Module Interface Specification for Slope Stability Analysis Program (SSP)

Henry Frankis and Brooks MacLachlan

November 13, 2018

1 Revision History

Date	Version	Notes
11/12/18	1.0	Initial updates based on template

2 Symbols, Abbreviations and Acronyms

See Section 2 of the SRS Documentation, available in the GitHub repository for the project.

Contents

1	Rev	vision History	i	
2	Symbols, Abbreviations and Acronyms			
3	Inti	coduction	1	
4	Not	cation	1	
5	Nui	merical Algorithms	1	
6	Mo	dule Decomposition	2	
7	MIS 7.1	S of the Control Module Module	3 3	
	7.2	Uses	3	
	7.3	Syntax	3	
		7.3.1 Exported Access Programs	3	
	7.4	Semantics	4	
		7.4.1 State Variables	4	
		7.4.2 Assumptions	4	
		7.4.3 Access Routine Semantics	4	
8		S of the Input Module	4	
	8.1	Module	4	
	8.2	Syntax	4	
	0.0	8.2.1 Exported Access Programs	4	
	8.3	Semantics	4	
		8.3.1 Environment Variables	4	
		8.3.2 Access Routine Semantics	5	
9	MIS	S of the Morgenstern Price Solver Module	5	
	9.1	Module	5	
	9.2	Uses	5	
		9.2.1 Imported Access Programs	5	
	9.3	Syntax	6	
		9.3.1 Exported Access Programs	6	
	9.4	Semantics	6	
		9.4.1 Local Constants	6	
		9.4.2 State Variables	6	
		9.4.3 Access Routine Semantics	7	

10	0 MIS of the Genetic Algorithm Module	7
	10.1 Module	7
	10.2 Uses	7
	10.2.1 Imported Access Programs	7
	10.3 Syntax	8
	10.3.1 Exported Access Programs	8
	10.4 Semantics	8
	10.4.1 Local Constants	8
	10.4.2 State Variables	8
	10.4.3 Access Routine Semantics	8
11	1 MIS of the Property Sorter Module	9
	11.1 Module	9
	11.2 Syntax	9
	11.2.1 Exported Access Programs	9
	11.3 Semantics	
	11.3.1 Access Routine Semantics	9
12	2 MIS of the Slip Slicer Module	10
	12.1 Module	
	12.2 Syntax	
	12.2.1 Exported Access Programs	
	12.3 Semantics	
	12.3.1 Local Constants	
	12.3.2 Assumption	10
	12.3.3 Access Routine Semantics	
13	3 MIS of the Kinematic Admissibility Module	11
	13.1 Module	11
	13.2 Syntax	
	13.2.1 Exported Access Programs	
	13.3 Semantics	
	13.3.1 Assumption	11
	13.3.2 Access Routine Semantics	
14	4 MIS of the Slip Weighting Module	12
	14.1 Module	
	14.2 Syntax	
	14.2.1 Exported Access Programs	
	14.3 Semantics	
	14.3.1 Access Boutine Semantics	19

15 MI	of the Output Module
15.	Module
15.5	<u>Uses</u>
	15.2.1 Imported Access Programs
15.	Syntax
	15.3.1 Exported Access Programs
15.4	Semantics
	15.4.1 State Variables
	15.4.2 Access Routine Semantics
16 A p	endix
16.	Parameter Tables
	16.1.1 Layer Parameters
	16.1.2 Piezometric Parameter
	16.1.3 Search Range Parameters
	16.1.4 Solution Parameters
	16.1.5 Load Force Parameters
	16.1.6 Internal Force Parameters
	16.1.7 Angle Parameters
	16.1.8 Soil Interslice Properties
	16.1.9 Soil Base Properties

3 Introduction

The following document details the Module Interface Specifications for SSP, a program for determining the critical slip surface and corresponding factor of safety for a given sloped mass of soil. The document is intended to ease understanding of the design of SSP and should be used as a resource for any maintenance of SSP.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at the GitHub repository for the project.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | \dots | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by SSP.

Data Type	Notation	Description
character	char	a single symbol or digit
boolean	\mathbb{B}	a value from the set {true, false}
real	\mathbb{R}	any number in $(-\infty, \infty)$.

The specification of SSP uses some derived data types: sequences, strings, and tuples. Sequences are ordered lists of elements of the same data type, denoted by brackets enclosing the type of the data elements. If a sequence has fixed dimensions, the notation of the type will include the dimensions in superscript. Strings are sequences of characters. Tuples contain a list of values, potentially of different types, each associated with a field identifier. When a tuple is referenced in this document, a link to an appendix section that specifies the fields of the tuple will be provided. In addition, SSP uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Numerical Algorithms

Morgenstern-Price (Section 9)

The non-linear nature of the systems of equations in the Morgenstern-Price solver algorithm requires that the equations for the factor of safety (IM1), the interslice normal-to-shear force

ratio (IM2), and the interslice normal forces (IM3) are solved iteratively, with an initial guess for two of the values, typically the factor of safety and interslice normal-to-shear force ratio.

Genetic Algorithm (Section 10)

SSP uses a genetic algorithm to find the coordinates of the critical slip surface vertices that minimize the factor of safety, as described in IM4. The genetic algorithm generates a set of initial potential slip surfaces, and subsequent generations are created by merging and mutating slip surfaces with low factors of safety from the previous generation. The minimum factor of safety after several generations is assumed to correspond to the critical slip surface.

[This section is not on the template. I've left it in for now because the information does seem useful, but maybe this is not the right place for it? Maybe this should go to an appendix? —BM]

6 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2	
Hardware-Hiding		
	Control	
	Input	
	Output	
Behaviour-Hiding	Genetic Algorithm	
Denaviour-Inding	Kinematic Admissibility	
	Slip Weighting	
	Slip Slicing	
	Morgenstern-Price Calculation	
	Slice Property Calculation	
	Array Data Structure	
Software Decision	Random Number Generation	
	Plotting	

Table 1: Module Hierarchy

7 MIS of the Control Module

7.1 Module

Control

7.2 Uses

Input (Section 8), GenAlg (Section 10), Output (Section 15)

7.3 Syntax

7.3.1 Exported Access Programs

Name	In	Out	Exceptions
Control	string	-	-

7.4 Semantics

7.4.1 State Variables

None

7.4.2 Assumptions

The access program is called with a string parameter.

7.4.3 Access Routine Semantics

control(fname):

• transition: Modifies the state of the Input Module, Genetic Algorithm Module, and Output Module.

8 MIS of the Input Module

8.1 Module

Input

8.2 Syntax

8.2.1 Exported Access Programs

Name	In	Out	Exceptions
Input	'string' (file); bools; reals	struc; struc; struc; struc;	input file error

8.3 Semantics

8.3.1 Environment Variables

board: keyboard

 $in_{-}file$: file

8.3.2 Access Routine Semantics

Input:

Accepts a path to a file name. file type is readable by Matlab, and is constructed in the format seen in appendix ??. Command line prompts will control user input values as boolean or real values through the keyboard environment.

Exceptions:

An input data file that does not follow intended input format will generate an input file error.

Output:

```
params_layers : struc_layers (Appendix 16.1.1)

params_piez : struc_piez (Appendix 16.1.2)

params_search : (Appendix 16.1.3)

struc_search

params_soln : struc_soln (Appendix 16.1.4)

params_load : struc_load (Appendix 16.1.5)
```

9 MIS of the Morgenstern Price Solver Module

9.1 Module

MorgPriceSolver

9.2 Uses

9.2.1 Imported Access Programs

Uses PropertySorter - section 11, Passes evalslip, params_layers, params_piez Recieves params_soilInterior, params_soilBase, params_internalForce, params_angles

9.3 Syntax

9.3.1 Exported Access Programs

Name	In	Out	Exceptions
Morgenstern Price Solver	Sequence; struc; struc; struc;	Real	Non Converging; Spurious FMP

9.4 Semantics

9.4.1 Local Constants

 $F_MinLim: \mathbb{R}$ The minimum factor of safety value that the solution must be above to

not be considered spurious. [F_MinLim=0.5]

 $max_iter: \mathbb{R}$ The max number of iterations the algorithm will perform before the solu-

tion is considered non converging. [max_iter=20]

 $eps_F : \mathbb{R}$ The value the absolute difference between the factor of safety calculated

by the algorithm between consecutive iterations must be below for the

answer to be considered converged. $[eps_F=1E-6]$

 $eps_Lam: \mathbb{R}$ The value the absolute difference between the interslice normal to shear

force ratio calculated by the algorithm between consecutive iterations must be below for the answer to be considered converged. [eps_Lam=1E-6]

9.4.2 State Variables

 $Lam: \mathbb{R}$ The interslice normal to shear force ratio. From IM2 of the SRS.

 $E_{\text{-}force}: [\mathbb{R}]^{1,n+1}$ Sequence of the value of the interslice normal force exerted between slices.

A value for each interslice, including ends. Sequence length value n is

defined by the input evalslip. From IM3 of the SRS.

 $Del_F: \mathbb{R}$ The difference between the factor of safety of the current iteration and the

previous iteration. When converged the value will not be changing and

 Del_F will be small.

 $Del_L Lam: \mathbb{R}$ The difference between the interslice normal to shear force ratio of the

current iteration and the previous iteration. When converged the value

will not be changing and *Del_Lam* will be small.

9.4.3 Access Routine Semantics

Input:

evalslip: $[\mathbb{R}]^{2,n+1}$ Vertex coordinates for the slip surface being evaluated. Identifies shape of the slope, and slice points. Sequence length value of n is defined by the Slicer module (section 12).

params_layers : struc_layers (Appendix 16.1.1)
params_piez : struc_piez (Appendix 16.1.2)
params_soln : struc_soln (Appendix 16.1.4)
params_load : struc_load (Appendix 16.1.5)

Exceptions:

A solution which does not converge to a consistent solution, where the change in calculated factor of safety (Del_F) between iterations is less than eps_F , and the change in interslice normal to shear force ratio (Del_Lam) is less than eps_Lam , in less than max_iter iterations will be considered non converging exception case. A solution with a final calculated a factor of safety less than F_MinLim will be considered a spurious factor of safety exception case. Solutions that trigger these exception cases will output a factor of safety (F_MP) of 1000.

Output:

 $F_-MP: \mathbb{R}$ The factor of safety of the slope, as calculated by the Morgenstern Price solution method, measuring the stability of the slope. From IM1 of the SRS.

10 MIS of the Genetic Algorithm Module

10.1 Module

GenAlgModule

10.2 Uses

10.2.1 Imported Access Programs

Uses MorgPrice Module - section 9, Passes evalslip, params_layers, params_piez, params_soln, params_load, Receives F_-MP_i

Uses Slicer Module - section 12, Imports $slip_i$, Receives evalslip

Uses Kin Admissibility Module - section 13, Imports $slip_i$, strat1, Receives KinPass, $slip_i$

Uses Slip Weights Module - section 14, Imports pool, Receives pool

10.3 Syntax

10.3.1 Exported Access Programs

Name	In	Out	Exceptions
GenAlg	struc; struc; struc; struc;	Array	None

10.4 Semantics

10.4.1 Local Constants

 $nslip : \mathbb{R}$ The number of vertices the generated slip surfaces will be described by. [nslip=13]

 $Mpool: \mathbb{R}$ The number of slip surfaces that will be in the pool of potential critical slip surfaces. [Mpool=40]

10.4.2 State Variables

 $pool: [[\mathbb{R}]^{2,\text{nslip}}, \mathbb{R}, \mathbb{R}]^{1,\text{Mpool}}$

A sequence of data describing the slip surfaces that are currently being considered as possible critical slip surfaces. Contains three data elements describing the slope: A sequence of coordinates describing the geometry of the slip surface ($[\mathbb{R}]^{2,\text{nslip}}$), the factor of safety of the slip surface (\mathbb{R}), and a weighting value describing the surfaces factor of safety relative to the other slip surfaces in the pools factors of safety (\mathbb{R}).

10.4.3 Access Routine Semantics

Input:

params_layers: struc_layers (Appendix 16.1.1)
params_piez: struc_piez (Appendix 16.1.2)

 $params_search$: (Appendix 16.1.3)

struc_search

 $params_soln$: struc_soln (Appendix 16.1.4)

 $params_load$: struc_load (Appendix 16.1.5)

Exceptions:

There are no potential exceptions for GenAlg.

Output:

cslip: $[\mathbb{R}]^{2,\text{nslip}}$ Sequence of vertex coordinates describing the geometry of the critical slip

surface of the slope.

11 MIS of the Property Sorter Module

11.1 Module

PropertySorter

11.2 Syntax

11.2.1 Exported Access Programs

Name	In	Out	Exceptions
Property Sorter	Sequence; struc; struc	struc; struc; struc; struc	None

11.3 Semantics

11.3.1 Access Routine Semantics

Input:

 $evalslip: [\mathbb{R}]^{1,n}$ Sequence of vertex coordinates for the slip surface being evalu-

ated. Identifies shape of the slope, and slice points. Sequence

length value n is defined by the Slicer module (section 12).

params_layers: struc_layers (Appendix 16.1.1)

params_piez: struc_piez (Appendix 16.1.2)

Exceptions:

There are no potential exceptions for Property Sorter.

Output:

 $params_internalForce$: (Appendix 16.1.6)

 $struc_intForce$

params_angles: struc_angles (Appendix 16.1.7)

params_soilInterior : struc_soilInt (Appendix 16.1.8)

params_soilBase : struc_soilBase (Appendix 16.1.9)

12 MIS of the Slip Slicer Module

12.1 Module

Slicer

12.2 Syntax

12.2.1 Exported Access Programs

Name	In	Out	Exceptions
Slicer	Sequence; bool	Sequence	None

12.3 Semantics

12.3.1 Local Constants

 $n:\mathbb{R}$ The number of slices the slip surface will be broken into for evaluation. [n=36]

12.3.2 Assumption

A straight line describing the slip surface is assumed between adjacent vertex coordinates given in the input slip.

12.3.3 Access Routine Semantics

Input:

 $slip: [\mathbb{R}]^{2,nslip}$ Sequence of vertex coordinates of the slip surface being sliced.

 $evnslc: \mathbb{B}$ Slicing method switch, an element from the $params_soln$ structure (Appendix 16.1.4).

Exceptions:

There are no potential exceptions for Slip Slicer.

Output:

 $evalslip: [\mathbb{R}]^{1,n}$

Sequence of vertex coordinates for the slip surface being evaluated. Identifies shape of the slope, and slice points.

13 MIS of the Kinematic Admissibility Module

13.1 Module

KinAdm

13.2 Syntax

13.2.1 Exported Access Programs

Name	In	Out	Exceptions
Kin Adm	Sequence; Sequence; struc	bool; Sequence	None

13.3 Semantics

13.3.1 Assumption

A straight line describing the slip surface is assumed between adjacent vertex coordinates given in the input slip.

13.3.2 Access Routine Semantics

Input:

 $slip: [\mathbb{R}]^{2, \text{nslip}}$

Sequence of vertex coordinates of the slip surface being tested. Sequence length value nslip is defined by the Genetic Algorithm module (section 10).

 $strat1: [\mathbb{R}]^{2,nvtx}$ Sequence of the coordinates of the vertexes from the uppermost strati-

graphic layer of the slope. Sequence length value nvtx is defined by

the given input file.

 $params_soln$: struc (Appendix 16.1.4)

Exceptions:

There are no potential exceptions for KinAdm.

Output:

 $KinPass: \mathbb{B}$ Identifies if the input slip surface (slip) has passed the admissibility cri-

terion for a slip surface. If true than the slip surface has passed. If false

than the slip surface has failed.

 $slipPass: [\mathbb{R}]^{1,nslip}$ Sequence of the slip surface given as input (slip) with end vertexes adjusted

to ensure they are on the slope surface.

14 MIS of the Slip Weighting Module

14.1 Module

SlipWeighter

14.2 Syntax

14.2.1 Exported Access Programs

Name	In	Out	Exceptions
Slip Weighting	Sequence; Real	Sequence	None

14.3 Semantics

14.3.1 Access Routine Semantics

Input:

 $pool_In$ $[[\mathbb{R}]^{2,\text{nslip}}, \mathbb{R}, \mathbb{R}]^{1,\text{Mpool}}$ A sequence of data sets describing the slip surfaces that are currently being considered as possible critical slip surfaces. Contains three data elements describing the slope: coordinates describing the geometry of the slip surface ($[\mathbb{R}]^{2,\text{nslip}}$),the factor of safety of the slip surface (\mathbb{R}), and a weighting value describing the surfaces factor of safety relative to the other slip surfaces in the pools factors of safety (\mathbb{R}). Sequence length values nslip, and Mpool are defined by the Genetic Algorithm Module (section 10).

 $Mpool: \mathbb{R}$

The number of slip surfaces in the pool of possible critical slip surfaces being compared and weighting. constant defined in the Genetic Algorithm module (section 10).

Exceptions:

There are no potential exceptions for Slip Weighter.

Output:

 $pool_{-}Out$ $[[\mathbb{R}]^{2,\text{nslip}}, \mathbb{R}, \mathbb{R}]^{1,\text{Mpool}}$ The sequence given in *pool_In*, with the weight data element recalculated, and the sequence reordered in terms of ascending factors of safety.

15 MIS of the Output Module

15.1 Module

Output

15.2 Uses

15.2.1 Imported Access Programs

Uses Slicer Module - section 12, Passes cslip, evnslc, Receives eval_cslip

Uses Morgenstern Price Module - section 9, Passes eval_cslip, params_layers, params_piez, params_load, params_soln Recieves F_MP_Final

15.3 Syntax

15.3.1 Exported Access Programs

Name	In	Out	Exceptions
Output	Sequence; struc; struc; struc;	-	None

15.4 Semantics

15.4.1 State Variables

 $F_MP_Final: \mathbb{R}$ The factor of safety as calculated by the Morgenstern Price solu-

tion method for the critical slip surface, measuring the stability

of the slope.

15.4.2 Access Routine Semantics

Input:

 $cslip: [\mathbb{R}]^{2, nslip}$ Sequence of vertex coordinates for the critical slip surface of the

slope.

params_layers: struc_layers (Appendix 16.1.1)

params_piez : struc_piez (Appendix 16.1.2)

 $params_soln$: struc_soln (Appendix 16.1.4)

params_load : struc_load (Appendix 16.1.5)

Exceptions:

There are no potential exceptions for Output.

Output:

Output does not return any values; however, it creates a plot of the critical slip surface cslip as a part of the slope geometry strat (from $params_layers$). The plot also displays the the factor of safety calculated by the Morgenstern-Price module F_MP_Final .

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

16 Appendix

16.1 Parameter Tables

16.1.1 Layer Parameters

The elements in the structure of the containers for the parameters of different slope layers. Assumed that the parameters will be entered such that sequence progresses from the uppermost stratigraphic layer at the first index, to the lowest stratigraphic layer at the last index. nlayer refers to the number of soil layers in the slope, and is defined by the input file.

Parameter	Description
$strat: [[\mathbb{R}]^{2,\text{nvtx}}]^{1,\text{nlayer}}$	Sequence of coordinate sequences describing the vertexes of each layer. The value $nvtx$ is defined by the input file, and can be different for each sequence.
$phi: [\mathbb{R}]^{1, ext{nlayer}}$	Sequence of the effective angle of friction for each stratigraphic layer.
$coh: [\mathbb{R}]^{1,\mathrm{nlayer}}$	Sequence of the effective cohesion for each stratigraphic layer.
$gam: [\mathbb{R}]^{1,\mathrm{nlayer}}$	Sequence of the dry unit weight of soil for each stratigraphic layer.
$gams: [\mathbb{R}]^{1,\mathrm{nlayer}}$	Sequence of the saturated unit weight of soil for each stratigraphic layer.
$E: [\mathbb{R}]^{1, ext{nlayer}}$	Sequence of the Young's modulus for each stratigraphic layer.
$nu: [\mathbb{R}]^{1,\mathrm{nlayer}}$	Sequence of the poissons ratio for each stratigraphic layer.

16.1.2 Piezometric Parameter

The elements in the structure for parameters relating to the piezometric surface existing on the slope. npz refers to the number of vertexes describing the piezometric surface, and is defined by the input file.

Parameter	Description
$piez: [\mathbb{R}]^{2,\mathrm{npz}}$	Sequence of vertex coordinates describing the geometry of the water table. If there is no water table than <i>piez</i> is an empty array.
$gamw: \mathbb{R}$	The unit weight of water.

16.1.3 Search Range Parameters

The elements in the structure for parameters relating to the range of coordinates the critical slip surface will be searched for in.

Parameter	Description
$Xext: [\mathbb{R}]^{1,2}$	Sequence of the range of x-ordinates that the exit point of the slip will be searched for in. Exit refers to the point of the slip at lower elevation that the slope mass will move towards during failure.
Xent : $[\mathbb{R}]^{1,2}$	Sequence of the range of x -ordinates that the entry point of the slip will be searched for in. Entry refers to the point of the slip at higher elevation that the slope mass will move away from during failure.
Ylim: $[\mathbb{R}]^{1,2}$	Sequence of range of y -ordinates that the slip will be searched for in. The larger value should be greater than the max y -ordinate of the slope. The smaller Ylim value is the deepest the slip surface is expected to descend to.

16.1.4 Solution Parameters

The elements in the structure for parameters relating to method in which the solution method will be approached.

Parameter	Description
ltor : B	Direction the slope is expected to experience failure in. If true than the side of the slope with a greater x-ordinate value is at a lower elevation. If false than the side of the slope with a greater x-ordinate is at a higher elevation.
ftype : \mathbb{B}	Switch between functions to use for interslice shear/normal inclination function. If true then the inclination function is a constant (Spencer's method). If false then the inclination function is a half-sine (standard Morgenstern Price method).
evnslc : \mathbb{B}	Switch between method of slicing a slip surface to when preparing for analysis. If true then slice slip surface into equal x-ordinate widths. If false then slice distance between vertices into even number of slices.
cncvu : B	Switch for concave slip surface admissibility criterion. If true then an admissible slip surface must be concave upwards towards the surface. If false then an admissible slip surface does not need to pass this criterion.

obtu : \mathbb{B}	Switch for angle limit slip surface admissibility criterion. If true then an ad-
	missible slip surface must have all interior angles greater than a set limit. If
	false then an admissible slip surface does not need to pass this criterion.

16.1.5 Load Force Parameters

The elements in the structure for parameters relating to the forces acting on a slice caused by external sources or loads. n refers to the number of slices composing the slip surface.

Parameter	Description
Kc : ℝ	The seismic load factor. The ratio of the weight force of the slope that be exerted outwards as a result of vibrations of the earth's surface. From DD?? of the SRS.
Q:??	An applied load being exerted into the slope surface. From DD?? of the SRS.
omega: ??	The angle the applied load is being exerted into the slope surface. From DD?? of the SRS.

16.1.6 Internal Force Parameters

The elements in the structure for parameters relating to the forces acting on a slice caused by the slope, and water in the slope acting on itself. n refers to the number of slices composing the evaluation slip surface, and is defined by the Slicer module (section 12).

Parameter	Description
Ub: $[\mathbb{R}]^{1,n}$	Sequence of the force acting on the basal surface of a slice as a result of pore water pressure within the slice. Value for each slice. From DD2 of the SRS.
$\mathrm{Ut}: [\mathbb{R}]^{1,n}$	Sequence of the force acting on the upper surface of a slice as a result of pore water pressure standing water on the surface. Value for each slice. From DD3 of the SRS.
$\mathrm{W}: [\mathbb{R}]^{1,n}$	Sequence of the downward force acting on the slice caused by the mass of the slice and the force of gravity. Value for each slice. From DD1 of the SRS.

 $H: [\mathbb{R}]^{1,n-1}$

Sequence of the force acting into the interslice surfaces as a result of pore water pressure within the adjacent slices. Value for each interslice. From DD4 of the SRS.

16.1.7 Angle Parameters

The elements in the structure for parameters relating to the angles of the slice surfaces. n refers to the number of slices composing the slip surface, and is defined by the input *evalslip* given to the Property Sorter module (section 11).

Parameter	Description
Alpha : $[\mathbb{R}]^{1,n}$	Sequence of the angle that the basal surface of the slice makes with the horizontal. Value for each slice. From DD?? of the SRS.
Beta: $[\mathbb{R}]^{1,n}$	Sequence of the angle that the upper surface of the slice makes with the horizontal. Value for each slice. From DD?? of the SRS.

16.1.8 Soil Interslice Properties

The elements in the structure for parameters relating to the soil properties of the slope, as calculated at the interslice interfaces of an evaluation slip. Calculation is based on the ratio of the interface that is in different stratigraphic layers, and the values of the effective angle of friction in the different layers. Interest is only with the interior interslice interfaces therefore for a slope of n slices, there will be n-1 interior interslice interfaces. The value n is defined by the input evalslip given to the Property Sorter module (section 11).

Parameter	Description
$phi_IS: [\mathbb{R}]^{1,n-1}$	Sequence of the vector of the effective angle of friction calculated at each interslice interface.
$coh_IS := [\mathbb{R}]^{1,n-1}$	Sequence of the vector of the effective cohesion calculated at each interslice interface.
$E_{-}IS := [\mathbb{R}]^{1,n-1}$	Sequence of the vector of the Youngs modulus calculated at each interslice interface.
$nu_IS := [\mathbb{R}]^{1,n-1}$	Sequence of the vector of the Poisson ratio calculated at each interslice interface.

16.1.9 Soil Base Properties

The elements in the structure for parameters relating to the soil properties of the slope, as calculated at the basal surfaces of an evaluation slip. Calculation is based on the ratio of the basal surface that is in different stratigraphic layers, and the values of the effective angle of friction in the different layers. An evaluation slip of n slices will have n basal surfaces, and the value of n is defined by the input evalslip given to the Property Sorter module (section 11).

Parameter	Description
$phi_Base: [\mathbb{R}]^{1,n}$	Sequence of the vector of the effective angle of friction calculated at each slice basal surface in an evaluation slip.
$coh_Base: [\mathbb{R}]^{1,n}$	Sequence of the vector of the effective cohesion calculated at each slice basal surface in an evaluation slip.
$E_Base: [\mathbb{R}]^{1,n}$	Sequence of the vector of the Young's modulus calculated at each slice basal surface in an evaluation slip.
$nu_Base: [\mathbb{R}]^{1,n}$	Sequence of the vector of the Poisson ratio calculated at each slice basal surface in an evaluation slip.