CLAIMS

- 1. A glass for laser processing that is processed through laser beam irradiation,
- wherein the glass for laser processing has a composition that satisfies the following relationships:

 $40 \le M[NFO] \le 70$;

 $5 \le (M[TiO_2]) \le 45$; and

 $5 \le M[NMO] \le 40$,

- where M[NFO], M[TiO₂], and M[NMO] denote the content by percentage of network forming oxides (mol%), that of TiO₂ (mol%), and that of network modifying oxides (mol%), respectively.
- 2. The glass for laser processing according to claim 1, wherein the

 network forming oxides are at least one oxide selected from SiO₂ and B₂O₃,

 the network modifying oxides are at least one oxide selected from alkali metal
 oxides and alkaline earth metal oxides, and the composition further satisfies
 the following relationship:

 $5 \le (M[TiO_2] + M[Al_2O_3]) \le 45$,

- where $M[Al_2O_3]$ denotes the content by percentage of Al_2O_3 (mol%).
 - 3. The glass for laser processing according to claim 2, wherein a value f_m defined by the following formula is 1.35 or lower:

$$f_m = (\sum x_i C_i Z_i / (r_i + r_0)^2) / \sum x_i C_i,$$

- where x_i denotes a molar fraction for which oxides (i) containing cations (i) other than alkali metal ions and alkaline earth metal ions account in the composition; C_i indicates the number of the cations (i) included in composition formulae of the oxides (i); Z_i denotes valences of the cations (i); and r_i and r_o indicate values expressing ion radii of the cations (i) and oxide ions by angstrom, respectively.
 - 4. The glass for laser processing according to claim 2, wherein a value F_m defined by the following formula is $400 \text{ kJ} \cdot \text{mol}^{-1}$ or lower:

$$F_m = \sum x_j C_j E_{dj} / \sum x_j C_j N_j,$$

35 where x_j denotes a molar fraction for which oxides (j) other than alkali metal oxides and alkaline earth metal oxides account in the composition; C_j indicates the number of cations (j) included in composition formulae of the

- oxides (j); E_{dj} denotes dissociation energy of the oxides (j) expressed with a composition ratio of the cations (j) being 1; and N_j indicates the number of oxide ions coordinated to the cations (j) in the oxides (j).
- 5. The glass for laser processing according to claim 4, satisfying a relationship of $(F_m/\alpha) \le 0.13$ when the value F_m and an absorption coefficient α of the glass for laser processing are expressed by the same unit.
- 6. The glass for laser processing according to claim 2, wherein the glass for laser processing is composed essentially of SiO₂, TiO₂, and at least one oxide selected from the alkali metal oxides and alkaline earth metal oxides, and the number of Si-O-Ti bonds per SiO₄ unit is at least 0.4.
- 7. The glass for laser processing according to claim 2, wherein the glass for laser processing is composed essentially of SiO₂, TiO₂, and at least one oxide selected from the alkali metal oxides and alkaline earth metal oxides, and satisfies the following relationships:

$$N_{BO}^{I}/\alpha \le 11 \times 10^6$$
 cm when $M_{Si}N_{NBO}^{I} - 2M_{Ti} > 0$; and $N_{BO}/\alpha \le 11 \times 10^6$ cm when $M_{Si}N_{NBO}^{I} - 2M_{Ti} \le 0$.

- where *M_{Si}* and *M_{Ti}* denote molar fractions of Si and Ti contained in the glass for laser processing, respectively; *N_{BO}^I* and *N_{NBO}^I* indicate the number of bridging oxygen atoms and the number of non-bridging oxygen atoms, respectively, in a glass structure that is free from Ti; α denotes an absorption coefficient (unit: cm⁻¹) of the glass for laser processing; and *N_{BO}* indicates the number of oxygen atoms, per SiO₄ unit, that each still is cross-linking two Si atoms even after introduction of Ti.
 - 8. A glass for laser processing that is processed through laser beam irradiation,
- wherein the glass for laser processing has a composition that satisfies the following conditions:

 $40 \le M[SiO_2] \le 60;$

 $10 \le M[Al_2O_3] \le 20;$

 $10 \le M[TiO_2] \le 20$; and

 $10 \le M[MgO] \le 35$,

35

where M[SiO₂], M[Al₂O₃], M[TiO₂], and M[MgO] denote the content by percentage of SiO₂ (mol%), that of Al₂O₃ (mol%), that of TiO₂ (mol%), and that

PCT/JP2004/000085

of MgO (mol%), respectively.