ΦΥΣ 112 - ΓΕΝΙΚΗ ΦΥΣΙΚΗ ΙΙ

Φροντιστήριο 7

Διδάσκων: Καθηγητής Φώτιος Πτωχός

Βοηθοί Διδασκαλίας: Ευτύχιος Καϊμακκάμης - Γιάννος Χαρίτου

Νοέμβριος 2, 2022

Τμήμα Φυσικής Πανεπιστήμιο Κύπρου 2022 29.13) Στο ακόλουθο σχήμα, το σημείο P_1 βρίσκεται σε απόσταση $R=13.1\,cm$ στην κάθετη διάμεσο ενός ευθέους αγωγού με μήκος $L=18.0\,cm$ που φέρει ρεύμα $I=58.2\,mA$. Ποιο είναι το μέγεθος του μαγνητικού πεδίου στο P_1 λόγω του I;

29.17) Στο πιο πάνω σχήμα, το σημείο P_2 βρίσκεται σε απόσταση $R=25.1\,cm$ από την μια άκρη αγωγού με μήκος $L=13.6\,cm$ που φέρει ρεύμα $I=0.693\,A$. Ποιο είναι το μέγεθος του μαγνητικού πεδίου στο P_2 ;

29.29) Στο παρακάτω σχήμα τέσσερις μακριοί ευθείς αγωγοί είναι κάθετοι στην επιφάνεια της σελίδας και οι διατομές τους σχηματίζουν τετράγωνο πλευράς $a=20\,cm$. Τα ρεύματα στους αγωγούς 1 και 4 έχουν κατεύθυνση προς τα έξω, ενώ στους 2 και 3 προς τα μέσα, και το μέτρο όλων είναι $I=20\,A$. Σε διανυσματική μορφή, ποιο είναι το συνολικό μαγνητικό πεδίο στο κέντρο του τετραγώνου;

29.39) Στο κάτωθι σχήμα πέντε μακριοί παράλληλοι αγωγοί σε ένα επίπεδο xy διαχωρίζονται από απόσταση $d=50.0\,cm$. Τα ρεύματα με κατεύθυνση εντός της σελίδας είναι $I_1=2.00\,A,\ I_3=0.250\,A,\ I_4=4.00\,A$ και $I_5=2.00\,A,$ ενώ εκτός της σελίδας είναι $I_2=4.00\,A.$ Ποιο είναι το μέτρο της συνολικής δύναμης ανά μονάδα μήκος που επιδρά στον αγωγό 3 λόγω των ρευμάτων στους υπόλοιπους;

29.48) Στο σχήμα που ακολουθεί ένας μακρύς κυκλικός σωλήνας με εξωτερική ακτίνα $R=2.6\,cm$ φέρει ομοιόμορφα κατανεμημένο ρεύμα $I=8.00\,mA$ με κατεύθυνση εντός της σελίδας. Ένα σύρμα βρίσκεται παράλληλα στον σωλήνα σε απόσταση 3.00R από το κέντρο του ενός έως το κέντρο του άλλου. Βρείτε (a) το μέγεθος και (b) την κατεύθυνση (εντός ή εκτός της σελίδας) του ρεύματος στο σύρμα τέτοιο ώστε το συνολικό μαγνητικό πεδίο στο P να έχει το ίδιο μέτρο με την τιμή του στο κέντρο του σωλήνα, αλλά με αντίθετο πρόσημο.

29.54) Ένα ηλεκτρόνιο αποστέλεται εντός της μιας άχρης ενός σωληνοειδούς. Καθώς εισέρχεται του ομοιογενούς μαγνητικού πεδίου εντός του σωληνοειδούς, η ταχύτητά του είναι $800\,m/s$ και η κατεύθυνση κίνησής του σχηματίζει γωνία 30 μοιρών με τον κεντρικό άξονα του σωληνοειδούς. Το σωληνοειδές φέρει ρεύμα $4.0\,A$ και έχει 8000 σπείρες κατά μήχος του. Πόσες περιστροφές εκτελεί το ηλεκτρόνιο κατά την ελικοειδή του κίνηση εντός του σωληνοειδούς μέχρι να φτάσει στο άλλο του άχρο; (Προσοχή: σε πραγματικό σωληνοειδές όπου το μαγνητικό πεδίο εντός δεν είναι αχριβώς ομοιογενές στα άχρα, ο αριθμός των περιστροφών θα ήταν ελαφρώς μικρότερος από την απάντηση σε αυτό το ερώτημα)

	2
Problem	29.34) = d = 50,0 cm
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \vec{F_3} = I_3 \left(\frac{18}{18} \right) \sin \theta$ $I_3 = 6 250 A$ $I_4 = 4 00 A$
2	7
	$= \frac{ \vec{F_x} }{\ell_3} = I_3 \vec{B_y} (\theta = 40^\circ)$
	$\vec{B}_{13} = -\frac{r_0 I_1}{4nd} \hat{k}$, $\vec{B}_{23} = \frac{r_0 I_2}{2nd} \hat{k}$, $\vec{B}_{43} = -\frac{r_0 I_4}{2nd} \hat{k} = \frac{r_0 I_4}{2nd} \hat{k}$
	$\vec{B}_{53} = -\left(-\frac{r_0 I_5}{4\pi d}\right)\hat{k} = \frac{r_0 I_5}{4\pi d}\hat{k}$
	$=> \vec{B}_3 =\frac{\mu_0}{2\pi J}\left(-\frac{Z_1}{2}+I_2+I_4+\frac{Z_5}{2}\right)$
	$= \frac{ \vec{F_s} }{l_s} = \frac{ \vec{F_s} }{2\pi J} \left(-\frac{I_s}{2} + I_2 + I_4 + \frac{I_5}{2} \right) = \left[80.10^{-7} \frac{N}{m} \right]$
Problem	29.48) Espen O. I.
	P = 26 cm
	I = 8 00 mA
	$R \qquad (a) \vec{B}(0) = \frac{\mu \cdot I_{\sigma}}{6\pi R} (udo u / o'')$
	Ampère $ \vec{B}_{2}(0) = 0$ $\Rightarrow \vec{B}_{3}(0) = \frac{t_{0}}{6n}$
	Shed sympstic owner: $ \vec{B},(P) = \frac{r \cdot I_{\sigma}}{2\pi R}$ $ \vec{B},(P) = \frac{r \cdot I_{\sigma}}{2\pi R}$ $ \vec{B},(P) = \frac{r \cdot I_{\sigma}}{2\pi R} = \frac{r \cdot I_{\sigma}}{2\pi R} \vec{I}_{\sigma}t ^{\frac{1}{2}}$ $ \vec{B},(P) = \frac{r \cdot I_{\sigma}}{4\pi R} = \frac{r \cdot I_{\sigma}}{2\pi R} \vec{I}_{\sigma}t ^{\frac{1}{2}}$
	$= \mathcal{B}_{c_{1}}(P) $
	r = R = r = R = r = R
	$= \frac{1}{6\pi R} = \frac{1}{2\pi R} \left[\frac{1}{2\pi R} \left[\frac{1}{2\pi L} \right] \right]$
D	$\angle Y \angle R: \vec{B} = 0$ are grandlend $(I_o - \frac{Z}{2})$
	$\Rightarrow \frac{1\sigma}{3} = -\left(\overline{1}_{\sigma} - \frac{7}{2}\right) \Rightarrow \overline{1}_{\sigma} = \frac{37}{8}$
-	(b) I, so => Exlos las orgisas = 3,00 mt