Linearna algebra nad polkolobarji

Jimmy Zakeršnik

mentor: prof. dr. Tomaž Košir

24. junij 2023

Napovednik

- Motivacija
- Monoidi in urejenost
- Polkolobarji in dioidi
- Polmoduli in moduloidi
- Matrike nad polkolobarji
- Pideterminanta in karakteristični pipolinom
- Posplošeni Cayley-Hamiltonov izrek
- Literatura

Motivacija

Polkolobarjev je veliko - pojavljajo se v skoraj vsakem področju matematike. Nekateri primeri so:

- \mathbb{N}_0 oz. \mathbb{Z}^+ , \mathbb{Q}^+ , \mathbb{R}^+ za standardne operacije + in *,
- max-plus algebra $(\mathbb{R} \cup \{-\infty\}, max, +)$ in min-plus algebra $(\mathbb{R} \cup \{\infty\}, min, +)$,
- Boolove algebre,
- Potenčne množice za \cup in \cap .

Monoidi in urejenost

Definicija

Komutativen monoid (M,*) je $kanonično\ urejen$, če je kanonična šibka urejenost $x \leq y \iff \exists z \in M: y = x*z$ na M antisimetrična.

Monoidi in urejenost

Definicija

Komutativen monoid (M,*) je $kanonično\ urejen$, če je kanonična šibka urejenost $x \leq y \iff \exists z \in M: y = x*z$ na M antisimetrična.

Izrek

Monoid ne more hkrati biti grupa in kanonično urejen.

Monoidi in urejenost

Definicija

Komutativen monoid (M,*) je *kanonično urejen*, če je kanonična šibka urejenost $x \leq y \iff \exists z \in M: y = x*z$ na M antisimetrična.

Izrek

Monoid ne more hkrati biti grupa in kanonično urejen.

Izrek

Naj bo monoid (M,*) okrajšljiv in naj zadošča pogoju pozitivnosti. Potem je kanonična šibka urejenost \leq na M antisimetrična.

Polkolobarji in dioidi

Definicija

Za neprazno množico R, ki je opremljena z operacijama \oplus in \otimes pravimo, da je *polkolobar*, če zanjo velja naslednje:

- \bullet (R, \oplus) je komutativen monoid z nevtralnim elementom 0,
- (2) (R, \otimes) je monoid z enoto 1,
- 3 leva oz. desna distributivnost \otimes in \oplus ,
- $0 \otimes a = 0 = a \otimes 0; \forall a \in R.$

Ĉe je operacija \otimes komutativna, pravimo, da je polkolobar R komutativen. Oznaka: (R, \oplus, \otimes) .

Polkolobarji in dioidi

Definicija

Naj bo (R,\oplus,\otimes) polkolobar. Če je (R,\oplus) kanonično urejen monoid, pravimo, da je (R,\oplus,\otimes) *dioid*.

Polkolobarji in dioidi

Definicija

Naj bo (R,\oplus,\otimes) polkolobar. Če je (R,\oplus) kanonično urejen monoid, pravimo, da je (R,\oplus,\otimes) *dioid*.

Trditev

Če je (R,\oplus,\otimes) polkolobar na katerem kanonična šibka urejenost \leq_{\oplus} ni antisimetrična in je $\mathcal E$ ekvivalenčna relacija s predpisom $x\mathcal E y\iff x\le y\ \&\ y\le x$, je $R/\mathcal E$ dioid za inducirani operaciji.

Definicija

Naj bo R polkolobar. *Levi R-polmodul* je komutativen monoid (M,+) z aditivno identiteto θ , na katerem imamo definirano množenje s skalarjem $\cdot: R \times M \to M$, ki zadošča naslednjim pogojem za vsaka $\lambda, \mu \in R$ in vsaka $x,y \in M$:

- 2 $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$ in $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$,
- $\mathbf{3} \ 1 \cdot x = x \text{ in } \lambda \cdot \theta = \theta = 0 \cdot x$

Če je R dioid in (M, +) kanonično urejen, mu pravimo R-moduloid.

Definicija

Naj bo X neka neprazna družina elementov R-polmodula (M,+). Najmanjši R-podpolmodul v M, ki vsebuje X, imenujemo R-polmodul generiran z X in ga označimo z $\langle X \rangle$. Če je $\langle X \rangle = M$, pravimo, da X generira M. Če je X končna družina, ki generira M, pravimo, da je M končno generiran.

Definicija

Naj bo X neka neprazna družina elementov R-polmodula (M,+). Najmanjši R-podpolmodul v M, ki vsebuje X, imenujemo R-polmodul generiran z X in ga označimo z $\langle X \rangle$. Če je $\langle X \rangle = M$, pravimo, da X generira M. Če je X končna družina, ki generira M, pravimo, da je M končno generiran.

Definicija

Rang R-polmodula (M,+) je najmanjše naravno število $n\in\mathbb{N}$ za katerega obstaja družina $X\subseteq M$ kardinalnosti n, ki generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X linearno neodvisna, če za vsak disjunktni par $I_1,I_2\subseteq J$ velja $\langle X_{I_1}\rangle\cap\langle X_{I_2}\rangle=\{\theta\}$.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X linearno neodvisna, če za vsak disjunktni par $I_1,I_2\subseteq J$ velja $\langle X_{I_1}\rangle\cap\langle X_{I_2}\rangle=\{\theta\}$.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X *šibko linearno neodvisna*, če za njo velja pogoj: $\forall j\in J: x_j\notin \langle X\setminus\{x_j\}\rangle$.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X baza M, če je linearno neodvisna in generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X baza M, če je linearno neodvisna in generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X *šibka baza* M, če je šibko linearno neodvisna in generira M.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X prosta baza R-polmodula M, če je prosta množica v M in generira cel M. Polmodulu, ki premore kako prosto bazo, pravimo prosti polmodul.

Proste baze so hkrati tudi šibke.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna (končna ali neskončna) družina elementov iz M. Pravimo, da je X prosta baza R-polmodula M, če je prosta množica v M in generira cel M. Polmodulu, ki premore kako prosto bazo, pravimo prosti polmodul.

Proste baze so hkrati tudi šibke.

Izrek

ČeR-polmodul M premore kako neskončno šibko bazo, so vse šibke baze M neskončne.

Definicija

Naj bo (M,+) R-polmodul z enoto θ in $X=(x_j)_{j\in J}$ neka neprazna družina elementov iz M. Pravimo, da je vektor x razcepen na $\langle X \rangle$, če in samo če obstajata taka vektorja $y,z\in \langle X \rangle$, oba različna od x, da je x=y+z. Če x ni razcepen na $\langle X \rangle$, pravimo, da je nerazcepen na $\langle X \rangle$.

Izrek

Naj bo (R, \oplus, \otimes) dioid z enotama 0 in 1 za katerega velja $r \oplus r = 1 \Rightarrow r = 1 \lor r = 1$ in $r \otimes r = 1 \Rightarrow r = 1 \land r = 1$ Naj

 $r\oplus p=1\Rightarrow r=1\lor p=1$ in $r\otimes p=1\Rightarrow r=1\land p=1$. Naj bo

(M,+) R-moduloid na katerem za $y\in M\setminus\{\theta\}, x\in M\setminus\{y\}$ in poljuben $\lambda\in R$ velja $y=\lambda\cdot y+x\Rightarrow \lambda=1.$ Potem velja, da če M premore kako bazo, je ta enolično določena.

Primer: $(\mathbb{N}_0, +, *)$

Izrek

Naj bo R komutativen polkolobar ter naj bosta $A,B\in M_n(R)$. Če velja $A*B=I_n$, je tudi $B*A=I_n$.

Izrek

Naj bo R komutativen polkolobar ter naj bosta $A, B \in M_n(R)$. Če velja $A*B=I_n$, je tudi $B*A=I_n$.

Trditev

Naj bo R komutativen polkolobar v katerem $1 \notin V(R)$ in za $\forall u, v \in R$ velja sklep $1 = u \oplus v \Rightarrow u \in U(R) \lor v \in U(R)$. Naj bo $A \in M_n(R)$. Če za $\forall i, j \in \{1, 2, \dots n\}$ velja $a_{ii} \in U(R)$ in $a_{ij} \in V(R)$, je matrika A obrnljiva.

Definicija

Naj bo M končno generiran R-polmodul in T ter S neki njegovi šibki bazi. Matriki A, ki slika elemente T v elemente S pravimo $prehodna\ matrika\ iz\ T$ v S.

Definicija

Naj bo M končno generiran R-polmodul in T ter S neki njegovi šibki bazi. Matriki A, ki slika elemente T v elemente S pravimo P-prehodna P-preh

Definicija

Naj bo R komutativen polkolobar in $A \in M_{n \times m}(R)$. Najmanjšemu številu $k \in \mathbb{N}$, za katerega obstajata matriki $B \in M_{n \times k}(R)$ in $C \in M_{k \times m}(R)$, da je A = B * C, pravimo *faktorski rang* matrike A in ga označimo z $\rho_s(A)$.

Izrek

Naj bo R komutativni polkolobar in M R-polmodul ranga r s šibkima bazama S in T. Potem za vsako prehodno matriko A iz T v S velja $r \leq \rho_s(A)$ in obstaja prehodna matrika \widehat{A} iz T v S za katero je $r = \rho_s(\widehat{A})$.

Izrek

Naj bo R komutativni polkolobar in M R-polmodul ranga r s šibkima bazama S in T. Potem za vsako prehodno matriko A iz T v S velja $r \leq \rho_s(A)$ in obstaja prehodna matrika \widehat{A} iz T v S za katero je $r = \rho_s(\widehat{A})$.

Trditev

Naj bo R komutativen polkolobar in M končno generiran prost R-polmodul. Potem za vsako šibko bazo S in za poljubno prosto bazo T velja $|T| \leq |S|$.

Izrek

Naj bo R komutativen polkolobar in M prost R-polmodul ranga r. Naj bo T neka prosta baza M. Potem so za šibko bazo S naslednje trditve ekvivalentne:

- $lue{0}$ S je prosta baza M
- **2** |S| = r
- ${f 3}$ prehodna matrika med T in S je enolično določena in obrnljiva

Definicija

Naj bo R polkolobar in $M=R^n$ polmodul nad R. Naj bo $A\in M_n(R)$ matrika, ki pripada endomorfizmu $h:M\to M$. Pravimo, da je $\lambda\in R$ lastna vrednost matrike A, če obstaja tak $v\in M\setminus\{\theta\}$, da velja $A*v=\lambda\cdot v$. Takemu vektorju v, če obstaja, pravimo lastni vektor matrike A za λ .

Definicija

Naj bo R polkolobar in $M=R^n$ polmodul nad R. Naj bo $A\in M_n(R)$ matrika, ki pripada endomorfizmu $h:M\to M$. Pravimo, da je $\lambda\in R$ lastna vrednost matrike A, če obstaja tak $v\in M\setminus\{\theta\}$, da velja $A*v=\lambda\cdot v$. Takemu vektorju v, če obstaja, pravimo lastni vektor matrike A za λ .

Izrek

Naj bo R komutativen dioid in $A \in M_n(R)$. Potem je λ lastna vrednost matrike A natanko tedaj, ko so stolpci matrike $\bar{A}(\lambda) = \begin{bmatrix} A & \lambda \cdot I_n \\ I_n & I_n \end{bmatrix}$ linearno odvisni.

Pideterminanta in karakteristični pipolinom

Definicija

Naj bo R nek polkolobar in $X \in M_n(R)$. Urejeni dvojici podani s predpisom

$$pdt(X) = \left(\bigoplus_{\substack{\pi \in P^+(n) \\ \sigma \in P(n)}} \sigma(\bar{\pi}(X)), \bigoplus_{\substack{\pi \in P^-(n) \\ \sigma \in P(n)}} \sigma(\bar{\pi}(X))\right)$$
$$= (\llbracket det^+(X) \rrbracket, \llbracket det^-(X) \rrbracket) = (pdt^+(X), pdt^-(X))$$

pravimo pideterminanta matrike X.

Pideterminanta in karakteristični pipolinom

Definicija

Naj bo R nek polkolobar in $X\in M_n(R)$. Karakteristični pipolinom matrike X v spremenljivki λ je urejena dvojica polinomov, podana s predpisom

$$pp_X(\lambda) = (\llbracket p_X^+(\lambda) \rrbracket, \llbracket p_X^-(\lambda) \rrbracket)$$
$$= (pp_X^+(\lambda), pp_X^-(\lambda))$$

Pri tem polinoma $p_X^+(\lambda)$ in $p_X^-(\lambda)$ dobimo tako, da se pretvarjamo, da delamo nad poljem in zapišemo pripadajoči karakteristični polinom $p_X(\lambda) = p_X^+(\lambda) \ominus p_X^-(\lambda)$.

Posplošeni Cayley-Hamiltonov izrek

Izrek

Naj bo R poljuben polkolobar in $X \in M_n(R)$ neka kvadratna matrika nad R. Potem je $pp_X^+(X) = pp_X^-(X)$.

Literatura

- M. Akian, S. Gaubert in A. Guterman, Linear independence over tropical semirings and beyond, v: Tropical and Idempotent
 Mathematics vol. 495 (ur. G. Litvinov in S. Sergeev), Amer. Math. Soc., Providence. 2008. str. 1–38.
- M. Gondran in M. Minoux, *Graphs, dioids and semirings: New models and algorithms*, Operations Research/Computer Science Interfaces 41, Springer, Boston, 2008; dostopno tudi na
 https://www.researchgate.net/publication/266193429_

Graphs_Dioids_and_Semirings_New_Models_and_Algorithms.

Literatura

- R. Grosu, The Cayley-Hamilton theorem for noncommutative semirings,
 v: Implementation and Application of Automata (ur. M. Domaratzki,
 K. Salomaa), Springer, Berlin, 2011, str. 143–153.
- C. Reutenauer in H. Straubing, Inversion of matrices over a commutative semiring, Journal of Algebra 88 (1984) 350–360.
- D. E. Rutherford, XIX.—The Cayley-Hamilton theorem for semi-rings, v: Proceedings of the Royal Society of Edinburgh Section A 66 (1964) 211–215.
- Y. J. Tan, Bases in semimodules over commutative semirings, v: Linear Algebra Appl. 443 (2014) 139–152.