1 Section 1.A Exercises

Exercises with solutions from Section 1.A of [LADR].

Exercise 1.A.1. Suppose a and b are real numbers, not both 0. Find real numbers c and d such that

$$1/(a+bi) = c+di.$$

Solution. Observe that

$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2}.$$

So the desired real numbers are $c = a/(a^2 + b^2)$ and $d = -b/(a^2 + b^2)$.

Exercise 1.A.2. Show that

$$\frac{-1+\sqrt{3}i}{2}$$

is a cube root of 1 (meaning that its cube equals 1).

Solution. Let $z = \frac{-1+\sqrt{3}i}{2}$, so that $2z = -1 + \sqrt{3}i$. Then

$$(2z)^2 = 4z^2 = (-1 + \sqrt{3}i)^2 = 1 - 2\sqrt{3}i - 3 = -2 - 2\sqrt{3}i$$

$$\implies (2z)^3 = (4z^2)(2z) = (-2 - 2\sqrt{3}i)(-1 + \sqrt{3}i) = 2 - 2\sqrt{3}i + 2\sqrt{3}i + 6 = 8,$$

i.e. $8z^3 = 8$. It follows that $z^3 = 1$.

Exercise 1.A.3. Find two distinct square roots of i.

Solution. Let $z_1 = \frac{1+i}{\sqrt{2}}$ and $z_2 = -z_1$ (z_1 and z_2 are distinct since $z_1 \neq 0$). Then

$$2z_1^2 = (1+i)^2 = 2i \implies z_1^2 = i,$$

and hence $z_2^2 = (-z_1)^2 = z_1^2 = i$.

Exercise 1.A.4. Show that $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in \mathbb{C}$.

Solution. Suppose $\alpha = x + yi$ and $\beta = u + vi$. Then

$$\alpha + \beta = (x + u) + (y + v)i = (u + x) + (v + y)i = \beta + \alpha,$$

where we have used commutativity of addition in R.

Exercise 1.A.5. Show that $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Solution. Suppose that $\alpha = x + yi, \beta = u + vi$, and $\lambda = s + ti$. Then

$$(\alpha + \beta) + \lambda = ((x+u) + (y+v)i) + \lambda = ((x+u) + s) + ((y+v) + t)i$$
$$= (x + (u+s)) + (y + (v+t))i = \alpha + ((u+s) + (v+t)i) = \alpha + (\beta + \lambda),$$

where we have used associativity of addition in **R**.

Exercise 1.A.6. Show that $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Solution. Suppose that $\alpha = x + yi, \beta = u + vi$, and $\lambda = s + ti$. Then

$$(\alpha\beta)\lambda = ((xu - yv) + (xv + yu)i)\lambda$$

$$= ((xu - yv)s - (xv + yu)t) + ((xu - yv)t + (xv + yu)s)i$$

$$= ((xu)s - (yv)s - (xv)t - (yu)t) + ((xu)t - (yv)t + (xv)s + (yu)s)i$$

$$= (x(us) - x(vt) - y(ut) - y(vs)) + (x(ut) + x(vs) + y(us) - y(vt))i$$

$$= (x(us - vt) - y(ut + vs)) + (x(ut + vs) + y(us - vt))i$$

$$= \alpha((us - vt) + (ut + vs)i)$$

$$= \alpha(\beta\lambda),$$

where we have used several algebraic properties of R.

Exercise 1.A.7. Show that for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$.

Solution. Suppose that $\alpha = x + yi$ and let $\beta = -x - yi$. Then

$$\alpha + \beta = (x - x) + (y - y)i = 0 + 0i = 0.$$

To see that β is unique, suppose β' also satisfies $\alpha + \beta' = 0$. Then

$$\beta = \beta + 0 = \beta + (\alpha + \beta') = (\alpha + \beta) + \beta' = 0 + \beta' = \beta',$$

where we have used associativity and commutativity of addition in C.

Exercise 1.A.8. Show that for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha\beta = 1$.

Solution. Suppose that $\alpha = x + yi$. Since $\alpha \neq 0$, it must be the case that x and y are not both zero. It follows that $x^2 + y^2 \neq 0$, so let $\beta = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i$. Then

$$\alpha\beta = (x+yi)\left(\frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i\right) = \frac{x^2+y^2}{x^2+y^2} + \frac{xy-xy}{x^2+y^2}i = 1 + 0i = 1.$$

To see that β is unique, suppose β' also satisfies $\alpha\beta'=1$. Then

$$\beta = \beta 1 = \beta(\alpha \beta') = (\alpha \beta)\beta' = 1\beta' = \beta',$$

where we have used associativity and commutativity of multiplication in C.

Exercise 1.A.9. Show that $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$ for all $\lambda, \alpha, \beta \in \mathbb{C}$.

Solution. Suppose that $\alpha = x + yi, \beta = u + vi$, and $\lambda = s + ti$. Then

$$\lambda(\alpha + \beta) = (s(x+u) - t(y+v)) + (s(y+v) + t(x+u))i$$

$$= (sx + su - ty - tv) + (sy + sv + tx + tu)i$$

$$= [(sx - ty) + (sy + tx)i] + [(su - tv) + (sv + tu)i]$$

$$= \lambda\alpha + \lambda\beta.$$

where we have used distributivity in **R**.

Exercise 1.A.10. Find $x \in \mathbb{R}^4$ such that

$$(4, -3, 1, 7) + 2x = (5, 9, -6, 8).$$

Solution. Take $x = (\frac{1}{2}, 6, -\frac{7}{2}, \frac{1}{2}).$

Exercise 1.A.11. Explain why there does not exist $\lambda \in \mathbb{C}$ such that

$$\lambda(2-3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i).$$

Solution. Suppose there was such a λ . Then

$$\lambda(2-3i) = 12-5i \implies \lambda = \frac{12-5i}{2-3i} = 3+2i.$$

However,

$$(3+2i)(-6+7i) = -32+9i \neq -32-9i.$$

Exercise 1.A.12. Show that (x + y) + z = x + (y + z) for all $x, y, z \in \mathbf{F}^n$.

Solution. Suppose $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n), \text{ and } z = (z_1, \ldots, z_n).$ Then

$$(x+y) + z = (x_1 + y_1, \dots, x_n + y_n) + z$$

$$= ((x_1 + y_1) + z_1, \dots, (x_n + y_n) + z_n)$$

$$= (x_1 + (y_1 + z_1), \dots, x_n + (y_n + z_n))$$

$$= x + (y_1 + z_1, \dots, y_n + z_n)$$

$$= x + (y + z).$$

where we have used associativity of addition in \mathbf{F} .

Exercise 1.A.13. Show that (ab)x = a(bx) for all $x \in \mathbf{F}^n$ and all $a, b \in \mathbf{F}$.

Solution. Suppose that $x = (x_1, \ldots, x_n)$. Then

$$(ab)x = ((ab)x_1, \dots, (ab)x_n)$$

$$= (a(bx_1), \dots, a(bx_n))$$

$$= a(bx_1, \dots, bx_n)$$

$$= a(bx),$$

where we have used associativity of multiplication in \mathbf{F} .

Exercise 1.A.14. Show that 1x = x for all $x \in \mathbf{F}^n$.

Solution. Suppose that $x = (x_1, \ldots, x_n)$. Then

$$1x = (1x_1, \dots, 1x_n) = (x_1, \dots, x_n) = x,$$

where we have used that $1x_i = x_i$ for any $x_i \in \mathbf{F}$.

Exercise 1.A.15. Show that $\lambda(x+y) = \lambda x + \lambda y$ for all $\lambda \in \mathbf{F}$ and all $x, y \in \mathbf{F}^n$.

Solution. Suppose that $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$. Then

$$\lambda(x+y) = \lambda(x_1 + y_1, \dots, x_n + y_n)$$

$$= (\lambda(x_1 + y_1), \dots, \lambda(x_n + y_n))$$

$$= (\lambda x_1 + \lambda y_1, \dots, \lambda x_n + \lambda y_n)$$

$$= (\lambda x_1, \dots, \lambda x_n) + (\lambda y_1, \dots, \lambda y_n)$$

$$= \lambda(x_1, \dots, x_n) + \lambda(y_1, \dots, y_n)$$

$$= \lambda x + \lambda y,$$

where we have used distributivity in **F**.

Exercise 1.A.16. Show that (a + b)x = ax + bx for all $a, b \in \mathbf{F}$ and all $x \in \mathbf{F}^n$.

Solution. Suppose that $x = (x_1, \ldots, x_n)$. Then

$$(a+b)x = (a+b)(x_1, ..., x_n)$$

$$= ((a+b)x_1, ..., (a+b)x_n)$$

$$= (ax_1 + bx_1, ..., ax_n + bx_n)$$

$$= (ax_1, ..., ax_n) + (bx_1, ..., bx_n)$$

$$= a(x_1, ..., x_n) + b(x_1, ..., x_n)$$

$$= ax + bx,$$

where we have used distributivity in \mathbf{F} .

[LADR] Axler, S. (2015) Linear Algebra Done Right. 3rd edn.