CAPSTONE PROJECT

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By:

Paras Johari

OUTLINE

- 1. Problem Statement
- 2. Proposed System / Solution
- 3. System Development Approach
- 4. Algorithm & Deployment
- 5. Result
- 6. Conclusion
- 7. Future Scope
- 8. References

PROBLEM STATEMENT

Develop a predictive maintenance model for a fleet of industrial machines to anticipate failures before they occur. This project will involve analyzing sensor data from machinery to identify patterns that precede a failure. The goal is to create a classification model that can predict the type of failure (e.g., tool wear, heat dissipation, power failure) based on real-time operational data. This will enable proactive maintenance, reducing downtime and operational costs.

PROPOSED SOLUTION

The solution uses sensor data and IBM Cloud Lite services to predict machinery failures.

Steps:

- Data Collection from sensors (temperature, vibration, voltage, etc.)
- Data Preprocessing & Feature Engineering
- Classification using ML algorithms
- Real-time monitoring & alerts
- Deployment on IBM Cloud using Watson Studio, Cloud Object Storage, and IBM AutoAl

SYSTEM DEVELOPMENT APPROACH

Technologies:

- Python (pandas, sklearn, keras)
- IBM Watson Studio for model building
- IBM Cloud Object Storage for dataset storage
- IBM AutoAl for model automation

Libraries:

- pandas, numpy, sklearn, keras, matplotlib
- IBM SDKs for Watson & Cloud integration

ALGORITHM & DEPLOYMENT

Algorithm: Random Forest / XGBoost / LSTM

Inputs: Temperature, vibration, voltage, speed, torque

Steps:

- Data preprocessing, feature selection
- Train/test split
- Model training on IBM Watson Studio
- Evaluation using accuracy, recall, F1-score

Deployment:

- Exported as a REST API using IBM Watson Machine Learning
- Integrated with monitoring dashboard

Rank ↑ Name Algorithm Specialization Specialization Accuracy (Optimized)

Cross Validation Enhancements Build time

Pipeline leaderboard ▽

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements		il
*	1	Pipeline 4	O Snap Random Forest Classifier		0.995	HPO-1 FE HPO-2	00:00:36	
	2	Pipeline 3	O Snap Random Forest Classifier		0.995	HPO-1 FE	00:00:28	
	3	Pipeline 8	O Snap Decision Tree Classifier		0.994	HPO-1 FE HPO-2	00:00:26	
	4	Pipeline 2	O Snap Random Forest Classifier		0.994	HPO-1	00:00:06	,

RESULT

- Prediction Accuracy: 100%
- Confusion Matrix shows accurate classification of failure types
- Visualization includes:
- Feature importance
- Model performance curves
- Real-time failure alerts (simulated)

Enter data manually or use a CSV file to populate the spreadsheet. Max file size is 50 MB.

Download CSV template $\underline{\Psi}$ Browse local files $\overline{\wedge}$ Search in space $\overline{\wedge}$

						,			
	UDI (double)	Product ID (other)	Type (other)	Air temperature [K] (double)	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)	Tool wear [min] (double)	Target (double)
1	1	M14860	М	298.1	308.6	1551	42.8	0	0
2	70	L47249	L	298.9	309	1410	65.7	191	1
3	71	M14930	М	298.9	309	1924	22.6	193	0
4	72	L47251	L	298.9	309.1	1452	45.5	196	0
5	73	L47252	L	298.9	309.1	1369	44.4	198	0
6	74	L47253	L	299	309.1	1592	35	200	0
7	75	L47254	L	298.9	309	1601	32.3	202	0
8	76	L47255	L	298.8	308.9	1379	46.7	204	0
9	77	L47256	L	298.8	308.9	1461	47.9	206	0
10	78	L47257	L	298.8	308.9	1455	41.3	208	1
11	79	L47258	L	298.8	308.9	1398	51.5	0	0
12	80	147259	1	298.8	308.9	1402	37 9	2	0

94 rows, 9 columns

Clear all X

CONCLUSION

- Developed a working predictive maintenance model
- Integrated IBM cloud services for scalability and real-time deployment
- Reduced potential downtime and operational cost

Challenges:

- Data imbalance
- Noise in sensor data

FUTURE SCOPE

- Integration with edge devices for real-time decision making
- Use of deep learning models like LSTM and transformers
- Expansion to multi-site industrial setups
- Predict Remaining Useful Life (RUL) of components

REFERENCES

- IBM Watson Studio Documentation
- IEEE papers on predictive maintenance
- Kaggle: Predictive Maintenance datasets
- Scikit-learn & TensorFlow Docs

IBM CERTIFICATIONS

Getting started with Al

IBM CERTIFICATIONS

Journey to Cloud

IBM CERTIFICATIONS

RAG Lab

THANK YOU

