

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta078

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Mil$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze produsul scalar al vectorilor $\vec{v} = \vec{i} + \vec{j}$ şi $\vec{w} = 2\vec{i} 3\vec{j}$
- (4p) b) Să se calculeze distanța de la punctul D(2, 4, 6) la planul x + y + z 6 = 0.
- (4p) c) Să se determine ecuația tangentei la hiperbola $x^2 3y^2 = 1$ dusă prin punctul P(2,1).
- (4p) d) Să se arate că punctele L(1, 2,0), M(2, 3,0) şi N(3, 4,0) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1,3,2), B(3,2,1), C(2,1,3) și D(2,4,6).
- (2p) f) Să se determine $a,b \in \mathbb{R}$, astfel încât punctele E(1,1) și F(2,3) să aparțină dreptei x + ay + b = 0.

SUBIECTUL II (30p)

1.

- (3p)
 a) Să se calculeze determinantul | 1 2 3 | 4 5 6 | 7 8 9 |
- (3p) b) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbf{Z}_5$ să verifice relația $\hat{x}^2 = \hat{1}$.
- (3p) c) Să se calculeze produsul matricelor $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ și $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$.
- (3p) d) Să se determine rangul matricei $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$.
- (3p) e) Să se calculeze $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{10}$.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = e^x + \ln(x^2 + 1)$.
- (3p) a) Să se calculeze f''(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x)dx$.
- (3p) c) Să se arate că funcția f este strict crescătoare pe intervalul $[0, \infty)$.
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) e) Să se calculeze $\int_0^1 \frac{x^2}{3x^3 + 4} dx.$

1

SUBIECTUL III (20p)

Se consideră numărul complex z = a + bi, cu $a,b \in \mathbb{R}$ și notăm z = a - bi.

- (4p) a) Să se calculeze $z + \overline{z}$.
- (4p) **b**) Să se calculeze $z \cdot \overline{z}$.
- **(4p)** c) Să se verifice că $z^2 2az + a^2 + b^2 = 0$.
- (2p) d) Să se determine $c, d \in \mathbf{R}$, știind că numărul complex x = 3 + 4i verifică ecuația $x^2 + cx + d = 0$.
- (2p) e) Utilizând metoda inducției matematice, să se arate că $\forall n \in \mathbb{N}, n \ge 2$, există $a_n, b_n \in \mathbb{R}$, astfel încât $z^n = a_n \cdot z + b_n$.
- (2p) **f**) Să se arate că pentru $\forall w \in \mathbb{C}$ și $\forall n \in \mathbb{N}$, $n \ge 2$, există polinomul cu coeficienți reali $f = X^n + pX + q$, cu proprietatea că f(w) = 0.
- (2p) g) Să se arate că numărul complex x = 3 + 4i nu poate fi rădăcină pentru nici un polinom $g \in \mathbf{R}[X]$, de forma $g = X^{2007} + r$.

SUBIECTUL IV (20p)

Se consideră funcția $f:(0,\infty)\to \mathbf{R}\,,\; f(x)=2\sqrt{x}$ și șirurile $(a_n)_{n\geq 1}\,,\; (b_n)_{n\geq 1}$ și $(c_n)_{n\geq 1}\,,\; a_n=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}\,,\;\; b_n=a_n-f(n),\;\; c_n=a_n-f(n+1)\,,\;\; \forall n\in \mathbf{N}\,,\;\; n\geq 1\,.$

- (4p) a) Să se calculeze f'(x), $x \in (0, \infty)$.
- (4p) b) Să se arate că funcția f' este strict descrescătoare pe intervalul $(0, \infty)$.
- (2p) c) Utilizând teorema lui *Lagrange*, să se arate că $\forall k > 0$, există $c \in (k, k+1)$, astfel încât $f(k+1) f(k) = \frac{1}{\sqrt{c}}$.
- (2p) d) Să se arate că $\frac{1}{\sqrt{k+1}} < 2\sqrt{k+1} 2\sqrt{k} < \frac{1}{\sqrt{k}}, \forall k \in (0,\infty).$
- (2p) e) Să se arate că şirul $(b_n)_{n\geq 1}$ este strict descrescător iar şirul $(c_n)_{n\geq 1}$ este strict crescător.
- (2p) f) Să se arate că șirurile $(b_n)_{n\geq 1}$ și $(c_n)_{n\geq 1}$ sunt convergente.
- (2p) g) Să se calculeze $\lim a_n$.
- (2p) h) Să se calculeze $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}} \right) \cdot \frac{1}{\sqrt{n}}$.