Analysis and Improvement of Differential Computation Attacks against Internally-Encoded White-Box Implementations

Matthieu Rivain ¹ **Junwei Wang** ^{1,2,3}

¹CryptoExperts ²University of Luxembourg ³University Paris 8

CHES 2019. Atalanta

White-Box Threat Model

- **Goal:** to extract a cryptographic key, · · ·
- Where: from a software impl. of cipher
- **Who:** malwares, co-hosted applications, user themselves, · · ·
- How: (by all kinds of means)
 - ▶ analyze the code
 - ▶ spy on the memory
 - ▶ interfere the execution
 - · · · ·

In theory: no provably secure white-box scheme for standard block ciphers.

Typical Applications

Digital Content Distribution

videos, music, games, e-books, · · ·

Host Card Emulation

mobile payment without a secure element

In practice: heuristic solutions / security through obscurity

Internal Encoding Countermeasure [SAC02]

- 1. Represent the cipher into a *network* of transformations
- 2. Obfuscate the network by encoding adjacent transformations
- 3. Store the encoded transformations into look-up tables

Internal Encoding Countermeasure [SAC02]

- 1. Represent the cipher into a *network* of transformations
- 2. Obfuscate the network by encoding adjacent transformations
- 3. Store the encoded transformations into look-up tables

Internal Encoding Countermeasure [SAC02]

- 1. Represent the cipher into a *network* of transformations
- 2. Obfuscate the network by encoding adjacent transformations
- 3. Store the encoded transformations into look-up tables

Attacks in This Talk

- 1 Differential Computation Analysis
- 2 Collision Attack

Differential Computation Analysis [CHES16]

gray-box model

side-channel leakages (noisy)

e.g. power/EM/time/...

white-box model

computational leakage (*perfect*)

e.g. registers/accessed memory/...

Differential Computation Analysis [CHES16]

Differential power analysis techniques on computational leakages

Implying strong *linear correlation* between the sensitive variables and the leaked samples in the computational traces.

DCA Attack Limitations

- 1. The seminal work [CHES16] lacks in-depth understanding of DCA
- 2. The follow-up analysis [ACNS18] is
 - partly experimental (in particular for wrong key guesses)
 - Only known to work on nibble encodings
 - Only known to work on the first and last rounds
 - Success probability is unknown
- 3. The computational traces are only sub-optimally exploited

Internal Encoding Leakage

- A key-dependent (n, m) selection function φ_k in a block cipher
- **A** *random* selected *m*-bit bijection ε
- ullet $\varepsilon \circ \varphi_k$, as a result of some **table look-ups**, is **leaked in the memory**
- To exploit the leakage of $\varepsilon \circ \varphi_k$, it is necessary that n > m

DCA Analysis

Based on well-established theory – Boolean correlation, instead of difference of means: for any key guess k

$$\rho_{\mathbf{k}} = \operatorname{Cor}\Big(\varphi_{\mathbf{k}}(\cdot)[i] , \quad \varepsilon \circ \varphi_{\mathbf{k}^*}(\cdot)[j]\Big)$$

DCA success (roughly) requires:

$$\left| \rho_{\mathbf{k}^*} \right| > \max_{\mathbf{k}^{\times}} \left| \rho_{\mathbf{k}^{\times}} \right|$$

ρ_{k^*} and $\rho_{k^{\times}}$: Distributions

Ideal assumption: $(\varphi_k)_k$ are mutually independent random (n, m) functions

Correct key guess k^* ,

$$a_{L*} = 2^{2-m}N^* - 1$$

Incorrect key guess k^{\times} ,

$$\rho_{\mathbf{k}^{\times}} = 2^{2-n} N^{\times} - 1$$

where

$$N^* \sim \mathcal{HG}(2^m, 2^{m-1}, 2^{m-1})$$
.

where

$$N^{\times} \sim \mathcal{HG}(2^n, 2^{n-1}, 2^{n-1})$$
.

Only depends on m.

Only depends on n.

Lemma

Lemma

Let $\mathcal{B}(n)$ be the set of balanced n-bit Boolean function. If $f \in \mathcal{B}(n)$ and $g \xleftarrow{\$} \mathcal{B}(n)$ independent of f, then the balanceness of f+g is $\mathrm{B}(f+g)=4\cdot N-2^n$ where $N\sim \mathcal{HG}(2^n,2^{n-1},2^{n-1})$ denotes the size of $\{x:f(x)=g(x)=0\}$.

With

$$Cor(f+g) = \frac{1}{2^n}B(f+g)$$

 \Rightarrow

$$\rho_{k^*} = 2^{2-m}N^* - 1$$
 and $\rho_{k^*} = 2^{2-n}N^* - 1$

where $N^* \sim \mathcal{HG}(2^m,2^{m-1},2^{m-1})$ and $N^{\times} \sim \mathcal{HG}(2^n,2^{n-1},2^{n-1})$.

ρ_{k^*} and $\rho_{k^{\times}}$: Distributions

DCA Success Rate: $|\rho_{k^*}| > \max_{k^{\times}} |\rho_{k^{\times}}|$

DCA success probability converges towards $\approx 1 - \Pr_{N^*}(2^{m-2})$ for $n \geq 2m + 2$.

Attack a NSC Variant: a White-Box AES

- Byte encoding protected
- DCA has failed to break it before this work
- Our approach: target a output byte of MixColumn in the first round

$$\varphi_{k_1||k_2}(x_1||x_2) = 2 \cdot \mathbf{Sbox}(x_1 \oplus k_1) \oplus 3 \cdot \mathbf{Sbox}(x_2 \oplus k_2) \oplus$$

 $Sbox(k_3)$ \oplus Sbox(k_4)

$$\oplus$$
 Sbox(k_4)

$$\varepsilon' = \varepsilon \circ \oplus_{\mathbf{c}} ,$$
 $n = 16, m = 8, |\mathcal{K}| = 2^{16}.$

Attack a NSC Variant: a White-Box AES

Attack results: ~ 1800 traces

Similar attack can be applied to a "masked" white-box implementation, which intends to resist DCA.

Collision Attack

N inputs & raw traces $\binom{N}{2}$ collision predictions & traces $\psi_k(\mathbf{x}_1,\mathbf{x}_2)$

$$\psi_k(x_1,x_2) := \left(\varphi_k(x_1) = \varphi_k(x_2)\right)$$

Collision Attack: Explanation

Based on the principle:

$$\varphi_k(x_1) = \varphi_k(x_2) \Leftrightarrow \varepsilon \circ \varphi_k(x_1) = \varepsilon \circ \varphi_k(x_2)$$

Trace Complexity:

$$N = O\left(2^{\frac{m}{2}}\right)$$

Collision Attack: Explanation

$$k^*$$
 "collides" \bigwedge $\forall k^{\times}$, k^* and k^{\times} are not "isomorphic" $\Rightarrow N = O\left(2^{\frac{m}{2}}\right)$

Attack the NSC Variant

- Same to DCA: targeting at one 1-st round MixColumn output byte
- Attack results: 60 traces

Conclusion

- DCA against internal encodings has been analysed in depth
 - Allows to attack wider encodings
- Computation traces have been further exploited
 - Showcase to attack variables beyond the first round of the cipher
 - ▶ New class of collision attack with very low trace complexity
- Hence, protecting AES with internal encodings in the beginning rounds is insufficient

Thank You!

ia.cr/2019/076