COL215P: ASSIGNMENT 6

Gunjan Kumar - 2019CS10353

T Abishek - 2019CS10407

Objective:

- Using pre-designed circuit of Assignment 3 as a building block and creation of time reference.
- Design a stopwatch and implement it on BASYS 3 board, using its 7-segment display and push buttons.

Implementation Overview:

- We use the four-digit seven-segment display from Assignmen 3.
- Tenth, sec1, sec2, and min are the four variables. For one tenth of a second, tenth stores the digit. Sec1 holds the value of the second's unit digit. The value of the tenth digit of a second is stored in Sec2, and the value of minutes is stored in min.
- We use a 24 bit counter to measure time. When the counter becomes equal to 10^7 and then set the counter back to 0. Since the clock is 10^8 Hz, thus every 0.1 sec counter gets back to zero.
- The 0.1 second digit grows by one every 0.1 second. When the 0.1 second digit goes from 9 to 10, the unit digit of second increases. When the unit digit of second shifts from 9 to 0, the tens digit of second count increases. When the second count's tens digit changes from 5 to 6, the minute counting digit changes.

Simulation:

Resource utilisation:

Hi	erarchy					
Q	Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	Bonded IOB (106)	BUFGCTRL (32)
		91	60	7	16	2
	└ create_mux_clock (ti	35	17	7	0	C

Resource	Utilisation No.	Utilisation %				
Slice LUTS	91	1				
Slice Registers	60	< 1				
F7 Muxes	7	< 1				
BUFGCTRL	16					
Bonded IOBs	2					
DSP	0					

-Slice Logic Slice LUTs (1%) -LUT as Memory (0%) LUT as Logic (1%) -Register as Latch (<1%) —Register as Flip Flop (<1%)

——Register as Flip Flop (<1%)

——Register as Flip Flop (<1%)

——Register as Flip Flop (<1%) -F8 Muxes (0%) F7 Muxes (<1%) -Memory ♦—Block RAM Tile (0%) -RAMB18 (0%) -RAMB36/FIFO (0%) -DSP □DSPs (0%) -IO and GT Specific -Bonded IPADs (0%) Bonded IOB (15%) -Bonded OPADs (0%) -IBUFDS_GTE2 (0%) -OUT FIFO (0%) -GTPE2_CHANNEL (0%) -IBUFDS (0%) -PHY_CONTROL (0%) -OLOGIC (0%) -ILOGIC (0%) -IDELAYE2/IDELAYE2 FINEDELAY (0% -PHASER_IN/PHASER_IN_PHY (0%) -PHASER REF (0%) -IN FIFO (0%)

FPGA Observation:

