SRSC02 – Sistemas Operacionais

Arquitetura do Núcleo

Arquitetura do Núcleo

- O projeto de um SO é bastante complexo e deve atender a diversos requisitos, algumas vezes conflitantes:
 - Confiabilidade
 - Portabilidade
 - Fácil manutenção
 - Flexibilidade
 - Desempenho

Arquitetura do Núcleo

- Depende muito da arquitetura do hardware e o tipo de sistema:
 - Batch
 - Tempo compartilhado ou Multitarefa
 - Monousuário
 - Multiusuário
 - Tempo Real
 - etc...

Arquitetura Monolítica

- Sistemas monolíticos estrutura básica:
 - Um programa principal executa a rotina requerida.
 - Um conjunto de rotinas de serviço que executa as chamadas de sistema.
 - Um conjunto de rotinas de utilidade que ajudam as rotinas de serviço.

Arquitetura Monolítica

Arquitetura Monolítica

Arquitetura em Camadas

- Abordagem em camadas dos sistemas operacionais
 - Tenta aperfeiçoar os projetos de núcleo monolítico.
 - Agrupa em camadas componentes que executam funções semelhantes.
 - Cada camada comunica-se apenas com as camadas imediatamente acima ou abaixo dela.
 - As solicitações dos processos devem passar por várias camadas para serem concluídas.
 - Rendimento do sistema pode ser menor do que o dos núcleos monolíticos.
 - Outros métodos precisam ser chamados para transmitir dados e controle.

Arquitetura em Camadas

Camada	Função
5	O operador
4	Programas de usuário
3	Gerenciamento de entrada/saída
2	Comunicação operador-processo
1	Memória e gerenciamento de tambor
0	Alocação do processador e multiprogramação

Tabela 1.3 Estrutura do sistema operacional THE.

- O sistema THE desenvolvido na Technische Hogeschool Eindhoven na Holanda por E. W. Dijkstra (1968) e seus estudantes.
- Camada 0 fornecia a multiprogramação básica da CPU.
- **Camada 1** realizava o gerenciamento de memória.
- Camada 2 encarregava-se da comunicação entre cada processo e o console de operação.
- Camada 3 cada processo podia lidar com dispositivos de E/S
- **Camada 4** onde os programas dos usuários eram encontrados.
- **Camada 5** local do processo do operador.

Arquitetura em Camadas do OpenVMS e Multics

- O OpenVMS é um sistema operacional conhecido por sua estrutura em camadas, que organiza seus componentes em níveis funcionais. Cada camada desempenha um papel específico e interage apenas com as camadas adjacentes. Isso resulta em uma organização modular e manutenção simplificada. A abordagem em camadas do OpenVMS melhora a modularidade, a segurança e a compreensão do sistema, permitindo que as camadas se comuniquem de forma controlada e eficiente.
 - Usuário camada mais externa
 - Supervisor
 - Executivo
 - Kernel camada mais interna

Máquina Virtual

- Sistema operacional da máquina virtual
 - Gerencia os recursos fornecidos pela máquina virtual.

Máquina Virtual

- Aplicações das máquinas virtuais
 - Permitem que várias instâncias de um sistema operacional sejam executadas simultaneamente.
 - Emulação
 - O software ou o hardware imita a funcionalidade do hardware ou software não presente no sistema.
 - Oferecem portabilidade.

Máquina Virtual Java

- Máquina virtual Java (JVM)
 - É uma abstração de software de um computador.
 - Em geral é executada como uma aplicação de usuário sobre o sistema operacional nativo.

Arquitetura Microkernel

- Arquitetura do sistema operacional de micronúcleo
 - Fornece somente um número pequeno de serviços.
 - O objetivo é manter o núcleo pequeno e escolável.
 - Alto grau de modularidade:
 - Extensíveis, portáteis e escaláveis.
 - Maior nível de comunicação entre módulos.
 - Isso pode diminuir o desempenho do sistema.

Arquitetura Microkernel

 Sistema operacional Mach na década de 1980 na universidade Carnegie-Mellon

Arquitetura Microkernel

Figura 1.23 Estrutura do sistema MINIX 3.

Arquitetura Cliente/Servidor

