SkillSanta Project

On

"Understanding Customer's Behaviour In A Retail Shop"

Submitted By -

Ankita Prasad

DSML Batch 1

Submitted To -

Mr. Neeraj Garg

Contents

1. Reading Data and EDA	3
2. Data Wrangling	6
2.1 Handling Missing Values	7
2.2 Conversion to Categorical Datatypes	8
3. Visualisation	10
3.1 - Number of purchases of each product category by Age	10
3.2 - Number of purchases of each product category by Gender	10
3.3 - Number of purchases of each product category by Occupation	11
3.4 - Number of purchases of each product category by City_Category	11
3.4.1 - Purchase Mean of Product_Category_1 by City	12
3.4.2 - Purchase Mean of Product_Category_2 by City	13
3.4.3 - Purchase Mean of Product_Category_3 by City	14
3.5 - Number of purchases of each product category by Stay_In_Current_City_Yea	rs15
3.6 - Number of purchases of each product category by Marital_Status	15
3.7 - Age and City_Category vs Purchase	16
3.8 - Age and Gender vs Purchase	17
3.9 - City_Category and Gender vs Purchase	17
3.10 - City_Category and Occupation vs Purchase	18
3.11 Heatmap	19
4. Model Selection	20
4.1 Random Forest Regressor	21
4.2 Linear Regression	23
4.3 Decision Tree Regressor	25
5. Training and Evaluating the Model	27

1. Reading Data and EDA

We are given with two datasets,

- (i) train.csv
- (ii) test.csv

First, read the data into df_train_org and df_test dataframes using read_csv.

*df_train consists all data except 'Purchase' values, which will be used later on for training purpose.

```
data_path = '/Users/hp/Desktop/SkillSanta Project/Data'
train_file = 'train.csv'
test_file = 'test.csv'

#Using "os.path.join" because it is platform independent,
#could have also used "+" sign to concat file names with path
df_train_org = pd.read_csv(os.path.join(data_path, train_file))
df_test = pd.read_csv(os.path.join(data_path, test_file))
df_train = df_train_org.iloc[:,:-1]
```

Look at the data in the dataframes by df_train_org.head() and df_test.head(). This will show first 5 rows of the dataframes.

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Produ
0	1000001	P00069042	F	0- 17	10	Α	2	0	3	NaN	
1	1000001	P00248942	F	0- 17	10	А	2	0	1	6.0	
2	1000001	P00087842	F	0- 17	10	А	2	0	12	NaN	
3	1000001	P00085442	F	0- 17	10	Α	2	0	12	14.0	
4	1000002	P00285442	М	55+	16	С	4+	0	8	NaN	

<pre>df_test.head()</pre>	
---------------------------	--

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Produc
0	1000004	P00128942	М	46- 50	7	В	2	1	1	11.0	
1	1000009	P00113442	М	26- 35	17	С	0	0	3	5.0	
2	1000010	P00288442	F	36- 45	1	В	4+	1	5	14.0	
3	1000010	P00145342	F	36- 45	1	В	4+	1	4	9.0	
4	1000011	P00053842	F	26- 35	1	С	1	0	4	5.0	
4											-

By using a function to get detailed information about the dataframe features, explore and analyse the dataframe.

The function returns a dataframe consisting information, and total memory used by that dataframe.

```
#Function to get informations about the DF
def get df info(df, include unique values = False):
    col name = list(df.columns)
    col type = [type(df[col][0]) for col in col name]
    col_null_count = [df[col].isnull().sum() for col in col_name]
    col unique count = [df[col].nunique() for col in col name]
    col mem usage = [df[col].memory usage(deep = True) for col in col name]
    df total mem = sum(col mem usage) / 1048576
    if include unique values:
        col_unique_list = [df[col].unique() for col in col_name]
        df info = pd.DataFrame({'column name': col name,
                                'type': col type,
                                'null count': col null count,
                                'nunique': col unique count,
                                'unique values': col unique list})
    else:
        df info = pd.DataFrame({'column name': col name,
                                 'type': col type,
                                'null count': col null count,
                                'nunique': col unique count})
    return df info, df total mem
```

For df_train_org -

df_train_org_info, df_train_org_total_mem = get_df_info(df_train_org, True)
print(df_train_org_total_mem)
df_train_org_info

193.79075241088867

	column_name	type	null_count	nunique	unique_values
0	User_ID	<class 'numpy.int64'=""></class>	0	5891	[1000001, 1000002, 1000003, 1000004, 1000005,
1	Product_ID	<class 'str'=""></class>	0	3631	[P00069042, P00248942, P00087842, P00085442, P
2	Gender	<class 'str'=""></class>	0	2	[F, M]
3	Age	<class 'str'=""></class>	0	7	[0-17, 55+, 26-35, 46-50, 51-55, 36-45, 18-25]
4	Occupation	<class 'numpy.int64'=""></class>	0	21	[10, 16, 15, 7, 20, 9, 1, 12, 17, 0, 3, 4, 11,
5	City_Category	<class 'str'=""></class>	0	3	[A, C, B]
6	Stay_In_Current_City_Years	<class 'str'=""></class>	0	5	[2, 4+, 3, 1, 0]
7	Marital_Status	<class 'numpy.int64'=""></class>	0	2	[0, 1]
8	Product_Category_1	<class 'numpy.int64'=""></class>	0	20	[3, 1, 12, 8, 5, 4, 2, 6, 14, 11, 13, 15, 7, 1
9	Product_Category_2	<class 'numpy.float64'=""></class>	173638	17	[nan, 6.0, 14.0, 2.0, 8.0, 15.0, 16.0, 11.0, 5
10	Product_Category_3	<class 'numpy.float64'=""></class>	383247	15	[nan, 14.0, 17.0, 5.0, 4.0, 16.0, 15.0, 8.0, 9
11	Purchase	<class 'numpy.int64'=""></class>	0	18105	$[8370,15200,1422,1057,7969,15227,19215,\dots$

df_train_org.shape

(550068, 12)

For df test -

In [12]: df_test_info

Out[12]:

	column_name	type	null_count	nunique	unique_values
0	User_ID	<class 'numpy.int64'=""></class>	0	5891	[1000004, 1000009, 1000010, 1000011, 1000013,
1	Product_ID	<class 'str'=""></class>	0	3491	[P00128942, P00113442, P00288442, P00145342, P
2	Gender	<class 'str'=""></class>	0	2	[M, F]
3	Age	<class 'str'=""></class>	0	7	[46-50, 26-35, 36-45, 18-25, 51-55, 55+, 0-17]
4	Occupation	<class 'numpy.int64'=""></class>	0	21	[7, 17, 1, 15, 3, 0, 8, 16, 4, 12, 13, 18, 11,
5	City_Category	<class 'str'=""></class>	0	3	[B, C, A]
6	Stay_In_Current_City_Years	<class 'str'=""></class>	0	5	[2, 0, 4+, 1, 3]
7	Marital_Status	<class 'numpy.int64'=""></class>	0	2	[1, 0]
8	Product_Category_1	<class 'numpy.int64'=""></class>	0	18	[1, 3, 5, 4, 2, 10, 15, 18, 8, 13, 6, 11, 12,
9	Product_Category_2	<class 'numpy.float64'=""></class>	72344	17	[11.0, 5.0, 14.0, 9.0, 3.0, 4.0, 13.0, 2.0, na
10	Product_Category_3	<class 'numpy.float64'=""></class>	162562	15	[nan, 12.0, 15.0, 9.0, 16.0, 14.0, 4.0, 3.0, 5

We can observe -

- (i) Datatypes of features are string, integer and float.
- (ii) Missing values in Product_Category_2 and Product Category 3.
- (iii) Memory usage is quite high.

2. Data Wrangling

First, concatenate the df_train and df_test into one dataframe, df_concat_org.

	ui_co	oncat			_						
[15]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2
	0	1000001	P00069042	F	0- 17	10	А	2	0	3	NaN
	1	1000001	P00248942	F	0- 17	10	Α	2	0	1	6.0
	2	1000001	P00087842	F	0- 17	10	А	2	0	12	NaN
	3	1000001	P00085442	F	0- 17	10	А	2	0	12	14.0
	4	1000002	P00285442	М	55+	16	С	4+	0	8	NaN
	5	1000003	P00193542	M	26- 35	1 5	Α	3	0	_1	2.0
	6	1000004	P00184942	M	46- 50	7	В	2	1	1	8.0
	7	1000004	P00346142	M	46-	7	R	2	1	1	15.0

[16]: df_concat_info, df_concat_total_mem = get_df_info(df_concat, True)
print(df_concat_total_mem)
df_concat_info

270.1093740463257

[16]:

	column_name	type	null_count	nunique	unique_values
0	User_ID	<class 'numpy.int64'=""></class>	0	5891	[1000001, 1000002, 1000003, 1000004, 1000005,
1	Product_ID	<class 'str'=""></class>	0	3677	[P00069042, P00248942, P00087842, P00085442, P
2	Gender	<class 'str'=""></class>	0	2	[F, M]
3	Age	<class 'str'=""></class>	0	7	[0-17, 55+, 26-35, 46-50, 51-55, 36-45, 18-25]
4	Occupation	<class 'numpy.int64'=""></class>	0	21	[10, 16, 15, 7, 20, 9, 1, 12, 17, 0, 3, 4, 11,
5	City_Category	<class 'str'=""></class>	0	3	[A, C, B]
6	Stay_In_Current_City_Years	<class 'str'=""></class>	0	5	[2, 4+, 3, 1, 0]
7	Marital_Status	<class 'numpy.int64'=""></class>	0	2	[0, 1]
8	Product_Category_1	<class 'numpy.int64'=""></class>	0	20	[3, 1, 12, 8, 5, 4, 2, 6, 14, 11, 13, 15, 7, 1
9	Product_Category_2	<class 'numpy.float64'=""></class>	245982	17	[nan, 6.0, 14.0, 2.0, 8.0, 15.0, 16.0, 11.0, 5
10	Product_Category_3	<class 'numpy.float64'=""></class>	545809	15	[nan, 14.0, 17.0, 5.0, 4.0, 16.0, 15.0, 8.0, 9

[17]: df_concat.shape

[17]: (783667, 11)

2.1 Handling Missing Values -

For missing values in Product_Category_2 and Product_category_3, we will impute the mode value at missing place.

```
In [18]: df_concat['Product_Category_2'].mode()
Out[18]: Ø 8.0
    dtype: float64

In [19]: df_concat['Product_Category_3'].mode()
Out[19]: Ø 16.0
    dtype: float64
```

Create a copy (df_concat_copy) of the df_concat so that changes won't affect the original dataframe.

```
#Creating a copy of df so that changes won't affect in the original one
df_concat_copy = df_concat.copy(deep = True)
```

Impute mode values to fill missing values.

```
df_concat_copy.Product_Category_2.fillna(value = 8, inplace = True)
df_concat_copy.Product_Category_3.fillna(value = 16, inplace = True)
```

```
[22]: df_concat_copy_info, df_concat_copy_total_mem = get_df_info(df_concat_copy, True)
          print(df_concat_copy_total_mem)
          df_concat_copy_info
          270.1093740463257
t[22]:
                            column name
                                                            type null count nunique
                                                                                                                              unique values
            0
                                             <class 'numpy.int64'>
                                                                            0
                                                                                           [1000001, 1000002, 1000003, 1000004, 1000005, ...
                                  User_ID
                               Product_ID
                                                                            0
                                                                                   3677
                                                                                         [P00069042, P00248942, P00087842, P00085442, P...
            1
                                                      <class 'str'>
            2
                                                                            0
                                                      <class 'str'>
                                  Gender
                                                                                      7
            3
                                     Age
                                                                            0
                                                                                                  [0-17, 55+, 26-35, 46-50, 51-55, 36-45, 18-25]
                                                      <class 'str'>
                                             <class 'numpy.int64'>
                                                                            0
                                                                                     21
                                                                                                    [10, 16, 15, 7, 20, 9, 1, 12, 17, 0, 3, 4, 11,...
                               Occupation
                                                                            0
                                                                                      3
                                                                                                                                    [A, C, B]
                            City Category
                                                      <class 'str'>
            6 Stay_In_Current_City_Years
                                                                            0
                                                                                      5
                                                      <class 'str'>
                                                                                                                               [2, 4+, 3, 1, 0]
                            Marital Status
                                                                            0
                                                                                      2
            7
                                             <class 'numpy.int64'>
                                                                                                                                       [0, 1]
                                                                            0
                                                                                     20
                      Product_Category_1
                                                                                                     [3, 1, 12, 8, 5, 4, 2, 6, 14, 11, 13, 15, 7, 1...
                                            <class 'numpy.int64'>
                      Product Category 2 <class 'numpy float64'>
                                                                            0
                                                                                     17
                                                                                                    [8.0, 6.0, 14.0, 2.0, 15.0, 16.0, 11.0, 5.0, 3...
           10
                      Product Category 3 <class 'numpy.float64'>
                                                                                     15
                                                                                                    [16.0, 14.0, 17.0, 5.0, 4.0, 15.0, 8.0, 9.0, 1...
```

2.2 Conversion to Categorical Datatypes -

Now, we need to convert datatypes of all the features to numeric categorical values.

- (i) User ID has 5891 unique values.
- (ii) Product ID has 3677 unique values.
- (iii) Gender has 2 values, M and F.
- (iv) Age has 7 unique intervals.
- (v) Occupation has 21 unique categories.
- (vi) City Category has 3 values, A, B and C.
- (vii) Stay_In_Current_City_Years has 5 unique values.
- (viii) Marital Status has 2 unique values, 0 and 1.
- (ix) Product_Category_1 has 20 unique values.
- (x) Product_Category_2 has 17 unique values.
- (xi) Product Category 3 has 15 unique values.

Using Label Encoding, convert all of them to categorical datatype.

```
[35]: from sklearn.preprocessing import LabelEncoder
    for col in df_concat_copy_info['column_name']:
        col_encoder = LabelEncoder()
        df_concat_copy[col] = col_encoder.fit_transform(df_concat_copy[col])

[36]: df_concat_copy_info, df_concat_copy_total_mem = get_df_info(df_concat_copy, True)
        print(df_concat_copy_total_mem)
        df_concat_copy_info

50.821529388427734
```

[36]:

	column_name	type	null_count	nunique	unique_values
0	User_ID	<class 'numpy.int64'=""></class>	0	5891	[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
1	Product_ID	<class 'numpy.int32'=""></class>	0	3677	[684, 2406, 868, 844, 2769, 1857, 1771, 3364,
2	Gender	<class 'numpy.int32'=""></class>	0	2	[0, 1]
3	Age	<class 'numpy.int32'=""></class>	0	7	[0, 6, 2, 4, 5, 3, 1]
4	Occupation	<class 'numpy.int64'=""></class>	0	21	[10, 16, 15, 7, 20, 9, 1, 12, 17, 0, 3, 4, 11,
5	City_Category	<class 'numpy.int32'=""></class>	0	3	[0, 2, 1]
6	Stay_In_Current_City_Years	<class 'numpy.int32'=""></class>	0	5	[2, 4, 3, 1, 0]
7	Marital_Status	<class 'numpy.int64'=""></class>	0	2	[0, 1]
8	Product_Category_1	<class 'numpy.int64'=""></class>	0	20	[2, 0, 11, 7, 4, 3, 1, 5, 13, 10, 12, 14, 6, 1
9	Product_Category_2	<class 'numpy.int64'=""></class>	0	17	[6, 4, 12, 0, 13, 14, 9, 3, 1, 2, 10, 7, 8, 15
10	Product_Category_3	<class 'numpy.int64'=""></class>	0	15	[12, 10, 13, 2, 1, 11, 4, 5, 9, 3, 8, 0, 14, 7

After encoding, the total memory usage has decreased significantly from 270 to 50 bytes.

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Produc
0	0	684	0	0	10	0	2	0	2	6	
1	0	2406	0	0	10	0	2	0	0	4	
2	0	868	0	0	10	0	2	0	11	6	
3	0	844	0	0	10	0	2	0	11	12	
4	1	2769	1	6	16	2	4	0	7	6	

3. Visualisation

3.1 - Number of purchases of each product category by Age -

The graph shows that age group of 26 - 35 buys most of the products, followed by group of age 36 - 45 and 18 - 25.

3.2 - Number of purchases of each product category by Gender

From the graph, it is clear that male purchases way more than females. Also, males buy Product_Category_1 more than other products.

3.3 - Number of purchases of each product category by Occupation

From this, we have occupation 4, 1 and 7 as top 3 buyers.

3.4 - Number of purchases of each product category by City Category

Here, most of the purchase is from city B.

3.4.1 - Purchase Mean of Product_Category_1 by City

From this graph, sale of product group 19 is among all. Also, product group 14 has the highest sale in city C.

3.4.2 - Purchase Mean of Product_Category_2 by City

Here, product group 10 has the highest sale, again in city C. Rest are same.

3.4.3 - Purchase Mean of Product_Category_3 by City

Here, product group 3 has the highest purchase in city A.

3.5 - Number of purchases of each product category by Stay_In_Current_City_Years

We can say, people who are staying for 1 year in the current city, buy more than other. Also, product category 1 has the highest sales.

3.6 - Number of purchases of each product category by Marital Status

Clearly, those who are not married purchase more than those of married people. Here. Product category 1 has the highest sales.

3.7 - Age and City_Category vs Purchase

For city A, only people of age group 51 - 55 has the highest purchase score.

For city B, people above 55 age buys more products.

For city C, all the rest age groups buy products more than other city.

3.8 - Age and Gender vs Purchase

Clearly, male in all age groups buy more than that of females.

3.9 - City_Category and Gender vs Purchase

Males are more than females in all the cities.

3.10 - City_Category and Occupation vs Purchase

For city A, occupation 8 and 9 are at top

For city B, occupation 19 exceeds other significantly.

For city C, almost all of the rest occupations are on top in terms of purchasing products.

3.11 Heatmap

There is a slight positive correlation between product categories, other than that, there is no strong correlation between features.

4. Model Selection

First, we will make a util function to store certain information about the models in a tabular format using list. This will make the task easier to choose and compare the algorithms.

```
def show_model_eval_table(model_attrib):
    df_model_eval = pd.DataFrame({
        'Names' : model_attrib['Names'],
        'Feature_Counts' : model_attrib['Feature_Counts'],
        'Feature_Names' : model_attrib['Feature_Names'],
        'R2' : model_attrib['R2'],
        'RMSE' : model_attrib['RMSE']
    })
    return df_model_eval.round(2)
model_attrib = {'Names' : [],
```

The given problem is a regression problem. Hence candidate algorithms to choose from are –

- (i) Random Forest Regressor
- (ii) Linear Regression
- (iii) Decision Tree Regressor

We will use GridSearchCV for tuning the hyper-parameters and cross-validation.

4.1 Random Forest Regressor

```
n [61]: X train, X test, y train, y test = train test split(X, y, test size = 0.3, random state = 0)
in [62]: rfr = RFR(random state = 0)
        rfr.get params().keys()
ut[62]: dict_keys(['bootstrap', 'criterion', 'max_depth', 'max_features', 'max_leaf_nodes', 'min_impurity_decrease', 'min_impurity_spli
        t', 'min_samples_leaf', 'min_samples_split', 'min_weight_fraction_leaf', 'n_estimators', 'n_jobs', 'oob_score', 'random_state',
        'verbose', 'warm start'])
n [63]: param grid = {
             'n_estimators': [20, 30],
             'max_features': ['auto', 'sqrt'],
             'min_samples_leaf' : [70, 80],
             'max depth' : [ 7, 8]
n [64]: CV rfr = GridSearchCV(estimator = rfr, param grid = param grid, cv = 4)
        CV rfr.fit(X train, y train)
ut[64]: GridSearchCV(cv=4, error score='raise-deprecating',
               estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max depth=None,
                   max_features='auto', max_leaf_nodes=None,
                   min impurity decrease=0.0, min impurity split=None,
                   min samples leaf=1, min samples split=2,
                   min weight fraction leaf=0.0, n estimators='warn', n jobs=None,
                   oob score=False, random state=0, verbose=0, warm start=False),
               fit params=None, iid='warn', n jobs=None,
               param grid={'n estimators': [20, 30], 'max features': ['auto', 'sqrt'], 'min samples leaf': [70, 80], 'max depth': [7,
        8]},
               pre dispatch='2*n jobs', refit=True, return train score='warn',
               scoring-None verbose-a)
```

Best parameters for RFR model are -

```
[67]: CV_rfr.best_params_
t[67]: {'max_depth': 8,
    'max_features': 'auto',
    'min_samples_leaf': 70,
    'n_estimators': 20}
```

Using these parameters, we get two models as –

1 RFR model 2

```
1 [68]: RFR model 1 = cross validate(RFR(random state = 0, min samples split = 8, min samples leaf = 80, n estimators = 30),
                                    X, y, cv = 5, n jobs = 5, verbose = 10, scoring = cv score)
        model attrib['Names'].append('RFR model 1')
        model_attrib['Feature_Counts'].append(X.shape[1])
        model_attrib['Feature_Names'].append(list(X.columns))
        model attrib['R2'].append(RFR model 1['test r2'].mean())
        model attrib['RMSE'].append((abs(RFR model 1['test neg mean squared error']) ** 0.5).mean())
        RFR model 2 = cross validate(RFR(random state = 0, min samples split = 8, max depth = 8, max features = 'auto', min samples leaf
                                    X, y, cv = 5, n jobs = 5, verbose = 10, scoring = cv score)
        model attrib['Names'].append('RFR model 2')
        model attrib['Feature Counts'].append(X.shape[1])
        model attrib['Feature Names'].append(list(X.columns))
        model attrib['R2'].append(RFR model 2['test r2'].mean())
        model attrib['RMSE'].append((abs(RFR model 2['test neg mean squared error']) ** 0.5).mean())
        [Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.
        [Parallel(n jobs=5)]: Done 2 out of 5 | elapsed: 2.4min remaining: 3.6min
        [Parallel(n jobs=5)]: Done 3 out of 5
                                                   elapsed: 2.4min remaining: 1.6min
        [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 2.5min remaining:
        [Parallel(n jobs=5)]: Done 5 out of 5 | elapsed: 2.5min finished
        [Parallel(n jobs=5)]: Using backend LokyBackend with 5 concurrent workers.
        [Parallel(n jobs=5)]: Done 2 out of 5
                                                  elapsed: 55.4s remaining: 1.4min
        [Parallel(n jobs=5)]: Done 3 out of 5
                                                   elapsed: 55.4s remaining: 36.9s
        [Parallel(n jobs=5)]: Done 5 out of 5 | elapsed: 55.5s remaining:
                                                                               0.05
        [Parallel(n jobs=5)]: Done 5 out of 5 | elapsed: 55.5s finished
1 [69]: show model eval table(model attrib)
ıt[69]:
                Names Feature Counts
                                                          Feature_Names R2 RMSE
        0 RFR model 1
                                11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.71 2703.97
```

11 [User ID, Product ID, Gender, Age, Occupation,... 0.67 2883.50

4.2 Linear Regression

```
in [70]: X train, X test, y train, y test = train test split(X, y, test size = 0.3, random state = 0)
in [71]: lr = LR()
        lr.get params().keys()
ut[71]: dict_keys(['copy_X', 'fit_intercept', 'n_jobs', 'normalize'])
in [72]: params_lr = {
             'copy X': [True, False],
             'fit intercept': [True, False],
             'normalize': [True, False]
in [73]: CV lr = GridSearchCV(estimator = lr, param grid = params lr, cv = 3)
         CV lr.fit(X train, y train)
ut[73]: GridSearchCV(cv=3, error score='raise-deprecating',
                estimator=LinearRegression(copy X=True, fit intercept=True, n jobs=None,
                 normalize=False),
                fit params=None, iid='warn', n jobs=None,
               param grid={'copy X': [True, False], 'fit intercept': [True, False], 'normalize': [True, False]},
                pre dispatch='2*n jobs', refit=True, return train score='warn',
                scoring=None, verbose=0)
```

Best parameters for LR model are -

```
[74]: CV_lr.best_params_

t[74]: {'copy_X': True, 'fit_intercept': True, 'normalize': False}
```

Using these parameters, we get two models as –

```
75]: LR model 1 = cross validate(LR(), X, y, cv = 5, n jobs = 5, verbose = 10, scoring = cv score)
      model_attrib['Names'].append('LR_model_1')
      model attrib['Feature Counts'].append(X.shape[1])
      model attrib['Feature Names'].append(list(X.columns))
      model attrib['R2'].append(LR model 1['test r2'].mean())
      model attrib['RMSE'].append((abs(LR model 1['test neg mean squared error']) ** 0.5).mean())
     LR model 2 = cross validate(LR(copy X = True, fit intercept = True, normalize = False), X, y, cv = 5, n jobs = 5, verbose = 10,
      model attrib['Names'].append('LR model 2')
      model attrib['Feature Counts'].append(X.shape[1])
     model_attrib['Feature_Names'].append(list(X.columns))
     model_attrib['R2'].append(LR_model_2['test_r2'].mean())
      model_attrib['RMSE'].append((abs(LR_model_2['test_neg_mean_squared_error']) ** 0.5).mean())
      [Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.
      [Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed:
                                                              4.7s remaining: 7.0s
                                                              4.7s remaining:
                                                   elapsed:
      [Parallel(n_jobs=5)]: Done 3 out of 5 |
                                                                                   3.1s
      [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 4.7s remaining
[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 4.7s finished
                                                              4.7s remaining:
                                                                                   0.05
      [Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.
      [Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 1.7s remaining: 2.6s
      [Parallel(n_jobs=5)]: Done 3 out of 5
                                                              1.7s remaining:
                                                   elapsed:
                                                                                   1.1s
      [Parallel(n jobs=5)]: Done 5 out of 5 |
                                                   elapsed: 1.7s remaining:
                                                                                   0.05
      [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed:
                                                             1.7s finished
76]: show model eval table(model attrib)
76]:
                                                           Feature_Names R2 RMSE
              Names Feature_Counts
      0 RFR_model_1
                                11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.71 2703.97
      1 RFR_model_2
                                11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.67 2883.50
      2 LR model 1
                                11 [User ID, Product ID, Gender, Age, Occupation,... 0.13 4667.42
                                11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.13 4667.42
      3 LR_model_2
```

4.3 Decision Tree Regressor

```
1 [77]: | X train, X test, y train, y test = train test split(X, y, test size = 0.3, random state = 0)
1 [78]: dtr = DTR()
        dtr.get params().keys()
rt[78]: dict keys(['criterion', 'max depth', 'max features', 'max leaf nodes', 'min impurity decrease', 'min impurity split', 'min samp
       les leaf', 'min samples split', 'min weight fraction leaf', 'presort', 'random state', 'splitter'])
1 [79]: param grid = {
            'max features': ['auto', 'sqrt'],
            'min samples leaf' : [70, 80],
            'max depth' : [ 7, 8]
1 [80]: CV dtr = GridSearchCV(estimator = dtr, param grid = param grid, cv = 4)
       CV_dtr.fit(X_train, y_train)
it[80]: GridSearchCV(cv=4, error score='raise-deprecating',
               estimator=DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,
                  max leaf nodes=None, min impurity decrease=0.0,
                  min_impurity_split=None, min_samples_leaf=1,
                  min samples split=2, min weight fraction leaf=0.0,
                  presort=False, random state=None, splitter='best'),
               fit params=None, iid='warn', n jobs=None,
               param_grid={'max_features': ['auto', 'sqrt'], 'min_samples_leaf': [70, 80], 'max_depth': [7, 8]},
               pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
               scoring=None, verbose=0)
```

Best parameters for DTR model are -

```
[81]: CV_dtr.best_params_
[81]: {'max_depth': 8, 'max_features': 'auto', 'min_samples_leaf': 80}
```

Using these parameters, we get two models as –

```
1 [82]: DTR_model_1 = cross_validate(DTR(random_state = 0), X, y, cv = 5, n_jobs = 5, verbose = 10, scoring = cv_score)
         model_attrib['Names'].append('DTR_model_1')
         model attrib['Feature Counts'].append(X.shape[1])
         model_attrib['Feature_Names'].append(list(X.columns))
         model_attrib['R2'].append(DTR_model_1['test_r2'].mean())
         model_attrib['RMSE'].append((abs(DTR_model_1['test_neg_mean_squared_error']) ** 0.5).mean())
         DTR_model_2 = cross_validate(DTR(random_state = 0, max_depth = 8, max_features = 'auto', min_samples_leaf = 80),
                                           X, y, cv = 5, n_jobs = 5, verbose = 10, scoring = cv_score)
         model_attrib['Names'].append('DTR_model_2')
         model_attrib['Feature_Counts'].append(X.shape[1])
         model_attrib['Feature_Names'].append(list(X.columns))
         model_attrib['R2'].append(DTR_model_2['test_r2'].mean())
         model_attrib['RMSE'].append((abs(DTR_model_2['test_neg_mean_squared_error']) ** 0.5).mean())
         [Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.
         [Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 13.6s remaining: [Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 13.7s remaining:
                                                                                                20.45
                                                                                                 9.15
         [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 14.1s remaining: [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 14.1s finished
         [Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.
         [Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 4.4s remaining: [Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 4.4s remaining: [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 4.4s remaining:
                                                                                                  6.65
                                                                                                  0.05
         [Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 4.4s finished
1 [83]: show_model_eval_table(model_attrib)
ıt[83]:
                   Names Feature Counts
                                                                      Feature Names
                                                                                       R2
          0 RFR_model_1
                                       11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.71 2703.97
          1 RFR_model_2
                                       11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.67 2883.50
          2 LR model 1
                                       11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.13 4667.42
          3 LR model 2
                                       11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.13 4667.42
                                       11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.44 3767.69
          4 DTR_model_1
          5 DTR model 2
                                       11 [User_ID, Product_ID, Gender, Age, Occupation,... 0.67 2895.43
```

From the table, we can clearly conclude that RFR_model_1 is best with R2 score of 0.71 and RMSE score of 2703.97.

5. Training and Evaluating the Model

Train the RFR_model_1 and fit X and y in it.

Predict the values using test dataset (df_test_copy), in which all the features are of int categorical data type.

Convert predicted value into dataframe and concatenate it with User_ID and Purchase_ID, and store it in Result_Problem2.csv file.

```
[93]: df_RFR_model_1_y_hat = pd.DataFrame(RFR_model_1_y_hat, columns = ['Purchase'])
[94]: df_RFR_model_1_y_hat.head()
[94]:
             Purchase
       0 15849.239906
       1 12006.735969
       2 5448.906481
          2674.055083
          2682.947088
[95]: result = pd.concat([df_test.loc[:,['User_ID', 'Product_ID']],
                            df_RFR_model_1_y_hat], axis = 1)
[96]: result.head()
[96]:
          User_ID Product_ID
                               Purchase
       0 1000004 P00128942 15849.239906
       1 1000009 P00113442 12006.735969
       2 1000010 P00288442 5448.906481
       3 1000010 P00145342 2674.055083
       4 1000011 P00053842 2682,947088
[97]: result.to_csv('Result_Problem2.csv', index = False)
```