Vicente Espinosa NOMBRE:

SECCIÓN: 2

Nº LISTA: 36

PUNTAJE:

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 7 – Respuesta Pregunta 2

1

Sabemos que se cumple para 0 y para 1, pues $2^0 = 1$ y $2^1 = 2$, luego asumiendo que se cumple para n - 1, lo demostraremos para n:

Dado que #nodes $(T_{n-1}) = 2^{n-1}$

Sabemos que #nodes (T_n) será $1 + \sum_{i=1}^{n-1} \text{#nodes}(T_i)$ por lo tanto, se puede traducir a $1 + \sum_{i=1}^{n-1} 2^i$

Y, siguiendo esta lógica, si juntamos el 1 que sobra, con 2⁰, nos dará 2¹, el cual podemos sumar con el 2^1 que hay, y conseguir 2^2 . Si seguimos así, deberíamos llegar a tener solo la suma de $2^{n-1} + 2^{n-1}$, lo que da como resultado final: 2^n .

$\mathbf{2}$

Sabemos que $depth(t) = 1 + \{depth(t_1), ..., depth(t_k)\}$ Sabemos que depth $(T_0) = 0$

Luego, podemos calcular depth (T_1) usando lo anterior: depth $(T_1) = 1 + \max\{ \text{ depth}(T_0) \} = 1 + 0 = 1.$ Luego, siguiendo lo mismo, depth $(T_2) = 2$ y asi sucesivamente, por lo tanto, notamos que depth (T_m) aumenta junto con m, entonces, si asumimos que depth $(T_{n-1}) = n-1$, debemos probar que depth $(T_{n-1}) = n$. $depth(T_{n-1}) = 1 + máx\{ depth(T_{n-1}),...,depth(T_1) \} = 1 + n - 1 = n.$

Por lo tanto, para cada T_n , probamos que depth $(T_n) = n$

3

Nada

4

Puesto que ya probamos que $\# nodes(T_i) = 2^i$, solo basta invertir esto:

```
\# \operatorname{nodes}(T_i) = 2^i
                                                       Aplicamos log<sub>2</sub>
\log_2(\# \operatorname{nodes}(T_i)) = \log_2(2^i)
\log_2(\# \operatorname{nodes}(T_i)) = i
```