

Al Text Chapter 13

13 QUANTIFYING UNCERTAINTY

In which we see how an agent can tame uncertainty with degrees of belief.

13.1 ACTING UNDER UNCERTAINTY

UNCERTAINTY

Agents may need to handle **uncertainty**, whether due to partial observability, nondeterminism, or a combination of the two. An agent may never know for certain what state it's in or where it will end up after a sequence of actions.

We have seen problem-solving agents (Chapter 4) and logical agents (Chapters 7 and 11) designed to handle uncertainty by keeping track of a **belief state**—a representation of the set of all possible world states that it might be in—and generating a contingency plan that handles every possible eventuality that its sensors may report during execution. Despite its many virtues, however, this approach has significant drawbacks when taken literally as a recipe for creating agent programs:

- When interpreting partial sensor information, a logical agent must consider every logically possible explanation for the observations, no matter how unlikely. This leads to impossible large and complex belief-state representations.
- A correct contingent plan that handles every eventuality can grow arbitrarily large and must consider arbitrarily unlikely contingencies.

Why Probabilities?

- Our knowledge of the world is incomplete.
- Complexity of outcomes requires approximation.
- At atomic level the world is Stochastic

Must deal with:

UNCERTAINTY

Why Probability Theory

- Declarative Representation
 - Propositional Logic
 - First Order Logic
- Representation has clear semantics
- Well developed methods
 - Statistical Mechanics
 - Theoretical Physics/Chemistry
 - Decision Theory (Economics, Psychology,...)
- Great Success in Al/Machine Learning
 - Bayesian Methods
 - Speech Recognition, Text Understanding, Vision
 - Diagnostics

Review Basic Probability Theory/ Everything you need to know (kinda)

- Permutations and Combinations
- Probability Experiments
- Conditional Probabilities
- Distribution Types
 - Binomial, Normal, Exponential
 - Continuous Distributions
- Probability Sampling and Statistics

Where do probabilities come from?

There is a low probability of light rain in the afternoon.

- Probability here refers to degree of confidence
- Probability Theory deals with formal foundations:
 - Discussing Estimates
 - Rules for estimates

Interpretation of Probabilities

- Frequentist Approach
- Subjectivist Approach
 - Betting Game:
 - One way to attribute belief

Interpretation of Probabilities Frequentist Approach

- Probabilities represent the frequency of events.
 - The probability of an event is the fraction of times it would occur if we repeat the experiment indefinitely.

Interpretation of Probabilities Frequentist Approach

- Probabilities represent the frequency of events.
- Coin Flip:
 - We repeatedly flip a coin.
 - If we flip the coin 1000 times, how often would it be heads?
 - If we flip the coin 100,000 times?
 - If we flip the coin indefinitely...?
- When this applies well, It's Clear Semantics!

Interpretation of Probabilities Some Formalism: Space & Events

- Given this Frequentist Perspective, let's add some formalism.
- Space of Possible Outcomes:
 - Dice roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Coin flip: $\Omega = \{H, T\}$
- Set of Measurable Events S that we can assign probabilities.
- Each event $\alpha \in S$ is a subset of Ω

2 Coin Example

- $\Omega = \{(H,H), (H,T), (T,H), (T,T)\}$
- Probability of an event where coins match:
 - $\alpha = \{(H,H), (T,T)\}$

Other examples

Probability Theory Event Space Requirements

- It contains the empty event Ø,
- It contains trivial event Ω
- It's closed under union
- It's closed under complementation
 - $-\alpha \in S$, then so is $\Omega \alpha$.

Subjectivist Perspective

- Frequentist View doesn't make sense for statements like:
 - The probability of rain tomorrow afternoon is 0.3.
- Subjectivist perspective is probabilities as Subjective Degrees of Belief.
- Betting game:
 - Based on your degree of belief, you should be willing to wager money.
 - If accurate, you win money, else lose money.
 - Belief is rational if it wins money.

Probabilities & Blackjack

 What is the Probability of getting, with the first 2 cards, Blackjack (Natural)

FIRST:

- Permutations
- Combinations

Permutations

- Permutation: An arrangement or selection of objects (without replacement) for which the selection order is important.
 - How many ways can the letters in the word 'CAT' be arranged:
 - ACT, ATC, CAT, CTA, TCA, TAC
 - 3! = 3*2*1

Permutations

 The number of permutation of n objects taken r at a time is denoted by:

$$- {}_{n}P_{r} = n!/(n-r)! = n(n-1)(n-2)...(n-r+1)$$

- (n-r)! is the number of ways to order the remaining items after choosing r of them.
- There are nine players on a softball team. How many ways can three of them be chosen to play Left Fielder, Center Fielder, and Right Fielder.

•
$$_{9}P_{3} = 9!/6! = 9*8*7 = 504$$

Permutations

 A club has 15 members. In how many ways can a president, vice-president, secretary, and treasurer be chosen?

Permutations versus Combinations

- Consider the following examples:
 - 1. There are six students in a club. Three will be chosen to go to a convention to represent the club. How many different ways can the three representatives be chosen?
 - 2. There are six students in a group. Three will be chosen to go to a convention to represent the group, and will be labeled Delegate 1, Delegate 2, Delegate 3. How many different ways can the three delegates be chosen?

Example 2

- 2. There are six students in a group. Three will be chosen to go to a convention to represent the group, and will be labeled Delegate 1, Delegate 2, Delegate 3. How many different ways can the three delegates be chosen?
 - Here order is important!
 - We could choose Jo, Jose, and Jim to be Delegate 1, 2 and 3, respectively
 - We could also choose Jim, Jo, and Jose to be Delegate 1, 2, and 3, respectively, and this would be a different choice.

Example 1

1. There are six students in a club. Three will be chosen to go to a convention to represent the club. How many different ways can the three representatives be chosen?

- In example 1 order does not matter, unlike example 2.
- Changing the order of the names does not create a new choice.

Combinations

- An arrangement or selection of object (without replacement) in which the order is not important is called a combination.
- Given the softball team with nine players, how many ways can three players be chosen to go to a convention to represent the group.

•
$$_{n}C_{r} = _{n}P_{r}/r! = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

• $_{9}C_{3} = 9!/(3!*6!) = (9*8*7)/(3*2*1)$

 \succ **r!** is the number of different orderings of the **r** objects.

Back to Probabilities

- Space of Possible Outcomes:
 - Dice roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Coin flip: $\Omega = \{H, T\}$
- Set of Measurable Events S that we can assign probabilities.
- Each event $\alpha \in S$ is a subset of Ω
- For a set of events S with equally likely outcomes,
 Probability of an event α ∈ S is :
 - $-P(\alpha) = |\alpha|/|\Omega|$
 - Fraction of total outcomes where event is true.

Blackjack (Natural)

 What is the probability of getting Blackjack (Natural) with first 2 cards?

Blackjack (Natural)

- What is the probability of getting Blackjack (Natural) with first 2 cards?
- There are 52 cards in one deck.
 - There are 4 Aces and 16 face-cards and 10s.
- First calculate all combinations of 52 elements taken 2 at a time: $_{52}C_2 = (52 * 51) / 2 = 1326$.
- We combine now each of the 4 Aces with each of the 16 ten-valued cards: 4 * 16 = 64.
- The probability to get a blackjack (natural): 64 / 1326 = .0483 = 4.83%.

Poker Hands

- A poker hand is 5 cards dealt from 52.
- How do we calculate the number of possible poker hands?

Poker Hands

- A poker hand is 5 cards dealt from 52.
- How do we calculate the number of possible poker hands?

- ₅₂C₅
- $\binom{52}{5}$
- 52!/[5!*(52-5)!] = 52*51*50*49*48/5! =
 -2,598,960

Poker Hands

- How do we calculate the Probability of a pair in Poker:
- How many ways to get a pair in Poker
 - $-\binom{13}{1}$, choose a face = 13
 - $-\binom{4}{2}$, choose two different suits = 6
 - $-\binom{12}{3}$, choose remaining card faces = 220
 - $-\binom{4}{1}\binom{4}{1}\binom{4}{1}$, Choose remaining suits. 4*4*4 = 64
 - -13*6*220*64 = 1,098,240
- Probability of Pair:
 - -1,098,240/2,598,960 = 42.3%

Monty Hall Problem

- Suppose you're on a game show, and you're given the choice of three doors:
 - Behind one door is a car;
 - behind the others, goats.
- You pick a door, say No. 1,
- The host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you, "Do you want to pick door No. 2?"
- Is it to your advantage to switch your choice?

Monty Hall Problem

1/3

- Suppose you're on a game show, and you're given the choice of three doors:
 - Behind one door is a car;
 - behind the others, goats.

Probability Rules

Union Rule: For any events E and F

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

- If $E \cap F = \emptyset$
 - E and F are Mutually Exclusive Events

$$P(E \cup F) = P(E) + P(F)$$

Complement of any event E ∈ S is

$$P(E') = 1 - P(E)$$

Fundamental Counting Principle

- Counting the number of choices when combining groups of items.
- Given two groups one with M possibilities and one with N possibilities.
 - Choose and item from group 1 & 2
 - Total number of choices = MN
- Extends to N groups.

Fundamental Counting Principle Ordering Pizza

- 3 sizes of pizza (small, medium, large)
- 3 crust choices (thin, thick, regular)
- 6 toppings (beef, sausage, pepperoni, bacon, extra cheese, mushroom)

How many possible one topping pizzas???

Fundamental Counting Principle Ordering Pizza

- 3 sizes of pizza (small, medium, large)
- 3 crust choices (thin, thick, regular)
- 6 toppings (beef, sausage, pepperoni, bacon, extra cheese, mushroom)

- How many possible one topping pizzas???
- 3 * 3 * 6 = **54**

Probability Distribution

Sample Space

$$-S = \{s_1, s_2, ..., s_n\}$$

- Probabilities
 - $-P = \{p_1, p_2, ..., p_n\}$
 - $-p_i$ is the probability of outcome s_i

Probability Distribution

- A probability distribution P over (Ω, S) is a mapping from events in S to real values that satisfies:
 - P(α) ≥ 0 for all α ∈ S.
 - $-P(\Omega)=1.$
 - If α,β ∈ S and $\alpha \cap \beta = \emptyset$, then $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$.
- Implied:
 - $-P(\emptyset)=0$
 - $-P(\alpha \cup \beta) = P(\alpha) + P(\beta) P(\alpha \cap \beta).$

Russell & Norvig Equation 13.1 & 13.2

- 13.1: Given event ω:
 - $-0 \le P(\omega) \le 1$ for every ω
 - $-\sum_{\omega\in\Omega}P(\omega)=1$

- 13.2: Also For any proposition φ, like 'holding(A)'
 - $P(\phi) = \sum_{\omega \in \Phi} P(\omega)$
 - The probability of a proposition is the sum of the probabilities for the outcomes where it is true.

Summing to 1

- Very Important: Probability Model for a space of outcomes must sum to 1
- If the values do not sum to 1 you do not have probabilities!
- Important later when we define FACTORS
- Important later when we define NORMALIZATION

Conditional Probabilities: Intro

 Suppose a Calculus I class contains 50 students: 35 Juniors (J), 30 CSci Majors (C), and 25 Junior CSci Majors.

$$- n(S) = 50$$

$$- n(J) = 35$$

$$- n(C) = 30$$

$$- n(J \cap C) = 25$$

 What is the probability that a student randomly selected from class is a CSci major??

Conditional Probabilities: Intro

 Suppose a Calculus I class contains 50 students: 35 Juniors (J), 30 CSci Majors (C), and 25 Junior CSci Majors.

$$- n(S) = 50$$

$$- n(J) = 35$$

$$- n(C) = 30$$

$$- n(J \cap C) = 25$$

 What is the probability that a student randomly selected from class is a CSci major??

$$- n(C)/n(S) = 0.60$$

Conditional Probabilities: Question

- A student is randomly selected from the class.
- If we know that the student is a Junior, what is the probability that the student is a Computer Science Major???

Conditional Probability: Definition

- The probability of an event $\beta \in S$ given that we know event $\alpha \in S$ is true is the relative proportion of outcomes satisfying β among these that satisfy α .
- PGM Equation 2.1

$$>P(\beta \mid \alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)}$$

Conditional Probabilities: Question

- A student is randomly selected from the class.
- If we know that the student is a Junior, what is the probability that the student is a Computer Science Major???
- $P(C | J) = P(C \cap J) / P(J)$
- $(25/50) / (35/50) \approx 0.714$

Conditional Probabilities Chain Rule

•
$$P(\beta \mid \alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)}$$

Chain Rule

$$\triangleright P(\alpha \cap \beta) = P(\alpha)P(\beta \mid \alpha)$$

General Chain Rule

$$\triangleright P(\alpha_1 \cap ... \cap \alpha_k) = P(\alpha_1)P(\alpha_2 \mid \alpha_1) \cdots P(\alpha_k \mid \alpha_1 \cap ... \cap \alpha_{k-1}).$$

Conditional Probabilities Chain Rule Example

- $P(\alpha \cap \beta \cap \gamma) = P(\alpha)P(\alpha \mid \beta)P(\gamma \mid \alpha \cap \beta)$.
 - $-P(\alpha)P(\alpha \mid \beta) = P(\alpha \cap \beta)$

$$-P(\gamma | \alpha \cap \beta) = \frac{P(\alpha \cap \beta \cap \gamma)}{P(\alpha \cap \beta)}$$

Bayes Rule

•
$$P(\alpha | \beta) = \frac{P(\beta | \alpha)P(\alpha)}{P(\beta)}$$

• Note:

$$> \frac{P(\beta \mid \alpha)P(\alpha)}{P(\beta)} = \frac{P(\alpha \cap \beta)}{P(\beta)}$$

Bayes Rule Significance

- Bayes rule lets use swap the item we Condition On.
 - Disease versus Symptom
- Frequently much easier to model Conditional Probabilities in one direction than the other!

Example

- Suppose that a tuberculosis (TB) skin test is 95 percent accurate.
 - If the patient is TB-infected, then the test will be positive with probability 0.95
 - if the patient is not infected, then the test will be negative with probability 0.95.

 Now suppose that a person gets a positive test result. What is the probability that he is infected?

Example

- Suppose that a tuberculosis (TB) skin test is 95 percent accurate.
 - If the patient is TB-infected, then the test will be positive with probability 0.95
 - if the patient is not infected, then the test will be negative with probability 0.95.
- Now suppose that a person gets a positive test result. What is the probability that he is infected?
- Naive reasoning suggests that if the test result is wrong 5
 percent of the time, then the probability that the subject is
 infected is 0.95.
 - That is, 95 percent of subjects with positive results have TB.

Example w/ Bayes Rule

- Naive reasoning suggests that if the test result is wrong 5 percent of the time, then the probability that the subject is infected is 0.95.
 - That is, 95 percent of subjects with positive results have TB.
- Bayes' rule needs to consider the prior probability of TB infection together with the probability of getting positive test result.

Example w/ Bayes Rule

- Bayes' rule needs to consider the prior probability of TB infection together with the probability of getting positive test result.
- Suppose that 1 in1000 of the subjects who get tested is infected.
 - P(TB) = 0.001
- Probability of a positive test result requires two cases:
 - Case 1: Person has TB
 - P(TB) * P(Positive | TB) = .001 * 0.95 = 0.00095
 - Case 2: Person without TB
 - $P(\neg TB) * P(Positive | \neg TB) = 0.999*0.05 = 0.04995$
 - P(Positive) = Case 1 + Case 2 + 0.0509
- P(TB | Positive) = P(TB ∩ Positive)/P(Positive)
 - -(0.001*0.95)/0.0509
 - About 2 Percent

Representation of Events

- Events as Sets of Outcomes not so convenient
- Need attributes over Outcomes:
 - Patient tests positive for TB
 - Patient does not have TB

Introduce: Random Variables

Student Example

- Consider a Population of Students
- Smart: denotes students that are smart.
- GradeA: denotes students that receive an A in class.

- Introduce random variable: Grade
- Grade is defined by a function mapping
 Outcomes in Ω to values in the set {A, B, C}

Random Variables

- P(GradeA) means P(Grade = A)
- 'Grade = A' means:
 - $-\{\omega\in\Omega:f_{Grade}(\omega)=A\}.$

- Intelligence: is another variable in student example
 - P(Smart) means P(Intelligence = high)
 - Intelligence values include {high, low}

Random Variables

- Categorical (discrete):
 - Take on a values from a set of possible values

- Real valued:
 - Take on infinite number of possible values

Multinomial Distribution

Given a random variable: X

$$- Val(X) = \{x^1, x^2, ..., x^k\}$$

$$-|X|=k$$

So we have:

$$-\sum_{i=1}^{k} P(X = x_i) = 1$$

Bernoulli Distribution

Given a random variable: X

$$- Val(X) = \{x^0, x^1\} = \{false, true\}$$

$$-|X|=2$$

So we have:

$$-\sum_{i=1}^{k} P(X = x_i) = 1$$

Marginal Distribution

- Now we can define the Probability Distribution over a single random variable like X.
- Marginal Distribution over X: P(X)
 - Defines a probability for each possible $P(X=x^i)$
- For Example w/ Marginal Distribution over Intelligence:
 - P(Intelligence=high)=0.3
 - P(Intelligence=low)=0.7
 - P(Intelligence ∈ {high, low})

Joint Distribution

- Our example included two variables: Intelligence & Grade
- Joint distribution allow events over both variables:
 - P(Intelligence=high, Grade=A)

Joint Distribution

		Intelligence		
		low	high	
Grade	Α	0.07	0.18	0.25
	В	0.28	0.09	0.37
	С	0.35	0.03	0.38
		0.7	0.3	

Joint Distribution

		Intelligence		
		low	high	
	Α	0.07	0.18	
Grade	В	0.28	0.09	
	С	0.35	0.03	

- Defines probabilities for P(Intelligence, Grade)
- P(Intelligence=high, Grade=A) = ?

Joints & Marginals

		Intelligence		
		low	high	
Grade	Α	0.07	0.18	
	В	0.28	0.09	
	С	0.35	0.03	

P(Intelligence=high) = ?

Joints & Marginals

		Intelligence		
		low	high	
Grade	Α	0.07	0.18	0.25
	В	0.28	0.09	
	С	0.35	0.03	
			0.3	1.0

P(Intelligence=high) = ?

Canonical Outcome Space

		Intelligence		
		low	high	
Grade	Α	0.07	0.18	0.25
	В	0.28	0.09	
	С	0.35	0.03	
			0.3	1.0

- $X = \{Intelligence, Grade\}$
- Atomic Outcomes are full assignments to all variables in $\boldsymbol{\mathcal{X}}$
- A set of variables $X = \{X_1, X_2, ..., X_n\}$ and associated values implicitly define a canonical outcome space.

Marginals and Joints

• Generally: $X = \{X_1, X_2, ..., X_n\}$

Marginalize over X₁:

$$-P(X_1) = \sum_{X_2,\dots,X_n} P(X_1, X_2, \dots, X_n)$$

-P(X_1 = x_1^2) = \sum_{X_2,\dots,X_n} P(X_1 = x_1^2, X_2, \dots, X_n)

• P(Intelligence=high) = $\sum_{n=1}^{\infty} P(Intelligence - high a)$

$$\sum_{g \in Grade} P(Intelligence = high, g)$$

Marginals and Joints

		Intelligence		
		low	high	
Grade	Α	0.07	0.18	0.25
	В	0.28	0.09	
	С	0.35	0.03	
			0.3	1.0

• P(Intelligence=high) = $\sum_{g \in Grade} P(Intelligence = high, g) = 0.3$

Marginals and Joints

		Intelligence		
		low	high	
Grade	Α	0.07	0.18	0.25
	В	0.28	0.09	
	С	0.35	0.03	
			0.3	1.0

- P(Intelligence=high) = $\sum_{g \in Grade} P(Intelligence = high, g) = 0.3$
- P(Intelligence=low) = $\sum_{g \in Grade} P(Intelligence = low, g) = 0.7$
- Marginal Distribution from Joint Distribution sums to 1
 - As Required for a Probability Distribution!

Conditionals w/ Random Variables

- Conditional Probabilities extend naturally to random variables
- P(Intelligence | Grade=A)
 - Conditional Distribution over Intelligence given
 Grade is an A.

Conditionals w/ Random Variables

- Conditional Probabilities extend naturally to random variables
- P(Intelligence | Grade=A)
 - Conditional Distribution over Intelligence given
 Grade is an A.
- P(X | Y)
 - Conditional Distribution over values for X given values for Y.

Chain Rule & Bayes Rule

- Chain Rule w/ Random Variables:
 - -P(X, Y) = P(X) P(Y|X)
 - $-P(X_1, ..., X_k) = P(X_1)P(X_2|X_1) \cdot \cdot \cdot P(X_k|X_1,...,X_{k-1})$

Independence

- In cases where events do not to each other contribute influence.
 - Flipping two coins: Neither coin influences the outcome of the other coin.
 - Rolling a dice 3 times. Values rolled do not influence future values
- Independent Events: Events that do not influence each other.

Independence: Formally

• An event α is independent of event β in P:

$$\triangleright$$
P \models (α \bot β) IF:
 \triangleright P(α | β) = P(α)
 \triangleright OR P(β) = 0

• P satisfies $(\alpha \perp \beta)$ if and only if

$$\triangleright P(\alpha \cap \beta) = P(\alpha)P(\beta)$$

• $(\alpha \perp \beta)$ implies $(\beta \perp \alpha)$

Independence: Examples

- Flipping Coins
 - Easy to believe: $P(C_2 | C_1) = P(C_2)$

Conditional Independence

- A little more complex
- A little more common

Conditional Independence: Formally

 An event α is Conditionally Independent of event β given event γ in P:

```
\trianglerightP \models (\alpha \perp \beta \mid \gamma), if P(\alpha \mid \beta \cap \gamma) = P(\alpha \mid \gamma)
```

 \triangleright or if $P(\beta \cap \gamma) = 0$.

Conditional Independence w/ Random Variables

- Let X,Y,Z be sets of random variables
- X is conditionally independent of Y given Z in a distribution P if
 - P satisfies $(X = x \perp Y = y \mid Z = z)$ for all values $x \in Val(X)$, $y \in Val(Y)$, and $z \in Val(Z)$.
 - Variables in set Z are often said to be observed.
- Marginally Independent if (X ⊥ Y | Ø)
 - writen $(X \perp Y)$
 - X and Y are marginally independent.

Conditional Independence

 The distribution P satisfies (X ⊥ Y | Z) if and only if

$$\triangleright$$
 P(X,Y | Z) = P(X | Z)P(Y | Z)

Independence & Conditional Independence

Tractability key idea

Islands of Tractability!

Probability Queries

- Evidence: subset E of random variables in the model, and an instantiation e to these.
- Query Variables: a subset Y of random variables in the network.
- P(Y | E = e)
 - the posterior probability distribution over the values y of Y, conditioned on the fact E = e.
 - This expression can also be viewed as the marginal over Y, in the distribution we obtain by conditioning on e.

maximum a posteriori *probability* (*MAP*) Query

- High Probability Assignment given Evidence.
- W = χ -E

- MAP(W | e) = $argmax_w P(w, e)$
 - w is the assignment of values:
 - Highest: (w₁=a₁, w₂=a₂, ... w_i=a_i)
 - given values $(e_1=b_1, ..., e_k=b_k)$

MAP Query

Event	Probability
a0	0.4
a1	0.6

Event	Evidence	P(Evidence Event)
a0	b0	0.1
a0	b1	0.9
a1	b0	0.5
a1	b1	0.5

• MAP(A) = ?

• MAP(A, B) = ?

MAP Query

Event	Probability
a0	0.4
a1	0.6

e P(Evidence Ever	Evidence	Event
0	b0	a0
1 0	b1	a0
0	b0	a1
1 0	b1	a1

• MAP(A) = a1

• MAP(A, B) = a0, b1

Marginal MAP Query

- MAP queries situation where
 - Variable set = $\mathcal{X} = \{x_1,, x_n\}$
 - − Evidence set = $E = \{e1, ..., ek\} \in X$
 - Query set = W = X E
- Query Set includes all variables not provided as evidence.

Query a subset of W?

Marginal MAP

Event	Evidence B	Evidence C	P(A, C B)
a0	b0	c0	0.01
a0	b0	c1	0.03
a0	b1	c0	0.12
a0	b1	c1	0.24
a1	b0	c0	0.1
a1	b0	c1	0.2
a1	b1	c0	0.1
a1	b1	c1	0.2

• MAP(A | b0) = ?

Marginal MAP

Event	Evidence B	Evidence C	P(A, C B)
a0	b0	c0	0.01
a0	b0	c1	0.03
a0	b1	c0	0.12
a0	b1	c1	0.24
a1	b0	c0	0.1
a1	b0	c1	0.2
a1	b1	c0	0.1
a1	b1	c1	0.2

- MAP(A|b0) =
 - $-\operatorname{argmax}_{A}[\sum_{c}P(A,C|b0)]$

Expectation

- Given our probability distribution.
- What outcome is expected?
 - What is the expected value.
- Given a single roll of a fair dice
 - Each value 1 thru 6 has equal likelihood

Expected value?

Expectation

- Given our probability distribution.
- What outcome is expected?
 - What is the expected value.
- Given a single roll of a fair dice
 - Each value 1 thru 6 has equal likelihood
- Expected value = 3.5

$$\mathsf{EP}[\mathsf{X}] = \sum_{x} x P(x)$$

Variance

- $Var_P[X] = E_P[(X E_P[X])^2].$
 - Expected value over the square of the difference from each variable value and the variable's expected value.

Standard Deviation

- $Var_P[X] = E_P[(X E_P[X])^2].$
 - Expected value over the square of the difference from each variable value and the variable's expected value.
 - $Var[X] = E(X^2) [E(X)]^2.$

 Sqrt(Var_P[X]) is a normalized measure of "distance" from the expected value of X.

Continuous

2.1. Probability Theory

29

Figure 2.2 Example PDF of three Gaussian distributions

Gaussian/Normal

• $\mathcal{N}(\mu; \sigma^2) =$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Standard Deviation

- $Var_P[X] = E_P[(X E_P[X])^2].$
 - Expected value over the square of the difference from each variable value and the variable's expected value.
 - $Var[X] = E(X^2) [E(X)]^2.$

 Sqrt(Var_P[X]) is a normalized measure of "distance" from the expected value of X.

Continuous

2.1. Probability Theory

29

Figure 2.2 Example PDF of three Gaussian distributions

Probabilities

- Space of Possible Outcomes:
 - Dice roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Coin flip: $\Omega = \{H, T\}$
- Set of Measurable Events S that we can assign probabilities.
- Each event $\alpha \in S$ is a subset of Ω
- For a set of events S with equally likely outcomes,
 Probability of an event α ∈ S is :
 - $-P(\alpha) = |\alpha|/|\Omega|$
 - Fraction of total outcomes where event is true.

Probability Distribution

Sample Space

$$-S = \{s_1, s_2, ..., s_n\}$$

- Probabilities
 - $-P = \{p_1, p_2, ..., p_n\}$
 - $-p_i$ is the probability of outcome s_i

Probability Distribution

- A probability distribution P over (Ω, S) is a mapping from events in S to real values that satisfies:
 - P(α) ≥ 0 for all α ∈ S.
 - $-P(\Omega)=1.$
 - − If $\alpha,\beta \in S$ and $\alpha \cap \beta = \emptyset$, then $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$.
- Implied:
 - $-P(\emptyset)=0$
 - $-P(\alpha \cup \beta) = P(\alpha) + P(\beta) P(\alpha \cap \beta).$

Russell & Norvig Equation 13.1 & 13.2

- 13.1: Given event ω:
 - $-0 \le P(\omega) \le 1$ for every ω
 - $-\sum_{\omega\in\Omega}P(\omega)=1$

- 13.2: Also For any proposition φ, like 'holding(A)'
 - $P(\phi) = \sum_{\omega \in \phi} P(\omega)$
 - The probability of a proposition is the sum of the probabilities for the outcomes where it is true.

Summing to 1

- Very Important: Probability Model for a space of outcomes must sum to 1
- If the values do not sum to 1 you do not have probabilities!
- Important later when we define FACTORS
- Important later when we define NORMALIZATION

Student Example

- Intelligence of Student (I)
 - i⁰ (low), i¹ (high)
- Difficulty of Course (D)
 - d^0 (easy), d^1 (hard)
- Student's Course Grade (G)
 - $-g^{1}(A), g^{2}(B), g^{3}(C)$
- What's the odds of a smart student getting a B in a difficult Course?
- What's the odds of a smart student getting an A in an easy class??

Student Example Joint Distrubtion

- Intelligence of Student (I)
 - i⁰ (low), i¹ (high)
- Difficulty of Course (D)
 - $-d^0$ (easy), d^1 (hard)
- Student's Course Grade (G)
 - $-g^{1}(A), g^{2}(B), g^{3}(C)$
- How many values needed for our example to cover all possible outcomes (Joint Probability Distribution Table)?

Student Example Joint Distribution

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
I ₀	d ⁰	g ¹	0.126
l ₀	d ⁰	g ²	0.168
10	d ⁰	g ³	0.126
l ₀	d^1	g ¹	0.009
10	d^1	g ²	0.045
10	d^1	g^3	0.126
l ₁	d ⁰	g ¹	0.252
l ₁	d ⁰	g^2	0.0224
¹	d ⁰	g ³	0.0056
¹	d^1	g ¹	0.06
¹	d¹	g ²	0.036
J ¹	d ¹	g ³	0.024

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
I ₀	d ⁰	g ¹	0.126
l ₀	d ⁰	g^2	0.168
I ₀	d ⁰	g ³	0.126
l ₀	d¹	g ¹	0.009
l ₀	d¹	g ²	0.045
l ₀	d¹	g^3	0.126
¹	d ⁰	g ¹	0.252
¹	d ⁰	g ²	0.0224
¹	d ⁰	g^3	0.0056
¹	d¹	g ¹	0.06
¹	d¹	g ²	0.036
¹	d¹	g^3	0.024

 What's the probability of a smart student getting a B in a difficult Course?

$$- P(i^1, d^1, g^2) =$$

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
l ₀	d ⁰	g ¹	0.126
10	d^0	g ²	0.168
10	d ⁰	g^3	0.126
10	d^1	g ¹	0.009
10	d¹	g ²	0.045
10	d^1	g^3	0.126
I ¹	d ⁰	g ¹	0.252
l 1	d^0	g ²	0.0224
¹	d ⁰	g^3	0.0056
l ¹	d^1	g ¹	0.06
l ¹	d¹	g ²	0.036
 1	d^1	g^3	0.024

- What's the probability of a smart student getting a B in a difficult Course?
 - $P(i^1, d^1, g^2) = 0.036$
 - Odds = 0.036/(1-0.036) = 0.03734
- Not a satisfying answer... Not quite what we want...

Conditioning: Condition on i¹

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
I ₀	d ⁰	g ¹	0.126
10	d ⁰	g ²	0.168
10	d ⁰	g ³	0.126
l ₀	d¹	g ¹	0.009
I ₀	d¹	g ²	0.045
10	d^1	g^3	0.126
l ₁	d ^o	g ¹	0.252
l ¹	d ^o	g ²	0.0224
l ₁	d ^o	g ³	0.0056
l 1	d¹	g ¹	0.06
l ₁	d¹	g ²	0.036
l ₁	d¹	g^3	0.024

Conditioning: Condition on i¹

Intelligent Students Only

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
‡ 0	€	€	0.126
‡ ⊕	€	# 5	0.168
‡ 0	d⊕	ਛ ੇ	0.126
‡ ⊕	d⁴	g [±]	0.009
‡ 0	d⁴	⊕	0.045
‡ 0	d [±]	ਉਂ ਹੈ	0.126
l ¹	d ⁰	g ¹	0.252
l ¹	d ⁰	g ²	0.0224
l ¹	d ⁰	g ³	0.0056
l ¹	d¹	g ¹	0.06
l ¹	d¹	g ²	0.036
 1	d^1	g ³	0.024

Conditioning: Reduction

IntelligentStudents Only

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
l ¹	d ⁰	g ¹	0.252
l ¹	d ⁰	g ²	0.0224
l ¹	d ⁰	g ³	0.0056
l ¹	d^1	g ¹	0.06
l ¹	d¹	g ²	0.036
l ¹	d^1	g ³	0.024

- But no longer a Probability Distribution!!!
 - Does not SUM TO 1!

CONDITIONING: NORMALIZE

Intelligent Students Only

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, g ¹)	Normalized P(D, G i¹)
I ¹	d^0	g ¹	0.252	0.63
l ¹	d^0	g^2	0.0224	0.056
l ¹	d^0	g^3	0.0056	0.014
l 1	d^1	g ¹	0.06	0.15
I ¹	d^1	g ²	0.036	0.09
l 1	d^1	g^3	0.024	0.06
Total			0.4	1

- But no longer a Probability Distribution!!!
 - Does not SUM TO 1!
- NORMALIZE IT!!!

CONDITIONING: NORMALIZE

Intelligent Students Only

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, g ¹)	Normalized P(D, G i¹)
l ¹	d ⁰	g ¹	0.252	0.63
l ¹	d^0	g^2	0.0224	0.056
l ¹	d^0	g^3	0.0056	0.014
 1	d^1	g ¹	0.06	0.15
l ¹	d^1	g ²	0.036	0.09
l ¹	d^1	g^3	0.024	0.06
Total			0.4	1

 What's the probability of a smart student getting a B in a difficult Course?

$$-P(g^2 \mid i^1, d^1) = ???$$

Let's condition on i¹, d¹

Intelligent Students Only

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, g ¹)	Normalized P(D, G i¹)
I ¹	d^0	g ¹	0.252	0.63
l ¹	d^0	g^2	0.0224	0.056
I ¹	d^0	g^3	0.0056	0.014
l 1	d^1	g ¹	0.06	0.15
I ¹	d^1	g ²	0.036	0.09
l ¹	d^1	g^3	0.024	0.06
Total			0.4	1

 What's the probability of a smart student getting a B in a difficult Course?

$$-P(g^2 \mid i^1, d^1) = ???$$

Let's condition on i¹, d¹

Intelligent
 Students
 in Difficult
 Classes!

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, g ¹)	Normalized P(D, G i¹)
#	d0	g1	0.252	0.63
#	d0	g2	0.0224	0.056
11	d0	g3	0.0056	0.014
J ¹	d^1	g ¹	0.06	0.15
l ¹	d^1	g^2	0.036	0.09
J ¹	d^1	g^3	0.024	0.06
Total				

 What's the probability of a smart student getting a B in a difficult Course?

$$-P(g^2 \mid i^1, d^1) = ???$$

Condition on i¹, d¹: Reduce/Normalize

Intelligent
 Students
 in Difficult
 Classes!

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, g ¹)	Normalized P(D, G i¹)
l ¹	d^1	g^1	0.06	0.5
l ¹	d^1	g ²	0.036	0.3
l ¹	d^1	g^3	0.024	0.2
Total			0.12	

 What's the probability of a smart student getting a B in a difficult Course?

$$-P(g^2 \mid i^1, d^1) = ???$$

Condition on i¹, d¹: Reduce/Normalize

Intelligent
 Students
 in Difficult
 Classes!

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, g ¹)	Normalized P(D, G i¹)
l ¹	d^1	g^1	0.06	0.5
l ¹	d^1	g ²	0.036	0.3
l ¹	d^1	g^3	0.024	0.2
Total			0.12	

• What's the probability of a smart student getting a B in a difficult Course?

$$-P(g^2 \mid i^1, d^1) = 30\%$$

$$- P(g^1 | i^1, d^1) = 50\%$$

Marginalization

 What's my chance of getting a difficult course???

First: Full Joint Distribution

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
l ₀	d ⁰	g ¹	0.126
l ₀	d ⁰	g ²	0.168
l ₀	d ⁰	g ³	0.126
l ₀	d¹	g ¹	0.009
I ₀	d¹	g ²	0.045
I ₀	d¹	g^3	0.126
l ¹	d ^o	g ¹	0.252
¹	d ^o	g^2	0.0224
¹	d ⁰	g ³	0.0056
¹	d¹	g ¹	0.06
¹	d¹	g ²	0.036
¹	d¹	g^3	0.024

Marginalize I, G

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
l ₀	d ^o	g ¹	0.126
l ₀	d ^o	g ²	0.168
10	d ⁰	g ³	0.126
l ₀	d¹	g ¹	0.009
I ₀	d¹	g ²	0.045
I ₀	d¹	g ³	0.126
l ¹	d ^o	g ¹	0.252
l ¹	d ^o	g ²	0.0224
¹	d ^o	g ³	0.0056
l ¹	d¹	g ¹	0.06
l ¹	d¹	g ²	0.036
¹	d¹	g ³	0.024

Marginalize I, G

Intelligence (I)	Difficulty (D)	Grade (G)	P(I, D, G)
10	d ⁰	g^1	0.126
10	d ⁰	g ²	0.168
10	d ⁰	g^3	0.126
10	D^1	g^1	0.009
10	D^1	g^2	0.045
10	D^1	g^3	0.126
I ¹	d ⁰	g^1	0.252
l ¹	d ⁰	g ²	0.0224
J ¹	d ⁰	g^3	0.0056
 1	D^1	g^1	0.06
 1	D^1	g^2	0.036
1	D^1	g^3	0.024

Difficulty (D)	P(D)
d ⁰	0.7
d¹	0.3

Probabilistic Reasoning

- Probability Theory
 - Marginal Probability
 - Conditional Probability

Question

Below is the Joint Probability Distribution Table for the variables:

A, B, C, D

	А, Б, С, Б					
A	В	C	D	P(A, B, C, D)		
0	0	0	0	0.5		
0	0	0	1	0.06		
0	0	1	0	0.02		
0	0	1	1	0.12		
0	1	0	0	0.05		
0	1	0	1	0.01		
0	1	1	0	0.01		
0	1	1	1	0.01		
1	0	0	0	0.01		
1	0	0	1	0.01		
1	0	1	0	0.01		
1	0	1	1	0.01		
1	1	0	0	0.03		
1	1	0	1	0.01		
1	1	1	0	0.01		
1	1	1	1	0.13		

(1) From the table above calculate the following:

(a)
$$P(C=0, D=1)$$

Question P(C=0, D=1)

A	В	С	D	P(A,B,	C,D)
(0	0	0	0	0.5
	0	0	0	1	0.06
	0	0	1	0	0.02
	0	0	1	1	0.12
	0	1	0	0	0.05
	0	1	0	1	0.01
	0	1	1	0	0.01
	0	1	1	1	0.01
	1	0	0	0	0.01
	1	0	0	1	0.01
	1	0	1	0	0.01
	1	0	1	1	0.01
	1	1	0	0	0.03
	1	1	0	1	0.01
	1	1	1	0	0.01
	1	1	1	1	0.13

Question: P(C=0, D=1)

Α	В	С	D	P(A	,B,C,D)
	0	0	0	1	0.06
	0	1	0	1	0.01
	1	0	0	1	0.01
	1	1	0	1	0.01
					=0.09

Question: **P**(C=1)

A	В	С	D	P(A,B,	C,D)
(0	0	0	0	0.5
	0	0	0	1	0.06
	0	0	1	0	0.02
	0	0	1	1	0.12
	0	1	0	0	0.05
	0	1	0	1	0.01
	0	1	1	0	0.01
	0	1	1	1	0.01
	1	0	0	0	0.01
	1	0	0	1	0.01
	1	0	1	0	0.01
	1	0	1	1	0.01
	1	1	0	0	0.03
	1	1	0	1	0.01
	1	1	1	0	0.01
	1	1	1	1	0.13

Question: **P**(C=1)

Α	В	С	D	P(A	,B,C,D)
	0	0	1	0	0.02
	0	0	1	1	0.12
	0	1	1	0	0.01
	0	1	1	1	0.01
	1	0	1	0	0.01
	1	0	1	1	0.01
	1	1	1	0	0.01
	1	1	1	1	0.13
					=0.32

Question: **P**(C=0 | D=1)

A	В	С	D	P(A,B,	C,D)
(0	0	0	0	0.5
	0	0	0	1	0.06
	0	0	1	0	0.02
	0	0	1	1	0.12
	0	1	0	0	0.05
	0	1	0	1	0.01
	0	1	1	0	0.01
	0	1	1	1	0.01
	1	0	0	0	0.01
	1	0	0	1	0.01
	1	0	1	0	0.01
	1	0	1	1	0.01
	1	1	0	0	0.03
	1	1	0	1	0.01
	1	1	1	0	0.01
	1	1	1	1	0.13

Question: P(C=0 | D=1)=P(C=0,D=1)/P(D=1)

Α	В	С	D	P(A,B,C,D)
C	0	0	0	0.5
C	0	0	1	0.06
C	0	1	0	0.02
C	0	1	1	0.12
C	1	0	0	0.05
C	1	0	1	0.01
C	1	1	0	0.01
C	1	1	1	0.01
1	. 0	0	0	0.01
1	. 0	0	1	0.01
1	. 0	1	0	0.01
1	. 0	1	1	0.01
1	. 1	0	0	0.03
1	. 1	0	1	0.01
1	. 1	1	0	0.01
1	. 1	1	1	0.13

Question:

$$P(C=0 \mid D=1)=P(C=0,D=1)/P(D=1)$$

	•	•	•	•	_	•
Α	В	С	D	P(A,I	B,C,D)	
	0	0	0	0	0.5	D (C 0 D 4)
	0	0	0	1	0.06	P (C=0 D=1)
	0	0	1	0	0.02	=P(C=0,D=1)/P(D=1)
	0	0	1	1	0.12	=0.09/P(D=1)
	0	1	0	0	0.05	0.03/1 (D 1)
	0	1	0	1	0.01	
	0	1	1	0	0.01	
	0	1	1	1	0.01	
	1	0	0	0	0.01	
	1	0	0	1	0.01	
	1	0	1	0	0.01	
	1	0	1	1	0.01	
	1	1	0	0	0.03	
	1	1	0	1	0.01	
	1	1	1	0	0.01	
	1	1	1	1	0.13	

Question:

$$P(C=0 \mid D=1)=P(C=0,D=1)/P(D=1)$$

Α	В	С	D	P(A	,B,C,D)	
	0	0	0	1	0.06	D (C 0 D 4)
	0	0	1	1	0.12	P (C=0 D=1)
	0	1	0	1	0.01	=P(C=0,D=1)/P(D=1)
	0	1	1	1	0.01	=0.09/P(D=1) =0.09/0.36 =1/4=0.25
	1	0	0	1	0.01	-0.00/0.26
	1	0	1	1	0.01	=0.09/0.36
	1	1	0	1	0.01	=1/4=0.25
	1	1	1	1	0.13	
					=0.36	

Introducing: Bayesian Networks

- Intuitions similar to Naïve Bayes Model
- Conditional Independencies exploited to allow representation that is Compact & Natural.
- Tailoring allowed so our representation of the distribution only include reasonable independencies!

Bayesian Networks: Finally

- Core Idea:
 - Directed Acyclic Graph (DAG)
 - Nodes represent Random Variables in our Domain
 - Edges represent a direct influence from one variable to another.

 View 1: Data structure that provides the skeleton for representing a joint distribution compactly in a factorized way.

 View 2: Compact representation of Conditional Independence Assumptions.

Bayesian Net Graph

52

Chapter 3. The Bayesian Network Representation

Figure 3.3 The Bayesian Network graph for the Student example

Enhanced Example

52

Chapter 3. The Bayesian Network Representation

Figure 3.3 The Bayesian Network graph for the Student example

- Intelligence (I): Val(I)={i⁰ (low), i¹ (high)}
- SAT (S): Val(S)={s⁰ (low), s¹ (high)}
- Grade (G): Val(G)={g¹ (A), g² (B), g³ (C)}
- ADD:
 - Course Difficulty (D): Val(D)={d⁰ (easy), d¹ (hard)}
 - Letter of Recommendation (L): $Val(L) = \{l^0 \text{ (weak)}, l^1 \text{ (strong)}\}$

Bayesian Networks : (CPD's)

 2nd Component of Bayesian Network are Local Probability Models that describe Parent's influence on a Variable.

Bayesian Networks: (CPD's)

- Each variable is associated with a conditional probability distribution (CPD) that specifies a distribution CPD over the values of X given each possible joint assignment of values to its parents in the model.
- For a node with no parents, the CPD is conditioned on the empty set of variables.

Bayesian Network

- The network structure together with its CPDs is a Bayesian network \mathcal{B} ;
- $\mathcal{B}^{\text{student}}$ refers to the Bayesian network for the student example.

• How do we use $\mathcal{B}^{\text{student}}$ to compute parameters from the full joint distribution?

- What's the probability:
 - An intelligent student
 - With High SAT Score
 - Taking an easy class
 - Get's a B
 - Resulting in a Weak Letter of Recommendation

- What's the probability:
 - An intelligent student: l=i¹
 - With High SAT Score: S=s¹
 - Taking an easy class: D=d⁰
 - Get's a B: G=g²
 - w/ Weak Letter of Recommendation: L = I⁰
- $P(i^1, d^0, g^2, s^1, l^0) = ???$

• $P(i^1, d^0, g^2, s^1, l^0) =$ • $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$

• $P(i^1, d^0, g^2, s^1, l^0) =$ $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$

Let's Query w/ B^{student}

- $P(i^1, d^0, g^2, s^1, l^0) =$
 - $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$
 - >0.3

Let's Query w/ Bstudent

- $P(i^1, d^0, g^2, s^1, l^0) =$
 - $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$
 - $> 0.3 \cdot 0.6$

- $P(i^1, d^0, g^2, s^1, l^0) =$
 - $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$
 - $> 0.3 \cdot 0.6 \cdot 0.08$

- $P(i^1, d^0, g^2, s^1, l^0) =$
 - $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$
 - $> 0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8$

- $P(i^1, d^0, g^2, s^1, l^0) =$
 - $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$
 - $> 0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8 \cdot 0.4 =$

- $P(i^1, d^0, g^2, s^1, l^0) =$
 - $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$
 - $> 0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8 \cdot 0.4 = 0.004608$

- $P(i^1, d^0, g^2, s^1, l^0) =$
 - $P(i^1)P(d^0)P(g^2|i^1, d^0)P(s^1|i^1)P(l^0|g^2)$
 - $> 0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8 \cdot 0.4 = 0.004608????$

First Example w/ Chain Rule for Bayesian Networks

- P(I, D, G, S, L)=
 - \triangleright P(I)P(D)P(G|I,D)P(S|I)P(L|G)

