Note del corso di Geometria 1

Gabriel Antonio Videtta

6 marzo 2023

Teorema degli orlati e calcolo del rango di una matrice

Nota. Nel corso di questo documento, per A si intenderà una generica matrice appartenente all'anello $M(m, n, \mathbb{K})$.

Definizione. Dato un minore M di A di ordine p, si definiscono orlati di M i minori di A di ordine p + 1 che contengono come blocco M.

Esempio. Se
$$A=\begin{pmatrix}1&2&3&4&5\\6&7&8&9&10\\11&12&13&14&15\end{pmatrix}$$
 e $M=\begin{pmatrix}1&2\\6&7\end{pmatrix}$, allora gli orlati

di M sono le matrici:

$$M_1 = \begin{pmatrix} 1 & 2 & 3 \\ 6 & 7 & 8 \\ 11 & 12 & 13 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 2 & 4 \\ 6 & 7 & 9 \\ 11 & 12 & 14 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1 & 2 & 5 \\ 6 & 7 & 10 \\ 11 & 12 & 15 \end{pmatrix}.$$

Teorema. (di Kronecker, o degli orlati) La matrice A ha rango $r \in \mathbb{N}^+$ se e solo se \exists un minore M di A di taglia $r \mid \det(M) \neq 0$, $\det(N) = 0 \; \forall$ orlato N di M.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

(\Longrightarrow) Poiché $r=\min\{k\in\mathbb{N}\mid \det(N)=0\ \forall \ \text{minore}\ N\ \text{di taglia}\ k+1\}$ e r>0, in particolare è vero che esiste un minore M di A di taglia r tale che $\det(M)\neq 0$ e che ogni orlato N di M, essendone chiaramente anche minore, è tale che $\det(N)=0$.

(\iff) Senza perdità di generalità, supponiamo che $M=A_{1,\dots,k}^{1,\dots,k}$ (altrimenti è sufficiente considerare una permutazione delle colonne e delle righe di A per ricadere nel caso studiato in questa dimostrazione). Dal momento che A^1, \dots, A^k sono per ipotesi colonne linearmente indipendenti (infatti $\det(M) \neq 0 \implies \operatorname{rg}(A^1 \cdots A^k) = k$), per dimostrare che $\operatorname{rg}(A) = r$ è sufficiente mostrare che $\forall j > k, A^j \in \operatorname{Span}(A^1, \dots, A^k)$.

Si consideri allora la matrice $B=A_{1,\dots,m}^{1,\dots,k,j}$. Sia i>k e $N_i=A_{1,\dots,k,i}^{1,\dots,k,j}$. Poiché N_i è un orlato di M, $\det(N_i)=0$, e quindi $\operatorname{rg}(N_i)< k+1$. Tuttavia, poiché le righe $N_{i_1}=B_1,\dots,N_{i_k}=B_k$ sono linearmente indipendenti (sono infatti righe di M a cui è stata aggiunta una colonna), $\operatorname{rg}(N_i)\geq k$. Si conclude allora che $\operatorname{rg}(N_i)=k$, e che, essendo le righe N_{i_1},\dots,N_{i_k} linearmente indipendenti, $N_{i_j}\in\operatorname{Span}(N_{i_1},\dots,N_{i_k})=\operatorname{Span}(B_1,\dots,B_k)$. Allora ogni $B_i\in\operatorname{Span}(B_1,\dots,B_k)$, e quindi $\operatorname{rg}(B)\leq k$. Dal momento però che, come osservato prima, B_1,\dots,B_k sono linearmente indipendenti, si conclude che $\operatorname{rg}(B)=k$. Infine, poiché $B^1=A^1,\dots,B^k=A^k$ sono linearmente indipendenti, deve valere che $B^{k+1}=A^j\in\operatorname{Span}(B^1,\dots,B^k)=\operatorname{Span}(A^1,\dots,A^k)$, da cui la tesi.

Esempio. Si può impiegare il teorema degli orlati per calcolare agevolmente il rango di una matrice senza impiegare il metodo di eliminazione di Gauss. Sia per esempio:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

Poiché $B_1=(A_{11})=(1)\neq (0)$, $\operatorname{rg}(A)\geq 1$. Si consideri l'orlato $B_2=\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$ di B_1 : $\det(B_2)=1\cdot 5-4\cdot 2=-3\neq 0$: allora $\operatorname{rg}(A)\geq 2$. Infine, si consideri l'orlato $B_3=A$ di B_2 : poiché $\det(B_3)=\det(A)=1\cdot \det\begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix}-2\cdot \det\begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix}+3\cdot \det\begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}=0$ e B_3 è l'unico orlato di B_2 , si conclude che $\operatorname{rg}(A)=2$.