- PRP Mid Sem Exam (2:30pm to 4:00pm)

 There are 6 questions 4th July
 Please make suitable assumptions,
 whereever necessary.

 Please show all the steps in your
 answers.

 Maximum Marks: 30
- ① If X is a non-negative random Variable Satisfying ρ(X>m+n | X>m) = ρ(X>n) for all possible integers m and n, then show that X is a geometric random Variable. (4 marks)
- (2) Consider a probability space (S, F, P).

 For an infinite sequence of events

 Ai, i>1, Show that

 P(\(\begin{align*} Ai) = \int \text{TI} P(Ai, \(A_1, \ldots, A_{i-1} \).

 i=1 (4 marks)

A random variable X is defined on the sample space $\Omega = \{ \omega : -1 \le \omega \le 6 \}$.

$$X(\omega) = \begin{cases} 2 & \text{if } -1 \leq \omega < 0 \\ 0 & \text{if } \omega = 0 \end{cases}$$

$$1 & \text{if } 0 < \omega < 1 \end{cases}$$

$$3 & \text{if } 1 \leq \omega \leq 3 \end{cases}$$

$$5 & \text{if } 3 < \omega < 5 \end{cases}$$

$$4 & \text{if } \omega = 5 \end{cases}$$

$$7 & \text{if } 5 < \omega \leq 6 .$$

- @ Specify a Switable event space F such that X is a random Variable (4 marks)
- 6) Let P be probability measure corresponding to the above event space F. Calculate the following in terms of P: (3 marks)

 $F_{\times}(0)$, $F_{\times}(-2)$, $F_{\times}(3.5)$.

(4) A noise voltage X is uniformly distributed between [-5,5]. If it is applied as the input to a circuit whose output is
between [-5,5]. If it is applied as the
input to a circuit whose output is
Y=[x], obtain Fy(y). Wiven the event
A: {YS2.5}, determine fy/a(Y/A). (5 marks)
(5 masks)

- B) Consider the joint pdf. $f_{X,y}(x,y) = \int 24xy \quad 0 \le x \le 1, \quad 0 \le y \le 1$ $0 \le x + y \le 1$ o otterwise.
 - (b) Find the marginal pdf fx(·). (4 marks)
 - 6) A total of x keys are to be put, one at a time in k boxes, with each key independently put in box i with probability p; where $\sum_{i=1}^{K} P_{i-1} \cdot Each$ time a key is

put in	a no	n-empty	box.	we s	ay a	
put in Collision			4-	-		
Collision	o clus	8s. And	the e	.xpeae	<i>0</i> 1	
number	06 60	llisions.			o max	ts)