

BLE-Nano 使用说明书 V.1.7

修订版历史

Date	Version	Description	Author
2019-1-29	V.1.0	创建文档	Ken.chen
2019-4-9	V.1.1	完善 AT 指令	Ken.chen
2019-5-12	V1.2	添加使用说明	Ken.chen
2019-5-24	V1.3	修改蓝牙指示灯错误	Ken.chen
2019-5-25	V1.4	添加 AT 指令回车符提示重点说明	Ken.chen
2019-6-21	V1.5	添加 BLE 和经典蓝牙 win10 电脑和 BLE-Nano 如何连接 添加 processing 经典案例说明	Ken.chen
2019-6-21	V1.6	蓝牙测试 app 需要打开定位权限	Ken.chen
2019-7-30	V.1.7	增加苹果手机连接方法说明	Abbott.chen

目录

简介	4
产品参数	
引脚说明	5
指示灯说明	
Ble-Nano 驱动安装	6
Ble-Nano 通过 arduion IDE 下载程序	11
Ble-Nano 和手机连接	12
Ble-Nano 和安卓手机连接	12
Ble-Nano 和苹果手机连接	17
Ble-Nano 和 Win10 蓝牙连接	
AT 指令集	25
AT 指令集详细说明	
开发说明	
Ble-Nano 结合 Processing 实际应用	
常见问题	

简介

Ble-Nano 是基于蓝牙 4.0 协议完美结合 Arduino Nano 由 emakefun 针对创客研发的一款革命性产品,功能和引脚完全兼容传统 Arduino Nano 主板,工作频段为 2.4GHZ 范围,调制方式为 GFSK,最大发射功率为 0db,最大发射距离 50 米,采用进口原装 TI CC2540 芯片设计,支持用户通过 AT 命令修改查看设备名、服务 UUID、发射功率、配对密码等指令,方便快捷使用灵活。产品身材却非常小,适合于很多对于体积有苛刻限制的应用。

我们提供 Android 和 IOS 手机 demo,

你可以快速开发出一款与手机通信的硬件设备。

正如现在非常火爆的可穿戴式手机周边设备,都可以用 Ble-Nano 这款平台开发,

你可以使用 Ble-Nano 与蓝牙 4.0 设备连接,在两个蓝牙设备之间实现无线传输,主从机设置.

甚至与 PC 建立蓝牙 HID 连接。同时我们为开发者提供了极大的自由度和支持准备,用户不仅可以通过 AT 指令调试 Ble-Nano,你还可以在 Ble-Nano 控制器上添加 Arduino 兼容的扩展板、传感器、电机和舵机驱动等,emakefun 独家研发蓝牙主机模式自动连接从机功能,并支持超过 20 个字节发送,使用更加方便。

产品参数

- ◆ 与 Arduino Nano-V3.0 引脚和使用方法完全兼容
- ◆ BLE 芯片:TI CC2540
- ◆ 工作频道 2.4G
- ◆ 传输距离: 空旷距离 50m
- ◆ 支持 AT 指令配置 BLE
- ◆ 支持 USB 虚拟串口,硬件串口,BLE 三向透传
- ◆ 支持主从机切换
- ◆ 主机模式下支持蓝牙自动连接从机
- ◆ 支持超过 20byte 发送。
- ◆ 支持 iBeacons
- ◆ 接口:Mircor-Usb
- ◆ 输入电压: Usb 供电.Vin6~12V, 5V
- ◆ 微处理器: ATmega328P-MU QFN32
- ◆ Bootloader: 最新 Arduino1.8.8
- ◆ 引脚: 两排 2.54mm-15Pin

尺寸: 48mm x 19mm x 12mm

重量: 18g

引脚说明

指示灯说明

当蓝牙未连接时蓝色灯光闪烁,连接后蓝色灯常亮

当模块和其他蓝牙进行数据通讯时或者 usb 有数据,或者 ATmega328P 发送串口数据时绿色灯闪烁 当 USB 数据线连接成功时 usb 灯亮,如果连上 usb 后只有电源灯亮,但是 usb 指示灯不亮,代表这根 USB-Micro 线是坏的请更换

Ble-Nano 驱动安装

1. 右键点击 "我的电脑" → "属性" → "设备管理器" → 查看 "端口(COM 和 LT)",如果看到如图 1.1

图 1.1 驱动成功安装界面

则说明驱动已安装成功,这时我们打开 IDE,在工具栏中选择对应的开发板型号和端口就正常使用了。如果出现如图 1.2,则说明电脑没有识别到开发板,需要自己安装驱动程序。

图 1.2 驱动未成功安装界面

2. 右键单击"USB串行端口"并选择"更新驱动程序软件"选项,如图 1.3。

图 1.3 更新驱动

3. 点击"浏览计算机以查找驱动程序软件"如图 1.4, 在点击"浏览"如图 1.5

图 1.4

驱动路径: "驱动\ccxxxx_usb_cdc.inf"在点击"下一步",如图 1.6

图 1.6

4. 弹出弹窗点击"始终安装此驱动程序软件"如图 1.7

图 1.7

图 1.8 驱动安装成功

此时,我们已经安装好了驱动,接下来我们安装 Arduino IDE,安装好 Arduino IDE 就可以开始 Arduino 之旅了.

Ble-Nano 通过 arduion IDE 下载程序

BLE-Nano 烧写最新版本 Bootloader 所以需要使用最新 IDE(1.8.8 版本以上)来烧写程序请前往 https://www.arduino.cc/en/Main/Software 下载最新 IDE

Ble-Nano 和手机连接

Ble-Nano 和安卓手机连接

1. 打开 Arduino IDE,连接串口如图 1.9,在打开串口监视器如图 1.10.

图 1.9

2. 测试 AT 指令如图 1.11 设置 BLE-Nano 的 USB 和蓝牙数据传输模式设置为 USB 串口数据和 BLE 透传如图 1.12

图 1.11

注意如果是其他串口助手一定要发送回车换行作为结束符

3、安卓或则 IOS 从设置中是无法连接使用的,因为手机设置都是只能连接经典蓝牙兼容蓝牙耳机,蓝牙麦克风等外设,不能连接低功耗蓝牙。

安卓手机(android4.2 以上)安装 BLE_TOOL.apk (注意需要打开蓝牙,和定位权限)如下图操作

(IOS 手机应用商城搜索安装 LightBlue),打开测试 APP,界面如图 1.13 示。找到对应的蓝牙名 (Ble-Nano)并点击进行连接,连接后如图 1.14 示,此时会出现 4 个选项,分别用于测试不同的功能,因为这里我们只测试蓝牙是否可以正常收发数据,所以我们选择 SK Service 入如图 1.14 在选择 SK_KEYPRESSED 如图 1.15

图 1.13 图 1.14

图 1.15

4、我们选择"SK-KEYPRESSED",点击后如图 1.17 我们可以看到有一个"写入"按键,点击即可进入图 1.18 示界面,在图 1.18,我们点击"红色框"即可输入想发送的数据,输入完成后点击"发送"即可将数据发出去,如图 1.18 示

图 1.17

5.点击发送后,我们可以看到串口监视器上打印出了手机端发送的内容,如图 1.19 示,说明蓝牙模块是可以正常发送数据的,当然,为了测试准确度更高,可以多测试几次,并尝试在不同的环境中测试。

图 1.19

6.如图 1.20,我们可以在串口监视器上输入想发送的内容,完成后点击"Send",便可将数据通过蓝牙发送到手机 APP上,如图 1.21 示。

图 1.20

图 1.21

在上面的测试过程中,PC 端和安卓端都可正常收发数据,说明 Ble-Nano 通讯正常,达到预期的效果.

Ble-Nano 和苹果手机连接

1. 在 APP store 中搜索 LightBlue,下载软件 LightBlue®Explorer。

2. 安装 APP 后,打开 APP 扫描到 BLE-NANO

3,连接 BLE-NANO 蓝牙

3. 选择字符类型,并点击 Write new value,输入字符即可给 BLE-NANO 发送数据。

Ble-Nano 和 Win10 蓝牙连接

同样道理 win10 的设置里面是无法和我们 BLE-Nano 连接的,它只能连接经典蓝牙,但是我们可以微软官方应用商城下载 BluetoothLEExplorer

先把板子 usb 和蓝牙开关打开

点击开始扫描

找到我们名字为 Ble-Nano 的设备,点击连接

我们选择字符特征码 Characteristic1

Win10 发送 helloword 给到 Ble-Nano 如下

Ble-Nano 发送 hellowin10

如果我们想通过 win10 自带蓝牙和 Ble-Nano 那么你需要基于 Microsoft 官方 BLE SDK 二次开发,请 查看开发者说明

https://docs.microsoft.com/zh-cn/windows/uwp/devices-sensors/gatt-server

以及视频 https://channel9.msdn.com/Events/Build/2017/P4177

很幸运 win10 提供了专业的源代码请参考

https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/BluetoothLE

https://github.com/Microsoft/BluetoothLEExplorer

当然这是一个非常麻烦的事情,假如不是必要的话,强烈建议使用 2 块 Ble-Nano 设备来完成你的想法,详细参考后面章节《Ble-Nano 结合 Processing 实际应用》

AT 指令集

用户可以通过串口和 蓝牙芯片进行通信,串口使用 Micro-USB 数据线,波特率支持9600,19200,38400,57600,115200。串口默认波特率为9600bps。

(注:发AT指令时必须回车换行,AT指令只能在模块未连接状态下才能生效,一旦蓝牙模块与设备连接上,蓝牙模块即进入数据透传模式)

(AT 指令区分大小写,均以回车、换行字符结尾: \r\n)

序列	指令	作用	主/从	工作模式	默认
1	AT+ALL	打印 BLE 配置所有的配置信息	M/S	/	/
2	AT+BAUD	配置串口波特率	M/S		9600
3	AT+PARITY	设置串口校验位	M/S		0
4	AT+STOPBIT	设置串口停止位	M/S		0
5	AT+NAME	配置蓝牙设备名字	M/S		Ble-Nano
6	AT+VER	查看 BLE 固件版本号	M/S		V1.1
7	AT+MAC	查看蓝牙 12 位 mac 地址	S		/
8	AT+ROLE	配置 BLE 主从模式	M/S		1
9	AT+SCAN	扫描周边的蓝牙设备	M		/
10	AT+CONN	连接扫描结果对应下标的蓝牙	M		/
11	AT+CON	连接对应 Mac 地址得蓝牙	M		/
12	AT+AUTOCON	自动连接最近的从机蓝牙,重启生效	M		0
13	AT+DISCON	断开当前的链接	M		/
14	AT+AUTH	设置蓝牙连接是否需要密码	S		0
15	AT+PASS	设置蓝牙连接密码	S		000000
16	AT+ MODE	设置蓝牙工作模式	M/S		0
17	AT+ BLEUSB	设置蓝牙的 USB 和蓝牙数据传输模式	M/S		0
18	AT+ TXPOWER	设置蓝牙发射功率	M/S		0
19	AT+MINI_INTE	设置 BLE 芯片最小通信间隔	M/S		6
	RVAL				

20	AT+MAX_INTE	设置 BLE 芯片最大通信间隔	M/S	6
	RVAL			
21	AT+SRVUUID	获取蓝牙特征码 UUID	M/S	0xFFE0
	AT+CHARUUID	获取字符特征码	M/S	0xFFE1
21	AT+RXGAIN	设置 BLE 接收增益	M/S	1
22	AT+RESETR	蓝牙设备软件重启	M/S	/
23	AT+SETTING	系统设置	M/S	/

指令集详细介绍

AT 指令集详细说明

1、测试指令

指令	响应	参数
AT	+OK	无

2、打印 Ble-Nano 所有配置信息指令

指令	响应	参数
AT+ALL	详细配置信息	无

3、配置串口波特率

指令	响应	参数
AT+BAUD= <param/>	OK+Baud= <param/>	0:9600
	+SUCCESS	1:19200
		2:38400
		3:57600
		4:115200

4、配置串口的校验位

指令	响应	参数
AT+PARITY= <param/>	OK+Parity= <param/>	0:无
	+SUCCESS	1:偶校验
		2:奇校验

5、配置串口的停止位

指令	响应	参数
AT+STOPBIT= <param/>	OK+StopBit= <param/>	0:1 位
	+SUCCESS	1:2 位

6、配置蓝牙名字

指令	响应	参数
AT+NAME= <param/>	OK+Name= <param/>	蓝牙名字
	+SUCCESS	

7、查询 Ble-Nano 固件版本

指令	响应	参数
AT+VER	OK+Version= <result></result>	无

8、查询蓝牙的 Mac 地址

指令	响应	参数
AT+MAC	OK+Mac= <result></result>	无

9、查询设置蓝牙主从模式

指令	响应	参数
AT+ROLE= <param/>	OK+RoleMode= <param/>	0:主机
	+SUCCESS	1:从机

10、 蓝牙主从模式下扫描附近从机

指令	响应	参数
AT+SCAN	OK+Scan	无
	OK+DISC[0]:xxxx	
	OK+DISC[1]:xxxx	
	OK+SCAN DONE	

11、 通过扫描返回下标连接从机蓝牙

AT+CONN= <param/> OK+CONN= <param/> 扫描从机蓝牙下标数

12、 通过连接主从蓝牙 Mac 地址连接从机蓝牙

指令	响应	参数
AT+CON= <param/>	OK+CON= <param/>	从机蓝牙地址

OK+Scan

OK+DISC[0]:3234CFE9D1C3

OK+DISC[1]:464288AEAB8F

OK+DISC[2]:3CA5080A62FB

OK+DISC[3]:30AEA42BF189

OK+DISC[4]:58803C6EFB0A

OK+SCAN DONE

AT+CONN=1 代表连接扫描得到的第二个蓝牙设备

AT+CON=464288AEAB8F 直接连接 Mac 地址为 464288AEAB8F 的设备

13、 开启蓝牙自动连接模式

该开启后, 蓝牙模块将自动连接上次成功连接过的设备

指令	响应	参数
AT+AUTOCON= <param/>	OK+AutoCon= <param/>	0:关闭自动连接
	+SUCCESS	1:开机自动连接

14、 断开当前连接蓝牙设备

指令	响应	参数
AT+DISCON	OK+Disconnect	无

15、 设置蓝牙的连接是否需要密码

指令	响应	参数
AT+AUTH= <param/>	OK+AuthMode= <param/>	0:连接无密码
	+SUCCESS	1:需要密码连接

16、 设置蓝牙的连接是密码

指令	响应	参数
AT+ PASS= <param/>	OK+ PassWord= <param/>	

	+SUCCESS	
--	----------	--

17、 设置蓝牙的工作模式

指令	响应	参数
AT+ MODE= <param/>	OK+ WorkMode= <param/>	0:透传
	+SUCCESS	1:驱动模式
		2:iBeacon

18、 设置蓝牙的 USB 和蓝牙数据传输模式

指令	响应	参数
AT+ BLEUSB= <param/>	OK+UsbBleTransmitMode= <param/>	0:关闭
	+SUCCESS	1:USB 串口数据传给 BLE
		2:BLE 数据传给 USB 串口
		3:USB 串口数据和 BLE 透传

19、 设置蓝牙的发射功率

指令	响应	参数
AT+ TXPOWER= <param/>	OK+TxPower= <param/>	0:4db
	+SUCCESS	1:0db
		2:-6db
		3:-23db

19、设置 BLE 芯片最小通信间隔,以毫秒为单位

指令	响应	参数
AT+MINI_INTERVAL= <param/>	OK+ Mini_Interval= <param/>	PC 和 Android,建议设为为 10
	+SUCCESS	iOS 设备,建议设置为 20

20、设置 BLE 芯片最大通信间隔,以毫秒为单位

指令	响应	参数
AT+MAX_INTERVAL= <param/>	OK+Max_Interval= <param/>	PC 和 Android,建议设为为 10
	+SUCCESS	iOS 设备,建议设置为 40

21、设置 BLE 接收增益

TIV. V	 ← ¼L
冶公	太松
1H <	多数

AT+RXGAIN= <param/>	OK+RxGain = <param/>	0: 标准增益
	+SUCCESS	1: 高增益

22、设置 BLE 特征码 UUID

指令	响应	参数
AT+SRVUUID	Servic UUID=0XFFE0	

23、设置 BLE 字符特征码

指令	响应	参数
AT+CHARUUID	Char UUID=0XFFE1	

24、软件复位

指令	响应	参数
AT+RESETR	无	无

25、系统设置

指令	响应	参数
AT+SETTING= <param/>	+SUCCESS	DEFAULT 恢复出厂设置
		PARI_DEFAULT 清除配对信息

开发说明

因为产品的蓝牙是透传功能,所以蓝牙编程,其实就是对 arduino 串口(Serilal)进行读写操作 BLE 协议规定每个蓝牙数据包长度不能超过 20byte,每一包数据发送间隔需要超过 150ms,否则容易 丢包,我们编程时需要注意两点

Ble-Nano 结合 Processing 实际应用

很多时候我们是使用 Ble-Nano 和 Processing 来完成自己构想,那么最简单的方案如下图

Step1. usb 连接从机先读取到从机的 mac 地址如下

Step2. Usb 连接到主机 Ble-Nano 设置成主机模式

Step3.把自动连接功能打开方便下次上电可以直接连接

Step5. AT+BLEUSB=3 把 USB 串口和蓝牙通讯功能打开这样蓝牙就可以和 usb 端口直接通讯

Step6. AT+CON 加从机 mac 地址即可直接连接

注意如果主机里面有其他程序会影响使用,建议主机 arduino 烧录一个空白程序进去 主机接电脑会虚拟一个端口出来,在我的电脑 设备管理器可以查看到端口号, processing 程序选择对 应的端口号即可完成通讯

常见问题

1、问 Ble-Nano 和普通 Nano 板有何区别,我要如何开始使用这个开发板 Ble-Nano 是在原来官方 arduino nano V3.0 基础上添加 CC2540 蓝牙 4.0 功能接口 Mini-Usb 升级成更加通用 Micro-Usb 接口,引脚功能完全兼容

Bootload 烧写最新 bootload 需要使用 1.8.8 以上 IDE 才可以烧写, 其他使用方法请参考官方 arduino nano 使用方法。

2、问:蓝牙如何手机电脑连接

Ble-Nano 为 Ble 设备,不能直接和手机设置里面蓝牙连接,需要通过 BLETestTools.apk (IOS LightBlue) 连接,如要开发参考源代码二次开发,windows 的设置也是经典蓝牙连接方式,需要微软官网参考 BLE SDK 开发。

- 3、问: 常见的蓝牙 4.0 之间通信不正常的问题。
- 答:建议检查步骤:
- 1 更新固件至最新版本;
- 2 通过 AT 指令恢复出厂设置 (AT+SETTING=DEFAULT). (详见:通过 AT 指令配置 BLE 设备)
- 3 检查蓝牙模块、程序代码等相关地方的通信波特率是否一致; (晶振频率为 8MHz 的控制板支持最大 38400bps 的波特率。)
- 4.配对蓝牙设备是否支持 4.0,还有 CC2540 和其他品牌蓝牙模组会存在兼容性问题,使用尽可能和 CC25xx 系类蓝牙模块连接
- 问: 为什么我的手机连不上 Ble-Nano,即使可以连上,但也不能通信?
- 答:请检查您的手机是否支持蓝牙 4.0。另外,请使用 APP 内的 Scan 按钮扫描连接 Ble-Nano,连接不需要密码。不支持手机蓝牙设置界面、其他 BLE APP 连接。
- 问:如何使用 Ibeacon 功能?
- 答: 不支持
- 问: Ble-Nano 支持多联吗? 我想用一个主机连接很多从机,请问最多能连几个?
- 答: Ble-Nano 不支持多联,但是可以通过不断地切换绑定从机,实现多联的思想。
- 问: 为什么 Ble-Nano 系列的蓝牙 4.0 产品无法连接蓝牙 2.0 的设备?

答:由于我们的 Ble-Nano 系列为了实现极低的功耗,采用了单模蓝牙低功耗(Bluetooth Smart),硬件和软件上都做了优化,只能支持 BLE,不支持连接蓝牙 2.0 设备。