Собственные значения матрицы

QR-алгоритм

Постановка задачи

$$Ax = \lambda x \qquad A_0^0 = \begin{bmatrix} a_{11}^0 & a_{12}^0 \cdots a_{1n}^0 \\ a_{21}^0 & a_{22}^0 \cdots a_{2n}^0 \\ \cdots & \cdots & \cdots \\ a_{n1}^0 & a_{n2}^0 \cdots a_{nn}^0 \end{bmatrix} \qquad (\det A_0^0 \neq 0)$$

$$A=Q\cdot R$$
 Q — ортогональная матрица $Q^{-1}=Q^T$ R — верхняя треугольная матрица

$$A_0^{k+1} = R = \begin{bmatrix} a_{11}^0 & a_{12}^0 & \cdots & a_{1n}^0 \\ 0 & a_{22}^0 & \cdots & a_{2n}^0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn}^0 \end{bmatrix}$$

Алгоритм преобразования Хаусхолдера

Для элементов первого столбца

$$\overline{\mathbf{v}_1} = \left\{ \left(a_{11}^0 + sign(a_{11}^0) \sqrt{\sum_{j=1}^n (a_{j1}^0)^2} \right), a_{21}^0, \cdots, a_{n1}^0 \right\}$$

$$H_1 = E - 2\frac{\overline{\mathbf{v}_1} \cdot \overline{\mathbf{v}_1}^T}{\overline{\mathbf{v}_1}^T \cdot \overline{\mathbf{v}_1}}$$

Ортогональная матрица Н

$$A_1^0 = H_1 \cdot A_0^0$$

Получим нули под диагональю в первом столбце

Для элементов нового столбца

$$\overline{\mathbf{v}_{k}} = \left\{0, \cdots, \left(a_{kk}^{0} + sign(a_{kk}^{0}) \sqrt{\sum_{j=k}^{n} (a_{jk}^{0})^{2}}\right), a_{k+1,k}^{0}, \cdots, a_{nk}^{0}\right\}$$

$$H_{k} = E - 2\frac{\overline{\mathbf{v}_{k}} \cdot \overline{\mathbf{v}_{k}}^{T}}{\overline{\mathbf{v}_{k}}^{T} \cdot \overline{\mathbf{v}_{k}}}$$

$$A_{k+1}^{0} = H_{k} \cdot A_{k}^{0}$$

Перебрав все n столбцов исходной матрицы кроме последнего

Ортогональная матрица Q^0

$$Q^0 = H_1 \cdot H_2 \cdot \dots \cdot H_{n-1}$$

Верхняя треугольная матрица R^0

$$R^0 = A_{n-1}^{0}$$

$$A_0^1 = A_{n-1}^0 \cdot Q^0 = R^0 \cdot Q^0.$$

Новая матрица, у которой сохранились собственные значения

Алгоритм преобразования матрицы

$$A_0^1 = A_{n-1}^0 \cdot Q^0 = R^0 \cdot Q^0$$

$$A_0^{\ m} = A_{n-1}^{\ m-1} \cdot Q^{m-1} \, .$$

Квазитреугольная матрица (блочно-диагональная структура)

$$A_0^{k+1} = \begin{bmatrix} a_{11}^0 - \lambda & a_{12}^0 \cdots a_{1n}^0 \\ 0 & a_{22}^0 - \lambda \cdots & a_{2n}^0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots a_{nn}^0 - \lambda \end{bmatrix}$$

$$\left| \sqrt{\sum_{i=m+1}^{n} (a_{im}^n)^2} \right| < \varepsilon \,,$$

$$\left[\lambda^{(n+1)} - \lambda^{(n)}\right] < \varepsilon.$$

$$\begin{vmatrix} a_{jj}^{(n)} - \lambda^{(n)} & a_{jj+1}^{(n)} \\ a_{j+1j}^{(n)} & a_{j+1,j+1}^{(n)} - \lambda^{(n)} \end{vmatrix} = 0$$

$$(a_{jj}^{(n)} - \lambda^{(n)})(a_{j+1,j+1}^{(n)} - \lambda^{(n)})$$

= $a_{jj+1}^{(n)} \cdot a_{j+1j}^{(n)}$.

Пример

Определить собственные числа квадратной матрицы с заданной точностью arepsilon =

Первая итерация

A0 ⁰				v1	v1*v1 ^T				v.	1 [*] v1				H1			
5	-2	1	3	11,245	126,45	22,49	-33,73	11,245	1	140,45	140,45	140,45	140,45	-0,801	-0,32	0,4804	-0,16
2	-4	3	-1	2	22,49	4	-6	2	1	140,45	140,45	140,45	140,45	-0,32	0,943	0,0854	-0,028
-3	3	3	5	-3	-33,73	-6	9	-3	1	140,45	140,45	140,45	140,45	0,4804	0,0854	0,8718	0,0427
1	2	-5	2	1	11,245	2	-3	1	1	140,45	140,45	140,45	140,45	-0,16	-0,028	0,0427	0,9858
A1 ⁰ =H1*	A0 ⁰			v2	v2*v2 ^T				٧Ž	2 ^T *v2				H2			
-6,2450	4,0032	0,4804	0,0000	0,000	0	0	0	0	5	58,111	58,111	58,111	58,111	1	0	0	0
0,0000	-2,9323	2,9076	-1,5336	-7,052	0	49,735	-9,862	-17,87	5	58,111	58,111	58,111	58,111	0	-0,7117	0,3394	0,6150
0,0000	1,3984	3,1386	5,8004	1,398	0	-9,862	1,9556	3,5434	5	58,111	58,111	58,111	58,111	0	0,3394	0,9327	-0,1220
0,0000	2,5339	-5,0462	1,7332	2,534	0	-17,87	3,5434	6,4204	5	58,111	58,111	58,111	58,111	0	0,6150	-0,1220	0,7790
A2 ⁰ =H2*	A2 ⁰ =H2*A1 ⁰			v3	v2*v2 ^T				٧Ž	2 ^T *v3				H3			
-6,2450	4,0032	0,4804	0,0000	0,000	0	0	0	0	1	100,78	100,78	100,78	100,78	1,0000	0	0	0
0,0000	4,1200	-4,1075	4,1262	0,000	0	0	0	0	1	100,78	100,78	100,78	100,78	0	1,0000	0	0
0,0000	0,0000	4,5297	4,6780	9,716	0	0	94,4	-24,54	1	100,78	100,78	100,78	100,78	0	0	-0,8734	0,4870
0,0000	0,0000	-2,5257	-0,3003	-2,526	0	0	-24,54	6,3792	1	100,78	100,78	100,78	100,78	0	0	0,4870	0,8734
A3 ⁰ =H3*	A2 ⁰				Q1=H1*H	12			Q	2 ⁰ =Q1*	H3						
-6,2450	4,0032	0,4804	0,0000		-0,8006	0,2925	0,3589	-0,3803		-0,801	0,2925	-0,499	-0,157				
0,0000	4,1200	-4,1075	4,1262		-0,3203	-0,6597	0,4033	0,5474		-0,32	-0,66	-0,086	0,6745				
0,0000	0,0000	-5,1863	-4,2321		0,4804	0,2614	0,8370	-0,0205	(0,4804	0,2614	-0,741	0,3897				
0,0000	0,0000	0,0000	2,0159		-0,1601	0,6410	-0,0900	0,7452		-0,16	0,641	0,4416	0,607				

Вторая итерация

A0 ¹ =A3 ⁰	*Q2 ⁰			v1	v1*v1t				v1t*v1				H1			
x1	x2	х3	x4													
3,9487	-4,342	2,4153	3,87	9,8322	96,672	-38,87	-17,83	-3,174	115,7	115,7	115,7	115,7	-0,671	0,672	0,308	0,055
-3,953	-1,147	4,5128	3,6828	-3,953	-38,87	15,629	7,1703	1,2762	115,7	115,7	115,7	115,7	0,6719	0,730	-0,124	-0,022
-1,814	-4,069	1,9742	-4,59	-1,814	-17,83	7,1703	3,2896	0,5855	115,7	115,7	115,7	115,7	0,3083	-0,124	0,943	-0,010
-0,323	1,2922	0,8901	1,2237	-0,323	-3,174	1,2762	0,5855	0,1042	115,7	115,7	115,7	115,7	0,0549	-0,022	-0,010	0,998
A1 ¹ =H1*	A1 ¹ =H1*A0 ¹			v2	v2*v2t				v2t*v2				H2			
-5,8835	0,9604	2,0687	-1,4706	0,000	0	0	0	0	115,07	115,07	115,07	115,07	1	0	0	0
0,0000	-3,2786	4,6521	5,8302	-9,400	0	88,356	47,437	-10,51	115,07	115,07	115,07	115,07	0	-0,536	-0,824	0,1827
0,0000	-5,0466	2,0381	-3,6048	-5,047	0	47,437	25,469	-5,643	115,07	115,07	115,07	115,07	0	-0,824	0,5574	0,0981
0,0000	1,1182	0,9015	1,3990	1,118	0	-10,51	-5,643	1,2503	115,07	115,07	115,07	115,07	0	0,1827	0,0981	0,9783
A2 ¹ =H2*	A1 ¹			v3	v2*v2t				v2t*v3				Н3			
-5,8835	0,9604	2,0687	-1,4706	0,000	0	0	0	0	38,059	38,059	38,059	38,059	1	0	0	0
0,0000	6,1211	-4,0075	0,1048	0,000	0	0	0	0	38,059	38,059	38,059	38,059	0	1	0	0
0,0000	0,0000	-2,6111	-6,6787	-5,859	0	0	34,328	-11,32	38,059	38,059	38,059	38,059	0	0	-0,8039	0,5947
0,0000	0,0000	1,9316	2,0801	1,932	0	0	-11,32	3,7312	38,059	38,059	38,059	38,059	0	0	0,5947	0,8039
A3 ¹ =H3*	A2 ¹				Q1=H1*H	H2			Q2 ¹ =Q1	*H3						
-5,8835	0,9604	2,0687	-1,4706		-0,671	-0,604	-0,377	0,2067	-0,671	-0,6040	0,4258	-0,0580				
0,0000	6,1211	-4,0075	0,1048		0,6719	-0,293	-0,673	0,0996	0,6719	-0,2927	0,6002	-0,3202				
0,0000	0,0000	3,2479	6,6063		0,3083	-0,713	0,6269	0,06	0,3083	-0,7130	-0,4683	0,4210				
0,0000	0,0000	0,0000	-2,2997		0,0549	0,2025	0,1104	0,9715	0,0549	0,2025	0,4890	0,8467				

Вычисление собственных чисел

A0 ⁴⁰ =A3	³⁹ *Q2 ³⁹		
x1	x2	x 3	x4
6,014716	-0,746604	1,435315	-1,843009
3,491E-06	3,253526	4,097548	4,644307
7,278E-06	-5,275481	-0,882416	5,437142
1,346E-15	-1,23E-09	5,720E-11	-2,385826

$$\lambda_1^{(40)} = 6,014716$$

$$\lambda_4^{(40)} = -2,385826.$$

$$\begin{vmatrix} 3,253526 - \lambda & 4,097548 \\ -5,275481 & -0,882416 - \lambda \end{vmatrix} = 0$$

$$\lambda_3^{(40)} = 1,18555 + 4,16414i$$
 и $\lambda_4^{(40)} = 1,18555 - 4,16414i$

$$\left[\lambda_1^{(40)} - \lambda_1^{(39)}\right] = 4,5339 \cdot 10^{-6}$$

$$\left[\lambda_4^{(40)} - \lambda_4^{(39)}\right] < 2,272639 \cdot 10^{-9}$$