1 线性模型

数据小鱼Rexa

CSDN: https://blog.csdn.net/qq_38395376?spm=1011.2124.3001.5343

Blibli: https://space.bilibili.com/283181288

Github: https://github.com/Rexa-Yu

1.1 简单的线性模型

In [221]:

```
import pandas as pd
import seaborn as sns
tips=pd.read_csv("E:\jupyter notebook storage\Practice in Pandas\seaborn-data-master
tips.head()
```

Out[221]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

In [222]:

```
# 问题研究: 研究total_bill 对tip的影响
from sklearn import linear_model
lr=linear_model.LinearRegression()
print(type(tips["total_bill"]))
```

<class 'pandas.core.series.Series'>

```
In [223]:
```

```
tips["total bill"]
Out[223]:
0
       16.99
       10.34
1
2
       21.01
       23.68
3
       24.59
       . . .
239
       29.03
240
       27.18
       22.67
241
242
       17.82
       18.78
243
Name: total bill, Length: 244, dtype: float64
In [263]:
# 由于sklearn的模型传入的数据需要numpy类型,所以我们需要转换类型
tips["total bill"].values.reshape(-1,1)
Out[263]:
array([[16.99],
       [10.34],
       [21.01],
       [23.68],
       [24.59],
       [25.29],
       [ 8.77],
       [26.88],
       [15.04],
       [14.78],
       [10.27],
       [35.26],
       [15.42],
       [18.43],
       [14.83],
       [21.58],
       [10.33],
       r16.291.
In [225]:
# 拟合
predicted=lr.fit(X=tips["total_bill"].values.reshape(-1,1),y=tips["tip"].values.resh
In [226]:
# 获取系数
predicted.coef
Out[226]:
array([[0.10502452]])
```

```
In [227]:

# 获取截距
predicted.intercept_

Out[227]:
array([0.92026961])
```

1.2 多元线性回归

```
In [228]:

# 导入多个变量无需重置x, 因此不用reshape
# Series可以重置为数组, 可以使用xxxxx.values.reshape(-1,1)
predicted=lr.fit(X=tips[["total_bill","size"]],y=tips["tip"].values.reshape(-1,1))

In [229]:
predicted.coef_
Out[229]:
array([[0.09271334, 0.19259779]])

In [230]:
predicted.intercept_
Out[230]:
array([0.66894474])
```

1.3 使用get_dummies将分类变量换成虚拟变量

In [231]:

tips

Out[231]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

In [232]:

tips_dummy=pd.get_dummies(tips[["total_bill","size","sex","smoker","day","time"]],dr
tips_dummy

Out[232]:

	total_bill	size	sex_Male	smoker_Yes	day_Sat	day_Sun	day_Thur	time_Lunch
0	16.99	2	0	0	0	1	0	0
1	10.34	3	1	0	0	1	0	0
2	21.01	3	1	0	0	1	0	0
3	23.68	2	1	0	0	1	0	0
4	24.59	4	0	0	0	1	0	0
239	29.03	3	1	0	1	0	0	0
240	27.18	2	0	1	1	0	0	0
241	22.67	2	1	1	1	0	0	0
242	17.82	2	1	0	1	0	0	0
243	18.78	2	0	0	0	0	1	0

244 rows × 8 columns

In [233]:

```
# 将虚拟变量带入模型
predicted=lr.fit(X=tips_dummy,y=tips["tip"].values.reshape(-1,1))
```

```
In [234]:
```

```
predicted.coef_
```

Out[234]:

In [235]:

```
predicted.intercept_
```

Out[235]:

array([0.80381728])

1.4 广义的线性模型(逻辑回归)

1.5 逻辑回归

In [236]:

```
# 当因变量是2值类的时候,可以使用逻辑回归
import pandas as pd
acs=pd.read_csv("E:\jupyter notebook storage\Practice in Pandas\data/acs_ny.csv")
acs.head()
```

Out[236]:

	Acres	FamilyIncome	FamilyType	NumBedrooms	NumChildren	NumPeople	NumRooms	Nur
0	1-10	150	Married	4	1	3	9	de
1	1-10	180	Female Head	3	2	4	6	de
2	1-10	280	Female Head	4	0	2	8	de
3	1-10	330	Female Head	2	1	2	4	de
4	1-10	330	Male Head	3	1	2	5	at

In [237]:

```
# 创造二值变量
acs["ge150k"]=pd.cut(acs["FamilyIncome"],[0,15000,acs["FamilyIncome"].max()],labels=
# cut函数切割,第一个参数是所要切的数据集,第二个是按照什么区间切,例如: 0-15000, 15000-最大, labels=
acs["ge150k"]
```

Out[237]:

```
0
          0
          0
1
2
          0
3
          0
          0
22740
          1
22741
          1
22742
          1
22743
          1
22744
Name: ge150k, Length: 22745, dtype: category
Categories (2, int64): [0 < 1]
```

In [238]:

```
acs["ge150k_i"]=acs["ge150k"].astype(int)
```

In [239]:

acs

Out[239]:

	Acres	FamilyIncome	FamilyType	NumBedrooms	NumChildren	NumPeople	NumRooms	NumUnits	Nun
0	1-10	150	Married	4	1	3	9	Single detached	
1	1-10	180	Female Head	3	2	4	6	Single detached	
2	1-10	280	Female Head	4	0	2	8	Single detached	
3	1-10	330	Female Head	2	1	2	4	Single detached	
4	1-10	330	Male Head	3	1	2	5	Single attached	
22740	10+	565000	Married	5	3	5	10	Single detached	

In [240]:

```
# 进行虚拟变量化
```

predictors=pd.get_dummies(acs[["HouseCosts","NumWorkers","OwnRent","NumBedrooms","Fa
predictors

Out[240]:

	HouseCosts	NumWorkers	NumBedrooms	OwnRent_Outright	OwnRent_Rented	FamilyTy
0	1800	0	4	0	0	
1	850	0	3	0	1	
2	2600	1	4	0	0	
3	1800	0	2	0	1	
4	860	0	3	0	0	
22740	1700	2	5	0	0	
22741	1300	2	4	0	0	
22742	410	3	4	0	0	
22743	1600	3	3	0	0	
22744	6500	2	4	0	0	

22745 rows × 7 columns

In [241]:

```
from sklearn import linear_model
lr=linear_model.LogisticRegression()
result = lr.fit(X=predictors,y=acs["ge150k_i"].values.reshape(-1,1).ravel())
```

E:\anaconda\lib\site-packages\sklearn\linear_model_logistic.py:762: C onvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as show
n in:

https://scikit-learn.org/stable/modules/preprocessing.html (http s://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic
-regression (https://scikit-learn.org/stable/modules/linear_model.html
#logistic-regression)

n_iter_i = _check_optimize_result(

In [242]:

```
result.coef_
```

Out[242]:

```
array([[ 3.26317321e-04, 1.41682531e+00, 1.16007943e-01, 2.38272067e-01, -1.53203820e+00, 3.78355122e-01, 1.34553573e+00]])
```

In [243]:

```
result.intercept_
```

Out[243]:

array([0.41135342])

2 聚类

2.1 Kmeans

In [244]:

```
import pandas as pd
wine=pd.read_csv("E:\jupyter notebook storage\Practice in Pandas\data/wine.csv")
wine.head()
```

Out[244]:

	Cultivar	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Pro
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	

In [245]:

```
# 从表中看Cultival属性过于密集,即需要删除
wine=wine.drop("Cultivar",axis=1)
wine.head()
```

Out[245]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyan
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1

In [246]:

```
from sklearn.cluster import KMeans
kmeans=KMeans(n_clusters=3,random_state=42).fit(wine)
print(kmeans)
```

KMeans(n_clusters=3, random_state=42)

In [247]:

```
import numpy as np
print(np.unique(kmeans.labels_,return_counts=True))
```

(array([0, 1, 2]), array([62, 47, 69], dtype=int64))

In [248]:

聚类制造标签

kmeans_3=pd.DataFrame(kmeans.labels_,columns=["cluster"])
print(kmeans_3)

cluster
1
1
1
1
0
• • •
0
0
0
0
2

[178 rows x 1 columns]

In [249]:

```
# 使用PCA降维

from sklearn.decomposition import PCA

# n_components = 主成分个数
pca=PCA(n_components=2).fit(wine)
```

In [250]:

```
# 数据迁移
pca_trans=pca.transform(wine)
# 给投影命名
pca_trans_df=pd.DataFrame(pca_trans,columns=["pca1","pca2"])
# 连接数据
kmeans_3=pd.concat([kmeans_3,pca_trans_df],axis=1)
print(kmeans_3.head())
```

	cluster	pca1	pca2
0	1	318.562979	21.492131
1	1	303.097420	-5.364718
2	1	438.061133	-6.537309
3	1	733.240139	0.192729
4	0	-11.571428	18.489995

In [251]:

```
# 作图
import seaborn as sns
import matplotlib.pyplot as plt
fig=sns.lmplot(x="pcal",y="pca2",data=kmeans_3,hue="cluster",fit_reg=False)
plt.show()
```


In [252]:

```
# 加入cultivar属性
wine_all=pd.read_csv("E:\jupyter notebook storage\Practice in Pandas\data/wine.csv")
wine.head()
```

Out[252]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyan
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1

In [253]:

```
pca_all=PCA(n_components=2).fit(wine_all)
pca_all_trans=pca_all.transform(wine_all)
pca_all_trans_df=pd.DataFrame(pca_all_trans,columns=["pca_all_1","pca_all_2"])
print(pca_all_trans)
kmeans_3=pd.concat([kmeans_3,pca_all_trans_df,wine_all["Cultivar"]],axis=1)
kmeans_3
```

```
[[ 3.18564055e+02 2.14907729e+01]
 [ 3.03098514e+02 -5.36608268e+00]
  4.38062063e+02 -6.53798613e+00]
 [ 7.33240711e+02 1.93319951e-01]
 [-1.15699516e+01 1.84872549e+01]
 [ 7.03231800e+02 -3.31723191e-01]
  5.42972384e+02 -1.35191971e+01]
 [ 5.48402656e+02 1.14491475e+01]
 [ 2.98037964e+02 -8.18149185e+00]
  2.98050654e+02 -7.10283985e+00]
  7.63080247e+02 -8.33356923e+00]
 [ 5.32944043e+02 -1.42878810e+01]
 [ 5.72835177e+02 -2.10050612e+01]
  4.02926332e+02 -1.61035066e+01]
 [ 8.00053884e+02 -1.21175637e+01]
 [ 5.63246356e+02 2.21467383e+00]
                  1.08044932e+01]
  5.33380465e+02
  3.83318588e+02 8.47646622e+001
 [ 9.33118716e+02 -8.35296527e+00]
```

In [254]:

```
with sns.plotting_context(font_scale=5):
    fig=sns.lmplot(x="pca_all_1",y="pca_all_2",data=kmeans_3,row="cluster",col="Cult
plt.show()
```


In [255]:

```
# 查看交叉表的频率计数
print(pd.crosstab(kmeans_3["cluster"],kmeans_3["Cultivar"],margins=True))
```

```
Cultivar
            1
                 2
                      3
                         All
cluster
           13
                20
                     29
                           62
1
                           47
           46
                1
                     0
2
            0
                50
                     19
                           69
All
           59
                71
                     48
                         178
```

2.2 层次聚类

2.2.1 最长距离法

In [256]:

```
from scipy.cluster import hierarchy
wine=pd.read_csv("E:\jupyter notebook storage\Practice in Pandas\data/wine.csv")
wine=wine.drop("Cultivar",axis=1)
```

In [257]:

```
wine_complete=hierarchy.complete(wine)
fig=plt.figure()
dn=hierarchy.dendrogram(wine_complete)
plt.show()
```


2.2.2 最短距离法

In [258]:

```
wine_single=hierarchy.single(wine)
fig=plt.figure()
dn=hierarchy.dendrogram(wine_single)
plt.show()
```


2.2.3 平均距离法

In [259]:

```
wine_average=hierarchy.average(wine)
fig=plt.figure()
dn=hierarchy.dendrogram(wine_average)
plt.show()
```


2.2.4 重心法

In [260]:

```
wine_centroid=hierarchy.centroid(wine)
fig=plt.figure()
dn=hierarchy.dendrogram(wine_centroid)
plt.show()
```


2.2.5 手动阈值法

In [261]:

```
wine_complete=hierarchy.complete(wine)
fig=plt.figure()
# 设置默认的matlab阈值
dn=hierarchy.dendrogram(wine_complete,color_threshold=0.7*max(wine_complete[:,2]),ab
plt.show()
```

