CS 341 Automata Theory Elaine Rich Homework 10 Due: Tuesday, March 27

This assignment reviews Chapter 13 and covers Chapter 14 and Sections 17.1 - 17.3.

- 1) For each of the following languages L, state whether L is regular, context-free but not regular, or not context-free and prove your answer.
 - a) $\{w : w = uu^R \text{ or } w = ua^n : n = |u|, u \in \{a, b\}^*\}.$
 - b) $\{a^n b^{2n} c^m\} \cap \{a^n b^m c^{2m}\}.$
 - c) L^* , where $L = \{0^*1^i0^*1^i0^* : i \ge 0\}$.
 - d) $\neg L_0$, where $L_0 = \{ww : w \in \{a, b\}^*\}.$
 - e) $\{x \in \{a,b\}^* : |x| \text{ is even and the first half of } x \text{ has one more a than does the second half} \}$.
- 2) Give a decision procedure to answer the following question: given a context-free grammar G, does G generate any even length strings?
- 3) Construct a standard, one-tape Turing machine M to decide the language $L = \{x*y = z : x, y, z \in 1^+ \text{ and, when } x, y, \text{ and } z \text{ are viewed as unary numbers, } xy = z\}$. For example, the string $1111*11 = 111111111 \in L$. Describe M in the macro language described in Section 17.1.5.
- 4) Construct a standard 1-tape Turing machine M to compute the function sub_3 , which is defined as follows: $sub_3(n) = n-3$ if n > 2 0 if $n \le 2$.

Specifically, compute sub_3 of a natural number represented in binary. For example, on input 10111, M should output 10100. On input 11101, M should output 11010. (Hint: you may want to define a subroutine.)