WHAT IS CLAIMED:

l	1. A method for establishing a trust relationship with a remote node,
2	comprising:
3	generating a local public value and a local private value on at least one
1	node;
5	receiving a public value from another node via an out-of-band mechanism;
5	and
7	generating a secret value using the local private value in combination with
3	the public value received from the other node.
l	2. A method according to Claim 1, wherein the method is performed on
2	both of a pair of nodes, and wherein further the secret values generated at both of the
3	nodes are symmetric.
1	3. A method according to Claim 2, wherein the generating a secret
2	value includes performing a Diffie-Hellman computation.
1	4. A method according to Claim 1, further comprising:
2	retaining the secret value locally;
3	protecting the secret value using the public value received from the other
1	node; and
5	transmitting the protected secret value to the other node via the out-of-band
5	mechanism

- 5. A method according to Claim 4, wherein the generating a secret value includes performing a Rivest-Shamir-Adleman (RSA) computation.
- 6. A method according to Claim 1, wherein the receiving of the public value from the other node via an out-of-band mechanism includes receiving the public value over an asynchronous connection.
- 7. A method according to Claim 1, wherein the receiving of the public value from the other node via an out-of-band mechanism includes downloading the public value from an external device.
- 8. A method according to Claim 7, wherein the external device is any one of a personal digital assistant (PDA), flash memory, memory stick, barcode, smart card, USB-compatible device, Bluetooth-compatible device, and infrared-compatible device.
- 9. A computer-readable medium having one or more instructions causing one or more processors to:
- generate a local two-part code having a public code component and private
 code component;
- receive a public code component from another processor via a peripheral device; and
- generate a secret value using the local private code component and the public code component received from the other processor.

- 1 10. A computer-readable medium according to Claim 9, wherein the one 2 or more instructions are executed on the other processor, and wherein further the secret 3 value is symmetrical to the secret value generated on the other processor.
- 1 11. A computer-readable medium according to Claim 9, wherein the one 2 or more instructions to generate a secret value includes one or more instructions to 3 perform a Diffie-Hellman computation.
- 1 12. A computer-readable medium according to Claim 9, further 2 comprising one or more instructions causing one or more processors to:
- encode the secret value using the public code component received from the

 other processor; and
- transmit the encoded secret value to the other processor via the peripheral device.
- 1 13. A computer-readable medium according to Claim 12, wherein the one or more instructions to generate a secret value includes one or more instructions to perform an RSA computation.
- 1 14. A computer-readable medium according to Claim 9, wherein the 2 peripheral device is asynchronously connected to the one or more processors.
- 1 15. A computer-readable medium according to Claim 9, wherein the one 2 or more instructions to receive the public code component from the other processor via

- 3 the peripheral device includes downloading the public code component from one of a
- 4 personal digital assistant (PDA), flash memory, memory stick, barcode, smart card, USB-
- 5 compatible device, Bluetooth-compatible device, and infrared-compatible device.
- 1 16. An apparatus, comprising:
- a key generator to generate a local public/private key pair; and
- a shared secret generator to receive a public key from another node via an
- 4 out-of-band connection and to generate a shared secret using the local private key and the
- 5 public key received from the other node.
- 1 17. An apparatus according to Claim 16, wherein the shared secret is
- 2 symmetrical to a shared secret generated on the other node using the local public key and
- 3 a private key corresponding to the other node.
- 1 18. An apparatus according to Claim 16, wherein the other node is a
- 2 server.
- 1 19. An apparatus according to Claim 16, wherein the shared secret
- 2 generator is to generate a shared secret by performing a Diffie-Hellman computation.
- 1 20. An apparatus according to Claim 16, further comprising an encoder
- 2 to encode the secret value using the public key received from the other node and to
- 3 transmit the encoded secret value to the other node via the out-of-band connection.

- 1 21. An apparatus according to Claim 20, wherein the shared secret 2 generator is to generate a shared secret by performing an RSA computation.
- 22. An apparatus according to Claim 16, wherein the out-of-band connection includes any one of a personal digital assistant (PDA), flash memory, memory stick, barcode, smart card, USB-compatible device, Bluetooth-compatible device, and infrared-compatible device.
- 1 23. A protocol for establishing trust between two or more processing 2 nodes, comprising:
- generating a public key and a private key on each of at least two nodes;
- exchanging the public keys between the at least two nodes using an
- 5 asynchronous mechanism; and
- 6 calculating a secret to be shared on at least one of the two nodes.
- 24. A protocol according to Claim 23, wherein the calculating of the secret to be shared includes performing a function using the public key from the other of the two nodes and the private key.
- 1 25. A protocol according to Claim 24, wherein the calculating the secret 2 to be shared includes performing a Diffie-Hellman calculation.
- 1 26. A protocol according to Claim 24, wherein the secret to be shared is 2 symmetrical on the at least two nodes.

1	27. A protocol according to Claim 23, further comprising:
2	encoding the secret to be shared using the public key from the other of the
3	two nodes; and
4	transmitting the encoded secret to be shared to the other of the two nodes
5	via the asynchronous mechanism.
1	28. A protocol according to Claim 27, wherein the calculating the secret
2	to be shared includes performing an RSA calculation.
1	29. A protocol according to Claim 23, wherein the out-of-band
2	mechanism includes any one of a personal digital assistant (PDA), flash memory,
3	memory stick, barcode, smart card, USB-compatible device, Bluetooth-compatible
4	device, and infrared-compatible device.
1	30. An apparatus, comprising:
2	means for generating a local public/private key pair; and
3	means for receiving a public key from another node via an out-of-band
4	connection; and
5	means for generating a shared secret using the local private key and the
6	public key received from the other node.
1	31. An apparatus according to Claim 30, wherein the means for
2	generating a shared secret performs a Diffie-Hellman computation.

- 1 32. An apparatus according to Claim 30, further comprising means for encoding the shared secret using the public key received from the other node.
- 1 33. An apparatus according to Claim 32, wherein the means for generating a shared secret performs an RSA computation.
- 34. An apparatus according to Claim 30, wherein the out-of-band connection includes any one of a personal digital assistant (PDA), flash memory, memory stick, barcode, smart card, USB-compatible device, Bluetooth-compatible device, and infrared-compatible device.