Лабораторная № 2

Прокопенко Тимофей, ACOБД, timophej3@gmail.com

2.1.6

Нарисуйте все качественно различные векторные поля, которые возможны в системе при изменении r. Покажите, что при некотором критическом значении $r=r^*$ происходит бифуркация. Определите тип бифуркации и укажите точку бифуркации r^* . Изобразите бифуркационную диаграмму.

$$\dot{x} = rx + x^2$$

Особые точки:

$$x^2 + rx = 0$$

$$x_1 = 0$$

$$x_2 = -r$$

График функции выглядит следующим образом:

при r < 0:

при r=0:

при r>0:

Таким образом, при $r \neq 0$ две особые точки, а при r = 0 одна особая точка. Бифуркация происходит в точке r*=0, это транскритическая бифуркация. Биффуркационная диаграмма выглядит следующим образом:

где сплошная линия - устойчивые, а пунктирная - неустойчивые точки.

Векторные поля

1) $r < 0 \;$ (на графике r = -2):

2) r = 0:

3) $r>0\,$ (на графике r = 2):

2.6

(Возмущение суперкритической вилки) Рассмотрим систему

$$\dot{x} = rx + ax^2 - x^3,$$

где $a \in \mathbb{R}$. При a=0 имеем нормальную форму суперкритической вилкообразной бифуркации. Цель задания — исследовать влияние нового параметра а.

- а) Примерно изобразите все качественно различные бифуркационные диаграммы на плоскости (r, x^*) , которые могут быть получены при различных a.
- б) Обобщите полученные результаты, изобразив на плоскости (r,a) области, соответствующие различным типам векторных полей. Укажите тип бифуркаций, которые происходят на границах этих областей.

a) Корни $rx+ax^2-x^3$:

$$x_1 = 0$$

$$x_{2,3}=rac{a\pm\sqrt{a^2+4r}}{2}$$

Таким образом, особая точка в 0 не зависит от параметра h. Другие две точки принимают действительные значения при $r>rac{a^2}{4}$.

Изобразим биффуркационные диаграммы при a < 0, a = 0, a > 0:

1) а < 0 (на рисунке а=-3):

2) a = 0

Везде зеленые линии обозначают устойчивые точки, оранжевые - неустойчивые. Синия линия, совпадающая с осью X, состоит из устойчивых точек слева от 0, справа - неустойчивые. б) Изобразим на (r, a) области, соответствующие различным типам векторных полей:

Тип бифуркации на границах: на сторонах параболы - вилка, на зеленой линии - транскритическая.