## Масштабирование данных



## Масштабирование данных

Если признаки сильно отличаются по масштабу, например, x1 in [100500; 201000], a x2 in [5.1; 7.2], то обучение будет долгим и оптимальная точка может быть не достигнута



https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

### Стандартизация (нормализация Z-оценки)

Выполняется преобразование

$$x'=rac{x-ar{x}}{\sigma}$$

 $ar{x}$  - математическое ожидание,  $\sigma$  - стандартное отклонение Новое мат. ожидание 0, стандартное отклонение 1

#### StandardScaler

- ▶ fit(X) расчет мат. ожидания и стандартного отклонения
- transform(X) выполнение преобразования
- fit\_transform(X) оба действия за один шаг
- inverse\_transform(X) обратное преобразование
- X массив, размерность [n\_samples, n\_features]

## База данных вин

Химический анализ вин трех разных сортов. 1 столбец - сорт вина, столбцы 2-14 содержат данные о следующих признаках:

- Алкоголь
- Яблочная кислота
- Зола
- Щелочность золы
- Магнезия
- Общее содержание фенолов
- Флаваноиды
- Нефлаваноидные фенолы
- Проантоцианины
- Интенсивность цвета
- Оттенок
- ▶ OD280 / OD315 разбавленных (разведенных) вин
- Пролин

lection\_4\_Scale

# Пример с большими объемами данных и непрерывной целевой функцией



https://scikit-learn.org/stable/auto\_examples/preprocessing/plot\_all\_scaling.html

## Масштабирование по минимаксу

Выполняется преобразование

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}}$$

 $X_{min}$ ,  $X_{max}$  - минимальное и максимальное значение, соответственно

Новая величина изменяется в пределах [0, 1]

#### MinMaxScaler

- fit(X) расчет минимума и максимума
- transform(X) выполнение преобразования
- ▶ fit\_transform(X) оба действия за один шаг
- inverse\_transform(X) обратное преобразование
- X массив, размерность [n\_samples, n\_features]

lection\_4\_Scale

# Пример с большими объемами данных и непрерывной целевой функцией

Масштабирование не в [0;1], а в [0;0.005]



https://scikit-learn.org/stable/auto\_examples/preprocessing/plot\_all\_scaling.html

## Нормализация

Признаки каждого образца (строка) независимо от других образцов нормируются.

Новые величины имеют единичную длину. Возможна нормализация L1, L2

$$x_j^{(i)'} = \frac{x_j^{(i)}}{\sqrt{\left(x_1^{(i)}\right)^2 + \dots + \left(x_n^{(i)}\right)^2}}$$

lection\_4\_Scale

#### Normalizer

- ▶ fit(X) ничего не делает (для совместимости с другими)
- transform(X) выполнение нормализацию до единичной длины
- ▶ fit\_transform(X) выполнение нормализацию до единичной длины
- обратного преобразования не предусмотрено

X - массив, размерность [n\_samples, n\_features]

## Пример с большими объемами данных





http://benalexkeen.com/feature-scaling-with-scikit-learn/

## Какое масштабирование выбрать? Для каких алгоритмов обучения применять?

- > StandardScaler практичен для алгоритмов, использующих градиентный спуск, в т.ч. алгоритмов использующих глубокое обучение. Выбросы влияют на расчет мат. ожидания и стандартного отклонения.
- ► MinMaxScaler сохраняет информацию об изначальном распределении данных (просто масштабирует). Не снижает значимость выбросов.
- NormalSclaler нормализует строку (объект), а не столбец с признаком.
  Обычно используется в задачах текстовой классификации, где рассчитывается косинусное сходство векторов

#### Для каких алгоритмов обучения масштабирование не обязательно?

- Деревья принятия решений
- Случайные леса (на базе деревьев)

## Pipeline

- ▶ Объект-конвейер принимает на вход список шагов
- Шаг кортеж (произвольный строковый идентификатор; преобразователь или оценщик)
- Промежуточные шаги преобразователи, последний оценщик



## Вопросы

Признаки у образцов имеют разные масштабы. Чем это плохо? Что с этим можно сделать?

Какие алгоритмы не подвержены влиянию разных масштабов данных?

## Домашнее задание

- > Загрузить данные о сортах вин.
- Разбить данные на тренировочный и тестовый набор в соотношении
  7/3 c random\_state=5
- Сделать массив классификаторов [Perceptron, LogisticRegression, KNeighborsClassifier(n\_neighbors=7),
  DecisionTreeClassifier(max\_depth=3)]
- Создать масштабирующие классы StandatdScaler и MinMaxScaler
- ➤ Отмасштабировать тренировочные (fit\_transform()) и тестовые (transform()) признаки и тем и другим классом
- ▶ Поочередно оценить точность прогнозов на немсаштабированных данных, данных после MinMaxScaler, после StandardScaler для алгоритмов из массива
- Отобразить точность для каждого случая (название класса можно вывести как clfr.\_\_class\_\_.\_\_name\_\_)

Calling fit() more than once will overwrite what was learned by any previous fit() <a href="https://scikit-learn.org/stable/tutorial/basic/tutorial.html">https://scikit-learn.org/stable/tutorial/basic/tutorial.html</a>

## Вопросы, на которые нужно дать ответы:

- ▶ В каком случае (StandatdScaler/MinMaxScaler/без масштабирования) алгоритмы показали лучший результат
- ► Как повлияло масштабирование признаков на результаты работы DecisionTreeClassifier
- Для классификатора LogisticRegression сделать конвейер с лучшим алгоритмом масштабирования. Сделать предсказания с помощью конвейера.
  - Из конвейера получить натренированный классификатор (pipline.steps[0] вернет tuple с масштабирующим классом, pipline.steps[1] вернет tuple с классификатором)
  - ▶ По весам классификатора (w1,w2...) (3 массива весов, которые отделяют каждый класс от двух других) определить, какие из признаков наиболее значимы (имеют абсолютное значение больше единицы)

#### НЕ ПИСАТЬ САМОСТОЯТЕЛЬНО НИКАКИХ ФУНКЦИЙ!

Преобразование весов в индексы делать с помощью numpy см. lection\_2\_numpy\_start Из c=[0.134, -2.3, 4.31, -0.65, -0.54, 0,23, 1.56] получить c1=[False, True, True, False, False, False, True], Полученный вектор из True/False, передать в качестве индекса в names - узнать наименование признаков (names[c1])

names = np.array(['Алкоголь', 'Яблочная кислота', 'Зола', 'Щелочность золы', 'Магнезия', 'Общее содержание фенолов', 'Флаваноиды', 'Нефлаваноидные фенолы', 'Проантоцианины', 'Интенсивность цвета', 'Оттенок', 'Ораво / OD315 разбавленных (разведенных) вин', 'Пролин'])

# Pipeline - аналог какого структурного шаблона проектирования?



Задача - модификация аргументов

Elements of Reusable Object-Oriented Software

Erich Gamma Richard Helm Ralph Johnson John Vlissides



Foreword by Grady Booch

ADDISON-WESLEY PROFESSIONAL COMPUTING SERIES





## Шаблон декоратор, классический вариант

предназначен для <<interface>> динамического **IComponent** подключения дополнительного operation() поведения к объекту. <<class>> <<class>> **Decorator** ConcreteComponent -component +operation() +operation()





## Бытовой пример



Розетка



Сетевой фильтр



Умная розетка



## Шаблон декоратор



\*В самом Python интерфейса lEstimator нет, шаги также нельзя добавлять динамически

## Другие шаблоны и техники...















catch