MODALITATEA DE DESFĂȘURARE A EXAMENULUI LA DISCIPLINA "PROGRAMAREA ALGORITMILOR"

- Examenul la disciplina "Programarea algoritmilor" se va desfășura în ziua de 20.01.2022, între orele 9⁰⁰ și 11³⁰, astfel:
 - 09⁰⁰ 09³⁰: efectuarea prezenței studenților
 - 09³⁰ 11³⁰: desfășurarea examenului
 - 11³⁰ 12⁰⁰: verificarea faptului că sursele trimise de către studenți au fost salvate pe platforma MS Teams
- Testul se va desfășura pe platforma MS Teams, iar pe tot parcursul desfășurării sale, de la ora 09⁰⁰ la ora 12⁰⁰, studenții trebuie să fie conectați pe canalul dedicat cursului de "Programarea algoritmilor" corespunzător seriei lor.
- În momentul efectuării prezenței, fiecare student trebuie să aibă pornită camera video în MS Teams și să prezinte buletinul sau cartea de identitate. Dacă dorește să-și protejeze datele personale, studentul poate să acopere codul numeric personal și/sau adresa!
- În timpul desfășurării testului studenții pot să închidă camera video, dar trebuie să o deschidă dacă li se solicită acest lucru de către un cadru didactic!
- Toate subjectele se vor rezolva folosind limbajul Python.
- Subiectul 1 este obligatoriu, iar dintre subiectele 2, 3 și 4 se vor rezolva CEL MULT DOUĂ, la alegere.
- Citirea datelor de intrare se va realiza de la tastatură, iar rezultatele vor fi afișate pe ecran.
- Se garantează faptul că datele de intrare sunt corecte.
- Operațiile de sortare se vor efectua folosind funcții sau metode predefinite din limbajul Python.
- Pentru subiectul 1 nu contează complexitatea soluției propuse.
- Rezolvările subiectelor alese dintre subiectele 2, 3 și 4 trebuie să conțină:
 - o scurtă descriere a algoritmului și o argumentare a faptului că acesta se încadrează într-o anumită tehnică de programare;
 - în cazul problemelor rezolvate folosind metoda Greedy sau metoda programării dinamice se va argumenta corectitudinea criteriului de selecție sau a relațiilor de calcul;
 - în cazul subiectelor unde se precizează complexitatea maximă pe care trebuie să o aibă soluția, se va argumenta complexitatea soluției propuse și vor primi punctaj maxim doar soluțiile corecte care se încadrează în complexitatea cerută;
 - în cazul problemei rezolvate folosind metoda backtracking nu contează complexitatea soluției propuse, dar se va ține cont de eficiența condițiilor de continuare;
 - în fiecare program Python se va preciza, pe scurt, sub forma unor comentarii, semnificația variabilelor utilizate.
- Rezolvările corecte care nu respectă restricțiile indicate vor primi punctaje parțiale.
- Se acordă 1 punct din oficiu.
- Rezolvările tuturor subiectelor se vor scrie de mână, folosind pix/stilou cu culoarea pastei/cernelii albastră sau neagră. Pe fiecare pagina studentul își va scrie numele și grupa, iar paginile trebuie să fie numerotate.
- Înainte de expirarea timpului alocat examenului, toate paginile vor fi fotografiate/scanate clar, în ordinea corectă, și transformate într-un singur fișier PDF care va fi încărcat în Google Drive folosind un anumit formular.
- Numele fișierului PDF trebuie să respecte șablonul *grupa_nume_prenume.pdf*. De exemplu, un student cu numele Popescu Ion Mihai din grupa 131 trebuie să denumească fișierul care conține rezolvările tuturor subiectelor astfel: *131 Popescu Ion Mihai.pdf*.

Subjectul 1 - limbajul Python - 3 p.

- a) Scrieți o funcție litere care primește un număr variabil de cuvinte formate din litere mici ale alfabetului englez și returnează un dicționar care conține pentru fiecare cuvânt primit ca parametru, un dicționar cu frecvența fiecărei litere distincte care apare în cuvânt. De exemplu, pentru apelul litere('teste', 'dictionar', 'ele') funcția trebuie să returneze dicționarul {'teste': {'e': 2, 's': 1, 't': 2}, 'dictionar': {'a': 1, 'c': 1, 'd': 1, 'i': 2, 'n': 1, 'o': 1, 'r': 1, 't': 1}, 'ele': {'e': 2, 'l': 1}}. (1.5 p.)
- b) Folosind un dicționar cu același format ca valorile dicționarului de la punctul a) (i.e., cheile sunt litere, iar valorile frecvența literei respective), să se scrie o secvență de inițializare (list comprehension) pentru o listă astfel încât aceasta să conțină perechile de forma (literă, frecvență) cu literele extrase din dicționar care au frecvența pară. De exemplu, pentru dicționarul {'e': 2, 's': 1, 't': 2} lista trebuie să fie [('e', 2), ('t', 2)]. (0.5 p.)
- c) Considerăm următoarea funcție recursivă:

```
def f(lista, p, u):
    if u-p <= 1:
        return sum(lista[p: u+1])
    k = (u-p+1) // 3
    aux_1 = f(lista, p, p+k)
    aux_2 = f(lista, p+k+1, p+2*k)
    aux_3 = f(lista, p+2*k+1, u)
    return aux_1 + aux_2 + aux_3</pre>
```

Determinați complexitatea funcției apelată pentru o listă L formată din n numere întregi astfel: f(L, 0, n-1). (1 p.)

Subjectul 2 – metoda Greedy (3 p.)

Complexitatea maximă a soluției: O(n)

Canalul Pythonic Way este unul foarte strâmt, astfel încât un singur nufăr încape pe lățimea sa. Pe canal sunt înșiruiți, de la capătul din stânga spre capătul din dreapta, mai multi nuferi, iar pe fiecare nufăr este scris un număr natural nenul reprezentând numărul maxim de nuferi peste care poate să sară o broscută aflată pe nufărul respectiv. Astfel, dacă pe nufărul cu numărul de ordine i este scris numărul k, atunci o broscuță poate să sară pe oricare dintre nuferii cu numerele de ordine i + 1, i + 2, ..., i + k. Primul nufăr, având numărul de ordine 1, se află la capătul din stânga al canalului, iar ultimul nufăr, având numărul de ordine n, se află la capătul din dreapta. Într-o bună zi, Lily, una dintre broscuțele care trăiesc în Pythonic Way, s-a hotărât să iasă din lumea strâmtă a canalului și să plece în lumea largă. Deoarece Lily are o fire melancolică, ea vrea să plece de pe primul nufăr, să ajungă pe ultimul nufăr (pentru a mai vedea încă o dată întreg canalul Pythonic Way) și abia apoi să iasă din canal (fără să mai facă niciun salt). Pentru a nu avea timp să se răzgândească, Lily vrea să ajungă pe ultimul nufăr cât mai repede, adică folosind un număr minim de sărituri care respectă restricția precizată anterior. Scrieți un program în limbajul Python care să citească de la tastatură numerele scrise pe cei *n* nuferi și să afișeze pe ecran un traseu format din numerele de ordine ale nuferilor pe care trebuie să sară Lily pentru a ieși din canal plecând de pe primul nufăr și efectuând un număr minim de sărituri. Dacă există mai multe trasee cu proprietatea cerută, atunci se va scrie oricare dintre ele. Numerele de ordine ale nuferilor din traseu vor fi despărțite între ele prin câte un spațiu. Fiecare săritură efectuată de Lily trebuie să respecte restrictia precizată în enunt.

Exemplu:

Date de intrare	Date de ieșire
2 3 1 5 3 2 2 5	1 2 4 8

Explicații: Lily trebuie să efectueze cel puțin 3 sărituri, plecând de pe primul nufăr, pentru a ieși din canalul Pythonic Way. Un traseu corect pe care îl poate urma Lily este 1, 2, 4, 8. Un alt traseu corect este 1, 3, 4, 8.

Subiectul 3 – metoda Programării Dinamice (3 p.) Complexitatea maximă a soluției: O(mn)

Greierașul și-a propus să fie harnic vara aceasta și să adune singur grăunțe pentru iarnă, să nu mai ceară de la furnici. El pornește să adune grăunțe pe un câmp de forma unei table dreptunghiulare cu m linii și n coloane, formată din pătrățele în care se pot găsi grăunțe sau furnici. Din fiecare pătrățică cu grăunțe pe care ajunge Greierașul ia toate grăunțele. Sunt însă și pătrățele în care Greierașul se întâlnește cu furnicile și acesta îi cer să le dea înapoi grăunțele cu care l-au împrumutat vara trecută. El poate trece de o pătrățică în care se află furnicuțe doar dacă are suficiente grăunțe să le dea. Greierașul pornește din colțul din dreapta sus al pădurii și se poate deplasa doar la vest, sud sau sud-vest, în una dintre pătrățele vecine cu cea în care se află. Greierașul pornește din colțul din dreapta sus și **se poate opri în orice pătrățică de pe ultima linie** să își construiască adăpost pentru iarnă unde să își depoziteze grăunțele adunate. Scrieți un program Python care citește de la tastatură dimensiunile tablei m și n și pentru fiecare pătrățică de coordonate (i,j) (cu i=1,...,m, j=1,...,n) o valoare cij cu semnificația:

- dacă c_{ij} >=0, atunci c_{ij} este numărul de grăunțe din pătrățică
- daca c_{ij}<0, atunci în pătrățica (i,j) se află o furnicuțe care îi cer -c_{ij} grăunțe,

și afișează un traseu al Greierașului pe câmp astfel încât să adune un număr maxim de grăunțe (sub forma indicată în exemplu).

Intrare de la tastatură			la tastatură	leşire pe ecran
4 4				maxim 20 graunte pe traseul
5	2	3	1	1 4
-14	7	1	-2	1 3
1	-10	-3	15	2 3
-1	6	12	2	3 3
	_		_	4 3
				4 2

Explicații: Pădurea este o matrice de dimensiuni 4x4 în care elementele pozitive sunt grăunțe care se pot aduna, iar cele negative sunt celule cu furnicuțe care cer un număr de grăunțe egal cu modulul numărului înscris în pătrățică. Traseul (1,4), (2,4), (3,4), (4,4), (4,3), (4,2), deși are suma 1 + (-2) + 15 + 2 + 12 + 6 = 34, nu este valid deoarece Greierașul are o grăunță când ajunge în celula (2,4), iar furnicuțele cer două.

Subjectul 4 – metoda Backtracking (3 p.)

a) O țeavă cu lungimea de p metri ($1 \le p \le 50$) trebuie să fie tăiată în cel puțin două bucăți ale căror lungimi să fie divizori ai lungimii sale. De exemplu, o țeavă cu lungimea de 4 metri poate fi tăiată în 4 bucăți de câte 1 metru, 2 bucăți de câte 2 metri sau 2 bucăți de câte 1 metru și 1 bucată de 2 metri, dar nu poate fi tăiată într-o bucată de 1 metru și o bucată de 3 metri (deoarece 3 nu este un divizor al lui 4). Scrieți un program Python care să citească de la tastatură numărul natural p și afișează toate modalitățile distincte în care poate fi tăiată corect o bară de lungime p metri, precum și numărul acestora. Două modalități de tăiere se consideră identice dacă sunt formate din aceleași bucăți de țeavă, dar în altă ordine. De exemplu, pentru o țeavă cu lungimea de 4 metri, modalitățile de tăiere 1+1+2, 1+2+1 și 2+1+1 sunt considerate identice. **(2.5 p.)**

Exemplu:

Pentru p=6 trebuie afișate următoarele 7 modalități de tăiere (nu neapărat în această ordine):

```
1+1+1+1+1
1+1+1+2
1+1+1+3
1+1+2+2
1+2+3
2+2+2
3+3
Nr. modalitati: 7
```

b) Precizați cum ar trebui adăugată o singură instrucțiune în program astfel încât să fie afișate doar modalitățile de tăiere în care au fost utilizate exact două tipuri distincte de bucăți de țeavă. Pentru exemplul anterior, aceste soluții sunt cele scrise cu roșu. **(0.5 p.)**