

Grundlagen der Vergleichenden Politikwissenschaft

Dag Tanneberg

06/04/2018

Nenne 2 Annahmen, die Handlungstheoretiker oft über Präferenzen treffen.

Nenne 2 Annahmen, die Handlungstheoretiker oft über Präferenzen treffen.

■ Vollständigkeit, Transitivität (& Reflexivität)

Nenne 2 Annahmen, die Handlungstheoretiker oft über Präferenzen treffen.

- Vollständigkeit, Transitivität (& Reflexivität)
- Warum treffen sie diese Annahmen?

Nenne 2 Annahmen, die Handlungstheoretiker oft über Präferenzen treffen.

- Vollständigkeit, Transitivität (& Reflexivität)
- Warum treffen sie diese Annahmen?
- Konsistenz von Individualentscheidungen gewährleisten

Welche weitere Annahme treffen räumliche Modelle der Politik?

Welche weitere Annahme treffen räumliche Modelle?

■ Eingipfeligkeit (Single-peakedness)

- Eingipfeligkeit (Single-peakedness)
 - $\blacksquare \ \mathsf{Idealpunkt:} \ y_i \succ o \ \forall \ o \in O \setminus \{y_i\}$

- Eingipfeligkeit (Single-peakedness)
 - $\blacksquare \ \mathsf{Idealpunkt:} \ y_i \succ o \ \forall \ o \in O \setminus \{y_i\}$
 - Der Nutzen einer Politik mit zunehmender Distanz vom Idealpunkt ab.

- Eingipfeligkeit (Single-peakedness)
 - Idealpunkt: $y_i \succ o \ \forall \ o \in O \setminus \{y_i\}$
 - Der Nutzen einer Politik mit zunehmender Distanz vom Idealpunkt ab.
 - Es gibt eine Nutzenfunktion, mit deren Hilfe der Nutzenverlust dargestellt werden kann.

- Eingipfeligkeit (Single-peakedness)
 - Idealpunkt: $y_i \succ o \ \forall \ o \in O \setminus \{y_i\}$
 - Der Nutzen einer Politik mit zunehmender Distanz vom Idealpunkt ab.
 - Es gibt eine Nutzenfunktion, mit deren Hilfe der Nutzenverlust dargestellt werden kann.
- Warum treffen sie diese Annahme?

- Eingipfeligkeit (Single-peakedness)
 - Idealpunkt: $y_i \succ o \ \forall \ o \in O \setminus \{y_i\}$
 - Der Nutzen einer Politik mit zunehmender Distanz vom Idealpunkt ab.
 - Es gibt eine Nutzenfunktion, mit deren Hilfe der Nutzenverlust dargestellt werden kann.
- Warum treffen sie diese Annahme?
 - Konsistenz von Kollektiventscheidungen gewährleisten

- Eingipfeligkeit (Single-peakedness)
 - Idealpunkt: $y_i \succ o \ \forall \ o \in O \setminus \{y_i\}$
 - Der Nutzen einer Politik mit zunehmender Distanz vom Idealpunkt ab.
 - Es gibt eine Nutzenfunktion, mit deren Hilfe der Nutzenverlust dargestellt werden kann.
- Warum treffen sie diese Annahme?
 - Konsistenz von Kollektiventscheidungen gewährleisten
 - Beispiel: Condorcet's Abstimmungsparadoxon

Beispiel

In einer Umfrage während des Vietnamkriegs fragten Sidney Verba et al. nach den Präferenzen der amerikanischen Bevölkerung über das weitere Engagement ihre Landes in Vietnam.

- a. Verba et al. fanden heraus, dass die Antworten der meisten Befragten den Anforderungen eines eindimensionalen Politikraums genügten. Welche Anforderungen sind das?
- Ein kleiner Teil der Befragten verlangte sowohl eine Reduktion als auch eine Erweiterung des Engagements. Welche Annahme verletzen diese Befragten? Worauf deutet der Verstoß hin?

Aufgabe B

In einem eindimensionalen Politikraum sind die Idealpunkte der Akteure a, b und c abgetragen. Der Status Quo ist mit sq bezeichnet.

- a. Zeichne die Präferenzmenge von a, b, und c ein.
- D. Zeichne die Gewinnmenge für den Fall ein, dass die Mehrheitsregel gilt.
- Jeder Akteur darf jederzeit neue Vorschläge unterbreiten. Es gilt die Mehrheitsregel. Welcher Punkt wird sich schlussendlich durchsetzen?

Aufgabe B Die Präferenzmenge eines Akteurs...

... ist die Menge aller Alternativen $o \in O$, die ein Akteur gegenüber einem Referenzpunkt o^* bevorzugt: $Pr_i(o^*) = \{o \in O; o \succ o^*\}$.

Aufgabe C

In einem eindimensionalen Politikraum sind die Idealpunkte der Akteure a, b und c abgetragen. Der Status Quo ist mit sq bezeichnet. Es gilt die Mehrheitsregel. Löse die einzelnen Teilaufgaben der Zeichnung.

- a. Schraffiere die Einigungsmenge der Akteure b und c.
- Welchen Punkt würde a (c) vorsclagen, wenn er der Agendasetzer wäre und ein alleiniges Vorschlagsrecht besäße?
- c. Nimm an, im Falle einer Nichteinigung würder nicht der Status quo bestehen bleiben, sondern die Regel sq* tritt in Kraft. Welche Punkt würde Agendasetzer a jetzt vorschlagen?

Aufgabe D

Unter der Annahme vollkommener Fraktionsdisziplin lassen sich die Fraktionen a, b, und c durch ihre Medianpositionen im eindimensionalen Politikraum darstellen. Es sei sq der Status Quo. Folgende Fraktionsstärken gelten: a 33 | b 19 | c 48.

- a. Begründe die Abbildung durch den Medianabgeordneten.
- **b.** Nimm an, es würde offen nach einfacher Mehrheit abgestimmt. Wer setzt sich durch?
- c. Eine Verfassungsänderung benötigt $\frac{2}{3}$ der Stimmen.
 - Zeichne die Gewinnmenge des Status Quo ein.
 - Nimm an, b sei die Agendasetzerin. Was schlägt sie vor?

Aufgabe E

In einem zweidimensionalen Politikraum sind die Idealpunkte der Akteure a, b, und c abgetragen. Der Status Quo ist mit sq bezeichnet.

Dimension 1

Dimension 2

- Wie gewichten die Akteure beide Dimensionen?
- Schraffiere die Gewinnmenge unter Geltung der Mehrheitsregel.
- Schraffiere die Gewinnmenge unter Geltung der Einstimmigkeitsregel.

Aufgabe E Die **Gewinnmenge** einer Option...

- Zusammenspiel der Präferenzmengen mehrerer Akteure
- Schnittmenge der Präferenzmengen aller Akteure: $Pr_C(sq) = \bigcap_{i \in C} Pr_i(sq)$
- Ergebnis hängt von der Entscheidungsregel ab