Matrix Algebra

Basis

Homework 10

- 1. Explain why each of the following sets is not a basis for \mathbb{R}^2 .
 - a) $\{(1,2)^T, (1,0)^T, (0,1)^T\}$
 - b) $\{(6,-5)^T, (-12,10)^T\}$
 - c) $\{(-3,2)^T\}$
- 2. Explain why each of the following sets is not a basis for \mathbb{R}^3 .
 - a) $\{(1,2,0)^T, (-1,0,2)^T, (0,2,2)^T\}$
 - b) $\{(-6,4,-5)^T,(2,1,0)^T\}$
 - c) $\{(3,2,1)^T, (1,2,3)^T, (2,3,1)^T, (3,1,2)^T\}$
- 3. For each of the following, determine whether or not the given set S is a basis for the corresponding \mathbb{R}^n .
 - a) $S = \{(3,2)^T, (2,3)^T\}$ for \mathbb{R}^2 .

Answer: It is a basis.

b) $S = \{0,3,2\}^T, (4,0,3)^T, (-8,15,-16)^T\}$ for \mathbb{R}^3 .

Answer: It is a basis.

c) $S = \{(0,0,0)^T, (1,5,6)^T, (6,2,1)^T\}$ for \mathbb{R}^3

Answer: It is not a basis.

d) $S = \{(0,0,0)^T, (1,5,6)^T, (6,2,1)^T, (1,1,1)^T\}$ for \mathbb{R}^3

Answer: It is not a basis.

e) $S = \{(1,2,0,1)^T, (0,1,0,0)^T, (1,0,0,0)^T, (0,0,2,0)^T\}$ for \mathbb{R}^4 .

Answer: It is a basis.