Credit Card Fraud Detection

Group 4: Jiayi Yang, Neal Xu, Suenkei Chan, Yao Zhang, Zhuofan Dong

Agenda

Business Problem

Definitions of Variables & Data Exploration

Methodology & Analytics Approach

Results & Recommendation

Business Problem

- > Background: Fraudulent activity—problem for financial institutions that issue credit cards.
- > Problem: Insufficient detection loss of customers' confidence in the security mechanisms

Excessive alerts lack of confidence in the detection algorithms as unreliable

- > Value of Solution: increase customers' stickiness
- Purpose and Objective: develop anomaly detection mechanisms (Extreme Imbalanced Dataset): make the right fraud detection and reduce false fraud alerts.

Exploratory Analysis

0: normal 1: fraud

Default Correlation with other Variables

	Class	1.000000
	V17	0.326481
	V14	0.302544
	V12	0.260593
	V10	0.216883
	V16	0.196539
	V3	0.192961
	V7	0.187257
	V11	0.154876
	V4	0.133447
_	V18	0.111485
	V1	0.101347
	V9	0.097733
	V5	0.094974
	V2	0.091289
	V6	0.043643
	V21	0.040413
	V19	0.034783
	V20	0.020090
	V8	0.019875
	V27	0.017580
	Time	0.017082
	V28	0.009536
	V24	0.007221
	Amount	0.005632
	V13	0.004570
	V26	0.004455
	V15	0.004223
	V25	0.003308
	V23	0.002685
	V22	0.000805
	Manage (3)	dt £1

Feature Selection

Generally, the features revealed from Random Forest are more convincing as it takes linear and nonlinear relationship into consideration.

Models Performance

No Resampling

Over-Sampling (SMOTE)

Weighted Learning

Nonlinear:

XGboosting
Decision Tree
Random Forest
Neural Network
Linear:

Logistic Regression

df['Class'].value_counts()

284315 1 492 **0.16**%

Name: Class, dtype: int64

All Leads to Overfitting:

Classification	report: precision	recall	f1-score	
0	1.00	1.00	1.00	
1	1.00	1.00	1.00	
accuracy			1.00	
macro avg	1.00	1.00	1.00	
weighted avg	1.00	1.00	1.00	

Model(for loop)

Advantages:

- Balanced data for both categories
- Train and test the models with different data in each loop without replacement
- Average performance score tells the truth of the model performance

Disadvantage:

- Size of training set may not be enough to fully train the models
- Hard to use the models with large computing resources such as deep learning

Model(for loop)

Label 0: 492 Label 1: 492

	accuracy	precision	recall	f1
Logistic Regression	0.937601	0.962064	0.911859	0.936071
Random Forest	0.937095	0.972221	0.899037	0.933930
XGBOOST	0.924764	0.938818	0.907956	0.922817
Decision Tree	0.917804	0.965918	0.867990	0.913875
Neural Network	0.919493	0.960431	0.875718	0.915931

Label 0: 250 Label 1: 492

	accuracy	precision	recall	f1
Logistic Regression	0.930269	0.968517	0.925163	0.946048
Random Forest	0.931480	0.969500	0.926187	0.947122
XGBOOST	0.929507	0.968245	0.924734	0.945681
Decision Tree	0.932735	0.970212	0.926731	0.947818
Neural Network	0.931166	0.968773	0.926345	0.946941
	accuracy	precision	recall	f1
Logistic Regression	accuracy 0.954509	precision 0.978263	recall 0.882575	f1 0.927693
Logistic Regression Random Forest				
	0.954509	0.978263	0.882575	0.927693
Random Forest	0.954509 0.954308	0.978263 0.977512	0.882575 0.882115	0.927693 0.927119

Label 0: 1000 Label 1: 492

Model in Semi-Supervised Learning

```
0 279580
1 5227
Name: cluster_labels, dtype: int64
```

Average cross-validation score for XC Standard deviation for XGboosting: (Accuracy score for XGboosting: 1.0 Classification report:

	precision	recall	
0	1.00	1.00	
accuracy	2100	2.00	
macro avg	1.00	1.00	
weighted avg	1.00	1.00	

Accuracy score for Logistic Regression: 0.9922404409957516 Classification report:

CIASSIIICACION	precision	recall	f1-score	support	
0	0.70	1.00	0.82 1.00	1515 83928	
accuracy			0.99	85443	
macro avg weighted avg	0.85 0.99	0.99 0.99	0.91 0.99	85443 85443	

```
Confusion matrix for Logistic Regression [[ 1510 5] [ 658 83270]]
```


Result Summary

- Useful in situation where fraud has a high cost (We have a high recall around 0.98)
- Approaches and models in supervised learning
- Approaches in semi-supervised learning
- Problematic
- Limited size of positive case; deeply imbalance dataset
- The dataset is continent-based
- The label is inaccurate

Future Improvement

Different Dataset

 Advanced Models to detect the hidden patterns (Deep Learning)

- Expected Loss
- Novelty Detection

