2025 年秋组会讲义"外三角范畴"

张陈成

2025 年秋

最后更新于 2025 年 9 月 13 日.

目录

1	正合范畴与三角范畴拾遗			
	1.1	正合范畴	2	
	1.2	三角范畴	4	
	1.3	同伦的推出拉回	7	
2	初探外三角范畴			
	2.1	基本定义	11	
	2.2	六项正合列	13	
	2.3	五项正合列的推论	15	
	2.4	扩张提升引理	17	
3	图表	to the control of th	19	
	3.1	双 deflation (inflation) 的拉回 (推出)	19	
	3.2	同伦的推出拉回方块	22	
	3.3	弱幂等完备	26	
	3.4	九引理		
4	特殊的外三角范畴			
	4.1	正合范畴是外三角范畴	31	
	4.2	三角范畴是外三角范畴	33	
	4.3	自等价 + 外三角范畴 = 三角范畴	33	
	4.4	理想商		
5	Hov	Hovey 对应		
	5.1	· 余挠对	39	
	5.2	遗传余挠对	42	
	5.3	态射观点	45	
	5.4	模型结构	48	

5 Hovey 对应 » 39

5 Hovey 对应

5.1 余挠对

余挠对是一门庞大的理论,本章节仅罗列一些基本定义与结论. 以下选定外三角范畴 ($C, \mathbb{E}, \mathfrak{s}$).

定义 **5.1.1.** (\mathbb{E} -垂直). 称两个对象类 \mathcal{X} 与 \mathcal{Y} 是 \mathbb{E} -垂直的 (下简称**垂直**), 若对任意 $X \in \mathcal{X}$ 与 $Y \in \mathcal{Y}$, 总有 $\mathbb{E}(X,Y) = 0$. 我们引入以下记号:

- 1. 若 χ 与 χ 垂直,则记作 $\chi \perp \chi$;
- 2. 记右垂直类 $\mathcal{X}^{\perp} := \{Y \mid \mathbb{E}(X,Y) = 0\};$
- 3. 记左垂直类 $^{\perp}\mathcal{Y} := \{X \mid \mathbb{E}(X,Y) = 0\}.$

简便起见,约定 $\{M\}^{\perp} = M^{\perp}$.

再引入几则 conflation 决定的类的运算.

定义 5.1.2. 假定 \mathcal{X} 与 \mathcal{Y} 是任意 (非空的) 对象类. 定义如下运算.

- 1. $Cone(\mathcal{X}, \mathcal{Y}) := \{Z \mid \text{存在 } X \in \mathcal{X} \text{ 与 } Y \in \mathcal{Y}, \text{ 使得有 conflation } X \mapsto Y \twoheadrightarrow Z\};$
- 2. $coCone(\mathcal{X}, \mathcal{Y}) := \{W \mid$ 存在 $X \in \mathcal{X} \vdash Y \in \mathcal{Y},$ 使得有 $conflation W \mapsto X \rightarrow W\};$
- 3. $\mathcal{X} * \mathcal{Y} := \{ E \mid$ 存在 $X \in \mathcal{X} \vdash Y \in \mathcal{Y},$ 使得有 conflation $X \rightarrowtail E \twoheadrightarrow Y \}.$

例子 5.1.3. 若 $\mathcal{X} \perp \mathcal{Y}$, 则 $\mathcal{X} * \mathcal{Y} = \mathcal{X} \oplus \mathcal{Y}$.

我们将 ET4 系列公理转化作如下引理.

引理 5.1.4. 对任意对象类 \mathcal{X} , \mathcal{Y} , 与 \mathcal{Z} , 有如下等式.

- 1. $Cone(\mathcal{X}, Cone(\mathcal{Y}, \mathcal{Z})) = Cone(\mathcal{Y} * \mathcal{X}, \mathcal{Z});$
- 2. $coCone(coCone(\mathcal{X}, \mathcal{Y}), \mathcal{Z}) = coCone(\mathcal{X}, \mathcal{Z} * \mathcal{Y});$
- 3. $Cone(\mathcal{X}, coCone(\mathcal{Y}, \mathcal{Z})) = coCone(Cone(\mathcal{X}, \mathcal{Y}), \mathcal{Z});$
- 4. $\mathcal{X} * (\mathcal{Y} * \mathcal{Z}) = (\mathcal{X} * \mathcal{Y}) * \mathcal{Z}$.

证明. 先证明 (1). 观察下图. 若 $M \in Cone(\mathcal{X}, Cone(\mathcal{Y}, \mathcal{Z}))$, 则 M 由实线所示的 δ_i 决定. 依照 ET4', M 由虚线所示的 ε_j 决定. 因此 $M \in Cone(\mathcal{Y} * \mathcal{X}, \mathcal{Z})$. 对偶地, 依照 ET4, 虚线所示的 conflation 决定实所示者.

(2) 是 (1) 在反范畴中的对偶. 证明 (3) ((4)) 所需的交换图分别是下图左 (右).

实线决出的 M 位于左式, 虚线决出的 M 位于右式. 由 ET4 与 ET4' 可证两者互相推导.

结合定理3.1.1,得如下引理.

引理 5.1.5. 给定任意对象类 X, Y 与 Z, 有以下包含关系.

- 1. $coCone(\mathcal{X}, \mathcal{Z}) * \mathcal{Y} \subseteq coCone(\mathcal{X} * \mathcal{Y}, \mathcal{Z}) \supseteq coCone(\mathcal{Y}, Cone(\mathcal{X}, \mathcal{Z}));$
- 2. $\mathcal{Y} * Cone(\mathcal{X}, \mathcal{Z}) \subseteq Cone(\mathcal{X}, \mathcal{Y} * \mathcal{Z}) \supseteq Cone(coCone(\mathcal{X}, \mathcal{Z}), \mathcal{Y})$.

证明. 下证明(1). 左式对应下图(左)蓝实线,右式对应下图(右)红实线,中式对应虚线:

由**定理** 3.1.1, 实线决定虚线; 反之, 虚线未必能决定实线. 上述包含通常无法改作等号. (2) 是 (1) 在反范畴中的对偶结论, 证明从略. □

定义 **5.1.6.** (余挠对). 称两个对象类 (U,V) 构成**余挠对**, 若 $U^{\perp} = V$, 且 $U = {}^{\perp}V$.

备注 5.1.7. 通常将 (U, V) 作为余挠对的固定顺序. 注意到 $\mathbb{E}(U, V) = 0$.

引理 5.1.8. 对任意对象类 X.

- 1. $(^{\perp}\mathcal{X}, (^{\perp}\mathcal{X})^{\perp})$ 是余挠对,称作 \mathcal{X} 生成的余挠对;
- 2. $(^{\perp}(\mathcal{X}^{\perp}), \mathcal{X}^{\perp})$ 是余挠对, 称作 \mathcal{X} **余生成**的余挠对.

证明. 依照 Galois 连接, 得 $(^{\perp}(\mathcal{X}^{\perp}))^{\perp} = \mathcal{X}^{\perp}$, 以及 $^{\perp}((^{\perp}\mathcal{X})^{\perp}) = ^{\perp}\mathcal{X}$. 证明细节从略.

引理 5.1.9. 假定 (U, V) 是余挠对,则有如下结论:

- 1. *U* 与 *V* 关于形变收缩 (定义 3.3.2) 封闭 (特别地, 关于直和项封闭);
- 2. U与V关于扩张封闭(特别地,关于直和封闭).

证明. 仅看 U. (1). 记 $U_0 \stackrel{i}{\to} U \stackrel{p}{\to} U_0$ 复合为恒等, $U \in \mathcal{U}$, 则有恒等自然变换

$$\mathbb{E}(U_0, (-)_{\mathcal{V}}) \xrightarrow{p^*} \mathbb{E}(U, (-)_{\mathcal{V}}) \xrightarrow{i^*} \mathbb{E}(U_0, (-)_{\mathcal{V}}). \tag{5.1.4}$$

这一恒等自然变换通过零函子 $\mathbb{E}(U,(-)\nu)$ 分解, 从而 $U_0 \in {}^{\perp}\mathcal{V} = \mathcal{U}$.

(2). 任取 conflation $U \rightarrowtail W \twoheadrightarrow U' \dashrightarrow (U, U' \in \mathcal{U})$. 将长正合列 (式 (2.2.14)) 限制在 \mathcal{V} 上, 得

$$0 = \mathbb{E}(U', (-)|_{\mathcal{V}}) \to \mathbb{E}(W, (-)|_{\mathcal{V}}) \to \mathbb{E}(U, (-)|_{\mathcal{V}}) = 0.$$
 (5.1.5)

因此,
$$\mathbb{E}(W,(-)|_{\mathcal{V}})=0$$
, 即 $W\in {}^{\perp}\mathcal{V}=\mathcal{U}$.

为较自然地引入完备余挠对,我们介绍以下定义.

定义 5.1.10. (预盖, 右逼近). 给定范畴中的对象类 \mathcal{X} . 对象 M 的一个 \mathcal{X} -预盖 (或称右 \mathcal{X} -逼近) 是指一个态射 $p: M^X \to M$ ($M^X \in \mathcal{X}$), 使得以下等价表述成立:

- (态射语言). 对任意 $q: X \to M$ ($X \in \mathcal{X}$), 存在 $q': X \to M^X$, 使得 $p \circ q' = q$.
- (函子语言). $\operatorname{Hom}_{\mathcal{X}}(-, M^X) \xrightarrow{p^{\circ -}} \operatorname{Hom}_{\mathcal{C}}((-)|_{\mathcal{X}}, M)$ 是函子范畴 $\operatorname{Funct}(\mathcal{X}^{\operatorname{op}}, \operatorname{\mathbf{Ab}})$ 的满态射.

余挠对给出一类特殊的预盖.

引理 5.1.11. 假定 $U \perp V$. 若存在 $U \in U = V$ 使得有 conflation $V \stackrel{i}{\rightarrowtail} U \stackrel{p}{\twoheadrightarrow} C \stackrel{\delta}{\dashrightarrow}$, 则 $p \neq U$ -预盖. 以此类方法构造的预盖称作**特殊预盖**.

证明. 将长正合列 (式 (2.2.14)) 限制在 U上, 得

$$((-)|_{\mathcal{U}}, V) \xrightarrow{i \circ -} ((-)|_{\mathcal{U}}, U) \xrightarrow{p \circ -} ((-)|_{\mathcal{U}}, C) \xrightarrow{\delta_{\sharp}} \mathbb{E}((-), V) = 0. \tag{5.1.6}$$

因此,以上 $p \circ -$ 是满态射,p 满足定义 5.1.10 的函子定义式.

对偶地, 可以定义预包 (左逼近) 与特殊预包 (特殊右逼近). 给定余挠对 (U,V). 任取 M 的特殊预盖 (若存在), 记相应的 conflation 为

$$M^V \rightarrow M^U \rightarrow M \longrightarrow;$$
 (5.1.7)

任取 M 的特殊预包 (若存在), 记相应的 conflation 为

$$M \rightarrowtail M_V \twoheadrightarrow M_U \dashrightarrow .$$
 (5.1.8)

定义 5.1.12. (完备余挠对). 称余挠对 (U, V) 是**完备**的, 若所有对象均有特殊预盖和特殊预包, 即

$$Cone(\mathcal{V}, \mathcal{U}) = \mathcal{C} = coCone(\mathcal{V}, \mathcal{U}). \tag{5.1.9}$$

定理 5.1.13. (若松技巧). 余挠对 (U, V) 是完备的, 当且仅当以下两点成立:

- 1. 所有对象有特殊预盖;
- 2. 对任意对象 X, 存在 inflation $X \mapsto V$, 其中 $V \in \mathcal{V}$.

证明. 先说明任意对象 X 存在特殊预包. 先由 (2) 构造 δ , 再由 (1) 构造 ε . 依照**定理** 3.1.1 作交换图:

由 ν 关于扩张封闭,得 $E \in \mathcal{V}$.

记 $\omega := U \cap V$ 为一类特殊的自垂直对象.

引理 5.1.14. 对任意 $U \in \mathcal{U}$ 与 $V \in \mathcal{V}$, 任意态射 $f: U \to V$ 通过 ω 中对象分解.

证明. 取 inflation $i: U \rightarrow U_V$. 长正合列表明 (i, V) 满, 故 f 通过 U_V 分解. 显然 $U_V \in \mathcal{U} \cap \mathcal{V} = \omega$.

预盖和预包通常不唯一, $(-)_V$ 与 $(-)^U$ 更无法称作函子; 但 \mathcal{C}/ω 是函子. 实际上, 有以下是更精细的结论.

定理 5.1.15. 全子加法范畴的嵌入 $(\mathcal{U}/\omega) \to (\mathcal{C}/\omega)$ 具有有伴随 $(-)^U$.

证明. 对所有对象取定 conflation $M^V \stackrel{i}{\rightarrowtail} M^U \stackrel{p}{\twoheadrightarrow} M$ ---. 下证明自然同构

$$(-\circ p): \operatorname{Hom}_{\mathcal{U}/\omega}(U, M^U) \simeq \operatorname{Hom}_{\mathcal{C}/\omega}(U, M).$$
 (5.1.11)

由正合列 $(U, M^U) \to (U, M) \to \mathbb{E}(U, M^V) = 0$, 得 $(U, M^U) \to (U, M)$ 满, 这在加法商范畴中也是满射. 下只需证明对任意 $f: U \to M^U$, [pf] = 0 蕴含 [f] = 0. 记 pf 通过 $W \in \omega$ 分解. 由 $\mathbb{E}(W, M^V) = 0$, 存在 s 使得 \circlearrowleft 所在的三角交换:

$$U \xrightarrow{a} W$$

$$\downarrow f \qquad \downarrow b \qquad . \qquad (5.1.12)$$

$$M^{V} \xrightarrow{i} M^{U} \xrightarrow{p} M \xrightarrow{p} M \xrightarrow{\cdots}$$

此时 p(sa-f)=0. 由长正合列, (sa-f) 通过 i 分解. 再由引理 5.1.14, (sa-f) 通过 ω 中对象分解. 由于 sa 已通过 $W\in\omega$ 分解, 故 f 通过 ω 中对象分解. 因此 [f]=0.

备注 5.1.16. 对偶可证, 全子加法范畴的嵌入 $V/\omega \to \mathcal{C}/\omega$ 存在左伴随. 综合以上结果得

$$\mathcal{U}/\omega \xrightarrow{\stackrel{\triangle}{\leftarrow} \stackrel{\triangle}{\rightarrow}} \mathcal{C}/\omega \xrightarrow{\stackrel{(-)_V}{\leftarrow} \stackrel{\bot}{\rightarrow}} \mathcal{V}/\omega$$
. (5.1.13)

5.2 遗传余挠对

(投射对象, C)与(C, 内射对象)是特殊的余挠对,这类余挠对满足一些额外性质.

定义 **5.2.1.** (完备余挠对). 称余挠对 (U,V) 是**遗传**的, 若 U 是消解的, 且 V 是余消解的.

- 1. 称全子范畴 $U \subseteq \mathcal{C}$ 是**消解**的, 若 U 包含一切投射对象且 coCone(U,U) = U;
- 2. 称全子范畴 $\mathcal{V} \subset \mathcal{C}$ 是**余消解**的, 若 \mathcal{V} 包含一切内射对象且 $Cone(\mathcal{V}, \mathcal{V}) = \mathcal{V}$.

对余挠对而言, $\mathcal{U}(\mathcal{V})$ 自动包含所有投射对象(内射对象).

备注 5.2.2. 若 $0 \in \mathcal{X}$, 则不必区分 $\mathsf{Cone}(\mathcal{X},\mathcal{X}) \subseteq \mathcal{X}$ 与 $\mathsf{Cone}(\mathcal{X},\mathcal{X}) = \mathcal{X}$. 关于 coCone 与 * 的等式同理. 备注 5.2.3. 依照经验, 通常讨论的遗传余挠对往往也是完备的. 当然, 这并非推论. 若 \mathcal{C} 不具有足够投射对象, \mathcal{D} 人是遗传但非完备的.

给定完备余挠对 $(\mathcal{U}, \mathcal{V})$. 引理 5.1.14 说明 $\operatorname{Hom}_{\mathcal{C}/\omega}(\mathcal{U}/\omega, \mathcal{V}/\omega) = 0$.

命题 5.2.4. 类似定理 5.1.13, 我们给出遗传的单边判准. 假定 $(\mathcal{U}, \mathcal{V})$ 是完备余挠对, 则以下六点等价:

1. V 是余消解的;

- 2. *U* 是消解的;
- $\text{3. } \ker \operatorname{Hom}_{\mathcal{C}/\omega}(\mathcal{U}/\omega,-)=\mathcal{V}/\omega; \qquad \text{4. } \ker \operatorname{Hom}_{\mathcal{C}/\omega}(-,\mathcal{V}/\omega)=\mathcal{U}/\omega.$
- 5. 对 $V \mapsto \stackrel{p}{\longrightarrow} , \mathbb{E}(\mathcal{U}, p)$ 是同构; 6. 对 $\stackrel{i}{\rightarrowtail} \stackrel{}{\longrightarrow} U, \mathbb{E}(i, \mathcal{V})$ 是同构.

证明. $(2 \to 1)$. 对任意 conflation $V_1 \mapsto V_2 \twoheadrightarrow X$, 往证 $X \in \mathcal{V}$, 也就是任意 conflation $X \mapsto A \twoheadrightarrow U$ 可裂. 依照 TR4' 构造下图

由 \mathcal{U} 是消解的, 得 $W \in \mathcal{U}$. 由 $\mathbb{E}(W, V_1) = 0$, 得 $q \neq V_2 \rightarrow X$ 分解. 从而 $q_*\delta = 0$. 这说明 conflation $X \mapsto A \rightarrow U$ 可裂. $(1 \rightarrow 2)$ 是对偶的.

 $(3 \to 1)$. 任取 conflation $V_1 \rightarrowtail V_2 \twoheadrightarrow X$, $U \in \mathcal{U}$ 以及任意态射 $f: U \to X$. 由 $\mathbb{E}(U, V_1) = 0$, 故 f 通过 V_2 分解,从而通过某一 ω 中对象分解(引理 5.1.14).

 $(1 \rightarrow 3)$. 给定 X 使得任意 $U \rightarrow X$ 通过 ω 分解, 下证明 $X \in \mathcal{V}$. 依照 ET4 作下图

由构造, $(X^U)_V \in \omega$. 由 V 余消解, 得 $E \in V$. 由假定, q 通过某一 $W \in \omega$ 分解, 从而 $q_*\delta = 0$. 这说明 X 是 E 的直和项, 从而 $X \in \mathcal{V}$.

 $(2 \leftrightarrow 4)$ 的证明是对偶的.

 $(5 \to 1)$. 对任意 conflation $V_1 \rightarrowtail V_2 \twoheadrightarrow X$, $\mathbb{E}((-)|_{\mathcal{U}}, V_2)$ 是零函子, 当且仅当 $\mathbb{E}((-)|_{\mathcal{U}}, X) = 0$.

 $(1 \rightarrow 5)$. 给定 conflation $V \rightarrowtail A \overset{p}{\twoheadrightarrow} B$. 对任意 $U \in \mathcal{U}$, 长正合列给出

$$0 = \mathbb{E}(U, V) \to \mathbb{E}(U, A) \xrightarrow{\mathbb{E}(U, p)} \mathbb{E}(U, B). \tag{5.2.3}$$

从而 $\mathbb{E}(U,p)$ 单. 下证明任意 $\delta \in \mathbb{E}(U,B)$ 都有 $\mathbb{E}(U,A)$ 中的原像. 由 ET4 作下图前三行:

由 ν 余消解, 故 $F \in \mathcal{V}$, 从而存在 β 使得下两行交换. 由 ET3 构造 γ , 则

$$\delta = \gamma^* \varepsilon = \gamma^* p_* \eta = p_* (\gamma^* \eta) \in \operatorname{im} p_*. \tag{5.2.5}$$

定义 5.2.5. (余挠三元组). 称 (\mathcal{T} , \mathcal{U} , \mathcal{V}) 是余挠三元组, 若 (\mathcal{T} , \mathcal{U}) 与 (\mathcal{U} , \mathcal{V}) 均为余挠对. 称余挠三元组是 完备的 (遗传的), 若其对应的两个余挠对均是完备的 (遗传的).

引理 5.2.6. 给定完备的余挠三元组 (T,U,V). 这一三元组是遗传的, 当且仅当U 是C 的厚子范畴.

证明. 若 U 是厚子范畴,则 Cone(U,U) = U. 依照单边定义**命题** 5.2.4,得 (T,U) 是遗传完备的余挠对. 对偶地,由 coCone(U,U) = U 知 (U,V) 也是遗传完备的余挠对.

反之, 若以上是遗传完备的余挠三元组, 则U是消解且余消解的. 由

$$U * U = U$$
, $Cone(U, U) = U$, $coCone(U, U) = U$, U 对直和项封闭, (5.2.6)

知
$$\mathcal{U}$$
 是 \mathcal{C} 的厚子范畴.

遗传完备的余挠三元组有一些精彩的性质.

定理 5.2.7. 给定遗传完备的余挠三元组 (T, U, V), 恰好有

$$\mathcal{T} \cap \mathcal{U} =$$
 投射对象, $\mathcal{U} \cap \mathcal{V} =$ 内射对象. (5.2.7)

证明. 下证明任意 $P \in \mathcal{T} \cap \mathcal{U}$ 是投射对象, 即任意 conflation $A \mapsto B \rightarrow P$ 可裂. 由 ET4' 构造下图

$$B^{V} = B^{V}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E \rightarrow B^{U} \rightarrow P$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \rightarrow B \rightarrow P$$

$$(5.2.8)$$

由 $P \in \mathcal{U}$, 以及 \mathcal{U} 是厚子范畴, 得 $E \in \mathcal{U}$. 由 $\mathbb{E}(P, E) = 0$, 底行 conflation 可裂. 对偶地可证 $\mathcal{U} \cap \mathcal{V}$ 恰是 内射对象.

推论 5.2.8. 若 Frobenius 范畴 (C, P) 存在遗传完备的余挠三元组 (T, U, V), 则全子范畴的包含 $U/P \to C/P$ 存在左右伴随 (备注 5.1.16).

推论 5.2.9. 若范畴存在遗传完备的余挠三元组,则该范畴有足够的投射对象与内射对象.

证明. 对一切 $T \in \mathcal{T}$, 总有特殊的投射预盖 $T^U \to T$. 对一切 $V \in \mathcal{V}$, 总有特殊的内射预包 $V \mapsto V_U$. 对 $U \in \mathcal{U}$, 总有特殊的投射预包 $U \mapsto U_T$ 和特殊的内射预盖 $U^V \to U$. 特别地, 对任意对象 X 存在投射预盖 (下图左) 与内射预包 (下图右):

$$(X^{T})^{V} \rightarrow (X^{T})^{V} \oplus X^{U} \longrightarrow X^{U} \qquad X = = X$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(X^{T})^{V} \rightarrow (X^{T})^{U} \longrightarrow X^{T} \qquad X_{V} \rightarrow \cdots \rightarrow (X_{V})_{U} \rightarrow (X_{V})_{T} \qquad (5.2.9)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$X = = = X \qquad X_{U} \rightarrow X_{U} \oplus (X_{V})_{T} \rightarrow (X_{V})_{T}$$

推论 5.2.10. C 是 Frobenius 外三角范畴, 当且仅当存在余挠四元组.

证明. (\rightarrow) . 取 \mathcal{P} 为投射对象类,则 $(\mathcal{C},\mathcal{P},\mathcal{C},\mathcal{P})$ 是余挠四元组.

(←). 若由余挠四元组 (\mathcal{X} , \mathcal{Y} , \mathcal{Z} , \mathcal{W}), 则 $\mathcal{Y} \cap \mathcal{Z}$ 恰是投射对象, 也恰是内射对象 (**定理 5.2.7**). 依照推论 5.2.9, 知 \mathcal{C} 有足够的投射对象与内射对象, 从而是 Frobenius 外三角范畴.

以下引理给出T与V的联系.

引理 5.2.11. 给定遗传完备的余挠三元组 (T, U, V). $X \in T$ 当且仅当其满足以下性质.

• 对任意 \mathcal{V} -预包对应的 conflation $M \stackrel{i}{\rightarrowtail} V \stackrel{p}{\twoheadrightarrow} N$, 任意态射 $X \to N$ 经 p 分解.

证明. (\rightarrow 方向). 作以下 conflation 的交换图, 其中 λ 由预包的定义选取, 取 μ 使得 \star 是同伦的推出拉回方块 (细节见定理 3.2.1):

$$M \xrightarrow{i} V \xrightarrow{p} N$$

$$\parallel \qquad \downarrow_{\lambda} \quad \star \qquad \downarrow_{\mu} .$$

$$M \xrightarrow{j} M_{V} \xrightarrow{q} M_{U}$$

$$(5.2.10)$$

任取 $X \in \mathcal{T}$ 与态射 $f: X \to N$. 结合引理 5.1.14 与**定理** 5.2.7, 复合态射 $X \xrightarrow{f} N \xrightarrow{\mu} M_U$ 通过某一投射对象 P 分解, 记作 $X \xrightarrow{a} P \xrightarrow{b} M_U$. 由投射对象的提升性作态射 c, 再有弱拉回的性质作态射 g:

q即为所求.

(← 方向). 若 X 満足上述性质, 下只需证明一切 $U \mapsto E \twoheadrightarrow X$ 可裂. 先取 U 的特殊预包 δ , 其中 $U_V \in \mathcal{U} \cap \mathcal{V}$ 是内射对象. 任取分解 λ , 依照 ET3 取 μ , 得以下 conflation 的拉回:

$$U \longrightarrow E \longrightarrow X \xrightarrow{-\mu^* \delta}$$

$$\parallel \qquad \downarrow_{\lambda} \qquad \downarrow_{\mu} \qquad . \qquad (5.2.12)$$

$$U \longrightarrow U \longrightarrow U_V \xrightarrow{p} U_U \xrightarrow{-\delta}$$

由 δ 是特殊预包, 依照假定知 μ 通过 p 分解. 因此 $\mu^*\delta = 0$.

5.3 态射观点

一些经验表明, 研究态射比研究对象更为方便. 例如, **定理 2.4.1** 是 \mathbb{E} -垂直关系在态射层面的推广. 若不涉及 conflation 或 \mathbb{E} -函子, 此处的范畴是一般的加法范畴.

定义 5.3.1. (态射的弱垂直关系). 称态射 f 与 g 是弱垂直的, 若对任意交换方块 (下图左), 总存在虚线态 射使得下图右交换:

$$f \downarrow \qquad \qquad \downarrow g \qquad \qquad f \downarrow \qquad \downarrow g \qquad \qquad \downarrow g \qquad \qquad (5.3.1)$$

常用的记号是 $f \cap g$, 或 $f \supseteq g$.

备注 5.3.2. 之所以称之弱垂直,是因为虚线处态射不必唯一. 弱垂直理论详见 [Jov] 的附录 D.

定义 5.3.3. (弱垂直对). 态射类 (C, \mathcal{F}) 是弱垂直对, 若 $C^{\cap} = \mathcal{F}$, 且 $C = {\cap} \mathcal{F}$. 类似引理 5.1.8 定义

- 1. $({}^{\pitchfork}S, ({}^{\pitchfork}S)^{\pitchfork})$ 是由 S 生成的 (也称**纤维地生成的**) 弱垂直对;
- 2. $(^{\pitchfork}(S^{\pitchfork}), S^{\pitchfork})$ 是由 S 余生成的 (也称**余纤维地生成**的) 弱垂直对.

良定义性由 Galois 连接保证.

命题 5.3.4. (伴随提升). 假定 $F \dashv G$ 是伴随函子, 则 $(Ff) \pitchfork g$ 当且仅当 $f \pitchfork (Gg)$.

证明. 从?? 的视角转述命题即可. 自然同构不影响"公共的原像"之选取.

引理 5.3.5. 给定态射类 S, 以下是一些基本事实.

- 1. $^{\circ}S$ 包含一切同构, 同时在复合同构的意义下封闭.
- 2. ${}^{\pitchfork}S$ 对形变收缩 (态射的形变收缩见**定理** 3.3.10) 封闭.

证明. 假定 $f \cap g$, $f' \in f$ 的形变收缩. 任取定交换方块 $\square: (\alpha, \beta): f' \Rightarrow g$. 由 $f \cap g$, 取 g 使得 $g = \beta g$ 且 $g = \alpha p$:

今断言 sj 给出交换方块 \square 的提升. 检验得 $(sj)f'=sfi=\alpha pi=\alpha$, 且 $g(sj)=\beta qj=\beta$.

3. $^{\circ}S$ 对范畴的推出 (若存在) 封闭.

证明. 假定 $f \cap g$, 且 f' 是 f 关于 m 的任意推出. 下证明交换方块 $\square: (\alpha, \beta): f' \Rightarrow g$ 有提升 t:

$$\begin{array}{cccc}
 & \xrightarrow{m} & \xrightarrow{\alpha} & \\
\downarrow f & \xrightarrow{s} & \downarrow f' & \downarrow g \\
\vdots & & & & \downarrow g
\end{array}$$
(5.3.3)

取 s 为 $f \cap g$ 对应的提升态射, 由推出的泛性质取 t 使得 $tf' = \alpha$ 且 tn = s. 为说明 $gt = \beta$, 只需在右侧复合推出诱导的满态射 $(n \ f')$ 即可.

4. ⁶S 对任意余积 (若存在) 封闭.

证明. 给定一族 $f_i \cap g$. 由**命题** 5.3.4, 以下提升问题等价:

$$\coprod_{i \in I} X_{i} \xrightarrow{\alpha} A \qquad (X_{i})_{i \in I} \xrightarrow{(\alpha \circ e_{i})_{i \in I}} (A)_{i \in I}$$

$$\coprod_{i \in I} f_{i} \downarrow \qquad \downarrow g \qquad (f_{i})_{i \in I} \downarrow \qquad \downarrow (g)_{i \in I}$$

$$\coprod_{i \in I} Y_{i} \xrightarrow{\beta} B \qquad (Y_{i})_{i \in I} \xrightarrow{(\beta \circ e_{i})_{i \in I}} (B)_{i \in I}$$

$$(5.3.4)$$

右图所示的 $(X_i)_{i\in I}$ 与 $(Y_i)_{i\in I}$ 是离散范畴, 从而提升态射 $(s_i)_{i\in I}$ 可逐次构造.

5. $^{\circ}S$ 对超限复合 (若存在) 封闭.

证明. 取定序数 α 与函子 $(X, f) : \alpha \to \mathcal{C}$. 此时 (X, f) 对应图

$$X_0 \xrightarrow{f_{1,0}} X_1 \xrightarrow{f_{2,1}} X_2 \xrightarrow{f_{3,2}} \cdots \xrightarrow{f_{\beta+1,\beta}} X_{\beta+1} \to \cdots$$
 (5.3.5)

称之超限复合, 若对极限序数 $\gamma \in \alpha$ (若存在) 总有 $\lim_{\beta \in \gamma} X_{\beta} = X_{\gamma}$.

不妨假定 α 是极限序数, 且恒有 f_{\bullet} \pitchfork g. 下证明 $f_{\alpha,0}: X_0 \to \varinjlim_{\beta \in \alpha} X_{\beta}$ 也属于 $\pitchfork g$. 显然恒等态射的超限复合是恒等, 不妨记 $X_0 = \varinjlim_{\beta \in \alpha} (X_0)_{\beta}$. 以下两个提升问题是等价的:

$$\begin{array}{cccc}
& & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

以下对右图归纳地构造 s_{β} .

- (a) 若 $\beta = 0$, 则 $f_{\beta,0} = 1_{X_0}$. 取 $s_0 := \alpha \circ e_0$ 即可.
- (b) 若 s_{β} 被构造,下构造 $s_{\beta+1}: t_{\beta} \circ f_{\beta+1,\beta}$ 如下图所示:

$$X_{0} \xrightarrow{s_{0}} A$$

$$f_{\beta,0} \downarrow \qquad \qquad \downarrow g$$

$$X_{\beta} \xrightarrow{f_{\beta+1,\beta}} X_{\beta+1} \xrightarrow{s_{\beta}} B$$

$$(5.3.7)$$

(c) 若 β 是极限序数,且 $(s_{\bullet})_{<\beta}$ 均被构造,则下图是交换图的滤过极限,从而显然交换:

$$(X_{0})_{<\beta} \xrightarrow{(s_{0})_{<\beta}} (A)_{<\beta}$$

$$(f_{-,0})_{<\beta} \downarrow \qquad \downarrow (g)_{<\beta} .$$

$$(X)_{<\beta} \xrightarrow{(q \circ e)_{<\beta}} (B)_{<\beta}$$

$$(5.3.8)$$

例子 5.3.6. 定义范畴向函子范畴的嵌入 $\mathfrak{t}: X \mapsto (0 \to X)$ 与 $\mathfrak{s}: X \mapsto (X \to 0)$. 给定余挠对 $(\mathcal{U}, \mathcal{V})$, 取 $\mathfrak{s}(\mathcal{U})$ 余生成的弱垂直对 $({}^{\pitchfork}(\mathfrak{s}(\mathcal{U})^{\pitchfork}), \mathcal{U}^{\pitchfork})$. 此时有如下结论.

- 1. 给定 conflation $V \stackrel{i}{\rightarrowtail} B \stackrel{p}{\twoheadrightarrow} C, V \in \mathcal{V}, 则 p \in \mathcal{U}^{\pitchfork}$. 由长正合列式 (2.2.11) 容易验证.
- 2. 若 $\mathfrak{t}(X) \in {}^{\pitchfork}(\mathfrak{s}(\mathcal{U})^{\pitchfork})$, 则 $X \in \mathcal{U}$.

证明. 对 X 构造特殊预盖 $X^V \mapsto X^U \to X$. 由上一条, 以下提升问题有解:

$$\begin{array}{cccc}
0 & \longrightarrow & X \\
\downarrow & & \parallel & . \\
X^{V} & \longmapsto & X^{U} & \longrightarrow & X
\end{array} (5.3.9)$$

这说明 conflation 可裂, 从而 $X \in \mathcal{U}$.

这说明, 余挠对理论可以"无损地"嵌入弱垂直对理论中.

备注 5.3.7. 容易发现, 所有形如 $(Y \to 0)$ 的态射属于 $\mathfrak{s}(\mathcal{U})^{\pitchfork}$, 这一态射类的关键信息蕴含在 inflation 的 coCone-项中. 将余生成关系改作生成关系, 则有对偶的结论.

推论 5.3.8. 由**例** 5.3.6 与引理 5.3.5, U 对任意余积 (若存在) 封闭.

备注 5.3.9. 弱垂直理论的更多"计算规则"见 [JT06],这在涉及幺半范畴或单纯集方法时尤为有用.

定义 5.3.10. (弱分解系统). 弱分解系统 (下简称 **WFS**) 是一个垂直对 (\mathcal{C} , \mathcal{F}), 使得范畴中所有态射可表示为 $p \circ i \in \mathcal{F} \circ \mathcal{C}$.

依照经验, 直接计算 \mathcal{C}^{\pitchfork} 往往是不切实际的. 以下是更常用的等价定义.

命题 5.3.11. (C, \mathcal{F}) 是 WFS 当且仅当下列条件成立.

- 1. C与F对形变收缩封闭.
- 2. $C \cap \mathcal{F}$ 是一对弱垂直的态射.
- 3. 范畴中所有态射可表示为 $p \circ i \in \mathcal{F} \circ \mathcal{C}$

证明. (\rightarrow) 方向是显然的. 下证明 (\leftarrow) 方向. 对 $f \cap \mathcal{F}$, 任取分解 $f = p \circ i$. 弱垂直性给出分解 s (下图左), 从而 $f \in \mathcal{E}$ f 的形变收缩 (下图右):

5.4 模型结构

模型结构理论的综述与多数经典文献可在 [Hov07] 中找到. 以下谈论的模型结构都是闭模型结构. 我们使用 Λ 表示全范畴. 若不涉及 conflation 或 \mathbb{E} -函子, 此处的范畴是含有零对象的范畴.

定义 **5.4.1.** 范畴 C 上的闭模型结构是指三个态射类 (Cofib, Weg, Fib), 满足如下定义:

- 1. (Cofib, Fib ∩ Weq) 与 (Cofib ∩ Weq, Fib) 是 WFS;
- 2. 对任意可复合的态射 $f, g = g \circ f$. 若两者属于 Weq, 则第三者也属于 Weq.

定义 5.4.2. 我们规范一些术语. 以下是五类基本态射.

- Cofib, Weg 与 Fib 三类态射分别称作**余纤维**, 弱等价与纤维.
- ・ 记 TCofib := Cofib ∩ Weg 为平凡纤维, TFib := Fib ∩ Weg 为平凡余纤维.

以下是五类基本对象.

- X 称作**余纤维对象**, 若 $0 \to X \in Cofib$. 记作 $X \in C$.
- X 称作纤维对象, 若 $X \to 0 \in \text{Fib.}$ 记作 $X \in \mathcal{F}$.
- X 称作**平凡余纤维对象**, 若 $0 \to X \in \mathsf{TCofib}$. 记作 $X \in \mathsf{TC}$.

- X 称作**平凡纤维对象**, 若 $X \to 0 \in \mathsf{TFib}$. 记作 $X \in \mathsf{T}\mathcal{F}$.
- X 称作**平凡对象**, 若 $0 \to X \in Weq$. 记作 $X \in \mathcal{W}$.

直接地, $TC = C \cap W$, $TF = F \cap W$.

方便起见,有时使用以下等价定义.

命题 5.4.3. 态射类 (Cofib, Weg, Fib) 构成闭模型结构, 当且仅当以下成立.

CM1 对任意可复合的态射 $f, g = g \circ f$. 若两者属于 Weq, 则第三者也属于 Weq.

CM2 三类态射对形变收缩封闭.

CM3 存在两组提升关系 Cofib ↑ (Weq ∩ Fib) 与 (TCofib ∩ Weq) ↑ Fib.

CM4 范畴中所有态射可表示为 $p \circ i \in (\mathsf{Weq} \cap \mathsf{Fib}) \circ \mathsf{Cofib} = p' \circ i' \in \mathsf{Fib} \circ (\mathsf{TCofib} \cap \mathsf{Weq}).$

证明. 定义 5.4.1 的第二条即 CM1. 定义 5.4.1 的第一条等价于 CM2-4 (命题 5.3.11).

备注 5.4.4. 定义 5.4.1 以对偶为先, 性质为后; 命题 5.4.3 以性质为先, 对偶为后.

引理 5.4.5. 以下是一些直接的推论.

1. W 中对象之间的态射必是 Weq.

证明. 对 $X, Y \in \mathcal{W}, 0 \to X \ni 0 \to Y$ 属于 Weg. 由 CM1 可知 $X \to Y$ 也属于 Weg.

2. Weg = TFib \circ TCofib.

证明. 由 Weq = Fib ∘ TCofib 与 CM1 得证.

3. 模型结构的态射范畴也是模型结构, 态射范畴的 Cofib (Weq, Fib) 是 Cofib $^{\rightarrow}$ (Weq $^{\rightarrow}$, Fib $^{\rightarrow}$). 更一般地, 部分模型的函子范畴也是模型范畴, 见 [Ree].

证明. CM1 与 CM2 是直接的. 下验证 CM3 (的一侧), 取 $(i,i) \in \mathsf{Cofib}^{\to} \vdash \mathsf{I}(p,p) \in (\mathsf{Weq} \cap \mathsf{Fib})^{\to}$ 的交换方块, 存在以下虚线所示的态射使得所有胞腔交换:

$$F_{1} \stackrel{m}{\longleftarrow} C_{1} \stackrel{f}{\longrightarrow} C'_{1} \stackrel{\longrightarrow}{\longrightarrow} F'_{1}$$

$$\downarrow^{p} \stackrel{\downarrow}{\downarrow_{i}} \qquad \downarrow^{i'} \qquad \downarrow^{p'}.$$

$$F_{2} \stackrel{G}{\longleftarrow} C_{2} \stackrel{g}{\longrightarrow} C'_{2} \stackrel{\longrightarrow}{\longrightarrow} F'_{2}$$

$$(5.4.1)$$

最后验证 **CM4** (的一侧). 对任意态射范畴的态射 (α, β) , 取分解 $i, i' \in \mathsf{Cofib} \ \exists \ p, p' \in \mathsf{Weq} \cap \mathsf{Fib}$. 由原模型结构的 **CM3**, 存在虚线处态射使得下图交换:

例子 5.4.6. (代换). 引入模型结构的一大动机是构造局部化. 试回忆 ([GZ67]) 分式给出的局部化范畴 $\mathcal{C} \to S^{-1}\mathcal{C}$, 局部化范畴中的态射 $X \to Y$ 本质上拆解作 $X \Leftrightarrow X' \to Y$. 换言之, 先使用 "同构" 代换 X 为 X', 使得 X' 至 Y 的态射能被直接描述.

类似地,模型范畴中的 S-态射类是 Weq. 对任意对象 X, 对 $0 \to X$ 与 $X \to 0$ 使用 CM4 得

$$0 \xrightarrow{\mathsf{Cofib}} F \xrightarrow{\mathsf{TCofib}} X, \quad X \xrightarrow{\mathsf{TFib}} C \xrightarrow{\mathsf{Fib}} 0. \tag{5.4.3}$$

换言之,任意对象 X 可被代换为余纤维对象 F 或纤维对象 C.

参考文献

- [BK] Theo Bühler and Matthias Kunzer. Some elementary considerations in exact categories. URL: https://pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/excounter.pdf.
- [BS01] Paul Balmer and Marco Schlichting. Idempotent Completion of Triangulated Categories. *Journal of Algebra*, 236(2):819–834, February 2001. doi:10.1006/jabr.2000.8529.
- [Büh10] Theo Bühler. Exact categories. *Expositiones Mathematicae*, 28(1):1-69, January 2010. doi: 10.1016/j.exmath.2009.04.004.
- [Che] Xiao-Wu Chen. The Extension-lifting Lemma via Two-term Complexes. URL: http://home.ustc.edu.cn/~xwchen/USTC%20Algebra%20Notes%20Archiv/The%20Extension-Lifting%20lemma%20via%20two-term%20complexes.pdf.
- [GZ67] Peter Gabriel and Michel Zisman. *Calculus of Fractions and Homotopy Theory*. Springer, Berlin, Heidelberg, 1967. doi:10.1007/978-3-642-85844-4.
- [Hap88] Dieter Happel. Triangulated Categories in the Representation of Finite Dimensional Algebras. Cambridge University Press, 1 edition, February 1988. URL: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/AD4EA5E6215A0B586678B10B2D417F74/9780511629228c1_p1-56_CB0.pdf/triangulated_categories.pdf, doi: 10.1017/CB09780511629228.
- [Hov07] Mark Hovey. Model Categories. American Mathematical Soc., 2007.
- [Joy] André Joyal. The theory of quasi-categories and its applications. URL: https://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf.
- [JT06] Andre Joyal and Myles Tierney. Quasi-categories vs Segal spaces, November 2006. arXiv: math/0607820, doi:10.48550/arXiv.math/0607820.
- [Kel82] G. M. Kelly. Basic Concepts of Enriched Category Theory. Number 64 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge; New York, 1982. URL: http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html.
- [Kel96] Bernhard Keller. Derived Categories and Their Uses. In *Handbook of Algebra*, volume 1, pages 671–701. Elsevier, 1996. doi:10.1016/S1570-7954(96)80023-4.
- [LC07] Jue Le and Xiao-Wu Chen. Karoubianness of a triangulated category. *Journal of Algebra*, 310(1):452-457, April 2007. doi:10.1016/j.jalgebra.2006.11.027.
- [May] John P. May. The axioms for triangulated categories. URL: https://www.math.uchicago.edu/~may/MISC/Triangulate.pdf.
- [Mit65] Barry Mitchell. *Theory of Categories*. Academic Press, 1965. URL: https://webhomes.maths.ed.ac.uk/~v1ranick/papers/mitchell.pdf.

[Mur07] Daniel Murfet. Triangulated categories part i, April 2007. URL: http://therisingsea.org/notes/TriangulatedCategories.pdf.

- [Nee91] Amnon Neeman. Some new axioms for triangulated categories. *Journal of Algebra*, 139(1):221–255, May 1991. doi:10.1016/0021-8693(91)90292-G.
- [Nee01] Amnon Neeman. *Triangulated Categories*. Number no. 148 in Annals of Mathematics Studies. Princeton University Press, Princeton, 2001. URL: https://homepage.mi-ras.ru/~akuznet/homalg/Neeman%20Triangulated%20categories.pdf.
- [NP19] Hiroyuki Nakaoka and Yann Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cahiers de topologie et géométrie différentielle catégoriques, LX(2):117–193, 2019. arXiv title "Mutation via Hovey twin cotorsion pairs and model structures in extriangulated categories". URL: https://hal.science/hal-02136919.
- [Pro] Stacks Project. Lemma 12.7.1 (ODLP)—The Stacks project. URL: https://stacks.math.columbia.edu/tag/ODLP.
- [Ree] C L Reedy. HOMOTOPY THEORY OF MODEL CATEGORIES.
- [RZ21] Shi Rong and Pu Zhang. Strong version of Snake Lemma in exact categories. *Homology, Homotopy and Applications*, 23(2):151–163, 2021. doi:10.4310/HHA.2021.v23.n2.a9.
- [Ver96] Jean-Louis Verdier. Des catégories dérivées des catégories abéliennes. Number 239 in Astérisque. Société mathématique de France, 1996. URL: https://www.numdam.org/item/AST_1996__ 239_R1_0/.
- [Wis] Jonathan Wise. A A Non-elementary Proof of the Snake Lemma. URL: https://ncatlab.org/nlab/files/Wise-SnakeLemma.pdf.
- [Yon60] Nobuo Yoneda. On Ext and exact sequences. *J. Fac. Sci. Univ. Tokyo Sect. I*, 8:507–576, 1960. URL: https://mathscinet.ams.org/mathscinet/article?mr=225854.