Dr. Kundan Kumar

Combinational Circuit

What is Combinational Circuit?

Combinational Circuit

- A **combinational circuit** is a logic circuit whose output at any given time depends solely on the combination of its current input values, not on previous input states (i.e., no memory element involved).
- To construct combinational circuit, we uses logic gates

Figure - Block diagram of Combinational circuit

Types of Combinational Circuits

Rules for Finding Adjacent Cells

- 1) Arithmetic Circuits:
 - ✓ Half Adder
 - ✓ Full Adder
 - ✓ Subtractors and etc.
- 2) Data Handling Circuits:
 - ✓ Multiplexers (MUX)
 - ✓ Demultiplexers (DEMUX)
 - ✓ Encoders
 - ✓ Decoders etc

Basic Design Steps

Basic Design Steps

1) Define input and output variables

2)Draw truth table

3) Simplify using K-map or Boolean algebra

4)Implement logic diagram

Exercises

Half Adder

Half Adder Design Steps

Step 1: State the Device to be Implemented

Device: Half Adder

Step 2: Define input and output variables

A half adder takes two single-bit binary inputs:

- Input A
- Input B

And it outputs:

- **Sum (S)**: Result of A + B
- Carry (C): Carry generated from the addition

Half Adder Design Steps

Step 3: Draw truth table

A	В	Sum (S)	Carry (C)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder Design Steps

Step4: Derive Boolean Expressions

From the truth table:

Sum (S) = $A \oplus B$ (XOR operation)

Carry (C) = $A \cdot B$ (AND operation)

Step 5: Implement logic diagram

[SELF ASSESMENT] Full Half Adder

[CASE STUDY]

Case Study: Problem Statement 1

- Design a combinational digital logic circuit that acts as a password-protected gate opener.
- The gate will only open when the correct 4-bit binary password is entered on the input keypad.
- Where correct password is only one. for example, Passowrd: 1011

Problem Statamenet-1

Solution:

Step 1: Define Input and Output Variables

- Inputs: A3,A2,A1, A0 (4-bit binary input from keypad)
- Output: G (Gate open signal; 1 = open, 0 = closed)

Step 2: Choose a 4-bit password

Example: Password = 1011

A3 = 1

A2 = 0

A1 = 1

A0 = 1

Cont...

Step 3: Construct Truth Table

Α	В	С	D	G (Gate Open)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Step 4: Derive Boolean Expression (SOP form)

$$F = A \cdot \overline{B} \cdot C \cdot D$$

Cont...

Step 5: Draw Logic Circuit Diagram

Required Components

• NOT Gate: 1 Nos

• AND Gate: 1 Nos of 4 Input signals

[Self Assessment]

Extension of Problem Statamenet1

Problem Statement 2: Self Assessment

- Design a combinational digital logic circuit that acts as a password-protected gate opener.
- The gate will only open when the correct 4-bit binary password is entered on the input keypad.
- Where correct passwords are two. for example,
 Passowrd1: 1011 and Password2: 1100

Thank You