Meenakshi D'Souza

IIIT-Bangalore.

Term II 2022-'23

Outline

- Presburger Logic
- 2 Automata-Based Procedure
- 3 Decision Procedure
- 4 Summary

Presburger Logic

- First-Order logic of $(\mathbb{N}, <, +)$.
- Interpreted over $\mathbb{N} = \{0, 1, 2, 3, ...\}.$
- What you can say:

$$x + 2y < z + 1$$
, $\exists x \varphi$, $\forall x \varphi$, \neg , \land , \lor .

- Examples:

 - Solutions to a system of linear inequalities: $\exists x \exists y (x + 2y < 1 \land x = y).$
 - § "Every number is odd or even": $\forall x \exists y (x = 2y \lor x = 2y + 1)$.
- Studied by Mojzesz Presburger, who gave a sound and complete axiomatization, as well as a decision procedure for validity, circa 1929.

Problems to solve

Questions: Is there an algorithm to decide the following problems:

- Is a given Presburger logic sentence true or not (validity) problem)?
- Given a Presburger logic formula $\varphi(x,y)$, do there exist natural numbers x and y satisfying φ (satisfiability problem)?

Presburger Logic more formally

Terms t are of the form:

$$0 | 1 | x | y | t + t$$

Atomic formulas (f) are of the form:

$$t = t \mid t < t$$

• General formulas (φ) :

$$f \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x \varphi \mid \forall x \varphi.$$

We denote by $L(\varphi)$ the set of all interpretations for variables \mathbb{V} that satisfy φ .

Overall idea

 Represent interpretation of variables as (rows of) binary strings

001111

100011

011100

- Construct automata over such words, that accept all satisfying assignments of the variables, for atomic formulas.
- Use closure properties of automata to inductively construct automata for more complex formulas.

Representing numbers as binary strings

- Represent the number 3 by "011" or "0011" or "00011" etc.
- The automata will read the strings from right to left.
- Will read a tuple of bits: For example for the formula $x \le 2y + 1$ it will read inputs from the alphabet

$$\{0,1\}^2$$

which we represent as:

$$\left(\begin{array}{c}0\\0\end{array}\right),\left(\begin{array}{c}0\\1\end{array}\right),\left(\begin{array}{c}1\\0\end{array}\right),\left(\begin{array}{c}1\\1\end{array}\right).$$

 Thus, automaton constructed for a given formula will accept the reverse of actual interpretations.

Automaton for x + 2y - 3z = 1

Accepting run on:

x (= 0): 000 y (= 2): 010 z (= 1) : 001

x (= 15) : 001111y (= 35): 100011z (= 28): 011100

but none on:

x (= 1): 001 y (= 2): 010 z (= 1): 001

Construction for atomic formulas: Idea

Consider formula x + 2y - 3z = 1.

001111

100011

011100

Keep track of the weighted sum needed in the future to reach the original weighted sum of b.

Construction for atomic formulas (=)

Consider formula $\varphi: a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$, with $a_i \in \mathbb{Z}$: Construct automaton A_{ω} as follows:

- Begin with initial state labelled b.
- In general, if state is c, on reading bit vector $(\theta_1, \dots, \theta_n)$
 - Check if $(a_1\theta_1 + \cdots + a_n\theta_n) \equiv c \pmod{2}$.
 - Move to state labelled $\frac{c-(a_1\theta_1+\cdots+a_n\theta_n)}{2}$.
 - Else, move to "Error" state.
- Make state with label 0 the (only) final state.

Example formula x + 2y - 3z = 1.

Using the algorithm.

Bounded state claim

Claim

The number of states is bounded by 2M + 1 where

$$M = \max(|b|, |a_1| + \cdots + |a_n|).$$

The "remaining" weighted sum is always in the interval [-M, M]. Observe that the remaining weighted sum is an order less (the place value of bits goes down by a factor of 2).

Weighted Sum

- Fix an atomic formula φ : $a_1x_1 + \cdots + a_nx_n = b$
- Define weighted sum of a string $w = d_k \cdots d_0 \in (\{0,1\}^n)^*$:

$$wsum(w) = a_1(k_1) + \cdots + a_n(k_n),$$

where k_1, \ldots, k_n are the numbers represented by w.

• Thus, if $w \neq \epsilon$ with |w| = k + 1, then

wsum(w) =
$$a_1(2^k d_k(1) + \dots + 2^0 d_0(1)) + \dots + a_n(2^k d_k(n) + \dots + 2^0 d_0(n))$$

If $w = \epsilon$, then wsum(w) is defined to be 0.

Claim

If $w = v \cdot u$ then $wsum(w) = 2^{|u|} \cdot wsum(v) + wsum(u)$.

Claim

After reading $u \in (\{0,1\}^k)^*$ the automaton \mathcal{A}_{φ} will be in state

$$\begin{cases} c \text{ such that } c \cdot 2^{|u|} + wsum(u) = b & \text{if } wsum(u) \equiv b \mod 2^{|u|} \\ Error & \text{otherwise} \end{cases}$$

Proof: By induction on |u|.

- Base case: $u = \epsilon$
- Induction step: $u = d \cdot w$

$$a_1x_1+a_2x_2+\cdots+a_nx_n\leq b.$$

- One approach:
 - Begin with initial state label b
 - From state c on input $(\theta_1, \ldots, \theta_n)$ go to state

$$\lfloor \frac{c - (a_1\theta_1 + \cdots + a_n\theta_n)}{2} \rfloor$$

- and make all states with labels $c \ge 0$, final.
- State labels are still in the range [-M, M].
- Note that remaining weighted sum is an integer.
- Another approach: Replace by $\exists z(a_1x_1 + \cdots + a_nx_n + z = b)$.

Construction for general formulas

- We use models in $(\{a\} \times \{0,1\}^n)^+$ $(0 \le n)$. Thus models are non-empty words of tuples of the form $(a,0,1,\ldots,0)$. All operations (including complementation) is wrt this universe of models.
- For a given formula φ , we define a relation R_{φ} that relates valuations for variables (say \mathbb{V}) with models w of the form above.
- Let A_{φ} denote the alphabet $\{a\} \times \{0,1\}^{|FV(\varphi)|}$.
- Then $(\mathbb{V}, w) \in R_{\varphi}$ iff $w \in A_{\varphi}^+$ and for each $x \in FV(\varphi)$, $\mathbb{V}(x) = (w(x))_2$.
- We use " $(w(x))_2$ " to denote the value of the binary string corresponding to the row for x in w.
- Note that R_{φ} is a many-to-many relation.

Construction for general formulas

Claim

For any Presburger logic formula φ we can construct an automaton \mathcal{A}_{φ} that accepts precisely the set $R_{\varphi}(L(\varphi))$.

We construct \mathcal{A}_{φ} inductively:

- For atomic formulas, construct as described earlier.
- For $\psi_1 \vee \psi_2$, we add rows for new variables (for example x in $FV(\psi_2) FV(\psi_1)$) in the automata \mathcal{A}_{ψ_1} and \mathcal{A}_{ψ_2} , and then "union" them.
- For $\neg \psi$, we construct an automaton for $A_{\psi}^+ L(A_{\psi})$.
- For $\exists x \psi$, we do the following:
 - Project out the row for x in \mathcal{A}_{φ}
 - If no free vars in φ , then take acceptance-closure.
 - Else (if there are free vars in φ), take zero-closure.

Presburger Logic

Illustrating zero-closure: $\exists y(x+y>2)$

Presburger Logic

Deciding the logical questions

Given a Presburger logic formula φ we contruct the automaton \mathcal{A}_{φ} as described, which accepts all the satisfying assignments that make φ true.

- If φ is a sentence (no free variables), then \mathcal{A}_{φ} runs on the single-letter alphabet $\{a\}$. Then φ is valid iff $L(\mathcal{A}_{\varphi})=a^+$. This can be checked algorithmically, by complementing \mathcal{A}_{φ} , intersecting with \mathcal{A}_{a^+} and checking for emptiness.
- If φ has free variables, then φ is satisfiable iff $L(\mathcal{A}_{\varphi})$ accepts a non-empty word. Again this can be algorithmically checked in linear time in size of \mathcal{A}_{φ} .

Summary

- Another application of automata-theory to solve a problem in logic.
- Automata approach gives us a convenient representation of the set of all satisfying assignments for a Presburger formula.
- Automata-based approach can be expensive (tower of exponentials), but more efficient decision procedures are known (triple exponential).