

中山大学

电路基础实验报告

学号: __19308069、19308072

一、实验目的

通过本次实验, 达到以下目的:

- 1. RLC 串联电路的幅频特性与谐振现象:
 - ·测定 R、L、C 串联谐振电路的频率特性曲线。
 - •观察串联谐振现象,了解电路参数对谐振特性的影响。
- 2. RC 电路频率特性的研究:
 - 研究 RC 电路的频率特性。
 - •初步了解文氏电路的应用,组成正弦波振荡器。

二、仪器设备

- 1. TPE-DG2L 电路分析实验箱,主要使用:
 - 不同阻值电阻 $(1k\Omega, 510k\Omega, 滑动变阻器)$ 、电线等
- 2. SIGLENT SDM3065X 数字万用表
- 3. SIGLENT SPD3303X 可编程线性直流电源
- 4. SIGLENT SDS5000X 双踪示波器
- 5. SIGLENT SDG-6000X-E 函数信号发生器

三、实验原理与内容

- 1. RLC 串联电路的幅频特性和谐振现象
 - (1) 实验目的
 - 1. 测定 R、L、C 串联谐振电路的频率特性曲线。
 - 2. 观察串联谐振现象,了解电路参数对谐振特性的影响。

(2) 实验内容及步骤

接图 10-1 连接线路,电源 U_S 为低频信号发生器。将电源的输出电压接示波器的 Y_A 插座,输出电流从 R 两端取出,接到示波器的 Y_B 插座以观察信号波形,取 L=0.1H、 $C=0.5\mu F$ 、 $R=10\Omega$,电源的输出电压 $U_S=3V$ 。

图 10.1

图 10.2 RLC 电路接线

1. 计算和测试电路的谐振频率

① $f_0 = \frac{1}{2\pi\sqrt{LC}}$,用 L、C 之值代入式中算出 f_0 。

计算得到 $f_0 = \frac{1}{2\pi\sqrt{LC}} \approx 711.763Hz$

② 测试: 用交流毫伏表接在 R 两端,观察 U_R 的大小,然后调整输入电源的频率,使电路达到串联谐振,当观察到 U_R 最大时电路即发生谐振,此时的频率即为 f_0 。

图 10.3 R、L、C 谐振波形

• 误差分析:

真实实验电路发生谐振时输入电源的频率大概为 $f'_0 = 724HzHz$ 。 推测可能是因为电路中电容、电感、电阻等元件参数与计算的标准值有误差导致的结果偏差,误差大小处于可接受范围内。

以下实验内容均按照真实谐振频率 $f_0' = 724HzHz$ 进行。

2. 测定电路的幅频特性

① 以 f_0 为中心,调整输入电源的频率从 100Hz~2000Hz,在 f_0 附 近,应多取些测试点。用交流毫伏表测试每个测试点的 U_R 值,然后计算出电流 I 的值,记入表格 10-1 中。

f(Hz)	100	300	500	700	710	720	724(f ₀)
UR (mV)	9.2926	32.7871	83.667	283.916	292.019	295.82	297.471
/(mA)	0.92926	3.27871	8.3667	28.3916	29.2019	29.582	29.7471

表 10.1 表 & 10.1-续

730	750	800	1000	1300	1600	2000
295.13	282.228	219.96	94.9671	52.3807	37.2138	27.3255
29.513	28.2228	21.996	9.49671	5.23807	3.72138	2.73255

・计算: 因为 $R=10\Omega$,所以 $I=\frac{U_R}{R}=0.1U_R$ 。

② 保持 $U_S=3V, L=0.1H, C=0.5\mu F$, 改变 R, 使 $R=100\Omega$, 即 改变了回路 Q 值,重复步骤①,记入表格 10-2 中。

f(Hz)	100	300	500	700	710	720	724(f ₀)
UR (mV)	91.9981	320.789	758.244	1547.052	1559.793	1565.419	1565.741
/(mA)	9.19981	32.0789	75.8244	154.7052	155.9793	156.5419	156.5741

表 10.2

730	750	800	1000	1300	1600	2000
1564.254	1542.446	1409.502	838.681	500.207	362.138	268.41
156.4254	154.2446	140.9502	83.8681	50.0207	36.2138	26.841

表 10.2-续

• 计算: 因为 $R=100\Omega$,所以 $I=\frac{U_R}{R}=0.01U_R$ 。

3. 测定电路的相频特性

①仍保持 $U_s=3V, L=0.1H, C=0.5\mu F, R=10\Omega$ 。以 f_0 为中心,调整输入电源的频率从 $100 \text{Hz}^2 2000 \text{Hz}$ 。在 f_0 的两旁各选择几个测试点,从示波器上显示的电压、电流波形上测量出每个测试点电压与电流之间的相位差 $\varphi=\varphi_u-\varphi_i$,数据记入表 10.3。

图 10.4 通过光标测量相位差

实验十 & 实验十一

f(Hz)	100	300	500	700	710	720	724
Δt (ms)	-2.46	-0.8	-0.46	-0.12	-0.07	-0.02	0
T(ms)	10	3.3333333	2	1.4285714	1.4084507	1.3888889	1.38121547
Δt/T	-0.246	-0.24	-0.23	-0.084	-0.0497	-0.0144	0
Δ φ(°)	-88.56	-86.4	-82.8	-30.24	-17.892	-5.184	0
Δφ(rad)	- 1.545664	-1.507964	- 1.445133	-0.527788	-0.312274	-0.090478	0

表 10.3

730	750	800	1000	1300	1600	2000
0.025	0.12	0.205	0.225	0.18	0.15	0.122
1.369863	1.3333333	1.25	1	0.769230769	0.625	0.5
0.01825	0.09	0.164	0.225	0.234	0.24	0.244
6.57	32.4	59.04	81	84.24	86.4	87.84
0.1146681	0.5654867	1.0304424	1.4137167	1.470265362	1.5079645	1.5330972

表 10.3-续

• 测量数据与处理:

首先通过光标之间的时间差读出电源输入波形和电阻 R 上的输出波形时间差 Δ t ,然后根据公式 $T=\frac{1}{f}$ 计算得出相应的波形周期。由于电容电阻对电路的影响仅仅是产生相移,所以电源输入和输出之间周期相同,即可根据 $\frac{\Delta t}{T}$ 得到相差值对周期的比值,从而换为以。为单位的 $\Delta \varphi$,进而换算为弧度值的相位差。

② 保持 $U_S=3V, L=0.1H, C=0.5\mu F$, 改变 R, 使 $R=100\Omega$, 即 改变了回路 Q 值,重复步骤①,记入表格 10.4 中。

f(Hz)	100	300	500	700	710	720	724
Δt (ms)	-2.5	-0.78	-0.4	-0.05	-0.02	-0.005	0
T(ms)	10	3.3333333	2	1.4285714	1.4084507	1.3888889	1.38121547
Δt/T	-0.25	-0.234	-0.2	-0.035	-0.0142	-0.0036	0
Δ φ(°)	-90	-84.24	-72	-12.6	-5.112	-1.296	0
Δφ(rad)	- 1.570796	-1.470265	- 1.256637	-0.219911	-0.089221	-0.022619	0

表 10.4

730	750	800	1000	1300	1600	2000
-0.005	0.06	0.11	0.185	0.17	0.14	0.114
1.369863	1.3333333	1.25	1	0.769230769	0.625	0.5
-0.00365	0.045	0.088	0.185	0.221	0.224	0.228
-1.314	16.2	31.68	66.6	79.56	80.64	82.08
0.022934	0.2827433	0.5529203	1.1623893	1.388583953	1.4074335	1.4325663

表 10.4-续

• 测量数据与处理:

同①。

(3) 实验分析及思考

- 1. 根据实验数据,坐标纸上绘出两条不同 Q 值下的幅频特性曲线和相频特性曲线,并作扼要分析。
 - ①不同 Q 值下的幅频特性曲线

图 10.5 幅频特性曲线

图 10.6 通用幅频特性曲线

• 曲线分析:

(1) 由于 RLC 电路中总阻抗为 $Z=R+j(\omega L-\frac{1}{\omega c})$,发生谐振时 有公式 $w_oL-\frac{1}{w_oC}=0$,此时电路呈现电阻性。理论上来讲应该有 $U_R=U_S$ 和 $I=I_0=\frac{U_S}{R}$ 。

已知两次测量时电路中 $R_1=10\Omega$ 、 $R_2=100\Omega$,也即理论上两个曲线对应的 I_0 应该是 10 倍关系。但是从图 10.5 幅频特性曲线可以看出两个不同 Q 值时的电路仅有 2 倍的关系。

误差分析:

猜测数据误差是因为电感内部的电阻分压导致的误差。由于电路中的电感 L 不是理想电感,设电感的真是模型为理想电感串联一个内阻 R_L :

画出谐振时分压电路图:

$$R_{L} \approx 80\Omega$$

$$R_{L} \approx 80\Omega$$

$$R = 10\Omega / 100\Omega$$

根据方程 $\frac{\it U}{10+\it R_L}=2 imes\frac{\it U}{100+\it R_L}$,可以算出 $\it R_L\approx 80\Omega$ 。此时,对于两次测量($\it R_1=10\Omega$ 、 $\it R_2=100\Omega$), $\it I_1\approx 2\it I_2$ 。

(2)由于改变电路中的 R 只改变 Q 值,根据 Q 的公式可以得到,然 Q 值越大,幅频特性曲线越尖锐。

观察以上幅频特性曲线和通用幅频特性曲线, $R=10\,\Omega$ 时 Q 值更大,曲线更尖锐。

(3) 在通用幅频特性曲线中作 $\frac{I}{I_0} = 0.707$ 直线与幅频特性曲线相交得到不同 Q 值下对应的通频带。

显然,Q值越大,谐振时的通频带越窄,也即电路的选择性越好。

②不同 Q 值下的相频特性曲线

图 10.7 通用相频特性曲线

• 曲线分析:

据图可以看出,当电源输入频率从0变到 w_0 时,电抗由 ∞ 变到0, φ 角从 $-\frac{\pi}{2}$ 变到0,电路为容性;

当电源输入频率从 w_0 增大到 ∞ 时,电抗由 0 增到 ∞ , ϕ 角从 0 增到 $-\frac{\pi}{2}$,电路为感性。

根据测量数值画出的曲线符合理论分析。

- 2. 用哪些实验方法可以判断电路处于谐振状态?
- ①RLC 电路处于谐振时,由于 $w_oL \frac{1}{w_oc} = 0$ 。此时复阻抗 Z 达最小,电路呈现电阻性,电流与输入电压同相;
- ②电感电压与电容电压数值相等,相位相反。此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

在 L 和 C 为定值时, Q 值仅由回路电阻 R 的大小来决定。

③在激励电压有效值不变时,回路中的电流达最大值,即:

$$I = I_0 = \frac{U_s}{R}$$

3. 实验中,当 R、L、C 串联电路发生谐振时,是否有 $U_c = U_L$ 及 $U_R = U_S$? 若关系不成立,试分析其原因。

分析:根据表 10.1 和表 10.2 测量得到的数据可以看出,电源输入频率为 $f_0' = 724HzHz$,发生谐振时。 $U_c \neq U_L$ 、 $U_R \neq U_S$,并且有数值关系为:

- 当 R=10 Ω 时 $U_{R0}=0.1U_{S}$;
- 当 R=100 Ω 时 $U_{R0}=0.5U_S$;

误差分析:

猜测数据误差是因为电感内部的电阻分压导致的误差。由于电路中的电感 L 不是理想电感,设电感的真是模型为理想电感串联一个内阻 R_L :

$$\frac{R_L}{L=\alpha_{IH}}$$

根据之前分析幅频特性曲线时计算得到的 R_L 大约为 $80\,\Omega$ 左右,画出谐振时分压电路图:

$$R \approx 80\Omega$$

根据欧姆定理可以估算得到:

- 当 R=10 Ω 时 $U_{R0} \approx 0.1 U_S$;
- 当 R=100 Ω 时 $U_{R0} \approx 0.5 U_{S}$ 。

检查表 10.1 和表 10.2 中数据得到:

- 当 $R=10 \Omega$ 时 $U_{R0} = 0.297471V \approx 0.1U_{S}$;
- $\stackrel{\mbox{\tiny \perp}}{=}$ R=100 Ω 时 $U_{R0}=1.565741\approx0.5U_S$ 。

猜测验证。

综上,是因为电感内部的电阻分压导致的谐振时电源电压没有全部加在 电阻上,电路中电阻大于所测量的电阻。

2. RC 电路频率特性的研究

(1) 实验目的

- 1. 研究 RC 电路的频率特性。
- 2. 初步了解文氏电路的应用,组成正弦波振荡器。

(2) 实验原理

1. 文氏电路

文氏电路如图 11.1 所示。

当 $\frac{1}{\omega c} \gg R$ 时,文氏电路可以等效为图 11.2 所示的低频等效电路, ω 愈低,

 U_o 的幅度愈小,其相位愈超前于 U_i 。当 ω 趋近于 0 时, $|U_o|$ 趋近于 0, $\varphi_0 - \varphi_i$ 接近+90°。

图 11.2 低频等效电路

当 $\frac{1}{\omega c}$ 《 R时,文氏电路可以等效为图 11.3 所示的高频等效电路。 ω 愈高, U_o 的幅度愈小,其相位愈滞后于 U_i 。当 ω 趋近于 ∞ 时, $|U_o|$ 趋近于 0, $\varphi_0-\varphi_i$ 接近 -90° 。当频率为某一中间值 f_o 时, U_o 不为 0,且 U_o 与 U_i 同相。

图 11.2 高频等效电路

我们把输出电压和输入电压的比称为网络函数,记作 $H(j\omega) = |H(j\omega)|/\varphi$,其中 $|H(j\omega)| = \frac{u_o}{u_i}$, $\varphi = \varphi_0 - \varphi_i$, $|H(j\omega)|$ 和 φ 分别为电路的幅频特性和相频特性,它们的曲线见图 11. 3。当频率 $f = f_o = \frac{1}{2\pi RC}$ 时, $|H(j\omega)|$ 有极大值, $\varphi = 0$,经过计算, $|H(j\omega)|$ 的最大值为 1/3。因此,这种电路具有选择频率的特点,它被广泛地用于 RC 振荡器的选频网络。

图 11.3 文氏电路的幅频特性和相频特性

2. 文氏电路 fo 的测定

由前文可得, f_o 的测定可以转化为输入电压和输出电压的相位差得测定。 用示波器观察李萨育图形的方法定 f_o 。实验线路如图 11.4 所示,给定 U_i 为某一数值,改变电源频率,并逐渐改变 X,Y 轴增益,使荧光屏上出现一条直线,此时电源频率即为 f_o 。

图 11.4 用示波器观察李萨育图形

3. 双 T 网络频率特性

图 11.5 所示,双 T 网络的频率特性正好与 RC 串并联电路相反。在 f_o = $\frac{1}{2\pi RC}$ 时, β =0,输出电压为 0,因此可以用来滤去频率为 f_o 的谐波。 f_o 也称为该 网络的"截止频率"。双 T 电路的幅频特性曲线见图 11.6。

4. 利用文氏电路组成正弦波振荡器

图 11.7 是由文氏电路和运算放大器构成的正弦波振荡器示意图。

图 11.7 正弦波振荡器示意图

在电路满足相位平衡条件(反馈信号与输入信号同相),幅度平衡条件 $|AF| \ge 1$ (其中A为放大器放大倍数,F为反馈网络的反馈系数),而放大器的工作点又正常的情况下,即能产生正弦波振荡。

(3) 预习内容

1. 根据给定参数 C=22n 和 R=10k Ω , 计算文氏电路的 f。及此频率时的 $|H(j\omega)|$ 及 φ 。

$$f_o = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 10k \times 22n} = 723.43$$

 $|H(j\omega)| = 1/3$

2. 根据给定参数 C=22n 和 R=10k Ω , 计算双 T 电路的 f。及此频率时的 $|H(j\omega)|$ 及 φ 。

$$f_o = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 10k \times 22n} = 723.43$$

 $|H(j\omega)| = 0$

(4) 实验内容及步骤

1. 用示波器观察李萨育图形的方法测定文氏电路的 f_0 ,如图 11.8 所示。 再用频率计测 f_0 ,并用毫伏表测 f_0 时的 U_i 、 U_o 。

图 11.8 f。时的李萨育图形

实际测得 f_\circ =692Hz, 与理论值 723Hz 较为接近,此时 U_i =3001. 57mV, U_\circ =997. 051mV。 $|H(j\omega)|=\frac{u_o}{u_i}=\frac{997.051}{3001.57}=\mathbf{0}$. 3322,与理论值 1/3 接近,误差造成的原因可能和实验仪器本身的精度有关系。

实验十 & 实验十一

2. 测试文氏电路的幅频特性 $|H(j\omega)|$ 及相频特性 φ 。如表 11. 1 所示:

f(Hz)	69	100	300	500	650	670	692
H(jω)	0.093908	0.131509	0.278449	0.322907	0.331542	0.331992	0.332176
φ(°)	73.154	66.328	33.007	13.161	2.875	2.1345	0.065
f(Hz)	700	730	800	1000	3000	5000	6900
H(jω)	0.332136	0.332169	0.331261	0.323831	0.201177	0.134052	0.100424
φ(°)	-0.425	-1.563	-5.575	-13.629	-51.752	-65.408	-72.03

表 11.1

作出 $|H(j\omega)|$ ~ $\frac{\omega}{\omega_o}$ 曲线如图 11.9 所示。

图 11.10 $|H(j\omega)| \sim \frac{\omega}{\omega_o}$ 曲线

作出 $\varphi\sim\frac{\omega}{\omega_o}$ 曲线如图 11.11 所示。

图 11.11 $\varphi \sim \frac{\omega}{\omega_o}$ 曲线

3. 利用文氏桥组成图 11. 7 所示的正弦波振荡器。放大器的放大倍数 K 可以稍加调节。调节放大倍数 K,使示波器上出现正弦波形,如图 11. 12。用频率计测量此正弦波的频率。用交流毫伏表测量放大器输入、输出电压。

图 11.12

图中显示的正弦波频率为 1284Hz。

放大器输入、输出电压见表 11.2:

输入电压 (mV)	24. 7203
输出电压 (mV)	294. 416

表 11.2

4. 测双 T 网络的幅频特性 $|H(j\omega)|$ 及相频特性 φ 。

如表 11.3:

f(Hz)	71	100	300	500	650	700	712
H(jω)	0.907312	0.850379	0.433473	0.176083	0.045421	0.009234	0.003563
φ(°)	21.893	29.968	63.645	78.095	83.742	87.532	0.028
f(Hz)	720	750	800	1000	3000	5000	7140
H(jω)	0.006542	0.026264	0.059711	0.168567	0.691451	0.855228	0.918393
φ(°)	-89.213	-82.888	-84.44	-79.07	-43.874	-29.395	-21.522

表 11.3

理论计算得: $f_o = \frac{1}{2\pi RC} = 712$

作出 $|H(j\omega)|$ ~ $\frac{\omega}{\omega_o}$ 曲线如图 11. 13 所示。

图 11.13 $|H(j\omega)| \sim \frac{\omega}{\omega_o}$ 曲线

作出 $\varphi \sim \frac{\omega}{\omega_o}$ 曲线如图 11.14 所示。

图 11.14 $\varphi \sim \frac{\omega}{\omega_o}$ 曲线

图像分析: 通过图 11. 14 可以看出,在 $\frac{\omega}{\omega_o} = 1$ 处相位差 Φ 发生了突变,这是因为此时电路中信号的频率为截止频率。

(5) 实验分析及思考

1. 用半对数坐标纸画 $|H(j\omega)|\sim \frac{\omega}{\omega_0}$ 曲线和 $\phi\sim \frac{\omega}{\omega_0}$ 曲线

见图 11.11、图 11.12、图 11.13 和图 11.14。

2. 说明由文氏桥组成得正弦波振荡器中,振荡频率与电路参数的关系。 文氏桥正弦波振荡电路中有公式:

$$f_0 = \frac{1}{2\pi RC}$$

四、实验中的问题和体会

实验总结:

本次实验进行了探究 RLC 串联电路的幅频特性并测量数据与谐振现象的观察验证实验;通过文氏电路和双 T 网络电路等探究了 RC 电路的频率特性并测量数据进行了图像绘制。

通过实验对于 RLC 电路的幅频特性和相频特性有了更加深刻的认识。 RLC 电路中,当输入信号为谐振频率时,输出信号幅度为最大值,整个幅频特性曲线呈现先上升后下降的趋势。并且随着品质因数 Q 的提升,曲线逐渐变得陡峭,对于频率的选择特性更好。并且当谐振时电容和电阻导致的相移相互抵消,输出信号和输入信号同相。

实验十一利用文氏电路实现了对电路谐振频率的测量,组成了正弦波振荡器。利用双 T 网络实现了带阻滤波器的效果。通过实验,加深了对于文氏电路和双 T 网络电路的理解。