convert approximate eigenvectors of the generator $\,\textbf{A}\,$ into eigenvectors of $\,\textbf{A}_{\text{F}}\,$.

<u>Proposition</u>. Let A be the generator of a strongly continuous semigroup. Then the generator A_F of the F-product semigroup satisfies

(i)
$$A\sigma(A) = A\sigma(A_F) = P\sigma(A_F)$$
.

(ii)
$$\sigma(A) = \sigma(A_F)$$
.

Remark: In case A is bounded then A is a generator and $E_F^T=E_F$ (cf. A-I,3.6). Thus the proposition applies to bounded linear operators and their canonical extensions to the F-product E_F .

<u>Proof of the proposition</u>. (i) The inclusion $P\sigma(A_F) \subset A\sigma(A_F)$ holds trivially. We show that $A\sigma(A_F) \subset A\sigma(A)$: Take $\lambda \in A\sigma(A_F)$ and an associated approximate eigenvector $(\hat{f}^m)_{n \in \mathbb{N}}$, i.e. $\hat{f}^m \in D(A_F)$, $\|\hat{f}^m\| = 1$ and $(\lambda - A_F)\hat{f}^m \to 0$ as $m \to \infty$. By the considerations in A-I,3.6 we can represent each \hat{f}^m as a normalized sequence $(f^m)_{n \in \mathbb{N}}$ in D(A) such that

$$\lim_{m\to\infty} \lim \sup_{n\to\infty} \|(\lambda-A)f_n^m\| = 0$$
.

Therefore we can find a sequence $g_k = f_k^{m(k)}$ satisfying

$$\lim_{k\to\infty} \|(\lambda-A)g_k\| = 0 ,$$

i.e. $\lambda \in A\sigma(A)$.

Finally we show $A\sigma(A) \subset P\sigma(A_{\mathcal{F}})$: For $\lambda \in A\sigma(A)$ take a corresponding approximate eigenvector (f_n) . By A-I,(3.2) we have

$$\begin{aligned} \| \mathbf{T}(\mathsf{t}) \, \mathbf{f}_{n} - \, \mathbf{f}_{n} \| & \leq \| \mathbf{T}(\mathsf{t}) \, \mathbf{f}_{n} - \, \mathbf{e}^{\lambda \, \mathsf{t}} \mathbf{f}_{n} \| \, + \, \| \mathbf{e}^{\lambda \, \mathsf{t}} - 1 \| \\ & = \| \int_{0}^{\mathsf{t}} \, \mathbf{e}^{\lambda \, (\mathsf{t} - \mathsf{s})} \, \mathbf{T}(\mathsf{s}) \, (\lambda - \mathsf{A}) \, \mathbf{f}_{n} \, \, \, \mathrm{ds} \| \, + \, \| \mathbf{e}^{\lambda \, \mathsf{t}} - 1 \| \end{aligned}$$

which converges to zero uniformly in n as t \rightarrow 0 , i.e. $(f_n) \in m^T(E)$. By the characterization of $D(A_F)$ given in A-I,3.6 it follows that

$$\hat{f} := (f_n) + c_F(E) \in D(A_F) ,$$

and $A_F \hat{f} = \lambda \hat{f}$, i.e. $\lambda \in P\sigma(A_F)$.

(ii) The inclusion $\sigma(A) \subset \sigma(A_F)$ follows from (i) and the inclusion $R\sigma(A) \subset R\sigma(A_F)$: For $\lambda \in R\sigma(A)$ choose $f \in E$ such that $\|(\lambda-A)g-f\| \ge 1$ for every $g \in D(A)$. Then $\|(\lambda-A_F)g-f\| \ge 1$ for every $g \in D(A_F)$ and $\hat{f} = (f,f,\ldots) + c_F(E)$. Therefore $\lambda \in R\sigma(A_F)$. We now show $\rho(A) \subset \rho(A_F)$: Assume $\lambda \in \rho(A)$. By (i) $(\lambda-A_F)$ has to be injective. Choose $\hat{f} = (f_1,f_2,\ldots) + c_F(E)$ such that $(f_n) \in m^T(E)$. Then $(R(\lambda,A)f_n) \in m^T(E)$ and $(\lambda-A_F)((R(\lambda,A)f_n)+c_F(E)) = (f_n) + c_F(E)$, i.e., $(\lambda-A_F)$ is surjective and $\lambda \in \rho(A_F)$.