BECA / Huson / IB Math 22 November 2017

Name:

Pre-Exam: Vector algebra and differential calculus

1a. In the following diagram, $\overrightarrow{OP} = p$, $\overrightarrow{OQ} = q$ and $\overrightarrow{PT} = \frac{1}{2}\overrightarrow{PQ}$.

Express each of the following vectors in terms of p and q,

 $\overrightarrow{\overline{QP}}_{;}$ [2 marks]

1b. \overrightarrow{OT} . [3 marks]

2a. Consider the points A(5,2,1) , B(6,5,3) , and C(7,6,a+1) , $a\in\mathbb{R}$. Find

(i) \overrightarrow{AB} ; [3 marks]

(ii) \overrightarrow{AC} .

2b. Let q be the angle between \overrightarrow{AB} and \overrightarrow{AC} .

Find the value of a for which ${
m q}={\pi\over 2}$. [4 marks]

 $\cos q = rac{2a+14}{\sqrt{14a^2+280}}$. [8 marks]

2d. Hence, find the value of a for which ${
m q}=1.2$. [4 marks]

 $\overrightarrow{AD} = \overrightarrow{BC}, \overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \text{ and } \overrightarrow{AC} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}.$

diagram not to scale

 \overrightarrow{BC} . [2 marks]

$$\overrightarrow{\mathrm{BD}} = inom{-2}{2}$$
 . [2 marks]

3c. Show that vectors \overrightarrow{BD} and \overrightarrow{AC} are perpendicular. [3 marks]

 ${f 4a.}$ Let $f(x)=ax^3+bx^2+c$, where a , b and c are real numbers. The graph of f passes through the point (2, 9) .

Show that
$$8a+4b+c=9$$
.

4b. The graph of f has a local minimum at (1,4) .

Find two other equations in a, b and c, giving your answers in a similar form to part (a). [7 marks]

4c. Find the value of a, of b and of c. [4 marks]

5a. Let
$$g(x)=rac{\ln x}{x^2}$$
 , for $x>0$.

Use the quotient rule to show that $g'(x) = rac{1-2\ln x}{x^3}$. [4 marks]

5b. The graph of *g* has a maximum point at A. Find the *x*-coordinate of A. [3 marks]

6a. The following diagram shows part of the graph of a quadratic function f.

The x-intercepts are at (-4,0) and (6,0), and the y-intercept is at (0,240).

Write down
$$f(x)$$
 in the form $f(x) = -10(x-p)(x-q)$. [2 marks]

6b. Find another expression for
$$f(x)$$
 in the form $f(x) = -10(x-h)^2 + k$ [4 marks]

6c. Show that
$$f(x)$$
 can also be written in the form $f(x) = 240 + 20x - 10x^2$. [2 marks]

6d. A particle moves along a straight line so that its velocity, $v~{
m ms}^{-1}$, at time t seconds is given by $v=240+20t-10t^2$, for $0\leq t\leq 6$.

- (i) Find the value of t when the speed of the particle is greatest.
- (ii) Find the acceleration of the particle when its speed is zero.

7a. The following diagram shows the graph of $f(x)=\mathrm{e}^{-x^2}$.

The points A, B, C, D and E lie on the graph of f. Two of these are points of inflexion.

Identify the **two** points of inflexion.

[2 marks]

7b. (i) Find f'(x). [5 marks]

(ii) Show that $f''(x)=(4x^2-2)\mathrm{e}^{-x^2}$

7c. Find the *x*-coordinate of each point of inflexion.

[4 marks]

7d. Use the second derivative to show that one of these points is a point of inflexion.

[4 marks]

8a. Let $g(x) = 2x \sin x$.

Find
$$g'(x)$$
. [4 marks]

8b. Find the gradient of the graph of g at $x=\pi$.

[3 marks]

9a. Let
$$f'(x) = -24x^3 + 9x^2 + 3x + 1$$
.

[3 marks]

There are two points of inflexion on the graph of f. Write down the x-coordinates of these points.

9b. Let $g(x)=f^{\prime\prime}(x)$. Explain why the graph of g has no points of inflexion.

[2 marks]

 $_{f 10a.}\,{
m Let}\,f(x)=rac{1}{2}x^3-x^2-3x$. Part of the graph of f is shown below.

There is a maximum point at A and a minimum point at B(3, -9).

[8 marks]

10b. Write down the coordinates of

Find the coordinates of A.

[6 marks]

- (i) the image of B after reflection in the y-axis;
- (ii) the image of B after translation by the vector
- (iii) the image of B after reflection in the x-axis followed by a horizontal stretch with scale factor $\frac{1}{2}$.

11a. Let
$$f(x) = rac{\cos x}{\sin x}$$
 , for $\sin x
eq 0$.

Use the quotient rule to show that $f'(x)=rac{-1}{\sin^2 x}$. [5 marks]

11b. Find f''(x). [3 marks]

11c. In the following table, $f'\left(\frac{\pi}{2}\right)=p_{\text{ and }}f''\left(\frac{\pi}{2}\right)=q_{\text{ . The table also gives approximate values of }}f'(x)$ and $f''(x)_{\text{ near }}x=\frac{\pi}{2}$.

x	$\frac{\pi}{2}$ - 0.1	$\frac{\pi}{2}$	$\frac{\pi}{2} + 0.1$
f'(x)	-1.01	p	-1.01
f"(x)	0.203	q	-0.203

Find the value of p and of q.

[3 marks]

11d. Use information from the table to explain why there is a point of inflexion on the graph of f where $x=rac{\pi}{2}$.

12. Let $f(x)=kx^4$. The point $\mathrm{P}(1,k)$ lies on the curve of f . At P, the normal to the curve is parallel to $y=-\frac{1}{8}x$. Find the value of k.