MATH 70 WORKSHEET 5

You are encouraged to work with others, but the final results must be your own.¹

1. (3 points) Let A, B, and C be invertible $n \times n$ matrices. Use the definition of invertibility to prove that ABC is invertible and that $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.

Solution:

Since A, B and C are invertible, let $P = C^{-1}B^{-1}A^{-1} \in \mathbf{R}^{n \times n}$. Thus,

$$(ABC) \cdot P = (ABC)(C^{-1}B^{-1}A^{-1})$$

= $AB(CC^{-1})B^{-1}A^{-1}$
= $A(BB^{-1})A^{-1}$
= $AA^{-1} = I_n$

Similarly

$$P \cdot (ABC) = (C^{-1}B^{-1}A^{-1})(ABC)$$

= $C^{-1}B^{-1}BC$
= $C^{-1}C = I_n$

Thus there exists a matrix P such that $P \cdot (ABC) = (ABC) \cdot P = I_n$, so (ABC) is invertible by definition and $(ABC)^{-1} = P = C^{-1}B^{-1}A^{-1}$

2. (4 points) Let A be an invertible $n \times n$ matrix, show that $\det(cA) = c^n \det(A)$ and $\det(A^{-1}) = (\det(A))^{-1}$.

Solution:

(1) By Theorem 3 in Chapter 3, multiplying one row of matrix A by constant c to produce matrix B means $\det B = c(\det A)$.

Since cA is the matrix where every row of A is multiplied by c, and $A \in \mathbf{R}^{n \times n}$ has n rows, we have $\det(cA) = c^n \det A$.

(2) Since A is invertible, we know there exists an inverse matrix A^{-1} such that

¹© Copyright Abiy Tasissa, Zachary Faubion, Xiaozhe Hu, Todd Quinto, and Tufts University.

$$A^{-1}A = I_n$$
. Thus
$$\det(A^{-1}A) = \det(I_n)$$

$$=> \det(A^{-1})\det(A) = \det(I_n) \quad \text{(by theorem 6 ch.3)}$$

$$=> \det(A^{-1})\det(A) = 1$$

$$=> \det(A^{-1}) = \frac{1}{\det(A)} \quad \text{(since } \det(A) \neq 0 \text{ by theorem 4 ch.3)}.$$

3. (5 points) Let W be the subset of \mathbb{P}_3 of polynomials such that p(0) = p(1),

$$W = \{ p \in \mathbb{P}_3 \mid p(0) = p(1) \}.$$

Prove that W is a subspace of \mathbb{P}_3 .

Solution:

Recall that a general polynomial in \mathbb{P}_3 is of the form $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$. Evaluating this polynomial at t = 0 and t = 1, we get

$$p(0) = a_0$$

$$p(1) = a_0 + a_1 + a_2 + a_3.$$

The polynomial p(t) is in W if and only if p(0) = p(1), which is equivalent to saying $a_1 + a_2 + a_3 = 0$.

First, the zero vector z(t) = 0 clearly satisfies z(0) = z(1) = 0.

Next, we check that W is closed under addition. Suppose $q(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3$ is another polynomial in W (so $b_1 + b_2 + b_3 = 0$), then the sum of p and q is

$$(p+q)(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3,$$

where $c_i = a_i + b_i$ for i = 0, 1, 2, 3. Then

$$c_1 + c_2 + c_3 = (a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3)$$

= $(a_1 + a_2 + a_3) + (b_1 + b_2 + b_3)$
= 0.

Hence (p+q)(t) is also in W.

Finally, we check that W is closed under scalar multiplication. Let c be a scalar. Then

$$(p+q)(t) = d_0 + d_1t + d_2t^2 + d_3t^3,$$

where $d_i = ca_i$ for i = 0, 1, 2, 3. Then

$$d_1 + d_2 + d_3 = ca_1 + ca_2 + ca_3$$
$$= c(a_1 + a_2 + a_3)$$
$$= 0.$$

Thus cp(t) is on W.

ALTERNATIVE PROOF: By definition (p+q)(t) = p(t) + q(t) and (cp)(t) = cp(t). You can use these facts to more concisely check that W is closed under addition and scalar multiplication.

4. (4 points) Note that $M_{2\times 2}$ is the vector space of 2×2 matrices. Decide whether the set $W = \{A \in M_{2\times 2} \mid \det(A) = 0\}$ is a subspace of $M_{2\times 2}$. If W is a subspace, prove it using the definition. If W is not a subspace, find a specific counterexample, i.e., define the matrices and scalars in your counterexample using specific numbers.

Solution:

Here, W is not a subspace, and there is a variety of counterexamples you could use to prove it.

For example, consider the matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

A quick calculation shows that det(A) = det(B) = 0. But since A + B = I, the identity matrix which has determinant 1, W is not closed under addition.

- 5. (4 points) Let V be a vector space.
 - (a) Let $c \in \mathbb{R}$ and let **0** denote the zero vector in V. Prove that $c\mathbf{0} = \mathbf{0}$.
 - (b) Let $\mathbf{v} \in V$. Prove that if $c \in \mathbb{R}$ and $c \neq 0$ and $c\mathbf{v} = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$.
 - (c) Prove that for each $\mathbf{x} \in V$, its additive inverse is unique. That is if $\mathbf{x} + \mathbf{u} = \mathbf{0}$ and $\mathbf{x} + \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{v}$.

Solution:

(a) Since $\mathbf{0} = \mathbf{0} + \mathbf{0}$, we have that

$$c\mathbf{0} = c(\mathbf{0} + \mathbf{0}) = c\mathbf{0} + c\mathbf{0}.$$

Subtracting $c\mathbf{0}$ from both sides, we get that $c\mathbf{0} = \mathbf{0}$.

(b) Since $c \neq 0$, the reciprocal $\frac{1}{c}$ exists. Scale both sides of $c\mathbf{v} = \mathbf{0}$ by $\frac{1}{c}$ to get $\mathbf{v} = 0$.

(c) Suppose that $\mathbf{x} + \mathbf{u} = \mathbf{u} + \mathbf{x} = \mathbf{0}$ and $\mathbf{x} + \mathbf{v} = \mathbf{v} + \mathbf{x} = \mathbf{0}$. Then using properties of vector addition, we have

$$\mathbf{u} = \mathbf{u} + \mathbf{0}$$

= $\mathbf{u} + (\mathbf{x} + \mathbf{v})$
= $(\mathbf{u} + \mathbf{x}) + \mathbf{v}$
= $\mathbf{0} + \mathbf{v}$
= \mathbf{v} .

Thus $\mathbf{u} = \mathbf{v}$.