Description des parametres de SEM3D

Le format de fichier SEM3D a été changé pour plus de souplesse et pour éviter des erreurs de saisie.

Le nouveau format de fichier est de la forme suivante (exemple)

```
mot_clef = valeur; # commentaire
# commentaire
section {
   mot_clef2 = "chaine";
};
mot_clef3 = v1 v2 v3; # un vecteur de valeurs
```

Les valeurs sont des entiers, des flottants, des booléens, des chaines ou des mot-clefs.

Une chaine est une suite de caractères entre guillemets ("), un mot clef est une suite de caractères alphanumeriques commençant par une lettre, et comportant des lettres, des chiffres ou le caractère souligné (_).

Les sections peuvent apparaître plusieurs fois (par exemple la section source).

Les paramètres peuvent apparaître dans un ordre quelconque au sein d'une section (ou du corps principal). Un paramètre valide peut-être ignoré si il n'est pas activé par un autre paramètre : par exemple on peut désactiver les snapshots, tout en laissant le paramètre nombre d'itération entre snapshot.

Les mots-clef pouvant être utilisés dans le fichier (niveau 0, hors toute section) sont décrits ici :

Mot-clef	type	valeur par défaut	Description
run_name	chaîne	1111	Titre de la simulation
time_scheme	section	n/a	Section de description du schéma d'intégration en temps
sim_time	réel	aucune	Durée (temps physique) de la simulation
mesh_file	chaîne	"mesh4spec"	Nom de base des fichiers maillage
mat_file	chaîne	"material.input"	Nom du fichier de description des matériaux
anisotropy	section	n/a	Description de l'anisotropie
amort	section	n/a	Description de l'amortissement
source	section	n/a	Description d'une source (peut apparaître plusieurs fois)
save_snap	bool	false	Sauvegarde des snapshots
save_interval	réel		Interval (temps physique) de sauvegarde des snapshots
model			
save_traces			
traces_interval			
station_file			
prorep			
prorep_iter			
verbose_level			
neumann_cond			

Description de la section time_scheme :

Mot-clef	type	valeur par défaut	Description
accel_scheme			
veloc_scheme			
alpha			
beta			

namma		
gamma		

Description de la section source :

Mot-clef	type	valeur par défaut	Description
coords	réel(3)	000	Position de la source
type	kw		Type spatial: impulse moment fluidpulse
dir	kw	-	Direction pour le type impulse ou fluidpulse (val: x y z)
func	kw		Type temporel: gaussian ricker tf_heaviside gabor file
moment	réel(6)		Moment xx yy zz xy yx xz pour le type moment
tau	réel		offset de temps de démarrage de la source
freq	réel		Fréquence de coupure de la fct temporelle
band	réel(4)		Description des bornes pour tf_heaviside
ts	réel		Pour gabor ?
time_file	chaîne		Fichier contenant la source

Exemple

Le fichier ci-dessus correspond à celui d'un cas test

```
# -*- mode: perl -*-
run_name = "Run_3D_trial";
# duration of the run
sim_time = 1.0;
mesh_file = "mesh4spec"; # input mesh file
mat_file = "material.input";
save snap = true;
snap_interval = 0.01;
save_traces = true;
# Fichier de description des capteurs
station_file = "file_station";
                         # introduce a source
source {
\# coordinates of the sources ((x,y,z) or (lat,long,R) if rotundity is considered)
coords = 0. 0. 0.;
type = impulse; # Type (1 Impulse, 2 Moment Tensor, fluidpulse)
dir = x;
                              # Direction x,y ou z (only for Impulse)
                        # Function gaussian,ricker,tf_heaviside,gabor,file
func = ricker;
tau = 0.2;
                        # tau
freq = 5.;
                    # source main frequency (only for Ricker)
};
#gradient_file="gradients.dat" # fichier gradient
time_scheme {
   accel scheme = false; # Acceleration scheme for Newmark
    veloc_scheme = true;  # Velocity scheme for Newmark
    alpha = 0.5;
                          # alpha (Newmark parameter)
   beta = -0.5;
                          # beta (Newmark parameter)
    gamma = 1;
                          # gamma (Newmark parameter)
};
```