# **EUROPEAN PATENT OFFICE**

# Patent Abstracts of Japan

PO3NM-086EP

PUBLICATION NUMBER

07298552

**PUBLICATION DATE** 

10-11-95

APPLICATION DATE

27-04-94

APPLICATION NUMBER

06114577

APPLICANT: NIPPONDENSO CO LTD;

INVENTOR: YASUDA AKIO;

INT.CL.

: H02K 9/02 H02K 7/116

TITLE

: MOTOR FOR DRIVING VEHICLE



ABSTRACT: PURPOSE: To reduce the size and weight of the entire structure including the cooling system for a motor driving an inverter integrated vehicle.

> CONSTITUTION: A doughnut-shaped inverter cooling chamber 8 is formed integrally with one end frame 3a. The inverter cooling chamber 8 is provided with reinforcing ribs 11a, 11b, 11c projecting in the axial direction. The reinforcing rib 11a serves as a wall for partitioning the inverter cooling chamber 8 into refrigerant flow-in section and flow-out section. Other reinforcing ribs 11b, 11c are formed into a triangle where the length projecting in the axial direction decreases at a constant rate from the inner peripheral wail 9 toward the outer peripheral wall 10 thus defining a channel for introducing the refrigerant from the flow-in side toward the flow-out side. A refrigerant flow-in hole 12 and a flow-out hole 13 are made through the outer peripheral wall 10 of the inverter cooling chamber 8 on the opposite sides of the reinforcing rib 11a and coupled, respectively, with a refrigerant flow-in pipe 14 and a flow-out pipe 15.

COPYRIGHT: (C)1995,JPO

# **BEST AVAILABLE COPY**

## (19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出顧公閱番号

### 特開平7-298552

(43)公開日 平成7年(1995)11月10日

(51) Int.Cl.6

庁内整理番号 識別記号

Fl

技術表示箇所

H 0 2 K 9/02 7/116 В

審査請求 未請求 請求項の数5 FD (全 7 頁)

(21)出願番号

特顏平6-114577

(71)出願人 000004260

日本電装株式会社

(22)出願日

平成6年(1994)4月27日

愛知県刈谷市昭和町1丁目1番地

(72)発明者 安田 彰男

愛知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

### (54)【発明の名称】 車両駆動用電動機

#### (57) 【要約】

【目的】 インバーター体型車両駆動用電動機の冷却シ ステムを含めた全体構成を小型軽量化する。

【構成】 一方のエンドフレーム3aには、ドーナツ状 のインバータ冷却室8が一体形成されている。該インパ ータ冷却室8には軸方向へ突出する補強用リブ11a. 11b, 11cが形成されている。補強用リブ11a は、インパータ冷却室8を冷媒の流入側と流出側に区画 する区画壁をなす。他の補強用リブ1116と11cは、 前記内周壁9から外周壁10に向かって軸方向の突出長 さを一定の割合で減少させた三角形状として、冷媒を前 記流入側から流出側へ案内する通路を形成している。イ ンパータ冷却室8の外周壁10には、前記補強用リブ1 1 a を挟む両側の位置に、冷媒流入孔12と冷媒流出孔 13とが穿設され、冷媒流入管14と冷媒流出管15と が接続されている。



#### 【特許請求の範囲】

【請求項1】 直流電力を交流電力に変換するインパー タと、核インパータから供給される交流電力により回転 する電動機を一体に組み込むとともに、前記電動機の回 転子軸を支承するエンドフレームに冷却手段の冷媒を循 環させて前配インパータを冷却するインパータ冷却室を 一体形成したことを特徴とする車両駆動用電動機。

【請求項2】 前記エンドフレームに一体形成した補強 用リブを前記インバータ冷却室に突出させるとともに、 該補強用リブにより循環する前記冷媒を案内することを 10 特徴とする請求項1記載の車両駆動用電動機。

【請求項3】 前配補強用リブは、前配エンドフレーム の半径方向に複数個放射状に形成するとともに、何れか 一個の補強用リブを前配インパータ冷却室を区画する区 画壁とし、他の補強用リブは前記インパータ冷却室への 突出長さを前記半径方向で変化させたことを特徴とする 請求項2記載の車両駆動用電動機。

【請求項4】 前記インバータ冷却室は、前記エンドフ レームに支承される前配回転子軸が挿通されるドーナツ 形状とするとともに、冷媒流入孔と冷媒流出孔とを前記 20 インパータ冷却室の区画壁となる補強用リブの両側に形 成したことを特徴とする請求項2又は請求項3記載の車 両駆動用電動機。

【請求項5】 前記電動機と減速機構及び差動機構と を、前記回転子軸の軸線に沿って直列的に配置して一体 化したことを特徴とする請求項1記載の車両駆動用電動

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電気自動車に搭載する 30 車両駆動用電動機に関するものである。

[0002]

【従来の技術】電気自動車の駆動系を構成する電動機や 機器等の小型軽量化は、特開平5-219607号公報 及び実開平5-25988号公報等により、インパータ 一体型電動機として試みられている。インパータ及び電 動機は通電により発熱するため、これらを冷却する冷却 システムを必須とするが、冷却システムを含めた総合的 なインパーター体型電動機の小型軽量化の試みはなされ ていない。

[0003]

【発明が解決しようとする課題】電気自動車の駆動系の 冷却システムは、車両の居住性を高めるために、広い放 熱面積を必要としない液冷方式が採用されつつある。と ころが、図5に示すように、冷媒を用いる液冷却方式に より蓄電池aの直流電力を交流電力に変換するインパー タbを冷却する場合は、冷却装置cと冷媒の熱を放出す る熱交換器dとの間に冷媒循環経路eを構成するととも に、冷媒循環用の電動ポンプ f 等を必須とする。このた め、冷却システムの車両に対する占有容積が大きくなる 50 ドフレームに一体形成したインバータ冷却室に、冷却手

ばかりでなく、居住区画への熱伝導を遮断する対策が必 要となって小型化が容易でない。さらに、車両駆動用電 動機度をも上記液冷却方式で冷却しようとすると、電動 ポンプ f や熱交換器dが大型化してしまい、車両駆動用 電動機gとインパータbを一体化し、さらに減速機hや 同軸型のデファレンシャルギヤi等の動力伝達機構をコ ンパクトに飽めて配置しても、前配冷却システムを含め た駆動系全体の小型化は一層困難になる等の問題点があ る。本発明は上記問題点を解決するためになされたもの で、インパーター体型電動機の冷却システムを含めた全 体構成を小型軽量化した電気自動車の駆動用電動機を提 供することを目的とする。

2

[0004]

【課題を解決するための手段】上記目的を達成するため の請求項1に記載の本発明の車両駆動用電動機は、直流 電力を交流電力に変換するインバータと、該インパータ から供給される交流電力により回転する電動機を一体に 組み込むとともに、前記電動機の回転子軸を支承するエ ンドフレームに冷却手段の冷媒を循環させて前記インパ ータを冷却するインパータ冷却室を一体形成したことを 特徴とする。

【0005】上記目的を達成するための請求項2に記載 の本発明の車両駆動用電動機は、上記請求項1記載の構 成において、前記エンドフレームに一体形成した補強用 リブを前記インパータ冷却室に突出させるとともに、該 補強用リプにより循環する前配冷媒を案内することを特 徴とする。

【0006】上記目的を達成するための請求項3に記載 の本発明の車両駆動用電動機は、上記請求項2記載の構 成において、前記補強用リブは、前記エンドフレームの 半径方向に複数個放射状に形成するとともに、何れか一 個の補強用リブを前記インパータ冷却室を区画する区画 壁とし、他の補強用リブは前記インパータ冷却室への突 出長さを前記半径方向で変化させたことを特徴とする。

【0007】上記目的を達成するための請求項4に記載 の本発明の車両駆動用電動機は、上記請求項2又は請求 項3記載の構成において、前配インバータ冷却室は、前 記エンドフレームに支承される前記回転子軸が挿通され るドーナツ形状とするとともに、冷媒流入孔と冷媒流出 孔とを前記インパータ冷却室の区画壁となる補強用リブ の両側に形成したことを特徴とする。

【0008】上記目的を達成するための請求項5に記載 の本発明の車両駆動用電動機は、上記請求項1記載の構 成において、前記電勁機と減速機構及び差勁機構とを、 前記回転子軸の軸線に沿って直列的に配置して一体化し たことを特徴とする。

[0009]

【作用及び発明の効果】請求項1配載の本発明の車両駆 動用電動機によれば、電動機の回転子軸を支承するエン

段の冷媒を流通させてインパータを冷却する。従って、 電動機の軸方向にインパータを配置してもエンドフレー ムからの放熱が妨げられることがないから、電動機を大 型化して放熱面積を拡大する必要がなく、全体構成を軸 方向で纏めることにより小型化できる効果がある。

【0010】 請求項2記載の本発明の車両駆動用電動機によれば、エンドフレームに一体形成しインパータ冷却室に突出する補強用リブにより、該インパータ冷却室内を流通する冷媒が案内される。補強用リブを形成して剛性を高めることにより、回転子軸を支承してスラスト荷 10 重を受けるエンドフレームの肉厚を薄くすることができ、電動機からインパータ冷却室への熱伝達を速めエンドフレームからの放熱を促進して冷却効率を高めることができる。また、補強用リブにより冷媒が案内されるから熱交換が促進され冷却効率を高めることができる効果がある。

【0011】請求項3記載の本発明の車両駆動用電動機によれば、補強用リブの一個がインバータ冷却室を区画し、他の補強用リブにより区画されたインパータ冷却室間を連通させている。これにより、冷媒は区画の一方の 20 例から他方の側へ案内される。冷媒の流通経路が定まり効率よくインバータの冷却を行うことができる効果がある。

[0012] 請求項4記載の本発明の車両駆動用電動機によれば、区画壁となる補強用リブの一側に形成した冷媒流人孔から流人した冷媒は、ドーナツ形状に沿ってインバータ冷却室内を一巡して、前記補強用リブの他側に形成した冷媒流出孔から流出する。従って、インバータ装着室に装着したインバータを均等に冷却することができる効果がある。

【0013】 請求項5記載の本発明の車両駆動用電動機によれば、回転子軸の軸線に沿って電動機と減速機構及び差動機構とが直列的に配置される。このため、車両の駆動系がコンパクトに集積され車室領域や積載領域を拡大できるとともに、保守点検等のメインテナンス作業を効率的に行うことができる効果がある。

#### [0014]

【実施例】本発明の実施例を図面を参照して説明する。図1は本発明に係る車両駆動用電動機1の中間部を省略した縦断面図、図2は図1におけるインパータ冷却室の40左右両側部分の概略の分解斜視図、図3は図1におけるA-A線断面図である。電動機は、ブラシ等のように回転体と接触する機構を有しないかご形誘導電動機を用いるのが好ましい。このため、本実施例は電動機としてかご形誘導電動機(以下単に誘導電動機という)を用いた低様で説明する。円筒状のハウジング2の両側にはそれぞれエンドフレーム3a、3bが低着されている。そのエンドフレーム3の中心に嵌着したベアリング4a、4bにより回転子5の管軸状の回転子軸6が支承されている。

【0015】一方のエンドフレーム3aには、管軸状の 回転子軸6の中心を貫通する出力軸29を挿通する挿通 孔7の外周にドーナツ状のインパータ冷却室8が一体形 成されている。該インバータ冷却室8には挿通孔7を形 成する内周壁9から外周壁10との間の3箇所に軸方向 へ突出する補強用リブ11a,11b,11cが形成さ れている。補強用リブ11aは、インパータ冷却室8を 冷媒の流入側と流出側に区画する区画壁をなす。 他の補 強用リプ11bと11cは、前記内周壁9から外周壁1 0に向かって軸方向の突出長さを一定の割合で減少させ た三角形状として、冷媒を前記流入側から流出側へ案内 する通路を形成している。そして、そのインパータ冷却 室8の外周壁10には、前記補強用リブ11aを挟む両 側の位置に、冷媒流入孔12と冷媒流出孔13とが穿設 され、冷媒流入管14と冷媒流出管15とが接続されて いる。そして、インバータ冷却室8が一体形成されエン ドフレーム3aには、中心に前記出力軸29を挿通する インパータ装着室16が固定され、インパータ冷却室8 を液密に封止している。

20 【0016】インバータ装着室16には、樹脂ケース内に半導体案子を封入するとともに、放熟金属板17を固定して、インパータ18を構成してなる複数個の半導体案子パック19が配置されている。インパータ18は直流電力を交流電力に変換する。前記半導体素子パック19の放熱金属板17は、前記インパータ持つ車名を整てインパータ装着室16の壁16aに当接されている。そして、その壁16aからは前記インパータ冷却室8内に突出する多数の放熱フィン20が同心円状に一体形成されている。同心円状の放熱フィン20には、円周方向で30数箇所不連続部20aが形成され、前配補強用リブ11a、11b、11cを対応させて、放熱フィン20と補強用リブ11a~11cとが干渉しないようになっている。

【0017】円筒状のハウジング2の内局壁2aには、前配回転子5に対向して固定子21が配設され、誘導電動機22が構成されている。また、他方のエンドフレーム3bの外側には、ギヤポックス23が固定されている。該ギヤボックス23内には、遊星歯車式減速機構24と同軸型差動協車機構30が回転子軸6に沿って直列状に配設されている。遊星歯車式減速機構24は、前記エンドフレーム3bに嵌着したペアリング4bに支承されて、ギヤボックス23内に突出した管軸状の回転子軸6の突出端に固着した太陽崎車25と、該太陽歯車25とギヤボックス23に固定した大径の内歯歯車26とに噛み合う複数個の遊星歯車27と、該遊星歯車27を回転自在に支持したキャリヤ28とから構成されている。前記管軸状の回転子軸6の中心には、出力軸29が貫通して両端を該回転子軸6から突出している。

【0018】同軸型差動歯車機構30は、前配出力軸2 0 9の突出端に固着した太陽歯車31と、ギヤボックス2

3のペアリング32に回転自在に支承された大径の内齿 歯車33と、前記遊星歯車式減速機構24のキャリヤ2 8に回転自在に支持され、太陽歯車31と内歯歯車33 とに噛み合う複数個の遊星歯車34とから構成されてい る。内歯歯車33は、ギヤボックス23の外部に突出す る軸部が等速ポールジョイント35の動力伝達軸36と なっている。また、エンドフレーム3aのペアリング4 aに支承された回転子軸6から突出して、前記インパー タ冷却室8及びインパータ装着室16の中心を貫通する 出力軸29は、前記インパータ装着室16のエンドカパ 10 小型軽量化できるとともに、搭載に必要な容積も少なく 一16日に依着したペアリング36に支承された等速ポ ールジョイント38の動力伝達軸39に締着されてい

【0019】上記車両駆動用電動機1の作動を説明す る。インパータ18により直流電力を交流電力に変換し て、誘導電動機22の固定子21に印加すると、回転子 5が回転する。そして、図4に示される冷媒圧送用の電 動ポンプ40が駆動すると、冷媒は冷媒流入管14→冷 媒流入孔12→インパータ冷却室8→冷媒流出孔13→ 冷媒流出管15→電動ポンプ40と連なる冷媒循環経路 20 を循環する。冷媒流入孔12と冷媒流出孔13との間に は、補強用リブ11aが形成されて区画壁となってい る。他の補強用リブ11b、11cは、内周壁9から外 **周壁10に向かって軸方向の突出長さを一定の割合で減** 少させた三角形状となっていて、冷媒を前記流入側から 流出側へ案内する通路を形成している、従って、流入し た冷媒はドーナツ形状に沿って流れ、インパータ冷却室 8内を一巡した後前記冷媒流出孔13から流出する。

【0020】インパータ冷却室8内を一巡する冷媒は、 放熱金属板17から放熱フィン20に伝わるインパータ 30 12 冷媒流入孔 18の発熱を吸収して冷却する。従って、インパータ1 8を構成する半導体索子の昇温により特性の変化や熱破 壊を防止できる。また、エンドフレーム3aに伝わる誘 導電動機22の発熱をも吸収して冷却する。エンドフレ ーム3aは補強用リプ11a~11cを形成しているか ら、構造的に肉厚を薄くでき、誘導電動機22からイン

パータ冷却室8への熱伝達を速めて、放熱を促進して冷 却効率を高めることができる。

[0021] 図4は、上記構成の車両駆動用電動機1を 搭載した電気自動車の概略平面図である。誘導電動機2 2、遊星歯車式滅速機構24及び同軸型差動歯車機構3 0を直列状に一体に組み込み、冷媒圧送用の電動ポンプ 40を付設して冷媒を循環させるとともに、走行に伴う 強い風を当てるようにして、循環する冷媒や誘導電動機 22を冷却するもので、コンパクトな外観形状に趣めて てすみ、電気自動車の車室や積載区画を拡大できる。さ らに、車両の駆動系が一か所に集積されたから、保守点 **検作業を効率的に行うことができる利点がある。** 

#### 【図面の簡単な説明】

【図1】本発明に係る車両駆動用電動機の中間部分を省 略した縦断断面図である。

【図2】インバータ冷却室の左右両側部分の概略の分解 斜視図である。

【図3】図1におけるA-A線断面図である。

【図4】車両駆動用電動機を搭載した電気自動車の概略 平面図である。

【図5】従来例の電気自動車の概略平面図である。

#### 【符号の説明】

- 1 車両取動用電動機
- 3a エンドフレーム
- 5 回転子
- 6 回転子軸
- 8 インパータ冷却室
- 11a~11c 補強用リブ
- - 13 冷媒流出孔
  - 18 インバータ
  - 22 誘導電動機
  - 24 遊星歯車式減速機構
  - 30 同軸型差動歯車機構
  - 40 電動ポンプ





特開平7-298552

(6)



【手続補正告】 【提出日】平成6年8月22日 【手絞補正1】

【補正対象費類名】図面

【袖正対象項目名】全図 【袖正方法】変更 【袖正内容】







# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.