版图设计

李福乐 清华大学微电子所 2007年7月

版图设计

- 集成电路的制造与设计流程
- CMOS集成电路中的元件
- 版图设计规则(Topological Design Rule)
- 版图设计准则('Rule' for performance)
- 标准单元库版图分析(以COMPASS自带的 1.2um CMOS标准单元库为例)
- 课堂测试与作业

集成电路中的制作与设计

- 制作过程
- 基本设计流程
- 基本版图流程

什么叫集成电路

集成电路(Integrated Circuit,简称IC)就是将有源元件(二极管、晶体管等)和无源元件(电阻、电容等)以及它们的连线一起制作在半导体衬底上形成一个独立的整体.集成电路的各个引出端就是该电路的输入,输出,电源和地.

核心电路+IO

集成电路制作过程 集成电路设计 版图 layout 制版 掩膜版 MASK 流水加工 硅圆片 Wafer

版图结构

■ 集成电路加工的平面工艺

■ 芯片的剖面结构 从平面工艺到立体结构,需多层掩膜版,故 版图是分层次的,由多 层图形叠加而成!

- 1 N阱——做N阱的封闭图形处,窗口 注入形成P管的衬底
 - 2 有源区——做晶体管的区域 (G,D,S,B区),封闭图形处是氮化 硅掩蔽层,该处不会长场氧化层
 - 3多晶硅——做硅栅和多晶硅连线。封闭图形处,保留多晶硅

- 1 阱——做N阱和P阱封闭图形处,窗口注入形成P管和N管的衬底
- 2 有源区——做晶体管的区域 (D,G,S,B区),封闭图形处是氮化 硅掩蔽层,该处不会长场氧化层
 - 3多晶硅——做硅栅和多晶硅连线。封闭图形处,保留多晶硅

- 1 阱——做N阱和P阱封闭图形处,窗口注入形成P管和N管的衬底
- 2 有源区——做晶体管的区域 (G,D,S,B区),封闭图形处是氮化 硅掩蔽层,该处不会长场氧化层
- 3 多晶硅——做硅栅和多晶硅连线。封闭图形处,保留多晶硅

- 4 有源区注入——P+,N+区。做源漏及阱或衬底连接区的注入
 - 5接触孔——多晶硅,扩散区和金属线1接触端子。
 - 6金属线1——做金属连线,封闭图形处保留铝
 - 7 通孔——两层金属连线之间连接的端子
 - 8属线2——做金属连线,封闭图形处保留铝

- 4 有源区注入——P+,N+注入区。做源漏及阱 或衬底连接区的注入
- 5接触孔——多晶硅,扩散区和金属线1接触 端子。
 - 6金属线1——做金属连线,封闭图形处保留铝
 - 7 通孔——两层金属连线之间连接的端子
 - 8属线2——做金属连线,封闭图形处保留铝

- 4 有源区注入——P+,N+区(select)。做源漏 及阱或衬底连接区的注入
- 5接触孔——多晶硅,扩散区和金属线1接触端子。
- 6 金属1——做金属连线, 封闭图形处保留铝
 - 7 通孔——两层金属连线之间连接的端子
 - 8金属2——做金属连线,封闭图形处保留铝

- 4有源区注入——P+,N+区(select)。做源漏 及阱或衬底连接区的注入
- 5接触孔——多晶硅,扩散区和金属线1接触端子。
- 6金属线1——做金属连线,封闭图形处保留铝
- 7 通孔——两层金属连线之间连接的端子
- 8 属线2——做金属连线, 封闭图形处保留铝

CMOS集成电路中的元件

- MOS晶体管
 - 版图和结构
 - 电特性
 - 隔离
 - 串联和并联(cascode, 差分对, 电流镜)
- 连线
- 集成电阻
- 集成电容
- 寄生二极管和三级管

CMOS集成电路中元件

- MOS晶体管
- 连线
 - 连线寄生模型
 - 寄生影响
- 集成电阻
- 集成电容
- 寄生二极管和三级管

CMOS集成电路中元件

- MOS晶体管
- 连线
- 集成电阻
 - 多晶硅电阻
 - 阱电阻
 - MOS电阻
 - 导线电阻
- 集成电容
- 寄生二极管和三级管

CMOS集成电路中元件

- MOS晶体管
- 连线
- 集成电阻
- 集成电容
 - 多晶硅-扩散区电容
 - 双层多晶硅电容
 - 双层金属电容
 - MOS电容
 - 多层"夹心"电容
 - 梳状电容
- 寄生二极管和三级管

CMOS集成电路中的元件

- MOS晶体管
- 连线
- 集成电阻
- 集成电容
- 寄生二极管和三级管
 - 衬底PNP BJT
 - PSD/NWELL Diode
 - NSD/P-epi Diode

- MOS晶体管
 - 最基本的有源元件
 - 在CMOS工艺中,有PMOS和NMOS 两种
 - 可用作跨导元件,开关,有源电阻,MOS电容

• NMOS晶体管 的版图和结构

NMOS晶体管符号

NMOS晶体管版图

NMOS晶体管剖面图

- 在物理版图中,只要一条多晶硅跨过一个有源区就形成了一个MOS晶体管,将其D,G,S,B四端用连线引出即可与电路中其它元件连接.
- MOS晶体管的电特性
 - MOS晶体管是用栅电压控制源漏电流的器件, 重要的公式是萨方程(I-V方程):

 $IDS=k' \bullet W/L \bullet [(VG-VT-VS)^2-(VG-VT-VD)^2]$

- MOS晶体管的电特性
 - VD, VG, VS分别是漏, 栅, 源端的电压, VT是开启电压.
 - k' 是本征导电因子, k' =μ•Cox/2, μ是表面迁移率, 属于硅材料参数, Cox是单位面积栅电容,属于工艺参数
 - W, L分别是MOSFET的沟道宽度和长度,属于物理参数
 - 管子的最小沟道长度Lmin标志着工艺的水平——特征尺寸,如0.35um,0.18um. W表示管子的大小,W越大则管子越大,导电能力越强,等效电阻越小.

- MOS晶体管的电特性
 - 1. 晶体管的三种工作状态

截止区:
$$I_{DS}=0$$
 条件: $V_G - V_T - V_S \leq 0$

饱和区:
$$I_{DS}=k' \bullet W/L \bullet [(V_G-V_T-V_S)^2-(V_G-V_T-V_D)^2]$$

条件:
$$V_G - V_T - V_S > 0, V_G - V_T - V_D \le 0$$

线性区:
$$I_{DS} = k' \bullet W/L \bullet [(V_G - V_T - V_S)^2 - (V_G - V_T - V_D)^2]$$

条件:
$$V_G - V_T - V_S > 0, V_G - V_T - V_D > 0$$

2. 晶体管的开启电压公式

$$V_T = V_{T0} + \gamma \left[\sqrt{2\Phi_F + V_{BS}} - \sqrt{2\Phi_F} \right]$$

• MOS晶体管的隔离

在集成电路中, 两个无关的晶 体管都是用场 氧隔离的

将MOS1和MOS2隔离开

- MOS晶体管的串联和并联
 - 并联: 晶体管的D端相连, S端相连.

如果两个晶体管中有一个晶体管导通,从D到S就有电流流过, 若两个晶体管都导通,则 I=I1+I2.

每只晶体管相当于一个电阻,它的并联和电阻并联的规律一样,等效电阻减小,电流增大.

• MOS晶体管的串联和并联

* 串联: 晶体管的S端和另外一个晶体管的D端相连.

晶体管的串联和电阻的串联规律相同,等效电阻增大,电流不变: I=I1=I2.

- MOS晶体管的串联和并联
 - * 串联和并联的物理实现

P1和P2并联,N1和N2串联

- 在模拟电路中,最基本的MOS管组合包括
 - Cascode
 - 差分对
 - 电流镜

P1 N1

• 连线

- *电路由元件和元件间的连线构成
- *理想的连线在实现连接功能的同时,不带来额外的寄生效应
- *在版图设计中,可用来做连线的层有:金属,扩散区,多晶硅

• 连线寄生模型

*串联寄生电阻

* 并联寄生电容

$$Td = 0.5*R_uC_u*L^2$$

简单的长导线寄生模型

• 串联寄生电阻典型值

* 金属(铝,铜)——0.05 ♀/□

*多晶硅——10~15 Ω/□

*扩散区 (N+) ——20~30 Ω/□

单位长度电容的经验公式:

$$C = \varepsilon \left[\frac{w}{h} + 0.77 + 1.06 \left(\frac{w}{h} \right)^{0.25} + 1.06 \left(\frac{t}{h} \right)^{0.5} \right]$$

4-metal 0.25um technology

	Ploy	Metal1	Metal2	Metal3	Metal4
最小宽度(um)	0.25	0.35	0.45	0.50	0.60
底板电容(aF/um*um)	90	30	15	9.0	7.0
侧墙电容(两边)(aF/um)	110	80	50	40	30

• 复杂互连线的寄生电容

- 串联寄生电阻和并联寄生电容的影响
 - 电源地上, 电阻造成直流和瞬态压降
 - 长信号线上,分布电阻电容带来延迟
 - 在导线长距离并行或不同层导线交叉时,带 来相互串扰问题

其他元件

MOS集成电路是以MOS晶体管(MOSFET)为主要元件构成的电路,以及将这些晶体管连接起来的连线,此外,集成电阻,电容,以及寄生三极管,二极管,等也是MOS集成电路中的重要元件.

- 电阻
 - * 两端元件——V=RI

- *最基本的无源元件之一,是输入输出静电保护电路,模拟电路中必不可少的元件
- *方块电阻,线性,寄生效应

- 多晶硅电阻
- *多晶硅电阻做在场区上.
- *加额外的高阻blocking 层,使其方块电阻变大, 可制作阻值很大的电阻.

$$R=R_{\square poly-Si}$$
•L/W

* 典型值: R_{□poly-Si}=1k

• NWELL电阻

*因为阱是低掺杂的,方块电阻较大,因此大阻值的电阻亦可以用阱来做

 $R=R_{\square well} \bullet L/W$

* 典型值: R_{□well}=0.85k

• NWELL电阻

* 非线性

$$R \approx R_0 \left(1 + \alpha_1 V + \alpha_2 V^2 \right)$$

*典型值:

$$\alpha_1:8.5\times10^{-3}V^{-1}$$

$$\alpha_1:8.5\times10^{-3}V^{-1}$$
 $\alpha_2:9.8\times10^{-4}V^{-2}$

*寄生电容效应

- MOS管电阻
 - *工作在线性区的MOS管可用作电阻
 - * 它是一个可变电阻, 其变化取决于各极电压的变化:

$$R = \frac{V_{DS}}{I_{DS}} = \frac{V_D - V_S}{k \left[(V_G - V_T - V_S)^2 - (V_G - V_T - V_D)^2 \right]}$$

- 导线电阻
- *多晶硅导线——10~15 Ω/□
- * 扩散区 (N+) ——20~30 Ω/□

• 电容

*两端元件,电荷的容器——Q=CV

- *最基本的无源元件之一,是电源滤波电路,信号滤波电路,开关电容电路中必不可少的元件
- *单位面积电容,线性,寄生效应

- 多晶硅-扩散区电容
- *电容作在扩散区上,它的上极板是第一层多晶硅,下极板是扩散区,中间的介质是氧化层
- *需要额外加一层版

- 多晶硅-扩散区电容
- *线性特性

$$C \approx C_0 \left(1 + \alpha_1 V + \alpha_2 V^2 \right)$$

* 典型值 $\alpha_1:5\times10^{-4}V^{-1}$

$$\alpha_2:5\times10^{-5}V^{-2}$$

- *单位面积电容小于MOS栅电容
- * 底板寄生电容——20%C

• 多晶硅-多晶硅电容:

- * 电容作在场区上, 它的两个电极分别是两层多晶硅, 中间的介质是氧化层
- *线性特性和底板寄生与多晶硅-扩散区电容相近
- * 典型值: 0.7fF/um*um

- •金属-金属电容(MIM cap)
- * 在先进的CMOS工艺中,金属互联层较多,对于混合工艺,可用最高的两层金属来做MIM cap,做MIM cap的金属之间的氧化层比较薄,因此需要额外的版
- •版图与结构与poly-ploy电容类似,只是其上极板为 专门的MIM cap金属层,下极板为次高层金属
- *因用高层金属实现,故底板寄生电容小、电容品质高
- *典型值: 1fF/um*um

- MOS电容:
 - *结构和MOS晶体管一样,是一个感应沟道电容, 当栅上加电压形成沟道时电容存在.一极是栅, 另一极是沟道,沟道这一极由S(D)端引出.
- *电容的大小取决于面积, 氧化层的厚度及介电数.

$$C = \varepsilon \cdot \frac{WL}{t_{ox}}$$

- *单位面积电容最大的电容
- *沟道电阻问题

- "夹心"电容
 - *线性电容
 - *电容值为:

*底板寄生电容大

(>30%C)

- 梳状金属电容
 - *利用同层相邻金属线的侧墙寄生电容
 - *线性电容
 - * 电容密度随着工艺缩小而增大
 - *与数字工艺兼容

衬底双极晶体管(BJT)

- 衬底BJT
 - *有源元件之一
 - *对于N阱CMOS工艺,可实现PNP BJT
 - *可用于电压基准电路

衬底BJT

• PNP BJT的版图和 结构

特点:

- 1)集电极C电压受到限制,须接地
- 2) 基区宽度W_B没有很好 控制,电流增益差别较大
- 3)结构上的两个主要参数:基区宽度WB和BE结面积A

衬底BJT

- 电特性
 - *饱和电流 I_S 正比于A,反比于 W_B
 - *集电极电流

$$i_C = I_S \exp\left(\frac{v_{BE}}{V_t}\right)$$

- * 共发射极电流增益 $oldsymbol{eta_F} = i_C/i_B$
- 当 i_C 一定, v_{BE} 具有负温度系数

二极管 (Diode)

- 二极管
 - *有源元件之一
 - *对于N阱CMOS工艺,有PSD/NWELL和
 - NSD/P-epi两种Diode
 - *主要用于ESD保护电路

二极管

• PSD/NWELL Diode的 版图和结构

特点:

- 1) 存在寄生PNP BJT问 题,电流容易漏到衬底, BJT的beta范围可从<0.1到 >10
- 2) 有较大的串联寄生电阻
- 3)结构上的主要参数:结 面积A

二极管

• NSD/P-epi Diode的 版图和结构

特点:

- 1) C端的电压要低于衬底 电压才能正向导通
- 2)在ESD中用于抑制负的 尖峰电压
- 2)结构上的主要参数:结 面积A

二极管

- 电特性
 - *饱和电流 I_S 正比于A
 - *电流-电压关系公式

$$i_D = I_S \left[\exp\left(\frac{v_D}{V_t}\right) - 1 \right]$$

*PN结电容

图 2.2.3 耗尽电容与外加电压的关系

版图设计规则 Design Rule

- 引言
- 设计规则(Topological Design Rule)
 - 0.6um DPDM CMOS工艺拓扑设计规则
 - 设计规则的运用
- 版图设计准则('Rule' for performance)
 - 匹配
 - 抗干扰
 - 寄生的优化
 - 可靠性

• 芯片加工: 从版图到裸片

是一种多层平面"印刷"和 叠加过程,但中间是否会 带来误差?

一个实际芯片照片的例子:

- 加工过程中的非理想因素
 - 制版光刻的分辨率问题
 - 多层版的套准问题
 - 表面不平整问题
 - 流水中的扩散和刻蚀问题
 - 梯度效应

- 解决办法
 - 厂家提供的设计规则(topological design rule),确保完成设计功能和一定的芯片成品率,除个别情况外,设计者必须遵循
 - 设计者的设计准则('rule' for performance),用以提高电路的某些性能,如匹配,抗干扰,速度等

0.6um DPDM CMOS工艺拓扑设计规则

版图的层定义

设计规则 active

符号	尺寸	含义
2.a	0.6	用于互连的有源区最小宽度
2.b	0.75	最小沟道宽度
2.c	1.2	有源区最小间距

设计规则 poly1

可做MOS晶体管栅极、 导线、poly-poly电容的 下极板

符号	尺寸	含义
4.a	0.6	用于互连的poly1最小宽度
4.b	0.75	Poly1最小间距
4.c	0.6	最小NMOS沟道长度
4.d	0.6	最小PMOS沟道长度

设计规则 poly1

可做MOS晶体管栅极、 导线、poly-poly电容的 下极板

符号	尺寸	含 义
4.e	0.6	硅栅最小出头量
4.f	0.5	硅栅与有源区最小内间距
4.g	0.3	场区poly1与有源区最小内 间距

设计规则 High Resistor

在Poly2上定义高阻区

符号	尺寸	含义
5.a	2.0	高阻最小宽度
5.b	1.0	高阻最小间距
5.c	1.0	高阻对poly2的最小覆盖
5.d	1.0	高阻与poly2的间距

设计规则 High Resistor

其上禁止布线 高阻层定义电阻长度 Poly2定义电阻宽度

符号	尺寸	含义
5.e	0.6	高阻与poly2电阻接触孔间距
5.f	0.8	高阻与低阻poly2电阻的间距
5.g	0.5	高阻与有源区的间距
5.h	1.0	高阻与poly1电阻的间距

设计规则 poly2

可做多晶连线、多晶 电阻和poly-poly电容 的上极板

符号	尺寸	含 义
6.a	1.2	poly2做电容时的最小宽度
6.b	1.0	poly2做电容时的最小间距
6.c	0.5	Poly2与有源区的最小间距
	3.2	做关键电容时的间距
6.d	1.5	电容底板对顶板的最小覆盖
6.e	0.8	电容Poly2对接触孔最小覆盖
6.f	-	Poly2不能在有源区上
6.g	-	Poly2不能跨过poly1边沿

设计规则 poly2

可做多晶连线、多晶 电阻和poly-poly电容 的上极板

符号	尺寸	含 义
6.h	0.8	poly2做导线时的最小宽度
6.i	1.0	poly2做电阻时的最小间距
6.j	1.0	Poly2电阻之间的最小间距
6.k	-	Poly2不能用做栅
6.1	0.5	电阻Poly2对接触孔最小覆盖
6.m	-	除做电容外,Poly2不能与
		poly1重叠

设计规则 implant

符号	尺寸	含义
8.a	0.9	注入区最小宽度
8.b	0.9	同型注入区最小间距
8.c	0.6	注入区对有源区最小包围
8.d	0.6	注入区与有源区最小间距

设计规则 implant

符号	尺寸	含义
8.E	0.75	N+(P+)注入区与P+(N+)栅间距
8.f	0.75	N+(P+)注入区与N+(P+)栅间距
8.H	0	注入区对有源区最小覆盖 (定义butting contact)

设计规则 contact

符号	尺寸	含 义
10.a	.6*.6	接触孔最小面积
10.a.1	.6*1.6	N ⁺ /P ⁺ butting contact面积
10.b	0.7	接触孔间距

定义为金属1与扩散 区、多晶1、多晶2 的所有连接!

设计规则 contact

符号	尺寸	含义
10.c	0.4	有源区,
(d, e)		Poly1, Poly2对最小孔最小覆盖
10.c.3	0.8	有源区对butting contact最小覆盖
10.f	0.6	漏源区接触孔与栅最小间距
10.g	0.6	Poly1,2上孔与有源区最小间距

设计规则 metal1

符号	尺寸	含 义
11.a	0.9	金属1最小宽度
11.b	0.8	金属1最小间距
11.c.1	0.3	金属1对最小接触孔的最小覆盖
11.c.2	0.6	金属1对butting contact的最小覆盖
-	1.5mA /um	最大电流密度
-	-	禁止并行金属线90度拐角,用135 度拐角代替

设计规则 via

定义为两层金属之间的连接孔

符号	尺寸	含 义
12.a	.7*.7	过孔最小面积
12.b	0.8	过孔间距
12.d~f	-	接触孔、poly-poly电容和栅上 不能打过孔
12.g	0.4	金属1对过孔的最小覆盖
12.h	0.5	过孔与接触孔的最小间距
建议	0.5	Poly与有源区对过孔的最小间 距或覆盖
12.k	1.5mA	单个过孔的最大电流

设计规则 metal2

可用于电源线、地 线、总线、时钟线 及各种低阻连接

符号	尺寸	含义
13.a	0.9	金属2最小宽度
13.b(e)	0.8	金属2最小间距
13.c	0.4	金属2对过孔的最小覆盖
13.d	1.5	宽金属2与金属2的最小间距
13.f	-	禁止并行金属线90度拐角,用 135度拐角代替
13.h	1.5mA /um	最大电流密度

设计规则 power supply line

由于应力释放原则,在大晶片上会存在与大宽度金属总线相关的可靠性问题。表现在裂痕会沿着晶片的边缘或转角处蔓延

符号	尺寸	含 义
17.a	20.0	金属2最小宽度
17.b	300.0	金属2最小长度
-	-	Slot规则见工艺文档

缝隙用于宽度任何大于 20μm,长度大于300μm 的金属线。

缝隙与电流方向平行

设计规则 高阻多晶电阻

 $R=R_{\square} \bullet (L-Ld)/(W-Wd)$

R_□=996欧姆

Ld = 1.443u

Wd = 0.162u

温度系数: -3.04E-03/度

电压系数: -4.36E-03/V

设计规则 PAD与划片 槽

见设计规则手册

版图设计准则 ('Rule' for performance)

- 匹配
- 抗干扰
- 寄生的优化
- 可靠性

- 在集成电路中,集成元件的绝对精度较低,如电阻和电容,误差可达 ±20%~30%
- 由于芯片面积很小,其经历的加工条件 几乎相同,故同一芯片上的集成元件可 以达到比较高的匹配精度,如1%,甚至 0.1%
- 模拟集成电路的精度和性能通常取决于元件匹配精度

- 失配:测量所得的元件值之比与设计的 元件值之比的偏差
- 归一化的失配定义:
 - 设 X_1 , X_2 为元件的设计值, x_1 , x_2 为其实测值,则失配 δ 为:

$$\delta = \frac{(x_2/x_1) - (X_2/X_1)}{(X_2/X_1)} = \frac{X_1x_2}{X_2x_1} - 1$$

- 失配 δ 可视为高斯随机变量
- 若有N个测试样本 δ 1, δ 2, ..., δ N, 则 δ 的均值为: $m_{\delta} = \frac{1}{N} \sum_{i=1}^{N} \delta_{i}$
- 方差为:

$$s_{\delta} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (\delta_i - m_{\delta})^2}$$

• 称均值m₈为系统失配

• 称方差s_δ为随机失配 [™]

• 失配的分布:

• 3 δ 失配:

| m_δ |+3 s_δ 概率99.7%

- 失配的原因
 - 随机失配:尺寸、掺杂、氧化层厚度等影响 元件值的参量的微观起伏(fluctuation)
 - 随机失配可通过选择合适的元件值和尺寸来减小
 - 系统失配:工艺偏差,接触孔电阻,扩散区相互影响,机械压力,温度梯度等
 - 系统失配可通过版图设计技术来降低

- 随机统计起伏 (Fluctuations)
 - 周边起伏(peripheral fluctuations)
 - 发生在元件的边沿
 - 失配随周长的增大而减小
 - 区域起伏(area fluctuations)
 - 发生在元件所覆盖的区域
 - 失配随面积的增大而减小

- 电容随机失配
 - 两个大小均为C的电容的失配:
 - Kp和ka分别为周边起伏和区域起伏的贡献,均是常量 $s_C = \frac{1}{\sqrt{C}} \sqrt{k_a + \frac{k_p}{\sqrt{C}}}$
 - 一般地, 电容失配与面积的平方根成反比, 即容量为原来2倍, 失配减小约30%
 - 不同大小电容匹配时, 匹配精度由小电容决定

- 电阻随机失配
 - 两个阻值为R、宽度为W的电阻的失配:
 - Kp和ka分别为周边起伏和区域起伏的贡献,均 是常量 ______

$$s_R = \frac{1}{W\sqrt{R}}\sqrt{k_a + \frac{k_p}{W}}$$

- 一般地,电阻失配与宽度成反比,即阻值为原来2倍,失配为原来的一半
- 不同阻值的电阻,可通过调整宽度来达到相同的匹配精度

兀配设计

• 晶体管匹配: 主要关心元件之间栅源电 压(差分对)和漏极电流(电流镜)的 偏差

- 栅源电压失配为: 阈值电压和跨导之

$$\Delta V_{GS} \cong \Delta V_{t} - V_{gs1} \left(\frac{\Delta k}{2k_{2}} \right)$$

$$\frac{I_{D2}}{I_{D1}} \cong \frac{k_2}{k_1} \left(1 + \frac{2\Delta V_t}{V_{gs1}} \right)$$

 ΔVt , Δk 为元件间的

- 棚源电压大配为: $\Delta V_{GS}\cong \Delta V_{t}-V_{gs1}$ Δk \pm , V_{gs1} 为第1个元件 的有效栅电压, k_{1} , k_{2} 为两个元件的跨导 $I_{D2}\cong \frac{k_{2}}{I_{D1}}\cong \frac{k_{2}}{k_{1}}\left(1+\frac{2\Delta V_{t}}{V_{gs1}}\right)$ 对于电压匹配,希望 V_{gs1} 小一些(>0.1V),但 对电流匹配,则希望 V_{gs1} 大一些(>0.3V)

- 晶体管随机失配
 - 在良好的版图设计条件下

$$S_{V_t} = \frac{C_{V_t}}{\sqrt{W_{eff} L_{eff}}}$$

- 跨导

C_{Vt}和C_k是 工艺参数

$$\frac{S_k}{k} = \frac{C_k}{\sqrt{W_{eff} L_{eff}}}$$

- 均与栅面积的平方根成反比

背栅掺杂分布 的统计起伏 (区域起伏)

线宽变化,栅 氧的不均匀, 载流子迁移率 变化等(边沿 和区域起伏)

- 系统失配
 - 工艺偏差(Process Bias)
 - 在制版、刻蚀、扩散、注入等过程中的几何收缩 和扩张, 所导致的尺寸误差
 - 接触孔电阻
 - 对不同长度的电阻来说,该电阻所占的分额不同
 - 多晶硅刻蚀率的变化(Variations in Polysilicon Etch Rate)
 - 刻蚀速率与刻蚀窗的大小有关, 导致隔离大的多 晶宽度小于隔离小的多晶宽度

均与周围环境有关

- 扩散区相互影响
 - 同类型扩散区相邻则相互增强, 异类型相邻则相 互减弱

- 系统失配
 - 梯度效应
 - 压力、温度、氧化层厚度的梯度问题,元件间的差异取决于梯度和距离

- 系统失配例子——电阻
 - 电阻设计值之为2:1
 - 由于poly2刻蚀速度的偏差, 假设其宽度偏差为0.1u,则会 带来约2.4%的失配
 - 接触孔和接头处的poly电阻, 将会带来约1.2%的失配;对 于小电阻,失配会变大

• 系统失配例子 ——电容

假设对poly2的刻蚀 工艺偏差是0.1um, 两个电容的面积分 别是(10.1)²和 (20.1)²,则系统失配 约为1.1%

- 降低系统失配的方法
 - 元件单元整数比
 - 降低工艺偏差和欧姆接触电阻的影响
 - 加dummy元件
 - 保证周围环境的对称
 - 匹配元件间距离尽量接近
 - 共中心设计(common-centroid)
 - 减小梯度效应
 - 匹配元件与其他元件保持一定距离
 - 减小扩散区的相互影响

- 降低系统失配的 例子
 - 一维共中心设计
 - 二维共中心设计

- 降低系统失配的例子
 - 单元整数比(8:1)
 - 加dummy元件
 - 共中心布局
 - 问题: 布线困难, 布 线寄生电容影响精度

- 降低系统失配的例子
 - 加dummy导线保持环境对称
 - 共中心以减小梯度效应

- 降低系统失配的例子
 - 匹配晶体管与其他晶体管保持相当距离,以 免引起背栅掺杂浓度的变化,导致阈值电压 和跨导的变化

- 数模混合电路的版图布局
- 电源规划
- 屏蔽
- 滤波

- 数模混合集成电路中的版图布局
 - 模拟和数字电源地的分离
 - 模拟电路和数字电路、模拟总线和数字总线 尽量分开而不交叉混合
 - 根据各模拟单元的重要程度,决定其与数字 部分的间距的大小次序

• 敏感信号线的屏蔽

• 敏感信号线的屏蔽

包围屏蔽

缺点:

到地的寄生电容较大;

加大了布线的难度

- 敏感电路的屏蔽
 - 用接地的保护环(guard ring)
 - 保护环应接"干净"的地
 - N阱较深,接地后可用来做隔离

- 加滤波电容
 - 电源线上和版图空余地方可填加MOS电容进 行电源滤波
 - 对模拟电路中的偏置电压和参考电压加MOS 电容或其他电容进行滤波
 - 注意片内滤波与片外滤波的区别

寄生优化设计

- 寄生电阻和电容会带来噪声、降低速度、增加功耗等效应
- 降低关键路径上的寄生,如放大器输入端上的寄生电阻(主要是多晶硅电阻)
- 降低关键节点的寄生,如高阻节点和活性较大的节点上的寄生电容

寄生优化设计

- 晶体管的寄生优化
 - 尽量减小多晶做导线的长度
 - 通过两边接栅可优化栅极串联寄生电阻
 - 通过梳状折叠可同时优化栅极电阻和漏极寄生电容

寄生优化设计

- 晶体管漏极寄生电容优化
 - 漏极一般接高阻节点或活性较大的节点
 - 主要指漏极扩散区面积的优化
 - 指标:漏极面积 S_D 与有效栅宽 W_e 之比,越小越好

$$\left(\frac{S_D}{W_e}\right)_1 = \frac{Q_d}{2} \qquad \left(\frac{S_D}{W_e}\right)_2 = \frac{Q_d}{2 + \frac{Q_d}{W_2}} \ge \frac{Q_d}{3} \qquad \left(\frac{S_D}{W_e}\right)_3 = \frac{Q_d}{4}$$

$$\begin{array}{c} D \\ W_1 \\ \hline Q_d \end{array}$$

寄生优化设计

- 晶体管漏极寄生电容优化举例
 - ROM位线上接有大量晶体管的漏极, ROM的位线电压建立速度受到寄生电容限制

寄生优化设计

- Contact, via与其它层的连接
 - Contact和via与其它层连接时存在接触电阻和电流密 度问题
 - 一般采用多个最小孔并联的方法来减小电阻和提高可通过电流

- 对于大面积的非金属层,接触孔的分布要均匀 电容

- 避免天线效应
- 防止Latch-Up
- 静电放电(ESD)保护

- 避免天线效应
 - 天线效应:
 - 当大面积的金属1直接与栅极相连,在金属腐蚀过程中,其周围聚集的离子会增加其电势,进而使栅电压增加,导致栅氧化层击穿。

- 避免天线效应
 - 避免措施:
 - 减小连接栅的多晶和金属1面积,令其在所接栅面积的100倍以下;
 - 采用第二层金属过渡。

• Latch-Up效应

- 在N阱CMOS电路中,存在寄生pnp和npn晶体管,以及N阱和 衬底寄生电阻
- 寄生pnp、npn晶体管,以及它们的基极到电源和地的寄生电阻,有可能形成正反馈回路
- MOS晶体管漏极的大信号摆动,通过漏极寄生电容向N阱和衬底灌入电流,形成正反馈回路的触发条件
- 若正反馈回路的回路增益大于一,则有可能被触发而导致 latch-up,从电源汲取大电流

- Latch-Up效应
 - 多发生在大的数字输出Buffer(反相器)
 - 解决办法: 令环路增益小于1
 - 对于版图设计来说,应增加N阱和衬底接触孔的数量和减小它们之间的距离,以降低N阱和衬底带电源和地的寄生电阻
 - 对于上华工艺, N阱和衬底接触孔间的距离不得大于36um

- 静电放电ESD保护
 - ESD: Electrostatic Discharge
 - 人体或其他机械运动所积累的静电电压远远超过 MOS晶体管的栅击穿电压
 - 集成电路需具备ESD保护电路
 - HBM (human body model)是一种常用的测试集成电路抗静电能力的电路

- 静电放电ESD保护
 - 集成电路中接到MOS晶体管栅极的PIN更需ESD保护,一般为输入PIN;而接到扩散区的PIN相对不易受ESD损坏,一般为输出PIN

- 静电放电ESD保护
 - 输入PIN的ESD保护电路
 - 目标:保证连接到核心电路的I点电压低于栅氧击穿电压
 - D₁, D₂的面积要大,以吸收大部分的电流,构成第一级保护
 - Rs的典型值从几百~几千欧姆,一般为多晶导线电阻或扩散 区电阻,宽度要大一些,以免被大电流烧坏
 - D₃, D₄与Rs一起构成第二级保护,面积可以小一些

- 静电放电ESD保护
 - 输入ESD保护电路会带来寄生效应,可能会影响输入 信号的带宽和增加热噪声
 - 串联保护电阻
 - 保护二极管的PN节电容
 - 对于某些输出Buffer比较小的输出PIN,也可采用上述 ESD保护电路,不过串联电阻可减小至50~500欧姆

例: PAD版图布局

本课小结

- 设计规则(Topological Design Rule)
 - 0.6um DPDM CMOS工艺拓扑设计规则
 - 符合设计规则的反相器版图设计流程
- 版图设计准则('Rule' for performance)
 - 匹配、抗干扰、寄生的优化、可靠性
 - 重点:存在的问题和解决的办法

标准单元库版图分析

- 版图电路分析(以COMPASS自带的 1.2um CMOS标准单元库为例)
 - 开关与反相器
 - 基本逻辑单元
 - 触发器单元
- 基于标准单元库的自动布局布线

版图电路分析

- 培养从版图提取电路的能力
- 学习版图设计的方法和技巧
- 复习和巩固基本的数字单元电路设计

• MOS开关和反相器是MOS数字电路的最基本单元,理解和掌握它们的工作原理和电路特性,有助于分析更复杂的标准单元的版图和电路。

- MOS开关
 - 功能: 当Vc控制开关导通时,将Vin端的信息 传送到Vout端;当Vc控制开关关闭时,将Vin 端和Vout端隔离.
 - 分类: N沟开关、P沟开关、CMOS开关

- MOS开关
 - 传输特性
 - N沟开关: 传输高电平有阈值损失,导通电阻变化大
 - P沟开关: 传输低电瓶有阈 值损失,导通电阻变化大
 - CMOS开关: N沟和P沟互 补,无阈值损失,近似线性 电阻

- MOS开关
 - 开关逻辑
 - N沟开关: Y=C•D+C•U
 - P沟开关: Y=C•D+C•U

- MOS开关
 - 开关逻辑
 - N沟开关串联:

$$Y=C_1\cdot C_2\cdot D+\overline{C_1\cdot C_2}\cdot U$$

• P沟开关串联:

$$Y = (\overline{C_1 + C_2}) \cdot D + (C_1 + C_2) \cdot U$$

- MOS开关
 - 开关逻辑
 - N沟开关并联:

$$Y=(C_1+C_2)\cdot D+\overline{(C_1+C_2)}\cdot U$$

• P沟开关并联:

$$Y = \overline{C_1 \cdot C_2} \cdot D + C_1 \cdot C_2 \cdot U$$

- MOS开关
 - 开关逻辑
 - N沟开关连线 Y=A·C₁+B·C₂+ (C₁+C₂)·U
 - P沟连线 Y=A·C₁+B·C₂+ C₁·C₂·U
 - P沟-N沟连线
 Y=A⋅C₁+B⋅C₂+ C₁⋅C₂⋅U

约束条件:同时只有一个 开关导通; 可扩展到n个开关连线

- MOS开关
 - 开关逻辑
 - CMOS反相器可以看成是 两个开关的连线逻辑

$$Y=1.\overline{C}+0.C+(C.\overline{C}).U=\overline{C}$$

• 满足同时只有一个开关导通的约束条件

- MOS反相器
 - 功能:逻辑求反,即输出是输入的逻辑反信 号
 - 逻辑表达式及符号

$$Y = \overline{D}$$

$$D \longrightarrow Y$$

- MOS反相器
 - 反相器的特性指标:
 - 输出高电平
 - 输出低电平
 - 静态功耗: 输入为静止态时的功耗
 - 阈值电平: 输出电平转换时所对应的输入电平
 - 直流传输特性: Vo~Vin 特性
 - 瞬态特性: 电平转换时对负载电容的充放电速度

MOS开关和反相器

- MOS反相器
 - 设计准则: 上升时间和下降时间相等

设计要求:
$$t_r = t_f$$

如果:
$$V_{TN} = -V_{TP}$$

则:
$$\frac{W_{\scriptscriptstyle N}}{W_{\scriptscriptstyle P}}=\frac{\mu_{\scriptscriptstyle P}}{\mu_{\scriptscriptstyle N}}$$

MOS开关和反相器

- CMOS互补反相器
 - 特性指标
 - 输出高电平: V_{DD}
 - 输出低电平: 0
 - 静态功耗: ≈0
 - 充放电特性: $t_r \approx t_f$
 - 阈值电平: ≈ V_{DD} /2

功能上对 W_p/W_N 无要求,是一种 无比反相器; 但要达到上述充放 电和阈值电平特性, Wp/Wn需满 足上一页的要求

直流传输特性

MOS开关 和反相器

• CMOS反相器版图 实例

买例 $- 注意 \quad \frac{W_P}{W_N} \cong 2.5 \,.$

- 多个反相器串联, 前后管子尺寸之比

• 延时最小 1:2~3

• 功耗最小 1:2~10

• CMOS基本逻辑单元是由MOS开关 (传输门)和反相器组合发展而成的 电路,在这里,给出版图,从中提取 电路,分析其逻辑功能,以及版图设 计的特点

- 单元一(与非门)
 - 提取出来的电路
 - 逻辑符号
 - 逻辑功能 zn=<u>a1•a2</u>
 - 真值表

a1	a2	zn
0	0	1
0	1	1
1	0	1
1	1	0

- 单元二 (或非门)
 - 提取出来的电路
 - 逻辑符号

v<u>d</u>d

- 逻辑功能

$$zn = \overline{a1 + a2}$$

a1	a2	zn
0	0	1
0	1	0
1	0	0
1	1	0

• 单元三版图

- 单元三(与门)
 - 提取出来的电路
 - 逻辑符号

- 逻辑功能

$$z=a1•a2$$

a1	a2	Z
0	0	0
0	1	0
1	0	0
1	1	1

- 单元四(或门)
 - 提取出来的电路
 - 逻辑符号

- 逻辑功能

$$z=a1+a2$$

a1	a2	Z
0	0	0
0	1	1
1	0	1
1	1	1

• 单元五版图

- 单元五(同或)
 - 提取出来的电路
 - 逻辑符号

- 逻辑功能

$$zn=\overline{a}1 \cdot \overline{a}2 + a1 \cdot a2 = a1 \cdot a2$$

a1	a2	zn
0	0	1
0	1	0
1	0	0
1	1	1

• 单元六版图

- 单元六(异或)
 - 提取出来的电路
 - 逻辑符号

- 逻辑功能

$$z = a1 \oplus a2$$

a1	a2 z			
0	0	0		
0	1	1		
1	0	1		
1	1	0		

- 单元七 (2-4译码)
 - 提取出来的电路

- 逻辑功能: 2-4译码

a1	a0	z0n	z1n	z2n	z3n
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

- 单元八(带使能端的反相器)
 - 提取出来的电路
 - 逻辑符号

- 逻辑功能

$$zn = oe \cdot \overline{i} + \overline{oe} \cdot U$$

oe	i	zn
1	0	1
1	1	0
0	任意	高阻态

- 带使能端反相器的作用
 - 简单反相器的缺陷
 - 多个门的输出同时送入母线时,需要有使能控制,每个时刻,最多有一个门的使能有效,如果没有一个使能有效,则母线高阻

• 单元九版图

- 单元九 (二选一)
 - 提取出来的电路
 - 逻辑功能

$$z = s \cdot i1 + \overline{s} \cdot i0$$

S	Z
0	i0
1	i1

作业1

- 提取电路
- 分析逻辑 关系

作业2

- 提取电路
- 分析逻辑关系

触发器单元

- 单元十(D触发器)
 - 提取出来的电路
 - 逻辑功能: 当时钟 信号为高时,

q=d; 当时钟信号 为低时,保存信息

 上
 Q

 1
 d

 0
 保持

• 提取电路

作业3

• 分析逻辑关系

Cell-based ASIC

怎样实现自动布局布线?对标准单元有什么要求? 综合出来的网表对应于哪个部分? 还缺少什么?

本课要点

- 版图电路分析
 - 版图认知能力
 - 标准版图中的版图设计方法和技巧
 - 数字单元的电路和版图设计

课后作业

各层金属线与衬底的寄生电容大小如下表,且Metal1~3的体电阻为80m Ω/\square , Metal4的体电阻为40m Ω/\square ,单个接触孔contact的电阻为10 Ω ,过孔via的电阻为3 Ω ,若电路中要求有一个从ploy到poly、长度为1000um的互联,且在换层布线中均只用双孔连接,请问用何层金属线和何种宽度可使延迟最小?给出详细讨论过程。

4-metal 0.25um technology

Ploy	Metal1	Metal2	Metal3	Metal4
0.25	0.35	0.45	0.50	0.60
90	30	15	9.0	7.0
110	80	50	40	30
	0.25	0.25 0.35 90 30	0.25 0.35 0.45 90 30 15	90 30 15 9.0

课后作业

如图所示,图的左边是一个电阻分压电路,电阻R1~R5的值相等,显然,电压V1=V2-V1=V3-V2=V4-V3=VREF-V4,在实际工艺实现中,假设存在如图右边所示的梯度效应,那么,实际的电压值V1r~V4r与理想的V1~V4会有所不同;问题:要使max(|V1-V1r|,|V2-V2r|,|V3-V3r|,|V4-V4r|)的值最小,在版图设计中该如何规划R1~R5的位置?五个电阻的版图已经在图中给出,请据此规划各电阻的次序,并将规划结果填写在电阻版图上,例如,如果你认为电路中的R1在版图中应该放在最右边,那么就在最右边的电阻版图上写上R1。

注:要给出分析过程和理由,而不仅仅是排序结果。

课后作业

在N阱CMOS工艺中要实现一个反相器,请按照实际加工的顺序依次说明主要的工艺过程,然后,列出所需要的掩模版(可自己命名并说明,如metal_1,金属一)。。

