MATH 272A: Numerical PDE HW3

University of California, San Diego

Zihan Shao

- 1. (4pt) Recall the four properties of A_h discussed in class. Prove the following results.
 - (a) Show that if a matrix A satisfies properties (P1) and (P2), then

$$Ax > 0 \implies x > 0.$$

Hint: Prove by contradiction. You may mimic the proof of the Discrete Maximum Principle given in class.

Proof. Assume not and let $x_i = \min_j x_j < 0$. Consider the *i*-th entry of Ax

$$0 \le (Ax)_i = \sum_{j=1}^N a_{ij} x_j \tag{1}$$

$$= a_{ii}x_i + \sum_{j=1, j\neq i}^{N} a_{ij}x_j \tag{2}$$

$$\leq a_{ii}x_i + \sum_{j=1, j \neq i}^{N} a_{ij}x_i \tag{3}$$

$$= (a_{ii} + \sum_{j=1, j \neq i}^{N} a_{ij})x_i \tag{4}$$

$$\leq 0 \tag{5}$$

Note that in inequality in line 3 we use the fact that $a_{ij} < 0$ for $i \neq j$ (P1) and $x_i = \min_j x_j < 0$; inequality in line 5 uses the fact that A is weakly diagonally dominant. The above inequality shows $(Ax)_i = 0$ i.e. all inequalities above are equalities. This implies x is a constant vector and x < 0. By definition of irreducibly diagonally dominant, there exists i^* such that $a_{i^*i^*} > \sum_{j=1, j\neq i^*} |a_{i^*j}|$. Given property (P2), we have $(a_{i^*i^*} + \sum_{j=1, j\neq i^*} a_{i^*j}) > 0$. However, this further implies

$$(Ax)_{i^*} = \sum_{j=1}^{N} a_{i^*j} x_j = (a_{i^*i^*} + \sum_{j=1, j \neq i^*} a_{i^*j}) x_i < 0$$
(6)

which contradicts to the assumption. It follows that $Ax \ge 0 \implies x \ge 0$.

(b) Use (a) to show that A is non-singular, i.e., the null space of A is trivial. This means:

$$Ax = 0 \implies x = 0.$$

Proof. If Ax = 0, with (a), we have $x \geq 0$. However, we also have A(-x) = 0, which means

 $-x \ge 0 \iff x \le 0$. This further implies the only possible case is x = 0.

- (c) Prove that the following three statements are equivalent:
 - i. $Ax \ge 0 \implies x \ge 0$;
 - ii. $b \ge 0 \implies A^{-1}b \ge 0$;
 - iii. A^{-1} is element-wise nonnegative.

Proof. We show equivalence between these 3 arguments by showing (i) \iff (ii) and (ii) \iff (iii).

- (i) ⇐⇒ (ii)
 - (\Longrightarrow) With part (b) we have A^{-1} is well-defined. Therefore, $b=A(A^{-1}b)\geq 0$ implies $A^{-1}b\geq 0$ by (i).
 - (\iff) If $Ax \ge 0$, we then have $x = A^{-1}(Ax) \ge 0$ with (ii).
- (ii) ⇐⇒ (iii)
 - (\Longrightarrow) If not, assuming $A_{ij}^{-1} < 0$. Let $b = [0 \dots 1 \dots 0]^T$ where the only 1 is on j-th entry, we will have $(A^{-1}b)_i = A_{ij}^{-1} < 0$.
 - (\iff) This is almost trivial. If $b \ge 0$, then $(A^{-1}b)_i = \sum_{j=1}^N A_{ij}^{-1}b_j \ge 0$ for all i since every term here is nonnegative.

2. (4pt) (Pure Neumann boundary value problem) Consider the pure Neumann boundary value problem:

$$\begin{cases}
-\Delta u(x) = f(x), & x \in \Omega = (0,1)^2, \\
\frac{\partial u(x)}{\partial n} = 0, & x \in \partial\Omega
\end{cases}$$

where f satisfies $\int_{\Omega} f(x)dx = 0$.

(a) Use the finite difference method with the "ghost point" technique (central difference for Neumann boundary) to discretize the problem and write down the linear system $A_hU_h=F_h$ corresponding to h=1/2. Hint: A_h is a 9×9 matrix.

Solution. The linear system $A_h U_h = F_h$ is in the following way

$$\frac{1}{h^{2}} \begin{pmatrix}
4 & -2 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & -2 & 4 & 0 & 0 & -2 & 0 & 0 & 0 \\
-1 & 0 & 0 & 4 & -2 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -2 & 4 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & 4 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 0 & -1 & 4 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & -2 & 4
\end{pmatrix}
\begin{bmatrix}
u_{00} \\
u_{01} \\
u_{02} \\
u_{10} \\
u_{11} \\
u_{12} \\
u_{20} \\
u_{21} \\
u_{22}
\end{bmatrix}
\begin{bmatrix}
f_{00} \\
f_{01} \\
f_{02} \\
f_{10} \\
f_{11} \\
f_{22} \\
f_{20} \\
f_{21} \\
f_{22}
\end{bmatrix}$$
(7)

Explanation of notation: $f_{ij} = f(x_{ij})$ and $u_{ij} = u(x_{ij})$.

Explanation of the matrix: We create ghost node $u_{i-1,j}$ $u_{i+1,j}$, $u_{i,j-1}$, $u_{i,j+1}$ for indices ij with i=0,2 or j=0,2. With central difference, we have either $\frac{u_{i+1,j}-u_{i-1,j}}{2h}=\frac{\partial u}{\partial n}=0$ or with similar process with j so that we can represent the value of ghost node (note that for corner node we do both i and j). We then assmble the matrix accordingly.

(b) Show that A_h is weakly diagonally dominant.

Proof. According to the definition and direct computation, we see A_h is weakly diagonally dominant. Note that A_h is indeed very "weak" here since every row the abs sum of off-diagonal elements exactly equal to the diagonal element. This leads to the property in (c).

(c) Show that:

$$A_h x \ge 0 \implies x \ge 0$$
 or x is a constant vector.

Proof. The proof is almost identical to 1(a); actually I think the conclusion should only be x is a constant vector.

If x is not a constant vector:

Let $x_i = \min_j x_j < 0$, we have

$$0 \le (A_h x)_i = \sum_{j=1}^N a_{ij} x_j \tag{8}$$

$$= a_{ii}x_i + \sum_{j=1, j\neq i}^{N} a_{ij}x_j \tag{9}$$

$$\langle a_{ii}x_i + \sum_{j=1, j\neq i}^N a_{ij}x_i \tag{10}$$

$$= (a_{ii} + \sum_{j=1, j \neq i}^{N} a_{ij})x_i = 0$$
(11)

Note that line 10 uses the fact that x is not a constant vector (so we got strict inequality) and $a_{ii} > 0$ and $a_{ij} < 0 \quad \forall i \neq j$. The last line uses the fact that $a_{ii} + \sum_{j=1, j \neq i}^{N} a_{ij} = 0$ which can be observed directly. The above computation clearly leads to contradiction, and the result follows.

(d) Use (c) to show that:

$$A_h x = 0 \implies x$$
 is a constant vector.

This says that the null space of A_h consists of constant vectors.

Proof. Since $A_h x \ge 0$ and $A_h(-x) = 0$, this turns out that both x and -x should be constant or ≥ 0 . This turns out that x can only be a constant vector or a zero vector (which is also a constant vector), and the result follows.

3. (2pt) (Cauchy-Schwarz inequality) Let $(X, \|\cdot\|_X)$ be a Hilbert space equipped with the inner product $(\cdot, \cdot)_X : X \times X \to \mathbb{R}$. Prove the Cauchy-Schwarz inequality:

$$|(u, v)_X| \le ||u||_X ||v||_X \quad \forall u, v \in X.$$

[Hint: Let $w = \frac{u}{\|u\|} - \frac{v}{\|v\|}$ and use $(w, w)_X \ge 0$.]

Proof. WLOG, we may assume ||u||, ||v|| > 0 (since the case where at least one of them is 0 is trivial). Let

 $w = u \pm v$ we have

$$0 \le (w, w)_X = \left(\frac{u}{\|u\|} \pm \frac{v}{\|v\|}, \frac{u}{\|u\|} \pm \frac{v}{\|v\|}\right) \tag{12}$$

$$= \frac{\|u\|^2}{\|u\|^2} + \frac{\|v\|^2}{\|v\|^2} \pm 2\frac{(u,v)}{\|u\|\|v\|}$$
(13)

$$=2(1\pm\frac{(u,v)}{\|u\|\|v\|})\tag{14}$$

It follows that

$$\frac{|(u,v)|}{\|u\|\|v\|} \le 1 \iff |(u,v)| \le \|u\|\|v\| \tag{15}$$