Assignment 1: 20 points Date: January 14, 2025

1. [5 points] Consider the set B of all binary sequences given by

$$B = \{b_1b_2b_3b_4 \cdots \mid b_i \in \{0, 1\} \text{ for } i \in \mathbb{N}\}.$$

Show that B is uncountable. Hint: Use Cantor's diagnolization argument.

2. [5 points] Let $A_1, A_2, A_3, A_4, \ldots$ be a sequence of countable sets. Show that $\bigcup_{i=1}^{\infty} A_i$ is countable.

Hint: Recall the proof of the countability of $\mathbb{N} \times \mathbb{N}$. There $\{(i,1),(i,2),(i,3),\ldots\}$ was a countable set of each $i \in \{1,2,3,\ldots\}$.

- 3. [5 points] Consider the equivalence relation R on the interval [0,1] given by $x \sim y$ if x-y is rational. This equivalence relation partitions [0,1] into disjoint equivalence classes. Let $H \subset [0,1]$ be the set consisting of exactly one element from each of the equivalence classes. Show that H is uncountable. Hint: Use the result from the previous problem.
- 4. [5 points] Suppose $\Omega = [0, 1]$, the interval containing all non-negative real numbers less than or equal to 1. Suppose \mathcal{F} is the set of subsets A of Ω such that either A or A^c is finite. Let $P : \mathcal{F} \mapsto [0, 1]$ be defined by P(A) = 0 if A is finite and P(A) = 1 if A^c is finite. Answer the following with **justification**.
 - (a) Is \mathcal{F} a field?
 - (b) Is \mathcal{F} a σ -field?
 - (c) Is P finitely additive?
 - (d) Is P countably additive?