Actividad 2

Métodos Númericos:

Gauss - Jordan

Este método consiste en transformar un sistema de ecuaciones en una una matriz aumentada y aplicar operaciones elementales para triangularla.

1. Ejemplo eliminación:

Supongamos que tenemos el siguiente esquema de ecuaciones.

1. Método de Sustitución

Se despeja una variable en una ecuación y sustituye en las demas ecuaciones.

2.1 Ejemplo de austitución.

Consideremos el oiguiente sistema.

$$(x = y + 3) \longrightarrow (3 (y+3) + 2y = 1\emptyset)$$

Resolvemos para obtener (y=2) y lucque encontramos $(\chi=5)$.

2. Sistema de ecuaciones.

Tomando en cuenta la siguiente ecuación 3x3

$$2x + y - z = 5 | 3x - 2y + 2z = 4 | x + 3y - 2z = 7$$

El primer paso para transformar a la matriz: Representamos el sistema como una mati

A plicamos operaciones elementales

3 -2 2 1 4

para triangular la matriz.

Ejemplo: Restamos 1.5 veces la primera fila de la segunda

y Ø.5 veces la primera de la tercera.

El segundo paso: $2.5y - 1.5z = 4.5z \rightarrow Despejamos = 7.5z = 4.5z \rightarrow Despejam$

$$Z = \frac{2.5y - 4.5}{1.5} \rightarrow -3.5y + 3.5 \left(\frac{2.5y - 4.5}{1.5}\right) = -1.5$$

Resolvemos para encontrar (y): y=2

Una vez encontradas podremos sustituir en la primera ecuación:

$$2x + 2 - z = 5 \rightarrow 2x - z = 3 \times 3 + z$$

Para encontrar (2): Sustituimos (y=2) y (x=3+z)

$$3 + z + 6 - 2z = 7 \longrightarrow z = 4$$

Por ultimo con (z=4) encontramos (y=2)y (x=3+4=7)

Por lo tanto la solución del sistema es (x=7), (y=2), (z=4)

1. Método Jacobi

Se basa en interacciones sucesivas para aproximar las soluciones.

1. formulación del métado.

Escribimos cada ecoación en términos de una variable desconocida.

$$x = \frac{5 - y + z}{2}$$
 $y = \frac{4 - 3x + 2z}{2}$ $z = \frac{7 - x - 3y}{2}$

2. Establecimiento de valores iniciales.

Comenzamos con extimaciones iniciales para (x), (y) ($\frac{1}{2}$). Por ejemplo, ($\chi_0 = \emptyset$), ($\chi_0 = \emptyset$), ($\chi_0 = \chi_0$).

3. 1 teracciones

Cada i teracción, actualizamos las variables:

$$\chi_{K+1} = \frac{5 - y_{K} + Z_{K}}{2}$$

$$y_{k+1} = \frac{4-3x_{k}+2z_{k}}{2}$$

$$7k+1=\frac{7-X_{k}-39_{k}}{2}$$

4. Criterio de convergencia:

Podemos usar la norma infinito (máxima diferentes absoluta entre las soluciones) para verificar la convergencia.

Nota: €→es una tolerancia pequeña.

5. Lterar hasta convergencia:

Repetimos los pasos 3 y 4 hasta que se compla el criterio de convergencia

$$\chi^{(k+1)} = \frac{1}{1} \left(5 - \mu^{(k)} + 7^{(k)} \right)$$

```
y^{(k+1)} = \frac{1}{2} (4 - 3x^{(k)} + 2x^{(k)})
\frac{1}{2} (4 - 3x^{(k)} + 2x^{(k)})
\frac{1}{2} (4 - 3x^{(k)} - 3y^{(k)})
La ecuación se puede 1 teral n contidad de veres.
```

Despues de realizar 5 interacciones con el método los valores aproximados son.

No Itera	χ	ı 3	Z
	2.500	2,0000	3.5000
2	3.2500	1.7500	1-0.7500
3	1 2500	-3.6250	1-0.7500
4	3. 93 00	-0.6250	8.3125
5	6.9687	1 4 4062	2.4687
6	1.5312	-5. 9843	-6.5937
7	2.1953	-6.8906	11 7109
8	11,8007	10.4179	12.7382
ğ	3.6601	1-1.9618	-18.0273
10	-5.0311	-21. 5175	6.1142

Nota: Si observamos los valores nos podemos percatar que no tienen una convergencia o una solución estable (tsto se puede deber a que el sistema de ecuaciones podría no ser el adecuado).

Para mejorar la convergencia, podriamos intentar con más interacciones o probar con el método Gauss-Seidel.