МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ
компьютерной	безопасности	И
криптографии		

Классификация бинарных отношений и системы замыканий

ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студентки 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Шуликиной Анастасии Александровны

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	подпись, дата	

СОДЕРЖАНИЕ

BI	ЗЕДЕ	ЕНИЕ.		3
1	Целі	ь работ	гы и порядок её выполнения	4
2	Teop	RNO		5
	2.1	Бинарные отношения и их свойства		5
		2.1.1	Свойства симметричности	5
		2.1.2	Свойства антисимметричности	5
		2.1.3	Свойства рефлексивности	6
		2.1.4	Свойства транзитивности	6
	2.2	Типы	бинарных отношений	7
		2.2.1	Отношение эквивалентности	7
		2.2.2	Отношение квазипорядка	7
		2.2.3	Отношение частичного порядка	8
	2.3 Систе		мы замыкания на множестве бинарных отношений	8
		2.3.1	Алгоритм построения замыкания отношения относитель-	
			но свойства рафлексивности	9
		2.3.2	Алгоритм построения замыкания отношения относитель-	
			но свойства симметричности	10
		2.3.3	Алгоритм построения замыкания отношения относитель-	
			но свойства транзитивности	10
		2.3.4	Алгоритм построения замыкания отношения относитель-	
			но свойства эквивалентности	10
3	Про	граммн	ная реализация рассмотренных алгоритмов	12
	3.1	3.1 Результаты тестирования программы		
	3.2	Код п	рограммы, на основе рассмотренных алгоритмов, на язы-	
	ке C++			12

ВВЕДЕНИЕ

В данной лабораторной работе поставлена задача рассмотрения основных свойств бинарных отношений, их классификация и замыкание, а также написание алгоритмов для опредления классификации и замыкания бинарного отношения.

1 Цель работы и порядок её выполнения

Цель работы – изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Разобрать основные определения видов бинарных отношений и разработать алгоритмы классификации бинарных отношений.
- 2. Изучить свойства бинарных отношений и рассмотреть основные системы замыкания на множестве бинарных отношений.
- 3. Разработать алгоритмы построения основных замыканий бинарных отношений.

- 2 Теория
- 2.1 Бинарные отношения и их свойства

Бинарным отношением между элементами A и B называется любое подмножество ρ множества $A \times B$, то есть $\rho \subset A \times B$.

По определению, бинарным отношением называется множество пар. Если ρ – бинарное отношение (т.е. множество пар), то говорят, что параметры x и y связаны бинарным отношением ρ , если пара $\langle x,y \rangle$ является элементом ρ , т.е. $\langle x,y \rangle \in \rho$.

Бинарное отношение $\rho \subset A \times A$ называется:

- рефлекисвным, если $(a, a) \in \rho \ \forall a \in A;$
- симметричным, если $(a,b) \in \rho \Rightarrow (b,a) \in \rho \ \forall a,b \in A;$
- антисимметричным, если $(a,b) \in \rho$ и $(b,a) \in \rho \Rightarrow a = b \ \forall a,b \in A$;
- транзитивным, если $(a,b) \in \rho$ и $(b,c) \in \rho \Rightarrow (a,c) \in \rho \ \forall a,b,c \in A$.

Матрица бинарного отношения ρ – это прямоугольная таблица, строки которой соответствуют первым координатам, а столбцы – вторым координатам. На пересечении i-й строки и j-ого столбца ставится 1, если выполняется соотношение a_iRa_j , и 0, если оно не выполняется.

2.1.1 Свойства симметричности

Симметричной называют квадратную матрицу, элементы которой симметричны относительно главной диагонали.

Алгоритм проверки бинарного отношения на симметричность:

Вход. Матрица $M(\rho)$ бинарного отношения p размерностью $N \times N$.

Выход. «Отношение симметрично» или отношение не симметрично.

 $\underline{\text{Шаг 1.}}$ res := true.

 $\underline{\text{Шаг 2.}}$ Цикл по i от 1 до N, цикл по j от 1 до N.

<u>Шаг 2.1.</u> Если $M_{ij} \neq M_{ji}$, то res := false.

<u>Шаг 3.</u> Если res = true, то вернуть ответ «Отношение симметрично», иначе не симметрично.

Трудоемкость алгоритма $O(N^2)$

2.1.2 Свойства антисимметричности

Алгоритм проверки бинарного отношения на антисимметричность:

Вход. Матрица $M(\rho)$ бинарного отношения ρ размерностью $N \times N$.

Выход. «Отношение антисимметрично» или отношение не антисимметрично.

Шаг 1. res := true.

 $\underline{\text{Шаг 2.}}$ Цикл по i от 1 до N, цикл по j от 1 до N.

<u>Шаг 2.1.</u> Если $M_{ij}=1 \ \& \ M_{ji}=1 \ \& \ i \neq j$, то res := false.

 $\underline{\text{Шаг 3.}}$ Если res = true, то вернуть ответ «Отношение симметрично», иначе отношение не антисимметрично.

Трудоемкость алгоритма $O(N^2)$

2.1.3 Свойства рефлексивности

Рефлексивной называют такую матрицу, у которой все диагональные элементы равняюся 1.

Алгоритм проверки бинарного отношения на рефлексивность:

Вход. Матрица $M(\rho)$ бинарного отношения p размерностью $N \times N$.

Выход. «Отношение рефлексивно» или отношение не рефлексивно.

Шаг 1. res := true.

Шаг 2. Цикл по i от 1 до N.

<u>Шаг 2.1.</u> Если $M_{ii} = 01$, то res := false.

 $\underline{\text{Шаг 3.}}$ Если res = true, то вернуть ответ «Отношение рефлексивно», иначе отношение не рефлексивно.

Трудоемкость алгоритма O(N)

2.1.4 Свойства транзитивности

Транзитивной называют матрицу, если для любого фиксированного элемента $M_{ki}=1$ из матрицы отношения, и для любого элемента из матрицы отношения $M_{ij}=1$, выполняется $M_{kj}=1$.

Алгоритм проверки бинарного отношения на транзитивность:

Вход. Матрица $M(\rho)$ бинарного отношения p размерностью $N \times N$.

Выход. «Отношение транзитивно» или отношение не транзитивно.

 $\underline{\coprod ar \ 1.} \ res := true.$

Шаг 2. Цикл по k от 1 до N, цикл по i от 1 до N, цикл по j от 1 до N.

<u>Шаг 2.1.</u> Проверяем все значение M_{ij} , если значение равно 1, то проверяем все значения M_{jk} , если значение равно 1, то проверяем значение M_{ik} , если оно равно 0, то res := false.

 $\underline{\text{Шаг 3.}}$ Если res = true, то вернуть ответ «Отношение транзитивно», иначе отношение не транзитивно.

Трудоемкость алгоритма $O(N^3)$

2.2 Типы бинарных отношений

Существует три основных типа бинарных отношений:

- отношение эквивалентности
- отношение квазипорядка
- отношение частичного порядка

2.2.1 Отношение эквивалентности

Бинарное отношение ε на множестве A называют отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Алгоритм проверки отношения на эквивалентность:

Вход. Матрица $M(\rho)$ бинарного отношения p размерностью $N \times N$.

Выход. «Отношение отношением эквивалентности» или отношение не является отношением эквивалентности.

Шаг 1. res := true.

<u>Шаг 2.</u> Результат = симмтеричность && рефлексивность && транзитивность, где симметричность - алгоритм 2.1.1, рефлексивность - 2.1.3, транзитивность - 2.1.4., если условия не выполняются res := false.

<u>Шаг 3.</u> Если res = true, то вернуть ответ «Отношение является отношением эквивалентности», иначе отношение отношением эквивалентности не является.

Трудоемкость алгоритма
$$O(N^3) = O(N + N^2 + N^3)$$

2.2.2 Отношение квазипорядка

Бинарное отношение ε на множестве A называют отношением квазипорядка, если оно рефлексивно и транзитивно.

Алгоритм проверки отношения на отношение квазипорядка:

Вход. Матрица $M(\rho)$ бинарного отношения p размерностью $N \times N$.

Выход. «Отношение отношением квазипорядка» или отношение не является отношением квазипорядка.

Шаг 1. res := true.

<u>Шаг 2.</u> Результат = рефлексивности && транзитивности, где рефлексивность - алгоритм 2.1.3. и транзитивность - 2.1.4., если условия не выполняются res := false.

<u>Шаг 3.</u> Если res = true, то вернуть ответ «Отношение является отношением квазипорядка», иначе отношение отношением квазипорядка не является.

Трудоемкость алгоритма $O(N^3) = O(N + N^3)$

2.2.3 Отношение частичного порядка

Бинарное отношение ε на множестве A называют отношением частичного порядка, если оно рефлексивно, антисимметрично и транзитивно.

Алгоритм проверки отношения на отношение частичного порядка:

Вход. Матрица $M(\rho)$ бинарного отношения ρ размерностью $N \times N$.

Выход. «Отношение отношением частичного порядка» или отношение не является отношением частичного порядка.

Шаг 1. res := true.

<u>Шаг 2.</u> Результат = рефлексивности && антисимметричности && транзитивности, где рефлексивность - флгоритм 2.1.3, антисимметричность - алгоритм 2.1.2, транзитивности - 2.1.4., если условия не выполняются res := false.

<u>Шаг 2.</u> Если res = true, то вернуть ответ «Отношение является отношением частичного порядка», иначе отношение отношением частичного порядка не является.

Трудоемкость алгоритма $O(N^3) = O(N + N^2 + N^3)$

2.3 Системы замыкания на множестве бинарных отношений

Замыканием отношения R относительно свойства P называется такое множество R*, что:

- 1. $R \subset R*$
- 2. R* обладает свойством P.
- 3. R* является подмножеством любого другого отношения, содержащего R и обладающего свойством P.

То есть R* является минимальным надмножеством множества R, выдерживается P.

Множество Z подмножеств множества A называется системой замыканий, если оно замкнуто относительно пересечений, т.е. выполняется $\cap B \in Z$ для любого подмножества $B \subset Z$.

В частности, для $\oslash \subset Z$ выполняется $\cap \oslash = A \in Z$

На множестве всех бинарных отношений между элементами множества A^2 следующие множества являются системами замыканий:

- 1. Z_r множество всех рефлексивных бинарных отношений между элементами множества A,
- 2. Z_s множество всех симметричных бинарных отношений между элементами множества A,
- 3. Z_t множество всех транзитивных бинарных отношений между элементами множества A,
- 4. $Z_{eq} Eq(A)$ множество всех отношений эквивалентности на множестве A.

Множество Z_{as} всех антисимметричных бинарных отношений между элементами множества A не является системой замыкания.

На множестве $P(A^2)$ всех бинарных отношений между элементами множества A следующие отображения являются операторами замыканий:

- 1. $f_r(\rho) = \rho \cup \triangle_A$ наименьшее рефлексивное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 2. $f_s(\rho) = \rho \cup \rho^{-1}$ наименьшее симметричное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 3. $f_t(\rho) = \bigcup_{n=1}^{\infty} \rho^n$ наименьшее транзитивное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 4. $f_e q(\rho) = f_t f_s f_r(\rho)$ наименьшее отношение эквивалентности, содержащее отношение $\rho \subset A^2$.
- 2.3.1 Алгоритм построения замыкания отношения относительно свойства рафлексивности

Вход. Матрица $M(\rho)$ бинарного отношения p размерностью $N \times N$.

Выход. Замыкание относительно свойства рефлексивности.

<u>Шаг 1.</u> Создать пустой список для хранения пар замыкания.

 $\underline{\text{Шаг 2.}}$ Пустить цикл по i от 1 до N.

<u>Шаг 2.1.</u> Если $M_{ii}=0$, пару (i,i), то добавить в замыкание рефлексивности.

<u>Шаг 3.</u> Ответ – вывод замыкания относительно свойства рефлексивности.

Трудоемкость алгоритма O(N)

2.3.2 Алгоритм построения замыкания отношения относительно свойства симметричности

Вход. Матрица $M(\rho)$ бинарного отношения ρ размерностью $N \times N$.

Выход. Замыкание относительно свойства симметричности.

<u>Шаг 1.</u> Создать пустой список для хранения пар замыкания.

 $\underline{\text{Шаг 2.}}$ Пустить цикл по i от 1 до N и цикл по j от 1 до N.

<u>Шаг 2.1.</u> Если $M_{ij}=1$ и $M_{ji}=1$, пару (i,j), то добавить в замыкание симметричности.

<u>Шаг 3.</u> Ответ – вывод замыкания относительно свойства симметричности.

Трудоемкость алгоритма $O(N^2)$

2.3.3 Алгоритм построения замыкания отношения относительно свойства транзитивности

Вход. Матрица $M(\rho)$ бинарного отношения ρ размерностью $N \times N$.

Выход. Замыкание относительно свойства симметричности.

<u>Шаг 1.</u> Создать пустой список для хранения пар замыкания.

<u>Шаг 2.</u> Пустить цикл по l от 1 до N, цикл по k от 1 до N, цикл по i от 1 до N и цикл по j от 1 до N.

<u>Шаг 2.1.</u> Проверяем все значение M_{ik} , если значение равно 1, то проверяем все значения M_{kp} , если значение равно 1, то присваеваем значению M_{ip} 1, добавляем в замыкание транзитивности.

<u>Шаг 3.</u> Ответ – вывод замыкания относительно свойства транзитивности.

Трудоемкость алгоритма $O(N^4)$

2.3.4 Алгоритм построения замыкания отношения относительно свойства эквивалентности

Вход. Матрица $M(\rho)$ бинарного отношения ρ размерностью $N \times N$.

Выход. Замыкание относительно свойства эквивалентности.

<u>Шаг 1.</u> Создать пустой список для хранения пар замыкания.

 $\underline{\text{Шаг 2.}}$ По очереди вызвать алгоритмы построения замыкания рефлексивности, симметричности и транзитивности.

Шаг 2.1. Добавляем в замыкание эквивалентности

<u>Шаг 3.</u> Ответ – вывод замыкания относительно свойства эквивалентности.

Трудоемкость алгоритма $O(N^4)$

- 3 Программная реализация рассмотренных алгоритмов
- 3.1 Результаты тестирования программы

На рисунке 1 можно увидеть работу, реализуемой программы, по рассмотренным алгоритмам.

Рисунок 1 – Тест программы

 $3.2\ \mathrm{Kog}\ \mathrm{программы},\ \mathrm{Ha}\ \mathrm{ochobe}\ \mathrm{paccmotpehhbx}\ \mathrm{алгоритмоb},\ \mathrm{Ha}\ \mathrm{языкe}\ \mathrm{C}++$ #include $<\!\mathrm{iostream}\!>$ using namespace std ; int $\mathrm{symmetry1}=0,\ \mathrm{reflexivity1}=0,\ \mathrm{transitivity1}=0,\ \mathrm{antisymm}$ void $\mathrm{symmetry}(\mathrm{int}***\ \mathrm{a},\ \mathrm{int}\ \mathrm{n})$ { int $\mathrm{not}_\mathrm{symmetry1}=0$; for $(\mathrm{int}\ \mathrm{i}=0;\ \mathrm{i}<\mathrm{n};\ \mathrm{i++})$

for (int j = 0; j < n; j++)

```
\Big\{
                           if (a[i][j] != a[j][i])
                           not symmetry1++;
                  }
         }
         if (not symmetry 1 = 0)
         cout << "relation is symmetrical" << endl;</pre>
         symmetry1++;
}
void antisymmetry(int** a, int n)
{
         int not antisymmetry 1 = 0;
         for (int i = 0; i < n; i++)
         \Big\{
                  for (int j = 0; j < n; j++)
                  \left\{ \right.
                           if (a[i][j] == 1 &&
                            a[j][i] == 1 && i != j)
                           not antisymmetry1++;
                  }
         if (not_antisymmetry1 == 0) {
                  cout << "relation is antisymmetric" << endl;</pre>
                  antisymmetry1++;
         }
}
void reflexivity(int** a, int n)
{
         int chek = 0;
         for (int i = 0; i < n; i++)
```

```
\Big\{
                  if (a[i][i] = 1)
                  ch\,ek\,++;
         }
         if (chek == n) {
                  \verb"cout" << "relation" is reflexively" << endl;
                  reflexivity1++;
         }
}
void transitivity(int** a, int n)
{
         int chek = 0;
         int not transitivity 1 = 0;
         for (int i = 0; i < n; i++)
         \Big\{
                  for (int j = 0; j < n; j++)
                  \Big\{
                           if (a[i][j])
                           for (int k = 0; k < n; k++)
                           if (a[j][k] && !a[i][k])
                           not transitivity 1++;
                           else
                           chek++;
                           }
```

```
}
        }
        if (chek == 1) {
                 cout << "relation is transitive" << endl;</pre>
                 transitivity1++;
        }
}
void pr symmetry(int** a, int n)
\left\{ \right.
        for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        if (a[i][j] = 1)
        a[j][i] = 1;
}
void pr reflexivity(int** a, int n)
\Big\{
        for (int i = 0; i < n; i++)
        a[i][i] = 1;
}
void pr transitivity(int** a, int n)
        for (int i = 0; i < n; i++)
                 for (int j = 0; j < n; j++)
                          for (int k = 0; k < n; k++)
                          if (a[j][k] = 1)
```

```
for (int p = 0; p < n; p++)
                          if (a[k][p] = 1)
                          a[j][p] = 1;
        }
}
void pr(int** a, int n, int number)
{
        int** a1;
        a1 = new int* [n];
        for (int i = 0; i < n; i++)
        \Big\{
                 a1[i] = new int[n];
                 for (int j = 0; j < n; j++)
                          a1[i][j] = a[i][j];
        }
        if (number = 1)
                 pr symmetry (a1, n);
                 cout << "symmetry closure" << endl;</pre>
        }
           (number = 2)
        i f
        {
                 pr reflexivity (a1, n);
                 cout << "reflexivity closure" << endl;</pre>
        if (number == 3)
```

```
{
                  pr transitivity (a1, n);
                  cout << "transitivity closure" << endl;</pre>
         }
            (number = 4)
         i f
         {
                  pr symmetry (a1, n);
                  pr reflexivity (a1, n);
                  pr transitivity (a1, n);
                  \verb"cout" << "" equivalence " closure" << endl;
         }
         for (int i = 0; i < n; i++) {
                  for (int j = 0; j < n; j++)
                  cout << a1[i][j] << ',';
                  cout << endl;
         }
}
int main()
\left\{ \right.
         setlocale (LC ALL, "RUS");
         int n;
         cout << "n=";
         cin >> n;
         int** a;
         a = new int* [n];
         cout << "Enter matrix \n";</pre>
         for (int i = 0; i < n; i++)
         {
                  a[i] = new int[n];
                  for (int j = 0; j < n; j++)
```

```
cin >> a[i][j];
        }
}
symmetry (a, n);
reflexivity (a, n);
transitivity (a, n);
antisymmetry (a, n);
if (symmetry1 = 1 \&\& reflexivity1 = 1 \&\&
                 transitivity1 == 1)
cout << "The relation is an
                  equivalence relation " << endl;
if (reflexivity1 = 1 \&\& transitivity1 = 1)
cout << "The relation is a
                 quasi-order relation " << endl;
if (symmetry1 = 0 \&\& reflexivity1 = 1 \&\&
                 transitivity1 == 1
\operatorname{cout} << "The relation is a partial
                 order relation " << endl;
pr(a, n, 1);
pr(a, n, 2);
pr(a, n, 3);
pr(a, n, 4);
return 0;
```

}

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были рассмотрены основные свойства бинарных отношений, виды бинарных отношений, при определённых комбинациях свойств, а такжке изучена система замыканий на множестве бинарных отношений. Также были разработаны алгоритмы определения свойств отношений и их классификации.