Time Value of Money

IME 611

Future Values and Present Values

- Calculating Future Values
 - Future Value
 - Amount to which investment will grow after earning interest
 - Present Value
 - Value today of future cash flow

Future Values and Present Values

Future Value of \$100 =

$$FV = $100 \times (1+r)^t$$

- Example: FV
 - What is the future value of \$100 if interest is compounded annually at a rate of 7% for two years?

$$FV = \$\underline{100} \times (1.07) \times (\underline{1.07}) = \$\underline{114.49}$$

$$FV = $100 \times (1 + .07)^2 = $114.49$$

Future Values

- The seven-ten rule Money invested at 7% per year doubles in approximately 10 years. Also, money invested at 10% per year doubles in approximately 7 years
 - Doubling time is approx. $\ln 2/r$
- Compounding at Various Intervals
 - Many banks pay interest more frequently quarterly, monthly, or even daily
 - Usually, interest is stated on yearly basis, and appropriate proportion of that interest rate is compounded each period
 - Example: quarterly, $\left[1 + \left(\frac{r}{4}\right)\right]^4$

Compound interest

• Effective interest rate equivalent yearly interest rate that would produce the same result after 1 year without compounding

$$1 + \underline{r}' = \left[1 + \left(\frac{r}{m}\right)\right]^m$$

Continuous compounding

$$\lim_{m\to\infty} \left[1 + \left(\frac{r}{m}\right)\right]^m \to \underline{e}^r$$

- If the nominal interest rate is 8%, then with continuous compounding r' = 8.33%
- For arbitrary length of time t, $\underline{t} \approx k/m$, that is, k periods coincide with the time \underline{t}

$$\lim_{m \to \infty} \left[1 + \left(\frac{r}{m} \right) \right]^{k = m + rt}$$

Future Values with Compounding

Present Values

Present Value = PV

• $PV = Discount Factor (DF) \times C_1$

Future Values and Present Values

• Discount factor = DF = PV of \$1

$$DF = \frac{1}{(1+r)^t}$$

 Discount factors can be used to compute present value of any cash flow

Present Values

 Given any variables in the equation, one can solve for the remaining variable

PV = DF₂ × C₂
PV =
$$\frac{1}{(1+.07)^2}$$
 × 114.49 = 100

Present Values with Compounding

Present and Future Values of Streams

- Ideal Bank An ideal bank applies the same rate of interest to both deposits and loans – no service charge and transaction fees
 - Constant Ideal Bank An Ideal Bank whose interest rate is independent of the length of time for which it applies

Future Value of a Stream

 Given a cash flow stream (x₀, x₁, ... x_n) and interest rate r each period, the future value of the stream is

$$FV = x_0(1+r)^n + x_1(1+r)^{n-1} + \dots + x_n$$

- **Example:** cash stream (-2, 1, 1, 1), r = 10%
- $FV = -2 \times 1.1^3 + 1 \times (1.1)^2 + 1 \times (1.1) + 1 = 0.648$

Present Value of a Stream

 Given a cash flow stream (x₀, x₁, ... x_n) and interest rate r each period, the PV of this cash flow stream is

$$PV = x_0 + \frac{x_1}{(1+r)^1} + \frac{x_2}{(1+r)^2} + \dots + \frac{x_n}{(1+r)^n}$$

- **Example:** cash stream (-2, 1, 1, 1), r = 10%
- PV = 0.487
- PV = $\frac{FV}{(1+r)^n}$

Frequent and continuous compounding

• If *r* is the nominal annual interest rate and interest is compounded at *m* equally spaced periods per year

$$PV = \sum_{k=0}^{n} \frac{x_k}{\left(1 + \frac{r}{m}\right)^k}$$

• For continuous compounding $PV = \sum_{k=0}^{n} x(t_k)e^{-rt_k}$; $t_k = \frac{k}{m}$

Main Theorem on Present Value

- The cash flow streams $\mathbf{x} = (x_0, x_1, ... x_n)$ and $\mathbf{y} = (y_0, y_1, ... y_n)$ are equivalent for a constant ideal bank with interest rate r iff PV of the two streams are equal
 - Only PV is needed to characterize a cash flow stream for an ideal bank
 - Stream can be transformed in variety of ways

Internal Rate of Return

- Pertains to the entire cash flow stream associated with an investment – not a partial
- Given a cash flow stream $(x_0, x_1, ... x_n)$

$$PV = \sum_{k=0}^{n} \frac{x_k}{(1+r)^k}$$

• Using Main Theorem, the investment corresponding to above stream constructed using deposits and withdrawals from a constant ideal bank at interest rate *r* should have PV zero

Internal Rate of Return

• Let $x = (x_0, x_1, ... x_n)$ be a cash flow stream. Then the internal rate of return of this stream is a number rsatisfying the equation

$$0 = \sum_{k=0}^{n} \frac{x_k}{(1+r)^k}$$

- $0 = \sum_{k=0}^{\infty} \frac{x_k}{(1+r)^k}$ Equivalently, $\sum_{k=0}^n x_k c^k = 0$; $c = \frac{1}{1+r}$ a polynomial
 Example: cash stream (-2, 1, 1, 1)

$$0 = -2 + c + c^2 + c^3$$

 Defined internally without reference to the external world

Main Theorem of IRR

• Suppose the cash flow stream $(x_0, x_1, ... x_n)$ has $x_0 < 0$ and $x_k \ge 0$ for k = 1, 2, ... n, with at least one term being strictly positive. Then there is a unique positive root to the equation

$$0 = \sum_{k=0}^{n} x_k c^k$$

Furthermore, if $\sum_{k=0}^{n} x_k > 0$, then the corresponding IRR is positive.

$$f(\omega) \rightarrow + \infty$$

$$f(\Delta) \rightarrow + \infty$$

$$f(\Delta) \rightarrow + \infty$$

IRR: how to solve the polynomial?

- $\sum_{k=0}^{n} x_k c^k = 0$
- Consider $f(c) = \sum_{k=0}^{n} x_k c^k$; $f'(c) = \sum_{k=1}^{n} k x_k c^{k-1}$
- Newton's method
 - Start with an estimate close to solution c_0
 - Generate sequences, $c_0, c_1, c_2, \dots c_k, \dots$

$$c_{k+1} = c_k - \frac{f(c_k)}{f'(c_k)}$$

- Approximate the function ' $\underline{\mathbf{f}}$ ' by a line tangent to its graph at c_k
- Illustration

Evaluation Criteria

- Selecting the best alternative among cash flow streams
 - PV and IRR
- NPV (net present value) is the present value of the benefits minus the present value of the costs
 - Cash flow streams for r = 10%
 - · (-1, 2)
 - $\cdot (-1, 0, 3)$
 - 0.82 vs 1.48
 - According to NPV second option is better

Evaluation Criteria

- **IRR** the higher the internal rate of return, the more desirable the investment
 - IRR must be greater than interest rate in money market
 - Previous example:
 - -1+2c = 0, and $-1+3c^2 = 0$
 - r = 1, and r = .73
 - According to IRR the first option is better
- Opposite conclusions!

Evaluation criteria: NPV vs IRR

- NPV is simple to compute
- IRR only depends on the properties of the cash flow stream, and not on the prevailing interest rate
- Suppose the proceeds of the first investment are used to invest further. Under this plan the investment can be doubled every year
 - Yearly growth by factor of 2 = 1+IRR
- In the second plan investment triples every two years
 - Yearly growth by factor of $\sqrt{3} = 1.73 = 1 + IRR$
- When proceeds of the investment can be repeatedly reinvested use IRR
- For one-time opportunity use NPV- obtained through prevailing interest rate

Problems in using IRR

- Does not distinguish between lending and borrowing
- 2. Investment scenarios yielding multiple rates of returns
- 3. Fails to provide right alternative in case of mutually exclusive projects
- 4. Does not work under scenarios of multiple cost of capital

- **Pitfall 1:** Lending or Borrowing?
 - NPV of project B increases as discount rate increases for some cash flows

Cash Flows (\$)				
Project	$\boldsymbol{\mathcal{C}}_0$	C ₁	IRR	NPV at 10%
А	-1,000	+1,500	+50%	+364
В	+1,000	-1,500	+50%	-364

- Pitfall 2: Multiple Rates of Return
 - Certain cash flows generate PV = o at two different discount rates
 - Following cash flow generates NPV = \$2.53 billion and yields IRR% of 3.5% and 19.54%

Cash Flows (billions of Australian dollars)					
\mathcal{C}_0	C ₁		C 9	C ₁₀	
-30	10		10	-65	

Multiple IRRs

- Pitfall 2 continued: Multiple Rates of Return
 - Project can have o IRR and positive NPV

Cash Flows, \$					
Project	C_0	C ₁	C_2	IRR (%)	NPV at 10%
С	+1,000	-3,000	+2,500	None	+339

- Pitfall 3: Mutually Exclusive Projects
 - IRR sometimes ignores magnitude of project

Project	C_0	<i>C</i> ₁	IRR (%)	NPV at 10%
D	-10,000	+20,000	100	+ 8,182
E	-20,000	+35,000	75	+11,818

- **Pitfall 4:** More than One Opportunity Cost of Capital
 - Term Structure Assumption
 - Assume discount rates stable during term of project
 - May not always hold

Applications of NPV

- **Cycle Problems** When using NPV to evaluate ongoing (repeatable) activities, the alternatives be compared over the same time horizon
- **Example (2.7)** You are contemplating the purchase of a motorbike and have narrowed the choice to two models.
 - Bike A costs Rs. 20,000, is expected to have a low maintenance cost of Rs. 1,000 per year payable at the beginning of each year after the first year. It has useful mileage life that for you translates into 4 years.
 - Bike B costs Rs. 30,000, and has an expected maintenance cost of Rs. 2,000 per year after the first year. It has a useful life of 6 years.
 - Neither bike has a salvage value. The interest rate is 10%. Which bike should you buy?

Applications of NPV

- Assumption: similar alternatives will be available in the future (ignore inflation) so this purchase is one of a sequence of bike purchases. To have same planning horizon, assume a planning period of 12 years, corresponding to three cycles of bike A and two of bike B.
- Bike A:

• One cycle
$$PV_A = 20000 + 1000 \sum_{k=1}^{3} \frac{1}{1.1^k} = 22,487$$

ⁿ Three cycles
$$PV_{A3} = PV_A \left[1 + \frac{1}{1.1^4} + \frac{1}{1.1^8} \right] = 48,336$$

• Bike B:

• One cycle
$$PV_B = 30000 + 1000 \sum_{k=1}^{5} \frac{1}{1.1^k} = 37,582$$

• Two cycles $PV_{B2} = PV_B \left[1 + \frac{1}{1.1^6} \right] = 58,795$

Bike A should be selected

Inflation

- **Inflation** is characterized by an increase in general prices with time. It is described quantitatively in terms of an **inflation rate** *f*
 - Prices 1 year from now will on average be equal to today's prices multiplied by (1 + f)
 - Erodes the purchasing power of money
- Constant (real) dollars: defined relative to a given reference year
- Nominal dollars: used for transactions
 - Real interest rate (r_0) : $1 + r_0 = \frac{1+r}{1+f}$; $r_0 = \frac{r-f}{1+f} \approx r f$

Inflation

Year	Real	PV@5.77	Nominal	PV@10
0	-10000	-10000	-10000	-10000
1	5000	4727	5200	4727
2	5000	4469	5408	4469
3	5000	4226	5624	4226
4	3000	2397	3510	2397
Total		5819		5819

