Exercises Partial differential equation

Simone Coli 6771371

Sheet 7

1 Exercise

Let us consider $\Omega \subset \mathbb{R}^n$ an open set and let us define $\Omega_{\varepsilon} \doteq \{x \in \Omega : \operatorname{dist}(x, \partial\Omega) > \varepsilon\}$. Let us now consider $u \in L^1_{loc}(\Omega)$ and its mollification $u_{\varepsilon} : \Omega_{\varepsilon} \to \mathbb{R}$

$$u_{\varepsilon}(x) = (\rho_{\varepsilon} * u)(x)$$

we want to show that

a) If $u \in C^0(\Omega)$ than $u_{\varepsilon} \to u$ uniformly in compact subsets as $\varepsilon \to 0$. By definition of continuous we know that:

$$\forall \varepsilon > 0 \exists \delta : \forall N_{\varepsilon} \in \mathbb{N}, x, y \in \Omega | x - y | < \delta, |u(x) - u(y)| < \varepsilon$$

If we consider

$$|u_{\varepsilon}(x) - u(x)| = \left| \int_{\Omega'} \rho_{\varepsilon}(x - y)u(y)dy - u(x) \right|$$

Using the commutability of the convolution operator we have that

$$\left| \int_{\Omega'} \rho_{\varepsilon}(x-y)u(y)dy - u(x) \right| = \left| \int_{\Omega'} \rho_{\varepsilon}(y)u(x-y)dy - u(x) \int_{\Omega'} \rho_{\varepsilon}(y)dy \right|$$

where Ω' is the set where ρ_{ϵ} is defined.

$$\left| \int_{\Omega'} \rho_{\varepsilon}(y) (u(x-y) - u(x)) dy \right| \leq \int_{\Omega'} |\rho_{\varepsilon}(y)| |u(x-y) - u(x)| dy < \int_{\Omega'} |\rho_{\varepsilon}(y)| \varepsilon dy$$

Let us consider a ball $\overline{B_{\varepsilon}(0)} \supset \Omega'$

$$\int_{\Omega'} |\rho_{\varepsilon}(y)| \varepsilon dy \le \int_{\overline{B_{\varepsilon}(0)}} |\rho_{\varepsilon}(y)| \varepsilon dy$$

for $\varepsilon \to 0$ this integral goes to zero, meaning that $\sup_{x \in \Omega} |u_{\varepsilon}(x) - u(x)| \to 0$ and therefore u_{ε} converges uniformly to u.

b) We now want to show that if $u \in L^p(\Omega)$ than $u_{\varepsilon} \to u$ in L^p_{loc} as $\varepsilon \to 0$. Let us consider

$$|u_{\varepsilon}(x) - u(x)|^p = \left| \int_{\Omega'} \rho_{\varepsilon}(x - y) u(y) dy - u(x) \right|^p = \left| \int_{\overline{B_{\varepsilon}(0)}} \rho_{\varepsilon}(y) (u(x - y) - u(x)) dy \right|^p$$

by the same argument as before. Now this is bounded from above by

$$\left| \int_{\overline{B_{\varepsilon}(0)}} \rho_{\varepsilon}(y) 2 \sup_{\overline{B_{\varepsilon}(0)}} u(x) dy \right|^{p}$$

If we take a subset $\Omega' \subset\subset \Omega$ we want to show the definition of L^p space

$$\int_{\Omega'} |u_{\varepsilon}(x) - u(x)|^p dx \le \int_{\Omega'} 2 \sup_{\overline{B_{\varepsilon}(0)}} u(x) dx = 2 \sup_{\overline{B_{\varepsilon}(0)}} u(x) \mu(\Omega')$$

which goes to 0 as $\varepsilon \to 0$ since $\Omega' \subset\subset \Omega$.

- c) We want to show that if $u \in W^{k,p}(\Omega)$ and k > 0 then $u_{\varepsilon} \to u$ for $\varepsilon \to 0$ in $W_{loc}^{k,p}$. By definition of $W^{k,p}(\Omega)$ we know that $D^{\alpha}u \in L^p$ for $|\alpha| < k$, then, using the previous result and the fact that $(D^{\alpha}u)_{\varepsilon} = D^{\alpha}u_{\varepsilon}$ we get the claim.

 d) We want to show that if $u \in C^{0,1}$ with Lipschitz constant L then $u_{\varepsilon} \in C^{0,1}$
- with the same constant. By definition of Lipschitz we want to prove that

$$|u_{\varepsilon}(x) - u_{\varepsilon}(z)| < L|x - z|$$

because of that let us consider

$$|u_{\varepsilon}(x) - u_{\varepsilon}(z)| = \left| \int_{\Omega} \rho_{\varepsilon}(x - y)u(y)dy - \int_{\Omega} \rho_{\varepsilon}(z - y)u(y) \right| =$$

Using the commutation property for convolutions we have that:

$$= \left| \int_{\Omega} \rho_{\varepsilon}(y) (u(x-y) - u(z-y)) dy \right| < \int_{\Omega} |\rho_{\varepsilon}(y)| L|x - z| dy$$

Since $u \in C^{0,1}(\Omega)$. Proving the statement.

2 Exercise

We want to find the weak derivative of

$$f(x) = \begin{cases} 2x - 1 & x \le 0\\ 1 - 3x & x \ge 0 \end{cases}$$

By its definition we have that:

$$-\int v\varphi dx = \int uD\varphi dx$$

$$= \int_{-infty}^{0} (2x-1)\varphi' dx + \int_{0}^{\infty} (1-3x)\varphi' dx =$$

$$= \int_{-infty}^{0} 2\varphi dx + \int_{0}^{\infty} 3\varphi dx$$

using integration by parts. We then have that the directional derivative of f is

$$v(x) = \begin{cases} 2 & x < 0 \\ -3 & x > 0 \end{cases}$$

Since we computed it using the definition we have that it is in fact the weak derivative of f.

3 Exercise

Let $\Omega \subset \mathbb{R}^n$ open and bounded such that $0 \in \Omega$. We want to show that a function $u(x) = |x|^{-\alpha}$ is in $W^{k,0}(\Omega)$ as long as $k + \alpha < n$.

This means that we want to show that

$$\int_{\Omega} v\varphi dx = -(-1)^k \int_{\Omega} D^{\beta} \varphi |x|^{-\alpha} dx$$

converges, where we used a multi index β such that $|\beta|=k$. If we move in spherical coordinates, we will have that:

$$\int_{\Omega} D_1^{k_1} \cdots D_n^{k_n} r^{-\alpha} r^{n-1} dr d\theta$$

where $d\theta$ contains all the angular part of the integral. Using integration by parts then we have that

$$(-1)^k \int_{\Omega} \varphi D^k r^{n-1-\alpha} dr d\theta \le \sup_{\Omega} |\varphi| \int_{\Omega} D^k r^{n-1-\alpha} dr d\theta$$

by the chain rule we know that the directional derivative in the direction of x_i or $r^{n-1-\alpha}$ will be less or equal than its directional derivative in the direction of r, because the function does not depend on the angular components. Then, let $\sup_{\Omega} |\varphi| = c$:

$$c\int_{\Omega} r^{n-1-\alpha-k} dr d\theta = \left[r^{n-\alpha-k}\right]_{0}^{R}$$

This will be non singular if, and only if, the exponent is not less than zero, that is $n - \alpha - k > 0$ which proves the statement.

4 Exercise

Let $\Omega \subset \mathbb{R}^n$ and an open and bounded subset $\Omega \subset\subset \Omega$ and $d \doteq \operatorname{dist}(\Omega', \partial\Omega)$, we want to show that there exists a function $\eta \in C_c^{\infty}(\Omega)$ and a constant C = C(n) such that

$$0 \le \eta \le 1, \quad , \eta|_{\Omega'} \equiv 1, \quad |D\eta| \le \frac{C}{d}$$

What we want to do is construct a function which grows from zero to 1L before reaching Ω' , and we want to bound this growth from above. Let us

therefore define two subsets $A,B\subset\Omega$ such that $\Omega'\subset B\subset A\subset\Omega$. In particular, we want $\operatorname{dist}(A,\partial\Omega)=\operatorname{dist}(\Omega',\partial B)=\frac{d}{4}$, meaning that $\operatorname{dist}(B,\partial A)=\frac{d}{2}$. Then consider the function

$$f(x) = \begin{cases} 1 & x \in B \\ -\frac{2}{d}x + k & x \in A \setminus B \\ 0 & x \in \Omega \setminus A \end{cases}$$

Where k is just a constant which must be chosen to be such that the linear function has value 1 at ∂B and 0 at ∂A . However, this function is not smooth. To make it C_c^{∞} we apply the mollification to f defining $0 < h < \operatorname{dist}(B, \partial A)$

$$\eta(x) = \int_{\Omega} \rho_h(x - y) f(y) dy$$