Math 55a, Assignment #11, November 28, 2003

Notations. \mathbb{C} denotes the field of all complex numbers. \mathbb{N} denotes the set of all natural numbers (*i.e.*, all positive integers).

Problem 1. (Vandemonde determinant) Let $n \in \mathbb{N}$ and $a_j \in \mathbb{C}$ for $1 \leq j \leq n$ with $a_j \neq a_k$ for $1 \leq j < k \leq n$. Consider the $n \times n$ matrix

$$T = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ (a_1)^2 & (a_2)^2 & (a_3)^2 & \cdots & (a_n)^2 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ (a_1)^{n-1} & (a_2)^{n-1} & (a_3)^{n-1} & \cdots & (a_n)^{n-1} \end{pmatrix}.$$

- (a) By using the simple part of the Fundamental Theorem of Algebra that a polynomial of degree m admits no more than m roots with multiplicities counted, show that the determinant $\det T$ of T is nonzero. (The determinant of T is known as the Vandemonde determinant).
- (b) Now consider each a_j as an independent variable for $1 \leq j \leq n$. By replacing the j-th column of T by the j-column minus the first column for $2 \leq j \leq n$ and expanding the determinant of the resultant matrix according to the first row, show that the determinant $\det T$ of T as a polynomial in the variables a_1, \dots, a_n is divisible by $a_1 a_j$ for $1 \leq j \leq n$. Hence show that the determinant $\det T$ of $1 \leq j \leq n$ is equal to

$$\prod_{1 \le j \le k \le n} (a_k - a_j).$$

(*Hint*: consider det T as a polynomial of degree n-1 in the single variable a_1 and compare the coefficient of $(a_1)^{n-1}$ to the $(n-1)\times(n-1)$ Vandemonde determinant in a_2, \dots, a_n .)

Problem 2. (Homogeneous polynomials and symmetric multilinear functions) Let V be a \mathbb{C} -vector space of finite dimension n. Let e_1, \dots, e_n be a \mathbb{C} -basis of V. Let $m \in \mathbb{N}$ and $F(x_1, \dots, x_n)$ be a \mathbb{C} -valued homogeneous polynomial of total degree m in the n independent variables x_1, \dots, x_n . (That is,

 $F(\lambda x_1, \dots, \lambda x_n) = \lambda^m F(x_1, \dots, x_n)$ for all $\lambda \in \mathbb{C}$.) Show that there exists a unique \mathbb{C} -valued \mathbb{C} -multi-linear function

$$G: \underbrace{V \times V \times \cdots \times V}_{m \text{ copies}} \longrightarrow \mathbb{C}$$

which is symmetric in its m variables such that

$$G(\underbrace{v, v, \cdots, v}_{m \text{ copies}}) = F(a_1, \cdots, a_n)$$

for $v = a_1e_1 + a_2e_2 + \cdots + a_ne_n$ and $a_j \in \mathbb{C}$ with $1 \leq j \leq n$. (*Hint:* let \mathcal{A} be the \mathbb{C} -vector space of all homogeneous polynomials F of degree m and let \mathcal{B} be the \mathbb{C} -vector space of all multilinear symmetric functions G on the product of m copies of V. Verify that \mathcal{A} and \mathcal{B} have the same dimension over \mathbb{C} and that the map $\mathcal{B} \to \mathcal{A}$ defined by $G \mapsto F$ is injective, cf. Problem 1.)

Problem 3. (Young tableau for three variables) Let V be a \mathbb{C} -vector space of finite dimension. For a \mathbb{C} -valued \mathbb{C} -multi-linear function f = f(x,y) of two variables with $x,y \in V$, there is a decomposition f(x,y) = g(x,y) + h(x,y) into a symmetric function h(x,y) = h(y,x) and a skew-symmetric function g(x,y) = -g(x,y) with

$$h(x,y) = \frac{1}{2} (f(x,y) + f(y,x))$$

and

$$g(x,y) = \frac{1}{2} (f(x,y) - f(y,x)).$$

For the case of a \mathbb{C} -valued \mathbb{C} -multi-linear function

$$F = F\left(x_1, x_2, \cdots, x_n\right)$$

of n variables with $n \geq 3$ and $x_1, \dots, x_n \in V$, besides the symmetric and skew-symmetric functions a decomposition would involve functions with other type of symmetry properties. Such an additional symmetry property is given by a "Young tableau" which partitions $\{1, 2, \dots, n\}$ into segments of non-increasing lengths and puts each segment in a row with left justification among all the rows. The projection operator (which sends a general function to a function with the symmetry property) is constructed by summing over all the permutations σ of the variables preserving all the rows and then summing over all the permutations τ of the variables preserving all the columns with coefficients equal to the sign of τ . This problem handles the case of three variables.

For a \mathbb{C} -valued \mathbb{C} -multi-linear function $f(x_1, x_2, x_3)$ with $x_1, x_2, x_3 \in V$ and a permutation σ of the three numbers $\{1, 2, 3\}$, let

$$(\sigma f)(x_1, x_2, x_3) = f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}).$$

For $1 \le i \ne j \le 3$, the cycle (i,j) denotes the permutation of $\{1,2,3\}$ which sends i to j, j to i, and leaves k unchanged if $k \ne i, j$. For $1 \le i, j, k \le 3$ distinct, the cycle (i,j,k) is the permutation of $\{1,2,3\}$ which sends i to j, j to k, and k to i. Let 1 denote the identity permutation of $\{1,2,3\}$.

Let \mathcal{V} denote the set of all \mathbb{C} -valued \mathbb{C} -multi-linear functions $f(x_1, x_2, x_3)$ with $x_1, x_2, x_3 \in V$. (Note that \mathcal{V} is equal to the tensor product of three copies of the dual vector space V^* of V.) Let

$$\pi_1 = \frac{1}{3} (1 - (1,3)) (1 + (1,2)) = \frac{1}{3} (1 - (1,3) + (1,2) - (1,2,3))$$

which is a \mathbb{C} -linear map from \mathcal{V} to itself. (Note that π_2 is defined from the Young tableau with the partition of $\{1,2,3\}$ into two segments, the first one being $\{1,2\}$ of length 2 and the second one being $\{3\}$ of length 1.) Similarly, define

$$\pi_2 = \frac{1}{3} (1 - (2, 1)) (1 + (2, 3)) = \frac{1}{3} (1 - (2, 1) + (2, 3) - (1, 2, 3))$$

and

$$\pi_3 = \frac{1}{3} (1 - (3, 2)) (1 + (3, 1)) = \frac{1}{3} (1 - (3, 2) + (3, 1) - (1, 2, 3))$$

by cyclically permutating $\{1,2,3\}$. (Note that 1 is the identity map of \mathcal{V} .)

- (a) Verify that each π_j satisfies $\pi_j \circ \pi_j = \pi_j$ so that π_j is a projection for $1 \leq j \leq 3$.
- (b) Let \mathcal{V}_{sym} be the \mathbb{C} -linear subspace of \mathcal{V} consisting of all $f(x_1, x_2, x_3)$ symmetric in x_1, x_2, x_3 . Let π_{sym} be the projection of \mathcal{V} onto \mathcal{V}_{sym} by averaging σf over all permutations σ of $\{1, 2, 3\}$. Let $\mathcal{V}_{\text{skew}}$ be the \mathbb{C} -linear subspace of \mathcal{V} consisting of all $f(x_1, x_2, x_3)$ skew-symmetric in x_1, x_2, x_3 . Let π_{skew} be the projection of \mathcal{V} onto $\mathcal{V}_{\text{skew}}$ by averaging (sign of σ) σf over all permutations σ of $\{1, 2, 3\}$. Show that $1 = \pi_{\text{sym}} + \pi_{\text{skew}} + \pi_1 + \pi_2 + \pi_3$ and that $\pi \circ \pi' = 0$ if π and π' are distinct elements of the set $\{\pi_{\text{sym}}, \pi_{\text{skew}}, \pi_1, \pi_2, \pi_3\}$ so that the \mathbb{C} -vector space \mathcal{V} is the direct sum of the images of \mathcal{V} under $\pi_{\text{sym}}, \pi_{\text{skew}}, \pi_1, \pi_2, \pi_3$.