

CORRECTION DE LA SÉRIE DE TD N° 1

Exercice 1. Additionneur/soustracteur.

1. Le circuit qui effectue la soustraction 1 bit par 1 bit (demi-soustracteur).

A	В	S	R
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$S = A \oplus B \qquad R = \overline{A}.B$$

$$A \qquad \qquad S$$

$$B \qquad \qquad R$$

2. Le demi-additionneur/soustracteur.

С	A	В	S	R
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

$$A$$
 B
 R

 $R = (C \oplus A).B$

 $S = A \oplus B$

3. L'additionneur/soustracteur complet 1 bit par 1 bit avec retenue d'entrée.

С	R _E	A	В	S	R
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0 0 0 0 0 0	1	1 1 0	0	1	0 0 1 0
0	1 1 1		1	0	1
0	1	1	0	0	1
0	1	0 1 1	0 1 0 1 0 1 0	1	1 1
1	0	0	0	0	0
1	0	0	1	1	
1 1 1	0	1	0	1	0
1	0	1	1	0	0
1	0 0 0 0 0	0	0	1	1
1 1 1	1	0 1 1 0 0 1	0 1 0 1 0 1	0	1 0 0 1 1 0
1	1 1 1	1	0	0 1	0
1	1	1	1	1	1

$$S = A \oplus B \oplus R_{\scriptscriptstyle E}$$

$$R = (C \oplus A \oplus B).R_{\scriptscriptstyle E} + (C \oplus A).B$$

4. Le schéma logique d'un additionneur/soustracteur 4 bits par 4 bits.

Exercice 2. Multiplicateur.

1. Le circuit qui effectue la multiplication 1 bit par 1 bit.

A	В	P
0	0	0
0	1	0
1	0	0
1	1	1

2. Le multiplicateur 2 bits par 2 bits.

						4	
A1	Α0	В1	ВО	Р3	P2	P1	P0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	-	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	ő	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

$$\begin{split} P_{3} &= A_{1}.A_{0}.B_{1}.B_{0} \\ P_{2} &= A_{1}.B_{1}.(\overline{A_{0}} + \overline{B_{0}}) = A_{1}.B_{1}.\overline{A_{0}}.B_{0} \\ P_{1} &= A_{1}.\overline{B_{1}}.B_{0} + A_{0}.B_{1}.\overline{B_{0}} + A_{1}.\overline{A_{0}}.B_{0} + \overline{A_{1}}.A_{0}.B_{1} \\ P_{0} &= A_{0}.B_{0} \end{split}$$

3. Le multiplicateur 2 bits par 2 bits à partir de multiplicateurs 1 bit par 1 bit de demi-additionneurs.

Exercice 3. Comparateur.

1. Le circuit qui effectue la comparaison 1 bit par 1 bit.

				1
A	В	Е	S	_
0	0	1	0	0
0	1	0	0	1
1	0	0 4	1	0
1	1	1	0	0

$$E = \overline{A}.\overline{B} + A.B = \overline{A} \oplus \overline{B}$$

$$S = A.\overline{B} \qquad I = \overline{A}.B$$

$$A \longrightarrow B$$

$$B \longrightarrow B$$

2. Le comparateur 2 bits en utilisant des comparateurs 1 bit et des portes logiques.

$$E = 1 \Rightarrow A = B \Rightarrow (A_1 = B_1)et(A_0 = B_0) \Rightarrow E = E_1E_0$$

$$S = 1 \Rightarrow A > B \Rightarrow (A_1 > B_1)ou[(A_1 = B_1)et(A_0 > B_0)] \Rightarrow S = S_1 + E_1S_0$$

$$I = 1 \Rightarrow A < B \Rightarrow (A_1 < B_1)ou[(A_1 = B_1)et(A_0 < B_0)] \Rightarrow S = I_1 + E_1I_0$$

3. Le le schéma logique d'un comparateur 3 bits.

$$\begin{split} E &= 1 \Rightarrow A = B \Rightarrow (A_2 = B_2)et(A_1A_0 = B_1B_0) \Rightarrow E = E_2E_{10} \\ S &= 1 \Rightarrow A > B \Rightarrow (A_2 > B_2)ou[(A_2 = B_2)et(A_1A_0 > B_1B_0)] \Rightarrow S = S_2 + E_2S_{10} \\ I &= 1 \Rightarrow A < B \Rightarrow (A_2 < B_2)ou[(A_2 = B_2)et(A_1A_0 < B_1B_0)] \Rightarrow S = I_2 + E_2I_{10} \end{split}$$

Exercice 4. Afficheur 7 segments.

Le circuit permettant d'afficher les chiffres de la base 16.

0 12 3 4 5 6 7 8 9 A B C B E F

									~		
	Χ	Υ	Z	W	Α	В	С	D	E	F	G
	0	0	0	0	1	1	1	1	1	1	0
	0	0	0	1	0	1	1	0	0	0	0
	0	0	1	0	1	1	0	1	1	0	1
	0	0	1	1	1	1	1	1	0	0	1
	0	1	0	0	0	1	1	0	0	1	1
	0	1	0	1	1	0	1	1	0	1	1
	0	1	1	0	1	0	1	1	1	1	1
	0	1	1	1	1	1	1	0	0	0	0
	1	0	0	0	1	1	1	1	1	1	1
	1	0	0	1	1	1	1	1	0	1	1
	1	0	1	0	1	1	1	0	1	1	1
	1	0	(1	1	0	0	1	1	1	1	1
	1	1	0	0	1	0	0	1	1	1	0
	1	1	0	1	0	1	1	1	1	0	1
	1	1	1	0	1	0	0	1	1	1	1
d	1	1	1	, 1	1	0	0	0	1	1	1

$$A = \overline{X}.Z + Y.Z + X.\overline{W} + X.\overline{Y}.\overline{Z} + \overline{X}.Y.W + \overline{Y}.\overline{W} + \overline{X}.\overline{Z}.\overline{W} + \overline{X}.Z.\overline{W} + \overline{X}.Z.\overline{W} + \overline{X}.Z.\overline{W} + \overline{X}.Z.\overline{W} + \overline{X}.\overline{Z}.\overline{W} + \overline{X}.\overline{Z}.\overline{W} + \overline{X}.\overline{Y} + \overline{Z}.\overline{W}$$

$$C = \overline{X}.\overline{Z} + \overline{X}.W + \overline{X}.Y + \overline{X}.\overline{Y} + \overline{Z}.\overline{W}$$

$$D = X.\overline{Z} + \overline{Y}.Z.\overline{W} + \overline{X}.\overline{Y}.\overline{W} + \overline{Y}.Z.W + Y.\overline{Z}.W$$

$$E = Z.\overline{W} + X.Y + X.Z + \overline{Y}.\overline{W}$$

$$F = \overline{Z}.\overline{W} + \overline{X}.Y.\overline{Z} + Y.\overline{W} + X.Z + X.\overline{Y}$$

$$G = \overline{X}.Y.\overline{Z} + \overline{Y}.Z + Z.\overline{W} + \overline{X}.\overline{W}$$

 $X.W + X.\overline{Y}$

Le schéma logique doit être complété par l'étudiant.

Exercice 5. Fonctions logiques avec des multiplexeurs.

1. La fonction majorité de 4 et de 5 variables avec un multiplexeur (16×1).

Α	В	С	D	М	(a) (b)
0	0	0	0	0	
0	0	0	1	0	E_0
0	0	1	0	0	E_1
0	0	1	1	0	E_2 E_3 E_4 E_4
0	1	0	0	0	E_3 E_4
0	1	0	1	0	E_5
0	1	1	0	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	1	1	1	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	0	0	0	0	E_{s}
1	0	0	1	0	E_{10}
1	0	1	0	0	E ₁₁ E ₁₂
1	0	1	1	1	E ₁₃
1	1	0	0	0	
1	1	0	1	1	E ₁₅
1	1	1	0	1	
1	1	1	1	1	A B C D E

2. Réalisation des fonctions suivantes à l'aide d'un multiplexeur (8×1).

3. Réalisation d'un multiplexeur (8×1) et d'un démultiplexeur (1×8) en utilisant des multiplexeurs (4×1) et (2×1) et des démultiplexeurs (1×4) et (1×2) .

Exercice 6. Fonctions logiques avec des décodeurs.

1. L'additionneur complet avec des décodeurs binaires (3×8) .

2. Réalisation des fonctions suivantes à l'aide des décodeurs (1×2) , (2×4) et (3×8) et des portes logiques.

3. Réalisation des fonctions suivantes à l'aide d'un décodeur convenable et des portes logiques.

