数理统计

1. 总体和样本

1.1 统计概念和统计量

- 总体: 研究对象的全体称为总体
- **样本**: n 个相互独立且与总体具有相同概率分布的随机变量 X_1, X_2, \cdots, X_n 所组成的整体, (X_1, X_2, \cdots, X_n) 称为来自总体 X, 容量为 n 的一个**简单随机样本**, 一次抽样结果的具体的 n 个数值 (x_1, x_2, \cdots, x_n) 称为样本 (X_1, X_2, \cdots, X_n) 的一个观测值
- **样本分布**: 假设总体的分布函数 F(x), 概率密度函数 f(x), 样本 (X_1,X_2,\cdots,X_n) 的分布函数和概率密度
 - 离散型

$$P\{X_1=x_1,X_2=x_2,\cdots,X_n=x_n\}=\prod_{i=1}^n P\{X_i=x_i\}$$

○ 连续型

$$egin{cases} F(x_1,x_2,\cdots,x_n) = \prod\limits_{i=1}^n F(x_i) \ f(x_1,x_2,\cdots,x_n) = \prod\limits_{i=1}^n f(x_i) \end{cases}$$

1.2 统计量及其分布

• 设 X_1,X_2,\cdots,X_n 是来自总体 X 的一个样本, $g(x_1,x_2,\cdots,x_n)$ 是 n 元函数,如果函数 g 中不含任何参数,称 $g(X_1,X_2,\cdots,X_n)$ 是样本 X_1,X_2,\cdots,X_n 的一个统计量

1.2.1 样本数字特征

• 样本均值
$$\overline{X}=rac{1}{n}\sum\limits_{i=1}^{n}X_{i}$$

• 样本方差
$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

• 样本标准差
$$S=\sqrt{rac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2}$$

• 样本
$$k$$
 阶原点矩 $A_k=rac{1}{n}\sum_{i=1}^n X_i^k (k=1,2,\cdots)$

• 样本
$$k$$
阶中心矩 $B_k=rac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^k(k=2,3,\cdots)$

1.2.2 顺序统计量

将样本 X_1,X_2,\cdots,X_n 的 n 个观测值\textbf{从小到大}顺序排序 $X_{(1)}\leq X_{(2)}\leq\cdots\leq X_{(n)}\leq$

随机变量 $X_{(k)}$ 称作第 k 顺序统计量, $X_{(1)}$ 为最小顺序统计量, $X_{(n)}$ 为最大顺序统计量

$$egin{cases} X_{(1)} = \min\{X_1, X_2, \cdots, X_n\} \ X_{(n)} = \max\{X_1, X_2, \cdots, X_n\} \end{cases}$$

1.2.3 统计量(数字特征)性质

假设总体期望 $E(X)=\mu$, 总体方差为 $D(X)=\sigma^2, X_1, X_2, \cdots, X_n$ 是取自总体的一个样本, \overline{X}, S^2 分别为样本的均值和方差

- $E(X_i) = \mu$
- $D(X_i) = \sigma^2$
- $E(\overline{X}) = E(\frac{X_1 + X_2 + \dots + X_n}{n}) = E(X) = \mu$
- $D(\overline{X}) = D(\frac{X_1 + X_2 + \dots + X_n}{n}) = \frac{1}{n}\sigma^2$
- $E(S^2) = D(X) = \sigma^2$

2. 三大分布

$2.1 \chi^2$ 分布

随机变量 X_1,X_2,\cdots,X_n 相互独立,且都服从标准正态分布,随机变量 $X=\sum_{i=1}^n X_i^2$ 服从自由度为 n 的卡方分布 $\chi^2(n)$,记作 $X\sim\chi^2(n)$

上 α 分位数: 对于给定的 $\alpha(0<\alpha<1)$, 称满足

$$P\{\chi^2>\chi^2_lpha(n)\}=\int_{\chi^2_lpha(n)}^{+\infty}f(x)dx=lpha$$

的 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位数

- ・ $X_1 \sim \chi^2(n_1), X_2 \sim \chi^2(n_2), X_1, X_2$ 相互独立, $X_1 + X_2 \sim \chi^2(n_1 + n_2)$
- ullet $X\sim \chi^2(n)\Rightarrow E(X)=n, D(X)=2n$

2.2 t 分布

随机变量 $X \sim N(0,1), Y \sim \chi^2(n), X, Y$ 相互独立, 随机变量 $t = \dfrac{X}{\sqrt{Y/n}}$ 服从

自由度为 n 的 t 分布, 记作 $t \sim t(n)$

上 lpha 分位数: 对于给定的 lpha(0<lpha<1), 称满足 $P\{t>t_lpha(n)\}=lpha$ 的 $t_lpha(n)$ 为 t 分布的上 lpha 分位数

- t 分布概率密度关于 x=0 对称 $\Rightarrow E(t)=0$
- $P\{t > -t_{\alpha}(n)\} = P\{t > t_{1-\alpha}(n)\} \Rightarrow t_{1-\alpha}(n) = -t_{\alpha}(n)$

2.3 F 分布

随机变量 $X\sim\chi^2(n_1),Y\sim\chi^2(n_2)$,且 X,Y 相互独立,随机变量 $F=rac{X/n_1}{Y/n_2}$ 服从自由度为 (n_1,n_2) 的 F 分布,记作 $F\sim F(n_1,n_2)$

$$ullet F \sim F(n_1,n_2) \Rightarrow rac{1}{F} \sim F(n_2,n_1)$$

$$ullet \ F_{1-lpha}(n_1,n_2) = rac{1}{F_lpha(n_2,n_1)}$$

•
$$t \sim t(n) \Rightarrow t^2 \sim F(1,n)$$

2.4 正态总体推论

设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的一个样本, \overline{X}, S^2 分别是样本的均值和方差

$$\bullet \ \ \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1)$$

$$ullet rac{1}{\sigma^2}\sum_{i=1}^n (X_i-\mu)^2 \sim \chi^2(n)$$

•
$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n (\frac{X_i - \overline{X}}{\sigma})^2 \sim \chi^2(n-1)$$

•
$$\overline{X}$$
和 S^2 相互独立 $\Rightarrow rac{\sqrt{n}(\overline{X}-\mu)}{S} \sim t(n-1)$

•
$$\sigma$$
未知时, $\dfrac{n(\overline{X}-\mu)^2}{S^2}\sim F(1,n-1)$

3. 参数的点估计

设总体 X 的分布函数 $F(x;\theta)$, 其中 θ 是一个未知参数, X_1,X_2,\cdots,X_n 是来自总体的一个样本, 由样本构造一个适当的统计量 $\hat{\theta}(X_1,X_2,\cdots,X_n)$ 作为参数 θ 的估计,称统计量 $\hat{\theta}$ 为参数 θ 的估计量

3.1 矩估计

设总体分布中有 k 个未知的参数 $\theta_1,\theta_2,\cdots,\theta_k$,来自总体 X 的一组样本 X_1,X_2,\cdots,X_n ,如果 X 的原点矩 $E(X^l)(l=1,2,\cdots,k)$ 存在,样本原点矩 $\frac{1}{n}\sum_{i=1}^n X_i^l$ 可作为 $E(X^l)$ 的估计

3.2 最大似然估计

对未知参数 heta 进行估计,在该参数可能的取值范围 I 中选取,使用使样本观测值 x_1,x_2,\cdots,x_n 最大的参数 $\hat{ heta}$ 作为参数 heta 的估计值

似然函数

$$egin{cases} L(heta) = L(x_1, x_2, \cdots, x_n; heta) \ L(heta) = \prod\limits_{i=1}^n f(x_i; heta) \end{cases}$$

$$\exists \hat{ heta} \in I, \; s. \, t. \; L(x_1, x_2, \cdots, x_n, \hat{ heta}) = \max_{ heta \in I} L(x_1, x_2, \cdots, x_n, heta)$$

3.3 估计量评价标准

- 无偏性: $E(\hat{\theta}) = \theta$
- 有效性: $D(\hat{\theta})$ 最小
- 一致性: $orall arepsilon > 0, \lim_{n o \infty} P\{|\hat{ heta} heta| < arepsilon\} = 1$

4. 参数的区间估计

4.1 区间估计和置信区间

设 heta 是总体 X 的一个未知参数,对于给定的 lpha(0<lpha<1),如果由样本 X_1,X_2,\cdots,X_n 确定的两个统计量 $\hat{ heta_1}=\hat{ heta_1}(X_1,X_2,\cdots,X_n)$ 和 $\hat{ heta_2}=\hat{ heta_2}(X_1,X_2,\cdots,X_n)$ 满足 $P\{\hat{ heta_1}(X_1,X_2,\cdots,X_n)< heta<\hat{ heta_2}(X_1,X_2,\cdots,X_n)\}=1-lpha$

则称随机区间 $(\hat{\theta_1},\hat{\theta_2})$ 是 θ 的置信度为 $1-\alpha$ 的 **置信区间**, $\hat{\theta_1}$ 和 $\hat{\theta_2}$ 分别称为 **置信上限** 和 **置信下限**, $1-\alpha$ 为置信水平, α 为**显著性水平**

4.2 正态总体的置信区间

待估 参数	其他 参数	枢轴量分布	置信区间
μ	σ^2 已知	$Z = rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$\left(\overline{X}-rac{\sigma}{\sqrt{n}}z_{lpha/2},\overline{X}+rac{\sigma}{\sqrt{n}}z_{lpha/2} ight)$
μ	σ^2 未知	$t = rac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$\left(\overline{X} - rac{S}{\sqrt{n}}t_{lpha/2}(n-1), \overline{X} + rac{S}{\sqrt{n}}t_{lpha/2}(n-1) ight)$
σ^2	<i>μ</i> 已 知	$\chi^2 = rac{\sum\limits_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$	$\left(\frac{\sum\limits_{i=1}^n(X_i-\mu)^2}{\chi_{\alpha/2}(n)},\frac{\sum\limits_{i=1}^n(X_i-\mu)^2}{\chi_{1-\alpha/2}(n)}\right)$
σ^2	μ未 知	$\chi^2=rac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n)},\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n)}\right)$

5. 假设检验

5.1 统计性检验和两类错误

- H₀: 虚无假设
- *H*₁: 备择假设
- 第一类错误: 虚无假设 H_0 为真,但拒绝了 H_0 ,误认为备择假设 H_1 为真,犯第一类错误概率 $\alpha = P\{R(H_0) \big| T(H_0)\}$
- 第二类错误: 备择假设 H_1 为真,但接受了 H_0 ,误认为虚无假设 H_0 为真,犯第二类错误概率 $\beta = P\{A(H_0) \big| T(H_1)\}$

5.2 正态总体下的六大检查和拒绝域

- σ^2 已知, μ 未知, $H_0: \mu=\mu_0,H_1: \mu
 eq \mu_0 \ \mu_r \in (-\infty,\mu_0-rac{\sigma}{\sqrt{n}}z_{rac{lpha}{2}}) \cup (\mu_0+rac{\sigma}{\sqrt{n}}z_{rac{lpha}{2}},+\infty)$
- σ^2 未知, μ 未知, $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$ $\mu_r \in (-\infty, \mu_0 \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)) \cup (\mu_0 + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), +\infty)$

- σ^2 已知, μ 未知, $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$ $\mu_r \in (\mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha, +\infty)$
- σ^2 已知, μ 未知, $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$ $\mu_r \in (-\infty, \mu_0 \frac{\sigma}{\sqrt{n}} z_\alpha)$
- σ^2 未知, μ 未知, $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$ $\mu_r \in (\mu_0 + \frac{S}{\sqrt{n}}t_{\alpha}(n-1), +\infty)$
- σ^2 未知, μ 未知, $H_0: \mu \geq \mu_0, H_1: \mu < \mu_0$ $\mu_r \in (-\infty, \mu_0 \frac{S}{\sqrt{n}} t_\alpha(n-1))$