

Preguntas de las sesiones anteriores?

Recordeis

- 1. Es estacionario o no estacionario?
- 2. Qué tipo de autocorrelación manifiestan los patrones de la serie?
- 3. Posee una variación estacional?
- 4. Existe algún desplazamiento estructural?

Los MA(q) son procesos que indican que la serie de tiempo depende de los errores pasados. Al igual que los AR(p), sirven para modelar y pronosticar desde el modelo univariado los periodos futuros

Algunas características de este proceso son:

- Un MA(1) se representa como: $y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1}$
- Un MA(2) se representa como: $y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2}$
- ullet Un MA(q) se representa como: $y_t = \mu + \epsilon_t + heta_1 \epsilon_{t-1} + \cdots + heta_q \epsilon_{t-q}$

Existe en series de tiempo un *teorema* y es el que nos dice que cualquier serie que es **estacionaria** puede representarse mediante un MA(q) de orden infinito. Esto lo dice Wold(1936).

Simulación de MA Infinito

Determine si el Proceso MA es estacionario en media y varianza

$$y_t = a + heta_1 \epsilon_{t-1} + \epsilon_t$$
 $E[y_t] = E[a + heta_1 \epsilon_{t-1} + \epsilon_t]$ $E[y_t] = a + heta_1 E[\epsilon_{t-1}] + E[\epsilon_t]$

Recordemos que por **ruido blanco** eso es $\sim (0,\sigma^2)$

$$oxed{E[y_t]=a}$$

No depende de (t).

Vamos ahora con la varianza:

$$egin{aligned} y_t &= a + heta_1 \epsilon_{t-1} + \epsilon_t \ Var[y_t] &= Var[a + heta_1 \epsilon_{t-1} + \epsilon_t] \ Var[y_t] &= heta_1^2 Var[\epsilon_{t-1}] + Var[\epsilon_t] \end{aligned}$$

Recordemos nuevamente que por **ruido blanco** eso es $\sim (0,\sigma^2)$

$$Var[y_t] = heta_1^2 oldsymbol{\sigma}^2 + oldsymbol{\sigma}^2$$

$$Var[y_t] = {\color{red}\sigma^2(heta_1^2+1)}$$

Tambien piense que la varianza se escribe como γ_0

$$oxed{\gamma_0 = oldsymbol{\sigma}^2(heta_1^2+1)}$$

El asunto de la **covarianza** permite gráficar e identificar los procesos concernientes a la autocorrelación y por ende tener las funciones de autocorrelación **simple** y **parcial**.

$$egin{align} cov[y_t,y_{t-s}] &= heta_1^2 cov[\epsilon_{t-1},\epsilon_{(t-s)-1}] + cov[\epsilon_t,\epsilon_{t-s}] \ & \gamma_0 = heta_1^2 \sigma^2 + \sigma^2 \ & \end{cases}$$

Entonces si
$$s=-1,1\Rightarrow \quad \gamma_1=\theta_1\sigma^2$$

Entonces si
$$s=2 \Rightarrow \gamma_2=0$$

Entonces si
$$s=3 \Rightarrow \gamma_3=0$$

Dicho mejor

$$ho = \left\{ egin{array}{lll} 1 & si & s = 0 \ rac{ heta_1}{1+ heta_1^2} & si & s = 1, -1 \ 0 & ext{de otro lado} \end{array}
ight.$$

Preguntemos algo: Intente identificar el orden del siguiente modelo

ACF de prueba

PACF de prueba

- Identificar los modelos por sus respectivas **ACF** y **PACF** es mejor que estar haciendo 1000 modelos y encontrar el modelo con menor criterio AIC o BIC.
- Dentro de los criterios, recordando nuevamente su formulación pero en términos de varianza:

Criterio de AKAIKE: Es el menos estricto de todos, no es consistente pero si eficiente.

$$AIC = ln(\sigma^2) + rac{2k}{T}$$

Criterio de BAYES: Es el mejor, castiga (sobre parametrización), es consistente pero no muy eficiente (no robusto en residuos).

$$BIC = ln(\sigma^2) + rac{k}{T} Ln(T)$$

Donde (σ^2) es la varianza de los errores (residuos del modelo), (k) el número de parámetros (p+q+1) si se incluye la constante y de (p+q) si se omite y por último (T) es el numero de observaciones.

Ejercicio 1:

Qué modelo es mejor?

# Lags	AIC	BIC	R2
0	1.095	1.076	0.000
7	1.067	1.030	0.056
2	0.955	0.900	0.181
3	0.957	0.884	0.203
4	0.986	0.895	0.204
5	1.016	0.906	0.204
6	1.046	0.918	0.205

R./ Note que depende que quiere ver el investigador. Si desea muchos rezagos lo mejor es tomar entonces el \bar{R}^2_{adj} . El BIC penaliza la sobreparametrización y el AIC es un poco mas intermedio.

Otras consideraciones de los Procesos MA

Invertibilidad

Un proceso MA es invertible si:

Considere el modelo MA:

$$y_t - \mu = (1 + heta L)\epsilon_t$$
 $E(\epsilon_t, \epsilon_s) = \left\{egin{array}{ll} \sigma^2 & si & s = t \ 0 & ext{de otro lado} \end{array}
ight.$ $Si & | heta| < 1$

$$(1+ heta L)^{-1}(y_t-\mu)=\epsilon_t$$

$$(1- heta L+ heta^2 L^2- heta^3 L^3+\cdots)(y_t-\mu)=\epsilon_t$$

Es Invertible AR(p) ✓

Invertibilidad

Dentro de las condiciones de invertibilidad también debe tenerse en cuenta las **raíces complejas** y esto es $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q z$, en un plano complejo deben caer por fuera del circulo unitario

Esto es condicionante de:

- Para procesos de q=1: $-1<\theta_1<1$
- Para procesos de q=2: $-1< heta_2<1$ pero $heta_2+ heta_1>-1$ o $heta_1- heta_2<1$
- Para procesos de q=3 es mas complejo... pero los softwares responden por ello.

Con respecto a los modelos Diferenciados!!

Ejemplo

Punto: Suponga que le ha tocado hacer un modelo y pronostico para **inflación**. El resultado de todo, término siendo:

$$\Delta Inf_t = -0.0145 - .3215 \Delta inf_{t-1}$$

 $Inf_{2021:3}=6.53\%$ es la inflación del respectivo año 2021 en el mes 3.

La inflación del siguiente periodo fué $Inf_{2021:4}=6.56\%$. Note que si diferenciamos tendremos

$$Inf_{2021:4} - Inf_{2021:3} = 0.029$$

Reemplazamos ese valor en nuestro modelo original:

$$\Delta Inf_t = -0.0145 - .3215(0.029) = -0.02382$$

Lo que usando el último valor del mes:

$$Inf_{2021:3} + \Delta_{2021:4} \Rightarrow 6.56 - 0.02382 = 6.54\%$$

Modelo SARIMA

Modelo Sarima

Donde m = número de observaciones por año.

Los modelos SARIMA, permiten no tener raices estacionales. Recuerde que no ser **estacionario** tiene muchos problemas a la hora de pronosticar.

Modelo Sarima

La parte estacional de un modelo AR o MA se verá en los rezagos estacionales de PACF y ACF.

Un $ARIMA(0,0,0)(0,0,1)_{12}$ mostrará:

- Un pico en el lag 12 del ACF pero ningún otro pico significativo.
- El PACF mostrará un decaimiento exponencial en los rezagos estacionales; es decir, en los rezagos $12,24,36,\ldots$

Un $ARIMA(0,0,0)(1,0,0)_{12}$ mostrará:

- Decaimiento exponencial en los rezagos estacionales de la ACF
- Un único pico significativo en el lag 12 en el PACF.

Bibliografía

- E Chatfield, C. (2000). *Time-series forecasting*. CRC press.
- Hyndman, R.J., & Athanasopoulos, G. (2021). *Forecasting: principles and practice*, 3rd edition, OTexts: Melbourne, Australia.
- E Shumway, R., & Stoffer, D. (2019). Time series: a data analysis approach using R. CRC Press.
- Campo, J. Notas de clase (MIMEO)

¡Gracias!

Modelos MA

Seguimos aprendiendo

Ø Syllabus/ Curso

y @keynes37