Exercice 01: EMD 2-2011-

Soit L le langage accepté par l'automate A ci-dessous :

- 1. Trouver l'expression régulière dénotant L.
- 2. Trouver l'automate A' reconnaissant le complément de L(A).
- 3. Trouver la grammaire régulière gauche qui génère L(A').

Correction:

1. Trouverons l'expression régulière dénotant L :

- Etablissons le système d'équation associé à A : On a :

$$\begin{cases} E_1 = a E_1 U aE_3 & (1) \\ E_2 = b E_2 U a E_3 U b E_1 U \epsilon & (2) \\ E_3 = E_2 U b E_1 & (3) \end{cases}$$

Résolution du système d'équation établi :

On applique la règle d'Arden, l'équation (2) devient :

$$E_2 = b^* (a E_3 U b E_1 U \epsilon)$$
 (4)

On remplace (4) dans (3):

$$E_{3} = b^{*} (a E_{3} U b E_{1} U \epsilon) U b E_{1}$$

$$= b^{*} a E_{3} U b^{*} b E_{1} U b^{*} U b E_{1}$$

$$= b^{*} a E_{3} U b^{+} E_{1} U b^{*}$$

$$E_{3} = (b^{*} a)^{*} (b^{+} E_{1} U b^{*}) \dots (5)$$

On remplace (5) dans (1):

$$E_{1} = a E_{1} U a ((b^{*} a)^{*} (b^{+} E_{1} U b^{*}))$$

$$= a E_{1} U a (b^{*} a)^{*} b^{+} E_{1} U a (b^{*} a)^{*} b^{*}$$

$$= (a U a (b^{*} a)^{*} b^{+}) E_{1} U a (b^{*} a)^{*} b^{*}$$

$$= (a U a (b^{*} a)^{*} b^{+})^{*} a (b^{*} a)^{*} b^{*}$$

 $E_1 = (a \ U \ a \ (b^* \ a)^* \ b^+)^* \ a \ (b^* \ a)^* \ b^* \ Est \ l'ER \ dénotant \ L.$

2. Trouverons l'AEF A' reconnaissant le complément de L(A) :

Pour pouvoir trouver l'AEF A', on doit d'abord vérifier si A est simple, déterministe et complet.

- A n'est pas simple, \exists une ε transition
- A est indéterministe, ∃ deux transitions ≠ pour lire une même lettre.
- A est incomplet.

- Rendre A SIMPLE:

On a:

Donc, on élimine:

3

 $S_3 \,|\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!\!- S_2\,$, et on ajoute les transitions suivantes :

Et, $S2 \in F \Rightarrow S3 \in F$

L'AEF simple est comme suit :

- Rendre A DETERMINISTE:

		a	b
EI	S_1	$S_1 S_3$	-
EF	S_2	S_3	$S_1 S_2$
EF	S_3	S_3	$S_1 S_2$
EI	S_1	$S_1 S_3$	-
EF	$S_1 S_3$	$S_1 S_3$	$S_1 S_2$
EF	$S_1 S_2$	$S_1 S_3$	$S_1 S_2$

L'AEF est déterministe

- Rendre A COMPLET:

On ajoute un état puits (non co-accessible),

Pour trouver l'AEF A', il suffit d'inverser les états finaux et non finaux.

Tout état final devient non final

Tout état non final devient final

L'AEF A' est comme suit :

3. Trouverons la grammaire régulière gauche qui génère L(A') :

On cherche l'AEF miroir de A' Soit A'' l'AEF miroir :

La grammaire GRD équivalente est :

 $S \rightarrow A/B$ $A \rightarrow \varepsilon$ $B \rightarrow aB/bB/bA$

D'où la grammaire régulière gauche qui génère L(A') est :

La grammaire GRG équivalente est :

 $S \rightarrow A/B$

A → ε

B→ Ba/ Bb/ Ab

Exercice 02: Rattrapage -2011-

Soit l'expression régulière suivante :

$$E = (a U b)^* b a^* a (a U b)^*$$

Donner l'automate simple déterministe reconnaissant le langage engendré par E.

Correction:

1. Trouvons l'automate simple déterministe reconnaissant le langage défini par E :

(En utilisant la méthode des dérivées)

On a:
$$E= (a \cup b)^* b a^* a (a \cup b)^*$$
 avec: $X=\{a,b\}$

$$E //a = (a U b)^* b a^* a (a U b)^* //a$$

= $(a U b)^* //a . b a^* a (a U b)^* U b a^* a (a U b)^* //a$

$$= (a \cup b)^* b a^* a (a \cup b)^* \cup \emptyset$$

=E

$$E //b = (a \cup b)^* b a^* a (a \cup b)^* //b$$

=
$$(a \cup b)^* //b$$
. $b a^* a (a \cup b)^* \cup b a^* a (a \cup b)^* //b$

$$= (a \cup b)^* b a^* a (a \cup b)^* U a^* a (a \cup b)^*$$

 $= E_1$

$$E_1 //a = [(a \cup b)^* b a^* a (a \cup b)^* U a^* a (a \cup b)^*]//a$$

$$=\left(a~U~b\right)^{*}b~a^{*}a\left(a~U~b\right)^{*}/\!/a~U~a^{*}a\left(a~U~b\right)^{*}/\!/a$$

$$= E//a U a a^* (a U b)^* //a$$

$$= E U a^* (a U b)^*$$

 $=E_2$

$$E_1 //b = [(a \cup b)^* b a^* a (a \cup b)^* U a^* a (a \cup b)^*]//b$$

=
$$(a \cup b)^* b a^* a (a \cup b)^* //b \cup a^* a (a \cup b)^* //b$$

$$= E//b U \varnothing$$

 $= E_1$

$$E_2//a = [E U a^* (a U b)^*]//a$$

$$= E//a U a^* (a U b)^* //a$$

$$= E U a^* //a (a U b)^* U (a U b)^* //a$$

$$= E U a^* (a U b)^* U (a U b)^*$$

$$= (a U b)^*$$

$$= E_3$$

$$E_2 //b = [E U a^* (a U b)^*] //b$$

$$E_2 //b = [E U a^* (a U b)^*] //b$$

$$= E //b U a^* (a U b)^* //b$$

$$= E U a^* //b (a U b)^* U (a U b)^* //b$$

$$= E U \varnothing U (a U b)^*$$

$$= (a U b)^*$$

$$= E_3$$

$$E_3//a = E_3//b = E_3$$

 $\varepsilon \in L(E_2)$ et $\varepsilon \in L(E_3) \Rightarrow E_2$ et E_3 sont des états finaux.

L'automate d'états finis simple déterministe A est défini comme suit :

La représentation graphique de l'automate A :

2. La grammaire régulière droite engendrant le langage défini par E :

La grammaire régulière droite équivalente est :

$$G \le X = \{a, b\}, V = \{S, A, B, C\}, P, S \ge avec :$$

$$P = \{ S \rightarrow aS / bA$$

$$A \rightarrow bA / aB$$

$$B \rightarrow aC / bC / \epsilon$$

$$C \rightarrow aC/bC/\epsilon$$
 }

Exercice 03: Rattrapage -2011-

Soit A l'automate suivant :

- 1. Donner l'expression régulière du langage L reconnu par A.
- 2. Donner l'automate simple déterministe reconnaissant L(A).
- 3. Donner l'automate complément de A.
- 4. Donner la grammaire régulière gauche engendrant le langage L(A).

Correction:

1. Trouverons l'expression régulière dénotant L :

- Etablissons le système d'équation associé à A : On a :

$$\begin{cases} S_0 = a S_1 & (1) \\ S_1 = S_2 & (2) \\ S_2 = a S_2 U a S_1 U b S_3 & (3) \\ S_3 = a S_2 U \varepsilon & (4) \end{cases}$$

- Résolution du système d'équation établi :

On remplace (4) dans (3):

$$S_2 = a S_2 U a S_1 U b a S_2 U b$$

$$S_2 = (a \cup ba) S_2 \cup a S_1 \cup b \dots (5)$$

On applique la règle d'Arden, l'équation (5) devient :

$$S_2 = (a \cup ba)^* (a S_1 \cup b)$$

$$S_2 = (a \ U \ ba)^* \ a \ S_1 \ U \ (a \ U \ ba)^* \ b \ \ldots (6)$$

On remplace (6) dans (2):

$$S_1 = (a \cup ba)^* a S_1 \cup (a \cup ba)^* b$$

 $S_1 = [(a \cup ba)^* a]^* (a \cup ba)^* b \dots (7)$

On remplace (7) dans (1):

$$S_0 = a((a \cup ba)^* a)^* (a \cup ba)^* b$$

$$S_0 = a((a \cup ba)^* a)^* (a \cup ba)^* b$$
 Est l'ER dénotant L.

2. Trouverons l'automate simple déterministe reconnaissant L(A):

- Rendre A SIMPLE:

On a:

Donc, on élimine:

3

a b a
$$S_1 \left| - \dots - S_2 \right. \quad , \qquad S_1 \left| - \dots - S_3 \right. \quad \text{et} \qquad S_1 \left| - \dots - S_1 \right.$$

L'AEF simple est comme suit :

- Rendre A DETERMINISTE:

	/	a	b
EI	S_0	S_1	-
	S_1	$S_1 S_2$	S_3
	S_2	$S_1 S_2$	S_3
EF	S_3	S_2	-
EI	S_0	S_1	-
	S_1	$S_1 S_2$	S_3
	$S_1 S_2$	$S_1 S_2$	S_3
EF	S_3	S_2	-
	S_2	$S_1 S_2$	S_3

L'AEF est déterministe

3. Trouverons l'automate A' : l'automate complément de A

Pour trouver l'AEF A', il suffit de :

- Rendre A complet.
- Inverser les états finaux et non finaux :

Tout état final devient non final

Tout état non final devient final

Rendre A COMPLET:

On ajoute un état puits (non co-accessible),

L'AEF A' est comme suit :

4. Trouverons la grammaire régulière gauche qui génère L(A) :

On cherche l'AEF miroir de A Soit A^R l'AEF miroir :

La grammaire GRD équivalente est :

 $S \rightarrow bA$

 $A \rightarrow aA/aS/B$

 $B \rightarrow aA/Ac$

 $C \rightarrow \epsilon$

D'où la grammaire régulière gauche qui génère L(A) est :

La grammaire GRG équivalente est :

 $S \rightarrow Ab$

 $A \rightarrow Aa/Sa/B$

B→ Aa/ cA

C**→** ε