Detección de contornos

- Extracción de contornos: Separación de elementos significativos de la superficie de los objetos
- Los contornos resumen la mayor parte de la información de una imagen

Extracción de Contornos

- Detección de puntos de contorno
 - Cambios de luminosidad en la imagen
 - » Máximos del Gradiente
 (1ª derivada de la luminosidad)
 - Cruces por cero del Laplaciano
 (2^a derivada de la luminosidad)

- Segmentación de contornos
 - Agrupación de puntos de contorno
 - Eliminación de ruidos
- Ajuste de rectas o curvas

Ejemplo: Contornos de Canny

Operador de Canny: derivada de la Gaussiana

Detección de máximos

- Segmentación de contornos:
 - Seguimiento local + Umbral con histéresis

Ajuste de rectas o curvas

Detección de Puntos de Contorno

- Máximo local del gradiente (1ª derivada)
- Cruce por cero del Laplaciano (2ª derivada)

Detección con el Gradiente

Gradiente:

Gradiente
$$\nabla f(x,y) = (\nabla_x, \nabla_y) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$$

Módulo

$$|\nabla f| = \sqrt{(\nabla_x)^2 + (\nabla_y)^2} \approx |\nabla_x| + |\nabla_y|$$

Orientación
$$\theta = \operatorname{atan} 2(\nabla_x, \nabla_y)$$

Operadores:

1ª diferencia

$$\begin{pmatrix} \mathbf{v} & \mathbf{x} \\ -\mathbf{1}_{\mathbf{a}} & \mathbf{1} \end{pmatrix}$$

$$\begin{array}{c|c} \mathbf{v} & y \\ \hline & 1_{\bullet} \\ \hline & -1 \end{array}$$

Roberts

Dividir por la suma de los valores positivos

Prewitt

$$\begin{array}{c|cccc}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}$$

Sobel

$$\begin{array}{c|cccc}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}$$

Gradiente: Operador de Canny

- Optimiza tres criterios:
 - Robustez de detección frente al ruido
 - Precisión en la localización
 - Unicidad de la respuesta
- Similar a la derivada de una Gaussiana

$$G'_{\sigma}(x) = \frac{-x}{\sigma^2} \exp\left(\frac{-x^2}{2\sigma^2}\right)$$

- Tamaño de la máscara: 5σ–7σ
- Ejemplo, para $\sigma = 1$

Dividir por la suma de los valores positivos

Gradiente: Operador de Canny

- Cálculo de gradiente en x e y
 - Pueden utilizarse máscaras separadas

$$\nabla_{x} = G'_{\sigma}(x) * G_{\sigma}(y) * f(i, j)$$
$$\nabla_{y} = G_{\sigma}(x) * G'_{\sigma}(y) * f(i, j)$$

– Para el caso σ = 1, n = 5

$$\nabla_{x} = \frac{1}{K} \begin{bmatrix} -0.2707 & -0.6065 & 0.0 & 0.6065 & 0.2707 \\ 0.6065 & 0.006065 & 0.2707 \end{bmatrix} * \begin{bmatrix} 0.6065 & 0.6065 \\ 0.6065 & 0.1353 \\ 0.1353 & 0.6065 \end{bmatrix}$$

0.1353

$$\nabla_y = \frac{1}{K} \boxed{ 0.1353 \quad 0.6065 \quad 1.0 \quad 0.6065 \quad 0.1353 } \\ * \qquad \begin{array}{c|c} 0.2707 \\ \hline 0.6065 \\ \hline -0.6065 \\ \hline -0.2707 \end{array} \\ *f(i,j)$$

Máximos del Gradiente

Máximos locales del módulo en la dirección del Gradiente

 Para cada pixel con módulo mayor que un umbral, se toma una ventana 3x3

- Se calcula el módulo del gradiente en B y C, interpolando linealmente entre los valores de A3-A4 y A7-A8
- El pixel A es punto de contorno si su módulo es mayor que el de B y mayor o igual que el de C

Máximos del Gradiente

Detección con la 2^a derivada

• Laplaciano:
$$\nabla^2 f(x,y) = \nabla^2 x + \nabla^2 y = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\begin{array}{c|cccc}
\nabla^2_x & \nabla^2_y \\
\hline
2^a diferencia & 1 & -2 & 1 & -2 \\
\hline
1 & & & & & \\
\hline
1 & & & &$$

Operadores para el Laplaciano

0	1	0
1	-4	1
0	1	0

1	4	1
4	-20	4
1	4	1

- Cruces por cero: contornos conexos, cerrados, y delgados
- La 2ª derivada amplifica mucho el ruido: necesario filtrar

Operador de Marr-Hildreth

Filtro Gaussiano + Operador Laplaciano

$$\nabla^2 * G_{\sigma} * f(i,j) = \left(\nabla^2 G_{\sigma}\right) * f(i,j)$$

$$\nabla^2 G_{\sigma}(r) = \frac{r^2 - 2\sigma^2}{\sigma^4} \exp\left(\frac{-r^2}{2\sigma^2}\right)$$

Sombrero mexicano (invertido)

Contornos: Cruces por cero

 Se consideran contornos los cruces por cero de magnitud superior a un umbral

```
my := 0
mx := 0
si q(i,j) >= 0 entonces
  si q(i+1,j) < 0 entonces
    my := q(i,j) - q(i+1,j)
  fsi
  si q(i,j+1) < 0 entonces
   mx := q(i,j) - q(i,j+1)
  fsi
sino
  si q(i+1,j) >= 0 entonces
    my := q(i+1,j) - q(i,j)
  fsi
  si q(i,j+1) >= 0 entonces
    mx := q(i,j+1) - q(i,j)
  fsi
fsi
magnitud(i,j) := max(my,mx)
```

Contornos: Cruces por cero

Zero crossings of $\nabla^2 G$ with $\sigma=1$.

Zero crossings of $\nabla^2 G$ with $\sigma=2$.

Zero crossings of $\nabla^2 G$ with $\sigma=3$.

Figure 4.10 The zero-crossings of the Marr-Hildreth operator applied to the

Detección de Contorr

Segmentación de Contornos

- Objetivos:
 - Extracción de rectas o curvas
 - Eliminación de contornos espúreos
- Técnicas:
 - Análisis local:
 - » Seguimiento de contornos
 - Umbral con histéresis
 - » Ajuste de rectas o curvas
 - División recursiva
 - Mínimos cuadrados
 - Transformada de Hough
 - Método de Burns: segmentación de rectas usando la orientación del gradiente

Seguimiento de Contornos

- Objetivo: cadenas de puntos de contorno de una cierta "intensidad" (módulo del gradiente o magnitud del cruce por cero)
- Elegir un valor de umbral es difícil

Umbral Demasiado ruido

Umbral con histéresis

- Cada cadena de contorno debe tener:
 - Todos los pixels >= Uinf
 - Al menos un pixel »= Usup
- Además filtrado por longitud del contorno

Seguimiento de Contornos

```
procedimiento encadenar contornos
  para i:= 1 hasta nfilas
    para j:= 1 hasta ncolumnas
      inicial:=(i,j)
      si modulo(inicial) >= Umbral_sup entonces
        n := 0
        sequir(inicial, cadena, n)
        reverse(cadena, n)
        seguir(siguiente(inicial), cadena, n))
        si n >= longitud_minima entonces
          quardar(cadena,n)
        fsi
      fsi
    fpara
  fpara
fin encadenar contornos
procedimiento seguir(actual, var cadena, var n)
  mientras actual <> nulo
    n:=n+1
    cadena(n):= actual
    modulo(actual):= 0
    actual:= siguiente(actual)
  fmientras
fin sequir
funcion siguiente(actual) devuelve pixel
  para sigte en vecinos(actual)
    si modulo(sigte) >= Umbral inf entonces
      devolver sigte
    fsi
  fpara
  devolver nulo
fin siguiente
```

División recursiva en rectas

1. División recursiva de una cadena:

- Recta que une los extremos de la cadena
- Punto que más se separa de la recta
- Si separación > umbral (ej: 2 pixels), partir la cadena por dicho punto
- Repetir para las dos subcadenas obtenidas
- 2. Fusión de segmentos:
 - Dos segmentos adyacentes se fusionan si la desviación del pixel más alejado de la recta es menor que el umbral
- 3. Eliminar segmentos muy cortos o con gradiente pequeño
- 4. Recta definida por los extremos de la cadena, o ajustada por mínimos cuadrados

División recursiva en rectas

Ejemplo

División recursiva en rectas

 Distancia de un punto a la recta que pasa por otros dos puntos:

$$d = \frac{\left|x_3(y_1 - y_2) - y_3(x_1 - x_2) + y_2x_1 - y_1x_2\right|}{\sqrt{(y_1 - y_2)^2 + (x_1 - x_2)^2}}$$

División y ajuste de rectas

Cadenas de contornos y rectas obtenidas

Ajuste de rectas

- Mínimos cuadrados (regresión total)
 - Minimizar la suma del cuadrado de las distancias pixel-recta

Ecuación de la recta: $x \cos \theta + y \sin \theta - \rho = 0$

Distancia del pixel i: $d_i = x_i \cos \theta + y_i \sin \theta - \rho$

Minimizar: $D^{2} = \sum_{i} (x_{i} \cos \theta + y_{i} \sin \theta - \rho)^{2}$

- Solución: eje de "minima inercia"
 - Igual que el calculo de la posición y orientación de un blob.
- Extremos: proyección del pixel inicial y final sobre la recta obtenida

4.2 Transformada de Hough

- Detección global de rectas o curvas
- Se representan de forma paramétrica
- Parámetros para las rectas: ρ y θ

$$ρ = x cos\theta + y sen\theta$$

$$x = j - ncolumnas/2$$

 $y = nfilas/2 - i$

Transformada de Hough

- Un pixel de coordenadas (xi, yi) puede pertenecer a cualquier recta de ecuación: ρ = xi cosθ + yi senθ
- Se divide el espacio (ρ,θ) en celdas
- Cada pixel vota a todas las rectas a las que puede pertenecer
- Buscar las rectas más votadas

Tr. Hough: Uso de la orientación

- Tiempo de cálculo excesivo
- Mejora: cada pixel solo vota en orientaciones similares a la orientación de su gradiente

Tr. Hough: Uso de la orientación

Sin Orientación

```
para i:= 1 hasta nfilas
  para j:= 1 hasta ncolumnas
  si modulo(i,j)>=Umbral
    x:= j - ncolumnas/2
    y:= nfilas/2 - i
    para θ:=θmin hasta θmax
    ρ:= x*cos(θ) + y*sin(θ)
    votar_recta(i,j,ρ,θ)
    fpara
  fsi
  fpara
fpara
```

Con Orientación

```
para i:= 1 hasta nfilas
  para j:= 1 hasta ncolumnas
  si modulo(i,j)>=Umbral
    x:= j - ncolumnas/2
    y:= nfilas/2 - i
        θ:= orientacion(i,j)
        ρ:= x*cos(θ) + y*sin(θ)
        votar_recta(i,j,ρ,θ)
    fsi
  fpara
fpara
```

Tr. de Hough: Círculos

- También sirve para curvas, pero el número de parámetros es mayor
- Elemplo: círculos
 - Radio y Centro (r, a, b)
 - Forma paramétrica (polar)

$$r^2 = (x-a)^2 + (y-b)^2$$

 $x = a + r \cos \theta$

$$y = b + r \sin \theta$$

Usando la orientación del gradiente:

$$a = x - r \cos \theta$$

$$b = y - r\sin\theta$$

$$a = x + r \cos \theta$$

$$b = y + r\sin\theta$$

Tr. de Hough: Círculos

Tabla de acumulación 3D: (r,a,b)

Con Orientación

```
para i:= 1 hasta nfilas
  para j:= 1 hasta ncolumnas
    si modulo(i,j)>=Umbral entonces
      x := j - ncolumnas/2
      y:= nfilas/2 - i
      \theta:= orientacion(i,j)
      para r:= rmin hasta rmax
        a := x - r*cos(\theta)
        b := y - r * sin(\theta)
        votar_circulo(i,j,r,a,b)
      fpara
    fsi
  fpara
fpara
```

Aplicación: punto de fuga de un pasillo

Cada punto de contorno vota a un punto de la línea del

horizonte

