Groupes localement

Prérequis

compacts

Question 1/5

Espace topologique séparé

Réponse 1/5

X est un espace toplogique séparé si pour tout $x \neq y$, il existe V_x et V_y des voisinages ouverts de x et y tels que $V_x \cap V_y = \emptyset$ De manière équivalente, $\{(x,x), x \in X\}$ est fermé dans X^2

Question 2/5

Espace connexe

Réponse 2/5

X est connexe si pour tout couple (U,V) d'ouverts tels que $X=U\sqcup V,\,U=\varnothing$ ou $V=\varnothing$ De manière équivalente, les seuls

ouverts-fermés de X sont X et \varnothing

Question 3/5

Espace totalement discontinu

Réponse 3/5

X est totalement discontinu si les composantes connexes de X sont les singletons

Question 4/5

Espace localement compact

Réponse 4/5

X est localement compact s'il est séparé et pour tout $x \in X$, il existe un compact K tel que $x \in K$ et il existe $U \subset K$ ouvert tel que $x \in U$

Question 5/5

Espace compact séparé

Réponse 5/5

X est compact séparé si pour toute famille d'ouvers $(U_i)_{i\in I}$ telle que $X\subset\bigcup_{i\in I}(U_i)$, il existe

$$\widetilde{I} \subset I$$
 fini tel que $X \subset \bigcup_{i \in \widetilde{I}} (U_i)$