Trabalho #4

Simular o algoritmo MRAC direto.

Caso geral: $\forall n$ (ordem da planta) $n^* = 1 \ \& \ 2 \quad \mbox{(grau relativo)}$

Resumo do algoritmo $(n^* = 1)$

Subsistema	Equação	Ordem
Planta	y = P(s) u	n
Modelo	$y_m = M(s) r$	n
Erro	$e_a = \operatorname{sign}(k_p)(y - y_m)$	
Controle	$u = \theta^T \omega$	
Filtros	$\dot{\omega}_1 = A_f \omega_1 + b_f u$	n-1
	$\dot{\omega}_2 = A_f \omega_2 + b_f y$	n-1
Regressor	$\omega^T = \begin{bmatrix} \omega_1^T & y & \omega_2^T & r \end{bmatrix}$	
Adaptação	$\dot{\theta} = -\Gamma\omega e_a$	2n

 $n_p = 2n$ (# de parâmetros)

Resumo do algoritmo $(n^* = 2)$

Subsistema	Equação	Ordem
Controle	$u = \theta^T \omega + \dot{\theta}^T \xi$	
Filtro- ξ	$\dot{\xi} = -\ell_0 \xi + \omega$	2n
Adaptação	$\dot{\theta} = -\Gamma \xi e_a$	2n

Avalie o algoritmo para uma planta de 3a. ordem. Verifique o comportamento do algoritmo variando:

- Condições iniciais.
- Ganho de adaptação.
- Sinal de referência.
- ★ Na apresentação do trabalho, o grupo deverá demonstrar detalhadamente a estabilidade do algoritmo.

Avaliação do trabalho

Preparar e enviar por email:

- Relatório contendo a descrição do algoritmo, resultados das simulações e discussão dos resultados.
- 2. Código dos scripts e modelos (Matlab & Simulink) utilizados para as simulações.
- 3. Slides preparados para a apresentação do trabalho.

Apresentações

- Os grupos terão cerca de 25 minutos para fazer a apresentação.
- As apresentações serão realizadas na seguinte data:

