المن والمال المن المن المن المن المال المنال المنال

المرادم المسراس المراك الدرام المسراس

insertion corti حرس 1 - for j=2 to n do CXM key - A[j] C2(n-1) C3 (n-1) i = j-1 C4 (tj+1) while i>0 &8 key < A[i] 4-C, (tj) A[i+i] + A[i] 5- $C_6(t_{\bar{j}})$ i ← i-1 A[i+1] + key C=(n-1) 7-

 $T(n) = C_{i}^{n} + C_{2}(n-1) + C_{3}(n-1) + C_{7}(n-1) + \sum_{j=2}^{n} C_{j}(t_{j}+1) + \sum_{j=2}^{n} C_{n}t_{j} + \sum_{j=2}^{n} C_{n}t_{j} + \sum_{j=2}^{n} C_{n}t_{j}$ T(1,1) = \(\frac{1}{2} \cdot \cdot (tj+1) + \frac{1}{2} \cdot \fra تعداد نام عاى حا

ب رمای دس به و به ما بای وجود داردس که مان کو ا باردی جو کا اندی داول کو ایار اندان کارد x, x2 - x; 0000-x3 11-5 Color

1-x=0 -> 0, 2 - for (i=1, i < n, i++) { -> C2 (n+1) for (j=1,j < n, j++) x++; -> C3 (n+1) xn + C4(n)(n) $j=1 \longrightarrow C_5(n)$ while (j<n) { - , C6 (n) (logn +1) 5 $x++; J=J*2; \longrightarrow C_7(n)(\log n) + C_2(n)(\log n)$ 6 -7 -T(n) = C1 + C2(n+1) + C3n(n+1) + C4(n2) + C5n + C6(4)(logn+1)+C4(n)(logn) 8 - }

 $x + 3x + 6x = 1 \rightarrow x = \frac{1}{10}$ التي المان د سام المواتود. Landesheir-n includes a × (1/3 × 1/2) مرتب الماسك الماسك المراحلية ine postua -> 3x (= x (= x = 1)) $\frac{n\pi}{6} + \frac{3n\pi}{2} + 5n\pi = \frac{40nn}{6} = \frac{\pi}{3}$ · 2 (2n + (\frac{2n}{3} + (\frac{n}{3} \times \frac{1}{2})) عدات متوسط براي وي است.

Tois!, Tique Koot (arr [], low, high) O(nlogarje tu'n +nlogare o' cur cour 2. if (low thigh) علام بالدهم الدارام عواب وق مد لقدرا اردباس يون Pi=partition (array, low, high) quickfort (array, low, pi-1) quelsot(array, pi, 1, high)

2 - for (i=0; i/n; i++)

3. if (array[i]+array[j] > k)

j--;

else if (array[i] + arrg[j](k) 5-

i++; 6-

7-

else return array[1], array[1]

on the for released Col O(n) - UT Gus Gran

Onlogin) >O(n)

a)
$$lg(n!) = \Theta(lg(n)) \rightarrow n! \langle n! \rightarrow lgn! \neq lgn! \rightarrow lgn! = O(lg(n))$$

$$\exists_{x \in \mathbb{R}} \mid xn^n \langle n! \rightarrow lg(nn^n) \neq lg(n!) \rightarrow lg(n!) = \Omega(lg(n))$$

c)
$$n! = \omega(2^n)$$
 $n! = [2\pi n \times (\frac{n}{2})^n = n^{n-1/2} \times e^n \times \sqrt{2\pi}$ $n! = \omega(2^n)$

$$d) n! = O(n^n) \qquad n! = \sqrt{2\pi n} \times (\frac{n}{e})^n = n^n \times e^{-n} \times \sqrt{2\pi n} = \frac{n^n \times \sqrt{2\pi n}}{e^n}$$

$$neR, n>1 \quad e^n > \sqrt{2\pi n} \rightarrow n^n > \frac{n^n \sqrt{2\pi n}}{e^n} \rightarrow n^n > n! \rightarrow n! \rightarrow n! = O(n^n)$$

$$d_1 f_{(n)} = O(g_{(n)}) \rightarrow 2^{\frac{1}{2}(n)} = O(2^{g_{(n)}})$$

$$f_{(\infty)} \leqslant g_{(n)} \rightarrow 2^{\frac{1}{2}(n)} \leqslant 2^{g_{(\infty)}} \rightarrow 2^{\frac{1}{2}(n)} \leqslant 2^{g_{(\infty)}} \rightarrow 2^{\frac{1}{2}(n)} \Leftrightarrow 2^{\frac{1}{2}(n)}$$

e)
$$f_{(n)} = O(f_{(n^2)})$$
 $f_{(n)} = \frac{1}{n}$ $f_{(n)} = \frac{1}{n^2}$ crusi

صوب تانيي دو ترزينا در درياندان عمر است

Scanned with CamScanner

h) f(n) + O(f(n)) = O(f(n)) = n

(f(n)) = n

(f(n)) = n

(f(n)) = n

	-De					
A	В	0	0	Ω	w	0
R ²	n ³	1	1	X	X ·	×
lgn	nE	1	.1	×	×	×
k	e e	/	1	X	×	X
2"	n/2 -2	×	×	1	1	×
lgc 1gn	logn C	X	×	1	J	×
lgn 2 4 = n	n ²	1	×	1	X	1
n!	n2"	X	×	1	1	X
Jz lgn lg/2	520gm) x		X	1	1	×
(lg(n))!	2 2	1	1	X	×	×
lg(lg(n))	(lg(n))	1	×	1	X	1