Homework 1

Due: Sept 6 (Tuesday)

1. Let $A = \{a, b, c\}$ and $B = \{b, c, d, e, f\}$. Find:

- (a) $A \cup B$.
- (b) $A \cap B$.
- (c) A B.
- (d) B A.
- (e) $A \oplus B$.
- (e) 2^{A} .

2. Determine whether these statements are true or false.

- (a) $\phi \in \{\phi\}$.
- (b) $\{\phi\} \in \{\phi\}.$
- (c) $\phi \subset \{\phi\}$.
- (d) $\{\phi\} \subset \{\phi\}$.
- (e) $\{\phi\} \subset \{\phi, \{\phi\}\}\$.
- (f) $\{\{\phi\}\}\ \subset \{\phi, \{\phi\}\}\$.

3. Suppose that A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$.

- 4. Let A and B be two **finite** sets. Argue that if $2^A = 2^B$, then A = B.
- 5. Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.
- 6. Are $A \times B \times C$ and $(A \times B) \times C$ the same? Explain why?
- 7. Show if A and B are sets, then $A \cup (A \cap B) = A$
- 8. Find the sets A and B if $A B = \{a, b, c, d\}, B A = \{e, f\}, \text{ and } A \cap B = \{g, h, i, j\}.$
- 9. Let A and B be sets. Show that $A \cup (B A) = A \cup B$ and $A \cap (B A) = \phi$.
- 10. Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$.
- 11. Show that if A and B are sets, then $A B = A \cap \overline{B}$ and $A = (A B) \cup (A \cap B)$.
- 12. Let A, B, and C be sets. Does (A B) C = (A C) (B C)? Explain why?
- 13. Let A, B, and C be sets. Can you conclude that A = B if
 - (a) $A \cup C = B \cup C$?
 - (b) $A \cap C = B \cap C$?
 - (c) $A \cup C = B \cup C$ and $A \cap C = B \cap C$?

Explain why?

- 14. Let A and B be sets. Show that $A \oplus B = (A \cup B) (A \cap B)$.
- 15. Let A, B, and C be sets. Determine if $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.
- 16. Find the domain and image of these functions. Note that in each case, to find the image, determine the set of elements assigned values by the function.
 - (a) The function f that assigns to each positive integer its last decimal digit. For example, f(123) = 3.
 - (b) The function f that assigns the next largest integer to a non-positive integer. For example, f(-10) = -9.
 - (c) The function f that assigns to a positive integer the number of distinct decimal digits. For example, f(11244) = 3.
 - (d) The function f that assigns to each pair of real numbers the first number of the pair. For example, f(1.1, -0.5) = 1.1.
- 17. For each of the functions below, determine if it is an injection, surjection, and bijection. Explaine why?
 - (a) $f: \mathcal{R} \to \mathcal{R}, f(x) = -3x + 4$.
 - (b) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = -3x + 4.
 - (c) $f: \mathcal{R} \to \mathcal{R}, f(x) = x^2$.
 - (d) $f: \mathcal{R}^+ \to \mathcal{R}^+, f(x) = x^2$.
 - (e) $f: \mathcal{R} \to \mathcal{R}, f(x) = x^3 x$.
- 18. Recall a function f is invertible if it is a one-to-one correspondence, and the inverse of f denoted by f^{-1} is defined as $f^{-1}(b) = a$ if and only if f(a) = b. Is the function $f : \mathcal{R} \to \mathcal{R}$, f(x) = |x| invertible? What about the function $g : \mathcal{R}^+ \to \mathcal{R}^+$, g(x) = |x|, is g invertible?
- 19. Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are both functions from \mathcal{R} to \mathcal{R} .
- 20. If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Explain why?
- 21. What is the value of $\lceil x \rceil \lfloor x \rfloor$?
- 22. Show that if A and B are two sets each with n elements, where n is a positive integer, then there is a one-to-one correspondence between A and B.
- 23. Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are countably infinite, construct a one-to-one correspondence between the set of positive integers and that set.
 - (a) The integers greater than 10.
 - (b) The non-positive integers.
 - (c) The integers with absolute value less than 1,000,000,000.
 - (d) The real numbers between 1 and 2.
 - (e) The set $\mathcal{Z}^+ \times \mathcal{Z}^+$.

- 24. Give an example of two uncountable sets A and B such that $A \cap B$ is:
 - (a) Finite.
 - (b) Countably infinite.
 - (c) Uncountable.
- 25. Prove that $|\mathcal{N}| = |\mathcal{Z}^+ \times \mathcal{Z}^+|$ by developing a one-to-one correspondence f from \mathcal{N} to $\mathcal{Z}^+ \times \mathcal{Z}^+$.