ALCOA STRUCTURAL HANDBOOK

ALUMINUM COMPANY OF AMERICA

1950

Robert 1. Sell 3309 E135-EL

ALCOA STRUCTURAL HANDBOOK

ALUMINUM COMPANY OF AMERICA

Gulf Building

PITTSBURGH, PENNSYLVANIA

1950

COPYRIGHT, 1950 ALUMINUM COMPANY OF AMERICA

CONTENTS

		Number
	Physical and mechanical properties	1
CHARACTERISTICS, MANUFACTURE AND FABRICATION OF	Manufacture	2
ALUMINUM ALLOY STRUCTURAL PRODUCTS	Fabrication	3
TRODUCIS	Tables of properties	4
	Selection of working stresses	5
DESIGN OF ALUMINUM ALLOY STRUCTURES	Design considerations	б
	Beam formulas	7
	Structural shapes	8
ELEMENTS OF SECTIONS	Rectangles	9
STRUCTURAL SHAPES, RECTANGLES,	Round tubing	10
TUBES AND FORMULAS	Plate Girder	11
	Formulas	12
	Sheet: flat and corrugated	13
TECHNICAL DATA	Bars: square and round	14
ON MISCELLANEOUS STRUCTURAL PRODUCTS	Rivets, bolts and nuts	15
	Pipe	16
CDECIFICATIONS TO FRANCES AND	Mechanical property specifications	17
SPECIFICATIONS, TOLERANCES AND COMMERCIAL SIZES	Commercial tolerances	18
OF STRUCTURAL MATERIAL	Commercial sizes	19
<u></u>	Conversion tables	20
CONVERSION TABLES	Properties of various materials	21
OTHER USEFUL DATA	Index	22
	Publications, Products, Sales offices	23

NOTICE

Many of the materials or their uses, the alloys or their processes of fabrication or casting, their heat treatment or the products of one or more of these operations mentioned in this handbook are covered by United States patents.

FOREWORD

The diversity of form and service characteristic of aluminum alloy structures emphasizes the need for a new design approach. This edition of the Alcoa Structural Handbook presents fundamental design information regarding the strength of aluminum structural members. These data presented through discussion, examples and tables are based on laboratory investigation, field tests and extensive practical experience.

Recent improvements in Alcoa aluminum alloys and structural products together with advances in design methods are reflected in the revision of all sections of the handbook.

The calculations involved in the preparation of this book are based upon the theoretical cross-sections as shown in the tables. It should be noted, however, that in practice these sections vary according to the commercial tolerances shown in the tables.

The services of the research and development facilities of Aluminum Company of America are available to customers who desire assistance in the application of aluminum to their products. Recommendations on design, choice of alloy and commodity, and fabrication are furnished without cost to the customer.

Aluminum Company of America assumes responsibility for the quality of its product but does not assume responsibility for customers' designs or for the performance of structures or parts made in accordance therewith.

The extent of responsibility assumed by Aluminum Company of America is set forth in detail in the company's formal warranty clause which appears on all acknowledgements of its orders and which is quoted in full on page 208 of this book.

CHARACTERISTICS, MANUFACTURE AND FABRICATION OF ALUMINUM ALLOY STRUCTURAL PRODUCTS

PHYSICAL AND MECHANICAL PROPERTIES OF ALUMINUM ALLOY STRUCTURAL PRODUCTS

ALUMINUM ALLOYS are used in structures chiefly because they combine light weight with strength. This combination permits the building of lightweight structures from members possessing the advantages inherent in generous dimensions and bulk. Furthermore, any well-equipped shop can fabricate aluminum alloy structures with no major change of method or equipment.

Structural members and materials are available commercially in a variety of aluminum alloys and in forms adapted to a wide range of use. The alloys commonly used for different structural commodities are given in Table 1, page 21.

From the mining of the ore to final inspection, each step in the manufacture of Alcoa Aluminum Alloy products is under accurate control. This, combined with rigid testing routine for all products, insures uniform quality of the materials produced by Aluminum Company of America. The production, metallurgy, fabrication and testing of Alcoa Aluminum and its alloys is covered in detail in the literature listed on page 212.

WROUGHT ALLOYS

Nomenclature and Products

The wrought alloys of Alcoa Aluminum are produced by rolling, extruding, drawing or forging. They are designated by a combination of numbers and letters which indicate chemical composition, class of material and temper. A detailed discussion of this system of nomenclature is published in "Alcoa Aluminum and Its Alloys." The structural engineer is seldom concerned with many different alloys or tempers. The following examples indicate the general significance of the terms in alloy designations.

The alloy most widely used in aluminum structures is 61S-T6. The first number, "61," identifies the chemical composition; the letter "S" distinguishes this as a wrought, rather than a cast product; the letter "T" shows that the metal has been heat treated to increase strength; and the final "6" defines the method of heat treatment.

Other heat-treated alloys frequently used for structural purposes are 14S-T4 and 14S-T6. These two are similar in all respects except that the T6 temper has been subjected to additional heat treatment thus providing maximum strength.

For low-stressed applications, such as wall or roof panels, nonheat-treatable alloys including 3S-H14 or 4S-H32 often provide maximum economy because of low unit cost and excellent forming characteristics. Taking 4S-H32 as an example, the combination "4S" identifies composition and class, as in the heat-treated alloys; the letter "H" signifies that temper is produced by cold rolling, rather than heat treatment; the final number "32" defines the temper and, consequently, the physical properties.

Certain sheet and plate alloys are produced with an alclad coating which ensures maximum resistance to corrosion. The coating is usually about 5% of the total thickness and can be applied to one or both sides. The surface coating is of an aluminum alloy which is anodic to the core and is bonded to the core by an alloying action at the interface during hot-working and subsequent fabricating operations.

Wrought aluminum alloy products are available in the form of shapes, plate, sheet, bar, tubing, rod, wire, forgings, rivets, bolts, nails and all other forms required for structural purposes.

Nominal Compositions

The nominal compositions of wrought Alcoa Aluminum Alloys used for structural purposes are given in Table 2, page 22. The maximum amount of alloying element added in any of these is about 6 to 7 per cent.

Mechanical Properties

Commercially pure aluminum weighs 0.098 pound per cubic inch and, fully annealed, has a yield strength of about 5000 pounds per square inch. The weight of the wrought alloys used for structural purposes varies from 0.096 pound per cubic inch to 0.101 pound per cubic inch. By means of alloying and heat treatment, the yield strength can be increased to 58,000 pounds per square inch or more. Based on commercially pure aluminum, the variation in weight of the different alloys is less than 4 per cent, while the increase in yield strength may be more than 1000 per cent. In some of the alloys the specific gravity is less than that of commercially pure aluminum.

11

STRUCTURAL

Tensile strengths, yield strengths, and elongations of structural Alcoa Aluminum Alloys at elevated temperatures are given in Table 7, page 27. These data provide some measure of the ability of the various alloys to withstand prolonged exposure at elevated temperatures. For specific information concerning the suitability of the various alloys for use at elevated temperatures, the nearest sales office of the Aluminum Company of America should be consulted.

Modulus of Elasticity

The moduli of elasticity of the aluminum alloys included in this book range from 10,000,000 to 10,600,000 pounds per square inch. An average value of 10,300,000 pounds per square inch is suitable for design purposes and is used throughout the book. Modulus of elasticity is important in studies of structural stability as well as in the design of beams and compression members. Deflection under load is dependent on both the form and arrangement of members as well as on the modulus of elasticity of the material. Desired stiffness can be provided by choosing a suitable form of member and by correct distribution of metal. A low modulus of elasticity tends to cushion the shock of impact and decreases the magnitude of stresses set up by misalignment of structural members.

Repeated Stress

The resistance of metals to repeated stress is ordinarily measured by a value known as endurance limit. Endurance limit is the highest stress at which a metal will withstand an indefinitely large number of complete reversals of stress, tension to compression. This endurance limit has little significance in structural design, because loading conditions which produce complete reversal of maximum stress seldom occur in structures. It is sometimes desirable to investigate the possibility of fatigue action at some lower number of cycles than that indicated by the endurance limit. Table 5, page 25. presents data obtained on specimens tested in the R. R. Moore rotating-beam fatigue machine in which only the extreme fiber is subjected to the maximum stress in each cycle. The approximate maximum stresses which the materials will withstand are given for various numbers of cycles. The values in the last column of Table 5, corresponding to 500,000,000 cycles of completely reversed stress, are the endurance limits for the various Alcoa Aluminum Alloys.

The data in Table 6, page 26, were obtained on a direct tension-compression testing machine in which a much wider range of stress variation is produced than is possible in the rotating-beam type of machine. On the direct tension-compression testing machine, the entire cross-section of the specimen is subjected to the maximum stress in each cycle. This difference in stress distribution is responsible for the fact that, for comparable tests in complete reversal, the direct tension-compression results are always somewhat lower than those obtained by the rotating-beam test.

Thermal Expansion

The coefficient of thermal expansion of the wrought aluminum alloys used for structural purposes varies from 0.0000114 to 0.0000128 inch per inch per degree Fahrenheit. Thermal expansion must be considered in relation to the behavior of large structures and in the measurement of long structural members. Table 8, page 28, gives the change in length of wrought Alcoa Aluminum Alloys corresponding to changes in temperature. In aluminum structures, secondary stresses resulting from temperature changes are less than those in similar steel structures, because the lower modulus of elasticity of aluminum compensates for its greater coefficient of thermal expansion.

Electrical and Thermal Conductivity

The electrical and thermal conductivities of aluminum alloys vary with alloy, heat treatment and amount of strain hardening. The high thermal conductivity of aluminum alloys makes it possible to use hot-driven rivets in heat-treated aluminum alloys without damage to mechanical properties.

Resistance to Corrosion

Aluminum alloys used for structural purposes have good resistance to atmospheric corrosion. This decreases the cost of maintenance and increases the safety of structures made of them. Corrosion may occur under severe conditions; and in such locations, aluminum structures, like those made of other materials, should have adequate paint protection. This is particularly true for structures which may be subjected to the corrosive agents that occur in mine waters or in certain industrial processes.

MANUFACTURE OF WROUGHT ALLOY PRODUCTS

The methods of manufacturing Alcoa Aluminum Alloy structural materials vary with the product and alloy. Maximum commer-

cial sizes for the various products are given on pages 188 to 200, and commercial tolerances are shown on pages 171 to 187.

Rolling

Sheet, plate, shapes, rod and bar are produced by rolling. In addition to standard structural shapes such as angles and channels, Aluminum Company of America is in a position to supply special rolled sections. These can be obtained with cross-sectional areas as great as 30 square inches, lengths up to 85 feet, and weights per piece as heavy as 1400 pounds. Thick plate and shapes are flattened and straightened by rolls, while sheet and certain sizes of plate and shapes are straightened by stretching.

Extruding

Extruded shapes are produced by forcing metal through an orifice having the shape of the desired cross-section. The member is then straightened by stretching. There are definite limitations to the weight per foot of length and to the total weight per piece of extruded sections. In general, sections which may be enclosed in a 15-inch circle can be extruded. Larger sections are sometimes produced, and, when these are desired, information may be obtained from the nearest sales office of Aluminum Company of America. Tools required for producing extruded shapes are relatively inexpensive.

Many of the 35,000 extruded sections now produced are useful in supplementing standard structural shapes. Maximum economy of metal and fabricating cost can often be effected by designing members especially adapted to a given purpose, and it is for such that extruded shapes are generally used.

Drawing

Seamless tubing is produced in a variety of alloys and sizes. The commercial range of diameters and wall thicknesses of round tubing is given in the table on pages 198 and 199. Oval, square, rectangular, streamline and special shapes are also available.

Forging

Die and open forgings are made from several aluminum alloys. Forging develops excellent properties in these alloys, and such forgings represent the maximum in combined strength and light weight. Hand forgings weighing over 2000 pounds have been made, and intricate shapes are produced in smaller die forgings.

Heat Treating

The solution heat treatment of wrought alloys consists of heating at carefully controlled temperatures, varying from 910°F. to 1000°F. for different alloys, and quenching. The time of heating depends on the size of load in the furnace and the thickness of the material. The sudden change in temperature, caused by the quench, may result in some distortion of the piece. This distortion is removed by subsequent rolling or stretching operations, but it must be given careful consideration where solution heat treatment is contemplated on a preformed member. The solution heat treatment is followed by an aging or precipitation heat treatment at room temperature for some of the alloys, and at temperatures varying from 315°F. to 365°F. for others. This aging treatment does not produce severe deformations of the material.

FABRICATION OF ALUMINUM ALLOY STRUCTURES

Through proper choice of alloy, bend radii and tools, a great variety of forming operations can be performed on aluminum alloys. Ordinary types of presses, brakes or rolls are suitable for this work, but it is highly desirable that the surfaces of the tools which come in contact with the aluminum alloys be smooth and free from tool marks, dents or rough edges which would tend to tear or score the metal. For difficult operations, lubricants, such as heavy oils or tallow mixed with a small amount of mineral oil, can be used to advantage.

The surface and edges of the metal to be bent should be smooth. Scratches, nicks and sharp corners should be removed. A pencil or crayon, rather than a punch or scriber, should be used for marking bend lines.

Shape of section and thickness of metal determine the severity of forming which can be accomplished successfully for a given alloy and temper. Table 9, page 29, indicates the cold bend radii which are commonly used for various Alcoa Alloys and thicknesses of sheet or plate. These values have been established by tests and practical experience, but it is advisable to try out the operation with available tools on sample pieces where a minimum bend radius is necessary.

For cold forming, the severity of the operation, which can be accomplished successfully, decreases as the hardness or strength of an

alloy increases. With the alloys which derive their strength from cold working, the proper alloy and degree of hardness can be selected to assure the success of a given forming operation. For heat-treated alloys, forming can be done either hot or cold on annealed material, and strength developed by subsequent heat treatment. In alloys which are artificially aged, such as 61S, material in the "as quenched" or "T4" temper is much more ductile than the fully heat-treated and aged or "T6" material. Cold forming can be done in the intermediate temper and the member subsequently aged to develop full strength.

Excessive heating of heat-treated material affects temper and reduces strength. At 400°F. the workability of 14S-T4, 14S-T6 and 61S-T6 is much better than at room temperatures, and providing this temperature is maintained for not more than a few minutes, there is no harmful effect on the properties of the metal. The use of this method of forming 24S-T4 is undesirable as the resistance to corrosion may be impaired. Where forming at 400°F. is attempted, it is important that a frequent check of metal temperature be made with an accurate contact pyrometer.

Machining

Machining operations can be performed, using the same methods and equipment as with steel, but for best results cutting tools must be specially ground. Tools should have keen edges with more side and top rake than is usual for steel. In all machining operations, a liberal use of a cutting compound is desirable. For detailed discussion, the booklet, "Machining Alcoa Aluminum," should be consulted.

Shearing

Aluminum alloy sheet, plate and shapes ½ inch or less in thickness can be sheared on any of the types of equipment used for steel. Blades should be sharp and clearances adjusted to give smooth cuts. Material thicker than ½ inch should be sawed.

Sawing and Routing

Straight, curved and coping cuts can be made by saws. Lubricants of the soluble oil type are recommended. For straight cuts, stationary or portable circular saws are used, while band saws are used for curved or coping cuts. In any type of work, high blade speeds are desirable. A speed of 5000 feet per minute is recommended for band saws, while a peripheral speed of 10,000 feet per minute gives good results with circular saws. The saw teeth should be fairly

coarse with a slight set and a slight amount of front rake. Special routing machines are available which cut varied profiles from aluminum sheet or plate rapidly and efficiently.

Punching, Reaming, Drilling

Rivet or bolt holes in primary-load-carrying members should be drilled or subpunched and reamed. On material over 1/2-inch thick, all holes should be drilled. Both single- and multiple-type punches such as are used on structural steel are suitable for aluminum alloys. The punch should be accurately centered in the die with a radial clearance of about 1/32 inch. Cutting edges of both punches and dies should be sharp. In punching tread plate, the punch should enter from the pattern surface of the plate. For rivets of 5%-inch diameter or larger, holes should be subpunched 1/8 inch less than the nominal diameter of the rivet and reamed to finished size of not more than ½-inch greater diameter than the nominal rivet size.

Reamers should be of the high-speed, spiral-fluted type. Reaming operations on aluminum alloys are about twice as fast as the

same work in steel.

Twist drills used on aluminum alloys should be kept sharp and constantly lubricated with a soluble oil. Drill speeds can be increased about 50 per cent above those used for steel. Special drills with more than the normal number of twists per inch can be used to advantage where a large amount of work is to be done. A doublefluted twist drill with a spiral angle of 47° gives good results on aluminum alloys.

Riveting

Aluminum alloy rivets are preferred for the fabrication of aluminum alloy structures. Information on the dimensions and strength of aluminum alloy rivets is given on pages 66 and 155. In any riveting operation, it is desirable that the clearance of the rivet in the hole be held to a minimum.

Aluminum alloy rivets should be used in structures where high resistance to corrosion or uniform appearance, with the elimination

of possible rust stains, is desired.

Squeeze-type riveters should be used on aluminum rivets where possible. Pneumatic hammers and back-up tools should be heavier than those used for steel rivets of the same size. The flat cone type of driven head shown on page 155 facilitates driving and has a good appearance.

Cold driving is used for 53S-T61, 61S-T6 and A17S-T4 alloy rivets as received from the manufacturer. Rivets with flat cone heads in sizes up to 5%-inch diameter are readily driven with a pneumatic hammer. Large rivets should be squeeze driven.

Cold driving is also used for 17S and 24S alloy rivets where proper heat-treating equipment is available. Such rivets should be heat treated, quenched and driven immediately to take advantage of the workability of the metal before age hardening occurs at room temperature. This "as quenched" workability can be retained for 8 to 10 hours by refrigerating to 32°F. or less and storing at this temperature until use. Such cold driving is normally restricted to sizes of less than ½-inch diameter.

Hot driving is often desirable for rivets over $\frac{1}{2}$ inch in diameter since driving pressures are only $\frac{1}{3}$ to $\frac{1}{5}$ as great as for corresponding cold rivets. For hot driving, 53S rivets should be brought to a temperature of 1030°F. to 1050°F. in a furnace having accurate temperature control. Rivets must be transferred from the furnace to the work and driven in the least possible time as quenching is obtained by contact with cold metal and tools. Rivets of 17S and 61S alloy can be hot driven using a similar procedure except that the heating range is 930°F. to 950°F. for 17S and 990°F. to 1050°F. for 61S.

Standard steel fabricating practice is followed in driving hot steel rivets in aluminum alloy structures. Annealed steel rivets are driven cold in sizes up to 1-inch diameter. Flat or cone-type heads are used, and results are satisfactory in quality and economy, provided an edge distance of at least two diameters is maintained. For cold-driven steel rivets over ½ inch in diameter, the squeeze-type riveter must be used.

Experience with many riveting operations, on all types of structures of heat-treated aluminum alloys, has proved that distortion is no greater than in steel structures. When riveting the softer grades of aluminum, special care must be exercised to avoid overdriving. The driven head should, where possible, be formed on the side of the work having the greater thickness or hardness of metal. For the details of riveting operations on aluminum alloys, refer to the booklet, "Riveting Alcoa Aluminum."

Welding

Certain alloys of aluminum may be welded by torch, electric arc and resistance welding methods. Welding tends to decrease the strength of tempered material because of the annealing effect. In some cases satisfactory results can be obtained by the heat treatment of parts after welding. Welding processes for aluminum alloys are being developed rapidly. The booklet, "Welding and Brazing Alcoa Aluminum," gives much valuable information on this subject.

Burning

Flame-cutting should not be attempted with aluminum alloys. The excessive heat damages the metal and the cut edge is very ragged. The metal melts instead of burning.

Painting

Although aluminum and its alloys do not rust, it is frequently desirable under severe conditions of exposure to protect them with paint as in the case of other metals, especially where thin sections are employed. For ordinary conditions of use such as bridge floors, flood bulkheads and excavator booms, the finishing system used on steel structures may generally be employed with some changes in the surface preparation and priming coat.

It is important that surfaces be properly prepared before painting. One satisfactory method is to treat the surface with a solution of phosphoric acid combined with special grease solvents. A number of such mixtures for chemical treatment are commercially available. In using treatments of this type the manufacturer's directions should be followed and the surface thoroughly rinsed with clean water after treating in the solution. For many conditions of use it may be found unnecessary to employ any special surface preparation other than to remove accumulations of grease or dirt by means of washing with a solvent.

As a priming coat, a paint containing a substantial proportion of zinc chromate has been found to be most effective. Where possible, the pigment portion of the primer should consist substantially of zinc chromate with a small amount of inert pigment. For the finishing coat, aluminum paint is the most durable, but where other colors are desired, any durable finishing paint may be employed.

Paint coatings may be applied to aluminum surfaces by employing practically the same procedure and equipment as in the case of steel or other metallic surfaces.

For a more complete discussion of the use of paints on aluminum, refer to the booklet, "Finishes for Alcoa Aluminum."

CASTING ALLOYS

Aluminum alloy castings are suitable for many structural applications. In certain cast alloys, the mechanical characteristics are obtained by alloying alone and the material is designated by the term "as cast." In other alloys, the properties are improved by heat treatment. The chemical composition of casting alloys of Alcoa Aluminum is designated by a number, while the heat treatment is designated by the letter "T" followed by a number, e.g., 220-T4. The nominal compositions of several casting alloys most suitable for structural uses are given in Table 2, page 22.

Mechanical Properties

Mechanical properties of Alcoa Aluminum sand-casting alloys are shown in Table 4, page 24. These values have been determined from standard ½-inch diameter test specimens individually cast in green-sand molds and tested without machining off the surface. As is the case with the other cast metals, the properties so determined are not necessarily the same as those of test bars cut from commercial castings, but may be higher or lower. In the design of castings, the services of the engineering and technical staff of Aluminum Company of America are available on request. The booklet entitled "Casting Alcoa Alloys" will also prove useful.

For structural purposes most aluminum alloy castings are made in sand molds. Patterns used for other metals can often be modified for aluminum alloy castings, but sometimes differences in shrinkage and foundry methods require special patterns. Single castings weighing over 3500 lb. have been produced in aluminum alloys.

SELECTION OF ALLOY

The selection of the proper alloy for a specific structural application depends on the requirements of strength, durability and economy and is limited by proposed fabricating methods and by availability of the commodities required. Table 1, page 21, will assist the engineer in making a preliminary selection. Stocks of certain items are available for immediate shipment; other material is fabricated to order. Before specifying aluminum alloy materials the engineer should consult the nearest sales office of Aluminum Company of America.

TABLES OF CHARACTERISTICS, COMPOSITION AND MECHANICAL PROPERTIES OF ALUMINUM ALLOYS USED FOR STRUCTURAL PURPOSES

Definitions and Significance of Terms used in Tables of Mechanical Properties. General Data.

- 1. For all Alcoa Alloys, wrought and cast, the following approximate data apply:
 - (a) Modulus of elasticity (E).....10,300,000 pounds per square inch¹
 - (b) Modulus of rigidity (G)..... 3,850,000 pounds per square inch¹
 - (c) Poisson's ratio......0.33
- 2. Yield strength is the stress which produces a permanent set of 0.2 per cent of the initial gage length (American Society for Testing Materials' Standard Methods of Tension Testing—E8-46).
- 3. Endurance limits are based on 500,000,000 cycles of completely reversed stress, using the R. R. Moore type of machine and specimen.
- 4. Elongation varies with the form and size of test specimen. When round specimens are used the gage length for the measurement of elongation is equal to four times the diameter of the reduced section of the specimen.
- 5. Dimensions given in tables for the following products are as listed below:

Sheet and plate.....Thickness

Tubing.....Outside diameter

Forgings......Diameter or thickness

Rod and bar...... Diameter or least distance between parallel surfaces, or where so stated maximum area of cross-section. Maximum size of hexagon is 2 inches; of octagon, 13/16 inches; of square, 4 inches.

¹The values of E and G vary somewhat with the alloy, and E is about 2 per cent higher in compression than in tension. Some specific values of E and G are as follows, those for E being the average of tension and compression:

		100
	E	G
Alloy	lb./sq. in.	lb./sq. in.
3S, 4S, 61S	10,000,000	3,800,000
A51S, 52S	10,200,000	3,850,000
14S, 24S	10,600,000	4,000,000

TABLE 1—CHARACTERISTICS OF ALUMINUM ALLOYS USED FOR STRUCTURAL PURPOSES

-				
Alloy	Usual Commercial Tempers ¹	Standard Commodities	Outstanding Characteristics	Typical Uses
38	O to -H18	Sheet, plate, wire, rod, bar, extrusions, tubing, forgings.	Workability, weldability4, resistance to corrosion.	Sheet metal work, tanks, piping, chemical equipment.
4S	0 to -H38	Sheet, plate, tubing.	Higher strength than 3S, weldability4, resistance to corrosion.	Sheet metal work, roofing, siding.
52S	0 to -H38	Sheet, plate, wire, rod, bar, tubing.	Higher strength than 4S, weldability4, very high resistance to corrosion.	Sheet metal work in the marine field.
14S	-T4 and -T6	Shapes, extrusions, forgings, sheet ² , plate ² .	High strength and hardness.	General purpose high strength structural alloy, bridges, booms, forgings.
24S3, 5	-T3 and -T4	Sheet, plate, wire, rod, bar, extrusions, tubing, rivets.	High strength, limited workability.	Aircraft.
A51S	_T6	Forgings.	Good strength, excellent forgeability.	Intricate forgings for machine and automotive parts.
S19	-T4 and -T6	Sheet, plate, wire, rod, bar, shapes, extrusions, tubing.	Good strength, best cold workability of heat-treated alloys, weldability, resistance to corrosion.	Most widely used structural alloy. Switchyard structures, tank roofs, marine applications, pipe.
43	As cast	Castings.	Weldability and resistance to corresion, good castability.	Architectural spandrels, sewage disposal plants, miscellaneous small castings, valves.
214	As cast	Castings.	Good strength and resistance to corrosion.	Marine applications, machine parts, pipe fittings.
1955	-T6	Castings.	High strength and good shock resistance.	Miscellaneous machine parts and stressed castings.
356	-T6	Castings.	Weldability4, pressure tightness, resistance to corrosion, good castability.	Intricate strength castings, marine field, pipe fittings, valves.
220€	-T4	Castings.	Highest strength and shock resistance of casting alloys, resistance to corrosion.	Heavy-duty castings subject to high loads and impact, machine parts, marine field.

1Available temper varies with commodity and size. See Tables 35 to 76. Alloy 14S sheet and plate is furnished alclad—other commodities nonclad.

Alloy 24S sheet and plate is furnished either alclad or nonclad—other commodities nonclad.

4Welding tends to anneal tempered material. See page 17.

FResistance to corrosion impaired by exposure to temperatures above 250°F.

TABLE 2-NOMINAL COMPOSITION OF ALUMINUM ALLOYS USED FOR STRUCTURAL PURPOSES¹

	Alloy	Per cent of a	lloying elen cor	nents. Alumin nstitute remai	um and norm nder	al impuritie
	11110)	Copper	Silicon	Manganese	Magnesium	Chromium
Wrought	3S 4S 14S 24S A51S 52S 61S	4.4 4.5 	0.8 1.0 0.6	1.2 1.2 0.8 0.6	1.0 0.4 1.5 0.6 2.5 1.0	0.25 0.25 0.25
Cast	43 195 214 220 356	4.5 	5.0 0.8 7.0		3.8 10.0 0.3	

¹Heat-treatment symbols have been omitted since composition does not vary for different heat-treatment practices.

HANDBOOK

TABLE 3-TYPICAL MECHANICAL PROPERTIES OF WROUGHT ALUMINUM ALLOYS2 In Forms Most Generally Used for Structural Purposes

		Tension		Compression	Hardness	Sh	Shear	Fatigue	Weight
Alloy	Ultimate Strength Lb./sq. in.	Yield Strength (Set=0.2%) Lb./sq. in.	Elongation Per Cent in 2 inches. Round Specimen (½- inch diameter)	Yield Strength (Set=0.2%) Lb./sq. in.	Brinell 500 kg., 10 mm. ball	Ultimate Strength Lb./sq. in.	Yield Strength (Set=0.2%) Lb./sq. in.	Endurance Limit Lb./sq. in.	Lb./cu. in.
38-0	16,000	000,9	40	000,9	28	11,000	4,000	7,000	0.099
3S-H12	19,000	17,000	20	17,000	35	12,000	10,000	8,000	0.099
3S-H14	21,500	19,000	16	19,000	40	14,000	12,000	000,6	0.099
3S-H16	25,000	22,000	14	22,000	47	15,000	13,000	9,500	0.099
3S-H18	29,000	26,000	10	26,000	55	16,000	14,000	10,000	0.099
4S-0	26,000	10,000	25	10,000	45	16,000	000,9	14,000	0.098
4S-H32	31,000	22,000	17	22,000	52	17,000	12,000	14,500	0.098
4S-H34	34,000	27,000	12	27,000	63	18,000	14,000	15,000	0.098
4S-H36	37,000	31,000	6	31,000	70	20,000	17,000	15,500	0.098
4S-H38	40,000	34,000	9	34,000	22	21,000	19,000	16,000	0.098
14S-T43.5	62,000	41,000	20	41,000	105	38,000	24,000	20,000	0.101
14S-T63	70,000	000,09	13	000,09	135	42,000	36,000	18,000	0.101
24S-T44	68,000	48,000	19	48,000	120	41,000	28,000	20,000	0.100
A51S-T6	48,000	43,000	17	43,000	100	32,000	26,000	11,000	0.097
52S-O	27,000	12,000	30	12,000	45	18,000	8,000	17,000	0.097
52S-H32	34,000	27,000	18	27,000	62	20,000	16,000	17,500	0.097
52S-H34	37,000	31,000	14	31,000	29	21,000	18,000	18,000	0.097
52S-H36	39,000	34,000	10	34,000	74	23,000	19,000	18,500	0.097
52S-H38	41,000	36,000	8	36,000	82	24,000	21,000	19,000	0.097
61S-O	18,000	8,000	30	8,000	30	12,500	000.9	000.6	0.098
61S-T4	35,000	21,000	25	21,000	65	24,000	14,000	13,500	0.098
61S-T6	45.000	40.000	17	40,000	95	30,000	26.000	13,500	0 008

¹For guaranteed minimum values, see Tables 35 to 39.

²See page 20 for definitions and significance of terms, also additional data.

³See page 20 for definitions and significance of terms, also additional data.

³44S sheet and plate are furnished as alclad material with strengths comparable to the above. All other 14S commodities are furnished as alclad or nonclad.

³44S sheet and plate are furnished as alclad or nonclad material. The strengths of the alclad material are approximately 10 per cent less than those of the nonclad material. All other 24S commodities are furnished nonclad.

⁵4As the weight per foot of 14S-T4 rolled structural shapes approaches and exceeds 4 lb./ft., the yield strength decreases about 15 per cent from the listed value.

TABLE 4-MECHANICAL PROPERTIES OF SAND-CAST ALUMINUM ALLOYS1

	Weight	Lb./ cu. in.	0.095 0.100 0.100 0.100 0.094 0.095 0.095
	Fatigue	Endurance Limit Lb./sq.in.	6,500 6,000 6,500 7,000 7,000 7,500 7,500
(pa	Shear	Shearing Strength Lb./sq. in.	14,000 24,000 30,000 31,000 20,000 27,000 18,000
Typical values (not guaranteed)	Hardness	Brinell 500 kg., 10 mm. ball	40 60 75 70 70 70 60
al values (no	Com- pression ³	Yield Strength (Set = 0.2%) Lb./sq.in.	10,000 15,000 25,000 38,000 12,000 24,000 24,000
Typic		Elongation Per Cent in 2 Inches	0.00.00.00.00.00.00.00.00.00.00.00.00.0
	Tension ²	Yield Strength (Set = 0.2%) Lb./sq.in.	9,000 16,000 24,000 30,000 12,000 25,000 24,000 20,000
2		Ultimate Strength Lb./sq. in.	19,000 32,000 36,000 40,000 25,000 46,000 33,000 25,000
Minimum values or specifications	Pension ²	Elongation Per Cent in 2 Inches	3.0 3.0 3.0 12.0 3.0
Minimum values for specifications	Tens	Ultimate Strength Lb./sq. in.	17,000 29,000 32,000 36,000 22,000 42,000 30,000 23,000
	5	Alloy	43 195-T4 ⁶ 195-T6 195-T62 214 220-T4 356-T6

1See page 20 for definitions and significance of terms; also additional data.

²Tension and hardness values determined from standard half-inch diameter tensile test specimens individually cast in greensand molds and tested without machining off the surface.

 $^{3}\mathrm{Results}$ of tests on specimens having an L/r ratio of 12.

*Not specified. The error in determining low elongations is comparable with the value being measured.

*On standing at room temperature for several weeks, the properties of 195-T4 approach those of 195-T6.

TABLE 5-ROTATING-BEAM FATIGUE DATA

All values of stress in lb./sq. in.

Values given were determined by testing 0.3-inch diameter machined specimens in R. R. Moore Rotating-Beam Fatigue Machines and represent extreme fiber stresses which such specimens will withstand in completely reversed flexure.

Alloy and		ximate maxin withstand for			
Temper	100,000	1,000,000	10,000,000	100,000,000	500,000,000
	cycles	cycles	cycles	cycles	cycles ¹
3S-H14	17,000	12,000	10,000	9,000	9,000
3S-H16	17,500	12,500	10,500	9,500	9,500
3S-H18	19,000	14,000	11,500	10,500	10,000
4S-H36	23,000	20,000	18,000	16,000	15,500
14S-T4	42,000	34,000	27,000	22,000	20,000
14S-T6	40,000	32,000	25,000	20,000	18,000
24S-T4	42,000	34,000	27,000	22,000	20,000
A51S-T6	29,000	21,000	15,500	12,500	11,000
52S-O	20,000	19,000	18,000	17,500	17,000
52S-H32	23,000	20,000	18,500	17,500	17,500
52S-H34	26,000	20,500	19,000	18,000	18,000
52S-H36	28,000	21,000	19,000	18,500	18,500
61S-O	16,000	13,000	11,000	9,500	9,000
61S-T4	27,500	22,500	17,500	15,000	13,500
61S-T6	31,000	22,500	17,500	15,000	13,500

¹Values given for 500,000,000 cycles are commonly known as endurance limits.

TABLE 6-DIRECT TENSION-COMPRESSION FATIGUE DATA

All values of stress in lb./sq. in.

Values given were determined by testing 0.2-inch diameter machined specimens in A.R.L. direct stress fatigue machines and represent uniformly distributed stresses which such specimens will withstand under repeated axial loads.

Stresses considered algebraically: plus (+) means tension, minus (-) means compression.

1	Minimum stress	Approx	imate maxim vithstand for	num stresses various num	which materi bers of cycles	al will
	in each cycle	100,000 cycles	1,000,000 cycles	10,000,000 cycles	100,000,000 cycles	500,000,000 cycles
24S-T4 alloys	-25,000 -20,000 -15,000 -10,000 - 5,000	+38,000 +41,000 +44,000 +46,000 +48,000	+26,000 +30,000 +34,000 +37,000 +40,000	+17,000 +21,000 +24,000 +28,000 +32,000	+10,000 +15,000 +19,000 +23,000 +27,000	+ 8,000 +12,000 +16,000 +20,000 +24,000
14S-T4, 24S	$ \begin{array}{r} 0 \\ +5,000 \\ +10,000 \\ +15,000 \\ +20,000 \end{array} $	+51,000 +53,000 +55,000 +57,000 +58,000	+43,000 +46,000 +48,000 +51,000 +53,000	+36,000 +39,000 +42,000 +45,000 +48,000	+31,000 +34,000 +37,000 +41,000 +44,000	+27,000 +31,000 +35,000 +39,000 +42,000
14S-T6 alloy	-25,000 -20,000 -15,000 -10,000 - 5,000	+37,000 +40,000 +43,000 +46,000 +48,000	+25,000 +30,000 +34,000 +37,000 +40,000	+16,000 +20,000 +24,000 +28,000 +32,000	+ 8,000 +13,000 +18,000 +22,000 +26,000	+ 5,000 + 9,000 +14,000 +18,000 +23,000
	0 + 5,000 +10,000 +15,000 +20,000 +25,000 +30,000 +35,000	+50,000 +52,000 +54,000 +56,000 +58,000 +60,000 +62,000 +63,000	+42,000 +46,000 +48,000 +51,000 +53,000 +56,000 +60,000	+35,000 +39,000 +42,000 +46,000 +49,000 +52,000 +55,000 +58,000	+30,000 +34,000 +38,000 +42,000 +46,000 +50,000 +53,000 +57,000	+27,000 +31,000 +36,000 +40,000 +44,000 +48,000 +52,000 +55,000
52S-H36 alloy	-25,000 -20,000 -15,000 -10,000 - 5,000 0 + 5,000	+19,000 +22,000 +26,000 +29,000 +32,000 +34,000	+ 9,000 +14,000 +19,000 +24,000 +28,000 +32,000 +35,000	+ 6,000 +11,000 +17,000 +22,000 +27,000 +31,000 +34,000	+ 4,000 +10,000 +16,000 +21,000 +26,000 +30,000 +33,000	+ 3,000 + 9,000 +15,000 +20,000 +25,000 +29,000 +32,000
61S-T6 alloy	$ \begin{array}{r} -20,000 \\ -15,000 \\ -10,000 \\ -5,000 \\ 0 \\ +5,000 \end{array} $	+29,000 +32,000 +34,000 +36,000 +38,000 +40,000	+20,000 +24,000 +27,000 +30,000 +33,000 +35,000	+12,000 +16,000 +20,000 +24,000 +28,000 +31,000	+ 6,000 +10,000 +15,000 +19,000 +24,000 +28,000	+ 3,000 + 7,000 +12,000 +17,000 +22,000 +27,000

TABLE 7—TYPICAL TENSILE PROPERTIES OF SOME ALUMINUM ALLOYS AT ELEVATED TEMPERATURES

(Lowest Strengths During 10,000 Hours of Heating at Testing Temperature)

Alloy and Temper	Temp.,	Tensile Strength, Lb./sq. in.	Yield Strength (Offset=0.2%), Lb./sq. in.	Elong. in 2 in.,	Alloy and Temper	Temp.,	Tensile Strength, Lb./sq. in.	Yield Strength (Offset=0.2%), Lb./sq. in.	
3S-O	75 212 300 400 500 600 700	16,000 13,000 11,000 8,500 6,000 4,000 3,000	6,000 5,500 5,000 4,500 3,500 2,500 2,000	40 43 47 50 60 60 60	24S-T41	75 212 300 400 500 600 700	68,000 61,000 43,000 26,000 14,000 7,000 5,000	48,000 45,000 37,000 22,000 10,000 5,000 3,500	19 17 17 22 45 75 100
3S-H14	75 212 300 400 500 600 700	21,500 19,500 17,500 14,000 10,000 5,000 3,000	19,000 16,000 12,500 8,000 4,000 2,500 2,000	16 16 17 22 25 40 60	52S-O	75 212 300 400 500 600 700	27,000 26,000 20,000 15,000 11,000 7,500 5,000	12,000 11,000 10,000 9,000 7,000 4,500 2,500	30 40 55 65 100 105 120
3S-H18	75 212 300 400 500 600 700	29,000 25,500 22,500 16,500 10,000 4,000 3,000	26,000 19,000 14,500 6,500 4,000 2,500 2,000	10 10 12 18 25 55 60	52S-H36	75 212 300 400 500 600 700	39,000 37,000 32,000 24,000 12,000 8,000 5,000	34,000 32,000 27,000 11,000 8,000 4,500 2,500	10 12 16 35 80 100 120
4 S-O	75 212 300 400 500 600 700	26,000 26,000 22,000 15,000 10,000 6,500 4,500	10,000 10,000 9,500 8,000 6,000 3,500 2,500	25 30 40 65 80 90 100	61S-T6	75 212 300 400 500 600 700	45,000 41,000 32,000 19,000 7,000 4,000 3,000	40,000 37,000 30,000 16,000 5,000 2,500 2,000	17 18 18 25 55 85 95
4S-H34	75 212 300 400 500 600 700	34,000 33,000 27,000 20,000 13,000 7,000 4,500	27,000 24,000 17,000 8,500 6,000 3,500 2,500	12 12 20 38 65 90 100	195-T41	75 300 400 500 600	32,000 24,000 15,000 9,500 4,000	16,000 13,000 9,000 6,000 3,000	8.5 9.0 20.0 25.0 80.0
4S-H38	75 212 300 400 500 600 700	40,000 38,000 32,000 22,000 11,000 6,500 4,500	34,000 31,000 19,000 8,000 6,000 3,500 2,500	6 7 14 35 65 90 100	220-T41	300 400 500 600 75 300 400	23,000 18,500 13,500 9,000 46,000 38,000 23,000	12,000 12,000 8,000 4,000 25,000 19,000 12,000	7.0 9.0 12.0 17.0 14.0 15.0 40.0
14S-T6	75 212 300 400 500 600 700	70,000 62,000 39,000 17,000 9,500 6,500 5,000	60,000 56,000 32,000 12,000 8,000 5,500 3,500	13 18 20 40 60 65 70	356-T6	500 600 75 300 400 500 600	15,000 11,000 33,000 21,000 13,000 8,000 4,500	7,000 3,500 24,000 16,000 9,000 5,500 3,000	50.0 70.0 4.0 5.0 8.0 20.0 45.0

¹The resistance to corrosion of these alloys is usually adversely affected by exposure to elevated temperatures.

TABLE 8—APPROXIMATE THERMAL EXPANSION OF WROUGHT ALUMINUM ALLOYS

Temperature Range from -50°F. to +150°F.

			C	hange i	n Leng	th in ir	ches			
Length in feet		Te	mperati	are Cha	nge in	Degree	s Fahr	enheit		
	10	20	30	40	50	60	70	80	90	100
10 20	0.015 0.030	0.030 0.060	0.045 0.090	0.060 0.120	0.075 0.150					0.150 0.300
30 40	0.045 0.060	0.090 0.120	0.135 0.180	0.180 0.240	0.225 0.300					No. C COLLAND
50 60	0.075 0.090	0.150 0.180	0.225 0.270	0.300 0.360	0.375 0.450					0.750 0.900
70 80	0.105 0.120	0.210 0.240	0.315 0.360	0.420 0.480	0.525 0.600					
90 100	0.135 0.150	0.270 0.300	0.405 0.450	0.540 0.600	0.675 0.750					

Coefficient of thermal expansion per degree Fahrenheit taken as 0.0000125 for wrought aluminum alloys, which is approximately 1.9 times value for medium structural steel.

TABLE 9—APPROXIMATE RADII FOR 90° COLD BENDS OF ALUMINUM ALLOY SHEET

Minimum permissible radius¹ varies with nature of forming operation, type of forming equipment, and design and condition of tools. Minimum working radius for given material or hardest alloy and temper for a given radius can be ascertained only by actual trial under contemplated conditions of fabrication.

Alloy	Bend classification ²	Alloy	Bend classification ²
3S-O 3S-H12 3S-H14 3S-H16 3S-H18	A B C E	24S-O ⁴ 24S-T4 ³ , ⁴ 52S-O 52S-H32	B J B C
4S-O 4S-H32 4S-H34 4S-H36	B C D F	52S-H34 52S-H36 52S-H38 61S-O	D F G
4S-H38 14S-O ⁴ 14S-T4 ⁴ 14S-T6 ⁴	G B H K	61S-T4 ³ 61S-T6	B E F

¹See page 14.

RADII REQUIRED FOR 90° BEND IN TERMS OF THICKNESS, t

			A	pproximate	Thickness		
В&	S Gage Inch Inch	0.016	0.032 1/82	0.064 1/6	0.128 1/8	5 0.189 3/16	0.258 1/4
Bend Classification	A B C D E F G H J K	$\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0-1t \\ 0-1t \\ \frac{1}{2}t-\frac{1}{2}t \\ 1t-2t \\ 1\frac{1}{2}t-3t \\ 2t-4t \end{matrix}$	0 0 0 0-1t ½t-1½t 1t-2t 1½t-3t 2t-4t 3t-5t	0 0 0-1t ½t-1½t 1t-2t 1½t-3t 2t-4t 3t-5t 3t-5t	0 0 0-1t ½t-1½t 1t-2t 1½t-3t 2t-4t 3t-5t 4t-6t 4t-6t	0 0-1t 0-1t 1t-2t 1½t-3t 2t-4t 3t-5t 4t-6t 4t-6t 5t-7t	0 0-1t ½t-1½t 1½t-3t 2t-4t 2t-4t 4t-6t 5t-7t 6t-10t

²For corresponding bend radii see table below.

³Immediately after quenching, these alloys can be formed over appreciably smaller radii.

⁴Alclad 14S and 24S can be bent over slightly smaller radii than the corresponding tempers of the nonclad alloy.

DESIGN OF ALUMINUM ALLOY STRUCTURES

THE SELECTION OF ALLOWABLE WORKING STRESSES

IN STRUCTURAL DESIGN, it is common practice to compute the stresses to which the various parts of a structure will probably be subjected during its life. The shape and size of the various parts of the structure are adjusted so that these computed stresses do not exceed certain limiting values called allowable working stresses. These allowable working stresses, then, become the basis for proportioning most of the parts of a structure.

The selection of allowable working stresses for structural materials is a matter of prime importance to the designer, because these stresses must provide a suitable margin of safety against failure of the structure. Obviously, an allowable stress for one structural application of a given material may be too conservative for another application. Since structural aluminum is used in a great variety of ways, no attempt is made in this book to recommend definite allowable working stresses for the various alloys. Instead, data are presented to show the strength of members made from the various wrought alloys in tension, compression, buckling, shear, bearing and fatigue. This information, which is based on both theoretical and laboratory studies, should provide the engineer with the essential information necessary for an intelligent selection of allowable working stresses in any given structure.

Factor of Safety

The allowable working stresses in any material for any condition of loading are generally selected as high as may be consistent with the strength of the material for that condition of loading. The ratio of the strength of the material to the allowable working stress is usually called the factor of safety.

A given allowable working stress in tension presents one factor of safety with respect to yield strength and a quite different factor of safety with respect to ultimate strength. Similarly, a given allowable stress for compression or shear may present one factor of safety against buckling and a higher factor of safety against ultimate failure. For these reasons, it is obviously impossible to obtain the same factor of safety throughout a set of allowable working stresses for any given material. In fact, a uniform factor of safety would probably not be desirable even if it could be attained. For

example, in many applications, the factor of safety against buckling of plate girder webs can be permitted to be smaller than that against tensile fracture of the material, and in such instances the use of the same factor of safety would result in uneconomical design.

In selecting suitable allowable working stresses for aluminum alloys for various structural applications, the following factors will be found important:

- (a) The precision with which the assumed loadings represent the actual service loadings, both present and future. When there is much uncertainty about actual loadings, allowable working stresses should be selected more conservatively than in cases where loadings are known with considerable accuracy. On the other hand, if the uncertainty surrounding the actual loading leads to the adoption of very heavy assumed loadings, then part of the factor of safety is already included in these loadings and it would be wasteful of material to repeat this factor of safety by using very low allowable working stresses. Where moving loads are encountered, the selection of a suitable impact factor to represent the dynamic effects is highly important.
- (b) The precision with which the stresses in the structure are calculated. Allowable working stresses should always be conservatively selected if in the design calculations the stresses are determined by methods which are known to give only approximate results. Refinements in calculations of stresses, if carried out consistently, should permit the use of higher allowable working stresses. For example, in the design of a riveted truss, allowable working stresses should be higher if both the primary and secondary stresses are calculated than if only the primary stresses are calculated.
- (c) The importance of the structure being designed. In designing important major structures in which failures might cause considerable property damage and even loss of life, the allowable working stresses are selected more conservatively than would be the case in less important structures in which the consequences of failure would be less severe. Similarly, some members or parts of members may be more important than others, and it may be desirable to adjust the factor of safety accordingly.

Tension

In selecting an allowable stress suitable for the net section of tension members, the most important mechanical property of the material is the tensile yield strength, which is given in Table 3, page 23, for the various wrought Alcoa Aluminum Alloys. There is no sudden yielding in the aluminum alloys, and therefore, the yield strength is defined as the stress at which the permanent set is 0.2 per cent of the original gage length. When a stress of this magnitude is first applied, a permanent elongation of about 1/4 inch for each 8 inches of length will occur. Since permanent elongations of even this small amount are considered undesirable, the allowable tensile working stresses for aluminum alloys are usually established by dividing the yield strength by a factor of safety suitable to the conditions of the problem in hand. In selecting tensile working stresses, some engineers use the typical yield strength of the material (Table 3), and others use the guaranteed minimum value (Tables 35 to 39). The factor of safety will, of course, be influenced by this choice.

The spread between yield strength and tensile strength in the aluminum alloys is large enough to provide a considerable extra factor of safety against tensile fracture. Some engineers determine the allowable tensile working stress separately for yield and ultimate and use the lower of the two values, the factor of safety in the case of the ultimate being larger than that used in the case of the yield by some arbitrary amount. For example, in some fields of design a factor of safety of 2 on the yield strength, or 3 on the ultimate strength is used. These are matters concerning which no fixed rules can be made; the engineer must rely on his own judgment and experience.

Compression

The structural Alcoa Aluminum Alloys, in common with other ductile materials, do not possess a definite ultimate compressive strength. When short, compact specimens of aluminum alloys are highly stressed in compression, the material flows out laterally so that the increased area continues to support the increasing load. Therefore, in Table 3 no compressive ultimate strength is given.

In Table 3 it will be noted that the compressive yield strengths of the various alloys are equal to the tensile yield strengths. Therefore, it is usually satisfactory to select an allowable working stress in compression equal to that selected in tension. This basic allowable compressive working stress applies only to short, compact members, the longer, less compact members being designed according to the column formula or other buckling formulas discussed on the following pages.

Columns

The column strength of aluminum alloys, as with other metals, is a function not only of the properties of the material but also of the slenderness ratio of the member. Table 10, page 37, gives the column formulas for the various Alcoa Alloys. Using these formulas, the ultimate strength curve for axially loaded columns of any given alloy can be constructed readily.

It will be noted in Table 10 that the column formulas are expressed in terms of $\frac{KL}{r}$, which is called "effective slenderness ratio." The factor K represents the effect of the end conditions of the member, the following being some of the values of this factor:

For both ends completely fixed	K = 0.5
For one end fixed and one end pinned	K = 0.7
For both ends pinned	K = 1.0
For one end fixed and one end free (cantilever co	ompression
member)	K = 2.0

The designer can select a value of K corresponding to any given set of end conditions which may be encountered. In making his selection the designer may find it helpful to think of KL as the portion of the member which functions as if it were pin-ended, that is, the length between points of contraflexure when the member is in its deflected position. This deflected position should be visualized in terms of the conditions which would exist just before failure.

Most compression members in modern framed structures have partially fixed ends so that a K value should be selected somewhere between fixed and pinned. Since few compression members are completely fixed, the value of K should rarely be selected less than 0.6. In fact, a study of the behavior of compression members in framed structures indicates that many of such members are more nearly pinned than fixed, so that values of K less than 0.75 are to be regarded with suspicion unless restricted to slender members rigidly connected at both ends to members relatively much stiffer.

Table 11, page 38, gives values of ultimate column strength corresponding to various effective slenderness ratios for the wrought Alcoa Aluminum Alloys.

In selecting allowable working stresses for aluminum alloy columns, it is necessary to divide the ultimate column strengths referred to above by a suitable factor of safety. The factor of safety selected should be at least as conservative as that used with the tensile yield strength in selecting the basic tensile and compressive working stresses.

TABLE 10—ULTIMATE STRENGTH FORMULAS FOR AXIALLY LOADED ALUMINUM ALLOY COLUMNS

Representative of material having the typical properties shown in Table 3

Members are assumed to be compact enough so that no local failure will occur.

 $\frac{P}{A}$ =ultimate strength of column in lb./sq. in. L=unsupported length of column in inches r=corresponding radius of gyration in inches K=0.5 for both ends fixed K=1.0 for both ends hinged

_				
Alloy	Typical Compressive Yield Strength Lb./sq. in.	For $\frac{KL}{r}$ less than C	С	For $\frac{KL}{r}$ greater than C
3S-O	6,000	$\frac{P}{A}$ = 6,200 - 18 $\frac{KL}{r}$	194	$\frac{P}{A} = \frac{102,000,000}{\left(\frac{KL}{r}\right)^2}$
3S-H12	17,000	$\frac{P}{A}$ = 18,400 - 95 $\frac{KL}{r}$	126	A $\left(\frac{KL}{r}\right)^2$
3S-H14	19,000	$\frac{P}{A}$ = 20,800 - 114 $\frac{KL}{r}$	116	"
3S-H16	22,000	$\frac{P}{A}$ = 24,400 - 145 $\frac{KL}{r}$	108	"
3S-H18	26,000	$\frac{P}{A}$ = 29,400 - 192 $\frac{KL}{r}$	100	"
4S-O	10,000	$\frac{P}{A} = 10,500 - 41 \frac{KL}{r}$	170	"
4S-H32	22,000	$\frac{P}{A} = 24,400 - 145 \frac{KL}{r}$	108	"
4S-H34	27,000	$\frac{P}{A}$ = 30,600 - 204 $\frac{KL}{r}$	100	,,
4S-H36	31,000	$\frac{P}{A} = 35,800 - 258 \frac{KL}{r}$	91	"
4S-H38	34,000	$\frac{P}{A}$ = 39,800 - 302 $\frac{KL}{r}$	85	"
14S-T4	41,000	$\frac{P}{A}$ = 49,400 - 418 $\frac{KL}{r}$	77	"
14S-T6	60,000	$\frac{P}{A}$ = 78,000 - 830 $\frac{KL}{r}$	63	"
24S-T4	48,000	$\frac{P}{A}$ = 59,500 - 553 $\frac{KL}{r}$	71	"
52S-O	12,000	$\frac{P}{A}$ = 12,700 - 54 $\frac{KL}{r}$	144	"
52S-H32	27,000	$\frac{P}{A} = 30,600 - 204 \frac{KL}{r}$	100	"
52S-H34	31,000	$\frac{P}{A}$ = 35,800 - 258 $\frac{KL}{r}$	91	77
52S-H36	34,000	$\frac{P}{A}$ = 39,800 - 302 $\frac{KL}{r}$	85	. 11
52S-H38	36,000	$\frac{P}{A}$ = 42,500 - 334 $\frac{KL}{r}$	84	.,
61S-T4	21,000	$\frac{P}{A} = 23,200 - 134 \frac{KL}{r}$	109	"
61S-T6	40,000	$\frac{P}{A} = 48,000 - 400 \frac{KL}{r}$	77	1,1

TABLE 11—VALUES OF ULTIMATE COLUMN STRENGTH CORRESPONDING TO FORMIII AS IN TABLE 10

4S-H38	39,800	38,290	36,780	35,270	33.760	32,250	30,740	29,230	27,720	26,210	24,700	23,190	21,680	20,170	18,660	17,150	15,640	14,120	12,590	11,300	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
4S-H36	35,800	34,510	33,220	31,930	30.640	29,350	28,060	26,770	25,480	24,190	22,900	21,610	20,320	19,030	17,740	16,450	15,160	13,870	12,580	11,300	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
4S-H34	30,000	29,580	28,560	27,540	26.520	25,500	24,480	23,460	22,440	21,420	20,400	19,380	18,360	17,340	16,320	15,300	14,280	13,260	12,240	11,220	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
4S-H32	24,400	23,680	22,950	22,230	21.500	20,780	20,050	19,330	18,600	17,880	17,150	16,430	15,700	14,980	14,250	13,530	12,800	12,080	11,350	10,630	006'6	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
4S-O	10,500	10,300	10,090	068'6	089.6	9,480	0,220	9,070	8,860	8,660	8,450	8,250	8.040	7,840	7,630	7,430	7,220	7,020	6,810	6,610	6,400	5,580	4,760	3,940	3,150	2,550	2,110	1,770	1,510	1,300
3S-H18	29,400	28,440	27,480	26,520	25.560	24,600	23,640	22,680	21.720	20,760	19,800	18,840	17,880	16,920	15,960	15,000	14,040	13,080	12,120	11,160	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
3S-H16	24,400	23,680	22.950	22,230	21.500	20, 780	20,020	19,330	18,600	17,880	17,150	16,430	15.700	14,980	14,250	13,530	12,800	12,080	11,350	10,630	006'6	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
3S-H14	20,800	20,230	19.660	19,090	18,520	17,950	17,380	16,810	16.240	15,670	15,100	14,530	13.960	13,390	12,820	12,250	11,680	11,110	10,540	9,970	9,400	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
3S-H12	18,400	17.930	17.450	16,980	16,500	16,030	15,550	15,080	14,600	14,130	13,650	13,180	12,700	12,230	11,750	11,280	10,800	10,330	9,850	9,380	8,900	7,000	5,200	3,980	3,150	2.550	2,110	1.770	1,510	1,300
38-0	6,200	6.110	6,020	5,930	5 840	7,750	2,,660	5,570	5.480	5,390	5,300	5,210	5.120	5,030	4,940	4,850	4.760	4,670	4,580	4,490	4,400	4,040	3,680	3,320	2,960	2.550	2,110	1,770	1,510	1,300
KI	0	ın	10	15	20	210	30	35	40	45	20	55	09	65	70	75	80	85	06	95	100	120	140	160	180	200	220	240	260	280

Concluded on opposite page.

TABLE 11—VALUES OF ULTIMATE COLUMN STRENGTH CORRESPONDING TO FORMULAS IN TABLE 10—Concluded

	61S-T6	48,000	46,000	44,000	42,000	40,000	38,000	36,000	34,000	32,000	30,000	28,000	26,000	24,000	22,000	20,000	18,000	15,940	14,120	12,590	11,300	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
	61S-T4	23,200	22,530	21,860	21,190	20,520	19,850	19,180	18,510	17,840	17,170	16,500	15,830	15,160	14,490	13,820	13,150	12,480	11,810	11,140	10,470	6,800	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
	52S-H38	42,500	40,830	39,160	37,490	35,820	34,150	32,480	30,810	29,140	27,470	25,800	24,130	22,460	20,790	19,120	17,450	15,780	14,120	12,590	11,300	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
5	52S-H36	39,800	38,290	36,780	35,270	33,760	32,250	30,740	29,230	27,720	26,210	24,700	23,190	21,680	20,170	18,660	17,150	15,640	14,120	12,590	11,300	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
	52S-H34	35,800	34,510	33,220	31,930	30,640	29,350	28,060	26,770	25,480	24,190	22,900	21,610	20,320	19,030	17,740	16,450	15,160	13,870	12,580	11,300	10,200	7,080	5,200	3,980	3,150	2,550	2,110	1,770	1,510	1,300
ONIMOETE IN TARGET	52S-H32	30,600	29.580	28,560	27,540	26,520	25,500	24,480	23,460	22,440	21,420	20,400	19,380	18,360	17,340	16,320	15,300	14,280	13,260	12,240	11,220	10,200	7,080	5,200	3,980	3,150	2.550	2,110	1,770	1,510	1,300
ONIMOEN	52S-O	12.700	12.430	12,160	11,890	11.620	11,350	11,080	10,810	10,540	10,270	10,000	9,730	9,460	9,190	8,920	8,650	8,380	8,110	7,840	7,570	7,300	6,220	5,140	3,980	3,150	2.550	2,110	1,770	1,510	1,300
2	24S-T4	59.500	56.740	53.970	51,210	48.440	45,680	42,910	40,150	37.380	34,620	31,850	29,090	26,320	23,560	20,790	18,130	15,940	14,120	12,590	11,300	10,200	7,080	5.200	3,980	3,150	2.550	2,110	1,770	1,510	1,300
	14S-T6	78.000	73,850	69,700	65,550	61,400	57,250	53,100	48,950	44.800	40,650	36,500	32,350	28,200	24,140	20,820	18,130	15.940	14,120	12,590	11,300	10,200	7,080	5,200	3,980	3,150	2.550	2,110	1,770	1,510	1,300
	14S-T4	40,400	47 310	45,220	43,130	41 040	38 950	36,860	34,770	32,680	30,590	28,500	26,410	24.320	22,230	20,140	18,050	15.940	14,120	12,590	11,300	10,200	7,080	5,200	3,980	3,150	2 550	2,330	1,770	1,510	1,300
	KI		11	10	1 5	20	200	30	200	40	4.5	20.5	N N	09	6.50	70	75	80	0 00	06	95	100	120	140	160	180	200	220	240	260	280

Values in italic type are above the compressive yield strength of the material.

Example 1. Design the compression chord of a truss for an axial load of 47,000 lb., using a factor of safety of 2.5.

Try two angles
$$4'' \times 3'' \times \frac{3}{8}''$$
, 61S-T6 alloy, area = 4.98 sq. in.

Calculated stress =
$$\frac{P}{A} = \frac{47,000}{4.98}$$

= 9440 lb./sq.

Axis X,

$$L = 60''$$
, $r = 0.86$, assume $K = 0.8$.
 $\frac{KL}{r} = \frac{0.8 \times 60}{0.86} = 56$.

Axis Y,

$$L = 120'', r = 1.91$$
, assume $K = 0.8$.
 $\frac{KL}{r} = \frac{0.8 \times 120}{1.91} = 50$.

Greatest value of $\frac{KL}{r}$ is 56, about Axis X.

Ultimate column strength (Table 10, 61S-T6 alloy) = 48,000 - 400 × 56 = 25,600 lb./sq. in.

Allowable working stress (factor of safety of 2.5) = $\frac{25,600}{2.5}$ = 10,240 lb./sq. in.

Since this allowable stress is greater than the calculated stress of 9440 lb./sq. in., the member selected is satisfactory.

In the foregoing discussion of column strength, it is assumed that members are compact enough so that no local buckling failures will occur. When columns are made up of thin sections, failures sometimes occur by local buckling at stresses below those indicated by the column formulas. In order to design such members safely and economically, it is necessary to check the allowable compressive working stress not only from the column formula, but also from local buckling formulas, the final allowable working stress for the member being the lower of the values arrived at in this manner. Local buckling formulas are discussed in the following paragraphs.

Local Buckling of Flat Plates Under Edge Compression

When a flat plate is used as a component part of a column or other compression member, it may buckle locally under edge compression at stresses below the compressive yield strength of the material. Buckling occurs in the form of local waves or wrinkles which are practically independent of the length of the member. These local buckling failures in plates may be treated conveniently as local column failures, using the ordinary column formula for the material, provided the proper equivalent slenderness ratio is used. A list of these equivalent slenderness ratios for various conditions of edge support is given below in terms of "b," the unsupported width of the plate, and "t," the thickness of the plate, both in inches.

1. Both edges simply supported (e.g., the web of an H-beam with relatively thin flanges).

Equivalent slenderness ratio
$$\frac{KL}{r} = 1.65 \frac{b}{t}$$
.

2. Both edges built in (e.g., the web of an H-beam with relatively thick flanges).

Equivalent slenderness ratio
$$\frac{KL}{r} = 1.25 \frac{b}{t}$$

3. One edge simply supported, other edge free (e.g., longest outstanding leg of a single angle strut).

Equivalent slenderness ratio
$$\frac{KL}{r} = 5.1 \frac{b}{t}$$
.

4. One edge built in, other edge free (e.g., the outstanding leg of an angle with other leg riveted to thicker members).

Equivalent slenderness ratio
$$\frac{KL}{r} = 2.9 \frac{b}{t}$$
.

The above values of equivalent slenderness ratio, $\frac{KL}{r}$, may be substituted directly in the ultimate column strength formulas for the various aluminum alloys to determine the critical stresses at which flat plates under edge compression will begin to buckle noticeably. In using these values it should be remembered that they are based on theoretical conditions of edge restraint. In actual structural design, it is necessary, of course, to select constants intermediate between fixed and simply supported conditions, depending on the actual conditions of the member being designed. Table 12 gives values of equivalent slenderness ratio for flat plates under edge compression.

The factors of safety to be used with the foregoing critical buckling stresses will depend largely on the type of structure being designed. Generally, it is not necessary to provide as large a factor of safety against flat plate buckling as against tensile fracture or column failure, because many compression members incorporating flat

TABLE 12-VALUES OF EQUIVALENT SLENDERNESS RATIO, KL, FOR FLAT PLATES SUBJECTED TO EDGE COMPRESSION

 $\frac{b}{t} = \frac{unsupported \ width \ of \ plate}{thickness \ of \ plate}$

Во	oth edg supp KL r	orted	ply		Both buil KL r			other	y sup- ted, edge	other fr	t in, edge
$\frac{b}{t}$	KL r	b t	KL r	b t	KL r	b t	$\frac{\mathrm{KL}}{\mathrm{r}}$	$\frac{b}{t}$	$\frac{\mathrm{KL}}{\mathrm{r}}$	$\frac{b}{t}$	$\frac{\mathrm{KL}}{\mathrm{r}}$
2	3	32	53	2	3	32	40	2	10	2	6
4	7	34	56	4	5	34	43	4	20	4	12
6	10	36	59	6	8	36	45	6	31	6	17
8	13	38	63	8	10	38	48	8	41	8	23
10	17	40	66	10	13	40	50	10	51	10	29
12	20	45	74	12	15	45	56	12	61	12	35
14	23	50	83	14	18	50	63	14	71	14	41
16	26	55	91	16	20	55	69	16	82	16	46
18	30	60	99	18	23	60	75	18	92	18	52
20	33	65	107	20	25	65	81	20	102	20	58
22	36	70	116	22	28	70	88	22	112	22	64
24	40	75	124	24	30	75	94	24	122	24	70
26	43	80	132	26	33	80	100	26	133	26	75
28	46	90	149	28	35	90	113	28	143	28	81
30	50	100	165	30	38	100	125	30	153	30	87

These values of equivalent slenderness ratio, $\frac{KL}{r}$, may be used directly in the column formulas (Table 10, page 37) to determine the critical compressive stresses at which plates of various aluminum alloys will buckle. plates are capable of carrying considerable load beyond that at which buckling begins. Quite often appearance is the controlling factor in the selection of the factor of safety to be used with the critical buckling stresses.

Example 2. Check member used in Example 1, page 40, to see if buckling of outstanding leg controls the

$$\frac{b}{t}$$
 for 4" leg = $\frac{4.00 - 0.375}{0.375}$ = 9.7

The equivalent slenderness ratio for this member is between the following (page 41):

(page 41): 5.1 $\frac{b}{t}$ (one edge simply supported, other edge free)

$$2.9 \frac{b}{t}$$
 (one edge built in, other edge free)

This member is nearer the first condition, the edge of the 4" leg being restrained only by the 3" leg plus what little restraint comes from the stitch rivets used to hold the two angles together.

Assume equivalent slenderness ratio = 4.5 $\frac{b}{t}$ = 4.5 \times 9.7 = 44.

This value is less than the effective slenderness ratio of the member as a whole, 56, so the member will have a greater factor of safety against local buckling than against column action, therefore local buckling does not control the design.

Example 2a. Check member in Example 1 to see if local buckling would have controlled design if the length of member between panel points had been 32" instead of 60".

For L=32", the effective slenderness ratio of the member would have been $\frac{0.8 \times 32}{0.86} = 30$.

The equivalent slenderness ratio of the 4" outstanding leg, however, would not be changed from the value, 44, arrived at in Example 2.

Since this value is now greater than the effective slenderness ratio of the whole member, local buckling controls the design.

The critical buckling stress for this member is found by substituting the equivalent slenderness ratio, 44, in the column formula for 61S-T6 alloy (Table 10, 61S-T6).

Critical stress = $48,000 - 400 \times 44 = 30,400$ lb./sq. in.

Allowable working stress (factor of safety of 2.5) $= \frac{30,400}{2.5} = 12,160 \text{ lb./sq. in.}$

This allowable stress is so much larger than the calculated stress, 9440 lb./sq. in. (Example 1), that a smaller member might well be used.

termine the factor of safety against buckling of the flat plate when the member is subjected to an axial load of 200,000 lb.

Calculated compressive stress
$$= \frac{P}{A} = \frac{200,000}{15.46} = 12,900 \text{ lb./sq. in.}$$

The equivalent slenderness ratio of the flat plate will lie between the values 1.65 $\frac{b}{t}$ and 1.25 $\frac{b}{t}$ (edges simply supported and edges fixed, page 41).

Assume equivalent slenderness ratio = 1.35 $\frac{b}{t}$ = 1.35 $\frac{12}{0.25}$ = 65.

Critical stress (Table 10, 61S-T6 alloy) = $48,000-400\times65$ = 22,000 lb./sq. in.

Factor of safety against buckling of the plate $=\frac{22,000}{12,900} = 1.71$.

In designing members in which both edges of a flat plate are built into members which will not fail at stresses below the yield strength of the material and in which there is no problem of appearance, engineers sometimes disregard buckling of the flat plate altogether and design the member, using only a portion of the plate area along the built-in edges as being effective. The center portion of the plate is assumed to have no load-carrying capacity. In such cases the width of plate which may be considered effective along each edge may be found by means of the following formula:

Effective width of plate =
$$\frac{2700}{\sqrt{YS}}$$
t,

where t=thickness of plate in inches, YS=yield strength of material in lb./sq. in.

Table 13, page 45, gives values of effective width of plate for the various wrought Alcoa Aluminum Alloys based on the typical yield strengths given in Table 3. In using these effective widths it should be remembered that they must never exceed one-half the clear width of the plate between the built-in edges; that is, they must never overlap at the center of the clear width.

TABLE 13—EFFECTIVE WIDTHS OF FLAT PLATES IN EDGE COMPRESSION

Effective width of plate along each edge which may be considered acting with the flange in resisting ultimate compression failure, the center portion of the plate assumed to have buckled.

$$W = \frac{2700}{\sqrt{\text{yield strength}}} t$$

where t = thickness of plate in inches.

Note.—Effective width, W, must never be taken greater than $\frac{b}{2}$.

Alloy	W	Alloy	W	Alloy	W	Alloy	W
3S-H12 3S-H14 3S-H16 3S-H18 14S-T4	20.7t 19.6t 18.2t 16.7t 13.3t	4S-H32 4S-H34 4S-H36 4S-H38 14S-T6	18.2t 16.4t 15.3t 14.6t 11.0t	52S-H32 52S-H34 52S-H36 52S-H38 24S-T4	16.4t 15.3t 14.6t 14.2t 12.3t	61S-T4 61S-T6	18.6t 13.5t

Example 4. Check the 61S-T6 member used in Example 3 to determine factor of safety against compression failure, failure assumed to occur at the yield strength of the material (40,000 lb./sq. in.).

Effective width of plate along each edge (Table 13) $=13.5 \pm 13.5 \times 0.25 = 3.38$ ".

Total effective area of plate $= 2 \times (3.38+3) \times 0.25 = 3.19$ sq. in. Area of angles = 10.96 sq. in.

Total effective area of member, A_e, = 14.15 sq. in.

Calculated compressive stress = $\frac{P}{A_e} = \frac{200,000}{14.15} = 14,130 \text{ lb./sq. in.}$

Factor of safety against failure = $\frac{40,000}{14,130}$ = 2.8.

Note.—If 14S-T6 alloy had been used instead of 61S-T6, the effective width would have been less (11.0t = 2.75''), but the factor of safety against failure would have been greater (60,000/14,460 = 4.2).

Local Buckling of Curved Plates Under Edge Compression

Curved plates are better suited for resisting local buckling failures under edge compression than are flat plates, and consequently the critical stresses are generally higher for a given thickness. These critical stresses may be determined in the same manner as for flat plates, however, by using the following value of equivalent slenderness ratio, expressed in terms of the radius of curvature, R, and the wall thickness, t, both in inches:

Equivalent slenderness ratio (Curved Plates) = 5.7 $\sqrt{\frac{R}{t}}$

The above value of equivalent slenderness ratio applies to curved plates used to form complete tubular members. The same value may be used for curved plates, forming less than complete cylinders, provided the edges are adequately stiffened so that failure will not occur by buckling of a free edge.

Seamless aluminum alloy tubes are considerably stronger in resisting local wall buckling than are curved plates of the same radius and thickness in built-up construction, and for this reason the equivalent slenderness ratio for seamless tubes should be lower than that for curved plates. The following value of equivalent slenderness ratio may be used for seamless tubes:

Equivalent slenderness ratio (Seamless Tubes) = 4.7
$$\sqrt{\frac{R}{t}}$$

The above values of the equivalent slenderness ratio may be substituted directly in the ultimate column strength formulas for the various aluminum alloys (Table 10) to determine the critical stresses at which curved plates under edge compression will begin to buckle noticeably. The factor of safety to be used with these critical buckling stresses should be about as conservative as that used to determine the allowable working stresses in columns, because buckling of curved plates in compression often results in complete failure of the member. This is particularly true if there are relatively few longitudinal stiffeners used on the curved plate.

Longitudinal stiffeners improve the buckling resistance of curved plates under edge compression, provided they are spaced closer together along the surface of the plate than a distance equal to the radius of curvature. No satisfactory general formulas have been devised for calculating the improvement in buckling resistance produced by various stiffener spacings on curved sheets. For the larger values of $\frac{R}{t}$ with close stiffener spacings, it is sometimes helpful to

calculate the buckling resistance of the sheet between stiffeners as though the sheet were flat (Table 12, page 42), knowing that the actual critical stress is somewhat higher than this value because of the stiffening effect of the curvature.

Table 14, below, shows the equivalent slenderness ratios for unstiffened curved plates in edge compression calculated in accordance with the foregoing information.

TABLE 14—VALUES OF EQUIVALENT SLENDERNESS RATIO, $\frac{KL}{r}$, FOR CURVED PLATES AND SEAMLESS TUBES

Curved plates Seamless tubes R KL KL R R KLKL

These values of equivalent slenderness ratio, $\frac{KL}{r}$, may be used directly in the column formulas (Table 10) to determine the critical compressive stresses at which plates and tubes of various aluminum alloys will buckle.

Bending

In designing beams, girders and other flexural members, the allowable working stress in tension, to be used for the net area of the tension flange, should be the same as the basic allowable tensile stress used for tension members. The basic allowable compressive working stress used for the gross area of the compression flange should be the same as the basic allowable compressive working stress used for other compression members. This basic compressive stress, however, can be used only when the laterally unsupported length of the flange is relatively short. The allowable compressive working stress on compression flanges which are supported at longer intervals must be reduced so that a suitable factor of safety is provided against the possibility of a sidewise buckling failure. Such failures occur in compression flanges of beams in much the same manner that column failures occur in members subjected to direct compression. The stress at which such failures occur in a beam flange may be predicted by calculating the column strength of the flange, providing the equivalent radius of gyration of the compression flange is determined in accordance with the following formula:

Equivalent radius of gyration of compression flange = $\sqrt{\frac{0.2}{S_c}}\sqrt{I_1[J(KL)^2+13.1\,I_Fd^2]}$,

where S_c=section modulus for beam about axis normal to web (compression side) in inches³

 $I_1 = moment$ of inertia for beam about principal axis parallel to web in inches⁴

L=laterally unsupported length of compression flange in inches

K=factor representing end conditions of laterally unsupported length, same as for columns

 I_F = moment of inertia of compression flange of beam about axis parallel to web (may be assumed equal to $\frac{1}{2}$ of I_1 in the case of I-shaped members having both flanges alike) in inches⁴

d=depth of beam in inches

J=torsion factor in inches4.

The value of J for structural shapes is included in the tables of elements of sections in this handbook. A reasonably close approximation may readily be obtained for other single-web members by assuming the cross section of the member to be broken into a series

of rectangles. The value of J for the entire member is simply the sum of the individual torsion factors for the separate rectangles as follows:

 $J = \sum \frac{1}{3} bt^3,$

where b is the length of each rectangle and t the thickness, both in inches. In the case of a girder built up of a web plate and four angles, the value for the angles may be taken from the tables and added to that for the plate determined as above.

The value of equivalent radius of gyration (page 48) is used with KL, the effective unsupported length of the compression flange, to determine the effective slenderness ratio. This slenderness ratio is then substituted in the column formula for the alloy in question (Table 10, page 37) to arrive at the value of critical stress for the compression flange. This critical stress on the compression flange applies to the conditions which exist at or near the center of the unsupported length. Table 15, page 50, gives values of effective slenderness ratio for the various Alcoa Aluminum Alloy I-beams, H-beams and channels.

The equivalent radius of gyration determined according to the foregoing formula is usually greater than the radius of gyration which would be determined for the compression flange in the ordinary manner. Therefore, in most cases, the use of this formula results in higher values of critical compressive stress for beam flanges than would be obtained by considering the flange as a column, using the ordinary radius of gyration. In the case of compact beams, such as I-beams, the difference is often found to be very large so that the use of the more exact method leads to considerable economy of material. In the case of less compact members, such as built-up plate girders, the difference is usually less, and often the radius of gyration of such members, determined in the ordinary manner, comes very close to the value given by the formula on page 48.

The foregoing discussion of lateral stability of beams applies principally to I-shaped members. The method may be extended without serious error, however, to include channel-shaped members. In all cases it is assumed that the members are adequately supported against tipping or twisting at the point of application of the important loads and reactions. Where such support is not provided, the member should be checked to make sure that any eccentricity of the loads and reactions is taken into account in the calculation of stress. This is particularly true in the case of channel-shaped mem-

TABLE 15—VALUES OF EQUIVALENT SLENDERNESS RATIO FOR COMPRESSION FLANGES OF BEAMS

Equivalent slenderness ratio = $\frac{KL}{r}$

L=laterally unsupported length of compression flange in inches

K =factor representing end conditions of laterally unsupported length, same as for columns

r=equivalent radius of gyration of compression flange defined on page 48

I-be	eams	Equiv for	alent sle	nderness values of	ratio of effective	compress e unsuppo	ion flang	$\frac{KL}{r}$, gth
Depth Inches	Weight Lb./ft.	KL=24 inches	KL=48 inches	KL=96 inches	KL=144 inches	KL=192 inches	KL=264 inches	KL=360 inches
2 2 2 ¹ / ₂ 3 3	0.804 1.473 1.850 2.02 2.67	37.8 30.5 27.8 31.3 27.9	63.4 46.4 40.8 50.0 43.0	96.2 67.0 58.3 73.7 62.6	119.7 82.4 71.5 91.0 77.1	139.0 95.3 82.7 105.4 89.2	163.6 111.9 97.0 123.9 104.7	130.7 113.2 144.8 122.3
4	2.72	30.1	50.3	76.2	94.7	110.0	129.4	151.3
4	3.74	27.1	43.4	64.1	79.3	91.8	107.9	126.1
5	3.53	28.1	48.8	75.9	95.1	110.8	130.6	152.9
5	5.25	25.2	41.2	61.6	76.4	88.6	104.1	121.8
6	4.43	26.2	46.8	74.9	94.7	110.7	130.8	153.4
6	6.13	24.5	42.0	64.7	80.8	94.0	110.7	129.5
7	5.42	24.3	44.5	73.1	93.2	109.4	129.6	152.1
7	7.12	23.4	41.5	65.9	83.0	96.9	114.4	134.1
8	6.53	22.6	42.1	70.6	91.0	107.3	127.5	149.9
8	9.07	21.7	38.9	62.5	79.0	92.4	109.2	128.1
9	7.72	21.1	39.8	68.3	88.9	105.2	125.4	147.8
9	10.68	20.4	37.3	61.1	78.0	91.4	108.3	127.2
10	9.01	19.9	37.8	65.9	86.5	102.9	123.1	145.4
10	12.45	19.3	35.7	59.5	76.4	89.9	106.7	125.5
12	11.31	18.8	36.2	64.5	85.9	102.9	123.8	146.7
12	17.78	17.0	31.8	54.0	69.9	82.6	98.3	115.8
H-b	eams							
4	4.85		33.2	51.7	64.8	75.5	89.0	104.2
5	6.63		29.4	48.5	62.0	72.9	86.4	101.5
6	8.04		26.0	45.5	59.8	71.2	85.2	100.6
6	9.40		25.4	43.6	56.7	67.2	80.2	94.5
8	11.51		21.0	39.4	54.5	67.0	82.3	98.9
8	13.32		20.8	38.4	52.4	63.8	77.8	92.9

These values of equivalent slenderness ratio, $\frac{KL}{r}$, may be used directly in the column formulas (Table 10, page 37) to determine the critical compressive stresses at which beams of the various aluminum alloys will buckle sidewise.

TABLE 15—VALUES OF EQUIVALENT SLENDERNESS RATIO FOR COMPRESSION FLANGES OF BEAMS—Concluded

Equivalent slenderness ratio = $\frac{KL}{r}$

L=laterally unsupported length of compression flange in inches

K = factor representing end conditions of laterally unsupported length, same as for columns

r = equivalent radius of gyration of compression flange defined on page 48

	Standard Equivalent slenderness ratio of compression flange, KL,												
	ndard nnels	Equiv for	alent sle various v	nderness values of	ratio of effective	compress unsuppo	sion flang orted leng	$\frac{KL}{r}$, gth					
Depth Inches	Weight Lb./ft.	KL=24 inches	KL=48 inches	KL=96 inches	KL=144 inches	KL=192 inches	KL=264 inches	KL=360 inches					
3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 110 12 12	1.46 2.13 1.90 2.58 2.38 4.09 2.91 4.63 3.47 6.13 4.38 6.67 4.74 8.90 5.43 10.67 7.63 12.45	37.5 30.7 42.9 33.7 37.0 29.9 35.5 30.9 33.8 29.0 31.7 29.0 30.4 26.7 28.8 25.5 25.8 24.2	56.5 45.1 61.5 51.3 59.9 45.6 59.3 48.9 58.1 46.2 55.6 44.1 52.6 44.1 52.5 47.9 42.5	81.4 64.5 87.3 74.2 89.0 66.0 89.8 71.8 89.6 68.1 87.1 72.0 87.6 66.2 86.0 64.2 80.1 66.8	100.0 79.2 107.0 91.2 110.1 81.2 111.6 88.6 112.0 84.1 109.3 89.3 110.8 82.1 109.5 79.8 103.1 83.9	115.6 91.5 123.6 105.5 127.6 93.9 129.6 102.6 130.3 97.4 127.4 103.6 129.6 95.2 128.4 92.6 121.4	135.7 107.4 145.0 123.8 149.9 110.3 152.4 120.5 153.5 114.4 150.6 121.9 153.2 112.0 108.9 144.1 115.3	158.5 125.4 169.3 144.7 175.3 128.8 178.3 140.8 179.7 133.8 175.8 142.6 179.6 131.0 178.5 127.4 169.5 135.1					
Special	channels												
2 2 2 3 3 4 5 5 5 6 6 8 8 10	1.253 1.277 2.30 2.78 3.41 3.19 4.88 5.99 5.94 6.10 6.62 8.09 8.84 10.34	31.0 38.3 27.5 25.0 19.9 23.1 24.7 20.5 22.4 19.4 24.1 19.4 20.8 20.3	45.4 55.9 42.4 37.6 29.6 38.7 39.1 33.1 37.6 34.5 42.9 35.9 38.4 36.8	64.8 79.8 61.7 54.2 42.5 58.5 57.4 49.0 57.0 55.1 68.4 58.0 63.7 59.9	79.5 97.9 76.0 66.6 52.2 72.7 70.8 60.6 70.9 69.5 86.3 73.5 81.6 76.2	91.8 113.1 87.9 77.0 60.4 84.5 82.0 70.2 82.4 81.2 100.8 86.0 96.0 89.3	107.7 132.7 103.2 90.4 70.8 99.4 82.5 96.9 95.9 95.9 119.0 101.8 113.8 105.6	125.8 155.0 120.6 105.6 82.8 116.2 112.6 96.5 113.4 112.4 139.5 119.4 133.7 124.0					

These values of equivalent slenderness ratio, $\frac{KL}{r}$, may be used directly in the column formulas (Table 10, page 37) to determine the critical compressive stresses at which beams of the various aluminum alloys will buckle sidewise.

bers where the loading is likely to be eccentric with respect to the shear center, thereby introducing a definite torque on the member in addition to the bending. In all such cases involving combined torsion and bending, and in cases of unsymmetrical bending, the foregoing method of analysis of lateral stability does not apply. It is usually sufficient in such cases to calculate the maximum combined flange stress and to keep this stress within the safe allowable working stress limits of the flange material.

Double-web box girders, because of their tube-like cross section, are very much stiffer in torsion than single-web girders of comparable size. For the depth-width ratios ordinarily encountered in design, double-web box girders are so stiff in torsion that lateral buckling failures of the compression flange are of no importance in structural design, and therefore it is not necessary to make any reduction in allowable stress because of the slenderness ratio or lengthwidth ratio of the flange. The allowable stress on the compression flange of such members is usually restricted by the possibility of local buckling of the compression cover plate.

Example 5. Check flange stress in plate girder for loading shown in sketch, using the following allowable working stresses, 61S-T6 alloy:

Tension on net area, factor of safety of 2.5 on the typical yield strength, $=\frac{40,000}{2.5}=16,000$ lb./sq. in.

Compression on gross area, factor of safety of 2.5 on critical stress, with upper limiting value equal to tensile allowable stress = 16,000 lb./sq. in.

S (compression) = 125 in.3

S (tension) = 114 in.^3

 $I_{y} = 25.0 \text{ in.}^{4}$

 $J = 0.580 \text{ in.}^4$

 $I_F = 17.4 \text{ in.}^4$

These section elements are taken from page 144.

Calculated maximum tensile stress on net area (page 144) $= \frac{1,496,000}{114} \times 1.13 = 14,800 \text{ lb./sq. in. (less than 16,000, therefore satisfactory).}$

Calculated maximum compressive stress on gross area $=\frac{1,496,000}{125} = 12,000 \text{ lb./sq. in.}$

This maximum stress occurs at a point of lateral support where no lateral bending can occur, therefore it is checked against the upper limiting compressive stress, 16,000 lb./sq. in. and found to be satisfactory. (For final check, see Example 6.)

Calculated compressive stress at center of 90" unsupported length $=\frac{1,380,000}{125}=11,000$ lb./sq. in.

Equivalent radius of gyration, assuming K=0.8 (page 48),

$$=\sqrt{\frac{0.2}{125}}\sqrt{25.0\left[0.580\ (0.8\times90)^2+13.1\times17.4\times\overline{24}^2\right]}=1.71''.$$

Equivalent slenderness ratio = $\frac{0.8 \times 90}{1.71}$ = 42

Critical flange stress (Table 10, 61S-T6 alloy) = $48,000-400\times42$ = 31,200 lb./sq. in.

Allowable working stress = $\frac{31,200}{2.5}$ = 12,500 lb./sq. in.

This allowable stress is greater than the calculated stress, 11,000 lb./sq. in., therefore the flange is safe for the 90" unsupported length.

Calculated compressive stress at center of 120" unsupported length $=\frac{748,000}{125} = 5980 \text{ lb./sq. in.}$

Equivalent radius of gyration, assuming K=0.9,

$$=\sqrt{\frac{0.2}{125}}\sqrt{25.0\left[0.580\ (0.9\times120)^2+13.1\times17.4\times\overline{24}^2\right]}=1.72''.$$

Equivalent slenderness ratio = $\frac{0.9 \times 120}{1.72}$ = 63

Critical flange stress = $48,000 - 400 \times 63 = 22,800$ lb./sq. in.

Allowable working stress = $\frac{22,800}{2.5}$ = 9120 lb./sq. in.

This allowable stress is greater than the calculated stress, 5980 lb./sq. in., therefore the flange is safe for the 120" unsupported length.

Local Buckling of Compression Flanges

The compression flanges of beams and girders may fail by local buckling of some component part if relatively thin material is used in the construction of the flange. In order to design such members safely and economically, it is necessary to check the allowable compressive working stress not only for stability of the flange as a whole, but also for local buckling, the final allowable working stress for the flange being the lower of the values arrived at in this manner. The critical buckling stresses for flat plates forming parts of the compression flanges of beams may be determined in the same manner as already given for flat plates in edge compression. Suitable factors of safety should be used with these critical stresses.

Example 6. Check the plate girder used in Example 5 to see if local

buckling of the outstanding legs of the $4" \times 3" \times 3\%"$ compression flange angles controls the design.

$$\frac{b}{t}$$
 for 4" $\log = \frac{4.00 - 0.375}{0.375} = 9.7$.

The equivalent slenderness ratio for this member is between the following (page 41):

5.1 $\frac{b}{t}$ (one edge simply supported, other edge free)

$$2.9\frac{b}{t}$$
 (one edge built in, other edge free)

This flange is nearer the second condition, the edge of the 4'' leg being restrained not only by the 3'' leg but also by the web.

Assume equivalent slenderness ratio = 3.5 $\frac{b}{t}$ = 3.5 × 9.7 = 34.

Critical stress (Table 10, 61S-T6 alloy) = $48,000-400\times34$ = 34,400 lb./sq. in.

Allowable working stress $=\frac{34,400}{2.5}$ =13,800 lb./sq. in.

This allowable stress is greater than the maximum calculated stress, 12,000 lb./sq. in. (Example 5), therefore local buckling of the outstanding leg does not control the design of the compression flange.

Example 7. Determine allowable working stress for compression flange of box girder shown in sketch, using a factor of safety of 2 on the critical buckling stress of the cover plate, 61S-T6 alloy,

$$\frac{b}{t} = \frac{18}{1/2} = 36$$
.

The equivalent slenderness ratio lies between 1.65 $\frac{b}{t}$ and 1.25 $\frac{b}{t}$ (edges simply supported and edges fixed, page 41).

Assume equivalent slenderness ratio = 1.5 $\frac{b}{t}$ = 1.5 \times 36 = 54.

Critical stress (Table 10, 61S-T6 alloy) = $48,000-400\times54$ = 26,400 lb./sq. in.

Allowable working stress = $\frac{26,400}{2}$ = 13,200 lb./sq. in.

Tubular beams made of curved plates or thin seamless tubes should be checked for local compression buckling failures. The critical compressive stresses may be taken 25 per cent greater than those already given for similar members in direct compression.

Example 8. Check seamless tubular beam to see if compressive stress is safe for 61S-T6 alloy, using factor of safety of 3 on critical buckling stress.

Max. moment =
$$\frac{200 \times \overline{48}^2}{8}$$
 = 57,600 in.-lb.

Calculated compressive stress
$$=\frac{57,600\times3.0}{14.47}=11,900 \text{ lb./sq. in.}$$

Ratio of radius to thickness
$$= \frac{R}{t} = \frac{2.906}{0.1875} = 15.5.$$
Equivalent slenderness ratio

 $_{\text{I}=14.47\,\text{in}}^{\text{W}}$ = 4.7 $\sqrt{15.5}$ = 19 (page 46). Critical stress assuming edge compression (Table 10, 61S-T6 alloy) = 48,000 - 400 × 19 = 40,400 lb./sq. in.

Critical stress for bending $=40,400\times1.25=50,500$ lb./sq. in.

Allowable working stress =
$$\frac{50,500}{3}$$
 = 16,800 lb./sq. in.

This allowable stress exceeds the calculated compressive stress, 11,900 lb./sq. in., therefore the tube is safe.

Compression Buckling of Thin Webs

The webs of beams and girders are subjected to a horizontal compressive stress varying from zero at the neutral axis to a maximum at the compression flange. Thin webs may tend to buckle under the influence of these compressive stresses the same as other flat plates subjected to edge compression. To determine the critical stress, the following value of equivalent slenderness ratio should be used with the column formula for the material in question (Table 10):

Equivalent slenderness ratio =
$$0.67\frac{h}{t}$$
,

where h = clear height of web in inches t = thickness of web in inches.

The critical stress found in this manner applies to the condition which exists at the compression edge of the clear height of the web, adjacent to the compression flange. Table 16, page 56, gives values of equivalent slenderness ratio for various ratios of clear height to thickness.

Since compression buckling of thin webs does not often lead to complete failure of the member, the factor of safety to be used with the foregoing critical stresses need not be as conservative as those used in determining the more important allowable working stresses. Appearance is probably the most important item to be considered in arriving at a suitable factor of safety. In many instances the factor of safety may be allowed to approach very close to unity. Compression buckling of the web will control the design of the compression flange only in the case of very thin-web girders. More often the allowable compressive flange stress will be restricted by lateral buckling of the flange or some other consideration.

TABLE 16—EQUIVALENT SLENDERNESS RATIOS, KL, FOR WEBS OF BEAMS

 $\frac{h}{t} = \frac{\text{clear depth of web}}{\text{thickness of web}}$

Equivalent slenderness ratio = $0.67 \frac{h}{t}$

$\frac{h}{t}$	$\frac{\mathrm{KL}}{\mathrm{r}}$	$\frac{h}{t}$	KL r
10 20	7 13	120 140	81
30	20	160	107
40 50	27 34	180 200	121 134
60 70	40 47	220 240	148 161
80 90	54 60	260 280	174 188
100	67	300	201

These values of equivalent slenderness ratio, $\frac{KL}{r}$, may be used directly in the column formulas (Table 10) to determine the critical compressive stresses at which plates of various aluminum alloys will buckle.

Example 9. Check the plate girder used in Example 5 to see if compression buckling of the web controls the design.

Calculated maximum compressive stress

at top of clear height of web = $12,000 \times \frac{8.4}{11.4} = 8800$ lb./sq. in.

Equivalent slenderness ratio of web (page 55) = $0.67 \times \frac{h}{t} = 0.67 \times \frac{18}{0.25} = 48$

Critical stress (Table 10, 61S-T6 alloy) = $48,000-400 \times 48 = 28,800$ lb./sq. in.

Allowable working stress (factor of safety of 2.0) = $\frac{28,800}{2.0}$ = 14,400 lb./sq. in.

This allowable stress is greater than the calculated stress, 8800 lb./sq. in., therefore compression buckling of web does not control the design.

Combined Bending and Direct Compression

When a short, compact member is subjected to combined bending and direct compression, the basic allowable working stresses in tension and compression apply, because no stability problem is involved. The same is true for longer members, provided the maximum stresses occur at or near the ends of the unsupported length. A longer member in which the maximum stresses occur at or near the center of the unsupported length, however, will function partly as a beam and partly as a column, and the allowable compressive working stress must be selected accordingly. An allowable bending stress selected in accordance with the following formula will give a factor of safety in combined bending and compression which is consistent with those used separately in bending and compression.

Maximum bending stress (compression) on extreme fiber, which may be permitted at or near center of unsupported length, in addition to

direct compression,
$$\frac{P}{A}$$
, $= \left(f_b - \frac{P}{A}\right)\left(1 - \frac{\frac{P}{A}}{f_c}\right)$,

where $\frac{P}{A}$ =average compressive stress on cross section of member produced by column load in lb./sq. in.

fb = allowable compressive working stress for member considered as a beam in lb./sq. in.

f_c=allowable working stress for member considered as a column tending to fail in plane of bending forces in lb./sq. in.

This formula for allowable bending stress is derived on the assumption that failure of the member will occur by bending in the plane of the bending forces, which is always the case if this plane coincides with the plane of least stiffness of the member. Members having bending forces applied in the plane of their greatest stiffness, however, may tend to fail by sidewise bending at right angles to the plane of the bending forces. To take care of this contingency, it is necessary to use the following additional formula for allowable bending stress:

Maximum bending stress (compression) on extreme fiber, which may be permitted at or near center of unsupported length, in addition to direct compression, $\frac{P}{A}$,

$$= f_b \sqrt{1 - \frac{\frac{P}{A}}{f_c'}}$$

where f'_c=allowable working stress for member considered as a column tending to fail in direction normal to plane of bending forces in lb./sq. in.

 f_b and $\frac{P}{A}$ are as previously defined.

For a member under combined loading, in which the bending forces are applied in the plane of greatest stiffness, it is necessary to apply each of the two foregoing formulas, and select the lower of the two values as the maximum bending stress to be permitted in addition to the direct compression, $\frac{P}{A}$.

In designing members for combined bending and direct compression, using the above formulas, it is rarely possible to determine the proper size of the member directly. The design procedure involves trial and error methods in which a member is selected and then checked to see if the calculated bending stress is within the allowable limits. It is always well to check the member finally selected for the possibility of column failure alone, about two or more axes. Obviously, the member selected for combined bending and compression should not be weaker than the one which would be selected for either loading considered separately.

Example 10. Check the chord used in Example 1 to see if, in addition

$$I = 3.72 \text{ in}^4$$

A = 4.98 sq.in.

to the 47,000 lb. axial load, it can safely carry a vertical bending load of 500 lb. concentrated at the center of one of the 60" spans; factor of safety to remain 2.5, same as in Example 1.

Check for axial load alone.

From Example 1, it is evident that the member is safe for column load alone because the calculated direct compression, $\frac{P}{A}$, is only 9440 lb./sq. in. compared to an allowable column stress, fc, of 10,240 lb./sq. in.

Check for beam loading alone.

Bending moment at center of unsupported length, assuming K=0.8 same as in Example 1,

$$M = \frac{500 \times 0.8 \times 60}{4} = 6000 \text{ in.-lb.}$$

Calculated bending stress (compression),
$$\frac{M_c}{I} = \frac{6000 \times 0.77}{3.72} = 1240 \text{ lb./sq. in.}$$

Allowable working stress for member as a beam (compression

f_b=12,160 lb./sq. in. (factor of safety of 2.5 against buckling of outstanding leg, see Example 2a).

Member is therefore safe for bending alone.

Check for combined loading.

Maximum bending stress (compression) which may be permitted in addition to $\frac{P}{A}$,

$$= \left(f_{\rm b} - \frac{P}{A}\right) \left(1 - \frac{\frac{P}{A}}{f_{\rm c}}\right) = (12,160 - 9440) \left(1 - \frac{9440}{10,240}\right) = 213 \ {\rm lb./sq.\ in.}$$

Since this allowable stress is less than the calculated stress, 1240 lb./sq. in., a larger member would be needed to avoid reducing the factor of safety.

Example 10a. Recheck member above using factor of safety of 2.0 instead of 2.5.

New value of $f_b = 12,160 \times \frac{2.5}{2.0} = 15,200 \text{ lb./sq. in.}$

New value of $f_c = 10,240 \times \frac{2.5}{2.0} = 12,800 \text{ lb./sq. in.}$

New value of maximum bending stress which may be permitted in addition to $\frac{P}{\Lambda}$

=
$$(15,200-9440)\left(1-\frac{9440}{12,800}\right)$$
=1510 lb./sq. in.

Since this allowable bending stress is greater than the calculated bending stress, 1240 lb./sq. in., the factor of safety against failure under combined loading is greater than 2.0.

Shear

The ultimate shear strengths and shear yield strengths of the various Alcoa Aluminum Alloys are given in Table 3, page 23. In arriving at suitable allowable working stresses in shear, both shearing yield and shearing ultimate should be taken into account and factors of safety comparable with those used in selecting allowable tensile working stresses should be employed. While it is common practice to apply the working stress in shear to the gross section of members, the possibility of shearing along the net section should not be overlooked, and the factor of safety to be used will depend somewhat on which way the allowable stress is to be used in design.

Shear Buckling of Flat Plates

When relatively thin, flat plates, such as the webs of girders, are subjected to shearing forces, they almost always buckle before the shearing yield strength of the material is reached. The critical shear buckling stress for such flat sheets simply supported along two edges, as in the case of the web of a plate girder without stiffeners, may be calculated by means of the following formula:

Critical shear buckling stress =
$$\frac{51,000,000}{\left(\frac{b}{t}\right)^2}$$

where t=thickness of plate in inches b=unsupported width of plate in inches.

When a flat plate is simply supported on four sides, forming a rectangular panel in which the longer dimension, a, is less than four times the shorter dimension, b, the critical shear buckling stress is appreciably greater than in the foregoing case, and the formula may be written as follows:

Critical shear buckling stress =
$$\frac{51,000,000}{\left(\frac{b}{t}\right)^2} \left[1 + 0.75\left(\frac{b}{a}\right)^2\right]$$

The above formulas are the same for all aluminum alloys, because they are based entirely on the modulus of elasticity of the material. The shearing yield strength of the material, taken from Table 3,

TABLE 17—CRITICAL SHEAR BUCKLING STRESSES FOR RECTANGULAR PANELS OF FLAT PLATE

Critical stress (simply supported edges) =
$$\frac{51,000,000}{\left(\frac{b}{t}\right)^{2}} \left[1 + 0.75 \left(\frac{b}{a}\right)^{2}\right]$$

4		_	-	_		_			_									-
	0	0	0 0	0	0 0	0	0 0	00	7	b short dimension of panel	0	0	0 0	0	0 0	00	00	0
		0		l°	F 1	0			1.	t thickness of plate)	0	1		7	77.	10	1
		0		0	1-b-	°			(o official of place	1	0	1		-	a	10)
				0	100	0			1	b short dimension of panel	1	0	11		9		10	1
1	0	0	0 0	6	0 0	0	0 0		1.		1	lo o	1/4		2/2	00	-100	5
-	-			_	-	-		-11-	= 1	a long dimension of panel	10	10	10 0		0 0	0 0	010	

These values of critical stress apply to all the alloys, but the upper limiting value for any particular alloy is the value of the shearing yield strength given in Table 3.

$\frac{b}{t}$	$\frac{b}{a} = 0$	$\frac{b}{a} = 0.4$	$\frac{b}{a} = 0.5$	$\frac{b}{a} = 0.6$	$\frac{b}{a} = 0.7$	$\frac{b}{a} = 0.8$	$\frac{b}{a} = 0.9$	$\frac{b}{a} = 1.0$
40	31,880	35,700	37,850	40,480	43,590	47,180	51,240	55,780
42	28,910	32,380	34,330	36,720	39,540	42,790	46,480	50,600
44	26,340	29,500	31,280	33,460	36,020	38,990	42,350	46,100
46	24,100	26,990	28,620	30,610	32,960	35,670	38,740	42,180
48	22,140	24,790	26,290	28,110	30,270	32,760	35,580	38,740
50	20,400	22,850	24,230	25,910	27,900	30,190	32,790	35,700
52	18,860	21,120	22,400	23,950	25,790	27,910	30,320	33,010
54	17,490	19,590	20,770	22,210	23,920	25,890	28,120	30,610
56	16,260	18,220	19,310	20,650	22,240	24,070	26,140	28,460
58	15,160	16,980	18,000	19,250	20,730	22,440	24,370	26,530
60	14,170	15,870	16,820	17,990	19,370	20,970	22,770	24,790
62	13,270	14,860	15,760	16,850	18,140	19,640	21,330	23,220
64	12,450	13,950	14,790	15,810	17,030	18,430	20,020	21,790
66	11,710	13,110	13,900	14,870	16,010	17,330	18,820	20,490
68	11,030	12,350	13,100	14,010	15,080	16,320	17,730	19,300
70	10,410	11,660	12,360	13,220	14,230	15,400	16,730	18,210
75	9,070	10,160	10,770	11,520	12,400	13,420	14,580	15,870
80	7,970	8,930	9,460	10,120	10,900	11,790	12,810	13,950
85	7,060	7,910	8,380	8,970	9,650	10,450	11,350	12,350
90	6,300	7,050	7,480	8,000	8,610	9,320	10,120	11,020
100	5,100	5,710	6,060	6,480	6,970	7,550	8,200	8,930
110	4,220	4,720	5,010	5,350	5,760	6,240	6,780	7,380
120	3,540	3,970	4,210	4,500	4,840	5,240	5,690	6,200
130	3,020	3,380	3,580	3,830	4,130	4,470	4,850	5,280
140	2,600	2,910	3,090	3,310	3,560	3,850	4,180	4,550
150	2,270	2,540	2,690	2,880	3,100	3,360	3,640	3,970
175	1,670	1,870	1,980	2,120	2,280	2,460	2,680	2,910
200	1,280	1,430	1,510	1,620	1,740	1,890	2,050	2,230
250	820	910	970	1,040	1,120	1,210	1,310	1,430
300	570	640	670	720	780	840	910	990

Note: For all four edges built in, the critical stresses are approximately 65 per cent greater than shown above, but the shear yield strength is still the upper limiting value.

should be used as the upper limiting value of critical stress for each alloy. Table 17, page 61, gives calculated values for critical shear buckling stress for flat plates based on the foregoing formulas.

The factor of safety, to be used with the foregoing values in arriving at allowable working stresses for shear on flat plates supported on only two edges, generally should be about the same as that used in selecting allowable working stresses for columns, because a buckling failure of such a plate will often result in complete collapse of the structure. A smaller factor of safety may be used in the case of flat plates supported on all four edges, because a buckling failure of such a plate does not necessarily result in collapse if the edge stiffeners are stiff enough to function as compression struts. For example, if the thin web of a well-stiffened plate girder buckles under high shearing stresses, it will continue to transmit diagonal tension, and the stiffeners will begin to function as compression struts between the two flanges so that the girder will withstand considerable additional load, functioning almost as though it were a truss. In some fields of construction, thin-web girders are actually designed to transmit loads in this manner, buckling being entirely ignored in the interests of eliminating as much web material as possible.

It should be clear from the foregoing that the factor of safety to be used with the critical shear stresses on well-stiffened rectangular flat plates will be determined largely by the importance which is attached to the unsightly appearance of buckles in the sheet. Such flat sheets often buckle gradually rather than suddenly, so that slight buckling is sometimes visible at stresses as low as one half of the critical buckling stress. Therefore, where a high degree of flatness must be maintained even under maximum loading conditions, a generous factor of safety should be used in arriving at allowable shearing working stresses.

Example 11. Check girder used in Example 5 to see if web plate will resist shear buckling with a factor of safety of 2.5. Maximum total shear on web, V=12,460 lb. Gross web area, $A=23.75\times0.25=5.94$ sq. in. Calculated average shear stress on web,

$$\frac{V}{A} = \frac{12,460}{5.94} = 2100 \text{ lb./sq. in.}$$

Minimum dimension of end panel of web, b=18'' (clear height) Other dimension of end panel of web, a=116'' (approximate)

$$\frac{b}{t} = \frac{18}{0.25} = 72$$
 $\frac{b}{a} = \frac{18}{116} = 0.155$

Critical stress =
$$\frac{51,000,000}{72^2} [1 + 0.75 (0.155)^2]$$

= 9850 [1.018] = 10,000 lb./sq. in.

Allowable working stress =
$$\frac{10,000}{2.5}$$
 = 4000 lb./sq. in.

This allowable stress is considerably greater than the calculated stress, 2100 lb./sq. in., therefore the web easily resists shear buckling. Note: If calculated stress had exceeded allowable stress, web could

have been increased in thickness or web stiffeners could have been added to break up panel into rectangles having larger ratio of $\frac{b}{a}$.

Example 11a. Calculate the maximum shear stress on web of girder used in Example 11 to see if it is enough larger than average shear stress to make any difference in the design.

Area of cross section above neutral axis (page 144) $=4.98+(11.4-0.125)\ 0.25=4.98+2.82=7.80$ sq. in.

Statical moment of this area about the neutral axis, $Q=4.98\times10.63+2.82\times5.64=69$ in.³

Calculated maximum shear stress on web,

$$\frac{\text{VQ}}{\text{It}} = \frac{12,460 \times 69}{1430 \times 0.25} = 2400 \text{ lb./sq. in.}$$

This stress is 14% greater than the average stress, 2100 lb./sq. in., calculated in Example 11, but is still well under the allowable working stress, 4000 lb./sq. in.

Shear Buckling of Cylindrical Shells

Thin-walled cylinders in transverse bending or torsion will fail by buckling in shear if the shear stresses exceed the following critical value:

Critical shear stress =
$$\frac{7,300,000}{\left(\frac{D}{t}\right)^{\frac{3}{2}}} \beta$$

where D=mean diameter of cylinder in inches, t=thickness of shell in inches, β=unity for long unstiffened cylinders,

 $\beta=1.2\sqrt{\frac{\sqrt{D/t}}{L/D}}$ for cylinders in which the clear length

"L" between circumferential stiffeners is such that the value of β is greater than unity.

When longitudinal stiffeners are used in conjunction with circumferential stiffeners so that the cylindrical surface is broken up into rectangular panels, the critical shear stress is greater than given by the above formula. In such cases it is sometimes helpful to calculate the critical shear stress for the rectangular panels as if they were flat (Table 17, page 61), knowing that the actual critical stress is somewhat higher because of the stiffening effect of the curvature.

Table 18 shows the critical shear buckling stresses for cylindrical shells calculated in accordance with the foregoing information.

TABLE 18—CRITICAL SHEAR BUCKLING STRESSES FOR CYLINDRICAL SHELLS

Critical shear stress =
$$\frac{7,300,000}{\left(\frac{D}{t}\right)^{\frac{3}{2}}}\beta$$

- D=mean diameter of cylinder in inches,
- t=thickness of shell in inches.
- β=unity for long unstiffened cylinders,

$$\beta = 1.2 \sqrt{\frac{\sqrt{D/t}}{L/D}}$$
 for cylinders

in which the clear length "L" between circumferential stiffeners is such that the value of β is greater than unity.

These values of critical stress apply to all the alloys, but the upper limiting value for any particular alloy is the value of the shearing yield strength given in Table 3, page 23.

L D	$\frac{\mathrm{D}}{\mathrm{t}} = 40$	$\frac{D}{t}$ = 50	$\frac{D}{t}$ =60	$\frac{\mathrm{D}}{\mathrm{t}} = 80$	$\frac{\mathrm{D}}{\mathrm{t}}$ = 120	$\frac{\mathrm{D}}{\mathrm{t}}$ =160	$\frac{\mathrm{D}}{\mathrm{t}}$ = 240	$\frac{D}{t} = 400$
0.10 0.25 0.50		93,180	74,200	73,220 51,790	69,740 44,110 31,190	48,820 30,870 21,770	29,320 18,540 13,110	15,490 9,800 6,930
1	87,090	65,880	52,460	36,610	22,060	15,390	9,270	4,900
2	61,580	46,580	37,100	25,890	15,590	10,890	6,560	3,460
5	38,960	29,460	23,470	16,360	9,860	6,890	4,150	2,190
10	28,860	20,830	16,590	11,580	6,970	4,870	2,930	1,550
20	28,860	20,650	15,710	10,200	5,550	3,610	2,070	1,100
30	28,860	20,650	15,710	10,200	5,550	3,610	1,960	910

Example 12. Check seamless tube used in Example 8, page 55, to see if shear buckling controls design.

2800 57

I=1447 in4

Maximum shear, V=4800 lb. Calculated maximum shear stress (see Example 11a),

$$= \frac{\text{VQ}}{\text{I(2t)}} = \frac{\text{V(2R}^2\text{t)}}{\text{I(2t)}}$$
$$= \frac{4800[2(2.906)^2 \times 0.1875]}{14.47(2 \times 0.1875)}$$

=2800 lb./sq. in.

Critical shear stress =
$$\frac{7,300,000}{\left(\frac{D}{t}\right)^{3/2}}\beta$$

$$\beta = 1.2 \sqrt{\frac{\sqrt{D/t}}{L/D}} = 1.2 \sqrt{\frac{\sqrt{\frac{5.812}{0.1875}}}{\frac{48}{5.812}}} = 0.99$$

Since β is less than unity, a value of unity is used instead.

Critical shear stress=
$$\frac{7,300,000}{\left(\frac{5.812}{0.1875}\right)^{\frac{3}{2}}} \times 1.00 = 42,300 \text{ lb./sq. in.}$$

This value of critical stress exceeds the shear yield strength of the material, 26,000 lb./sq. in., therefore the latter figure becomes the critical stress instead of the former.

Allowable working stress =
$$\frac{26,000}{3}$$
 = 8670 lb./sq. in.

This allowable stress is greater than the calculated stress, 2800 lb./sq. in., therefore shear buckling does not control the design.

Rivets in Shear and Bearing

Information on riveting of aluminum structures is given on pages 16 and 17. Table 19 gives the average shear strengths of driven rivets of aluminum alloys and steel, and Table 19A shows how these ultimate shear strengths should be reduced in those cases in which a rivet bears against a relatively thin plate. Table 20 shows the bearing yield strengths and bearing ultimate strengths of aluminum alloy plates and shapes when used with aluminum alloy or steel rivets or tightly fitted bolts or pins.

The allowable working stress for shear on rivets should have about the same relation to the ultimate shear strength shown in Table 19 that the basic tensile working stress has to the tensile ultimate strength of the material. The allowable working stress in bearing on plates and shapes should have about the same relation to the bearing yield and bearing ultimate given in Table 20 that the basic tensile working stress has to the tensile yield and tensile ultimate strength of the material. Table 29, page 158, gives shearing and bearing areas of driven rivets which are useful in designing riveted joints.

うちょうからばらずる

TABLE 19—AVERAGE ULTIMATE SHEAR STRENGTHS OF DRIVEN RIVETS

Alloy and		After Driving		
Temper Before Driving	Driving Procedure	Alloy and Temper	Shear Strength 1b./sq. in.	
A17S-T4 17S-T4 17S-T4 24S-T4 24S-T6 53S-T61 53S-T4 61S-T6 61S-T4 Steel Steel	Driven cold, as received. Driven cold, immediately after quench*. Driven at 930°F. to 950°F.*. Driven cold, immediately after quench*. Driven cold, as received. Driven at 960°F. to 1050°F.* Driven cold, as received. Driven at 990°F. to 1050°F.* Driven at 990°F. to 1050°F.* Driven cold, annealed. Driven hot.	17S-T31 17S-T41 24S-T31 53S-T61 53S-T41	33,000 34,000 33,000 42,000 23,000 18,000† 30,000 24,000 40,000 45,000	

^{*}Immediately after driving, the shear strengths of these rivets are about 75 percent of the values shown. On standing at ordinary temperatures the rivets ageharden to develop full strength, this action being complete in about 4 days for 17S-T31, 17S-T41 and 24S-T31 rivets and in about two weeks for 53S-T41 and 61S-T43 rivets.

TABLE 19A—REDUCTION IN SHEAR STRENGTH OF ALUMINUM ALLOY RIVETS RESULTING FROM THEIR USE IN THIN PLATES AND SHAPES

Ratio of Rivet Diameter	Per Cent Loss in Shear Strength		Ratio of Rivet Diameter	Per Cent Loss in Shear Strength			
to Plate Thickness,* D/t	Single Shear	Double Shear	to Plate Thickness,* D/t	Single Shear	Double Shear		
1.5 1.6 1.7 1.8	0 0 0 0	0 1.3 2.6 3.9	2.7 2.8 2.9 3.0	0 0 0	15.6 16.9 18.2 19.5		
1.9 2.0 2.1 2.2	0 0 0 0	5.2 6.5 7.8 9.1	3.1 3.2 3.3 3.4	0.4 0.8 1.2 1.6	20.8 22.1 23.4 24.7		
2.3 2.4 2.5 2.6	0 0 0	10.4 11.7 13.0 14.3	3.5 3.6 3.7 3.8	2.0 2.4 2.8 3.2	26.0 27.3 28.6 29.9		
Mariani and and		4 0 15	3.9 4.0	3.6 4.0	31.2 32.5		

^{*}Thickness of thinnest plate in single shear joint. Thickness of middle plate in double shear joint.

[†]This shear strength is for rivets driven at temperatures of 960°F. to 980°F. The shear strength increases about 1000 lb. per square inch for each increase of 12°F. in driving temperature. Thus, if the driving temperature range is carefully maintained at 1030°F. to 1050°F., an average shear strength of 24,000 lb. per square inch will be developed in the driven rivets.

TABLE 20—BEARING STRENGTHS OF ALUMINUM ALLOY PLATES AND SHAPES REPRESENTATIVE OF MATERIAL HAVING THE TYPICAL PROPERTIES SHOWN IN TABLE 3

Alloy	Bearing ultimate strength, Lb./sq. in.	Bearing yield strength, ¹ Lb./sq. in.	Alloy	Bearing ultimate strength, Lb./sq. in.	Bearing yield strength, ¹ Lb./sq. in.
3S-O 3S-H12 3S-H14 3S-H16 3S-H18	34,000 37,000 39,000 42,000 46,000	15,000 27,000 31,000 35,000 40,000	24S-T4 52S-O 52S-H32 52S-H34	129,000 57,000 71,000 78,000	77,000 26,000 43,000 50,000
4S-O 4S-H32 4S-H34 4S-H36	54,000 65,000 71,000 78,000	23,000 35,000 43,000 50,000	52S-H36 52S-H38 61S-O 61S-T4	82,000 86,000 38,000 73,000	54,000 58,000 19,000 34,000
4S-H38 14S-T4 14S-T6	84,000 114,000 129,000	54,000 59,000 96,000	61S-T6	94,000	64,000

¹Bearing yield strength is the bearing stress which produces a permanent set of 2 per cent of the rivet hole diameter.

Note: These bearing values should be used only when the edge distance measured from the center of rivet hole in the direction of stressing is equal to or greater than twice the diameter of the rivet. For an edge distance of $1\frac{1}{2}$ times the rivet diameter the values should be reduced approximately 15 per cent in the case of bearing yield strengths and 22 per cent in the case of bearing ultimate strengths.

Impact

The foregoing discussion of the strength, critical stresses and allowable working stresses is based on the assumption that all loadings are static. The entire discussion may be extended to include ordinary live-load conditions, however, if a suitable impact factor is used to represent dynamic effects of moving loads. Unusual dynamic effects such as uncushioned shock loads should be treated somewhat more carefully than the more normal loading conditions, and in such cases it is not always satisfactory to use a conventional assumed impact factor as an allowance for impact. A more thorough analysis, involving a study of the dissipation of the energy of the moving loads, is often the only safe procedure when designing for unusual conditions of impact in structural design.

Repeated Stress

When stresses are repeatedly applied to any metal for a large number of cycles, failure may occur by fatigue action even though the stresses represent an adequate factor of safety against steady stress. Fatigue action on ordinary structures occurs very rarely and usually only because there exists at some critical point a highly concentrated stress, considerably larger in magnitude than is indicated by ordinary design calculations. A study of the fatigue data in Table 5, page 25, and Table 6, page 26, indicates that even after making some allowance for such concentrated stresses, the Alcoa Aluminum Alloys still have a margin of safety against fatigue action. In the lower strength aluminum alloys, the allowable working stresses are almost never selected high enough to cause any concern about fatigue. In the higher strength aluminum alloys, however, allowable working stresses may be high enough to make it advisable to consider the possibility of fatigue action.

In studying repeated stress, it should be remembered that the maximum loadings assumed in ordinary structural design are usually much more severe than those which occur regularly in service. Furthermore, combinations of loadings are often assumed which occur very infrequently. An intelligent study of fatigue action in any structure usually involves a separate analysis of the stresses, using live loading conditions quite different from the maximum loadings assumed in the ordinary design. Ordinarily, dead-load stresses are not repeated. The live loads produce stress cycles which are superimposed on the steady dead-load stresses.

In using the fatigue data in Tables 5 and 6, it should be remembered that these data are obtained on smooth finished specimens in which stress concentrations are purposely minimized. Suitable allowance must always be made for re-entrant corners, notches, holes, joints and all other conditions which may produce localized high stresses. These localized high stresses, which have almost no effect on the static strength of the members, are of great importance in studying the effect of repeated stress.

A few general observations based on fatigue investigations at the Aluminum Research Laboratories may be helpful in connection with the design of aluminum alloy structures to resist repeated loads.

1. A hole well filled with a rivet causes less reduction of the fatigue strength of a structure than an open hole.

- 2. The reduction of the fatigue strength of a structure is greater for a rivet carrying stress than for a stitch rivet.
- 3. The reduction of the fatigue strength of a structure is greater for hot-driven steel rivets than for cold-driven steel rivets or for aluminum alloy rivets, driven either hot or cold.
- 4. Lap joints reduce the fatigue strength of a structure more than butt joints with double straps. This greater effect seems to be associated with the greater flexing which occurs in the lap joint. Any stiffening of the lap joint to prevent undue flexing under repeated loads tends to improve the fatigue characteristics of the joint.

DESIGN CONSIDERATIONS FOR ALUMINUM ALLOY STRUCTURES

THE PREVIOUS CHAPTER dealt with the selection of allowable working stresses for use in the design of aluminum alloy structures. The allowable working stresses are the controlling factor in the design of most of the members in a structure, but the final selection of the size and shape of the various members, as well as their arrangement, will often be influenced by other considerations. In this chapter, an attempt will be made to present information which will assist the designer in arriving at a well-balanced, economical design.

In many fields of structural design, there have been developed sets of limitations on the size and shape of members. For example, it is sometimes specified that the slenderness ratio of columns shall not exceed 200 or that the unsupported width of plates shall be not greater than 40 times the thickness. In different fields of design, such limitations vary considerably, and, since aluminum alloys are used in numerous types of construction, no attempt will be made in this book to establish such a set of limitations.

Freedom from the conventional limitations on size of parts should assist the designer in arriving at minimum weight of metal in the finished structure, a goal which is usually of primary importance in the design of aluminum alloy structures. On the other hand, freedom from such restrictions places an obligation on the designer to be especially careful in considering all loadings, both intentional and accidental, which the members may be called upon to resist in service. For example, almost any horizontal member in a structure may be called upon to support a man's weight at mid-span. A careful review of the conditions which will exist during fabrication and erection, as well as during the useful life of a structure, will often suggest other loadings for which members, particularly light bracing members, should be checked. A check of the strength of members on such a basis should accomplish the same purpose as the arbitrary size limitations and should do so with a net gain in both economy and safety.

Deflection

One of the most common limitations in structural design is that applying to deflections, and, since the aluminum alloys have a relatively low modulus of elasticity, such restrictions may require some special considerations in design. In all cases where deflection seems to be a controlling factor in the design, the reasons for limiting the deflection should be carefully examined. The selection of allowable deflections is often just as important as the selection of allowable working stresses.

The deflections of aluminum alloy members may be calculated from the conventional deflection formulas provided that the correct value of modulus of elasticity, 10,300,000 lb. per sq. in., is used.

For design purposes, particularly in the preliminary stages of a design, it is often unnecessary to strive for a high degree of precision. In such cases the following formula for approximating the deflection at mid-span for aluminum alloy beams of uniform cross section subjected to simple bending will be found extremely convenient:

Deflection in inches =
$$\frac{fL^2}{100,000,000}$$
 c

where f=maximum bending stress on extreme fiber at or near mid-span in lb./sq. in.

L=span length in inches c=distance from neutral axis to extreme fiber in inches.

A study of this deflection formula will show that for a given span length there are two ways the deflection can be reduced: one is to decrease the working stress, and the other is to increase the depth of the beam. The second method is preferable because it is most economical of material. It is well to remember this fact in proportioning members where stiffness is of primary importance.

Latticed Members and Trusses

In calculating deflections of beams by means of the foregoing formula, or by more precise deflection formulas, (Table 21, pages 79 to 82), it is common practice to neglect shearing deformations. This is justified in the case of solid-web beams and girders having span lengths which are fairly long in proportion to the depth of the beam, but it is not justified in the case of members with trussed or

latticed webs. If an attempt is made to calculate deflections of openweb members by means of the foregoing formula, or by substituting the moment of inertia of the member in one of the ordinary deflection formulas, the resulting calculated deflection will be considerably less than the actual deflection, the difference being the result of deformations of the web system. The deflections of members with trussed or latticed webs should always be calculated by some method applicable to truss construction, or at least some allowance for deformations of the web should be made.

The foregoing discussion of deflections of open-web members applies also to the calculation of stresses in such members. Members with latticed or trussed webs should be designed as trusses and not as beams, and the analysis should include the calculation of stresses in the web members and their connections.

Rivet Spacing in Built-up Members

Many of the members in a structure, particularly the larger members, are built up of plates and shapes riveted together as a unit. In such members the rivets connecting the component parts must be of the proper size and spaced so that the completed member will function as a unit. This is accomplished by spacing the rivets close enough so that: first, a suitable margin of safety is provided against column failure of the parts between rivets, and second, the longitudinal shear on any section can be transferred without exceeding the allowable working stresses in shear and bearing.

The spacing of rivets to prevent column failure of parts between adjacent rivets is simply a matter of adjusting the spacing so that the column strength of the parts is adequate. In order to determine the column strength of the part, the effective slenderness ratio of the part between rivets is substituted in the column formulas (Table 10, page 37), in the usual manner. This should be done not only for the component parts of columns and other compression members, but also for the compression flanges of beams, particularly the compression cover plates.*

The spacing of rivets to resist longitudinal shear is influenced principally by the magnitude of the longitudinal shear. The longitudinal shear varies along the length of a member in proportion to the total shear on the transverse cross section. It also varies with the location of the longitudinal section, being a maximum at the neutral axis and zero at the extreme fiber.

^{*}The radius of gyration of a flat plate is equal to 29% of its thickness, regardless of its width.

The formula for calculating the longitudinal shear is as follows:

$$V_L = \frac{VQ}{I}$$
,

V_L = shear on any longitudinal section between neutral axis where and extreme fiber in lb./lin. in.

V=total shear on transverse section of member at point being investigated in lb.

Q=statical moment of gross area (fydA) of transverse cross section between longitudinal section and extreme fiber with reference to neutral axis of member in in.3

I = moment of inertia of entire transverse section, gross area, in in.4

When using this formula to calculate the shear on a line or lines of rivets, the longitudinal section may be irregular in shape so as to cut only the rivets in question.

The spacing of rivets to resist the longitudinal shear may be found from the following formula:

Spacing in inches =
$$\frac{R}{V_L}$$
,

where R=value of one rivet in shear or bearing, whichever is smaller, expressed in lb.

Example 13. Determine the spacing of 5/8" hot-driven 61S rivets connecting the compression flange angles to the web in the girder used in Example 5, page 52, allowable bearing stress to be 27,000 lb./sq. in.

Maximum shear (in end panel), V = 12,460 lb.

Statical moment of compression flange angles about neutral axis, $O = (11.4 - 0.77) 4.98 = 52.9 \text{ in.}^3$

Calculated longitudinal shear between flange angles and web,
$$V_L = \frac{VQ}{I} = \frac{12,460 \times 52.9}{1430} = 460 \text{ lb./lin. in.}$$

Value of one rivet (Table 29, page 159), $R = 0.164 \times 27,000 = 4430 \text{ lb}$. (obviously, bearing controls the design of this double-shear rivet).

Maximum allowable spacing of rivets =
$$\frac{R}{V_L} = \frac{4430}{460} = 9.6$$
".

This spacing may be considered the maximum allowable in the end panel, based on longitudinal shear alone.

The foregoing formula for the spacing of rivets to resist longitudinal shear applies to columns and other compression members as well as to beams. When a built-up member is subjected to a column load approaching its ultimate strength, the member bends sidewise and the axis of the member becomes tilted with respect to the line of action of the load. The member is therefore subjected to a transverse shear in the plane of bending equal to the load times the sine of the angle between the deflected axis of the member and the line of action of the load. Since the maximum angle occurs at the ends of the effective length, KL, the maximum shear also occurs at this point. For design purposes the maximum shear on a column may be determined according to the following formula:

$$V = P \frac{(f_b - f'_c)}{f_c} \times \frac{\pi r^2}{KLc},$$

where

V = maximum transverse shear on a transverse section of column at ends of effective length, KL, in direction of assumed bending in lb.

P = column load in lb.

 ${\rm f_b}\!=\!{\rm allowable}$ extreme fiber stress (compression) on member considered as a beam in lb./sq. in.

f_c=allowable average stress on member considered as an axially loaded column in lb./sq. in.

f'c=average stress, in lb./sq. in., which member will stand at allowable stresses. For straight axially loaded columns without side loads, f'c is identical with fc. For other members f'c should be determined in accordance with the formulas for combined bending and direct compression (page 57) and will be less than fc because of the influence of eccentricities and side loads.

because of the influence of eccentricities and side loads. r = radius of gyration, same as that used in determining f_c in inches

KL = effective length of member, same as used in determining f_b and f_c in inches

c=distance from centroidal axis to extreme fiber corresponding to f_b in inches.

It is important in the foregoing formula that the values of f_b, f_c, f_c, KL, r and c be selected so that they are consistent with each other and consistent with the direction of bending assumed. Sometimes it may be desirable to investigate bending about two or more axes, or bending in opposite directions about the same axis. More often, however, the transverse shear will be needed in a given direction, and the direction of bending can be selected accordingly.

It should be noted that the value of V given by the above formula applies to a transverse section at the ends of the effective length, KL. The value at the center of the effective length, KL, is zero. Between the center and the end, the value of V on any section may be approximated by direct interpolation.*

The value of V for columns as defined in the foregoing formula is that produced by the column load only. To this should be added the shear produced by any transverse loads which may exist. This combination may be substituted directly in the foregoing formula for longitudinal shear, V_L , which in turn may be used to determine the spacing of rivets. The combined transverse shear, V_L , may also be

^{*}In cantilever compression members loaded so that the line of action of the load is always parallel to its original position (K=2.0), the free end corresponds to the point of maximum shear, V, and the built-in end corresponds to the center of effective length at which the value of V is zero.

used in designing latticing for compression members. Knowing the maximum transverse shear and the approximate distribution of shear along the length of the member, the latticing can be designed to resist the tensile and compressive forces acting on the individual bars. If batten plates are to be used instead of latticing, they should be close enough together so that the bending stresses, introduced into the longitudinal members by the transverse shear acting between batten plates, are not excessive.

Example 14. Determine spacing of 5/8" hot-driven 61S rivets required to make the two angles function as a unit in the chord member used in Example 1, allowable shear stress to be 8000 lb./sq. in.

Check for column failure of individual angles.

Calculated column stress, $\frac{P}{\Delta} = 9440$ lb./sq. in.

Corresponding $\frac{KL}{r}$ from column formula (factor of safety of 2.5)

$$=\frac{48,000-9440\times2.5}{400}=61.0$$

Least radius of gyration of individual angle = 0.64".

Maximum value of KL for individual angle = $61.0 \times 0.64 = 39.0$ °.

Maximum value of L for individual angle, between rivets, assuming K value of seven-tenths, =39.0/0.7=55.7".

Check for longitudinal shear.

In order to produce longitudinal shear on the rivets connecting the two angles, the member must bend in the horizontal plane about axis Y-Y. For bending in this plane, the following values are

$$\frac{\mathrm{KL}}{\mathrm{r}} = \frac{0.8 \times 120}{1.91} = \frac{96}{1.91} = 50$$

 $f_c = f'_c = (48,000 - 400 \times 50) \div 2.5 = 11,200 \text{ lb./sq. in.}$

 $f_b = 32,000 \div 2 = 16,000$ lb./sq. in. (factor of safety of 2 against guaranteed minimum yield strength).

Maximum transverse shear,

$$V = P \frac{(f_b - f_c')}{f_c} \frac{\pi r^2}{KLc} = 47,000 \frac{(16,000 - 11,200)}{11,200} \frac{\pi \times \overline{1.91}^2}{96 \times 4.19} = 574 \text{ lb.}$$

Maximum longitudinal shear,

 $Q = 2.49 \times 1.45 = 3.61$ in.³ (statical moment of one angle about axis $\tilde{Y} - Y$)

$$\begin{split} I = & Ar^2 = 4.98 \times \overline{1.91}^2 = 18.2 \text{ in.}^4 \\ V_L = & \frac{VQ}{I} = \frac{574 \times 3.61}{18.2} = 114 \text{ lb./lin. in.} \end{split}$$

Allowable shear value of one rivet (Table 29, page 159), $R = 0.338 \times 8000 = 2700 \text{ lb.}$

Spacing of rivets to resist longitudinal shear = $\frac{2700}{114}$ = 23.7".

This is the controlling spacing for the rivets joining the two angles because it is less than the 55.7" required to prevent column failure of the individual angles between rivets.

Web Stiffeners at Concentrated Loads

In the foregoing chapter, formulas are given for determining the critical shear stress on the webs of beams and girders, and it is pointed out that shear buckling is a determining factor in the spacing of web stiffeners. Critical shear, however, is only one of the considerations controlling the spacing of web stiffeners, such stiffeners also being necessary at certain points of concentrated load or reaction. In order to check whether or not a stiffener is needed at points of concentrated load or reaction, it is necessary to calculate the average stress in the web both adjacent to the loaded flange and at the center of the clear height. The following two formulas may be used:

Calculated stress in web adjacent to loaded flange = $\frac{P}{tb}$.

Calculated stress in web at center of clear height $=\frac{P}{t(b+ah)}$

Where P=concentrated load or reaction in lb.

t = web thickness in inches

b=length along flange over which P is assumed to be distributed in inches

h = clear height of web in inches

a = 1.0 for intermediate loads or reactions

a = 0.5 for loads or reactions at or near end of member.

The stress calculated by the first of the above two formulas should not exceed the basic allowable compressive stress on the web, and the stress calculated by the second of the above two formulas should not exceed the allowable stress on the web considered as a column over a length equal to the clear height.* In case either of these allowable stresses is exceeded, it is necessary to strengthen the web by applying stiffeners having a close bearing against the flanges. Such stiffeners must, of course, make up any deficiency in area adjacent to the loaded flange as well as provide sufficient column strength to resist the concentration.

In the case of built-up plate girders, the investigation of stresses in the web adjacent to the loaded flange should also include a check on the rivets to make sure that the latter are capable of transferring safely the concentration from the flange to the web without exceeding the allowable stresses in shear and bearing. When a concentrated load or reaction occurs at a section in which there is considerable longitudinal shear, the stress in the rivets should be calculated for a combination of the two conditions. Since the forces from

^{*}The radius of gyration of a flat plate is equal to 29% of its thickness, regardless of the width.

these two conditions are usually not acting parallel to each other, they are not directly additive, the maximum force being obtained from the well-known parallelogram law.

Sometimes it may be necessary to investigate the need for additional stiffeners to resist concentrated loads which occur between stiffeners spaced according to some other consideration. This is particularly true in the case of a concentrated load moving along the flange. Under such circumstances, the stress adjacent to the loaded flange is checked exactly as outlined on previous page, but in checking the stresses at the center of the clear height, advantage may be taken of the stiffening effect of adjacent stiffeners already in place. This is done in determining the allowable column stress in the web. Instead of using the clear height of the web as the length of the column, a reduced length is used as follows:

Effective clear height of web =
$$\frac{h}{\sqrt{1+2\left(\frac{h}{s}\right)^2}}$$
,

where s=twice the distance from concentrated load to nearest stiffener in inches
h=clear height of web in inches.

Connections and Splices

The design of connections and splices in structural members is equally as important as the design of the members themselves. It is highly desirable, of course, that the rivets in connections and splices be arranged so that any axial loads on the members are transmitted without introducing eccentricities. Where it is impossible to avoid such eccentricities, an estimate of their magnitude should be made and their effect should be taken into account in the calculation of stresses in the members. In designing joints which are required to transmit both moment and shear, the stresses in the rivets should be calculated, taking into account both factors. This condition is particularly important in end connections of small beams in which only a few rivets are used to connect the clip angles to the web. In such cases it will often be found that the bending moment on this group of rivets is more severe than the shear.

Care should be taken in designing riveted joints to have the rivets stressed principally in shear and bearing rather than in tension. This is particularly true in joints in which the forces are repeated, because rivets are not well adapted for transmitting repeated ten-

sile loadings. Where such tensile loadings cannot be eliminated, bolts should be substituted for rivets.

Vibration

It is sometimes necessary in structural design to consider the harmful effects of vibration of certain members or of the structure as a whole. In such cases it is necessary to make sure that the natural frequency of vibration of a structure as a whole, or any part of the structure, does not synchronize with the frequency of some impulse which may be repeated for a considerable number of times. It is desirable that the natural frequencies of the structure and its parts lie outside of a range from one-half to twice the frequency of these impulses. The natural frequency of a structure or member may be found approximately by means of the following formula:

Natural frequency of vibration, cycles per second,

$$=\frac{3.13}{\sqrt{\overline{D}}}$$

where D=deflection at the center of the span of the structure or member resulting from its own weight plus any other weights attached to the member.

In the case of horizontal members, the deflection D is calculated in the ordinary manner, but in the case of members whose position is other than horizontal, the deflection is calculated as though the member were in a horizontal position. This use of the deflection is simply a convenient method of taking into account the modulus of elasticity of the material, the span length of the member, and the magnitude and distribution of the mass which is in motion when the member is vibrating.

Example 15. Find the natural frequency of vibration of the girder used in Example 5, page 52, assuming the loads shown are attached to and vibrate with the girder.

Calculated deflection at center of span, D=1.06"

Natural frequency of vibration = $\frac{3.13}{\sqrt{1.06}}$ = 3.04 cycles per second.

Any impulses to which this girder may be subjected should not be repeated steadily in the range from 1.5 to 6 cycles per second. If the frequency of the impulses should lie within this range, stresses might be built up in the member exceeding any ordinary impact allowance which might be made to take care of such dynamic effects.

Example 15a. Check the natural frequency of vibration of the above girder assuming no weights attached to it.

Calculated deflection at center of span, D=0.016"

Natural frequency of vibration = $\frac{3.13}{\sqrt{0.016}}$ = 24.8 cycles per second.

79

BEAM FORMULAS

TABLE 21—BENDING MOMENTS AND DEFLECTIONS OF BEAMS

1. CANTILEVER BEAM

Concentrated Load at Free End

Reaction = P

Moment at any point = Px

Maximum moment = PL

Maximum deflection = $\frac{PL^3}{3 EI}$

2. CANTILEVER BEAM

Uniform Load, w per unit of length, total load W

Reaction = wL = W

Moment at any point = $\frac{wx^2}{2} = \frac{Wx^2}{2L}$

Maximum moment = $\frac{wL^2}{2} = \frac{WL}{2}$

Maximum deflection = $\frac{\text{wL}^4}{8 \text{ EI}} = \frac{\text{WL}^3}{8 \text{ EI}}$

3. SIMPLE BEAM Concentrated Load at Center

P Ruman Re Reactions: $R_L = R_R = \frac{P}{2}$

Moment at any point:

$$x < \frac{L}{2}$$
, $M = \frac{Px}{2}$

$$x > \frac{L}{2}, M = \frac{P(L-x)}{2}$$

Maximum moment, at center = $\frac{PL}{4}$

Maximum deflection = $\frac{PL^3}{48 EI}$

TABLE 21—BENDING MOMENTS AND DEFLECTIONS OF BEAMS—Continued

4. SIMPLE BEAM

Concentrated Load at any point

Reactions:
$$R_L = \frac{Pb}{L}$$
, $R_R = \frac{Pa}{L}$

Moment at any point:

$$\begin{split} &x < a, \ M = R_L x = \frac{Pbx}{L} \\ &x > a, \ M = R_R(L-x) = \frac{Pa(L-x)}{L} \end{split}$$

Maximum moment, where
$$x = a$$
, $M = \frac{Pab}{L}$

Maximum deflection,
$$D = \frac{Pab(L+b)\sqrt{3a(L+b)}}{27 EIL}$$

5. SIMPLE BEAM

Two equal, concentrated loads, symmetrically placed

Reactions:
$$R_L = R_R = P$$

Moment at any point:

$$x < a, M = R_L x = Px$$

 $a < x < (L-a), M = Pa$
 $x > (L-a), M = P(L-x)$

Maximum moment: M = Pa

Maximum deflection =
$$\frac{Pa}{24 EI} (3L^2 - 4a^2)$$

6. SIMPLE BEAM

Uniform Load, w per unit of length, total load W

Reactions:
$$R_L = R_R = \frac{WL}{2} = \frac{W}{2}$$

Moment at any point:

$$M = \frac{Wx(L-x)}{2} = \frac{Wx(L-x)}{2L}$$

Maximum moment, at center: $M = \frac{wL^2}{8} = \frac{WL}{8}$

Maximum deflection:
$$D = \frac{5wL^4}{384 EI} = \frac{5WL^3}{384 EI}$$

TABLE 21—BENDING MOMENTS AND DEFLECTIONS OF BEAMS—Continued

7. SIMPLE BEAM

Uniform Load, w per unit of length, on part of span

Reactions:
$$R_L = \frac{bw(2c+b)}{2L}$$
, $R_R = \frac{bw(2a+b)}{2L}$

81

Moment at any point:

$$x < a, M = R_L x = \frac{bwx(2c+b)}{2L}$$
 $a < x < (a+b), M = R_L x - \frac{(x-a)^2 w}{2}$
 $x > (a+b), M = R_R (L-x)$

Maximum moment =
$$\frac{bw(2c+b) [4aL+b(2c+b)]}{8L^2}$$

8. BEAM FIXED AT ONE END, SIMPLE SUPPORT AT OTHER

Concentrated Load at any point

Reactions:
$$R_L = \frac{Pb^2}{2L^3}(2L+a)$$
, $R_R = P - R_L$

Moment at any point:

$$x < a, M = R_L x = \frac{Pb^2 x}{2L^3} (2L + a)$$

 $x > a, M = R_L x - P(x - a)$
 $x = L, M_2 = \frac{-Pab}{2L^2} (L + a)$

$$M_1 = \frac{Pab^2}{2L^3}(2L + a)$$

9. BEAM FIXED AT ONE END, SIMPLE SUPPORT AT OTHER

Uniform Load, w per unit of length

Reactions:
$$R_L = \frac{3}{8} wL$$
, $R_R = \frac{5}{8} wL$

Moment at any point:

$$x < L$$
, $M = wx \left(\frac{3L}{8} - \frac{x}{2}\right)$

$$x = L, M_2 = \frac{-wL^2}{8}$$

$$M_1 = \frac{9wL^2}{128}$$

TABLE 21—BENDING MOMENTS AND DEFLECTIONS

OF BEAMS-Concluded

10. BEAM FIXED AT BOTH ENDS

Concentrated Load at center

Reactions:
$$R_L = R_R = \frac{P}{2}$$

Moment at any point:

$$\begin{split} & \text{x} = 0, \; \text{x} = \text{L}, \; \text{M}_2 = \frac{-\text{PL}}{8} \\ & \text{x} < \frac{\text{L}}{2}, \; \text{M} = \frac{-\text{P}}{2} \bigg(\frac{\text{L}}{4} - \text{x} \bigg) \\ & \text{x} > \frac{\text{L}}{2}, \; \text{M} = \frac{\text{P}}{2} \bigg(\frac{3\text{L}}{4} - \text{x} \bigg) \end{split}$$

$$M_1 = \frac{PL}{8}$$

Maximum deflection = $\frac{PL^3}{192 EI}$

11. BEAM FIXED AT BOTH ENDS

Concentrated Load at any point

Reactions:
$$R_L = \frac{Pb^2}{L^3}(L+2a)$$
, $R_R = \frac{Pa^2}{L^3}(L+2b)$

Moment at any point:

$$x = 0, M_{3} = \frac{-Pab^{2}}{L^{2}}$$

$$x < a, M = \frac{-Pab^{2}}{L^{2}} + R_{L}x$$

$$x > a, M = \frac{-Pa^{2}b}{L^{2}} + R_{R}(L-x)$$

$$x = L, M_{2} = \frac{-Pa^{2}b}{L^{2}}$$

$$M_{1} = \frac{2Pa^{2}b^{2}}{L^{3}}$$
Maximum deflection, $a > b = \frac{2Pa^{2}b}{L^{2}}$

$$M_1 = \frac{2Pa^2b^2}{L^3}$$

Maximum deflection, a > b, = $\frac{2Pa^3b^2}{3 \text{ EI } (3a+b)^2}$

12. BEAM FIXED AT BOTH ENDS

Uniform Load, w per unit of length, total load W

Reactions:
$$R_L = R_R = \frac{wL}{2} = \frac{W}{2}$$

Moment at any point:

$$x = 0$$
, $x = L$, $M_2 = \frac{-wL^2}{12} = \frac{-WL}{12}$

$$x < L, M = \frac{-wL^2}{12} - \frac{wx^2}{2} + \frac{wLx}{2}$$

$$M_1 = \frac{WL^2}{24} = \frac{WL}{24}$$

Maximum deflection =
$$\frac{\text{wL}^4}{384 \text{ EI}}$$

ELEMENTS OF SECTIONS STRUCTURAL SHAPES, RECTANGLES, TUBES AND FORMULAS

STRUCTURAL SHAPES

Elements of Sections

THE DATA given on the following pages include the section elements commonly used in design. All values have been computed on the basis of the nominal dimensions shown; the actual dimensions of a member will usually overrun slightly, depending on the condition of the rolls or die. Fillets and roundings have been included throughout all calculations except those for the torsion factor, J.

On the profiles shown, axes X-X and Y-Y are the axes of maximum and minimum moments of inertia, respectively, for sections having an axis of symmetry. Axis Z-Z is the axis of least moment of inertia for unsymmetrical sections. Each is the neutral axis for flexure in the plane at right angles to the axis.

The moment of inertia, I, is a convenient value representing the expression, f y²dA, which appears in the derivation of the well-known flexure formula. The moment of inertia of any structural shape about a given axis, however, is obtained not by actual integration over the entire area, but by breaking the area up into a few convenient parts, calculating the individual moments of inertia of these parts about the axis in question by means of the theorem of parallel axes, and summing up these individual values. The term, I, appears in the formulas for deflections of beams in Table 21, pages 79 through 82.

The section modulus, S, about a given axis, may be defined as the quotient obtained by dividing the moment of inertia by the distance of the extreme fiber of the section from the axis considered $\left(S = \frac{I}{c}\right)$. This term is used in calculating extreme fiber stress in beams, the stress being the bending moment divided by the section modulus.

The radius of gyration, r, about a given axis, may be defined as the square root of the quotient obtained by dividing the moment of inertia by the area of the section $\left(\mathbf{r} = \sqrt{\frac{1}{A}}\right)$. This term is used in the determination of column strength, the length of a member divided by its radius of gyration being the slenderness ratio.

The torsion factor, J, is a measure of the resistance of a section to twisting in simple torsion in much the same way that I is a measure of resistance to deflection in simple bending. For structural shapes this term is not the polar moment of inertia as it would be

for round rods or tubes, but it may be used in exactly the same manner to determine angle of twist for a given torque according to the formula:

$$\Theta = \frac{\mathrm{T}}{\mathrm{JG}},$$

where Θ = angle of twist, radians per inch of length

T = torque in inch-pound J = torsion factor in in.⁴

G=modulus of rigidity (3,850,000 lb./sq. in. for aluminum alloys).

The term J enters into the determination of the lateral stability of beams (page 48).

The weights given are for 14S alloy. The weights based on other alloys may be found as follows:

For 3S, multiply by 0.980 For 4S, and 61S multiply by 0.970 For 52S, multiply by 0.960

The range of sizes which Aluminum Company of America mills are capable of producing are indicated in the tables, but tools are not available for all sizes of shapes shown. Under the heading "Tools," shapes which are usually produced by rolling are shown by the notation "Rolls." In the case of shapes produced exclusively by extrusion, the die number is given. Contact nearest Alcoa Sales Office in regard to tools for the production of other shapes.

NOTE

ALCOA ALUMINUM STANDARD STRUCTURAL SHAPES are indicated by an asterisk (*) at the head of the column. This list has been developed on the basis of maximum utility and popularity. Selection of these STANDARD SHAPES by the designer is strongly recommended in the interest of quick delivery. Nonstandard shapes will be produced to order and at a higher price.

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.4

S=Section Modulus in in.³ r=Radius of Gyration in inches. J=Torsion Factor in in.⁴

Size	Legs	1/2 x 1/2	5/8	x 5/8	3/4 x 3/8		3/4 X	3/4	
Si	t	1/16	3/32	1/8	3/32	1/16	3/32	1/8*	3/16*
	Veight Area	0.071 0.059	0.134 0.111	0.169 0.140	0.120 0.099	0.108 0.089	0.159 0.132	0.207 0.171	0.297 0.246
	$\begin{smallmatrix} f_1 \\ f_2 \end{smallmatrix}$	1/16 1/32	1/8 3/64	1/16 1/16	1/8 3/64	1/8 3/32	1/8 3/32	1/8 3/32	1/8 3/32
Axis X-X	I S r y	0.0013 0.0038 0.150 0.146	0.0037 0.0084 0.183 0.187	0.0046 0.0109 0.182 0.199	0.0054 0.0114 0.232 0.279	0.0043 0.0079 0.220 0.199	0.0063 0.0118 0.219 0.214	0.0082 0.0157 0.219 0.227	0.0112 0.0224 0.214 0.251
Axis Y-Y	I S r	0.0013 0.0038 0.150 0.146	0.0037 0.0084 0.183 0.187	0.0046 0.0109 0.182 0.199	0.0009 0.0031 0.094 0.098	0.0043 0.0079 0.220 0.199	0.0063 0.0118 0.219 0.214	0.0082 0.0157 0.219 0.227	0.0112 0.0224 0.214 0.251
Axis Z-Z	Θ Ι r	45° 0′ 0.0006 0.097	45° 0′ 0.0015 0.117	45° 0′ 0.0020 0.120	13° 44′ 0.0006 0.077	45° 0′ 0.0018 0.142	45° 0′ 0.0026 0.141	45° 0′ 0.0034 0.141	45° 0′ 0.0049 0.141
	J Fools	78-P	77-G	0.00081 485	734-A	0.00012 78-K	0.00041 78-C	0.00098 Rolls	Rolls

Size	Legs	1 x	5/8	1 x 3/4			1 x 1		
Si	t	1/8	1/4	1/8	1/16	3/32*	1/8*	3/16*	1/4*
	/eight	0.226	0.418	0.245	0.147	0.216	0.283	0.411	0.529
	Area	0.187	0.345	0.202	0.122	0.178	0.234	0.339	0.437
	$\begin{smallmatrix} f_1 \\ f_2 \end{smallmatrix}$	1/16 1/16	1/8 1/16	1/16 1/16	1/16 1/32	1/8 3/32	1/8 3/32	1/8 3/32	1/8 3/32
Axis X-X	I	0.0181	0.0306	0.0194	0.0118	0.0161	0.0208	0.0291	0.0361
	S	0.0279	0.0507	0.0288	0.0162	0.0223	0.0293	0.0424	0.0544
	r	0.312	0.298	0.309	0.311	0.301	0.298	0.293	0.287
	y	0.351	0.396	0.329	0.271	0.276	0.290	0.314	0.336
Axis Y-Y	I	0.0054	0.0089	0.0092	0.0118	0.0161	0.0208	0.0291	0.0361
	S	0.0117	0.0215	0.0169	0.0162	0.0223	0.0293	0.0424	0.0544
	r	0.170	0.161	0.214	0.311	0.301	0.298	0.293	0.287
	x	0.165	0.210	0.205	0.271	0.276	0.290	0.314	0.336
Axis Z-Z	Θ	20° 34′	9° 08′	28° 23′	45° 0′	45° 0′	45° 0′	45° 0′	45° 0′
	Ι	0.0033	0.0084	0.0051	0.0048	0.0066	0.0085	0.0124	0.0162
	r	0.132	0.156	0.158	0.199	0.193	0.191	0.191	0.193
	J Tools	0.00106 734-5	0.00846 734-4	734-JJ	0.00016 78-J	0.00055 Rolls	0.00130 Rolls	0.00439 Rolls	0.01042 Rolls

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.4

S=Section Modulus in in.⁸ r=Radius of Gyration in inches. J=Torsion Factor in in.⁴

Legs	1½ x 1½	11/4 x 3/4	11/4 x 1			11/4 x 11/4			
iii t	1/8	3/32*	1/8*	3/32	1/8*	3/16*	1/4*	5/16	
Weight Area	0.32 0.27	0.22 0.18 3/32 3/64	0.32 0.27 1/8 1/16	0.28 0.23 3/82	0.36 0.30 3/32	0.53 0.43 3/32 1/8	0.68 0.56 3/32 1/8	0.83 0.68 3/52 1/8	
f ₂	1/8			3/64	1/8		$\frac{1}{8}$	$\frac{1}{8}$ 0.088	
K S	0.030 0.037 0.33 0.32	0.029 0.035 0.40	0.040 0.047 0.39	0.033 0.036 0.38	0.042 0.046 0.37	0.059 0.068 0.37 0.37	0.087 0.36 0.40	0.000 0.106 0.36 0.42	
Y-Y S	0.030 0.037	0.42 0.008 0.014	0.39 0.023 0.031	0.34 0.033 0.036	0.35 0.042 0.046	0.059 0.068	0.074 0.087	0.088 0.106	
	0.33	0.21 0.17	0.29 0.27	0.38	0.37	0.37	0.36 0.40	0.36 0.42	
Axis Z-Z	45° 0′ 0.012 0.21	19° 47′ 0.005 0.16	31° 51′ 0.012 0.21	45° 0′ 0.014 0.24	45° 0′ 0.017 0.24	45° 0′ 0.025 0.24	45° 0′ 0.032 0.24	45° 0′ 0.040 0.24	
J	0.0015	0.0005	0.0015	0.0007	0.0016	0.0055	0.013	0.025	
Tools	78-U	734-FF	734-HH	78-Y	Rolls	Rolls	Rolls		

Size	Legs	11/2	x 3/4	1½ x 1/8	11/2	x 1	-	1½ x 1¼	
Si	t	1/8*	3/16*	3/16	5/32*	1/4*	1/8*	³ / ₁₆ *	1/4*
	Veight	0.32	0.47	0.50	0.45	0.68	0.40	0.58	0.76
	Area	0.27	0.39	0.41	0.37	0.56	0.33	0.48	0.63
	f_1 f_2	1/8 1/16	1/8 3/32	1/8 3/32	5/32 5/64	3/16 1/8	3/16 1/8	3/16 1/8	3/16 1/8
Axis X-X	I	0.061	0.085	0.090	0.080	0.117	0.070	0.100	0.127
	S	0.064	0.091	0.093	0.081	0.122	0.066	0.097	0.126
	r	0.48	0.47	0.47	0.47	0.46	0.46	0.46	0.45
	y	0.54	0.57	0.54	0.50	0.53	0.44	0.47	0.49
Axis Y-Y	I	0.010	0.014	0.022	0.027	0.040	0.044	0.063	0.079
	S	0.018	0.025	0.034	0.036	0.057	0.047	0.069	0.090
	r	0.20	0.19	0.23	0.27	0.27	0.37	0.36	0.36
	x	0.17	0.19	0.23	0.26	0.29	0.32	0.35	0.37
Axis Z-Z	Θ	14° 25′	13° 45′	18° 08′	23° 02′	22° 23′	33° 59′	33° 53′	33° 36′
	Ι	0.007	0.009	0.014	0.015	0.025	0.022	0.032	0.041
	τ	0.16	0.16	0.18	0.20	0.21	0.26	0.26	0.26
	rools	0.0015 734-EE	734-11	734-7	Rolls	Rolls	Rolls	0.0060 Rolls	0.0143 Rolls

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.4

S=Section Modulus in in.³ r=Radius of Gyration in inches. J=Torsion Factor in in.⁴

Size	Legs			1½ x	11/2			15/8 x 11/4	13/4 x 11/8
S	t	3/32	1/8*	³ / ₁₆ *	1/4*	5/16	3/8	1/8	3/16
	Veight Area f ₁ f ₂			0.64 0.53 3/16 1/8	0.83 0.69	1.02 0.84 3/16 1/8	1.19 0.99 3/16 1/8	0.41 0.34 1/8	0.61 0.51 3/16 3/32
Axis Y-Y Axis X-X	I S r y I S r	0.058 0.053 0.46 0.40 0.058 0.053 0.46 0.40	0.074 0.068 0.45 0.41 0.074 0.068 0.45 0.41	0.107 0.100 0.45 0.44 0.107 0.100 0.45 0.44	0.135 0.130 0.44 0.46 0.135 0.130 0.44 0.46	0.161 0.158 0.44 0.48 0.161 0.158 0.44 0.48	0.184 0.185 0.43 0.51 0.184 0.185 0.43 0.51	0.087 0.077 0.51 0.50 0.045 0.048 0.36 0.31	0.152 0.132 0.55 0.59 0.049 0.058 0.31 0.29
Axis Z-Z	Θ I r J	45° 0′ 0.024 0.30 0.0008	45° 0′ 0.031 0.29 0.0020	45° 0′ 0.044 0.29 0.0066	45° 0′ 0.057 0.29 0.016	45° 0′ 0.070 0.29 0.031	45° 0′ 0.083 0.29 0.053	29° 55′ 0.024 0.26 0.0019	21° 47′ 0.029 0.24 0.0063
′	rools .	78-JJ	Rolls	Rolls	Rolls	78-N	78-DD	734-2	734-E

Size	Legs		13/4 x 11/4				13/4 x	13/4		
Si	t	1/8*	3/16*	1/4*	3/32	1/8*	3/16*	1/4*	5/16*	3/8
	Veight Area	0.44 0.36	0.64 0.53	0.83 0.69	0.39 0.32	0.51 0.42	0.75 0.62	0.98 0.81	1.21	1.42 1.17
	f_1 f_2	3/16 1/8	\$/16 1/8	3/16 1/8	3/32 3/64	3/16 1/8	3/16 1/8	3/16 1/8	³ / ₁₆ 1/ ₈	3/16 1/8
Axis X-X	I S r y	0.108 0.090 0.55 0.54	0.156 0.132 0.54 0.57	0.199 0.172 0.54 0.60	0.096 0.075 0.55 0.47	0.121 0.094 0.53 0.47	0.174 0.139 0.53 0.50	0.223 0.181 0.52 0.52	0.266 0.221 0.52 0.55	0.306 0.259 0.51 0.57
Axis Y-Y	I S r x	0.046 0.048 0.36 0.30	0.066 0.071 0.35 0.32	0.083 0.092 0.35 0.35	0.096 0.075 0.55 0.47	0.121 0.094 0.53 0.47	0.174 0.139 0.53 0.50	0.223 0.181 0.52 0.52	0.266 0.221 0.52 0.55	0.306 0.259 0.51 0.57
Axis Z-Z	Θ Ι r	26° 22′ 0.026 0.27	26° 08′ 0.037 0.26	25° 47′ 0.048 0.26	45° 0′ 0.039 0.35	45° 0′ 0.050 0.34	45° 0′ 0.072 0.34	45° 0′ 0.093 0.34	45° 0′ 0.113 0.34	45° 0′ 0.134 0.34
	J Tools	0.0020 Rolls	0.0066 Rolls	0.016 Rolls	0.0010 78-L	0.0023 Rolls	0.0077 Rolls	0.018 Rolls	0.036 Rolls	0.062

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3 r=Radius of Gyration in inches.

J=Torsion Factor in in.4

Size	Legs		2 x 11/4		2 x 13/8			2 x 1½		
Si	t	1/8	3/16	1/4	1/4	1/8*	3/16*	1/4*	5/16	3/8*
	Veight Area	0.47 0.39	0.70 0.58	0.91 0.75	0.95 0.79	0.51 0.42	0.75 0.62	0.98 0.81	1.21 1.00	1.42 1.17
	$egin{matrix} f_1 \\ f_2 \end{matrix}$	3/16 1/8	3/16 1/8	3/16 1/8	1/4 1/8	3/16 1/8	3/16 1/8	3/16 1/8	3/16 1/8	3/16 1/8
Axis X-X	I S r y	0.158 0.117 0.63 0.65	0.228 0.172 0.63 0.68	0.291 0.224 0.62 0.70	0.302 0.228 0.62 0.68	0.17 0.12 0.63 0.60	0.24 0.18 0.62 0.63	0.31 0.23 0.62 0.66	0.37 0.28 0.61 0.68	0.43 0.33 0.60 0.70
Axis Y-Y	I S r	0.047 0.049 0.35 0.28	0.068 0.072 0.34 0.31	0.086 0.093 0.34 0.33	0.114 0.113 0.38 0.37	0.08 0.07 0.44 0.36	0.12 0.10 0.43 0.38	0.15 0.14 0.43 0.41	0.18 0.16 0.42 0.43	0.20 0.19 0.41 0.45
Axis Z-Z	Θ I r	21° 05′ 0.028 0.27	20° 52′ 0.041 0.27	20° 31′ 0.053 0.26	24° 14′ 0.067 0.29	28° 44′ 0.04 0.32	28° 36′ 0.06 0.32	28° 20′ 0.08 0.32	28° 0′ 0.10 0.32	27° 37′ 0.12 0.32
- '	J Fools	0.0021 734-P	0.0071 734-N	0.017 734-12	0.018 734-KK	0.0023 Rolls	0.0077 Rolls	0.018 Rolls	0.036 734-20	0.062 Rolls

Size	Legs	2 x 13/4			2 x	2			2½ x 1½
Si	t	1/4	1/8*	³ / ₁₆ *	1/4*	5/16*	3/8*	7/16	1/4
	Veight Area f ₁ f ₂	1.07 0.88	0.59 0.87 0.49 0.72 14 14 18 18		1.14 0.94 1/4 1/8	1.40 1.16 1/4 1/8	1.65 1.37 1/4 1/8	1.89 1.57 1/4 1/8	1.07 0.88 14 1/8
Axis Y-Y Axis X-X	I S r y I S r	0.33 0.24 0.61 0.62 0.23 0.18 0.51	0.18 0.13 0.61 0.53 0.18 0.13 0.61	0.27 0.19 0.61 0.56 0.27 0.19 0.61	0.34 0.24 0.60 0.58 0.34 0.24 0.60	0.41 0.30 0.60 0.61 0.41 0.30 0.60	0.47 0.35 0.59 0.63 0.47 0.35 0.59	0.53 0.39 0.58 0.65 0.53 0.39 0.58	0.43 0.29 0.70 0.76 0.15 0.14 0.42
Axis Z-Z	X O I r J Tools	0.49 34° 44′ 0.11 0.36 0.020 734-13	0.53 45° 0′ 0.08 0.40 0.0026 Rolls	0.56 45° 0' 0.11 0.39 0.0088 Rolls	0.58 45° 0′ 0.14 0.39 0.021 Rolls	0.61 45° 0' 0.17 0.39 0.041 Rolls	0.63 45° 0′ 0.20 0.39 0.070 Rolls	0.65 45° 0′ 0.23 0.39 0.112	0.39 23° 09′ 0.09 0.32 0.020 734-MM

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.4

S=Section Modulus in in.³ r=Radius of Gyration in inches. J=Torsion Factor in in.⁴

Size	Legs		$2\frac{1}{2} \times 1\frac{1}{4}$				2½ x 1½		
S	t	1/8	3/16	1/4	, 1/8	3/16*	1/4*	5/16*	3/8
	Veight Area f ₁ f ₂	0.55 0.46 3/16 3/82	5 0.82 1.07 0.68 0.88		0.59 0.49 1/4 1/8	0.87 0.72 1/4 1/8	1.14 0.94 1/4 1/8	1.40 1.16	1.65 1.37 1/4 1/8
Axis Y-Y Axis X-X	I S r y I S r x	0.30 0.18 0.81 0.87 0.05 0.05 0.05 0.34 0.25	0.43 0.27 0.80 0.89 0.07 0.08 0.33 0.28	0.55 0.35 0.79 0.92 0.09 0.10 0.32 0.30	0.31 0.19 0.80 0.80 0.09 0.07 0.42 0.32	0.46 0.27 0.79 0.84 0.12 0.11 0.41 0.35	0.59 0.36 0.79 0.86 0.16 0.14 0.41 0.37	0.71 0.44 0.78 0.89 0.19 0.17 0.40 0.39	0.82 0.51 0.77 0.91 0.22 0.20 0.40 0.42
AxisZ-Z	⊖ I r	14° 45′ 0.03 0.27	14° 29′ 0.05 0.27	14° 10′ 0.06 0.26	19° 40′ 0.05 0.33	19° 38′ 0.08 0.32	19° 25′ 0.10 0.32	19° 06′ 0.12 0.32	18° 42′ 0.14 0.32
	Tools	734-6	0.0082 734-H	0.020	734-36	0.0088 734-T	0.021 734-RR	734-8	0.070

Size	Legs				$2\frac{1}{2} \times 2$			
Ŝ	t	1/8*	3/16*	1/4*	5/16*	3/8*	7/16	1/2
7	Weight Area	0.67 0.55	0.99 0.82	1.29 1.07	1.59 1.32	1.88 1.55	2.16 1.78	2.43 2.01
	$\begin{smallmatrix} f_1 \\ f_2 \end{smallmatrix}$	1/4 1/8						
Axis Y-Y Axis X-X	I S r y I S r	0.34 0.19 0.79 0.72 0.20 0.13 0.60 0.48	0.50 0.29 0.78 0.75 0.29 0.19 0.59 0.51	0.65 0.38 0.78 0.78 0.37 0.25 0.58 0.53	0.78 0.46 0.77 0.80 0.44 0.30 0.58 0.55	0.91 0.54 0.76 0.83 0.51 0.36 0.57 0.58	1.02 0.62 0.76 0.85 0.57 0.41 0.57 0.60	1.13 0.69 0.75 0.87 0.63 0.46 0.56 0.62
AxisZ-Z	Θ Ι τ	31° 57′ 0.10 0.43	31° 58′ 0.15 0.42	31° 51′ 0.19 0.42	31° 41′ 0.23 0.42	31° 28′ 0.27 0.42	31° 13′ 0.31 0.42	30° 56′ 0.35 0.42
	Tools	0.0029 Rolls	0.010 Rolls	Rolls	Rolls	0.079 Rolls	0.126	0.188

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches. I=Moment of Inertia in in.4

S=Section Modulus in in.³ r=Radius of Gyration in inches. J=Torsion Factor in in.⁴

Size	Legs				2½ x 2½				3 x 1½
Si	t	1/8*	3/16*	1/4*	.5/16*	3/8*	7/16	1/2	1/4
	Veight Area	0.75 0.62	1.10 0.91	1.45 1.19	1.78 1.47	2.11 1.74	2.42 2.00	2.73 2.26	1.30 1.08
	f_1 f_2	1/4 1/8	1/4 1/8	1/4 1/8	1/4 1/8	1/4 1/8	1/4 1/8	1/4 1/8	5/16 1/8
Y Axis X-X	I S r y	0.37 0.20 0.77 0.65 0.37	0.54 0.30 0.77 0.68 0.54	0.69 0.39 0.76 0.71	0.84 0.48 0.76 0.73	0.98 0.56 0.75 0.76	1.10 0.64 0.74 0.78 1.10	1.22 0.72 0.73 0.80 1.22	0.98 0.51 0.95 1.08 0.16
Axis Y-Y	S r x	0.20 0.77 0.65	0.30 0.77 0.68	0.39 0.76 0.71	0.48 0.76 0.73	0.56 0.75 0.76	0.64 0.74 0.78	0.72 0.73 0.80	0.14 0.39 0.34
AxisZ-Z	Θ I r	45° 0′ 0.15 0.50	45° 0′ 0.22 0.49	45° 0′ 0.29 0.49	45° 0′ 0.35 0.49	45° 0′ 0.41 0.48	45° 0′ 0.47 0.48	45° 0′ 0.53 0.48	14° 22′ 0.11 0.32
	J Tools	Rolls	0.011 Rolls	0.026 Rolls	0.051 Rolls	Rolls	77-N	0.208	734-L

Size	Legs			3 2	2				3	3 x 2½		
Si	t	3/16*	1/4*	5/16*	3/8*	7/16*	1/2	1/4*	⁵ /16*	3/8*	7/16	1/2
A	eight rea	1.10	1.44	1.78	2.11	2.42 2.00	2.73 2.26	1.58	1.95 1.62	2.32	2.67 2.21 ⁵ / ₁₆	3.02 2.49
f f	2	5/16 3/16	5/16 3/16	5/16 3/16	5/16 3/16	5/16 3/16	5 16 3 16	5/16 1/4	5/16 1/4	5/16 1/4	1/4	5/16 1/4
I Axis X-X	I S r y	0.82 0.40 0.95 0.94	1.06 0.52 0.94 0.97	1.29 0.65 0.94 1.00 0.45	1.51 0.76 0.93 1.03 0.53	1.71 0.88 0.92 1.05 0.59	1.90 0.99 0.92 1.07	1.12 0.53 0.92 0.89	1.37 0.66 0.92 0.92 0.86	1.60 0.78 0.91 0.94	1.82 0.90 0.91 0.97	2.03 1.01 0.90 0.99
Axis Y-Y	Srx	0.19 0.56 0.46	0.25 0.56 0.48	0.30 0.56 0.51	0.36 0.55 0.53	0.41 0.55 0.56	0.46 0.54 0.58	0.38 0.73 0.64	0.47 0.73 0.67	0.55 0.72 0.69	0.64 0.72 0.72	0.72 0.71 0.74
Axis Z-Z	Θ I r	23° 25′ 0.17 0.43	23° 22′ 0.22 0.43	23° 13′ 0.27 0.43	23° 0′ 0.31 0.42	22° 44′ 0.36 0.42	22° 25′ 0.40 0.42	34°03′ 0.35 0.52	34° 0′ 0.43 0.51	33°54′ 0.51 0.51	33°46′ 0.58 0.51	33°37′ 0.65 0.51
	J Tools	0.011 Rolls	0.026 Rolls	0.051 Rolls	0.088 Rolls	0.140 Rolls	0.208	0.029 734-J	0.056 734-ZZ	0.097 734-C	0.154	0.229

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. S=Section Modulus in in.3 r=Radius of Gyration in inches. I=Torsion Factor in in.4

Area in square inches.

I=Moment of Inertia in in.4

Legs 3 x 3 3/16* 1/4* 5/6* 3/8* 7/6*1 1/2*2 9/16 5/8 Weight 1.33 1.73 2.14 2.55 2.94 3.32 3.69 4.06 1.10 1.43 1.77 2.10 2.43 2.74 3.05 Area 3.35 5/16 f_1 5/16 5/16 5/16 5/16 5/16 5/16 5/16 f_2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 0.93 1.18 1.70 1.94 I 1.45 2.16 2.37 2.57 Axis Z-Z Axis Y-Y Axis X-X S 0.42 0.54 0.67 0.80 0.92 1.04 1.15 1.26 0.92 0.91 0.91 0.90 0.89 0.89 0.88 0.88 T 0.80 0.82 0.85 0.87 0.90 0.92 0.94 0.97 Ι 0.93 1.70 2.57 1.18 1.45 1.94 2.16 2.37 S 0.42 0.54 0.67 0.80 0.92 1.04 1.15 1.26 0.89 r 0.92 0.91 0.91 0.90 0.89 0.88 0.88 0.80 0.85 X 0.82 0.870.90 0.92 0.940.97 Θ 45° 0′ 45° 0' 45° 0' 45° 0' 45° 0′ 45° 0' 45° 0' 45° 0′ 0.70 I 0.38 0.49 0.60 0.81 0.91 1.01 1.12 г 0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.250 0.356 0.013 0.031 0.061 0.105 0.167 0.488 Tools Rolls Rolls Rolls Rolls Rolls Rolls

¹Nominal rolled size in this thickness is 3½2″x3½2″x½6″.
²Nominal rolled size in this thickness is 3½2″x3½2″x½″x½″.

Legs		3	3½ x 2½	2				$3\frac{1}{2} \times 3$		
io t	1/4*	5/16*	3/8*	7/16	1/2*	1/4*	5/16*	3/8*	1/16	1/2*
Weight Area	1.73 1.43	2.14 1.77	2.55 2.10	2.94 2.43	3.32 2.74	1.89 1.57	2.34 1.94	2.78 2.30	3.21 2.66	3.63 3.00
f_1 f_2	5/16 1/4	5/16 1/4	5/16 1/4	5/16 1/4	5/16 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4
Axis Y-Y Axis X-X	1.73 0.72 1.10 1.09 0.73 0.38 0.71 0.60 26° 23'	2.12 0.89 1.09 1.12 0.89 0.48 0.71 0.62 26° 18'	2.49 1.06 1.09 1.14 1.05 0.57 0.71 0.65 26° 10'	2.84 1.22 1.08 1.17 1.19 0.65 0.70 0.67 26° 0'	3.17 1.37 1.08 1.19 1.32 0.73 0.69 0.70 25° 48'	1.84 0.74 1.08 1.01 1.28 0.57 0.90 0.76 36° 13'	2.26 0.92 1.08 1.04 1.52 0.69 0.89 0.79 35° 40'	2.65 1.09 1.07 1.06 1.79 0.82 0.88 0.82 35° 37'	3.03 1.26 1.07 1.09 2.04 0.94 0.88 0.84 35° 32′	3.38 1.42 1.06 1.11 2.27 1.06 0.87 0.86 35° 26'
Aris Z-Z	0.41 0.53	0.50 0.53	0.59	0.67	0.76 0.53	0.63	0.74 0.62	0.87	1.00	1.13
Tools	0.031 734-D	0.061 734-UU	0.105 734-24	0.167	734-23	0.034 734-BB	734-22	734-27	734-39	0.271 734-NN

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3

r=Radius of Gyration in inches.

J=Torsion Factor in in.4

Size	Legs				$3\frac{1}{2} \times 3\frac{1}{2}$			
S	t	1/4*	5/16*	3/8*	7/16	1/2*	9/16	5/8
7	Weight Area	2.05 1.69	2.53 2.09	3.01 2.49	3.48 2.87	3.94 3.25	4.39 3.62	4.83 3.99
	f_1 f_2	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4
Axis X-X	I S r v	1.93 0.76 1.07 0.94	2.37 0.94 1.06 0.97	2.79 1.11 1.06 1.00	3.18 1.28 1.05 1.02	3.56 1.45 1.05 1.05	3.92 1.61 1.04 1.07	4.26 1.77 1.03 1.09
Axis Y-Y	I S r	1.93 0.76 1.07 0.94	2.37 0.94 1.06 0.97	2.79 1.11 1.06 1.00	3.18 1.28 1.05 1.02	3.56 1.45 1.05 1.05	3.92 1.61 1.04 1.07	4.26 1.77 1.03 1.09
Axis Z-Z	Θ Ι r	45° 0′ 0.80 0.69	45° 0′ 0.98 0.68	45° 0′ 1.15 0.68	45° 0′ 1.32 0.68	45° 0′ 1.49 0.68	45° 0′ 1.65 0.67	45° 0′ 1.81 0.67
	Tools	0.036 78-G	0.071 78-CC	0.123 78-GG	0.195	0.292 77-Z	0.415	0.570

Size	Legs				4 x 3					4 x 3	31/2	
SS	t	1/4*	5/16*	3/8*	7/16*	1/2*	9/16	5/8*	5/16	3/8*	7/16	1/2*
	/eight Area	2.05 1.69	2.53 2.09	3.01 2.49	3.48 2.87	3.94 3.25	4.39 3.62	4.83 3.99	2.70 2.23	3.22 2.66	3.72 3.08	4.22 3.49
	f_1 f_2	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	$\frac{3}{8}$ $\frac{1}{4}$	3/8 5/16	3/8 5/16	3/8 5/16	3/8 5/16
Axis X-X	I S r y	2.68 0.96 1.26 1.21	3.29 1.19 1.25 1.24	3.88 1.42 1.25 1.26	4.43 1.63 1.24 1.29	4.96 1.85 1.24 1.31	5.47 2.05 1.23 1.34	5.95 2.25 1.22 1.36	3.40 1.19 1.23 1.15	4.02 1.43 1.23 1.18	4.61 1.65 1.22 1.21	5.17 1.87 1.22 1.23
Axis Y-Y	I S r	1.29 0.56 0.87 0.72	1.58 0.70 0.87 0.74	1.86 0.83 0.86 0.77	2.12 0.96 0.86 0.79	2.36 1.08 0.85 0.82	2.60 1.20 0.85 0.84	2.82 1.32 0.84 0.86	2.42 0.93 1.04 0.91	2.85 1.11 1.04 0.94	3.27 1.29 1.03 0.96	3.67 1.46 1.03 0.99
Axis Z-Z	Θ I r	28° 42′ 0.70 0.64	28° 40′ 0.85 0.64	28° 35′ 1.01 0.64	28° 28′ 1.15 0.63		28° 11′ 1.44 0.63		36° 54′ 1.15 0.72			36° 46′ 1.77 0.71
	J Tools	0.036 Rolls	0.071 Rolls	0.123 Rolls	0.195 Rolls	0.292 Rolls	0.415	0.570 Rolls	0.076	0.132 734-AA	0.209	0.313 734-30

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

oot. r

S=Section Modulus in in.3

r=Radius of Gyration in inches.

J=Torsion Factor in in.4

Size	Legs					4 x 4				
Si	t	1/4*	5/16*	3/8*	7/16*	1/2*	9/16*	5/8*	11/16*1	3/4*2
	Veight Area	2.35 1.94	2.91 2.41	3.46 2.86	4.01 3.31	4.54 3.75	5.07 4.19	5.58 4.61	6.09 5.03	6.58 5.44
	$egin{matrix} f_1 \\ f_2 \end{matrix}$	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	3/8 1/4	$\frac{3}{8}$ $\frac{1}{4}$	3/8 1/4	3/8 1/4
Axis X-X	I S r y	2.94 1.00 1.23 1.07	3.61 1.24 1.23 1.10	4.26 1.48 1.22 1.12	4.87 1.71 1.21 1.15	5.46 1.93 1.21 1.17	6.02 2.15 1.20 1.20	6.56 2.36 1.19 1.22	7.08 2.57 1.19 1.24	7.57 2.77 1.18 1.26
Axis Y-Y	I S r x	2.94 1.00 1.23 1.07	3.61 1.24 1.23 1.10	4.26 1.48 1.22 1.12	4.87 1.71 1.21 1.15	5.46 1.93 1.21 1.17	6.02 2.15 1.20 1.20	6.56 2.36 1.19 1.22	7.08 2.57 1.19 1.24	7.57 2.77 1.18 1.26
Axis Z-Z	Θ Ι r	45° 0′ 1.21 0.79	45° 0′ 1.48 0.78	45° 0′ 1.75 0.78	45° 0′ 2.01 0.78	45° 0′ 2.26 0.78	45° 0′ 2.51 0.77	45° 0′ 2.76 0.77	45° 0′ 3.00 0.77	45° 0′ 3.25 0.77
	Tools	Rolls	0.081 Rolls	0.141 Rolls	0.223 Rolls	0.333 Rolls	0.475 Rolls	0.651 Rolls	0.867 Rolls	1.125 Rolls

¹Nominal rolled size in this thickness is $4\frac{3}{16}"x4\frac{3}{16}"x^{1}\frac{1}{16}"$.

²Nominal rolled size in this thickness is $4\frac{1}{14}"x4\frac{1}{14}"x\frac{3}{4}"$.

Size	Legs	5 x 2½	5 2	3			5 x	31/2		
Si	t	1/2	3/8*	1/2*	5/16*	3/8*	7/16*	1/2*	9/16	5/8*
	reight Area f ₁ f ₂	4.24 3.50 3/8 1/4	3.45 2.85 3/8 5/16	4.52 3.74 3/8 5/16	3.09 2.56 716 516	3.69 3.05 76 5/16	4.27 3.53	4.84 4.00	5.40 4.46	5.95 4.92
Y Axis X-X	I S r y I	8.74 2.77 1.58 1.84	7.15 2.15 1.59 1.68	9.24 2.83 1.57 1.73	6.39 1.85 1.58 1.55 2.58	7.56 2.21 1.58 1.58	8.69 2.56 1.57 1.61 3.49	9.77 2.90 1.56 1.63 3.91	10.82 3.24 1.56 1.66 4.32	5/16 11.82 3.56 1.55 1.68 4.70
Axis Y-Y	S r x	0.77 0.64 0.60	0.84 0.82 0.69	1.10 0.81 0.74	0.96 1.00 0.81	1.15 1.00 0.84	1.33 0.99 0.87	1.50 0.99 0.89	1.67 0.98 0.92	1.84 0.98 0.94
Axis Z-Z	Θ I r	14° 12′ 0.96 0.52	19° 40′ 1.17 0.64	19° 26′ 1.52 0.64	25° 33′ 1.45 0.75	25° 32′ 1.71 0.75	25° 27′ 1.97 0.75	25° 22′ 2.22 0.74	25° 15′ 2.46 0.74	25° 07′ 2.70 0.74
	Cools	0.313 734-DD	734-Q	0.333 734-38	0.086 Rolls	0.149 Rolls	0.237 Rolls	0.354 Rolls	0.504	0.692 Rolls

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.

S=Section Modulus in in.³ r=Radius of Gyration in inches.

J=Torsion Factor in in.4

Z	1=Moment of Inertia in in.

Size	Legs	5 x 3½			,	5 x 5			
Si	t	3/4	3/8*	7/16*	1/2*	9/16	5/8*	11/16	3/4
	eight Area	7.025 5.806	4.36 3.60	5.05 4.18	5.74 4.74	6.42 5.30	7.08 5.85	7.74 6.40	8.39 6.93
	f_1 f_2	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8
Axis X-X	I S r y	13.619 4.161 1.532 1.727	8.37 2.30 1.52 1.36	9.65 2.67 1.52 1.38	10.89 3.03 1.52 1.41	12.08 3.39 1.51 1.43	13.22 3.73 1.50 1.46	14.33 4.07 1.50 1.48	15.39 4.41 1.49 1.51
Axis Y-Y	I S r	5.371 2.135 0.962 0.984	8.37 2.30 1.52 1.36	9.65 2.67 1.52 1.38	10.89 3.03 1.52 1.41	12.08 3.39 1.51 1.43	13.22 3.73 1.50 1.46	14.33 4.07 1.50 1.48	15.39 4.41 1.49 1.51
Axis Z-Z	Θ I r	24° 45′ 3.142 0.736	45° 0′ 3.44 0.98	45° 0′ 3.96 0.97	45° 0′ 4.47 0.97	45° 0′ 4.97 0.97	45° 0′ 5.47 0.97	45° 0′ 5.96 0.97	45° 0′ 6.44 0.96
	Yools	734-33	0.176 77-J	78-X	78-RR	0.593	78-QQ	1.08	1.41

e Se	Legs				бх	$3\frac{1}{2}$			*
Size	t	5/16*	3/8*	7/16	1/2*	9/16	5/8	11/16	3/4
Weight Area		3.49 2.88	4.15 3.43	4.81 3.98	5.46 4.51	6.10 5.04	6.73 5.56	7.35 6.07	7.95 6.57
	f_1 f_2	1/2 5/16							
Axis X-X	I S r y	10.64 2.64 1.92 1.97	12.60 3.15 1.92 2.00	14.50 3.65 1.91 2.03	16.34 4.14 1.90 2.06	18.11 4.62 1.90 2.08	19.83 5.09 1.89 2.11	21.49 5.56 1.88 2.13	23.09 6.01 1.87 2.16
Axis Y-Y	I S r	2.70 0.98 0.97 0.74	3.19 1.17 0.96 0.77	3.66 1.35 0.96 0.80	4.11 1.53 0.95 0.82	4.53 1.71 0.95 0.85	4.94 1.88 0.94 0.87	5.33 2.05 0.94 0.89	5.71 2.21 0.93 0.92
Axis Z-Z	O I r	18° 52′ 1.65 0.76	18° 51′ 1.95 0.75	18° 47′ 2.24 0.75	18° 42′ 2.52 0.75	18° 35′ 2.80 0.75	18° 28′ 3.07 0.74	18° 20′ 3.34 0.74	18° 11′ 3.61 0.74
	Tools	734-35	0.167 734-R	0.265	734-9	0.564	0.773 734-26	1.03	1.34

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3

r=Radius of Gyration in inches. J=Torsion Factor in in.4

Size	Legs				6 x 4			
Si	t	3/8*	7/6*	1/2*	9/16*	5/8*	11/16	3/4*1
7	Weight	4.36	5.05	5.74	6.42	7.08	7.74	8.39
	Area	3.60	4.18	4.74	5.30	5.85	6.40	6.93
	f_1 f_2	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	. 3/8	1/2 3/8	1/2 3/8
Axis X-X	I	13.02	15.02	16.95	18.82	20.63	22.39	24.08
	S	3.17	3.69	4.19	4.69	5.17	5.64	6.11
	r	1.90	1.90	1.89	1.88	1.88	1.87	1.86
	y	1.90	1.93	1.96	1.98	2.01	2.03	2.06
Axis Y-Y	I	4.63	5.34	6.01	6.65	7.27	7.86	8.43
	S	1.50	1.74	1.98	2.21	2.44	2.66	2.87
	r	1.13	1.13	1.13	1.12	1.11	1.11	1.10
	x	0.91	0.94	0.97	0.99	1.02	1.04	1.07
Axis Z-Z	Θ	23° 33′	23° 31′	23° 27′	23° 22′	23° 16′	23° 10′	23° 02′
	I	2.67	3.07	3.47	3.86	4.24	4.61	4.98
	r	0.86	0.86	0.86	0.85	0.85	0.85	0.85
J		0.176	0.279	0.417	0.593	0.814	1.08	1.41
Tools		Rolls	Rolls	Rolls	Rolls	Rolls		Rolls
		II.						

¹Nominal rolled size in this thickness is $6\frac{3}{6}$ " $x4\frac{3}{16}$ " $x4\frac{3}{4}$ ".

Size	Legs				6 x 6			
Si	t	3/8*	7/16*	1/2*	9/16	5/8*	11/16	3/4
	Weight	5.27	6.11	6.95	7.78	8.59	9.40	10.20
	Area	4.35	5.05	5.74	6.43	7.10	7.77	8.43
	f_1 f_2	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8	1/2 3/8
Axis X-X	I	14.85	17.15	19.38	21.54	23.64	25.67	27.64
	S	3.38	3.93	4.46	4.99	5.51	6.02	6.52
	r	1.85	1.84	1.84	1.83	1.82	1.82	1.81
	y	1.60	1.63	1.66	1.68	1.71	1.73	1.76
Axis Y-Y	I	14.85	17.15	19.38	21.54	23.64	25.67	27.64
	S	3.38	3.93	4.46	4.99	5.51	6.02	6.52
	r	1.85	1.84	1.84	1.83	1.82	1.82	1.81
	x	1.60	1.63	1.66	1.68	1.71	1.73	1.76
AxisZ-Z	Θ	45° 0′	45° 0′	45° 0′	45° 0′	45° 0′	45° 0′	45° 0′
	I	6.07	7.01	7.92	8.82	9.70	10.57	11.43
	r	1.18	1.18	1.17	1.17	1.17	1.17	1.16
_	Tools	78-Q	0.335 78-V	0.500 78-S	0.712	0.977 78-HH	1.30 78-W	1.69

^{*}See note on page 86.

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3 r=Radius of Gyration in inches.

J=Torsion Factor in in.4

Legs		8 x 6		_	8 x 8	
t t	5/8*	11/16*	3/4*	1/2*	3/4*	1*
Weight Area f1 f2 X I S S r y y	10.129 8.371 1/2 5/16 53.571 9.737 2.530 2.498 25.939	11.07 9.15 1/2 3/8 57.99 10.58 2.52 2.52 27.98	12.016 9.931 -1/2 3/8 62.603 11.474 2.511 2.544 30.150	9.41 7.77 58 38 47.74 8.16 2.48 2.15 47.74	13.87 11.46 5/8 3/8 68.86 11.99 2.45 2.26 68.86	18.18 15.02 58 38 88.11 15.60 2.42 2.35 88.11
Axis Y-Y	5.770 1.760 1.504	6.25 1.75 1.53	6.774 1.742 1.549	8.16 2.48 2.15	11.99 2.45 2.26	15.60 2.42 2.35
Axis Z-Z I I O	28° 52′ 13.891 1.288	28° 47′ 15.02 1.28	28° 43′ 16.236 1.279	45° 0′ 19.51 1.58	45° 0′ 28.20 1.57	45° 0′ 36.46 1.56
Tools	1.139 734-34	1.516 734-37	1.969 734-32	0.667 78-SS	2.25	5.33
	701534	754-57	134-32	66-01		

^{*}See note on page 86.

STANDARD I-BEAMS

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.⁴
S=Section Modulus in in.³

r=Radius of Gyration in inches.

J=Torsion Factor in in.4
Rivet given is maximum
allowable in flange.

g=Usual gage. u=Nominal grip.

Size	Depth		3			4		
Si	t	0.170*	0.251	0.349*	0.190*	0.253	0.326*	0.400
	Veight Area	2.02 1.67	2.31 1.91	2.67 2.21	2.72 2.25	3.03 2.50	3.38 2.79	3.74
b n f ₁ f ₂		2.330 0.170 0.27 0.10 134	2.411 0.170 0.27 0.10 13/4	2.509 0.170 0.27 0.10 13/4	2.660 0.190 0.29 0.11 23/4	2.723 0.190 0.29 0.11 2 ³ ⁄ ₄	2.796 0.190 0.29 0.11 2 ³ ⁄ ₄	2.870 0.190 0.29 0.11 2 ³ / ₄
Axis X-X	I S r	2.52 1.68 1.23	2.71 1.80 1.19	2.93 1.95 1.15	6.06 3.03 1.64	6.40 3.20 1.60	6.79 3.39 1.56	7.18 3.59 1.52
Axis Y-Y	I S r	0.46 0.39 0.52	0.51 0.42 0.52	0.59 0.47 0.52	0.76 0.57 0.58	0.82 0.61 0.57	0.90 0.65 0.57	0.99 0.69 0.57
Rivet Data	Diam. g u	3/8 3/4 5/16	3/8 3/4 5/16	3/8 3/4 5/16	1/2 3/4 5/16	1/2 3/4 5/16	1/2 3/4 5/16	1/2 3/4 5/16
	J	0.045	0.061	0.093	0.074	0.092	0.12	0.17
′	Tools	Rolls	851-J	Rolls	Rolls		Rolls	

Size	Depth		5			6		7		
Si	t	0.210*	0.347	0.494*	0.230*	0.343*	0.465	0.250	0.345*	0.450
	eight rea	3.53 2.92	4.36 3.60	5.25 4.34	4.43 3.66	5.25 4.34	6.13 5.07	5.42 4.48	6.23 5.15	7.12 5.88
	b n	3.000 0.210	3.137 0.210	3.284 0.210	3.330 0.230	$\frac{3.443}{0.230}$	3.565 0.230	3.660 0.250	3.755 0.250	3.860 0.250
	f ₁ f ₂ C	0.31 0.13 3½	0.31 0.13 $3\frac{1}{2}$	0.31 0.13 $3\frac{1}{2}$	0.33 0.14 $4\frac{1}{2}$	0.33 0.14 $4\frac{1}{2}$	0.33 0.14 $4\frac{1}{2}$	0.35 0.15 51/4	0.35 0.15 51/4	0.35 0.15 5 ¹ / ₄
Axis X-X	I S r	12.26 4.90 2.05	13.69 5.48 1.95	15.22 6.09 1.87	22.08 7.36 2.46	24.11 8.04 2.36	26.31 8.77 2.28	36.69 10.48 2.86	39.40 11.26 2.77	42.40 12.12 2.69
Axis Y-Y	I S r	1.21 0.81 0.64	1.41 0.90 0.63	1.66 1.01 0.62	1.82 1.09 0.71	2.04 1.19 0.69	2.31 1.30 0.68	2.63 1.44 0.77	2.88 1.53 0.75	3.17 1.64 0.73
Rivet Data	Diam. g u	1/2 7/8 3/8	1/2 7/8 3/8	1/2 7/8 3/8	5/8 1 3/8	5/8 1 3/8	5/8 1 3/8	5/8 11/8 3/8	5/8 11/8 3/8	5/8 1 ¹ /8 3/8
	J	0.12	0.19	0.33	0.17	0.24	0.38	0.25	0.32	0.46
T	ools	851-C	851-E	851-O	851-K	851-L	851-S		851-H	

^{*}See note on page 86.

STANDARD I-BEAMS

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.4

S=Section Modulus in in.³

r=Radius of Gyration in inches.

J=Torsion Factor in in.4 Rivet given is maximum allowable in flange.

g=Usual gage.

u=Nominal grip.

	1 Italias of Gyravion in months												
Size	Depth	*	8	3			9						
Si	t	0.270*	0.349	0.441	0.532*	0.290	0.397	0.561					
	eight Area	6.53 5.40	7.30 6.03	8.19 6.77	9.07 7.49	7.72 6.38	8.89 7.35	10.68 8.82					
b n f ₁ f ₂ c		4.000 0.270 0.37 0.16 61/4	4.079 0.270 0.37 0.16 61/4	4.171 0.270 0.37 0.16 61/4	4.262 0.270 0.37 0.16 61/4	4.330 0.290 0.39 0.17	4.437 0.290 0.39 0.17	4.601 0.290 0.39 0.17					
Axis X-X	I S r	57.55 14.39 3.27	60.92 15.23 3.18	64.85 16.21 3.10	68.73 17.18 3.03	85.90 19.09 3.67	92.40 20.53 3.55	102.36 22.75 3.41					
Axis Y-Y	I S r	3.73 1.86 0.83	3.99 1.95 0.81	4.31 2.07 0.80	4.66 2.19 0.79	5.09 2.35 0.89	5.54 2.50 0.87	6.30 2.74 0.85					
Rivet Data	Diam. g u	1 ³ / _{1/8} 7/ ₁₆	1 ³ / _{1/8} 7/ ₁₆	1 1/8 7/16	1 ³ / ₁ / ₈ 1 ¹ / ₂	1 ³ / ₄ 1 ¹ / ₄ 1 ¹ / ₂	$1\frac{\frac{3}{4}}{\frac{1}{4}}$ $\frac{1}{2}$	1½ 1½ ½					
Tools		0.34 851-G	0.42	0.56	0.75 851-M	0.46 851-N	0.61	0.99					

Depth by the second sec		10				12		
io t	0.310*	0.447	0.594	0.350*	0.428	0.460	0.565	0.687
Weight Area	9.01 7.45	10.67 8.82	12.45 10.29	11.31 9.35	12.44 10.28	14.49 11.97	16.01 13.23	17.78 14.70
b n f ₁ f ₂ c	4.660 0.310 0.41 0.19 8	4.797 0.310 0.41 0.19	4.944 0.310 0.41 0.19	5 000 0.350 0.45 0.21 93/4	5.078 0.350 0.45 0.21 93/4	5.250 0.460 0.56 0.28 91/4	5.355 0.460 0.56 0.28 91/4	5.477 0.460 0.56 0.28 91/4
Axis X-X S I	123.39 24.68 4.07	134.81 26.96 3.91	147.06 29.41 3.78	218.13 36.35 4.83	229.36 38.23 4.72	272.15 45.36 4.77	287.27 47.88 4.66	304.84 50.81 4.56
Axis Y-Y I O I	6.78 2.91 0.95	7.50 3.13 0.92	8.36 3.38 0.90	9.35 3.74 1.00	9.87 3.89 0.98	13.54 5.16 1.06	14.50 5.42 1.05	15.71 5.74 1.03
Rivet Data g n	13/8 1/2	13/8 1/2	1 ³ / ₄ 1 ³ / ₈ 1/ ₂	1½ 1½ 9/16	3/4 11/2 9/16	3/4 11/2 3/4	1½ 3/4	13/4 13/4 3/4
Tools	0.62 851-P	0.86 851-V	1.31 851-R	0.92 851-T	1.10	1.78 851-U	2.19 851-Q	2.85

^{*}See note on page 86.

STANDARD CHANNELS

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.⁴
S=Section Modulus in in.³
r=Radius of Gyration in inches.

J=Torsion Factor in in.⁴
Rivet given is maximum
allowable in flange.
g=Usual gage.

u=Nominal grip.

Size	Depth			3				4	
Si	t	0.170*	0.187	0.258*	0.320	0.356*	0.180*	0.247*	0.320*
	eight Area	1.46 1.21	1.52 1.26	1.78 1.47	2.00 1.66	2.13 1.76	1.90 1.57	2.22 1.84	2.58 2.13
b n f ₁ f ₂ c		1.410 0.170 0.27 0.10 134	1.427 0.170 0.27 0.10 13/4	1.498 0.170 0.27 0.10 13/4	1.560 0.170 0.27 0.10 134	1.596 0.170 0.27 0.10 13/4	1.580 0.180 0.28 0.11 23/4	1.647 0.180 0.28 0.11 23/4	1.720 0.180 0.28 0.11 2 ³ ⁄ ₄
Axis X-X	I S r	1.66 1.10 1.17	1.69 1.13 1.16	1.85 1.24 1.12	1.99 1.33 1.10	2.07 1.38 1.08	3.83 1.92 1.56	4.19 2.10 1.51	4.58 2.29 1.47
Axis Y-Y	I S r x	0.20 0.20 0.40 0.44	0.21 0.21 0.41 0.44	0.25 0.23 0.41 0.44	0.28 0.25 0.41 0.45	0.31 0.27 0.42 0.46	0.32 0.28 0.45 0.46	0.37 0.31 0.45 0.45	0.43 0.34 0.45 0.46
Rivet Data	Diam. g u	1/2 7/8 1/4	1/2 7/8 1/4	1/2 7/8 1/4	1/2 7/8 1/4	1/2 7/8 1/4	1/2 1 5/16	1/2 1 5/16	1 1/2 1 5/16
Tools		0.031 Rolls	0.033 852-Z	Rolls	0.066 852-AB	0.080 Rolls	Rolls	0.062 Rolls	0.090 Rolls

Size	Depth			5			(5	
S.	t	0.190*	0.225	0.325*	0.472*	0.200*	0.225*	0.314*	0.437*
	eight Area	2.38 1.97	2.59 2.14	3.20 2.64	4.09 3.38	2.91 2.40	3.09 2.55	3.73 3.09	4.63 3.82
	b n f ₁ f ₂ c	1.750 0.190 0.29 0.11 33/4	1.785 0.190 0.29 0.11 334	1.885 0.190 0.29 0.11 33/4	2.032 0.190 0.29 0.11 33/4	$ \begin{array}{c} 1.920 \\ 0.200 \\ 0.30 \\ 0.12 \\ 4\frac{1}{2} \end{array} $	$ \begin{array}{c} 1.945 \\ 0.200 \\ 0.30 \\ 0.12 \\ 4\frac{1}{2} \end{array} $	$\begin{array}{c} 2.034 \\ 0.200 \\ 0.30 \\ 0.12 \\ 4\frac{1}{2} \end{array}$	$ \begin{array}{c} 2.157 \\ 0.200 \\ 0.30 \\ 0.12 \\ 4\frac{1}{2} \end{array} $
Axis X-X	I S r	7.49 3.00 1.95	7.86 3.14 1.91	8.90 3.56 1.83	10.43 4.17 1.76	13.12 4.37 2.34	13.57 4.52 2.31	15.18 5.06 2.22	17.39 5.80 2.13
Axis Y-Y	I S r	0.48 0.38 0.49 0.48	0.52 0.40 0.49 0.48	0.63 0.45 0.49 0.48	0.81 0.53 0.49 0.51	0.69 0.49 0.54 0.51	0.73 0.51 0.54 0.51	0.87 0.56 0.53 0.50	1.05 0.64 0.52 0.51
Rivet Data	Diam. g u	1½ 1½ 5/16	1½ 1½ 5/16	1½ 1½ 5/16	1½ 1½ 5/16	5/8 1 ¹ /8 5/16	1 ⁵ / ₈ 1 ¹ / ₈ 5/ ₁₆	5/8 11/8 3/8	13/8 13/8 3/8
	<u>J</u>	0.064	0.074	0.12	0.25	0.088	0.097	0.14	0.26
	ools	Rolls		Rolls	Rolls	Rolls	Rolls	Rolls	Rolls

^{*}See note on page 86.

STANDARD CHANNELS

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.⁴
S=Section Modulus in in.³
r=Radius of Gyration in inches.

J=Torsion Factor in in.4
Rivet given is maximum
allowable in flange.
g=Usual gage.
u=Nominal grip.

e s	Depth			7					8		
Size	t	0.210	0.230*	0.314*	0.419*	0.524	0.250*	0.303*	0.395*	0.487*	0.520
Weight Area		3.47 2.87	3.64 3.01	4.36 3.60	5.24 4.33	6.13 5.07	4.38 3.62	4.89 4.04	5.78 4.78	6.67 5.51	6.99 5.78
b n f ₁ f ₂ c		2.090 0.210 0.31 0.13 5½	2.110 0.210 0.31 0.13 5½	2.194 0.210 0.31 0.13 5½	2.299 0.210 0.31 0.13 5½	2.404 0.210 0.31 0.13 5½	2.290 0.220 0.32 0.13 6½	2.343 0.220 0.32 0.13 61/4	2.435 0.220 0.32 0.13 61/4	2.527 0.220 0.32 0.13 6½	2.560 0.220 0.32 0.13 6 ¹ / ₄
Axis X-X	I S r	21.27 6.08 2.72	21.84 6.24 2.69	24.24 6.93 2.60	27.24 7.78 2.51	30.25 8.64 2.44	33.85 8.46 3.06	36.11 9.03 2.99	40.04 10.01 2.90	43.96 10.99 2.82	45.37 11.34 2.80
Axis Y-Y	I S r x	0.97 0.63 0.58 0.54	1.01 0.64 0.58 0.54	1.17 0.70 0.57 0.52	1.38 0.78 0.56 0.53	1.59 0.86 0.56 0.55	1.40 0.81 0.62 0.56	1.53 0.85 0.61 0.55	1.75 0.93 0.61 0.55	1.98 1.01 0.60 0.57	2.07 1.04 0.60 0.57
Rivet Data	Diam. g u	5/8 11/4 3/8	5/8 11/4 7/16	5/8 11/4 3/8	5/8 11/4 7/16	5/8 11/2 7/16	1 ³ / ₈ 1 ³ / ₈ 3/ ₈	13/4 13/8 3/8	1½ 1½ ½	1½ 1½ 1/2	1½ 1½ ½
T	ools	0.12	0.13 Rolls	0.18 Rolls	0.29 Rolls	0.47 852 - Q	0.17 Rolls	Rolls	0.32 Rolls	0.47 Rolls	0.55

Size	Depth		9)	-	10				
Si	t	0.230*	0.285	0.448*	0.612	0.240*	0.379	0.526*	0.673	
	eight Area	4.74 3.91	5.34 4.41	7.11 5.88	8.90 7.35	5.43 4.49	7.11 5.88	8.89 7.35	10.67 8.82	
$\begin{array}{c} b \\ n \\ f_1 \\ f_2 \\ c \end{array}$		2.430 0.230 0.33 0.14 71/4	2.485 0.230 0.33 0.14 $7\frac{1}{4}$	2.648 0.230 0.33 0.14 71/4	2.812 0.230 0.33 0.14 71/4	2.600 0.240 0.34 0.14 8½	2.739 0.240 0.34 0.14 8½	2.886 0.240 0.34 0.14 8½	3.033 0.240 0.34 0.14 8½	
Axis X-X	I S r	47.68 10.60 3.49	51.02 11.34 3.40	60.92 13.54 3.22	70.89 15.75 3.11	67.37 13.47 3.87	78.95 15.79 3.66	91.20 18.24 3.52	103.45 20.69 3.43	
Axis Y-Y	I S r x	1.75 0.96 0.67 0.60	1.93 1.01 0.66 0.59	2.42 1.17 0.64 0.58	2.94 1.34 0.63 0.61	2.28 1.16 0.71 0.63	2.81 1.32 0.69 0.61	3.36 1.48 0.68 0.62	3.95 1.66 0.67 0.65	
Rivet Data	Diam. g u	13/8 7/16	13/8 7/16	1½ 1½ ½	1½ ½ ½	1 ³ / ₂ 7/ ₁₆	3/4 11/2 7/16	13/4 1/2	1 ³ / ₄ 1 ³ / ₂	
Tools		0.20 852-R	0.24	0.47 852-T	0.92 852-U	0.25 852-P	0.41	0.75 852-AE	1.32	

^{*}See note on page 86.

STANDARD CHANNELS

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3

r = Radius of Gyration in inches.

J=Torsion Factor in in.4 Rivet given is maximum allowable in flange.

g=Usual gage.

u=Nominal grip.

0	Depth		1	2		1	15
Size	t	0.300*	0.387*	0.510*	0.632	0.400*	0.716*
	Weight Area	7.63 6.30	8.89 7.35	10.67 8.82	12.45 10.29	12.05 9.96	17.78 14.70
	b n f ₁ f ₂ c	2.960 0.280 0.38 0.17	3.047 0.280 0.38 0.17	3.170 0.280 0.38 0.17	3.292 0.280 0.38 0.17	3.400 0.400 0.500 0.240 123/8	3.716 0.400 0.500 0.240 123/8
Axis X-X	I S r	131.84 21.97 4.57	144.37 24.06 4.43	162.08 27.01 4.29	179.65 29.94 4.18	314.76 41.97 5.62	403.64 53.82 5.24
Axis Y-Y	I S r x	3.99 1.76 0.80 0.69	4.47 1.89 0.78 0.67	5.14 2.06 0.76 0.67	5.82 2.24 0.75 0.69	9.63 3.11 0.90 0.79	12.53 4.30 0.92 0.80
Rivet Data	Diam. g u	7/8 1 ³ / ₄ 1/ ₂	7/8 13/4 1/2	7/8 1/3/4 1/2	2 ^{7/8} 2 ^{5/8}	1 2 5/8	1 2 5/8
	J	0.46	0.61	0.95	1.48	1.17	2.89
	Tools	Rolls	Rolls	Rolls	852-O	852-AC	

^{*}See note on page 86.

WIDE-FLANGE BEAMS

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches.

S=Section Modulus in in.3 Weight in pounds per foot. r=Radius of Gyration in inches. J=Torsion Factor in in.4

I=Moment of Inertia in in.4

	Nominal	6 x 4	6 x 6	8 x 5	8 x 7	8 x 8	10 x 53/4
	Size	UAI					
	Actual Depth	6.00*	6.00*	8.00*	8.00*	8.00*	9.90*
	t	0.230	0.240	0.230	0.245	0.288	0.240
	Weight Area	4.28 3.54	5.56 4.59	6.07 5.02	8.56 7.08	11.04 9.12	7.51 6.21
	b n f ₁ c	4.00 0.279 0.250 47/8	6.00 0.269 0.250 47/8	5.25 0.308 0.320 6 ³ ⁄ ₄	6.50 0.398 0.400 6 ³ / ₈	8.00 0.433 0.400 6 ³ / ₈	5.75 0.340 0.312 8½
Axis X-X	I S r	21.75 7.25 2.48	30.17 10.06 2.56	56.73 14.18 3.36	84.15 21.04 3.45	109.66 27.41 3.47	106.74 21.56 4.15
Axis Y-Y	I S r	2.98 1.49 0.92	9.69 3.23 1.45	7.44 2.83 1.22	18.23 5.61 1.61	36.97 9.24 2.01	10.77 3.75 1.32
	J	0.082	0.106	0.135	0.312	0.497	0.196
	Tools	42100-D	42100-H	42100-E	42100-F	42100-G	42100-J

^{*}See note on page 86.

H-BEAMS

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches. I=Moment of Inertia in in.4

S=Section Modulus in in.³ r=Radius of Gyration in inches. I=Torsion Factor in in.⁴

Size	Depth	4	5		6			8	
Si	t	0.313*	0.313*	0.250*	0.313	0.438	0.313*	0.375	0.500*
	Veight	4.85	6.63	8.04	8.49	9.40	11.51	12.11	13.32
	Area	4.00	5.48	6.64	7.02	7.77	9.52	10.01	11.01
	b	4.000	5.000	5.938	6.000	6.125	7.938	8.000	8.125
	m	0.453	0.503	0.542	0.542	0.542	0.560	0.560	0.560
	n	0.290	0.330	0.360	0.360	0.360	0.358	0.358	0.358
	f ₁	0.313	0.313	0.313	0.313	0.313	0.313	0.313	0.313
	f ₂	0.145	0.165	0.180	0.180	0.180	0.179	0.179	0.179
Axis X-X	I	10.72	23.82	44.06	45.19	47.44	112.94	115.58	120.92
	S	5.36	9.53	14.69	15.06	15.81	28.23	28.90	30.23
	r	1.64	2.08	2.58	2.54	2.47	3.45	3.40	3.31
Axis Y-Y	I	3.56	7.82	14.18	14.65	15.65	34.15	35.01	36.79
	S	1.78	3.13	4.77	4.88	5.11	8.60	8.75	9.06
	r	0.94	1.19	1.46	1.44	1.42	1.89	1.87	1.83
	J	0.22	0.34	0.45	0.50	0.62	0.68	0.75	0.96
- '	Γools	3002-A	3002-B	3002-C		3002-F	3002-D		3002-E

^{*}See note on page 86.

TEES

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches. I=Moment of Inertia in in.⁴ S=Section Modulus in in.³ r=Radius of Gyration in inches.

	Flange	1			11/2			2	2	21/4		21/2	
Size	Stem	1	11/4	11/4	11/2	11/2	2	2*	2	21/4*	11/4	21/2*	3
	t	1/8	1/8	3/16	3/16	1/4	3/16	1/4	5/16	1/4	3/16	5/16	5/16
	Veight Area	0.323 0.267	0.451 0.373	0.633 0.523		0.895 0.740		1.29	1.55	1.47 1.21	1.03 0.85	1.97 1.62	2.17 1.80
	m n f	5/32 5/32 1/8	5/32 5/32 1/8	7/32 7/82 1/8	7/32 7/32 3/16	9/32 9/82 3/16	1/4 1/4 3/16	5/16 5/16 1/4	3/8 3/8 1/4	5/16 5/16 1/4	5/16 9/32 3/16	3/8 3/8 1/4	3/8 3/8 1/4
Axis X-X	I S r y	0.023 0.032 0.293 0.292	0.049 0.053 0.363 0.326		0.443	$0.137 \\ 0.438$	0.195 0.606	0.37 0.26 0.59 0.58	0.43 0.31 0.58 0.61	0.53 0.33 0.66 0.64	0.08 0.09 0.31 0.30	0.89 0.50 0.74 0.73	0.91
Axis Y-Y	I S r	0.011 0.023 0.206	0.038 0.051 0.319	0.075	0.075	0.100	0.080	0.18	0.23 0.23 0.42	0.26 0.23 0.46	0.28 0.22 0.57	0.44 0.35 0.52	0.35
	rools	853-F	853-B	853-N	853-K	853-G	853-W	853-C	853-X	853-J	853-A	853-M	853-P

	Flange		3					4				41/2	5
Size	Stem	21/2	3	3*	2	21/2	3	4*	41/2	- 5	5	3	3
	t	5/16	5/16	3/8	3/8	5/16	5/16	3/8	3/8	3/8	1/2	5/16	3/8
	Veight Area	2.19	2.40 1.98	2.79 2.31	2.78 2.30	2.63 2.17	2.84 2.34	3.85 3.18	4.10 3.39	4.34 3.59	5.56 4.60	3.04 2.52	4.14 3.42
	m n f	3/8 3/8 5/16	3/8 3/8 5/16	7/16 7/16 5/16	7/16 7/16 1/4	3/8 3/8 3/8	3/8 3/8 3/8	7/16 7/16 1/2	7/6 7/6 1/2	7/16 7/16 1/2	9/16 9/16 1/2	3/8 3/8 3/8	5/8 7/16 3/8
Axis X-X	I S r y	0.94 0.51 0.72 0.68	1.58 0.74 0.89 0.85	1.83 0.86 0.89 0.88	0.60 0.40 0.51 0.48	1.01 0.53 0.68 0.60	1.72 0.77 0.86 0.75	4.56 1.58 1.20 1.11	6.37 1.98 1.37 1.29	8.56 2.43 1.54 1.48	10.84 3.14 1.54 1.54	1.78 0.78 0.84 0.71	2.37 1.06 0.83 0.76
Axis Y-Y	I S r	0.75 0.50 0.65	0.75 0.50 0.62	0.90 0.60 0.63	2.10 1.05 0.96	1.77 0.88 0.90	1.77 0.89 0.87	2.12 1.06 0.82	2.13 1.06 0.79	2.13 1.06 0.77	2.83 1.42 0.79	2.52 1.12 1.00	
	Tools	853-H		853-D	853-L		853-R	853-E	-	853-S	853-T	853-O	853-Q

^{*}See note on page 86.

SPECIAL TEES

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3 r=Radius of Gyration in inches.

J=Torsion Factor in in.4

=	Flange			6			8
Size	Stem	3	4	4	7.50	7.50	6
Si	ts tf	0.312 0.312	0.375 0.313	0.375 0.450	0.50 0.75	1.125 0.75	0.500 0.860
	Weight Area	3.33 2.75	4.00 3.30	4.93 4.07	9.73 8.04	14.84 12.26	11.56 9.56
	f	0.312	0.313	0.312	5/8	5/8	0.500
Axis X-X	I S r y	1.83 0.77 0.81 0.62	4.78 1.59 1.20 1.00	5.02 1.61 1.11 0.88	40.34 7.28 2.24 1.96	69.34 14.46 2.38 2.71	22.93 4.82 1.55 1.24
Axis Y-Y	I S r	5.63 1.88 1.43	5.65 1.88 1.31	8.12 2.71 1.41	13.60 4.53 1.30	14.38 4.80 1.08	36.76 9.19 1.96
	J	0.091	0.132	0.253	1.16	4.40	1.95
	Tools	37526	37524	37525	28084	28232	37523

ZEES

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

S=Section Modulus in in.3 r=Radius of Gyration in inches.

J=Torsion Factor in in.4

I=Moment of Inertia in in.4

Size	Nominal depth	13/4	2	23/8			3			
01	t	3/16	3/16	3/16	1/4*	5/16	3/8*	1/16	1/2	9/16
7	Weight Area	1.116 0.922	0.946 0.782	1.031 0.852	2.40 1.98	3.02 2.50	3.48 2.87	4.09 3.38	4.48 3.70	5.08 4.20
	Actual depth	13/4	2	23/8	3	31/16	3	31/16	3	31/16
	b	13/4	11/4	11/4	211/16	23/4	211/16	23/4	211/16	23/4
	f_1 f_2	13/4 3/16 1/8	1½ 3/16 1/8	11/4 3/16 1/8	5/16 1/4	$2\frac{3}{4}$ $\frac{5}{16}$ $\frac{1}{4}$	5/16 1/4	23/4 5/16 1/4	5/16 1/4	23/4 5/16 1/4
×is.	I S	0.446	0.458	0.694	2.89	3.65	3.86	4.57	4.60	5.26
Axis X-X	r	0.510 0.695	0.458 0.765	0.584 0.902	1.92	2.39	2.57 1.16	2.99 1.16	3.06 1.11	3.44 1.12
sz	I S	0.551	0.186	0.186	2.64	3.47	3.76	4.59	4.71	5.53
Axis Y-Y		0.333	0.161 0.488	0.161	1.03	1.34 1.18	1.50 1.14	1.81 1.17	1.93	2.24
-	r			0.467						
Axis Z-Z	Θ I	48° 49′ 0.101	29° 12′ 0.063	23° 12′ 0.082	43° 24′ 0.59	44° 05′ 0.76	44° 31′ 0.82	45° 04′ 0.99	45° 27′ 1.03	45° 55′ 1.22
AN	r	0.101	0.003	0.082	0.59	0.76	0.53	0.54	0.53	0.54
	J	0.012	0.010	0.011	0.044	0.087	0.15	0.24	0.35	0.51
	Tools	771-D	771-C	7088	771-B		771-A			

Size	Nominal depth			4			
01	t	1/4*1	5/16*	3/8*2	7/16	1/2	9/16
	Veight Area	2.93 2.42	3.68 3.04	4.44 3.67	4.92 4.06	5.65 4.67	6.40 5.29
	Actual depth	4	41/16	41/8	4	41/16	41/8
	b f ₁ f ₂	3 ¹ / ₁₆ ⁵ / ₁₆ ¹ / ₄	$3\frac{1}{8}$ $5\frac{1}{14}$	3 ³ / ₁₆ 5/ ₁₆ 1/ ₄	3 ¹ / ₁₆ ⁵ / ₁₆ ¹ / ₄	31/8 5/16 1/4	3 ³ / ₁₆ 5/ ₁₆ 1/ ₄
Axis X-X	I S r	6.32 3.16 1.62	7.97 3.92 1.62	9.66 4.68 1.62	9.68 4.84 1.54	11.20 5.51 1.55	12.76 6.19 1.55
Axis Y-Y	I S r	4.01 1.36 1.29	5.24 1.76 1.31	6.54 2.18 1.33	6.53 2.30 1.27	7.75 2.70 1.29	9.05 3.11 1.31
Axis Z-Z	Θ Ι r	36° 47′ 1.08 0.67	37° 24′ 1.39 0.68	37° 55′ 1.72 0.68	37° 50′ 1.74 0.66	38° 16′ 2.06 0.66	38° 41′ 2.41 0.68
	J	0.053	0.10	0.18	0.28	0.43	0.62
	Tools	Rolls	Rolls	Rolls	771-G		771-F

^{*}See note on page 86. ¹Nominal rolled size in this web thickness is: depth $4\frac{1}{2}$, flange width $3\frac{3}{2}$. ²Nominal rolled size in this web thickness is: depth $4\frac{5}{2}$, flange width $3\frac{3}{2}$.

ZEES

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3

r=Radius of Gyration in inches.

J=Torsion Factor in in.4

Size	Nominal depth			5			
Si	t	5/16	3/8*	⁷ /16	1/2*	9/16	5/8
	Veight Area	4.13 3.41	4.98 4.12	5.84 4.83	6.37 5.27	7.21 5.96	8.05 6.66
Acti	al depth b f ₁ f ₂	5 3 ¹ / ₄ ⁵ / ₁₆ 1/ ₄	5½6 35½6 5½6 14	5½ 33/8 5/16 1/4	5 31/4 ⁵ /16 1/4	5 ¹ / ₁₆ 3 ⁵ / ₁₆ 5/ ₁₆	5½ 3½ 5½ 14
Axis X-X	I S r	13.41 5.36 1.98	16.23 6.41 1.99	19.12 7.46 1.99	19.23 7.69 1.91	21.87 8.64 1.92	24.56 9.59 1.92
Axis Y-Y	I S r	5.94 1.92 1.32	7.40 2.37 1.34	8.95 2.84 1.36	8.82 2.94 1.29	10.28 3.39 1.31	11.82 3.86 1.33
Axis Z-Z	Θ Ι r	30° 40′ 1.89 0.74	31° 08′ 2.33 0.75	31° 32′ 2.81 0.76	31° 09′ 2.82 0.73	31° 32′ 3.29 0.74	31° 53′ 3.79 0.75
Tools		0.12 771-K	0.21 771-E	0.33	0.48 771-H	0.69	0.97

Size	Nominal depth			6			
	t	3/8	7/16	1/2	9/16	5/8	11/16
	/eight Area	5.58 4.61	6.54 5.40	7.51 6.20	8.10 6.69	9.05 7.48	10.00 8.27
Actı	ial depth b f ₁ f ₂	6 3½ ⁵ 16 14	6½6 39/16 5/16 1/4	6½ 35/8 5/16 1/4	6 3½ ⁵ /16 1/4	6½6 3½6 516 14	6 ¹ / ₈ 3 ⁵ / ₈ ⁵ / ₁₆ 1/ ₄
Axis X-X	I S r	25.40 8.47 2.35	29.88 9.86 2.35	34.44 11.24 2.36	34.71 11.57 2.28	38.93 12.84 2.28	43.24 14.12 2.29
Axis Y-Y	I S r	8.83 2.67 1.38	10.66 3.19 1.40	12.58 3.73 1.42	12.32 3.83 1.36	14.15 4.35 1.38	16.07 4.90 1.39
Axis Z-Z	Θ Ι r	26° 55′ 3.08 0.82	27° 17′ 3.70 0.83	27° 37′ 4.36 0.84	27° 08′ 4.36 0.81	27° 26′ 5.01 0.82	27° 44′ 5.70 0.83
	J Tools	0.23	0.37	0.56	0.77	1.07	1.45 771-L

^{*}See note on page 86.

BULB ANGLE

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.
I=Moment of Inertia in in.4
S=Section Modulus in in.3

r=Radius of Gyration in inches.

0	Legs	4 x 3½	5 x 2½	5 x 3½	6 x 3½
Size	t ₁	3/8	1/4	3/8	0.28
	t ₂	3/8	1/4	3/8	0.31
	Weight	4.32	2.58	4.77	3.80
	Area	3.57	2.13	3.94	3.14
	$egin{array}{c} a \\ b \\ c \\ d \\ e \\ f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ \end{array}$	3.50 4.00 1.50 5/16 11/4 1/8 3/8 1/4 3/8 0 3/8	2.50 5.00 0.875 0.79 0.20 0.20 0.21 0.42	3.50 5.00 1.50 1.50 5.66 1.44 1.88 3.88 1.44 3.66 0.38	3.51 6.01 1.06 0 0.97 0 0.24 0.24 0 0.27 0.54
Axis A-A	I	3.02	0.82	3.21	2.70
	S	1.18	0.41	1.22	0.98
	r	0.92	0.62	0.90	0.93
	y	0.93	0.50	0.86	0.74
AXIS I-I	I	7.95	7.10	13.82	15.44
	S	3.58	2.49	5.05	4.33
	r	1.49	1.82	1.87	2.22
	x	1.78	2.15	2.26	2.44
Axis Z-Z	⊖	20° 13′	9° 35′	13° 53′	13° 21′
	I	2.24	0.64	2.52	1.94
	r	0.79	0.55	0.80	0.79
	Tools	5022	32166	37221	38669

SPECIAL I-BEAMS

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3

r=Radius of Gyration in inches. J=Torsion Factor in in.4

Size	Depth	2	2	$2\frac{1}{2}$
Si	t	0.094	0.188	0.250
	Weight	0.804	1.473	1.850
	Area	0.664	1.217	1.529
	b	2.00	2.00	2.00
	Slope	0	1:11.4	1:7
	n	0.125	0.188	0.188
	f ₁	0.125	0.188	0.250
	f ₂	0.125	0.094	0.125
	c	1½	1½	13/8
Axis X-X	I	0.481	0.782	1.453
	S	0.481	0.782	1.162
	r	0.85	0.80	0.97
Axis Y-Y	I	0.154	0.275	0.2 <mark>92</mark>
	S	0.154	0.275	0.292
	r	0.48	0.47	0.44
	J	0.004	0.025	0.091
	Tools	8606	10096	4465

SPECIAL CHANNELS

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot.

Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3

r=Radius of Gyration in inches.

J=Torsion Factor in in.4

o Dept	h 2	21/2	3	3	4		5	
Dept	0.170	0.250	0.250*	0.375*	0.318*	0.188	0.500	0.438*
Weight Area b Slope n	1.253 1.036 1.41 1:6.0 0.170 0.270 0.100	1.277 1.055 1.250 1:6.0 0.125 0.250 0.125	2.30 1.90 2.000 1:12.1 0.250 0.250	2.78 2.30 2.000 0 0.375 0.188 0.375	3.41 2.82 2.500 1:34.9 0.313 0.375 0.125	3.19 2.64 2.875 1:10.7 0.188 0.250 0.094	4.88 4.03 2.500 0 0.375 0.375 0.250	5.99 4.95 2.875 1:9.8 0.438 0.250 0.094
f ₂	3/4	13/8	13/4	13/4	23/8	31/2	31/2	3
Axis X-X S I	0.621 0.621 0.775	0.879 0.703 0.913	2.61 1.74 1.17	2.89 1.92 1.12	6.84 3.42 1.56	11.20 4.48 2.06	13.37 5.35 1.82	18.13 7.25 1.91
Axis Y-Y X	0.172 0.188 0.407 0.494	0.111 0.122 0.324 0.344	0.68 0.52 0.60 0.68	0.78 0.59 0.58 0.67	1.62 0.95 0.76 0.81	1.91 0.96 0.85 0.89	1.94 1.08 0.69 0.71	3.57 1.87 0.85 0.96
J	0.029	0.025	0.068	0.12	0.50	0.18	0.30	0.55
Tools	852-H	7400	5287	2229	4885	1351	1665	1052

	Depth	6	i	8			10	
Size	t	0.500*	0.375*	0.380*	0.425*	0.375*	0.438*	0.500*
	Veight Area b Slope	5.94 4.91 3.000 0 0.375	6.10 5.04 3.500 1:49.6 0.412	6.78 5.60 3.000 1:14.43 0.380 0.550	8.09 6.68 3.500 1:28.5 0.471 0.525	8.84 7.30 3.500 1:9 0.375 0.625	9.59 7.93 3.563 1:9 0.375 0.625	10.34 8.55 3.625 1:9 0.375 0.625
	f ₁ f ₂ C	$0.375 \\ 0.250 \\ 4\frac{1}{2}$	$0.480 \\ 0.420 \\ 4$	0.220	0.375 $5\frac{3}{4}$	0.023 0.188 $7\frac{1}{2}$	0.188 $7\frac{1}{2}$	0.188 $7\frac{1}{2}$
Axis X-X	I S r	24.05 8.02 2.21	28.22 9.41 2.37	54.15 13.54 3.11	63.76 15.94 3.09	109.62 21.92 3.88	114.87 22.97 3.81	120.03 24.01 3.75
Axis Y-Y	I S r	3.52 1.61 0.85 0.81	5.58 2.31 1.05 1.09	4.10 1.88 0.86 0.81	7.06 2.84 1.03 1.01	7.19 2.80 0.99 0.93	7.73 2.93 0.99 0.92	8.25 3.04 0.98 0.91
	J Tools	0.36 1666	0.32 2658	0.383 11866	0.56 10005	0.66 Rolls	0.78 Rolls	0.94 Rolls

^{*}See note on page 86.

11

WING CHANNELS

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. S=Section Modulus in in.3 Area in square inches.

I=Moment of Inertia in in.4

r=Radius of Gyration in inches.

Weight Area	0.537 0.444	0.794 0.656	0.925 0.765	1.173	1.30	1.15	5	71/2	83/4
Area	0.444				1.30	1 15	4 00		
b	21/			0.969	1.08	0.95	1.90 1.57	4.97	5.02 4.15
$\begin{array}{c} c \\ C \\ Depth, d \\ e \\ \Gamma hickness, t_1 \\ \Gamma hickness, t_2 \\ f_1 \\ f_2 \\ f_3 \end{array}$	21/6 23/32 34/ 21/4 3/32 3/32 3/32 3/32 0	134 11/8 34 2 1/8 1/8 1/8 1/8	134 118 118 118 2 18 18 18 18 18	15/66 111/22 2 11/2 5/42 1/8 0	2 138 2 214 18 18 18 18 0	234 11/8 11/2 3 1/8 1/8 1/8 1/8 1/8 0	15/8 111/16 17/8 2 3/16 3/16 1/8 144 1/8	2½8 211/66 33/8 23/4 51/6 1/8 1/8	4 ¹ / ₈ 2 ⁵ / ₁₆ 3 ¹ / ₈ 4 ⁵ / ₈ 5/ ₁₆ 1/ ₄ 1/ ₈ 1/ ₈
X-X six X-X I S r y	0.038 0.116 0.293 0.420	0.054 0.139 0.288 0.359	0.148 0.251 0.440 0.533	0.603 0.517 0.789 0.833	0.668 0.634 0.788 0.946	0.339 0.485 0.597 0.803	0.778 0.709 0.704 0.778	6.28 3.15 1.24 1.38	6.40 4.10 1.24 1.56
Axis Y-Y	0.484 0.276 1.044	0.804 0.402 1.107	0.946 0.473 1.112	0.980 0.490 1.006	1.69 0.71 1.25	1.97 0.79 1.44	2.53 1.01 1.27	13.66 3.64 1.82	24.23 5.54 2.42
Tools	9004	7838	4277	8604	9498	4619	5899	5023	

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

,h, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	%16	5/8	3/4	7/8	, 1
1	Wt. Area I x-x I y-y	0.151 0.125 0.010 0.000	0.188 0.016	0.303 0.250 0.021 0.001	0.378 0.313 0.026 0.003	0.375	0.529 0.438 0.037 0.007	0.500 0.042	0.563 0.047	0.756 0.625 0.052 0.020	0.750 0.063	1.059 0.875 0.073 0.056	1.210 1.000 0.083 0.083
11/8	Wt. Area I x-x I y-y		$0.211 \\ 0.022$	0.340 0.281 0.030 0.001	0.352	$0.422 \\ 0.045$	$0.492 \\ 0.052$	0.563 0.059	0.766 0.633 0.067 0.017	0.851 0.703 0.074 0.023		1.191 0.984 0.104 0.063	1.361 1.125 0.119 0.094
11/4	Wt. Area I x-x I y-y	0.020	0.234 0.031			0.567 0.469 0.061 0.005	0.662 0.547 0.071 0.009	0.625 0.081	0.703 0.092	0.945 0.781 0.102 0.025	1.134 0.938 0.122 0.044	1.094 0.142	1.513 1.250 0.163 0.104
13/8	Wt. Area I x-x I y-y		0.258 0.041		$0.430 \\ 0.068$	0.516 0.081	0.602 0.095	0.688 0.108		1.040 0.859 0.135 0.028		1.456 1.203 0.190 0.077	1.664 1.375 0.217 0.115
11/2	Wt. Area I x-x I y-y	0.035	0.281 0.053	0.375	0.469 0.088		0.794 0.656 0.123 0.010	0.750 0.141	0.844 0.158	1.134 0.938 0.176 0.031	1.125	1.588 1.313 0.246 0.084	
15/8	Wt. Area I x-x I y-y		0.305 0.067		0.508 0.112	0.609 0.134	0.860 0.711 0.156 0.011	0.813 0.179	1.106 0.914 0.201 0.024	1.229 1.016 0.224 0.033	1.219 0.268	1.720 1.422 0.313 0.091	1.966 1.625 0.358 0.135
13/4	Wt. Area I x-x I y-y		0.328 0.084		0.547	0.656 0.168	0.766 0.195	0.875 0.223	0.984 0.251	1.323 1.094 0.279 0.036	1.313 0.335	1.853 1.531 0.391 0.098	2.118 1.750 0.447 0.146
17/8	Wt. Area I x-x I y-y	0.069	0.352 0.103	0.469 0.137	0.586 0.172	0.703 0.206	0.820 0.240	$0.938 \\ 0.275$	1.055 0.309	1.172 0.343	1.406 0.412	1.985 1.641 0.481 0.105	1.875 0.549

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

b, d		_					Thickr	ness, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
2	Wt. Area I x-x I y-y	0.303 0.250 0.083 0.000	$0.375 \\ 0.125$		0.756 0.625 0.208 0.005	0.908 0.750 0.250 0.009	1.059 0.875 0.292 0.014	1.210 1.000 0.333 0.021	1.125 0.375	1.513 1.250 0.417 0.041	1.815 1.500 0.500 0.070	2.118 1.750 0.583 0.112	2.420 2.000 0.667 0.167
21/8	Wt. Area I x-x I y-y	0.321 0.266 0.100 0.000	0.150	0.531 0.200	$0.664 \\ 0.250$	0.964 0.797 0.300 0.009	0.930 0.350	1.286 1.063 0.400 0.022	$1.195 \\ 0.450$	1.328	0.600	2.250 1.859 0.700 0.119	2.571 2.125 0.800 0.177
21/4	Wt. Area I x-x I y-y		0.422	$0.563 \\ 0.237$	0.851 0.703 0.297 0.006	0.356	1.191 0.984 0.415 0.016	0.475	$\frac{1.266}{0.534}$	0.593	1.688 0.712	2.382 1.969 0.831 0.126	2.723 2.250 0.949 0.187
23/8	Wt. Area I x-x I y-y	0.140	0.445	0.594 0.279	$0.742 \\ 0.349$	$0.891 \\ 0.419$	1.039	1.188 0.558	1.336 0.628	1.484 0.698	1.781 0.837		1.116
21/2	Wt. Area I x-x I y-y		0.469 0.244	0.625 0.326	0.945 0.781 0.407 0.006	$0.938 \\ 0.488$	1.094 0.570	1.250 0.651	1.406 0.732	1.563 0.814	1.875 0.977	1.139	1.302
25/8	Wt. Area I x-x I y-y	0.188	0.492 0.283	0.656 0.377		0.984 0.565	1.148 0.660	1.313	1.477 0.848		1.969 1.131	2.779 2.297 1.319 0.147	2.625
23/4	Wt. Area I x-x I y-y	0.344	0.325	0.688 0.433	0.859 0.542	1.031 0.650	1.203 0.758	1.375 0.867	1.547 0.975	1.719 1.083	2.063 1.300	2.406	2.750 1.733
27/8	Wt. Area I x-x I y-y	0.248	0.539	0.719	0.898	1.078 0.743	1.258 0.866	1.438	1.617	1.797	2.156 1.485	2.516	2.875 1.980

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches.

Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thickr	iess, t	4				
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
3	Wt. Area I x-x I y-y	0.454 0.375 0.281 0.000	0.681 0.563 0.422 0.002	0.563	1.134 0.938 0.703 0.008	0.844	0.984		1.688 1.266		2.723 2.250 1.688 0.105	3.176 2.625 1.969 0.167	3.630 3.000 2.250 0.250
31/8	Wt. Area I x-x I y-y	0.473 0.391 0.318 0.001	$0.586 \\ 0.477$	0.781 0.636	0.977	1.418 1.172 0.954 0.014	1.367	1.272	1.431	1.590	2.344 1.907	3.309 2.734 2.225 0.174	3.781 3.125 2.543 0.260
31/4		0.492 0.406 0.358 0.001	0.609 0.536	0.813	1.016	1.073	$\frac{1.422}{1.252}$	1.625 1.430	2.212 1.828 1.609 0.048	2.458 2.031 1.788 0.066	2.438 2.146	2.503	3.933 3.250 2.861 0.271
33/8		0.422 0.401	0.633		1.055 1.001	1.266 1.201	1.477	1.688 1.602	1.898 1.802	2.552 2.109 2.002 0.069	2.531 2.403	2.953 2.803	3.375 3.204
31/2	Wt. Area I x-x I y-y		0.656	1.059 0.875 0.893 0.005	1.094 1.117	1.313	1.531 1.563	1.750	2.382 1.969 2.010 0.052	2.188 2.233	2.625 2.680	3.063 3.126	3.500 3.573
35/8	I x-x	0.548 0.453 0.496 0.001	0.680	0.906	1.133	1.359	1.586	1.813	2.467 2.039 2.233 0.054	2.266	2.719	3.473	3.625 3.970
33/4	Ix-x	0.567 0.469 0.549 0.001	0.703	0.938	1.172	1.406	1.641	1.875	2.552 2.109 2.472 0.056	2.344	3.296	3.281	3.750 4.395
37/8	Wt. Area I x-x I y-y	0.484	0.879 0.727 0.909 0.002	0.969	1.211	1.758 1.453 1.818 0.017	1.695	1.938	2.637 2.180 2.728 0.057	2.422 3.031	2.906	3.391	3.875

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

р, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
4	Wt. Area I x-x I y-y	0.667	0.908 0.750 1.000 0.002	1.000 1.333	1.513 1.250 1.667 0.010	2.000	1.750 2.333	2.000 2.667	2.250 3.000	3.025 2.500 3.333 0.081	3.000 4.000	4.235 3.500 4.667 0.223	
41/8	Wt. Area I x-x I y-y	0.731	0.773 1.097	1.031	1.560 1.289 1.828 0.010	1.547 2.193	1.805 2.559	2.063 2.925	2.320 3.290	2.578 3.656	3.094	4.367 3.609 5.118 0.230	4.991 4.125 5.849 0.344
41/4	Wt. Area I x-x I y-y	0.643 0.531 0.800 0.001	0.797 1.200	1.063	1.328 1.999	1.594 2.399	1.859 2.799	2.125 3.199	2.391 3.598	2.656 3.998	3.188	4.500 3.719 5.598 0.237	5.143 4.250 6.397 0.354
43/8	Wt. Area I x-x I y-y	0.662 0.547 0.872 0.001	0.993 0.820 1.308 0.002	1.094 1.745	1.367 2.181	$\frac{1.641}{2.617}$	1.914 3.053	3.489	2.461	2.734 4.362	3.281 5.234	4.632 3.828 6.106 0.244	5.294 4.375 6.978 0.365
41/2	Wt. Area I x-x I y-y		1.424	1.125 1.898	1.702 1.406 2.373 0.011	1.688 2.848	1.969 3.322	2.250 3.797	2.531 4.272	2.813 4.746	3.375 5.695	4.764 3.938 6.645 0.251	
45/8	Wt. Area I x-x I y-y	0.578 1.031	1.546	1.156 2.061		1.734 3.092	2.023 3.607	4.122	2.602	2.891 5.153	3.469	4.897 4.047 7.214 0.258	8.244
43/4	Wt. Area I x-x I y-y		0.891 1.675	1.188 2.233	1.484	3.349	2.078 3.907	2.375	2.672 5.024	2.969 5.582	3.563 6.698	5.029 4.156 7.815 0.265	4.750 8.931
47/8		0.737 0.609 1.207 0.001	0.914 1.810	1.219 2.414	1.843 1.523 3.017 0.012	1.828 3.621	2.133 4.224	2.438	2.742 5.431	3.047 6.034	3.656 7.241		4.875 9.655

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thickr	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	. 1
5	Wt. Area I x-x I y-y	0.756 0.625 1.302 0.001	1.134 0.938 1.953 0.003	1.513 1.250 2.604 0.007		2.269 1.875 3.906 0.022	4.557	3.025 2.500 5.208 0.052	3.403 2.813 5.859 0.074	3.781 3.125 6.510 0.102	3.750 7.813		
51/8		0.775 0.641 1.402 0.001	1.163 0.961 2.103 0.003		1.602 3.506	2.325 1.922 4.207 0.023	2.242 4.908			3.203 7.011	3.844	4.484 9.815	
51/4	Wt. Area I x-x I y-y		1.191 0.984 2.261 0.003	3.015	1.641 3.768	$\frac{1.969}{4.522}$	2.297 5.276	2.625 6.029	2.953 6.783	3.281	3.938 9.044	4.594 10.55	5.250
53/8		0.813 0.672 1.618 0.001	1.008 2.426	1.344	4.044	2.016 4.853	2.845 2.352 5.662 0.038	2.688 6.470	3.023	3.359 8.088	4.031 9.705	4.703 11.32	5.375
51/2	I x-x	0.832 0.688 1.733 0.001	1.031 2.600	1.664 1.375 3.466 0.007	1.719 4.333	2.063	2.406 6.066	3.328 2.750 6.932 0.057	3.094 7.799	3.438 8.665	4.125 10.40	4.813 12.13	6.655 5.500 13.86 0.458
55/8	Wt. Area I x-x I y-y		1.055 2.781	1.406 3.708	1.758 4.635	2.552 2.109 5.562 0.025	2.461 6.489	7.416	3.164 8.343	3.516 9.270	4.219 11.12	4.922 12.98	6.806 5.625 14.83 0.469
53/4	Wt. Area I x-x I y-y		1.078 2.971	1.438 3.961	1.797 4.951	2.156	6.931	2.875 7.921	3.234 8.911	3.594 9.902	5.218 4.313 211.88 0.202	5.031	15.84
57/8	Wt. Area I x-x I y-y		1.102	1.469	1.836	6.337	2.570	2.938	9.505	3.672	12.67	14.79	5.875

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches.

Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1 /
б	Wt. Area I x-x I y-y	2.250	1.125 3.375	1.815 1.500 4.500 0.008	1.875 5.625	2.723 2.250 6.750 0.026	2.625 7.875	3.000 9.000	4.084 3.375 10.13 0.089	3.750 11.25	13.50	5.250 15.75	6.000 18.00
61/8	Wt. Area I x-x I y-y	2.394	1.148 3.590	1.531 4.787	1.914 5.984	2.297 7.181	2.680 8.378	3.063 9.574	4.169 3.445 10.77 0.091	3.828 11.97	4.594 14.36	16.76	6.125 19.15
61/4	Wt. Area I x-x I y-y		1.172 3.815	1.563 5.086	6.358		2.734 8.901	10.17	3.516	3.906 12.72	4.688 15.26	5.469 17.80	20.35
63/8	Wt. Area I x-x I y-y		1.195 4.048		1.992 6.747	2.391 8.096	2.789 9.446	3.188 10.80	3.586 12.14	3.984 13.49	4.781 16.19	5.578 18.89	6.375 21.59
61/2	Wt. Area I x-x I y-y		1.219 4.291	1.625 5.721	2.031	2.438 8.582	2.844 10.01	3.250 11.44	4.424 3.656 12.87 0.096	4.063 14.30	17.16	5.688 20.02	6.500 22.89
65/8	Wt. Area I x-x I y-y		1.242 4.543	1.656 6.058	2.070	2.484 9.087	2.898 10.60	12.12	3.727 13.63	4.141 15.14	4.969 18.17	5.797 21.20	6.625
63/4	Wt. Area I x-x I y-y		1.266 4.805	6.407	2.109	2.531 9.611	2.953 11.21	12.81	3.797	4.219 16.02	19.22	5.906 22.43	6.750 25.63
67/8	Wt. Area I x-x I y-y		1.289 5.077	1.719 6.770	2.148 8.462	10.15	3.008 11.85	3.438 13.54		4.297 16.92	5.156	6.016 23.69	6.875

ELEMENTS OF SECTIONS

All dimensions in inches.

Weight in pounds per foot.

Area in square inches.

I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
7	Wt. Area I x-x I y-y	1.059 0.875 3.573 0.001	1.588 1.313 5.359 0.004	1.750	2.188	2.625	3.063	4.235 3.500 14.29 0.073	3.938	4.375	21.44	25.01	28.58
71/8	Ix-x	1.078 0.891 3.768 0.001	1.336 5.652	7 536	2.227	2.672	3.117	4.311 3.563 15.07 0.074	4.008 16.95	4.453	22.61	26.37	30.14
71/4	Ix-x	1.097 0.906 3.970 0.001	1.359 5.954	1.813	2.266	2.719	3.172	4.386 3.625 15.88 0.076	17.86	19.85	23.82	27.79	31.76
73/8		1.115 0.922 4.178 0.001	1.383	1.844	2.305	2.766	3.227	4.462 3.688 16.71 0.077	18.80	4.609 20.89	25.07	29.25	33.43
71/2	Wt. Area I x-x I y-y		1.406	1.875	2.344	1 2.813	3 . 281	4.538 3.750 17.58 0.078	19.78	21.97	26.37	30.76	35.16
75/8		1.153 0.953 4.618 0.001	1.430	1.906	2.383	3 2.85	9 3.330	18 47	20.78	23.09	27.71	32.33	9.226 7.625 36.94 0.635
73/4		0.969 4.849	7.27	1.938	2.42	2 2.90	6 3.39	119.40	21.82	24.24	29.09	3 6.78 33.94	9.378 7.750 38.79 0.640
77/8	I x -:	1.19 0.98 x 5.08 y 0.00	4 1.47	7 1.969	2.46	1 2.95	3 3.44	9 4.764 5 3.938 20.35 5 0.083	8 4.430	25.44	30.52	35.61	40.70

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches.

Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1 /
8	Wt. Area I x-x I y-y	1.000 5.333	1.500 8.000	2.000 10.67	2.500 13.33	3.000 16.00	3.500 18.67	4.000 21.33	5.445 4.500 24.00 0.119	5.000 26.67	6.000 32.00	7.000 37.33	8.000 42.67
81/8	Wt. Area I x-x I y-y	1.016 5.587	1.523 8.381	2.031 11.17	2.539 13.97	3.047 16.76	3.555 19.56	$\frac{4.063}{22.35}$	5.530 4.570 25.14 0.121	5.078 27.94	6.094 33.52	7.109 39.11	8.125 44.70
81/4	Wt. Area I x-x I y-y	1.031 5.849	1.547 8.774	2.063	2.578 14.62	3.094 17.55	3.609	4.125	5.615 4.641 26.32 0.122	5.156 29.25	6.188 35.09	7.219 40.94	8.250 46.79
83/8	Wt. Area I x-x I y-y	6.119	1.570 9.179	2.094 12.24	2.617 15.30	3.141 18.36	3.664 21.42	4.188 24.48	5.700 4.711 27.54 0.124	5.234	6.281	7.328 42.83	8.375 48.95
81/2	Wt. Area I x-x I y-y	6.397	1.594 9.596	12.79	2.656	3.188	$\frac{3.719}{22.39}$	4.250	5.785 4.781 28.79 0.126	5.313	6.375	7.438	8.500
85/8	Wt. Area I x-x I y-y	1.078 6.684	10.03	2.156 13.37	2.695 16.71	3.234 20.05	3.773 23.39	4.313 26.73	5.870 4.852 30.08 0.128	5.391 33.42	6.469 40.10	7.547 46.78	53.47
83/4	Wt. Area I x-x I y-y	1.094 6.978	1.641 10.47	13.96	2.734 17.45	3.281 20.94	3.828 24.42	4.375 27.91	5.955 4.922 31.40 0.130	5.469 34.89	6.563 41.87	7.656 48.85	8.750 55.83
87/8	Wt. Area I x-x I y-y	1.109 7.282	1.664 10.92	2.219 14.56	2.773 18.20	3.328 21.85	3.883 25.49	4.438 29.13	6.041 4.992 32.77 0.132	5.547 36.41	6.656	7.766 50.97	8.875 58.25

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	/ 1
9	Wt. Area I x-x I y-y	7 504	1.688	2.723 2.250 15.19 0.012	2.813 18.98	3.375	3.938 26.58	$\frac{4.500}{30.38}$	34.17	5.625 37.97	6.750 45.56	7.875 53.16	9.000
91/8	Wt. Area I x-x I y-y	1.141	1.711	2.760 2.281 15.83 0.012	2.852	3.422	3.992	4.563	5.133	5.703	6.844	7.984 55.40	63.32
91/4	T	1.156	1.734	2.798 2.313 16.49 0.012	2.891	3.469	4.047	4.625	5.203	5.781	6.938	8.094 57.71	65.95
93/8	Wt. Area I x-x I y-y	1.172	1.758	2.836 2.344 17.17 0.012	2.930	3.516	4.102 30.04	4.688	5.273 38.62	5.859	51.50	60.08	68.66
91/2	Wt. Area I x-x I y-y	1.188	1.781	2.874 2.375 17.86 0.012	2.969	3.563	4.156	4.750 35.72	5.344	5.938	53.59	62.52	71.45
95/8	Wt. Area I x-x I y-y	1.203	1.803	2.912 2.406 18.58 0.013	3.008	3.609	32 51	4.813	3 5.414 41 80	46.44	55.73	65.02	74.31
93/4	Tv	1.219	1.828	2 2.949 2 2.438 19.31 0.013	3.047	7 3.650	33 79	38.62	5 5.484	48.27	57.93	67.58	177.24
97/8	T	1.23	1.85	2.987 2.469 20.06 5 0.013	3.08	6 3.70	3 4.32	40 12	8 5.553	50.17	60.19	70.22	80.25

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth,	1	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
10	Wt. Area I x-x I y-y	1.513 1.250 10.42 0.002	2.269 1.875 15.63 0.005	3.025 2.500 20.83 0.013	3.125 26.04	31.25	4.375 36.46	5.000	5.625 46.88	7.563 6.250 52.08 0.203	7.500 62.50		83.33
101/8	Wt. Area I x-x I y-y	1.531 1.266 10.81 0.002	2.297 1.898 16.22 0.006	2.531 21.62	3.164	3.797 32.44	4.430 37.84		5.695 48.65		7.594 64.87	75.69	
101/4	Wt. Area I x-x I y-y	1.550 1.281 11.22 0.002	2.325 1.922 16.83 0.006			3.844 33.65	4.484 39.26	5.125 44.87	50.48	56.09	7.688 67.31	10.85 8.969 78.52 0.572	12.40 10.25 89.74 0.854
103/8	Wt. Area I x-x I y-y	1.569 1.297 11.63 0.002	2.354 1.945 17.45 0.006		3.242	3.891 34.90	4.539 40.72		5.836 52.35	58.17	7.781 69.80	10.98 9.078 81.43 0.579	12.55 10.38 93.06 0.865
101/2	Wt. Area I x-x I y-y	1.588 1.313 12.06 0.002	1.969 18.09	3.176 2.625 24.12 0.014	3.281	3.938 36.18	4.594 42.21	5.250 48.23	5.906 54.26	60.29		11.12 9.188 84.41 0.586	12.71 10.50 96.47 0.875
105/8	Wt. Area I x-x I y-y	1.607 1.328 12.49 0.002	2.411 1.992 18.74 0.006	3.214 2.656 24.99 0.014	$\frac{3.320}{31.24}$	3.984 37.48	43.73	5.313 49.98	5.977	8.035 6.641 62.47 0.216	7.969 74.97	11.25 9.297 87.46 0.593	12.86 10.63 99.95 0 .885
103/4	Wt. Area I x-x I y-y	1.626 1.344 12.94 0.002	2.439 2.016 19.41 0.006	2.688 25.88	3.359 32.35	4.031 38.82	4.703 45.29	5.375 51.76	6.047 58.23	8.130 6.719 64.70 0.219	8.063 77.64	9.406 90.58	10.75 103.5
107/8	Wt. Area I x-x I y-y	1.645 1.359 13.40 0.002	2.039 20.10	2.719 26.79	3.398 33.49	$\frac{4.078}{40.19}$	4.758 46.89	5.438	6.117 60.29	6.797 66.99	8.156 80.38		13.16 10.88 107.2 0.906

-

RECTANGLES

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

Radius of Gyration: r_{x-x}=0.289 d; r_{y-y}=0.289 t

h, d							Thickn	ess, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1_
11	Wt. Area I x-x I y-y	1.664 1.375 13.86 0.002	2.496 2.063 20.80 0.006	3.328 2.750 27.73 0.014	3.438 34.66	41.59	5.823 4.813 48.53 0.077			8.319 6.875 69.32 0.224	9.983 8.250 83.19 0.387	11.65 9.625 97.05 0.614	13.31 11.00 110.9 0.917
111/8	Wt. Area I x-x I y-y	1.683 1.391 14.34 0.002	2.524 2.086 21.51 0.006	3.365 2.781 28.69 0.014	4.207 3.477 35.86 0.028	5.048 4.172 43.03 0.049	5.889 4.867 50.20 0.078	6.731 5.563 57.37 0.116		71.71	8.344 86.06	9.734 100.4	13.46 11.13 114.7 0.927
111/4	Wt. Area I x-x I y-y		2.552 2.109 22.25 0.006	2.813 29.66	3.516 37.08	4.219	4.922 51.91	6.806 5.625 59.33 0.117	6.328 66.74	74.16	10.21 8.438 88.99 0.396	9.844 103.8	13.61 11.25 118.7 0.937
113/8	Wt. Area I x-x I y-y	15.33	2.133 23.00	3.441 2.844 30.66 0.015	4.301 3.555 38.33 0.029	5.161 4.266 45.99 0.050	4.977	5.688 61.33	6.398 68.99			9.953 107.3	122.7
111/2	Wt. Area I x-x I y-y	15.84	2.156 23.76	2.875	3.594 39.61	4.313 47.53	5.031 55.45	63.37	6.469 71.29	7.188 79.21	8.625	10.06 110.9	11.50 126.7
115/	Wt. Area I x-x I y-y	16.36	2.180 24.55	2.906	3.633 40.91	49.09	5.086	65.46	6.539	7.266	8.719 98.19	10.17 114.6	11.63 130.9
113/	Wt. Area I x-x I y-y	16.90	2.203	2.938	3.672 42.25	4.406	59.14	5.875	76.04	7.344	8.813 101.4	118.3	11.75 135.2
117/	Wt. Area I x-2 I y-3	17.44	2.227	2.969	3.711 43.61	4.453 52.33	6.286 5.195 61.05 0.083	5.938	8.082 6.680 78.49 0.176	7.422 87.22	8.906	122.1	11.88

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
12	Wt. Area I x-x I y-y	1.815 1.500 18.00 0.002	2.250 27.00	3.000 36.00	3.750	5.445 4.500 54.00 0.053	6.353 5.250 63.00 0.084	6.000 72.00	6.750 81.00	7.500 90.00	10.89 9.000 108.0 0.422		14.52 12.00 144.0 1.000
121/4	Wt. Area I x-x I y•y	1.853 1.531 19.15 0.002	2.297 28.72	3.063 38.30	4.632 3.828 47.87 0.031	5.558 4.594 57.45 0.054	5.359 67.02	6.125 76.59	6.891 86.17	7.656 95.74	11.12 9.188 114.9 0.431	12.97 10.72 134.0 0.684	14.82 12.25 153.2 1.021
121/2	Wt. Area I x-x I y-y	1.891 1.563 20.35 0.002	2.344 30.52	3.125 40.69	3.906	61.04	5.469 71.21	6.250 81.38	7.031 91.55	7.813 101.7	9.375		15.13 12.50 162.8 1.042
123/4	Wt. Area I x-x I y-y	21.59	2.391 32.39	3.188 43.18	4.821 3.984 53.98 0.032	$4.781 \\ 64.77$	5.578 75.57	86.36	7.172 97.16	7.969 108.0	9.563 129.5	151.1	15.43 12.75 172.7 1.062
13	Wt. Area I x-x I y-y	22.89	2.438 34.33	3.250 45.77	4.063 57.21		5.688 80.10	7.865 6.500 91.54 0.135	7.313 103.0	8.125 114.4	11.80 9.750 137.3 0.457	13.76 11.38 160.2 0.726	15.73 13.00 183.1 1.083
131/4	Wt. Area I x-x I y-y	2.004 1.656 24.23 0.002	2.484 36.35	3.313 48.46		4.969 72.69	5.797 84.81	96.93	7.453 109.0	8.281 121.2			16.03 13.25 193.9 1.104
131/2	Wt. Area I x-x I y-y	2.042 1.688 25.63 0.002	2.531 38.44	3.375 51.26		5.063 76.89	5.906 89.70	6.750 102.5	7.594 115.3	8.438 128.1	12.25 10.13 153.8 0.475	14.29 11.81 179.4 0.754	16.34 13.50 205.0 1.125
133/4	Wt. Area I x-x I y-y	2.080 1.719 27.08 0.002	2.578 40.62	3.438 54.16	4.297	5.156 81.24	6.016 94.78	6.875 108.3	7.734 121.9	8.594 135.4	12.48 10.31 162.5 0.483	12.03 189.6	16.64 13.75 216.6 1.146

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

b, d							Thickn	ess, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
14	Wt. Area I x-x I y-y	2.118 1.750 28.58 0.002	3.176 2.625 42.88 0.008	57.17	4.375 71.46	6.353 5.250 85.75 0.062	7.411 6.125 100.0 0.098	8.470 7.000 114.3 0.146	9.529 7.875 128.6 0.208	10.59 8.750 142.9 0.285	12.71 10.50 171.5 0.492	14.82 12.25 200.1 0.782	16.94 14.00 228.7 1.167
141/4	Wt. Area I x-x I y-y	2.155 1.781 30.14 0.002	3.233 2.672 45.21 0.008	4.311 3.563 60.28 0.019	5.388 4.453 75.36 0.036	6.466 5.344 90.43 0.063		8.621 7.125 120.6 0.148		10.78 8.906 150.7 0.290	12.93 10.69 180.9 0.501	15.09 12.47 211.0 0.796	17.24 14.25 241.1 1.187
141/2	Wt. Area I x-x I y-y	31.76	3.290 2.719 47.63 0.008	4.386 3.625 63.51 0.019	5.483 4.531 79.39 0.037	6.579 5.438 95.27 0.064	7.676 6.344 111.1 0.101	8.773 7.250 127.0 0.151	8.156 142.9	10.97 9.063 158.8 0.295	13.16 10.88 190.5 0.510	15.35 12.69 222.3 0.809	17.55 14.50 254.1 1.208
143/4	Wt. Area I x-x I y-y	33.43	3.346 2.766 50.14 0.008	3.688 66.86	5.577 4.609 83.57 0.038	6.693 5.531 100.3 0.065	6.453 117.0	7.375	8.297 150.4	11.15 9.219 167.1 0.300	13.39 11.06 200.6 0.519	234.0	17.85 14.75 267.4 1.229
15	Wt. Area I x-x I y-y	35.16	3.403 2.813 52.73 0.008	3.750 70.31	87.89	6.806 5.625 105.5 0.066	6.563	7.500 140.6	158.2	11.34 9.375 175.8 0.305	11.25 210.9	246.1	18.15 15.00 281.3 1.250
151/4	Wt. Area I x-x I y-y	36.94	2.859 55.42	3.813 73.89	4.766 92.36	110.8	6.672 129.3	7.625 147.8	8.578 166.2	9.531 184.7	11.44 221.7	13.34 258.6	15.25
151/2	Wt. Area I x-x I y-y	38.79	2.906 58.19	3.875 77.58	4.844 96.98	5.813 116.4	135.8	7.750	8.719 174.6	9.688	11.63 232.7	13.56 271.5	310.3
153/	Wt. Area I x-z I y-y	40.70	2.953 61.05	3.938	4.922	5.900	6.891	7.875	8.859	9.844	11.81	13.78	15.75 325.6

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches.

Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

Radius of Gyration: rx-x=0.289 d; ry-y=0.289 t

h, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	%16	5/8	3/4	7 ⁄8	1 /
16	Wt. Area I x-x I y-y	2.420 2.000 42.67 0.003	3.000 64.00	4.000 85.33		6.000 128.0	7.000 149.3	8.000 170.7	9.000 192.0	12.10 10.00 213.3 0.326	12.00 256.0		
161/4	Wt. Area I x-x I y-y	2.458 2.031 44.70 0.003	3.047 67.05	4.063 89.40	5.078	6.094 134.1	156.4	8.125 178.8	9.141 201.1	12.29 10.16 223.5 0.331	268.2	17.20 14.22 312.9 0.907	19.66 16.25 357.6 1.354
16 ¹ / ₂	Wt. Area I x-x I y-y	2.496 2.063 46.79 0.003	3.094 70.19	4.125 93.59	6.239 5.156 117.0 0.042	6.188 140.4	7.219 163.8	8.250	9.281 210.6	12.48 10.31 234.0 0.336	12.38	327.6	19.97 16.50 374.3 1.375
163/4	Wt. Area I x-x I y-y	2.533 2.094 48.95 0.003	3.141 73.43	4.188 97.90	6.334 5.234 122.4 0.043	6.281 146.9	7.328 171.3	10.13 8.375 195.8 0.174	9.422 220.3	12.67 10.47 244.8 0.341		17.73 14.66 342.7 0.935	20.27 16.75 391.6 1.396
17	Wt. Area I x-x I y-y	1	3.857 3.188 76.77 0.009	4.250 102.4	6.428 5.313 127.9 0.043	6.375 153.5	7.438 179.1	8.500 204.7	9.563 230.3	12.86 10.63 255.9 0.346	12.75 307.1	18.00 14.88 358.2 0.949	20.57 17.00 409.4 1.417
171/4	Wt. Area I x-x I y-y	2.609 2.156 53.47 0.003	3.234 80.20	4.313 106.9	6.523 5.391 133.7 0.044	7.827 6.469 160.4 0.076	7.547 187.1	10.44 8.625 213.9 0.180	9.703 240.6	13.05 10.78 267.3 0.351	12.94 320.8	18.26 15.09 374.3 0.963	20.87 17.25 427.7 1.437
171/2	Wt. Area I x-x I y-y	2.647 2.188 55.83 0.003	83.74	4.375 111.7	6.617 5.469 139.6 0.045	167.5	7.656 195.4	10.59 8.750 223.3 0.182	9.844 251.2	13.23 10.94 279.1 0.356	13.13 335.0	18.53 15.31 390.8 0.977	21.18 17.50 446.6 1.458
173/4	Wt. Area I x-x I y-y	2.685 2.219 58.25 0.003	3.328 87.38	4.438 116.5	6.712 5.547 145.6 0.045	6.656 174.8	7.766 203.9	10.74 8.875 233.0 0.185	9.984 262.1	13.42 11.09 291.3 0.361	13.31 349.5	18.79 15.53 407.8 0.991	21.48 17.75 466.0 1.479

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thickr	iess, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	%16	5/8	3/4	7/8	1
18	Wt. Area I x-x I y-y	2.723 2.250 60.75 0.003	4.084 3.375 91.13 0.010	4.500	5.625 151.9	6.750 182.3	212.6	10.89 9.000 243.0 0.188	10.13 273.4	13.61 11.25 303.8 0.366	13.50 364.5	19.06 15.75 425.3 1.005	
181/4		2.760 2.281 63.32 0.003	3.422 94.97	4.563 126.6	5.703	8.281 6.844 189.9 0.080	7.984 221.6	9.125 253.3	12.42 10.27 284.9 0.271	13.80 11.41 316.6 0.371	13.69 379.9	19.32 15.97 443.2 1.019	22.08 18.25 506.5 1.521
181/2		2.798 2.313 65.95 0.003	3.469 98.93	4.625 131.9	6.995 5.781 164.9 0.047	6.938	8.094	9.250 263.8	296.8	13.99 11.56 329.8 0.376	13.88 395.7		22.39 18.50 527.6 1.542
183/4	Wt. Area I x-x I y-y	2.344 68.66	3.516	137.3	5.859 171.7	7.031 206.0	8.203 240.3	9.375 274.7	10.55	11.72 343.3	412.0	16.41	22.69 18.75 549.3 1.562
19		71.45	3.563 107.2	4.750	178.6	7.125 214.3	8.313 250.1	9.500 285.8	12.93 10.69 321.5 0.282	11.88 357.2	$\frac{14.25}{428.7}$	20.12 16.63 500.1 1.061	19.00 571.6
191/4		2.912 2.406 74.31 0.003	3.609 111.5	4.813 148.6	6.016 185.8	7.219 222.9	8.422 260.1	9.625 297.2	10.83	12.03 371.5		16.84	19.25 594.4
191/2	Wt. Area I x-x I y-y	2.949 2.438 77.24 0.003	3.656 115.9	4.875 154.5	6.094 193.1	7.313 231.7	8.531 270.3	9.750 309.0	13.27 10.97 347.6 0.289	12.19 386.2	14.63 463.4	20.65 17.06 540.7 1.089	19.50 617.9
193/	Ix-x	2.987 2.469 80.25 0.003	3.703	4.938	6.172 200.6	7.406 240.7	8.641 280.9	9.875 321.0	361.1	12.34 401.2	17.92 14.81 481.5 0.694	17.28 561.7	19.75 642.0

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

р, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1,
20	Wt. Area I x-x I y-y	3.025 2.500 83.33 0.003	125.0	6.050 5.000 166.7 0.026	7.563 6.250 208.3 0.051	9.075 7.500 250.0 0.088	10.59 8.750 291.7 0.140	12.10 10.00 333.3 0.208	11.25 375.0	15.13 12.50 416.7 0.407	18.15 15.00 500.0 0.703	21.18 17.50 583.3 1.117	24.20 20.00 666.7 1.667
201/4	Wt. Area I x-x I y-y	3.063 2.531 86.50 0.003		5.063 173.0	7.657 6.328 216.2 0.051	9.188 7.594 259.5 0.089	302.7	12.25 10.13 346.0 0.211	11.39 389.2	15.31 12.66 432.5 0.412	519.0	21.44 17.72 605.5 1.130	24.50 20.25 692.0 1.687
20½	Wt. Area I x-x I y-y		3.844 134.6	179.5	7.752 6.406 224.4 0.052	7.688 269.2	314.1	10.25 359.0	11.53 403.8		15.38 538.4	21.71 17.94 628.2 1.144	24.81 20.50 717.9 1.708
203/4	Wt. Area I x-x I y-y	3.138 2.594 93.06 0.003	3.891 139.6	5.188 186.1	232.7	7.781 279.2	9.078 325.7	10.38 372.3	11.67 418.8	12.97 465.3	15.56 558.4	18.16	744.5
21	Wt. Area I x-x I y-y	96.47	3.938 144.7	5.250 192.9	6.563 241.2	7.875 289.4	9.188 337.6	385.9	11.81 434.1	482.3	15.75 578.8	18.38 675.3	
211/4	Wt. Area I x-x I y-y	3.214 2.656 99.96 0.003	3.984 149.9	199.9	6.641 249.9	7.969 299.9	9.297 349.8	10.63 399.8	11.95 449.8	13.28 499.8	15.94 599.7		21.25 799.6
211/2	Wt. Area I x-x I y-y	103.5	4.031 155.3	5.375	6.719 258.8	8.063 310.6	9.406	10.75 414.1	12.09 465.9	13.44 517.6	16.13 621.1	724.7	21.50 828.2
213/4	Wt. Area Ix-x Iy-y	107.2	4.078	5.438 214.4	6.797	8.156	9.516 375.1	10.88 428.7	12.23 482.3	13.59 535.9	16.31 643.1	19.03 750.2	21.75 857.4

RECTANGLES

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

Radius of Gyration: $r_{x-x}=0.289$ d; $r_{y-y}=0.289$ t

h, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
22	Wt. Area I x-x I y-y	3.328 2.750 110.9 0.004	4.125 166.4		6.875 277.3	332.8	9.625 388.2		14.97 12.38 499.1 0.326	554.6	19.97 16.50 665.5 0.773	23.29 19.25 776.4 1.228	26.62 22.00 887.3 1.833
221/4	Wt. Area I x-x I y-y	3.365 2.781 114.7 0.004	4.172 172.1	5.563 229.5	6.953 286.8	8.344 344.2	9.734 401.6	13.46 11.13 459.0 0.232	12.52 516.3	13.91 573.7	16.69 688.4		26.92 22.25 917.9 1.854
221/2	Wt. Area I x-x I y-y	118.7	4.219 178.0	5.625 237.3	7.031	8.438 356.0	9.844 415.3		12.66 534.0	593.3	16.88 711.9	23.82 19.69 830.6 1.256	
223/4	Wt. Area I x-x I y-y	100000000000000000000000000000000000000	4.266 184.0	5.688 245.3	8.602 7.109 306.6 0.058	8.531 368.0	9.953 429.3	11.38 490.6	552.0	14.22 613.3	17.06 735.9	19.91 858.6	22.75
23	Wt. Area I x-x I y-y		4.313 190.1	5.750 253.5	8.697 7.188 316.8 0.058	8.625 380.2	10.06 443.6	13.92 11.50 507.0 0.240	12.94	633.7	17.25 760.4	24.35 20.13 887.2 1.284	
231/4	Wt. Area I x-x I y-y	130.9	4.359 196.4	5.813 261.8	8.791 7.266 327.3 0.059	8.719 392.8	10.17 458.2	11.63 523.7	13.08 589.1	14.53 654.6	17.44 785.5		23.25 1047.
231/2	Wt. Area I x-x I y-y	135.2	4.406 202.8	5.875 270.4	7.344 338.0	8.813 405.6		11.75 540.8	608.3	14.69 675.9	17.63 811.1	946.3	23.50
233/4	Wt. Area I x-x I y-y		4.453 209.3	5.938 279.1	7.422 348.9	8.906 418.6	12.57 10.39 488.4 0.166	11.88 558.2	13.36 627.9	14.84 697.7	17.81 837.3	20.78 976.8	23.75 1116.

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

р, d							Thick	ness, t					
Depth,	_	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
24	Wt. Area I x-x I y-y	3.000 144.0		6.000 288.0	9.075 7.500 360.0 0.061	9.000 432.0	10.50 504.0	12.00 576.0	648.0	15.00 720.0	21.78 18.00 864.0 0.844		
241/2	Wt. Area I x-x I y-y	3.063	229.8	6.125 306.4	7.656	9.188 459.6	536.2	12.25 612.8	13.78 689.3	15.31 765.9		25.94 21.44 1072. 1.368	29.65 24.50 1226. 2.042
25	Wt. Area I x-x I y-y		4.688 244.1	6.250 325.5	7.813 406.9	9.375 488.3	10.94 569.7	15.13 12.50 651.0 0.260	$14.06 \\ 732.4$	15.63	18.75 976.6		
251/2	Wt. Area I x-x I y-y	3.857 3.188 172.7 0.004	4.781 259.1	6.375 345.4	431.8	9.563 518.2	11.16 604.5	15.43 12.75 690.9 0.266	$\frac{14.34}{777.2}$	15.94 863.6	19.13 1036.	22.31 1209.	30.86 25.50 1382. 2.125
26	Wt. Area I x-x I y-y	183.1	4.875 274.6	6.500 366.2	8.125 457.7	9.750 549.3		13.00 732.3	14.63 823.9	16.25 915.4	23.60 19.50 1099. 0.914	22.75 1282.	31.46 26.00 1465. 2.167
261/2	Wt. Area I x-x I y-y	193.9	4.969 290.8	6.625 387.7		9.938 581.6	14.03 11.59 678.5 0.185	13.25 775.4	14.91 872.3	16.56 969.3	24.05 19.88 1163. 0.932		32.07 26.50 1551. 2.208
27	Wt. Area I x-x I y-y		5.063 307.5	8.168 6.750 410.1 0.035	8.438 512.6	10.13 615.1	11.81 717.6	13.50 820.1	922.6	16.88	20.25 1230.	23.63 1435.	
271/2	Wt. Area I x-x I y-y	3.438 216.6	325.0	8.319 6.875 433.3 0.036	541.6	10.31 649.9	12.03 758.2	866.5	15.47 974.9	17.19 1083.	24.96 20.63 1300. 0.967	24.06 1516.	27.50 1733.

ELEMENTS OF SECTIONS

All dimensions in inches.

Weight in pounds per foot.

I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d					_		Thickn	ess, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
28	Wt. Area I x-x I y-y	228.7	6.353 5.250 343.0 0.015	8.470 7.000 457.3 0.036	571.7	12.71 10.50 686.0 0.123	14.82 12.25 800.3 0.195	16.94 14.00 914.7 0.292	15.75 1029.	21.18 17.50 1143. 0.570	25.41 21.00 1372. 0.984	29.65 24.50 1601. 1.563	33.88 28.00 1829. 2.333
281/2	Wt. Area I x-x I y-y	241.1	361.7	8.621 7.125 482.3 0.037	8.906 602.8	10.69	12.47 844.0	964.5	16.03 1085.	17.81 1206.		30.17 24.94 1688. 1.591	34.49 28.50 1929. 2.375
29	Wt. Area I x-x I y-y		5.438	8.773 7.250 508.1 0.038	9.063	10.88 762.2	889.2	14.50 1016.	16.31 1143.	21.93 18.13 1270. 0.590	21.75 1524.	30.70 25.38 1778. 1.619	35.09 29.00 2032. 2.417
291/2	Wt. Area I x-x I y-y	4.462 3.688 267.4 0.005	5.531	7.375	9.219 668.5	11.06 802.3	12.91 936.0	14.75 1070.	1203.	22.31 18.44 1337. 0.600	22.13 1605.	31.23 25.81 1872. 1.647	35.70 29.50 2139. 2.458
30	Wt. Area I x-x I y-y	$\frac{1}{2}$ 3.750 $\frac{1}{2}$ 281.3	6.806 5.625 421.9 0.016	7.500 562.5	9.375 703.1	13.61 11.25 843.8 0.132	13.13 984.4	15.00 1125.	20.42 16.88 1266. 0.445	18.75 1406.	22.50 1688.	1969.	30.00 2250.
301/	Wt. Area I x-z I y-y	3.813 x 295.6	5.719	7.625 591.1	9.531	11.44 886.7	13.34	15.25	20.76 17.16 1330. 3 0.452	19.06 1478	22.88 1773.	26.69 2069.	30.50 2364.
31	Wt. Area I x-: I y-:	3.875 x 310.3	5 5.813	7.750		11.63 931.0	13.56	15.50	21.10 17.44 1396. 3 0.460	19.38	23.25 1862.	27.13 2172.	31.00 2483.
311/	- I X-	a 3.938	5.90 6 488.4	7.875 4 651.2	9.844	976.8	1 13.78		5 17.72 . 1465	19.69	23.63	27.56 2279.	31.50

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches.

Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1 /
32	Wt. Area I x-x I y-y		512.0	8.000 682.7	853.3	14.52 12.00 1024. 0.141	14.00 1195.	19.36 16.00 1365. 0.333	18.00 1536.	24.20 20.00 1707. 0.651	24.00 2048.	33.88 28.00 2389. 1.786	38.72 32.00 2731. 2.667
32½	Wt. Area I x-x I y-y		6.094 536.4	8.125 715.2	12.29 10.16 894.0 0.083	12.19 1073.	14.22 1252.	19.66 16.25 1430. 0.339	18.28 1609.	24.58 20.31 1788. 0.661	24.38 2146.	34.41 28.44 2503. 1.814	39.33 32.50 2861. 2.708
33	Wt. Area I x-x I y-y		6.188 561.5	8.250 748.7	935.9	12.38 1123.	14.44 1310.	19.97 16.50 1497. 0.344	18.56 1685.	24.96 20.63 1872. 0.671	24.75 2246.	34.94 28.88 2620. 1.842	39.93 33.00 2995. 2.750
33½	Wt. Area I x-x I y-y	5.067 4.188 391.6 0.005	6.281 587.4	8.375 783.2	10.47 979.0	12.56	14.66 1371.	20.27 16.75 1566. 0.349	18.84 1762.	25.33 20.94 1958. 0.682		35.47 29.31 2741. 1.870	40.54 33.50 3133. 2.792
34	Wt. Area I x-x I y-y		6.375 614.1	8.500 818.8	10.63	12.75 1228.	14.88 1433.	17.00 1638.	19.13 1842.	25.71 21.25 2047. 0.692	2457.	36.00 29.75 2866. 1.898	41.14 34.00 3275. 2.833
34½	Wt. Area I x-x I y-y	5.218 4.313 427.8 0.006	6.469	855.5	10.78 1069.	15.65 12.94 1283. 0.152	15.09 1497.	17.25 1711.	19.41 1925.	26.09 21.56 2139. 0.702		36.53 30.19 2994. 1.926	41.75 34.50 3422. 2.875
35	Wt. Area I x-x I y-y		6.563	893.2	10.94 1117.	13.13 1340.	15.31 1563.	21.18 17.50 1786. 0.365	19.69 2010.	26.47 21.88 2233. 0.712	26.25 2680.	30.63 3126.	35.00 3573.
351/2	Wt. Area I x-x I y-y	5.369 4.438 466.0 0.006	6.656 699.0	8.875 932.1	11.09 1165.	13.31 1398.		17.75 1864.	19.97 2097.	26.85 22.19 2330. 0.722		37.59 31.06 3262. 1.982	42.96 35.50 3728. 2.958

RECTANGLES

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

Radius of Gyration: $r_{x-x}=0.289$ d; $r_{y-y}=0.289$ t

1, d			<u> </u>			ß	Thickr	ness, t					
Depth,		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
36	Wt. Area I x-x I y-y	486.0		9.000 972.0		16.34 13.50 1458. 0.158	19.06 15.75 1701. 0.251		24.50 20.25 2187. 0.534	27.23 22.50 2430. 0.732	32.67 27.00 2916. 1.266	38.12 31.50 3402. 2.010	43.56 36.00 3888. 3.000
361/2	Ix-x	5.521 4.563 506.5 0.006	8.281 6.844 759.8 0.020		13.80 11.41 1266. 0.093	13.69 1520.	19.32 15.97 1773. 0.255	18.25 2026.	24.84 20.53 2279. 0.541	27.60 22.81 2533. 0.743	33.12 27.38 3039. 1.283	38.64 31.94 3546. 2.038	44.17 36.50 4052. 3.042
37	Wt. Area I x-x I y-y		6.938	9.250 1055.	13.99 11.56 1319. 0.094	13.88 1583.	16.19 1847.	18.50 2111.	20.81 2374.	27.98 23.13 2638. 0.753	27.75 3166.	39.17 32.38 3693. 2.066	44.77 37.00 4221. 3.083
371/2	Ix-x	5.672 4.688 549.3 0.006	8.508 7.031 824.0 0.021	9.375 1099.	11.72 1373.	1648.	19.85 16.41 1923. 0.262	18.75 2197.	21.09 2472.	2747.	28.13 3296.	39.70 32.81 3845. 2.094	37.50 4395.
38	Wt. Area I x-x I y-y	571.6	7.125	9.500 1143.	11.88	14.25 1715.	16.63 2001.	19.00 2286.	25.86 21.38 2572. 0.564	23.75 2858.	28.50 3430.	40.23 33.25 4001. 2.121	
381/2	Wt. Area I x-x I y-y	594.4	7.219 891.7	9.625 1189.	12.03	14.44 1783.	16.84	19.25 2378.	21.66 2675.	24.06 2972.	3567.	4161.	
39	Wt. Area I x-x I y-y	617.9	7.313 926.9	9.750 1236.	12.19 1545.	14.63 1854.		19.50 2472.	26.54 21.94 2781. 0.578	24.38 3090.	29.25 3707.	41.29 34.13 4325. 2.177	4943.
391/2	Wt. Area I x-x I y-y	4.938 642.0	963.0	9.875 1284.	12.34 1605.	17.92 14.81 1926. 0.174	17.28 2247.	19.75 2568.	22.22 2889.	24.69 3210.	3852.		39.50 5136.

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

р, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	17
40	Wt. Area I x-x I y-y	6.050 5.000 666.7 0.007	9.075 7.500 1000. 0.022	1333.	15.13 12.50 1667. 0.102	18.15 15.00 2000. 0.176	21.18 17.50 2333. 0.279	2667.		30.25 25.00 3333. 0.814		42.35 35.00 4667. 2.233	48.40 40.00 5333. 3.333
401/2	Wt. Area I x-x I y-y	6.126 5.063 692.0 0.007		12.25 10.13 1384. 0.053	15.31 12.66 1730. 0.103	2076.	17.72 2422.	24.50 20.25 2768. 0.422		30.63 25.31 3460. 0.824	30.38 4152.	42.88 35.44 4844. 2.261	49.01 40.50 5536. 3.375
41	Wt. Area I x-x I y-y	6.201 5.125 717.9 0.007	9.302 7.688 1077. 0.023	1436.	15.50 12.81 1795. 0.104	15.38 2154.	17.94 2513.	20.50 2872.		31.01 25.63 3590. 0.834	4308.	43.41 35.88 5026. 2.289	49.61 41.00 5743. 3.417
41½	Wt. Area I x-x I y-y	6.277 5.188 744.5 0.007	9.416 7.781 1117. 0.023	10.38 1489.		15.56 2234.	18.16 2606.	20.75 2978.	3350.	31.38 25.94 3723. 0.844	31.13 4467.	43.94 36.31 5212. 2.317	50.22 41.50 5956. 3.458
42	Wt. Area I x-x I y-y		7.875 1158.	12.71 10.50 1544. 0.055	1929.	15.75 2315.	18.38 2701.	21.00 3087.	23.63 3473.	26.25 3859.	31.50 4631.	44.47 36.75 5402. 2.345	50.82 42.00 6174. 3.500
421/2	Wt. Area I x-x I y-y	6.428 5.313 799.6 0.007	7.969 1199.	1599.	13.28 1999.	15.94 2399.			23.91 3598.	26.56 3998.	31.88 4798.	5598.	51.43 42.50 6397. 3.542
43	Wt. Area I x-x I y-y	828.2	8.063 1242.	10.75 1656.	13.44 2070.	16.13 2485.	2899.	26.02 21.50 3313. 0.448	24.19 3727.	32.52 26.88 4141. 0.875	32.25 4969.		52.03 43.00 6626. 3.583
431/2	Wt. Area I x-x I y-y	857.4	8.156 1286.	10.88 1715.	13.59 2144.	16.31 2572.	19.03 3001.		24.47 3858.	27.19 4287.	32.63 5145.	46.06 38.06 6002. 2.428	43.50 6859.

RECTANGLES

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thickn	iess, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
44	Wt. Area I x-x I y-y	6.655 5.500 887.3 0.007	9.983 8.250 1331. 0.024	13.31 11.00 1775. 0.057	16.64 13.75 2218. 0.112	19.97 16.50 2662. 0.193	23.29 19.25 3106. 0.307	26.62 22.00 3549. 0.458	29.95 24.75 3993. 0.653	33.28 27.50 4437. 0.895	39.93 33.00 5324. 1.547	46.59 38.50 6211. 2.456	53.24 44.00 7099. 3.667
441/2	Wt. Area I x-x I y-y		10.10 8.344 1377. 0.024	13.46 11.13 1836. 0.058	13.91 2295.	20.19 16.69 2754. 0.196	23.56 19.47 3213. 0.311	22.25 3672.	30.29 25.03 4131. 0.660	33.65 27.81 4590. 0.905	33.38 5508.	47.11 38.94 6426. 2.484	53.85 44.50 7343. 3.708
45	Wt. Area I x-x I y-y			13.61 11.25 1898. 0.059	2373.	20.42 16.88 2848. 0.198	23.82 19.69 3322. 0.314	22.50 3797.	25.31 4271.	34.03 28.13 4746. 0.916	33.75 5695.	47.64 39.38 6645. 2.512	54.45 45.00 7594. 3.750
451/2	Wt. Area I x-x I y-y		1472.	11.38 1962.	2453.	20.65 17.06 2944. 0.200	19.91 3434.	22.75 3925.	25.59 4415.	28.44 4906.	34.13 5887.	48.17 39.81 6868. 2.540	55.06 45.50 7850. 3.792
46	Wt. Area I x-x I y-y	1014.	8.625 1521.	11.50 2028.	14.38 2535.	3042.		23.00 4056.	25.88 4563.		34.50 6084.	40.25 7097.	55.66 46.00 8111. 3.833
461/2	Wt. Area I x-x I y-y	1047.	8.719 1571.	11.63 209 5 .	14.53 2618.	21.10 17.44 3142. 0.204	24.62 20.34 3666. 0.324	23.25 4189.	26.16	29.06 5237.	34.88 6284.	40.69 7331.	56.27 46.50 8379 3.875
47	Wt. Area I x-x I y-y	1081.	8.813 1622.	2163.	14.69 2704.	17.63 3244.	20.56 3785.	23.50 4326.	26.44 4867.	29.38 5407.	35.25 6489.	41.13 7570.	47.00 8652
48	Wt. Area I x-x I y-y	1152.	9.000 1728.	12.00 2304.	15.00 2880.	18.00 3456.	21.00 4032.	24.00 4608.	5184.	30.00 5760.	36.00 6912.	50.82 42.00 8064. 2.680	48.00 9216.

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

h, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	%16	5/8	3/4	7/8	1
49	Wt. Area I x-x I y-y	7.411 6.125 1226. 0.008	1838.	14.82 12.25 2451. 0.064	3064.	18.38 3677.	25.94 21.44 4289. 0.342	4902.	5515.	37.06 30.63 6128. 0.997	36.75 7353.	51.88 42.88 8579. 2.736	59.29 49.00 9804. 4.083
50	Wt. Area I x-x I y-y	7.563 6.250 1302. 0.008	9.375 1953.	12.50 2604.	18.91 15.63 3255. 0.127	18.75 3906.	4557.	30.25 25.00 5208. 0.521		37.81 31.25 6510. 1.017	7813.	52.94 43.75 9115. 2.791	60.50 50.00 10417 4.167
51	Wt. Area I x-x I y-y	7.714 6.375 1382. 0.008	9.563 2073.	12.75 2764.	19.28 15.94 3454. 0.130	19.13 4145.	4836.		28.69 6218.	6909.	38.25	54.00 44.63 9672. 2.847	61.71 51.00 11054 4.250
52	Wt. Area I x-x I y-y	7.865 6.500 1465. 0.008	9.750 2197.	13.00 2929.	19.66 16.25 3662. 0.132	19.50 4394.		26.00 5859.	29.25 6591.	39.33 32.50 7323. 1.058	39.00 8788.	55.06 45.50 10253 2.903	62.92 52.00 11717 4.333
53	Wt. Area I x-x I y-y	8.016 6.625 1551. 0.009	9.938 2326.	3102.	20.04 16.56 3877. 0.135	19.88 4652.	23.19 5428.	32.07 26.50 6203. 0.552	29.81 6979.	40.08 33.13 7754. 1.078	39.75 9305.	56.11 46.38 10856 2.959	64.13 53.00 1240 4.41
54	Wt. Area I x-x I y-y	8.168 6.750 1640. 0.009	10.13 2460.	13.50 3281.	20.42 16.88 4101. 0.137	20.25 4921.	28.59 23.63 5741. 0.377	32.67 27.00 6561. 0.563	30.38 7381.	40.84 33.75 8201. 1.099	40.50 9842.	57.17 47.25 11482 3.015	65.34 54.00 13122 4.500
55	Wt. Area I x-x I y-y	8.319 6.875 1733. 0.009	10.31 2600.	13.75 3466.	20.80 17.19 4333. 0.140	20.63 5199.	24.06 6066.	33.28 27.50 6932. 0.573	30.94 7799.	41.59 34.38 8665. 1.119	41.25 10398	58.23 48.13 12132 3.070	66.55 55.00 13865 4.583
56	Wt. Area I x-x I y-y	1829.	10.50 2744.	14.00 3659.	21.18 17.50 4573. 0.142	21.00 5488.	24.50 6403.	33.88 28.00 7317. 0.583	31.50 8232.	42.35 35.00 9147. 1.139	42.00 10976	59.29 49.00 12805 3.126	14635

III

RECTANGLES

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{y-y} = \frac{I_{y-y}}{t/2}$

Depth, d							Thick	ness, t					
Dept		1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1
57	Ix-x	8.621 7.125 1929. 0.009	12.93 10.69 2894 0.031	17.24 14.25 3858. 0.074	21.55 17.81 4823. 0.145	25.86 21.38 5787. 0.250	6752.	7716.	32.06 8681.	9645.	51.73 42.75 11575 2.004	60.35 49.88 13504 3.182	68.97 57.00 15433 4.750
58	Wt. Area I x-x I y-y		3049.	17.55 14.50 4065. 0.076		26.32 21.75 6097. 0.255	7113.	29.00 8130.	39.48 32.63 9146. 0.860	43.86 36.25 10162 1.180		61.41 50.75 14227 3.238	70.18 58.00 16259 4.833
59	Wt. Area I x-x I y-y		11.06 3209.	17.85 14.75 4279. 0.077	18.44 5348.	6418.	7488.	29.50 8557.	33.19 9627.	44.62 36.88 10697 1.200	44.25 12836	62.47 51.63 14976 3.294	71.39 59.00 17115 4.917
60	Wt. Area I x-x I y-y	2250.	11.25 3375.	18.15 15.00 4500. 0.078	18.75 5625.	22.50 6750.	31.76 26.25 7875. 0.419	30.00 9000.	10125	37.50 11250	45.00 13500	63.53 52.50 15750 3.350	72.60 60.00 18000 5.000
61	Wt. Area I x-x I y-y		11.44 3547.	18.45 15.25 4729. 0.079	19.06 5911.	22.88 7093.	8275.	30.50 9458.		38.13 11822	45.75 14186	64.58 53.38 16551 3.405	61.00 18915
62	Wt. Area I x-x I y-y	2483.		15.50 4965.	6206.		27.13 8689.	31.00 9930.	42.20 34.88 11172 0.920	38.75 12413	46.50 14896	54.25 17378	
63	Wt. Area I x-x I y-y	2605.	14.29 11.81 3907. 0.035	5209.	19.69 6512.	23.63	27.56 9116.	31.50 10419	42.88 35.44 11721 0.934	39.38 13023	47.25 15628	18233	63.00 20837
64	I x-x	9.680 8.000 2731. 0.010	12.00 4096.	16.00 5461.	20.00 6827.		28.00 9557.	32.00 10923	36.00	40.00 13653	48.00 16384	56.00 19115	64.00 21845

ELEMENTS OF SECTIONS

All dimensions in inches. Area in square inches. Weight in pounds per foot. I=Moment of Inertia in in.4

Section Modulus: $S_{x-x} = \frac{I_{x-x}}{d/2}$; $S_{yy} = \frac{I_{y-y}}{t/2}$

Radius of Gyration: r_{x-x}=0.289 d; r_{y-y}=0.289 t

h, d							Thick	ness, t					
Depth, d		1/8	3/16	1/4	5/16	3/8	7/16	1/2	⁹ ⁄16	5/8	3/4	7/8	1
65	Wt. Area I x-x I y-y	9.831 8.125 2861. 0.011	4291.	16.25 5721.	20.31 7152.	24.38 8582.	28.44 10012	32.50 11443	44.24 36.56 12873 0.964		48.75 17164	68.82 56.88 20025 3.629	78.65 65.00 22885 5.417
66	Wt. Area I x-x I y-y	9.983 8.250 2995. 0.011	12.38 4492.	16.50 5990.	20.63 7487.	24.75 8948.	28.88 10482	33.00 11979	37.13 13476	49.91 41.25 14974 1.343	49.50 17969	69.88 57.75 20963 3.685	79.86 66.00 23958 5.500
67	Wt. Area I x-x I y-y		15.20 12.56 4699. 0.037	16.75 6266.		25.13 9399.	29.31 10965	33.50 12532	37.69 14098	50.67 41.88 15665 1.363	50.25 18798	70.94 58.63 21931 3.740	81.07 67.00 25064 5.583
68	Wt. Area I x-x I y-y	10.29 8.500 3275. 0.011	15.43 12.75 4913. 0.037	17.00 6551.	8188.	25.50 9826.	29.75 11464	13101	38.25 14739	51.43 42.50 16377 1.383	51.00 19652	72.00 59.50 22927 3.796	68.00 26203
69	Wt. Area I x-x I y-y	10.44 8.625 3422. 0.011	15.65 12.94 5133. 0.038	17.25 6844.	26.09 21.56 8555. 0.175	25.88 10266	30.19 11977	34.50 13688	46.96 38.81 15399 1.023	52.18 43.13 17110 1.404	51.75 20532	73.05 60.38 23954 3.852	83.49 69.00 27376 5.750
70	Wt. Area I x-x I y-y	10.59 8.750 3573. 0.011	15.88 13.13 5359. 0.038	17.50 7146.	26.47 21.88 8932. 0.178	26.25 10719	30.63 12505	14292	47.64 39.38 16078 1.038	52.94 43.75 17865 1.424	52.50 21438	74.11 61.25 25010 3.908	84.70 70.00 28583 5.833
71	Wt. Area I x-x I y-y	10.74 8.875 3728. 0.012	16.11 13.31 5592. 0.039	21.48 17.75 7456. 0.092	26.85 22.19 9321. 0.181	26.63 11185	37.59 31.06 13049 0.495	14913	48.32 39.94 16777 1.053	53.69 44.38 18641 1.444	22369	75.17 62.13 26098 3.964	85.91 71.00 29826 5.917
72	Wt. Area I x-x I y-y	10.89 9.000 3888. 0.012	16.34 13.50 5832. 0.040	18.00 7776.	9720.	27.00 11664	13608	36.00 15552	49.01 40.50 17496 1.068		23328	76.23 63.00 27216 4.020	87.12 72.00 31104 6.000

ROUND TUBING

III

ELEMENTS OF SECTIONS

All dimensions in inches.
Weight in pounds per foot.
Area in square inches.

I=Moment of Inertia in in.4

S=Section Modulus in in.3

r=Radius of Gyration in inches.

Diameter, d			1/2		3/4					
Thickness, t	1/32	1/16	3/32	1/8	5/32	1/32	1/16	3/82	1/8	3/16
Weight Area I S r	0.056 0.046 0.001 0.005 0.166	0.104 0.086 0.002 0.008 0.156	0.145 0.120 0.003 0.010 0.147	0.178 0.147 0.003 0.012 0.140	0.204 0.169 0.003 0.012 0.134	0.085 0.071 0.005 0.012 0.254	0.163 0.135 0.008 0.021 0.244	0.234 0.193 0.011 0.028 0.234	0.297 0.245 0.012 0.033 0.225	0.401 0.331 0.015 0.039 0.210

Diameter, d			1			11/4					
Thickness, t	1/32	1/16	1/8	3/16	1/4	1/32	1/16	1/8	3/16	1/4	
Weight Area I S r	0.115 0.095 0.011 0.022 0.342	0.223 0.184 0.020 0.041 0.332	0.416 0.344 0.034 0.067 0.313	0.579 0.479 0.042 0.083 0.295	0.713 0.589 0.046 0.092 0.280	0.145 0.120 0.022 0.036 0.431	0.282 0.233 0.041 0.066 0.420	0.535 0.442 0.071 0.113 0.400	0.757 0.626 0.091 0.146 0.381	0.950 0.785 0.104 0.167 0.364	

Diameter, d			11/2		13/4					
Thickness, t	1/32	1/16	1/8	3/16	1/4	1/32	1/16	1/8	3/16	1/4
Weight Area I S r	0.175 0.144 0.039 0.052 0.519	0.342 0.282 0.073 0.097 0.509	0.653 0.540 0.129 0.172 0.488	0.936 0.773 0.170 0.227 0.469	1.188 0.982 0.199 0.266 0.451	0.204 0.169 0.062 0.071 0.608	0.401 0.331 0.118 0.135 0.597	0.772 0.638 0.212 0.242 0.576	1.114 0.920 0.285 0.326 0.556	1.426 1.178 0.341 0.389 0.538

Diameter, d			2			21/4					
Thickness, t	1/16	1/8	3/16	1/4	5/16	1/16	1/8	3/16	1/4	5/16	
Weight Area I S r	0.460 0.380 0.179 0.179 0.685	0.891 0.736 0.325 0.325 0.664	1.292 1.068 0.443 0.443 0.644	1.663 1.374 0.537 0.537 0.625	2.005 1.657 0.610 0.610 0.607	0.520 0.430 0.257 0.229 0.774	1.010 0.834 0.473 0.420 0.753	1.470 1.215 0.651 0.579 0.732	1.901 1.571 0.798 0.709 0.713	2.302 1.902 0.916 0.814 0.694	

ROUND TUBING

ELEMENTS OF SECTIONS

All dimensions in inches. Weight in pounds per foot. Area in square inches.

- I=Moment of Inertia in in.⁴ S=Section Modulus in in.³
- r=Radius of Gyration in inches.

Diameter, d			21/2					23/4	-	
Thickness, t	1/16	1/8	3/16	1/4	5/16	1/16	1/8	3/16	1/4	5/16
Weight Area I S r	0.579 0.479 0.356 0.285 0.862	1.129 0.933 0.660 0.528 0.841	1.648 1.362 0.917 0.733 0.820	2.138 1.767 1.132 0.906 0.800	2.599 2.148 1.311 1.049 0.781	0.639 0.528 0.477 0.347 0.950	1.247 1.031 0.890 0.647 0.929	1.827 1.510 1.246 0.906 0.908	2.376 1.964 1.549 1.127 0.888	2.896 2.393 1.807 1.314 0.869

Diameter, d			3					31/4		
Thickness, t	1/8	3/16	1/4	5/16	3/8	1/8	3/16	1/4	5/16	3/8
Weight Area I S r	1.366 1.129 1.169 0.779 1.017	2.005 1.657 1.646 1.097 0.997	2.614 2.160 2.059 1.373 0.976	3.193 2.639 2.414 1.610 0.957	3.742 3.093 2.718 1.812 0.938	1.485 1.227 1.501 0.923 1.106	2.183 1.804 2.123 1.306 1.085	2.851 2.356 2.669 1.643 1.064	3.490 2.884 3.146 1.936 1.044	4.098 3.387 3.559 2.190 1.025

Diameter, d			31/2					33/4		
Thickness, t	1/8	3/16	1/4	5/16	3/8	1/8	3/16	1/4	5/16	3/8
Weight Area I S r	1.604 1.325 1.890 1.080 1.194	2.361 1.951 2.685 1.534 1.173	3.089 2.553 3.390 1.937 1.153	3.787 3.129 4.013 2.293 1.132	4.455 3.682 4.559 2.605 1.113	1.722 1.424 2.341 1.249 1.282	2.539 2.099 3.339 1.781 1.261	3.326 2.749 4.231 2.256 1.241	4.084 3.375 5.026 2.681 1.220	4.811 3.976 5.732 3.057 1.201

Diameter, d			4					41/4		
Thickness, t	1/8	3/16	1/4	5/16	3/8	1/8	3/16	1/4	5/16	3/8
Weight Area I S r	1.841 1.522 2.859 1.429 1.371	2.717 2.246 4.090 2.045 1.350	3.564 2.945 5.200 2.600 1.329	4.380 3.620 6.198 3.098 1.308	5.167 4.271 7.090 3.544 1.289	1.960 1.620 3.449 1.623 1.459	2.896 2.393 4.948 2.328 1.438	3.801 3.142 6.308 2.968 1.417	4.678 3.866 7.539 3.548 1.397	5.524 4.565 8.649 4.070 1.376

ROUND TUBING

ELEMENTS OF SECTIONS

Weight in pounds per foot. Area in square inches.

All dimensions in inches. I=Moment of Inertia in in.4 S=Section Modulus in in.3

r=Radius of Gyration in inches.

Diameter, d	3-5		41/2			1 15		43/4	p 377	15 15 1
Thickness, t	1/8	3/16	1/4	5/16	3/8	1/8	3/16	1/4	5/16	3/8
Weight Area I S r	2.079 1.718 4.114 1.829 1.547	3.074 2.540 5.917 2.630 1.526	4.039 3.338 7.563 3.362 1.505	4.974 4.111 9.062 4.028 1.485	5.880 4.860 10.42 4.633 1.464	2.198 1.816 4.860 2.047 1.636	3.252 2.688 7.006 2.950 1.615	4.277 3.534 8.975 3.779 1.594	5.271 4.357 10.78 4.538 1.573	6.237 5.154 12.42 5.231 1.553

Diameter, d			5					51/4	Th. Co.	TEST I
Thickness, t	-	1/4	5/16	3/8	7/16	3/16	1/4	5/16	3/8	7/16
Weight Area I S	3.430 2.835 8.220 3.288 1.703	4.514 3.731 10.55 4.220 1.682	5.568 4.602 12.70 5.078 1.661	6.593 5.449 14.67 5.866 1.641	7.588 6.271 16.47 6.587 1.621	3.608 2.982 9.568 3.645 1.791		5.865 4.847 14.83 5.650 1.749	6.949 5.743 17.16 6.538 1.729	8.004 6.615 19.31 7.356 1.709

Diameter, d	176		51/2					6	17	THE STATE OF THE S
Thickness, t	3/16	1/4	5/16	3/8	7/16	3/16	1/4	5/16	3/8	1/2
Weight Area I S	3.787 3.129 11.05 4.020 1.879	4.989 4.123 14.24 5.178 1.858	6.162 5.093 17.19 6.252 1.837	7.306 6.038 19.93 7.247 1.817	8.419 6.958 22.46 8.166 1.797	4.143 3.424 14.47 4.825 2.056	5.465 4.516 18.70 6.232 2.035		6.627 26.33	10.45 8.639 32.94 10.98 1.953

Diameter, d	1		61/2					7	Line	-
Thickness, t	3/16	1/4	5/16	3/8	1/2	3/16	1/4	5/16	3/8	1/2
Weight Area I S r	4.499 3.718 18.54 5.703 2.233	5.940 4.909 24.01 7.385 2.212	7.350 6.075 29.15 8.966 2.190	33.97 10.45		4.856 4.013 23.30 6.656 2.410	5.302 30.23 8.638	36.78 10.51	9.444 7.805 42.96 12.27 2.346	10.21 54.24 15.50

ROUND TUBING

ELEMENTS OF SECTIONS

All dimensions in inches. I=Moment of Inertia in in.4 Weight in pounds per foot. Area in square inches.

S=Section Modulus in in.3 r=Radius of Gyration in inches.

Diameter, d			71/2					8	AUTH	
Thickness, t	3/16	1/4	5/16	3/8	1/2	3/16	1/4	5/16	3/8	1/2
Weight Area I S r	5.212 4.307 28.81 7.683 2.586	6.890 5.694 37.46 9.989 2.565	7.056 45.66 12.18	8.394 53.42 14.24	11.00 67.70 18.05	5.568 4.602 35.13 8.780 2.763	7.365 6.087 45.75 11.43 2.742	7.547 55.84 13.96	65.45 16.36	14.26 11.78 83.21 20.80 2.658

Diameter, d			81/2					9		
Thickness, t	3/16	1/4	5/16	3/8	1/2	3/16	1/4	5/16	3/8	1/2
Weight Area I S r	5.924 4.896 42.32 9.956 2.940	7.840 6.480 55.18 12.98 2.918	8.038 67.45 15.87	79.16 18.63	12.57 100.9 23.75	6.281 5.191 50.42 11.20 3.116	8.316 6.872 65.82 14.63 3.095	80.57 17.91	21.04	121.0 26.89

Diameter, d			91/2					10		
Thickness, t	3/16	1/4	5/16	3/8	1/2	3/16	1/4	5/16	3/8	1/2
_	6.637 5.485 59.49 12.52 3.293	8.791 7.265 77.76 16.36 3.272	95.28 20.05	23.59	143.6 30.22	6.994 5.780 69.59 13.92 3.470		111.7 22.34	11.34 131.5 26.30	168.8 33.76

Diameter, d			$10\frac{1}{2}$					11		
Thickness, t	3/16	1/4	5/16	3/8	1/2	3/16	1/4	5/16	3/8	1/2
	7.350 6.074 80.78 15.39 3.647	8.050 105.8 20.15	24.74	11.93 153.1 29.15	196.8 37.49	7.706 6.369 93.10 16.93 3.823		27.26	32.16	

PLATE GIRDER

ELEMENTS OF SECTION

These are typical calculations for the various elements of a section of a plate girder. They include not only the ordinary values: area, moment of inertia, and section modulus, but also torsional moment of inertia, J, and moment of inertia of compression flange, I_F. The latter values are needed for determining critical buckling stress of compression flange, see page 48.

		Area	A	bout ax	is X'-X	ζ'	Abou	ıt axis	Y-Y	71
Section	Weight	(gross)	у	Ay	Ay ²	I,	x	Ax²	Io	J
2 4 4" × 3" × 3%" · · · · · · 1PL ½" × 23¾" · · · · · · 2 4 3" × 3" × 3%" · · · · ·	6.02 7.18 5.10 18.30	$4.98 \\ 5.94 \\ 4.20 \\ \hline 15.12$	0.77 12.00 23.13	$ \begin{array}{r} 3.8 \\ 71.3 \\ 97.1 \\ \hline 172.2 \end{array} $	3 855 2247 3105	$ \begin{array}{r} 4 \\ 279 \\ \hline 3 \\ \hline 286 \end{array} $	1.39 0.00 1.00	$ \begin{array}{r} 9.6 \\ 0.0 \\ \underline{4.2} \\ \hline 13.8 \end{array} $	7.8 0.0 3.4 11.2	0.246 0.124 0.210 0.580

¹Torsion factor. Values for angles taken from pages 93 and 94. Values for plate obtained according to formula on page 49: $\frac{1}{3} \times 23.75 \times 0.25^3 = 0.124$

Weight =
$$18.30$$
 lb./ft.

Area =
$$15.12$$
 sq. in.

$$\overline{y} = \frac{172.2}{15.12} = 11.4$$
 inches

$$c = 24 - 11.4 = 12.6$$
 inches

$$I_x = 3105 + 286 - 172.2 \times 11.4 = 1430 \text{ in.}^4$$

$$I_y = 13.8 + 11.2 = 25.0 \text{ in.}^4$$

S (top flange) =
$$\frac{1430}{11.4}$$
 = 125 in.3

S (bottom flange) =
$$\frac{1430}{12.6}$$
 = 114 in.3 (See note.)

$$J = 0.580 \text{ in.}^4$$

 I_F (moment of inertia of compression flange about axis Y) = 9.6 + 7.8 = 17.4 in.⁴

Note.—These section elements are based on gross area and therefore the section modulus values divided into any given bending moment give extreme fiber stresses based on gross area. To obtain the stresses based on net area, multiply gross stress by ratio of gross to net area. Thus the bottom flange stress in this girder, based on net area, assuming 2½ in. rivet holes, is:

$$\frac{M}{114} \times \frac{4.20}{4.20 - 0.49} = \frac{M}{114} \times 1.13$$

FORMULAS

TABLE 22-FORMULAS FOR ELEMENTS OF SECTIONS

Figure 1

$$A = d^2$$

$$r = \frac{d}{\sqrt{12}} = 0.2887d$$

Figure 4

A = bd

$$1 = \frac{bd^3}{12}$$

$$I = \frac{bd^3}{12}$$
$$S = \frac{bd^2}{6}$$

$$r = \frac{d}{\sqrt{12}} = 0.2887d$$

Figure 2

 $A = d^2$

$$x = \frac{d}{\sqrt{2}} = 0.7071d$$

$$I = \frac{d^4}{12}$$

$$S = \frac{\sqrt{2} d^3}{12} = 0.1179 d^3$$

$$r = \frac{d}{\sqrt{12}} = 0.2887d$$

Figure 5

$$A = b$$

$$A = bd$$

$$I = \frac{bd^3}{3}$$

Figure 3

$$A = d_1^2 - d_2^2$$

$$x = \frac{d_1}{2}$$

$$I = \frac{d_1^4 - d_2^4}{12}$$

$$S = \frac{d_1^4 - d_2^4}{6d_1}$$

$$r = \sqrt{\frac{d_1^2 + d_2^2}{12}}$$

Figure 6

$$A = bd$$

$$I = A\left(\frac{d^2}{12} + c^2\right)$$

TABLE 22-FORMULAS FOR ELEMENTS OF SECTIONS-Continued

n = Number of Sides

111

TABLE 22-FORMULAS FOR ELEMENTS OF SECTIONS-Concluded

$$A = \pi (R_1^2 - R_2^2) = \frac{\pi (d_1^2 - d_2^2)}{4}$$

$$x = R_1 = \frac{d_1}{2}$$

$$I = \frac{\pi (R_1^4 - R_2^4)}{4} = \frac{\pi (d_1^4 - d_2^4)}{64}$$

$$S = \frac{\pi (R_1^4 - R_2^4)}{4R_1} = \frac{\pi (d_1^4 - d_2^4)}{32d_1}$$

$$r = \sqrt{\frac{R_1^2 + R_2^2}{4}} = \sqrt{\frac{d_1^2 + d_2^2}{16}}$$

Figure 15

$$A = \frac{\pi R^2}{2} = \frac{\pi d^2}{8}$$

$$I = 0.1098R^4 = 0.0069d^4$$

$$x = \frac{4R}{3\pi} = \frac{2d}{3\pi}$$

Figure 16

$$A = (\tan\Theta - \Theta)R^{2}$$

$$x = \left(\sec\Theta - \frac{\tan^{2}\Theta\sin\Theta}{3(\tan\Theta - \Theta)}\right)R$$

-

TECHNICAL DATA ON MISCELLANEOUS STRUCTURAL PRODUCTS

ATAU JADINHOST

MO

MISCELLANEOUS STRUCTURAL

PRODUCTS

TABLE 23-WEIGHT OF ALUMINUM AND STEEL SHEET

Thickness	B & S		Weig	ht in lb./s	q. ft.		Manufacturers' Standard
Inch	Gage	3S	24S	52S	4S 61S	Steel.	Gage for Steel Sheet*
0.2391	.;	3.409	3.443	3.340	3.374	10.000	3
$0.2294 \\ 0.2242$	3	3.270 3.196	3.303 3.229	3.204 3.132	3.237 3.164	9.375	4
0.2092		2.982	3.013	2.922	2.952	8.750	5
$0.2043 \\ 0.1943$	4	2.913 2.770	2.942 2.798	2.854 2.714	2.883 2.742	8.125	6
0.1819	5	2.593	2.619	2.541	2.567		
0.1793		2.556	2.582	2.504	2.530	7.500	7
0.1644	•••	2.344	2.367	2.296	2.320	6.875	8
0.1620	6	2.310	2.333	2.263	2.286		.;
0.1495 0.1443	7	2.131 2.057	2.153 2.078	2.088 2.016	2.110 2.036	6.250	
0.1345	TEL SE TOP	1.917	1.937	1.879	1.898	5.625	iö
0.1285	8	1.832	1.850	1.795	1.813		
0.1196		1.705	1.722	1.671	1.688	5.000	11
0.1144	9	1.631	1.647	1.598	1.614	1.955	iż
0.1046	10	1.491 1.453	1.506	1.461	1.476 1.438	4.375	
0.1019 0.0907	10 11	1.453	1.306	1.423 1.267	1.438		
0.0897	71.1	1.279	1.292	1.253	1.266	3.750	13
0.0808	iż	1.152	1.164	1.129	1.140		11
0.0747	13	1.065	1.076 1.037	1.043 1.006	1.054	3.125	14
0.0720 0.0673	13	1.026 0.959	0.969	0.940	0.950	2.812	i5
0.0641	14	0.914	0.923	0.895	0.905		
0.0598	12	0.853	0.861	0.835	0.844	2.500	16
0.0571 - 0.0538	15	0.814 0.767	0.822	0.798 0.751	0.806	2.250	iż
0.0508	16	0.724	0.732	0.710	0.717		n. 51
0.0478	9430 0	0.681	0.688	0.668	0.675	2.000	18
0.0453	i7	0.646	0.652	0.633	0.639	1.750	iġ
0.0418 0.0403	18	0.596 0.575	0.602 0.580	0.584 0.563	0.590	1.750	19
0.0403	19	0.512	0.517	0.501	0.507	1.500	20
0.0329	7 1911-0 11	0.469	0.474	0.460	0.464	1.375	21
0.0320	20	0.456	0.461	0.447	0.452	1.250	22
0.0299 0.0285	21	0.426 0.406	0.431 0.410	0.418 0.398	0.422 0.402	1.230	24
0.0269		0.384	0.387	0.376	0.380	1.125	23

^{*}The weights per square foot corresponding to these gage numbers are the same as for U. S. Standard Gage. The thicknesses are determined on the basis of a weight of 41.82 pounds per square foot per inch thick. Ref: Steel Product Manual, Carbon Steel Sheet, American Iron and Steel Institute, November, 1942.

TABLE 24—CORRUGATED SHEET¹

Elements of Section

	(D) : 1	W. i. 1.4	12-i	nch width of c	corrugated sl	neet
B & S Gage	Thickness	Weight	Area	I _{x-x}	Corrugated shows S_{x-x} In.3 Depth= \mathcal{T}_8 inch 0.097 0.173 0.137 0.109 0.086 0.068 0.0697 0.0553 0.0439 0.0347 0.0276	r _{x-x}
	Inches	Lb./sq. ft.	In.2	In.4	In.3	Inches
	Alcoa Industi	rial Roofing Sl	heet, Pitch=2	2.67 inches, D	epth = $\frac{7}{8}$ incl	1 4410
20	0.0320	0.560	0.476	0.0423	0.097	0.298
	87/1	Pitch=2.6	7 inches, Dep	oth=3/4 inch		3401 G
14 16 18 20 22	0.0641 0.0508 0.0403 0.0320 0.0253	1.094 ² 0.868 ² 0.669 ² 0.548 ² 0.434 ²	0.923 0.732 0.580 0.461 0.364	0.0649 0.0514 0.0408 0.0324 0.0256	0.137 0.109 0.086	0.266 0.266 0.266 0.266 0.266
		Pitch=1.2	26 inches, De	pth=3/8 inch	The state of	1480 p
16 18 20 22 24	0.0508 0.0403 0.0320 0.0253 0.0201	0.879 ² 0.696 ² 0.553 ² 0.443 ² 0.347 ²	0.744 0.590 0.468 0.370 0.294	0.0131 0.0104 0.0082 0.0065 0.0052	0.0553 0.0439 0.0347	0.133 0.133 0.133 0.133 0.133

¹A variety of special types and sizes of corrugations and other thicknesses of sheet can be furnished.

²Weight given is for 3S alloy. Corrugated sheet can be furnished in other alloys.

111

TABLE 25—WEIGHTS AND AREAS OF SQUARE AND ROUND BARS

Weights given are for 14S For other alloys, multiply by the following factors: 3S—0.980; 4S and 61S—0.970; 24S—0.990; 52S—0.960

Size	Squ	are		und
Inches	Weight, lb./ft.	Area, sq. in.	Weight, lb./ft.	Area, sq. in.
0	0	0	0	0
1/16	0.005	0.0039	0.004	0.0031
1/8	0.019	0.0156	0.015	0.0123
8/16	0.043	0.0352	0.033	0.0276
14	0.076	0.0625	0.059	0.0491
516	0.118	0.0977	0.093	0.0767
3/8	0.170	0.1406	0.134	0.1104
7/16	0.232	0.1914	0.182	0.1503
1/2	0.303	0.2500	0.238	0.1963
9/16	0.383	0.3164	0.301	0.2485
5/8	0.473	0.3906	0.371	0.3068
11/16	0.572	0.4727	0.449	0.3712
3/4	0.681	0.5625	0.535	0.4418
13/16	0.799	0.6602	0.627	0.5185
7/8	0.926	0.7656	0.728	0.6013
15/16	1.063	0.8789	0.835	0.6903
$ \begin{array}{c} 1 \\ 1 \frac{1}{16} \\ 1 \frac{1}{8} \\ 1 \frac{3}{16} \end{array} $	1.210	1.0000	0.950	0.7854
	1.366	1.1289	1.073	0.8866
	1.531	1.2656	1.203	0.994 0
	1.706	1.4102	1.340	1.1075
1½ 1½ 1½ 1¾ 1½ 1½	1.891 2.084 2.288 2.500	1.5625 1.7227 1.8906 2.0664	1.485 1.637 1.797 1.964	1.2272 1.3530 1.4849 1.6230
$1\frac{1}{2}$ $1\frac{9}{16}$ $1\frac{5}{8}$ $1\frac{11}{16}$	2.723	2.2500	2.138	1.7671
	2.954	2.4414	2.320	1.9175
	3.195	2.6406	2.509	2.0739
	3.446	2.8477	2.706	2.2365
$1\frac{3}{4}$ $1\frac{18}{16}$ $1\frac{7}{8}$ $1\frac{15}{16}$	3.706	3.0625	2.910	2.4053
	3.975	3.2852	3.122	2.5802
	4.254	3.5156	3.341	2.7612
	4.542	3.7539	3.567	2.9483
2	4.840	4.0000	3.801	3.1416
2 ¹ / ₁₆	5.147	4.2539	4.043	3.3410
2 ¹ / ₈	5.464	4.5156	4.291	3.5466
2 ³ / ₁₆	5.790	4.7852	4.548	3.7583
21/4	6.126	5.0625	4.811	3.9761
25/16	6.471	5.3477	5.082	4.2000
23/8	6.825	5.6406	5.360	4.4301
27/16	7.189	5.9414	5.646	4.6664
2½	7.563	6.2500	5.940	4.9087
2%6	7.945	6.5664	6.240	5.1572
25/8	8.338	6.8906	6.548	5.4119
211/6	8.739	7.2227	6.864	5.6727
23/4	9.151	7.5625	7.187	5.9396
213/16	9.571	7.9102	7.517	6.2126
27/8	10.001	8.2656	7.855	6.4918
215/16	10.441	8.6289	8.200	6.7771

(Continued on next page)

TABLE 25—WEIGHTS AND AREAS OF SQUARE AND ROUND BARS—Concluded

Weights given are for 14S
For other alloys, multiply by the following factors:
3S—0.980; 4S and 61S—0.970; 24S—0.990; 52S—0.960

Size	Squ		S-0.990; 52S-0.96	und
Inches	Weight, lb./ft.	Area, sq. in.	Weight, 1b./ft.	Area, sq. in.
3	10.890	9.0000	8.553	7.0686
3 ¹ / ₁₆	11.348	9.3789	8.913	7.3662
3 ¹ / ₈	11.816	9.7656	9.281	7.6699
3 ⁸ / ₁₆	12.294	10.1602	9.656	7.9798
314	12.781	10.5625	10.038	8.2958
35/6	13.277	10.9727	10.428	8.6180
33/8	13.783	11.3906	10.825	8.9462
37/6	14.298	11.8164	11.230	9.2806
3½ 3½ 3½ 35/8 311/6	14.823 15.357 15.900 16.453	12.2500 12.6914 13.1406 13.5977	11.642 12.061 12.488 12.922	9.6212 9.9678 10.3206 10.6796
334	17.016	14.0625	13.364	11.0447
318/6	17.588	14.5352	13.813	11.4159
37/8	18.169	15.0156	14.270	11.7933
315/6	18.760	15.5039	14.734	12.1768
4	19.360	16.0000	15.205	12.5664
4 ¹ / ₁₆	19.970	16.5039	15.684	12.9622
4 ¹ / ₈	20.589	17.0156	16.171	13.3641
4 ³ / ₁₆	21.218	17.5352	16.664	13.7721
4 ¹ / ₄	21.856	18.0625	17.165	14.1863
4 ⁵ / ₁₆	22.503	18.5977	17.674	14.6066
4 ³ / ₈	23.160	19.1408	18.190	15.0330
4 ⁷ / ₁₆	23.827	19.6914	18.713	15.4656
4 ¹ / ₂	24.503	20.2500	19.244	15.9044
4 ⁹ / ₁₆	25.188	20.8164	19.783	16.3492
4 ⁵ / ₈	25.883	21.3906	20.328	16.8002
4 ¹¹ / ₁₆	26.587	21.9727	20.881	17.2574
434	27.301	22.5625	21.442	17.7206
413 ₆	28.024	23.1602	22.010	18.1900
47 ₈	28.756	23.7656	22.585	18.6655
415 ₁₆	29.498	24.3789	23.168	19.1472
5	30.250	25.0000	23.758	19.6350
51/6	31.011	25.6289	24.356	20.1289
51/8	31.781	26.2656	24.961	20.6290
58/16	32.561	26.9102	25.574	21.1353
51/4	33.351	27.5625	26.194	21.6476
55/16	34.149	28.2227	26.821	22.1661
53/8	34.958	28.8906	27.456	22.6907
57/16	35.775	29.5664	28.098	23.2215
5 ¹ / ₂	36.603	30.2500	28.748	23.7584
5 ⁹ / ₁₆	37.439	30.9414	29.405	24.3014
5 ⁵ / ₈	38.285	31.6406	30.069	24.8505
5 ¹¹ / ₁₆	39.141	32.3477	30.741	25.4059
5 ³ / ₄	40.006	33.0625	31.420	25.9673
5 ¹⁸ / ₁₆	40.880	33.7852	32.107	26.5349
5 ⁷ / ₈	41.764	34.5156	32.801	27.1086
5 ¹⁵ / ₁₆	42.657	35.2539	33.503	27.6884

1111

1

TABLE 26-DIMENSIONS OF STRUCTURAL RIVETS

MANUFACTURED HEADS

Button

Sizes up to $\frac{1}{2}$ in. a=1.75d b=0.75d c=0.885d

High Button (Am. Std.)

Sizes $\frac{1}{2}$ in. and larger a=1.5d +0.031 in. b=0.75d+0.125 in. c=0.75d-0.281 in. f=0.75d+0.281 in.

Flat Countersunk

a=1.81db=0.50d

Oval Countersunk

a=1.577d b=0.50dg=0.187d

DRIVEN HEADS

Button

Sizes up to $\frac{1}{2}$ in. a=1.75d b=0.75d c=0.885d

Button (Am. Std.)

Sizes $\frac{1}{2}$ in. and larger a=1.5d +0.125 in. b=0.638d+0.053 in. c=0.638d+0.053 in. f=0.956d+0.080 in.

Cone Point

a=1.5db=0.75d

TABLE 27-LENGTHS OF RIVETS FOR VARIOUS GRIPS

GRIP

Hole diameter not more than 1/22 inch greater than rivet diameter.

LENGTHS OF RIVETS FOR CONE-POINT DRIVEN HEADS

Cone-point heads are dimensioned in Table 26, page 155.

Grip	d=1/4	d=5/16	d=3/8	$d = \frac{1}{2}$	$d = \frac{5}{8}$	$d = \frac{3}{4}$	$d = \frac{7}{8}$	d=1
1/8 1/4 3/8 1/2	716 5/8 13/16 15/16	1/2 5/8 13/16	9/16 11/16 7/8	$ \begin{array}{c} 11_{16} \\ 13_{16} \\ 1\\ 11_{8} \end{array} $	13/16 $15/16$ $11/8$ $15/16$	$ \begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \end{array} $	$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \end{array} $	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \\ 1\frac{5}{8} \end{array} $
5/8 3/4 7/8	1½ 1½ 1½ 1½ 158	$1\frac{1}{8}$ $1\frac{5}{16}$ $1\frac{1}{2}$ $1\frac{5}{8}$	$ \begin{array}{r} 13/6 \\ 15/6 \\ 11/2 \\ 15/8 \end{array} $	$ \begin{array}{c} 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{9}{16} \\ 1\frac{11}{16} \end{array} $	$ \begin{array}{c} 17_{16} \\ 19_{16} \\ 11_{16} \\ 11_{316} \end{array} $	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{11}{16} \\ 1\frac{13}{16} \\ 1\frac{15}{16} \end{array} $	15/8 13/4 115/16 21/16	13/4 17/8 2 21/8
$ \begin{array}{c} 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8} \\ 1\frac{1}{2} \end{array} $		13/4 2	$ \begin{array}{c} 1^{13}/6 \\ 2 \\ 2^{1}/8 \\ 2^{1}/4 \end{array} $	17/8 2 23/16 25/16	2 2½8 2½ 2½ 2½6	2½ 2½ 2½ 23/8 29/6	2 ³ / ₁₆ 2 ³ / ₈ 2 ¹ / ₂ 2 ⁵ / ₈	25/16 21/2 25/8 23/4
$ \begin{array}{c} 15/8 \\ 13/4 \\ 17/8 \\ 2 \end{array} $:::	:::	27/16 25/8 23/4 215/16	29/16 211/16 27/8 3	2 ¹¹ / ₁₆ 2 ¹³ / ₁₆ 2 ¹⁵ / ₁₆ 3 ¹ / ₈	2 ³ / ₄ 2 ¹⁵ / ₁₆ 3 ¹ / ₁₆ 3 ³ / ₁₆	27/8 31/16 33/16 35/16
$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$ $2\frac{1}{2}$:::		Ž		3½ 3½ 3½ 3½ 3½ 39 16	31/4 37/6 39/6 311/6	35/16 31/2 35/8 33/4	3½ 35/8 33/4 37/8

111

LENGTHS OF RIVETS FOR BUTTON DRIVEN HEADS

Button driven heads are dimensioned in Table 26, page 155.

Grip	d=1/4	d=5/16	d=3/8	$d = \frac{1}{2}$	d=5/8	$d = \frac{3}{4}$	$d = \frac{7}{8}$	d=1
Grip 1/8 1/4 2/8 1/2 5/8 3/4 7/8 1 11/8 11/8 11/2 15/8 13/4 17/8 2 21/8	d=1/4 9/16 3/4 15/16 11/16 13/16 13/18 11/2 13/4	d=5/16 5/8 13/16 15/16	d=3/8 3/4 7/8 11/16 13/16 15/16 11/2 111/16 113/16 2 22/6 22/6 21/2	d=½ 1 13/16 15/16 11/2 15/8 113/16 21/8 21/8 21/4 22/8 21/16 21/8 33/16	d=5/8 13/6 13/6 13/6 11/2 111/66 113/6 115/6 21/6 23/6 23/6 21/3/6 21/3/6 31/4 37/6	d=34 13/8 11/2 15/8 13/4 115/6 21/16 23/16 23/16 21/5/16 31/8 31/2	d=78 158 134 178 2 218 214 238 214 238 318 314 338 314	d=1 134 178 2 21/8 21/4 29/8 21/4 29/8 31/4 33/4 33/4 33/6 33/4 35/8
21/4 23/8 21/2					39/16 33/4 37/8	35/8 33/4 37/8	35/8 33/4 37/8	33¼ 37/8 4

TABLE 28-WEIGHTS OF STRUCTURAL RIVETS

BUTTON HEAD

Weights given are for 17S For A17S-T multiply by 0.980. For 53S multiply by 0.960

VALUES GIVEN IN POUNDS PER HUNDRED RIVETS

Length	746				Diamete	er in inc	hes				3
head Inches	1/4	5/16	3/8	7/16	1/2	5/8	3/4	7/8	1	11/8	11/4
Weight of heads only	0.2	0.4	0.6	0.9	1.4	2.8	4.8	7.6	11.3	16.1	22.1
1/2 5/8 3/4 7/8	0.4 0.5 0.6 0.6	0.9 1.0 1.1	1.4 1.6	 2.2	Z	::		::	::		
1 1½8 1¼ 1¾ 13%	0.7 0.8 0.8 0.9	1.2 1.3 1.4 1.5	1.7 1.9 2.0 2.1	2.4 2.6 2.8 3.0	3.4 3.6 3.9 4.1	··· ·· · · 7	=:: :::	::	::		
$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{5}{8} \\ 1\frac{3}{4} \\ 1\frac{7}{8} \end{array} $	0.9 1.0 1.1 1.1	1.6 1.7 1.8 1.9	2.3 2.4 2.6 2.7	3.2 3.4 3.6 3.8	4.4 4.6 4.9 5.1	7 8 8 9	12 12 13 13	18 19			::
2 21/8 21/4 23/8	1.2 1.2 1.3 1.4	2.0 2.0 2.1 2.2	2.8 3.0 3.1 3.3	3.9 4.1 4.3 4.5	5.4 5.6 5.9 6.1	9 9 10 10	14 14 15 15	20 21 21 22	27 28 29 30	39 40	8::- 8::-
2½ 25/8 23/4 27/8	1.4 1.5 1.6 1.6	2.3 2.4 2.5 2.6	3.4 3.5 3.7 3.8	4.7 4.9 5.1 5.3	6.4 6.6 6.9 7.1	11 11 11 12	16 17 17 18	23 24 24 25	31 32 33 34	41 42 44 45	53 55 56 58
3 3½8 3½ 3¾ 33/8	1.7 1.7 1.8 1.9	2.7 2.8 2.9 3.0	3.9 4.1 4.2 4.4	5.5 5.7 5.8 6.0	7.3 7.6 7.8 8.1	12 13 13 13	18 19 19 20	26 27 27 27 28	35 36 37 38	46 47 49 50	59 61 62 64
3½ 35/8 33/4 37/8	1.9 2.0 2.0 2.1	3.1 3.2 3.3 3.4	4.5 4.6 4.8 4.9	6.2 6.4 6.6 6.8	8.3 8.6 8.8 9.1	14 14 14 15	20 21 22 22	29 30 30 31	39 40 41 42	51 52 54 55	65 67 69 70
4 4½ 4½ 4¾ 4³/8	2.2 2.2 2.3 2.4	3.5 3.6 3.7 3.8	5.1 5.2 5.3 5.5	7.0 7.2 7.4 7.6	9.3 9.6 9.8 10.1	15 16 16 16	23 23 24 24	32 33 33 34	43 44 45 46	56 58 59 60	72 73 75 76
4½ 45/8 43/4 47/8	2.4 2.5 2.5 2.6	3.9 4.0 4.1 4.2	5.6 5.8 5.9 6.0	7.7 7.9 8.1 8.3	10.3 10.6 10.8 11.1	17 17 18 18	25 25 26 27	35 36 36 37	47 48 49 50	61 63 64 65	78 79 81 82
5	2.7	4.3	6.2	8.5	11.3	18	27	38	51	66	84

TABLE 29-SHEARING AND BEARING AREAS OF DRIVEN RIVETS

The second second

	% 4/2	0.766	49%	0.4608	0.0958 0.1197 0.1436 0.1676 0.1076 0.2394 0.2873 0.2873 0.2873 0.3830 0.4788 0.5266 0.5745
	8%	0.641	43/19	0.3227	0.0801 0.1002 0.1202 0.1402 0.2003 0.2003 0.2804 0.3205 0.3205 0.4407
	%	0.578	37/64	0.2624	0.0723 0.0903 0.1084 0.1264 0.1806 0.2529 0.2890 0.3251
	72	0.516	33,64	0.2091	0.0645 0.0806 0.0968 0.1129 0.1590 0.1613 0.2580
	3/16	0.453	2964	0.1612	0.0462 0.0566 0.0708 0.0849 0.0991 0.1416 0.1699 0.1982
Cold-Driven Rivets	%% %	0.386	W	0.1170	0.0313 0.0394 0.0483 0.0603 0.0724 0.0855 0.1206 0.1448
Cold-Dri	2/6	0.323	Д	0.08194	0.0207 0.0262 0.0329 0.0404 0.0505 0.0606 0.0707 0.0808 0.1009
OF 12 14 14 14 14 14 14 14 14 14 14 14 14 14	14	0.257	ഥ .	0.05187	0.01645 0.02082 0.02621 0.03213 0.04016 0.05622 0.06425
00000000000000000000000000000000000000	Inches	er, Inches	ize	e .	0.000 4.10011% %%%%%%% %%%%%% %%%%% 1.1000 4.10011% %%%%%%% %%%%%% 1.10000
55 55 56 50 50 50 50 50 50	Nominal Rivet Diameter, Inches	Recommended Hole Diameter, Inches	Corresponding Drill Size	Corresponding Single Shear Area, Sq. In.	Bearing Area, Sq. In., For Various Sheet and Plate Thicknesses

TABLE 29-SHEARING AND BEARING AREAS OF DRIVEN RIVETS-Concluded Hot-Driven Rivets

	11	1.063	11/16	0.8875	0.1329 0.1661 0.1963 0.2325 0.2658 0.3322 0.3986 0.4651 0.5315 0.5979 0.6644 0.7973 0.8637 0.9301 1.063
,	1/8	0.922	5964	0.6677	0.1153 0.1441 0.1729 0.2017 0.2305 0.2505 0.
	3%	0.781	25/32	0.4791	0.0976 0.0976 0.1220 0.1464 0.1953 0.1953 0.2441 0.2929 0.3417 0.3905 0.4393 0.4881 0.5369 0.5369
	8%	0.656	21/32	0.3380	0.0820 0.1025 0.1230 0.1435 0.1640 0.2050 0.2460 0.2870 0.3890 0.4100 0.4510
	3/6	0.594	1932	0.2771	0.0742 0.0928 0.1114 0.1299 0.1299 0.2599 0.2599 0.3341
Hot-Dilven Kivets	1/2	0.531	17/22	0.2215	0.0664 0.0830 0.0996 0.1162 0.1162 0.1328 0.1559 0.2333 0.2333
H01-DI	7/6	0.469	15/32	0.1728	0.0478 0.0586 0.0587 0.00879 0.1026 0.1173 0.1759 0.2052
	88	0.397	×	0.1238	0.0322 0.0405 0.0496 0.0496 0.0744 0.0868 0.0993 0.1241 0.1489
	Inches	er, Inches	ize	a)	0.000 4.1100 4.1000 4.000 4.000 4.000 4.0000 4.000
	Nominal Rivet Diameter, Inches	Recommended Hole Diameter, Inches	Corresponding Drill Size	Corresponding Single Shear Area, Sq. In.	Bearing Area, Sq. In., For Various Sheet and Plate Thicknesses

TABLE 30—DIMENSIONS OF ROUGH AND SEMIFINISHED BOLTS

All dimensions in inches

		i ==	Shank				Head		. 6-			Nut			
Diameter of bolt	Threads per inch	Diameter at root Gross area in shank		area in root of		Hexagonal Hex. or square		Squ	iare	Hexa	gonal	Hex. or square	Square		
		of thread	Sq. in.	Sq. in.	a	ь	h	a	b	a	ь	h	a	b	
1/4 5/16 3/8 7/16	20 18 16 14	0.1850 0.2403 0.2938 0.3447	$0.077 \\ 0.111$	0.027 0.045 0.068 0.093	3/8 1/2 9/16 5/8	0.43 0.58 0.65 0.72	1364	3/8 1/2 9/16 5/8	0.53 0.71 0.80 0.88	7/16 9/16 5/8 3/4	0.51 0.55 0.72 0.87	17/64 21/64	7/16 9/16 5/8 3/4	0.62 0.80 0.88 1.06	
1/2 9/16 5/8 3/4 7/8	13 12 11 10 9	0.4001 0.4542 0.5069 0.6201 0.7307	0.307 0.442	0.126 0.162 0.202 0.302 0.419	3/4 7/8 15/16 11/8 15/16	0.87 1.01 1.08 1.30 1.52	3/8 27/64 1/2	3/4 7/8 15/16 11/8 15/16	1.06 1.24 1.33 1.59 1.86	13/16 7/8 15/16 11/8 15/16	0.94 1.01 1.08 1.30 1.52	1/2 35/64 21/32	13/16 7/8 15/16 11/8 15/16	1.15 1.24 1.33 1.59 1.86	
1 1½ 1¼ 1¼	8 7 7	0.8376 0.9394 1.0644	0.994	0.551 0.693 0.890	$\frac{1\frac{1}{2}}{1^{11}/6}$ $\frac{17}{8}$	1.73 1.95 2.17		$\frac{1\frac{1}{2}}{1^{11}/6}$	2.12 2.39 2.65	$\frac{1\frac{1}{2}}{1^{11}/6}$ $\frac{17}{8}$	1.73 1.95 2.17		$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{11}{16} \\ 1\frac{7}{8} \end{array}$	2.12 2.39 2.65	

TABLE 31—APPROXIMATE WEIGHT OF ROUGH AND SEMIFINISHED HEXAGON HEAD BOLTS

Weights in pounds per hundred bolts of alloy 24S

Length under		Diameter in inches										
head Inches	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1	11/8	11/4
Weight of heads only	0.21	0.44	0.69	1.01	1.61	2.50	3.23	5.53	8.92	12.89	18.69	25.90
1/4 1/2 3/4	0.30 0.40 0.49	0.75 0.90	1.13 1.35	1.62 1.92	2.41 2.81	3.52 4.03	5.13	8.31		<u>.</u>		
$ \begin{array}{c} 1 \\ 1 \frac{1}{4} \\ 1 \frac{1}{2} \\ 1 \frac{3}{4} \end{array} $	0.61 0.73 0.85 0.96	1.08 1.27 1.46 1.63	1.60 1.87 2.15 2.39	2.26 2.63 3.00 3.34	3.21 3.70 4.19 4.67	4.54 5.16 5.77 6.39	5.77 6.40 7.04 7.92	10.17 11.10	15.30 16.58	21.23 22.90	27.11 29.21 31.31 33.41	39.11 41.75 44.40
$ \begin{array}{c} 2 \\ 2 \frac{1}{4} \\ 2 \frac{1}{2} \\ 2 \frac{3}{4} \end{array} $	1.08 1.18 1.30 1.42	1.82 1.99 2.18 2.36	2.66 2.94 3.21 3.48	3.71 4.08 4.45 4.82	5.16 5.64 6.03 6.61	7.00 7.61 8.23 8.84		14.39 15.48	20.85 22.35	30.45	37.63 39.74	47.05 49.70 52.31 55.00
3 3 ¹ / ₄ 3 ¹ / ₂ 3 ³ / ₄	1.54 1.66 1.78 1.90	2.55 2.74 2.93 3.12	3.75 3.98 4.25 4.52	5.19 5.50 5.87 6.24	7.10 7.50 7.99 8.47	9.46 9.98 10.58 11.20	12.35 13.11	18.77 19.87		36.04 38.01	47.19 49.68	57.60 61.45 64.51 67.52
4 4½ 4½ 4½ 4¾	2.02 2.14 2.26 2.38	3.31 3.49 3.68 3.87	4.80 5.07 5.34 5.61	6.61 6.98 7.35 7.72	8.95 9.44 9.93 10.41	11.81 12.42 13.04 13.66	16.14	23.01 24.11	32.64 34.14	43.59 45.55	56.74 59.22	70.60 72.81 75.89 78.92
5	2.50	4.06	5.88	8.10	10.89	14.26	17.66	26.31	37.14	49.45	64.19	82.00

TABLE 32—APPROXIMATE WEIGHT OF ROUGH AND SEMIFINISHED HEXAGON NUTS

Weights in pounds per hundred nuts of alloy 24S

Size Inches	1/4	5/16	3/8	7/16	1/2	9/16	5/8	3/4	7/8	1	11/8	11/4
Weight per hundred	0.26	0.53	0.75	1.27	1.65	2.09	3.09	4.33	6.88	10.26	14.85	20.05

TABLE 33-DIMENSIONS AND ELEMENTS OF SECTIONS OF PIPE

Nominal Pipe Size, Inch	Schedule Number‡	Outside Diameter, Inch	Inside Diameter, Inch	Wall Thick- ness, Inch	Weight per Linear Foot Pounds§	Cross- Sectional Wall Area Sq. Ins.	Moment of Inertia Inches	Section Modulus Inches ³	Radius of Gyration Inches
1/8	40* 80†	.405 .405	.269	.068	.085	0.0720 0.0925	0.0011 0.0012		0.1215 0.1146
1/4	40* 80†	. 540 . 540	.364 .302	.088 .119	.147 .185	0.1250 0.1574	0.0033 0.0038		0.1628 0.1547
3/8	40* 80†	.675 .675	.493 .423	.091 .126	.196 .256	0.1670 0.2173	0.0073 0.0086		0.2090 0.1992
$\frac{1}{2}$	40* 80†	.840 .840	.622 .546	.109 .147	.294 .376	0.2503 0.3200	0.0171 0.0201		0.2613 0.2505
3/4	40* 80†	1.050 1.050	.824 .742	.113 .154	.391 .510	0.3326 0.4335	0.0370 0.0448		0.3337 0.3214
1	40* 80†	1.315 1.315	1.049 .957	. 133 . 179	. 581 . 751	0.4939 0.6388	0.0873 0.1056		0.4205 0.4066
11/4	40* 80†	1.660 1.660	1.380 1.278	.140 .191	.786 1.037	0.6685 0.8815	0.1947 0.2418		0.5397 0.5238
$1\frac{1}{2}$	40* 80†	1.900 1.900	1.610 1.500	.145 .200	.940 1.256	0.7995 1.0681	0.3099 0.3912		0.6226 0.6052
2	40* 80†	2.375 2.375	2.067 1.939	.154 .218	1.264 1.737	1.0745 1.4773	0.6657 0.8679		0.7871 0.7665
2½	40* 80†	2.875 2.875	2.469 2.323	.203 .276	2.004 2.650	1.7041 2.2535	1.530 1.924	1.064 1.339	0.9474 0.9241
3	40* 80†	3.500 3.500	3.068 2.900	.216 .300	2.621 3.547	2.2285 3.0159	3.017 3.894	1.724 2.225	1.164 1.136
$3\frac{1}{2}$	40* 80†	4.000 4.000	3.548 3.364	.226 .318	3.151 4.326	2.6795 3.6784	4.788 6.281	2.394 3.140	1.337 1.307
4	40* 80†	4.500 4.500	4.026 3.826	.237 .337	3.733 5.183	3.1740 4.4074	7.232 9.611	3.214 4.272	1.510 1.477
5	40* 80†	5.563 5.563	5.047 4.813	.258 .375	5.057 7.188	4.2999 6.1120	15.16 20.67	5.451 7.432	1.878 1.839
6	40* 80†	6.625 6.625	6.065 5.761	.280 .432	6.564 9.884	5.5814 8.4050	28.14 40.49	8.496 12.22	2.246 2.195
8	30 40 80	8.625 8.625 8.625	8.071 7.981 7.625	.277 .322 .500	8.543 9.878 15.01	7.2646 8.3992 12.7628	63.35 72.49 105.7	14.69 16.81 24.51	2.953 2.938 2.878
10	30 40 60	10.750 10.750 10.750 10.750	10.192 10.136 10.020 9.750	.279 .307 .365 .500	10.79 11.84 14.00 18.93	9.1779 10.0720 11.9082 16.1007	125.8 137.4 160.7 211.9	23.41 25.57 29.90 39.43	3.704 3.694 3.674 3.628
12		12.750 12.750	12.000 11.750	.375	17.14 22.63	14.5789 19.2423	279.3 361.5	43.81 56.71	4.377 4.335

^{*}Also designated as Standard Pipe.

Also designated as Extra-Heavy or Extra-Strong Pipe.

†Schedule Numbers conform to American Standard for Wrought Iron and Wrought Steel
Pipe, ASA B36.10.

[§]Weights calculated for 61S. For 3S multiply by 1.010. All calculations based on nominal dimensions.

SPECIFICATIONS, TOLERANCES AND COMMERCIAL SIZES

OF

STRUCTURAL MATERIAL

TABLE 34—SPECIFICATIONS FOR ALUMINUM ALLOYS USED FOR STRUCTURAL MATERIAL

	Wrought alloys	Federal ¹	Army ¹	Navy ¹	S.A.E.	A.S.T.M. ²
3S	Sheet and plate	QQ-A-359		47A4	29	B209 B178
	Bar, rod, wire and shapes Tubing Rivets and rivet wire and rod	QQ-A-356 WW-T-788		46A6 44T20 43R5	29 29	B221 B210
14S	Forgings. Extrusions.	QQ-A-367		46A7	260 260	B221
24S	Sheet and plate	QQ-A-355		47A10	24	B209
	Bar, rod and shapes	QQ-A-354		46A9	24	B211 B221
	Tubing	WW-T-785		44T28	24 24	B210
	RivetsBolts, nuts, studs and tap rivets Machine screws	FF-B-571 FF-S-91		43B11 42S5		- ::::::
Alc. 24S	Sheet and plate	QQ-A-362			240	B209
A51S	Forgings	QQ-A-367		46A7	280	
52S	Sheet and plate	QQ-A-318		47A11	201	B209 B178
	Bar, rod and wire	QQ-A-315 WW-T-787		46A11	201 201	B211 B210
53S	Rivets Rivet wire			43R5 43R5	:::	
61S	Sheet and plate	QQ-A-327		47A12	281	B209 B178
	Bar, rod and shapes	QQ-A-325		46A10	281	B211 B221
	Tubing	WW-T-789		44T30	281	B210
195 214. 220.	Sand castings	QQ-A-601-3 QQ-A-601-3 QQ-A-601-3 QQ-A-601-3	57-72-6	46A1 46A1 46A1 46A1	35 38 320 324 323	B26 B26 B26 B26 B26

¹Revisions of Federal, Army, and Navy specifications are designated by a letter following the specification number. Purchasers should specify that material conform with the issue of the specifications in effect at the date of the proposal under which the contract was issued.

²A.S.T.M. specifications have a suffix (such as -49T) indicating the year of issue.

TABLE 35—MECHANICAL PROPERTIES SPECIFICATIONS— 3S, 4S, 52S SHEET AND PLATE

	Tensile Strength,	Minimum Elongation,¹ Per Cent in 2 Inches					
Grade and Temper	Lb./Sq. In. Minimum, Except for	Thickness, ³ Inches					
	Soft (O) Temper	3.000- .501	.500- .250	.249-	.161- .114	.113-	
3S-O 3S-H12 or H22 3S-H14 or H24 3S-H16 or H26 3S-H18 or H28	19,000 (2) 17,000 19,500 24,000 27,000	23 10 10 	23 9 8 	25 8 7	25 7 6 4	25 6 5 4 4	
4S-O 4S-H32 4S-H34 4S-H36 4S-H38	29,000 (²) 28,000 32,000 35,000 38,000	16 	16 	18 6 5	18 6 5 4 4	18 5 4 4	
52S-O 52S-H32 52S-H34 52S-H36 52S-H38	31,000 (2) 31,000 34,000 37,000 39,000	18 12 10 	18 9 10 	20 9 7 	20 9 7 4 4	20 7 6 4 4	

¹Test specimens taken parallel to direction of rolling from flat and coiled sheet in H12, H32, H14 and H34 tempers.

²Maximum. So specified to insure complete annealing.

Maximum thickness for H12, H22 and H32 is 1½6 inch; for H14, H24 and H34 is ½6 inch; for H16, H26 and H36 is 0.162 inch; and for H18, H28 and H38 is 0.128 inch. Special surface finishes may further restrict the thicknesses.

TABLE 36—MECHANICAL PROPERTIES SPECIFICATIONS— 14S ALLOY PRODUCTS

Material	Thickness, Inch	Tensile Strength, Lb./Sq. In. Minimum, Except for 14S-O	Yield Strength (Offset = 0.2%), Lb./Sq. In. Minimum	Elongation Per Cent in 2 Inches or in 4D, Minimum
Sheet and Plate				
Alclad 14S-T3 Flat Sheet	0.040-0.249	57,000 (1)	36,000 (1)	15
Alclad 14S-T4 Plate	{0.250-0.499 {0.500-1.000	57,000 (¹) 58,000 (¹)	36,000 (¹) 34,000	15 15
Alclad 14S-T6 Flat Sheet	0.040-0.249	64,000	57,000	8
Plate	{0.250-0.499 0.500-1.000	64,000 67,000	57,000 59,000	8 6
Extruded Rods, Ba	ars and Shapes			
14S-T4	A11	50,000	35,000 (1)	12
14S-T6	0.125-0.499 0.500-0.749	60,000 64,000 (¹)	53,000 58,000 (¹)	7 7
	0.750 and over Area 25 sq. in., max. Area over 25 to 32 sq. in.	68,000 (¹) 68,000 (¹)	60,000 (¹) 58,000 (¹)	7 6
Shapes (rolled)	1			,
14S-T4	0.125 and over	55,000	32,000	16
14S-T6	0.170 and over	65,000	55,000	8

¹Flat sheet and plate heat treated by the user cannot be required to have a yield strength higher than 34,000 pounds per square inch. Extruded shapes reheat treated by the user cannot be required to have a yield strength higher than 29,000 pounds per square inch; those reheat treated and aged by the user, regardless of thickness, cannot be required to develop tensile and yield strengths higher than 60,000 and 53,000 pounds per square inch, respectively.

TABLE 37—MECHANICAL PROPERTIES SPECIFICATIONS— 24S ALLOY PRODUCTS

Material	Thickness, Inches	Tensile Strength, Lb./Sq. In. Minimum, Except for 24S-O	Yield Strength (Offset = 0.2%), Lb./Sq. In. Minimum	Elongation, Per Cent in 2 Inches or in 4D, Minimum
Sheet and Plate				
24S-T3 Flat Sheet	{0.052-0.128 (0.129-0.249	64,000 (¹) 64,000 (¹)	42,000 (1) 42,000 (1)	17 15
24S-T4 Plate	0.250-0.500 0.501-1.000 1.001-1.500 1.501-2.000 2.001-3.000	64,000 62,000 60,000 60,000 56,000	40,000 40,000 40,000 40,000 40,000	12 8 7 6 4
Alclad 24S-T3 Flat Sheet	0.021-0.063 0.064-0.128 0.129-0.249	59,000 (¹) 62,000 (¹) 62,000 (¹)	39,000 (¹) 40,000 (¹) 40,000 (¹)	15 15 13
Alclad 24S-T4 Plate	0.250-0.499 0.500-1.000 1.001-1.500 1.501-2.000 2.001-3.000	62,000 62,000 60,000 60,000 56,000	40,000 40,000 40,000 40,000 40,000	11 8 7 6 4
Wire, Rod, Bar and Sl	hapes			
24S-T4 Wire Wire, Rods and Bars (rolled or	up to 0.124	62,000		
cold finished) Rods, Bars and	0.125-5.500	62,000	40,000	14
Shapes (extruded)	Section thickness: 0.050 to 0.249 0.250 to 0.749 0.750 to 1.499	57,000 (¹) 60,000 (¹) 65,000 (¹)	42,000 (¹) 44,000 (¹) 46,000 (¹)	12 12 10
	1.500 and over Area 25 sq. in. max. Area over 25 to 32 sq. in	70,000 (¹) 68,000 (¹)	52,000 (¹) 48,000 (¹)	10 8
Tubing				
24S-T3	Diameter ¼" to 2" Wall thickness:			II-v
Parried I have	0.018-0.024 0.025-0.049 0.050-0.259 0.260-0.500	64,000 64,000 64,000	42,000 (1) 42,000 (1) 42,000 (1) 42,000 (1)	10 12 14 16
dad dan da da	Diameter greater than 2" to 8" Wall thickness: 0 025-0.259 0.260-0.500	64,000 64,000	42,000 (¹) 42,000 (¹)	10 12

IFlat sheet in 24S heat treated by the user may have minimum tensile and yield strengths of 62,000 and 40,000 psi, respectively. Alclad 24S flat sheet up to 0.063 inch thick, when heat treated by the user, may have minimum tensile and yield strengths of 58,000 and 37,000 psi, respectively, while that 0.064 inch or thicker may have minimum strengths of 61,000 and 38,000 psi, respectively. Tubing heat treated by the user may have a minimum yield strength of 40,000 psi, and extruded shapes, minimum tensile and yield strengths of 57,000 and 38,000 psi, respectively.

TABLE 38-MECHANICAL PROPERTIES SPECIFICATIONS-61S ALLOY PRODUCTS

Material	Thickness, Inches	Tensile Strength, Lb./Sq. In. Minimum, Except for 61S-O	Yield Strength (Offset= 0.2%), Lb./Sq. In. Minimum	Elongation Per Cent ir 2 Inches or in 4D, Minimum
Sheet and Plate				10-41 20-4
61S-T4	0.021-0.249 0.250-1.000 1.001-3.000	30,000 30,000 30,000	16,000 16,000 16,000	16 18 16
61S-T6	0.021-0.249 0.250-0.500 0.501-1.000 1.001-2.000 2.001-3.000	42,000 42,000 42,000 42,000 42,000	35,000 35,000 35,000 35,000 35,000	10 10 9 8 6
Tubing				1 1 1
61S-T4	Diameter 1/4" to 2" Wall thickness: 0.025-0.049 0.050-0.259 0.260-0.500	30,000 30,000 30,000	16,000 16,000 16,000	16 18 20
	Diameter greater than 2" to 8" Wall thickness: 0.025-0.049 0.050-0.259 0.260-0.500	30,000 30,000 30,000	16,000 16,000 16,000	14 16 18
61S-T6	Diameter 1/4" to 2" Wall thickness: 0.025-0.049 0.050-0.259 0.260-0.500	42,000 42,000 42,000	35,000 35,000 35,000	10 12 14
	Diameter greater than 2" to 8" Wall thickness: 0.025-0.049 0.050-0.259 0.260-0.500	42,000 42,000 42,000	35,000 35,000 35,000	8 10 12

TABLE 38—MECHANICAL PROPERTIES SPECIFICATIONS— 61S ALLOY PRODUCTS—Concluded

Material	Thickness, Inches	Tensile Strength, Lb./Sq. In. Minimum, Except for 61S-O	Yield Strength (Offset= 0.2%), Lb./Sq. In. Minimum	Elongation, Per Cent in 2 Inches or in 4D, Minimum
Wire, Rods, Bars and	Shapes			,
61S-T4 Wire Wire, Rods, Bars and Shapes (rolled or cold finished) Rods, Bars and Shapes (extruded)	up to 0.124 0.125-3.000 All sizes	30,000 30,000 26,000	16,000 16,000	18
61S-T6 Wire Wire, Rods, Bars and Shapes (rolled or cold finished) Rods, Bars and Shapes (extruded)	up to 0.124 0.125-3.000 All sizes	42,000 42,000 38,000	35,000 35,000	10 10

TABLE 39—MECHANICAL PROPERTIES SPECIFICATIONS— ALUMINUM ALLOY DIE FORGINGS 1, 2

Material	Tensile Strength, Lb./Sq. In. Minimum	Yield Strength (Offset=0.2%) Lb./Sq. In. Minimum	Elongation, Per Cent in 2 Inches Minimum	Brinell Hardness, 500-kg. Load 10-mm. Ball Minimum
14S-T4	55,000	30,000	16.0	100
14S-T6	65,000	55,000	10.0	125
A51S-T6	44,000	37,000	14.0	90

¹These properties apply to forgings up to 4 inches in diameter or thickness.

²Values obtained from standard half-inch diameter test specimens with axis of specimen parallel to direction of grain flow. Values in compression are at least equal to those in tension.

TABLE 40—COMMERCIAL TOLERANCES FOR THICKNESS OF FLAT 3S SHEET AND PLATE

Tolerance, Plus or Minus, Inch

		Width, Inches								
Thickness, Inches	Up to 18, incl.	Over 18 through 36	Over 36 through 54	Over 54 through 72	Over 72 through 90	Over 90 through 102	Over 102 through 132			
0.046 to 0.068 0.069 to 0.076 0.077 to 0.096 0.097 to 0.108 0.109 to 0.140 0.141 to 0.172 0.173 to 0.203 0.204 to 0.249 0.250 to 0.320 0.321 to 0.438 0.439 to 0.625 0.626 to 0.875 0.876 to 1.125 1.126 to 1.375	0.0025 0.0025 0.003 0.0035 0.0045 0.006 0.007 0.009 0.013 0.019 0.025 0.030 0.035	0.003 0.003 0.003 0.004 0.0045 0.006 0.007 0.009 0.013 0.019 0.025 0.030 0.035 0.040	0.004 0.004 0.004 0.005 0.005 0.008 0.009 0.011 0.013 0.019 0.025 0.030 0.035	0.005 0.006 0.006 0.007 0.007 0.009 0.011 0.013 0.015 0.019 0.025 0.030 0.035	0.007 0.008 0.008 0.009 0.009 0.011 0.013 0.015 0.017 0.023 0.030 0.037 0.045 0.052	0.010 0.010 0.012 0.015 0.017 0.020 0.026 0.035 0.045 0.055	0.026 0.035 0.045 0.055 0.065			
1.376 to 1.625 1.626 to 1.875 1.876 to 2.250 2.251 to 2.750 2.751 to 3.000	0.045 0.052 0.060 0.075 0.090	0.045 0.052 0.060 0.075 0.090	0.045 0.052 0.060 0.075 0.090	0.045 0.052 0.060 0.075 0.090	0.060 0.070 0.080 0.100 0.120	0.075 0.088 0.100 0.125 0.150	0.075 0.088 0.100			

TABLE 41—COMMERCIAL TOLERANCES FOR WIDTH AND LENGTH OF SHEARED FLAT SHEET, ALL ALLOYS

Width Tolerance, Plus or Minus, Inch

Thickness, Inch	Widths 1/4" through 4"	Widths over 4" through 18"	Widths over 18" through 36"	Widths over 36" through 54"	Widths over 54" through 72"	Widths over 72" through 102"
0.249 to 0.103	1/32 (1)	3/32 (2)	1/8	3/16	3/16	1/4
0.102 to 0.006		1/16	3/32	1/8	5/32	3/16

Length Tolerance, Plus or Minus, Inch

Thickness, Inch	Lengths through 18"	Lengths over 18" through 48"	Lengths over 48" through 120"	Lengths over 120" through 180"	Lengths over 180" through 540"
0.249-0.006	1/16	3/32	1/8	5/32	1/4

¹For widths of 4 inches or less the maximum thickness of flat sheet which can be sheared commercially is 0.093 inch. Thicker sheet is sawed.

²For flat sheet in thicknesses of 0.201 inch to 0.249 inch the minimum width which can be sheared is 5 inches. Narrower widths must be sawed.

TABLE 42—COMMERCIAL TOLERANCES FOR WIDTH AND LENGTH OF SHEARED PLATE, ALL ALLOYS

Tolerance, Plus Only, Inch

			Length Tolerance	e
Thickness, ¹ Inch	Width Tolerance ¹	Lengths through 12 ft.	Lengths over 12 ft. through 20 ft.	Lengths over 20 ft. through 45 ft.
1.000 to 0.501 0.500 to 0.250	1/2 3/8	1/2 3/8	%16 716	5/8 1/2

¹For limits for shearing plate see Note 2 to Tables 70 to 73.

TABLE 43—COMMERCIAL TOLERANCES FOR WIDTH AND LENGTH OF SAWED SHEET AND PLATE, ALL ALLOYS

Tolerance, Plus or Minus, Inch

Thickness, Inches	Dimensions through 10"	Dimensions over 10" through 36"	Dimensions over 36" through 60"	Dimensions over 60" through 130"
Up to 3	1/32	1/16	3/32	3/32

TABLE 44—COMMERCIAL TOLERANCES FOR ROLLED STRUCTURAL SHAPES

Dimensions	Tolerance
Thickness of section	Plus or minus 2½ per cent of nominal thickness—minimum tolerance: ±0.010 inch.
Over-all dimensions. Length of leg of angles or zees.	Plus or minus $2\frac{1}{2}$ per cent of nominal—minimum tolerance: $\pm \frac{1}{6}$ inch.
Length Up to 20 feet, not inclusive. 20 feet to 30 feet, inclusive. Over 30 feet.	Minus 0, Plus ¼ inch. Minus 0, Plus ¾ inch. Minus 0, Plus ½ inch.
Channels, depth.	Plus ¾ inch, minus ¼ inch.
Channels, width of flange.	Plus or minus 4 per cent of nominal width.
Weight of a lot or shipment of sizes 3 inches or larger.	Plus or minus 2½ per cent of nominal weight.

¹Actual weight shipped is invoiced. For sizes smaller than 3 inches, dimension tolerances only apply.

OK

HANDBO

URAL

TABLE 45-COMMERCIAL TOLERANCES FOR THICKNESS OF FLAT 4S, ALCLAD 14S, 24S, ALCLAD 24S, 52S, 61S, SHEET AND PLATE

Applies only to commercial sizes, tolerances for other sizes subject to inquiry.

Tolerance, Plus or Minus, Inch

				٠		Width, Inches	nches					
Thickness, Inches	Up to 18, incl.	Over 18 thru 36	Over 36 thru 48	Over 48 thru 54	Over 54 thru 60	Over 60 thru 66	Over 66 thru 72	Over 72 thru 78	Over 78 thru 84	Over 84 thru 90	Over 90 thru 96	Over 96 thru 120
0.046 to 0.068 0.069 to 0.076 0.077 to 0.096 0.097 to 0.140 0.191 to 0.172 0.173 to 0.203 0.204 to 0.249 0.250 to 0.320 0.321 to 0.438 0.439 to 0.625 0.626 to 0.875 0.876 to 1.125 1.126 to 1.375 1.376 to 1.625 1.876 to 1.875 1.876 to 2.250 2.251 to 2.750	0.0025 0.0035 0.004 0.004 0.005 0.00	0.003 0.003 0.0045 0.0045 0.007 0.030 0.035 0.040 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045	0.004 0.005 0.005 0.005 0.019 0.019 0.019 0.025 0.045	0.005 0.005 0.005 0.005 0.005 0.019 0.019 0.045 0.045 0.045 0.045 0.045 0.045 0.045	0.006 0.006 0.007 0.007 0.007 0.013 0.013 0.045 0.045 0.045 0.045 0.045	0.000 0.000 0.010 0.010 0.010 0.010 0.020 0.020 0.030 0.045 0.045 0.045 0.045 0.045 0.045 0.050	0.000 0.010 0.010 0.010 0.012 0.023 0.023 0.025 0.045 0.045 0.045 0.045 0.045	0.008 0.003 0.017 0.013 0.013 0.013 0.023 0.023 0.045 0.050 0.050 0.050 0.050 0.050	0.009 0.001 0.011 0.014 0.014 0.016 0.025 0.025 0.037 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.012 0.012 0.015 0.016 0.017 0.025 0.025 0.030 0.030 0.050 0.050 0.050	0.018 0.022 0.022 0.026 0.026 0.035 0.045 0.045 0.065 0.065	0.020 0.020 0.023 0.025 0.025 0.045 0.045 0.045 0.055

See Tables 75 and 76 for commercial sizes of sheet, and Tables 70 through 73 for commercial sizes of plate.

TABLE 46—COMMERCIAL TOLERANCES FOR COLD-FINISHED WIRE, ROD AND BAR, ALL ALLOYS

(Rounds, Squares, Hexagons, Rectangles up to 11/2 Inches Thick or to 4 Inches Wide)

Diameter or	Tolera	nce, Inch, Plus or Mi	nus
Distance Across Flats, Inches	Rounds	Squares, Hexagons	Rectangles
Up to 0.035	0.0005		0.001
0.036 to 0.064	0.001		0.0015
0.065 to 0.500	0.0015	0.002	0.002
0.501 to 1.000	0.002	0.0025	0.0025
1.001 to 1.500	0.0025	0.003	0.003
1.501 to 2.000	0.004	0.005	0.005
2.001 to 3.000	0.004		0.005
3.001 to 4.000			0.005

TABLE 47—COMMERCIAL TOLERANCES FOR ROLLED ROUND ROD, ALL ALLOYS

Diameter,	Toleran	ice, Inch	Diameter,	Tolerar	ice, Inch
Inches	Plus	Minus	Inches	Plus	Minus
1.501 to 2.000 2.001 to 3.499	0.006 0.008	0.006 0.008	3.500 to 5.000 5.001 to 8.000	1/32 1/16	164 1/32

TABLE 48—COMMERCIAL TOLERANCES FOR ROLLED BAR, ALL ALLOYS

(Squares, Hexagons, 1 Rectangles)

Least Distance Across Flats, Inches	Tolerance, Inch, Plus or Minus	Width (of Rectangles), Inches	Tolerance, Inch, Plus or Minus
Up to 0.500 0.501 to 0.750 0.751 to 1.000 1.001 to 2.000 2.001 to 4.000	0.006 0.008 0.012 0.016 0.020	Up to 1.500 1.501 to 4.000 4.001 to 6.000 6.001 to 10.000	1/64 1/52 3/64 1/16

Available only in sizes greater than 1.5 inches; smaller sizes cold-finished.

TABLE 49—COMMERCIAL TOLERANCES FOR CROSS-SECTIONAL DIMENSIONS OF EXTRUDED RODS, BARS AND SHAPES

			Tolerance, 1, 2 inch, plus or minus	h, plus or minus		
	Metal d	Metal dimensions		Space	Space dimensions	
C C C C C C C C C C C C C C C C C C C	Allowable deviated	Allowable deviation from specified dimension where 75% or	t Wh	Mowable deviation freere more than 25% of	Allowable deviation from specified dimension where more than 25% of the dimension is space ³¹ 4	n 93. 4
dimension,	more of the di	more of the dimension is metal	At	dimensioned points (At dimensioned points (Distance from base of leg)	leg)
inches	All excepting those covered by column 3	Wall thickness completely enclosing space 0.11 sq. in. and over (Eccentricity)	% inch to (not incl.) % inch	% inch to (not incl.) 11% inches	11% inches to (not incl.) 21% inches	2½ inches or more
Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7
14 000 to 14 999	080		060.	.106	.142	.196
12 000 to 13 999	.074		.084	.100	.134	. 184
10.000 to 11.999	.064	,	.074	.088	.116	.160
8.000 to 9.999	.054		.064	.074	.100	.136
	044	Plus	.054	.062	.082	.112
	.034	100	.042	.050	.064	880.
, (+)	.024	minus	.032	.036	.048	.064
1.500 to 1.999	.016	10%	.024	.028	.034	.050
-	.012	max. ±.060	.020	.022	.026	.034
	010	min. ±.010	.018	.020	.022	.030
0	600		.016	.018	.020	.026
0.250 to 0.499	800.		.014	.016	.018	.022
0.125 to 0.249	200.		.012	.014	.016	.020
	900		.010	.012	.014	.016

HANDBOOK

1/The tolerance applicable to a dimension composed of two or more component dimensions is the sun of the tolerances of the component dimensions, if all of the component dimensions are indicated.

When a dimension tolerance is specified other than as an equal bilateral tolerance, the value of the standard tolerance is that which would apply to the mean of the maximum and minimum dimensions permissible under the tolerance.

'At points less than M inch from base of leg, the tolerances in Col. 2 are applicable.

Whose the crace is completely enclosed (hollow shapes), the tolerances in

Where the space is completely enclosed (hollow shapes), the tolerances in Col. 4 are applicable.

Where the dimensions specified are outside and inside, rather than the wall thickness itself, allowable deviation is plus or minus 10 per cent of mean wall thickness, max, ±0.000, min. ±0.010.

TABLE 50—COMMERCIAL TOLERANCES FOR ANGLES IN EXTRUDED SHAPES

	Tolerance, Degrees, Plus or Minus
Minimum Specified Leg Thickness, Inch	Allowable Deviation from Specified Angle
0.750 to solid	$\begin{array}{c} \pm 1 \\ \pm 1 \frac{1}{2} \\ \pm 2 \end{array}$

TABLE 51—COMMERCIAL TOLERANCES FOR CONFORMANCE OF FLAT AND CURVED SURFACES OF EXTRUDED SHAPES

Curved Surfaces

Allowable deviation from specified contour, 0.004 inch per inch of chord length, 0.005 inch minimum; not applicable to more than 90 degrees of any arc.

Flat Surfaces

Allowable deviation from flat, 0.004 inch per inch of width; 0.004 inch minimum.

TABLE 52—COMMERCIAL TOLERANCES FOR STRAIGHTNESS EXTRUDED RODS, BARS AND SHAPES

Circumscribed Circle Diameter, Inches	Minimum Thickness, Inch	Tolerance, ² Inch Allowable Deviation from Straight Per Foot of Length
1.50 and over. Less than 1.50. Less than 1.50.	Over 0.094	0.0125 0.0125 0.050(³)

The circumscribed circle diameter is the diameter of the smallest circle that will completely enclose the shape. Not applicable to extruded shapes in the annealed (O) temper.

TABLE 53—COMMERCIAL TOLERANCES FOR TWIST IN EXTRUDED BARS AND SHAPES

	To	olerance, ² Degrees
Circumscribed Circle	Allowable	Deviation from Straight
Diameter, Inches	In Each Foot of Length	In Total Length of Piece
3.00 and over	1/4° 1/2° 1°	Length, ft., times ½° (not over 3°) Length, ft., times ½° (not over 5°) Length, ft., times 1°

The circumscribed circle diameter is the diameter of the smallest circle that will completely enclose the shape.

⁸When weight of shape on flat surface minimizes deviation.

Not applicable to extruded shapes in the annealed (O) temper.

TABLE 54—COMMERCIAL TOLERANCES FOR CORNER AND FILLET RADII OF EXTRUDED SHAPES

0 10 17 1	Tolerance	
Specified Radius, Inch	Allowable Deviation from Specified Radius	
0.188 and over	±10% ±1⁄4 inch +1⁄4 inch	

TABLE 55-COMMERCIAL TOLERANCES FOR LENGTH OF EXTRUDED RODS, BARS AND SHAPES1

0 10 17 11	Tolerance, Inch, Plus Only
Specified Length, Feet	Allowable Deviation from Specified Length
30 and over	1/2 1/4 1/8

¹Squareness of cut ends—1 degree.

TABLE 56-STANDARD TOLERANCES1 FOR DRAWN TUBING

ROUND

Diameter Tolerances

SIZE DEVIATION

ROUNDNESS DEVIATION (OVALNESS)

Difference between AA+BB 2 and specified diameter.
Col. 2

Difference between AA and specified diameter.
Cols. 3 and 4

10 hearth, to the ou	O HEARING TO THE TOTAL OF THE OF		
Specified outside or inside diameter, inches	Allowable deviation of mean diameter ² from	of diameter	e deviation r at any point ed diameter ³ lness)
Col. 1	specified diameter (Size) Col. 2	3S, 4S, 52S Col. 3	24S, 61S Col. 4
Under .501	±.003	±.003	±.006
	±.004	±.004	±.008
	±.005	±.005	±.010
2.01 to 3.00.	±.006	±.006	±.012
3.01 to 5.00.	±.008	±.008	±.016
5.01 to 6.00.	±.010	±.010	±.020
6.01 to 8.00.	±.015	± .015	± .030
8.01 to 10.00.	±.020	± .020	± .040
10.01 and over.	±.025	± .025	± .050

¹Tolerances closer than these or tolerances for special other than round tubular shapes should be made the subject of special inquiry.

²The "mean diameter" is the average of two measurements taken at right angles to each other.

³Not applicable in the annealed (O) temper nor if wall thickness is less than 2½ per cent of the outside diameter, or is less than 0.020 inch.

TABLE 57-STANDARD TOLERANCES1 FOR DRAWN TUBING2

OTHER THAN ROUND Width or Depth Tolerances

SIZE DEVIATION

Difference between AA and specified width or depth.
Col. 4

	Tolerance, inch		
Specified width or depth, inches at corners from		of wid not from	ble deviation th or depth at corners a specified h or depth
	specified width or depth	Square, hexagonal and	Rectangular
Col. 1	Col. 2	octagonal Col. 3	Col. 4
Under .501	± .003 ± .004 ± .005	±.006 ±.008 ±.010	The tolerance for the width is the value in Col. 3
2.01 to 3.00. 3.01 to 5.00. 5.01 to 6.00.	±.006 ±.008 ±.010	± .012 ± .016 ± .020	for a dimension equal to the depth, and con- versely, but in no
6.01 to 8.00. 8.01 to 10.00. 10.01 and over.	± .015 ± .020 ± .025	±.030 ±.040 ±.050	case is the toler- ance less than at the corners. 3

¹Tolerances closer than these or tolerances for special other than round tubular shapes should be made the subject of special inquiry.

²Heat-treated tubing produced with tools constructed for nonheat-treated tubing will be .003 inch to .010 inch undersize. Nonheat-treated tubing produced with tools constructed for heat-treated tubing will be .003 inch to .010 inch oversize.

³Example: The width tolerance of 1-inch x 3-inch rectangular tubing is plus or minus .008 inch and the depth tolerance is plus or minus .012 inch.

TABLE 58-STANDARD TOLERANCES FOR DRAWN TUBING

ROUND AND OTHER THAN ROUND

Wall Thickness Tolerances

WALL THICKNESS DEVIATION

Difference between

AA+BB

and specified
wall thickness.

Col. 2

Difference between AA and specified wall thickness.
Col. 4

CONCENTRICITY DEVIATION (ECCENTRICITY)

Difference between AA and specified wall thickness. Cols. 3 and 4

Difference between AA and specified wall thickness.
Col. 4

	Tolerance, inch			
Specified ³ thickness, inch	Allowable deviation of mean wall thickness ² from specified	Allowable deviation of wall thickness at any point from specified wall thickness (Eccentricity)		
	wall thickness	Round	Round 24S, 61S and	
Col. 1	Round 24S, 61S Col. 2	3S, 4S, 52S Col. 3	other than round all alloys Col. 4	
.010 to .035 .036 to .049 .050 to .120	±.002 ±.003 ±.004	±.002 ±.003 ±.004	Plus or minus 10%	
.121 to .203 .204 to .300 .301 to .375	±.005 ±.008 ±.012	±.005 ±.008 ±.012	of specified wall thickness, but not less than 0.003"	
.376 to .500	± .032	±.032		

¹Tolerances closer than these or tolerances for special other than round tubular shapes should be made the subject of special inquiry.

²The "mean wall thickness" is the average of two measurements taken opposite each other.

³Where the dimensions specified are outside and inside, rather than the wall thickness itself, allowable deviation at any point (eccentricity) is plus or minus 10 per cent of mean wall thickness, but not less than 0.003 inch.

TABLE 59-STANDARD TOLERANCES1 FOR DRAWN TUBING

Length Tolerances

			Toleran	ice, inch		
Specified outside diameter, inches	Allowable deviation from specified length					
	Straight				Coiled	
		Sp	ecified 1	ength, f	eet	
	Under 2	2 to (not incl.)	10 to (not incl.)	30 and over	50 and less	Over 50
Under ¼	+1/16	$+\frac{1}{4}$ $+\frac{1}{8}$ $+\frac{3}{16}$ $+\frac{1}{4}$	+3/8 +8/16 +1/4 +3/8	+½ +¼ +¾ +3/8	+12 +12 	+24 +24

¹Tolerances closer than these should be made the subject of special inquiry.

TABLE 60—OTHER STANDARD TOLERANCES¹ FOR DRAWN TUBING

Corner Radii Tolerances

	Tolerance, inch
Specified radius, inches	Allowable deviation from specified radius
Sharp corners	+164 ±164 ±10%

Twist Tolerances

	Tolerance ² , degrees Allowable deviation from straight			
Specified width or depth,				
(whichever greater) inches	In each foot of length	In total length of piece		
Under 1½. 1½ to (not incl.) 3. 3 and over.	1° 1/2° 1/4°	Length, ft., times 1° Length, ft., times ½°, not over 5° Length, ft., times ¼°, not over 3°		

¹Tolerances closer than these should be made the subject of special inquiry.

²Not applicable in the annealed (O) temper.

TABLE 60-OTHER STANDARD TOLERANCES FOR DRAWN TUBING-Concluded

Straightness Tolerances

Specified	Tolerance ² , inch		
outside diameter or width, inches	Allowable deviation from straight per foot of length		
Under 3/8 3/8 to (not incl.) 6 6 and over.	.500 ³ .010 .020		

Angularity Tolerance ± 3 degrees.

Tolerance on Squareness of Cut Ends 1 degree.

Shipping Tolerances

Specified pounds	Tolerance,
per order item	per cent
Under 500 500 to (not incl.) 10,000	±10 ± 5 ± 3

¹Tolerances closer than these should be made the subject of special inquiry.

²Not applicable in the annealed (O) temper.

Deviation becomes less when tube is laid on a flat surface. Not applicable to lengths

TABLE 61-STANDARD TOLERANCES FOR EXTRUDED TUBING

ROUND

Diameter Tolerances

SIZE DEVIATION

Difference between

AA+BB
2

and specified diameter.
Col. 2

ROUNDNESS DEVIATION (OVALNESS)

Difference between AA and specified diameter. Col. 3

	Toleran	ce, inch
Specified outside or inside diameter, inches	Allowable deviation of mean diameter 2 from specified diameter (Size)	Allowable deviation of diameter at any point from specified diameter 3 (Ovalness)
Col. 1	Col. 2	Col. 3
1/2 to (not incl.) 1	±.012	±.020 ±.025 ±.030
4 to (not incl.) 6. 6 to (not incl.) 8. 8 to (not incl.) 10.	±.035	±.050 ±.075 ±.100
10 to (not incl.) 12	±.055 ±.065	±.125 ±.150

¹Tolerances closer than these should be made the subject of special inquiry.

²The "mean diameter" is the average of two measurements taken at right angles to each other.

Not applicable in the annealed (O) temper or if wall thickness is less than 2½ per cent of the outside diameter.

TABLE 62—STANDARD TOLERANCES1 FOR EXTRUDED TUBING

OTHER THAN ROUND Width or Depth Tolerances

SIZE DEVIATION

Difference between AA and specified width or depth. Col. 2

Difference between AA and specified width or depth. Col. 4

	Tolerance, inch			
Specified width or depth, inches	Allowable deviation of width or depth at corners from	0	lowable deviation f width or depth not at corners from specified width or depth	
Col. 1	specified width or depth	Square, hexagonal and octagonal Col. 3	Rectangular Col. 4	
1/2 to (not incl.) 3/4 1/3/4 to (not incl.) 1 1/1 to (not incl.) 2 2 to (not incl.) 4 4 to (incl.) 5	± .012 ± .014 ± .018 ± .025 ± .035	±.020 ±.020 ±.025 ±.035 ±.045	The tolerance for the width is the value in Col. 3 for a dimension equal to the depth, and conversely, but in no case is the tolerance less than at the corners. 2	

¹Tolerances closer than these should be made the subject of special inquiry.

Example: The width tolerance of 1-inch x 3-inch rectangular tubing is plus or minus .025 inch and the depth tolerance is plus or minus .035 inch.

TABLE 63-STANDARD TOLERANCES FOR EXTRUDED TUBING

ROUND AND OTHER THAN ROUND

Wall Thickness Tolerances

WALL THICKNESS DEVIATION

Difference between

AA+BB
2

and specified
wall thickness.
Cols. 2, 3, 4

Difference between AA and specified wall thickness.
Col. 6

CONCENTRICITY DEVIATION (ECCENTRICITY)

Difference between AA and $\frac{AA+BB}{2}$ Col. 5

Difference between AA and specified wall thickness.
Col. 6

		R	OUND		OTHER THAN ROUND
			To	olerance, inch²	
Specified thickness,	wall	e deviation thickness ³ ed wall thic	from	Allowable deviation of wall	Allowable deviation
inches	Outside	e diameter,	inches	thickness at any point	of wall thickness at any point
	Under 3	3 to (not incl.)	5 and over	from mean wall thickness³ (Eccentricity)	from specified wall thickness
Col. 1	Co1. 2	Col. 3	Col. 4	Col. 5	Col. 6
	±.008 ±.009 ±.011 ±.015	± .008 ± .010 ± .013 ± .016 ± .021 ± .028 ± .035 ± .045	±.010 ±.015 ±.020 ±.025 ±.035 ±.045 ±.055 ±.065	Plus or minus 10% of mean wall thickness; max. ±0.060 min. ±0.010	

¹Tolerances closer than these should be made the subject of special inquiry.

²If the extruded tubing is to be drawn into drawn tubing, allowance for tolerances greater than standard is recommended.

The "mean wall thickness" is the average of two measurements taken opposite each other.

⁴Example: The width tolerance of 1-inch x 3-inch rectangular tubing is plus or minus .025 inch and the depth tolerance is plus or minus .035 inch.

[†]Where dimensions specified are outside and inside rather than wall thickness itself, allowable deviation at any point (eccentricity) is plus or minus 10 per cent of the mean wall thickness, but not less than 0.003 inch.

TABLE 64—STANDARD TOLERANCES FOR EXTRUDED TUBING

Length Tolerances

		Tolerance, inch	
Specified	Allowable of	deviation from spe	cified length
outside diameter, inches	S	Specified length, fe	et
niches	Under 10	10 to (not incl.)	30 and over
Under 3 3 to (not incl.) 8 8 and over	$^{+\frac{1}{8}}_{+\frac{3}{16}}_{+\frac{1}{4}}$	+3/6 +1/4 +3/8	+1/4 +3/8 +1/2

¹Tolerances closer than these should be made the subject of special inquiry.

TABLE 65-OTHER STANDARD TOLERANCES1 FOR EXTRUDED TUBING

Corner Radii Tolerances

Specified radius	Tolerance, inch
Specified radius, inches	Allowable deviation from specified radius
Sharp corners. Under 0.188. 0.188 and over	+164 ±164 ±10%

Twist Tolerances

0101		Tolerance ² , degrees
Specified width,	Allow	able deviation from straight
inches	In each foot of length	In total length of piece
Under 1½ 1½ to (not incl.) 3 3 and over	1/0	Length, ft., times 1° Length, ft., times ½°, not over 5° Length, ft., times ½°, not over 3°

¹Tolerances closer than these should be made the subject of special inquiry.

²Not applicable in the annealed (O) temper.

TABLE 65—OTHER STANDARD TOLERANCES¹ FOR EXTRUDED TUBING—Concluded

Straightness Tolerances

Specified	Tolerance ² , inch
Specified outside diameter or width, inches	Allowable deviation from straight per foot of length
Under 6	.010 .020

Angularity Tolerance ± 3 degrees.

Tolerance on Squareness of Cut Ends 1 degree.

Shipping Tolerances

Specified pounds per order item	Tolerance, per cent
Under 500	±10 ± 5 ± 3

¹Tolerances closer than these should be made the subject of special inquiry.

²Not applicable in the annealed (O) temper.

TABLE 66-FLAT SHEET-ALCOA MILL STANDARD SIZES

			4-14-4		
Thickness, Inch	3S-O	3S-H14	52S-O	52S-H32	52S-H34
0.051	36 x 96 48 x 144	36 x 96 48 x 144	36 x 96 48 x 144	36 x 96 48 x 144	48 x 144
0.064	36 x 96 48 x 144	36 x 96 48 x 144	36 x 96 48 x 144	36 x 96 48 x 144	48 x 144
0.081	36 x 96 48 x 144	36 x 96 48 x 144	48 x 144	36 x 96 48 x 144	48 x 144
0.091 {	36 x 96 48 x 144	36 x 96 48 x 144	48 x 144	36 x 96 48 x 144	48 x 144
0.125	36 x 96 48 x 144	36 x 96 48 x 144	48 x 144	36 x 96 48 x 144	48 x 144
0.188 {		36 x 96 48 x 144	48 x 144	36 x 96 48 x 144	48 x 144
0.250 {		36 x 96(1) 48 x 144(1)			48 x 144(1

^{&#}x27;F temper ("As-rolled").

TABLE 67—FLAT SHEET AND PLATE—ALCOA MILL STANDARD SIZES

Thickness, Inch	61S-O, -T4 and -T6	24S-O, -T3 and -T4	Alclad 24S-O, -T3 and -T4
0.051 0.064 0.072	48 x 144 48 x 144	48 x 144 48 x 144 48 x 144	48 x 144 48 x 144 48 x 144
0.081 0.091 0.102	48 x 144 48 x 144	48 x 144 48 x 144 48 x 144	48 x 144 48 x 144 48 x 144
0.125 0.156 0.188 0.250	48 x 144 	48 x 144 48 x 144 48 x 144 48 x 144	48 x 144 48 x 144 48 x 144 48 x 144

¹Not available in T4 temper.

TABLE 68-COMMERCIAL SIZES OF ALCOA TREAD PLATE (61S)

Standard Pattern C-100

	Standard	Maximum Ro	olling Limits ¹	Approximate
Thickness, Inch	Sizes, Inches	Width, Inches	Length, Feet	Weight, Lb./Sq. Ft.
1/8 3/16	48 x 144 48 x 144 60 x 144	48 60	24 24 24	2.0 2.8 2.8
1/4	48 x 144 60 x 144	60 60 60	24 24	3.7 3.7
5/16 3/8		60 60 60	24 24 24	4.6 5.5 5.5
1/2		60 60	24 24	7.3 7.3

¹Non-standard sizes and tempers are subject to special inquiry as to next rolling date.

TABLE 69—RANGE OF COMMERCIAL SIZES OF WIRE, ROD AND BAR1

All Alloys

Commodity	Smallest	Largest
	Diameter, Inches	Diameter, Inches
Round Wire—Drawn Round Rod—Cold-Finished Round Rod—Rolled	0.0126 3/8 19/16	0.374 3 8
	Distance Across Flats, Inches	Distance Across Flats, Inches
Square Wire—Drawn Square Bar—Cold-Finished Square Bar—Rolled Hexagonal Wire—Drawn Hexagonal Bar—Cold-Finished Hexagonal Bar—Rolled	1/8 x 1/8 3/8 x 3/8 15/8 x 15/8 3/6 3/8 19/6	11/ ₅₂ x 11/ ₅₂ 11/ ₂ x 11/ ₂ 4 x 4 11/ ₅₂ 2 3
	Dimensions, Inch	Dimensions, Inches
Square Edge Rectangular Wire—Drawn Square Edge Rectangular Bar—Cold-Finished Square Edge Rectangular Bar—Rolled Round Edge Rectangular Bar—Rolled	1/32 x 1/8 1/8 x 1/2 3/16 x 3/4 3/16 x 3/4	5/6 x 11/82 11/2 x 4 3 x 7 1/2 x 6

¹This table indicates the range of commercial sizes. All alloys are not produced in all of the sizes listed; consult the sales representative of Aluminum Company of America for details.

TABLE 70-MAXIMUM COMMERCIAL SIZES OF PLATE

ALLOY 3S Mill Finish Only

	Width 132"			12.9	18.5 21.6 25.8 32.2	
Vidths	Width 120"			10.0 11.7 14.0	20.1 23.4 28.2 35.1 41.8	
Maximum Length (Feet) for Indicated Widths	Width 108"		::::0	13.0	22.4 26.1 31.4 39.1 52.1	
t) for Inc	Width 96"		88.0 7.0 8.7	12.5 14.7 17.6 21.3	25.2 29.4 35.4 44.0 58.8 60.0	
gth (Fee	Width 84"	8.4	9.1 10.0 10.8	14.3 16.8 20.2 24.4	28.8 33.6 50.5 67.2 60.0	
num Len	Width 72"	9.6	10.6 11.7 12.6 14.6	16.7 19.6 23.6 28.5	33.7 39.2 47.3 59.0 72.0	
Maxir	Width 60"	11.8	12.8 14.2 15.2 17.6	20.1 23.6 28.3 35.4	40.5 47.0 56.7 60.0 50.0	
	Widths 40" or less	17.7	19.3 21.2 22.8 26.5	30.3 35.4 42.5 53.1	60.8 70.7 72.0 60.0 40.0 36.0	
Maximum Length for	Maximum Width, Feet	7.6	8.8.8.0 4.8.4.	10.0 10.8 12.9 16.2	18.5 25.8 32.2 41.8 48.0	
Maximum Width	Inches	92	96 101 106 113	120 130 132 132	132 132 132 132 120 102	
Thickness,	Inches	3	00000 74/01/4	# W #	1,0/4/0/11/0/V4	

¹For thicknesses or lengths intermediate between those listed, available dimensions are in proportion within the limits of the manufacturing equipment, and will be quoted on request.

²The dimensions shown are subject to the following limitations:
(a) The sizes shown apply to plate in the as-rolled (F) temper.

b) The maximum limiting sizes of plate in any alloy in the soft (O) temper are:

Lengths to 36 feet for widths up to 100 inches.

Lengths to 30 feet for widths over 100 inches to maximum width of 118 inches.

(c) Maximum diameter of circle same as maximum width of plate except 118 inches is maximum diameter for annealed (O) temper circles.

(d) Plate can be supplied in the following tempers:
Thickness 3 inches to 2 inches—As-rolled (F), Soft (O).

Thickness less than 2 inches to 1 inch—As-rolled (F), Soft (O), Quarter-Hard (H12).

Thickness less than 1 inch to ¼ inch—As-rolled (F), Soft (O), Quarter-Hard (H12), Half-

Hard (H14).

(e) Flatness. The degree of flatness which can be obtained depends on the alloy and temper, and upon the dimensions

of the plate:

The limiting maximum size for stretcher-leveled plate is $\frac{7}{8}$ inch thick by 90 inches wide in all commercial lengths. Plate wider than 90 inches and/or thicker than $\frac{7}{8}$ inch is supplied roller-leveled.

Plate thicker than 1 inch is supplied as flat as can be produced on the rolling mills.

Shearing. Unless otherwise specified, plates in all commercial widths in thicknesses up to 1 inch are sheared.

(E)

Minimum sheared width

Thickness

Minimum sheared widths are as follows:

0.250 inch to 0.375 inch 6 inches (8 inches for lengths up to 10 feet. (1.000 inch | 18 inches for lengths greater

than 10 feet.

Thicker plate or narrower widths must be sawed.

Plate circles are sheared, unless otherwise specified, as follows:

Thicknesses ¼ inch to ½ inch inclusive.
Diameters 17½ inches to 96 inches inclusive.
Thicker circles and larger diameters are sawed.
Method of cutting smaller diameters subject to special inquiry.

D B O O

TABLE 71—MAXIMUM COMMERCIAL¹ SIZES OF PLATE² ALLOYS 45 AND 528

Mill Finish Only

		Maximun	Maximum Length							
	Maximum	for Maximum	for um Width	Z	aximum	Length (Feet) for	r Indicat	Maximum Length (Feet) for Indicated Widths	S
	Mutit, Inches	Inches	Feet	Widths 43" or less	Width 60"	Width 72"	Width 84"	Width 96"	Width 108"	Width 120"
	82	82	6.8	12.9	9.1	7.6	:	:	:	:
	85 87 94 100	85 87 94 100	7.17.2 7.28 8.38	14.0 15.4 17.1 19.3	10.0 11.0 12.2 13.8	8.3 9.1 10.1	9.5		!!!!	
- 4	107 116 120 120	107 116 130 166	8.9 9.7 10.8 13.8	22.1 25.8 30.9 38.6	15.7 18.3 22.0 27.6	13.0 15.2 18.3 23.0	11.1 12.8 15.6 19.7	9.7 11.4 13.6 17.2	10.2 12.0 15.2	10.8
	120 120 120 96 96	190 222 262 332 332 555 600	15.8 18.5 22.2 27.7 46.2 50.0	44.1 51.5 60.0 60.0 40.0 36.0	31.5 36.8 44.2 55.0 50.0 40.0	26.2 30.6 36.8 45.7 61.3	22.4 26.2 30.5 39.0 52.5 50.0	19.6 22.8 26.6 34.0 46.2	17.4 20.2 23.6 30.2	15.8 18.5 22.2 27.7

¹For thicknesses or lengths intermediate between those listed, available dimensions are in proportion within the limits of the manufacturing equipment, and will be quoted on request.

²The dimensions shown are subject to the following limitations:
(a) The sizes shown apply to plate in the as-rolled (F) temper.

b) In the quarter-hard (H32) and half-hard (H34) tempers, the maximum limiting lengths are:

30 feet for widths up to 100 inches.

24 feet for widths greater than 100 inches to maximum width shown in the table.

(c) The maximum limiting sizes of plate in any alloy in the soft (O) temper are:

Lengths to 36 feet for widths up to 100 inches.

Lengths to 30 feet for widths over 100 inches to maximum width of 118 inches.

(d) Maximum diameter of circle same as maximum width of plate except 118 inches is maximum diameter for annealed (O) temper circles:

(e) Plate can be supplied in the following tempers:
 Thickness 3 inches to 2 inches—As-rolled (F), Soft (O).
 Thickness less than 2 inches to 1 inch—As-rolled (F), Soft (O), Quarter-Hard (H32).

Thickness less than 1 inch to 1/4 inch—As-rolled (F), Soft (O), Quarter-Hard (H32), Half-Hard (H34).

Flatness. The degree of flatness which can be obtained

depends on the dimensions of the plate:

The limiting maximum size for stretcher-leveled plate is % inch thick by 90 inches wide in all commercial lengths. Plate wider than 90 inches and/or thicker than 1% inch is supplied roller-leveled.

S

Plate thicker than 1 inch is supplied as flat as can be produced on the rolling mills.

Shearing. Unless otherwise specified, plates in all commercial widths in thicknesses up to 5% inch are sheared. Minimum sheared widths are as follows:

(S)

Minimum sheared width

Thickness

0.250 inch to 0.375 inch 6 inches for lengths up to 10 feet.

0.376 inch to 0.625 inch 18 inches for lengths greater than 10 feet.

Thicker plate or narrower widths must be sawed—except that rough sheared plate 0.626 inch to 1 inch thick, 24 inches or over in width and 72 inches to 120 inches long can be supplied if so specified. The length and width tolerances for rough sheared plate are +1 inch, -0 inch. Plate circles are sheared, unless otherwise specified, as follows:

Thicknesses \mathcal{N}_{4} inch to 5% inch inclusive. Diameters 171% inches to 96 inches inclusive. Thicker circles and larger diameters are sawed. Method of cutting smaller diameters subject to special

nquiry.

TABLE 72-MAXIMUM COMMERCIALI SIZES OF HEAT-TREATABLE ALLOY PLATE2 ALLOYS 245 ALCLAD 245 AND 615

Mill Finish Only

II	Thickness,	Maximum	for Maximum	for Maximum Width	Maximı	ım Length	Maximum Length (Feet) for Indicated Widths	Indicated	Widths
	Inches	Mudui, Inches	Inches	Feet	Widths 43" or less	Width 60"	Width 72"	Width 84"	Width 96"
	3	09	09	5.0	7.1	5.0	:		:
	23/4	63	63	5.2	7.7	5.5	•	:	:
	27,2	99	99	iv i	ος (10, 1	0.0	:	:	:
-	27/4	27	07	8.0	5.6	20.0		:	:
_	13/2	10	70	2.0	10.0	0.00	7.0.2	:	:
24S, 61S	17,	86	86	7.1	10.0	10.0	8.4.8	7.2	: :
	11/4	94	94	7.8	10.0	10.0	10.0	8.8	:
	П	105	105	8.7	10.0	10.0	10.0	10.0	9.5
S19	1%	88	143	11.9	24.4	17.5	14.6	12.5	:
61S	%4°	06	163	13.6	28.4	20.5	16.9	14.5	:
Sign	\%\ <u>-</u>	06	196	16.3	34.1	24.4	20.5	17.4	:
010	27	25	240	20.5	36.0	30.5	25.4	21.8	:
013	%\ <u>\</u>	40.0	848	29.0	30.0	36.0	33.9	29.0	:
STO	4	7/	200	30.0	30.0	30.0	30.0	:	:
24S	1/8	44	286	23.8	24.4	:	:	:	:
24S	%	51	286	23.8	28.4	:	:	:	:
24S	100	62	286	23.8	34.1	24.4	:	:	:
24S, Alclad 24S	1/2	78	286	23.8	36.0	30.5	25.4	:	
24S, Alclad 24S	%	84	348	29.0	36.0	36.0	33.9	29.0	
24S, Alclad 24S	74	72	360	30.0	30.0	30.0	30.0	:	:

In some cases larger sizes can be produced by means of special manufacturing practices; requirements for larger sizes should be the subject of special inquiry. In many cases the maximum sizes listed are determined by available flattening equipment rather than rolling capacity, in which cases larger sizes may be produced in the soft (O) temper. These are not listed since these alloys are used almost exclusively in the hear-treated tempers. For thicknesses or lengths intermediate between those listed, available dimensions are in proportion within the limits of manufacturing equipment, and will be quoted on request.

²The dimensions shown are subject to the following limitations:

- (a) The maximum limit in length of plates in these alloys in the soft (O) temper is 30 feet.
- (b) The maximum diameter of circles same as maximum width of plate.
- (c) Flatness. The degree of flatness which can be obtained depends upon the alloy and temper, and upon the dimensions of the plate. The maximum degree of flatness in these alloys in the heat-treated tempers, in thicknesses over ½ inch, can be supplied in lengths up to 120 inches.

(d) Shearing. Unless otherwise specified, plates in all commercial widths in thicknesses up to the limits shown below are sheared. The minimum widths of sheared plate are as follows:

Minimum sheared width

Thickness

24S, 61S 0.250 inch to 0.375 inch $\left\{\begin{array}{c} 6 \text{ inches} \\ 8 \text{ inches} \end{array}\right\}$

0.376 inch to 0.625 inch $\left|\begin{array}{c} \text{feet.} \\ 18 \text{ inches for lengths} \\ 0.376 \text{ inch to 0.500 inch} \end{array}\right|$ than 10 feet.

U R

greater

U.5.10 men to 0.500 men) (unan rotect.

Thicker plate or narrower widths must be sawed—except that rough sheared 618 plate 0.626 inch to 1 inch thick, and 248 plate 0.501 inch to 1 inch thick, can be supplied if so specified in widths of 24 inches and over and in lengths of 72 inches to 120 inches. The length and width tolerances for rough sheared plate are +1 inch, -0 inch.

L

A

Plate circles 17% inches diameter and larger in M inch thickness are sheared, unless otherwise specified. The following sizes are sawed:

Diameters 71% inches to 171% inches, thickness 1% inch. Diameters 71% inches and larger, over 1% inch thickness. Diameters smaller than 71% inches quoted specially.

TABLE 73-MAXIMUM COMMERCIALI SIZES OF HEAT-TREATABLE ALLOY PLATES2 ALCLAD 145 ALLOY

Mill Finish Only

Alloys Alclad 14S	Thickness, Inches 134 1134 114 114 114	Maximum Width, Inches 74 79 86 94 105	Maximur fc Maximur Inches 74 79 86 94 105	Maximum Length for Maximum Width Inches Feet 74 6.2 79 6.6 86 7.1 94 7.8 105 8.7	Maxim: Widths 43" or less 10.0 10.0 10.0 10.0	width 60" 7.6 8.7 10.0 10.0 10.0	(Feet) for Width 72% 6.3 7.3 8.4 10.0 10.0	Maximum Length (Feet) for Indicated Widths lidths Width Width Width 84" 86" 7.6 6.3 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 8.4 7.2 10.0 10.0 10.0 8.4 7.2 10.0 10.0 10.0 8.4 7.2 10.0 10.0 10.0 8.4 7.2 10.0 10.0 10.0 8.4 7.2 10.0 10.0 10.0 8.4 7.2 10.0 10.0 8.4 8.8 10.0 10.0 10.0 8.5 10.0 10.0 8.5 10.0 10.0 8.5 10.0 10.0 8.5 10.0 10.0 8.5 10.0 10.0 10.0 8.5 10.0 10.0 10.0 8.5 10.0 10.0 10.0 8.5 10.0 10.0 10.0 8.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Widths Width 96"
1	10/4/0/1/0/4 0/4/0/1/0/4	440 72 72 72	288 288 288 348 360	24.0 24.0 24.0 29.0 30.0	24.0 34.0 36.0 30.0	29.0 36.0 30.0	24.0 33.9 30.0	29.0	

In some cases larger sizes can be produced by means of special manufacturing practices; requirements for larger sizes should be the subject of special inquiry. In many cases the maximum sizes listed are determined by available flattening equipment rather than rolling capacity, in which cases larger sizes may be produced in the soft (O) temper. These are not listed since this alloy is used almost exclusively in the heat-treated tempers. For thicknesses or lengths intermediate between those listed, available dimensions are in proportion within the limits of manufacturing equipment, and will be quoted on required.

The dimensions shown are subject to the following limitations:

- (a) The maximum limit in length of plates in these alloys in the soft (O) temper is 30 feet.
- (b) Maximum diameter of circles same as maximum width of plate.

- (c) Flatness. The degree of flatness which can be obtained depends upon the alloy and temper, and upon the dimensions of the plate. The maximum degree of flatness in this alloy in the heat-treated tempers, in thicknesses over ½ inch, can be supplied in lengths up to 120 inches.
- mercial widths of 6 inches or greater and in thickness up to 0.375 inch, inclusive, are sheared. Thicker plates or narrower widths must be sawed.

Shearing. Unless otherwise specified, plates in all com-

(p)

UR

Plate circles 17% inches diameter and larger in % inch thickness are sheared, unless otherwise specified. The following sizes are sawed:

L

A

HANDBOOK

Diameters 7½ inches to 17½ inches, thickness ¼ inch. Diameters 7½ inches and larger, over ¼ inch thickness.

Diameters smaller than 71/2 inches quoted specially.

TABLE 74-RANGE OF COMMERCIAL SIZES OF ROUND TUBING1, 4

	Specified by O.D. & I.D. or I.D. & wall	Allalloys	Col. 15	.028 .058 .083 .120	.148 .148 .2033 .2383	.284° .320° .320° .375°	.4003 .4003 .4003 .4003	.4003 .400 .400	.400	.400	.400 .400
		24S-F 24S-T3	Col. 14	.049 .078 .109	.148 .165 .180 .203	.238 .259 .300	.300 .320 .320 .350	.350 .400 .400	.450	.450	.450 .450
	sa	61S-T4 61S-T6	Col. 13	.049 .078 .109 .134	.165 .180 .238 .259	.320 .320 .320	.450 .450 .450	.450 .450 .450	.500	.500	.500
th.	Where tubing is specified by outside diameter and wall thickness	61S-F	Col. 12	.049 .078 .109 .134	.165 .180 .238 .300	.320 .320 .320	.450 .450 .450	.450 .450 .500	.500	.500	.500
Maximum wall thickness, inch	ter and wa	4S 52S	Col. 11	.049 .078 .109 .120	.148 .165 .180 .203	. 238 . 259 . 284 . 300	.320	.350 .400 .400	.450	.450	.450 .400 .375
m wall thi	side diame	2S-H18 3S-H18	Col. 10	.049 .078 .109 .134	.165 .180 .238 .300	.320 .320 .320	.450 .450 .450	.450 .450 .500	.500	.480	.450 .400 .375
Maximu	ed by outs	2S-H16 3S-H16	Col. 9	.049 .078 .109 .134	.165 .180 .238 .300	.320 .320 .320	.450 .450 .450	.450 .450 .500	.500	.500	.500
	g is specif	2S-H14 3S-H14	Col. 8	.049 .078 .134	.165 .180 .238 .300	.320 .320 .320	.450 .450 .450	.450 .450 .500	.500	.500	.500
	here tubir	2S-H12 3S-H12	Col. 7	.049 .078 .109 .134	.165 .180 .238 .300	.320 .320 .320	.450 .450 .450	.450 .450 .450	.500	.500	.500
	A	2S-F 3S-F	Col. 6	.049 .078 .109 .134	.165 .180 .238 .259	320 320 320 375	.450 .450 .450	.450 .450 .500	.500	.500	.500
		2S-0 3S-0 61S-0	Col. 5	.049 .083 .120 .134	.165 .180 .238 .259	.320 .320 .320	.450 .450 .450	.450 .450 .500	.500	.500	.500
	all ch	24S	Col. 4	0.018 0.018 0.018 0.018	.020	.025 .025 .025	.028 .028 .028	.032 .032 .035	.042	.049	.049
	Minimum wall thickness, inch	4S 52S	Col. 3	.018 .018 .018 .018	.018 .020 .020 .020	.022	.022	.028 .028 .028	.035	.049	.049
		2S 3S 61S	Col. 2	.014 .014 .014 .016	.018 .018 .018 .018	.020	.020	.022	.028	.042	.042
	Outside diameter, ² inches		Col. 1	76747456	7278/8/4/8	11111	111111	2222 2728	3	4	444

TABLE 74-RANGE OF COMMERCIAL SIZES OF ROUND TUBING1, 4-Concluded

	Specified by O.D. & I.D. or I.D. & wall	Allalloys	Col. 15	.4003 .4003 .4003	.4003 .4003 .4003 .4003	.4373 .4373 .4373	.4373 .4373 .4373	.4373 .4373 .4373	.4373 .4373 .4373	.4373 .4377
		24S-F 24S-T3	Col. 14	.450 .450 .450	.450 .450 .450	.453 .453 .453	.453 .453 .453 .421	.421		
	Σ	61S-T4 61S-T6	Col. 13	.500	.500	.500	.500	.500 .500 .500 .484	.468 .453 .453	.421
,q	11 thicknes	61S-F	Col. 12	.500	.500	.500	.500	.500	.500	.500
Maximum wall thickness, inch	Where tubing is specified by outside diameter and wall thickness	4S 52S	Col. 11			::::	::::		1111	
n wall thic	ide diamet	2S-H18 3S-H18	Col. 10	.350 .320 .300	.300 .284 .259	.250 .234 .234 .218	.218 .203 .203 .187	.187 .187 .171		
Maximur	ed by outs	2S-H16 3S-H16	Col. 9	.500 .480 .450	.400 .375 .320	.328 .328 .312 .297	. 281 . 281 . 266 . 266	.250 .250 .234 .234	.218	
	g is specifi	2S-H14 3S-H14	Col. 8	.500	.500	.500	.468 .468 .437	.421 .406 .390	.375 .375 .359	.344
	here tubin	2S-H12 3S-H12	Col. 7	.500	.500	.500 .500 .500	.500	.500 .484 .468 .453	.437 .437 .421	.390
	W	2S-F	Col. 6	.500	.500	.500	.500 .500 .500	.500	.500	.500
		2S-0 3S-0 61S-0	Col. 5	.500	.500 .500 .500	.500 .500 .484 .468	453 437 421 406	.390 .375 .375	.344 .344 .328	iiii
	III	24S	Col. 4	.058 .058 .058	.065 .065 .065	.078 .078 .093	.171 .250 .281 .344	.406	!!!!	1111
	Minimum wall thickness, inch	4S 52S	Col. 3			::::		1111	1111	111
	Mithi	2S 3S 61S	Col. 2	. 042 . 042 . 042 . 049	.049 .049 .058	.062 .062 .078	.078 .078 .078	.093 .093 .109	.125 .125 .156	.250
	Outside diameter,	TITCHES	Col. 1	N 10 10 10 74/4/4/4	0 % 10 % 74 10 %	11111 1418/4	8888	0 9 9 9 74 74 74	01 1007 107%	1111

Standard wall thickness limits of tubing other-than-round are the same as those of round tubing of the same perimeter.

*Range, up to but not including the next larger ordarised chameter shown.

*Or the thickness shown in Cols. 5 to 14 for the alloy and temper in question, whichever is less.

*Requirements beyond these Standard Manufacturing Limits should be made the subject of special inquiry.

TABLE 75—COMMERCIAL SIZES OF 3S, 4S AND 52S FLAT SHEET

-		1	Max <mark>i</mark> mun L <mark>i</mark> mi			Maxi Rol Limi	ling	Maxi Rol Limit	
	Thickness, Inch	Mill I	Finish		d Bright iish	Mill I	Finish	Mill I	Finish
		Width In.	Length Ft.	Width In.	Length Ft.	Width In.	Length Ft.	Width In.	Length Ft.
	0.249-0.172 0.171-0.136 0.135-0.096 0.095-0.086 0.085-0.077	102 102 102 90 90	30 30 30 30 30 30	60 60 60 60	20 20 20 20 20 20	102 102 90 72 66	24 24 24 24 24 24	84(2) 72(2) 72(2) 72(2) 72(2) 72(2)	24 24 24 24 24 24
	0.076-0.068 0.067-0.061	90 84	30 24	60 60	20 20	60 60	20 20	60(2) 60(2)	20 20
	0.060-0.054	84 76 60	16 20 30	60	20	60	20	60(2)	20
	0.053-0.048	84 76 60	16 20 30	60	20	60	14	60(2)	14

Refer to Table 66 for Alcoa Mill Standard Sizes.

TABLE 76—COMMERCIAL¹ SIZES OF ALCLAD 14S, 24S, ALCLAD 24S AND 61S ALLOY FLAT SHEET

	Alcla	d 14S	24S and A	Alclad 24S	61	IS
Thickness,		n Rolling nits	Maximur Lin	n Rolling nits		n Rolling nits
	Width	Length	Width	Length	Width	Length
	Inches	Feet	Inches	Feet	Inches	Feet
0.249-0.096	60	24	60	24	102	24
0.095-0.068	60	24	60	24	90	24
0.067-0.061	60	24	60	24	84	24
0.060-0.048	60	18	60	18	72	18

¹Refer to Table 67 for Alcoa Mill Standard Sizes.

²Maximum width in H38 temper is 54 inches and in H36 is 60 inches.

AND OTHER USEFUL DATA

USEFUL CONVERSION FACTORS

One board foot=144cubic inches	
One centimeter=0.3937inch	
One centimeter = 0.01 meter	
One centimeter=10millimeters	
One cubic centimeter=3.531 x 10 ⁻⁵ cubic feet	
One cubic centimeter=0.06102cubic inch	
One cubic foot = 28317cubic centimeter	ers
One cubic foot=1728cubic inches	
One cubic foot=7.481gallons	
One cubic foot=28.32liters	
One cubic inch=16.39cubic centimet	ers
One degree (angle) = 0.01745 radian	
One foot per second=0.6818mile per hour	
One gallon=231cubic inches	
One gallon=3.785liters	
One gram=2.205 x 10 ⁻³ pounds	
One gram per cu. cm=62.43pounds per cul	oic foot
One horse-power=550foot-pounds pe	r second
One horse-power=0.7457kilowatt	
One inch=2.540centimeters	
One kilogram=1000grams	
One kilogram=2.205pounds	
One kg. per sq. mm=1422pounds per squ	are inch
One mile=5280feet	
One pound=453.6grams	
One lb. per sq. in=0.068atmosphere	
One lb. per sq. in=2.307feet of water	
One lb. per sq. in=2.036inches of merc	ury
One lb. per sq. in=7.031 x 10 ⁻⁴ kg. per sq. mm	1.
One radian=57.30degrees	
One square inch=6.452square centime	eters
One ton (short)=2000pounds	
One ton (metric) = 2205 pounds	
One ton (long)=2240pounds	
One ton (long) per sq. in = 1.575kg. per sq. mm	1.

TABLE 77—FRACTIONS TO DECIMALS

	Fr	action	ıs		Decimals		Fı	action	S	etsmi	Decimals
		7,		1/64	.015625					33/64	.515625
		ereds.	1/69		.03125	1: -			17/32		.53125
	-	3-14	7 52	3/64	.046875			7		85/64	.546875
		1/0		704	.0625	10,00	-	%6			.5625
	rei wil	>10		5/64	.078125					37/64	.578125
			3/0		.09375	-	_		19/32		.59375
			732	764	.109375	1.7 -	-			39/64	.60937
	1/8		7.15	704	.125	•	5/8				.625
	78			%4	.140625	71				41/64	.64062.
			5/29		.15625				21/32		.65625
			784	11/64		7, 17				43/64	
		3/0		704.	.1875			11/16			.6875
		/16	-	13/64		7				45/64	.70312
			7/00			1. 1.			23/32		.71875
ools			732	15/64					51 1-	47/64.	.73437
1/			ej he	704	.25	3/4			!		.75
74			_ recli	17/64		7.0 -				49/64	.76562
			9/0	1	.28125	7			25/32.		
			7.52	1964	.296875					51/64.	7968
		5/16.		704	.3125	1 -		13/16.			
Gut		>10.	il and	21/64	1				11111	53/64.	82812
			11/2		1				27/32.		8437
			7 32	23/64						55/64.	
	8/6		1.231		375	100	7/8.				875
	/8	y Jan A		25/84						57/64.	8906
		En. P	13/29					-	29/32.	1/8 3	9062
		i pi	011	27/64.		10 -		-		59/64.	9218
		7/0				-		15/16.			9375
	i pila u	10.	i sarat	2964.		1	-	7, 2, 1		61/64.	9531
_	7		15/29			KE			31/32		
			102	31/64.	1	A ISE				63/64	9843
14) beg	. 01	.5	1.					1.0

TABLE 78-INCHES TO CENTIMETERS

One Foot = 30.480 Centimeters

11	27.940	28.178	28.258	28.416	28.496	28.575	28.654	28.813	28.893	28.972	29.051	29.210	29.289	29.448	29.528	29.607	29.686	29.845	29.924	30.004	30.163	30.242	30.321
10	25.400	25.638	25.718	25.876	25.956	26.035	26.114	26.273	26.353	26.432	26.511 26.591	26.670	26.749	26.908	26.988	27.067	27.146	27.305	27.384	27.464	27.623	27.702	27.781
6	22.860	23.098	23.178	23.336	23.416	23.495	23.574	23.733	23.813	23.892	23.971 24.051	24.130	24.209	24.368	24.448	24.527	24.686	24.765	24.844	24.924 25.003	25.083	25.162	25.241
00	20.320	20.558	20.638	20.796	20.876	20.955	21.034	21.193	21.273	21.352	21.431	21.590	21.669	21.828	21.908	21.987	22.066	22.225	22.304	22.384	22.543	22.622	22.701
7	17.780	18.018	18.098	18.256	18.336	18.415	18.494	18.653	18.733	18.812	18.891	19.050	19.129	19.288	19.368	19.447	19.526	19.685	19.764	19.844	20.003	20.082	20.161
9	15.240	15.399	15.558	15.716	15.796	15.875	15.954	16.113	16.193	16.272	16.351 16.431	16.510	16.589	16.748	16.828	16.907	16.986	17.145	17.224	17.304 17.383	17.463	17.542	17.621
5	12.700	12.938	13.018	13.176	13.256	13.335	13.414	13.573	13.653	13.732	13.811	13.970	14.049	14.208	14.288	14.367	14.446	14.605	14.684	14.764	14.923	15.002	15.081
4	10.160	10.319	10.478	10.537	10.716	10.795	10.874	11.033	11.113	11.192	11.271	11.430	11.509	11.668	11.748	11.827	11.986	12.065	12.144	12.224	12.383		12.541
3	7.620	7.858	7.938	8.096	8.176	8.255	8.334	8.493	8.573	8.652	8.731	8.890	8.969	9.128	9.208	9.287	9.366	9.525	9.604	9.684	9.843	9.922	10.001
2	5.080	5.239	5.398	5.556	5.636	5.715	5.794	5.953	6.033	6.112	6.191	6.350	6.429	6.588	899.9	6.747	6.826 6.906	6.985	7.064	7.144	7.303	7.382	7.461
1	2.540	2.699	2.858	3.016	3.096	3.175	3.254	3.413	3.493	3.572	3.651	3.810	3.889	4.048	4.128	4.207	4.286	4.445	4.524	4.604	4.763	4.842	4.921
0	0.079	0.159	0.318	0.476	0.556	0.635	0.714	0.873	0.953	1.032	1.111	1.270	1.349	1.508	1.588	1.667	1.746	1.905	1.984	2.064	2.223	2.302	2.381
	0%	2%	100	%% %%	22.5	1/4	(E)	27,2	%	13/2	222	727	22%	1978	18	27,27	23.75 23.75 23.75	13/4	25,22	22/2	1/4	28/20	31/6

TABLE 79-INCHES TO DECIMALS OF A FOOT

									T			
EE	0	1	2	3	4	5	6	7	8	9	10	11
0 1/6 1/8 \$/16 1/4 \$/16 \$/16 \$/16 \$/16 \$/16 \$/16 \$/16 \$/16	0 .0052 .0104 .0156 .0208 .0260 .0313 .0365 .0417 .0469 .0521 .0573 .0625 .0677 .0729 .0781	.0833 .0885 .0938 .0990 .1042 .1094 .1146 .1198 .1250 .1302 .1354 .1406 .1458 .1510 .1563 .1615	.1667 .1719 .1771 .1823 .1875 .1927 .2031 .2083 .2135 .2188 .2240 .2292 .2344 .2396 .2448	.3021 .3073 .3125 .3177 .3229	.3854 .3906 .3958 .4010 .4063	.4635 .4688 .4740 .4792 .4844 .4896	.5469 .5521 .5573 .5625 .5677 .5729	.6250 .6302 .6354 .6406 .6458 .6510	.7031 .7083 .7135 .7188 .7240 .7292 .7344 .7396	.7969 .8021 .8073 .8125 .8177 .8229	.9010	.9740 .9792 .9844 .9896

TABLE 80-SHEET AND TUBE GAGES

	Thick in in			Thick in in			Thick in in	
Gage number	(B & S gage) Sheet	(Stubs gage) Tubing	Gage number	(B & S gage) Sheet	(Stubs gage) Tubing	Gage number	(B & S gage) Sheet	(Stubs gage) Tubing
00 0 1 2 3 4 5 6 7 8 9	0.365 0.325 0.289 0.258 0.229 0.204 0.182 0.162 0.144 0.128 0.114 0.102	0.380 0.340 0.300 0.284 0.259 0.238 0.220 0.203 0.180 0.165 0.148 0.134	11 12 13 14 15 16 17 18 19 20 21 22	0.091 0.081 0.072 0.064 0.057 0.051 0.045 0.036 0.032 0.028	0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.042 0.035 0.032 0.028	23 24 25 26 27 28 29 30 31 32 33 34	0.023 0.020 0.018 0.016 0.014 0.013 0.011 0.009 0.009 0.008 0.007	0.025 0.022 0.020 0.018 0.016 0.013 0.012 0.010 0.009 0.008 0.007

Material	Weight Lb./ cu. ft.	Tensile Strength Lb./ sq. in.	Yield Point Lb./ sq. in.	Elonga- tion PerCent in 2 Inches	Shear Strength Lb./ sq. in.	Shear Modulus of Strength Elasticity Lb./ Lb./sq. in.	Pois- son's Ratio	Coefficient of Expansion per degree F. 68°-212°	Specific heat Calories per gram	Thermal trical Conductivity tivity 200° C. 20 C.	Electrical Conductivity ² 20 C.
Aluminum (commercially pure)	Sec	See Tables 3 and 4 for values for various alloys.	es 3 and 4 for various alloys.	or values	for	10,000,000	0.33	0.0000133	0.23	0.52	58
Brass: 34% Zn hard sheet 40% Zn, sand-cast	521 521 521	76,000 46,000 46,000	22,000	7 64 15		15,000,000 15,000,000 13,000,000	0.33	0.000011 0.000011 0.000010	0.086	0.20	25 25 25
Bronze: 8% Sn.) hard sheet	548	90,000 50,000 31,000	25,000	.25:		17,000,000 17,000,000 17,000,000	0.33	0.000010 0.000010 0.000010	0.086	0.18	23 23 23
Copper (pure): hard sheet	557 557	60,000	24,000 10,000	82	24,000	17,500,000	0.33	0.000000	0.101	0.92	97
Iron: gray castwrought plate	450 480	21,000	27,000	25	40,000	12,000,000	0.25	0.000006	0.115	0.10	17
Lead: chemical, castrolled	710 710	2,800		30 :	::	2,600,000	0.43	0.000017	0.034	0.08	∞ ∞
Monel metal: hard sheethot-rolled plate or cast	550 550	100,000	30,000	30	87,000 46,000	25,000,000	0.39	0.000008	0.128	90.00	44
Steel: carbon, cast, annealed structural 5% Ni, 0.3% C	490 490 490	75,000 65,000 95,000	41,000 33,000 65,000	24 22 28	60,000	29,000,000 29,000,000 28,000,000	0.30	0.000007	0.118	0.12 0.12 0.12	15 :
Wood: oak. spruce. yellow pine.	45 27 27	8,000 5,500 5,000		:::	1,300	1,300,000 1,200,000 1,000,000	: : :	0.000003	0.33	0.00035	:::
Zinc: cold rolled; 1% Cu, 0.01% Mg	440	37,000		20		7 17	0.11	0.000018	0.092	0.27	:

¹Calories transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree centigrade.

²Volume conductivity in per cent based on 100 for copper (International Annealed Copper Standard).

WARRANTY CLAUSE

The products of Aluminum Company of America are supplied under the standard warranty clause which appears on its acknowledgment of orders:

"The goods sold hereunder are warranted to be free from defects in material and work-manship and this express warranty is in lieu of and excludes all other warranties expressed or implied by operation of law or otherwise. Defective material may be returned to us after inspection by us and upon receipt of definite shipping instructions from us. Goods so returned will be replaced or repaired without charge, but we shall not be liable for loss, damage or expense directly or indirectly arising from the use of the material or from any other cause, our liability being expressly limited to the replacement or repair of defective material. Every claim on account of defective material or workmanship or for any other cause, shall be deemed waived by you unless made in writing within sixty (60) days from the date of the receipt of goods to which such claim relates."

INDEX

A	Compression
Alloys	Columns36
Aging14	Design35
Alclad	Strengths23, 24, 35
Cast	Conductivity
Characteristics	Electrical12, 207
Composition22	Thermal
Nomenclature	Connections
Nomenciature	Connections77
Properties	Conversion tables
Selection of	Factors203
Uses	Fractions to decimals204
Wrought9	Inches to centimeters205
Angles, elements of sections of 87–98, 110	Inches to decimals of a foot206
	Corrosion, resistance to
В	Corrugated sheet152
Bar	Curved plates
	Cutting
Commercial sizes	Cutting, 10
Specifications	D
Tolerances	
Weights and areas153, 154	Deflection
Batten plates	Design of aluminum structures33-78
Beams	Drawing tubing
Buckling of flanges	Drilling16
Buckling of webs	
Deflections	E
Design	D
Formulas79-82	Eccentric loadings49, 57, 77
H-Beams	Edge compression of plates40, 46
I-Beams99–100, 111	Effective slenderness ratio36
Tubular55	Effective width of flat plates45
	Elasticity, modulus of11, 20, 207
Bearing 150 150	Electrical conductivity12, 207
Areas of driven rivets158–159	Elements of sections of85-147
Strengths	Angles87–98
Bend radii for forming29	Bulb angle110
Bending moments79–82	Channels101–103, 109, 112
Bolts, dimensions and weights of .160, 161	Formulas145–147
Buckling	Circles 144
Beam and girder webs55, 60, 76	Girder144
Bending48	H-Beams
Compression flanges53	I-Beams
Curved plates and tubes46, 55, 63	Pipe
Flat plates40, 60	Rectangles114–139
Shear	Tees
Burning	Tubing140-143
Durning	Wide-flange beams104
	Wing channels
C	Zees108–109
C+i 10 22 24	Elevated temperatures27
Castings	Elongation 20, 23, 24, 166–170, 207
Channels, elements of sec-	Endurance limit11, 20, 23, 24, 25
tions of	Equivalent slenderness ratio. 41, 46, 50, 56
Characteristics of alloys21	Expansion, coefficient of28, 20%
Cold forming14	Extrusion of shapes
Columns	Extrusion of snapes
Design36	F
Formulas	
Latticing	Fabrication of structures14
Shear	Factor of safety
Strength	Fatigue
Combined bending and compression57	Forgings
Composition of alloys	Forming

G	Poisson's ratio
Gages	Products of Aluminum Company of
Sheet	America213
Tube	Properties, typical
Girders	Aluminum alloys23, 24, 170
Box52	Various materials207
Buckling of flanges	Publications
Buckling of webs	Punching
Elements of sections of	810
	R
Н	K
H-Beams, elements of sections of105	Radius of gyration
Hardness of alloys	Reaming
Heat treating	Reaming
Alloys14	tions of
Rivets	Repeated stress
	Rigidity, modulus of20
I	Rivets
I Poome elements of	Bearing areas
I-Beams, elements of sec-	Dimensions
tions of	Driving
Impact	Heads
L	Heat treating
	Lengths for various grips
Latticed members71, 75	Shear and bearing 65, 158, 159
Local buckling, see Buckling	Spacing .72 Weights .157
Longitudinal shear72	Rod
34	Commercial sizes189
M	Specifications
Machining	Tolerances
Manufacture of wrought alloy	Weights and areas153, 154
commodities12	Rolling
Mechanical properties	Routing
Cast aluminum alloys	
Significance of terms20	S
Specifications	
Various materials207	Sales offices of Aluminum Company
Wrought aluminum alloys10, 23	of America
Modulus of elasticity	Sawing
Modulus of rigidity 20 Moment of inertia 85	Section modulus85
Motion pictures	Shapes, see Structural shapes
motion pictures	Shear
N	Areas of driven rivets158, 159
	Buckling
Nomenclature of alloys9, 19	Rivets
Nominal compositions	Strength
Nuts, weights of	Shearing
p	Sheet
-	Commercial sizes200
Painting18	Corrugated
Pipe	Gage151, 206
Elements of sections of	Gage
Sizes	Specifications
Tolerances	Tolerances
Weight162 Plate	Weights, aluminum and steel 151
Bearing strength67	Sizes, commercial
Commercial sizes 188, 189, 190–197	Bar
Specifications 166, 169, 190–197	Pipe
Specifications 166–169 Tolerances 171–173	
Weights and areas	Rod
G	Shapes

Sizes, commercial (Continued)	Tubing
Sheet	Beams55
Tubing	Buckling
Wire	Commercial sizes198, 199
Specific heat207	Elements of sections of 140–143
Specifications	Gages
A.S.T.M., S.A.E., Gov't	Manufacture13
Bar	Specifications
Forgings	Tolerances
Plate	Weights140–143
Rod	
Shapes	U
Sheet	Ultimate strength
Tubing	Aluminum alloys23, 24
Wire	Various materials207
Splices	Uses of various alloys21
Stiffeners	
Structural shapes	V
Commercial sizes87-113	Vibration
Elements of sections of87–113	VIDIALIOII
Equivalent slenderness ratio50, 51	W
Manufacture	iii ii
Specifications	Web plates55, 60, 76
Tolerances	Web stiffeners
Weights and areas87-113	Weights
	Aluminum alloys23, 24
T	Bars
	Bolts
Tees, elements of sections of106-107	Nuts161
Temperature	Pipe
Coefficient of expansion28, 207	Plate114–139
Mechanical properties at elevated	Rivets
temperatures27	Shapes87–113
Tension	Sheet
Design34	Tubing
Rivets	Various materials207
Strengths23, 24, 207	Welding17
Thermal conductivity	Wide-flange beams, elements of
Thermal expansion	sections of
Tolerances, commercial	Wing channels, elements of sections of . 113
Bar	Wire
Pipe178–187	Commercial sizes
Plate171–173, 176	Specifications
Rod	Tolerances
Shapes172, 175–177	Working stresses
Sheet	Wrought alloys9
Tubing	No. of the last of
Wire	Y
Torsion	Yield strength20, 23, 24, 207
Torsion factor	
	Z
Tread plate189	Zees, elements of sections of 108-109
Trusses71	Zees, elements of sections of 100-109

PUBLICATIONS

• Architecture

Standard Architectural Specifications for Alcoa

Spandrels of Alcoa Aluminum
Window Sills and Thresholds of Alcoa Aluminum
Copings and Gravel Stops of Alcoa Aluminum
Utility Pipe Railings of Alcoa Aluminum
Alcoa Aluminum Industrial Roofing

• Chemical Process Equipment Alcoa Aluminum Heat Exchanger Tubes

Electrical Conductors

Aluminum Bus Conductors
A.C.S.R. for Rural Lines
A.C.S.R. 220,000 Volt Transmis

A.C.S.R. 220,000 Volt Transmission Lines in the United States and Canada

Electrical Characteristics of A.C.S.R. Engineering Data for A.C.S.R. Lines

• General

Alcoa Aluminum and Its Alloys

Magnesium

Properties of Mazlo Magnesium Products Designing with Magnesium Mazlo Magnesium Data

 Metal Working and Product Design

Casting Alcoa Alloys
Designing for Alcoa Die Castings
Finishes for Alcoa Aluminum
Forming Alcoa Aluminum
Machining Alcoa Aluminum
Alcoa Aluminum in Automatic Screw Machines
Riveting Alcoa Aluminum
Welding and Brazing Alcoa Aluminum
Design Details for Aluminum
Alcoa Aluminum Impact Extrusions

• Paint

Painting with Aluminum

These books are free and available upon request, on your business letterhead, to the nearest sales office of Aluminum Company of America.

MOTION PICTURES

Unfinished Rainbows
Curiosity Shop
This is Aluminum
Dateline Tomorrow
Aluminum Fabricating Processes
How to Machine Aluminum
How to Rivet Aluminum
General Sheet Metal Practice

Blanking and Piercing
Drawing, Stretching and Stamping
Tube and Shape Bending
Spinning
Torch Welding
Arc Welding
Resistance Welding
How to Braze Aluminum

The Davenport Story

PRODUCTS

Ingots

Ingots, billets and slabs for wrought aluminum products.

Casting alloy ingot.

Metallurgical granulated ingot.

Materials for Fabrication

Rolled structural shapes: Angles, beams, channels, car channels and zees.

Extruded shapes and moldings for aircraft, architecture, railroad rolling stock, truck bodies, bus bodies, etc.

Rod and Bar: Round, rectangular, hexagonal and special shapes for screw machine stock, etc.

Plate: Sheared and sawed, rectangular, circles and tread.

Tank plates.

Tread plate.

Sheet: Alclad, flat, coiled, corrugated, circles, reflector sheet and roofing sheet.

Handrails and fittings.

Pipe and fittings (I. P. S.).

Tubing: Round, square, streamline and special shapes.

Castings: Sand, die and permanent mold.

Hammer Forgings.

Press Forgings.

Impact extrusion products.

Draw press products.

Screw machine products.

Rivets.

Bolts.

Nuts.

Nails.
Screws: Machine and wood.

Wire: Round, half round, oval, half oval, square, rectangular, hexagonal and octagonal and flattened.

Welding and brazing flux and wire.

Specialties

Barrels and shipping containers. Chemical and special apparatus. Kettles.

Tanks: Welded and riveted.
Job-shop products.

Automotive Products

Lynite pistons and connecting rods. Lynite Lo-Ex pistons.

Electrical Conductors and Accessories

Electrical cable: All-aluminum and A. C. S. R. (Aluminum cable steel reinforced).

Cable fittings and accessories.

Rigid conduit.

Electrical metallic tubing.

Bus bars: Flat, tubular and rolled channel.

Bus bar fittings and accessories.

Fuse wire.

Magnet wire.

• Paste and Powder

Paste and powder: For paint pigment, printing ink, lithographic ink, rubber compounding, dusting, etc.

• Packaging Products

Bottle closures and bottle sealing machines.

Collapsible tubes.

Foil: Plain, printed, embossed, lacquered and paper-mounted.

ALCOA SALES OFFICES

AKRON 8, OHIO
ALBANY 7, N. Y
ALLENTOWN, PA
ATLANTA 3. GA
BALTIMORE 1. MD
BIRMINGHAM 3. ALA
BOSTON 16, MASS
BUFFALO 7, N. Y
CHARLOTTE 2, N. C
CHICAGO 11, ILL
CINCINNATI 2, OHIO
CLEVELAND 13, OHIO
CLEVELAND 13, OHIO
COLUMBUS 15, OHIO
DALLAS 1, TEXAS
DAVENPORT, IOWA
DAYTON 2, OHIO
DENVER, COLO
DETROIT 2, MICH
FAIRFIELD CONN
FORT WAYNE, IND. 1935 Lincoln Tower
GRAND RAPIDS 2. MICH
HARTFORD 3 CONN
HOUSTON 2 TEXAS
INDIANAPOLIS 4, IND
JACKSON, MICH
KANSAS CITY 6, MO
LOS ANGELES 14, CALIF
LOUISVILLE 2, KY
MIAMI 32, FLA
MILWAUKEE 2, WIS
MILWAUKEE 2, WIS.
MINNEAPOLIS 2, MINN
NEWARK 2, N. J
NEW ORLEANS 12, LA
NEW YORK 17, N. Y
OKLAHOMA CITY 2, OKLA
PEORIA 1, ILL
PHILADELPHIA 9. PA
PITTSBURGH 22. PA
PONTIAC 15, MICH
PROVIDENCE 3. R. I
RICHMOND 19 VA
ROCHESTER 4, N. Y
ST. LOUIS 8, MO
SAN FRANCISCO 4, CALIF
SEATTLE 1, WASH
SOUTH BEND 5, IND
SOUTH BEND 5, IND.
SPRINGFIELD 3, MASS
SYRACUSE 2, N. Y
TAMPA 2, FLA
TOLEDO 4, OHIO
VANCOUVER, WASH
WASHINGTON 6, D. C
WICHITA 2 KAN
WILMINGTON, DEL. Delaware Trust Bldg. YORK, PA

ALUMINUM COMPANY OF AMERICA

General Offices-Gulf Building, Pittsburgh 19, Pa.

The word "Alcoa" and the adjacent design are registered trademarks applied to the products of Aluminum Company of America, whose technical staff exercises the most rigid control over every process in the production of Alcoa Aluminum . . from the mining of bauxite ore to the production of uniform and high quality aluminum and aluminum alloys, in every commercial form.

Rabert 7 Sell 3309 E: 35 th

