Robust Empirical Bayes Confidence Intervals

Michal Kolesár

May 27, 2020

The package ebci implements robust empirical Bayes confidence intervals (EBCIs) proposed by Armstrong et al. [2020] for inference in a normal means model $Y_i \sim N(\theta_i, \sigma_i^2)$, i = 1, ..., n.

Setup

Suppose we use an empirical Bayes estimator of θ_i that shrinks toward the predictor based on the regression of θ_i onto X_i (equivalently, regression of Y_i onto X_i),

$$\hat{\theta}_i = X_i' \delta + w_i (Y_i - X_i' \delta), \tag{1}$$

where $\delta = E[X_i X_i']^{-1} E[X_i \theta_i]$, $w_i = \frac{\mu_2}{\mu_2 + \sigma_i^2}$, and

$$\mu_2 = E[(\theta_i - X_i'\delta)^2 \mid X_i, \sigma_i]. \tag{2}$$

We assume that μ_2 doesn't depend on σ_i . Morris [1983] proposes to use the parametric EBCI

$$\hat{\theta}_i \pm \frac{z_{1-\alpha/2}}{\sqrt{w_i}} w_i \sigma_i.$$

The critical value $z_{1-\alpha/2}/\sqrt{w_i}$ is larger than the usual critical value $z_{1-\alpha/2} = \mathtt{qnorm}(1-\mathtt{alpha/2})$ if the estimator was unbiased conditional on θ_i . This CI is justified if we strengthen the assumption (2) by making the normality assumption $\theta_i \mid X_i, \sigma_i \sim N(X_i'\delta, \mu_2)$: to account for the bias $b_i = (1-w)(\theta_i - X_i'\delta)$ of the estimator (more precisely b_i is the bias conditional on $(X_i, \theta_i, \sigma_i)$), the parametric EBCI assumes that it is normally distributed.

A robust EBCI that is only uses (2) and not the normality assumption takes the form

$$X_i'\delta + w_i(Y_i - X_i'\delta) \pm cva_{\alpha}(m_2, \infty)w_i\sigma_i, \ m_2 = (1 - 1/w_i)^2\mu_2/\sigma_i^2,$$
 (3)

where the critical value cva_{α} is derived in Armstrong et al. [2020]. Here m_2 is the second moment of the bias-standard deviation ratio $m_2 = b_i/(w_i\sigma_i)$, which we refer to as the normalized bias. This critical value imposes a constraint (2) on the second moment of θ_i , but no constraints on higher moments. We can make the critical value smaller by also imposing a constraint on the kurtosis of θ_i (or equivalently, the kurtosis of the normalized bias)

$$\kappa = E[(\theta_i - X_i'\delta)^4 \mid X_i, \sigma_i] / \mu_2^2 = E[b_i^4] / E[b_i^2]^2.$$
(4)

In analogy to (2), we assume here that the conditional fourth moment of $\theta_i - X_i'\delta$ doesn't depend on (X_i, σ_i) . In this case, the robust EBCI takes the form

$$\hat{\theta}_i \pm cva_{\alpha}(m_2, \kappa)w_i\sigma_i, \ m_2 = (1 - 1/w_i)^2\mu_2\sigma_i^2,$$

These critical values are implemented in the package by the cva function:

```
library("ebci")
## If m_2=0, then we get the usual critical value
cva(m2 = 0, kappa = Inf, alpha = 0.05)$cv
#> [1] 1.959964
## Otherwise the critical value is larger:
cva(m2 = 4, kappa = Inf, alpha = 0.05)$cv
#> [1] 7.216351
## Imposing a constraint on kurtosis tightens it
cva(m2 = 4, kappa = 3, alpha = 0.05)$cv
#> [1] 4.619513
```

Example

Here we illustrate the use of the package using a dataset from Chetty and Hendren [2018] (CH hereafter). The dataset is included in the package as the list cz. Run ?cz for a full description of the dataset. As in Chetty and Hendren [2018], we use precision weights proportional to the inverse of the squared standard error to compute (δ, μ_2, κ) .

```
## As Y_i, use fixed effect estimate theta25 of causal
## effect of neighborhood for children with parents at
## the 25th percentile of income distribution. The
## standard error for this estimate is se25. As
## predictors use average outcome for permanent residents
## (stayers), stayer25. Let us use 90% CIs.
r <- ebci(formula = theta25 ~ stayer25, data = cz, se = se25,
    weights = 1/se25^2, alpha = 0.1, wopt = FALSE)</pre>
```

For shrinkage toward the grand mean, or toward zero, use the specification theta25 ~ 1, or theta25 ~ 0 in the formula argument of ebci.

The return value contains (see ?ebci for full description)

1. The least squares estimate of δ :

```
r$delta

#> (Intercept) stayer25

#> -1.44075193 0.03244676
```

2. Estimates of μ_2 and κ . The estimate used for EBCI calculations (estimate) is obtained by applying a finite-sample correction to an initial method of moments estimate (uncorrected_estimate). This correction ensures that we don't shrink all the way to zero (or past zero) if the method-of-moments estimate of μ_2 is negative (see Armstrong et al. [2020] for details):

3. A data frame with columns:

```
names(r$df)
#> [1] "w_eb"     "w_opt"     "ncov_pa" "len_eb"     "len_op"     "len_pa"     "len_us"
#> [8] "th_us"     "th_eb"     "th_op"     "se"
```

The columns of the data frame refer to:

- w_eb Empirical Bayes shrinkage factor $w_i = \mu_2/(\mu_2 + \sigma_i^2)$.
- th_eb Empirical Bayes estimator $\hat{\theta}_i$ given in (1)
- len_eb Half-length $cva_{\alpha}(m_2,\kappa)w_i\sigma_i$ of the robust EBCI, so that the lower endpoint of the EBCIs are given by th_eb-len_eb, and the upper endpoint by th_eb+len_eb. For a given observation, this can be also computed directly using the cva function:

```
cva(m2 = ((1 - 1/r$df$w_eb[1])/r$df$se[1])^2 * r$mu2[1],
    r$kappa[1], alpha = 0.1)$cv * r$df$w_eb[1] * r$df$se[1]
#> [1] 0.1916245
r$df$len_eb[1]
#> [1] 0.1916245
```

- len_pa Half-length $z_{1-\alpha/2}\sqrt{w_i}\sigma_i$ of the parametric EBCI.
- w_opt Shrinkage factor that optimizes the length of the resulting confidence interval, that is, the value of w_i that minimizes (3) over w_i (missing here since we specified wopt=FALSE)
- th_op Estimator based on the length-optimal shrinkage factor w_opt (missing here since we specified wopt=FALSE)
- len_op Half-length $cva_{\alpha}(m_2,\kappa)w_i\sigma_i$ of the length-optimal EBCI (missing here since we specified wopt=FALSE).
- th_us The unshrunk estimate Y_{ij} as specified in the formula argument of the function ebci.
- len_us Half-length $z_{1-\alpha/2}\sigma_i$ of the CI based on the unshrunk estimate
- se The standard error σ_i , as specified by the argument se of the ebci function.
- ncov_pa Maximal non-coverage of the parametric EBCI.

Using the data frame, we can give a table summarizing the results. Let us show the results for the CZ in California:

cz	unshrunk_estimate	estimate	lower_ci	upper_ci
Klamath Falls	0.372	0.112	-0.076	0.301
Redding	0.082	0.031	-0.144	0.206
Eureka	0.280	-0.097	-0.299	0.105
Crescent City	-0.078	-0.076	-0.302	0.149
Modesto	-0.004	0.015	- 0.111	0.142
Bakersfield	0.028	0.084	-0.047	0.215
Fresno	-0.377	-0.163	-0.274	-0.052
Chico	0.072	0.034	-0.135	0.203
Sacramento	-0.012	0.006	-0.095	0.106
San Jose	-0.011	0.048	-0.073	0.169
Santa Rosa	-0.117	0.002	-0.167	0.171
San Francisco	0.017	0.029	-0.077	0.134
Mammoth Lakes	0.045	0.109	-0.120	0.338
San Diego	0.054	0.056	-0.035	0.148
Yuma	-0.216	0.031	-0.130	0.192
Santa Barbara	-0.040	0.068	-0.088	0.224
Los Angeles	-0.170	-0.129	-0.191	-0.067

Using shrinkage tightens the robust EBCIs relative to the unshrunk CI by a factor of

```
mean(r$df$len_us)/mean(r$df$len_eb)
#> [1] 4.024772
```

on average.

On the other hand, using the parametric EBCI yields CIs that violate the 90% coverage requirement, the worst-case coverage for the estimated value of (μ_2, κ) is given by

```
mean(r$df$ncov_pa)
#> [1] 0.2274703
```

References

Tim Armstrong, Michal Kolesár, and Mikkel Plagborg-Møller. Robust empirical Bayes confidence intervals. ArXiv: 2004.03448, April 2020. URL https://arxiv.org/abs/1606.01200.

Raj Chetty and Nathaniel Hendren. The impacts of neighborhoods on intergenerational mobility II: County-level estimates. *The Quarterly Journal of Economics*, 133(3):1163–1228, August 2018. doi: 10.1093/qje/qjy006.

Carl N. Morris. Parametric empirical Bayes inference: Theory and applications. *Journal of the American Statistical Association*, 78(381):47–55, March 1983. doi: 10.1080/01621459.1983.10477920.