Practica 4: Fundamentos de la Ciencia de Datos

Daniel Lopez Moreno Alejandro Fernandez Maceira Alvaro Maestre Santa

November 22, 2019

1 Clasificación no supervisada

En este apartado vamos a realizar una clasificación no supervisada con unos datos proporcionados por el profesor. Para ello usaremos el algoritmo K-means, sobre la muestra utilizada en clase, a parte se deberá obtener los centroides de los clusters obtenidos.

En primer lugar, debemos tener la librería **stats**, si no la tenemos, tenemos que instalarla.

Ahora procedemos a cargar los datos en una matriz para posteriormente hacer la transpuesta y hacer el algoritmo **K-means**, como ya he mencionado antes, los datos que cargamos en la matriz, están proporcionados por el profesor:

```
> (m < -matrix(c(4,4,3,5,1,2,5,5,0,1,2,2,4,5,2,1),2,8))
```

Ahora calculamos la transpuesta de la matriz:

> (m<-t(m))

```
[,1] [,2]
[1,]
[2,]
         3
               5
[3,]
               2
         1
[4,]
         5
               5
[5,]
               1
[6,]
         2
               2
         4
               5
[7,]
[8,]
```

A continuación, cargamos otra matriz de datos, y posteriormente haremos la transpuesta:

```
> (c < -matrix(c(0,1,2,2),2,2))
```

```
[,1] [,2]
[1,] 0 2
[2,] 1 2
```

Como ya hemos mencionado, ahora procedemos a calcular la transpuesta de la matriz cargada posteriormente:

```
> (c<-t(c))

[,1] [,2]

[1,] 0 1

[2,] 2 2
```

Ahora procedemos a realizar el algoritmo **K-means** para la clasificación, en este comando, tenemos que meter las dos transpuestas calculadas previamente y posteriormente ponemos el número de iteraciones que queremos que haga **K-means**, en este caso 4, cuando llegue a la 4 iteración parará. El resultado obtenido es el siguiente:

```
> (clasificaciones<-kmeans(m,c,4))</pre>
```

K-means clustering with 2 clusters of sizes 4, 4

```
Cluster means:
    [,1] [,2]
1 1.25 1.50
2 4.00 4.75

Clustering vector:
[1] 2 2 1 2 1 1 2 1

Within cluster sum of squares by cluster:
[1] 3.75 2.75
(between_SS / total_SS = 84.8 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

Ahora vamos a proceder a explicar los resultados obtenidos:

- En primer lugar: tenemos dos clusters de 4 y 4 datos cada uno para un total de 8 registros.
- cluster means: en este apartado, el algoritmo calcula la medida más óptima para hallar los centroides, los cuales, muestra en Cluster Means, cuando detecta estos, en este caso, detecta 2 centroides.
- Clustering vector: indica el pronóstico para cada registro testeado con el algoritmo.
- $\bullet~[1]$ 3.75 2.75: estos valores, es la inercia intra-clúster de cada grupo.

- between_SS / total_SS: es una medida de calidad e indica que tanto están separados los grupos de manera inter-cluster en relación al agrupamiento intra-cluster, mientras, se esté más cercano al 100
- Available components: tenemos los elementos disponibles del modelo, los cuales, vamos a explicar a continuación:
 - Cluster: La categorización asignada a cada observación de los datos introducidos o dataset en función a su cercanía a estos centros.
 - Centers: Los centroides.
 - **Totss**: Inercia total del conjunto de datos.
 - Withinss: Inercia intra-clases de cada uno de los grupos.
 - **Tot.withinss**: Inercia intra-clases total.
 - **Betweenss**: Inercia inter-clases.
 - **Size**: El tamaño de cada grupo.
 - Iter: Número de iteraciones empleado.

Ahora unimos, con la función **cbind**, a la matriz de datos(clasifiaciones), en este caso, une el vector con la matriz m:

> (m = cbind(clasificaciones\$cluster,m))

	[,1]	[,2]	[,3]
[1,]	2	4	4
[2,]	2	3	5
[3,]	1	1	2
[4,]	2	5	5
[5,]	1	0	1
[6,]	1	2	2
[7,]	2	4	5
[8,]	1	2	1

Ahora con la funcion **subset**, cogemos de la columna 1, aquellos valores que sean igual a 1, y creamos una matriz con las filas cuyo valor de la columna 1 es 1.

Hacemos lo mismo con la columna 1, pero que contengan el valor 2:

Quitamos la primera columna de las dos matrices generadas anteriormente, quedando los siguientes resultados:

```
> (mc1 = mc1[,-1])
     [,1] [,2]
[1,]
        1
[2,]
         0
[3,]
         2
[4,]
         2
> (mc2 = mc2[,-1])
     [,1] [,2]
[1,]
[2,]
         3
              5
[3,]
         5
              5
              5
[4,]
```

Estas dos matrices, son las matrices de los centroides resultantes.

2 Desarrollo por parte del grupo

En este apartado vamos a realizar una **Clasificación no supervisada** sobre una base de datos que reune información de los personajes de la saga de películas **Star Wars**. Este archivo "characters.csv" está compuesto 87 personajes con atributos repartidos en 10 columnas:

```
Name: (Nombre)Height: (Altura)
```

 \bullet Mass: (Peso)

• Hair_color: (Color de Pelo)

• Skin_color: (Color de Piel)

• Eye_color: (Color de Ojos)

• Birth_year: (Año de nacimiento)

• **Gender**: (Genero)

 $\bullet \ \ \mathbf{Homeworld} \colon (\mathrm{Hogar})$

• Species: (Especie)

Nuestro análisis de clasificación se centrará en *clusterizar* los personajes según su **altura y peso**. Para empezar leeremos nuestro archivo .csv y lo almacenaremos en nuestra variable **personajes**:

```
> personajes<- read.csv("characters.csv")</pre>
```

Algunos de nuestros personajes no tienen la suficiente información sobre su altura o peso como para clasificarlos, y en estos atributos cuentan con el valor **NA**. Como no tenemos información sobre estos personajes, no podemos clasificarlos, asi que debemos eliminarlos de nuestra matriz utilizando la funcion **complete.cases** y especificando que queremos trabajar sobre las columnas de altura y peso (columnas 2 y 3), el resto no nos importa que tengan NA:

> (personajes <- personajes[complete.cases(personajes[, 2:3]),])</pre>

	name	height	mass	hair_color	skin_color
1	Luke Skywalker	172	77	blond	fair
2	C-3P0	167	75	<na></na>	gold
3	R2-D2	96	32	<na></na>	white, blue
4	Darth Vader	202	136	none	white
5	Leia Organa	150	49	brown	light
6	Owen Lars	178	120	brown, grey	light
7	Beru Whitesun lars	165	75	brown	light
8	R5-D4	97	32	<na></na>	white, red
9	Biggs Darklighter	183	84	black	light
10	Obi-Wan Kenobi	182	77	auburn, white	fair
11	Anakin Skywalker	188	84	blond	fair
13	Chewbacca	228	112	brown	<na></na>
14	Han Solo	180	80	brown	fair
15	Greedo	173	74	<na></na>	green
16	Jabba Desilijic Tiure	175	1,358	<na></na>	green-tan, brown
17	Wedge Antilles	170	77	brown	fair
18	Jek Tono Porkins	180	110	brown	fair
19	Yoda	66	17	white	green
20	Palpatine	170	75	grey	pale
21	Boba Fett	183	78.2	black	fair
22	IG-88	200	140	none	metal
23	Bossk	190	113	none	green
24	Lando Calrissian	177	79	black	dark
25	Lobot	175	79	none	light
26	Ackbar	180	83	none	brown mottle
29	Wicket Systri Warrick	88	20	brown	brown
30	Nien Nunb	160	68	none	grey
31	Qui-Gon Jinn	193	89	brown	fair
32	Nute Gunray	191	90	none	mottled green
34	Jar Jar Binks	196	66	none	orange
35	Roos Tarpals	224	82	none	grey
39	Sebulba	112	40	none	grey, red
42	Darth Maul	175	80	none	red
44	Ayla Secura	178	55	none	blue
45	Dud Bolt	94	45	none	blue, grey
47	Ben Quadinaros	163	65	none	grey, green, yellow
48	Mace Windu	188	84	none	dark
49	Ki-Adi-Mundi	198	82	white	pale
50	Kit Fisto	196	87	none	green
52	Adi Gallia	184	50	none	dark

55		Plo Koon	188	80		ione			orange
57	_	ar Typho	185	85	bl	lack			dark
60	Poggle the		183	80		one			green
61	Luminara		170	56.2		Lack			yellow
62	Barris	ss Offee	166	50		Lack			yellow
64		Dooku	193	80	wh	nite			fair
66		ngo Fett	183	79		lack			tan
67		n Wesell	168	55	blo	onde f	air,	green,	yellow
68	Dexter 3		198	102	r	ione			brown
69		Lama Su	229	88	r	one			grey
72	Ratts	Tyerell	79	15	r	one		grey	, blue
74	Wat	t Tambor	193	48	r	one		greer	ı, grey
76	5	Shaak Ti	178	57	r	one	re	d, blue	, white
77	(Grievous	216	159	r	one		brown	, white
78		Tarfful	234	136	br	own			brown
79	Raymus I	Antilles	188	79	br	own			light
80	SI	ly Moore	178	48	r	one			pale
81	Tio	on Medon	206	80	r	one			grey
87	$Padm \tilde{A} C$	Amidala	165	45	br	own			light
	eye_color	birth_year		gender	r h	omewo	rld	\$	species
1	blue	19BBY		male)	Tatoo	ine		Human
2	yellow	112BBY		<na></na>	>	Tatoo	ine		Droid
3	red	33BBY		<na></na>	>	Na	boo		Droid
4	yellow	41.9BBY		male	9	Tatoo	ine		Human
5	brown	19BBY		female)	Alder	aan		Human
6	blue	52BBY		male		Tatoo			Human
7	blue	47BBY		female		Tatoo			Human
8	red	<na></na>		<na></na>		Tatoo			Droid
9	brown	24BBY		male		Tatoo			Human
10	blue-gray	57BBY		male		Stew			Human
11	blue	41.9BBY		male		Tatoo	-		Human
13	blue	200BBY		male		Kashy		Ţ	Vookiee
14	brown	29BBY		male		Corel		•	Human
15	black	44BBY		male			dia		Rodian
16	orange		horm	aphrodite		Ito Val Hu			Hutt
17	hazel	21BBY	петш	male	-	Corel			Human
18	blue	<na></na>		male		estine			Human
19	brown	896BBY		male				Yoda's s	
20								Ioua S a	_
21	yellow brown	82BBY		male			boo		Human
		31.5BBY		male			ino		Human
22	red	15BBY		none			:NA>	Т	Droid
23	red	53BBY		male		rando		irai	ndoshan
24	brown	31BBY		male		Soco			Human
25	blue	37BBY		male			pin	v a	Human
26	orange	41BBY		male		Mon C		Mon Ca	alamari
29	brown	8BBY		male			dor	~ -	Ewok
30	black	<na></na>		male		Sull		Su	llustan
31	blue	92BBY		male			NA>		Human
32	red	<na></na>			e Cato N			Nei	imodian
34	orange	52BBY		male	9	Na	boo		Gungan

35	orange	<na></na>	male	Naboo	Gungan
39	orange	<na></na>	male	Malastare	Dug
42	yellow	54BBY	male	Dathomir	Zabrak
44	hazel	48BBY	female	Ryloth	Twi'lek
				•	
45	yellow	<na></na>	male	Vulpter	Vulptereen
47	orange	<na></na>	male	Tund	Toong
48	brown	72BBY	male	Haruun Kal	Human
49	yellow	92BBY	male	Cerea	Cerean
50	black	<na></na>	male	Glee Anselm	Nautolan
52	blue	<na></na>	female	Coruscant	Tholothian
55	black	22BBY	male	Dorin	Kel Dor
57	brown	<na></na>	male	Naboo	Human
60	yellow	<na></na>	male	Geonosis	Geonosian
61	blue	58BBY	female	Mirial	Mirialan
62	blue	40BBY	female	Mirial	Mirialan
64	brown	102BBY	male	Serenno	Human
66	brown	66BBY	male	Concord Dawn	Human
67	yellow	<na></na>	female	Zolan	Clawdite
68	yellow	<na></na>	male	Ojom	Besalisk
69	black	<na></na>	male	Kamino	Kaminoan
72	<na></na>	<na></na>	male	Aleen Minor	Aleena
74	<na></na>	<na></na>	male	Skako	Skakoan
76	black	<na></na>	female	Shili	Togruta
77	green, yellow	<na></na>	male	Kalee	Kaleesh
78	blue	<na></na>	male	Kashyyyk	Wookiee
79	brown	<na></na>	male	Alderaan	Human
80	white	<na></na>	female	Umbara	<na></na>
81	black	<na></na>	male	Utapau	Pau'an
87	brown	46BBY	female	Naboo	Human

Ahora que ya tenemos nuestra matriz con los datos es hora de trabajar con ella. Crearemos una matriz a parte para aislar las medidas de altura y peso:

- > height<-personajes\$height
 > mass<-personajes\$mass</pre>
- > (medidas<-cbind(height,mass))</pre>

	height	${\tt mass}$
[1,]	172	27
[2,]	167	26
[3,]	96	13
[4,]	202	7
[5,]	150	17
[6,]	178	6
[7,]	165	26
[8,]	97	13
[9,]	183	33
[10,]	182	27
[11,]	188	33
[12,]	228	4
[13,]	180	30

```
[14,]
          173
                25
[15,]
          175
                  1
[16,]
          170
                27
[17,]
          180
                 3
[18,]
           66
                11
[19,]
          170
                26
[20,]
          183
                28
          200
[21,]
                  8
[22,]
          190
                  5
[23,]
          177
                29
[24,]
          175
                29
          180
[25,]
                32
[26,]
                12
           88
          160
                24
[27,]
[28,]
          193
                37
[29,]
          191
                38
[30,]
          196
                23
          224
[31,]
                31
[32,]
          112
                14
[33,]
          175
                30
[34,]
          178
                19
[35,]
           94
                15
          163
                22
[36,]
[37,]
          188
                33
[38,]
          198
                31
[39,]
          196
                35
[40,]
          184
                18
[41,]
          188
                30
[42,]
          185
                34
[43,]
          183
                30
[44,]
          170
                20
[45,]
          166
                18
[46,]
          193
                30
[47,]
          183
                29
[48,]
          168
                19
[49,]
          198
                 2
[50,]
          229
                36
[51,]
           79
                 9
[52,]
          193
                16
[53,]
          178
                21
          216
                 10
[54,]
[55,]
          234
                 7
[56,]
          188
                29
[57,]
          178
                16
          206
                30
[58,]
[59,]
          165
                15
```

2.1 Clasificación con k-means

Crearemos los centroides de nuestros clusters. Para diferenciarnos del ejercicio realizado en clase realizaremos la clasificación k-means separando en 3 clusters en vez de en 2. Los clusters empezarán siendo C1(200cm, 100kg), C2(150cm, 75kg) y C3(100cm, 50kg):

> centroides < -matrix(c(200,100,150,75,100,50),2,3)

```
> (centroides <- t(centroides))</pre>
     [,1] [,2]
[1,] 200 100
[2,]
     150
           75
[3,]
     100
           50
  Una vez creados los centroides y aisladas nuestras medidas vamos a realizar
la clasificación del mismo modo que la hemos realizado en clase, y posterior-
mente utilizaremos otros métodos de clasificación para comparar los
resultados:
> (clasiKmeans<-kmeans(medidas,centroides,6))</pre>
K-means clustering with 3 clusters of sizes 9, 43, 7
Cluster means:
    height
               mass
1 215.22222 15.00000
2 179.02326 24.34884
3 90.28571 12.42857
Clustering vector:
 [39] 2 2 2 2 2 2 2 2 2 2 1 1 3 2 2 1 1 2 2 1 2
Within cluster sum of squares by cluster:
[1] 2985.556 8258.744 1309.143
 (between_SS / total_SS = 84.2 %)
Available components:
```

Hemos observado que los centroides se han desplazado hacia los valores C1(215.22222, 15.00000), C2(179.02326, 24.34884) y $C3(90.28571\ 12.42857)$. Después de clasificar mediante k-means, añadimos la columna de los clusters a

"totss"

"iter"

"withinss"

"ifault"

"tot.withinss"

la matriz de personajes y los separamos segun su cluster:

"centers"

"size"

[1] "cluster"

[6] "betweenss"

```
> personajesKmeans = cbind(clasiKmeans$cluster,personajes)
Cluster 1:
> (persc1 = subset(personajesKmeans,personajesKmeans[,1] == 1))
```

```
clasiKmeans$cluster
                                    name height mass hair_color
                                                                    skin_color
4
                            Darth Vader
                                            202 136
                                                            none
                                                                         white
13
                      1
                              Chewbacca
                                            228
                                                 112
                                                           brown
                                                                          <NA>
22
                      1
                                   IG-88
                                            200
                                                 140
                                                            none
                                                                         metal
35
                      1
                           Roos Tarpals
                                            224
                                                   82
                                                            none
                                                                          grey
                      1 Dexter Jettster
                                            198
68
                                                102
                                                            none
                                                                         brown
69
                      1
                                            229
                                Lama Su
                                                   88
                                                            none
                                                                          grey
77
                      1
                                Grievous
                                            216
                                                 159
                                                            none brown, white
78
                                            234
                      1
                                Tarfful
                                                 136
                                                           brown
                                                                         brown
81
                      1
                             Tion Medon
                                            206
                                                   80
                                                            none
                                                                          grey
       eye_color birth_year gender homeworld
                                                species
4
                     41.9BBY
                               {\tt male}
          yellow
                                      Tatooine
                                                   Human
13
            blue
                      200BBY
                                male
                                      Kashyyyk
                                                Wookiee
22
             red
                       15BBY
                                none
                                          <NA>
                                                   Droid
35
          orange
                        <NA>
                               male
                                         Naboo
                                                  Gungan
68
          yellow
                        <NA>
                               male
                                          Ojom Besalisk
69
           black
                                        Kamino Kaminoan
                        <NA>
                               male
77
   green, yellow
                        <NA>
                               male
                                         Kalee Kaleesh
78
            blue
                        <NA>
                                male
                                     Kashyyyk
                                                Wookiee
81
           black
                        <NA>
                                male
                                        Utapau
                                                 Pau'an
```

Cluster 2:

> (persc2 = subset(personajesKmeans,personajesKmeans[,1] == 2))

	clasiKmeans\$cluster	name	height	mass	hair_color
1	2	Luke Skywalker	172	77	blond
2	2	C-3P0	167	75	<na></na>
5	2	Leia Organa	150	49	brown
6	2	Owen Lars	178	120	brown, grey
7	2	Beru Whitesun lars	165	75	brown
9	2	Biggs Darklighter	183	84	black
10	2	Obi-Wan Kenobi	182	77	auburn, white
11	2	Anakin Skywalker	188	84	blond
14	2	Han Solo	180	80	brown
15	2	Greedo	173	74	<na></na>
16	2	Jabba Desilijic Tiure	175	1,358	<na></na>
17	2	Wedge Antilles	170	77	brown
18	2	Jek Tono Porkins	180	110	brown
20	2	Palpatine	170	75	grey
21	2	Boba Fett	183	78.2	black
23	2	Bossk	190	113	none
24	2	Lando Calrissian	177	79	black
25	2	Lobot	175	79	none
26	2	Ackbar	180	83	none
30	2	Nien Nunb	160	68	none
31	2	Qui-Gon Jinn	193	89	brown
32	2	Nute Gunray	191	90	none
34	2	Jar Jar Binks	196	66	none
42	2	Darth Maul	175	80	none
44	2	Ayla Secura	178	55	none

47	2	Bei	163	65	none	
48	2		ı 188	84	none	
49	2]	Ki-Adi-Mundi	. 198	82	white
50	2		Kit Fisto	196	87	none
52	2		Adi Gallia	184	50	none
55	2		Plo Koon	188	80	none
57	2	(Gregar Typho	185	85	black
60	2	Poggle	e the Lesser	183	80	none
61	2	Lum	inara Unduli	. 170	56.2	black
62	2	В	arriss Offee	166	50	black
64	2		Dooku	193	80	white
66	2		Jango Fett	183	79	black
67	2		Zam Wesell	168	55	blonde
74	2		Wat Tambor	193	48	none
76	2		Shaak Ti	178	57	none
79	2	Rayı	nus Antilles	188	79	brown
80	2		Sly Moore	178	48	none
87	2	Pag	dmé Amidala	165	45	brown
	skin_color	eye_color	birth_year	g	ender	homeworld
1	fair	blue	19BBY		male	Tatooine
2	gold	yellow	112BBY		<na></na>	Tatooine
5	light	brown	19BBY	f	emale	Alderaan
6	light	blue	52BBY		male	Tatooine
7	light	blue	47BBY	f	emale	Tatooine
9	light	brown	24BBY		male	Tatooine
10	_	blue-gray	57BBY		male	Stewjon
11	fair	blue	41.9BBY		male	Tatooine
14	fair	brown	29BBY		male	Corellia
15	green	black	44BBY		male	Rodia
16	green-tan, brown	orange	600BBY	hermaphr	odite	Nal Hutta
17	fair	hazel	21BBY		${\tt male}$	Corellia
18	fair	blue	<na></na>		${\tt male}$	Bestine IV
20	pale	yellow	82BBY		male	Naboo
21	fair	brown	31.5BBY		male	Kamino
23	green	red	53BBY		male	Trandosha
24	dark	brown	31BBY		${\tt male}$	Socorro
25	light	blue	37BBY		${\tt male}$	Bespin
26	brown mottle	orange	41BBY		male	Mon Cala
30	grey	black	<na></na>		male	Sullust
31	fair	blue	92BBY		male	<na></na>
32	mottled green	red	<na></na>		male	Cato Neimoidia
34	orange	orange	52BBY		male	Naboo
42	red	yellow	54BBY		male	Dathomir
44	blue	hazel	48BBY	f	emale	Ryloth
47	grey, green, yellow	orange	<na></na>		male	Tund
48	dark	brown	72BBY		male	Haruun Kal
49	pale	yellow	92BBY		male	Cerea
50	green	black	<na></na>		male	Glee Anselm
52	dark	blue	<na></na>	f	emale	Coruscant
55	orange	black	22BBY		male	Dorin
	_					

57	dark	brown	<na></na>	male	Naboo
60	green	yellow	<na></na>	male	Geonosis
61	yellow	blue	58BBY	female	Mirial
62	yellow	blue	40BBY	female	Mirial
64	fair	brown	102BBY	male	Serenno
66	tan	brown	66BBY	male	Concord Dawn
67	fair, green, yellow	yellow	<na></na>	female	Zolan
74	green, grey	<na></na>	<na></na>	male	Skako
76	red, blue, white	black	<na></na>	female	Shili
79	light	brown	<na></na>	male	Alderaan
80	pale	white	<na></na>	female	Umbara
87	light	brown	46BBY	female	Naboo
	species				
1	Human				
2	Droid				
5	Human				
6	Human				
7	Human				
9	Human				
10	Human				
11	Human				
14	Human				
15	Rodian				
16	Hutt				
17	Human				
18	Human				
20	Human				
21	Human				
23	Trandoshan				
24	Human				
25	Human				
26	Mon Calamari				
30	Sullustan				
31	Human				
32	Neimodian				
34	Gungan				
42	Zabrak				
44	Twi'lek				
47	Toong				
48	Human				
49	Cerean				
50	Nautolan				
52	Tholothian				
55	Kel Dor				
57	Human				
60	Geonosian				
61	Mirialan				
62	Mirialan				
64	Human				
	**				

Human

```
67 Clawdite
74 Skakoan
76 Togruta
79 Human
80 <NA>
87 Human
```

Cluster 3:

> (persc3 = subset(personajesKmeans,personajesKmeans[,1] == 3))

	clasiKmear	ns\$cluster		nam	ne height	mass	hair_color	skin_color
3		3	R2-D2		96	32	<na></na>	white, blue
8		3		R5-D	97	32	<na></na>	white, red
19		3		Yod	la 66	17	white	green
29		3	Wicket :	Systri Warrio	k 88	20	brown	brown
39		3		Sebulb	a 112	40	none	grey, red
45		3		Dud Bol	t 94	45	none	blue, grey
72		3		Ratts Tyerel	.1 79	15	none	grey, blue
	eye_color	birth_year	gender	homeworld	S]	pecies	3	
3	red	33BBY	<na></na>	Naboo		Droid	i	
8	red	<na></na>	<na></na>	Tatooine		Droid	i	
19	brown	896BBY	male	<na></na>	Yoda's s	pecies	3	
29	brown	8BBY	male	Endor		Ewol	ζ	
39	orange	<na></na>	male	Malastare		Dug	3	
45	yellow	<na></na>	male	Vulpter	Vulp	teree	ı	
72	<na></na>	<na></na>	male	Aleen Minor		Aleena	a	

Para poder ver con más detalle la división en clusters de los datos, se representarán gráficamente los clusters en dos gráficas distintas. Para ello harán falta las siguientes librerías.

- > install.packages("cluster")
- > install.packages("factoextra")
- > library(cluster)
- > library(factoextra)

Ahora que están instalados los paquetes, se pueden representar los resultados anteriores.

> fviz_cluster(clasiKmeans,data=medidas)

> clusplot(personajesKmeans,clasiKmeans\$cluster,color=TRUE,shade=TRUE,labels=2,lines=0)

CLUSPLOT(personajesKmeans)

Una comprobación que se puede realizar para los datos es obtener el número

óptimo de clusters para clasificarlos. Para comprobarlo, se utilizan la medida de la silueta, que indica de forma aproximada cómo de bien se han clasificado los datos, es decir, si están en los clusters correctos.

> fviz_nbclust(medidas,kmeans,method="silhouette")

Como se puede observar, los mejores números de clusters para clasificar los datos están entre $2\ y\ 3$, con 1 cluster la clasificación es muy ineficiente y más clusters de 3 son innecesarios.

Como conclusión de esta clasificación de k-means podemos sacar que todos aquellos que quedan en el Cluster 1 comparten que su género es **masculino**. Los personajes pertenecientes al Cluster 3 también comparten que son de **género masculino**, a excepción de R2-D2 y R5-D4 que son droides de pequeña estatura. Sobre el Cluster 3 también cabe destacar que ninguno de los personajes es de Especie **humano**. Por último, en el Cluster 2 es donde se acumulan la mayor cantidad de personajes y donde es más dificil es diferenciarlos por atributos, aunque si se puede observar que **todos los humanos** (a excepción de Darth Vader) se encuentran en este cluster, rondando los 179cm y 24kg.

2.2 Clasificación mediante Clustering Jerarquico Aglomerativo

A continuación realizaremos la clasificación mediante Clustering Jerarquico Aglomerativo en inglés HAC. Mediante este método todos los personajes irán agrupandose en clusters de pequeño tamaño y poco a poco irán generando clusters mayores hasta lograr un solo cluster que agrupamiento todos los personajes. Como hemos aprendido en clase, el primer paso de este algoritmo es calcular la

matriz de distancias entre todos los personajes. Para ello utilizaremos la función **dist** y el parámetro "**euclidean**" para calcular las distancias mediante la formula euclidiana:

```
> distancias <- dist(medidas, method = "euclidean")</pre>
```

Una vez hemos calculado las distancias vamos a realizar la clasificación jerarquica. Existen tres métodos diferentes de agrupar en clusters: MIN("single"), MAX("complete") y Group Average("average").

2.2.1 Enlace simple MIN

Realizaremos la clasificación utilizando la distancia **mínima** entre puntos a cada cluster:

```
> hcmin <- hclust(distancias, method = "single" )
> plot(hcmin, cex = 0.6, hang = -1, main = "Dendrograma MIN")
```

Dendrograma MIN

distancias hclust (*, "single")

2.2.2 Enlace completo MAX

Realizaremos la clasificación utilizando la distancia **máxima** entre puntos a cada cluster:

```
> hcmax <- hclust(distancias, method = "complete" )
> plot(hcmax, cex = 0.6, hang = -1, main = "Dendrograma MAX")
```

Dendrograma MAX

distancias hclust (*, "complete")

2.2.3 Enlace promedio Group Average

Realizaremos la clasificación utilizando la **media de las distancias** entre puntos a cada cluster:

```
> hcavg <- hclust(distancias, method = "average" )
> plot(hcavg, cex = 0.6, hang = -1, main = "Dendrograma Group Average")
```

Dendrograma Group Average

distancias hclust (*, "average")

Como se puede observar, todos los dendogramas son muy parecidos entre si, con ligeros cambios debido al método de agrupación escogido para cada uno.

2.3 Clasificación mediante DBSCAN

Por último, realizaremos la clasificación mediante el algoritmo **DBSCAN**. Este algoritmo agrupará nuestros personajes en clusters basandose en la densidad, comenzando por una estimación de la distribución de densidad de cada personaje. Utilizaremos los paquetes **fpc** y **dbscan**:

- > install.packages("dbscan")
- > install.packages("fpc")
- > library("dbscan")
- > library("fpc")

Una vez hemos instalado los paquetes necesarios, calcularemos cual es el valor de **eps** óptimo para nuestra clasificación DBSCAN. Para ello, utilizaremos el método k-nearest neighbour, y buscaremos donde exista un cambio drástico en nuestra gráfica:

- > kNNdistplot(medidas, k=4)
- > abline(h=16.5, col="red")

En este ejemplo podemos observar que el cambio se encuentra en el **valor 16.5**, por lo que ese será nuestro valor para eps. A continuación, realizaremos la clasificación dbscan y mostraremos una gráfica con los resultados:

```
> set.seed(123)
```

> clasificacionDBSCAN <- fpc::dbscan(medidas, eps = 16.5, MinPts = 5)

> hullplot(medidas, clasificacionDBSCAN\$cluster)

Convex Cluster Hulls

Como podemos observar en el gráfico, el algoritmo nos ha separado los personajes en 2 clusters, un pequeño cluster de color **verde** que incluye 6 de estos, y un gran cluster **rojo** que incluye la gran mayoria, 47. Por último encontramos aquellos puntos negros que no están ni en el cluster verde ni en el rojo, estos puntos se corresponde con valores **outlier**.