

- Préparation des données
- Consommation corrigée de l'effet température
- Désaisonnalisation
- Prédiction
 - → Méthode Holt-winter
 - → Méthode SARIMA
- Conclusion

- Préparation des données
- Consommation corrigée de l'effet température
- Désaisonnalisation
- Prédiction
 - → Méthode Holt-winter
 - → Méthode SARIMA
- Conclusion

Préparation - Consommation d'électricité

Source : RTE - Du 01/01/10 au 01/11/18

Préparation - DJU

- DJU quotidien et mensuel (définition)
- Source : GRDF Roissy Du 01/01/10 au 01/05/18

Préparation - Jointure

Jointure interne

Seulement les dates contenant les deux valeurs

dju		consommation	
date			
2010-01-01	624.8	56342	
2010-02-01	474.7	48698	
2010-03-01	414.9	48294	
2010-04-01	290.1	38637	
2010-05-01	255.4	37284	

- Préparation des données
- Consommation corrigée de l'effet température
- Désaisonnalisation
- Prédiction
 - → Méthode Holt-winter
 - → Méthode SARIMA
- Conclusion

Consommation liée à l'effet température ?

→ On peut retrancher l'effet température

Régression linéaire

→ OLS de statsmodel

Régression linéaire - Variation expliquée

 $R^2 = 0.92$

L'effet température explique la majeur partie de la consommation électrique

8% de la consommation électrique est utilisé pour autre chose

Correction de l'effet température

consommation corrigée = consommation - DJU x coefficient(DJU)

- Préparation des données
- Consommation corrigée de l'effet température
- Désaisonnalisation
- Prédiction
 - → Méthode Holt-winter
 - → Méthode SARIMA
- Conclusion

Désaisonnalisation

Désaisonnalisation

Désaisonnalisation

- Préparation des données
- Consommation corrigée de l'effet température
- Désaisonnalisation
- Prédiction
 - → Méthode Holt-winter
 - → Méthode SARIMA
- Conclusion

Holt-Winters - Modèle

Création du modèle

hwl_model = ExponentialSmoothing(np.asarray(y), seasonal_periods=12, trend='additive', seasonal='additive').fit()

Prédiction hw1_pred = hw1_model.forecast(DUREE_PREDITE)

Holt-Winters - Analyse à posteriori

- Préparation des données
- Consommation corrigée de l'effet température
- Désaisonnalisation
- Prédiction
 - → Méthode Holt-winter
 - → Méthode SARIMA
- Conclusion

SARIMA - Description

$$SARIMA(p,d,q)(P,D,Q)_s$$

Définie une relation linéaire entre un instant t et les **p** instants précédents

Définie une relation entre une perturbation décorélée entre un instant t est les q instants précédents

Cette décomposition est aussi faite pour la partie saisonnière, selon les paramètres P et Q.

Stationnarisation incluse

SARIMA - Stationnarité

Un processus est stationnaire si :

- → Son **espérance** est **constante** à travers le temps
- → Sa variance est constante à travers le temps
- → Les autocorrélations entre deux moments séparés dans le temps sont constantes

La **structure** du processus stationnaire **n'évolue pas** avec le temps, ce qui le rend plus **prévisible**

SARIMA - Autocorrélograme simple

SARIMA - Autocorrélograme multiples

SARIMA - Recherche automatique des paramètres

On teste **324** modèles différents

SARIMA(p: $0\rightarrow 2$, d: $0\rightarrow 1$, q: $0\rightarrow 2$)(P: $0\rightarrow 2$, D: $0\rightarrow 1$, Q: $0\rightarrow 2$)₁₂

SARIMA - Recherche automatique des paramètres

MAPE croissant:

paramètres non-significatifs

	coef	std err	Z	P> z
ar.L1	-0.7092	0.142	-5.002	0.000
ar.L2	-0.4693	0.149	-3.142	0.002
ar.S.L12	-0.9228	0.117	-7.888	0.000
ar.S.L24	-0.4689	0.105	-4.456	0.000
sigma2	2.047e+06	4.32e+05	4.734	0.000

Candidat : SARIMA(2,1,0)(2,1,0)₁₂

324 modèles ...

$SARIMA(2,1,0)(2,1,0)_{12}$ - Analyse des résidus

Test de Ljung-Box (définition)

Retard	p-valeur
6	0.05
12	0.09
18	0.16
24	0.28
30	0.36
36	0.44

Les résidus sont un bruit blanc → On valide le modèle

SARIMA - Analyse à posteriori

- Préparation des données
- Consommation corrigée de l'effet température
- Désaisonnalisation
- Prédiction
 - → Méthode Holt-winter
 - → Méthode SARIMA
- Conclusion

Conclusion - Prédiction avec SARIMA

