

Analyse complexe

TP1: Série entière

I. Généralités

On appelle série entière toute série de fonctions $\sum U_n$ pour laquelle il existe une suite (a_n) telle que :

$$\forall n \in \mathbb{N} \quad \forall z \in \mathbb{C} \quad u_n(z) = a_n z^n$$

Une telle série entière est notée $\sum a_n z^n$, appelée **série entière**; les a_n sont les coefficients de la série entière.

II. Exercices

Exercice 1:

Ecrire un programme python qui calcule la somme partielle de la série suivante :

$$\sum_{k=1}^{k=n} \frac{1}{k}$$

Exercice 2:

Ecrire un programme python permettant le développement de la série entière suivante :

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^n}{n!}$$
, 0

Exercice 3:

Donner un code python permettant de visualiser les représentations graphiques de fonctions de variable réelle pour différentes valeurs de n :

$$x \mapsto \sum_{k=0}^{n} \frac{1}{2^k} x^k$$