Logical Database Design - Mapping EER Model to Relational

Mapping EER Model Concepts to Relations

 The relational model does not directly support Superclass/Subclass Relationships.

 There are various strategies that database designers can use to represent these relationships with the relational data model.

- Identify superclass as parent entity and subclass entity as child entity.
- There are various options on how to represent such a relationship as one or more relations.
- Most appropriate option is dependent on number of factors such as:
 - Disjointness and participation constraints on the superclass/subclass relationship,
 - Whether subclasses are involved in distinct relationships,
 - Number of participants in superclass/subclass relationship
- In this course unit; discuss guidelines for the representation of a superclass/subclass relationship based only on the participation and disjoint constraints

Participation Constraint – Partial

Disjoint Constraint - Disjoint

- 1. Create a relation for superclass
- Create a relation for each subclass such that: {primary_key of superclass} U {attributes of subclass} key for subclass is (primary_key of superclass)

Example - Partial, Disjoint

Partial, Disjoint

Employee

Ssn FN	lame Mlnit	LName B	3'date /	Address	JobType
--------	------------	---------	----------	---------	---------

Secretary

Ssn TypingSpeed

Technician

Ssn TGrade

Engineer

Ssn EngType

Participation Constraint – Total

Disjoint Constraint - Disjoint

Create a relation for each subclass such that:

{primary_key of superclass} U {attributes of superclass}
U {attributes of subclass}

key for each relation is (primary_key of superclass)

Total, Disjoint

Salaried_Employee

<u>Ssn</u>	FName	MInit	LName	B'date	Address	JobType	Salary
------------	-------	-------	-------	--------	---------	---------	--------

Hourly_Employee

Γ	Ssn	FName	MInit	LName	B'date	Addr.	JobType	PayScale
			1	1				

Participation Constraint – Partial

Disjoint Constraint - Overlap

- Create a relation for superclass
- Create a relation for all subclasses such that:

key for each relation is (primary_key of superclass)

Partial, Overlap

Partial, Overlap

Person

<u>NID</u>	FName	MInit	LName	B'date	Sex	Address
------------	-------	-------	-------	--------	-----	---------

Emp_Stud

NID	Salary	Designation	DegreeProgram	Year	Emp.Flag	Student
						Flag

Participation Constraint – Total

Disjoint Constraint - Overlap

Create one relation such that:

{primary_key of superclass attributes} U {attributes of superclass} U {attributes of all subclasses} U {type attribute}

Total, Overlap

Total, Overlap

Part

{PartNo, Description, Manufactured Date, Drawing No, Batch No,

SupplierName, ListPrice, ManufacFlag, PurchFlag}

Guidelines for Representation of Superclass/Subclass Relationships

Guidelines for the representation of a superclass/subclass relationship based on the participation and disjoint constraints.

Participation constraint	Disjoint constraint	Relations required
Mandatory	Nondisjoint {And}	Single relation (with one or more discriminators to distinguish the type of each tuple)
Optional	Nondisjoint {And}	Two relations: one relation for superclass and one relation for all subclasses (with one or more discriminators to distinguish the type of each tuple)
Mandatory	Disjoint {Or}	Many relations: one relation for each combined superclass/subclass
Optional	Disjoint {Or}	Many relations: one relation for superclass and one for each subclass

Mandatory(Total); Optional (Partial); Nondisjoint (overlap/AND); Disjoint (OR)

Mapping of Categories

- A category is a subclass of the Union of two or more superclasses that can have different keys because they can be of different entity types.
- If the superclasses have different keys we have to define
 <u>a new key attribute</u> called a "<u>surrogate key</u>", when
 creating a relation to correspond to the category.
- Create a relation to correspond to the category, include any attributes of the category. The primary key is the surrogate key.
- Each superclass is also mapped into a relation with its own primary key, the surrogate key becomes a foreign key for this.

Mapping of Categories

Mapping of Categories

PERSON

SSN DriverLicenseNo Name Address Owner
--

BANK

BName BAddress Ownerld	BName BAddress Ownerld
------------------------	------------------------

COMPANY

CName	CAddress	Ownerld

OWNER

Ownerld

Example

Answer

- Van(vehLicenseNo, make, model, capacity)
- Car (vehLicenseNo, make, model, color)
- Bus (vehLicenseNo, make, model, noSeats)

Example

Answer

- Staff (<u>staffNo</u>, name, position, salary)
- AllStaffSubClass(<u>staffNo</u>, bonus, salesArea, vehLicenseNo, carAllowance, typingSpeed, Fag)

Example

Answer

- CAR (VehicleId, LicensePlateNo, Price, MaxSpeed, NoOfPassengers)
- TRUCK (<u>VehicleId</u>, LicensePlateNo, Price, NoOfAxles, Tonnage)

Example

Map the following EER into relations

Answer

 PERSON(<u>SSN</u>, Name, Sex, Address, BirthDate, EFlag, Salary, AFlag, Sflag, MajorDept)

Example - Mapping the EER into relations.

Answer

- SALESPERSON(<u>Sid</u>, Name)
- CAR(Engine_size, <u>Vin</u>, Price, Model, Date, Sid)
- TRUCK(Tonnage, Vin, Price, Model, Date, Sid)
- SUV(No_seats, <u>Vin</u>, Price, Model, Date, Sid)

Homework

Mapping the EER into relations.

