Hamiltonian simulation algorithms for near-term quantum hardware

Patrick Bettermann

June 9, 2022

- Hamiltonian simulation
 - Schrödinger equation
 - Lie-Trotter product formula
- 2 Implementation
 - Split operator
 - Simulating a wavefunction
- 3 Hamiltonian simulation algorithms for near-term quantum hardware
 - Introduction
 - Fermi-Hubbard Model
 - Sub-Circuit Model
 - Trotter bounds
- 4 Results
 - Per-gate run-times
 - Gate decomposition cost
- Outlook
- 6 End

Problem statement

Definition

Hamiltonian simulation:

"Given a description of a Hamiltonian H, and evolution time t, some initial state $|\psi(0)\rangle$ produce the final state $|\psi(t)\rangle$ (to some error ϵ)"

 "The Hamiltonian of a system is the sum of the kinetic energies of all the particles, plus the potential energy of the particles associated with the system

Why is this a difficult problem?

Definition

We assume that the quantum state is loaded into memory

- a classical computer can't store the state efficiently
- a classical computer cannot produce a complete description of the state

Schrödinger equation

Definition

$$H|\psi(t)\rangle = i\hbar \frac{\delta}{\delta t} |\psi(t)\rangle$$

integrate both sides:

$$|\psi(t)\rangle = e^{-iHt/\hbar} |\psi(0)\rangle$$

break H down into potential and kinetic energy:

$$\hat{V}$$
 (E_{pot}), $E_{kin} = p^2 \frac{1}{2m}$

$$e^{rac{-i\hat{V}t}{\hbar}}$$
 and $e^{rac{-ip^2t}{2m\hbar}}$ don't commute, $e^{-iHt/\hbar}
eq e^{rac{-i\hat{V}t}{\hbar}} e^{rac{-ip^2t}{2m\hbar}}$

Lie-Trotter product formula

Definition

$$e^{A+B} = \lim_{n \to \inf} (e^{A/n} e^{B/n})^n$$

- product formula: simulate the sum-terms of a Hamiltonian by simulating each one separetly for a small time slice
- H = A + B + C
- $U = e^{-i(A+B+C)t} = (e^{-iCt/r}e^{-iBt/r}e^{-iCt/r})^r$
- switching between kinetic and potential energy terms

we arrive at:
$$e^{\frac{-i\hat{H}t}{\hbar}}=\lim_{N\to\infty}(e^{\frac{-ip^2t}{2m\hbar N}}e^{\frac{-\hat{V}(\hat{x})t}{\hbar N}})^N$$

Definition

Split operator

Algorithm:

- **①** Apply a half step of the potential propagator to $\psi(0)$
- Apply the Fourier transform: momentum basis
- Apply a full step of the kinetic propagator on the momentum basis
- Apply the Inverse Fourier transform: back to coordinate basis
- Solution
 Apply the second half step of the potential propagator

this algorithm results from splitting the propagator, substituting into the Schrödinger equation and projecting onto a coordinate basis $|x\rangle$

End

Simulating a wavefunction

• blue line: $\langle \Psi | \Psi \rangle$

ullet orange line: potential energy, \hat{V}

End

Simulating a wavefunction

• blue line: $\langle \Psi | \Psi \rangle$

ullet orange line: potential energy, \hat{V}

Problem statement

Definition

Find explicit gate count for near-term simulations

- gate count of near-term quantum hardware is very limited
- algorithms need to be optimized to use as few gates as possible
- even low gate counts of 250 gates are still too costly

Topics

- Optimal fermion encoding
- Subscircuits: programming below the circuit model
- Non-asymptotic Trotter bounds

Fermi-Hubbard Model

Hamiltonian:

$$H_{FH} = \sum_{i=1}^{N} h_{on-site}^{(i)} + \sum_{i < j, \sigma} h_{hopping}^{(i,j,\sigma)}$$

- Model existed before quantum computing
- Most practical applications involve fermionic system
- Classical approaches can be used as benchmark

Sub-Circuit Model

- Assumption: hardware can perform CNOT, Z, H gates
- Layer of abstraction: overhead
- Quantum circuit: $C = \prod_{l=1}^{L} U_{l} V_{j}$
- $U_l = \prod_{i \in Q} u_i^l$ a layer of arbitrary single qubit unitary gates $V_l = \prod_{ij \in \Gamma} v_{ij}(t_{ij}^l)$ a layer of non-overlapping, two-qubit gates
- two-qubit unitary gates: $v_{ij}(t) = e^{ith_{ij}}, h_{ij} = Z_i Z_j$
- $h_{ij} = \sigma_i \sigma_j$ since $\sigma_i \sigma_j = Z_i Z_j(*)$
- the cost $T_{cost}(C) = L$, L = circuit depth

Definition

how to decompse local Trotter steps $e^{i\delta h}$

Let
$$U(t) = e^{itH}, H = \frac{1}{2i}[h_1, h_2]$$

Let $U(t) = e^{itH}$, $H = \frac{1}{2i}[h_1, h_2]$ $U(t) = e^{it_1h_1}e^{it_2h_2}e^{it_2h_1}e^{it_1h_2}$ (Lemma 7, supplementary)

Error models

- Per-gate error model
- Per-time error model
 - "Error budget required to execute a circuit"
- Single-qubit gates are considered free
- Obtain tight error expression $\epsilon_p(\delta)$
- Guarantee $\epsilon_p(\delta) < \epsilon_{target}$ by inverting the expression and derive a maximum possible Trotter step $\delta_0 = \delta_0(\epsilon_{target})$

Table 1 Per-gate run-times.					
Fermion encoding	Trotter bounds	Standard decomposition	Sub-circuit decomposition		
VC	Ref. 23, Prop. F.4.	1,243,586	977,103		
	Analytic	121,478	95,447		
	Numeric	5391	4236		
Compact	Analytic	98,339	72,308		
	Numeric	4364	3209		

A comparison of the run-time T_{cost} for lattice size $L \times L$ with L = 5, overall simulation time T = 7and target Trotter error $\epsilon_{\text{target}} = 0.1$, with $\Lambda = 5$ fermions and coupling strengths $|u|, |v| \le r = 1$. Obtained by minimising over product formulas up to 4th order. T_{cost} = circuit depth for pergate error model. In either gate decomposition case—standard and sub-circuit—we account single-qubit rotations as a free resource as explained in the Introduction; the value of $T_{\rm cost}$ depends only on the two-gubit gates/interactions. Two-gubit unitaries are counted by unit time per gate in the per-gate error model. Here compact and VC denote the choice of fermionic encoding.

source: Hamiltonian simulation algorithms for near-term quantum hardware, Clinton et al.

Table 2 Per-time run-times.				
Fermion encoding	Trotter bounds	Standard decomposition	Sub-circuit decomposition	
VC	Ref. ²³ , Prop. F.4.	976,710	59,830	
	Analytic	95,409	17,100	
	Numeric	4234	1669	
compact	Analytic	77,236	1686	
	Numeric	3428	259	

A comparison of the run-time T_{cost} for lattice size $L \times L$ with L = 5, overall simulation time T = 7and target Trotter error $\epsilon_{\text{target}} = 0.1$, with $\Lambda = 5$ fermions and coupling strengths $|u|, |v| \le r = 1$. Obtained by minimising over product formulas up to 4th order. $T_{cost} = T_{cost}(P_n(\delta_0)^{T/\delta_0})$ for per-time error model. In either gate decomposition case—standard and sub-circuit—we account single-qubit rotations as a free resource; the value of T_{cost} depends only on the two-qubit gates/interactions. Two-qubit unitaries are counted by their respective pulse lengths. Here compact and VC denote the choice of fermionic encoding.

source: Hamiltonian simulation algorithms for near-term quantum hardware, Clinton et al.

Gate decomposition cost

source: Hamiltonian simulation algorithms for near-term quantum hardware. Clinton et al.

Outlook

- Further optimization needed for quantum hardware
- Tighter error bounds might be reached
- Standard circuit decomposition will stay unfeasible on real hardware for some time
- The sub-circuit model might enable some algorithm to run on NISQ hardware

Hamiltonian simulation Implementation amiltonian simulation algorithms for near-term quantum hardware Results Outlook End

Thank you for your attention!