

Modelling in Linear Programming

sophie.demassey@minesparis.psl.eu

October 2, 2024

- 1 Exercises
- 1.1 Doors and windows

$$\max 3x_1 + 5x_2$$
s.t. $x_1 \le 4$

$$x_2 \le 6$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 \ge 0$$

1.2 Nuclear waste management

A company eliminates nuclear wastes of 2 types A and B, by applying a sequence of 3 processes I, II and III in any order. The processes I, II, III, have limited availability, respectively: 450h, 350h, and 200h per month. The unit processing times depend on the process and waste type, as reported in the following table:

process	I	II	III
waste A	1h	2h	1h
waste B	3h	1h	1h

(first entry reads *one unit of A-type waste is processed in 1 hour with process I*) The profit for the company is 4000 euros to eliminate one unit of waste A and 8000 euros to eliminate one unit of waste B.

Objective: maximize the profit.

$$\max 4x_{A} + 8x_{B}$$
s.t. $x_{A} + 3x_{B} \le 450$

$$2x_{A} + x_{B} \le 350$$

$$x_{A} + x_{B} \le 200$$

$$x_{A}, x_{B} \ge 0$$

1.3 The two crude petroleum problem [Ralphs]

A petroleum company distills crude imported from Kuwait (9000 barrels available at 20ε each) and from Venezuela (6000 barrels available at 15ε each), to produce gasoline (2000 barrels), jet fuel (1500 barrels), and lubricant (500 barrels) in the following proportions:

	gasoline	jet fuel	lubricant
Kuwait	0.3	0.4	0.2
Venezuela	0.4	0.2	0.3

(first entry reads: *producing 1 unit of gasoline requires 0.3 units of crude from Kuwait*) Objective: minimize the production cost.

$$\begin{aligned} & \min 20x_K + 15x_V \\ & \text{s.t.} & 0.3x_K + 0.4x_V \ge 2 \\ & 0.4x_K + 0.2x_V \ge 1.5 \\ & 0.2x_K + 0.3x_V \ge 0.5 \\ & 0 \le x_K \le 9 \\ & 0 \le x_V \le 6 \end{aligned}$$

1.4 The steel factory

A factory produces steel in coils/tapes/sheets up to 6000/4000/3500 tons a week, sold at 25/30/2 euros per ton of product, respectively. The heating mill is available up to 35 hours a week and can process 200 tons of each product each hour. The rolling mill is available 40 hours and processes hourly either 200/140/160 tons of coils/tapes/sheets. Objective: maximize profit.

$$\begin{array}{ll} \max 25x_C + 30x_T + 2x_S \\ \text{s.t.} & \frac{x_C}{200} + \frac{x_T}{200} + \frac{x_S}{200} \leq 35 \\ & \frac{x_C}{200} + \frac{x_T}{140} + \frac{x_S}{160} \leq 40 \\ & 0 \leq x_C \leq 6000 \\ & 0 \leq x_T \leq 4000 \\ & 0 \leq x_S \leq 3500 \end{array} \qquad \begin{array}{ll} (\textit{rolling}) \\ (\textit{tapes}) \\ (\textit{sheets}) \end{array}$$

1.5 network flow

A company delivers retail stores in 9 cities in Europe from its unique factory *USINE*. How to manage production and transportation in order to: meet the demand of each store, not exceed the production limit, not exceed the line capacities, minimize the transportation costs?

```
demand = {
    'PARIS': 110,
    'CAEN': 90,
    'RENNES': 60,
    'NANCY': 90,
    'LYON': 80,
    'TOULOUSE': 50,
    'NANTES': 50,
    'LONDRES': 70,
    'MTI AN': 70
                                                                                                                                                                                                                                                                                                                                                              LONDRES
                                                                                                                                                                                                                                                                                                                                                                CAEN
                                                                                                                                                                                                                                                                            LILLE
                                                                                                                                                                                                                                                                                                                                                             NANCY
                    'MILAN': 70
}
LINES, unitary_cost, capacity = multidict({
    ('USINE', 'LILLE'): [2.9, 350],
    ('USINE', 'NICE'): [3.5, 320],
    ('USINE', 'BREST'): [3.1, 310],
    ('LILLE', 'PARIS'): [1.1, 150],
    ('LILLE', 'RENNES'): [1.0, 150],
    ('LILLE', 'RENNES'): [1.3, 150],
    ('LILLE', 'NANCY'): [1.3, 150],
    ('LILLE', 'LONDRES'): [1.3, 150],
    ('NICE', 'YON'): [0.8, 200],
    ('NICE', 'TOULOUSE'): [0.2, 110],
    ('NICE', 'PARIS'): [1.3, 160],
    ('NICE', 'MILAN'): [1.3, 150],
    ('BREST', 'NANTES'): [0.9, 150],
    ('BREST', 'RENNES'): [0.8, 150],
    ('BREST', 'RENNES'): [0.8, 150],
    ('BREST', 'PARIS'): [0.9, 100]
})
                                                                                                                                                                                                                                                  350
                                                                                                                                                                                                                                                                                                                                                        ⇒ RENNES
                                                                                                                                                                                                                                                  310
                                                                                                                                                                                        USINE <
                                                                                                                                                                                                                                                                                                                                                         PARIS
                                                                                                                                                                                                                                                                            BREST
                                                                                                                                                                                                                                                   320
                                                                                                                                                                                                                                                                                                                                                         NANTES
                                                                                                                                                                                                                                                                                                                                                         ► LYON
                                                                                                                                                                                                                                                                               NICE
                                                                                                                                                                                                                                                                                                                                                        ► TOULOUSE
 MAX_PRODUCTION = 900
                                                                                                                                                                                                                                                                                                                                                          MILAN
```

- x_{ℓ} the quantity of products (*flow*) transported on line $\ell = (i, j) \in \texttt{LINES}$
- TRANSITS= {LILLE, NICE, BREST}

$$\begin{aligned} & \min \ \, \sum_{\ell \in \texttt{LINES}} \texttt{COST}_{\ell} x_{\ell} \\ & \text{s.t.} \ \, \sum_{i \in \texttt{TRANSITS}} x_{(\texttt{USINE},i)} \leq \texttt{MAXPROD} \\ & \sum_{i \in \texttt{TRANSITS}} x_{(i,j)} \geq \texttt{DEMAND}_{j}, & \forall j \in \texttt{STORES} \\ & x_{(\texttt{USINE},i)} = \sum_{j \in \texttt{STORES}} x_{(i,j)}, & \forall i \in \texttt{TRANSITS} \\ & 0 \leq x_{\ell} \leq \texttt{CAPACITY}_{\ell}, & \forall \ell \in \texttt{LINES}. \end{aligned}$$

1.6 minimum distance (1-norm)

Find a solution $x \in \mathbb{R}^n$ of the system of equation Ax = b, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ of minimum L^1 norm:

$$\|x\|_1=\sum_{j=1,\dots,n}|x_j|$$

• variable splitting:

$$|x| = \min\{x^+ + x^- \mid x = x^+ - x^-, x^+, x^- \ge 0\}$$

$$\min \sum_{j=1}^{n} (x_j^+ + x_j^-)$$
s.t. $Ax = b$,
$$x_j = x_j^+ - x_j^-, \qquad \forall j$$

$$x_j^+, x_j^- \ge 0, \qquad \forall j$$

• supporting plane model:

$$|x| = \max\{x, -x\} = \min\{y \mid y \ge x, y \ge -x\}$$

$$\min \sum_{j=1}^{n} y_{j}$$
s.t. $Ax = b$,
$$y_{j} \ge x_{j}, \qquad \forall j$$

$$y_{i} \ge -x_{i}, \qquad \forall j$$

1.7 minimum distance (infinity-norm)

Find a solution $x \in \mathbb{R}^n$ of the system of equation Ax = b, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ of minimum L^{∞} norm:

$$||x||_{\infty} = \max_{j=1,\dots,n} |x_j|$$

•
$$y \ge |x_j| \iff y \ge x_j \land y \ge -x_j$$

•
$$y \ge \max_j |x_j| \iff y \ge x_j \land y \ge -x_j \ (\forall j)$$

$$\begin{aligned} &\min y\\ &\text{s.t. } Ax = b,\\ &y \geq x_j,\\ &y \geq -x_j, \end{aligned} \qquad \forall j$$

1.8 data fitting (LAD regression)

Given m observations – data points $a_i \in \mathbb{R}^n$ and associate values $b_i \in \mathbb{R}$, i = 1..m – predict the value of any point $a \in \mathbb{R}^n$ according to a linear regression model?

A best **linear fit** is a function : $b(a) = a^T x + y$, for chosen $x \in \mathbb{R}^n$, $y \in \mathbb{R}$ minimizing the **residual/prediction error** $|b(a_i) - b_i|$, globally over the dataset i = 1..m, e.g.

Least Absolute Deviation or L_1 **-regression:** $\min \sum_i |b(a_i) - b_i|$ supporting planes sparse supporting planes

$$\begin{aligned} \min \sum_{i} d_{i} & \min \sum_{i} d_{i} \\ \text{s.t.} & d_{i} \geq \sum_{j} a_{ij} x_{j} + y - b_{i}, & \forall i \\ d_{i} \geq -(\sum_{j} a_{ij} x_{j} + y - b_{i}), & \forall i \\ d \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, y \in \mathbb{R} & d_{i} \geq -r_{i}, & \forall i \\ d \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, y \in \mathbb{R} & r, d \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}, y \in \mathbb{R} \end{aligned}$$

variable splitting

dual model

$$\begin{aligned} \min \sum_{i} d_{i}^{+} + d_{i}^{-} & \max \sum_{i} b_{i} z_{i} \\ \text{s.t.} & d_{i}^{+} - d_{i}^{-} = \sum_{j} a_{ij} x_{j} + y - b_{i}, \quad \forall i \\ d_{i}^{+}, d_{i}^{-} \geq 0, & \forall i \\ x \in \mathbb{R}^{n}, y \in \mathbb{R} & \sum_{i} z_{i} = 0, \\ & z_{i} \in [-1, 1], & \forall i \end{aligned}$$

1.9 capacity planning

find a least cost electric power capacity expansion plan over an horizon of $T \in \mathbb{N}$ years, given:

- forecast demand (in MW): $d_t \ge 0$ for each year t = 1, ..., T
- existing capacity (oil-fired plants, in MW): $e_t \ge 0$ available for each year t
- options for expanding capacities: (1) coal-fired plant and (2) nuclear plant
 - lifetime (in years): l_i ∈ \mathbb{N} , for each option j = 1, 2
 - capital cost (in euros/MW): c_{jt} to install capacity j operable from year t
 - political/safety measure: share of nuclear should never exceed 20% of available capacity

$$\min \sum_{t=1}^{T} \sum_{j=1}^{2} c_{jt} x_{jt}$$
s.t. $y_{jt} = \sum_{s=\max\{1, t-l_j+1\}}^{t} x_{js}$, $\forall j = 1, 2, t = 1, ..., T$

$$e_t + y_{1t} + y_{2t} \ge d_t, \qquad \forall t = 1, ..., T$$

$$8y_{2t} \le 2e_t + 2y_{1t}, \qquad \forall t = 1, ..., T$$

$$x_{jt} \ge 0, y_{jt} \ge 0, \qquad \forall j = 1, 2, t = 1, ..., T$$

- with decision variables, x_{jt} : installed capacity (in MW) of type j=1,2 starting at year $t=1,\ldots,T$
- and implied variables, y_{jt} : available capacity (in MW) j = 1, 2 for year t