

AMRUPT

(Animal Movement Research Using Phase-based Trilateration)

Management plan

Task Name	Start Date	End Date	Duration	% Complete	Status	Assigned To
Phase 1(AOA)	18-01-24	18-05-25	88d	8%	In Progress	
Project Proposal	18-01-24	18-02-21	21d	100%	Completed	Russell Silva, Mei Yang, Justin Cray, Peidong Qi
Antennas	18-02-21	18-03-21	21d	0%	In Progress	Justin Cray
RF Switch	18-02-21	18-03-21	21d	0%	In Progress	Justin Cray
CC1310 I/Q Extraction	18-02-21	18-03-21	21d	0%	In Progress	Russell Silva
CC1310 to Raspberry Pi UART Connection and Datalogging	18-02-21	18-03-21	21d	0%	In Progress	peidong qi
Phase Disambiguation and Angle of Arrival Calculation	18-03-21	18-05-15	40d	0%	Not Started	Russell Silva, Mei Yang, Justin Cray
RF Wave Reconstruction and Matlab Simulation	18-02-21	18-04-18	41d	0%	In Progress	Mei Yang
Angel of Arrival Measurement	18-02-21	18-05-15	60d		In Progress	
Testing	18-04-24	18-05-25	24d		Not Started	
Separate Demodulator/ADC (Plan B Solution)						Russell Silva, Mei Yang, Justin Cray, Peidong Qi

Management plan

Task Name	Start Date	End Date	Duration	% Complete	Status	Assigned To
- Phase 1(AOA)	18-01-24	18-05-25	88d	8%	In Progress	
Project Proposal	18-01-24	18-02-21	21d	100%	Completed	Russell Silva, Mei Yang, Justin Cray, P
Antennas	18-02-21	18-03-21	21d	0%	In Progress	Justin Cray
RF Switch	18-02-21	18-03-21	21d	0%	In Progress	Justin Cray
CC1310 I/Q Extraction	18-02-21	18-03-21	21d	0%	In Progress	Russell Silva
CC1310 to Raspberry Pi UART Connection and Datalogging	18-02-21	18-03-21	21d	0%	In Progress	peidong qi
Phase Disambiguation and Angle of Arrival Calculation	18-03-21	18-05-15	40d	0%	Not Started	Russell Silva, Mei Yang, Justin Cray
RF Wave Reconstruction and Matlab Simulation	18-02-21	18-04-18	41d	0%	In Progress	Mei Yang
Angel of Arrival Measurement	18-02-21	18-05-15	60d		In Progress	
Testing	18-04-24	18-05-25	24d		Not Started	
Separate Demodulator/ADC (Plan B Solution)						Russell Silva, Mei Yang, Justin Cray,

Justin Cray, spring 2018 initial goals

Antenna design:

- Determine best type of antenna to use (whip, dipole, COTS PCB)
 - 1. Isotropic
 - 2. Sensitive
 - 3. Physically robust and high tolerance in manufacturing specs
 - 4. Minimally impacted by being close to other antennas in an array
 - 5. Low cost
 - 6. Able to receive all potential frequencies to be used (150 MHz \sim 300 MHz)
- PCB design (antenna footprints, LNA, trace specifications, ground plane)
- Testing

RF switch:

- Evaluate pros/cons of RF switches
 - 1. Isolation
 - 2. Insertion loss
 - 3. Switching speed
 - 4. Slew rate
 - 5. Cost
- PCB design (RF switch footprint requirements [e.g. isolation to avoid parasitic effects])
- Testing
- Work with Mei to model required specs for a given level of precision of AOA

Consult with Dr. Kan

Russell Silva, spring 2018 initial goals

Phase extraction from CC1310:

- Determine how to extract I/Q data from CC1310
 - Plan A: Make contacts with TI to identify correct way to update I/Q data register
 - Plan B: Work with others in the AMRUPT group to troubleshoot code
- Work with Peidong to determine format of resulting data (is it a binary text file?)
- Work with Mei to do RF simulations to determine required sample rate
 - Can the interrupt be triggered, and buffer be updated and emptied quickly enough?
 (Highest Nyquist frequency is ~600 MHz!)
- PCB design (CC1310 footprint, power supply, trace specifications)
- Testing

Consult with Dr. Kan

Peidong Qi, spring 2018 initial goals

<u>Transfer of phase data from CC1310 to Raspberry Pi:</u>

- Work with Mei and Russell to do RF simulations to determine required sample rate (stay above Nyquist frequency) and bit depth (minimize quantization error)
- Determine how to transfer data from CC1310 to the Pi
 - Plan A: UART, if simulations suggests UART speed is sufficient
 - Plan B: SPI, otherwise
- Work with Russell to determine the format of resulting data (is it a binary text file?)
- Write program to decode, format, process, and save resulting phase information
- PCB design (Raspberry Pi shield design, power supply, trace specifications)
- Testing

Consult with Dr. Kan

Mei Yang, spring 2018 initial goals

RF wave reconstruction and simulations:

- Work with Peidong and Russell to do RF simulations to determine required sample rate (stay above Nyquist frequency) and bit depth (minimize quantization error)
- Work with Justin to define required RF switching characteristics
- Learn Dr. Kan's simulation model and adapt it for our system architecture

Consult with Dr. Kan