Project Design Phase-II Technology Stack (Architecture & Stack)

Date	27 June 2025
Team ID	LTVIP2025TMID59682
Project Name	Comprehensive Analysis and Dietary
	Strategies with Tableau: A College Food
	Choices Case Study
Maximum Marks	4 Marks

Technical Architecture:

The system architecture follows a data analytics pipeline approach, designed to process, analyze, and visualize college student food choice data to derive meaningful dietary insights and strategies.

Table-1: Components & Technologies

S.No	Component	Description	Technology
1.	User Interface	ilinteractive web dashboard for data visualization and analysis results	HTML5, CSS3, JavaScript, Bootstrap
112		Primary visualization and analytics platform for creating interactive dashboards	Tableau Desktop/Public
3.	Data Processing Layer	Data cleaning, transformation, and preprocessing of survey data	Python (Pandas, NumPy)
4.	Database	Storage for processed datasets and analysis results	SQL

Table-2: Application Characteristics

S.No	Characteristics	Description	Technology
11 1	Open-Source Frameworks		Python (Pandas, NumPy, Matplotlib, Seaborn), Jupyter Notebooks
117 1	Implementations	student survey data	Data anonymization, SSL/TLS encryption, Access controls, GDPR compliance measures
3.	Scalable Architecture	Modular design allowing for additional datasets and analysis modules	Microservices architecture with containerization (Docker)
4.	IAVAIIANIIITV I	Ensures consistent access to dashboards and analysis results	Load balancing, redundant storage, automated backups
5.	Performance	, · · · · · · · · · · · · · · · · · · ·	Data indexing, caching mechanisms (Redis), optimized SQL queries, CDN for static assets

References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d