

TD/TP_N°: ■

Faculté des Sciences Exactes

Module: Data Mining

L'objectif de ce TD est de comprendre l'algorithme ID3 qui permet la création d'un arbre de décision à partir d'un ensemble de données

Exercice 1:

Le tableau suivant contient des données sur les résultats obtenus par des étudiants à l'Université. Chaque étudiant est décrit par 3 attributs : Est-il doublant ou non, la série du Baccalauréat obtenu et la mention. Les étudiants sont répartis en deux classes : Admis et Non Admis. On veut construire un arbre de décision à partir des données du tableau, pour rendre compte des éléments qui influent sur les résultats des étudiants.

	Doublant	Série	Mention	Classe
1	Non	Maths	ABien	Admis
2	Non	Techniques	ABien	Admis
3	Oui	Sciences	ABien	Non Admis
4	Oui	Sciences	Bien	Admis
5	Non	Maths	Bien	Admis

6	Non	Techniques	Bien	Admis
7	Oui	Sciences	Passable	Non Admis
8	Oui	Maths	Passable	Non Admis
9	Oui	Techniques	Passable	Non Admis
10	Oui	Maths	TBien	Admis
11	Oui	Oui Techniques		Admis
12	Non	Sciences	TBien	Admis

Travail à faire : construire l'arbre en utilisant l'algorithme ID3. . Dessinez l'arbre final.

Exercice 2:

A partir des données contenues dans le tableau. Construire l'arbre en utilisant l'algorithme ID3

age	revenu	etudiant	credit	achat
<=30	eleve	non	bon	non
<=30	eleve	non	excellent	non
31-40	eleve	non	bon	oui
>40	moyen	non	bon	oui
>40	faible	oui	bon	oui
>40	faible	oui	excellent	non
31-40	faible	oui	excellent	oui
<=30	moyen	non	bon	non
<=30	faible	oui	bon	oui
>40	moyen	oui	bon	oui
<=30	moyen	oui	excellent	oui
31-40	moyen	non	excellent	oui
31-40	eleve	oui	bon	oui
>40	moyen	non	excellent	non

Exercice 3:

Nous considèrerons l'ensemble d'exemples représentant la nature de différents 'échantillons de champignons : toxique ou non selon les critères de couleur, taille, forme et le milieu de croissance :

Coleur	Taille	Forme	Milieu	Toxique
marron	petit	plat	terre	oui
jaune	petit	sphère	terre	oui
marron	moyen	conique	bois	non
blanc	moyen	sphère	terre	non
blanc	grand	plat	terre	non

1. Construire l'arbre de d'decision correspondant à cet ensemble en utilisant l'algorithme ID3.

Faculté des Sciences Exactes

Module : Data Mining

TD/TP_N°: ■

TD 1: DM

Année Universitaire 2023-2024 2^{ème} année Master PA, se mestre 1

Exercice 4:

A partir des données contenues dans le tableau. Construire l'arbre en utilisant l'algorithme ID3

Patient	Age	Résidus	Tension	Infection
01	Jeune	Positif	Élevée	oui
02	Jeune	Négatif	Elevée	non
03	Vieux	Positif	Élevée	non
04	Vieux	Positif	Normale	non
05	Jeune	Positif	Élevée	oui
06	Jeune	Négatif	Normale	non