Chip8 Emulator in C

Kirjan Kohuladas/kprime21

Overview

Compact Hexadecimal Interpretive Programming – 8-bit

Components

- Memory 4kB ram (4096 bytes 4096 address lines each line is 1 byte)
- \bullet Display 64 x 32 pixels
- Registers
 - Program Counter (16 bits)
 - Index Register (16 bits)
 - Stack call subroutines and functions (16 bits)
 - Delay timer decremented at 60Hz (8 bits)
 - Sound timer decremented at 60Hz (8 bits)
 - 15 General purpose registers V0 VF (8 bits)

Memory

- all memory is RAM, 4096 bytes.
 - 4096 addressable lines
 - 12 bits needed
 - each addressable line represents an addresss of 1 byte.
- interpreter located 0x000-0x1FF (not in our case)
- program located 0x200 0x...
- font located before program 0x000-0x1FF (popular area 0x050 0x09F)

Font

- font character should be 4px x 5px
- first byte is the character (draw vertically in nvim to see)
- stored in memory, index register set to specific font in memory to draw it

Display

- $\bullet~60\mathrm{Hz}$ $60~\mathrm{times}$ per second
- sprite consists of 8 bits
- ullet sprites are between 1 and 15 bytes tall
- 0 bits are transparent and 1 bits flip pixel locations

Stack

- stack(LiFo) to call and return from subroutines
- 16 bit addresses (12 bits useful) are saved here

Timers

- two timer registers the delay timer and sound timer
- one byte in size and if above 0, decremented by 1 60 times per second (60Hz)
- \bullet sound timer beeps as long as it's above 0

Keypad

- 123C
- 456D
- 789E
- A0BF

Fetch/decode/excute loop

- fetch the instruction from memory at current PC (program counter)
- decode the instruction to find what emulator should do
- execute instruction and do what it tells you
- this loop's speed has to be set so that it does not run too fast (700Hz)
- fetch: read instruction in PC, two successive bytes and combine into one 16 bit instruction, increment PC by 2
- decode: switch statement checking first half of instruction
- nibbles after first used for decoding, extract these before decoding from opcode
 - X second nibble
 - Y third nibble
 - N fourth nibble
 - NN third and fourth nibble 8 bit immd number
 - NNN second, third and fourth nibble 12 bit immd address
- execute: do what each instruction should do in each case of the switch

Main

- Setup directory to ignore makefile outputs
- $\bullet\,$ read through instructions
- $\bullet\,$ make SDL display at 60fps

Reference

• https://tobiasvl.github.io/blog/write-a-chip-8-emulator/