Multi Modal Segmentation

-Khushin, Parth Patel

Problem Statement

- Multi-modal data involves information from various sensors or data sources (e.g., RGB images, depth maps, thermal images, LiDAR).
- For autonomous vehicles, these data sources offer different perspectives of the environment.
- Issue: Struggles in detecting obstacles accurately when multi-modal data is inconsistent.
- Multi-modal fusion networks like FuseNet outperform single-modal networks but struggle when one modality (e.g., depth) is missing or degraded.
- Degradation often occurs due to environmental factors like shadows, glares, or limited depth sensing range, leading to poor segmentation performance.

Proposed Solution

- To address the issue, create a network with two connected streams:
 - First stream: encoder-decoder for analyzing depth image.
 - Second stream: encoder-decoder for handling RGB image, with Residual-Guided Fusion (RGF) modules in the decoder.
- Combine the depth stream's decoder output with the RGF modules in the RGB stream.
- The RGB stream will provide the segmentation mask by effectively using both depth and RGB images.
- Purpose of RGF module: Quantify missing features between RGB features and ground truth, addressing performance degradation due to inconsistencies between data types.
- In contrast to Iconseg's 5-stage encoder-decoder, our model uses a more compact 3-stage encoder and 3-stage decoder.
- Unlike Iconseg, which fuses outputs from the last three decoder stages, our model fuses only the output from the final decoder stage into the RGF module.

The RGF Module

- The RGF module takes two inputs: RGB feature maps(dark grey) and depth feature maps(light grev).
- RGB feature maps produce an RGB predicted mask y_hat using a convolutional layer.
- A residual mask y res is generated through element-wise subtraction between y_hat and the ground truth y, representing the missing features of the RGB feature map.
- Next, complementary features are extracted for the missing features Element-wise subtraction is performed between RGB and depth feature maps to
 - compute their difference.
 - The difference is adjusted to the number of classes using a 1×1 convolution.
 - A residual unit with a 3×3 convolution generates the predicted residual mask y hat res, guided by y res.
 - The adjusted result is fused with the RGB feature maps via element-wise
 - The adjusted result, fusion result, and RGB feature maps are concatenated along the channel dimension.

Encoder Decoder Structure

- Encoder
 - o 2 Convolution layers 3x3 filters
 - Max Pooling 2x2
- Decoder
 - Upsampling layer
 - Concat with skip connection
 - 2 convolution layers 3x3 filters

Imbalance

Class Number(original)	Class Number(after offset)	Dataset occurrence(%)		
-4	0	12.24624249		
0	1	32.44301035		
1	2	5.306801676		
2	3	20.04192705		
5	6	1.079105409		
7	8	0.4747958143		
8	9	13.95592954		
9	10	1.010260061		
10	11	3.545020608		
11	12	1.033653452		
12	13	0.1201418067		
13	14	6.146646708		
18	19	0.3574544442		
3	4	0.5598603577		
4	5	0.7466766614		
6	7	0.1800101144		
17	18	0.08927545628		
14	15	0.2416210014		
15	16	0.2122253931		
16	17	0.2093416102		

Dataset

- The dataset used is a preprocessed version of the CityScapes dataset, sourced from the work "End-to-end Multi-task Learning with Attention."
- It includes three types of images:

 - RGB image: standard color image.

 Depth image: encodes depth information for each pixel.

 Label image: serves as the segmentation mask.
- The dataset contains 20 classes for semantic segmentation, with each image having a resolution of 128x256 pixels.
- The dataset is divided into three subsets:
 - Training set: 2,380 images.
 - Validation set: 500 images. Test set: 595 images.
- The dataset has a significant class imbalance, with some classes being much rarer than others.

Depth Image

Segmentation Label

Models

- We will analyze 3 different models
 - Regular UNET(as designed in the hw)
 - Multi Modal UNET with depth perception
 - o Multi Modal UNET with RGF
- Parameters for each
 - Regular UNET: 7,760,724 params
 - o Multi Modal UNET: 3,815,284 params
 - o Multi Modal UNET with RGF: 3,858,112 params

Our Model Running Results

Reg	ular UNET(mean IoU=	0.2014)	Multi-r	modal UNET	(mean IoU=	0. 0.228)	Multi-moda	al UNET w F	GF (mean l	oU= 0.21)
Class	precision	recall	f1-score	Class	precision	recall	f1-score	Class	precision	recall	f1-score
0	0.91	0.59	0.72	0	0.93	0.61	0.73	0	0.917884	0.611202	0.733788
1	0.82	0.95	0.88	1	0.87	0.95	0.91	1	0.816738	0.962296	0.883562
2	0.44	0.42	0.43	2	0.58	0.55	0.57	2	0.500884	0.400119	0.444867
3	0.7	0.77	0.73	3	0.68	0.9	0.78	3	0.730892	0.801098	0.764387
4	0	0	0	4	0	0	0	4	0	0	0
5	0	0	0	5	0.06	0	0	5	0	0	0
6	0	0	0	6	0.47	0	0	6	0	0	0
7	0	0	0	7	0	0	0	7	0	0	0
8	0	0	0	8	0	0	0	8	0	0	0
9	0.68	0.77	0.72	9	0.79	0.73	0.76	9	0.673666	0.838151	0.746961
10	0	0	0	10	0.24	0.04	0.07	10	0.199059	0.017439	0.032069
11	0.81	0.92	0.86	11	0.88	0.89	0.89	11	0.776602	0.958087	0.857851
12	0	0	0	12	0.34	0.17	0.22	12	0	0	0
13	0	0	0	13	0	0	0	13	0	0	0
14	0.59	0.79	0.68	14	0.62	0.84	0.72	14	0.72888	0.729658	0.729269
15	0	0	0	15	0	0	0	15	0	0	0
16	0	0	0	16	0	0	0	16	0	0	0
17	0	0	0	17	0	0	0	17	0	0	0
18	0	0	0	18	0	0	0	18	0	0	0
19	0	0	0	19	0	0	0	19	0	0	0
accuracy	0.74	0.74	0.74	accuracy	0.77	0.77	0.77	accuracy	0.759763	0.759763	0.759763

Conclusion

- RGF-Enhanced Network: Improves segmentation in shadowed regions compared to baseline UNet and standard multimodal models.
- Performance and Efficiency: Achieves higher accuracy in shadow detection without a substantial increase in model size.
- Further Improvements: Increasing network depth, adding more RGF modules, and training for more than 10 epochs could unlock additional potential.