

Besondere Schwierigkeiten beim Mathematiklernen in der Primarstufe

Eye-Tracking-Untersuchungen zur Identifikation und Förderung

Dr. Lukas Baumanns

Forschungsvortrag im Rahmen des Berufungsverfahrens für eine W2-Professur für "Didaktik der Mathematik mit dem Schwerpunkt Primarstufe" an der Universität Münster

Motivation

Besondere Schwierigkeiten beim Mathematiklernen in der Primarstufe

Anzahlerfassung – 2. Klasse

(Schindler, 2019; 2020; Schipper, 2011)

Besondere Schwierigkeiten beim Mathematiklernen in der Primarstufe

Anzahlerfassung – 4. Klasse

(Schindler, 2019; 2020; Schipper, 2011)

Motivation

Besondere Schwierigkeiten beim Mathematiklernen in der Primarstufe (BSM)

Besondere Schwierigkeiten beim Mathematiklernen in der Primarstufe (BSM)

Kennzeichen für BSM

- Mangelndes Verständnis
 - natürlicher Zahlen,
 - des dezimalen
 Stellenwertsystems und
 - der Rechenoperationen.

Entwickeln sich im Verlauf der Grundschule, sind jedoch noch nicht in der ersten Klasse manifest.

Kennzeichen für das Risiko für die Entwicklung von BSM

- Schwierigkeiten bei
 - Mengenerfassung,
 - Mengeninvarianzen,
 - Zählkompetenz,
 - Ziffernkenntnis
 - (Dornheim, 2008; Jordan et al., 2007)

Bereits in der ersten Klasse sichtbar und gute Prädiktoren für die spätere Entwicklung von BSM (Baumanns et al., 2022; Lüken et al., 2014; Rittle-Johnson et al., 2019)

DIDUNASApp

Projektleitung: Prof. Dr. Maike Schindler; Kooperationspartner: Prof. Dr. Demetra Pitta-Pantazi, Prof. Dr. Constantinos Christou, Prof. Dr. Achim J. Lilienthal

Zahlverständnis

Ordinal

DIDUNASApp

Mathematik als Wissenschaft der Muster und Strukturen (Steen, 1988)

"... die im Prozess entwickelt, erforscht, fortgesetzt und verändert werden können" (Wittmann, 2004, S. 1)

phänomenologische Regelmäßigkeit

(Akinwunmi & Steinweg, 2021)

Muster

Strukturen

mathematisch festgelegte Eigenschaften und Relationen

Muster und Strukturen sind überall

deswegen ist ein frühes Bewusstsein für Muster zentral bei der Entwicklung mathematischen Denkens

(Carraher & Schliemann, 2007; Clemens & Sarama, 2007; NCTM, 2000)

Statische Musterfolgen

Theorie

(Akinwunmi & Steinweg, 2024; Böttinger & Söbbeke, 2009; Clemens & Sarama, 2007; Mulligan & Mitchelmore, 2018; Lüken, 2012; NCTM, 2000; Papic & Mulligan, 2007; Steinweg, 2013)

KMK (2022)

Forschung zu Musterfolgeaufgaben T

Theorie

Vorgehensweisen

Basierend auf Interviews, Beobachtungen oder Zeichnungen Collins & Laski (2015), Lüken (2018), Lüken & Sauzet

Blickbewegungen

Basierend auf

Baumanns et al. (2022; 2023; 2024), Pitta-Pantazi et al. (2024)

(2021), Papic et al. (2011)

- Wiederholen des letzten Elements
- Identifizieren der Grundeinheit
- Verifizieren mit dem Anfang des Musters
- "Aufsagen" des Musters

4 Jahre

~47 % korrekt

(Rittle-Johnson et al., 2015)

5 Jahre

~31% korrekt

(Clarke et al., 2006)

6 Jahre

~67 % korrekt

(Lüken & Sauzet, 2021)

Jnzureichende Forschungslage

... vor allem im Hinblick auf Kinder mit BSM

Forschung zu Kindern unterschiedlicher Leistungsgruppen in der Arithmetik

Theorie

Hinsichtlich arithmetischer Basiskompetenzen machen leistungsstarke Schüler*innen

nutzen bestimmte Vorgehensweisen mit einer höheren Korrektheit (Torbeyns et al., 2005; Torbeyns et al., 2017)

als leistungsschwache Schüler*innen.

Und bei Musterfolgen?

(Lüken und Sauzet, 2021)

Forschungsziele

N = 22

N = 224

N = 42

Identifikation von Vorgehensweisen

Unterschiede zwischen Kindern mit und ohne BSM Evaluations studie eines Förderkonzepts

Methoden

BSM: Risiko für die Entwicklung **B**esonderer **S**chwierigkeiten beim **M**athematiklernen

Forschungsfragen

Methoden

Unterscheiden sich Kinder mit und ohne BSM beim Lösen von Musterfolgeaufgaben hinsichtlich ihrer

- Fehlerraten,
- Vorgehensweisen und
- Fehlerraten bei der Verwendung bestimmter Vorgehensweisen?

BSM: Risiko für die Entwicklung Besonderer Schwierigkeiten beim Mathematiklernen

Datenerhebung

Methoden

 224 Erstklässler*innen aus Zypern und Deutschland

(Alter: M = 7.2 Jahre; SD = 0.4 Jahre)

 Standardisierter Test (ZAREKI-K)

Kinder mit BSM 187 Kinder ohne BSM

BSM: Risiko für die Entwicklung **B**esonderer **S**chwierigkeiten beim **M**athematiklernen

Musterfolgeaufgaben

Methoden

AB

ABC

AABB

AAB

AABC

ABAC

Zahlenmuster

Farbmuster

4 1 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
1 5 3 1 5 3 1 5 3 1	
3 3 2 2 3 3 2 2 3 3 2 2 3	
77177177	
1 1 7 5 1 1 7 5 1 3	
9691969194	

Datenanalyse

BSM: Risiko für die Entwicklung Besonderer Schwierigkeiten beim Mathematiklernen

Unterscheiden sich Kinder mit und ohne BSM beim Lösen von Musterfolgeaufgaben hinsichtlich ihrer

Methoden

Fehlerraten?

Mann-Whitney-U-Test

Kinder

mit

BSM

Kinder

ohne

BSM

Vorgehensweisen?

c. Fehlerraten bei der Verwendung bestimmter Vorgehensweisen?

- Kinder mit BSM und

Für alle Kinder,

Datenanalyse

Identifikation von Vorgehensweisen

Baumanns et al. (2022; 2024)

Fehlerraten

Signifikanter Unterschied mit mittlerem Effekt

(U = 2232, p < 0.001, d = 0.687; 95%-C/[0.415; 0.959])

Kinder mit BSM machen signifikant mehr Fehler als Kinder ohne BSM.

M = 41,22 % (SD = 32,81 %)

M = 21,17 % (SD = 25,01 %)

BSM: Risiko für die Entwicklung Besonderer Schwierigkeiten beim Mathematiklernen

Vorgehensweisen

Chi-Quadrat-Test: $\chi^2(2, N = 2686) = 14.33, p < .001, V = 0.07$

Kinder mit BSM nutzen häufiger flüchtige und seltener validierende Vorgehensweisen als Kinder ohne BSM.

- Betrachten einer Grundeinheit des Musters
- Betrachten und validieren einer Grundeinheit
- Betrachten jedes Elements

Ergebnisse

BSM: Risiko für die Entwicklung Besonderer Schwierigkeiten beim Mathematiklernen

Fehlerraten \(\to\) Vorgehensweisen

Ergebnisse

 $\chi^2(2, N = 492) = 49,7, p < 0,001, \epsilon^2 = 0,10$ Alle Kinder *** 1.00 -0.75 --ehlerrate 0.50 000 0.25 0.00 3 Vorgehensweisen

 $\chi^{2}(2, N = 82) = 5.14, p = 0.076$ $\chi^{2}(2, N = 410) = 40.6, p < 0.001, \epsilon^{2} = 0.09$

- Betrachten einer Grundeinheit des Musters
- Betrachten und validieren einer Grundeinheit
- Betrachten jedes Elements

Bei Kindern mit **BSM** führen sorgsamere Vorgehensweisen nicht zur weniger Fehlern! **BSM**: Risiko für die Entwicklung Besonderer Schwierigkeiten beim Mathematiklernen

- Ergebnisse sind konsistent mit Ergebnissen aus dem Bereich der
- Arithmetik im Hinblick auf Fehlerraten (Ashkenazi et al., 2013; Geary et al., 2004; Zhang et al., 2014),
 - Vorgehensweisen (Geary et al., 2004; Schindler et al., 2019; 2020; Simon & Schindler, 2022; van't Noordende et al., 2016)
 - und Fehlerraten bei Vorgehensweisen (Torbeyns et al., 2005; 2017)

- Zudem ergänzen wir bestehende Forschung zu Vorgehensweisen bei Musterfolgeaufgaben mit dem besonderen Blick auf Kinder mit und ohne
 - **BSM** (Clarke et al., 2006; Lüken & Sauzet, 2021; Rittle-Johnson et al., 2015)

Ausblick

Evaluationsforschung

(N = 32)

Projektleitung: Dr. Lukas Baumanns Gefördert durch die Young Academy der TU Dortmund

Diagnostik II

nach 3 Monaten

Ausblick

Wunschbrunnen

- Die Fehlerraten der Experimentalgruppe sinken signifikant.
- Die Vorgehensweisen der Experimentalgruppe verändern sich signifikant.

Die Experimentalgruppe zeigt signifikante Unterschiede in den Fehlerraten bei der Verwendung unterschiedlicher Vorgehensweisen.

gulärer Unterricht

Motivation

Besondere Schwierigkeiten beim Mathematiklernen in der Primarstufe

(Geary, 2013; Moser Opitz, 2013; Sasanguie et al., 2012)

KI-basierte adaptive Lernunterstützung zur Diagnostik und Förderung der mathematischen Basiskompetenzen im inklusiven Kontext

Verständnis natürlicher Zahlen

Kardinal

Ordinal

Verständnis des dezimalen Stellenwertsystems

Mehrsystemblöcke

Projektleitung: Prof. Dr. Maike Schindler; Kooperationspartner: Prof. Dr. Achim J. Lilienthal

Verständnis der Rechenoperationen

Addition & Subtraktion

Multiplikation

Division

(Gaidoschik et al., 2021; Rottmann & Schipper 2002)

Datenerhebung

Methoden

 122 Fünftklässler*innen einer inklusiven Gesamtschule

(Alter: M = 10;7 Jahre; SD = 0;6 Jahre)

Standardisierter Test

(HRT & BASIS-MATH)

52 Kinder mit BSM

Kinder ohne BSM

BSM: Besonderer Schwierigkeiten beim Mathematiklernen

... beim Lösen von Multiplikationsaufgaben am Hunderterfeld

Ergebnisse

Betrachten der Spalten-/ Zeilen Punkt für Punkt

Zählen jedes einzelnen Punktes

Vorgehensweisen

Kinder mit BSM Kinder ohne BSM

Besonderer Schwierigkeiten beim Mathematiklernen

Signifikanter Unterschied mit mittlerem Effekt

Chi-Quadrat-Test: X^2 (2, N = 357) = 32,50, p < .001, V = 0.30

Haben die Kinder in Gruppen gedacht ("Sieben Vierer") oder das Ergebnis aus dem Gedächtnis abgerufen? (Lamon, 1994; Baiker & Götze, 2020)

Zählen jedes p < 0,05p < 0,01p < 0,001 einzelnen Punktes

Bonferroni-Adjustierung

32.5 %

Kinder mit BSM zeigen mangelndes Verständnis der räumlich-simultanen Multiplikation

Ergebnisse

Fehlerraten & Bearbeitungszeiten 17

Kinder mit BSM Kinder ohne BSM

Besonderer Schwierigkeiten beim Mathematiklernen

Signifikanter Unterschied mit kleinem Effekt

M = 23 % (SD = 25 %) M = 15 % (SD = 24 %)

Signifikanter Unterschied mit großem Effekt

M = 19,20 s (SD = 11,01 s)

M = 12,13 s (SD = 6,17 s)

Diskussion

- nutzen weniger effiziente Vorgehensweisen,
- machen mehr Fehler und
- haben längere Bearbeitungszeiten

bei der Bearbeitung von Multiplikationsaufgaben am Hunderterfeld als Kinder ohne BSM.

Ausblick

Spiegelt vergangene Forschung in der Arithmetik wieder

(Barmby et al., 2009; Bolden et al., 2015; Prediger, 2008; Rotem & Henik, 2020; Schindler et al., 2019; 2020; Zhang et al., 2014)

Vielen Dank für die Aufmerksamkeit!

Folien zum Download