Installation and service instructions

for contractors

Vitocal 300-G Type BW/BWS, WW/WWS, 21 to 45 kW Compact heat pump with electric drive Single and two-stage

For applicability, see the last page

VITOCAL 300-G

5442 829 GB 11/2009 Please keep safe.

Safety instructions

Please follow these safety instructions closely to prevent accidents and material losses.

Safety instructions explained

Danger

This symbol warns against the risk of injury.

Please note

This symbol warns against the risk of material losses and environmental pollution.

Note

Details identified by the word "Note" contain additional information

Target group

These instructions are exclusively designed for qualified personnel.

- Work on electrical equipment must only be carried out by a qualified electrician
- The system must be commissioned by the system installer or a qualified person authorised by the installer.

Regulations

Observe the following when working on this system

- all legal instructions regarding the prevention of accidents,
- all legal instructions regarding environmental protection,
- the Code of Practice of relevant trade associations.
- all current safety regulations as defined by DIN, EN, DVGW, VDE and all locally applicable standards

Working on the system

- Isolate the system from the power supply and check that it is no longer 'live', e.g. by removing a separate fuse or by means of a main isolator.
- Safeguard the system against unauthorised reconnection.

Please note

Electronic modules can be damaged by electrostatic discharges.

Touch earthed objects, such as heating or water pipes, to discharge static loads.

Repair work

Please note

Repairing components that fulfil a safety function can compromise the safe operation of your heating system.

Replace faulty components only with original Viessmann spare parts.

Safety instructions (cont.)

Ancillary components, spare and wearing parts

Please note

Spare and wearing parts that have not been tested together with the heating system can compromise its function. Installing non-authorised components and non-approved modifications or conversions can compromise safety and may invalidate our warranty.

For replacements, use only original spare parts supplied or approved by Viessmann.

Installation instructions	
Preparing for installation	
Product information	9
General information - electrical connection	10
Installation	10
Overview of possible system schemes	15
Function description for the system examples	17
Primary circuit, type BW (brine/water)	22
Primary circuit, type WW (water/water)	24
Primary circuit, type BW + BWS (two-stage version)	
Primary circuit, type WW + WWS (two-stage version)	31
Integration of the two-stage version in the system examples	39
System example 1	44
System example 2	52
DHW heating	65
Installation sequence	
Installing the heat pump	
Hydraulic connections	
Electrical connections	
Power supply	
Connecting to terminals X3.8/X3.9	
Closing the heat pump	
Checking grommets	116
Service instructions	
Commissioning, inspection, maintenance	
Steps - commissioning, inspection and maintenance	
Further details regarding the individual steps	119
Troubleshooting	
Messages	126
Diagnosis (service scans)	
Testing outputs (actuator test)	
Function check	
Steps if the room temperature is too low	
No display indication on the programming unit	
Repairs	
i vehali s	100
Control unit settings by the contractor	171

5442 829 GB

Parameter group system definition	
Parameter group system definition	173
7000 System scheme	173
7001 Language	173
7003 Temperature differential for the heating limit	174
7004 Temperature differential for the cooling limit	174
7010 External extension	175
7008 Swimming pool	176
700A Cascade	176
5735 Number of lag heat pumps	176
700B Output of lag heat pumps	177
7011 External operating status changeover	
7012 Operating status for external changeover	179
701A Pumps and compressor, external blocking	180
7013 Duration of external operating status changeover	
7014 External demand mixer "OPEN"	
7015 External blocking mixer "CLOSED"	
7017 Vitocom 100	
701B Common system temperature sensor	
Parameter group compressor	
Parameter group compressor	
5000 Enable compressor	
5030 Heat pump output	185
Parameter group compressor 2	
Parameter group compressor 2	186
5100 Enabling heat pump stage 2	
5130 Heat pump output	
Parameter group external heat source	
Parameter group external heat source	
7B00 Enabling an external heat source	
7B01 Priority of external heat sources	
7B02 Dual-mode temperature of external heat sources	
7B0D External heat source for DHW	188
Parameter group DHW	
Parameter group DHW	189
6000 Set cylinder temperature	
6015 DHW reheating	
6005 Minimum temperature for DHW cylinder	
6006 Maximum temperature for DHW cylinder	

Index

6007/6008 DHW/booster heater hysteresis	190
6009 DHW start optimisation	
600A DHW stop optimisation	
600C Set DHW temperature 2	192
600E Temperature sensor 2	
6016 DHW heating priority	
6017 DHW at control high pressure	
6020 Cylinder primary pump operating mode	
Parameter group solar	
Parameter group solar	
7A00 Solar control unit	195
Parameter group electric heater	
Parameter group electric heater	196
7900 Instantaneous heating water heater (on site)	
7902 Heating mode with booster heater	
7907 Max. stage instantaneous heating water heater	
790A Stage at power-OFF	
790B Dual-mode temperature instantaneous heating water heater	198
Parameter group internal hydraulics	
Parameter group internal hydraulics	
7300 Heat pump for drying a building	
7303 Screed program	
730D 3-way diverter valve mode	
730C Set flow temperature, external demand	
7320 Primary pump operating mode	
7340 Secondary pump operating mode	203
Parameter group buffer cylinder	
Parameter group heating water buffer cylinder	
7200 Heating water buffer cylinder	204
7202 Set temperature for "Fixed val."	
7203 Hysteresis	
7204 Maximum temperature	
7208 Dual-mode temperature, heating water buffer cylinder	206
Parameter group heating circuits/cooling circuit	
Parameter group heating circuits	
2000/2001/2022 Room temperatures and switching times	
2003 Enabling the remote control	
2006/2007 Heating curve slope/level	208

200A Influence of room temperature hook-up	208
200B Room temperature hook-up (heating circuits)	
200E Maximum set flow temperature	209
Danamatan masan asalina	
Parameter group cooling	044
Parameter group cooling	
7100 Cooling mode	
7101 Cooling circuit	
7102 Room temperature separate cooling circuit	
7103 Minimum flow temperature for separate cooling circuit	
7104 Room hook-up cooling circuit	
7110/7111 Cooling curve (cooling circuit/separate cooling circuit)	∠13
Parameter group time	
Parameter group time	
7C00 - 7C06 Summertime/wintertime	214
Parameter group communication	
Parameter group communication	215
7710 LON communication module	
7798/7777 LON system number/subscriber number	
7779 Fault manager	
779C Receive interval for data	
7797 Outside temperature via LON	
77FF Time via LON	
5707 Heat pump numbers in a cascade	
Parameter group operation	
Parameter group operation	210
8800 Lock out controls.	
Connection and wiring diagrams	
Overview of the PCBs and connection options	220
Parts lists	
Parts list	231
Commissioning/service reports	
Hydraulic parameters report	236
Control parameters report	
·	
Specification	241

Index (cont.)

Appendix Heat pump commissioning order	246
Certificates Declaration of conformity	247
Keyword index	248

Product information

Vitocal 300-G, Type BW and WW

Brine/water or water/water heat pump with electronic heat pump control unit Vitotronic 200, type WO1A

The refrigerant circuit has an electronic expansion valve (EEV) with an independent control circuit.

For type WW, a separate well circuit provides the primary circuit with heating energy via a separating heat exchanger (accessory). The well circuit is also controlled by heat pump control unit Vitotronic 200, type WO1A.

All sensors are fitted inside sensor wells.

The heat pump control unit can activate and control a heating circuit provided on site for cooling or a separate cooling circuit.

For central and DHW heating, an instantaneous heating water heater (on site) can also be controlled.

The output can be extended in conjunction with heat pump stage 2 (Vitocal 300-G, type BWS).

Vitocal 300-G, type BWS and WWS

The Vitocal 300-G, type BWS and WWS, are used to extend the output (stage 2) of heat pumps type BW and WW.

Heat pump stage 2 (type BWS/WWS) can be used both for heating operation and DHW heating. Accordingly, a second secondary pump or circulation pump for cylinder heating (on the heating water side) is required.

Heat pump stage 2 (type BWS/WWS) does not have its own heat pump control unit and is controlled by the heat pump control unit Vitotronic 200, type WO1A of the heat pump (type BW/WW).

Heat pump stage 2 (type BWS/WWS) has its own refrigerant circuit. This means a separate power supply is required for every compressor.

With the two-stage version, either a primary pump can be used for every heat pump, or a common external primary pump can be used. Independently, a collective flow and return temperature sensor is used on the primary side at the common flow and return.

Heat pump stage 2 (type BWS/WWS) must be installed to the left of the heat pump (type BW/WW).

The hydraulic connection between two heat pumps is carried out on site.

An instantaneous heating water heater (on site) can only be controlled by heat pump stage 1 (type BW/WW) (for heat pump cascades only by the lead appliance).

General information - electrical connection

- The total output of all components connected directly to the heat pump control unit (e.g. pumps, valves, message facilities, contactors) must not exceed 1000 W.
 - If the total load \leq 1000 W, the individual rating of a component (e.g. pump, valve, message facility, contactor) can be greater than specified (observe max. contact load; see also page 241).
- If the compressor and/or instantaneous heating water heater (on site) are operated at a lower tariff (power-OFF), provide an additional cable for the power-OFF signal (e.g. NYM 3 x 1.5 mm²) from the distribution board (meter box) to the heat pump control unit (see page 104).

- The number of power cables from the distribution board (meter box) to the heat pump control unit depends on the system version and tariffs used (see from page 103).
- The cores of the KM BUS cable are interchangeable.

For further information, see heat pump control unit and power supply (page 103).

Installation

For handling purposes, the heat pump module can be removed (see page 168).

Please note

Avoid damaging the appliance during handling.

Never put weight on top of the appliance.

Please note

If the compressor is at a steep angle in the heat pump, lubricant will enter the refrigerant circuit and damage the appliance.

Max. tilting angle 45°.

Installation room requirements

Please note

The installation room must be dry and free from the risk of frost. Ensure ambient temperatures of 0 to 35 °C.

Please note

Avoid risk of explosion due to dust, gases and vapours in the installation room.

Please note

Observe the permissible floor load.

■ Total weight

BW 121	282 kg
BWS 121	277 kg
BW 129	305 kg
BWS 129	300 kg
BW 145	345 kg
BWS 145	340 kg

- To prevent structure-borne noise, never set up the appliance on ceilings with wooden joists (e.g. in the attic).
- Level the appliance.
 If the adjustable feet are used to compensate for an uneven floor (max.
 10 mm), the pressure load on the feet must be distributed evenly.

Observe the required floor area and minimum room volume (as per DIN EN 378):

Туре	Floor area	Min. space require- ment
BW/BWS 121	5 m ²	14 m ³
BW/BWS 129	7 m ²	17 m ³
BW/BWS 145	9 m ²	123 m ³

Observe required minimum clearances:

Single stage (type BW)

(A) Clearance depends on on-site installation and location

Two stage (type BW/BWS)

(A) Clearance depends on on-site installation and location

Requirements - on-site connections

Single stage (type BW)

Two stage (type BW/BWS)

- Install hydraulic connections on site stress-free.
- Establish hydraulic connections between the two heat pumps (type BW/BWS) on site.
- All required components (with a suitably designed plate heat exchanger) for the cooling circuit must be provided on site.

Line lengths in the heat pump plus wall clearance:

Туре	BW	BWS
Heat pump control unit	1.0 m	A connecting cable is used
power supply (230 V~)		for the power supply
Compressor power supply	1.0 m	1.0 m
(400 V~)		
Additional power cables	1.5 m	Connecting cable

Recommended power cables:

Туре	Heat pump con-	Compressor (400 V~)				
	trol unit (230 V~)		Max. cable length			
BW 121	3 x 1.5 mm ²	4 x 2.5 mm ²	50 m			
BWS 121	_	4 x 2.5 mm ²	50 m			
BW 129	3 x 1.5 mm ²	4 x 4.0 mm ²	50 m			
BWS 129	_	4 x 4.0 mm ²	50 m			
BW 145	3 x 1.5 mm ²	4 x 6.0 mm ²	40 m			
BWS 145	_	4 x 6.0 mm ²	40 m			

Note

An instantaneous heating water heater (on site) can **only** be installed outside the heat pump (on site). The flow temperature sensor system must be installed in the direction of flow downstream of the instantaneous heating water heater.

Overview of possible system schemes

The following table provides an overview of **all** possible system schemes.

Overview of possible system schemes (cont.)

	Syst	tem di	agram	(ID 7	000)							
	0	1	2	3	4	5	6	7	8	9	10	11
Heating cir- cuit												
A1	-	X	X	-	-	X	X	-	-	X	X	-
M2	-	-	_	X	Х	X	X	X	X	X	X	-
M3	_	_	_		_	_	_	Х	Х	Х	Х	_
DHW cylin- der	Х	-	Х	_	X	_	X	_	Х	_	Х	_
Heating water buffer cylinder	_	0	0	X	X	X	X	X	X	X	X	_
External heat source	_	O*1	O*1	0	0	0	0	0	0	0	0	-
Cooling mode (only one "cool- ing circuit" possible) Heating cir- cuit A1 M2 M3 Separate cooling cir- cuit	0	0 0	0 0	-0-0	-0-0	00 - 0	00 - 0	- 000	- 000	0000	0000	- - -
Swimming pool	0	0	0	0	0	0	0	0	0	0	0	-
Solar ther- mal system (only with Vitosolic 100/200)	0	_	0	_	0	_	0	_	0	_	0	_

Χ	Requirement

O Option

^{*1} Only in conjunction with a heating water buffer cylinder.

Note

The system examples are recommendations only, which must be checked **on site** for completeness and function. Please observe the applicable regulations and directives for design, installation and operation.

Function description two-stage version

For reasons of modularity, compressor stage 2 refers to a separate heat pump stage 2 (type BWS). Heat pump stage 2 is not equipped with its own heat pump control unit, but with its own EEV controller to regulate the cooling circuit. If the heating output required is greater than that of the heat pump (type BW, compressor stage 1), the heat pump control unit starts heat pump stage 2 (type BWS).

For optimised starting and stopping of heat pump stage 2, the heating outputs of the two compressor stages must be known. This is specified with parameter "Output compressor stage 5030".

Heating circuit

Minimum flow rate

Heat pumps require a minimum heating water flow rate (see specification on page 242), which **must** be maintained. To ensure the minimum flow rate, install an overflow valve (or low loss header) in systems without a heating water buffer cylinder.

Note

A minimum flow rate is also required on the primary side (see specification, page 242).

Systems with small water volumes

For systems with small water volumes (for example, heating systems with radiators), use a heating water buffer cylinder to prevent excessive heat pump cycling (starting/stopping).

Systems with large water volumes

Systems with large water volumes (for example, underfloor heating systems) can operate without a heating water buffer cylinder. In these heating systems, install an overflow valve at the heating circuit distributor of the underfloor heating system that is furthest away from the heat pump. This safeguards the minimum flow rate, even in sealed heating circuits.

In conjunction with an underfloor heating system, install a temperature limiter (accessory, order no. 7151 728 or 7151 729) (for connection, see page 88).

Heating water buffer cylinder operated in parallel

Applications for a heating water buffer cylinder:

- Bridging power-OFF periods: At peak times, heat pumps may be switched off by your local power supply utility, subject to your electricity tariff. A heating water buffer cylinder supplies the heating circuits even during this power-OFF period.
- Constant flow rate through the heat pump: Heating water buffer cylinders provide hydraulic separation of the flow in the secondary and heating circuits. For example, the flow rate in the secondary circuit remains constant even if the heating circuit flow rate is reduced via thermostatic valves.
- Longer heat pump operating times

Because of the increased water volume of the heat source and the fact that it may have a separate shut-off facility, an additional (or larger) expansion vessel should be provided.

Note

The flow rate of the secondary pump should be greater than that of the heating circuit pumps.

Protect the heat pump in accordance with EN 12828 [or local regulations].

Systems without heating water buffer cylinder

To safeguard the minimum heating water flow rate (see specification from page 242), do **not** install a mixer in the heating circuit.

Low loss header

When using a low loss header, ensure that the flow rate on the heating circuit side is greater than the flow rate on the secondary side of the heat pump. The heat pump control unit treats a low loss header like a small heating water buffer cylinder. The low loss header must therefore be configured as a heating water buffer cylinder in the control unit settings (see from page 204).

Cooling operation

Cooling mode is possible either with one of the available heating circuits, or with a separate cooling circuit (e.g. chilled ceilings or fan convectors).

Types and configuration

Subject to system version, natural cooling, optionally with or without a mixer, or active cooling are possible. For natural cooling, the compressor is shut down and heat exchange occurs directly with the primary circuit. Active cooling uses the heat pump as a refrigeration unit, meaning a higher cooling capacity is possible than with natural cooling. Parameter "Cooling 7100" specifies the type of cooling mode. Active cooling is only possible outside a power-OFF period, and must be enabled separately by the system operator.

Enabling cooling mode Operating instructions

Even if active cooling is selected and enabled, the control unit will initially start the natural cooling function. If the set room temperature cannot be achieved with this function, the compressor starts.

A mixer can only be used with natural cooling, and particularly in cooling mode on underfloor heating circuits, it keeps the flow temperature above the dew point. To ensure the transfer of the high cooling output in active cooling at all times, no mixer is provided.

Operating status

Cooling mode in the heating circuits is carried out in "Normal" and "Fixed val." operating statuses. The separate cooling circuit is additionally cooled in "Reduced" and "Only DHW" operating statuses. The latter enables continuous cooling of a room, e.g. a warehouse during the summer months.

The cooling output is subject to either weather-compensated control according to the heating or cooling curve, or room temperature-dependent control.

Note

For cooling operation in the following cases, a room temperature sensor must be installed and enabled (parameter "Remote control 2003" set to "1"):

- Weather-compensated cooling mode with room influence
- Room temperature-dependent cooling mode
- "Active cooling"

A room temperature sensor must always be installed for a separate cooling circuit.

Weather-compensated control

In weather-compensated cooling mode, the set flow temperature is calculated from the relevant set room temperature and the current outside temperature (long-term average) according to the cooling curve. Its level ("Cooling curve level 7110") and slope ("Cooling curve slope 7111") are adjustable.

Room influence

Parameter "Slope room hook-up 7104" specifies the strength of the room influence for cooling mode.

Operating status "Normal"

The cooling output for the heating circuits is subject to either weather-compensated control according to the cooling curve, or room temperature-dependent control

Operating status "Fixed val."

In operating status "Fixed val.", cooling occurs at the min. flow temperature "Minimum flow temperature 7103".

DHW heating

In the delivered condition, DHW heating by the heat pump takes priority over the heating circuits.

The heat pump control unit switches the DHW circulation pump ("DHW circ time prog") off during cylinder heating to prevent cylinder heating from being impaired.

Available booster heaters to reheat the DHW:

- External heat source
- Instantaneous heating water heater (on site)

The integral load manager in the heat pump control unit decides which heat sources to use for DHW heating. Generally the external heat source has priority over the instantaneous heating water heater (on site).

If one of the following criteria is met, the booster heaters begin cylinder heating:

- Cylinder temperature is below 3 °C (frost protection).
- Heat pump does not provide any heating output and actual temperature has fallen below set temperature at the top cylinder temperature sensor by more than "Booster heater hysteresis 6008".

Note

The external heat source switches off as soon as the set value is reached at the top temperature sensor minus a hysteresis of 1 K.

Instantaneous heating water heater (on site)

An electric instantaneous heating water heater can be integrated in the heating water flow as an auxiliary heat source.

Installation instructions, instantaneous heating water heater

The heat pump control unit regulates this function ("Inst. heating water heater 7900"). The instantaneous heating water heater can be enabled separately for central heating ("Heating with electro 7902") and DHW heating ("DHW with e heating 6015").

If enabled via parameter "Maximum stage, electric heating 7907", the heat pump control unit starts stages 1, 2 or 3 of the instantaneous heating water heater, subject to heat demand. As soon as the maximum flow temperature in the secondary circuit "Maximum flow temperature 200E" is reached, the heat pump control unit switches the instantaneous heating water heater off.

Parameter "Stage at power-OFF 790A" restricts the output stage of the instantaneous heating water heater for the duration of the power-OFF period. To limit the total power consumption, the heat pump control unit stops the instantaneous heating water heater for a few seconds directly before the compressor starts. Each stage is subsequently started individually one after the other in intervals of 10 s.

If the instantaneous heating water heater is on and the differential between flow and return temperatures in the secondary circuit does not rise by at least 1 K within 24 h, the heat pump control unit displays a fault message.

External heat source

The heat pump control unit enables the heat pump to operate in dual mode with an external heat source, e.g. oil boiler ("External heat source 7B00"). The external heat source is hydraulically connected to let the heat pump also be

used as a return temperature raising

facility for the boiler. System separation

is provided either with a low loss header or heating water buffer cylinder. For optimum heat pump operation, the external heat source must be integrated via a mixer into the heating water flow. A quick reaction is achieved by directly controlling this mixer via the heat pump control unit.

If the outside temperature (long-term average) is below the "Dual-mode temperature 7B02", the heat pump control unit starts the external heat source. In case of direct heat demand from the consumers (e.g. for frost protection or if the heat pump is faulty), the external heat source is also started above the dual mode temperature.

In addition, the external heat source can be enabled for DHW heating ("External heat source for DHW 7B0D").

Note

The heat pump control unit does **not** contain any safety function for the external heat source. To prevent excessive temperatures in the heat pump flow and return in case of a fault, high limit safety cut-outs **must** be provided to shut down the external heat source and the secondary pump(s) (switching threshold in each case 70 °C).

Power-OFF

It is possible for the power supply utility to shut down the compressor and instantaneous heating water heater (see from page 108). The ability to carry out such a shutdown may be a power supply utility requirement for providing a lower tariff.

This must **not** shut down the power supply to the heat pump control unit.

Primary circuit, type BW (brine/water)

P Primary circuit interface (see system examples)

Primary circuit, type BW (brine/water) (cont.)

Required Equipment

Pos.	Description
1	Heat pump
2	Heat pump control unit
15	Primary pump
20	Brine accessory pack
21)	Pressure switch, primary circuit
2	Brine distributor for geothermal probes/collectors
27)	Geothermal probes/collectors

Electrical connection

For further information regarding the PCBs, see from page 220.

Primary circuit, type WW (water/water)

P Interface, primary circuit

Equipment required

Pos.	Description
(1)	Heat pump
(T) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	Heat pump control unit
(15)	Primary pump
19	Frost stat, primary circuit
20	Brine accessory pack
21)	Pressure switch, primary circuit
2	Separating heat exchanger, primary circuit
23)	Flow limiter, well circuit (remove jumper when connecting)
24)	Dirt trap
26	Well pump (suction pump for groundwater; connect via on-site contactor
	with fuse protection)
	■ 230 V connection: See page 25
_	■ 400 V connection: See page 26
27)	Delivery well
27) 28)	Return well

Primary circuit, type WW (water/water) (cont.)

Electrical connection

For further information regarding the PCBs, see from page 220.

Primary circuit, type WW (water/water) (cont.)

Well pump on-site connection 400 V~

Primary circuit, type BW + BWS (two-stage version)

With two primary pumps

Primary circuit interface (see system examples)

Equipment required

Equipment required		
Pos.	Description	
1	Heat pump stage 1 (type BW)	
2	Heat pump control unit	
② 9	Heat pump stage 2 (type BWS)	
15	Primary pump (heat pump stage 1, type BW)	
	Flow temperature sensor, primary circuit	
(16) (17) (28) (28) (28) (28) (28)	Return temperature sensor, primary circuit	
20	Brine accessory pack	
21)	Pressure switch, primary circuit	
2	Brine distributor, geothermal probes/collectors	
25	Primary pump (heat pump stage 2, type BWS)	
27)	Geothermal probes/collectors	

Electrical connection

For further information regarding the PCBs, see from page 220.

With a common primary pump

Note

If types BW and BWS are installed with different rated outputs, the different flow rates mean that two primary pumps must be used (see page 27).

P Interface, primary circuit

Equipment required

Equipment required		
Pos.	Description	
1	Heat pump stage 1 (type BW)	
2	Heat pump control unit Vitotronic 200, type WO1A	
9	Heat pump stage 2 (type BWS)	
2 9 15 16 (17)	Common primary pump	
16)	Primary circuit flow temperature sensor (for installation, see page 84)	
17)	Primary circuit return temperature sensor (for installation, see	
	page 84)	
20	Brine accessory pack	
21)	Pressure switch, primary circuit	
20 20 20 20 20	Brine distributor, geothermal probes/collectors	
27)	Geothermal probes/collectors	

Electrical connection

For further information regarding the PCBs, see from page 220.

Primary circuit, type WW + WWS (two-stage version)

With two primary pumps

Primary circuit interface (see system examples)

Equipment required

Pos.	Description
1	Heat pump stage 1 (type WW)
2	Heat pump control unit
9	Heat pump stage 2 (type WWS)
1 2 9 15 6 17	Primary pump (heat pump stage 1, type WW)
16)	Primary circuit flow temperature sensor (for installation, see page 84)
17)	Primary circuit return temperature sensor (for installation, see
	page 84)
19	Frost stat, primary circuit
98568888	Brine accessory pack
21)	Pressure switch, primary circuit
2	Heat exchanger, primary circuit
23)	Flow limiter, well circuit (remove jumper before connecting)
24)	Dirt trap
25)	Primary pump (heat pump stage 2, type WWS)
26	Well pump (suction pump for groundwater; connect via on-site contactor
	with fuse protection)
	■ 230 V connection: See page 33
	■ 400 V connection: See pages 38, 34.
② ②8	Delivery well
28)	Return well

Electrical connection

For further information regarding the PCBs, see from page 220.

Well pump on-site connection 230 V~

Well pump on-site connection 400 V

Connecting the sensors and limiters

With a common primary pump

Note

If types WW and WWS are installed with different rated outputs, the different flow rates mean that two primary pumps must be used (see page 31).

P Interface, primary circuit

Primary circuit, type WW + WWS (two-stage... (cont.)

Equ	ipmen [.]	t requi	ired
-----	--------------------	---------	------

Pos.	Description
1	Heat pump stage 1 (type WW)
1 2 9 15 16 (7)	Heat pump control unit
9	Heat pump stage 2 (type WWS)
15)	Common primary pump
16	Primary circuit flow temperature sensor (for installation, see page 84)
17)	Primary circuit return temperature sensor (for installation, see
	page 84)
19	Frost stat, primary circuit
980088	Brine accessory pack
21)	Pressure switch, primary circuit
2	Heat exchanger, primary circuit
23	Flow limiter, well circuit (remove jumper before connecting)
24)	Dirt trap
26	Well pump (suction pump for groundwater; connect via on-site contactor
	with fuse protection)
	■ 230 V connection: See page 33
_	■ 400 V connection: See pages 38, 34.
② ②8	Delivery well
28	Return well

Electrical connection

For further information regarding the PCBs, see from page 220.

Primary circuit, type WW + WWS (two-stage... (cont.)

Well pump on-site connection 400 V

Primary circuit, type WW + WWS (two-stage... (cont.)

Connecting the sensors and limiters

Integration of the two-stage version in the system examples

Note

- Every partial scheme can be integrated into the system examples via the interfaces indicated.
- Connect return DHW cylinder only to heat pump, type BW.
- Two-stage heat pump cascade:
 For the two-stage heat pump cascade,
 the lead appliance and lag heat pumps
 each comprise a heat pump (type BW)
 and heat pump stage 2 (type BWS).
 The electrical connection is made at
 the heat pump (type BW) (via the KM
 BUS at external extension H1) as per
 page 100.

Two-stage heat pump

- © Cooling interface
- H Heating interface
- Primary circuit interface (see primary circuit)
- W DHW interface (see also DHW heating)

Two-stage heat pump cascade

- © Cooling interface
- Heating interface
 Primary circuit interface

I Lead appliance (two-stage) of the heat pump cascade II to IV Lag heat pump (two-stage) 1 to 3

_						
-a	IIIIn	me	nt r	'DA'	uired	ı
_4	uip			CHI	411 C C	

Pos.	Description
	Heat source
1	Heat pump stage 1
	Note
	For recommended compressor power cable, see page 15, on-site fuse protection (see from page 104 and 242)
3	Outside temperature sensor
③ ②	Heat pump control unit (for the power supply, use a 3 x 1.5 mm ² cable; onsite fuse protection \leq 16 A)
5	Circulation pump for cylinder heating (heating water side), heat pump stage
6 9	Secondary pump, heat pump stage 1 Heat pump stage 2
	Note
	For recommended compressor power cable, see page 15, on-site fuse protection (see from page 104 and 242)
(10)	Secondary pump, heat pump stage 2
10 (11)	Circulation pump for cylinder heating (heating water side), heat pump stage 2
(15)	Primary pump, heat pump stage 1
<u>16</u>	Primary circuit flow temperature sensor (for installation, see page 84)
15 16 17 25	Primary circuit return temperature sensor (for installation, see page 84)
25	Primary pump, heat pump stage 2

Electrical connection

For further information regarding the PCBs, see from page 220.

Required parameters

The additional parameters for the heat pump cascade are set during commissioning by the certified heat pump contractor.

System example 1

Select system scheme 8 (see page 173)

- Single stage heat pump, type BW
- 1 underfloor heating circuit with mixer (M2)
- 1 radiator circuit with mixer (M3)
- DHW heating with a cylinder primary store
- Solar thermal system
- Heating water buffer cylinder

Note

This scheme is a basic example without shut-off valves or safety equipment. This does not replace the local technical engineering task.

- © Cooling interface
- Heating interface
- Primary circuit interface (see primary circuit)
- W DHW interface (see also DHW heating)
- Solar interface or external heat source (see system examples)

Pos.	Description
	Heat source
1	Heat pump
2	Heat pump control unit
3	Outside temperature sensor
(5)	Circulation pump for cylinder heating (heating water side)
6	Secondary pump
(8)	KM BUS distributor
(12)	Safety equipment block with safety assembly
1 2 3 5 6 8 2 3	Expansion vessel
	Primary circuit
(15)	Primary pump
(16)	Primary circuit flow temperature sensor (integrated into heat pump)
(17)	Primary circuit return temperature sensor (integrated into heat pump)
(20)	Brine accessory pack
(21)	Pressure switch, primary circuit
(22)	Brine distributor for geothermal probes/geothermal collectors
\$	Geothermal probe/geothermal collector
	DHW heating with a primary store system
(30)	DHW cylinder
(31)	Solar cylinder temperature sensor (connection S2 to Vitosolic)
(32)	Cylinder temperature sensor (connection to heat pump control unit)
(33)	Cylinder primary pump (DHW side)
(34) (85)	Plate heat exchanger Flow limiter
(36)	
(36) (37)	Motorised two-way valve, normally closed
(31)	DHW circulation pump
41)	DHW heating with a solar thermal system High limit safety cut-out for DHW cylinder to switch off the solar circuit pump
41)	R1 43
(12)	Solar-Divicon
42	Solar circuit pump R1
<u>~</u>	Collector temperature sensor (Vitosolic standard delivery, connection S1)
(1 5)	Solar collectors
(47)	Vitosolic 200 (observe separate installation instructions)
\$	Safety equipment block with safety assembly
49	Expansion vessel

Pos.	Description
	Heating water buffer cylinder
60	Heating water buffer cylinder
888888	Buffer cylinder temperature sensor
<u>@</u>	System flow temperature sensor
65)	Solar buffer temperature sensor (connection S4 to Vitosolic)
66	Solar circuit pump R4 for heating up the heating water buffer cylinder
67	High limit safety cut-out for heating water buffer cylinder to switch off the solar circuit pump R4 ®
	Heating circuit with mixer (M2)
70	Underfloor heating circuit with directly controlled mixer motor
70 71 73 74 76 77	Vitotrol 200 remote control (accessory)
73	Flow temperature sensor
74)	Temperature limiter as maximum limiter for underfloor heating systems
76	Heating circuit pump
77)	Mixer motor - three-way mixer
_	Heating circuit with mixer (M3)
100 101 103 105 106	Radiator heating circuit with mixer, controlled via KM BUS
(101)	Vitotrol 200 remote control (accessory)
(103)	Flow temperature sensor
(105)	Extension kit for one heating circuit with mixer
(106)	Heating circuit pump
(107)	Mixer motor - three-way mixer

Electrical connection

For further information regarding the PCBs, see from page 220.

Control unit power supply

(A) Mains terminals on the cross connect PCB

Compressor power supply

Required parameters

Parameter	Setting
"System definition"	
■ "System scheme 7000"	"8"
"Solar"	
■ "Solar control unit type 7A00"	"2"
Note	
Vitosolic parameters must be set (see Vitosolic instal-	
lation and service instructions)	
For accessories (if installed):	
DHW circulation pump	Set switching times (see
	operating instructions)
"Heating circuit 2"	
■ "Remote control 3003"	"1"
"Heating circuit 3"	
■ "Remote control 4003"	"1"

System example 2

Select system scheme 10 (see page 173)

- Two stage heat pump type BW/BWS
- 2 primary pumps
- 1 heating circuit without mixer (A1)
- 2 heating circuits with mixer (M2, M3)
- External heat source for heating and DHW
- DHW heating with a cylinder primary store
- Solar thermal system

- Heating water buffer cylinder
- Cooling function "natural cooling" (on site) at heating circuit M2
- Swimming pool

Note

This scheme is a basic example without shut-off valves or safety equipment. This does not replace the local technical engineering task.

- Cooling interface
- Heating interface

P Primary circuit interface (see primary circuit)

- W DHW interface (see also DHW heating)
- Solar interface or external heat source (see system examples)

Pos.	Description		
PUS.	Description		
	Heat source		
(1)	Heat pump stage 1 (type BW)		
(2)	Heat pump control unit		
(1) (2) (3) (5)	Outside temperature sensor		
	Circulation pump for cylinder heating (heating water side) for heat pump stage 1 (type BW)		
6	Secondary pump for heat pump stage 1 (type BW)		
8	KM BUS distributor		
9	Heat pump stage 2 (BWS)		
(10)	Secondary pump for heat pump stage 2 (type BWS)		
6 8 9 10 11	Circulation pump for cylinder heating (heating water side) for heat pump stage 2 (type BWS)		
(12)	Safety equipment block with safety assembly		
12 13	Expansion vessel		
	Primary circuit		
15) 16)	Primary pump for heat pump stage 1 (type BW)		
16)	Primary circuit flow temperature sensor (installation only required for two stage heat pump, see page 84)		
17)	Primary circuit return temperature sensor (installation only required for two		
	stage heat pump, see page 84)		
(25)	Primary pump for heat pump stage 2 (type BWS)		
(20)	Brine accessory pack		
(21)	Pressure switch, primary circuit		
(X) (X) (X)	Brine distributor for geothermal probes/geothermal collectors		
(27)	Geothermal probe/geothermal collector		

Pos.	Description		
	DHW heating with a primary store system		
30	DHW cylinder		
32	Cylinder temperature sensor		
33	Cylinder primary pump (DHW side)		
34)	Plate heat exchanger		
35	Flow limiter		
36	Motorised two-way valve, normally closed		
3	DHW circulation pump		
	External heat source		
14)	High limit safety cut-out (STB) to switch off the secondary pumps 6 and		
	100		
50	External heat source, e.g. oil boiler		
868888	External heat source demand (connection to external heat source)		
<u>52</u>	Circulation pump for cylinder reheating		
53	Boiler water temperature sensor (connection to heat pump control unit)		
<u>54</u>	Directly controlled mixer motor		
(55)	High limit safety cut-out 70 °C for shutting down the external heat source		
	(on site)		
	Heating water buffer cylinder		
60	Heating water buffer cylinder		
61 62	Buffer cylinder temperature sensor		
<u>62</u>	System flow temperature sensor		

Pos.	Description		
	Natural cooling function (NC)		
	Note All required components (with a suitably designed plate heat exchanger) for the cooling circuit must be provided on site.		
81)	Three-way diverter valve		
	Note When using a three-way diverter valve without spring-loaded return, at contact 522 ▼ (from pos. ⑧) "L1" must be connected (see for example terminal strip X3, page 225).		
8888888888	Secondary cooling circuit pump Contact humidistat Primary cooling circuit pump Mixer motor - three-way mixer Frost stat Extension kit for NC Extension kit for heating circuit (cooling circuit) with mixer Motorised two-way valve, normally closed		
	Note When using a two-way diverter valve without spring-loaded return, at contact 521 ▼ (from pos. ③) "L1" must be connected (see for example terminal strip X3, page 225).		
90 91 96	Heating circuit without mixer (A1) Radiator heating circuit Vitotrol 200 remote control Heating circuit pump		
9999 9003460	Heating circuit with mixer (M2) Underfloor heating circuit with directly controlled mixer motor Vitotrol 200 remote control (accessory) Flow temperature sensor Temperature limiter as maximum limiter for underfloor heating systems Heating circuit pump Mixer motor - three-way mixer		

Pos.	Description
	Heating circuit with mixer (M3)
100	Radiator heating circuit with mixer, controlled via KM BUS
101	Vitotrol 200 remote control (accessory)
103	Flow temperature sensor
105	Extension kit for one heating circuit with mixer
100) 101) 103) 105) 106)	Heating circuit pump
107	Mixer motor - three-way mixer
	Swimming pool
110	Swimming pool
111	Thermostat for controlling the swimming pool temperature
(11) (112) (113)	Circulation pump for swimming pool heating
113	Plate heat exchanger
114	External extension H1 (only 1 external extension H1 can be connected to
	the heat pump)
115	Three-way diverter valve (zero volt: Heating the heating water buffer cylin-
	der)

Note

The additional parameters for two-stage operation are set during commissioning by the certified heat pump contractor.

Electrical connection

For further information regarding the PCBs, see from page 220.

- On-site contactor
- B Use jumper from X3.1 to 222.3

KTS 53

VTS @

VTS M2 73

STS ②

ATS (3)

PTS @1

16

(17)

Control unit power supply

(A) Mains terminals on the cross connect PCB

Compressor power supply

Required parameters

	i
Parameter	Setting
"System definition"	
■ "System scheme 7000"	"10"
■ "Ext. extension 7010"	"1"
■ "Swimming pool 7008"	"1"
"Compressor 2"	
■ "Enable 5100"	"1"
"Ext. heat source"	
■ "External heat source 7B00"	"1"
■ "External heat source for DHW 7B0D"	"1"
"Cooling"	
■ "Cooling 7100"	"1"
■ "Cooling circuit 7101"	"2"
For accessories (if installed):	
DHW circulation pump	Set switching times (see
	operating instructions)
"Heating circuit 1"	
■ "Remote control 2003"	"1"
"Heating circuit 2"	
■ "Remote control 3003"	"1"
"Heating circuit 3"	
■ "Remote control 4003"	"1"

DHW heating

- W DHW interface (see system examples)
 - Solar interface or external heat source (see system examples)

KW Cold water DHW DHW

Required Equipment

(X)

Pos.	Description
30	DHW cylinder
32	Cylinder temperature sensor
33	Cylinder primary pump (DHW side)
34)	Plate heat exchanger
(33) (34) (35) (36)	Flow limiter
36	Motorised two-way valve, normally closed
37)	DHW circulation pump

Electrical connection

For further information regarding the PCBs, see from page 220.

DHW heating (cont.)

Required parameters

Parameter	Setting
"System definition"	
■ "System scheme"	"0", "2", "4," "6", "8", "10"
■ DHW circulation pump	Set switching times (see operating instructions)
"DHW" ■ "DHW time prog."	Set switching times (see operating instructions)

Installing the heat pump

Levelling the heat pump

Position and level the heat pump as described on page 10.

Installing the heat pump (cont.)

Removing the transport brackets

Please note

If transport brackets are not removed, they cause vibrations and excessive development of noise.

Remove transport brackets and secure with lower screws on to the base carrier (see step 4.).

Installing the heat pump (cont.)

Remove top panel

Hydraulic connections

Overview of connections

Connecting the primary circuit

Please note

The components used must be resistant to the heat transfer medium.

Never use zinc-plated/galvanised pipes.

1. Equip the primary circuit with an expansion vessel and safety valve (in accordance with DIN 4757).

Hydraulic connections (cont.)

Note

- Expansion vessel must be approved to DIN 4807. Diaphragms of expansion vessel and safety valve must be suitable for the heat transfer medium.
- Blow-off and drain lines must converge in one container that can hold the maximum possible expansion volume of the heat transfer medium
- Ensure adequate thermal and sound insulation of all pipes routed through walls.
- 3. Connect primary lines to heat pump.

Please note

To prevent equipment damage, connect on-site primary lines to the heat pump so that they are free of load and torque stresses.

Please note

Make tight hydraulic connections on the primary side. In the case of hose outlets, ensure grommets are seated correctly (if necessary, seal with sealing tape, see page 116).

Connecting the secondary circuit

- Equip the secondary circuit on site with an expansion vessel and safety assembly (in accordance with DIN 4757).
 - Fit the safety assembly to the on-site line in the heating water return.

- Insulate lines inside the building to provide protection from heat and vapour diffusion.
- 5. Fill the primary circuit with Viessmann heat transfer medium and vent.

2. Connect secondary lines to heat pump ($\emptyset \ge 42 \text{ mm}$).

Hydraulic connections (cont.)

Please note

To prevent equipment damage, connect on-site secondary lines to the heat pump so that they are free of load and torque stresses.

Please note

Make tight hydraulic connections on the secondary side. In the case of hose outlets, ensure grommets are seated correctly (if necessary, seal with sealing tape, see page 116).

- 3. Fill and vent secondary circuit.
- **4.** Thermally insulate pipes inside the building.

Note

- In underfloor heating circuits, integrate a temperature limiter on site for limiting the maximum temperature of underfloor heating systems.
- Safeguard minimum flow rate, e.g. with overflow valve (see Specification on page 243).

Electrical connections

For further information, an overview of the electrical connections and more details regarding the PCBs, see page 220 onwards.

Make all external electrical connections as per the instructions from page 79 onwards.

Danger

Damaged cable insulation can cause injury and damage to the appliance.

Route cables so that they cannot touch very hot, vibrating or sharpedged components.

Danger

Incorrectly routed wiring can lead to serious injury from electrical current and result in equipment damage.

- Route 230 V cables and LV cables separately.
- Strip the insulation from the cables as close to the terminals as possible, and bundle tightly to the associated terminals.
- Secure cables with cable ties. This ensures that, in case of failure, for example when detaching a wire, the wires cannot drift into the adjacent voltage area.

Note

■ The total output of all components connected directly to the heat pump control unit (e.g. pumps, valves, message facilities, contactors) must not exceed 1000 W. If the total output ≤ 1000 W, the individual rating of a component (e.g. pump, valve, message facility, contactor) can be greater than specified. However, never exceed the breaking capacity of the corresponding relay (see page 241).

If two components are connected to the same terminal, press both cores together into a single wire ferrule.

Install programming unit

Overview of connections

Type BW

Type BWS

- (A) Transformer, EEV PCB
- B EEV PCB (electronic expansion valve)
- © Compressor contactors, control unit starter, three phase monitor
- Cable trunking
- (E) Compressor power supply
- F Cross connect PCB

- Main PCB
- H Main PCB extension
- (K) Controller and sensor PCB
- Programming unit
- M Plug for connecting cable stage 1/2 230 V~
- N Plug for connecting cable stage 1/2, low voltage

Terminal area, heat pump control unit

- (A) Cross connect PCB
- (B) Fuse F1 for heat pump control unit
- © Extension of main PCB

Terminal strips on cross connect PCB $\widehat{\mathbb{A}}$:

- X1 Terminals for earth conductor "

 "
- X2 Terminals for neutral conductor "N"
- X3 Terminals for power supply to the heat pump control unit and auxiliary components

- D Main PCB
- (E) Control and sensor PCB

Connections to plugs on main PCB with extension \bigcirc/\bigcirc :

- DHW circulation pump
- Heating circuit pump for heating circuit without mixer A1
- Circulation pump for cylinder heating (heating water side)
- Instantaneous heating water heater control, stage 2 (on site)
- External heat source control

- Mixer motor control, external heat source
- Central fault message
- Circulation pump of separate cooling circuit and "AC" signal for cooling
- "NC" signal for cooling
- Primary pump stages 1 and 2, well pump
- Secondary pump stages 1 and 2
- Circulation pump for DHW reheating
- Cylinder primary pump (DHW side) / two-way shut-off valve
- Heating circuit pump for heating circuit with mixer M2
- Mixer motor control, heating circuit M2
- Secondary pump
- Instantaneous heating water heater control, stage 1 (on site)

Connections on controller and sensor PCB $\stackrel{\frown}{(E)}$:

145 KM BUS

LON Slot for LON module

X31 Coding card slot

- F.. Sensor connections:
 - Outside temperature sensor
 - Buffer cylinder temperature sensor above
 - Boiler temperature sensor, external heat source
 - Flow temperature sensor, heating circuit with mixer M2
 - System flow temperature sensor
 - Flow temperature sensor, secondary circuit
 - Cylinder temperature sensor, top
 - Remote control connection for heating circuits with/without mixer A1, M2, M3
 - Temperature sensor, separate cooling circuit
 - Flow temperature sensor, primary circuit
 - Return temperature sensor, primary circuit
 - Flow temperature sensor, secondary circuit
 - Return temperature sensor, secondary circuit, stages 1 and 2
 - Room temperature sensor, separate cooling circuit

Inserting the LON communication module (accessory)

Inserting cables for the heat pump control unit terminal area

When routing the on-site power cables, observe the location of the cable entries into the appliance on its back panel (see page 13).

- Route LV cables through opening "
 42 V" to the heat pump control unit connection area.
- 2. Route 230 V cables through opening "230 V" to the heat pump control unit terminal area.

Note

Route LV cables and 230 V cables as far apart as possible.

Route power cable for compressor through opening "400 V" to terminal area. For power supply, see from page 103.

Danger

Incorrectly routed wiring can lead to serious injury from electrical current and result in equipment damage.
Route 230 V cables and LV leads separately, bundle tightly near the terminals and secure using the cable ties provided. This ensures that, in case of failure, for example when detaching a wire, the wires cannot drift into the adjacent voltage area.

Route electrical cables from heat pump stage 2 (type BWS) to the heat pump control unit

- (A) Heat pump stage 2 (type BWS) terminal area for cables connecting to the heat pump (type BW)
- B 230 V~ connecting cables
- © < 42 V low voltage leads with plugs 17 and 145
- D Primary pump power cable, if installed

- (B) 230 V~ connecting cables with plugs "X300" and $\boxed{156}$
- © < 42 V low voltage leads with plugs
 17 and 145
- D Primary pump power cable, if installed (connection to terminals 4X41.4; see next chapter)

Danger

Incorrectly routed wiring can lead to serious injury from electrical current and result in equipment damage.

Route 230 V cables and LV leads separately, bundle tightly near the terminals and secure using the cable ties provided. This ensures that, in case of failure, for example when detaching a wire, the wires cannot drift into the adjacent voltage area.

Connecting sensors

- For PCB locations (terminal and plug markings), see from page 75.
- For examples of connecting sensors, see system examples from page 44.
- For all sensor connections to the controller and sensor PCB, see page 228.

Sensor / KM BUS	Connection to controller and sensor PCB
KM BUS distributor	145
Buffer cylinder temperature sensor	F4
Outside temperature sensor	F0
Cylinder temperature sensor, top	F6
Flow temperature sensor, heating circuit with	F12
mixer (M2)	
System flow temperature sensor (with sensor well,	F13
downstream of the heating water buffer cylinder or	
external heat source)	
Flow temperature sensor, cooling circuit (direct heat-	F14
ing circuit A1 or separate cooling circuit)	
Room temperature sensor, separate cooling circuit	F16
Boiler temperature sensor, external heat source	F20

Connection of primary circuit flow/return temperature sensor, two stage heat pump

- 12 Flow temperature sensor, primary circuit
- 13 Return temperature sensor, primary circuit Please note
 - Identify sensor leads. Fasten sensor leads and dismantled leads (with plug 12/13) together with the other low voltage leads using the cable ties provided.

Connecting pumps

- For PCB locations (terminal and plug markings), see from page 75.
- For examples of connecting pumps, see system examples from page 44.
- For connections of all pumps to main PCB with extension, see page 221. For connection of all ⊕ and N cables to cross connect PCB, see page 225.
- For parameter settings, see from page 171.

Appliance	Connection	Required parameters:
		Parameter → setting
Circulation pump for cylin-	211.4	"System definition"
der heating (heating water	X1.⊕	■ "System scheme 7000" →
side)	X2.N	with DHW heating
(max. 130 W)		
Cylinder primary pump	224.6	"System definition"
(only with primary store sys-	X1.⊕	■ "System scheme 7000" →
tem, DHW side)	X2.N	with DHW heating
(max. 130 W)		
Heating circuit pump for	212.2	"System definition"
heating circuit without mixer	X1.⊕	■ "System scheme 7000" →
A1	X2.N	with heating circuit A1
(max. 100 W)		_
Secondary pump	211.2	"System definition"
(max. 130 W)	X1.⊕	■ "System scheme 7000" →
	X2.N	"1" to "11"
Heating circuit pump, heat-	225.1	"System definition"
ing circuit with directly con-	X1.⊕	■ "System scheme 7000" →
trolled mixer M2	X2.N	with heating circuit M2
(max. 100 W)		_
Heating circuit pump, heat-	Plug 20	"System definition"
ing circuit with mixer M3	in extension kit	■ "System scheme 7000" →
(max. 100 W)		with heating circuit M3

Appliance	Connection	Required parameters: Parameter → setting
Circulation pump, separate cooling circuit with AC cooling (max. 10 W)	212.1 X1.⊕ X2.N	"System definition" ■ "System scheme 7000" → "0" to "10" "Cooling" ■ "Cooling 7100" → "3" ■ "Cooling circuit 7101" → "4"
Solar circuit pump R1 (collector pump, DHW) See Vitosolic installation instructions	at "R1" of the Vitosolic	No parameters need to be set
DHW circulation pump (max. 50 W)	212.3 X1.⊕ X2.N	Extended menu: "DHW circ time prog" → Setting switching times
Primary pump (max. 200 W)	211.1 X1.⊕ X2.N	No parameters need to be set
Well pump control (max. 200 W)	211.1 X1.⊕ X2.N	No parameters need to be set
Note Parallel connection with primary pump		
Circulation pump for DHW reheating (max. 100 W)	224.7 X2.N	"Ext. heat source" ■ "External heat source 7B00" → 1 ■ "External heat source for DHW 7B0D" → 1
Solar circuit pump for heat- ing up the heating water buf- fer cylinder R4	at "R4" of the Vitosolic	No parameters need to be set

Additional pumps for two stage heat pump (type BW/BWS)

Appliance	Connection	Required parameters:
		Parameter → setting
Circulation pump for cylin-	224.5	"System definition"
der heating, heat pump	X1.⊕	■ "System scheme 7000" →
stage 2 (heating water side)	X2.N	with DHW heating
(max. 130 W)		Note
,		Two-stage operation is enabled during commissioning by the certified heat pump contractor.
Primary pump, heat pump	224.2	No parameters need to be set
stage 2	X1.⊕	
(max. 130 W)	X2.N	
Secondary pump, heat	224.3	"System definition"
pump stage 2	X1.⊕	■ "System scheme 7000" →
(max. 200 W)	X2.N	"1" to "11"

Connecting the temperature limiter for limiting the maximum temperature of underfloor heating systems

Connection with temperature limiter, general

Connection with temperature limiter (part no. 7151 728, 7151 729)

- For connection to main PCB with extension, see table below
- B Temperature limiter
- © Heating circuit pump A1, M2
- (A) For connection to main PCB with extension, see table below
- B Temperature limiter
- © Heating circuit pump A1, M2

Temperature limiter for heating circuit	Connection to main PCB
	with extension
Heating circuit A1 without heating water buffer cylinder	211.2
Heating circuit A1 with heating water buffer cylinder	212.2
Heating circuit M2	225.1

Connection with temperature limiter (part no. 7151 728, 7151 729) to extension kit for heating circuit with mixer M3

- A Plug 20 for extension kit
- B Temperature limiter
- © Heating circuit pump M3

Connections for conversion from type BW to type WW

- For PCB locations (terminal and plug markings), see from page 75.
- For examples of connecting pumps and sensors, see system examples from page 44.
- For connections of all pumps to main PCB with extension, see page 221. For connection of all ⊕ and N cables to cross connect PCB, see page 225
- For all sensor connections to the controller and sensor PCB, see page 228.
- For parameter settings, see from page 171.

Appliance	Connection	Required parameters: Parameter → setting
Well pump		
(max. 200 W)		
Contactors for well pump	211.1	No parameters need to be set
(common connection with	X1.⊕	
primary pump)	X2.N	
Primary circuit pressure	X3.8	No parameters need to be set
switch and/or frost stat (in	X3.9	-
series)		
or		
Jumper		
Flow switch, well circuit	X3.3	No parameters need to be set
	X3.4	-

Other components

- For PCB locations (terminal and plug markings), see from page 75.
- For examples of connecting pumps, mixers and sensors, see system examples from page 44.
- For connections of all pumps and mixers to main PCB with extension, see page 221.
 - For connection of all \oplus and N cables to cross connect PCB, see page 225
- For all sensor connections to the controller and sensor PCB, see page 228.
- For parameter settings, see from page 171.

Appliance	Connection	Required parameters: Parameter → setting
Directly controlled mixer motor, heating circuit M2	225.3▲ OPEN 1X1.⊕ 1X2.N 225.2▼ CLOSE	"System definition" ■ "System scheme 7000" → with heating circuit M2
Extension kit with mixer for heating circuit M3 via KM BUS.	145 → 145 145 → 145	"System definition" ■ "System scheme 7000" → with heating circuit M3 Note Set the DIP switch, extension kit (see extension kit installation instructions).
Remote control (e.g. Vitotrol 200)	145 → 145 145 → 145	"Heating circuit 1" or "Heating circuit 2" or "Heating circuit 3" ■ "Remote control 2003/3003/4003" → "1" Note Set the DIP switch, remote control for heating circuit allocation (see remote control installation instructions)
External extension H1 (KM BUS subscriber)	145 → 145 145 → 145	"System definition" ■ "External extension 7010" → "1"
Vitocom 100 (KM BUS subscriber)	145 → 145 145 → 145	"System definition" ■ "Vitocom 100 7017" → "1"
Vitosolic 100	1 145 → 7 2 145 → 8	"Solar" ■ "Solar control unit type 7A00" → "1"

Appliance	Connection	Required parameters:
		Parameter → setting
Vitosolic 200	145 → 145	"Solar"
	145 → 145	■ "Solar control unit type
		7A00" → "2"
Motorised two-way valve	224.6	"System definition"
and cylinder primary pump	X2.N	■ "System scheme 7000" →
(DHW side, DHW heating	X1.⊕	with DHW heating
with primary store system;	(Pos. 36/33 side)	
both components to 224.6)		

Cooling functions

- For PCB locations (terminal and plug markings), see from page 75.
- For examples of connecting the cooling function, see system examples from page 44.
- For connections of cooling function to main PCB with extension, see page 221.

For connection of all $\textcircled{\oplus}$ and N cables to cross connect PCB, see page 225

- For all sensor connections to the controller and sensor PCB, see page 228.
- For parameter settings, see from page 171.

Cooling function	Connection	Required parameters: Parameter → setting
Natural cooling with ex	ktension kit without m	nixer
NC signal (230 V~)	211.5 → X2.4	"Cooling"
	X2.N→X2.3	■ "Cooling 7100" → "1"
	X1.⊕→X5.⊕	■ "Cooling circuit 7101" →
		"1" (heating circuit A1)
		or
		"Cooling circuit 7101" →
		"2" (heating circuit M2)
		or
		"Cooling circuit 7101" →
		"3" (heating circuit M3)
		or
		"Cooling circuit 7101" →
		"4" (separate cooling circuit

Cooling function	Connection	Required parameters: Parameter → setting
Natural cooling with ex	tension kit with mix	er
NC signal (230 V~)	211.5→X2.4 X2.N→X2.3 X1.⊕→X5.⊕	"Cooling" ■ "Cooling 7100" → "2" ■ "Cooling circuit 7101" →
Mixer (via KM BUS)	$ \begin{array}{c} 145 \rightarrow 145 \\ 145 \rightarrow 145 \end{array} $	"1" (heating circuit A1) or "Cooling circuit 7101" → "2" (heating circuit M2) or "Cooling circuit 7101" → "3" (heating circuit M3) or "Cooling circuit 7101" → "4" (separate cooling circuit)
Active cooling (both si	gnals required)	4 (ocparate cooming choart)
AC signal (230 V~) NC signal (230 V~)	212.1 X2.N X1.⊕ 211.5 X2.N X1.⊕	"Cooling" ■ "Cooling 7100" → "3" ■ "Cooling circuit 7101" → "1" (heating circuit A1) or "Cooling circuit 7101" → "2" (heating circuit M2)
		or "Cooling circuit 7101" → "3" (heating circuit M3) or "Cooling circuit 7101" → "4" (separate cooling circuit)

Room temperature sensor for separate cooling circuit (part no. 7408 012)

Note

No parameters need to be set.

- A Connection to controller and sensor PCB
- B Room temperature sensor (Ni 500)

Instantaneous heating water heater (on site)

Connection

Installation instructions Instantaneous heating water heater (on site).

Instantaneous heating water heater control and load circuit

- A Instantaneous heating water heater
- Connection to main PCB with extension and to cross connect PCB 211.3 Stage 1 224.4 Stage 2

Required parameters:

Parameter → setting

- "Electric heater"
- "Inst. heating water heater 7900" → "1"
- If necessary "Heating with electro 7902" → "1"

Power-OFF

The supply voltage to the relevant components (subject to power supply utility) is switched off by the power-OFF contact signal.

- (A) Terminals on cross connect PCB
- B Zero volt N/C contact Breaking capacity 230 V~, 0.15 A; remove jumper when making this connection

Contact open: Power-OFF ena-

bled

Contact closed: Power-OFF disa-

bled

Note

- No parameters need to be set.
- The compressor is forced OFF as soon as the contact opens.
- For the instantaneous heating water heater, the stages to be switched off can be selected. See parameter "Stage at power-OFF 790A" on page 197.

For further information, see from page 103.

External heat source

- For PCB locations (terminal and plug markings), see from page 75.
- For examples of connecting pumps and mixers, see system examples from page 44.
- For connections of all pumps and mixers to main PCB with extension, see page 221.

For connection of all ⊕ and N cables to cross connect PCB, see page 225

- For all sensor connections to the controller and sensor PCB, see page 228.
- For parameter settings, see from page 171.

Please note

Protect the heat pump against temperatures over 70 °C from the external heat source. Install high limit safety cut-out (STB) or, if required, also take additional measures (e.g. second STB to switch off the secondary pump).

Note

- The switching contact to demand heat from an external heat source in the heat pump is a zero volt N/O contact that closes in case of heat demand.
- This contact can be subjected to a load of 230 V~/4(2) A in case of an external voltage supply. Never route low voltage via this contact; that requires an on-site relay.
- The boiler water temperature sensor in the external heat source (plug F20) must capture the average temperature of the external heat source.

- A Terminals on main PCB with extension: Contact load 230 V~, 4(2) A, zero volt contact
- Install jumper from X3.1 (cross connect PCB) to 222.3 (main PCB with extension)
- © Connection at the external heat source on the terminals for external demand
- D High limit safety cut-out (this is set to 70 °C) as heat pump protection
- K1 Relay; sizing in accordance with the external heat source; observe safety instructions

Appliance	Connection	Required parameters: Parameter → setting
Mixer motor, external heat source	222.2 ▲ OPEN X1. ⊕ X2.N 222.1 ▼ CLOSE	"Ext. heat source" ■ "External heat source 7B00" → "1"
Control of an external heat source	222.3 222.4	"Ext. heat source" ■ "External heat source 7B00" → "1"
Circulation pump for DHW reheating	224.7 X1.⊕ X2.N	"Ext. heat source" ■ "External heat source 7B00" → "1"

External hook-up

The external components can also be hooked up via "External extension H1".

Installation instructions "External extension H1"

Note

If the components for swimming pool heating are connected to "External extension H1", **no** further hook-up (e.g. operating status changeover) can be connected.

- For PCB locations (terminal and plug markings), see from page 75.
- For examples of connecting pumps, mixers and sensors, see system examples from page 44.
- For connections of all pumps and mixers to main PCB with extension, see page 221.

For connection of all (a) and N cables to cross connect PCB, see page 225

- For all sensor connections to the controller and sensor PCB, see page 228.
- For parameter settings, see from page 171.

External demand, external mixer "OPEN", operating status changeover

- (A) Terminals on cross connect PCB
- B Zero volt N/O contact outside the heat pump control unit (on site)
 Breaking capacity 230 V~; 2 mA

Required parameters

Function	Parameter → setting
External demand	No parameters need to be set; the set flow tem-
	perature for external demand can be specified
	(parameter "Set flow temperature, external
	demand 730C", see page 202).
External mixer "OPEN"	"System definition"
	■ "External demand mixer "OPEN" 7014" →
	"0" to "7" (see page 182). Observe parameter
	"Set flow temperature, external demand
	730C" (see page 202).
External changeover of the oper-	"System definition"
ating status	■ "Changing the heating circuit operating
	mode 7011" → "0" to "10" (see page 177)
	■ "Effect of operating mode changeover 7012"
	→ "0" to "3" (see page 179)
	■ "Duration of operating mode changeover
	7013" → "0" to "12" (see page 181)

External blocking, external mixer "CLOSED"

- A Terminals on cross connect PCB
- Breaking capacity 230 V~; 2 mA

Required parameters

Function	Parameter → setting	
External blocking	"System definition" ■ "External blocking effect 701A" → "0" to "31".	
External mixer "CLOSED"	"System definition" ■ "External blocking mixer "CLOSED" 7015" → "0" to "8" (see page 183) Observe parameter "External blocking effect 701A".	

Central fault message

Note

- No parameters need to be set.
- The contact issues a short pulse when the power supply is switched on.
 Observe the pulse when processing the message via communication tools.
- A Terminals on main PCB with extension
 Zero volt contact in the heat pump, open in fault-free operation (voltage > 42 V)
 Breaking capacity 230 V~; 4(2) A

Swimming pool water heating

Note

- Swimming pool heating is controlled with KM BUS via "External extension H1".
- Make connections to "External extension H1" only according to the following diagram.
- Connect **only** the circulation pump for swimming pool heating (E) to plug (50) according to the following diagram. A filter circuit pump must be connected separately.
- If the components for swimming pool heating are connected to "External extension H1", **no** further hook-up (e.g. operating status changeover) can be connected.

- Connection on controller and sensor PCB
- (B) External extension H1
- © Thermostat for swimming pool temperature control (zero volt contact, 230 V~; 0.1 A; accessory)
- D Junction box (on site)
- E Fuses and contactor for circulation pump for swimming pool heating (accessory)
- (F) Circulation pump for swimming pool water heating (accessory)
- G Three-way diverter valve "swimming pool" (zero volt: Heating the heating water buffer cylinder)

Required parameters

Parameter → setting

- "System definition"
- "External extension 7010" → "1"
- "Swimming pool 7008" → "1"

Cascade control via KM BUS

Make connections to "External extension H1" **only** according to the following diagram.

- A Heat pump 1 (lead appliance)
- (B) KM BUS
- © External extension H1
- D Zero volt contact "External demand"
- E Lag heat pump 1 Connection at the contact for "External demand"
- F Zero volt contact "External demand"

- G Lag heat pump 2
 Connection at the contact for "External demand"
- (H) Zero volt contact "External demand"
- K Lag heat pump 3

Central fault message input, lag heat pump Open contact X3.10 / X3.11 triggers a message (see central fault message, page 99).

Required parameters

Appliance	Parameter → setting "System definition" ■ "System scheme 7000" → "0" to "10" ■ "External extension 7010" → "1" ■ "Cascade control 700A" → "1" ■ "Output lag heat pump 700B" → "0" to "255" ■ "No. of external heat pumps 5735" → "1" to "3"	
Lead appliance		
Note Set the parameters for all lag heat pumps.	"System definition" ■ "System scheme 7000" → "11" ■ "Cascade control 700A" → 0 ■ "Set flow temperature, external demand 730C" → "0" to "70" (see page 202)	

Power supply

Danger

Incorrectly executed electrical installations can lead to injury from electrical current and result in equipment damage.

Make the power supply connection and implement all earthing measures (e.g. RCD circuit) in accordance with the following regulations:

- IEC 60364-4-41
- VDE requirements
- Requirements specified by your local power supply utility
- Protect the power cable to the control unit with no more than 16 A

Danger

The absence of component earthing in the system can lead to serious injury from electrical current if an electrical fault occurs. The equipment and the pipework must be connected to the earth bonding of the house in question.

Isolators for non-earthed conductors

- The main isolator (if installed) must simultaneously isolate all non-earthed conductors from the mains with a minimum contact separation of 3 mm.
- If no main isolator is installed, all nonearthed cables must be isolated from the mains by the upstream breaker with at least 3 mm contact separation.

Danger

Incorrect core termination can cause severe injuries and damage to the equipment.

Never interchange cores "L" and "N".

General information regarding the power supply

Information regarding the compressor power supply

١.

Please note

An incorrect phase sequence can cause damage to the unit. Make the compressor power supply **only** in the phase sequence specified (see terminal) with a **clockwise** rotating field

■ If compressor and/or instantaneous heating water heater (on site) are operated at a lower tariff (power-OFF), provide an additional cable (e.g. NYM 3 x 1.5 mm²) for the power-OFF signal from the distribution board (meter box) to the control unit.

Information regarding the heat pump control unit power supply

- Protect the power supply to the heat pump control unit with 16 A max.
- For accessories and external components which are not to be connected to the control unit, we recommend making the power connection to the same fuse, but with at least the same phase as the control unit.
 - Connection to the same fuse/MCB provides additional safety when the power is switched off. Observe the power consumption of the consumers connected (see page 241).
- The power supply to the heat pump control unit (3 x 1.5 mm²) and the cable for the power-OFF signal can be combined in a five-core cable. Observe the technical connection requirements of the power supply utility.

Information regarding the power supply utility

- In negotiations with your power supply utility, different supply tariffs for the main power circuits may be offered.
- The control unit/electronics feed must be implemented without possible blocking from the power supply utility; tariffs that are subject to possible shutdowns must not be applied to these feeds.
- The allocation of the power-OFF (for compressor and/or instantaneous heating water heater) is made via the type of connection and by a setting in the control unit (see pages 108 and 197). In Germany, the power supply can be cut off for up to 3 x 2 hours within any 24 h period.

Connecting power cables

The power supply is separated into two areas with two power cables:

- A Power supply to heat pump control unit
- (B) Power supply to compressor stages 1 and 2

Recommended power cables:

Туре	Heat pump con-	Compressor (400 V~)	
	trol unit (230 V~)		Max. cable length
BW 121	3 x 1.5 mm ²	4 x 2.5 mm ²	50 m
BWS 121	_	4 x 2.5 mm ²	50 m
BW 129	3 x 1.5 mm ²	4 x 4.0 mm ²	50 m
BWS 129	_	4 x 4.0 mm ²	50 m
BW 145	3 x 1.5 mm ²	4 x 6.0 mm ²	40 m
BWS 145	_	4 x 6.0 mm ²	40 m

Danger

Damaged cable insulation can cause injury and damage to the appliance.

Route cables so that they cannot touch very hot, vibrating or sharp-edged components.

Connect heat pump control unit power cable (230 V~)

Note

This supply must **never** be blocked.

- Max. fuse rating 16 A
- Standard tariff (no optional low tariff with power-OFF)

Connect compressor power cable (400 V~)

Single stage (type BW)

Two stage (type BW/BWS)

- Fuse protection in accordance with the compressor rating (see specification).
- Low tariff and power-OFF can be used.
- No parameters need to be set when using low tariff with power-OFF. During the power-OFF period, the compressor is shut down.

Power supply with power-OFF

Power-OFF without on-site load disconnection

The power-OFF signal is connected directly to the heat pump control unit. When power-OFF is enabled, **both** compressors (type BW/BWS) are forced OFF.

Parameter "Stage at power-OFF" is used to determine whether and at what stage the instantaneous heating water heater (on site) remains operational during the power-OFF (see page 197).

Note

Observe the technical connection conditions of the relevant power supply utility.

Single stage (type BW)

Diagram excluding fuses and RCD.

- A Heat pump control unit (for connection on cross connect PCB, see page 225)
- (B) Instantaneous heating water heater (on site)
- © Heat pump compressor (type BW)
- (D) High tariff meter
- E Ripple control receiver (contact open: power-OFF enabled)
- (F) Backup fuse ripple control receiver
- G TNC system feed
- H Low tariff meter

Two stage (type BW/BWS)

Shown excluding fuses and RCD.

- (A) Heat pump control unit (for connection on cross connect PCB, see page 225)
- B Instantaneous heating water heater (on site)
- © Heat pump compressor stage 1 (type BW)
- D High tariff meter

- (E) Ripple control receiver (contact open: power-OFF enabled)
- (F) Backup fuse ripple control receiver
- © TNC system feed
- (H) Low tariff meter
- (K) Heat pump compressor stage 2 (type BWS)

Power-OFF with on-site load disconnection

The power-OFF signal is connected to the on-site contactor of the low tariff power supply and in the heat pump control unit (heat pump type BW). When power-OFF is enabled, **both** compressors (type BW+BWS) **and** the instantaneous heating water heater (on site) are forced OFF.

Note

Observe the technical connection conditions of the relevant power supply utility.

Single stage (type BW)

Diagram excluding fuses and RCD.

- Heat pump control unit (for connection on cross connect PCB, see page 225)
- (B) Instantaneous heating water heater (on site)
- © Heat pump compressor (type BW)

- (D) Control unit power supply
- (E) Main isolator
- (F) High tariff meter
- G Ripple control receiver (contact open: power-OFF enabled) with backup fuse
- (H) Low tariff meter
- (K) TNC system feed

Two stage (type BW/BWS)

Shown excluding fuses and RCD.

- (A) Heat pump control unit (for connection on cross connect PCB, see page 225)
- (B) Instantaneous heating water heater (on site)
- © Heat pump compressor stage 1 (type BW)
- (D) Control unit power supply
- Main isolator
- F High tariff meter
- G Ripple control receiver (contact open: power-OFF enabled) with backup fuse
- (H) Low tariff meter

- K TNC system feed
- (L) Heat pump compressor stage 2 (type BWS)

Phase monitor

The phase monitor is factory-fitted in the type BW and is available as an accessory for type BWS.

The phase monitor is used to monitor the mains power supply to the compressor.

The following power supply deviations are permitted in the delivered condition:

Over/undervoltage	15%
Phase asymmetry	15%
Switching delay	4 s

The phase monitor switches off (switching contact opens) if these tolerances are exceeded.

The phase monitor automatically re-enables the power supply if the values return to within the specified tolerance range. Remove the cause if the relay has responded. The relay does not need to be reset.

- (A) Over/undervoltage in %
- B Phase asymmetry in %
- © Switching delay in s
- (D) Contact used in safety chain (N/O)
- E Operating display ("Rel")
- F Fault display phase failure/phase sequence ("Ph")
- G Fault display asymmetry ("Asy")
- ("<>U")

LEDs explained

- LED "Rel" illuminates green: All voltages and the rotating field (clockwise) are healthy.
- LED "Ph" illuminates red: The relay has responded; the rotating field is anticlockwise.
- All LED's off:
 One or several phases have dropped out.
- LED "<>U" illuminates red: Incorrect voltage on one/several phase(s).
- LED "Asy" illuminates red: Asymmetry on one/several phase(s).

Connecting to terminals X3.8/X3.9

After connecting the power supply, one of the following components **must** be connected at terminals X3.8 and X3.9:

Primary circuit pressure switch and/or frost stat

or

■ Jumper from the pack

Closing the heat pump

Please note

Seal the appliance to be soundproof and diffusion-proof. Check tightness of internal hydraulic connections.

Please note

To prevent the formation of condensate and extreme noise development, tightly seal the control unit door.

Danger

The absence of component earthing in the system can lead to serious injury from electrical current if an electrical fault occurs. Attach earth conductor to front panel and side panel.

Closing the heat pump (cont.)

Checking grommets

Please note

Seal the appliance to be sound-proof and diffusion-proof. With hose outlets, ensure grommets (A) are seated correctly. Seal grommets (A) with adhesive tape.

Checking grommets (cont.)

Steps - commissioning, inspection and maintenance

For further information regarding the individual steps, see the page indicated

			Commissioning steps
			Inspection steps
		Γ	— Maintenance steps Page
•	•	•	1. Opening the heat pump119
•			2. Writing reports119
•	•	•	3. Checking the refrigeration circuit for leaks 119
•			4. Filling and venting on the primary side 120
•			5. Filling and venting on the secondary side 120
•			6. Filling and venting the solar circuit 121
•	•	•	7. Checking expansion vessels and the primary circuit/
			heating circuit pressure121
•			8. Commissioning assistant 121
•			9. Integrating a heat pump control unit into a LON 124
•	•	•	10. Closing the heat pump
•			11. Instructing the system user 125

Opening the heat pump

Danger

Contact with 'live' components can lead to severe injury from electric current.

Never touch terminal areas (heat pump control unit and power connections; see page 75).

Danger

The absence of component earthing can lead to serious injury from electrical current and to component damage if an electrical fault occurs.

Always reconnect the earth conductors.

Please note

Wait at least 30 min between the installation and the commissioning of the appliance to prevent equipment damage.

Work on the refrigerant circuit must only be carried out by a

must only be carried out by a qualified **refrigeration engi- neer**.

Writing reports

Enter measurements taken during commissioning (described in the following) into the reports from page 236 onwards.

Checking the refrigeration circuit for leaks

If there are any leaks, have the heat pump module checked by a refrigeration engineer.

- **1.** Remove front panel in reverse order.
- **2.** When work is complete, close the heat pump; see page 115.

Regarding commissioning this appliance, see also the operating instructions.

Filling and venting on the primary side

- Please note
 - To prevent equipment damage, fill the primary circuit before connecting the power supply.
- 1. Check the pre-charge pressure of the expansion vessel (see page 121).
- 2. Fill the primary circuit with Viessmann heat transfer medium and vent.

Note

The system must be protected against frost down to –15 °C.

3. Check the connections for possible leaks. Replace faulty or displaced gaskets.

Filling and venting on the secondary side

- Please note
 - To prevent equipment damage, protect electrical components on the control unit door from escaping liquids.

Note

Before filling the system, observe VDI 2035 sheet 1.

- Open any on-site non-return valves installed.
- 2. Check the pre-charge pressure of the expansion vessel (see page 121).
- Fill (flush) and vent secondary circuit:

l. Please note

To prevent equipment damage, check the flow and return connections of the secondary heat pump circuit for leaks. In case of leaks, immediately shut off the equipment, drain the water and check the seating of the seal rings. Replace all seal rings that may have become dislodged.

 Check the system pressure and top up with water if required.
 Minimum system pressure: 0.8 bar Permiss. operating pressure: 2.5 bar

Filling and venting the solar circuit

Danger

Overheated collector areas and overheated heat transfer medium can cause burns/scalding and equipment damage.

When working on the collector and the solar circuit with heat transfer medium, protect the collector areas against solar irradiation.

 Check the pre-charge pressure of the diaphragm expansion vessel.

2. Please note

To prevent equipment damage, only fill the solar circuit with Tyfocor LS.

Vent the solar circuit. Minimum system pressure: 1.7 bar Permiss. operating pressure: 6 bar

Checking expansion vessels and the primary circuit/heating circuit pressure

Observe design information.

Vitocal technical guide

Commissioning assistant

The commissioning assistant guides you automatically through all the menus where settings have to be made.

Please note

Incorrect operation at "Coding level 1" can result in damage to the appliance and heating system.

Always observe the installation and service instructions; failure to observe these will void your warranty rights.

Note

- The scan "Start commissioning assistant?" only appears during initial commissioning.
- The configuration, parameter settings and function check can also be carried out without the commissioning assistant (see page 171, separate menu structure and operating instructions).
- When the unit is first commissioned, the display is in German:

Messages are displayed by manually controlling some components during commissioning. These do not indicate appliance faults.

Integrating a heat pump control unit into a LON

The LON communication module (accessory) must be plugged into the heat pump control unit (see page 79).

Note

The data transfer via the LON system can take several minutes.

LON system number and LON subscriber number

Set the LON system number, LON subscriber number and other functions at the **"Coding level 1"** setting level (see from page 215).

Setting other LON subscribers:

See service instructions of further LON subscribers (e.g. Vitocom) and the following table.

Note

In the same LON system, one number can only be allocated once.

Only one control unit per system may be programmed as the fault manager.

Example: Heat pump and Vitocom Heat pump control unit Vitocom LON LON communication module installed Parameter setting: "LON module installed" set to "1" Subscriber no. 1 Subscriber no. 99 Parameter setting: "Subscriber number 7710" set to "1" Viessmann system number Parameter setting: "System number 7798" set to "1" Control unit is fault manager Device is fault manager Parameter setting: "Fault manager 7779" set to "1" Control unit transmits the time Device receives the time Parameter setting: "Time 77FF" set to "2"

Heat pump control unit	Vitocom
Control unit transmits outside temperature	_
Parameter setting: "Outside temperature 7797" set	
to "2"	
LON subscriber fault monitoring	_
Parameter setting: "Receive heartbeat 779C" set to	
"20"	

Carrying out subscriber check

In conjunction with LON.

Communication with the system devices connected to the fault manager is tested with a subscriber check.

Preconditions:

- The heat pump control unit must be programmed as the fault manager ("Fault manager")
- The LON subscriber number must be programmed in all control units (see page 124)
- The fault manager LON subscriber list must be up to date

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"

3. "Communication"

4. "LON subscriber"

Displaying:

- "Check": Subscriber check runs;
 "LON WINK" flashes for 30 s on the display of the selected subscriber (if installed).
- "Check OK"
- "Check NOK": No communication between the two devices. Check the LON connection and codes; restart subscriber check.

Instructing the system user

The system installer must hand the operating instructions to the system user and instruct him/her in the operation of the system.

Messages

Scanning messages

Note

When opening up the heat pump control unit, the top part of the control unit clicks into a specific position. You can change this position by pushing © on the side.

- A ON indicator (green)
- B Fault indicator (red)
- © Button to change the end-stop position

If messages are pending, the message symbol flashes in the display $(\Delta, \Delta, \checkmark)$. For faults (Δ) , fault indicator B also flashes.

Show the message text and message code by pressing **OK** (see "Message overview").

Top part of the control unit with integral programming unit

Note	
Outside temp sensor	18
Power-OFF	C5
Acknowledge with	OK

Explanation of messages

Fault "▲"

- The central fault message terminal is activated.
- Message via communication facility (e.g. Vitodata, Vitocom) possible.
- The system is no longer in standard mode; the fault must be removed as quickly as possible.

Warning "△"

■ The operation of the appliance is limited and the cause of the warning must be removed.

Note "√"

 The appliance retains its functionality, however the information needs to be noted.

Acknowledging messages and recalling acknowledged messages

Operating instructions

Calling up messages from the message history

- Messages cannot be acknowledged in the message history.
- The messages are listed in order of occurrence with the most recent first.
- Up to 30 entries are stored.

Service menu:

- Press **OK** + simultaneously for approx. 4 s.
- 2. "Message history"
- 3. Press **OK** to scan information about the required message.

Note

The service menu remains active until it is deactivated with "Terminate service?", or if no operation takes place for 30 minutes.

Message overview

All messages are identified by a two-digit code.

Message		
System characteristics	Cause	Measures
02 Std after data error		
	Delivered condition set after recognition of data fault	Reconfigure system.

Message		
System characteristics	Cause	Measures
03 Configuration fault		
	System configuration fault: Incorrect system scheme (contains non-supported heating circuit) Max. flow temperature for heating circuit < min. flow temperature for cooling the heating circuit Cooling for unavailable heating circuit	Check and match associated parameters, reset to delivered condition if required ("Reset", see operating instructions), and reconfigure system. Contact your local heating contractor if the cause of the fault cannot be remedied.
05 Fault EEV 1		
	Fault message from EEV controller (refrigerant circuit control)	Observe messages in heat pump module diagnosis (see page 154).
06 Fault EEV 2	1	1
	Fault message from EEV controller (refrigerant circuit control), heat pump stage 2 (type BWS)	Observe messages in heat pump module diagnosis (see page 154).
07 Message EEV 1		
	Message from EEV controller (refrigerant circuit control), heat pump stage 1 (type BW)	Observe messages in heat pump module diagnosis (see page 154).
08 Message EEV 2		
	Message from EEV con- troller (refrigerant circuit control), heat pump stage 2 (type BWS)	Observe messages in heat pump module diagnosis (see page 154).
10 Outside temp sensor	1	1
Operation with outside temperature -40 °C	Short circuit, outside temperature sensor	Check resistance (Ni 500) at plug-in connection F0; replace sensor if required.

Message		
System characteristics	Cause	Measures
18 Outside temp sensor		
Operation with outside temperature -40 °C	Lead break, outside tem- perature sensor	Check resistance (Ni 500) at plug-in connection F0; replace sensor if required.
20 Flow sensor secondary	_	
Operation with temperature value of return temperature sensor in secondary circuit, plus 5 K. If both temperature sensors (secondary flow and return) are faulty, the heat pump stops (message A9)	Short circuit, secondary circuit flow temperature sensor	Check resistance (Pt 500) at plug-in connection F8 and terminals X5.8/X5.9; replace sensor if required.
21 Return sensor sec.		
Operation with temperature value of flow temperature sensor in secondary circuit, minus 5 K. If both temperature sensors (secondary flow and return) are faulty, the heat pump stops (message A9)	Short circuit, return temperature sensor, secondary circuit, heat pump stage 1 (type BW)	Check resistance (Pt 500) at plug-in connection F9 and terminals X5.10/X5.11; replace sensor if required.
22 Return sensor sec. 2		
Operation with temperature value of flow temperature sensor in secondary circuit, minus 5 K. If both temperature sensors (secondary flow and return) are faulty, the heat pump stops (message A9)	Short circuit, return temperature sensor, secondary circuit, heat pump stage 2 (type BWS)	Check resistance (Pt 500) at plug-in connection F18 and terminals X6.6/X6.7; replace sensor if required.

Message		
System characteristics	Cause	Measures
28 Flow sensor secondary Operation with temperature value of return temperature sensor in secondary circuit, plus 5 K. If both temperature sensors (secondary flow and return) are faulty, the heat pump stops (message A9)	Lead break, secondary circuit flow temperature sensor	Check resistance (Pt 500) at plug-in connection F8 and terminals X5.8/X5.9; replace sensor if required.
29 Return sensor sec.	l	I
Operation with temperature value of flow temperature sensor in secondary circuit, minus 5 K. If both temperature sensors (secondary flow and return) are faulty, the heat pump stops (message A9)	Lead break, return tem- perature sensor, secon- dary circuit, heat pump stage 1 (type BW)	Check resistance (Pt 500) at plug-in connection F9 and terminals X5.10/X5.11; replace sensor if required.
2A Return sensor sec. 2		
Operation with temperature value of flow temperature sensor in secondary circuit, minus 5 K. If both temperature sensors (secondary flow and return) are faulty, the heat pump stops (message A9)	Lead break, return tem- perature sensor, secon- dary circuit, heat pump stage 2 (type BWS)	Check resistance (Pt 500) at plug-in connection F18 and terminals X6.6/X6.7; replace sensor if required.
30 Flow sensor primary	1	l
Operation with temperature value of return temperature sensor in primary circuit, plus 3 K. If both temperature sensors (primary flow and return) are faulty, the heat pump stops (message A9)	Short circuit, tempera- ture sensor, primary cir- cuit (heat pump brine inlet)	Check resistance (Pt 500) at plug-in connection F2 and terminals X5.2/X5.3; replace sensor if required.

Message				
System characteristics	Cause	Measures		
31 Return sensor primary				
Operation with temperature value of flow temperature sensor in primary circuit, minus 2 K. If both temperature sensors (primary flow and return) are faulty, the heat pump stops (message A9)	Short circuit, primary circuit temperature sensor, brine outlet	Check resistance (Pt 500) at plug-in connection F3 and terminals X5.4/X5.5; replace sensor if required.		
38 Flow sensor primary				
Operation with temperature value of return temperature sensor in primary circuit, plus 3 K. If both temperature sensors (primary flow and return) are faulty, the heat pump stops (message A9)	Lead break, flow temper- ature sensor, primary (heat pump brine inlet)	Check resistance (Pt 500) at plug-in connection F2 and terminals X5.2/X5.3; replace sensor if required.		
39 Return sensor primary	1	1		
Operation with temperature value of flow temperature sensor in primary circuit, minus 2 K. If both temperature sensors (primary flow and return) are faulty, the heat pump stops (message A9)	Lead break, primary return temperature sensor (brine outlet)	Check resistance (Pt 500) at plug-in connection F3 and terminals X5.4/X5.5; replace sensor if required.		
40 Flow sensor HC2				
Mixer heating circuit M2 is closed	Short circuit, flow tem- perature sensor in heat- ing circuit with mixer M2	Check resistance (Ni 500) at plug-in connection F12; replace sensor if required.		
41 Flow sensor HC3	41 Flow sensor HC3			
Mixer heating circuit M3 is closed	Short circuit, flow temperature sensor in heating circuit with mixer M3	Check sensor and replace if necessary (see installation instructions for extension kit for heating circuit with mixer).		

Message		
System characteristics	Cause	Measures
43 Flow sensor system		
	Short circuit, system flow temperature sensor (downstream of heating water buffer cylinder)	Check resistance (Pt 500) at plug-in connection F13; replace sensor if required.
44 Flow sensor cooling	10	la
	Short circuit, flow tem- perature sensor, cooling circuit	Check resistance (Ni 500) at plug-in connection F14; replace sensor if required.
48 Flow sensor HC2		
Mixer heating circuit M2 is closed	Lead break, flow temper- ature sensor in heating circuit with mixer M2	Check resistance (Ni 500) at plug-in connection F12; replace sensor if required.
49 Flow sensor HC3		
Mixer heating circuit M3 is closed	Lead break, flow temper- ature sensor heating cir- cuit M3	Check sensor and replace if necessary (see installation instructions for extension kit for heating circuit with mixer).
4B Flow sensor system		
	Lead break, system flow temperature sensor (downstream of heating water buffer cylinder)	Check resistance (Pt 500) at plug-in connection F13; replace sensor if required.
4C Flow sensor cooling		
	Lead break, flow temper- ature sensor, cooling cir- cuit	Check resistance (Ni 500) at plug-in connection F14; replace sensor if required.
50 DHW sensor top		
DHW heating is blocked	Short circuit, top cylinder temperature sensor	Check resistance (Pt 500) at plug-in connection F6 and terminals X6.2/X6.1; replace sensor if required.

Message		
System characteristics	Cause	Measures
54 DHW solar		
No heating of the DHW cylinder/primary store by the solar thermal system; solar circuit pump remains OFF	Short circuit, Vitosolic cylinder temperature sensor	Check sensor and replace if required (see Vitosolic installation and service instructions).
58 DHW sensor top		
DHW heating is blocked	Lead break, cylinder temperature sensor F6	Check resistance (Pt 500) at plug-in connection F6 and terminals X6.2/X6.1; replace sensor if required.
5C DHW solar		
No heating of the DHW cylinder/primary store by the solar thermal system; solar circuit pump remains OFF	Lead break, Vitosolic cyl- inder temperature sen- sor	Check sensor and replace if required (see Vitosolic installation and service instructions).
60 Buffer cylinder sensor		
Buffer cylinder is heated once every hour. Heating stops according to set value of the return temperature sensor	Short circuit, buffer cylinder temperature sensor	Check resistance (Pt 500) at plug-in connection F4 and terminals X5.6/X5.7; replace sensor if required.
63 Ext. heat source		
External heat source is blocked. Instantaneous heating water heater (if installed) is enabled	Short circuit, external heat source temperature sensor	Check pressure drop value (Pt 500) at plug-in connection F20 and termi- nals X6.8/X6.9; replace sensor if required.
68 Buffer cylinder sensor	1	l
Buffer cylinder is heated once every hour. Heating stops according to set value of the return temperature sensor	Lead break, buffer cylinder temperature sensor	Check resistance (Pt 500) at plug-in connection F4 and terminals X5.6/X5.7; replace sensor if required.

Message		
System characteristics	Cause	Measures
6B Ext. heat source		
External heat source is blocked. Instantaneous heating water heater (if installed) is enabled	Lead break, external heat source temperature sensor	Check pressure drop value (Pt 500) at plug-in connection F20 and termi- nals X6.8/X6.9; replace sensor if required.
70 Room sensor HC1		
 No frost protection mode via room temper- ature sensor No room temperature hook-up No room temperature control 	Short circuit, room tem- perature sensor heating circuit A1	Check remote control sensor and replace if required (see Vitotrol service instructions).
71 Room sensor HC2		
 No frost protection mode via room temper- ature sensor No room temperature hook-up No room temperature control 	Short circuit, room temperature sensor heating circuit M2	Check remote control sensor and replace if required (see Vitotrol service instructions).
72 Room sensor HC3		
 No frost protection mode via room temper- ature sensor No room temperature hook-up No room temperature control 	Short circuit, room temperature sensor heating circuit M3	Check remote control sensor and replace if required (see Vitotrol service instructions).
73 Room sensor SKK		
	Short circuit, room temperature sensor, cooling circuit	Check resistance (type Ni 500) at plug-in connection F16; replace sensor if required.

Message		
System characteristics	Cause	Measures
78 Room sensor HC1		
 No frost protection mode via room temper- ature sensor No room temperature hook-up No room temperature control 	Lead break, room tem- perature sensor heating circuit A1	Check remote control sensor and replace if required (see Vitotrol service instructions).
79 Room sensor HC2		
 No frost protection mode via room temper- ature sensor No room temperature hook-up No room temperature control 	Lead break, room tem- perature sensor heating circuit M2	Check remote control sensor and replace if required (see Vitotrol service instructions).
7A Room sensor HC3		
 No frost protection mode via room temper- ature sensor No room temperature hook-up No room temperature control 	Lead break, room tem- perature sensor heating circuit M3	Check remote control sensor and replace if required (see Vitotrol service instructions).
7B Room sensor SKK		
	Lead break, room tem- perature sensor, cooling circuit	Check resistance (type Ni 500) at plug-in connection F16; replace sensor if required.
92 Collector sensor		
	Short circuit, Vitosolic collector temperature sensor	Check sensor and replace if required (see Vitosolic installation and service instructions).
93 Return sensor solar	1	1
	Short circuit, Vitosolic return temperature sensor	Check sensor and replace if required (see Vitosolic installation and service instructions).

Troubleshooting

Message		
System characteristics	Cause	Measures
9A Collector sensor		
	Lead break, Vitosolic col- lector temperature sen- sor	Check sensor and replace if required (see Vitosolic installation and service instructions).
9B Return sensor solar		
	Lead break, Vitosolic return temperature sensor	Check sensor and replace if required (see Vitosolic installation and service instructions).
A6 Secondary pump		
	No flow in secondary circuit (secondary circuit pump stopped)	Check voltage at connection 211. 2 and check secondary pump mechanically; replace if required.
A7 Solar circuit		
	No flow in solar circuit (solar circuit pump stopped)	Check voltage at connection between the solar circuit pump and Vitosolic and check solar circuit pump; replace if required (see Vitosolic installation and service instructions).
A8 Pump heating circuit 1		
	No flow in heating circuit A1 (circuit pump stop- ped)	Test voltage at connection 212.2 and check pump mechanically; replace if required.

Isolate the power supply prior to starting work on the appliance.

Message		
System characteristics	Cause	Measures
A9 Heat pump	Heat pump fault Heat pump faulty Safety high pressure switch has responded. High pressure or low pressure sensor has responded 8 times within 24 h	Scan further messages ("Message history" see page 127); check volume flow rates, motor currents/ motor protection, and safety high pressure switch
	 Fault EEV controller Temperature sensors in primary/secondary circuit faulty 	Note After removing fault, switch appliance OFF and ON again once.
AB Electric heater	1	1
	Fault, instantaneous heating water heater (appliance faulty or high limit safety cut-out has responded; alternatively no temperature rise within 24 h)	Danger Contact with 'live' components can lead to severe injury from electric current.

Message		
System characteristics	Cause	Measures
		■ Check power supply, connecting cable and plug for the instantaneous heating water heater. ■ Test instantaneous heating water heater control signal at connections 211.3 (stage 1) and 224.4 (stage 2); check high limit safety cut-out and reset if required; check instantaneous heating water heater. Installation instructions, instantaneous heating water heater
AF Cylinder prim pump	 Circulation pump for cylinder heating faulty Circulation volume in primary store system too low; cylinder primary pump or two-way valve on primary store system faulty. 	 Circulation pump for cylinder heating: Test voltage at connection 211.4 and check pump mechanically; replace if required. Cylinder primary pump/two-way valve: Test voltage at connections.
		tion 224.6 and check pump/valve mechani- cally; replace if required.

Message		
System characteristics	Cause	Measures
B0 Device recognition	Error in recognising appliance version, incor-	■ Check sensor input F11 on the controller and
	rect coding card or PCBs faulty.	sensor PCB. No connection should be made at terminal F11. Check coding card and replace if required. Check PCBs and replace if required.
B1 KM BUS EEV	1	1
	Communication fault with EEV controller (refrigerant circuit control), heat pump stage 1 (type BW)	Check KM BUS connection. At the connection between KM BUS and EEV, a fluctuating DC voltage between approx. 20 V and 30 V can be measured at the controller and sensor PCB at terminals X5.14 and X5.15 (connections are parallel to plug 145). Check leads/cables; check power supply to EEV controller PCB; replace PCB if required.

Message		
System characteristics	Cause	Measures
B2 KM BUS EEV		
B4 A-D converter	Communication fault with EEV controller (refrigerant circuit control), heat pump stage 2 (type BWS)	Check KM BUS connection. At the connection between KM BUS and EEV, a fluctuating DC voltage between approx. 20 V and 30 V can be measured at the controlle and sensor PCB at terminals X5.14 and X5.15 (connections are parallel to plug 145). Check leads/cables; check power supply to EEV controller PCB; replace PCB if required.
D4 A-D Converter	Internal fault ADC (analogue digital converter, reference), ribbon cable between sensor PCB and main PCB faulty, or PCBs faulty	Check PCB; if required, replace in the following order: Controller and sensor PCB, main PCB, programming unit.
B5 EEPROM	1	1
	Internal fault, EEPROM	Replace coding card.
B9 KM BUS solar	Communication error - KM BUS solar control unit, or sensor S3 of Vitosolic faulty	■ Check parameter "Solar control unit type 7A00". ■ Check connection to Vitosolic. ■ Check Vitosolic sensors and replace if required (see Vitosolic installa- tion and service instruc- tions).

Message		
System characteristics	Cause	Measures
BA KM BUS mixer HC	KM BUS communication error or internal fault in extension kit for one heating circuit with mixer M3	Check extension kit connections and code.
BB KM BUS mixer cooling	•	
	KM BUS communication error or internal fault in extension kit, NC-Box for cooling circuit	Check connections and parameter settings.
BC KM BUS R/C HC1		
	Communication error - KM BUS remote control; heating circuit without mixer A1	Check remote control connections and code; switch ON remote control.
BD KM BUS R/C HC2		
	Communication error - KM BUS remote control; heating circuit with mixer M2	Check remote control connections and code; switch ON remote control.
BE KM BUS R/C HC3		
	Communication error - KM BUS remote control; heating circuit with mixer M3	Check remote control connections and code; switch ON remote control.
BF Communication module		
	LON communication error; incorrect LON communication module	Check connections and type of communication module LON. Replace in the following order if required: Control and sensor PCB Ribbon cables between controller and sensor PCB and main PCB Main PCB

Message		
System characteristics	Cause	Measures
C2 Power supply monitor	Compressor power supply fault or phase monitor faulty	Check connections, phase connection and power supply; check phase monitor. The switching signal can be tested at connection 215.2.
C5 Power-OFF	Power-OFF enabled (triggered by power sup- ply utility)	No measures required. If message persists: Check the cross connect PCB connections first at terminal X3.7 (feed) then at terminal X3.6 (230 V~).
C9 Refrigerant circuit	Refrigerant circuit fault, heat pump stage 1 (type BW): Safety high pressure switch has responded. Compressor motor protection (thermal relay) has responded Klixon start-up resistor If supplied: Separate compressor motor protection has responded	 Check flow and return temperature sensors in primary and secondary circuits. Check primary and secondary circuits for pressure and throughput (see also message A9) Have heat pump tested by a refrigeration engineer. The switching signal can be tested at connection 215.4. Note After removing fault, switch appliance OFF and ON again once.

Message		
System characteristics	Cause	Measures
CA Primary source	Primary circuit fault: Primary circuit pressure switch/frost pro-	■ Check safety equipment on cross connect PCB, terminals X3.9
	tection monitoring has responded Primary pump thermal circuit breaker (heat pump stage 1, type BW or common primary pump)	and X3.8; in systems without safety equipment, check jumper between X3.9/X3.8. Reset thermal relay, check primary pump and replace if required The switching signal can be tested at connection 215.3.
CB Primary temperature		
Heat pump stops.	Min. primary flow tem- perature (brine inlet) not achieved	Check primary circuit for flow rate.
CC Coding card		
	The coding card cannot be read	 Check coding card and replace if required. Check controller and sensor PCB and replace, if required.
CD KM BUS Vitocom		
	Communication error - KM BUS Vitocom 100	Check Vitocom 100 connections and connecting cables. Check connections at the controller and sensor PCB, plug 145 KM BUS. A fluctuating DC voltage between approx. 20 V and 30 V can be measured at the terminals.

Message				
System characteristics	Cause	Measures		
CE KM BUS ext. extension				
	Communication error - KM BUS external exten- sion H1	Check external extension H1 connections and connecting cables. Check connections at the controller and sensor PCB, plug [145] KM BUS. A fluctuating DC voltage between approx. 20 V and 30 V can be measured at the terminals.		
CF Communication module	1			
	Communication error - LON module in control unit	Check LON communication module and replace if required.		
		If required, replace in the following order: Control and sensor PCB Ribbon cables between controller and sensor PCB and main PCB Main PCB		

Message		
System characteristics	Cause	Measures
	Cause Compressor fault, heat pump stage 1 (type BW): Compressor thermal relay has responded. Separate compressor motor protection (if installed) has responded	■ Reset compressor thermal relay, check setting, restore delivered condition ("Standard settings", see menu structure). ■ Check compressor electrical connections, test coil resistance of compressor motor. Check compressor phase sequence.
		phase sequence. The switching signal (from thermal relay, separate motor protection) can be tested at connection 215.7.
		Note If overheating occurs, internal motor protection prevents a re-enabling of the compressor for 1-3 hours.
		If required, have com- pressor tested by a refrigeration engineer.

Message		
System characteristics	Cause	Measures
D3 Low pressure		
	Low pressure fault, heat pump stage 1 (type BW): Heat pump faulty Primary pump faulty Low pressure sensor has reported a fault or is faulty	■ Have heat pump tested by a refrigeration engineer. ■ Check pressure gauge, primary pump and shutoff facilities. ■ Check low pressure sensor, lead and EEV PCB, and replace if required. The signal from plug 116 can be tested at connection 215.5. (Delivered condition: Jumper installed between terminals 116.3/116.4). If a pressure sensor is installed, the signal must be continuously active.
D6 Flow switch	Lancar and a second	1
	Well circuit flow switch cannot detect a flow	 Check well pump. Check primary circuit. If no flow switch is installed, insert a jumper between X3.3/X3.4. The signal can be tested at connection 216.3 or across terminals X3.3/X3.4.

Message		
System characteristics	Cause	Measures
DA Compressor 2	Compressor fault, heat pump stage 2 (type BWS): Compressor thermal relay has responded. Separate compressor motor protection (if installed) has responded Klixon start-up resistor If supplied: three phase monitor has detected a fault or is faulty	■ Reset compressor thermal relay, check setting, restore delivered condition ("Standard settings", see menu structure). ■ Check compressor electrical connections, test coil resistance of compressor motor. Check compressor phase sequence. ■ The switching signal (from thermal relay, separate motor protection) can be tested at connection 214.5. Note If overheating occurs, internal motor protection prevents a re-enabling of the compressor for 1-3 hours. ■ If required, have compressor tested by a refrigeration engineer.

Message		
System characteristics	Cause	Measures
DB Refrigerant circuit 2	Refrigerant circuit fault, heat pump stage 2 (type BWS): Safety high pressure switch has responded. Compressor motor protection (thermal relay) has responded If supplied: separate compressor motor protection has responded	 Check flow and return temperature sensors in primary and secondary circuits. Check primary and secondary circuits for pressure and throughput (see also message A9). Have heat pump tested by a refrigeration engineer. The switching signal can be tested at connection 214.2. Note After removing fault, switch appliance OFF and
DC Low pressure 2	Low pressure fault, heat pump stage 2 (type BWS): Heat pump faulty Primary pump faulty Low pressure sensor has reported a fault or is faulty	■ Have heat pump tested by a refrigeration engineer. ■ Check pressure gauge, primary pump and shutoff facilities. ■ Check low pressure sensor, lead and EEV PCB, and replace if required. The signal from plug 116 can be tested at connection 214.3. (Delivered condition: Jumper installed between terminals 116.3/116.4). If a pressure sensor is installed, the signal must be continuously active.

Message		
System characteristics	Cause	Measures
DE Primary source 2	Primary circuit fault: Primary circuit pressure switch/frost protection monitoring has responded Primary pump thermal circuit breaker, heat pump stage 2 (type BWS) Three phase monitor has detected a fault or is faulty	■ Check safety equipment (frost protection, brine pressure, frost protection AC-Box) on cross connect PCB, terminals X3.9 and X3.8; ir systems without safety equipment, check jumper between X3.9/X3.8. ■ Reset thermal relay, check primary pump and replace if required The switching signal can be tested at connection 214.1.
E0 LON subscriber	LON subscriber has failed or connection is faulty	 Call up fault memory at faulty subscriber. Check address (system and subscriber numbers); check connections and LON connecting cables.
E1 Ext. heat generation	Fault - external heat source	Check external heat source.
E2 Fault lag heat pump	Fault at a lag heat pump in the cascade	Check heat pump control unit display at lag heat pump.
F2 Param. output 1/2	Compressor output not selected	Set "Output compressor stage 5030/5130" parameter accordingly.
FF New start	Control unit restart	No measures required.

Note

The system is out of use if **"Simulation"** is displayed. Connection F11 must **not** be assigned.

Diagnosis (service scans)

Calling up diagnosis

Service menu:

- 1. Press **OK** + **\equiv** simultaneously for approx. 4 s.
- 2. "Diagnosis"
- 3. Select required area, e.g. **"Heat pump"**

Scanning operating data

Operating data can be scanned in the following areas:

<u> </u>		
"System overview"	For further information, see page 151	
"System"	For further details, see menu structure	
"Heating circuit 1"	For further details, see menu structure	
"Heating circuit 2"	If a heating circuit with mixer M2 is installed, see the	
	menu structure for further details	
"Heating circuit 3"	If a heating circuit with mixer M3 is installed, see the	
	menu structure for further details	
"Cooling circuit SKK"	If a separate cooling circuit is installed, see the menu	
	structure for further details	
"DHW"	For further details, see menu structure	
"Solar"	If a solar thermal system is installed, see the menu	
	structure for further details	
"Heat pump"	For further information, see page 154	
"Energy statement"	For further information, see page 160	
"Temperature sensors"	For further details, see menu structure	
"Signal inputs"	For further details, see menu structure	
"Brief scan"	For further information, see page 161	

Note

Only connected temperature sensors are displayed. In case of faults, the display shows "---".

System overview

Service menu:

- Press **OK** + simultaneously for approx. 4 s.
- 2. "Diagnosis"
- 3. "System overview"

Note

(N)

(O)

The display depends on the system version (e.g. column \widehat{H} : display only if heating circuit M2 is installed). With some components the symbols move when they are operational (e.g. pumps).

The values shown are examples.

- (A) to (L) For an explanation of the contents of columns (A) to (L), see the following tables.
- Cooling function:
- "natural cooling": ☐

 "active cooling": ☐

 ∅

The arrow points at the heating/cooling circuit activated for cooling.

Geothermal probe symbol

A	
0 3	Outside temperature sensor
0	Outside temp
	Primary circuit flow temperature (brine inlet temperature)
7	Primary circuit return tempera-
	ture (brine outlet temperature)
B	
1	Refrigerant circuit (compressor stage 1)
<u> </u>	DHW heating via heat pump stage 1 (type BW)
1₿	Instantaneous heating water
or	heater at stage 1
_	or
2	Instantaneous heating water
or	heater at stage 2
_	or
3■	Instantaneous heating water
	heater at stage 3
45	Secondary circuit flow temperature
41	Secondary circuit return temper-
	ature
\bigcirc	Secondary pump
51	Hot gas temperature
<u>51</u>	Compressor stage 1 (type BW)
\bigcirc	Primary pump (primary source,
	common primary pump or pri-
	mary pump heat pump stage 1)

©	
2	Refrigerant circuit (compressor stage 2)
<u> </u>	DHW heating via heat pump stage 2 (type BWS)
42	Secondary circuit return temperature
52 (1)	Secondary pump
52	Hot gas temperature
\bigcirc	Compressor stage 2 (type BWS)
<u></u>	Primary pump (primary source, heat pump stage 2)
<u>D</u>	
λ <u>η</u>	Solar circuit
50	Collector temperature (collector temperature sensor)
29	Solar return temperature (cylinder temperature sensor) or DHW temperature sensor solar cylinder (connected to the
	Vitosolic)
\bigcirc	Solar circuit pump
<u> </u>	External heat source or
or Or	If an external heat source is in operation
45	External heat source mixer
45	Boiler temperature, external heat source
<u></u>	Circulation pump for cylinder reheating

(E)	
<u> </u>	DHW
50	DHW temperature, top
45	Set DHW temperature
\bigcirc	Circulation pump for cylinder
	heating
\bigcirc	DHW circ pump
<u>F</u>	
	Heating water buffer cylinder
45	Heating water buffer cylinder
	temperature
33	Set temperature, heating water
	buffer cylinder
44	System flow temperature
\Rightarrow	System flow
	Swimming pool
\bigcirc	Swimming pool circuit pump

G	
Ш 1	Heating circuit A1 (without
	mixer)
21	Room temperature
21	Set room temperature
38	Set heating circuit flow tempera-
	ture
\bigcirc	Heating circuit pump

$oldsymbol{H}$	
Ш 2	Heating circuit with mixer M2
22	Room temperature
22	Set room temperature
32	Heating circuit flow temperature
38	Set heating circuit flow tempera-
	ture
\bigcirc	Heating circuit pump
\bowtie	Mixer

(K)	
111 3	Heating circuit with mixer M3
23	Room temperature
23	Set room temperature
33	Heating circuit flow temperature
38	Set heating circuit flow tempera-
	ture
\bigcirc	Heating circuit pump
	Mixer
L	
*	Separate cooling circuit
20	Room temperature
18	Set room temperature
15	Flow temperature, separate cool-
	ing circuit
10	Flow temperature, separate cool-
	ing circuit, set value
\bigcirc	"Cooling circuit pump": NC sig-
	nal
	Mixer

Heat pump module diagnosis

The refrigerant circuit is controlled by the EEV controller, which communicates permanently with the control unit via KM BUS.

You can scan the following information in the heat pump module diagnosis:

- Status and fault information of the EEV controller
- Current refrigerant circuit temperature and pressure values
- Last temperatures, evaporation and condensation pressures captured via the EEV controller
- lacktriangledown Compressor hours run for the various load classes. A load class specifies the compressor operation at a certain differential of evaporation and condensation temperature $\Delta T_{V/K}$

Diagnosis overview

Single stage (type BW)

Two stage (type BW/BWS): stage 1 (type BW)

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Diagnosis"
- 3. "Heat pump"
- 4. "EEV module"

Note

The information displayed in **"EEV module"** is independent of the control unit fault codes.

Displays

Display	Explanation
l [–]	Information index (commands, status, versions):
	12 digits, 4 different codes possible at each position, hexadecimal dis-
	play; observe the subsequent display system
Tsh, Tc [°C]	Tsh: Set superheating temperature
	Tc: Set hot gas temperature for start of the vapour injection (EVI)
Pmop	Max. suction gas pressure ("maximum operating pressure")
[bara]	Max. evaporator operating pressure
Ts, Tc [°C]	Ts: Actual suction gas temperature
	Tc: Actual condensation temperature
Ps [bara]	Actual suction gas pressure
Pc [bara]	Actual condensation pressure
TI [°C]	Actual LPG temperature
x, P [%]	x: Last EEV position
	P: Most recent set value default for the compressor output, calculated
	by the control unit from current heat demand in the secondary circuit
Err [–]	Fault index (components, messages):
	10 digits, 4 different codes possible at each position, hexadecimal dis-
	play; observe the subsequent display system

Display system of information and fault index

Four different messages are possible at each position in the information index and fault index. The control unit displays these messages with the codes 1, 2, 4 and 8. If several messages are active simultaneously, the relevant codes are added hexadecimally. Hexadecimal totals are unique, i.e. the individual active codes can be determined according to the following table.

Active codes C				
Display value	A	Active codes		
	1	2	4	8
"0"				
"1"	X			
"2"		Х		
"3"	X	Х		
"4"			Х	
"5"	X		Х	
"6"		Х	Х	
"7"	X	Х	Х	
"8"				Х
"9"	X			Х
"A" (≙10)		Х		Х
"B" (≙11)	X	Х		Х
"C" (≙12)			Х	Х
"D" ($\hat{=}$ 13)	X		Х	Х
"E" (≙14)		Х	Х	Х
"F" (≙15)	Х	Х	Х	Х
"F" (≙15)	X	X	X	X

How to analyse the information index and fault index

- 1. Check the display value for each position individually.
- 2. Determine active codes C from the table.
- 3. See tables E and I for explanations of active codes.

Information index "I" |

Position	Code	Explanation		
Most rece	nt comma	nds transferred from the control unit to the EEV controller		
1	4	Message received regarding EEV controller restart		
2	1	Enable refrigerant circuit control (EEV controller switches com-		
		pressor on automatically when required)		
	2	Enable vapour injection with EVI control circuit		
	4	Cooling mode enabled		
3	0	N/A		
4	0	N/A		
Most rece	nt status r	reported by the EEV controller to the control unit		
5	1	Digital scroll relay enabled		
	2	EVI valve enabled		
	4	Refrigerant circuit control of heat pump control unit enabled via		
		digital input		
	8	Cooling mode enabled, start via digital input		
6	1	Refrigerant circuit control of heat pump control unit enabled via		
		KM BUS		
	2	Vapour injection with EVI control circuit enabled via KM BUS		
	4	Cooling mode enabled, start via KM BUS		
	8	Compressor on		
7	0	N/A		
8	1	Compressor shutdown due to fault		
Always sp	ecify the	versions in case of questions		
9	0 to F	EEV controller hardware version, position 1		
10	0 to F	EEV controller hardware version, position 2		
11	0 to F	EEV controller software version, position 1		
12	0 to F	EEV controller software version, position 2		

Example:

Information index "01 00 49 00 01 02"

Posi-	Display	Codes	Explanation (Tab. 1)	
tion		(Tab. C)		
1	"0"	0	_	
2	"1"	1	Enable refrigerant circuit control	
3	"0"	0	_	
4	"0"	0	_	
5	"4"	4	Refrigerant circuit control of heat pump control unit	
			enabled via digital input	
6	"9"	1	 Refrigerant circuit control of heat pump control un 	
			enabled via KM BUS	
		8	Compressor on	
7	"0"	0	_	
8	"0"	0	_	
9	"0"	0	EEV controller hardware version 01	
10	"1"	1		
11	"0"	0	EEV controller software version 02	
12	"2"	2		

Fault index "Err" E

Position	Code	Explanation
Parts, fault messages reported directly from EEV controller		
1	1	LPG temperature sensor faulty
	2	EEV stepper motor faulty
2	1	Low pressure sensor faulty
	2	Suction gas temperature sensor faulty
	4	High pressure sensor faulty
	8	Hot gas temperature sensor faulty
3	0	N/A
4	0	N/A
Messages	}	
5	1	Inadequate evaporation pressure (low pressure shutdown)
6	1	Condensation temperature too high
	2	Condensation pressure too high
	4	Suction gas superheating temperature too low
	8	Suction gas superheating too high
7	0	N/A

Position	Code	Explanation
8	1	Maximum operating pressure (MOP) was reached; control type
		(superheating/evaporation pressure control) in refrigerant cir-
		cuit was adjusted.
	2	Fault due to impermissible combination of refrigerant circuit
		conditions. A serious EEV controller fault has occurred, as the
		heat pump control unit only transfers permissible parameter
		combinations to the EEV controller.

Example:

Information index "0C 00 00 00"

Posi-	Display	Codes	Explanation (Tab. E)
tion		(Tab. C)	
1	"0"	0	_
2	"C"	4	High pressure sensor faulty, reported directly from EEV controller
		8	Hot gas temperature sensor faulty, reported directly from EEV controller
3	"0"	0	_
4	"0"	0	_
5	"0"	0	_
6	"0"	0	_
7	"0"	0	_
8	"0"	0	_

Temperature and pressure values

Most recent temperature and pressure values captured in primary and secondary circuits.

Note

While the compressor is running, the control unit in this overview displays the current test values. After the compressor has shut down, the last values measured during operation can be called up. These values are only overwritten when the compressor starts again.

Single stage (type BW)

Two stage (type BW/BWS):stages 1 and 2

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Diagnosis"
- 3. "Heat pump"
- 4. "EEV module (last run)"

Displays

Display	Explanation
tpe °C	Brine inlet temperature
tpa °C	Brine outlet temperature
tse °C	Secondary circuit return temperature
tsa °C	Secondary circuit flow temperature
p0 bara	Evaporation pressure
pc bara	Condensation pressure
Err/Msg	Last fault information code before a compressor shutdown; display system (see page 155) and explanation (see page 157) as before.

Compressor runtime (hours run according to load classes)

Single stage (type BW)

Two stage (type BW/BWS): stage 1 (type BW)

Service menu:

- 1. Press **OK** + **\equiv** simultaneously for approx. 4 s.
- 2. "Diagnosis"

- 3. "Heat pump"
- 4. "Runtime compressor"

The compressor hours run ("Hours run") can be scanned with ♠ for every "Load class".

Assigning the load classes:

Load class	Hours run for $\Delta T_{V/K}$
1	ΔT _{V/K} < 25 K
2	25 K < ΔT _{V/K} < 32 K
3	32 K < ΔT _{V/K} < 41 K
4	41 K < ΔT _{V/K} < 50 K
5	$\Delta T_{V/K} > 50 \text{ K}$

 $\Delta T_{\text{V/K}}$ Differential, evaporation and condensation temperature

Energy statement

The following information can be scanned in the "Energy statement" menu:

- "Energy statement htg": electrical energy ¼ used to operate the heat pump and the amount of heating energy IIII transferred into the heating system.
- "Energy statement DHW": electrical energy ¼ used to operate the heat pump and the amount of energy transferred into the heating system for DHW heating. →
- "SPF heating": seasonal performance factor for heating
- "SPF DHW": seasonal performance factor for DHW heating
- "SPF overall": seasonal performance factor overall

Service menu:

- Press **OK** + simultaneously for approx. 4 s.
- 2. "Diagnosis"
- 3. "Energy statement"

The energy values **Ⅲ**, **¬**, ¹ can be scanned with **•** for each calendar week **"Wk."** of the past year.

Note

In order to record realistic data, the parameter "Output" must be set correctly.

Brief scan

In the brief scan, you can scan temperatures, software versions and connected components, for example.

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Diagnosis"
- 3. "Brief scan"

For an explanation of the relevant values in the individual lines, see the fol-

lowing table:

Line (brief scan)	Field					
Julij	1	2	3	4	5	6
1	Control unit: Software version (SW index)		Device: Version Coding card: ID Low		Coding card: Version	
2	System scheme		Number of KM BUS users	Common demand temperature		perature
3	0	Program- ming unit: Software index	Extension for heating circuit with mixer (M2/M3): Software version	Solar control unit: Software version	LON module: Software version	External extension: Software version
4	0	0	0	0	Appliance	type

Line (brief scan)	Field						
	1	2	3	4	5	6	
5	0: no external	0: no external	0	External 0 to 10 V hook-up			
	demand	0711011101		Display in			
	1: exter-	blocking 1: exter-		U. HO exter	nal hook-up	1	
	nal	nal block-					
	demand	ing					
6	Number of scribers	LON sub-	Check digit	0	0	0	
7	Remote control:						
	Heating ci	rcuit with-	Heating c	ircuit with	Heating c	ircuit with	
	out mixer	out mixer A1:		mixer M2		mixer M3	
	0 w/o	Software	0 w/o	Software	0 w/o	Software	
	1 Vitotrol	version	1 Vitotrol	version	1 Vitotrol	version	
	200		200		200		
8	EEV modu	le 1:	EEV module 1:		Extension for heating		
	Hardware index		Software index		circuit with mixer for		
					cooling cir	cuit/sepa-	
					rate coolin	g circuit:	
					Software v	ersion	
9	EEV modu	le 2:	EEV module 2:		0		
	Hardware i	ndex	Software i	ndex			
10	Control unit:		Control unit:		Programming unit:		
	Software v	ersion	Software v	ersion/	Software v	ersion	
	High		Low				

Testing outputs (actuator test)

- Only actuators are shown that correspond to the actual system equipment level.
- Activating the actuator test switches all actuators to zero volt.
- One or several actuators can be started from this menu.
- The actuator test stops automatically after approx. 30 min or with ...
- With ****** "System overview" and the diagnosis page "EEV module" can be called up, without exiting the actuator test. Back to the actuator test display with **OK**.

Testing outputs (actuator test) (cont.)

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Actuator test"

Note

- If a cylinder primary pump is controlled via the PWM signal, activate both outputs "Cylinder prim pump".
- All actuators can be switched off simultaneously with "All actuators".

Function check

To test the function of connected components (see commissioning assistant, page 121).

- 3. "Function check"
- 4. Select required group, e.g. "DHW".

Service menu:

- Press **OK** + simultaneously for approx. 4 s.
- 2. "Service functions"

"Function check" menu

Fullction check illend	
Function	System characteristics
Heating circuit 1	Secondary pump and heating circuit pump A1 are
	started.
Heating circuit 2	Heating circuit pump M2 or M3 is started. Open/close
Heating circuit 3	mixer every 5 min.
Separate cooling circuit	Primary pump and circulation pump, separate cooling
	circuit are started. Open/close mixer every 5 min.
DHW (DHW cylinder)	Secondary pump, circulation pump for cylinder heat-
	ing (heating water side) and cylinder primary pump
	(DHW side) are started.
Swimming pool	Secondary pump is started. Swimming pool output is
	switched on/off every minute.
Electric heater (instantane-	Secondary pump is started. Instantaneous heating
ous heating water heater,	water heater regulates to a flow temperature of
accessory)	30 °C.
Heat pump	Primary and secondary pumps are started. Heat
	pump regulates to a return temperature of 30 °C.
Ext. heat source	The external heat source is regulated to a flow tem-
	perature of 35 °C. Open mixer, heating circuit pumps
	are started.

Function check (cont.)

Function	System characteristics
Solar	If the Vitosolic is connected, the display for the solar
	circuit pump is activated in the system overview. Start
	the solar circuit pump via the Vitosolic (see Vitosolic
	service instructions).
Primary source	The primary pump starts. The primary circuit flow
	temperature is averaged every minute.
Note	
The execution of this function	Note
lasts 10 min.	This function determines the temperature of the undisturbed ground.
	If the function is terminated earlier, the average value calculated at the time of the termination is saved.

Steps if the room temperature is too low

- 1. Vent the heating circuits.
- Check throughput of affected heating circuits. Recommended temperature differential between heating flow and return approx. 8 K.
- **3.** Hydraulically balance the connected heating circuits.
- **4.** Check the outside temperature sensor (see page 166).

Increase the set room temperature for standard mode and match the heating curves.

Operating instructions

Enable heating operation via the integral instantaneous heating water heater (if installed) (see page 196).

No display indication on the programming unit

- 1. Switch ON system ON/OFF switch.
- 2. Check heat pump control unit fuse; replace if required (see page 167).
- Check whether there is power at the control unit; switch ON power supply if required.
- Check the plug-in and threaded connections.

No display indication on the programming unit (cont.)

- **5.** Replace programming unit if required.
- **6.** Replace controller and sensor PCB if required.

Repairs

Overview of internal components

- Primary circuit flow temperature sensor (heat pump brine inlet)
- B Suction gas temperature sensor
- © Condenser
- (D) High pressure sensor EEV
- © Secondary circuit flow temperature sensor
- F Compressor

- G Secondary circuit return temperature sensor
- H Drain valve on the secondary side
- K Sight glass
- (EEV)
- M Drain valve, primary side
- N Filter dryer

- Primary circuit return temperature sensor (heat pump brine outlet)
- (P) Hot gas temperature sensor
- Schrader high pressure valve
- (R) Low pressure sensor EEV
- S Safety high pressure switch
- (T) Schrader low pressure valve
- (U) Evaporator

Draining the heat pump on the primary/secondary side

- 1. Close on-site drain & fill valve.
- Drain heat pump at drain valve on primary/secondary side (see page 165).

Checking sensors

For sensor connections to the controller and sensor PCB, see page 228.

Temperature sensors type Ni 500 Capi

For the position of the sensors in the heat pump, see figure on page 165.

Capturing element: "Ni 500"

- Outside temperature sensor (F0)
- Flow temperature sensor, heating circuit M2 (F12)
- Flow temperature sensor, separate cooling circuit
- Room temperature sensors

Temperature sensors type Pt 500

Capturing element "Pt 500"

- Flow temperature sensor, system (F13)
- Buffer temperature sensor (F4)
- Cylinder temperature sensor (F6)
- Flow/return temperature sensor, secondary circuit (F8/F9)
- All sensors inside the heat pump
- Boiler temperature sensor, external heat source

Checking the fuse

For fuse locations, see from page 220:

- Fuse F1 is located on the cross connect PCB.
- Fuse F3 is located on the main PCB.

Fuse F1 and F3:

- 6.3 A (slow), 250 V~
- Max. power loss ≤ 2.5 W

Danger

Contact with 'live' components can lead to severe injury from electric current.

Before working on the equipment, always ensure that the power circuit is also at zero volt.

Removing the fuse does not switch the power circuit to zero volt.

Appliance too noisy

Possible causes:

- Transport brackets not removed or not secured to the base carrier: See page 68.
- Control unit door not tightly sealed: See page 116.
- Base sheets not fitted: See page 116 step 5.
- Clearance between the base sheet and floor is too great.

Removing the heat pump module

Please note
Avoiding device damage.

Never put weight on the top, front or side panels of the appliance.

5. Drain the primary and secondary side (for drain valves, see page 165).

Note on step 7.
Identify the plug-in and threaded connections that belong together.
Disconnect all electrical connections.

Please note

Installing a compressor at a steep angle inside the heat pump can result in equipment damage. Never tilt the heat pump module more than 45°.

Note on step 9.

To stabilise the heat pump module on the carrier, the transport brackets can be screwed on (see page 68).

Installing the heat pump module

Install in reverse order to removal.

Please note

To prevent the formation of condensate and extreme noise development, tightly seal the control unit door.

Please note

Seal the appliance to be soundproof and diffusion-proof. Check tightness of the internal and external hydraulic connections (see page 116).

Control unit settings by the contractor

The following pages **only** describe those parameters that can **only** be adjusted by specialists operating in the service menu at **"Coding level 1"**.

Customer level parameters that are described in the operating instructions are **not** explained here.

Note

The available parameters depend on the individual system configuration (e.g. parameters for heating circuit M2: display only if heating circuit M2 is configured).

Please note

Incorrect operation at "Coding level 1" can result in damage to the appliance and heating system.

Always observe the installation instructions; failure to observe these will void your warranty rights.

Activating service menu

The service menu can be activated from any menu.

Press **OK** + **s** simultaneously for approx. 4 s.

Disabling the service menu

The service menu remains active until it is deactivated with "Terminate service?", or if no operation takes place for 30 minutes.

Setting parameters, using the example "System scheme"

To set a parameter, first select the parameter group and then the parameters.

All parameters are displayed as plain text. A parameter code is also assigned to each parameter.

Service menu:

- Press **OK** + simultaneously for approx. 4 s.
- 2. Select "Coding level 1".
- 3. Select parameter group: **"System definition"**
- 4. Select parameter: "System scheme 7000"
- 5. Adjust system scheme: "2"

Control unit settings by the contractor (cont.)

Alternatively, if the service menu was already activated:

Extended menu

- 1.
- 2. "Service"
- 3. Select "Coding level 1".
- 4. Select parameter group: "System definition"

- 5. Select parameter: "System scheme"
- 6. Confirm parameter code: "7000"
- 7. Adjust system scheme: "2"

Note

The parameters shown depend on the current device settings.

Reinstating the delivered condition (Reset)

Service menu:

- Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"
- 3. "Standard setting"
- 4. "All groups"

or

Select required parameter group (e.g.

"System definition").

Servic

Parameter group system definition

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "System definition"
- 4. Select parameter.

7000 System scheme

"System scheme 7000"

Adjust the system scheme during commissioning according to the system version. 12 different system schemes are available (see technical guide).

The components associated with the corresponding system scheme are automatically enabled and monitored.

Value	Heating circuit without mixer A1	Heating circuit with mixer M2	Heating circuit with mixer M3	DHW heating
"0"	_	_	_	X
"1"	X	_	_	_
"2"	Х	_	_	X
"3"	_	X	_	_
"4"	_	X	_	Х
"5"	X	X	_	_
"6"	X	X	_	X
"7"	_	X	X	_
"8"	_	X	X	X
"9"	Х	X	X	_
"10"	X	Х	Х	X
"11"	External control			•

Delivered condition 2 Setting 0 to 11

7001 Language

Note

Adjust only in the extended menu.

Language for operating and display elements in the control unit.

7001 Language (cont.)

Operating instructions

7003 Temperature differential for the heating limit

"Temperature differential heating 7003"

Temperature differential for calculating the heating limit.

Heating limit: Set room temperature minus "Temperature differential heating"

If the average outside temperature calculated over 3 hours falls below the heating limit, central heating starts.

Example:

The selected set room temperature is 20 °C; the value set under "Temperature differential heating" is 4 K. This results in a heating limit of 16 °C (20 °C - 4 K).

Central heating commences if the average outside temperature drops below 16 °C (heating limit).

If the average outside temperature exceeds 18 °C, central heating stops (because of the specified hysteresis of 2 K).

Delivered condition 40 (≙ 4 K)

Setting range 0 to 200 (≜ 0 to 20 K)

- A Set room temperature
- B Adjusted average temperature
- © Selected value "Temperature differential heating"
- D Heating mode OFF
- (E) Heating mode ON

7004 Temperature differential for the cooling limit

"Temperature differential cooling 7004"

Temperature differential for calculating the cooling limit.

Cooling limit: Set room temperature plus "Temperature differential cooling"

7004 Temperature differential for the cooling... (cont.)

If the average outside temperature calculated over 3 hours exceeds the cooling limit, room cooling is switched on.

Example:

The selected set room temperature is 20 °C; the value set under "Temperature differential cooling" is 4 K.
This results in a cooling limit of 24 °C (20 °C + 4 K).

Room cooling commences if the average outside temperature rises above 24 °C (cooling limit).

Delivered condition

40 (≙ 4 K)

Setting range 10 to 200 (≜ 1 to 20 K)

Room cooling stops if the average outside temperature falls below 23 °C (because of the specified hysteresis of 1 K).

Note

This parameter is only available if cooling mode has been enabled via parameter "Cooling 7100" (see page 211).

7010 External extension

"External extension 7010"

Enabling external extension H1.

External extension H1 can be used for the following hook-ups/components:

- Swimming pool water heating
- External changeover of the operating status
- External demand
- External mixer OPEN
- External blocking
- External mixer CLOSED

Note

Only one external extension can be connected to the control unit.

If the components for swimming pool heating are connected to "External extension H1", **no** additional hook-up (e.g. operating status changeover) can be connected to the "External extension H1"

Valu	Explanation
е	
"0"	External extension H1 is not ena-
	bled.
"1"	External extension H1 is installed
	and enabled.

Delivered condition 0 Setting 0 / 1

7008 Swimming pool

"Swimming pool 7008"

Swimming pool heating

Valu	Explanation
е	
"0"	Swimming pool will not be
	heated.
"1"	Swimming pool is connected and
	will be heated.

Note

The thermostat for swimming pool temperature control is connected to the control unit via external extension H1. Set parameter "External extension 7010" to "1" (see page 175), otherwise the "Swimming pool" parameter will not be displayed.

Delivered condition 0 Setting 0 / 1

700A Cascade

"Cascade control 700A"

The heat pump control unit enables the control of a cascade with up to three or four lag heat pumps. The connection can be made via LON or external extension H1.

Valu	Explanation
е	
"0"	No control of lag heat pumps.
"1"	Control of up to three lag heat pumps via external extension
	pumps via external extension
	H1.
"2"	Control of up to four lag heat
	Control of up to four lag heat pumps via LON.

Note

With setting "1" or "2", the heat pump is the lead appliance. The number of lag heat pumps is set with parameter "No. of external heat pumps 5735".

If the appliance is to work as a lag heat pump, the value "0", and simultaneously the value "11" for parameter "System scheme 7000" must be selected. For connection via LON, "Heat pump number 5707" must also be set.

Delivered condition 0 Setting 0 / 1 / 2

5735 Number of lag heat pumps

"No. of external heat pumps 5735"

5735 Number of lag heat pumps (cont.)

Number of lag heat pumps in a cascade that are connected via LON or via external extension H1.

Note

Parameter "Cascade control 700A" on the lead appliance must be set to "1" (for control via external extension H1) or "2" (for control via LON).

Valu	Explanation	
е		
"0"	No lag heat pump	
"4" to "2"		

Valu	Explanation	
е		
	Number of lag I	neat pumps for
	control via exte	neat pumps for rnal extension H1
"1" to	"4"	
	Number of lag I control via LON	neat pumps for I
Delivered condition 0 Setting 0/1/2/3/4		

700B Output of lag heat pumps

"Output lag heat pump 700B"

Average type-dependent heating output of the lag heat pumps in a cascade, connected via external extension H1.

Delivered condition 10 kW Setting 0 to 255 kW

7011 External operating status changeover

"Changing the heating circuit operating mode 7011"

The various operating statuses for heating/cooling, DHW heating and heating water buffer cylinder are switched on and off in the control unit via the relevant time program. It is also possible to change the operating status externally for a specific duration independently of the time program, e.g. via Vitocom 100.

Time program, operating status

Operating instructions

Parameter for setting which system components the operating status is changed over for when signal "External demand" is issued (signal active when the contact is closed, see overview of PCBs from page 220).

With the external operating status changeover, a heating circuit, for example, can be switched via a button from "Reduc." to "Normal".

7011 External operating status changeover (cont.)

Note

- The operating status to be set is specified with the parameter "Effect of operating mode changeover 7012".

 The duration of the changeover is set with the parameter "Duration of operating mode changeover 7013".
- The "External blocking" signal takes higher priority than the "External demand" signal.
- The function using the "External demand mixer "OPEN" 7014" parameter has a higher priority than the function using the "Changing the heating circuit operating mode 7011" parameter.

Value	Heating cir- cuit without mixer A1	Heating cir- cuit with mixer M2	Heating cir- cuit with mixer M3	DHW heat- ing	Heating water buffer cylinder
"0"	_	_	_	_	_
"1"	X	_	_	_	_
"2"	_	Х	_	_	_
"3"	X	Х	_	_	_
"4"	_	_	X	_	_
"5"	X	_	X	_	_
"6"	_	Х	Х	_	_
"7"	X	Х	X	_	_
"8" to "	15": Do not adj	ust.	•		•
"16"	_	_	_	Х	_
"17"	X	_	_	X	_
"18"	_	Х	_	Х	_
"19"	X	Х	_	X	_
"20"	_	_	Х	X	_
"21"	X	_	Х	Х	_
"22"	_	X	X	Х	_
"23"	X	X	X	Х	_
"24" to	"31": Do not ac	ljust.			
"32"	_	_	_	_	X
"33"	X	_	_	_	X
"34"	_	Х	_	_	X
"35"	Х	Х	_	_	X

7011 External operating status changeover (cont.)

Value	Heating cir- cuit without mixer A1	Heating cir- cuit with mixer M2	Heating cir- cuit with mixer M3	DHW heat- ing	Heating water buffer cylinder
"36"	_	_	X	_	X
"37"	X	_	Х	_	Х
"38"	_	Х	Х	_	Х
"39"	Х	X	Х	_	Х
"40" to	"47": Do not ac	ljust.			
"48"	_	_	_	Х	X
"49"	Х	_	_	X	Х
"50"	_	X	_	Х	Х
"51"	Х	X	_	Х	Х
"52"	_	_	Х	Х	Х
"53"	Х	_	Х	Х	Х
"54"	_	X	Х	Х	Х
"55"	Х	X	Х	Х	Х

[&]quot;56" to "63": Do not adjust.

Delivered condition

0

Setting range

0 to 63

7012 Operating status for external changeover

"Effect of operating mode changeover 7012"

Setting the operating status that is enabled for the individual system components with the external changeover (see also "Changing the heating circuit operating mode 7011").

Value	Operating status (see operating instructions)					
	Heating/cooling	cooling DHW Heating water buffe				
			cylinder			
"0"	No heating, only frost protection of system components					
"1"	"Reduc."	educ." "Top" "Top"				

7012 Operating status for external changeover (cont.)

Value	Operating status (see	Operating status (see operating instructions)			
	Heating/cooling	DHW	Heating water buffer cylinder		
"2"	"Normal"	"Normal"	"Normal"		
"3"	"Fixed val." (set flow temperature is "Max- imum flow tempera- ture 200E")	"Temp. 2 "(heating with "Set temperature 2 600C")	"Fixed val." (heating with "Fixed temperature 7202")		

Delivered condition 2 Setting range 0 to 3

701A Pumps and compressor, external blocking

"External blocking effect 701A"

Setting to determine which pumps are blocked when function "External blocking" is enabled (see following table).

Note

Observe setting for parameter **"External blocking mixer "CLOSED" 7015"** (see page 183).

Value	Secondary pump/com- pressor blocked	Cylinder pump blocked	Heating cir- cuit pump M3 blocked	Heating cir- cuit pump M2 blocked	Heating cir- cuit pump A1 blocked
"0"					
"1"					х
"2"				Х	
"2" "3" "4"				Х	Х
"4"			Х		
"5"			Х		Х
"6"			Х	Х	
"7"			Х	Х	Х
"8"		Х			
"9"		Х			Х
"10"		Х		Х	
"11"		Х		х	Х
"12"		Х	х		
"13"		х	х		х
"14"		Х	Х	Х	

701A Pumps and compressor, external blocking (cont.)

Value	Secondary pump/com- pressor blocked	Cylinder pump blocked	Heating cir- cuit pump M3 blocked	Heating cir- cuit pump M2 blocked	Heating circuit pump A1 blocked
"15"		Х	Х	Х	Х
"16"	Х				
"17"	х				х
"18"	х			Х	
"19"	х			Х	х
"20"	x		Х		
"21" "22" "23" "24"	x		Х		х
"22"	х		Х	Х	
"23"	х		Х	Х	х
"24"	х	х			
"25" "26"	х	х			х
"26"	х	X		Х	
"27"	x	X		Х	х
"28"	х	Х	Х		
"29"	х	Х	Х		Х
"30"	х	х	Х	Х	
"31"	Х	Х	Х	Х	Х

Delivered condition 0 Setting 0 to 31

7013 Duration of external operating status changeover

"Operating mode changeover duration 7013"

Setting the **minimum** duration of external operating status changeover (see also **"Changing the heating circuit operating mode 7011"**). After expiry, the control unit switches back to the operating status that was enabled before the external changeover via the time program. This also occurs if party mode was enabled in the meantime.

7013 Duration of external operating status... (cont.)

The diagram shows the duration of the external changeover (B), subject to signal duration (A), with parameter "Duration of operating mode changeover 7013" set to 8 h (delivered condition). The external operating status changeover is enabled for at least 8 h (delivered condition), independently of the length of the signal. If the signal lasts for longer than 8 h, the external operating status changeover remains enabled for as long as the signal is present.

Valu	Duration
е	
"0"	Changeover is only carried out as long as signal "External demand" is available.
	long as signal "External
	demand" is available.

"1" to "12"

Duration of the operating status changeover in hours, starting with the activation of the external operating mode changeover.

Delivered condition 8 h Setting range 0 to 12 h

7014 External demand mixer "OPEN"

"External demand mixer "OPEN" 7014"

Setting for the way the signal "External demand" is to affect the heat pump and the heating circuits (signal active when the contact is closed; see overview of PCBs from page 220).

7014 External demand mixer "OPEN" (cont.)

Note

- The "External blocking" signal takes higher priority than the "External demand" signal.
- See also "Set flow temperature, external demand" on page 202.

Value	Heating circuit with	Heating circuit with	Heat demand to the
	mixer M2	mixer M3	heat pump
"0"	Control mode	Control mode	No
"1"	Mixer "Open"	Control mode	No
"2"	Control mode	Mixer "Open"	No
"3"	Mixer "Open"	Mixer "Open"	No
"4"	Control mode	Control mode	Yes
"5"	Mixer "Open"	Control mode	Yes
"6"	Control mode	Mixer "Open"	Yes
"7"	Mixer "Open"	Mixer "Open"	Yes

Delivered condition 4 Setting range 0 to 7

7015 External blocking mixer "CLOSED"

"External blocking mixer "CLOSED" 7015"

Setting for how the signal "External blocking" is to affect the heat pump (signal active when contact is closed; see summary of PCBs from page 220).

Please note

The system may no longer be protected against frost.

Note

- The "External blocking" signal takes higher priority than the "External demand" signal.
- See also parameter "Set flow temperature for external demand" on page 202.

Value	Heating circuit with mixer M2	Heating circuit with mixer M3	Heat pump blocking
"0"	Control mode	Control mode	No
"1"	Mixer "Close"	Control mode	No
"2"	Control mode	Mixer "Close"	No

7015 External blocking mixer "CLOSED" (cont.)

Value	Heating circuit with mixer M2	Heating circuit with mixer M3	Heat pump blocking
"3"	Mixer "Close"	Mixer "Close"	No
"4"	Control mode	Control mode	Yes
"5"	Mixer "Close"	Control mode	Yes
"6"	Control mode	Mixer "Close"	Yes
"7"	Mixer "Close"	Mixer "Close"	Yes

Delivered condition 4 Setting range 0 to 8

7017 Vitocom 100

"Vitocom 100 7017"

Using the Vitocom 100 communication interface.

Delivered condition 0 Setting 0 / 1

Valu	Explanation
е	
"0"	Vitocom 100 is not used.
"1"	Vitocom 100 is installed and ena-
	bled.

701B Common system temperature sensor

"Common system sensor 701B"

In systems with a heating water buffer cylinder, a common flow temperature sensor ("System flow temperature sensor") can be installed in the heating water flow, downstream of the heating water buffer cylinder.

Valu e	Explanation
"0"	System flow temperature sensor is not used. The flow temperature sensor for the secondary circuit is
	not used.
"1"	System flow temperature sensor is installed and enabled.

Delivered condition 1 Setting 0 / 1

Service

Parameter group compressor

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "Compressor"
- 4. Select parameter.

5000 Enable compressor

"Enable 5000"

Enabling the heat pump for operation.

Valu	Explanation
е	
"0"	Heat pump does not start, e.g. in the event of a fault.
	the event of a fault.
"1"	Heat pump is enabled.

Note

To block the heat pump for drying a building, use parameter **"Heat pump for drying a building 7300"**.

Delivered condition 1 Setting 0 / 1

5030 Heat pump output

"Output compressor stage 5030"

Type-dependent heating output of heat pump.

This value is required to calculate the energy statement and seasonal performance factor.

Delivered condition Specified via coding card according to rated heating output

of heat pump (e.g. 8 kW for type 108; see type plate for

rated heating output)

Setting range 1 to 255 kW

Parameter group compressor 2

Service menu:

- for
- 1. Press **OK** + simultaneously for approx. 4 s.
- "Compressor 2"
 Select parameter.

- 2. "Coding level 1"
 - 5100 Enabling heat pump stage 2

"Enable 5100"

Enabling the heat pump stage 2 (type BWS).

Delivered condition Setting

0 / 1

Valu	Explanation
е	
"0"	Heat pump stage 2 is not used, e.g. in the event of a fault or if the output of stage 1 is permanently sufficient.
"1"	Heat pump stage 2 is used.

5130 Heat pump output

"Output compressor stage 2 5130"

Type-dependent heating output of heat pump stage 2.

This value is required to calculate the energy statement and seasonal performance factor.

Delivered condition Specified via coding card according to rated heating output

of heat pump stage 2 (e.g. 8 kW for type 108; see type plate

for rated heating output)

Setting range 1 to 255 kW

Servic

Parameter group external heat source

Service menu:

- 1. Press **OK** + **\equiv** simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "Ext. heat source"
- 4. Select parameter.

7B00 Enabling an external heat source

"External heat source 7B00"

To enable an additional, external heat source.

If there is a corresponding heat demand, the external heat source can also be started by the heat pump control unit.

Valu	Explanation
е	
"0"	External heat source is not used.
"1"	External heat source, e.g. oil condensing boiler is enabled.

Note

All other parameters for the external heat source become visible only when this parameter has been set to "1".

Delivered condition 0 Setting 0 / 1

7B01 Priority of external heat sources

"Priority 7B01"

Priority of the external heat source over the instantaneous heating water heater (on site).

Delivered condition	1
Setting	0 / 1

Valu	Explanation
е	
"0"	External heat source has priority.
"1"	Instantaneous heating water heater has priority.

7B02 Dual-mode temperature of external heat sources

"Dual-mode temperature 7B02"

Outside temperature limit for operating the external heat source.

If the average outside temperature is lower than the set limit temperature over a longer period ("Dual-mode temperature"), the external heat source is switched on.

Requirement: The heat pump and/or other heat sources cannot meet the current heat demand on their own.

Above the dual-mode temperature, the heat pump control unit only starts the external heat source if, for example, a heat pump fault is present.

(\(\delta\) -50 to +50 °C)

Delivered 100 (≜ 10 °C) condition Setting −500 to +500

7B0D External heat source for DHW

"External heat source for DHW 7B0D"

Using the external heat source for DHW heating.

If the heat demand of the DHW cylinder cannot be covered by the heat pump, the circulation pump for DHW reheating and the external heat source will be activated.

Valu	Explanation	
е		
"0"		
	for DHW heating.	
"1"	External heat source is enabled	
	for DHW heating.	

Delivered condition 0 Setting 0 / 1

Parameter group DHW

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "DHW"
- 4. Select parameter.

6000 Set cylinder temperature

"Cylinder temperature DHW 6000"

DHW cylinder set temperature for DHW heating.

Operating instructions

Note

If the heat pump alone cannot achieve the set DHW temperature, an instantaneous heating water heater (on site) is started (if enabled via parameter "DHW with e heating 6015"). Delivered 500 (≜ 50 °C) condition

Setting 100 to 700 range (≙ 10 to 70 °C)

6015 DHW reheating

"DHW with e heating 6015"

DHW reheating enabled via instantaneous heating water heater (on site). If the set cylinder temperature cannot be achieved with the heat pump, an instantaneous heating water heater (on site) can be used.

Note

- The instantaneous heating water heater (on site) has to be enabled separately with parameter "Inst. heating water heater 7900".
- Observe setting for "Booster heater hysteresis 6008".

Valu	Explanation
е	
"0" Instantaneous heating water	
	heater (on site) is not enabled for
	DHW reheating.
"1"	Instantaneous heating water
	heater (on site) is connected and
	enabled for DHW reheating

Delivered condition 1 Setting 0 / 1

6005 Minimum temperature for DHW cylinder

"Minimum temperature 6005"

Lower set temperature for DHW cylinder (minimum temperature).

When the actual temperature falls below the minimum temperature selected, the DHW cylinder is heated up to that value plus hysteresis (frost protection). This is independent of the selected operating programme. Temperature capture is carried out via the temperature sensor integrated into the top of the DHW cylinder.

Delivered 100 (≙ 10 °C)

condition

Setting 50 to 600 range (≙ 5 to 60 °C)

6006 Maximum temperature for DHW cylinder

"Maximum temperature 6006"

Upper temperature limit for DHW cylinders.

When this temperature has been reached, the DHW cylinder is not reheated until the temperature has dropped by at least 5 K.

Delivered 600 (≙ 60 °C)

condition

Setting 200 to 800 range (≜ 20 to 80 °C)

Danger

Risk of scalding with DHW at temperatures above 60 °C.

To limit the temperature to 60 °C, install a mixing device, e.g. an automatic thermostatic mixing valve (DHW cylinder accessory).

6007/6008 DHW/booster heater hysteresis

- "DHW hysteresis 6007"
- "Booster heater hysteresis 6008"

Cylinder temperature hysteresis for starting and stopping DHW heating.

6007/6008 DHW/booster heater hysteresis (cont.)

The set value determines the deviation from the set DHW cylinder temperature ("Cylinder temperature DHW 6000") at which DHW heating is started and stopped. Parameter "DHW hysteresis 6007" relates to DHW heating with the heat pump. Parameter "Booster heater hysteresis 6008" specifies the hysteresis for heating with the instantaneous heating water heater (on site).

- © Booster heater hysteresis ("Booster heater hysteresis 6008")
- Actual DHW temperature at the top cylinder temperature sensor
- E Heat pump switching state
- F Booster heater switching state
- (G) OFF
- (H) ON

Note

- The value selected for "DHW hysteresis 6007" should be higher than the expected temperature drop due to heat losses during reduced heating mode (approx. 5 K).
- A lower value for "Booster heater hysteresis 6008" increases the proportion of DHW heating with the booster heater.
- Observe setting for "DHW with e heating 6015".

- A Set DHW temperature
- B Heat pump hysteresis ("DHW hysteresis 6007")

	"DHW hysteresis 6007"	"Booster heater hysteresis 6008"
Delivered condition	70 (≙ 7 K)	100 (≙ 10 K)
Setting range	10 to 100 (≙ 1 to 10 K)	20 to 700 (≙ 2 to 70 K)

6009 DHW start optimisation

"Start optimisation 6009"

Comfort function for DHW cylinder heating.

Operating instructions

6009 DHW start optimisation (cont.)

Delivered condition 0 Setting range 0 / 1

600A DHW stop optimisation

"Stop optimisation 600A"

Comfort function for DHW cylinder heating.

Delivered Setting recommendations of the company of the cylinder heating.

Delivered condition 0 Setting range 0 / 1

Operating instructions

600C Set DHW temperature 2

"Set temperature 2 600C"

Set temperature for auxiliary DHW heat-

up function to kill bacteria.

Delivered 600 (≙ 60 °C) condition

Setting range

100 to 700 (≙ 10 to 70 °C)

Operating instructions

600E Temperature sensor 2

"Temperature sensor 2 600E"

No function.

6016 DHW heating priority

"Combi cylinder 6016"

Only when using heating water buffer cylinders with integral DHW heating:

6016 DHW heating priority (cont.)

To shorten the heat-up time, heating circuit heating can be interrupted during DHW heating. For this, the heating circuit pumps of all heating circuits are switched off

Delivered condition	0
Setting	0 / 1

Valu	Explanation
е	
"0"	Simultaneous central heating and
	DHW heating is possible.
"1"	No central heating during DHW heating, all heating circuit pumps
	heating, all heating circuit pumps
	are switched off during this time.

6017 DHW at control high pressure

"No. of attempts DHW 6017"

High set cylinder temperatures can result in shutdowns through controlled high pressure. Upon demand, the control unit tries to restart DHW heating. This parameter determines the number of start attempts.

Delivered condition 1 Setting range 0 to 10

Note

DHW heating that is blocked is automatically enabled again when the operating status changes over for heating the DHW cylinder from a lower to a higher temperature level, for example from "Top" to "Normal" (see the operating instructions for further details regarding the operating status).

6020 Cylinder primary pump operating mode

"Cylinder primary pump type 6020"

6020 Cylinder primary pump operating mode (cont.)

Cylinder primary pump operating mode.

Delivered condition 0

Do not adjust.

Parameter group solar

Service menu:

- 3. "Solar"
- 1. Press **OK** + **simultaneously** for 4. Select parameter. approx. 4 s.

2. "Coding level 1"

7A00 Solar control unit

"Solar control unit type 7A00"

For adjusting the solar control unit used.

Valu	Explanation	
е		
"0"	There is no solar control unit.	
"1"	Vitosolic 100	
"2"	Vitosolic 200	
"3"	No function	
"4"	No function	

Delivered condition Setting range 0 to 4

Parameter group electric heater

Service menu:

- for
- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "Electric heater"
- 4. Select parameter.

7900 Instantaneous heating water heater (on site)

"Inst. heating. water heater 7900"

If an instantaneous heating water heater (on site) is installed in the heating water flow, it must be enabled. It can be enabled either for DHW reheating only and/ or for heating mode.

Parameter	Enabling the instantaneous heating water heater for		
	Heating mode	DHW reheating	
"Inst. heating. water heater 7900"	"1"	"1"	
"Heating with electro 7902"	"1"	"0"	
"DHW with e heating 6015"	"0"	"1"	

Please note
Setting "0" in parameter "Inst.
heating water heater 7900"
switches the instantaneous heating water heater completely OFF,
so that it is also unavailable for heating to provide frost protec-

For the instantaneous heating water heater to be able to start in case of a heat demand for frost protection, set parameter "Heating with electro 7902" to "0" to shut down, but set "Inst. heating water heater 7900" to "1".

Delivered condition 0 Setting 0 / 1

7902 Heating mode with booster heater

"Heating with electro 7902"

Enabling heating mode with the instantaneous heating water heater (on site). If the set flow temperature cannot be achieved with the heat pump, an on-site instantaneous heating water heater can be started for the heating operation.

A /		4 -
N	$\boldsymbol{\cap}$	TO

The instantaneous heating water heater (on site) has to be enabled separately with parameter "Inst. heating water heater 7900".

Valu	Explanation
е	
"0"	Instantaneous heating water
	heater (on site) is disabled for
	heating mode.
"1"	Instantaneous heating water
	Instantaneous heating water heater (on site) is connected and enabled for heating mode.
	enabled for heating mode.

Delivered condition 1 Setting 0 / 1

7907 Max. stage instantaneous heating water heater

"Maximum stage, electric heating 7907"

Max. output stage of the instantaneous heating water heater for DHW heating or heating mode.

The selected stage and all those below it will be enabled.

Delivered condition	3
Setting range	1 to 3

Valu	Explanation	
е		
"1"	Output stage 1, e.g. 3 kW	
"2"	Output stage 2, e.g. 6 kW	
"3"	Output stage 3 (stages 1 and 2	
	simultaneously), e.g. 9 kW	

790A Stage at power-OFF

"Stage at power-OFF 790A"

Maximum output stage of the instantaneous heating water heater (accessory) during the power-OFF.

The selected stage and all those below it will be enabled.

790A Stage at power-OFF (cont.)

Valu	Explanation	Delivered condition	0
е		Setting range	0 to 3
"0"	Instantaneous heating water		
	heater remains off during power-		
	OFF, except for frost protection.		
"1"	Output stage 1, e.g. 3 kW		
"2"	Output stage 2, e.g. 6 kW		
"3"	Output stage 3, or subject to type		
	and power connection, stages 1		
	and 2 simultaneously, e.g. 9 kW		

790B Dual-mode temperature instantaneous heating water heater

"Dual mode temperature, electric heater 790B"

Temperature limit for heating with the instantaneous heating water heater (on site).

If the long-term average outside temperature falls below the dual-mode temperature, the control unit enables operation of the instantaneous heating water heater. Above the dual-mode temperature, the control unit starts the instantaneous heating water heater only if the heat pump develops a fault.

Delivered 100 (≜ 10 °C)

condition

Setting -500 to +500range (=-50 to +50 °C)

Service

Parameter group internal hydraulics

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "Internal hydraulics"
- 4. Select parameter.

7300 Heat pump for drying a building

"Heat pump for drying a building 7300"

For drying buildings, the heat pump can be used **in addition** to the instantaneous heating water heater (on site). If the heat pump is not ready for use (e.g. primary circuit is not yet completed), this function must be set to **"0"** (delivered condition).

Note

- When using the heat pump to dry a building, observe the loading of the geothermal probe.
- Drying buildings with an instantaneous heating water heater (on site) results in high power consumption.

Valu	Explanation
е	
"0"	Heat pump is not used for drying
	a building.
"1"	Heat pump is used for drying a
	building.

Delivered condition 0 Setting 0 / 1

7303 Screed program

"Screed program 7303"

Temperature/time profile for screed drying.

Please note

Risk of damage to building through overheating screed with high flow temperatures. Install a temperature limiter into the flow of the underfloor heating circuit to limit the maximum temperature.

7303 Screed program (cont.)

- The screed programme affects all enabled heating circuits in parallel.
- The selected "Screed program" is continued after a power failure or after the control unit has been switched off.
- The selected operating programme continues if the "Screed program" has terminated in accordance with the programme or, before its expiry, the temperature/time profile "0" is selected.
- The temperature/time profiles 7 to 12 regulate to the maximum flow temperature.
- If the time profile has a higher set flow temperature, the set temperature is limited by parameter "Maximum flow temperature 200E" (see page 209) for the heating circuit.
- The power consumption increases when using an instantaneous heating water heater (accessory) for drying buildings.

Note

Observe the specifications of EN 1264-4. The report to be provided by the heating contractor must contain the following heat-up details:

- Heat-up data with respective flow temperatures
- Max. flow temperature achieved
- Operating condition and outside temperature during handover

"2" Temperature/time profile 2 (to ZV parquet and flooring technology)

"3" Temperature/time profile 3 (to ÖNORM)

7303 Screed program (cont.)

730D 3-way diverter valve mode

[&]quot;Heating/DHW diverter valve 730D"

730D 3-way diverter valve mode (cont.)

If, on site, only **one** pump and **one** threeway diverter valve are used to switch between DHW heating and central heating mode, parameter "**Heating/DHW diverter valve 730D**" must be changed to "1".

Delivered condition	0
Setting	0 / 1

Valu e	Explanation
"0"	Three-way diverter valve is not installed; DHW is heated via a separate output; secondary pump does not run; circulation pump for cylinder heating (heating water side) is started.
"1"	Three-way diverter valve is installed; secondary pump also runs for DHW heating.

730C Set flow temperature, external demand

"Set flow temperature, external demand 730C"

Set flow temperature in case of external demand, e.g. from the swimming pool (see page 182). In contrast to room temperature-dependent or weather-compensated set flow temperatures, a fixed set flow temperature is selected here, for example for heating circuits.

Delivered 500 (≜ 50 °C) condition

Setting 0 to 700

range (≙ 0 to 70 °C)

7320 Primary pump operating mode

"Primary source type 7320"

Primary pump operating mode. Delivered condition

Do not adjust.

7340 Secondary pump operating mode

"Secondary pump type 7340"

Secondary pump operating mode.

Delivered condition 0

Do not adjust.

Parameter group heating water buffer cylinder

Service menu:

- 1. Press **OK** + **simultaneously** for approx. 4 s.
- 2. "Coding level 1"

- 3. "Buffer cylinder"
- 4. Select parameter.

7200 Heating water buffer cylinder

"Buffer cylinder 7200"

This function is only available for system schemes 1 and 2. The heating water buffer cylinder is optional for system schemes 1 and 2; system schemes 3 to 10 require the heating water buffer cylinder, which is preset.

Valu	Explanation
е	
"0"	Heating water buffer cylinder not installed
"1"	Heating water buffer cylinder installed
Delive Settin	ered condition 0

7202 Set temperature for "Fixed val."

"Fixed temperature 7202"

Set temperature for "Fixed val." operating status of the heating water buffer cylinder.

Delivered 500 (\(\delta\) 50 °C) condition 10 to 700 Setting

(≙ 1 to 70 °C)

range

Note

The temperature cannot be set higher than the max. temperature in the heating water buffer cylinder (see page 205).

7203 Hysteresis

"Hysteresis, buffer cylinder heating 7203"

7203 Hysteresis (cont.)

The set value determines the deviation from the set temperature of the heating water buffer cylinder (subject to the operating status) at which heating is started and stopped.

Note

For system schemes 1 and 2, this function is only available if option "1" was selected under "Buffer cylinder 7200".

- A Set temperature
- B Start hysteresis

- © Heating the heating water buffer cylinder "OFF"
- D Heating the heating water buffer cylinder "ON"

 $\begin{array}{ll} \mbox{Delivered} & \mbox{50 ($\stackrel{\triangle}{=}$ 5 K)} \\ \mbox{condition} & \mbox{20 to 200} \\ \mbox{range} & \mbox{($\stackrel{\triangle}{=}$ 2 to 20 K)} \\ \end{array}$

7204 Maximum temperature

"Maximum temperature 7204"

Upper temperature limit for the heating water buffer cylinder.

Heating of the heating water buffer cylinder ends when this temperature is reached.

Note

- For system schemes 1 and 2, this function is only available if option "1" was selected under "Buffer cylinder 7200".
- If the value specified here is below the maximum possible set flow temperature of one of the connected heating circuits, this heating circuit may not be able to be supplied with the calculated flow temperature when there is a greater heat demand.

7204 Maximum temperature (cont.)

Delivered 600 (\(\delta\) 60°C)

condition

Setting 10 to 700 range (≙ 1 to 70 °C)

7208 Dual-mode temperature, heating water buffer cylinder

"Temperature block fixed value mode buffer cylinder 7208"

Temperature limit for the **"Fixed val."** operating status with heating water buffer cylinder (see the operating instructions for further details regarding the operating status).

If the long-term average outside temperature exceeds the dual mode temperature, the control unit blocks the operation of the heating water buffer cylinder in operating mode "Fixed val." (e.g. in summer). The heating water buffer cylinder will then only be heated to the set temperature for operating status "Normal".

If the long-term average outside temperature falls below the dual mode temperature by 0.5 K (hysteresis), operation of the heating water buffer cylinder in operating mode **"Fixed val."** is automatically continued.

Delivered 100 (≙ 10 °C)

condition

Setting -500 to +500range (=-50 to +50 °C)

Parameter group heating circuits

Service menu:

- 1. Press **OK** + **s** simultaneously for approx. 4 s.
- 2. "Coding level 1"
- 3. "Heating circuit 1"

or

"Heating circuit 2"

or

"Heating circuit 3"

or

"Separate cooling circuit"

4. Select parameter.

Note

The parameters in the parameter groups Heating circuit 1, Heating circuit 2 and Heating circuit 3 are identical.

The assignment to the heating circuit is determined by the first digit of the parameter code:

2xxx for heating circuit 1 3xxx for heating circuit 2 4xxx for heating circuit 3

2000/2001/2022 Room temperatures and switching times

Adjusting the set room temperatures and time programmes for all heating circuits (A1, M2 and M3).

Operating instructions

	"Standard room tempera- ture 2000" "Party temperature 2022"	"Reduced room temperature 2001"
Delivered condition	200 (≙ 20 °C)	160 (≙ 16 °C)
Setting range	100 to 300	100 to 300
	(≙ 10 to 30 °C)	(≙ 10 to 30 °C)

2003 Enabling the remote control

[&]quot;Standard room temperature 2000"

[&]quot;Reduced room temperature 2001"

[&]quot;Party temperature 2022"

[&]quot;Remote control 2003"

2003 Enabling the remote control (cont.)

A Vitotrol 200 remote control unit can be used for each heating circuit.

Vitotrol 200 installation instructions

Valu	Explanation
е	
"0"	Remote control is not enabled.
"1"	Vitotrol 200 remote control for the heating circuit is installed and
	heating circuit is installed and
	enabled.

Note

Remote control units have no function when the heat pump is set to "Manual mode".

Delivered condition	0
Setting	0 / 1

2006/2007 Heating curve slope/level

Heating curve level and slope for all heating circuits (A1, M2 and M3).

Operating instructions

Note

The values determined from the heating curves for the flow temperature are transferred directly as set values for heating circuits with mixers (M2, M3). The set flow temperatures for the direct heating circuit (A1) are always around 8 K higher than the values from the heating curve.

	"Heating curve level 2007"	"Heating curve slope 2006"
Delivered condition	0 (≙ 0 K)	6 (≙ 0.6)
Setting range	-150 to +400	0 to 35
	(≙ –15 to + 40 K)	(≙ 0 to 3.5)

200A Influence of room temperature hook-up

[&]quot;Heating curve slope 2006"

[&]quot;Heating curve level 2007"

[&]quot;Slope room hook-up 200A"

200A Influence of room temperature hook-up (cont.)

The influence of room temperature hookup can be selected, subject to a room temperature sensor being installed and room temperature hook-up being enabled (see page 209).

The higher the value, the greater the influence of the room temperature on the set flow temperature of the relevant heating circuit with weather-compensated control

Delivered condition 10 Setting range 0 to 50

200B Room temperature hook-up (heating circuits)

"Room temperature hook-up 200B"

This parameter determines the conditions under which the set flow temperature with weather-compensated control should be corrected by the room influence.

Valu	Explanation
е	
"0"	Weather-compensated control without room influence. Set flow
	temperature is not corrected.
"1"	Weather-compensated control with room influence only for
	with room influence only for
	"Reduc." operating status.

Valu	Explanation	
е		
"2"	Weather-compensated control	
	with room influence only for "Nor-	
	mal" operating status.	
"3"	Weather-compensated control	
	with room influence for	
	"Reduc." and "Normal" operat-	
	ing statuses.	
Delive	ered condition 3	

Setting range

0 to 3

200E Maximum set flow temperature

"Maximum flow temperature 200E"

Maximum permissible set flow temperature for a heating circuit.

200E Maximum set flow temperature (cont.)

The set flow temperature, which is calculated from the outside temperature and the heating curve, is limited by this parameter to a maximum set flow temperature. For the heating circuit without mixer (A1), limited modulation properties mean the heat pump regulates to the return temperature. The set return temperature is calculated from the set flow temperature minus 5 K.

Note

Since the control unit only limits the set value with this parameter, always install an on-site temperature limiter in the flow of an underfloor heating circuit, to restrict the maximum temperature.

Delivered 400 (≙ 40 °C)

condition

Setting 100 to 700 range (≙ 10 to 70 °C)

Parameter group cooling

Service menu:

- 1. Press **OK** + **s** simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "Cooling"
- 4. Select parameter.

7100 Cooling mode

"Cooling 7100"

Type of cooling mode. Cooling results either through a heating/cooling circuit or via a separate cooling circuit.

Delivered condition 0 Setting range 0 to 3

Valu e	Explanation
"0"	No cooling.
"1"	"Natural Cooling"
	Direct transfer of the cooling
	capacity from the primary circuit,
	heat pump stopped .
"2"	"Natural Cooling"
	Direct transfer of the cooling
	capacity from the primary circuit
	via a mixer, heat pump stopped .
"3"	"Active cooling" Transfer of the cooling capacity via the heat pump, heat pump in operation, resulting in high cool- ing capacity.
	Note Since the compressor runs for active cooling, this function must be enabled by the system user (see operating instructions).

7101 Cooling circuit

"Cooling circuit 7101"

This parameter specifies whether cooling occurs in one of the heating circuits or in a separate cooling circuit.

Valu	Explanation
е	
"1"	Cooling on heating circuit A1
"2"	Cooling on heating circuit M2
"3"	Cooling on heating circuit M3
"4"	Cooling a separate cooling cir-
	cuit

Note

Cooling mode is not possible for several heating or cooling circuits simultaneously.

Delivered condition	1
Setting range	1 to 4

7102 Room temperature separate cooling circuit

"Room temperature 7102"

With this parameter a different set room temperature than for the heating circuits can be specified for the separate cooling circuit. This makes it possible, for example, to also cool a storage room in winter, independent of the set room temperature.

range

Operating instructions

(\(\text{\pm}\) 10 to 30 \(\text{\pm}\)C)

Delivered	200 (\(\delta\) 20 °C)
condition	
Setting	100 to 300

7103 Minimum flow temperature for separate cooling circuit

"Minimum flow temperature 7103"

If a lower set flow temperature than the value specified here results due to outside and room temperatures according to the cooling curve, the flow temperature is regulated to this value.

Note

Only the set flow temperature is limited with this value, not the actual temperature.

The minimum permissible set flow temperature specified here applies both for cooling a heating circuit as well as for cooling a separate cooling circuit.

7103 Minimum flow temperature for separate... (cont.)

Delivered 100 (≙ 10 °C)

condition

Setting 10 to 300 range (≙ 1 to 30 °C)

7104 Room hook-up cooling circuit

"Slope room hook-up 7104"

The influence of room temperature hookup can be selected, subject to a room temperature sensor being installed. The higher the value, the greater the influence of the room temperature on the set flow temperature of the cooling circuit in weather-compensated cooling mode. Delivered condition 0 Setting range 0 to 50

7110/7111 Cooling curve (cooling circuit/separate cooling circuit)

"Cooling curve level 7110"

"Cooling curve slope 7111"

If the room temperature does not meet the set value for a prolonged period, the cooling characteristics can be matched to the individual ambient conditions. This is achieved by changing the slope and level of the cooling curve for weathercompensated cooling mode. Observe the modified cooling characteristics over several days (if possible, await a significant change in the weather) before making further adjustments.

	"Cooling curve level 7110"	"Cooling curve slope 7111"
Delivered condition	0 (≙ 0 K)	12 (≙ 1.2)
Setting range	-150 to +400	0 to 35
	(≙ −15 to + 40 K)	(≙ 0 to 3.5)

Parameter group time

Service menu:

3. **"Time"**

- 1. Press **OK** + simultaneously for approx. 4 s.
- 4. Select parameter.

2. "Coding level 1"

7C00 - 7C06 Summertime/wintertime

In the delivered condition, the changeover will always take place in the night from Saturday to Sunday on the last weekend in March and October. This setting can be changed with parameters "Summertime - month", "Summertime - week", "Summertime - day", "Wintertime - month", "Wintertime week", and "Wintertime - day".

Parameter	Parameter code	Delivered condition	Setting r	range
"Automatic summer/win- tertime changeover"	"7C00"	"1"	"1"	Automatic changeover enabled. Automatic changeover not enabled.
"Summertime - month"	"7C01"	"3"	"1" to "12"	January to December
"Summertime - week"	"7C02"	"5"	"1" to "5"	First to last week of the month
"Summertime - day"	"7C03"	"7"	"1" to "7"	Monday to Sunday
"Wintertime - month"	"7C04"	"10"	"1" to "12"	January to December
"Wintertime - week"	"7C05"	"5"	"1" to "5"	First to last week of the month
"Wintertime - day"	"7C06"	"7"	"1" to "7"	Monday to Sunday

Parameter group communication

Service menu:

- 1. Press **OK** + simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "Communication"
- 4. Select parameter.

7710 LON communication module

"LON module installed 7710"

If LON communication module is installed in the control unit.

Delivered condition 0 Setting 0 / 1

Valu	Explanation
е	
"0"	LON communication module is not enabled.
"1"	LON communication module is
-	installed and enabled.

7798/7777 LON system number/subscriber number

Range of numbers in LON addresses. The addresses of LON subscribers consist of three different parts, as in a telephone network (country code, area code, subscriber number). The first part is permanently set to the same value for all Viessmann appliances. The other parts comprise system and subscriber number. This enables subscribers to be grouped according to system number, for example to separate the external heat source in the LON as well.

Note

To avoid communication conflicts, every subscriber number within a system may only be assigned once. The Vitocom communication interface always has subscriber number 99.

[&]quot;System number 7798"

[&]quot;Subscriber number 7777"

7798/7777 LON system number/subscriber number (cont.)

	"Subscriber number"	"System number"
Delivered condition	1	1
Setting range	1 to 99	1 to 5

7779 Fault manager

"Fault manager 7779"

Device is fault manager within a system.

This parameter determines whether the device should collect and display all system fault messages. Furthermore, the control unit monitors all subscribers for failure and generates central fault messages.

Valu Explanation e "0" Device is not fault manager. "1" Device is fault manager.

Delivered condition 0 Setting 0 / 1

Note

Only one device may be configured as the fault manager within a system. Exception: The Vitocom communication interface may be an additional fault manager.

779C Receive interval for data

"Receive heartbeat 779C"

Receive interval for the values and messages transmitted via LON.

If no signal is received for a size or message within this cycle time, the control

unit sets this value or status to an internal preset until the corresponding value is received again.

Delivered condition Setting range 20 min 0 to 60 min

7797 Outside temperature via LON

"Outside temperature 7797"

If several subscribers use the current outside temperature value, this can be made available centrally by one device within a system. All other subscribers in the same system can receive the temperature values.

Delivered condition 0 Setting range 0 to 2

Note

Only one subscriber within a system may transmit the outside temperature.

Valu	Explanation
е	
"0"	Device captures the outside temperature via the locally connected
	temperature sensor.
"1"	Device captures outside temperature of another LON subscriber within the same system.
"2"	Device transmits outside temper- ature. All LON subscribers within the same system can receive these values.

77FF Time via LON

"Time 77FF"

77FF Time via LON (cont.)

This parameter determines the source from which the control unit receives the time and whether it is to be transmitted via LON to other subscribers.

Delivered condition 0 Setting range 0 to 2

Note

Only one subscriber within a system may transmit the time.

Valu	Explanation
е	
"0"	Device receives time from the control unit's internal clock
"1"	Device receives time from another LON subscriber within the same system.
"2"	Device transmits the time from the internal clock of the control unit. All LON subscribers within the same system can receive the time signal.

5707 Heat pump numbers in a cascade

"Heat pump number 5707"

Numbers of the heat pumps in a cascade, that are connected via LON.

Numbers within a LON must be unique.

Note

Lag heat pumps that are connected via external extension H1 do not need to be numbered.

Delivered condition 1

. .

Setting 1 / 2 / 3 / 4

Parameter group operation

Service menu:

- 1. Press **OK** + **\equiv** simultaneously for approx. 4 s.
- 2. "Coding level 1"

- 3. "Control"
- 4. Select parameter.

8800 Lock out controls

"Lock out controls 8800"

For locking and enabling the controls.

Valu	Explanation
е	
"0"	Enabling operation in the standard menu and in the extended menu.
"1"	Operation in the standard menu and in the extended menu blocked. Only manual operation possible.
"2"	Operation in the standard menu enabled and in the extended menu blocked.

Note

- Remote control and maintenance in conjunction with the Vitocom is possible with all settings.
- Enabling operation via the coding level 1 is also possible in the blocked state (settings "1" and "2").

Delivered condition 0 Setting range 0 to 2

General information regarding the electrical connections

For further information see chapter "Electrical connection", page 72.

- The total output of all components connected directly to the control unit (e.g. pumps, valves, message facilities, contactors) must not exceed 1000 W. If the total output ≤ 1000 W, the individual rating of a component (e.g. pump, valve, message facility, contactor) can be greater than specified. However, never exceed the breaking capacity of the corresponding relay (see page 241).
- In the delivered condition, terminals may have been pre-allocated (subject to appliance version). If two components are connected to the same terminal, press both cores together into a single wire ferrule.

- The KM BUS wires are interchangeable.
- The neutral and earth conductors of all components are connected to the terminals X2.N and X1. ⊕ of the cross connect PCB.

Note

Only the connections to be made are shown in the following PCB diagrams. Pre-allocated connections made at the factory are explained in the tables.

Servic

Overview of the PCBs and connection options (cont.)

Main PCB with extension (operational components 230 V~)

Fuse 6.3 A (slow) Factory connection

210 Factory connection
211/212 On site connections

213-216 Factory connections 223-225 On site connections Factory connections

Operational components 230 V~

Plug	Terminals	Function	Explanation
40		Power supply PCBs	Factory connection
210	210.1 210.2	Compressor control stage 1 (type BW) via EEV controller (refrig- erant circuit control)	 Heat demand: Contact closed, 210.2 is 'live' If the compressor will not start, check whether it has been ena- bled by the EEV controller (own relay on EEV PCB) Factory connection
	210.1 210.2	End of safety chain	'Live' in case of fault-free safety chain
211	211.1	Primary pump (heat pump stage 1, type BW or common primary pump), well pump con- trol	■ Max. output: 200 W Connect on site
	211.2	Secondary pump (heat pump stage 1, type BW)	■ In systems without a heating water buffer cylinder, no other heating circuit pump is required (see terminal 212.2) ■ Max. output: 130 W Connect on site
	211.3	Control of instantane- ous heating water heater, stage 1	Accessories ■ Output 10 W Connect on site
	211.4	Circulation pump for cylinder heating or three-way diverter valve, heating/DHW heating	■ Max. output: 130 W ■ Voltage: 230 V~ Connect on site
	211.5	NC function control "natural cooling"	■ Max. output: 10 W ■ Voltage: 230 V~ Create circuit on site

Plug	Terminals	Function	Explanation
212	212.1	AC function control "active cooling"	■ Max. output: 10 W ■ Voltage: 230 V~ Create circuit on site
	212.2	Heating circuit pump for heating circuit with- out mixer (A1)	 This pump is installed in addition to the secondary pump if a heating water buffer cylinder is installed. Max. output: 100 W Connect on site
	212.3	DHW circulation pump	■ Max. output: 50 W ■ Voltage: 230 V~ Connect on site
220	220.1 220.2	Compressor control stage 2 (type BWS) via EEV controller (refrig- erant circuit control)	 Heat demand: Contact closed, 220.2 is 'live' If the compressor will not start, check whether it has been ena- bled by the EEV controller stage 2 (own relay on EEV PCB stage 2) Factory connection
222	222.1	Mixer motor control for external heat source Signal Mixer CLOSED	■ Voltage: 230 V~ Connect on site
	222.2	Mixer motor control for external heat source Signal Mixer OPEN	■ Voltage: 230 V~ Connect on site
	222.3 222.4	External heat source control	Zero volt contact: ■ Contact load 230 V/50 Hz, 4(2) A Connect on site
223	223.1 223.2	Central fault message	Zero volt contact: Closed: Fault Open: No fault Contact load 230 V/50 Hz, 4(2) A Not suitable for safety LV Connect on site

Plug	Terminals	Function	Explanation
224	224.2	Primary pump for heat pump stage 2 (type BWS)	■ Max. output: 200 W ■ Voltage: 230 V~ Connect on site
	224.3	Secondary pump for heat pump stage 2 (type BWS)	■ Max. output: 130 W ■ Voltage: 230 V~ Connect on site
	224.4	Control of instantane- ous heating water heater, stage 2	Accessories ■ Output 10 W Connect on site
	224.5	Circulation pump for cylinder heating (heat- ing water side) for heat pump stage 2 (type BWS)	■ Max. output: 130 W ■ Voltage: 230 V~ Connect on site
	224.6	Cylinder primary pump (DHW side), two-way shut-off valve	Switch cylinder primary pump and two-way shut-off valve in parallel Max. output: 130 W Connect on site
	224.7	Circulation pump for DHW reheating	■ Max. output: 100 W ■ Voltage: 230 V~ Connect on site
225	225.1	Heating circuit pump of the heating circuit with mixer M2	■ Max. output: 100 W Connect on site
	225.2	Mixer motor control, heating circuit with mixer M2 signal CLOSED ▼	■ Voltage: 230 V Connect on site
	225.3	Mixer motor control, heating circuit with mixer M2 signal OPEN	■ Voltage: 230 V Connect on site

Cross connect PCB (message and safety connections)

- F1 Fuse 6.3 A (slow)
- X1 Terminals X1.⊕ for earth conductors of **all** components
- X2 Terminals X2.N for neutral conductors of **all** components
- X3 Power supply terminals of the control unit "L1" and auxiliary components
 - Switched phase L1: X3.1, X3.2, X3.3, X3.7, X3.11, X3.13
 - Terminals for message and safety connections

Message and safety connections

Terminals	nd safety connections Function	Explanation
X3.1	Phase switched	Explanation
		Zoro volt contact required:
X3.2	External blocking, mixer	Zero volt contact required:
X3.14	CLOSED	■ Closed: Blocking enabled
or to exter-		■ Open: No blocking
nal exten-		■ Breaking capacity 230 V~, 2 mA
sion H1		
		Connect on site
X3.3	Flow switch, well circuit	Zero volt contact required:
X3.4		■ Closed: Heat pump operational
		■ Open: Heat pump shut down
		■ Breaking capacity 230 V~, 0.15 A
		Connection on site; remove jumper when
		connecting
X3.6	Power-OFF	Zero volt contact required:
X3.7		■ Closed: No blocking (safety chain has
		continuity)
		■ Open: Blocking enabled
		■ Breaking capacity 230 V~, 0.15 A
		Connection on site; remove jumper when connecting
V2.0	Deigo and aircoit are accord	
X3.8 X3.9	Primary circuit pressure switch and/or frost stat	Zero volt contact required:
A3.9		Closed: Safety chain has continuity
	or	■ Open: Safety chain interrupted; heat
	Jumper	pump shut down
		■ Breaking capacity 230 V~, 0.15 A
		Connect on site:
		■ Connected in series if both safety com-
		ponents are installed
		Insert jumper if no safety components are installed
X3.10	Fault message, lag heat	Zero volt contact required:
X3.11	pump in a cascade	Closed: No faults
	or	■ Open: Fault
	Jumper	■ Breaking capacity 230 V~, 0.15 A
		Connection on site; remove jumper when
		connecting

Terminals	Function	Explanation
X3.12	External demand to the	Zero volt contact required:
X3.13	heat pump; mixer OPEN;	■ Closed: Demand
or to exter-	operating status change-	■ Open: No demand
nal exten-	over	■ Breaking capacity 230 V, 2 mA
sion H1		
		Connect on site
X2.2	ON/OFF switch	At the programming unit
X2.3		
X3.16		
X3.17		
X3.17	Fuse F1 6.3 A (slow)	
X3.18		

Controller and sensor PCB

F.. Plug for sensor LON Slot for LON module

"X31" Coding card slot

145 KM BUS

Sensors

Plug	Sensor	Туре
F0	Outside temperature sensor	Ni 500
	Connect on site	
F2	Flow temperature sensor, primary circuit	Pt 500
	Factory connection	
F3	Return temperature sensor, primary circuit	Pt 500
	Factory connection	
F4	Buffer temperature sensor above	Pt 500
	Connect on site	

Plug	Sensor	Type
F6	Cylinder temperature sensor, top	Pt 500
	Connect on site	
F8	Flow temperature sensor, secondary circuit	Pt 500
	Factory connection	
F9	Return temperature sensor, secondary circuit for heat	Pt 500
	pump stage 1 (type BW)	
	Factory connection	
F12	Flow temperature sensor, heating circuit with	Ni 500
	mixer (M2)	
	Connect on site	
F13	System flow temperature sensor (with sensor well, down-	Pt 500
	stream of the heating water buffer cylinder)	
	Connect on site	
F14	Flow temperature sensor, cooling circuit (direct heating	Ni 500
	circuit A1 or separate cooling circuit)	
-	Connect on site	
F16	Room temperature sensor, separate cooling circuit	Ni 500
	Connect on site	
F18	Return temperature sensor, secondary circuit for heat	Pt 500
	pump stage 2 (type BWS)	
	Connect on site	
F20	Boiler temperature sensor, external heat source	Pt 500
	Connect on site	

EEV PCB

- A Compressor relay
- B Mains voltage
- © EVI relay
- D Defrost
- (E) Modulation compressor
- (F) Manual compressor control (actuator test)
- G Defrost control
- H KM BUS
- K Address jumper, multi-stage system
 - Heat pump stage 1 (type BW): without jumper
 - Heat pump stage 2 (type BWS): with jumper

- (L) LPG temperature sensor
- M Hot gas temperature sensor
- N Pressure gas temperature sensor
- O Suction gas temperature sensor
- P Low pressure sensor
- Stepper motor EEV
- S Power supply

Parts list

Information for ordering spare parts.

Quote the part and serial no. (see type plate) and the position no. of the required part (as per this parts list).

Obtain standard parts from your local supplier.

(A) Type plate

725 EEV control

726 Transformer

735 Start-up resistor

743 Three-pole contactor

BW/BWS145)

744 Three-pole contactor (not in type

Individual parts for type BW/WW+BWS/WWS

001	Compressor	029	Rubber cushion
002	Condenser	030	Anti-vibration mount set
003	Evaporator	031	Threaded insert 35 x 1½
004	High pressure sensor	032	Gasket A Ø 30 x 44 x 2 mm
005	Low pressure sensor	033	Temperature sensor Pt 500
006	Spacer	034	Safety spring
007	Electronic expansion valve (EEV)	035	Sensor mount sealed
800	Filter dryer	036	Connecting brace
009	Pressure switch	037	Soldered valve body
010	Sight glass	038	Adapter nipple
011	Compressor fixing	039	Fill/drain valve
012	Union nut	040	Heat exchanger holder
013	Schrader valve	041	Base, cooling panel
014	Sealing cap	200	Heat pump module front panel
015	Line, brine outlet	201	Side panel, left
016	Line, heating water return/DHW	202	Side panel, right
	cylinder return	203	Front top panel
017	Line, heating water flow/DHW cyl-	204	Top panel, back
	inder flow	205	Lower panel
018	Refrigerant line, filling	206	Back panel
019	Refrigerant line, sight glass, expan-	207	Panel strip, front/back
	sion valve	208	Panel strip, right/left
020	Refrigerant line, condenser filter	209	Bottom panel
	drier	210	Rail
021	Refrigerant line, expansion valve-	211	Rail, top front/back
	evaporator	212	Rail, top right/left
022	Refrigerant line, filter drier-sight	213	Cover panel, control unit
	glass	219	Adjustable foot
023	Refrigerant line, evaporator-com-	220	Decorative cap

© 027 Nipple 52 © 028 Bend 90°

pressor

denser

025 Hose DN40 with G11/2"

026 Hose DN40 with G11/2"

027 Nipple 5243-42a x 22

024 Refrigerant line, compressor-con-

745	Thermal relay (only in type BW/	777	Compi
	BWS145)	778	Cable
746	Thermal relay (only in type BW/	779	Cable
	BWS121)	780	Cable
747	PCBs, terminal box 230 V~ with	781	Cable
	cable harness	782	Power
			_

748 Control module

776 Thermal relay (only in type BW/ BWS129)

ressor line

kit. EEV

harness 230 V~

harness, pressure switch

harness, low voltage

r cable

783 Power supply [terminals]

784 Cable harness, EEV

Other individual parts for type BW/WW

214	Vitocal 300 logo	742	Phase failure relay
	Programming unit	754	Connecting cable
701	PCB CU401 with cover	755	Ribbon cable
702	PCB MB761 with cover	760	Mating plug MB761
703	PCB SA135 with cover	761	Mating plug SA135
704	Coding card	762	Mating plug CU401
711	Base carrier CU401	772	Fuse holder
712	Base carrier MB761	773	Cartridge fuse 6.3 A
727	Programming unit		

Individual parts not shown for type BW/WW+BWS/WWS

Cable harness 230 V	135	Connecting cable, compressor
Control module cable kit	137	Cable fittings
Plug-in terminal	139	Earthing cable kit
Cable kit, electronic expansion	300	Operating instructions
valve (EEV)	301	Installation/service instructions
Cable harness, high pressure	302	Touch-up paint stick, Vitosilver
Cable harness, low pressure	303	Touch-up spray, Vitosilver
Connecting cable, electronic	305	Fixing elements
expansion valve (EEV)	306	Connecting elements
	Cable harness, high pressure Cable harness, low pressure Connecting cable, electronic	Control module cable kit 137 Plug-in terminal 139 Cable kit, electronic expansion 300 valve (EEV) 301 Cable harness, high pressure 302 Cable harness, low pressure 303 Connecting cable, electronic 305

Other individual parts not shown for type BW/WW

103	Ribbon cable, 50-PIN	115	Auxiliary contact
104	Ribbon cable, 24-PIN	122	Control module for instantaneous
105	Ribbon cable, 26-PIN		heating water heater
110	Fuse holder (6.3 A, slow)	123	Line set, instantaneous heating
111	Cable harness, low voltage		water heater

Hydraulic parameters report

Setting and test values		Set value	Commission-ing
Antifreeze (brine medium)	°C	– 15	
Testing the external heating circuit pump	s		
Circulation pump type			
Circulation pump stage			
Overflow valve setting			
Primary circuit commissioning			
Primary circuit flow temperature	°C		
Primary circuit return temperature	°C		
Temperature differential ΔT:			
Secondary circuit flow temperature =	K	3 to 5	
35 °C at primary circuit flow temperature			
= 10 °C			
Secondary circuit flow temperature =	K	2 to 4	
35 °C at primary circuit flow temperature			
= 0 °C			
Testing the mixer, heat pump and cylinder	er heati	ing	
Checked under the following conditions:			
Room temperature	°C		
Outside air temperature	°C		
"DHW cylinder top" temperature constant?		Yes (±1 K)	
Secondary circuit flow temperature	°C	rising	from to
Temperature differential ΔT	_	6 to 8 K	
"Secondary flow" / "Secondary return"			

Control parameters report

For a description of parameters, see from page 173.

Parameter	Code	Delivered condition	Commis- sioning
System definition	,	•	
System scheme	7000	2	
Language	7001	English	
Temperature differential heating	7003	40 (≙ 4 K)	
Temperature differential cooling	7004	40 (≙ 4 K)	
External extension	7010	0	
Swimming pool	7008	0	
Cascade control	700A	0	
No. of external heat pumps	5735	0	
Output lag heat pump	700B	10	
Changing the heating circuit operating	7011	0	
mode			
Effect of operating mode changeover	7012	2	
External blocking effect	701A	0	
Duration of operating mode changeover	7013	8 h	
External demand mixer "OPEN"	7014	4	
External blocking mixer "CLOSED"	7015	4	
Vitocom 100	7017	0	
Common system sensor	701B	1	
Compressor	•	•	
Enable	5000	1	
Output compressor stage	5030	Rated heating out- put according to type plate for heat pump stage 1 (type BW)	
Compressor 2	'	, , ,	•
Enable	5100	1	
Output compressor stage 2	5130	Rated heating out- put according to type plate for heat pump stage 2 (type BWS)	
Ext. heat source			
External heat source	7B00	0	
Priority	7B01	1	
Dual-mode temperature	7B02	100 (≙ 10 °C)	
External heat source for DHW	7B0D	0	

Parameter	Code	Delivered condition	Commis- sioning
DHW	!	'	·
Cylinder temperature DHW	6000	500 (≙ 50 °C)	
DHW with e heating	6015	1	
Minimum temperature	6005	100 (≙ 10 °C)	
Maximum temperature	6006	600 (≙ 60 °C)	
DHW hysteresis	6007	70 (≙ 7 K)	
Booster heater hysteresis	6008	100 (≙ 10 K)	
Start optimisation	6009	0	
Stop optimisation	600A	0	
Set temperature 2	600C	600 (≙ 60 °C)	
Temperature sensor 2	600E	No function	•
Combi cylinder	6016	0	
No. of attempts DHW	6017	1	
Cylinder primary pump type	6020	Do not adjust.	
Solar			
Solar control unit type	7A00	0	
Electric heater			
Inst. heating water heater	7900	0	
Heating with electro	7902	1	
Maximum stage, electric heating	7907	3	
Stage at power-OFF	790A	0	
Dual-mode temperature, electric heating	790B	100 (≙ 10 °C)	
Internal hydraulics			
Heat pump for drying a building	7300	0	
Screed program	7303	0	
Heating/DHW diverter valve	730D	0	
Set flow temperature, external demand	730C	500 (≙ 50 °C)	
Primary source type	7320	Do not adjust.	
Secondary pump type	7340	Do not adjust.	
Heating water buffer cylinder			
Buffer cylinder	7200	0	
Fixed temperature	7202	500 (≙ 50 °C)	
Hysteresis, buffer cylinder heating	7203	50 (≙ 5 K)	
Maximum temperature	7204	600 (≙ 60 °C)	
Buffer cylinder fixed value mode temperature limiter	7208	100 (≙ 10 °C)	

Parameter	Code	Delivered condition	Commis- sioning
Heating circuit 1	'		·
Standard room temperature	2000	200 (≙ 20 °C)	
Reduced room temperature	2001	160 (≙ 16 °C)	
Party temperature	2022	200 (≙ 20 °C)	
Remote control	2003	0	
Heating curve slope	2006	6 (≙ 0.6)	
Heating curve level	2007	0 (≙ 0 K)	
Slope room hook-up	200A	10	
Room temperature hook-up	200B	3	
Maximum flow temperature	200E	400 (≙ 40 °C)	
Heating circuit 2	'	, , ,	•
Standard room temperature	3000	200 (≙ 20 °C)	
Party temperature	3022	200 (≙ 20 °C)	
Reduced room temperature	3001	160 (≙ 16 °C)	
Remote control	3003	0	
Heating curve slope	3006	6 (\(\delta\) (0.6)	
Heating curve level	3007	0 (≙ 0 K)	
Slope room hook-up	300A	10	
Room temperature hook-up	300B	3	
Maximum flow temperature	300E	400 (≙ 40 °C)	
Heating circuit 3	•		
Standard room temperature	4000	200 (≙ 20 °C)	
Reduced room temperature	4001	160 (≙ 16 °C)	
Party temperature	4022	200 (≙ 20 °C)	
Remote control	4003	0	
Heating curve slope	4006	6 (\(\delta\) (0.6)	
Heating curve level	4007	0 (≙ 0 K)	
Slope room hook-up	400A	10	
Room temperature hook-up	400B	3	
Maximum flow temperature	400E	400 (≙ 40 °C)	
Cooling			
Cooling	7100	0	
Cooling circuit	7101	1	
Room temperature	7102	200 (≙ 20 °C)	
Minimum flow temperature	7103	100 (≙ 10 °C)	
Slope room hook-up	7104	0	
Cooling curve slope	7110	12 (£1.2)	

Parameter	Code	Delivered condition	Commis- sioning
Cooling curve level	7111	0 (≙ 0 K)	
Time			
Automatic summer/wintertime change-	7C00	1	
over			
Summertime - month	7C01	3	
Summertime - week	7C02	5	
Summertime - day	7C03	7	
Wintertime - month	7C04	10	
Wintertime - week	7C05	5	
Wintertime - day	7C06	7	
Communication			
LON module installed	7710	0	
System number	7798	1	
Subscriber number	7777	1	
Fault manager	7779	0	
Receive heartbeat	779C	20 min	
Outside temperature	7797	0	
Time	77FF	0	
Heat pump number	5707	1	
Control			
Lock out controls	8800	0	

Specification

Note

- The output given is the recommended connected load.
- The total output of all connected appliances must not exceed 1000 W. If the total output ≤ 1000 W, the individual rating of a component can be greater than specified.
- The stated current indicates the max. switching current of the switching contact (observe the total current of 5 A).
- Controls for external heat source and central fault message are unsuitable for safety LV.

Connection values of the function components

Components	Connec- tion	Connected load [W]	Voltage [V]	Max. switching
Primary pump (type BW/ WW) / well pump	211.1	200	230	4(2)
Secondary pump	211.2	130	230	4(2)
Instantaneous heating water heater control, stage 1	211.3	10	230	4(2)
Circulation pump for cylinder heating (on the heating water side) or threeway diverter valve, heating/DHW heating	211.4	130	230	4(2)
NC signal control "natural cooling"	211.5	10	230	4(2)
Circulation pump, separate cooling circuit and AC signal control "active cooling"	212.1	10	230	4(2)
Heating circuit pump A1	212.2	100	230	4(2)
DHW circulation pump	212.3	50	230	4(2)
External heat source control	222.3 222.4	zero volt contact	250	4(2)
Central fault message	223.1 223.2	zero volt contact	250	4(2)
Primary pump, heat pump stage 2 (type BWS/ WWS)	224.2	200	230	4(2)

Components	Connec- tion	Connected load [W]	Voltage [V]	Max. switching current [A]
Secondary pump, heat pump stage 2 (type BWS/ WWS)	224.3	130	230	4(2)
Instantaneous heating water heater control, stage 2	224.4	10	230	4(2)
Circulation pump for cylinder heating (on the heating water side) or threeway diverter valve, heating/DHW heating for heat pump stage 2 (type BWS/WWS)	224.5	130	230	4(2)
Cylinder primary pump (DHW side)	224.6	130	230	4(2)
Circulation pump for DHW reheating or Control of immersion heater EHE	224.7	100	230	4(2)
Heating circuit pump M2	225.1	100	230	4(2)
Total current				max. 5(3) A

Type BW/BWS

BW/BWS		121	129	145
Output data to DIN EN 14511				
(0/35 °C, 5 K spread)				
Rated output	kW	21.2	28.8	42.8
Refrigerating capacity	kW	17.0	23.3	34.2
Power consumption	kW	4.48	5.96	9.28
Coefficient of performance ∈		4.73	4.83	4.6
(COP)				
Output data to DIN EN 255				
(0/35 °C, 10 K spread)				
Rated output	kW	21.5	29.2	43.5
Refrigerating capacity	kW	17.5	23.8	35.0
Power consumption	kW	4.33	5.75	9.16
Coefficient of performance ∈		4.97	5.08	4.8
(COP)				

BW/BWS		121	129	145
Brine (primary circuit)				
Capacity	1	7.3	9.1	12.7
Minimum flow rate (always main-	l/h	3300	4200	6500
tain)				
Pressure drop	mbar	90	120	200
Max. flow temperature	°C	25	25	25
Min. flow temperature	°C	-5	-5	-5
Heating water (secondary circuit)				
Capacity	1	7.3	9.1	12.7
Minimum flow rate (always main-	l/h	1900	2550	3700
tain)				
Pressure drop	mbar	30	48	60
Max. flow temperature	°C	60	60	60

Type WW/WWS

Type www/wwws				
ww/wws		121	129	145
Output data to DIN EN 14511				
(10/35 °C, 5 K spread)				
Rated output	kW	28.1	37.1	58.9
Refrigerating capacity	kW	23.7	31.4	48.9
Power consumption	kW	4.73	6.2	10.7
Coefficient of performance ∈		5.94	6.0	5.5
(COP)				
Brine (primary circuit)				
Capacity	I	7.3	9.1	12.7
Minimum flow rate at approx. 4 K	l/h	5200	7200	10600
spread (always maintain)				
Pressure drop	mbar	200	300	440
Max. inlet temperature	°C	25	25	25
Min. inlet temperature	°C	-5	-5	-5
Heating water (secondary circuit)				
Capacity	I	7.3	9.1	12.7
Minimum flow rate (always main-	l/h	1900	2550	3700
tain)				
Pressure drop	mbar	30	48	60
Max. flow temperature	°C	60	60	60

|--|

Type BW/BWS, WW/WWS				
BW/BWS, WW/WWS		121	129	145
Rated voltage, compressor, heat	V	3/PE 400 V/50 Hz		
pump stage 2 (type BWS/WWS)				
Rated current, compressor	Α	16	22	34
Starting current, compressor (with	Α	<30	41	47
starting current limiter)				
Starting current, compressor with	Α	95	118	174
stalled armature				
Compressor fuse	Α	1xC16A	1xC25A	1xC40A
		3-pole	3-pole	3-pole
Rated voltage control unit/electron-	V	1/N/	PE 230 V/50) Hz
ics				
Fuse protection, control unit/elec-			1xB16A	
tronics				
Fuse, control unit/electronics	Α		A (slow) /25	
Rated capacity, control unit/elec-	W	1000	1000	1000
tronics		0=	0.5	0.5
Max. electr. power consumption,	W	25	25	25
control unit/electronics, heat pump				
stage 1 (type BW/WW)		00	00	00
Max. electr. power consumption,		20	20	20
control unit/electronics, heat pump				
stage 2 (type BWS/WWS)	107	45	45	45
Electr. power consumption, control	VV	45	45	45
unit/electronics, stages 1 and 2 Protection class		1	, ,	1
IP rating		IP 20	IP 20	IP 20
Refrigerant circuit		11 20	IF 20	IF 20
Refrigerant			R 410 A	
Fill volume	kg	6.5		10.0
Compressor	Type			
Compressor	Type	Hermetically sealed scroll compressor		
Permiss. operating pressure, high	bar	43	43	43
pressure side				
Permiss. operating pressure, low	bar	28	28	28
pressure side				
Permiss. operating pressure				
Primary circuit	bar	3	3	3
Secondary circuit	bar	3	3	3

	121	129	145
mm	1085	1085	1085
mm	780	780	780
mm	1074	1074	1074
G	2	2	2
G	2	2	2
kg	282	305	345
kg	277	300	340
dB(A)	42	45	48
	mm mm G G G kg	mm 1085 mm 780 mm 1074 G 2 G 2 kg 282 kg 277	mm 1085 1085 mm 780 780 mm 1074 1074 G 2 2 2 G 2 2 kg 282 305 kg 277 300

Heat pump commissioning order

Please send the following order, together with the enclosed system scheme, by fax to your local Viessmann sales office.

We would ask that a competent employee of yours be present during commissioning.

Sys Clie	tem details: nt	
_		
Sys	tem location	
Dio	ase tick these check	nointe
		for system example included:
ш	System exam	
	System exam	
	System exam	
		ernative hydraulic scheme
		lly installed and filled
Ħ	Electrical installation	·
Ħ		y thermally insulated
H	•	xternal doors are sealed
H		s/well and connection lines fully installed
H	•	poling mode fully installed (option)
ш	Componente lei et	semily mode rany metaned (epiterry
Pre	ferred appointment:	
1.	Date	
	Time	
2.	Date	
	Time	
All ۱	vork ordered from Vie	essmann will be charged to me/us in accordance with the
curi	ent Viessmann pricel	ist.
DI	/-	
	ce/date	
Sigi	nature	

Declaration of conformity

We, Viessmann Werke GmbH & Co KG, D-35107 Allendorf, declare as sole responsible body that the product **Vitocal 300-G**, **type BW/BWS**, **WW incl. Vitotronic 200**, **type WO1A** complies with the following standards:

 DIN 7003
 DIN EN 61 000-3-3; 2009-06

 DIN 8901
 DIN EN 61 000-3-11; 2001-04

 DIN 8975
 DIN EN 61 000-3-11; 2005-09

DIN EN 50 090-2-2; 2007-11 DIN EN 62233 2008-11 (VDE 0700-366)

DIN EN 55 014-1; 2007-06 DIN EN 62233 Rep.1 2009-04

(VDE 0700-365)

DIN EN 55 014-2; 2009-06 EN 292/T1/T2
DIN EN 55 022: 2008-05 EN 294

DIN EN 55 022; 2008-05 EN 294
DIN EN 60 335-2-40; 2006–11 EN 349

DIN EN 60 335-1 with A1; 2007–02 EN 378; 2008-05 DIN EN 61 000-3-2; 2006-10 BGR 500, Chapter 2.35

In accordance with the following Directives, this product is designated with CE:

2004/108/EC 98/37/EC 97/23/EC 2006/95/EC

Details according to the Pressure Equipment Directive (92/93/EC): Category II, module A1

The **product characteristics** determined as system values for the product **Vitocal 300-G** (see technical guide) can be utilised to assess the energy consumption of heating and ventilation systems to DIN V 4701-10 specified by the EnEV [Germany].

Allendorf, 10 November 2009 Viessmann Werke GmbH & Co KG

pp. Manfred Sommer

Keyword index

A	Checking the expansion vessel121
Acknowledging messages127	Checking the fuse167
Activating, service menu171	Checking the pressure121
Active cooling19	Checking the refrigerant circuit for
Actuator test162	leaks119
A-D converter140	Checking the system pressure121
Appliance fuse167	Coding card143
Appliance too noisy167	Coding card slot228
Applicability260	Coding level 1171
Assembly116	Collector sensor
	9 2135
В	■ 9A136
BA KM BUS mixer HC141	Combi cylinder192
Brief scans161	Commissioning119, 246
Brine pressure switch114	Commissioning assistant121
Buffer cylinder 204	Commissioning order246
■ fixed temperature204	Common system sensor184
■ hysteresis, buffer cylinder heating 204	communication
■ maximum temperature205	■ parameter group215
■ parameter group204	Communication
■ set temperature204	■ Fault manager216
■ temperature block fixed value mode	■ LON module installed215
buffer cylinder206	■ Outside temperature217
Buffer cylinder sensor	■ Receive heartbeat216
6 0133	■ Subscriber number215
6 8133, 134	System number215
	Communication module144
С	Communication module BF141
Calling up	Communications
■ Diagnosis150	■ time217
■ heat pump module diagnosis154	Components90, 97
System overview151	compressor
Calling up a fault message127	parameter group185
Calling up system overview151	Compressor145, 147
Cascade	■ Enable185
■ LON218	■ Heat pump output185, 186
Central fault message99	■ runtime159
Changeover, operating status179	compressor 2
Checking	parameter group186
■ Fuse167	Compressor 2
Sensors	enabling186
Checking functions162	Compressor stage 2
Checking sensors166	■ Start and stop conditions17

5442 829 GB

5442 829 GB

Configuration fault128	Cylinder prim pump1	38
Connection and wiring diagrams220	Cylinder reheating18	89
Connections13	Cylinder temperature DHW18	89
■ Electrical72, 97	Cylinder temperature sensor13	33
■ Hydraulic70		
■ Primary circuit70	D	
■ Secondary circuit71	Declaration of Conformity24	47
Contractor171	Device recognition13	39
Control high pressure shutdown193	DHW	
Controller PCB228	■ booster heater hysteresis19	90
Control parameter reports236	■ Combi cylinder19	
Control settings	■ Cylinder primary pump type19	
■ external heat source187	■ DHW with e heating18	
Control unit door167	■ hysteresis DHW19	
Control unit settings171, 173	maximum temperature19	
Cooling	minimum temperature19	
■ Cooling circuit212	■ No. of attempts DHW19	
■ cooling curve level213	■ parameter group18	
■ cooling curve slope213	■ seasonal performance factor1	
■ minimum flow temperature212	■ set cylinder temperature18	
■ Parameter211	■ set temperature 219	
■ Parameter group211	■ Start optimisation1	
■ room temperature212	stop optimisation19	
■ Slope room hook-up213	■ temperature sensor 219	
Cooling circuit19	DHW at control high pressure19	93
■ Parameter212	DHW cylinder	
■ parameter group207	■ maximum temperature19	
■ Types and configuration19	minimum temperature19	
Cooling function19	DHW cylinder temperature18	
Cooling functions	DHW heating	
■ Electrical connection92	hysteresis1	
Cooling limit174	set temperature 21	
Cooling mode 211	■ Start optimisation1	
■ operating status19	stop optimisation1	
■ room influence19	■ temperature sensor 21	
■ Weather-compensated control19	with an external heat source1	
Cooling operation19	DHW heating priority19	
Cross connect PCB225	DHW reheating18	
Cylinder	DHW sensor top132, 13	
with primary store system	DHW solar13	აპ იი
Cylinder primary pump operating	DHW with e heating1	ŏУ
mode		
Cylinder primary pump type193		

Diagnosis15	0 Electric heater94, 137
■ Brief scan16	1 ■ dual-mode temperature electric
■ Calling up15	
■ energy statement16	0 ■ Heating with electro197
■ fault index15	7 ■ inst. heating water heater196
■ heat pump module15	4 ■ maximum stage electric heater197
■ hours run15	9 ■ Stage at power-OFF197
■ information index15	6 Enable compressor185
■ Operating data/temperatures15	0 Enabling Compressor 2186
■ Software version16	1 Energy statement160
System overview15	1 Ext. heat generation149
■ temperature and pressure values.15	8 Ext. Mixer open97
Dimensions1	
Diverter valve20	1 Extension PCB221
Draining, secondary heat pump	External blocking98, 183
side16	6 ■ effect180
Drying a building19	9 ■ pumps180
Dual-mode temperature18	8 External demand97
electric heater19	
■ heating water buffer cylinder20	6 set flow temperature202
Duration of external operating status	External extension175
changeover18	1 external heat source
	■ parameter group187
E	External heat source
Earth conductor22	0 ■ dual-mode temperature188
EEPROM14	0 ■ enabling187
EEV controller15	4 ■ for DHW188
EEV module15	4 ■ priority187
EEV module (last run)15	8 External mixer "closed"98
EEV PCB23	External operating status
Electrical connection 9	7 changeover177, 181
■ Components9	0
■ Cooling functions9	2 F
■ General information1	0 Fault127
■ heat pump control unit7	7 Fault codes127
■ pumps8	5 Fault EEV128
sensors8	3 Fault history127
Electrical connections7	2 Fault index 157
■ Inserting cables7	
Electric booster heater19	6 Fault lag heat pump149
electric heater	Fault list127 g
■ parameter group19	6 Fault manager
	Fault memory127 🖁
	, , , , , , , , , , , , , , , , , , ,

Fault message	9
Filling	40
Primary sideSecondary side	
Solar circuit	
Fixed temperature	
Flow sensor cooling	204
■ 44	13
■ 4C	
Flow sensor HC2	
Flow sensor HC3	
Flow sensor primary	
Flow sensor secondary	100, 10
2 0	129
■ 28	
Flow sensor sys	
Flow sensor system	
Flow switch	
Function check	
Function description	1 [.]
■ DHW heating	20
■ Heating circuit	
■ Heating water buffer cylinder	18
■ instantaneous heating water	
heater	20
■ Power-OFF	2
Н	
Heartbeat	
Heating, seasonal performance	
factor	
Heating/DHW diverter valve	20
heating circuits/cooling circuit	
■ parameter group	20

Heating circuits/cooling circuit	
■ heating curve level	.208
■ heating curve slope	.208
maximum flow temperature	
■ party temperature	.207
Remote control	
■ room temperature hook-up	
room temperature hook-up slope.	
■ room temperature normal	
■ room temperature reduced	.207
Heating curve	
■ level	
slope	
Heating limit	
heating water buffer cylinder	.204
Heating water buffer cylinder	
dual-mode temperature	
■ hysteresis	
maximum temperature	
set temperature	
Heating with electro	
Heat pump	
number	
■ Output185,	
Heat pump diagnosis overview	
Heat pump for drying a building	.199
Heat pump module	
calling up diagnosis	.154
■ installing	
Removing	
Heat pump output185,	186
Heat pump stage 2	
■ enabling	
Heat transfer medium	
Hours run, diagnosis	
Hydraulic connections	
Hydraulic connections overview	
Hydraulic parameters	.236
Hysteresis	
■ booster heater	
buffer cylinder heating	.204
■ DHW	
■ DHW heating	190

I	L
	56 Lag heat pump176
■ Display system1	55 ■ number176, 218
Information regarding the electrical	■ output177
connections2	20 Language173
Inspection1	19 Lead appliance176
Inst. heating water heater1	96 Level
Installation10,	
Installation room	
Instantaneous heating water heater	
■ dual-mode temperature1	
maximum stage1	
Instantaneous water heater	LON
■ dual-mode temperature1	98 Address 215
■ enabling1	96 ■ Fault manager216
maximum stage1	
Instructing the system user1	•
Internal components	■ LON subscriber E0149
overview1	65 ■ parameter LON module installed215
Internal hydraulics	■ Receive interval for data216
■ heating/DHW diverter valve2	01 send/receive time217
■ Heat pump for drying a building1	
■ Parameter group1	
■ primary source type2	
■ Screed program1	
secondary pump type2	
■ set flow temperature, external	■ Transmitting/receiving outside
demand2	02 temperature217
	LON cascade218
K	LON communication module 124, 215
KM BUS EEV139, 14	40 Inserting79
KM BUS ext. extension14	44 Low pressure146, 148
KM BUS mixer cooling14	41
KM BUS R/C HC114	41 M
KM BUS R/C HC214	41 Maintenance119
KM BUS R/C HC314	41 Maximum stage electric heater197
KM BUS solar14	40 Maximum temperature
KM BUS Vitocom14	43 ■ DHW cylinder190
	■ parameter190, 205
	■ parameter maximum flow
	tomporature
	Message connections
	Message connections225
	2

Message EEV128	Outside te
Message history127	Outside te
Messages	1 0
■ acknowledging127	1 8
■ Calling up the message history127	Overview
■ Explanation127	Hydrauli
■ Overview127	■ internal
■ recalling127	■ Message
■ Scanning126	■ PCBs
Minimum clearances11	■ pumps
Minimum room volume11	■ sensors
Minimum temperature	■ valves
■ DHW cylinder190	
■ minimum flow temperature212	Р
Mixer closed183	Param. ou
Mixer OPEN182	Parameter
9	■ Report
N	■ setting e
Natural cooling19	Parameter
Neutral conductor220	■ buffer cy
New start	■ commun
Ni 500	■ compres
No. of attempts DHW193	■ compres
No display indication164	■ Cooling.
Noise167	■ cooling
Noise volume	■ DHW
Note	■ electric l
Number	■ external
■ lag heat pump176	■ heating
Number of external heat pumps176	■ Internal
Number of external fleat pumps170	■ operatio
0	■ Solar
On-site connections13	■ system
	■ System o
Operating status changeover97, 181 Operating status for external	
	Parameter ■ Resettin
changeover	
operation	Parts lists.
parameter group219	Party temp
Operation	
Lock out controls219	
Operational components 230 V~221	
Output	
■ lag heat pump177	

Outside temperature Outside temp sensor	217
1 0	128
1 8	
Overview	
Hydraulic connections	70
■ internal components	
Messages	
■ PCBs	
■ pumps	
sensors	
■ valves	
■ valves	105
P	
•	140
Param. output 1/2	149
Parameter	
Report	
setting example	171
Parameter group	
■ buffer cylinder	
■ communication	
■ compressor	
■ compressor 2	
■ Cooling	
■ cooling circuit	207
■ DHW	
■ electric heater	
■ external heat source	
■ heating circuits/cooling circuit	207
■ Internal hydraulics	199
■ operation	219
■ Solar	195
system definition	173
■ Time	
Parameters	
■ Resetting	172
Parts lists	
Party temperature	
y 	

PCB
■ Controller PCB228
■ cross connect PCB225
■ EEV230
■ extension PCB221
■ overview220
■ Sensor PCB228
Phase monitor113
Power-OFF95, 108, 142
Power-OFF contact95
Power supply103
■ Information104
Power supply monitor142
Power supply utility17
Pressure values, diagnosis158
Primary circuit
■ Connecting70
■ Filling and venting120
■ Type BW22
■ Type WW24
Primary circuit pressure switch114
Primary pump202
Primary pump operating mode202
Primary source143, 149
Primary source type202
Primary store system65
Primary temperature143
Priority
■ external heat source187
Programming unit164
Pt 500166
Pump heating circuit 1136
Pumps85, 165
Pumps, external blocking180
3
R
Receive heartbeat216
Receive interval for data216
Refrigerant circuit142, 148
Reinstating the delivered condition172
Relay test162
Remote control207
Remote control module 184

Remote monitoring module	184
Repairs	
Repair work	
Reports	
■ Control parameter	
Required Equipment2	
Reset	
Return sensor primary	131
Return sensor sec.	
2 1	129
2 9	130
Return sensor solar	
9 3	135
■ 9B	
Room height	
Room influence19, 208	209
Room sensor HC1	, 203
■ 70	124
1 78	135
Room sensor HC2	
1 71	
1 79	135
Room sensor HC3	
7 2	134
■ 7A	135
Room sensor SKK	
1 73	134
■ 7B	135
Room temperature	
■ normal	207
■ reduced	
separate cooling circuit	
· · · · · · · · · · · · · · · · · · ·	209
■ influence	208
■ Influence cooling mode	213
Room temperature hook-up slope	
■ parameter	
Room temperature is too low	164
Room volume	11
Runtime, compressor	159
, r	

S	
Safety connections	225
Scanning messages	
Scanning operating data	
Scanning temperatures	
Scanning the fault display	
Screed program	
Sealing faces	
Secondary circuit	
■ Connecting	71
■ Filling and venting	
Secondary pump136	
Secondary pump operating mode	
Secondary pump type	
Sensor PCB	228
Sensors83	
Sensors resistance curves	
Service level	
Service menu	
■ Activating	
■ Calling up	172
■ Disabling	171
Service scans	
Set DHW temperature	
Set flow temperature	
cooling	212
maximum	
Set flow temperature, external	
demand	202
Set room temperature	
cooling mode	212
Set temperature	
■ DHW cylinder	189
■ heating water buffer cylinder	
Set temperature 2	
Simulation	
Slope	
cooling curve	213
■ heating curve	
Room hook-up	
Software version	

Solar	
■ Parameter group	195
Solar control unit	
	136
■ Filling and venting	121
Solar control unit	
Solar control unit type	
SPF (seasonal performance factor).	
Stage at power-OFF	
Standard settings	
Start optimisation	
Std after data error	
Stop optimisation	
Subscriber number	
Summertime	
Swimming pool99,	
System definition	
■ changeover, operating status,	
duration	181
Common system sensor	184
External blocking mixer CLOSED.	183
■ external demand mixer OPEN	182
■ External extension	175
■ Language	
operating status changeover	
■ operating status for external	
changeover	179
parameter group	
Swimming pool	
System scheme	
■ Temperature differential cooling	
■ temperature differential heating	
■ Vitocom 100	
System example44	
System number	
System scheme44, 52,	
System schemes	
overview	15

Т	
Temperature block fixed value mod	е
buffer cylinder	
■ parameter	.206
Temperature differential	
■ Cooling	
■ heating	.174
Temperature limiter	
Temperature sensor	.192
Temperature sensor 2	
Temperature values, diagnosis	
Terminating service	
Testing outputs	
Three-phase monitor	
Tilting angle	10
Time	
■ LON	
■ parameter	
■ Parameter group	
■ Summertime	
■ Wintertime	
Total seasonal performance factor.	.160

Transport brackets Transport locking bracket	
U Underfloor heating system	88
V Venting ■ Primary side ■ Secondary side ■ Solar circuit Vitocom Vitocom 100 Vitotrol	120 121 184 184
W Wall clearances Warning Warranty Weather-compensated control Wintertime	127 171 19

Applicability

Brine/water and water/water heat pump Vitocal 300-G, single and two-stage

Serial	no.
~	

Output	tput Type BW/WW	Type BWS/
		(heat pump
21 kW	7424 066 9 00000	7424 072 9
29 kW	7424 067 9 00000	7424 073 9
45 kW	7424 068 9 00000	7424 074 9

Viessmann Werke GmbH&Co KG D-35107 Allendorf

Telephone: +49 6452 70-0 Fax: +49 6452 70-2780 www.viessmann.com

wws o stage 2)

00000 ... 00000 ... 00000 ...

Viessmann Limited Hortonwood 30, Telford Shropshire, TF1 7YP, GB Telephone: +44 1952 675000

Fax: +44 1952 675040 E-mail: info-uk@viessmann.com

Subject to technical modifications.