Prof. Danilo Silva

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais EEL410250 - Aprendizado de Máquina

EEL / CTC / UFSC

Introdução

- ullet Conjunto de dados não-rotulados: $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)} \in \mathbb{R}^n$
- ightharpoonup Problema: separar os dados em K grupos (clusters) de amostras "similares", i.e., que estejam mais "próximas" das amostras do mesmo grupo do que das de outros grupos

- ullet Conjunto de dados não-rotulados: $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)} \in \mathbb{R}^n$
- ightharpoonup Problema: separar os dados em K grupos (clusters) de amostras "similares", i.e., que estejam mais "próximas" das amostras do mesmo grupo do que das de outros grupos

Aplicações:

- Segmentação de mercado / posicionamento de produto
- Agrupamento de resultados de busca
- Identificação de famílias de genes
- Segmentação de imagens

Abordagens:

- Clustering hierárquico/aglomerativo
- Clustering baseado em centróides (ex: k-means)
- Clustering baseado em distribuição de probabilidade (ex: GMM)
- Clustering baseado em densidade de pontos (ex: DBSCAN)
- Clustering baseado em grafos
- **.**..

Algoritmo K-means

K-means

▶ Objetivo: Determinar K representantes dos clusters (centróides) e alocar amostras em clusters de forma a minimizar a soma das distâncias quadráticas de cada amostra ao representante do seu cluster

K-means

- Notação:
 - $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)} \in \mathbb{R}^n$: amostras/pontos
 - K: número de clusters (escolhido a priori)
 - $m{\mu}_1,\ldots,m{\mu}_K\in\mathbb{R}^n$: médias/centróides (representantes dos clusters)
 - $c^{(i)} \in \{1,\dots,K\}$: índice do cluster ao qual a amostra $\mathbf{x}^{(i)}$ está atribuída
 - \triangleright $S_k = \{\mathbf{x}^{(i)} : c^{(i)} = k\}$: k-ésimo cluster
- Função custo:

$$J(c^{(1)}, \dots, c^{(m)}, \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K) = \sum_{i=1}^m \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_{c^{(i)}}\|^2$$
$$= \sum_{k=1}^K \sum_{\mathbf{x} \in \mathcal{S}_k} \|\mathbf{x} - \boldsymbol{\mu}_k\|^2$$

Otimização Alternada

lacktriangle Se os centróides $oldsymbol{\mu}_k$ estão fixos, a solução ótima da atribuição é

$$c^{(i)} = \operatorname*{argmin}_{k} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}\|^{2}$$

isto é, atribui-se $\mathbf{x}^{(i)}$ ao cluster cujo centróide esteja mais próximo

- Se as atribuições $c^{(i)}$ estão fixas, a solução ótima para ${\pmb \mu}_k$ é

$$\mu_k = \frac{1}{|\mathcal{S}_k|} \sum_{\mathbf{x} \in \mathcal{S}_k} \mathbf{x}$$

isto é, escolhe-se $\pmb{\mu}_k$ como sendo a média (centróide) das amostras pertencentes ao cluster k

Alternar estas otimizações nunca pode aumentar o custo

Algoritmo

- Inicialize aleatoriamente $oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_K\in\mathbb{R}^n$
- Repita até a convergência:
 - ▶ Para i = 1, ..., m:

$$c^{(i)} = \operatorname*{argmin}_{k} \|\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}\|^{2}$$

▶ Para k = 1, ..., K:

$$\mu_k = \frac{1}{|\{i:c^{(i)} = k\}|} \sum_{i:c^{(i)} = k} \mathbf{x}^{(i)}$$

- Obs: o algoritmo sempre converge, mas n\u00e3o necessariamente para o ótimo global
- Normalmente utilizado com múltiplas reinicializações
 - Escolhe-se a melhor de N tentativas (ex: N = 100)

Exemplo: Função Custo

Escolha de K

- lacktriangle Uma limitação do K-means é a necessidade de escolher K a priori
- Diversas métricas propostas na literatura (ex: Silhouette cofficient)
- A melhor métrica é o desempenho na tarefa final, se for viável estimar
- Em alguns casos o valor de K pode ser imposto pela aplicação

Exemplo: Método do "Joelho" (Elbow Method)

Exemplo: Método do "Joelho" (Elbow Method)

Exemplo: Segmentação/Compressão de Imagens

DBSCAN

Density-Based Spatial Clustering of Applications with Noise

- **Vizinhos:** pontos com distância ϵ ou menor
- ▶ Ponto central: ponto com minPts 1 ou mais vizinhos
- Ruído/outlier: ponto que não é vizinho de nenhum ponto central
- Todos os vizinhos de um ponto central fazem parte do mesmo cluster

Comparação

