OUTPUT

Df.head() of creditcard.csv

Df.head() of Fraud dataset.csv

Correlation

V16	V17	V18	V19
0.05979178691573992	-0.017921915795272046	0.04624944345765195	0.056121730987790365
0.07164467241823783	0.04291897947446053	-0.05106968901979239	-0.07102115077260378
0.0716073476262239	0.03264518174918471	-0.058953242530119736	0.028251148519771552
-0.27125804045737095	-0.06213623625045226	-0.11012326593571237	0.059460868755991346
-0.09538121597248693	0.2071548314231877	-0.06616718843335262	0.10405902421907098
0.05151015774203243	-0.15359168958460392	0.034479778857581196	0.025449314035575564
-0.07817375121743182	-0.02727247917659616	0.03274855398764016	0.13522682610573514
-0.02441562021885164	-0.14283279308329072	-0.037417031137226504	-0.011916056928539328
0.06901478844867924	0.05895648754535658	-0.01892313869461621	-0.011378448387180978
-0.15947146356761496	-0.07175138481668297	-0.09856624234894759	0.05733198642724949
-0.09825437127335278	-0.12349958927973635	0.013476636456132705	0.026735862516434162
-0.001981310969731231	0.0051321155182635384	0.02949286895120329	-0.14829287482708423
-0.18323339414605105	0.08512141166786617	-0.12771106616577563	-0.06785939127909227
0.027726472236011938	-0.09178227150640092	-0.022750317733714366	-0.004685302100674802
0.05320767600803998	-0.19612874199337108	-0.12422829803207894	0.02556348971953643
0.08990185559599198	-0.003439086971153879	0.011821863928408624	-0.09668312057333205
1.0	-0.27517214068823315	0.14361339780325927	0.01923169716774418
-0.27517214068823315	1.0	-0.20602705683296488	-0.04705955701502714
0.14361339780325927	-0.20602705683296488	1.0	0.15056876014802886
0.01923169716774418	-0.04705955701502714	0.15056876014802886	1.0
0.08359306457102018	-0.07203765496993027	0.013479424330907985	0.08103091383564011
0.009149376425033964	-0.004137089200848911	-0.017434694453420725	0.06035899484759624
-0.12000718350134588	0.1269671133375839	-0.140445499562902	-0.0020743274059004738
-0.04122379720659809	0.08376189212560853	-0.06752937275321542	-0.08151385522587036
Ი Ი12385696856879238	-N N31317577985N8211	_N N19848411408168704	-0.005217081524483134

Visualization

Categorical Distribution

Heat map

ROC Curve

Result

```
Customer Group 0: 1.0 not fraud
Customer Group 1: 0.9791281589923939 not fraud | 0.02087184100760612 fraud
Customer Group 2: 0.9748987854251012 not fraud | 0.025101214574898785 fraud
Customer Group 3: 0.2097902097902098 not fraud | 0.7902097902097902 fraud
Customer Group 4: 1.0 not fraud
```

```
Naive Bayes

[ ] gnb = GaussianNB()
  nb = cross_val_score(gnb, X_train, y_train, cv = 10)
  print("Train Data:", numpy.mean(nb))

  gnb = GaussianNB()
  nb = cross_val_score(gnb, X_test, y_test, cv = 10)
  print("Test Data:", numpy.mean(nb))

Train Data: 0.9507042088251954
  Test Data: 0.9501341129450445
```


