LÖSNINGAR EXTRA PROBLEM 2010-12-10

1. (a) Nej.

Motexempel: Låt

$$f(x) = \begin{cases} -1 & x < 0\\ 1 & x \ge 0 \end{cases}$$

- (b) Ja, ty |x| är en kontinuerlig funktion och enligt sats är sammansättningen av två kontinuerliga funktioner kontinuerlig.
- 2. Om vi för varje $\epsilon > 0$ kan finna ett naturligt tal N så att

$$\sum_{n=N}^{\infty} a_n^2 < \epsilon$$

så konvergerar $\sum_{n=1}^{\infty}a_{n}^{2}$ per definition.

Så låt $\epsilon > 0$ vara givet. I och med att $\sum_{n=1}^{\infty} a_n$ konvergerar så vet vi att $\lim_{n \to \infty} a_n = 0$, och därmed kan vi finna ett M så att $a_n < 1$ för alla n > M. Dessutom så vet vi att det finns ett L bland de naturliga talen så att

$$\sum_{n=L}^{\infty} a_n < \epsilon.$$

Låt N vara det största av talen M,L. Då har vi att $a_n^2 < a_n$ för alla n > N och därmed att

$$\sum_{n=N}^{\infty} a_n^2 < \sum_{n=N}^{\infty} a_n \le \sum_{n=L}^{\infty} a_n < \epsilon.$$

Alltså konvergerar $\sum_{n=1}^{\infty} a_n^2$.

Ovanstående gäller inte om vi släpper på kravet att $a_n \ge 0$, ty $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ konvergerar men $\sum_{n=1}^{\infty} \frac{1}{n}$ konvergerar ej.

3. Vi börjar med att visa att f är kontinuerlig:

Låt $\epsilon > 0$ vara givet, och låt $\delta = \frac{\epsilon}{K}$. Då gäller det, för $u, v \in [a, b]$, att $|f(u) - f(v)| < K|u - v| < K\frac{\epsilon}{K} = \epsilon$ om $|u - v| < \delta$. Alltså är f kontinuerlig på I.

Nu visar vi att f har en fixpunkt $r \in I$:

Låt g(x) = f(x) - x. Om vi kan finna en punkt $r \in I$ så att g(r) = 0 så är r en fixpunkt för f. Då f avbildar I på I har vi att $f(a) \ge a$ och

 $f(b) \leq b$. Alltså gäller det att $g(a) \geq 0$ och $g(b) \leq 0$. Om likhet gäller i någon av punkterna a,b så har vi funnit vår fixpunkt. Om vi däremot har g(a) > 0 och g(b) < 0 så finns det enligt satsen om mellanliggande värden (g är kontinuerlig ty f är kontinuerlig) en punkt $r \in I$ så att g(r) = 0. Alltså har f en fixpunkt $r \in I$.

Denna fixpunkt är unik:

Antag, för att få en motsägelse, att vi har två skilda fixpunkter $r, s \in I$. Då gäller det att |f(r) - f(s)| = |r - s| vilket motsäger antagandet att $|f(r) - f(s)| \le K|r - s|$ där K < 1. Alltså kan det bara finnas en fixpunkt.