A Conflict-Free Learning Approach for MILP and WCSP Optimization SLOPPY Workshop

Pierre Montalbano¹³, Simon de Givry¹, George Katsirelos²

¹Université Fédérale de Toulouse, ANITI,INRAE, MIAT, UR875, Toulouse, France

²Université Fédérale de Toulouse, ANITI,INRAE, MIA Paris, AgroParisTech, France

³Laboratoire LIFAT, 64 avenue Jean Portalis, 37200 Tours, France

05/11/2024

Conflict-free learning in MILP

Conflict-free learning

Objective

▶ Learn the lower bounds of subproblems visited during search

$$\min 3x_1 + 4x_2 + 6x_3 + 8x_4 + x_5 + 6x_6$$

s.t

$$2x_1 + 2x_2 + 3x_3 + 4x_4 + x_5 + 6x_6 \ge 10$$

$$x_1 + x_2 = 1$$

$$x_i \leq 1$$

$$x_i \in \{0, 1\}$$

$$\forall i \in [1,6]$$

$$\forall i \in [1, 6]$$

MILP standard form

$$\begin{aligned} \min 3x_1 + 4x_2 + 6x_3 + 8x_4 + x_5 + 6x_6 \\ s.t \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 + x_5 + 6x_6 - s &= 10 \\ x_1 + x_2 &= 1 \\ x_i + \overline{x_i} &= 1 & \forall i \in [1, 6] \\ x_i &\in \{0, 1\} & \forall i \in [1, 6] \\ \overline{x_i} &\geq 0 & \forall i \in [1, 6] \\ s &> 0 \end{aligned}$$

Domain restriction

To remove a variable we increase its coefficient in the objective function by a large value.

Removing x_1 :

$$\min 100x_1 + 4x_2 + 6x_3 + 8x_4 + x_5 + 6x_6$$

ightarrow Sets of primal constraints/dual variables are the same at every node of the search tree.

Learn a constraint capturing that the LB of the blue node is 15.

Learn a constraint capturing that the LB of the blue node is 15. Learn a constraint capturing that the LB of the green node is 17. Learn a constraint capturing that the LB of the red node is 15.

Learn constraint capturing that we can increase the LB by 3 at blue node. Learn constraint capturing that we can increase the LB by 5 at green node. Learn constraint capturing that we can increase the LB by 3 at red node.

Defined for MILP

Farkas constraint [Farkas, 1902]

- Linear combination of primal constraints guided by an LP (dual) solution
- Explain a lower bound

Conflict-free learning [Witzig, 2022]

- ▶ Modify the Farkas constraint according to information obtained deeper in the tree
 - → tighten the Farkas constraint
- Learned constraints are useful only to prune more values

Memo Constraint

Definition of Memo Constraint

- A constraint $w^Tz = b$ is a memo constraint if $w \le obj$
- ▶ A memo constraint $w^Tz = b$ explains an LB of b

There exists a family of Farkas constraints that are memo constraints.

Farkas Constraint: $3x_1 + 3x_2 + 6x_3 + 8x_4 + x_5 - \overline{x_5} + 6x_6 - 6\overline{x_6} - 2s = 12$

Capturing the increase of lower bound?

From the LP optimal solution rewrite the objective to obtain an **equivalent** problem \rightarrow We use the reduced costs

- ▶ The Farkas constraint saves a subset of costs justifying the increase of LB
- ▶ Then we remove that information from the objective function

Problem P:

$$\min \frac{3x_1 + 4x_2 + 6x_3 + 8x_4 + x_5 + 6x_6}{1}$$

$$x_2 + 6x_3 + 8x_4 + x_5 + 6x_6$$

$$0x_3 + 0x_4 + x_5 + 0x_6$$

$$2x_1 + 2x_2 + 3x_3 + 4x_4 + x_5 + 6x_6 - s = 10$$

$$2x_1 + 2x_2 + 3x_3 + 4x_4 + x_5 + 6x_6 - s = 10$$

$$+3x_3 +$$

$$+4x_{4}$$

$$-4x_4 +$$

$$x_1+x_2=1$$

$$x_i + \overline{x_i} = 1$$

$$= 1$$

$$=1$$

 $x_i \in \{0, 1\}$ $\overline{x_i} > 0$

Problem P': $\min \frac{0}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{$

 $\overline{x_i} > 0$

s > 0

 $x_1 + x_2 = 1$

 $x_i + \overline{x_i} = 1$

 $x_i \in \{0, 1\}$

s.t

s > 0

 $\forall i \in [1,6]$

 $\forall i \in [1,6]$ $\forall i \in [1, 6]$

Fusion Resolution[Gocht, Nordstrom, and Buss, 2021]

$$\frac{\overline{x_1} + 2x_3 + 4x_4 - x_5 \ge b}{2x_3 + 4x_4 - x_5 \ge \min(b, b')}$$

Memo Resolution (simplified)

$$\frac{w_j\overline{x_j} + \sum_{i \neq j} w_i x_i = b, \quad w'_j x_j + \sum_{i \neq j} w'_i x_i = b'}{\sum_{i \neq j} \max(w_i, w'_i) x_i \ge \min(b, b')}$$

- 1. Compute a Farkas constraint c_A at node A and transform the objective function. Then compute memo constraints for B and C.
- 2. Apply memo resolution on c_B and c_C
- 3. Sum the resulting constraint with the memo constraint c_A
- 4. Learn the resulting **memo** constraint and return it to node O

1) Compute memo constraint c_A .

$$\min \frac{100x_{2} + 100x_{3} + \overline{x_{5}} + 6\overline{x_{6}} + 2s + 12}{s.t}$$

$$2x_{1} + 2x_{2} + 3x_{3} + 4x_{4} + x_{5} + 6x_{6} - s = 10$$

$$x_{1} + x_{2} = 1$$

$$x_{i} + \overline{x_{i}} = 1$$

$$x_{i} \geq 0$$

$$\overline{x_{i}} \geq 0$$

$$\overline{x_{i}} \geq 0$$

$$\forall i \in [1, 6]$$

$$c_A$$
: $3\overline{x_3} + \overline{x_5} + 6\overline{x_6} - 4x_4 + s = 2$

1) Compute memo constraint c_A , and transform the objective function:

$$\min \frac{100x_2 + 100x_3}{100x_2 + 100x_3} + 4x_4 + s + 14$$

$$s.t$$

$$2x_1 + 2x_2 + 3x_3 + 4x_4 + x_5 + 6x_6 - s = 10$$

$$x_1 + x_2 = 1$$

$$x_i + \overline{x_i} = 1$$

$$x_i \ge 0$$

$$\overline{x_i} \ge 0$$

$$\forall i \in [1, 6]$$

$$\forall i \in [1, 6]$$

$$s \ge 0$$

$$c_A: \quad 3\overline{x_3}+\overline{x_5}+6\overline{x_6}-4x_4+s=2$$

1) Compute memo constraints c_B , c_C at nodes B and C

$$c_A:$$
 $3\overline{x_3} + \overline{x_5} + 6\overline{x_6} - 4x_4 + s = 2$
 $c_B:$ $6\overline{x_6} + 3\overline{x_3} - 4x_4 - x_5 + s = 1$

$$c_C: 6x_6 + x_2 + 4x_4 - 2\overline{x_1} - 3\overline{x_3} - \overline{x_5} - s = 4$$

2) Apply memo resolution on c_B and c_C .

$$\frac{c_B: \mathbf{6}\overline{x_6} + 3\overline{x_3} - 4x_4 - x_5 + s = 1}{c_{BC}: 3\overline{x_3} + x_2 + 4x_4 - 2\overline{x_1} - 3\overline{x_3} - \overline{x_5} - s = 4}$$

$$c_{BC}: 3\overline{x_3} + x_2 + 4x_4 + s - s_1 = 1$$

 c_{BC} is a memo constraint at node A' (after objective reformulation).

3) Sum the resulting **memo** constraint with the constraint c_A

$$c_{BC}: 3\overline{x_3} + x_2 + 4x_4 + s - s_1 = 1 \\ + \\ c_A: 3\overline{x_3} + \overline{x_5} + 6\overline{x_6} - 4x_4 + s = 2 \\ \hline c_{ABC}: 6\overline{x_3} + x_2 + \overline{x_5} + 6\overline{x_6} + 2s - s_1 = 3$$

CABC is a memo constraint at node A.

$$\begin{aligned} &\min 100x_1 + x_2 + \overline{x_5} + 6\overline{x_6} + 2s + 12 \\ s.t \\ &2x_1 + 2x_2 + 3x_3 + 4x_4 + x_5 + 6x_6 - s = 10 \\ &x_1 + x_2 = 1 \\ &6\overline{x_6} + \overline{x_5} + 2s - s_2 = 3 \\ &x_i + \overline{x_i} = 1 &\forall i \in [1, 6] \\ &\overline{x_i}, x_i \ge 0 &\forall i \in [1, 6] \\ &s, s_1 \ge 0 \end{aligned}$$

Without the red constraint: OPT=13 \rightarrow the search continue With the red constraint: OPT=16 \rightarrow end of search

Python script based on CPLEX Python API

No learning					
	Depth-first search B&B				
	Branch on the first fractional variable				
	Value removal by bound propagation				
	Solve the LP				
MemoBound	+				
	Rewrite the objective function				
	Value removal by node consistency				
	Learn memo constraints				

Results

Knapsack problem

- ▶ 100-300 variables
- Random weights and profits

Results

Knapsack Problem with Conflict Graph (KPCG)

- ▶ 120 or 250 Boolean variables.
- One linear constraint of size equal to the number of variables.
- Weights are uniformly distributed. Sometimes correlated to the profit (instance C).
- ▶ A conflict graph (binary constraints) of varying density (0.1-0.3).
- 10 instances in each class

	No learning	MemoBound	TOULBAR2	ROUNDINGSAT	CPLEX
$R^1120 - 0.1$	1030	226	213	2660	0.3
$R^1120 - 0.2$	1054	270	260	2558	0
$R^1120 - 0.3$	1004	298	270	2546	1.7
$R^1250 - 0.1$	2123	418	522	8985	0
$R^3120 - 0.1$	2272	472	476	5330	0.8
$R^3120 - 0.2$	3064	906	1026	6061	39.2
$R^3120 - 0.3$	3115	1487	1886	6650	66.8
$R^3250 - 0.1$	9423	1223	1679	17532	10.3
$C^1120 - 0.1$	10989	2646	1580	6064	0
$C^1120 - 0.2$	8672	2292	1151	8779	5.8
$C^1120 - 0.3$	6437	2156	1537	8043	73

Table: Average number of nodes developed to solve different configurations of the KPCG problem.

Kbtree problem

- ▶ 44 to 188 Boolean variables
- ▶ 190 to 838 binary constraints
- Very specific structure (bounded tree-width)

- Each cluster is a complete graph.
- 2 clusters are connected by 2 separators.
- ▶ kb-7-3 indicates clusters of size 7 and tree height 3.

Results

	Variables	Constraints	No learning	MemoBound	TOULBAR2-BTD	ROUNDINGSAT	CPLEX
kb-7-3	44	190	7.79	5.9	5.58	4649	0 (573)
kb-7-4	92	406	43	17	16.33	64549	0 (1235)
kb-7-5	188	838	1240	262	37	-	0 (2556)
kb-8-3	51	246	13.89	8	12	7568	0 (758)
kb-8-4	107	526	128	40	40	153374	0 (1613)
kb-9-3	58	309	26	14	27	19153	0(979)
kb-9-4	122	661	457	156	95	-	0(2071)

Conclusion

- ▶ The proof of concept validates our theory
- Implementation in a fully functional solver?
- ► Heuristics?
 - Restart
 - Selecting the learned constraints
 - Constraint strengthening

- ► Theoretical results
 - Comparable to dynamic programming?

Conflict-free learning in WCSP

Graphical Models

- ► The nodes represent discrete domain variables
- ► (Hyper)-edges represent interactions between variables.

Graphical Models

Different types of GM:

- Bayesian Networks (probabilities)
- Markov Random Fields (potentials)
- Cost Function Networks (costs)

Cost function

Definition: Cost function

- Scope A (a set of variables)
- Associate a cost to each tuple in the scope:

$$f_A: \prod_{x\in A} D_x \to \mathbb{N} \bigcup \{\infty\}$$

Unary cost function f_x

×	f _x
а	2
b	0

Binary cost function f_{xy}

2			
	x	у	f _{xy}
	а	а	3
	а	b	2
	b	а	0
	b	b	∞

Hard binary constraint f_{xz}

. rara simary		
х	z	f_{xz}
а	а	∞
а	b	0
b	а	0
b	b	∞

Weighted Constraint Satisfaction Problem

Definition: Cost Function Network P = (V, S, f)

- ► Set *V* of discrete domain variables
- ► Set *S* of scopes
- ▶ For each scope $A \in S$, we define a cost function:
 - $f_A: \prod_{x\in A} D_x \to \mathbb{N} \bigcup \{\infty\}$

Objective:

Find a complete assignment v minimizing $\sum_{A \in S} f_A(v[A])$

→ NP-Hard Problem

Cost functions in real life

Grid operation-based outage maintenance planning

Warehouse location problem

x	y	$\mathbf{f}_{\mathbf{x}\mathbf{y}}$
а	а	3
а	b	2
b	а	0
b	b	∞

x	f _x
а	0
b	2

$$\min_{x,y} \quad f_x(x) + f_y(y) + f_{xy}(x,y)$$

х	у	f _{xy}
а	а	3
а	b	2
b	а	0
b	b	∞

(x = b, y = a) is the optimal assignment with cost 2.

 $\min_{x,y}$

 $f_{x}(x)+f_{y}(y)+f_{xy}(x,y)$

> How to compute the lower bounds?

- ► Soft arc consistency algorithms
- ► Equivalence preserving transformations

Equivalence Preserving Transformation

Equivalent WCSP

P = (V, S, f) and P' = (V, S, f') are equivalent if for any complete assignment v:

$$\sum_{A \in S} f_A(v[A]) = \sum_{A \in S} f'_A(v[A])$$

Equivalence Preserving Transformation (EPT)

Transform a WCSP P into an equivalent WCSP P' by moving costs from a cost function f_A to another cost function f_B .

у	f _{xy}
а	3
b	2
а	0
b	∞
	a b a

×	f _x
а	0
b	2

$$\min_{x,y} \quad f_x(x) + f_y(y) + f_{xy}(x,y)$$

x	y	$\mathbf{f}_{\mathbf{x}\mathbf{y}}$
а	а	3-2
а	b	2-2
b	а	0
b	b	∞
D	D	∞

×	f _x
а	0+2
b	2

$$\min_{x,y} \quad f_x(x) + f_y(y) + f_{xy}(x,y)$$

x	y	$\mathbf{f}_{\mathbf{x}\mathbf{y}}$
а	а	1
а	b	0
b	а	0
b	b	∞

x	\mathbf{f}_{x}
а	2
b	2

$$\min_{x,y} \quad f_x(x) + f_y(y) + f_{xy}(x,y)$$

X	y	$\mathbf{f}_{\mathbf{x}\mathbf{y}}$
а	а	1
а	b	0
b	а	0
b	b	∞

х

$$f_{\emptyset} = \frac{2}{2}$$

$$\min_{x,y} \quad f_x(x) + f_y(y) + f_{xy}(x,y) + f_{\emptyset}$$

X	y	$\mathbf{f}_{\mathbf{x}\mathbf{y}}$
а	а	1
а	b	0
b	а	0
b	b	∞

$$f_{\emptyset}=2$$

$$\min_{x,y} \quad f_x(x) + f_y(y) + f_{xy}(x,y) + f_{\emptyset}$$

> How to Solve a WCSP?

Branch&Bound Algorithm

At each node of the search tree produce a sequence of EPTs maximizing f_{\emptyset}

The optimal sequence (using rational costs) can be obtained from the optimal solution of a linear problem: **The Local Polytope**.

However, solving this LP to optimality is often too expensive

> S

Soft Local Consistency Algorithms

Soft Local Consistency Algorithms

Reason on a 'local' level by considering only a subset of cost functions.

- Prune locally inconsistent values
- ightharpoonup Define a sequence of EPTs increasing f_{\emptyset}

Examples:

Node Consistency, Soft Arc Consistency, Existential Directional Arc Consistency, Virtual Arc Consistency (VAC),...

Global constraints

Examples: alldiff, among, clique, grammar, Pseudo-Boolean...

Global constraints

- 1. Hard Global Constraint
 - Representation is implicit
 - Design a dedicated propagator
- 2. Soft global constraint

Conflict-free learning in CFNs

- ► We know a LP: The Local Polytope
- ► Soft consistency algorithms
 - ► Find solutions of the The Local Polytope
 - Natively reformulate the problem

Thanks

Thanks for your attention! Questions?

pierre.montalbano@laposte.net

Farkas, J. (1902).

Theorie der einfachen ungleichungen.

Journal für die reine und angewandte Mathematik (Crelles Journal), 1902(124):1-27.

Witzig, J. (2022).

Infeasibility Analysis for MIP.

Technische Universitaet Berlin (Germany).

