Author: Peng Jun Date: 2013.04.03

This a document concerning the testing results of package 'RadialPlotter'

CAM and MAM routines are checked by using OSL De data provided by Schmidt et al (2012). Routine FMM is testing by using unpublished OSL data from the Tengger Desert.

Testing CAM using published data from Schmidt Silke et al (2012) :

addsigma=0

Sample.No	Schmidt et al	RadialPlotter
AL1	64.1(2.1)	64.0701 (2.1210)
AL2	5.92(0.33)	5.8917 (0.3254)
AL3	51.8(1.6)	51.8076(1.6306)
AL4	60.0(2.7)	59.2572(1.9339)
AL5	51.9(1.8)	51.8541(1.7303)

Testing MAM3 using published data from Schmidt Silke et al (2012) :

addsigma=0.1

Sample.No	Schmidt et al	RadialPlotter
AL1	43.4(2.1)	43.3759(2.3360)
AL2	2.37(0.18)	2.3709 (0.1863)
AL3	36.8(2.0)	36.8335(2.3691)
AL4	39.0(1.9)	39.3375(2.0441)
AL5	30.4(1.5)	29.7030(1.5533)

addsigma = 0.2

Sample.No	Schmidt et al	RadialPlotter
AL1	50.5(3.8)	50.4985(5.1117)
AL2	3.04(0.21)	2.9778 (0.2456)
AL3	44.6(3.2)	44.5920(3.2833)
AL4	46.2(3.4)	47.6405(3.8872)
AL5	37.6(2.3)	36.7683(2.4373)

Testing FMM using OSL De data from the Tengger Desert, results that obtained through R package 'RadialPlotter' are compared with results calculated using JAVA software 'RadialPlotter' written by Vermeesch Pieter (2009), the best number of components is picked out automatically:

addsigma=0

•		Components				Plotte	r			adialPl			
GL1-1	35	3	comp1 comp2 comp3	0.51	sP 0.11 0.11 0.16	ED 21.99 25.66 33.75	0.36	comp2	P 0.3763 0.5090 0.1147	0.1094 0.1134	21.9 25.6	ED 9945 6568	sED 0.4458 0.3599
GL1-2	35	5	comp1 comp2 comp3 comp4 comp5	0.136 0.169 0.357	0.072 0.078 0.09	5.42 7.59	sED 0.16 0.24 0.15 0.15 0.35	comp2 comp3 comp4	P 0.2236 0.1361 0.1691 0.3569 0.1143	0.0724 0.0777 0.0902	4.0 5.4 7.5 9.3	4202 5885 3899	0.2351 0.1545 0.1522
GL2-1	29	2	comp1			ED 29.29 36.66			P 0.3041 0.6959	0.0997	29.2		
GL2-2	33	4	comp1 comp2 comp3 comp4	0.35 0.242	0.11 0.094	ED 27.97 32.65 38.29 52.1	0.75 0.59	comp2 comp3	P 0.3644 0.3549 0.2423 0.0384	0.1114 0.0936	27.9 32.6 38.2	6364 2921	0.7510 0.5935
GL2-3	34	4	comp1 comp2 comp3 comp4	0.58 0.134	0.11 0.067	31.03	0.64	comp2 comp3	P 0.2514 0.5817 0.1337 0.0331	0.1056 0.0669	24.0 31.0 38.9	9286 9188	0.4170 0.6395
GL2-4	28	4	comp1 comp2 comp3 comp4	0.53 0.23	0.12 0.11	31.2 36.3	sED 1.0 0.69 1.0 1.6	comp2 comp3	P 0.1627 0.5336 0.2322 0.0714	0.1221 0.1090	24.5 31.3 36.3	1975 3119	0.6881 1.0424

Showing the results of FMM using sample AL5 from published De data of Schmidt Silke et al (2012), AL5 has a total of 114 aliquots, here seting the maxcomp to be 100:

addsigma=0

ncomp	BIC	maxlik
2	837.2715	-411.5314
3	405.2022	-190.7606
4	226.0011	-96.4238
5	177.5005	-67.4373
6	149.5803	-48.7411
7	146.3973	-42.4134
8	137.9239	-33.4405
9	145.771	-32.6278
10	154.6878	-32.35
11	163.8763	-32.2081
12	172.7932	-31.9303
13	182.2656	-31.9303

1.4	101 720	21 0202
14 15	191.738 201.2104	-31.9303 -31.9303
16	210.6828	-31.9303
17	220.1552	-31.9303
18	229.6276	-31.9303
19	239.1	-31.9303
20	248.5724	-31.9303
21	258.0448	-31.9303
22	267.5172	-31.9303
23	276.9896	-31.9303
24	286.4619	-31.9303
25	295.9343	-31.9303
26	305.4067	-31.9303
27	314.8791	-31.9303
28	324.3515	-31.9303
29	333.8239	-31.9303
30	343.2963	-31.9303
31	352.7687	-31.9303
32	362.2411	-31.9303
33	371.7135	-31.9303
34	381.1859	-31.9303
35	390.6583	-31.9303
36 37	400.1307 409.6031	-31.9303 -31.9303
38	419.0755	-31.9303 -31.9303
39	428.5479	-31.9303
40	438.0203	-31.9303
41	447.4927	-31.9303
42	456.9651	-31.9303
43	466.4375	-31.9303
44	475.9099	-31.9303
45	485.3823	-31.9303
46	494.8547	-31.9303
47	504.3271	-31.9303
48	513.7995	-31.9303
49	523.2719	-31.9303
50	532.7443	-31.9303
51	542.2167	-31.9303
52	551.6891	-31.9303
53	561.1615	-31.9303
54	570.6339	-31.9303
55	580.1062	-31.9303
56	589.5786	-31.9303
57	599.051	-31.9303
58	608.5234	-31.9303
59	617.9958	-31.9303
60	627.4682 636.9406	-31.9303 -31.9303
61 62	646.413	-31.9303
63	655.8854	-31.9303
64	665.3578	-31.9303
65	674.8302	-31.9303
66	684.3026	-31.9303
67	693.775	-31.9303
68	703.2474	-31.9303
69	712.7198	-31.9303
70	722.1922	-31.9303
71	731.6646	-31.9303
72	741.137	-31.9303
73	750.6094	-31.9303
74	760.0818	-31.9303
75	769.5542	-31.9303
76	779.0266	-31.9303
77	788.499	-31.9303
78	797.9714	-31.9303
79	807.4438	-31.9303
80	816.9162	-31.9303
81	826.3886	-31.9303
82 93	835.861	-31.9303
83 84	845.3334 854.8058	-31.9303 -31.9303
85	864.2782	-31.9303
86	873.7506	-31.9303
87	883.2229	-31.9303
<u>.</u>	55512225	31.3303

```
-31.9303
88
        892.6953
89
        902.1677
                        -31.9303
90
        911.6401
                        -31.9303
91
        921.1125
                        -31.9303
92
        930.5849
                        -31.9303
93
        940.0573
                        -31.9303
        949.5297
94
                        -31.9303
95
        959.0021
                        -31.9303
96
        968.4745
                        -31.9303
97
        977.9469
                        -31.9303
98
        987.4193
                        -31.9303
99
        996.8917
                        -31.9303
100
        1006.3641
                       -31.9303
```

Firstly, saving outcomes above to object x, then using following code to draw a plot of type PDF:

```
pdf(file='AL5.pdf')
par(mar=c(5, 5, 3, 5))
plot(x[,1],x[,2],type='l',col='blue',lwd=2,ann=FALSE, las=2)
points(x[,1],x[,2],col='black',cex=0.5)
legend(c(60,90), c(200,400), c("BIC", "maxlik"),cex=1.5, pch=1,col=c('blue','red'))
mtext("BIC value", side=2, line=3.5)
arrows(20,700,8,700)
text(20, 700, "ncomp=8", cex=2, pos=4)
par(new=TRUE)
plot(x[,1],x[,3],type='l',col='red',lwd=2,axes=FALSE,ann=FALSE)
points(x[,1],x[,3],col='black',cex=0.5)
mtext("Maxlik", side=4, line=3.5)
axis(4)
mtext('Number of component', side=1, line=3.5)
abline(v=8, col = "black", lwd=3, lty=2)
title('FMM results for sample AL5')
dev.off()
```

References:

Schmidt, S., Tsukamoto, S., Salomon, E., Frechen, M., Hetzel, R., 2012. Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza, Argentina). Geochronometria, 39 (1), pp. 62-75.

Vermeesch, P., 2009. RadialPlotter: a Java application **for** fission track, luminescence and other radial plots, Radiation Measurements, 44 (4), pp. 409-410.