Test 1 (Remotely Proctored)

Due Sep 30 at 12:15pm **Points** 105 **Questions** 18

Available after Sep 30 at 11am Time Limit 75 Minutes

Exam Requirements A webcam and microphone are required to take this exam.

Exam Security This exam will be monitored by **Proctorio**. Learn more about Proctorio (https://proctorio.zendesk.com/hc/articles/200972514).

Instructions

Note some questions can have multiple answers.

If we have k classes the information from them will be -p1 log p1 - p2 log p2 - - pk log pk where pi is the fraction of examples belonging to the ith class.

The logs are all base 2 by default so here log is implicitly log₂

Attempt History

<i>F</i>	Attempt	Time	Score
LATEST A	Attempt 1	27 minutes	95 out of 105

(!) Correct answers are hidden.

Score for this quiz: **95** out of 105 Submitted Sep 30 at 11:49am This attempt took 27 minutes.

Question 1	5 / 5 pts
A regression tree may be realized as	
a given regression function implemented in a tree	

a decision tree with a nominal function at each leaf
a decision tree with a value at each leaf

Question 2	5 / 5 pts
A decision tree will, typically, use a numeric attribute in a test	
creating one branch for each value	
by picking a number and having everything less than or equal to it i branch and everything greater than it in another branch	n one
creating one branch for each value with a different class	
onone of these	

Question 3	5 / 5 pts
Association rules rely on support and confidence which	
oprovide only useful rules	
are random variables	
onone of these	
limit the search space	

Question 4	5 / 5 pts
For a nominal attribute used as a test when building a decision value usually causes a branch to be created which means	tree, each
the nominal attribute must appear at least 2 times in the tree	
onone of these	
o you cannot have numeric attributes	
the nominal attribute will only be used in one test in the tree	

Question 5	5 / 5 pts
The no free lunch theorem can be interpreted to mean	
until an algorithm is shown better than another you should us mining	se it for data
 decision trees are the most explainable model 	
oyou should always use deep neural networks for a problem be perform the best	pecause they

for a given data set, we cannot tell beforehand what the best learning algorithm will be

Question 6	5 / 5 pts
If there are no labels on a data set what types of data mining a can be applied?	lgorithms
association rule learning	
✓ clustering	
regression algorithms	
decision trees	

Question 7	5 / 5 pts
The search space during training is largest for	
✓ rule learners	
instance based learning	
decision trees	
naive bayes	

Question 8	5 / 5 pts
The Laplace transform	
is used in Naive Bayes to make sure no nominal attribute has 0 occurrences for a class	
ofor nearest neighbors	
Naive bayes to get perfect probabilities	
Decision trees with missing values	

Question 9 5 / 5 pts

Using weather.nominal.train20 below what attribute is chosen by One-R

- @relation weather.symbolic
- @attribute outlook {sunny, overcast, rainy}
- @attribute temperature {hot, mild, cool}
- @attribute humidity {high, normal}
- @attribute windy {TRUE, FALSE}
- @attribute play {yes, no}
- @data

sunny, hot, high, FALSE,no overcast,hot, high, FALSE,yes rainy, cool, normal,FALSE,yes rainy, cool,normal,TRUE, no overcast,cool,normal,TRUE, yes sunny, mild,high, FALSE, no rainy, mild,normal,FALSE,yes

sunny, mild,normal,TRUE, yes overcast,hot,normal,FALSE,yes rainy, mild,high, TRUE, yes

outlook -> Sunny (2 no, 1 Yes), overcast (0 no, 3yes), rainy (1 no, 3 yes) for error rate of 2/10

one of temperature, humidity and windy is the best (equivalent) choice

windy -> FALSE (2 no, 4 yes), TRUE (1 no, 3 yes), for error rate of 3/10

humidity -> high (2 no, 2 yes), normal (1 no, 5 yes) -for error rate of 3/10

temperature -> (1 no, 2 yes) hot, (1 no, 2 yes) cool, (1 no, 3 yes) mild for error rate of 3/10

Question 10	10 / 10 pts
RIPPER uses what to choose a test to add	
o to a rule, foil gain	
to add to a rule, p-n	
o to a rule, information gain	
o to a tree, foil gain	

Incorrect

Question 11 0 / 5 pts

In association rule learning, to form a triplet (A B C) with the appropriate support you must have

- at least AB and AC with the appropriate support
- high confidence
- lots of examples
- all pairs with the appropriate support value

Question 12 10 / 10 pts

What is the information for the test height?

		(Class)
Height	Weight Eating Style	Eating
rieigrit		Style
Tall	normal	big
Short	heavy	big
Short	light	moderate
medium	normal	moderate
Short	heavy	moderate
Tall	light	big
medium	light	big
Tall	heavy	big

Naive Bayes with 1000 attributes/features have a problem with Lagrange multipliers has to use laplace correction for all features will tend to have 0 or near zero probabilities will work fine if there are lots of examples

Question 14	5 / 5 pts
Data mining could be defined as	
○ indescribable	

searching through the space of models for the best one
learning like a robot with reinforcement learning
 randomly choosing models

Question 15	5 / 5 pts
RIPPER does pruning	
to prevent overfitting by having more general rules	
to get small regression models	
to have the most specific rules possible	
o to be faster to learn	

Incorrect

Question 16	0 / 5 pts
Regression solutions have been adapted to classification	
only by using two classes 0 and 1 as values for regression exa	amples
called logistic regression	
never	
via regression trees	

Question 17	10 / 10 pts
With instance based learning (nearest neighbors)	
 training time is equal to testing time 	
training time is low, but test time large for a big training set	
test time is very slow for small data	
 training time is much slower than for RIPPER 	

Question 18 5 / 5 pts

What is the first test chosen for a rule for the class moderate and its Foil Gain? (equation Foil Gain = p1 (log2(p1/(p1+n1)) - log (p0/(p0+n0))

		(Class)
Height	Weight	Eating
Height		Style
Tall	normal	big
Short	heavy	big
Short	light	moderate
medium	normal	moderate
Short	heavy	moderate
Tall	light	big
medium	light	big
Tall	heavy	big

Height= Tall -> 0 (log2 0/3 - log 3/8)

Height = medium -> 1 (log2 1/2 - log2 3/8)
Height=short -> 2 (log2 2/3 - log2 3/8)
Weight=heavy -> 1 (log2 1/3 - log 3/8)

Quiz Score: 95 out of 105