COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2020

Announcements

HW5 Due April 9th PR2 Due April 19th

Previously on COS 433...

Discrete Log

Discrete Log

Let **p** be a large number (usually prime)

Given $g \in \mathbb{Z}_p^*$, $a \in \mathbb{Z}$, "easy" to compute $g^a \mod p$

- Time poly(log a, log p)
- How?

However, no known efficient ways to recover $a \pmod{\Phi(p)=p-1}$ from g and $g^a \mod p$

Discrete Log Assumption: For any discrete log algorithm $\frac{\epsilon}{\epsilon}$ running in time polynomial time, there exists negligible ϵ such that:

Pr[
$$a \leftarrow \mathcal{V}$$
 (p,g,g^a mod p):
 $p \leftarrow \text{random } \lambda\text{-bit prime}$
 $g \leftarrow \text{random generator of } \mathbb{Z}_p^*$,
 $a \leftarrow \mathbb{Z}_{p-1}$] $\leq \epsilon(\lambda)$

Collision Resistance from DLog

Let **p** be a prime

- Key space = \mathbb{Z}_p^2 Domain: \mathbb{Z}_{p-1}^2
- Range: $\mathbb{Z}_{\mathbf{p}}$
- H((g,h), (x,y)) = $g^x h^y$

To generate key, choose random \mathbf{p} , \mathbf{g} , $\mathbf{h} \in \mathbb{Z}_{\mathbf{p}}^*$

• Require **g** a generator

Blum-Micali PRG

Let **p** be a prime

Let
$$g \in \mathbb{Z}_p^*$$

Let $h:G \to \{0,1\}$ be h(x) = 1 if 0 < x < (p-1)/2

Seed space: $\mathbb{Z}_{\mathbf{p}}^*$

Algorithm:

- Let \mathbf{x}_0 be seed
- For **i=0,...**
 - Let $x_{i+1} = g^{x_i} \mod p$
 - Output h(x_i)

Theorem: If the discrete log assumption holds on \mathbb{Z}_p^* , then the Blum-Micali generator is a secure PRG

We will prove this next time (if time)

Today

Discrete log continued

Factoring

Another PRG

p a primeLet **g** be a generator

Seed space: \mathbb{Z}_{p-1}^2

Range: \mathbb{Z}_{p}^{3}

 $PRG(a,b) = (g^a,g^b,g^{ab})$

Don't know how to prove security from DLog

Stronger Assumptions on Groups

Sometimes, the discrete log assumption is not enough

Instead, define stronger assumptions on groups

Computational Diffie-Hellman:

• Given (g,g^a,g^b) , compute g^{ab}

Decisional Diffie-Hellman:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

DLog:

• Given (g,ga), compute a

CDH:

• Given (g,g^a,g^b) , compute g^{ab}

DDH:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

Computational Diffie Hellman: For any algorithm running in polynomial time, there exists negligible ε such that:

```
Pr[g^{ab} \leftarrow \mathcal{V}(p,g,g^a,g^b):

p \leftarrow \text{random } \lambda\text{-bit prime}

g \leftarrow \text{random generator of } \mathbb{Z}_p^*,

a,b \leftarrow \mathbb{Z}_{p-1}

] \leq \epsilon(\lambda)
```


Hardness of DDH

Need to be careful about DDH

Turns out that DDH as described is usually easy:

- For prime p>2, $\Phi(p)=p-1$ will have small factors
- Can essentially reduce solving DDH to solving DDH over a small factor

Fixing DDH

Let \mathbf{g}_0 be a generator

Suppose p-1 = qr for prime q, integer r

Let **g=g₀^r**

gq mod p = 1, but gq' mod p ≠ 1 for any q'<q
 So g has "order" q

Let $G = \{1, g, g^2, ...\}$ be group "generated by" g

Generalizing Cryptographic Groups

Replace fixed family of groups with "group generator" algorithm

Decisional Diffie Hellman for GrGen:

For any algorithm $\frac{r}{r}$ running in polynomial time, there exists negligible ϵ such that:

|
$$Pr[1\leftarrow \begin{subarray}{l} (g,g^a,g^b,g^{ab}): \\ (G,g,q)\leftarrow GrGen(\lambda), \ a,b\leftarrow \begin{subarray}{l} (g,g^a,g^b,g^c): \\ (G,g,q)\leftarrow GrGen(\lambda), \ a,b,c\leftarrow \begin{subarray}{l} (g,g^a,q)\leftarrow \begin{subarray}{l} (G,g,q)\leftarrow \begin{subarra$$

Another PRG

Seed space: **Z**_q²

Range: **G**³

 $PRG(a,b) = (g^a,g^b,g^{ab})$

Security almost immediately follows from DDH

Generalizing Cryptographic Groups

Can also define Dlog, CDH relative to general GrGen

In many cases, problems turns out easy

Ex:
$$G = Z_q$$
, where $g \otimes h = g + h \mod q$

- What is exponentiation in **G**?
- What is discrete log in G?

Essentially only two groups where Dlog/CDH/DDH is conjectured to be hard:

- $\mathbb{Z}_{\mathbf{p}}^*$ and its subgroups
- "Elliptic curve" groups

Parameter Size in Practice?

- **G** = subgroup of \mathbb{Z}_p^* of order **q**, where **q** $\mid p-1$
- In practice, best algorithms require **p** ≥ 2¹⁰²⁴ or so

- **G** = "elliptic curve" group
- Can set **p** ≈ 2²⁵⁶ to have security
 - \Rightarrow best attacks run in time 2¹²⁸

Therefore, elliptic curve groups tend to be much more efficient \Rightarrow preferred in practice

Naor-Reingold PRF

Domain: **{0,1}**ⁿ

Key space: \mathbb{Z}_{q}^{n+1}

Range: **G**

$$F((a,b_1,b_2,...,b_n), x) = g^{ab_1^{x_1}b_2^{x_2}}...b_n^{x_n}$$

Theorem: If DDH assumption holds on **G**, then the Naor-Reingold PRF is secure

Proof by Hybrids

Hybrids 0:
$$H(x) = g^{a b_1^{x1} b_2^{x2}} ... b_n^{xn}$$

Hybrid i:
$$H(x) = H_i(x_{[1,i]})^{b_{i+1}^{x_{i+1}}} \dots b_n^{x_n}$$

• H_i is a random function from $\{0,1\}^i \rightarrow G$

Hybrid \mathbf{n} : $\mathbf{H}(\mathbf{x})$ is truly random

Proof

Suppose adversary can distinguish Hybrid **i-1** from Hybrid **i** for some **i**

Easy to construct adversary that distinguishes:

$$x \to H_i(x)$$
 from $x \to H_{i-1}(x_{[1,i-1]})^{b^{x_i}}$

Proof

Suppose adversary makes **2r** queries

Assume wlog that queries are in pairs x||0, x||1

What does the adversary see?

- H_i(x): 2r random elements in G
- $H_{i-1}(x_{[1,i-1]})^{b_i^{xi}}$: $h_1,...,h_q$ (r random elements in G) as well as h_1^{bi} , ..., h_q^{bi}

Lemma: Assuming the DDH assumption on **G**, for any polynomial **r**, the following distributions are indistinguishable:

$$(g,g^{x1},g^{y1},...,g^{xr},g^{yr})$$
 and $(g,g^{x1},g^{b},...,g^{xr},g^{b},x^{r})$

Suffices to finish proof of NR-PRF

Proof of Lemma

Hybrids O: $(g,g^{x1},g^{b})^{x1}$, ..., g^{xr},g^{b}

Hybrid i:
$$(g,g^{x1},g^{y1},...,g^{xi},g^{yi},g^{xi+1},g^{b})$$

Hybrid q: $(g,g^{x1},g^{y1},...,g^{xr},g^{yr})$

Proof of Lemma

Suppose adversary distinguishes Hybrid **i-1** from Hybrid **i**

Use adversary to break DDH:

Proof of Lemma

$$(g,g^{x_1},g^{y_1},...,g^{x_{i-1}},g^{y_{i-1}},u,v, g^{x_{i+1}},h^{x_{i+1}}, ...g^{x_r},h^{x_r})$$

If $(g,h,u,v) = (g,g^b,g^{x_i},g^b)$, then Hybrid $i-1$

If $(g,h,u,v) = (g,g^b,g^{x_i},g^{y_i})$, then Hybrid i

Therefore, ** sadvantage is the same as ** (s

Further Applications

From NR-PRF can construct:

- CPA-secure encryption
- Block Ciphers
- MACs
- Authenticated Encryption

Integer Factorization

Integer Factorization

Given an integer N, find it's prime factors

Studied for centuries, presumed difficult

- Grade school algorithm: O(N^{1/2})
- Better algorithms using birthday paradox: O(N^{1/4})
- Even better assuming G. Riemann Hyp.: O(N^{1/4})
- Still better heuristic algorithms:

$$\exp(C(\log N)^{1/3}(\log \log N)^{2/3})$$

 However, all require super-polynomial time in bitlength of N **Factoring Assumption:** For any factoring algorithm running in polynomial time, \exists negligible ε such that:

 $Pr[(p,q) \leftarrow \downarrow (N):$ N=pq $p,q \leftarrow random λ-bit primes] ≤ ε(λ)$

Chinese Remainder Theorem

Let N = pq for distinct prime p,q

Let
$$\mathbf{x} \in \mathbb{Z}_{p'}$$
 $\mathbf{y} \in \mathbb{Z}_{q}$

Then there exists a unique integer $\mathbf{z} \in \mathbb{Z}_{N}$ such that

- $\cdot x = z \mod p$, and
- \cdot y = z mod q

Proof: $z = [py(p^{-1} \mod q) + qx(q^{-1} \mod p)] \mod N$

Quadratic Residues

Definition: y is a quadratic residue mod N if there exists an x such that $y = x^2 \mod N$. x is called a "square root" of y

Ex:

- Let **p** be a prime, and **y**≠**0** a quadratic residue mod
 p. How many square roots of **y**?
- Let N=pq be the product of two primes, y a quadratic residue mod N. Suppose y≠0 mod p and y≠0 mod q. How many square roots?

QR Assumption: For any algorithm $rac{1}{2}$ running in polynomial time, $rac{1}{2}$ negligible $rac{1}{2}$ such that:

```
Pr[y^2=x^2 \mod N:

y \leftarrow (N,x^2)

N=pq, p,q \leftarrow random \lambda-bit primes

x \leftarrow \mathbb{Z}_N ] \leq \epsilon(\lambda)
```

Theorem: If the factoring assumption holds, then the QR assumption holds

Proof

To factor **N**:

- **x**←ℤ_N y← (N,x²)
 Output GCD(x-y,N)

Analysis:

- Let {a,b,c,d} be the 4 square roots of x²
- has no idea which one you chose
- With probability ½, y will not be in {+x,-x}
- In this case, we know x=y mod p but x=-y mod q

Collision Resistance from Factoring

Let **N=pq**, **y** a QR mod **N** Suppose **-1** is not a **QR** mod **N**

Hashing key: (N,y)

```
Domain: \{1,...,(N-1)/2\} \times \{0,1\}
Range: \{1,...,(N-1)/2\}
H( (N,y), (x,b) ): Let z = y^b x^2 \mod N
• If z \in \{1,...,(N-1)/2\}, output z
• Else, output -z \mod N \in \{1,...,(N-1)/2\}
```

Theorem: If the factoring assumption holds, **H** is collision resistant

Proof:

- Collision means $(x_0,b_0)\neq(x_1,b_1)$ s.t. $y^{b0} x_0^2 = \pm y^{b1} x_1^2 \mod N$
- If $b_0=b_1$, then $x_0\neq x_1$, but $x_0^2=\pm x_1^2 \mod N$
 - $x_0^2 = -x_1^2 \mod N$ not possible. Why?
 - $x_0 \neq -x_1$ since $x_0, x_1 \in \{1, ..., (N-1)/2\}$
- If $b_0 \neq b_1$, then $(x_0/x_1)^2 = \pm y^{\pm 1} \mod N$
 - -y case not possible. Why?
 - (x_0/x_1) or (x_1/x_0) is a square root of y

Choosing N

How to choose **N** so that **-1** is not a QR?

By CRT, need to choose **p,q** such that -1 is not a QR mod **p** or mod **q**

Fact: if $\mathbf{p} = \mathbf{3} \mod 4$, then $-\mathbf{1}$ is not a QR mod \mathbf{p}

Fact: if $p = 1 \mod 4$, then -1 is a QR mod p

Is Composite N Necessary for SQ to be hard?

Let p be a prime, and suppose $p = 3 \mod 4$

Given a QR x mod p, how to compute square root?

Hint: recall Fermat: $x^{p-1}=1 \mod p$ for all $x\neq 0$

Hint: what is $\mathbf{x}^{(p+1)/2}$ mod \mathbf{p} ?

Solving Quadratic Equations

In general, solving quadratic equations is:

- Easy over prime moduli
- As hard as factoring over composite moduli

Other Powers?

What about $x \rightarrow x^4 \mod N$? $x \rightarrow x^6 \mod N$?

The function $x \rightarrow x^3 \mod N$ appears quite different

- Suppose 3 is relatively prime to p-1 and q-1
- Then $x \rightarrow x^3 \mod p$ is injective for $x \neq 0$
 - Let a be such that 3a = 1 mod p-1
 - $(x^3)^a = x^{1+k(p-1)} = x(x^{p-1})^k = x \mod p$
- By CRT, $x \rightarrow x^3 \mod N$ is injective for $x \in \mathbb{Z}_N^*$

x³ mod N

What does injectivity mean?

Cannot base of factoring:

Adapt alg for square roots?

- Choose a random z mod N
- Compute $y = z^3 \mod N$
- Run inverter on y to get a cube root x
- Let p = GCD(z-x, N), q = N/p

RSA Problem

Given

- $\cdot N = pq$
- e such that GCD(e,p-1)=GCD(e,q-1)=1,
- y=x^e mod N for a random x

Find x

Injectivity means cannot base hardness on factoring, but still conjectured to be hard

RSA Assumption: For any algorithm \mathbf{k} running in polynomial time, \mathbf{k} negligible $\mathbf{\epsilon}$ such that:

Pr[x \leftarrow (N,x³ mod N) N=pq and p,q random λ -bit primes s.t. GCD(3,p-1)=GCD(3,q-1)=1 x \leftarrow Z_N*] $\leq \epsilon(\lambda)$

Application: PRGs

Let $F(x) = x^3 \mod N$, h(x) = least significant bit

Theorem: If RSA Assumption holds, then

G(x) = (F(x), h(x)) is a secure PRG

Reminders

HW5 Due April 9th

PR2 Due April 19th