

General Description

The MAX6520 is the lowest-power 1.2V, precision, three-terminal voltage reference offered in a SOT23-3 package. Ideal for 3V battery-powered equipment where power conservation is critical, the MAX6520 is a low-power alternative to existing two-terminal shunt references. Unlike two-terminal references that throw away battery current and require an external series resistor, the MAX6520 has a 70µA maximum supply current (typically only 50µA) that is independent of the input voltage. This feature translates to maximum efficiency at all battery voltages.

The MAX6520 operates from a supply voltage as low as 2.4V, and initial accuracy is ±1% for the SOT23 package. Output voltage temperature coefficient is typically only 25ppm/°C, and is guaranteed to be less than 50ppm/°C in the SOT23 package.

Applications

Battery-Powered Systems

Portable and Hand-Held Equipment

Data-Acquisition Systems

Instrumentation and Process Control

Features

- ♦ 3-Pin SOT23 Package
- ♦ 50ppm/°C max Tempco
- ♦ Supply Current Independent of Input Voltage **Over Temperature**
- ♦ 50µA Supply Current
- ♦ 2.4V to 11V Input Voltage Range
- ♦ ±1% Initial Accuracy

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX6520EUR-T	-40°C to +85°C	3 SOT23-3	EFAA

^{*}Contact factory for availability.

Typical Operating Circuit

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{IN})0.3	V to +12V	Operating Temperature Range	40°C to +85°C
Vout0.3V to (V	IN + 0.3V)	Storage Temperature Range	65°C to +160°C
Output Short-Circuit DurationContinuous to Eith	er Supply	Lead Temperature (soldering, 10s)	+300°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)			
SOT23 (dorato 4m\M/°C abovo 170°C)	320mM		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 2.4V, I_{LOAD} = 0mA, T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage	Vout	MAX6520EUR	T _A = +25°C	1.188	1.200	1.212	V
			$T_A = T_{MIN}$ to T_{MAX}	1.176		1.224	V
Output Voltage Temperature Coefficient	TCV _{OUT}	MAX6520EUR, TA = T _{MIN} to T _{MAX}			25	50	ppm/°C
Output Voltage Noise		en 0.1Hz to 10Hz 10Hz to 10kHz			10		µVр-р
	⊎n				400		
Line Regulation	V _{OUT} /V _{IN}	$V_{IN} = 2.4V$ to 11V, $T_A = T_{MIN}$ to T_{MAX} (Note 1)			2	30	μV/V
Load Regulation	V _{OUT} /I _{OUT}	I _{LOAD} = -50μA to 400μA (Note 1)			0.1	1	μV/μΑ
Ouissant Cumply Current	lo.	T _A = +25°C			50	58	
Quiescent Supply Current IQ		$T_A = T_{MIN}$ to T_{MAX} (Note 1)				70	- μΑ
Change in Supply Current vs. Input Voltage	I _Q /V _{IN}	V _{IN} = 2.4V to 11V			1.5	5	μΑ/V
Chart Circuit Output Current	I _{SC}	V _{OUT} shorted to GND			4.3		mA
Short-Circuit Output Current		V _{OUT} shorted to V _{IN}			400		μΑ

Note 1: Production testing done at $T_A = +25^{\circ}C$, over temperature limits guaranteed by parametric correlation data.

Typical Operating Characteristics

 $(V_{IN} = 3V, I_{LOAD} = 0mA, T_A = +25$ °C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{IN} = 3V, I_{LOAD} = 0mA, T_A = +25^{\circ}C, unless otherwise noted.)$

0.1Hz TO 100Hz NOISE

LOAD-TRANSIENT RESPONSE

A = OUTPUT CURRENT, $50\mu A/div$, $I_{LOAD} = 0\mu A$ TO $-50\mu A$ B = OUTPUT VOLTAGE, 100mV/div

LOAD-TRANSIENT RESPONSE

A = OUTPUT CURRENT, $500\mu A/div$, $I_{LOAD} = 0\mu A$ TO $500\mu A$ B = OUTPUT VOLTAGE, 100mV/div

LINE-TRANSIENT RESPONSE

A = INPUT VOLTAGE, 100mV/div, $V_{IN} = 3V \pm 50mV$ B = 0UTPUT VOLTAGE, 10mV/div

Pin Description

PIN	NAME	FUNCTION
1	VIN	Input Voltage
2	Vout	Reference Output
3	GND	Ground

Figure 1. 3V, Triple, 8-Bit Serial DAC

Applications Information

Input Bypassing

For the best line-transient performance, decouple the input with a $0.1\mu F$ ceramic capacitor as shown in the *Typical Operating Circuit*. Locate the capacitor as close to the device pin as possible. Where transient performance is less important, no capacitor is necessary.

Output Bypass

The MAX6520 performs well without an output decoupling capacitor. If your application requires an output charge reservoir (e.g., to decouple the reference from the input of a DAC), then make sure that the total output capacitive load does not exceed 10nF.

Figure 2. Low-Power ±1.2V Reference

_____Chip Information

TRANSISTOR COUNT: 39

Tape-and-Reel Information

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.