$1^{\rm o}$ de Grado en Matemáticas y Doble Grado Informática-Matemáticas. Departamento de Matemáticas

Curso 2022/23

Hoja 9

Superficies parametrizadas. Integrales sobre superficies. Teoremas de Stokes y Gauss.

- 1.- Hallar la ecuación del plano tangente a las siguientes superficies parametrizadas:
 - (a) $\Phi(u, v) = (4u, 3u^2 + v, v^2 + 5)$ en (0, 1, 6).
 - (b) $\Phi(u, v) = (u^2, e^{v^2}, v^2 + 1)$ en (0, 1, 1).
 - (c) $\Phi(u,\theta) = (\cosh u \cos \theta, \cosh u \sin \theta, \sinh u)$ en (0,1,0).
 - (d) $\Phi(u, v) = (u^2 + 1, v^2 + 1, u^2 + v^2)$ en $\Phi(1, 1)$.
- 2.- Hallar la expresión de la normal unitaria a las superficies parametrizadas:
 - (a) $\Phi(u, v) = (\cos u \sin v, \sin u \sin v, \cos v) \cos 0 < u < 2\pi, 0 < v < \pi.$
 - (b) $\Phi(r, \theta) = (\cos \theta, \sin \theta, r) \cos 0 < r < 5, 0 < \theta < \pi$.
- 3.- Dada la esfera de centro (0,0,0) y radio 2, hallar la ecuación del plano tangente en el punto $(1,1,\sqrt{2})$ considerándola como:
 - (a) Superficie parametrizada, $\Phi(\theta,\varphi)=(2\,\cos\theta\,\sin\varphi,2\,\sin\theta\,\sin\varphi,2\,\cos\varphi)\,\cos\,0<\theta<2\,\pi,\,0<\varphi<\pi.$
 - (b) Superficie de nivel 4 de la función $f(x, y, z) = x^2 + y^2 + z^2$.
 - (c) Gráfica de la función $g(x,y) = \sqrt{4 x^2 y^2}$ con $(x,y) \in D = \{(x,y) : x^2 + y^2 \le 4\}$.
- 4.- (a) Hallar un parametrización para el hiperboloide $x^2 + y^2 z^2 = 25$
 - (b) Hallar una expresión para una normal unitaria a esta superficie.
 - (c) Hallar una ecuación para el plano tangente a la superficie en $(x_0, y_0, 0)$, donde $x_0^2 + y_0^2 = 25$.
 - (d) Demostrar que las rectas $(x_0, y_0, 0) + t(-y_0, x_0, 5)$ y $(x_0, y_0, 0) + t(y_0, -x_0, 5)$ están en la superficie y en el plano tangente hallado en (c).
- 5.- Hallar el área del helicoide definido por $\Phi:D\to\mathbb{R}^3$ donde $\Phi(r,\theta)=(r\cos\theta,r\sin\theta,\theta)$ y D es la región donde $0\leq r\leq 1$ y $0\leq \alpha\leq 2\pi$.
- 6.- Un toro T se puede representar como el conjunto $\Phi(D)$ con $\Phi:D\to\mathbb{R}^3$ dada por las funciones coordenadas $x=(R+\cos\theta)\cos\phi,\ y=(R+\cos\theta)\sin\phi,\ z=\sin\theta,\ y\ D=\{(\theta,\phi)\ :\ 0<\theta<2\pi\ \}.$ Calcular el área de T.
- 7.- Demuéstrese que la superficie $z=1/\sqrt{x^2+y^2}$, donde $1\leq z<\infty$, "se puede llenar pero no se puede pintar" y explíquese el significado de esta frase.
- 8.- Calcular la integral de superficie $I = \int_S (x+z) dS$, donde S es la porción del cilindro $y^2 + z^2 = 9$, entre x = 0 y x = 4, perteneciente al primer octante, de dos maneras:
 - (a) considerando S como la gráfica de una función de las variables x e y y expresando I como una integral doble:
 - (b) parametrizando la superficie de otra manera (por ejemplo, usando como parámetros la coordenada x y el ángulo θ de las coordenadas polares en el plano yz.
- 9.- Hallar la integral de superficie $\int_S F \cdot dS$, siendo $F(x,y,z) = (x^3,y^3,-3z)$ y donde S denota la esfera unidad $\{(x,y,z) \in \mathbb{R}^3: x^2+y^2+z^2=1\}$ orientada hacia el exterior.

10.- Hallar la integral del campo

$$F(x, y, z) = (x + \cos y - \log(1 + z^2), y + \sin \sqrt{1 + x^2 + z^2}, z)$$

sobre la esfera unidad con la orientación inducida por normal exterior.

11.- Sea S la superficie del cubo $0 \le x, y, z \le 1$ con la orientación correspondiente a la normal exterior. Si $F(x, y, z) = (x^2, y^2, z^2)$, calcular la integral

$$\int_{S} F \cdot dS.$$

12.- Transformar la integral de superficie

$$\int_{S} \operatorname{rot} F \cdot dS,$$

en una integral de línea utilizando el Teorema de Stokes y calcular entonces la integral de línea en cada uno de los siguientes casos:

- a) $F(x, y, z) = (y^2, xy, xz)$, donde S es el hemisferio $x^2 + y^2 + z^2 = 1, z \ge 0$ y la normal tiene componente z no-negativa. Resultado: 0.
- b) F(x,y,z)=(y,z,x), donde S es la parte del paraboloide $z=1-x^2-y^2$ con $z\geq 0$ y la normal tiene componente z no-negativa. Resultado: $-\pi$.
- c) F(x, y, z) = (y z, yz, -xz), donde S consta de las cinco caras del cubo $0 \le x, y, z \le 2$ no situadas en el plano xy y la normal escogida es la exterior. Resultado: -4.
- 13.- Utilizar el Teorema de Stokes para comprobar que las siguientes integrales de línea tienen los valores que se dan, indicando en cada caso el sentido en el que se recorre C para llegar al resultado.
 - a) Siendo C la curva intersección de la esfera $x^2 + y^2 + z^2 = R^2$ y el plano x + y + z = 0,

$$\int_C y \, dx + z \, dy + x \, dz = \pi \, R^2 \sqrt{3} \,.$$

b) Siendo C la curva intersección del cilindro $x^2 + y^2 = 2y$ y el plano y = z,

$$\int_C (y+z) \, dx + (z+x) \, dy + (x+y) \, dz = 0, \qquad \int_C y^2 \, dx + x \, y \, dy + x \, z \, dz = 0.$$

c) Siendo C la curva intersección del cilindro $x^2+y^2=a^2$ y el plano x/a+z/b=1 , con a,b>0 ,

$$\int_C (y-z) \, dx + (z-x) \, dy + (x-y) \, dz = 2\pi \, a(a+b) \, .$$

14.- Sea S la superficie formada por las porciones de la semiesfera $z=\sqrt{1-x^2-y^2}$ y del semicono $z=\sqrt{x^2+y^2}$ con $x^2+y^2\leq 1/2$. Calcular $\int_S F\cdot dS$ (con la orientación inducida por la normal exterior) donde

$$F(x, y, z) = (x z + e^{y \sin z}, 2 y z + \cos(xz), -z^2 + e^x \cos y).$$

15.- Hallar la integral de superficie

$$\int_{S} F \cdot dS \qquad \text{siendo} \qquad F(x, y, z) = (x^{3}, y^{3}, -abz),$$

cuando S es el elipsoide de revolución

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1 \,,$$

2

orientado hacia el exterior.