identifying parameters and making list

measuring first parameter on FAB A device (1-n)

calculating P_{1A} & P_{99A}.

measuring first parameter on FAB B devices (1-m) and calculating P_{1B} & P_{99B}

combining FAB A & FAB B data, determining P1= max[P_{1A} , P_{1B}] & P99= min[P_{99A} , P_{99B}].

If $98\% \le S_{AB}$, FAB A and FAB B are equal wrt first parameter.

repeating steps 102 - 108 on other parameters on list

If all S_{AB} 's are greater or equal to 98%, FAB A and FAB B are equal.

identifying parameters and making list

measuring first parameter on FAB A baseline device (1-n)

recording data 1 to n.

calculating P₁ & P₉₉. from data 1 to n.

measuring first parameter on FAB B devices (1-m) and recording data.

using FAB B data, determining $X_{(k-1)} < P_1$ $\leq X_{(k)}$; $X_{(p)} \leq P_{99} < X_{(p+1)}$ and calculating S_{AB} = ((p-k+1)/m)/98%.

calculating $_{A}S_{B} = ((p-k+1)/m)/98\%$.

If $98\% \le {}_{A}S_{B}$, FAB B devices conform to baseline wrt first parameter.

repeating steps 102 - 108 on other parameters on list

If all _AS_B's are greater or equal to 98%, FAB B devices conform to baseline.

identifying parameters and making list

measuring first parameter on FAB A device (1-n)

recording FAB A data (1-n)

arranging FAB A data in arrayA.

Inserting pre-determined limits C and D into array and determining $X_{(k\text{-}1)}$ < C \leq $X_{(k)};\ _{(p)}$ \leq D < $X_{(p+1)}$

calculating $_{CD}S_{A} = ((p-k+1)/(n))/98\%$.

If $98\% \le_{CD}S_A$, FAB A devices conform to predetermined limit wrt first parameter.

repeating steps 302 – 308 on other parameters on list

If all _{CD}S_A's are greater or equal to 98%, FAB A devices conform to pre-determined limit in total