教师试做时间	60 分钟	出题教师	数学教研室	取题时间		审	教研室主任	
出题单位	理学院	使用班级	16 级理工各班	考试日期	2017年1月9日	核	院(部)长	
考试成绩期望值	75 分	印刷份数		规定完成时间	110 分钟	交教务科印刷日期		

题号	-	<u> </u>	三	四	五.	六	七	八	九	+	总成绩
得分											
阅卷人											

一、填空(每题3分,共计15分)

- 1. $\int_0^a \sqrt{a^2 x^2} dx = \underline{\hspace{1cm}}.$
- 2. $y = 2x^3 + ax^2 + 3$ 在 x = 1 处取得极值,则 a =______
- 3. $\int \frac{x+1}{x^2+1} dx =$ ______.
- 4. $\frac{\mathbf{d}}{\mathbf{d}\mathbf{r}}\int_{\mathbf{r}^2}^1 e^{2t^2} dt = \underline{\hspace{1cm}}$
- 5. $\int_{-1}^{1} x^{2} [\ln(x + \sqrt{1 + x^{2}}) + 1] dx = \underline{\hspace{1cm}}$
- 二、单项选择题(每题3分,共计15分)
- 1. f(x) = x(x-1)(x-2)(x-3)(x-4), 则 f'(x) = 0的实根个数为 ().
 - A. 5 B. 2 C. 3 D. 4
- 2. 设在[0,1]上f''(x) > 0,则有().
 - A. f'(1) > f'(0) > f(1) f(0) B. f'(1) > f(1) f(0) > f'(0)
 - C. f(1)-f(0) > f'(1) > f'(0) D. f(1)-f(0) > f'(0) > f'(1)
- 3. 若 $f'(x) = e^{-x}$, 则 f(x) 的一个原函数为().
 - A. $1 + e^{-x}$ B. $1 e^{-x}$ C. $1 + e^{x}$ D. $1 e^{x}$

- 4. 下列反常积分中收敛的是().
- A. $\int_{2}^{+\infty} \frac{1}{\sqrt{x}} dx$ B. $\int_{2}^{+\infty} \frac{\ln x}{x} dx$ C. $\int_{2}^{+\infty} \frac{1}{x \ln x} dx$ D. $\int_{2}^{+\infty} \frac{x}{e^{x}} dx$
- 5. $I_k = \int_0^{k\pi} e^{x^2} \sin x dx \ (k = 1,2), \, \text{Mag} \ ($

- A. $I_1 > I_2$ B. $I_1 < I_2$ C. $I_1 = I_2$ D. 无法比较

 $1. 求极限 \lim_{x\to 0^+} (\frac{1}{x})^{\tan x}.$

 $2. \int_0^\pi \sqrt{\sin^3 x - \sin^5 x} dx.$

 $3. \int_0^{\pi^2} \cos \sqrt{x} dx.$

 $4. \int \frac{\sqrt{x^2 - 16}}{x} dx (x>4).$

四、(7分) 若 f(x) 的一个原函数为 $\frac{\ln x}{x}$, 求 $\int xf'(x)dx$.

五、(8分) 设函数 $f(x) = \begin{cases} \frac{1}{1+x} & x \ge 0 \\ \frac{1}{1+\cos x} & -\pi < x < 0 \end{cases}$,计算 $\int_{1}^{4} f(x-2)dx$.

六、 $(12 \, \mathcal{G})$ 求函数 $f(x) = \frac{\ln x}{x}$ 的单调区间,极值及其曲线的凹凸区间和拐点.

七、(13分) 设平面图形由 $x=0, y=\sin x, y=\cos x$ $(0 \le x \le \frac{\pi}{4})$ 所围成,求

- 1. 该平面图形的面积;
- 2. 该平面图形绕 x 轴旋转而成的旋转体的体积.

八、(6 分) 设函数 f(x),g(x) 在[a,b]上可导,且 $g'(x) \neq 0$,证明:在(a,b) 内至少存在一点 ξ ,使得 $\frac{f(a) - f(\xi)}{g(\xi) - g(b)} = \frac{f'(\xi)}{g'(\xi)}$ 成立.