Homotopy-coherent interchange and equivariant little disk operads

Natalie Stewart

Department of Mathematics Harvard University

INI Equivariant Homotopy Theory in Context

Queen's University Belfast, April 7 2025

A question you might happen upon

In trace methods for Real algebraic K-theory, THH has a Real analogue:¹

$$\begin{array}{ccc} \operatorname{Alg}_{\mathbb{E}_1}(\operatorname{Sp}) & \operatorname{Alg}_{\mathbb{E}_\sigma}(\operatorname{Sp}_{\operatorname{C}_2}) \\ & & & & & \downarrow \operatorname{ThR} \\ \operatorname{Sp} & & & & \operatorname{Sp}_{\operatorname{C}_2} \end{array}$$

In this, σ is the sign representation and \mathbb{E}_{σ} -algebras are a genuine-equivariant version of rings with anti-involution.

Question (c.f. Dotto-Moi-Patchkoria-Reeh² '17)

What algebraic structure does THR of highly structured C_2 -ring spectra have?

Interchange and little V-disks

Natalie Stewart

Cold open

Historical conte

Preview of argumen

G- ∞ -categorica operads

BV-tensor products
The Dunn map

The Dunn map Weak approximation

ttle V-disks

Interlude: the homotopy type of a smooth manifold

he strategy Vith tangential structur

ferences

¹ Emanuele Dotto. Stable real K-theory and real topological Hochschild homology. Thesis (Ph.D.)–Uniiversity of Copenhagen. 2012. arXiv: 1212. 4310 [math. AT].

² Emanuele Dotto, Kristian Moi, Irakli Patchkoria, and Sune Precht Reeh. "Real topological Hochschild homology". In: J. Eur. Math. Soc. (JEMS) 23.1 (2021), pp. 63–152.

How to construct structure on THH

Observation

THH can be given a symmetric monoidal structure, so we may lift

Theorem (Dunn³ '88, Lurie⁴ '09)

 $\mathbb{E}_n \simeq \mathbb{E}_{n-1} \otimes \mathbb{E}_1$; hence THH takes \mathbb{E}_n -rings to \mathbb{E}_{n-1} -rings.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical con

Preview of argument

G-∞-categorical

G-(pre)operads, algebras

BV-tensor products

The Dunn map

Weak approximations

Little V-dis

a smooth manifold The strategy

With tangential structu

³Gerald Dunn. "Tensor product of operads and iterated loop spaces". In: J. Pure Appl. Algebra 50.3 (1988), pp. 237–258.

⁴ Jacob Lurie, Derived Algebraic Geometry VI: Ek Algebras, 2009, arXiv: 0911,0018 [math.AT].

How to construct structure on THR

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argumen

G-∞-categorica operads

G-(pre)operads, algebra
BV-tensor products

The Dunn map
Weak approximation

ittle V-disks

Interlude: the homotopy type of a smooth manifold

ne strategy

- -

Observation (S.⁵)

THR can be given a C2-symmetric monoidal structure, so we may lift

Conjecture

$$\mathbb{E}_V \otimes \mathbb{E}_W \simeq \mathbb{E}_{V \oplus W}$$

⁵ Natalie Stewart. On tensor products of equivariant commutative operads (draft). 2025.

Statement of the additivity theorem

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argumer

G- ∞ -categorical operads

BV-tensor products

The Dunn map Weak approximations

Veak approximations

ittle V-disl

Interlude: the homotopy type o a smooth manifold

e strategy

with tangential structi

References

For this talk, all terms are defined ∞ -categorically.

Theorem (S.⁵)

Given V, W orthogonal G-representations, we have

$$\mathbb{E}_{V} \otimes \mathbb{E}_{W} \simeq \mathbb{E}_{V \oplus W};$$

hence there is an equivalence of ∞ -categories

$$\mathrm{Alg}_{\mathbb{E}_{V}} \underline{\mathrm{Alg}}_{\mathbb{E}_{W}}^{\otimes} \left(\mathrm{Sp}_{G} \right) \simeq \mathrm{Alg}_{\mathbb{E}_{V \oplus W}} \left(\mathrm{Sp}_{G} \right).$$

Corollary

THR of $\mathbb{E}_{V \oplus \sigma}$ -rings has a natural \mathbb{E}_{V} -ring structure.

Natalie Stewart, On homotopical additivity of equivariant little disks operads (forthcoming), 2025.

Myriad versions of this theorem

- May '72: 6 $C_n \otimes C_m$ and C_{n+m} agree on **connected spaces**.
- **1** Dunn '88: $^7C_1^{\otimes n} \simeq C_n$ w.r.t. a **point-set** tensor product.
- **2** Brinkmeier '00: ${}^8C_n \otimes C_m \simeq C_{n+m}$ w.r.t. a **point-set** tensor product.
- **3** Rourke-Sanderson'00: 9 $D_V \otimes D_W$ and $D_{V \oplus W}$ agree on G-connected G-spaces.
- 4 Lurie '09: ${}^{10}\mathbb{E}_n^{\otimes} \overset{\text{\tiny IN}}{\otimes} \mathbb{E}_m^{\otimes} \simeq \mathbb{E}_{n+m}^{\otimes}$ with respect to a **homotopical** tensor product.
- *Fiedorowicz-Vogt '15*:¹¹ Dunn & Brinkmeier's result extends to **cofibrant** \mathbb{E}_n -**operads**.
- **6** Szczesny '24:¹² $D_V \otimes D_W \simeq D_{V \oplus W}$ w.r.t. a **point-set** tensor product.
- 7 S. '25: $\mathbb{E}_V^{\otimes} \overset{\text{\tiny BV}}{\otimes} \mathbb{E}_W^{\otimes} \simeq \mathbb{E}_{V \oplus W}^{\otimes}$ with respect to a **homotopical** tensor product.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

operads

G-(pre) operads, algebra BV-tensor products ---

The Dunn map Weak approximations

ittle V-dicks

a smooth manifold The strategy With tangential structure

oforoncos

^{6].} P. May. The geometry of iterated loop spaces. Vol. Vol. 271. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1972, pp. viii+175.

⁷Gerald Dunn. "Tensor product of operads and iterated loop spaces". In: J. Pure Appl. Algebra 50.3 (1988), pp. 237–258.

⁸ Michael Brinkmeier. On Operads. Thesis (Ph.D.)–Universitat Osnabrück. 2000.

⁹Colin Rourke and Brian Sanderson. "Equivariant configuration spaces". In: J. London Math. Soc. (2) 62.2 (2000), pp. 544–552.

¹⁰ Jacob Lurie. Derived Algebraic Geometry VI: Ek Algebras. 2009. arXiv: 0911.0018 [math.AT].

¹¹Z. Fiedorowicz and R. M. Vogt. "An additivity theorem for the interchange of E_p structures". In: Adv. Math. 273 (2015), pp. 421–484.

¹² Ben Szczesny, Equivariant Framed Little Disk Operads are Additive, 2024, arXiv: 2410, 20235 [math, AT].

A heavily abridged history of G- ∞ -categorical operads

Interchange and little V-disks

Cold open

Historical cont

Preview of argument

G- ∞ -categorical operads

BV-tensor products The Dunn map

Weak approximations

ITTIE V-QISKS Interlude: the homotopy (

The strategy With tangential structure

With tangential struct

References

• Hill-Hopkins '16:¹³ G-commutative monoids are **semi-Mackey functors**.

- Nardin-Shah '22:¹⁴ G-operads are a type of fibration over a genuine equivariant version $\underline{\mathbb{F}}_{G,*}$ of Segal's category Γ^{op} .
- **2** Barkan-Haugseng-Steinebrunner'22:¹⁵ G-operads are also **fibrations over the effective Burnside** 2-category Span(\mathbb{F}_G).
- S. '25:¹⁶ homotopy-coherent interchange is corepresented by **BV tensor products** and *G*-operads are monadic over *G*-symmetric sequences.
- **4** S. '25:¹⁷ Algebras in (co)cartesian G-symmetric monoidal structures have concrete descriptions and $\mathcal{N}_{l\infty} \otimes \mathcal{N}_{J\infty} \simeq \mathcal{N}_{l\vee J\infty}$

¹³ Michael A. Hill and Michael J. Hopkins. Equivariant symmetric monoidal structures. 2016. arXiv: 1610.03114 [math.AT].

¹⁴Denis Nardin and Jay Shah. Parametrized and equivariant higher algebra. 2022. arXiv: 2203.00072 [math.AT].

¹⁵ Shaul Barkan, Rune Haugseng, and Jan Steinebrunner. Envelopes for Algebraic Patterns. 2022. arXiv: 2208.07183 [math.CT].

 $^{{\}color{blue} 16} \, Natalie\, Stewart.\, \textit{Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products.\, 2025.\, arXiv:\, 2501.\, 02129\,\, [math.\,CT].}$

¹⁷ Natalie Stewart. On tensor products of equivariant commutative operads (draft), 2025.

How to prove equivariant Dunn additivity

- Define "G-operads" as a localizing subcategory of "G-preoperads."
- $\textbf{2} \quad \text{Define G-preoperad models} \times \text{and \wr for $\overset{\mathbb{N}}{\otimes}$, reduce to showing that $\varphi_{\mathbb{E}}$ is an $L_{\mathrm{Op}_{\mathbb{G}}}$-equivalence. }$
- Define "approximations" α , an approximated "surjection" $\widetilde{\varphi}_{\mathbb{P}}$ onto "decomposable little disks," verify that $\alpha_{V|W}$ is an approximation by lifting Dunn's argument about decomposability.
- **4** Use ∞ -category theory to reduce to showing $\widetilde{\varphi}_{\mathbb{P}}$ is an L_{Op_c} -equivalence.
- **5** Verify that $\widetilde{\varphi}_{\mathbb{P}}$ by lifting Dunn's argument about uniqueness of decompositions.

Interchange and little V-disks

Natalie Stewart

old open

Historical conte

Preview of argume

G-∞-cate operads

BV-tensor products
The Dunn map

ittle V dieke

a smooth manifold The strategy

Dafavanese

A quasi-definition of G-operads

Definition

- A *G*-preoperad is a functor $\mathcal{O}^{\otimes} \to \operatorname{Span}(\mathbb{F}_G)$ with cocartesian lifts over backwards maps.
- A G-operad is required to satisfy "Segal conditions."
- An \mathcal{O} -algebra in \mathcal{C}^{\otimes} is a functor preserving cocartesian arrows :

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G- ∞ -categorica operads

BV-tensor products
The Dunn map

Weak approximations

weak approximation:

Interlude: the homotopy type o a smooth manifold

With tangential structur

The underlying *G*-symmetric sequence

Interchange and little *V*-disks

Natalie Stewart

Cold open

Historical con

Preview of argumen

G- ∞ -categorical operads

BV-tensor products

The Dunn map Weak approximatio

Weak approximation

ittle V-disks

The strategy

ith tangential structu

References

Construction

Given $\mathcal{O}^{\otimes} \in \operatorname{Op}_G$, $H \subset G$, and $S \in \mathbb{F}_G$, define the **structure space**

$$\mathcal{O}(S) \xrightarrow{\hspace{1cm}} \operatorname{Mor} (\mathcal{O}^{\otimes})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\left\{\operatorname{Ind}_{H}^{G}S = \operatorname{Ind}_{H}^{G}S \rightarrow [G/H]\right\} \longrightarrow \operatorname{Mor} (\operatorname{Span}(\mathbb{F}_{G}))$$

Proposition (S.¹⁸)

If \mathcal{O}^{\otimes} has "one color" then is it conservatively identified by $(\mathcal{O}(S))_{\substack{H \subset G \\ S \in \mathbb{F}_H}}$.

¹⁸ Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT].

operads

BV-tensor products The Dunn map

Weak approximation

Example

The **little** *V***-disks** *G***-operad** has *S*-ary structure space given by *H***-equivariant configurations of** *S* **in** *V*:

$$\mathbb{E}_{V}(S) := Emb^{H,Affine} (S \cdot D(V), D(V)) \simeq Conf_{S}^{H}(V).$$

Example

Given a G-symmetric monoidal category $\mathcal{C}^\otimes\colon \operatorname{Span}(\mathbb{F}_G)\to\operatorname{Cat}_\infty$, its unstraightening is a G-operad. Given $X\in\mathcal{C}(G/G)$, there is an **endomorphism** G-operad with

$$\operatorname{End}_X(S) \simeq \operatorname{Map}_{\mathcal{C}_H} \left(\left(\operatorname{Res}_H^G X \right)^{\otimes S}, \operatorname{Res}_H^G X \right)$$

Ur-examples

Interchange and little V-disks

Natalie Stewart

Cold open

Historical conte

Preview of argumen

operads

BV-tensor products
The Dunn map

The Dunn map
Weak approximations

ttle V-disl

smooth manifold he strategy

Vith tangential struct

References

In particular, an \mathbb{E}_{V} -algebra in \mathcal{C} consists of an object $X \in \mathcal{C}_{G}$ and homotopy-coherently compatible maps

$$\mathsf{Conf}^H_\mathsf{S}(V) o \mathsf{Map}_{\mathcal{C}_\mathsf{H}}\left(\left(\mathsf{Res}^\mathsf{G}_\mathsf{H}\mathsf{X}\right)^{\otimes \mathsf{S}},\mathsf{Res}^\mathsf{G}_\mathsf{H}\mathsf{X}\right).$$

Example (Horev-Klang-Zou¹⁹ '20)

Let $\underline{\mathcal{S}}_G^{G-\times}$ be the *cartesian structure* on *G*-spaces. Then, for all $X \in \mathcal{S}_G$, we have $\Omega^V X \in \mathrm{Alg}_{\mathbb{E}_V}(\mathcal{S}_G)$.

Example (Horev-Klang-Zou '20, loc. cit.)

Let $\underline{\mathrm{Sp}}_{\mathsf{G}}^{\otimes}$ be the HHR G-symmetric monoidal structure. If $f\colon \Omega^{\mathsf{V}}\mathsf{X} \to \underline{\mathrm{Pic}}(\underline{\mathrm{Sp}}_{\mathsf{G}})$ is a V-loop map, then $\mathrm{Th}(f) \in \mathrm{Alg}_{\mathbb{E}_V}(\mathrm{Sp}_{\mathsf{G}})$.

¹⁹ Jeremy Hahn, Asaf Horev, Inbar Klang, Dylan Wilson, and Foling Zou. Equivariant nonabelian Poincaré duality and equivariant factorization homology of Thom spectra. 2024. arXiv: 2006. 13348 [math. AT]

Modelling G-operadic constructions, two ways

Model categorist: **(co) fibrantly replace**, then apply a construction to monoids in *G*-symmetric sequences.

 ∞ -categorist: apply a G-preoperadic construction, then $L_{\mathrm{Op}_{G}}$ -localize.

Shared goal: model corepresenting object for **pairings** (aka interchanging algebras, bifunctors, etc.) akin to May.²⁰

$$\mathcal{O}^{\otimes} \times \mathcal{P}^{\otimes} \xrightarrow{\text{"pairing"}} \mathcal{Q}^{\otimes}$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$Span(\mathbb{F}_{G}) \times Span(\mathbb{F}_{G}) \xrightarrow{\wedge} Span(\mathbb{F}_{G})$$

Today, we are ∞ -categorists.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G-∞-categorical operads

G-(pre)operads, algebra BV-tensor products

The Dunn map
Weak approximations

ittle V-disks

a smooth manifold

The strategy
With tangential structur

^{201.} P. May. "Pairings of categories and spectra", In: 1. Pure Appl. Algebra 19 (1980), pp. 299–346.

The Boardman-Vogt tensor product

Definition

$$\mathcal{O}^{\otimes} \overset{\text{\tiny inv}}{\otimes} \mathcal{P}^{\otimes} := L_{\operatorname{Op}_G} \left(\mathcal{O}^{\otimes} \times \mathcal{P}^{\otimes} \longrightarrow \operatorname{Span}(\mathbb{F}_G)^2 \overset{\wedge}{\longrightarrow} \operatorname{Span}(\mathbb{F}_G) \right)$$

 $\mathrm{Alg}_{\mathcal{O}}(\mathcal{C})$ lifts to a "pointwise" G-symmetric monoidal category $\mathrm{Alg}_{\mathcal{O}}^{\otimes}(\mathcal{C})$.

Proposition (S.²¹)

$$(-)\mathop{\otimes}^{{\scriptscriptstyle{\mathrm{INV}}}}\mathcal{O}^{\otimes}$$
 is left adjoint to $\underline{\mathrm{Alg}}_{\mathcal{O}}^{\otimes}(-)$, so

$$\mathrm{Alg}_{\mathcal{O}} \underline{\mathrm{Alg}}_{\mathcal{P}}^{\otimes}(\mathcal{C}) \simeq \mathrm{Alg}_{\mathcal{O} \otimes \mathcal{P}}(\mathcal{C}).$$

Also, have "wreath" operator $\$ and natural L_{Op_c} -equivalences

$$\mathcal{O}^{\otimes}\overset{\text{\tiny BV}}{\otimes}\mathcal{P}^{\otimes}\leftarrow\mathcal{O}^{\otimes}\times\mathcal{P}^{\otimes}\rightarrow\mathcal{O}^{\otimes}\wr\mathcal{P}^{\otimes}.$$

Interchange and little V-disks

Natalie Stewart

Cold open

Historical conte

Preview of argument

G- ∞ -categorical operads

BV-tensor products
The Dunn map

The Dunn map Weak approximation

ttle V-disk

nterlude: the homotopy type of a smooth manifold

The strategy With tangential structu

²¹Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT].

The Dunn map

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G- ∞ -categorical operads

BV-tensor products

The Dunn map Weak approximations

ittle V-disks.

a smooth manifold The strategy

With tangential structu

Preoperad models for 1-colored G-operads

Given $\mathcal{P}^{\otimes} \in \operatorname{POp}_{G}$, We let $\mathcal{P}^{\operatorname{act}}_{/P}$ be the ∞ -category of arrows $P' \to P$ projecting to a forward map $T = T \to S$.

Definition

A map of G-preoperads $\alpha\colon \mathcal{P}^\otimes\to\mathcal{O}^\otimes$ with \mathcal{O}^\otimes a "one color" G-operad is a **weak** approximation if

- The G- ∞ -category of colors UP has a terminal G-object, and
- 2 For all $P \in \mathcal{P}^{\otimes}$ and $T \to \pi(P)$, the map of spaces

$$B\left(\mathcal{P}_{/P}^{\text{act}} \times_{\mathbb{F}_{G,/\pi(P)}} \{T \to \pi(P)\}\right) \to \prod_{[H/K] \subset \pi(P)} \mathcal{O}\left(T \times_{\pi(P)} [H/K]\right)$$

is a weak equivalence.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G-∞-categorical operads

BV-tensor products The Dunn map

The Dunn map
Weak approximations

ittle V-disks

a smooth manifold

The strategy

With tangential structure

Preoperad models for 1-colored G-operads

Proposition (Harpaz²² '19 + reinterpretation)

If $\alpha\colon \mathcal{P}^\otimes \to \mathcal{O}^\otimes$ is a weak approximation, pullback is fully faithful

$$Alg_{\mathcal{O}}(\mathcal{S}_G) \subset Alg_{\mathcal{P}}(\mathcal{S}_G)$$

with image the \mathcal{P} -monoids whose "color" G-functors $U\mathcal{P} \to \underline{\mathcal{S}}_G$ are constant.

Weak approximations can be made to have many colors; a weak approximation α is a **strong approximation** if $UP \to UO$ is an equivalence.

Proposition (S.²³)

 $\mathrm{Alg}_{(-)}(\mathcal{S}_{\mathsf{G}})$ detects $L_{\mathrm{Op}_{\mathsf{G}}}$ -equivalences when $U\mathcal{P} \to U\mathcal{O}$ is an equivalence; in particular, **strong approximations are** $L_{\mathrm{Op}_{\mathsf{G}}}$ -equivalences.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G-∞-categorical operads

G-(pre) operads, algebras BV-tensor products

The Dunn map
Weak approximations

ttle V-disl

mooth manifold e strategy

vitn tangentiai struct

²² Yonatan Harpaz. Little cubes algebras and factorization homology (course notes).

²³ Natalie Stewart. On tensor products of equivariant commutative operads (draft), 2025.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical conte

Preview of argumen

G-∞-categorical operads

BV-tensor products

The Dunn map
Weak approximation

Seed on the Alberton

Interlude: the homotopy type

he strategy

.....

References

Proof sketch.

Examine the free \mathcal{O} -G-space monad:²⁴

$$(T_{\mathcal{O}}X)^H \simeq \coprod_{S \in \mathbb{F}_H} \left(\mathcal{O}(S) \times \left(X^S \right)^H \right)_{h \operatorname{Aut}_H S}.$$

The inclusion $\operatorname{Aut}_H(S) \subset \operatorname{End}_H(S) = \left(S^S\right)^H$ yields natural splitting

$$(T_{\mathcal{O}}S)^{H} \simeq \mathcal{O}(S) \sqcup Junk.$$

Use monadicity of $\mathrm{Alg}_{\mathcal{O}}(\mathcal{S}_G) o \mathcal{S}_G$ and conservativity of $(\mathcal{O}(S))_{H \subset G}$.

²⁴ Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT].

Approximating manifolds

Proposition (Dugger-Isaksen²⁵ '01)

If *X* is a topological space and $\mathfrak{O}\subset \mathscr{P}(X)$ a basis of contractible open subsets, then we get a weak equivalence

$$B\mathfrak{O} \xrightarrow{\sim} X$$

Corollary

Let $\mathfrak{O}_S^H(V) \subset \operatorname{Conf}_S^H(V)$ be the basis of configurations in affinely $\coprod_S D(V)$ -shaped invariant subspaces of D(V). We get a weak equivalence

$$B\mathfrak{O}_S^H(V) \stackrel{\sim}{\longrightarrow} Conf_S^H(V) \simeq \mathbb{E}_V(S).$$

Natalie Stewart

Cold open

Historical cont

Preview of argument

operads

BV-tensor products The Dunn map

Weak approximation

ittle V-disks

hestrategy

With tangential structu

Interchange and little V-disks

²⁵ Daniel Dugger and Daniel C. Isaksen. "Topological hypercovers and A¹-realizations". In: Math. Z. 246.4 (2004), pp. 667–689.

We define a G-preoperad \mathbb{P}_V^{\otimes} such that $\mathbb{P}_{V,/P}^{\operatorname{act}} \simeq \mathfrak{O}_S^H(V)$, yielding a weak approximation $\alpha_V \colon \mathbb{P}_V^{\otimes} \to \mathbb{E}_V^{\otimes}$. Then, we define a \mathbb{P} -Dunn map fitting into the above diagram.

Here, $\mathbb{P}_{V|W}^{\otimes}$ is the "G-preoperadic image, i.e. "decomposed little disks."

We're tasked with verifying that $\varphi_{\mathbb{E}}\circ \mathsf{M}_{\mathbb{E}}$ induces an equivalence

$$\mathrm{Alg}_{\mathbb{E}_{V \oplus W}}(\mathcal{S}_G) \xrightarrow{\sim} \mathrm{Alg}_{\mathbb{E}_{V} \times \mathrm{Alg}_{\mathbb{E}_{W}}}(\mathcal{S}_G) \xleftarrow{\sim} \mathrm{Alg}_{\mathbb{E}_{V} \otimes \mathbb{E}_{W}}(\mathcal{S}_G)$$

Interchange and little V-disks

Natalie Stewart

Cold open

Historical con

Preview of argument

G-∞-categorion operads

G-(pre)operads, algebra BV-tensor products

The Dunn map Weak approximation

Little V-di:

Interlude: the homotopy type a smooth manifold The strategy

With tangential structur

- **1** $L_{\mathbb{P}}$ and $L_{\mathbb{E}}$ are L_{Op_c} -equivalences by fiat.
- 2 A variant of Harpaz's strategy²⁶ shows that $M_{\mathbb{P}}$ and $M_{\mathbb{E}}$ are $L_{\mathrm{Op}_{G}}$ -equivalences.
- Simple ∞ -category theory shows that $\alpha_V \times \alpha_W$ is a weak approximation.
- 4 A variant of Dunn's strategy²⁷ shows that $\alpha_{V|W}$ is a weak approximation.
- **5** Explicit 1-category theory shows that $\widetilde{\varphi}_{\mathbb{P}}$ is a strong approximation.
- Routine bookkeeping then shows that $Alg_{\mathbb{E}_{V \times \mathbb{E}_W}}(\mathcal{S}_G) \xrightarrow{\sim} Alg_{\mathbb{E}_V \times \mathbb{E}_W}(\mathcal{S}_G)$.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

operads

BV-tensor products
The Dunn map

Weak approximation:

Interlude: the homotopy type o

The strategy

²⁶ Yonatan Harpaz. Little cubes algebras and factorization homology (course notes).

²⁷ Gerald Dunn, "Tensor product of operads and iterated loop spaces", In: 1, Pure Appl, Algebra 50.3 (1988), pp. 237–258,

Stalkwise-linearizable tangential structures

Define $\mathbb{E}_{B_G^{\text{lin}}\text{Top}(n)}^{\otimes}$ to have colors the linearizable *G*-actions on \mathbb{R}^n and operations the *topological* embeddings.

Given a *G*-space *X* with stalkwise-linearizable equivariant \mathbb{R}^n -bundle $T_{\bullet}\colon X\to B^{\mathrm{lin}}_{G}\mathrm{Top}(n)$, we define the assembly

$$\mathbb{E}_X^{\otimes} := L_{\operatorname{Op}_G} \left(\mathbb{E}_{B_G^{\operatorname{lin}} \operatorname{Top}(n)}^{\otimes} \times_{B_G^{\operatorname{lin}} \operatorname{Top}(n)^{G-\sqcup}} X^{G-\sqcup} \right).$$

Theorem (S.²⁸)

There is a natural equivariant colimit expression of operads

$$\underline{\text{colim}}_{x \in X} \mathbb{E}_{T_x}^{\otimes} \overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-}} \mathbb{E}_X^{\otimes}$$

Interchange and little V-disks

Natalie Stewart

Cold open

Historical con

Preview of argumen

G-∞-categorical operads

G-(pre)operads, algebras BV-tensor products

The Dunn map
Weak approximations

ittle V-dis

smooth manifold ne strategy

ith tangential structur

²⁸ Natalie Stewart. On homotopical additivity of equivariant little disks operads (forthcoming). 2025.

Stalkwise-linearizable tangential structures

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G-∞-categorical operads

G-(pre)operads, algebras BV-tensor products

The Dunn map

Corollary (S.)

Given stalkwise-linearizable equivariant \mathbb{R}^k -bundles $X \to B_C^{\text{lin}} \mathbf{Top}(n)$ and $Y \to B_C^{\text{lin}} \mathbf{Top}(m)$, fixing the direct sum structure

$$X \times Y \longrightarrow B_G^{\text{lin}} \text{Top}(n) \times B_G^{\text{lin}} \text{Top}(m) \stackrel{\oplus}{\longrightarrow} B_G^{\text{lin}} \text{Top}(n+m),$$

there is an equivalence.

$$\mathbb{E}_{\mathsf{X}}^{\otimes} \overset{\scriptscriptstyle\mathsf{BV}}{\otimes} \mathbb{E}_{\mathsf{Y}}^{\otimes} \overset{\sim}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-}} \mathbb{E}_{\mathsf{X} \times \mathsf{Y}}^{\otimes}.$$

Other cases that are covered by the original argument:

- (Equivariant) swiss cheese
- Stratified little disks

A curious corollary about algebraic topology

Interchange and little V-disks

Natalie Stewart

old open

Historical cont

Preview of argument

operads

BV-tensor products

The Dunn map Weak approximatio

The strategy

With tangential structu

References

Let $\underline{\mathrm{Disk}}_G^{X-\mathrm{fr},\sqcup} \subset \underline{\mathrm{Mfld}}_G^{X-\mathrm{fr},\sqcup}$ be the *G*-symmetric monoidal full category whose objects are disjoint unions of *X*-framed *G*-disks and whose mapping spaces are *X*-framed equivariant disk embeddings.

Corollary (S., c.f. Dwyer-Hess-Knudsen²⁹ '19)

There is a *G*-symmetric monoidal equivalence

$$\underline{\mathrm{Disk}}_{G}^{X-\mathrm{fr},\sqcup} \square \underline{\mathrm{Disk}}_{G}^{Y-\mathrm{fr},\sqcup} \simeq \underline{\mathrm{Disk}}_{G}^{X\times Y-\mathrm{fr},\sqcup}.$$

Here, \square is the box product of semi-Mackey functors valued in Cat_{∞} .

²⁹ William Dwyer, Kathryn Hess, and Ben Knudsen. "Configuration spaces of products". In: Trans. Amer. Math. Soc. 371.4 (2019), pp. 2963–2985.

References

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cor

Preview of argumer

G-∞-categorica operads

BV-tensor products
The Dunn map

The Dunn map Weak approximation

Little V-disks

Interlude: the homotopy type o

The strategy

With tangential structi

References

- [1] Shaul Barkan, Rune Haugseng, and Jan Steinebrunner. Envelopes for Algebraic Patterns. 2022. arXiv: 2208.07183 [math.CT].
- [2] Michael Brinkmeier. On Operads. Thesis (Ph.D.)—Universitat Osnabrück. 2000.
- [3] Emanuele Dotto. Stable real K-theory and real topological Hochschild homology. Thesis (Ph.D.)—University of Copenhagen. 2012. arXiv: 1212.4310 [math.AT].
- [4] Emanuele Dotto, Kristian Moi, Irakli Patchkoria, and Sune Precht Reeh. "Real topological Hochschild homology". In: J. Eur. Math. Soc. (JEMS) 23.1 (2021), pp. 63–152.
- [5] Daniel Dugger. "An Atiyah-Hirzebruch spectral sequence for KR-theory". In: K-Theory 35.3-4 (2005), 213–256 (2006).
- [6] Daniel Dugger and Daniel C. Isaksen. "Topological hypercovers and A¹-realizations". In: Math. Z. 246.4 (2004), pp. 667–689.
- [7] Gerald Dunn. "Tensor product of operads and iterated loop spaces", In: J. Pure Appl. Algebra 50.3 (1988), pp. 237–258.
- [8] William Dwyer, Kathryn Hess, and Ben Knudsen. "Configuration spaces of products". In: Trans. Amer. Math. Soc. 371.4 (2019), pp. 2963–2985.
- [9] Z. Fiedorowicz and R. M. Vogt. "An additivity theorem for the interchange of En structures". In: Adv. Math. 273 (2015), pp. 421–484.
- [10] Jeremy Hahn, Asaf Horev, Inbar Klang, Dylan Wilson, and Foling Zou. Equivariant nonabelian Poincaré duality and equivariant factorization homology of Thom spectra. 2024 arXiv: 2006. 13348 [math. 47]
- [11] Yonatan Harpaz, Little cubes glaebras and factorization homology (course notes).
- Michael A. Hill and Michael I. Hopkins. Faujvariant symmetric monoidal structures. 2016. arXiv: 1610.03114 [math.AT]
- [13] Jacob Lurie, Derived Algebraic Geometry VI: Ek Algebras, 2009, arXiv: 0911.0018 [math.AT]
- [14] J. P. May. The geometry of iterated loop spaces. Vol. Vol. 271. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1972, pp. viii+175.
- [15] J. P. May. "Pairings of categories and spectra". In: J. Pure Appl. Algebra 19 (1980), pp. 299–346.
- [16] Denis Nardin and Jay Shah. Parametrized and equivariant higher algebra. 2022. arXiv: 2203.00072 [math.AT].
- [17] Colin Rourke and Brian Sanderson. "Equivariant configuration spaces". In: J. London Math. Soc. (2) 62.2 (2000), pp. 544–552.
- [18] Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT].
- [19] Natalie Stewart. On homotopical additivity of equivariant little disks operads (forthcoming). 2025.
- [20] Natalie Stewart. On tensor products of equivariant commutative operads (draft). 2025.
- [21] Ben Szczesny. Equivariant Framed Little Disk Operads are Additive. 2024. arXiv: 2410.20235 [math.AT].

This presentation was made in Beamer, with figures via tikz-cd and Inkscape, presented via Impressive. The tex is on my website. The title slide is $H_{C_2}^{\star}(*c_2; \underline{\mathbb{Z}})$ [5].