# Naïve Bayes Classifier

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

### Weekly Objectives

- Learn the optimal classification concept
  - Know the optimal predictor
  - Know the concept of Bayes risk
  - Know the concept of decision boundary
- Learn the naïve Bayes classifier
  - Understand the classifier
  - Understand the Bayesian version of linear classifier
  - Understand the conditional independence
  - Understand the naïve assumption
- Apply the naïve Bayes classifier to a case study of a text mining
  - Learn the bag-of-words concepts
  - How to apply the classifier to document classifications

#### NAÏVE BAYES CLASSIFIER

### Dataset for Optimal Classifier Learning

| Sky   | Temp | Humid  | Wind   | Water | Forecst | EnjoySpt |
|-------|------|--------|--------|-------|---------|----------|
| Sunny | Warm | Normal | Strong | Warm  | Same    | Yes      |
| Sunny | Warm | High   | Strong | Warm  | Same    | Yes      |
| Rainy | Cold | High   | Strong | Warm  | Change  | No       |
| Sunny | Warm | High   | Strong | Cool  | Change  | Yes      |

- $f^*(x) = argmax_{Y=y}P(X = x|Y = y)P(Y = y)$ 
  - P(X=x|Y=y)= $P(x_1=sunny, x_2=warm, x_3=normal, x_4=strong, x_5=warm, x_6=same|y=Yes)$
  - P(Y=y)=(y=Yes)
- How many parameters are needed? How many observations are needed?
  - P(X=x|Y=y) for all x,y

 $(2^{d}-1)k$ 

Often, what happens is  $N \gg (2^d-1)k \gg |D|$ 

• P(Y=y) for all y

- k-1
- Remember that we are not living in the perfect world!
  - Noise exists, so need to model it as a random variable with a distribution
  - Replications are needed!

## Why need an additional assumption?

- $f^*(x) = argmax_{Y=y}P(X = x|Y = y)P(Y = y)$ 
  - To learn the above model, we need a very large dataset that is impossible to get
- The model has relaxed unrealistic assumptions, but now the model has become impossible to learn.
  - Time to add a different assumption
  - An assumption that is not so significant like the ones being relaxed
- What are the major sources of the dataset demand?
  - P(X=x|Y=y) for all  $x,y \rightarrow (2^d-1)k$ 
    - x is a vector value, and the length of the vector is d
    - d is the source of the demand
    - Then, reduce *d*?
    - Or, ????

### Conditional Independence

- A passing-by statistician tells us
  - Hey, what if?

• 
$$P(X = < x_1, ..., x_i > | Y = y) \rightarrow \prod_i P(X_i = x_i | Y = y)$$

- Your response: Is it possible?
  - Statistician: Yes! If  $x_1,...,x_i$  are conditionally independence given y
- Conditional Independence
  - $x_1$  is conditionally independent of  $x_2$  given y
  - $(\forall x_1, x_2, y)$   $P(x_1|x_2, y) = P(x_1|y)$
  - Consequently, the above asserts
    - $P(x_1, x_2|y) = P(x_1|y)P(x_2|y)$
  - Example,
    - P(Thunder|Rain, Lightning)=P(Thunder|Lightening)
    - If there is a *lightening*, there will be a *thunder* with a prob. *p* regardless of raining

#### Conditional vs. Marginal Independence



- Marginal independence
  - P(OfficerA=Go|OfficerB=Go) > P(OfficerA=Go)
  - This is not marginally independent!
    - X and Y are independent if and only if P(X)=P(X|Y)
    - Consequently, P(X,Y)=P(X)P(Y)
- Conditional independence
  - P(OfficerA=Go|OfficerB=Go,Commander=Go)
    =P(OfficerA=Go|Commander=Go)
  - This is conditionally independent!