Optimality Conditions in Nonlinear Optimization

Let us consider the nonlinear optimization problem

min
$$f(x)$$

 $g_i(x) \le 0, \quad i = 1, ..., m,$
 $h_i(x) = 0, \quad i = 1, ..., p.$ (1)

We assume that the functions $f: \mathbb{R}^n \to \mathbb{R}$, $g_i: \mathbb{R}^n \to \mathbb{R}$, $i=1,\ldots,m$, and $h_i: \mathbb{R}^n \to \mathbb{R}$, $i=1,\ldots,p$, are continuously differentiable. We call such a nonlinear optimization problem *smooth*. The feasible set of this problem is denoted X.

Let $I^{0}(\hat{x})$ be the set of *active* inequality constraints at \hat{x} :

$$I^{0}(\hat{x}) = \{i : g_{i}(\hat{x}) = 0\}.$$

We say that problem (1) satisfies at \hat{x} the Mangasarian–Fromovitz condition if

- the gradients $\nabla h_i(\hat{x})$, i = 1, ..., p, are linearly independent; and
- there exists a direction d such that

$$\nabla g_i(\hat{x}), d\rangle < 0 \quad i \in I^0(\hat{x}),$$

 $\nabla h_i(\hat{x}), d\rangle = 0, \quad i = 1, \dots, p.$

Problem (1) is said to satisfy *Slater's condition*, if the functions g_i , i = 1, ..., m are convex, the functions h_i , i = 1, ..., p are affine, and there exists a feasible point x_s such that $g_i(x_s) < 0$, i = 1, ..., m.

In what follows we shall say that problem (1) *satisfies the constraint qualification condition*, if either the Mangasarian–Fromovitz or Slater's condition holds true.

Тнеогем

Let \hat{x} be a local minimum of problem (1), where the functions f, g_i and h_i are continuously differentiable. Assume that at \hat{x} the constraint qualification condition is satisfied. Then there exist multipliers $\hat{\lambda}_i \geq 0$, $i = 1, \ldots, m$, and $\hat{\mu}_i \in \mathbb{R}$, $i = 1, \ldots, p$, such that

$$\nabla f(\hat{x}) + \sum_{i=1}^{m} \hat{\lambda}_i \nabla g_i(\hat{x}) + \sum_{i=1}^{p} \hat{\mu}_i \nabla h_i(\hat{x}) = 0, \tag{2}$$

and

$$\hat{\lambda}_i g_i(\hat{x}) = 0, \quad i = 1, \dots, m. \tag{3}$$

Conversely, if the functions f and g_i are convex, and the functions h_i are affine, then every point $\hat{x} \in X$ satisfying these conditions for some $\lambda \geq 0$ and $\mu \in \mathbb{R}^p$ is an optimal solution of (1).

1 Example

Consider the following problem

min
$$(x_1 - 2)^2 + (x_2 - 1)^2$$

subject to $x_1 + x_2 \le 2$.

In this problem we have

$$f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 1)^2$$

$$g(x_1, x_2) = x_1 + x_2 - 2.$$

We calculate the gradients

$$\nabla f(x) = \begin{bmatrix} 2x_1 - 4 \\ 2x_2 - 2 \end{bmatrix}, \qquad \nabla g(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Conditions (2)–(3) take on the form:

$$\begin{bmatrix} 2x_1 - 4 \\ 2x_2 - 2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \tag{4}$$

$$\lambda(x_1 + x_2 - 2) = 0. (5)$$

Case 1: $\lambda = 0$.

It follows from (4) that $x_1 = 2$, $x_2 = 1$. This solution is not feasible and thus this case is not valid. Case 2: $\lambda > 0$.

We solve (4) for x_1 and x_2 and get

$$x_1 = 2 - \frac{\lambda}{2}, \qquad x_2 = 1 - \frac{\lambda}{2}.$$

It follows from (5) that $x_1 + x_2 = 2$, and thus $\lambda = 0.5$. We conclude that $x_1 = 1.5$ and $x_2 = 0.5$. This is a global minimum because both $f(\cdot)$ and $g(\cdot)$ are convex.