

SOP: OR OIP 1 XY+XY' = X

POS: AND OIP 0 (X+Y)(X+Y') = X

grouping and then eliminating all varying values

2 ~ 1

4 ~ 2

F = 1

E= 0

	DONT	CARE			
	0/Ps f	or inpu	uts tha	t don't	matter
eg.	1/P :	BCD of high low	digit (XE (XE	[0,5] [6,9]	BCD has a limit of 9
	A B	C	D	0 / P	
0	0 0	0	0	:	
5	n 1	D	1	· 	
6	0 1)	0	0	
	:			:	
9	1 0	0	1	0	1
		1		X	don't care
15	1 1	l	<u> </u>	X	J
	in a cand, make be tre	K-Map can b bigger c cated o		v	can be used as a joken or 0 in 100 ps to se that aren't boped can e more simplified 80Ps/POS

L8 practice problems

 Design a combinational logic circuit that converts a 4-bit Excess-3 code into a BCD code. Your design needs to accept only those inputs that produce valid BCD codes. Use K-map method for simplification and make use of any don't care conditions.

AB	OD	01	1	10
00	0	0	1	0
01	1	1	1	1
П	Χ	Χ	X	X
10	1	1	Χ	X

Hint: this circuit has 4 inputs and 4 outputs. To fulfill the design, a Boolean expression must be obtained for each output.

An excess-3 code is obtained by adding the decimal value 3 to a BCD code. For example, decimal 0 is 0000 in BCD, which is 0011 in excess-3. See partial truth table below.

Partial truth table:

Input			Output				
Excess-3 code			BCD code				
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	1	0	0	1	0	0	1

3 2 1 0 ← A KMAPS

2. Problem 4.7 from Tocci 9th Ed.

A 4-bit binary number is represented as A3, A2, A1, A0 where A0 is the LSB. Design a logic circuit that will produce a High output whenever the binary number is greater than 0010 and less than 1000.

Note: otherwise the circuit produces a LOW output.

Design typically means a Boolean expression must be obtained for the circuit output. With the expression, a logic circuit diagram may be drawn if needed.

Page 1 ©2021 NTU

3. Problem 4-35 from Tocci 9th Ed.

Design a logic circuit that has two signal inputs A1 and A0 and a control input S so that it functions according to the requirements given in the figure below. This circuit is a multiplexer which will be covered in the MSI syllabus.

4. Modify the circuit obtained in Question 3 such that it now has an active-high enable input EN whose effect is shown in the new truth table:

Inp	Output	
EN	S	Z
0	X	0
1	0	A0
1	1	A1

$$X =$$
"don't care", i.e. 0 or 1

You may describe the modification with words or sketch a diagram to illustrate

Page 2 ©2021 NTU

ENABLE / DISABLE \leftarrow design feature

enabled: if O/P can change w/C change in I/Pdisabled / inhibited: O/P is fixed (0 or 1)

eq. $A = X = A \cdot O = D$ regardless of A B = D C = A $C = A \cdot O = D$ regardless of A $C = A \cdot O = D$ C = A $C = A \cdot O = D$ C = A $C = A \cdot O = D$ C = A $C = A \cdot O = D$ $C = A \cdot O = D$