Question 1

The free vibration of a viscously damped SDOF system due to a non-zero initial displacement (zero initial velocity) is given in the graph shown below. Determine the following questions using this graph. Clearly indicate the values you obtain from the graph.

- (a) (5 pts) Write a differential equation that governs the equation of motion of this system.
- (b) (5 pts) If the same system was subjected only to a non-zero initial velocity of 100 cm/sec (zero initial displacement), what would be the displacement response at t = 0.25 sec.

Notice that the graph exhibits the behaviour of a damped cosine wave. Using $x_0 = 5$ and $x_3 = 2$,

$$\delta = \frac{1}{n} \ln \left(\frac{x_0}{x_3} \right)$$
$$= \frac{1}{3} \ln \left(\frac{5}{2} \right)$$
$$= 0.30543$$

From this, we can find the damping ratio ζ ,

$$\zeta = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$$

$$= \frac{0.30543}{\sqrt{4\pi^2 + 0.30543^2}}$$

$$= 0.048553$$

The period is $\tau = 0.1$ sec, so the natural frequency is

$$p = \frac{2\pi}{\sqrt{1 - \zeta^2 \tau}}$$

$$= \frac{2\pi}{\sqrt{1 - 0.048553^2 \cdot 0.1}}$$

$$= 62.91 \text{ rad/sec}$$

Recall the equation of motion for a damped SDOF system,

$$m\ddot{x} + c\dot{x} + kx = 0$$

dividing by m and letting $p^2 = \frac{k}{m}$ and $2\zeta p = \frac{c}{m}$, we get

$$\ddot{x} + 2\zeta p\dot{x} + p^2x = 0$$

substituting in the values we found, we get

$$\ddot{x} + 2(0.048553)(62.91)\dot{x} + (62.91)^2 x = 0$$
$$\ddot{x} + 6.11\dot{x} + 3957.7x = 0$$