Definições Recursivas e Indução Estrutural Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

16 de abril de 2014

Outline

Introdução

Definições Recursivas

Conjuntos Recursivamente Definidos

Indução Estrutural

Exercícios

Outline

Introdução

Definições Recursivas

Conjuntos Recursivamente Definidos

Indução Estrutural

Exercícios

Figura: Imagem Recursiva

Figura: Árvore Recursiva

Figura: Pintura Recursiva

Figura: Escultura Recursiva

Outline

Introdução

Definições Recursivas

Conjuntos Recursivamente Definidos

Indução Estrutural

Exercícios

Definições Recursivas

Considere o domínio em \mathbb{Z}^+ . Consistem de dois passos:

• BASE: Defina a função no caso 0 (zero)

Definições Recursivas

Considere o domínio em \mathbb{Z}^+ . Consistem de dois passos:

- BASE: Defina a função no caso 0 (zero)
- PASSO RECURSIVO: Especifique uma regra pra encontrar o valor da função em um inteiro qualquer com base em inteiros menores.

Definições Recursivas

Considere o domínio em \mathbb{Z}^+ . Consistem de dois passos:

- BASE: Defina a função no caso 0 (zero)
- PASSO RECURSIVO: Especifique uma regra pra encontrar o valor da função em um inteiro qualquer com base em inteiros menores.

IMPORTANTE!!!

Definições Recursivas também são chamadas de Definições Indutivas.

Exemplo

Suponha que f é definida recursivamente por

- f(0) = 3
- f(n+1) = 2.f(n) + 3

Exemplo

Suponha que f é definida recursivamente por

- f(0) = 3
- f(n+1) = 2.f(n) + 3

Constatação:

Os valores de f_1 , f_2 , f_3 e f_4 são $f_1 = 9$, $f_2 = 21$, $f_3 = 45$, e $f_4 = 93$.

Exemplo

Forneça uma defininção recursiva da sequência aⁿ, onde a é um real qualquer não nulo e n é não negativo.

Exemplo

Forneça uma defininção recursiva da sequência aⁿ, onde a é um real qualquer não nulo e n é não negativo. **Solução**:

- $a^0 = 1$
- $a^{n+1} = a.a^n$

Outline

Introdução

Definições Recursivas

Conjuntos Recursivamente Definidos

Indução Estrutural

Exercícios

Conjuntos Recursivamente Definidos

Conjuntos são definidos recursivamente de forma muito parecida com funções:

- No base, especificamos uma coleção inicial de elementos do conjunto;
- No passo indutivo, especificamos regras para acrescentar mais elementos ao conjuntos.

Exemplo

Suponha que S é definido recursivamente por

- 3 ∈ S
- $Se x \in S e y \in S$, então $x + y \in S$.

Exemplo

Suponha que S é definido recursivamente por

- 3 ∈ S
- Se $x \in S$ e $y \in S$, então $x + y \in S$.

Constatação:

O conjunto indutivamente definido será $S = \{3, 6, 9, 12, 15, ...\}$

Exemplo

Suponha agora que S é definido recursivamente por

- 1,3 ∈ *S*
- Se $x \in S$ e $y \in S$, então $x + y \in S$.

Exemplo

Suponha agora que S é definido recursivamente por

- 1,3 ∈ *S*
- Se $x \in S$ e $y \in S$, então $x + y \in S$.

Constatação:

O conjunto indutivamente definido será $S = \{1,3,$

Exemplo

Suponha agora que S é definido recursivamente por

- 1,3 ∈ *S*
- $Se x \in S e y \in S$, então $x + y \in S$.

Constatação:

O conjunto indutivamente definido será $S = \{1, 3, 2, 4, 6,$

Exemplo

Suponha agora que S é definido recursivamente por

- 1,3 ∈ *S*
- Se $x \in S$ e $y \in S$, então $x + y \in S$.

Constatação:

O conjunto indutivamente definido será $S = \{1, 3, 2, 4, 6, 5, 7, 9,$

Exemplo

Suponha agora que S é definido recursivamente por

- 1,3 ∈ *S*
- Se $x \in S$ e $y \in S$, então $x + y \in S$.

Constatação:

O conjunto indutivamente definido será

$$S = \{1, 3, 2, 4, 6, 5, 7, 9, ...\}$$

Exemplo

Suponha agora que S é definido recursivamente por

- 1.3 ∈ S
- Se $x \in S$ e $y \in S$, então $x + y \in S$.

Constatação:

O conjunto indutivamente definido será $S = \{1, 3, 2, 4, 6, 5, 7, 9, ...\}$

Constatação:

Uma pequena mudança na base ou na regra do passo indutivo podem mudar radicalmente o conjunto gerado.

Exemplo

Podemos definir o conjunto de fórmulas bem formadas na aritmética:

- x é uma fórmula bem formada se x é um numeral ou uma variável.
- Se F e G são fórmulas bem formadas, então (F + G), (F G), (F * G), e (F/G) são fórmulas bem formadas.

Outline

Introdução

Definições Recursivas

Conjuntos Recursivamente Definidos

Indução Estrutural

Exercícios

Indução Estrutural

Para provar resultados sobre conjuntos recursivamente definidos, utilizamos uma forma de indução:

 BASE: Mostre que a propriedade desejada vale para todos os elementos da BASE da definição recursiva do conjunto.

Indução Estrutural

Para provar resultados sobre conjuntos recursivamente definidos, utilizamos uma forma de indução:

- BASE: Mostre que a propriedade desejada vale para todos os elementos da BASE da definição recursiva do conjunto.
- PASSO INDUTIVO: Mostre que se a propriedade desejada vale para todos os elementos utilizados para construir um novo elemento, então a propriedade também vale para o novo elemento construído.

Exemplo

Mostre que todas as fórmulas bem formadas da nossa definição recursiva têm um número igual de parênteses esquerdos e direitos.

Exemplo

Mostre que todas as fórmulas bem formadas da nossa definição recursiva têm um número igual de parênteses esquerdos e direitos.

Solução: (BASE) Se *x* é um numeral, tem zero parênteses esquerdos e direitos, portanto o mesmo número.

Exemplo

Mostre que todas as fórmulas bem formadas da nossa definição recursiva têm um número igual de parênteses esquerdos e direitos.

Solução: (BASE) Se x é um numeral, tem zero parênteses esquerdos e direitos, portanto o mesmo número. Alternativamente, se x é uma variável, também tem zero parênteses esquerdos e direitos e, portanto, o mesmo número.

Exemplo

Mostre que todas as fórmulas bem formadas da nossa definição recursiva têm um número igual de parênteses esquerdos e direitos.

Solução: ... (PASSO INDUTIVO) Sejam F, G duas fórmulas bem formadas, suponha que F tem k parênteses esquerdos e direitos e que G tem j parênteses esquerdos e direitos.

Exemplo

Mostre que todas as fórmulas bem formadas da nossa definição recursiva têm um número igual de parênteses esquerdos e direitos.

Solução: ... (PASSO INDUTIVO) Sejam F, G duas fórmulas bem formadas, suponha que F tem k parênteses esquerdos e direitos e que G tem j parênteses esquerdos e direitos. Observe que a fórmula (F+G) terá então k+j+1 parênteses esquerdos e k+j+1 parênteses direitos, o mesmo número, portanto.

Exemplo

Mostre que todas as fórmulas bem formadas da nossa definição recursiva têm um número igual de parênteses esquerdos e direitos.

Solução: ... (PASSO INDUTIVO) Sejam F, G duas fórmulas bem formadas, suponha que F tem k parênteses esquerdos e direitos e que G tem j parênteses esquerdos e direitos. Observe que a fórmula (F+G) terá então k+j+1 parênteses esquerdos e k+j+1 parênteses direitos, o mesmo número, portanto. Os casos das fórmulas (F-G), (F*G), e (F/G) são similares.

Outline

Introdução

Definições Recursivas

Conjuntos Recursivamente Definidos

Indução Estrutural

Exercícios

Exercícios

1. Resolva:

- a) Dê uma definição recursiva dos inteiros positivos que são múltiplos de 5.
- b) Dê uma definição recursiva para a função ones(x) que conta o número de 1's em uma string de bits.
- **c)** Utilize indução estrutural pra mostrar que ones(st) = ones(s) + ones(t).
- d) Defina o conjunto das fórmulas bem formadas sobre conjuntos onde variáveis representam conjuntos e os operadores disponíveis são {∪, ∩, \,'}
- e) Dê uma definição recursiva da operação de reversão de uma string.
- **f)** Use indução estrutural para mostrar que $(w_1 w_2)^R = w_2^R w_1^R$.