Module Overview
Unix Overview
Concepts
Working with Unix

COMP09024 Unix System Administration Lecture 1: Introduction

Duncan Thomson/Hector Marco

UWS

Trimester 1 2020/21

Outline

- 1.1 Module Overview
 - Classes and Staff
 - Learning Outcomes
 - Assessment
 - Regulations
 - Resources
- 1.2 Unix Overview
 - What is Unix?
 - Where is Unix used?
 - Why Unix?

- Unix Philosophy
- History
- 1.3 Concepts
 - Filesystem
 - Users
 - Processes
- 1.4 Working with Unix
 - The Command Line
 - Unix Commands
 - Documentation

Module Overview
Unix Overview
Concepts
Working with Unix

Classes and Staff Learning Outcome Assessment Regulations Resources

1.1 Module Overview

Classes and Staff

All campuses under the same day/hour online delivery:

Three lecturers to remotely support your lectures and labs:

- UWS Paisley (Hector Marco)
- UWS Lanarkshire (Henry Hunter)
- NCL Cumbernauld (Neil Gillies)

Staff can be contacted as follows:

H Marco hector.marco@uws.ac.uk

H Hunter henry.hunter@uws.ac.uk N Gillies Neil.Gillies@nclan.ac.uk

Learning Outcomes

The module descriptor is available on http://psmd.uws.ac.uk/ The learning outcomes of the module are:

- Demonstrate a broad and integrated understanding of Unix concepts and terminology
- Demonstrate a detailed knowledge of areas of Unix system administration
- Use a range of Unix system administration skills to configure a system to specified requirements
- Use a number of tools to configure, update, monitor and troubleshoot a Unix-like system

Assessment

- Lab (B)ook: Your Answers to Laboratory Exercises
 - Submit in PDF format
 - Assessed questions chosen randomly
- Lab (D)emo: Presentation of Answers to a Worksheet
- (E)xamination: 90-min exam (multi-choice)
- Schedule: B = wk 11; D = wk 11/12; E = wk 14/15
- (C)oursework Mark: C = (2B + D) / 3
- (M)odule Mark: M = 0.4B + 0.2D + 0.4E
- Pass = min of 40% for M and min of 30% for both C and E

Regulations

UWS Student Engagement Policy

- Regulation (5.7.1 c) states that, attendance will be monitored and, if deemed unsatisfactory, may result in warning and/or withdrawal
- Alas attendance is the most visible facet of engagement
- Minimum expected attendance at lectures is 75%

UWS Assessment Policy (paraphrased extract)

- Regulation (7.8.1 b) states in effect that, where a student has not submitted any work in a module for assessment, they must re-attend instead of re-sitting
- Details here: http://www.uws.ac.uk/regulatoryframework/

Moodle

My UWS - Virtual Learning Environment (VLE)

- Accessed here: https://my.uws.ac.uk
- Moodle will typically provide:
 - Archived Announcements
 - A Discussion Forum
 - Module Materials including all slides and laboratories
- It is imperative that you check (or re-direct) your student e-mail account to be sure of receiving all communications

Laboratory

- Virtual laboratory accessible through https://my.uws.ac.uk
- You only need your browser (PC, tablet, smartphone, etc.)

Software

JSLinux

- The first PC/x86 emulator in Javascript running Linux
- Supports multiple CPU architectures (riscv and x86)
- Can run a full Linux environment
- It has access to Internet from inside the emulator via websocket VPN
- Author: Fabrice Bellard http://bellard.org/jslinux

Books / Websites

- Many books are available which can help you to learn about Unix
- Historically, O'Reilly has a good track record of publishing well respected books on Unix or topics within it — you'll find their books in any good bookshop (http://www.oreilly.com/)
- The Linux Documentation Project (LDP) produces a number of online books and other documentation relating more specifically to Linux: http://www.tldp.org/
- You can also find Debian-specific documentation at http://www.debian.org/doc/

Module Overview
Unix Overview
Concepts
Working with Unix

Vhat is Unix? Vhere is Unix used' Vhy Unix? Inix Philosophy listory

1.2 Unix Overview

What is Unix?

Unix is a portable, multiuser, multitasking operating system:

- Portable runs on multiple platforms
- Multiuser designed to support multiple users (simultaneously)
- Multitasking can do more than one thing at a time using timesharing or multi-processor

Where is Unix used?

- Originally (1970s) on mainframes and servers as a timesharing OS
- In 1980s began to be used on graphical workstations (eg Solaris, HP-UX, SGI)
- This extended to standard PCs in the 1990s with Linux and BSD variants
- Widely used for Internet servers (eg Facebook, Google, Youtube, Amazon...)
- Increasingly used as a platform for embedded devices (eg wireless routers, televisions, Raspberry Pi)
- Is the basis of Android (phones and tablets), as well as MacOS
- The OS for 98% of the fastest supercomputers (TOP500)

Why Unix?

- Portable
- Multitasking
- Multiuser
- Flexible
- Stable
- Secure
- High performace
- Widespread
- Low cost (for 'free' software)

Unix Philosophy

A number of phrases embody much about how Unix is designed and operates. Some of the important philosphical underpinnings include concepts such as:

- Hierarchical filesystem
- Plain text files and interfaces
- 'Everything is a file' (eg devices, directories)
- Small software tools which can be easily chained together: 'Do one thing well'

History

1970s — Origins

- 1960s: Multics an experimental timesharing OS (MIT, Bell Labs, GE)
- 1969-70: 'Unics' developed to support a single user: supported hierarchical filesystem, device files, shell and utilities (Thompson and Ritchie) — all in assembly language
- 1972: reimplemented in C, bringing portability, and pipes
- 1970s AT&T Unix distributed with source code
- 1975: Capabilities as an ARPANet (Internet) host documented (RFC681)
- 1977: Berkeley Software Distribution (BSD) begins to be developed at the University of California

History

1980s — Unix Wars and GNU

- 1983: AT&T begins selling Unix as a commercial product (System V) — without source code
- In reaction, Richard Stallman starts the GNU (GNU's Not Unix) project using GPL licensing
- Early-mid 1980s: Many vendors release own versions of Unix, eg SunOS, HP-UX, AIX (IBM), Xenix (Microsoft)
- 1984: X/Open consortium founded in attempt to standardise features
- 1987: GNU project has a compiler, editor and utilities
- 1988: First IEEE POSIX standard released
- Late 1980s: Various networking features adopted, including X11 (remote desktop protocol), NFS (filesharing), NIS (account information)

History

1990s — Linux

- 1991: Linus Torvalds (Finnish student) releases Linux kernel (for Intel 80386) under the GPL
- 1992: GNU project has full set of user utilities, but still working on a kernel (HURD)
- 1992: First Linux distributions (kernel with GNU utilities) released (eg MCC, TAMU, SLS, Yggdrasil)
- 1993: Further Linux distributions: Slackware, Debian
- 1994: First release of commercial RedHat and SuSE Linux distributions
- 1994: Linux kernel version 1.0 released
- 1995: Linux 1.2 introduces multiarchitecture support
- 1996: Linux 2.0 supports SMP (more than 1 CPU)

Filesystem Users Processes

1.3 Concepts

Filesystem

- The virtual filesystem is a single hierarchical system
- The filesystem root is / (a forward slash!)
- All files can be found within it
- The cd command changes the current directory
- Filenames can be absolute (starting with /) or relative from the current directory. For example, from /home/user:
 - ./file1.txt
 - /home/user/file1.txt
- The directory name . . means 'up one level'
 - If we are in /home/user, after cd .. we are in /home.

Users

- Every user is identified by a numerical user ID (UID)
- Users generally login using an alphanumeric username
- UID 0 usually has the username root, and is the administrative user
- Users belong to one (or more) groups
- Files, processes and so on belong to a particular user
- Files also have a group owner
- The root user is known as the superuser, and usually has privileges to do anything
- Best to work as a normal user, unless you really need to be root

Processes

- When a executes program, the application is loaded into memory and begins running. This is known as a process
- Since the application is launched by a user, each process belongs to a user
 - But the owner of a process can change
- A user can run an application multiple times. E.g: Two calculators but there is only 1 program on disk
- Multiple processes are running on a system
- Every process has a process ID (PID)
- When the kernel boots, it executes a process (the first one) with PID 1, usually the init process, which initialises the system and starts other processes (loing, networking, etc.)

The Command Ling Unix Commands Documentation

1.4 Working with Unix

Working on the Command Line

- Much work in Unix, and most administrative tasks, can be performed on the command line
- Typical Unix system administration tasks consist of:
 - Logging in (possibly remotely)
 - Making changes to a (text-based) configuration file
 - Reloading services to use a new configuration
 - Checking changes have had the required effect
- So important skills include:
 - Working on the command line (the shell)
 - Editing text files
 - Understanding how to start/stop services, check log files

Some Important Rules

First, there are a few important things to be aware of:

- First Rule: Unix is case sensitive
 - True for most things: commands, flags, filenames...
- Second Rule: Unix is concise:
 - Many commands are abbreviations
 - No 'informational' output just errors
- Third Rule: Unix assumes you know what you're doing
 - Doesn't usually ask for confirmation of commands

The Shell

- The most important interaction with the system is through a Command Line Interface known as the 'shell'
- Various shells are available for Unix (later), but we will mostly be using the Bourne Again Shell (bash)
- Commands are typed at a prompt, which is usually:
 - For normal users: \$
 - For the administrative user (root): #
- A shell is started when you login to the system (or when you open a new terminal window in a GUI)
- Shell can be exited with exit, logout or (easiest) Ctrl-D

Shell Tricks

The bash shell has a number of nice capabilities to make working with it easier and faster:

- Command line history
 - Up and down arrows to retrieve previous commands
- Command line editing
 - Left and right arrows to move forward and back
 - Ctrl-A and Ctrl-E to move to the start or end of a line
 - BackSpace and Delete to delete backwards and forwards
- Command line completion
 - TAB key to complete a command (or filename)

Command Syntax

Most commands consist of three parts:

- The command itself
- Flags, which modify the operation of the command (usually preceded by - or --)
- Parameters, specifying data or input to the command (eg filenames)

For example:

```
user@debian:~$ ls -l /home
```

- 1s is the command ('list' files)
- -1 is a flag (give a long listing)
- /home is the parameter (list the /home directory)

Some Commands

- cd change (working) directory
- pwd print working directory
- 1s list files in a directory
- man show manual page
- who show who is logged on
- more show contents of a file (or less)
- ps list processes
- date show (or set) time and date
- cat concatenate a number of files
- su set user (become another user)

Command Flags

Flags can be combined together in various ways, eg separately:

or by chaining together:

long versions of flags (with double hyphens) must be separate:

```
ls -lt --reverse
```

some flags expect additional parameters:

sometimes flags don't always use hyphens:

ps aux

Documentation

- The most important source of Unix documentation is the man (manual) command (next slide)
- Many commands have a -h, --help or -? option which prints a command synopsis
- Some (GNU) commands also use the info system (a text-based hyperlink system)
- Some systems also include further online documentation at (eg) /usr/share/doc/
- For Linux, there is also the Linux Documentation Project (LDP) at http://www.tldp.org/
- And many good books (O'Reilly is a publisher with a long history of providing excellent books on aspects of Unix administration)

The man Command

- Shows manual page for command specified eg man man
- In viewer: SPACE for next page; q to quit; / to search...
- Manual pages generally follow a fixed format which might include sections such as NAME, SYNOPSIS, DESCRIPTION, EXAMPLES, FILES, SEE ALSO
- SYNOPSIS shows command syntax using standard conventions
- Manual divided into 8 sections each covering different information, eg:
 - User commands (Section 1)
 - File formats (Section 5)
 - System administration commands (Section 8)
- Can also hunt for keywords (using -k or apropos), and has a number of related commands, including whatis