ARELLANO GRANADOS ANGEL MARIANO 218123444

SEMINARIO DE SOLUCIÓN DE PROBLEMAS DE ARQUITECTURA DE COMPUTADORAS 2021B

D15

PRÁCTICA 6: DISEÑO DE CONTADORES

ENTREGA: Lunes 15 de Noviembre de 2021

Objetivo.

A partir del material de la clase:

- 1.- Diseña un contador de 4 bits completo (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) con Flip flop tipo JK.
- 2.- Contesta:
- a) ¿Cuántos Flip flop necesita?
- b) ¿Qué diferencia existe en diseñar con Flip flop D como anteriormente lo hiciste y con Flip flop JK como ahora?
- 3.- Plasma tus evidencias con capturas de pantalla.

Introducción.

¿QUÉ ES UN CONTADOR DIGITAL?

Los contadores digitales, también conocidos como "contadores inteligentes" o "contadores avanzados" son dispositivos que registran automáticamente el consumo eléctrico y de agua y luego entregan electrónicamente esa información a la empresa de servicios en intervalos regulares.

Flip-Flop J-K:

El "flip-flop" J-K, es el más versátil de los flip-flops básicos. Tiene el carácter de seguimiento de entrada del flip-flop D sincronizado, pero tiene dos entradas, denominadas tradicionalmente J y K. Si J y K son diferentes, la salida Q toma el valor de J durante la subida del siguiente pulso de sincronismo.

Q Out	Inputs		
Present State	Next State	J _n	K _n
0	0	0	X
0	1	1	Х
1	0	Х	1
1	1	X	0

Desarrollo.

1.- Diseño de un contador de 4 bits.

Primero elaboramos la tabla de verdad con ayuda de la tabla de exitacion de flip-fñop JK.

	ENTR	ADAS		FF J	IK-A	FF J	IK-B	FF J	IK-C	FF J	IK-D
Α	В	C	D	JA	KA	JB	KB	JC	KC	JD	KD
0	0	0	0	0	X	0	X	0	X	1	X
0	0	0	1	0	X	0	X	1	X	X	1
0	0	1	0	0	X	0	X	X	0	1	X
0	0	1	1	0	X	1	X	X	1	X	1
0	1	0	0	0	X	X	0	0	X	1	X
0	1	0	1	0	X	X	0	1	X	X	1
0	1	1	0	0	X	X	0	X	0	1	X
0	1	1	1	1	X	X	1	X	1	X	1
1	0	0	0	X	0	0	X	0	X	1	X
1	0	0	1	X	0	0	X	1	X	X	1
1	0	1	0	X	0	0	X	X	0	1	X
1	0	1	1	X	0	1	X	X	1	X	1
1	1	0	0	X	0	X	0	0	X	1	X
1	1	0	1	X	0	X	0	1	X	X	1
1	1	1	0	X	0	X	0	X	0	1	X
1	1	1	1	X	1	X	1	X	1	X	1

Después hacemos mapas de Karnaugh para simplificar las expresiones y armar nuestro circuito.

FF JK-A

AB'	\CD	00	01	11	10
	00	0	0	0	0
C)1	0	0	1	0
1	1	0	0	1	0
1	0	0	0	0	0
$D_0 = E$	3CD				

FF JK-B

AB\CD	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0
$D_1 = CD$				

FF JK-C

AB\CD	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0
$D_2 = D$				

FF JK-D

AB\CD	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1
D 1 (nower	1			

 $D_3 = 1$ (power)

Por ultimo construimos nuestro circuito en proteus.

Este fue el resultado final, completamente funcional.

2.- Contesta:

a) ¿Cuántos Flip flop necesita?

Se necesitan de 4 flip-flops, uno para cada bit de la cadena de los bits necesarios para expresar los numero del 0 al 15.

b) ¿Qué diferencia existe en diseñar con Flip flop D como anteriormente lo hiciste y con Flip flop JK como ahora?

La principal diferencia es la cantidad de compuertas lógicas que requieren, pues en el los flip-flops D se requirieron alrededor de 4 o 5 compuestas por cada flip-flops, en cambio con los flip-flops JK solo se necesitó de 1 o 2 compuertas logrando así un circuito más pequeño y funcional.

Resultados.

Aquí muestro algunas de las salidas que muestra el circuito entre los numero del 1 al 15 hexadecimal.

Conclusiones.

En esta practica al inicio se me complico mucho el saber como se traducía los resultados que obtuve en los mapas de Karnaugh a los circuitos en proteus, pero tras investigar y ver videos en internet entendí y al final mi circuito logro funcionar a la perfecion.

Referencias.

- https://espanol.ouc.com/customer-support/frequently-askedquestions/lists/digital-meter-faq/what-is-a-digital-meter-
- http://hyperphysics.phy-astr.gsu.edu/hbasees/Electronic/jkflipflop.html