STK1100 Oblig 1

Egil Furnes Studentnummer: 693784

Oppgave 1

a)

Det er til sammen 11 etasjer å velge mellom for første person, deretter 10, 9, og 8 etasjer. Sannsynligheten for at de 4 personene går av i hver sin etasje blir følgende muligheter delt på antall mulige etasjer, i dette tilfellet 54%.

$$\frac{11}{11} \cdot \frac{10}{11} \cdot \frac{9}{11} \cdot \frac{8}{11} = \frac{11 * 10 * 9 * 8}{11^4} = \frac{7920}{14641} \approx 0.540 = 54\%$$

b)

Her bruker jeg bare komplimentet til sannsynligheten, hvor to eller flere personer går av i samme etasje bare er 1-54%=46%.

$$P^C = 1 - P = 1 - 0.54 = 0.46 = 46\%$$

c)

Benytter meg av en binomisk fordeling med grupper av 3 personer blant 4 mulige personer, og finner at det er totalt 4 slike grupper.

$$\binom{4}{3} = \frac{4!}{3!(4-3)!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 1} = 4$$

d)

Sannsynligheten for at parallellkoblingen (1,2) eller (4,5) fungerer er $1-0.05^2=0.9975$ og koblingen (3) er fortsatt 0.95. Dermed er sannsynligheten for at systemet som helhet fungerer følgende:

$$0.9975 \cdot 0.9975 \cdot 0.95 = 0.9452 \approx 94.5\%$$

Oppgave 2

a)

Til tross for at anti-jukse-programmet avslører men tekst med 90% sannsynlighet, finner vi at bare 40% av tilfellene hvor det flagges for juks faktisk er det, grunnet den eksepsjonelt lave andelen av juksere i den totale befolkningen.

$$\frac{0.05 \cdot 0.90}{0.05 \cdot 0.90 + 0.95 \cdot 0.07} = 0.4035 \approx 40.4\%$$

b)

Bruker i dette tilfellet resultatet fra forrige deloppgave og setter opp en ligning, hvor vi finner at sannsynligheten for at programmet feilaktig fastlår at teksten er AI-generert må være så liten som 0.5% og ikke 10% som tidligere.

$$\frac{0.05 \cdot 0.90}{0.05 \cdot 0.90 + 0.95 \cdot x} = 0.90$$

$$x = \frac{0.05 * 0.90 - 0.05 * 0.90^2}{0.90 * 0.95} = \frac{1}{190} = 0.00526 \approx 0.5\%$$

Sannsynligheten for at programmet feilaktig anslår at teksten er AI-generert må være under 0.5% for at sannsynligheten i **a)** skal være over 90%.

Oppgave 3

```
# laster inn pakker
  library(tidyverse)
  library(readr)
  # leser inn data lokalt fra datamaskinen
  data <- read_table("doedelighet.txt") %>%
    mutate(menn = menn/1000,
            kvinner = kvinner/1000)
  # definerer en funksjon for at beregne gjenverande levealder
10
  life <- function(qx){</pre>
11
    n = length(qx)
12
    lx = numeric(n); Lx <- numeric(n); Tx <- numeric(n); ex <- numeric</pre>
13
        (n)
    lx[1] = 1000000
14
    for (i in 1:(n-1)) {
15
      dx = lx[i]*qx[i]
16
      lx[i+1] = lx[i]-dx
17
      Lx[i] = lx[i] - 0.5*dx
18
    }
    Lx[n] < -1x[n]*0.5
20
    Tx <- rev(cumsum(rev(Lx)))</pre>
    ex <- Tx/Lx
    return(list(lx=lx, Lx=Lx, Tx=Tx, ex=ex))
24
  men <- life(data$menn) %>% as_tibble()
  women <- life(data$kvinner) %>% as_tibble()
  aldre = c(0, 25, 50, 85)
```

a)

```
# a)
e_men = men$ex[aldre+1]
names(e_men) = paste("Age", aldre)
print("men:"); print(round(e_men,2))
```

```
[1] "men:"
Age 0 Age 25 Age 50 Age 85
81.32 56.79 32.79 6.22
```

Forventet gjenværende levealder for menn ved fødsel er med dette 81.32 år og følgende 56.79, 32.79 og 6.22 år for henholdsvis aldrene 25, 50 og 85.

b)

```
[1] "women:"
Age 0 Age 25 Age 50 Age 85
84.69 59.97 35.59 7.28
```

Forventet gjenværende levealder for kvinner ved fødsel er med dette 84.69 år og følgende 59.97, 35.59 og 7.28 år for henholdsvis aldrene 25, 50 og 85 – altså noe lengre enn for menn!

```
# A tibble: 4 \times 4
          Men Women Difference
  <dbl> <dbl> <dbl>
                          <dbl>
1
     0 81.3 84.7
                           3.37
     25 56.8 60.0
                           3.19
2
3
     50 32.8 35.6
                           2.8
     85 6.22 7.28
4
                           1.05
```

Her er utskrift av forskjellene, hvor forventet levealder for kvinner er noe høyere enn for menn.

c)

Fra plottet ser vi at kvinner og menn har en relativt forskjellig forventet levealder fra fødselen (hvor x-aksen alder er 0), deretter ser vi at disse sannsynlighetene konvergerer mot maksalderen som ligger på litt over 100 år.

Forventet gjenverande levealder Menn og kvinner

Oppgave 4

a)

Med q markører for 4 bokstaver har man 4^q typer profiler.

Sannsynligheten for at en vilkårlig person har en spesifikk DNA profil $\mathcal{S}.$

For
$$q=5$$

$$\frac{1}{4^5}=\frac{1}{1024}\approx 0.097\%$$
 For $q=10$
$$\frac{1}{4^{10}}=\frac{1}{1048576}\approx 0.000095\%$$
 For $q=20$
$$\frac{1}{4^{20}}=\frac{1}{1.09\cdot 10^{12}}\approx 9.09\cdot 10^{-11}\%$$

Med en populasjon på N=5500000 individer, blir forventet antall personer som har ${\cal S}$ for de ulike verdiene av q.

For
$$q=5$$

$$5500000\cdot\frac{1}{4^5}=5371.09$$
 For $q=10$
$$5500000\cdot\frac{1}{4^{10}}=5.24$$
 For $q=20$
$$5500000\cdot\frac{1}{4^{20}}=5.00*10^{-6}$$

b)

A = Mistenkt er bidragsyter

B = Mistenkt har DNA-profil S.

P(B|A)=1 betyr med ord at mistenkt er bidragsyter gitt at mistenkt har DNA-profil $\mathcal S$. Vi har sett at selv med q=5 utvalgte posisjoner er sannsynligheten for at en enkeltperson sin DNA-profil er $\mathcal S$ lik bare 0.097%. I forskning bruker man typisk p=5% som statistisk signifikant, og selv med en relativt god margin i en kriminalsak vil 0.097% være statistisk signifikant.

For P(B|A') vet vi fra tidligere at sannsynligheten for at vilkårlig person har en spesifikk DNA profil S er lik

$$P(B|A') = \frac{1}{4^q}$$

c)

Skal finne P(A|B) gitt N = 5500000 og q = 5, 10 og 20.

Kjenner til Bayes' formel

$$P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

Vet også følgende

$$P(A) = \frac{1}{N} = \frac{1}{5500000}, \quad P(B|A) = 1$$

$$P(A') = 1 - P(A) = \frac{N-1}{N}$$

$$P(B) = \frac{1}{N} + \frac{1}{4^q} \cdot \frac{N-1}{N} = \frac{1}{N} + \frac{N-1}{N \cdot 4^q}$$

Kan da sette inn i Bayes' formel

$$P(A|B) = \frac{\frac{1}{N}}{\frac{1}{N} + \frac{N-1}{N \cdot 4^{1}}} | \cdot N \cdot 4^{q} = \frac{4^{q}}{4^{q} + (N-1)}$$

For
$$q=5$$

$$P(A|B) = \frac{4^5}{4^5 + (5500000 - 1)} \approx 1.86 \cdot 10^{-4}$$

For q = 10

$$P(A|B) = \frac{4^{10}}{4^{10} + (5500000 - 1)} \approx 0.1601$$

For
$$q = 20$$

$$P(A|B) = \frac{4^{20}}{4^{20} + (5500000 - 1)} \approx 0.9999$$

For q markører ser vi at sannsynligheten for at den mistenkte personen er en bidragsyter øker betraktelig. Fra nesten helt usannsynlig for q=5 til nesten helt garantert for q=20.

d)

Definerer C= bidragsyter er et av individene i databasen. Videre er X antall personer med spor $\mathcal S$ innen databasen.

Hvis C ikke har inntruffet vet vi at ingen personer i databasen har spor S, og at den personen er en av de andre personene i N men ikke i n.

- e)
- f)
- g)