EN671: Solar Energy Conversion Technology

Lecture 7: Solar Radiation Estimation

Dr. Pankaj Kalita

Associate Professor School of Energy Science and Engineering Indian Institute of Technology, Guwahati

- Need of correlation
- Classification of weather
- Calculation of monthly average of daily extra-terrestrial radiation
- Different correlations for estimation of monthly average of daily global radiation

Estimation of

- (a) Monthly average of daily diffuse radiation
- (b) Monthly average of hourly global radiation
- (c) Monthly average of hourly diffuse radiation
- (d) Hourly global, beam and diffuse radiation under cloudless skies
- (e) Radiation on tilted surface

Cloudy Skies

Relationships for Cloudy skies

Monthly average daily diffuse radiation

Liu and Jordan

$$\frac{\overline{H}_d}{\overline{H}_g} = 1.390 - 4.027 \left[\frac{\overline{H}_g}{\overline{H}_o} \right] + 5.531 \left[\frac{\overline{H}_g}{\overline{H}_o} \right]^2 - 3.108 \left[\frac{\overline{H}_g}{\overline{H}_o} \right]^3$$

Modi and Sukhatme

$$\frac{\overline{H}_d}{\overline{H}_g} = 1.411 - 1.696 \left[\frac{\overline{H}_g}{\overline{H}_o} \right]$$

Gard and Garg

$$\frac{\overline{H}_d}{\overline{H}_g} = 0.8677 - 0.7365 \left[\frac{\overline{S}}{\overline{S}_{\text{max}}} \right]$$

$$\bar{K}_T = \frac{\bar{H}_g}{\bar{H}_o}$$
 Monthly average clearness index

Relationships for Cloudy skies

Monthly average hourly global radiation

$$\frac{\bar{I}_g}{\overline{H}_g} = \frac{\bar{I}_o}{\overline{H}_o} (a + b \cos \omega)$$

Collares-Pereira and Rabl

$$a = 0.409 + 0.5016 \sin(\varpi_s - 60^\circ)$$

$$b = 0.6609 - 0.4767 \sin(\varpi_s - 60^\circ)$$

Monthly average hourly diffuse radiation

$$\frac{\bar{I}_d}{\bar{H}_d} = \frac{\bar{I}_o}{\bar{H}_o}$$
 Liu and Jordan

Terrestrial region

- Clearness index parameters
 - Hourly clearness index $(k_T = \frac{I}{I})$: ratio of hourly data of solar radiation in the terrestrial region to hourly data of solar radiation in the extra terrestrial region I(t).
 - Daily clearness index $(K_T = \frac{H}{H})$: ratio of daily solar radiation in the terrestrial region to the daily solar radiation in the extra terrestrial region for that day.
 - Monthly clearness index $(\overline{K_r} = \frac{\overline{H}}{\overline{H}})$: ratio of monthly average solar radiation on a horizontal surface in the terrestrial region to the monthly average extra terrestrial solar radiation.

Relationships for Cloudless skies

Hourly global, beam and diffuse radiation

In the ASHRAE Model, it is postulated that,

$$I_{bn} = A \exp[-B/\cos\theta_z]$$

$$I_d = CI_{bn}$$

A, B and C are constants whose values have been determined on month wise basis

Values of the constants A, B, and C used for predicting hourly solar radiation on clear days

	A (W/m²)	В	С
January 21	1202	0.141	0.103
February 21	1187	0.142	0.104
March 21	1164	0.149	0.109
April 21	1130	0.164	0.120
May 21	1106	0.177	0.130
June 21	1092	0.185	0.137
July 21	1093	0.186	0.138
August 21	1107	0.182	0.134
September 21	1136	0.165	0.121
October 21	1136	0.152	0.111
November 21	1190	0.144	0.106
December 21	1204	0.141	0.103

Ex.M2_L2 Estimate the hourly global, beam and diffused radiations at Guwahati $(26^{\circ}9^{\circ}N,91^{\circ}44^{\circ}E)$ between 1000 to 1400 hours (LAT) on May 15, 2019 and compare these data with measured values given in the following table.

SI. No.	LAT	Global radiation (kJ/m ² -h)	Diffuse radiation (kJ/m²-h)
1	1000 – 1100	3224	636
2	1100 – 1200	3320	737
3	1200 – 1300	3538	779
4	1300 – 1400	3329	708

 kJ/m^2-hr kJ/m^2-hr kJ/m^2-hr LAT P SI. ω M M P M P Diffuse Global No. **Diffuse** Deg Global Beam Beam 1000 – 1100 22.5 3020 1 970.1/ 2550 850.7/ 470 119.3/ 3492 3062 429.5 2 1100 - 12007.5 1034.2/ 2600 913.5 550 120.6 3150 434.2 3723 3289 1200 - 1300570 3 3318 970.1/ 2748 913.5/ 120.6 / -7.5 434.2 3723 3289 1300 - 1400-22.5 3163 1034.2/ 2678 850.7/ 485 119.3 / 4 3492 3062 429.2

Solar Radiation on tilted surface

- Beam Radiation
- Diffuse radiation
- Reflected radiation
- Flux on tilted Surface

Solar radiation on tilted surfaces

 Beam radiation (ratio of beam radiation flux falling on a tilted surface to that falling on a horizontal surface is called the tilt factor for the beam radiation)- facing south

$$r_b = \frac{\cos \theta}{\cos \theta_z} = \frac{\sin \delta \sin(\phi - \beta) + \cos \delta \cos \varpi \cos(\phi - \beta)}{\sin \phi \sin \delta + \cos \phi \cos \delta \cos \varpi}$$

• Diffuse radiation (ratio of diffuse radiation flux falling on a tilted surface to that falling on a horizontal surface is called the tilt factor for the diffuse radiation) $r_d = \frac{1 + \cos \beta}{2}$

(Radiation shape factor for a tilted surface with respect to the sky)

Reflected radiation

$$r_r = \frac{\rho(1-\cos\beta)}{2}$$

Flux on tilted surface

$$I_T = I_b \times r_b + I_d \times r_d + (I_b + I_d) \times r_r$$

Ex.M3_L3 Calculate the monthly average hourly radiation falling on a flat plate collector facing south $(\gamma = 0^{\circ})$ with a slop of 26°, given the following data

- Location: New Delhi $(28^{\circ}23'N,77^{\circ}12'E)$
- Month: October
- Time: 1100 -1200 h (LAT)
- Assume ground reflectivity to be 0.2
- $\overline{I}_g = 2350 \text{ kJ/m}^2 \text{h}; \overline{I}_d = 986 \text{ kJ/m}^2 \text{h}$

Summary

- Correlations for estimation of monthly average of daily diffuse radiation, monthly average of hourly global and diffuse radiation on horizontal surface and cloudy skies
- Estimation of hourly global, beam and diffuse on horizontal surface and clear skies
- Total radiation estimation of an inclined surface (Instantaneous, hourly, monthly average of hourly, daily and monthly average of daily)
- Solved numerical problems