Solution to Practice 3d

(1) Since 1 + 4i is a root of p_1 , 1 - 4i is also a root of p_1 . Which means that both (x - 1 - 4i) and (x - 1 + 4i) are factors of p_1 . This means that their product (x - 1 - 4i)(x - 1 + 4i) is a factor of p_1 . In fact, we see that $p_1(x) = (x - 1 - 4i)(x - 1 + 4i)$.

(2) Since 3-4i is a root of p_2 , 3+4i is also a root of p_2 . Which means that both (x-3+4i) and (x-3-4i) are factors of p_2 . This means that their product (x-3+4i)(x-3-4i) is a factor of p_2 . Multiplying we get

$$(x-3+4i)(x-3-4i) = x^2 - 3x - 4ix - 3x + 9 + 12i + 4ix - 12i - 16i^2 = x^2 - 6x + 25i$$

Dividing $p_2(x) = x^3 - 9x^2 + 43x - 75$ by $x^2 - 6x + 25$ gives us x - 3. So $p_2(x) = (x - 3 + 4i)(x - 3 - 4i)(x - 3)$.

(3) Since -2-2i is a root of p_3 , -2+2i is also a root of p_3 . Which means that both (x+2+2i) and (x+2-2i) are factors of p_3 . This means that their product (x+2+2i)(x+2-2i) is a factor of p_3 . Multiplying we get

Dividing $p_3(x) = x^4 + 8x^3 + 19x^2 + 12x - 40$ by $x^2 + 4x + 8$ gives us $x^2 + 4x - 5$. And since $x^2 + 4x - 5 = (x - 1)(x + 5)$, we see that $p_3(x) = (x + 2 + 2i)(x + 2 - 2i)(x - 1)(x + 5)$.

(4) Since 5i is a root of p_4 , -5i is also a root of p_4 . Which means that both (x-5i) and (x+5i) are factors of p_4 . This means that their product (x-5i)(x+5i) is a factor of p_4 . Multiplying we get

$$(x-5i)(x+5i) = x^2 + 5ix - 5ix - 25i^2 = x^2 + 25$$

Dividing $p_4(x) = x^4 - 2x^3 + 30x^2 - 50x + 125$ by $x^2 + 25$ gives us $x^2 - 2x + 5$. To find the roots of this quadratic equation, we use the quadratic formula:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(5)}}{2(1)}$$

$$= \frac{2 \pm \sqrt{4 - 20}}{2}$$

$$= \frac{2 \pm \sqrt{-16}}{2}$$

$$= \frac{2 \pm 4i}{2}$$

$$= 1 + 2i \text{ and } 1 - 2i$$

And so we see that 1+2i and its conjugate 1-2i are also roots of p_4 . And since $(x-1-2i)(x-1+2i)=x^2-2x+5$, we see that $p_4(x)=(x-5i)(x+5i)(x-1-2i)(x-1+2i)$.