Prob. 4:

Prob. 1:

Find the power dissipated in the 4 Ω resistor.

ONE METHOD: USE PROPORTIONALITY.

ASSUME i= IA. THEN, WE GETS So, i 15 REALLY i = 36 x1 = 41 So P = 42 × 4 = 64 W

ANOTHER METHOD: USE NODAL ANAYSIS.

$$\frac{N_1 - 36}{1} + \frac{N_1 - N_2}{2} + \frac{N_1}{3} = 0$$

$$Solving, WE GET $N_2 = 1/6$

$$So, P_{\mu} = \frac{(16)^2}{4} = 64W$$$$

STILL ANOTHER METHOD: USE MESH ANALYSIS.

$$(i_1 + (i_1 - i_2)^3 = 36)$$

 $(i_2 - i_1)^3 + 6i_2 = 0$

 $i_1 + (i_1 - i_2) = 36$ SOLVING WE GET $i_2 = 4A$ $(i_2 - i_1) + 6i_2 = 0$ $S_0, P_4 = 4^2 \times 4 = 64 \text{ W}.$

Prob. 2:

Find the output voltage v_o . Use a nodal analysis with the node voltages v_o , v_1 , v_2 , v_3 .

WE MUST USE THE VIRTUAL OPEN - VIRTUAL SHORT MODEL OF THE OP AMP BECAUSE THE GAIN A IS NOT GIVEN.

AT
$$V_i - NODE: \frac{10 - V_i}{2} + \frac{V_2 - V_i}{4} + \frac{V_0 - V_i}{8} = 0$$

AT
$$V_2 - NODE : \frac{V_2 - V_1}{4} + \frac{V_2}{8} = 0$$

AT
$$N_3 - NODE:$$
 $N_3 = N_2 = \frac{10}{10410}N_0 = \frac{N_3}{2}$

SOLUNG THESE EQUATIONS, WE GET

AND
$$V_0 = \frac{160}{13} = 12.31 \text{ V}$$

Prob. 3:

In this circuit, v_1 and v_2 node voltages, and v_a branch voltage. Find v_2 . Use nodal analysis

$$N$$
 10 N_1
 N NODE N_1
 N_2
 N_3
 N_4
 N_4
 N_2
 N_4
 N_2
 N_2
 N_3
 N_4
 N_4
 N_2
 N_3
 N_4
 N_5
 N_5

Prob. 4:

Finds the branch voltage v. Do a mesh analysis using the mesh currents shown.

AT DEPENDENT CURRENT SOURCE:

$$i_2 - i_1 = 2w = 2 \times 2 i_2 = 4 i_2$$

So $i_1 + 3i_2 = 0$

KVL AROUND ENTIRE CIRCUIT:

$$(2+4)i_1 + 2i_2 + 2 = 0$$

SOLVING THESE EQUATIONS WE GET

$$i_2 = \frac{1}{p}$$
So $v = 2 \times \frac{1}{p} = \frac{1}{4} V$