Programming Project 0 (Advanced)

Implement the following Python "magic methods" in your Molecule class:

name len str	returns int str	args	called by 1 len(mol) str(mol), print(mol)	description return the "length" (number of atoms) of a molecule instance return a pretty str representation of the contents of your
501	501		bor(mor), prino(mor)	Molecule object
repr	str		>>> mol, repr(mol)	return a str representation of the your Molecule object in .xyz format
iter	iterator		for _ in mol	iterates over (str, numpy.array) tuples, each of which contains the atomic symbol and Cartesian coordinates of an atom in the molecule
add	Molecule	Molecule	mol1 + mol2	returns a new molecule object containing the atoms of both molecules

¹Assume mol, mol1, and mol2 are all instances of your Molecule class.