Classification

Week goals

What is classification

Which loss functions are used to train linear classifiers

How to measure performance of a classifier

 What is Logistic regression and SVM models and how they are connected to linear classifier with error rate as a loss function

Binary Classification

- $\mathbb{Y} = \{ -1, +1 \}$
- -1 negative class
- +1 positive class
- a(x) should return one of two numbers

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j$$

Returns a real number

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x_j\right)$$

$$a(x) = sign(\langle w, x \rangle)$$

Assuming that we have a feature, which is always 1

Hyperplane

$$\langle w, x \rangle = 0$$

• w – normal vector

Hyperplane

$$\langle w, x \rangle = 0$$

- w normal vector
- If x lies on hyperplane, then $\langle w, x \rangle = 0$
- $\langle w, x \rangle < 0$ object lies «to the left» from hyperplane
- $\langle w, x \rangle > 0$ object lies «to the right» from hyperplane

Hyperplane

$$\langle w, x \rangle = 0$$

• Distance from the point to hyperplane $\langle w, x \rangle = 0$:

$$\frac{\left|\left\langle w,\,x\right\rangle \right|}{\|w\|}$$

• The lager $\langle w, x \rangle$ value is, further the object is from a hyperplane

$$M_i = y_i \langle w, x_i \rangle$$

- $M_i > 0$ classifier give the right answer
- $M_i < 0$ classifier give the wrong answer
- Distance from zero indicates the confidence of the classifier (large absolute values mean that the classifier is more confident)

Threshold

$$a(x) = sign(\langle w, x \rangle - t)$$

- *t* threshold
- We can choose threshold using loss function which is different from the one used for training

Summary

Linear classifier separates two classes using a hyperplane

$$a(x) = sign(\langle w, x \rangle - t)$$

- Sing of a scalar product shows, on which side compared to hyperplane the object lies
- Margin reflects confidence of a classifier on a given object

$$M_i = y_i \langle w, x_i \rangle$$

Training Linear Classifiers

Loss function in classification

Loss function – error rate

$$L(a, X) = \frac{1}{N} \sum_{i=1}^{N} [a(x_i) \neq y_i]$$

Sometimes accuracy is measured:

$$L(a, X) = \frac{1}{N} \sum_{i=1}^{N} [a(x_i) = y_i]$$

Indicator function:

$$[A] = \begin{cases} 1, & if \ A \ is \ True \\ 0, & if \ A \ is \ False \end{cases}$$

Loss function

$$L(w, X) = \frac{1}{N} \sum_{i=1}^{N} \left[\text{sign} \left(\langle w, x_i \rangle \right) \neq y_i \right]$$

Alternative formulation:

$$L(w, X) = \frac{1}{N} \sum_{i=1}^{N} \left[y_i \langle w, x_i \rangle < 0 \right]$$

Loss function

$$L(w, X) = \frac{1}{N} \sum_{i=1}^{N} \left[\text{sign} \left(\left\langle w, x_i \right\rangle \right) \neq y_i \right]$$

Alternative formulation:

$$L(w, X) = \frac{1}{N} \sum_{i=1}^{N} \left[y_i \langle w, x_i \rangle < 0 \right]$$

$$M_i$$

Indicator – non-differentiable function

$$l(M) = \left[M < 0 \right]$$

• Error rate (on 1 object) as a function of a margin

Upper bound

$$l(M) = \left[M < 0 \right] \le \tilde{l} \ (M)$$

Let us take an upper bound of the error rate

Upper Bound

$$0 \le \frac{1}{N} \sum_{i=1}^{N} \left[y_i \langle w, x_i \rangle < 0 \right] \le \frac{1}{N} \sum_{i=1}^{N} \tilde{l} \left(y_i \langle w, x_i \rangle \right) \to \min_{w}$$

- We can now minimize the upper bound
- Hopefully, it will automatically reduce the error rate

Examples of Upper Bounds

- $\tilde{l}(M) = \log(1 + e^{-M}) \text{logistic}$
- $\tilde{l}(M) = \max(0, 1 M)$ hinge loss
- $\tilde{l}(M) = e^{-M}$ exponential

$$\widetilde{l}(M) = \frac{2}{1 + e^M} - \text{sigmoid}_{3.0}$$

Example: logistic regression

Assume, that we chose logistic loss function

$$\tilde{l}(M) = \log(1 + e^{-M})$$

Example: logistic regression

Assume, that we chose logistic loss function

$$\tilde{l}(M) = \log(1 + e^{-M})$$

We can now apply gradient descent to optimize the loss

$$\widetilde{L}(w, X) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

Example: logistic regression

Assume, that we chose logistic loss function

$$\tilde{l}(M) = \log(1 + e^{-M})$$

We can now apply gradient descent to optimize the loss

$$\widetilde{L}(w, X) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

We can add regularization, just as we did with linear regression

$$\min_{w} \widetilde{L}(w, X) + \lambda ||w||^2$$

Summary

• It is not feasible to optimize the error rate

 We can upper bound the loss with some differentiable function and optimize this bound instead

• From this point, we can train our model as we did last week with linear regression: use gradient descent, add regularization

Quality Metrics in Classification

Loss function in classification

Loss function – error rate

$$L(a, X) = \frac{1}{N} \sum_{i=1}^{N} [a(x_i) \neq y_i]$$

Sometimes accuracy is measured:

$$L(a, X) = \frac{1}{N} \sum_{i=1}^{N} [a(x_i) = y_i]$$

Accuracy and Imbalanced Datasets

• Imbalanced Dataset – when one class has more observations than another one

- Examples:
 - Predicting that the user will click on the ad
 - Medical diagnostics

Imbalanced Datasets: examples

- Class +1: 50 observations
- Class -1: 950 observations
- Consider the model

$$a(x) = -1$$

Imbalanced Datasets: examples

- Class +1: 50 observations
- Class -1: 950 observations
- Consider the model

$$a(x) = -1$$

- Accuracy: 0.95
- What is wrong with this model?
 - The model does not add any value
 - Errors are not equivalent

Credit scoring

- Model 1: gives 100 loans
 - 80 pay-off
 - 20 defaults
- Model 2: gives 50 loans
 - 48 pay-off
 - 2 defaults
- Which one is better?

Confusion Matrix

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Confusion Matrix

Model $a_1(x)$

Model $a_2(x)$

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

Precision

• Can we trust a classifier, when it attributes an object to a positive class?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Precision

Model $a_1(x)$

Model $a_2(x)$

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

 $precision(a_1, X) = 0.8$

 $precision(a_2, X) = 0.96$

Recall

• What proportion of a positive class the model was able to detect?

$$recall(a, X) = \frac{TP}{TP + FN}$$

Recall

Модель $a_1(x)$

Модель $a_2(x)$

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

$$\mathsf{recall}(a_1, X) = 0.8$$

$$\mathsf{recall}\big(a_2, X\big) = 0.48$$

Examples

- Credit scoring
 - No more that 5% of defaults
 - precision(a, X) ≥ 0.95
 - Maximize recall
- Medical diagnostics
 - Find at least 90% of all the sick
 - recall(a, X) ≥ 0.9
 - Maximize precision

Precision and Recall

precision(a, X) =
$$\frac{\text{TP}}{\text{TP} + \text{FP}}$$

recall(a, X) = $\frac{\text{TP}}{\text{TP} + \text{FN}}$

What if we want to optimize both?

Average

$$A = \frac{1}{2} (precision + recall)$$

Average

$$A = \frac{1}{2} (precision + recall)$$

- precision = 0.1
- recall = 1
- A = 0.55

A bad algorithm

Average

$$A = \frac{1}{2} (precision + recall)$$

- precision = 0.55
- recall = 0.55
- A = 0.55

A better algorithm

F_1 score (harmonic mean)

$$F = \frac{2 * \text{precision} * \text{recall}}{\text{precision} + \text{recall}}$$

F_1 score (harmonic mean)

$$F = \frac{2 * \text{precision} * \text{recall}}{\text{precision} + \text{recall}}$$

- precision = 0.1, recall = 1
- F = 0.18
- precision = 0.55, recall = 0.55
- F = 0.55
- precision = 0.55, recall = 0.8
- F = 0.652

F_{eta} score

$$F = \frac{(1 + \beta^2) * \text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

F_{eta} score

$$F = \frac{(1 + \beta^2) * \text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

• $\beta = 0.5$ – precision is more important

F_{eta} score

$$F = \frac{(1 + \beta^2) * \text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

• $\beta = 2$ – recall is more important

Summary

 Accuracy is a very convenient metrics, but sometimes it is not the best way to assess quality of a model

 To distinguish between different errors one can use precision and recall

 Moreover, we can combine them into one metric, e.g. use harmonic mean

Precision-Recall Curve

Classifier

$$a(x) = \operatorname{sign}(b(x) - t) = 2[b(x) > t] - 1$$

Linear classifier:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - t) = 2[\langle w, x \rangle > t] - 1$$

Classifier

$$a(x) = \operatorname{sign}(b(x) - t) = 2[b(x) > t] - 1$$

Linear classifier:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - t) = 2[\langle w, x \rangle > t] - 1$$

- $\langle w, x \rangle$ assesses the possibility of the class +1
- How to choose t?
- How to evaluate b(x)?

Classifier

$$a(x) = \operatorname{sign}(b(x) - t) = 2[b(x) > t] - 1$$

Linear classifier:

$$a(x) = \text{sign}(\langle w, x \rangle - t) = 2[\langle w, x \rangle > t] - 1$$

- $\langle w, x \rangle$ assesses the possibility of the class +1
- How to choose t? Based on precision and recall
- How to evaluate b(x)?

Threshold examples

$$a(x) = \operatorname{sign}(b(x) - t)$$

-1	-1	+1	+1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

Threshold examples

$$a(x) = \operatorname{sign}(b(x) - t)$$

	-1	-1	+1	+1	-1	-1	+1	+1	-1	+1
	0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9
	-1	-1	-1	-1	-1	-1	+1	+1	+1	+1
	t = 0.45									

precision =
$$\frac{3}{3+1} = 0.75$$

recall = $\frac{3}{3+2} = 0.6$

Threshold examples

$$a(x) = \operatorname{sign}(b(x) - t)$$

_									
-1	-1	+1	+1	-1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9
-1	-1	+1	+1	+1	+1	+1	+1	+1	+1

$$t = 0.1$$

precision =
$$\frac{5}{5+3} = 0.625$$
$$recall = \frac{5}{5+0} = 1$$

Classifier

$$a(x) = \operatorname{sign}(b(x) - t) = 2[b(x) > t] - 1$$

• Linear classifier:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - t) = 2[\langle w, x \rangle > t] - 1$$

- $\langle w, x \rangle$ assesses the possibility of the class +1
- How to choose t? Based on precision and recall
- How to evaluate b(x)?

X-axis – recall

• Y-axis – precision

 Each point – values of precision and recall for different thresholds

- Left point: (0, 0)
 - The largest threshold
 - No points in the positive class

- Left point: (0, 0)
 - The largest threshold
 - No points in the positive class
- Right point: (1, r)
 - r proportion of objects in positive class
 - The lowest threshold
 - All the points are predicted to be positive

- Left point: (0, 0)
 - The largest threshold
 - No points in the positive class
- Right point: (1, r)
 - r proportion of objects in positive class
 - The lowest threshold
 - All the points are predicted to be positive
- Ideal classifier goes through the point (1, 1)
- AUC-PRC area under PR-curve

AUC-PRC

Model 1: AUC-PRC = 0.78

Model 2: AUC-PRC = 0.97

Summary

• It is useful to evaluate how well the algorithm ranges the objects before choosing the threshold

Area under PR-curve is one way to do that

Area Under ROC-curve

Area Under PR-curve

$$precision = \frac{TP}{TP + FP}; recall = \frac{TP}{TP + FN}$$

- Precision changes, depending on a class balance
- AUC-PRC of an ideal algorithm changes, depending of the class balance
- Easier to interpret in case of imbalanced dataset
- Better if we are interested in precision and recall

ROC-curve

- Receiver Operating Characteristic
- X-axis False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

Y-axis – True Positive Rate (Recall)

$$TPR = \frac{TP}{TP + FN}$$

ROC-curve

Receiver Operating Characteristic

ROC-curve

- Left point: (0, 0)
- Right point: (1, 1)
- Idea classifier goes through (0, 1)
- AUC-ROC area under ROC-curve

Area Under ROC-curve

$$FPR = \frac{FP}{FP + TN}; \qquad TPR = \frac{TP}{TP + FN}$$

- FPR and TPR are normalized to the class size
- AUC-ROC does not change if classes are imbalanced
- AUC-ROC of a ideal classifier is 1

Example: AUC-ROC and AUC-PR

- AUC-ROC = 0.95
- AUC-PRC = 0.001

Example: AUC-ROC and AUC-PR

- Fix a threshold
- a(x) = 1 for 50095 objects
- FP = 50000, TP = 95
- TPR = 0.95, FPR = 0.05
- precision = 0.0019, recall = 0.95

Summary

 Area under ROC-curve is one of the most popular metrics used to estimate the ranging quality

 One have to be careful with AUC-ROC when classes are imbalanced

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Linear classifier:

$$a(x) = sign(b(x) - t) = sign(\langle w, x \rangle - t)$$

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Linear classifier:

$$a(x) = sign(b(x) - t) = sign(\langle w, x \rangle - t)$$

Error rate loss function:

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \left[y_i \langle w, x_i \rangle < 0 \right] = \min_{w} \frac{1}{N} \sum_{i=1}^{N} \left[M_i < 0 \right]$$

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Linear classifier:

$$a(x) = sign(b(x) - t) = sign(\langle w, x \rangle - t)$$

Error rate loss function:

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \left[y_i \langle w, x_i \rangle < 0 \right] = \min_{w} \frac{1}{N} \sum_{i=1}^{N} \left[M_i < 0 \right]$$

We can optimize differentiable upper bound, e.g. logistic loss

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-M_i))$$

Predicting Probabilities

When Do We Need Probabilities?

- Credit Scoring
 - Give loans to client with probability of default less that 10%

- Internet Adds
 - -b(x) probability that the person clicks
 - -c(x) revenue from the ad
 - -c(x)b(x) expected revenue, that we want to maximize

Predicting Probabilities

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Linear classifier:

$$a(x) = sign(b(x)) = sign(\langle w, x \rangle)$$

Can we use $\mathbf{b}(\mathbf{x}) = \langle w, x \rangle$ as a probability estimate?

Predicting Probabilities

Linear Classifier

• Let us convert outputs of the model into [0, 1]

• E.g. we can use Sigmoid function:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Sigmoid

Predicting Probabilities

Predicting Probabilities

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Predicted probabilities:

$$P(y_i = 1) = b(x_i)$$

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Predicted probabilities:

$$P(y_i = 1) = b(x_i)$$

Use sigmoid function to map outputs to the range from 0 to 1:

$$b(x) = \sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Predicted probabilities:

$$P(y_i = 1) = b(x_i)$$

Use sigmoid function to map outputs to the range from 0 to 1:

$$b(x) = \sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

We can now use maximum likelihood to train this model

Summary

• In some tasks it is important to predict class probabilities

 We can apply sigmoid function to the output of the model to get numbers between 0 and 1

• Finally, we want to train our model in such a way, that they would be interpreted as probabilities

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Predicted probabilities:

$$P(y_i = 1) = b(x_i)$$

Use sigmoid function to map outputs to the range from 0 to 1:

$$b(x) = \sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Predict Probabilities

Binary classification task: $\mathbb{Y} = \{-1, +1\}$

Predicted probabilities:

$$P(y_i = 1) = b(x_i)$$

Use sigmoid function to map outputs to the range from 0 to 1:

$$b(x) = \sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

We can train with Log-Loss:

$$\min_{w} \sum_{i=1}^{N} \log(1 + \exp(-y_i \langle w, x_i \rangle))$$

Upper bound on the error rate

$$\tilde{l}(M) = \log(1 + e^{-M})$$

Logistic Regression Loss:

$$\min_{w} \sum_{i=1}^{N} \log(1 + \exp(-y_i \langle w, x_i \rangle))$$

Predicting probabilities

Does Logistic Regression give us correct probabilities?

We will say that the model b(x) predicts probabilities correctly, if among objects with b(x) = p proportion of positive is p.

Predicting probabilities

• Consider objects $x_1, ..., x_n$, where the b(x) outputs the same probability around p:

$$\sum_{i=1}^{n} l(y_i, b(x_i)) = \sum_{i=1}^{n} l(y_i, p)$$

Predicting probabilities

• Consider objects $x_1, ..., x_n$, where the b(x) outputs the same probability around p:

$$\sum_{i=1}^{n} l(y_i, b(x_i)) = \sum_{i=1}^{n} l(y_i, p)$$

What is the optimal output for these objects?

$$p_* = \operatorname{argmin} \sum_{i=1}^n l(y_i, p)$$

We expect that
$$p_* = \frac{1}{n} \sum_{i=1}^{n} \left[y_i = +1 \right]$$

Predicting probabilities: Log-Loss

• Consider objects x_1, \ldots, x_n , where the b(x) outputs the same probability around p:

$$\sum_{i=1}^{n} l(y_i, b(x_i)) = \sum_{i=1}^{n} l(y_i, p)$$

Which output logistic regression would have on these objects?

$$p_* = \operatorname{argmin} \sum_{i} \{ -[y_i = +1] \log p - [y_i = -1] \log(1-p) \}$$

Log-loss

$$p_* = \underset{i}{\text{argmin}} \sum_{i} \left\{ -[y_i = +1] \log p - [y_i = -1] \log(1-p) \right\}$$

Calculate the derivative and find optimal probability:

$$\sum_{i} \left\{ -\frac{\left[y_{i} = +1 \right]}{p} + \frac{\left[y_{i} = -1 \right]}{1-p} \right\} = -\frac{n_{+}}{p} + \frac{n_{-}}{1-p} = 0$$

$$p_* = \frac{n_+}{n_+ + n_-} = \frac{1}{n} \sum_{i=1}^{n} \left[y_i = +1 \right]$$

Predicting probabilities: Log-Loss

We assume that the model gives correct probabilities if for any set $y_1, ..., y_n \in \mathbb{Y}$

argmin
$$\sum_{i=1}^{n} l(y_i, p) = \frac{1}{n} \sum_{i=1}^{n} [y_i = +1]$$

- This is a condition on a loss function (we can check it for Log-Loss, MSE, MAE, etc.)
- It holds for Log-Loss
- Logistic Regression gives us correct probabilities

Summary

• We can formulate the condition that the model estimates the probabilities correctly

Choose loss functions which satisfy this condition

Log-loss is one example of such loss

Another example is MSE, but MSE works poorly with classification tasks