Chapter 7 Fonctions circulaires

Exercice 1 (7.1)

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = \cos(x^2 + 4)$$
.

2.
$$f(x) = \sin \frac{1}{x(x-1)}$$
.

$$3. \ f(x) = \tan 3x.$$

Exercice 2 (7.2)

Calculer $\sin \alpha$ et $\cos \alpha$ sachant que $\tan \alpha = \frac{4}{5}$ et que α un angle du troisième quadrant.

Exercice 3 (7.2)

Soit α un angle du premier quadrant.

Calculer $\sin(2\alpha)$, $\cos(2\alpha)$ et $\tan(2\alpha)$ sachant que $\cos \alpha = \frac{12}{13}$.

Exercice 4 (7.3)

Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1.
$$\sin x = 0$$
,

4.
$$\cos x = 1$$

7.
$$\tan x = 0$$
.

2.
$$\sin x = 1$$
,

4.
$$\cos x = 1$$
, 7. $\tan x = 0$,
5. $\cos x = -1$, 6. $\cos x = 0$, 8. $\tan x = 1$.

3.
$$\sin x = -1$$
,

Exercice 5 (7.3)

Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1.
$$\sin x = \frac{1}{2}$$
,

3.
$$\tan x = -1$$
,

5.
$$\cos x = \frac{\sqrt{3}}{2}$$
,

2.
$$\sin x = -\frac{1}{\sqrt{2}}$$
,

4.
$$\tan x = \frac{1}{\sqrt{3}}$$

3.
$$\tan x = -1$$
,
5. $\cos x = \frac{\sqrt{3}}{2}$,
4. $\tan x = \frac{1}{\sqrt{3}}$,
6. $\cos x = -\frac{1}{\sqrt{2}}$.

Exercice 6 (7.3)

Résoudre l'équation

$$\sin 2x = \cos \frac{x}{2} \tag{1}$$

et représenter sur le cercle trigonométrique les images des solutions.

Exercice 7 (7.3)

Résoudre dans ℝ:

$$2\sin^4 x - 5\sin^2 x + 2 = 0. (1)$$

Exercice 8 (7.3)

Résoudre l'inéquation

$$\frac{1 - 2\sin^2 x}{1 + 2\cos x} \ge 0. \tag{1}$$

d'inconnue $x \in [0, 2\pi]$.

Exercice 9 (7.3)

Soit les deux équations

$$\cos x + \sqrt{3}\sin x = m\sqrt{2}$$

et

 $\cos a \cos x + \sin a \sin x = m \cos b$.

- 1. Déterminer a et b pour qu'elles soient équivalentes.
- 2. En déduire pour quelles valeurs de $m \in \mathbb{R}$ la première de ces équations possède des solutions.
- **3.** La résoudre pour m = 1.

Exercice 10 (7.3)

Soient $\omega, t \in \mathbb{R}$. Mettre l'expression $y = 2\cos^2\left(\omega t + \frac{\pi}{3}\right) + \sin^2\left(\omega t\right)$ sous la forme $y = A\cos(2\omega t + \phi) + B$, A, B et ϕ étant des constantes réelles.

Exercice 11 (7.5)

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = \arctan(1 - 2x)$$
.

2.
$$f(x) = \arcsin \frac{1}{x}$$
.

3. $f(x) = \arccos \sqrt{x(4-x)}$.

Exercice 12 (7.5)

Donner une expression simple des réels

$$A = \arcsin\left(\sin\frac{2\pi}{3}\right); \qquad B = \tan\left(\arctan\frac{1}{\sqrt{3}}\right);$$

$$C = \arcsin\left(\sin\frac{3\pi}{4}\right); \qquad D = \arccos\left(\cos\frac{89\pi}{3}\right).$$

Exercice 13 (7.5)

Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{3}$.

Exercice 14 (7.5)

Calculer 2 $\arcsin \frac{3}{5} + \arcsin \frac{7}{25}$.

Exercice 15 (7.5)

Le but de cet exercice est de tracer la courbe représentative de la fonction f définie par

$$f(x) = \arcsin(\sin x)$$
.

- **1.** Justifier que f est définie sur \mathbb{R} .
- 2. Montrer que f est 2π -périodique et impaire. Justifier que l'on peut alors restreindre l'étude de f à $[0,\pi]$.
- 3. Soit $x \in [0, \pi/2]$, que vaut f(x)?
- **4.** Soit $x \in [\pi/2, \pi]$, que vaut f(x)?
- **5.** Tracer la courbe représentative de la fonction f.

- **6.** $\stackrel{\text{\tiny{iii}}}{\simeq}$ Résoudre les équations f(x) = 0, $f(x) = \frac{\pi}{3}$ et $f(x) = \pi$.
- 7. $\stackrel{\text{\tiny III}}{\rhd}$ Pour $k \in \mathbb{Z}$, on pose $I_k = \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right]$. Simplifier l'expression de f(x) lorsque $x \in I_k$.

Exercice 16 (7.5)

Tracer la courbe représentative de la fonction f définie par

$$f(x) = \arccos(\cos x)$$
.

S'inspirer de l'exercice 15 (7.5).

Exercice 17 (7.5)

Tracer la courbe représentative de la fonction f définie par

$$f(x) = \arctan(\tan x)$$
.

S'inspirer de l'exercice 15 (7.5).

Exercice 18 (7.5)

Montrer

$$\forall x \in [-1, 1], \arcsin(x) + \arccos(x) = \frac{\pi}{2}.$$

Exercice 19 (7.5)

Montrer

$$\forall x \in \mathbb{R}^*, \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

Exercice 20 (7.5)

On se propose d'étudier f, la fonction d'une variable réelle définie par

$$f(x) = \arcsin\left(3x - 4x^3\right).$$

Dans tout cet exercice, on pourra poser $\phi(x) = 3x - 4x^3$.

- **1.** Justifier que le domaine de définition de f est E = [-1, 1].
- **2.** Dans cette question, on cherche a donner une expression simple de $\arcsin(\sin u)$.
 - (a) Montrer que si $u \in \left[-\frac{3}{2}\pi, -\frac{\pi}{2} \right]$, alors $\arcsin(\sin(u)) = -\pi u$.
 - (b) Calculer $\arcsin(\sin(u))$ pour $u \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 - (c) Calculer $\arcsin(\sin(u))$ pour $u \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- **3.** Montrer que pour $\theta \in \mathbb{R}$, on a $\sin(3\theta) = 3\sin\theta 4\sin^3(\theta)$.
- **4.** Soit $x \in E$. On pose $\theta = \arcsin x$. En dégageant les cas pertinents pour x, exprimer $f(x) = f(\sin \theta)$ en fonction de $\arcsin(x)$.
- **5.** Tracer le graphe de f.
- **6.** Déterminer sur quel ensemble f est dérivable. Calculer sa dérivée et confronter votre résultat à celui de la question **4.**.

85

Problème 21 (7.5) Formule de Machin

- 1. Préciser les parties de $\mathbb R$ sur lesquelles :
 - (a) $\arctan(\tan(x)) = x$;
 - (b) tan(arctan(x)) = x.
- 2. Calculer successivement,

$$\tan\left(2\arctan\left(\frac{1}{5}\right)\right), \qquad \tan\left(4\arctan\left(\frac{1}{5}\right)\right), \qquad \text{et} \qquad \tan\left(4\arctan\left(\frac{1}{5}\right)-\frac{\pi}{4}\right).$$

On obtiendra des nombres rationnels que l'on simplifiera.

3. En déduire la formule de Machin

$$\frac{\pi}{4} = 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right).$$

Remarque. Sachant que $\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, cette formule permit à John Machin (1680-1752) de déterminer en 1706 les 100 premières décimales de π .