Digital Integrated Circuits Homework #2

Due 2 hours before the next lecture

Problem 1: Equivalent Resistance

Consider NMOS device with W = 240 nm and L = 100 nm (effective L = 70 nm). Using the resistor averaging technique discussed in class, and parameters below, calculate R_{on} as V_{DD} changes from 0.4V to 1V in steps of 0.2V. Compare the results of your hand calculations with simulation results in Table 2.

Use following parameters for hand calculations:

$$\lambda = 0.795 \ V^{-1}$$
 k' = 129.5 μ A/V² L_{eff} = 70 nm V_{th} = 0.168 V V_{dsatn} = 0.3 V

Table 2: Ron (Analytical vs. Simulation)

Ron	I _{DSAT} (µA)	Analytical Model (R _{eq})	Simulation
			2-point avg
$V_{DD} = 0.4V$			$27.8~\mathrm{k}\Omega$
$V_{DD} = 0.6V$			9.0 kΩ
$V_{DD} = 0.8V$			6.5 kΩ
$V_{DD} = 1.0V$			5.0 kΩ

Problem 2: Inverter in Subthreshold

The inverter below, operates with $V_{DD} = 0.175V$ and is composed of $V_{Tn} = |V_{Tp}| = 0.20V$ devices. They can be described by the subthreshold voltage-current relation. The devices have identical I_S and n, (n=1.5 and kT/q=26mV).

Figure 2: Inverter in Subthreshold.

2A Calculate the switching threshold (V_M) of this inverter.

If the equation is difficult to solve, plot both sides and find the intersection point for a numerical answer.

2B Calculate V_{IL} and V_{IH} of the inverter.

You may find piecewise-linear approximation helpful.

Problem 3: MOS Capacitance

Use the following table.

Assumptions:

 $|V_{TH}| = 0.2V$ for both NMOS and PMOS

For the purpose of capacitance calculation (only), treat velocity saturation as saturation

Param.	C _{ox} [fF/\mu ²]	C _o [fF/μm]
NMOS	15	0.27
PMOS	14	0.25

- **3A** What is the t_{ox} (nm) of the NMOS transistor?
- 3B Consider a PMOS biased with $V_G = V_D = V_S = V_B = 0V$ Assume W = 480 nm, L = 120nm, $L_D = L_S = 240$ nm Calculate the following capacitances:
 - (B1) Gate-to-Channel capacitance (C_{GC})
 - (B2) Gate-to-Source capacitance (C_{GS})
- 3C Consider an NMOS biased with $V_G = V_D = 0.8V$, $V_S = V_B = 0V$ Assume W = 240 nm, L = 120nm, $L_D = L_S = 240$ nm Calculate the following capacitances:
 - (C1) Gate-to-Channel capacitance (C_{GC})
 - (C2) Gate-to-Source capacitance (C_{GS})

Clearly indicate your final formulas and circle/highlight your answers.

Problem 4: Computing Capacitance

Consider the circuit in Figure 4. Calculate the total equivalent capacitance on node X as it charges from 0 to $V_{DD}/2$.

Figure 4

You can use the following capacitance values in your calculations:

$$\begin{array}{ll} C_{db_NMOS} = 0.06 \; fF, & C_{db_PMOS} = 0.10 \; fF \\ C_{gd_NMOS} = 0.14 \; fF, & C_{gd_PMOS} = 0.26 \; fF \\ C_{g1} = 0.16 \; fF, & C_{g2} = 0.30 \; fF \end{array}$$

Problem 5: VTC

Consider the inverter below, with the input at the gate of the PMOS and a diode-connected NMOS.

(a) Calculate V_Y for $V_{IN} = 0$ V.

Device parameters:

$$\begin{aligned} &V_{TN}=0.2 \text{ V}, V_{TP}=-0.2 \text{ V} \\ &V_{DSATN}=|V_{DSATP}|=0.3 \text{ V} \\ &k'_n=130 \text{ } \mu\text{A}/V^2 \\ &k'_p=-100 \text{ } \mu\text{A}/V^2 \\ &(W/L)_A=1 \\ &(W/L)_B=4 \\ &\lambda=0, \gamma=0 \text{ for both transistors} \end{aligned}$$

 $V_{DD} = 1 \text{ V}$

(b) Calculate V_Y for $V_{IN} = V_{DD}$.

 $\mathbf{V}_{\mathbf{Y}} =$

 $\mathbf{V}_{\mathbf{Y}} =$

(c) Ignoring the results from (a) and (b), calculate switching threshold V_M for the inverter. Is V_M expected to be greater or smaller than 0.5V? (circle the correct answer)

> $V_{\rm M} > 0.5 \ {\rm V}$ $V_{\rm M} > 0.5 {\rm V}$

Briefly explain why:					
What are the modes of operation for M_A and M_B ?					
M _A :	M _B :				

Calculate the value of V_{M} .

 $V_M =$