Embedded Systems - Jian Jia Chen Zusammenfassung

Maximilian Springenberg

TU-Dortmunf WS18/19

0 Teil 1 - ES CPS

0.1 ES

Ein eingebettetes System (ES) ist ein System, das Informationen verabeitet und in ein größeres Produkt eingebettet ist. Ein ES stellt also Software bereit, die durch die Verarbeitung von (Sensor-) Signalen/Informationen ein Produkt im Features, bzw. Verbesserungen ergänzt.

$0.2~\mathrm{CPS}$

Cyber-Physical-Systems (CPS) sind im Wesentlichen Systeme, die zuzüklich auf Kommunikation ausgelegt sind. (smart-home, smart-...)

0.3 Charakteristika

0.3.1 Dependability

CPS und ES müssen verlässlich sein. Deshalb definieren wir folgende Güten:

Reliability R(t) = Wahrscheinlichkeit, dass das System zut = 0funktioniert

Maintainability M(d) = Wahrscheinlichkeit, dass das SystemdZeiteinheiten nach einem Fehler funktioniert

Availability A(t) = Wahrscheinlichkeit, dass das System zur Zeit tfunktioniert

Safety = Das System verursacht keinen Schaden

 $Security \ = Das \ System \ bedient \ sich \ authentischer \ und \ vertraulicher \ Kommunikation$

0.3.2 Effizienz

Energieeffizienz:

Für ES/ CPS ist die Energieeffizienz von bedeutung, die sie oftmals auf Batteriebetrieb angewiesen sind. Energieeffiziente Prozessoren verlangen jedoch eine aufwendigere Implementierung des ES/ CPS. Hierbei gilt es für Produzenten/ Firmen einen Mittelweg zu finden.

real-time constraints:

Wird bei z.B. einem Auto ein real-time constraint nicht eingehalten können die Folgen verherend sein. Dies wäre auch ein Beispiel für einen harten real-time constraint. Alle nicht in Katastrophen resultierende real-time constraints sind soft.

Weite Faktoren hinsichtlich der Effizienz sind: Gewicht der Hardware, Kosten der Hardware und Entwicklung, Code-Größe/ Länge

0.4 Anwendung

ES/ CPS finden Anwendung in:

1. Transport:

Die Automobilindustrie verwendet ES mit ABS, ESP, etc., die Flugzeugindustrie benutzt ES für Flugkontrolle, Kollisionsvermeidung, Autopiloten, etc.. Auch Schiffe und Züge verwenden ES für Sicherheits- und Kontroll/ Navigations Features.

2. Logistik:

Die Logistik verwendet ES für Radio-Frequency-Identification, mobile Kommunikation, etc..

3. Fabriken:

Fabriken verwenden ES in 'social machines', Maschinen de sich selbst konfigurieren und/ oder distributieren.

4. Structural Safety:

Darunter fällt Regulation des Wasserstandes eines Damms, Überwachung von Brücken/ Vulkanen, sowie die Neigung von Hochhausern bei Erdbeben.

5. Smart Home:

Häuser können ES für zero energy buildings, safety/ security, comfort, ambient assited living (selbst regulierende Fenster etc.) benutzen.

1 Teil 2 - Spezifikations- und Modellierungssprachen

1.1 Anforderungen an Spezifikations- und Modellierungssprachen/techniken

1.1.1 Hierarchy

Meschen sind nicht darauf ausgelegt Systeme zu verstehen, die mehr als 5 Komplexe Objekte enthalten. Die Meisten Systeme fordern jedoch mehr. Hilfe bietet eine Hierarchy für die Spraceh/ Technik.

- Behavioral: states, processes, procedures
- Structural: processors, racks, printed circuit boards
- Component-based design: Das System muss von Komponenten designed sein, die Synchronisiert argieren können.

- Timing: Erforderliche Spezifikationen
 - Measured elapsed Time: Check nach vergangener Zeit
 - Means for delaying Process: Prozesse können schlafen gelegt werden
 - Possibility to specify timeouts: In einer spezifizierten maximalen Laufzeit for Timeout bleiben
 - Methods for specifying deadlines: Programme sollen vor einer Angegebenen Zeit terminieren
- support for design: kann unterteilt werden in
 - State-oriented behaviour: Verhalten, wie das von Automaten (States)
 - Event-handling: externe oder interne Events lösen Berechnungen aus
 - Exception-oriented behaviour: Imgang mit Fehlern