Lab-5

Correlation Analysis

Name: Jose ZacariasStudent ID: n01663659

Import Libraries

```
In [20]: import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   import scipy
   from scipy.stats.stats import pearsonr
   from scipy.stats.stats import spearmanr
   import warnings
   import numpy as np
   warnings.filterwarnings('ignore')
```

Import Titanic dataset

```
In [4]: df = pd.read_csv('titanic.csv')
```

Read head of the dataset

```
In [5]: df.head()
```

Out[5]:		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	En
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
	4											•

Exercise 1

```
In [6]: plt.hist(df['Fare'])
   plt.xlabel('Fare')
```

Out[6]: Text(0.5, 0, 'Fare')

Exercise 2

```
In [7]: sns.heatmap(df[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']].corr(),
    plt.xticks(rotation=90)

Out[7]: (array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5]),
        [Text(0.5, 0, 'PassengerId'),
        Text(1.5, 0, 'Pclass'),
        Text(2.5, 0, 'Age'),
        Text(3.5, 0, 'SibSp'),
        Text(4.5, 0, 'Parch'),
        Text(5.5, 0, 'Fare')])
```


Exercise 3

Find "Pearson correlation" and "Spearman correlation" between "Age" and "Parch" column?

```
In [8]: age = df['Age'].fillna(df['Age'].mean())
    parch = df['Parch'].fillna(df['Parch'].mean())

pearsonr_coefficient, p_value = pearsonr(age, parch)
    print('PeasonR Correlation Coefficient %0.3f'% (pearsonr_coefficient))

spearmanr_coefficient, p_value = spearmanr(age, parch)
    print('Spearman Rank Correlation Coefficient %0.3f' % (spearmanr_coefficient))
```

PeasonR Correlation Coefficient -0.045 Spearman Rank Correlation Coefficient -0.110

Exercise 4

Calculate the standard deviation, variance and mean of column "Fare" and "Age"

```
In [9]: print("Fare Mean:", df['Fare'].mean())
    print("Fare Std:", df['Fare'].std())
    print("Fare Variance:", df['Fare'].var())
```

```
print('\n')
print("Age Mean:", df['Age'].mean())
print("Age Std:", df['Age'].std())
print("Age Variance:", df['Age'].var())
```

Fare Mean: 35.627188489208635 Fare Std: 55.90757617997383 Fare Variance: 3125.6570743195775

Age Mean: 30.272590361445783 Age Std: 14.18120923562442 Age Variance: 201.10669538455937

Exercise 5

select Two columns randomly and check the outliers and fix them.

```
In [10]: df_boston = pd.read_csv('HousingData.csv')
    df_boston.head()
```

```
ZN INDUS CHAS
                                         NOX
                                                 RM AGE
                                                              DIS RAD TAX PTRATIO
Out[10]:
              CRIM
                                                                                            В
          0 0.00632 18.0
                             2.31
                                     0.0 0.538 6.575
                                                      65.2 4.0900
                                                                         296
                                                                                  15.3 396.90
                             7.07
          1 0.02731
                      0.0
                                                                         242
                                                                                   17.8 396.90
                                     0.0 0.469 6.421
                                                      78.9 4.9671
          2 0.02729
                      0.0
                             7.07
                                     0.0 0.469 7.185
                                                      61.1 4.9671
                                                                         242
                                                                                   17.8 392.83
                                                                      2
                                                                         222
          3 0.03237
                      0.0
                             2.18
                                     0.0 0.458 6.998
                                                      45.8 6.0622
                                                                      3
                                                                                   18.7 394.63
          4 0.06905
                      0.0
                             2.18
                                     0.0 0.458 7.147 54.2 6.0622
                                                                         222
                                                                                  18.7 396.90
                                                                      3
```

```
In [11]:
         import sklearn
         import pandas as pd
         import matplotlib.pyplot as plt
         RM = df_boston['RM']
         MEDV = df_boston['MEDV']
         print("RM skew: ", RM.skew())
         print("MEDV skew: ", MEDV.skew())
         plt.figure(2, figsize=(10,3))
         plt.subplot(1,2,1)
         plt.boxplot(RM)
         plt.ylabel('RM')
         plt.subplot(1,2,2)
         plt.boxplot(MEDV)
         plt.ylabel('MEDV')
         plt.figure(figsize=(10,5))
         plt.subplot(1,2,1)
         sns.distplot(RM)
```

```
plt.subplot(1,2,2)
sns.distplot(MEDV)
```

RM skew: 0.40361213328874385 MEDV skew: 1.1080984082549072

Out[11]: <Axes: xlabel='MEDV', ylabel='Density'>

We can see a normal distribution in RM but not for MEDV

```
IQR = Q3-Q1
# Not using 1.5 to exclude the outliers better
MEDV_upper_limit = Q3+1.3*IQR
MEDV_lower_limit = Q1-1.8*IQR

print('lower limit: ', MEDV_lower_limit)
print('upper limit: ', MEDV_upper_limit)
print('IQR:' , IQR)

# trimming again
MEDV_new = MEDV.clip(lower=MEDV_upper_limit, upper=MEDV_lower_limit)
```

lower limit: 2.669999999999964

upper limit: 35.3675 IQR: 7.9750000000000001

```
In [17]: plt.figure(2, figsize=(10,3))
    plt.subplot(1,2,1)
    plt.boxplot(RM_new)
    plt.ylabel('RM')
    plt.subplot(1,2,2)
    plt.boxplot(MEDV_new)
    plt.ylabel('MEDV')

plt.figure(figsize=(10,5))
    plt.subplot(1,2,1)
    sns.distplot(RM_new)

plt.subplot(1,2,2)
    sns.distplot(MEDV_new)
```

Out[17]: <Axes: xlabel='MEDV', ylabel='Density'>


```
In [19]: # Im not ure why the boxplot for RM is showing outliers, I printed here values abov
print("RM values under lower_limit: ", len(RM_new[RM_new < lower_limit]))
print("RM values above upper_limit", len(RM_new[RM_new > upper_limit]))
print("MEDV values under lower_limit: ", len(MEDV_new[MEDV_new < MEDV_lower_limit]))
print("MEDV values above upper_limit", len(MEDV_new[MEDV_new > MEDV_upper_limit]))
```

RM values under lower_limit: 0
RM values above upper_limit 0
MEDV values under lower_limit: 0
MEDV values above upper_limit 0

In []: