Three photon production at the LHC: Amplitudes and Phenomenology

Milan - Bicocca seminar

Rene Poncelet

in collaboration with H. Chawdhry, M. Czakon and A. Mitov.

19th Feburary 2020

Cavendish Laboratory

Outline

- Introduction
- Phenomenology
- Massless 5-point amplitudes at two-loop

Precision at the LHC

NNLO QCD

Tremendous progress in NNLO QCD calculation in the past decade

State-of-the-art:

- All (Standard Model) $2 \rightarrow 2$ processes calculated
- Phenomenology: SM precision measurements and parameter estimation,
 PDF determination, . . .
- → Valuable input for the LHC physics program!
 - ullet 2 ightarrow 3 is the natural step beyond. Many efforts on-going

Not quite comparable to the 'NLO revolution' yet, lack of automated:

- 1. Real radiation contributions \rightarrow subtraction schemes
- 2. Two-loop matrix elements

л

Handling real radiation contribution in NNLO calculations cancellation of infra-red divergences

increasing number of available NNLO calculations with a variety of schemes

- qT-slicing [Catani, Grazzini, '07], [Ferrera, Grazzini, Tramontano, '11], [Catani, Cieri, DeFlorian, Ferrera, Grazzini, '12], [Gehrmann, Grazzini, Kallweit, Maierhofer, Manteuffel, Rathlev, Torre, '14-15']. [Bonciani, Catani, Grazzini, Sargsyan, Torre, '14-'15], [Grazzini "MATRIX" '17-'19]
- N-jettiness slicing [Gaunt, Stahlhofen, Tackmann, Walsh, '15], [Boughezal, Focke, Giele, Liu, Petriello, '15-'16], [Bougezal, Campell, Ellis, Focke, Giele, Liu, Petriello, '15], [Campell, Ellis, Williams, '16]
- Antenna subtraction [Gehrmann, GehrmannDeRidder, Glover, Heinrich, '05-'08], [Weinzierl, '08, '09], [Currie, Gehrmann, GehrmannDeRidder, Glover, Pires, '13-'17], [Bernreuther, Bogner, Dekkers, '11, '14], [Abelof, (Dekkers), GehrmannDeRidder, '11-'15], [Abelof, GehrmannDeRidder, Maierhofer, Pozzorini, '14], [Chen, Gehrmann, Glover, Jaquier, '15]
- Colorful subtraction [DelDuca,Somogyi,Troscanyi,'05-'13], [DelDuca,Duhr,Somogyi,Tramontano,Troscanyi,'15]
- Sector-improved residue subtraction (STRIPPER) [Czakon, '10, '11], [Czakon, Fiedler, Mitov, '13, '15], [Czakon, Heymes, '14] [Czakon, Fiedler, Heymes, Mitov, '16, '17], [Bughezal, Caola, Melnikov, Petriello, Schulze, '13, '14], [Bughezal, Melnikov, Petriello, '11], [Caola, Czernecki, Liang, Melnikov, Szafron, '14], [Bruchseifer, Caola, Melnikov, '13-'14], [Caola, Melnikov, Röntsch, '17-'19]
- Projection-to-Born [Cacciari et al '15], [Dreyer, Karlberg '18], Geometric [Herzog '18], Unsubtraction [Aguilera-Verdugo et al '19], . . .

Introduction: Sector-improved Residue Subtraction

Subtraction beyond 2 \rightarrow 2 with the $\texttt{Stripper}\ c++$ framework

- Jet-production at NNLO QCD [Czakon,van Hameren,Mitov,Poncelet'19]: full set of subtraction terms in action
- Fully automated generation of subtraction terms
- Straight-forward user interface:
 - Generation of required contributions
 - ullet Combination of equivalent contributions o minimize computational setup
 - Automated interfaces to OpenLoops2 [Buccioni et al. '19] and Recola2 [Denner et al. '16-17], including available correlators

The framework is ready for the future

Introduction: Why $pp \rightarrow \gamma \gamma \gamma$?

- Potentially simplest 2 → 3 process:
 - Simple IR-structure
 - Allows for tool development
 - First experience with the two-loop matrix elements
 - Two-loop amplitudes: fewer diagrams and channels than jets
- \rightarrow Proof-of-principle calculation
 - Phenomenologically interesting:
 - LHC measurements show significant deviations from standard NLO predictions
 - Large NNLO/NLO K-factors have been observed in photon pair production [Catani et al 11], [Campbell et al 16]

Introduction: Photon pair production

[Campbell, Ellis, Li, Williams 16]

- Giant K-factor $\sigma^{\rm NNLO}/\sigma^{\rm NLO} \approx 2$
- Significant impact on shape of differential distribution
- Good agreement between NNLO QCD and data (CMS 7 TeV)

Introduction: Three isolated photons

Detailed differential measurements by ATLAS [1712.07291 ATLAS]

NNLO QCD corrections to three-photon production at the LHC

[Chawdhry, Czakon, Mitov, Poncelet '19]

Setup ATLAS [1712.07291]:

- E_T (= p_T) cut for the three photons: $E_{T,\gamma_1} > 27$ GeV, $E_{T,\gamma_2} > 22$ GeV, $E_{T,\gamma_3} > 15$ GeV
- Rapidity: All photons have $|\eta_{\gamma}| < 2.37$ (+exclusion of 1.37 $< |\eta_{\gamma}| < 1.56$)
- ullet Separation of photons: The angular distance between each two photons ΔR is required to be > 0.45
- Invariant mass: $m_{\gamma\gamma\gamma} > 50 \text{ GeV}$
- Photon isolation: Using the Frixione [Frixione '98] isolation as indicated for the MadGraph@NLO setup.
 This means R₀ = 0.4, E_T^{so} > 10 GeV and χ(R) = (1 cos(ΔR₀))/(1 cos(ΔR₀)).
- PDF set: NNPDF31_nnlo_as_0118
- Scales:

$$\begin{split} \mu_0 &= m_{T,\gamma\gamma\gamma} = \sqrt{\rho_\gamma^2 + (\rho_{\gamma,T})^2} \quad \text{with} \quad \rho_\gamma = \sum_{i=1}^3 \rho_{\gamma_i} \ , \\ \mu_0 &= H_T/4 = \frac{1}{4} \sum \rho_{\gamma_i,T} \end{split}$$

3 Photons @ LHC: Fiducial cross section

- Huge K-factors: $\sigma^{\rm NLO}/\sigma^{\rm LO}\approx 2-3$ $\sigma^{\rm NNLO}/\sigma^{\rm NLO}\approx 1.5$
- Significant improvement in description of data
- Scale dependence dominated by gg/qq' channels

- ullet Not only normalization o significant effects on the shape
- Remarkable agreement of measurement with NNLO QCD

3 Photons @ LHC: Perturbative convergence

$$pp \rightarrow \gamma \gamma$$

- ullet Similar large K-factors in $\gamma\gamma$ [Catani, Cieri, de Florian, Ferrera, Grazzini 11] [Campbell, Ellis , Li, Williams 16]
- $gg \rightarrow \gamma \gamma$ 1-loop box $\sim +10\%$ cross section +sizeable NLO corrections $(\Delta \sigma^{N3LO}_{gg,fr})$

$pp \rightarrow \gamma \gamma \gamma$

- gg channel contributes through $gg \to \gamma \gamma \gamma q \bar{q}$ @ NNLO QCD
- • $gg \to \gamma \gamma \gamma$ 1-loop box does vanish (Furry's Theorem)

3 Photons @ LHC: Perturbative convergence

- ullet $gg
 ightarrow \gamma \gamma \gamma$ 1-loop box vanishes (Furry's Theorem)
- ullet But $gg o \gamma\gamma\gamma g$ does not, and is separately finite N³LO contribution
- \rightarrow negligible!

3 Photons @ LHC: Phenomenology-Summary

$$pp \rightarrow \gamma \gamma \gamma$$

- NNLO QCD corrections are vital for comparisons of data with SM
 - Improved normalization
 - Very good agreement of differential cross section between NNLO QCD and ATLAS data
- Huge K-factors $\sigma^{\rm NNLO}/\sigma^{\rm NLO} \approx 1.5$
 - ightarrow Very similar to Photon pair production
 - ightarrow but without gg-box contribution
- Scale dependence driven by 'LO' contributions
 - ightarrow $H_T/4$ dynamical scale choice (similar to the scale used in top-pair production)

3 Photons @ LHC: Phenomenology-Summary

$$pp \rightarrow \gamma \gamma \gamma$$

- NNLO QCD corrections are vital for comparisons of data with SM
 - Improved normalization
 - Very good agreement of differential cross section between NNLO QCD and ATLAS data
- Huge K-factors $\sigma^{\rm NNLO}/\sigma^{\rm NLO} \approx 1.5$
 - $\rightarrow\,$ Very similar to Photon pair production
 - ightarrow but without gg-box contribution
- Scale dependence driven by 'LO' contributions
 - ightarrow $H_T/4$ dynamical scale choice (similar to the scale used in top-pair production)

What is about the other $2 \rightarrow 3$ processes? Main bottle-neck are the two-loop amplitudes!

Five-point amplitudes in the IBP approach

$2 \rightarrow 3$ Phenomenology @ NNLO QCD

State-of-art:

- → no general algorithm for numerical evaluation (like cut-based one-loop amps)
- ightarrow case-by-case study
 - Massless case:
 - Masters known
 - planar: numerical implementation [Gehrmann et al '18]
 - non-planar: differential equations [Chicherin et al'19]
 - Reductions:
 - planar: known analytically [Chawdhry et al '18]
 - non-planar: work in progress ([Guan, Liu, Ma '19]?)
 - Massless 5-point amplitudes:
 - $pp \rightarrow \gamma \gamma \gamma$ (N_c^3 contribution done)
 - $pp \rightarrow \gamma \gamma j$
 - $pp \rightarrow \gamma jj$
 - pp o jjj (planar, euclidean region only [Abreu,Dormans,Febres Cordero,Ita,Page,Sotnikov '19])

Two-loop matrix elements

The traditional approach to amplitudes

Feynman diagrams

 \downarrow

Tensor reduction \rightarrow scalar integrals

1

IBP reduction of scalar integrals to masters

_

Expression of masters in terms of function basis (Polylogarithms, etc.)

Evaluable (Semi-) Analytic expression of the matrix element

Two-loop matrix elements

The traditional approach to amplitudes

Feynman diagrams

 \downarrow

Tensor reduction \rightarrow scalar integrals

 \downarrow

IBP reduction of scalar integrals to masters

Expression of masters in terms of function basis (Polylogarithms, etc.)

Evaluable (Semi-) Analytic expression of the matrix element

5-point 2-loop: $q\bar{q} \rightarrow \gamma\gamma\gamma$ matrix element

- ullet Diagram generation with DiaGen [Czakon, private code] ightarrow 1200 diagrams
- Color and fermion-loop structure of the matrix element:

$$\begin{split} \bar{\sum} 2 \text{Re} \left\langle \mathcal{M}^{(0)} \middle| \mathcal{M}^{(2)} \right\rangle = & \mathcal{M}^{(\text{lc},1)} C_F^2 C_A + \mathcal{M}^{(\text{lc},2)} C_F C_A^2 + \mathcal{M}^{(\text{f})} C_A C_F \\ &+ \mathcal{M}^{(\text{np})} (N_c - 1/N_c) \end{split}$$

Color decomposition in the leading colour approximation

$$\sum^- 2 \text{Re} \left< \mathcal{M}^{(0)} \middle| \mathcal{M}^{(2)} \right>_{\text{I.-c.}} \approx \textit{N}_c^3 \left(\mathcal{M}^{(\text{lc},1)} + \mathcal{M}^{(\text{lc},2)} \right)$$

• neglecting $\mathcal{M}^{(\mathrm{f})}$ contribution ($\sim n_{\mathrm{f}} N_{\mathrm{c}}^2$), contains non-planar contribution

5-point 2-loop: Scalar integrals

- All $k_1 \cdot k_2$ and $k_i \cdot p_j$ expressed through inverse propagators
- 11-propagator integral:

$$B[\vec{a}] = \begin{cases} k_1^2, k_2^2, (k_1 + p_1)^2, (k_1 + p_1 + p_2)^2, \\ (k_2 - p_3)^2, (k_2 - k_1 - p_3)^2, \\ (k_2 - k_1 - p_1 - p_2 + p_4)^2, (k_2 + p_4)^2, \\ (k_2 + p_1 + p_2)^2, (k_2 + p_1)^2, (k_1 + p_3)^2 \end{cases}$$

$$C[\vec{a}] = \begin{cases} k_1^2, k_2^2, (k_1 + p_1 + p_2)^2, (k_1 - k_2)^2, \\ (k_2 + p_1)^2, (k_2 + p_1 + p_2)^2, (k_2 - p_3)^2, \\ (k_1 + p_1 + p_2 - p_3)^2, (k_1 + p_1 + p_2 - p_3 - p_4)^2, \\ (k_2 - p_3 - p_4)^2, (k_1 + p_1)^2 \end{cases}$$

$$\Rightarrow \mathcal{M}^{(C)} = \sum c_i(\{s_{ij}\}, \epsilon) I(\vec{a_i}) \quad I \text{ either B or C}$$

Two-loop matrix elements

The traditional approach to amplitudes

Feynman diagrams

 \downarrow

Tensor reduction \rightarrow scalar integrals

 \downarrow

IBP reduction of scalar integrals to masters

Expression of masters in terms of function basis (Polylogarithms, etc.)

Evaluable (Semi-) Analytic expression of the matrix element

Massless 5-point 2-loop: IBP identities and reduction

Topologies for massless 5-point amplitudes

$$B_1 = B [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]$$

$$B_2 = B [1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1]$$

$$C_1 = C [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0]$$

$$C_2 = C [1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1]$$

$$C_3 = C [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1]$$

- Reduction of planar topologies up to numerator power -5 available: [Chawdhry,Lim,Mitov '18]
 - Memory and CPU intensive venture
 - \bullet 'divide and conquer': solve IBPs for one master at a time \to easy to parallelize and reduced memory consumption
- Non-planar topologies: work ongoing, but is constraint by available CPU hours, recent developments [Guan, Liu, Ma '19]

Two-loop matrix elements

The traditional approach to amplitudes

Feynman diagrams

 \downarrow

Tensor reduction \rightarrow scalar integrals

 \downarrow

IBP reduction of scalar integrals to masters

Expression of masters in terms of function basis (Polylogarithms, etc.)

Evaluable (Semi-) Analytic expression of the matrix element

5-point 2-loop: Master Integrals

Master integrals expressed through planar 'pentagon-function'-basis
[Gehrmann.Henn.Presti '18]

- DEQ for masters $\vec{l} = \sum_k \epsilon^k \vec{l}^{(k)}$ in ϵ -form: $\mathrm{d}\vec{l}^{(k+1)}(s_{ij}) = \mathrm{d}\tilde{A}(s_{ij})\vec{l}^{(k)}(s_{ij})$
- ullet $ec{I}^{(k)}$ can be expressed through iterated integrals
- Independent functions:

Weight	Functions
1	1
2	1
3	4
4	11

Note: Independent in the sense that $ln(s_{12}) \leftrightarrow ln(s_{23})$

• Different boundary constants for different physical regions

5-point 2-loop: Crossings

Large set of functions (\sim 1800 @ Weight 4, including lower weight products) due to momenta permutations

The difference to an euclidean amplitude (particularly in sub topologies). Example:

5-point 2-loop: The amplitude in terms functions

$$\mathcal{M}^{(\mathcal{C})} = \sum_{k=-4}^0 \sum_l c_l^k(\{s_{ij}\}) f_l^k \epsilon^k$$

- ullet Building amplitude together o computationally intensive
- Large cancellation between in the rational coefficient $\mathcal{O}(1GB) o \mathcal{O}(1MB)$ after simplifying
- Usage of rational reconstruction software FiniteFlow [Peraro '19] to sum up coefficients $c_i^k(\{s_{ij}\})$ (but under usage of the analytical reduction result)
- Cancellation of UV and IR poles checked analytically

5-point 2-loop: Evaluation

- Rational c++ implementation of coefficients with the help of CLN library to avoid loss numerical precision
- Usage of 'pentagon-function' implementation by [Gehrmann, Henn, Presti '18]
- 10 to 50 minutes per phase space point, 30k points evaluated (unweighted Born PS points)
- ullet Coefficients relatively fast (~ 1 min), the functions take most of the time (numerical integration)
- Stability checks by changing integration precision
- Additional checks with interpolation software GPTree [Kasabov '19] to detect numerical instabilities

5-point 2-loop: Beyond $pp \rightarrow \gamma \gamma \gamma |N_c^3|$

- Same technology applicable to the non-planar contributions (as soon as reductions are available, Master representation?)
- The other 5-point amplitudes:
 - $pp \rightarrow \gamma \gamma i$
 - $pp \rightarrow \gamma jj$
 - $pp \rightarrow jjj$

are feasible as well (at least in the leading colour limit)

- Combination with real radiation?
 - ⇒ NNLO QCD within the STRIPPER framework
 - Challenges: more complicated radiation pattern due to final state colored particles, growing number of partonic contributions, stability and convergence?

The Future

- LHC-HL ⇒ more and more statistics which allow for:
 - Unprecedented precision in SM measurements
 - More exclusive selections
 - Rare processes measured qualitatively and quantitatively
- Precision predictions for multi-leg processes become more and more important!

Perturbative QCD is the backbone of theory predictions at the LHC

Precision at the LHC

Conclusions and Outlook

$2 \rightarrow 3$ Phenomenology

- First process: $pp \rightarrow \gamma \gamma \gamma$
- ullet Shows importance of NNLO QCD beyond 2 ightarrow 2
- Will certainly become more and more important with more experimental statistics

Advances for 5-point amplitudes:

- Application of IBP reductions for $pp o \gamma \gamma \gamma$
- Finite remainder constructed and ready for use
- Certainly not the end of the story, many more amplitudes feasible with same techniques (5 partons, 4 partons + photon, 3 partons + 2 photons)

Backup

- ullet Not only normalization o significant effects on the shape
- Remarkable agreement of measurement with NNLO QCD

- ullet Not only normalization o significant effects on the shape
- Remarkable agreement of measurement with NNLO QCD

- ullet Not only normalization o significant effects on the shape
- Remarkable agreement of measurement with NNLO QCD

Stripper: Minimal sector-improved residue subtraction

Refined formulation of the sector-improved residue subtraction

[Czakon '10 '11][Czakon, Heymes '14][Czakon, van Hameren, Mitov, Poncelet '19]

- New phase space parametrization:
 - Starts from Born kinematics → additional radiation accommodated by rescaling and boosts
 - Generates minimal set of subtraction kinematics in each sector
 - Only one (!) double unresolved kinematic (= Born kinematic)
- Minimal set of sectors
- New 4-dimensional formulation:
 - New method to determine necessary counter terms
 - Numerical pole cancellation for each Born phase space point

I $\xi_1 > \xi_2$ $\xi_2 > \xi_3$ $I \qquad \qquad \xi_1 > \xi_2$ $\eta_1 > \eta_2 \qquad \qquad \eta_2 > \eta_1$ $II \qquad \qquad \eta_1 > \eta_2$ $\eta_2 > \eta_1 \qquad \qquad \eta_2 > \eta_2$ $\eta_1 > \frac{1}{2} > \eta_2$ $\eta_2 > \frac{1}{2} > \eta_1$ $\eta_2 > \frac{1}{2} > \eta_2$ $\eta_3 > \frac{1}{2} \qquad \qquad \eta_4 > \frac{1}{2}$ $\eta_4 > \frac{1}{2} \qquad \qquad \eta_5 > \frac{1}{2}$ $\eta_5 > \frac{1}{2} \qquad \qquad \eta_7 > \frac{1}{2}$ $\eta_8 > \frac{1}{2} \qquad \qquad \eta_8 > \frac{1}{2} \qquad \qquad \eta_8 > \frac{1}{2}$

S23

Sector decomposition:

Stripper: Single-inclusive jet cross sections

First complete NNLO QCD calculation for inclusive jet production

[Czakon,van Hameren,Mitov,Poncelet]

Many publications and studies by the NNLOJET collaboration:

[Currie, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Pires '16-19]

- Antenna subtraction formalism
- Leading colour approximation for channels with quarks (expected to be a good approximation)
- Extensive analysis of renormalization scale setting and dependence:
 - Cancellation between different n-jet samples!
 - Distinguish 'jet'- and 'event'-type scales:
 - Inclusive jet observables: $\mu = p_T$ for each jet
- Very good description of LHC data for various observables: inclusive jets, various di-jet observables.

Technically very challenging process.

Contains the full set of NNLO IR singularities!

Stripper: Single-inclusive jet cross sections

- First full NNLO QCD calculation at 13 TeV
- Quite slow convergence: 350k CPU hours → optimization potential!
- Comparison to NNLOJET: sub-leading colour effects within MC errors, thus indeed small
- K-factors public

Stripper: Single-inclusive jet cross sections

- First full NNLO QCD calculation at 13 TeV
- Quite slow convergence:
 350k CPU hours →
 optimization potential!
- Comparison to NNLOJET: sub-leading colour effects within MC errors, thus indeed small
- K-factors public

