Tema 1

Introducción

Fundamentos de Informática

Universidad de Oviedo

Índice

- 1.1 Visión general de la informática
- 1.2 Estructura y funcionamiento de un ordenador
- 1.3 Representación de la Información en un ordenador
 - 1.3.1 Sistemas de representación: decimal, binario, hexadecimal

Representación de números enteros

Representación de números reales

Representación de caracteres

Representación de booleanos

1.4 La Lógica de Proposiciones

1.1 Visión general de la informática

- Informática: Información + automática
 - Según la RAE: Conjunto de conocimientos científicos y técnicas que hacen posible el tratamiento automático de la información por medio de ordenadores.
 - Ciencia que trata de la adquisición, almacenamiento, representación, tratamiento y transmisión de la información, utilizando máquinas denominadas ordenadores o computadoras.
 - La información en las empresas se gestiona con diferentes herramientas informáticas integradas, incluyendo
 - Diferentes sistemas operativos
 - Comunicaciones entre máquinas
 - Bases de datos
 - Aplicaciones de usuario
 - Aplicaciones de control y gestión de producción

1.2 Estructura y funcionamiento de un ordenador

Pero, ¿qué es un ordenador?

Es una máquina que recoge unos datos, opera con ellos y retorna una salida.

Procesa a una velocidad infinitamente superior a la humana.

Es programable.

- ¿Cómo realiza estas funciones un ordenador?
 - Arquitectura y Diagrama de bloques
 - Espacio de direcciones único
 - Programa
 - Algoritmo

Dado un polinomio de segundo orden $p(x)=a\cdot x^2+b\cdot x+c$, evaluar p(x) para todo x distinto de cero introducido por el usuario.

Algoritmo:

```
Pedir coeficientes
Pedir x
Mientras x!=0
      Calcular p(x)
       Mostrar p(x)
       Pedir x
```

```
print "Evaluacion de polinomios de 2do orden:"
print "p(x)=a*x*x+b*x+c"
a = float(raw_input("Dame a: "))
b = float(raw_input("Dame b: "))
c = float(raw_input("Dame c: "))
x = float(raw_input("Dame x: ") )
while not x==0:
  s = a * x * x + b * x + c
  print "p(", x, ")=",s
  x = float(raw_input("Dame x: "))
print "Fin del programa"
```

1.2 Estructura y funcionamiento de un ordenador

- La información en un ordenador
 - Mediante los buses se intercambian señales eléctricas.
 - Las señales eléctricas son TODO/NADA!
 - o Un ejemplo, el antiguo 68000 de Motorola... ౖ ├ ;

1.3 Representación de la Información en un ordenador

- Para procesar la información en un computador hay que representarla
 - O Un computador solo admite 1/0's → ¡Información binaria!
 - Sistema binario
 - Base 2 → dígitos {0, 1}
 BIT → bit digit
 - Agrupaciones
 - **□** 8 bits **→** 1 **Byte**
 - \square 10³ bytes \rightarrow **kB**
 - \square 2¹⁰ bits \rightarrow **kb** \square

Base 10, dígitos {0, 1, 2, 3, 4,5, 6, 7, 8, 9}

 Sabemos extraer las unidades y sus pesos relativos!!!

138,32

138,32

 $2x10^{-2}$

En general, si tenemos el número **abcd.ef** representado en la **base B**, EXPRESARLO EN BASE DECIMAL se realiza mediante multiplicaciones sucesivas por potencias de la base...

abc.d
$$\rightarrow$$
 a*B²+b*B¹+c*B⁰+d*B⁻¹

1.3 Representación de la Información en un ordenador

- Sistema hexadecimal
 - o La base es 16
 - Valores posibles: entero en el rango [0, 15]
 - Dígitos posibles: {0, 1, 2, 3, 4,5, 6, 7, 8, 9, A, B, C, D, E, F}
 - Correspondencia directa con los números binarios:
 - 16=2⁴ → con 4 bits puedo representar todos los dígitos binarios.
 - Mismo procedimiento para llevar de decimal a hexadecimal y viceversa
 - El visto para sistema binario

10	0 x	2 10	0 x	2
0	0	0000 8	8	1000
1	1	0001 9	9	1001
2	2	0010 (10	A	1010
3	3	0011 (11)	B	1011
4	4	0100 (12)	C	1100
5	5	0101 (13)	D	1101
6	6	0110 (14)	E	1110
7	7	0111 (15)	F	1111

Es fácil pasar de binario a hexadecimal. Y viceversa... ¡solo hay que usar la tabla!

Representación de los Números Enteros Positivos

DE BASE B A BASE 10

En general, si tenemos el número **abcd.ef** representado en la **base B**, EXPRESARLO EN BASE DECIMAL se realiza mediante MULTIPLICACIONES sucesivas por potencias de la base B...

abc.d
$$\rightarrow$$
 a*B²+b*B¹+c*B⁰+d*B⁻¹

DE BASE 10 A BASE B

En general, si tenemos el número **abcd.ef** representado en la **base 10**, EXPRESARLO EN BASE B se realiza mediante DIVISONES sucesivas entre la base B...

25/2=12, resto 1 12/2=6, resto 0 6/2=3, resto 0 3/2=1, resto 1 $\frac{1}{2}$ =0, resto 1 $\frac{1}{2}$ 11001₂

Vamos a utilizar básicamente 3 tipos de representación:

	Decimal	Binario	Hexadecimal
¿Por qué?	Lo usa el humano	Lo usa el computador	Representación intermedia
Base	Base B=10	Base B=2	Base B=16
Dígitos	0123456789	0 1	0123456789 ABCDEF

Representación de los Números Enteros Positivos

- De decimal a binario
 - 0 18
 - 0 29
- De binario a decimal
 - o 11010
 - 0 0110111
- De binario a hexadecimal (8 bits)
 - 0 11010
 - 0 0110111
- De hexadecimal a decimal
 - o 1A2F
- De hexadecimal a binario
 - 1A2F

- 18/2=9 r=0; 9/2=4 r=1; 4/2=2 r=0; 2/2=1 r=0; 1/2=0 r=1

 →10010
- 29/2=14 r=1; 14/2=7 r=0; 7/2=3 r=1; 3/2=1 r=1; 1/2=0 r=1 \rightarrow 11101
- $1*2^4+1*2^3+0*2^2+1*2^1+0*2^0=26$
- $0*2^6+1*2^5+1*2^4+0*2^3+1*2^2+1*2^4$ $^1+1*2^0=55$
- 0001 1010 \rightarrow 0x1A
- 0011 0111 \rightarrow 0x37
- $1*16^3+10*16^2+2*16^1+15*16^0=6$ 703
- 0001 1010 0010 1111

... Números Enteros con signo y Números Reales

Números Enteros con signo

- Con signo: ídem pero usando el bit más significativo como signo +(0) o -(1).
- En complemento a 2

Para obtener la representación de -50:

- 1º- Se representa 50 en binario 50 → 00110010
- 2º.- Se obtiene el c2 de 50 (-50)

 Buscar el primer 1 por la derecha

 Cambiar el resto de bits

 00110010 → 110011 10

Números reales

- Estándar IEEE 754
- Uso de notación científica más algunas reglas de simplificación
- En 32 o en 64 bits

Signo Exponente Mantisa
1 8 ó 11 bits 23 ó 52 bits

Representación de los Caracteres y Datos Booleanos

Caracteres

- Alfabéticos, Dígitos, Signos
 Puntuación...
- Convenio: tabla de representación
 - ASCII & ASCII extendido

Dec Hx Oct Char Dec Hx Oct Html Chr									Chr
0	0	000	NUL	(null)	32	20	040		Space
1	1	001	SOH	(start of heading)	33	21	041	!	!
2	2	002	STX	(start of text)	34	22	042	 4 ;	"
3	3	003	ETX	(end of text)	35	23	043	4#35;	#
4	4	004	EOT	(end of transmission)	36	24	044	\$	ş
5	5	005	ENQ	(enquiry)	37	25	045	%	*
6	6	006	ACK	(acknowledge)	38	26	046	@#38;	6
7	7	007	BEL	(bell)	39	27	047	@#39;	'
8	8	010	BS	(backspace)	40	28	050	a#40;	(
9	9	011	TAB	(horizontal tab)	41	29	051))
10	A	012	LF	(NL line feed, new line)	42	2A	052	&# 4 2;	*
11	В	013	VT	(vertical tab)	43	2B	053	a#43;	+
12	С	014	FF	(NP form feed, new page)	44	2C	054	a#44;	,
13	D	015	CR	(carriage return)	45	2D	055	a#45;	E 1
14	E	016	so	(shift out)	46	2E	056	&#46;</td><td></td></tr></tbody></table>	

Booleanos:

- Valores posibles True o False (Verdadero o Falso; 1 ó 0)
- Nombre en honor a George Boole (1815-1864), padre de la de Lógica Proposiciones moderna.
- Ejemplos de situaciones que producen un dato booleano:
 - 3 > 5 False
 - 14 >= 2 True
 - 3 es entero True
- Un dato de tipo booleano conlleva la menor cantidad de información posible: 1 bit

Un sistema de Unidades de Información

- En el Sistema Internacional de Unidades los múltiplos de bit son:
- Kilobit (kb) 10³ bits
- Megabit (Mb), 10⁶ bits= 1000 kb
- Gigabit (Gb), 10⁹ bits= 1000 Mb
- Terabit (Tb), 10¹² bits= 1000 Gb
- Petabit (Pb), 10¹⁵ bits= 1000 Gb

- En el Sistema Internacional de Unidades los múltiplos de byte son:
- Kilobyte (kB) 10³ bytes
- Megabyte (MB) 10⁶ bytes=1000 kB
- Gigabyte (GB) 10⁹ bytes= 1000 MB
- Terabyte (TB) 10¹² bytes= 1000 GB
- Petabyte (PB) 10¹⁵ bytes= 1000 TB

1.4 La Lógica de Proposiciones

- La Lógica de Proposiciones se remonta en sus inicios a la época griega clásica
- Renace su estudio con esplendor en el siglo IX con Boole, tomando el carácter de ciencia
- Es un modelo de cierto tipo de razonamientos humanos.
- Conlleva un lenguaje como forma de representar y manejar simbólicamente los razonamientos.
- El lenguaje de esta lógica es lo que nos interesa en esta asignatura.

- El lenguaje de la Lógica de Proposiciones es un lenguaje formal
- Un lenguaje formal es un lenguaje bien definido que consta de:
 - Un alfabeto: los símbolos del lenguaje
 - Una sintaxis: las reglas de construcción de las palabras del lenguaje
 - Una semántica: el significado de las palabras del lenguaje

El Alfabeto

El <u>Alfabeto</u> de la L.P. consta de los:

 Símbolos de Verdadero y Falso

- Símbolos de proposiciones elementales
 - o Referencia:

{A, B, C,
$$A_1$$
, A_2 , A_3 , ..., B_1 , B_2 , B_3 , ... C_1 , C_2 , C_3 , ...}

Alternativos:

- Símbolos de las conectivas u operadores lógicos
 - O De referencia:

- Alternativos:
 - {or, and, not},
 - **■** {|, &, ¬},
 - **■** {+, ·, ¯},
 - etc.
- Símbolos auxiliares

Cuando nos tengamos que referir a proposiciones cualesquiera utilizaremos los metasímbolos P, Q, R, P₁, P₂, ...

La Sintaxis

Las **proposiciones** de la L.P. se construyen de acuerdo a las siguientes reglas sintácticas:

- 1. Los símbolos V, de Verdadero, y F, de Falso, son proposiciones.
- 2. Los símbolos de proposiciones elementales son proposiciones.
- 3. Si P₁ y P₂ son proposiciones también los son:
 - $P_1 \vee P_2$
 - $P_1 \wedge P_2$
 - ¬ P₁

Ejemplos de proposiciones con diferentes alfabetos:

V

(por la 1º regla)

A

- (por la 2º regla)
- **V**∧A
- (por la 3º regla)

¬B

- (por la 3º regla)
- $(A \land \neg B)$ (por la 3º regla, 2 veces)
- (A ∧ ¬B) ∨ C
- ¬B∨B
- Ilueve ∧ hace_frío
- $\{(x>0 \text{ and } x<=3) \text{ or } y<6\}$

La Semántica (1)

- La semántica de una proposición se reduce a ∨ o F.
- Una interpretación I de una proposición consiste en una asignación de valores de verdad a cada proposición elemental de ella.

Ejemplo.

$$I=\{A=V, B=V\}$$

Es una interpretación de $(A \land \neg B)$, pero no lo es de $(A \land \neg B) \lor C$, ni de (llueve \land hace_frio).

 Los símbolos V y F tienen valores de verdad asociados V y F respectivamente, bajo cualquier interpretación. Obsérvese como se distinguen en negrita los símbolos de proposición **V** y **F**, de sus valores de verdad V y F.

 El valor de verdad de una proposición elemental viene dado siempre por la interpretación que se considere en ese momento.

A continuación se proporcionarán las reglas que permitirán evaluar una proposición no elemental bajo cualquier interpretación

La Semántica (2)

 Reglas semánticas de las conectivas u operadores lógicos.

Sean P1 y P2 proposiciones cualesquiera. Entonces la semántica de las proposiciones construidas a partir de ellas mediante las conectivas lógicas, viene resumida en las tablas de verdad siguientes:

• 🔨 📃	P1	P2	P1 ∧ P2
ľ	V	V	V
	V	F	F
	F	V	F
	F	F	F

Evaluación de proposiciones (1)

 Evaluación de (A ∧ ¬B) ∨ C bajo I= {A=V, B=F, C= F}

	(A	٨		В)	V	С
10	V			F		F
2 º	V		V			F
30		V				F
4º					V	
5º						

Evaluación de (A ∧ ¬B) ∨ C
bajo todas sus
interpretaciones (una por fila)
o Tabla de Verdad

A	В	С	¬В	A∧¬B	(A ∧ ¬B) ∨ C
V	V	V	F	F	V
V	V	F	F	F	F
V	F	V	V	V	V
V	F	F	V	V	V
F	V	V	F	F	V
F	V	F	F	F	F
F	F	V	V	F	V
F	F	F	V	F	F

Evaluación de proposiciones (2)

Evaluación de (x>3) ∧ (y<=0)
 bajo l= {x= 4, y= 5}

	(x>3)	٨	\neg	(y<=0)
10	(4>3)	٨	\neg	(5<=0)
2 °	V			F
3º	V		V	
4 º		V		

Evaluación de
 ((x>3) ∧ ¬(y<=0)) ∨ A
 bajo I={x= 4, y= 5, A=V}

	(x>3)	^	\neg	(y<=0)	V	A
10	((4>3)	٨	\neg	(5<=0))	V	A
2 °	V			F		V
30	V		V			V
40		V				V
5°					V	

Las Leyes Lógicas

Las **leyes lógicas** son equivalencias muy importantes entre proposiciones; es decir, proposiciones con idéntica tabla de verdad.

Sean P, Q y R proposiciones cualesquiera:

Asociativas

$$\circ (P \lor Q) \lor R = P \lor (Q \lor R)$$

$$\circ (P \wedge Q) \wedge R = P \wedge (Q \wedge R)$$

Conmutativas:

$$\circ$$
 P \vee Q = Q \vee P

$$\circ$$
 P \wedge Q = Q \wedge P

Idempotente

$$\circ \neg \neg P = P$$

Distributivas

$$\circ (P \vee Q) \wedge R = (P \wedge R) \vee (Q \wedge R)$$

$$\circ (P \land Q) \lor R = (P \lor R) \land (Q \lor R)$$

De los complementarios

$$\circ$$
 P $\vee \neg$ P = V,

$$\circ P \land \neg P = F$$

De la V y de la F

$$\circ$$
 $\mathbf{V} \vee \mathbf{P} = \mathbf{V}$

$$\mathbf{V} \wedge \mathbf{P} = \mathbf{P}$$

$$\circ$$
 F \vee P=P,

$$\mathbf{F} \wedge \mathsf{P} = \mathbf{F}$$

De De Morgan

$$\circ \neg (P \land Q) = \neg P \lor \neg Q$$

Simplificaciones sintácticas

Simplificar las proposiciones siguientes:

•
$$\neg$$
($(\neg A \land B) \lor \neg (B \lor \neg A)$) = \neg ($\neg A \land B$) $\land \neg \neg (B \lor \neg A)$ = \neg ($\neg A \land B$) \land ($B \lor \neg A$) = $(\neg \neg A \lor \neg B) \land (B \lor \neg A)$ = $(A \lor \neg B) \land (B \lor \neg A)$
• \neg ($(x <= 3 \lor x >= 5) \lor (3 > y \lor y >= 9)$) = \neg ($x <= 3 \lor x >= 5$) $\land \neg$ ($x >= 5$) \land ($x >= 5$) \rightarrow (x

Traducciones

Realicense las siguientes traducciones:

Es blanco y no es blanco.

Sea el alfabeto $\{A,...\}$ donde identificamos A = Ser blanco, entonces la traducción será: $A \land \neg A$, que, por otra parte, sabemos que $A \land \neg A = \mathbf{F}$, por lo que ambas proposiciones se pueden tomar como traducciones correctas.

 No es verdad que se columpie y no use el móvil, pero al menos canta o ríe.

$$A \equiv Columpiarse$$
, $B \equiv Usar\ el\ m\'ovil$, $C \equiv Cantar$, $D \equiv Reir$
 $\neg (A \land \neg B) \land (C \lor D)$

Sean x e y enteros: al menos uno de los dos es mayor o igual que cero, y el primero no es mayor que el segundo.
 (x>=0)

•
$$((x>=0) \lor (y>=0)) \land \neg (x>y) = ((x>=0) \lor (y>=0)) \land (x<=y)$$

Ejercicios (tomados de exámenes)

 Considere la expresión "El número x es impar, o es par y mayor o igual a 10". Escriba una expresión en Python usando una variable x con el mismo significado que en la expresión.

(Nota: la expresión a%b en Python devuelve el resto de una división entera) (x % 2 != 0) or ((x % 2 == 0)) and (x >= 10)

 Niegue la expresión anterior y aplique posteriormente las leyes de De Morgan, indicando la expresión resultante sin negación alguna. ¿Cuál sería su resultado para x=6?

```
not ((x % 2 != 0) or ((x % 2 == 0) and (x >= 10)))
not (x % 2 != 0) and not ((x % 2 == 0) and (x >= 10))
not (x % 2 != 0) and (not (x % 2 == 0) or not (x >= 10))
(x % 2 == 0) and ((x % 2 != 0) or (x < 10))
El resultado para x=6 sería True
```

¿Se podría simplificar todavía más esta expresión?