Stat 9911 Principles of AI: LLMs Key Empirical Behaviors of LLMs

Edgar Dobriban

Department of Statistics and Data Science, the Wharton School, University of Pennsylvania

February 14, 2025

Plan

▶ We plan to discuss some key empirical behaviors of LLMs.

Table of Contents

Scaling Laws

Emergence

Memorization

Super-Phenomena

Scaling Laws for LLMs

▶ Scaling laws are empirical observations about the test loss of LLMs.

Figure: Kaplan et al. (2020)

- ▶ Let *D* be the training dataset size (# tokens) and *N* be the number of non-embedding parameters in an LLM.
- Let $L(\cdot)$ denote the test perplexity achieved by an LLM (or, the best among a few possibilities).

Parameter Count for Transformer

- For each layer:
 - For each head:
 - ▶ Queries, Keys, Values: W_q , W_k , W_v , each $d' \times d$, where d is embedding dim, and d' is attention dim. Total 3Hdd'
 - Output projection W_o is $Hd' \times d$. Total Hdd'
 - ▶ FFN: W_1 is $d_{ff} \times d$, W_{proj} is $d \times d_{ff}$. Total $2dd_{ff}$.
 - ▶ Total per layer: $N_1 = 4Hdd' + 2dd_{ff}$. Often d' = d/H, $d_{ff} = 4d$, so $N_1 = 4d^2 + 8d^2 = 12d^2$
- ▶ Overall $N = N_1 n_{\text{layer}} = 12 n_{\text{layer}} d^2$
- ► Exclude initial token embeddings, positional encoding

Kaplan et al. (2020) Scaling Law

▶ Kaplan et al. (2020) found that for some scalars $\alpha_N, \alpha_D > 0$, $N_c, D_c > 0$,

$$L(N,D) \approx \left[\left(\frac{N_c}{N} \right)^{\alpha_N/\alpha_D} + \left(\frac{D_c}{D} \right) \right]^{\alpha_L}$$

- $ightharpoonup N_c, D_c$: Critical values above which scaling laws hold.
- \blacktriangleright Holds over several orders of magnitude of N, D.
- ▶ Performance decreases as a power law:

$$L(N,D) \sim \frac{1}{N^{\alpha_N}} + \frac{1}{D^{\alpha_D}}.$$

► They find $\alpha_N \approx 0.076$, $\alpha_D \approx 0.095$

Figure: Kaplan et al. (2020)

Compute for a Transformer

- A $a \times b$ into $b \times c$ matrix-matrix multiplication takes roughly 2abc flops (abc multiplications and a(b-1)c additions)
- ightharpoonup So in a forward pass, the dominating number of flops is $F_1=2N$
- ▶ Backward pass/back-propagation: $F_2 \approx 2F_1$
 - Simplest to see this for a matrix operation y = Wx, where x is d-dim, W is $d \times d$
 - Forward pass $\approx 2d^2$ flops.
 - ▶ Backward pass: Compute $\frac{\partial L}{\partial x} = W^{\top} \cdot \frac{\partial \mathcal{L}}{\partial y}$, where $\frac{\partial \mathcal{L}}{\partial y}$ is $d \times 1$ [total $2d^2$]
 - ► Then $W = W \eta \frac{\partial \mathcal{L}}{\partial W}$, where $\frac{\partial \mathcal{L}}{\partial W} = \frac{\partial \mathcal{L}}{\partial y} \cdot x^{\top}$ [total $2d^2$]
 - Overall 4d²
- ▶ Total 6N; and this is for every token, so C = 6ND. I
- Exclude positional encoding computation and lower-order terms (biases in FFNs)

Kaplan et al. (2020): Optimal Scaling

- ▶ Total compute: C = 6ND.
- ▶ Given a specific compute budget C_{max} , solve:

$$\min_{N,D} L(N,D)$$
 subject to $6ND \le C_{\text{max}}$.

- ▶ Optimum: $N^{\alpha_N} \sim D^{\alpha_D}$.
- Example: for $\alpha_N \approx 0.076$, $\alpha_D \approx 0.095$, $D \approx N^{0.8}$, so increase dataset size sublinearly with parameters¹.
- ▶ If we consider that D = BS, where B is the batch size and S is the number of gradient steps, then, for a given batch size, we can obtain the needed S

¹Kaplan et al. (2020) write $N^{0.74}$.

Chinchilla Scaling Law (Hoffman et al., 2023)

▶ Hoffman et al. (2023) found a slightly different scaling law:

$$L(N,D) = \mathcal{E} + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}},$$

where $\mathcal{E} = 1.69$, $\alpha \approx 0.34$, $\beta \approx 0.28$.

Suggests roughly equal scaling of model and dataset sizes.

Experimental Validation by Hoffman et al.

- ▶ Train models of various architectures, sizes, and dataset sizes.
- ▶ Plot smoothed train loss as a function of FLOPs.
- Find lower envelope to validate scaling law.

Decomposition of Loss (Hoffman et al., 2023)

Decomposition:

$$L(N,D) = L(\hat{f}_{N,D}) = L(f^*) + (L(f_N) - L(f^*)) + (L(\hat{f}_{N,D}) - L(f_N)),$$

- L: Population-level risk function.
- \blacktriangleright $L(f^*)$: Bayes risk.
- ▶ $L(f_N) L(f^*)$: Approximation error for the best model of size N.
- ▶ $L(\hat{f}_{N,D}) L(f_N)$: Random error of the fitted model.

Table of Contents

Scaling Laws

Emergence

Memorization

Super-Phenomena

Emergence (Wei et al., 2022)

- ► Emergence in general: Quantitative change leads to qualitative change (e.g., uranium, DNA, water).
- For ML: Small models cannot solve a task, but large models can.
- Related concept: Grokking (similar meaning).

Table of Contents

Scaling Laws

Emergence

Memorization

Super-Phenomena

Memorization in LLMs

- LLMs can memorize text.
- ▶ **Desirable**: Memorize facts (e.g., "Who was George Washington?").
- ▶ **Undesirable**: Memorizing entire novels (e.g., "Harry Potter") due to copyright concerns.
- ▶ Detection: Large likelihood ratio p(x)/p'(x), a.k.a perplexity filter (Carlini et al., 2021).

Extractable Memorization (Nasr et al., 2023)

Definition 1: Extractable Memorization

Figure Given a generation routine Gen, an example x is extractably memorized if an adversary can construct a prompt p such that Gen(p) = x.

Definition 2: Discoverable Memorization

▶ x is discoverably memorized if Gen(p) = x when sampling $[p \mid x]$ from the training data.

Prior work: About 1% of training data is discoverably memorized in many LLMs.

Memorization Scores (Biderman et al., 2024)

▶ **Memorization Score:** For string $S = (S_1, ..., S_m)$, start index k, length I, it is the fraction of tokens from k + 1 to k + I generated by an LLM with prompt $S_{1:k}$ that agree with S.

Memorization and double descent

Table of Contents

Scaling Laws

Emergence

Memorization

Super-Phenomena

Super-Phenomena in LLMs

- ► Super-activations (or massive activations) (Sun et al., 2024):
 - Large activations in specific tokens/dimensions.
 - Values are nearly input-independent.
 - Setting to zero destroys model performance.
- ▶ Related to attention sinks (Xiao et al., 2024).

Super-Weights (Yu et al., 2024)

- ▶ Super-activations are partly caused by very large weights.
- ▶ Modifying them degrades performance completely (e.g., gibberish output).
- ▶ In Llama-7B: A single super-weight is more important than the top 7,000 largest weights combined.
- ► Can be identified using forward passes and examining $e'_i = W_{\text{proj}}\tilde{e}_i$, where $\tilde{e}_i = \sigma(W_1e_i)$.

Historical Context: Outlier Dimensions

- ► Earlier work on BERT-busters: Outlier dimensions that disrupt transformers (Kovaleva et al., 2021).
- ▶ Similar principles extend to super-phenomena in LLMs.

References

- S. Biderman, U. Prashanth, L. Sutawika, H. Schoelkopf, Q. Anthony, S. Purohit, and E. Raff. Emergent and predictable memorization in large language models. Advances in Neural Information Processing Systems, 36, 2024.
- N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. Brown, D. Song, U. Erlingsson, et al. Extracting training data from large language models. In *Proceedings of the 30th USENIX Security Symposium*, pages 2633–2650, 2021.
- M. D. Hoffman, D. Phan, david dohan, S. Douglas, T. A. Le, A. T. Parisi, P. Sountsov, C. Sutton, S. Vikram, and R. A. Saurous. Training chain-of-thought via latent-variable inference. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=a147pIS2Co.
- J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
- O. Kovaleva, S. Kulshreshtha, A. Rogers, and A. Rumshisky. BERT busters: Outlier dimensions that disrupt transformers. In C. Zong, F. Xia, W. Li, and R. Navigli, editors, *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 3392–3405, Online, Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.300. URL https://aclanthology.org/2021.findings-acl.300/.
- M. Nasr, N. Carlini, J. Hayase, M. Jagielski, A. F. Cooper, D. Ippolito, C. A. Choquette-Choo, E. Wallace, F. Tramèr, and K. Lee. Scalable extraction of training data from (production) language models. *arXiv preprint arXiv:2311.17035*, 2023.

References

- M. Sun, X. Chen, J. Z. Kolter, and Z. Liu. Massive activations in large language models. arXiv preprint arXiv:2402.17762, 2024.
- J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, et al. Emergent abilities of large language models. *Transactions on Machine Learning Research*, 2022.
- G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis. Efficient streaming language models with attention sinks. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.
- M. Yu, D. Wang, Q. Shan, and A. Wan. The super weight in large language models. arXiv preprint arXiv:2411.07191, 2024.