		W	alchand Colleg	ge of Engineerin	ng, Sangli								
				ided Autonomous Instit									
			A	Y 2021-22									
			Cour	se Information									
Progr	amme		B. Tech. (Mechanic	cal Engineering)									
Class,	, Seme	ster	Third Year B. Tech	ı., Sem. V									
Cours	se Cod	e	5OE330										
Cours	se Nan	ne	Energy Engineering	g									
Desire	ed Req	uisites:											
T	Teachi	ng Scheme		Examination So	theme (Marks)								
Lectu	re	2 Hrs./week	T1	T2	ESE	Total							
Tutor	ial	-	20	20	60	100							
Practi	ical	-		-									
Intera	action	-		Credi	its: 2								
				rse Objectives									
1		ntroduce student nomic consideration		ergy sources, their in	nportance, needs, gl	obal scenario and							
2				and ocean energy plan	nts and its design met	hodology.							
3				formance and econom									
		•	<u> </u>										
) with Bloom's Taxo	nomy Level								
	_	<u> </u>	tudents will be able t	<u> </u>									
CO1			scenario and energy			Understand							
CO2				io mass as alternate so		Apply							
CO3	ASSE	ess the performan	ce and economic con	asiderations of energy	systems.	Analyze							
Modu	ule		Modu	ule Contents		Hours							
]	ntroduction to N	Non-Conventional E	nergy Sources									
				ergy scenario, fossil									
I				nd of energy, solar									
			••	of alternate energy so	ources of worlds po	wer							
		generation in futur	re										
		Solar Energy Extra-terrestrial so	olar radiation solar r	adiation on earth, bear	m and diffused radiat	ion							
II				iation geometry, sola		·							
11	-	,	,	ations of solar ener	<i>C</i> 3								
			PV energy generation		87, 44 B, F F	8,							
	Wind Energy Conversion Systems												
III			ergy estimation, avai	1									
	5		wind energy conv	nes,									
				age, and applications	or wind energy								
		Bio-Energy and Fuel cell Bio-mass and photosynthesis, biogas generation, types of biogas plants, factors											
	٠, ا			y biogas plants, bioga		rion							
IV				ge, problems related t		5							
				Operation of a fuel		and							
	t	ypes of fuel cells	, Advantages and Di	sadvantages of Fuel C	Cell, Applications of I	Fuel							

	Cells, Batteries- Basic Batteries Theory, Classification of Batteries										
	Ocean Energy										
	Ocean thermal energy conversion (OTEC): principle of OTEC, open and closed cycle										
V	OTEC, working fluids for OTEC										
	Tidal energy: principle of tide generation, tidal power plants, estimation of energy	4									
	from tides, site selection for tidal power plants										
	Energy Economics and Environment										
	Life cycle costing, present worth factor, present worth of capital and maintenance										
VI	cost, energy conservation opportunities, energy audit, co-generation systems, waste										
, -	heat utilization, impact	4									
	of conventional energy use on environment										
	Text Books										
1	G. D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, 5 th Edition, 2014										
	V. M. Domkundwar, "Solar Energy and Non-Conventional Energy Sources", Dhanpat Ra	ni & Co. Ltd.,									
2	1 st Edition, 2010	,									
3	R. K. Singal, "Non-Conventional Energy Sources", Katson Publication, 2 nd Edition, Repr	rint, 2013									
	References										
1	Jhon Twidell and Tony Weir, "Renewable Energy Resources", Roultledge Publication,	2 nd Edition,									
1	2005										
2	S. P. Sukhatme, "Solar Energy", McGraw Hill Publication, 4 th Edition, 2017										
3	G. S. Sawhney, "Non-Conventional Resources of Energy", PHI Publication, 5 th Edition,	2012									
4	Recent reports of agencies: International Energy Agency (IEA), Ministry of New and Rene										
	(MNRE), Technology and Action for Rural Advancement (TARA)										
	Useful Links										
1	https://mnre.gov.in/										
2	https://beeindia.gov.in/										
3	https://ascelibrary.org/journal/jleed9										
4	https://onlinecourses.nptel.ac.in/noc21_ch11/preview										

Civil

	CO-PO Mapping														
		Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1						1					1			
CO2	1	1			1		1					1			
CO3	2	1	2		1		1					1			
The streng	The strength of mapping is to be written as 1.2.3; Where, 1:Low, 2:Medium, 3:High														

Electronics

	Dieta omes															
	CO-PO Mapping															
		Programme Outcomes (PO)												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2											1				
CO2	1	1			1		1					1				
CO3	1	2	2		1		1					1				
The streng	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															

Electrical

CO-PO Mapping															
Programme Outcomes (PO)													PSO		
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
2						2					1				
2	1			1		1					1				
2	2	2		1		1					1				
	2	2 2 1	1 2 3 2 2 1	1 2 3 4 2 2 1	1 2 3 4 5 2 2 1 1 1	Programme C 1 2 3 4 5 6 2 1 1 1	Programme Outcom 1 2 3 4 5 6 7 2 2 2 2 1 1 1	Programme Outcomes (PC) 1 2 3 4 5 6 7 8 2 2 2 2 2 1 1 1 1	Programme Outcomes (PO) 1 2 3 4 5 6 7 8 9 2 2 2 2 2 2 2 2 1 1 1 1 1	Programme Outcomes (PO) 1 2 3 4 5 6 7 8 9 10 2 2 1 1 1 1 1	Programme Outcomes (PO) 1 2 3 4 5 6 7 8 9 10 11 2 1 1 1 1 1 1	Programme Outcomes (PO) 1 2 3 4 5 6 7 8 9 10 11 12 2 1 2 2 1 1 2 1 1 1 1	Programme Outcomes (PO) 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 2 2 1 1 1 2 1 1 1 1 1	Programme Outcomes (PO) PSO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 1 2 2 1	

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Computer Science

	CO-PO Mapping															
	Programme Outcomes (PO)													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2															
CO2	1	1			1											
CO3	1	1	2		1											

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Information Technology

	CO-PO Mapping																
		Programme Outcomes (PO)													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2																
CO2	1	1			1												
CO3	1	1	2		1												

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course											
E	Bloom's Taxonomy Level	T1	T2	ESE	Total							
1	Remember											
2	Understand	7	8	20	35							
3	Apply	8	7	17	32							
4	Analyze	5	5	23	33							
5	Evaluate											
6	Create											
	Total 20 20 60 100											