A

Project Report on

DISEASES DIAGNOSIS USING COMPUTATIONAL NADI PATTERNS

Submitted in partial fulfilment of the requirements for the award of the degree of

Bachelor of Technology in

Electronics & Telecommunication

Submitted by

Roll No. (Seat no)	Names of Students
14153201	Deshmukh Akash Shrimant
11153201	Patil Swapnil Madhukarrao
16151221	Jadhav Karan Suresh

Under the guidance of **Prof. P.S. Tanurkar**

Department of Electronics and Telecommunication

Government College of Engineering, Karad

(An Autonomous Institute of Govt. of Maharashtra)

Maharashtra India – 415124

Government College of Engineering, Karad

Department of Electronics & Telecommunication Vidyanagar, Karad-415124, Dist.- Satara, Maharashtra.

Certificate

This is to be certified that this is a bonafide record of the project presented by the students whose names are given below of IV Year B.Tech VIII semester (2019-20) of Electronics and Telecommunication Department, Government College of Engineering, Karad have completed their Major Project entitled

"DISEASES DIAGNOSIS USING COMPUTATIONAL NADI PATTERNS"

They have submitted their Project Report for the partial fulfilment of the curriculum of the Degree of Bachelor of Electronics and Telecommunication from Government College of Engineering, Karad.

Roll No. (Seat no)	Names of Students
14153201	Deshmukh Akash Shrimant
11153201	Patil Swapnil Madhukarrao
16151221	Jadhav Karan Suresh

External Project Guide Head of the Department Examiner E& TC dept.

Date:

Acknowledgement

It gives us a great pleasure in bringing out the project report entitled "DISEASES DIAGNOSIS USING COMPUTATIONAL NADI PATTERNS". This project is something that could not have been implemented without the cooperation of many people who have involved in this project. We take this opportunity to express our thanks for all the people who had helped us in the completion of this project. We sincerely thank to Prof. P.S.Tanurkar with his help and guidance this project would not be in its present form. The keen interest taken by the guide in our project helped us to solve difficulties. We are thankful to our respected H.O.D. Dr Prof. A.M.Sapkal who provided us the opportunity to work on this project and helped us a lot by providing valuable suggestions

Abstract

Ayurveda, which literally means the 'Science of Life,' has bestowed the miraculous science upon us of diagnosing the imbalances within our body, without the use of any instruments except fingers. Perception of the patterns of nadis is an important method of diagnostics in Ayurveda. Various types of diseases can be detected in early stages by using this nadi pareeksha which is also called as Pulse diagnosis. This paper surveys on various diseases that can be detected by the pulse diagnosis or nadi pareeksha and provides the information about how nadi pareeksha can be useful for the generation of computational patterns for various diseases which is useful for the early detection of several diseases.

The populace in the world is increasing vastly, so peoples have to face diffrent types of diseases. But this disease detection tests are very expensive and needs more time and painful. It is not easy for poor people to go through it. In Ancient Ayurveda, there is miraculous science technique for knowing the imbalance of the human body, which is known as Nadi pariksha. Nadi Pariksha is the technique of feeling the palpations of adjoining three points of the radial artery, a few millimeters below the starting point of the base of the thumb. This method of sensing the pressure pulses used for the diagnosis of the diseases. But this Nadi parikshan requires expertise who has long experience and skill of reading the pulses for any disease diagnosis. In this paper, the system is designed using piezoelectric sensors using DAQ card and Matlab. The feature extraction, power spectrum tool and ApEn are used for analysis of the signals for prediction of health.

Ayurveda, which exactly means 'Science of Life', Ayur means 'life' and Veda means 'science'. The Ancient medical science, Ayurveda is elaborated in India thousands of years ago. According to this oldest spiritual technique, the relation in between the body, mind, and spirit defines the wellness and heath. If the body, mind, and spirit is in polyphony with the universe, the health is best. If our body, mind, and spirit has dissonance with universe, the health is not good. The things like genetic, birth defect, age, injuries, emotions, seasonal changes, climate, are responsible for the imbalance among the body, mind, spirit and the universe.

Abbreviations

 $ir - ir \ sensors$

USB DAQ - usb Data Aquisition

GUI - graphical user interface

LED – Light Emitting Diode

LDR – Light Dependent Resistor

Contents

Acknowledgement	i
Abstract	ii
Abbrevation	iv
List of Figures	vii
1 Introduction	1
1.1 Motivation	2
2 Literature Survey	3
3 Phased Execution	4
3.1 Objectives	4
3.2 Proposed System	5
3.3 Block Diagram	6
3.4 Working	7
3.5 Methodology	7
4 Hardware	8
4.1 Piezoelectric Sensor:	8
4.2 Arduino	10
4.3 Bluetooth Module (HC-05)	11
4.4 ESP8266	11
4.5 LED Dot Matrix display	12
4.6 Sensors	12
4.7 Data Acquisition Card	13
5. Software	14
5.1 MIT App Inventor	14
5.2 Arduino IDE software	14
5.3 Firebase Website	15
6.1 Experimental result	17
6.2 Actual Model	22
6.3 Practical Outputs of Applications	23

7 Applications	24
8 Merits, Demerits	26
9 Conclusion	27
10 Future Scope	28
Ribliography	29

List of Figures

3.3 Block diagram of system	6
3.5 Methodology	7
4.1.1 Pulse Sensor	8
4.1.2. Modules of piezoelectric sensors	9
4.5.1 Inter-connection diagram	12
6.1.1 Raw Vata Signal Waveform	17
6.1.2 Filtered Vata Signal	17
6.1.3 Raw Pitta Signal	18
6.1.4 Filtered Pitta Signal	18
6.1.5 Raw Kapha Signal	18
6.1.6 Filtered Kapha Signal	18
6.1.7 Power spectrum of the Vata signal	19
6.1.8 Power spectrum of Pitta signal	19
6.1.9 Power spectrum of Kapha signal	19
6.1.10 Position and nature of pulses	20
6.1.11 Standard radial pulse	20
6.1.12 Approximatevalue	20
6.1.13 Simplified Vata Signal	21
6.1.14 Simplified Pitta signal	21
6.1.15 Simplified Kapha signal	21
6.1.16 Matlab Filter	21
6.2.1 Actual Model Front View 1	22
6.2.2 Actual Model Front View 2	22
6.3.1 Detect Heart Disease using nadi pattern	23
6.3.2 Detect Lung Disease using nadi pattern	23
6.3.3 Detect BloodPressure using nadi pattern	23
6.3.4 Detect BloodPressure using nadi pattern	23