Fine Structure Corrections in Optical Emission Spectra of Sodium

Bhaskar Mookerji Charles Herder

8.13 Experimental Physics I MIT Department of Physics

11 December 2007

Goal:

- Characterize corrections to Bohr model and Rydberg equation.
- Validate predictions of quantum mechanics for hydrogen-like atoms.

CAUTION

- Introduction
 - QM of Hydrogenic Atoms
 - Fine Structure Perturbation
 - Sodium Doublet States
- 2 Experimental
 - Czerny-Turner Monochromator (but I...)
 - Peak resolution and their parameters
- Results and Error Analysis
 - 1800gvs/mm Mercury Calibration
 - Error Accounting
 - Measured Sodium Doublets
 - Screening in s and d Angular Momentum States

$$H = \frac{\mathbf{p}^2}{2m} - \frac{Ze^2}{4\pi\epsilon_0} \frac{1}{r}.$$
 (1)

$$E_{n} = -hcR_{\infty} \frac{Z^{2}}{n^{2}}$$

$$= -\frac{m_{e}e^{4}}{2(4\pi\epsilon_{0})^{2}\hbar^{2}} \frac{Z^{2}}{n^{2}} (2)$$

- Energy and electron orbitals are quantized.
- Electron transitions emit photons, causing discrete optical spectra.

But wait!

- Electrons have angular momentum L = 0, 1, ..., n 1, S = 1/2
- Orbiting proton in electron frame sees a magnetic field B

$$H_1 = -\mu \cdot \mathbf{B} \rightarrow \left(\frac{e^2}{8\pi\epsilon_0}\right) \frac{1}{m^2 c^2 r^3} \mathbf{S} \cdot \mathbf{L}$$
 (3)

- Now H, L^2 , S^2 , and J = L + S commute!
- From first-order perturbation, angular momentum terms are no longer degenerate

$$E_{nj} = -\frac{E_n}{n^2} \left[1 + \frac{\alpha^2}{n^2} \left(\frac{n}{j + 1/2} - \frac{3}{4} \right) \right]$$
 (4)

For states specified by $|nlm\rangle$, transition probability related to

$$\langle n'l'm'|\mathbf{r}|nlm\rangle$$
.

Only non-zero when,

$$\Delta I = \pm 1$$

$$\Delta m = 0, \pm 1$$
 (5)

'Fine structure': Energy difference between *P* states

Diffraction grating: 1800gvs/mm and 3600gvs/mm

- (A) Emission source
- (B) Entrance slit
- (C) Collimating mirror
- (D) Diffraction grating
- (E) Focusing mirror
- (F) Exit slit
- (G) PMT (950V)

 Entrance/exit slit width, density of the diffraction grating, and source-entrance slit distance.

- Resolution: $\sigma_{1800} = 0.10 + 0.15$ Å
 - $0.10 0.15 \text{\AA} \ \sigma_{3600} = 0.06 \text{\AA}$
- 100ms integration
- Slit: 4-10μm
- 0.01Å step size
 - 1800gvs/mm

Wavelength Calibration Residuals for Hg Spectrum

 $\lambda_{\text{Predicted}} \sim 26.4612 + 0.9930x - 3.0940 \sin{(7.4585 + 0.0009x)}$

Grating equation: $m\lambda = d(\sin \alpha + \sin \beta)$

 $\sigma_{\text{Calib.}} \sim 0.06 \text{Å}$ 98% confidence level from $\chi^2 = 1.6$.

Systematic error in our wavelength measurements are given by:

$$\sigma_{\lambda}^2 = \sigma_{\text{FWHM}}^2 + \sigma_{\text{Calib.}}^2. \tag{6}$$

Due to finite slit width, peaks approximated as Gaussians, therefore $\sigma_{\rm FWHM} = \Delta \lambda_{\rm FWHM}/\sqrt{2 \ln 2}$

$$\sigma_{\text{FWHM}}^2 = \sigma_{\text{slit}}^2 + \sigma_{1800}^2 + \sigma_{\text{line width}}^2 + \sigma_{\text{doppler}}^2 \tag{7}$$

Doppler broadening for temperature T = 2700K and A = 11:

$$\Delta \lambda = \lambda \cdot 10^{-6} \sqrt{\frac{2700}{11}} = \lambda \cdot 1.57 \cdot 10^{-6}$$

For 6160Å, $\Delta \lambda = 0.001$ Å.

4*P* Doublet at $\Delta \bar{\nu} = 5.60 \pm 0.94 \text{cm}^{-1}$

$$b = \text{Log}_{\frac{4}{3}}[\Delta \bar{\nu}_{3P}/\Delta \bar{\nu}_{4P}] = 3.88 \text{Meas}.$$

3P Doublet at $\Delta \bar{\nu} = 17.25 \pm 0.28 \mathrm{cm}^{-1}$

Table: Classification of sodium fine structure (in air).

	CRC	1800gvs	s/mm
Transition	$\lambda(\text{Å})$	λ(Å)	$\Delta \bar{\nu} (\text{cm}^{-1})$
$5S \rightarrow 3P_{3/2}$	6160.75	6159.65 ± 0.25	14.65 ± 0.40
$\rightarrow 3P_{1/2}$	6154.23	6154.09 ± 0.20	
$3P_{3/2} \rightarrow 3S$	5895.92	5895.77 ± 0.13	17.25 ± 0.28
$3P_{1/2} \to 3S$	5889.95	5889.78 ± 0.13	
$4D \rightarrow 3P_{3/2}$	5688.21	5688.25 ± 0.12	17.43 ± 0.29
$\rightarrow 3P_{1/2}$	5682.63	5682.61 ± 0.12	
$6S \rightarrow 3P_{3/2}$	5153.40	5153.58 ± 0.16	17.17 ± 0.41
$\rightarrow 3P_{1/2}$	5148.84	5149.03 ± 0.14	
$5D \rightarrow 3P_{3/2}$	4982.81	4983.11 ± 0.15	17.12 ± 0.44
\rightarrow 3 $P_{1/2}$	4978.54	4978.86 ± 0.16	
$7S \rightarrow 3P_{3/2}$	4751.82	4752.09 ± 0.22	17.32 ± 0.61
$\rightarrow 3P_{1/2}$	4749.94	4748.18 ± 0.20	
$6D \rightarrow 3P_{3/2}$	4668.56	4668.77 ± 0.16	17.32 ± 0.51
$\rightarrow 3P_{1/2}$	4664.81	4665.00 ± 0.15	
$7D \rightarrow 3P_{3/2}$	4497.66	4497.89 ± 0.27	17.00 ± 0.90
$\rightarrow 3P_{1/2}$	4494.18	4494.45 ± 0.31	
$4P_{3/2} \rightarrow 3S$	3302.98	3303.26 ± 0.14	5.60 ± 0.94
$4P_{1/2} \to 3S$	3302.37	3302.64 ± 0.14	
$5P_{3/2} \rightarrow 3S$	2853.01	_	
$5P_{1/2} \rightarrow 3S$	2852.81	_	

3P Doublet Separations in Sodium

3P_{3/2} Doublet Wavelength CRC (Å)

$$\sigma_{\Delta\bar{\nu}}^2 = \frac{\sigma_{\lambda_1}^2}{\lambda_1^4} + \frac{\sigma_{\lambda_2}^2}{\lambda_2^4}$$

In case you were wondering...

Fitting Hydrogen Fine Structure $\begin{array}{c}
5. \times 10^{6} \\
4.5 \times 10^{6} \\
4.5 \times 10^{6}
\end{array}$ $\begin{array}{c}
\chi^{2} = 577(93\%) \\
\chi^{2} = 62(10^{-76}\%) \\
3.5 \times 10^{6} \\
6339.306539.356539.406539.566539.506539.56539.606539.656539.70
\end{array}$ Wavelength λ (λ)

$$\lambda = 6539.39 \pm 0.003$$
 6539.54 ± 0.003 Å

$$\Delta\lambda_{Meas.} = 0.150 \pm 0.007 \mbox{\normalfont\AA}$$
 $\Delta\lambda_{Theory.} = 0.1576 \pm 0.007 \mbox{\normalfont\AA}$

Angular momentum $L \to \text{Electrons}$ 'see' effective charge of nucleus $Z_{\text{eff}}e$

Assume final and initial states differ in Z_{eff} :

$$\frac{1}{\lambda} = -R_{\mathrm{Na}} \left(\frac{Z_{\mathrm{eff}_i}^2}{n_i^2} - \frac{Z_{\mathrm{eff}_f}^2}{n_f^2} \right).$$

and equate common initial and final states:

$$\frac{1}{\lambda_2} \pm_d^s \frac{1}{\lambda_1} = Z_{\text{eff}}^2 R_{\text{Na}} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{8}$$

Combined Wavenumber vs. State Transitions

$$Z_{
m s}=1.50\pm0.10$$
 $\lambda_{
m vac}=\lambda_{
m meas}\cdot n_{
m air}$

Combined Wavenumber vs. State Transitions

$$Z_d = 1.00 \pm 0.09$$

. . . _ .

Typo in Mellisinos (1.14): From Slater's Rules,

$$Z_{\rm eff} = 1.844 \sim 11 - 0.85 \cdot 8 - 2 = 2.2$$
 (10)

(9)

 $n_{\rm air} = 1.0002739$

Table: Classification of sodium fine structure.

	CRC/NIST	Measured
$\Delta \bar{\nu}_{3P}$	17.196cm ⁻¹	$17.12 \pm 0.52 \pm 0.05$ cm ⁻¹
$\Delta \bar{\nu}_{4P}$	$5.59 cm^{-1}$	5.60 ± 0.94 cm $^{-1}$
Z_s	1.844	1.50 ± 0.10
Z_d	1	1.00 ± 0.09
IÉ ₁	5.1391eV	$3.68 \pm 0.03 eV$

- Correction to Bohr model from the spin-orbit perturbation, and angular momentum selection rules.
- Effect of screening for outer 'shell' electrons, and IE.
- Experimental confirmation of String Theory? No.

Acknowledgements

- Charles Herder: Physics appears to be easier when you're actually Course 6.
- JLab staff: For being helpful despite knowing more than we do.
- Glass: For attenuating the transmission of UV waves, thereby saving us from near certain death (by which I mean good UV data).
- Lab notebook bonfire after class? Eh?

8.13 T θ is finally over! :(

Extra

Fitting Hydrogen Fine Structure

$${}^{1}IE_{\text{Na}} = E_{3P-3S} + E_{\infty}^{3P} \tag{11}$$