Name: Jason Borland

Student Number: D17129310

Date: 04 March 2021

Question 1: A ring R is called simple if its only two-sided ideals are the full ring and the zero ideal. Prove that the matrix ring $M_2(F)$ is simple if F is a field?

Let:

$$M_2(F) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in F \right\}$$

The Zero matrix, **0** in $M_2(F)$ is:

identity matrix.

$$\begin{bmatrix} c & d \end{bmatrix}$$

$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 Where $0 \in F$ is the additive identity. Also note that since F is a field, it contains the multiplicative identity 1, so $M_2(F)$ contains the

First note $M_2(F) \neq \{0\}$. Now suppose that **J** is an ideal of $M_2(F)$ and that $J \neq \{0\}$. We want to prove $J = M_2(F)$. This is equivalent to proving that **J** contains the identity matrix. Since $J \neq \{0\}$, there exists a matrix $A \in J$ which is not zero in every entry, such that $\{A\} \subseteq J$.

We will try to build the identity matrix starting from A using operations under which ideals are stable, that is, internal sum and multiplication with elements of $M_2(F)$. Consider the matrix $A \in J$.

arbitarily select
$$a_{12}$$

Now consider the following elementary matrices in $M_2(F)$:

Now since **J** is a two-sided Ideal we can multiply,
$$A \in J$$
 on either side by elements of $M_2(F)$ and remain in **J**.
$$E_{11}AE_{21} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a_{12} & 0 \\ 0 & 0 \end{bmatrix} = E_{11} \in J$$

Another matrix operation is multiplication by a scalar. Since F is a field and $a_{12} \in F$ we know $a_{12}^{-1} \in F$. Therefore: $a_{12}^{-1}E_{11}AE_{21} = a_{12}^{-1}\begin{bmatrix}a_{12} & 0\\0 & 0\end{bmatrix} = \begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} \in J$

Similarly:

$$E_{21}AE_{22} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & a_{12} \end{bmatrix} \in J$$

$$a_{12}^{-1}E_{21}AE_{22} = a_{12}^{-1} \begin{bmatrix} 0 & 0 \\ 0 & a_{12} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = E_{22} \in J$$

Continuing our construction. Since **J** is an Ideal the addition of two elements of **J** remains in **J**:
$$E_{11} + E_{22} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 \in J$$
 We have shown that the identity is in **J**. Since $I \in J$, then the ideal **J** contains the whole matrix ring $M_2(F)$. As such we have proven that

 $M_2(F)$ is simple. Note this construction used a_{12} , any a_{ij} could of been chosen and $E_{11} = -a_{ij}E_{1i}AE_{1j}$ and $E_{22} = -a_{ij}E_{2i}AE_{2j}$ (I think).

Suppose that R is a ring with multiplicative identity, 1, and
$$\phi:R\to S$$
 is a homomorphism onto S, then prove that $\phi(1)$ is the multiplicative identity of S

Let $1_R \in R$ be the identity in R. Let $1_S \in S$ be the identity in S. Since ϕ is a homomorphism, say $s = \phi(1_R) \in S$.

 $1_S = \phi(r) = \phi(r.1_R) = \phi(r)\phi(1_R) = \phi(r)$. $s = 1_S$. $s = s = \phi(1_R)$ We have proven $1_S = \phi(1_R)$.

1. $a - b \in A$ whenever $a, b \in A$. 2. $ra \in A$, $ar \in A$ whenever $a \in A$ and $r \in R$.

Consider elements $a, b \in Ker(\phi)$ and $r \in R$. We will next show $ker(\phi)$ is an ideal of R:

onsider elements
$$a,b \in \ker(\phi)$$
 and $r \in K$. We will next show $\ker(\phi)$ is an ideal $a-b \in \ker(\phi)$?
$$\phi(a-b) = \phi(a) + \phi(-b)$$
$$= \phi(a) - \phi(b)$$

Is $ra \in \ker(\phi)$?

Is $ar \in \ker(\phi)$?

$$\phi(ar) = \phi(a)\phi(r)$$

$$= 0.\phi(r)$$

$$= 0$$

$$\therefore ar \in Ker(\phi)$$
So $\ker(\phi)$ is an ideal of R.

Question 2(c):

Show that $A = \{(3x, 5y) : x, y \in \mathbb{Z}\}$ is an ideal of $\mathbb{Z} \oplus \mathbb{Z}$. Prove A is not a prime ideal.

 $a - b = (3x_1, 5y_1) - (3x_2, 5y_2)$

 $=(3x_1-3x_2,5y_1-5y_2)$

 $= (3(x_1 - x_2), 5(y_1 - y_2)) \in A$

Consider $a = (3x_1, 5y_1), b = (3x_2, 5y_2) \in A$ and $r = (x_3, y_3) \in \mathbb{Z} \oplus \mathbb{Z}$. Is $a - b \in A$?

Is $ar \in A$?

 $b \in P$.

Question 2(d):

Is $ar \in B$?

Also

Since $x_1 - x_2, y_1 - y_2 ∈ \mathbb{Z}$ Is $ra \in A$ (Note operations on elements of \mathbb{Z} are commutative)? $ra = (x_3, y_3).(3x_1, 5y_1)$

First show that A is non-empty. Since $0 \in \mathbb{Z}$, then $(3.0, 5.0) = (0, 0) \in A$. So A is non-empty.

 $=(x_3(3x_1), y_3(5y_1))$ $= (3x_1x_3, 5y_1y_3) \in A$ Since $x_1x_3, y_1y_3 \in \mathbb{Z}$

So A is an Ideal of $\mathbb{Z} \oplus \mathbb{Z}$. Is A a prime Ideal?

First we need to show that B is an ideal of $\mathbb{Z} \oplus \mathbb{Z}$. Show that B is non-empty. Since $0 \in \mathbb{Z}$, then $(3.0,0) = (0,0) \in B$. So B is non-empty.

Now we need to show B is a maximal Ideal of B.

 $a - b = (3x_1, y_1) + (3x_2, y_2)$ $=(3x_1-3x_2,y_1-y_2)$ $= (3(x_1 - x_2), (y_1 - y_2)) \in B$

Since $x_1 - x_2, y_1 - y_2 \in \mathbb{Z}$

 $ra = (x_3, y_3). (3x_1, y_1)$

 $ar = (3x_1, y_1)(x_3, y_3)$ $= (3x_1x_3, y_1y_3) \in B$ Since $x_1x_3, y_1y_3 \in \mathbb{Z}$

 $= \{[0]_3, [1]_3, [2]_3\}$ $=\mathbb{Z}_3$ Now if we consider a homomorphism from $\mathbb{Z} \oplus \mathbb{Z}$ to \mathbb{Z}_3 . $\phi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}_3$. Where $\phi((x, y)) = [x]_3$. Is ϕ a homomorphism? Consider $(x_1, y_1), (x_2, y_2) \in \mathbb{Z} \oplus \mathbb{Z}$. $\phi(x_1, y_1) + \phi(x_2, y_2) = [x_1]_3 + [x_2]_3$

 $\phi(x_1, y_1). \phi(x_2, y_2) = [x_1]_3. [x_2]_3$

 $= [x_1 + x_2]_3$

 $= [x_1, x_2]_3$

 $= \phi((x_1 + x_2, y_1 + y_2))$ $= \phi((x_1, y_1) + (x_2, y_2))$

 $= \phi((x_1, x_2, y_1, y_2))$ $= \phi((x_1, y_1), (x_2, y_2))$

Question 3(a):

Is $x - y \in \langle a, b \rangle$?

Is $rx \in \langle a, b \rangle$?

 $\langle a,b\rangle = \{ra+sb: r,s\in R\}.$

Consider $a, b \in \langle a, b \rangle$, and r = 1 = s:

 $\therefore a + b \in \langle a, b \rangle$. So $\langle a, b \rangle \neq \emptyset$.

The Ring Homomorphism Theorem states: $\frac{\mathbb{Z} \oplus \mathbb{Z}}{Ker(\phi)} \cong \mathbb{Z}_3$ Since \mathbb{Z}_3 is a finite field, so is $\frac{\mathbb{Z} \oplus \mathbb{Z}}{Ker(\phi)}$. Thus $B = Ker(\phi)$ is a maximal ideal.

Since $(r_1 - r_2), (s_1 - s_2) \in R$

First lets prove <a,b> is an ideal. Is $\langle a,b\rangle=\{ra+sb:r,s\in R\}\neq\emptyset$?

 $= r_1 ra + s_1 rb \in \langle a, b \rangle$ Since $r_1r, s_1r \in R$ So $\langle a, b \rangle$ is an ideal of R. Is $\langle a, b \rangle$ the smallest ideal of R containing a and b?

Question 3(b): Illustrate that $\mathbb{Z}[x]$ is not a principal ideal domain by giving an example of an ideal which is not a principal ideal. (Hint consider the ideal $\langle 2, x \rangle$).

Then f|2 and f|x so $f = \pm 1$. But this is a contradiction because $\pm 1 \notin J$. This is because J must have an even constant term.

Consider $J = \langle 2, x \rangle$ which is an ideal of $\mathbb{Z}[x]$ (note given in the question so not necessary to prove).

Question 3(c):

Show that $\langle 2, x \rangle$ is a prime ideal of $\mathbb{Z}[x]$.

Definition: P is a prime ideal of ring R, if $ab \in P$ then $a \in P$ or $b \in P$. The contrapositive of this is: if $a \notin P$ and $b \notin P$ then $ab \notin P$. $J = \langle 2, x \rangle = \{2p(x) + xq(x) | p, q \in \mathbb{Z}[x]\}\$ Thus the ideal J consists of all polynomials of the form

where a_0 is even. Consider: $a(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where $a_0 = 2p + 1$ i.e. odd, and $a(x) \notin J$.

 $\therefore a(x)b(x) = \cdots + a_0b_0 \notin J$ as $a_0, b_0 = 2(2pq + p + q) + 1$ which is odd. This means J is a prime ideal.

 $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$a_{12}^{-1}E_{11}A_{12}$$

multiplicative identity of S.

Let
$$r \in R$$
 be: $\phi(r) = 1_S$. We know that ${\bf r}$ exists as ϕ is onto. Consider:

Question 2(b):

Given $\phi:R\to S$ is a homomorphism onto S. Prove that the kernel of ϕ is an ideal of R, where the kernel of ϕ is the set $ker(\phi) = \{r \in R : \phi(r) = 0\}.$

> $\phi(0+0) = \phi(0) + \phi(0)$ $\therefore \phi(0) = \phi(0) + \phi(0)$

> > = 0 - 0

 $\phi(ra) = \phi(r)\phi(a)$ $= \phi(r).0$

 $\therefore \phi(0) = 0$ So $0 \in Ker(\phi) \neq \emptyset$.

The Ideal Test Therorem: A non-empty subset A of ring R is an ideal of R if:

First we need to show $ker(\phi)$ is non-empty. As ϕ is a ring homomorphism:

Consider elements
$$a, b \in \ker(\phi)$$
 and $r \in K$. We will ls $a - b \in \ker(\phi)$?

=0 $\therefore a - b \in Ker(\phi)$

$$= 0$$

$$\therefore ra \in Ker(\phi)$$

$$ar \in \ker(\phi)$$
?
$$\phi(ar) = \phi(a)\phi(r)$$

So
$$\ker(\phi)$$
 is an ideal of R.
 Question 2(c):

$$ar = (3x_1, 5y_1)(x_3, y_3)$$

= $(3x_1x_3, 5y_1y_3) \in A$
Since $x_1x_3, y_1y_3 \in \mathbb{Z}$

Prime Ideal Definition: A prime ideal P of a commutative ring R is a proper ideal of R such that: $a, b \in R$ and $ab \in P$ imply $a \in P$ or

The contrapositive is $a \notin P$ and $b \notin P$ implies $ab \notin P$. So consider $(3,1) \notin A$ and $(1,5) \notin A$. Note that (3,1). $(1,5) = (3,5) \in A$. So $a \notin A$ and $b \notin A$ but $ab \in A$. So A is not a prime ideal.

Show that $B = \{(3x, y) : x, y \in \mathbb{Z}\}$ is a maximal ideal of $\mathbb{Z} \oplus \mathbb{Z}$.

Consider $a = (3x_1, y_1), b = (3x_2, y_2) \in B$ and $r = (x_3, y_3) \in \mathbb{Z} \oplus \mathbb{Z}$. Is $a - b \in B$?

 $=(x_3(3x_1), y_3y_1)$ $=(3x_1x_3, y_1y_3) \in B$ Since $x_1x_3, y_1y_3 \in \mathbb{Z}$

Is $ra \in B$ (Note operations on elements of \mathbb{Z} are commutative)?

$$\frac{\mathbb{Z} \oplus \mathbb{Z}}{B} = \{(0, y) + (3x, y), (1, y) + (3x, y), (2, y) + (3x, y)\}$$

$$= \{[0]_3, [1]_3, [2]_3\}$$

$$= \mathbb{Z}_3$$
In from $\mathbb{Z} \oplus \mathbb{Z}$ to \mathbb{Z}_3 . $\phi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}_3$. Where $\phi((x, y)) = [x]_3$

We will use the theorem: Let R be a commutative ring with identity and let A be an ideal of R. Then R/A is a field iff A is a maximal ideal.

 $Ker(\phi) = \{(x, y) : [x]_3 = [0]_3\}$ $= \{(x, y) : 3 | x, x \in \mathbb{Z}\}$ $Ker(\phi) = \{(3x, y) : x, y \in \mathbb{Z}\} = B$

So ϕ is a homomorphism. Now we need to find the kernel of the homomorphism.

$$\therefore a+b \in \langle a,b \rangle. \text{ So } \langle a,b \rangle \neq \emptyset.$$
Consider elements $x=(r_1a+s_1b), y=(r_2a+s_2b) \in \langle a,b \rangle and \ r \in R.$
Is $x-y \in \langle a,b \rangle$?
$$x-y=(r_1a+s_1b)-(r_2a+s_2b)$$

$$=(r_1a-r_2a)+(s_1b-s_2b)$$

$$=(r_1-r_2)a+(s_1-s_2)b \in \langle a,b \rangle$$

 $rx = r(r_1a + s_1b)$

 $xr = (r_1a + s_1b)r$ $= r_1 a r + s_1 b r$

Since $rr_1, rs_1 \in R$

 $= rr_1 a + rs_1 b \in \langle a, b \rangle$

For ring R, define $\langle a,b\rangle$ to be the smallest ideal containing both a and b. Prove that if R is a commutative ring with identity then

Is $xr \in \langle a, b \rangle$? (Note R is communative Ring so this is strictly not necessary as in a communatative if the left ideal exists then so does the right.)

So
$$\langle a,b\rangle$$
 is an ideal of R. Is $\langle a,b\rangle$ the smallest ideal of R containing a and b? Definition of a Principal Ideal: Given any Ring R, and any element of $a\in R$, the principal ideal generated by a is the smallest ideal of R that contains a. It is denoted $\langle a\rangle$. In the case of communatative ring with identity $\langle a\rangle=Ra$.

This means the smallest ideal of R, containing a is $A = \langle a \rangle = Ra$ Also, the smallest ideal of R, containing b is $B = \langle b \rangle = Rb$

Now if we consider another ideal C of R, containing both a and b. If $a \in C$ then $ra \in C$ where $r \in R$. Similarly if $b \in C$ then $sb \in C$ where $s \in R$. Since $ra, sb \in C$ then $ra + sb \in C$. Therefore $\langle a, b \rangle \subseteq C$. So $\langle a, b \rangle$ is the smallest ideal of R containing a and b.

Definition of PID: If R is an integral domain and every ideal of R is principal, then R is called a PID. To show $\mathbb{Z}[x]$ is not a PID, we need to find an ideal of R which is not a principal ideal.

So we cannot write the ideal $J = \langle f \rangle$, so J is not a principal ideal and therefore $\mathbb{Z}[x]$ is not a PID.

$$J=\langle 2,x\rangle=\{2p(x)+xq(x)|p,q\in\mathbb{Z}[x]\}$$
 If J is a principal ideal then there exists an $f\in\mathbb{Z}[x]$ such that:
$$J=\langle 2,x\rangle=\langle f\rangle$$

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

 $b(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$ where $b_0 = 2q + 1$ i.e. odd, and $b(x) \notin J$.

In []:

 $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ Where $a_{ij} \in F$ and at least one of the $a_{ij} \neq 0$. We shall arbitarily select $a_{12} \neq 0$.