GNN

The Graph Neural Network Model

Graph Structure

Social Network, 영화 추천, 분자 화합물 등 현실세계의 [남양한 것들이 graph 구조로 되어있음

Graph in Machine Learning

- 1. Graph structure는 구조 자체가 learning에 많이 사용
- 2. Graph structure를 인코딩하여 embedding space에 mapping, 해당 값들을 application에 이용

Application class

1) node-focused application

2) graph-focused application

Motivation

MLP로는 image를 1-D vector data로 변환시켜 연산

- → image의 위치정보 손실!
- → Image 자체로 학습하기 위해 Convolutional Neural Network 등장

Motivation

Using Diffusion + RNN techniques

Motivation

Using Diffusion + RNN techniques 그래프 구조에 적용 가능한

Diffusion & Relaxation Mechanism

CellularNN 과 HopfieldNN에서 이미 사용 중에 있음 state가 stable 해질 때 까지 update

The condition exists

→ 항상 같은 fixed point로 수렴해()한[나]

Notation

co([n]: n을 중심노드로 하는 edge의 집합

ne[n]: n을 중심으로 연결되어 있는 인접 노드들의 집합

 $oldsymbol{l}_n \in I\!\!R^{l_N}$ 은 graph의 모든 label을 encoding 하기전 input domain은 graph집합과 node들의 집합으로 이루

label은 nodeLhedge의 feature를
$$\mathcal{L}=(G_i,n_{i,j},t_{i,j})|,G_i=(N_i,E_i)\in\mathcal{G};$$
 encoding 하기전 input domain은 $n_{i,j}\in N_i;\,t_{i,j}\in\mathbb{R}^m,\,1\leq i\leq p,1\leq j\leq q_i$

Learning set ℍ [Hoth raw data(graph, node)와 node의

인코딩 target $t_{i,j}$ 사이의 loss를 최소한이 되도록 학습!

Graph Representation

Idea: graph에서 node가 객체나 한 개념을 표현하고, edge가 객체(node)간의 관계를 표현하지 않을까??

나와 친분이 있을수록

social networ에서 가깝고 큰 관계를 형성한다.

나에 대해 설명하기 위해

나의 특징과 주변 사람을 정보로 사용할 수 있다.

Graph Representation

Idea: node를 표현하기 위해 해당 node feature와 주변 정보를 이용한다!

 x_n : representation of node n's concept

state transition function: f_w 을 통해

node의 state를 계산한다!

state를 이용해 output 계산!

local transition function:

$$\boldsymbol{x}_n = f_{\boldsymbol{w}}(\boldsymbol{l}_n, \boldsymbol{l}_{\operatorname{co}[n]}, \boldsymbol{x}_{\operatorname{ne}[n]}, \boldsymbol{l}_{\operatorname{ne}[n]})$$

local output function:

$$oldsymbol{o}_n = g_{oldsymbol{w}}(oldsymbol{x}_n, oldsymbol{l}_n)$$

Graph Representation(example)

인접 노드의 label정보가 node state에 포함된 경우, 생략 가능

노드 간 edge가 한 개만 있는 것이 아니라 다수의 edge 존재 가능!

directed & undirected edge로 이루어진 graph 도한 구성 가능!

여러가지 방식으로 graph를 표현할 수 있다!!

Nonpositional Graph는 어떨까?

$$m{x}_n = \sum_{u \in ext{ne}[n]} h_{m{w}}(m{l}_n, m{l}_{(n,u)}, m{x}_u, m{l}_u), \qquad n \in m{N}$$
 로표현 가능!

각각의 인접노드에 대해 개별적으로 연산 가능

Graph Representation(example)

인접 노드의 label정보가 node state에 포함된 경우, 생략 가능

노드 간 edge가 한 개만 있는 것이 아니라 다수의 edge 존재 가능!

여러가지 방식으로 graph를 표현할 수 있다!!

directed & undirected edge로 이루어진 graph 도한 구성 가능!

→ general form of various type of graph representation

 k_n type의 다른 node가 있는 경우 f^{k_n} , g^{k_n} 으로 함수를 표현할 수 있고 다음과 같이 표현된다.

 $\boldsymbol{x} = F_{\boldsymbol{w}}(\boldsymbol{x}, \boldsymbol{l})$: Global transition function

 $oldsymbol{o} = G_{oldsymbol{w}}(oldsymbol{x}, oldsymbol{l_N})$: Global output function

Encoding Condition(Banach Theorem)

output 함수는 특정 vector space에 mapping하는 함수 $\,$

전체 모델에 [H해 state와 output은 유일한 값을 갖도록 해이한다.

Encoding Condition(Banach Theorem)

Banach theorem을 이용해 arphi 가 contraction map으로 state를 한 점에 수렴하도록 할 때, 다음과 같은 증명이 가능

Transition function이 contraction map으로 다음과 같이 표현이 가능하다

$$x_n^t = F_w(x_n^{t-1}, l)$$

$$||x_n^t - x_n^{t-1}|| \le ||x_n^1 - x_n^0||$$

다음과 같은 부등식을 세울 수 있으며

[0,1)에 존재하는 μ 에 대해 $\|F_w(x,l) - F_w(y,l)\| \leq \mu \|x-y\|$

으로 정리가 된다. 결국 transition 함수는 수렴한다는 것을 알 수 있다.

final state x는 stable한 상태가 된다 → 유일한 값을 가짐

One of Diffusion Mechnism

Encoding Condition(Banach Theorem)

Step 1. method to solve function

$$x_n = f_w(l_n, l_{co[n]}, x_{ne[n]}, l_{ne[n]})$$
 $o_n = g_w(x_n, l_n)$

Step 2. learning algorithm

Step 3. implementation of $f_w \& g_w$

Solve function (1 step)

Banach Theorem에 의해 f_w 의 해가 존재하고, 유일하다는 것을 증명

 $x(t+1) = F_w(x(t), l)$ 을 반복 계산하여 state를 얻어낸다.

아래의 연산과정 집합을 하나의 compute unit으로 취급 → encoding network

Solve function (1 step)

Banach Theorem에 의해 f_w 의 해가 존재하고, 유일하다는 것을 증명

 $x(t+1) = F_w(x(t), l)$ 을 반복 계산하여 state를 얻어낸다.

아래의 연산과정 집합을 하나의 compute unit으로 취급 → encoding network

 $f_w \& g_w$ 을 feedforward neural network로 구현

→ Input label은 external connection, input state는 internal connection

Learning Algorithm(2 step)

estimating the parameter w

함수 $\varphi_{\mathbf{w}}$ 가 learning data set을 이용해 data를 approximate

Data set
$$\mathcal{L} = (G_i, n_{i,j}, t_{i,j})|, G_i = (N_i, E_i) \in \mathcal{G};$$

$$n_{i,j} \in N_i; t_{i,j} \in \mathbb{R}^m, 1 \leq i \leq p, 1 \leq j \leq q_i$$

Cost function:

$$e_w = \sum_{i=1}^p \sum_{j=1}^{q_i} (t_{i,j} - \varphi_w(G_i, n_{i,j}))^2$$

Learning Algorithm(2 step)

Gradient Descent flows

- 1. state $x_n(t)$ 가 T번 반복 update 되어 fixed point solution 에 근사하게 한다. $x(T) \approx x$
- 2. $\partial e_w(T)/\partial w$ 계산
- 3. 계산한 기물기를 이용해 w update

Learning Algorithm(2 step)

Limitation

- 1. RNN에서 사용한 backpropagation through time algorithm을 통해 각 time step에 대해 모든 기울기를 계산
- 2. 위의 계산을 위해 모든 time step에서의 state를 저장해야함
 - → memory exceeds its storage!
 - → 진행된 time step이 길수록 더 많은 메모리소요 발생

Almeida-Pineda Algorithm

Key point: 수렴하는 마지막 state 값만 저장해서 gradient 계산!

1. Compute
$$x(t+1) = F(x(t), w_F, l_N) \mid x^* = F(x^*, w_F, l_N) \mid o = G(x^*, w_G, l_N)$$

2. Parameter w에 [H해 이전 state와의 차이

$$\Psi(w_F, x^*) = 0$$
 $\Psi(w_F, x) = x - F(x, w_F, l_N)$

3. Continuously differentiable & converge to unique fixed point

$$J_{F,x^*} = \frac{\partial F(x^*, w_F, l_N)}{\partial x} \qquad \frac{\partial (w_F, x^*)}{\partial w_F} = \frac{\partial x^*}{\partial w_F} - \frac{\partial F(x, w_F, l_N)}{\partial w_F} = 0$$

Almeida-Pineda Algorithm

$$(I-J_{F,x^*})^{-1}$$
 가 존재!

4. Make invertible

$$(I - J_{F,x^*}) \frac{\partial x^*}{\partial w_F} - \frac{\partial F(x, w_F, l_N)}{\partial w_F} = 0 \longrightarrow \frac{\partial x^*}{\partial w_F} = (I - J_{F,x^*})^{-1} \frac{\partial F(x, w_F, l_N)}{\partial w_F}$$

5. Gradient of output

$$\frac{\partial L}{\partial w_F} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial x^*} (I - J_{F,x^*})^{-1} \frac{\partial F(x^*, w_F, l_N)}{\partial w_F}$$
 transition gradient \Rightarrow store every states!
$$\frac{\partial L}{\partial w_G} = \frac{\partial L}{\partial o} \frac{\partial G(x^*, w_F, l_N)}{\partial w_G}$$
 output gradient

Almeida-Pineda Algorithm

Using Auxilary variable on backpropagation

6. Set auxiliary variable

$$z = (I - J_{F,x^*})^{-1} \left(\frac{\partial L}{\partial o} \frac{\partial o}{\partial x^*}\right)^{\top} \longrightarrow z = J_{F,x^*}^{\top} * z + \left(\frac{\partial L}{\partial o} \frac{\partial o}{\partial x^*}\right)^{\top}$$

7. Compute gradient by following task

- 1: **Initialization:** initial guess z_0 , e.g., draw uniformly from [0, 1], i = 0, threshold ϵ
- 2: repeat

3:
$$i = i + 1$$

4:
$$z_i = J_{F,h^*}^{\top} z_{i-1} + \left(\frac{\partial L}{\partial y} \frac{\partial y}{\partial h^*}\right)^{\top}$$

5: **until**
$$||z_i - z_{i-1}|| < \epsilon$$

6:
$$\frac{\partial L}{\partial w_F} = z_i^{\top} \frac{\partial F(x, w_F, h^*)}{\partial w_F}$$

7: Return $\frac{\partial L}{\partial w_F}$

Almeida-Pineda Algorithm(proof)

Transition function has unique & fixed-point solution(by Banach Theorem)

Proof
$$(I-J_{F,x^*})^{-1}$$
 is invertible

1. Contraction map

$$||J_{F,x^*}|| \le \mu < 1$$

2. build inequality equation, $\sigma_i(J_{F,x^*})$ 은 Jacobian의 i번째 singular value이다.

$$|det(I - J_{F,x^*})| = \prod_{i} |\sigma_i(I - J_{F,x^*})| \ge [1 - \sigma_{max}(J_{F,h^*})]^d > 0$$

3. $|det(I-J_{F,x^*})|$ 이 이이 아니므로 invertible

Implementation (3 step)

Output function g_w 는 multi-layer Feed Forward Network로 구현

구성이 자유롭다.

State transition function 구현이 중요하다.

→ fw의 해를 결정하기 때문이다

Linear (nonpositional) GNN

Transition function f_w 를 linear function으로 표현

$$h_w(l_n, l_{(n,u)}, x_u, l_u) = A_{n,u}x_u + b_n$$
 $(A_{n,u} \in R^{s \times s}, b_n \in R^s)$

transition network: generate $A_{n,u}$

forcing network: generate b_n

Matrix defined by following equation (contraction scale $\mu \in (0,1)$)

$$A_{n,u} = \frac{\mu}{s|\text{ne}[u]|} \cdot \Xi \longrightarrow \Xi = \text{resize}(\phi_w(l_n, l_{(n,u)}, l_u))$$

$$b_n = \rho_w(l_n) \qquad ||\phi_w(l_n, l_{(n,u)}, l_u)||_1 \le s$$

$$\longrightarrow ||\frac{\partial F_w}{\partial x}||_1 = ||A||_1 \le \mu$$

NonLinear(nonpositional) GNN

non-linear function인 경우, transition function이 $\dfrac{\partial F_w}{\partial x} \leq \mu$ 를 만족하기 위해

모든 파라메터를 사용하기 힘들다. > regularization을 통해 해결

다음과 같이 Ridge 규제항을 추가

$$e_w = \sum_{i=1}^{p} \sum_{j=1}^{q_i} (t_{i,j} - \varphi_w(G_i, n_{i,j}))^2 + \beta L(\|\frac{\partial F_w}{\partial x}\|)$$

Complexity

3가지 종류의 GNN model에 대한 복잡도 계산

instruction	positional	non-linear	linear	execs.
$\boldsymbol{z}(t+1) = \boldsymbol{z}(t) \cdot \boldsymbol{A} + \boldsymbol{b}$	$s^2 m{E} $	$s^2 m{E} $	$s^2 m{E} $	$\mathrm{it_{b}}$
$\boldsymbol{o} = G_{\boldsymbol{w}}(\boldsymbol{x}(t), \boldsymbol{l_w})$	$ oldsymbol{N} \overrightarrow{C}_g$	$ oldsymbol{N} \overrightarrow{C}_g$	$ oldsymbol{N} \overrightarrow{C}_g$	1
$\boldsymbol{x}(t+1) = F_{\boldsymbol{w}}(\boldsymbol{x}(t), \boldsymbol{l})$	$ oldsymbol{N} \overrightarrow{C}_f$	$ oldsymbol{E} \overrightarrow{C}_h$	$s^2 m{E} $	$\mathrm{it_f}$
			$ oldsymbol{N} \overrightarrow{C}_{ ho} + oldsymbol{E} \overrightarrow{C}_{\phi} $	1
$oldsymbol{A} = rac{\partial F_{oldsymbol{w}}}{\partial oldsymbol{x}}(oldsymbol{x}, oldsymbol{l})$	$s oldsymbol{N} \overleftarrow{C}_f$	$s m{E} \overleftarrow{C}_h$	_	1
$rac{\partial e_{oldsymbol{w}}}{\partial oldsymbol{o}}$	N	N	N	1
$rac{\partial p_{oldsymbol{w}}}{\partial oldsymbol{w}}$	$\mathbf{t}_{\boldsymbol{R}} \cdot \max(s^2 \cdot \mathrm{hi}_f, \overleftarrow{C}_f)$	$\mathbf{t}_{\boldsymbol{R}} \cdot \max(s^2 \cdot \mathbf{hi}_h, \overleftarrow{C}_h)$	_	1
$oldsymbol{b} = rac{\partial e_{oldsymbol{w}}}{\partial oldsymbol{o}} rac{\partial G_{oldsymbol{w}}}{\partial oldsymbol{x}} (oldsymbol{x}, oldsymbol{l_N})$	$ oldsymbol{N} \overleftarrow{C}_g$	$ oldsymbol{N} \overleftarrow{C}_g$	$ oldsymbol{N} \overleftarrow{C}_g$	1
$oldsymbol{c} = rac{\partial e_{oldsymbol{w}}}{\partial oldsymbol{o}} rac{\partial G_{oldsymbol{w}}}{\partial oldsymbol{w}} (oldsymbol{x}, oldsymbol{l_N})$	$ oldsymbol{N} \overleftarrow{C}_g$	$ oldsymbol{N} \overleftarrow{C}_g$	$ oldsymbol{N} \overleftarrow{C}_g$	1
$oldsymbol{d} = oldsymbol{z}(t) rac{\partial F_{oldsymbol{w}}}{\partial oldsymbol{w}}(oldsymbol{x}, oldsymbol{l})$	$ oldsymbol{N} \overleftarrow{C}_f$	$ oldsymbol{E} \overleftarrow{C}_h$	$ m{N} \overleftarrow{C}_{ ho} + m{E} \overleftarrow{C}_{\phi}$	1

Experiment

Application

- Subgraph Matching Problem
- Mutagenesis Problem

The Subgraph Matching Problem _node focused application

Goal: graph와 노드가 주어졌을 때, 해당 노드가 subgraph에 속하는 노드인지 classification

 $au(G_i,n_{i,j})$ 이 주어졌을 (ii, node(i,j)가 subgraph의 노드일 (ii,

 $au(G_i,n_{i,j})$ =1, 아니면 -1을 출력

The Subgraph Matching Problem node focused application

Performance: NL > L > FNN

S와 G의 balance가 좋을수록 평가가 어려운 data

Subgraph와 graph간의 크기 차이가 적을수록 성능이 향상된다.

Graph G의 크기가 커질수록 평가가 어렵다

FNN보다 좋은 성능

→ graph topology와 label정보 이용을 적절히 활용할 수 있다.

TABLE III
ACCURACIES ACHIEVED BY NONLINEAR MODEL (NL), LINEAR MODEL
(L), AND A FEEDFORWARD NEURAL NETWORK
ON SUBGRAPH MATCHING PROBLEM

			No. of nodes in G				
			6	10	14	18	Avg.
		NL	22.4	90.0	90.0	84.3	89.1
	3	L	93.3	84.5	86.7	84.7	87.3
		FNN	81.4	78.2	79.6	82.2	80.3
		NL	91.3	87.7	84.9	83.3	86.8
	5	L	90.4	85.8	85.3	80.6	85.5
No.		FNN	85.2	73.2	65.2	75.5	74.8
of		NL		89.8	84.6	79.9	84.8
nodes	7	L		91.3	84.4	79.2	85.0
in S		FNN		84.2	66.9	64.6	71.9
		NL		93.3	84.0	77.8	85.0
	9	L		92.2	84.0	77 7	84.7
		FNN		91.6	73.7	67.0	77.4
		NL	91.8	90.2	85.9	81.3	
	Avg.	L	91.9	88.5	85.1	80.6	
		FNN	83.3	81.8	71.3	72.3	
	Total	NL			87.3		
	Total L		86.5				
	avg.	FNN	77.2				

Subgraph의 크기가 작을수록 GNN이 graph topology를 더 잘 학습한다. (FNN과 성능차)

The Mutagenesis Problem Graph-focused application

10-fold cross validation

Friendly part

→ SOTA에 근접

나머지 모델도 평균적으로 높은 성능을 보임

Method	Features	Reference	Accuracy
non-linear GNN	AB+C+PS		94.3
Neural Networks	C+PS	[13]	89.0%
P-Progol	AB+C	[13]	82.0%
P-Progol	AB+C+FG	[13]	88.0%
MFLOG	AB+C	[84]	95.7%
FOIL	AB	[85]	76%
boosted-FOIL	not available	[86]	88.3%
$1nn(d_m)$	AB	[87]	83
$1nn(d_m)$	AB+C	[87]	91%
RDBC	AB	[88]	84%
RDBC	AB+C	[88]	83%
RSD	AB+C+FG	[89]	92.6%
SINUS	AB+C+FG	[89]	84.5%
RELAGGS	AB+C+FG	[89]	88.0%
RS	AB	[90]	88.9%
RS	AB+FG	[90]	89.9%
RS	AB+C+PS+FG	[90]	95.8%
SVM_P	not available	[91]	91.5

The Mutagenesis Problem Graph-focused application

Unfriendly part

→ Best accuracy!!

Unfriendly 한 data set 에서는 다른 모델들은 성능이 떨어짐

GNN만 성능 향상

Method	Knowledge	Reference	Accuracy
non-linear GNN	AB+C+PS		96.0%
$1nn(d_m)$	AB	[87]	72%
$1nn(d_m)$	AB+C	[87]	72%
TILDE	AB	[92]	85%
TILDE	AB+C	[92]	79%
RDBC	AB	[88]	79%
RDBC	AB+C	[88]	79%

The Mutagenesis Problem Graph-focused application

Whole training set

→ Still best accuracy!!

GNN을 이용해서 regression이 잘되는지 상관없이

Graph의 특징을 추출하는 것이 가능!

Method	Knowledge	Reference	Accuracy
non-linear GNN	AB+C+PS		90.5%
$1nn(d_m)$	AB	[87]	81%
$1nn(d_m)$	AB+C	[87]	88%
TILDE	AB	[92]	77%
TILDE	AB+C	[92]	82%
RDBC	AB	[88]	83%
RDBC	AB+C	[88]	82%

Conclusion

- GNN: model is based on information diffusion & relaxation mechanism
- Can applied to the practical applications!
- Give rise to new topics of research!
- → 패턴과 관계성이 존재하는 데이터를 처리하기 좋다
- Limitation: static domain에서만 다툼

THANK YOU.