Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ITMO University

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА GRADUATION THESIS

Разработка системы онлайн-антифрода для сервиса новостей

Обучающийся / Student Гуммель Никита Константинович

Факультет/институт/кластер/ Faculty/Institute/Cluster факультет информационных технологий и программирования

Группа/Group М34041

Направление подготовки/ Subject area 09.03.02 Информационные системы и технологии **Образовательная программа / Educational program** Программирование и интернеттехнологии 2019

Язык реализации ОП / Language of the educational program Русский Статус ОП / Status of educational program

Квалификация/ Degree level Бакалавр

Руководитель ВКР/ Thesis supervisor Койнов Руслан Васильевич, Университет ИТМО, факультет информационных технологий и программирования, преподаватель (квалификационная категория "преподаватель практики")

Консультант не из ИТМО / Third-party consultant Стрельцов Антон Алексеевич, ООО "Дзен.Платформа", Руководитель группы антифрод

Обучающийся/Student

Документ подписан Гуммель Никита Константинович 18.05.2023

Гуммель Никита Константинови

(Фамилия И.О./ name and surname)

Руководитель ВКР/ Thesis supervisor

Документ подписан	
Койнов Руслан Васильевич	
18.05.2023	

(эл. подпись/ signature)

(эл. подпись/ signature)

Койнов Руслан Васильевич

(Фамилия И.О./ name and surname)

Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ITMO University

АННОТАЦИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ SUMMARY OF A GRADUATION THESIS

Обучающийся / Student Гуммель Никита Константинович

Факультет/институт/кластер/ Faculty/Institute/Cluster факультет информационных технологий и программирования

Группа/Group М34041

Направление подготовки/ Subject area 09.03.02 Информационные системы и технологии **Образовательная программа / Educational program** Программирование и интернеттехнологии 2019

Язык реализации ОП / Language of the educational program Русский

Статус ОП / Status of educational program

Квалификация/ Degree level Бакалавр

Тема BKP/ **Thesis topic** Разработка системы онлайн-антифрода для сервиса новостей **Руководитель BKP**/ **Thesis supervisor** Койнов Руслан Васильевич, Университет ИТМО, факультет информационных технологий и программирования, преподаватель (квалификационная категория "преподаватель практики")

Консультант не из ИТМО / Third-party consultant Стрельцов Антон Алексеевич, ООО "Дзен.Платформа", Руководитель группы антифрод

XAPAKTEPИСТИКА ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ DESCRIPTION OF THE GRADUATION THESIS

Цель исследования / Research goal

Проектирование и разработка системы онлайн-антифрода, поставляющей таблицы логов, проверенные на предмет фрода.

Задачи, решаемые в BKP / Research tasks

- Определение требований к системе - Проектирование архитектуры системы - Реализация спроектированной архитектуры - Настройка мониторингов и алертов

Краткая характеристика полученных результатов / **Short summary of results/findings** Составлены функциональные и нефункциональные требования к системе. Спроектирована архитектура, соответствующая требованиям. Спроектированная архитектура реализована, мониторинги и алерты настроены, система введена в эксплуатацию.

Обучающийся/Student

Документ подписан	
Гуммель Никита Константинович	
18.05.2023	

Гуммель Никита Константинови

Ч

(эл. подпись/ signature)

and surname)

Руководитель ВКР/ Thesis supervisor

Документ подписан	
Койнов Руслан	
Васильевич	
18.05.2023	

(эл. подпись/ signature)

Койнов Руслан Васильевич

(Фамилия И.О./ name and surname)

Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ITMO University

ЗАДАНИЕ НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ / OBJECTIVES FOR A GRADUATION THESIS

Обучающийся / Student Гуммель Никита Константинович

Факультет/институт/кластер/ Faculty/Institute/Cluster факультет информационных технологий и программирования

Группа/Group M34041

Направление подготовки/ Subject area 09.03.02 Информационные системы и технологии **Образовательная программа / Educational program** Программирование и интернеттехнологии 2019

Язык реализации ОП / Language of the educational program Русский

Статус ОП / Status of educational program

Квалификация/ Degree level Бакалавр

Тема BKP/ **Thesis topic** Разработка системы онлайн-антифрода для сервиса новостей **Руководитель BKP**/ **Thesis supervisor** Койнов Руслан Васильевич, Университет ИТМО, факультет информационных технологий и программирования, преподаватель (квалификационная категория "преподаватель практики")

Консультант не из ИТМО / Third-party consultant Стрельцов Антон Алексеевич, ООО "Дзен.Платформа", Руководитель группы антифрод

Основные вопросы, подлежащие разработке / Key issues to be analyzed

Целью выпускной квалификационной работы является проектирование и разработка системы онлайн-антифрода для сервиса новостей. Основной функциональностью разработанной системы является поставка таблиц логов, проверенных на фрод.

Дата выдачи задания / Assignment issued on: 15.12.2022

Срок представления готовой BKP / Deadline for final edition of the thesis 15.05.2023

Характеристика темы BKP / Description of thesis subject (topic)

Название организации-партнера / Name of partner organization: ООО "Дзен.Платформа"

Тема в области фундаментальных исследований / Subject of fundamental research: нет / not

Тема в области прикладных исследований / Subject of applied research: да / yes

COГЛАCOBAHO / AGREED:

Руководитель ВКР/	Документ	
Thesis supervisor	подписан	

Койнов Руслан Васильевич

(эл. подпись)

(эл. подпись)

Задание принял к исполнению/ Objectives assumed BY

Документ
подписан
Гуммель Никита
Константинович
18.05.2023

Гуммель Никита Константинови

Руководитель ОП/ Head

of educational program

Документ	
подписан	
Маятин	
Александр	
Владимирович	
19.05.2023	

Маятин Александр Владимирович

(эл. подпись)

Оглавление

Глосса	рий	5
Введен	ние	7
Глава	1. Описание предметной области	8
1.1	Исходный процесс	8
1.2	Формирование функциональных требований	1
1.3	Формирование нефункциональных требований	2
Глава	2. Проектирование 1	3
2.1	Системная архитектура	3
2.1	Программная архитектура	4
2.2	Архитектура данных	9
Глава	3. Реализация2	25
3.1	Описание	25
3.2	News Xurma	25
3.3	Table Merger	30
3.4	Update Fat Thresholds	32
3.5	Alerts3	33
3.6	Hitman3	34
Заклю	чение	36
Списо	к используемой литературы 3	37

Глоссарий

Антифрод – система или процесс, направленный на борьбу с фродом, предсказание и мониторинг фрода.

Батч – набор таблиц.

Сервис Новости – новостной агрегатор, бывший Яндекс. Новости.

Фрод — мошенничество, незаконное использование информационных технологий в различных областях бизнеса.

Datalens - это сервис для бизнес-аналитики. Сервис позволяет подключаться к различным источникам данных, строить визуализации, собирать дашборды и делиться полученными результатами. Имеет удобный интерфейс работы с таблицами, расположенными в YT.

Hitman — это универсальная платформа на базе Nirvana для создания продакшен-процессов по сбору и обработке данных. Нitman предоставляет интерфейс для настройки регулярных запусков этих процессов и мониторинга их выполнения.

Nirvana — облачная платформа для управления процессами, которые оформлены в виде ациклических графов.

Nirvana-граф — разовый процесс, имеющий графическое отображение. У каждого процесса есть своя конфигурация. Новые графы порождаются клонированием существующих. Граф может быть в одном из четырех состояний: черновик, согласованный, запущенный, завершенный. Все состояния, кроме черновика, являются неизменяемыми.

Nirvana-операция — блок исполнения в графе, который описывается конфигурацией, содержащей способ запуска произвольной программы (в т. ч. имя процессора) и другие опции. Сначала операцию нужно создать или найти, а уже потом — добавить в граф в редакторе и соединить связями с другими операциями или объектами данных.

SLA – это соглашение между заказчиком и исполнителем о том, какие, когда и как будут предоставляться услуги. В рамках данной выпускной квалификационной работы подразумевается соглашение о времени поставки таблиц онлайн-антифрода.

Telegram – мессенджер.

Workflow — набор Nirvana-графов, созданных клонированием Nirvana-графа из этого же набора.

YQL (Yandex Query Language) – универсальный декларативный язык запросов к системам хранения и обработки данных с основанным на SQL синтаксисом и поддержкой пользовательских функций на C++, Python и JavaScript. Может использоваться для работы с данными в YT.

YSON – разработанный в Яндексе формат данных, похожий на JSON.

YT — сервис распределенного хранения и обработки данных с поддержкой модели MapReduce, распределенной файловой системой и NoSQL key-value базой данных.

Введение

Многие крупные компании сталкиваются с такой проблемой, как фрод. В общем понимании фрод — это любое мошенническое действие, совершенное с целью обогащения. Однако есть множество непрямых мошеннических схем, поэтому мы будем использовать более широкое понятие, фрод — это любое действие, противоречащее правилам пользования платформой или совершенное ненастоящим пользователем, то есть роботом.

Для выявления фрода и борьбы с ним крупные компании создают свои группы антифрода или пользуются сторонними сервисами.

Распознавание фрода в событиях любой платформы является неотъемлемой частью продуктовой компании. Без четкой картины о взаимодействии пользователей с продуктом невозможны развитие, понимание узких мест, распознавание паттернов пользования продуктом.

Особенно проблема фрода актуальна для такого медиасервиса как Новости, в котором каждый день публикуются новостные СМИ и миллионы пользователей просматривают новостной контент.

Если не выявлять фрод и не бороться с ним, то модели ранжирования будут учиться на некорректных данных, не отражающих реальные действия пользователей, как следствие появляется возможность у злоумышленников сместить ранжирование в пользу каких-то конкретных СМИ или тематик новостей. Также большой поток фрода может смещать метрики во время проведения А/В тестов, поскольку один попавший в группу тестирования робот может совершать множество событий, вследствие чего продукту придется браковать тест или же результаты теста окажутся ошибочными.

Таким образом, целью выпускной квалификационной работы является разработка онлайн-антифрода для сервиса новостей.

Глава 1. Описание предметной области

1.1 Исходный процесс

Одно из основных направлений антифрода — нахождение фродовых событий и пользователей в логах.

Все события Новостей собираются воедино через logfeller и поставляются таблицами на хранилище YT. Все названия являются датами или временем, поэтому записываются в формате ISO8601. Описание поставляемых таблиц представлено на таблице 1.

Таблица 1 — Onucaние таблиц, поставляемых logfeller

Директория	Название таблицы	Описание	Изменяемы?	Срок
				жизни
stream/5min	Время поставки	Данные таблицы	Нет	2 суток
	таблицы, всегда	хранят в себе		
	кратно пяти	события по мере их		
	минутам	появления в		
		logfeller, таким		
		образом данные		
		таблицы могут		
		хранить в себе		
		события за любой		
		промежуток		
		времени		
30min	Нижняя граница	Таблицы хранят в	В таблицы	3 суток
	тридцатиминутного	себе данные за	могут	
	интервала	каждый	дописываться	
		тридцатиминутный	события,	
		интервал суток	которые	
1d	Дата, за которую	Хранят в себе все	logfeller	Не
	собраны события в	события за какую-	получил позже	удаляются
	данной таблице	либо дату	времени	
			поставки	

Выявление фрода в логах делится на два вида:

- Оффлайн-антифрод, который запускается раз в сутки. Данный процесс тяжелый, а его резуьтатом работы является таблица с обнаруженными фродовыми пользователям за сутки;
- Онлайн-антифрод обрабатывает таблицы, поставляемые logfeller, и добавляет к каждой строке лога колонку rules, содержащую список идентификаторов антифрод-правил, которые сработали на данной строке лога. Соответственно, если в колонке rules пустой лист событие не является фродом. Результатом онлайн антифрода являются таблицы с колонкой rules, поставляемые в том же формате, что и таблицы, которые поставляет logfeller.

Проверенные через онлайн-антифрод таблицы используются для переобучения ранжирующих моделей, построения дашбордов продуктовой командой, а также для аналитических скриптов на свежих данных с возможностью фильтрации от фродовых событий. Дневные таблицы, полученные в результате работы онлайн-антифрода, вместе с оффлайн-антифродом используются для построения сессий, которые в дальнейшем используются командами МL и продуктовой аналитики.

До того, как Новости отделились от Яндекса, онлайн-антифрод совершался на стороне сервиса антифрода Яндекса, правила для обнаружения фрода задавала команда Новостей. После отказа от части сервисов Яндекса появилась необходимость создать свою систему онлайн-антифрода.

Задачу по разработке системы онлайн-антифрода можно разделить на три основные части:

- Определение требований к системе, таких как время и формат поставки таблии:
- Разработка архитектуры системы с учетом требований;

• Реализация данной архитектуры с использованием технологий, определенных нефункциональными требованиями.

1.2 Формирование функциональных требований

Согласно поставленной задаче, можно выделить следующие функциональные требования к системе онлайн-антифрода сервиса новостей:

- Данные необходимо читать из stream/5min таблиц, поставляемых logfeller. Сделано это с целью уменьшения времени поставки таблиц, так как данные таблицы имеют наименьшую задержку поставки;
- Поставка таблиц должна осуществляться в том же формате, что и у таблиц logfeller'a. То есть stream/5min идентичны обрабатываемым таблицам, 30min и 1d таблицы должны содержать в себе данные, отфильтрованные по timestamp событий;
- Согласно SLA, задержка поставки таблиц онлайн-антифрода должна составлять не более 4 часов;
- Для системы должен быть настроен мониторинг времени поставки таблиц и времени работы отдельных компонентов;
- Должны быть настроены алерты:
 - Алерты об упавших процессах должны быть настроены через
 Hitman и отправляться через email и sms.
 - Алерты о задержке (или выявлении сигнала, что задержка возможна) поставки таблиц должны отправляться в канал алертов в Telegram и содержать в себе список задержавшихся таблиц и время поставки данных таблиц от logfeller.
- Поставляемые онлайн-антифродом таблицы должны иметь колонку rules, содержащую список идентификаторов правил, сработавших на событии. В остальной схеме таблицы должны быть идентичны тем таблицам, которые поставляет logfeller.

1.3 Формирование нефункциональных требований

- Необходимо использовать logfeller, из которого берутся исходные данные;
- Для написания скриптов обработки таблиц необходимо использовать YQL для экономии времени работы;
- Процессы должны уметь работать в асинхронном режиме, чтобы ускорять процесс поставки таблиц;
- Процессы не должны одновременно работать с чувствительными данными, чтобы не нарушить консистентность данных;
- Чтение данных из logfeller необходимо производить по батчам, это необходимо для асинхронной работы;
- Необходимо использовать инструменты Nirvana и Hitman;
- Хранить все табличные данные на YT;
- Должны быть настроены разграничения доступа, так как система работает с чувствительными данными.
- Графики мониторинга должны быть реализованы в Datalens.

Глава 2. Проектирование

2.1 Системная архитектура

В команде антифрода для построения регулярных процессов используют графы в Nirvana с запуском через сервис Hitman, соответственно все элементы системы реализованы в Nirvana.

Поскольку используются технологии Яндекса, то Nirvana, Hitman и YT находятся в одном серверном окружении.

Используемые компоненты системы:

- Сервис Hitman для регулярного запуска Nirvana-графов, мониторинга всего проекта и отдельных процессов в нем;
- Сервис Nirvana для составления графов исполнения;
- Для целей проекта использовались Nirvana-операции для запуска YQL-скриптов, Groovy-скриптов для работы с YSON, YT-операций;
- Все табличные данные находятся в хранилище данных YT;
- Запускаемые YQL-скрипты разбиваются на map-reduce операции на YT.

2.1 Программная архитектура

Одной из задач в разработке системы онлайн-антифрода для сервиса Новостей являлась разработка архитектуры всей системы. Исходя из выбранного инструментария и требований, было решено реализовать 4 Nirvana-графа, которые будут по стоп запускаться сервисом Hitman. Графы из различных workflow должны работать независимо друг от друга.

Pисунок 1- Диаграмма классов для отображения функций графов и их взаимодействия

На рисунке 1 представлена диграмма классов, на которой графы описаны в виде классов, а также компоненты, с которыми они взаимодействуют. Графы напрямую не взаимодействуют друг с другом, но пользуются общими таблицами.

Ниже приведена таблица с описанием каждого графа:

Таблица 2 — Описание основных графов архитектуры

Название графа	Функциональность	Результат работы	
News Xurma	Основной граф системы, должен	Потоковые таблицы в	
	реализовывать подбор, обработку	директории stream.	
	и применение антифрод-правил.	Актуальная таблица	
		мониторинга процесса.	
Table Merger	Граф должен собирать таблицы	Корректные таблицы в	
	30min и 1d из stream директории,	директории 30min и 1d.	
	поставка осуществляется в	Актуальная таблица	
	формате logfeller'a.	мониторинга процесса.	
Alerts	Оповещение о задержках	Алерты в Telegram.	
	поставки таблиц.		
Update Fat	Ежесуточное обновление порогов	Новые пороги.	
Thresholds	для правила пользователей с	Актуальная таблица	
	аномальными счетчиками	истории порогов.	
	событий.		

Рисунок 2 — Диаграмма последовательности взаимодействия компонентов системы

На рисунке 2 представлена диаграмма последовательности взаимодействия компонентов системы между собой.

- 1. Logfeller поставляет таблицы на YT в директорию zen-news-events-log (1d, 30min и stream/5min). stream/5min таблицы поставляются потоком, поток логов нарезается интервалами по 5 минут после чего поставляется как готовые таблицы. У logfeller возможны задержки, следствием чего является поставка нескольких таблиц одновременно.
- 2. Граф News Xurma проверяет, что прямо сейчас не обновляются таблицы истории, если обновляются граф завершает свое выполнение. Если таблицы истории актуальны и не обновляются прямо сейчас подбираются новые таблицы, которые еще не были обработаны.
- 3. Сохраняется информация о взятых в обработку таблицах.
- 4. Получение таблиц истории и переменных, которые затем будут использованы для применения правила онлайн-антифрода.

4.1 Обновление таблиц истории с добавление в них информации из обрабатываемого батча, также происходит фильтрация событий старше суток.

Готовые таблицы со сформированной колонкой rules, содержащей список идентификаторов антифрод-правил, распределяются на три потока записи (пункты 5 и 8):

- 5. stream/5min таблицы записываются по названиям таблиц, так как схема данных в zen-news-events-checked-log должна быть идентична zen-news-event-log.
- 6. В таблицу мониторинга задержек поставок 5min таблиц записывается информация о завершившейся поставке таблиц из батча.
- 7. Граф Alerts проверяет задержку поставок всех видов проверенных таблиц, и если задержка превышает SLA, то отправляет сообщение с алертом в Telegram в специализированный чат для алертов.
- 8. Если нужных для записи 1d и 30min таблиц нет в stream-директории, то создаются пустые таблицы с нужной схемой, далее происходит запись в данные таблицы. Это необходимо для lock-free записи таблиц несколькими Nirvana-графами.
 - 8.1 Граф Table Merger получает список 30min и 1d таблиц из streamдиректории, которые не обновлялись более часа, данные таблицы считаются готовыми.
 - 8.2 Готовые таблицы, у которых разница с уже поставленными таблицами zen-news-events-log выше порога 0.0001, считаются сигналом о проблемах в процессе или потенциальной задержке. Сообщение о проблеме отправляется в Telegram.
 - 8.3 Готовые 30min и 1d таблицы, с которыми не оказалось проблем из пункта 8.2, перемещаются из stream директории в директорию постоянного хранения. Для 30min таблиц устанавливается время жизни 3 суток, через это время таблицы удаляются автоматически.

9. Раз в сутки запускается граф Update Fat Thresholds, который пересчитывает пороги для определения аномальных пользователей и записывает пороги в виде таблицы на YT.

2.2 Архитектура данных

Рисунок 3 — Используемые таблицы

На рисунке 3 представлены таблицы, используемые в онлайн-антифроде:

1. Таблицы zen-news-events-log поставляются logfeller. Все таблицы имеют одинаковую схему, различие только в том, как составляются данные таблицы. Основные используемые таблицы — таблицы из директории stream/5min, из остальных берется только время поставки и размер (количество строк).

2. Агрегаты:

Данные таблицы обрабатываются только News Xurma и поддерживают окно наблюдения в сутки, фильтруя записи старше суток по dt и дописывая информацию из текущего обрабатываемого батча логов.

Таблица 3 — Таблицы истории агрегатов

Таблица	Схема			
	Ключ	Тип	Смысл	
events_history	dt	Timestamp	Время запуска графа, который внес записи	
	userHash	Uint64	Хэш информации о пользователе	
	event_dict	Yson	Словарь событий с количеством	
duplicates_history	dt	Timestamp	Время запуска графа, который внес записи	
	eventInfoHash	Uint64	Хэш информации о событии и пользователе	
	minTs	Timestamp	Минимальное время появления eventInfoHash в батче	

Таблица events_history используется для антифрод-правил, для которых нужно знать, какие события за последние сутки совершал пользователь и сколько раз. Так же по данной таблице можно получить полный словарь действий пользователя за сутки, что позволяет проверить правило пользователей с аномальными счетчиками.

Таблица дубликатов нужна для применения правила дубликатов. Правило вычистки дубликатов является техническим и должно предотвращать спам событиями в логах от одного и того же пользователя или сгладить эффект от ошибок логирования. Если ts события не равен минимальному событию с таким же eventInfoHash за последние сутки, то событие является дубликатом.

3. Правило аномальных пользователей:

Таблица 4 — Описание таблиц для правила нахождения аномальных пользователей

Таблица	Схема			Смысл
	Ключ	Тип	Смысл	
fat_thresholds	event	String	Название события	Используемые пороги
	threshold	Uint64	Порог для правила	
			аномальных	
			пользователей	
fat_thresholds_new	event	String	Название события	Новые посчитанные
	threshold	Uint64	Порог для правила	пороги. Таблица
			аномальных	удаляется после
			пользователей	переноса данных из нее
				в fat_thresholds.
fat_thresholds_history	date	String	Название	Таблица хранит
			используемой для	рассчитанные пороги за
			расчета дневной	каждую дату.
			таблицы (дата	Потенциальные
			рассматриваемых	всплески порогов могут
			событий)	свидетельствовать о
	event	String	Название события	фрод атаке.
	threshold	Uint64	Порог для правила	
			аномальных	
			пользователей	

событий счетчикам нахождения аномальных ПО пользователей граф Update Fat Thresholds запускается раз в сутки на дневной таблице лога и считает новые пороги. Пороги записываются в таблицу fat_thresholds_new, которая создается в момент записи. Так же новые посчитанные пороги дописываются таблицу В fat_thresholds_history, где для каждого дня хранятся рассчитанные пороги за день.

Запись происходит изначально в таблицу fat_thresholds_new, чтобы обновлять таблицу fat_thresholds только тогда, когда ни один процесс не будет читать из неё.

4. Технические таблицы:

Таблица 5 — Описание технических таблиц

Таблица	Схема			Смысл
	Ключ	Тип	Смысл	
lock_table				Используется для
				блокировки
processed_tables	tableName	String	Название таблицы	Знание о том, что
			из stream/5min	какой-то граф еще не
	isProcessed	Bool	False, если таблица	актуализировал
			в обработке	таблицы истории
			True, если история	исключает запуск
			уже	нового графа
			актуализирована	

Две данные таблицы гарантируют, что в критическом блоке графа News Xurma, где происходит подбор батча таблиц для обработки, будет только один граф, и что с таблицами истории работает только один граф.

5. Мониторинги:

Таблица 6 — Описание таблиц мониторинга

Таблица	Схема			Смысл
	Ключ	Тип	Смысл	
delays	startDt	Timestamp	Время запуска	Граф News Xurma
			графа News Xurma	записывает в
	workTime	Uint64	Время в секундах	данную таблицу
			между startDt и	данные в ходе
			временем поставки	своей работы
			таблиц 5min	
	maxDelay	Uint64	Максимальная	
			задержка поставки	
			таблицы 5min в	
			секундах	
merger_delays	tableName	String	Название	Граф Table Merger
			перемещаемой	для каждой
			таблицы из stream-	таблицы, которую
			директории	он поставляет в
	tableType	String	"30min"/"1d", тип	ходе запуска,
			таблицы,	записывает
			перемещаемой из	информацию о
			stream-директории	времени своей
	worktime	Uint64	Время работы	работы и о
			графа Table Merger	задержке поставки.
			в секундах	
	delay	Uint64	Задержка поставки	
			таблицы в секундах	

Обе эти таблицы необходимы для мониторинга времени работы графов и задержки поставки таблиц.

6. Таблицы zen-news-events-checked-log являются результатом работы всей системы. Все таблицы имеют одинаковую схему. Схема таблиц отличается от zen-news-events-log только наличием колонки rules,

хранящей список идентификаторов отработавших правил для каждой строки логов.

- stream/5min директория таблиц пятиминуток, таблицы в ней хранятся двое суток, после чего автоматически удаляются;
- stream/30min директория для временного накопления таблиц 30min. По мере готовности таблицы из stream/30min граф Table Merger забирает таблицу и производит запись в директорию 30min. Если в директории 30min уже есть таблица с таким названием дозаписывает, иначе создает таблицу и производит запись;
- stream/1d директория для временного накопления дневных таблиц. По мере готовности таблицы из stream/1d граф Table Merger забирает таблицу и производит запись в директорию 1d. Если в директории 1d уже есть таблица с таким названием дозаписывает, иначе создает таблицу и производит запись;
- 30min директория для хранения таблиц 30min, таблицы в ней хранятся трое суток, после чего автоматически удаляются;
- 1d директория для хранения дневных таблиц.

Глава 3. Реализация

3.1 Описание

Согласно разработанной архитектуре системы онлайн-антифрода были реализованы 4 Nirvana-графа. Для каждого из них были созданы процессы в Hitman, настроены триггеры, клонирующие и запускающие графы с заранее заданными параметрами, а также мониторинги на падения процессов, частоту запуска и время выполнения с нотификацией через SMS и корпоративную почту.

3.2 News Xurma

News Xurma является основным графом всей архитектуры. В его функции входят:

- Определение нового батча необработанных таблиц;
- Предобработка данных в таблицах;
- Поддержание актуальности таблиц истории (events_history и duplicates_history);
- Обновление таблицы порогов fat_thresholds при наличии fat_thresholds new для правила аномальных пользователей;
- Применение к каждой строке лога в батче правил онлайн-антифрода, результатом чего является список идентификаторов правил;
- Запись лога в соответствующие таблицы в директорию stream;
- Обновление таблицы мониторинга задержек поставок таблиц stream/5min.

Рисунок 4 — Реализация графа News Xurma

Рисунок 5 — Очередность и связь между этапами графа News Xurma

На рисунке 4 представлена реализация архитектуры графа с подписанными номерами этапов. Для простоты понимания очередность и связь между этапами отображена в виде схемы на рисунке 5.

1. Подбор таблиц

Рисунок 6 — Алгоритм работы первого этапа графа News Xurma

На рисунке 6 представлена блок-схема алгоритма работы первого этапа.

Поскольку в данном блоке есть запись в техническую таблицу processed_tables, необходимо защитить данный этап блокировкой, чтобы предотвратить параллельную запись, а следовательно, и параллельную обработку, возможно пересекающихся, батчей.

На данном этапе определяется, будет ли исполняться граф или пропустится. А также определяется список таблиц, попавших в батч на обработку. Добавляя информацию о новом батче в таблицу is Processed, мы гарантируем, что только один граф может работать с таблицами истории.

Таким образом, если таблицы истории используются каким-либо графом, то граф завершит своё исполнение, предварительно освободив таблицу lock_table.

- 2. Обновление таблицы порогов для правила определения пользователей с аномальными счетчиками событий.
 - На данном этапе проверяется наличие таблицы fat_thresholds_new и, если таблица fat_thresholds никаким процессом не используется, то перезаписывает данные из fat_thresholds_new в fat_thresholds, удаляя версию fat_thresholds_new. Сделано это для поддержания асинхронности работы с таблицей порогов.
- 3. На данном этапе происходит объединение всех таблиц батча в одну, по которой в последующем происходит агрегация по пользователям или событиям. Данные агрегаты в последующем будут использоваться в этапах 5 и 7.
- 4. Параллельно с выполнением этапа 3, происходит фильтрация таблиц истории агрегатов от событий, которым больше суток. Так же на данном этапе производится агрегация таблиц историй по пользователям и событиям, чтобы ускорить объединение истории с данными из свежего батча.
 - Результатом данного этапа является таблица уникальных пользователей с их словарем событий за сутки, а также таблица уникальных событий с их минимальным временем появления в логе за последние сутки. Данные таблицы будут использоваться в этапе 7.
- 5. После того, как этапы 3 и 4 завершились, в таблицах истории находятся актуальные данные, но неполные. Поэтому на данном этапе в историю дозаписываются данные из этапа 3.
- 6. После того, как все таблицы истории актуализированы. У таблиц из текущего батча в таблице processed_tables значение isProcessed меняется на True, таким образом происходит разблокировка работы для остальных графов.
- 7. На данном этапе производится подготовка списка найденных пользователей с аномальными счетчиками, объединение старой истории из этапа 4 со свежими данными из этапа 3. Также к таблице, содержащей

все события батча, добавляются ключи для дальнейшего join в 8 этапе, а именно хэш информации о пользователе и хэш информации о событии. Во время расчета ключей так же применяются правила, которые не требуют данных об истории.

- 8. Самый долгий этап исполнения графа, производится тяжелый join, а также непосредственно запись всех сработавших правил в колонку rules в виде списка идентификаторов правил. Результатом данного этапа является таблица, содержащая в себе все события из обрабатываемого лога, где для каждой строки дополнительно добавлены названия таблиц пятиминуток, из которых эти события были взяты, и колонка rules.
- 9. Финальная часть графа, в которой производится запись в stream-директорию. Все таблицы записываются без колонки, содержащей информцию о том, из какой таблицы пятиминутки было событие. Раскладка событий для таблиц stream/5min происходит по ранее сохраненным названиям таблиц пятиминуток. После чего обновляется таблица мониторинга delays. На рисунке 7 представлен график, который в автоматическом режиме строится по таблице мониторинга delays.

Рисунок 7 — Мониторинг поставок таблиц stream/5min

Если для таблиц stream/30min и stream/1d не было в stream-директории таблиц, в которую должна происходить запись, то создаются новые пустые таблицы с правильной схемой. После чего производится запись в данные таблицы, каждая строка попадает в ту таблицу, которая соответствует её timestamp события.

3.3 Table Merger

Вспомогательный граф в архитектуре, реализующий поставку таблиц, идентичную по формату тому, как это делает logfeller. Функции данного графа:

- Нахождение готовых таблиц в stream/30min или stream/1d, в зависимости от параметра графа. Данные таблицы перемещаются из stream-директории в место постоянного хранения.
- Информация о некорректных таблицах отправлется в чат алертов в Telegram.
- Обновление таблицы мониторинга задержки поставок 30min и 1d таблиц.

Рисунок 8 — Реализация графа Table Merger

На рисунке 8 представлен реализованный граф с пронумерованными этапами. В данном графе на 1 этапе берутся таблицы из соответствующей параметрам

запуска графа stream-директории (stream/30min или stream/1d), которые не обновлялись больше часа. Такие таблицы считаются готовыми к переносу. Однако готовые таблицы необходимо проверить на разладки по числу строк:

Пусть tableТуре - тип таблицы 30min/1d, tableName - название таблицы, тогда:

S - количество строк в таблице stream/tableType/tableName.

M - количество строк в таблице tableType/tableName, таблица существует, иначе 0.

U - количество строк в таблице table Type/table Name из непроверенного лога.

Разладкой называется ситуация, когда $\left| \frac{S+M}{U} - 1 \right| > 1^{-4}$.

Если на 1 этапе были найдены таблицы с разладками, то на 2 этапе формируется и отправляется алерт в Telegram. Пример алерта представлен на рисунке 9.

Рисунок 9 — Алерт о потенциальных разладках

На 3 этапе берутся готовые таблицы без разладок из 1 этапа, и данные из этих таблиц переносятся из stream-директории в место постоянного хранения. Если

же таблица с таким названием уже существует в месте постоянного хранения, то происходит дозапись.

На 4 этапе обновляется таблица мониторинга работы графа Table Merger merger_delays. На рисунке 10 представлен график, который в автоматическом режиме строится по таблице мониторинга merger_delays для дневных таблиц. late_events_delay определяется как максимальная задержка дозаписи в таблицу.

Рисунок 10 – Мониторинг поставки дневных таблиц

3.4 Update Fat Thresholds

Данный граф реализует обсчет порогов для определения аномальных по количеству событий пользователей.

Рисунок 11 — Реализация графа Update Fat Thresholds

На рисунке 11 представлен реализованный граф, состоящий из кубиков расчета порогов, записи в историю таблиц, а также записи новых посчитанных порогов в таблицу fat_thresholds_new.

Рисунок 12 – История порогов для аномальных пользователей

График, который строится по таблице истории порогов fat_thresholds_history, изображен на рисунке 12. По данному графику можно косвенно отслеживать активность роботов на платформе.

3.5 Alerts

Данный граф является одним из ключевых сигналов о поломках системы. Он считает для каждой таблицы, появившейся за последние сутки в zen-news-events-log, для которой нет таблицы с таким же названием в zen-news-events-checked-log, сколько времени прошло с момента поставки таблицы до текущего момента, это время называется задержкой. Если задержка превышает 4 часа, то граф отправляет алерт в чат алертов в Telegram. Пример алерта представлен на рисунке 13.

Рисунок 13 — Пример алерта о задержках поставки таблиц

3.6 Hitman

Для всей системы был создан проект в Hitman, содержащий отдельный процесс под каждый граф.

Для каждого процесса были настроены мониторинги:

- Число успешно завершенных запусков за час должно быть не меньше одного;
- Не должно быть графов, завершившихся с ошибкой;
- Верхняя граница времени работы каждого графа настраивалась для каждого процесса отдельно.

Если мониторинг заметил отклонение от одного из правил – он отправляет алерт в виде SMS, так же дублируя алерт на корпоративную почту. Пример алертов представлен на рисунке 14.

Pисунок 14 - SMS алерты от мониторинга Hitman

Заключение

В ходе выполнения выпускной квалификационной работы была разработана архитектура системы онлайн-антифрода для сервиса Новостей, а также реализована данная архитектура с использованием графов Nirvana, настроены мониторинги и построены графики для отслеживания состояния системы.

Таблицы, поставляемые онлайн-антифродом активно используются аналитиками Новостей и Дзена.

Благодаря настроенным мониторингам и алертам обо всех неполадках в системе команда антифрода узнает своевременно.

Все функциональные и нефункциональные требования исполнены в полном объеме.

Список используемой литературы

- 1. Yson [Электронный ресурс] URL: https://ydb.tech/ru/docs/yql/reference/udf/list/yson (дата обращения 05.05.2023)
- 2. YQL [Электронный ресурс] URL: https://ydb.tech/ru/docs/yql/reference/ (дата обращения 05.05.2023)
- 3. YT [Электронный pecypc] URL: https://habr.com/ru/companies/yandex/articles/311104/ (дата обращения 05.05.2023)
- 4. Datalens [Электронный ресурс] URL: https://cloud.yandex.ru/docs/datalens/ (дата обращения 05.05.2023)
- 5. Дзен Новости [Электронный ресурс] URL: https://dzen.ru/news (дата обращения 10.05.2023)
- 6. SLA (соглашение о уровне услуг) [Электронный ресурс] URL: https://ru.wikipedia.org/wiki/Соглашение_об_уровне_услуг (дата обращения 10.05.2023)