Galois Theory

Alec Zabel-Mena $\underline{\mathbf{Text}}$ Gaois Theory (4th edition) Ian Stewart

September 18, 2020

Chapter 1

Classical Algebra.

1.1 Complex Numbers

Definition. A Complex Number is a pair (x, y) of real numbers together with binary operations +, \cdot such that for $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $(x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_2)$, together with the relation $i^2 = (-1, 0)$. We denote the set of all complex numbers as \mathbb{C} .

Defining (x,0) as the real number x, we see that $\mathbb{R} \subseteq \mathbb{C} \subseteq \mathbb{R}^2$, moreover, defining i=(0,1), we see that $i^2=(-1,0)\in\mathbb{R}$. We can then define the pair $(x,y)\in\mathbb{C}$ as having the form x+iy, where $i^2=-1$.

1.2 Subrings and Subfields of \mathbb{C} .

We restrict our notion of "subrings" and "subfields" to those concerning \mathbb{R} and \mathbb{C} .

Definition. A subring of \mathbb{C} is a nonempty set $R \subseteq \mathbb{C}$ such that $1 \in R$, and if $x, y \in R$ then $x + y, -x \in R$ and $xy \in R$.

Definition. A subfield of \mathbb{C} is a subring $K \subseteq \mathbb{C}$ such that if $x \in K$ then $x^{-1} \in K$.

Since, we are talking about subrings and subfields in the sense of \mathbb{R} and \mathbb{C} , then we denote x^{-1} to be $\frac{1}{x}$.

Example 1.1. (1) The set $\mathbb{Z}[i] \subseteq \mathbb{C}$ of all pairs of integers (a, b) of the form a + ib is a subring of \mathbb{C} but not a subfield. We call this set the **Gaussian integers**.

- (2) The set $\mathbb{Q}[i] \subseteq \mathbb{C}$ of all pairs of rational numbers (p,q) of the form a+ib forms not only a subring of \mathbb{C} , but also a subfield.
- (3) The set $P[\pi]$ of all polynomials in π with rational coefficients is a subring of \mathbb{C} , but not a subfield.
- (4) The set $\mathbb{Q}(\pi)$ of all rational expressions in π , $\frac{p(\pi)}{q(\pi)}$ (with $q(\pi) \neq 0$) with rational coefficients is a subfield of \mathbb{C} .

- (5) The set $2\mathbb{Z}$ of all even integers is not a subring of \mathbb{C} .
- (6) The set $\mathbb{Q}[\sqrt[3]{2}]$ of all pairs of rationla numbers (a,b) of the form $a+b\sqrt[3]{2}$ does not form a subring of \mathbb{C} since it is not closed under \cdot . It is closed however under +.

Definition. Let K and L be subfields of \mathbb{C} . An **isomorphism** between K and L is a 1-1 mapping $\phi: K \to L$ from K onto L such that $\phi(x+y) = \phi(x) + \phi(y)$ and $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in K$.

Proposition 1.2.1. *If* $\phi : K \to L$ *is an isomorphism, then:*

- (1) $\phi(0) = 0$.
- (2) $\phi(1) = 1$.
- (3) $\phi(-x) = -\phi(x)$.
- (4) $\phi(x^{-1}) = \phi(x)^{-1}$

Proof. (1) We have 0x = 0 for all $x \in K$, so $\phi(0x) = \phi(0)\phi(x) = \phi(0)$. Let $\phi^{-1}(0) = x$, so $\phi(0)\phi^{-1}(0) = \phi\phi^{-1}(0) = 0$.

- (2) This is esentially the same proof as (1), but with 1 instead of 0.
- (3) We have that x + (-x) = 0, so $\phi(x + (-x)) = \phi(x) + \phi(-x) = \phi(0) = 0$, hence we get that $\phi(-x) = -\phi(x)$.
- (4) This proof is analogous to that of (3).

If $\phi: K \to L$ is 1-1, but not necessarily onto, then we call it a **monomorphism**. If L = K, then we call ϕ an **automorphism**.

Definition. A **primitive n-th root of unity** is an n-th root of 1 that is not an m-th root of 1 for any proper divisor m of n.

Example 1.2. We have that i is a 4th root of unity, as $i^4 = (i^2)^2 = (-1)^2 = 1$. The number $\zeta_n = e^{2i\pi/n}$ is also an nth root of unity.

Proposition 1.2.2. Let $_n=e^{2i\pi/n},$ then ζ_n^k is a primitive nth root of unity if and only if gcd(k,n)=1.

Proof. We prove the contrapositive of this proposition. Suppose that ζ_n^k is not a primitive nth root of unity, then $(\zeta_n^k)^m = 1$ for some n such that n = mr. Then $\zeta_n^{km} = 1 = \zeta_n^n$, hence n = mr|kr, therefore r|k, and since r|n, then $\gcd(k,n) \ge r > 1$ (by definition of the greatest common divisor).

Now suppose that gcd(k, n) = r > 1. Then n = mr for some $m \in \mathbb{Z}$, and n = mr|km for some k. Thus we get that $(\zeta_n^k)^m = \zeta_n^{km} = 1$, therefore, ζ_n^k is not a primitive nth root of unity.

- **Example 1.3.** (1) textbfcomplex conjugation defined as the mapping $(x,y) \to (x,-y)$ (that is, $x+iy \to x-iy$) is an automorphism from $\mathbb C$ onto $\mathbb C$.
 - (2) Let $\mathbb{Q}[\sqrt{2}]$ be the set of all pairs of (p,q) rational numbers of the form $p+q\sqrt{2}$. Then $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{C} . The map $p+q\sqrt{2}\to p-q\sqrt{2}$ is an automorphism from $\mathbb{Q}[\sqrt{2}]$ onto itself.
 - (3) Lel $\alpha = \sqrt[3]{2}$ and let $\omega = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ be a primitive cube root of unity in \mathbb{C} . Then the set of all $\mathbb{Q}[\alpha]$ triples of rational numbers (p,q,r) of the form $p+q\alpha+r\alpha^2$ is a subfield of \mathbb{C} . The map $p+q\alpha+r\alpha^2\to p+q\omega\alpha+r\omega\alpha^2$ is an monomorphism onto its image, but not an automorphism.

1.3 Solving Equations.