## lecture

## October 1, 2025

**Definition 1** (Clustering). given a dataset  $S = \{x_1, x_2, \dots, x_n\}$ , find "similar" points

G(V, E, w)

V is verticies, E is edges

w is the "weight"

"size of cut" talks about how much weight is removed

examples: clustering time series, K-center, median, mean

given an arbitrary metric space, minimize distance to centers wk (fixed) centers,



example cost function:

$$\sum_{i,j \in V} w_{ij} : \frac{\text{\# of data points present when node i,j split}}{n}$$
 (1)

linkage algos: single, average, complete

divisive (top-down), balanced, sparsest

example:  $G(V, E, w \ge 0) |V| = n$ 

find a binary tree that minimizes cost

$$\sum_{ij,\in E} w_{ij} | \# \text{ leaves of } T_{ij} | \tag{2}$$

 $T_{ij}$  = is also called *lowest common ancestor* of i, j tree reconstruction problem, use vector reconstruction

## 1 Convex Relaxations

assign a  $\{0,1\}$  variable for each pair of nodes,  $x_{ij}$ 

want to represent that we want to look for tree with 0 1 variables, and also represent the objective with 01



 $x_{a,b} = 1 \ x_{a,c} = 0$ 

$$\max_{\text{assigned } \vec{x}} \sum_{ij \in E} w_{ij} x_{ij} \tag{3}$$

this system maximizes the "weight cut" in the original cluster finding problem