Dinâmica Molecular

Introdução a modelagem, docking e dinâmica molecular (Foco em Doenças

Definição

Usa **física clássica** para simular a movimentação de átomos individuais em sistemas maiores, de modo a explorar os comportamentos dinâmicos do mesmo.

Tipos de dados: Posição Movimentação Distâncias Interações

O que posso esperar dos resultados?

O processo todo desse vídeo retrata 100ns

Entre o tempo de preparação, processamento, análise, etc levou...

2 anos

Física Clássica

1ª Lei: Inércia

"Todo corpo continua em seu estado de repouso ou de movimento uniforme em uma linha reta, a menos que seja forçado a mudar aquele estado por forças aplicadas sobre ele."

2ª Lei: Princípio Fundamental da Dinâmica

F = ma Aceler

Força Sobre O Átomo Deriva Da Energia Potencial Vetorial Aceleração do Átomo

Incógnita do problema

Vetorial

Massa do Átomo

Constante

3ª Lei: Ação e Reação

"As forças de ação e reação em dois corpos distintos apresentam módulos e direções iguais, porém com sentidos opostos."

Programas de DM

Variedade de programas disponíveis

Conjunto de programas (pacote) que realizam as diferentes etapas de dinâmica molecular e ainda a análise dos resultados

GROMACS:

Gratuito;

Fácil instalação do programa

e do acelerador GPU

Manual completo

Muito material disponível (artigos, tutoriais,

fórum)

Programa	Distribuição	
Abalone	Gratuito	
ADUN	Gratuito	
AMBER	Pago	
Ascalaph Designer	Gratuito	
CHARMM	Pago	
Discovery Studio	Pago	
GROMACS	Gratuito	
GROMOS	Pago	
GULP	Gratuito	
LAMMPS	Gratuito	
MDynaMix	Gratuito	
MOE	Pago	
MOIL	Gratuito	
MOLDY	Gratuito	
NAMD	Gratuito	
RedMD	Gratuito	
TeraQuem	Pago	
TINKER	Gratuito	
YASARA	Pago 5	

Etapas gerais da dinâmica molecular

Etapas gerais da dinâmica molecular

Etapas gerais da dinâmica molecular

$$Vm = \Delta S/\Delta t$$

Taxa de variação instantânea de algo

$$Vm = \frac{\Delta s}{\Delta t}$$

$$E \ se \ \Delta t = 0$$
?

Taxa de variação instantânea de algo

$$Vm = \frac{\Delta s}{\Delta t}$$

$$E \ se \ \Delta t = 0?$$

$$V = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

Taxa de variação instantânea de algo

$$Vm = \frac{\Delta s}{\Delta t}$$

$$E \ se \ \Delta t = 0?$$

$$V = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

Campo de força

IUPAC: "conjunto de funçõese parametrização usadas em cálculos de mecânica molecular";

H. Verli (2014): "Conjunto de equações matemáticas dedicadas a reproduzir aspectos do comportamento molecular (...). Estas equações, por sua vez, são calibradas (ou seja, parametrizadas) para reproduzir o comportamento dos compostos de interesse".

Termos ligados Calcula energia potencial em cada átomo.

estiramento de ligações químicas; deformação de um ângulo de ligação; torção de um diedro.

Termos não-ligados

interações de van der Waals; sobreposição de orbitais; interações eletrostáticas.

Vicente Salgado Pires e RSG-Brazil

Explicando

- Lei de Hooke: F = kx
 - k é a resistência da mola
 - x é a distensão da mola
- Lei de Coulomb: $F = \frac{Kq_iq_j}{R_{ij}}$
 - K é a constante dielétrica do sistema
 - q_i é a carga de i
 - q_i é a carga de j
 - R_{ii} é a distância entre i e j

Explicando

• Potencial de Lennard-Jones

Usa a força (que você tem) e a massa (que é constante) pra conseguir a aceleração

Usa aceleração pra descobrir velocidade e posição

Acceleration

Derivative Form

$$v(t) = \frac{dr}{dt}$$

$$a(t) = \frac{dv}{dt} = \frac{d^2r}{dt^2}$$

Quantas vezes esse cálculo é feito? Sabemos o tempo da simulação, então temos que $t = \Delta t * n$, onde n é o número de frames Quanto tempo cada frame é separado? Δt

Tempo de integração

Figura 7-8: Representação do efeito de diferentes tempos de integração na amostragem de uma simulação por DM. Valores muito pequenos (0,5fs) descrevem fenômenos com maiores detalhes, mas mais lentamente. Valores muito grandes (4,0fs) apresentam menores custos computacionais, mas podem dar origem a instabilidades.

O que diferencia campos de força

Adequados a determinados tipos de moléculas

Capacidade molecular de reproduzir acuradamente o comportamento dos átomos

Tipos de campos de força

AMBER: peptídeos, proteínas, ácidos nucleicos (HORNAK et al., 2006)

CHARMM27: proteínas, peptídeos, lipídios, ácidos nucleicos, carboidratos e alguns ligantes (BROOKS *et al.*, 2009)

GROMOS: polímeros orgânicos, proteínas, ácidos nucleicos, carbohidratos e lipídeos (CHRISTEN et al., 2005)

OPLS-AA/L: proteínas, ácidos nucleicos e carboidratos (MURZYN et al., 2013)

Existem modificações de campos de força pra adequar a algumas moléculas

Tipos de campos de força

AMBER: peptídeos, proteínas, ácidos nucleicos (HORNAK et al., 2006)

Conheça seu sistema

Existem modificações de campos de força pra adequar a algumas moleculas

Limitações campos de força

Grande número de compostos de interesse biológico não é descrito nos parâmetros atuais:

Aminoácidos modificados;

Hormônios;

Alguns fosfolipídios e carboidratos;

Produtos naturais e fármacos.

Necessidade de parametrização.

Pra estudar a movimentação, é preciso reproduzir o meio

Concentração e caga: Regulados com Na+ e Cl-

pH: Representado por protonação

Solvente:

Água

Membrana

Tipos de representações de moléculas de água

Modelos de água adequados para determinados campos de força

Maior parte do custo computacional em um sistema sem membrana

Tipos de representações de moléculas de água

Modelos de água adequados para determinados campos de força

Maior parte do custo computacional em um sistema sem membrana

Introdução a modelagem, docking e dinâmica molecular Vicente Salgado Pires e RSG-Brazil

Explosão da simulação

Figura 4-8: Explosão em uma simulação por DM.

Pausa!

Etapas gerais da dinâmica molecular

Aonde será feita a simulação?

A proteína, solvente, íons e tudo que será simulado faz parte do nosso sistema

O nosso sistema inteiro deve estar dentro de uma região delimitada no espaço, chamada caixa

A caixa não pode ser muito grande e a proteína tem que estar centralizada

A caixa não pode ser muito grande e a proteína tem que estar centralizada

A caixa também não pode ser muito pequena

A caixa não pode ser muito grande e a proteína tem que estar centralizada

A caixa também não pode ser muito pequena

A caixa não pode ser muito grande e a proteína tem que estar centralizada

A caixa também não pode ser muito pequena

A forma da caixa tá estranha

Salgado Pires e RSG-Brazil

Condições periódicas de contorno

https://freeasteroids.org

Condições periódicas de

contorno

Figura 6-8: Representação das condições periódicas de contorno em uma simulação por DM. Somente a caixa central é simulada, enquanto que as réplicas garantem a continuidade do sistema, isto é, ausência de contato

ntrodução a modelagem docking dinâmio réfeculta sicerom o vácuo.

Salgado Pires e RSG-Brazi

Neutralização do sistema e preparação

No mundo real, existem íons e cargas:

Consideramos isso com a adição de íons Na+ e Cl-

Determinar concentração salina (concentração fisiológica 0,1536 mol/L)

No contexto fisiológico:

Proteínas não estão no vácuo, ambiente cristalino, no extremo frio ou num estado médio de conformações que podem ser aferidas

Como ajustar pra isso:

Minimizar a energia do sistema

O que pode dar errado:

Resultados inválidos ou explosão do sistema Introdução a modelagem, docking e dinâmica molecular Vicente Salgado Pires e RSG-Brazil

Minimização do sistema

Objetivo

encontrar um conjunto de coordenadas que minimizam a energia potencial do sistema Algoritmo *steepest descent*

Você pode verificar a energia potencial do sistema usando *gmx energy*

http://www.mdtutorials.com/gmx/lysozyme/05_EM.html

Relaxamento NVT e NPT

Minimizada a energia do sistema, pra onde foi ela? Pro solvente Resolveu o problema da energia no sistema? Não Steepest descent se preocupa com a energia da proteína

Pra isso, "congelamos" a proteína e fazemos corridas curtas isobáricas e isovolumétricas, chamadas NVT e NPT

Pra que "congelar" a posição da proteína?

Não ia dar o mesmo problema?

Etapas gerais da dinâmica molecular

RMSD

RMSD

RMSF

Quanto será que cada resíduo varia de posição durante a dinâmica?

Será que uma região é mais flexível que outra?

Calcula a média dos RMSDs de cada resíduo!

RMSF

Superfície acessível ao solvente

Raio de Giro

$$Rg = \sqrt{\frac{d_1^2 + d_2^2 + d_3^2 + \dots d_n^2}{n}}$$

Raio de Giro

Ligações de H

Ligado à o quê? A própria molécula? Ao solvente? A um ligante?

Introdução a modelagem, docking e dinâmica molecular - Vicente Salgado Pires e RSG-Brazil