

Product Recommendation in Ecommerce

MSC PROJECT PRESENTATION

AUGUST 2019

Pranjal Jain

180393996

Agenda

- ▶ What is a recommender system?
- Why? What is the need?
- Practical Applications
- Problem Description
- Approach and Methodology
- Results
- Problems associated with Recommendations
- Conclusions

Why did I choose this topic?

- Practical Data Science Application
- Gives a good understanding about the business aspect of a product development

What is a recommender system?

- Systems that help users identify products of particular interest to them.
- ➤ A lot of time users don't know what they want until they get a recommendation system that does that.
- Focuses on the task of INFORMATION FILTERING

Source: Web

Purpose & Importance

- ▶ Gives a tailored experience to the customer.
- ▶ Improves customer level satisfaction.
- Offline Recommendation Mother / Student Example
- Increases the net sales of a merchant.

Applications of a Recommendation System

- Many of the top Ecommerce retailers use recommender systems to improve sales.
- Retail giant Amazon credits about 35% of its revenues to the recommendation engine in use

Source: Twitter

Applications continued...

Users may find new books, music, or movies that was previously unknown to them.

Netflix apparently knows better about what I would like to watch rather that me deciding myself

Netflix Prize Competition

- Organized in 2006
- Winning prize: \$1,000,000
- Objective: Improved the accuracy of their existing system "Cinematch" by 10% using machine learning and data mining
- ▶ 100 million ratings of 17,770 movies from 480,189 customers.
- ► Took 3 years to complete the challenge

Applications continued...

- LinkedIn knows which Job should I apply for
- Facebook suggests who do I know and who should I add in my network
- ► TripAdvisor tells which place should I visit
- Coursera recommends me which course certification will I like based on my recent activity.

Life Cycle of a Recommendation Engine

Data Collection

Finding patterns in user behaviour and trends;

Extracting valuable insights;

Calculating probabilities or weights

Comparing them with the available item inventory;

displaying the most similar matches.

Data Collection

- Using Amazon's customer level data retrieved from SNAP Julian McAuley, UCSD repository.
- ► This is customer level from the online retailer www.Amazon.com for a period of 18years.

(Jun 1995 - Mar 2013)

Note: A new-and-improved Amazon dataset is available here

Data Cleaning

data

- The obtained dataset is in unstructured format. Hence one of the most important steps is to clean the data in a wellstructured format.
- ▶ The .txt raw files were converted into .csv wide tables

```
['product/productId: B000GKXY4S',
 'product/title: Crazy Shape Scissor Set',
 'product/price: unknown',
 'review/userId: A1QA985ULVCQOB',
 'review/profileName: Carleen M. Amadio "Lady Dragonfly"',
 'review/helpfulness: 2/2',
 'review/score: 5.0',
 'review/time: 1314057600',
 'review/summary: Fun for adults too!',
 'review/text: I really enjoy these scissors for my inspiration books that I am making (like collage, but in books) and using t
hese different textures these give is just wonderful, makes a great statement with the pictures and sayings. Want more, perfect
for any need you have even for gifts as well. Pretty cool!',
 'product/productId: B000GKXY4S',
 'product/title: Crazy Shape Scissor Set',
 'product/price: unknown',
 'review/userId: ALCX2ELNHLQA7',
 'review/profileName: Barbara',
 'review/helpfulness: 0/0',
 'review/score: 5.0',
 'review/time: 1328659200'.
 'review/summary: Making the cut!',
 'review/text: Looked all over in art supply and other stores for "crazy cutting" scissors for my 4-year old grandson. These ar
e exactly what I was looking for - fun, very well made, metal rather than plastic blades (so they actually do a good job of cut
ting paper), safe ("blunt") ends, etc. (These really are for age 4 and up, not younger.) Very high quality. Very pleased with t
he product.',
```

Unstructured

review/userId	review/time	review/text	review/summary	review/score	review/profileName	review/helpfulness	product/title	product/productId	product/price
A1QA985ULVCQOB	1314057600	I really enjoy these scissors for my inspirat	Fun for adults too!	5.0	Carleen M. Amadio "Lady Dragonfly"	2/2	Crazy Shape Scissor Set	B000GKXY4S	unknown
ALCX2ELNHLQA7	1328659200	Looked all over in art supply and other store	Making the cut!	5.0	Barbara	0/0	Crazy Shape Scissor Set	B000GKXY4S	unknown
A2M2M4R1KG5WOL	1156636800	These are the BEST scissors I have ever owned	Fiskars Softouch Multi-Purpose Scissors, 10"	5.0	L. Heminway	1/1	Fiskars Softouch Multi- Purpose Scissors 10"	B000140KIW	unknown
ARQAQ6ZYMFPCA	1214784000	This Fiskars Scissors are the best i've bougt	Best scissors ever	5.0	R. GARCIA	0/0	Fiskars Softouch Multi- Purpose Scissors 10"	B000140KIW	unknown
A3FPG4LAJ1HOHZ	1173484800	I finally gave in and bought these after year	A great tool to make your work easier	5.0	Dea Carey "deacarey"	0/0	Fiskars Softouch Multi- Purpose Scissors 10"	B000140KIW	unknown

Clean Data

Understanding the Data

	Feature	Description	Datatype
1	product/productId	Unique ID which is associated with each product	String
2	product/title	Title of the product	String
3	product/price	price of the product	Integer
4	review/userld	Unique ID which is associated with each Customer	String
5	review/profileName	Name of the Customer	String
6	review/helpfulness	fraction of customer who found the review helpful	Integer
7	review/score	Rating of the product	Integer
8	review/time	Time of the review	UNIX time
9	review/summary	Review Summary	String
10	review/text	Text of the review	String

price	productId	title	review	profileName	score	summary	text	userId	purchasedate	Class
17.94	B000CD483K	C-Line Clear 62033 Heavyweig	0/0	Thomas Perrin "Perrin 8	5	Superior produ	Ever since some of n	A1186EZQ23CU4X	23-11-2012	Office_Products
443.04	B0006Q9950	Wasp Barcode Technologies 6	14/14	Handyman	4	Good product,	My boss had us using	A2CW9GKMNFAL	04-11-2011	Office_Products
13.99	B0001YXWV4	Panasonic MARKER ERASER KI	0/0	C L Huddleston	5	Best markers n	We use our white bo	A14XEQHPPULFD	01-02-2013	Office_Products
13.99	B0001YXWV4	Panasonic MARKER ERASER KI	0/0	Eiji Nakamura	5	Good item	Fast shipment and fa	A7YN96KKCI8GO	16-01-2013	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/0	shstric	5	The only brand	I am a college studer	A36BHVA80D0OH	13-11-2012	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/0	v2can5	5	Good quality fo	This 4" folder was pu	AIAOFEPWPX1J8	14-09-2012	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/0	rose312	1	Huge & Unrelia	I don't know if i got a	A11CL4JDRJ8ROZ	19-08-2012	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/0	SeriouslyHappy	5	Good Size, Exa	I am using this to org	A2232SPXNILNBL	15-03-2012	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/0	malhej	5	good product	For the price, this ite	AE10MU3XESM8I	31-12-2011	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/1	LMB "Christmas Nut"	3	big and sturdy	The binder I received	AS10I6YNHH8C0	28-08-2011	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	9/9	J. Donahoe "Dog, cat, &	5	Huge, high-qua	I bought this binder	A2TGKNAG87PYX	12-01-2011	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	3/3	Clmence	4	The biggest Bir	I was looking for a bi	A17HUD2DYQ81U	14-05-2012	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	1/1	Eva	1	Broke within th	I bought this binder	A1DVVL2R5YCE4N	07-10-2012	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	1/1	M. Taylor "Myrna"	5	Same dependa	I keep all of my equi	A18SNZN6Z16NC	09-05-2012	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	1/1	Peggy W. Harper "agran	5	Binder Review	Avery is a product w	AGP0OT38AVWK	22-09-2011	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	1/1	MsRealMuzik	5	Nice Product	The product was ship	ALF6GZ2700Y6C	07-09-2011	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/0	Cheryl L. Jones "one ho	1 5	binder	these worked great	A3HMZHKYT81BE	23-01-2013	Office_Products
17.28	B000GR7OYW	Avery Nonstick Heavy-Duty EZ	0/0	CRAIG R NUSSBAUM	5	Great - holds a	Well, a binder is a pr	A3Q81RANE2GJ42	13-01-2013	Office_Products

Data Cleaning Tasks

- Loading the raw data
- Converting the data into a list
- Using dict(zip()) function, pairs the list element with other list element at corresponding index in form of key-value pairs. This can be seen from the snippet below.

```
m = df['COL'].str.split(':', expand=True).groupby(0)[1].apply(list).reset_index()
df = pd.DataFrame(dict(zip(m[0], m[1])))
```

Data Cleaning continued..

Once we obtain the structured table –

> Feature x Dimension

Converting into appropriate datatype

E.g. date into YY-MM-DD

Finding what categories data is distributed

Merging different datasets into one – class wise

Exploratory Analysis

- Finding missing values
- Data was generally complete except for product prices.
- ~76% was missing hence I decided to drop it.

Figure 12 : Pie chart representing missing data in price column

EDA continued

Finding consistency

- Fig 1 shows Rating consistency along with the standard deviation over the time

Finding anomalies

- Fig 2 shows Long tail property or Power Law distribution

Feature Engineering

- ► SELECTING THE RELEVANT FEATURES USED IN THE ANALYSIS.
- ► DROPPING THE UNUSED FEATURES LIKE PRICE, REVIEW (N /D) AND THE PRODUCT TEXT.

price	dropped
productId	***
title	*
review	unused
profileName	*
score	***
summary	unused
text	***
userId	***
purchasedate	***
Class	**

Problem Formulation

- ► I tried to recommend product to the customer using three different algorithms.
- a. Affinity based analysis
- b. Similar Customer based analysis
- c. Content based analysis

Affinity based analysis

- Also called Market basket Analysis or association rule learning
- Algorithm: Creating an n dimensional Affinity Matrix
- ▶ Input: User Id, Product Id
- ► **Transformation**: Customers who purchased product P1 also purchased product P(x)
- Output: List of similar products ranked according to the highest lift value.

Affinity Analysis continued...

- Association rules are defined in terms of two products $(A \rightarrow B)$
- This is called **Base Class** and **Associated Class**
- Weight each product on the basis of Confidence, Expected Confidence and lift values.

T : Total number of transactions in a sample data	(Suppose)	1000
X1: Number of customers that brought A	(Suppose)	100
X2: Number of customers that brought B	(Suppose)	200
X3 : Frequency of co-occurrence	(Suppose)	50
Support	X3/T	0.02
C : Confidence	X3/X1	0.5
Ce : Expected Confidence	X2/T	0.2
Lift	C / Ce	2.5

Figure 17: Dummy data table used in the table just to explain the concept of various indices accordingly

	base_class	asso_class	base_class_count	asso_class_count	со	Confidence	Expected_Confidence	Lift
0	B00004RM25	B00004VYLJ	2	2	2	1.000000	0.000312	3209.000000
1	B003L20ICO	B00004VYLJ	2	2	2	1.000000	0.000312	3209.000000
2	B00004RM25	B003L20ICO	2	2	2	1.000000	0.000312	3209.000000
3	B00004VYLJ	B003L20ICO	2	2	2	1.000000	0.000312	3209.000000
4	B00004VYLJ	B00004RM25	2	2	2	1.000000	0.000312	3209.000000
5	B003L20ICO	B00004RM25	2	2	2	1.000000	0.000312	3209.000000
6	B00006IF4J	B00006IF4L	1	1	1	1.000000	0.000156	6418.000000
7	B00006IF4L	B00006IF4J	1	1	1	1.000000	0.000156	6418.000000
8	B00006M7OC	B00006M7PK	6	6	6	1.000000	0.000935	1069.666667
9	B00006M7Q0	B00006M7PK	6	6	6	1.000000	0.000935	1069.666667
10	B00006M875	B00006M7PK	6	6	6	1.000000	0.000935	1069.666667
11	B00006M883	B00006M7PK	6	6	6	1.000000	0.000935	1069.666667
12	B00006M9TP	B00006M7PK	6	6	6	1.000000	0.000935	1069.666667

Affinity Matrix Output

Affinity Analysis continued...

- For customers with lot less past purchases, Affinity becomes a limitation.
- For these, recommendation is made using a POPULARITY MATRIX

Figure 22:Popular Product frequency in terms of product ID

Affinity Analysis continued...

Other factors which were included were Recency and consumables.

Recency was based on the recent purchases of the customer which were given more weight.

Consumable was given to the products which needed timely replacement like office products, printer cartridge, soap etc.

Replenished were products from Food and Gourmet category which could be recommended to the customers again.

Similar Customer based analysis

- Also known as Collaborative Filtering
- Algorithm: Creating an n dimensional Utility Matrix
- Input: User Id, Product Id, Rating(Score 1-5)
- Transformation: find a group of other customers whose likes and dislikes are similar to customer A and same for products.
- Output: List of similar products/customers ranked according to the highest correlation value.

Collaborative continued...

- SIGNIFICANCE: It does not requires to understand the nature of the items and still can suggest complex products.
- LIMITATIONS: It requires a lot of data to make accurate predictions about a user hence requiring lots of computational power and resources.
- Distribution of score is shown in the histogram plot.

Collaborative continued...

• Jaccard similarity: $Sim(C1, C2) = |s(C1) \cap s(C2)|/|s(C1) \cup s(C2)|$

Cosine similarity:

Sim(C1, C2) =
$$\frac{\sum_{1}^{n} s(C1) s(C2)}{\sqrt{\sum s(C1)^{2}} \sqrt{\sum s(C2)^{2}}}$$

• Pearson similarity:

Sim(C1, C2) =
$$\frac{\sum_{1}^{n} (s(C1) - \mu) (s(C2) - \mu)}{\sqrt{\sum (s(C1) - \mu)^{2}} \sqrt{\sum (s(C1) - \mu)^{2}}}$$

Here, μ is the mean score for the Customer

UTILITY MATRIX	P1	P2	P3	P4	P5	P6
C1		2		4		4
C2	1		3			5
C3		3		1		
C4	4		4	_	5	

Collaborative continued..

This is a sample view of the Utility Matrix using Pearson metric

Some Statistics derived from the analysis:

Unique Number of Customer: 2,65,401 Unique Number of Products: 84,626

	0	1	2	3	4	5	6	7
0	1.000000	-0.000322	-0.000322	-0.000322	-0.000322	-0.000322	-0.000455	-0.000322
1	-0.000322	1.000000	-0.000322	-0.000322	-0.000322	-0.000322	-0.000455	-0.000322
2	-0.000322	-0.000322	1.000000	-0.000322	-0.000322	-0.000322	-0.000455	-0.000322
3	-0.000322	-0.000322	-0.000322	1.000000	-0.000322	-0.000322	-0.000455	-0.000322
4	-0.000322	-0.000322	-0.000322	-0.000322	1.000000	-0.000322	-0.000455	-0.000322
5	-0.000322	-0.000322	-0.000322	-0.000322	-0.000322	1.000000	-0.000455	-0.000322
6	-0.000455	-0.000455	-0.000455	-0.000455	-0.000455	-0.000455	1.000000	-0.000455
7	-0.000322	-0.000322	-0.000322	-0.000322	-0.000322	-0.000322	-0.000455	1.000000
8	-0.000455	-0.000455	-0.000455	-0.000455	-0.000455	-0.000455	-0.000644	-0.000455

```
similarities,indices = findksimilarusers(99,util_df, metric='correlation')

5 most similar users for User 99:

0: User 3144, with similarity of 1.0

2: User 2104, with similarity of -0.0003217503217503026

3: User 2102, with similarity of -0.0003217503217503026

4: User 2100, with similarity of -0.0003217503217503026
```

Figure 48 : Similar user obtained using Pearson metric

```
similarities,indices=findksimilaritems(99,util_df)

5 most similar items for item 99:

0: Item Index : 100 , with similarity of 1.0

1: Item Index : 1024 , with similarity of 0.999999999998896

2: Item Index : 2811 , with similarity of -0.0002533569799847424

3: Item Index : 2809 , with similarity of -0.0002533569799847424

4: Item Index : 2807 , with similarity of -0.0002533569799847424
```

Figure 49 : Similar product obtained using Pearson metric

Output

Content based analysis

- Using the sentiment analysis for textual mining in Product reviews given by the customer in form of written texts
- Algorithm: Creating an n dimensional review Matrix
- ▶ Input: User Id, Product Id, Rating(Score 1-5), summary, count
- Transformation: predict a product for a similar customer.
- Output: List of all similar products ranked according to the highest average score obtained by feature analysis.

Content Based continued...

3 important steps for this analysis:

Tokenization

Sample text: "This product is absolutely amazing, MUST BUY for all the dog lovers!!

After tokenization: 'this', 'product', 'is', 'absolutely', 'amazing', 'must', 'buy', 'for', 'all', 'the', 'dog' 'lovers'

- Removing stop words: most commonly occurring terms such as "the", "was", "is" etc.
- Classification:

Content Based continued...

- ► I took only those products which were bought 100 times or more.
- Summary of those products were cleaned by tokenizing.
- Splitting data into train and test set.
- Classification Method used KNN Algorithm.
- ▶ To find Euclidean distance between the two datapoints.
- Predicted other similar products.
- Same procedure was repeated for predicting similar users.

```
For product : B000JHCYTE , the average Score is : 4.7477477477478

The 1st Similar product is B000224GM , the average Score is : 4.745454545454545

The 2nd Similar product is B0001YS61K , the average Score is : 4.752212389380531

For product : B000JKN0A , the average Score is : 3.312820512820513

The 1st Similar product is B00008ION9 , the average Score is : 4.096153846153846

The 2nd Similar product is B00008IOOI , the average Score is : 4.104761904761904

For product : B000JLHRII , the average Score is : 3.8088642659279777

The 1st Similar product is B000FS67LS , the average Score is : 3.9595238095238097

The 2nd Similar product is B00016QPAW , the average Score is : 4.285067873303167
```

Two recommended products according to the score

```
Based on reviews, for Customer AR3WTWO4H2GOD
The 1st similar Customer is A292V24Y5TJIIC .
Customer likes following products
Based on reviews, for Customer AY3NS68W1N98P
The 1st similar Customer is A292V24Y5TJIIC .
Customer likes following products
Based on reviews, for Customer AYUCFJMTDAJC3
The 1st similar Customer is A3MVS23LU1ZC1E .
Customer likes following products
 B0007YX26S
 B000EE9D00
Based on reviews, for Customer AZ2X4NOLQ1UNV
The 1st similar Customer is A3MVS23LU1ZC1E .
Customer likes following products
 B0007YX26S
 B000EE9D00
```

Figure 53: Output for similar customer analysis

Output

Results

Results

Affinity

Forming a customer table to recommend 5 products

2 on the basis of lift score

2 on the basis of popularity

1 on the basis of recency

FYI: If product was replenishable, it was given more weight.

Collaborative

Predicting a group of 5 users which are similar to the customer in question.

Predicting 5 products similar to the product in question .

This is based on a score – based system

Text Based

Predicting 2 similar products based on the average score obtained after classification.

Predicting similar customers and their top bought product based on the review analysis.

Customer Table – Priority and less important

userId AV9NKOINQONGN 1104 708 ANDNAFTUKW3D9 618 A18WDI1W0XJLNL A1NWLSB03XE74A 593 593 AAXDBRTR04J35 A2KV4LCZMPSIMO 579 A8QAOMRX0JLXJ 573 A37LKHEFØZPVSA 564 A3RTT2QP2V25QW 563 A1X553B80L6SD6 560 Name: productId, dtype: int64

```
avg_num_reviews3 = main.groupby('userId')['productId'].count()
len(avg_num_reviews3.nsmallest(keep='all'))
202745
```

There were also about 200K users who had only a single purchase for whom we can predict better using popularity matrix

Accuracy score

Similar Product

► Accuracy of prediction = ~76%

	precision	recall	f1-score	support					
3	0.50	0.44	0.47	9					
4	0.83	0.86	0.85	29					
accuracy			0.76	38					
macro avg	0.67	0.65	0.66	38					
weighted avg	0.75	0.76	0.76	38					
Accumacy Scor	Accuracy Score : 0.7631578947368421								
Accuracy Scor	e . 0./0315	/094/30842	1						

Similar User

► Accuracy of prediction = ~50%

<pre>print(classification_report(df5_test_target, knnpreds_test))</pre>								
Predicting r	eview score precision		ataset cust f1-score	tomers are : support	[3 3 2 4]			
1	0.00	0.00	0.00	1				
2	0.00	0.00	0.00	0				
3	0.50	1.00	0.67	1				
4	1.00	1.00	1.00	1				
5	0.00	0.00	0.00	1				
accuracy			0.50	4				
macro avg	0.30	0.40	0.33	4				
weighted avg	0.38	0.50	0.42	4				

```
crumpled newspaper fit dickies wrong state of the minute product cases of the minute p
```

```
well made ok fit dickies resistant wrinkle size awesome fit to dickies resistant wrinkle quality fit fit it ign the shirts work cants. Suggestion fit is a suggestion of the shirts work cants. Suggestion fit is a suggestion of the shirts work cants. Suggestion fit is a suggestion of the suggestion of
```


For Score 3 For Score 5

Word Cloud Representation

Issues associated

New Customers with no purchase history have no recommendations.

Sparsity - not every user has rated every other product gives a very sparse matrix.

Fraud Recommendation

Solution: Content based filtering tends to avoid this incorrect way of prediction.

Cold Start Problems

New Products with no ratings have no recommendations.

using the popularity matrix – Top N products

Conclusion

- A concept model successfully implemented after conducting a research through literature review.
- Helped me understand the importance of Data cleaning
- Finding insights and exploring data statistics is as important as implementing a machine learning algorithm.
- Project helps in understanding recommender in both Online markets – Content & Collaborative and offline scenarios – Market basket

Thank you