Atividade PT 8.5.3: Identificação e solução de problemas de rede da empresa 3

Diagrama de topologia

Tabela de endereçamento

Dispositivo	Interface	Endereço IP	Máscara de sub-rede	Gateway padrão
R1	Fa0/0	192.168.10.1	255.255.255.0	N/A
	Fa0/1	192.168.11.1	255.255.255.0	N/A
	S0/0/0	10.1.1.1	255.255.255.252	N/A
	S0/0/1	10.3.3.1	255.255.255.252	N/A
R2	Fa0/1	192.168.20.1	255.255.255.0	N/A
	S0/0/0	10.1.1.2	255.255.255.252	N/A
	S0/0/1	10.2.2.1	255.255.255.252	N/A
	Lo0	209.165.200.225	255.255.255.224	209.165.200.226

Continuação da tabela de endereçamento na próxima página

Continuação da tabela de endereçamento

R3	Fa0/1	N/A	N/A	N/A
	Fa0/1.11	192.168.11.3	255.255.255.0	N/A
	Fa0/1.30	192.168.30.1	255.255.255.0	N/A
	S0/0/0	10.3.3.2	255.255.255.252	N/A
	S0/0/1	10.2.2.2	255.255.255.252	N/A
S1	VLAN10	DHCP	255.255.255.0	N/A
S2	VLAN11	192.168.11.2	255.255.255.0	N/A
S3	VLAN30	192.168.30.2	255.255.255.0	N/A
PC1	Placa de rede	DHCP	DHCP	DHCP
PC2	Placa de rede	192.168.11.10	255.255.255.0	192.168.11.1
PC3	Placa de rede	192.168.30.10	255.255.255.0	192.168.30.1
Servidor TFTP	Placa de rede	192.168.20.254	255.255.255.0	192.168.20.1

Objetivos de aprendizagem

- Localizar e corrigir todos os erros de rede.
- Verificar se os requisitos foram completamente satisfeitos.
- Documentar a rede corrigida.

Cenário

Para esta atividade, não use a proteção por login ou senha em nenhuma linha de console para impedir o bloqueio acidental. Use **ciscoccna** para todas as senhas desta atividade.

Nota: como esta atividade é cumulativa, você utilizará todo o conhecimento e as técnicas de solução de problemas aprendidas no material anterior para concluir esta atividade com êxito.

Requisitos

- S2 é a raiz do spanning tree para VLAN 11, e S3 é a raiz do spanning tree para VLAN 30.
- S3 é um servidor VTP com S2 como um cliente.
- O link serial entre R1 e R2 é Frame Relay.
- O link serial entre R2 e R3 usa encapsulamento HDLC.
- O link serial entre R1 e R3 é autenticado com o uso de CHAP.
- R2 deve ter procedimentos de login seguros por ser o roteador de borda da Internet.
- Todas as linhas vty, exceto as pertencentes a R2, só permitem conexões das sub-redes mostradas no diagrama de topologia, excluindo-se o endereço público.
- O spoofing do endereço IP de origem deve ser impedido em todos os links que n\u00e3o se conectam a outros roteadores.
- Os protocolos de roteamento devem ser usados com segurança. O OSPF é usado neste cenário.
- R3 não deve ser capaz de executar telnet para R2 pelo link serial diretamente conectado.
- R3 tem acesso a VLANs 11 e 30 via porta Fast Ethernet 0/1.
- O servidor TFTP n\u00e3o deve obter nenhum tr\u00e1fego que possua endere\u00f3o de origem fora da sub-rede. Todos os dispositivos t\u00e2m acesso ao servidor TFTP.

- Todos os dispositivos na sub-rede 192.168.10.0 devem ser capazes de obter os endereços IP do DHCP em R1. Isso inclui o S1.
- Todos os endereços mostrados no diagrama devem ser alcançáveis em todos os dispositivos.

Tarefa 1: Localizar e corrigir todos erros de rede

Use um clock rate de 4000000 e uma prioridade de VLAN de 24576 onde for necessário.

Tarefa 2: Verificar se os requisitos foram totalmente atendidos

Como as restrições de tempo impedem a solução de um problema em cada tópico, apenas um determinado número de tópicos tem problemas. No entanto, para reforçar e fortalecer habilidades na solução de problemas, você deve verificar se cada requisito é atendido. Para fazer isso, apresente um exemplo de cada requisito (por exemplo um comando **show** ou **debug**).

Tarefa 3: Documentar a rede corrigida