Оптимизация параметров стратегий поиска объектов на море

Антон Ковшаров Научный руководитель: Ковалев А.С.

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

16 июня 2015

Оптимизация параметров стратегий поиска объектов на море — Постановка задачи

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результать

Цель работы

Построить маршрут поиска объекта максимизирующий вероятность его обнаружения. Фиксированы:

- распределение вероятности (зависимость от времени)
- параметры средства поиска
- стратегия поиска "параллельное галсирование"

Стратегия поиска

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Построение маршрута поиска объекта, основываясь на поле вероятности
- Симуляция прохождения маршрута

- Построение маршрута поиска объекта, основываясь на поле вероятности
- Симуляция прохождения маршрута

- Построение маршрута поиска объекта, основываясь на поле вероятности
- Симуляция прохождения маршрута

Оптимизация параметров стратегий поиска объектов на море — Постановка задачи

Входные данные

- параметры распределения
- параметры средства поиска
- параметры стратегии поиска
- время поиска

Задача

- π : П частица
- w_{π} вес частицы (сумма весов 1)

•
$$\chi(\pi) = \left\{ egin{array}{ll} 1 & ext{ecnu } \exists t \ \textit{dist}(\textit{posFinder}(t),\textit{pos}(\pi,t)) <= r \\ 0 & ext{uhave} \end{array} \right.$$

•
$$S_{res} = \sum_{\pi \in \Pi} \chi(\pi) w_{\pi}$$

Построить маршрут максимизирующий S_{res}

Результат алгоритма

- I_i проекция i-го галса на прямую I
- ullet h_i разница между галсом i и i+1
- S_{res} доля собранных частиц от начального распределения

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результать

Сервисы симулятора

- демонстрация распределения в каждый момент прохождения маршрута
- Статистика
 - прогресс поиска
 - поисковая
 производительность

Сервисы симулятора

- демонстрация распределения в каждый момент прохождения маршрута
- Статистика
 - прогресс поиска
 - поисковая производительность

Примеры моделей изменения распределения

- ullet случайное блуждание с произвольным Δt в качестве шага, $v \in [0, v Max]$
- направленное движение в одном из фиксированных направлений
- притяжение-отталкивание от фиксированных точек плоскости

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результать

Статический алгоритм

- dp[cntHor][row][col][move][last] максимальное суммарный вес частиц, который можно собрать
- row, col текущий строка и столбец в которой находится средство поиска
- cntHor количество горизонтальных ходов
- last количество строк без галсирования
- ullet move тип последнего хода из $\{L,LU,R,RU\}$

Статический алгоритм: переходы

- $(cntHor, row, col) \rightarrow (cntHor, row + 1, col)/(cntHor + 1, row, col \pm 1)$
- $((cntHor_i, row_i, col_i, curMove, last_i), nextMove) \rightarrow (cntHor_{i+1}, row_{i+1}, col_{i+1}, nextMove, last_{i+1})$

Статический алгоритм: переходы

- $L \rightarrow L, LU$
- $R \rightarrow R, RU$
- $LU \rightarrow LU, L, R$
- $RU \rightarrow RU, L, R$

Статический алгоритм: порядки величин

- $row \approx 200$
- $col \approx 50$
- $cntHor \approx 10^3$
- ullet last pprox 16 более дальние мало влияют
- $row \cdot col \cdot cntHor \cdot last \cdot 4 \approx 6.4 \cdot 10^8$

- исходное распределение
- 1 чac
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 yacoe

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 час:
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- изначально построенный путь
- со временем путь устарел
- перестроим путь

- изначально
 построенный путь
- со временем путь устарел
- перестроим путь

- изначально построенный путь
- со временем путь устарел
- перестроим путь

- rest непройденная часть построенного пути
- S'_{rest} планировалось собрать на симуляторе, когда строили путь (без учета диффузии)
- S_{rest}'' планируется на симуляторе к текущему моменту (без учета диффузии)
- $S_{rest}'' \leq k \cdot S_{rest}'$ перестроить маршрут с текущей точки на оставшееся время
- $k \approx 0.98$

Оптимизация параметров стратегий поиска объектов на море — Полученные результаты

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результаты

Сравнение

Nº	T_{old}	Rold	Сравнение по	Сравнение по
			результату $\it R$	времени Т
1	3.6	87.5%	94.7%	2.9
2	3.6	83.3%	92.6%	1.9
3	3.6	83.3%	86.1% (4.5)	3.6
4	3.6	100.0%	100.0%	3.3 (99.7%)

Полученные результаты

- Реализован инструмент, рассчитывающий изменение распределения частиц с учетом поискового средства в реальном времени. Инструмент используется для визуализации и оценки эффективности алгоритмов поиска
- Разработан и реализован алгоритм построения пути поиска методом "Параллельное галсирование", обеспечивающий нахождение объекта с вероятностью $\geq 90\%$ в большинстве случаев, за приемлемое время поиска

Оптимизация параметров стратегий поиска объектов на море — Полученные результаты

Вопросы?