

CS501- Advance Computer Architecture Solved MCQS From Midterm Papers

Feb 05,2013

MC100401285

Moaaz.pk@gmail.com

Mc100401285@gmail.com

PSMD01

FINALTERM EXAMINATION Fall 2008 CS501- Advance Computer Architecture

Question No: 1 (Marks: 1) - Please choose one

Which one of the following is the memory organization of **SRC processor?**

- 2^8 * 8 bits
- 2^16 * 8 bits
- 2^32 * 8 bits (Page 46)
- 2^64 * 8 bits

Question No: 2 (Marks: 1) - Please choose one

Type A format of SRC uses -----instructions

- Two (Page 47)
- three
- four
- five

Ouestion No: 3 (Marks: 1) - Please choose one

The instruction -----will **load** the register R3 with the contents of the memory location M [PC+56]

- Add R3, 56
- lar R3, 56
- ldr R3, 56 (Page 47)
- str R3, 56

Question No: 4 (Marks: 1) - Please choose one

Which format of the instruction is called the accumulator?

- 3-address instructions
- 3-address instructions
- 2-address instructions
- 1-address instructions (Page 32)
- 0-address instructions

Question No: 5 (Marks: 1) - Please choose one

Which one of the following are the **code size** and the **Number of memory bytes** respectively for a 2-address instruction?

- 4 bytes, 7 bytes
- 7 bytes, 16 bytes (Page 36)
- 10 bytes, 19 bytes
- 13 bytes, 22 bytes

Question No: 6 (Marks: 1) - Please choose one

Which operator is used to name registers, or part of registers, in the Register Transfer Language?

- := (Page 66)
- &
- %
- ©

Question No: 7 (Marks: 1) - Please choose one

The transmission of data in which each character is self-contained units with its own start and stop bits is -----

- Asynchronous <u>Click here for detail</u>
- Synchronous
- Parallel
- All of the given options

Question No: 8 (Marks: 1) - Please choose one

Circuitry that is used to move data is called -----

- **Bus** click here for detail
- Port
- Disk
- Memory

Question No: 9 (Marks: 1) - Please choose one

Which one of the following is **NOT** a technique used when the CPU wants to exchange data with a peripheral device?

- Direct Memory Access (DMA).
- Interrupt driven I/O
- Programmed I/O
- Virtual Memory (Page 268)

Question No: 10 (Marks: 1) - Please choose one

Every time you press a key, an interrupt is generated. This is an example of

- Hardware interrupt (Page 275)
- Software interrupt
- Exception
- All of the given

Question No: 11 (Marks: 1) - Please choose one

The interrupts which are pre-programmed and the processor automatically finds the address of the ISR using interrupt vector table are

- Maskable
- Non-maskable
- Non-vectored
- Vectored (Page 277)

Question No: 12 (Marks: 1) - Please choose one

Which is the last instruction of the ISR that is to be executed when the ISR terminates?

- IRET (Page 278)
- IRQ
- INT
- NMI

Question No: 13 (Marks: 1) - Please choose one

If NMI and INTR both interrupts occur simultaneously, then which one has the precedence over the other

- NMI (Page 279)
- INTR
- IRET
- All of the given

Question No: 14 (Marks: 1) - Please choose one

Identify the following type of serial communication error condition:

The prior character that was received was not still read by the CPU and is over written by a new received character.

- Framing error
- Parity error
- Overrun error (Page 240)
- Under-run error

Question No: 15 (Marks: 1) - Please choose one

-----the device usually means reading its status register every so often until the device's status changes to indicate that it has completed the request.

- Executing
- Interrupting
- Masking
- Polling click here for detail

Question No: 16 (Marks: 1) - Please choose one

Which I/O technique will be used by a sound card that may need to access data stored in the computer's RAM?

- Programmed I/O
- Interrupt driven I/O
- Direct memory access(DMA) Click here for detail
- Polling

Question No: 17 (Marks: 1) - Please choose one

For increased and better performance we use _____ which are usually made of glass.

- Coaxial Cables
- Twisted Pair Cables
- Fiber Optic Cables (Page 390)
- Shielded Twisted Pair Cables

Question No: 18 (Marks: 1) - Please choose one

In _____ if we find some call party busy we can have provision of call waiting.

- Delay System (Page 381)
- Loss System
- Single Server Model
- None of the given

Question No: 19 (Marks: 1) - Please choose one

In _____ technique memory is divided into segments of variable sizes depending upon the requirements.

- Paging
- Segmentation (Page 365)
- Fragmentation
- None of the given

Question No: 20 (Marks: 1) - Please choose one For a request of data if the requested data is not present in the cache, it is called a _____

• Cache Miss (Page 358)

- Spatial Locality
- Temporal Locality
- Cache Hit

Question No: 21 (Marks: 1) - Please choose one

An entire _____ memory can be erased in one or a few seconds which is much faster than EPROM.

- PROM
- Cache
- EEPROM
- Flash Memory (Page 356)

Question No: 22 (Marks: 1) - Please choose one

_____chips have quartz windows and by applying ultraviolet light data can be erased from them.

- PROM
- Flash Memory
- **EPROM** (Page 356)
- EEPROM

Question No: 23 (Marks: 1) - Please choose one

The _____signal coming from the CPU tells the memory that some interaction is required between the CPU and memory.

- REQUEST (Page 350)
- COMPLETE
- None of the given

Question No: 24 (Marks: 1) - Please choose one

is a combination of arithmetic, logic and shifter unit along with some multiplexers and control unit.

- Barrel Rotator
- Control Unit
- Flip Flop
- ALU (Page 347)

Question No: 25 (Marks: 1) - Please choose one

In Multiple Interrupt Line, a number of interrupt lines are provided between the _____ modules.

- CPU and the I/O (Page 283)
- CPU and Memory
- Memory and I/O
- None of the given

Question No: 26 (Marks: 1) - Please choose one

The data movement instructions _____ data within the machine and to or from input/output devices.

- Store
- Load
- Move
- None of given (Page 141)

Question No: 27 (Marks: 1) - Please choose one

CRC has ----- overhead as compared to Hamming code.

- Equal
- Greater
- Lesser (Page 329)
- None of the given

Question No: 28 (Marks: 1) - Please choose one

The _____ is w-bit wide and contains a data word, directly connected to the data bus which is b-bit wide memory address register (MAR) .

- Instruction Register(IR)
- memory address register (MAR)
- memory Buffer Register(MBR) (Page 350)
- Program counter (PC)

Question No: 29 (Marks: 1) - Please choose one

 $In\underline{\hspace{1cm}}$ technique, a particular block of data from main memory can be placed in only one location into the cache memory .

- Set Associative Mapping
- Direct Mapping (Page 360)
- Associative Mapping
- Block Placement

Question No: 30 (Marks: 1) - Please choose one

__ indicate the availability of page in main memory.

- Access Control Bits
- Used Bits
- Presence Bits <u>click here for detail</u>
- None of the given

FINALTERM EXAMINATION FALL 2006 CS501 - ADVANCE COMPUTER ARCHITECTURE

Question No: 1 (Mark	ks: 1) - Please choose one
The RT	N describes the overall effect of instructions on the programmer visible registers.
	ick here for detail
Concrete	
Absolute	
▶Basic	
Question No. 2 (Mar	ks: 1) - Please choose one
	importance in governing the structure and function of the pipeline.
The instruction set is of _	importance in governing the structure and runction of the pipeline.
▶Least	
	ick here for detail
► Secondary	
▶No	
Question No: 3 (Mark	ks: 1) - Please choose one
is the mo	st general and least useful performance metrics for RISC machines.
►MIPS <u>click</u>	
► Instruction Cou	
Number of reg	isters
► Clock Speed	

Question No: 4 (Marks: 1) - Please choose one A provides four functions: Select, DataIn, DataOut and Read/Write.
►ALU ►Bus
► Register
► Memory Cell (Page 351)
Question No: 5 (Marks: 1) - Please choose one We can classify or partition the SRC instructions by their overall behavior.
► Register transfer <u>click here for detail</u>
► Memory transfer
► Execution
►Logical
Question No: 6 (Marks: 1) - Please choose one
The RTN describes detailed register transfer steps in the data path that produce the overall effect.
effect.
► Abstract
Concrete click here for detail
►Absolute
▶Basic
Question No: 7 (Marks: 1) - Please choose one
All members of the MC68000 family are processors.
▶32-bit click here for detail
▶16-bit
▶64-bit
▶8-bit
Question No: 8 (Marks: 1) - Please choose one
Operations refers to a processor that can issue more than one instruction simultaneously.
►Macro
► Micro
► Scalar
►Superscalar <u>click here for detail</u>

Question No: 9 (Marks: 1) - Please choose one Exceptions which are occur in response to events that are particularly and the properties of the prope	ced by the internal processor
clock.	
Agymchronous	
AsynchronousSynchronous click here for detail	
Internal	
External	
Question No: 10 (Marks: 1) - Please choose one	
In the hazard detection by hardware, resolved by pipeline stalls, if the instruction	ns are in the adjoining stages,
then the hazard must be detected in stage	
▶ 3 4	
click here for detail	
FINALTERM EXAMINATION	
SPRING 2006	
CS501 - ADVANCE COMPUTER ARCHITECT	URE
Question No: 1 (Marks: 3) - Please choose one 16k x4 static RAM Chip is arranged in the form of four cells.	
16k x4 static RAM Chip is arranged in the form of four cells. ▶ 16x512	
► 32x512	
≥256x512	
►64x256 (Page 352)	
Question No: 2 (Marks: 3) - Please choose one	
In a DRAM cell, the storage capacitor will discharge in around	
► 4 -15 ms (Page 354)	
≥ 2 - 10 ms	
► 5-20 ms	

► 10-25 ms

Question No: 3 (Marks: 3) - Please choose one 1-bit sign, 8-bit exponent, 23-bit fraction and a bias of 127 is used for Binary Floating Point	
Representation	
▶ Double precision	
► Single Precision (Page 348)	
► All of above	
► Half Precision	
Question No: 4 (Marks: 3) - Please choose one	
The average rotational latency if the disk rotated at 20,000rpm is	
▶0.5 ms	
▶3.5 ms	
▶2.5 ms	
▶1.5 ms (Page 324)	
Question No: 5 (Marks: 3) - Please choose one	
A hard disk with 5 platters has 1024 tracks per platter, 512 sectors per track and 512 bytes/sector. What is the	
total capacity of the disk?	
▶1.5 GB	
▶1 GB (Page 324)	
►2 GB	
▶3 GB	

CS501 – Final Term Quizzes

Quiz No.3 (Fall 2012)

Question # 1 of 10 (Total Marks: 1) Select correct option:

Where does the processor store the address of the first instruction of the ISR?

Interrupt vector (Page 277)

Interrupt request

Interrupt handler

All of the given options

Question #2 of 10 (Total Marks: 1) Select correct option:

In ______, a separate address space of the CPU is reserved for I/O operations.

Isolated I/O (Page 236)

Memory Mapped I/O

All of above

None of above

Question # 3 of 10 (Total Marks: 1) Select correct option:

----- is the time needed by the CPU to recognize (not service) an interrupt request.

Interrupt Latency (Page 279)

Response Deadline

Timer delay

Throughput

Question #4 of 10 (Total Marks: 1) Select correct option:

is a technique in which some of the CPU's address lines forming an input to the address decoder are ignored.

Microprogramming

Instruction pre-fetching

Pipelining

Partial decoding (Page 255)

Question # 5 of 10 (Total Marks: 1) Select correct option:

How can you define an interrupt?

A process where an external device can speedup the working of the microprocessor

A process where memory can speed up programs execution speed

A process where an external device can get the attention of the microprocessor click here for detail

A process where input devices can takeover the working of the microprocessor

Question # 6 of 10 (Total Marks: 1) Select correct option:

An interface that can be used to connect the microcomputer bus to ______is called an I/O Port.

Flip Flops

Memory

Peripheral devices (Page 234)

Multiplexers

Question #7 of 10 (Total Marks: 1) Select correct option:

A software routine performed when an interrupt is received by the computer is called as ------

Interrupt

Interrupt handler click here for detail

Exception

Trap

Question #8 of 10 (Total Marks: 1) Select correct option:

Which one of the following methods for resolving the priority makes use of individual bits of a priority encoder?

Daisy-Chaining Priority

Asynchronous Priority

Parallel Priority (Page 281)

Semi-synchronous Priority

Quiz No.3 (Fall 2012)

Question #1 of 10 (Total Marks: 1) Select correct option:

In which one of the following methods for resolving the priority, the device with the highest priority is placed in the first position, followed by lower-priority devices up to the device with the lowest priority, which is placed last in the series?

Asynchronous

Daisy-Chaining Priority Click here for detail

Parallel

Semi-synchronous

Question #2 of 10 (Total Marks: 1) Select correct option:

Identify the type of serial communication error condition in which A 0 is received instead of a stop bit (which is always a 1)?

Framing error (Page 240)

Parity error

Overrun error

Under-run error

Question #3 of 10 (Total Marks: 1) Select correct option:

Identify the following type of serial communication error condition in which no character is available at the beginning of an interval.

Framing error

Parity error

Overrun error

Under-run error (Page 240)

Question # 4 of 10 (Total Marks: 1) Select correct option:

____ is an electrical pathway through which the processor communicates with the internal and external devices attached to the computer.

Computer Bus <u>click here for detail</u>

Hazard Memory Disk

13

Question # 5 of 10 (Total Marks: 1) Select correct option:

Connection to a CPU that provides a data path between the CPU and external devices, such as a keyboard, display, or reader is called------

processer program

Buses <u>click here for detail</u>

memory address

Question # 6 of 10 (Total Marks: 1) Select correct option:

VLIW stands for -----

Very Lengthy Interaction Word

Very Length Instruction Width

Very Long Instruction Word (Page 219)

none of given options

Question #7 of 10 (Total Marks: 1) Select correct option:

A -----is a wiring scheme in which, for example, device A is wired to device B, device B is wired to device C, device C is wired to device D etc.

Daisy chain click here for detail

DMA

Interrupt driven I/O

Polling

Question #8 of 10 (Total Marks: 1) Select correct option:

An ----- is the memory address of an interrupt handler.

Interrupt vector <u>click here for detail</u>

Interrupt service routine

Exception

Mask

Question # 9 of 10 (Total Marks: 1) Select correct option:

The conversion of numbers from a representation in one base to another is known as____

Radix Conversion (Page 333)

Number Representation

Decimal representation

Hexadecimal Representation

Question # 10 of 10 (Total Marks: 1) Select correct option:

If an interrupt is set by the timer component or by the peripheral device then how would you categorize it?

Hardware click here for detail

Software Exception

All of the given options

Quiz No.3 (Fall 2012)

Question # 1 of 10 (Total Marks: 1) Select correct option: 1

In which one of the following interrupts the device have to supply the address of the subroutine to the Microprocessor

Maskable

Non-maskable click here for detail

Non-vectored Vectored

Question #2 of 10 (Total Marks: 1) Select correct option:

----- interrupts are usually associated with the software

hardware

software click here for detail

machine internal

Question # 3 of 10 (Total Marks: 1) Select correct option:

When the address of the subroutine is already known to the Microprocessor then it is called as ----- interrupt.

Maskable

Non-maskable Non-vectored

Vectored click here for detail

Question #4 of 10 (Total Marks: 1) Select correct option:

How Interrupt driven I/O is better than polling because?

Interrupt driver I/O is easy to design

Interrupt driver I/O is enhanced version of polling.

Interrupt driver I/O does not waste time on checking which device is available. (Page 274)

Interrupt driven I/O is easy to program.