Fundamentals of Computer Programming

Lecture 1: An Introduction and Overview on C

Lecturer: Ahmad Siavashi
Spring 2023

1/28

Outline

- Syllabus
- 2 All about Computer
- 3 Programming
- Basics about C Programming

Syllabus

- Primitive Data Types and Operations
- Sequential Control
- Selection Control clause: if-else and switch
- 4 Loops Control clause: while, do-while and for
- 5 Functions: declaration, definition and calling
- 6 Pre-compilation Command/Macros: #ifdef
- Array: declaration, definition and calling
- Structures: struct and union
- Open Pointers
- File Operations: read and write
- Performance Evaluation
 - $20\% \times Midterm + 30\% \times Final$
 - 25%×Exerc. + 20%×Proj. + 5%×Quiz.

Arrangement of this course

- 16 weeks \times 1.5 hours classes
- Midterm exam on May 29, 2023
 - Live coding

Outline

- Syllabus
- 2 All about Computer
- Programming
- 4 Basics about C Programming

About Computer (1)

- What is computer?
 - Machine for computation
 - Essentially, no big difference from abacus
 - In our history, we have several kinds of machines used for computing
 - Abacus
 - Difference engine
 - Tide-predicting machine

About Computer (2): the model

- What is computing
 - Input data and needed operations
 - Output the answer
 - This is actually the model proposed by Alan Turing

Alan Turing (1912-1954)

John Von Neumann (1903-1957)

About Computer (3): the framework

- Think aloud about the major components of a computer
 - CPU: central processing unit
 - Memory
 - Hard disk
 - Keyboard
 - Graphics card + monitor/screen
 - Sound card + microphone + speaker
 - Mouse

About Computer (4): the framework

- Think aloud about the major components of a computer
 - CPU: central processing unit
 - Memory
 - Hard disk
 - Keyboard
 - Graphics card + monitor/screen
 - Sound card + microphone + speaker
 - Mouse

About Computer (5): who is who

• How many of them you can figure out?

About Computer (6): basic elements in Computer Chips

- Despite the high complexity of VLSI (very large-scale integration)
- Two basic elements are there
- One is gate, responsible for operations, main components for CPU
- Another is latch, in charge of memory, main components for memory

Outline

- Syllabus
- 2 All about Computer
- 3 Programming
- 4 Basics about C Programming

Why programming? (1)

Charles Babbage (1792—1871)

Mechanical computer

Ada Lovelace (1815-1852)

Why programming? (2)

- Instructions and data fetch from memory to CPU for processing
- The results are returned back to memory

Why High Level Programming Language? (1)

- Natural language is the media that we communicate with each other
- Computer language is the media that we communicate with computer
- We should use the language that computer could understand
- At least, we need an interpreter/translator

Why High Level Programming Language? (2)

- Instructions are binary codes
- Machine only accepts/understands binary codes

Why Programming Language? (3)

- 1 010101 0000 0011
- **2** 010101 0001 0101
- **3** 101010 0000 0001
- 4 010101 0000 1011

Why Programming Language? (4)

- **1** 010101 0000 0011
- **2** 010101 0001 0101
- **3** 101010 0000 0001
- **4** 010101 0000 1011

- **1** MOV D1 0011
- 2 MOV D2 0101
- **3** ADD D1 D2
- 4 MOV D1 A1
- For the convenience of operation, binary instructions are denoted with readable symbols

Why Programming Language? (5)

- Machine code
- **1** 010101 0000 0011
- 2 010101 0001 0101
- **3** 101010 0000 0001
- **4** 010101 0000 1011

- Assembly
- 1 MOV D1 0011
- 2 MOV D2 0101
- **3** ADD D1 D2
- 4 MOV D1 A1

- High level language
- $\mathbf{0}$ a=3+5;

Why Programming Language? (6)

- We write a text file in specified format (grammar)
- These are instructions that we basically understand
- The translator converts the text instructions into machine codes
- Machine then runs these binary codes one by one
- Different translators lead to different programming languages
- Which also regulate different grammars
- C is such kind of high level language

The life-time of a computer program

Outline

- Syllabus
- 2 All about Computer
- 3 Programming
- Basics about C Programming

Brief History about C

Ken Thompson (1943 -)

Dennis M. Ritchie (1941 - 2011)

- C is born in AT&T Bell Labs along with UNIX
- The developer Dennis Ritchie and Ken Thompson were awarded with Turing Award
- C is simple:), versatile and highly efficient (70% of assembly language efficiency)
- UNIX is one of the most stable operating systems so far developed

Your first program in C (1)

- "#include <stdio.h>" states that we want to use function defined in "stdio.h"
- Our code is encapsulated in a function called "main()"
- In the main bordy of the function
- We output "Hello world!" to the screen
- "printf()" is a function declared in "stdio.h"
- include, int and return are reserved keywords

Your first program in C (2)

```
#include <stdio.h>
int main()

printf("Hello_world_1!\n");
printf("Hello_world_2!\n");
printf("Hello_world_3!\n");
return 0;

}
```

[Output]

```
Hello world 1!
Hello world 2!
Hello world 3!
```

Codes are executed from top to bottom

Popularity of C in recent decade

Popularity of C in recent decade

References

+

"C Programming" course slides by Dr. Wan-Lei Zhao from China