Sedimentary Rocks

The Prologue

Weathering — Mechanical (particularly important in very cold or dry climate)

Chemical

The Chemistry of Weathering

Most important processes	Examples	Principal kinds of rock materials affected
Simple (congruent) Solution—Dissolution of soluble minerals in H ₂ O (direct solution) or in H ₂ O + CO ₂ (carbonation) to	$SiO_2 + 2H_2O \rightarrow H_4SiO_4$ (direct solution) (quartz) (silicic acid) aq	Highly soluble minerals (e.g., gypsum, halite), quartz
yield cations and anions in solution	$CaCO_3 + H_2O + CO_2 \leftrightarrow Ca^{2+} + 2HCO_3$ (Carbonation) (calcite) aq aq	Carbonate rocks
Hydrolysis (incongruent dissolution)— Reaction between H ⁺ and OH ⁻ ions of water and the ions of silicate minerals,	$2KAlSi_3O_8 + 2H^* + 9H_2O \rightarrow H_4Al_2Si_2O_9 + 4H_4SiO_4 + 2K^*$ (orthoclase) aq (kaolinite) (silicic acid) aq	Silicate minerals
yielding soluble cations, silicic acid, and clay minerals (if Al present)	$2NaAlSi_3O_8 + 2H^+ + 9H_2O \rightarrow H_4Al_2Si_2O_9 + 4H_4SiO_4 + 2Na^+$ (albite) aq (kaolinite) (silicic acid) aq	
Oxidation—Loss of an electron from an element (commonly Fe or Mn) in a mineral, resulting in the formation of oxides or	$2\text{FeS}_2 + 15/2\text{O}_2 + 4\text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + 4\text{SO}_4^{2-} + 8\text{H}^+$ (pyrite) (hematite) aq aq	Iron- and manganese-bearing silicate minerals, iron sulfides
hydroxides (if water present)	$MnSiO_3 + 1/2O_2 + 2H_2O \rightarrow MnO_2 + H_4SiO_4$ (rhodonite) (pyrolusite) (silicic acid)	
Other Processes		
Hydration and Dehydration—Gain (hydration) or loss (dehydration) of water molecules from a mineral,	$Fe_2O_3 + H_2O \leftrightarrow 2FeOOH \text{ (hydration)}$ (hematite) (goethite)	Ferric oxides
resulting in formation of a new mineral	$CaSO_4 \cdot 2H_2O \leftrightarrow CaSO_4 + 2H_2O$ (dehydration) (gypsum) (anhydrite)	Evaporites
Ion Exchange—Exchange of ions, principally cations, between solutions and minerals	K-clay + Mg^2 + \longleftrightarrow Mg -clay + K^+ Ca-zeolite + Na^+ \longleftrightarrow Na -zeolite + Ca^{2+}	Clay minerals and zeolites
Chelation—Bonding of metal ions to organic molecules having ring structures	Metal ions (cations) + chelating agent (e.g., secreted by lichers) → H ⁺ ions + chelate (metal ions/organic molecules in solution)	Silicate minerals

Submarine Weathering Processes and Products

Alteration of ocean rocks occurs both at low temperature (<20°C) as well as at high temperature (~350°C)

As a result of submarine weathering, chemical elements are exchanged between rock and seawater and large mass of seawater becomes fixed in the oceanic crust in the form of altered hydrous minerals

Fluid Flow- Laminar vs. Turbulent

The Hjulström curve

Sediment Transport Path

Texture-Grain Size

Grain size

Closer to source

Texture- Grain Sorting

Texture- Roundness and Sphericity

"floating" grain **Principal kinds of Grain Contacts** tangential contact long contact concavo-convex contact

sutured contact

Sedimentary Structures- Bedding

Laminated Bedding

Massive Bedding

0.1 mm

Plutonic

Volcanic

Lithic Fragments

Metamorphic schist

Metamorphic Quartzite

Sandstone

Lithic Fragments

Chert

- New crystals form between grains
- Precipitation out of groundwater
- Fills in remaining porosity

Cement

Dott Classification

Conglomerate

Clast-Supported Conglomerate

Breccia

Oligomictic Conglomerate

Polymictic Conglomerate