МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Элементы функционального анализа» Тема: Норма элемента

Студент гр. 1381 Сагидуллин Э.Р. Преподаватель Коточигов А.М.

Санкт-Петербург 2024

Задание.

Вариант 15.

В R^3 задан многогранник W и две точки x и y. Требуется вычислить норму Минковского для $\|\mathbf{x}\|$, $\|\mathbf{y}\|$ и $\|\mathbf{x}+\mathbf{y}\|$. Способ задания W: в условии даны шесть точек (вершины в первом октанте) {{12, 7, 0}, {8, 0, 11}, {0, 10, 9}, {14, 0, 0}, {0, 15, 0}, {0, 0, 22}}

Основные теоретические положения.

Выпуклость. Выпуклым телом называется выпуклое множество W, в котором существует такая точка w, что для любого $x \in X$ найдется число $\varepsilon(x) > 0$ такое, что множество W содержит отрезок w + tx, при всех $t \in (-\varepsilon(x); \varepsilon(x))$.

Норма Минковского. Пусть W — выпуклое множество и 0 является его внутренней точкой. Нормой Минковского, порожденной множеством W, называется $||x|| = \inf \{ \lambda : x/\lambda \in W, \lambda > 0 \}, x \in W \Longrightarrow -x \in W$.

Теорема Минковского. Если W — выпуклое ограниченное тело и 0 является его внутренней точкой, то выражение $||\mathbf{x}|| = \inf \{ \lambda : \mathbf{x}/\lambda \in \mathbf{W}, \, \lambda > 0 \}$ задает норму в пространстве X.

Биортогональный базис. Это набор векторов в линейном пространстве, для которого каждый вектор ортогонален всем остальным векторам в этом наборе, за исключением самого себя, и все они нормированы (имеют единичную длину).

Экспериментальные результаты.

Для построения многогранника нужно трижды отразить координаты относительно координатных плоскостей.

Полученный многогранник представлен на рисунке 1.

Рис. 1. Полученный многогранник.
Заданы следующие точки многогранника в первом октанте.

	X	Y	Z
D	12	7	0
Е	8	0	11
G	0	10	9
A	14	0	0
В	0	15	0
С	0	0	22

Для выполнения Теоремы Минковского требуется выполнение трех свойств:

1) Нулевой элемент является внутренней точкой множества многогранника (выполнено по условию задания)

- 2) $x \in W => -x \in W$ (выполнено благодаря симметричности многогранника)
- 3) Выпуклость многогранника (выполнено, для достижения выпуклости координаты точки С были изменены $(0, 0, 22) \longrightarrow (0, 0, 18)$

Проверим свойство выпуклости для заданного многогранника, для этого составим уравнения плоскостей со значением свободного коэффициента d=1 для всех граней в первом октанте и проверим положение всех 18 точек многогранника относительно них:

Нормализованные уравнения плоскостей для граней в первом октанте:

AED:
$$F1(x, y, z) = -\frac{1}{14}x - \frac{1}{49}y - \frac{3}{77}z + 1 = 0$$

EGD:
$$F2(x, y, z) = -\frac{1}{19}x - \frac{1}{19}y - \frac{1}{19}z + 1 = 0$$

BGD:
$$F3(x, y, z) = -\frac{2}{45}x - \frac{1}{15}y - \frac{1}{27}z + 1 = 0$$

CEG:
$$F4(x, y, z) = -\frac{7}{144}x - \frac{1}{20}y - \frac{1}{18}z + 1 = 0$$

Значения коэффициентов для всех 18 точек:

Точка	Координаты	F1	F2	F3	F4
D	(12, 7, 0)	0	0	0	1/15
Е	(8, 0, 11)	0	0	32/135	0
G	(0, 10, 9)	240/539	0	0	0
A	(14, 0, 0)	0	5/19	17/45	23/72
В	(0, 15, 0)	34/49	4/19	0	1/4
С	(0, 0, 18)	23/77	1/19	1/3	0
D1	(-12, -7, 0)	2	2	2	29/15
E1	(-8, 0, -11)	2	2	238/135	2
G1	(0, -10, -9)	838/539	2	2	2

A1	(-14, 0, 0)	2	33/19	73/45	121/72
B1	(0, -15, 0)	64/49	34/19	2	7/4
C1	(0, 0, -18)	131/77	37/19	5/3	2
D2	(12, -7, 0)	2/7	14/19	14/15	23/30
E2	(-8, 0, 11)	8/7	16/19	128/135	7/9
G2	(0, -10, 9)	460/539	20/19	4/3	1
D3	(-12, 7, 0)	12/7	24/19	16/15	37/30
Е3	(8, 0, -11)	6/7	22/19	142/135	11/9
G3	(0, 10, -9)	618/539	18/19	2/3	1

Найдем биортогональный базис для каждой из граней в первом октанте:

1) Рассмотрим конус OAED, в котором построим биортогональный базис для *OA*, *OE*, *OD*:

$$\begin{aligned} OA^{'} &= \frac{1}{\left(OA_{1},OA\right)}OA_{1}, OA_{1} = OE \times OD \\ OE^{'} &= \frac{1}{\left(OE_{1},OE\right)}OE_{1}, OE_{1} = OA \times OD \\ OD^{'} &= \frac{1}{\left(OD_{1},OD\right)}OD_{1}, OD_{1} = OA \times OE \end{aligned}$$

	OA	OE	OD
AED	(0.07142857,	(0.0,	(0. 0,
	-0.12244898,	0.0,	0.14285714,
	-0.05194805)	0.09090909	0.0

2) Рассмотрим конус OEGD, в котором построим биортогональный базис для *O*E, *O*G, *O*D:

$$\begin{split} OE^{'} &= \frac{1}{\left(OE_{1},OE\right)}OE_{1}, OE_{1} = OG \times OD \\ OG^{'} &= \frac{1}{\left(OG_{1},OG\right)}OG_{1}, OG_{1} = OE \times OD \\ OD^{'} &= \frac{1}{\left(OD_{1},OD\right)}OD_{1}, OD_{1} = OE \times OG \end{split}$$

	OE	OG [']	OD [']
EGD	(0.03453947,	(-0.04221491,	(0.06030702,
	-0.05921053,	0.07236842,	0.03947368,
	0.06578947)	0.03070175)	-0.04385965)

3) Рассмотрим конус OBGD, в котором построим биортогональный базис для *O*B, *O*G, *O*D:

$$OB' = \frac{1}{(OB_{1},OB)}OB_{1}, OB_{1} = OG \times OD$$
 $OG' = \frac{1}{(OG_{1},OG)}OG_{1}, OG_{1} = OB \times OD$
 $OD' = \frac{1}{(OD_{1},OD)}OD_{1}, OD_{1} = OB \times OG$

	OB	OG [']	OD [']
BGD	(-0.03888889,	(0.0,	(0.08333333,
	0.06666667,	0.0,	0.0,
	-0.07407407)	0.111111111)	0.0)

4) Рассмотрим конус ОСЕG, в котором построим биортогональный базис для *O*C, *O*E, *O*G:

$$OC' = \frac{1}{(OC_{1},OC)}OC_{1}, OC_{1} = OE \times OG$$

$$OE' = \frac{1}{(OE_{1},OE)}OE_{1}, OE_{1} = OC \times OG$$

$$OG' = \frac{1}{(OG_{1},OG)}OG_{1}, OG_{1} = OC \times OE$$

	oc [']	OE	OG [']
CED	(-0.07638889,	(0.125,	(0.0,
	-0.05,	0.0,	0.1,
	0.05555556)	0.0)	0.0)

Найдем коэффициенты разложения и норму для каждой точки по каждому базису:

1) Следовательно, раскладываем векторы по базису OA, OE, OD $OX = k_1OA + k_2OE + k_3OD$, $\varepsilon \partial e$ $k_1 = \left(OX , OA'\right)$, $k_2 = \left(OX , OE'\right)$, $k_2 = \left(OX , OD'\right)$ $OY = k_1OA + k_2OE + k_3OD$, $\varepsilon \partial e$ $k_1 = \left(OY , OA'\right)$, $k_2 = \left(OY , OE'\right)$, $k_2 = \left(OY , OD'\right)$ $OZ = k_1OA + k_2OE + k_3OD$, $\varepsilon \partial e$ $k_1 = \left(OZ , OA'\right)$, $k_2 = \left(OZ , OE'\right)$, $k_2 = \left(OZ , OD'\right)$

Норма в данном случае, считается как:

$$||W|| = k_1 + k_2 + k_3$$

Точка	Координаты	k1	k2	k3	w
X	(108, 0, 121)	1.42857142 8571427	11.0	0.0	12.428571428571427
Y	(84, 49, 484)	-25.142857 142857146	44.0	7.0	25.857142857142854
Z = X + Y	(192, 49, 605)	-23.714285 714285715	55.0	7.0	38.285714285714285

2) Следовательно, раскладываем векторы по базису OE, OG, OD $OX = k_1 OE + k_2 OG + k_3 OD$, $\varepsilon \partial e$ $k_1 = \left(OX \ , OE'\right), \ k_2 = \left(OX \ , OE'\right), k_2 = \left(OX \ , OD'\right)$

$$\begin{split} OY &= k_1 OE + k_2 OG + k_3 OD, \, \varepsilon \partial e \\ k_1 &= \left(OY, OE'\right), \, k_2 = \left(OY, OE'\right), k_2 = \left(OY, OD'\right) \\ OZ &= k_1 OE + k_2 OG + k_3 OD, \, \varepsilon \partial e \\ k_1 &= \left(OZ, OE'\right), \, k_2 = \left(OZ, OE'\right), k_2 = \left(OZ, OD'\right) \end{split}$$

Норма в данном случае, считается как:

$$||W|| = k_1 + k_2 + k_3$$

Точка	Координаты	k1	k2	k3	w
X	(108, 0, 121)	11.69078947368 421	-0.844298245 6140351	1.2061403508 771935	12.052631578 947368
Y	(84, 49, 484)	31.84210526315 7894	14.859649122 807017	-14.22807017 5438596	32.473684210 526315
Z = X + Y	(192, 49, 605)	43.53289473684 21	14.015350877 192981	-13.02192982 45614	44.526315789 473685

3) Следовательно, раскладываем векторы по базису OB, OG, OD $OX = k_1OB + k_2OG + k_3OD$, $\mathcal{E} \partial e$ $k_1 = \left(OX \ , OB'\right), \ k_2 = \left(OX \ , OG'\right), k_2 = \left(OX \ , OD'\right)$ $OY = k_1OB + k_2OG + k_3OD$, $\mathcal{E} \partial e$ $k_1 = \left(OY, OB'\right), \ k_2 = \left(OY, OG'\right), k_2 = \left(OY \ , OD'\right)$ $OZ = k_1OB + k_2OG + k_3OD$, $\mathcal{E} \partial e$

$$k_{1}=\left(OZ\text{ , }OB^{'}\right),\text{ }k_{2}=\left(OZ\text{ , }OG^{'}\right),k_{2}=\left(OZ\text{, }OD^{'}\right)$$

Норма в данном случае, считается как:

$$||W|| = k_1 + k_2 + k_3$$

Точка	Координаты	k1	k2	k3	w
X	(108, 0, 121)	-13.1629629629 62961	13.44444444 444443	9.0	9.2814814814 81482
Y	(84, 49, 484)	-35.8518518518 5185	53.77777777 77777	7.0	24.925925925 925924
Z = X + Y	(192, 49, 605)	-49.0148148148 1481	67.22222222 22221	16.0	34.207407407 4074

4) Следовательно, раскладываем векторы по базису ОС, ОЕ, ОБ

$$\begin{aligned} OX &= k_1 OC + k_2 OE + k_3 OG, \, \varepsilon \partial e \\ k_1 &= \left(OX \ , OC'\right), \, k_2 = \left(OX \ , OE'\right), k_2 = \left(OX \ , OG'\right) \end{aligned}$$

$$\begin{aligned} OY &= k_1 OC + k_2 OE + k_3 OG, \, \varepsilon \partial e \\ k_1 &= \left(OY \ , OC'\right), \, k_2 = \left(OY \ , OE'\right), k_2 = \left(OY \ , OG'\right) \end{aligned}$$

$$\begin{split} OZ &= k_1 OC + k_2 OE + k_3 OG, \ \ \partial e \\ k_1 &= \left(OZ \ , OC'\right), \ k_2 = \left(OZ, OE'\right), k_2 = \left(OZ \ , OG'\right) \end{split}$$

Норма в данном случае, считается как:

$$||W|| = k_1 + k_2 + k_3$$

Точка	Координаты	k1	k2	k3	
X	(108, 0, 121)	-1.5277777777 77786	13.5	0.0	11.972222222 222221
Y	(84, 49, 484)	18.0222222222 222	10.5	4.9	33.42222222 22222
Z = X + Y	(192, 49, 605)	16.4944444444 444	24.0	4.9	45.394444444 44444