Lecture 3 Shortest Paths

Overview

- Weighted Graphs
- General Approach
- Negative Edges
- Optimal Substructure

Readings

CLRS Chapter 24 (Intro)

Motivation

The most common problem

Shortest way to drive from A to B Google maps "get directions"

Formulation:

Problem on a weighted graph $G(V, E), W: E \rightarrow R$

Two algorithms:

Dijkstra $O(V \lg V + E)$ assumes non-negative edge weights

Bellman Ford O(V * E) is a general algorithm

Motivation Definitions

Model as a weighted graph G(V, E), $W : E \rightarrow R$

- V = vertices (street intersections)
- E = edges (street, roads); directed edges (one way roads)
- -W(U, V) = weight of edge from u to v (distance, toll)

path
$$p = \langle v_0, v_1, \dots v_k \rangle$$

 $(v_i, v_{i+1}) \in E \text{ for } 0 \le i < k$
 $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$

Shortest path weight

Notation:

 $v_0 \xrightarrow{p} v_k$ means p is a path from v_0 to v_k . (v_0) is a path from v_0 to v_0 of weight 0.

Definition:

Shortest path weight from u to v as

$$\delta(u,v) = \left\{ \begin{array}{ccc} \min \left\{ w(p) : & p \\ \infty & v \end{array} \right\} & \text{if } \exists \text{ any such path} \\ \text{otherwise} & (v \text{ unreachable from } u) \end{array} \right.$$

Example

Single Source Shortest Paths:

Given G = (V, E), w and a source vertex S, find $\delta(S, V)$ [and the best path] from S to each $v \in V$.

Data structures:

$$d[v] = \text{value inside circle}$$

$$= \begin{cases} 0 & \text{if } v = s \\ \infty & \text{otherwise} \end{cases} \longleftarrow \text{initially}$$

$$= \delta(s, v) \longleftarrow \text{at end}$$

$$d[v] \geq \delta(s, v) \text{ at all times}$$

d[v] decreases as we find better paths to v, see Figure 1. $\Pi[v]$ = predecessor on best path to v, $\Pi[s]$ = NIL

Negative-Weight Edges

- Natural in some applications. Really?
- Some algorithms disallow negative weight edges (e.g., Dijkstra)
- If you have negative weight edges, you might also have negative weight cycles =⇒ may make certain shortest paths undefined!

Example

$$B \rightarrow D \rightarrow C \rightarrow B$$
 (origin) has weight $-6 + 2 + 3 = -1 < 0!$

Shortest path $S \rightarrow C$ (or B, D, E) is undefined! Why?

If negative weight edges are present, s.p. algorithm should find negative weight cycles (e.g., Bellman Ford).

Figure 2: Negative-weight Edges.

General structure of S.P. Algorithms (no negative cycles)