Exercises Qing Liu

Séverin Philip 6 juillet 2018

1 General properties of Schemes

1.1 Reduced schemes and integral schemes

Exercise . (4.2)

Démonstration. Le morphisme canonique $\operatorname{Spec} \mathcal{O}_{X,x} \to X$ est donné par le morphisme $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$ pour un ouvert affine U de X contenant x. On note $\mathcal{O}_X(U) = A$ et l' morphisme est celui de localisation en \mathfrak{p} idéal premier associé à x. Si y est un point de U qui se spécialise en $x, x \in \overline{\{y\}}$, par définition si \mathfrak{q} est l'idéal premier associé à y, on a $\mathfrak{q} \subset \mathfrak{p}$ d'où \mathfrak{q} est un idéal premier du localisé $A_{\mathfrak{p}}$. Par suite y est dans l'image de $\operatorname{Spec} A_{\mathfrak{p}} \to \operatorname{Spec} A$. Il est clair que réciproquement un élément de cette image provient d'un idéal premier de $A_{\mathfrak{p}}$ et donc par localisation d'un idéal premier de A inclus dans \mathfrak{p} ce qui correspond à un point qui se spécialise en x. Comme le morphisme $\operatorname{Spec} \mathcal{O}_{X,x} \to X$ est indépendant du choix de U (Pourquoi?) cela suffit. \square

Exercise . (4.3)

Démonstration. On a une inclusion $\mathcal{O}_K[T] \hookrightarrow K[T]$ qui induit un morphisme $j \colon \operatorname{Spec} K[T] \to \operatorname{Spec} \mathcal{O}_K[T]$. On montre que c'est une immersion ouverte. Si $\mathfrak{p} \in \operatorname{Spec} K[T]$, $j(\mathfrak{p}) = \mathfrak{p} \cap \mathcal{O}_K[T]$. L'image de j est $\operatorname{Spec} \mathcal{O}_K[T] \setminus V(t)$ qui est ouverte. En effet, si $t \in \mathfrak{p} \cap \mathcal{O}_K[T]$ alors $t \in \mathfrak{p}$ et $\mathfrak{p} = K[T]$ ce qui est impossible. Inversement, si $t \notin \mathfrak{p}$ avec \mathfrak{p} idéal premier de $\mathcal{O}_K[T]$ alors par localisation en $S = \mathcal{O}_K[T] \setminus \{0\}$ on a $\mathfrak{p}K[T]$ idéal premier qui vérifie $\mathfrak{p}K[T] \cap \mathcal{O}_K[T] = \mathfrak{p}$. Il reste à voir que j_x^{\sharp} est un isomorphisme en tout point $x \in \operatorname{Spec} K[T]$ ce qui est trivialement le cas (même une égalité). L'idéal (T) est le seul point de $\operatorname{Spec} K[T]$ qui se spécialise en (T,t). (Je crois?) □

Exercise . (4.8)

Démonstration. Soit x un point de X et (U_i) les ouverts affines qui recouvrent X (en nombre fini). On suppose que $x \in U_1$ quitte à renuméroté les ouverts. Le point x correspond à un idéal premier \mathfrak{p} contenu dans un idéal maximal \mathfrak{m} de $\mathcal{O}_X(U_1)$ qui lui même correspond à un point fermé de U_1 . On a donc l'existence de $x_1 \in U_1$ fermé dans U_1 et $x_1 \in \overline{\{x\}}$ la fermeture étant prise dans X. Si x_1 est fermé dans tous les autres U_i qui le contiennent il est fermé dans X. Sinon il existe un $i \in \{2, \ldots, n\}$ tel que $x_1 \in U_i$ et x_1 n'est pas fermé dans U_i . On peut à nouveau supposer que i = 2 et par le même argument qu'avant obtenir $x_2 \in U_2$ fermé dans U_2 et $x_2 \notin U_1$. En répétant le procédé au plus n fois on obtient un point fermé dans tous les ouverts affines U_i qui le contiennent.

Exercise . (4.11)

Démonstration. (i) \Rightarrow (ii) On montre que $f^{\sharp}(U)$ est injectif pour tout ouvert affine U de Y. Soit $g \in \mathcal{O}_Y(U)$ tel que $f^{\sharp}(U)(g) = 0$. Pour tout $y = f(x) \in U \cap f(X)$ on a

$$f_x^{\sharp} \colon \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$$

qui est un morphisme local et $f_x^{\sharp}(g) = 0 \in \mathfrak{m}_x$. D'où $g \in \mathfrak{m}_{f(x)}$. Or l'ensemble $\{y \in U, g \in \mathfrak{m}_y\}$ est un fermé de U, celui-ci contient f(X) c'est donc U tout entier. Il suit que $g \in \bigcap_{\mathfrak{p} \in \operatorname{Spec} \mathcal{O}_X(U)} \mathfrak{p}$ est nilpotent.

Comme Y est réduit g = 0. Le résultat est vrai sans l'hypothèse U affine en prenant un recouvrement par des ouverts affine.

 $(ii) \Rightarrow (iii)$ Par la proposition 4.18 le morphisme $\mathcal{O}_X(U) \to \mathcal{O}_{X,x}$ est injectif pour tout $x \in U$ donc en particulier si $V \subset U$ est un ouvert, $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ est injectif. En effet le diagramme suivant commute

Le résultat suit trivialement de cette remarque et de l'injectivité de $\mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}(V))$ par (ii).

 $(iii) \Rightarrow (iv)$ Soit V un ouvert de Y contenant $f(\xi_X)$. Le diagramme suivant

commute et par (iii) les flèches sont injectives.

$$\mathcal{O}_{Y}(V) \longrightarrow \mathcal{O}_{X}(f^{-1}(V))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{Y,f(\xi_{X})} \longrightarrow \mathcal{O}_{X,\xi_{X}}$$

Comme ξ_X est le point générique de X qui est un schéma entier (integral?) son idéal maximal associé est (0). Par injectivité et le fait que $f_{\xi_X}^{\sharp}$ est local l'idéal maximal de $f(\xi_X)$ est donc lui même (0). Il suit que $f(\xi_X) = \xi_Y$.

 $(iv) \Rightarrow (v)$ Trivial.

 $(v) \Rightarrow (i)$ Comme Y est un schéma entier $\overline{\{\xi_Y\}} = Y$.

2 Morphisms and base change

2.1 The technique of base change

Proposition 2.1. 1.4 Démonstration du point d.

Démonstration. On considère U,V des sous-schémas ouvert de X et Y. Il faut vérifier que $i \times j$ induit un isomorphisme de $U \times_S V$ dans $p^{-1}(U) \cap q^{-1}(V)$. Soit Z un schéma et f,g des morphismes $Z \to U, Z \to V$. En composant avec les injections de U,V dans X et Y on obtient un diagramme commutatif

Il suit que la flèche du milieu se factorise par $p^{-1}(U) \cap q^{-1}(V)$. Comme le morphisme $i \times j$ est l'unique morphisme de $U \times_S V$ dans $X \times_S Y$ faisant commuter les diagrammes et se factorisant par $p^{-1}(U) \cap q^{-1}(V)$ c'est un isomorphisme $U \times_S V \simeq p^{-1}(U) \cap q^{-1}(V)$.

Exercise . (1.7)

Démonstration. On suppose X,Y et S affines, c'est-à-dire $X=\operatorname{Spec} M$, $Y=\operatorname{Spec} N$ et $S=\operatorname{Spec} R$. Le résultat dans le cas général suit du cas affine par recollement (Intuitivement ok, l'idée doit marcher mais un truc détaillé serait bien...). On note $f\colon R\to M,\ g\colon R\to N$. Soit $(\mathfrak{p},\mathfrak{q})\in X\times Y$ tels que $\mathfrak{p}\in X_s,\ \mathfrak{q}\in Y_s$ pour un point $s\in S$. On a donc $f^{-1}(\mathfrak{p})=s$ d'où les morphismes

$$R \longrightarrow M \longrightarrow M/\mathfrak{p}$$

induisent

$$R/s \rightarrow \longrightarrow M/\mathfrak{p}$$

$$k(s) \longrightarrow k(\mathfrak{p})$$

et il en est de même pour \mathfrak{q} et N. On a donc des morphismes $M \to k(\mathfrak{p})$ et $N \to k(\mathfrak{q})$ tel que le diagramme suivant commute

et donc par propriété du produit tensoriel on obtient l'existence de la flèche en pointillé d'où un morphisme naturel

Spec
$$(k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})) \to X \times_S Y$$
.

On vérifie maintenant que l'image de ce morphisme est contenu dans l'ensemble

$$\{z \in X \times_S Y, \ p(z) = \mathfrak{p}, q(z) = \mathfrak{q}\}.$$

Il faut vérifier que si I est un idéal premier de $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ alors $\varphi^{-1}(I)$ est l'idéal \mathfrak{p} de M où φ est l'application $M \to k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. Comme $\varphi(\mathfrak{p}) = 0$ on a une inclusion. Maintenant, si $m \in M \setminus \mathfrak{p}$ est tel que $\varphi(m) \in I$ alors comme $\varphi(m) = \overline{m} \otimes 1$ qui est inversible dans $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$ ce qui est impossible car alors $I = k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. Donc $\varphi^{-1}(I) = \mathfrak{p}$ et ce raisonnement appliqué à N et \mathfrak{q} assure l'inclusion.

Il faut maintenant voir qu'un idéal I de $M \otimes_R N$ tel que $i^{-1}(I) = \mathfrak{p}$ et $j^{-1}(I) = \mathfrak{q}$ où i, j sont les applications $M \to M \otimes_R N$, $N \to M \otimes_R N$ est

tel que $M \otimes_R N \to k(I)$ se factorise par $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. En effet, $\mathfrak{p} \otimes 1$ est donc dans I et est envoyé sur 0 dans k(I) donc on a une factorisation

$$M \otimes_R N \to M/\mathfrak{p} \otimes_R N/\mathfrak{q} \to k(I).$$

Il reste à voir que l'on peut étendre cette dernière flèche à $k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})$. Il suit donc une factorisation de $k(I) \to X \times_S Y$ en

$$k(I) \longrightarrow \operatorname{Spec} (k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q})) \longrightarrow X \times_S Y.$$

Exercise . (1.8)

Démonstration. C'est une conséquence de l'exercice précédent. Soit $y \in Y$, il existe un $s \in S$ tel que $y \in Y_s$. Par surjectivité de $X \to S$ la fibre X_s au dessus de s est non vide donc contient un point $x \in X$. Par l'exercice 1.7 l'ensemble

$$\{z \in X \times_S Y, \ p(z) = \mathfrak{p}, q(z) = \mathfrak{q}\}\$$

est homéomorphe à Spec $(k(\mathfrak{p}) \otimes_{k(s)} k(\mathfrak{q}))$ qui est non vide donc contient au moins un point. Le morphisme $q: X \times_S Y$ est donc surjectif.

Exercise . (1.10)

Démonstration. Par la propriété universelle du produit fibré en tant qu'ensembles les applications $p\colon X\times_S Y\to X$ et $q\colon X\times_S Y\to Y$ donnent l'existence d'une unique application continue $f\colon |X\times_S Y|\to |X|\times_{|S|}|Y|$. Cette application est surjective par l'exercice 1.7.

On considère le produit tensoriel $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$. On a

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[X]/(X^2 + 1) = \mathbb{C}[X]/(X^2 + 1) = \mathbb{C}(X)/(X + i)(X - i)$$

et ce dernier anneau est isomorphe à $\mathbb{C} \times \mathbb{C}$ (Spécifier l'isomorphisme). Comme il n'y a qu'un point dans Spec \mathbb{C} le produit fibré des deux ensembles $|\operatorname{Spec} \mathbb{C}|$ sur $|\operatorname{Spec} \mathbb{R}|$ ne contient qu'un seul point. Par contre Spec $(\mathbb{C} \times \mathbb{C})$ contient deux idéaux premiers (1,0) et (0,1). L'application f est donc surjective mais pas injective ces deux points du produit fibré de schémas ayant même image dans le produit fibré d'ensembles.

3 Some local properties

3.1 Normal schemes

Exercise . (1.4)

 $D\acute{e}monstration.$ Si X est normal alors il est normal en tout point donc en particulier pour les points fermés.

Soit $x \in X$ un point qui n'est pas fermé. Alors par l'exercice 2.4.8 il existe un point fermé y dans $\overline{\{x\}}$. Soit V un ouvert affine contenant y, alors si $x \notin V$ on aurait $x \in X \setminus V$ qui est fermé donc en particulier $\overline{\{x\}} \subset X \setminus V$ et donc $y \in X \setminus V$ ce qui est une contradiction. Il suit que $x \in V$ et que l'on obtient $\mathcal{O}_{X,x}$ par localisation de $\mathcal{O}_{X,y}$. Ce dernier est donc réduit, intègre ou normal si $\mathcal{O}_{X,y}$ l'est ce qui prouve l'implication.