Lab 7

Least squares approximation

Use Matlab functions polyfit and polyval.

1. The following table lists the temperatures of a room recorded during the time interval [1:00;7:00]. Find the best liniar least squares function f(x) = ax + b that approximates the table. Use your result to predict the temperature of the room at 8:00. In the same figure, plot the points (Time, Temperature) and the least squares function.

Time	1:00	2:00	3:00	4:00	5:00	6:00	7:00
Temperature	13	15	20	14	15	13	10

2. The vapor pressure P of the water (in bars) as a function of temperature T (in ${}^{o}C$) is:

ĺ	T	0	10	20	30	40	60	80	100
ĺ	P	0.0061	0.0123	0.0234	0.0424	0.0738	0.1992	0.4736	1.0133

- (a) Obtain the best liniar least squares polynomial and use it to approximate the pressure P at $T=45^{\circ}$.
- (b) Obtain other two least squares approximations for the given data, for 2 different degrees of the polynomials. Find their values for $T=45^{\circ}$.
- (c) Compute in all three cases the approximation errors, knowing that the exact value is P(45) = 0.095848.
- (d) Plot the interpolation points, the 3 least squares approximants and the interpolation polynomial, in the same figure.
- 3. Consider 10 random points in the plane $[0,3] \times [0,5]$ using Matlab function *ginput*. Plot the points and the least squares polynomial of 2nd degree that best fits these points.