Supervivencia en un Cultivo de Palma

Nicolás Galindo Ramírez

2022-07-02

Análisis de Supervivencia para un cultivo de palma

ARTICULO

Asignación

- Asumir los datos como sí fuerán para un cultivo de palma
- Tiempo = time: Variable respuesta: Tiempo de supervivencia
- Edad = Age: meses de plantación
- Hibrido = Sex: hibrido 1, hibrido 2
- Severidad = ph.ecog: severidad en la misma escala
- N17 = meal.cal: Nitrogeno medido en la hoja 17
- P17 = wt.loss: Fosforo medido en la hoja 17

```
library(survival)
str(lung)
```

```
'data.frame':
                    228 obs. of 10 variables:
   $ inst
              : num 3 3 3 5 1 12 7 11 1 7 ...
##
   $ time
                      306 455 1010 210 883 ...
               : num
   $ status
               : num
                      2 2 1 2 2 1 2 2 2 2 ...
##
               : num 74 68 56 57 60 74 68 71 53 61 ...
   $ age
               : num 1 1 1 1 1 1 2 2 1 1 ...
   $ sex
##
   $ ph.ecog : num
                     1 0 0 1 0 1 2 2 1 2 ...
   $ ph.karno : num 90 90 90 90 100 50 70 60 70 70 ...
   $ pat.karno: num 100 90 90 60 90 80 60 80 80 70 ...
   $ meal.cal : num 1175 1225 NA 1150 NA ...
   $ wt.loss : num NA 15 15 11 0 0 10 1 16 34 ...
df1 <- lung
names(df1)[2] <- 'Tiempo'</pre>
names(df1)[4] <- 'Edad'
names(df1)[5] <- 'Hibrido'
names(df1)[6] <- 'Severidad'
names(df1)[9] <- 'N17'
names(df1)[10] <- 'P17'
df1
       inst Tiempo status Edad Hibrido Severidad ph.karno pat.karno N17 P17
##
```

##	6	12	1022	1	74	1	1	50	80	513	0
##	7	7	310	2	68	2	2	70	60	384	10
##	8	11	361	2	71	2	2	60	80	538	1
##	9	1	218	2	53	1	1	70	80	825	16
##	10	7	166	2	61	1	2	70	70	271	34
##	11	6	170	2	57	1	1	80	80	1025	27
##	12	16	654	2	68	2	2	70	70	NA	23
##	13	11	728	2	68	2	1	90	90	NA	5
##	14	21	71	2	60	1	NA	60		1225	32
##	15	12	567	2	57	1	1	80		2600	60
##	16	1	144	2	67	1	1	80	90	NA	15
##	17	22	613	2	70	1	1	90		1150	-5
##	18	16	707	2	63	1	2	50		1025	22
##	19	1	61	2	56	2	2	60	60	238	10
##	20	21	88	2	57	1	1	90		1175	NA
##	21	11	301	2	67	1	1	80	80	1025	17
##	22	6	81	2	49	2	0	100	70	1175	-8
##	23	11	624	2	50	1	1	70	80	NA	16
##	24	15	371	2	58	1	0	90	100	975	13
##	25	12	394	2	72	1	0	90	80	NA	0
##	26	12	520	2	70	2	1	90	80	825	6
##	27	4	574	2	60	1	0	100	100	1025	-13
##	28	13	118	2	70	1	3	60	70	1075	20
##	29	13	390	2	53	1	1	80	70	875	-7
##	30	1	12	2	74	1	2	70	50	305	20
##	31	12	473	2	69	2	1	90	90	1025	-1
##	32	1	26	2	73	1	2	60	70	388	20
##	33	7	533	2	48	1	2	60	80	NA	-11
##	34	16	107	2	60	2	2	50	60	925	-15
##	35	12	53	2	61	1	2	70	100	1075	10
##	36	1	122	2	62	2	2	50		1025	NA
##	37	22	814	2	65	1	2	70	60	513	28
##	38	15	965	1	66	2	1	70	90	875	4
##	39	1	93	2	74	1	2	50		1225	24
##	40	1	731	2	64	2	1	80		1175	15
##	41	5	460	2	70	1	1	80	60	975	10
##		11	153	2	73	2	2	60		1075	11
##		10	433	2	59	2	0	90	90	363	27
##		12	145	2	60	2	2	70	60	NA	NA
## ##		7 7	583 95	2 2	68 76	1 2	1 2	60 60		1025	7 -24
##		1	303	2	76 74	1	0	90	60 70	463	30
	48	3	519	2	63	1	1	80		1025	10
##		13	643	2	74	1	0	90		1425	2
##		22	765	2	50	2	1	90		1175	4
##		3	735	2	72	2	1	90	90	NA	9
##	52	12	189	2	63	1	0	80	70	NA	0
##		21	53	2	68	1	0	90		1025	0
##		1	246	2	58	1	0	100		1175	7
##		6	689	2	59	1	1	90		1300	15
##		1	65	2	62	1	0	90	80	725	NA
##		5	5	2	65	2	0	100	80	338	5
##	58	22	132	2	57	1	2	70	60	NA	18
##	59	3	687	2	58	2	1	80	80	1225	10

шш	60	4	245	0	<i>C</i> 1	0	4	00	00	1075	2
	60	1	345	2	64	2	1	90		1075	-3
##	61	22	444	2	75	2	2	70	70	438	8
##	62	12	223	2	48	1	1	90		1300	68
##	63	21	175	2	73	1	1	80	100	1025	NA
##	64	11	60	2	65	2	1	90	80	1025	0
##	65	3	163	2	69	1	1	80	60	1125	0
##	66	3	65	2	68	1	2	70	50	825	8
##	67	16	208	2	67	2	2	70	NA	538	2
##	68	5	821	1	64	2	0	90	70	1025	3
##	69	22	428	2	68	1	0	100	80	1039	0
##	70	6	230	2	67	1	1	80	100	488	23
##	71	13	840	1	63	1	0	90		1175	-1
##	72	3	305	2	48	2	1	80	90	538	29
##	73	5	11	2	74	1	2	70		1175	0
##	74	2	132	2	40	1	1	80	80	NA	3
##	7 5		226	2	53	2				825	3
		21					1	90	80		
##	76	12	426	2	71	2	1	90		1075	19
##	77	1	705	2	51	2	0	100	80	1300	0
##	78	6	363	2	56	2	1	80		1225	-2
##	79	3	11	2	81	1	0	90	NA	731	15
##	80	1	176	2	73	1	0	90	70	169	30
##	81	4	791	2	59	1	0	100	80	768	5
##	82	13	95	2	55	1	1	70	90	1500	15
##	83	11	196	1	42	1	1	80	80	1425	8
##	84	21	167	2	44	2	1	80	90	588	-1
##	85	16	806	1	44	1	1	80	80	1025	1
##	86	6	284	2	71	1	1	80	90	1100	14
##	87	22	641	2	62	2	1	80	80	1150	1
##	88	21	147	2	61	1	0	100		1175	4
##	89	13	740	1	44	2	1	90	80	588	39
##	90	1	163	2	72	1	2	70	70	910	2
##	91	11	655	2	63	1	0	100	90	975	-1
##	92	22	239	2	70	1	1	80	100	NA	23
##	93	5	88	2	66	1		90	80	875	8
							1				
##	94 05	10	245	2	57	2	1	80	60	280	14
##	95	1	588	1	69	2	0	100	90	NA	13
##		12	30	2	72	1	2	80	60	288	7
##		3	179	2	69	1	1	80	80	NA	25
##		12	310	2	71	1	1	90	100	NA	0
	99	11	477	2	64	1	1	90	100	910	0
	100	3	166	2	70	2	0	90	70	NA	10
	101	1	559	1	58	2	0	100	100	710	15
	102	6	450	2	69	2	1	80		1175	3
##	103	13	364	2	56	1	1	70	80	NA	4
##	104	6	107	2	63	1	1	90	70	NA	0
##	105	13	177	2	59	1	2	50	NA	NA	32
##	106	12	156	2	66	1	1	80	90	875	14
##	107	26	529	1	54	2	1	80	100	975	-3
##	108	1	11	2	67	1	1	90	90	925	NA
	109	21	429	2	55	1	1	100	80	975	5
	110	3	351	2	75	2	2	60	50	925	11
	111	13	15	2	69	1	0	90	70	575	10
	112	1	181	2	44	1	1	80		1175	5
	113	10	283	2	80	1	1	80		1030	6
	-10			-		-	-		_00		9

##	114	3	201	2	75	2	0	90	100	NA	1
##	115	6	524	2	54	2	1	80	100	NA	15
##	116	1	13	2	76	1	2	70	70	413	20
##	117	3	212	2	49	1	2	70	60	675	20
##	118	1	524	2	68	1	2	60	70	1300	30
##	119	16	288	2	66	1	2	70	60	613	24
##	120	15	363	2	80	1	1	80	90	346	11
##	121	22	442	2	75	1	0	90	90	NA	0
##	122	26	199	2	60	2	2	70	80	675	10
##	123	3	550	2	69	2	1	70	80	910	0
##	124	11	54	2	72	1	2	60	60	768	-3
##	125	1	558	2	70	1	0	90	90	1025	17
##	126	22	207	2	66	1	1	80	80	925	20
##	127	7	92	2	50	1	1	80	60	1075	13
##	128	12	60	2	64	1	1	80	90	993	0
##	129	16	551	1	77	2	2	80	60	750	28
##	130	12	543	1	48	2	0	90	60	NA	4
##	131	4	293	2	59	2	1	80	80	925	52
##	132	16	202	2	53	1	1	80	80	NA	20
##	133	6	353	2	47	1	0	100	90	1225	5
##	134	13	511	1	55	2	1	80	70	NA	49
##	135	1	267	2	67	1	0	90	70	313	6
##	136	22	511	1	74	2	2	60	40	96	37
##	137	12	371	2	58	2	1	80	70	NA	0
##	138	13	387	2	56	1	2	80	60	1075	NA
##	139	1	457	2	54	1	1	90	90	975	-5
##	140	5	337	2	56	1	0	100	100	1500	15
##	141	21	201	2	73	2	2	70	60	1225	-16
##	142	3	404	1	74	1	1	80	70	413	38
##	143	26	222	2	76	1	2	70	70	1500	8
##	144	1	62	2	65	2	1	80	90	1075	0
##	145	11	458	1	57	1	1	80	100	513	30
##	146	26	356	1	53	2	1	90	90	NA	2
##	147	16	353	2	71	1	0	100	80	775	2
##	148	16	163	2	54	1	1	90	80	1225	13
##	149	12	31	2	82	1	0	100	90	413	27
##	150	13	340	2	59	2	0	100	90	NA	0
##	151	13	229	2	70	1	1	70	60	1175	-2
##	152	22	444	1	60	1	0	90	100	NA	7
##	153	5	315	1	62	2	0	90	90	NA	0
##	154	16	182	2	53	2	1	80	60	NA	4
##	155	32	156	2	55	1	2	70	30	1025	10
##	156	NA	329	2	69	1	2	70	80	713	20
##	157	26	364	1	68	2	1	90	90	NA	7
##	158	4	291	2	62	1	2	70	60	475	27
##	159	12	179	2	63	1	1	80	70	538	-2
	160	1	376	1	56	2	1	80	90	825	17
##	161	32	384	1	62	2	0	90	90	588	8
##	162	10	268	2	44	2	1	90	100	2450	2
##	163	11	292	1	69	1	2	60	70	2450	36
	164	6	142	2	63	1	1	90	80	875	2
	165	7	413	1	64	1	1	80	70	413	16
##	166	16	266	1	57	2	0	90	90	1075	3
##	167	11	194	2	60	2	1	80	60	NA	33

##	168	21	320	2	46	1	0	100	100	860	4
##	169	6	181	2	61	1	1	90	90	730	0
##	170	12	285	2	65	1	0	100	90	1025	0
##	171	13	301	1	61	1	1	90	100	825	2
##	172	2	348	2	58	2	0	90	80	1225	10
##	173	2	197	2	56	1	1	90	60	768	37
##	174	16	382	1	43	2	0	100	90	338	6
##	175	1		1							12
			303		53	1	1	90		1225 1025	
##	176	13	296	1	59 56	2	1	80			0
##	177	1	180	2	56	1	2	60		1225	-2
##	178	13	186	2	55	2	1	80	70	NA	NA
##	179	1	145	2	53	2	1	80	90	588	13
##	180	7	269	1	74	2	0	100	100	588	0
##	181	13	300	1	60	1	0	100	100	975	5
##	182	1	284	1	39	1	0	100		1225	-5
##	183	16	350	2	66	2	0	90		1025	NA
##	184	32	272	1	65	2	1	80	90	NA	-1
##	185	12	292	1	51	2	0	90		1225	0
##	186	12	332	1	45	2	0	90	100	975	5
##	187	2	285	2	72	2	2	70	90	463	20
##	188	3	259	1	58	1	0	90	80	1300	8
##	189	15	110	2	64	1	1	80	60	1025	12
##	190	22	286	2	53	1	0	90	90	1225	8
##	191	16	270	2	72	1	1	80	90	488	14
##	192	16	81	2	52	1	2	60	70	1075	NA
##	193	12	131	2	50	1	1	90	80	513	NA
##	194	1	225	1	64	1	1	90	80	825	33
##	195	22	269	2	71	1	1	90	90	1300	-2
##	196	12	225	1	70	1	0	100	100	1175	6
##	197	32	243	1	63	2	1	80	90	825	0
##	198	21	279	1	64	1	1	90	90	NA	4
##	199	1	276	1	52	2	0	100	80	975	0
##	200	32	135	2	60	1	1	90	70	1275	0
##	201	15	79	2	64	2	1	90	90	488	37
##	202	22	59	2	73	1	1	60	60	2200	5
##	203	32	240	1	63	2	0	90	100	1025	0
##	204	3	202	1	50	2	0	100	100	635	1
	205	26	235	1	63	2	0	100	90	413	0
	206	33	105	2	62	1	2	NA	70	NA	NA
	207	5	224	1	55	2	0	80	90	NA	23
	208	13	239	2	50	2	2	60		1025	-3
	209	21	237	1	69	1	1	80	70	NA	NA
	210	33	173	1	59	2	1	90	80	NA	10
	211	1	252	1	60	2	0	100	90	488	-2
	212	6	221	1	67	1	1	80	70	413	23
	213	15	185	1	69	1	1	90		1075	0
	214	11	92	1	64	2	2	70	100	NA	31
	215	11	13	2	65	1	1	80	90	NA	10
	216	11	222	1	65	1	1	90		1025	18
	217	13	192	1	41	2	1	90	80		-10
	217	21	183	2	76	1	2	80	60	NA 825	-10 7
	218	11	211	1	70	2	2	70	30	131	3
		2	211 175	1		2				725	
	220				57 67		0	80 80	80		11
##	221	22	197	1	67	1	1	80	90	1500	2

```
71
## 222
         11
                203
                                       2
                                                           80
                                                                      90 1025
                         1
                                                  1
## 223
                116
                         2
                              76
                                       1
                                                           80
                                                                      80
                                                                                0
          1
                                                  1
                                                                           NA
## 224
          1
                188
                         1
                              77
                                       1
                                                  1
                                                           80
                                                                      60
                                                                           NA
                                                                                3
## 225
                              39
                191
                                       1
                                                  0
                                                           90
                                                                      90 2350
                                                                               -5
         13
                         1
## 226
         32
                105
                         1
                              75
                                       2
                                                  2
                                                           60
                                                                      70 1025
                                                                                5
## 227
                              66
                                       1
                                                  1
                                                           90
                                                                     100 1075
                                                                                1
          6
                174
                         1
## 228
                                       2
                                                                      90 1060
         22
                177
                         1
                              58
                                                           80
                                                                                0
table(df1$inst)
##
                5 6 7 10 11 12 13 15 16 21 22 26 32 33
##
   1
          3
## 36 5 19 4 9 14 8 4 18 23 20 6 16 13 17 6 7 2
df1.sur<-Surv(df1$Tiempo, df1$status) ##Datos censurados
## lung.sur
class(df1.sur)
```

[1] "Surv"

El análisis de supervivencia requiere crear una función Surv(), para declarar un dato de supervivencia.

Este objeto de supervivencia se utiliza con frecuencia como variable de respuesta.

```
df1.fit<-survfit(df1.sur~1)</pre>
summary(df1.fit)
## Call: survfit(formula = df1.sur ~ 1)
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
##
       5
             228
                        1
                            0.9956 0.00438
                                                   0.9871
                                                                   1.000
##
      11
             227
                        3
                            0.9825 0.00869
                                                   0.9656
                                                                   1.000
##
             224
                            0.9781 0.00970
      12
                                                   0.9592
                                                                   0.997
                        1
                        2
##
      13
             223
                            0.9693 0.01142
                                                   0.9472
                                                                   0.992
##
      15
             221
                            0.9649 0.01219
                        1
                                                   0.9413
                                                                   0.989
##
      26
             220
                        1
                            0.9605 0.01290
                                                   0.9356
                                                                   0.986
##
      30
             219
                            0.9561 0.01356
                                                   0.9299
                                                                   0.983
                        1
##
      31
             218
                        1
                            0.9518 0.01419
                                                   0.9243
                                                                   0.980
##
                        2
      53
             217
                            0.9430 0.01536
                                                   0.9134
                                                                   0.974
                            0.9386 0.01590
##
      54
             215
                        1
                                                   0.9079
                                                                   0.970
##
      59
             214
                        1
                            0.9342 0.01642
                                                   0.9026
                                                                   0.967
##
      60
             213
                        2
                            0.9254 0.01740
                                                   0.8920
                                                                   0.960
##
      61
             211
                        1
                            0.9211 0.01786
                                                   0.8867
                                                                   0.957
##
      62
             210
                        1
                            0.9167 0.01830
                                                   0.8815
                                                                   0.953
             209
                        2
                            0.9079 0.01915
##
      65
                                                   0.8711
                                                                   0.946
##
      71
             207
                        1
                            0.9035 0.01955
                                                   0.8660
                                                                   0.943
##
      79
             206
                        1
                            0.8991 0.01995
                                                   0.8609
                                                                   0.939
##
      81
             205
                        2
                            0.8904 0.02069
                                                   0.8507
                                                                   0.932
                        2
##
      88
             203
                            0.8816 0.02140
                                                   0.8406
                                                                   0.925
      92
             201
                            0.8772 0.02174
##
                        1
                                                   0.8356
                                                                   0.921
##
      93
             199
                        1
                            0.8728 0.02207
                                                   0.8306
                                                                   0.917
##
      95
             198
                        2
                            0.8640 0.02271
                                                   0.8206
                                                                   0.910
##
     105
             196
                        1
                            0.8596 0.02302
                                                   0.8156
                                                                   0.906
##
     107
             194
                        2
                            0.8507 0.02362
                                                   0.8056
                                                                   0.898
##
     110
             192
                            0.8463 0.02391
                                                   0.8007
                                                                   0.894
```

##	116	191	1	0.8418	0.02419	0.7957	0.891
##	118	190	1	0.8374	0.02446	0.7908	0.887
##	122	189	1	0.8330	0.02473	0.7859	0.883
##	131	188	1	0.8285	0.02500	0.7810	0.879
##	132	187	2	0.8197	0.02550	0.7712	0.871
##	135	185	1	0.8153	0.02575	0.7663	0.867
##	142	184	1		0.02598	0.7615	0.863
##	144	183	1		0.02622	0.7566	0.859
##	145	182	2		0.02667	0.7469	0.852
##	147	180	1		0.02688	0.7421	0.848
##	153	179	1		0.02000	0.7373	0.844
			2		0.02710	0.7277	
##	156	178	3				0.836
##	163	176			0.02809	0.7134	0.824
##	166	173	2		0.02845	0.7039	0.816
##	167	171	1		0.02863	0.6991	0.811
##	170	170	1		0.02880	0.6944	0.807
##	175	167	1		0.02898	0.6896	0.803
##	176	165	1		0.02915	0.6848	0.799
##	177	164	1	0.7353	0.02932	0.6800	0.795
##	179	162	2	0.7262	0.02965	0.6704	0.787
##	180	160	1	0.7217	0.02981	0.6655	0.783
##	181	159	2	0.7126	0.03012	0.6559	0.774
##	182	157	1	0.7081	0.03027	0.6511	0.770
##	183	156	1	0.7035	0.03041	0.6464	0.766
##	186	154	1	0.6989	0.03056	0.6416	0.761
##	189	152	1	0.6943	0.03070	0.6367	0.757
##	194	149	1	0.6897	0.03085	0.6318	0.753
##	197	147	1	0.6850	0.03099	0.6269	0.749
##	199	145	1	0.6803	0.03113	0.6219	0.744
##	201	144	2	0.6708	0.03141	0.6120	0.735
##	202	142	1	0.6661	0.03154	0.6071	0.731
##	207	139	1	0.6613	0.03168	0.6020	0.726
##	208	138	1	0.6565	0.03181	0.5970	0.722
##	210	137	1	0.6517	0.03194	0.5920	0.717
##	212	135	1	0.6469	0.03206	0.5870	0.713
##	218	134	1	0.6421	0.03218	0.5820	0.708
##	222	132	1	0.6372	0.03231	0.5769	0.704
##	223	130	1		0.03243	0.5718	0.699
##	226	126	1		0.03256	0.5666	0.694
##	229	125	1		0.03268	0.5614	0.690
##	230	124	1		0.03280	0.5562	0.685
##	239	121	2		0.03304	0.5456	0.675
##	245	117	1		0.03316	0.5402	0.670
##	246	116	1		0.03328	0.5349	0.666
##	267	112	1		0.03341	0.5294	0.661
##	268	111	1		0.03353	0.5239	0.656
##	269	110	1		0.03364	0.5184	0.651
##	270	108	1		0.03376	0.5128	0.645
##	283	104	1		0.03376	0.5071	0.640
##	284	104	1		0.03300	0.5014	0.635
##	285	103	2		0.03400	0.4899	0.624
##	286	99	1		0.03424	0.4841	0.619
##	288	99 98	1		0.03434	0.4784	
			1				0.614
##	291	97	1	0.5563	0.03454	0.4727	0.608

##	293	94	1	0.5306	0.03464	0.4669	0.603
##	301	91	1	0.5248	0.03475	0.4609	0.597
##	303	89	1	0.5189	0.03485	0.4549	0.592
##	305	87	1	0.5129	0.03496	0.4488	0.586
##	306	86	1	0.5070	0.03506	0.4427	0.581
##	310	85	2	0.4950	0.03523	0.4306	0.569
##	320	82	1	0.4890	0.03532	0.4244	0.563
##	329	81	1		0.03539	0.4183	0.558
##	337	79	1	0.4768	0.03547	0.4121	0.552
##	340	78	1		0.03554	0.4060	0.546
##	345	77	1		0.03560	0.3998	0.540
##	348	76	1		0.03565	0.3937	0.534
##	350	75	1		0.03569	0.3876	0.528
##	351	74	1		0.03573	0.3815	0.522
##	353	73	2		0.03578	0.3693	0.510
##	361	70	1	0.4278	0.03581	0.3631	0.504
##	363	69	2		0.03583	0.3508	0.492
##	364	67	1		0.03582	0.3447	0.486
##	371	65	2		0.03581	0.3323	0.473
##	387	60	1		0.03582	0.3258	0.467
##	390	59	1		0.03582	0.3193	0.460
##	394	58	1		0.03580	0.3128	0.454
##	426	55	1		0.03580	0.3060	0.447
##	428	54	1		0.03579	0.2993	0.440
##	429	53	1		0.03576	0.2926	0.434
##	433	52	1		0.03573	0.2860	0.427
##	442	51	1		0.03568	0.2793	0.420
##	444	50	1		0.03561	0.2727	0.413
##	450	48	1		0.03555	0.2659	0.406
##	455	47	1		0.03548	0.2592	0.399
##	457	46	1		0.03539	0.2525	0.392
##	460	44	1		0.03530	0.2456	0.385
##	473	43	1		0.03520	0.2388	0.378
##	477	42	1		0.03508	0.2320	0.371
##	519	39	1		0.03498	0.2248	0.363
##	520	38	1		0.03485	0.2177	0.356
##	524	37	2		0.03455	0.2035	0.340
##	533	34 32	1		0.03439	0.1962	0.333
## ##	550 558	30	1 1		0.03423 0.03407	0.1887 0.1810	0.325 0.316
##	567	28	1		0.03407	0.1729	0.318
##	574	26 27	1		0.03391	0.1729	0.308
##	583	26	1		0.03348	0.1571	0.299
##	613	24	1		0.03346	0.1371	0.290
##	624	23	1		0.03323	0.1407	0.272
##	641	22	1		0.03265	0.1327	0.263
##	643	21	1		0.03229	0.1247	0.254
##	654	20	1		0.03188	0.1169	0.245
##	655	19	1		0.03142	0.1091	0.235
##	687	18	1		0.03142	0.1031	0.226
##	689	17	1		0.03034	0.0938	0.216
##	705	16	1		0.02972	0.0863	0.217
##	707	15	1		0.02904	0.0789	0.197
##	728	14	1		0.02830	0.0716	0.187
	. = -	- -	_			3.0.20	0.201

```
0.1068 0.02749
                                                  0.0645
##
     731
             13
                                                                 0.177
##
     735
             12
                           0.0979 0.02660
                                                  0.0575
                                                                 0.167
                       1
             10
                           0.0881 0.02568
##
     765
                       1
                                                  0.0498
                                                                 0.156
     791
              9
                           0.0783 0.02462
##
                       1
                                                  0.0423
                                                                 0.145
              7
##
     814
                       1
                           0.0671 0.02351
                                                  0.0338
                                                                 0.133
##
     883
               4
                       1
                           0.0503 0.02285
                                                  0.0207
                                                                 0.123
plot(df1.fit, xlab="Mes de plantación", ylab="Proporción de palmas")
abline(h = 0.5, col='red')
abline(v = 310, col='red')
abline(h = c(0.25, 0.75), col='purple')
abline(v = c(170, 550), col='purple')
```


De este grafico podemos destacar que a los 310 días hay un 50% de la población total de palmas, es decir a los 310 meses de plantación de plantación hay un 50% de probabilidad de que sobreviva la mitad de la población. Este mismo concepto tambien se aplica a los 170 meses de plantación donde hay una probabilidad del 75% de supervivencia y a los 550 meses de plantación hay una mayor probabilidad de muerte siendo esta del 25%.

```
plot(df1.fit,xlab="Dias",ylab="Proporción de Palmas")
abline(h = 0.5, col='red')
abline(v = 310, col='red')
points(c(310, 310), c(0.43, 0.57), pch =16, col='blue')
points(c(280, 360), c(0.5, 0.5), pch =16, col='red')
```


#Analisis por estratos (Severidad)

```
df1.fit.strata<-survfit(df1.sur~Severidad, df1)
plot(df1.fit.strata, lty = 1:4,col=1:4,xlab="Meses de Plantación",ylab="Proporción de Palmas", lwd=3)
legend(700, .9, c("Severidad_Nivel=0", "Severidad_Nivel=1", "Severidad_Nivel=2", "Severidad_Nivel=3"),
abline(h = 0.5)</pre>
```


Analisis de supervivencia según estratos, en este caso seria según la severidad, donde nos damos cuenta que para el nivel 3 de severidad no hay suficiente información, debido a que los individuos (Palmas) se mueren muy rapido (peor condición). ### Por otro lado, del nivel 0 a 2 se pueden observar lineas suavizadas donde se evidencia que para una probabilidad del 50% de supervivencia el tiempo varia en gran medida, tal como se observa en la figura. Para el nivel 2 más o menos a los 200 meses de plantación, para el nivel 1 sobre los 300

meses de plantación y para el nivel 0 sobre los 400 meses de plantación (mejor condición).

#Analisis por Genotipo (Hibrido)

```
df1.fit.strata<-survfit(df1.sur~Hibrido, df1)</pre>
plot(df1.fit.strata, conf.int = 0.95,
     col=1:2, xlab = 'Meses de Plantación', lwd=1)
legend(700, .9, c("H1", "H2"), col=1:2, lwd=3)
# abline(v = 400)
abline(h = 0.25, col = 'blue1')
abline(h = 0.5, col = 'blue1', lwd=1.5)
abline(v = c(210, 320), col = 4)
abline(v = c(350, 550), col = 4)
\infty
                                                                H1
                                                                H2
0.0
       0
                                 400
                   200
                                               600
                                                            800
                                                                          1000
                               Meses de Plantación
```

uar el comportamiento de los genotipos de las palmas se evidencia que el hibrido 2 (H2) tiene un mejor comportamiento en el ambiente que se esta evaluando, pues la tasa de supervivencia de este genotipo es mayor con respecto al hibrido 1 (H1). Esto se observa pues en la probabilidad de supervivencia del 50% el H1 la tiene entre los 210 a 320 meses de plantación, mientras que el H2 tiene esta condición a los 350 a 550 meses de plantación.

Intervalos de Confianza para el estimador Kaplan-Meier

```
col = c('red', 'black', 'blue'))
abline(h = 0.5, col='maroon3', lwd=2)
abline(v = 310, col='maroon3', lwd=2)
0.8
                                                                Kaplan-Meier
                                                                Hall-Wellner
                                                                Pointwise
9.0
0.4
0.0
                                      400
       0
                      200
                                                     600
                                                                     800
aalen.fit<- survfit(coxph(df1.sur~1), type="aalen")</pre>
sum_aalen.fit = summary(aalen.fit)
plot(aalen.fit, col="red",lwd=1,lty=1)
lines(df1.fit, lwd=1, lty=1)
legend(600, .9,
       c("Nelson-Aalen", "Kaplan-Meier"),
       lty=c(1,1),
       col=c("red", "black"))
0.8
                                                          Nelson-Aalen
                                                          Kaplan-Meier
9.0
0.4
0.0
                   200
       0
                                 400
                                               600
                                                             800
                                                                          1000
                                                                                  \#\#\# Ambos
estimadores son muy similares, por no decir que se sobreponen (iguales).
```

```
barplot(sum_aalen.fit$time, cumsum(sum_aalen.fit$n.event))
```

```
0 200 400 800
```

mod_suv = lm(cumsum(sum_aalen.fit\$n.event) ~ sum_aalen.fit\$time)
summary(mod_suv)

```
##
## Call:
## lm(formula = cumsum(sum_aalen.fit$n.event) ~ sum_aalen.fit$time)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
##
  -49.044 -11.535
                    4.049 12.868
                                   20.208
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                     22.178043
                                 2.171525
                                            10.21
## (Intercept)
                                                    <2e-16 ***
## sum_aalen.fit$time 0.217289
                                 0.005911
                                            36.76
                                                    <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.43 on 137 degrees of freedom
## Multiple R-squared: 0.908, Adjusted R-squared: 0.9073
## F-statistic: 1352 on 1 and 137 DF, p-value: < 2.2e-16
plot(sum_aalen.fit$time, cumsum(sum_aalen.fit$n.event), pch = 13)
abline(mod_suv)
```



```
survdiff(df1.sur~Severidad, df1)
## Call:
## survdiff(formula = df1.sur ~ Severidad, data = df1)
## n=227, 1 observation deleted due to missingness.
##
                 N Observed Expected (0-E)^2/E (0-E)^2/V
## Severidad=0 63
                         37
                              54.153
                                         5.4331
                                                   8.2119
## Severidad=1 113
                         82
                              83.528
                                        0.0279
                                                   0.0573
## Severidad=2 50
                         44
                              26.147
                                        12.1893
                                                  14.6491
## Severidad=3
                          1
                               0.172
                                        3.9733
                                                   4.0040
##
## Chisq= 22 on 3 degrees of freedom, p= 7e-05
# Prueba de log-rank or Mantel-Haenszel
survdiff(df1.sur~Hibrido, df1, rho = 0)
## Call:
## survdiff(formula = df1.sur ~ Hibrido, data = df1, rho = 0)
##
##
               N Observed Expected (O-E)^2/E (O-E)^2/V
                              91.6
## Hibrido=1 138
                      112
                                         4.55
                                                   10.3
## Hibrido=2 90
                       53
                              73.4
                                        5.68
                                                   10.3
##
## Chisq= 10.3 on 1 degrees of freedom, p= 0.001
# Preuba de Peto & Peto modification of the Gehan-Wilcoxon test
survdiff(df1.sur~Hibrido, df1, rho = 1)
## survdiff(formula = df1.sur ~ Hibrido, data = df1, rho = 1)
##
```

N Observed Expected $(0-E)^2/E (0-E)^2/V$

##

```
## Hibrido=1 138
                     70.4
                              55.6
                                        3.95
                                                  12.7
## Hibrido=2 90
                     28.7
                              43.5
                                        5.04
                                                  12.7
##
  Chisq= 12.7 on 1 degrees of freedom, p= 4e-04
##
survdiff(df1.sur~Hibrido + Severidad, df1)
## Call:
## survdiff(formula = df1.sur ~ Hibrido + Severidad, data = df1)
## n=227, 1 observation deleted due to missingness.
##
                           N Observed Expected (O-E)^2/E (O-E)^2/V
## Hibrido=1, Severidad=0 36
                                        33.051
                                                   0.772
                                                              0.986
## Hibrido=1, Severidad=1 71
                                        43.318
                                   54
                                                   2.634
                                                              3.636
                                                  12.799
## Hibrido=1, Severidad=2 29
                                   28
                                        14.416
                                                             14.128
## Hibrido=1, Severidad=3 1
                                        0.172
                                                   3.973
                                                             4.004
                                   1
## Hibrido=2, Severidad=0 27
                                   9
                                        21.101
                                                   6.940
                                                             8.020
## Hibrido=2, Severidad=1 42
                                   28
                                        40.210
                                                   3.707
                                                              4.999
## Hibrido=2, Severidad=2 21
                                   16
                                        11.731
                                                   1.553
                                                              1.693
## Chisq= 32.9 on 6 degrees of freedom, p= 1e-05
```

Modelo Parametrico - Modelo de Regresión Multivariable

SUuponiendo una distribución Weibull

```
par.wei<-survreg(df1.sur~1,dist="w")</pre>
par.wei
## Call:
## survreg(formula = df1.sur ~ 1, dist = "w")
## Coefficients:
## (Intercept)
##
      6.034904
##
## Scale= 0.7593936
                            Loglik(intercept only) = -1153.9
## Loglik(model) = -1153.9
## n= 228
kappa<-par.wei$scale</pre>
lambda<-exp(-par.wei$coeff[1])</pre>
zeit<-seq(from=0,to=1100,length.out=1000)</pre>
s<-exp(-(lambda*zeit)^kappa)</pre>
h<-lambda^kappa *kappa*zeit^(kappa-1)
par(mfrow=c(2,1))
plot(zeit,h,xlab="Meses de Plantación",ylab="h(t)", pch = 16, cex = 0.1, las = 1)
plot(zeit,s,xlab="Meses de Plantación",ylab="s(t)", pch = 16, cex = 0.1, las = 1)
```


La primera figura muestra que el riesgo h(t) disminuye con el tiempo, mientras que la segunda muestra la función de supervivencia.