Convertisseurs Numériques - Analogiques (CNA)

Etant donné que dans les montage de Conversion Analogique Numérique, un des composant est un CNA, nous étudions en premier lieu le CNA.

I. DEFINITION

On appelle **Convertisseur Numérique Analogique** (CNA ou DAC Digital to Analog Converter en anglais), tout dispositif électronique qui transforme une donnée numérique [N] en une grandeur électrique (tension ou courant) proportionnelle à cette entrée numérique.

On a donc:

Sortie Analogique = K. Entrée Numérique

La sortie analogique est une tension (en V) ou un courant (en A)

K est le facteur de proportionnalité (exprimé en V ou en A)

II. CARACTERISTIQUES DES C.N.A

Exemple d'un convertisseur 3 bits

Considérons un CNA dont les entrées sont fournies par un compteur de 3 bits (comptage de 0 à 7) et supposons que le pas de progression est de 0,5 V. La tension de sortie est en marche d'escalier : il y a 8 marches (correspondant aux 8 états du compteur) et 7 pas de progression, entre la valeur 0 et la valeur max.

Pour n bits il y a (Cas général) :

2ⁿ niveaux ou états

2ⁿ-1 pas de progression

ESIR CUPGE - 1ère année - 2022/2023

a ₂	a_1	a_0	N	V _{sortie}
				(V)
0	0	0	0	0
0	0	1	1	0,5
0	1	0	2	1,0
0	1	1	3	1,5
1	0	0	4	2,0
1	0	1	5	2,5
1	1	0	6	3,0
1	1	1	7	3,5

Pour n=3 bits: 8 niveaux (0, 1, 2, ..., 7), et 7 pas de progression.

✓ Le facteur de proportionnalité K

K = 0.5 Volt

✓ Le pas de progression

C'est l'écart entre les tensions de sortie quand le code d'entrée passe d'un état à son état suivant. Le pas de progression est donc égal au poids du bit le plus faible, ou encore au facteur de proportionnalité K.

Pour n=3 bits : Pas = 0.5V.

✓ La tension maximale (ou « tension pleine échelle »)

On appelle 'Tension pleine échelle' d'un CNA la tension maximale que peut prendre la sortie. Cette tension pleine échelle est obtenue en appliquant à l'entrée du CNA la valeur numérique la plus grande, c'est-à-dire lorsque tous les bits d'entrée sont à 1.

✓ La **résolution** (analogique)

La résolution est fixée par le nombre de bits n fournis par le convertisseur. Elle définit la plus faible variation de tension que le convertisseur puisse coder. On représente généralement la résolution par :

$$r = \frac{Tension \max}{2^n - 1}$$

C'est la plus petite variation de tension qui s'ajoute à la sortie lorsque la valeur binaire d'entrée est augmentée de 1. **Elle est égale au pas de progression**. C'est une tension, elle s'exprime donc en volts.

III. MONTAGES CNA

III.1. CNA à résistances pondérées

III.1.1. Exemple d'un CNA 4 bits

Le nombre N mis en entré est codé sur 4 bits :

 $N_{(2)}=a_3a_2a_1a_0$

Pour fixer les valeurs (0 ou 1) des a_i, on utilise des interrupteurs.

4 $a_i = 0$ si l'interrupteur est ouvert

4 $a_i = 1$ si l'interrupteur est fermé

AOP est supposé idéal \Rightarrow $V^+ = V^- = 0$ et $i^- = 0$ (i est le courant d'entrée sur la borne – de l'AOP)

On va montrer que Is est proportionnel à N, le nombre binaire mis en entrée sur les interrupteurs :

- 1. Exprimer Is en fonction des courants Ii dans chacune des 4 branches.
- 2. Exprimer chaque courant Ii en fonction de Vref, R, ai.
- 3. En déduire l'expression de Is en fonction de Vref, R et N.

Le courant I_S en sortie du CNA prend la valeur :

$$I_S {=} \ I_0 {+} I_1 {+} I_2 {+} I_3 {=} \ a_3 \frac{V_{r\acute{e}f}}{R} {+} a_2 \frac{V_{r\acute{e}f}}{2R} {+} a_1 \frac{V_{r\acute{e}f}}{4R} {+} a_0 \frac{V_{r\acute{e}f}}{8R}$$

$$Is = \frac{V_{réf}}{R} (a_3 + \frac{a_2}{2} + \frac{a_1}{4} + \frac{a_0}{8})$$

$$I_S = \frac{V_{r\acute{e}f}}{8R}(8a_3 + 4a_2 + 2a_1 + a_0)$$

$$I_S = \frac{V_{r\acute{e}f}}{8R} N$$

 \Rightarrow Le courant de sortie est proportionnel au nombre N : on a bien réalisé un convertisseur (de courant) Numérique - Analogique.

Pour réaliser un convertisseur de tension, on utilise la sortie de l'AOP.

- 1. Exprimer Vs en fonction de Is et Rs.
- 2. Donner finalement son expression en fonction de Rs, Vref, R et N.

Solution:

$$V_S = -R_S I_S = -\frac{R_S V_{réf}}{8R} N$$

Inconvénient:

Pour un CNA de 12 bits, il faut 12 résistances différentes.

Ce CNA devient vite **imprécis** dès que le nombre de bits augmente, car il est alors difficile d'obtenir une très bonne précision dans le rapport des résistances quand le nombre de résistances différentes augmente.

III.2. CNA à réseau R / 2R ou en échelle

♣ Avantage principal du réseau R/2R :

Ne nécessite que 2 valeurs de résistances (R et 2R).

♣ Structure de CNA à réseau R / 2R la plus simple : CNA à commutation de courant binaire inversé – ci-contre.

- $a_i = 0$: interrupteur relié à la masse
- $a_i = 1$: interrupteur relié à V- = V+ = 0

⇒ Quelle que soit la position des interrupteurs, tout se passe comme si toutes les résistances 2R étaient réunies à la masse.

1. Expression de Is:

• Les courants Ii dans les branches sont donc constants :

$$I_i = \frac{V_i}{2R}$$

• Le courants Is est donc :

$$I_{s=\sum_{i=0}^{3} a_i \frac{V_i}{2R}}$$
 (1)

Calcul de Is en fonction de Vref, R, N:

• Expression de V₀ en fonction de V₁ : le nœud V₀ voit, d'une part deux résistances 2R en parallèles (soit une résistance équivalente R) et d'autre part une résistance R réunie au nœud V₁. Donc le calcul de V₀ (par Pont diviseur de tension) donne :

$$V_0 = \frac{V_1}{2}$$

• Expression de V₁ en fonction de V₂ : à droite du nœud V₁ l'impédance est constituée par (R+R) en parallèle avec 2R (soit R), et une résistance R réunie à V₂.

$$V_1 = \frac{V_2}{2}$$

Le raisonnement peut être poursuivi jusqu'à l'entrée du circuit. A droite de V₃ on a également une résistance équivalente 2R.

Dans ces conditions : $V_0 = \frac{V_1}{2} = \frac{V_2}{4} = \frac{V_3}{8} = \frac{V_{\text{rèf}}}{16}$ (2)

D'après (1) et (2), il vient : $I_s = \frac{V_{ref}}{2R} \left(\frac{a_0}{16} + \frac{a_1}{8} + \frac{a_2}{4} + \frac{a_3}{2} \right) = \frac{V_{ref}}{32R} \left(a_0 + 2a_1 + 4a_2 + 8a_3 \right)$

Soit: $Is = \frac{V_{ref}}{32R}.N$

ou encore : $V_s = \frac{R_s V_{ref}}{32R}.N$

La tension de sortie est bien proportionnelle à N, on a bien un convertisseur NA.