An overview of current BGP security problems

Ralph Krimmel

July 3, 2012

Introduction

Introduction

- Security issues of BGP
- 3 Cryptographic techniques
- 4 BGP security today
- Defensive Filtering
- 6 S-BGP

Routing in the Internet

The Internet

- Large, decentralized Network
- Intermediate hosts: Routers
- Internet protocol

Some definitions

IP Addresses

- IP Address: 32(v4)/128(v6) bit Numbers
- E.g.: Host: 134.76.80.1 Subnet: 134.76.80.0/24
- IP Prefix: Block of IP addresses

Some definitions #2

Autonomous Systems

- Collection of IP prefixes under control of one organisation
- Identified by AS Number

• Public: 1-64511

Private: 64512-65535

Exchange routing information with adjacent autonomous systemss

BGP

BGP Basics

- Incremental protocol
- 4 Message Types
 - Open: Session initiation
 - **Update**: Advertisement/withdrawal of routes
 - Notification: Session termination
 - Keepalive: Verification of reachability

BGP Update Message

Important attributes

- Next hop: Destination of the next hop router
- AS-Path: Path with AS-Numbers leading to prefix
- Several attributes for path selection (MED, Origin, Local preference)

Path selection

Decision factors

- Local preference
- Shortest AS path length
- 4 Lowest MED value
- **⑤**

Example

Prefix hijacking

No verification of:

- Prefix ownership
- AS number ownership

Short AS pathes

Deaggregation

Attacks on TCP

Attacks on TCP

- Eavesdropping to learn routing information
- MITM: Insertion, modification and deletion of messages
- Replay attack
- DoS attacks (via RST, SYN-Flood)

Cryptographig techniques

Some techniques

- Pairwise keying
- Cryptographic hash functions (message digests)
 - Non-invertible
 - Collision resistant
- Message Authentication Code: digest(Shared key + Message)

BGP security today

Current approaches

- Protection of the BGP session between routers
- Defensive filtering

Protection of a BGP Session between routers

Two goals

- Protecting TCP
- BGP session itself

Proposed solutions

Countermeasures

- MD5 Integrity
- Session and Message Protection
- Generalized TTL Security Mechanism
- IPsec

MD5 Integrity

Idea

- TCP extension that uses a MAC based on MD5
- Carries MAC of TCP header and BGP data
- ⇒ Protects integrity and prevents replay attacks

Session and Message Protection

Proposed countermeasures

- Adding sequence numbers
- Encryption of all BGP data between peers
- Digital signatures of all UPDATE fields

Disadvantages: BGP needs to be altered, based on shared keys

Generalized TTL Security Mechanism

Idea

- IP header contains a TTL field
- TTL decreased with every hop
- Utilize IP TTL to discard every packet with TTL < 254.
- Cheap solution
- Weakly defends against remote attacker

IPsec

IPsec overview

- IP layer protocol
- Three protocols: IKE (Key Managment, AH and ESP (packet level security)
- Provides: authenticy, integrity, replay prevention, confidentality, DOS prevention
- Widely used for securing BGP sessions

Defensive Filtering

Goal: Filter bad and potential malicious announcements

Route policies

- Prefixes with special uses
- Bogons
- Private AS numbers
- Long AS-Pathes
- Routes to small networks (Deaggreation prevention)
- Limit of announcements by a neighbour (DoS and Deaggreation prevention)
- Rewrite of BGP attributes

S-BGP

S-BGP

S-BGP overview

- Full scale security architecture
- Installs PKI, parallel to existing allocation and delegation systems
- BGP data can be signed and verified
- IPsec to secure peer sessions
- Two kind of attestations: Address and route attestations

S-BGP

Address attestations

Address attestations

- Out-of-band mechanism
- Verification of the ownership of prefixes via certificates
- Delegation chain, similar to x.509 PKI

Route attestations

Route attestations

- Distributed via BGP
- Update messages can carry digital signatures
- Each AS in the path signes the path recursively

Route attestations

S-BGP

Deployment issues

- S-BGP needs more memory
- Alot of parties have to work together (IANA/ICANN)/ISPs/Router vendors

Summary

Summary

- BGP plays a large role in in internet routing
- BGP is vulnerable at many places
- Several existing practises to defend against threads
- Existing solutions are hard to deploy

S-BGP

Questions?

