Phys234, 2018, Problem set #7: In-lab questions

Question 1:

The following integral has an exact analytical solution:

$$I = \int_{-1}^{5} e^{-x} \cos(e^{-x}) dx = \left[-\sin(e^{-x}) \right]_{-1}^{5} = \sin(e^{1}) - \sin(e^{-5})$$

Write a function ps7q1 that computes this integral numerically with both:

- the trapezoidal rule (using the function trapezoid)
- Simpson's rule (using the function simpson)

Do each case for $n_f = 9, 17, 33, 65, 129, 257, 513$ where n_f is the number of points on which you evaluate the function. Recall that for a given number of panels N, the number of function evaluations for the trapezoid and Simpson rule are, respectively, $n_f = N + 1$ and $n_f = 2N + 1$. For each n_f compute the error (i.e. the difference between the *exact* value of the integral and your numerical approximation). Execution of your function ps7q1 should create two tables (one each for Trapezoidal and Simpson method) that shows the evaluation of I and the error for each n_f . You can use and modify the functions demoTrap and demoSimp that I showed in class as templates for producing your tables. (You will also need to create a function m-file f=fint(x) that evaluates $e^{-x}\cos(e^{-x})$)

Question 2:

Repeat the calculation of question 1, but using Gauss-Legendre (GL) quadrature with the function gaussQuad.m using different number (n) of GL points per panel:

a)
$$n = 2$$
 (i.e. 2-pt GL rule), b) $n = 3$ (3-pt GL rule), c) $n = 4$ (4-pt GL rule).

For each case, calculate the integral by subdividing the interval [-1,5] into N=4,8,16,32,64,128 panels. Present your answer in a function file ps7q2 that produces 3 tables (one for each choice of n) of the evaluation of I and the error as a function of n_f (the number of function evaluation) where $n_f=N\cdot n$. You can use and modify the function demoGauss that I showed in class as a template for producing your tables.