Université Pierre et Marie Curie License LM345 Année 2010-2011 PIMA

Contrôle continu 2

Exercice 1.

Soit X une variable exponentielle de paramètre $\theta > 0$. On pose Y = |X|. Déterminer la loi de Y.

On rappelle que la loi de X possède une densité $\rho_X(x) = \theta e^{-\theta x} \mathbb{1}_{\mathbb{R}^+_*}(x), \quad \forall x \in \mathbb{R}.$

Pour tout x réel la partie entière de x, notée $\lfloor x \rfloor$, est l'unique entier relatif vérifiant $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$.

Exercice 2.

Soit X et Y deux variables aléatoires réelles indépendantes de même loi $\mathcal{N}(0,1)$. Déterminer la loi de la variable aléatoire définie (p.s.) par $\frac{Y}{X}$. Que peut-on dire de $\mathbb{E}\left[\frac{Y}{X}\right]$?

On rappelle que sous ces hypothèses le couple (X,Y) a pour densité $f_{(X,Y)}$,

$$f_{(X,Y)}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad \forall (x,y) \in \mathbb{R}^2.$$

On pourra se servir du changement de variables

$$\begin{array}{ccc}]0,\infty[\times\mathbb{R} & \longrightarrow & ? \\ (x,y) & \mapsto & (u,v) \stackrel{\triangle}{=} (x,\frac{y}{x}). \end{array}$$