Отчет по практической работе

Горохов Никита

Декабрь 2019

Для своего исследования я выбрал 20 организмов из отряда приматов (полный список см. табл.1). В качестве объекта я взял белок **цитохром б** ($CYB_{_}$). На сайте **uniport** я нашел 20 аминокислотных последовательностей для заданного списка организмов.

Далее к исходным последовательностям я применил алгоритм множественного выравнивания **MUSCLE**. Цель данного проекта заключается в использовании различных алгоритмов реконструкции филогении. Я свой выбор остановил на следующих программах:

- FastME
 - метод: метод сбалансированной минимальной эволюции
 - эволюционная модель: JTT
 - bootstrap: да
- MrBayes
 - метод: Markov chain Monte Carlo (MCMC)
 - **эволюционная модель**: Dayhoff
 - bootstrap: да
- MEGA
 - метод: UPGMA
 - эволюционная модель: JTT
 - bootstrap: да
- PhyML
 - метод: метод максимального правдоподобия
 - эволюционная модель: JTT
 - bootstrap: да

В результате были построены 4 дерева (Построение деревьев делал с помощью MEGA). На рис 1 изображены эти деревья. Далее был проведен сравнительные анализ полученных результатов. Для этого я использовал пакет на R *ape*. В данном пакете реализовано несколько полезных функций, которые позволяют сравнить два филогенетических дерева. Ниже представлен код.

```
library(ape)
fastme = read.tree(file = "fastME_tree.nwk")
mrbayes = read.tree(file = "mrBayes_tree.nwk")
phyml = read.tree(file = "PhyML_tree.nwk")
mega_upgma = read.tree(file = "mega_upgma_tree.nwk")
comparePhylo(phyml, fastme, plot = T, force.rooted = TRUE)
all.equal.phylo(fastme, phyml) #fastme and phyml are equal
comparePhylo(phyml, mega_upgma, plot = T, force.rooted = TRUE)
comparePhylo(phyml, mrbayes, plot = T, force.rooted = TRUE)
comparePhylo(mrbayes, mega_upgma, plot = T, force.rooted = TRUE)
```

На рис.2, 3 и 4 точками отмечена клады, которых нет в другом дереве. Программы **phyML** и **FastMe** реконструировали абсолютно одинаковые деревья. Пары **phyML** MEGA UPGMA и phyML mrBayes отличаются в двух кладах. Однако в паре деревьев **mrBayes** и MEGA UPGMA различия наблюдаются в 4 кладах.

На основе полученных результатов, можно предположить, что деревья полученные методами FastMe и phyML являются оптимальными. Если проводить аналогию с пространством филогенетических деревьев, то получается, что деревья полученные FastMe и phyML принадлежат одной террасе, и более того, деревья полученные программами MEGA UPGMA и mrBayes лежат по разные стороны от этой террасы, но на одном островке.

Дополнительно я нашел статью, в которой реконструируется филогения приматов (**PMID: 21436896**). На рис.5 изображены два дерева: дерево из статьи и результат программы FastMe. Проведя сравнительный анализ можно сделать вывод, что полученные деревья совпадают.

ID	организм
CYB_NEAND	Homo sapiens Neanderthalensis
CYB_DENIS	Homo sapiens Denisova
CYB_HUMAN	Homo sapiens (Human)
CYB_GORGO	Gorilla gorilla (Western lowland gorilla)
CYB_PANTR	Pan troglodytes (Chimpanzee)
CYB_PONPY	Pongo pygmaeus (Bornean orangutan)
CYB_PONAB	Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)
CYB PANPA	Pan paniscus (Pygmy chimpanzee) (Bonobo)
CYB MACMU	Macaca mulatta (Rhesus macaque)
CYB NOMLE	Nomascus leucogenys (Northern white-cheeked
	gibbon) (Hylobates leucogenys)
CYB_CHLAE	Chlorocebus aethiops (Green monkey)
	(Cercopithecus aethiops)
CYB_HYLLA	Hylobates lar (Common gibbon) (White-handed
_	gibbon)
CYB_COLGU	Colobus guereza (Mantled guereza) (Eastern
	black-and-white colobus monkey)
CYB_HOOHO	Hoolock hoolock (Western hoolock gibbon)
	(Bunopithecus hoolock)
CYB_HYLME	Hylobates muelleri (Mueller's Bornean gibbon)
CYB_NOMGA	Nomascus gabriellae (Red-cheeked gibbon)
CYB_LEPLC	Lepilemur leucopus (White-footed sportive
	lemur)
CYB_MICMU	Microcebus murinus (Lesser mouse lemur) (Gray
	Mouse Lemur)
CYB_AOTAI	Aotus azarai subsp. infulatus (Feline night
	monkey) (Aotus infulatus)
CYB_MIRZA	Mirza zaza (Northern giant mouse lemur)
	(Microcebus zaza)

Таблица 1: 20 выбранных организмов

Рис. 1: (FastME \nwarrow), (MrBayes \nearrow), (MEGA \swarrow), (PhyML \searrow)

 ${\it Puc.}$ 2: сравнение ${\it PhyML}$ и MEGA UPGMA

Рис. 3: cравнение PhyML и mrBayes

Рис. 4: сравнение mrBayes и MEGA UPGMA

Рис. 5: