全国赛模拟赛

时间: 2024 年 5 月 6 日 07:30 ~ 12:30

题目名称	量子计算	字符串模板题	美丽魔法
题目类型	传统型	传统型	传统型
可执行文件名	soulist.exe	whiteqwq.exe	beautiful.exe
输入文件名	soulist.in	whiteqwq.in	beautiful.in
输出文件名	soulist.out	whiteqwq.out	beautiful.out
每个测试点时限	1.0 秒	3.0 秒	1.0 秒
内存限制	512 MiB	512 MiB	512 MiB
测试点数目	25	25	20
测试点是否等分	是	是	是

提交源程序文件名

编译选项

对于 C++ 语言	-02 -std=c++14 -Wl,stack=536870912
-----------	------------------------------------

全国赛模拟赛 量子计算(soulist)

量子计算(soulist)

【题目背景】

Soulist 发明了一种特别的"量子"数据结构,叫做 osu!list,现在他急需你来验证一下他的实现对不对。

【题目描述】

osu!list 可以维护一个 1 到 n 的排列 a,同时支持以下四种操作:

- 1. 给定下标 i,将所有满足 $a_j < a_i$ 的 a_j 执行赋值操作 $a_j \leftarrow a_j + 1$,最后执行赋值操作 $a_i \leftarrow 1$ 。
- 2. 给定下标 i,将所有满足 $a_j > a_i$ 的 a_j 执行赋值操作 $a_j \leftarrow a_j 1$,最后执行赋值操作 $a_i \leftarrow n$ 。
- 3. 给定下标 $i, j (i \neq j)$, 交换 a_i 与 a_j 的值。
- 4. 给定下标 $l, r(1 \le l \le r \le n)$,询问 $\sum_{i=1}^{r} a_i$ 的值。

为什么说这是一个"量子"数据结构呢?它的特点就是修改操作会产生多个状态,具体而言每次修改操作都会给出一定额外的参数 p,该数据结构会将所有的当前状态都 复制 M+1 份(M=998,244,353),而其中的 p 份会执行该修改操作,而 M+1-p 份会忽略这次操作,也即对 a 没有任何影响。这样一来如果该次修改操作发生之前有 t 个状态,那么该次修改操作发生之后就会有 (M+1)t 个状态。

如此一来询问显然不能给出所有状态的答案,所以这个数据结构会给出对于所有状态执行该次询问的答案之和对 M 取模后的结果。

虽然你唯一接触到量子计算就是上次 NOI 冬令营听的量子计算讲座,而且你当时直接翘掉了该活动,但是迫于 Soulist 的压力,你还是不得不写一个程序来实现 osu!list 的功能。

【输入格式】

从文件 soulist.in 中读入数据。

输入第一行两个正整数 n.m 分别表示排列的长度与操作次数。

接下来输入一行 n 个正整数 a_1, a_2, \ldots, a_n ,表示排列的初始情况,保证输入是一个 1 到 n 的排列。

接下来 m 行,每行若干个整数描述一次操作,具体而言有下面几种情况:

- 1. **1 i p** 表示以 p 的额外参数对 i 执行操作 1(见问题描述),保证 $1 \le i \le n, 0 \le p < M$ 。
- 2. **2 i p** 表示以 p 的额外参数对 i 执行操作 2(见问题描述),保证 $1 \le i \le n, 0 \le p < M$ 。

全国赛模拟赛 量子计算(soulist)

3. **3 i j p** 表示以 *p* 的额外参数对 i, j 执行操作 3 (见问题描述),保证 $1 \le i, j \le n, i \ne j, 0 \le p < M$ 。

4. **4 1 r** 表示对 l, r 执行操作 4 (见问题描述), 保证 $1 \le l \le r \le n$ 。

【输出格式】

输出到文件 soulist.out 中。

对于每次询问操作, 你需要输出一行表示该次询问的答案 (对 M 取模)。

【样例1输入】

1 4 3

2 3 4 1 2

3 **3 2 4 1**

4 1 1 499122177

5 **4 2 4**

【样例1输出】

1 8

【样例1解释】

- 一开始数组为 3,4,1,2:
- 1. 第一次操作以参数 1 交换 a_2, a_4 ,得到 1 个状态为数组 3, 2, 1, 4,M 个状态为数 组 3, 4, 1, 2。
- 2. 第二次操作以参数 499,122,177 = (M+1)/2 对位置 1 执行操作 1,得到 (M+1)/2 个状态为数组 3,2,1,4, (M+1)/2 个状态为 1,3,2,4, M(M+1)/2 个状态为 1,3,2,4, M(M+1)/2 个状态为 3,2,1,4。
- 3. 第三次操作询问所有状态 $a_2 + a_3 + a_4$ 的和对 M 取模,为 $\frac{M+1}{2}(2+1+4) + \frac{M+1}{2}(3+2+4) + \frac{M(M+1)}{2}(3+2+4) + \frac{M(M+1)}{2}(2+1+4) \mod M = 8$ 。

【样例 2】

见选手目录下的 *soulist/soulist2.in* 与 *soulist/soulist2.ans*。

全国赛模拟赛 量子计算(soulist)

【样例 3】

见选手目录下的 *soulist/soulist3.in* 与 *soulist/soulist3.ans*。 该组样例满足特殊性质 A 和 B。

【样例 4】

见选手目录下的 *soulist/soulist4.in* 与 *soulist/soulist4.ans*。 该组样例满足特殊性质 A。

【样例 5】

见选手目录下的 *soulist/soulist5.in* 与 *soulist/soulist5.ans*。 该组样例满足特殊性质 B。

【样例 6】

见选手目录下的 *soulist/soulist6.in* 与 *soulist/soulist6.ans*。 该组样例满足特殊性质 C。

【样例 7】

见选手目录下的 *soulist/soulist7.in* 与 *soulist/soulist7.ans*。

【子任务】

测试点	n	m	特殊性质 A	特殊性质 B	特殊性质 C
1	≤ 19	≤ 19		否	
2,3	≤ 7		否	П	
4,5	$\leq 2,000$			是	
$6 \sim 10$	$\leq 2,000$			否	否
11		$\leq 10^3$	是	是	
12, 13		$ \leq 10$	上	否	
14, 15	$\le 5 \times 10^5$			是	
$16 \sim 19$			否	否	是
$20 \sim 25$				П	否

特殊性质 A: 保证不含有操作 1 和操作 2。

特殊性质 B: 保证对于每次修改操作有 p=1。

特殊性质 C: 保证对于初始的排列有 $a_i = i$ 。

对于所有数据,满足 $1 \le n \le 5 \times 10^5, 1 \le m \le 10^3$ 。

全国赛模拟赛 量子计算 (soulist)

【提示】

现在还有人认识 Soulist 吗,我的锁老师不会过气了吧(流泪)。

字符串模板题(whiteqwq)

【题目背景】

众所周知, whiteqwq 是原题自动机, 你在 codeforces gym 上面随便找一道冷门题打开提交记录都可以看到 whiteqwq 的提交。

【题目描述】

whiteqwq 给了你一个长度为 n 的数组 z_1, z_2, \ldots, z_n , 其中 $0 \le z_i < p$ 为整数。

whiteqwq 称一个长度为 m 的数组 x_1, x_2, \ldots, x_m 是 (a, b)— 回文的当且仅当 $\forall i \in [1, m]$,有 $ax_i + b \equiv x_{m-i+1} \pmod{p}$,或者说 $ax_i + b$ 除以 p 的余数和 x_{m-i+1} 除以 p 的余数相同。

现在 whiteqwq 有 q 个询问,令 z[l;r] 表示数组 $z_l, z_{l+1}, \ldots, z_r$,每个询问为以下两种形式中的一种:

- 1. 给定 a,询问有多少三元组 (b, l, r) 满足 z[l; r] 是 (a, b)— 回文的,其中要求 $1 \le l \le r \le n, 0 \le b < p$ 为整数。
- 2. 给定 b,询问有多少三元组 (a, l, r) 满足 z[l; r] 是 (a, b)— 回文的,其中要求 $1 \le l \le r \le n, 0 \le a < p$ 为整数。

【输入格式】

从文件 whiteqwq.in 中读入数据。

输入第一行三个正整数 n,q,p,分别表示数组长度,询问次数以及回文串定义时需要用的模数。

输入第二行 n 个整数 z_1, z_2, \ldots, z_n 表示 whiteqwq 给你的数组。

接下来 q 行,每行两个整数表示一次询问,每次询问有以下两种形式:

- 1. **1** a,询问有多少三元组 (b, l, r) 满足 z[l; r] 是 (a, b)— 回文的,其中要求 $1 \le l \le r \le n, 0 \le b < p$ 为整数,保证 $0 \le a < p$ 。
- 2. **2 b**,询问有多少三元组 (a, l, r) 满足 z[l; r] 是 (a, b)— 回文的,其中要求 $1 \le l \le r < n, 0 < a < p$ 为整数,保证 0 < b < p。

【输出格式】

输出到文件 whiteqwq.out 中。

输出共 q 行,每行一个整数表示该次询问的答案。

【样例1输入】

```
      1
      3
      3
      6

      2
      1
      2
      1

      3
      1
      0

      4
      2
      0

      5
      1
      1
```

【样例1输出】

```
    3
    5
    4
```

【样例 1 解释】

```
对于第一次询问:
字符串 z[1;1] 是 (0,1)— 回文的。字符串 z[2;2] 是 (0,2)— 回文的。字符串 z[3;3] 是 (0,1)— 回文的对于第二次询问:
字符串 z[1;1] 是 (1,0)— 回文的。字符串 z[1;3] 是 (1,0)— 回文的。字符串 z[2;2] 是 (1,0)— 回文的。字符串 z[2;2] 是 (4,0)— 回文的。字符串 z[3;3] 是 (1,0)— 回文的。字符串 z[3;3] 是 (1,0)— 回文的。字符串 z[3;3] 是 (1,0)— 回文的。
```

字符串 z[1;1] 是 (1,0)— 回文的。 字符串 z[1;3] 是 (1,0)— 回文的。 字符串 z[2;2] 是 (1,0)— 回文的。

于竹中 z[2;2] 定 (1,0) 一 回文的。

字符串 z[3;3] 是 (1,0)— 回文的。

【样例 2】

对于第三次询问:

见选手目录下的 whiteqwq/whiteqwq2.in 与 whiteqwq/whiteqwq2.ans。该组样例性质同测试点 1。

【样例 3】

见选手目录下的 *whiteqwq/whiteqwq3.in* 与 *whiteqwq/whiteqwq3.ans*。 该组样例性质同测试点 4。

【样例 4】

见选手目录下的 *whiteqwq/whiteqwq4.in* 与 *whiteqwq/whiteqwq4.ans*。 该组样例性质同测试点 6。

【样例 5】

见选手目录下的 *whiteqwq/whiteqwq5.in* 与 *whiteqwq/whiteqwq5.ans*。 该组样例性质同测试点 13。

【样例 6】

见选手目录下的 *whiteqwq/whiteqwq6.in* 与 *whiteqwq/whiteqwq6.ans*。 该组样例性质同测试点 22。

【子任务】

测试点	n	q	p	特殊性质 A	特殊性质 B
1	≤ 20	≤ 20	$\leq 10^2$	否	
2,3	$\leq 10^{2}$	$\leq 10^{2}$			否
4, 5				是	
6, 7	$\leq 10^3$	$\leq 10^{3}$	$\leq 10^9$		是
8,9	≥ 10			否	
$10 \sim 12$					否
$13 \sim 15$			$\leq 10^4$		
$16 \sim 18$	$\leq 2 \times 10^5$	$\leq 10^4$		是	
$19 \sim 21$	$\geq 2 \times 10$		$\leq 10^9$	否	是
$22 \sim 25$				日	否

特殊性质 A: 保证询问操作只存在询问 1 a。

特殊性质 B: 保证 p 为质数。

对于所有数据,满足 $1 \le n \le 2 \times 10^5, 1 \le q \le 10^4, 2 \le p \le 10^9, 0 \le z_i < p_o$

【提示】

原题自动机 whiteqwq 又称金牌收割机,还在清华酒井算协开设了精品课程,无比 拜谢!

讲起算协求大伙关注一下今年新开的清北算协联谊活动——未名•9# 杯吧,初赛参加人数有点过于少了呜呜。

全国赛模拟赛 美丽魔法(beautiful)

美丽魔法 (beautiful)

【题目背景】

Daniel 最爱的魔法是变出排列的魔法,他想知道他能变出多少个美丽的排列。

【题目描述】

Daniel 认为,一个排列 p 的美丽的,当且仅当:

• $\forall i, j \perp i \neq j$,有 $\gcd(i, j) = \gcd(p_i, p_j)$ 。 他想知道有多少个长度为 n 的排列是美丽的。 答案对 998244353 取模。

【输入格式】

从文件 *beautiful.in* 中读入数据。 输入第一行一个正整数 n,表示排列的长度。

【输出格式】

输出到文件 *beautiful.out* 中。 输出一行表示答案(对 998244353 取模)。

【样例1输入】

1 3

【样例1输出】

1 6

【样例1解释】

长度为3的排列一共有六个,所有排列都是美丽的。

【样例 2 输入】

1 6

全国赛模拟赛 美丽魔法(beautiful)

【样例 2 输出】

1 4

【样例2解释】

长度为6的美丽排列列举如下:

 $\{1, 2, 3, 4, 5, 6\}$

 $\{1, 4, 3, 2, 5, 6\}$

 $\{5, 2, 3, 4, 1, 6\}$

 $\{5, 4, 3, 2, 1, 6\}$

【样例 3】

见选手目录下的 beautiful/beautiful3.in 与 beautiful/beautiful3.ans。

【样例 4】

见选手目录下的 beautiful/beautiful4.in 与 beautiful/beautiful4.ans。

【样例 5】

见选手目录下的 beautiful/beautiful5.in 与 beautiful/beautiful5.ans。

【子任务】

测试点	n
1, 2	≤ 9
$3 \sim 6$	$\leq 10^{3}$
$7 \sim 12$	$\leq 10^{7}$
$13 \sim 20$	$\leq 10^9$

对于所有数据,满足 $2 \le n \le 10^9$ 。