度量(metric)是对一个集合里面的两个元素而言的,是两点间距离的抽象。

范数(norm)是对一个元素而言的,是实数的绝对值或复数的模这样的长度的抽象。

Machine Learning

Topic 4: Measuring Distance

Why measure distance?

Clustering requires distance measures.

 Local methods require a measure of "locality"

Search engines require a measure of similarity

What is a "metric"?

 A function of two values with these four qualities.

$$d(x, y) = 0$$
 iff $x = y$ (reflexivity)
 $d(x, y) \ge 0$ (non - negative)
 $d(x, y) = d(y, x)$ (symmetry)
 $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality)

What is a "norm"?

- Loosely, it is a function that applies a positive value to all vectors (except the 0 vector) in a vector space.
- 3 properties:

```
For all a \in F and u,v \in V, a function p:V \to F

p(av) = |a| p(v) (positive scalability)

p(u) = 0 iff u is the zero vector

p(u) + p(v) \ge p(u+v) (triangle inequality)
```

2 definitions (AKA why this is confusing)

A vector norm

A function that assigns a strictly positive value to all vectors in a vector space....except the 0 vector, which has a 0 assigned to it. (see previous slide)

• A normal vector

A vector is called a **normal** to another object if they are perpendicular to each other. So, a **normal vector** is perpendicular to (the tangent plane of) a surface at some point P.

Metric == Norm??

Every norm determines a metric.

Given a normed vector space, we can make a metric by saying

$$d(x,y) \equiv ||x - y||$$

Some metrics determine a norm.

If the metric is on a vector space, you can define a norm by saying...

$$||x|| \equiv d(x,0)$$

Euclidean Distance

- What people intuitively think of as "distance"
- Is it a metric?
- Is it a norm?

Dimension 1

Generalized Euclidean Distance

n = the number of dimensions

$$d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^2\right]^{1/2}$$
where $\vec{x} = \langle x_1, x_2, ..., x_n \rangle$,
$$\vec{y} = \langle y_1, y_2, ..., y_n \rangle$$
and $\forall i(x_i, y_i \in \Re)$

L^p norms

• L^p norms are all special cases of this:

$$d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} |x_i - y_i|^p\right]^{1/p}$$
 p changes the norm

$$\|\mathbf{x}\|_1 = \mathbf{L}^1 \text{ norm} = \mathbf{Manhattan \ Distance} : p = 1$$

两点距离 = 直线距离

$$\|\mathbf{x}\|_2 = \mathbf{L}^2$$
 norm = Euclidean Distance: $p = 2$

不同位数的个数

Hamming Distance:
$$p = 1$$
 and $x_i, y_i \in \{0,1\}$

Weighting Dimensions

- Put point in the cluster with the closest center of gravity
- Which cluster <u>should</u> the red point go in?
- How do I measure distance in a way that gives the "right" answer for both situations?

Weighted Norms

You can compensate by weighting your dimensions....

$$d(\vec{x}, \vec{y}) = \left[\sum_{i=1}^{n} w_i | x_i - y_i |^p \right]^{1/p}$$

weighted norms只能表示轴平行于坐标轴的椭圆

This lets you turn your circle of equal-distance into an elipse with axes parallel to the dimensions of the vectors.

Mahalanobis distance

The region of constant Mahalanobis distance around the mean of a distribution forms an ellipsoid. 在平均值周围以固定马氏距离分布的形成的是椭圆

这个椭圆的轴不必与坐标轴平行
The axes of this ellipsiod don't have to be parallel to the dimensions describing the vector

Images from: http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm

Calculating Mahalanobis

$$d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})}$$

- This matrix S¹ is called the "covariance" matrix and is calculated from the data distribution
- Let's look at the demo here:

http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_mahalanobis.htm#Animation%20Mahalanobis

Take-away on Mahalanobis

Metric, or not?

Driving distance with 1-way streets

- Categorical Stuff :
 - Is distance (Jazz to Blues to Rock) no less than distance (Jazz to Rock)?

Categorical Variables

Consider feature vectors for genre & vocals:

```
Genre: {Blues, Jazz, Rock, Zydeco}Vocals: {vocals, no vocals}
```

```
s1 = {rock, vocals}
s2 = {jazz, no vocals}
s3 = { rock, no vocals}
```

Which two songs are more similar?

One Solution: Hamming distance

Blues	Jazz	Rock	Zydeco	o Vocals	
0	0	1	0	1	s1 = {rock, vocals}
0	1	0	0		s2 = {jazz, no_vocals}
0	0	1	0	0	s3 = { rock, no_vocals}

Hamming Distance = number of bits different between binary vectors

Hamming Distance

$$d(\vec{x}, \vec{y}) = \sum_{i=1}^{n} |x_i - y_i|$$
where $\vec{x} = \langle x_1, x_2, ..., x_n \rangle$,
$$\vec{y} = \langle y_1, y_2, ..., y_n \rangle$$
and $\forall i(x_i, y_i \in \{0,1\})$

Defining your own distance (an example)

How often does artist x quote artist y?

Quote Frequency

	Beethoven	Beatles	Liz Phair
Beethoven	7	0	0
Beatles	4	5	0
Liz Phair	?	1	2

Let's build a distance measure!

Defining your own distance (an example)

	Beethoven	Beatles	Liz Phair
Beethoven	7	0	0
Beatles	4	5	0
Liz Phair	?	1	2

Quote frequency $Q_f(x, y)$ = value in table

Distance
$$d(x, y) = 1 - \frac{Q_f(x, y)}{\sum_{z \in Artists} Q_f(x, z)}$$

Missing data

 What if, for some category, on some examples, there is no value given?

Approaches:

- Discard all examples missing the category
- Fill in the blanks with the mean value
- Only use a category in the distance measure if both examples give a value

Dealing with missing data

$$w_i = \begin{cases} 0, & \text{if both } x_i \text{ and } y_i \text{ are defined} \\ 1, & \text{else} \end{cases}$$

$$d(\vec{x}, \vec{y}) = \frac{n}{n - \sum_{i=1}^{n} w_i} \left[\sum_{i=1}^{n} \phi(x_i, y_i) \right]$$

Edit Distance

- Query = string from finite alphabet
- Target = string from finite alphabet
- Cost of Edits = Distance

Levenshtein distance

$$M_{i,j} = \min \left\{ \begin{array}{c} M_{i-1,j} + 1 & \text{Insert} \\ \\ M_{i,j-1} + 1 & \text{Delete} \\ \\ M_{i-1,j-1} + \mu(s_i,q_j) & \text{Match} \end{array} \right.$$

$$\mu(s_i, q_j) = \begin{cases} 0 & \text{if } s_i = q_j \\ 1 & \text{otherwise} \end{cases}$$

$$M_{i-1,j-1} M_{i-1,j}$$

$$M_{i,j-1} \longrightarrow M_{i,j}$$

Example Levenshtein Distance

DISTANCE
$$d(S,Q) = (M_{I,J})$$

(Somewhat more) General Edit Distance

$$M_{i,j} = \min \left\{ \begin{array}{ll} M_{i-1,j} + \mu(-,q_j) & \text{Insert} \\ \\ M_{i,j-1} + \mu(s_i,-) & \text{Delete} \\ \\ M_{i-1,j-1} + \mu(s_i,q_j) & \text{Match} \end{array} \right.$$

One more distance measure

- - a non-symmetric measure of the difference between two probability distributions
 - not a metric, since it is not symmetric
 - Here's the definition of KL divergence for discrete probability distributions P and Q

$$D_{KL}(P \parallel Q) = \sum_{i} \ln \left(\frac{P(i)}{Q(i)}\right) P(i)$$

KL Divergence as Cross Entropy

$$D_{KL}(P \parallel Q) = \sum_{i} \ln \left(\frac{P(i)}{Q(i)} \right) P(i)$$

$$= \sum_{i} \left(\ln(P(i)) - \ln(Q(i)) P(i) \right)$$

$$= \sum_{i} P(i) \ln P(i) - \sum_{i} P(i) \ln Q(i)$$

Some take-away thoughts

- Many machine learning methods are helped by having a distance measure
- Some methods require metrics
- Not all measures are metrics
- Some common distance measures:

```
"P-norms": Euclidean, Manhattan
```

"Edit distance": Levenshtein

KL Divergence

Mahalanobis