線形表現と余加群

天野勝利

2013年5月22日~6月5日

参考文献

W.C. Waterhouse, "Introduction to affine group schemes", Graduate Texts in Mathematics 66, Springer, New York, 1979.

講義はこの本をテキストに進めていきます. この資料は本の Ch. 3 にあたる部分の講義ノートです.

3.1 線形表現

k を可換環とし、基礎環として固定する (ただし、3.3 節以降はずっと k を体と仮定する). V を k-加群とするとき、アフィン群スキームの V 上の線形表現を下記のように定義する.

まず、 \mathbf{GL}_V という群関手を

 $\mathbf{GL}_V: R \mapsto \{V \otimes_k R \xrightarrow{\sim} V \otimes_k R \ R$ -加群同型 $\}$ (積は写像の合成)

により定める. 射の対応は、k-代数射 $\varphi:R\to S$ に対し、 $\mathbf{GL}_V(\varphi):\mathbf{GL}_V(R)\to\mathbf{GL}_V(S)$ を、 $h\in\mathbf{GL}_V(R)$ に対し

$$\mathbf{GL}_{V}(\varphi)(h): V \otimes_{k} S \xrightarrow{\sim} V \otimes_{k} R \otimes_{R} \varphi S \xrightarrow{n \otimes \mathrm{id}_{S}} V \otimes_{k} R \otimes_{R} \varphi S \xrightarrow{\sim} V \otimes_{k} S$$

 $(\varphi S \ \text{d} \ \varphi \ \text{を介して} \ S \ \text{を} \ R$ -加群とみなしたもの)とすることにより定める.ここで, $h \in \mathbf{GL}_V(R) \ \text{d} \ V \ \text{への制限} \ h|_V: V \to V \otimes_k R, \ v \mapsto h(v \otimes 1) \ \text{により完全に定まっており,単にこれを} \ R$ -線形になるように拡張したものにすぎないことに注意しておこう. $\mathbf{GL}_V(\varphi)(h) \ \text{t} \ (\mathrm{id} \otimes \varphi) \circ h|_V: V \to V \otimes_k S \ \text{c} \ S$ -線形になるように拡張したものにすぎない.

定義 3.1 G を k 上のアフィン群スキーム, V を k-加群とするとき, G から GL_V への (群関手としての) 準同型を G の V 上の線形表現 (linear representation) と呼ぶ.

3.2 余加群

定義 3.2 A を k-ホップ代数, V を k-加群とする. k-加群準同型 $\rho:V\to V\otimes_k A$ で次の二つの可換図式

$$\begin{array}{cccc} V & \xrightarrow{\rho} & V \otimes_k A & & V & \xrightarrow{\rho} & V \otimes_k A \\ \downarrow^{\rho} & & & \downarrow^{\rho \otimes \mathrm{id}} & & & \swarrow^{\rho} & \mathrm{id} \otimes \varepsilon \\ V \otimes_k A & \xrightarrow{\mathrm{id} \otimes \Delta} & V \otimes_k A \otimes_k A & & & & V \otimes_k k \end{array}$$

を満たすものを V 上の右 A-余加群構造 (right A-comodule structure) と呼ぶ. またこのとき (V,ρ) を右 A-余加群 (right A-comodule) と呼ぶ.

ホップ代数の余積と同様に、余加群構造にも次のような ∑ 記法が用いられている:

$$\rho(v) = \sum v_{(0)} \otimes v_{(1)} \in V \otimes_k A.$$

(V に含まれる部分が必ず 0 番になるように番号をつける.) この記法で上記の二つの可換図式の条件を書いてみると、

$$\sum \rho(v_{(0)}) \otimes v_{(1)} = \sum v_{(0)} \otimes \Delta(v_{(1)}) \ (= \sum v_{(0)} \otimes v_{(1)} \otimes v_{(2)} \ \textbf{と書く}), \quad \sum v_{(0)} \varepsilon(v_{(1)}) = v_{(1)} \varepsilon(v_$$

定理 3.3 G を k 上のアフィン群スキーム, A = k[G] とする. V を k-加群とするとき, G の V 上の線形表現と V の右 A-余加群構造とは次のように双射的に対応する:

逆写像は $\rho \mapsto [\Phi_R : g \mapsto [v \otimes r \mapsto (\mathrm{id} \otimes g)(\rho(v))r]]$ で与えられる. (ただし、ここでは $\mathbf{G}(R)$ と $\mathrm{Alg}_k(A,R)$ とを同一視している.)

[証明] $G = \operatorname{Sp} A$ と仮定してよい.

 (\longrightarrow) $\Phi: \mathbf{G} \to \mathbf{GL}_V$ を線形表現とする. $\rho' = \Phi_A(\mathrm{id}_A) \in \mathbf{GL}_V(A)$ とし、これを V に制限したものを $\rho = \rho'|_V: V \to V \otimes_k A$ とおく.

 Φ は関手間射なので、任意の $R \in {}_k A$ と $g \in \mathbf{G}(R) = \mathrm{Alg}_k(A,R)$ に対し

$$\mathbf{G}(A) \xrightarrow{\Phi_A} \mathbf{GL}_V(A)$$

$$\mathbf{G}(g) \downarrow \qquad \qquad \downarrow \mathbf{GL}_V(g)$$

$$\mathbf{G}(R) \xrightarrow{\Phi_R} \mathbf{GL}_V(R)$$

は可換である. この図式における $\mathrm{id}_A \in \mathbf{G}(A)$ の行先を考えれば

$$\Phi_R(g) = \mathbf{GL}_V(g)(\Phi_A(\mathrm{id}_A)) = \mathbf{GL}_V(g)(\rho')$$

を得る. 故に, $\Phi_R(g)$ は $(\mathrm{id}\otimes g)\circ \rho:V\to V\otimes_k R$ を R-線形になるよう拡張したもの に他ならない. すなわち Φ_R は

$$\Phi_R: g \mapsto [v \otimes r \mapsto (\mathrm{id} \otimes g)(\rho(v))r]$$

という写像になっている.

次に ρ が V 上の右 A-余加群構造になることを示す。まず、A の余単位射 $\varepsilon \in \mathbf{G}(k)$ は $\mathbf{G}(k)$ の単位元なので、 $\Phi_k(\varepsilon)$ は $\mathbf{GL}_V(k) = GL(V)$ の単位元、つまり V の恒等写像でなければならない。一方、先程の説明より $\Phi_k(\varepsilon)$ は $(\mathrm{id} \otimes \varepsilon) \circ \rho$ と同じ写像だから、

$$V \xrightarrow{\rho} V \otimes_k A$$

$$\sim \bigvee_{V \otimes_k k} \operatorname{id} \otimes \varepsilon$$

の可換性が分かる.

任意の $R \in {}_k\mathcal{A}$ と $g,h \in \mathbf{G}(R)$ に対し、積 $gh = m \circ (g \otimes h) \circ \Delta$ を考えると、 $\Phi_R(gh) = \mathbf{GL}_V(gh)(\rho')$ は $(\mathrm{id} \otimes gh) \circ \rho$ を R-線形になるように拡張したものであるから、V に制限すると

$$\Phi_R(gh)|_V: V \xrightarrow{\rho} V \otimes_k A \xrightarrow{\operatorname{id} \otimes \Delta} V \otimes_k A \otimes_k A \xrightarrow{\operatorname{id} \otimes g \otimes h} V \otimes_k R \otimes_k R \xrightarrow{\operatorname{id} \otimes m} V \otimes_k R \ (3.1)$$

となる. 一方, $\Phi_R(g)$, $\Phi_R(h)$ はそれぞれ $(\mathrm{id}\otimes g)\circ \rho$, $(\mathrm{id}\otimes h)\circ \rho$ を R-線形になるように拡張したものだから, $\Phi_R(g)\circ \Phi_R(h)$ を V に制限すると

$$(\Phi_R(g) \circ \Phi_R(h))|_V$$

$$= (V \xrightarrow{\rho} V \otimes_k A \xrightarrow{\mathrm{id} \otimes h} V \otimes_k R \xrightarrow{\rho \otimes \mathrm{id}} V \otimes_k A \otimes_k R \xrightarrow{\mathrm{id} \otimes g \otimes \mathrm{id}} V \otimes_k R \otimes_k R \xrightarrow{\mathrm{id} \otimes m} V \otimes_k R)$$

$$= (V \xrightarrow{\rho} V \otimes_k A \xrightarrow{\rho \otimes \mathrm{id}} V \otimes_k A \otimes_k A \xrightarrow{\mathrm{id} \otimes g \otimes h} V \otimes_k R \otimes_k R \xrightarrow{\mathrm{id} \otimes m} V \otimes_k R)$$
(3.2)

となる. Φ_R は群準同型だから $\Phi_R(gh) = \Phi_R(g) \circ \Phi_R(h)$, 従って, (3.1) と (3.2) とは一致していなければならない. ここで, $R = A \otimes_k A$, $g: a \mapsto a \otimes 1$, $h: b \mapsto 1 \otimes b$ とすれば $V \otimes_k A \otimes_k A \xrightarrow{\operatorname{id} \otimes g \otimes h} V \otimes_k R \otimes_k R \xrightarrow{\operatorname{id} \otimes m} V \otimes_k R$ の部分は恒等写像になってしまうので,

$$\begin{array}{ccc}
V & \xrightarrow{\rho} & V \otimes_k A \\
\downarrow^{\rho} & & \downarrow^{\rho \otimes \mathrm{id}} \\
V \otimes_k A & \xrightarrow{\mathrm{id} \otimes \Delta} & V \otimes_k A \otimes_k A
\end{array}$$

の可換性を得る. 以上より, ρ が V 上の右 A-余加群構造になることがいえた.

 (\longleftarrow) $\rho:V \to V \otimes_k A$ を右 A-余加群構造とする. この ρ を右 A-線形になるように拡張したものを $\rho':V \otimes_k A \to V \otimes_k A$ とすると, これは A-加群同型になる (逆写像は $v \otimes a \mapsto \sum v_{(0)} \otimes S(v_{(1)})a)$ ので, $\rho' \in \operatorname{GL}_V(A)$ である. すると, 各 $R \in {}_k A$ に対し

$$\Phi_R : \mathbf{G}(R) \to \mathbf{GL}_V(R), \quad g \mapsto \mathbf{GL}_V(g)(\rho')$$

とすることにより $\Phi: \mathbf{G} \to \mathbf{GL}_V$ という関手間射が得られる。さて、 ρ は余加群構造だから $(\mathrm{id} \otimes \Delta) \circ \rho = (\rho \otimes \mathrm{id}) \circ \rho$ で、従って、任意の $g,h \in \mathbf{G}(R)$ に対して上記の (3.1) と (3.2) とは一致する。よって、 $(\mathbf{GL}_V(R)$ の元はその V への制限によって完全に定まるのであったから) $\Phi_R(gh) = \Phi_R(g) \circ \Phi_R(h)$ を得る。従って Φ は群関手の準同型である。

例 3.4 上の定理で V=A とするとき, $\Delta:A\to A\otimes_k A$ は右 A-余加群構造になっている. これに対応する線形表現を G の正則表現 (regular representation) という.

部分余加群/部分表現. G をアフィン群スキーム, A=k[G], (V,ρ) を右 A-余加群と U, ρ に対応する線形表現を $\Phi: G \to GL_V$ とおく. V の k-加群直和因子 W が $\rho(W) \subset W \otimes_k A$ を満たすとき, $(W,\rho|_W)$ を (V,ρ) の部分余加群 (subcomodule) という. なお, $\rho(W) \subset W \otimes_k A$ という条件は, $\forall R \in {}_k A, \forall g \in G(R)$ に対し $W \otimes_k R$ が $\Phi_R(g): V \otimes_k R \xrightarrow{\sim} V \otimes_k R$ で不変 (i.e. $\Phi_R(g)(W \otimes_k R) \subset W \otimes_k R$) であることと同値である. 部分余加群 $(W,\rho|_W)$ に対応する線形表現 $G \to GL_W$ は $g \mapsto \Phi_R(g)|_{W \otimes_k R}$ により与えられる. これは Φ の部分表現と呼ばれる.

商余加群/商表現. さらに上の状況で、商加群 $\bar{V}=V/W$ を考える。もし W が部分余加群なら、 $V\stackrel{\rho}{\to}V\otimes_k A \twoheadrightarrow \bar{V}\otimes_k A$ が \bar{V} を経由するので、 ρ から \bar{V} 上の右 A-余加群構造 $\bar{\rho}:\bar{V}\to \bar{V}\otimes_k A$ が誘導される。この $(\bar{V},\bar{\rho})$ を (V,ρ) の商余加群 (quotient comodule) と呼ぶ。また、それに対応する線形表現 $G\to GL_{\bar{V}}$ を Φ の商表現という。

線形表現のテンソル積. $\Phi_1: \mathbf{G} \to \mathbf{GL}_{V_1}, \ \Phi_2: \mathbf{G} \to \mathbf{GL}_{V_2}$ をアフィン群スキーム \mathbf{G} の二つの線形表現とするとき, 関手間射 $\Phi_1 \otimes \Phi_2: \mathbf{G} \to \mathbf{GL}_{V_1 \otimes_k V_2}$ を

$$(\Phi_1 \otimes \Phi_2)_R : \mathbf{G}(R) \to \mathbf{GL}_{V_1 \otimes_k V_2}(R), \quad g \mapsto \Phi_{1,R}(g) \otimes_R \Phi_{2,R}(g) \qquad (R \in {}_k \mathcal{A})$$

により定める $((V_1 \otimes_k R) \otimes_R (V_2 \otimes_k R) \simeq V_1 \otimes_k V_2 \otimes_k R$ に注意) と、これは G の $V_1 \otimes_k V_2$ 上の線形表現となる.この $\Phi_1 \otimes \Phi_2$ を Φ_1 と Φ_2 のテンソル積 (表現) と呼ぶ. Φ_1, Φ_2 に対応する余加群構造を ρ_1, ρ_2 とおくと、 $\Phi_1 \otimes \Phi_2$ に対応する余加群構造は

$$\rho_1 \otimes_A \rho_2 : V_1 \otimes_k V_2 \to V_1 \otimes_k V_2 \otimes_k A, \quad v \otimes v' \mapsto \sum v_{(0)} \otimes v'_{(0)} \otimes v_{(1)} v'_{(1)}$$

で与えられる.

線形表現の双対. 定理 3.3 の状況で、線形表現 Φ と余加群構造 ρ とが対応しているとする. ここで V は k-加群として有限生成かつ射影的であったと仮定し、双対加群 $V^* = \operatorname{Hom}_k(V,k)$ を考える. 関手間射 $\Phi^\vee: \mathbf{G} \to \mathbf{GL}_{V^*}$ を, $R \in {}_k\mathcal{A}$ に対し

$$\Phi_R^{\vee}: \mathbf{G} \to \mathbf{GL}_{V^*}, \quad g \mapsto \Phi_R(g^{-1})^* \quad (\Phi_R(g^{-1}))$$
 の R -加群双対)

とすることにより定めると、これは G の V^* 上の線形表現となる. この Φ^\vee を Φ の双対 (表現) と呼ぶ. これに対応する余加群構造は

$$\rho^{\vee}: V^* \to \operatorname{Hom}_k(V, A) \xrightarrow{\simeq} V^* \otimes_k A$$
$$f \mapsto [v \mapsto \sum f(v_{(0)}) S(v_{(1)})]$$

で与えられる.

演習 3.5 上記の4つのパラグラフに書いてあることを確かめよ.

それから、 (V_1, ρ_1) 、 (V_2, ρ_2) を二つの余加群とすると、直和 $(V_1 \oplus V_2, \rho_1 \oplus \rho_2)$ も自然に余加群となる $((V_1 \otimes_k R) \oplus (V_2 \otimes_k R) \simeq (V_1 \oplus V_2) \otimes_k R$ に注意)。また、ある余加群 V の二つの部分余加群があるとき、その二つの和も自然に V の部分余加群となる.

 GL_V と GL_n . ここで V が階数 n $(<\infty)$ の自由 k-加群であった場合を考えよう. V の基底を一組選んでおき、それを $\{v_1,\ldots,v_n\}$ とする. また、 $H=k[X,1/\det X]$ $(X=(X_{ij})_{i,j})$ を GL_n の座標環とする. このとき同型 $\operatorname{GL}_n \overset{\sim}{\to} \operatorname{GL}_V$ が次のようにして構成できる: 各 $R\in {}_k\mathcal{A}$ に対し、

$$\operatorname{Alg}_{k}(H,R) \xrightarrow{\sim} \operatorname{\mathbf{GL}}_{n}(R) \xrightarrow{\sim} \operatorname{\mathbf{GL}}_{V}(R)$$

$$g \mapsto g(X) = (g(X_{ij}))_{i,j} \mapsto [\sum_{j=1}^{n} v_{j} \otimes r_{j} \mapsto \sum_{i,j=1}^{n} v_{i} \otimes g(X_{ij})r_{j}].$$

一番右は要するに, R 成分の n 項縦ベクトルに g(X) を左からかける作用と同じで,

$$(v_1 \otimes 1, \dots, v_n \otimes 1) \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \mapsto (v_1 \otimes 1, \dots, v_n \otimes 1)(1 \otimes g(X)) \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$$

とも書ける. この同型 $\mathbf{GL}_n \xrightarrow{\sim} \mathbf{GL}_V$ を \mathbf{GL}_n の V 上の線形表現とみたときに, これに対応する V の右 H-余加群構造を ρ_0 と書くことにする:

$$\rho_0: V \to V \otimes_k H, \quad v_j \mapsto \sum_{i=1}^n v_i \otimes X_{ij} \quad (j=1,\ldots,n).$$

さて、G をアフィン群スキーム、A=k[G] とするとき、G の V 上の任意の線形表現 $\Phi: G \to \operatorname{GL}_V$ は必ず GL_n を経由する.つまり、ある準同型 $\Psi: G \to \operatorname{GL}_n$ があって、 $\Phi: G \xrightarrow{\Psi} \operatorname{GL}_n \xrightarrow{\sim} \operatorname{GL}_V$ と書ける.この Ψ に対応するホップ代数射を $\psi: H \to A$ とすると、 Φ に対応する V の右 A-余加群構造は

$$V \xrightarrow{\rho_0} V \otimes H \xrightarrow{\operatorname{id} \otimes \psi} V \otimes A, \quad v_j \mapsto \sum_{i=1}^n v_i \otimes \psi(X_{ij}) \quad (j=1,\ldots,n)$$

と書ける. $\Delta(\psi(X_{ij})) = \sum_{s=1}^n \psi(X_{is}) \otimes \psi(X_{sj})$ だから, 以上により次が言えたことになる:

補題 3.6 G をアフィン群スキーム, $A=k[\mathbf{G}], V$ を $\{v_1,\ldots,v_n\}$ を基底とする階数 n $(<\infty)$ の自由 k-加群とし, V に右 A-余加群構造 $\rho:V\to V\otimes A$ が与えられているとする. このとき $\rho(v_j)=\sum_{i=1}^n v_i\otimes a_{ij}\ (j=1,\ldots,n)$ となる $a_{ij}\in A$ をとれば,

$$\Delta(a_{ij}) = \sum_{s=1}^{n} a_{is} \otimes a_{sj} \quad (i, j = 1, \dots, n)$$

が成立する. また $\det(a_{ij})_{i,j}$ は A の可逆元である.

3.3 有限性定理

この節から以下はずっと k は体であると仮定する.

定理 3.7 A を可換 k-ホップ代数, (V,ρ) を右 A-余加群とする. このとき V は k 上有限次元な部分余加群たちの有向和集合 (directed union) になっている. すなわち, ある有向集合 Λ により添え字づけられた k 上有限次元な V の部分余加群の族 $\{V_i\}_{i\in\Lambda}$ で $i< j\Rightarrow V_i\subset V_j$ なるものがあって, $V=\bigcup_{i\in\Lambda}V_i$ と書ける.

[略証] 任意の $v \in V$ に対し, v を含む k 上有限次元な部分余加群が必ず存在することを示せばよい. $\{a_i\}$ を A の k-基底とし,

$$ho(v) = \sum_i v_i \otimes a_i \quad ($$
有限個の i を除き $v_i = 0)$

と書く. このとき $V'=\operatorname{Span}_k\{v,v_i\}$ (v と v_i たちで生成される V の k-部分空間) が 求める部分余加群となる.

定理 ${\bf 3.8}$ 任意の可換 k-ホップ代数 A は, k 上有限生成な部分ホップ代数たちの有向和集合である.

[略証] 右 A-余加群 (A, Δ) の任意の有限次元部分余加群 $V \subset A$ が, ある k 上有限生成な部分ホップ代数に含まれることを示せばよい. $\{v_i\}$ を V の基底とし, $\Delta(v_j) = \sum_i v_i \otimes a_{ij}$ となるような $a_{ij} \in A$ をとる. このとき $v_i, a_{ij}, S(v_i), S(a_{ij})$ たちで生成される A の k-部分代数は部分ホップ代数となる.

この定理を言い換えると、次のようになる:

系 3.9 体 k 上のアフィン群スキームは、常に代数的アフィン群スキームたちの逆極限 (射影極限) である.

3.4 代数的なら GL_n の閉部分群に帰着すること

定理 3.10 G を体 k 上の代数的アフィン群スキームとするとき, ある閉埋め込み G \hookrightarrow GL $_n$ ($^{\exists}n\in\mathbb{Z}_{\geq 0}$) が存在する.

[証明] $A=k[\mathbf{G}]$ とすると A は k 上有限生成なホップ代数なので、定理 3.7 により、ある有限次元部分余加群 $V\subset A$ で k[V]=A を満たすものがある。 $n=\dim_k V$ とし、 \mathbf{GL}_n の座標環 $k[X,1/\det X]$ $(X=(X_{ij})_{i,j})$ をとる。 $\{v_1,\ldots,v_n\}$ を V の基底とし、 $\Delta(v_j)=\sum_{i=1}^n v_i\otimes a_{ij}$ $(j=1,\ldots,n)$ となる a_{ij} をとれば、補題 3.6 により

$$k[X, 1/\det X] \to A, \quad X_{ij} \mapsto a_{ij}$$

はホップ代数射である。後はこれが全射であることを示せばよいが、それは $v_j=(\varepsilon\otimes \mathrm{id})(\Delta(v_j))=\sum_{i=1}^n \varepsilon(v_i)a_{ij}$ $(j=1,\ldots,n)$ により従う.

例 3.11 上記の定理の証明に沿って G_a の GL_2 への閉埋め込みを構成する. G_a の座標環を k[Y] (Y は原始元) とする. V=k+kY とすれば, これは 2 次元の部分余加群で k[V]=k[Y] を満たす. V の基底として $v_1=1,\,v_2=Y$ をとれば,

$$\Delta(v_1, v_2) = (1 \otimes 1, 1 \otimes Y + Y \otimes 1) = (v_1 \otimes 1, v_2 \otimes 1) \begin{pmatrix} 1 \otimes 1 & 1 \otimes Y \\ 0 & 1 \otimes 1 \end{pmatrix}$$

だから, \mathbf{GL}_2 の座標環 $k[X, 1/\det X]$ からのホップ代数射

$$\varphi: k[X, 1/\det X] \to k[Y], \quad X \mapsto \begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix}$$

を得る. φ に対応する準同型を $\Phi: \mathbf{G}_{\mathbf{a}} \to \mathbf{GL}_2$ とすると, 各 $R \in {}_k \mathcal{A}$ に対して Φ_R は

$$\Phi_R: \mathbf{G}_{\mathrm{a}}(R) \to \mathbf{GL}_2(R), \quad a \mapsto \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right)$$

という群準同型である.

3.5 すべての有限次元線形表現を k^n から構成する

定義 3.12 A を可換 k-ホップ代数, (V_1, ρ_1) , (V_2, ρ_2) を右 A-余加群とする. k-線形写像 $\varphi: V_1 \to V_2$ が A-余加群射 (A-comodule map) であるとは, 次の可換図式を満たすことをいう:

$$\begin{array}{ccc} V_1 & \xrightarrow{\varphi} & V_2 \\ \downarrow^{\rho_1} & & \downarrow^{\rho_2} \\ V_1 \otimes_k A & \xrightarrow{\varphi \otimes \mathrm{id}} & V_2 \otimes_k A. \end{array}$$

余加群射 φ が全単射であれば、余加群同型 (comodule isomorphism) といい、 V_1 と V_2 は余加群として同型であるという.

補題 3.13 A を可換 k-ホップ代数, (V, ρ) を k 上有限次元な右 A-余加群, $n = \dim_k V$ とする. このとき, ある単射 A-余加群射 $V \hookrightarrow A^n$ が存在する (ここで, A^n の余加群構造は (A, Δ) の n 個の直和としてのもの).

[略証] $(V \otimes_k A, \mathrm{id}_V \otimes \Delta)$ は A^n と同型な余加群であり, $\rho: V \to V \otimes_k A$ は単射 A-余 加群射となる.

定理 $\mathbf{3.14}$ \mathbf{G} を \mathbf{GL}_n の閉部分群スキーム, $A=k[\mathbf{G}]$ とする. このとき \mathbf{G} の k^n 上の線形表現 $\Phi: \mathbf{G} \hookrightarrow \mathbf{GL}_n \xrightarrow{\sim} \mathbf{GL}_{k^n}$ が自然に存在する. \mathbf{G} のすべての有限次元線形表現は, Φ から, テンソル積, 直和, 部分表現, 商表現, 双対, をとる操作を有限回行うことにより構成できる.

[証明] 上の補題により、 (A,Δ) の有限個の直和 A^m の任意の有限次元部分余加群 V について主張が成り立てばよい。 さらに、V は A^m から A への m 個の射影による V の像たちの直和と同型だから、結局 (A,Δ) の任意の有限次元部分余加群(これを改めて V とおく)が構成可能であればよい。

$$B = k[\mathbf{GL}_n] = k[X, 1/\det X] \ (X = (X_{ij})_{i,j})$$
 とおくと、

$$B = \bigcup_{r,s} B_{r,s}, \quad B_{r,s} = \frac{1}{(\det X)^r} \{ f \in k[X] \mid \deg f \le s \}$$

と書ける。この $B_{r,s}$ たちは右 B-余加群 (B,Δ) の有限次元部分余加群である。V はある $B_{r,s}$ の $B \to A$ $(\mathbf{G} \hookrightarrow \mathbf{GL}_n$ に対応するホップ代数射)による像に含まれているはずなので、各 $B_{r,s}$ が右 B-余加群として k^n から構成されることを示せば証明は完了する。

 $\{v_1,\ldots,v_n\}$ を k^n の標準基底とする. このとき, $k^n\to B,\,v_j\mapsto X_{ij}\;(i=1,\ldots,n)$ は単射 B-余加群射なので,

$$H_1 := \{ f \in k[X] \mid f$$
 は斉次, $\deg f = 1 \} \simeq (k^n)^{\oplus n}$

となる. また, $H_s:=\{f\in k[X]\mid f$ は斉次, $\deg f=s\}$ とおくと, 自然な全射 B-余加群射

$$\underbrace{H_1 \otimes_k \cdots \otimes_k H_1}_{s} \twoheadrightarrow H_s$$

がある. また, $k \det X \subset H_n$ は 1 次元 B-部分余加群で, その双対は

$$(k \det X)^* \simeq k \frac{1}{\det X}$$

である. そして

$$B_{r,s} \simeq \underbrace{k \frac{1}{\det X} \otimes_k \cdots \otimes_k k \frac{1}{\det X}}_{r} \otimes_k \left(\bigoplus_{s' \leq s} H_{s'} \right) \quad (\text{trib} \ H_0 = k)$$

となるから, $B_{r,s}$ が k^n から構成可能であることが示された.

注意 3.15 上の定理で、もし G が SL_n の閉部分群スキームであったなら、双対は不要である.