Solving an Exam Scheduling Problem Using a Genetic Algorithm

Dave Kordalewski davekordalewski@gmail.com

Caigu Liu liucaigu@gmail.com

Kevin Salvesen

kevin.salvesen@gmail.com

Abstract

We examine the exam scheduling problem with soft constraints for problems of varying sizes using a genetic algorithm (GA), random search, hillclimbing, and a variant of simulated annealing. This is done in the context of maximizing the fitness of a schedule, where the fitness is relatively computationally expensive to compute for any schedule. The genetic algorithm is discussed in detail. We consider selecting parameters for the GA that maximize the quality of the schedule found after a constant number of fitness computations. The GA, with a naive crossover operator, performs much better than the random search, but simulated annealing is far superior in this search space.

The Problem

The problem we investigate is a sort of scheduling problem. We are attempting to find the most satisfactory choice of when and where to hold exams, given a background of student course loads.

An instance of this scheduling problem consists of a number of days on which exams can be scheduled (d), the number of time slots in which an exam can be scheduled on any day (t), a set of rooms (R), a set of courses (C), and a set of students (S), each of whom (s) has a particular course load, some subset of the courses (L_s) .

A schedule, then, is a mapping from courses to rooms at times, which we can express like this:

$$C \to \{(r, a, b) \mid r \in R, a \in \{1..d\}, b \in \{1..t\}\}\$$

Typically, with relatively loose constraints on the number of rooms and particular schedules of students, it is not difficult to find some consistent schedule; that is, one where no student is asked to write 2 exams simultaneously and no room has 2 exams occur in it simultaneously.

Rather than worry about hard constraints, we prefer a framework of soft constraints, where we try to find a schedule that makes the students and invigilators happiest overall, allowing the possibility that some student or room is left with an impossible exam schedule, which can, in the real world, be dealt with on an individual basis.

The timetable that a student $s \in S$ has under some particular schedule K may be represented in this way:

$$TT_s(K) = \{(a, b) \mid \exists r \in R, \exists c \in L_s, K(c) = (r, a, b)\}\$$

which may, in general, be a multiset. Similarly, the timetable for a room $r \in R$ is

$$TT_r(K) = \{(a,b) \mid \exists c \in C, K(c) = (r, a, b)\}\$$

We define two quality functions, mapping schedules to real numbers in [0,1], one for students and one for rooms. These are meant to capture how much they "like" the schedule under consideration. (For instance, a student will rate poorly any schedule where she has 2 consecutive exams, and very poorly any schedule which expects her to take two exams at the same time. A room will rate poorly a schedule that assigns two different exams to be held in it at the same moment).

$$Q_s(K) = q_{student}(TT_s(K)): Schedules \rightarrow [0, 1]$$

$$Q_r(K) = q_{room}(TT_r(K)): Schedules \rightarrow [0, 1]$$

We will consider later how to define these functions in a reasonable way.

The quality of a schedule, then, is given by

$$Q(K) = \frac{\left(w_s \left(\sum_{s \in S} \frac{Q_s(K)}{|S|}\right) + w_r \left(\sum_{r \in R} \frac{Q_r(K)}{|R|}\right)\right)}{\left(w_s + w_r\right)}$$

where w_s and w_r are the weightings we can use to indicate that we care somewhat more about students preferences than rooms, giving a quality (or fitness, in the terminology of genetic algorithms) in the range [0,1] for any schedule.

Evaluating this function Q can be computationally expensive when |S| and |R| are large. Our work examines how to find a schedule with relatively high fitness considering that we will want to do this with as few evaluations of Q as possible.

We examine, first and foremost, a genetic algorithm approach to solving this problem, but also touch on a few other methods.

Approach and Implementation Differences From Natural Exam Scheduling

The problem we have constructed here is a compromise between more mathematically pure problems with the same sort of properties (which might ignore the rooms' constraints completely) and the problem that must be solved in the real world when scheduling thousands of students, which has some important differences from this problem. For example, we don't deal with constraints like room capacity or exams with varying length.

Tools used

Our application was entirely written in Java. We also wrote another Java application to generate problem instance files for testing our algorithms. We used Mathematica to plot all of our graphs. Additionally, we use Google code's subversion repository¹, Google docs and Google Wave to collaborate on this report.

Fitness Function

In order to assign each schedule a fitness, we need to define the functions $q_{student}$ and q_{room} . They need to capture the idea of determining how much each student or room likes their given timetable. We do this by giving penalties to schedules when they have properties that are disliked by the student or room, and then using the formula

$$q(TT) = \frac{1}{1 + penalty_{TT}}$$

This function will be in the desired range of [0,1].

We assign 50 point penalties for inconsistent schedules, 3-5 points when students are assigned multiple exams on the same day, and 0.5 when students don't have a rest day between exams. Rooms have the same stiff 50 point penalty for inconsistencies, 5 for hosting exams in consecutive time slots, and 0.5 for any days without exams between the days it is first used and last used.

We chose the weighting constants $w_s=2$ and $w_r=1$, which suggest that we are more concerned with the students' schedules than the rooms'.

The details of the function we used are essentially arbitrary, and we expect similar results would be attained for any other penalty-based fitness function modelling the preferences of students and requirements of rooms.

Genetic Algorithm Search

Although there are many readily available open source genetic algorithm software packages available (see JGAP, Jenes) we decided to write a simple, yet general, genetic algorithm package, in Java, that can interface with data types designed by others, so long as they implement a few necessary methods. The package we wrote is more than adequate for investigating the scheduling problem under consideration here.

General Description The genetic algorithm maintains a population of schedules and constructs subsequent generations by adding new random schedules, making copies of high quality schedules in the present generation, applies the mutation operator to schedules, or uses the crossover operator on 2 schedules. When performing mutation or crossover, the schedules are selected with a probability proportional to

their fitness, allowing the schedules with high quality to be selected more frequently and make more "offspring".

The free parameters in our GA are the size of the population, number of generations to simulate, and proportions of new generations to be made by the copy, random, mutation, and crossover methods.

Representation We use the naive representation of schedules. A schedule contains lists of size |C| containing the room in which each course's exam is to occur and the timing (corresponding to a pair or integers representing the day and time) of each course's exam. We will see that this representation is far from ideal, but there is no clear alternative.

Mutation Operator The mutation operator takes a probability and a schedule. We loop over the courses, and, with the given probability, each is or is not set to a random room at a random time.

Crossover Operator Given two schedules, the crossover operator loops over the courses, and chooses at random which schedule to take the room and timing from for that course. This results in an interleaving of the original courses' data.

There is, unfortunately, no good reason to expect that the result of applying crossover to two relatively high quality schedules will produce a high quality schedule, since the quality of schedules can be very subtle, as they are a more global property of the schedule than this process captures. The crossover of two schedules where no student or room has a timing conflict is unlikely to result in a schedule with much more than average quality. There is no obvious reason to think that this sort of procedure will produce schedules with better than random fitness. Luckily, the schedules produced in practice are better than random.

If a different representation were chosen, such that the children schedules were different from, but likely to have quality similar to their parents, the GA would likely be able to perform much better than it does, but we could not discover such a representation and are satisfied with this method for present purposes.

Other Search Algorithms

Random Search The random search method simply generates random schedules, evaluates their fitness, and remembers the one that it has seen that has highest fitness. This method is meant as a baseline against which to compare the other methods. If a search method doesn't perform significantly better than random search with the same number of fitness evaluations, it is useless.

Hillclimbing Search The hillclimbing search that we have implemented examines every schedule in the neighbourhood of a given starting schedule, and then continues from the one with highest fitness, terminating when it has performed as many evaluations as it is allowed to, or it has found a schedule whose neighbour are all equal or inferior to it.

The neighbouring schedules are those where only one course meets in either a different room, on a different day, or at a different time. It can be seen that this method is com-

¹http://code.google.com/p/
csc384-genetic-algorithms-project/

pletely deterministic given a starting schedule, and will always return a local maximum.

Mutate Search Mutate Search starts by generating a random schedule. It makes an alternative schedule (by using the same mutate operator made for the genetic algorithm) with 1% of the data randomized and keeps the better schedule. This operation is repeated until it has performed as many evaluations as it is allowed to.

This method can be changed to true simulated annealing by varying the degree of modification made to the current best schedule with the number of evaluations remaining. Not being the focus of our investigation, little effort was made to optimize the parameters.

Parallel Computations Of the 4 methods, only mutate search is not trivially parallelizable. A plausible parallel version of mutate search would generate as many mutated schedules at every step as processors are available and select the fittest result for the next set of mutations. We expect that this would increase the rate at which the best found fitness increases.

Scheduling Problem Instances

We generated 2 sets of 3 scheduling problem instances with which to test the above algorithms. The first set of instances were generated with the parameters in the first three columns of the table below. The rooms, courses and students were given arbitrary names and the courses that each student attended were selected with uniform probability from the complete set of courses.

The second set was generated with a correlation between the courses that each student took, rendering the data-set more true to the sort of data that would be found in real-world situations. The set of courses that each student takes was selected so that around 70% of their courses were in their (randomly selected) major. This simulates the way in which we expect student bodies to choose their courses, though the true data is likely to exhibit far more structure, due to program requirements, notorious professors, etc.

	S	M	L	S_{Cor}	M_{Cor}	L_{Cor}
d	7	10	7	7	10	7
t	5	8	8	5	8	8
C	20	200	603	20	200	600
R	4	10	43	4	10	43
S	50	300	21945	50	300	21945
$ L_s $	1-5	1-6	1-5	2-6	2-6	2-6
#Maj	N/A	N/A	N/A	4	10	20
SSS	10^{182}	10^{1840}	10^{6695}	10^{182}	10^{1840}	10^{6689}

Table 1: The six problem instances used in our project. #Maj is the number of different majors used and SSS is an approximation of the search space size.

The size of our 3 instances vary considerably. The total number of different possible schedules in any problem instance is $|C|^{|R|dt}$ which is far too large to conduct a brute force search. The smallest could potentially be solved exactly, with methods not under consideration here, while the

others have search spaces much too large for any hope of finding a perfect solution. For the largest, which simulates a UofT exam schedule, a single evaluation of the fitness function takes 0.2 seconds on on a typical desktop computer. This makes it difficult to thoroughly investigate this instance.

The large problem instance was created with parameters corresponding to the fall 2009 University of Toronto exam schedule, which is the size we expect for a large real-world problem instance.

Evaluation

Selecting Parameters for the GA

In order to select parameters for the genetic algorithm (that is, the population, number of generations to simulate, proportions of copies, randoms, mutations, and crossovers for the next generation) we performed tests using the small uncorrelated problem instance.

Generation Parameters We undertook a search of the space of parameters for forming new generations. Our results for different combinations of parameters can be seen in figure 1. Each point has been averaged over 5 trials. The colour on the plotted surface corresponds to the fitness, where the highest fitnesses are red. The number of copies is fixed at 1, and the proportion of mutations and crossovers are shown on the horizontal axes.

Figure 1: Effectiveness of the GA's proportion parameters

The graph indicates that for a fixed number of evaluations, best results are achieved by selecting parameters that have the majority of individuals in the next generation be generated by crossovers of the most fit schedules in the previous generation. In order to achieve the very highest fitness, a few randoms or mutations should also be incorporated.

This test was done for only the smallest problem instance, and is infeasible for the larger instances. We chose generation proportion parameters to approximate the optimal values seen here, under the assumption that the larger problems exhibited this sort of preference.

Comparison Between the Different Searches

We tested the 4 search methods on all 6 of our problem instances. The results for two of the problems, the small and large correlated problems, are shown in figure 2 and 3. The medium problem exhibited characteristics very similar to the large problem.

All methods produced nearly indistinguishable results for the uncorrelated versions. This suggests that it may be possible to use the expected internal correlations more effectively that the methods we have proposed do.

On the graphs for the small instance, the results shown are averages over many trial runs. Individually, however, the different methods all produced similar results, in particular the ranking of the algorithms was very consistent for any particular problem instance.

Figure 2: Search methods on small problem instance

Figure 3: Search methods on large problem instance

Random search provides a benchmark by which to measure the other 3 techniques. As desired, they all usually perform significantly better.

Hillclimbing works very well for the small instance, but miserably on the large problem. This is because of the vastly increased number of neighbouring schedules in the large problem. Hillclimbing is able to examine a much smaller portion of search space and wastes its evaluations on too many points that are too similar to each other. A variant that tries some fixed number of schedules in the neighbourhood may perform better.

The mutate search algorithm performed remarkably well in all tests, finding a schedule at least somewhat better than every other method for every size problem instance.

The GA is a bit of a disappointment. It works much better than random, meaning that the naive crossover method used does have some value, and it scales well for different sized problem instances, which is an important characteristic. For the large instance, the attained fitness of around 0.4 would be the fitness of a schedule for which every student and room assign 1.4 penalty points to the schedule. This is reasonable, and would perhaps be very exciting if mutate search wasn't so much better than GA for this problem.

Conclusion

Any monotone function can be applied to the fitness values to obtain identical results for the 3 non-GA methods, which only need to choose the better fitness and do not use the fitness values in any important way. The GA, however, uses the fitness values to decide the probability of schedules being selected and modified for subsequent generations. It might be possible to reduce or increase the probability of poor functions being selected for mutation or crossover. Corne, Fang, and Mellish (1993) for example, got favourable results by squaring the fitness.

Modifying the fitness function in a variety of ways (perhaps calculating the total penalty that a schedule gets instead averaging over the values given by each student and room) might improve the quality of the GA approach to this problem. The fitness function used here could be modified in many ways, and investigating this would be very interesting.

Unfortunately, without further investigation and modification, the GA given should not be used. Perhaps a novel form for representing schedules could make a GA approach for this problem perform better than mutate search. We recommend Mutate search for solving problems of this type. A typical PC can generate a relatively good schedule for a large exam scheduling problem overnight using the mutate search method. Mutate search is very easy to implement, making it even more attractive.

Mutate search can be modified to change the rate of mutation and number of attempts at each step, which suggests that much better methods can be developed based on the it. This could be an interesting direction for further research.

References

CISELab. 2009. Jenes. http://jenes.ciselab.org.

Corne, D.; Fang, H.-L.; and Mellish, C. 1993. Solving the modular exam scheduling problem with genetic algorithms. http://www.dai.ed.ac.uk/papers/documents/rp622.html.

Meffert, K. e. a. 2009. Jgap - java genetic algorithms and genetic programming package. http://jgap.sf.net.

UofT. 2009. University of toronto statistics. http://
www.utoronto.ca/internationalstudent/
index_stats.html.