1.1Línea del tiempo de los S.O.

1960-1970: El surgimiento de los primeros sistemas operativos

- 1961: Desarrollo del CTSS (Compatible Time-Sharing System) en el MIT, el primer sistema operativo de tiempo compartido.
- **1964**: IBM lanza el sistema operativo OS/360 para sus computadoras mainframe.

• 1969: Ken Thompson y Dennis Ritchie desarrollan UNIX en los Bell Labs de AT&T.

1970-1980: La era de UNIX y la diversificación de los SO

• 1971: Intel lanza el primer microprocesador, el Intel 4004.

- 1974: UNIX es reescrito en C, haciéndolo más portable
- 1978: Gary Kildall desarrolla CP/M, popular en computadoras personales.

1980-1990: La consolidación de Microsoft y el surgimiento de Apple

- 1981: Microsoft lanza MS-DOS para la IBM PC.
- 1984: Apple lanza Mac OS para las computadoras Macintosh.
- 1985: Microsoft lanza Windows 1.0, su primer sistema operativo gráfico.

1990-2000: La era de la conectividad y la aparición de Linux

• 1991: Linus Torvalds desarrolla Linux, un SO de código abierto basado en UNIX.

• **1995**: Microsoft lanza Windows 95, con soporte para redes y una interfaz gráfica avanzada.

2000-actualidad: El surgimiento de los SO móviles y la era de la nube

- 2001: Apple lanza Mac OS X, basado en UNIX.
- 2007: Apple lanza el iPhone, impulsando el desarrollo de iOS y Android.

• 2011: Google lanza Chrome OS, un SO basado en la nube¹².

Espero que esta línea de tiempo te sea útil. ¿Hay algún acontecimiento específico que te gustaría explorar más a fondo?

1.2 Tabla comparativa de SO Y SOD

Actividad 1

	SO	SOB	Definición	
Costo	~	X	Cantidad que se da o se paga por algo	
Velocidad	x	~	Eficiencia y rapidez de donde se ejecutan	
Distribucion	X	~	Acción y el efecto de distribuir, es decir, de repartir o dividir algo entre varios destinatarios o ubicaciones.	
Fiabilidad	X	V	Probabilidad de buen funcionamiento	
Escalabilidad	х	~	Capacidad de una empresa, proyecto de alcanzar un crecimiento exponencial	
Datos compartidos	х	4	Información, archivos o recursos que pueden ser accedidos por múltiples usuarios dentro del sistema	
Comunicación	~	x	Es el mecanismo que posibilita que dos o mas procesos intercambien información	
Flexibilidad			Habilidad del sistema de manufactura para producir un número determinado de productos	
Software	~	х	Conjunto de programas instrucciones y reglas informáticas para ejecutar ciertas tareas en una computadora	
Redes	~	x	Interacción de distintos números de sistemas informáticos a través de una serie de dispositivos de telecomunicación y un medio físico	
Seguridad	~	x	Capacidad de un sistema para proteger sus recursos, datos y funcionamientos contra amenazas	
Complejidad	X	~	Cantidad de algo que esta compuesto por diversos elementos	

1.3 Tabla de super computadoras

Nombre	Institució n	Lugar	Rendimie nto (PFlop/s)	Procesad ores	Sistema Operativ o
Frontier	Oak Ridge National Laboratory	EE.UU.	1,102	AMD EPYC + AMD	HPE Cray OS

				Instinct GPUs	
Fugaku	RIKEN	Japón	442	Fujitsu A64FX	Custom Linux
LUMI	CSC - IT Center for Science	Finlandia	309	AMD EPYC + AMD Instinct GPUs	HPE Cray OS
Summit	Oak Ridge National Laboratory	EE.UU.	148	IBM POWER9 + NVIDIA Tesla V100	Red Hat Enterpris e Linux
Sierra	Lawrence Livermore National Laboratory	EE.UU.	94.6	IBM POWER9 + NVIDIA Tesla V100	Red Hat Enterpris e Linux
Sunway TaihuLigh t	National Supercom puting Center	China	93	Sunway SW26010	Sunway RaiseOS
Perlmutt er	National Energy Research Scientific Computing Center	EE.UU.	70.9	AMD EPYC + NVIDIA A100 GPUs	HPE Cray OS
Selene	NVIDIA Corporatio n	EE.UU.	63.4	AMD EPYC + NVIDIA A100 GPUs	Ubuntu
Tianhe- 2A	National Supercom puter Center	China	61.4	Intel Xeon E5- 2692v2 + Matrix- 2000	Kylin Linux

Damma m-7

1.4 Ejercicios del libro

Ventajas y desventajas de los sistemas distribuidos respecto a los centralizados:

Ventajas:

Los sistemas distribuidos pueden crecer fácilmente añadiendo más nodos. Si un nodo falla, el sistema puede seguir funcionando. Permiten la integración de diferentes tipos de hardware y software.

Desventajas:

La gestión y coordinación de múltiples nodos es más compleja. Tienen mayor superficie de ataque debido a la distribución de datos y servicios. La comunicación entre puede ser costosa y lenta.

Importancia de la transparencia en los sistemas distribuidos:

La transparencia es crucial porque permite que los usuarios y aplicaciones interactúen con el sistema distribuido como si fuera un único sistema coherente, ocultando la complejidad de la distribución y facilitando su uso y gestión.

Transparencia de red en los sistemas distribuidos:

La transparencia de red implica que los usuarios no necesitan saber la ubicación física de los recursos o servicios. Pueden acceder a ellos de la misma manera, independientemente de dónde se encuentren en la red.

Diferencia entre sistemas fuertemente acoplados y sistemas débilmente acoplados:

Fuertemente acoplados:

Los componentes están estrechamente integrados y comparten memoria y recursos de manera directa.

Débilmente acoplados:

Los componentes funcionan de manera más independiente y se comunican a través de redes, sin compartir memoria directamente.

Diferencia entre un sistema operativo de red y un sistema operativo distribuido:

Sistema operativo de red:

Gestiona los recursos de una red de computadoras, permitiendo la comunicación y el intercambio de datos entre ellas.

Sistema operativo distribuido:

Proporciona una capa de abstracción que hace que múltiples nodos en una red parezcan un único sistema coherente.

Diferencia entre una pila de procesadores y un sistema distribuido:

Pila de procesadores:

Conjunto de procesadores que trabajan juntos en una misma máquina, compartiendo memoria y recursos.

Sistema distribuido:

Conjunto de nodos independientes que colaboran a través de una red para realizar tareas.

"Imagen único" sistema en los sistemas distribuidos: Significa que el sistema distribuido se presenta a los usuarios y aplicaciones como un único sistema coherente, ocultando la distribución de los recursos y servicios.

Cinco tipos de recursos en hardware y software que pueden compartirse de manera útil:

Procesadores: Para balancear la carga de trabajo.

Memoria: Para almacenamiento distribuido.

Dispositivos de almacenamiento: Como discos duros y SSDs.

Impresoras: Para acceso compartido.

Aplicaciones: Software que puede ser utilizado por múltiples usuarios.

Importancia del balanceo de carga en los sistemas distribuidos: Es crucial para asegurar que ningún nodo esté sobrecargado mientras otros están infrautilizados, mejorando la eficiencia y la respuesta del sistema.

Cuándo se dice que un sistema distribuido es escalable: Un sistema es escalable si puede manejar un aumento en la carga de trabajo añadiendo más recursos (nodos) sin una disminución significativa en el rendimiento.

Mayor riesgo a la seguridad en un sistema distribuido que en un sistema centralizado: Debido a la distribución de datos y servicios en múltiples nodos, hay más puntos de entrada potenciales para ataques, lo que aumenta la superficie de ataque y la complejidad de asegurar el sistema.