Атомная точность без ГНСС

Гибрид ИФРНС/OCXO/MFGN для роя БПЛА

Научно-коммерческое обоснование

Глушение ГНСС — смерть для автономных роев

Критическая уязвимость ГНСС

- Сигналы ГНСС легко подавляются средствами РЭБ
- Мощность сигнала ГНСС на Земле: -130 дБм
- Для подавления достаточно передатчика мощностью 1-5 Вт
- Спуфинг позволяет перехватить управление роем

Последствия потери ГНСС для роя БПЛА 100

80

Почему MFGN+Wi-Fi недостаточно?

Технология	Преимущества	Недостатки
Магнитные карты (MFGN)		
Не требует внешних сигналов		
Низкая точность (50- 200 м)		
Wi-Fi HaLow		
Дальняя связь (1 км+)		
Низкая точность синхронизаци и (>500 нс)		
Инерциальные системы (IMU)		
Работает без сигналов		
Накопление		

Решение: Архитектура гибридной системы

Ключевые компоненты

ИФРНС

Базовая навигация и эталонное время. Устойчивость к РЭБ благодаря работе в диапазоне СДВ.

Точность: 20-50 м, время: 100 нс

Высокоточный генератор OCXO/CSAC

Поддержание стабильности времени между сеансами ИФРНС. Снижение дрейфа.

Стабильность: $1e^{-11}$ (OCXO), $1e^{-12}$ (рубидий)

Магнитные карты (MFGN)

Альтернативная навигация при временном отсутствии ИФРНС. Калибруется по ИФРНС.

Точность с коррекцией: ≤15 м

Wi-Fi HaLow

Передача эталонного времени в рое. Синхронизация ведомых БПЛА.

Точность синхронизации: ≤100 н

Прорыв: ИФРНС + генератор как фундамент

Синергия ИФРНС и высокоточного генератора

ИФРНС: устойчивость к РЭБ Работа в диапазоне СДВ (100 кГц) обеспечивает в 1000 раз большую устойчивость к глушению по сравнению с ГНСС (1.5 ГГц) Генератор: стабильность времени ОСХО/СЅАС генераторы обеспечивают стабильность 10⁻¹¹ - 10⁻¹², что позволяет сохранять точное время до 60 минут Взаимная коррекция ИФРНС корректирует дрейф генератора, а генератор обеспечивает непрерывность при временной недоступности ИФРНС

Распространение в рое

Ведущий БПЛА передает эталонное время ведомым через
Wi-Fi HaLow с точностью ≤100 нс

Расчеты стабильности времени

Технические преимущества

Сравнение эффективности

Кратность улучшений

Деградация точности при потере ИФРНС

Оборудование и интеграция

Ключевые компоненты

Приемник ИФРНС "ПОИСК-М"

Прием сигналов ИФРНС в диапазоне СДВ

Точность позиции:	20-50 N
Точность времени:	100 но
Энергопотребление:	5-8 B1

Генератор ОСХО "СИГМА-Т"

Высокоточный термостатированный генератор

Стабильность:	
Энергопотребление:	1-3 Вт
Macca:	50-100 г

Wi-Fi HaLow модуль

Модуль связи для синхронизации роя

Дальность:	
Энергопотребление:	0.5-1 Вт
Точность синхронизации:	≤100 нс

Интеграция на БПЛА

Технические характеристики системы

Общая масса:	300-450 г	Рабочая температура:	-40+85°C
Энергопотребление:	7-12 Вт	Время запуска:	≤60 сек

Сравнение с зарубежными аналогами

Параметр	Наша система	DARPA ASPN	Европейский E- PAS
Основная технология	ИФРНС + OCXO + MFGN	Мультисенсорная интеграция	Galileo + локальные сети
Точность позиции	≤15 м (при РЭБ)	25-30 м (при РЭБ)	40-50 м (при РЭБ)
Точность синхронизации	≤100 нс	≤250 нс	≤500 нс
Устойчивость к РЭБ	Высокая	Высокая	Средняя
Автономность	30-60 мин	15-30 мин	
Стоимость	Средняя	Высокая	Низкая
Стадия разработки	Прототип	Прототип	Концепция

Ключевые отличия

, иниверсальный подход к интеграции сенсор
высокая сложность и стоимость
ависимость от множества источников

Уникальное торговое предложение

Единственная система, гарантирующая точность ≤15 м при 100% глушении ГНСС

Ключевые преимущества

Непревзойденная устойчивость к РЭБ

Работа в условиях полного подавления ГНСС благодаря использованию ИФРНС в диапазоне СДВ и высокоточных генераторов.

Гарантированная точность

Точность позиционирования ≤15 м и синхронизации ≤100 нс даже при периодическом доступе к ИФРНС (1 раз в 5 минут).

Автономность

До 60 минут автономной работы при полном отсутствии внешних сигналов с сохранением приемлемой точности.

Сценарии РЭБ

Этапы внедрения

Дорожная карта проекта

Пилотные испытания (3-6 месяцев)

- Тестирование на малых группах БПЛА (3-5 единиц)
- 🛾 🗸 Отработка алгоритмов в различных условиях РЭБ
- Оптимизация энергопотребления и массогабаритных характеристик

Сертификация (6-9 месяцев)

- 🗸 Получение сертификатов соответствия требованиям
- 🕏 Проведение государственных испытаний
- 🛾 🗸 Подготовка документации для серийного производства

Серийное производство (9-12 месяцев)

- 🥝 Запуск производственной линии
- Обучение персонала заказчика

График реализации

Ключевые показатели внедрения

Выводы

Ключевые выводы

Решена критическая проблема

Гибридная система обеспечивает надежную навигацию и синхронизацию роя БПЛА в условиях полного глушения ГНСС

Превосходство над аналогами

Точность позиционирования ≤15 м и синхронизации ≤100 нс превосходит зарубежные аналоги DARPA ASPN и E-PAS

Технологическая готовность

Все компоненты системы **доступны и реализуемы** на отечественной элементной базе

Перспективы развития

Дальнейшая миниатюризация, снижение энергопотребления и интеграция с другими системами БПЛА

Этапы внедрения

Q 2025 Q3-Q4: Прототип

Создание и лабораторные испытания прототипа системы

2026 Q1-Q2: Полевые испытания

Тестирование на реальных БПЛА в различных условиях

2026 Q3-Q4: Сертификация

Получение необходимых сертификатов и разрешений

2027: Серийное производство

Запуск серийного производства и внедрение

