Ecuaciones diferenciales de primer orden y Problemas de valor inicial

Ejercicio 1

Hallar la solución general de las siguientes ecuaciones diferenciales:

1. a)
$$\frac{dy}{dx} - 3y = 0$$
 b) $\frac{dy}{dx} = \frac{x^3 - 2y}{x}$

$$b) \frac{dy}{dx} = \frac{x^3 - 2y}{x}$$

2. a)
$$\frac{dy}{dx} - 3y = -2e^{-2x}$$
 b) $\frac{dy}{dx} = \frac{2x+y}{3y^2 - x + 3}$

b)
$$\frac{dy}{dx} = \frac{2x+y}{3y^2 - x + 3}$$

3. a)
$$\frac{dy}{dx} + 2y = \cos x$$
 b) $\frac{dy}{dx} = \frac{x}{x^2y + y^3}$

b)
$$\frac{dy}{dx} = \frac{x}{x^2y + y^3}$$

4. a)
$$\frac{dy}{dx} = \frac{x}{y}$$

$$b) \ x\frac{dy}{dx} + xy = 1 - y$$

5. a)
$$\frac{dy}{dx} = y - y^2$$
 b) $\frac{dy}{dx} = e^{2x} + 3y$

$$b) \frac{dy}{dx} = e^{2x} + 3y$$

6. a)
$$\frac{dy}{dx} + 2y = x$$

6. a)
$$\frac{dy}{dx} + 2y = x$$
 b) $\frac{dy}{dx} = -\frac{2xy+1}{x^2 + 2xy}$

7. a)
$$\frac{dy}{dx} + 4y = e^{-4x}$$
 b) $x\frac{dy}{dx} + 2y = \frac{\sin x}{x}$

b)
$$x\frac{dy}{dx} + 2y = \frac{\sin x}{x}$$

8. a)
$$\frac{dy}{dx} = \frac{x^2 + y^2}{x^2}$$

b)
$$\frac{dy}{dx} = e^{x+y}$$

Ejercicio 2

Resolver el problema de valor inicial

1.
$$\frac{dy}{dt} = 2y$$
, $y(0) = 4$

2.
$$\frac{dy}{dt} = \frac{t}{\sqrt{1+t^2}}, \quad y(0) = 2$$

3.
$$\frac{dy}{dt} - 2y^2 = 0$$
, $y(0) = 2$

4.
$$\frac{dy}{dt} - 3y = -2e^{-2t}, \quad y(0) = 5$$

5.
$$\frac{dy}{dt} = 2y^2 - 2y$$
, $y(0) = 2$

6.
$$\frac{dy}{dt} = (1 - 2t)y^2$$
, $y(0) = -\frac{1}{6}$

7.
$$\frac{dy}{dt} = y^3$$
, $y(0) = -2$

8.
$$\frac{dy}{dt} = y^2 \sin t$$
, $y(0) = \frac{1}{2}$