TD n°1

B. Louédoc. ISEN-Brest. La Croix-Rouge.

Exercices

Exercice 1

Un joueur A lance 2 fois un dé équilibré.

On note X_1 le résultat du dé 1 et X_2 le résultat du dé 2.

Un joueur B lance également 2 fois un dé équilibré.

On note Y_1 le résultat du dé 1 et Y_2 le résultat du dé 2.

- 1. Simuler l'expérience aléatoire et calculer la valeur de $(X_1 + X_2) (Y_1 + Y_2)$
- 2. Ré-itérer l'expérience n fois et donner une estimation numérique de $P(X_1 + X_2 = Y_1 + Y_2)$.

Exercice 2

Soit n un entier fixé supérieur ou égal à 1.

A l'instant $t_0 = 0$, on place un mobile à l'abscisse x = 0 de la droite réelle.

A chaque instant t_i (t_i entier), il fait au hasard un pas en avant ou un pas en arrière et ce indépendamment des pas précédents qu'il ait pu faire.

On note x_n sa position à l'instant t_n .

- 1. Ecrire un programme en python qui, ayant en argument l'entier n, simule l'expérience aléatoire et retourne la valeur de x_n .
- 2. Ecrire un programme en python qui, ayant en argument l'entier n, un entier k $(-n \le k \le n)$ et le nombre r de fois où vous avez répété l'expérience pour votre estimation, retourne une estimation numérique de $P(x_n = k)$.

Exercice 3

On dispose d'une urne contenant initialement une boule blanche et d'une pièce de monnaie bien équilibrée.

On effectue une suite de lancers de la pièce de monnaie.

Tant que l'on obtient face lors du lancer de la pièce de monnaie, on ajoute une boule noire dans l'urne et on effectue aucun tirage.

Par contre, la première fois que l'on obtient pile, on tire alors au hasard une boule dans l'urne.

On note B: "un tirage dans l'urne a eu lieu et la boule tirée est blanche".

- 1. Ecrire un programme en python qui simule l'expérience aléatoire et retourne 0 si B s'est produit et 1 sinon.
- 2. En déduire un programme en python qui, ayant en argument le nombre r de fois où vous avez répété l'expérience pour votre estimation, renvoie une estimation numérique de P(B)

Exercice 4

On effectue une série de tirages dans une urne de la manière suivante :

- Au départ, l'urne contient une boule blanche et une boule noire.
- Après chaque tirage, on remet dans l'urne la boule que l'on vient de tirer ainsi qu'une autre boule de la même couleur.

On note X_n le nombre de boules blanches obtenues lors des n premiers tirages $(n \ge 1)$.

- 1. Ecrire un programme en python qui, ayant en argument l'entier n, simule l'expérience aléatoire et retourne la valeur de X_n .
- 2. Ecrire un programme en python qui, ayant en argument l'entier n, un entier k $(0 \le k \le n)$ et le nombre r de fois où vous avez répété l'expérience pour votre estimation, retourne une estimation numérique de $P(X_n = k)$. Quelle est la loi de X_n ?

Exercice 5

On considère plusieurs sacs de billes S_1, S_2, \ldots, S_n tels que :

- le premier sac S_1 contient 3 billes jaunes et 2 billes vertes.
- chacun des sacs suivants S_2, \ldots, S_n contient 2 billes jaunes et 2 billes vertes.

On réalise l'expérience suivante :

- on tire au hasard une bille dans S_1
- on place la bille tirée de S_1 dans S_2 , puis on tire au hasard une bille dans S_2
- on place la bille tirée de S_2 dans S_3 , puis on tire au hasard une bille dans S_3
- et ainsi de suite

Pour $n \geq 1$, on note E_n l'événement : "la bille tirée dans S_n est verte" et on note $P(E_n) = p_n$ sa probabilité.

- 1. Ecrire un programme en python qui, ayant en argument l'entier n, simule l'expérience aléatoire et retourne la liste des n boules tirées.
- 2. En déduire un programme en python qui, ayant en argument l'entier n et le nombre r de fois où vous avez répété l'expérience pour votre estimation, renvoie une estimation numérique de $P(E_n) = p_n$

Exercice 6

Soit n un entier supérieur ou égal à 3.

Une urne contient 2 boules blanches et n-2 boules rouges.

On effectue des tirages sans remise dans cette urne.

On note X le rang de sortie de la première boule blanche.

- 1. Ecrire un programme en python qui simule l'expérience aléatoire et retourne la valeur de X.
- 2. Ecrire un programme en python qui, ayant en argument un entier k $(1 \le k \le n-1)$ et le nombre r de fois où vous avez répété l'expérience pour votre estimation, retourne une estimation numérique de P(X = k).
- 3. Ecrire un programme en python qui, ayant en argument le nombre r de fois où vous avez répété l'expérience pour votre estimation, retourne une estimation numérique l'espérance de X.