PRINTABLE VERSION

Quiz 2

You scored 100 out of 100

Question 1

Your answer is CORRECT.

After a statement P has been negated 8 times, the resulting statement is logically equivalent to

- a)

 P
- b) $\bigcirc P \land \neg P$
- c) $\bigcirc \neg P$
- d) $\bigcirc P \lor \neg P$
- e) None of the above.

Question 2

Your answer is CORRECT.

 $\neg Q \Rightarrow \neg P$ is logically equivalent to which, if any, of the following statements? (Hint: a truth table should help!)

- $a) \circ P \Rightarrow Q$
- b) $\bigcirc \neg Q \land \neg P$
- c) $\bigcirc \neg P \land Q$
- d) \bigcirc Q \Rightarrow P
- $e) \bigcirc \neg P \Rightarrow \neg Q$

Question 3

Your answer is CORRECT.

De Morgan's Laws tells us that $\neg (P \land \neg Q)$ is logically equivalent to which of the following statements?

 $a) \bigcirc P \lor Q$

- b) $\bigcirc P \land Q$
- c) $\bigcirc \neg P \land Q$
- e) $\bigcirc \neg Q \land \neg P$

Question 4

Your answer is CORRECT.

The symbol " \forall " means ...

- a) There exists or "Some"
- b) "There does not exist"
- c) O "Not all" or "Not every"
- d) "For all" or "For every"
- e) There exists exactly one" or "There exists a unique"

Ouestion 5

Your answer is CORRECT.

Determine which of the following statements is true when using the universal set U=Z.

$$\mathbf{a)} \bigcirc \forall \mathbf{x}, \mathbf{x}^3 - 4\mathbf{x} \neq 0$$

b)
$$\bigcirc \forall x, x^3 - 4x = 0$$

- c) $\exists x, x^2 \le -1$, but not every x satisfies this condition.
- **d)** $\bigcirc \exists ! x, x^3 4x = 0$
- e) $\exists x, x^3 4x = 0$, but not every x satisfies this condition.

Ouestion 6

Your answer is CORRECT.

Consider the English sentence:

When some pairs of integers are added together the result is not positive

Which of the following statements correctly expresses this sentences using logical symbols?

- $a) \cap \exists x, y \in Z, xy \in Z$
- **b)** $\bigcirc \exists x, y \in Z, x + y \in Z$
- $(c) \bigcirc \forall x, y \in Z, x + y \in Z$
- \mathbf{d}) $\forall x, y \in \mathbb{Z}, x + y \leq 0$
- $e) \odot \exists x, y \in \mathbb{Z}, x + y \leq 0$
- \mathbf{f}) $\forall x, y \in Z$, $xy \in Z$

Question 7

Your answer is CORRECT.

Consider the following statement:

$$\exists x, \forall y, x + y = y.$$

From the options provided below, which universal set U makes this statement true?

- a) \odot U = {-9, -6, -3, 0, 3, 6, 9}
- **b)** \bigcirc U = {2, 4, 6, 8, ...}
- $e) \odot U = \{5\}$
- **d)** \bigcirc U = {1/2, 1, 2}
- e) \bigcirc U = $\{-1, 3\}$

Question 8

Your answer is CORRECT.

Consider the English sentence P: "Someone is wearing a blue shirt." The negation of P can be expressed in logical symbols as which of the following? (We are using $U = \{ \text{ all people } \}$ as our universal set.)

- a) $\bigcirc \neg P : \forall x, x \text{ is not wearing a blue shirt}$
- **b)** $\bigcirc \neg P : \exists x, x$ is not wearing a blue shirt
- c) $\neg P : \exists x, x$ is wearing a blue shirt
- d) $\bigcirc \neg P : \forall x, x$ is wearing a blue shirt