■ ■ série de livros didáticos informática ufrgs

Estruturas de Dados

Nina Edelweiss Renata Galante

Conceitos Básicos

Introduz conceitos necessários ao entendimento das diferentes estruturas a serem vistas ao longo deste curso

Conceitos Básicos

Tipos de dados e Estruturas de dados

Tipos de Dados

Tipo de dado

definição do conjunto de valores (domínio) que variável pode assumir

>

lógico

< verdadeiro, falso >

Tipos de Dados

- Tipos básicos (primitivos)
 - inteiro, real, lógico e caractere
- Tipos de estruturados (construídos)
 - arranjos (vetores e matrizes)
 - registros
 - sequências (conjuntos)
 - referências (ponteiros)
- Tipos definidos pelo usuário

Tipos e Estruturas de Dados

Aplicação:

representação dos <u>funcionários e alunos</u> de uma Faculdade

- Tipo de dado?????

Estruturas de Dados

Relacionamento de hierarquia

Como representar com os tipos de uma Linguagem de Programação?

Tipos e Estruturas de Dados

- Tipos de dados básicos
 - Fornecidos pela Linguagem de Programação
- Estruturas de Dados
 - Estruturação <u>conceitual</u> dos dados
 - Reflete um relacionamento lógico entre dados, de acordo com o problema considerado

Estruturas de Dados

Estruturas de Dados a serem vistas:

- Listas lineares
- Árvores

Lista linear

- Relação de ordem entre os dados
- Linear sequencial

Ex:

aplicação: empresa

problema: dados dos funcionários – cada nó um funcionário

• Relação de subordinação entre os dados

Ex:

aplicação: empresa

problema: organograma de funções

Operações sobre estruturas de dados

Estruturas de Dados incluem as operações para a manipulação de seus dados

Operações básicas:

- <u>criação</u> da estrutura de dados
- inclusão de um novo elemento
- <u>remoção</u> de um elemento
- acesso a um elemento
- <u>destruição</u> da estrutura de dados

Operações

Solução para uma Aplicação:

1. Identificar as relações lógicas existentes entre os dados,

relevantes ao problema

Ordem linear pai / filhos

•••

2. Identificar as

operações

sobre estes dados

Criação
Manutenção
Inserção de componente
Remoção de componente
Alteração de componente
Consulta
Destruição
Outras

Estruturas de Dados

13

Exemplo: Folha de frequência

Disciplina: Estruturas de Dados

Semestre: 2009-2 Turma: A

Professor: Maria Silva

matrícula	nome	 	
XXXX	Ana		
ZZZZ	Maria		
YYYY	Pedro		

Programa: manipula dados dos alunos matriculados

Operações sobre os dados dos alunos:

- inserir os nomes
- <u>buscar</u> os nomes dos alunos e armazenar na memória
- <u>pesquisar</u> os nomes ordenados para folha de frequência
- <u>alterar</u> os nomes
- excluir os nomes

Conceitos Básicos

TADs - Tipos Abstratos de Dados

Tipos Abstratos de Dados

TADs

Um TAD é uma forma de definir um novo tipo de dado juntamente com as operações que manipulam esse novo tipo de dado

TADs

- Separação entre conceito (definição do tipo) e implementação das operações
- Visibilidade da estrutura interna do tipo fica limitada às operações
- Aplicações que usam o TAD são denominadas clientes do tipo de dado
- Cliente tem acesso somente à forma abstrata do TAD

TADs

Um TAD (em LP) é um tipo de dado que satisfaz as condições:

- A representação ou a definição do tipo e as operações sobre variáveis desse tipo estão contidas numa única unidade sintática
 - MÓDULO
- A representação interna do tipo (a implementação) não é visível de outras unidades sintáticas, de modo que só as operações oferecidas na definição do tipo podem ser usadas com as variáveis desse tipo

Propriedades dos TADs

- Satisfazem as propriedades de
 - encapsulamento: definição isolada de outras unidades do programa
 - invisibilidade e proteção: representação do tipo deve ser acessada somente no ambiente encapsulado

- A LP deve possibilitar
 - ambiente encapsulado
 - proteção de dados
 - interface para acesso
 - operações básicas

Vantagens de TADs

- Possibilidade de utilização do mesmo TAD em diversas aplicações diferentes
- Possibilidade de alterar o TAD sem alterar as aplicações que o utilizam

REUTILIZAÇÃO

Vantagens de TADs

- Código do cliente do TAD não depende da implementação
- Segurança:
 - clientes não podem alterar a representação
 - clientes não podem tornar os dados inconsistentes

Projeto de um TAD

Envolve a escolha de operações adequadas para uma determinada estrutura de dados, definindo seu comportamento

- Dicas para definir um TAD:
 - definir pequeno número de operações
 - conjunto de operações deve ser suficiente para realizar as computações necessárias às aplicações que utilizarem o TAD
 - cada operação deve ter um propósito bem definido, com comportamento constante e coerente

Exemplo de TAD: DATA

- Par (*v*,*o*)
 - v tripla formada por dia-mês-ano
 - o operações aplicáveis sobre o tipo DATA
 - verificar se a data é válida
 - calcular o dia da semana de uma determinada data
 - calcular a data do Carnaval de um determinado ano

• ...

Exemplo de TAD: DATA

Estrutura de representaçãoData = registro

Dia: inteiro

Mês: inteiro

Ano: inteiro

fim registro

Exemplo de TAD: DATA

Operações

Procedimento InicializaData

Entradas: Dia, Mês, Ano (inteiro)

Saída: D(Data)

Função AcrescentaDias

Entradas: D(Data), Dias (inteiro)

Retorno: (Data)

Função EscreveExtenso

Entradas: D (Data)

Retorno: (lógico)

Exemplo de TAD: representação de um ponto

Modelo

Par ordenado (x,y)

- Dados representando o modelo
 - Coordenada X
 - Coordenada Y

Exemplo de TAD: representação de um ponto

Operações:

- cria: operação que cria um ponto, alocando memória para as coordenadas x e y;
- libera: operação que libera a memória alocada por um ponto;
- acessa: operação que devolve as coordenadas de um ponto;
- atribui: operação que atribui novos valores às coordenadas de um ponto;
- distancia: operação que calcula a distância entre dois pontos.

Exemplo de TAD: representação de um ponto

Operações:

- cria (x,y)
- libera (ponto P)
- acessa (ponto P)
- atribui (ponto P, x,y)
- distancia (ponto P1, ponto P2)

Conceitos Básicos

Alternativas de representação física

Modelagem dos dados

Mundo Real

Objetos reais sem omissão de detalhes

Mundo Real

Objetos reais sem omissão de detalhes

Informações relevantes para o sistema

Selecionadas aquelas informações relevantes para as aplicações consideradas Depto, Emp, Veículo, etc.

Mundo Real

Objetos reais sem omissão de detalhes

Informações relevantes para o sistema

Selecionadas aquelas informações relevantes para as aplicações consideradas Depto, Emp, Veículo, etc.

Tipos Abstratos de Dados (TAD) Componentes e operações dos diversos Tipos de Dados, abstraídos detalhes e implementação:

CADASTRO (insere, remove, ...)

Mundo Real

Objetos reais sem omissão de detalhes

Informações relevantes para o sistema

Selecionadas aquelas informações relevantes para as aplicações consideradas Depto, Emp, Veículo, etc.

Tipos Abstratos de Dados (TAD)

Componentes e operações dos diversos Tipos de Dados, abstraídos detalhes e implementação:
CADASTRO (insere, remove, ...)

Estrutura Lógica e Algoritmos

Esquemas de representação dos dados e detalhamento das operações definidas sobre tais esquemas

Mundo Real

Objetos reais sem omissão de detalhes

Informações relevantes para o sistema

Selecionadas aquelas informações relevantes para as aplicações consideradas Depto, Emp, Veículo, etc.

Tipos Abstratos de Dados (TAD) Componentes e operações dos diversos Tipos de Dados, abstraídos detalhes e implementação:
CADASTRO (insere, remove, ...)

Estrutura Lógica e Algoritmos

Esquemas de representação dos dados e detalhamento das operações definidas sobre tais esquemas

Estrutura Física e Programas

Representação física dos dados e programas que implementam as operações (o nível físico pode corresponder a tipos primitivos de uma linguagem de programação)

Modelo físico

Escolha da representação física

- Preservar as relações lógicas
- Permitir operações através de procedimentos <u>simples</u> e <u>eficientes</u>

As operações definidas sobre os dados influenciam decisivamente na escolha da representação física a ser adotada

Alternativas de Representação Física

Contiguidade física

posicional - implícita

Encadeamento

posições aleatórias - ordem explícita

A posição do componente na estrutura lógica determina sua posição na estrutura física

Modelo físico

- Diversas alternativas de estruturas físicas podem implementar uma mesma estrutura lógica
 - Vetores
 - Matrizes
 - Estruturas
 - Ponteiros

Modelo físico

- A escolha pela melhor alternativa de estrutura física depende de alguns fatores
 - volume de dados
 - número (quantidade) de dados
 - fixo ou variável
 - operações realizadas sobre os dados

• Folha de frequência

Disciplina: Estruturas de Dados

Semestre: 2009-2 Turma: A

Professor: Maria Silva

matrícula	nome				
XXXX	Ana				
ZZZZ	Maria				
YYYY	Pedro				

- Folha de frequência
 - Modelo Lógico
 - Estrutura abstrata para manter o relacionamento entre os dados

- Folha de frequência
 - Modelo Lógico
 - Estrutura abstrata para manter o relacionamento entre os dados: LISTA

- Folha de frequência
 - Modelo Físico
 - Implementa a estrutura lógica em uma estrutura de armazenamento (estrutura física) em uma linguagem de programação

- Folha de frequência
 - Modelo Físico
 - Implementa a estrutura lógica em uma estrutura de armazenamento (estrutura física) em uma linguagem de programação: ARRAY

vetor de alunos Ana Maria Pedro

• Folha de frequência

Disciplina: Estruturas de Dados

Semestre: 2009-2 Turma: A

Professor: Maria Silva

matrícula	nome	 	
XXXX	Ana		
ZZZZ	Maria		
YYYY	Pedro		

Programa: manipula dados a respeito

dos alunos matriculados

Operações:

- insere
- consulta
- excluir
- altera
- calculaMedia

Estruturas de Dados

Listas Lineares

Árvores

- formas de estruturar os dados
- opções para armazenamento físico
- algoritmos de manipulação

Final Capítulo 2 Conceitos básicos