Article 1

圆柱形骰子

谭帆驰, 鲍子龙, 丁俊翔 IBPE2021

本文是对 2022CUPT 第七题研究成果的一个总结. 理论上, 考虑了五种可能的计算概率的模型, 重点分析了简单弹跳模型, 将骰子的可能的运动学过程映射到了相空间中, 通过临界条件确定的面积与相空间总面积的比值计算概率. 最后将五种模型进行对比, 利用最大似然估计, 计算五种模型的似然函数, 来判断哪一种模型更为可靠. 实验上, 采用随机投掷的方法进行投掷, 对五种不同的材料进行了投掷.

关键词: 简单弹跳模型,相空间,最大似然估计,随机投掷.

1 简介

To land a coin on its side is often associated with the idea of a rare occurrence. What should be **the physical and geometrical characteristics** of a cylindrical dice so that it has the **same probability** to land on its **side and one of its faces**?

一枚硬币落地时侧面站立的情况通常是很罕见的. 为了使一个**圆柱形骰子**落下时能有**相同的** 概率立在它的**侧面和上下表面其中之一**, 它应该具有怎样的**物理和几何特征**?

2 理论

在介绍理论之前,先提出我们对理论做出的 6 条简化假设:

- 1. 相空间的概率分布是均匀的
- 2. 骰子质量分布均匀
- 3. 忽略地面摩擦力与空气阻力
- 4. 不考虑骰子两头同时着地的情况
- 5. 与地面碰撞的时间可忽略不计
- 6. 侧面与底面与地面碰撞的恢复系数一致

在列举我们要说的模型之前,我们需要先设定一 些参数,方便我们接下来的分析:

高度与半径之比: $\eta = \frac{h}{r}$ 圆柱的对角线长度: $l = \sqrt{r^2 + (h/2)^2}$

Figure 1. 参数图 [3]

角度 c: $\theta_c = \arctan(\eta/2)$ 线速度与角速度: v and ω 骰子的长轴与 z 轴所成角度: θ 质心与地面的高度: $Z_{C.M.}$

2.1 模型 1-4

模型一:表面面积之比求解概率(假设概率与面积成正比).

$$p_{edge}(h,r) = \frac{2\pi rh}{2\pi r^2 + 2\pi rh} = \frac{\eta}{1+\eta}$$
 (1)

模型二: 横截面长度之比(假设概率与横截面长度成正比).

$$p_{edge}(h,r) = \frac{h}{2(2r) + h} = \frac{\eta}{4 + \eta}$$
 (2)

模型三: 立体角之比求概率. 假设在三面硬币的给 定面上着陆的概率与该面所含的立体角成正比.

模型四: 质心.

硬币与z轴所成的角度 θ 将完全决定最终的 静止形态:

- 1. 如果 $0 < \theta < \theta_c$, 则硬币将落在侧面.
- 2. 如果 $\theta_c < \theta < \frac{\pi}{2}$, 那么硬币将落在正面/反 面.

$$p_{edge} = \frac{2\theta_c}{\pi} \tag{4}$$

2.2 模型 5: 简单弹跳模型

简单反弹模型考虑了反弹的影响. 反弹以以 下方式讲行. 每次骰子与地面发生碰撞, 与地面所 接触的法向速度满足以下条件:

$$u'' = -\gamma u' \tag{5}$$

骰子的势能完全由高度 z 决定, 即 U = mgz, 动能考虑其平动能以及转动能,得到:

$$T = \frac{mv^2}{2} + \frac{I_{xx}\omega^2}{2} \tag{6}$$

其中: $I_{xx} = \frac{1}{4}mr^2 + \frac{1}{12}mh^2$.

定义碰撞前瞬间的势能为最小势能, 即: $U_{\min}(\theta) = mgz_{\min}(\theta)$,由几何关系可求得:

$$z_{\min}(\theta) = \sqrt{r^2 + (h/2)^2} \cos\left(|\theta| - \arctan\left(\frac{h}{2r}\right)\right)$$
$$= z^* \cos\left(|\theta| - \theta_c\right) \tag{7}$$

定义骰子无法再次弹起的临界能量 Ec:

$$E_c = mgz^* \tag{8}$$

由于在最后一次碰撞中,θ的值不会发生瞬时变化, 即在碰撞前的瞬间的状态已经决定了骰子的最终 状态 (i.e $-\theta_c \le \theta \le \theta_c$ 会落在边缘)

其中 z* 是半对角线长度.

由 (5) 可得:

$$\Delta u = -(1+\gamma)u' \tag{9}$$

另一方面,垂直方向的速度还可能与质心速 度以及角动量的变化相关:

$$\Delta u = \Delta v + y(\theta) \Delta \omega \tag{10}$$

其中 $y(\theta)$ 代表质心与碰撞点连线的距离在水平方 向的投影.

我们对碰撞点选择一个平行于x轴的参考轴, 对该参考轴应用角动量守恒,得到:

$$m(-y)\Delta v + I\Delta\omega = 0 \tag{11}$$

结合上述的 (9),(10),(11), 我们得到了质心速度与 角速度的变化值:

$$\Delta v = -(1+\gamma) \cdot \frac{I}{I + mv^2} \left(v' + y\omega' \right) \tag{12}$$

$$\Delta\omega = -(1+\gamma) \cdot \frac{my}{I+my^2} \left(v'+y\omega'\right) \qquad (13)$$

结合上述 (12),(13), 可得到能量的变化量:

$$\Delta E = -\frac{1 - \gamma^2}{2} \cdot \frac{mI}{I + my^2} \left(v' + y\omega' \right)^2 \qquad (14)$$

接下来我们考虑临界碰撞状态需要满足的3个条

- 1. 碰撞前的能量必须大于或等于 E_c .
- 2. 碰撞后的能量必须低于 E_c .
- 3. 由于物理约束, u' 必须为负值 (方向向下).

可写成3个数学表达式:

$$E'(\theta, v, \omega) \ge E_c \tag{15}$$

$$E_c > E''(\theta, v, \omega) = E'(\theta, v, \omega) + \Delta E$$
 (16)

$$v' + y \cdot \omega' < 0 \tag{17}$$

将 (15),(16) 重排成两个不等式:

$$\left[\frac{1}{2g(z^{*}-z_{\min})}\right]v^{2} + \left[\frac{I}{2mg(z^{*}-z_{\min})}\right]\omega^{2} \ge 1$$
(18)
$$\left[\frac{I\gamma^{2}+my^{2}}{2g(I+my^{2})(z^{*}-z_{\min})}\right] \cdot v^{2}$$

$$+ \left[\frac{Iy^{2}\gamma^{2}+I^{2}/m}{2g(I+my^{2})(z^{*}-z_{\min})}\right] \cdot \omega^{2}$$
(19)
$$+ \left[\frac{Iy(1-\gamma^{2})}{-g(I+my^{2})(z^{*}-z_{\min})}\right] \cdot v\omega < 1$$

将上述两个不等式绘制成相空间, 如图所示: 其中

Figure 2. 相图 [3]

黑色的椭圆代表不等式 1, 外层的椭圆代表不等式 2, 此外由于约束 u' < 0, 相图只存在对称的一般 具有物理意义.

于是我们可以分别求出两个椭圆的面积:

$$S_1 = 2\pi g \sqrt{\frac{m}{I}} \cdot (z^* - z_{\min}(\theta)). \qquad (20)$$

$$S_2 = rac{2\pi g \left(z^* - z_{\min}(heta)
ight) \left(I + my^2
ight)}{\sqrt{\left(I\gamma^2 + my^2
ight) \left(Iy^2\gamma^2 + rac{I^2}{m}
ight) - I^2y^2 \left(1 - \gamma^2
ight)^2}}}$$
 n 是翻转次数, r 是边缘着陆次数, p 是该模型预测的侧面朝上的概率.

对不同状态的 θ , 其在相空间的面积代表其概率 密度 (乘上一个因子 A 是对量纲进行处理), 即:

$$\rho(\theta) = \frac{mI}{A^2} \frac{(S_2 - S_1)}{2} = \frac{\pi m^{3/2} g \sqrt{I}}{A^2} \cdot \frac{1 - \gamma}{\gamma} \cdot (z^* - z_{\min}(\theta))$$
(22)

(其中 A) 为一个带量纲的常数,乘上的因子后续会 消掉)

由求出的概率密度,再根据其对称性,可以求 出理论上落在边缘的概率:

3

$$P_{E} = \frac{\int_{\theta=0}^{\theta=\theta_{c}} \rho(\theta) d\theta}{\int_{\theta=0}^{\theta=\pi/2} \rho(\theta) d\theta} = \frac{\theta_{c} - \sin(\theta_{c})}{\pi/2 - (\sin(\theta_{c}) + \cos(\theta_{c}))}$$
(23)

2.3 模型选择

在模型选择的贝叶斯公式中, 我们首先计算 模型的后验概率 Mi 给定数据 D 和任何其他信息 I. 由多变量的贝叶斯公式:

$$P(M_i \mid D, I) = \frac{P(M_i \mid I) P(D \mid M_i, I)}{P(D \mid I)}$$
 (24)

杳看它们的比率,以检查每个模型的相对概率(即 一个模型与另一个模型的概率)

$$\frac{P(M_i \mid D, I)}{P(M_j \mid D, I)} = \frac{P(M_i \mid I) P(D \mid M_i, I)}{P(M_j \mid I) P(D \mid M_j, I)}$$

$$= \frac{P(M_i \mid I) L(M_i)}{P(M_i \mid I) L(M_j)}$$
(25)

其中 L 为相应的似然函数, 我们此处使用最大似 然估计的方法来确定各模型的可信程度.

如果我们给每个模型分配相等的先验概率 $\frac{P(M_i|I)}{P(M_i|I)} = 1$, 那么后验概率的比率就变成了概率 的比率 $\frac{L(M_i)}{L(M_i)}$.

利用二项分布的似然函数公式:

$$\log L(M_i) = \sum \log n! - \log r! - \log (n - r)$$

$$+ r \log p + (n - r) \log (1 - p)$$
(26)

3 模拟

模拟目的:

- 1. 补充实验无法用高径比连续的一系列骰子进 行实验的漏洞.
- 2. 印证理论, 检验理论的正确性.
- 3. 与实验相互对照, 检测实验误差.

使用 THREE.js 构建三维环境,Cannon.js 作为物理引擎,设置重力加速度,体积,质量,R/H,落下高度和初始角速度作为参量.通过模拟与理论结合,

Figure 3. 模拟场景图

绘制出对比图:

Figure 4. 模拟与理论对比

4 实验

实验目的:

- 1. 检验理论模型和模拟的正确性.
- 2. 通过有限次实验测算出的数据与理论模型进 行拟合进而修正模型.
- 3. 寻找可能满足理论目标的参数组合.

实验器材:不同高径比的亚克力,金属质地以及木质骰子(共五种材料),高径比标记在上侧(从上到下依次为亚克力,铁,铝,木头以及铜(见附录)).

给出骰子的测量不确定度:

实验结果

高径比	A 类不确定度
0.420	0.002
0.621	0.001
0.753	0.001
0.823	0.002
1.029	0.001
1.231	0.001
1.356	0.001
1.412	0.001

Table 1. 亚克力不确定度

高径比	A类不确定度	
0.401	0.003	
0.567	0.001	
0.606	0.001	
0.736	0.001	
0.801	0.004	
1.002	0.002	
1.201	0.001	
1.335	0.002	
1.405	0.004	

Table 2. 金属骰子不确定度

从实验结果图来分析: 各材料不同高径比得 到的侧面朝上概率相近, 且弹跳模型模拟与实验 较为贴近.

4.1 与五个模型的对比

仅从图片的形状与趋势分析,模型三与模型 五与实验结果有着较高的适配度,但两者与实验 结果间仍存在误差.故使用似然函数对其合理性 进行评估(对比图见附录).

模型	似然函数值
表面积模型	-1027
长度模型	-3795
立体角模型	-1225
质心模型	-2474
简易运动学模型	-93

Table 3. 各模型似然函数值

结论: **仅从趋势来看,模型 5 为最佳模型.** 用似然函数仅能排除掉模型二与模型四,无

Figure 5. 不同材质骰子实验结果

Figure 6. 模拟与实验的对比图 (弹跳明显)

法完全排除模型一, 三, 五. 其也有在物理上的合理性. 我们假设三个组合能通过线性叠加得到最后的结果, 具体表述如下:

$$y = ax_1 + bx_2 + cx_3 (27)$$

y 代表现实中的骰子侧面着上的概率, x_1, x_2, x_3 分别代表模型一, 三, 五的概率.

Figure 7. 线性拟合结果

概率	弹跳	不弹跳
$P_E = \frac{1}{3}$ $P_E = \frac{1}{2}$	0.535 0.354	0.641 0.577

Table 4. 结果预测

拟合结果为:

$$y = -5.3879x_1 + 6.7528x_2 - 0.7216x_3 \tag{28}$$

拟合优度为: $R^2 = 0.9817$.

由于数据量的原因,该结果在前端和后端拟合结果较差,但在概率 0.2-0.9 的部分与实验结果符合的较好,由此我们可以对最终结果进行预言.

(表内二三列指的是 片)

误差分析

可能的误差来源:

1. 系统误差:

在模型上我们简化为坠落平面为无摩擦平面 上,但实际器材无法达到预期.

2. 人员和器材误差:

圆柱形骰子的高,直径使用精度为 0.02mm 的游标卡尺测量,存在一定误差. 骰子在进行多次的实验时出现了一定情况的磨损.

实验人员在实验中不可避免出现一些误差.

不足与展望

- 1: 探究的模型做了诸多简化, 无法确定其中忽略的因素是否会对结果产生重大影响.
 - 2: 实验次数不够, 与大数定律有一定偏差.
 - 3: 理论结果与实验结果仍存在着一定的误差.

致谢

探究小组成员: 谭帆驰 丁俊翔 杨超毅 杜溪翔 邱卓伦

此外,尤其鸣谢物理实验创新基地 (IBPE) 的各成员的协作,比赛主办方和指导老师,以及参赛同学.

Your Name 谭帆驰

Address: School of Physics, Huazhong University of Science and Technology
Email: U202010215@hust.edu.cn

参考文献

- [1] Teaching Bayesian Model Comparison With theThree-Sided Coin[J]The American Statistician Scott R Kuindersma Brian S Blais (2007)
- [2] Probability of a tossed coin landing on edge[J]PHYSICAL REVIEW E Daniel B.Murray Scott W. Teare(1993.9)
- [3] Exact edge landing probability for the bouncing coin toss and the three-sided die problem[J]Llut's Hernt'andez-Navarro and Jordi Pinero(2021.4)

Figure 9. 铁

Figure 10. 铝

5 附录

5.1 实验器材

1.2 1.367 1.472

1.367 1.472

1.338

Figure 8. 亚克力

Figure 11. 木

Figure 12. 铜

Figure 15. 与模型三的对比图

5.2 模型对比

Figure 13. 与模型一的对比图

Figure 14. 与模型二的对比图

Figure 16. 与模型四的对比图

Figure 17. 与模型五的对比图