UNIT X Novel coronavirus

► Which scale should we look at?

▶ Which scale should we look at?

- ▶ Which scale should we look at?
 - ▶ * Both, but the log scale is more relevant

- ▶ Which scale should we look at?
 - ▶ * Both, but the log scale is more relevant
 - **>** ,

- ▶ Which scale should we look at?
 - ▶ * Both, but the log scale is more relevant
 - ▶ * Focus on what individual cases are doing

- ▶ Which scale should we look at?
 - ▶ * Both, but the log scale is more relevant
 - ► * Focus on what individual cases are doing
 - *

- ▶ Which scale should we look at?
 - ▶ * Both, but the log scale is more relevant
 - * Focus on what individual cases are doing
 - ► * A slowdown on the log scale would be progress

- ▶ Which scale should we look at?
 - ▶ * Both, but the log scale is more relevant
 - * Focus on what individual cases are doing
 - ► * A slowdown on the log scale would be progress

► What quantities do we want to look at?

▶ What quantities do we want to look at?

- ▶ What quantities do we want to look at?
 - ► * Speed of exponential growth *r*

- ▶ What quantities do we want to look at?
 - ► * Speed of exponential growth *r*
 - *

- ▶ What quantities do we want to look at?
 - ► * Speed of exponential growth *r*
 - \blacktriangleright * Finite rate of increase λ

- ▶ What quantities do we want to look at?
 - ► * Speed of exponential growth *r*
 - \blacktriangleright * Finite rate of increase λ
 - *

- What quantities do we want to look at?
 - ► * Speed of exponential growth *r*
 - \blacktriangleright * Finite rate of increase λ
 - ▶ * Lifetime reproduction

- What quantities do we want to look at?
 - ► * Speed of exponential growth *r*
 - \blacktriangleright * Finite rate of increase λ
 - ▶ * Lifetime reproduction

► What are the components?

▶ What are the components?

*

- ▶ What are the components?
 - ► * Birth rate

- ▶ What are the components?
 - ▶ * Birth rate
 - *

- ▶ What are the components?
 - ► * Birth rate
 - ▶ * Instantaneous rate of a case producing new cases

- ▶ What are the components?
 - ► * Birth rate
 - * Instantaneous rate of a case producing new cases
 - **>** 3

- What are the components?
 - ▶ * Birth rate
 - ▶ * Instantaneous rate of a case producing new cases
 - * [case/(case · time]

- ▶ What are the components?
 - ▶ * Birth rate
 - ▶ * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - *

- What are the components?
 - ▶ * Birth rate
 - ▶ * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - ▶ * Death rate

- ▶ What are the components?
 - ▶ * Birth rate
 - ▶ * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - ▶ * Death rate
 - *

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - ► * [case/(case · time]
 - ▶ * Death rate
 - * Virus-centered!

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - ▶ * Death rate
 - * Virus-centered!
 - *

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - ▶ * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine

- ► What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - ► * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- ► How do you think we estimate?

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - ► * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- How do you think we estimate?
 - >

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- How do you think we estimate?
 - ▶ * People are estimating *r* right now from the population-level increase in disease

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- ► How do you think we estimate?
 - ▶ * People are estimating *r* right now from the population-level increase in disease
 - **>** ×

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- ► How do you think we estimate?
 - ▶ * People are estimating *r* right now from the population-level increase in disease
 - ► * Then using that to estimate b

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- How do you think we estimate?
 - ▶ * People are estimating *r* right now from the population-level increase in disease
 - ► * Then using that to estimate b
 - *

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - ► * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- ► How do you think we estimate?
 - ▶ * People are estimating *r* right now from the population-level increase in disease
 - ► * Then using that to estimate b
 - ▶ * Models go both directions!

- What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - ► * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- ► How do you think we estimate?
 - ▶ * People are estimating *r* right now from the population-level increase in disease
 - ► * Then using that to estimate b
 - ► * Models go both directions!

► Why do we want this?

Why do we want this?

- ► Why do we want this?
 - ▶ * to communicate with policy-makers or the public

- ► Why do we want this?
 - * to communicate with policy-makers or the public
 - **▶** *

- Why do we want this?
 - * to communicate with policy-makers or the public
 - \triangleright * maybe to make concrete predictions, though we could use r

- Why do we want this?
 - * to communicate with policy-makers or the public
 - \triangleright * maybe to make concrete predictions, though we could use r
- ► How do we calculate it?

- Why do we want this?
 - * to communicate with policy-makers or the public
 - ightharpoonup * maybe to make concrete predictions, though we could use r
- How do we calculate it?
 - *

- ► Why do we want this?
 - * to communicate with policy-makers or the public
 - * maybe to make concrete predictions, though we could use r
- ► How do we calculate it?
 - ► * Pick a time step (week? year?)

- Why do we want this?
 - * to communicate with policy-makers or the public
 - \triangleright * maybe to make concrete predictions, though we could use r
- How do we calculate it?
 - * Pick a time step (week? year?)
 - *

- ► Why do we want this?
 - * to communicate with policy-makers or the public
 - \triangleright * maybe to make concrete predictions, though we could use r
- ► How do we calculate it?
 - * Pick a time step (week? year?)
 - * Use a formula $\lambda = \exp(r\Delta t)$

- ► Why do we want this?
 - * to communicate with policy-makers or the public
 - \triangleright * maybe to make concrete predictions, though we could use r
- ► How do we calculate it?
 - * Pick a time step (week? year?)
 - * Use a formula $\lambda = \exp(r\Delta t)$

 $ightharpoonup r \approx 0.14/\,\mathrm{day}$

- $ightharpoonup r \approx 0.14/\,\mathrm{day}$
- ▶ What is λ ?

- $ightharpoonup r \approx 0.14/\,\mathrm{day}$
- ▶ What is λ ?
 - ► At a time scale of a day?

- $ightharpoonup r pprox 0.14/\,\mathrm{day}$
- \blacktriangleright What is λ ?
 - ► At a time scale of a day?
 - ► At a time scale of a week?

- $ightharpoonup r pprox 0.14/\,\mathrm{day}$
- \blacktriangleright What is λ ?
 - At a time scale of a day?
 - ► At a time scale of a week?

► What is it?

- ► What is it?
 - •

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- ► Why do we want this?

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- ► Why do we want this?
 - >

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - * An important measure of how hard the epidemic will be to stop

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - * An important measure of how hard the epidemic will be to stop
- ► How do we calculate it?

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - * An important measure of how hard the epidemic will be to stop
- ► How do we calculate it?
 - *

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - * An important measure of how hard the epidemic will be to stop
- ► How do we calculate it?
 - ▶ * $\mathcal{R} = b/d$; if we can estimate those

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - * An important measure of how hard the epidemic will be to stop
- ► How do we calculate it?
 - ▶ * $\mathcal{R} = b/d$; if we can estimate those

 $ightharpoonup r \approx 0.14/\,\mathrm{day}$

- $ightharpoonup r pprox 0.14/\,\mathrm{day}$
- \blacktriangleright What is our estimate of \mathcal{R} ?

- $ightharpoonup r pprox 0.14/\,\mathrm{day}$
- \blacktriangleright What is our estimate of \mathcal{R} ?
 - ▶ When average length of infection $L = 5 \,\text{day}$?

- $ightharpoonup r pprox 0.14/\,\mathrm{day}$
- \triangleright What is our estimate of \mathcal{R} ?
 - ▶ When average length of infection $L = 5 \,\text{day}$?
 - ▶ When average length of infection $L = 10 \,\mathrm{day}$?

- $ightharpoonup r \approx 0.14/\,\mathrm{day}$
- \triangleright What is our estimate of \mathcal{R} ?
 - ▶ When average length of infection $L = 5 \,\text{day}$?
 - ▶ When average length of infection $L = 10 \,\mathrm{day}$?

▶ If the disease spreads around the world, most of us will get it.

- ▶ If the disease spreads around the world, most of us will get it.
- ► How many will die?

- ▶ If the disease spreads around the world, most of us will get it.
- ► How many will die?
 - ► This is a units question!

- ▶ If the disease spreads around the world, most of us will get it.
- ► How many will die?
 - ► This is a units question!
- ▶ What proportion of people with the disease are dying?

- ▶ If the disease spreads around the world, most of us will get it.
- ► How many will die?
 - This is a units question!
- What proportion of people with the disease are dying?
 - People are often not careful enough with the denominator of this proportion

- ▶ If the disease spreads around the world, most of us will get it.
- ► How many will die?
 - This is a units question!
- What proportion of people with the disease are dying?
 - People are often not careful enough with the denominator of this proportion
 - ► People with (detected) severe disease; people with (detected) recognizable disease; people who develop antibodies

- ▶ If the disease spreads around the world, most of us will get it.
- How many will die?
 - This is a units question!
- What proportion of people with the disease are dying?
 - People are often not careful enough with the denominator of this proportion
 - People with (detected) severe disease; people with (detected) recognizable disease; people who develop antibodies

► What are some reasons the virus's reproductive number may go down as it spreads?

► What are some reasons the virus's reproductive number may go down as it spreads?

> *

- ► What are some reasons the virus's reproductive number may go down as it spreads?
 - ► * People react by changing behaviour

- ► What are some reasons the virus's reproductive number may go down as it spreads?
 - ► * People react by changing behaviour
 - **>** *

- What are some reasons the virus's reproductive number may go down as it spreads?
 - * People react by changing behaviour
 - * People die or become immune

- What are some reasons the virus's reproductive number may go down as it spreads?
 - * People react by changing behaviour
 - * People die or become immune
 - *

- What are some reasons the virus's reproductive number may go down as it spreads?
 - * People react by changing behaviour
 - * People die or become immune
 - * Vaccination or treatment

- What are some reasons the virus's reproductive number may go down as it spreads?
 - * People react by changing behaviour
 - * People die or become immune
 - * Vaccination or treatment
- ► Are there any reasons it might go *up*?

- What are some reasons the virus's reproductive number may go down as it spreads?
 - * People react by changing behaviour
 - * People die or become immune
 - * Vaccination or treatment
- Are there any reasons it might go up?
 - *

- What are some reasons the virus's reproductive number may go down as it spreads?
 - * People react by changing behaviour
 - * People die or become immune
 - * Vaccination or treatment
- Are there any reasons it might go up?
 - * Evolution

- What are some reasons the virus's reproductive number may go down as it spreads?
 - ► * People react by changing behaviour
 - ▶ * People die or become immune
 - * Vaccination or treatment
- Are there any reasons it might go up?
 - * Evolution
 - *

- What are some reasons the virus's reproductive number may go down as it spreads?
 - ► * People react by changing behaviour
 - * People die or become immune
 - * Vaccination or treatment
- Are there any reasons it might go up?
 - * Evolution
 - ➤ * One way evolution sometimes increases R is by decreasing the fatality proportion

- What are some reasons the virus's reproductive number may go down as it spreads?
 - ► * People react by changing behaviour
 - * People die or become immune
 - * Vaccination or treatment
- Are there any reasons it might go up?
 - * Evolution
 - ➤ * One way evolution sometimes increases R is by decreasing the fatality proportion

Other key questions

► How is the disease transmitted?

Other key questions

- ► How is the disease transmitted?
- ► Can it be transmitted before symptoms start?

Other key questions

- ► How is the disease transmitted?
- ► Can it be transmitted before symptoms start?