A_1 Assignment 1

CS 3482; Professor Tang

Connor Taffe. T no. 3742

April 21st, 2015

1 Question

Draw the circuit in LogicWorks to implement the Boolean function:

$$f(a, b, c, d) = (a' + b)'c + d(b' + ac)$$

Figure 1: Given boolean function f

Figure 2: Parse tree of figure 1

- (a) Figure 2 shows the structure of a naive circuit implementation.
- (b) The longest path from a to f is 5 gates. At a 2ns delay per gate, 2ns*5 = 10ns.

2 Question

Simplify the same Boolean function in figure 1 to be the sum of its minterms by obtaining is truth table first.

- (a) Figure 1 shows the truth table for the function.
- (b) $f_{\text{minterm}} = a'b'c'd + a'b'cd + ab'c'd + ab'cd' + ab'cd + abcd$

a	b	c	d	a'	a' + b	(a'+b)'	(a'+b)'c	ac	b'	b' + ac	d(b'+ac)	f
0	0	0	0	1	1	0	0	0	1	1	0	0
0	0	0	1	1	1	0	0	0	1	1	1	1
0	0	1	0	1	1	0	0	0	1	1	0	0
0	0	1	1	1	1	0	0	0	1	1	1	1
0	1	0	0	1	1	0	0	0	0	0	0	0
0	1	0	1	1	1	0	0	0	0	0	0	0
0	1	1	0	1	1	0	0	0	0	0	0	0
0	1	1	1	1	1	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	1	1	0	0
1	0	0	1	0	0	1	0	0	1	1	1	1
1	0	1	0	0	0	1	1	1	1	1	0	1
1	0	1	1	0	0	1	1	1	1	1	1	1
1	1	0	0	0	1	0	0	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	1	0	1	0	0
1	1	1	1	0	1	0	0	1	0	1	1	1

Table 1: Truth table for f as described in figure 1

Figure 3: Parse tree of minterms of f

- (c) Figure 3 shows the parse tree and thusly the gate implementation of the minterms of f.
- (d) The delay is set to 2ns and the longest gate path is 3 gates (as is with any sum of minterms circuit). Thusly, the delay is 2ns * 3 = 6ns.

3 Question

(a) Figure 4 shows the trees of a 2-to-4 decoder with an active-high enable E

4 Question

- (a) Five, one for the first two bits, and four for each of the four minterms of the first two bits.
- (b) Figure 5 shows the parse trees of a 4-to-16 decoder built only using 2-to-4 decoders. The parse tree describes the gate diagram.

Figure 4: Parse trees of 2-to-4 decoder with an active-high enable ${\cal E}$

Figure 5: Parse trees of 4-to-16 decoder with an active-high enable ${\cal E}$