מתמטיקה בדידה - תרגיל בית n – שחר פרץ

מידע כללי

ניתן בתאריך: 3.2.2024 תאריך הגשה: 12.2.2024

מאת: שחר פרץ **:.ī.n** 334558962

פרויקט ~ תיקון 1

השאלה

תהי פונקציה $f:A \to B$ ויהי $f:A \to B$, נגדיר את הצמצום של $f:A \to B$ ויהי ויהי $f:A \to B$, נגדיר את הצמצום של $f:A \to B$ ויהי איז כחלק מתרגיל בית 6, נתנו גם ההגדרות השקולות הבאות:

$$f|_X := f \cap (X \times B) = \{ \langle a, b \rangle \in f \mid a \in X \}$$

"יהיו $A,B,C
eq \emptyset$ יהיו

$$H \colon ((B \cup C) \to A) \to ((B \to A) \times (C \to A))$$
$$H = \lambda h \in (B \cup C) \to A.\langle h|_B, h|_C \rangle$$

(B o A) imes (C o A) על ש־Hעל לכך של אל ומספיק על אל ומספיק על צ.ל. תנאי הכרחי ומספיק על

הוכחה (שינויים מסומנים בצהוב)

. נוכיח שתי גרירות שקול לכך ש־H על. נוכיח שתי גרירות ($B \cap C = \emptyset \lor |A| = 1$

- נניח $(f_1,f_2)\in (B o A) imes (C o A)$ נוכיח על, כלומר, יהי $(A_1,f_2)\in (B o A) imes (B\cap C=\emptyset \lor |A|=1$ נוכיח קיום $(A_1,f_2)\in (B \to A)$ בפלג למקרים.
 - $:H(h)=\langle f_1,f_2
 angle$ נניח $B\cap C=\emptyset$ נוכיח ש־h פונ', המקיימת $B\cap C=\emptyset$ נבחר $B\cap C=\emptyset$
 - פונ': נוכיח מליאות וחד ערכיות; h
- $x\in B$ מליאות ב־ $B\cup C$ יהי $B\cup C$ יהי $x\in B\cup C$, נוכיח קיום $y\in A$ מוכיח קיום $x\in B\cup C$ מליאות ב־ $y=f_2(x)$ יהי $y=f_2(x)$, ואם $x\in C$ ואם $x\in C$ נבחר $y=f_2(x)$.
- נניח . $y_1=y_2$ נוכיח . $\langle x,y_1 \rangle \in h \land \langle x,y_2 \rangle \in h$ כך ש־ y_1,y_2 ווהי . $x \in B \cup C$ בשלילה שלא כן. נפצל למקרים:

 - $y_1=y_2$ אם $G\setminus B$ אם $G\setminus G\setminus G$ אז $G\setminus G$ אז $G\setminus G$ אז $G\setminus G$ אם לכן הם ב־ $G\setminus G$ ולכן הם ל $G\setminus G$ אם $G\setminus G$

- . אם $x \in \mathcal{C} \cap B$ אם $x \in \mathcal{C} \cap B$ אם $x \in \mathcal{C} \cap B$
 - ב.:. לפי תחשיב למדא, צ.ל.: $H(h) = \langle f_1, f_2 \rangle$ מקיימת h

$$\langle (f_1 \cup f_2)|_B, (f_1 \cup f_2)|_C \rangle = \langle f_1, f_2 \rangle$$

ובהתחשב בזה שהתחומים של f_1 ו־ f_2 הם A,B בהתאמה שהן קבוצות זרות, ובהתאם להגדרה השקולה של הצמצום המופיע לעיל, זהו פסוק אמת.

- - $\operatorname{dom}(h|_B) = (B \cup C) \cap B = B = \operatorname{dom}(f_1)$ שוויון תחום:
 - שוויון איברים: יהי $h|_B(b)=f_1(b)$, לכן ישירות $b\in B=\mathrm{dom}(f_1)$ כדרוש.

Hעל.Hעל.

 $\mathscr{Q}.\mathscr{E}.\mathscr{F}.$ לכן, H על; $B\cap C=\emptyset \lor |A|=1$ לכן,

2.€.D. ■