RAPORT

1. Wprowadzenie

W pracy analizowano dane eksperymentalne pochodzące z mikroskopii żywych komórek, w których mierzono aktywność dwóch istotnych szlaków sygnałowych: ERK (ERKKTR_ratio) oraz AKT (FoxO3A_ratio). Do wizualizacji aktywności wykorzystano biosensory fluorescencyjne, a obserwacje prowadzono co 5 minut przez 24 godziny. Dane obejmują zarówno pomiary czasowe, jak i przestrzenne dla pojedynczych komórek w różnych liniach mutacyjnych.

Celem projektu jest analiza zmian aktywności tych szlaków w czasie i przestrzeni, w zależności od typu mutacji, poprzez odpowiedzi na dwa pytania:

- 1. Jak przebiega aktywność szlaków ERK i AKT w czasie dla różnych mutacji?
- 2. Czy aktywacja sygnałowa ma charakter lokalny i skoordynowany przestrzennie?

2. Zadanie 1 – Porównanie aktywności szlaków sygnałowych między mutacjami

2.1 Cel zadania

Zbadanie i porównanie dynamiki aktywności szlaków ERK i AKT pomiędzy komórkami z różnymi mutacjami genetycznymi.

2.2 Metody

- Dane podzielono na grupy wg mutacji: WT, AKT1_E17K, PIK3CA_E545K, PIK3CA_H1047R, PTEN_del.
- Obliczono średnie wartości ERKKTR_ratio i FoxO3A_ratio w czasie oraz przedziały niepewności (90 percentyl lub odchylenie standardowe).
- W zakresie 60–180 minut porównano średni poziom aktywności między WT a każdą z mutacji, stosując test Manna–Whitneya. W przypadku wielu porównań zastosowano korektę Bonferroniego.

2.3 Wyniki i wizualizacja

Dla wykresu ERK:

PIK3CA_H1047R – najwyższa aktywność ERK

- Choć to mutacja w szlaku PI3K-AKT, obserwujemy silną aktywację również ERK. To sugeruje krzyżową aktywację między szlakami (cross-talk PI3K ↔ MAPK).
- Komórki z tą mutacją mogą być bardziej proliferacyjne i odporne na brak czynników wzrostu.

PIK3CA_E545K i PTEN_del – umiarkowanie podniesiona aktywność ERK

- Zwiększona aktywność może wynikać z indukcji przez PI3K lub AKT.
- Utrata PTEN uwalnia hamulec na PI3K-AKT, ale też może pośrednio wpłynąć na ERK.

AKT1 E17K – obniżona aktywność ERK

- Silna aktywacja AKT może prowadzić do ujemnej regulacji ERK (np. przez sprzężenie zwrotne negatywne).
- Te komórki mogą przechodzić bardziej w stan przeżycia niż proliferacji.

Dla wykresu AKT:

AKT reguluje przeżycie komórki, metabolizm, wzrost i inhibicję apoptozy.

AKT1_E17K – najwyższa aktywność AKT

- Mutacja konstytutywnie aktywuje AKT zgodne z mechanizmem działania.
- Komórki mogą być odporne na stres i unikać apoptozy

PIK3CA H1047R i E545K – podwyższona aktywność AKT

Aktywują PI3K, który działa upstream wobec AKT.

- H1047R działa silniej niż E545K (co widać na wykresie).
- Komórki wykazują silniejszy sygnał przeżycia.

PTEN_del – również wysoka aktywność AKT

- PTEN hamuje PI3K, więc jego utrata prowadzi do aktywacji AKT.
- Komórki bez PTEN są często spotykane w nowotworach.

WT – niska aktywność AKT i ERK

- Brak mutacji komórki nie mają aktywnego sygnału bez bodźców zewnętrznych
- Służą jako punkt odniesienia.

Tabela 1 – Testy istotności dla aktywności w zakresie 60–180 minut

	mutation	track	test	p_values	p_values_bonferroni	significant
0	AKT1_E17K	ERK	306.0	9.073220e-01	1.000000e+00	False
1	PIK3CA_E545K	ERK	625.0	1.415656e-09	1.132525e-08	True
2	PIK3CA_H1047R	ERK	625.0	1.415656e-09	1.132525e-08	True
3	PTEN_del	ERK	625.0	1.415656e-09	1.132525e-08	True
4	AKT1_E17K	AKT	625.0	1.415656e-09	1.132525e-08	True
5	PIK3CA_E545K	AKT	0.0	1.415656e-09	1.132525e-08	True
6	PIK3CA_H1047R	AKT	298.0	7.858989e-01	1.000000e+00	False
7	PTEN_del	AKT	126.0	3.074624e-04	2.459699e-03	True

Testy statystyczne przeprowadzone w przedziale czasowym 60–180 minut wykazały:

- PIK3CA_E545K, PIK3CA_H1047R i PTEN_del mają znacząco wyższą aktywność szlaku ERK niż komórki typu dzikiego (WT), co może wskazywać na interakcję szlaku PI3K–AKT z szlakiem ERK.
- AKT1_E17K oraz PIK3CA_E545K powodują znaczące zwiększenie aktywności szlaku AKT, co jest zgodne z oczekiwaniami biologicznymi – mutacje te prowadzą do konstytutywnej aktywacji szlaku PI3K–AKT.
- PTEN_del także znacząco zwiększa aktywność AKT zgodnie z funkcją PTEN jako negatywnego regulatora tego szlaku.
- Co ciekawe, PIK3CA_H1047R nie wykazuje istotnego wpływu na poziom aktywności AKT, mimo że jest to mutacja aktywująca PI3K. Może to wynikać z różnic w sile efektu tej mutacji lub kontekstu komórkowego.

 AKT1_E17K nie wpływa istotnie na aktywność ERK, co wskazuje na względną niezależność działania tego szlaku.

3. Zadanie 2 – Analiza przestrzennej koordynacji i dynamiki sygnału

3.1 Cel zadania

Zbadanie, czy aktywność sygnałowa ma charakter lokalny oraz czy może rozchodzić się przestrzennie, w skoordynowany sposób.

3.2 Metody

- Komórkę uznano za "aktywną", gdy wartość FoxO3A_ratio przekraczała 90 percentyl wartości dla danej komórki.
- Dla każdej aktywnej komórki zliczono liczbę aktywnych sąsiadów w promieniu 20 (przy użyciu KDTree).
- Obliczono średnią liczbę aktywnych sąsiadów w czasie dla różnych mutacji.
- Przygotowano wizualizacje aktywności w przestrzeni XY w wybranych momentach.

3.3 Wyniki i wizualizacja

Wykres 3 – Średnia liczba aktywnych sąsiadów w czasie

Wykres przedstawia średnią liczbę aktywnych sąsiadów dla aktywnych komórek w czasie, w podziale na mutacje.

PIK3CA_H1047R charakteryzuje się najwyższą liczbą aktywnych sąsiadów (3–4), co wskazuje na silnie skoordynowaną przestrzennie aktywność – tworzenie ognisk aktywnych komórek. Może to sugerować istnienie lokalnych propagujących się sygnałów.

WT również wykazuje stosunkowo wysoką liczbę aktywnych sąsiadów, mimo ogólnie niższego poziomu aktywacji, co sugeruje, że nawet w typie dzikim aktywność może występować grupowo.

PIK3CA_E545K i **PTEN_del** pokazują umiarkowaną liczbę aktywnych sąsiadów, bez wyraźnych trendów, co wskazuje na bardziej rozproszoną aktywność.

AKT1_E17K cechuje się najniższą średnią liczbą aktywnych sąsiadów (~2.0–2.4), co sugeruje, że komórki aktywują się niezależnie od otoczenia. Może to oznaczać, że ta mutacja prowadzi do autonomicznej, nieskoordynowanej aktywności.

Podsumowując, mutacja PIK3CA_H1047R sprzyja lokalnej koordynacji sygnału, natomiast AKT1_E17K prowadzi do bardziej izolowanego wzorca aktywacji.

Mapy aktywności – przykładowe momenty

Ten zestaw map pokazuje przestrzenną lokalizację aktywnych (czerwonych) i nieaktywnych (niebieskich) komórek w kolejnych momentach czasu (co ~43 minuty). To wizualizacja aktywności w układzie XY.

W niektórych warstwach czasowych obserwuje się skupiska aktywnych komórek, sugerujące lokalną koordynację sygnału.

Może to wskazywać na przestrzenną propagację sygnału lub lokalne "ogniska" aktywacji.

[W plikach na githubie dostępny jest również plik gif ze wszystkimi obserwacjami]

Obserwacje te wspierają hipotezę, że sygnały aktywacji mogą propagować się w przestrzeni, a nie być wynikiem wyłącznie wewnętrznych, niezależnych aktywacji.