BÀI 5. GÓC GIỮA ĐƯỜNG THẮNG VÀ MẶT PHẮNG. GÓC NHỊ DIỆN

- CHƯƠNG 8. QUAN HỆ VUÔNG GÓC
- Nguyễn Bảo Vương

PHẦN C. BÀI TẬP TRẮC NGHIỆM (PHÂN MỨC ĐỘ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

Câu 1. Cho hình chóp S.ABC có $SA \perp (ABC)$; tam giác ABC đều cạnh a và SA = a (tham khảo hình vẽ bên). Tìm góc giữa đường thẳng SC và mặt phẳng (ABC).

- **A.** 60°.
- **B.** 45°.
- C. 135°.
- **D.** 90°.

Câu 2. Cho hình chóp S.ABC có cạnh SA vuông góc với đáy. Góc giữa đường thẳng SB và mặt phẳng đáy là góc giữa hai đường thẳng nào dưới đây?

- **A.** SB và AB.
- **B.** *SB* và *SC*.
- \mathbf{C} . SA và SB.
- **D.** SB và BC.

Câu 3. Cho hình chóp S.ABCD có đáy ABCD cạnh a, SA vuông góc với đáy và $SA = a\sqrt{3}$. Góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng:

- A. $\arcsin \frac{3}{5}$.
- **B.** 45° .
- **C.** 60° .
- **D.** 30° .

Câu 4. Cho hình chóp S.ABCD đáy là hình vuông cạnh $a, SA \perp (ABCD), SA = a\sqrt{2}$. Tính góc giữa SC và mặt phẳng (ABCD).

- **A.** 30° .
- **B.** 45° .
- \mathbf{C} , 60° .
- **D.** 90° .

Câu 5. Cho hình lăng trụ đều ABC.A'B'C' có $AB = \sqrt{3}$ và AA' = 1. Góc tạo bởi giữa đường thẳng AC' và (ABC) bằng

- **A.** 45°.
- **B.** 60°.
- **C.** 30° .
- **D.** 75°.

Câu 6. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), SA = 2a, tam giác ABC vuông tai B, AB = a và $BC = \sqrt{3}a$ (minh hoa như hình vẽ bên).

Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng

A. 90°.

B. 30°.

 $\mathbf{C.}\ 60^{\circ}$

D. 45°

Câu 7. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC). $SA = \sqrt{2}a$. Tam giác ABC vuông cân tại B và AB = a (minh họa như hình vẽ bên).

Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng

A. 45° .

B. 60° .

 $\mathbf{C.}\ 30^{\circ}$.

D. 90° .

Câu 8. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), SA = 2a, tam giác ABC vuông cân tại B và $AB = a\sqrt{2}$ (minh họa như hình vẽ bên).

Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng

A. 60° .

B. 45°.

C. 30° .

D. 90°.

Câu 9. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SB = 2a. Góc giữa đường thẳng SB và mặt phẳng đáy bằng

A. 60°.

B. 90°.

C. 30°.

D. 45°.

Câu 10. Cho hình chóp S.ABC có đáy là tam giác vuông tại C, AC = a, $BC = \sqrt{2}a$, SA vuông góc với mặt phẳng đáy và SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy bằng

A. 60°.

B. 90°

C. 30°

D. 45°.

Câu 11. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy, AB = a và SB = 2a. Góc giữa đường thẳng SB và mặt phẳng đáy bằng.

A. 60° .

B. 45⁰.

 $\mathbf{C.}\ 30^{\circ}$.

D. 90° .

Câu 12. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và $SA = \sqrt{2}a$. Góc giữa đường thẳng SC và mặt phẳng đáy bằng

A. 45°.

B. 60°.

C. 30°.

D. 90°.

Câu 13. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, AD = 2a, SA vuông góc với mặt phẳng $\begin{pmatrix} ABCD \end{pmatrix}$, SA = 3a. Gọi φ là góc giữa SC và $\begin{pmatrix} ABCD \end{pmatrix}$ (tham khảo hình vẽ bên). Khi đó tan φ bằng

A.
$$\frac{\sqrt{5}}{5}$$
.

B.
$$\frac{3}{5}$$
.

C.
$$\frac{\sqrt{5}}{3}$$
.

D.
$$\frac{3\sqrt{5}}{5}$$
.

Câu 14. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α .

B.
$$\sqrt{3}$$
.

D.
$$\frac{1}{\sqrt{3}}$$
.

Câu 15. Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Góc giữa đường thẳng AB' và mặt phẳng (A'B'C') bằng

Câu 16. Cho hình chóp S. ABCD có đáy là hình vuông cạnh 2a, cạnh bên SA vuông góc mặt đáy và SA = a. Goi φ là góc tao bởi SB và mặt phẳng (ABCD). Xác định $\cot \varphi$?

A.
$$\cot \varphi = 2$$
.

B.
$$\cot \varphi = \frac{1}{2}$$

$$\mathbf{C.} \cot \varphi = 2\sqrt{2}$$

B.
$$\cot \varphi = \frac{1}{2}$$
. **C.** $\cot \varphi = 2\sqrt{2}$. **D.** $\cot \varphi = \frac{\sqrt{2}}{4}$.

Câu 17. Cho hình chóp S.ABC có SB vuông góc (ABC). Góc giữa SC với (ABC) là góc giữa

A.
$$SC$$
 và AC .

B.
$$SC$$
 và AB .

D.
$$SC$$
 và SB .

Câu 18. Cho hình thoi ABCD tâm O có BD = 4a, AC = 2a. Lấy điểm S không thuộc (ABCD) sao cho $SO \perp (ABCD)$. Biết tan $\widehat{SBO} = \frac{1}{2}$. Tính số đo góc giữa SC và (ABCD).

A.
$$60^{\circ}$$
.

B.
$$75^{\circ}$$
.

$$\mathbf{C.}\ 30^{\circ}$$
.

$$\mathbf{D.} \ 45^{\circ}$$
.

Câu 19. Cho hình chóp S.MNP có đáy là tam giác đều, MN = a, SM vuông góc với mặt phẳng đáy, SP = 2a, với $0 < a \in \mathbb{R}$. Tính góc giữa đường thẳng SN và mặt phẳng đáy.

A.
$$45^{\circ}$$
.

$$C. 60^{\circ}$$
.

D.
$$30^{\circ}$$
.

Câu 20. Cho hình chóp S.ABC có $SA \perp (ABC)$, SA = a, tam giác ABC đều cạnh a. Góc giữa SC và mặt phẳng (ABC) là:

B.
$$60^{\circ}$$
.

$$C. 30^{\circ}$$
.

D.
$$45^{\circ}$$
.

Câu 21. Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a, $SA \perp (ABC)$, $SA = a\sqrt{3}$. Tính góc giữa đường thẳng SB và mặt phẳng (ABC).

B.
$$45^{\circ}$$
.

C.
$$60^{\circ}$$
.

D.
$$30^{\circ}$$
.

Câu 22. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy và SA = 2a Góc giữa đường thẳng SC và mặt phẳng ABCD là α . Khi đó tan α bằng

A.
$$\sqrt{2}$$
 .

B.
$$\frac{2}{\sqrt{3}}$$

D.
$$2\sqrt{2}$$
.

Câu 23. Cho hình chóp SABC có đáy ABC là tam giác đều cạnh 2a, H là hình chiếu của S lên AB, tam giác SAB vuông cân tại S, SH vuông góc với (ABC). Góc giữa cạnh SC và mặt đáy bằng:

A. 60° .

 $B. 30^{\circ}$.

 $C. 90^{\circ}$.

Câu 24. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), SA = 2a, tam giác ABC vuông tại B, $AB = a\sqrt{3}$ và BC = a (minh họa hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng

A. 90°.

B. 45°.

C. 30° .

D. 60°.

Câu 25. Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh 2a, $\widehat{ADC} = 60^{\circ}$. Gọi O là giao điểm của AC và BD, $SO \perp (ABCD)$ và SO = a. Góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng

A. 60°.

B. 75°.

D. 45°.

Câu 26. Cho hình chóp tứ giác đều có cạnh đáy bằng $a\sqrt{2}$ và chiều cao bằng $\frac{a\sqrt{2}}{2}$. Tang của góc nhị diện [S, AB, O]**B.** $\frac{1}{\sqrt{3}}$. **C.** $\sqrt{3}$.

A. 1.

D. $\frac{3}{4}$.

Câu 27. Cho hình chóp S.ABCD với đáy ABCD là hình vuông có cạnh 2a, $SA = a\sqrt{6}$ và vuông góc với đáy. Góc nhị diện [S, BD, A]?

 $A. 90^{0}$.

B. 30° .

 $C. 45^{\circ}$.

D. 60°

Câu 28. Cho tứ diện S.ABC có các cạnh SA, SB; SC đôi một vuông góc và SA = SB = SC = 1. Tính $\cos \alpha$, trong đó α là góc nhị diện [S, BC, A]

A. $\cos \alpha = \frac{1}{\sqrt{2}}$. **B.** $\cos \alpha = \frac{1}{2\sqrt{3}}$. **C.** $\cos \alpha = \frac{1}{3\sqrt{2}}$. **D.** $\cos \alpha = \frac{1}{\sqrt{3}}$.

Câu 29. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và $AB = a\sqrt{2}$. Biết $SA \perp (ABC)$ và SA = a. Góc nhị diện [S, BC, A]

A. 30°.

B. 45°.

C. 60°.

D. 90°.

Câu 30. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Giá trị sin của góc nhị diện [A', BD, A]

A. $\frac{\sqrt{3}}{4}$. **B.** $\frac{\sqrt{6}}{4}$. **C.** $\frac{\sqrt{6}}{3}$. **D.** $\frac{\sqrt{3}}{3}$.

Câu 31. Cho lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh đều bằng a. Gọi α là góc nhị diện [A, B'C', A']. Tính giá trị của tan α ?

A.
$$\frac{2\sqrt{3}}{3}$$
.

B.
$$\frac{\sqrt{3}}{3}$$
.

C.
$$\frac{3\sqrt{2}}{2}$$
. D. $\frac{\sqrt{3}}{2}$.

D.
$$\frac{\sqrt{3}}{2}$$
.

TOÁN 11-CHÂN TRỜI SÁNG TẠO

Câu 32. Cho hình chóp tứ giác đều S.ABCD với O là tâm của đáy và chiều cao $SO = \frac{\sqrt{3}}{2}AB$. Tính góc nhị diện [S, AB, O]

2. Câu hỏi dành cho đối tượng học sinh khá-giỏi

Câu 33. Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = 4a, AD = 3a. Các cạnh bên đều có độ dài 5a. Tính góc nhị diện [S, BC, O]

A.
$$\alpha \approx 75^{\circ}46'$$
.

B.
$$\alpha \approx 71^{\circ}21'$$
.

C.
$$\alpha \approx 68^{\circ}31'$$
.

D.
$$\alpha \approx 65^{\circ}21'$$
.

Câu 34. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và $OB = OC = a\sqrt{6}$, OA = a. Tính góc nhị diện [A, BC, O]

Câu 35. Cho tứ diện đều ABCD. Gọi φ là góc giữa đường thẳng AB và mặt phẳng (BCD). Tính $\cos \varphi$.

A.
$$\cos \varphi = 0$$
.

B.
$$\cos \varphi = \frac{1}{2}$$
.

C.
$$\cos \varphi = \frac{\sqrt{3}}{3}$$
.

C.
$$\cos \varphi = \frac{\sqrt{3}}{3}$$
. D. $\cos \varphi = \frac{\sqrt{2}}{3}$.

Câu 36. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng $\sqrt{2}a$. Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng

Câu 37. Lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a. Gọi M là điểm trên cạnh AA' sao cho $AM = \frac{3a}{4}$. Tang của góc nhị diện [M, BC, A]:

B.
$$\frac{1}{2}$$

B.
$$\frac{1}{2}$$
. **C.** $\frac{\sqrt{3}}{2}$.

D.
$$\frac{\sqrt{2}}{2}$$
.

Câu 38. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và $SA = \frac{a\sqrt{6}}{6}$. Khi đó góc nhị diện [S, BD, A].

Câu 39. Cho hình chóp S.ABCD có đáy là hình vuông cạnh 3a, SA vuông góc với mặt phẳng đáy, SB = 5a. Tính sin của góc giữa SC và mặt phẳng (ABCD).

A.
$$\frac{2\sqrt{2}}{3}$$
.

B.
$$\frac{3\sqrt{2}}{4}$$
.

C.
$$\frac{3\sqrt{17}}{17}$$
. D. $\frac{2\sqrt{34}}{17}$

D.
$$\frac{2\sqrt{34}}{17}$$
.

Rlog. Nguyễn Bảo Vương.	https://www.nbv.edu.vn/
Diog: Nguyen Dao vuong:	IIII N W W .II D V .EUU. V II

$C\hat{a}u$ 40. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $AB=2a$, $AD=a$. SA vuông góc với								
mặt phẳng đáy. $SA = a\sqrt{3}$. Cosin của góc giữa SC và mặt đáy bằng:								
	A. $\frac{\sqrt{5}}{4}$.	\mathbf{R} , $\frac{\sqrt{7}}{2}$	$\mathbf{C} = \frac{\sqrt{6}}{2}$	$\mathbf{p}_{\cdot} \frac{\sqrt{10}}{10}$				
	4	4	4	4				
Câu 41. Cho tứ diện $ABCD$ có BCD là tam giác vuông tại đinh B , cạnh $CD = a$, $BD = \frac{a\sqrt{6}}{3}$,								
$AB = AC = AD = \frac{a\sqrt{3}}{2}$. Tính góc nhị diện $[A, BC, D]$								
	A. $\frac{\pi}{4}$.	B. $\frac{\pi}{3}$.	C. $\frac{\pi}{6}$.	D. arctan 3.				
Câu 42.	Cho hình chóp S.ABC	D, đáy ABCD là hình	vuông cạnh a và SA	$\bot(ABCD)$. Biết				
$SA = \frac{a\sqrt{6}}{3}$. Góc giữa SC và $(ABCD)$ là:								
	A. 45°.	B. 30°.	C. 75°.	D. 60°.				
Câu 43.	Cho khối chóp S.ABCD	có đáy ABCD là hình	vuông cạnh a, Tam gi	ác SAB cân tại S và nằm				
Câu 43. Cho khối chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh a , Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết thể tích của khối chóp $S.ABCD$ là $\frac{a^3\sqrt{15}}{6}$. Góc giữa								
	${ m ang}~SC~$ và mặt phẳng đá ${ m ang}$			U				
C	A. 120° .	B. 30° .	C. 45°.	D. 60° .				
Cân 44			3					
	Cho hình chóp S.ABC		voi mật pháng (ABC),	Olet AB = AC = a,				
$BC = a\sqrt{.}$	$\overline{3}$. Tính góc nhị diện $[B, A]$	SA, C] B. 150°.	C (00	D 1000				
	A. 30°.	18	_	D. 120°.				
Câu 45. Cho hình lăng trụ đều $ABC.A'B'C'$ có tất cả các cạnh bằng a . Gọi M là trung điểm của AB và α là góc tạo bởi đường thẳng MC' và mặt phẳng (ABC) . Khi đó $\tan \alpha$ bằng								
	A. $\frac{2\sqrt{7}}{7}$.	B. $\frac{\sqrt{3}}{2}$.	C. $\sqrt{\frac{3}{7}}$.	D. $\frac{2\sqrt{3}}{3}$.				
CO 46	,	_	• •	, and the second				
Câu 46. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên								
(ABC) trùng với trung điểm H của cạnh BC . Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa								
SA và (A	A. 30°.	B. 75°.	C. 60°.	D. 45°.				
Câu 47. Cho hình chóp $S.ABC$ có đáy là tam giác vuông cân tại B , cạnh bên SA vuông góc với mặt phẳng đáy, $AB = BC = a$ và $SA = a$. Góc nhị diện B , BC , A								
	A. 60°.	B. 90°.	C. 30°.	D. 45°.				
Câu 48.	Cho hình chóp S.ABC c	có đáy ABC là tam giá	c vuông tại $\it A$. Tam giá	c SBC là tam giác đều và				
nằm trong mặt phẳng vuông góc với đáy. Số đo góc giữa đường thẳng SA và (ABC) bằng:								
	A. 45° .	B. 30°.	C. 75°.	D. 60°.				
Câu 49. Cho hình chóp $S.ABC$ có SA , SB , SC đôi một vuông góc với nhau và $SA = SB = SC = a$. sin								
của góc giữa đường thẳng SC và mặt phẳng (ABC) bằng								
	$\sqrt{6}$	$\sqrt{2}$	c 1	D 2				
	A. $\frac{\sqrt{6}}{3}$.	B. $\frac{\sqrt{2}}{2}$.	C. $\frac{1}{\sqrt{3}}$.	D. $\frac{2}{\sqrt{6}}$.				

Câu 50. Cho hình chóp S.ABCD có tất cả các cạnh đều bằng nhau. Gọi E, F lần lượt là trung điểm của SB và SD, O là giao điểm của AC và BD. Khẳng định nào sau đây sai?

A.
$$SO \perp (ABCD)$$
.

B.
$$(SAC) \perp (SBD)$$
.

C.
$$EF//(ABCD)$$
.

C.
$$EF//(ABCD)$$
. D. $(\widehat{SA,(ABCD)}) = 60^{\circ}$.

Câu 51. Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) là trung điểm của canh BC. Biết $\triangle SBC$ đều, tính góc giữa SA và (ABC)

Câu 52. Cho hình lăng trụ ABC.A'B'C', đáy ABC là tam giác vuông tại B, AB = a, $\widehat{ACB} = 30^{\circ}$. M là trung điểm AC. Hình chiếu vuông góc của đỉnh A' lên mặt phẳng (ABC) là trung điểm H của BM.

Khoảng cách từ C' đến mặt phẳng (BMB') bằng $\frac{3a}{4}$. Tính số đo góc tạo bởi cạnh bên và mặt phẳng đáy của hình lăng tru.

A.
$$60^{\circ}$$
.

B.
$$30^{\circ}$$
.

$$\mathbf{C.}\ 90^{\circ}$$
.

D.
$$45^{\circ}$$
.

Câu 53. Cho hình chóp S.ABCD có đáy là hình thoi tâm O, $SO \perp (ABCD)$. Góc giữa SA và mặt phẳng (SBD) là góc

A.
$$\widehat{ASO}$$
.

B.
$$\widehat{SAO}$$
.

$$\mathbf{C}$$
. \widehat{SAC} .

D.
$$\widehat{ASB}$$
.

Câu 54. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy và $SA = a\sqrt{2}$. Tìm số đo của g**óc giữa đường thẳng** SC và mặt phẳng (SAB).

D.
$$60^{\circ}$$
.

Câu 55. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, $SA \perp (ABCD)$ và $SA = a\sqrt{3}$ Gọi α là góc tạo bởi giữa đường thẳng SB và mặt phẳng (SAC), khi đó α thỏa mãn hệ thức nào sau đây:

A.
$$\cos \alpha = \frac{\sqrt{2}}{8}$$
. **B.** $\sin \alpha = \frac{\sqrt{2}}{8}$. **C.** $\sin \alpha = \frac{\sqrt{2}}{4}$. **D.** $\cos \alpha = \frac{\sqrt{2}}{4}$.

B.
$$\sin \alpha = \frac{\sqrt{2}}{8}$$

C.
$$\sin \alpha = \frac{\sqrt{2}}{4}$$

D.
$$\cos \alpha = \frac{\sqrt{2}}{4}$$

Câu 56. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và $SA = a\sqrt{6}$ (hình vẽ). Gọi α là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sin α ta được kết quả là:

A.
$$\frac{1}{\sqrt{14}}$$
.

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{\sqrt{3}}{2}$$

D.
$$\frac{1}{5}$$
.

Câu 57. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh AB = a, $AD = \sqrt{3}a$. Cạnh bên $SA = a\sqrt{2}$ và vuông góc mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng:

A. 75°.

B. 60°.

C. 45°.

D. 30°.

Câu 58. Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB = BC = a, $BB' = a\sqrt{3}$. Tính góc giữa đường thẳng A'B và mặt phẳng (BCC'B').

A. 45°.

B. 30°.

C. 60°.

D. 90°.

Câu 59. Cho khối chóp S.ABC có $SA \perp (ABC)$, tam giác ABC vuông tại B, AC = 2a, BC = a, $SB = 2a\sqrt{3}$. Tính góc giữa SA và mặt phẳng (SBC).

A. 45° .

B. 30°.

C. 60° .

D. 90° .

Câu 60. Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB = AA' = a (tham khảo hình vẽ bên). Tính tang của góc giữa đường thẳng BC' và mặt phẳng (ABB'A').

A. $\frac{\sqrt{2}}{2}$

B. $\frac{\sqrt{6}}{3}$

C. $\sqrt{2}$

D. $\frac{\sqrt{3}}{3}$.

Câu 61. Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC = 2, BC = 1, AA' = 1. Tính góc giữa AB' và (BCC'B').

A. 45°.

B. 90°.

C. 30°.

D. 60°.

Câu 62.) Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a, $\widehat{ABC} = 60^{\circ}$, $SA = a\sqrt{3}$ và $SA \perp (ABCD)$. Tính góc giữa SA và mặt phẳng (SBD).

A. 60°.

B. 90°.

C. 30°.

D. 45°.

Câu 63. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. AB = a, $AD = a\sqrt{3}$. Cạnh bên $SA \perp (ABCD)$ và $SA = a\sqrt{2}$. Góc giữa đường thẳng SC và mặt phẳng (SAB) là

A. 30°.

B. 90°.

C. 45°.

D. 60°.

Câu 64. Cho hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh a, $SA \perp (ABCD)$ và SA = a. Góc giữa đường thẳng SB và (SAC) là

A. 30° .

B. 75°.

 $C. 60^{\circ}$.

D. 45° .

Câu 65. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA = 2a. Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD).

A. $\frac{\sqrt{5}}{5}$

B. $\frac{2\sqrt{5}}{5}$.

C. $\frac{1}{2}$.

D. 1.

D. 30°.

(BDD'B').

A. 90°.

đáy và SA = a. Tính góc giữa SC và (SAB).

	A. 60° .	B. 90°.	C. 45°.	D. 30°.			
Câu 68. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật có $AB = 2AD = 2a$ cạnh bên SA vuông góc với đáy và $SA = a\sqrt{15}$. Tính $tang$ của góc giữa SC và mặt phẳng (SAD) .							
	A. $\sqrt{3}$.	B. 2.	C. $\frac{1}{2}$.	D. $\frac{\sqrt{3}}{3}$.			
Câu 69. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thoi tâm I , cạnh a , góc $\widehat{BAD} = 60^{\circ}$.							
$SA = SB = SD = \frac{a\sqrt{3}}{2}$. Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC) . Giá trị $\sin \alpha$ bằng							
	A. $\frac{1}{3}$.	B. $\frac{2}{3}$.	C. $\frac{\sqrt{5}}{3}$.	D. $\frac{2\sqrt{2}}{3}$.			
Câu 70. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh a , SA vuông góc với đáy và $SA = a\sqrt{3}$. Gọi α là góc giữa SD và (SAC) . Giá trị $\sin\alpha$ bằng							
	A. $\frac{\sqrt{2}}{4}$.	B. $\frac{\sqrt{2}}{2}$.	C. $\frac{\sqrt{3}}{2}$.	D. $\frac{\sqrt{2}}{3}$.			
Câu 71. Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có mặt $ABCD$ là hình vuông, $AA' = \frac{AB\sqrt{6}}{2}$. Xác định							
góc nhị c	liện $[A', BD, C']$	48.					
A. 30° . B. 45° . C. 60° . D. 90° . Câu 72. Cho hình lăng trụ đứng $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình thoi. Biết $AC = 2$, $AA' = \sqrt{3}$. Tính góc nhị diện $[A, B'D', C]$							
	A. 60° .	B. 90° .	$\mathbf{C.}\ 45^{\circ}$.	D. 30° .			
Câu 73. Cho hình chóp $S.ABCD$ có đáy là hình thoi cạnh a , góc $\widehat{ABC} = 60^{\circ}$, $SA \perp (ABCD)$, $SA = a\sqrt{3}$. Gọi α là góc giữa SA và mặt phẳng (SCD) . Tính $\tan \alpha$.							
	A. $\frac{1}{2}$.	B. $\frac{1}{3}$.	C. $\frac{1}{4}$.	D. $\frac{1}{5}$.			
Câu 74. Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại B , cạnh bên SA vuông góc với mặt phẳng							
đáy, $AB = 2a$, $\widehat{BAC} = 60^{\circ}$ và $SA = a\sqrt{2}$. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng							
	A. 30° .	B. 45° .	$\mathbf{C.} \ 60^{\circ}$.	D. 90° .			
Câu 75. Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành, $AB = 2a$, $BC = a$, $\widehat{ABC} = 120^{\circ}$. Cạnh bên $SD = a\sqrt{3}$ và SD vuông góc với mặt phẳng đáy (tham khảo hình vẽ bên). Tính \sin của góc tạo bởi SB và mặt phẳng (SAC)							

Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 9

Câu 66. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, $AB = a\sqrt{2}$, AD = a, SA vuông góc với

 $\mathbf{Câu}$ 67. Cho hình lập phương ABCD.A'B'C'D' (hình bên). Tính góc giữa đường thẳng AB' và mặt phẳng

C. 45°.

A. $\frac{3}{4}$.

B. $\frac{\sqrt{3}}{4}$.

D. $\frac{\sqrt{3}}{7}$.

Câu 76. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a, gọi α là góc giữa đường thẳng A'B và mặt phẳng (BB'D'D). Tính $\sin \alpha$.

B. $\frac{\sqrt{3}}{2}$.

C. $\frac{\sqrt{3}}{5}$.

Câu 77. Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt đáy, AB = 2a, $\widehat{BAC} = 60^{\circ}$ và $SA = a\sqrt{2}$. Góc giữa đường thẳng SB và mặt phẳng (SAC) bằng

 $A. 45^{0}$.

B. 60° .

 $C. 30^{\circ}$.

Câu 78. Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của các cạnh BC và SA, α là góc tạo bởi đường thẳng EM và mặt phẳng (SBD). Giá trị của an lphabằng

A. 2.

B. $\sqrt{3}$. **C.** 1.

 \mathbf{D} . $\sqrt{2}$.

Câu 79. Cho hình hộp ABCD.A'B'C'D' có M, N, P lần lượt là trung điểm của các cạnh A'B', A'D', C'D'. Góc giữa đường thẳng CP và mặt phẳng (DMN) bằng?

 $\mathbf{A.}\ 0^{\circ}$.

B. 45°.

C. 30°.

D. 60°.

Câu 80. Cho tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mp(BCD), AB = 2a. Mlà trung điểm đoạn AD, gọi φ là góc giữa CM với mp(BCD), khi đó:

A. $\tan \varphi = \frac{\sqrt{3}}{2}$. **B.** $\tan \varphi = \frac{2\sqrt{3}}{3}$. **C.** $\tan \varphi = \frac{3\sqrt{2}}{2}$. **D.** $\tan \varphi = \frac{\sqrt{6}}{3}$.

Câu 81. Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của SC và AD (tham khảo hình vẽ).

Góc giữa MN và mặt đáy (ABCD) bằng

A. 90°.

B. 30°.

C. 45°.

D. 60°.

Câu 82. Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của BC và AD (tham khảo hình vẽ). Gọi φ là góc giữa đường thẳng MN và mặt phẳng (BCD). Tính $\tan \varphi$.

A. $\tan \varphi = \sqrt{2}$. **B.** $\tan \varphi = \frac{\sqrt{2}}{2}$.

C. $\tan \varphi = \sqrt{3}$. D. $\tan \varphi = \frac{\sqrt{3}}{3}$.

Câu 83. Cho hình chóp S.ABC có $SA \perp (ABC), SA = 2a\sqrt{3}, AB = 2a$, tam giác ABC vuông cân tại B. Gọi M là trung điểm của SB. Góc giữa đường thẳng CM và mặt phẳng (SAB) bằng:

A. 90° .

B. 60° .

 $C. 45^{\circ}$

D. 30° .

Câu 84. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nàm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa hai đường thẳng SA và mặt phẳng (SHK).

A. $\frac{\sqrt{2}}{2}$.

B. $\frac{\sqrt{2}}{4}$. **C.** $\frac{\sqrt{14}}{4}$. **D.** $\frac{\sqrt{7}}{4}$.

Câu 85. Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SD(tham khảo hình vẽ bên). Tang của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng

A. $\frac{\sqrt{2}}{2}$.

B. $\frac{\sqrt{3}}{2}$.

Câu 86. Cho hình chóp đều S.ABCD có $SA = \sqrt{5}a$, AB = a. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tính cosin của góc giữa đường thẳng DN và mặt phẳng (MQP).

A. $\frac{\sqrt{2}}{2}$.

B. $\frac{1}{2}$.

C. $\frac{\sqrt{3}}{2}$.

D. $\frac{\sqrt{15}}{6}$.

Câu 87. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, $BC=a\sqrt{3}$, SA=a và SAvuông góc với mặt phẳng (ABCD). Đặt α là góc giữa đường thẳng BD và (SBC). Giá trị của $\sin \alpha$ bằng

A. $\frac{\sqrt{2}}{4}$. **B.** $\frac{\sqrt{5}}{5}$. **C.** $\frac{1}{2}$.

Câu 88. Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi M, N lần lượt là trung điểm của các cạnh BC, SA và α là góc tạo bởi đường thẳng MN với (SBD). Tính tan α .

Câu 89. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, tâm O. Gọi M và N lần lượt là trung điểm của SA và BC. Biết rằng góc giữa MN và (ABCD) bằng 60° , cosin góc giữa MN và mặt phẳng (SBD) bằng:

A. $\frac{\sqrt{41}}{41}$.

B. $\frac{\sqrt{5}}{5}$. **C.** $\frac{2\sqrt{5}}{5}$. **D.** $\frac{2\sqrt{41}}{41}$.

Câu 90. Cho lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của B' lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC. Cạnh bên hợp với (ABC) góc 60° . Sin của góc giữa AB và mặt phẳng (BCC'B').

A. $\frac{3}{\sqrt{12}}$.

B. $\frac{3}{2\sqrt{13}}$. C. $\frac{1}{\sqrt{13}}$. D. $\frac{2}{\sqrt{13}}$.

Câu 91. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a, $SA \perp AB$, $SC \perp BC$, SB = 2a. Gọi M, N lần lượt là trung điểm SA, BC. Gọi α là góc giữa MN với (ABC). Tính $\cos \alpha$.

A. $\cos \alpha = \frac{2\sqrt{11}}{11}$. **B.** $\cos \alpha = \frac{\sqrt{6}}{3}$. **C.** $\cos \alpha = \frac{2\sqrt{6}}{5}$. **D.** $\cos \alpha = \frac{\sqrt{10}}{5}$.

Câu 92. Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là điểm trên đoạn SD sao cho SM = 2MD.

Tan góc giữa đường thẳng BM và mặt phẳng (ABCD) là

A.
$$\frac{1}{3}$$
.

B.
$$\frac{\sqrt{5}}{5}$$
.

C.
$$\frac{\sqrt{3}}{3}$$
.

D.
$$\frac{1}{5}$$
.

Câu 93. Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a. Độ dài cạnh bên của hình chóp bằng bao nhiều để góc giữa cạnh bên và mặt đáy bằng 60° .

A.
$$\frac{2a}{\sqrt{3}}$$
.

B.
$$\frac{a}{6}$$
.

C.
$$\frac{a\sqrt{3}}{6}$$
. D. $\frac{2a}{3}$.

D.
$$\frac{2a}{3}$$

Câu 94. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, cạnh bên SB tạo với đáy góc 45° . Một mặt phẳng (α) đi qua A và vuông góc với SC cắt hình chóp S.ABCD theo thiết diện là tứ giác AB'C'D' có diện tích bằng:

A.
$$\frac{a^2\sqrt{3}}{4}$$
.

B.
$$\frac{a^2\sqrt{3}}{2}$$

D.
$$\frac{a^2\sqrt{3}}{3}$$
.