

Julien Gabet

Mars-June, 2018

Memo/garbage part

```
M, N ::= x; \lambda x.M; MN
(\lambda x.M)N \to_{\beta} M[N/x]
```

terms tend to get bigger

If $C[\]$ is a context, and $M \to_{\beta} N$ then $C[M] \to_{\beta} C[N]$

 $\begin{array}{l} P,Q ::= u(xy).P; \bar{u}xy.P; P|Q; (\nu x)P|!P \\ u(xy).P|\bar{u}ab.Q \rightarrow P[a/x,b/y]|Q \end{array}$

If
$$P \to Q$$
 then $C[P] \to C[Q]$
If $P \equiv P' \to Q \equiv Q'$ then $P \to Q$

(with necessary hypothesis on context C)

Krivine Abstract Machine (KAM) $M \star \Pi \star \mathcal{E}$

$$MN \star \Pi \star \mathcal{E} \to M \star (N, \mathcal{E}).\Pi \star \mathcal{E}$$
$$\lambda x.M \star (N, \mathcal{E}).\Pi \star \mathcal{F} \to M \star \Pi \star \mathcal{F}, s \mapsto (N, \mathcal{E})$$
$$x \star \Pi \star \mathcal{E}, x \mapsto (M, \mathcal{F}) \to M \star \Pi \star \mathcal{F}$$

For exponentials:

 $\begin{aligned} !P \simeq !P| !P \\ (\nu u)! u(x). P \simeq 0 \\ \text{idea: } !P|Q \simeq !P| !P|Q \ \forall Q \end{aligned}$

We want $M \star \Pi \star \mathcal{E} \to M' \star \Pi' \star \mathcal{E}'$ iff $[\![M,\mathcal{E}]\!]_u | [\![\Pi]\!]_u \to [\![M',\mathcal{E}']\!]_v | [\![\Pi']\!]_v$

- equiv \simeq bisimulation
- the traduction goes well

Definition

A binary relation S is a reduction bisimulation if, for all $(P,Q) \in S$

- (1) $P \xrightarrow{\tau} P'$ implies $Q \xrightarrow{\tau} Q'$ for some Q' with $(P', Q') \in S$ (2) $Q \xrightarrow{\tau} Q'$ implies $P \xrightarrow{\tau} P'$ for some P' with $(P', Q') \in S$

Definition (Observability:)

 $P \downarrow_x$ if P can make an input action of subject x

 $P\downarrow_{\bar{x}}$ if P can make an output action of subject x.

Definition (Image-finite process:)

P is image-finite if, for all derivative Q of P and any action $\alpha, \exists n \geq 0$ and Q_1, \dots, Q_n such that $Q \stackrel{\alpha}{\Rightarrow} Q'$ implies $Q' = Q_i$ for some i.

where \Rightarrow is the reflexive transitive closure of $\stackrel{\tau}{\rightarrow}$ and $\stackrel{\alpha}{\Rightarrow}$ is $\Rightarrow \stackrel{\alpha}{\rightarrow} \Rightarrow$ for some action α .

Rules for base- π

Value-typing

$$\frac{}{\Gamma \vdash basval : B} \text{ TV-BASVAL} \qquad \qquad \frac{}{\Gamma, x : T \vdash x : T} \text{ TV-NAME}$$

Process typing

Types: S, T := V value type

|L| link type

| ♦ behaviour type

Value types: V ::= B basic type

Link types: $L := \sharp V$ connexion type

Environments: $\Gamma ::= \Gamma, x : L \mid \Gamma, x : V \mid \emptyset$

Transitions for base- π

$$\frac{1}{\overline{a}w.P \xrightarrow{\overline{a}w} P} \text{OUT} \qquad \overline{a(x).P \xrightarrow{aw} P\{w/x\}} \text{ INP} \qquad \overline{\tau_P \xrightarrow{\tau} P} \text{ TAU}$$

$$\frac{P \xrightarrow{\alpha} P'}{[x = x]P \xrightarrow{\alpha} P'} \text{ MAT} \qquad \frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} \text{ SUM-L} \qquad \frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \text{ PAR-L } (bn(\alpha) \cap fn(Q) = \emptyset)$$

$$\frac{P \xrightarrow{(\nu \overline{z}: T)} \overline{av} P' \qquad Q \xrightarrow{av} Q'}{P|Q \xrightarrow{\tau} (\nu \overline{z}: T)(P'|Q')} \text{ COMM-L } (\overline{z} \cap fn(Q) = \emptyset)$$

$$\frac{P \xrightarrow{\alpha} P'}{(\nu x : T)P \xrightarrow{\alpha} (\nu x : T)P'} \text{ RES } (x \notin n(\alpha)) \qquad \frac{P \xrightarrow{\alpha} P'}{!P \xrightarrow{\alpha} P'|!P} \text{ REP-ACT}$$

$$\frac{P \xrightarrow{(\nu \overline{z}: T)} \overline{av} P'}{(\nu x : T)P \xrightarrow{(\nu \overline{z}: T)} \overline{x} P'} \text{ OPEN } (x \in fn(v), x \notin \{\overline{z}, a\})$$

$$(\nu x : T)P \xrightarrow{(\nu \overline{z}: T)} P' \text{ Parameter } P'$$

$$\frac{P \xrightarrow{(\nu \overline{z}: T)} \overline{av} P'}{(\nu x : T)(P'|P'')|!P} \text{ REP-COMM } (\overline{z} \cap fn(P) = \emptyset)$$

$$\frac{P \xrightarrow{\tau} v rong}{\overline{v} w.P \xrightarrow{\tau} wrong} \text{ OUTERR}$$

$$\frac{Si \ v \ n'\text{est pas un nom}}{\overline{v} w.P \xrightarrow{\tau} wrong} \text{ OUTERR}$$

$$\frac{Si \ v \ n'\text{est pas un nom}}{\overline{v} w.P \xrightarrow{\tau} wrong} \text{ MATERR}$$

simply-typed π -calculus: same but with value types V := B basic type

|L| link type, allowing to pass links

i/o types

 $\underline{\text{Grammar:}} \text{ same} + L ::= iV \mid oV$

(input and output capabilities)

Subtyping rules

$$\overline{T \leq T} \text{ SUB-REFL} \qquad \qquad \frac{S \leq S' \quad S' \leq T}{S \leq T} \text{ SUB-TRANS}$$

$$\overline{\#T \leq iT} \text{ SUB-\sharpI} \qquad \qquad \overline{\#T \leq oT} \text{ SUB-\sharpO}$$

$$\frac{S \leq T}{iS \leq iT} \text{ SUB-II} \qquad \qquad \frac{S \leq T}{oT \leq oS} \text{ SUB-OO}$$

$$\frac{S \leq T \quad T \leq S}{\#T \leq \#S} \text{ SUB-BS}$$

Typing rules

$$\frac{\Gamma \vdash a : iS \qquad \Gamma, x : S \vdash P : \diamondsuit}{\Gamma \vdash a(x).P : \diamondsuit} \text{ T-INPS}$$
 replaces T-INP
$$\frac{\Gamma \vdash a : oT \qquad \Gamma \vdash w : T \qquad \Gamma \vdash P : \diamondsuit}{\Gamma \vdash aw.P : \diamondsuit} \text{ T-OUTS}$$
 replaces T-OUT
$$\frac{\Gamma \vdash v : S \qquad S \leq T}{\Gamma \vdash v : T} \text{ SUBSUMPTION}$$

Linear types

 $\underline{\text{Grammar:}} \ L ::= l_{\sharp}V \mid l_{i}V \mid l_{o}V$

Combination of types

$$l_i T \uplus l_o T = l_{\sharp} T$$

 $T \uplus T = T$ if T is non-linear

 $T \uplus U = error$ otherwise

Combination of environments

If for some $x, \Gamma_1(x)$ and $\Gamma_2(x)$ are defined and $\Gamma_1(x) \uplus \Gamma_2(x) = error$ then $\Gamma_1 \uplus \Gamma_2$ is undefined.

Otherwise,
$$(\Gamma_1 \uplus \Gamma_2)(x) = \begin{cases} \Gamma_1(x) \uplus \Gamma_2(x) \text{ if both are defined} \\ \Gamma_i(x) \text{ if defined but } \Gamma_{3-i}(x) \text{ is not defined} \\ \text{undefined otherwise} \end{cases}$$

Extraction

$$\overline{Lin(\Gamma)} = \{x | \Gamma(x) = l_I T \text{ for } I \in \{i, o, \sharp\} \text{ and some type } T\}$$

 $Lin_i(\Gamma) = \{x | \Gamma(x) = l_i S \text{ or } \Gamma(x) = l_\sharp S \text{ for some } S\}$

Value-typing

$$\overline{\Gamma, x: T \vdash x: T} \text{ LIN-NAME } (Lin(\Gamma) = \emptyset) \qquad \qquad \overline{\Gamma \vdash \star : unit} \text{ LIN-UNIT } (Lin(\Gamma) = \emptyset)$$

+ SUBSUMPTION and subtyping rules

Process typing

$$\frac{\Gamma_{1} \vdash v : mS \ (m \in \{i, l_{i}\}) \quad \Gamma_{2}, x : S \vdash P}{\Gamma_{1} \uplus \Gamma_{2} \vdash v(x).P : \diamondsuit} \quad \text{LIN-INP}$$

$$\frac{\Gamma_{1} \uplus \Gamma_{2} \vdash v(x).P : \diamondsuit}{\Gamma_{1} \uplus \Gamma_{2} \uplus \Gamma_{3} \vdash \overline{v}w.P : \diamondsuit} \quad \text{LIN-OUT}$$

$$\frac{\Gamma_{1} \uplus \Gamma_{2} \uplus \Gamma_{3} \vdash \overline{v}w.P : \diamondsuit}{\Gamma_{1} \uplus \Gamma_{2} \vdash P_{1} | P_{2} : \diamondsuit} \quad \text{LIN-PAR}$$

$$\frac{\Gamma \vdash P_{1} : \diamondsuit \quad \Gamma \vdash P_{2} : \diamondsuit}{\Gamma \vdash \tau.P : \diamondsuit} \quad \text{LIN-TAU}$$

$$\frac{\Gamma \vdash P : \diamondsuit}{\Gamma \vdash 0 : \diamondsuit} \quad \text{LIN-NIL} \ (Lin(\Gamma) = \emptyset)$$

$$\frac{\Gamma_{1} \uplus \Gamma_{2} \vdash P : \diamondsuit}{\Gamma \vdash v : \sharp T \quad \Gamma_{1} \vdash w : \sharp T \quad \Gamma_{2} \vdash P : \diamondsuit} \quad \text{LIN-MAT}$$

$$\frac{\Gamma_{1} \uplus \Gamma_{2} \vdash P : \diamondsuit}{\Gamma \vdash (\nu x : L)P : \diamondsuit} \quad \text{LIN-RES}$$

$$\frac{\Gamma \vdash P : \diamondsuit}{\Gamma \vdash (\nu x : L)P : \diamondsuit} \quad \text{LIN-RES2}$$

TODO: results on i/o and i/o-lin