

ITU-ML5G-PS-014: Build-a-thon(PoC)

Autonomous Resource Allocation for Emergency Network Slice

TEAM: AUTOMATO

MEHMET KARACA & DORUK TAYLI & ÖZGE SİMAY DEMİRCİ

30 NOV 2021

HOST: ITU FOCUS GROUP AUTONOMOUS NETWORKS (FG-AN)

Problem Definition

Make resource allocation decision for **emergency slice in an autonomous way:**

- ☐ Get & parse high-level intent
 - Requirements for ES
 - Information regarding data and ML models
- Make traffic analysis
- ☐ Admission & priority control
- Make resource allocation

Building Blocks

Intent Parsing

- We get intent from higher-loop (Open-RAN NonRT-RIC).
- Indicates if there is an emergency case and monitoring xApp is triggered.
 - Information about where data and ML models are.

Traffic Forecasting

- ☐ We monitor RAN resource utilization
 - Checks for available PRBs for emergency slice
 - We apply Gaussian Process Regression (GPR) for time-series forecast of PRB utilization
- We develope this building block as a RIC xApp. This is our first RIC xApp for this problem.
- ☐ Real data (PRB utilization) taken from paper [1].

- Trained with 1000 samples
- Data normalized by 100
 - [0.717 0.706 0.708 0.706 ...]
- Matern kernel is selected
- Retrain GPR at every ~15 min.

PRB utilization forecasting-Mean absolute error (MAE) and Root Mean Squared Error (RMSE)

MAE, RMSE for future 4000 points	MAE RMSE for future 2000 points
0.077, 0.147	0.046, 0.081

Priority Control

- Level of emergency
 - Protect the existing slices first (ES is the second priority)
 - Algorithm 1 (ALG 1)
 - Always give the first priority to ES
 - Algorithm 2 (ALG 2)

Resource Allocation

- ALG 1 and ALG 2 decide on resource allocation
 - How many PRBs should we allocate for ES?
- Resource Allocation block is implemented as **RIC xApp. This is our second RIC xApp.**

ALG 1

IDEA: Amount of PRBs allocated to other slices are not always used (underutilization). Predict unused PRBs of other slices (leftover from other network slices) and allocate them to ES.

For each other slice n

Step 1: Train GPR with the latest P training data

Step 2: Forecast PRB utilization over the next W samples with GPR

Step 3: Calculate maximum possible PRB utilization with prediction bounds

Step 4: Calculate forecasted PRB usage over next W samples

End

Step 5: Calculate available PRBs for Emergency Slice ->PES

Step 6: Allocate PRBs to ES -> PES

Resource allocation (ALG 1)

Example: Two slices

Total system PRBs = 100

Amoun of PRBs allocated to first slice is 40, utilization is %80 (predicted)-> 8 PRBs unused

Amoun of PRBs allocated to second slice is 60, utilization is %90 (predicted)-> 6 PRBs unused

PRBs allocated to emergency slice is **8 +6 = 14** PRBs

ALG 2

IDEA:Emergency slice needs **E** amount of PRBs (fixed). Allocate the available PRBs to ES first. If it is not enough borrow PRBs from other slices. Aim is to always give E PRBs to ES. ES has the first priority [2],[3].

Resource allocation (ALG 2)

Solve an optimization problem:

PRB needed for slice n at time

Total PRBs given to slice n

Number of PRB taken from slice n at time t to be used for emergency slice

$$\min \sum_{t=1}^{W} \sum_{n=1}^{N} \max\{0, x_n(t) - (T_n - y_n(t))\}$$
s.t. $0 \le y_n(t) \le T_n \ \forall n$

s.t.
$$0 \le y_n(t) \le T_n \ \forall n$$

$$\sum_{n=0}^{N} y_n(t) \ge E$$

Guarantee that emergency slice gets enough PRBs

We damage slice n this amount by taking PRBs from it

Transform this problem to a solvable integer problem

^[2] X. Foukas et al., "Orion: RAN Slicing for a Flexible and Cost-Effective Multi-Service Mobile Network Architecture," in ACM MobiCom, 2017.

ALG 2 (cont.)

IDEA: Emergency slice needs **E** amount of PRBs (fixed). Allocate the available PRBs to ES first. If it is not enough borrow PRBs from other slices. Aim is to always give **E** PRBs to ES. ES has the first priority.

Resource allocation (ALG 2)

Solve an integer programming using auxiliary variable u_n :

$$\min \sum_{t=1}^{W} \sum_{n}^{N} u_{n}(t)$$

$$\tilde{x}_{n}(t) + o_{n}(t) - (T_{n} - y_{n}(t)) \leq u_{n}(t)$$

$$0 \leq y_{n}(t) \leq T_{n} \ \forall n$$

$$\sum_{n}^{N} y_{n}(t) \geq E$$

$$u_{n}(t) \geq 0$$
Actuations
$$u_{n}(t) \geq 0$$

$$x_n(t) = \tilde{x}_n(t) + o_n(t)$$
 Actual PRB usage at time t in future. With GPR Usage This cannot be known in advance Estimated PRB usage used provided by GPR.

We have implemented ALG1 & ALG2 and next we will show a demo for ALG2

Experiment: resource allocation

- ☐ Two other slices:
 - 40 and 60 PRBs allocated these two slices
 - Network has 100 PRBs (ES should borrow from others)
- Emergence slice needs **E = 20** PRBs
- Result from the Figure: at every decision-time, sum of the PRBs is always 20, which ES needs.

ML model selection for forecasting

- Different ML models with different performance, complexity and cost can be available in a ML pool.
- We implement this scheme as a microservice.
 - Webserver stores different ML models
 - Possible to fetch different ML models when forecasting

Our implementation

PRB data

Local repository

- ☐ Implemented RIC xApp1, xApp2 and server as a microservice.
- ☐ These xApps can communicate through a RIC (O-RAN messaging) message.
 - e.g., xApp1 can send prediction to xApp2 over the network

PoC Demo

We have a quick demo:

- Ubuntu 20.04 Works fine
- Need docker and docker compose

https://drive.google.com/file/d/1ouqhouvHlZiYOotnKqFHyIB8J UDdAFIF/view?usp=sharing

```
...
                      meldor@meldor-UX305FA: -/enki/openran/ITUChallenge_BuildaThon_Activity&
                    Predicted PRB util. for Slice 1: 71.7
                    Predicted PRB util, for Slice 2: 71.7
                    Results for ALG2
                    Number of PROs taken from slice 1: [7.0]
Number of PROs taken from slice 2: 1 [13.0]
decision app 1
                    NEW PREDICTION TIME: (1611)
                    Predicted PRB util, for 5lice 1: 55.5
                    Predicted PAB util. for Stice 2: 55.5
                    Results For ALG2
                    Number of PMBs taken from stice 1: [7.0]
                    Number of PREs taken from slice 2: : [13.0]
                   NEW PREDICTION TIME: [[63]]
                    Predicted PRB util. for Slice 1: 67.0
                    Predicted PRB util. for Slice 2: 67.0
                    Results For ALGZ
                    Number of PREs taken from stice 1: (7.8)
                    Number of PROS taken from slice 2: : [13.0]
                    Results For ALG?
                    Number of PRBs taken from slice 1: [7.0]
                    Number of PRBs taken from stace 2: 1 [13.0]
                   NEW PREDICTION TIME: [1631]
                    Predicted PRB util, for Slice 1: 72.1
                    Predicted PRB util. for Slice 2: 72.1
                    Results For ALG2
                    Number of PRBs taken from alice 1: [7.0]
decision_app_1
                    Number of PREs taken from stace 2: : [13.0]
                   NEW PREDICTION TIME: [[64]]
prediction_app_1
                    Predicted PRB util, for Slice 1: 72.8
prediction app 1
                    Predicted PRB util, for Slice 2: 72.8
                    Results For ALG2
                    Number of PRBs taken from since 1: [7.8]
                    Number of PRDs taken from slice 2: : [13.0]
                    Fetching model busic_prediction_model_1.pkl
                    NEW PREDICTION TIME: [165][
                    Predicted PRS util. for Slice 1: 68.5
                    Predicted PRB util. for Slice 2: 58.5
                    1636876866782 7/RMR | INFO| sends: ts=1636876668 src=meldor-LX385FA:4564 target=127.0.0.1:4564 open=0 si
prediction spp 1 | 1636876061163 7/RMR | INFO| sends: fs=1636876061 srcnmeldor-0X385FA:4564 target=127.0.0.1:4564 open=1 su
cc=16 fail=8 (hard=8 soft=8)
mecision app 1
                  | Amsalts For ALGZ
decision app 1
                   Number of PRDs taken from slice 1: [7.0]
                   Number of PROS taken from stice 2: : [13.0]
decision app 1
```

Check for details: https://github.com/ITU-AI-ML-in-5G-Challenge/ITU-ML5G-PS-014-Build-a-thon-PoC---Team-AUTOMATO-

Conclusion and Future Works

- ☐ A PoC for autonomous slice management
- Resource allocation handled
 - Prediction with machine learning & linear optimization
- ☐ Flexible and modular O-RAN RIC xApps design

Future Works:

- ☐ Integration of all xApps to testbed, real O-RAN infrastructure
 - Real autonomous closed loops
- ☐ ML optimizations & improvements
- Dynamic estimation of emergency slice

Thank you for listening!

Q & A

mehmet.karaca@tedu.edu.tr doruktayli@gmail.com osimay.demirci@tedu.edu.tr