Cryptography Lecture 14 – Exam Review

Arkady Yerukhimovich

October 14, 2024

Outline

- General Concepts
- Perfect Encryption
- Private-Key Crypto
 - Building Blocks
 - Encryption
 - Authentication

Security Definitions

- Game-based security definitions
 - How they capture adversary capabilities
 - ullet What it means for ${\cal A}$ to win
 - The use of oracles in the definitions
 - Be able to write a definition given an adversary description

Security Definitions

- Game-based security definitions
 - How they capture adversary capabilities
 - What it means for A to win
 - The use of oracles in the definitions
 - Be able to write a definition given an adversary description
- Understand difference between "indistinguishability" and "unforgeability" style definitions

Security Definitions

- Game-based security definitions
 - How they capture adversary capabilities
 - What it means for A to win
 - The use of oracles in the definitions
 - Be able to write a definition given an adversary description
- Understand difference between "indistinguishability" and "unforgeability" style definitions
- Relationships between definitions (e.g., CCA is strengthening of CPA)

- Understand proof structure and what it implies
 - Assume existence of adversary A_c vs. construction
 - ullet Show this implies existence of adversary \mathcal{A}_r vs. assumption
 - Step 1: Build such an A_r
 - ullet Step 2: Show that \mathcal{A}_r wins his security game

- Understand proof structure and what it implies
 - Assume existence of adversary A_c vs. construction
 - ullet Show this implies existence of adversary \mathcal{A}_r vs. assumption
 - Step 1: Build such an A_r
 - ullet Step 2: Show that \mathcal{A}_r wins his security game
- Be able to give proof for simple examples

- Understand proof structure and what it implies
 - Assume existence of adversary A_c vs. construction
 - Show this implies existence of adversary A_r vs. assumption
 - Step 1: Build such an A_r
 - ullet Step 2: Show that \mathcal{A}_r wins his security game
- Be able to give proof for simple examples
- Remember common techniques
 - A_r simulates the challenger for A_c
 - Replace output of PRG with random string
 - Replace PRF with random function

- Understand proof structure and what it implies
 - Assume existence of adversary A_c vs. construction
 - Show this implies existence of adversary A_r vs. assumption
 - Step 1: Build such an A_r
 - ullet Step 2: Show that \mathcal{A}_r wins his security game
- Be able to give proof for simple examples
- Remember common techniques
 - A_r simulates the challenger for A_c
 - Replace output of PRG with random string
 - Replace PRF with random function
- Note: Not enough to just draw picture of reduction, have to explain why it works.

Outline

- General Concepts
- Perfect Encryption
- Private-Key Crypto
 - Building Blocks
 - Encryption
 - Authentication

One-Time Pad

- Construction
- Security definition
- Limitations
 - One-time use
 - Key as long as message
 - Be able to argue why these are inherent

Outline

- General Concepts
- Perfect Encryption
- Private-Key Crypto
 - Building Blocks
 - Encryption
 - Authentication

PRGs

- Security definition
 - Length extension
 - Pseudorandomness as a game
- Be able to argue whether simple constructions are or aren't necessarily PRGs

PRFs

- Security definition
 - Recall what we mean by random function what is the distribution
 - Indistinguishability from a random function as a game
 - Oracle notation
- Syntax distinguish between key and input

Private-Key Encryption

- Definitions
 - Security vs. eavesdropper
 - CPA
 - CCA
 - Authenticated encryption

Private-Key Encryption

- Definitions
 - Security vs. eavesdropper
 - CPA
 - CCA
 - Authenticated encryption
- Constructions
 - PRG + OTP what this achieves and limitations
 - PRF + OTP what this achieves and limitations
- Proofs of security remember basic proof structure

Private-Key Encryption

- Definitions
 - Security vs. eavesdropper
 - CPA
 - CCA
 - Authenticated encryption
- Constructions
 - PRG + OTP what this achieves and limitations
 - PRF + OTP what this achieves and limitations
- Proofs of security remember basic proof structure
- Modes of operations
 - Why we need modes of operations
 - Constructions and key properties (CBC, CTR)
 - Padding oracle attack why this breaks CCA security

MACs

- Goals and why this is important
- Security definition
- Construction based on PRF

MACs

- Goals and why this is important
- Security definition
- Construction based on PRF
- Domain extension
 - General using only MAC
 - Hash-and-MAC

MACs

- Goals and why this is important
- Security definition
- Construction based on PRF
- Domain extension
 - General using only MAC
 - Hash-and-MAC
- Using MACs to build authenticated encryption
 - Encrypt and authenticate
 - Authenticate then encrypt
 - Encrypt then authenticate

Hash Functions

- What is a CRHF, how it differs from a PRF
- Security definition

Arkady Yerukhimovich Cryptography October 14, 2024 12 / 14

Hash Functions

- What is a CRHF, how it differs from a PRF
- Security definition
- Applications
 - Passwords
 - Identifiers
 - Hash-and-MAC

Hash Functions

- What is a CRHF, how it differs from a PRF
- Security definition
- Applications
 - Passwords
 - Identifiers
 - Hash-and-MAC
- Domain extension

Exam Procedures

- Exam on Wed., Oct. 16, 12:45-2:00 PM in the classroom
- \bullet You may bring 2 pieces of 8.5 x 11 inch paper (back and front) with notes
- No computers, phones, or calculators during exam bring pens or pencils

Exam format

The exam will contain the following:

- 10 True/False questions no partial credit
- 2-3 long answer questions definitions, reductions, PRG/PRF, Encryption, MACs, Hash functions
- 1 challenge problem
- Questions may have multiple parts, complete as much as you can.

Exam format

The exam will contain the following:

- 10 True/False questions no partial credit
- 2-3 long answer questions definitions, reductions, PRG/PRF, Encryption, MACs, Hash functions
- 1 challenge problem
- Questions may have multiple parts, complete as much as you can.