SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Câmpus Jataí Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

10 de junho de 2014

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 05 (cinco) componentes que formarão a média final da disciplina: dois testes, duas provas e exercícios;
- A média final será calculada pela média ponderada das cinco supraditas notas [em que o primeiro teste tem peso 20 (vinte), o segundo teste tem peso 10 (dez), a primeira prova tem peso 35 (trinta e cinco), a segunda prova tem peso 25 (vinte e cinco) e os exercícios têm peso 10 (dez)];
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (4) Implicação Lógica e Argumento, (5) Demonstração e Dedução, e (6) Satisfazibilidade.

Nome:	
Assinatura:	

- 1. (2,0 pt) [ESAF 2012] Conclua o argumento a seguir, marque a alternativa correta e **justifique a sua resposta**. Se Marta é estudante, então Pedro não é professor. Se Pedro não é professor, então Murilo trabalha. Se Murilo trabalha, então hoje não é domingo. Ora, hoje é domingo. Logo,
 - (a) Marta não é estudante e Murilo trabalha.
 - (b) Marta não é estudante e Murilo não trabalha.
 - (c) Marta é estudante ou Murilo trabalha.
 - (d) Marta é estudante e Pedro é professor.
 - (e) Murilo trabalha e Pedro é professor.

Podemos representar cada proposição dada pelas seguintes expressões:

- me: Marta é estudante
- pp: Pedro é professor
- mt: Murilo trabalha
- hd: Hoje é domingo

Temos assim, como suposições dadas pela questão, as seguintes proposições:

- (1) $me \rightarrow \neg pp$
- (2) $\neg pp \to mt$
- (3) $mt \rightarrow \neg hd$
- (4) hd

Podemos tirar das afirmações acima uma série de conclusões:

- (5) $\neg mt$ (MT 3,4)
- (6) pp (MT 2,5)
- (7) $\neg me$ (MT 1,6)

Logo, de (5) e (7), temos que Marta não é estudante e Murilo não trabalha. Resposta correta: letra (b).

2. (1,0 pt) Justifique cada passo na sequência de demonstração de $(q \rightarrow r) \land (s \lor \neg r) \land q \models s$:

(2)
$$s \vee \neg r$$
 Premissa

(3)
$$q$$
 Premissa

(4)
$$r MP 1,3$$

(5)
$$s SD 2,4$$

3. (1,0 pt) Justifique cada passo na sequência de demonstração de $(p \to s) \land (p \to r) \models p \to (s \land r)$:

(1)
$$p \to s$$
 Premissa

(2)
$$p \to r$$
 Premissa

(3)
$$p$$
 AB (nova conc. $s \wedge r$)

(4)
$$s$$
 MP 1,3

(5)
$$r MP 2,3$$

(6)
$$s \wedge r \wedge i \ 4,5$$

4. (6,0 pt) Prove que os argumentos abaixo são válidos através do uso de regras de inferência:

(a)
$$(2,0 \text{ pt})$$
 $(p \to (q \lor r)) \land \neg q \land \neg r \models \neg p$

(1)
$$p \to (q \lor r)$$
 Premissa

(2)
$$\neg q$$
 Premissa

(3)
$$\neg r$$
 Premissa

(4)
$$\neg q \wedge \neg r \wedge i \ 2,3$$

(5)
$$\neg (q \lor r)$$
 DM_{\(\times\)} 4

(6)
$$\neg p$$
 MT 1,5

(b)
$$(2,0 \text{ pt}) (p \to (q \to r)) \land (p \lor \neg s) \land q \models s \to r$$

- (1) $p \to (q \to r)$ Premissa
- (2) $p \vee \neg s$ Premissa
- (3) q Premissa
- (4) s AB (nova conc. r)
- (5) p SD 2,4
- (6) $q \to r$ MP 1,5
- (7) r MP 3,6
- (c) (2,0 pt) $(p \lor (q \to p)) \land q \models p$
 - (1) $p \lor (q \to p)$ Premissa
 - $(2) \hspace{1cm} q \hspace{1cm} {\rm Premissa}$
 - (3) $\neg p$ RA (nova conc. \bot)
 - (4) $q \to p$ SD 1,3
 - (5) p MP 2,4
 - (6) $\perp \qquad \neg e \ 3.5$

Material de Consulta

REGRAS DE INFERÊNCIA

- Silogismo Disjuntivo (SD)
 - (1) $p \vee q$
 - $(2) \neg p$
 - (3) q
- SD(1), (2)
- De Morgan (DM_{\wedge})
 - (1) $\neg p \land \neg q$
 - $(2) \quad \neg (p \lor q)$
- DM_{\wedge} (1)
- De Morgan (DM_{\lor})
 - (1) $\neg p \lor \neg q$
 - (2) $\neg (p \land q)$
- DM_{\vee} (1)

- Modus Ponens (MP)
 - (1) $p \rightarrow q$
 - (2) p
 - (3) q MP(1), (2)
 - Modus Tollens (MT)
 - (1) $p \rightarrow q$
 - $(2) \neg q$
 - $(3) \quad \neg p \qquad MT \ (1), (2)$
 - Contradição $(\neg e)$
 - (1) p
 - $(2) \neg p$
 - $(3) \quad \perp \qquad \neg e \ (1), (2)$
- ullet Introdução da Conjunção $(\wedge i)$
 - (1) p
 - (2) q
 - (3) $p \wedge q$
- $\wedge i \ (1), (2)$