Главные расслоения и связности.

1 Главные расслоения

Пусть G — группа Ли. Расслоение со слоем, гомеоморфным G, называется Определение 1.1. Главным G — расслоением называется локально тривиальное расслоение, задаваемое тройкой (P,B,π) , где P — томальное пространство, B — $\delta a s a$, $\pi:P\to B$ — проекция, а группа Ли G действует на P правыми сдвигами, сохраняя слои, причем действие внутри каждого слоя — свободно и транзитивно

Замечание 1.1. Локальную тривиальность нужно понимать следующим образом: существует такое покрытие базы B картами $\{U_{\alpha}\}_{\alpha}$ и набор гомеоморфизмов $\varphi_{\alpha}:\pi^{-1}(U_{\alpha})\xrightarrow{\simeq} U_{\alpha}\times G,\ \varphi_{\alpha}(p)=(\pi(p),g_{\alpha}(p)),$ причем функции g_{α} уважают действие группы G.

2 Примеры главных расслоений.

Пример 2.1. Расслоение penepos (frame bundle). Пусть \mathcal{M} — гладкое многообразие размерности n. Рассмотрим расслоение со слоем в точке $x \in \mathcal{M}$, состоящем из всевозможных упорядоченных базисов $T_x\mathcal{M}$. Это — главное $GL_n(\mathbb{R})$ — расслоение.

Пример 2.2. Предыдущий пример можно немного модифицировать. Например, если многообразие *риманово*, можно рассматривать только ортонормированные базисы, то получится главное $O_n(\mathbb{R})$ – расслоение. А если оно еще и ориентировано, то можно рассматривать ортонормированные базисы с фиксированной ориентацией, получится главное $SO_n(\mathbb{R})$ – расслоение.

Оба предыдущий примера так или иначе строятся с помощью касательного расслоения $T_x\mathcal{M}$. Но бывают и менее тривиальные главные расслоения.

Пример 2.3. Главное тавтологическое S^1 – расслоение над проективным комплексным пространством $\mathbb{CP}^n = \mathbb{C}^{n+1}/\sim$. Пусть $S^{2n+1} \subset \mathbb{C}^{n+1}$ — единичная сфера. Рассмотрим проекцию $\pi: S^{2n+1} \to \mathbb{CP}^n$. Она склеивает точки, отличающиеся домножением на комплексное число, модуль которого 1. То есть слой изоморфен S^1 . Получилось главное S^1 – расслоение $(S^{2n+1}, \mathbb{CP}^n, \pi)$.

Возможно, тут стоит и более общее определение написать.

Функции перехода. 3

Определение 3.1. Функциями перехода называются функции $g_{\alpha\beta}$: $U_{\alpha} \cap U_{\beta} \to G$, определенные по правилу

$$g_{\alpha}(p) = g_{\alpha\beta}(\pi(p)) \cdot g_{\beta}(p). \tag{1}$$

Предложение 3.1. Определение (1) корректно, то есть не зависит от выбора представителя p слоя.

Доказательство. Рассмотрим точку $p \cdot g$, где $g \in G$. Тогда по определению 1.1 $\pi(p) = \pi(p \cdot q)$. Согласно (1)

$$g_{\alpha}(p) \cdot g = g_{\alpha}(p \cdot g) = g_{\alpha\beta}(\pi(p \cdot g))g_{\beta}(p \cdot g) = g_{\alpha\beta}(\pi(p \cdot g))g_{\beta}(p) \cdot g.$$

Таким образом, $g_{\alpha\beta}(\pi(p)) = g_{\alpha\beta}(\pi(p \cdot g)).$

Замечание 3.1. Функции перехода удовлетворяют условиям коцикла:

- (1) $g_{\alpha\beta}(x)g_{\beta\gamma}(x)=g_{\alpha\gamma}(x)$, для $x\in U_{\alpha}\cap U_{\beta}\cap U_{\gamma};$ (2) $g_{\alpha\beta}(x)=g_{\beta\alpha}^{-1}(x)$, при $x\in U_{\alpha}\cap U_{\beta};$

(3) $g_{\alpha\alpha}=1$, при $x\in U_\alpha$. Предположим, $\varphi'_\alpha:\pi^{-1}(U_\alpha)\to U_\alpha\times G$ — какая-то другая тривиализация в тех же картах. Тогда существуют такие функции $h_{\alpha}(x):U_{\alpha}\to G,$ что выполнено

$$g'_{\alpha}(p) = h_{\alpha}(\pi(p)) \cdot g_{\alpha}(p).$$

Предложение 3.2. Функции перехода преобразуются следующим образом:

$$g'_{\alpha\beta}(x) = h_{\alpha}(x) \cdot g_{\alpha\beta}(x) \cdot h_{\beta}^{-1}(x).$$

Доказательство.

$$g'_{\alpha\beta}(\pi(p)) = g'_{\alpha}(p) \cdot (g'_{\beta}(p))^{-1} = h_{\alpha}(\pi(p)) \cdot g_{\alpha}(p) \cdot (h_{\beta}(\pi(p)) \cdot g_{\beta}(p))^{-1} =$$
$$= h_{\alpha}(x) \cdot g_{\alpha\beta}(x) \cdot h_{\beta}^{-1}(x).$$

Функции перехода — это один из способов говорить о главных расслоениях.

Предложение 3.3. Предположим, есть функции $g_{\alpha\beta}$, которые удовлетворяют условиям коцикла (покрытие $\{U_{\alpha}\}_{\alpha}$ тоже дано) Тогда главное расслоение на базе B определяется ими однозначно.

Доказательство. Рассмотрим пространство $E = \coprod_{\alpha} U_{\alpha} \times G$. Заведем на нем отношение эквивалентности \sim :

$$(x,g) \sim (x, g_{\beta\alpha(x)\cdot g}),$$

оно склеивает точки из $U_{\beta} \times G$ и $U_{\alpha} \times G$ соответственно. Заметим, что это честное отношение эквивалентности в силу условий коцикла. Положим теперь $P=E/\sim$. Все корректно и хорошо.

4 Pullback – расслоения

Пусть $f:A\to B$ — непрерывное отображение многообразий. Определим $f^*P\subset A\times P$ как максимальное подмножество, для которого диаграмма коммутативна:

$$\begin{array}{ccc}
f^*P \xrightarrow{p_2} P, \\
\downarrow & \downarrow \\
A \xrightarrow{f} B
\end{array}$$

где p_1, p_2 — проекции на соответствующие координаты. То есть $f^*P = \{(a,p) \in A \times P \mid f(a) = \pi(b)\}$. Проекция $\tau : f^*P \to A$ получается ограничением проекции p_1 на f^*P . Получилось главное G — расслоение (f^*P, A, τ) , групповая структура наследуется у расслоения (P, B, π) .

Замечание 4.1. Предположим, есть два главных G – расслоения $Q \to A$, $P \to B$ и отображение $F: Q \to P$, уважающее дейтвие группы G. Оно индуцирует $f: A \to B$ и изоморфизм $Q \to f^*P$.

5 Ассоциированные расслоения

Предположим, группа G действует слева на многообразие F. Тогда можно определить расслоение

$$P \times_G F \to B$$
.

Тотальное пространство определяется аналогично тому, как мы это делали в доказательстве предложения 3.3.

Замечание **5.1.** Аналогично, но не совсем. Действие теперь левое, поэтому чуть-чуть определение эквивалентности на пересечении компонент изменится. Это будет видно в следующем примере.

Пример 5.1. Предположим, есть представление группы G:

$$\rho: G \to Aut(V)$$
.

Пусть $\rho(g) = \rho_q$. Определим векторное расслоение

$$P \times_G V \to B$$
.

Аналогично предложению 3.3 мы хотим профакторизовать $E = P \times V$ по отношению эквивалентности. Определим \sim отношение эквивалентности:

$$(p,v) \sim (p \cdot g, \rho_q^{-1}(v)).$$

Нетрудно убедиться, что это действительно отношение эквивалентности. Положим теперь $P \times_G V = E/\sim$.

Замечание 5.2. Про алгебру Ли. Вот у нас есть группа Ли G. Это многообразие, у него есть касательное пространство в каждой точке. Вектор касательного пространства T_gG однозначным образом сопоставляется вектору касательного пространства T_eG сдвигом на g^{-1} . Таким образом, векторное поле, уважающее групповую структуру однозначно задается одним ветором в T_eG . Теперь можно строить алгебру Ли G. Пусть её элементы — векторы из T_eG . Определим умножение на них как скобку Ли соответствующих полей.

Пример 5.2. Сопряженное расслоение. Определим сопряженное представление группы Ли G её алгеброй Ли \mathcal{G} :

$$G \times \mathcal{G} \to \mathcal{G}$$
;

$$(g,X) \mapsto g \cdot X \cdot g^{-1}$$
.

Векторное расслоение adP, ассоциированное с этим представением, называется conpsженным расслоением.

6 Универсальное расслоение

Пусть Gr(n,k)-n – плоскости в \mathbb{R}^{n+k} . Вектороное расслоение ранга n

$$\xi(n,k) \to Gr(n,k)$$

называется mавтологическим (слой над плоскостью — это точки этой плоскости). Есть тривиальное включение $Gr(n,k)\subset Gr(n,k+1)$. Обозначим через $Gr(n,\infty)=\bigcup_{k\geqslant 0}Gr(n,k)$ (об этом можно мыслить как о поскостях в \mathbb{R}^∞). Тав-

тологическое расслоение для $Gr(n,\infty)$ обозначается $\xi(n)$.

Дальше я ничего не поняла, но вроде оно и не потребуется.

7 Связности на гладких главных расслоениях

Определение 7.1. В каждой точке p тотального пространства расслоения P гладко выберем подпространство $\mathcal{H}_p \subset T_p P$ размерности $\dim B$ так, чтобы $T_p P = \mathcal{H}_p \oplus \ker(d\pi(p))$. Такой выбор плоскостей, который еще и уважает действие группы, называется связностью на главном расслоении. Пространство \mathcal{H}_p называется множеством горизонтальных векторов, пространство $\ker(d\pi(p)) = T_p P^v -$ множеством вертикальных векторов (по сути это векторы, лежащие «в слое» над p).

Лемма 7.1. Пусть Γ — связность на $\pi: P \to B, \gamma: [0,1] \to B$ — гладкий путь на базе B. Выберем $e \in \pi^{-1}(\gamma(0))$ — точку из слоя над началом пути. Тогда путь γ однозначно поднимается до пути $\widetilde{\gamma}: [0,1] \to P$, начало которого $e, \pi \circ \widetilde{\gamma} = \gamma$ и $\widetilde{\gamma}'(t)$ содержится в горизонтальном пространстве $\mathcal{H}_{\widetilde{\gamma}(t)}$.

Доказательство. Рассмотрим отображение, задаваемое путем $\gamma:[0,1]\to B$ и применим к нему pullback. Получим главное расслоение $\gamma^*P\to[0,1]$. То есть без ограничения общности B=[0,1]. Связность в главном расслоении с одномерной базой — векторное поле. Тогда по тереме из диффуров о существовании и единственности мы на самом деле просто решаем задачу Коши.

Замечание 7.1. Если мы захотим построить путь с началом в точке $e \cdot g$, например, то нужно просто старый домножить на соответствующий элемент групны: $\widetilde{\gamma} \cdot g$. То есть на самом деле над каждым путем на базе лежит целое семейство его поднятий — сечений.

Следствие 7.1. Пусть на базе дана кривая $\gamma:[0,1]\to B,\,\gamma(0)=b_0,\,\gamma(1)=b_1.$ Связность Γ задает изоморфизм между слоями $\pi^{-1}(b_0)\stackrel{\simeq}{\to} \pi^{-1}(b_1),\,$ эквивариантный относительно действия G.

8 Дифференциальные формы, описывающие связности

Определение 8.1. Внешняя 1 – форма $\omega_{MC} \in \Omega^1(G,\mathcal{G})$, инвариантная относительно левого домножения на G и значение $e \in G$ на которой — тривиальный изоморфизм $T_eG \to \mathcal{G}$, называется формой Маурера – Картана.

Замечание 8.1. Такая форма существует и единственна, потому что любая форма, уважающая сдвиги, задается своим значением в единичном элементе G.

Обозначение 8.1. Если $\tau \in T_gG$, то значение формы в точке g принято и естественно обозначать $(\omega_{MC})_g = g^{-1}\tau \in T_eG = \mathcal{G}$.

Лемма 8.1. Каждой связности на гладком расслоении $\pi: P \to B$ можно

сопоставить форму $\omega \in \Omega^1(P,\mathcal{G})$, удовлетворяющую условиям

(a) При правом домножении на $g \in G$ форма преобразуется по правилу

$$\omega_{pg}(\tau \cdot g) = g^{-1}\omega_p(\tau) \cdot g,$$

где $p \in P$, $\tau \in T_pP$.

(b) Для любого $p \in P$ рассмотрим вложение $R_p: G \to P, R_p(g) = p \cdot g$. Тогда

$$R_p^*(\omega) = \omega_{MC}.$$

Обратно тоже верно.

Доказательство. Докажем сначала обратно. Пусть дана форма $\omega \in \Omega^1(P,\mathcal{G})$, которая удовлетворяет (a) и (b). Пусть \mathcal{H}_p — ядро отображения $\omega_p : T_pP \to \mathcal{G}$. Чтобы выбранные плоскости задавали связность, нужно проверить, что они имеют размерность действительно dim B, причем выбор плоскостей гладкий, и эквивариантность относительно G.

Размерность и гладкость. Посмотрим на $R_p^*: T_p^*P \to T_e^*G$.

$$\omega_p(p \cdot \tau) = R_p^*(\omega_p)(\tau) = (\omega_{MC})_e(\tau) = e^{-1}\tau = \tau.$$

Получается, что если путь τ нарисовать на G, то $\omega_p(p\cdot\tau)=0$ только когда $\tau=0$. Это значит, что $\dim(\operatorname{im}(\omega_p))\geqslant \dim G$, а больше быть и не может. Таким образом, все \mathcal{H}_p — плоскости нужных размерностей, а их выбор гладкий, потому что форма ω — гладкая.

Эквивариантность. Действительно, если $\tau \in \mathcal{H}_p$, то $\tau \cdot g \in \mathcal{H}_{pg}$ по свойству (a).

Теперь докажем в другую сторону. Пусть у нас есть связность Γ . Определим $\omega_p:T_pP o\mathcal G$ через композицию

$$T_pP \to T_pP^v \xrightarrow{(R_p^*)^{-1}},$$

где первая стрелочка — проекция на подпространство вертикальных векторов, а второе отображение корректно определено, поскольку ядро — это в точности горизонтальные векторы. \Box

9 Существование связности

Хотелось бы, чтобы связность всегда была.

Лемма 9.1. Тривиальное расслоение имеет связность.

Доказательство. Структура $B \times G$ дает естественную структуру горизонтальных сечений (сечения состоят из точек с фиксированной второй координатой).

Лемма 9.2. Если P имеет хотя бы одну связность, тогда пространство всех связностей — аффинно, причем ему соответствует векторное пространство 1 — форм $\Omega^1(B,adP)$.

Доказательство. В лемме 8.1 мы поняли, что связностям соответствуют особенные 1 — формы из $\Omega^1(P,\mathcal{G})$. Если рассмотреть множество их попарных разностей, получится векторное подпространство, удовлетворяющее условиям (a) и (c) $R_p^*(\omega) = 0$ (получается из (b) вычитанием). Рассмотрим отображение

$$\pi^*: \Omega^1(B, adP) \to \Omega^1(P, \mathcal{G}),$$

 $\pi^*: \delta \mapsto \omega.$

Покажем, что его ограничение на подпространство $\Omega^1(P,\mathcal{G})$, удовлетворяющее (a) и (c) — изоморфизм.

Для начала заметим, что образ $im(\pi^*)$ удовлетворяет (a) и (c). Действительно, все касательные векторы, «лежащие в слое» схлопываются, у поскольку именно они составляли дополнение к ядру $R_p^*(\omega)$, то выполнено (c).

Предположим, $\pi(p) = b, \ \tau \in T_p P$. Тогда $\omega_p(\tau) = \pi^*(\delta_b)(\tau) = \delta_b(\pi \tau)$. Таким образом,

$$\omega_p(\tau) = \delta_b(\pi \tau) \tag{2}$$

и выполнено (а) (нужно просто подставить (2)).

Из формулы (2) видно, что π^* — инъекция, значит, имеется изоморфизм с образом.

Предложение 9.1. Любое гладкое главное расслоение имеет связность. Пространство связностей отождествляется с $\Omega^1(B,adP)$.

Доказательство. Рассмотрим разбиение единицы $\{\lambda_{\alpha}\}_{\alpha}$, подчиненное покрытию локальной тривиализации $\{U_{\alpha}\}_{\alpha}$. В каждой окрестности $\pi^{-1}(U_{\alpha})$ есть форма связности A_{α} по леммы 9.1. Положим

$$A\sum_{\alpha}\lambda_{\alpha}A_{\alpha}.$$

Мы нашли глобальную форму связности на P.

Вторая частыпредложения — следствие леммы 9.2.

10 Коваринатная производная