Predicting Housing Prices in Ames, IA

Data Manipulation, Feature Selection, and Linear Regression

The Goal

To model and accurately predict housing prices in Ames, IA primarily using Python's Pandas and SciKit Learn libraries with Multiple Linear Regression

To compete with my peers in the accompanying Kaggle competition

To better understand the practical use of Linear Regression using the SciKit Learn libraries in Python

The Data

Collected by the Ames, Iowa Assessor's Office between 2006 to 2010

Eighty potentially impactful variables

Including 23 categorical and 23 ordinal features

Potentially hundreds of features to model

Linearity Plotter - Generates four scatter plots against the target

Pool Area v Sale Price

Linearity Plotter - Generates four scatter plots against the target

Garage Area v Sale Price

Basement Quality v Sale Price

Cat Compare
- Generates a
Seaborn Bar
Chart

Value Counts		
Ex	184	
Gd	864	
TA	887	
Fa	60	
Ро	1	
Nan	55	

Chop and the Chopping Block

Im_tester, lasso_tester, and ridge_tester

submission_gen_lm_tester

Feature Selection and Engineering

What Still Needs to be Done?

- Look at Histograms and a Correlation Heatmap
- Investigate Transforms Logged during EDA
- Create Dummy Variables

Transforming Distributions

Feature Subsets for Model Testing

The Feature Subsets

Linear Regression Model Performance

Relatively Consistent Results, Regardless of Feature Subset

- All subsets produced Linear Regression models with R2 scores between 0.83 and 0.89, with a difference under 0.03
- Transformed consistently performed better, if only by a bit

The Best Model

dfd3: All remaining features, including dummy variables, combined feature for SF, and log transforms

Training R2: 0.8856

Testing R2: 0.8713

RMSE: 25, 526.63

Positive Beta Coefficients		Negative Beta Coefficients	
totalSF	43,404.69	Total Bsmt SF	-16,660.02
Mas Vnr Type_BrkFace	12,484.24	Neighborhood OldTown	-4,102.34
Mas Vnr Type_None	12,274.95	Garage Finish_2	-3,575.77
Exter Qual	10,953.86	Garage Finish_1	-2,459.42
Overall Goodness	10,474.58	Neighborhood CollgCr	-2,430.08

What Really Happened Here

Most Impressive R2:

22082416895.93

Special Thanks

The Official Documentation for SciKit Learn

Chapter 2 of "Feature Engineering for Machine Learning"

by Alice Zheng & Amanda Casari