Galois representations with specified Sato-Tate distributions

Daniel Miller

6 May 2017

Cornell University

Outline

Motivation

Motivation

Sato-Tate Conjecture

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, $\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$.

Sato–Tate measure: $ST = \frac{2}{\pi} \sin^2 \theta \, d\theta$ (Haar measure on SU(2)).

Theorem (Taylor et. al.)

The θ_p are equidistributed with respect to ST.

Generalized by Serre: conjecture for arbitrary motives.

Stick to elliptic curves and CM abelian varieties.

Quantify rate of convergence of $\frac{1}{\pi(N)} \sum_{p \leqslant N} \delta_{\theta_p}$ to ST.

Use discrepancy (Kolmogorov–Smirnov statistic).

Akiyama-Tanigawa Conjecture

$$D_{N} = \sup_{x \in [0,\pi]} \left| \frac{1}{\pi(N)} \sum_{p \leqslant N} 1_{[0,x)}(\theta_{p}) - \int_{0}^{x} dST \right|.$$

Conjecture (Akiyama-Tanigawa)

$$D_N \ll N^{-\frac{1}{2}+\epsilon}$$
.

There is a variant of this conjecture for CM elliptic curve.

Theorem (Akiyama-Tanigawa)

Akiyama–Tanigawa conjecture \Rightarrow Riemann Hypothesis for E.

Theorem (Mazur)

Akiyama–Tanigawa conjecture \Rightarrow Riemann Hypothesis for sym^k E

Questions?