Quantum Information Spring 2023 Problem Set 1

1. Basic Quantum Mechanics

(a) State space

A pure quantum state is completely described by a vector $|\psi\rangle$ in a Hilbert space \mathcal{H} . Usually quantum states are normalized $\langle\psi|\psi\rangle=1$. Normalize the one-qubit state

$$|\phi\rangle = 2|0\rangle - i|1\rangle , \qquad (1)$$

that is, find a constant A such that $|\psi\rangle = |\phi\rangle/A$ is normalized. Solution.

By direct computation $\langle \phi | \phi \rangle = 5$. Therefore, if $A = \sqrt{5}$, then $\langle \Psi | \Psi \rangle = 1$.

(b) Evolution of states

The time evolution of closed quantum states is described by unitary transformations: if a system is initially in state $|\psi_1\rangle$, then at some later time the state is $|\psi_2\rangle = U |\psi_1\rangle$ where U is an unitary operator. Verify explicitly that

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \tag{2}$$

is unitary. Let $|\psi_1\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$. Compute $|\psi_2\rangle = U |\psi_1\rangle$. Solution.

By direct computation

$$U^{\dagger}U = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \qquad (3)$$

so U is unitary. Then $U | \psi_1 \rangle$

$$U|\psi_1\rangle = \frac{1}{2} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix} = |0\rangle . \tag{4}$$

(c) Measurement

Measurements are described by sets of measurement operators $\{M_m\}$, where the index m corresponds to any of the possible outcomes of the measurement. Measurement of a single qubit in the computational basis is described by the operators

Outcome 0:
$$M_0 = |0\rangle\langle 0|$$
 (5)

Outcome 1:
$$M_1 = |1\rangle\langle 1|$$
. (6)

Suppose a qubit is in the normalized state $|\psi\rangle$ from part (a). What are the probabilities of outcomes 0 and 1 when $|\psi\rangle$ is measured in the computational

basis?

Solution.

In part (a) we found that $|\psi\rangle = \frac{2}{\sqrt{5}} |0\rangle - \frac{i}{\sqrt{5}} |1\rangle$. Measurement probabilities are then

$$p(0) = \langle \phi | M_0 | \phi \rangle = \langle \phi | 0 \rangle \langle 0 | \phi \rangle = \frac{4}{5}$$
 (7)

$$p(1) = \langle \phi | M_1 | \phi \rangle = \langle \phi | 1 \rangle \langle 1 | \phi \rangle = \frac{1}{5} . \tag{8}$$

(d) Composite systems

The state space of a composite physical system is the tensor product of the component state spaces. For example, $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$. If the subsystems are prepared to states $|\psi_1\rangle$ and $|\psi_2\rangle$, then their composite system is in state $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \in \mathcal{H}$. Let

$$|\psi_1\rangle = a|0\rangle + b|1\rangle \in \mathcal{H}_1 \tag{9}$$

$$|\psi_2\rangle = c|0\rangle + d|1\rangle \in \mathcal{H}_2$$
 (10)

Compute explicitly $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$. Show that the *Bell state*

$$\left|\Psi^{+}\right\rangle = \frac{1}{\sqrt{2}}(\left|0\right\rangle \otimes \left|0\right\rangle + \left|1\right\rangle \otimes \left|1\right\rangle) \tag{11}$$

cannot be written as a tensor product of any two states $|\psi_1\rangle$ and $|\psi_2\rangle$. Solution.

The two qubit states in component form are

$$|\psi\rangle = \begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix} \quad |\Psi^{+}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \tag{12}$$

If we assume that the Bell state can be factorized, that is $|\psi\rangle = |\Psi^{+}\rangle$ for some a, b, c, d then we would have

$$\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right) = (ac)(bd) = (ad)(bc) = 0, \qquad (13)$$

using the commutative property of scalar multiplication. This is a contradiction, therefore the Bell state cannot be written as a product of any two one-qubit states $|\psi_1\rangle$ and $|\psi_2\rangle$.

2. Operator Functions 1

Find the square root and logarithm (base 2) of the matrix

$$A = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} . \tag{14}$$

Solution.

First we find the spectral decomposition of A. Start by solving for the eigenvalues λ from the characteristic equation

$$\det(A - \lambda \mathbb{I}) = (4 - \lambda)^2 - 9 = 0.$$
 (15)

Therefore the eigenvalues are $\lambda_a = 7$ and $\lambda_b = 1$. Then solve the first eigenvector (corresponding to $\lambda_a = 7$)

$$\begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 7 \begin{pmatrix} x \\ y \end{pmatrix} \tag{16}$$

$$\rightarrow \begin{cases} 4x + 3y = 7x \\ 4x + 4y = 7y \end{cases} , \tag{17}$$

which is solved by x = y. The eigenvector is then (x, x) which after normalization becomes $|a\rangle = \frac{1}{\sqrt{2}}(1, 1)$. The same procedure for $\lambda_b = 1$ results in the eigenvector $|b\rangle = \frac{1}{\sqrt{2}}(1, -1)$. Therefore, the spectral decomposition of A is

$$A = \lambda_a |a\rangle\langle a| + \lambda_b |b\rangle\langle b| \tag{18}$$

$$= 7 \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} + \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix} . \tag{19}$$

Now we can compute \sqrt{A} and $\log_2 A$. First,

$$\sqrt{A} = \sqrt{7} \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} + \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{7} + 1 & \sqrt{7} - 1 \\ \sqrt{7} - 1 & \sqrt{7} + 1 \end{pmatrix} . \tag{20}$$

Then,

$$\log_2 A = \log_2 7 \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} + \log_2 1 \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix} = \frac{\log_2 7}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} . \tag{21}$$

3. Operator Functions 2

Show that

$$\exp(-i\theta X/2) = \cos\left(\frac{\theta}{2}\right)\mathbb{I} - i\sin\left(\frac{\theta}{2}\right)X , \qquad (22)$$

where X is the Pauli X-matrix.

Solution.

This can be computed in the same way as the previous problem: first find the spectral decomposition of X which would be $X = |+\rangle\langle +|-|-\rangle\langle -|$ and then computing

 $\exp(-i\theta X/2) = \exp(-i\theta/2) |+\rangle\langle +| + \exp(i\theta/2) |-\rangle\langle -|$. One can show that this indeed is equal to the RHS of (22). An another, maybe easier way is to use the fact that $X^2 = \mathbb{I}$ and use this in the expansion of the exponent function

$$\exp(-i\theta X/2) = \sum_{n=0}^{\infty} \frac{(-i\theta/2)^n}{n!} X^n$$
(23)

$$= \sum_{n=0}^{\infty} \frac{(-i\theta/2)^{2n}}{(2n)!} X^{2n} + \sum_{n=0}^{\infty} \frac{(-i\theta/2)^{2n+1}}{(2n+1)!} X^{2n+1}$$
 (24)

$$= \mathbb{I} \sum_{n=0}^{\infty} \frac{(-1)^n (\theta/2)^{2n}}{(2n)!} - iX \sum_{n=0}^{\infty} \frac{(-1)^n (\theta/2)^{2n+1}}{(2n+1)!}$$
 (25)

$$= \cos\left(\frac{\theta}{2}\right) - i\sin\left(\frac{\theta}{2}\right)X \ . \tag{26}$$

We separated even-n and odd-n terms in the first step. In the second step we used the fact that $X^{2n} = \mathbb{I}$ and $(-i)^{2n} = (-1)^n$ for every n. In the last step we recognize the two series as cos and sin.

4. Single Qubit Quantum Circuits

Calculate the state produced by the given circuit and compute the expectation value of the given observable. Matrices of the gates are

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} , \quad Z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} , \quad Y = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} , \tag{27}$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} , \quad R_y \left(\frac{\pi}{2} \right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} . \tag{28}$$

(a) Compute the expectation value of the Z-observable

$$q_0: |0\rangle - H - Z - H - S$$

(b) Compute the expectation value of the X-observable

$$q_0:|0\rangle$$
 $R_y(\frac{\pi}{2})$ Z Y H

Solution.

(a)

We are asked to compute the expectation value of Z in the state $|\psi\rangle = SHZH|0\rangle$.

First we compute this state

$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \tag{29}$$

$$ZH|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix} \tag{30}$$

$$HZH|0\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \tag{31}$$

$$SHZH |0\rangle = \begin{pmatrix} 0 \\ i \end{pmatrix} \tag{32}$$

Then, the expectation value of Z in this state is

$$\langle \psi | Z | \psi \rangle = \begin{pmatrix} 0 & -i \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ i \end{pmatrix} = -1 .$$
 (33)

(b) This time the state before measurement is $|\psi\rangle = HYZR_y\left(\frac{\pi}{2}\right)|0\rangle$

$$R_y\left(\frac{\pi}{2}\right)|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \tag{34}$$

$$ZR_y\left(\frac{\pi}{2}\right)|0\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$$
 (35)

$$YZR_y\left(\frac{\pi}{2}\right)|0\rangle = \frac{i}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}\tag{36}$$

$$HYZR_y\left(\frac{\pi}{2}\right)|0\rangle = \binom{i}{0} \tag{37}$$

Finally, we compute the expectation value of the X-operator

$$\langle \psi | X | \psi \rangle = \begin{pmatrix} -i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ 0 \end{pmatrix} = 0 .$$
 (38)

5. Controlled NOT gate

The controlled-not operator has a central role in quantum computation. Consider a CNOT gate controlled on the first qubit with the second qubit as the target. One way to express this operation is

$$CNOT = |0\rangle\langle 0| \otimes \mathbb{I} + |1\rangle\langle 1| \otimes X . \tag{39}$$

That is, CNOT flips the target qubit only if the control qubit is set to $|1\rangle$. Compute explicitly the matrix representation of CNOT. Then verify that

$$CNOT |00\rangle = |00\rangle \tag{40}$$

$$CNOT |01\rangle = |01\rangle \tag{41}$$

$$CNOT |10\rangle = |11\rangle$$
 (42)

$$CNOT |11\rangle = |10\rangle$$
 , (43)

where

$$|00\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$
 etc. (44)

Solution.

The matrix representation of CNOT is

$$CNOT = |0\rangle\langle 0| \otimes \mathbb{I} + |1\rangle\langle 1| \otimes X \tag{45}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{46}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} . \tag{47}$$

We can verify the action of CNOT on computational basis states by explicit multiplications

$$CNOT |00\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = |00\rangle \tag{48}$$

$$CNOT |01\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = |01\rangle \tag{49}$$

$$CNOT |10\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = |11\rangle$$
 (50)

$$CNOT |11\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = |10\rangle . \tag{51}$$