ĐÈ 1

Câu 1: Cho phương trình $f(x) = 2x\cos 2x - (x-2)^2 = 0$ trong khoảng cách ly nghiệm [3,4]. Chọn $x_0 = 3.5$, hãy tính x_1 và x_2 bằng phương pháp Newton. Tính giá trị $m = \min_{x \in [3,4]} |f'(x)|$. Dùng công thức đánh giá sai số tổng quát, hãy tính sai số của nghiệm gần đúng x_2 .

Câu 2: Xây dựng spline bậc ba tự nhiên g(x) nội suy bảng số

X	0	1	2
у	1	1.5	1

Sử dụng các giá trị của g(x) tại các điểm nút $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$, $x_3 = 1.5$, $x_4 = 2$ và công thức Simpson mở rộng, hãy tính gần đúng tích phân $\int_{0}^{2} g(x)dx$

Câu 3: Tìm nghiệm xấp xỉ của bài toán Cauchy

$$y' = tgx + cos y$$
, $x > 0.5$, $y(0.5) = 1.6$

trên đoạn [0.5,1] bằng phương pháp Euler cải tiến với bước h=0.25

Câu 4: Sử dụng phương pháp sai phân hữu hạn, giải bài toán biên:

$$\begin{cases} y'' - x^2 y = \ln x + 1, \ 1 < x < 2 \\ y(1) = y(2) = 0 \end{cases}$$

trong đoan [1,2] với bước h = 0.25

Câu 5: Xấp xỉ giá trị hàm u(x, y) trong miền $D = \{0 < x < 1, 0 < y < 1\}$ với

$$u(x, y) \text{ thoå: } \begin{cases} \Delta u = 10xy, (x, y) \in D \\ u(x, 0) = 5x^2, \ u(x, 1) = 5x^2 + 1 \text{ với bước chia } \Delta x = \Delta y = \frac{1}{3} \\ u(0, y) = y, \ u(1, y) = y + 5 \end{cases}$$

Câu 6: Xấp xỉ giá trị hàm u(x,t) trong miền $D = \{0 < x < 1, 0 < t < 0.4\}$ với

$$u(x,t) \text{ thoå:} \begin{cases} \frac{\partial u}{\partial t} - \sqrt{5} \frac{\partial^2 u}{\partial x^2} = 0, \quad (x,t) \in D \\ u(x,0) = \sin \pi x, \quad 0 \le x \le 1 \\ u(0,t) = u(1,t) = 0, \quad 0 \le t \le 0.4 \end{cases}$$
 với bước chia $\Delta x = 0.25$, $\Delta t = 0.2$. Sử

dung sơ đồ hiện

ĐỀ 2

Câu 1: Cho phương trình $x = \frac{1}{8} \left(e^{x+1} - x^2 - 4x - 8 \right)$ trong khoảng cách ly nghiệm [-1,0]. Chọn $x_0 = -0.5$, hãy tính x_1 bằng phương pháp lặp đơn và đánh giá sai số của x_1 theo công thức sai số hậu nghiệm

Câu 2: Cho bảng số

X	0	0.2	0.4	0.6
у	-1	1	1	4

Ký hiệu $N_1(x)$, $N_2(x)$, $N_3(x)$ lần lượt là đa thức nội suy tiến áp dụng cho 2 nút đầu, 3 nút đầu và 4 nút của bảng số trên. Biết $N_1(0.1) = 0$, tính $N_2(0.1)$, $N_3(0.1)$.

Cho $f(x) = \begin{cases} 4 - 3x + 2(x - 1)^3, & 1 \le x \le 2\\ a + 3(x - 2) + b(x - 2)^2 - 2(x - 2)^3, & 2 \le x \le 4 \end{cases}$. Tîm a và b để Câu 3:

f(x) là hàm nôi suy spline bâc 3 tư nhiên

Câu 4: Bằng cách đổi biến thích hợp để đưa về hệ phương trình vi phân cấp một và áp dụng phương pháp Euler với bước chia h = 0.25, hãy tính xấp xỉ các giá trị

y(0.25), y'(0.25) với y = y(x) là nghiệm: $\begin{cases} y''(x) = y'(x) + xy(x) + 2x - 1, & x \in [0,0.25] \\ y(0) = 1, & y'(0) = 1 \end{cases}$ **Câu 5:** Xét hệ phương trình $\begin{cases} 6x_1 - 2x_2 = 0 \\ 4x_1 + 10x_2 = 1 \end{cases}$ với phương pháp lặp Jacobi. Tính chuẩn vô cùng của ma trận lặp T_i . Cho $x^{(0)} = [-1,1]^T$, tính $x^{(1)}$.

Câu 6: Dùng phương pháp sai phân hữu hạn với bước chia h = 0.25, tìm nghiệm **Câu 6:** Dùng phương phap sai phản huu hạn với buốc chia n = 0.25, xim ngược y(x) của bài toán biên trong [0,1]: $\begin{cases} y''(x) - y'(x) - (x+1)y(x) = x - 1, & x \in [0,1] \\ y(0) = 1, & y(1) = 0 \end{cases}$ **Câu 7:** Giải gần đúng bài toán Cauchy: $\begin{cases} y'(x) = xy(x) + 2x + 1, & x \in [1,2] \\ y(1) = 2 \end{cases}$ bằng

phương pháp Euler với bước chia h = 0.5

Cho bảng số Câu 8:

X	1	1.25	1.5 1.75	2
y	1	4	2 -1	0

Dùng công thức Simpson với bước chia h = 0.25, tính gần đúng tích phân $I = \int y^2(x) dx$

Với bước chia $\Delta x = \Delta y = 0.25$, hãy xấp xỉ nghiệm u(x, y) của bài toán Câu 9: elliptic sau tai các điểm chia (0.75, 1.5) và (0.75, 1.75):

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x + 1, & 0.5 < x < 1, 1.25 < y < 2 \\ u(x, 1.25) = 2x + 5, & u(x, 2) = 2x + 8, 0.5 < x < 1 \\ u(0.5, y) = 4y + 1, & u(1, y) = 4y + 2, 1.25 < y < 2 \end{cases}$$

Dùng sơ đồ hiện với bước chia $\Delta x = 0.25$, $\Delta t = 0.1$, xấp xỉ nghiệm Câu 10: u(x,t) của bài toán truyền nhiệt sau tại các điểm (0.25, 1.1) và (0.25, 1.2)

$$\begin{cases} \frac{\partial u}{\partial t} - 3\frac{\partial^2 u}{\partial x^2} = x + 5t, & 0 \le x \le 0.25, t > 1\\ u(0,t) = t - 1, & t > 1\\ u(0.5,t) = t + 1.25, & t > 1\\ u(x,1) = x^2 + 4x, & 0 \le x \le 0.25 \end{cases}$$

<u>ĐÈ 3</u>

Câu 1: Cho hệ phương trình
$$Ax = b$$
 với $A = \begin{bmatrix} 20 & -1 & 2 \\ 1 & 20 & -1 \\ -2 & -1 & 20 \end{bmatrix}, b = \begin{bmatrix} 12 \\ 13 \\ 14 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$

Sử dụng phương pháp lặp Gauss – Seidel, hãy xác định ma trận lặp T_g và vecto c_g . Cho $x^{(0)} = [0,0,0]^T$, tính vecto $x^{(2)}$

Câu 2: Xây dựng hàm nội suy spline bậc ba tự nhiên g(x) nội suy bảng số:

X		1.2	1.6	2.0
у	,	1.53	2.44	4.12

Sử dụng các giá trị của g(x) tại các điểm nút $x_0 = 1.2$, $x_2 = 1.4$, $x_2 = 1.6$, $x_3 = 1.8$,

 $x_4 = 2.0$ và công thức Simpson mở rộng, hãy tính gần đúng tích phân I = $\int_{1.2}^{2.0} \frac{g(x)}{x} dx$

Câu 3: Tìm nghiệm xấp xỉ của bài toán $\begin{cases} y' = x^2 \cos y + y^2 \cos x, \ 0 < x < 0.4 \\ y(0) = 0.6124 \end{cases}$

trên đoạn [0,0.4] bằng phương pháp Runge – Kutta cấp bốn với bước chia h=0.2

Câu 4: Sử dụng phương pháp sai phân hữu hạn, giải bài toán biên

$$\begin{cases} y''-4y'-4y = \cos x + 3, \ 0 < x < 1 \\ y(0) = 1, \ y(1) = 0 \end{cases}$$

trong đoạn [0, 1] với bước chia h = 0.25

Câu 5: Xấp xỉ nghiệm u(x, y) trong miền $D = \{0 < x < \pi/2, 0 < y < \pi/2\}$ của

$$\Delta u = \cos x + \cos y, (x, y) \in D$$

bài toán: $\begin{cases} u(x,0) = u(x,\pi/2) = 0, & 0 \le x \le \pi/2 \text{ với bước chia } \Delta x = \Delta y = \frac{\pi}{6} \\ u(0,y) = u(\pi/2,y) = 0, & 0 \le y \le \pi/2 \end{cases}$

Câu 6: Xấp xỉ nghiệm u(x,t) trong miền $D = \{0 < x < 1, 0 < t < 0.2\}$ của bài

$$\int \partial u/\partial t - 9\partial^2 u/\partial x^2 = 0, \ (x,t) \in D$$

toán: $\begin{cases} u(x,0) = \sin \pi x, & 0 \le x \le 1 \\ u(0,t) = 0, & u(1,t) = \sin \pi t, & 0 \le t \le 0.2 \end{cases}$ với bước chia $\Delta x = 0.25$, $\Delta t = 0.1$.

Sử dụng sơ đồ hiện