	Mintoms				Maxt eims	
×	7	Z	Term	Designation	Term	Designation
0	0	0	æ'3'z'	me	(2+y+z)	Mo
0	0		>c'y'z	m,	2+3+2'	171
0		0	2192'	my	21 + 3'+2	172
0	1	1	21'92	mz	20+7'+2'	M3
1	0	0	28 3121	my	21/+3+2	174
1	0	1	29'2	ms	20148+21	M5
1	J	D	× y 2'	m	24842	Me
1	1	1	26 92	my	20149421	19-7

Minterm - standard product Maxterm - Standard Sum-

Any Boolean junction can be expressed as a sum of minterms [Sum of product (\$0P)] - "Sum" meant the Oking of terms

and also can be caprosed as some of maxterns - "product" meand the ANDing of terms.

Ex- SOP - $J_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$ $POS - J_2 = (x+y+z)(x+y+z)(x+y+z')(x'+y+z')(x'+y+z')$ $= M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$

Ex- Express the Boolean function F = A+B'c in a sum of minterms.

Soln- F = A+B'C

The John has three variables A.B and C. The first term A is missing two variable. Therefore

A = A(B+B') = AB+AB'

This is still missing one variable:

A = AB(C+C') + AB'(C+C') = ABC+ABC'+AB'C'The second term B'C is missing one variable:

B'c = B'c (A+A') = AB'c + A'B'c

combining all terms, we have f = A + B'C = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'CBut AB'C appears twice, so according to theorems, setzence F = ABC + ABC' + AB'C + AB'C' + A'B'C $= m_1 + m_6 + m_5 + m_4 + m_1$ $= m_1 + m_4 + m_5 + m_6 + m_7 \quad Ams.$

Product of Sum (Pos)

& Express the Boolean function F = sey + se'z in a product of maxterin form or Postorin.

Soly
$$F = 2e \mathcal{Y} + 2e' Z = (2ey + 2e') (2ey + 2)$$

 $= (2e + 2e') (3e + 2e') (2e + 2e')$
 $= (2e' + 2e') (3e + 2e') (3ey + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$
 $= (2e' + 2e') (3e' + 2e') (3e' + 2e')$

Here each maxterm is missing come variable, therefore

$$x'+y = x'+y+zz' = r(x'+y+z)(x'+y+z')$$

$$x+z = x+z+yy' = (x+y+z)(x+y+z)$$

$$y+z = y+z+xx' = (x+y+z)(x'+y+z)$$

combining all the terms and removing those that appear more than once, we finally obtain:

$$F = (x'+y+z)(x'+y+z')(x+y+z)(x+y'+z)$$
= M4. M5. Mo M2
= M6.M2 M4.M5