Concorso di dottorato in Fisica 2016 Universita' di Pisa

Il candidato svolga a scelta un tema fra i seguenti e almeno uno dei quattro esercizi proposti.

TEMI (massimo due facciate)

- n.1)Descrivere brevemente il concetto di "rottura spontanea di simmetria" e illustrare alcune sue applicazioni.
- n.2)Si discuta un esperimento di fisica in cui gli errori sistematici di misura siano rilevanti, precisandone l'entitá.
- n.3)Si descriva un fenomeno di interazione radiazione-materia, di particolare rilevanza per le applicazioni tecnologiche e/o per lo studio di un problema di fisica fondamentale.
- n.4)Si definisca il principio di Hamilton e se ne discutano le possibili applicazioni.

Esercizio n.1:

Consideriamo il sistema descritto dall'equazione di Schrödinger

$$\left[-\frac{\hbar^2}{2m} \partial_x^2 + V(x) \right] \psi(x) = E \psi(x), \qquad x \in \mathbb{R},$$
 (1)

che ha come stato fondamentale

$$\psi_f(x) = \frac{\sqrt{\lambda}}{\sqrt{2}\cosh(\lambda x)}, \qquad (2)$$

dove $\lambda > 0$ é una costante.

(a) Assumendo che

$$\lim_{|x| \to \infty} V(x) = 0, \tag{3}$$

determinare il valore dell'energia E_f dello stato fondamentale e discutere la sua natura;

- (b) Determinare la forma esplicita del potenziale V(x) nell'ipotesi (3);
- (c) Dimostrare che gli stati di scattering, associati al potenziale trovato nel punto (b), sono dati da

$$\psi_k(t,x) = e^{ikx} \left[\frac{k + i\lambda \tanh(\lambda x)}{k - i\lambda} \right], \qquad k \in \mathbb{R};$$
(4)

(d) Usando il comportamento di (4) nei limiti $x \to \pm \infty$, determinare i coefficienti di trasmissione e riflessione e le probabilità associate. Dare un'interpretazione fisica dei risultati.

Esercizio 2

- a) Il bosone di Higgs, di massa $125 GeV/c^2$ puó decadere in coppie di fotoni. Si vogliono misurare i due fotoni nella configurazione in cui hanno la stessa energia utilizzando un calorimetro elettromagnetico distante 1 m dal punto di generazione del Higgs. Il calorimetro ha una risoluzione spaziale di separazione tra i due sciami dei fotoni di 10 cm. Si determini la massima energia del Higgs per cui i due fotoni siano misurabili separatamente.
- b) Il muone μ^- ha una massa di 100 MeV/c^2 e decade in e^- (che ha una massa di 0.5 MeV/c^2)+ ν + $\bar{\nu}$ (che hanno massa nulla). Nel sistema di riposo del μ^- , si trovino le configurazioni geometriche delle tre particelle finali in cui l'elettrone ha la minima e la massima energia determinando tale energia. Si determinino anche le configurazioni di spin delle tre particelle nei due casi.
- c) Antineutrini di 2.3 MeV dai decadimenti di prodotti di fissione in un reattore, hanno una sezione d'urto di interazione con protoni:

$$\bar{\nu_e} + p - > e^+ + n$$

- di $6 \times 10^{-48} m^2$. Si calcoli il libero cammino medio degli antineutrini in acqua. (Si assuma che gli antineutrini possano interagire solo con i protoni liberi.)
- d) Protoni cosmici di alta energia possono interagire con la radiazione di fondo cosmica a 3 K attraverso la reazione:

$$p + \gamma - > n + \pi^+$$

- Sapendo che la massa del protone e del neutrone sono rispettivamente 938 e 940 MeV/c^2 , e che la massa del π^+ è di 140 MeV/c^2 , si determini la minima energia che il protone deve avere per dar luogo alla reazione (GZK cutoff). (Sia data la costante di Boltzmann $k=8.6\times 10^{-5}eVK^{-1}$)
- e) Sia data la vita media del leptone $\mu:2.2\times10^{-6}s$. Si stimi la vita media del leptone τ sapendo che che la sua frazione di decadimento, B, in $e+\nu+\nu$ (lo stesso stato finale del decadimento del μ) è 0.18 e che le masse dei due leptoni sono 100 e 1800 MeV.

Esercizio n.3

Un gas di N fermioni identici di spin $\frac{1}{2}$, vincolati a muoversi in una dimensione nell'intervallo $0 \le x \le L$, ha una Hamiltoniana di singola particella data da:

$$H(k) = hv|k| + \mu V_0$$

dove h è la costante di Planck, v è una costante positiva, V_0 ha le dimensioni fisiche di un'energia e μ è una variabile discreta che può assumere i due valori ± 1 . Per ogni valore del numero d'onda k quindi esistono due autostati, uno soluzione del problema Hamiltoniano con μ =+1 ed uno di quello con μ =-1. Si richiede di:

- a) disegnare il diagramma degli autovalori dell'Hamiltoniana $\varepsilon(k)$;
- b) calcolare la funzione cumulativa $\Sigma(\varepsilon)$, ovvero l'integrale della densità degli stati ;
- c) determinare, per temperatura T=0, il numero massimo di particelle N^* per cui si ha $\langle \mu \rangle = -1$ e indicare la relativa posizione dell'energia di Fermi nel diagramma ottenuto in a);
- d) descrivere, motivandola, la tendenza di $\langle \mu \rangle$ all'aumentare della temperatura.

Esercizio n. 4

Un corpo di massa m orbita attorno a un altro corpo di massa M>>m con momento angolare j.

- a) Si scriva la lagrangiana del sistema in coordinate polari (r, ϕ) .
- b) Dalla lagrangiana si derivi l'equazione del moto del corpo m.
- c) Scrivere il momento angolare j in funzione di (r, ϕ) . Varia j durante il moto?
- d) Si scriva l'equazione del moto usando le derivate rispetto alla coordinata φ invece della coordinata temporale, sfruttando le caratteristiche del momento angolare j.
- e) Si dimostri che l'equazione del moto risultante e' quella di un oscillatore armonico nella coordinata y=1/r.