Contrats d'assurance et rente sur deux têtes Définitions de vie conjointe et dernier survivant

Hiver 2023

Objectifs d'apprentissage

Objectif général

■ Connaître la définition des statuts de vie conjointe et de dernier survivant

-()

Objectifs d'apprentissage

Objectif général

■ Connaître la définition des statuts de vie conjointe et de dernier survivant

Vous serez en mesure de

- Définir les statuts vie conjointe et dernier survivant.
- Donner un exemple de produit d'assurance sur deux têtes.
- Exprimer les probabilités et produits associés aux statuts vie conjointe et dernier survivant en notation actuarielle.

Objectifs d'apprentissage

Objectif général

■ Connaître la définition des statuts de vie conjointe et de dernier survivant

Vous serez en mesure de

- Définir les statuts vie conjointe et dernier survivant.
- Donner un exemple de produit d'assurance sur deux têtes.
- Exprimer les probabilités et produits associés aux statuts vie conjointe et dernier survivant en notation actuarielle.

Ressources

Ressources officielles

AMLCR: Chapitre 8 (8.1, 8.2, 8.3)

Ressources

Ressources officielles

■ **AMLCR** : Chapitre 8 (8.1, 8.2, 8.3)

Ressources additionnelles

Nomenclatures des symboles actuariels https://en.wikipedia.org/wiki/Actuarial_notation

Ressources

Ressources officielles

■ **AMLCR** : Chapitre 8 (8.1, 8.2, 8.3)

Ressources additionnelles

Nomenclatures des symboles actuariels https://en.wikipedia.org/wiki/Actuarial_notation

Contrat sur deux vies : (x) et (y)

Contrat sur deux vies : (x) et (y)

 \blacksquare (x) **et** (y) sont vivants

Contrat sur deux vies : (x) et (y)

- \blacksquare (x) **et** (y) sont vivants
 - ► Vie conjointe (*Joint life*)

Contrat sur deux vies : (x) et (y)

- \blacksquare (x) **et** (y) sont vivants
 - ► Vie conjointe (*Joint life*)
 - $lacktriangledown T_{xy}$ temps d'attente jusqu'au décès d'un assuré

Contrat sur deux vies : (x) et (y)

- \blacksquare (x) **et** (y) sont vivants
 - ► Vie conjointe (*Joint life*)
 - $ightharpoonup T_{xy}$ temps d'attente jusqu'au décès d'un assuré
- \blacksquare (x) **ou** (y) sont vivant

Contrat sur deux vies : (x) et (y)

- \blacksquare (x) **et** (y) sont vivants
 - ► Vie conjointe (*Joint life*)
 - $lacktriangledown T_{xy}$ temps d'attente jusqu'au décès d'un assuré
- \blacksquare (x) **ou** (y) sont vivant
 - ► Dernier survivant (*Last survivor*)

Contrat sur deux vies : (x) et (y)

- \blacksquare (x) **et** (y) sont vivants
 - ▶ Vie conjointe (*Joint life*)
 - $ightharpoonup T_{xy}$ temps d'attente jusqu'au décès d'un assuré
- \blacksquare (x) **ou** (y) sont vivant
 - ► Dernier survivant (*Last survivor*)
 - $ightharpoonup T_{\overline{xy}}$ temps d'attente jusqu'au deuxième décès

Visuellement

Émission du contrat

ACT-2007

Visuellement

Visuellement

t

Visuellement

ŀ

)

Visuellement

Visuellement

t

Visuellement

ACT-2007

t

Visuellement

ACT-2007

Relations importantes

 $T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y)$

Relations importantes

 $T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$

U

Relations importantes

- $T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$
- $v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$

Relations importantes

$$T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$$

$$v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$$

Probabilité du status vie conjointe

- $lacksquare tp_{xy} = \Pr[(x) \text{ et } (y) \text{ sont les deux vivant and } t \text{ années}] = \Pr[T_{xy} > t]$
- \bullet $tq_{xy} = \Pr[(x) \text{ et } (y) \text{ ne sont pas les deux vivant dans } t \text{ années}] = \Pr[T_{xy} \leq t]$

ACT-2007

Probabilité du status vie conjointe

- $\mathbf{p}_{t} = \mathbf{pr}[(x) \text{ et } (y) \text{ sont les deux vivant and } t \text{ années}] = \mathbf{pr}[T_{xy} > t]$
- $lacksquare tq_{xy} = \Pr[(x) \text{ et } (y) \text{ ne sont pas les deux vivant dans } t \text{ années}] = \Pr[T_{xy} \leq t]$
- $\mathbf{u}_{u|t}q_{xy} = \Pr[(x) \text{ et } (y) \text{ sont les deux vivant dans } u \text{ années, mais pas dans } u+t \text{ années}] = \Pr[u \leq T_{xy} \leq u+t]$

ACT-2007

Probabilité du status vie conjointe

- $\mathbf{p}_{t} = \mathbf{p}_{t}[(x) \text{ et } (y) \text{ sont les deux vivant and } t \text{ années}] = \Pr[T_{xy} > t]$
- $lacksquare tq_{xy} = \Pr[(x) \text{ et } (y) \text{ ne sont pas les deux vivant dans } t \text{ années}] = \Pr[T_{xy} \leq t]$
- $\mathbf{u}_{u|t}q_{xy} = \Pr[(x) \text{ et } (y) \text{ sont les deux vivant dans } u \text{ années, mais pas dans } u+t \text{ années}] = \Pr[u \leq T_{xy} \leq u+t]$
- $lacksquare _t p^1_{xy} = \Pr[(x) \text{ meurt en premier, avant } t \text{ ann\'ees}] = \Pr[T_x < t \text{ et } T_x < T_y]$
- $\mathbf{L}_{t}p_{xy}^{2} = \Pr[(x) \text{ meurt en deuxième, avant } t \text{ années}] = \Pr[T_{y} < T_{x} \leq t]$

A

Probabilité du status dernier survivat

- $lacksquare tp_{\overline{xy}} = \Pr[ext{au moins un de }(x) ext{ ou } (y) ext{ est vivant dans } t ext{ années}] = \Pr[T_{\overline{xy}} > t]$
- $\qquad {}_tq_{\overline{xy}} = \Pr[(x) \text{ et } (y) \text{ sont décédés dans } t \text{ années}] = \Pr[T_{\overline{xy}} \leq t]$

ACT-2007

Probabilité du status dernier survivat

- $ullet tp_{\overline{xy}} = \Pr[ext{au moins un de }(x) ext{ ou } (y) ext{ est vivant dans } t ext{ années}] = \Pr[T_{\overline{xy}} > t]$
- $\mathbf{I}_t q_{\overline{xy}} = \Pr[(x) \text{ et } (y) \text{ sont décédés dans } t \text{ années}] = \Pr[T_{\overline{xy}} \leq t]$
- $\mathbf{u}_{|u|t}q_{\overline{xy}} = \Pr[\text{au moins un de }(x) \text{ et } (y) \text{ sont vivant dans } u \text{ années, mais les deux sont décédés dans } u+t \text{ années}] = \Pr[u \leq T_{\overline{xy}} \leq u+t]$

Désambiguation de la notation

 \blacksquare (x) et (y) sont habituellement notés en nombre dans les symbols de probabilité, certaines ambiguité peuvent survenir

Désambiguation de la notation

- \blacksquare (x) et (y) sont habituellement notés en nombre dans les symbols de probabilité, certaines ambiguité peuvent survenir
- On sépare les ages par :
- e.g. x a 40 ans, et y a 42 ans. $\Pr[(x) \text{ et } (y) \text{ sont les deux vivant and } t \text{ années}] = {}_tp_{40:42}$

Désambiguation de la notation

- \blacksquare (x) et (y) sont habituellement notés en nombre dans les symbols de probabilité, certaines ambiguité peuvent survenir
- On sépare les ages par :
- e.g. x a 40 ans, et y a 42 ans. $\Pr[(x)$ et (y) sont les deux vivant and t années] = $_tp_{40:42}$
- On ajoute un exposant pour signifier que des deux risques proviennent de modèles de survie distincts (e.g. homme et femme)

ACT-2007

■ e.g. x est un homme 40 ans, et y une femme de 40 ans. $\Pr[(x) \text{ et } (y) \text{ sont les deux vivant and } t \text{ années}] = {}_t p_{40:40}^{h f}$

Relations importantes

- $T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$
- $v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$
- $\quad \blacksquare \ \bar{a}_{\overline{T_{xy}}} + \bar{a}_{\overline{T_{\overline{xy}}}} = \bar{a}_{\overline{T_x}} + \bar{a}_{\overline{T_y}}$

ACT-2007

Relations importantes

$$T_{xy} + T_{\overline{xy}} = \min(T_x, T_y) + \max(T_x, T_y) = T_x + T_y$$

$$v^{T_{xy}} + v^{T_{\overline{xy}}} = v^{T_x} + v^{T_y}$$

ACT-2007

Qu'est-ce qu'on peut protéger

■ L'utilisation des statuts vie conjointe et dernier survivant permet d'éliminer l'incertitude reliée à l'ordre des décès.

Qu'est-ce qu'on peut protéger

- L'utilisation des statuts vie conjointe et dernier survivant permet d'éliminer l'incertitude reliée à l'ordre des décès.
- lacksquare 2 moments d'occurrences de décès $(t=T_{xy},t=T_{\overline{xy}})$

Qu'est-ce qu'on peut protéger

- L'utilisation des statuts vie conjointe et dernier survivant permet d'éliminer l'incertitude reliée à l'ordre des décès.
- lacksquare 2 moments d'occurrences de décès $(t=T_{xy},t=T_{\overline{xy}})$
- lacksquare 2 périodes de survie des statuts xy et \overline{xy} ($t \leq T_{xy}, t \leq T_{\overline{xy}}$)

Produits communs - Assurance Vie

()

Produits communs - Assurance Vie

Assurance premier décès : A_{xy}

lacksquare Assurance dernier décès : $A_{\overline{xy}}$

()

Produits communs - Assurance Vie

- Assurance premier décès : A_{xy}
- Assurance dernier décès : $A_{\overline{xy}}$
- lacksquare Assurance contingente (e.g. payable si $T_x \leq T_y$) : A^1_{xy}

Produits communs - Assurance Vie

- Assurance premier décès : A_{xy}
- Assurance dernier décès : $A_{\overline{xy}}$
- Assurance contingente (e.g. payable si $T_x \leq T_y$) : A_{xy}^1

Produits communs - Rente

Produits communs - Assurance Vie

- Assurance premier décès : A_{xy}
- Assurance dernier décès : $A_{\overline{xy}}$
- Assurance contingente (e.g. payable si $T_x \leq T_y$) : A_{xy}^1

Produits communs - Rente

- lacksquare Payable pendant la survie de $xy: \bar{a}_{xy}$
- lacksquare Payable pendant la survie de \overline{xy} : $\bar{a}_{\overline{xy}}$
- \blacksquare Rente de réversion, payable à partir du décès de (x) jusqu'au décès de (y) : $\bar{a}_{x|y}$

Qui à besoin de ses produits?

Qui à besoin de ses produits?

- Assurance premier décès : Partenaires d'affaires pour racheter des parts
- Assurance dernier décès : Lègue à la famille
- lacktriangle Payable pendant la survie de xy: Supporter un train de vie plus luxueux à deux
- lacktriangle Payable pendant la survie de \overline{xy} : Assurer les besoins de base d'un couple

Combiner plusieurs produits simples ensemble

Combiner plusieurs produits simples ensemble

■ Une rente qui décroit au moment du premier décès $a_{xy} + a_{\overline{xy}}$

Combiner plusieurs produits simples ensemble

- Une rente qui décroit au moment du premier décès $a_{xy} + a_{\overline{xy}}$
- \blacksquare Une assurance vie payable au premier décès et une rente de réversion par la suite $A_{xy}+a_{x\mid y}$

Combiner plusieurs produits simples ensemble

- Une rente qui décroit au moment du premier décès $a_{xy} + a_{\overline{xy}}$
- \blacksquare Une assurance vie payable au premier décès et une rente de réversion par la suite $A_{xy}+a_{x\mid y}$
- Une rente jusqu'au second décès et une assurance vie sur payer les frais funéraires de chacun des décès $a_{\overline{xy}} + A_{xy} + A_{\overline{xy}}$

()