Summary Details So	ource Context Comments Raw Session	on	Compare ↓ 🎇 Tools ↓ ◎ View ↓ 🕒 Export	
► GPU Speed Of Light Throughput	for compute and memory resources of the GPU. For each unit, the t	hroughn	GPU Throughput Chart ut reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns s	ρ show the
		tor. High	l-level overview of the utilization for compute and memory resources of the GPU presented as a roofline	
Memory Throughput [%] L1/TEX Cache Throughput [%]		12.54	Elapsed Cycles [cycle]	344607 1564.83
L2 Cache Throughput [%] DRAM Throughput [%]			SM Frequency [Ghz] DRAM Frequency [Ghz]	1.44 6.00
	kload is utilizing greater than 80.0% of the available compute or men o another unit. Start by analyzing workloads in the <u>© Compute Worklo</u>		formance of the device. To further improve performance, work will likely need to be shifted from the most vsis section.	t
FP04/32 Utilization porf			. The workload achieved 0% of this device's fp32 peak performance and 32% of its fp64 peak p64 bound, consider using 32-bit precision floating point operations to improve its performance. See	•
Est. Speedup: 85.77% the		load is i	po4 bound, consider using 52-bit precision hoading point operations to improve its performance. See	
► PM Sampling Timeling view of PM metrics complete	d periodically over the workland duration. Data is collected across m	ultinla n	acces. Hea this section to understand how workload behavior changes over its runtime	Ω
Maximum Sampling Interval [cycle]		20000	# Pass Groups	1
Maximum Buffer Size [Kbytes] ▶ Compute Workload Analysis		192	Dropped Samples [sample]	Ω
Detailed analysis of the compute resonance.	ources of the streaming multiprocessors (SM), including the achieve	d instruc	ctions per clock (IPC) and the utilization of each available pipeline. Pipelines with very high utilization mig	
Executed Ipc Elapsed [inst/cycle] Executed Ipc Active [inst/cycle]			SM Busy [%] Issue Slots Busy [%]	88.53 6.15
Issued Ipc Active [inst/cycle]	is the highest utilized pipeline (00 EV) based on active evalue taking	0.25	sount the rates of its different instructions. It executes 64 hit fleating point energtions. The pipeline is	
over-u <u>✓ Very High Utilization</u> opera	itilized and likely a performance bottleneck. Based on the number of tions. Comparing the two, the overall pipeline utilization appears to b	execute e cause	count the rates of its different instructions. It executes 64-bit floating point operations. The pipeline is dinstructions, the highest utilized pipeline (88.5%) is FP64. It executes 64-bit floating point d by frequent, low-latency instructions. See the Kernel Profiling Guide or hover over the pipeline	•
name <u>Statis</u>	to understand the workloads handled by each pipeline. The <u>Pinstruc</u> tics section for which reasons cause warps to stall.		tistics section shows the mix of executed instructions for this workload. Check the <u>Warp State</u>	
► Memory Workload Analysis			Memory Chart	Ω
			I performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available uing memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with da	ta for
Memory Throughput [Gbyte/s] L1/TEX Hit Rate [%]			Mem Busy [%] Max Bandwidth [%]	9.91 12.54
L2 Hit Rate [%]	attern The memory access nattern for global loads from LITEV m		Mem Pipes Busy [%]	12.61
Est. Speedup: 12.86%		_	be optimal. On average, only 8.0 of the 32 bytes transmitted per sector are utilized by each thread. he <u>Source Counters</u> section for uncoalesced global loads.	•
L1TEX Global Store Access P Est. Speedup: 8.58%			e optimal. On average, only 16.0 of the 32 bytes transmitted per sector are utilized by each thread. he <u>Source Counters</u> section for uncoalesced global stores.	•
▶ Scheduler Statistics				Ω
Summary of the activity of the sched configuration. On every cycle each sc	heduler checks the state of the allocated warps in the pool (Active V	Varps). A	an issue instructions for. The upper bound of warps in the pool (Theoretical Warps) is limited by the laun active warps that are not stalled (Eligible Warps) are ready to issue their next instruction. From the set of	ch eligible
warps the scheduler selects a single indicates poor latency hiding.		n cycles	with no eligible warps, the issue slot is skipped and no instruction is issued. Having many skipped issue	slots
Active Warps Per Scheduler [warp] Eligible Warps Per Scheduler [warp] Issued Warp Per Scheduler			No Eligible [%] One or More Eligible [%]	93.83 6.17
issued waip rei schedulei		for this	workload each scheduler only issues an instruction every 16.2 cycles. This might leave hardware	0
	scheduler, but only an average of 0.10 warps were eligible per cycle no eligible warp results in no instruction being issued and the issue	e. Eligible e slot rer	the maximum of 8 warps per scheduler, this workload allocates an average of 7.33 active warps per e warps are the subset of active warps that are ready to issue their next instruction. Every cycle with mains unused. To increase the number of eligible warps, avoid possible load imbalances due to highly	
	different execution durations per warp. Reducing stalls indicated o	n the 🔼 V	<u>Varp State Statistics</u> and <u>▶ Source Counters</u> sections can help, too.	
► Warp State Statistics Analysis of the states in which all wa	rps spent cycles during the kernel execution. The warp states descri	be a war	p's readiness or inability to issue its next instruction. The warp cycles per instruction define the latency b	Ω etween
			each warp state, the chart shows the average number of cycles spent in that state per issued instruction. If the schedulers fail to issue every cycle. When executing a kernel with mixed library and user code, these	
Warp Cycles Per Issued Instruction [Avg. Active Threads Per Warp Avg. Not Predicated Off Threads Per Warp	32 30.97
			g for a scoreboard dependency on a L1TEX (local, global, surface, texture) operation. Find the ce the number of cycles waiting on L1TEX data accesses verify the memory access patterns are	•
Est. Speedup: 11.71% op		by increa	sing data locality (coalescing), or by changing the cache configuration. Consider moving frequently	
			for the L1 instruction queue for texture operations to be not full. This stall reason is high in cases of	•
Fet Speedup: 11 71% lower	er-width memory operations into fewer wider memory operations and	try inte	ce loads, surface stores, or decoupled math operations. If applicable, consider combining multiple rleaving memory operations and math instructions. Consider converting texture lookups or surface cycle, whereas global accepts 32 threads. This stall type represents about 42.8% of the total average	
of 1	18.7 cycles between issuing two instructions.			
Warp Stall Check the <u>▶ Warp</u>	p Stall Sampling (All Samples) table for the top stall locations in you	r source	based on sampling data. The <u>Mernel Profiling Guide</u> provides more details on each stall reason.	
			bes and frequency of the executed instructions. A narrow mix of instruction types implies a dependency of	
diverge if cycles are spent in system Executed Instructions [inst]	calls.		rallel execution. Note that 'Instructions/Opcode' and 'Executed Instructions' are measured differently and Avg. Executed Instructions Per Scheduler [inst]	20975
Issued Instructions [inst]				1002.07
FP64 Non-Fused Instructions Est. Speedup: 14.76%	This kernel executes 129600 fused and 64800 non-fused FP64 in achieved FP64 performance could be increased by up to 17% (rel instructions.		ns. By converting pairs of non-fused instructions to their the fused, higher-throughput equivalent, the its current performance). Check the Source page to identify where this kernel executes FP64	0
NVI ink Topology				0
► NVLink Topology NVLink Topology diagram shows log	ical NVLink connections with transmit/receive throughput.			Ω
► NVLink Tables Detailed tables with properties for ea	ch NVLink.			Ω
► NUMA Affinity				Ω
Non-uniform memory access (NUMA Launch Statistics) affinities based on compute and memory distances for all GPUs.			Ω
		kernel gr	id, the division of the grid into blocks, and the GPU resources needed to execute the kernel. Choosing an	
Grid Size Registers Per Thread [register/thread			Function Cache Configuration CachePref Static Shared Memory Per Block [byte/block]	ferNone 0
Block Size Threads [thread]		256 88960	Dynamic Shared Memory Per Block [byte/block] Driver Shared Memory Per Block [byte/block]	0
Waves Per SM Uses Green Context		0	Shared Memory Configuration Size [Kbyte] Stack Size	32.77 1024
# SMs [SM] Enabled TPC IDs		- 11	# TPCs	12
			% Occupancy Graphs 🔻 [nat is
actively in use. Higher occupancy do the theoretical and the achieved occu		always r ads.	educes the ability to hide latencies, resulting in overall performance degradation. Large discrepancies be	etween
Theoretical Occupancy [%] Theoretical Active Warps per SM [warps Achieved Occupancy [%]	arp]	32	Block Limit Registers [block] Block Limit Shared Mem [block] Block Limit Warps [block]	16 16 4
Achieved Active Warps Per SM [warp			Block Limit Warps [block]	16
► GPU and Memory Workload Distri Analysis of workload distribution in a	bution ctive cycles of SM, SMP, SMSP, L1 & L2 caches, and DRAM			Ω
Average SM Active Cycles [cycle] Average L2 Active Cycles [cycle]				1564.83
Average DRAM Active Cycles [cycle] Total L1 Elapsed Cycles [cycle]	1 82	79392 20088	Total SM Elapsed Cycles [cycle] 8 Total L2 Elapsed Cycles [cycle] 3	220088 935736
Total SMSP Elapsed Cycles [cycle] Source Counters	328	80352	Total DRAM Elapsed Cycles [cycle] 8	583168 Q
Source metrics, including branch effic	ciency and sampled warp stall reasons. Warp Stall Sampling metrics of all stall reasons. Only focus on stalls if the schedulers fail to issue		odically sampled over the kernel runtime. They indicate when warps were stalled and couldn't be schedul ycle.	
Branch Instructions [inst] Branch Instructions Ratio [%]		30080	Branch Efficiency [%] Avg. Divergent Branches	0
	This kernel has uncoalesced global accesses resulting in a total Excessive table for the primary source leasting. The first party source leasting.	of 6480	100 excessive sectors (71% of the total 907200 sectors). Check the L2 Theoretical Sectors Global ming Guide has additional information on reducing uncoalesced device memory accesses.	0
20t. opecdup. 01.00%			ors Global Excessive	
Location Ov501850100 in Image RGR2RW ke		r Jeclo	Value V	alue (%)
0x501850100 in image_RGB2BW_ke	Marie Val. (1)		194,400 194,400	30

Cycles GPU

▼ (120, 68, 1)x(16, 16, 1) 238.59 us 344,607 0 - NVIDIA GeForce GTX 1660 Ti 1.44 Ghz

Time

Size

Attributes

[26565] image 🏻 🥨

SM Frequency Process

Result

Current

573 - image_RGB2BW_kernel

194,400 64,800