Intro to Analysis Homework 2

Zachary Meyner

1. Let S be a nonempty bounded set in \mathbb{R} . Let b < 0 and consider $bS = \{bs : s \in S\}$. Prove $\sup(bS) = b * \inf(S)$

Proof. Let $\sup(S) = s$ We know that $\sup(bS) = b\sup(S) = bs$. So $\forall s_0 \in S \ s_0 \leq s$. Becsue b < 0 multiplying it into the inequality give is $bs_0 \geq bs \ \forall bs_0 \in bS$. So by definition bs is the smallest element in bS when b < 0, so $bs = \inf(bS) = b * \inf(S)$.

2. Let $I_n = \left[1, 1 + \frac{1}{n}\right] \forall n \in \mathbb{N}$. Prove $\bigcap_{n=1}^{\infty} I_n = \{1\}$.

Proof. Clearly 1 is in $\left[1, 1 + \frac{1}{n}\right]$. BMOC Let $x \in \bigcap_{n=1}^{\infty} I_n$. Then

$$1 < x \le 1 + \frac{1}{n}$$
$$0 < x - 1 \le \frac{1}{n}$$

Since x-1>0 by Archimedean Property $\exists m\in\mathbb{N}$ s.t.

$$x - 1 > \frac{1}{m}$$

$$\implies x > 1 + \frac{1}{m}$$

but $x < 1 + \frac{1}{n} \forall n \in \mathbb{N}$. $\therefore \bigcap_{n=1}^{\infty} I_n = \{1\}$.

3. Consider the set $S = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\}$. Find the infimum and supremum of the set. Then, prove your assertions. $\inf(S) = -1$ and $\sup(S) = 1$

1

4. Let $I_n = \left(2 - \frac{1}{n}, 2\right) \forall n \in \mathbb{N}$. Prove $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

Proof. BMOC let $x \in \bigcap_{n=1}^{\infty} I_n$. Then

$$2 - \frac{1}{n} < x < 2$$

$$2 - \frac{1}{n} < x - 2 < 0$$

$$0 < 2 - x < \frac{1}{n} - 2$$

Since 2-x>0 by Archimedean Property $\exists m\in\mathbb{N}$ s.t.

$$2 - x > \frac{1}{m}$$

$$\implies -x > \frac{1}{m} - 2$$

$$\implies x < 2 - \frac{1}{m}$$

but
$$x > 2 - \frac{1}{n} \ \forall n \in \mathbb{N}$$
. $\therefore \bigcap_{n=1}^{\infty} I_n = \emptyset$

5. Find the infimum of the set and prove your result.

$$S = \left\{ \frac{3+n}{n} : n \in \mathbb{N} \right\}$$