Homework 3

Armand Nasseri

November 3, 2017

1 Problem 1

1) NFA star construction

2) Convert regex to NFA

3) Convert NFA to DFA

4) Convert DFA to reverse NFA

DFA/NFA

2 Problem 2

Equivalent DFA for given NFA:

3 Problem 3

The reverse of a DFA is defined by creating a new start state with epsilon transitions that point to the original accepting states and flipping all transition arrows around. To create a reverse DFA:

- 1) Create a new start state.
- 2) Label the new epsilon transitions and make them point to the accepting states.
- 3) Reverse all arrows for each transition in the DFA and remove original start arrow.
 - 4) Turn the original start state into an accept state.

4 Problem 4

For each ε -transition in the NFA, called it $\delta(q, \varepsilon) = p$, we could replace that by a set of transition $\delta(q, c) = p$ where c is in the outgoing transition from p. If one of the outgoing transition from p is an accepting state, then we make p to be an accepting state.

5 Problem 5

- (a) It is not regular by the pumping lemma for the string $w = 0^p 1^p 0^{2p}$, i.e. pumping up the string, we get $xyyz = 0^{p+|y|} 1^p 0^{2p}$ is not in the language.
- (b) It is not regular by the pumping lemma for the string $w = 0^p 1^p 0^{2p-1}$, i.e. pumping down the string, we get $xz = 0^{p-|y|} 1^p 0^{2p}$ is not in the language.
- (c) It is regular because you can build a regular expression for it, i.e. R = 0*1*.
- (d) It is regular because you can build a regular expression for it, i.e. $(00)^*(11)^*|0(00)^*1(11)^*$.
- (e) It is regular because you can build a regular expression for it, i.e. 0(0|1)*0|1(0|1)*1
- (f) It is not regular by the pumping lemma for the string $w = 0^{p+1}1^p \in A$ but when pumping down $xz = 0^{p+1-|y|}1^p \notin A$.