1. Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definitions of Θ -notation, prove that $\max(f(n),g(n))=\Theta(f(n)+g(n))$.

For simplicity, let us define $h(n) = \max(f(n), g(n))$. To prove $h(n) = \Theta(f(n) + g(n))$, we must find positive constants c_1 , c_2 and n_0 such that $0 \le c_1 \cdot \{f(n) + g(n)\} \le h(n) \le c_2 \cdot \{f(n) + g(n)\}$ for all $n \ge n_0$.

Both f(n) and g(n) are asymptotically nonnegative functions, so that for some n' we have $0 \le f(n)$ and $0 \le g(n)$ for all $n \ge n'$. Select $n_0 = n'$.

Suppose further without loss of generality that $g(n) \leq f(n) = h(n)$. Then $f(n)+g(n) \leq 2 \cdot h(n)$, so $\frac{1}{2} \cdot (f(n)+g(n)) \leq h(n)$ and we can choose $c_1 = 1/2$. Likewise since both f(n) and g(n) are asymptotically nonnegative, we can write $f(n) \leq f(n) + g(n)$ for $n \geq n_0 = n'$ and choose $c_2 = 1$.

Hence with $c_1 = 1/2$, $c_2 = 1$ and $n_0 = n'$, we have $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

2. Show that for any real constants a and b, where b > 0,

$$(n+a)^b = \Theta(n^b)$$

To show that $(n+a)^b = \Theta(n^b)$, we must find positive constants c_1 , c_2 , and n_0 such that for all $n \ge n_0$, we have:

$$c_1 n^b \le (n+a)^b \le c_2 n^b$$

$$c_1 n^b \le \left\{ n(1+\frac{a}{n}) \right\}^b \le c_2 n^b$$

$$c_1 n^b \le n^b \left(1 + \frac{a}{n} \right)^b \le c_2 n^b$$

$$c_1 \le \left(1 + \frac{a}{n} \right)^b \le c_2$$

Select $n_0 = 2|a|$, and suppose that a < 0. Then the middle term becomes $(1 + a/n_0)^b \to (\frac{1}{2})^b$ when $n = n_0$ and increases as $n \ge n_0$, which suggests that we should choose $c_1 = (\frac{1}{2})^b$. Likewise, suppose instead that we have a > 0. Then the middle term becomes $(1 + a/n_0)^b \to (\frac{3}{2})^b$ when $n = n_0$ and decreases as $n \ge n_0$, which suggests that we should choose $c_2 = (\frac{3}{2})^b$.

Hence with $c_1 = (\frac{1}{2})^b$, $c_2 = (\frac{3}{2})^b$ and $n_0 = 2|a|$, we have $(n+a)^b = \Theta(n^b)$.

3. Explain why the statement "The running time of algorithm A is at least $O(n^2)$ " is content-free.

The statement doesn't make sense, or is meaningless, because $O(n^2)$ is an *upper* bound on the running time of A. It could make sense to that the running time of A is at most $O(n^2)$, or it could also make sense to say that the running time of A is at best $\Omega(n^2)$, but the statement as it stands doesn't make sense in the context of what $O(n^2)$ means.

4. Is
$$2^{n+1} = O(2^n)$$
? Is $2^{2n} = O(2^n)$?

To determine if $2^{n+1} = O(2^n)$, we must find positive constants c and n_0 such that $2^{n+1} \le c \cdot 2^n$ for all $n \ge n_0$. Dividing both sides of this inequality by 2^n , we obtain $2 \le c$. Select $n_0 = 1$ and c = 3, and we have established that $2^{n+1} = O(2^n)$.

To determine if $2^{2n} = O(2^n)$, we must find positive constants c and n_0 such that $2^{2n} \le c \cdot 2^n$ for all $n \ge n_0$. Dividing both sides of this inequality by 2^n , we obtain $2^n \le c$. Clearly, there is no choice of c that will satisfy this relation. Hence, we conclude that $2^{2n} \ne O(2^n)$.

5. Prove Theorem 2.1.

Theorem 2.1 states that for any two functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Suppose that $f(n) = \Theta(g(n))$. This means that we can find positive constants c_1 , c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$. Clearly, this means that we have found positive constants c_2 and n_0 such that $0 \le f(n) \le c_2 g(n)$ for all $n \ge n_0$, hence f(n) = O(g(n)). Likewise, it also means that we have found positive constants c_1 and n_0 such that $0 \le c_1 g(n) \le f(n)$ for all $n \ge n_0$, hence $f(n) = \Omega(g(n))$.

This establishes $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)) \land f(n) = \Omega(g(n))$. Suppose next that f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. Since $f(n) = \Omega(g(n))$, we can find positive constants c_1 and c_2 such that $0 \le c_1 g(n) \le f(n)$ for all $n \ge n_1$. Likewise, since f(n) = O(g(n)), we can find positive constants c_2 and c_2 such that c_2 such that c_2 and c_3 such that c_3 such that c_4 such that

This establishes $f(n) = O(g(n)) \land f(n) = \Omega(g(n)) \Rightarrow f(n) = \Theta(g(n))$. Hence $f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$. 6. Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

Let T(n) be the running time of the algorithm and suppose that $T(n) = \Theta(g(n))$. Hence we can find positive numbers c_1 , c_2 and n_0 such that $0 \le c_1 \cdot g(n) \le T(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$. The longest T(n) could possibly take to complete is bounded above by $c_2 \cdot g(n)$, hence T(n) = O(g(n)). The fastest that T(n) could possibly take to complete is bounded below by $c_1 \cdot g(n)$, hence $T(n) = \Omega(g(n))$.

Suppose that the fastest running time for T(n) is bounded below by $\Omega(g(n))$. This means that we can find positive constants c_1 and n_1 such that $0 \le c_1 \cdot g(n) \le f(n)$ for all $n \ge n_1$. Suppose further that the worst-case running time for T(n) is bounded above by O(g(n)). This means that we can find positive constants c_2 and n_2 such that $0 \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_2$. Let $n_0 = \max(n_1, n_2)$. Therefore, we have $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$ and hence $T(n) = \Theta(g(n))$.

7. Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

The notations o(g(n)) and $\omega(g(n))$ are used to indicate bounds that are not asymptotically tight. That is, we have f(n) = o(g(n)) if for any positive constant c, we can find a positive constant n_0 such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$. Likewise, we have $f(n) = \omega(g(n))$ if for any positive constant c, we can find a positive constant n_0 such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

Suppose we have $f(n) = \omega(g(n))$, and select an arbitrary positive constant $c_0 > 0$. Since $f(n) = \omega(g(n))$, we can find a positive constant $n_1 > 0$ such that $0 \le c_0 \cdot g(n) < f(n)$ for all $n \ge n_1$. Suppose further that f(n) = o(g(n)), so that we can find another positive constant $n_2 > 0$ such that $0 \le f(n) < c_0 \cdot g(n)$ for all $n \ge n_2$. Let $n_0 = \max(n_1, n_2)$. It follows that we must have $c_0 \cdot g(n) < f(n) < c_0 \cdot g(n)$ for all $n \ge n_0$. This is a contradiction, and so f(n) cannot be in both $\omega(g(n))$ and o(g(n)) simultaneously. Since the choice of f(n) was arbitrary, we have $o(g(n)) \cap \omega(g(n)) = \emptyset$.

A second approach would be to use a result given in the text, namely that $f(n) = \omega(g(n))$ if and only if g(n) = o(f(n)). Suppose that $\omega(g(n)) \cap o(g(n)) \neq \emptyset$ and choose some $f(n) \in \omega(g(n)) \cap o(g(n))$. Then $f(n) = \omega(g(n))$ and f(n) = o(g(n)). But since $f(n) = \omega(g(n))$, we must have that g(n) = o(f(n)) from the result in the text.

Since f(n) = o(g(n)), we can find a $n_1 > 0$ such that $0 \le f(n) < c \cdot g(n)$ for any c > 0 and all $n \ge n_1$. Likewise, since g(n) = o(f(n)), we can

find $n_2 > 0$ such that $0 \le g(n) < c \cdot f(n)$ for any c > 0 and all $n \ge n_2$. Choose $n_0 = \max(n_1, n_2)$. It follows then that we have $f(n) < c \cdot g(n)$ and $g(n) < c \cdot f(n)$ for any c > 0 and all $n \ge n_0$, which is a contradiction. Hence, no such f(n) exists and $o(g(n)) \cap \omega(g(n)) = \emptyset$.

8. We can extend our notation to the case of two parameters n and m that can go to infinity independently at different rates. For a given function g(n,m), we denote by O(g(n,m)) the set of functions

 $O(g(n,m)) = \{f(n,m) : \text{there exist positive constants } c, n_0 \text{ and } m_0 \text{ such that } 0 \le f(n,m) \le c \cdot g(n,m) \text{ for all } n \ge n_0 \text{ and } m \ge m_0 \}$

Give corresponding definitions for $\Omega(g(n,m))$ and $\Theta(g(n,m))$.

 $\Omega(g(n,m)) = \{f(n,m) : \text{there exist positive constants } c, n_0 \text{ and } m_0 \text{ such that } 0 \le c \cdot g(n,m) \le f(n,m) \text{ for all } n \ge n_0 \text{ and } m \ge m_0 \}.$

 $\Theta(g(n,m)) = \{f(n,m) : \text{there exist positive constants } c_1, c_2, n_0 \text{ and } m_0 \text{ such that } 0 \leq c_1 \cdot g(n,m) \leq f(n,m) \leq c_2 \cdot g(n,m) \text{ for all } n \geq n_0 \text{ and } m \geq m_0 \}.$