

1 CLAIM LISTING

2 1. (Currently Amended) A medical device comprising:
3 a stud configured to project percutaneously outward through a patient's skin
4 layers;
5 said stud defining an outer end and having a longitudinal peripheral surface
6 extending inwardly from said outer end;
7 said peripheral surface having a longitudinal porous layer thereon for promoting
8 soft tissue ingrowth;
9 a shoulder surface oriented substantially perpendicular to said stud peripheral
10 surface and located inwardly from said stud outer end and from said longitudinal porous
layer; and wherein
11 said shoulder surface has a lateral porous layer thereon oriented substantially
12 perpendicular to said longitudinal porous layer for promoting soft tissue ingrowth.
13
14 2. (Original) The medical device of claim 1 wherein at least one of said porous
15 layers is characterized by a pore size within the range of 50 to 200 microns with a porosity of
16 between 60 to 95%.
17
18 3. (Original) The medical device of claim 1 wherein at least one of said porous
19 layers comprises a mesh of fibers.
20
21 4. (Original) The medical device of claim 1 wherein at least one of said porous
22 layers comprises a mass of sintered material.
23
24 5. (Original) The medical device of claim 3 wherein said fibers are of metal
25 material from within a group comprised of titanium, nitinol, silver, and stainless steel.
26
27 6. (Original) The medical device of claim 3 wherein said fibers are of polymeric
28 material.

1 7. (Original) The medical device of claim 4 wherein said mass is formed of metal
2 material from within a group comprised of titanium, nitinol, silver, and stainless steel.

3 8. (Original) The medical device of claim 4 wherein said mass is formed of
4 polymeric material.

5 9. (Original) The medical device of claim 1 wherein said stud carries means for
6 promoting healing.

7 10. (Withdrawn) The medical device of claim 1 wherein said stud carries a sound
8 generator and is configured to percutaneously project into a patient's ear canal.

9 11. (Withdrawn) The medical device of claim 1 wherein said stud comprises a
10 portion of an implanted catheter providing access to an interior body site.

11 12. (Withdrawn) The medical device of claim 1 wherein said stud includes a sensor
12 coupled to an interior body site.

13 13. (Original) The medical device of claim 1 further including a transitional layer
14 mounted on said stud between said stud outer end and said longitudinal layer.

15 14. (Original) The medical device of claim 1 further including a cap configured for
16 mounting on said stud outer end.

17 15. (Original) The medical device of claim 1 wherein said porous layers are formed
18 of biocompatible material.

19 //

20 //

21 //

22 //

23 //

1 16. (Currently Amended) A method of configuring an implantable medical device
2 with a portion adapted to project percutaneously comprising the steps of:

3 providing a longitudinally projecting stud on said device having an outer end
4 and a peripheral surface extending longitudinally inward from said outer end;

5 providing a laterally projecting shoulder surface on said device located inwardly
6 from and oriented substantially perpendicular to said stud peripheral surface; and

7 forming a lateral porous layer on said stud peripheral surface and said shoulder
8 surface and a longitudinal porous layer on said peripheral surface for conducive to promoting
tissue ingrowth and for establishing an infection resistant barrier.

9
10 17. (Original) The method of claim 16 wherein said step of forming a porous layer
11 comprises forming the layer with a pore size within a range of 50 to 200 microns with a
12 porosity of between 60 to 95%.

13
14 18. (Original) The method of claim 16 wherein said step of forming a porous layer
comprises forming at least a portion of said layer with a fiber mesh.

15
16 19. (Original) The method of claim 16 wherein said step of forming a porous layer
17 comprises forming at least a portion of said layer with a mass of sintered material.

18
19 20. (Original) The method of claim 16 wherein said porous layer is formed at least
20 in part of metal material from within a group comprised of titanium, nitinol, silver, and
stainless steel.

22
23 21. (Original) The method of claim 16 wherein said porous layer is formed at least
in part of polymeric material.

24 //

25 //

26 //

27 //

28 //