

Solutions to the Problems in Homework Assignment 01

Spring, 2020

- 1. Let E be the identity of a group G, a and b be any two elements in the group, a^{-1} and b^{-1} be respectively the inverses of a and b. Using the definition of a group, show that
 - (a) If ca = a, then c = E;
 - (b) If ca = E, then $c = a^{-1}$;
 - (c) The inverse of (ab) is $b^{-1}a^{-1}$.
 - (a) Making use of c = cE, $aa^{-1} = E$, and ca = a, we have

$$c = cE = caa^{-1} = (ca)a^{-1} = aa^{-1} = E.$$

(b) Making use of c = cE, $aa^{-1} = E$, and ca = E, we have

$$c = cE = c(aa^{-1}) = (ca)a^{-1} = Ea^{-1} = a^{-1}.$$

(c) We consider the product $(b^{-1}a^{-1})(ab)$. If the result of this product is equal to E, then $b^{-1}a^{-1}$ is the inverse of ab. Computing the product $(b^{-1}a^{-1})(ab)$ directly, we have

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}Eb = b^{-1}b = E.$$

Thus, $b^{-1}a^{-1}$ is indeed the inverse of ab.

2. Show that the set of nonzero complex numbers is a group under the ordinary multiplication.

We examine whether the four group axioms are satisfied.

(a) Closure.

For two nonzero complex numbers $a = a_r + ia_i$ and $b = b_r + ib_i$, we have under the ordinary multiplication

$$ab = (a_r + ia_i)(b_r + ib_i) = (a_rb_r - a_ib_i) + i(a_rb_i + a_ib_r).$$

Obviously, the above result is a nonzero complex number. Thus, the product of any two elements is also in the group.

(b) Associativity.

Let $c = c_r + ic_i$. We have

$$\begin{split} a(bc) &= (a_r + ia_i)[(b_r + ib_i)(c_r + ic_i)] = (a_r + ia_i)[(b_rc_r - b_ic_i) + i(b_rc_i + b_ic_r)] \\ &= a_rb_rc_r - a_rb_ic_i - a_ib_rc_i - a_ib_ic_r + i(a_ib_rc_r - a_ib_ic_i + a_rb_rc_i + a_rb_ic_r) \\ &= (a_rb_r - a_ib_i)c_r - (a_rb_i + a_ib_r)c_i + i[(a_ib_r + a_rb_i)c_r - (a_ib_i - a_rb_r)c_i] \\ &= [(a_rb_r - a_ib_i) + i(a_ib_r + a_rb_i)]c_r + i[(a_rb_r - a_ib_i) + i(a_rb_i + a_ib_r)]c_i \\ &= [(a_rb_r - a_ib_i) + i(a_ib_r + a_rb_i)](c_r + ic_i) = (ab)c. \end{split}$$

Thus, the associative law is satisfied.

(c) Identity element.

The number 1 is the identity element.

(d) Inverse elements.

The inverse of an element is its reciprocal. For any arbitrary element $a = a_r + ia_i$, we have

$$a^{-1} = \frac{1}{a} = \frac{1}{a_r + ia_i} = \frac{a_r - ia_i}{a_r^2 + a_i^2} = \frac{a_r}{a_r^2 + a_i^2} - i\frac{a_i}{a_r^2 + a_i^2}$$

which is obviously in the group.

3. Show that there is only one group of order three. Using a step-by-step procedure, construct the multiplication table for the group.

Let the group of order three be $G = \{E, a, b\}$. We first construct its multiplication table. The first row and column can be trivially filled. We then have the following uncompleted multiplication table.

$$\begin{array}{c|cccc}
 & E & a & b \\
\hline
E & E & a & b \\
a & a & & \\
b & b & & & \\
\end{array}$$

In consideration that the product of two different elements of the group is also in the group, we have ab = ba = E. Then, the uncompleted multiplication table becomes

Because an element of the group appears only once in any row and column, we see from the above uncompleted multiplication table that $a^2 = b$ and $b^2 = a$. We then have the following completed multiplication table.

Because there is a unique way to construct the multiplication table of a group of order three, there is only one group of order three up to isomorphism.

4. Show that a group must be an Abelian group if the order of any element except the identity in the group is 2.

Let a and b be any two arbitrary elements of the group. According to the statement of the problem, we have

$$a^2 = E, b^2 = E,$$

where E is the identity element. Making use of the fact that ab and ba are the elements of the group, we have

$$(ab)(ab) = E.$$

On the other hand, the product of ab and ba is given by

$$(ab)(ba) = a(bb)a = aEa = a^2 = E.$$

Because of the uniqueness of an element in each row and each column of the multiplication table, we have

$$ab = ba$$
.

Because a and b are any two arbitrary elements of the group, the group is an Abelian group.

5. Show that every subgroup of a cyclic group is also cyclic.

Assume that the cyclic group G is of order n and is given by $G = \{E, a, a^2, \dots, a^{n-1}\}$ with $a^n = E$. If n = 1, then $G = \{E\}$ and the conclusion is true. We now assume that n > 1. Obviously, the two trivial subgroups of G, $\{E\}$ and G, are cyclic. We now consider a subgroup $S = \{E, b_1, b_2, \dots, b_{s-1}\}$ of G with the order S of S greater than 1. Since S is a cyclic group, all the elements of S are of the form S with S is a cyclic group, all the elements of S are arranged in the order of the increasing power of S are except the identity S.

Assume that a^{ℓ} is the element of the lowest power in S with ℓ a positive integer. If an element of S is not of the form $(a^{\ell})^k$ with k a positive integer and $k\ell \leq n$, then it can be written as $(a^{\ell})^p a^r$ with p and r positive integers, $p\ell + r \leq n$, and $r < \ell$. Because of the closure property of S, $(a^{\ell})^p a^r$ is the product of the element $(a^{\ell})^p$ and the element a^r . This indicates that the element of the lowest power in S is a^r with $r < \ell$, which is in contradiction with the assumption that a^{ℓ} is the element of the lowest power in S. Thus, all the elements of S are of the form $(a^{\ell})^k$ with k a positive integer, which implies that the element b_j of S with $j = 1, 2, \dots, s-1$ can be expressed as $b_j = (a^{\ell})^j$ with $(a^{\ell})^s = a^{s\ell} = a^n = E$. Hence, a subgroup S of G is of the form

$$S = \{E, a^{\ell}, a^{2\ell}, \dots, a^{(s-1)\ell}\}$$
 with $a^{s\ell} = a^n = E$.

Therefore, every subgroup of a cyclic group is also cyclic.