Intro to Math Reasoning HW 4b

Ozaner Hansha

October 3, 2018

The functions f and g referenced in Problems 1-3 have the following domain and codomain: $f,g:\mathbb{R}\to\mathbb{R}$.

Problem 1

Part a

Problem: Are there two functions f, g such that they both have limits as $x \to 0$?

Solution: Yes, consider f(x) = g(x) = x. It clearly has a limit as $x \to 0$, namely 0.

Part b

Problem: Is there a unique pair of functions (f, g) such that they hold the same property in Part A?

Solution: No, there is more than one pair of functions that satisfy this property. We gave one above, here is another one: $f(x) = x^2$ and g(x) = 5x + 1. They both have limits as $x \to 0$, with $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} g(x) = 1$.

Part c

Problem: Is there a pair of functions (f, g) such that they do *not* satisfy the above property?

Solution: Yes, consider the following choice of f and g:

$$f(x) = g(x) = \begin{cases} x+1, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$

This function has a right-sided limit of 1 as $x \to 0$ but a left-sided limit of 0. Thus the limit does not exist for either f or g.

Problem 2

Problem: Is the following statement true?: if f has a limit as $x \to 0$ and g is bounded, then the product fg has a limit as $x \to 0$.

Solution: This statement is false. Consider the following choices of functions:

$$f(x) = 1$$

$$g(x) = \begin{cases} 2, & \text{if } x \ge 0 \\ -2, & \text{if } x < 0 \end{cases}$$

These functions satisfy the requirements for f and g, namely:

$$\lim_{x\to 0} f(x) = 1 \qquad \qquad \text{(limit exists)}$$

$$\forall x \ |g(x)| \leq 2 \qquad \qquad (g \text{ is bounded})$$

Also note that $\lim_{x\to 0} g(x)$ does not exist (the left hand and right hand limits are -2 and 2 respectively and thus do not line up). The reason this is important is because when we multiply the functions we get f(x)g(x)=g(x). This is because we set f(x)=1. As a result fg doesn't have a limit as $x\to 0$ just like g. And so the statement we set out to disprove is indeed false.

Problem 3

Problem: Prove the following statement: if $\lim_{x\to 0} f(x) = 0$ and g is bounded, then the product fg has a limit as $x\to 0$.

Solution: This is true and we can see this by writing down the definition of limit as $x \to 0$ for f:

$$\lim_{x \to 0} f(x) = 0 \equiv (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R}) \ 0 < |x - 0| < \delta \to |f(x) - 0| < \epsilon$$
$$\equiv (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R}) \ 0 < |x| < \delta \to |f(x)| < \epsilon$$

and for the product of the functions fg:

$$\lim_{x \to 0} f(x)g(x) = 0 \equiv (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R}) \ 0 < |x - 0| < \delta \to |f(x)g(x) - 0| < \epsilon$$
$$\equiv (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R}) \ 0 < |x| < \delta \to |f(x)g(x)| < \epsilon$$

Putting these together, this means we must prove the following:

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R}) \ 0 < |x| < \delta \to |f(x)| < \epsilon$$

$$\Longrightarrow$$

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R}) \ 0 < |x| < \delta \to |f(x)g(x)| < \epsilon$$

First let's call the bound on g the constant M. As in $|g(x)| \leq M$. Now let us note that $|f(x)g(x)| \leq |f(x)||g(x)|$ via the triangle inequality. Finally let express the ϵ in the first statement as $\frac{\epsilon}{M}$. Making the antecedent:

$$(\forall \frac{\epsilon}{M} > 0)(\exists \delta > 0)(\forall x \in \mathbb{R}) \ 0 < |x| < \delta \to |f(x)| < \frac{\epsilon}{M}$$

And so for a given choice of δ we find that $|f(x)| < \frac{\epsilon}{M}$ which means that $|f(x)g(x)| \leq |f(x)||g(x)| < M \cdot \frac{\epsilon}{M} = \epsilon$

Thus, $|f(x)g(x)| < \epsilon$ making the consequent of the statement true. This chains back up the statement with each implication's consequent being true until we have proved the whole statement.

Problem 4

Problem: Prove the following:

$$(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$$

Solution: Here is a truth table:

A	B	C	$A \lor C$	$B \vee C$	$(A \lor C) \land (B \lor C)$	$(A \wedge B) \vee C$
\overline{F}	F	F	F	F	F	F
\mathbf{F}	\mathbf{F}	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	Τ	F	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{T}	F	F	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	F	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
${ m T}$	${\rm T}$	F	${ m T}$	${ m T}$	${ m T}$	${ m T}$
${ m T}$	${\rm T}$	${\rm T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$

Problem 5

Problem: Prove the following:

$$\neg (A \to B) \equiv (A \land \neg B)$$

Solution: Here is a truth table:

A	B	$\neg B$	$A \to B$	$\neg(A \to B)$	$A \wedge \neg B$
F	F	Т	Τ	F	F
\mathbf{F}	\mathbf{T}	\mathbf{F}	Τ	\mathbf{F}	\mathbf{F}
${ m T}$	F	\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$
Т	Т	F	Т	F	F