IMPUTAÇÃO EM LARGA ESCALA COM SPARK

Cristian Danner Prática em Pesquisa Aplicada

Introdução

A tarefa de **imputação** tem como objetivo recuperar valores ausentes de maneira mais precisa, através de técnicas que variam desde [Little, 2015]:

- Média simples
- Regressão linear
- Modelos preditivos
- Algoritmos de aprendizado de máquina

Métodos de imputação são classificados em dois grupos:

- Métodos simples
- Métodos híbridos

Natureza dos dados:

- Numéricos: Contínuos ou discretos.
- Categóricos: alfanuméricos.

Motivação

- Abordagens convencionais para a complementação de dados ausentes tornam a análise tendenciosa.
- Soluções utilizando métodos estatísticos ou de aprendizado de máquina estão à disposição.
- Problema: aumento de inconsistências de dados.
- <u>Consequência</u>: prejudica a análise de dados e descoberta de conhecimento.
- Solução: imputação.

Objetivo

- Analisar os efeitos da aplicação de diversas estratégias de complementação de dados (*categóricos*) ausentes em larga escala.
- Permitir a composição dos experimentos de imputação utilizando várias tarefas de extração de conhecimento (knowledge-discovery in databases
 - KDD) e diferentes algoritmos.

Novos Desafios

As técnicas de imputação devem adequar-se aos novos desafios atuais:

- Grandes e variados volumes de dados (Big Data)
- Processamento em larga escala
- Proveniência
- Inteligência de Negócios (Business Intelligence)

Big Data

Processamento e armazenamento de imensos volumes de dados. Caracterização pelo modelo dos cinco Vs [Chen et al., 2014]:

- Volume (grandes volumes)
- Variedade (diversas modalidades)
- Velocidade (geração rápida)
- Veracidade (dados verdadeiros)
- Valor (valor agregado)

Big Data demanda estruturas de processamento paralelo e distribuído.

Apache Spark

O Apache Spark é um sistema de processamento distribuído de código aberto utilizado para execução de tarefas de natureza big data.

Utiliza o armazenamento em cache na memória e a execução otimizada para obtenção de alto desempenho.

Apache Spark

- Spark provê uma interface para programação de clusters com paralelismo e tolerância a falhas.
- Foi desenvolvido nativamente na linguagem Scala, entretanto suporta também as linguagens Java, Python e R.
- Utiliza o modelo de programação MapReduce

Apache Spark - Arquitetura

Figura 5: Spark. Fonte: Databricks - Apache Spark Streaming Concepts [2017]

Apache Spark - Arquitetura

Figura 6: Arquitetura. Fonte: IntelliPaat – Spark: Arquitetura [2016]

Trabalhos Relacionados

• GOPALANI et al. [2015] \Longrightarrow K-Means: implementação Spark

Tamanho dos dados	Número de cores	Tempo (s)	
62MB	1	18	
1240MB	1	149	
1240MB	2	85	

Tabela 1: Spark (MLib). Fonte: adaptado de Gopalani and Arora [2015].

Tamanho dos dados	Número de cores	Tempo (s)
62MB	1	44
1240MB	1	291
1240MB	2	163

Tabela 2: Apache Mahout. Fonte: adaptado de Gopalani and Arora [2015].

Appraisal-Spark

Objetivo Geral:

Desenvolvimento de uma ferramenta de imputação em bases de dados big data, garantindo a proveniência e reprodutibilidade de experimentos, com processamento de tarefas de forma distribuída e em larga escala.

Appraisal-Spark

Objetivos Específicos:

- Permitir a construção de quaisquer planos de imputação, utilizando diversas técnicas de aprendizado de máquina, norteadas pelo modelo de imputação composta.
- Permitir a comparação de resultados de planos de imputação, através da utilização de diferentes parâmetros (execução de algoritmos) e amostras de dados.

k-Nearest Neighbor (k-NN)

O **k-NN** (*k vizinhos mais próximos*) é um dos algoritmos de classificação mais utilizados na área de aprendizagem de máquina.

A busca pela vizinhança é feita utilizando uma medida de distância nessa procura. No experimento desenvolvido, foi utilizado a distância Euclidiana.

k-Nearest Neighbor (k-NN)

```
object Knn {
def run(idf: DataFrame, k: Int, attribute: String, params: HashMap[String, Any] = null): entities.Entities.CategoricImputationResult = {
  val attributes: Array[String] = params("attributes").asInstanceOf[Array[String]]
  val removeCol = idf.columns.diff(attributes).filter(!_.equals("lineId"))
  val calcCol = attributes.filter(! .equals(attribute))
  var fidf = utility.Utility.filterNullAndNonNumeric(idf.drop(removeCol: _*), calcCol)
   calcCol.foreach(att => fidf = fidf.withColumn(att, utility.Utility.toDouble(col(att))))
   fidf = fidf.withColumn("originalValue", col(attribute)).drop(attribute)
  val rdf = knn(fidf, k, calcCol).filter( . 2 == null)
  entities.Entities.CategoricImputationResult(rdf.map(r => entities.Entities.CategoricResult(r.1, r.2, r.3)))
```

Decision Tree

O **Decision Tree** (**Árvore de Decisão**), é uma técnica de Mineração de Dados escolhida para identificar padrões de produção, por ser uma modelagem preditiva, exige a definição de um atributo *alvo* ou *preditor*. Esse atributo orienta o algoritmo a classificar os demais atributos, quando possível, para identificar padrões que se repitam no repositório de dados fornecido.

Decision Tree

```
object DecisionTree {
def run(idf: DataFrame, attribute: String, params: HashMap[String, Any] = null, callback: String => Double): entities.Entities.NumericImputationResult = {
  val attributes: Array[String] = params("attributes").asInstanceOf[Array[String]]
  val removeCol = idf.columns.diff(attributes).filter( != "lineId")
  val remidf = idf.drop(removeCol: _*)
  val context = remidf.sparkSession.sparkContext
  val calcCol = attributes.filter(_ != attribute)
  var fidf = context.broadcast(utility.Utility.filterNullAndNonNumeric(remidf, calcCol))
  val columns = fidf.value.columns
  val lineIdIndex = columns.indexOf("lineId")
  val attributeIndex = columns.indexOf(attribute)
  val vectorsRdd = fidf.value.rdd.map(row => {
    val lineId = row.getLong(lineIdIndex)
    val attributeValue = row.getString(attributeIndex)
```

Random Forest

O **Random Forest** consiste em uma técnica de agregação de classificadores do tipo árvore, construídos de forma que a sua estrutura seja composta de maneira aleatória. A classificação final é dada pela classe que recebeu o maior número de votos entre todas as árvores da floresta.

O classificador é baseado no método *Bagging*. Para cada árvore gerada é utilizado um conjunto de treinamento diferente, formado por *n* instâncias de treinamento escolhidas aleatoriamente.

Random Forest

```
object RandomForest {
def run(idf: DataFrame, attribute: String, params: HashMap[String, Any] = null, callback: String => Double): entities.Entities.NumericImputationResult = {
  val attributes: Array[String] = params("attributes").asInstanceOf[Array[String]]
  val removeCol = idf.columns.diff(attributes).filter(_ != "lineId")
  val remidf = idf.drop(removeCol: _*)
  val context = remidf.sparkSession.sparkContext
  val calcCol = attributes.filter(_ != attribute)
  var fidf = context.broadcast(utility.Utility.filterNullAndNonNumeric(remidf, calcCol))
  val columns = fidf.value.columns
  val lineIdIndex = columns.indexOf("lineId")
  val attributeIndex = columns.indexOf(attribute)
  val vectorsRdd = fidf.value.rdd.map(row => {
    val lineId = row.getLong(lineIdIndex)
    val attributeValue = row.getString(attributeIndex)
```

Multilayer Perceptron

A **Multilayer Perceptron** (*Perceptron multicamadas*) é uma rede neural semelhante à perceptron, mas com mais de uma camada de neurônios em alimentação direta. Tal tipo de rede é composta por camadas de neurônios ligadas entre si por sinapses com pesos. O aprendizado nesse tipo de rede é geralmente feito através do algoritmo de Retropropagação (Backpropagation) do erro.

 $x_1 \rightleftharpoons w_1$ $x_2 \rightleftharpoons w_2$ $x_n \rightleftharpoons w_n$

Multilayer Perceptron

```
object MultilayerPerceptron {
def run(idf: DataFrame, attribute: String, params: HashMap[String, Any] = null, callback: String => Double): entities.Entities.NumericImputationResult = {
  val attributes: Array[String] = params("attributes").asInstanceOf[Array[String]]
  val removeCol = idf.columns.diff(attributes).filter( != "lineId")
  val remidf = idf.drop(removeCol: *)
  val context = remidf.sparkSession.sparkContext
  val calcCol = attributes.filter(_ != attribute)
  var fidf = context.broadcast(utility.Utility.filterNullAndNonNumeric(remidf, calcCol))
  val columns = fidf.value.columns
  val lineIdIndex = columns.indexOf("lineId")
  val attributeIndex = columns.indexOf(attribute)
  val vectorsRdd = fidf.value.rdd.map(row => {
    val lineId = row.getLong(lineIdIndex)
    val attributeValue = row.getString(attributeIndex)
     var values = new Array[Double](calc(ol length)
```

Experimentação

Resultados Obtidos com o Appraisal 2.11

- Foram reproduzidos os experimentos de imputação composta de Soares
 [2007] nas bases de dados: iris plants e treatment of migraine headaches,
 utilizando a nova versão do sistema.
- Foram simuladas ausências de dados de dez, vinte, trinta, quarenta e cinquenta por cento para cada um dos atributos das bases de dados.

Experimentação

Resultados Obtidos com o Appraisal 2.11

Iris dataset:

Experimentação

Resultados Obtidos com o Appraisal 2.11

Headache dataset:

Cluster

Spark Master at spark://rukbat:7077

URL: spark://rukbat:7077

REST URL: spark://rukbat:6066 (cluster mode)

Alive Workers: 6

Cores in use: 24 Total, 0 Used

Memory in use: 34.5 GB Total, 0.0 B Used Applications: 0 Running, 0 Completed Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers (6)

Worker Id	Address	State	Cores	Memory
worker-20180625200917-alpha-39971	alpha:39971	ALIVE	4 (0 Used)	5.8 GB (0.0 B Used)
worker-20180625201354-beta-44825	beta:44825	ALIVE	4 (0 Used)	5.8 GB (0.0 B Used)
worker-20180625201358-gamma-38862	gamma:38862	ALIVE	4 (0 Used)	5.8 GB (0.0 B Used)
worker-20180625201403-delta-33737	delta:33737	ALIVE	4 (0 Used)	5.8 GB (0.0 B Used)
worker-20180625201408-epsilon-36647	epsilon:36647	ALIVE	4 (0 Used)	5.8 GB (0.0 B Used)
worker-20180625201414-zeta-44159	zeta:44159	ALIVE	4 (0 Used)	5.8 GB (0.0 B Used)

Running Applications (0)

	-12000000	12_0000000000 1	2_0000000000000000000000000000000000000		Targeony rote	022000000	P-160000
Application ID	Name	Cores	Memory per Executor	Submitted Time	User	State	Dur

Considerações Finais

- É possível imaginar que em ambientes Big Data, novos conhecimentos sejam descobertos acerca do tema imputação (grandes volumes de dados x flutuações individuais).
- A capacidade de utilizar diferentes planos de imputação, além dos cinco propostos por Soares [2007], pode permitir que novas técnicas de imputação sejam descobertas.
- É uma ferramenta capaz de impulsionar a pesquisa científica nas áreas de imputação, KDD e ML.

Perguntas

IMPUTAÇÃO EM LARGA ESCALA COM SPARK

Cristian Danner Prática em Pesquisa Aplicada