

Misk Academy أكاديمية مسك

Empower The Next Generation

DSI Capstone Presentation

A topic-based sentiment analysis

Lujain Felemban

AGENDA

- PROBLEM STATEMENT
- DATA SCIENCE PROBLEM
- DATA COLLECTION AND PRE-PROCESSING
- FEATURE EXTRACTION
- MODELLING
- RESULTS
- CONCLUSION

Target Account

- Analyze the Sentiments of ALL of target account followers
- Predict Approval (Perceived Sentiment) Distribution towards a new tweet to be written by target account

DS Work Flow

- Choose Account (PIF)
- Fetch all account followers username (40K followers)
- Check dominant Language (only 700 appear to be EN)
- Fetch all en Tweets (2000 max, 100 min per user)

hashtags	mentions	tweet	time username	date
NaN	['lucylucyprior', 'xrailgroup', 'transcityrail']	sure lucy couldnt miss seeing speaking line lo	06:47:22	2018-09-27
NaN	['darbaarbyabdul']	darbaarbyabdul hi guys closed trying phone guy	18:48:27	2018-09-03
NaN	['johnmsv', 'emirates', 'british_airways']	british airways safety lucky serve tea	04:15:16	2018-08-13
['#autotradergoals']	NaN	ive entered autotradergoals chance win free car	19:30:04	2018-07-11
NaN	['landrover_uk']	hi becci sent dm ongoing issue thank	10:45:58	2018-07-02

• ~300,000 observations

FEATURE EXTRACTION!

"I LIKE TO EAT SUSHI"

POSITIVE

FOOD, EATING

Topic modeling gensim LDA

lmi	port	d	af	a:
			•	

from .csv into pandas dataframe

Clean data (text analysis):

remove ascii, unicode, stopwords and remove affixes from words.

Construct a document-term matrix (DTM):

from gensim import corpora, models

Create dictionary:

split sentences into tokens, assigning a unique integer id to each unique token while also collecting word counts and relevant statistics.

Create corpus:

doc2bow() function converts dictionary into a bag-of-words. The result, corpus, is a list of vectors equal to the number of documents. In each document vector is a series of tuples.

Decide number of clusters, passes and alpha:

Apply the LDA model

Examine the results:

each topic contains bags of words with multinomial distribution, analyze these set and assign meaningful labels to topic.

New document to be classified:

Clean data (text analysis), pass to LDA model, sort results based on topic probability and choose one with maximum probability or using another distance calculations techniques.

Topic Modeling of All Fetched Tweets

FEATURE EXTRACTION!

"I LIKE TO EAT SUSHI"

Sentiment Analysis TEXTBLOB LIBRARY

TOPIC MODELING

POSITIVE

FOOD, EATING

0	1	2	3	4	5	6	7	8	9	DayOfWeek	Month	Hour	sentiment
0.010058	0.010058	0.228744	0.487173	0.113148	0.010058	0.010058	0.010058	0.010060	0.110585	3	9	6	0.500000
0.000000	0.129514	0.303850	0.000000	0.000000	0.000000	0.000000	0.000000	0.508295	0.000000	0	9	18	-0.085185
0.157130	0.157147	0.014292	0.014292	0.157099	0.157097	0.014292	0.300065	0.014292	0.014292	0	8	4	0.333333
0.157129	0.157156	0.014287	0.014288	0.299989	0.014289	0.157153	0.157131	0.014290	0.014287	2	7	19	0.600000
0.020004	0.219996	0.020004	0.419946	0.020008	0.020004	0.020004	0.020004	0.020007	0.220022	0	7	10	0.000000

Average Sentiments of All Tweets Grouped by Time

Average Sentiments of All Tweets Grouped by Time Broken by Topic

Sentiment Distribution of All collected Tweets

Modeling

Regression

Classification

Algorithm	Train/Test Score
Simple Linear Regression	AvgCV = 0.01
Decision Tree	0.99, -0.92
Random Forest	0.83, 0.07

Algorithm	Train/Test Score
Logistic Regression	0.66, 0.66
DecisionTree	0.71, 0.65
MLP	0.67, 0.66
MLP	0.77, 0.67

BEST MODEL

(None,	128)	56704
(None,	256)	33024
(None,	3)	771
	(None,	(None, 128) (None, 256) (None, 3)

Total params: 90,499

Trainable params: 90,499 Non-trainable params: 0

صندوق الاستثمارات العامة Public Investment Fund

 ""#PIF CONTRIBUTES TO THE DEVELOPMENT OF SAUDI ARABIAS ECONOMY BY INVESTING INDIVERSIFIED SECTORS, GEOGRAPHIES AND ASSET CLASSES, FORMING STRATEGIC PARTNERSHIPS AND LAUNCHING MAJOR INITIATIVES THAT MAXIMIZE SUSTAINABLE RETURNS IN LINE WITH THE GOALS OF #SAUDIVISION2030.

	0	1	2	3	4	5	6	7	8	9
0	0.046951	0.045885	0.045879	0.09988	0.358462	0.049083	0.045889	0.11382	0.125947	0.068204

CREATE DF OF ALL POSSIBILITIES (USERNAME & DATETIME)

	month	day	hour	0	1	2	3	4	5	6	7	8	9
0	1	0	0	0.046951	0.045885	0.045879	0.09988	0.358462	0.049083	0.045889	0.11382	0.125947	0.068204
0	1	0	1	0.046951	0.045885	0.045879	0.09988	0.358462	0.049083	0.045889	0.11382	0.125947	0.068204
0	1	0	2	0.046951	0.045885	0.045879	0.09988	0.358462	0.049083	0.045889	0.11382	0.125947	0.068204
0	1	0	3	0.046951	0.045885	0.045879	0.09988	0.358462	0.049083	0.045889	0.11382	0.125947	0.068204
0	1	0	4	0.046951	0.045885	0.045879	0.09988	0.358462	0.049083	0.045889	0.11382	0.125947	0.068204

PREDICT
PERCEIVED
SENT

Predicted Perceived Sentiment by ALL USERS

Challenges:

- Data Collection
- No Defined Metric
- Time
- Modelling based on non-apparent correlation Features
- Data Size

Future Work:

- Hashtags
- Pre-trained LDA topic model
- Time-Series based Sentiment Analysis
- Modelling
- Define a Metric (likes, RT)
- Tweet's sentiment (by head account)
- Resampling
- Wait for more followers to get bigger data

THANK YOU!

PowerpointSuckground

Lujain Felemban General Assembly DSI Student lifelemban@gmail.com