MM546/834 PDEs: theory, modeling and computing

Self-study and exercise problems, no 3

1. Given Poisson's equation $-\Delta u = f$, $x \in \Omega$ with Neumann boundary condition $\partial u/\partial n = 0$, $x \in \partial \Omega$ in its weak formulation

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \, , \quad \forall v \in H^{1}(\Omega) \, .$$

- (a) Formulate and explain Galerkin's method for this problem.
- (b) Knowing that the problem is elliptic, show that the Galerkin solution is unique.
- (c) Derive and explain Galerkin orthogonality.
- 2. Given an element f in a vector space V with inner product $\langle \cdot, \cdot \rangle$. Let $U \subset V$ be a subspace spanned by the basis functions $\{\varphi_j\}_{j=1}^N$. Show that the best approximation $f^* \in U$ to $f \in V$ is determined by the orthogonality condition $f f^* \perp \varphi_j$ for all $j = 1, 2, \ldots, N$. Hint: Consider any other $g \in U$ and show that $\|f f^*\| \leq \|f g\|$.
- 3. Consider now the Poisson equation and it's variational formulation

$$a(u,v) = l(v) \quad \forall v \in V .$$

Argue that the approximation $u_{\Delta} \in V_{\Delta} \subset V$ by Galerkin's method is in fact the best possible approximation in V_{Δ} with respect to the energy norm.