Class 5.

Programming-MATLAB

Practice class coursel

- 1. Enter the address ftp://ftp.korea.ac.kr in your web browser.
- 2. Click the directory MATLAB/
- 3. Choose appropriate R2017a.egg depending on your OS.
- 4. Download it.
- 5. During downloading, go to www.mathworks.com and create an account.
- 6. create an account [*your ID*@korea.ac.kr]
- 7. Get a license key

- Unzip R2017a.egg and double click 'setup'
- 2. Choose 'install using the internet'
- 3. Fill in the blanks
- 4. Click next

1. Install MATLAB

Class 4

1. Make a new script file

- 1. Hello World fprintf('hello world')
 - → Same function in C but
 - → Matlab dose not require #include <stdio.h>

1. Save the script

1. In the command window, you will get an output

❖ Built-in matlab function

The variable t represents time in seconds, and the dimensionless variable y represents the pressure difference acrross valve, normalized by a constant reference pressure. Plot this function for , $t \ge 0$

- The built-in matlab functions automatically operate on array arguments to produce an array result the same size as the array argument x.
- Use element-by-element operations(ex. .*, .^) if the arguments are arrays.
- exp(-8*t) and sin(9.7*t+pi/2) will be vectors(=array) the same size as t.

❖ Built-in matlab function

The maximum height h achieved by an object thrown with a speed ν at an angle Θ to the horizontal, neglecting drag, is

$$h = \frac{v^2 sin^2 \theta}{2g}$$

Create a table showing the maximum height for the following values of ν and Θ :

 $\Theta = 50^{\circ}, 60^{\circ}, 70^{\circ}, 80^{\circ}$

The rows in the table should correspond to the speed values, and the columns should corresponds to the angles.

<source code>

<result>

Command Window					
	table =				
	0	50.0000	60.0000	70.0000	80.0000
	10.0000	2.9940	3.8265	4.5052	4.9482
	12.0000	4.3114	5.5102	6.4875	7.1254
	14.0000	5.8682	7.5000	8.8302	9,6985
	16.0000	7.6646	9.7959	11.5334	12.6674
	18.0000	9.7006	12.3980	14.5969	16.0322
	20.0000	11.9760	15.3061	18.0209	19.7928
	20.0000	11.9760	15.3061	18.0209	19.79

- The arrays v and theta contain the given velocities and angles. The array v is 1X6 and the array theta is 1X4.
- $v'.^2$ is a 6X1 array, and the term $sind(theta).^2$ is 1X4 array. Then, h is a (6X1)(1X4) = (6X4) matrix
- The array [0, theta] is 1X5 and the array [v', h] is 6X5, so the matrix table is 7X5.

Special matrices

Command	Description		
eye(n)	Creates an n X n identity matrix.		
eye(size(A))	Creates an identity matrix the same size as the matrix A.		
ones(n)	Creates an n X n matrix of 1s.		
ones(m, n)	Creates an m X n matrix of 1s.		
ones(size(A))	Creates an array of 1s the same size as the array A.		
zeros(n)	Creates an n X n matrix of 0s.		
zeros(m, n)	Creates an m X n matrix of 0s.		
zeros(size(A))	Creates an array of 0s the same size as the array A.		

To create and plot the function

$$f(x) = \begin{cases} 10 & 0 \le x \le 2\\ 0 & 0 < x < 5\\ -3 & 5 \le x \le 7 \end{cases}$$

<source code>

10 9 8 7 6 >> 5 4 3 2

<result>