Introducción a la Estabilidad de Lyapunov

jalopez@uao.edu.co

Doctorado en Ingeniería

Vigiladas Mineducació

Introducción

Representación en Espacio de Estado

$$\dot{x}_1 = f_1(x_1, x_2, ..., x_n)$$

$$\dot{x}_2 = f_2(x_1, x_2, ..., x_n)$$

. . .

$$\dot{x}_n = f_n(x_1, x_2, ..., x_n)$$

Solucionando la ecuación diferencial

Cómo determinar la estabilidad de un sistema no lineal?

Estabilidad de Lyapunov.
Permite estudiar la
estabilidad de un sistema
sin solucionar la ecuación
diferencial

Métodos de Lyapunov

Alexander Mijailovich Lyapunov 1857-1918

Primer Método o de Linealización: Estabilidad local

Segundo Método o Directo: Estabilidad global

Tesis "Problema general de la estabilidad del movimiento" 1892

Estabilidad en Función de la Energía

Idea intuitiva

Un sistema es estable si la energía se disipa

Trabajar con funciones de energía!!!

Estabilidad en Función de la Energía

Energía Potencial

$$V_p = \frac{1}{2} kx^2$$

Energía Cinética

$$V_C = \frac{1}{2} m \dot{x}^2$$

Energía Disipativa

$$V_D = \frac{1}{2}b\dot{x}^2$$

Problema encontrar una función de Energía para el sistema

Función de Lyapunov

Comportamiento Función de energía de Lyapunov

Dado un sistema

$$\dot{X} = F(X)$$

Función de Lyapunov

$$V(X) > 0$$
 $X \in U$

$$V\left(0\right)=0$$

$$\dot{V}(X) < 0 \quad X \in U$$

Definida positiva

Definida negativa

https://www.math24.net/method-lyapunov-functions/

Estabilidad de Lyapunov para Sistemas Lineales Continuos

Criterio de Sylvester

Función de Lyapunov (Forma Cuadrática)

$$V(X) = X^T P X$$

P = Matriz Simétrica

$$V(X) = X^T PX$$
 es definida positiva si

$$D_{1} = p_{11} > 0$$

$$D_{2} = \begin{vmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{vmatrix} > 0$$

$$D_{n} = \begin{vmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{nn} \\ p_{n1} & p_{nn} & p_{nn} \end{vmatrix} > 0$$

Estabilidad de Lyapunov para Sistemas Lineales Continuos

Dado el sistema

$$\dot{X} = AX$$

Función de Lyapunov (Forma Cuadrática)

$$V(X) = X^T P X$$

Ecuación de Lyapunov

$$PA + A^T P = -Q$$

P = Matriz Simétrica Q= Identidad Derivada de la Función de Lyapunov

$$\dot{V}(X) = X^T P \dot{X} + \dot{X}^T P X$$

$$\dot{V}(X) = X^{T}(PA + A^{T}P)X = -X^{T}QX < 0$$

Estabilidad Asintótica

Si
$$P = P^T > 0$$

Implica que los autovalores de A debe ser negativos

Estabilidad de Lyapunov para Sistemas **Lineales Discretos**

Dado el sistema

$$X(k+1) = A_d X(k)$$

Función de Lyapunov

$$V(X(k)) = X^{T}(k)PX(k)$$

Ecuación de Lyapunov

$$A_d^T P A_d - P = -Q$$

P = Matriz Simétrica Q= Identidad

Derivada de la Función de Lyapunov

$$\Delta V(X(k)) = V(X(k+1)) - V(X(k))$$

$$\Delta V(X(k)) = X^{T}(k+1)PX(k+1) - X^{T}(k)PX(k)$$

$$\Delta V(X(k)) = (A_d X(k))^T P(A_d X(k)) - X^T(k) PX(k)$$

$$\Delta V(X(k)) = X^{T}(k)A_{d}^{T}PA_{d}X(k) - X^{T}(k)PX(k)$$

$$\Delta V(X(k)) = X^{T}(k)(A_d^T P A_d - P)X(k)$$

$$\Delta V(X(k)) = -X^{T}(k)QX(k) < 0$$

Estabilidad Asintótica

Si
$$P=P^T>0$$

Implica que los autovalores de Ad deben estar dentro del círculo unitario

Teorema de Estabilidad Global de Lyapunov

Sea
$$\dot{X} = F(X)$$
 y $F(X^*) = 0$

Si existe una función V(x) tal que

$$V\left(X^{*}\right) = 0$$
 $V\left(X\right) > 0$ para todo $X \neq X^{*}$
 $\dot{V}\left(X\right) < 0$ para todo $X \neq X^{*}$
 $V\left(X\right) \to \infty$ cuando $\|X\| \to \infty$

Entonces X* es un punto de equilibrio asintóticamente estable

Teorema de Estabilidad Global de Lyapunov

Sea $\dot{X} = F(X)$ y $F(X^*) = 0$

Si existe una función V(x) tal que

$$V(X^*) = 0$$

 $V(X) > 0$ para todo $X \neq X^*$
 $\dot{V}(X) \le \alpha V(X)$ para todo $X \neq X^*$
 $V(X) \to \infty$ cuando $||X|| \to \infty$

Entonces X* es un punto de equilibrio exponencialmente estable

