Руководство к приложению «Preprocessor Application»



Автор: Трубин И.С.

# Оглавление

| 1. Введение                           | 3 |
|---------------------------------------|---|
| 1.1. Область применения               | 3 |
| 1.2. Минимальные системные требования | 3 |
| 2. Работа с приложением               | 4 |
| 2.1. Состав дистрибутива              | 4 |
| 2.2. Программная структура            | 4 |
| 2.3. Запуск приложения                | 5 |
| 2.4. Входные и выходные данные        | 5 |
| 2.5. Описание интерфейса              | 6 |
| 2.6. Возможные сообщения              | 9 |
| 2.7. Выход из приложения              | 9 |
| 3. Демонстрационные примеры           |   |

#### 1. Введение

### 1.1. Область применения

В настоящее время нейронные сети приобрели большую популярность. Однако, чтобы разработанная нейронная сеть смогла работать, её нужно обучить на определённых наборах данных, и чем удобнее ей будет работать с этими данными, тем лучше будет обучающий эффект. То есть, обучающие данные нужно как следует подготовить – очистить или же дополнить, чтобы результат работы нейронной сети был более точным. Препроцессор или предобработка – это общий термин для всех манипуляций над данными перед передачей их обучающей модели. Данное приложение представляет собой образов, препроцессор двухмерных двоичных которое обеспечит независимость образов к масштабированию, смещению (трансляции) и повороту (ротации), что позволит подготовить обучающие изображения для их дальнейшего распознавания в нейронной сети.

# 1.2. Минимальные системные требования

- Версия Java 1.8.
- Не менее 10 МБ свободного дискового пространства.
- Не менее 512 МБ ОЗУ.

## 2. Работа с приложением

# 2.1. Состав дистрибутива

В состав дистрибутива входят:

- Файлы с кодом программы с расширениями .java и сформированные на их основе файлы класса с расширениями .class.
  - Исполняемые файлы «PreprocessorApp.exe» и «PreprocessorApp.jar».
  - Папка с тестовыми примерами «Images».
  - Руководство к приложению «AboutPreprocessorApplication.pdf».

### 2.2. Программная структура

Программная структура представлена на рисунке 1.



Рисунок 1 – Программная структура

На схеме видно входное изображение, которое должно содержать образ для преобразования, и выходное изображение с преобразованным образом.

Основная программа-препроцессор представлена на схеме тремя блоками: «Масштабирование», «Трансляция» и «Ротация».

Краткое описание работы, которую выполняют блоки, представленные на схеме:

- «Преобразование изображения в массив»: преобразует растровое изображение в двухмерный двоичный массив.
- «Масштабирование»: увеличивает или уменьшает образ, расположенный на изображении, при этом, перемещает его в левый верхний угол изображения.
  - «Трансляция»: смещает образ в относительный центр изображения.
- «Ротация»: поворачивает образ относительно его центра по часовой стрелке, если угол поворота положительный, или против часовой стрелки, если угол отрицательный.
- «Преобразование массива в изображение»: преобразует двухмерный двоичный массив в чёрно-белое растровое изображение.

## 2.3. Запуск приложения

Для запуска приложения достаточно дважды кликнуть на исполняемые файлы «PreprocessorApp.exe» или «PreprocessorApp.jar».

Для запуска приложения через консоль необходимо использовать путь к компилятору Java «...\bin\java.exe». В зависимости от выбора исполняемого файла консольные команды будут иметь следующий вид:

- «...\bin\java.exe» -jar «...\PreprocessorApp.exe»
- «...\bin\java.exe» -jar «...\PreprocessorApp.jar»

#### 2.4. Входные и выходные данные

Входными данными для программы являются растровые изображения формата PNG или JPEG, предпочтительно со светлым (белым) фоном и тёмным (чёрным) образом. Далее программа преобразует изображение в

массив, с которым и начинает работать препроцессор. Выходными данными программы являются растровые изображения с белым фоном и чёрным образом, которые получены в результате преобразования результирующего массива.

Перед преобразованием входного изображения в двухмерный двоичный массив, на него накладывается чёрно-белый фильтр. После этого, тусклым и белым пикселям присваивается значение 0, а тёмным и чёрным присваивается значение 1. В конце, этот двоичный массив преобразуется в изображение, где элементу со значением 0 соответствует белый пиксель, а элементу со значением 1 — чёрный пиксель.

На рисунке 2 представлены градиенты чёрного, красного, зелёного и синего цветов и то, как они изменяются после выполнения преобразования в массив и обратно.



Рисунок 2 – Преобразование цветовых градиентов

Чёрному цвету соответствуют пункты 1 и 2, красному – пункты 3 и 4, зелёному – пункты 5 и 6, синему – пункты 7 и 8.

# 2.5. Описание интерфейса

На рисунке 3 представлено главное окно приложения с отмеченными элементами.



Рисунок 3 – Главное окно

Описание элементов, отмеченных на рисунке 3, представлено в таблице 1.

Таблица 1 – Элементы главного окна

| Номер элемента | Описание элемента                                                                            |  |  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1              | Область для отображения исходного изображения.                                               |  |  |  |  |  |  |
| 2              | Область для отображения результирующего изображения.                                         |  |  |  |  |  |  |
| 3              | Кнопка, открывающая диалоговое окно для выбора исходного изображения.                        |  |  |  |  |  |  |
| 4              | Кнопка, запускающая программу преобразования изображения.                                    |  |  |  |  |  |  |
| 5              | Кнопка, открывающая диалоговое окно для выбора места сохранения результирующего изображения. |  |  |  |  |  |  |
| 6              | Кнопка, открывающая окно настроек приложения.                                                |  |  |  |  |  |  |
| 7              | Кнопка, открывающая информационное окно.                                                     |  |  |  |  |  |  |
| 8              | Кнопка, открывающая руководство к приложению.                                                |  |  |  |  |  |  |

На рисунке 4 продемонстрировано окно настроек приложения.



Рисунок 4 – Окно настроек

В окне настроек возможно отключить блоки препроцессора. Помимо этого, блок ротации представлен в двух вариантах:

- Автоматический поворот, где программа сама определяет угол поворота образа. Используя этот вариант, образ должен занять одно из четырёх положений: 0°, 90°, 180°, 270°.
  - Поворот на угол, заданный пользователем.

Также, присутствуют кнопки, позволяющие либо применить новые настройки, либо вернуть настройки в значение по умолчанию. Значение по умолчанию имеет вид всех включённых блоков препроцессора, а блок ротации включён в автоматическом режиме, как и показано на рисунке 4.

На рисунке 5 продемонстрировано информационное окно, где будет отображаться информация о работе препроцессора.



Рисунок 5 – Информационное окно

### 2.6. Возможные сообщения

При работе с приложением могут возникать ситуации, когда будут появляться различные сообщения об ошибках. Возможные сообщения и ситуации, при которых они возникают, описаны в таблице 2.

Таблица 2 – Возможные сообщения



### 2.7. Выход из приложения

Выход из приложения осуществляется при закрытии главного окна.

# 3. Демонстрационные примеры

В таблице 3 представлены демонстрационные примеры с отображением настроек, главного окна и информационного окна.

Таблица 3 – Примеры с настройками







В таблице 4 представлены демонстрационные примеры с промежуточными результатами.

Таблица 4 – Демонстрация с промежуточными результатами

| Разрешение | Исходное<br>изображение | Преобразование | Масштабирование | Трансляция | Ротация |
|------------|-------------------------|----------------|-----------------|------------|---------|
| 100 x 200  | A                       | A              | A               | Α          | Α       |
| 200 x 100  | B                       | 8              | 8               | 8          | В       |
| 50 x 50    | E                       | E              |                 | E          |         |
| 800 x 800  |                         |                |                 |            |         |
| 200 x 200  | 6                       | 6              | G               | 6          | G       |

| 200 x 200 | 7 | 7 | 7 | 4  | K |
|-----------|---|---|---|----|---|
| 200 x 200 | N | N | 1 | 7  |   |
| 100 x 200 | 8 | 8 | 8 | R  | ъ |
| 200 x 200 |   | 8 | ~ | CZ |   |
| 200 x 100 | Т | T | T | T  | T |