Course Syllabus CE-210 Digital Systems I

Instructor: Mohammad Ghamari

Office: 2-703U

Hours: Fridays or by appointment Email: mghamari@kettering.edu

Phone: 810-762-7990

URL: Blackboard is used for posting course material and virtual class/lab

<u>Course Description</u>: This course provides the required theoretical and practical background to design of digital systems. Formal design and analysis techniques for combinational and sequential logic circuits are studied. Topics include binary number systems and binary addition/subtraction, combinational logic minimization, frequently used combinational logic circuits, finite state machines, shift registers and counters. VHDL will be used for description, simulation and FPGA synthesis of digital circuits.

Text Book:

Introduction to Digital Circuits, manuscript by Prof. Nozar Tabrizi

References:

Fundamentals of Digital Logic with VHDL Design, Stephen Brown and Zvonko Vranesic, 3rd edition, McGraw-Hill Companies, ISBN 0077221435.

Digital Design, with RTL Design, VHDL, and Verilog, 2nd edition, by Frank Vahid, ISBN 978-0-470-53108-2.

Tentative Course schedule:

Week	Topics	Homework	Labs	Exams
		(HW)		
Week 1	Digital Circuits, Binary	Posting	Lab 1: Introduction	
	Numbers, Truth	Chapter 1 HW	to software and	
	Tables, and Digital		FPGA Board	
	Gates			
Week 2	Digital Gates	Due Chapter 1	Lab 2: Intro. To	
	continued;	HW; Posting	VHDL	
	Switching Algebra	Chapter 2 HW		
Week 3	Switching Algebra	Due Chapter 2	Lab 3:	
	continued	HW	Multiplexers	

Week 4	Canonical SOP & POS	Posting	Lab 4: 7-Seg	Exam 1
	Logic Minimization	Chapter 3 HW	Decoder	
	using K-Map	•		
Week 5	K-MAP continued;	Due Chapter 3	Lab 5: Design of	
	Frequently Used	HW; Posting	Digital Circuits -	
	Digital Circuits	Chapter 4 HW	Structural Style	
Week 6	Frequently Used	Due Chapter 4	TBA	
	Digital Circuits	HW; Posting		
	Continued, Binary	Chapter 6 HW		
	Number Systems and			
	Arithmetic			
Week 7	Arithmetic Circuits	Due Chapter 6	Lab 6:	Exam 2
	Continued for	HW; Posting	4-bit Adder	
	Combinational Circuits	Chapter 5 HW		
Week 8	Signed number	Due Chapter 5	Lab 7: Design of	
	systems;	HW; Posting	Digital Circuits -	
	Analysis of Sequential	Chapter 7 HW	Behavioral Style	
	Circuits		BCD adder Design	
Week 9	Analysis of Sequential	Due Chapter 7	Lab 8: Simulation	Exam 3
	Circuits Continued;	HW; Posting		
	Design of Sequential	Chapter 8 HW		
	Circuits			
Week 10	Design of Sequential	Due Chapter 8	Lab 9: Sequential	
	Circuits continued;	HW; Posting	Circuits: Memory	
	Frequently Used	Chapter 9 HW	Cells	
	Sequential Circuits			
Week 11	Frequently Used			Final
	Sequential Circuits			Exam
	Continued; Possible			
	Review session and			
	Final exam			

<u>Performance Evaluation</u>: Students will be evaluated through exams and homework/lab assignments. Students must write four exams and complete homework/lab assignments.

Grading: The overall grade for the course is calculated as follows:

Exams and quizzes	55%
Homework	20%
Laboratory	25% (70% Lab attendance/completion + 30% Questions)
	100%

The passing grade for this course is 60/100 and subject to achieve 60/100 or higher for the Exams and quizzes.

Attendance Policy:

You can participate in class in face-to-face or virtual sessions. The instructor must be notified in advance of late arrivals or absences. Each student is allowed to miss up to three lectures with the in-advance permission from instructor. No absence is permitted for lab and exam sessions.

Academic Assistance

In addition to your professors, academic assistance with class work and writing is available from the Academic Success Center (ASC) at (810) 762-7995 or academicsuccess@kettering.edu.

FAQ: How can I successfully complete this course?

Best answer: Follow the following instructions:

- Read the course notes before lectures
- Attend all lectures and be active in class
- Complete in-class exercises
- **Individually** do the homework assignments, then discuss your solutions with your classmates
- Compare your solutions with the posted solutions
- Do your best in exams
- Complete & submit lab assignments by deadlines
- Be active in lab sessions and practice your team working skills
- Complete lab assignments & submit by deadlines