A Simple Introduction to Quantum Computers

For SIT111

Overview of Topics

- What are quantum computers?
- Qubits and their representation
- Quantum Logic Gates
- Quantum Logic Circuits
- Applications of Quantum Computers

What are Quantum Computers?

Source: https://www.cnet.com/pictures/take-a-look-at-googles-quantum-computing-technology/

Source: https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

How do they differ from classical computers?

Source: https://computer.howstuffworks.com/bytes.htm

Source: Wong, T.G. (2022) 'One Quantum Bit', in Introduction to classical and quantum computing. Omaha: Rooted Groove, p. 76.

Source: Havenstein, Christopher & Thomas, Damarcus & Chandrasekaran, Swami. (2018). SMU Data Science Review Compar of Performance between Quantum and Classical Machine Learning Comparisons of Performance between Quantum and Classical Machine Learning. 10.13140/RG.2.2.20353.40801.

Prerequisites

- Knowledge of Trigonometry and Linear Algebra
 - https://www.khanacademy.org/math/trigonometry
 - https://www.khanacademy.org/math/linear-algebra
- IBM Quantum Account
 - Set up using Deakin email
 - https://quantum-computing.ibm.com/