Sistema de Control de Lazo Cerrado

Ing. Raúl Gardella Apunte Clase 2

Modelo Mediante Diagramas de Bloques

Conceptos y elementos

Modelo Mediante Diagramas de Bloques

Conceptos y elementos

Trayactoria de realimentación

 ~ 1

Trayectoria de prealimentacion:

Bloques en serie

Bloques en Paralelo – Lazo de Prealimentación

Ing. Raúl Gardella Apunte Clase 2

Bloques en Realimentación

Remoción de un bloque de un lazo de Prealimentación

^{***}Este documento está clasificado como PUBLICO por TELEFÓNICA.

Apunte Clase 2

Movimiento de un punto de bifurcación antes de un bloque

Movimiento de un punto de bifurcación después de un bloque

^{***}Este documento está clasificado como PUBLICO por TELEFÓNICA. ***This document is classified as PUBLIC by TELEFÓNICA.

Agrupar los siguientes sistemas a un solo bloque, expresando su función de transferencia global

$$G = \frac{(G1+G2)}{1+(G1+G2).H}$$

$$G = \frac{G2}{1 + G2.H} + G1$$

Ing. Raúl Gardella Apunte Clase 2

Aplicar el teorema de Superposición

Hallar la salida debida a cada entrada pasivando las restantes

$$\Theta_{i3} = 0$$

$$Salida debido a$$

$$la entrada 1$$

$$\Theta_{i1} = 0$$

$$\Theta_{i1} = 0$$
****Este documento está clasificado como PUE $\Theta_{i2} = 0$
****This document is classified as PUBLIC by TELEFÓNICA.

θο

$$\frac{\Theta_{0}}{\Theta_{i2}} \begin{vmatrix} \Theta_{i1} = 0 \\ \Theta_{i3} = 0 \end{vmatrix}$$

$$\begin{array}{c|c} \frac{\theta o}{\theta_{i3}} & \\ \Theta_{i1} = 0 \\ \Theta_{i2} = 0 \end{array}$$

Salida debido a la entrada 3

Sistema lineal

10

$$\Theta_0 = \frac{G1.G2}{1+G1.G2.H1} \Theta_{i1} + \frac{G2}{1+G1.G2.H1} \Theta_{i2} + \frac{(-G1.G2.H1)}{1+G1.G2.H1} \Theta_{i3}$$

Efecto de las perturbaciones

Cuando un sistema de lazo cerrado es sometido a una perturbación presenta cierto nivel de rechazo a la misma a diferencia de un sistema de lazo abierto. Esta es una manera de limitar el efecto de las perturbaciones o ruido ya sean externas o internas.

Perturbación en un sistema de lazo abierto

Error adicionado = $G2 \theta p$

$$\theta$$
o= G2 [θ p + G1 (θ _i – θ o H)] \Rightarrow θ o + G1 G2 θ o H =G2 θ p + G1 G2 θ _i

$$\theta$$
o (1 + G1 G2 H) = G1 G2 θ_i + G2 θ p

$$\therefore \quad \Theta_0 = \frac{G_{1.G_2}}{1 + G_{1.G_2.H}} \theta_{i1} + \frac{G_2}{1 + G_{1.G_2.H}} \theta_p \quad \Rightarrow \quad$$

Error adicionado en lazo cerrado =
$$\frac{G2}{1+G1.G2.H1} \theta p$$

Error adicionado en lazo abierto= G2 θp

Comparando este error adicionado con respecto al adicionado en el sistema de lazo abierto surge la siguiente reducción

$$\frac{1}{1+G1.G2.H}$$

Factor de Reducción de la perturbación

Ing. Raúl Gardella Apunte Clase 2

Algunas consideraciones

$$\Theta o = \frac{G1.G2}{1 + G1.G2.H} \Theta i + \frac{G2}{1 + G1.G2.H} \Theta p$$

Teniendo en cuenta las siguientes condiciones:

✓ En el efecto en la perturbación

$$\frac{G2}{1+G1.G2.H}\,\mathsf{\theta p}pprox 0$$

✓ También en la transferencia de lazo cerrado :

$$rac{G1.G2}{1+G1.G2.H} pprox rac{1}{.H}$$

De manera que las variaciones de G1 y G2 no afectan la función de transferencia de lazo cerrado

Modelos de sistemas

- Para analizar los sistemas de control se necesitan modelos matemáticos de los elementos que se emplean en esos sistemas.
- Estos modelos son ecuaciones que representan la relación entre la entrada y la salida del sistema.
- Las bases de cualquier modelo provienen de las leyes físicas fundamentales que gobiernan el comportamiento del elemento.
- Los sistemas dinámicos, que son lineales y están constituidos por componentes concentrados e invariantes en el tiempo, pueden ser descriptos por ecuaciones diferenciales lineales, invariantes en el tiempo. Estos sistemas reciben el nombre de lineales de coeficientes constantes.

Ing. Raúl Gardella Apunte Clase 2

Relación no lineal

Ejemplo tanque de agua

Q: Caudal (${}^{M^3}/_{Seg}$)

h: Altura real del agua en el tanque

H: Altura de referencia en la que deja de entrar agua al tanque

$$\frac{dQ}{dt} \approx \frac{dh}{dt}$$

Depende de la diferencia de altura H-h

$$\Rightarrow \frac{dh}{dt} \approx (H - h)$$

→
$$\frac{dh}{dt} \approx (H - h)$$
 :: $\frac{dh}{dt} = K (H - h)$

La solución a esta ecuación diferencial que describe como varía la altura h es:

$$h_{\mathsf{t})}$$
 = H (1 - $e^{-\,kt}$)

Ejemplo circuito eléctrico con capacitor y resistor

Modelo eléctrico

Elementos pasivos

Inductor

$$L = \frac{\Phi}{I} \quad \Rightarrow \quad \frac{d\Phi}{dt} = L \cdot \frac{dI}{dt}$$

$$\dot{\cdot} \mid v_{L(t)} = L \cdot \frac{dI}{dt}$$

Capacitor

$$C = \frac{Q}{V} \rightarrow \frac{dQ}{dt} = C \cdot \frac{dV}{dt}$$

$$\therefore | |_{(t)} = C \cdot \frac{dv(c)}{dt}$$

$$I_{L(t)} = \frac{1}{L} \cdot \int v_{L(t)} dt$$

$$v_{c(t)} = \frac{1}{C} \cdot \int I_{c(t)} dt$$

Ley de Ohm

- \rightarrow V [volt]= I [amp]. R [Ω]
- Primera ley de Kirchhoff
- → La suma algebraica de corrientes que convergen a un nodo es nula

$$\sum_{k=1}^{m} \mathsf{Ik}_{(\mathsf{t})} = \mathsf{O}$$

Segunda ley de Kirchhoff
 La tensión aplicada a un circuito serie cerrado es igual a la suma de las caídas de

tensión
$$\sum_{k=1}^{m} V \mathbf{k}_{(t)=0}$$

Ejercicios para presentar

Ing. Raúl Gardella Apunte Clase 2

 θ o1 = G11 . Θ i1 +G12 . Θ i2

 θ o2 = G21 . Θ i1 +G22 . Θ i2

Modelo eléctrico

Elementos pasivos

Inductor

$$L = \frac{\Phi}{I} \quad \Rightarrow \quad \frac{d\Phi}{dt} = L \cdot \frac{dI}{dt}$$

$$\dot{\cdot} \mid v_{L(t)} = L \cdot \frac{dI}{dt}$$

Ejemplo circuito eléctrico con capacitor y resistor

Capacitor

$$C = \frac{Q}{V} \rightarrow \frac{dQ}{dt} = C \cdot \frac{dV}{dt}$$

$$\therefore | |_{(t)} = C \cdot \frac{dv(c)}{dt}$$

$$I_{L(t)} = \frac{1}{L} \cdot \int v_{L(t)} dt$$

$$v_{c(t)} = \frac{1}{C} \cdot \int I_{c(t)} dt$$

Ley de Ohm

- \rightarrow V [volt]= I [amp]. R [Ω]
- Primera ley de Kirchhoff
- → La suma algebraica de corrientes que convergen a un nodo es nula

$$\sum_{k=1}^{m} \mathsf{lk}_{(\mathsf{t})} = \mathsf{0}$$

- Segunda ley de Kirchhoff
- → La tensión aplicada a un circuito serie cerrado es igual a la suma de las caídas de

tensión
$$\sum_{k=1}^{m} V \mathbf{k}_{(t)=0}$$

21

Ejemplo de un circuito RC

$$V = v_{r(t)} + v_{c(t)} \Rightarrow V = R.I_{(t)} + v_{c(t)} \Rightarrow V = R. C. \frac{dv(c)}{dt} + v_{c(t)}$$

$$\Rightarrow \frac{dv(c)}{dt} = \frac{1}{RC} \left[V - v_{c(t)} \right] \qquad \text{del modelo hidraulico } \frac{dh}{dt} = K (H - h)$$

 \Rightarrow

Componente Componente forzado libre $v_{c(t)} = v - v \cdot e^{-\frac{t}{RC}}$

Podemos decir que todos los sistemas de primer orden tienen la característica que la razón de cambio de alguna variable es proporcional a la diferencia entre esa variable y algún valor de referencia de la misma

t (tiempo)	$e^{-\frac{t}{RC}}$	$V (1 - e^{-\frac{t}{RC}})$
τ	0,368	V . 0,632
2. τ	0,135	V . 0,865
3. au	0,050	V . 0,950
4. au	0,018	V . 0,982
5. au	0,007	V . 0,993

RC: Constante de tiempo del sistema

$$\tau$$
 = RC [Seg]

Ejemplo de un circuito RC

