AD

339981

USAAVLABS TECHNICAL REPORT 66-31

A PRESENTATION OF MEASURED AND CALCULATED FULL-SCALE ROTOR BLADE AERODYNAMIC AND STRUCTURAL LOADS

By

J. P. Rabbott, Jr.

A. A. Lizak

V. M. Paglino

July 1966

U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

CONTRACT DA 44-177-AMC-53(T)
UNITED AIRCRAFT CORPORATION
SIKORSKY AIRCRAFT DIVISION
STRATFORD, CONNECTICUT

BEST AVAILABLE COPY

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY U. S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA 23604

This report has been reviewed by the U. S. Army Aviation Materiel Laboratories and is considered to be technically sound and accurate. It is published for the exchange of information and the stimulation of further understanding and research in rotary-wing aerodynamics.

Task 1P125901A14604

Contract DA 44-177-AMC-53(T)

USAAVLABS Technical Report 66-31

July 1966

A PRESENTATION OF MEASURED AND CALCULATED FULL-SCALE ROTOR BLADE AERODYNAMIC AND STRUCTURAL LOADS

SER-58398

by

J. P. RABBOTT, JR. A. A. LIZAK V. M. PAGLINO

Prepared by

UNITED AIRCRAFT CORPORATION SIKORSKY AIRCRAFT DIVISION STRATFORD, CONNECTICUT

for

U.S. ARMY AVIATION MATERIEL LABORATORIES FORT EUSTIS, VIRGINIA

Distribution of this document is unlimited

SUMMARY

A test of a set of Sikorsky CH-34 rotor blades was conducted in the NASA/Ames full-scale wind tunnel at speeds of from 110 to 175 knots. One blade of the set was instrumented to measure differential chordwise pressures and flapwise, chordwise, and torsional stress. The test results are presented, two- and three-dimensional pressure distributions are compared, and a correlation of airloads and blade stresses is made with a flexible blade aeroelastic theory, including both uniform and variable inflow assumptions.

At inboard radial stations where a direct comparison of measured and two-dimensional chordwise loadings could be made, the correlation was good. However, near the advancing blade tip, in a region of rapid change in loading, and therefore in shed vorticity, there is evidence of a requirement for including consideration of lifting surface effects in the calculation.

Correlation of measured section airload time histories with theory was generally good, with the principal discrepancy noted at high speed in the region of the advancing blade tip where a sharp, impulsive type of loading was measured. Inclusion of variable inflow improved the correlation on both advancing and retreating sides of the disk at speeds as high at 175 knots, but the need for a more rigorous treatment of theoretical shed vorticity is indicated, owing to the presence of a phase lag between measured and calculated loading.

Good correlation of measured and calculated vibratory blade stresses was shown. Inclusion of variable inflow tends to improve the correlation of flapwise stress time histories, but has a negligible effect on computed chordwise and torsion stress.

A comparison of wind tunnel and flight test results obtained from the same rotor blade set (both operating at 110 knots but at a different rotor propulsive force) showed generally good agreement, and the differences could reasonably be explained by the differences in rotor operating conditions.

ī.

FOREWORD

Mr. Robert Piper monitored this program for the U.S. Army Aviation Materiel Laboratories. The NASA/Ames Project Engineer for the wind tunnel testing was Mr. John McCloud, III. Mr. Lawrence Doyle of the Sikorsky Measurements Instrumentation Section was the principal instrumentation engineer and wrote the Instrumentation Section of this report. Grateful appreciation is extended to each for their valuable assistance in this program.

CONTENTS

											PAGE
SUMMARY .	•	•	•	•	•	•	•	•	•	•	iii
FOREWORD	•	•	•	•	•	•	•	•	•	•	v
LIST OF ILLU	STRA	TIO	NS	•	•	•	•	•	•	•	viii
LIST OF TABL	ES	•	•	•	•	•	•	•	•	•	x
LIST OF SYMB	OLS	•	•	•	•	•	•	•	•	•	xiji
INTRODUCTIO	N		•	•	•	•	•	•	•	•	1
DESCRIPTION	OF F	ACI	LITI	ES A	ND I	EQ U	IPMI	ENT	•	•	2
TEST PROCED		5, D.	ATA •	REL .	JIABI •	LIT	Y, A	ND I	OATA •		7
DESCRIPTION	OF C	OMF	UTA	TIO	NAL	ME	ГНО	D	•	•	8
DISCUSSION O	F WII	T Civ	UNN	EL	DAT	A	•	•	•	•	10
SAMPLE BLAD	E RO	TO	MOT	ION	COM	PAR	ISO	1	•	•	11
CORRELATION	OF	ROT	OR .	AIRL	OAD	S	•	•	•	•	12
EFFECT OF N SECTION ANG					LOW	ON ·	CAL •	CUL.	ATE •	D •	16
CORRELATION	OF	BLA	DE S	TRE	ESSES	5	•	•	•	٠.	17
DISCUSSION O	F WII	T DI	UNN	EL.	AND	FLI	GHT •	TES	T.	•	23
CONCLUSIONS	}	•	•	•	•	•	•	•	•	•	25
RECOMMENDA	ATIO	NS	•	•	•	•	•	•	•	•	26
REFERENCES		•	•	•	•	•	•	•	•	•	27
DISTRIBUTION	7	_				4		_			161

ILLUSTRATIONS

Figure		Page
1	Sikorsky CH-34 Rotor Installed in NASA/Ames Full-Scale Wind Tunnel	29
2	Comparison of Basic Airfoil, Spar, and Tip Cap Cross Section	30
3	Blade Physical Properties	31
4	Blade Frequency Diagram	33
5	Location of Blade Instrumentation	34
6	Data Acquisition Block Diagram	35
7	Data Processing System	36
8	Phase Response of Data System	37
9	Sample Pressure Data Reliability	38
10	Sample Repeatability of Airload Data	39
11	Sample Repeatability of Blade Stress Data	40
12	Flow Diagram for Computations	41
13	Pictorial Example of the Initial Portion of the Wake of a Two-Bladed Rotor	42
14	Sample Chordwise Pressure Distributions	43
15	Sample Two-Dimensional Chordwise Loading .	45
16	Comparison of Two-Dimensional and Three-Dimensional Chordwise Loading	46
17	Sample Blade Root Flapping Motions	47
18	Section Aerodynamic Loading V = 110 Knots, a s = -5 Degrees	48

6

Figure		Page
19	Section Aerodynamic Loading V = 150 Knots, $\alpha_{\rm S}$ = -5 Degrees	52
20	Section Aerodynamic Loading V = 175 Knots, α_S = -5 Degrees	56
21	Theoretical Effect of Blade Flapping on Aerodynamic Loading	60
22	Theoretical Local Angle of Attack Distribution at 110 Knots, $\alpha_S = -5$ Degrees	61
23	Theoretical Local Angle of Attack Distribution at 150 Knots, $\alpha_s = -5$ Degrees	62
24	Theoretical Local Angle of Attack Distribution at 175 Knots, $\alpha_s = -5$ Degrees	63
25	Blade Stress Time Histories at 110 Knots, $\alpha_s = -5$ Degrees	64
26	Blade Stress Time Histories at 150 Knots, $\alpha_s = -5$ Degrees	67
27	Blade Stress Time Histories at 175 Knots, $\alpha_S = -5$ Degrees	70
28	Azimuthal Variation of Torsional Stress (Reference 16)	73
29	Effect of Flapping on Blade Stress	74
30	Vibratory Stress Envelope at 110 Knots, $\alpha_S = -5$ Degrees	75
31	Vibratory Stress Envelope at 150 Knots, $\alpha_S = -5$ Degrees	76
32	Vibratory Stress Envelope at 175 Knots, $\alpha_s = -5$ Degrees	77
33	Comparison of Wind Tunnel and Free Flight	78

TABLES

Table		Page
I	Wind Tunnel Operating Conditions	84
II	Harmonics of Flapping	85
III	Time Histories of Aerodynamic Loading $V = 110 \text{ Knots } \boldsymbol{a}_S = 0 \text{ Degrees}$.	87
IV	Time Histories of Aerodynamic Loading $V = 110 \text{ Knots } \mathbf{a}_S = 5 \text{ Degrees}$.	89
V	Time Histories of Aerodynamic Loading $V = 150 \text{ Knots } \alpha_S = 0 \text{ Degrees}$.	91
VI	Time Histories of Aerodynamic Loading $V = 150 \text{ Knots } \alpha_S = 5 \text{ Degrees}$.	93
VII	Time Histories of Aerodynamic Loading $V = 175 \text{ Knots } \alpha_S = 0 \text{ Degrees}$.	95
VIII	Time Histories of Aerodynamic Loading $V = 175 \text{ Knots}$ $\alpha_S = 5 \text{ Degrees}$.	97
IX	Harmonics of Aerodynamic Loading $V = 110 \text{ Knots}$ $\alpha_S = -5 \text{ Degrees}$.	99:
X	Harmonics of Aerodynamic Loading $V = 110 \text{ Knots } \alpha_S = 0 \text{ Degrees }.$	100
XI	Harmonics of Aerodynamic Loading $V = 110 \text{ Knots}$ $\alpha_S = 5$ Degrees.	101
XII	Harmonics of Aerodynamic Loading $V = 150 \text{ Knots } \alpha_S = -5 \text{ Degrees}$.	102
XIII	Harmonics of Aerodynamic Loading $V = 150 \text{ Knots}$ $\alpha_S = 0 \text{ Degrees}$.	103
XIV	Harmonics of Aerodynamic Loading $V = 150 \text{ Knots} \alpha_s = 5 \text{ Degrees}.$	104

<u> Fable</u>		Page
XV	Harmonics of Aerodynamic Loading $V = 175 \text{ Knots}$ $\alpha_s = -5 \text{ Degrees}$.	105
XVI	Harmonics of Aerodyna, ic Loading $V = 175 \text{ Knots}$ $\alpha_s = 0 \text{ Degrees}$.	106
XVII	Harmonics of Aerodynamic Loading $V = 175 \text{ Knots}$ $\alpha_s = 5 \text{ Degrees}$.	107
XVIII	Time Histories of Blade Stress $V = 110 \text{ Knots}$ $\alpha_S = -5 \text{ Degrees}$.	108
XIX	Time Histories of Blade Stress $V = 110 \text{ Knots}$ $\alpha_S = 0 \text{ Degrees}$.	110
XX	Time Histories of Blade Stress $V = 110 \text{ Knots}$ $\alpha_S = 5 \text{ Degrees}$.	112
XXI	Time Histories of Blade Stress $V = 150 \text{ Knots}$ $\alpha_S = -5 \text{ Degrees}$.	114
XXII	Time Histories of Blade Stress $V = 150 \text{ Knots}$ $\alpha_s = 0 \text{ Degrees}$.	116
XXIII	Time Histories of Blade Stress $V = 150 \text{ Knots}$ $\alpha_S = 5 \text{ Degrees}$.	118
XXIV	Time Histories of Blade Stress $V = 175 \text{ Knots}$ $\alpha_S = -5 \text{ Degrees}$.	120
XXV	Time Histories of Blade Stress $V = 175 \text{ Knots}$ $\alpha_S = 0$ Degrees.	122
XXVI	Time Histories of Blade Stress $V = 175 \text{ Knots}$ $\alpha_S = 5 \text{ Degrees}$.	124
XXVII	Harmonics of Blade Stress $V = 110 \text{ Knots}$ $\alpha_S = -5 \text{ Degrees}$.	126
xxvIII	Harmonics of Blade Stress $V = 110 \text{ Knots}$ $\alpha_s = 0 \text{ Degrees}$.	129

_	<u> Fable</u>			Page
	XXIX	Harmonics of Blade Stress V = 110 Knots	$a_s = 5$ Degrees .	132
	XXX	Harmonics of Blade Stress V = 150 Knots	$\alpha_{s} = -5$ Degrees.	135
	XXXI	Harmonics of Blade Stress V = 150 Knots	$\alpha_s = 0$ Degrees .	138
	XXXII	Harmonics of Blade Stress V = 150 Knots	$\alpha_{\rm S} = 5$ Degrees .	141
	XXXIII	Harmonics of Blade Stress V = 175 Knots	$a_s = -5$ Degrees.	144
	XXXIV	Harmonics of Blade Stress V = 175 Knots	$a_S = 0$ Degrees.	147
	XXXV	Harmonics of Blade Stress V = 175 Knots	$\alpha_{\rm S} = 5$ Degrees.	150
	XXXVI	Time Histories of Aerodynam V = 110 Knots	nic Loading a _s = -9 Degrees.	153
	XXXVII	Harmonics of Aerodynamic L V = 110 Knots	oading a _S = -9 Degrees.	155
	XXXVII	I Time Histories of Blade Stre V = 110 Knots	ss a _s = -9 Degrees.	156
	XXXIX	Harmonics of Blade Stress V = 110 Knots	α _a = -9 Degrees.	158

SYMBOLS

(For Text and Table I)

		Units
a_{ls}	Longitudinal first harmonic flapping with respect to the shaft	Degrees
A_{ls}	Lateral cyclic pitch	Degrees
b	Number of blades ·	
$^{\mathrm{b}}\mathrm{_{ls}}$	Lateral first harmonic flapping with respect to shaft	Degrees
$B_{\mathbf{ls}}$	Longitudinal cyclic pitch with respect to the shaft	Degrees
С	Blade chord	Feet
C_N	Section normal force coefficient	
D	Rotor drag	Pounds
E _O	Average lag angle	Degrees
E_1	First harmonic cosine amplitude of lag angle	Degrees
F_1	First harmonic sine amplitude of lag angle	Degrees
HP	Rotor shaft horsepower	
L	Rotor lift	Pounds
M	Free-stream Mach number	_
M(1.0, 90	0) Mach number of advancing blade tip	
q	Free stream dynamic pressure	Pounds/square foot
r	Distance from center of rotation to blade radial station	Feet

		<u>Units</u>
R	Blade radius	Feet
V	Forward speed	Feet per second or knots
x	Distance from leading edge to blade chordwise station	Feet
a_r	Local blade section angle of attack	Degrees
a _s	Rotor shaft angle of attack	Degrees
β	Blade flapping angle with respect to sha	oft Degrees
γ	Shed vorticity	Square feet per second
Γ	Trailing vorticity	Square feet per second
θ _{.75 R}	Blade collective pitch at 0.75R	Degrees
μ	Advance ratio, V/ΩR	
P	Air density	Slugs per cubic foot
σ	Blade solidity, bc / TR	
Ψ	Azimuth angle	Degrees
Ω	Rotor angular velocity	Radians per second
	For Remaining Tables	
A (N)	Cosine components in terms of Fourier series	•
B (N)	Sine component in terms of Fourier series	
N	Harmonic order, $N = 1, 2, 3, \ldots$	
Y =	$A_0 - A_1 \cos \psi - B_1 \sin \psi - A_2 \cos 2\psi$	$-B_2 \sin 2\psi \dots \text{ etc.}$

Ċ,

INTRODUCTION

During the design stage of rotary-wing aircraft, the ability to predict aerodynamic and, more important, overall dynamic structural blade loads is essential to achieve a structurally reliable and efficient rotor system. This is because the rotor is subjected to continuous fatigue loading, even during normal cruise flight. Early studies to measure the aerodynamic loads on a rotor include the wind tunnel tests of Reference 1 and the more recent flight tests of References 2 and 3. These tests covered the approximate speed range of 0 to 100 knots, and correlation of these test data with theory, as in References 1 and 4, showed that the assumption of uniform rotor inflow was inadequate to predict aerodynamic and structural loads, at least in the lower flight speeds, and that the effects of the trailing wake vorticity must be included in the theory, as covered in References 4 and 5.

The purpose of the present investigation was to extend the range of available aerodynamic and structural loading data to higher forward speeds. Therefore, the pressure-instrumented Sikorsky CH-34 full-scale rotor system, used in the study of Reference 2, was tested in the NASA/Ames full-scale wind tunnel at speeds of from 110 to 175 knots. An additional test was conducted at 110 knots to simulate a flight test condition of Reference 2. These data are presented and a comparison is made with computed aerodynamic and structural loads. For certain computations, both nonuniform and uniform rotor inflow were used.

This program was jointly sponsored by the United States Army Aviation Materiel Laboratories and Sikorsky Aircraft, and the tests were conducted by the Ames Research Center of the National Aeronautics and Space Administration.

DESCRIPTION OF FACILITIES AND EQUIPMENT

WIND TUNNEL

The full-scale wind tunnel located at the NASA Ames Research Center is of the closed-throat, closed-return type, with a test section 40 feet high and 80 feet wide. This tunnel has a nominal maximum speed capability of 200 knots and is powered by six 6000-horsepower electric motors. Model forces and moments are measured by a six-component mechanical balance, with the readings punched directly on IBM cards for processing.

ROTOR DRIVE AND CONTROL SYSTEM

The faired rotor drive and control system is shown as installed in the wind tunnel in Figure 1. The fully articulated rotor is mounted on a standard CH-34 transmission powered by a NASA 1500-horsepower variable-speed electric motor. The four-bladed hub is equipped with coincident flapping and lagging hinges located 1 foot from the center of rotation. Lagging motion is restrained by standard production hydraulic dampers. A terminal plate is mounted on the rotor head to accommodate instrumentation leads from the rotating system through the slip rings to the fixed system. All components are mounted on a triangular I-beam frame, and the complete assembly is enclosed in a streamlined fairing. The model was supported on the tunnel balance by means of two faired forward struts and one unfaired, telescoping tail strut. The rotor head, at zero angle of attack, was positioned 7 feet above the tunnel center line.

Certain modifications to the CH-34 control system were made to minimize pitch-lag coupling and to provide for adequate strength to react the anticipated control loads which, at the high speeds and advance ratios possible in the wind tunnel, were expected to be in excess of the CH-34 design loads. The swash plate, scissors, and control horn were redesigned. The CH-34 pushrods and primary control servos were replaced by units standard on the Sikorsky S-61 helicopter. The usual aircraft collective and cyclic pitch control sticks were replaced by three remotely operated electromechanical actuators which controlled rotor blade pitch through the standard aircraft linkage.

ROTOR BLADES

The test was conducted using a standard four-bladed CH-34 main rotor, one blade of which was modified only to the extent required for the necessary instrumentation. The remaining blades were balanced to match the instrumented blade. Rotor radius is 28 feet, and the blades are of -8 degrees aerodynamic twist with a blade chord of 16.4 inches. Airfoil contour is that of an NACA 0012, based on a chord of 16.0 inches

modified by a 0.4-inch trailing edge extension of 0.096 inch thickness. Figure 2 compares the basic airfoil shape, the tip cap region at 99 percent radius, and the inboard blade spar. The blade's physical properties are given in Figure 3; the blade frequency diagram, in Figure 4. The calculated blade natural frequencies at a rotor tip speed of 650 feet per second are as follows:

CYCLES/REVOLUTION

1st Flapwise Mode:	1.03
2nd Flapwise Mode:	2.70
3rd Flapwise Mode:	4.98
4th Flapwise Mode:	7.71
1st Chordwise Mode:	0. 24
2nd Chordwise Mode:	3. 38
3rd Chordwise Mode:	9. 00
1st Torsional Mode:	7.41

(The listed first flapwise and chordwise modes are sometimes referred to as the rigid body flapping and lagging frequencies. However, this is true only for an articulated blade with zero flap and lag hinge offset. For an articulated rotor with finite flapping and lag hinge offset, such as considered here, these are actually elastic modes.)

INSTRUMENTATION AND DATA ACQUISITION SYSTEM

One rotor blade of the set was instrumented with 56 electrical pressure gages, NASA type 49-TP and 6680-NS, (Reference 6) in order to provide measurements of instantaneous aerodynamic loads. The gages were located at nine radial stations as shown in Figure 5. The blade was also strain gaged to measure four flapwise, four chordwise, and three torsion stresses. As a safety precaution, five total stress gages were also provided and continuously monitored during testing (see Figure 5).

A master control console was used to provide rotor control and monitoring functions. The panel display consisted primarily of a rotor tachometer, gearbox oil pressure and temperature indicators, two dials for the resolved flapping angle, and three dial indicators for the control inputs. Three position toggle switches controlled servo actuators, and a servo position indicator system was utilized to set test conditions.

Blade flap and lag angles were measured by Baldwin-Lima-Hamilton angulators installed on the rotor head. A flapping resolver system was used to derive the firs, harmonic sine and cosine components electrically

from the output of one of two flapping transducers. These flapping components were displayed on the control console for use in setting trim conditions during testing.

Rotor power was derived from torsion strain gages located on the rotor shaft. Electrical signals were transmitted from the rotating to the non-rotating system through a 160-channel slip-ring assembly. Magnetic pickups were used to sense blade azimuth position.

Time-averaged six-component rotor performance data were recorded by the wind tunnel balance and processed by NASA/Ames wind tunnel equipment.

DATA REDUCTION FACILITY

43

1

In order to utilize automated electronic data processing techniques, the recording medium selected for all dynamic measurements was magnetic tape. A block diagram of the instrumentation is shown in Figure 6. The principal acquisition device was an Ampex Model 800B Magnetic Tape Recorder which has a capacity of 14 tracks of information.

The recording system was a narrow-band FM multiplex using standard IRIG subcarrier oscillators. Eight channels of information, IRIG bands 9 through 16, were recorded on individual tape tracks. A total of 10 direct record tracks were used for dynamic data. In addition, one track was used for audio comments, two others were used for main rotor azimuth reference contactors, and a final track contained a data run command to be used in processing. All dynamic measurements were recorded simultaneously to provide proper time correlation of the data.

The 56 pressure transducers in the instrumented blade were conditioned using CEC System D Amplifiers.

The strain gage instrumentation channels were conditioned by B & F Bridge Balance Units. The resulting signal outputs were then supplied to the subcarrier oscillators.

In order to provide for on-line monitoring of test conditions, a patch panel and an 18-channel CEC Datarite Oscillograph were provided. It was also necessary to observe specific signals continually during the entire test program. For this purpose, a 17-inch oscilloscope and a four-trace electronic switch were supplied and patched into the appropriate channels.

Operation of the recording system was accomplished by use of a single control unit. Features included selectable time duration data bursts

and an automatic calibration sequence using standard shunt resistance techniques.

DATA PROCESSING SYSTEM

The dynamic test data were processed at Sikorsky Aircraft by means of the technique block diagrammed in Figure 7. A single tape track, which contained a maximum of eight measurements in an FM multiplex, was played back into a bank of narrow-band FM discriminators (Model GFD-7, Data Controls Systems, Inc.). The discriminator outputs were then fed into normalizing amplifiers that scaled all measurements to a common signal level (10 volts = full scale). These data were presented to a solidstate multiplex with sample and hold amplifiers. The sampling rate of the multiplexer was controlled by special Sikorsky-designed hardware that utilized control signals from the analog tape. The control signals, 72 azimuth pulses per main rotor revolution, one azimuth pulse per main rotor revolution, and a data run command, were combined to generate 720 data sampling pulses for 10 data cycles within a given data burst. The multiplexer output was digitized by an eight Bit Binary Plus sign analog to digital converter and formated on digital tape through a Scientific Data Systems Computer, Model 910. This digital tape was then processed to final form by an IBM 7094 computer, with calibration constants incorporated in the digital computations.

FREQUENCY RESPONSE OF DATA SYSTEM AND MEASUREMENT ACCURACY

In considering data accuracy for a test of this type, both static and dynamic errors must be included. By a static error is meant the summation of the possible errors in each individual component of the data acquisition and processing system. This was arrived at by taking the square root of the sum of the squares of the possible deviations of each component, a standard statistical procedure. This resulted in a static system amplitude accuracy for strain gage measurements of 2.2 percent of full scale, and 4.1 percent of full scale for blade pressures.

The dynamic response of the data acquisition and reduction system must also be considered, as it could distort both the amplitude and the phase relationship of the data. There was no measurable amplitude distortion up to the tenth harmonic of rotor speed and a maximum of only 2 percent at the twentieth harmonic for either pressure or strain gage measurements. Figure 8 presents the phase lag of the system versus frequency for both pressure and strain gage measurements.

Any departure from linearity would indicate a phase distortion of the final waveform, but the nonlinearity of the curve is so small that no correction was applied to the data.

Direction

Upper surface in compression

Trailing edge in compression

Leading edge up

SIGN CONVENTIONS

Measurement

Flapwise bending moment

Torsion Moment

 F_1

1

No Section 19

Chordwise bending moment

The sign convention used is that a positive sign indicates:

$\theta_{75 R}$ Leading edge up, average value A_{1s} Pitch reduction at $\psi = 0$ Degrees Azimuth B_{1s} Pitch reduction at $\psi = 90$ Degrees Azimuth a_{1s} Down flapping at $\psi = 0$ Degrees Azimuth b_{1s} Down flapping at $\psi = 90$ Degrees Azimuth E_0 Blade span axis lagged behind line from center of rotation and lag hinge (average value) E_1 Blade leading at $\psi = 0$ Degrees Azimuth	Pressure	Lift (upward)
Bls Pitch reduction at $\psi = 90$ Degrees Azimuth als Down flapping at $\psi = 0$ Degrees Azimuth bls Down flapping at $\psi = 90$ Degrees Azimuth Eo Blade span axis lagged behind line from center of rotation and lag hinge (average value)	θ _{75 R}	Leading edge up, average value
a _{ls} Down flapping at $\psi = 0$ Degrees Azimuth b _{ls} Down flapping at $\psi = 90$ Degrees Azimuth E ₀ Blade span axis lagged behind line from center of rotation and lag hinge (average value)	A_{ls}	Pitch reduction at ψ = 0 Degrees Azimuth
b _{ls} Down flapping at ψ = 90 Degrees Azimuth E _o Blade span axis lagged behind line from center of rotation and lag hinge (average value)	$\mathtt{B_{ls}}$	Pitch reduction at ψ = 90 Degrees Azimuth
E _O Blade span axis lagged behind line from center of rotation and lag hinge (average value)	a _{ls}	Down flapping at $\psi = 0$ Degrees Azimuth
rotation and lag hinge (average value)	b_{ls}	Down flapping at ψ = 90 Degrees Azimuth
E_1 Blade leading at $\psi = 0$ Degrees Azimuth	E _o	
	$\mathbf{E_{l}}$	Blade leading at $\psi = 0$ Degrees Azimuth

Blade leading at $\psi = 90$ Degrees Azimuth

TEST PROCEDURES, DATA RELIABILITY, AND DATA REPEATABILITY

PROCEDURE

The testing procedure was to set a desired tip speed (650 feet per second), shaft angle of attack, forward speed, and nominal rotor lift. Longitudinal and lateral cyclic pitch were adjusted to provide nominal zero first harmonic flapping with respect to the shaft. The actual first harmonic flapping angles are presented in Table I. A negative Fourier series is used to represent blade motions and all other harmonic amplitudes (for example, $\beta = a_0 - a_{1s} \cos \psi - b_{1s} \sin \psi - a_{2s} \cos 2\psi - \text{etc.}$).

In anticipation of the high control loads that would be generated at high tunnel speeds, the control system was modified and strengthened as described previously. However, this modification resulted in an unusual control system kinematic coupling such that two adjacent blades had a slightly different cyclic pitch from the other two adjacent blades, which resulted in a "split" tip path plane whenever cyclic pitch was applied. The instrumented blade and the preceding blade (whose vortex system has the primary influence on the following blade) were always in plane, but the other two blades were flapped approximately one degree higher. Calculations based on the method of Reference 5 indicate that such a misalignment should have no significant influence on the measured pressure data.

RELIABILITY OF PRESSURE DATA

At each data point, an analog tape record was made for 10 rotor revolutions. Figure 9 shows a typical plot of differential pressure at 90 percent radius and 16.8 percent chord, a randomly chosen location. Curve 1 is a direct playback from the analog tape of a random cycle within the 10-cycle data burst. Curve 2 represents the same random cycle after being digitized in 5-degree increments. Curve 3 is an average of the 10 digitized cycles within the data burst. The figure demonstrates excellent cycle-to-cycle repeatability was well as accurate conversion from analog to digital information.

OVERALL REPEATABILITY OF DATA

At a tunnel speed of 150 knots and a shaft angle of zero, two completely independent runs were conducted at separate times to permit evaluation of overall data repeatability. Figure 10 compares time histories of airloads for three typical radial stations, and Figure 11 presents time histories of flapwise, chordwise, and torsional stress at 65 percent radius. Excellent repeatability is evidenced, particularly considering the slight difference in actual rotor lift and drag.

DESCRIPTION OF COMPUTATIONAL METHOD

The computational technique used (see Figure 12) is based on the aerodynamic approach of Reference 7 but is extended to include blade flexibility through the summation of normal modes of vibration and the incorporation of an option for including the influence of the trailing and shed wakes on rotor loads, using the method of Reference 4. Calculations are performed on an IBM 7094 and are initiated by inserting the blade's physical properties and rotor speed into a deck for computing the rotor blade's natural frequencies and mode shapes based on an extension of the Myklestad method for rotating beams (Reference 8). In this investigation, 4 flapwise, 3 chordwise, and 1 torsional mode shapes were used. These results, along with the required flight parameters (forward speed, tip speed, lift, and propulsive force), blade section aerodynamic data (Reference 7), and rotor inflow, are then inserted in the Normal Mode Transient Analysis program to calculate blade response. Determination of blade response by the normal mode method is described in References 9 and 10. Briefly, using arbitrary starting values, the transient response of the blade is calculated at finite azimuthal increments until the steady state is reached to within a specified tolerance. If the desired lift and propulsive force and/or blade flapping motions are not achieved, an automatic iteration is performed by adjusting rotor inflow and control positions, as indicated in Figure 12. Once convergence is achieved, the rotor blade aerodynamic and structural loads, blade motions, and control positions are printed out.

If the variable inflow option is exercised, the above results are used as input to the Cornell Aeronautical Laboratory variable inflow calculation method of Reference 4. This method represents the rotor wake as a series of discrete shed and trailing vortices, as illustrated schematically in Figure 13, taken from Reference 4. For the present calculations, 10 radial segments were used and calculations of inflow were made at 15degree increments in azimuth, the minimum spacing provided in the method. The wake transport velocity is assumed to be equal to the vector sum of the mean rotor inflow velocity and the forward speed of the rotor. The variable induced velocity output is then introduced into the Transient Analysis Program and a new blade response is determined. This procedure can be repeated, but experience has shown that one iteration is adequate. For the correlation conditions of this report, both uniform and nonuniform inflow were used in the calculations. However for the tabulated theoretical results, only uniform inflow was assumed, unless otherwise noted.

It should be noted that in the following comparison of measured and computed loading using the variable inflow method of Reference 4, that when discrepancies are attributed to possible limitations in the theory, no

criticism of the theory of Reference 4 is intended. The intent is to emphasize that additional research in the very complicated field of rotor inflow determination is required, as discussed in References 14 and 15, to provide a more precise definition of the influence of the returning wake on rotor loading.

DISCUSSION OF WIND TUNNEL DATA

CHORDWISE LOADING

Figure 14 presents typical examples (complete pressure data are available in Reference 11) of differential blade pressure versus chordwise position at 175 knots for 90-degree increments in azimuth at 55, 75, 95, 97, and 99 percent radius. (Note that the measurements at 99 percent radius are on the tip cap and therefore are not for an NACA 0012 airfoil section; see Figure 2.) The load distributions are generally as expected, with the primary exception of the unusual pressure distribution at 95 percent radius and 90 degrees azimuth. These data were particularly carefully checked for validity. No definite explanation for this apparently peculiar behavior is available at this time, but two possibilities are present. First, this distribution may be partly a two-dimensional characteristic. The two-dimensional wind tunnel tests of Reference 12 on a production CH-34 rotor section indicate that at the Mach numbers under consideration, approximately 0.8, similar chordwise loadings may be encountered, but normally at a higher angle of attack, as shown in Figure 15. Second, the distribution may be influenced by a three-dimensional effect. Examination of the wake trajectory, computed by the method of Reference 4, shows that the tip vortex from the preceding blade is at about 88 percent radius and within 1 foot of the instrumented blade. If this representation is reasonably accurate, there could be a large chordwise variation in inflow at the instrumented blade due to the returning wake under the rotor which would suggest the necessity of the use of lifting surface theory for more accurate determination of chordwise load distribution. Harmonic analysis of the individual pressure gage output at this station showed a large variation in harmonic content with chordwise location, which would lend support to the latter hypothesis. An excellent discussion of this point is given in Reference 15. Further examination of this phenomenon is beyond the scope of the present report.

Figure 16 presents a comparison of the rotor chordwise Lad distribution with two-dimensional data from Reference 11, at 25, 55, and 75 percent radius. The radial stations and azimuth positions selected coincided approximately with data points in Reference 12 at the same Mach number and normal force coefficient, so interpolation would not be necessary. The correlation of two-dimensional and three-dimensional loading is generally good for these conditions, and additional comparisons may be made by interpolating between References 11 and 12.

SAMPLE BLADE ROOT MOTION COMPARISON

A correlation of measured and calculated blade root flapping motion is presented in Figure 17 for speeds of 110, 150, and 175 knots at a shaft angle of -5 degrees (forward tilt). It should be noted that here, and in all plotted correlations of theory and experiment, the theoretical first harmonic flapping angle with respect to the shaft has been made equal to the measured value. In the tabulated calculations, the first harmonic flapping angle is set equal to zero. The effect of out-of-trim flapping on computed airloads and blade stress is discussed in connection with Figures 21 and 29.

Correlation of theoretical and measured flapping in Figure 17 is good, and the effect of the inclusion of variable inflow is small. Harmonic analyses of all test conditions are presented in Table II.

No comparisons were made of the blade lag motion, as the higher harmonic content was negligible. The first harmonic measured values are listed in Table I.

CORRELATION OF ROTOR AIRLOADS

Figures 18 through 20 present a comparison of the measured time histories of section aerodynamic loading with computed airloads based both on uniform and variable inflow at $a_s = -5$ degrees and forward speeds of 110, 150, and 175 knots for radial stations of 25, 40, 55, 75, 85, 90, 95, and 97 percent radius. At 99 percent radius, only variable inflow theory is presented because this station is within the tip loss region for uniform inflow; therefore, the lift is assumed equal to zero. Also at 99 percent radius, NACA 0012 airfoil data were used in the theoretical calculations, for lack of information on the actual section characteristics. Complete time histories and harmonic analysis of airloads for the remaining test conditions are presented in Tables III through VIII and IX through XVII, respectively. The blade surface pressures were integrated to obtain section aerodynamic loading using the Gaussian technique of Reference 2, except for stations at 97 and 99 percent radius, where an averaged quadratic method was used. These pressure gages could not be located for structural reasons at chordwise locations compatible with the Gaussian method. The integrated loadings at 97 and 99 percent radius are not as well defined as at other stations, as only 4 and 3 pressure gages were installed, respectively, owing to space limitations.

At 110 knots, Figure 18, the correlation of loading is generally good out to 55 percent radius; but from 75 to 97 percent radius, the measured data show a sharp rise in the vicinity of 80 to 90 degrees azimuth which is not predicted by either theory. For all radial stations at this speed, however, the inclusion of variable inflow improves the correlation with experiment, particularly on the retreating side of the disk at the outboard stations.

1

Inspection of stations 95 and 97 percent radius, for example, shows a trend which is noticeable at higher speeds as well: a phase lag in the measured loading in the region of 120 degrees azimuth compared to either uniform or nonuniform inflow theories. This is a region of high rate of change of loading with azimuth and therefore one in which there is a rapid change in shed vorticity from the blade, which would imply that unsteady aerodynamic effects might be significant. As discussed under the section "Description of Computational Method", the variable inflow program used in this study incorporates shed as well as trailing vorticity in the wake and therefore should ideally account for the lift deficiency and phase lag associated with nonstationary flow. However, the method of Reference 4 has a minimum wake spacing of 15 degrees in azimuth, which is probably too coarse to represent the influence of the shed vorticity adequately in close proximity to the blade. In an attempt to assess whether unsteady effects are indeed significant, a very approximate calculation was made of the Theordorsen phase lag (Reference 13); the results indicate that

there could be a 5- to 10-degree phase lag in loading. This two-dimensional analysis, while not conclusive, does tend to support the hypothesis that a more exact treatment of the shed wake is needed in rotor aerodynamic theory. Reference 15 suggests that a 1- to 2-degree spacing is required near the blade, and presents a good discussion of lifting line versus lifting surface theory with respect to nonstationary flow effects. Another point to be kept in mind is that, in the computational method used, the wake trajectory time history is prespecified by the forward and mean inflow velocities and any change in wake positioning could have a significant influence on the computed inflow and loading. An interesting discussion of some of these problems is presented in References 14 and 15.

At 150 knots (Figure 19), correlation of experiment and theory at 25 to 55 percent radius is similar to the 110-knot case, but two differences may be noted. At 25 to 55 percent radius, the variable inflow calculations show a higher harmonic content than the experimental data. This effect will be seen to be more pronounced at 175 knots. It is postulated that this is due to the sensitivity of the calculated results when the blade is in close proximity to the zero core diameter line vortex which is assumed in the currently used theory. It is believed that a more precise definition of wake geometry and chordwise distribution of vorticity could improve correlation. The second point is that at 25 percent radius, within the reversed velocity region, the variable inflow calculations shows a positive lift as opposed to the measured negative lift and the calculated negative lift based on the assumption of uniform inflow. This will be discussed in more detail in connection with Figure 20. At radial stations outboard of 75 percent radius, the inclusion of nonuniform inflow improves the correlation with experiment on the retreating side of the disk as at 110 knots; but an additional effect is noticed, in comparison to the uniform inflow calculations, on the advancing side of the disk. Here, and in Figure 20 at 175 knots, the inclusion of variable inflow tends to increase the sharpness of the drop in loading more in line with the experimental results. However, the steep drop in loading on the advancing side (which is more evident in Figure 20 at 175 knots) is still substantially greater than either theory predicts. The phase lag in loading on the advancing side, previously discussed, is again evidenced here, similar to that of Reference 14, Figure 17 and 18. The high-frequency airload at 95 percent radius between 160 and 230 degrees azimuth may be due to the proximity to the blade of a strong tip vortex in practice, not accounted for by current theory, as discussed in Reference 15.

The correlation of theory and experiment at 175 knots (μ = .45) is similar to that at 150 knots except that the differences noted (Figure 20) are more pronounced. At the inboard radial stations, the higher harmonic content of the variable inflow theory on the advancing blade is more exaggerated, probably due to inexact placement of the trailing

wakes, and the degree of correlation in the reversed flow region has deteriorated.

Subsequent to the preparation of Figures 18 through 20 further investigation of the computing program used (Reference 4) has indicated that the inconsistencies in the reverse flow region do not in fact exist and the variable inflow theory should also predict negative aerodynamic loading in the reverse flow region. However, precise definition of the airload distribution was not available in time for inclusion in this publication. Preliminary calculations show that only reverse flow airloads are influenced, and these differences do not affect computed blade stresses, to be discussed subsequently. To put this correlation discussion in proper perspective, it should be kept in mind that the variable inflow theory of Reference 4 was originally developed primarily for application at low advance ratio conditions where the reversed flow region is small, and the effects shown here would not be important.

On the advancing blade (for example, at 90 and 95 percent radius) an extremely rapid reduction in measured loading is evidenced, compared to theory. Reference 15 has postulated that this rapid change in loading is predominantly influenced by the tip vortex of the preceding blade; Reference 14, containing data obtained during the present tests under transient conditions, shows a similar impulsive type load.

The lack of agreement between theory and experiment for this impulsive type loading on the advancing blade at high speed is disturbing to the aerodynamicist, and indicates that substantial additional research is needed to understand rotor dynamic airloads properly. However, it should be remembered that the final result of importance to the designer of a structurally reliable rotor system is the ability to predict vibratory blade stresses; and as will be shown in the discussion of blade stresses, the rotor blade does not respond substantially to this impulsive type of aerodynamic loading, as the time duration is short compared to the natural period of the blade lower order flapwise modes of vibration. The character of the loading variation with azimuth at 97 and 99 percent radius of Figure 20 is seen to be quite different than at 95 percent. For example, the sharp peaks have been rounded off, similar to 99 percent radius at 150 knots in Figure 19. In each case, inclusion of variable inflow substantially improves the correlation of theory and experiment.

As discussed in connection with Figure 17, each of the theoretical calculations for which the data are plotted had first harmonic flapping set equal to the measured value, while for the tabulated calculations the first harmonic flapping is set equal to zero. For a rotor with zero flapping hinge offset, there would be no effect of flapping on airloads; but with a finite flapping offset selected to produce hub moment capability for control,

first harmonic flapping with respect to the shaft does influence the airload distribution. However, with the relatively small offset of the CH-34 rotor system (approximately 3.6 percent radius), the effects are small for small amounts of flapping. This can be seen from examination of Figure 21, which presents computed aerodynamic loading versus azimuth at 175 knots, based on uniform flow, for 25, 55, and 90 percent radial stations. Figure 21 represents the condition where the maximum differences in actual and trimmed flapping occurred; therefore, in the tabulated theoretical calculations, the effects of out-of-trim flapping will be less than shown here. The solid line represents first harmonic flapping trimmed to zero with respect to the shaft, while the dashed line has longitudinal and lateral flapping iterated equal to the experimentally measured values. As expected, the principal differences occur on the outboard advancing side when the combination of flapping velocity and dynamic pressure is greatest; the effect is primarily one per revolution, thereby producing a lateral moment for the lateral flapping case shown.

EFFECT OF NONUNIFORM INFLOW ON CALCULATED SECTION ANGLES OF ATTACK

The preceding discussion of correlation of theory and experiment showed that nonuniform inflow considerations based on the method of Reference 4 were significant on rotor airloads at speeds at least as high as 175 knots. Similar comparisons cannot be made on the basis of local blade section angle of attack owing to the lack of experimental section angle data. Therefore, Figures 22 through 24 were prepared to present a comparison of the theoretical local angle of attack contours over the rotor disk for both uniform and nonuniform inflow. These conditions correspond to those where the airload correlations were presented in Figures 18 through 20. Some general observations are apparent from Figures 22 through 24. The primary influence of the inclusion of variable inflow, as calculated by the method of Reference 4, is the substantially greater nonuniformity in computed angles of attack, particularly on the retreating side of the disk. Also, the angle of attack at the retreating tip is reduced by variable inflow in all cases; for example, a reduction from 6 to 4 degrees at 110 knots, from 9.5 to 5 degrees at 150 knots, and from 9 to 5 degrees at 175 knots. The inclusion of variable inflow tends to shift the region of maximum positive angles of attack inboard, notably in the regions of 225 and 315 degrees azimuth at approximately 50 percent radius, typically by 2 to 3 degrees. Further inboard radially, just outboard of the reversed flow region, the large negative angles of attack predicted by uniform inflow theory become positive (110 and 175 knots), or substantially less negative, as at 150 knots, when variable inflow theory is used.

CORRELATION OF BLADE STRESSES

BLADE STRESS TIME HISTORIES

Figures 25 through 27 compare measured blade stress time histories with calculated stress, for both uniform and variable inflow assumptions, at 110, 150, and 175 knots forward speed and -5-degree shaft angle. Stations at 0.375 and 0.65 radius were chosen for presentation, as these represent locations where flapwise, chordwise, and torsional data each were measured. Also, the 65 percent station is normally the critical stress station at the speeds and loadings considered in the present study. Data for the remaining test conditions are given in Tables XVIII through XXVI as blade stress time histories, and in Tables XXVII through XXXV as harmonics of blade stress. Although the figures are grouped in terms of forward speed for consistency, the discussion will consider each component of stress at a given speed separately so that trends for a given component may more easily be seen. The figures are reasonably self-explanatory, so only the more unusual features will be discussed in some detail.

FLAPWISE STRESS

The correlation of flapwise stress with azimuth is generally good at all speeds, as to general stress signature. The agreement on steady flapwise bending stress at the inboard station, 37.5 percent radius, is less than desirable, and the variable inflow calculation is less precise in this case than constant inflow. Inspection of Tables XXVIIa through XXXVa shows a maximum discrepancy between theory and experiment of steady bending stress of 1000 p.s.i. and an average deviation of less than 400 p.s.i.

Throughout the speed range, the principal harmonics of flapwise stress are the first through third, as seen by inspection of Figures 25a through 27a and Tables XXVIIa through XXXVa. At 110 knots for harmonics above the fourth, the stress amplitudes are generally less than 100 p.s.i. At 150 knots, harmonic amplitudes above the fifth are generally less than 100 p.s.i.; for 175 knots, 100 p.s.i. harmonic amplitudes are rarely found above the sixth. Compared in the following sketch are the experimental and calculated first three harmonics of flapwise stress in bargraph form for the 65 percent radial station, at a shaft angle of -5 degrees.

HARMONIC AMPLITUDE p.s.i

3

*NOTE: e = experimental; u = uniform inflow theory; v = variable inflow theory

It can be seen that, in general, the correlation of the lower harmonics, which predominantly participate in blade peak-to-peak stresses and therefore influence blade fatigue design, is good; the overall peak-to-peak correlation is shown in Figures 30 through 32. The higher harmonic content of the experimental data at 110 knots is small; but at 150 and 175 knots forward speed, there appears to be substantial harmonic response within the region of 90 to 180 degrees azimuth, not reflected in the calculations, which is attributed to the impulsive type of aerodynamic loading described previously in the "Correlation of Rotor Airloads" section. Because of the short time duration of the aerodynamic impulse compared to the period of the lower order modes, the correlation of measured and calculated blade flapwise stress is much better than the correlation of airloads. As with the airloads, the inclusion of variable inflow improves the correlation of theory and experiment, particularly in the advancing blade region. Examination of the frequency of blade response in the 90to 180-degree azimuth region indicates that the response is primarily second-mode bending, which has a calculated natural frequency of 2.7 cycles per revolution.

Examination of Tables XXVIIa through XXXVa shows that for all three flight conditions in Figures 25a through 27a, both the measured data and the calculations based on uniform inflow show relatively insignificant harmonic content at frequencies above the fifth or sixth at stations inboard of 80 percent radius. At the 80 percent radial station it may be noted in the tables that measured seventh and/or eighth harmonics appear for some of the flight conditions which are substantially greater than 10 percent of the first harmonic (Tables XXXIa, XXXIIa, XXXVa). It is seen in these instances that the uniform inflow theory does not adequately predict these higher harmonics. At other flight conditions (Tables XXVIIa, XXXIIIa), where variable inflow calculations were performed, the measured seventh and eighth harmonics are small, while the variable inflow calculations predict these harmonics to be too large. A study was undertaken to evaluate the effects of variable inflow on computed seventh and eighth harmonic flapwise stress at 80 percent radius for Tables XXXIa, XXXIIa, and XXXVa, and it was found that in all cases the inclusion of variable inflow tended to increase the higher harmonic content over that predicted by uniform inflow, as would be expected physically, but that in at least one case the variable inflow predicted fourth and eighth harmonics larger than the first harmonic, which is much greater than anything measured. The study also showed that very small changes in wake geometry have a large effect on the predicted higher harmonics when the rotor disk is at small angles to the free stream (thus causing the assumed wake to pass very close to the rotor). Thus it seems that the variable inflow theory used in this study tends to increase the predicted higher harmonic content over that of uniform inflow, which is more comparable to experimental results, but does not yet pinpoint this content with sufficient accuracy. Reference 17 has shown that strong line vortex concentrations, as used in the current variable inflow calculations, can have a considerable influence on the higher harmonics and therefore higher modes of vibration. This suggests again that a better definition of the theoretical wake geometry and vortex field is required.

CHORDWISE STRESS TIME HISTORIES

Figures 25b through 27b present a comparison of measured and computed chordwise stress versus azimuth. As with the flapwise stress correlations, the figures are rather self-explanatory, so only the salient differences will be noted in the discussion herein. The degree of correlation of measured and computed time histories is less precise than with the flapwise stress discussed above, but this is mitigated by the fact that the chordwise stress amplitudes are only on the order of 40 percent of the flapwise stresses, and the agreement on vibratory stress amplitude (Figures 30 through 32) is good, a fact which is important for fatigue analysis. However, a better definition of the higher harmonics of chordwise stress is desirable, as these are reflected in the blade root shear

forces which determine aircraft vibration levels. It is noteworthy that the inclusion of variable inflow has little influence on computed chordwise stress.

One of the simplifying assumptions implicit in the theory used for the present correlation is that the lag damper moment, which primarily influences chordwise stress, is a linear function of the instantaneous lagging velocity. However, in practice, a typical damper response curve would be as in the sketch following:

The influence of this simplifying assumption is currently under study independently at Sikorsky Aircraft.

The predominant harmonic of measured chordwise stress is the third, and both theoretical calculations agree reasonably well at this frequency. However, there are two discrepancies between theory and experiment that can be noted, particularly in Figures 26b and 27b, at 150 and 175 knots, respectively.

At 37.5 percent radius in Figure 26b, there is a small-amplitude, high-frequency component in the measured data which is not found in either

theory. Detailed harmonic analysis of these data showed that all harmonics greater than the fourth were substantially less than 10 percent of the fundamental, except for the twenty-first harmonic, which was 15 percent of the fundamental.

The calculated fourth-mode chordwise bending frequency at this tip speed is 18 cycles per revolution, which is close to this twenty-first harmonic. This may be an indication of a requirement for a more exact definition of the higher mode frequencies in the solution of the rotating beam equations into the normal modes of vibration.

At 65 percent radius, there is a sizeable 8-per-revolution frequency in the experimental data which is not reflected in the theory. The theoretical third-mode chordwise frequency is approximately 9 cycles per revolution, close to the measured response. Therefore, a small change in the computed third natural frequency (along with a better definition of the higher harmonic airloads) would probably improve the correlation.

TORSIONAL STRESS TIME HISTORIES

The torsional stresses measured at the loadings encountered during this program were of such low magnitude that the presentation must be considered qualitative in nature rather than quantitative; however, the results are presented for the sake of completeness, and a supplemental correlation is presented for quantitative evaluation of the theory under severe operating conditions. Figures 25c through 27c present torsional stress time histories for experiment, and both uniform and nonuniform inflow computations. The vertical scales have been grossly expanded, out of proportion to the measurement accuracy, to demonstrate qualitative trends (if the proper scale had been used, no appreciable variation of torsion stress with azimuth would be evident). Qualitatively, therefore, the predominant first and second harmonics of torsion stress from the figures and Tables XXVIIc through XXXVc are in good agreement, and a discussion of the correlation of the higher harmonics is not considered appropriate because of the very low levels under consideration. A more severe comparison of the ability of the Transient Analysis Theory to predict torsional stress time histories was presented in Reference 16, which discussed, among other items, similar correlations with test results obtained on a dynamically scaled model rotor at advance ratios as high as 1.0, a very severe operating condition. Figure 28, from Reference 16, compares measured and calculated torsion stress time histories at an advance ratio of 1.0 (dynamic equivalent forward speed of 300 knots), and the quantitative correlation with the theory of this report is seen to be quite good. As discussed in Reference 16, the disagreement between theory and experiment near zero azimuth is believed to be due to turbulent flow from the relatively large unfaired model rotor

head. It is interesting to note that the phase lag in measured and computed torsional stress of Figure 28 at 270 degrees azimuth, the region of maximum change in angle of attack, is similar to the previous full-scale aerodynamic loading data at 90 degrees azimuth at lower advance ratios such as in Figures 18 through 20.

EFFECT OF FLAPPING ON BLADE STRESS TIME HISTORIES

Figure 29 was prepared to show the theoretical effect of out-of-trim flapping on flapwise, chordwise, and torsional stress at 65 percent radius and 175 knots, the most severe case. The effects are seen to be minimal.

VIBRATORY BLADE STRESS AMPLITUDE

Figures 30 through 32 present measured and calculated total vibratory stress amplitude versus radius for flapwise, chordwise, and torsional bending for forward speeds of 110, 150, and 175 knots, respectively. As discussed previously, while the higher harmonic contents of blade stress are important in that they reflect on the harmonic content of root vibratory shear forces, the primary criterion for satisfactory blade structural reliability is the ability to predict blade stress amplitudes accurately. Figures 30 through 32 show excellent correlation of theory and experiment in this respect. The apparent discrepancy in torsional correlation is due to the overly expanded vertical stress scale previously discussed in conjunction with blade stress time histories but preserved here for consistency. The absolute difference in torsional stress amplitude correlation, on the order of 100 p. s.i., is of no practical importance.

DISCUSSION OF WIND TUNNEL AND FLIGHT TEST DATA

During the test, it was desired to duplicate, in the wind tunnel, a flight test condition previously conducted on this same rotor blade set, as reported in Reference 2. The condition chosen to be duplicated is listed in Reference 2 as Flight 18. Essentially the same value of rotor lift was achieved: 11,800 pounds for the wind tunnel data versus an estimated 11,500 pounds for the flight test data. (Reference 2 lists a range of aircraft gross weights, rather than specific values at each test point.) However, a greater rotor propulsive force was inadvertently produced in the wind tunnel: 2144 pounds versus an estimated flight test value of 1390 pounds (based on 36.5 square feet of parasite area for the H-34 helicopter). The increased propulsive force and the -9-degree rather than -7.2-degree shaft angle reported in Reference 2 thus represent a different inflow and loading for the rotors, so these differences should be kept in mind in the following comparison of wind tunnel and flight test data.

ROTOR AIRLOADS

Figure 33a presents the averaged aerodynamic loading versus spanwise station for wind tunnel and flight test data as well as theoretical calculations based on both uniform and nonuniform inflow assumptions simulating the wind tunnel operating condition. The wind tunnel data appear to be smoother than the flight test data, perhaps reflecting the more easily controlled conditions in the wind tunnel. The well defined and sharp drop-off in lift from 95 to 99 percent radius for the wind tunnel data is an indication of the existence of a very strong tip vortex, and supports the hypothesis of References 14 and 15 that simplifications in the existing variable inflow theories could be made by representing the trailing vorticity by a single tip vortex. (However, as discussed earlier, a more exact treatment of the shed vorticity is required.) Both theoretical airload distributions follow the wind tunnel results well. The only significant difference in the two calculations is that the variable inflow theory predicts the drop-off in lift toward the blade tip, which the constant inflow assumption precludes. Theoretical calculations based on flight test values of propulsive force have indicated that a higher propulsive force results in a lower average airload at the inboard stations and a higher average airload at the out oard stations. This is in agreement with the characteristics displayed by the wind tunnel and flight test data in Figure 33a.

Figure 33b presents a comparison of time histories of flight and wind tunnel airloads at comparable radial stations. (Wind tunnel data for 97 and 99 percent radius are listed in Table XXXVI, and harmonics of loading for all tunnel conditions are presented in Table XXXVII.) Discounting the difference in average loading (shown in Figure 33a), the agreement

between flight and tunnel airload time histories is generally good. The principal differences in loading signature are noted at 85 and 90 percent radius in the region of 120 degrees azimuth, where the flight test data show a sharper drop in lift. The principal harmonics of airload are the first through the fourth, and Table XXXVII, which presents measured and computed harmonics of the wind tunnel test conditions, shows good agreement with these harmonics, particularly when variable inflow is included. Therefore it appears that the major differences in loading of Figure 33b are probably attributable to the difference in operating condition, that is, rotor propulsive force and mean rotor inflow, rather than to differences between wind tunnel and flight testing.

BLADE STRESSES

Flapwise blade stress time histories are compared in Figure 33c. The stress signature is generally comparable, although the flight test data have a somewhat higher harmonic content and total amplitude than the wind tunnel results. If any significant variations of tunnel-induced upwash over the rotor disk were present, this would result in an increased harmonic content of blade stress rather than the reduction shown here, so the differences are attributed primarily to the different operating conditions and not to tunnel effects. The reduced flapwise stress amplitude for the wind tunnel data is in line with the results of Reference 18, which showed that at a given blade twist, a larger propulsive force generally reduces flapwise blade stress amplitudes. Table XXXIXa lists the harmonic content of flapwise stress for both wind tunnel data and theory and shows generally good agreement for the significant harmonics, which tends to support the validity of the wind tunnel data.

Chordwise blade stress time histories are presented in Figure 33d for the two radial stations at which comparisons can be made. Additional wind tunnel data are given in Tables XXVIII and XXXIXb for 65 and 85 percent radius. The correlation of wind tunnel and flight test chordwise stress is not as good as for the flapwise stresses. In addition to the difference in rotor propulsive force for the two tests, two other factors could influence the chordwise stress amplitude. These are possible differences in lag damper setting between the two tests and possible differences in flapping with respect to the shaft, which would introduce Coriolis moments in the chordwise direction. An examination of these factors is beyond the scope of the present study.

Figure 33e compares torsional stress time histories for both wind tunnel and flight data at 15 percent radius. (Additional wind tunnel data are presented in Tables XXXIII and XXXIXc for 37.5 and 65 percent radius.) As with previously presented torsion stress plots, the vertical scale has been exaggerated greatly because of the low stress levels encountered, but even at this scale the correlation is seen to be quite good.

CONCLUSIONS

Analysis of the results of full-scale experimental and theoretical rotor airload and blade stress correlations at speeds of from 110 to 175 knots leads to the following principal conclusions.

- 1. At several inboard radial stations where direct comparisons could be made, good agreement was obtained with two-dimensional and three-dimensional chordwise airload distributions. However, at the advancing blade tip where rapid fluctuations in loading are encountered, there is evidence that lifting surface theory may be required for an adequate prediction of chordwise pressures.
- 2. Correlation of airload time histories with theory was reasonably good, with the principal discrepancy occurring at high speed in the region of the advancing blade tip, where a much sharper drop-off in lift was measured than predicted (an impulsive type loading). Inclusion of variable inflow in the theory improved airload correlations on both the advancing and the retreating blades at speeds as high as 175 knots (advance ratio = 0.45), but improvements in the inflow theory are required. Evidence was shown for the need for treating the effects of shed vorticity more precisely.
- 3. Correlation of measured and calculated blade stress time histories was considerably better than the airload correlation, as the lower mode blade natural period is long compared to the duration of the measured impulsive type airload. Excellent correlation of blade vibratory stress amplitude versus radius was achieved. Inclusion of variable inflow in the theory tends to improve correlation with experiment of flapwise stress signature and amplitude, but has no significant effect on chordwise or torsion stresses.

A comparison of wind tunnel and flight test results at 110 knots forward speed and approximately equal rotor lift, but differing by approximately a factor of two in rotor propulsive force, leads to the following conclusions:

- 1. The wind tunnel data are somewhat better defined, particularly with respect to average airloads, probably owing to the ability to hold a given test condition more closely in the wind tunnel than in flight testing.
- 2. Agreement between flight test and wind tunnel test data was generally good, and the differences could reasonably be explained by the difference in rotor operating condition.

RECOMMENDATIONS

- 1. Current research on the development of variable inflow theory should be expanded to include operation at high forward speeds where reversed flow is significant as well as in the transition region. Also, a more rigorous treatment of nonstationary flow effects is needed.
- 2. Additional correlation of wind tunnel and flight test measurements should be made under conditions as closely identical as possible to substantiate further the correlations discussed herein.

REFERENCES

- 1. Rabbott, J. P., Jr., and Churchill, G. B., Experimental Investigation of the Aerodynamic Loading on a Helicopter Rotor Blade in Forward Flight, NACA RML56I07, Langley Aeronautical Laboratory, Langley Field, Virginia, October 1956.
- 2. Scheiman, J., A Tabulation of Helicopter Rotor Blade Differential Pressures, Stresses, and Motions as Measured in Flight, NASA TM X-952, Langley Research Center, Langley Station, Hampton, Virginia, March 1964.
- Burpo, F., Measurement of Dynamic Airloads on a Full-Scale Semirigid Rotor, TREC Technical Report 62-42, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, December 1962.
- 4. Piziali, R. A., and DuWaldt, F. A., A Method for Computing Rotary-Wing Airload Distributions in Forward Flight, TREC Technical Report 62-44, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, November 1962.
- 5. Miller, R. H., Rotor Blade Harmonic Airloading, IAS Paper No. 62-82, Presented at the IAS 30th Annual Meeting, New York, January 1962.
- 6. Patterson, J. L., A Miniature Electrical Pressure Gage Utilizing a Stretched Flat Diaphragm, NACA TN 2659, Langley Aeronautical Laboratory, Langley Field, Virginia, 1952.
- 7. Tanner, W. H., Charts for Estimating Rotary Wing Performance in Hover and at High Forward Speeds, NASA CR-114, Sikorsky Aircraft Division of United Aircraft Corporation, Stratford, Connecticut, November 1964, SER-50379.
- 8. Myklestad, N. O., Fundamentals of Vibration Analysis, McGraw-Hill Book Company, Inc., New York, 1956.
- 9. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aero-elasticity, Addison-Wesley Publishing Co., Inc. Cambridge, Mass., 1955.
- 10. Miller, R. H., Aeroelastic Problems of VTOL Aircraft, Notes for a Special Summer Program on Aeroelasticity, Vol. III, Massachusetts Institute of Technology, 1958.

- Rabbott, J. P., Jr., Lizak, A. A., Paglino, V. M., Tabulated CH-34 Blade Surface Pressures Measured at NASA/Ames Full Scale Wind Tunnel, SER-58399, Sikorsky Aircraft Division of United Aircraft Corporation, Stratford, Connecticut, December 1965.
- 12. Lizak, A. A., Two-Dimensional Wind Tu 1 Tests of an H-34 Main Rotor Airfoil Section, TREC Technical Report 60-53, SER-58304, Sikorsky Aircraft Division of United Aircraft Corporation, Stratford, Connecticut, September 1960.
- 13. Scanlon, R. H., and Rosenbaum, R., Introduction to the Study of Aircraft Vibration and Flutter, The Macmillan Company, New York, 1951.
- 14. White, R. P., Jr., VTOL Periodic Aerodynamic Loadings, Paper Presented at the Symposium on the Noise and Loading Actions on Helicopters, V/STOL Aircraft, and Ground Effect Machines, August 30 September 3, 1965. Institute of Sound and Vibration Research, University of Southampton, England.
- 15. Miller, R. H., Unsteady Airloads on Helicopter Rotor Blades, Fourth Cierva Memorial Lecture, Presented to the Royal Aeronautical Society, London, England, October 25, 1963.
- 16. Fradenburgh, E. A., and Segel, R. M., Model and Full Scale Compound Helicopter Research, Paper Presented before the American Helicopter Society Twenty-First Annual National Forum, Washington, D. C., May 12 14, 1965.
- 17. Bain, L. J., Comparison of Theoretical and Experimental Model Rotor Blade Vibratory Shear Forces, SER-50419, Sikorsky Aircraft Division of United Aircraft Corporation, Stratford, Connecticut, "In Publication".
- 18. Rabbott, J. P., Jr., A Study of the Optimum Rotor Geometry for a High Speed Helicopter, TREC Technical Report 62-53, SER-50254, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, May 1962.

Figure 1. Sikorsky CH-34 Rotor Installed In NASA/Ames Full-Scale Wind Tunnel.

,²,

TIP CAP AT .99 RADIAL STATION

Comparison of Basic Airfoil, Spar, and Tip Cap Cross Section. Figure 2.

Figure 3. Blade Physical Properties.

Figure 3. Concluded.

Figure 4. Blade Frequency Diagram.

Figure 5. Location Of Blade Instrumentation.

Figure 6. Data Acquisition Block Diagram.

Ģ,

Ç

Additional constraints and a second s

Figure 7. Data Processing System.

Figure 8. Phase Response of Data System.

Figure 9. Sample Pressure Data Reliability.

Figure 10. Sample Repeatability Of Airload Data. $V = 150 \; \text{KT} \quad \pmb{\alpha}_{\text{S}} = 0^{\circ}$

đ<u>à</u>

Figure 11. Sample Repeatability Of Blade Stress Data.

$$V = 150 \text{ KT}$$
 $\alpha_S = 0^{\circ}$

Figure 12. Flow Diagram for Computations.

ş. <u>Y</u>

1

Figure 13. Pictorial Example Of The Initial Portion Of The Wake Of A Two-Bladed Rotor Divided Into Four Radial Segments (From Reference 4).

Figure 14. Sample Chordwise Pressure Distributions. D = -250 LB $a_{\rm S} = -5^{\circ}$ V = 175 KT

L = 7100 LB

Figure 14. Concluded. $V = 175 \text{ KT} \quad \alpha_S = -5^\circ \quad L = 7100 \text{ LB} \quad D = -250 \text{ LB}$

Figure 15. Sample 2-D Chordwise Loading At 4° Angle of Attack.

Figure 16. Comparison of 2-D and 3-D Chordwise Loading.

Note: 3 Dimensional Data Taken From Ames Tunnel

$$V = 175 \text{ KT} \quad \mathbf{a}_{S} = +5^{\circ}$$

Figure 17. Sample Blade Root Flapping Motions.

Figure 18. Section Aerodynamic Loading. $V = 110 \text{ KT} \quad \alpha_S = -5^{\circ} \quad L = 8300 \text{ LB} \quad D = -750 \text{ LB}$

Figure 18. Continued.

$$V = 110 \text{ KT}$$
 $a_{s} = -5^{\circ}$ $L = 8300 \text{ LB}$ $D = -750 \text{ LB}$

Figure 18. Continued. $V = 110 \; \text{KT} \quad \alpha_{_{\rm S}} = -5^{\circ} \quad L = 8300 \; \text{LB} \quad D = -750 \; \text{LB}$

Figure 18. Concluded. $V = 110 \, \text{KT} \quad \boldsymbol{\alpha}_S = -5^\circ \quad L = 8300 \, \text{LB} \quad D = -750 \, \text{LB}$

Figure 19. Section Aerodynamic Loading. $V = 150 \text{ KT} \quad \alpha_S = -5^{\circ} \quad L = 8500 \text{ LB} \quad D = -650 \text{ LB}$

Figure 19. Continued. V = 150 KT $\alpha_S = -5^{\circ}$ L = 8500 LB D = -650 LB

Figure 19. Continued.

$$V = 150 \text{ KT}$$
 $\alpha_{s} = -5^{\circ}$ $L = 8500 \text{ LB}$ $D = -650 \text{ LB}$

Figure 19. Concluded. $V = 150 \, \mathrm{KT} \quad \boldsymbol{\alpha}_{\mathrm{S}} = -5^{\circ} \quad \mathrm{L} = 8500 \, \mathrm{LB} \quad \mathrm{D} = -650 \, \mathrm{LB}$

Figure 20. Section Aerodynamic Loading.

$$V = 175 \text{ KT}$$
 $\alpha_{S} = -5^{\circ}$ L = 71.00 LB D = -250 LB

Figure 20. Continued. $V = 175 \text{ KT} \quad \alpha_S = -5^{\circ} \quad L = 7100 \text{ LB} \quad D = -250 \text{ LB}$

Figure 20. Continued.

$$V = 175 \text{ KT}$$
 $\alpha_{S} = -5^{\circ}$ L = 7100 LB D = -250 LB

Figure 20. Concluded. $V = 175 \text{ KT} \quad \alpha_s = -5^{\circ} \quad L = 7100 \text{ LB} \quad D = -250 \text{ LB}$

Pigure 21. Theoretical Effect Of Blade Flapping
On Aerodynamic Loading.

Uniform Inflow

V = 175 KT $\alpha_{\rm B} = -5^{\circ} \text{ L} = 7100 \text{ LB}$ D = -250 LB

Figure 22. Theoretical Local Angle of Attack Distribution at 110 Kt.

D = -750 LB Ω R = 650 FT/SEC μ = .29 M_(1.0,90) = .73 L = 8300 LB **s** = -5°

Figure 23. Theoretical Local Angle of Attack Distribution At 150 Kt.

D = -650 LB Ω R = 650 FT/SEC μ = .39 M_(1.0,90) = .79 L = 8500 LB **a**s = -5°

Figure 24. Theoretical Local Angle of Attack Distribution at 175 Kt.

 $\Omega_R = 650 \text{ FT/SEC}$ $\mu = .45 \text{ M}_{(1.0, 90)} = .83 \text{ L} = 7100 \text{ LB}$ D = -250 LBs = -5°

Figure 25. Blade Stress Time Histories. $V = 110 \, \text{KT} \quad \alpha_S = -5^\circ \quad L = 8300 \, \text{LB} \quad D = -750 \, \text{LB}$

Figure 25. Continued.

V = 110 KT $a_S = -5^{\circ}$ L = 8300 LB D = -750 LB

Figure 25. Concluded. $V = 110 \text{ KT} \quad \alpha_8 = -5^{\circ} \quad L = 8300 \text{ LB} \quad D = -750 \text{ LB}$

(a) FLAPWISE

Figure 26. Blade Stress Time Histories. V = 150 KT $\alpha_s = -5^{\circ}$ L = 8500 LB D = -650 LB

(b) CHORDWISE

Figure 26. Continued.

$$V = 150 \text{ KT}$$
 $\alpha_S = -5^{\circ}$ $L = 8500 \text{ LB}$ $D = -650 \text{ LB}$

William and the committee of the committ

Figure 26. Concluded.

$$V = 150 \text{ KT}$$
 $\alpha_{s} = -5^{\circ}$ $L = 8500 \text{ LB}$ $D = -650 \text{ LB}$

(a) FLAPWISE

Figure 27. Blade Stress Time Histories.

$$V = 175 \text{ KT}$$
 $\alpha_{S} = -5^{\circ}$ $L = 7100 \text{ LB}$ $D = -250 \text{ LB}$

(b) CHORDWISE

Figure 27. Continued. $V = 175 \text{ KT} \quad \alpha_S = -5^\circ \quad L = 7100^\circ L_B \quad D = -250 \text{ LB}$

Figure 27. Concluded.

$$\alpha_{s} = -5^{\circ}$$
 L = 7100 LB D = -250 LB

Figure 28. Azimuthal Variation of Torsional Stress (Reference 16). $\mu=1.0 \quad C_{L/\sigma}\approx 0 \quad \theta_{.75R}=-2^{\circ}$

 z_{I}

Figure 29. Theoretical Effect Of Blade Flapping On Blade Stress At 65% Radius.

Uniform Inflow $V = 175 \text{ KT} \quad \alpha_s = -5^{\circ} \quad L = 7100 \text{ LB} \quad D = -250 \text{ LB}$

Figure 30. Vibratory Stress Envelope. V = 110 KT $\alpha_s = -5^{\circ}$ L = 8300 LB D = -750 LB

Figure 31. Vibratory Stress Envelope. $V = 150 \text{ KT} \quad \alpha_{\rm S} = -5^{\circ} \quad L = 8500 \text{ LB} \quad D = -650 \text{ LB}$

Figure 32. Vibratory Stress Envelope. $V = 175 \text{ KT} \quad \alpha_{_{\rm S}} = -5^{\circ} \quad L = 7100 \text{ LB} \quad D = -250 \text{ LB}$

(a) Average Spanwise Aerodynamic Loading

Figure 33. Comparison Of Wind Tunnel And Free Flight Data.

-

(b) Aerodynamic Loading

Figure 33. Continued.

Figure 33. Continued.

Figure 33. Continued.

(d) Chordwise Stress

Figure 33. Continued.

STATION = . 15 RADIAL 6 -4004--200 200 **4**00 TORSIONAL STRESS, LB/IN 2

L = 11500 Da + 1390)

-FREE FLIGHT (4 =.30 L≈II -WIND TUNNEL

D = -2150

(μ =.29 L=11800

(e) Torsional Stress

AZIMUTH POSITION, , DEG

80

360

320

Figure 33. Concluded.

TABLE I WIND TUNNEL OPERATING CONDITIONS

<u>1</u>	UEG	ē	00	ō.	- - -	8	ō.	8	00	0.0	0.0
Ē	UEG	0.3	0.2	ō.	03	0.2	02	0.2	0.5	0.0	05
Eo	DEG	9.9	₽. 4.	0.3	8	4	0	5.9	3.7	₹.	6.01
Siq	DEG	4.	3.7	2.3	4	3.6	36	3.5	28	2.8	3.6
818	DEG	0.2	<u>o</u> .	<u>8</u> .	<u>0</u>	0.5	=	-0.7	0,5	8	4:
Bis	DEG	16	64	32	95	6 5	44	09	49	37	8.9
(DEG	33	39	32	59	34	98	24	2.	2.4	7
וו	DEG	9.6	5.0	<u>6.</u>	87	5.4	27	9.9	45	42	10.4
8	LB/FT-	95.6	94.7	940	728	71.7	70.5	390	380	380	39.2
M	(Corporation)	83	.83	.83	62.	62.	67.	.73	73	73	.73
ď	SLUGS/FT~	.002249	.002216	.002200.	002195	.002192	. 002173	.002226	.002227	.002231	.002221
<u>£</u>		703	293	9-	750	326	-20	579	303	4 ઉ	1187
0	L8	-251	8 4	1173	-629	240	1083	-762	Ē	830	-2144
٠ ـ	r.8	7084	7129	7323	8463	8428	8553	8252	8212	8144	11800
	DEG	ຮຸ	0	÷	ဟု	0	+5	٠.	0	÷ •	တု
3R	F T/SEC	650	650	650	650	650	650	650	650	650	650
#	.	45	4. 8.	45	39	39	39	62.	.29	.29	62.

		TABLE	II HAR	MONICS OF FLAPPING	G, DEG
N 0	EXPERIMEN A(N) B(N	TAL 'UNIFOR	RM INFLOW) B(N)	EXPERIMENTAL A(N) B(N)	
1 2 3 4	0.0 0.4 0.1 0.0 0.0 0.0	0.1	0.2 0.0 0.0	0.0 2.8 -0.1 0.4 0.1 -0.1 0.1 0.0	0.1 0.0
0	EXPERIMEN' A(N) B(N	TAL UNIFOR) A(N)	M INFLOW) B(N)	EXPERIMENTAL A(N) B(N)	
1 2 3 4	0.5 3.6 0.2 0.8 0.0 0.0 0.1 0.0	0.3	0.5 0.0	3.3 - 1.1 3.6 0.2 0.9 0.1 -0.1 0.1 0.0	0.0 0.0 0.5 0.5 0.3 -0.1 0.1 0.0
		TAL UNIFOR	M INFLOW	EXPERIMENTAL	+5° L = 7300 LB D = 1150 LB UNIFORM INFLOW A(N) B(N)
0 1 2 3 4	EXPERIMEN A(N) B(N	TAL UNIFOR 1) A(N) 2.4 -0.1 0.5 0.4	M INFLOW B(N) - 0.0 0.7	EXPERIMENTAL	UNIFORM INFLOW A(N) B(N)
1 2 3 4	EXPERIMEN A(N) B(N 2.8 - 1.0 3.7 0.2 1.1 0.1 0.0	TAL UNIFOR A(N) 2.4 -0.1 0.5 0.4 0.1 V = 110 K EXPERIM A(N) 4.1	M INFLOW 0.0 0.7 0.0 0.1 T a _s = -9° L = ENTAL UN B(N)	EXPERIMENTAL A(N) B(N) 2.8 - 1.8 2.3 0.2 1.2 0.1 -0.2 0.2 0.0 11,800 LB D = -2150 IFORM INFLOW A(N) B(N) 4.2 -	UNIFORM INFLOW A(N) B(N) 2.5 - 0.0 0.0 0.4 0.8 0.4 -0.2 0.2 0.0
1 2 3 4	EXPERIMEN A(N) B(N 2.8 - 1.0 3.7 0.2 1.1 0.1 0.0 0.2 0.0	TAL UNIFOR A(N) 2.4 -0.1 0.5 0.4 0.1 V = 110 K EXPERIM A(N) 4.1 -1.4 0.3 0.0 0.0	M INFLOW 0.0 0.0 0.7 0.0 0.1 T	EXPERIMENTAL A(N) B(N) 2.8 - 1.8 2.3 0.2 1.2 0.1 -0.2 0.2 0.0 11,800 LB D = -2150 IFORM INFLOW A(N) B(N)	UNIFORM INFLOW A(N) B(N) 2.5 - 0.0 0.0 0.4 0.8 0.4 -0.2 0.2 0.0 LB

	TABL	E II CONTINUE	ED
→ \	V = 175 KT a _s = -5°	L = 7100 LB D = -25	O LB
N	EXPERIMENTAL A(N) B(N)	UNIFORM INFLOW A(N) B(N)	VARIABLE INFLOW A(N) B(N)
0	2.7 -	2.4 -	2.4 -
1	0.2 4.4	0.2 4.4	0.3 4.4
2	0.4 0.9	0.8 0.6	0.7 0.6
3	0.0 0.2	0.4 0.1	0.4 0.0
4	0.0 0.2 0.1 0.1	0.1 0.1	0.1 0.1
	$V = 150 \text{ KT} a_{s} = -5^{\circ}$	L = 8500 LB D = 650	LB
N	EXPERIMENTAL A(N) B(N)	UNIFORM INFLOW A(N) B(N)	VARIABLE INFLOW A(N) B(N)
0	2.9 -	2.9 -	2.9 -
1	-1.0 4.4		-1.0 4.4
2	0.4 0.7	-1.1 4.4 0.8 0.5	0.6 0.4
3	0.0 0.2	0.3 0.2	0.3 0.1
4	0.1 0.1	0.1 0.1	0.1 0.0
	V = 110 KT as= -5°	L = 8300 LB D = -75	O LB
N	EXPERIMENTAL A(N) B(N)	UNIFORM INFLOW A(N) B(N)	VARIABLE INFLOW A(N) B(N)
0	2.6 -	2.8 -	2.8 -
1	-0.7 3.5	-0.8 3.5	-0.7 3.5
2		0.4 0.3	0.3 0.1
3	0.1 0.1	0.1 0.1	0.1 0.0
4	0.0 0.0	0.0 0.0	0.0 0.0

氢

NOTE: Harmonic above 4th harmonic are less than 1/10 of a degree. First harmonic flapping for theoretical calculations set equal to experimental values for these operating conditions.

TABLE III TIME HISTORIES OF AERODYNAMIC LOADING, LB/IN V = 110 ET as= 00 L = 8200 LB (a) EXPERIMENTAL Blade Radial Station . 25R . 40R . 55R . 75R . 85R 90R . 95R 97R 99R 10.6 -1.31-1-1.42-1.184-1.192 12.3 13.0 13.8 15.5 14.3 14.8 16.7 18.1 19.2 19.9 19.4 18.1 16.4 12.0 12.5 13.2 14.4 13.7 14.7 15.7 17.3 18.5 19.6 18.5 16.9 14.9 8.0 8.4 8.5 8.6 8.5 9.7 10.3 10.5 10.4 10.4 9.0 7.1

			7 ~ 13		OF L-8		- 50 LB		
			(b)	THEORET	ICAL (UNII)	ORM INFLO	DW)		
				Blade	Radial Stat	ion			
¥	. 25R	.40R	.55R	.75R	.85R	.90R	.95R	.97R	, 99R
0	1.3	4.4	7.7	12.5	14.7	15.4	15.8	15.9	0.0
5 10	1.6 1.9	4.7 5.0	8.0 8.2	12.6 12.5	14.5 14.1	15.0 15-6	15, 2 14, 6	15.2 14.4	0.0 0.0
15	2.3	5.3	8.4	12.4	13.8	14 /	120	13.6	0.0
20	2, 6	5.6 5.9	8.4 8.5	12.2	13.3	13.4	13. I 12 2	12.6 11.7	0.0
25	2.9	5.9	8.6	12.4 12.2 11.9	13.8 13.3 12.7 12.1	13.4 13.4 12.7 11.8 10.9	12 2	11.7	0.0
30	3. 2	6.1	8.6	11.5	12.1	11.8	11.2	'0.7 9.5	0.0 0.0
35 40	3.5 3.9	6.3 6.5	8.6 8.6	10.7	11.4 10.6	10.7	10.2 9.0	9.3 g 1	0.0
45	4.2	6.7	8.7	10.3	9.8	8.9	7.7	8.1 6.7 5.0	0.0
50	4.5	7.0	8.8	9.9	8.9	7.8	6.3	5.0	0.0
55	4.9	6.7 7.0 7.2 7.5	8.9 9.0 9.2	11.2 10.7 10.3 9.9 9.4 9.6 8.7 8.4 8.1 8.1 8.1 8.1 8.2 8.4 8.7 8.9 9.6 10.0 10.3	8.1 7.2	10.0 8.9 7.8 6.7 5.5 4.3 3.3 2.3 1.4	4.9	3.4	0.0
60 65	5. 2 5. 6	7.5	9.0	9.6	7.2	5.5	3.4 1.9 0.5	1.6 -0.1	0.0 0.0
70	6.0	7.9 8.2	9.5	0./ 8.4	6.4 5.6	*.J	0.5	-1 7	0.0
75	6.4	8.6	9.8	8. 2	5.0	2.3	-0.8	-3. 2	0.0
80	6.7	8.6 9.0	10.1	8.1	4.4	1.4	-1.9	-4.5	3.0
85	7.1	9.5	10.5	8.1	4.0	0.7 0.2	-2.8	-5.6	0.0
90	7.5	9.9	10.9	8.1	3.7 3.5 3.4 3.5	0.2	-0.8 -1.9 -2.8 -3.5 -4.0 -4.2	-6.4	0.0
95	7.8 8.1	10.3 10.6	11.2 11.6	8.1	3.5	-0.1	-4.0	-7.0 -7.2	0.0 0.0
100 105	8.3	11.0	11.9	8.4	3.5	-0.1 -0.3 -0.3	-4.2	-7.2	0.0
110 115	8.5	11.0 !1.2	12, 2	8.7	3.6	•0. I		-6.9	0.0
115	8.6	11.5	12.5	8.9	3.9 4.3	0.2 0.7 1.3	-3.6	-6.5	0.0
120	8.6	11.6	12.7	2.2	4.3	0.7	-3.0	-5.8	0.0
120 125 130 135	8.6	11.8 11.8	12.7 12.9 13.1 13.2 13.2 13.2 13.1	9.6	4.8 5.3	1.3 2.0	-3.0 -2.3 -1.5	-5.0	0.0 0.0
130	8.5 8 3	11.7	13.1	10.0	5.3 5.8	2.0	-0.6	-4.1 -3.0	0.0
140	8.1	11.6	13 2	10.7	5.8 6.5	3.5	0.4	-1.9	0.0
140 145 150 155	8.1 7.7	11.4 11.2	13.2			2.7 3.5 4.3	1.4	-0.8	0.0
150	7.3	11.2	13.1	11.4	7.8	5.1 5.9 6.7 7.5 8.2 8.9 9.6 10.2 10.7 11.2	2,4	0.4	0.0
155	6.8 6.3	10.8 10.4	13.0	11.7 12.0	8.4 9.0	5.9	3.4	1.5 2.7	0.6
160 165 170 175	5.8	9, 9	12.8 12.6	12.0	9.6	7.5	4.4 5.3 6.3 7.2	3.8	0.0 0.0
170	5.2	9.4	12.3	12.3 12.5 12.6	10.1	8.2	6.3	4.8	0.0
175	4.5	8 8	12.3 11.9	12.6	10.6	8, 9	7.2	5.9 6.9	0.0
180 185 190 195	3.9	8. 2 7. 5 6. 8 6. 2	11.5 11.0	12.6	11.0	9.6	8.0	6.9	0.0
185	3.3 2.6	7.5	11.0	12.6 12.6	11.4 11.7	10.2	8.8	7.8 8.6	0.0 0.0
195	2.1	6.3	9 9	12.0	12.0	11.2	8.8 9.5 10.2	8.0	0.0
200	1.6	5.5	9.9	12.5 12.3	12.2	11.6	10.8	9, 4 10, 1	0.0
200 205	1.2	5.5 4.8	8.6	12.2	12. 2 12. 3	11.9	11 3	10.8	0.0
210 215	0.9	4.2	8.0 7.3 6.7	11.9	122	12.2	11.8 12.2 12.5	11.4	0.0
215	0.6	3.6	7.3	11.6	12.3	12.4	12.2	11.9	0.0
225	9.4 0.2	2.5	6.1	11.3	12.3	12.5	12.7	12.3	0.0 0.0
230	0.1	5.5 4.8 4.2 3.6 3.0 2.5 2.1	5.5	11.3 10.9 10.5	12.2	12.7	12.8 13.0	11.9 12.3 12.7 13.1	0.0
220 225 230 235 240	0.0	2.1	5.5 5.0		12.3 12.3 12.3 12.2 12.1	12.4 12.5 12.6 12.7		13.4	0.0
240	0.0	1.4	4.5 4.0	9.8	11.9 11.8	12.8	13, 3	13.6	0.0
245 250 255 260	0.0 0.0	1.1	4.0	9,8 9,4 9,0 8,7 8,5 8,3	11.8	12.7 12.8 12.8 12.7 12.7 12.8 12.8	13.1 13.3 13.5 13.6 13.7 13.9 14.0	13.9 14.1	0.0 0.0 0.0
255	0.0	0. 7 0. 8	3.7 3.3	9.U 8.7	11.6	12.7	13.0	14,3	0.0
260	0.0	0.6	3.1	8.5	11.4	12.8	13.9	14,5	0.0
265	0.0 0.0 -0.1	0.5	3.1 2.9	8.3	11.4	12,8	14.0	14.8	0.0
270	-0.1	0.5	2.7	8.1	11.3	12.9	14.2 14.4	15.0 15.3	0.0
275	-0.1				11.3		17.7	15.3	0.0
280 285	-0.1 -0.1	0.4 0.4	2.6 2.6	8.1 8.2	11.4 11.6	13. 2 13. 4	14,6 14,9	15.5 15.8	0.0 0.0
290	-0. I	0.4	2.7	8.3	11.8	13.6	15.1	16.1	0.0
295	0.0	0.5	2.8	8.5	12.0	13.9	15.4	16.4	0.0
300	0.0	0.6	3.0	8.8	12.3	14.2	15.7	16.7	0.0
305	0.0	0.7	3.3	9.2	12.7	14.5	15.9	17.0	0.0
310 315	0.0 -0.1	0.8 1.1	3.6 4.0	9.5 9.9	13.0 13.4	14.8 15.1	16.2	17. 2 17. ⁵	0.0
320	-0.1	1.1	4.4	10.4	13.7	15.4	16.5 16.8	17.6	0.0 0.0
325	-0. i	1.6	4.8	10.8	14.0	15.6	17. C	17.7	0.0
330	0.0	1.9	5.2	11.2	14.3	15.9	17.1	17.8	0.0
335	0.1	2.3	5.7	11.6	14.5	16.0	17.1	17.7	0.0
340 345	0.3	2.7	6.2	11.9	14.7	16.1	17.0	17.5	0.0
343 357	0.5 0.7	3. 1 3. 6	6.6 7.0	12.1 12.3	14.8 14.9	16.0 15.9	16.8 16.5	17. 2 16. 9	0.0 0.0
355	1.0	4.0	7.4	12.4	14.8	15.7	16.2	16.4	0.0
360	1.3	4.4	7.7	12.5	14.7	15.4	15.8	15, 9	0.0

			¥ - 110 MT	@g =+50	r - atto ra	D =050 I			
				(a) l:	XPERIMENT	ΓΑΙ,			
	· · · · · · · · · · · · · · · · · · ·			Blade	Radial Stat	tion			
Ý	. 25R	. 40R	, 55R	. 75R	.85R	. 90R	. 95R	. 97R	. 99R
U	1.0	2, 7	6, 0	10. 3	12. 4	11.2	9, 9	3. 9	0.0
5	0.3	3.5	6. 3	9.4	10. 1	9. 4	9.9	4. 1	-0.4
10 15	0. 3 1. 3	2.0 2.2	7. 8 6. 2	8. 3 8. 4	8.6 7.2	7. 5 6. 0	8. 0 6. 1	2, 5 1, 0	0. 2 -0. 2
20	2. 2	3, 0	5. 7	9. 5	; 4	5. 1	5. 4	i. 2	-0.3
25	3. 4	3, 2	6. 5	9.6	8.3	6.6	6.8	2, 1	J. I
30	3. 2	3.8	6. 9	9. 7	7. 9	6.7	7.3	2. 2	-0.2
35	2.5	4. 3	7.7	9.8	8. 3 8. 9	7, 4 3, 2	8.5 8.9	2.6	-0. 2 -0. 2
40 45	2.3 2.6	4. 8 5. 6	8. 2 8. 5	10. 1 10. 5	9.3	8.6	9.8	3. 3 3. 9	-0. 2
50	3. 2	6.3	9, 1	11.2	10. 2	9. 6	10.9	4. 7	-0. 1
55	3. 1	6.9	9.8	12. 1	11, 0	10.3	11.6	5, 5	0.5
60	4, 3	7.7	10, 6	12.6	11.7	11.1	12. 4	6. 4	0.6
65	4. ,	8. 4	11.3	13. 1	12.0 11.7	11.4	12.3	6.7	0.6
70 75	5, 3 5, 8	8. 9 9. 3	12. 0 12. 6	13. 4 13. 4	11, 7	11.7 12.1	13. 2 12. 7	6. 6 6. U	0. 7 0. 4
80	6.2	9. 3 9. 9	13. 1	13. 4	12, 2	11.5	10.6	4. 4	0.4
85	6.7	10. 4	13. 4	14.2	12.0	10. 1	8.4	2.3	0. 2
90	7.2	10.6	13. 5	14. 1	10.8	7.8	5.3	0. 2	-0.8
95	7.6	10 9	13. 4	14. 1	8.7	4.9	2.3	-1.4	-1.6
100 105	8. O 8. 4	11. 2 11. 4	13. 2 13. 1	13. 6 12. 6	6. I 3	2. 4 1. 0	0. 4 - 1. 2	-2.5 -3.4	-2. 5 -2. 7
110	8.8	11,7	13.0	11.2	1.8	0.3	-1.8	-3.8	-3. 1
:15	9.2	12.0	12.9	9.7	0.8	-0. 2	-2.0	-3.7	-3.2
120	9. 5	12, 1	12, 9	8.3	4). 2	-0. 1	-2, 0	-3.3	-3.0
125	9.8	12. 2 12. 2	13.0	7. I 6 9	A) 1	-0. 1	-2.0	. 9	-2, 4 -3, 2
130 135	9, 9 9, 4	12.2	13. 1 13. 5	6.8	€). 3 0. 9	0. 1 0. 8	-2.0 -1.7	6 -2. 3	-3.2
140	9, 9	12. 2	13.7	7.0	1.7	1. 4	-0.7	-1.5	-2.3
145	9.8	12. 3	13.5	7. 3	2.0	1.9 2.6	-0. 2	-0, 4	-2, 1
150	9.9	12. 2	13. 8	7.3	2.8	2.6	0.3	-0. 4	-1.9
155	9.7	11.8	13.7	7.5	3. 3	3. 2	0.6	-0. 3 -0. 1	-2. 2 -1. 6
160 165	4. 4 9. 0	11.5 11.2	13. 7 13. 5	7, 5 7, 6	3.7 4.1	3, 9 4, 3	0, 6 1, 3	0. 2	-1, 5
170	8. 4	10. 8	13. 3	7. 9	5.0	5, 2	i. 8	0.7	-1, 5
175	7.8	10. 3	13.0	8.6	6. 1	6. 2	3. 0	1.4	-0.8
180	7.0	4.9	12.8	9. 1	7.3	7.3	3. 8	2. 1	-0.6
185	6.3	9.3	12.7 12.5	9. 7 10. 5	8. 4 9. 4	8. 4 9. 4	4. 6 5. 9	2. 7 3. 4	-0. 3 0. 6
195 195	5, 5 4, 8	8. 7 8. 0	12. 3	11.2	10. 2	10. 1	6.7	4.0	0. 9
200	4.8	7. 3	11.8	11.5	11.0	10, 9	7. 6	4.7	0, 9
205	4. 2	6, 5	11. 4	11.8	11.7	11.9	8. 2	5. 2	1.1
210	3. 2 2. 7	5.8	10. 8	11.9	12. 2	12. 4	8.5	5. 4	1.8
215	2.7	5. 1	10. 0 9. 2	11. 9 11. 7	12. 4 12. 5	12. 6 12. 8	9, 1 9, 5	5, 7 6, 1	2.0
220 225	2, 1 1, 4	4. 4 3. 8	8.7	11.4	12. 7	12. 0	10, 2	6.4	2. 2
230	i, i	3. 1	8. 1	11, 1	12.6	12.8	10. 2	6.4	2. 2
235	0.8	2.6	7.5	10.7	12. 5	12.8	10. 5	6. 7	2.6
240	0.6	2.7	6.8	10. 5	12, 5	12.8	10.8	6.8	2.
245 250	0. 5 0. 3	2. 4 1. 9	6. 3 5. 9	10. 4 10°3	12. 5 12. 4	12. 8 12. 7	10. 7 11. 4	6.8 7.2	2. d 2. d
255	0.3	1.8	5, 5	10, 3 10, 3	12. 5	12.8	11.4	7.4	2.
260	0. 1	1.7	5. 3	10.3	12.7	13. 1	12.3	7.8	2. :
265	0.1	1. 4	5.0	10. 5	12, 9	13.3	13. 1	1.8	2.
270	0.0	1.3	4.9	10. 4	13. 4	13.7	13. 3	8.4	2.1
275 280	0, 0 -0, 1	1. 5 1. 3	4. 8 4. 5	10. 0 9. 6	13. 8 13. 3	14. 2 14. 4	14. l 14. 9	8. 9 9. 5	2. · 2. :
285	•0. I	0.8	4. 4	9. 2	12.3	13. 5	15.0	9.6	2.
290	0.0	0.6	i. •	8. 9	11.8	12.3	13. 9	8. 5	1,:
245	0.0	0. 5	4. 4	8.8	11.1	11.6	13, 2	7.8 7.5	1.0
300	0.0	0.7	4, 5	9, 1	11.5	11.6	12.9		0.1
305 310	0. l 0. l	1. I 1. 5	4. 5 4. 7	0, 0 0, 1	12. 3 13. ()	12. 3 12. 9	13, 2	7.8 8.3	0. i
315	0. 1	2.0	5. 2	10.6	14.0	13.7	15, 1	8.6	1.4
320	0.3	2.3	5. 7	11.3	14.7	14.0	14, 8	8. 4	o.
325	0, 4	2. 4	6.3	11.9	15. 4	14.2	15, 9	8.3	0.
330	0, 6	2. 4	7.0	12.6	15.4	15.2	15, 8	8.6	0.
335 340	0, 9 1, 3	2. 1 2. 1	7. 8 8. 7	13. 0 13. 3	16. 3 17. 1	16. () 17. 1	17. 3 18. 2	9. 3 9. 7	0, [,] 1,
345	2.6	2, 1	9, 5	13. 3	17. 1	17.6	18.3	9.6	i.,
350	2. 3	ī. 6	9, 2	14. 0	15.0	15.0	17. 9	9, 2	0.
355	1, 3	1, 5	8. 5	12.3	13. >	12. 2	13, 3	6.6	1.

				TABLE IV	CONCLU	DED			
			4 - 170 E	. a ² 2,	r - eruo	13 D-6	90 LB		
			(b) THEORET	ICAL (UNII	ORM INFL	OW)		
				Blade	Radial Sta	tion			
•	. 25R	. 40R	. 55R	.75R 11.5 11.5 11.5 11.5 11.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0	. \$5R	. 90R	. 95R	. 97 R	. 99R
0	2.7	5.8	8.6	11.5	11.8	11. 4	10.6	9.9	0.0
5 10	3. 1 3. 5	6.5	9. O	11.5	11.3	10. 9	9. 9 9. 2	9. U 8. 2	0.0 0.0
15	3.9	6. 8	9. 2	11.2	10.7	9. 8	8.5	7. 4	0.0
20	4. 3	7. 1	9. 3	11.0	10.3	9. 2	7.8	6. 6	0.0
25 30	4. 7 5. 1	7. 4	9. 4	10.6	9.7	8. D	7.1	3. Y	0.0 0.0
30 35	Š. 5	8 . 0	9. 6	10.0	8.6	7.2	5. 5	4. 1	0.0
40	5.9	8. 3	9.7	9. 6	7.9	6. 4	4. 5	2.9	0.0
45	6.3 6.7 7.1 7.5 7.9 8.3 8.7	8.6	9. 8	9. 3	7.2	5. 4	3. 3	1.5	0.0
50 55	7.1	8.9	9.9	9.0	6.5	4.4	1.9	-0.1	0. 0 0. 0
60	7.5	9.5	10.4	8.5	5.1	2. 2	-1.0	-3.5	0.0
65	7.9	9. 9	10.7	8.3	4. 3	1, 2	-2. 4	-5. 1	0.0
70	8. 3	10. 4	11.0	8. 1	3.6	0.1	-3.7	-6.7	0.0
75 80	8. / 9. 2	10.8	11.4	7. 9	3.0	-0.8	-4.9	-8.0	0. 0 0. G
85	9. 5	11.7	12.1	7.7	2.0	-1.0	-6.7	-10.2	0.0
90	9. 5 9. 9	12. 1	12. 4	7.7	1.7	-2.7	-7.4	-11.0	0.0
95	10.3	12.5	12.7	7.7	1.5	-3.0	-7.8	-11.5	0.0
100	10.5	12. \$	13.0	7.8	1. 4	-3.2	-8.0	-11.7	0.0
195 110	10.7 10.9	13.1	13.5	7.9	1:3	-3.2	-8.0 -7.9	-11.7	0.0 0.0
:15	10.9 10.9 10.7 10.6 10.3	13.5	13.8	8. 2	i. 7	-2.9	-7. 5	-11.0	0.0
120	10.9	13.6	14.0	8. 4	2. 0	-2.5	-7. 1	-10.5	0.0
125	10.7	13.6	14. 1	8.7	2. 4	2.0	-6. 5	-9.8	0.0
130 135	10.6	13. *	14. 2	9.0	2. 5	-1.4	-5.7	-8.9	0.0 0.0
140	9. 9	13.3	14. 1	9.7	4.0	0.1	-3.0	-6.9	0.0
145	9. 5	13.0	14.0	10.0	4. 6	2.9	-2. 9	-5.7	0.0
150	9.0	12.7	13.9	10.3	5. 2	1.7	-1.9	-4.5	0.0
155	8.5	12. 3	13.8	10.6	5. 9	2.5	-0.9	-3.3	0.0
160 165	7. 8 7. 0	11.3	13.3	13.1	7.0	3.3 4.1	1.2	-1.0	0.0 0.0
170	6.2	10.7	13.0	11.3	7.6	4.9	7. 1	0. 1	0.0
175	6.2 5.3	10. 1	12.6	11.4	8. 1	5. 6	3. 1	1.2	0.0
180	3.9	9. 4	12. 1	11.5	8.6	6.3	4.0	2.2	0.0
185 190	2. 3 1. 8	8. / 8. 1	11.7	11.5	9.0	0. Y 7. S	4. 3	3.2	0.0 0.0
195	1.4	7. 3	10.6	11.4	9. 6	8.0	6.2	4. 9	ão
200	1.)	6.4	10.0	11. 4	9. 9	8.5	6. 9	5'	0.0
205	0.9	5.6	9. 5	11.3	10. 1	9.0	7.6	6.6	Q.O
210 215	0.7 0.5	4.0	8.9	11.2	10.3	9. 4	8.3	7.4	0.0 0.0
220	0.4	3. 2	7.6	10.9	10.7	16. 1	9. 3	8.6	v.0
225	0.3	2.5	7.0	10.7	10.8	10.3	9.7	9. 1	0.0
230	0.2	1.5	6. 4	10.3	10.8	10. 5	10.0	9. 5	0.0
235 240	0.1 0.1 0.1 0.1 0.1 0.1 0.1	1. 2	5. 5 5. 3	9.6	10. / 10. A	10.0	10.2	9. y 10. 3	0.0 0.0
245	ãi	a.	4. 9	9. 2	10.5	10. 8	10.8	10.7	0.0
250	0.1	0.8	4. 5	8 9	10.4	10.9	11. 1	11. 1	0.0
255 260	σı	0.7	4. Z	2.6	10.3	10.9	11.3	11.5	0.0
265	0.1	(L 6	3. U	8. 2	10. 2	11.0	11.0	11.5 12 1	0.0 0.0
274)	ā.i	ã. 9	3.7	8. 1	10. 2	i i . ż	11.9	12.3	0.0
275	0.1	1.0	3.6	8. 1	10. 3	11.3	12.0	12. 4	6.0
280	0.0	1.0	3.5	8. 1	10. 4	11. 4 11. 5	12. 1	12.5	0.0
285 290	0.0 0.0	1. I 1. I	3.6 3.7	8. 2 8. 4	10. 5 10. 7	11.5	12, 3 12, 4	12. 7 12. 8	0.0 0.0
295	0.0	i. 3	3.7	0.5	10. 9	11.9	12, 6	13.0	0.0
300	~ 0	11. 7	70.0	w. w			44. •	13. 4	u.u
305	0.0	i. 6 i. 9	4. 4 4. 7	9.0	11.3	12.2	12. 9	13. 4	0.0
310 315	0.1	2. 2	4. / 5. 0	9. 3 9. 6	11. 5 11. 7	12. 4 12. 5	13. 1 13. 2	13. 5 13. 5	0.0 0.0
320	0.2	2. 5	5. 4	9. 9	ii.9	12.7	13.2	13. 4	0.0
325	0.4	2. 8	5. 8	9. 9 10. 2	12.0	12.7	13. 1	13.2	0.0
330	0.7	3.2	6. 2	10.5	12. l·	12.7	13.0	13.0	0.0
335 340	0.9 1.2	3.6 4.1	6.7 7.1	10. 8 11. 0	12. 2 12. 3	12. 7 12. 6	12. 8 12. 5	12.7	0.0
345	1.6	4.5	7.6	11.2	12.3	12. 4	12.3	12. 3 11. 9	0.0 0.0
350	1. 🕈	5.0	8.0	11. 3	12. 2	12, 1	11.8	11.3	0.0
355 360	2. 3	5. 4	8.3	11.4	12.0	11.8	11.2	10.7	0.0
-40	2.7	5. 8	8. 6	11.5	11.8	11, 4	10.6	9. 9	0.0

TABLE V TIME HISTORIES OF AERODYNAMIC LOADING, LB/IN
V = 150 ET e₅ = 0 L = 4400 LB B = 250 LB (a) EXPERIMENTAL Blade Radial Station 85R 40R . 55R . 75R 90R . 95R 97 R . 99R 14.67 14.72 13.26 14.43 12.84 14.62 13.43 14.62 13.43 13.64 14.62 13.63 14.62 14.63 15.32 16.83 16 17. 9 12. 3 10. 9 9. 0 8. 7 8. 8 9. 7 -0.53 -1.62 -2.22 -1.84 -0.22 -1.40 -0.22 -1.40 -0.22 -1.54 -0.22 -2.33 -3.45 -4.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -1.40 -0.22 -0.23 10. 5 11. 8 12. 3 11. 0 10.2 9.6 9.3 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.8 10

			7 - 15	TABLE • 49 TE O		HADED	- 250 LB		
		***	(b	THEORET			OW)		
*	. 25H	. 40R	***	Blade . 75R	Radial Sta 85R	tion . 90R	. 95R	. 97 R	000
			. 55R						. 99R
0 5	1. 8 2. 3	5. 2 5. 7	8. 8 9. 2	13. 7 13. 8	15-9 15.7	16, 7 16, 2	17. 1 16. 4	17. 2 16. 2	0. 0 0. 0
10	2.7	6. 1	9 4	13. 8	15. 3	15. 6	15. 5	15. 2	0.0
15	3. 2	6. 4	9.5	13, 6	14.9	15.0	14.6	14. 1	0.0
20 25	3. 6 4. 0	6, 6 6 , 8	9. 5 9. 4	13. 3 12. 8	14.3	14. 2 13. 4	13. 7 12. 9	13. 3 12. 4	0. 0 0. 0
30	4. 3	7.0	9. 3	12. 1	13. 6 12. 7	12, 5	12. 1	11.5	0.0
35	4. 7	7. 1	9. 1	11.3	11.6	11.5	11.0	10 4	0.0
40	5.0	7.2	8.8	10. 4	10. 5	10. 2	9. 5	8.8	0.0
45 50	5. 4 5. 8	7. 3 7. 5	8.6	9. 4	9. 2 7. 8	86	7.6	6.7 4.1	0.0
55	6. 3	7.7	8. 4 8. 4	8.6 7.9	6.4	6. 8 4. 8	5. 3 2. 8	1.0	0. U 0. U
60	ć. 8	8. 1	8. 0	7. 3	4, 9	2. 7	0.0	-2.3	0.0
65	7.3	8. 6	9. 0	6. 9	3.5	0.6	-2.8	-5.7	0.0
70 75	7.9	9.3	9. 5	6.7	2. 3	-1.3	-5. 5	-8.8	0.0
80	8. 5 9. i	10. 1 10. 9	10. 3 11. 1	6. 6 6. 8	1. 4 0. 8	-2 8 -3.8	-7.5 -9.0	-11.3 -13.1	0. 0 0. 0
85	9.8	11. 8	12.0	7. 1	0.6	-4.4	-9.9	-14.3	0.0
90	10. 5	12. 6	12.7	7.4	0. 4	-4.8	-10.6	- 15. 1	0.0
95	11.1	13. 3	13. 4	7.6	0. 2	-5. 2	-11.2	-15.8	0.0
100 105	11.7 12. i	13. 9 14. 4	13. 8 14. 1	7.6	0. 1	-5.7	-11.8	-16.5	0.0
110	12. 5	14.7	14. 4	7. 4 7. 3	-0. 5 -0. 7	-6. 2 -6. 5	-12.3 -12.6	-17. 1 -17. 3	0. 0 0. 0
115	12.7	15.0	14. 6	7.3	-0.7	-6.4	-12. 4	-16.9	0.0
120	12.8	15. 2	14.8	7. 5	-0.5	-6.0	-11.7	-16. 1	0.0
125	12.8	15. 3	15. 1	7.8	0. 1	-5. i	-10.6	-14.7	0.0
130 135	12. 6 12. 3	15. 3 15. 3	15. 3	8. 4	1.1	-4.0	-9.0	-12.8	0.0
140	12.0	15. 2	15. 6 15. 8	9. 2 10. 0	2. 3 3. 6	-2 4 -0.7	-7.0 -5.0	-10.5 -8.0	0, 0 0, 0
145	11.5	15.0	15. 9	10. 8	4. 9	1.0	-2. 9	-5.7	0.0
150	10.9	14.7	15.8	11.6	6. 1	2.6	-0.9	-3.4	0.0
155	10. 2	14. 2	15. 7	12. 2	7.3	4. 0	0.9	-1, 4	0.0
160 165	9. 3 8. 3	13. 7 12. 9	15. 4 15. 2	12. 7 13. 1	8. 3 9. 2	5. 3 6. 5	2, 5 4, 0	0. 5 2. 1	0. 0 0. 0
176	7. 2	12. í	14. 8	13. 4	10. 0	7.6	5. 3	3. 6	0.0
175	6. 0	11, 2	14. 3	13. 7	10. 7	8. 6	6. 5	5. 0	0.0
180	4.6	10. 2	13. 6	13. 8	11.4	9. 5	7.7	6. 3	0.0
185 190	2. 5 1. 6	9. 2 8. 0	12, 9 12, 1	13. 8 13. 8	11.9	10.3	8.7	7.5	0,0
195	1. 1	6. 8	11. 2	13.7	12. 4 12. 7	11.0 11.6	9. 6 10. 4	8. 3 9. 5	0.0 0.0
200	0.8	5. 5	10. 2	13. 4	12. 9	12. i	11. 1	10. 4	0.0
205	0.5	4, 2	9.3	13. i	13.0	12. 5	11.8	11.2	0.0
210 215	0. 3 0. 1	2. 9 1. 5	8.3 7.2	12.7	13, 1	12.7	12.3	11.9	0.0
220	0.0	1. 1	6, 1	12, 2 11, 7	13. 0 12. 9	13. 0 13. 1	12.7 13.0	12.5	0.0
225	0.0	0.8	5. 1	ii. i	12. 8	13. 2	13.3	13. 0 13. 3	0. 0 0. 0
230	0.0	0.5	4. 2	10. 4	12, 5	13. 2	13.6	13. 7	0.0
255	· Q. 1	0.4	3, 5	9.7	12, 2	13. 1	13.7	14.0	0.0
240 245	-0. 3 -0. 4	0. 2 0. 1	2. 8 2. 3	9. 0 8. 3	11.6	13.0	13.8	14. 3	0.0
250	-0.5	ů. i	1.9	7. 6	11.4 10.9	12. 8 12. 5	13. 9 13. 9	14. 5 14. 7	0.0 0.0
255	-0, 6	0. i	1.6	7.0	10. 5	12. 3	13.8	14. 8	0.0
260	-0.7	0.0	i. 4	6. 5	10. 1	12. 1	13.8	15.0	0.0
265 270	-0.8 -0.8	0.0 0.0	1. 2 1. 0	6. 2	9. 9	11.9	13.8	15, 1	0.0
275	-0.8	0.0	1.0	6. D 5. 9	9. 7 9. 7	11. 9 12. 0	13.9	15. 2	0.0
280	-0.8	0.0		5.9	9. 9	12. 2	14.0 14.2	15, 4 15, 6	0.0 0.0
285	-0.7	0.0	1.0	6. 1	10. 1	12. 4	14, 5	15, 9	0.0
290 295	0.6	-0.1	1. 1	6.4	10.5	12.8	14. 9	16. 3	0.0
300	-0.5 -0.4	-0. 1 0. 0	1.3 1.5	6, 8 7, 3	11. 0 11. 5	13. 3	15. 4	16.8	0.0
305	·0.3	0.0	1.9	7. 9	12. 1	13. 8 14. 4	15, 9 16, 5	17. 3 17. 8	0.0 0.0
310	-0.2	0. 2	2. 3	8. 6	12. 8	15. 1	17. 1	18. 3	0.0
315	-0.1	0.4	2.9	9. 3	13, 5	15.7	17.6	18. 8	0.0
320 325	0.0 0.0	0. 7 1. 1	3.5	10. 1	14. 2	16. 3	18.0	19. i	0.0
330	-0.1	i. 5	4. 2 4. 9	10. 8 11. 6	14.8	16.8	18.3	19. 4	0.0
33 5	ã. ò	2. ĭ	5. 6	12. 2	15, 3 15, 7	17. 1 17. 3	18. 6 18. 7	19. 5 19. 4	0.0 0.0
340	0.2	2. 7	6, 4	12.7	'5, 9	17. 5	18.6	19. 3	0.0
345	0.5	3. 4	7. 1	13. 1	16. I	17. 5 17. 5 17. 3	18. 4	19.0	0.0
350 355	0. 9 1. 3	4. 0 4. 7	7. 8 8. 3	13. 4 13. 5	16. 1 16. 1			18.5	0.0
340	1.8	5. 2	8. \$	13.7	15. 9	17. 1 16. 7	17, 7 17, 1	17. 9 17. 2	0.0 0.0

		TABLE			es of Aer	ODYNAMIC		'LB/IN	
				(a) EX	PERIMENT	AL			
 					Radial Stati				
	. 25R	. 40R	. 55R	. 75R	. 85R	. 90R	. 95R	. 97 R	. 99R
0	-3. 0 -0. 8	0. 8 1. 0	5. 6 5. 0	13. 1 12. 2	11. 1 10 8	8.3 7.0	8. 0 8. 3	2, 5 3, 2	-U. 6 -0. 6
5 10	0. 9	3. 8	3.7	9. 5	€. 3	6 2	7. 2	2. 3	-1.4
15	1.8	4. 7 3. 2	4.7	9.4	8. 4	6. 2 6. 1	7.3 7.3	2. 9 2. 9	-2. I -2. 1
20 25	2. 6 1. 9	3. 2 3. 9	5.7 7.2	10. 0 10. 2	8. 5 9. 1	7.0	6.9	2. 8	-2.0
30	1.9	4.7	7.9	11.3	10. 8	8.0	7.0	3. 3	-2.2
35 40	2.7 2.8	5. 3 6. I	8. 6 9. 4	13. O 14. 3	12. 6 13. 4	9. 6 16. 6	9. 4 11. 2	4, 5 5, 0	-1. 9 -1. 2
45	2.7	6. 4	9. 9	14. 4	13 3	10. 7	11.2	5. 4	-1.2
50	3. 1	7.0	10.4	14. 2	12.9	10. 5	11.9 11.2	5. 4 4. 8	-1.0 -0.5
55 60	3. 6 4. 2	8. 0 8. 9	10. 8 11. 3	14. 3 14. 3	12. 7 12. 4	1.0 8.9	10. 9	6. 3	-0.7
65	5.0	9.8	12.0	14. 1	12. 2	8. 5	11.0	8. 3	-0.7
70 75	5. 7 6. 5	10. 9 11. 5	12. 7 13. 4	14. 4 14. 6	12. 1 11. 6	7. 9 7. 0	10. 0 8. 0	7. O 4. J	-0. 9 -1. 6
80	7. 4	12. 1	13. 9	14. 5	10.8	5. 0	3. 9	0.0	-2.7
85	8.5	12 7 13. 4	14. 4 14. 7	14.6 14.5	8. 9 5. 4	1. 8 -2. 5	-0.7 3.3	-3. 1 -5. 9	-4. 1 -4. 9
90 95	9. 5 10. 4	14. 3	14. 6	13.8	0.6	-5.3	-5. 1	-9.6	-5. 2
100	11.3	14.7	14.5	11.9	-3 5	-7.2	-7.8	-11.8	-6.1
105 110	12. 0 12. 8	15. 0 15. 5	14. 6 14. 8	8. 9 5. 6	-5. 6 -6. 6	-8. 7 -9. 7	-10. 5 -12. 0	- 12. 9 - 13. 8	-6. 9 -7. 4
115	13. 5	16. 1	15. 2	3. 6	-7.5	-9.7	-12.5	-14. 2	-7. 2
120 125	14. 1 14. 4	16. 8 17. 3	15. 9 16. 6	3. 2 3. 3	-7. 3 -6. 4	-9. 1 -7. 9	-11. 9 -10. 2	- 10. 9 - 6. 9	-7. 4 -6. 9
130	14.6	17. 9	16.9	3. 9	-4.9	-6.5	-8. 4	-5, 9	-6. 3
135	14.8	18. 4	16.7	4.7	-3. 2	-5.2	-7. 1	-5.0	-5. 9
140 145	15. O 15. O	18. 3 18. 2	16. 5 16. 2	5. 7 6. 6	-1. 4 0. 1	-3.5 -1.8	-6. 8 -6. 1	-4.0 -2.8	-5. 6 -5. 1
150	14.8	18. 6	16.0	7.8	1.6	0.0	-4.7	-1.7	-4.3
155 160	14. 5 14. 0	18. 0 17. 4	16. 1 16. 2	8. 2 9. 0	3. 2 4. 7	1. 0 2. 1	-3. 7 -3. 3	-1.2 -0.6	-3.9 -3.7
165	13 1	16. 4	16 1	9.8	6. 1	3. 4	-2.6	C.0	-3. 4
170	12.0	15. 4 14. 2	16. 1	10. 5	7.6	4. 8 6. 2	-1.6 -0.2	0 8 1. 7	-3. 0 -2. 2
175 180	12. 1 12. 2	13.0	16. 0 15. 6	11.5 12.6	8.7 10 0	7.4	2.0	2.7	-1.6
185	10. 5	11 5	14-9	13.0	10.8	8. 5	4. 5	36	-0. 7
190 195	8. 6 6. 5	10 1 8.7	13. 8 12. 5	13. 3 13. 3	11.4 12.3	9. 2 9. 7	4. 7 3. 9	3 8 4. 2	-0. 2 -0. 1
200	4.6	8. 1	11.6	13 5	13. 3	10. 5	4. 6	4. 8	0. 3
205	3. 3	7. 9	10.7	13. 6 13. 5	13 8 14. 0	11.3 11.7	5. 2	5. 3 6. 2	0. 7 1. 6
210 215	2. 3 1. 4	6. 5 5. 2	9. 7 8. 6	13. 2	14. 1	12. 2	6. 8 9. 0	7. 1	2.6
220	0.7	4. 5	7.7	13.0	14. 2	12. 4	10.0	7.3	3. 0 2. 7
225 230	0. 3 0. 0	3. 7 2. 8	6. 9 6. 2	12. 4 11. 9	14.0 13.7	12. 5 12. 3	10. 3 9. 7	7.7 7.5	2.6
235	-0, 2	1.8	5. 8	11. 1	13. 3	11.8	9. 0	7.5	2, 5
240 245	-0. 4 -0. 4	1, 6 1, 3	5. 3 4: 9	10. 9 10. 4	12. 7 12. 2	11, 5 11, 4	9. 4 10. 3	7. 7 8. 0	2. 6 2. 8
250	-0. 4 -0. 5	1.0	4. 4	10.0	11.8	11.4	11.2	8. 4	3.0
255	-0.6	0.8	4. I	9.6	11.7	11.3 10.9	11. 1 10. 1	8 2 8.0	2. 7 2. 0
260 265	-0. 7 -0. 8	0. 9 0. 7	3. 8 3. 5	9. 5 9. 4	11.7 11.6	10.8	11. 2	8. 5	2.0
270	-0.7	0. 3	3. 1	9. 1	11.6	11.1	12. 4	8. 8	1.7
275 280	-0. 8 -0. 8	0. 4 0. 4	3. 0 2. 4	9. 2 9. 3	11.6 11.7	11.5 11.7	13. 8 14. 1	9. 3 9. 4	2. 3 2. 3
285	-0. 8 -0. 7	0.4	1.6	9. 4	12. 1	11.3	13. 2	9. 2	1. 2
290	-0.6	0.4	1.6	9.5	12. 8 13. 7	11.5 12.4	12. 6 13. 2	9. 2 9. 7	0. 4 0. 4
295 300	-0. 6 -0. 5	0. 6 0. 8	2.0 2.3	10. l 10. 6	14.4	13. 2	14. 4	10. 1	0.3
305	-G. 3	0.8	2.8	10.7	14.7	13. 3	14. 8	9.8	0.2
310 315	-0. 2 0. 0	1.0 1.1	3. 4 4. 3	11. l 11. 7	14. 9 15. 1	13. 2 13. 4	14.7 15.0	9. 6 9. 5	-0. I -0. I
,120	0. 1	1, 6	4. 9	12.8	15. 6	14. 0	16. 1	9. 8	0.0
325	0. 2	2, 0	5. 1	13.8	16. 5 17. 5	14. l 1÷ 8	16. 4 15. 8	9. 8 9. 7	-0. 4 -0. 7
330 335	0. 3 0. 7	2. 6 3. 0	5. 3 5. 6	14.7 15.4	18.2	15. 1	16, 2	9. 5	-1.1
340	1.3	3.6	6. 2	16.0	18. 9	15. 9	16.8	9. 6	-0.8
345 350	1.1 -1.7	5. I 5. 7	6, 6 6, 1	16. 2 15. 2	20. 3 24. 0	17. 5 20. 4	18. 5 20. 7	10. 4 10. 8	-0.3 0.0
255	-3. 4	3. 4	5. 4	13. 2	19.8	16. 6	16. 2	7. 1	0. 1
350	-3.0	0. 8	5. ò	13. 1	13. 1	8. 3	8.0	2.5	-0.6

			7.			- else la	9 - 1100 1	•	
			(b)	THEORET			OW)		
					e Radial Sta				
*	. 25R	. 40R	. 55R	. 75R	. 85R	, 90R	, 95R	, 97 R	. 99 R
0	3.7	7. 1	10.0	12.2	11.4	10.2	8.6	7.3	0.0
5 10	4.3 4.9	7, 6 8, 0	10. 3 10. 4	12.0 11.7	10.9 10.5	9. 6 9. 2	7. 9 7. 5	6.6	0.0 0.0
iš	Š. 4	8. 4	10. 5	11.4	10.2	8.9	7.3	6, 1	ãŭ
20	6.0	8.7	10.4	11.0	9, 9	8,6	7.2	6.0	0.0
25 30	6.5 7.0	8. 9 9. 0	10. 2 10. 1	10.6 10.2	9. S 9. O	8. 3 7. 8	6.9 6.3	5.7 5.0	Q.0
33	7. 5	9. 2	9, 9	9.6	8.2	7.0	5.3	3.8	ão
40	8.0	9. 5		9. 6 6. 9 8. 3	7.3	5.7	3.8	2. 2	0.0
45 50	8, 5	9. 8	10.0 10.3 10.7	8. 3	6. 1	4. 2	1. 9 -0. 3	0.0	0.0
55	9, 1 9, 7	10. 2 10. 8	10. 3	7.8 7.5	3.4	2. 5 0. 6	-u. 3 -2. 9	-2.7 -5.8	0.0 0.0
60	10.3	ii. 5	11.3	7. 3	2. 4	-1.4	-5.7	-9.2	ãŏ
65	11.0	12.2	11.9	7.2	1.2	-3.4	-8. 6	-12.7	0.0
70 75	11.8 12.6	13. I 14. O	12.7 13.6	7.3 7.7	0.4	-4.9 -6.0	-10, 9 -12, 6	-15, 7 -17, 8	Q 0
80	13.4	14.9	14. 5	8.0	-63	-6.6	-13.6	-19.0	0.0
85	14.2	15. 9	15.3	8. 1	0.6	-7. 1	-14.2	-19.8	0.0
90 95	14. 8 15. 4	16.7	15.9	• •	8.2 7.3 6.1 4.9 3.6 2.4 0.0 -0.3 -0.3 -1.1	-7.8	-14.5 -14.5 -14.5 -16.8 -17.1 -17.1 -17.1 -17.1 -14.5 -17.5 -14.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	-20.5	0.0
100	15.9	17. 3 17. 7	16.3 16.5	7. 2	-1.8 -2.7	•0 f	-15, 9	-21, 4 -22, 4	Q 0 Q 0
105	16.2	18.0	16.6	6.7	-3.4	-10.4	-17.7	-23, 2	ãŏ
110	16. 4	18, 2	16.7	7.6 7.2 6.5 6.7	-3.4 -3.7 -3.6 -3.3 -2.7	-10.7	-18.0	-23.4	QU
115 120	16. 5 16. 4	18. 3 18. 3	16.8 16.9	0. O	-7.0	-10.1	-17.8	-23, 1 -22, 3	Q.0 Q.0
125	16.2	18.3	17.0	7.0	-2.7	-9.3	-15.9	-20.9	ãŏ
130	15.9	18.3 18.2	17. 1	7.5	-1, 9	-8.2	-14.3	-19.0	0.0
135	15, 5	18. 1	17. 2	8.0	.0.9	-6.8	-12.6	- 16. 8	0.0
140 145	14.8 14.0	17. € 17. 5	17. 3 17. 2	8.7 9.4	1.5	-8.2 -6.8 -5.3 -2.0 -0.4 -0.2 -0.1 -0.2 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	·10.7	-14.6 -12.2	Q 0
150			17. 1	10. 1	2.7	-2.0	-6.6	-9.9	0.0
155	11.6	17. 0 16. 5 15. 9 15. 0 14. 0 12. 8 11. 2	17. 1 16. 9 16. 7 16. 4 15. 5 15. 0 14. 4 13. 6 12. 6 11. 4	10.7 11.2	4.0	-0.4	-4.7	-7.7	0.0
160 165	9, 3 6. 8	15.0	16. 7 16. 4	11.0	2.1	1.0	-2.9	-5,7 -4,1	Q.0
170	4.8	14.0	15.9	11.6	6.6	3. 1	-0.3	·2.7	ãŏ
175	3.6	12.6	15.5	12.0	7.2	4.0	0.9	-1.4	0.0
180 185	2. 9 2. 4	11.2 8.7	15.0	12. 3 12. 5	7. 9 8. 7	Ø.0	2, 1 3, 4	0.0 1.5	0.0
190	1.9	6.2	i3.6	12.8	9. 2	6.8	4.4	2.7	ão
195	1, 5	4.4	12.6	13.0	9. 8	7.6	5. 4	3, 8	0.0
200 205	1, 2 0, 8	3.3 2.6	11. 4 10. 1	13. 2 13. 3 13. 2	10. 5 11. 3	8, 5 9, 5	6.5 7.6	5.0 6.2	0.0
210	ão	2. 1	8.4	13.2	11.9	10.4	8.8	7.5	0.0
215	0.4	1.7	6, 2	12. 9 12. 3	12. 4	11.2	9, 7	8.6	0.0
220 225	0.3 0.3	1.4	4.5	12.3	12.4	11.6	10.4	9. 3	σo
230	0.4	0.9	3. 5 2. 8	11.5 10.7	11.8	11.7 11.8	10. 9 11. 3	10, 2 10, 4	0.0
230 235	äš	2. 1 1. 7 1. 4 1. 1 0. 9	2.3	10.0	11.4	11.7		11, 5	ãŏ
240	0.4	0.5	1.9	9. 3	11.1	11.7	12.0	12. 1	0.0
245 250	0.5 0.6	0.4 0.3	1. 6 1. 4	8.7 8.1	11,9 12,4 12,2 11,8 11,1 10,5 10,5 10,5 10,5	11. 6 11. 6	12. 0 12. 2 12. 4 12. 5 12. 5 12. 5 12. 5 12. 8 13. 0	12, 5 12, 9	0.0
255	ã.	0.2	1.2	77	10.3	11.5	12, 5	i3. i	ãõ
260	0.8	0.2	1. 1	7.3	10, 1	11.4	12, 5	13.2	0.0
265 270	0.7 0.6	0.1 0.1	1. 0 1. 0	7. 0 6. 8	7, 7 9 7	11.3	12, 5 12 4	13.3	0.0
275	0.5	0.1 0.1	i. ö	6.8	9.7	11.3	12.6	13.4	0.0
280	0.4	0.1	1.4	6,8	9. 6	11.4	12.8	13.6	0.0
285 290	0.4	0.1 0.2	1. 7 2. 1	7. 1 7. 4	10, 1	11.7 12.0	13.0 12.4	13.9 14.2	0.0
295	0.4	0.2	2. 5	7. 8 7. 8	10.	12.4	12.7	14.5	0.0
300	0.3	0.3	2.8	8.3	11.3	12. 8	12.9	14.6	0.0
305	0.2	0.4	7.2 7.3	8. 5	11.7	13. 1	14, 1	14.7	0.0
310 315	0.1 0.1	Q.6 Q.8	4.5	9. 3 9. 8	12, 0 12, 3	13.3 13.4	14, 1 14, 1	14.6 14.4	0.0
320	0.1	1.0	5,2	10, 2	12, 5	13.4	14.0	14.3	0.0
325	0.1	2.6	4.0	10.6	12.4	13.4	13.6	14.0	0.0
330 335	0.3 0.4	3.1 3.8	6.7 7.4	11. I 11. S	12, 7 12, 8	17.3	12'5	13. 6 13. 0	0.0
340	0.7	4.6	8.0	11.9	12, 8	12.9	12, 6	12.2	0.0
343	0.4	5.4	8,6	12, 1	12.7	12, 3	11,7	11.0	0.0
350 355	2. 3 3. 0	4.0	9.1	12.2	12.4	11.7	10.6	9,6	0.0
357 360	27	7.1	4, 6 10, 0	12, 2 12, 2	11.9 11.4	10. 9 10. 2	9, 5 8, 6	8.3 7.3	0.0

9 5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95 100 105 110 115 120	-3.7 -0.8 1.5 1.5 1.6 0.9 1.4 2.1 1.7 1.7 2.0 2.2 2.7 3.8 4.7 5.3 8.8 10.4	.40R -0.2 -0.1 2.0 2.7 2.3 2.5 3.9 4.5 4.9 5.0 5.1 5.4 6.1 7.0 7.5 8.1 8.7 9.2	. 55R 4. 3 2. 2 5. 4. 6 5. 1 7. 4 8. 1 8. 5 8. 6 8. 7 9. 2 9. 8 10. 4 10. 7	.75R 11. 4 11. 2 9. 9 9. 4 9. 7 10. 6 12. 3 14. 0 15. 6 15. 7 15. 8 15. 2	13. 6 11. 7 10. 3 9. 5 9. 5 10. 6 12. 7 15. 3 16. 5 16. 4 16. 3	. 9UR 10. 6 7. 6 6. 5 6. 0 6. 5 7. 7 9. 8 12. 4 13. 4	. 95R 9. 4 6. 7 5. 4 4. 3 4. 6 6. 2 8. 7 10. 9 11. 2 11. 3	. 97R 4. 3 2. 7 2. 1 1. 8 2. 2 3. 3 4. 9 6. 5 6. 5	.99R -1.7 -2.5 -2.9 -3.3 -3.2 -2.8 -2.0 -1.7
0 5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 100 105	-3.7 -0.8 1.5 1.5 1.6 1.0 0.4 2.1 1.7 2.0 2.2 2.7 3.8 4.7 7.3 8.8	-0.2 -0.1 2.0 2.7 2.3 2.5 3.9 4.9 5.0 5.1 5.4 6.1 7.5 8.1 8.7	4. 3 2. 2 2. 5 4. 6 5. 1 7. 4 8. 5 8. 6 8. 7 8. 9 9. 2 9. 8	11. 4 11. 2 9. 9 9. 4 9. 7 10. 6 12. 3 14. 0 15. 5 15. 6 15. 7 15. 8 15. 2	13.6 11.7 10.3 9.5 9.5 10.6 12.7 15.3 16.5 16.4	10. 6 7. 6 6. 5 6. 0 6. 5 7. 7 9. 8 12. 4 13. 4	9. 4 6. 7 5. 4 4. 3 4. 6 6. 2 8. 7 10. 9 11. 2	4.3 2.7 2.1 1.8 2.2 3.3 4.9 6.5 6.5	-1.7 -2.5 -2.9 -3.3 -3.2 -2.8 -2.0 -1.7
5 10 15 20 25 30 35 40 45 50 55 60 65 75 80 90 90 105 115	-0.8 1.5 1.6 1.0 1.7 2.1 2.7 2.7 2.7 2.7 3.8 4.7 9.3 8.8 10.4	-0.1 2.07 2.35 3.59 4.5 5.01 5.41 7.5 8.17 9.2	2. 2 2. 5 4. 6 5. 1 7. 4 8. 5 8. 6 8. 7 8. 9 9. 2 9. 8 10. 7	11. 2 9. 9 9. 4 9. 7 10. 6 12. 3 14. 0 15. 0 15. 5 15. 6 15. 7 15. 8 15. 2	11.7 10.3 9.5 9.5 10.6 12.7 15.3 16.4 16.3	7. 6 6. 5 6. 0 6. 5 7. 7 9. 8 12. 4 13. 4	6. 7 5. 4 4. 3 4. 6 6. 2 8. 7 10. 9 11. 2	2. 7 2. 1 1. 8 2. 2 3. 3 4. 9 6. 5 6. 5	-2.5 -2.9 -3.3 -3.2 -2.8 -2.0 -1.7
10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 100 105	1.5 1.6 0.9 1.7 1.7 2.2 2.7 2.3 3.8 7.3 8.10 10.4	2.0 2.7 2.5 3.9 4.5 4.5 5.1 5.4 6.1 7.0 7.5 8.1 9.2	2.5 4.6 5.1 7.4 8.1 8.5 8.6 8.7 8.9 9.2 9.8 10.7	9. 9 9. 4 9. 7 10. 6 12. 3 14. 0 15. 0 15. 5 15. 6 15. 7 15. 8 15. 2	10. 3 9. 5 9. 5 10. 6 12. 7 15. 3 16. 5 16. 4 16. 3	6. 5 6. 0 6. 5 7. 7 9. 8 12. 4 13. 4	5. 4 4. 3 4. 6 6. 2 8. 7 10. 9 11. 2	2. 1 1. 8 2. 2 3. 3 4. 9 6. 5 6. 5	-2, 9 -3, 3 -3, 2 -2, 8 -2, 0 -1, 7
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 100 105 110 115	1.6 1.0 1.4 1.7 1.7 2.2 2.2 3.8 4.9 3.8 4.5 7.3 8.4	2.3 3.9 4.9 5.0 5.1 7.0 7.5 8.1 7.9	5, 1 6, 1 7, 4 8, 1 8, 5 8, 6 8, 7 8, 9 9, 2 9, 8 10, 4	9. 7 10. 6 12. 3 14. 0 15. 0 15. 5 15. 6 15. 7 15. 8 15. 2	9.5 10.6 12.7 15.3 16.5 16.4 16.3	6, 0 6, 5 7, 7 9, 8 12, 4 13, 4	4. 6 6. 2 8. 7 10. 9 11. 2	2. 2 3. 3 4. 9 6. 5 6. 5	-3. 2 -2. 8 -2. 0 -1. 7
25 30 35 40 45 50 65 70 75 80 85 90 95 100 105	1.0 0.9 1.1 1.7 1.7 2.0 2.7 3.8 5.9 7.3 8.4	2.5 3.9 4.5 5.0 5.1 5.4 6.1 7.0 7.5 8.1 9.2	6. 1 7. 4 8. 1 8. 5 8. 6 8. 7 8. 9 9. 2 9. 8 10. 4	10. 6 12. 3 14. 0 15. 0 15. 5 15. 6 15. 7 15. 8 15. 2	10. 6 12. 7 15. 3 16. 5 16. 4 16. 3	7. 7 9. 8 12. 4 13. 4	6. 2 8. 7 10. 9 11. 2	3, 3 4, 9 6, 5 6, 5	-2.8 -2.0 -1.7
30 35 40 45 50 55 60 65 70 75 80 85 90 100 105 110	0.9 1.4 2.7 1.7 2.0 2.7 2.3 3.8 5.3 8.4 9.3 8.4	3.9 4.5 5.0 5.1 6.1 7.0 7.5 8.7 9.2	7. 4 8. 1 8. 5 8. 6 8. 7 8. 9 9. 2 9. 8 10. 4	12. 3 14. 0 15. 0 15. 5 15. 6 15. 7 15. 8 15. 2	12.7 15.3 16.5 16.4 16.3	9, 8 12, 4 13, 4	8.7 10.9 11.2	4. 9 6. 5 6. 5	-2. 0 -1. 7
35 40 45 50 55 60 65 70 75 80 85 90 95 100 105	1.4 2.1 1.7 2.0 2.2 2.7 3.8 4.7 5.3 8.4	4.5 4.9 5.0 5.1 5.4 6.1 7.0 7.5 8.1 8.7	8. 1 8. 5 8. 6 8. 7 8. 9 9. 2 9. 8 10. 4	14. 0 15. 0 15. 5 15. 6 15. 7 15. 8 15. 2	15. 3 16. 5 16. 4 16. 3	12. 4 13. 4	10. 9 11. 2	6. 5 6. 5	-1.7
45 50 55 60 65 70 75 80 85 90 95 100 105 110 115	1.7 1.7 2.0 2.27 3.8 4.7 5.3 4.7 7.8 8.4	5.0 5.1 5.4 6.1 7.0 7.5 8.1 8.7 9.2	8. 6 8. 7 8. 9 9. 2 9. 8 10. 4 10. 7	15. 5 15. 6 15. 7 15. 8 15. 2	16. 4 16. 3	13. 4 13. 2			
50 55 60 65 70 75 80 85 90 95 100 105 110	1.7 2.0 2.2 3.8 4.7 5.3 8.8 10.4	5. 1 5. 4 6. 1 7. 0 7. 5 8. 1 8. 7 9. 2	8. 7 8. 9 9. 2 9. 8 10. 4 10. 7	15. 6 15. 7 15. 8 15. 2	16. 3	1.4.4			-1.7
55 60 65 70 75 80 85 90 93 100 105 110	2.0 2.2 2.7 3.8 4.7 5.9 7.3 8.8	5. 4 6. 1 7. 0 7. 5 8. 1 8. 7 9. 2	8, 9 9, 2 9, 8 10, 4 10, 7	15. 7 15. 8 15. 2		13. 3	11.8	6. 5 9. 1	~1.6 -1.7
65 70 75 80 85 90 95 100 105 110	2. 7 3. 2 3. 8 4. 7 5. 9 7. 3 8. 8	7.0 7.5 8.1 8.7 9.2	9. 8 10. 4 10. 7	15, 2		13. 4	13. 4	10.9	-2.8
70 75 80 85 90 95 100 105 110	3. 2 3. 8 4. 7 5. 9 7. 3 8. 8 10. 4	7. 5 8. 1 8. 7 9. 2	10. 4 10. 7		15. 2	13. 4 12. 5	13.9	9.6	1.4
75 80 85 90 95 100 105 110 115	3. 8 4. 7 5. 9 7. 3 8. 8 10. 4	8. 1 8. 7 9. 2	10.7		13. 9 13. 1	10. 7 10. 7	18.0 21.1	7. 5 5. 9	4. 8 4. 3
80 85 90 95 100 105 110 115	4.7 5.9 7.3 8.8 10.4	8. 7 9. 2		14. 7 14. 4	12.7	13.5	19.0	4.0	3.5
90 95 100 105 110 115	7, 3 8, 8 10, 4	9. 2	10. 8	14. 5	12. 9	14. 2	13. 1	0. 5	-0.6
95 100 105 110 115	8. 8 10. 4	31 F 4	11.1	15. 2	11.9	11.0	0.9	0.6	-6.0
100 105 110 115	10. 4	11.6	11.5 11.9	15. 7 15. 0	6. 5 -1. 8	-2. 4 -16. 0	-7. 2 -8. 7	-0. l -0. 8	•7. 7 •8. 4
105 110 115	11.4	12. 4	11.8	11.3	-8.7	-19.3	-13.7	-2. 1	-9.6 -10.7
115		13. 2	11.9	5. 1	-11.4	-19.7	-21.8	-3.7	-10.7
	12. 2 13. 2	13. 8 14. 4	12. 3 12. 8	i. i -0. 3	-12.8 -13.9	-22. 0 -22. 4	-23. 8 -23. 9	-4. 8 -6. 1	- 10. 8 - 10. 9
	14.2	15. 1	13.8	-0.6	-13.2	-14.6	-23. 5	-8. 5	-11.7
125	14.8	16. 2	15, 2	0. 3	-11.0	-9. 5	-14. 9	-8. 5 -10. 2	-11.0
130	15. 1	17.2	15. 1	1. 9 3. 9	7.6	-9.0	9.9	-10.0	-8.4
135 140	15. 5 15. 9	18. 1 18. 6	14. 8 15. 4	5.6	-4.0 -0.7	-5. 8 -2. 1	-8.3 -5.2	-8. 3 -3. 3	-7. 3 -6. 2
145	15.9	18. 7	15.7	7.0	2.7	0.7	-2. 5	-0. 1	-4.6
150	16.0	18. 6	16.2	8.7	4. 3	2. 9	-0.9	1.3	-3.0
155 160	15. 8 15. 2	18.3	16. 1 16. 0	9. 9 10. 6	6, i 7, 5	4. 1 5. 2	-0. 5 -1. 1	i. 8 i. 6	-2. 4 -2. 5
165	14. 4	17. 7 16. 7	16.0	11.0	8, 5	6.0	-0.8	1.6	-2.6
170	13. 2	15.7	15. 9	11.5	8.8	6. 1	0.4	2.0	-2. 4
175 180	12. 6 11. 5	14. 3 12. 8	15. 6 15. 2	12, 2 13, 1	9. 4 10. 5	6. 8 8. 1	2. 5 4. 8	2. 9 4. 0	-1.7 -0.3
185	9. 3	11, 2	14.6	13.7	12.0	9, 5	6.3	4.8	0.6
190	9.3 7.7	11, 2 9, 7	14.0	14. 4	13.5	10.8	6. 3 6. 5	5. 2	1. 1
195 200	5. 9 4. 0	8. () 6. 4	12.6 11.2	14. 6 14. 6	14. 8 15. 6	11.7 13.1	5. 3 5. 0	5. 4 6. 0	1. 4 1. 9
205	2. 5	5. 1	9.9	14.5	16. i	14, 0	6.2	6.7	2. 3
210	1.5	4.0	8. 6	14. 5 14. 2	16.2	14, 1	7.5	7.4	2.8
215	0.7	3. 1 2. 2	7.3	13.6	15, 9	14.2	9.7	8.3	3.8
220 225	-0. 1 -0. 7	1.6	6. l 5. 0	13. 0 12. 2	15. 4 14. 6	14. 4 14. 0	12. 0 12. 1	8. 9 8. 8	4.7 5.0
230	-1.2	0. 9	4, 1	11. 1	13.8	13.0	11.0	8. 5	4.7
235	-1.8	0. 3	3.3	10. 1	13.0	12, 3	9. 8	8.2	4. 1
240 245	-2. 1 -2. 3	0. 1 -0. 4	2.7 2.2	9. 6 8. 8	12. 2 11. 4	12.0 11.4	9. 5 10. 0	8. 1 8. 2	3.9 3.6
250	-2.5	-0.4	1. 8	8. 3	10.9	11. 1	10.5	8. 2	3.7
255	-2, 9	-0.6	1. 4	7.9	10.6	10. 4	9. 5	8. 0	2. 9 2. 3
260 265	-3, 5 -4, 2	-0.9 -1,1	i. 2 i. 0	7. 5 7. 2	10. 4 10. 3	10. 0 10. 0	8. 5 9. 0	7.7 7.9	2. 3 2. 0
265 270	-4. 2 -4. 2	-1, 1	1.0	7.1	10. 3	9. 9	10. 4	8. 2	1.9
275	-4.2	-1.0	1.0	6, 9	10.0	10. 5	12, 1	5, 5	2. 2
260	-4.1	-0. 8	1.0	6.9	10.0	10.6	12.6	8. 8	2.0
285 290	-3. 9 -3. 5	-0, 7 -0, 4	1. 0 1. 1	7. 0 7. 2	10. 3 10. 7	10. i 10. i	11.3 10.4	8. 6 8. 6	1. 1 0. 3
295	-2. 4	-0. 1	1. 3	7.6	11.3	10.6	10. 8	8. 8	-3. 1
300	-1.3	0. 1	1.4	8. 1	12.0	11.2	12, 5	9. 3	-0.2
303 310	-1.2 -1.3	0. 2 0. 5	1.7 2.1	8. 6 9. 1	12. 8 13. 6	12. 6 13. 3	15. 4 16. 6	10. 2 10. 7	0. 2 0. 5
315	-1. 3 -0. 6	1.0	2. 1	9, 9	14.7	14.3	16.7	11, 2	0.2
320	O. 1	1.0	2.6	10.7	15.8	15.8	17.5	11.5	-0.4
325	0.3	0.7	2.9	11.6	16. 4	16. 9	17.8	10. 9	-1,8
330 335	0. 3 0. 4	i. 5 2. 4	4. 1 5. 4	13. 0 14. 2	18. 5 19. 6	17. 6 18. 3	17. 5 18. 1	10. 3 10. 4	-1.4 -1.5
340	i. 2	2. 6	5. 9	15. 3	20. 5	18. 9	19. 3	10. 9	-1.4
345	0. 3	2. 3	5. 7	14.6	22.2	19.5	20. 5	12. 3	-1.7
350 355	·1.6 ·2.6	3. 7 3. 1	4, 2 4, 3	13. 0 12. 2	21. 5 13. 6	21. i i6. 8	20. 7 17. 2	12. 4	-1,2

	-		¥ = 175		VII CONCL		100 IB		
			(b)	THEORET	CAL (UNIF	ORM INFLO	OW)		
				Blade	Radial Sta	tion			
-	. 25R	. 40R	. 55R	.75R	. 85R	. 90R	. 95R	. 97R	. 99R
U 5	2. I	5. 2	8, I	11. 0	11. 5	11. I	10. 3	9, 5	0. 0
	2. 6	5. 7	8, 4	11. 1	11. 1	10-3	9. 1	8, 0	0. 0
10	3. I	6. U	8. 6	11. 0	10, 6	9, 5	8. 0	6. 7	0. 0
	3. 6	6. 3	8. 7	10. 8	10, 0	8, 8	7. 1	5. 9	0. 0
20	4. 1	6. 6	8.7	10. 4	9, 5	8. 2	6.8	5 6	0. 0
25	4. 5	6. 8	8. 6	9, 8	8. 9	7. 9	6. 7	5. 7	0. 0
30	4. 9	7. U	8. 4	9, 1	8. 3	7. 6	6. 6	5. 7	0. 0
35	5, 3	7. 0	8. 1	8. 2	7. 6	7. 0	6, I	5. 2	0. 0
40	5, 7	7. 1	7. 7	7. 3	6. 6	5. 9	4, 9	3. 9	0. 0
45	6. I	7. 2	7.4	6, 5	5. 4	4. 3	2.9	1.6	0. 0
50	6, 6	7. 4	7. 2	5. 8	4.0	2.3	0. l	-1.8	0. 0
55	7, 1	7. 8	7. 4	5. 3	2.5	0.0	-3. 2	-5.8	0. 6
60	7. 7	8. 4	7. 9	5. 1	1. 2	-2. I	-6, 2	-9.6	0. 0
65	8. 4	9. 3	9. 0	5. 7	0. 8	-3. 3	-8, 2	-12.1	0. 0
70	9. 1	10. 4	10. 4	6. 6	1.0	-3.7	-9, 🛊	-13.5	0.0
75	10. 0	11.6	11.8	7. 4	1, 0	•4.2	-10 1	-14.3	0. 0
80	10. 8	12.7	12.8	7. 5	0, 2	•5.6	-12, 1	-15.9	0. 0
85	11.6	13.6	13. 5	7.4	-0. 8	-7.2	-14.3	-18.0	-0. i
90	12, 4	14. 4	14. 1	7. 4	-3, 4	-8. 4	-16.0	-19, 7	+0. 1
95	13, 2	15. 2	14. 7	7. 6	-1, 8	-9, 0	-17.0	-29, 9	+0. 1
100	13, 8	15. 8	15, 2	7. 5	-2. t	-9, 6	-17, 7	-22.1	-0. i
105	14, 3	16. 3	15, 5	7. 2	-2. 7	-10, 2	-18, 2	-23.3	-0. i
110	14.6	16. 6	15.7	6. 7	-3, 3	- 10. 7	-18, 6	-24.6	-0. 1
115	14.7	16. S	15.7	6. 3	-3, 9	-11, 2	- 15, 8	-24. 6	-0. 1
	14.7	16. B	15.5	5. 6	-4, 7	-11, 9	- 19, 4	-25. 0	-0. 1
125	14.6	16.6	15. 2	5. 1	-5. 2	-12.4	-19, 6 -19, 5	-25. 1	-0. 1
130	14. 4	16.3	14. 9	4. 7	•5, 5	-12, 4	~18.5	-24.7	-0. 1
135	14. 1	16.0	14. 6	4. 7	•5, 1	-11, 7		-23.4	0 0
140	13. 7	15. 7	14. 5	5. I	-4.0	-10. 2	-16, 4	-21, 1	0. O
145	13. 2	15. 5	14. 7	6. I	-2.3	-7. 9	-13, 5	-17, 6	G. O
150	12.5	15.3	14.9	7.2	- 0. 3	-5.3	-16, 2	-13.8	0.0
155	11, 7	15.4)	15. ช	8.3	1. 6	-2, 8	-7. l	-10, 1	0. 0
160	10, 6	14.5	15. 0	9.3	3. 3	-0, 6	-4. 2	-6, 9	0. 0
165	9, 5	13. 8	14, 9	10, 1	4. 7	1. 2	-2. 0	-1.3	0. 0
170	8, 2	12. 9	14, 6	10, 7	5. 8	2. 7	-0. 2	-2.2	0. 0
175	6. 4	11, 9	14. 1	11. 1	6.7	3. 9	1, 2	-0.7	0.0
180	3. 5	10. 8	13. 4	11. 4	7. 5	4. 9	2. 4	0. 6	(), ()
185	2. 3	9. 5	12. 7	11. 5	8. 2	5. 8	3. 4	1. 8	(), ()
190	1. 6	8. 2	11.8	11. o	8. 8	6. 6	4, 5	2. 9	0. 0
195	1. 1	6. 6	:0.9	11. 6	4. 3	7. 4	3, 5	4. 2	0. 0
200	0.7	4, 5	9. 9	11.6	9.7	8. 2	6.6	5. 4	0.0
2L	0. 4	2, 4	8. 8	11.4	10. I	n. 8	7. 5	6. 5	0. 0
210	0. 2	1, 6	7. 7	11.2	10. 4	4. 4	8. 3	7. 5	0. 0
215	0. 1	1. 1	6. 4	10. 9 10. 4	10.7	10, 0	4. i	8. 4 9. 2	0.0
220 225	0. I 0. I	0. 8 0. 5	5. i 4. 0	9. 8	10, 9 10, 9	10. 5 10. 8	10. 4 10. 4	10.0	0. 0 0. 0
230	0. 0	0. 3	3. 6	9, ()	10. 7	10, 9	10, 8	10. 6	0. 0
235	-0. 2	0. 2	2. 4	8. i	10. 3	10, 8	11, 0	11. 0	0. 0
240	-0. 5	1.0	1.9	7. 2	9.7	10, 6	11.2	11,4	0.0
245	-0.8	0, 0	1. 4	6. 4	4. I	10.3	11. 2	11.7	0. 0
250	-1.2	0, 0	1. 1	5. 6	8. 5	9.9	11. 1	11.9	0. 0
255	-1.3	0. 0	0. 9	5. 0	7. 9	9. 6	11. 1	12.0	6. 0
260	-1.5	0. 0	0. 7	4. 5	7. 5	9. 3	10. 9	12.0	0. 0
265	-1.6	-0. 1	0. 5	4. 2	7.3 7.2	9, 1	10. 8	12, 0	0.0
270 275	-1.6 -1.6	-0, I -0, I	0. + 0. +	4, 0 3, 4	7. 2 7. 2 7. 3	9. 0 9. 1	10, 8 10, 8	12, 0 11, 9	0. 0 0. 0
200	-1.5	-U, I	0. 3	4. 4)	7. 3	9. <u>2</u>	10. 9	12. 0	0. 0
205	-1.4	0.0	0. 4	4. 2	7. 5	9. 4	11. 0	12. 1	0. 0
290	-1.3	0.0	0.5	4. 5	7.8	9.6	11. 3	12.4	0.0
295	- i, i	0. 0	0. 7	4, 4	8. 2	10. 0	11.7	12. 8	0.0
300	-0, 9	0. 0	0. 4	5. 4	8. 7	10. 5	12.1	13. 2	
305	-0.7	0.0	1. 2	6, O	4. 2	11. 1	12. 6	13. 6	0.0
310	-0.4	0.1	1. 6	6, 6	4. 4	11. 6	13. 1	14. 0	
31 5	-0.3	U. 2	2. 2	7.3	10.5	12. 1	13. 4	14, 2	0.0
320	-0. 1	0, 5	2. 7	8. O	11. 1	12. 5	13, 6	14.3	0.0
325	0. 0	0, 9	3. 4	8. 7	(1. 5	12. 8	13, 7	14.2	
330 335	0, 0 0, 3	1.3 1.4	4, I	ч. 3 ч. к	11.8 12.0	12. 4 12. 8	13. 6	14.0 1 3. 7	0.0
340	0. 3	2.6	5, 7	10. 2	12, 0	12.8	13, 4 1 3 , 2	13. 3	0, 0 0, 0
345	0, 7	3. 3	6. 4	10, 5	12-0	12.6	12. 8	12, 8	0, 0
350	1, 1	4. 0	7. 1	10, 7	12.0		12. 2	12, 0	0, 0
355	1.0	4.6	7, 6	(0, 9	11.8	11.8	11, 4	10. 4	0.0
260	2. 1	5, 2	8, i	11.0	11. 3	11.1	10, 3	4, 5	0.0

		TABLE	VIII TIM ▼ = 175		es of Aero	ODYNAMIC NO 13 9 =	LOADING, 1150 18	LB/IN	
				(a) E	XPERIMEN	TAL.			
				Blade	e Radial Sta	tion			
*	. 25R	. 40R	. 55R	.75R	. 85R	. 90K	. 95R	. 97 R	. 99R
0	-2.0	-1, 9	2.0	9.7	3.8	-1.6	-1.9	·2. 8	-2.5
5 10	0. 4 2. 3	-0. 3 3. 5	0. 9 2. 3	9, 7 5, 7	5. 9 4. l	0. 4 0. 1	-0. 9 -1. 4	-2. 2 -2. 1	-3.0 -3.2
15 20	3. 2 3. 4	5. 2 3. 7	3. 8 4. 8	4. 9 6. 9	3. 2 5 7	0, J 2, 5	-1.3	-2.0	-3.5
25	2.4	3.7	6. 3	8.8	8. l	4. 1	0. 2 3. l	-0.8 0.7	-3. 6 -3. 1
30 35	2. 3 3. 1	4. 3 5. 0	7. 4 8. l	10. 8 12. 7	10 6 12. 7	6.6 8 5	5. 3 7. 0	2, 1 3 1	-2.8 -2.6
40	4 0	5. 6	8. 9	14.1	13.6	9. 5	9. 2	4. 2	-2.5
45 50	3. 7 3. 7	6. 5 7. 7	9. 8 10. 7	14, 3 14, 5	13. 4 13. 1	10. 2 10. 8	12. 0 14. 0	7. 5 8. 5	-2. <u>1</u> -1. 7
55	4. 2	8. 8	11.6	14, 7	12.8	10.6	14. 3	7.6	-2.1
60 65	4. 9 5. 8	10 1 11.0	12. 4 13. 2	14. 8 14. 9	12. 4 12. 9	10. 4 9. 5	14 () 17. 6	6. 2 4. 6	1.6 2.9
70 75	6. 8 7. 9	11. 9 12. 8	13. 8 14. 3	15, 5 16, 0	13. 0 12. 1	10. 1	20. I 16. 1	2. 9	2. 3
80	9. 2	13. 6	15. 1	16, 3	10. 3	11.7 12.2	6. 4	0. 9 -0. 2	0. 2 -2. 6
85 90	10. 5 11. 7	14.7 15.7	15. 8 16. 4	16. 3 15. 6	6. 9 2. 1	5. 3 -4. 6	-2. 2 -5. 3	-0. 5 -0. 6	-5. 6 -7. 1
95	12. 9	16.6	16. 9	13, 5	-3.7	-14.6	-10.4	-1, 4	-8.6
100 105	14. 0 14. 8	17. 2 17. 7	17. 1 17. 2	9. 5 4. 3	-8.7 -11.8	-18.8 -21.1	-19. 5 -22. 7	-3. 0 -4. 9	-1.0 -10.6
110	15. 4	18. 4	17. 3	0.6	-14. 1	-21.3	·25. 2	·7.2	-11.5
115 120	16. 1 16. 5	19. 1 19. 6	17. 4 17. 4	-1, 1 -1, 7	-15.0 -15.0	-16.2 -13.4	·26. 1 ·20. 0	-11. 1 -13. 4	- 12. 6 - 13. 0
125 130	16. 9 17. 2	20. 0 20. 4	17. 0 16. 1	-1.7 -1.4	-13.6 -11.8	-14. 4 -13. 5	-15. 2 -15. 7	-13.6	-11.1 -10.2
135	17. 4	20. 5	14.8	-0.6	9. 4	-10.7	-14.0	-13. 8 -11, 1	-9. 5
140- 145	17. 6 17. 4	20. 4 20. 1	14. 0 14. 2	1. 2 2. d	-7. 2 -5. 3	- 8. 2 -6. 3	-10. 3 -7. 3	-6. 7 -5. U	-8.0 -6.5
150	17.3	19. 5	14.7	3. 9	-2.9	-4.0	-6.2	-3.9	-5.8
155 160	17. O 16. 7	18. 8 17. 9	14. 5 14. 4	4. 6 5. 3	-1.5 -0.4	-3.0 -2.3	-4. 6 -5. 4	-3.3 -3.2	-4.9 -5.4
165 170	16. 7 16. 5	16. 9 15. 6	14. 8 14. 8	6. 2 7. 3	0. 9 2. 4	-1.6 0.0	·6. 0 ·3. 9	-3.0 -1.8	-5, 9 -5, 0
175	15. 2	14. 4	14.7	8. 4	4.0	2.3	-0.1	·0.3	-3.7
180 185	13, 7 12, 0	13.0 11.5	14. 5 14. 1	9. 8 10. 8	5. 8 7. 7	4, 2 5, 4	1. 6 1. 5	0. 9 1. 5	-2. 4 -1. 9
190	9. 2	10. 1	13. 3	11, 8	9. 9	7. 2	0.1	2. 2	-1.5
195 200	6. 4 4. 8	8. 9 8. 4	12. 4 11. 6	12. 7 13. 3	12. 1 13. 5	9. 6 11. 3	1. 2 2. 6	3. 3 4. 4	-0.5 0.2
205	3. 6 2. 3	6. 9	10. 5 9. 3	13. 🗸	14. 2 14. 3	12, 2 12, 2	3. 8	5. 2	1.0
210 215	1. 2	5. 8 5. 0	8. 1	13. 0 12. 6	13.8	11.8	5. 0 6. 3	5. 7 6. 0	1. 2 1. 7
220 225	0. 9 0. 6	3. 8 2. 8	7. 2 6. 8	12. 0 11. 3	13. 1 12. 7	11.7 11.7	7. 7 8. 7	6. 4 6. 8	2. 3 2. 3
230	0.3	2. 3	6. 1	10.5	12. 2	11.9	9. 6	7. 1	2.6
235 240	0. 2 0. 1	1. 6 0. 9	5. 1 4. 1	9. 9 9. 2	11.5 10.9	11.7 11.2	10. 4 10. 5	7.3 7.3	3. 2 3. 5
245 250	0.0 -0.1	0. 6 0. 4	3. 4 2. 8	8, 6 8, 2	10. 4 10. 1	10. 7 10. 3	10. 5 10. 2	7. 4	3. 1
255	-0.3	0. 3	2. 5	7.8	9. 9	9. 9	1.0	7, 2 6, 9	2. 6 2. 0
260 265	-0. 4 -0. 4	0. 3 0. 2	2. 0 1. 8	7.5 7.3	9. 6 9. 3	9. 7 9. 8	9. 6 10. 6	6. 9 7. 1	1. 8 2. 0
270	-0. 4	0. 3	1.6	7. 3 7. 1	9. 4	9.7	10. 9	7. 1	1.7
275 280	-0. 4 -0. 3	0. 4 0. 3	1. 4 1. 2	7. 0 7. 0	9. 2 9. 3	9. 4 9. U	10. 7 9. 1	7. 2 7. 0	1. 1 -0. 1
285	-0.2	0.4	1.0	7.0	9.6	8.9	8. 9	6. 9	-0.4
290 295	•0.0 0.0	0. 4 0. 5	1. 1 1. 3	7. 2 7. 4	10. 0 10. 6	8. 9 9. 1	8. 2 8. 4	6. 9 7. 0	-0. 9 -1. 6
300 305	0. I 0. 3	0. 6 0. 7	i. 5 2. 0	7. 4 8. 1	11.0 11.6	9. 7 10. 5	9. 8 1t. 1	7. 2 7. 6	-1.6 -1.2
310	03	0.9	2. 4	9. 0	12. 4	11.4	12. 4	8. 1	-1.5
315 320	0. 4 0. 6	1. 1 1. 3	· 2.9 3.4	9. 8 10. 9	13. 0 14. 0	12.7 13.6	15. 1 15. 7	8. 9 9. 3	-0.7 -0.7
325	0.8	1. 9 2. 2	3. 8 4. 3	12. 1	15. 1 16. 3	14. 2	16. 3	9. 2	-0.9
330 335	2.0	2. 9	4. 8	12. 8 12. 9	16. 9	14. 9 15. 2	16. 5 16. 2	9. 2 9. 0	·0. 9 -1. 2
340 345	1. 3 • 1. 5	4. 4 6. 5	5. 4 6. 3	12, 2 10, 7	16. 2 13. 2	14.6 11.9	15. 9 14. 8	8. 3 7. 1	-1.6 -1.1
350	-3.0	6. 3	5. 2	10.7	11.6	7.8	11.5	4. 8	-1.2
355 360	-2.8 -2.0	1. 8 -1. 9	2. 3 2. 0	11.0 9.7	9. 1 3. 8	2.0 -1.6	1.7 -1.9	·1. 1 ·2. 8	-1.7 -2.5

			V = 175		VIII COLC		י ע		
			(b) THEORET	ICAL (UNI	FORM INFL	.OW)		
				Blade	Radial Sta	tion			
<u> </u>	. 25R	. 40R	, 553	.75R	.85R	. 90R	. 95R	. 97 R	. 99R
0 5	4. 3 5. 1	7. 4 7. 8	9. 3 9. 6	ส. 5 8. 3	4.7 4.1	i. 5 0. 8	-2, 1 -2, 7	-4.8 -5.3	0.0
10	5. 7	8. 3	9. 7	7.9	3. 8	0. 5	-2.6	-5. 0	0. 0 0. 0
15	6.3	8.6	9.7	7.5	3. 7	0. 9	-1.9	-4.0	0.0
20 25	6. 9 7. 5	8. 9 9. 1	9. 6 9. 3	7. 1 6. 8	3. 8	1.5	-0.9	-2.8	0.0
30	8. 2	9. 3	9.0	6, 5	40	2 I 2. 4	-0. 1 0. 3	-1.8 -1.3	0.0 0.0
35	8.8	9. 4	8.8	6. 2	4.0	2, 2	0.0	-1.8	0.0
40	9, 4	9.7	8.8	5, 9	3. 4	1, 3	-1,2	-3.3	0.0
45 50	10. 0 10. 7	10. 3 11. 0	9. 1 9. 8	5.7 5.5	2. 4 1. 2	-0. 1	-3.2	-5.8 -9.2	0.0
55	11.4	11.9	10.8	5.7	0. 2	-2. 0 -4. 0	-6.0 -8.9	-9. 2 -12. 9	0. 0 0. 0
60	12. 3	13. 1	12. 1	6, 5	-0.1	-5. 2	÷11.2	-15. 9	0.0
65 70	13. 3	14. 4	13.8	7. 9	0.3	-5.7	-12.6	-18.1	0.0
75	14, 4 15, 4	15, 8 17, 0	15. 3 16. 5	9. 1 9. 6	0.6	-6, 2 -7, 4	-13.9	-19.6	-0.1
80	16.4	18.0	17. 2	9. 4	0. 2 - 1. 9	-7. 1 -9. 2	-15.8 -18.3	-21, 2 -23, 3	-0. i -0. i
85	17. 4	18. 9	17.8	8 9	-2.2	-10. 9	-20. 5	-25. 3	-0. 1
90	3.2	19.7	.8. 3	8. 4	-5.3	-12.2	-21, 9	-26.8	-0. i
95 100	18. 8 19. 3	20, 4 20, 8	18.7 18.8	7.8	-4.3	-13. 4	-23. 1	-28.3	-0, 1
105	19.6	21. 1	18. 9	7. 1 6. 4	-5. 4 -6. 4	-14, 6 -15, 6	-24. 2 -25. 1	-30. 1 -32. 2	-0, i -0, i
110	19.7	21. 1	18. 7	5, 8	-7.3	-16. 4	-25, 8	-33.0	-0. i
115	19.7	20.9	18. 3	4.8	-8. 4	~17.5	-26. 9	-34.0	-0. i
120 125	19. 5 19. 1	20. 6 20. 2	17.7	3.9	-9.3	- 18. 4	-27.7	-34.8	-0. 1
130	18.7	19.8	17. 1 16. 6	3. 2 2. 7	-9.9 -10.1	-18. 9 -18. 7	-27. 9 -27. 6	-34.7 -34.0	-0. 1 -0. 1
135	18. I	19. 4	16, 3	2.7	÷9. 7	-17.9	-26. 2	-34.0	-0.1
140	17. 4	19.0	16. 2	3.0	-8.7	-16. 4	-23. 9	-29.7	-0. 1
145 150	16. 4 15. 0	18. 8 18. 5	16. 3 16. 4	3.7	-7.2	-14. 4	-21. 4	-26. 3	0.0
155	12.8	17.9	16. 4	4. 7 5. 8	-5. 5 -3. 5	-12.0 -9.4	-18. 4 -15. 1	•72, 9 •19, 2	0.0
160	9. 3	17. 4	16. 4	6.9	-1.6	-6.9	-12, 1	÷ 15, 8	0. 0 0. 0
165	6. 9	16.6	16. 3	7.6	-0. 2	-5. 2	-9.8	-13.2	0.0
170 175	5. 0 4. 0	15. 3 13. 6	16. I 15. 8	8. 2 8. 8	0.9	-3. 7	-8.0	-11.1	0.0
180	3. 4	10. 5	15. 4	9.4	2. 0 3. 0	-2. 3 -1. 1	-6. 4 -4. 9	-9.3 -7.6	0.0
185	2.8	7.5	14. 9	9.9	3. 8	-0. 1	-3.6	-6.2	0. 0 0. 0
190 195	2. 2	5. 3	14.0	10. 5	4.7	1.0	-2.4	-4.8	0.0
200	i. 8 l. 3	4. 0 3. 2	12, 8 10, 9	11, 2 11, 9	5.9	2. 4	-0.8	-3. 1	0.0
205	0.9	2.6	8. 1	12. 3	7.3 8.7	4. } 5. 8	1. Q 2. 9	-1.2 0.8	0.0
210	0.6	2. 1	5. 6	12. 3	9.6	7. i	4. 4	2. 4	0. 0 0. 0
215 220	0.5	1.7	4. 2	12.0	10.2	8. l	5.8	4.0	0.0
225	0, 6 0, 7	i. 4 l. i	3. 2 2. 6	11.4	10.6	9.0	7.0	5. 4	0.0
230	0.8	0.8	2. 2	10.7 9.8	10. 6 10. 3	9. 5 9. 8	8 1 8. 9	ઇ. ફ 8 O	0.0
235	0.8	0. 6	1.8	8 9	9. 9	9 8	9. 4	8.9	0 0 0.0
240 245	0, 9 1, 1	0.5	1.5	8 0	9. 4	97	97	9.5	0.0
250	1. 1	0. 4 0. 3	1, 2 1, 0	7. 3 6. 6	8 9 8. 4	9. 4 9. 2	9. 8	9.9	0 0
235	1. 5	0. 3	0. 9	6.0	8. 0	9. 2 9. 0	9 7 9.7	10 0 10. 1	0. 0 0. 0
260	1.6	0.3	0. 8	5. 6	7.8	8 8	96	10. 1	0.0
265 270	1.7 1.7	0. 3 Q. 3	0. 7	5 4	7.6	5. 7	9, 5	10. 1	0.0
275	1. 6	0. 2	0. 7 0. 6	5. 3 5. 3	7.6 7.6	8 7 8. 7	9. 5	10. 1	0 0
280	i. 5	0. 2	0.7	5. 4	7.7	8. 7 8. 8	9. 6 9. 7	10. 1 10. 2	0. 0 0. 0
285	1.4	0.2	0. 7	5. 6	7.8	8. 9	9.7	10. 2	0.0
290 295 300 305	1. 2 1. 0	0. 2 0. 2	0.9	5. 9	8.0	9.0	98	10. 2	0.0
300	0.8	0.2	1. 0 1. 2	6. 2 6. 6	8. 3 8. 5	9, I	9. 8 9. 7	10.1	0.0
305	0.5	0.4	1.5	7.0	8.7	9. 2 9. 2	9. 5	9. 9 9. 6	0. 0 0. 0
210	0. 4	0. 5 0. 7	3. 1	7.4	8.8	9. 2	9. 3	9. 1	0.0
33V 312	0. 4 0. 3	0. 7 0. 9	3. 9	7.8	8.9	9 1	8.9	8.7	0.0
325	0.3	1.2	4. 7 5. 5	8. l 8. 4	8. 9 8. 8	8 8 8. 5	8.5	8.1	0.0
315 320 325 330 335	0. 4	1.6	6. 3	8.6	8. S	8. G	7. 9 7. 1	7. 4 6. 4	0, 0 0, 0
325	0.6	3. 1	7.0	8.7	8. i	7. 2	6.0	4.9	0.0
340	0. 8 1. 1	4.7 5.6	7. 5	8.7	7.5	6. 2	4, 5	3. 1	0.0
345 350	1. 4	n. n h. 3	8. i 8. 5	`8.7 8.7	6, 9 6, 2	5.0	2.7	0.9	0.0
355	3. i	6. 4	8, 9	8. 7	5. 5	3. 6 2. 5	0, 9 -0, 8	-1. 4 -3. 4	0. 0 0. 0
360	4. 3	7.4	4 3	8. 5	4, 7	1. 3	-2.1	-4.8	U. U

		VARIABLE INFLOW	7.20	2.23 -2.06	0.34 0.47	0.38 -0.14	10.0- 10.0	0.03 0.11	0.03	70°0 80°0.		VARIABLE	INFLOW			•					0.02 0.02		VAKTABLE	A(N) 8(N)							0.11 -0.00		
	.55R	UNIFORM	23	22 -3.88 54 0.53 -	27 -0-16	10 -6-10	00.00	0000	00.0	- 00.0	.90R	VIFORM	:	:	2:	==	~	Ξ:	: =	õ	==	.99R	UNIFORM	î			1 1	1	ı	1	1-1	ı 1	ı
	STATION .	ENT	2	0.23 -1.0	0-08	0-09	0.20	0.20	0.14	20.0	•	5	ENTAL	12.	3.58 -3.	0.86 0.99	1.17	-0-26 0-0	0.56 0.0	0.25 0.0	-0.09 0.01 0.0	STATION	:	8(4) Att							0.05		
	BLADE S	EXPERIM	7.7	•	•	• •		•	•	•	BLADE ST		Ξ	12.32	-2.59	*0°0-	-1.30	00.0	0.03	-0-33	-0.26 0.26	BLADE S		5	0.52	9-19	70.0-	-0.21	-0.30	0.13	0.13	60.0-	0.05
-750 13		VARIABLE INFLOM		1.93 -3.07								VARÍABLE	INFLOW A C. C.		25.1						0.07 0.14		VARIABLE	A(V) B(N)	10.33		•				0.12 0.02		•
5	80	;	;	35	7	8 6	8	8 8	8	9	58	1FORM	:	•	52	202	.05	8.5	30	00	58	78	UNIFORM	2	; ;	62.6	0 4	91.0	0.15	0.03	000	000	-0.01
1	AT 104 = .40R	UNIFORM INFLOW	5.4 6.4	-3.24 2.1°	0.26 -3.1	0.08 -0.0	0-0-10-0	20.0-	90-0	0	1		NTAL 1MI	12.4	3.02 -1.8	.c.c- 16-0	0.61	0.28 0.0	0.43	0.03	0.16 -0.01 0	STATION 978	į	N (N)	12.64						0.16 -0.0		
\$\$ LI	BLADE STATION	EXPERIME	3.53	2.98	3.2	9.10	3.0		ç	0.32	BLADE ST		FXPFRIME	14.38	06.5-	-2.46	-1.23	-5.33	02.0-	-2.27	3.34	BLADE ST	Ĭ	Ľ	5.99	19.2-		16.0-	- 1.78	2.29	7.5.C	-2.24	-2.37
011 - Y		ABLE		135 -1.90								VARTABLE	INFLUM	(N) 6 (N)	.54 -5.13	76 3.37	16 3.56	71.0	49.0	10 7.02	31 3.12 3.01		VARIABLE	(A) (A) (A)	11.93	26.9 18.	22.6- 60.	751 2.97	.53 3.58	16 3.16	36 0.04	2.0	.33 -3.00
		# 75 0.00	3 (4)	1 66.2-	-0-33 -0	-0-01	0.04	50.0	20.0	0 20°¢	~												WIFIRM	2		7.62		21.6	2.12	0.72	יי נייל	-7.31	10.0-
	12 NOT										ATTON = .758			11.15	38 0.27	46 -0.27	30 0.02	40.00	05 22	-1.33	0.15 0.33 -3	110N = .95R	·	- Y	12	26.4- 19.	51-6- 66	20 0-23	10.0- 00	20 -0-02	30.01	60.0	-5-11 -5.31
	RLADE STATION	EXPERIMENT	1.98	2.55 -2.49							BLADE STAT		EXPERIMENT								-0.32	RLADE STATION	3		7.94								
			, c	- ^	. ~	.	n •0	۰.	t C	<u>.</u>			:	, ((~ ~	•	.	۰,	•	۲.			,	٠,	(~ ~	•	ď	æ i	~ a	LJ	<u>:</u>

Mark Mark	14 14 15 15 15 15 15 15
WILFORM	STATION = .25K WEETAL LIMELDAN WILEDAN WILL AIN BIN BIN BIN BIN BIN BIN BIN BIN BIN B
#	STATION - 258 -5.17 -
	# # # # # # # # # # # # # # # # # # #

•	BLADE STATION	N25R	×	BLADE ST	STATION	.404		BLADE	BLADE STATION	N = .55R	
			UNIFORM			UNIFORM	28.4	4		UNIFORM	DRM
	XPERIMENTAL	•	8	EXPERIME	MENTAL	Z :		EXPERI	INCREAL	NO LINE	*
	A(A)		Ĉ.		Î N		ê .	4 C C	2 2	2 0	
	2.84 -1.75				4.55	1.86	-5.90	2,75	-3.43		-4-31
	-0-38 1-42	0.83	1.07	10.0-	1:1	-0-62	1.14	-0-71	0	-1.18	0.00
	0.n2 -0.14	•			92.0	20.0	-0-19	20.0	1.02		90.0
ī	0.09 0.12				97.0	-0.19	-0.15	-0-38	0.57		90.0
	0.01 0.06	•			0.12	-0.0	0.09	-0.23	0.33		~ O
	0.15 0.09					0.0	-0.02	0.15	0.20		0.0
	0.12 0.10	•				50.0	0.00	60.0	***		7000
	0.22 0.24				50.0	100	70.0	9.0	51.0		5
	91.6 01.0	•			0.03	10.0-	-0-02	10.0	50.0		00.00
	9.11 9.24				÷	-0.02	20.0	0.0	•		0
•	BLADE STATION	N758	æ	BLADE SI	STAT 10N			BLADE	STATION	H06" = A	
		-	3 6 6 9			27.41	3			MACHINI	# 2 C
4	BENT	, E		FXPERINE	MTAL	TAPLON.		EXPERS	MENTAL	INFLO	
		(×) V	17.6	(2)4	N N	- N	20.00	(N)	A(N)	(N) V	B(N)
	5	9.70		6.0	:	9.16	•	9.37		6.69	
	9	0.18	0.36	-3.35	3.86	-1.66	4.21	-2.70			99.9
	Ģ	-1.79	.0-0-	0.61	-1.84	-2.08	-0-69	0.31	'		6.0
	~	-0-13	11.0	6.0	2.51	0.0	90.0-	1.23			77.0-
	c (50.0	70.0			2 0	000	76.0-			
				0 P C	7.		50.0	10.0	2		
		200		7.7.6	0.37	00.0	-0-07	0.42			0.0
	Ģ	-0-01	0.01	-0-24	0.03	-0.01	-0.02	80.0-			0.0
	0	0.02	-0.01	-0-01	60.0	0.0	0.01	-0-17			00.0
	0.02 0.20	- 10°0- va	-0.00	0.10	61.0	-0.01	-0.00	0.13			00.0
•	BLADF STATION	N 958	£	6LADE S1	STAT TON			BLADE	STATION	¥66° = ₹	
		MACHINO	Haca			UNIFORM	08.8				OKH
۳		12.	101	EXPERIME	Ā	1 NFL		EXPERI	INENTAL	INFLOW	
7		Ž	7 20	() V	ŝ	7	?	A (N)	ž		ŝ
		2.00	•	61.4	;	9.6	•	2.0			
		-3.69	6.13	-2.37	2	16.4	10.03	15.0-	E .		ŀ
		-2.53	-1.07	· 84.6	90.	21.5	91.19	\$	21.1		ı
		77.0		96.1	-		600				1 1
	AL. 1 00.0-				0.87	0.15	0.13	0.30	0	•	
		0.0	60-0	66.0	0.0	0.0	0.10	11.0	-0-06		ı
		-0.04	3.52	0.00	0.13	-0.05	0.01	0.15	0.0		•
		-0.04	200	0.10	0.16	-0.0-	0.0	ò	0.0		•
		.0.01	0.01	-0-10	0.27	-0.0-	0.03	-0.03	0.11		•
						•	~	•	•		

	BLADE	STATION					BL ADE	BLADE STATEON	*. +0R				BLADE	BLADE STATION	55R			
	,		NO.	F 0 R M	VARI	PARTABLE			UNIFOR	M M	VARI	IABLE			UNIFORM	DRM	VARI	ARIAD'E
	EXPER	I ME K. A.L.	2			5	EXPERI	MENTAL	N.	3	2	NC.		MENTAL				, .
* (2	ě	2	ŝ	N N	200	7	8C N	ACR	₹ >0	2	Ž	2	8 ()	2	2	Z .	
۰ د	::				2.34	•	***				74.4	ć	79.0	**	7.0	9		40.
- ^			2.7		9	,	1000		9 0			- 2 - 4 - 4	71.4		-2.96	0.0	-2.96	0
			4		, F. C.	9		10.1-				-0-42	55.0	-0-87	-0.59	-0-54	04.0	-0.37
			0.32		-0-23	י י	0.23	0.10	-3.32		-0-74	-0-63	0.0	0.10	-0-37	-C-3-	-0.40	0.0
~	0.30		0.17		0.02	· ;	2.37	0.0	0.03		0.20	-0-13	0.16	0.09	0.09	-0.10	-0.17	-0.09
•	0.07		0.0		-0.0+	P	21.0	0.13	-000		-0-1,	61.0-	0.17	0.20	0.10	0.0	0.12	0.07
~	0.1		0.05		0.19	î	0.07	6,07	-0.05		0.0	61.0-	•	0.22	-0.05	0.0	-0-	0.0
•	*		0.0		9.50	ę,	3.0	9	0.0		0.16	0.0	-0-15	10.0-	0000	0.00	-0.03	100
ن ه	0.28	0.0	96	-0-01	-0.12	2.63	-5.5	0.0	0.00	-0.01	-0-0-	-0-14	000	0.0	50.0	0.0	0.11	-0-12
	BLADE	STATION	75A				BLADE	STATION	1854				BLADE	STATION	* .90R			
			200	7	YAR.	481 6			CALLE.	***	VAR	181.6			UNIFORM	28.8	VAKI	VAKIABLE
	EXPER	HENTAL	145	3		6	EXPEPI	TENT.	INFL	3	INFLOW	LOW	EXPERI	MENTAL	INFLO		ž	ENFLON
z c	\$ 7 C C	ž	Ž (ĕ	ACK!	2	A (4)	Ē	1 × ×	(K) (A CA	2	Z Y		A(N)	Š	12.36	Š
-	0.86	-0.64	0.36	ç	0	-3.33	40.4	č	-2.59	4.15	-2.23	2.91	4.4.		9	7.14	-3.90	4.95
~	17:11	-2.18	-5.04	ç	-4.07	-5.27	-5.50	ŕ	-h.07	-1.58	04.4	-1.25	-5.65		-6.72	-2.09	-4.73	-1.58
"		91.0	-0.57	ġ.	90.0	3.28	Ç:	ġ.	92.0-	-0-36	-0-13	9:5	1.29		-0.02	-0-67	0.0	0
•	-0-33	-3.29		ç	00.0	900	7 -1-	ç	200	20.0	11.0-	0.16	1.43		61.0	0.05	-0.24	0.37
٠	0.25	0.23	0.10	ö	0.13	97.5	3.54	ò	0.15	0.10	0.0	0.29	44.0		0.13	0.23	90.0	0.27
~ (-0-14	0.30	-0-03	ė,	-0.05	0.23	91.0	0	-0-11	0.0	-0-12	0.37	0.13		91.0	<u>ي</u>	000	0
æ (9:00	-0.25	~ c	ŗ	600	-3.02	9.00	ç	20.0	50.0	-0-	20.0	4.0		000	9	200	200
P C.	40.0	0.01	-0.0	òò	01 0.04 0.10	2.10	5.27	٩٠	-2.02 0.0	0.03	0.05	0.0	0.12	-0.33	-0.03	0.0	-0.10	0.0
	BLADE	STATION		_			BLADE	STATION	97R				BLADE S	STATION	99R			
			RC41MU		VARIABLE	ABLE			UNIFORM	N N C	VARIABLE	IBLE			UNIFORM	DKM	VAKI	VAKIABLE
,	EXPER.	MENTAL	1 N 1	_ 4	Z .	3	EXPER	¥ 4	7. M.F. L.	, i	C.17KI	_:		MENTAL	INFLO			₫°
r c		č		0	11.77		75.	6	12.8		4	6			1		7.7	
,	-7.61	5.09	-6.02	0	-5.22	6.39	-3.97	÷	-7.12	12.34	5.79	9.04		3.44	1	ı	-5.37	5.42
~	4.10	-2.80	-7.46	~	-4.96	-1.57	-2.91	-2.	-6.05	-2.86	16.4-	-1.23		-1.84	1	ŧ	-3.90	-0-79
_	1.53	0.0	0.26	-	0.00	-2.36	1.97	ė,	15.0	-1.34	1.21	-0.54		-0-12	i	t	1.02	-0-63
• •	15.0		7.0	ĎC	00.00	6.4	000-	1	0.0	20.0	25.0	0.70	60.0	95.0	1 (1 (400	0
٠.	0.17	54.0	0.12	Ö	-6.22	200	0	Ġ		2.37	-0.32				1	ı !	-0-31	0.28
~	***	0.21	-0.20	Ö	-0.02	9.16	0.38	ò	-5.24	0.07	0.0	0.05		-0-05	i	ı	0.02	-0.05
	• 100	0:10	0.02	Ö	41.0	01.0	-0-11		0.0	-0-17	0.30	0.12		90.0	i	1	0.31	0.11
•	-0.36	0.49	.09	ċ	0.0-	# - · ·		c	•	•	•	•		•				
(i	,	D (3 1	;	20	0.0	50.0	A2.0		0.23	1	ı	70.0-	97.0

	BLADE STAT	ATTON 2	.25k	BL AD E	STAT	40R		BL ADE	STATION	155R	
			UNTFORM			UNIFORM	ORM			UNIFORK	MAC
	EXPERIMENTAL		WE-LON	EXPERI	MENT	- X		EXPER	×	INFLOR	3
* (7		A (A)	2	2 4	2
: -	•		32 -4-05	9.0	-5.1	2.76	-6.87	91:	•	2.86	-5.6
~			19 1.79	-1-2	2.	-0.71	1.91	-1.95		-2.31	1.19
_	-0.08 -0.64		-0.65	0,0	ò	-0-35	-0-72	0.82	0.0	24.0-	0.04
4			11.0 +2	10.0-			11.0-	70.02		00.00	7.0-
r	•		25 -0-34 0-13	26.0	•		0.00	0.34		0.0	9
۰,											
- 4	•		40-0		6		-0.04	01.0-		0.0-	
. •	٠		31 -0.06	0.10		-0-0	0.03	0.0-	•	0.0	0
6	0-59 -0-		-0.00 0.00	-0.02	3	0.0	-0.00	0.0		-0-01	0.0
	BLADE STAT	AT10N7	.75R	BL AD E	STAT 10N	854		BLADE	STATION	90R	
		5	41 FORM			SINO	DRM			UNIFORK	#
	HENT	AL 18	4FI.DH		HENT	INFL	3	EXPERI	Ξ	INFLOR	ě
	ĕ	۲ (۲	(Z)6	(F) Y	200	2	(X)	P C	č	N N	ž
	•		96	11.82	17	9635		-0-			•
	9	7.0	10.04	14.5	10.	7	11.42	19.00			-
		95	32 0.33	66.	: ~	0.0	00.0	2.05		0.36	-0-3
	•	15 -0-3	13 -0.09	-1.05	2.35	0.05	0.10	-1.11			0.22
	ó	35 0.0	0.03	-1.52	-0-36		-0.26	-1.48			0
	ė		90.00	20.07	2			77.0			2.0
	.		100			0.0	-0-11	-0-53			9
	ó	0.0	10-0-	-0.33	-0-18	0	-0.03	-0.64			0
	0.23 0.36	36 0.01 0.0	0.01	0.21	0.23	23 0.01 0.0	0.02	-0-13	-0-15		0.0
			;	3							
	BLADE STAT		.458	M. AUE	STATEON			90479		¥ .	
			UNIFORM	4	4 4 4 4	UNIFORM	OR #	9		CHIFORM	# :
	CAPERIMENTAL	•	5	24764				TANKS TANKS			
, c		18'2 18'2	•	8.59		6.32		-0.45		1	
				-3.36	•	***	14.24	0.24		ı	ı
	•			-1.19	-2.2	-6.10	-2.59	-0-11		i	١
				19.2	S	0.97	-1.24	0.68		I	ı
				-0.24	2.	29.0	0.40	-0.16		ı	i
				64.1-				26.0-		l I	ı
				9 4			100	2		!!	ı
	-0-63 0-78		-0.10	07-0-	0	-0-1	0.0-	40.0-	0.0	1	1 1
				-0-	0	0.03	-0.06	0.03		ı	1
				•	•	•		•			

	- ·	. 2	- 1	0 . Q	~ 6	96		-0	 00		-	_	2	6	66 27	2	2 22	7.	(A)	¥.			· ;	-	-		-	-
	- -	¥ 5		• -	~ ~	ò	o c	ခု	ခုဝ			18 C	N S	c	7 0	2	0	0 =	0.0	٠ •	_	- x	e e	Ę	1 1	-1-1 	1	1
2,42		INCTORM INCTOR	201	2.45	600	20.0	0 0	2	6 6 6 0		405	SALE ON PARTIES	K (%)	3.50	3.42	75-0	2.0	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		466*	CAR FURN	A C S	П	i Į	- ; ;	- }	ţ
CTATION		NIAL	707			-			9,05		22							-	25.0				ďŽ	2	2 2		6 M	ć
11		ž									STAI				*				.~			- 3	(X) &	*	~ c	0.0	2.0	
ar kink	2 - 1 G	Experi	33	4,13	6	\$ % • *	200		က်ကို မြိမ် ကြိုင်း ကြိုင်း	-	BLAUE	y day	5		4.4	0.36	200	4	2	Š	BLAGE	- 6	¥ 2 2 4 1	2.5.0	50.00	0	21.4	* 0
		-	-			-	-			-		-		-				-					-					
	_	~			-		-					-	=		-		-			-	-			-			_	
			-		- - -		-				-				-					-	-			- = .	-	. =		
	-	. 2		V V	- CO - 4	, 4	~ <u>~</u>		e en De		-		~	31	~ o o ~	•	٠ <u>٠</u>	.e. c		ž	-		2	= - 0-1	A va	M-v	٠Ņ.	•
_		* × ×		, c	o c	ó	o c	်ဝ် -				SALEDRA INFLOS	*	ŏ		•	o c	00		5		X 7				0.23		
107	•	NATE OF A	6.0	-0.20	80.0	2	2.0	12.0	နှင့် ဂဂ္ဂ	F	***	A PAR	1 × 1 × 1		4.0 2.0 3.0 4.0	2.5	90.0	40.00	200	5	¥.6.		A (N)	, v.	2.5	1.00	W.	
Í	á	MAI			400	- 4				- "	10 P	1	× ×						0.33	-			:					_
717	:	ž						_			A T	7		~	*						STATION	**************************************	i.			N.C.		
307 14		X				7		,	- C	-	BL AD	- X	2	1 2 3 3 4 4 5 4 5 7 7 7 7 7 7 7 7		24		24.0	90		3.406	- Q	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	کرون مراجع	7 X	C	Ċ.	
-	٠.		-	•	: -			. ´	-			- ,		: "		-		Ĭ		-	-		• -			! 		-
 	-	`-										-			-			-								-		_
	-					: -	-	٠		•		- 3					-		-		. - .	- "		= -	-	-		
	-			>-c-		٠.	- مر عو	~ .	سعد ما	-		-	_	- - -	e e	c .c	5 ∧	 			-		· -		- -	سرتنو.	-	
F .		, <u></u>	. ;		77.0	Ċ	90	ç	ģ		_	ž.	Z.	i i	ດ ພິສ	0.5		2.5	7.0	•		£ 3	7	13.5	40	200		•
. 25R	-	2 <u>7 2</u>	200	25	21.15	10	~	8	56	-	. 254	WILDER TO THE TOTAL TO THE TOTAL TOT	2	'n		=;	V N	20	26	· .	5. 37.	UNIFORM			· ·	0.4	.0	
* NO	-		**								¥ Z	- -	41	r _e Car	w w 	3	? O	ဂူဂူ	o c		· *		-∢ ^	4.34 C				
STATIO		A 7 8	· ·	, v	79.0	Ç	ço	9	ē	-	1411	ENYA	80.00	0	, N		o C		21.0	•	TATIC	14141	2	2		2.23	2	-
) you	-	ALNI									AOF S	≯] ₩ ‡ 0	3	O- 1		<u> </u>	- AC	 	900		40E S	MA CMOND				2.0	2	0
ā		Sect -								÷.	ŧ		4	7	, !	ر ز	- (-	c c	a ç	,	. ž	ž	č		2 1	ó-	ç	
	.: -	- 2	** =	T FQ	r 2	. جي -	a m	∞ C	- A.		-		z (y ř	• •	•	 -	ۍ <u>د</u>				7.0	، بر ا	تبري	* v	-01	

*	BLADE STA	104	.25A				BL.ADE	STAT 10N	40R				BLADE S	STATION	55A			
			UNIFOR	æ	VARIABLE	481.6			UNIFORM	H V	VARIA	BLE		:	UNIFORM		VARIAB	318
w	XPER INE	MIAL	T ME		1 N L			MENTAL	I NE	3					7 7 7	Z	¥ (%)	200
		=	2		3.02		4.30		2.03			;	6.61		6.76		6.17	
	•	5.16	2.42	5.13	2.28	-2.68	•••	3	3.17	7.		-4.52	4,35	-3.67	6.5	-5.49	3.10	7
•	2.91	3.24	0.17	1:05	0.59	5.05	-2.32	Ξ,	0.0	0		2.12	-3.51	285	79.7-	٠,٠٠٠		7.0
٠	0.0	0.85	-0.67	0.35	-0.43	-0.6-	9.54	7	0	7		2 9	9:0	0.1.	•	9 9		
		0.40	0.31	2:0	-0.53	0.0	6 2 ° C		,				0.13	200	2 .	20.0		0-05
	•	4.6	65.0		600	9 -			10.0			-0.05	0.28	.4.0	0.12	60.0	0.02	-0.0
•		700			200	-5.17	90-0-		0.00	*0		.0.0	9.01	0.28	20.0	0.03	0.0	¢.02
		0.00	-0.02	•	41.0	-0.01	11.0	~	0.0	.07		-0.21	0.10	0.0	10.0	60-0	-0.21	0.0
	0.31	-9.17	0.0	9.92	0	6.0	41.0	: :	0.0	8-	2.5	-0-23	0.1	0.0	90.0	10.0	-0-13	-0-13
	•	-0-17	10.0-		60.0	9	5			:								
•	N ADE ST	MO110	. 758				BLADE	STATION					BL ADE	STATION	406. F			
•												;				;		3
			FINO	¥ C	VARI	ABLE	1		25	¥ 3	VARIABLE	9 TE		MENTAL		£ 2	INF	108
_	CXPE* INF	F. T. A. L.	٦ ٢	, 3	1	3	ALA		Z Z Z	£		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	N.	(N.)		3
-				5			12.00	5	9.9	:	6.82		11.49		8.56		8.32	
•		-0.65	0.35	ė	0.22	-5.37	40.4	4.25	-2.70	4:	-2.44	3.35			9.4.	7.93	70-4-	
•	4.76	~	4.64	ဝှံ	9.0	-0.3	-7.26			10.7-		-1. 54 0. 71	7.7	0.0	0.20	50.0	0.96	0.0
,	47.1			9	-0-	0.0-	68.0	2.73	-0.34	-0.20	-0.31	0.58	-0.81	3.67	-0.17	0.03	0.27	0.86
•		-3.24	0.40	ó	0.37	-0.47	-1.7	-0.51	2.57	10.0-	0.38	-0-25	-3.03	9.0	9.0	-0-38	•	***
	0.35	0.39	22.0	င်		.		50.0	225			2	000	***	-0.03	0.02	0.0	0.57
•	•	B 6	70.0	ò				0.0	0.0		-0.37	0.0	-0.96	0.88	0.0	0.22	-0-12	0.21
•				9	0.26	-5.22	-	-0.33	-0.23	-0.03	0.15	.0.31	-0.75	-0.68	-0.24	-0.04	-0.00	0.0
	1.0	0.10	0	ę	09 0.33 3.2	3.27	9.34	90.0	90.0	-0-14	0.39	0.16	0.0	-0.36	96 0.08 -0.	91.0-	0.05	-0.0
_	BLADE ST	TATION	58				BL ADE	STAT TON	# TA				BLADE	STATION	99R			
			A SWC		VAR	TABLE			UNIFORM	**	VARIABLE	BLE			UNIFOR	H H	VARE	ARIABLE
_	I	ENTAL	INFL	3	INFL	3	EXPERI	HENTA	INFL		INFLU	- :	EXPERI	MENTAL	INFLOR		O LANGE	3
	7	ŝ	3	î î	3	2	3:	Z 6	- C - C - C - C - C - C - C - C - C - C		24.4	è	74.0			: 1		
	10.26			•	41.4	7.41		,			-5.46	7.49	0.76	3.50	ı	ı	-4.98	5.80
•		2.5	25.0	- '			-2.91		-7.70		-5.32	-1.8	-0-61	-2.73	•	ı	+:-	-1.19
•			77.			95.00-	10101	0	1.03		1.7	-0.89	1.7	0.03		ŧ	1.41	-0.49
•			0		69.0	0.0	-0.35	1:0	-0.0-	•	0.85	0.6	-0.22	1.50	,	ı	2:	0.61
٠			0.63	•	2.57	14.0	-3.65	:	1.02	٠	=	\$ 6	-1-47	92.0-	•		•	9 4
			0.53		90.0	2.77	-3.42	•	B	٠	60.0			•	•	1 1		•
	00.	0.61	-0-13	0.02	7.0	2.2	20.0			2,0	22.0		0	0.25		1 1	22	0.17
•	B		3			•				•							90	7
•				٩	4.0	2.20	*0.0	c			01.0	5.33	91:01	÷ • •	1	t	``	

e 00-000000 2 0000000000 2 4468-000000 2 4468-000000
##

	BLAUF STATTUR 278	A11CR	#. 2. ·		St. AUL	BLADE STATION = . 40K	* . *UK		BLADE	BLADE STATEON = .55R	166 1	
			UNIFURN	K 43			UNIFURA	URM			UNIFORM	CKH
	Ĩ	ווואר	1 AF L		EXPERI	X PERIMENTAL	INT	5	FAPER	ATTENTACTOR		3
		2	2 3	25	(N) 4	2 2	A	200	2/-5		2000	
٠.		2	3	70.05	2	- 7.80	***	-4.99	4.32	٠	2.38	-1.43
				10.75	77.0-		00.0		80.0		-1.40	1.82
, ~		,,,	-1.3	2.0-	50.0-		-0-82	07-0-	0-74		2.0	0.93
			15.5	-0-34	10.0	64.0	5R*0-	0.52	10.0-	^!·o	-1.55	0 - I &
		-4.5.	04.7-	- C. C.	20°0-	10.0	-0-13	-0.66	₹.°		* 0	30.0
		10.0-	0.40	-0-31	16.0	77.0	3	14.0	61.0		3 -	\$ 3
_		17.0-	-0-	5.13	97.0		70.0	77.0-	100			200
.		0.40	5	07.0	44.0	3	000	40.01	700		-0-13	77-0
, 3	97.7	-0-22	21.0-	71.7	***	2.7	0.00	91.0	0.30	0.08	0.01	-0-0
	BLAUE STATTON " . 13K	A110A	*		PLADL	BLADL STAFIUN = .854	* .85K		BLADE	BLAUL STAITUN = .40K	37	
			47977	,			UNIF	¥ 3			175	UKN
	A A DI A LA L	7414	1,44,4		EAPERS	APENIMENTAL	INFLO	5	EXPERI	IMENIAL	INFLUM	5
,	2	2	2	0(%)	A CA	(Z)a	27	G(H)	2 4	AIN) BEN)	~ ×	E S
			7.43		21.0		3.14		54.4			:
_	44.1-	12.0	1.0	25.0	£ 0.4-	45.0	-2.25	1.24	44.61			11.55
~		-2-7	1.10	-1-43	*0·!-	87 · C	::- :-	- 2.05	77-1-	70,0		2.40
		?		7.50		9 7		**	74.		4	4
			5	0.00	7.0-	2	11.0	*****	-1.01			-0-0-
	07-0		}	1000	1.42	-0-72	0.35	0.35	1.24		0.50	0.55
. ~		9, 70	70.00	-0-15	19.0	0.40	20.0	-0.10	49.7		*1-0	90.5-
	'	-0.0v		2	0.14	75.0	0.15	0.30	0.36	71-15	0.77	0.30
	·	77.5	-v.l+	20.00	47.0-	0.05	-0-14	• T • 0	79-0-		-0-12	0.1
_	01.0-	;	-0.10	-0-0-	£0.0-	-0.21	-0-14	-0.01	0°30		-0-14	-0-01
	BLADE STATION = . * JK	ATTON	* * * *		BL AUE	BLADE STATION = .97K	×14.		BLADE	BLADE STATICA = . 99K		
			CALTURA	**		i	UNIFORM	DKM			UNIFURM	¥ .
	Ĩ	MIML	10tcs	5	LAPEXI	APEXIMENTAL	INT C	5	EXPLK	ž	2	3
2		(N)	7(3)	cta)	2 ×	î P	î i	(Z)	(X)	200	2	2
۰	7.44		-3.71		7.77		17.0-		74-7-		i	
_		4.45	77.4	12.74	76.2-	2.70	20.0	16.89	05-0-		ŧ	ŧ
	- 51.0	7	4F:7-	-4-14	7.0	5		05.6	70.0	•	!	! !
~		**	7.7	,	77.0	3.1	00.7	70.0	00.7			1
		7	20.5	7. 34	7		-		4			
۰.	,	•	70.	20.01	9 0	200	60	97.0	20-0	44.0		1
٠.		5 4	7 -	20-0-	75-0-	0.50	\$ 5	***	41.0			1
	70.1			27.0	61.0	0.70	0.22	7.70	0.24	01.0-		1
		`	7	^1·0	79.0	0.13	+1 ·0-	, o • o	70-0			1

TABLE XVIII TIME HISTORIES OF BLADE STRESS, PSI

V = 110 KT $\alpha_S = -5^{\circ}$ L = 8300 LB D = -750 LB

	Chordwise	: Stress	Flapwise	Stress	Torsional Stress
ψ, DEG	r/R .15	r/R .80	r/R .45	r, d .80	r/R •15
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 85 90 95 100 115 120 125 130 140 145 150	-1790 -1697 -1597 -1547 -1460 -1354 -1279 -1192 -1073 -911 -805 -780 -761 -792 -799 -780 -749 -749 -749 -749 -749 -749 -749 -749	1111 1076 1053 1036 1094 1215 1278 1244 1232 1261 1255 1215 1226 1284 1342 1272 1186 1163 1163 1134 1146 1146 1146 1146 114	5209 5262 5315 5432 5532 5526 5509 5385 5127 4863 4675 4481 4041 3917 3771 3618 3412 3266 3183 3172 3136 3019 2913 2831 2672 2590 2573 2620 2796	-1393 -1351 -1279 -1081 -817 -547 -354 -150 -96 -18 -180 -487 -925 -1567 -1808 -1988 -2162 -2174 -2036 -1880 -1706 -1501 -1429 -1327 -1363 -1429 -1567	133 150 164 176 217 251 256 251 233 231 239 243 249 255 266 270 262 249 207 176 147 97 56 27 -3 -9 -9 -9

TABLE XVIII CONCLUDED V = 110 KT. $\alpha_S = -5^{\circ}$ L = 8300 LB D = -750 LB

	Chordwis	e Stress	Flapwise	Stress	Torsional	Stress
ψ,DEG	r/R	r/R	r/.t	r/R	r/R	
ψ,	.15	.80	•45	.80	.15	
155 160	-337 -337	1347 1405	2813 2860	-1784 -1916	3 15	
165	-343	1532	2925	- 2042		
170	- 393	1566	3025	-2084	5 3 7	
175 180	-493 -530	1503 1440	3113 3177	-2078 -2072	7	
185	- 505	1370	3336	-2072 -1994	<u>-</u> 9	
190	-468	1301	3506	-1934	- 5	
195	-480	1238	3694	-1874	-1	
200	-524	1220	3888	-1766	11	
205	-655	1203	4076	-1597	35	
210	-805 034	1215	4240	-1357	58 68	
215 220	-936 -1017	1249 1295	4493 4734	-1051 -817	80	
225	-1110	1284	4957	-601	84	
230	-1179	1232	5180	-439	80	
235	- 1260	1174	5403	-300	78	
240	-1291	1.151	5614	-162	82	
245 250	-1285	1197	5785 5002	6 132	92 86	
250 255	-1310 -1435	1272 1255	5902 5943	294	74	
260	-1535	1215	5937	408	86	
265	-1566	1278	5896	540	94	
270	- 1566	1342	5867	667	103	
275	-1578	1313	5808	721	113	
280	-1584	1272	5720	745	133	
285 290	-1578 -1584	1238 1209	5620 5509	703 643	121 88	
295	-1653	1163	5403	558	76	
300	-1691	1192	5291	390	54	
305	-1734	1261	5168	150	37	
310	-1747	1255	5098	-78	29	
315	-1784	1163	5033	-3 96	31	
320 325	-1753 1607	799 71	4957 4892	-697 -961	73 73	
325 330	-1697 -1684	,71 1042	4892	-901 -1171	62	
335	-1747	1030	4810	-1285	90	
340	-1809	1053	4839	-1357	99	
345	-1834	1128	4904	-1381	123	
350	-1840	1163	5033	-1417	127	
355 360	-1834 -1790	1151 1111	5133 5209	-1429 -1393	125 133	
			,.,-,	7717		

	Stress	r/R .65	33. 23. 23. 23. 23. 23. 23. 23.
	Torsional St	r/R .375	33 33 33 33 33 33 33 33 33 33 33 33 33
	Tors	r/R .15	198 164 164 164 165 165 165 165 165 165 165 165 165 165
ESS, PSI		r/R .80	1189 1267 1339 156 156 156 156 1273 1273 1273 1273 1273 1273 1273 1273
ADE STRI D = 50	Stress	r/R .65	730 1064 1686 11686 1342 1342 1342 1342 1343 1343 1343 1101 521 123 123 123 123 123 123 123 123 123 1
IES OF BI 8200 LB	Flapwise (r/R .45	5233 5051 4910 4775 4775 6010 4775 4070 3982 3982 3982 2055 2055 2055 2055 2055 2055 2055 20
TIME HISTORIES OF BLADE STRESS s=0° L = 8200 LB D = 50 LB	-	r/R .375	6757 6585 6585 6585 6522 6338 6726 6431 66431 66431 6654 7762 7762 7762 7762 7776 7776 7776 777
XIX TIN KT a _S = (-	r/R .80	1157 1088 1190 1190 1233 1233 1233 1249 1250 1250 1250 1250 1250 1250 1250 1250
TABLE V + 110	Stress	r/R .65	284 220 220 220 231 232 233 233 233 234 255 255 255 255 255 255 255 255 255 25
	Chordwise	r/R .375	212 213 210 212 213 210 210 210 210 210 210 210 210 210 210
)	r/R -25	1678 15572 15572 15566 15566 15566 1566 1566 1566 1566
W s d	The second secon	√ pEo	0 ~ 0 7 7 8 7 8 7 7 8 8 7 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8

TABLE XIX CONCLUDED as = 0° V = 110 KT L - 8200 LB D = 50 LB Flapwise Stress Torsional Stress Chordwise Stress r/R r/R r/R r/R .15 r/R r/R •375 r/R r/R .65 r/R r/K ₩, deg .15 .375 .65 .80 .375 .45 .80 .65 -574 1109 1110 1509 1526 3987 2320 2338 -1146 -1814 -480 -34 -28 -1706 -1730 -1282-487 -1307 -12 -44 -56 -34 -505 -1214 -1802 -524 -524 993 1365 4435 2561 -1922 -2030 -1066 -30 -912 -850 -1988 -14 1324 1359 -881 -714 -5 21 26 -674 -1904 **-7**55 -1880671 86 -811 -418 -1844 558 934 -880 -1808 72 192 -1597 -1207 -986 -10.,2 -187 -1073 -157 -715 99 230 477 1238 5233 5397 1626 86 -1123 -108 -258 6978 -120472 62 66 -78 -1304 2583 2737 91 -1335 -267 -455 -382 5779 -1366 -18 -14C4 260 265 -230 -17 -60 7322 7279 ?4 80 -1422 2706 -1416 99 91 95 -1366-96 -1347 -291 5291 -1422 -212 2700 -1472 -1472 2107 685 153 -1466 -260 -1503 -1541 -1528 -437 -163 99 471 1249 33 33 2416. -144 1953 1533 -35 -473 -607 5909 -499 -805 -1485 320 -1478 -1491 145 72 78 160 -973 6511 6578 4892 -1099 -1327 -1567 -1572 -577 811 1094 -1691 -431 149 172 -1821 340 -200 1064 934 576 6345 6517 -1846 -321 -1724 -1742 -1447 338 350 355 -1834 -1778 -1715 -668 -741 -479 289 1169 394 -1057 -1189

TABLE XX TIME HISTORIES OF BLADE STRESS, PSI V-110 KT q ₅ ++++++++++++++++++++++++++++++++++++		al Stress		
TABLE XX TIME HISTORIES OF BLADE STRESS, V = 110 KT		Torsion	lorsio	
TABLE XX TIME HISTORIES OF BLADE Chordwise Stress r/R r/R r/R r/R r/R r/R r/R r/R r/R -375 .65 .80 .375 .45 .65 -394 358 1192 6886 5033 594 -303 4,39 1209 6419 4722 1141 -206 339 1134 6657 4,421 172 -102 352 1163 6579 4,441 173 -11 4,65 1226 4,441 173 -11 4,65 1226 4,441 173 -11 289 1169 5172 3911 187 -11 289 1169 5172 3911 187 -12 364 1146 1216 5424 3477 -162 -13 4,46 1226 4,441 3,406 655 -14 502 1226 4,441 3,406 -156 -15 308 1099 5111 3754 -91 -24 502 1226 4,484 309 -174 -25 4,46 1227 4,890 2990 -77 -16 308 1267 4,890 2990 -77 -17 540 1267 4,890 2997 -1160 -18 502 1220 1220 4,890 2997 -1160 -18 503 125 342 1393 -1868 -18 6 12 12 12 12 12 12 12 12 12 12 12 12 12	1 1		r/R .80	11.77 14.35 14.65 14.65 17.7 17
Chordwise Stress TABLE XX TIME HISTORIES OF T = 110 KT	SLADE STF D = 850	i E	•	595 1607 1416 965 1337 1737 1737 1737 1737 1737 1737 173
TABLE XX V = 110 MT q Chordwise Stress r/R r/R r/R r/R -375 .65 .80 -394 .358 .1192 -303 .439 .1205 -285 .339 .1186 -102 .352 .1163 -103 .352 .1163 -104 .465 .1206 -114 .465 .1206 -151 .289 .1165 -151 .289 .1059 -23 .364 .1146 -24 .502 .1267 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -159 .502 .1253 -1603 .722 .1353 -1604 .446 .1376 -1605 .260 .1376 -174 .477 .1174 -175 .260 .1376 -176 .260 .1376 -177 .272 .1376 -174 .473 .841 .1324		Flapwis	rlapwis r/R	5033 4681 4722 4141 3882 3635 3635 3635 3635 3656 372 3656 366 372 367 367 372 367 367 367 367 367 367 367 367
TABLE XX V = 110 MT q Chordwise Stress r/R r/R r/R r/R -375 .65 .80 -394 .358 .1192 -303 .439 .1205 -285 .339 .1186 -102 .352 .1163 -103 .352 .1163 -104 .465 .1206 -114 .465 .1206 -151 .289 .1165 -151 .289 .1059 -23 .364 .1146 -24 .502 .1267 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -157 .527 .1277 -159 .502 .1253 -1603 .722 .1353 -1604 .446 .1376 -1605 .260 .1376 -174 .477 .1174 -175 .260 .1376 -176 .260 .1376 -177 .272 .1376 -174 .473 .841 .1324	IME HISTC		r/R .375	6886 6683 64119 6250 6250 6257 6257 6257 6257 6257 6257 6257 6257
TAB Chordwise Stres r/R	XX		r/R .80	1192 1215 1216 1163 1163 1163 1163 1172 1272 1272 1272 1272 1272 1272 127
	TABLI V = 1	age	2	333 333 333 333 333 333 333 333 333 33
65.30 69.00		Chordw	1	
- 5			DEG r/R	0 1912 10 1-772 10 1-772 11 1-678 12 1-1678 13 1-1678 13 1-1678 13 1-1678 13 1-1678 13 1-128 13 1-128 14 1-128 15 1-128 16 1-128 17 1-128 18 1-128 19 1-128 19 1-128 10

			•	TAI	TABLE XX I as= +50	CONCLULAD	•	850 I.B			
		Chordedse	Stress			Flapwise	Stress		Tore	Torsional Stress	660.
, DEC	r/R .15	r/R .375	r/R .65	r./R .80	r/R .375	r/R •45	r/R .65	r/R .80	r/R .15	r/R .375	r/R .65
	3	2,5	28	1203	37.59	1530	-1887	-1928	-18	32	198
155	675-	2 6 8	928	1388	3539	1698	-2023	-1796	-35	ę	150
165	-568	858 858	996	1416	3600	1792	-1912	-1826	-50	-14	191
12	-574	798	916	1399	3632	1839	-1585	-1904	6 8	87	131
175	-605	8	916	1376	3867	2220	906-	-1964) 6 9	84	118
9 5	25.5	2 K	972	1370	1270	2667	-986-	-1676	-77	-58	38
190	-211	282	872	1359	81,718	3042	-819	-1513	7;	07 8 7	102
195	-716	452	980	1353		3359	52.5	150	7,2	848 243	157
S S	672-	797	759	1205	55.6	3859	230	-1537	25	123	180
302	248	28,5	628	1197	5707	4158	505	-1387	2	119	202
225	-1073	Ľ,	769	1272	5665	4434	85	-1153	80	ទ្ធនួ	190
8	-1117	ነ ጉ ;	789	1393	0019	4734	776	5.5	× 8	121	190
225	-1154	737	5 5	1313	6861	5239	14.28	-439	8	125	196
3,50	-1266	- -	7,17	1232	6843	5344	1817	-354	78	149	176
र रि	-1248	-139	707	1174	6714	5368	2163	-234	2: Ş	<u></u>	5,85
245	-1285	-175	717	1215	0818 6892	5479	7,52 7,52 7,52 7,52 7,52 7,52 7,52 7,52	180	28.	66	147
2,50	-1372	- 157	609	1365	6922	5538	24,90	747	97	8	178
, 26, 26,	-1404	-267	979	1422	1269	5562	253	764	3 6	115	200
565	-1366	-236	3.5	1336	6689	520	2589	-15	89	119	525
325	-1397	32	205	1238	1659	2074	2576	-30¢	85,5	125	238
280	-1422	8	452	11.4	5462	5092 5102	222 1961	0/5-	2 %	121	254
582	-1422	3	533	1342	6591		1595	-390	87	115	233
3 2	-1427	-193	55	1295	6259	0167	1360	-378	9 5	္ကိုင္ပ	12 × 5
300	-1560	-139	977	1197	6431	7,540	1391	-763	3.2	101	235
302	.1578	169	22	1134	5934	667	1379	-916	88	135	242
315	-1597	-273	270	11.6	1009	4522	147	-1067	121	8 8 8	9 6
350	-1634	-382	264	1163	9050	4246	1961	1129	177	226	341
322	1691-	-385	2/6	119/	6155	4534	1187	יוווי	139	561	326
330	-1/12	1510	20	1001	6143	1697	1126	-1117	137	577	35
350	-1722	-191	164	1088	6222	0197	9911	-1159	13.7	20 X	380
345	-1734	-461	164	1082	6370 64.86	77,70	768	-943	168	18	371
35.50	-1859	-786	276	1146	6707	5145	103	-931	178	۲ ا	361
36	-1921	-394	358	1192	9889	5033	595	-1177	061	ξ,	700

TABLE XXI TIME HISTORIES OF BLADE STRESS, PSI V = 150 KT $\alpha_S = -5^\circ$ L = 8500 LB D = -650 LB

	Chordwis	e Stress	Flapwise	Stress	Tors ional	Stress
ψ; DEG	r/R .15	r/R .80	r/R •45	r/R .80	r/R •15	· .
0 5 10 15 20 25 30 35 40 45 50 65 70 75 85 90 105 110 125 130 135 140 145 150	-1797 -1685 -1685 -1586 -1566 -1597 -1997 -685 -497 -466 -560 -497 -497 -385 -397 -397 -397 -397 -397 -397 -566 -460 -285 -460 -285 -460 -285 -272 -28	704 785 924 1074 1236 1351 1369 1421 1501 1542 1403 1288 1340 1369 1247 1166 1097 1005 912 855 953 1114 1230 1288 1455 1571 1646 1623 1611 1576 1484	5728 6018 6475 6866 6961 6860 6635 6315 6131 5680 5164 4809 4566 4269 3955 3694 3403 2977 2662 2650 2793 2728 2431 2093 1779 1548 1583 1785 1986 2141	-1453 -1236 -856 -482 -332 -410 -332 -108 398 826 814 422 -96 -717 -1507 -1682 -2623 -2563 -2563 -2563 -2563 -1538 -1399 -1212 -1194 -1103 -1248 -1622	205 223 276 314 310 318 353 389 413 419 419 415 332 258 173 -124 -124 -124 -126 -98	

TABLE XXI CONCLUDED $V = 150 \text{ KT} \quad \alpha_S = -5^{\circ} \quad \text{L} = 8500 \text{ LB} \quad D = -650 \text{ LB}$

	Chordwise	e Stress,	Flapwise	Stress	Torsional Stres
ψ, DEG	r/R- .15	r/R .80	r/R .45	r/R .80	r/R .15
Î 155	66	1507	2218	-2122	-100
160	-84	1675	2224	-2665	- 74
165	~216	1802	2265	- 2979	- 49
170	-303	1761	2502	-2955	- 35
175	-285	1542	2828	-2810	-33
180	-197	1299	3101	-2659	+13
185.	-109	1126	3249	-2707	-7 -
190	-159	1039	3439	-2744	. - .5
195	<u>-316</u>	1091	3676 3961	-2629 2261	11 27
200	-522 607	1276	4269	-1640	.23
205	-697 -8 6 0	1496. 1553	4209	-1040 -886	33
210 215	-947	1444	4915	-326	56
220	-1028	1275	5159	60	76
225 225	-1028	1149	5419	223	112
230	-1153	1132	5740	338	171
235	-1303	1207	6149	495	213
240	-1472	1334	6582	724	239
245	-1697	1351	6896	935	252
250	-1879	1259	6979	1086	. 268
255	-1985	1173	6914	1188	270
260	-1972	1143	6825	1315	282
265	-1891	1143	6759	1574.	306
270	-1835	1201	6641	1773	336
27.5	-1835	1218.	6463	1900	342
280	-1797	1247	6255	1845	342
285	-1835	1340	5995	1610	322
290	-1841	1369	5787	1260	262
295	-1860	1351	5585	844	219
300	-1841	1432	5408	422	191
305.	-1741	1426	5277	.36· .	155
310	-1641	1363	5170	-271	108
315	-1579	1224	5064	-615	74
320:	-1479	1062	4862	- 2 98 -1170	27
325 ±	-1516	982	4672	-11/0 -1242	-17
330 -	-1629	947	4655 4803	-1242 -1164	-3 27
335	-1804 -1897	970° 105 7	4987	-1121	66
340	-1897 -1891	1143	5212	-1127	130
345 350	-1891 -1885	1074	5449	-1127 -1206	165
350 355	-1866 -1866	866	5591	-1393	181
35 <i>5</i> ° - 360	-1797	704	5728	-1453	205
700	-1171	LÓM	7, 20		

		355	r/R	.65	25	
,	,	omil 3tres	r/R	.375	271 272 272 272 273 273 273 273 273 273 274 275 275 275 275 275 275 275 275 275 275	
	,	Terstown	r/R	.15	22 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	
ļ	s, PSI		r/R	. 80	2744 1369 1369 1369 1404 1434 1434 1434 1434 1434 1434 1434	
	DE STRESS, D = 250 LB	Stress	r/R	.65	2636 2289 1290 1302 3629 3629 3629 3629 1526 1526 1536 1536 1537 1538 1538 1538 1539 1539 1539 1539 1539 1539 1539 1539	
	BLA	Flapwise	r/R	.45	5277 5680 6398 6398 5680 5680 5680 5680 571 771 772 773 773 773 773 773 773 773 773 773	
***	HISTOR L	·	r/R	.375	6463 6958 77928 77928 77928 77928 77928 7793 7793 7793 7793 7794 7793 7794 7793 7794 7795 7796 7796 7796 7797 7797 7797 7797	
	II TIME as- 0°		r/R	.80	635 1362 1362 1363 1370 1137 1137 1137 1137 1137 1137 113	,
1	TABLE XXII V = 150 kt	Stress	r/R	.65	123 133 133 133 153 153 153 153 153 153 15	
Ì	Ţ.	Chordwise	r/R	.375	25.55.55.55.55.55.55.55.55.55.55.55.55.5	
, ,	,)	H/=	ک ل۰	1635 1557 1556 1556 1556 1556 1556 1556 155	
	, • •		ρΞα·ψ		025252553555555555555555555555555555555	

-				-	-				,		
)	Chontrise	Stress	, F.	,	Flapwise	e Stress	, ,	lors	lorsional Str	Stress
gá 🕻	r/R .15	r/R .375	r/3 .65	r/R .80	r/k .375	r/R :45	r/R .65	تر/ بر 80.	r/R .15.	r/H .375	r/R .65
155	-134	1492	1302	1507	2329	786	-1669	-2189	-221	-164	168
97.	-260	13%	1503,	997. 87.	8 8 8 8	777 830	-1334	-2719	-155	-158 -135	136
170	212	887	12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	12/17	476	1435	7502-	-2587	8	16,	ន្ត្រី
175	7 7 7 7	3867 287	1757 276	1207	4,73	25.56 25.26	-2//4	9 7 7 8 8 3 8 3	ት <u>ት</u>	7 4	154
135	-260	795	£2.	1016	5005	27.75	-2228	-3353 2738	15 K	£)`É	180
195	-510	22.0	567	1247	313	3287	-751	7,09	٠ ٢	38	£
88	-785	9 9 9	362 70	1501	5357	7005 1	25.	12900	40	6 <u>1</u> "	105
និង	-1097	-146	i di	365 555	686 886 886	1,00	22	-597	33′) 6)	ig
38	-1097	-165	755	۲ ۲	7759 7769	7820	2251	8,5	#	T.9	797
2 K	791-	128	řã	976	7.7.3 8.7.3	5212	3052	88	88	36	178
SS.	-1247	-345	₽\$	1045	87/9	5597	3591	553	157	126	182
ς δ δ δ	-1691	₹ •	ફે દૂ	138	383	868 11	3796	1152	, 162 1791	Ê	178
25.5	-1866	-929	9,7	1374	8237	7056	3591	1200	176	67	34.
255	-1922	-782	159	1189	8027	659	100	718	និតិ	វង្	52
% X	1797	, 19,50 19,5	3,65	0.01 0.01	7823	6321	4324 1361	736	183	% %	מן נין
6 S	-1610	2 7 7	15.5	181	715	9089 9089	3635	17.8	8	8	183
£ 53	-1560	77.4	372 585	1334	7607	6078	3232	1598	<u>8</u> 8	72.	222
88	1735	7	₹	155	202	12,5	33	670	8	Ħ	238
8 8	-17.85	78	818	77.7	54.5	5099	3318 77	79	경 ?	% %	7 7 7 7 7
38	-171.	62,	£	197) (§	0167	5769		*	ļν	R
, S	1,622	-13	₹ 2	92.1.	1619	4720	1960 159,	7 583 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	23	# 5	183 201
315	127	ेर्न १न	189	100	2988	100	1228	-573	<u>.</u>	2	ដូ
8	-1554	-397	4 5	345	5747	4305	330 830 8	200	23	31	258 258
330	126	77:	183	8	. 5965 5975	6624	38.	1435	283	33	ž,
335	-1991	7117	7	1132	7879	4637	545	-1544	691	319	18
9 4	-2019		3 8	1213	6525	25.58 28.88	777	-1815	232	7 % 2 %	193
200	-1929	-935	1	ã	7	27.25	1246	-2879	ঠ	33	057
, 30,08 50,08 50,08	-1710	<u> </u>	8 25 4		6297 64463	51.29 5277	888 888 888	12/2	\$\$	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. §
-			7	T		,					10

24 0 20 20 20 20 20 20 20 20 20 20 20 20 2
--

	S	Chordwise	Stress			Flapwise	Stress		Tors	Torsional Str	Stress
DBC ★	r/R .15	r/R .375	r/R .65	r/R .30	r/R .375	r/R -45	r/R .65	r/R .80	r/R .15	r/R .375	₹.2.
155	-241	1327	1390	1576	1625	7	-2265	-2756	-203	-168	162
8	-266	1691	1415	1640	1822	219	-2259	-2912	~177 375	297	3,58
56	-285	100	1305	1028	\$ 6 6 6 7	1322	12207	2563	-165	7,1	132
5 K	7.5	26.3	1050	1322	3788	1803	-2836	222	977	123	Ä
\ \ \ \ \ \ \	17,7	66	696	1340	7708	2218	-2439	-2756	-128	35	139
185	435	964	963	7,09	4387	2579	-1763	-3009	717	97-	170
87	-572	539	982	2449	6777	2947	1080	-3045	-128	ខុះ	158
295	-778	38	926	85 7.	4838	3392	727	-2695	775	45	£
3 %		7 2	850	1,67	900	1382	523	-1115	-59	7	10.
38	ì	-379	299	1357	6432	4785	762	977	ጥ	12	131
á	-1035	-330	787	1172	6575	5022	1451	-54	8	8	185
8	-1165	£	355	243	7299	5206 5206	5 5 5 6 7 7	27.7	ಜ	ដុំ	195
Š	-1210	-262	330	25.5	1616	5419 5882	3678 3638	100	35	91. 71.	780
3,5	-1505	1926	323	1288	7712	6463	3424	862	200	8	195
2	-1547	-1039	32	1270	8070	6795	3343	0711	ಬ.	Ç,	183
25	7091-	-892	522 522 523 523 523 523 523 523 523 523	1247	8181 2050	1089	3560	2017	7 5	~ ac	35
250	-1535	166	253	1236	7237	6315	7676	698	15	34	138
86	-1616	-256	341	1305	7452	6107	8807	965	13	7	77
265	-1560	9	767	1322	7347	6042	3666	176	χ.	٥- (193
23	1504	459	292	1201	2077	3	77.7	1005	٥.5	7 5	3 5
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100	1 676	£ 6	1357	7032	1975	2599	452	33	38	266
388	-1541	} }	867	1276	6593	5182	2549	-283	-37	-38	217
8	-1535	-189	5%	1293	6148	4915	2363	778	-57	72-	9;
<u>%</u>	-1529	त्र	ផូ	1432	6012	2,708	1277	12/6	÷.	3 2	3 6
8	157	87 S	265	1305	\$28 \$48 \$48 \$48 \$48 \$48 \$48 \$48 \$48 \$48 \$4	1004	132	1450 1995	76	3.5	18
35	7,77	196	8	1161	6062	4530	1024	-910	126	និ	31,
315	-1672	60	ដ	. 666	5913	1177	1887	-935	153	283	356
33	-1704	-226	-149	935	5845	1311	7001	-1200	185	3	101
325	-1866	825	-174	976	5957	4376	1191	-1525	8	25	107
330	-1960	-1210	8 %	1155	. 6402	2005	492	-1839	167	<u>8</u>	727
370	-2079	988	79	173	6711	5443	1085	-1984	677	33	107
345	-2091	1 79	877	1039	6089	5497	1333	-2050	138	8	391
350	-2041	-727	-136	250	17.6	5372	1611	-1948	169	8 8 8 8 8 8 8	6
355	-1885	-935	7.2	3	2000	2625	2.7	-1270	ĝ;	?	1:
9	122.			פאַלר	1.769	5272	20.00	2005	273	307	

TABLE XXIV TIME HISTORIES OF BLADE STRESS, PSI V = 175 KT $\alpha_S = -5^{\circ}$ L = 7100 LB D = -250 LB

	Chordwise	Stress	. Flapwise	Stress	Torsional Stress
ψ ,DEG	r/R	r/R	r/R	r/R	r/R
	.15	.80	•45	•80	.15
Ō	-1324	498	5694	-1575	227
5	-1298	567	6103	-1032	. 259
10	-1267	764	6685	-267	269
15	-1280	1105	6988	239	293
20`	- 1342	1331	6922	372	327
25	- 1280	1475	6804	396	321
30	-1129	1620	6715	547	331
35	- 846	1695	6548	872	404
40	- 538	1655	6483	1294	479
45	- 369	1579	6305	1385	503
50	-256	1487	5646	987	519
55	-218	1469	4999	191	531
60	-318	1423	4643	-544	509
65	- 362	1377	4459	-1147	515
70	-375	1365	4150	-1701	525
7.5	- 356	1232	3753	-1912	533
80	-369	932	3492	-1846	533
85	- 381	746	3040	- 2099	517
90	-325	723	2411	-2606	479
95	-312	816	2186	- 2600	420
100	- 406	995	2465	-2093	297
105 110	-557 -6 7 0	1128 1284	2554	-1533	188
115	-746	1464	2144	-1093	75
120	-740 -670	1631	1746	-864 755	-38 141
125	-469	1707	1444 1058	-755 -731	-161 -221
130	-409 -161	1782	779	-731 -828	-221 -245
135	153	1764	945	- 737	-245 -256
17.0	366	1660	1189	-797	-264
145	329	1533	1331	-1153	-243
150	285	1545	1444	-1 744	-24 <i>7</i> -21 <i>7</i>

TABLE XXIV CONCLUDED $V=175~\text{KT}~~\alpha_S=-50~~\text{L}=7100~\text{LB}~~D=-250~\text{LB}$

	Chordwis	e Stress	Flapwise	s Stress	Torsional	Stress
ψ, DEG	r/R .15	r/R .80	r/R •45	r/R .80	r/R •15	
155 160 165 170 175 180 185 190 205 210 225 230 235 240 245 250 255 260 265 270 275 280 295 300 305 310 315 320 325 330 335 340 345 350 355 360 360 375 375 376 376 376 376 376 376 376 376 376 376	197 40 -168 -243 -86 40 -86 -199 -457 -702 -978 -1053 -1261 -1324 -1619 -1964 -2147 -2153 -2027 -1958 -1688 -1613 -1606 -1424 -1242 -1085 -1696 -1424 -1242 -1085 -1543 -1543 -1543 -1424 -1324	1817 1967 1863 1672 1533 1336 1082 995 1209 1417 1441 1475 1458 1267 1099 1128 1273 1331 1215 1227 1319 1238 1400 1539 1620 1550 1348 1400 1550 1348 1400 1550 1348 1400 1550 1348 1400 1550 1348 1400 1550 1348 1400 1550 1348 1400 1550 1417 1411 1402 1503 1620 1620 1620 1620 1620 1620 1620 1620	1533 1456 1592 2536 2708 2874 3207 3503 4216 4691 4993 5700 6477 6916 7219 6928 6928 6938 6495 5611 5409 5290 4323 44186 4542 4527 5504 5694	-2425 -3021 -3238 -3124 -2979 -3028 -3142 -3058 -2744 -2117 -1274 -448 -40 342 499 722 987 1324 1674 1800 1855 2017 2240 2337 2355 2102 1692 1131 667 276 -978 -978 -1485 -1575 -1629 -1575	-183 -120 -62 -48 -16 -13 -7 -36 -54 -52 -38 17 81 152 237 305 333 339 337 335 436 489 557 610 612 547 456 358 275 180 -20 182 224 227	

		<u> </u>	7.	
,		Stress	r/R .65	222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		Torsional Sta	г/к .375	34222323222222222222222222222222222222
,	, 12 mars	Tors	r/R .15	1148 252 253 264 255 255 255 255 255 255 255 255 255 25
ESS, PSI	F 1		r/⊬ .80	11,22 11,33 11,33 11,33 11,33 11,33 12,23 13,23
BLADE STRESS,	EI 007 = Q	Stress	r/R .65	2653 2653 2653 2653 2653 2653 2653 2653
	- 7100 IB	Flapwise	r/R .45	5386 6305 6305 6305 6305 6305 6305 6305 630
E HIST	7	¢	"r/R •375	6882 7396 7396 7396 7396 7365 7365 7365 7365 7365 7366 7368 737 737 737 737 737 737 737 737 737 73
₹	rr a _s = 0°		r/R .80	556 1718 1718 1718 1834 1668 1668 1668 1771 1770 1786 1776 1776 1689 1776 1689 1776 1689 1776 1689 1776 1689 1776 1689
TABLE	V = 175.KT	Streśs	r/R .65	233 233 303 303 303 303 303 303 303 303
, 0		Chordwise	r/R .375	163 163 163 163 163 163 163 163 163 163
	9		r./R .13	1388 1-1-289 1-1-1-289 1-1-1-289 1-1-1-299 1-1
			ψ, DEG	54.63.33.33.33.33.33.33.33.33.33.33.33.33.

							`	 			ب ا
		Chordwise	Stress		·Fla	owise Stre	35		Torsional	Stress	
DEG	r/R	r/R	r/R	r/R	r/3	r/R	r/R	r/ñ	r/R	r/R	r/R
	.15	•375	.65	.80	.375	.45	.65	.80	.15	-375	.65
155	-136	1510	1645	1817.	1041	-105	-1979	-2805	-221	-168	220
160	-356	1277	1884	2054	1487	-22	-1979	-3251	-187	-168	.125
165	-425	1253	1847	2019	2162	476	-2524	-3100	-209	-200	104
170	-375	965	1431	1730	3066	1212	-3399	-2756	-213	-231	84
175	-274	677	826	1290	3964	1794	-2524 -3399 -3654 -3213 -2326	-2786	-183	-174	27
180	-168	836	341	943 932 1 088	4453	2120	-3213	-3124 -2570	-181	-111	76
185	-168	922	102	932	4509	2435	-2326	-?570	-147	-52	145 106
190 1	-293	597	203	1088	4571 4751	2928	-1371 -652	-3709	-88	11	106
195	-651	64-	473	1296	4751	3527	-652	-3166	-64	11	- 84
200	-1022	-347	769	1464	5364	4050	-75	-2172	-12	-24	76
205	-1236	-506	877	1562	-6138	4566	526	-960:	53 93	19	110
210 :	-1280 -1298	-408	681	1504	6566	4981	1084. 1927	125	93	76	110
215.	-1298	-255	360	1232	6671	5248	1927	709	140	141	167
220	-1236	-396	39	978	657€	5379	2920	963	176	139	198
225	-1185	-684	-157	989	6795	5646	3837	1101	192	163	204
230	-1236	-886	-150	1070	- 7414	6210	4401	1288	208	155	155 131
235	-1449	-935	45	1163	8034	6875	4265	1764	186	86 8	131
240	-1751	-757-	215	1325	8535	7439	4116	1891	156	-8	94
245	-1902	-659	398	1383	8802	7575	4228	1861	164	-60	14 10 43
250 ·	-2033	-757	.455	1441	9616	7290	4594 5059 4966	1595	222	-79	10
255 260	-2027	-843	442	1348	8368	6863	5059	1336 ′	337	-34	43
260	-1832	-433	448	1261	8052	6661	4966	1547	461.	92	113 202
265.	-1625	-249	385	1354	7916	6164	4395	1963	563	199	202
270	-1399	-267	442	1331 1296	7941	6412	3881	2156	626	295.	243 263 249 210 157
275	-1273	3	518	1296	7724	5979	3502	5076	624	305	263
280	-1273	-58	574	1394	7377	5569	3341	1475	515	254	249
285	-1330	370	732	1394	6782	5195	3168 2827	703	370.	151	210
290	-1512	291	864	1458	6188	4821	2827	58	245	45 -28	157
295 .	-1619	272	1009	1579 1660	6008	4637	2461	-460	160	-28	137
300	-1455	70	1040	1660	6076	4518	1810,	-550	111	-30	137 135 151
305	-1267	-279	776	1574.	6045	4382	1171	-719	120	39 92	101
310	-1091	-785	335	1209	5835	4150	911;	-906	114	92	204
315	-965	-267	-251	758	5476	3943	743-	-1123 -1382	107	151	269
320	-1028	-102	-742	527	5271	3735	911	-1382	112	238	310
325	-1135	-537	-717	504	5296	3699 4067	911 1078 1016	-1491	146	305	393 399 397 413
330	-1437	-1021	-591	810	5550	4067	1016	-1424	184	349.	<i>3</i> 77
335	-1820	-1248	-251	1134 1198	5996	4649	929	-1328	204	370	497
340	-2040	-1284	14	1198	6268	5017	1047	-1485	202	351	413
345	1996	-1223	64	1146	6405	5159	1493	-1617	196	327	450
35 <u>0</u>	-1751	-929	-133	1007	6448	-5171	2076	-1298	186	315	407
355	-1516	-580	-446	706 -	6603	5177	2709	-1045	156	295	381
36C	- 1386	-451	-516	556	6882	5385	3112	_ 46	. 148.	266.	377

	Stress	r/R .65	23.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2
	Torsional Str	r/R :375	149 1439 1439 1439 1439 1459 1
3	Tors	r/R .15	105 233 333 333 333 233 233 233 233 233 23
STRESS, PSI 1150 tB		r/R .80	1234 1113 1113 511 511 511 1535 1535 1535
BLADE STRES	Stress	r/R .65	2517 2362 3050 3763 3066 3064 3064 2304 2304 2304 2304 2304 2306 2304 2306 2304 2306 2306 2411 2411 2411 2411 2661 2661 2661 266
P B	Flapwise	r/R .45	5421 6073 6073 5895 5895 5717 5432 5107 4607 4607 7916 2898 2856 2708 2856 2708 2708 2708 2708 2708 2708 2708 2708
HISTO	b	r/R .375	7173 7551 7718 7728 6556 6256 6256 7718 7718 7716 7713 7716 7713 7715 7713 7715 7713 7715 7713 7715 7713 7716 7713 7716 7713 7713 7713 7716 7713 7716 7713 7716 7713 7716 7717 7717
XXVI TIME	<u>-</u>	r/R .80	1539 1174 1174 1267 1741 1741 1741 1752 1008 1169 1169 1169 1169 1169 1169 1169 116
TABLE > V = 175 H	Stress	r/R .65	763 719 751 751 751 751 751 173 173 173 174 1418 1418 1418 1418 1418 1418 1418
	Chordwise	r/R .375	4322 1399 1438 1414 1414 163 163 163 163 163 163 163 163 163 163
	ŕ	r/R .15	1138 11254 11254 11317 11317 11318
		ø, ueg	o 2 5 2 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5 5

TABLE XXVI CONCLUDED V=175~KT $\alpha_S=+5^{\circ}$ L = 7300 LB D = 1100 LB

		Chordwise	Stress			Flapwise	Stress		Tors	ional St	ress
ψ, DEC	r/R •15	r/R .375	r/R .65	r/R .80	r/R •375	r/R •45	r/R .65	r/R .80	r/R .15	r/R .375	r/R .65
155 160	21.	1878	1399	1585	322	-663	-2481	-2774	272	-148	204
160	· - 136	1577	1437	1672	886	-425	-2617	-2871	-318	-206	147
165	-413	1424	1412	1695	1728	96	-3089	-2527	-379	-282	64
170	-702	1271	1349	1562	2552	749	-3566	-2190	-405	-306	3 41 46
175	-852	848	1223	1545 1533	3270	1141 1515	-3479 -2822	-2262	-385	-286	ui.
180	-808	542	1047	1533	3605	1515	-2822	-2714	-322	-229	46 -
185	-752	358	782	1388	3840	2067	-2028	-3046	-241	-137	17
190	-746	137	423	1134	4274	2839	-1309:	-3136-	-185	-97	27
195	-724	-16	184	972	4899	3604	-708	-2738	-92	-32	108
195 200 205	-739	-175	89	1007	5599	4305	-21.8	-2009	37	104	147
205	-903	390	121	1111	6275	4869	415	-1129	83 55	228	218
210	-1179	-567	253	1169	6609	5118	1214	-351	55	220	273
215	~1506	-653	410	1313	6634	5159	2188	282	33 - 26	124	202
220	·· - 1656	-806	568	1458	6813	5391	3099	854	-26	27	96
225	_1638	-825	625	1504.	7222	5860	3651	1445	-88	-30	106
225 230 235 240	-1493	-733	518	1441	7656	6335	3887	1861	-64	-44	131
235	-1298	-653	373	1267	8052	6762	3992	1987	-30	-22	98.
240	1129.	-469	171	1163	8263	7136 7106	4116	1897	-30	-12	104
245	-1035	-249	108	1076	8133	7106	4364	1565	9	27	157
245 250 255 260 265 270	-1116	-132	253	1209	7848	6744	4364 4656 4 606	1192	43 71	78	165
255	-1330	-71	562	1452 1655 1799	7495	6430	4606	1210	71	94	180
260	-2506	-126	940`	1655	7434	6174	4141	1517	89 122	88	200
265	-1518	-145	1204	1799	7396	5913	3515	1710	122	106	212
270	-1386	70	1198	1817	7148	5510	2806	1680~	105	112	234 251
275	-1185	180	946	1574	6832	5177	2448	1065	61	`82	251
280	-991	266	581	1238	6423	4821	2213	245	17	35	230
285	-640	407	297	1076	5866	4524	1946	-653	-44	-10	230 175
290	-827	352	190	1099	5531	4257	1717	-1400	-124	-40	159
290 295	-1003	94	253	1192	5407	4204	1283	-1569	-139	-58.	-145
1300	-1267	-273	373	1319	5333	4020	780	-1436	-100	-58	112
305	-1506	-555	448 379	1412	5234	3693	545	-1255	-88	-2	155 220
310	-1625	-586	379	1331	: / ₄999	3462	433	-1014	22	45	220
315	-1644	-653	108	1088	4881	3420	384	-924	118	195	267
320	-1543	-69 6	-220	937	4949	3509	557	-1069	229	372.	375
310 315 320 325 330 335	-1455	-733	-478	937 822	5172	3788	669 .	-1292	309	633	478
330	-1437	-794	-547	746	5624	4334	842 979	-1593	378	625	563
335	-1518	-868	-516	781	6132	4952	97 9	-1834	319	603`	559
340	-1613	-849	-358	880	6392	5278	1252	-1882	216	√485	535
345	-1607	-727	-106	995 1157	6553	5219	1803	-1593	144	349	41.7
350	-1983	-567	209	1157	6652	5011	2306	-810	101	209	297
355	-1920	-426	530	1394	6776	-49 99	2641	167	89-	132	243
360	-1738	-322	763	1539	7173	5421	2517	1234 =	105	149	238
					L				<u> </u>		

	,			V - 110 KF	ET GS	-50 E	- 8300 LB	V = 110 KT a ₅ = -5° L = 8300 LB D = -750 LB	, en os,	ž:			
•		- - -	, -			ž.			3				, .
	SLACE	STATION	1 = .375R	æ				BLADE	STÁTION	1 = .45R			
	2		FIND	IFORM	VAR	VARTABLE			-	UNIFORM	DRM	VARI	VARÍABLE
	¥ .	MENTAL	INF	F. O.	Z	INFLOM		EXPER	EXPERIMENTAL	INFLOW	30	Z	INFLOW
Z C	A1 N J	Z,	A (A)	2	A CR	Z		200	2 20	Z C	9 (X)	ACK	8 (N)
		3	-765	1666.	0.64			1000		309	:0	396.	
-	, ,	-571	-329	-549	÷ 20			1044		- 36.2	1000	• • • • •	2677
	-140	*	-218	-65	-320.			1111	-250	-262-	1007	104	-077
	-39	72	-29	-25.	94	50.		-12-	, i	-12-	-17	1 4 6	000
	.19	38	-33.	-22.	-118.	40		09	100	-13.	-22	-41	
_	-11.	5	-10.	.0-		-13.		15.	2.	.5-	6	ó	1 9 1
_	29.	•	-3.	-1-		-31.		•		-2	1		-47
	30.	•	-1-	:	-95			.28÷	7	1	, m	-108	,
	.	0	-:	ċ		-13.		-16.	28.	2.	1	-41	-23
	-7-		ò	ċ		-9-		-22.	80	•	1.	-13.	6
	,	-											
	BLADE	STATION	= .65R					BLAÜE	STATION	* .80R			
	_[_[- 1	FIND	FORM	VARE	VARIABLE				UNIFORM	ORH	VARE	VARIABLE
	EXPERI	MENTAL	INFLOW	3	•	INFLOW		EXPERI	EXPERIMENTAL	INFLOW		T 2 4	INFLOW
		Ž	2	200	N Y	3 9		2	(N)) X X	8 (N)	S Y	(N)
ء د	1991		-1176		-1065			-1555.	1	-1451-		-1342.	
	2011	_ (•		-1104	.67.11		-470	701.	-551.	892.	-165.	668.
	• • •	•				****		290.	-500-	307	-258	418.	-88-
		!	707-	- 7 + 7 -) () () () () () () () () () (-167-		181	-515-	168.	- 200-	-31.	-539.
	4 4 4		77	;;	- 173	-200-		325.	-27.		-2-	• •	-245
	1	4	700	<u>.</u>	104	-124.		-68-	119.	N.	29.	160.	-118.
		17.	0		-11-	• • • •			23.	.7.4	15.		:
	-21-		, -		25.	• • •		12.	•		; .	æ`(9
		, ,	Ċ			• 4		- 60	•11	֓֞֞֞֝֞֞֝֞֝֞֝֟֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡	•	210.	ŕ
	17.	=	ċ		7			. 0	• "	֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	: .		

STATION = .15R UNIFORM BIN) A(N) BIN) BIN) A(N) A(N) A(N) A(N) A(N) A(N) A(N) A(-5° L = 8300 LB D = -750 LB BLADE STATION = .375R	EXPEREMENTAL	(N) A(N) G(N) A	387316. 94289.	11. 53.	3. 75. 64.	-28225.		39° 15° -11° 0° -1° 0° 0° -1°	-620. 1 1.	-27. 1 1	BLADE STATION = BOR	VITORH	DA EXPERIMENTAL INFLOW BANN AAN BANN AAN BANN AAN	1231.	100: -10. 5828.	-16. 04. 18.	6870. 4180.	35. 2021.	-2. 11. 2.	8 -3 O O	30. 322.	<u>.3.</u>	-15. 302.
ACN TO BE 1000 1000 1000 1000 1000 1000 1000 1	V = 110 KT as	> ,	1 A (0			>	17			-57.	133	4.7					_
	1		Ŝ.	31.	.00	28.		· ·	• •		. •			ENFLOR	05.	14.	<u>.</u>	• • • •	: _			5 .	•	o

TABLE XXVIIC HARMONICS OF TORSIONAL STRESS, PSI V = 110 kT a ₅ = -50 L = 6300 18 D = -750 18 BLADE STATION .158 STATION .3758 STATION .3758 TABLE XXVIIC HARMONICS OF TORSIONAL STRESS, PSI V = 110 kT a ₅ = -50 L = 6300 18 D = -750 18 STATION .3758 STATION .3758
--

	IN = .45R	UNIFORM INFLOW A(N) 9(N)	-892. 1 -235	-253. -16.	-13.	76		N = .80%	UNIFORM INFLOW	-1622.	244273.	-1951	-21.	34.	2.	13.	0 0
SS, PSI	STATION	_					. 16.	STATION	EXPERIMENTAL AIN) AIN)		-340	•		-103-			• 04• • 43·
WISE STRES D = 50 LB	BLADE	EXPER A(N)	230	-230	, 13 11	-57.	-23. -37.	BLAŬĒ	EXPER	-1685.	376.	40	337	- 63-	140		-45
TABLE XXVIII : HARMONICS OF FLAPWISE STRESS, PSI V = 110 KT a _s = 0° L = 8200 LB D = 50 LB																	
XXVIII e. HARM	α	DRH Du B(N)	1728. 555.	-19. -13.	-8-		0.0		¥ . 30		1755.	-217.	.9-	-5-	1	1-	;;
TABLE	= 375R	UNIFORM INFLOW BACN) B	-743. -302.	-217.	-26.	1.0	0.0	= .65R	INFLOR						2.		• •
-	STATION						79.	STATION	MENTAL		1422.	-430	-73	-167. 46.	15.	-43.	-28-
	BCADE	KPER ACK) 555.	-742.	-247.	-66.	130		9LADE	EXPER 1	-1289.	-1045	-1-	112.	20.	-95	-55.	75.
		Z .0	- 2	m 🖈	ev e	` ~ -œ	60		2	0	~ ∧	ı m		v. «	٠,	€0 (10

				a5= 0	8T 05 = 1			
OL'ADE	STATION	= .15R			BLADE	BLADE STATION	* .375R	
-		UNIFORM	ORM		1	1	UNIFORM	•
A(N)	IMENTAL B(N)	ACN)	(X) B(X)		A(N) B(N)	76 N J V J V J V J V J V J V J V J V J V J	A(N)	8 (N)
170.	•	155.		-	42.	6		
9	742-	112.	-151-		587 - 87	•777-	- 68.	-202-
3.5	•	76.			186	-148.		-162
22.	13	24.	6		-14.	'n		**
18.		o	**1		-28.	-1-		
Š	- F	ę.	-		15.	11.	-2.	ö
-19.		-1-	•			5.	-1:	ô
-63-		-1-	•		-15.	-16.	-1:	ó
-21:	•	-1-	:			-12.	-1:	;
.		o o	•		55.	-36.	•	ô
-	,							
BLADE	STATION	. 658			BLADE	STATION	= .80R	
,		UNIFÜÄM	DRM				UNIFORM	_
EXPER	INEN	INFLON	3 0	-	EXPERIMENTAL	MENTAL	3	
Z		N N	2 2 8		2	(N) (N)		200
524		135.	;		1249.	•		:
707	• • • •	148.	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		103.			•
6	1		-126	,	27.	-67		2 2
-27.	•	, (1)	-61.		-17	15.		-31.
2	-15.	•	.		-15.	-6-		æ
11.	14.	N.	M		10.	- 7	œ.	2.
6	10.	بر	•		-7-	0	-	ċ
40	16.	2	-1-	٠	45.		2.	•
27.	40	-	-2.		30.	33.		-1-
-34	7	ć	- 4.2		-25.	0.	c	

-	=	- - - -		011									
				_	BLAĎE :	BLADE STATION	.153						
					EXPERTMENTAL		UNIFORM	1 × 2					
				y C			-106,						
	-			- ~	-82.		5.9 2.0 1	-14.					
				m .	-13.	32.	<u>.</u> ;	<u>.</u>					
				4 K	-23.		; -						
				فه ۱	16.	21.	÷	ີ ຄ					
				~	E	23.	٠.	o o					
=				≪ 0	• •	ėć	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	, ç					
				, č	'n	0	0-	, e					
10	BLADES	STATION	.375R					BLADE		STATION	.65R		
			N 4C S A N 1	7							UNIFORM	¥.	
Ψ	W.	ENTA	INFLOW					EXP	IME		INFLOW		
-	2	2	ACN	9(1)				ACR)		2	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ž Ž	
- 1	201.	-,	-128-	-7.				-105			-61.	-5.	
1 (7	: 5		31.	-17.				ă Ì			22.	-12.	
	-22-	. 6	. ;	; .				1.2		,	-2-	; ;	
	-13 -13	* *	÷-	-				រ៉េ		-10:	Ļ		
	32.	22.	: :					12.		.61	į	•	
	-19:	2	 :	ċ				i ī		•	o c	•	
	•	91-	ຸ	9 0				7			Ģ	Ģ	
			•	•				•		¥	é	(

,			V = 11	V = 110 KT	as= +5°	05= +50 L = 8100 LB D = 850 LB	D = 850 LB	e .	-	
	8L ADE	STATION	1 = .375k	Ř			BLADE	STATION	= .458	
			M4033 MI	3					MACHINE	2
	EXPERI	MENT	INFLOK	, A			EXPER	IMENTAL	INFLOR	
Z (Z	(X) 0	ACR)	(N) (Z C	. B(N)	ACN)	8(N)
۰ د	-189	:	-526	9			-101-	1270	- 45 54 - 65 5	1226
۰ ،	167	-466	-258	-641			230		-172	-682
1 60	-248		-243				-256-	16	-294	-65
٠ 🖈	134) (C)	-24.	-17.			-79.	-15.	-6	+
'n	131	•	-64	55.			-41.	-47.	-50	11.
٠	-19.	-29.	17.	36.			26.	-12.	11.	39.
~	24.		60	-20•			24.		• 6 -	-33.
€0	33.		-31.	•			11.	15.	-66	%6
•	20.	18.	-3-	9•			Ť	•	-4-	
10	33•	3G.	7	ċ			17:	13•	-5-	.I.
	BLADE	STATIÓN	65R				BLADE	STATION	= .80Ã	
			UNIFORM	MMO			 		UNIFORM	ORM
:	EXPERI	MENTAL	INFLOM	- 4			EXPER	HE	MO JAKE	
z c	2 4		ALRI	2 2			2 7 7	2	A C C C C	2 2 2 2
٠ د	-1017		-2012				19/1-	3	70707	9
۰ ،	9000	1344	• 749-	1650					1 20	, 200°
4 F	277		127	949			12.0	-500	-221	1001
بً ر	140	7 - 1	-16.				297	-173	195	
'n	245		700	-108			307.	188.	97.	-85
·•	90	- •	-20-	-37.			-78.	94.	-24.	-72.
~	-24.	~	•	. 🕏			-10-	-17.	14.	46.
•	-52-	-40	.	÷			94.		89.	-14.
•	-60		2.				111.	56.	٠.	-12.
10	-33	-	ó	-1-			74.	38.	3.	5 •

HARMONICS OF CHOKDWISE STRESS, PSI $q_5 = +5^{\circ}$ L = 8100 LB D = 850 LB	BLADE STATION375R	UNIFORM EXPERIMENTAL INFLOW	< -	-179.	988	151125. 124.	2. 2	-5-		-I- -1-	113 L4	•	BLADE STATION = .80R		IMENTAL	<u> </u>		13.	•	ا ا	_ (· •	. 4	329 8.	
V = 110 KT	X * .15R	UNIFORM	◀	158174.		62 68.	1		- 56.		D ,	• 7	N = .65R	UNIFORM	HCJANI	A(N) G(N)		- 96- 67-	'		•			-11-	ċ
	STATION	147	9 (N)	-150.	2	-79.	23.	-	-:		4 (. 71	STATÍON		MENTAL	8(8)	•	24.	~	-25.	ų,	-	•	-32.	-39

		•	UNIFORM UNIFORM INFLOW A(N) A(N)
NAL STRESS, D = 850 LB		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	EXPERIMENTAL A(N) 292. -113112. 6032. 12. 23. -15. 23. -15. 23. -163.
CS OF TORSION	.158	M	
HARMONIC	BLADE STATION	EXPERIMENTAL A(4) 8(N) 111: -99: -76: 57: -56: -3: -2: -5: -6: -8: 0:	
TABLE XXIX C HARMONICS OF TORSIONAL STRESS, PSI $V = 110$ et $a_5 = +5^{\circ}$ L = 8100 lb $D = 850$ lb		ምር ። የ የመቀያ ቀያ ቀይ	.375R UNIFORM INFLOW A(N) B(N) -106. -22. -3. -1. -1. -1. -1. -1. -1. -1. -1. -1. -1
			STATION BONTAL 119. 146. 172. 41. 12. 17. 17. 17. 17. 17. 17. 17. 17
			8

				,	7	2<\$p	.L = 8500 LB D						
	BLADE	STATION	1 = .375R	œ			BLADE	STAT BON	* .45R				
			UNIF	FORM	VARIABLE	ABL É		1	UNIFOR	I	VARIABLE	ibre	
i	X :	IMENTAL	Ē,	MO.	IN T		A(N)	A(N) B(N)	A(N)	<u> </u>	N N N	(N) 80	
z c	A(N)	Ď	357	-	395	á	-166.	, -	210		240.	-	
·	-1190.	1220	, 0	872.	-1058.		-1355.	1321	299	Ž:	-1284.	1564.	
• ~	٠,	-1204	6		-154.		220.	-1221-	6/4-	-1138	-702-	-721-	
m	2	64-			-701.	-167.	. • 761-	14.00	150	j i	-126.	-96-	
4	114	-176	-122.		-071-		120	-89-	20	-36.	-21.	-108.	
S.	210.	-51	000		• • • • • • • • • • • • • • • • • • •			-27.	9	*	-13.	-48.	
•	3 '	41.	-02-	0 -		-16.	-39	-10•	.21.	-10.	19.	31.	
~ 6	, r	7 1	26.	16	, ,	26.	.92	9-	53.	-2•	-27.	116.	
r (• • • •	- C	•		-47.	9	1.	52.	÷	.	-93•	-27.	
10	22.	-43	:-	7	: N	-21.	-28.		:	•	;	-36°	
	BLADE	STATION	N * .65R				BLADE	STATION	1 * .808				
		•	27.01	7 a C U	VARIABL	ABLE			UNIFORM	DRM	VARIABLE	ABLE	
	ų	N N N N		, and	LTI	INFLOW	EXPER	INEN	INFLOW			•	
2	ACK	•	X X	8(8)	A C K	(X)	N'S		1	8 N)	2 7 7 7	2	
C	ő		7		-1047.		1661-		2041-	0761	-1203	. 101	
-	-1550.	1752	-1344.	2188.	-1491.	1706.	129-	. 1025.	. Y84	-205-	468	-442	
7	ď.	-111	· m	-924-	794	-(75-) C 2 C		704-	-498-	-265	-634	
m	-82	-802	-654	-556-	- 10-	1011	670			45	0	-75.	
•	•	;		•			-208		,	11.	109.	149.	
.	9!		• 6 7 1	1 6	101	104.	9-			-	19.	109.	
0 I	: ;	2:	n 1	1	-62	**	19		'	22.	-125.	-23.	
~ (70		• •	-26.	-22.	-80-				22.	-165.	
1 0 C			1		16.	15	,16		ķ	.i .i	129.	25.	
· ·	25.		•	-	12.		Ť	-99-	7	ċ	÷	54.	
2	1	3)	į	i I								

					*	÷					
A DE	STATION	158				BLADE :	STATION	= .375R	ئة		
- 6		UNIF	IFORM	VARI	VARIABLE	- 1		UNIFORM	NAC.	VARIABLE	BLE
¥ .~	1	Y CR	1 8(N)	A(N) B	E(N)	A(N) - B(N)	B(N)	A(N)	(N) 8	A(N)A	(N) 80
	· i-	274.		303.		32.	-,	161.	•	223.	- (
٠	069-	1	-509-		24%	498°	-515.	132.	-389	167.	-399
•-	* 1	307	20.0	יו לי	-172	- C - I	108-	201	522	653	-440
• •	יא ז	105	-346	137.	-61-	304.	30.	236.	- 122.	326.	-135
- #	0	-13.	-16.	25.	-24.	-99-	15.	- 2	9 -	.	-27.
- •	-18	-12.	.	.	-38.	-7.	-2.	-10	- 1:	• •	-21.
•	90	- 2.	<u>.</u>	10.	;	-1-	-2-	-2.	- 2•	'n	ነ ት
•-	-124	;	- 13.	17.	.	-15	-54.	 ,	6 (÷.	•
•	ַבָּה בַּי	•	Ŋ,	-15.	; (ģ	21.	M	E	•01-	'n.
•	9 1- -	-2-	i.	5	-2-	• m	-21.	-7-	:	Ţ	.
w	STATION	# .65R				BLADE S	SŤATION	* . 80R			
		UNIF	IFORM	VARI	VARTABLE			UNIFORM	NA.	VARIABLE	BLE
	IMENI	INFL	IFLOW	INFOOM	MOG	EXPERIMENTAL	TENTAL	INFLOM	¥	INFLOW	¥0.
		Z Y	8 (N)	A C K	(X)	N. W.	8 N	2 Z	B(N)	2 V	8 (N)
-	-	91.		163.	,	1266.		**	,	90	-1
•	-245	154.	-187	183.	-100.		-37.	~	-61	90.	, v
•	79	37.	119.	-23	• • •		30.		*	-12.	•
•	-300	286.	-445	984	- 403		-153.	2 5	107	112	199
•	7 .	27.1	• • • • • • • • • • • • • • • • • • • •	107	\$ CT 7		•	0 -	• 66	0 1 1	77
	0 44 4 4 4 4		0				35.		12.	-12.	43
6	-12		é	188			-10.	•	*	-12.	2
	163	6	20.	- 22.	ī	57.	104.		14.	-16.	9
	-1	Ó	8	24.		*	-33.	4 ,	•	16.	-3.
		,	-	î		•	71.	2	_	ī	~

	-	-	-	TABLE V =	= 150 KT a	as = -50	MONICS (HARMONICS OF TORSIONAL STRESS, s= -50 L = 8500 LB D = -650 LB	ONAL ST	STRESS, PSI -650 LB				
					BLADE	STATION	•15R							
					EXPEAT	MENTAL	PACHINO.	¥ .	VARIABLE	دنا:				
				₹ C.	A(N) 164.	3 (N)	A(N) -129.	97.5	A(Y) 3	(X)				
				س ره	-136	-16.	-128	-21.	135:	-48.				
					30.	-22.	8 2 9		ં ં	. 6				-\-\
_				4 W	-57.	-20-	-17.	•						
				·	•	15.			. ∞	i				
_				~ α	9 4	16.	E		જં જ	ri c				
				•	-	•	0	, .	ร่ง	ኯ፞፞፞ዯ፞				
	-			<u>_</u>	č	:	;		ૡ૽	ċ				-
-	BLADE	PETTATS	.375K					BLADE	STATION	658				
				;				ř S L						-
_	~	I MEXT		E Y Y	VARIABLE	3.E		0	4	UNIFORK	¥ :	VARIABLE	BLE	
	7	,	3	(N) G	2	(X)		(X) Y	A(N) B(N)	NO (N) V	<u>2</u>	ACN) ACN		
-	0 203.	_	-15.7	-26.	-169. -165.	-58.		318	1	-111-		-119.	: :	
	7	-160.	0	-30	7.	4		38.	-80	• • • • • • • • • • • • • • • • • • •	-13-	110	4 2	•
_	3 2	•	-2:5	6	با د	i;		37.	22.	%	, v	ંં	80	7 %
	-23	•	13.		17.	0		-33	-31.	-15	-170	4;	ဆုံ င	,
	in (17.	6	۲.	10.	٦,		-		•		7.	: -:	
	71	27.	• • •	-1-	ค่ ~	4.3		ي. م		ų.	7		ijij	_
	. PV	11.		2	in	i și		-		: 6	-2.	"	ቊ፟፟	
,	~	-	-1-	-:	7	•		10.	•	•	: -:	i o	io	
	-		-	•		-	_	-			S			
î	-	-	-	,							,			

BLADE STATION = .375R EXPERIMENTAL INFLORM -4(N) B(N) -378 -1202	X	UNIFORM	•	-600-	-1204	-4211245-	-095-	-80.	• •1	-8-	-80-		0.	N = .80R		INFLOR		-1679.	-691.	389.	-5625	17.	199.	38.	19.	111.	-	•
TABLE AAALA HAKMONICS OF FLARWISE STATION = .375R STATION = .375R UNIFORM BENN -373 -1561 -1002 -157 -373 -156 -86 -120 -157 -571 -86 -120 -157 -571 -99 -120 -141 -00 -22 -141 -00 -22 -141 -168 -159 -168 -168 -168 -168 -168 -168 -168 -168		FRENTAL			1728.	-1392	98-	.o	10.	114.	-96-	21.	-74-	STATIC		RENTAL	8(N)	,	1073.	-619-	-1076	-288	-95	-12	-434	-29		-156
STATIO 11561. -13261. -13261. -13261. -13260. -1410. STATIO -1410. -1	D = 250 LB B = 250 LB	EXPER	ACK	-773.	-1356	195.	-518-	116.	-16.	-131.	616	-18	-84	BI ADE			Y X	-1625.	-435.	644.	-416.	864.	10.	101	268.	*;	25.	-64.
STATIO -13261- -13261- -13261- -13261- -13261- -13261- -1410 STATIO STATIO -1410- -1350- -187	a _s = o L = 840 LB																											
MENTAL 1561. 1561. 1561. 1561. 1560. 1536.	~~	_	z z		2446.	~	8 8	27.	37.	-40	-10.	•	-2-		•	OKM I	8		2453.	-1051-		61.	-115.	-45.	23.	m	ċ	•
MENTAL 1550. 1326. 1350.	150 KT	80.7	? י														' _			•	•	٠	•	•		5	•	;
	ABLE XXI	_	N V	-373.	-1002.	-529.	-571.	-124	-29	8	-39.	~ .	ċ	K	ı	N.	Z	-1783	-1230	238	-844	20	168	54	ï			
• •	TABLE XXXI 4 1 150 KT V = 150 KT		•	•	•				-53.	-39.	44-	16.	-141.	K	ı	•	<	7	7		•		~					168.

-	•	1	- 150 at	as= 00	L = 8400 LB	D = 250 LB	$a_5 = 0^{\circ}$ L = 84.00 LB D = 250 LB		
	701.44.3	3	 		-	8	NO AVA	37.6	
			;					ì	: 2 ⁵
Q.	IMENTA	UNIFORM	K B			EXPERIMENT	HENTAL	CNIFORM	# M
Y		ACR	8 (N)	-		(N)K	9 (N)	ACNI	B(N)
1165.	-63	121.	-201			3.6. 5.3.6.	-425	136.	-167
-13	ic		134.			-224	246.	7	135
212	-1		-222-			273.	-358.	149.	- 354.
_	-		- 47.			182.	-132.	116.	- 253.
.1	7		-17.			-59	-14.	37.	36
~ .	•		0.7			•	17.	5 9:	6
5	FA (• (i	٩			-10-	•61	17.	6. (
	l -	• • •				-11-	-41·	90	07.7
7	•	0 1	.	٠		• • • •	i	•	•
1 -	7	•	:			•6-	• 6	;	÷
BLADE	STATION	= .65R				BLADE	STATION	= .80R	
		UNIFORM	Z.			_		UNIFORM	# AO
EXPER	MENT	INFLOW				EXPERI	EXPERIMENTAL	KNFLON	30
	î X	N X	2			Z	8 (N)	₽ V	8(2)
		0				1257.		133.	;
	-172:	78.	-20			149.	-10	337	- 375.
٠.						יה ה	3.5	-64	, CO 4
			-120			•	- 20	105	
			23.			-27.	-10	6	4
9	38	17.	-1			, 6	32.	-10	10
	•		6			31.	•	-7.	7
	140		-14-	•		172.	61.	-11	12.
	1-	-7-	-1-			.56÷	.	7.	*
	-	Ŷ	ģ			23.	118.	- 6.	-

5 5		TABLE XXXI c HARMONICS OF TORSIONAL STRESS, PSI W = 150 KT q_s = 0° L = 8460 LB D = 250 LB BLADE STATION .15R UNIFORM W A(V) BIN A(V) BIN .15. 1 -160 -30 -13. 2 122 -127 65 -23. 3 29 49 -2. 15. 4 -85 11 -22 -8. 5 -9 -10 13 -7. 7 22 23 -4.	MXXI C HARMON = 150 KT as = 00 BLADE STY BLADE STY BLADE STY BLADE STY A 140 1 160 1 160 1 122 1 20 1 20 1 20 1 20 1 20 1 20 1	HARMONICS O L Qs = 0° L = BLADE STATION EXPERIMENTAL A(V) 14030. 122127. 2510. 26. 38. 27. 27. 28.	ON 15R UNIFORM UNIFORM 1 A(N) 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Dal STRES Day 18 18 18 19 19 19 19 19 19 19	SS, PSI			
9L'ADE	STAT ION	3758		ė.	.	J. BLADE	STĂTION	. 65R	·	
EX PER 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IMENTAL BOTAL 1169. 1310.	UNIFORM INFLOM A(4) B(4) -120 -15 -122 -15 -26 -27				i 36.5 10.5 10.5 10.5 10.5 10.5	EXPERIMENTAL A(N) B(N) 319. -166182. 6063. 25. 70.	1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
5 38.0 7 38.0 9 17.0 10 120.0	4.00 6 11 9 0 0 0 11 1		9.00-100			12. 14.		4444	******	

TABLE XXXII a HARMONICS OF FLAPWISE STRESS, FSI BLADE STATION = .375R. UNIFORM EXPERIMENTAL UNIFORM A(N) 1350 -925 1350 -1350	WISE STRESS, PSI D = 1100 LB	BLADE STATION = .45R	UNIFORM EXPERIMENTAL INFLOR	B(N) A	-1277.	• -1447 • -1447 • -439	63818.	-64 -96	21. 50.	108.	-12. 151.	27. 22	•	BLADE STATION = .80R		IMENTAL INFLOW	N) V (X) B	1903- -380- 1110-1486- 1264	-643. 240.	883864	-406- 17-	55. 64420	381.	-129 -202	-2533.	243.	
TABLE TABLE TABLE TABLE TABLE TABLE UNI 1939 - 793 -1392 - 616 120 - 793 -1392 - 616 120 - 793 -1392 - 616 120 - 793 -1392 - 1093 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 236 -131 - 256 -131	JARMONICS OF FLAPW s=+50 L=8600 LB	,		-						-	-																
TATION STATION 19391392139213921392139213921392139213701370640137013		•	UNIFORM	5		7 ≓				47.					UNIFORM	2	3 0	270M	'	231.	_	_				, md .	
	TAI	STATION	RIMENT) B(N)	0001	-1392	. 120.	-15.		-34	-44		<u> </u>	STATION	-	Z I MENT	200	2636	-1370	6401	-76.	-31.	31.	92.	-1-		

TABLE XXXII D HARMONICS OF CHORDWISE STRESS, FSI V = 126.KT	IS OF CHORDWISE STRESS, FSI L = 8600 LB D = 1100 LB	BLADE STATION = .375R	INDITION INTERNATIONAL PROPERTY OF THE PROPERT	~		-203 b	-449. 157.	-155- 147	•	11. 3.	7. 7.	• - •	BLADE STATÍON = .80R	UNIFORM	NATURE PLANT NAME OF STREET	104.	-6-	6177.	146. 35.	934.	. •	• L • • L • • L • L • L • L • L • L • L		21. 19.	70
	TABLE XXXII B HARMONIC V = 150 KT a ₅ = +5°			BCN	-119.	234.	78.	93.	-27.	• -	1521	E 4			INFLON	N .	200	-170.	92.	272	73.	-1123	77	27. A	-14.

PSI		TTON .65R UNIFORM ITAL INFLOW (N) A(N) B(N) -7917. 687917. 68187. 6912. 7. 9. 12. 7. 9. 12. 7. 9. 12. 7. 9. 13. 13. 52.
TABLE XXXII C HARMONICS OF TORSIONAL STRESS, PSI V = 150 KT a _s = +5° L = 8600 IB D = 1100 IB	20 0000 00 00 00 00 00 00 00 00 00 00 00	EXPERIMENTAL A(N) 3321811626668. 47. 6111. +67. 7. 7. 7. 7. 727. 727. 727. 727. 727. 727. 727. 727. 7627. 7666666.
ONICS OF TORS	STATION .15% WHENTAL UNFORM BR(N) AR(N) B F129 -92 - F129 -92 - F129 -22 - F129 -22 - F130 -130 -96 - F130 -130 -96 - F130 -66 - F1	
XXXII c HARMO	EXPERIMENTAL A(N) B(N) 102. 102. 103. 104. 105.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
TABLE >	-	1
	· · · · · · · · · · · · · · · · · · ·	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		ัฐอัสสกรรม เมื่อสการการ

		VARIABLE Inflow	8 (N)	1826.	7	-61.				136.			VARIABLE	ACN)		•	•	1			-23	-279.	20,	0
		AA>	A(N)	1.	309	-1084-	-84.	29.	84.	-155	E .		VAR	Z 7 7	-1155.	-867.	218.	-637.	9	م م	-123	_	201.	2
	_	UNIFORM	8 (8)	2414.	-1429.	-136.	22.	19.	-38	.	6		UNIFORM	(N) 4		1468.	-674.	-686	148	2007	56.	m		7
	4 = .45R	UNIFOR	ACN1	7	-524		-22	18	58.		, ,	1 = .87Ř	I NO		-1317.	-810.	485.	-617.	165	6 G	-32	63	-22.	ີ
	STATION	IMENTAL	(N)	.1551	-1554	-512.	-108.	0.	61:	- 1-	-14-	STATION		ACNITICATE ACNI		1102.	-636.	-929	-228	126.	-55	-17:	-96-	7.47
	BLADE	EXPER	(N)V	-1466	268	-79.	102.	-38.	-38.	03.	-44-	BLADE	2	A LA	-1203	-672.	. 166	-471.	• 909 • • • • • • • • • • • • • • • • • • •	122	78.	-21.	61.	- 20
		VARÍABLE INFLOW	(N)	1498.	-1222.	-113.	-13.	-42.	-1:	• o	-27,		Aêl E		•	1983.	~	-803-	-52.	4	30.	-31%	-24.	,
		VARI	A(N)	-1133.	-389.	-235	-157.	-41	54.	-64	•		VARTABLE		-1149.	437	~	-1074.	1	7 0	-28	-27.	12.	6
	% .	FORM	(N) (N)	2093.	-1279.	-202-	82.		-25-	ċ		ند	FORM	1 N N N N N N N N N N N N N N N N N N N		2441.	-1252.	-694.	128.		1,1	6	1.	-
	# 37	ZZ	ACRI	150	01	22	•	~	mi,	- 62	0	¥ = .65f	INO	5	m	-1400.	-217.	-974.	180	102	- - -	10.	-6-	ď
	STATION	IMENT	€0	1460	100		06-	.• ;	-58°		-26.	STATION			•	193	-1455	-1006	1 0	6 4	108	13	-25	7
	BLADE	PER	ACN 263	6	339	200	180.	*	•1- •1-	37.	-44.	BLADE	9	Z . Z	. •	-1679.	741.	-332		• -	-20-	-67	-27.	44.
Į .			zc	-	~ ~	٠.٠	ĸ	•	<u> </u>	0 0	6			2		_	~ `	m.	.	٠	, ,	60	o.	_

		-								
S	STATION	= .15R				BLADE STATION	H	.375R		
`		LIND	FORM	VARI	VAR I ABLE			UNIFORM	VARIABLE	IBLE
至	ENTAL	INFL		Z	INFLOW	EXPERIMENTAL	•		INFLOW	MO.
	2 2 8	A(N)	2	A(N)	200		((X)	A(N)	8 8
	-677.	06	-111.	118.	- 160.	408507		-252.	233.	-294.
	131.	94.	144	35.	76.	252		294	87.	172.
	55.	306	-301.	274.	-335.	-311	~ •	1	36	-729.
	50.	153.	-58.	168.	-71.	-1		-21	351.	289.
	-7:	-35•	-9-	-11.	-53.	12	_	3.	M	6
	-45.	- 6.	÷	-17.	-10-	•	<u>د</u>	э.	45.	* *
	41.	-14-	- 8 -		0	. 13	ኖ	• +- •	9	o O
,	~~	ģ	11.	17.	10.	-6255.	ጥ	. 7.	14.	٠ <u>.</u>
	28.	÷.	•	÷17.	. .	•		. 2.	-11-	æ
	-i-	ဝှ	:	۲,	-7-	-29• ÷32	٩ •		ท้	ς.
S	HATION	* .65R				BLADE STATION	N 80R	æ		
		IN D	FORM	VARI	VARIABLE	•	*	UNIFORM	VARI	BLE
Ξ	ENTAL		LOW	×	INFLOW	IMEN		101	INFLOW	30
	B(N)	N (N)	8 S	Y C N	(N)	A(N) B(N)	•	BCNS	ACN)	8 (N)
	-	132.	. •	172.			26		94.	
	-268.	124.	-180-	.145	-126.	١		•	57.	-36.
	113.	111.	179.	75.	129.		***		34.	20.
	-401-	201.	+64	97.	664	132201.		11		-207-
	-19.	237.	-250	225	72	81-		-126.		- 190
	ф М	94.	21.	37.	90 (23.	31.
	• • • •		5	19.	25.				•	16.
	36	, ,	15.), (P.	.61	•	•	· ·	?
		.12.	01-	-62-	• ·		•		• 0 1	7 1
	-56.	- 5	-1-	56.	۽ م	1923-		•6.	18.	֖֖֖֖֖֖֖֖֖֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
	5	c	ا	ć	.01		0	.2-	•	٠

		2 7	· · · ·												
· : `` `	7 ~	•	.,	- ¢	TABLE		HARMO	NICS OF	TORSÌO	NAL ST	RESS, PS	Ħ			
5		15.	6.12.13	5		TÚ C/T	g2	•	97 307/ = 7	70	97 OC2-			ζ.	
- -	i i	· -		,											
			-			BLADE S	STATION	.15R							
						0 0 2	14	PROFINA	y	VARIABLE	m				
_					7	ACNI		A(N)	2	E (N)	(N)				-
					۰-	203.	•	-69•. 119.		-106.	.71.				
					٠.	196		132.			-31.				-
					m	57.	,	-22-	27.		30.				
					4	-102-					-23.				
					ĸ						-11.				
					¢					٠.	01				
					~					: ,	•				
					ec (•				• •	• 1				
					6					•	•				
					c. -					į					
															-
				1											<u>-</u> -
	8	BLADE S	STATION	375R					BLADE	STATION	.65R				
				UNIFO	FORM	VARIABLE	ĹĒ				UNIFORM	NA.	VARIABLE	BLE	3
•	Ä,	PER	MENTAL	<u> </u>		INFLON	3 8,6		EXPERIMENTAL	MENTAL	MOULNI	X.	INFLOM), j	
	• •	3	2	Z	e E	A (N)	Ĉ		A 1 & 1		2.0	2	(N) V	2	
1	ر ا	9	-203.	-145	-64.		-86.		-190.	-230.	-102.	-45.	-105.	-61.	
- •	_	7	-254-	•	-14.	_	-38.		57.	-112.	113.	-10	28	27.	
• •		79.	20 °	71	33.		36.		65.	 M	-19.	23.	-19.	25.	-
~ `	•	6		-45	-647		-28-		-00-	52.	- 30-	-28.		-20.	
- • •	•	25	-56.	ò١	÷		-1.5.		101		, C2 ,	, ,	.	, e je u	
- (•	• 70	,	6 4		: ;		. 5	, e	,		÷ ~	n y	
- u	'	27.	-64-	• • • • • •	-	, ,	-2-		-19.	-26-	,	0		•	
		15.	10.	4	*	.	9		•	Ñ	.3	-3.	e. M	14	
H		10.	÷	÷	-5-	'n	2•		13.	· • •	3.	<u>-</u>		2.	
											,				

		-		XXXIV a	ONIC	SE STRESS	, PSI		
	-		>	- 175 FT	$a_S = 0$ L = 7100 LB	D = 400 1B	9	-	
	BLADE	SÍATION	= .375R	. &		BLADE	STATION	= .45R	
	111	T. N.	PIND PINI	UNIFORM		EXPERIMENTAL	MENTAL	UNIFORM	α3 Σ
z	S X	8 (%)	ACN	8 (N)		Z	8 (N)	A(N)	8 (N)
c ·	803	:	-813.	Ì		-946-		-1078	900
⊣ (1905.	-1075	-1440			-1884	- 4031-	
~ ~	-147	• 1 7 7 1	1001	3441		-458	-138		17
n 4	36.0	-157	-261.			-243	-100.	-143.	-101-
r v	146	1.1	183	861		161.	-128.	-135.	57.
٠.	160	•	0 00	99		44	6	17.	69
4 0	• 0	-44.	32	- 68		-40	112.	-46	-103.
- a	n e	, (1.0	4		136.	-60•	-195	90
τ. σ	. 0		4	100		75.	102.	11.	10.
i c	-151-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: :	-2.		-88.	81.	-3.	-1-
	BLADE	STATION	± .658	er.		BUADE	ȘTATION.	. # . 80R	
			UNI	UNIFORM				UNIFORM	RM
	æ	IMENTAL	INFLOW	MO		EXPERI	EXPERIMENTAL	INFLOM	- (
 Z	Z	(X)	Î V	(X)		N Y	8(N)	Z .	(X)
0	-1202.		-1985.	- 1		-1389.		644	,,,,
- (-1627.	2457	-1292.			*****	1260.	-122.	7.50
2	292	0 0	133.	•	-	-1232	-1,112	-831	-756
۰ ۷	375	† 0 -	185			582	-543	155.	163.
r` v r	1	S CO	221.			-04-	94.	289.	-343.
• •	5	0	29.			-111-	101.	-5-	-150.
~	44	N	30.			-41.	-345.	80.	133.
æ	0	~	36.	7		-162.	-125.	273.	-122.
σ	-68	in.	2.	•. •••	•	* .	-136.	-12:	77
c	m	-41.	1			-115	ימו	• 7	•

e ale

151 'a'	STATION = .375R	UNIFORM INFIORM	A(N) B(N) A(N) B(N)	394	-65	-650. 249530.	- 111-	9	-111-	-85. 3. 24.	13.	 0	STATION: # .86R	REGRE	INFLOM	B(X) A(X) B(X)	61.0		•	45.	32	10.	142. 37. 141.	-20•	42. 6. – 5.
D = 400 L	BLADE	A C	ACNO	477.	-216.	197.	190	•	-21.	-115:	-17.	.00	BLADE		EXPERI	VIN	1255.	-10.	-22.	76.	•	18.	255	17.	98.
V = 175 KF a ₅ = 0 ⁶ L = 7100 LB D = 400 LB					-																				
9 = 3																									
- 175 KF		# X	BCN)	-134.	191.	-257.	-63	32.	2	38.	•	.		1 a		B CN		001	- 287.	- 347.	43.	• †	א ל		.7.
	= .15k	CNIFORM	ACN S	216.	37.	153.	971	-14.	-21	0	.19.	÷	= .65R	MACHINE	INFLOR	ACNO	179.	0 0	67.	129.	. 9 6.	27.	M	- 29.	•
	STATEON	147.42	(N) 8	-355.	219.	-188.	.	- 10	24	-174.	-2-	-1-	STATION		MENTAL	8 (R)	-1	-7.31.	-602	-278.	-40	31	-18-	26.	76.
	BLADE	u	2	7	28	248.	ቀ ሶ በ ቦ	3 6	32	-305-	2	-29.	BLADE		PERI	A C N C	3	7	9 6	181.	~	23.	36.	9 6	101
			z	,	7	m ·	+ 4	n 4	, ~	€	Ģ	ຊ				z	0	⊶-c	i m	4	ĸ	•	~ ∘	0 0	.01

														A N	(N) 8		-55.	0	-24.	•	•		, et
		•											.658	UNIFORM	A(N)	-27.	-73.	101.	-36-	24.	.	;	.3
D = 400 LB													STATION		A(N) B(N)	,	-212-	. 79T-	79.	-22-	2 B =	-42	12.
ONAL		<i>y</i> 7	8(4)	-66.	ć	42 •	-27.	-11-	Ċ	12.	, m		BLADE	7 × 0 × 0	ACN	321.	-198	82.	-48.	-41:	72.	-32	13.
S OF TORS	.15R	PECHINA	A(N)	-32.		-30.				• •	Ę,	•											
MONICS	BLADE STATION	MENTAL	B(N)	24.	195.	36.	•			-13.	16.	4.											
c HARM	BLADE	10000	A(N) B(N)	-212-	208	73.	-96-	-28.	0 0	-27.	0.	12.											
- 11			7	٠	~	m ·	•	r 4	C P	- ec	•	1	œ	# # O	BCN)			51.	-33,	-13.	-10	5	;
A IVERT													.375R	UNIFORM	AC X	-39.	144.	-36-	-51.	*	, ,	'n	÷
													STAT 10N	-	(N)	•		148.	ě.	. .	: -	-56.	23.
													BLADE	PERI	4(4)	9;	151	102.	5	3 2	2	-45	~
															z	۰ م	٠ ١	ر د س	4	در	0 6	- 00	0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TATION # .375R STATION # .375R UNIFOR UNIFOR L1918685129186851396851396851396851396851394413944139441394413944139441394413944139451394545454545454545
---------------------------------------	--	---

-	-	A	V = 175 ET	0°= +5	ds = +5	D - 1150 E	10. m	~	
9 ĽĄDE	DE STATION	15R				6LADE	STATION	= .375R	
		UNIFORM	# K				ļ	UNIFORM	S. M.
	EXINENTAL N. B(N)	A(N)	2 2 36			EXPERIT	MENTAL B(N)	INFLOM A(N)	E CN
7	~	13.				70.	1	191.	
2.0		306.	246.			512	-376.	522.	-501.
1	062 -	16.	188.			• V V I		.623	•
	.43	122.	9			11.	-107		-272
	22	-28.	-22			30			
		15.	19			12.			200
	*0	-12.	10.			-16.		ģ	,
	0-199	9	-12.			20.00	- 80	-	, e
	9	-14.	7			Ģ		9	3
	5. 15	•	-16.			-7.		•	-13.
BLA	ADE STATION	= .65R				BLADE	STATION	- 80R	
		UNIFORM	H K					UNIFORM	X X
ű	er i mental	INFLOW				EXPERI	EXPERIMENTAL	INFLOR	<u> </u>
Z	2 2	S S	E K			ACN	Z O	ACN .	8 (N
n e	90	107	125			1299.	•	134	•
7	31	-137	252			-22		ָּהְ בְּיִ	-1001-
· 7	5548	12.	99			-125.	-241		10.
	158	-22-	-367.			-10.	-74.	-37.	-189.
•	3.	. 4 4	Ę,			-10.	-44-	30.	•
	320.	-28	7			14.	-15	-18.	-7-
	90	22.	- 20.			29.	-47.	13.	-13
7	3.	•				-116.	173.	- 5	13.
•		21.	7			•	87.	14.	-6.
	12	-12.	19.			-7-	-21.	ę	14.

		18 (N) 18 (N) 18 (N) 1 (N) (N) 1 (N)	- / - - 3 · 0 ·
		.658 UNIFORM 1 NFLOW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	****
STRESS, PS D = 1150 LB		EXPERIMENTAL A(N) 328-213-193-116-75-75-75-75-75-75-75-75-75-75-75-75-75-	-12. -21. -17. -4.
NAL		> monday on the re-	ಕರ್ಮಿಯ -
S OF TORSIO L = 7300 LB	. R21.	LANDER CONTROL	
IARMONICS	STATION	EXPERIMENTAL A(V) 3(N) 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0	
XV c HA	BLADE	A A B B B B B B B B B B B B B B B B B B	
SLE XXXV o		200 E E E E E E E E E E E E E E E E E E	-10. -5. 0.
TAE	-	1412 1968 1112 150 150 150 150 150 150 150 150 150 150	100.
		STAT ION -204197- 1878217-	-21. -14. -14.
		and the second of the second o	-11. 51. 11.
		Z O H M M M M M M M M M M M M M M M M M M	10
:	-		

F										
						NPERIMEN		· ·		-
				-	Blade	Radial Sta	tion			
-	Ψ	. 25R	. 40R	. 55R	75R	. 85R	. 90R	. 95R	.97R .	, 99R =
ľ	0 5	-0. 6 -0. 8	1.7 2.1	10.0	23.7	33.2	32.9	35.0	19.5	5. 9
L	01	-0.7	2.6	10. 4 10. 4	24.3 24.4	33. 3 33. 1	33. 0 32. 7	35. I 34. 5	19, 5 19, 2	5. 5 5. 2
İ	15	-0.5	2.9	10.7	24.3	32, 2	31.8	33.5	18.5	4.7
į	20 25	+0. 1 0. 7	3. 1 3. 3	11, 0 11, 0	23. 7 23. 1	30. 9 29. 7	30. 1 28. 5	31.9 30.1	17.2 -16.0	4.5 4.5
ı	30	ĭ. 2	3. 4	10. 9	22.5	28.3	27.3	28.8	15. 2	4.0
l	35	1, 2	3.3	10.8	22.0	27, 0 25, +	26. 1	27. 9 26. 7	14.5	3.8
ı	40 45	1. O 0. 8	3. 6 3. 6	10, 8 10, 5	21. 4 20. 8	25, 4 24, 3	24. 9 23. 5	26.7 25.1	14.0 13.0	3. 5 3. 3
ı	50	0.7	3.6	10. 2	19.8	22,6	21.7	22.9	12.0	3. 4
l	55 60	0.7 0.2	3.6	9.8 9.5	18.6	20.8	20. 2	21.6	11.1	3. 4
L	65	0.8	3. 6 3. 5	9.0	17. 3 16. 2	19. (17. 5	18.5 16.8	20. 0 18. 9	10. 2 9. 5	2.9 2.9
ı	70	0.8	3. 5	8.6	15, 1	16, 1	15, 6	18.5	9, 1	2.8
1	75 80	1. 0 1. 2	3, 4 3, 5	8. 2 8. I	14.3 13.7	14.6 13.7	14, 9 14, 5	18.0 17.5	8.9 8.7	3.7 3.0
1	85	1.4	3. 4 3. 5 3. 9	8.3	13.3	13. 7	14.5	16.8	8. <i>i</i> 8. 3	3.0 2.8
L	90	1. 7	4.3	8.7	13.2	13.5	14.7	16.7	8.3	2.8
ı	95 100	2. I 2. 5	4. 8 5. 3	9. I 9. 6	13. 4 13. 9	14.3 14.5	14.5 14.0	16. 5 16. 4	8.3 8.2	3. 1 2. 4
1	105	3.0	5.8	10.2	14.5	14.2	14. 1	15. 6 14. 6 13. 9	7.6	2.4
1	110-	3.6	6.4	10.9	15, 1	14.0	14. 1	14.6	6. 9	2.0
ı	-115 120	4, 1 4, 6	6.9 7.6 8.2	11.7 12.6	15. 3 15. 4 15. 5	14.3 14.7	13. 6 13. 4	13.9 12.8	6. 1 6. 2	2.0 1.9
l	125	5. 2	8.2			14, 9	13. 5	12.8 12.7	6.2	2.0
l	130 135	5. 7 6. 2	8. 9 9. 4	13.5	16.2	15, 2	14.0	13. J	6.5	2.2
ļ.	140	6.0	9. 4	13. 8 14. 2	17.5 18.9	16. 2 17. 3	15. 0 16. 0	13. 9 14. 7	7.3 8.2	2.5 2.9-
l	145	7.0	10. 1	14.6	20. G	18.8	17.6	16.0	9.0	2.7
ı	150 155	7.3 7.6	.10, 2 10, 2	14.9	20. 6 20. 9	20.2 21.2	19.2	17. 2 18. 3	10. 1 11. 0	3. 8 4. 3
l	160	7.7	10, 1	15. 1	21.0	21.9	20. 6 21. 6 22. 2	19.3	11.6	4. S
1	165	7, 6	10.0	14. 9 15. 1 15. 1 15. 2 15. 4 15. 5 15. 5 15. 4 15. 1 14. 7 14. 3	21. 1	22. 4	22.2	19.8	11.9	5.3
ı	170 175	7.4 7.0	9.7 9.1 8.5 8.0	15. 4	21. i 21. i	22. 7 23. 0	22. 5 22. 7	19. 5 20. 1	11.9 12.1	5. 7 6. 1
ı	180	6.4	8.5	15. 5	21.3	23. 4	23.0	20. 4	12.3	6.5
l	-185 190	5.7	8.0	15. 4	21.3	23.7	23. 5	21.4	13.0	7.0
ı	195	4. 9 4. I	7. 4 6. 8	15, 1	21.2 21.1	24. 1 24. 6	23. S	21.9 22.2	13. 4 13. 8	6.8 7.6
ļ	200	3.3	6. 8 6. 1 5. 4	14.3	21.1	25.0	24, 6 25, 0 25, 0	22. 9	14, 2	8.3
L	205 210	2.5 1.8	5. 4 4. 6	13. 7 13. 0	20. 8 -20. 4	24.9 24.9	25. 0 25. 0	23. 3 23. 2	14. 4 14. 6	8.6
ı	215	1.2	4.0	12.0	20.1	24.7	24.8	23, 1	14.6	8. 8 9. 0
l	220	0.7	3. 3	-11. 1	19. 6	24. 7 24. 4	24.7	23. 5	14.7	9.3
l	225 230	0. 3 0. 0	2.7 2.2	10. 3 9. 4	19. 1 18. 5	24. 2 23. 7	24. 4 24. 3	23.7 23.3	14.8 14.8	A. 4
L	235	·0.2	1.7	8.6	10 0	23. 3	24.0	23. 3 23. 3	14.8	9. 2
ı	240 245	•0.4 •0.5	1. 2 0. 8	7.9 7.1	17. 4 16. 9	23.0	23.7	23. 3	14.7	9.2
	250	-0.5	0.6	6.4	16.3	22. 6 22. 2	23. 4 23. 3	23. 5 23. 3	14, 9 - 15, 0	9, U- 9, 1-
1	255	-0.8	0.3	5.8	15.8	21.4	23. 2	23.2	15. 1	8.8
ĺ	260 265	-0, 9 -1, 0	0. 1 0. 0	5. 2 4. 8	15, 3 14, 8	21.5 21.3	23. 2 22. 4	23. 9 24. 0	15.3 15.3	8. 4 8. 0
ı	270	-1.0	-0.1	4.5	14. 4	20.8	22.3	23. 7	15, 5	7.8
ı	275	• I. I	0.0	4.3	14. 1	20. 4	22. I	24.8	15.9	7.8 7.9
l	280 285	-1.1 -1.0	-0, 1 -0, 1	4. I 3. 9	13. 7 13. 4	20. 3 20. 2	22. 2 22. 0	25. 6 26. 0	16. J 16. 4	8.0 7.6
ı	290	-0.9	0.0	3.8	13.3	20, 2	22, 0	26.0	16.6	7:6
ı	295 300	-0.9 -0.8	0, 0 0, 1	3. 9	13. 1	20. 1	22. 1	26. 4	16.6	7. 3
l	305	-0.8	0.1	4. () 4. 1	13. 5 13. 8	20, 3 20, 9	22. I 22. 5	26, 5 26, 7	16, 4 16, 4	7.3 6.6
	310	-0.5	0, 2	4. 3	14.3	21.6	23. 2	27. 4	16.4	6.0
	315 320	•0. 3 •0. 3	0.3 0.5	4. 6 5. 0	14. 9 15. 6	22. 7 23. 7	24.3 25.6	28. 2 28. 9	16.8 17.3	5. 5
ı	325	-0.3	0.7	5.3	16.3	25, 2	26.7	30. 4	17.8	5.9 5.7
ľ	330	•0.7	0, 4	6.0	17. 4	26. 4	28.3	31.2	18.2	-6.0
ı	335 340	-0.3 -0.1	1, 0 1, 2	6.7 7.3	18.5 19.5	28. 0 29. 5	29, 4 30, 7	32. 4 33. 5	18. 6 19, 2	5.8 6.2
1-	34.	-++. I	1.3	8.0	20.7	30.7	31.4	34.2	19.4	6.2
١	350 355	•0. I	1.3	8.7	21.9	31.7	32.0	34.4	19, 4	6.1
ĺ	357 360	+0, 2 +0, 6	1, 4 1, 7	4.3 10.0	22. 9 23. 7	32. 7 33. 2	32. 6 32, 4	35, 2 35, 0	19. 6 19. 5	5. 8 5. 9-

Ž.

			v - 110 Ki	TABLE XX	L = 118		2150 LB		
			(b)	THEORET			OW)		
					Radial Stat				221
Ψ	. 25R	. 40R	. 55R	.75R	. 85R	.908	. 95R	. 97R	, 99R
0 3	0. 8 •0. 6	3. 2 3. 6	9.3 9.6	21.4 21.4	29, 1 28, 9	33. 1 32. 8	36. 4 35. 6	38. 1 37. 5	0. 1 0. 1
-01	-0.3	4.0	9, 9	21.3	28. 4	32.0	34. 9	36.8	ő, i
15	-0.1	4.3	10. 1	21.0	27.7	31. 1	33. 9	35.7	0.1
20 25	0. I 0. 4	4.6 4.8	19, 2 10, 2	20. 6 20. 2	26, 9 26, 2	30. 2 29. 2	32. 9 31. 5	34. 5 33. 0	0. 0 0. 0
30	0.6	4,9	10. 1	19.7	25, 3	28. 1	30. 2	31.5	0.0
35	0.8	5.0	10.0	19. 1	24, 4	26.9	28.8-	31.5 30.0	0.0
40 45	0.9	5.0	9.7	18. 4 17. 5 16. 6 15. 6	23.3	25.6	27. 4 25. 9	28.5 27.0	0.0
45 50	1.1	5. 0 5. 0	9. 4 9. 2	17.5	22, 0 20, 7	24, 1 22, 7	25. 9 24. 4	27. 0 25. 4	0. 0 0. 0
55	1.4	5.0	8.9	15.6	19.3	21. 2	22, 6	23.4	0.0
55 60	1.6	5.0	8, 6	14.7 13.9 13.3	17. 9 16. 6	19. 6 17. 9	20.7 18.7	21.3	0.0
65	1.3	5. 1	8, 5	13. 9	16.6	17.9	18.7	19, 0	0, 0
70 75	2. 1 2. 4	5. 1 5. 3 5. 5 5. 8 6. 2 6. 7 7. 2	8. 5 5. 6	13.3	35, 4 14, 4	16. 3 14. 8	16-7 14.8	16.7 14.6	0, 0 0, 0
80	2.7	5. 8	8.8	12. 8 12. 5 12. 4 12. 4 12. 5	13.6	13.6	13.2	12.7	0.0
85	2.7 3.0	6, 2	8.8	12. 4	12. 9 12. 5 12. 2	13.6 12.6	13. 2 11. 9	12.7 11.2	0.0
90 95	3. 4	6.7	9, 6 10, 2	12. 4	12, 5	11.9	10.8	10.0	0.0
95	3.8	7.2	10, 2 10, 7	12.5	12.2	11.4	10, 1	9.1	0.0
100 105	4. 2 4. 6	8.3	11, 3	12.8 13.1	12. 1 12. 3	t), j 11. j	9. 7 9. 6	8.5 8.3	0. 0 0. 0
110	3. Õ	8 8	11.9	13.6	12.6	11.3	9.7	8.5	0.0
110 113	5. 4 5. 7	9. 4	11.9 12.5	14. 1	13.0	11.8	10.2	8.9	0.0
120	5. 7	9.8	13.0	14.7 15.3	13. 6 14. 3 15. 1	12. 4	10.9 11.8	9.7 10.7	0.0
125 130 135	5. 9 6. 0	10. 2 10. 5	13.6	15. 3 16. 0	14,3	13. 2 14. 1	11.8	10.7 11.9	0. 0 0. 0
130	6. l	10. 3	14.0 14.5	16.7	16.0	15. 2	14.1	13. 2	0.0
140	6. i	10.9	14.8	17. 4	16.8	16. 2	15. 4	14.7	0.0
145	6, 0	11.0	15. 1	18. 1	17.8	16, 2 17, 3	15. 4 16. 7	16. 1	0.0
150	5.8	10.9	15, 2	17. 4 18. I 18. 8 19. 3	18.7 19.7	18. 3	17.9 19.2	17.5	0.0
155 160 165 170 175	5. 5 5. 2	10. 8 10. 6	15.3	19.3	20.6	19.3	19. 2	19.0 20.3	0. 0 0. 0
165	4.8	10. 2	15. 3 13. 2	19. 8 20. 3	21. 4	20. 4 21, 5	20, 4 21, 5	21.6	0.0
170	4.3	9.8	15. 0	20.6	22. 1	22. 4	22.6	22.7	0.0
175	3.8	4.3	14.8	20.8	22.7	23. 3	23.7	23.9	0.0
180 185	3.3	8.8	14. 4 13. 9	21.0	23, 1	24.6	24.6	25.0	0.0
190	2. 8 2. 2	8. 2 7. 5	13. 4	21.0	23. 5 23. 8	24. 6 25. 0	25. 4 26. 1	26. 0 26. 8	0. 0 0. U
195	1.7	6.8	12.7	20. 9 20. 7	24.0	25. 4	26.7	27.5	0.0
260 205	1, 2	6. I 5. 3	12. 1 11. 3	20. 4 20. 1 19. 7 19. 3	24.1	25. 4 25. 7 25. 9	27. 1 27. 5	28. 1	0.0
205	0.8	5. 3	11.3	20. 1	24.0	25. 9	27.5	28.5	0.0
216 215	0. 4 0. 1	4. 6 3. 9	10. 5 9. 7	19.7	23. 9 23. 7	26. U 25. 9	27.8 27.9	28.9 29.2	0. U 0. U
220	•0. i	3. 2	8.9	18.7	23. ₹	25.8	27. 9	29.2	0.0
225	-0.3	3. 2 2. 6	8. 1	18.0	23. i 22. 7	25. 5	27. 8	29.3	0.9-
230	*O. 4	2.0	7.3	18. 7 18. 0 17. 4 16. 8	22.7	25. 4 25, I	27.6	29. 1	0. I
235 240	-0. 2 -0. 2	1. 5 1, 1	6. 6 3. 9	10.8	22.3	25, I 73 3	27.5 27.2	29.1	0. I 0. I
245	-0.2	6. 7	5, 2	16. 2 15. 6	21.8 21.3	24. & 24. 5	27. 2 27. I	28.9 28.7	0. 1
250 255	·0.2	0. 7 0. 4 0. 1	4.6	15.0	20. 9 20. 5	24. 1	26.9	28.6	0.1
255	-0.3	0.1	4. 1	14.4	20, 5	23.7	26.6	28.4	1.0
260 265	-0. 3	-0. 1 -0. 3	3. 6 3. 3	13.9 13.5	20.2 19.9	23. 3 23. 3	26. 4 26. 2	28.3 28.2	0.1
270	-0.4	-0. 4	3. 3	13. 3	19.9	23. 3 23. I	26. I	28. 1	0. I 0. I
275	•0.5	-0.5	2.7	13.0	19.7	23. 1	26. I	28. 1	0. i
280	-0.5	-0.6	2. 6	12.9	19.7	23. 2	26, 2	28,2	0. 1
285 290	•0. 5 •0. 5	·0.7	2.5	12.9	19, 9	23. 4	26.4	28. 4 28. 6	0. I
290 295	-0.5 -0.5	-0. 7 -0. 7	2.5 2.6	13. I 13. 3	20. l 20. 4	23. 7 24. 0	26, 7 27-0	28. 6 29. 0	(), 2 (), 2
300	-0.3	-0.7	2.8	13.7	20. 9	24.5	27.6	29.5	0. 2
305	-0.5	-0.6	3. 0	14, 2	21.4	25. I	28.2	30. 2-	0.2
310	-0.3	-0.5	3.3	14.8	22. 1	25.8	29.0	30.5	0.2
315 320	-0.5	*0. 4	3.8	15.5	22.9	26.6	29.8	31.6	0.2
325	•0.6 •0.6	-0. 2 0. 1	4.3 4.8	16.3 17.0	23.7 24.7	27. 5 28. 6	30. 6 31. 5	32. 5 33. 4	0.2 0.2
330	-0.6	6. 4	5, 5	17.8	25, 5	29:4	32. 4	34.3	0.2
335	-0, 6	0.8	6.1	18.6	26, 4	30. 1	33.2	35.2	0. 2-
340	-1.0	1.2	6.8	19.3	27. 2	31.0	34. 1	36. 2	0. 1
345 350	-1.3 -1.2	1.7 2.2	7. 5 8. 1	20. 0 20. 7	27. 8 28. 4	31.6	34. 9 35. 9	37. I 38. 2	0. 1 0. 1
355	-1.0	2.7	8. 7	21. 1	28. 4 28. 8	32, 4 32, 8	35. 9 36. 3	38.2	0. 1
360	-0.8	3.2	9.3	21. 4	29, 1	33. 1	36. 4	38. 1	ő. i

		VARIABLE	2		-0.50	0.0	, c	•	0.05	20.0	-0.02		ABLE			3.66	-0-8	4.4	0.33	7.0	20.0	0	6.0		7	101	2	A.0.4	40	0.51	\$2.00	0.47	9.50	0.0	-0.0	-0-03
		VARI	ACM	9.15	-2.69	-0.39	7.0	0-0-	0.03	-0-03	•		VARI	INFLOR	21.31	-3.42		0.5	0.13	60.0		0,0	10.0-		•		ACM		-2.68	0.0	-0-34	-0.20	01.0	-	-0-14	- 0.01 -0.03
		UNIFORM	=					0.03					0 M M			5.13		0.13	0.12	6.0	-0-03	-0.03	20.0			•			ŧŧ	t		1	• •	•	•	1
	55A	TINO TINO	A CR		-2.75	-0-39	0.00		-0-01	70-0-	0.01	#06" = 1	125	1 × 1	22.89	-3.94		-0.03	-0-11	-0-13	-0-0	2 -0.04	• 0 • 0 •	A		INFLOR			•	1	1	t		•	•	ı
	STATION	MENTAL	(X)		-0.55	-0.47	66.0	0.0	10.0	20.0-	0.0	STATION		ENT		m	-		ö	0	Ģ	Ģ	P	STATION		MENTAL	Î D C N	3.12	-1.01	0.30	0.0	-0-13	0.07	0.0	-0.06	ċ
LB/IN	BLADE	FXPFR	A C	7.5	-2.98	-0.22	21.0	11.0	-0.05	-0.0	0.02	BLADE		EXPERI	22.56	-3.50	ָהָיה הייניייייייייייייייייייייייייייייי	-0-7	Ö	200	0	-0-03	•	BLADE		EXPERI	ACR.	0,00	-0-30	-0.07	-0-27	200	0.16	0.0	0.0	ċ
ADING,		APLE	(N)	91	0.30	-0.50	65.0	0.0	0.0	20.0	-0.05		ADLE	101		2.26	5:00	0.38	0.31	900	0.0	0.0	6.0			100		5.26	-0.55	0.59	6.0	9.20	91.0	0.0	-0.0	10.0-
OF AERODÝNAMIC LOADING, E = 11600 18 - 8 = -2150 18		VARIA	2	25.5	-1.26	-0.23	000	-0.02	-0.01	-0.02	10.0		VARIABLE	E .	20.32	7:7		-0-34	0.19	50.0	ė		20.0			INFLOW	NY:	5.95	-3.44	-0.05	-0.4	21.0-	50.0	-0.20	-0-12	0.0
AERODYN - 11600 18			(N)	_ =	12.0		_	:	 6	• • •	•			1	•	Ν.		0	0	0		-0-05	10.0		# C			9.7.0	-2.80	-0-6	0.3	9.5	-0.0	0.03	•	20.0
35 OF AI	- 40k	UNIFORM	ACHI	4.52	-1.41	-0-16		0.0	20.0	5.0	ó	#58. =	UNIT	1	21.00	-2.43		-0.05	-0-03	0.0	0.0	-0-05	10.0	A76. = 1	2	INFLOR	A(N)	-6.01	60.9-	-0-17	င္	-0.27	-0.16	-0.06	0.02	20.0
ANONG Co F	STATION	MENTAL	3		0.85	-0.65		C.02		9 0	0.01	STATION		MENTA		2.87	10.7	-0.07	10.0	90.0	-0-17	0	70.0-	STATION		MENTAL	S S	3.94	-0.63	60.0	•	-0.27	0.07	-0-15	BC - 2 -	0.0-
2000 H	BLADE		ACM	7 · 6	-1.60	0.24	200	90.0	10.0	000	0.03	BLADE		EXPERI	22.32	-3.25	7.0	0.4.	-0.05	9 9	0.0	500	70.0	PLAĎE		EXPERI	Y S	-2.95	-2.22	-0.22	-0.58	-0.20	-0-19	0	-0.0+	ċ
TARLE XXXVII HARMONICS V = 110 ff	-	ABLE	BCN	14.1-	10.0	14.0-		90.0	0.0	60.0	-0.03		3791	IFLOW	Ē	600	70.0	0.47	**	0.00	0.0	40	5		210	101	(H)	4.15	9	0.40	69.0	0	0.12	ė	£0.0-	C*05
1		VARIABLE	ACH	1.57	61.0-	61.0	200	90.0	20.0	000	-0-05		VARE	E :	17.22	16.0		-0.03	60.0-	20.0	-0-	0.0	60.0		1	INFLOW	N V		-3.53	0.40	-0.59	20.0-	40.0	-C.2C	-0.05	90.0
		S S S		77.74	1.14	-0.48		90.0	70.0	0.0	-0.01		×	70		0-1		3	0.0		Ö	0	5			5.0	9 (N)	6.92	-2.46	-0.56	0.24	61.0		20.0-	ö	0.03
	125R	CAL	A.			•				•	•	1 = .75R	UNIF	136	16.92	0.27		រុំ	0.0	و د د د	0	-0.05	77.0-	A\$6. = 1		1941										
-	STATION	MERITAL	2	4	1.17	-0.62	61.0	50.0	31:0	61.0	60.0	STATION		FNTAL		-0-54	100	-0.05	•	200	-0-17	5	0.0-	STATION		IMENTAL		4.30	-1-15	31:0	-0-13	-0.37	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	- 20	-0.03	-0.10
-	BLADE	+ x D C R	ACR	1.70	-1.31	0.45	900	0.0	90.0	20.0	-0-05	BLADE		EXPERI	18.11	-0-14	7.4	-0.05	-0-14	9 0	0.02	•	0-0-	DL ADE		A A	E V	41.4-	-3-91	-0.66	-0-	-0-51	6,23	0.0	-0.10	-0-01
-	le la con de pages		z	۰ د	٠ ~	m		۰.	~	• •	2		~		. 0	~	7	•	5	• ^	- 4	•	2		-		z	o -	• •	• •	•	.	• •		٠	2

	Torsional Stress	r/R r/R .375 .65	
İSd	Tor	r/R .15	13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		r/R .80	-1988 -1934 -1273
TIME HISTORIES OF BLADE STRESS -90 L = 11800 13 D = -2150 IB	Stress	r/R .65	1687 1527 1527 1528 1749 2373 2373 2373 2373 2373 2373 2373 237
ORIES OF	Flapwise	r/R .45	57% 6002 6002 6002 6003 6003 6003 6003 6003
rime HIST		r/R .375	7266 7773 7773 7773 7773 7773 7765 7765 6174 6174 6175 5175 5175 5175 5175 5175 5175 5175
XXXVIII T		r/R .80	1009 1009 1009 1009 1009 1009 1009 1009
TABLE X V = 110 1	Stress	r/R •65	113 113 113 113 113 113 113 113 113 113
	Chordwise	r/R -375	+ + + + + + + + + + + + + + + + + + +
		r/R •15	15.55 15.55
,	1	♦ , DES	o 2 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

			V = 110	TABLE	-90 L=	CONCLUDED		-2150 118			
	-	Chordwise	Stress			Flapwise	Stress		for	forsional St	Stress
♣, deg	r/R .15	r/R ,375	r/R .65	r/R .£0	r/R .375	r/R .45	r/R .65	r/R .80	r/R .15	r/R .375	r/R .65
155	21 18	756 853	897	1451	5271	371.2 3800	-424	-2672	37	7 98	273
165	‡ ;	5,5	972	1428	5535	3888	-671	-2871	· ~ ·	3	250
175	1568	928	1254	1618	5670	3862	-/14	-2877	۹ <u>۲</u>	85	75
180	-387	830	1380	1710	5713	3870	629	-2726	17	مَ	8
185	96	689	1461	1780	5725	3870	-560	-2660	-16	-16 -16	130
195	-337	725	1280	1682	2823 5885	7907 7067	-356 -356	-2720	7 61	~	178
8	676	634	1010	1509	6032	121	-146	-2372	: ‡ :	27	190
ଝିଞ୍ଚ	121	3,6 3,6	2 KZ	14.22	6253 6253	4370 4534	30.73	-2372	& & & &	8 2	35
215	-580	208	722	1445	9700	1897	558	-2126	8 8	121	8
888	45 54 54 54 54 54 54 54 54 54 54 54 54 5	۲.	715	14.57	6591	767	368	-1844	æ 6	115	186
38	-1310	33 77	£\$	1463	7150	5427	1268	-132	2,82	£	172
స్ట	-1360	-437	53	1416	2346	5685	1595	-1093	8	119	182
27.5	1366		2 <u>8</u>	1342	7512	5961 6776	2015	916	5 5 5	27 27 27	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
250	-1497	-571	9	TIT	7659	6325	2867	717-	, 112	<u>1</u> 2	8
323	-1678	-577	ትጳ	1059	7770	8779 7757	3317	-18	7;; 8	62,5	217
265	-1952	38	33	139. 199.	7923	6607	38	38	86	3 8	176
230	-2106	-887	333	1422	7874	6595	4052	111.7	78	፠	159
() % () %	-22/1	7//-	8 2	1347	7807	6542 6513	4280	1267	88	85	180
38.5	-2015	123	127	1272	7751	6513	1755	1211	86	38	194
8,8	1881	55 50 50 50 50 50 50 50 50 50 50 50 50	101	1226	7696	6536	4237	1063	66	17	219
() ()	725	-722	ፉ	1080	265	1000	4003 3786	216	<u></u>	141	27.6
302	1903	-534	ัสู	1278	7592	6184	3558	396	Ř	149	275
310	-1865	-546		ווא	7487	9209	3305	102	a	153	273
35	1884	367	2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3	1399	-25°	5932 583.	3005	-180	ያ :	121	583 83 83 83 83 83 83 83 83 83 83 83 83 8
33.5	-1778	18	321	1284	174	2303	7 2 2	7.58 4.58 4.58 4.58	44	338	3
33	1791-	-242	295	1290	511.	2609	2286	7111-	97	155	330
335	2791-	45	\$ £	8 %	7 (S	5567 5538	1926	-1339	٥:	193	328
35.	-1616	-525	∄ನೆ	1278	2769	220	1860	-1663	- 151	38	123
350	-1591	<i>1</i> 92	170 25	130	0669	2673	1823	-1778	176	354	473
360	-1634	-132	787	660	366 7368	5703	1687	-1862	8 8	217 217	536
		-									

		M N	2 (X) 52		1622.	-693.	-25.	-29.	-6-	•	• 1	٠.	:		ORM			747.	-284.	-348.	61	57.	•	-9-	-10•
	= .45R	UNIFORM	1 (N) A	1253.	-1232.	-169.		9-	;	'n		,	•	# .80.8	UNIFORM	INFLOW	ACK.	-1/86.	595	-61.	22.	• ·	ģ	-19.	-13.
-2150 LB	STA'T LON	, d	A(N) B(N)			-421	-111-	-65	ò	S	27.	o.r	Ý.	STATION		EXPERIMENTAL	E S	861.		-334.	48.	•1C7	-24.	-23.	•09
= 11800 LB D =	BLADE	, u	A(N)	259.	-1022	190.		•09	•	*	27.	• · ·	•	BLADE		EXPERI	Z	-1952-	1056.	****	127.	-121- -84-	2.	-46.	÷ i.
7 o680	œ.	08.H	(N) 8		1344.	* *	145	-41.	-18.	-3.	 ,		•6		DRM	HC.	8(N)	1519.	-538	-450-	m į	45.	•	2.	•
110 H	375g = 1	UNIFORM	Z	1350.	-1023.	-266.	-15.	-36.	9-	÷	ထိပ်	v .	;	= .65R	UNIFORM	HCJANI	ACN	-990-	496	-146.	39.		7	*	-5-
A	STATION		(N) B(N)		864	-474.	-52	-63	-52-	2.	5 6•	•,	:	STATION		ER I MENTAL	2 0	1350	-143	-517.	• • •	200	2	-20•	-11-
	BLADE	>	ACN)	454	-908-	34.	. ec	90.	6	4 %	; .	• •	• • • • • • • • • • • • • • • • • • • •	BLADE		ο.	•	-1466			120.			2.	10.
			z:	c	(N (r	•	5	9	~	€0 (· •	2				ž	o -	~ ~	C)	\$ 1	r.:0	~	2 0	0

• 7 • 2 • • • • • • • • • • • • • • • •

HARMONKCS OF TORSIONAL STRESS, PSI BLADE STATION .15R BLADE STATION .15R BLADE STATION .15R UNIFORM EXPERITY OF TORSIONAL STRESS, PSI BLADE STATION .15R UNIFORM FLOW EXPERITY OF TORSIONAL STRESS, PSI BLADE STATION .15R LOW FLOW EXPERITY OF TORSIONAL STRESS, PSI LOW BLADE STATION .65R BLADE STATION .65R FLOW AIN BIN	2. 0. 2222. 02.
--	-----------------

DISTRIBUTION

US Army Materiel Command	5
US Army Mobility Command	5
US Army Aviation Materiel Command	6
US Army Aviation Materiel Laboratories	24
US Army R&D Group (Europe)	2
US Army Limited War Laboratory	1
US Army Human Engineering Laboratories	1
US Army Research Office-Durham	1
US Army Test and Evaluation Command	1
Plastics Technical Evaluation Center	1
US Army Medical R&D Command	1
US Army Engineer Waterways Experiment Station	1
US Army Combat Developments Command, Fort Belvoir	2
US Army Combat Developments Command Experimentation Command	3
US Army War College	1
US Army Command and General Staff College	1
US Army Aviation School	1
US Army Infantry Center	2
US Army Tank-Automotive Center	2
US Army Aviation Maintenance Center	2
US Army Armor and Engineer Board	1
US Army Electronics Command	2
US Army Aviation Test Activity	2
Air Force Flight Test Center, Edwards AFB	2
US Army Field Office, AFSC, Andrews AFB	1
Air Force Flight Dynamics Laboratory, Wright-Patterson AFB	1
Systems Engineering Group (RTD), Wright-Patterson AFB	3
Air Proving Ground Center, Eglin AFB	1
Naval Air Systems Command, DN	2
Bureau of Naval Weapons, DN	4
Chief of Naval Research	. 4
David Taylor Model Basin	1
Marine Corps Liaison Officer, US Army Transportation School	1
Testing and Development Division, US Coast Guard	1
Ames Research Center, NASA	1
Lewis Research Center, NASA	1
Manned Spacecraft Center, NASA	1
NASA Representative, Scientific and Technical Information Facility	2
NAFEC Library (FAA)	2
National Tillage Machinery Laboratory	1
US Army Aviation Human Research Unit	2
US Army Board for Aviation Accident Research	1

Bureau of Safety, Civil Aeronautics Board	2
US Naval Aviation Safety Center, Norfolk	1
Federal Aviation Agency, Washington, D. C.	1
Bureau of Flight Standards, FAA	1
Civil Aeromedical Research Institute, FAA	2
The Surgeon General	1
Defense Documentation Center	20

Security Classification

DOCUMENT CO (Security classification of title, body of abstract and indexis	NTROL DATA - R&		he overall report is classified)
1 ORIGINATING ACTIVITY (Corporate author)	and annotation made by an		RT SECURITY C LASSIFICATION
Sikorsky Aircraft Division of United A	ircraft Corp.	Unc	lassified
Stratford, Connecticut	-	2 b GROUP	
3. REPORT TITLE		l	
A Presentation of Measured and Calc and Structural Loads	ulated Full-Sca	ale Roto	or Blade Aerodynamic
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report			
5. AUTHOR(S) (Last name, first name, initial)			
Rabbott, J. P., Jr. Paglino, V	. M.		
Lizak, A. A.			
6. REPORT DATE	74. TOTAL NO. OF P	AGES	76. NO. OF REFS
July 1966	176		18
84. CONTRACT OR GRANT NO.	9 a. ORIGINATOR'S RE	EPORT NUM	BER(S)
DA 44-177-AMC-53(T) b. PROJECT NO.	USAAVLABS	Techni	cal Report 66-31
_{c.} Task 1P125901A14604	9b. OTHER REPOR!	NO(S) (Any	other numbers that may be assigned
d	SER-58398		
10. AVAILABILITY/LIMITATION NOTICES		· · · · · · · · · · · · · · · · · · ·	
Distribution of this document is unlin	nited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILI	TARY ACTI	VITY
	US Army Avia Fort Eustis, '		ateriel Laboratories
12 ABCTRACT			

A test of a set of Sikorsky CH-34 rotor blades was conducted in the NASA/Ames full-scale wind tunnel at speeds of 110 to 175 knots. One blade of the set was instrumented to measure differential chordwise pressures, as well as flapwise, chordwise and torsional stress. The test results are presented, two- and threedimensional pressure distributions are compared, and a correlation of airloads and blade stresses is made with a flexible blade aeroelastic theory, including both uniform and variable inflow assumptions.

Correlation of airloads and stresses with theoretical results was generally good. Inclusion of variable inflow improved correlation on both advancing and retreating sides of the disk at speeds as high as 175 knots, but the need for a more precise wake treatment is indicated. There is a p evidence of a requirement for including lifting surface effects in the calculation at the advancing blade tip.

A comparison of some of the wind tunnel data with flight test results shows good agreement.

DD 150RM 1473

Unclassified

Security Classification

å,

Unclassified Security Classification						
KEY WORDS	LIN	IK A	LIN	кв	LII	ik C
	ROLE	WT	ROLE	WT	ROLE	WT
Helicopter Rotor Full-scale Tests Airloads Stress Correlation						

- ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author-
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal paginution procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements
 - (1) "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13 ABSTRACT Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical re-port. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Iden-fiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

> Unclassified Security Classification