1. Опорна Машина Векторів

Опорна Машина Векторів - це алгоритм лінійної класифікації. Що означає лінійна класифікаці? Це означає, що ми зображаємо нашу вибірку у вигляді набору з N точок у просторі \mathbb{R}^p . Тобто, як і раніше маємо p - числових регресорів, та N спостережень, тоді i-те спостереження зображається у вигляді точки в \mathbb{R}^p : $x_i = (x_i^1, \dots, x_i^p)$. Для початку розглядаємо бінарну класифікацію, і позначатимемо відгук $y_i \in \{-1,1\}$. Відповідно, кожна точка з набору x_i належить до якогось класу (а саме до класу y_i). Лінійна класифікація полягає у тому, щоби провести пряму, яка розділить пі два класи.

Припустимо, спочатку, що класи лінійно роздільні, тобто існує така пряма, по одну сторону якої лежать точки з $y_i = 1$ а по іншу з $y_i = -1$.

Визначимо гіперплощину:

$$\{x: f(x) = x^T \beta + \beta_0 = 0\}, \text{ de } x \in \mathbb{R}^{p \times 1}, \beta \in \mathbb{R}^{p \times 1}, \beta_0 \in \mathbb{R}.$$

де β це одиничний вектор, $||\beta||=1$. Класифікаційне правило, створене f(x) виглядає таким чином:

$$G(x) = \operatorname{sign}(\sum_{k=1}^{p} x^{k} \beta_{k} + \beta_{0}).$$

Опорна Машина Векторів шукає "найкращу" пряму, тобто таку, яка "максимально" розділяє класи.

За допомогою f(x) можна визначити знакозмінну відстань з точки x до гіперплощини $f(x) = x^T \beta + \beta_0 = 0$. Оскільки класи лінійно роздільні то можливо знайти функцію $f(x) = x^T \beta + \beta_0$, таку що $y_i f(x_i) > 0$, $\forall i$. Таким чином можливо знайти гіперплощину що створює найбільший відступ між тренувальними точками для класів 1 та -1.

Для початку нагадаємо трохи алгебри. Гіперплощина в \mathbb{R}^p задається формулою $\beta^T x + \beta_0 = 0$. Тут β це вектор нормалі, перпендикулярний до гіперплощини. Якщо вздовж вектору β відкласти відстань β_0 отримаємо "новий нуль" - x_0 . Для довільної точки $x \in \mathbb{R}^{p \times 1}$ відстань від x до гіперплощини задається формулою:

$$d(L, x) = \beta^{T}(x - x_0) = \frac{1}{||\beta||} (\beta^{T}x + \beta_0),$$

для довільного $x' \in L$: $\beta^T x' = -\beta_0$.

Наша задача знайти таку пряму, щоб відстань від усіх тренувальних точок до прямої була максимальною (поки розглядаємо випадок лінійно роздільних даних). Позначимо цю відстань 2M.

Тоді оптимізаційна проблема має вигляд:

$$\begin{cases} \max_{\beta,\beta_0,||\beta||=1} M\\ y_i(x_i\beta+\beta_0) \ge M, \ i=1,\dots,N \end{cases}$$
 (1)

Відступ з кожного боку гіперплощини до найближчої тренувальної точки буде принаймні M, а отже вся смуга буде мати ширину 2M.

Зауважимо, що задача полягає у максимізації відстані від усіх точок, тобто $y_i(x_i\beta + \beta_0) \ge ||\beta|| M$ ($x_i \in \mathbb{R}^{1 \times p}$ - i-те тренувальне спостереження) . Зауважимо, що множення на будь яку константу не змінить цієї задачі оптимізації, тому можна покласти $M = ||\beta||^{-1}$.

Дана проблема може буте перефразована більш зручно:

$$\begin{cases} \min_{\beta,\beta_0} ||\beta|| \\ y_i(x_i\beta + \beta_0) \ge 1, \ i = 1,\dots, N \end{cases}$$
 (2)

Зауважимо, що умови $||\beta|| = 1$ більше немає, а $M = ||\beta||^{-1}$. Дана проблема є задачею опуклої оптимізації і тому допускає розв'язання, як це показано у дискримінантному аналізі.

Розв'язучи цю задачу (а це є задача опуклої оптимізації), записавши умови Каруша-Куна-Такера ми побачимо, що значеня матимуть лише точки що потрапляють на край межі. Такі точки і називаються опорними векторами.

Розглянемо ситуацію, коли класи не ε лінійно роздільними, або вірніше, ε "трішки" лінійно нероздільними.

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/\|\beta\|$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M\xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.

Припустимо зараз що класи перетинаються у фазовому просторі. Один зі способів як працювати з таким перетином, все ще максимізувати M, але дозволити деяким точкам бути на неправильній стороні. Визначимо допоміжні (люфтові - slack) змінні: $\xi = (\xi_1, \ldots, \xi_N)$ (це такі змінні які в задачі оптимізації перетворюють нерівності на рівності). Існує два природніх способи як модифікувати задачу оптимізації:

$$y_i(x_i^T \beta + \beta_0) \ge M - \xi_i, \tag{3}$$

або

$$y_i(x_i^T \beta + \beta_0) \ge M(1 - \xi_i), \tag{4}$$

$$\forall i, \ \xi_i \ge 0, \ \sum_{i=1}^N \xi_i \le \text{constant.}$$

Ці два варіанти ведуть до різних розв'язків. Перший варіант виглядає більш природнім, оскільки він вводить вимірює перекриття (overlap) у абсолютній відстані, другий вибір вводить відносну відстань для перекриття, що змінює ширину відступу M. Однак перший варіант веде до неопуклої задачі оптимізації а другої до опуклої. Таким чином ми використаємо другу форму, що приведе нас до "стандартних" опорних векторів.

Ідея полягає в наступному. Величина ξ_i в обмеженнях $y_i(x_i^T\beta + \beta_0) \ge M(1 - \xi_i)$ - це величина пропорційна "перестрибку" прогнозу $f(x_i) = x_i^T\beta + \beta_0$ на неправильній

стороні відступу. Тому обмежуючи суму $\sum \xi_i$ ми обмежуємо загальну пропорційну величину на яку точкам "дозволяється" перестрибнути на неправильну сторону відступу. Неправильна класифікація відбувається коли $\xi_i > 1$, отже обмеження $\sum \xi_i < K$, обмежує загальну кількість неправильних класифікацій величиною K.

Можемо переформулювати задачу оптимізації позбавившись обмеження на норму β , визначивши $M = ||\beta||^{-1}$:

$$\begin{cases}
 ||\beta|| \to \min, \\
 y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ \forall i, \\
 \xi \ge 0, \\
 \sum \xi_i \le \text{constant}
\end{cases} (5)$$

Зауважимо, що величини ξ_i мають наступну інтерпритацію: якщо $\xi_i = 0$, то точка лежить у своїй півплощині поза смугою, якщо $\xi \in (0,1)$, то точка лежить у смузі, і якщо $\xi \geq 1$, то точка лежить поза смугою у неправильній півплощині.

Із сутності задачі оптимізації бачимо, що точки які лежать у правильних півплощинах не відіграють великої ролі, що є однією з відмінностей від дискримінантного аналізу, де вирішуючі межі (межі смуги) визначені коваріацією розподілів класів та позиціями центроїдів. Такі точки, з $\xi > 0$, що впилвають на класифікатор і називаються опорними векторами.

Задачу (5) можна переформулювати у наступному вигляді:

$$\begin{cases}
\min_{\beta,\beta_0} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^{N} \xi_i, \\
y_i(x_i^T \beta + \beta_0) \ge 1 - \xi \, \forall i \xi \ge 0
\end{cases}$$
(6)

Тут "ціновий" параметр C виступає в ролі константи з (5). Лінійно роздільний випадок відповідає $C = \infty$, (тобто всі $\xi_i = 0$).

Функція Лагранжа має вигляд:

$$L = \frac{1}{2}||\beta||^2 + C\sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i \left(y_i(x_i^T \beta + \beta_0) - (1 - \xi_i)\right) - \sum_{i=1}^{N} \mu_i \xi_i,$$

яку слід мінімізувати по β, β_0 та ξ_i . Прирівнявши відповідні похідні до нуля, отримаємо:

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i,$$

$$0 = \sum_{i=1}^{N} \alpha_i y_i,$$

$$\alpha_i = C - \mu_i, \ \forall i,$$

$$(7)$$

а також невід'ємність обмежень $\alpha_i, \mu_i, \xi_i \geq 0, \ \forall i.$

$$\alpha_i[y_i(x_i^T \beta + \beta_0) - (1 - \xi_i)] = 0, \tag{8}$$

$$y_i(x_i^T \beta + \beta_0) - (1 - \xi_i) \ge 0,$$
 (9)

Роз'язок бути мати вигляд:

$$\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i y_i x_i,$$

де ненульові коефіцієнти $\hat{\alpha}_i$ будуть лише для тих спостережень i, для яких (9) в точності виконано (в силу (8)). Ці спостереження і називають опорними векторами, оскільки $\hat{\beta}$ зображено у вигляді лише цих векторів.

Серед цих точок, деякі будуть лежати на межі смуги $(\hat{\xi}_i = 0)$, а тому будуть характеризуватися $0 < \hat{\alpha}_i < C$, решта $\hat{\xi}_i > 0$ матимуть $\hat{\alpha} = C$.

Отримавши вектори $\hat{\beta}_0$ та $\hat{\beta}$, класифікатор має вигляд:

$$\hat{G}(x) = \operatorname{sign}(\hat{f}(x)) = \operatorname{sign}(x^T \hat{\beta} + \hat{\beta}_0).$$

Параметром налаштування (тюнінгу) моделі є константа C.

1.1. Використання ядер у SVM.. Розглянуті вище моделі є лінійними. Як і в задачах регресії їх можна зробити нелінійними додавши додаткові ознаки, такі як степені початкових даних, або сплайни. Так, для кожного x_i можна розглянути функцію $h \colon \mathbb{R}^p \to \mathbb{R}^m$:

$$h(x_i) = (h_1(x_i), \dots, h_m(x_i)),$$

і звичайний класифікатор:

$$G(x) = \operatorname{sign}(h(x)^T \beta + \beta_0).$$

Зауважимо, що задачу оптимізації яку ми розглядали раніше, можна переформулювати лише у вигляді скалярних добутків, так функція L_D може бути зображена у вигляді:

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j < h(x_i), h(x_j) >,$$

розв'язок цієї задачі може бути представлений у вигляді:

$$f(x) = h(x)^T \beta + \beta_0 = \sum_{i=1}^N \alpha_i y_i < h(x), h(x_i) > +\beta_0.$$

Таким чином бачимо, що знати всю функцію h(x) непотрібно, а потрібно знати лише скалярні добутки, або ядерну функцію:

$$K(x, x') = \langle h(x), h(x') \rangle$$
.

Щоб функція K(x,y) могла зображатись у вигляді скалярного добутку вона повинна бути симетричною, додатньо напів-визначеною.

Популярними ядерними функціями є:

Поліноміальне ядро, степені d
$$K(x,x') = (1+\langle x,x'\rangle)^d$$
,
Радіальне (Гаусове) ядро $K(x,x') = e^{-\gamma||x-x'||^2}$, (10)
Тангенс гіперболічний $K(x,x') = tanh(k_1 \langle x,x'\rangle + k_2 \rangle$.

Наприклад для поліноміального ядра другого степеня:

$$K(x,x') = (1 + \langle x, x' \rangle)^2 = 1 + 2x_1x_1' + 2x_2x_2' + (x_1x_1')^2 + (x_2x_2')^2 + 2x_1x_2x_1'x_2'$$

Таким чином m=6 і $h(x)=(1,\sqrt{2}x_1,\sqrt{2}x_2,x_1^2,x_2^2,\sqrt{2}x_1x_2)$. Тоді має місце зображення: K(x,x')=< h(x),h(x')>.

В багатовимірних просторах роль параметра C полягає у згладжуванні розділяючої повернхні. Справді, якщо C - велике, це приведе до малих значень ξ_i тобто до малої кількості неправильно класифікованих тренувальних даних, що як правило веде до перенавчання та нерегулярної розділячої кривої.