrow y \not\equiv 0$.

Lemma 2. If \mathcal{S} is hidden input observable, then

$$w \not\equiv 0 \Leftrightarrow y \not\equiv 0 \tag{15}$$

or equivalently
$$w \equiv 0 \Leftrightarrow y \equiv 0$$
. (16)

Proof. 1. $w \not\equiv 0 \Rightarrow y \not\equiv 0$ and equivalently $y \equiv 0 \Rightarrow w \equiv 0$ by definition of hidden input observability and $w \equiv 0 \Rightarrow y \equiv 0$ is obvious.

2. Assume $y \neq 0$ and $w \equiv 0$. The explicit formula (14) results in $y \equiv 0$ which is in conflict with the assumption. Thus $y \neq 0 \Rightarrow w \neq 0$.

Expanding (14) in a power series we get

 $y(t) = \sum_{k=0}^{\infty} CA^k D \int_0^t \frac{(t-\tau)^k w(\tau)}{k!} d\tau \quad , \tag{17}$

and by the Cayley-Hamilton theorem we know that this is equivalent to

$$y(t) = M_n V(t) \tag{18}$$

with an arbitrary $V:[0,t_{\rm f}]\to\mathbb{R}^{nm}$.

Lemma 3. We have

$$rank M_n = nm. (19)$$

Proof. 1. Let $V(t) \in \text{kernel } M_n \ \forall t$. Then $y \equiv 0 \Rightarrow w \equiv 0 \Rightarrow V \equiv 0$.

2. Now $V \equiv 0$ then $V(t) \in \text{kernel } M_n$ because M_n is linear. Hence dim kernel M = 0. By the rank theorem

$$f: X \to Y \text{ linear then } \dim V = \dim \ker \operatorname{ln} f + \operatorname{rank} f$$
 (20)

we see

$$M_n: \mathbb{R}^{nm} \to \mathbb{R}^r \quad \text{and} \quad nm = \text{rank} \, M_n \quad .$$
 (21)

Remark. The preceding lemma only makes sense if $r \ge nm$ because rank $M_n \le \min(nm, r)$. The theorem 1 needs $r \le nm$, so that we can conclude:

A system \mathcal{S} can be hidden input observable only if $r \ge nm$.

A system \mathscr{S}' that is target controllable can belong to a system \mathscr{S} that is hidden input observable only if r=nm.

2.2 sufficient condition