Visualizing covariance, variance, standard deviation, correlation

Gina Reynolds

This book looks some basic statistics:

- covariance
- variance
- standard deviation
- correlation coefficient

We'll look at the *population* statistics first equation over all:

Covariance

Covariance is a measure of the joint variability of two random variables.

$$cov(x,y) = rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n}$$

 μ_x

 μ_y

$$x_i - \mu_x$$

 $y_i - \mu_y$

$$\sum_{i=1}^n (x_i-\mu_x)(y_i-\mu_y)$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n}$$

Variance and Standard Deviation

$$var(x) = rac{\sum_{i=1}^n (x_i - \mu_x)^2}{n}$$

$$\sigma^2 = rac{\sum_{i=1}^n (x_i - \mu_x)^2}{n}$$

 μ_x

$$x_i - \mu_x$$

$$x_i - \mu_x$$

$$\sum_{i=1}^n (x_i - \mu_x)^2$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)^2}{n}$$

$$\sigma^2 = rac{\sum_{i=1}^n (x_i - \mu_x)^2}{n}$$

$$\sigma = \sqrt{rac{\sum_{i=1}^n (x_i - \mu_x)^2}{n}}$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)^2}{n}$$

$$\sqrt{rac{\sum_{i=1}^n (x_i - \mu_x)^2}{n}}$$

Creative commons, Wikipedia, M. W. Toews - Own work, based (in concept) on figure by Jeremy Kemp, on 2005-02-09

correlation coefficient

$$cor(x,y) = rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n * \sigma_x \sigma_y}$$

$$rac{\sum_{i=1}^n (x_i-\mu_x)(y_i-\mu_y)}{n}$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n*\sigma_x}$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n * \sigma_x \sigma_y}$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n * \sigma_x \sigma_y}$$

A negative correlation

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n}$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n*\sigma_x}$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n * \sigma_x \sigma_y}$$

$$rac{\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)}{n * \sigma_x \sigma_y}$$

Bessel correction: n - 1

Sample statistics (Not population statistics)

$$cov(x,y) = rac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

$$s^2 = rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

$$s=\sqrt{rac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1}}$$

DRY: Bonus

DRY: Bonus

"Don't repeat yourself"

DRY: Bonus

"Don't repeat yourself"

Writing and using functions

this is a temporary fix - a
mysetseed <- set.seed</pre>

mysetseed(199402)

mysetseed(199402)
create x y(relationship = .5)

# A tibble: 20 x 15								
	х	У	mean_x	mean_y	area	mean_area	quasi_mean_area	sd_x_sample
	<dbl></dbl>	<dbl></dbl>						
1	68.2	32.1	53.8	26.9	76.1	269.	4.00	23.4
2	45.2	23.2	53.8	26.9	30.8	269.	1.62	23.4
3	26.4	16.7	53.8	26.9	278.	269.	14.6	23.4
4	90.7	41.3	53.8	26.9	533.	269.	28.0	23.4
5	58.0	27.0	53.8	26.9	0.420	269.	0.0221	23.4
6	41.6	20.5	53.8	26.9	78.2	269.	4.11	23.4
7	67.7	41.2	53.8	26.9	200.	269.	10.5	23.4
8	-10.4	-8.66	53.8	26.9	2280.	269.	120.	23.4
9	65.4	30.5	53.8	26.9	42.7	269.	2.25	23.4
10	53.3	24.5	53.8	26.9	1.20	269.	0.0634	23.4
11	58.5	31.1	53.8	26.9	19.8	269.	1.04	23.4
12	45.9	21.8	53.8	26.9	39.9	269.	2.10	23.4
13	73.9	38.5	53.8	26.9	234.	269.	12.3	23.4
14	60.1	23.2	53.8	26.9	-23.1	269.	-1.22	23.4
15	99.0	51.1	53.8	26.9	1094.	269.	57.6	23.4
16	44.2	25.6	53.8	26.9	12.5	269.	0.656	23.4
17	45.0	24.0	53.8	26.9	25.5	269.	1.34	23.4
18	35.9	14.5	53.8	26.9	220.	269.	11.6	23.4
19	39.8	20.6	53.8	26.9	87.5	269.	4.60	23.4
20	66.9	38.6	53.8	26.9	154.	269.	8.12	23.4

^{# ...} with 7 more variables: sd_x <dbl>, sd_y_sample <dbl>, sd_y <dbl>,

[#] some_x <dbl>, some_x_sample <dbl>, some_y <dbl>, some_y_sample <dbl>

```
mysetseed(199402)
create_x_y(relationship = .5) %>%
   data_create_scatterplot()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x() %>%
  plot_draw_differences_y()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x() %>%
  plot_draw_differences_y() %>%
  plot_multiply_differences()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x() %>%
  plot_draw_differences_y() %>%
  plot_multiply_differences() %>%
  plot_take_average_rectangle()
```



```
function (seed, kind = NULL, normal.kind = NULL, sample.kind = NULL)
    kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper",
        "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002",
        "L'Ecuver-CMRG", "default")
   n.kinds <- c("Buggy Kinderman-Ramage", "Ahrens-Dieter", "Box-Muller",
        "user-supplied", "Inversion", "Kinderman-Ramage", "default")
    s.kinds <- c("Rounding", "Rejection", "default")
   if (length(kind)) {
       if (!is.character(kind) || length(kind) > 1L)
            stop("'kind' must be a character string of length 1 (RNG to be used).")
       if (is.na(i.knd <- pmatch(kind, kinds) - 1L))</pre>
            stop(gettextf("'%s' is not a valid abbreviation of an RNG",
                kind), domain = NA)
       if (i.knd == length(kinds) - 1L)
            i.knd <- -1L
    else i.knd <- NULL
   if (!is.null(normal.kind)) {
       if (!is.character(normal.kind) || length(normal.kind) !=
            1L)
            stop("'normal.kind' must be a character string of length 1")
       normal.kind <- pmatch(normal.kind, n.kinds) - 1L
       if (is.na(normal.kind))
            stop(gettextf("'%s' is not a valid choice", normal.kind),
                domain = NA)
       if (normal.kind == 0L)
            stop ("buggy version of Kinderman-Ramage generator is not allowed",
                domain = NA)
       if (normal.kind == length(n.kinds) - 1L)
            normal.kind <- -1L
   if (!is.null(sample.kind)) {
       if (!is.character(sample.kind) || length(sample.kind) !=
            1L)
            stop("'sample.kind' must be a character string of length 1")
        sample.kind <- pmatch(sample.kind, s.kinds) - 1L</pre>
       if (is.na(sample.kind))
            stop(gettextf("'%s' is not a valid choice", sample.kind),
```

domain = NA)

```
mysetseed(199402)
create_x_y(relationship = .5)
```

```
function (num = 20,
                                                    # A tibble: 20 x 15
                      spread x = 20,
                                                                 v mean x mean v
                                                                                     area mean area quasi mean area sd x sa
                      relationship = .1,
                                                       <dbl> <dbl> <dbl> <dbl> <
                                                                                    <dbl>
                                                                                               <dbl>
                                                                                                              <dbl>
                      noise = 3
                                                     1 68.2 32.1
                                                                     53.8
                                                                            26.9
                                                                                   76.1
                                                                                               269.
                                                                                                             4.00
                      ) {
                                                     2 45.2 23.2
                                                                            26.9
                                                                                               269.
                                                                     53.8
                                                                                   30.8
                                                                                                             1.62
                                                     3 26.4 16.7
                                                                     53.8
                                                                            26.9 278.
                                                                                               269.
                                                                                                            14.6
 tibble(x = rnorm(num, sd = spread x) + 50 ) \%
                                                     4 90.7 41.3
                                                                     53.8
                                                                            26.9 533.
                                                                                               269.
                                                                                                            28.0
 mutate(y = relationship * x + rnorm(num, sd = noise); \$5\%.0 27.0
                                                                            26.9
                                                                     53.8
                                                                                    0.420
                                                                                               269.
                                                                                                             0.0221
 mutate(mean x = mean(x)) %>%
                                                     6 41.6 20.5
                                                                     53.8
                                                                            26.9
                                                                                   78.2
                                                                                               269.
                                                                                                             4.11
 mutate(mean y = mean(y)) %>%
                                                                                                            10.5
                                                     7 67.7 41.2
                                                                     53.8
                                                                            26.9 200.
                                                                                               269.
 mutate(area = (x - mean x)*(y - mean y)) %>%
                                                     8 -10.4 -8.66
                                                                     53.8
                                                                            26.9 2280.
                                                                                               269.
                                                                                                           120.
 mutate(mean area = mean(area)) %>%
                                                                            26.9
                                                                                               269.
                                                                                                             2.25
                                                     9 65.4 30.5
                                                                     53.8
                                                                                   42.7
 mutate(quasi mean area = area/(n() - 1)) %>%
                                                    10 53.3 24.5
                                                                     53.8
                                                                            26.9
                                                                                   1.20
                                                                                               269.
                                                                                                             0.0634
 mutate(sd x sample = sd(x)) %>%
                                                    11 58.5 31.1
                                                                     53.8
                                                                            26.9
                                                                                   19.8
                                                                                               269.
                                                                                                             1.04
 mutate(sd x = sd pop(x)) %>%
                                                    12 45.9 21.8
                                                                     53.8
                                                                            26.9
                                                                                   39.9
                                                                                               269.
                                                                                                             2.10
 mutate(sd\ y\ sample = sd(y)) %>%
                                                    13 73.9 38.5
                                                                            26.9 234.
                                                                                               269.
                                                                                                            12.3
                                                                     53.8
 mutate(sd y = sd pop(y)) %>%
                                                                                                            -1.22
                                                    14 60.1 23.2
                                                                     53.8
                                                                            26.9 -23.1
                                                                                               269.
 mutate(some x = sd x) %>%
                                                    15 99.0 51.1
                                                                            26.9 1094.
                                                                                               269.
                                                                                                            57.6
                                                                     53.8
 mutate(some x sample = sd x sample) %>%
                                                                                                             0.656
                                                    16 44.2 25.6
                                                                     53.8
                                                                            26.9
                                                                                  12.5
                                                                                               269.
 mutate(some y = mean area/some x) %>%
                                                    17 45.0 24.0
                                                                     53.8
                                                                            26.9
                                                                                   25.5
                                                                                               269.
                                                                                                             1.34
 mutate(some y sample = sd y sample)
                                                       35.9 14.5
                                                                            26.9 220.
                                                                                               269.
                                                                                                            11.6
                                                                     53.8
                                                    19 39.8 20.6
                                                                                               269.
                                                                                                             4.60
                                                                     53.8
                                                                            26.9
                                                                                   87.5
                                                                                               269.
                                                                                                             8.12
                                                    20 66.9 38.6
                                                                     53.8
                                                                            26.9 154.
<br/>
<br/>
bytecode: 0x7fda6c9d67c0>
                                                    # ... with 7 more variables: sd x <dbl>, sd y sample <dbl>, sd y <dbl>,
```

some x < dbl>, some x < ample < dbl>, some y < ample < dbl>, some y < ample <

```
mysetseed(199402)
create_x_y(relationship = .5) %>%
    data_create_scatterplot()
```

```
function(data, background color = "palegreen4") {
data %>%
 ggplot() +
 theme(legend.position = c(.15, .9)) +
 aes(x = x) +
 aes(y = y) +
 theme(rect = element rect(fill = background color))
 theme(text = element text(color = "white", face = "i
 theme(panel.background = element_rect(fill = backgro
 theme(legend.key = element blank()) + #element rect(
 theme(legend.title = element blank()) +
 theme(axis.text = element text(color = "white")) +
 theme(axis.ticks = element line(color = "white")) +
 labs(title = NULL) +
 theme(panel.grid = element blank()) +
 geom point(size = 3, pch = 21, col = "white", fill =
 labs(caption = "Statistical Visualization: Gina Reyn
                                                                                   Statistical Visualization: Gina Reynolds @EvaMaeRey
<bytecode: 0x7fda6d7f4c98>
```

```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x() %>%
  plot_draw_differences_y()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x() %>%
  plot_draw_differences_y() %>%
  plot_multiply_differences()
```



```
mysetseed(199402)
create_x_y(relationship = .5) %>%
  data_create_scatterplot() %>%
  plot_draw_mean_x() %>%
  plot_draw_mean_y() %>%
  plot_draw_differences_x() %>%
  plot_draw_differences_y() %>%
  plot_multiply_differences() %>%
  plot_take_average_rectangle()
```


DRY next level: writing and using packages

• A companion guide to Jim Hester's, 'You can make an R package in 20 minutes'

cars

4	speed	dist
1	4	2
2	4	10
3	7	4
4	7	22
5	8	16
6	9	10
7	10	18
8	10	26
9	10	34
10	11	17
11	11	28
12	12	14
13	12	20
14	12	24
15	12	28
16	13	26
17	13	34
18	13	34
19	13	46
20	14	26
21	14	36
22	14	60
23	14	80
24	15	20
25	15	26
26	15	54
27	16	32
28	16	40
29	17	32
30	17	40
31	17	50
32	18	42
33	18	56
34	18	76
35	18	84
36	19	36
37	19	46
38	19	68
39	20	32

cars %>%
 ggplot()

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist)
```



```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point()
```



```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
visualization
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
visualization

cars$speed
```

[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
  mean(cars$speed)
```

```
[1] -11.4 -11.4 -8.4 -8.4 -7.4 -6.4 -5.4 -5.4 -5.4 -4.4 -4.4 -3.4 [13] -3.4 -3.4 -3.4 -2.4 -2.4 -2.4 -2.4 -1.4 -1.4 -1.4 -1.4 -1.4 -0.4 [25] -0.4 -0.4 0.6 0.6 1.6 1.6 1.6 2.6 2.6 2.6 2.6 2.6 3.6 [37] 3.6 3.6 4.6 4.6 4.6 4.6 4.6 6.6 7.6 8.6 8.6 [49] 8.6 9.6
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
  mean(cars$speed) ->
x_diff
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
  mean(cars$speed) ->
  x_diff

cars$dist
```

[1] 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46 [20] 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68 [39] 32 48 52 56 64 66 54 70 92 93 120 85

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
   mean(cars$speed) ->
  x_diff

cars$dist -
  mean(cars$dist)
```

```
[1] -40.98 -32.98 -38.98 -20.98 -26.98 -32.98 -24.98 -16.98 -8.98 -25.98 [11] -14.98 -28.98 -22.98 -18.98 -14.98 -16.98 -8.98 -8.98 3.02 -16.98 [21] -6.98 17.02 37.02 -22.98 -16.98 11.02 -10.98 -2.98 -10.98 -2.98 [31] 7.02 -0.98 13.02 33.02 41.02 -6.98 3.02 25.02 -10.98 5.02 [41] 9.02 13.02 21.02 23.02 11.02 27.02 49.02 50.02 77.02 42.02
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
   mean(cars$speed) ->
  x_diff

cars$dist -
   mean(cars$dist) ->
  y_diff
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
  mean(cars$speed) ->
  x_diff

cars$dist -
  mean(cars$dist) ->
  y_diff

x_diff
```

```
[1] -11.4 -11.4 -8.4 -8.4 -7.4 -6.4 -5.4 -5.4 -5.4 -4.4 -4.4 -3.4 [13] -3.4 -3.4 -3.4 -2.4 -2.4 -2.4 -2.4 -1.4 -1.4 -1.4 -1.4 -1.4 -0.4 [25] -0.4 -0.4 0.6 0.6 1.6 1.6 1.6 2.6 2.6 2.6 2.6 2.6 3.6 [37] 3.6 3.6 4.6 4.6 4.6 4.6 4.6 6.6 7.6 8.6 8.6 [49] 8.6 9.6
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
   mean(cars$speed) ->
  x_diff

cars$dist -
   mean(cars$dist) ->
  y_diff

x_diff %>%
  `*`(y_diff)
```

```
[1] 467.172 375.972 327.432 176.232 199.652 211.072 134.892 91.692 48.492 [10] 114.312 65.912 98.532 78.132 64.532 50.932 40.752 21.552 [19] -7.248 23.772 9.772 -23.828 -51.828 9.192 6.792 -4.408 -6.588 [28] -1.788 -17.568 -4.768 11.232 -2.548 33.852 85.852 106.652 -25.128 [37] 10.872 90.072 -50.508 23.092 41.492 59.892 96.692 151.932 83.752 [46] 232.372 421.572 430.172 662.372 403.392
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
   mean(cars$speed) ->
  x_diff

cars$dist -
   mean(cars$dist) ->
  y_diff

x_diff %>%
  `*`(y_diff) %>%
  sum()
```

[1] 5387.4

25 / 25

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
  geom_point() ->
  visualization

cars$speed -
    mean(cars$speed) ->
  x_diff

cars$dist -
    mean(cars$dist) ->
  y_diff

x_diff %>%
    `*`(y_diff) %>%
    sum() %>%
    `/`(nrow(cars) - 1)
```

[1] 109.9469

```
cars %>%
 ggplot() +
 aes(x = speed, y = dist) +
 geom_point() ->
visualization
cars$speed -
 mean(cars$speed) ->
x diff
cars$dist -
 mean(cars$dist) ->
y diff
x diff %>%
 -
`*`(y_diff) %>%
 sum() %>%
 `/`(nrow(cars) - 1) ->
my_calc
```

```
cars %>%
 ggplot() +
 aes(x = speed, y = dist) +
 geom point() ->
visualization
cars$speed -
 mean(cars$speed) ->
x diff
cars$dist -
 mean(cars$dist) ->
y diff
x diff %>%
 -
`*`(y diff) %>%
 sum() %>%
 `/`(nrow(cars) - 1) ->
my_calc
library (magrittr)
```

```
cars %>%
  ggplot() +
  aes(x = speed, y = dist) +
 geom point() ->
visualization
cars$speed -
 mean(cars$speed) ->
x diff
cars$dist -
 mean(cars$dist) ->
y diff
x diff %>%
 -
`*`(y diff) %>%
  sum() %>%
 `/`(nrow(cars) - 1) ->
my_calc
library (magrittr)
cars
```

	opeca	arb c
1	4	2
2	4	10
3	7	4
4	7	22
5	8	16
6	9	10
7	10	18
8	10	26
9	10	34
10	11	17
11	11	28
12	12	14
13	12	20
14	12	24
15	12	28
16	13	26
17	13	34
18	13	34
19	13	46
20	14	26
21	14	36
22	14	60
23	14	80
24	15	20
25	15	26
26	15	54
27	16	32
28	16	40
29	17	32
30	17	40
31	17	50
32	18	42
33	18	56
34	18	76
35	18	84
36	19	36
37	19	46
38	19	68
39	20	32

speed dist

```
cars %>%
 ggplot() +
 aes(x = speed, y = dist) +
 geom point() ->
visualization
cars$speed -
 mean(cars$speed) ->
x diff
cars$dist -
 mean(cars$dist) ->
y diff
x diff %>%
 -
`*`(y diff) %>%
 sum() %>%
 `/`(nrow(cars) - 1) ->
my_calc
library (magrittr)
cars %$%
 cov(dist, speed)
```

[1] 109.9469

```
cars %>%
 ggplot() +
 aes(x = speed, y = dist) +
 geom point() ->
visualization
cars$speed -
 mean(cars$speed) ->
x diff
cars$dist -
 mean(cars$dist) ->
y diff
x diff %>%
 -
`*`(y diff) %>%
 sum() %>%
 `/`(nrow(cars) - 1) ->
my_calc
library(magrittr)
cars %$%
 cov(dist, speed)
visualization
```



```
cars %>%
 ggplot() +
 aes(x = speed, y = dist) +
 geom point() ->
visualization
cars$speed -
 mean(cars$speed) ->
x diff
cars$dist -
 mean(cars$dist) ->
y diff
x diff %>%
 `*`(y diff) %>%
 sum() %>%
 `/`(nrow(cars) - 1) ->
my_calc
library(magrittr)
cars %$%
 cov(dist, speed)
visualization +
 annotate(geom = "text",
          x = 7,
          y = 100,
          label = paste0("cov = ",
                         cars %$% cov(dist, speed) %>% rour
```


