Analytické vyjadrenia roviny v priestore

Každými troma bodmi A,B,C, ktoré neležia na jednej priamke, prechádza jediná rovina ρ .Ak $\mathbf{u} = AB$ a $\mathbf{v} = AC$, tak vektor \mathbf{u} nie je násobkom vektora \mathbf{v} . Potom každý bod X, pre ktorý platí $X = A + t \cdot \mathbf{u} + s \cdot \mathbf{v}$, kde $t,s \in R$, leží v rovine ρ .

<u>Definícia</u>: Každú rovinu ABC môžeme pomocou bodu A a vektorov $\mathbf{u} = AB$ a $\mathbf{v} = AC$ vyjadriť rovnicou

$$X = A + t.u + s.v$$
, kde $t,s \in R$

a X je bod ležiaci v rovine ABC. Túto rovnicu nazývame **parametrické vyjadrenie roviny** alebo **parametrická rovnica roviny**.

Ak X[x,y,z], $A[a_1,a_2,a_3]$, $\mathbf{u}[u_1,u_2,u_3]$ a $\mathbf{v}[v_1,v_2,v_3]$, tak parametrické vyjadrenie roviny môžeme zapísať pomocou sústavy súradníc : $x=a_1+u_1.t+v_1.s$ $y=a_2+u_2.t+v_2.s$ $z=a_3+u_3.t+v_3.s \ t,s\in R$

<u>Veta</u>: **Každá rovina má nekonečne veľa parametrických vyjadrení.** Každá rovnica typu $X = A + t \cdot u + s \cdot v$, kde $t, s \in R$ a vektor u nie je násobkom vektora v, je parametrickým vyjadrením práve jednej roviny.

Definícia: Rovnicu

ρ: a.x + b.y + c.z + d = 0, kde a,b,c ∈ R

a aspoň jeden z koeficientov a,b, c je nenulový, nazývame **všeobecná rovnica roviny**. Vektor **n[a,b,c]** sa nazýva **normálový vektor roviny**.

Veta: Nomálový vektor roviny je kolmý na rovinu.

Táto veta je zároveň návodom, ako napísať všeobecnú rovnicu roviny ρ , ak poznáme jej parametrické vyjadrenie ρ : $X = A + t \cdot u + s \cdot v$, kde $t, s \in R$:

- 1. Nájdeme vektor \mathbf{n} , ktorý je kolmý na vektory \mathbf{u} a \mathbf{v} , napr. $\mathbf{n} = \mathbf{u} \times \mathbf{v}$.
- 2. Súradnice vektora **n** sú koeficienty a,b,c zo všeobecnej rovnice roviny.
- 3. Do neúplnej všeobecnej rovnice dosadíme súradnice bodu A a vypočítame koeficient d.

<u>Veta</u>: **Každá rovina má nekonečne veľa všeobecných rovníc**, ktoré sú nenulovým násobkom jednej z nich. Každá rovnica typu ρ : $\mathbf{a.x} + \mathbf{b.y} + \mathbf{c.z} + \mathbf{d} = 0$, kde $\mathbf{a.b.c} \in \mathbb{R}$ a aspoň jeden z koeficientov $\mathbf{a.b.c}$ je nenulový, je všeobecnou rovnicou práve jednej roviny.

Študent musí vedieť:

- napísať parametrické vyjadrenie roviny bez ohľadu na to, ako je rovina určená
- určiť normálový vektor roviny a napísať jej všeobecnú rovnicu, ak pozná parametrické vyjadrenie