

Search docs

MeGraPDE

Getting Started

Background

Your first metric graph

Creating a metric graph

Functions on metric graphs

... and its spectrum

Heat Equation

Metric Graphs

Base

Extended Graph

Constructors

Test Problems

Finite Elements

Finite Element Discretization

Multigrid Solver

Quantum Graph Spectra

Equilateral Graphs

Non-Equilateral Graphs

Spectral Galerkin Method

Plotting

Your first metric graph

Getting Started / Your first metric graph

Creating a metric graph

4.71238898038469

Let us first create a combinatorial star graph G with 5 vertices and 4 edges using Graphs.jl

```
using Graphs
G = star_graph(5)
{5, 4} undirected simple Int64 graph
```

```
In order to extend G to an equilateral metric graph, we define the edge length ?
```

```
\ell = pi + pi/2
```

G can now be represented as metric graph Γ by applying the function metric_graph

```
Γ = metric_graph(G, ℓ)
{n=5, m=4, \ell=4.71238898038469} equilateral metric graph
```

For a small example like the star graph, vertex coordinates can be assigned that will later allow to visualize Γ in 3d.

```
coords = [[0,0],
           [0,0],
           [-0,0],
           [0, {],
           [0,-{]]
```

```
5-element Vector{Vector{Float64}}:
[0.0, 0.0]
[4.71238898038469, 0.0]
[-4.71238898038469, 0.0]
[0.0, 4.71238898038469]
[0.0, -4.71238898038469]
```

The function metric_graph takes the optional input vertex_coords to specify the vertex coordinates.

```
Γ = metric_graph(G, ℓ, vertex_coords = coords)
\{n=5, m=4, \ell=4.71238898038469\} equilateral metric graph
```

We may now plot Γ using plot_graph_3d

```
\{n=5, m=4, \ell=1\} equilateral metric graph
```

Note

The previous example graph can be assembled using the constructor metric_star_graph metric_star_graph({ = pi + pi/2}). Several other example graphs are implemented...

Functions on metric graphs

A function u on a metric graph is represented by a vector of functions u_e, specifying u on each edge e.

```
u = [x -> -3*\sin(x),
      x \rightarrow \sin(x),
      x \rightarrow \sin(x)
      x \rightarrow \sin(x)
```

```
4-element Vector{Function}:
 #1 (generic function with 1 method)
 #2 (generic function with 1 method)
 #3 (generic function with 1 method)
 #4 (generic function with 1 method)
```

If vertex coordinates are assigned to Γ , a function can be plotted on Γ with

```
4-element Vector{Function}:
#1 (generic function with 1 method)
 #2 (generic function with 1 method)
 #3 (generic function with 1 method)
#4 (generic function with 1 method)
```