Math 135: Introduction to Set Theory Autumn 2000 Midterm Exam II

15 November 2000 2:10pm - 3:00pm

- 1. (30 points) Complete the following definitions. If your definition involves a term introduced in this course after the first midterm, you must define that term as well.
 - a. The set \mathbb{Z} of *integers* is defined to be _____.
 - b. If K is a set of cardinality κ and L is a set of cardinality λ , then the set X has cardinality κ^{λ} if and only if _____.
 - c. If (P, <) is a partially ordered set and $C \subseteq P$, then C is a *chain* if and only if _____.
- **2.** (10 points)
 - State the (transfinite) recursion theorem.
 - State the principle of cardinal comparability.
- **3.** (20 points) Suppose that $f:\omega\to\mathbb{R}$ is a function satisfying
 - 1. f is increasing: $(\forall m < n \in \omega) \ f(n) < f(m)$ and
 - 2. f is bounded: $(\exists B \in \mathbb{R})(\forall n \in \omega) \ f(n) < B$.

Show that f has a limit:

$$(\exists \ell \in \mathbb{R})(\forall \epsilon > 0)(\exists N \in \omega)(\forall n > N) \ 0 < \ell - f(n) < \epsilon$$

- **4.** (20 points) For a set X define $\operatorname{Fin}(X) := \{A \in \mathcal{P}X : A \text{ is finite }\}$. Show that if X is infinite, then $X \approx \operatorname{Fin}(X)$.
- **5.** (20 points) Let (X, <) be a well-ordered set. Define a new ordering on X by $a <^* b \Leftrightarrow b < a$. Show that if $(X, <^*)$ is also well-ordered, then X is finite.