ULN2803

LINEAR INTEGRATED CIRCUIT

EIGHT DARLINGTON ARRAYS

■ DESCRIPTION

The UTC **ULN2803** is high-voltage, high-current Darlington drivers comprised of eight NPN Darlington pairs.

■ FEATURES

- *Output current (single output) 500mA MAX.
- *High sustaining voltage output 50V MIN.
- *Output clamp diodes
- *Inputs compatible with various types of logic

*Pb-free plating product number: ULN2803L

ORDERING INFORMATION

Order	Packago	Packing		
Normal	Lead Free Plating	Package	Packing	
ULN2803-S18-R	ULN2803L-S18-R	SOP-18	Tape Reel	
ULN2803-S18-T	ULN2803L-S18-T	SOP-18	Tube	
ULN2803-D18-T	ULN2803L-D18-T	DIP-18	Tube	

<u>www.unisonic.com.tw</u>

■ SCHEMATICS (EACH DRIVER)

Note: The input and output parasitic diodes cannot be used as clamp diodes.

■ PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
Input Voltage		V_{IN}	-0.5~30	V	
Output Sustaining Voltage		V _{CE (SUS)}	-0.5~50	V	
Output Current		I _{OUT}	500	mA/ch	
Clamp Diode Reverse Voltage		VR	50	V	
Clamp Diode Forward Current		I _F	500	mA	
Power Dissipation	DIP-18	<u> </u>	1.47	14/	
	SOP-18	P_{D}	0.54/0.625(Note)	W	
Operating Temperature		T _{OPR}	0 ~ +70	°C	
Storage Temperature		T _{STG}	-40 ~ +150	°C	

- Note 1. On glass epoxy PCB (30x30x1.6mm Cu 50%)
 - 2. Absolute maximum ratings are stress ratings only and functional device operation is not implied. The device could be damaged beyond Absolute maximum ratings.
 - 3. The device is guaranteed to meet performance specifications within 0° C~70°C operating temperature range and assured by design from -40° C~ 85° C.

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified.)

PARAMETER		SYMBOL	TEST CIRCUIT	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Leakage Current		I _{CEX}	1	V _{CE} =50V,T _a =25°C V _{CE} =50V,T _a =85°C			50 100	μА
Collector-Emitter Saturation Voltage		V _{CE(SAT)}	2	I _{OUT} =350mA,I _{IN} =500μA I _{OUT} =200mA,I _{IN} =350μA I _{OUT} =100mA,I _{IN} =250μA		1.3 1.1 0.9	1.6 1.3 1.1	V
Input Current	ON	I _{IN(ON)}	3	V _{IN} =3.85V,I _{OUT} =350mA		0.93	1.35	mA
	OFF	I _{IN(OFF)}	4	I _{OUT} =500μA, T _a =85°C	50	65		μА
Input Voltage (output on)		V _{IN(ON)}	5	V_{CE} =2.0 V I_{OUT} =200 mA I_{OUT} =250 mA I_{OUT} =300 mA			2.4 2.7 3.0	V
Clamp Diode Reverse C	urrent	I _R	6	V_R =50V, T_a =25°C V_R =50V, T_a =85°C			50 100	μА
Clamp Diode Forward Voltage		V _F	7	I _F =350mA			2.0	V
Input Capacitance		C _{IN}				15	25	pF
Turn-On Delay		t _{ON}	8	$V_{OUT}=50V,R_L=125\Omega,C_L=15pF$		0.1	1	μS
Turn-Off Delay		t _{OFF}	8	$V_{OUT}=50V,R_L=125\Omega,C_L=15pF$		0.2	1	μS

■ TEST CIRCUIT

1. I_{CEX}

2. $V_{CE \text{ (sat)}}$, h_{FE}

$3. I_{IN (ON)}$

4. I_{IN (OFF)}

5. V_{IN (ON)}

6. I_R

7. V_F

8. t_{ON} , t_{OFF}

Note1: Pulse width 50µs, duty cycle 10%

Output impedance 50Ω , tr<=5ns, tf<=10ns

Note2: R1: 0, V_{IH}: 3V

Note3: CL includes probe and jig capacitance.

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS(cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.