5.7.2 SPLINE CÚBICA INTERPOLANTE

A spline linear apresenta a desvantagem de ter derivada primeira descontínua nos nós.

Se usarmos splines quadráticas, teremos que $S_2(x)$ tem derivadas contínuas até ordem 1 apenas e, portanto, a curvatura de $S_2(x)$ pode trocar nos nós. Por esta razão, as splines cúbicas são mais usadas.

Uma spline cúbica, $S_3(x)$, é uma função polinomial por partes, contínua, onde cada parte, $s_k(x)$, é um polinômio de grau 3 no intervalo $[x_{k-1}, x_k]$, k = 1, 2, ..., n.

 $S_3(x)$ tem a primeira e segunda derivadas contínuas, o que faz com que a curva $S_3(x)$ não tenha picos e nem troque abruptamente de curvatura nos nós.

Vamos reescrever a definição de spline cúbica interpolante:

Supondo que f(x) esteja tabelada nos pontos x_i , i = 0, 1, 2,..., n a função $S_3(x)$ é chamada spline cúbica interpolante de f(x) nos nós x_i , i = 0,..., n se existem n polinômios de grau 3, $s_k(x)$, k = 1, ..., n tais que:

i)
$$S_3(x) = S_k(x)$$
 para $x \in [x_{k-1}, x_k], k = 1, ..., n$

ii)
$$S_3(x_i) = f(x_i)$$
, $i = 0, 1, ..., n$

iii)
$$s_k(x_k) = s_{k+1}(x_k)$$
, $k = 1, 2, ..., (n-1)$

$$iv$$
) $s'_{k}(x_{k}) = s'_{k+1}(x_{k}), k = 1, 2, ..., (n-1)$

$$v$$
) $s_{k}''(x_{k}) = s_{k+1}''(x_{k}), k = 1, 2, ..., (n-1)$

Para simplicidade de notação, escreveremos $s_k(x) = a_k(x - x_k)^3 + b_k(x - x_k)^2 + c_k(x - x_k) + d_k$, k = 1, 2, ..., n.

Assim, o cálculo de $S_3(x)$ exige a determinação de 4 coeficientes para cada k, num total de 4n coeficientes: a_1 , b_1 , c_1 , d_1 , a_2 , b_2 , ..., a_n , b_n , c_n , d_n .

Impondo as condições para que $S_3(x)$ seja spline interpolante de f em $x_0,...,\,x_n$ teremos:

(n + 1) condições para que $S_3(x)$ interpole f(x) nos nós;

(n-1) condições para que $S_3(x)$ esteja bem definida nos nós (continuidade de $S_3(x)$ em $[x_0, x_n]$);

(n-1) condições para que $S_3(x)$ seja contínua em $[x_0, x_n]$; e

(n-1) condições para que $S_3''(x)$ seja contínua em $[x_0, x_n]$, num total de (n+1+3(n-1))=4n-2 condições. Portanto temos duas condições em aberto. Essas condições podem ser impostas de acordo com informações físicas que tenhamos sobre o problema etc; citaremos mais adiante algumas opções, dentre as mais usadas.

De acordo com a definição que demos para cada $s_k(x)$, a condição (i) da definição de $S_3(x)$ está automaticamente satisfeita.

Para impor a condição (ii) montamos, para k = 1, ..., n, as equações:

(1) $s_k(x_k) = d_k = f(x_k)$, às quais devemos acrescentar mais a equação:

(2)
$$s_1(x_0) = f(x_0) \Rightarrow -a_1h_1^3 + b_1h_1^2 - c_1h_1 + d_1 = f(x_0)$$
 onde usamos a notação $h_k = x_k - x_{k-1}$, com $k = 1$.

A condição (iii) é satisfeita através das (n-1) equações: para k=1,...,(n-1), $s_{k+1}(x_k)=f(x_k)$, ou seja:

$$(3) - a_{k+1} h_{k+1}^3 + b_{k+1} h_{k+1}^2 - c_{k+1} h_{k+1} + d_{k+1} = f(x_k).$$

Para impor as condições (iv) e (v), precisaremos das derivadas das $s_k(x)$:

(4)
$$s'_k(x) = 3a_k(x - x_k)^2 + 2b_k(x - x_k) + c_k$$

(5)
$$s_k''(x) = 6a_k(x - x_k) + 2b_k$$
.

Observamos que $s_k''(x_k) = 2b_k$. Assim, cada coeficiente b_k pode ser escrito em função de $s_k''(x_k)$:

(6)
$$b_k = \frac{s_k''(x_k)}{2}$$

Analogamente, como $s''_k(x_{k-1}) = -6a_kh_k + 2b_k$, podemos também escrever a_k em função das derivadas segundas nos nós pois

$$a_{k} = \frac{2b_{k} - s_{k}^{\prime\prime}(x_{k-1})}{6h_{k}} = \frac{s_{k}^{\prime\prime}(x_{k}) - s_{k}^{\prime\prime}(x_{k-1})}{6h_{k}}$$

e, impondo agora a condição (v), $(s''_k(x_{k-1}) = s''_{k-1}(x_{k-1}))$, obtemos:

(7) $a_k = \frac{s_k''(x_k) - s_{k-1}''(x_{k-1})}{6h_k}$. Observamos que, no caso k = 1, estamos introduzindo uma variável, s" (x0), arbitrária.

Uma vez que $d_k = f(x_k)$ e já expressamos a_k e b_k , podemos usar (2) e (3) para termos c_k também em função das derivadas segundas nos nos. Observamos que tirar c₁ da equação (2) e, para k = 1,..., (n - 1) usar (3) é o mesmo que, para k = 1, 2, ..., n, termos:

$$(8) c_{k} = \frac{-f(x_{k-1}) - a_{k}h_{k}^{3} + b_{k}h_{k}^{2} + d_{k}}{h_{k}}$$

$$= \frac{f(x_{k}) - f(x_{k-1})}{h_{k}} - (a_{k}h_{k}^{2} - b_{k}h_{k})$$

$$= \frac{f(x_{k}) - f(x_{k-1})}{h_{k}} - \left\{ \frac{[s_{k}''(x_{k}) - s_{k}''(x_{k-1})]}{6} h_{k} - \frac{s_{k}''(x_{k})}{2} h_{k} \right\}$$

ou seja:

$$c_{k} = \frac{f(x_{k}) - f(x_{k-1})}{h_{k}} - \frac{-2s_{k}^{"}(x_{k})h_{k} - s_{k-1}^{"}(x_{k-1})h_{k}}{6}.$$

Se usarmos mais as notações

$$g_k''(x_k) = g_k e$$

 $f(x_k) = y_k$, teremos:

(9)
$$a_k = \frac{g_k - g_{k-1}}{6h_k}$$

(10)
$$b_k = \frac{g_k}{2}$$

(11)
$$c_k = \left[\frac{y_k - y_{k-1}}{h_k} + \frac{2h_k g_k + g_{k-1} h_k}{6} \right] e$$

(12)
$$d_k = y_k$$
.

Assim, para $k=1,\,2,\,...,\,n$, podemos calcular todos os coeficientes de $s_k(x)$ em função de $g_j=s_j''(x_j),\,\,j=0,\,1,\,...,\,n$.

Impondo agora a condição (iv) que ainda não foi utilizada, $s'_k(x_k) = s'_{k+1}(x_k)$, k = 1, 2, ..., (n-1) teremos:

$$s'_{k}(x_{k}) = c_{k} = 3a_{k+1}h_{k+1}^{2} - 2b_{k+1}h_{k+1} + c_{k+1}$$

donde
$$c_{k+1} = c_k - 3a_{k+1} h_{k+1}^2 + 2b_{k+1} h_{k+1}$$

$$\begin{split} &\frac{y_{k+1}-y_k}{h_{k+1}} + \frac{2h_{k+1}g_{k+1}+g_kh_{k+1}}{6} = \\ &= \frac{y_k-y_{k-1}}{h_k} + \frac{2h_kg_k+g_{k-1}h_k}{6} - 3\bigg(\frac{g_{k+1}-g_k}{6}\bigg) \; h_{k+1} + \\ &+ 2\left(\frac{g_{k+1}\;h_{k+1}}{2}\right). \end{split}$$

Agrupando os termos semelhantes, para k = 1, ..., n-1,

$$\frac{1}{6} \left[h_k g_{k-1} + (2h_k + 3h_{k+1} - h_{k+1}) g_k + \right]$$

+
$$(6h_{k+1} - 3h_{k+1} - 2h_{k+1}) g_{k+1}$$
] =
= $\frac{y_{k+1} - y_k}{h_{k+1}} - \frac{y_k - y_{k-1}}{h_k}$,

ou seja:

$$(13) \ h_k g_{k-1} + 2(h_k + h_{k+1}) \ g_k + h_{k+1} \ g_{k+1} = 6 \left(\frac{y_{k+1} - y_k}{h_{k+1}} - \frac{y_k - y_{k-1}}{h_k} \right)$$

que é um sistema de equações lineares com (n-1) equações (k=1, ..., (n-1)) e (n+1) incógnitas: $g_0, g_1, ..., g_{n-1}, g_n$ e, portanto, indeterminado, Ax = b

onde
$$x = (g_0, g_1, ... g_n)^T$$

$$A = \begin{pmatrix} h_1 & 2(h_1 + h_2) & h_2 & & & \\ & h_2 & 2(h_2 + h_3) & h_4 & & \\ & & \ddots & & \ddots & \\ & & h_{n-1} & 2(h_{n-1} + h_n) & h_n \end{pmatrix}_{(n-1) \times (n+1)}$$

e

$$b = 6 \begin{pmatrix} \frac{y_2 - y_1}{h_2} & - & \frac{y_1 - y_0}{h_1} \\ \frac{y_3 - y_2}{h_3} & - & \frac{y_2 - y_1}{h_2} \\ \vdots & \vdots & \vdots \\ \frac{y_n - y_{n-1}}{h_n} & - & \frac{y_{n-1} - y_{n-2}}{h_{n-1}} \end{pmatrix}_{(n-1) \times 1}$$

Para podermos resolver esse sistema, de forma única, teremos de impor mais duas condições conforme já comentamos.

De posse da solução, aí então poderemos determinar a_k , b_k , c_k , e d_k , para cada $s_k(\overline{x})$.

ALGUMAS ALTERNATIVAS:

1) $S_3''(x_0) = g_0 = 0$ e $S_3''(x_n) = g_n = 0$, que é chamada spline natural.

Esta escolha é equivalente a supor que os polinômios cúbicos nos intervalos extremos ou são lineares ou próximos de funções lineares.

- 2) $g_0 = g_1$, $g_n = g_{n-1}$, que é equivalente a supor que as cúbicas são aproximadamente parábolas, nos extremos.
- 3) Impor valores para as inclinações em cada extremo, por exemplo $S_3'(x_0) = A$ e $S_3'(x_0) = B$, o que nos fornecerá as duas equações adicionais:

$$s'_1(x_0) = 3a_1h^2 - 2b_1h + c_1 = A$$

 $s'_n(x_n) = c_n = B.$

Exemplo 14

Vamos encontrar uma aproximação para f(0.25) por spline cúbica natural, interpolante da tabela:

x	0	0.5	1.0	1.5	2.0	
f(x)	3	1.8616	-0.5571	-4.1987	-9.0536	

Temos 4 subdivisões do intervalo [0, 2.0], donde n = 4, e portanto temos de determinar $s_1(x)$, $s_2(x)$, $s_3(x)$ e $s_4(x)$ resolvendo, para $1 \le k \le 3$ (n - 1 = 3), o sistema:

(14)
$$h_k g_{k-1} + 2(h_k + h_{k+1})g_k + h_{k+1} g_{k+1} =$$

= $6 \left(\frac{y_{k+1} - y_k}{h_{k+1}} - \frac{y_k - y_{k-1}}{h_k} \right)$.

No nosso exemplo, $h_k = h = 0.5$. Assim, (14) fica:

(15)
$$hg_{k-1} + 4hg_k + hg_{k+1} = \frac{6}{h} (y_{k+1} - 2y_k + y_{k-1})$$

$$\begin{cases} hg_0 + 4hg_1 + hg_2 = \frac{6}{h}(y_2 - 2y_1 + y_0) \\ hg_1 + 4hg_2 + hg_3 = \frac{6}{h}(y_3 - 2y_2 + y_1) \\ hg_2 + 4hg_3 + hg_4 = \frac{6}{h}(y_4 - 2y_3 + y_2) \end{cases}$$

Como queremos a spline cúbica natural, $g_0 = g_4 = 0$, e então o sistema a ser resolvido será:

$$\begin{cases} 4hg_1 + hg_2 &= (6/h)(y_2 - 2y_1 + y_0) \\ hg_1 + 4hg_2 + hg_3 &= (6/h)(y_3 - 2y_2 + y_1) \\ hg_2 + 4hg_3 &= (6/h)(y_4 - 2y_3 + y_2) \end{cases}$$

$$\begin{pmatrix} 4h & h & 0 \\ h & 4h & h \\ 0 & h & 4h \end{pmatrix} \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix} = \frac{6}{h} \begin{pmatrix} y_2 - 2y_1 + y_0 \\ y_3 - 2y_2 + y_1 \\ y_4 - 2y_3 + y_2 \end{pmatrix}$$

e, substituindo os valores de h e de y_i , $0 \le i \le 4$,

$$\begin{pmatrix} 2 & 0.5 & 0 \\ 0.5 & 2 & 0.5 \\ 0 & 0.5 & 2 \end{pmatrix} \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} -15.3636 \\ -14.6748 \\ -14.5598 \end{pmatrix}, \text{ cuja solução pelo método da Elimi-}$$

nação de Gauss nos fornece

$$g_3 = -6.252$$

 $g_2 = -4.111$
 $g_1 = -6.6541$, com 4 casas decimais.

Levando estes valores em a_k , b_k , c_k e d_k encontramos $s_1(x)$, $s_2(x)$, $s_3(x)$ e $s_4(x)$. Como queremos uma aproximação para f(0.25), $f(0.25) \approx s_1(0.25)$ e $s_1(x) = a_1(x - x_1)^3 + b_1(x - x_1)^2 + c_1(x - x_1) + d_1$ onde, por (9), (10), (11) e (12),

$$a_1 = \frac{g_1 - g_0}{6h} = \frac{-6.6541}{3} = -2.2180$$

$$b_1 = \frac{g_1}{2} = -3.3270$$

$$c_1 = \frac{y_1 - y_0}{h} + \frac{2hg_1 + g_0h}{6} = -3.3858$$

$$d_1 = y_1 = 1.8616$$

$$s_1(0.25) = -2.2180 (-0.25)^3 - 3.3270 (0.25)^2 - 3.3858 (-0.25) + 1.8616 = 2.5348.$$

Assim, por spline cúbica natural interpolante,

$$f(0.25) \approx s_1(0.25) = 2.5348.$$

5.8 ALGUNS COMENTÁRIOS SOBRE INTERPOLAÇÃO

- Sob o conceito de interpolação desenvolvido neste capítulo, ao interpolarmos um polinômio de grau n por um polinômio de grau ≥ n obteremos o polinômio original. Verifique!
- 2. Seja interpolar f(x) sobre $x_0, x_1, ..., x_n, n+1$ pontos distintos igualmente espaçados. Mostra-se que $G(x) = (x x_0) (x x_1) ... (x x_n)$ assume seu módulo máximo num dos intervalos (x_0, x_1) ou (x_{n-1}, x_n) , conforme a referência [17]. Assim, se formos usar (k+1) pontos de interpolação, $k \le n$, (polinômio de grau $\le k$) e se tivermos possibilidade de escolha destes pontos, dado \overline{x} , devemos escolher $x_0, x_1, ..., x_k$ de tal forma que \overline{x} fique o mais central possível no intervalo $[x_0, x_k]$.