Lecture 3: Integer representation

September 6, 2019

601.229 Computer System Fundamentals

Representing integers

- ▶ We've seen how to represent unsigned (nonnegative) integers
 - ▶ Bit string intrepreted as a binary (base 2) number
- ► How to represent signed integers?
 - Sign magnitude
 - Ones' complement
 - Two's complement
- In examples that follow, we'll use 4-bit words
 - Ideas will generalize to larger word sizes

Desired features for signed representation

What we want in a representation for signed integers:

- ▶ About half of encoding space used for negative values
- ► Each represented integer has a unique encoding as bit string
- Straightforward way to do arithmetic

Sign magnitude representation

Let most significant bit be a sign bit: $0 \rightarrow$ positive, $1 \rightarrow$ negative

Bit string	value	Bit string	value
0 000	0	1 000	-0
0 001	1	1 001	-1
0 010	2	1 010	-2
0 011	3	1 011	-3
0 100	4	1 100	-4
0 101	5	1 101	-5
0 110	6	1 110	-6
0 111	7	1 111	-7

Downsides: two representations of 0, arithmetic complicated by sign bit $\ \ \,$

Ones' complement

Ones' complement: to represent -x, invert all of the bits of \boldsymbol{x}

Bit string	value	Bit string	value
0000	0	1000	-7
0001	1	1001	-6
0010	2	1010	-5
0011	3	1011	-4
0100	4	1100	-3
0101	5	1101	-2
0110	6	1110	-1
0111	7	1111	-0

Downside: two representations of 0, slightly complicated arithmetic

Sign magnitude and ones' complement are obsolete

- ➤ Sign magnitude and ones' complement representations are not used for integer representation by modern computers
 - ▶ But, sign magnitude is used in floating point representation
- ▶ The rest of this lecture will discuss two's complement

Two's complement

Two's complement: in w-bit word, the most significant bit represents -2^{w-1}

E.g., when w = 4,

Representation	Bit 3	Bit 2	Bit 1	Bit 0
Unsigned	8	4	2	1
Two's complement	-8	4	2	1

Given bit string 1011,

- ▶ Unsigned, 1011 is 8 + 2 + 1 = 11
- ▶ Two's complement, 1011 is -8 + 2 + 1 = -5

Two's complement

Two's complement: in w-bit word, the most significant bit represents -2^{w-1}

Bit string	value	Bit string	value
0000	0	1000	-8
0001	1	1001	-7
0010	2	1010	-6
0011	3	1011	-5
0100	4	1100	-4
0101	5	1101	-3
0110	6	1110	-2
0111	7	1111	-1

Note asymmetry of negative and positive ranges: -8 is represented, 8 isn't

Thinking about two's complement

Useful way to think about a *w*-bit two's complement representation:

- ▶ Bit w-1 is the sign bit, $0\rightarrow$ positive, $1\rightarrow$ negative
- ▶ If sign bit is 0, usual unsigned interpretation
- ▶ If sign bit is 1, bits w-2..0 indicate the "offset" from -2^{w-1}

Two's complement example

Given w = 4, example bit string is 1011

- ► Sign bit is 1
- ▶ Offset from -2^3 is 011, which is 3 (2+1)
- -8 + 3 = -5

So, 1011 represents -5

Clicker quiz

Clicker quiz omitted from public slides