REG.NO .:

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING CONTINUOUS ASSESSMENT TEST - II

FALL SEMESTER 2024-2025

SLOT: C1+TC1

Programme Name & Branch

: M.Tech (Integrated) Computer Science and Engineering

Course Code and Course Name

: CSI3022 & Cyber Security and Application Security

Faculty Name(s)

: Prof. K. Parthiban & Prof. S. Siva Sankari : VL2024250101961 & VL2024250101962

Class Number(s)

Date of Examination

: 15.10.2024

Exam Duration

: 90 minutes

Maximum Marks: 50

Answer All Questions

M - Max mark; CO - Course Outcome; BL - Blooms Taxonomy Level (1 - Remember, 2 - Understand, 3 – Apply, 4 – Analyse, 5 – Evaluate, 6 – Create)

CO3: Understand and implement the cryptographic techniques and know the real time applications of various cryptographic techniques.

CO4: Know fundamentals of cybercrimes and the cyber offenses.

CO5: Understand the cyber threats, attacks, vulnerabilities and its defensive mechanisms

Q. No									Que	stio	n								M	CO BL	
1.	A.											10	CO3	BL3							
1./		the key [0111 1101 0222 1203 0006 3030 4004 5114]. Apply AES																			
		algorithm to perform the following																			
		i) Show the original contents of state, displayed as a 4x4 matrix.																			
		(1Mark)																			
		ii) Show the value of state after initial AddRoundKey. (3 Marks)																			
		iii) Show the value of State after SubBytes. (2 Marks)																			
		iv) Show the value of State after ShiftRows. (1 Marks)																			
		y																			
			0	1	2	3	4	5	6	7 C5	30	9	A 67	B 2B	C FE	D D7	AB	76			
		0	63	7C	77	7B	FA	6B 59	6F 47	F0	AD	D4	A2	AF	9C	A4	72	CO			
		L	CA B7	FD FD	C9 93	26	36	3F	F7	CC	34	A5	E5	FI	71	D8	31	15			
		3	04	C7	23	C3	18	96	05	91	07	12	80	E2	EB	27	B2	75			
		4	09	83	2C	IA	18	6E	51	AO	52	3B	D6	В3	29	E3	2F	84			
		5	53	DI	00	ED	20	FC	BI	5B	6A	CB	BE	39	40	4C	58	CF			
		6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	AS			
		7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2			
	x	8	CD	0C	13	EC	5F	97	44	17	C4	Α7	7E	3D	64	5D	19	73			
		9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	ов	DB			
		A	EO	32	3A	0.A	49	06	24	5C	C2	D3	ΛC	62	91	95	E4	79			
		В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7.	AE	08			
		C	BA	78	25	2E	IC	A6	B4	C6	E8	DD	74	1F	4B	BD	SB	8A			
		D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	CL	1D	9E			
		E	EI	F8	98	11	69	D9	8E	94	9B	IE	87	E9	CE	55	28	DF			
		F	SC	ΑI	89	0D	BF	E6	42	68	41	99	2D	0F	Во	54	BB	16			
									(a)	S-box											
												0 ()	T A 71		. an	: 6 41.		int D			
	В.	In ar	ı elli	ptic	curv	re gr	oup	defi	ned	by I	$\Xi_{13}(1$	0,6)	, wr	iat is	SZP,	II UI	ie po	oint P			
	1																				
			,5). (. 1	1.0	CO2	DI 4
2.	In a digital world where secure communication is paramount, Robert wishes										ishes	10	CO3	BL4							
	to send a confidential message to Russel, ensuring that only he can read it.										ad it.										
	То	To achieve this, they decide to use RSA algorithm, a widely used method for											d for								

REG.NO.:

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING CONTINUOUS ASSESSMENT TEST - II FALL SEMESTER 2024-2025

SLOT: C1+TC1

	secure data transmission. Russel selects two prime numbers as 7 and and			
	17. These numbers will be the foundation of his encryption and decryption			
	process. Russel selects a public exponent which is relatively prime to $\phi(n)$			
	as 13. Robert wants to send the message 25 to Russel. Apply RSA algorithm			
	to generate a key pair and then perform the encryption and decryption of			
	messages between them. Show all the steps.			
3.	Assume there are two parties A and B wish to share some information	10	CO3	BL5
	secretly. They planned to use Elliptic Curve Cryptosystem for their			
	communication. Perform Elliptic curve encryption using the elliptic curve y ²			
	\equiv x ³ +x+1 mod 23 with generator point G=(3,10) and B's private key n=2.			
	i Find B's public key P _U . (4 Marks)			
	ii A wishes to share the message M=(9,7) to B. Let the random integer			
	k=2. Find the cipher text and show all the steps A follows for			
	encrypting the plaintext to cipher text. (6 Marks)			
4./	Assuming Mr. Rahul is running a ROZOinFO cyber cafe in Vellore, providing	10	CO4	BL2
	computer-related services to the public, let's discuss the possible			
4	vulnerabilities in his cafe. Could you discuss the safety and security policies			
	that should be followed in a cyber cafe? Additionally, what instructions			
	should Mr. Rahul provide to customers who are using the computer services			
	in his cafe to help them protect themselves from cyber-attacks?			
5.	A. Suppose you are running XYZ Company, a tech firm focused on software	10	CO5	BL3
	development. You have a team of developers and support staff who use			
	company-provided laptops to perform their jobs. You want to ensure			
	that employees are not misusing company resources by engaging in			
	other activities. To achieve this, you plan to identify the software that can	7.		
	be installed on all company laptops to record the keystroke. Discuss the			
	different categories of that software available in market. (5 Marks)			
	B. You are using your laptop when you notice that the webcam light			
	unexpectedly turns on for a few seconds, even though you haven't			
	opened any applications that would use the camera. Alongside this, your			
	device has been running slower than usual, and you experience frequent			
	browser redirects to unknown websites. Based on these observations,			
	what type of attack or threat might your device be experiencing? Provide			
	a list of preventive measures you can take to protect your device from			
	such attacks in the future. (5 Marks)			
