

Assignment 4

class-SFTV ROLL NO-21430

Batch-f4 DOS - 5/12/2020.

Title - Multiplexex / Demultiplexer.

Objective-

1. Verification of function table of IC-7415153

2. Design and implement 8:1 Mux using tc-7415153 and verify its truth table

3. Realization of the following Boolean expression using IC-74153 and verify its truth

Table.

 $F(A,B,(D)=\Sigma m(0,2,4,7,9,10,12,13,15)$

4. Verification of function table of IC-7415138 5. Realization of following Boolean expression

45ing IC-74138 and verify its truth table

F(A,B,C) = 5m(2,3,4,5,8,9,14,15)

Apparatus -:

Digital board, GP-4 patch -cords, IC-741532, IC-741508 / IC-741504 / IC-7415153/

Jc-7415138 and required logic gates if any

Theory.

Multiplexer is a combinational logic device, which has many input and one output this output can be selected according to

Obsta: 1 1

select lines. IC-7415153 is Dual 4:1Mux. This are pin dual in line packaged IC which has two enable pins. He can design 8:1 Mux using cascading of Troo 4:1Mux. This is achieved with the help of enable / 5tmbe inputs and multiplexer tree is designed. To implement 8:1 Mux we need 3 select lines and one output. Use dual 4:1 MOX for select lines 2 are common, use enable pin for 3rd select line. Connect the first strobe of first 4:1 MOX and the Second strobe of second 4:1 MOX through one Invertex. This is 3rd select line only one 4:1 MOX will be become active at one time. Correct outputs of 2-MOX to or gate so that we get one output

De-Multiplixer / Decoder is a combinational logic device. which has one input and many output one output can be selected according to select lines. IC-7415183 is 3 to 8 Line decoder / Demultiplixer. It is a 16 pm dual packaged IC which has three enable pins. IC-7415138 produces complementary output i.e. 0/P of 7415138 is active low. We can design any Combinational crimits using IC-7415138. DEMUX performs reverse operation that of Multiplexer.

* PIN Digram-

6	Page:			1
0	Date:	1	1	U
-				

IÈ -		Vcc A	ub also acal
SI	te arisabi	2E B	a love cut
1A3		So C	ed para
1A2	IC	2A3 GI	IC
IAI	74LS153	2A2 G2	74 LS138
- 041	Soles & pa	2A1 (3	and the second
14	Exam L'A	200 Yo	we see bare
GND _	o our superior	24 GND	de a seall

Procedure-I

1. Make connections as per the pm Diagram of
IC-74LS153 and verify its Truth Table.

2. Make the connections as per the logic circuit
of 8:1 MUX and verify its Truth Table.

3. Make the connections as per logic circuit
of the given function and Verify its Truth Table
4. Make the connections as per the pin diagram
of IC-74LS138 and Verify its Truth Table.

5. Make the connections as per the Logic circuit of given function and verify its touth Table.

* Function Table- TC74LS153

	Application and the	1 1 1 1 1 1 1 1	the state of the s	March Comments			
	chip Enable		Select	Input	out	Pat	
	18	2E	el (MSB)	SOCLS B)	MOX-1	MOX-2	
	0	0	0	0	IAG	172	
	0	0	0	1	IAI	2A0	
	0	0	1,1,	0	1A2	2A2	
L	0	0	1	1	1A3	2A3	

Design of 8:1 MOX using IC-7415153

* Design Table

52(msb)	51	So (ISB)	OUTPUT (Y)
6	0		140
	6		1A1
0	1	0	1A-2
0	1		1A3
1	0	6	2.A0
	0	1	2A1
1	1	0	2A-2
1	. 1.		2A3

Page: * Logic Diagram -! Io IC 74153 14 I 4:1 MUX Iı 13 50 Si Iq Is IC 74153 IG 4" MUX 24 I, 32 Truth Table 52 51 Y 50 0 0 Io 0 12 13 0 14 Is 6 IG I,

Design of Realization of Boolean expression using IC74153

F(A, R, C, D) = Em (0,2,4,7,9,10,12,13,15)

	S	B	P	ed	u	d	H	on	
	-								

- 11					-	-		
	A	В	C	D	Y			
			1		2.1			
	0	0	0	. 0	11.			
	0	0	0		0			
	0	0	4	. 0	1			
	0	0	1		0			
	0		٥	0	1	and a		
	0	1	0	1	O			
	0	1	1	0	0	•		
	0	1 =	1	-1	1			
	-	0	0	0	0			
	-	0	0	1	1		-	
	1	0	- ALMS	0	-	200	*	
	1	0	1	1	0			
	1	1	0	0	1			
	1	-	0		+ +			
		1		6	0			
	- 1							
	A	p	C	Y- 1	-			
		В	0	D D				
	0	0			-			

0	0		D
0		6	ō
0			D
		5	D
			Ď
1		6	1
-		1	D

-	Logic	Diag	ram.	od de	April 100 B	is appear
- 1	01	91.2	24.		05 510	2.2.4.3
		7			- Children	100 BZ
		8				,
	1 1000	2	0	Io	-	- tra
		1		J.		
		1		In		0
			1	13	40	
		4	-	14 8	:I MUX	CIAR
-	1	-		15		F(A, B, C, D)
	1		-	Ic		
		-		I,	-	
		1		A A		
	17-4	-	1			
	-	0 1	- 20	A 8	c	
	1	Li		1		
	•	and the same				
*	Design	of De	coder/	Pemox		
*	Design	of De	coder/	Pemox		
*	Design	of De	coder/	Pemox	- 0	
*	Design	of De	coden/	Pemox	- 0	
*	Ao	of De	coden/		Vcc	
*	Ao Ai	of De	coden/	Pemox	Vcc Vo	
*	Ao Ai A2	-		16	Vcc Vo Vi	
*	Ao Ai Ao Fo	-	Ic	16 13 14	Vcc Vo Vi	A
*	Ao Ai Ao Fo	1 2 3		16 13 14	Vcc Vo Vi	
*	Ao A1 A2 F6 F1 F2	1 2 3	Ic	16 15 14 8 13	Vcc Yo Yi Yz Ya Yu	A
*	Ao Ai Ao Fo	1 2 3	Ic	16 13 14 8 13	Vcc Vo Vi	A

-							-		-	-	_	-		
-	Fo	Ē	E ₂	A2	A	A	Yo	¥,	¥2	Ya	Ya	Ts	YG	Ÿ,
1	-		×	X	_	X		1	1	1	1	1	1	1
-	1	×		-		×	1		1	1	1	++	1	1
	X	1	X	×	×	-			1	444	1	1	-	11
	×	X	0	X	X	X				1	1	1	1	1
1	0	0	1	0	0	0	0	1		1.	1	11	1	1
1	0	0		0	0	1	9	0	1	-	1	1,		1
1	0	0	1	0	70	0	1	11	0	1	1		1	1
-	0	0	1	6	10	1	1	10	1	0	-	+-		
+	6	0		1	0	6	61	1	1	1	0	1		1
+	-				0	1	1	1.0	1	1	1	0	1	1
+	0	0								1	1	1	0	1
-	0	0	1	-	-	0		-		1	1	1		0
1	0	0	1	1		-	01	1	1					
1				-										
													The Park Land	

Log	ic	D	ac	ram.	-

	-	Yo			
1071		٧,			
and the second		Y2	. 1		2
	JC	Ya	400		
	74138	Ya			
		27			
	Fo	Ye			
	Ē,	47			
	A2 A1	Ao		-	
		-		- majoria	4
-	3 5460	-			

* full Adder Using to 74138 -1

Truth Table-1

	to D.	Doput		ou	tput	
	A	В	Cm	Sum	Carry	
	0	0	0	0	0	1
	0	0	0.11	1	6	1
-	0	1	0		0	
	0	1	1	0	10	
	211	0	0		0	
	110	0	1	0	1	
	1	1 1	6	0	1	
1	1	-1:	11	1		
1						

Logic Diagram:

				1	-		1 1.
	ogic Gates/	MST	Device	redured	tor 1	mplemen	tation
*	Daic Gares	1.1		-			-
1							

No.	Title	Name of to	No. of gate required	required
+	Design of 8:1 MUX	IC 7404	L	1
1	Design of St.	TC 7432	1	1
		JC 74153	2	1
	Realization of expr	TC 7404	2	1
1	using LSB reduction	IC 7432	an allowed	1
	method	TC 79153	2	1
3.	Realization of expn	TC 1404	2122	1
	using MSB reduction	10 7432	sa Lind	(
3 11.5	method	JC 74153	CE 2 2	
			waipper han	
4.	Realization of expn	JC 7900	3	-
	using Decoder to	JZ 7432	- Lond T	t
-		1674138	Magallude	1
120	has bas milas a	man il		

Conclusion-

He have learnt to design and implement multiplexer and demultiplexer with Ics and also verified the implementation using different examples

