Additive Gaussian Channels with an Input-Entropy Constraint

a.k.a. a reason to study discrete distributions on continuous alphabets

Adway Girish [EPFL], Emre Telatar [EPFL], Shlomo Shamai [Technion]

Motivation

Capacity-achieving distributions for continuous alphabet channels are sometimes surprisingly discrete (e.g., amplitude-constrained Gaussian channel [1], fading channel [2]); what happens if they are forced to be discrete?

Difficulties -

1. Non-convex optimization problem

- 2. Discrete distributions over continuous alphabets?
- 3. H is not continuous w.r.t. usual topologies on distributions,

Connections to SDPI and F_{T} -curves [3]

$$\mathsf{F}_{\mathbf{I}}(A) = \sup_{\substack{\mathbb{P}_{XW}: \\ \mathbf{I}(X; W) \leq A}} \mathbf{I}(W; Y)$$

 $F_I(A) \ge C_H(A)$ for general channels, usually strict, e.g.,

But for such power-constrained Gaussian channels, it is known that W=X is optimal (in $F_{\rm I}$ as above) asymptotically as $A\to 0^+,\infty$, with the correct rate [3]!

Add cardinality constraint-

$$C_H^n(A, P) = \sup_{P_X: \mathbb{E}[X^2] \le P, \ H(X) \le A, \ |Supp(P_X)| = n} \mathbb{I}(X; Y)$$

Then $P_X \equiv \{(p_i, x_i)\}_{i=1}^n$, $p_i > 0$, x_i distinct

 \longrightarrow Constrained optimization over \mathbb{R}^{2n}

KKT conditions **necessary** for optimality:

there exist $\lambda_1, \lambda_2 \geq 0$ such that

1.
$$\mathbb{E}\left[Z\log\frac{1}{f_Y(x_i+Z;\mathsf{P}_X)}\right] = 2\lambda_2 x_i$$

2.
$$\mathbb{E}\left[\log \frac{1}{f_Y(x_i + Z; \mathsf{P}_X)}\right] = \mathsf{C}^n_\mathsf{H}(A, P) + \lambda_2 (x_i^2 - P) + \lambda_1 \left(\log \frac{1}{p_i} - A\right)$$

Initial conjecture: two-point distribution is optimal for small P: False!

References

[1] Smith, J.G., 1971. The information capacity of amplitude-and variance-constrained scalar Gaussian channels. *Information and control*, 18(3), pp.203-219.

[2] Abou-Faycal, I.C., Trott, M.D. and Shamai, S., 2001. The capacity of discrete-time memoryless Rayleigh-fading channels. IEEE transactions on Information Theory, 47(4), pp.1290-1301.

[3] du Pin Calmon, F., Polyanskiy, Y. and Wu, Y., 2017. Strong data processing inequalities for input-constrained additive noise channels. IEEE Transactions on Information Theory, 64(3), pp.1879-1892.