Putting quantum machine learning algorithms to the test

4th QIPCC conference, 2016 Cape Town, South Africa

Mark Fingerhuth

Maastricht University, The Netherlands Thesis work at Centre for Quantum Technology, UKZN, South Africa

Table of contents

- 1. Introduction
- 2. Amplitude-based kNN algorithm
- 3. Conclusion

Introduction

Quantum Computing & Qubits

Figure 1: Arbitrary two-dimensional qubit $|\psi\rangle$ visualized on the Bloch sphere 1

Most general form of a 2-D qubit:

$$|q\rangle = \alpha |0\rangle + \beta |1\rangle$$
 (1)

where $\alpha, \beta \in \mathbb{C}$.

Can also be visualized in spherical polar coords on the unit or Bloch sphere as follows:

$$|q\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$
 (2)

where $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$

¹Reprinted from Wikipedia, n.d., Retrieved September 7, 2016, from https://en.wikipedia.org/wiki/Bloch_Sphere. Copyright 2012 by Glosser.ca. Reprinted with permission.

Machine Learning

- Approximately 2.5 quintillion (10¹⁸) bytes of digital data are created every day¹
- Need for advanced algorithms that can make sense of data content. retrieve patterns and reveal correlations \rightarrow Machine learning (ML)
- ML algorithms often involve
 - solving large systems of linear equations
 - inverting large matrices
 - distance computations
- Performing these computations on large data sets gets increasingly difficult²

Quantum Machine Learning

- 1. ML involves manipulation of large vectors and matrices
- 2. Quantum mechanics is about vectors \in complex Hilbert spaces
- 3. Quantum computers are performing linear operations on qubits
- \rightarrow Hence, we can manipulate large vectors in parallel on quantum computers

So can we use QC to improve classical ML algorithms??

- Classical ML is a very practical topic
- BUT, QML has been of almost entirely theoretical nature

Quantum data encoding

There are two fundamentally different ways for state preparation:

Data encoded into qubits

k-dimensional probability vector requires 4k classical bits which are encoded one-to-one into 4k qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} * 10 \rightarrow \begin{pmatrix} 6 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 0110 \\ 0100 \end{pmatrix} \rightarrow n = 01100100 \rightarrow |n\rangle = |01100100\rangle$$

Data encoded into amplitudes

k-dimensional probability vector is encoded into $log_2(k)$ qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} \quad \rightarrow \quad |n\rangle = \sqrt{0.6} \, |0\rangle + \sqrt{0.4} \, |1\rangle$$

5

Quantum data encoding

There are two fundamentally different ways for state preparation:

Data encoded into qubits

k-dimensional probability vector requires 4k classical bits which are encoded one-to-one into 4k qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} * 10 \rightarrow \begin{pmatrix} 6 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 0110 \\ 0100 \end{pmatrix} \rightarrow n = 01100100 \rightarrow |n\rangle = |01100100\rangle$$

Data encoded into amplitudes

k-dimensional probability vector is encoded into $log_2(k)$ qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} \quad \rightarrow \quad |n\rangle = \sqrt{0.6} |0\rangle + \sqrt{0.4} |1\rangle$$

6

Classical k-nearest neighbour

- kNN is a non-parametric classifier
- k is a positive integer, usually chosen small

Given training data set: Given a new vector \tilde{x} (red star):

 $D_T = v_0, v_1, ..., v_{10}$

- consider k nearest neighbours

 $v_i \in \{A, B\}$

- classify \tilde{x} , based on majority vote, as A or B

Figure 2: Visualization of a kNN classifier¹

 $^{{}^{1}\}text{Reprinted from GitHub, Burton de Wilde, Retrieved September 13, 2016, from http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/. Copyright 2012 by Burton de Wilde. Reprinted with permission.}$

Amplitude-based kNN algorithm

The algorithm

$$\frac{1}{\sqrt{2M}} \sum_{m=1}^{M} (|0\rangle | \Psi_{\tilde{\mathbf{x}}}(\star) \rangle + |1\rangle | \Psi_{\mathbf{x}^{m}} \rangle) | y^{m} (A \text{ or } B) \rangle | m \rangle$$
 (3)

where

$$|\Psi_{\tilde{\mathbf{x}}}(\star)\rangle = \sum_{i=1}^{N} \tilde{\mathbf{x}}_{i} |i\rangle \qquad |\Psi_{\mathsf{x}^{m}}\rangle = \sum_{i=1}^{N} \mathbf{x}_{i}^{m} |i\rangle$$
 (4)

e.g.
$$\begin{pmatrix} 0.6\\0.4 \end{pmatrix}$$
 \rightarrow $|n\rangle = \sqrt{0.6}|0\rangle + \sqrt{0.4}|1\rangle$ (5)

Figure 3: Visualization of a kNN classifier¹

The algorithm

Applying the **Hadamard gate** interferes the input and the training vectors:

$$\frac{1}{2\sqrt{M}} \sum_{m=1}^{M} (|0\rangle [|\Psi_{\tilde{\mathbf{x}}}\rangle + |\Psi_{\mathbf{x}^{m}}\rangle] + |1\rangle [|\Psi_{\tilde{\mathbf{x}}}\rangle - |\Psi_{\mathbf{x}^{m}}\rangle]) |y^{m}(A \text{ or } B)\rangle |m\rangle$$
 (6)

ightarrow Perform conditional measurement on ancilla qubit.

Successful if $|0\rangle$ state is measured.

The algorithm

After successful conditional measurement, the state is proportional to

$$\frac{1}{2\sqrt{M}} \sum_{m=1}^{M} \sum_{i=1}^{N} (\tilde{\mathbf{x}}_{i} + \mathbf{x}_{i}^{m}) |0\rangle |i\rangle |y^{m}(A \text{ or } B)\rangle |m\rangle$$
 (7)

Probability to measure class B:

$$p(|y^{m}\rangle = |1(B)\rangle) = \sum_{m|y^{m}=1(B)} 1 - \frac{1}{4M} |\tilde{x} - x^{m}|^{2}$$
 (8)

Overall algorithmic complexity

 $\mathcal{O}(\frac{1}{p_{acc}})$ where p_{acc} is the probability of measuring ancilla in the $|0\rangle$ state

Simple binary classification case

Figure 4: Simple binary classification problem of a quantum state

$$\frac{1}{\sqrt{2M}} \sum_{m=1}^{M} (|0\rangle | \mathbf{\Psi}_{\bar{\mathbf{x}}}(\star) \rangle + |1\rangle | \mathbf{\Psi}_{\mathbf{x}}^{m} \rangle) | y^{m} (A \text{ or } B) \rangle | m \rangle$$
(9)

Procedure to load the input vector \tilde{x} :

$$|\Psi_0\rangle = \frac{1}{2} \sum_{m=1}^{2} (|0\rangle |0\rangle + |1\rangle |0\rangle) |y^m\rangle |m\rangle \qquad (10)$$

Apply controlled rotation ${}_{0}^{1}CR_{y}(\frac{\pi}{4})$ s.t.

$$_{0}^{1}CR_{y}(\frac{\pi}{4})\left|\Psi_{0}\right\rangle =\left|\Psi_{1}\right\rangle =\frac{1}{2}\sum_{m=1}^{2}(\left|0\right\rangle \left|0\right\rangle +\left|1\right\rangle \left|\Psi_{\tilde{x}}\right\rangle)\left|y^{m}\right\rangle \left|m\right\rangle \tag{11}$$

Flip the ancilla qubit in the first register

$$(X \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1}) |\Psi_1\rangle = |\Psi_2\rangle = \frac{1}{2} \sum_{m=1}^{2} (|0\rangle |\Psi_{\overline{x}}\rangle + |1\rangle |0\rangle) |y^m\rangle |m\rangle$$
(12)

Implementation with IBM's quantum computer

Figure 5: IBM's quantum composer

- Accessible to the public
- Allows for ideal + real simulations

- 5 superconducting qubits
- 40 gates (39 gates + 1 measurement)

IBM's universal gate set

Figure 6: IBM's universal gate set

How can we implement the ${}_0^1CR_y(\frac{\pi}{4})$ gate?

Controlled U gate

Figure 7: Controlled U-gate

Figure 8: Decomposition of a controlled U-gate¹

Choose A,B,C and α s.t.

$$e^{i\alpha} * A * X * B * X * C = U$$
 and $A * B * C = 1$ (13)

Need to solve the following equation¹

$$U = \begin{pmatrix} e^{i(\alpha - \frac{\beta}{2} - \frac{\delta}{2})} \cos \frac{\gamma}{2} & -e^{i(\alpha - \frac{\beta}{2} + \frac{\delta}{2})} \sin \frac{\gamma}{2} \\ e^{i(\alpha + \frac{\beta}{2} - \frac{\delta}{2})} \sin \frac{\gamma}{2} & e^{i(\alpha + \frac{\beta}{2} + \frac{\delta}{2})} \cos \frac{\gamma}{2} \end{pmatrix}$$
(14)

Overall algorithmic complexity

 $O(\frac{1}{p_{acc}}) + O(k)$ where k is number of root finding iterations²

¹Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University Press.
²Jat, R. N., & Ruhela, D. S. (2011). Comparative study of complexity of algorithms for iterative solution of non-linear equations. Journal of International Academy Of Physical Sciences 15(4).

Problems with universal gate sets

In our case we need to find A, B, C and α for ${}^1_0CR_y(\frac{\pi}{4})$:

Using a root finding algorithm for non-linear equations we find:

$$\alpha = \pi; \quad \beta = 2\pi; \quad \delta = \frac{7}{8}\pi; \quad \gamma = 0$$
 (15)

Then,

$$A = R_z(\beta)R_y(\frac{\gamma}{2}) = R_z(2\pi) = 1$$
 (16)

$$B = R_{y}(-\frac{\gamma}{2})R_{z}(-\frac{\delta+\beta}{2}) = R_{z}(-\frac{23}{16}\pi) = ???$$
 (17)

$$C = R_z(\frac{\delta - \beta}{2}) = R_z(-\frac{9}{16}\pi) = ???$$
 (18)

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{pmatrix} = Z \tag{19}$$

¹Dawson, C. M., & Nielsen, M. A. (2005). The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030.

The Solovay-Kitaev theorem

$$B = R_z(-\frac{23}{16}\pi) = ???$$

$$C = R_z(-\frac{9}{16}\pi) = ???$$
(20)

$$C = R_z(-\frac{9}{16}\pi) = ???$$
 (21)

The Solovay-Kitaev theorem guarantees that given a set of single-qubit quantum gates which generates a dense subset of SU(2), then that set is guaranteed to fill SU(2) quickly.¹

- \rightarrow Hence, given any universal gate set it is possible to obtain good approximations to any desired gate.
- → But needs to be computed classically!

The Solovay-Kitaev algorithm

Fowler distance¹:

Booth Jr, J. (2012). Quantum compiler optimizations. arXiv preprint arXiv:1206.3348.

The Solovay-Kitaev algorithm

d = 0.22739 (23)

d = 0.15165 (24)

d = 0.10722 (25)

d = 0.02086 (26)

d = 0.00156 (27)

Figure 9: Various Fowler distances visualized on Bloch sphere

The Solovay-Kitaev algorithm

IBM's quantum computer needs 130ns for single-qubit gates and 500ns for CNOT gates.

IBM qubit decoherence times:

$$49.5 \, \mu s \le T_1 \le 85.3 \, \mu s$$
 "amplitude damping" $56.0 \, \mu s \le T_2 \le 139.7 \, \mu s$ "phase damping"

Approx. Gate	Distance	Gate count	Execution time
$R_z(-\frac{23}{16}\pi)$	0.15165	25	\sim 3 μ s
	0.10722	109	\sim 14 μ s
	0.02086	2997	\sim 390 μ s
	0.01494	14721	\sim 1914 μ s
	0.003327	74009	$\sim\!9621\mu s$
	0.001578	370813	\sim 48 206 μ s

 Table 1: SK algorithm results

Adding complexities

Executing the SK algorithm adds to our overall algorithmic complexity:

Overall algorithmic complexity

$$O(\frac{1}{p_{acc}}) + O(k) + O(m * log^{2.71}(\frac{m}{\epsilon}))$$
 for ϵ -approximations of m gates¹

Due to state preparation we went from

$$\mathcal{O}(\frac{1}{p_{acc}})\tag{28}$$

suddenly to

$$O(m * log^{2.71}(\frac{m}{\epsilon})) \tag{29}$$

where m is the number of gates that need approximation to ϵ -accuracy

Liqui| simulations

Currently impossible to implement the quantum algorithm on IBM's quantum computer! \rightarrow can only simulate it with i.e. Liqui|

In Liqui| we can directly implement the controlled R_{ν} rotation!

Conclusion

Summary

- Initial state preparation is non-trivial! (even for very simple examples)
- In this case, state preparation dominates the overall algorithmic complexity
- Solovay-Kitaev yields long gate sequences for good approximations
- Some universal gate sets are only useful when combined with long qubit lifetimes
- Need for better quantum compiling and more general state preparation algorithms!

Taking it further

- Complexity analysis of the qubit-based kNN algorithm
- Classification of gaussian probability distributions
- Implementing more general state preparation algorithms
- Waiting for IBM QASM 2.0 ...

References

Bekkerman, R., Bilenko, M., & Langford, J. (2011). Scaling up machine learning: Parallel and distributed approaches. Cambridge University Press.

Booth Jr, J. (2012). Quantum compiler optimizations. arXiv preprint arXiv:1206.3348.

Dawson, C. M., & Nielsen, M. A. (2005). The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030.

IBM. (2016). What is big data? $\label{lem:https://www-01.ibm.com/software/data/bigdata/what-is-big -data.html. (Accessed: 2016-09-08)$

Jat, R. N., & Ruhela, D. S. (2011). Comparative study of complexity of algorithms for iterative solution of non-linear equations. Journal of International Academy Of Physical Sciences, 15(4).

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University Press.

Backup slide: Qubit decoherence times

We expect exponential decay:

$$e^{t/T_i} (30)$$

T_1 : Longitudinal coherence time (amplitude damping)

- Prepare $|0\rangle$ state
- Apply the X (NOT) gate s.t. qubit is in $|1\rangle$ state
- Wait for time t
- Measure the probability of being in $|1\rangle$ state

T_2 : Transversal coherence time (phase damping)

- Prepare $|0\rangle$ state
- Apply Hadamard $ightarrow \ \frac{|0
 angle + |1
 angle}{\sqrt{2}}$
- Wait for time t
- Apply Hadamard again
- Measure the probability of being in $|0\rangle$ state

We expect this probability to go to $0.5 \rightarrow$ qubit lost quantum behaviour

Backup Slide II: Experimental realizations

Only few experimental verifications of QML algorithms:

- Li, Liu, Xu, and Du (2015) successfully distinguished a handwritten six from a nine using a quantum support vector machine on a four-qubit nuclear magnetic resonance test $bench^1$
- Cai et al. (2015) were first to experimentally demonstrate quantum machine learning on a photonic QC and showed that the distance between two vectors and their inner product can indeed be computed quantum mechanically 2
- Rist et al. (2015) solved a learning parity problem with five superconducting qubits and found that a quantum advantage can already be observed in non error-corrected systems 3

Machine Learning

Machine learning can be subdivided into three major fields.

Supervised ML

- Based on *input* and *output* data
 - "I know how to classify this data but I need the algorithm to do the computations for me."

Unsupervised ML

- Based on input data only
 - "I have no clue how to classify this data, can the algorithm create a classifier for me?"

Reinforcement learning

- Based on input data only
- "I have no clue how to classify this data, can the algorithm classify this data and I'll give it a reward if it's correct or I'll punish it if it's not."

Machine Learning

Machine learning can be subdivided into three major fields.

Supervised ML

- Based on *input* and *output* data
 - "I know how to classify this data but I need the algorithm to do the computations for me."

Unsupervised ML

- Based on input data only
 - "I have no clue how to classify this data, can the algorithm create a classifier for me?"

Reinforcement learning

- Based on *input* data only
- "I have no clue how to classify this data, can the algorithm classify this data and I'll give it a reward if it's correct or I'll punish it if it's not."

$Liqui|\rangle$ simulations: Taking it further

Figure 10: Representation of hamming distance on 3D cube

Liqui $|\rangle$ simulations: Taking it further

Applying the following matrix

$$\begin{pmatrix}
\sqrt{\delta} & 1 - \sqrt{\delta} \\
1 - \sqrt{\delta} & -\sqrt{\delta}
\end{pmatrix}$$
(31)

to all qubits in the data register leads to a gaussian distribution over the "Hamming distance" cube:

Liqui $|\rangle$ simulations: Taking it further

Figure 12: Representation of gaussian diffusion on 3D cube

Liqui $|\rangle$ simulations: Taking it further

Figure 13: Representation of gaussian diffusion on 3D cube

Backup slide II I

IBM.

What is big data?

https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html, 2016.

Accessed: 2016-09-08.

Qubit-based kNN quantum

algorithm

Typography

The theme provides sensible defaults to \emph{emphasize} text, \alert{accent} parts or show \textbf{bold} results.

becomes

The theme provides sensible defaults to *emphasize* text, accent parts or show **bold** results.

Font feature test

- Regular
- Italic
- SmallCaps
- Bold
- Bold Italic
- Bold SmallCaps
- Monospace
- Monospace Italic
- Monospace Bold
- Monospace Bold Italic

Lists

Items

- Milk
- Eggs
- Potatos

Enumerations

- 1. First,
- 2. Second and
- 3. Last.

Descriptions

PowerPoint Meeh.

Beamer Yeeeha.

• This is important

- This is important
- Now this

- This is important
- Now this
- And now this

- This is really important
- Now this
- And now this

Figures

Figure 14: Rotated square from texample.net.

Tables

Table 2: Largest cities in the world (source: Wikipedia)

Population
20,116,842
19,210,000
15,796,450
14,160,467

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.

Default

Block content.

Alert

Block content.

Example

Block content.

Math

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Line plots

Bar charts

Quotes

Veni, Vidi, Vici