LITERATURE SURVEY ON

$INTERNET\ of\ THINGS (IoT)$

BATCH : **B11-5A1E**

BATCH MEMBERS:

513119106079 - L.SNEHA

513119106065 - K.PRAVEENA

513119106070 - S.SAMY AYYA

513119106091 - T.TAMILMANI

P				
A	TITLE	AUTHOR	KEY	FINDINGS/PROCS/CONS
P		&	WORD	
Ε		YEAR		
R				
1	IOT	Shaik Asif	Task	Scheduling plays a vital role in real time
	Multitaskin:	Hussain,	conflicts;	embedded systems to prepare a schedule
	Design of	Shekar	Railways	dynamically and share resources effectively.
	Smart phone	Ramaiah,	Smart	The scheduling algorithms involve priorities
	application	J Chinna	phone.	in mixed fashion depending on hard and soft
	for	Babu,		deadlines. Real time scheduling systems
	systematic	M. N. Giri		basically depends on logical computation and
	execution	Prasad.		time of the results produced. Multitasking
	and			involves parallel execution of request and
	scheduling	&		response based on the scheduling algorithm.
	in real time			It brings automation in many areas with
	environment	2019		reference to performance parameters like
				reliability and sensitivity. The major use of
				scheduling is Effective utilization of
				resources and avoiding task conflicts. In the
				proposed work the concept of Scheduling in
				real time systems is applied in transportation
				system application for efficient service and
				effective utilization of resources. One of the

				best transportation system in the world is
				railways, however inpresent days this
				transport service is under pressure due to
				mismanagement of operations resulting in
				customer complaints and long waiting list of
				passengers. The proposed system is used to
				accommodate the passengers based on the
				request and resource availability. In this work
				Internet of Things based smart phone
				application system is designed to introduce
				automation in addressing the emergency
				service to the passenger requests in the
				moving train. The proposed system consists
				of raspberry pi as a server for maintaining the
				database and provides wireless
				communication between the passenger and
				the ticket collector of train. The aim of this
				work is to help passengers to have safe and
				comfortable journey in the train. The user
				interface designed in each compartment is
				used to send the request from the passenger to
				the train employee for allocating the seat in
				the train in emergency situations. On the
				request received from the passenger the
				response is given depending on the resource
				list loaded in the server. The fair distribution
				of the seat to the passengers is scheduled
				using composite scheduling for multitask
				algorithm based on database resource list. The
				algorithm defines the task priority as its own
				unique priority level for every task and assign
				the same priority to the multiple tasks if more
				number of tasks are introduced in scheduling
				then they are either time sliced or work round
				robin fashion. The results obtained in the
				proposed work justify the performance
				parameters in real time for the algorithm used.
2	Failure	Francesca	Smart	Railways monitoring and control are currently
-	management	Righetti,	Station,	performed by different heterogeneous vertical
	strategies for	Carlo		systems working in isolation without or with
			1	

2	IoT-based railways systems	Vallati, Giuseppe Anastasi Giulio Masetti, Felicita Di Giandomen ico. & 2020	Smart City, added value services, failure recovery strategies	limited cooperation among them. Such configuration, widely adopted in practical deployments today, is in contrast with the integrated vision of systems that are at the foundation of the smart-city concept. In order to overcome the current fractured ecosystem that monitors and controls railways functionalities, the adoption of a novel integrated approach is mandatory to create an all-in-one railway system. To this aim, new IoT-based communication technologies, like wireless or Power Line Communication technologies, are considered the main enablers to integrate in a very rapid and easy manner existing vertical systems. In this work, we analyse the architecture of future railways systems based on a mix of wireless and Power Line Communication technologies. In our analysis, we aim at studying possible failure management strategies on rail-road switches to improve the level of reliability, crucial requirement for systems that demand maximum resiliency as they manage a critical function of the infrastructure. In particular, we propose a set of solutions aimed at detecting and handling network and sensor failures to ensure continuity in the execution of the basic control functions. The proposed approach is evaluated by means of simulations and demonstrated to be effective in ensuring a good level of performance even when failures occur.
3	Towards the Internet of	Paula Fraga-	IoT; IIoT; internet	Nowadays, the railway industry is in a position where it is able to exploit the
	Smart	Lamas,	of trains;	opportunities created by the IIoT (Industrial
	Trains:	Tiago M.	railway	Internet of Things) and enabling
	A Review on	Fernández-	safety;	communication technologies under the
				\mathcal{E}
	Industrial	Caramés	rail	paradigm of Internet of Trains. This review
	IoT-		planning	details the evolution of communication

	Connected	and Luis	and	technologies since the deployment of GSM-
	Railways	Castedo	schedule	R, describing the main alternatives and how
	Ranways	Custedo	-ing;	railway requirements, specifications and
		&	predictive	recommendations have evolved over time.
			maintena	The advantages of the latest generation of
		2017	nce;	broadband communication systems and the
		2017	WSN;	emergence of Wireless Sensor Networks for
			railway	the railway environment are also explained
			enhanced	together with the strategic roadmap to ensure
			services;	a smooth migration from GSM-R.
			freight	Furthermore, this survey focuses on providing
			_	a holistic approach, identifying scenarios and
			transporta tion;	1
			cyber	architectures where railways could leverage better commercial IIoT capabilities. After
			security	reviewing the main industrial developments,
			security	short and medium-term IIoT-enabled services
				for smart railways are evaluated. Then, it is
				analyzed the latest research on predictive
				maintenance, smart infrastructure, advanced
				monitoring of assets, video surveillance
				systems, railway operations, Passenger and
				Freight Information Systems (PIS/FIS), train
				control systems, safety assurance, signaling
				systems, cyber security and energy efficiency
				Overall it can be stated that the aim of this
				article is to provide a detailed examination of
				the state-of-the-art of different technologies
				and services that will revolutionize the
				railway industry and will allow for
				confronting today challenges.
4	Research on	NA PAN	Wireless	With the continuous development of society
	Music		music	and rapid economic growth, intelligent music
	Wireless	&	control,	control technology has received more and
	Control		Internet	more attention. At the same time, real-time
	Based on	2021	of	motion tracking technology has also been
	Motion		Things,	developed more and more in the fields of
	Tracking		motion	virtual reality and human-machine control.
	Sensor and		tracking,	This article is dedicated to developing a
	Internet of		sensors,	wireless music control system based on
	Things			gesture tracking sensors. First, in the data

5	Securing	ANASTAS	Blockcha	based on the Internet of Things is used to automatically detect whether someone is approaching. When detecting that someone is approaching, the motion tracking sensor module captures and detects gestures and counts them through a counter. Then, the IoT data transmission module sends the acquired gesture information from the sending end to the receiving end. Finally, the particle swarm algorithm performs algorithmic intelligent processing and judgment on the transmitted data to realize wireless control of background music. After software and hardware debugging, a wireless music control model based on motion tracking was finally successfully established. The system has undergone a complete test, and the test results show that the system has strong stability. Users can easily control music equipment and achieve high accuracy of music control information. With the faster maturity and stability of
	Digital Ledger Technologie s-Enabled IoT Devices: Taxonomy, Challenges,	IOS N. BIKOS 1 ,SATHISH A. P. KUMAR	-in, decentrali zed, IoT, IOTA, direct acyclic graph	digitization, connectivity and edge technologies, the number of the Internet of Things (IoT) devices and sensors is flourishing fast in important junctions such as homes, hotels, hospitals, retail stores, manufacturing floors, railway stations, airports, oil wells, warehouses, etc. However,
	and Solutions	2022	(DAG), Tangle, cybersecu -rity, privacy, confident iality.	in this extremely connected world, the security implications for IoT devices are getting worse with the constant rise in malicious cyberattacks. The challenge is how to secure IoT sensors, services and data. The blockchain technology, a prominent distributed ledger technology (DLT), is being pronounced as the way forward for safeguarding IoT devices and data. The Directed Acyclic Graph (DAG)-based DLT

				has the inherent potential to realize the benefits of blockchain with better performance. IOTA is a DAG-based blockchain implementation for the IoT era. The Tangle, the IOTA's network immutably records the exchange of data and value. It ensures that the information is trustworthy and cannot be tampered with nor destroyed. In
				this work, we depict a thorough analysis of the existing security studies for IOTA. Then, we identify the gaps and the limitations of these security solution schemes, and finally, propose future security research recommendations that can potentially fill these gaps to secure DLT-enabled IoT
6	Research on Adaptive Iterative Learning Control of Air Pressure in Railway Tunnel With IOTs Data	YINJUN ZHANG 1,2, JIANHUA SU1, MENGJI CHEN & 2020	Train in tunnel, pressure fluctuat -ion, Internet of Things, adaptive iterative learning control.	devices. When a train enters a tunnel, the passengers in the train will feel tinnitus. The main reason is that the pressure in the tunnel enters the vehicle through the adjusting system of the train, which will cause discomfort to the passengers. In this paper, according to the quasi-periodicity and repeatability of mass data in the process of train running in tunnels, a control method based on the IOTs big data is proposed, and an adaptive iterative learning control algorithm based on the IOTs big data is established. The fan operation frequency of ventilation system is regulated by adaptive iterative learning control algorithm, and can adjust the new air and exhaust gas of the ventilation system in real time to restrain the pressure fluctuation in the train. Finally, the simulation results show that the adaptive iterative learning control algorithm based on the Internet of Things can significantly reduce the amplitude of pressure fluctuation in the tunnel and the change rate of the ventilator, and improve the passenger comfort program. Moreover, the real-time measured data also

				show that the proposed closed-loop adaptive iterative learning control algorithm based on the Internet of Things is obviously superior to active control.
7	Internet of things for high speed railways.	Guidong Zhong. Ke Xiong. Zhangdui Zhong. Bo Ai & 2021	Internet of things, High speed railway, High speed train, Intelligen t high- speed railway.	As a new generation of application infrastructure and strategic emerging technologies, the internet of things is an inevitable trend to be integrated into the rapid development of high-speed railways (HSR). This article first introduces the concept and key technologies of the HSR IoT, and then analyzes the HSR's requirements for the IoTs. Based on these concepts, a system architecture of the HSR IoT is proposed to expand the in-depth applications of IoT in various fields of the HSR industry. Finally, future development trends of the HSR IoT are discussed. This article is expected to provide some useful insights into the study and evolution of HSR IoT.
8	3D-LIDAR Based Object Detection and Tracking on the Edge of IoT for Railway Level Crossing.	CRISTIAN WISULTS CHEW, GABRIEL MUJICA, JOSE MANUEL LANZA- GUTIER -REZ, JORGE PORTILA. & 2021	Edge computig, embeddd software, energy efficienc, Internet of Things, LIDAR, object detection, object tracking, railway level crossing, sensor systems	Object detection is an essential technology for surveillance systems, particularly in areas with a high risk of accidents such as railway level crossings. To prevent future collisions, the system must detect and track any object that passes through the monitored area with high accuracy, and this process mustbe performed ful_lling real-time speci_cations. In this work, an edge IoT HW platform implementation capable of detecting and tracking objects in a railway level crossing scenario is proposed. The response of the system has to be calculated and sent from the proposed IoT platform to the train, so as to trigger a warning action to avoid a possible collision. The system uses a low-resolution 3D 16-channel LIDAR as a sensor that provides an accurate point cloud map with a large amount of data. The element used to

		1	T 2	
			and	process the information is a custom embedded
			applicati	edge platform with low computing resources
			-ons.	and low-power consumption. This processing
				element is located as close as possible to the
				sensor, where data is generated to improve
				latency, privacy, and avoid bandwidth
				limitations, compared to performing
				processing in the cloud. Additionally,
				lightweight object detection and tracking
				algorithm is proposed in this work to process
				a large amount of information provided by the
				LIDAR, allowing to reach real-time
				speciation's. The proposed method is
				validated quantitatively by carrying out
				implementation on a car road, emulating a
				railway level crossing.
9	Internet of	GABRIEL	Edge	Recent advances in wireless communication,
	Things in the	MUJICA,	nodes,	sensing and processing technologies are
		JAVIER	Internet	
	Railway Domain:		of	fostering novel research and innovation
		HENCHE,	_	opportunities in areas such as Industry 4.0,
	Edge	JORGE	Things,	Smart Cities and Intelligent Transportation
	Sensing	PORTILA	LIDAR	Systems. In particular, the railway domain is
	System	0	sensing,	envisioned to have important breakthroughs
	Based on	&	railway	in terms of cost-ef_ciency, self-management,
	Solid-State		applicat	and reliability in the operation of the rolling
	LIDAR	2021	-ion,	stocks and infrastructures. Some of these key
	and Fuzzy		wireless	objectives are been addressed by the concept
	Clustering		sensor	of Railway Virtual Coupling, which is a
	for Virtual		networks.	promising solution where the capacity of the
	Coupling			tracks is highly improved by means of
				reducing the distance between adjacent trains,
				and the physical connection between train's
				compositions, through accurate Vehicle-to-
				Vehicle communication systems. In this work
				a new approach towards supporting the
				information dynamically exchanged by the
				trains is proposed, with the design and
				implementation of a Solid-State LIDAR
				based sensing system to provide an accurate,
				robust and low-latency on-board distance
				Todasi and low-fatency dif-board distance

10 A Secretary Railway Crossi System Using	ha Reddy, Ilaiah Kavati,	Railway Gate, Internet of Things, Railway Crossing, Micro Controll -er, Arduino, Sensors.	detection system between trains. The combination of a long-range distance sensor, an Internet of Things edge hardware platform and a fuzzy clustering approach for distance detection of the object of interest allows obtaining very accurate results to support the virtual coupling maneuvers. The system implementation has been tested in a real railway scenario, where several coupling and distance detection maneuvers have been performed to verify the operation of the proposed system in an actual application context. This represents one of the firrst dedicated distance detection tests of this kind under real dynamic conditions documented in the literature towards railway virtual coupling. The aim of this paper is to develop a prototype that control the railway gate using the microcontroller. Whenever train touches base at the sensor, caution is activated at the railway crossing so that the general population get instruction that entryway will be shut. At that point the control module initiates and shuts the gates on either side of the track. Once the train crosses, this module naturally lifts the gate. For mechanical operation of a gate DC adapted engines are utilized. We are utilizing an installed controller worked around the 8051 family (AT89C52) for the control. As per the instructions produced at the microcontroller, the proper action (i.e., shut or lift) will be made. This logic was implemented in Embedded C and dumped to the Raspberry PI. This prototype was tested and successfully shuts the gate at the time of train arrival and lifts after train crosses other end.
--	--------------------------------	---	---

11	Internet of	Ohyun Jo,	Internet	The explosively growing demand of internet
	Things for	Yong-Kyu	of	of things (IoT) has rendered broadscale
	Smart	Kim,	Things,	advancements in the fields across sensors,
	Railway:	Juyeop	Smart	radio access, network, and hardware/software
	Feasibility	Kim.	railway,	platforms for mass market applications. In
	and		Condition	spite of the recent advancements, limited
	Applications	&	based	coverage and battery for persistent
			mainten	connections of IoT devices still remains a
		2017	-ance,	critical impediment to practical service
			Power	applications. In this paper, we introduces a
			consumpt	cost-effective IoT solution consisting of
			ion.	device platform, gateway, IoT network, and
				platform server for smart railway
				infrastructure. Then, we evaluate and
				demonstrate the applicability through an in-
				depth case study related to IoT-based
				maintenance by implementing a proof of
				concept and performing experimental works.
				The IoT solution applied for the smart railway
				application makes it easy to grasp the
				condition information distributed over a wide
				railway area. To deduce the potential and
				feasibility, we propose the network
				architecture of IoT solution and evaluate the
				performance of the candidate Radio Access
				Technologies (RATs) for delivering IoT data
				in the aspects of power consumption and
				coverage by performing an intensive field test
				with system level implementations. Based on
				the observation of use cases in
				interdisciplinary approaches, we figure out
				the benefits that the IoT can bring.

12 C1:::	_ :
12 Condition Gulsah catenary, With the increase of railway transportation	
Monitoring Karaduman rail the world, the safety, security and comfor	
Platform in Mehmet system, the railways have gained great important	
Railways Karakose Fault Nowadays, the use of Internet of Thi	_
Based of Erhan Akin diagnosis, (IOT) in condition monitoring of system	
IoT. pantogr quite common. On this basis, in this stud	y a
& -aph, method for condition monitoring of railw	ays
using IOT is proposed. In this method, ima	ges
taken from the cameras monitoring	the
railways are transmitted to a central comp	ıter
using IOT. Image processing techniques	
applied to these images. The process	
images are analyzed and meaningful data	
extracted in the central computer.	
necessary precautions are taken from	
results of the analysis. Thus, contactless for	
diagnosis is performed.	uuit
13 An IOT Dr.K.Helen IOT, Among different modes of transportation,	
Based Smart Prabha, Microcon railway transportation offers excellent ene	rav
Medical Badhepudi troller, conservation, environmental protection	
	-
Passengers m Gnana Respirat within the transportation of products, but a	
Jasmitha, -ory of passengers. Even many technolog	
Gavarla Sensor, developments arise within the field	
sandhya. Ventilat railways: healthcare remains not in conce	
-or This paper proposes a controller ba	
& Mechanis technique to offer care support to	
m, emergency patient and therefore the det	
2020 CPR are going to be transferred to the loco pilot	•
Mechanis implementing this system to save lots of	the
m, lifetime of emergency patient in travel.	his
Arduino paper approach an IOT based healthough	are
services during a medical emergency situat	1011

14	AN MULTIPUR POSE MONITORI NG SYSTEM FOR RAILWAYS USING IOT	P.Vinothku mar, J.Shrividya alakshmi, M.Manime galai, R. Ilango, K.Nandhak umar	IOT, Sensor, Arduino mega board.	Nowadays 25% of the accidents are due to trains. The train accidents which causes people death and injury that cannot be retrieved. Any error mistakes from control room board, it makes causes the train accidents. By using the intelligent secure system in this project, we can overcome the possibility of train accidents. It is very important to implement a new automatic system. All the departments needed the automation system especially for railways stations. Automatic train operating systems can be useful when the driver in the sleepy mode or in any emergency conditions. The contemplated system is a driverless metro & normal train and which eliminates the need for awaiting staff and build the complete autonomous train. This system is mainly used to make less any Human error. In our project, microcontroller has been acts as a CPU, used to control & processing all devices. The ultrasonic sensor has implementation the train collision avoidance system, to transmit and receives the ultrasonic signal, mainly used to
15	Geophone-Based Energy Harvesting Approach for Railway Wagon Monitoring Sensor With High Reliability and Simple Structure	WEI HE, WEIZHON G SHI, JIANWEI LE, HUI LI, RUNZE MA. & 2019	Energy harvest -ing, Internet of Things, vibration.	identify the distance from one to another train. Freight train positioning and axle safety monitoring are the key to railway traffic supervision, which can be achieved by sensors based on Internet of Things technology and the energy harvesting technology is the best solution to those sensors due to neither electrical power nor communication system is available on railway wagons. This paper proposes a self-powered railway wagon monitoring sensor solution based on the geophone, which has the characteristics of mature technology and simple structure, and can convert mechanical vibration of wagons into electrical energy. Since the vibration is so weak that the voltage

induced by the geophone is very weak, hence, this paper proposes an electromagnetic generator constructed by geophone matrix and an energy management interface to convert the induced potential into the voltage that can drive the circuit system of sensors. In implementation this paper, the and performance of EMI will be focused on, and the energy harvesting system analysis prior to developing prototypes. The design principles and prototypes of EMG and EMI are proposed based on the parameters of vibration pro_les collected by a data logger, and the performance of the SpRWMS prototype is evaluated on a trial run freight train. Experimental results show that the proposed EMI can extract the energy generated by EMG more effectively and increase the voltage across the storage capacitor from 2V to 3.3V, that is, our proposed EMI and EMG can convert the railway wagon vibrational energy into the electrical energy form required by circuitry of sensors.