Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/034693

International filing date: 15 October 2004 (15.10.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US Number: 60/532.696

Filing date: 24 December 2003 (24.12.2003)

Date of receipt at the International Bureau: 11 February 2005 (11.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

THE INTERED STATES OF ANTER OF

TO ALL TO WIOM THESE, PRESENTS: SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

February 02, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

> APPLICATION NUMBER: 60/532.696 FILING DATE: December 24, 2003

RELATED PCT APPLICATION NUMBER: PCT/US04/34693

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

Type a plus sign (+)

COVER SHEET FOR PROVISIONAL APPLICATION FOR PATENT

Commissioner for Patents
P.O. Box 1450
Mail Stop Provisional Patent Application
Alexandria, VA 22313-1450
Sir.

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(c).

						inside this	box	
		IN	VENTOR(s) A	PPLICANT(s)			
LAST NAME	FIRST NAM	AE MIE	DLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)				
Kinch	Michael	S.		Laytonsville, Maryland				
		ļ						
		TITLE OF T	THE INVENTIO	N (280 chara	cters max)			
			EphA2 Va	accines				
			•					
		D	ENDIE 6 EF	MONDS				
			ENNIE & ED IDENCE ADDR					
		ENCLOSED AF	PPLICATION P	ARTS (check	all that apply)		
⊠ Specification	Number of Pages	107	☐ Applicant claims small entity status, see 37 CFR §1.27					
☑ Drawing(s)	Number of Sheets	18	☐ Other (specify) Sequence Listing (67 Pages)					
		METI	OD OF PAYM	ENT (check	one)			
☐ A check or money of	order is enclosed to cover	the Provisional t	iling fees.				PROV	MATED ISIONAL Ø \$160 G FEE □ \$80 UNT
☑ The Commission Number 16-1150.	oner is hereby author	ized to charge	e the required	I filing fee	to Deposit	Account	1	
	le by an agency of the I						the Unit	ed States Government.
Respectfully submitted			,					
Signature and	thony M. Fr	sogna	REGISTRATI		35,2	03	Date	12/24/03
	IE & EDMONDS LLP	•	(if approp	riate)			L	
ьу:	Limited R	42 K.CA A	eEncli	osed		ю.9(b)	
☐ Additional invent	ors are being named on	separately nu	mbered sheets	attached her		Total numb	er of cov	er sheet pages.
	DD 01111							

COVER SHEET FOR PROVISIONAL APPLICATION FOR PATENT

Commissioner for Patents P.O. Box 1450 Mail Stop Provisional Patent Application Alexandria, VA 22313-1450

ir:						
his is a request for filir	ng a PROVISIONAL API	PLICATION under 37 CF	R 1.53(c).			
		Docket Number	10271-085-888	Type a plus sig	m (+)	+
		INVENTOR(s) AI				
LAST NAME	FIRST NAME	MIDDLE INITIAL	RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)			
Kinch	Michael	S.	Laytonsville, Maryland			
		TITLE OF THE INVENTIO	N (280 characters max)			
		PENNIE & EI	DMONDS LLP			
	E	NCLOSED APPLICATION I	ARTS (check all that ap	pply)		
Specification ■ Specification	Number of Pages	107 🗆 A	Applicant claims small entity status, see 37 CFR §1.27			
☑ Drawing(s)	Number of Sheets	10 -	Other (specify) Sequence Listing (67 Pages)			
		METHOD OF PAY	MENT (check one)		ESTIMATED	
A check or money order is enclosed to cover the Provisional filling fees.					PROVISIONAL FILING FEE AMOUNT	⊠ \$160 □ \$80
Number 16-1150.		zed to charge the requir				
The invention was ma ⊠ No. □ Yes, th	ade by an agency of the Une name of the U.S. Gove	Inited States Government or rnment agency and the Go	or under a contract with vernment contract nu	th an agency of the mber are:	e United States G	overnment.

Respectfully submitted.

Respectivity	suomitted,			,	
Signature	Anthony M. Tr	REGISTRATION NO.	35,203	Date	12/24/03

der 37 CFR & 10.9(b)

Additional inventors are being named of Total number of cover sheet pages Express Mail No.: Express Mail No.: EV 335 858 870 US
Attorney Docket: 10271-085-888

EphA2 VACCINES

1. FIELD OF THE INVENTION

[0001] The present invention relates to methods and compositions designed for the treatment, management, or prevention of proliferative cell disease. The present invention further relates to methods and compsitions for eliciting an immune response against hyperproliferative cells. The methods of the invention comprise the administration of an effective amount of an EphA2 vaccine, comprising, for example, EphA2 antigenic peptides or an EphA2 antigenic peptide expression vehicle. The invention also provides pharmaceutical compositions comprising one or more EphA2 antigenic peptides or peptide expression vehicles of the invention either alone or in combination with one or more other agents useful for therapy of proliferative disorders.

2. BACKGROUND OF THE INVENTION

2.1 HYPERPROLIFERATIVE DISEASES

2.1.1 Cancer

5

10

15

20

25

[0002] A neoplasm, or tumor, is a neoplastic mass resulting from abnormal uncontrolled cell growth which can be benign or malignant. Benign tumors generally remain localized. Malignant tumors are collectively termed cancers. The term "malignant" generally means that the tumor can invade and destroy neighboring body structures and spread to distant sites to cause death (for review, see Robbins and Angell, 1976, Basic Pathology, 2d Ed., W.B. Saunders Co., Philadelphia, pp. 68-122). Cancer can arise in many sites of the body and behaves differently depending upon its origin. Cancerous cells destroy the part of the body in which they originate and then spread to other part(s) of the body where they start new growth and cause more destruction.

[0003] More than 1.2 million Americans develop cancer each year. Cancer is the second leading cause of death in the United States and, if current trends continue, cancer is expected to be the leading cause of death by the year 2010. Lung and prostate cancer are the top cancer killers for men in the United States. Lung and breast cancer are the top cancer killers for women in the United States. One in two men in the United States will be diagnosed with cancer at some time during his lifetime. One in three women in the United States will be diagnosed with cancer at some time during her lifetime.

[0004] A cure for cancer has yet to be found. Current treatment options, such as surgery, chemotherapy and radiation treatment, are often either ineffective or present serious side effects.

2.1.2 Metastasis

5

10

15

[0005] The most life-threatening forms of cancer often arise when a population of tumor cells gains the ability to colonize distant and foreign sites in the body. These metastatic cells survive by overriding restrictions that normally constrain cell colonization into dissimilar tissues. For example, typical mammary epithelial cells will generally not grow or survive if transplanted to the lung, yet lung metastases are a major cause of breast cancer morbidity and mortality. Recent evidence suggests that dissemination of metastatic cells through the body can occur long before clinical presentation of the primary tumor. These micrometastatic cells may remain dormant for many months or years following the detection and removal of the primary tumor. Thus, a better understanding of the mechanisms that allow for the growth and survival of metastatic cells in a foreign microenvironment is critical for the improvement of therapeutics designed to fight metastatic cancer and diagnostics for the early detection and localization of metastases.

2.1.3 Cancer Cell Signaling

Cancer is a disease of aberrant signal transduction. Aberrant cell signaling [0006] overrides anchorage-dependent constraints on cell growth and survival (Rhim et al., 1997, Crit. Rev. in Oncogenesis 8:305; Patarca, 1996, Crit. Rev. in Oncogenesis 7:343; Malik et 20 al., 1996, Biochimica et Biophysica Acta 1287:73; Cance et al., 1995, Breast Cancer Res. Treat. 35:105). Tyrosine kinase activity is induced by extracellular matrix (ECM) anchorage and indeed, the expression or function of tyrosine kinases is usually increased in malignant cells (Rhim et al., 1997, Critical Reviews in Oncogenesis 8:305; Cance et al., 1995, Breast Cancer Res. Treat. 35:105, 1995; Hunter, 1997, Cell 88:333). Based on 25 evidence that tyrosine kinase activity is necessary for malignant cell growth, tyrosine kinases have been targeted with new therapeutics (Levitzki et al., 1995, Science 267:1782; Kondapaka et al., 1996, Mol. & Cell. Endocrinol. 117:53; Fry et al., 1995, Curr. Opin. in BioTechnology 6:662). Unfortunately, obstacles associated with specific targeting to tumor cells often limit the application of these drugs. In particular, tyrosine kinase activity is often 30 vital for the function and survival of benign tissues (Levitzki et al., 1995, Science 267:1782). To minimize collateral toxicity, it is critical to first identify and then target tyrosine kinases that are selectively overexpressed in tumor cells.

2.1.4 Cancer Therapy

[0007] Barriers to the development of anti-metastasis agents have been the assay systems that are used to design and evaluate these drugs. Most conventional cancer therapies target rapidly growing cells. However, cancer cells do not necessarily grow more rapidly but instead survive and grow under conditions that are non-permissive to normal cells (Lawrence and Steeg, 1996, World J. Urol. 14:124-130). These fundamental differences between the behavior of normal and malignant cells provide opportunities for therapeutic targeting. The paradigm that micrometastatic tumors have already disseminated throughout the body emphasizes the need to evaluate potential chemotherapeutic drugs in the context of a foreign and three-dimensional microenvironment. Many standard cancer drug assays measure tumor cell growth or survival under typical cell culture conditions (i.e., monolayer growth). However, cell behavior in two-dimensional assays often does not reliably predict tumor cell behavior in vivo.

[0008] Currently, cancer therapy may involve surgery, chemotherapy, hormonal therapy and/or radiation treatment to eradicate neoplastic cells in a patient (see, e.g., Stockdale, 1998, "Principles of Cancer Patient Management," in Scientific American: Medicine, vol. 3, Rubenstein and Federman, eds., ch. 12, sect. IV). Recently, cancer therapy may also involve biological therapy or immunotherapy. All of these approaches can pose significant drawbacks for the patient. Surgery, for example, may be contraindicated due to the health of the patient or may be unacceptable to the patient. Additionally, surgery may not completely remove the neoplastic tissue. Radiation therapy is only effective when the neoplastic tissue exhibits a higher sensitivity to radiation than normal tissue, and radiation therapy can also often elicit serious side effects. Hormonal therapy is rarely given as a single agent and, although it can be effective, is often used to prevent or delay recurrence of cancer after other treatments have removed the majority of the cancer cells. Biological therapies/immunotherapies are limited in number and each therapy is generally effective for only a very specific type of cancer.

[0009] With respect to chemotherapy, there are a variety of chemotherapeutic agents available for treatment of cancer. A significant majority of cancer chemotherapeutics act by inhibiting DNA synthesis, either directly, or indirectly by inhibiting the biosynthesis of the deoxyribonucleotide triphosphate precursors, to prevent DNA replication and concomitant cell division (see, e.g., Gilman et al., 1990, Goodman and Gilman's: The Pharmacological Basis of Therapeutics, 8th Ed. (Pergamom Press, New York)). These agents, which include alkylating agents, such as nitrosourea, anti-metabolites, such as methotrexate and hydroxyurea, and other agents, such as etoposides, campathecins, bleomycin, doxorubicin, daunorubicin, etc., although not necessarily cell cycle specific, kill cells during S phase

because of their effect on DNA replication. Other agents, specifically colchicine and the vinca alkaloids, such as vinblastine and vincristine, interfere with microtubule assembly resulting in mitotic arrest. Chemotherapy protocols generally involve administration of a combination of chemotherapeutic agents to increase the efficacy of treatment.

5

10

15

20

25

30

[0010] Despite the availability of a variety of chemotherapeutic agents, chemotherapy has many drawbacks (see, e.g., Stockdale, 1998, "Principles Of Cancer Patient Management" in Scientific American Medicine, vol. 3, Rubenstein and Federman, eds., ch. 12, sect. X). Almost all chemotherapeutic agents are toxic, and chemotherapy causes significant, and often dangerous, side effects, including severe nausea, bone marrow depression, immunosuppression, etc. Additionally, even with administration of combinations of chemotherapeutic agents, many tumor cells are resistant or develop resistance to the chemotherapeutic agents. In fact, those cells resistant to the particular chemotherapeutic agents used in the treatment protocol often prove to be resistant to other drugs, even those agents that act by mechanisms different from the mechanisms of action of the drugs used in the specific treatment; this phenomenon is termed pleiotropic drug or multidrug resistance. Thus, because of drug resistance, many cancers prove refractory to standard chemotherapeutic treatment protocols.

[0011] There is a significant need for alternative cancer treatments, particularly for treatment of cancer that has proved refractory to standard cancer treatments, such as surgery, radiation therapy, chemotherapy, and hormonal therapy. Further, it is uncommon for cancer to be treated by only one method. Thus, there is a need for development of new therapeutic agents for the treatment of cancer and new, more effective, therapy combinations for the treatment of cancer.

2.1.5 OTHER HYPERPROLIFERATIVE DISORDERS

2.1.5.1 Asthma

[0012] Asthma is a disorder characterized by intermittent airway obstruction. In western countries, it affects 15% of the pediatric population and 7.5% of the adult population (Strachan et al., 1994, *Arch. Dis. Child* 70:174-178). Most asthma in children and young adults is initiated by IgE mediated allergy (atopy) to inhaled allergens such as house dust mite and cat dander allergens. However, not all asthmatics are atopic, and most atopic individuals do not have asthma. Thus, factors in addition to atopy are necessary to induce the disorder (Fraser et al., eds.,1994, Synopsis of Diseases of the Chest: 635-53 (WB Saunders Company, Philadelphia); Djukanovic et al., 1990, *Am. Rev. Respir. Dis.* 142:434-457). Asthma is strongly familial, and is due to the interaction between genetic

and environmental factors. The genetic factors are thought to be variants of normal genes ("polymorphisms") which alter their function to predispose to asthma.

[0013] Asthma may be identified by recurrent wheeze and intermittent air flow limitation. An asthmatic tendency may be quantified by the measurement of bronchial hyper-responsiveness in which an individual's dose-response curve to a broncho-constrictor such as histamine or methacholine is constructed. The curve is commonly summarized by the dose which results in a 20% fall in air flow (PD20) or the slope of the curve between the initial air flow measurement and the last dose given (slope).

[0014] In the atopic response, IgE is produced by B-cells in response to allergen stimulation. These antibodies coat mast cells by binding to the high affinity receptor for IgE and initiate a series of cellular events leading to the destabilization of the cell membrane and release of inflammatory mediators. This results in mucosal inflammation, wheezing, coughing, sneezing and nasal blockage.

[0015] Atopy can be diagnosed by (i) a positive skin prick test in response to a common allergen; (ii) detecting the presence of specific serum IgE for allergen; or (iii) by detecting elevation of total serum IgE.

2.5.1.2 COPD

5

10

15

20

25

30

35

[0016] Chronic obstructive pulmonary disease (COPD) is an umbrella term frequently used to describe two conditions of fixed airways disorders, chronic bronchitis and emphysema. Chronic bronchitis and emphysema are most commonly caused by smoking; approximately 90% of patients with COPD are or were smokers. Although approximately 50% of smokers develop chronic bronchitis, only 15% of smokers develop disabling airflow obstruction. Certain animals, particularly horses, suffer from COPD as well.

[0017] The airflow obstruction associated with COPD is progressive, may be accompanied by airway hyperactivity, and may be partially reversible. Non-specific airway hyper-responsiveness may also play a role in the development of COPD and may be predictive of an accelerated rate of decline in lung function.

[0018] COPD is a significant cause of death and disability. It is currently the fourth leading cause of death in the United States and Europe. Treatment guidelines advocate early detection and implementation of smoking cessation programs to help reduce morbidity and mortality due to the disorder. However, early detection and diagnosis has been difficult for a number of reasons. COPD takes years to develop and acute episodes of bronchitis often are not recognized by the general practitioner as early signs of COPD. Many patients exhibit features of more than one disorder (e.g., chronic bronchitis or asthmatic bronchitis)

making precise diagnosis a challenge, particularly early in the etiology of the disorder.

Also, many patients do not seek medical help until they are experiencing more severe symptoms associated with reduced lung function, such as dyspnea, persistent cough, and sputum production. As a consequence, the vast majority of patients are not diagnosed or treated until they are in a more advanced stage of the disorder.

2.1.5.3 Mucin

5

10

15

20

25

30

35

Mucins are a family of glycoproteins secreted by the epithelial cells [0019] including those at the respiratory, gastrointestinal and female reproductive tracts. Mucins are responsible for the viscoelastic properties of mucus (Thornton et al., 1997, J. Biol. Chem. 272:9561-9566). Nine mucin genes are known to be expressed in man: MUC 1, MUC 2, MUC 3, MUC 4, MUC 5AC, MUC 5B, MUC 6, MUC 7 and MUC 8 (Bobek et al., 1993, J. Biol. Chem. 268:20563-9; Dusseyn et al., 1997, J. Biol. Chem. 272:3168-78; Gendler et al., 1991, Am. Rev. Resp. Dis. 144:S42-S47; Gum et al., 1989, J. Biol. Chem. 264:6480-6487; Gum et al., 1990, Biochem. Biophys. Res. Comm. 171:407-415; Lesuffleur et al., 1995, J. Biol. Chem. 270:13665-13673; Meerzaman et al., 1994, J. Biol. Chem. 269:12932-12939; Porchet et al., 1991, Biochem. Biophys. Res. Comm. 175:414-422; Shankar et al., 1994, Biochem. J. 300:295-298; Toribara et al., 1997, J. Biol. Chem. 272:16398-403). Many airway disorders such chronic bronchitis, chronic obstructive pulmonary disease, bronchietactis, asthma, cystic fibrosis and bacterial infections are characterized by mucin overproduction (Prescott et al., Eur. Respir. J., 1995, 8:1333-1338; Kim et al., Eur. Respir. J., 1997, 10:1438; Steiger et al., 1995, Am. J. Respir. Cell Mol. Biol., 12:307-314). Mucociliary impairment caused by mucin hypersecretion leads to airway mucus plugging which promotes chronic infection, airflow obstruction and sometimes death. For example, COPD, a disorder characterized by slowly progressive and irreversible airflow limitation, is a major cause of death in developed countries. The respiratory degradation consists mainly of decreased luminal diameters due to airway wall thickening and increased mucus caused by goblet cell hyperplasia and hypersecretion. Epidermal growth factor (EGF) is known to upregulate epithelial cell proliferation, and mucin production/secretion (Takeyama et al., 1999, Proc. Natl. Acad. Sci. USA 96:3081-6; Burgel et al., 2001, J. Immunol. 167:5948-54). EGF also causes mucin-secreting cells, such as goblet cells, to proliferate and increase mucin production in airway epithelia (Lee et al., 2000, Am. J. Physiol. Lung Cell. Mol. Physiol. 278:185-92; Takeyama et al., 2001, Am. J. Respir. Crit. Care. Med. 163:511-6; Burgel et al., 2000, J. Allergy Clin. Immunol. 106:705-12). Historically, mucus hypersecretion has been treated in two ways: physical methods to increase clearance and mucolytic agents. Neither approach has yielded significant benefit

to the patient or reduced mucus obstruction. Therefore, it would be desirable to have methods for reducing mucin production and treating the disorders associated with mucin hypersecretion.

2.1.5.4 Restenosis

5

10

15

20

25

30

[0020] Vascular interventions, including angioplasty, stenting, atherectomy and grafting are often complicated by undesirable effects. Exposure to a medical device which is implanted or inserted into the body of a patient can cause the body tissue to exhibit adverse physiological reactions. For instance, the insertion or implantation of certain catheters or stents can lead to the formation of emboli or clots in blood vessels. Other adverse reactions to vascular intervention include endothelial cell proliferation which can lead to hyperplasia, restenosis, i.e. the re-occlusion of the artery, occlusion of blood vessels, platelet aggregation, and calcification. Treatment of restenosis often involves a second angioplasty or bypass surgery. In particular, restenosis may be due to endothelial cell injury caused by the vascular intervention in treating a restenosis.

[0021] Angioplasty involves insertion of a balloon catheter into an artery at the site of a partially obstructive atherosclerotic lesion. Inflation of the balloon is intended to rupture the intima and dilate the obstruction. About 20 to 30% of obstructions reocclude in just a few days or weeks (Eltchaninoff et al., 1998, J. Am Coll. Cardiol. 32: 980-984). Use of stents reduces the re-occlusion rate, however a significant percentage continues to result in restenosis. The rate of restenosis after angioplasty is dependent upon a number of factors including the length of the plaque. Stenosis rates vary from 10% to 35% depending the risk factors present. Further, repeat angiography one year later reveals an apparently normal lumen in only about 30% of vessels having undergone the procedure.

[0022] Restenosis is caused by an accumulation of extracellular matrix containing collagen and proteoglycans in association with smooth muscle cells which is found in both the atheroma and the arterial hyperplastic lesion after balloon injury or clinical angioplasty. Some of the delay in luminal narrowing with respect to smooth muscle cell proliferation may result from the continuing elaboration of matrix materials by neointimal smooth muscle cells. Various mediators may alter matrix synthesis by smooth muscle cells in vivo.

2.1.5.5 Neointimal Hyperplasia

[0023] Neointimal hyperplasia is the pathological process that underlies graft atherosclerosis, stenosis, and the majority of vascular graft occlusion. Neointimal hyperplasia is commonly seen after various forms of vascular injury and a major component

of the vein graft's response to harvest and surgical implantation into high-pressure arterial circulation.

[0024] Smooth muscle cells in the middle layer (i.e. media layer) of the vessel wall become activated, divide, proliferate and migrate into the inner layer (i.e. intima layer). The resulting abnormal neointimal cells express pro-inflammatory molecules, including cytokines, chemokines and adhesion molecules that further trigger a cascade of events that lead to occlusive neointimal disease and eventually graft failure.

[0025] The proliferation of smooth muscle cells is a critical event in the neointimal hyperplastic response. Using a variety of approaches, studies have clearly demonstrated that blockade of smooth muscle cell proliferation resulted in preservation of normal vessel phenotype and function, causing the reduction of neointimal hyperplasia and graft failure.

[0026] Existing treatments for the indications discussed above is inadequate; thus, there exists a need for improved treatments for the above indications.

2.2 EphA2

5

10

15

20

25

30

EphA2 is a 130 kDa receptor tyrosine kinase that is expressed in adult epithelia, where it is found at low levels and is enriched within sites of cell-cell adhesion (Zantek et al., 1999, Cell Growth & Differentiation 10:629; Lindberg et al., 1990, Molecular & Cellular Biology 10:6316). This subcellular localization is important because EphA2 binds ligands (known as EphrinsA1 to A5) that are anchored to the cell membrane (Eph Nomenclature Committee, 1997, Cell 90:403; Gale et al., 1997, Cell & Tissue Research 290: 227). The primary consequence of ligand binding is EphA2 autophosphorylation (Lindberg et al., 1990, supra). However, unlike other receptor tyrosine kinases, EphA2 retains enzymatic activity in the absence of ligand binding or phosphotyrosine content (Zantek et al., 1999, supra). EphA2 is upregulated on a large number hyperproliferating cells, including aggressive carcinoma cells.

3. SUMMARY OF THE INVENTION

[0028] EphA2 is overexpressed and functionally altered in a large number of malignant carcinomas. EphA2 is an oncoprotein and is sufficient to confer metastatic potential to cancer cells. EphA2 is also associated with other hyperproliferating cells and is implicated in diseases caused by cell hyperproliferation. The present invention stems from the inventors' discovery that administration of an expression vehicle for an EphA2 antigenic peptide to a subject provides beneficial therapeutic and prophylactic benefits against hyperproliferative disorders involving EphA2 overexpressing cells. Without being

bound by any mechanism or theory, it is believed that the therapeutic and prophylactic benefit is the result of an immune response elicited against the EphA2 antigenic peptide.

[0029] The present invention thus provides EphA2 vaccines and methods for their use. The EphA2 vaccines of the present invention can elicit or mediate a cellular immune response, a humoral immune response, or both. Where the immune response is a cellular immune response, it can be a Tc, Th1 or a Th2 immune response. In a preferred embodiment, the immune response is a Th2 cellular immune response.

5

10

15

20

30

35

[0030] In a preferred embodiment, an EphA2 vaccine of the invention comprises or encodes one or more epitopes on EphA2 that is selectively exposed or increased on cancer cells relative to not non-cancer cells. In one embodiment, the cancer is of an epithelial cell origin. In other embodiments, the cancer is a cancer of the skin, lung, colon, prostate, breast, ovary, eosophageal, bladder, or pancreas or is a renal cell carcinoma or a melanoma. In another embodiment, the cancer is of a T cell origin. In yet other embodiments, the cancer is a leukemia or a lymphoma.

[0031] In a preferred embodiment, the methods and compositions of the invention are used to prevent, treat or manage EphA2-expressing tumor metastases. In a preferred embodiment, the EphA2-expressing cells against which an immune response is sought ("target cells") overexpress EphA2. In a preferred embodiment, some EphA2 on the target cells is not bound to ligand, either as a result of decreased cell-cell contacts, altered subcellular localization, or increases in amount of EphA2 relative to ligand.

[0032] Thus, the present invention provides methods of eliciting an immune response against an EphA2-expressing cell, said method comprising administering to an individual an EphA2 vaccine in an amount effective to elicit an immune response against an EphA2-expressing cell.

25 [0033] The present invention further provides a method of treating or preventing a hyperproliferative disorder of EphA2-expressing cells, said method comprising administering to an individual an EphA2 vaccine in an amount effective treat or prevent the hyperproliferative disorder.

[0034] The present invention yet further provides EphA2 vaccines useful for eliciting an immune response against an EphA2-expressing cell and/or for treating or preventing a hyperproliferative disorder of EphA2-expressing cells.

[0035] The EphA2 vaccines may comprise an EphA2 antigenic peptide, an EphA2 antigenic peptide expression vehicle, an antigen presenting cell sensitized with an EphA2 antigenic peptide, or an anti-idiotypic antibody or antigen-binding fragment thereof which immunospecifically binds to an idiotype of an anti-EphA2 antibody.

[0036] In embodiments where an EphA2 vaccine comprises an EphA2 antigenic peptide, the vaccine may further comprise an adjuvant, or a heat shock protein bound to the EphA2 antigenic peptide.

[0037] In certain embodiments, the EphA2 antigenic peptide comprises a protein transduction domain, for example the protein transduction domain is the Antennapedia or the HIV tat protein transduction domain.

5

10

15

20

25

30

35

[0038] In certain embodiments in which an EphA2 vaccine comprises an EphA2 antigenic peptide expression vehicle, the expression vehicle can be a nucleic acid, preferably DNA, encoding said EphA2 antigenic polypeptide operably linked to a promoter. The DNA can be conjugated to a carrier, including but not limited to an asialoglycoprotein carrier, a transferrin carrier, or a polymeric IgA carriers.

[0039] In other embodiments, the expression vehicle is an infectious agent comprising a nucleic acid, said nucleic acid comprising a nucleotide sequence encoding said EphA2 antigenic polypeptide operably linked to a promoter. Preferably, the sequence encoding said EphA2 antigenic polypeptide is codon-optimized for expression in said

infectious agent and/or the infectious agent is coated with a reagent that targets the infectious agent to EphA2-expressing cells (such as an EphA2 antibody) or to antigen-presenting cells.

[0040] A preferred infectious agent for use as an EphA2 antigenic peptide expression vehicle in accordance with the methods and compositions of the invention is a bacterium. Preferred bacteria for administration to human subjects are attenuated, for example are deficient in DNA repair (e.g., mutant in a DNA repair gene) or subjected to psoralen-treatment. Preferably, the nucleic acid encoding the EphA2 antigenic peptide comprises a nucleotide sequence encoding a secretory signal, e.g., the SecA secretory signal, operatively linked to the sequence encoding the EphA2 antigenic polypeptide. A preferred strain of bacteria for use in the methods and compositions of the invention is Pseudomonas aeruginosa. In certain specific embodiments, the bacteria is not Listeria, and more preferably is not Listeria monocytogenes.

[0041] Another preferred infectious agent for use as an EphA2 antigenic peptide expression vehicle in accordance with the methods and compositions of the invention is a virus, for example a retrovirus, including but not limited to lentivirus, an adeno-associated virus, or a herpes simplex virus. Preferred viruses for administration to human subjects are attenuated viruses.

[0042] As an alternative to an infectious agent or nucleic acid, an EphA2 antigenic peptide expression vehicle can be a mammalian cell comprising a recombinant nucleic acid,

said nucleic acid comprising a nucleotide sequence encoding said EphA2 antigenic polypeptide. Preferably, the mammalian cell is a human cell. Mammalian cells for use in the methods and compositions of the invention may be encapsulated within a membrane, for example a THERACYTE membrane, and/or administered by means of implantation.

[0043] Compositions of the present invention useful as EphA2 vaccines also include anti-idiotypes of anti-EphA2 antibodies. In certain specific embodiments, the EphA2 vaccines comprise anti-idiotypes of the anti-EphA2 monoclonal antibodies secreted by the hybridoma clones deposited in the ATCC as PTA-4572, PTA-4573, and PTA-4574.

5

10

15

20

25

30

[0044] With respect to EphA2 vaccines comprising sensitized antigen presenting cells, such as macrophages and dendritic cells, in certain embodiments, the antigen presenting cells are sensitized prior to their administration. For example, the antigen presenting cells may be sensitized by a method comprising: (a) contacting the cells with a composition comprising one or more EphA2 antigenic peptides, and optionally comprising one or more heat shock proteins such as hsp70, gp96, or hsp90, in an amount effective to sensitize the cells. In a preferred embodiment, the antigen presenting cells are autologous to the individual to whom they are administered; however, the cells need not be autologous.

[0045] The compositions and methods of the present invention are useful in the treatment of hyperproliferative diseases. In certain embodiments, the hyperproliferative disease is cancer. In certain embodiments, the cancer is of an epithelial cell origin and/or involves cells that overexpress EphA2 relative to non-cancer cells having the tissue type of said cancer cells. In specific embodiments, the cancer is a cancer of the skin, lung, colon, breast, ovarian, esophogeal, prostate, bladder or pancreas or is a renal cell carcinoma or melanoma. In yet other embodiments, the cancer is of a T cell origin. In specific embodiments, the cancer is a leukemia or a lymphoma. In yet other embodiments, the hyperproliferative disorder is non-neoplastic. In specific embodiments, the non-neoplastic hyperproliferative disorder is an epithelial cell disorder. Exemplary non-neoplastic hyperproliferative disorders are asthma, chronic pulmonary obstructive disease, lung fibrosis, bronchial hyper responsiveness, psoriasis, and seborrheic dermatitis.

[0046] The EphA2 antigenic polypeptide for use in accordance with the methods and compositions of the present invention may comprise full length EphA2 or an antigenic fragment or derivative thereof. In certain embodiments, the EphA2 antigenic polypeptide comprises the extracellular domain of EphA2 or the intracellular domain of EphA2. In certain embodiments the EphA2 antigenic polypeptide is a chimeric polypeptide comprising at least an antigenic portion of EphA2 and a second polypeptide.

[0047] A vaccine of the invention may have one or a plurality of EphA2 antigenic polypeptides, a plurality of EphA2 antigenic polypeptide expression vehicles, or antigen presenting cells sensitized with a plurality of EphA2 antigenic polypeptides. A vaccine of the invention may also have one or more classes of immune response-inducing or mediating reagents, for example both an EphA2 antigenic polypeptide and an EphA2 antigenic polypeptide expression vehicle, both an EphA2 antigenic polypeptide and an antigen-presenting cell sensitized with an EphA2 antigenic polypeptide expression vehicle and an antigen-presenting cell sensitized with an EphA2 antigenic polypeptide expression vehicle and an antigen-presenting cell sensitized with an EphA2 antigenic polypeptide.

5

10

15

20

25

30

35

[0048] The methods of the present invention encompass combination therapy with an EphA2 vaccine and one or more additional therapeutics, for example an additional anticancer therapy. In certain embodiments, the additional anti-cancer therapy is an agonistic EphA2 antibody. In other embodiments, the additional anti-cancer therapy is chemotherapy, biological therapy, immunotherapy, radiation therapy, hormonal therapy, or surgery.

[0049] The vaccines of the invention can be administered by mucosal, intranasal, parenteral, intramuscular, or intraperitoneal routes.

[0050] In other embodiments, the EphA2 vaccines of the invention are used to treat, prevent and/or manage a non-cancer disease or disorder associated with cell hyperproliferation, such as but not limited to asthma, chronic obstructive pulmonary disease, restenosis (smooth muscle and/or endothelial), psoriasis, etc. In preferred embodiments, the hyperproliferative cells are epithelial. In preferred embodiments, the hyperproliferative cells overexpress EphA2. In a preferred embodiment, some EphA2 is not bound to ligand, either as a result of decreased cell-cell contacts, altered subcellular localization, or increases in amount of EphA2 relative to EphA2-ligand.

[0051] The methods and compositions of the invention are useful not only in untreated patients but are also useful in the treatment of patients partially or completely refractory to current standard and experimental cancer therapies, including but not limited to chemotherapies, hormonal therapies, biological therapies, radiation therapies, and/or surgery as well as to improve the efficacy of such treatments. In particular, EphA2 expression has been implicated in increasing levels of the cytokine IL-6, which has been associated with the development of cancer cell resistance to different treatment regimens, such as chemotherapy and hormonal therapy. In addition, EphA2 overexpression can override the need for estrogen receptor activity thus contributing to tamoxifen resistance in breast cancer cells. Accordingly, in a preferred embodiment, the invention provides

therapeutic and prophylactic methods for the treatment or prevention of cancer that has been shown to be or may be refractory or non-responsive to therapies other than those comprising administration of EphA2 antibodies of the invention. In a specific embodiment, one or more EphA2 vaccines of the invention are administered to a patient refractory or non-responsive to a non-EphA2-based treatment, particularly tamoxifen treatment or a treatment in which resistance is associated with increased IL-6 levels, to render the patient non-refractory or responsive. The treatment to which the patient had previously been refractory or non-responsive can then be administered with therapeutic effect.

[0052] In another embodiment, kits comprising the vaccines or vaccine components of the invention are provided.

3.1 DEFINITIONS

5

10

35

As used herein, the term "EphA2 vaccine" can be any reagent that elicits or [0053] mediates an immune response against EphA2 on hyperproliferative cells. In certain embodiments, an EphA2 vaccine is an EphA2 antigenic peptide of the invention, an expression vehicle (e.g., a naked nucleic acid or a viral or bacterial vector or a cell) for an 15 EphA2 antigenic peptide, or T cells or antigen presenting cells (e.g., dendritic cells or macrophages) that have been primed with the EphA2 antigenic peptide of the invention. As used herein, the term "EphA2 antigenic peptide" or "EphA2 antigenic [0054] polypeptide" refers to an EphA2 polypeptide, preferably of SEQ ID NO:2, or a fragment or derivative thereof comprising one or more B cell epitopes or T cell epitopes of EphA2. In 20 certain embodiments, the EphA2 antigenic peptides are not one or more of the following peptides: TLADFDPRV (SEQ ID NO:3); VLLLVLAGV (SEQ ID NO:4); VLAGVGFFI (SEO ID NO:5); IMNDMPIYM (SEO ID NO:6); SLLGLKDOV (SEO ID NO:7); WLVPIGOCL (SEQ ID NO:8); LLWGCALAA (SEO ID NO:9); GLTRTSVTV (SEO ID NO:10); NLYYAESDL (SEQ ID NO:11); KLNVEERSV (SEQ ID NO:12); IMGQFSHHN 25 (SEO ID NO:13); YSVCNVMSG (SEQ ID NO:14); MQNIMNDMP (SEQ ID NO:15); EAGIMGOFSHHNIIR (SEQ ID NO:16); PIYMYSVCNVMSG (SEQ ID NO:17); DLMONIMNDMPIYMYS (SEQ ID NO:18). In certain specific embodiments, the EphA2 antigenic peptide is not any of SEQ ID NO:3-12, is not SEQ ID NO:13-15, and/or is not SEO ID NO:16-18. In yet another specific enbodiment, the EphA2 antigenic peptide is not 30 SEQ ID NO:3-18.

[0055] The term "derivative" as used herein refers to a polypeptide that comprises an amino acid sequence of an EphA2 polypeptide or a fragment of an EphA2 polypeptide that has been altered by the introduction of amino acid residue substitutions, deletions or additions (i.e., mutations). The term "derivative" as used herein also refers to an EphA2

polypeptide or a fragment of an EphA2 polypeptide which has been modified, i.e, by the covalent attachment of any type of molecule to the polypeptide. For example, but not by way of limitation, an EphA2 polypeptide or a fragment of an EphA2 polypeptide may be modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. A derivative of an EphA2 polypeptide or a fragment of an EphA2 polypeptide may be modified by chemical modifications using techniques known to those of skill in the art, including, but not limited to, specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Further, a derivative of an EphA2 polypeptide or a fragment of an EphA2 polypeptide may contain one or more non-classical amino acids. In one embodiment, a polypeptide derivative possesses a similar or identical function as an EphA2 polypeptide or a fragment of an EphA2 polypeptide described herein. In another embodiment, a derivative of EphA2 polypeptide or a fragment of an EphA2 polypeptide has an altered activity when compared to an unaltered polypeptide. For example, a derivative of an EphA2 polypeptide or fragment thereof can 15 differ in phosphorylation relative to an EphA2 polypeptide or fragment thereof. The term "B cell epitope" as used herein refers to a portion of an EphA2 100561 polypeptide having antigenic or immunogenic activity in an animal, preferably in a mammal, and most preferably in a mouse or a human. An epitope having immunogenic activity is a portion of an EphA2 polypeptide that elicits an antibody response in an animal. 20 An epitope having antigenic activity is a portion of an EphA2 polypeptide to which an antibody immunospecifically binds as determined by any method well known in the art, for example, by immunoassays. Antigenic epitopes need not necessarily be immunogenic. The term "T cell epitope" as used herein refers to at least a portion of an 100571 EphA2 polypeptide, preferably an EphA2 polypeptide of SEQ ID NO:2, that is recognized 25 by a T cell receptor. The term "T cell epitope" encompasses helper T cell (Th) epitopes and cytotoxic T cell (Tc) epitopes. The term "helper T cell epitopes" encompasses Th1 and Th2 enitopes. The "fragments" described herein include an EphA2 antigenic peptide or 100581 30

5

10

35

polypeptide comprising an amino acid sequence of at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 contiguous amino acid residues, at least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at

least 100 contiguous amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, or at least 250 contiguous amino acid residues of the amino acid sequence of an EphA2 polypeptide.

5

10

15

20

25

30

35

As used herein, the term "in combination" refers to the use of more than one [0059] prophylactic and/or therapeutic agents. The use of the term "in combination" does not restrict the order in which prophylactic and/or therapeutic agents are administered to a subject with a hyperproliferative cell disorder, especially cancer. A first prophylactic or therapeutic agent can be administered prior to (e.g., 1 minute, 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 1 minute, 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second prophylactic or therapeutic agent to a subject which had, has, or is susceptible to a hyperproliferative cell disorder, especially cancer. The prophylactic or therapeutic agents are administered to a subject in a sequence and within a time interval such that the agent of the invention can act together with the other agent to provide an increased benefit than if they were administered otherwise. Any additional prophylactic or therapeutic agent can be administered in any order with the other additional prophylactic or therapeutic agents.

[0060] As used herein, the phrase "low tolerance" refers to a state in which the patient suffers from side effects from treatment so that the patient does not benefit from and/or will not continue therapy because of the adverse effects and/or the harm from the side effects outweighs the benefit of the treatment.

[0061] As used herein, the terms "manage," "managing" and "management" refer to the beneficial effects that a subject derives from administration of a prophylactic or therapeutic agent, which does not result in a cure of the disease. In certain embodiments, a subject is administered one or more prophylactic or therapeutic agents to "manage" a disease so as to prevent the progression or worsening of the disease.

[0062] As used herein, the phrase "non-responsive/refractory" is used to describe patients treated with one or more currently available therapies (e.g., cancer therapies) such as chemotherapy, radiation therapy, surgery, hormonal therapy and/or biological therapy/immunotherapy, particularly a standard therapeutic regimen for the particular cancer, wherein the therapy is not clinically adequate to treat the patients such that these

patients need additional effective therapy, e.g., remain unsusceptible to therapy. The phrase can also describe patients who respond to therapy yet suffer from side effects, relapse, develop resistance, etc. In various embodiments, "non-responsive/refractory" means that at least some significant portion of the cancer cells are not killed or their cell division arrested. The determination of whether the cancer cells are "non-responsive/refractory" can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of treatment on cancer cells, using the art-accepted meanings of "refractory" in such a context. In various embodiments, a cancer is "non-responsive/refractory" where the number of cancer cells has not been significantly reduced, or has increased during the treatment.

5

10

15

20

25

30

35

[0063] As used herein, the term "potentiate" refers to an improvement in the efficacy of a therapeutic agent at its common or approved dose.

[0064] As used herein, the terms "prevent," "preventing" and "prevention" refer to the prevention of the onset, recurrence, or spread of a disease in a subject resulting from the administration of a prophylactic or therapeutic agent.

10065] As used herein, the term "prophylactic agent" refers to any agent that can be used in the prevention of the onset, recurrence or spread of a disease or disorder associated with EphA2 overexpression and/or cell hyperproliferative disease, particularly cancer. In certain embodiments, the term "prophylactic agent" refers to an EphA2 vaccine of the invention, such as a composition comprising an EphA2 antigenic peptide, an EphA2 antigenic peptide expression vehicle, or an antigen presenting cell sensitized with an EphA2 antigenic peptide. In certain other embodiments, the term "prophylactic agent" refers to cancer chemotherapeutics, radiation therapy, hormonal therapy, biological therapy (e.g., immunotherapy). In other embodiments, more than one prophylactic agent may be administered in combination.

10066] As used herein, a "prophylactically effective amount" refers to that amount of the prophylactic agent sufficient to result in the prevention of the onset, recurrence or spread of cell hyperproliferative disease, preferably, cancer. A prophylactically effective amount may refer to the amount of prophylactic agent sufficient to prevent the onset, recurrence or spread of hyperproliferative disease, particularly cancer, including but not limited to those predisposed to hyperproliferative disease, for example, those genetically predisposed to cancer or previously exposed to carcinogens. A prophylactically effective amount may also refer to the amount of the prophylactic agent that provides a prophylactic benefit in the prevention of hyperproliferative disease. Further, a prophylactically effective amount with respect to a prophylactic agent of the invention means that amount of prophylactic agent alone, or in combination with other agents, that provides a prophylactic

benefit in the prevention of hyperproliferative disease. Used in connection with an amount of an EphA2 vaccine of the invention, the term can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of or synergies with another prophylactic agent.

5

30

As used herein, a "protocol" includes dosing schedules and dosing regimens. 100671 As used herein, the phrase "side effects" encompasses unwanted and adverse 189001 effects of a prophylactic or therapeutic agent. Adverse effects are always unwanted, but unwanted effects are not necessarily adverse. An adverse effect from a prophylactic or therapeutic agent might be harmful or uncomfortable or risky. Side effects from chemotherapy include, but are not limited to, gastrointestinal toxicity such as, but not 10 limited to, early and late-forming diarrhea and flatulence, nausea, vomiting, anorexia, leukopenia, anemia, neutropenia, asthenia, abdominal cramping, fever, pain, loss of body weight, dehydration, alopecia, dyspnea, insomnia, dizziness, mucositis, xerostomia, and kidney failure, as well as constipation, nerve and muscle effects, temporary or permanent damage to kidneys and bladder, flu-like symptoms, fluid retention, and temporary or 15 permanent infertility. Side effects from radiation therapy include but are not limited to fatigue, dry mouth, and loss of appetite. Side effects from biological therapies/immunotherapies include but are not limited to rashes or swellings at the site of administration, flu-like symptoms such as fever, chills and fatigue, digestive tract problems and allergic reactions. Side effects from hormonal therapies include but are not limited to 20 nausea, fertility problems, depression, loss of appetite, eye problems, headache, and weight fluctuation. Additional undesired effects typically experienced by patients are numerous and known in the art. Many are described in the Physicians' Desk Reference (56th ed., 2002).

As used herein, the terms "subject" and "patient" are used interchangeably. 25 [0069] As used herein, a subject is preferably a mammal such as a non-primate (e.g., cows, pigs, horses, cats, dogs, rats etc.) and a primate (e.g., monkey and human), most preferably a human.

As used herein, the terms "treat," "treating" and "treatment" refer to the [0070] eradication, reduction or amelioration of symptoms of a disease or disorder, particularly, the eradication, removal, modification, or control of primary, regional, or metastatic cancer tissue that results from the administration of one or more therapeutic agents. In certain embodiments, such terms refer to the minimizing or delaying the spread of cancer resulting from the administration of one or more therapeutic agents to a subject with such a disease.

[0071] As used herein, the term "therapeutic agent" refers to any agent that can be used in the prevention, treatment, or management of a disease or disorder associated with overexpression of EphA2 and/or cell hyperproliferative diseases or disorders, particularly, cancer. In certain embodiments, the term "therapeutic agent" refers to an EphA2 vaccine of the invention, such as a composition comprising an EphA2 antigenic peptide, an EphA2 antigenic peptide expression vehicle, or an antigen presenting cell sensitized with an EphA2 antigenic peptide. In certain other embodiments, the term "therapeutic agent" refers to cancer chemotherapeutics, radiation therapy, hormonal therapy, and/or biological therapy/immunotherapy. In other embodiments, more than one therapeutic agent may be administered in combination.

5

10

15

20

25

30

35

As used herein, a "therapeutically effective amount" refers to that amount of 100721 the therapeutic agent sufficient to treat or manage a disease or disorder associated with EphA2 overexpression and/or cell hyperproliferative disease and, preferably, the amount sufficient to destroy, modify, control or remove primary, regional or metastatic cancer tissue. A therapeutically effective amount may refer to the amount of therapeutic agent sufficient to delay or minimize the onset of the hyperproliferative disease, e.g., delay or minimize the spread of cancer. A therapeutically effective amount may also refer to the amount of the therapeutic agent that provides a therapeutic benefit in the treatment or management of cancer. Further, a therapeutically effective amount with respect to a therapeutic agent of the invention means that amount of therapeutic agent alone, or in combination with other therapies, that provides a therapeutic benefit in the treatment or management of hyperproliferative disease or cancer. Used in connection with an amount of an EphA2 vaccine of the invention, the term can encompass an amount that improves overall therapy, reduces or avoids unwanted effects, or enhances the therapeutic efficacy of or synergies with another therapeutic agent.

10073] As used herein, the terms "T cell malignancies" and "T cell malignancy" refer to any T cell lymphoproliferative disorder, including thymic and post-thymic malignancies. T cell malignancies include tumors of T cell origin. T cell malignancies refer to tumors of lymphoid progenitor cell, thymocyte, T cell, NK-cell, or antigen presenting cell origin. T cell malignancies include, but are not limited to, leukemias, including acute lymphoblastic leukemias, thymomas, acute lymphoblastic leukemias, and lymphomas, including Hodgkin's and non-Hodgkin's disease, with the proviso that T cell malignancies are not cutaneous T cell malignancies are systemic, non-cutaneous T cell malignancies.

3.2 SEQUENCES

[0074] Below is a brief summary of the sequence presented in the accompanying sequence listing, which is incorporated by reference herein in its entirety:

[0075] SEO ID NO:1

5 Human EphA2 cDNA (full length)

[0076] SEQ ID NO:2

Human EphA2 polypeptide (full length)

[0077] SEQ ID NOs:3-18

Human EphA2 peptides

10 [0078] SEQ ID NO:19

Construct: LLOss-PEST-hEphA2

Native LLO signal peptide + PEST fused to full-length human EphA2

Not Codon optimized

No epitope tags (e.g., myc or FLAG used in this construct)

Fusion protein coding sequence shown

[0079] SEQ ID NO:20

15

30

Construct: LLOss-PEST-hEphA2

Native LLO signal peptide + PEST fused to full-length human EphA2

Not Codon optimized

20 No epitope tags (e.g., myc or FLAG used in this construct)

Predicted fusion protein shown

[0080] SEQ ID NO:21

EphA2 EX2 domain

Native nucleotide sequence

25 100811 SEQ ID NO:22

EphA2 EX2 domain

Nucleotide sequence for optimal codon usage in Listeria

[0082] SEQ ID NO:23

EphA2 EX2 domain

Primary Amino Acid Sequence

[0083] SEQ ID NO:24

Construct: LLOss-PEST-EX2 hEphA2

Native LLO signal peptide + PEST fused to external domain of human

EphA2

35 Not Codon optimized

No epitope tags (e.g., myc or FLAG used in this construct)

[0084] SEO ID NO:25

Construct: LLOss-PEST-EX2 hEphA2

Native LLO signal peptide + PEST fused to external domain of human

EphA2

5

Not Codon optimized

No epitope tags (e.g., myc or FLAG used in this construct)

Predicted fusion protein shown

[0085] SEO ID NO:26

10 NativeLLOss-PEST-FLAG-EX2 EphA2-myc-CodonOp

(Native L. monocytogenes LLO signal peptide + PEST-Codon optimized -

FLAG-EX-2 EphA2-Myc)

Nucleotide Sequence (including hly promoter)

[0086] SEO ID NO:27

15 NativeLLOss-PEST-FLAG-EX2 EphA2-myc-CodonOp

(Native L. monocytogenes LLO signal peptide + PEST-Codon optimized -

FLAG-EX-2 EphA2-Myc)

Primary Amino Acid Sequence

[0087] SEQ ID NO:28

20 Codon Optimized LLOss-PEST-FLAG-EX2 EphA2-myc-CodonOp

(Codon Optimized L. monocytogenes LLO signal peptide + PEST-Codon

optimized -FLAG-EX-2 EphA2-Myc)

Nucleotide Sequence (including hly promoter)

[0088] SEO ID NO:29

25 Codon Optimized LLOss-PEST-FLAG-EX2 EphA2-myc-CodonOp

(Codon Optimized L. monocytogenes LLO signal peptide + PEST-Codon

optimized -FLAG-EX-2 EphA2-Myc)

Primary Amino Acid Sequence

PhoD-FLAG-EX2 EphA2-myc-CodonOp

(Codon optimized B. subtilis phoD Tat signal peptide-FLAG-EX-2 EphA2-

Mvc)

SEQ ID NO:30

Nucleotide Sequence (including hly promoter)

[0090] SEO ID NO:31

[0089]

30

35 PhoD-FLAG-EX2 EphA2-mvc-CodonOp

(Codon optimized B. subtilis phoD Tat signal peptide-FLAG-EX-2 EphA2-Myc) Amino acid sequence [0091] SEO ID NO:32 5 EphA2 CO domain Native nucleotide sequence [0092] SEO ID NO:33 EphA2 CO domain Nucleotide sequence for optimal codon usage in Listeria 10 [0093] SEO ID NO:34 EphA2 CO domain Primary Amino Acid Sequence SEQ ID NO:35 [0094] Construct: LLOss-PEST-CO-huEphA2 15 Native LLO signal peptide + PEST fused to cytoplasmic domain of human EphA2 Not Codon optimized No epitope tags (e.g., myc or FLAG used in this construct) Fusion protein coding sequence shown 20 [0095] SEO ID NO:36 Construct: LLOss-PEST-CO-huEphA2 Native LLO signal peptide + PEST fused to cytoplasmic domain of human EphA2 Not Codon optimized 25 No epitope tags (e.g., myc or FLAG used in this construct) Predicted fusion protein shown SEO ID NO:37 [0096] NativeLLOss-PEST-FLAG-CO EphA2-myc-CodonOp (Native L. monocytogenes LLO signal peptide + PEST-Codon optimized -30 FLAG-CO EphA2-Myc) Nucleotide Sequence (including hly promoter) [0097] SEQ ID NO:38 NativeLLOss-PEST-FLAG-CO EphA2-myc-CodonOp (Native L. monocytogenes LLO signal peptide + PEST-Codon optimized -35 FLAG-CO EphA2-Myc)

Primary Amino Acid Sequence

[0098] SEO ID NO:39

Codon Optimized LLOss-PEST-FLAG-CO EphA2-myc-CodonOp

(Codon Optimized L. monocytogenes LLO signal peptide + PEST-Codon

optimized -FLAG-CO EphA2-Myc)

Nucleotide Sequence (including hly promoter)

[0099] SEQ ID NO:40

5

10

20

25

Codon Optimized LLOss-PEST-FLAG-CO EphA2-myc-CodonOp

(Codon Optimized L. monocytogenes LLO signal peptide + PEST-Codon

optimized -FLAG-CO EphA2-Myc)

Primary Amino Acid Sequence

[00100] SEO ID NO:41

PhoD-FLAG-CO EphA2-myc-CodonOp

(Codon optimized B. subtilis phoD Tat signal peptide-FLAG-CO EphA2-

15 Myc)

Nucleotide Sequence (including hlv promoter)

[00101] SEQ ID NO:42

PhoD-FLAG-CO EphA2-myc-CodonOp

(Codon optimized B. subtilis phoD Tat signal peptide-FLAG-CO_EphA2-

Myc)

Amino acid sequence

[00102] SEQ ID NO:43

Construct: pAM401-MCS

Plasmid pAM401 containing multiple cloning site (MCS) from pPL2 vector

Insertion of small Aat II MCS fragment from pPL2 inserted into pAM401

plasmid between blunted Xba I and Nru I sites.

Complete pAM401-MCS plasmid sequence shown

4. BRIEF DESCRIPTION OF THE FIGURES

[00103] Figure 1. Western blot analysis of secreted protein from recombinant

30 Listeria encoding native EphA2 CO domain sequence.

[00104] Figure 2. Western blot analysis of secreted protein from recombinant

Listeria encoding native or codon-optimized LLO secA1 signal peptide fused with codonoptimized EphA2 EX2 domain sequence signal peptide.

- [00105] Figure 3. Western blot analysis of secreted protein from recombinant

 Listeria encoding native or codon-optimized LLO secA2 signal peptide or codon-optimized

 Tat signal peptide fused with codon-optimized EphA2 CO domain sequence.
- [00106] Figure 4. Flow cytometry analysis of human EphA2 expression in CT2 murine carcinoma cells. Single cell FACS sorting assays were performed by standard techniques to identify CT26 cell clones expressing high levels of human EphA2.

5

30

EphA2.

- [00107] Figure 5. Western blot analysis of pooled populations CT26 murine colon carcinoma cells expressing high levels of human EphA2 protein.
- [00108] Figure 6. Flow Cytometry of B16F10 cells expressing huEphA2.
- 10 [00109] Figure 7. Western blot analysis of lysate from 293 cells 48 hr. following transfection with pCDNA4 plasmid DNA encoding full-length native EphA2 sequence.
 - [00110] Figure 8A-8C. Figures 8A-8C illustrate results of a typical therapeutic study of animals inoculated with CT26 murine colon carcinoma cells transfected with human EphA2 (L4029-EphA2 exFlag), Listeria control (L4029-control) or vehicle (HBSS).
- 15 In Figure 8A, tumor volume was measured at several intervals post inoculation. Figure 8B illustrates the mean tumor volume of mice inoculated with CT26 cells containing either Listeria control or the ECD of huEphA2. Figure 8C represents the results of a therapeutic study using the lung metastases model, measuring percent survival of mice post inoculation with CT26 cells with either HBSS or Listeria control, or Listeria expressing the ECD of huEphA2.
- [00111] Figures 9A-9D. Preventive studies following i.v. administration of L4029EphA2-exFlag, Listeria control (L4029), or Listeria positive control containing the AH1 protein (L4029-AH1) (5x10⁵ cells in 100 µl volume) either subcutaneously or intravenously. Figure 9A demonstrates tumor volume of mice inoculated with CT26 cells expressing the ECD of huEphA2, vehicle (HBSS), Listeria (L4029) or Listeria positive (L4029-AH1) controls. Figure 9B demonstrates mean tumor volume of mice inoculated with CT26 cells expressing the ECD of huEphA2 (L4029-EphA2 exFlag) compared to the Listeria (L4029) control. Figure 9C illustrates results of the prevention study in the s.c. model, measuring percent survival of the mice post CT26 tumor cell inoculation. Figure
 - percent survival of the mice post tumor cell inoculation.

 [00112] Figure 10. Therapeutic efficacy in Balb/C mice bearing CT26 tumors encoding human EphA2 immunized with recombinant Listeria encoding codon-optimized

9D illustrates the results of the prevention study in the lung metastases model, measuring

- [00113] Figure 11. Increased survival of Balb/C mice bearing CT26.24 (huEphA2+) lung tumors when immunized with recombinant *Listeria* encoding codon-optimized secAl signal peptide fused with condon-optimized EphA2 EX2 domain sequence.
- [00114] Figure 12. Immunization of Balb/C mice bearing CT26.24 (huEphA2+) lung tumors with recombinant *Listeria* encoding EphA2 CO domain confers long-term survival.

5

10

15

20

25

30

35

[00115] Figure 13. Immunization of Balb/C mice bearing CT26.24 (huEphA2+) lung tumors with recombinant *Listeria* encoding EphA2 CO domain but not with plasmid DNA encoding full-length EphA2 confers long-term survival.

5. DETAILED DESCRIPTION OF THE INVENTION

[00116] The present invention is based, in part, on the inventors' discovery that a vaccine that comprises an EphA2 antigenic peptide can confer beneficial immune response against EphA2-expressing cells in involved in a hyperproliferative disease such as cancer. In particular, such a vaccine can contain an EphA2 antigenic peptide, an expression vehicle for an EphA2 antigenic peptide, or an antigen-presenting cell that is sensitized with an EphA2 antigenic peptide.

[00117] Accordingly, the present invention relates to methods and compositions that provide for the treatment, inhibition, and management of diseases and disorders associated with overexpression of EphA2 and/or cell hyperproliferative diseases and disorders. A particular aspect of the invention relates to methods and compositions containing compounds that, when administered to a subject with a hyperproliferative disorder involving EphA2-expressing cells, either elicit or mediate an immune response against EphA2, resulting in a growth inhibition of the EphA2-expressing cells involved in the hyperproliferative disorder. The present invention further relates to methods and compositions for the treatment, inhibition, or management of metastases of cancers of epithelial cell origin, especially human cancers of the breast, ovary, oesophagus, lung, skin, prostate, bladder, and pancreas, and renal cell carcinomas and melanomas. The invention further relates to methods and compositions for the treatment, inhibition, or management of cancers of T cell origin, especially leukemias and lymphomas. Further compositions and methods of the invention include other types of active ingredients in combination with the EphA2 vaccines of the invention. In other embodiments, the methods of the invention are used to treat, prevent or manage other diseases or disorders associated with cell hyperproliferation, for example but not limited to asthma, psoriasis, restenosis, COPD, etc. The present invention also relates to methods for the treatment, inhibition, and management of cancer or other hyperproliferative cell disorders or diseases that have

become partially or completely refractory to current or standard cancer treatment, such as chemotherapy, radiation therapy, hormonal therapy, and biological-/immuno-therapy.

5.1 EphA2 Antigenic Peptides

[00120]

10

15

30

35

[00119] As discussed above, the invention encompasses administration of exogenous EphA2 antigenic peptides that are capable of eliciting an immune response to EphA2, resulting in a cellular or humoral immune response against endogenous EphA2. Additionally, the present invention encompasses the use of an EphA2 antigenic peptide expression vehicle.

"EphA2 antigenic polypeptide") for use in the methods and compositions of the present invention can be any EphA2 antigenic peptide that is capable of eliciting an immune response against EphA2-expressing cells involved in a hyperproliferative disorder. Thus, an EphA2 antigenic peptide can be an EphA2 polypeptide, preferably an EphA2 polypeptide of SEQ ID NO:2, or a fragment or derivative of an EphA2 polypeptide that (1) displays antigenicity of EphA2 (ability to bind or compete with EphA2 for binding to an anti-EphA2 antibody, (2) displays immunogenicity of EphA2 (ability to generate antibody

In principle, an EphA2 antigenic peptide (sometimes referred to as an

[00121] In certain embodiments, the EphA2 antigenic peptide is full length human EphA2 (SEQ ID NO:2).

20 [00122] In other embodiments, the EphA2 antigenic peptide comprises the intracellular domain of EphA2 (residue 22 to 554 of SEQ ID NO:2).

which binds to EphA2), or (3) contains one or more T cell epitopes of EphA2.

[00123] In yet other embodiments, the EphA2 antigenic peptide comprises the intracellular domain EphA2 (residue 558 to 976 of SEQ ID NO:2).

[00124] In certain embodiments, the peptide corresponds to or comprises an EphA2 epitope that is exposed in a cancer cell but occluded in a non-cancer cell. In a preferred embodiment, the EphA2 antigenic peptides preferentially include epitopes on EphA2 that are selectively exposed or increased on cancer cells but not non-cancer cells ("exposed EphA2 epitope peptides").

[00125] The present invention further encompasses the use of a plurality of EphA2 antigenic peptides in the compositions and methods of the present invention. In certain embodiments, the plurality of EphA2 antigenic peptides are multimerized or polyvalent.

[00126] Fragments of EphA2 that are useful in the methods and compositions present invention may contain deletions, additions or substitutions of amino acid residues within the amino acid sequence encoded by an EphA2 gene. Preferably mutations result in a silent change, thus producing a functionally equivalent EphA2 gene product.

[00127] An EphA2 antigenic polypeptide sequence preferably comprises an amino acid sequence that exhibits at least about 65% sequence similarity to human EphA2, more preferably exhibits at least 70% sequence similarity to human EphA2, yet more preferably exhibits at least about 75% sequence similarity human EphA2. In other embodiments, the EphA2 polypeptide sequence preferably comprises an amino acid sequence that exhibits at least 85% sequence similarity to human EphA2, yet more preferably exhibits at least 90% sequence similarity to human EphA2, and most preferably exhibits at least about 95% sequence similarity to human EphA2.

5

10

[00129]

[00128] Additional polypeptides suitable in the present methods are those encoded by the nucleic acids described in Section 5.2 below.

The determination of percent identity between two sequences can be

accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, 1990, Proc Natl Acad Sci. USA 87:2264-2268, modified as in Karlin and Altschul, 1993, Proc Natl Acad Sci. USA 90:5873-5877. Such an algorithm is 15 incorporated into the NBLAST and XBLAST programs of Altschul et al., 1990, J. Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the invention. BLAST protein searches can be performed with 20 the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to a protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing 25 BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

[00130] Another preferred, non limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, 1988,
CABIOS 4:11 17. Such an algorithm is incorporated into the ALIGN program (version 2.0)

30 which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art and include ADVANCE and ADAM as described in Torellis and Robotti, 1994, Comput. Appl. Biosci. 10:3-5; and FASTA described in Pearson and Lipman, 1988, 85:2444-8. Within FASTA, ktup is a control option that sets the

sensitivity and speed of the search. If ktup = 2, similar regions in the two sequences being compared are found by looking at pairs of aligned residues; if ktup = 1, single aligned amino acids are examined. ktup can be set to 2 or 1 for protein sequences, or from 1 to 6 for DNA sequences. The default if ktup is not specified is 2 for proteins and 6 for DNA. For a further description of FASTA parameters, see

http://bioweb.pasteur.fr/docs/man/man/fasta.1.html#sect2.

5

10

15

20

25

30

[00131] The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted. However, conservative substitutions should be considered in evaluating sequences that have a low percent identity with the EphA2 sequences disclosed herein.

[00132] In a specific embodiment, EphA2 antigenic polypeptides comprising at least 10, 20, 30, 40, 50, 75, 100, or 200 amino acids of an EphA2 polypeptide of SEQ ID NO:2 are used in the present invention. In a preferred embodiment, such a polypeptide comprises all or a portion of the extracellular domain of an EphA2 polypeptide of SEO ID NO:2.

5.2 Methods of Identifying EphA2 Antigenic Peptides

5.2.1 Assays for EphA2 Antigenic Peptides

[00133] The present invention provides Listeria-based EphA2 vaccines comprising Listeria bacteria engineered to express an EphA2 antigenic peptide. Any assay known in the art for determining whether a peptide is a T cell epitope or a B cell epitope may be employed in testing EphA2 peptides for suitability in the present methods and compositions.

[00134] For example, ELISPOT assays and methods for intracellular cytokine staining can be used for enumeration and characterization of antigen-specific CD4⁺ and CD8⁺ T cells. Lalvani et al. (1997) J. Exp. Med. 186:859-865; Waldrop et al. (1997) J. Clin Invest. 99:1739-1750.

[00135] EphA2 antigenic peptides can be determined by screening synthetic peptides corresponding to portions of EphA2. Candidate antigenic peptides can be identified on the basis of their sequence or predicted structure. A number of algorithms are available for this purpose.

[00136] Exemplary protocols for such assays are presented below.

5.2.2 Peptides That Display Immunogenicity of EphA2

[00137] The ability of EphA2 peptides to elicit EphA2-specific antibody responses in mammals can be examined, for example, by immunizing animals (e.g., mice, guinea pigs or rabbits) with individual EphA2 peptides emulsified in Freund's adjuvant.

[00138] After three injections (5 to 100 μ g peptide per injection), IgG antibody responses are tested by peptide-specific ELISAs and immunoblotting against EphA2.

[00139] EphA2 peptides which produce antisera that react specifically with the EphA2 peptides and also recognized full length EphA2 protein in immunoblots are said to display the antigenicity of EphA2.

5.2.3 CD4⁺ T-Cell Proliferation Assay

For example, such assays include in vitro cell culture assays in which 10 [00140] peripheral blood mononuclear cells ("PBMCs") are obtained from fresh blood of a patient with a disease involving overexpression of EphA2, and purified by centrifugation using FICOLL-PLAOUE PLUS (Pharmacia, Upsalla, Sweden) essentially as described by Kruse and Sebald, 1992, EMBO J. 11:3237-3244. The peripheral blood mononuclear cells are 15 incubated for 7-10 days with candidate EphA2 antigenic peptides. Antigen presenting cells may optionally be added to the culture 24 to 48 hours prior to the assay, in order to process and present the antigen. The cells are then harvested by centrifugation, and washed in RPMI 1640 media (GibcoBRL, Gaithersburg, MD), 5 x 10⁴ activated T cells/well are in RPMI 1640 media containing 10% fetal bovine serum, 10 mM HEPES, ph 7.5, 2 mM Lglutamine, 100 units/ml penicillin G, and 100 ug/ml streptomycin sulphate in 96 well plates 20 for 72 hrs at 37°C, pulsed with 1 µCi 3H-thymidine (DuPont NEN, Boston, MA)/well for 6 hrs, harvested, and radioactivity measured in a TOPCOUNT scintillation counter (Packard Instrument Col., Meriden, CT).

5.2.4 Intracellular Cytokine Staining (ICS)

25 [00141] Measurement of antigen-specific, intracellular cytokine responses of T cells can be performed essentially as described by Waldrop et al., 1997, J. Clin. Invest. 99:1739-1750; Openshaw et al., 1995, J. Exp. Med. 182:1357-1367; or Estcourt et al., 1997, Clin. Immunol. Immunopathol. 83:60-67. Purified PBMCs from patients with a disease involving EphA2-overexpressing cells are placed in 12x75 millimeter polystyrene tissue culture tubes
 30 (Becton Dickinson, Lincoln Park, N.J.) at a concentration of 1x10⁶ cells per tube. A solution comprising 0.5 milliliters of HL-1 serum free medium, 100 units per milliliter of penicillin, 100 units per milliliter streptomycin, 2 millimolar L glutamine (Gibco BRL), varying amounts of individual EphA2 antigenic candidate peptides, and 1 unit of anti-CD28 mAb (Becton-Dickinson, Lincoln Park, N.J.) is added to each tube. Anti-CD3 mAb is added to a duplicate set of normal PBMC cultures as positive control. Culture tubes are

incubated for 1 hour. Brefeldin A is added to individual tubes at a concentration of 1 microgram per milliliter, and the tubes are incubated for an additional 17 hours.

[00142] PBMCs stimulated as described above are harvested by washing the cells twice with a solution comprising Dulbecco's phosphate-buffered saline (dPBS) and 10 units of Brefeldin A. These washed cells are fixed by incubation for 10 minutes in a solution comprising 0.5 milliliters of 4% paraformaldehyde and dPBS. The cells are washed with a solution comprising dPBS and 2% fetal calf serum (FCS). The cells are then either used immediately for intracellular cytokine and surface marker staining or are frozen for no more than three days in freezing medium, as described (Waldrop et al., 1997, J. Clin. Invest. 99:1739-1750).

[00143] The cell preparations were rapidly thawed in a 37°C water bath and washed once with dPBS. Cells, either fresh or frozen, are resuspended in 0.5 milliliters of permeabilizing solution (Becton Dickinson Immunocytometry systems, San Jose, Calif.) and incubated for 10 minutes at room temperature with protection from light.

Permeabilized cells are washed twice with dPBS and incubated with directly conjugated mAbs for 20 minutes at room temperature with protection from light. Optimal concentrations of antibodies are predetermined according to standard methods. After staining, the cells were washed, refixed by incubation in a solution comprising dPBS 1% paraformaldehyde, and stored away from light at 4°C for flow cytometry analysis.

5.2.5 ELISPOT Assays

5

10

15

20

25

30

35

[00144] The ELISPOT assay measures Th1-cytokine specific induction in murine splenocytes following *Listeria* vaccination. ELISPOT assays are performed to determine the frequency of T lymphocytes in response to endogenous antigenic peptide stimulation, and are as described in Geginat, et al., 2001, *J. Immunol.* 166:1877-1884. Balb/c mice (3 per group) are vaccinated with *L. monocytogenes* expressing candidate EphA2 antigenic peptides or HBSS as control. Whole mouse spleens are harvested and pooled five days after vaccination. Single cell suspensions of murine splenocytes are plated in the presence of various antigens overnight in a 37°C incubator.

[00145] Assays are performed in nitrocellulose-backed 96-well microtiter plates coated with rat anti-mouse IFN- γ mAb. For the testing of the candidate EphA2 antigenic peptide, a 1 x 10⁻⁵ M peptide solution is prepared. In round-bottom 96-well microtiter plates per well 6 x 10⁵ unseparated splenocytes in 135 μ l culture medium (α modification of Eagle's medium (Life Technologies, Eggenstein, Germany) supplemented with 10% FCS, 100 U/ml penicillin, 100 μ g/ml streptomycin, 1 x 10⁻⁵ M 2-ME, and 2 mM glutamine) are mixed with 15 μ l of the 1 x 10⁻⁵ M peptide solution to yield a final peptide concentration of

 $1 \times 10^{-6} M$. After 6 h of incubation at 37° C, cells are resuspended by vigorous pipetting, and $100 \mu l$ or $10 \mu l$ of cell suspension (4×10^{3} /well or 4×10^{4} /well, respectively) is transferred to Ab-coated ELISPOT plates and incubated overnight at 37° C. In the ELISPOT plates, the final volume was adjusted to $150 \mu l$ to ensure homogenous distribution of cells

Purified CD4⁺ or CD8⁺ T cells are tested in a modified assav as follows: 15 [00146] ul prediluted peptide (1 x 10⁻⁵ M) is directly added to Ab-coated ELISPOT plates and mixed with 4 x 10⁵ splenocytes from nonimmune animals as APC to yield a final volume of 100 µl. After 4 h of preincubation of APC at 37°C, 1 x 10⁵ CD4⁺ or CD8⁺ cells purified from L. monocytogenes-immune mice are added per well in a volume of 50 µl and plates are incubated overnight at 37°C. The ELISPOT-based ex vivo MHC restriction analysis is performed after loading of cell lines expressing specific MHC class I molecules with 1 x 10° ⁶ M peptide for 2 h at 37°C. Subsequently, unbound peptides are washed off (four times) to prevent binding of peptides to responder splenocytes. Per well of the ELISPOT plate, 1 x 10⁵ peptide-loaded APC are mixed with 4 x 10⁵ or 4 x 10⁴ responder splenocytes in a final volume of 150 µl. After overnight incubation at 37°C, ELISPOT plates are developed with biotin-labeled rat anti-mouse IFN- γ mAb, HRP streptavidin conjugate, and aminoethylcarbazole dye of spots per splenocytes seeded. The specificity and sensitivity of the ELISPOT assay is controlled with IFN- γ secreting CD8 T cell lines specific for a control antigen.

5.3 Fusion Proteins

10

15

20

35

[00147] In certain embodiments of the present invention, an EphA2 vaccine comprises, expresses or is an antigen-presenting cell that is sensitized with an EphA2 antigenic peptide that is a fusion protein. Thus, the present invention encompasses compositions and methods in which the EphA2 antigenic peptides are fusion proteins comprising all or a fragment or derivative of EphA2 operatively associated to a heterologous component, e.g., a heterologous peptide. Heterologous components can include, but are not limited to sequences which facilitate isolation and purification of the fusion protein. Heterologous components can also include sequences which confer stability to EphA2 antigenic peptides. Such fusion partners are well known to those of skill in the art.

[00148] The present invention encompasses the use of fusion proteins comprising an EphA2 polypeptide (e.g., a polypeptide of SEQ ID NO:2) and a heterologous polypeptide (i.e., an unrelated polypeptide or fragment thereof, preferably at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90 or at least 100 amino

acids of the polypeptide). The fusion can be direct, but may occur through linker sequences. The heterologous polypeptide may be fused to the N-terminus or C-terminus of the EphA2 antigenic polypeptide. Alternatively, the heterologous polypeptide may be flanked by EphA2 polypeptide sequences.

5

10

25

30

35

[00149] A fusion protein can comprise an EphA2 antigenic polypeptide fused to a heterologous signal sequence at its N-terminus. Various signal sequences are commercially available. Eukaryotic heterologous signal sequences include, but are not limited to, the secretory sequences of melittin and human placental alkaline phosphatase (Stratagene, La Jolla, CA). Prokaryotic heterologous signal sequences useful in the methods of the invention include, but are not limited to, the phoA secretory signal (Sambrook et al., eds., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) and the protein A secretory signal (Pharmacia Biotech, Piscataway, NJ).

[00150] The EphA2 antigenic polypeptide can be fused to tag sequences, e.g., a hexahistidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., Chatsworth, CA), among others, many of which are commercially available for use in the methods of the invention. As described in Gentz et al., 1989, Proc. Natl. Acad. Sci. USA, 86:821-824, for instance, hexa-histidine provides for convenient purification of the fusion protein. Other examples of peptide tags are the hemagglutinin "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., 1984, Cell, 37:767) and the "flag" tag (Knappik et al., 1994, Biotechniques, 17(4):754-761). These tags are especially useful for purification of recombinantly produced EphA2 antigenic polypeptides.

[00151] Any fusion protein may be readily purified by utilizing an antibody specific or selective for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺ nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

[00152] An affinity label can also be fused at its amino terminal to the carboxyl terminal of the EphA2 antigenic polypeptide for use in the methods of the invention. The precise site at which the fusion is made in the carboxyl terminal is not critical. The optimal site can be determined by routine experimentation. An affinity label can also be fused at its

carboxyl terminal to the amino terminal of the EphA2 antigenic polypeptide for use in the methods and compositions of the invention.

5

10

15

20

25

30

35

[00153] A variety of affinity labels known in the art may be used, such as, but not limited to, the immunoglobulin constant regions (see also Petty, 1996, Metal-chelate affinity chromatography, in Current Protocols in Molecular Biology, Vol. 2, Ed. Ausubel et al., Greene Publish. Assoc. & Wiley Interscience), glutathione S-transferase (GST; Smith, 1993, Methods Mol. Cell Bio. 4:220-229), the E. coli maltose binding protein (Guan et al., 1987, Gene 67:21-30), and various cellulose binding domains (U.S. Patent Nos. 5,496,934; 5,202,247; 5,137,819; Tomme et al., 1994, Protein Eng. 7:117-123), etc. Other affinity labels are recognized by specific binding partners and thus facilitate isolation by affinity binding to the binding partner which can be immobilized onto a solid support. Some affinity labels may afford the EphA2 antigenic polypeptide novel structural properties, such as the ability to form multimers. These affinity labels are usually derived from proteins that normally exist as homopolymers. Affinity labels such as the extracellular domains of CD8 (Shiue et al., 1988, J. Exp. Med. 168:1993-2005), or CD28 (Lee et al., 1990, J. Immunol. 145:344-352), or fragments of the immunoglobulin molecule containing sites for interchain

[00154] As will be appreciated by those skilled in the art, many methods can be used to obtain the coding region of the above-mentioned affinity labels, including but not limited to, DNA cloning, DNA amplification, and synthetic methods. Some of the affinity labels and reagents for their detection and isolation are available commercially.

disulfide bonds, could lead to the formation of multimers.

[00155] In certain embodiments, the affinity label is a non-variable portion of the immunoglobulin molecule. Typically, such portions comprise at least a functionally operative CH2 and CH3 domain of the constant region of an immunoglobulin heavy chain. Fusions are also made using the carboxyl terminus of the Fc portion of a constant domain, or a region immediately amino-terminal to the CH1 of the heavy or light chain. Suitable immunoglobulin-based affinity label may be obtained from IgG-1, -2, -3, or -4 subtypes, IgA, IgE, IgD, or IgM, but preferably IgG1. Many DNA encoding immunoglobulin light or heavy chain constant regions are known or readily available from cDNA libraries. See, for example, Adams et al., Biochemistry, 1980, 19:2711-2719; Gough et al., 1980,

Biochemistry, 19:2702-2710; Dolby et al., 1980, Proc. Natl. Acad. Sci. U.S.A., 77:6027-6031; Rice et al., 1982, Proc. Natl. Acad. Sci. U.S.A., 79:7862-7865; Falkner et al., 1982, Nature, 298:286-288; and Morrison et al., 1984, Ann. Rev. Immunol, 2:239-256. Because many immunological reagents and labeling systems are available for the detection of immunoglobulins, the EphA2 antigenic polypeptide-Ig fusion protein can readily be

detected and quantified by a variety of immunological techniques known in the art, such as the use of enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, fluorescence activated cell sorting (FACS), etc. Similarly, if the affinity label is an epitope with readily available antibodies, such reagents can be used with the techniques mentioned above to detect, quantitate, and isolate the EphA2 antigenic polypeptide containing the affinity label. In many instances, there is no need to develop specific or selective antibodies to the EphA2 antigenic polypeptide for the purposes of purification.

A fusion protein can comprise an EphA2 antigenic polypeptide fused to the

5

10

15

20

25

30

[00156]

Fc domain of an immunoglobulin molecule or a fragment thereof for use in the methods and compositions of the invention. A fusion protein can also comprise an EphA2 antigenic polypeptide fused to the CH2 and/or CH3 region of the Fc domain of an immunoglobulin molecule. Furthermore, a fusion protein can comprise an EphA2 antigenic polypeptide fused to the CH2, CH3, and hinge regions of the Fc domain of an immunoglobulin molecule (see Bowen et al., 1996, J. Immunol. 156:442-49). This hinge region contains three cysteine residues which are normally involved in disulfide bonding with other cysteines in the Ig molecule. Since none of the cysteines are required for the peptide to function as a tag, one or more of these cysteine residues may optionally be substituted by

another amino acid residue, such as for example, serine.

[00157] Various leader sequences known in the art can be used for the efficient secretion of the EphA2 antigenic polypeptide from bacterial and mammalian cells (von). Heijne, 1985, J. Mol. Biol. 184:99-105). Leader peptides are selected based on the intended host cell, and may include bacterial, yeast, viral, animal, and mammalian sequences. For example, the herpes virus glycoprotein D leader peptide is suitable for use in a variety of mammalian cells. A preferred leader peptide for use in mammalian cells can be obtained from the V-J2-C region of the mouse immunoglobulin kappa chain (Bernard et al., 1981, Proc. Natl. Acad. Sci. 78:5812-5816). Preferred leader sequences for targeting EphA2 antigenic polypeptide expression in bacterial cells include, but are not limited to, the leader sequences of the E.coli proteins OmpA (Hobom et al., 1995, Dev. Biol. Stand. 84:255-262), Pho A (Oka et al., 1985, Proc. Natl. Acad. Sci. 82:7212-16), OmpT (Johnson et al., 1996, Protein Expression 7:104-113), LamB and OmpF (Hoffman & Wright, 1985, Proc. Natl.

Acad. Sci. USA 82:5107-5111), \$\beta\$-lactamase (Kadonaga et al., 1984, \$J. Biol. Chem. 259:2149-54), enterotoxins (Morioka-Fujimoto et al., 1991, \$J. Biol. Chem. 266:1728-32), and the Staphylococcus aureus protein A (Abrahmsen et al., 1986, Nucleic Acids Res. 14:7487-7500), and the \$B. subtilis endoglucanase (Lo et al., \$Appl. Environ. Microbiol.

54:2287-2292), as well as artificial and synthetic signal sequences (MacIntyre et al., 1990, Mol. Gen. Genet. 221:466-74; Kaiser et al., 1987, Science, 235:312-317).

[00158] Fusion proteins can be produced by standard recombinant DNA techniques or by protein synthetic techniques, e.g., by use of a peptide synthesizer. For example, a nucleic acid molecule encoding a fusion protein can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, e.g., Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley & Sons. 1992).

5

10

15

20

25

30

[00160]

[00159] The nucleotide sequence coding for a fusion protein can be inserted into an appropriate expression vector, *i.e.*, a vector which contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. The expression of a fusion protein may be regulated by a constitutive, inducible or tissue-specific or -selective promoter. It will be understood by the skilled artisan that fusion proteins, which can facilitate solubility and/or expression, and can increase the *in vivo* half-life of the EphA2 antigenic polypeptide and thus are useful in the methods of the invention. The EphA2 antigenic polypeptides or peptide fragments thereof, or fusion proteins can be used in any assay that detects or measures EphA2 antigenic polypeptides or in the calibration and standardization of such assay.

The methods of invention encompass the use of EphA2 antigenic

polypeptides or peptide fragments thereof, which may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing the EphA2 antigenic polypeptides of the invention by expressing nucleic acid containing EphA2 antigenic gene sequences are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing, e.g., EphA2 antigenic polypeptide coding sequences (including but not limited to nucleic acids encoding all or an antigenic portion of a polypeptide of SEQ ID NO:2) and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, supra, and Ausubel et al., 1989, supra. Alternatively, RNA capable of encoding EphA2 antigenic polypeptide sequences may be chemically synthesized using, for example, synthesizers (see, e.g., the

techniques described in Oligonucleotide Synthesis, 1984, Gait, M.J. ed., IRL Press, Oxford).

- [00161] In certain embodiments, the EphA2 antigenic polypeptide is functionally coupled to an internalization signal peptide, also referred to as a "protein transduction domain," that would allow its uptake into the cell nucleus. In certain specific embodiments, the internalization signal is that of Antennapedia (reviewed by Prochiantz, 1996, Curr.
- 5 Opin. Neurobiol. 6:629 634, Hox A5 (Chatelin et al., 1996, Mech. Dev. 55:111 117), HIV TAT protein (Vives et al., 1997, J. Biol. Chem. 272:16010 16017) or VP22 (Phelan et al., 1998, Nat. Biotechnol. 16:440 443).

5.4 Polynucleotides Encoding An EphA2 Antigenic Peptide

[00162] The present invention also encompasses compositions and methods that employ an EphA2 antigenic peptide expression vehicle.

[00163] In certain embodiments, the expression vehicles comprise or contain polynucleotides that hybridize under high stringency, intermediate or lower stringency hybridization conditions, e.g., as defined *infra*, to polynucleotides that encode an EphA2 of the invention.

- 15 [00164] By way of example and not limitation, procedures using such conditions of low stringency for regions of hybridization of over 90 nucleotides are as follows (see also Shilo and Weinberg, 1981, Proc. Natl. Acad. Sci. USA 78:6789-6792). Filters containing DNA are pretreated for 6 hours at 40°C in a solution containing 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μg/ml denatured salmon sperm DNA. Hybridizations are carried out in the same solution with the following modifications: 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μg/ml salmon sperm DNA, 10% (wt/vol) dextran sulfate, and 5-20 X 106 cpm ³²P-labeled probe is used. Filters are incubated in hybridization mixture for 18-20 h at 40°C, and then washed for 1.5 h at 55°C in a solution containing 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1%
 SDS. The wash solution is replaced with fresh solution and incubated an additional 1.5 h at
- 25 SDS. The wash solution is replaced with fresh solution and incubated an additional 1.5 h at 60°C. Filters are blotted dry and exposed for autoradiography. If necessary, filters are washed for a third time at 65-68°C and re-exposed to film. Other conditions of low stringency which may be used are well known in the art (e.g., as employed for cross-species hybridizations).
- 30 [00165] Also, by way of example and not limitation, procedures using such conditions of high stringency for regions of hybridization of over 90 nucleotides are as follows. Prehybridization of filters containing DNA is carried out for 8 h to overnight at 65°C in buffer composed of 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 μg/ml denatured salmon sperm DNA. Filters are

salmon sperm DNA and 5-20 X 10⁶ cpm of ³²P-labeled probe. Washing of filters is done at 37°C for 1 h in a solution containing 2X SSC, 0.01% PVP, 0.01% Ficoll, and 0.01% BSA. This is followed by a wash in 0.1X SSC at 50°C for 45 min before autoradiography.

[00166] Other conditions of high stringency which may be used depend on the nature

of the nucleic acid (e.g., length, GC content, etc.) and the purpose of the hybridization (detection, amplification, etc.) and are well known in the art. For example, stringent hybridization of a nucleic acid of approximately 15-40 bases to a complementary sequence in the polymerase chain reaction (PCR) is done under the following conditions: a salt concentration of 50 mM KCl, a buffer concentration of 10 mM Tris-HCl, a Mg²⁺ concentration of 1.5 mM, a pH of 7-7.5 and an annealing temperature of 55-60°C.

5

10

15

20

25

30

[00169]

[00167] Selection of appropriate conditions for moderate stringencies is also well known in the art (see, e.g., Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; see also, Ausubel et al., eds., in the Current Protocols in Molecular Biology series of laboratory technique manuals, © 1987-1997, Current Protocols, © 1994-1997 John Wiley and Sons, Inc.).

[00168] The nucleic acids useful in the present methods may be made by any method known in the art. For example, if the nucleotide sequence of the EphA2 antigenic peptide is known, a nucleic acid encoding the peptide may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., 1994, BioTechniques 17:242), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the peptide, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

Alternatively, a polynucleotide encoding an EphA2 antigenic peptide may be

generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular peptide is not available, but the sequence of the EphA2 antigenic peptide is known, a nucleic acid encoding the peptide may be chemically synthesized or obtained from a suitable source (e.g., a cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing EphA2) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the peptide. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art.

[00170] Further, a nucleic acid that is useful in the present methods may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties), to generate EphA2 antigenic peptides having a different amino acid sequence from the amino acid sequence depicted in SEQ ID NO:2, for example to create amino acid substitutions, deletions, and/or insertions.

5.5 Recombinant Expression Of An EphA2 antigenic peptide

5

10

15

20

25

30

35

[00171] Recombinant expression of an EphA2 antigenic peptide of the invention, or fragment or derivative thereof, requires construction of an expression vector containing a polynucleotide that encodes the EphA2 antigenic peptide. Once a polynucleotide encoding an EphA2 antigenic peptide of the invention has been obtained, the vector for the production of the EphA2 antigenic peptide may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an EphA2 antigenic peptide-encoding nucleotide sequence are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing peptide coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an EphA2 antigenic peptide of the invention.

[00172] The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an EphA2 antigenic peptide of the invention. Thus, the invention includes host cells containing a polynucleotide encoding an EphA2 antigenic peptide of the invention or fragments thereof, operably linked to a heterologous promoter.

[00173] A variety of host-expression vector systems may be utilized to express the EphA2 antigenic peptides of the invention (see, e.g., U.S. Patent No. 5,807,715). Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an EphA2 antigenic peptide of the invention in situ. These include but are not limited to

microorganisms such as bacteria (e.g., E. coli and B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing peptide coding sequences; yeast (e.g., Saccharomyces Pichia) transformed with recombinant yeast expression vectors containing peptide coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing peptide coding 5 sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing peptide coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, NS0, and 3T3 cells) harboring recombinant expression constructs containing promoters derived from the 10 genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). Preferably, bacterial cells such as E. coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant EphA2 antigenic peptide, are used for the expression of a recombinant EphA2 antigenic peptide. For example, mammalian cells such as Chinese hamster ovary 15 cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for peptides (Foecking et al., 1986, Gene 45:101; and Cockett et al., 1990, BioTechnology 8:2). In a specific embodiment, the expression of nucleotide sequences encoding an EphA2 20 antigenic peptide of the invention is regulated by a constitutive promoter, inducible promoter or tissue specific promoter.

[00174] In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the EphA2 antigenic peptide being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of an EphA2 antigenic peptide vaccine, vectors which direct the expression of high levels of protein products that are readily purified may be desirable. Such vectors include, but are not limited to, the *E. coli* expression vector pUR278 (Ruther *et al.*, 1983, *EMBO* 12:1791), in which the peptide coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, *Nucleic Acids Res.* 13:3101-3109; Van Heeke & Schuster, 1989, *J. Biol. Chem.* 24:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione 5-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free

25

30

glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

[00175] In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The peptide coding sequence may be cloned individually into non-essential regions (e.g., the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (e.g., the polyhedrin promoter).

5

10

15

20

25

30

[00176] In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the peptide coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the EphA2 antigenic peptide in infected hosts (e.g., see Logan & Shenk, 1984, PNAS 8 1:355-359). Specific initiation signals may also be required for efficient translation of inserted pentide coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see, e.g., Bittner et al., 1987, Methods in Enzymol. 153:516-544).

[00177] In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, W138, BT483, Hs578T, HTB2, BT2O, NS1 and

T47D, NS0 (a murine myeloma cell line that does not endogenously produce any peptide chains), CRL7O3O and HsS78Bst cells.

5

10

15

[00179]

[00178] For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the EphA2 antigenic peptide may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the EphA2 antigenic peptide. Such engineered cell lines may be particularly useful in screening and evaluation of compositions that interact directly or indirectly with the EphA2 antigenic peptide.

A number of selection systems may be used, including but not limited to, the

synthetase, hypoxanthine guanine phosphoribosyltransferase (Szybalski, & Szybalski, 1992. 20 Proc. Natl. Acad. Sci. USA 48:202), and adenine phosphoribosyltransferase (Lowy et al., 1980, Cell 22:8-17) genes can be employed in tk-, gs-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., 1980, PNAS 77:357; O'Hare et al., 1981, PNAS 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & 25 Berg, 1981, PNAS 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Wu and Wu, 1991, Biotherapy 3:87; Tolstoshev, 1993, Ann. Rev. Pharmacol. Toxicol. 32:573; Mulligan, 1993, Science 260:926; and Morgan and Anderson, 1993, Ann. Rev. Biochem. 62: 191; May, 1993, TIB TECH 11:155-); and hygro, which confers resistance to hygromycin (Santerre et al., 1984, Gene 30:147). Methods commonly known in the art of 30 recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990); and in Chapters 12 and 13, Dracopoli et al. (eds), Current Protocols in Human Genetics, John Wiley & Sons, NY

herpes simplex virus thymidine kinase (Wigler et al., 1977, Cell 11:223), glutamine

(1994); Colberre-Garapin et al., 1981, J. Mol. Biol. 150:1, which are incorporated by reference herein in their entireties.

[00180] The expression levels of an EphA2 antigenic peptide can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing peptide is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the peptide gene, production of the peptide will also increase (Crouse et al., 1983, Mol. Cell. Biol. 3:257).

[00181] Once an EphA2 antigenic peptide of the invention has been produced by recombinant expression, it may be purified by any method known in the art for purification of an EphA2 antigenic peptide, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. Further, the EphA2 peptides of the present invention or fragments thereof may be fused to heterologous polypeptide sequences described herein or otherwise known in the art to facilitate purification.

5.6 Gene Therapy

5

10

15

35

20 [00182] As discussed above, the present invention encompasses compositions and methods employ an EphA2 antigenic peptide expression vehicles. In certain embodiments, the expression vehicle is any gene therapy vector available in the art can be used. Exemplary gene therapy vectors that may be used as EphA2 antigenic peptide expression vehicles are described below.

[00183] For general reviews of the methods of gene therapy, see, Goldspiel et al.,
 1993, Clinical Pharmacy 12:488-505; Wu and Wu, 1991, Biotherapy 3:87-95; Tolstoshev,
 1993, Ann. Rev. Pharmacol. Toxicol. 32:573-596; Mulligan, 1993, Science 260:926-932;
 Morgan and Anderson, 1993, Ann. Rev. Biochem. 62:191-217; May, 1993, TIBTECH 1,
 1(5):155-215. Methods commonly known in the art of recombinant DNA technology which
 can be used are described in Ausubel et al. (eds.), Current Protocols in Molecular Biology,
 John Wiley & Sons, NY (1993); and Kriegler, Gene Transfer and Expression, A Laboratory
 Manual, Stockton Press, NY (1990).

[00184] In a preferred aspect, the expression vehicle comprises nucleic acid sequences encoding an EphA2 antigenic peptide, said nucleic acid sequences being part of expression vectors that express the EphA2 antigenic peptide in a suitable host. In

particular, such nucleic acid sequences have promoters operably linked to the EphA2 antigenic peptide, said promoter being inducible or constitutive, and, optionally, tissue-specific. In another particular embodiment, nucleic acid molecules are used in which the EphA2 antigenic peptide coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the EphA2 antigenic peptide (Koller and Smithies, 1989, Proc. Natl. Acad. Sci. USA 86:8932-8935; Zijlstra et al., 1989, Nature 342:435-438.

5

10

15

20

25

30

[00185] Delivery of the nucleic acids into a subject may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid-carrying vectors, or indirect, in which case, cells are first transformed with the nucleic acids *in vitro*, then transplanted into the patient. These two approaches are known, respectively, as *in vivo* or ex vivo gene therapy.

[00186] In a specific embodiment, the nucleic acid sequences are directly administered in vivo, where it is expressed to produce the encoded EphA2 antigenic peptide. This can be accomplished by any of numerous methods known in the art, for example by constructing them as part of an appropriate nucleic acid expression vector and administering the vector so that the nucleic acid sequences become intracellular. Gene therapy vectors can be administered by infection using defective or attenuated retrovirals or other viral vectors (see, e.g., U.S. Patent No. 4.980,286); direct injection of naked DNA; use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont); coating with lipids or cell-surface receptors or transfecting agents; encapsulation in liposomes, microparticles. or microcapsules; administration in linkage to a peptide which is known to enter the nucleus; administration in linkage to a ligand subject to receptor-mediated endocytosis (see. e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432) (which can be used to target cell types specifically expressing the receptors); etc. In another embodiment, nucleic acidligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06 180; WO 92/22635; W092/20316; W093/14188, and WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression by homologous recombination (Koller and Smithies, 1989, Proc. Natl. Acad. Sci. USA 86:8932-8935; Ziilstra et al., 1989, Nature 342:435-438).

[00187] In a specific embodiment, viral vectors that contain nucleic acid sequences encoding an EphA2 antigenic peptide. For example, a retroviral vector can be used (see Miller et al., 1993, Meth. Enzymol. 217:581-599). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the EphA2 antigenic peptide to be used in gene therapy are cloned into one or more vectors, thereby facilitating delivery of the gene into a patient. More detail about retroviral vectors can be found in Boesen et al., 1994, Biotherapy 6:291-302, which describes the use of a retroviral vector to deliver the mdr 1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., 1994, J. Clin. Invest. 93:644-651; Klein et al., 1994, Blood 83:1467-1473; Salmons and Gunzberg, 1993, Human Gene Therapy 4:129-141; and Grossman and Wilson, 1993, Curr. Opin. in Genetics and Devel. 3:110-114.

5

10

15

20

25

30

35

[00188] One approach to gene therapy encompassed by the present methods and compositions involves transferring a gene, e.g., a nucleic acid encoding an EphA2 antigenic peptide, to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a subject.

[00189] In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, 1993, Meth. Enzymol. 217:599-618; Cohen et al., 1993, Meth. Enzymol. 217:618-644; Cline, 1985, Pharmac. Ther. 29:69-92) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells

the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.

[00190] The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor

are not disrupted. The technique should provide for the stable transfer of the nucleic acid to

cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.

[00191] Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to fibroblasts; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.

10 [00192] In a preferred embodiment, the cell used for gene therapy is autologous to the patient.

[00193] In an embodiment in which recombinant cells are used in gene therapy, nucleic acid sequences encoding EphA2 antigenic peptide are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g. PCT Publication WO 94/08598; Stemple and Anderson, 1992, Cell 71:973-985; Rheinwald, 1980, Meth. Cell Bio. 21A:229; and Pittelkow and Scott, 1986, Mayo Clinic Proc. 61:771).

[00194] In a specific embodiment, the nucleic acid to be introduced for purposes of gene therapy comprises an inducible promoter operably linked to the coding region, such that expression of the nucleic acid is controllable by controlling the presence or absence of the appropriate inducer of transcription.

5.7 Bacterial Expression Vehicles

5

15

20

25

30

[00195] In certain embodiments, the present invention provides EphA2 antigenic peptide expression vehicles in the form of a microorganism, and, in specific embodiments, the microorganism is a bacterium.

[00196] Microorganisms useful for the methods of the present invention include but are not limited to Borrelia burgdorferi, Brucella melitensis, Escherichia coli, enteroinvasive Escherichia coli, Legionella pneumophila, Salmonella typhi, Salmonella typhimurium, Shigella spp., Streptococcus spp., Treponema pallidum, Yersinia enterocchtica, Listeria monocytogenes, Mycobacterium avium, Mycobacterium bovis, Mycobacterium tuberculosis, BCG, Mycoplasma hominis, Rickettsiae quintana,

35 Cryptococcus neoformans, Histoplasma capsulatum, Pneumocystis carnii, Eimeria

acervulina, Neospora caninum, Plasmodium falciparum, Sarcocystis suihominis,
Toxoplasma gondii, Leishmania amazonensis, Leishmania major, Leishmania mexacana,
Leptomonas karyophilus, Phytomonas spp., Trypanasoma cruzi, Encephahtozoon cuniculi,
Nosema helminthorum. Unikaryon leveri.

5

10

15

20

25

30

35

[00197] Many of the microorganisms encompassed by the present invention are causative agents of diseases in humans and animals. For example, sepsis from gram negative bacteria is a serious problem because of the high mortality rate associated with the onset of septic shock (R.C. Bone, 1993, Clinical Microbiol. Revs. 6:57-68). Therefore, to allow the safe use of these microorganisms in both diagnostics and treatment of humans and animals, the microorganisms are attenuated in their virulence for causing disease. The end result is to reduce the risk of toxic shock or other side effects due to administration of the vector to the patient. Such attenuated microorganisms can be isolated by a number of techniques. Such methods include use of antibiotic-sensitive strains of microorganisms, mutagenesis of the microorganisms, selection for microorganism mutants that lack

virulence factors, and construction of new strains of microorganisms with altered cell wall lipopolysaccharides.

[00198] In certain embodiments, the microorganisms can be attenuated by the deletion or disruption of DNA sequences which encode for virulence factors which insure survival of the microorganisms in the host cell, especially macrophages and neutrophils, by, for example, homologous recombination techniques and chemical or transposon mutagenesis. Many, but not all, of these studied virulence factors are associated with survival in macrophages such that these factors are specifically expressed within macrophages due to stress, for example, acidification, or are used to induced specific host cell responses, for example, macropinocytosis, Fields et al., 1986, Proc. Natl. Acad. Sci. USA 83:5189-5193. Bacterial virulence factors include, for example: cytolysin; defensin resistance loci; DNA K; fimbriae; GroEL; inv loci; lipoprotein; LPS; lysosomal fusion inhibition; macrophage survival loci; oxidative stress response loci; pho loci (e.g., PhoP and PhoQ); pho activated genes (pag; e.g., pagB and pagC); phoP and phoQ regulated genes

[00199] Yet another method for the attenuation of the microorganisms is to modify substituents of the microorganism which are responsible for the toxicity of that microorganism. For example, lipopolysaccharide (LPS) or endotoxin is primarily responsible for the pathological effects of bacterial sepsis. The component of LPS which results in this response is lipid A (LA). Elimination or mitigation of the toxic effects of LA results in an attenuated bacteria since 1) the risk of septic shock in the patient would be

(prg); porins; serum resistance peptide; virulence plasmids (such as spvB, traT and ty2).

reduced and 2) higher levels of the bacterial EphA2 antigenic peptide expression vehicle could be tolerated.

[00200] Rhodobacter (Rhodopseudomonas) sphaeroides and Rhodobacter capsulatus each possess a monophosphoryl lipid A (MLA) which does not elicit a septic shock response in experimental animals and, further, is an endotoxin antagonist. Loppnow et al., 1990, Infect. Immun. 58:3743-3750; Takayma et al., 1989, Infect. Immun. 57:1336-1338. Gram negative bacteria other than Rhodobacter can be genetically altered to produce MLA, thereby reducing its potential of inducing septic shock.

5

10

15

20

25

30

[00203]

[00201] Yet another example for altering the LPS of bacteria involves the introduction of mutations in the LPS biosynthetic pathway. Several enzymatic steps in LPS biosynthesis and the genetic loci controlling them in a number of bacteria have been identified, and several mutant bacterial strains have been isolated with genetic and enzymatic lesions in the LPS pathway. In certain embodiments, the LPS pathway mutant is a firA mutant. firA is the gene that encodes the enzyme UDP-3-O(R-30 hydroxymyristoyl)-glycocyamine N-acyltransferase, which regulates the third step in endotoxin biosynthesis (Kelley et al., 1993, J. Biol. Chem. 268:19866-19874).

[00202] As a method of insuring the attenuated phenotype and to avoid reversion to the non-attenuated phenotype, the bacteria may be engineered such that it is attenuated in more than one manner, e.g., a mutation in the pathway for lipid A production and one or more mutations to auxotrophy for one or more nutrients or metabolites, such as uracil biosynthesis, purine biosynthesis, and arginine biosynthesis.

In certain embodiments of the present invention, the bacterial EphA2

antigenic peptide expression vehicles are engineered to deliver suicide genes to the target EphA2-expressing cells. These suicide genes include pro-drug converting enzymes, such as Herpes simplex thymidine kinase (TK) and bacterial cytosine deaminase (CD). TK phosphorylates the non-toxic substrates acyclovir and ganciclovir, rendering them toxic via their incorporation into genomic DNA. CD converts the non-toxic 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU), which is toxic via its incorporation into RNA. Additional examples of pro-drug converting enzymes encompassed by the present invention include cytochrome p450 NADPH oxidoreductase which acts upon mitomycin C and porfiromycin (Murray et al., 1994, J. Pharmacol. Exp. Therapeut. 270:645-649). Other exemplary prodrug converting enzymes that may be used in the methods and compositions of the present invention include: carboxypeptidase; beta-glucuronidase; penicillin-V-amidase; penicillin-G-amidase; beta-lactamase; beta-glucosidase; nitroreductase; and carboxypeptidase A.

constructs are preferably designed such that the microorganism-produced peptides and enzymes are secreted by the microorganism. A number of bacterial secretion signals are well known in the art and may be used in the compositions and methods of the present invention. Exemplary secretion signals that can be used with gram-positive microorganisms include SecA (Sadaie et al., Gene 98:101-105, 1991), SecY (Suh et al., Mol. Microbiol, 4:305-314, 1990), SecE (Jeong et al., Mol. Microbiol, 10:133-142, 1993), FtsY an FfH (PCT/NL 96/00278), and PrsA (WO 94/19471). Exemplary secretion signals that may be used with gram-negative microorganisms include those of soluble cytoplasmic proteins such as SecB and heat shock proteins; that of the peripheral membrane-associated protein SecA; and those of the integral membrane proteins SecY, SecE, SecD and SecF. The promoters driving the expression of the EphA2 antigenic peptides and. optionally, pro-drug converting enzymes, may be either constitutive, in which the peptides or enzymes are continually expressed, inducible, in which the peptides or enzymes are expressed only upon the presence of an inducer molecule(s), or cell-type specific control, in which the peptides or enzymes are expressed only in certain cell types. For example, a suitable inducible promoter can a promoter responsible for the baterial "SOS" response (Friedberg et al., In: DNA Repair and Mutagenesis, pp. 407-455, Am. Soc. Microbiol. Press, 1995). Such a promoter is inducible by numerous agents including chemotherapeutic alkylating agents such as mitomycin (Oda et al., 1985, Mutation Research 147:219-229; Nakamura et al., 1987, Mutation Res, 192:239-246; Shimda et al., 1994, Carcinogenesis 15:2523-2529) which is approved for use in humans. Promoter elements which belong to this group include umuC, sulA and others (Shinagawa et al., 1983, Gene 23:167-174; Schnarr et al., 1991, Biochemie 73:423-431). The sulA promoter includes the ATG of the sulA gene and the following 27 nucleotides as well as 70 nucleotides upstream of the ATG (Cole, 1983, Mol. Gen. Genet. 189:400-404). Therefore, it is useful both in expressing foreign genes and in creating gene fusions for sequences lacking initiating codons.

Where the EphA2 vaccine comprises a microorganism that expresses an

EphA2 antigenic peptide and, optionally, a pro-drug converting enzyme, the expression

[00204]

5

10

15

20

25

30

35

5.7.1 Exemplary Embodiment: Listeria monocytogenes As An Expression Vehicle

[00206] Listeria monocytogenes (Listeria) is a Gram-positive facultative intracellular bacterium that is being developed for use in antigen-specific vaccines due to its ability to prime a potent CD4+/CD8+ T-cell mediated response via both MHC class I and class II antigen presentation pathways, and as such it has been tested recently as a vaccine vector in a human clinical trial among normal healthy volunteers.

[00207] Listeria has been studied for many years as a model for stimulating both innate and adaptive T cell-dependent antibacterial immunity. The ability of Listeria to effectively stimulate cellular immunity is based on its intracellular lifecycle. Upon infecting the host, the bacterium is rapidly taken up by phagocytes including macrophages and dendritic cells into a phagolysosomal compartment. The majority of the bacteria are subsequently degraded. Peptides resulting from proteolytic degradation of pathogens within phagosomes of infected APCs are loaded directly onto MHC class II molecules, and these MHC II-peptide complexes activate CD4+ "helper" T cells that stimulate the production of antibodies, and the processed antigens are expressed on the surface of the antigen presenting cell via the class II endosomal pathway. Within the acidic compartment. certain bacterial genes are activated including the cholesterol-dependent cytolysin, LLO. which can degrade the phagolysosome, releasing the bacterium into the cytosolic compartment of the host cell, where the surviving Listeria propagate. Efficient presentation of heterologous antigens via the MHC class I pathway requires de novo endogenous protein expression by Listeria. Within antigen presenting cells (APC), proteins synthesized and secreted by Listeria are sampled and degraded by the proteosome. The resulting peptides are shuttled into the endoplasmic reticulum by TAP proteins and loaded onto MHC class I molecules. The MHC I-peptide complex is delivered to the cell surface, which in combination with sufficient co-stimulation (signal 2) activates and stimulates cytotoxic T lymphocytes (CTLs) having the cognate T cell receptor to expand and subsequently recognize the MHC I-peptide complex.

5

10

15

20

25

30

35

[00208] The EphA2 antigenic peptides are preferably expressed in Listeria using a heterologous gene expression cassette. A heterologous gene expression cassette is typically comprised of the following ordered elements: (1) prokaryotic promoter; (2) Shine-Dalgamo sequence; (3) secretion signal (signal peptide); and, (4) heterologous gene. Optionally, the heterologous gene expression cassette may also contain a transcription termination sequence, in constructs for stable integration within the bacterial chromosome. While not required, inclusion of a transcription termination sequence as the final ordered element in a heterologous gene expression cassette may prevent polar effects on the regulation of expression of adjacent genes, due to read-through transcription.

[00209] The expression vectors introduced into the *Listeria*-based EphA2 vaccine are preferably designed such that the *Listeria*-produced EphA2 peptides and, optionally, prodrug converting enzymes, are secreted by the *Listeria*. A number of bacterial secretion signals are well known in the art and may be used in the compositions and methods of the present invention. Exemplary secretion signals that can be used with gram-positive

microorganisms include SecA (Sadaie et al., 1991, Gene 98:101-105), SecY (Suh et al., 1990, Mol. Microbiol. 4:305-314), SecE (Jeong et al., 1993, Mol. Microbiol. 10:133-142), FtsY and FfH (PCT/NL 96/00278), and PrsA (WO 94/19471).

5

10

15

20

25

30

35

[00210] The promoters driving the expression of the EphA2 antigenic peptides and, optionally, pro-drug converting enzymes, may be either constitutive, in which the peptides or enzymes are continually expressed, inducible, in which the peptides or enzymes are expressed only upon the presence of an inducer molecule(s), or cell-type specific control, in which the peptides or enzymes are expressed only in certain cell types. For example, a suitable inducible promoter can be a promoter responsible for the bacterial "SOS" response (Friedberg et al., In: DNA Repair and Mutagenesis, pp. 407-455, Am. Soc. Microbiol. Press, 1995). Such a promoter is inducible by numerous agents including chemotherapeutic alkylating agents such as mittomycin (Oda et al., 1985, Mutation Research 147:219-229; Nakamura et al., 1987, Mutation Res. 192:239-246; Shimda et al., 1994, Carcinogenesis 15:2523-2529) which is approved for use in humans. Promoter elements which belong to

this group include umuC, sulA and others (Shinagawa et al., 1983, Gene 23:167-174; Schnarr et al., 1991, Biochemie 73:423-431). The sulA promoter includes the ATG of the sulA gene and the following 27 nucleotides as well as 70 nucleotides upstream of the ATG (Cole, 1983, Mol. Gen. Genet. 189:400-404). Therefore, it is useful both in expressing foreign genes and in creating gene fusions for sequences lacking initiating codons.

[00211] Preferred embodiments of components of the EphA2 antigenic peptide expression system, to be used in conjunction with nucleic acids encoding EphA2 antigenic peptides described in Section 5.2, are provided below.

5.7.1.1. Construct Backbone

[00212] One of ordinary skill in the art will recognize that a variety of plasmid construct backbones are available which are suitable for use in the assembly of a heterologous gene expression cassette. A particular plasmid construct backbone is selected based on whether expression of the heterologous gene from the bacterial chromosome or from an extra-chromosomal episome is desired.

[00213] Given as non-limiting examples, incorporation of the heterologous gene expression cassette into the bacterial chromosome of *Listeria monocytogenes* (*Listeria*) is accomplished with an integration vector that contains an expression cassette for a listeriophage integrase that catalyzes sequence-specific integration of the vector into the *Listeria* chromosome. For example, the integration vectors known as pPL1 and pPL2 program stable single-copy integration of a heterologous protein (e.g., EphA2-antigenic peptide) expression cassette within an innocuous region of the bacterial genome, and have

been described in the literature (Lauer et. al. 2002 J. Bacteriol. 184:4177-4178). The integration vectors are stable as plasmids in E. coli and are introduced via conjugation into the desired Listeria background. Each vector lacks a Listeria-specific origin of replication and encodes a phage integrase, such that the vectors are stable only upon integration into a chromosomal phage attachment site. Starting with a desired plasmid construct, the process of generating a recombinant Listeria strain expressing a desired protein(s) takes approximately one week. The pPL1 and pPL2 integration vectors are based, respectively, on the U153 and PSA listeriophages. The pPL1 vector integrates within the open reading frame of the comK gene, while pPL2 integrates within the tRNAArg gene in such a manner that the native sequence of the gene is restored upon successful integration, thus keeping its native expressed function intact. The pPL1 and pPL2 integration vectors contain a multiple cloning site sequence in order to facilitate construction of plasmids containing the heterologous protein (e.g., EphA2-antigenic peptide) expression cassette. Alternatively, incorporation of the EphA2-antigenic peptide expression cassette into the Listeria chromosome can be accomplished through alleleic exchange methods, known to those skilled in the art. In particular, compositions in which it is desired to not incorporate a gene encoding an antibiotic resistance protein as part of the construct containing the heterologous gene expression cassette, methods of allelic exchange are desirable. For example, the pKSV7 vector (Camilli et. al. Mol. Microbiol. 1993 8.143-157), contains a temperaturesensitive Listeria Gram-positive replication origin which is exploited to select for recombinant clones at the non-permissive temperature that represent the pKSV7 plasmid recombined into the Listeria chromosome. The pKSV7 allelic exchange plasmid vector contains a multiple cloning site sequence in order to facilitate construction of plasmids containing the heterologous protein (e.g., EphA2-antigenic peptide) expression cassette, and also a chloramphenicol resistance gene. For insertion into the Listeria chromosome, the heterologous EphA2-antigenic peptide expression cassette construct is optimally flanked by approximately 1 kb of chromosomal DNA sequence that corresponds to the precise location of desired integration. The pKSV7-heterologous protein (e.g., EphA2-antigenic peptide) expression cassette plasmid is introduced optimally into a desired bacterial strain by electroporation, according to standard methods for electroporation of Gram positive bacteria. Briefly, bacteria electroporated with the pKSV7-heterologous protein (e.g., EphA2-antigenic peptide) expression cassette plasmid are selected by plating on BHI agar media containing chloramphenicol (10 µg/ml), and incubated at the permissive temperature of 30oC. Single cross-over integration into the bacterial chromosome is selected by passaging several individual colonies for multiple generations at the non-permissive

5

10

15

20

25

30

35

temperature of 41oC in media containing chloramphenicol. Finally, plasmid excision and curing (double cross-over) is achieved by passaging several individual colonies for multiple generations at the permissive temperature of 30°C in BHI media not containing chloramphenicol. Verification of integration of the heterologous protein (e.g., EphA2-antigenic peptide) expression cassette into the bacteria chromosome can be accomplished by PCR, utilizing a primer pair that amplifies a region defined from within the heterologous protein (e.g., EphA2-antigenic peptide) expression cassette to the bacterial chromosome targeting sequence not contained in the pKSV7 plasmid vector construct.

5

10

15

20

[00214] In other compositions, it may be desired to express the heterologous protein (e.g., EphA2-antigenic peptide) from a stable plasmid episome. Maintenance of the plasmid episome through passaging for multiple generations requires the co-expression of a protein that confers a selective advantage for the plasmid-containing bacterium. As non-limiting examples, the protein co-expressed from the plasmid in combination with the heterologous protein (e.g., EphA2-antigenic peptide) may be an antibiotic resistance protein, for example chloramphenicol, or may be a bacterial protein (that is expressed from the chromosome in wild-type bacteria), that can also confer a selective advantage. Non-

limiting examples of bacterial proteins include enzyme required for purine or amino acid biosynthesis (selection under defined media lacking relevant amino acids or other necessary precursor macromolecules), or a transcription factor required for the expression of genes that confer a selective advantage in vitro or in vivo (Gunn et. al. 2001 J. Immuol. 167:6471-6479). As a non-limiting example, pAM401 is a suitable plasmid for episomal expression of a selected heterologous protein (e.g., EphA2-antigenic peptide) in diverse Gram-positive bacterial genera (Wirth et. al. 1986 J. Bacteriol 165:831-836).

5.7.1.2. Shine-Dalgarno Sequence

25 [00215] At the 3' end of the promoter is contained a poly-purine Shine-Dalgarno sequence, the element required for engagement of the 30S ribosomal subunit (via 16S rRNA) to the heterologous gene RNA transcript and initiation of translation. The Shine-Dalgarno sequence has typically the following consensus sequence: (SEQ ID NO:66): 5'-NAGGAGGU-N5-10-AUG (start codon)-3'. There are variations of the poly-purine Shine-Dalgarno sequence Notably, the *Listeria* hly gene that encodes listerolysin O (LLO) has the following Shine-Dalgarno sequence (SEQ ID NO:67): AAGGAGAGTGAAACCCATG (Shine-Dalgarno sequence is underlined, and the translation start codon is bolded).

5.7.1.3. Codon Optimization

[00216] It is well known to those skilled in the art that for optimal translation efficiency of a selected heterologous protein, it is desirable to utilize codons favored by the bacterium. The preferred codon usage for bacterial expression can be found at the following link: http://www.kazusa.or.jp/codon/. In some embodiments, expression of heterologous proteins from *Listeria* monocytogenes is desired. The preferred *Listeria* monocytogenes codon usage can be found at the following link: http://www.kazusa.or.jp/codon/cgi-

bin/showcodon.cgi?species=Listeria+monocytogenes+[gbbct]

5

15

[00217] The optimal codons utilized by *Listeria* monocytogenes for each amino acid

Listeria Codon Bias: Codons to be used for optimizing expression One Letter Code Optimal Listeria Codon Amino Acid Alanine GCA Α Arginine R CGU Ν AAU Asparagine D Aspartate GAU Cysteine С UGU Glutamine 0 CAA Glutamate E GAA Glycine G GGU Histidine н CAU Isoleucine T AUU Leucine UUA L Lysine ĸ AAA Methionine M AUG F UUU Phenylalanine P Proline CCA Serine S AGU Threonine Т ACA w UGG Tryptophan Tyrosine γ UAU

5.7.1.4. Signal Peptides

Valine

[00218] Bacteria utilize diverse pathways for protein secretion, including secA1 and Twin-Arg Translocation (Tat), which are located at the N-terminal end of the pre-protein. The majority of secreted proteins utilize the Sec pathway, in which the protein translocates through the bacterial membrane-embedded proteinaceous Sec pore in an unfolded

GUU

v

conformation. In contrast, the proteins utilizing the Tat pathway are secreted in a folded conformation. Nucleotide sequence encoding signal peptides corresponding to either of these protein secretion pathways can be fused genetically in-frame to a desired heterologous protein coding sequence. The signal peptides optimally contain a signal peptidase at their 5 carboxyl terminus for release of the authentic desired protein into the extra-cellular environment (Sharkov and Cai, 2002 J. Biol. Chem. 277:5796-5803; Nielsen et. al. 1997 Protein Engineering 10:1-6; and, http://www.cbs.dtu.dk/services/SignalP/). The signal peptides can be derived not only from diverse secretion pathways, but also from diverse bacterial genera. Signal peptides have a common structural organization, having a charged 10 N-terminus (N-domain), a hydrophobic core region (H-domain) and a more polar Cterminal region (C-domain), however, they do not show sequence conservation. The Cdomain of the signal peptide carries a type I signal peptidase (SPase I) cleavage site, having the consensus sequence A-X-A, at positions -1 and -3 relative to the cleavage site. Proteins secreted via the sec pathway have signal peptides that average 28 residues. Signal peptides 15 related to proteins secreted by the Tat pathway have a tripartite organization similar to Sec signal peptides, but are characterized by having an RR-motif (R-R-X-#-#, where # is a hydrophobic residue), located at the N-domain / H-domain boundary. Bacterial Tat signal peptides average 14 amino acids longer than sec signal peptides. The Bacillus subtilis secretome may contain as many as 69 putative proteins that utilize the Tat secretion 20 pathway, 14 of which contain a SPase I cleavage site (Jongbloed et. al. 2002 J. Biol. Chem. 277:44068-44078; Thalsma et. al., 2000 Microbiol, Mol. Biol. Rev. 64:515-547). Shown in the table below are non-limiting examples of signal peptides that can be used in fusion compositions with a selected heterologous gene, resulting in secretion from the bacterium of the encoded protein.

Secretion Pathway	Signal Peptide Amino Acid Sequence (NH ₂ -CO ₂)	Signal peptidase Site (cleavage site represented by ')	Gene	Genus/species	SEQ ID NO:
secA1	MKKIMLVFITLILVSLPI AQQTEAKD	TEA'KD (SEQ ID NO:70)	hly (LLO)	Listeria monocytogene s	44
	MTDKKSENQTEKTETK ENKGMTRREMLKLSAV AGTGIAVGATGLGTILN VVDQVDKALT	DKA'LT (SEQ ID NO:71)	lmo0367	Listeria monocytogene s	45
	MAYDSRFDEWVQKLK EESFQNNTFDRRKFIQG AGKIAGLSLGLTIAQSV GAFG	VGA'FG (SEQ ID NO:72)	PhoD (alkaline phosphata se)	Bacillus subtillis	46

[00219] It should be appreciated by those skilled in the art that there exists a variety of proteins secreted via the Tat pathway among diverse bacterial genera, and that selected

25

Tat signal peptides corresponding to these proteins can be fused genetically in-frame to a desired sequence encoding a heterologous protein, to facilitate secretion of the functionally linked Tat signal peptide-heterologous protein chimera via the Tat pathway. Provided below are non-limiting examples of proteins from Bacillus subtilis and Listeria (innocua and monocytogenes) that are predicted to utilize Tat pathway secretion.

Putative Bacillus subtilis Proteins Secreted by Tat Pathwayhttp://www.sas.upenn.edu/~pohlschr/TABLE1.html

[00220] >gi|2635523|cmb|CAB15017.1| similar to two (component sensor histidine kinase (YtsA) (Bacillus subtilis)

10 [00221] >gi|2632548|emb|CAB12056.1| phosphodicsterase/alkaline phosphatase D (Bacillus subtilis)

 $\label{eq:continuous} $$ | 00222 | $$ $>$ gi|2632573 | emb|CAB12081.1 | similar to hypothetical proteins (Bacillus subtilis) $$$

[00223] >gi|2633776|emb|CAB13278.1| similar to hypothetical proteins (Bacillus

15 subtilis)

25

5

[00224] >gi|2634674|emb|CAB14172.1| menaquinol:cytochrome c oxidoreductase (iron (sulfur subunit) (Bacillus subtilis)

[00225] >gi|2635595|emb|CAB15089.1| yubF (Bacillus subtilis)

[00226] >gi|2636361|emb|CAB15852.1| alternate gene name: ipa (29d~similar to

20 hypothetical proteins (Bacillus subtilis)

Putative Listeria Proteins Secreted by Tat Pathwayhttp://www.sas.upenn.edu/~pohlschr/TABLE1.html

[00227] Listeria innocuahttp://www.sas.upenn.edu/~pohlschr/TABLE1.html

[00228] >gi|16799463|ref|NP_469731.1| conserved hypothetical protein similar to B.

subtilis YwbN protein (Listeria innocua)

[00229] >gi|16801368|rcf|NP_471636.1| similar to 3 (oxoacyl (acyl (carrier protein synthase (*Listeria* innocua)

[00230] Listeria monocytogenes EGD (e)

http://www.sas.upenn.edu/~pohlschr/TABLE1.html

30 [00231] >gi|16802412|ref|NP_463897.1| conserved hypothetical protein similar to B. subtilis YwbN protein (*Listeria* monocytogenes EGD (e)

[00232] Organisms utilize codon bias to regulate expression of particular endogenous genes. Thus, signal peptides utilized for secretion of selected heterologous proteins may not contain codons that utilize preferred codons, resulting in non-optimal levels of protein

35 synthesis. In some some embodiments, the signal peptide sequence fused in frame with a

gene encoding a selected heterologous protein is codon-optimized for codon usage in a selected bacterium. In some embodiments for expression and secretion from recombinant Listeria monocytogenes, a nucleotide sequence of a selected signal peptide is codon optimized for expression in Listeria monocytogenes, according to the table (ibid.)

5.7.1.5. Transcription Termination Sequence

[00233] In some embodiments, a transcription termination sequence can be inserted into the heterologous protein expression cassette, downstream from the C-terminus of the translational stop codon related to the heterologous protein. Appropriate sequence elements known to those who are skilled in the art that promote either rho-dependent or rho-independent transcription termination can be placed in the heterologous protein expression cassette.

5.8 Anti-Idiotypic Antibodies

5

10

15

20

25

30

[00234] The present invention relates to methods and compositions utilizing EphA2 vaccines for eliciting immune responses against EphA2-expressing cells and treatment and prevention of disorders involving EphA2-expressing cells. In certain embodiments, the EphA2 vaccines of the invention comprises an anti-idiotype of an anti-EphA2 antibody. [00235] The idiotopes on a single antibody molecule are thought to mimic and be the "internal image" of any foreign or self epitope at the molecular level. By means of Mab technology, an antibody against an EphA2 epitope is produced, purified and subsequently used as an immunogen to elicit an anti-idiotypic antibody which may be an internal image of the original EphA2 epitope. Thus, as predicted by the Jerne "network" theory (Jerne, 1974, Ann. Inst. Pasteur. Immun. 125C:373-389), immunization with an anti-idiotypic antibody that is directed against antigen combining sites of an anti-EphA2 epitope antibody would elicit a humoral immune response specific for the nominal antigen. The resulting anti-anti-idiotypic antibody should react with the original primary EphA2 epitope. Thus, EphA2 antibodies can be utilized to generate anti-idiotype antibodies that using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona,

House the third using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB 17(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example, antibodies which bind to EphA2 can be used to generate anti-idiotypes that, when administered to a subject, can elicit a humoral immune response against EphA2. Such anti-idiotypes (including molecules comprising, or alternatively consisting of, antibody fragments or variants, such as Fab fragments of such anti-idiotypes) can be used in therapeutic regimens to elicit an immune response against hyperproliferative cells that

express EphA2 and thus be useful in treating, preventing or managing hyperproliferative diseases involving EphA2-overexpressing cells.

5.9 Prophylactic/Therapeutic Methods

5

10

15

20

25

30

35

[00237] The present invention encompasses methods for treating, preventing, or managing a disease or disorder associated with overexpression of EphA2 and/or cell hyperproliferative disorders, preferably cancer, in a subject comprising administering one or more EphA2 vaccines of the invention.

[00238] The present invention further encompasses methods for eliciting an immune response against an EphA2-expressing cell associated with a hyperproliferative disorder, comprising administering to a subject one or more EphA2 vaccines of the invention in an amount effective for eliciting an immune response against the EphA2-expressing cell.

[00239] An EphA2 vaccine may comprise one more EphA2 antigenic peptides, one ore more EphA2 antigenic peptide expression vehicles, or antigen presenting cells sensitized with one ore more EphA2 antigenic peptides.

[00240] In another specific embodiment, the disorder to be treated, prevented, or managed is a pre-cancerous condition associated with cells that overexpress EphA2. In more specific embodiments, the pre-cancerous condition is high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi.

[00241] In one embodiment, the peptides of the invention can be administered in combination with one or more other therapeutic agents useful in the treatment, prevention or management of diseases or disorders associated with EphA2 overexpression. hyperproliferative disorders, and/or cancer. In certain embodiments, one or more EphA2 antigenic peptides of the invention are administered to a mammal, preferably a human, concurrently with one or more other therapeutic agents useful for the treatment of cancer. The term "concurrently" is not limited to the administration of prophylactic or therapeutic agents at exactly the same time, but rather it is meant that the EphA2 antigenic peptides of the invention and the other agent are administered to a subject in a sequence and within a time interval such that the peptides of the invention can act together with the other agent to provide an increased benefit than if they were administered otherwise. For example, each prophylactic or therapeutic agent may be administered at the same time or sequentially in any order at different points in time; however, if not administered at the same time, they should be administered sufficiently close in time so as to provide the desired therapeutic or prophylactic effect. Each therapeutic agent can be administered separately, in any appropriate form and by any suitable route. In other embodiments, the EphA2 antigenic

peptides of the invention are administered before, concurrently or after surgery. Preferably the surgery completely removes localized tumors or reduces the size of large tumors.

Surgery can also be done as a preventive measure or to relieve pain.

[00242] In various embodiments, the prophylactic or therapeutic agents are administered less than 1 hour apart, at about 1 hour apart, at about 1 hour to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 6 hours to about 9 hours apart, at about 10 hours apart, at about 10 hours apart, at about 11 hours to about 11 hours apart, at about 11 hours apart, and apart, and apart apart apart apart apart apart, and apart apart apart apart apart apart apart. In preferred embodiments, two or more components are administered within the same patient visit.

[00243] The dosage amounts and frequencies of administration provided herein are encompassed by the terms therapeutically effective and prophylactically effective. The dosage and frequency further will typically vary according to factors specific for each patient depending on the specific therapeutic or prophylactic agents administered, the severity and type of cancer, the route of administration, as well as age, body weight, response, and the past medical history of the patient. Suitable regimens can be selected by one skilled in the art by considering such factors and by following, for example, dosages reported in the literature and recommended in the *Physician's Desk Reference* (56th ed., 2002).

5.9.1 Patient Population

5

10

1.5

20

25

30

35

[00244] The invention provides methods for treating, preventing, and managing a disease or disorder associated with EphA2 overexpression and/or hyperproliferative cell disease, particularly cancer, by administrating to a subject in need thereof one or more EphA2 vaccines of the invention in a therapeutically or prophylactically effective amount or an amount effective to elicit an immune response against EphA2-expressing cells associated with the hyperproliferative disorder. In another embodiment, the EphA2 vaccines of the invention can be administered in combination with one or more other therapeutic or prophylactic agents. The subject is preferably a mammal such as non-primate (e.g., cows, pigs, horses, cats, dogs, rats, etc.) and a primate (e.g., monkey, such as a cynomolgous monkey and a human). In a preferred embodiment, the subject is a human.

[00245] Specific examples of cancers that can be treated by the methods encompassed by the invention include, but are not limited to, cancers that overexpress EphA2. In a further embodiment, the cancer is of an epithelial origin. Examples of such

cancers are cancer of the lung, colon, ovary, esophagus, prostate, breast, and skin. Other cancers include cancer of the bladder and pancreas and renal cell carcinoma and melanoma. In yet a further embodiment, the cancer is of a T cell origin. Examples of such cancers are leukemias and lymphomas. Additional cancers are listed by example and not by limitation in the following section 5.9.1.1. In particular embodiments, methods of the invention can be used to treat and/or prevent metastasis from primary tumors.

[00246] The methods and compositions of the invention comprise the administration of one or more EphA2 vaccines of the invention to subjects/patients suffering from or expected to suffer from cancer, e.g., have a genetic predisposition for a particular type of cancer, have been exposed to a carcinogen, or are in remission from a particular cancer. As used herein, "cancer" refers to primary or metastatic cancers. Such patients may or may not have been previously treated for cancer. The methods and compositions of the invention may be used as a first line or second line cancer treatment. Included in the invention is also the treatment of patients undergoing other cancer therapies and the methods and compositions of the invention can be used before any adverse effects or intolerance of these other cancer therapies occurs. The invention also encompasses methods for administering one or more EphA2 vaccines of the invention to treat or ameliorate symptoms in refractory patients. In a certain embodiment, that a cancer is refractory to a therapy means that at least some significant portion of the cancer cells are not killed or their cell division arrested. The determination of whether the cancer cells are refractory can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of treatment on cancer cells, using the art-accepted meanings of "refractory" in such a context. In various embodiments, a cancer is refractory where the number of cancer cells has not been significantly reduced, or has increased. The invention also encompasses methods for administering one or more EphA2 vaccines to prevent the onset or recurrence of cancer in patients predisposed to having cancer.

10

15

20

25

30

35

[00247] In particular embodiments, the EphA2 vaccines of the invention are administered to reverse resistance or reduced sensitivity of cancer cells to certain hormonal, radiation and chemotherapeutic agents thereby resensitizing the cancer cells to one or more of these agents, which can then be administered (or continue to be administered) to treat or manage cancer, including to prevent metastasis. In a specific embodiment, the EphA2 vaccines of the invention are administered to patients with increased levels of the cytokine IL-6, which has been associated with the development of cancer cell resistance to different treatment regimens, such as chemotherapy and hormonal therapy. In another specific embodiment, the EphA2 vaccines of the invention are administered to patients suffering

from breast cancer that have a decreased responsiveness or are refractory to tamoxifen treatment. In another specific embodiment, the EphA2 vaccines of the invention are administered to patients with increased levels of the cytokine IL-6, which has been associated with the development of cancer cell resistance to different treatment regimens, such as chemotherapy and hormonal therapy.

5

10

15

20

25

30

35

[00248] In alternate embodiments, the invention provides methods for treating patients' cancer by administering one or more EphA2 vaccines of the invention in combination with any other treatment or to patients who have proven refractory to other treatments but are no longer on these treatments. In certain embodiments, the patients being treated by the methods of the invention are patients already being treated with chemotherapy, radiation therapy, hormonal therapy, or biological therapy/immunotherapy. Among these patients are refractory patients and those with cancer despite treatment with existing cancer therapies. In other embodiments, the patients have been treated and have no disease activity and one or more agonistic peptides of the invention are administered to prevent the recurrence of cancer.

[00249] In preferred embodiments, the existing treatment is chemotherapy. In particular embodiments, the existing treatment includes administration of chemotherapies including, but not limited to, methotrexate, taxol, mercaptopurine, thioguanine, hydroxyurea, cytarabine, cyclophosphamide, ifosfamide, nitrosoureas, cisplatin, carboplatin, mitomycin, dacarbazine, procarbizine, etoposides, campathecins, bleomycin, doxorubicin, idarubicin, daunorubicin, dactinomycin, plicamycin, mitoxantrone, asparaginase, vinblastine, vincristine, vinorelbine, paclitaxel, docetaxel, etc. Among these patients are patients treated with radiation therapy, hormonal therapy and/or biological therapy/immunotherapy. Also among these patients are those who have undergone surgery for the treatment of cancer.

[00250] Alternatively, the invention also encompasses methods for treating patients undergoing or having undergone radiation therapy. Among these are patients being treated or previously treated with chemotherapy, hormonal therapy and/or biological therapy/immunotherapy. Also among these patients are those who have undergone surgery for the treatment of cancer.

[00251] In other embodiments, the invention encompasses methods for treating patients undergoing or having undergone hormonal therapy and/or biological therapy/immunotherapy. Among these are patients being treated or having been treated with chemotherapy and/or radiation therapy. Also among these patients are those who have undergone surgery for the treatment of cancer.

[00252] Additionally, the invention also provides methods of treatment of cancer as an alternative to chemotherapy, radiation therapy, hormonal therapy, and/or biological therapy/immunotherapy where the therapy has proven or may prove too toxic, i.e., results in unacceptable or unbearable side effects, for the subject being treated. The subject being treated with the methods of the invention may, optionally, be treated with other cancer treatments such as surgery, chemotherapy, radiation therapy, hormonal therapy or biological therapy, depending on which treatment was found to be unacceptable or unbearable.

5

10

15

20

25

30

35

[00253] In other embodiments, the invention provides administration of one or more EphA2 vaccines of the invention without any other cancer therapies for the treatment of cancer, but who have proved refractory to such treatments. In specific embodiments, patients refractory to other cancer therapies are administered one or more EphA2 vaccines in the absence of cancer therapies.

[00254] In other embodiments, patients with a pre-cancerous condition associated with cells that overexpress EphA2 can be administered vaccines of the invention to treat the disorder and decrease the likelihood that it will progress to malignant cancer. In a specific embodiments, the pre-cancerous condition is high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi.

[00255] In yet other embodiments, the invention provides methods of treating, preventing and managing non-cancer hyperproliferative cell disorders, particularly those associated with overexpression of EphA2, including but not limited to, asthma, chromic obstructive pulmonary disorder (COPD), restenosis (smooth muscle and/or endothelial), psoriasis, etc. These methods include methods analogous to those described above for treating, preventing and managing cancer, for example, by administering the EphA2 vaccines of the invention, combination therapy, administration to patients refractory to particular treatments, etc.

5.9.1.1. Cancers

[00256] Cancers and related disorders that can be treated, prevented, or managed by methods and compositions of the present invention include but are not limited to cancers of an epithelial cell origin. Examples of such cancers include the following: leukemias, such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias, such as, myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia leukemias and myelodysplastic syndrome; chronic leukemias, such as but not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin's disease, non-Hodgkin's disease; multiple myelomas such as but not limited to smoldering

multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma and extramedullary plasmacytoma; Waldenström's macroglobulinemia; monoclonal gammopathy of undetermined significance; benign monoclonal gammopathy; heavy chain disease; bone and connective tissue sarcomas such 5 as but not limited to bone sarcoma, osteosarcoma, chondrosarcoma, Ewing's sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, neurilemmoma, rhabdomyosarcoma, synovial sarcoma; brain tumors such as but not limited to, glioma, astrocytoma, brain stem 10 glioma, ependymoma, oligodendroglioma, nonglial tumor, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, primary brain lymphoma; breast cancer including but not limited to ductal carcinoma. adenocarcinoma, lobular (small cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, Paget's 15 disease, and inflammatory breast cancer; adrenal cancer such as but not limited to pheochromocytom and adrenocortical carcinoma; thyroid cancer such as but not limited to papillary or follicular thyroid cancer, medullary thyroid cancer and anaplastic thyroid cancer; pancreatic cancer such as but not limited to, insulinoma, gastrinoma, glucagonoma. vipoma, somatostatin-secreting tumor, and carcinoid or islet cell tumor; pituitary cancers 20 such as but limited to Cushing's disease, projectin-secreting tumor, acromegaly, and diabetes insipius; eye cancers such as but not limited to ocular melanoma such as iris melanoma, choroidal melanoma, and cilliary body melanoma, and retinoblastoma; vaginal cancers such as squamous cell carcinoma, adenocarcinoma, and melanoma; vulvar cancer such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma. 25 sarcoma, and Paget's disease; cervical cancers such as but not limited to, squamous cell carcinoma, and adenocarcinoma; uterine cancers such as but not limited to endometrial carcinoma and uterine sarcoma; ovarian cancers such as but not limited to, ovarian epithelial carcinoma, borderline tumor, germ cell tumor, and stromal tumor; esophageal cancers such as but not limited to, squamous cancer, adenocarcinoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, 30 plasmacytoma, verrucous carcinoma, and oat cell (small cell) carcinoma; stomach cancers such as but not limited to, adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma; colon cancers; rectal cancers; liver cancers such as but not limited to 35 hepatocellular carcinoma and hepatoblastoma; gallbladder cancers such as adenocarcinoma;

cholangiocarcinomas such as but not limited to pappillary, nodular, and diffuse; lung cancers such as non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma and small-cell lung cancer; testicular cancers such as but not limited to germinal tumor, seminoma, anaplastic, classic (typical), 5 spermatocytic, nonseminoma, embryonal carcinoma, teratoma carcinoma, choriocarcinoma (volk-sac tumor), prostate cancers such as but not limited to, prostatic intraepithelial neoplasia, adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma; penal cancers; oral cancers such as but not limited to squamous cell carcinoma; basal cancers; salivary gland cancers such as but not limited to adenocarcinoma, mucoepidermoid carcinoma, and 10 adenoidcystic carcinoma; pharynx cancers such as but not limited to squamous cell cancer. and verrucous; skin cancers such as but not limited to, basal cell carcinoma, squamous cell carcinoma and melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, acral lentiginous melanoma; kidney cancers such as but not limited to renal cell carcinoma, adenocarcinoma, hypernephroma, fibrosarcoma, transitional cell 15 cancer (renal pelvis and/ or uterer); Wilms' tumor; bladder cancers such as but not limited to transitional cell carcinoma, squamous cell cancer, adenocarcinoma, carcinosarcoma. In addition, cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma. lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma. sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas (for a 20 review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia and Murphy et al., 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, Penguin Books U.S.A., Inc., United States of America) [00257] Accordingly, the methods and compositions of the invention are also useful in the treatment or prevention of a variety of cancers or other abnormal proliferative

bladder, breast, ovary, oesophagus, colon, kidney, liver, lung, ovary, pancreas, stomach, cervix, thyroid and skin; including squamous cell carcinoma; hematopoietic tumors of 30 lymphoid lineage, including leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Burkitt's lymphoma; hematopoietic tumors of myeloid lineage, including acute and chronic myelogenous leukemias and promyelocytic leukemia; tumors of mesenchymal origin, including fibrosarcoma and rhabdomyoscarcoma; other tumors, including melanoma, seminoma, tetratocarcinoma, neuroblastoma and 35 glioma; tumors of the central and peripheral nervous system, including astrocytoma,

diseases, including (but not limited to) the following; carcinoma, including that of the

25

neuroblastoma, glioma, and schwannomas; tumors of mesenchymal origin, including fibrosarcoma, rhabdomyoscarama, and osteosarcoma; and other tumors, including melanoma, xeroderma pigmentosum, keratoactanthoma, seminoma, thyroid follicular cancer and teratocarcinoma. It is also contemplated that cancers caused by aberrations in apoptosis would also be treated by the methods and compositions of the invention. Such cancers may include but not be limited to follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis, and myelodysplastic syndromes. In specific embodiments, malignancy or dysproliferative changes (such as metaplasias and dysplasias), or hyperproliferative disorders, are treated or prevented in the skin, lung, colon, breast, prostate, bladder, kidney, pancreas, ovary, or uterus. In other specific embodiments, sarcoma, melanoma, or leukemia is treated or prevented.

5

10

15

20

25

30

[00258] In some embodiments, the cancer is malignant and overexpresses EphA2. In other embodiments, the disorder to be treated is a pre-cancerous condition associated with cells that overexpress EphA2. In a specific embodiments, the pre-cancerous condition is high-grade prostatic intraepithelial neoplasia (PIN), fibroadenoma of the breast, fibrocystic disease, or compound nevi.

[00259] In preferred embodiments, the methods and compositions of the invention are used for the treatment and/or prevention of breast, colon, ovarian, oesophageal, lung, and prostate cancers and melanoma and are provided below by example rather than by limitation.

[00260] In another preferred embodiment, the methods and compositions of the invention are used for the treatment and/or prevention of cancers of T cell origin, including, but not limited to, leukemias and lymphomas.

5.9.1.2. Treatment of Breast Cancer

[00261] In specific embodiments, patients with breast cancer are administered an effective amount of one or more EphA2 vaccines of the invention. In another embodiment, the peptides of the invention can be administered in combination with an effective amount of one or more other agents useful for breast cancer therapy including but not limited to: doxorubicin, epirubicin, the combination of doxorubicin and cyclophosphamide (AC), the combination of cyclophosphamide, doxorubicin and 5-fluorouracil (CAF), the combination of cyclophosphamide, epirubicin and 5-fluorouracil (CEF), herceptin, tamoxifen, the combination of tamoxifen and cytotoxic chemotherapy, taxanes (such as docetaxel and paclitaxel). In a further embodiment, peptides of the invention can be administered with

taxanes plus standard doxorubicin and cyclophosphamide for adjuvant treatment of nodepositive, localized breast cancer.

[00262] In a specific embodiment, patients with pre-cancerous fibroadenoma of the breast or fibrocystic disease are administered an EphA2 vaccine of the invention to treat the disorder and decrease the likelihood that it will progress to malignant breast cancer. In another specific embodiment, patients refractory to treatment, particularly hormonal therapy, more particularly tamoxifen therapy, are administered an EphA2 vaccine of the invention to treat the cancer and/or render the patient non-refractory or responsive.

5.9.1.3. Treatment of Colon Cancer

5

10

15

20

25

30

[00263] In specific embodiments, patients with colon cancer are administered an effective amount of one or more EphA2 vaccines of the invention. In another embodiment, the peptides of the invention can be administered in combination with an effective amount of one or more other agents useful for colon cancer therapy including but not limited to: the combination of 5-FU and leucovorin, the combination of 5-FU and levamisole, irinotecan (CPT-11) or the combination of irinotecan, 5-FU and leucovorin (IFL).

5.9.1.4. Treatment of Prostate Cancer

[00264] In specific embodiments, patients with prostate cancer are administered an effective amount of one or more EphA2 vaccines of the invention. In another embodiment, the peptides of the invention can be administered in combination with an effective amount of one or more other agents useful for prostate cancer therapy including but not limited to: external-beam radiation therapy, interstitial implantation of radioisotopes (i.e., I¹²⁵, palladium, iridium), leuprolide or other LHRH agonists, non-steroidal antiandrogens (flutamide, nilutamide, bicalutamide), steroidal antiandrogens (cyproterone acetate), the combination of leuprolide and flutamide, estrogens such as DES, chlorotrianisene, ethinyl estradiol, conjugated estrogens U.S.P., DES-diphosphate, radioisotopes, such as strontium-89, the combination of external-beam radiation therapy and strontium-89, second-line hormonal therapies such as aminoglutethimide, hydrocortisone, flutamide withdrawal, progesterone, and ketoconazole, low-dose prednisone, or other chemotherapy regimens reported to produce subjective improvement in symptoms and reduction in PSA level including docetaxel, paclitaxel, estramustine/docetaxel, estramustine/etoposide, estramustine/vinblastine, and estramustine/paclitaxel.

[00265] In a specific embodiment, patients with pre-cancerous high-grade prostatic intraepithelial neoplasia (PIN) are administered an EphA2 vaccine of the invention to treat the disorder and decrease the likelihood that it will progress to malignant prostate cancer.

5.9.1.5. Treatment of Melanoma

5

10

15

[00266] In specific embodiments, patients with melanoma are administered an effective amount of one or more EphA2 vaccines of the invention. In another embodiment, the peptides of the invention can be administered in combination with an effective amount of one or more other agents useful for melanoma cancer therapy including but not limited to: dacarbazine (DTIC), nitrosoureas such as carmustine (BCNU) and lomustine (CCNU), agents with modest single agent activity including vinca alkaloids, platinum compounds, and taxanes, the Dartmouth regimen (cisplatin, BCNU, and DTIC), interferon alpha (IFN-A), and interleukin-2 (IL-2). In a specific embodiment, an effective amount of one or more EphA2 vaccines of the invention can be administered in combination with isolated hyperthermic limb perfusion (ILP) with melphalan (L-PAM), with or without tumor necrosis factor-alpha (TNF-alpha) to patients with multiple brain metastases, bone metastases, and spinal cord compression to achieve symptom relief and some shrinkage of the tumor with radiation therapy.

[00267] In a specific embodiment, patients with pre-cancerous compound nevi are administered an EphA2 vaccine of the invention to treat the disorder and decrease the likelihood that it will progress to malignant melanoma.

5.9.1.6. Treatment of Ovarian Cancer

[00268] In specific embodiments, patients with ovarian cancer are administered an effective amount of one or more EphA2 vaccines of the invention. In another embodiment, 20 the peptides of the invention can be administered in combination with an effective amount of one or more other agents useful for ovarian cancer therapy including but not limited to: intraperitoneal radiation therapy, such as P32 therapy, total abdominal and pelvic radiation therapy, cisplatin, the combination of paclitaxel (Taxol) or docetaxel (Taxotere) and 25 cisplatin or carboplatin, the combination of cyclophosphamide and cisplatin, the combination of cyclophosphamide and carboplatin, the combination of 5-FU and leucovorin, etoposide, liposomal doxorubicin, gemcitabine or topotecan. It is contemplated that an effective amount of one or more EphA2 vaccines of the invention is administered in combination with the administration Taxol for patients with platinum-refractory disease. 30 Included is the treatment of patients with refractory ovarian cancer including administration of: ifosfamide in patients with disease that is platinum-refractory, hexamethylmelamine (HMM) as salvage chemotherapy after failure of cisplatin-based combination regimens, and tamoxifen in patients with detectable levels of cytoplasmic estrogen receptor on their fumors

5.9.1.7. Treatment of Lung Cancers

5

10

15

20

25

30

35

[00269] In specific embodiments, patients with small lung cell cancer are administered an effective amount of one or more EphA2 vaccines of the invention. In another embodiment, the peptides of the invention can be administered in combination with an effective amount of one or more other agents useful for lung cancer therapy including but not limited to: thoracic radiation therapy, cisplatin, vincristine, doxorubicin, and etoposide, alone or in combination, the combination of cyclophosphamide, doxorubicin, vincristine/etoposide, and cisplatin (CAV/EP), local palliation with endobronchial laser therapy, endobronchial stents, and/or brachytherapy.

[00270] In other specific embodiments, patients with non-small lung cell cancer are administered an effective amount of one or more EphA2 vaccines of the invention in combination with an effective amount of one or more other agents useful for lung cancer therapy including but not limited to: palliative radiation therapy, the combination of cisplatin, vinblastine and mitomycin, the combination of cisplatin and vinorelbine, paclitaxel, docetaxel or gemcitabine, the combination of carboplatin and paclitaxel, interstitial radiation therapy for endobronchial lesions or stereotactic radiosurgery.

5.9.1.8. Treatment of T Cell Malignancies

[00271] In specific embodiments, patients with T cell malignancies, such as leukemias and lymphomas (see, e.g., section 5.9.1.1), are administered an effective amount of one or more EphA2 vaccines of the invention. In another embodiment, the EphA2 vaccines of the invention can be administered in combination with an effective amount of one or more other agents useful for the prevention, treatment or amelioration of cancer, particularly T cell malignancies or one or more symptoms thereof, said combination therapies comprising administering to a subject in need thereof a prophylactically or therapeutically effective amount of one or more EphA2 vaccines of the invention and a prophylactically or therapeutically effective amount of one or more cancer therapies, including chemotherapies, hormonal therapies, biological therapies, immunotherapies, or radiation therapies.

[00272] In another specific embodiment, patients with T cell malignancies are administered an effective amount of one or more EphA2 vaccines of the invention in combination with one or more cancer chemotherapeutic agents, such as but not limited to: doxorubicin, epirubicin, cyclophosphamide, 5-fluorouracil, taxanes such as docetaxel and paclitaxel, leucovorin, levamisole, irinotecan, estramustine, etoposide, vinblastine, dacarbazine, nitrosoureas such as carmustine and lomustine, vinca alkaloids, platinum compounds, cisplatin, mitomycin, vinorelbine, gemcitabine, carboplatin,

hexamethylmelamine and/or topotecan. Such methods can optionally further comprise the administration of other cancer therapies, such as but not limited to radiation therapy, biological therapies, hormonal therapies and/or surgery.

5

10

15

20

25

[00273] In yet another specific embodiment, patients with T cell malignancies are administered an effective amount of one or more EphA2 vaccines of the invention in combination with one or more types of radiation therapy, such as external-beam radiation therapy, interstitial implantation of radioisotopes (I-125, palladium, iridium), radioisotopes such as strontium-89, thoracic radiation therapy, intraperitoneal P-32 radiation therapy. and/or total abdominal and pelvic radiation therapy. Such methods can optionally further comprise the administration of other cancer therapies, such as but not limited to chemotherapies, biological therapies/immunotherapies, hormonal therapies and/or surgery. 1002741 In yet another specific embodiment, patients with T cell malignancies are administered an effective amount of one or more EphA2 vaccines of the invention in combination with one or more biological therapies/immunotherapies or hormonal therapies. such as tamoxifen, leuprolide or other LHRH agonists, non-steroidal antiandrogens (flutamide, nilutamide, bicalutamide), steroidal antiandrogens (cyproterone acetate). estrogens (DES, chlorotrianisene, ethinyl estradiol, conjugated estrogens U.S.P., DESdiphosphate), aminoglutethimide, hydrocortisone, flutamide withdrawal, progesterone, ketoconazole, prednisone, interferon-α interleukin-2, tumor necrosis factor-α and/or melphalan. Biological therapies also included are cytokines such as but not limited to TNF ligand family members such as TRAIL anti-cancer agonists that induce apoptosis. TRAIL antibodies that bind to TRAIL receptors 1 and 2 otherwise known as DR4 and DR5 (Death Domain Containing Receptors 4 and 5), as well as DR4 and DR5. TRAIL and TRAIL antibodies, ligands and receptors are known in the art and described in U.S. Patent Nos. 6,342,363, 6,284,236, 6,072,047 and 5,763,223. Such methods can optionally further comprise the administration of other cancer therapies, such as but not limited to radiation therapy, chemotherapies, and/or surgery. In yet another specific embodiment, patients with T cell malignancies are administered an effective amount of one or more EphA2 vaccines of the invention in

administered an effective amount of one or more EphA2 vaccines of the invention in combination with standard and experimental therapies of T cell malignancies. Standard and experimental therapies of T cell malignancies that can be used in the methods and compositions of the invention include, but are not limited to, antibody therapy (e.g., Campath®, anti-Tac, HuM291 (humanized murine IgG2 monoclonal antibody against CD3), antibody drug conjugates (e.g., Mylotarg), radiolabeled monoclonal antibodies (e.g., Bexxar, Zevalin, Lym-1)), cytokine therapy, aggressive combination chemotherapy with or

without cytotoxic agents, purine analogs, hematopoietic stem cell transplantation, and T cell mediated therapy (e.g., CD8+ T cells with anti-leukemic activity against target antigens including but not limited to leukemia specific proteins (e.g., bcr/abl, PML/RARa, EMV/AML-1), leukemia-associated proteins (e.g., proteinase 3, WT-1, h-TERT, hdm-2)). (See Riddell et el., 2002, Cancer Control, 9(2): 114-122; Dearden et al., 2002, Medical Oncology, 19, Suppl. S27-32; Waldmann et al. 2000, Hemtaology (Am Soc Hematol Educ Program):394 408).

10

15

20

25

30

35

5.9.2 Other Prophylactic/Therapeutic Agents [00276] In some embodiments, therapy by administration of one or more EphA2 vaccines is combined with the administration of one or more therapies such as, but not limited to, chemotherapies, radiation therapies, hormonal therapies, and/or biological therapies/immunotherapies. Prophylactic/therapeutic agents include, but are not limited to, proteinaceous molecules, including, but not limited to, peptides, polypeptides, proteins, including post-translationally modified proteins, peptides etc.; or small molecules (less than 1000 daltons), inorganic or organic compounds; or nucleic acid molecules including, but not limited to, double-stranded or single-stranded DNA, or double-stranded or singlestranded RNA, as well as triple helix nucleic acid molecules. Prophylactic/therapeutic agents can be derived from any known organism (including, but not limited to, animals, plants, bacteria, fungi, and protista, or viruses) or from a library of synthetic molecules. [00277] In a specific embodiment, the methods of the invention encompass administration of an EphA2 vaccine of the invention in combination with the administration of one or more prophylactic/therapeutic agents that are inhibitors of kinases such as, but not limited to, ABL, ACK, AFK, AKT (e.g., AKT-1, AKT-2, and AKT-3), ALK, AMP-PK, ATM, Auroral, Aurora2, bARK1, bArk2, BLK, BMX, BTK, CAK, CaM kinase, CDC2, CDK, CK, COT, CTD, DNA-PK, EGF-R, ErbB-1, ErbB-2, ErbB-3, ErbB-4, ERK (e.g., ERK1, ERK2, ERK3, ERK4, ERK5, ERK6, ERK7), ERT-PK, FAK, FGR (e.g., FGF1R, FGF2R), FLT (e.g., FLT-1, FLT-2, FLT-3, FLT-4), FRK, FYN, GSK (e.g., GSK1, GSK2, GSK3-alpha, GSK3-beta, GSK4, GSK5), G-protein coupled receptor kinases (GRKs), HCK, HER2, HKII, JAK (e.g., JAK1, JAK2, JAK3, JAK4), JNK (e.g., JNK1, JNK2. JNK3), KDR, KIT, IGF-1 receptor, IKK-1, IKK-2, INSR (insulin receptor), IRAK1, IRAK2, IRK, ITK, LCK, LOK, LYN, MAPK, MAPKAPK-1, MAPKAPK-2, MEK, MET. MFPK, MHCK, MLCK, MLK3, NEU, NIK, PDGF receptor alpha, PDGF receptor beta. PHK, PI-3 kinase, PKA, PKB, PKC, PKG, PRK1, PYK2, p38 kinases, p135tyk2, p34cdc2. p42cdc2, p42mapk, p44mpk, RAF, RET, RIP, RIP-2, RK, RON, RS kinase, SRC, SYK,

YRK, ZAP-70, and all subtypes of these kinases (see e.g., Hardie and Hanks (1995) The Protein Kinase Facts Book, I and II, Academic Press, San Diego, Calif.). In preferred embodiments, an EphA2 vaccine of the invention is administered in combination with the administration of one or more prophylactic/therapeutic agents that are inhibitors of Eph receptor kinases (e.g., EphA2, EphA4). In a most preferred embodiment, an EphA2 vaccine of the invention is administered in combination with the administration of one or more prophylactic/therapeutic agents that are inhibitors of EphA2.

5

10

15

20

25

[00278] In another specific embodiment, the methods of the invention encompass administration of an EphA2 vaccine of the invention in combination with the administration of one or more prophylactic/therapeutic agents that are angiogenesis inhibitors such as, but not limited to: Angiostatin (plasminogen fragment); antiangiogenic antithrombin III; Angiozyme; ABT-627; Bay 12-9566; Benefin; Bevacizumab; BMS-275291; cartilage-derived inhibitor (CDI); CAI; CD59 complement fragment; CEP-7055; Col 3; Combretastatin A-4; Endostatin (collagen XVIII fragment); fibronectin fragment; Gro-beta; Halofuginone; Heparinases; Heparin hexasaccharide fragment; HMV833; Human chorionic gonadotropin (hCG); IM-862; Interferon alpha/beta/gamma; Interferon inducible protein (IP-10); Interleukin-12; Kringle 5 (plasminogen fragment); Marimastat; Metalloproteinase inhibitors (TIMPs); 2-Methoxyestradiol; MMI 270 (CGS 27023A); MoAb IMC-1C11; Neovastat; NM-3; Panzem; PI-88; Placental ribonuclease inhibitor; Plasminogen activator

Innibitors (HMFs); 2-Methoxyestradiol; MM12/0 (CdS 27023A); MoAb IMC-1C11; Neovastat; NM-3; Panzem; PI-88; Placental ribonuclease inhibitor; Plasminogen activator inhibitor; Platelet factor-4 (PF4); Prinomastat; Prolactin 16kD fragment; Proliferin-related protein (PRP); PTK 787/ZK 222594; Retinoids; Solimastat; Squalamine; SS 3304; SU 5416; SU6668; SU11248; Tetrahydrocortisol-S; tetrathiomolybdate; thalidomide; Thrombospondin-1 (TSP-1); TNP-470; Transforming growth factor-beta (TGF-β); Vasculostatin; Vasostatin (calreticulin fragment); ZD6126; ZD6474; farnesyl transferase inhibitors (FTI); and bisphosphonates.

[00279] In another specific embodiment, the methods of the invention encompass administration of an EphA2 vaccine of the invention in combination with the administration of one or more prophylactic/therapeutic agents that are anti-cancer agents such as, but not limited to: acivicin, aclarubicin, acodazole hydrochloride, acronine, adozelesin.

aldesleukin, altretamine, ambomycin, ametantrone acetate, aminoglutethimide, amsacrine, anastrozole, anthramycin, asparaginase, asperlin, azacitidine, azetepa, azotomycin, batimastat, benzodepa, bicalutamide, bisantrene hydrochloride, bisnafide dimesylate, bizelesin, bleomycin sulfate, brequinar sodium, bropirimine, busulfan, cactinomycin, calusterone, caracemide, carbetimer, carboplatin, carmustine, carubicin hydrochloride, carzelesin, cedefingol, chlorambucil, cirolemycin, cisplatin, cladribine, crisnatol mesylate,

cyclophosphamide, cytarabine, dacarbazine, dactinomycin, daunorubicin hydrochloride, decarbazine, decitabine, dexormaplatin, dezaguanine, dezaguanine mesylate, diaziquone, docetaxel, doxorubicin, doxorubicin hydrochloride, droloxifene, droloxifene citrate, dromostanolone propionate, duazomycin, edatrexate, eflornithine hydrochloride, clsamitrucin, enloplatin, enpromate, epipropidine, epirubicin hydrochloride, erbulozole, 5 esorubicin hydrochloride, estramustine, estramustine phosphate sodium, etanidazole, etoposide, etoposide phosphate, etoprine, fadrozole hydrochloride, fazarabine, fenretinide, floxuridine, fludarabine phosphate, fluorouracil, flurocitabine, fosquidone, fostriecin sodium, gemcitabine, gemcitabine hydrochloride, hydroxyurea, idarubicin hydrochloride, ifosfamide, ilmofosine, interleukin 2 (including recombinant interleukin 2, or rIL2), 10 interferon alpha-2a, interferon alpha-2b, interferon alpha-n1, interferon alpha-n3, interferon beta-I a, interferon gamma-I b, iproplatin, irinotecan hydrochloride, lanreotide acetate, letrozole, leuprolide acetate, liarozole hydrochloride, lometrexol sodium, lomustine, losox antrone hydrochloride, masoprocol, maytansine, mechlorethamine hydrochloride, 15 megestrol acetate, melengestrol acetate, melphalan, menogaril, mercaptopurine, methotrexate, methotrexate sodium, metoprine, meturedepa, mitindomide, mitocarcin, mitocromin, mitogillin, mitomalcin, mitomycin, mitosper, mitotane, mitoxantrone hydrochloride, mycophenolic acid, nitrosoureas, nocodazole, nogalamycin, ormaplatin, oxisuran, paclitaxel, pegaspargase, peliomycin, pentamustine, peplomycin sulfate, 20 perfosfamide, pipobroman, piposulfan, piroxantrone hydrochloride, plicamycin, plomestane, porfimer sodium, porfiromycin, prednimustine, procarbazine hydrochloride, puromycin, puromycin hydrochloride, pyrazofurin, riboprine, rogletimide, safingol, safingol hydrochloride, semustine, simtrazene, sparfosate sodium, sparsomycin, spirogermanium hydrochloride, spiromustine, spiroplatin, streptonigrin, streptozocin, sulofenur, talisomycin, 25 tecogalan sodium, tegafur, teloxantrone hydrochloride, temoporfin, teniposide, teroxirone, testolactone, thiamiprine, thioguanine, thiotepa, tiazofurin, tirapazamine, toremifene citrate, trestolone acetate, triciribine phosphate, trimetrexate, trimetrexate glucuronate, triptorelin, tubulozole hydrochloride, uracil mustard, uredepa, vapreotide, verteporfin, vinblastine sulfate, vincristine sulfate, vindesine, vindesine sulfate, vinepidine sulfate, vinglycinate 30 sulfate, vinleurosine sulfate, vinorelbine tartrate, vinrosidine sulfate, vinzolidine sulfate, vorozole, zeniplatin, zinostatin, zorubicin hydrochloride. Other anti-cancer drugs include, but are not limited to: 20-epi-1.25 dihydroxyvitamin D3. 5-ethynyluracil, abiraterone. aclarubicin, acylfulvene, adecypenol, adozelesin, aldesleukin, ALL-TK antagonists, altretamine, ambamustine, amidox, amifostine, aminolevulinic acid, amrubicin, amsacrine, 35 anagrelide, anastrozole, andrographolide, angiogenesis inhibitors, antagonist D, antagonist

G, antarelix, anti-dorsalizing morphogenetic protein-1, antiandrogens, antiestrogens, antineoplaston, aphidicolin glycinate, apoptosis gene modulators, apoptosis regulators, apurinic acid, ara-CDP-DL-PTBA, arginine deaminase, asulacrine, atamestane, atrimustine, axinastatin 1, axinastatin 2, axinastatin 3, azasetron, azatoxin, azatyrosine, baccatin III derivatives, balanol, batimastat, BCR/ABL antagonists, benzochlorins, 5 benzoylstaurosporine, beta lactam derivatives, beta-alethine, betaclamycin B, betulinic acid, bFGF inhibitor, bicalutamide, bisantrene, bisaziridinylspermine, bisnafide, bistratene A. bizelesin, breflate, bropirimine, budotitane, buthionine sulfoximine, calcipotriol, calphostin C, camptothecin derivatives, canarypox IL-2, capecitabine, carboxamide-amino-triazole, 10 carboxyamidotriazole, CaRest M3, CARN 700, cartilage derived inhibitor, carzelesin, casein kinase inhibitors (ICOS), castanospermine, cecropin B, cetrorelix, chloroquinoxaline sulfonamide, cicaprost, cis-porphyrin, cladribine, clomifene analogues, clotrimazole, collismycin A, collismycin B, combretastatin A4, combretastatin analogue, conagenin. crambescidin 816, crisnatol, cryptophycin 8, cryptophycin A derivatives, curacin A. 15 cyclopentanthraquinones, cycloplatam, cypemycin, cytarabine ocfosfate, cytolytic factor, cytostatin, dacliximab, decitabine, dehydrodidemnin B, deslorelin, dexamethasone, dexifosfamide, dexrazoxane, dexverapamil, diaziquone, didemnin B. didox. diethylnorspermine, dihydro-5-azacytidine, dihydrotaxol, dioxamycin, diphenyl spiromustine, docetaxel, docosanol, dolasetron, doxifluridine, droloxifene, dronabinol, duocarmycin SA, ebselen, ecomustine, edelfosine, edrecolomab, eflornithine, elemene, 20 emitefur, epirubicin, epristeride, estramustine analogue, estrogen agonists, estrogen antagonists, etanidazole, etoposide phosphate, exemestane, fadrozole, fazarabine, fenretinide, filgrastim, finasteride, flavopiridol, flezelastine, fluasterone, fludarabine, fluorodaunorunicin hydrochloride, forfenimex, formestane, fostriecin, fotemustine, 25 gadolinium texaphyrin, gallium nitrate, galocitabine, ganirelix, gelatinase inhibitors, gemcitabine, glutathione inhibitors, hepsulfam, heregulin, hexamethylene bisacetamide, hypericin, ibandronic acid, idarubicin, idoxifene, idramantone, ilmofosine, ilomastat, imidazoacridones, imiquimod, immunostimulant peptides, insulin-like growth factor-l receptor inhibitor, interferon agonists, interferons, interleukins, iobenguane, 30 iododoxorubicin, ipomeanol, iroplact, irsogladine, isobengazole, isohomohalicondrin B, itasetron, jasplakinolide, kahalalide F, lamellarin-N triacetate, lanreotide, leinamycin, lenograstim, lentinan sulfate, leptolstatin, letrozole, leukemia inhibiting factor, leukocyte alpha interferon, leuprolide+estrogen+progesterone, leuprorelin, levamisole, liarozole, linear polyamine analogue, lipophilic disaccharide peptide, lipophilic platinum compounds, 35 lissoclinamide 7, lobaplatin, lombricine, lometrexol, lonidamine, losoxantrone, lovastatin,

loxoribine, lurtotecan, lutetium texaphyrin, lysofylline, lytic peptides, maitansine, mannostatin A, marimastat, masoprocol, maspin, matrilysin inhibitors, matrix metalloproteinase inhibitors, menogaril, merbarone, meterelin, methioninase, metoclopramide, MIF inhibitor, mifepristone, miltefosine, mirimostim, mismatched double 5 stranded RNA, mitoguazone, mitolactol, mitomycin analogues, mitonafide, mitotoxin fibroblast growth factor-saporin, mitoxantrone, mofarotene, molgramostim, EphA2 vaccine, human chorionic gonadotrophin, monophosphoryl lipid A+myobacterium cell wall sk, mopidamol, multiple drug resistance gene inhibitor, multiple tumor suppressor 1-based therapy, mustard anticancer agent, mycaperoxide B, mycobacterial cell wall extract, 10 myriaporone, N-acetyldinaline, N-substituted benzamides, nafarelin, nagrestip, naloxone+pentazocine, napavin, naphterpin, nartograstim, nedaplatin, nemorubicin, neridronic acid, neutral endopeptidase, nilutamide, nisamycin, nitric oxide modulators, nitroxide antioxidant, nitrullyn, O6-benzylguanine, octreotide, okicenone, oligonucleotides, onapristone, ondansetron, oracin, oral cytokine inducer, ormaplatin, osaterone, 15 oxaliplatin, oxaunomycin, paclitaxel, paclitaxel analogues, paclitaxel derivatives, palauamine, palmitoylrhizoxin, pamidronic acid, panaxytriol, panomifene, parabactin, pazelliptine, pegaspargase, peldesine, pentosan polysulfate sodium, pentostatin, pentrozole, perflubron, perfosfamide, perillyl alcohol, phenazinomycin, phenylacetate, phosphatase inhibitors, picibanil, pilocarpine hydrochloride, pirarubicin, piritrexim, placetin A, placetin 20 B, plasminogen activator inhibitor, platinum complex, platinum compounds, platinumtriamine complex, porfimer sodium, porfiromycin, prednisone, propyl bis-acridone, prostaglandin J2, proteasome inhibitors, protein A-based immune modulator, protein kinase C inhibitor, protein kinase C inhibitors, microalgal, protein tyrosine phosphatase inhibitors, purine nucleoside phosphorylase inhibitors, purpurins, pyrazoloacridine, pyridoxylated 25 hemoglobin polyoxyethylene conjugate, raf antagonists, raltitrexed, ramosetron, ras farnesyl protein transferase inhibitors, ras inhibitors, ras-GAP inhibitor, retelliptine demethylated, rhenium Re 186 etidronate, rhizoxin, ribozymes, RII retinamide, rogletimide, rohitukine, romurtide, roquinimex, rubiginone B1, ruboxyl, safingol, saintopin, SarCNU, sarcophytol A, sargramostim, Sdi 1 mimetics, semustine, senescence derived inhibitor 1, sense oligonucleotides, signal transduction inhibitors, signal transduction modulators, single chain 30 antigen binding protein, sizofiran, sobuzoxane, sodium borocaptate, sodium phenylacetate, solverol, somatomedin binding protein, sonermin, sparfosic acid, spicamycin D, spiromustine, splenopentin, spongistatin 1, squalamine, stem cell inhibitor, stem-cell division inhibitors, stipiamide, stromelysin inhibitors, sulfinosine, superactive vasoactive 35 intestinal peptide antagonist, suradista, suramin, swainsonine, synthetic

- glycosaminoglycans, tallimustine, tamoxifen methiodide, tauromustine, taxol, tazarotene, tecogalan sodium, tegafur, tellurapyrylium, telomerase inhibitors, temoporfin, temozolomide, teniposide, tetrachlorodecaoxide, tetrazomine, thaliblastine, thalidomide, thiocoraline, thioguanine, thrombopoietin, thrombopoietin mimetic, thymalfasin,
- 5 thymopoietin receptor agonist, thymotrinan, thyroid stimulating hormone, tin ethyl etiopurpurin, tirapazamine, titanocene bichloride, topsentin, toremifene, totipotent stem cell factor, translation inhibitors, tretinoin, triacetyluridine, triciribine, trimetrexate, triptorelin, tropisetron, turosteride, tyrosine kinase inhibitors, tyrphostins, UBC inhibitors, ubenimex, urogenital sinus-derived growth inhibitory factor, urokinase receptor antagonists,
 10 vapreotide, variolin B, vector system, erythrocyte gene therapy, velaresol, veramine,
 - vapreotide, variolin B, vector system, erythrocyte gene therapy, velaresol, veramine, verdins, verteporfin, vinorelbine, vinxaltine, vitaxin, vorozole, zanoterone, zeniplatin, zilascorb, and zinostatin stimalamer. Preferred additional anti-cancer drugs are 5-fluorouracil and leucovorin.
 - [00280] In more particular embodiments, the present invention also comprises the administration of one or more EphA2 vaccines of the invention in combination with the administration of one or more therapies such as, but not limited to anti-cancer agents such as those disclosed in Table 2, preferably for the treatment of breast, ovary, melanoma, prostate, colon and lung cancers as described above.

TABLE 2

15

Therapeutic Agent	Administration	Dose	Intervals
doxorubicin hydrochloride (Adriamycin RDF® and Adriamycin PFS®)	Intravenous	60-75 mg/m ² on Day 1	21 day intervals
epirubicin hydrochloride (Ellence™)	Intravenous	100-120 mg/m ² on Day I of each cycle or divided equally and given on Days 1-8 of the cycle	3-4 week cycles
fluorousacil	Intravenous	How supplied: 5 ml and 10 ml vials (containing 250 and 500 mg flourouracil respectively)	
docetaxel (Taxotere®)	Intravenous	60- 100 mg/m ² over 1 hour	Once every 3 weeks
paclitaxel (Taxol®)	Intravenous	175 mg/m ² over 3 hours	Every 3 weeks for 4 courses (administered sequentially to doxorubicin-containing combination chemotherapy)
tamoxifen citrate (Nolvadex®)	Oral (tablet)	20-40 mg Dosages greater than 20 mg should be given in divided doses (morning and evening)	Daily

Therapeutic Agent	Administration	Dose	Intervals
leucovorin calcium for injection	Intravenous or intramuscular injection	How supplied: 350 mg vial	Dosage is unclear from text. PDR 3610
luprolide acetate (Lupron®)	Single subcutaneous injection	1 mg (0.2 ml or 20 unit mark)	Once a day
flutamide (Eulexin®)	Oral (capsule)	250 mg (capsules contain 125 mg flutamide each)	3 times a day at 8 hour intervals (total daily dosage 750 mg)
nilutamide (Nilandron®)	Oral (tablet)	300 mg or 150 mg (tablets contain 50 or 150 mg nilutamide each)	300 mg once a day for 30 days followed by 150 mg once a day
bicalutamide (Casodex®)	Oral (tablet)	50 mg (tablets contain 50 mg bicalutamide each)	Once a day
progesterone	Injection	USP in sesame oil 50 mg/ml	
ketoconazole (Nizoral®)	Cream	2% cream applied once or twice daily depending on symptoms	
prednisone	Oral (tablet)	Initial dosage may vary from 5 mg to 60 mg per day depending on the specific disease entity being treated.	
estramustine phosphate sodium (Emcyt®)	Oral (capsule)	14 mg/ kg of body weight (i.e. one 140 mg capsule for each 10 kg or 22 lb of body weight)	Daily given in 3 or 4 divided doses
etoposide or VP-16	Intravenous	5 ml of 20 mg/ ml solution (100 mg)	
dacarbazine (DTIC-Dome®)	Intravenous	2-4.5 mg/knowing	Once a day for 10 days. May be repeated at 4 week intervals
polifeprosan 20 with carmustine implant (BCNU) (nitrosourea) (Gliadel®)	wafer placed in resection cavity	8 wafers, each containing 7.7 mg of carmustine, for a total of 61.6 mg, if size and shape of resection cavity allows	
cisplatin	Injection	How supplied: solution of 1 mg/ml in multi- dose vials of 50mL and 100mL	
mitomycin	Injection	supplied in 5 mg and 20 mg vials (containing 5 mg and 20 mg mitomycin)	
gemcitabine HCl (Gemzar®)	Intravenous	For NSCLC-2 schedules have been investigated and the optimum schedule has not been determined 4 week schedule-administration intravenously at 1000 mg/m² over 30 minutes on 3 week schedule-Gemzar administered intravenously at 1250 mg/m²	A week schedule- Days 1,8 and 15 of each 28- day cycle. Cisplatin intravenously at 100 mg/m² on day 1 after the infusion of Gemzar. 3 week schedule- Days 1 and 8 of each 21 day cycle. Cisplatin at dosage of 100 mg/m² administered

Therapeutic Agent	Administration	Dose	Intervals
		over 30 minutes	intravenously after administration of Gemzar on day 1.
carboplatin (Paraplatin®)	Intravenous	Single agent therapy: 360 mg/m² 1.V. on day 1 (infusion lasting 15 minutes or longer) Other dosage calculations: Combination therapy with cyclophosphamide, Dose adjustment recommendations, Formula dosing, etc.	Every 4 weeks
ifosamide (Ifex®)	Intravenous	1.2 g/m² daily	5 consecutive days Repeat every 3 weeks or after recovery from hematologic toxicity
topotecan hydrochloride (Hycamtin®)	Intravenous	1.5 mg/m² by intravenous infusion over 30 minutes daily	5 consecutive days, starting on day 1 of 21 day course

[00281] The invention also encompasses administration of the EphA2 vaccines of the invention in combination with radiation therapy comprising the use of x-rays, gamma rays and other sources of radiation to destroy the cancer cells. In preferred embodiments, the radiation treatment is administered as external beam radiation or teletherapy wherein the radiation is directed from a remote source. In other preferred embodiments, the radiation treatment is administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells or a tumor mass.

[00282] Cancer therapies and their dosages, routes of administration and recommended usage are known in the art and have been described in such literature as the *Physician's Desk Reference* (56th ed., 2002).

5.10 Characterization And Demonstration Of Therapeutic Or Prophylactic Utility

10

15

20

Toxicity and efficacy of the prophylactic and/or therapeutic protocols of the instant invention can be determined by standard pharmaceutical procedures in experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Prophylactic and/or therapeutic agents that exhibit large therapeutic indices are preferred. While prophylactic and/or therapeutic agents that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such agents to the site

of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects

[00284] The data obtained from the animal studies can be used in formulating a range of dosage of the prophylactic and/or therapeutic agents for use in humans. The dosage of such agents lies preferably within a range of circulating concentrations that include the ED_{50} with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any agent used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC_{50} (i.e., the concentration of the vaccine or test compound that achieves a half-maximal inhibition of symptoms) as determined in animal studies. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

[00285] The anti-cancer activity of the therapies used in accordance with the present invention also can be determined by using various experimental animal models for the study of cancer, such as an immunocompetent mouse model, e.g., Balb/c or C57/Bl/6, or transgenic mice where a mouse EphA2 is replaced with the human EphA2, mouse models to which murine tumor cell lines engineered to express human EphA2 are administered, animal models described in Section 6 infra, or any animal model (including hamsters, rabbits, etc.) known in the art and described in Relevance of Tumor Models for Anticancer Drug Development (1999, eds. Fiebig and Burger); Contributions to Oncology (1999, Karger); The Nude Mouse in Oncology Research (1991, eds. Boven and Winograd); and Anticancer Drug Development Guide (1997 ed. Teicher), herein incorporated by reference in their entireties.

[00286] Compounds for use in therapy can also be tested in other suitable animal model systems prior to testing in humans, including but not limited to in rats, mice, chicken, cows, monkeys, rabbits, hamsters, etc., for example, the animal models described above.

The compounds can then be used in the appropriate clinical trials.

[00287] Further, any assays known to those skilled in the art can be used to evaluate the prophylactic and/or therapeutic utility of the vaccines and combinatorial therapies disclosed herein for treatment or prevention of hyperproliferative disorders such as cancer.

5.11 Vaccine Compositions

10

15

20

25

30

35

[00288] The compositions of the invention include bulk drug compositions useful in the manufacture of non-pharmaccutical compositions (e.g., impure or non-sterile

compositions) and pharmaceutical compositions (i.e., compositions that are suitable for administration to a subject or patient) which can be used in the preparation of unit dosage forms. Such compositions comprise a prophylactically or therapeutically effective amount of a prophylactic and/or therapeutic agent disclosed herein or a combination of those agents and a pharmaceutically acceptable carrier. Preferably, compositions of the invention comprise a prophylactically or therapeutically effective amount of one or more EphA2 vaccines of the invention. The EphA2 vaccines of the invention may comprise one or more EphA2 antigenic peptides of the invention and a pharmaceutically acceptable carrier, one or more EphA2 antigenic peptide expression vehicles of the invention and a pharmaceutically acceptable carrier, or one or more antigen presenting cells sensitized with an EphA2 antigenic peptide and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

35

[00289] Where an EphA2 vaccine of the invention comprises an EphA2 antigenic peptides, the EphA2 antigenic peptide of the invention can be modified. For example, in certain embodiments, the EphA2 antigenic peptide may be formulated with lipid as a lipopeptide or linked to a carrier molecule (and/or polymerized).

[00290] In a further embodiment, the composition of the invention further comprises an additional prophylactic or therapeutic, e.g., anti-cancer, agent.

[00291] In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant (e.g., Freund's adjuvant (complete and incomplete) or, more preferably, MF59C.1 adjuvant available from Chiron, Emeryville, CA), excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc. sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like

[00292] Generally, the ingredients of compositions of the invention are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

5

10

15

20

25

30

35

[00293] The compositions of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamine ethanol, histidine, procaine, etc. [00294] Various delivery systems are known and can be used to administer an EphA2 vaccine of the invention or the combination of an EphA2 vaccine of the invention and a prophylactic agent or therapeutic agent useful for preventing or treating cancer, e.g., encapsulation in linosomes, microparticles, microcansules, recombinant cells canable of

encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the EphA2 antigenic peptide, receptor-mediated endocytosis (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of administering an EphA2 vaccine or the combination of an EphA2 vaccine of the invention and prophylactic or therapeutic agent, but are not limited to, parenteral administration (e.g., intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous), epidural, and mucosal (e.g., intranasal, inhaled, and oral routes). In a specific embodiment, an EphA2 vaccine of the invention or the combination of an EphA2 vaccine of the invention and prophylactic or therapeutic agent are administered intramuscularly, intravenously, or subcutaneously. The EphA2 vaccine of the invention or the combination of an EphA2 vaccine of the invention and prophylactic or therapeutic agent may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other

[00295] In a specific embodiment, it may be desirable to administer the EphA2 vaccine of the invention or the combination of an EphA2 vaccine of the invention and prophylactic or therapeutic agents of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion, by

biologically active agents. Administration can be systemic or local.

injection, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. [00296] In yet another embodiment, the EphA2 vaccine of the invention or the combination of an EphA2 vaccine of the invention and prophylactic or therapeutic agent can be delivered in a controlled release or sustained release system. In one embodiment, a pump may be used to achieve controlled or sustained release (see Langer, supra; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:20; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used to achieve controlled or sustained release of the EphA2 antigenic peptides of the invention (see e.g., Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J. Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985. Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 7 1:105); U.S. Patent Nos. 5,679,377; 5,916,597; 5,912,015; 5,989,463; 5,128,326; International Publication Nos. WO 99/15154 and WO 99/20253. Examples of polymers used in sustained release formulations include, but are not limited to, poly(2hydroxy ethyl methacrylate), poly(methyl methacrylate), poly(acrylic acid), poly(ethyleneco-vinyl acetate), poly(methacrylic acid), polyglycolides (PLG), polyanhydrides, poly(Nvinyl pyrrolidone), poly(vinyl alcohol), polyacrylamide, poly(ethylene glycol), polylactides (PLA), poly(lactide-co-glycolides) (PLGA), and polyorthoesters. In a preferred embodiment, the polymer used in a sustained release formulation is inert, free of leachable impurities, stable on storage, sterile, and biodegradable. In yet another embodiment, a controlled or sustained release system can be placed in proximity of the prophylactic or therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). Controlled release systems are discussed in the review by Langer (1990. Science 249:1527-1533). Any technique known to one of skill in the art can be used to produce sustained release formulations comprising one or more therapeutic agents of the invention. See, e.g., U.S. Patent No. 4,526,938; International Publication Nos. WO 91/05548 and WO 96/20698; Ning et al., 1996, Radiotherapy & Oncology 39:179-189: Song et al., 1995, PDA Journal of Pharmaceutical Science & Technology 50:372-397: Cleek et al., 1997, Pro. Int'l. Symp. Control. Rel. Bioact. Mater. 24:853-854; and Lam et

5

10

15

20

25

30

35

al., 1997, Proc. Int'l. Symp. Control Rel. Bioact. Mater. 24:759-760, each of which is

incorporated herein by reference in its entirety.

5.11.1 Formulations

5

10

15

20

25

35

[00298] Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.

[00299] Thus, the EphA2 antigenic peptides of the invention and their physiologically acceptable salts and solvates (or EphA2 antigenic peptide expression vehicles or antigen presenting cells sensitized with an EphA2 antigenic peptide) may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, parenteral or mucosal (such as buccal, vaginal, rectal, sublingual) administration. In a preferred embodiment, local or systemic parenteral administration is

[00300] For oral administration, the vaccine may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

[00301] Preparations for oral administration may be suitably formulated to give controlled release of the active compound.

30 [00302] For buccal administration the compositions may take the form of tablets or lozenges formulated in conventional manner.

[00303] For administration by inhalation, the prophylactic or therapeutic agents for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane.

dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

5

10

15

20

25

30

35

[00304] The EphA2 vaccine may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

[00305] The vaccines of the invention may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

[00306] In addition to the formulations described previously, the prophylactic or therapeutic agents may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the prophylactic or therapeutic agents may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

[00307] The invention also provides that an EphA2 vaccine of the invention is packaged in a hermetically sealed container such as an ampoule or sachette indicating the quantity. In one embodiment, the vaccine is supplied as a dry sterilized lyophilized powder or water free concentrate in a hermetically sealed container and can be reconstituted, e.g., with water or saline to the appropriate concentration for administration to a subject.

[00308] In a preferred embodiment of the invention, the formulation and

administration of various chemotherapeutic, biological/immunotherapeutic and hormonal therapeutic agents for use in combination with the vaccine of the invention are known in the art and often described in the *Physician's Desk Reference*, 56th ed. (2002). For instance, in certain specific embodiments of the invention, the agents can be formulated and supplied as provided in Table 2.

[00309] In other embodiments of the invention, radiation therapy agents such as radioactive isotopes can be given orally as liquids in capsules or as a drink. Radioactive

isotopes can also be formulated for intravenous injections. The skilled oncologist can determine the preferred formulation and route of administration.

[00310] In certain embodiments the EphA2 antigenic peptides and anti-idiotypic antibodies of the invention are formulated at 1 mg/ml, 5 mg/ml, 10 mg/ml, and 25 mg/ml for intravenous injections and at 5 mg/ml, 10 mg/ml, and 80 mg/ml for repeated subcutaneous administration and intramuscular injection.

[00311] The compositions may, if desired, be presented in a pack or dispenser device that may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

5.11.2 Dosages

5

10

15

20

[00312] The amount of the composition of the invention which will be effective in the treatment, prevention or management of cancer can be determined by standard research techniques. For example, the dosage of the EphA2 vaccine of the invention which will be effective in the treatment, prevention or management of cancer can be determined by administering the composition to an animal model such as, e.g., the animal models disclosed herein or known to those skilled in the art. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges.

[00313] Selection of the preferred effective dose can be determined (e.g., via clinical trials) by a skilled artisan based upon the consideration of several factors which will be known to one of ordinary skill in the art. Such factors include the disease to be treated or prevented, the symptoms involved, the patient's body mass, the patient's immune status and other factors known by the skilled artisan to reflect the accuracy of administered pharmaceutical compositions.

- 25 [00314] The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the cancer, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- 30 [00315] For EphA2 antigenic peptides or anti-idiotypic antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight. [00316]
 With respect to the dosage of bacterial EphA2 vaccines of the invention, the
- 35 dosage is based on the amount colony forming units (c.f.u.). Generally, in various

embodiments, the dosage ranges are from about 1.0 c.f.u./kg to about 1×10^{10} c.f.u./kg; from about 1.0 c.f.u./kg to about 1×10^{8} c.f.u./kg; from about 1×10^{2} c.f.u./kg to about 1×10^{8} c.f.u./kg; and from about 1×10^{8} c.f.u./kg to about 1×10^{8} c.f.u./kg. Effective doses may be extrapolated from dose-response curves derived animal model test systems. In certain exemplary embodiments, the dosage ranges are 0.001-fold to 10,000-fold of the murine $LD_{50}, 0.01$ -fold to 1,000-fold of the murine $LD_{50}, 0.1$ -fold to 500-fold of the murine $LD_{50}, 0.5$ -fold to 250-fold of the murine $LD_{50}, 1$ -fold to 100-fold of the murine $LD_{50}, 100$ -fold of the murine 100-fold of the murine 100-fold of the murine 100-fold of the murine 100-fold, 100

[00317] For other cancer therapeutic agents administered to a patient, the typical doses of various cancer therapeutics known in the art are provided in Table 2. Given the invention, certain preferred embodiments will encompass the administration of lower dosages in combination treatment regimens than dosages recommended for the administration of single agents.

[00318] The invention provides for any method of administrating lower doses of known prophylactic or therapeutic agents than previously thought to be effective for the prevention, treatment, management or amelioration of cancer. Preferably, lower doses of known anti-cancer therapies are administered in combination with lower doses of EphA2 vaccines of the invention

5.12 Kits

5

10

15

20

25

30

35

[00319] The invention provides a pack or kit comprising one or more containers filled with an EphA2 vaccine of the invention or a component of an EphA2 vaccine of the invention. Additionally, one or more other prophylactic or therapeutic agents useful for the treatment of a cancer or other hyperproliferative disorder can also be included in the pack or kit. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

[00320] The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises one or more a EphA2 vaccines of the invention. In another embodiment, a kit further comprises one or more other prophylactic or therapeutic agents useful for the treatment of cancer or another hyperproliferative disorder, in one or more containers. In other embodiments, the prophylactic or therapeutic agent is a biological or hormonal therapeutic.

6. EXAMPLES: LISTERIA-BASED EPHA2 VACCINES PROVIDE THERAPEUTIC AND PROPHYLACTIC BENEFITS AGAINST EPHA2-EXPRESSING CANCERS

[00321] Given the mechanisms by which *Listeria* programs the presentation of heterologous antigens via the MHC class I pathway, the efficiency of both expression of

5

10

15

20

25

30

heterologous genes and secretion of the newly synthesized protein from the bacterium into the cytoplasm of the infected (antigen presenting) cell is related directly to the potency of CD8+ T cell priming and/or activation. As the level of Ag-specific T cell priming is related directly to vaccine efficacy, the efficiency of heterologous protein expression and secretion is linked directly to vaccine potency. Thus, the efficiency of EphA2 expression and secretion was optimized to maximize the potency of Listeria-based vaccines, in terms of priming and/or activating CD8+ T cell responses specific for the encoded EphA2 protein. [00322] A mouse immunotherapy model was created for testing the Listeria-based vaccines of the invention. Two murine tumor cell lines, the CT26 murine colon carcinoma cell line, and the B16F10 murine melanoma cell line, were created to express high levels of the huEphA2 protein. FACS cell sorting assays were performed to identify CT26 and B16F10 tumor cells expressing high levels of huEphA2, which were pooled and analyzed by Western blot analysis. Clones were further pooled by FACS cell sorting to generate subclones expressing the highest levels of huEphA2.

[00323] Immunoassays were also performed, including intracellular cytokine staining (ICS) assays to measure Th1-cytokine production, and ELISPOT assays to measure Th1-cytokine specific induction in murine splenocytes following *Listeria* vaccination.

6.1 EXAMPLE 1: CONSTRUCTION OF EphA2-EXPRESSING AND CONTROL LISTERIA STRAINS

6.1.1 Preparation of mutant Listeria strains.

[00324] Listeria strains were derived from 10403S (Bishop et al., J. Immunol. 139:2005 (1987)). Listeria strains with in-frame deletions of the indicated genes were generated by SOE-PCR and allelic exchange with established methods (Camilli, et al, Mol. Microbiol. 8:143 (1993)). The mutant strain LLO L461T (DP-L4017) was described in Glomski, et al., J. Cell. Biol. 156: 1029 (2002), incorporated by reference herein. The actA-mutant (DP-L4029) is the DP-L3078 strain described in Skoble et al., J. of Cell Biology, 150: 527-537 (2000), incorporated by reference herein in its entirety, which has been cured of its prophage. (Prophage curing is described in (Lauer et al., J. Bacteriol. 2002, 184:4177 (2002)).

[00325] In some vaccines, mutant strains of Listeria that are deficient with respect to internalin B (Genbank accession number AL591975 (Listeria monocytogenes strain EGD, complete genome, segment 3/12; in B gene region; nts. 97008-98963), incorporated by reference herein in its entirety) are used. One particular actA inlB strain (DP-L4029inlB) was deposited with the American Type Culture Collection (ATCC) on October 3, 2003, and designated with accession number PTA-5562).

6.1.2 Cloning vectors

5

15

20

25

[00327]

[00326] Selected heterologous antigen expression cassette molecular constructs were inserted into pPL2 (Lauer et al., 2002, J. Bacteriol.), or pAM401 (Wirth et. al., J. Bacteriol. 10 165:831-836), modified to contain the multiple cloning sequence of pPL2 (Aat II small fragment, 171 bps), inserted between blunted Xba I and Nru I recognition sites, within the tetracycline resistance gene (pAM401-MCS). In general, the hly promoter and (selected) signal peptide sequence was inserted between the unique Kpn I and Bam HI sites in the pPL2 or pAM401-MCS plasmid vectors. Selected EphA2 genes (sometimes modified to contain N-terminal and C-terminal epitope tags; see description below) were cloned subsequently into these constructs between unique Bam HI and Sac I sites. Molecular constructs based on the pAM401-MCS plasmid vector were introduced by electroporation into selected Listeria monocytogenes strains also treated with lysozyme, utilizing methods common to those skilled in the art. The expected plasmid structure in Listeria-transfectants was verified by isolating DNA from colonies that formed on chloramphenicol-containing BHI agar plates (10 µg/ml) by restriction enzyme analysis. Recombinant Listeria transformed with various pAM401-MCS based heterologous protein expression cassette constructs were utilized to measure heterologous protein expression and secretion, as described below

The pPL2 based heterologous protein expression cassette constructs were incorporated into the tRNAArg gene in the genome of selected Listeria strains, according to the methods as described previously (Lauer et al., 2002, J. Bacteriol, 184:4177-4186). Briefly, the pPL2 heterologous protein expression cassette constructs plasmid was first introduced into the E. coli host strain SM10 (Simon et al., 1983, Bio/Technology 1:784-791) 30 by electroporation or by chemical means. Subsequently, the nPL2-based plasmid was transferred from transformed SM10 to the selected Listeria strains by conjugation. Following incubation on drug-selective BHI agar plates containing 7.5 µg of chloramphenicol per ml and 200 µg of streptomycin per ml as described, selected colonies are purified by passaging 3 times on plates with the same composition. To verify 35 integration of the pPL2 vector at the phage attachment site, individual colonies are picked

and screened by PCR using the primer pair of forward primer NC16 (5'gtcaaaacatacgctcttatc-3') (SEQ ID NO:47) and reverse primer PL95 (5'acataatcagtccaaagtagatgc-3') (SEQ ID NO:48). Selected colonies having the pPL2-based
plasmid incorporated into the tRNAArg gene in the genome of selected *Listeria* strains
yielded a diagnostic DNA amplicon of 499 bps.

6.1.3 Promoter

[00328] Heterologous protein expression cassettes contained the prfA-dependent hly promoter, which drives the transcription of the gene encoding Listeriolysin O (LLO), and is activated within the microenvironment of the infected cell. Nucleotides 205586-206000 (414 bps) were amplified by PCR from *Listeria* monocytogenes, strain DP-L4056, using the primer pair shown below. The region amplified includes the hly promoter and also the first 28 amino acids of LLO, comprising the secA1 signal peptide (*ibid*) and PEST domain. The expected sequence of this region for *Listeria monocytogenes*, strain EGD can be found in GenBank (Accession number: gil16802048|refINC 003210.1|f16802048|).

15 [00329] Primer Pair

5

10

20

25

Forward (KpnI-LLO nts. 1257-1276): 5'-CTCTGGTACCTCCTTTGATTAGTATATTC (SEQ ID NO:49)

Reverse (Bam HI-LLO nts. X-x):

5'-CTCTGGATCCATCCGCGTGTTTCTTTTCG (SEO ID NO:50)

(Restriction endonuclease recognition sites are underlined)

[00330] The 422 bp PCR amplicon was cloned into the plasmid vector pCR-XL-TOPO (Invitrogen, Carlsbad, CA), according to the manufacturer's specifications. The nucleotide sequences of *Listeria*-specific bases in the pCR-XL-TOPO-hly promoter plasmid clone was determined. *Listeria* monocytogenes strain DP-L4056 contained eight nucleotide base changes flanking the prfA box in the hly promoter, as compared to the EGD strain.

The *hly* promoter alignment for the *Listeria* monocytogenes DP-L4056 and EGD strains is shown in the Figure below (SEO ID NOs:68 and 69, respectively).

Listeria hly DP-L4056 and EGD Alignment

15

20

EX2 domain of EphA2.

Query:	Listeria EGD
Subject:	DP-L4056 (wild-type, Portnoy strain)
	prfA Box
Query: 1	ggtacctcctttgattagtatattcctatcttaaagtgacttttatgttgaggcattaac 60
Sbjct: 1	ggtacctcctttgattagtatattcctatcttaaagttacttttatgtggaggcattaac 60
Query: 61	atttgttaacgacgataaagggacagcaggactagaataaagctataaagcaagc
Sbjct: 61	
Query: 121	atattgcgtttcatctttagaagcgaatttcgccaatattataattatcaaaagagaggg 180
Sbjct: 121	atattgcgtttcatctttagaagcgaatttcqccaatattataattatcaaaaqaqqqq 180
	Shine-Delgarno LLO start
Query: 181	gtggcaaacggtatttggcattattaggttaaaaaatqtaqaaggagagtgaaacccatg 240
Sbjct: 181	gtggcaaacggtatttggcattattaggttaaaaaatgtagaaggagagtgaaacccatg 240

[00331] The 422 bp DNA corresponding to the hly promoter and secA1 LLO signal peptide were liberated from the pCR-XL-TOPO-hly promoter plasmid clone by digestion with Kpn I and Bam HI, and cloned into the pPL2 plasmid vector (Lauer et al., 2002, J. Bact.), according to conventional methods well-known to those skilled in the art. This plasmid is known as pPL2-hlvP (native).

6.1.4 Cloning and Insertion of EphA2 into pPL2 vectors for expression in selected recombinant Listeria monocytogenes strains

- 10 [00332] The external (EX2) and cytoplasmic (CO) domains of EphA2 which flank the EphA2 transmembrane helix were cloned separately for insertion into various pPL2signal peptide expression constructs. Genes corresponding to the native mammalian sequence or codon-optimized for expression in Listeria monocytogenes of EphA2 EX2 and CO domains were used. The optimal codons in Listeria (see table, ibid) for each of the 20 amino acids were utilized for codon-optimized EphA2 EX2 and EphA2 CO. The codonoptimized EphA2 EX2 and CO domains were synthesized by extension of overlapping oligonucleotides, using techniques common to those skilled in the art. The expected sequence of all synthesized EphA2 constructs was verified by nucleotide sequencing. [003331 SEQ ID NOS:23, 21 and 22 represent the primary amino acid sequences, together with the native and codon-optimized nucleotide sequences, respectively, for the
 - [00334] SEQ ID NOS: 34, 32 and 33 represent the primary amino acid sequences, together with the native and codon-optimized nucleotide sequences, respectivley, for the CO domain of EphA2.
- 25 [00335] Additonally, FLAG (Stratagene, La Jolla, CA) and myc epitope tags were inserted, respectively, in-frame at the amino and carboxy termini of synthesized EphA2

EX2 and CO genes for detection of expressed and secreted EphA2 by Western blot analysis using antibodies specific for the FLAG or proteins. Thus, the expressed protein had the following ordered elements: NH₂-Signal Peptide-FLAG-EphA2-myc-CO₂. Shown below are the FLAG and myc epitope tag amino acid and codon-optimized nucleotide sequences.

5 [00336] FLAG

5'-GATTATAAAGATGATGATAAA (SEQ ID NO:51)

NH₂-DYKDDDDK-CO₂ (SEQ ID NO:52)

[00337] Myc

10

35

 ${\tt 5'-GAACAAAAATTAATTAGTGAAGAAGATTTA~(SEQ~ID~NO:53)}$

NH₂-EQKLISEEDL-CO₂ (SEQ ID NO:54)

6.1.5 <u>Detection of synthesized and secreted heterologous proteins by</u> <u>Western blot analysis</u>

Synthesis of EphA2 protein and secretion from various selected recombinant 1003381 Listeria-EphA2 strains was determined by Western blot analysis of trichloroacetic acid 15 (TCA) precipitated bacterial culture fluids. Briefly, mid-log phase cultures of Listeria grown in BHI media were collected in a 50 mL conical centrifuge tube, the bacteria were pelleted, and ice-cold TCA was added to a final [6%] concentration to the bacterial culture supernatant and incubated on ice minimally for 90 min or overnight. The TCA-precipitated proteins were collected by centrifugation at 2400 X g for 20 min at 4°C. The pellet was 20 then resuspended in 300-600 µl volume of TE, pH 8.0 containing 15 µg/ml phenol red. Sample dissolution was facilitated by vortexing. Sample pH was adjusted by NH₂OH addition if necessary until color was pink. All samples were prepared for electrophoresis by addition of 100 µl of 4X SDS loading buffer and incubating for 10 min, at 90°C. The samples were then centrifuged from 5 min at 14,000 rpm in a micro-centrifuge, and the 25 supernatants collected and stored at -20°C. For Western bolt analysis, 20 µl of prepared fractions (the equivalent of culture fluids from of 1-4 x 109 bacteria), were loaded on the 4-12% SDS-PAGE gel, electrophoresed, and the proteins were transferred to PDDF membrane, according to common methods used by those skilled in the art. Transferred membranes were prepared s for incubation with antibody, by incubating in 5% dry milk in 30 PBS for 2 hr. at room temperature with agitation. Antibodies were used under the

PBS for 2 nr. at room temperature with agutation. Antibodies were used under the following dilutions in PBST buffer (0.1% Tween 20 in PBS): (1) Rabbit anti-Myc polyclonal antibody (ICL laboratories, Newberg, Oregon) at 1:10,000; (2) murine anti-FLAG monoclonal antibody (Stratagene, *ibid*) at 1:2,000; and, (3) Rabbit anti-EphA2 (carboxy terminus-specific) polyclonal antibody (sc-924, Santa Cruz Biotechnology, Inc., Santa Cruz, CA). Specific binding of antibody to protein targets was evaluated by

secondary incubation with goat anti-rabbit or anti-mouse antibody conjugated with horseradish peroxidase and detection with the ECL chemilumenescence assay kit (Amersham), and exposure to film.

6.1.6 Secretion of EphA2 protein by recombinant Listeria encoding various forms of EphA2

6.1.6.1. <u>Listeria: [strains DP-L4029 (actA) or DP-L4017 (LLO L461T)]</u>

[00339] Expression cassette construct: LLOss-PEST-CO-EphA2 (SEQ ID NO:35)
[00340] The native sequence of the EphA2 CO domain was genetically fused to the native secA1 LLO sequence, and the heterologous antigen expression cassette under control of the Listeria hly promoter was inserted into the pPL2 plasmid between the Kpn I and Sac I sites as described (ibid). The pPL2-EphA2 plasmid constructs were introduced by conjugation into the Listeria strains DP-LA029 (actA) and DP-L4017 (L461T LLO) as described (ibid). Figure 1 shows the results of a Western blot analysis of TCA-precipitated bacterial culture fluids of 4029-EphA2 CO and 4017-EphA2 CO. This analysis demonstrated that recombinant Listeria engineered to contain a heterologous protein expression cassette comprised of native sequences corresponding to the secA1 and EphA2 CO fusion protein secreted multiple EphA2-specific fragments that were lower than the 52 kDa expected molecular weight, demonstrating the need for modification of the expression cassette.

6.1.6.2. Listeria: [DP-L4029 (actA)]

[00341] Expression cassette constructs:

5

10

15

20

25

30

35

Native LLOss-PEST-FLAG-EX2_EphA2-myc-CodonOp (SEQ ID NO:26)

(CodonOp) LLOss-PEST-(CodonOp)FLAG-EX2_EphA2-myc (SEQ ID NO:28)

[00342] The native secA1 LLO signal peptide sequence or secA1 LLO signal peptide sequence codon-optimized for expression in *Listeria* was fused genetically with the EphA2 EX2 domain sequence codon-optimized for expression in *Listeria*, and the heterologous antigen expression cassette under control of the *Listeria hly* promoter was inserted into the pPL2 plasmid between the *Kpn I* and *Sac I* sites as described (*ibid*). The pPL2-EphA2 plasmid constructs were introduced by conjugation into the *Listeria* strain DP-L4029 (actA) as described (*ibid*). Figure 2 shows the results of a Western blot analysis of TCA-precipitated bacterial culture fluids of *Listeria* actA encoding either the native or codon-optimized secA1 LLO signal peptide fused with the codon-optimized EphA2 EX2 domain.

This analysis demonstrated that the combination of utilizing sequence for both signal peptide and heterologous protein optimized for the preferred codon usage in *Listeria monocytogenes* resulted in expression of the expected full-length EphA2 EX2 domain protein. Expression of full-length EphA2 EX2 domain protein was poor with codon-optimization of the EphA2 coding sequence alone. The level of heterologous protein expression (fragmented or full-length) was highest when utilizing the *Listeria monocytogenes* LLO secA1 signal peptide, codon-optimized for expression in *Listeria monocytogenes*.

6.1.6.3. Listeria: [DP-L4029 (actA)]

10 [00343] Expression cassette constructs:

5

15

20

25

30

35

Native LLOss-PEST-(CodonOp) FLAG-EphA2_CO-myc (SEQ ID NO:37)

CodonOp LLOss-PEST-(CodonOp) FLAG- EphA2_CO-myc (SEQ ID NO:39)

CodonOp PhoD-(CodonOp) FLAG- EphA2_CO-myc (SEQ ID NO:41)

The native secA1 LLO signal peptide sequence or the secA1 LLO signal [00344] peptide sequence codon-optimized for expression in Listeria, or, alternatively, the Tat signal peptide of the phoD gene from Bacillus subtilis codon-optimized for expression in Listeria, was fused genetically with the EphA2 CO domain sequence codon-optimized for expression in Listeria, and the heterologous antigen expression cassette under control of the Listeria hly promoter was inserted into the pAM401-MCS plasmid between the Kpn I and Sac I sites as described (ibid). The pAM401-EphA2 plasmid constructs were introduced by electroporation into the Listeria strain DP-L4029 (actA) as described (ibid). Figure 3 shows the results of a Western blot analysis of TCA-precipitated bacterial culture fluids of Listeria actA encoding either the native or codon-optimized secA1 LLO signal peptide, or codonoptimized Bacillus subtilis phoD Tat signal peptide fused with the codon-optimized EphA2 CO domain. This analysis demonstrated once again that the combination of utilizing sequence for both signal peptide and heterologous protein optimized for the preferred codon usage in Listeria monocytogenes resulted in expression of the expected full-length EphA2 CO domain protein. Furthermore, expression and secretion of the expected full-length EphA2 CO domain protein resulted from recombinant Listeria encoding codon-optimized Bacillus subtilis phoD Tat signal peptide fused with the codon-optimized EphA2 CO domain. This result demonstrates the novel and unexpected finding that signal peptides from distinct bacterial species can be utilized to program the secretion of heterologous proteins from recombinant Listeria. Expression of full-length EphA2 CO domain protein

was poor with codon-optimization of just the EphA2 sequence. The level of heterologous protein expression was highest when utilizing signal peptides codon-optimized for expression in *Listeria monocytogenes*.

6.1.7 Construction of Listeria strains expressing AH1/OVA or AH1-A5/OVA

[00345] Mutant *Listeria* strains expressing a truncated form of a model antigen ovalbumin (OVA), the immunodominant epitope from mouse colorectal cancer (CT26) known as AH1 (SPSYVYHQF) (SEQ ID NO:55), and the altered epitope AH1-A5 (SPSYAYHQF (SEQ ID NO:56); Slansky et al., *Immunity*, 13:529-538 (2000)) were prepared. The pPL2 integrational vector (Lauer et al., *J. Bacteriol*. 184:4177 (2002); U.S. Patent Publication No. 2003/0203472) was used to derive OVA and AH1-A5/OVA recombinant *Listeria* strains containing a single copy integrated into an innocuous site of the *Listeria* genome.

[00346] Construction of OVA-expressing Listeria (DP-L4056)An antigen expression cassette consisting of hemolysin-deleted LLO fused with truncated OVA and contained in the pPL2 integration vector (pPL2/LLO-OVA) is first prepared. The Listeria-OVA vaccine strain is derived by introducing pPL2/LLO-OVA into the phage-cured L. monocytogenes strain DP-L4056 at the PSA (Phage from ScottA) attachment site tRNA^{Arg}-attBB³.

[00347] PCR is used to amplify the hemolysin-deleted LLO using the following template and primers:

Source: DP-L4056 genomic DNA

Primers:

5

10

20

25

30

35

Forward (KpnI-LLO nts. 1257-1276):

5'-CTCTGGTACCTCCTTTGATTAGTATATTC (SEQ ID NO:57)

(Tm:LLO-spec: 52°C. Overall: 80°C.)

Reverse (BamHI-XhoI-LLO nts. 2811-2792):

 ${\tt 5'-CAAT} \underline{GGATCCCTCGAG} \underline{ATCATAATTTACTTCATCCC}$

(SEQ ID NO:58)

(Tm:LLO-spec: 52°C. Overall: 102°C.)

[00348] PCR is also used to amplify the truncated OVA using the following template and primers:

Source: pDP3616 plasmid DNA from DP-E3616 E. coli (Higgins et al., Mol. Molbiol. 31:1631-1641 (1999)).

Primers:

Forward (XhoI- NcoI OVA cDNA nts. 174-186):

5'-ATTT<u>CTCGAG</u>T<u>CCATGG</u>GGGGTTCTCATCATC (SEQ ID NO:59)

(Tm: OVA-spec: 60°C. Overall: 88°C.)

Reverse (XhoI-NotI-HindIII):

5

10

15

20

25

5'-GGTG<u>CTCGAGTGCGGCCGCAAGCTT</u> (SEQ ID NO:60) (Tm: Overall: 82°C.)

[00349] One protocol for completing the construction process involves first cutting the LLO amplicon with KpnI and BamHI and inserting the KpnI/BamHI vector into the pPL2 vector (pPL2-LLO). The OVA amplicon is then cut with XhoI and NotI and inserted into the pPL2-LLO which has been cut with XhoI/NotI. (Note: The pPL2 vector does not contain any XhoI sites; pDP-3616 contains one XhoI site, that is exploited in the OVA reverse primer design.) The construct pPL2/LLO-OVA is verified by restriction analysis (KpnI-LLO-XhoI-OVA-NotI) and sequencing. The plasmid pPL2/LLO-OVA is introduced into E. coli by transformation, followed by introduction and integration into Listeria (DP-

L4056) by conjugation, exactly as described by Lauer et al. (or into another desired strain of Listeria).

[00350] Construction of Listeria strains expressing AH1/OVA or AH1-A5/OVATo prepare *Listeria* expressing either the AH1/OVA or the AH1-A5/OVA antigen sequences, inserts bearing the antigen are first prepared from oligonucleotides and then ligated into the vector pPL2-LLO-OVA (prepared as described above).

[00351] The following oligonucleotides are used in preparation of the AH1 or AH1-A5 insert:

AH1 epitope insert (ClaI-PstI compatible ends):

Top strand oligo (AH1 Top):

5'-CGATTCCCCTAGTTATGTTTACCACCAATTTGCTGCA (SEO ID NO:61)

Bottom strand oligo (AH1 Bottom):

5'-GCAAATTGGTGGTAAACATAACTAGGGGAAT (SEO ID NO:62)

AH1-A5 epitope insert (ClaI-AvaII compatible ends):

30 [00352] The sequence of the AH1-A5 epitope is SPSYAYHQF (SEQ ID NO:56) (5'-AGT CCA AGT Tat GCA Tat CAT CAA TTT-3') (SEO ID NO:63).

Top: 5'-CGATAGTCCAAGTTATGCATATCATCAATTTGC (SEQ ID NO:64)

Bottom: 5'-GTCGCAAATTGATGATATGCATAACTTGGACTAT

35 (SEQ ID NO:65)

[00353] The oligonucletide pair for a given epitope are mixed together at an equimolar ratio, heated at 95 °C for 5 min. The oligonucleotide mixture is then allowed to slowly cool. The annealed oligonucleotide pairs are then ligated at a 200 to 1 molar ratio with pPL2-LLO/OVA plasmid prepared by digestion with the relevant restriction enzymes.

The identity of the new construct can be verified by restriction analysis and/or sequencing. [00354] The plasmid can then be introduced into E. coli by transformation, followed by introduction and integration into *Listeria* (DP-L4056) by conjugation, exactly as described by Lauer et al., or into another desired strain of *Listeria*, such as an *actA* mutant strain (DP-L0429), LLO L461T strain (DP-L4017), or *actA* / intlB strain (DP-L4029inlB).

5

10

6.2 EXAMPLE 2: GENERATION OF MURINE TUMOR CELL LINES THAT EXPRESS HUMAN EphA2

6.2.1 <u>Selection of CT26 Murine Colon Carcinoma Cells Expressing</u> <u>High Levels of huEphA2</u>

6.2.1.1. Transfection Assays With LipofectamineTM

15 [00355] CT26 cells were transfected with constructs containing huEphA2 using standard transfection techniques and commercially available LipofectamineTM according to the manufacturer's instructions

6.2.1.2. Flow Cytometry (FACS) Analysis

[00356] Single cell FACS sorting assays were performed by standard techniques to identify CT26 murine carcinoma tumor cell expressing high levels of human EphA2.

[00357] Figure 4 illustrates a representative experiment, showing that the EphA2-3 clone expressed the highest levels of human EphA2 protein.

6.2.1.3. Western Blot of Pooled Populations Expressing High Levels of huEphA2

25 [00358] Western blotting was also performed using standard techniques to determine the levels of human EphA2 protein expression in CT26 cells following FACS sorting of pooled populations of cells transfected with various constructs containing the huEphA2 gene. Figure 5 depicts results of a representative experiment. Compared to various clones tested, the huEphA2-3 clone expressed the highest levels of human EphA2 protein and was selected for the *in vivo* efficacy studies described below. Cells were further pooled to generate subclones expressing the highest levels of huEphA2.

6.2.2 <u>Selection of B16F10 Murine Melanoma Cells Expressing High</u> <u>Levels of huEphA2</u>

6.2.2.1. Retroviral Transduction

[00359] Human EphA2 was introduced into B16F10 murine melanoma cells by a retroviral transduction method to create clones expressing high levels of the protein.

6.2.2.2. Flow Cytometry (FACS) Analysis

5 [00360] As was performed on the CT26 cells, single cell FACS sorting assays were performed by standard techniques on B16F10 cells expressing huEphA2 to generate clones expressing high levels of huEphA2. Clones expressing the highest levels of huEphA2 were pooled and further examined by Western blot analysis. A representative FACS experiment is depicted in Figure 6, showing a B16F10 subclone expressing high levels of huEphA2.

6.2.3 Western Blot of Pooled Populations Expressing High Levels of huEphA2

[00361] Western blotting was also performed as described above to determine levels of huEphA2 protein expression in B16F10 cells following FACS sorting of pooled populations of cells containing the huEphA2 gene introduced by retroviral transduction.

15 Cells were further pooled to generate subclones expressing the highest levels of huEphA2.

6.2.4 Transfection of 293 Cells with pCDNA4 plasmids encoding fulllength EphA2

[00362] Expression cassette constructs:

[00363] pCDNA4-EphA2

10

30

20 [00364] The native full-length EphA2 gene was cloned into the eukaryotic CMV promoter-based expression plasmid pCDNA4 (Invitrogen, Carlsbad, CA). Figure 7 shows the results of a Western blot analysis of lystates prepared from 293 cells transfected with the pCDNA4-EphA2 plasmid, and demonstrates the abundant expression in mammalian cells of full-length EphA2 protein.

25 6.3 EXAMPLE 3: IN VIVO EphA2 EFFICACY STUDIES

[00365] Efficacy studies were performed in mice inoculated with CT26 tumor cells expressing the extracellular domain (ED) of human EphA2 in order to characterize the antitumor effect of huEphA2. Endpoints measured were tumor volume and percent survival of the mice after tumor inoculation. The routes of inoculation were subcutaneous (s.c.) and intravenous (i.v.). HBSS and Listeria were administered as controls.

6.3.1 Therapeutic Vaccinations:

[00366] A representative therapeutic study was performed as follows:

[00367] Groups: Six groups of ten mice per group. Groups 1-3 were inoculated s.c. and groups 4-6 were inoculated i.v. with CT26 murine colon carcinoma cells:

Treatment Group	Number of Mice per Groups
1. Control - HBSS	10
2. L4029 - control Listeria monocytogenes	10
3. L4029-EphA2 exFlag – Listeria monocytogenes expressing extracellular domain of human EphA2	10
4. Control - HBSS	10
5. L4029 - control Listeria monocytogenes	10
6. L4029-EphA2 exFlag – Listeria monocytogenes expressing extracellular domain of human EphA2	10

1003681 Schedule: Animals were inoculated with CT26 colon carcinoma cells transfected with human EphA2 (L4029-EphA2 exFlag), Listeria control (L4029-control) or vehicle (HBSS) (5 x 10⁵ cells in 100ul volume) either subcutaneously or intravenously (experimental lung metastases model). Three days after cell inoculation, animals received i.v. administrations of the agents listed above in 200ul bolus. Two weeks following the first administration, the animals received a booster vaccination. Tumor volume was measured hiweekly (s.c inoculation only) and animal weights assessed on a weekly basis. Any animals possessing tumors greater than 2000 mm³ or demonstrating signs of morbidity (hunched posture, impaired breathing, decreases mobility, greater than 20% weight loss, etc.) were humanely euthanized. The schedule is summarized in the table below.

5

10

15

[00369]

Group	Cell Inoculation Route	Primary Vaccination (Day 3)	Boost Vaccination (Day 17)
	(5 x 10 ⁵ cell in 100μl)		
1. Control	s.c.	HBSS	HBSS
2. L4029	s.c.	6x10 ⁶ to 2x10 ⁷ CFU	6x10 ⁶ to 2x10 ⁷ CFU
3. L4029 EphA2- exFlag	s.c.	6x 10 ⁶ to 2x 10 ⁷ CFU	6x10 ⁶ to 2x10 ⁷ CFU
4. Control	i.v.	HBSS	HBSS
5. L4029	i.v.	6x10 ⁶ to 2x10 ⁷ CFU	6x10 ⁶ to 2x10 ⁷ CFU
6. L4029 EphA2- exFlag	i.v.	6x10 ⁶ to 2x10 ⁷ CFU	6x10 ⁶ to 2x10 ⁷ CFU

Figures 8A-8C illustrate the results of a typical therapeutic study. In Figure 8A, tumor volume was measured at several intervals post inoculation. Compared to the HBSS and Listeria controls, the mice inoculated with CT26 cells expressing the ECD of huEphA2 had a significantly lower tumor volume after day 14 and continued onto day 28. Figure 8B depicts the mean tumor volume of mice inoculated with CT26 cells containing either Listeria control or huEphA2. Compared to control, the mice inoculated with CT26 cells expressing huEphA2 had a reduced mean tumor volume. Figure 8C represents the results of the therapeutic study using the lung metastases model, measuring percent survival of the mice post inoculation with CT26 cells with either HBSS or *Listeria* control, or *Listeria* expressing the ECD of huEphA2. Animals inoculated with CT26 cells expressing the ECD of huEphA2 (depicted by red triangles) showed a higher percent survival rate compared to controls.

6.3.2 Prophylactic Vaccinations:

5

10

15

20

[00370] Preventive studies were performed according to the schedule described below. These studies utilized a pool of CT26 cells expressing huEphA2 generated by the single cell FACS assays described above.

[00371] Groups: Eight groups of ten mice per group. Groups 1-4 were inoculated s.c. and groups 5-8 were inoculated i.v. with CT26 colon carcinoma cells transfected with human EphA2:

Treatment Group	Number of Mice per Groups
1. Control - HBSS	10
2. L4029 - control Listeria monocytogenes	10
3. L4029-EphA2 exFlag - Listeria monocytogenes expressing extracellular domain of human EphA2	10
4. L4029 - AH1 Listeria monocytogenes	10
5. Control - HBSS	10
6. L4029 - control Listeria monocytogenes	10
7. L4029-EphA2 exFlag - Listeria monocytogenes expressing extracellular domain of human EphA2	10
8. L4029 - AH1 Listeria monocytogenes	10

[0.322] Schedule: Animals received i.v. administrations of the agents listed above in 200µl bolus on Day 0 and Day 10. On Day 14, animals were inoculated with CT26 colon carcinoma cells transfected with human EphA2 (L4029EphA2-exFlag), Listeria control (L4029), or Listeria positive control containing the AH1 protein (L4029-AH1) (5 x10⁵ cells in 100µl volume) either subcutaneously or intravenously (experimental lung metastases model). Tumor volume was measured bi-weekly (s.c inoculation only) and animal weights assessed on a weekly basis. Any animals possessing tumors greater than 2000 mm³ or demonstrating signs of morbidity (hunched posture, impaired breathing, decreases mobility, greater than 20% weight loss, etc.) were humanely euthanized. The experimental schedule is summarized in the table below.

Group	Cell Inoculation	Primary Vaccination	Boost Vaccination
1	Route	(Day 0)	(Day 10)
	(5 x 10 ⁵ cell in 100µl)		
	(Day 14)		
1. Control	S.C.	HBSS	HBSS
2. L4029	S.C.	2x10 ⁷ CFU	2x10 ⁷ CFU
3. L4029 EphA2-	s.c.	2x10 ⁷ CFU	2x10 ⁷ CFU
exFlag			

4. L4029 -AH1	s.c.	2x10 ⁷ CFU	2x10 ⁷ CFU
5. Control	i.v.	HBSS	HBSS
6. L4029	i.v.	2x10 ⁷ CFU	2x10 ⁷ CFU
7. L4029 EphA2- exFlag	i.v.	2x10 ⁷ CFU	2x10 ⁷ CFU
8. L4029 - AH1	i.v.	2x10 ⁷ CFU	2x10 ⁷ CFU

[00373] In this study, vaccination with Listeria-huEphA2 exFlag demonstrated a significant anti-tumor effect in both the s.c. and experimental lung metastases models (i.v.). In the s.c. model, a significant reduction in tumor growth was achieved with 3 mice remaining tumor-free. This response was also specific compared to the control Listeria and vehicle treated animals. In the experimental lung metastases model, vaccination with Listeria huEphA2-exFlag also demonstrated efficacy compared to the vehicle treated group. [00374] Figures 9A-9D illustrate results of the preventive experiments. Figure 9A shows that the tumor volume of mice inoculated with CT26 cells expressing the ECD of huEphA2 was significantly reduced when compared to vehicle (HBSS), Listeria (L4029) and Listeria positive (L4029-AH1) controls starting at day 21 and continued until day 32 post inoculation. Figure 9B also depicts results of the preventive experiments, showing again that the tumor volume of mice inoculated with CT26 cells expressing the ECD of huEphA2 (L4029-EphA2 exFlag) was significantly reduced when compared to the Listeria (L4029) control starting at day 21 and continued until day 32 post inoculation. Figure 9C illustrates the results of the prevention study in the s.c. model, measuring percent survival of the mice post CT26 tumor cell inoculation. Compared to all control groups, the L4029-EphA2 exFlag group had the most significant survival rate (indicated by red triangles). Figure 9D illustrates the results of the prevention study in the lung metastases model, measuring the percent survival of the mice post tumor cell inoculation. Compared to all

5

10

15

20

25

6.4 Therapeutic efficacy in Balb/C mice bearing CT26 tumors encoding human EphA2 immunized with recombinant Listeria encoding codon-optimized EphA2.

[00375] The following data presented in Figures 10-13 demonstrated the following:
[00376] Immunization of Balb/C mice bearing CT26.24 (huEphA2+) lung tumors
with recombinant Listeria encoding OVA.AH1 (MMTV gp70 immunodominant epitope) or
OVA.AH1-A5 (MMTV gp70 immunodominant epitope, with heteroclitic change for
enhanced T-cell receptor binding) confers long-term survival (Figure 10).
[00377] The EphA2 CO domain is strongly immunogenic, and a significant long term

control groups, the L4029-EphA2 exFlag group had the most significant survival rate.

increase in survival of Balb/C mice bearing CT26.24 (huEphA2+) lung tumors was

observed when immunized with recombinant *Listeria* encoding codon-optimized or native EphA2 CO domain sequence (Figure 12).

1003781

5

10

15

20

25

The EphA2 EX2 domain is poorly immunogenic, and increased survival of

Balb/C mice bearing CT26.24 (huEphA2+) lung tumors was observed only when immunized with recombinant *Listeria* encoding codon-optimized secA1 signal peptide fused with the codon-optimized EphA2 EX2 domain sequence. Therapeutic efficacy was not observed in mice when immunized with recombinant *Listeria* encoding native secA1 signal peptide fused with the codon-optimized EphA2 EX2 domain sequence (Figure 11). The desirability of using both codon-optimized secA1 signal peptide and EphA2 EX2 domain sequences was supported by statistically significant therapeutic anti-tumor efficacy, as shown in the table below:

[00379] The following table shows a comparison by log-rank test of survival curves shown in Figure 11:

Experimental Group	Median Survival (Days)	Significance versus HBSS cohort (p value)	Significance versus actA-native secA1/EphA2 EX2 cohort (p value)
HBSS	19	-	
ActA	20	NS	NS
actA-native secA1- EphA2 EX2 (native)	19	NS	-
actA-native secA1- EphA2 EX2 (CodOp)	24	0.0035	NS
actA-CodOp secA1- EphA2 EX2 (CodOp)	37	0.0035	0.0162
actA-native secA1- EphA2 CO (CodOp)	>99	0.0035	0.0015

[00380] Significantly, even though pCDNA4-EphA2 plasmid transfected 293 cells

yielded very high levels of protein expression, immunization of Balb/C mice bearing CT26.24 (huEphA2+) lung tumors with the pCDNA4-EphA2 plasmid did not result in any observance of therapeutic anti-tumor efficacy (Figure 13).

[00381] For therapeutic in vivo tumor studies, female Balb/C mice were implanted IV with 5 x 10³ CT26 cells stably expressing EphA2. Three days later, mice were randomized and vaccinated IV with various recombinant Listeria strains encoding EphA2. In some cases (noted in figures) mice were vaccinated with 100 µg of pCDNA4 plasmid or pCDNA4-EphA2 plasmid in the tibialis anterior muscle. As a positive control, mice were vaccinated IV with recombinant Listeria strains encoding OVA.AHI or OVA.AHI-A5 protein chimeras. Mice were vaccinated on days 3 and 14 following tumor cell implantation. Mice injected with Hanks Balanced Salt Solution (HBSS) buffer or unmodified Listeria served as negative controls. All experimental cohorts contained 5

mice. For survival studies mice were sacrificed when they started to show any signs of stress or labored breathing.

7. EQUIVALENTS

5

10

[00382] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

[00383] All publications, patents and patent applications mentioned in this specification are herein incorporated by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference.

We claim:

5

- A method of eliciting an immune response against an EphA2-expressing cell, said
 method comprising administering to an individual a composition comprising an EphA2
 antigenic polypeptide in an amount effective to elicit an immune response against an
 EphA2-expressing cell.
- 2. The method of claim 1, wherein the composition further comprises an adjuvant.
- The method of claim 1, wherein the composition comprises a heat shock protein bound to said EphA2 antigenic polypeptide.
- The method of claim 1, where the polypeptide further comprises a protein transduction
 domain.
 - The method of claim 4, wherein the protein transduction domain is the Antennapedia or the HIV tat protein transduction domain.
- A method of eliciting an immune response against an EphA2-expressing cell, said method comprising administering to an individual a composition comprising an EphA2 antigenic polypeptide expression vehicle in an amount effective to elicit an immune response against an EphA2-expressing cell.
 - The method of claim 6, wherein the expression vehicle is a nucleic acid encoding said EphA2 antigenic polypeptide operably linked to a promoter.
 - 8. The method of claim 7, wherein the nucleic acid is DNA.
- 20 9. The method of claim 8, wherein the DNA is conjugated to a carrier.
 - 10. The method of claim 7, wherein the carrier is asialoglycoprotein.
 - 11. The method of claim 7, wherein the carrier is transferrin.
 - 12. The method of claim 7, wherein the carrier is polymeric IgA.

- 13. The method of claim 6, wherein the expression vehicle is an infectious agent comprising a nucleic acid, said nucleic acid comprising a nucleotide sequence encoding said EphA2 antigenic polypeptide operably linked to a promoter.
- 14. The method of claim 13, wherein the sequence encoding said EphA2 antigenic polypeptide is codon-optimized for expression in said infectious agent.
 - 15. The method of claim 13, wherein the infectious agent is coated with a reagent that targets the infectious agent to EphA2-expressing cells.
 - 16. The method of claim 15, wherein the reagent is an anti-EphA2 antibody.
- 17. The method of claim 13, wherein the infectious agent is coated with a reagent that10 targets the infectious agent to antigen-presenting cells.
 - 18. The method of claim 13, wherein the infectious agent is a bacterium.
 - 19. The method of claim 18, wherein the bacterium is attenuated.
 - 20. The method of claim 19, wherein the attenuated bacterium is deficient in DNA repair.
 - 21. The method of claim 19, wherein the bacterium is psoralen-treated.
- 15 22. The method of claim 20, wherein the bacterium has a mutation in a DNA repair gene.
 - 23. The method of claim 18, wherein the nucleic acid comprises a nucleotide sequence encoding a secretory signal operatively linked to the sequence encoding the EphA2 antigenic polypeptide.
 - 24. The method of claim 23, wherein the secretory signal is a SecA secretory signal.
- 20 25. The method of claim 18, wherein the bacterium is Pseudomonas aeruginosa.
 - 26. The method of claim 13, wherein the infectious agent is a virus.

- 27. The method of claim 26, wherein the virus is a retrovirus.
- 28. The method of claim 27, wherein the retrovirus is a lentivirus.
- 29. The method of claim 26, wherein the virus is an adenovirus.
- 30. The method of claim 26, wherein the virus is an adeno-associated virus.
- 5 31. The method of claim 26, wherein the virus is herpes simplex virus.
 - 32. The method of claim 26, wherein the virus is attenuated.
 - 33. The method of claim 6, wherein the expression vehicle is a mammalian cell comprising a recombinant nucleic acid, said nucleic acid comprising a nucleotide sequence encoding said EphA2 antigenic polypeptide.
- 10 34. The method of claim 34, wherein the mammalian cell is a human cell.
 - 35. The method of claim 33, wherein the mammalian cell is encapsulated within a membrane.
 - 36. The method of claim 35, wherein said administering is by means of implantation.
- 37. A method of eliciting an immune response against an EphA2-expressing cell, said method comprising administering to an individual a composition comprising antigen presenting cells sensitized with an EphA2 antigenic polypeptide.
 - 38. The method of claim 37, further comprising prior to said administration the step of sensitizing the antigen presenting cells.
- 39. The method of claim 38, wherein the antigen presenting cells are sensitized by a method comprising: contacting the cells with a composition comprising one or more EphA2 antigenic peptides in an amount effective to sensitize the cells.

- 40. The method of claim 40, wherein the composition further comprises a heat shock protein.
- 41. The method of claim 40, wherein the heat shock protein is hsp70, gp96, or hsp90.
- 42. The method of claim 37, wherein the antigen presenting cells are autologous to the 5 individual.
 - The method of claim 37, wherein the antigen presenting cells are non-autologous to the individual.
 - 44. The method of claim 37, wherein the antigen presenting cells are macrophages.
 - 45. The method of claim 37, wherein the antigen presenting cells are dendritic cells.
- 10 46. The method of claim 1, 6, or 37, wherein the individual has cancer.
 - 47. The method of claim 46, wherein said cancer is of an epithelial cell origin.
 - 48. The method of claim 46, wherein said cancer comprises cells that overexpress EphA2 relative to non-cancer cells having the tissue type of said cancer cells.
- 49. The method of claim 46, wherein said cancer is a cancer of the skin, lung, colon, ovary, 15 esophagus, breast, prostate, bladder or pancreas or is a renal cell carcinoma or melanoma.
 - 50. The method of claim 1, 6, 37, or 53, wherein the individual has a non-neoplastic hyperproliferative disorder.
 - 51. The method of claim 50, wherein the hyperproliferative disorder is an epithelial cell disorder.
- 52. The method of claim 51, wherein the hyperproliferative is asthma, chronic pulmonary obstructive disease, lung fibrosis, bronchial hyper responsiveness, psoriasis, and seborrheic dermatitis.

- 53. A method of eliciting an immune response against an EphA2-expressing cell, said method comprising administering to an individual a composition comprising an anti-idiotypic antibody or antigen-binding fragment thereof which immunospecifically binds to an idiotype of an anti-EphA2 antibody in an amount effective to elicit an immune response against an EphA2-expressing cell.
- 54. A method of treating a human individual having a hyperproliferative disorder of EphA2-expressing cells, said method comprising administering to the individual a composition comprising an EphA2 antigenic polypeptide in an amount effective to treat a hyperproliferative disorder of EphA2-expressing cells.
- 55. A method of treating a human individual having a hyperproliferative disorder of EphA2-expressing cells, said method comprising administering to the individual a composition comprising an EphA2 expression vehicle in an amount effective to treat a hyperproliferative disorder of EphA2-expressing cells.

5

15

- 56. A method of treating a human individual having a hyperproliferative disorder of EphA2-expressing cells, said method comprising administering to the individual a composition comprising antigen presenting cells sensitized with an EphA2 antigenic polypeptide in an amount effective to treat a hyperproliferative disorder of EphA2expressing cells.
- 57. A method of treating a human individual having a hyperproliferative disorder of EphA2-expressing cells, said method comprising administering to an individual a composition comprising an anti-idiotypic antibody or antigen-binding fragment thereof which immunospecifically binds to an idiotype of an anti-EphA2 antibody in an amount effective to elicit treat a hyperproliferative disorder of EphA2-expressing cells.
 - 58. The method of claim 54, 55, 56, or 57, wherein the individual has cancer.
- 25 59. The method of claim 58, wherein said cancer is of an epithelial cell origin.
 - 60. The method of claim 58, wherein said cancer comprises cells that overexpress EphA2 relative to non-cancer cells having the tissue type of said cancer cells.

- 61. The method of claim 58, wherein said cancer is a cancer of the skin, lung, colon, breast, prostate, bladder or pancreas or is a renal cell carcinoma or melanoma.
- 62. The method of claim 54, 55, 56, or 57, wherein the individual has a non-neoplastic hyperproliferative disorder.

15

- 5 63. The method of claim 62, wherein the hyperproliferative disorder is an epithelial cell disorder.
 - 64. The method of claim 63, wherein the hyperproliferative disorder is asthma, chronic pulmonary obstructive disease, lung fibrosis, bronchial hyper responsiveness, psoriasis, and seborrheic dermatitis
- 10 65. The method of any one of claims 1, 6, 37, 54, 55, and 56, wherein the EphA2 polypeptide comprises full length EphA2.
 - 66. The method of any one of claims 1, 6, 37, 54, 55, and 56, wherein the EphA2 polypeptide comprises the extracellular domain of EphA2.
 - 67. The method of any one of claims 1, 6, 37, 54, 55, and 56, wherein the EphA2 polypeptide comprises the intracellular domain of EphA2.
 - 68. The method of any one of claims 1, 6, 37, 54, 55, and 56, wherein the EphA2 polypeptide is a chimeric polypeptide comprising at least an antigenic portion of EphA2 and a second polypeptide.
- 69. The method of claim 53 or 57, wherein the EphA2 antibody immunospecifically bindsto an epitope in the extracellular domain of EphA2.
 - 70. The method of claim 53 or 57, wherein the EphA2 antibody immunospecifically binds to an epitope the intracellular domain of EphA2.
 - 71. The method of any one of claims 1, 6, 37, 54, 55, and 56, wherein the EphA2 polypeptide is a chimeric polypeptide comprising at least an antigenic portion of EphA2 and a second polypeptide.

- 72. The method of claim 1, or 54, wherein the composition comprises a plurality of EphA2 antigenic polypeptides.
- 73. The method of claim 6 or 55, wherein the composition comprises a plurality of EphA2 antigenic polypeptide expression vehicles.
- 5 74. The method of claim 6 or 55, wherein the expression vehicle expresses a plurality of EphA2 antigenic polypeptides.
 - 75. The method of claim 37 or 56, wherein the antigen presenting cells are sensitized with a plurality of EphA2 antigenic polypeptides
- 76. The method of any one of claims 1, 6, 37, 53, 54, 55, 56, and 57, further comprisingadministering an additional anti-cancer therapy.
 - 77. The method of claim 76, wherein the additional anti-cancer therapy is an agonistic EphA2 antibody.
 - 78. The method of claim 76, wherein the additional anti-cancer therapy is chemotherapy, biological therapy, immunotherapy, radiation therapy, hormonal therapy, or surgery.
- 79. The method of any one of claims 1, 6, 37, 53, 54, 55, 56, and 57, wherein said administering is mucosal, intranasal, parenteral, intramuscular, or intraperitoneal.

ABSTRACT

[00384] The present invention relates to methods and compositions designed for the treatment, management, or prevention of cancer, particularly metastatic cancer, and hyperproliferative diseases involving EphA2-expressing cells. In one embodiment, the methods of the invention comprise the administration of an effective amount of an EphA2 antigenic peptide to elicit an immune response against the EphA2-expressing cells. In other embodiments, the methods of the invention entail the use of an EphA2 expression vehicle, such as a naked nucleic acid or viral vector. In yet other embodiments, the methods of the invention comprise the use of adoptive immunotherapy with autologous or non-autologous antigen presenting cells that are sensitized with one or more EphA2 antigenic peptides. The invention also provides pharmaceutical compositions comprising one or more EphA2 antigenic peptides, expression vehicles or antigen-presenting cells of the invention either alone or in combination with one or more other agents useful for cancer therapy.

5

SEQUENCE LISTING

<110>	Kinch,	Michae	1 S.									
<120>	EphA2 \	VACCINE	s									
<130>	10271-0	085-888										
<160>	72											
<170>	Patent	In vers	ion 3.2									
<210>	1 3963											
<211>	DNA											
<213>		apiens										
<220> <221> <222>	CDS (138).	. (3068)										
<400> attaag	1 gact cg	gggcagg	a ggggc	agaag t	tgcgc	gcag	gccg	gcgg	gc g	ggag	cggac	60
accgag	gccg gc	gtgcagg	c gtgcg	ggtgt g	cgggag	gccg	ggct	cggg	gg 9	atcg	gaccg	120
agagco	gagaa gc	gegge a M	let Glu	ctc cag Leu Gln	gca g Ala A 5	gcc c Ala A	gc g rg A	cc t la C	ys F	tc g he A	jcc lla	170
ctg ct Leu Le	g tgg g u Trp G 1	gc tgt ly Cys 5	gcg ctg Ala Lev	gcc gc Ala Al 20	a Ala	gcg Ala	gcg Ala	gcg Ala	cag Gln 25	ggc Gly	aag Lys	218
gaa gt Glu Va	g gta c al Val L 30	tg ctg eu Leu	gac ttt Asp Phe	gct gc Ala Al 35	a gct a Ala	gga Gly	Gly	gag Glu 40	ctc Leu	ggc Gly	tgg Trp	266
ctc ac Leu Ti 4!	ca cac c nr His P	cg tat ro Tyr	ggc aaa Gly Lys 50	ggg tg Gly Tr	g gac p Asp	ctg Leu	atg Met 55	cag Gln	aac Asn	atc Ile	atg Met	314
aat ga Asn As 60	ac atg c sp Met P	cg atc ro Ile	tac ato Tyr Met 65	tac to Tyr Se	c gtg r Val	tgc Cys 70	aac Asn	gtg Val	atg Met	tct Ser	ggc Gly 75	362
gac ca Asp G	ag gac a ln Asp A	ac tgg sn Trp 80	ctc cgc Leu Arg	acc aa Thr As	c tgg n Trp 85	gtg Val	tac Tyr	cga Arg	gga Gly	gag Glu 90	gct Ala	410
gag ce Glu A	gt atc t rg Ile P 9	tc att he Ile 5	gag cto Glu Lev	aag tt Lys Ph	e Thr	gta Val	cgt Arg	gac Asp	tgc Cys 105	aac Asn	agc Ser	458
ttc c	ct ggt g ro Gly G 110	gc gcc Sly Ala	agc tcc Ser Ser	tgc aa Cys Ly 115	g gag s Glu	act Thr	ttc Phe	aac Asn 120	ctc Leu	tac Tyr	tat Tyr	506
gcc g Ala G	ag tcg g lu Ser A	gac ctg Asp Leu	gac tac Asp Ty	ggc ac	c aac r Asn	ttc Phe	cag Gln	aag Lys	cgc Arg	ctg Leu	ttc Phe	554

1	25				130			135			
acc a Thr L											602
ttc g											650
ccg c Pro L		hr i									698
tgt g Cys V	al A										746
ctg ct Leu Le 20											794
gca co Ala Pi 220											842
gtg co Val Pi			Gly								890
gag to Glu Ti		eu 1									938
aag gt Lys Va	al Gl										986
gag go Glu Al 28	la Se										1034
ser Pr											1082
gca co Ala Pr			Asp								1130
cca ca Pro Hi		/r L									1178
tgg ac Trp Th		:0 F			Ser						1226
gtc ac Val Th 36	ır Cy										1274

gag Glu 380	gcc Ala	agt Ser	gtg Val	cgc Arg	tac Tyr 385	tcg Ser	gag Glu	cct Pro	cct Pro	cac His 390	Gly	ctg Leu	acc Thr	cgc Arg	acc Thr 395	1322
agt Ser	gtg Val	aca Thr	gtg Val	agc Ser 400	gac Asp	ctg Leu	gag Glu	Pro	CaC His 405	atg Met	aac Asn	tac Tyr	acc Thr	ttc Phe 410	acc Thr	1370
			cgc Arg 415													1418
			agt Ser													1466
			cgc Arg													1514
			cag Gln													1562
			tcc Ser													1610
			gac Asp 495													1658
			acg Thr													1706
			ctg Leu													1754
ggc Gly 540	gtg Val	gct Ala	gtc Val	ggt Gly	gtg Val 545	gtc Val	ctg Leu	ctt Leu	ctg Leu	gtg Val 550	ctg Leu	gca Ala	gga Gly	gtt Val	ggc Gly 555	1802
			cac His													1850
			tac Tyr 575													1898
			ccc Pro			Tyr										1946
			gag Glu													1994

Ċ							gag Glu					Met						2042
							ccg Pro											2090
							gtg Val											2138
							aac Asn											2186
							atc Ile 690											2234
L							gag Glu											2282
							ggc Gly											2330
							cgt Arg											2378
							aag Lys										:	2426
							gcc Ala 770										:	2474
P							ccg Pro										:	2522
							agc Ser										:	2570
			Gly				tac Tyr										3	2618
		Ala					ttc Phe										2	2666
	er.						atg Met 850										2	2714
C	gc	cgc	ccc	aag	ttc	gct	gac	atc	gtc	agc	atc	ctg	gac	aag	ctc	att	2	762

Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile 860 875	
cgt gcc cct gac tcc ctc aag acc ctg gct gac ttt gac ccc cgc gtg Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val 890	2810
tct atc cgg ctc ccc agc acg agc ggc tcg gag ggg gtg ccc ttc cgc Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg 895 900 905	2858
acg gtg tcc gag tgg ctg gag tcc atc aag atg cag cag tat acg gag Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu 910 915 920	2906
cac ttc atg gcg gcc ggc tac act gcc atc gag aag gtg gtg cag atg His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met 925 930 935	2954
acc aac gac gac atc aag agg att ggg gtg cgg ctg ccc ggc cac cag Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln 940 945 950 955	3002
aag ogc atc goc tac agc otg otg gga otc aag gac oag gtg aac act Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr 960 965 970	3050
gtg ggg atc occ atc tga gootogacag ggootggago cocatoggoo Val Gly Ile Pro Ile 975	3098
aagaatactt gaagaaacag agtggcetee etgetgtgee atgetgggee actggggaet	3158
ttatttattt ctagttottt octoocotg caacttoogo tgaggggtot oggatgacac	3218
cctggcctga actgaggaga tgaccaggga tgctgggctg ggccctcttt ccctgcgaga	3278
cgcacacage tgagcactta gcaggcaccg ccacgteeca gcatecetgg agcaggagee	3338
cogocacago ottoggacag acatatagga tattoccaag cogacottoc otcogootto	3398
teccacatga ggecatetea ggagatggag ggettggece agegecaagt aaacagggta	3458
cctcaagccc catttcctca cactaagagg gcagactgtg aacttgactg ggtgagaccc	3518
aaageggtee etgteeetet agtgeettet ttagaceete gggeeeeate eteateeetg	3578
actggccaaa cccttgcttt cctgggcctt tgcaagatgc ttggttgtgt tgaggttttt	3638
aaatatatat tttgtacttt gtggagagaa tgtgtgtgtg tggcaggggg ccccgccagg	3698
gctggggaca gagggtgtca aacattcgtg agctggggac tcagggaccg gtgctgcagg	3758
agtgtcctgc ccatgcccca gtcggcccca tctctcatcc ttttggataa gtttctattc	3818
tgtcagtgtt aaagattttg ttttgttgga catttttttc gaatcttaat ttattatttt	3878
ttttatattt attgttagaa aatgacttat ttctgctctg gaataaagtt gcagatgatt	3938
caaaccgaaa aaaaaaaaa aaaaa	3963

<210> 2
<211> 976
<212> PRT
<213> Homo sapiens
<400> 2

Met Glu Leu Gln Ala
1 5

Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys 1 10 15

Ala Leu Ala Ala Ala Ala Ala Gl
n Gly Lys Glu Val Val Leu Leu 20 25 30

Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr 35 40 45

Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile 50 55 60

Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp 65 70707575

Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile 85 90 95

Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala 100 \$105\$

Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu 115 120 125

Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr 130 $$135\$

Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His 145 150155155160

Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys 165 170 175

Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu 180 185 190

Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu 195 200 205

Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala

Thr 225	Val	Ala	Gly	Thr	Cys 230	Val	Asp	His	Ala	Val 235		Pro	Pro	Gly	G1:
Glu	Glu	Pro	Arg	Met 245	His	Cys	Ala	Val	Asp 250		Glu	Trp	Leu	Val 255	Pr
Ile	Gly	Gln	Cys 260	Leu	Cys	Gln	Ala	Gly 265		Glu	Lys	Val	Glu 270	Asp	Al:
Cys	Gln	Ala 275	Cys	Ser	Pro	Gly	Phe 280	Phe	Lys	Phe	Glu	Ala 285	Ser	Glu	Se
Pro	Cys 290	Leu	Glu	Cys	Pro	Glu 295	His	Thr	Leu	Pro	ser 300	Pro	Glu	Gly	Ala
Thr 305	Ser	Cys	Glu	Cys	Glu 310	Glu	Gly	Phe	Phe	Arg 315	Ala	Pro	Gln	Asp	Pro 320
Ala	Ser	Met	Pro	Cys 325	Thr	Arg	Pro	Pro	Ser 330	Ala	Pro	His	Tyr	Leu 335	Thi
Ala	Val	Gly	Met 340	Gly	Ala	Lys	Val	Glu 345	Leu	Arg	Trp	Thr	Pro 350	Pro	Gli
Asp	Ser	Gly 355	Gly	Arg	Glu	Asp	Ile 360	Val	Tyr	Ser	Val	Thr 365	Сув	Glu	Glr
Cys	Trp 370	Pro	Glu	Ser	Gly	Glu 375	Сув	Gly	Pro	Cys	Glu 380	Ala	ser	Val	Arg
Tyr 385	Ser	Glu	Pro	Pro	His 390	Gly	Leu	Thr	Arg	Thr 395	ser	Val	Thr	Val	Se1
Asp	Leu	Glu	Pro	His 405	Met	Asn	туг	Thr	Phe 410	Thr	Val	Glu	Ala	Arg 415	Asr
Gly	Val	Ser	Gly 420	Leu	Val	Thr	Ser	Arg 425	Ser	Phe	Arg	Thr	Ala 430	Ser	val
Ser	Ile	Asn 435	Gln	Thr	Glu	Pro	Pro 440	Lys	Val	Arg	Leu	Glu 445	Gly	Arg	Ser
Thr	Thr		Leu	Ser	Val	Ser		Ser	Ile		Pro		Gln	Gln	Ser

Arg 465		Trp	Lys	Tyr	Glu 470		Thr	Tyr	Arg	Lys 475		Gly	Asp	Ser	Asn 480
Ser	Tyr	Asn	Val	Arg 485		Thr	Glu	Gly	Phe 490		Val	Thr	Leu	Asp 495	Asp
Leu	Ala	Pro	Asp 500		Thr	Tyr	Leu	Val 505	Gln	Val	Gln	Ala	Leu 510	Thr	Gln
Glu	Gly	Gln 515		Ala	Gly	Ser	Lys 520	Val	His	Glu	Phe	Gln 525	Thr	Leu	Ser
Pro	Glu 530	Gly	Ser	Gly	Asn	Leu 535	Ala	Val	Ile	Gly	Gly 540	Val	Ala	Val	Gly
Val 545	Val	Leu	Leu	Leu	Val 550	Leu	Ala	Gly	Val	Gly 555	Phe	Phe	Ile	His	Arg 560
Arg	Arg	Lys	Asn	Gln 565	Arg	Ala	Arg	Gln	Ser 570	Pro	Glu	Asp	Val	Tyr 575	Phe
Ser	Lys	Ser	Glu 580	Gln	Leu	Lys	Pro	Leu 585	Lys	Thr	Tyr	Val	Asp 590	Pro	His
Thr	Tyr	Glu 595	Asp	Pro	Asn	Gln	Ala 600	Val	Leu	Lys	Phe	Thr 605	Thr	Glu	Ile
His	Pro 610	Ser	Cys	Val	Thr	Arg 615	Gln	Lys	Val	Ile	Gly 620	Ala	Gly	Glu	Phe
Gly 625	Glu	Val	туг	Lys	Gly 630	Met	Leu	Lys	Thr	Ser 635	Ser	Gly	Lys	Lys	Glu 640
Val	Pro	Val	Ala	Ile 645	Lys	Thr	Leu	Lys	Ala 650	Gly	Tyr	Thr	Glu	Lys 655	Gln
Arg	V al	Asp	Phe 660	Leu	Gly	Glu	Ala	Gly 665	Ile	Met	Gly	Gln	Phe 670	Ser	His
His	Asn	Ile 675	Ile	Arg	Leu	Glu	Gly 680	Val	Ile	Ser	Lys	Tyr 685	Lys	Pro	Met
Met	Ile 690	Ile	Thr	Glu	Tyr	Met 695	Glu	Asn	Gly	Ala	Leu 700	Asp	Lys	Phe	Leu

	Arg 705		Lys	Asp	Gly	Glu 710	Phe	Ser	Val	Leu	Gln 715		Val	Gly	Met	Leu 720
	Arg	Gly	Ile	Ala	Ala 725	Gly	Met	Lys	Tyr	Leu 730	Ala	Asn	Met	Asn	Tyr 735	Val
1	His	Arg	Asp	Leu 740	Ala	Ala	Arg	Asn	Ile 745	Leu	Val	Asn	Ser	Asn 750	Leu	Val
	Cys	Lys	Val 755	Ser	Asp	Phe	Gly	Leu 760	Ser	Arg	Val	Leu	Glu 765	Asp	Asp	Pro
	Glu	Ala 770	Thr	Tyr	Thr	Thr	Ser 775	Gly	Gly	Lys	Ile	Pro 780	Ile	Arg	Trp	Thr
	Ala 785	Pro	Glu	Ala	Ile	Ser 790	Tyr	Arg	Lys	Phe	Thr 795	Ser	Ala	Ser	Asp	Val 800
	Trp	Ser	Phe	Gly	Ile 805	Val	Met	Trp	Glu	Val 810	Met	Thr	Tyr	Gly	Glu 815	Arg
	Pro	Tyr	Trp	Glu 820	Leu	Ser	Asn	His	Glu 825	Val	Met	Lys	Ala	Ile 830	Asn	Asp
	Gly	Phe	Arg 835	Leu	Pro	Thr	Pro	Met 840	Asp	Cys	Pro	Ser	Ala 845	Ile	Tyr	Gln
	Leu	Met 850	Met	Gln	Cys	Trp	Gln 855	Gln	Glu	Arg	Ala	Arg 860	Arg	Pro	Lys	Phe
	Ala 865	Asp	Ile	Val	Ser	Ile 870	Leu	Asp	Lys	Leu	Ile 875	Arg	Ala	Pro	Asp	Ser 880
	Leu	Lys	Thr	Leu	Ala 885	Asp	Phe	Asp	Pro	Arg 890	Val	Ser	Ile	Arg	Leu 895	Pro
	Ser	Thr	Ser	Gly 900	Ser	Glu	Gly	Val	Pro 905	Phe	Arg	Thr	Val	Ser 910	Glu	Trp
	Leu	Glu	Ser 915	Ile	Lys	Met	Gln	Gln 920	Tyr	Thr	Glu	His	Phe 925	Met	Ala	Ala
	Gly	Tyr 930	Thr	Ala	Ile	Glu	Lys 935	Val	Val	Gln	Met	Thr 940	Asn	Asp	Asp	Ile

```
Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr
945
                    950
                                        955
Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile
                                     970
<210> 3
<211> 12
<212> PRT
<213> Homo sapiens
<400> 3
Thr Leu Ala Asp Phe Asp Pro Arg Val Pro Arg Thr
<210> 4
<211> 9
<212> PRT
<213> Homo sapiens
<400> 4
Val Leu Leu Val Leu Ala Gly Val
                5
<210> 5
<211> 9
<212> PRT
<213> Homo sapiens
<400> 5
Val Leu Ala Gly Val Gly Phe Phe Ile
<210> 6
<211> 9
<212> PRT
<213> Homo sapiens
<400> 6
Ile Met Asn Asp Met Pro Ile Tvr Met
               5
<210> 7
<211> 9
<212> PRT
<213> Homo sapiens
<400> 7
Ser Leu Leu Gly Leu Lys Asp Gln Val
```

```
<210> 8
<211> 9
<212> PRT
<213> Homo sapiens
 <400> 8
 Trp Leu Val Pro Ile Gly Gln Cys Leu
 <210> 9
<211> 9
<212> PRT
<213> Homo sapiens
 <400> 9
Leu Leu Trp Gly Cys Ala Leu Ala Ala
<210> 10
<211> 9
<212> PRT
<213> Homo sapiens
<400> 10 -
Gly Leu Thr Arg Thr Ser Val Thr Val
<210> 11
<211> 9
<212> PRT
<213> Homo sapiens
<400> 11
Asn Leu Tyr Tyr Ala Glu Ser Asp Leu
<210> 12
<211> 9
<212> PRT
<213> Homo sapiens
<400> 12
Lys Leu Asn Val Glu Glu Arg Ser Val
<210> 13
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 13
Ile Met Gly Gln Phe Ser His His Asn
<210> 14
<211> 9
<212> PRT
<213> Homo sapiens
<400> 14
Tyr Ser Val Cys Asn Val Met Ser Gly
              5
<210> 15
<211> 9
<212> PRT
<213> Homo sapiens
<400> 15
Met Gln Asn Ile Met Asn Asp Met Pro
<210> 16
<211> 15
<212> PRT
<213> Homo sapiens
<400> 16
Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg
<210> 17
<210> 17
<211> 13
<212> PRT
<213> Homo sapiens
<400> 17
Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly
<210> 18
<211> 16
<212> PRT
<213> Homo sapiens
<400> 18
Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser
                                      10
```

<210> 19 <211> 3105 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Fusion construct <400> atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacc aattgcgcaa 60 caaactqaag caaaggatgc atctgcattc aataaaqaaa attcaatttc atccatggca 120 ccaccagcat ctccgcctgc aagtcctaag acgccaatcg aaaagaaaca cgcggatctc 180 gageteeagg eageeegege etgettegee etgetgtggg getgtgeget ggeegeggee 240 geggeggege agggeaagga agtggtactg ctqgactttg ctgcagctqq aqqqqaqctc 300 qqctqqctca cacacccqta tqqcaaaqqq tqqqacctqa tqcaqaacat catqaatqac 360 atgccgatct acatgtactc cgtgtgcaac gtgatgtctg gcgaccagga caactggctc 420 cgcaccaact gggtgtaccg aggagaggct gagcgtatct tcattgagct caagtttact 480 gtacgtgact gcaacagett ceetggtgge gecageteet gcaaggagae tttcaacete 540 tactatgccg agtcggacct ggactacggc accaacttcc agaagcgcct gttcaccaag 600 attgacacca ttgcgcccga tgagatcacc gtcagcagcg acttcgaggc acgccacgtg 660 aagctgaacg tggaggagcg ctccgtgggg ccgctcaccc gcaaaggctt ctacctggcc 720 ttccaggata tcggtgcctg tgtggcgctg ctctccgtcc qtqtctacta caaqaaqtqc 780 eccgagetge tgeagggeet ggeceactte cetgagacea tegeeggete tgatgeacet 840 tecctggcca etgtggccgg cacctgtgtg gaccatgccg tggtgccacc ggggggtgaa 900 gagccccgta tgcactgtgc agtggatggc gagtggctgg tgcccattgg gcaqtqcctq 960 tgccaggcag gctacgagaa ggtggaggat gcctgccagg cctgctcgcc tggattttt 1020 aagtttgagg catctgagag cccctgcttg gagtgccctg agcacacgct gccatcccct 1080 gagggtgcca cetectgcga gtgtgaggaa ggettettee gggcacetea ggacecageg 1140 togatgoott goacacgace ececteegee ceacactace teacageegt qqqcatqqqt 1200 gccaaggtgg agctgcgctg gacgccccct caggacagcg qqqqccqcqa qqacattqtc 1260 tacagegtea cetgegaaca gtgctggeec gagtetgggg aatgegggee gtgtgaggee 1320 agtgtgcgct actcggagcc tcctcacgga ctgacccgca ccagtgtgac agtgagcgac 1380 ctggagcccc acatgaacta caccttcacc gtggaggccc gcaatggcgt ctcaggcctg 1440 gtaaccagcc gcagcttccg tactgccagt gtcagcatca accagacaqa gcccccaaq 1500 gtgaggctgg agggccgcag caccacctcg cttagcgtct cctggagcat cccccgccg 1560

```
1620
cagcagagee qaqtqtqqaa qtacqaqqte acttaccqca aqaaqqqaqa etecaacaqe
tacaatqtgc qccqcaccga gggtttctcc gtgaccctgg acgacctggc cccagacacc
                                                                     1680
acctacctqq tccaqqtqca qqcactqacq caqqaqqqcc aqqqqqccgg caqcaqqqtq
                                                                     1740
cacgaattcc agacgctgtc cccggaggga tctggcaact tggcggtgat tggcggcgtg
                                                                     1800
gctgtcggtg tggtcctgct tctggtgctg gcaggagttg gcttctttat ccaccgcagg
                                                                     1860
aggaagaacc agcgtgcccg ccagtccccg gaggacgttt acttctccaa gtcagaacaa
                                                                     1920
ctqaaqcccc tqaaqacata cgtgqacccc cacacatatq agqaccccaa ccaggctqtg
                                                                    1980
ttgaagttca ctaccgagat ccatccatcc tgtgtcactc ggcagaaggt gatcggagca
                                                                     2040
                                                                    2100
qqaqaqtttq qqqaggtgta caagggcatg ctgaagacat cctcggggaa gaaggaggtg
ccqqtqqcca tcaaqacqct qaaaqccggc tacacaqaqa aqcagcgagt ggacttcctc
                                                                    2160
qqcqaqqccq qcatcatqqq ccaqttcaqc caccacaaca tcatccqcct aqaqqqcqtc
                                                                     2220
atetecaaat acaageeeat gatgateate actgagtaca tggagaatgg ggeeetggae
                                                                    2280
aagtteette gggagaagga tggegagtte agegtgetge agetggtggg catgetgegg
                                                                    2340
qqcatcqcaq ctqqcatqaa gtacctggcc aacatqaact atqtqcaccq tqacctqqct
                                                                    2400
                                                                    2460
gcccgcaaca tcctcgtcaa cagcaacctg gtctgcaagg tgtctgactt tggcctgtcc
cgcgtgctgg aggacgaccc cgaggccacc tacaccacca gtggcggcaa gatccccatc
                                                                    2520
egetggaceg eeceggagge catttectae eggaagttea eetetgecag egaegtgtgg
                                                                    2580
agetttggca ttgtcatgtg ggaggtgatg acctatggcg ageggcecta etgggagttg
                                                                    2640
tccaaccacq aggtgatgaa agccatcaat gatggcttcc ggctccccac acccatggac
                                                                    2700
tgcccctccg ccatctacca gctcatgatg cagtgctggc agcaggagcg tgcccgccgc
                                                                    2760
cccaagttcg ctgacatcgt cagcatcctg gacaagctca ttcgtgcccc tgactcctc
                                                                    2820
aagaccctgg ctgactttga cccccgcqtg tctatccgqc tccccaqcac qaqcqqctcq
                                                                    2880
gagggggtgc ccttccqcac ggtgtccqaq tqqctqqaqt ccatcaaqat qcaqcaqtat
                                                                    2940
acqqaqcact tcatqqcqqc cqqctacact qccatcqaqa aqqtqqtqca qatqaccaac
                                                                    3000
gacgacatca agaggattgg ggtgcggctg cccggccacc agaagcgcat cgcctacagc
                                                                    3060
                                                                    3105
ctgctgggac tcaaggacca ggtgaacact gtggggatcc ccatc
```

<210> 20 <211> 1035

<212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 20

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu Leu Gln Ala 50 55 60

Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys Ala Leu Ala Ala Ala 65 70 75 80

Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala Ala 85 90 95

Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val 115 120 125

Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp 130 $$135\$

Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr 145 \$150\$

Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu 165 170 175

Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn 180 185 190

Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu 195 200 205

Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val 210 215 220

Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala 225 230 235 240

Phe	Gln	Asp	Ile	Gly 245	Ala	Сув	Val	Ala	Leu 250	Leu	Ser	Val	Arg	Val 255	Tyr
Tyr	Lys	Lys	Cys 260	Pro	Glu	Leu	Leu	Gln 265	Gly	Leu	Ala	His	Phe 270	Pro	Glu
Thr	Ile	Ala 275	Gly	Ser	Asp	Ala	Pro 280	Ser	Leu	Ala	Thr	Val 285	Ala	Gly	Thr
Cys	Val 290	Asp	His	Ala	Val	Val 295	Pro	Pro	Gly	Gly	Glu 300	Glu	Pro	Arg	Met
His 305	Cys	Ala	Val	Asp	Gly 310	Glu	Trp	Leu	Val	Pro 315	Ile	Gly	Gln	CÀR	Leu 320
Cys	Gln	Ala	Gly	Tyr 325	Glu	Lys	Val	Glu	Asp 330	Ala	Cys	Gln	Ala	Cys 335	Ser
Pro	Gly	Phe	Phe 340	Lys	Phe	Glu	Ala	Ser 345	Glu	Ser	Pro	Cys	Leu 350	Glu	Cys
Pro	Glu	His 355	Thr	Leu	Pro	Ser	Pro 360	Glu	Gly	Ala	Thr	Ser 365	Cys	Glu	Cys
Glu	Glu 370	Gly	Phe	Phe	Arg	Ala 375	Pro	Gln	Asp	Pro	Ala 380	Ser	Met	Pro	Cys
Thr 385	Arg	Pro	Pro	Ser	Ala 390	Pro	His	Tyr	Leu	Thr 395	Ala	Val	Gly	Met	Gly 400
Ala	Lys	Val	Glu	Leu 405	Arg	Trp	Thr	Pro	Pro 410	Gln	Asp	Ser	Gly	Gly 415	Arg
Glu	Asp	Ile	Val 420	Tyr	Ser	Val	Thr	Cys 425	Glu	Gln	Cys	Trp	Pro 430	Glu	Ser
Gly	Glu	Cys 435	Gly	Pro	Cys	Glu	Ala 440	Ser	Val	Arg	Tyr	Ser 445	Glu	Pro	Pro
His	Gly 450	Leu	Thr	Arg	Thr	Ser 455	Val	Thr	Val	Ser	Asp 460	Leu	Glu	Pro	His
Met 465	Asn	Tyr	Thr	Phe	Thr 470	Val	Glu	Ala	Arg	Asn 475	Gly	Val	Ser	Gly	Leu 480

Val	Thr	Ser	Arg	Ser 485	Phe	Arg	Thr	Ala	Ser 490		Ser	Ile	Asn	Gln 495	
Glu	Pro	Pro	Lys 500		Arg	Leu	Glu	Gly 505		Ser	Thr	Thr	Ser 510	Leu	Ser
Val	Ser	Trp 515		Ile	Pro	Pro	Pro 520	Gln	Gln	Ser	Arg	Val 525		Lys	Tyr
Glu	Val 530		Tyr	Arg	Lys	Lys 535	Gly	Asp	Ser	Asn	Ser 540	Tyr	Asn	Val	Arg
Arg 545	Thr	Glu	Gly	Phe	Ser 550	Val	Thr	Leu	Asp	Asp 555	Leu	Ala	Pro	Asp	Thr 560
Thr	Tyr	Leu	Val	Gln 565	Val	Gln	Ala	Leu	Thr 570	Gln	Glu	Gly	Gln	Gly 575	Ala
Gly	Ser	Arg	Val 580	His	Glu	Phe	Gln	Thr 585	Leu	Ser	Pro	Glu	Gly 590	Ser	Gly
Asn	Leu	Ala 595	Val	Ile	Gly	Gly	Val 600	Ala	Val	Gly	Val	Val 605	Leu	Leu	Leu
Val	Leu 610	Ala	Gly	Val	Gly	Phe 615	Phe	Ile	His	Arg	Arg 620	Arg	Lys	Asn	Gln
Arg 625	Ala	Arg	Gln	Ser	Pro 630	Glu	Asp	Val	Tyr	Phe 635	Ser	Lys	Ser	Glu	Gln 640
Leu	Lys	Pro	Leu	Lys 645	Thr	Tyr	Val	Asp	Pro 650	His	Thr	Tyr	Glu	Asp 655	Pro
Asn	Gln	Ala	Val 660	Leu	Lys	Phe	Thr	Thr 665	Glu	Ile	His	Pro	Ser 670	Cys	Val
Thr	Arg	Gln 675	Lys	Val	Ile	Gly	Ala 680	Gly	Glu	Phe	Gly	Glu 685	Val	Tyr	Lys
Gly	Met 690	Leu	Lys	Thr	Ser	Ser 695	Gly	Lys	Lys	Glu	Val 700	Pro	Val	Ala	Ile
Lys 705	Thr	Leu	Lys	Ala	Gly 710	Tyr	Thr	Glu	Lys	Gln 715	Arg	Val	Asp		Leu 720

Gly	Glu	Ala	Gly	Ile 725		Gly	Gln	Phe	Ser 730		His	Asn	Ile	Ile 735	Arg
Leu	Glu	Gly	Val 740	Ile	Ser	Lys	Tyr	Lys 745		Met	Met	Ile	Ile 750		Glu
Tyr	Met	Glu 755		Gly	Ala	Leu	Asp 760		Phe	Leu	Arg	Glu 765	Lys	Asp	Gly
Glu	Phe 770		Val	Leu	Gln	Leu 775		Gly	Met	Leu	Arg 780	Gly	Ile	Ala	Ala
Gly 785	Met	Lys	туr	Leu	Ala 790	Asn	Met	Asn	Tyr	Val 795	His	Arg	Asp	Leu	Ala 800
Ala	Arg	Asn	Ile	Leu 805	Val	Asn	Ser	Asn	Leu 810		Cys	Lys	Val	Ser 815	Asp
Phe	Gly	Leu	Ser 820	Arg	Val	Leu	Glu	Asp 825	Asp	Pro	Glu	Ala	Thr 830	Tyr	Thr
Thr	Ser	Gly 835	Gly	Lys	Ile	Pro	Ile 840	Arg	Trp	Thr	Ala	Pro 845	Glu	Ala	Ile
Ser	Tyr 850	Arg	Lys	Phe	Thr	Ser 855	Ala	Ser	Asp	Val	Trp 860	Ser	Phe	Gly	Ile
Val 865	Met	Trp	Glu	Val	Met 870	Thr	туг	Gly	Glu	Arg 875	Pro	туг	Trp	Glu	Leu 880
Ser	Asn	His	Glu	Val 885	Met	Lys	Ala	Ile	Asn 890	Asp	Gly	Phe	Arg	Leu 895	Pro
Thr	Pro	Met	Asp 900	Cys	Pro	Ser	Ala	Ile 905	Tyr	Gln	Leu	Met	Met 910	Gln	Cys
Trp	Gln	Gln 915	Glu	Arg	Ala	Arg	Arg 920	Pro	Lys	Phe	Ala	Asp 925	Ile	Val	Ser
Ile	Leu 930	Asp	Lys	Leu	Ile	Arg 935	Ala	Pro	Asp	Ser	Leu 940	Lys	Thr	Leu	Ala
Asp 945	Phe	Asp	Pro	Arg	Val 950	Ser	Ile	Arg	Leu	Pro 955	Ser	Thr	Ser	Gly	Ser 960
Glu	Gly	Val	Pro	Phe	Arg	Thr	Val	Ser	Glu	тгр	Leu	Glu	Ser	Ile	Lys

Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile

Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val 1000

Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly 1015 1010 1020

Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 1030 1025 1035

<210> 21

<211> 1506

<212> DNA <213> Homo sapiens

<400> 21

cagggcaagg aagtggtact gctggacttt gctgcagctg gaggggagct cggctggctc acacaccegt atggcaaagg gtgggacetg atgcagaaca teatgaatga catgeegate 120 tacatgtact ccgtgtgcaa cgtgatgtct ggcgaccagg acaactggct ccgcaccaac 180 tgggtgtacc gaggagaggc tgagcgtatc ttcattgagc tcaagtttac tqtacqtqac 240 tgcaacagct tccctggtgg cgccagctcc tgcaaggaga ctttcaacct ctactatgcc 300 gagteggace tggactacgg caccaactte caqaaqeqee tqttcaccaa gattgacace 360 attgcgcccg atgagateae cqtcaqcaqc qacttcgagq cacqccacqt gaagctgaac 420 gtggaggagc gctccgtggg gccgctcacc cgcaaaggct tctacctqqc cttccaqqat 480 ateggtgeet gtgtggeget geteteegte egtgtetaet acaaqaaqtq eeceqaqetq 540 ctgcagggcc tggcccactt ccctgagacc atcgccggct ctgatgcacc ttccctggcc 600 actgtggccg gcacctgtgt ggaccatgcc gtggtgccac cggggggtga agagccccgt 660 atgeactgtg cagtggatgg cgagtggetg gtgcccattg ggcagtgcct qtqccaqqca 720 ggctacgaga aggtggagga tgcctqccag gcctqctcqc ctqqattttt taaqtttqaq 780 geatetgaga geceetgett ggagtgeeet gageacaege tgecatecee tgagggtgee 840 aceteetgeg agtgtgagga aggettette egggeacete aggaeceage gtegatgeet 900 tgcacacgac ccccctccgc cccacactac ctcacagecg tgggcatggg tgccaaggtg 960 gagetgeget ggaegeeece teaggaeage gggggeegeg aggaeattgt etacagegte 1020 acctgcgaac agtgctggcc cgagtctggg gaatgcgqqc cqtqtqaqqc caqtqtgcqc 1080

tactcqqaqc ctcctcacqq actgacccgc accagtgtga cagtgagcga cctggagccc 1140 cacatgaact acacetteac egtggaggee egcaatggeg teteaggeet ggtaaceage 1200 egeagettee gtactgeeag tgteageate aaccagacag ageeeceaa ggtgaggetg 1260 gagggeegea geaceacete gettagegte teetggagea teececegee geageagage 1320 cqaqtqtqqa aqtacqaggt cacttaccgc aagaagggag actccaacag ctacaatgtg 1380 egeegeaceg agggtttete egtgaceetg gacgacetgg ecceagacae cacetacetg 1440 qtccaggtgc aggcactgac gcaggagggc cagggggccg gcagcagggt gcacgaattc 1500 1506 cagacg

<210> 22 <211> 1506

<212> DNA <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Human sequence optimized for codon usage in Listeria

<400> 22 caaggtaaag aagttgtttt attagatttt gcagcagcag gtggtgaatt aggttggtta 60 acacatccat atggtaaagg ttgggattta atgcaaaata ttatgaatga tatgccaatt 120 tatatqtata qtqtttqtaa tgttatgagt ggtgatcaag ataattggtt acgtacaaat 180 tgggtttatc gtggtgaagc agaacgtatt tttattgaat taaaatttac agttcgtgat 240 tgtaatagtt ttccaggtgg tgcaagtagt tgtaaagaaa catttaattt atattatgca 300 qaaaqtgatt tagattatgg tacaaatttt caaaaacgtt tatttacaaa aattgataca 360 attqcaccaq atqaaattac aqttaqtaqt gattttgaaq cacgtcatgt taaattaaat 420 qttqaaqaac qtaqtqttqq tccattaaca cqtaaaqqtt tttatttaqc atttcaagat 480 attggtgcat gtgttgcatt attaagtgtt cgtgtttatt ataaaaaatg tccagaatta 540 ttacaaggtt tagcacattt tccagaaaca attgcaggta gtgatgcacc aagtttagca 600 acaqttqcaq qtacatqtqt tqatcatgca gttqttccac caqgtqgtqa agaaccacgt 660 atgcattgtg cagttgatgg tgaatggtta gttccaattg gtcaatgttt atgtcaagca 720 ggttatgaaa aagttgaaga tgcatgtcaa gcatgtagtc caggtttttt taaatttgaa 780 gcaagtgaaa gtccatgttt agaatgtcca gaacatacat taccaagtcc agaaggtgca 840 acaagttgtg aatgtgaaga aggttttttt cgtgcaccac aagatccagc aagtatgcca 900 tqtacacqtc caccaaqtqc accacattat ttaacagcag ttggtatggg tgcaaaagtt 960 gaattacgtt ggacaccacc acaagatagt ggtggtcgtg aagatattgt ttatagtgtt 1020 acatgtgaac aatgttggcc agaaagtggt gaatgtggtc catgtgaagc aaqtqttcqt 1080 tatagtgaac caccacatgg tttaacacgt acaagtgtta cagttagtga tttagaacca 1140 1200 catatqaatt atacatttac agttgaagca cgtaatggtg ttagtggttt agttacaagt cgtagttttc gtacagcaag tgttagtatt aatcaaacag aaccaccaaa agttcgttta 1260 gaaggtogta gtacaacaag tttaagtgtt agttggagta ttccaccacc acaacaaagt 1320 cqtqtttgga aatatgaagt tacatatcgt aaaaaaggtg atagtaatag ttataatgtt 1380 cqtcqtacaq aaqqttttag tgttacatta gatgatttag caccagatac aacatattta 1440 gttcaagttc aagcattaac acaagaaggt caaggtgcag gtagtcgtgt tcatgaattt 1500 1506 caaaca

<210> 23 <211> 502

<212> PRT

<213> Homo sapeins

<400> 23

Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Glu 1 $$ 5 $$ 10 $$ 15

Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln 20 25 30

Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val \$35\$

Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg 50 60

Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp 65 70 75 80

Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn 85 90

Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys

Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val

Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg 130 135 140

Ser 145	Val	Gly	Pro	Leu	Thr 150	Arg	Lys	Gly	Phe	Tyr 155	Leu	Ala	Phe	Gln	Asp 160
Ile	Gly	Ala	Сув	Val 165	Ala	Leu	Leu	Ser	Val 170	Arg	Val	Tyr	Tyr	Lys 175	Lys
Cys	Pro	Glu	Leu 180	Leu	Gln	Gly	Leu	Ala 185	His	Phe	Pro	Glu	Thr 190	Ile	Ala
Gly	Ser	Asp 195	Ala	Pro	Ser	Leu	Ala 200	Thr	Val	Ala	Gly	Thr 205	Cys	Val	Asp
His	Ala 210	Val	Val	Pro	Pro	Gly 215	Gly	Glu	Glu	Pro	Arg 220	Met	His	Cys	Ala
Val 225	Asp	Gly	Glu	Trp	Leu 230	Val	Pro	Ile	Gly	Gln 235	Cys	Leu	Cys	Gln	Ala 240
Gly	Tyr	Glu	Lys	Val 245	Glu	Asp	Ala	Cys	Gln 250	Ala	Cys	Ser	Pro	Gly 255	Phe
Phe	Lys	Phe	Glu 260	Ala	Ser	Glu	Ser	Pro 265	Cys	Leu	Glu	Сув	Pro 270	Glu	His
Thr	Leu	Pro 275	Ser	Pro	Glu	Gly	Ala 280	Thr	Ser	Cys	Glu	Cys 285	Glu	Glu	Gly
Phe	Phe 290	Arg	Ala	Pro	Gln	Asp 295	Pro	Ala	Ser	Met	Pro 300	Cys	Thr	Arg	Pro
Pro 305	Ser	Ala	Pro	His	Tyr 310	Leu	Thr	Ala	Val	Gly 315	Met	Gly	Ala	Lys	Val 320
Glu	Leu	Arg	Trp	Thr 325	Pro	Pro	Gln	Asp	Ser 330	Gly	Gly	Arg	Glu	Asp 335	Ile
Val	Tyr	Ser	Val 340	Thr	Сув	Glu	Gln	Cys 345	Trp	Pro	Glu	Ser	Gly 350	Glu	Cys
Gly	Pro	Суs 355	Glu	Ala	Ser	Val	Arg 360	Tyr	Ser	Glu	Pro	Pro 365	His	Gly	Leu
Thr	Arg 370	Thr	Ser	Val	Thr	Val	Ser	Asp	Leu	Glu	Pro 380	His	Met	Asn	Tyr

Thr 385	Phe	Thr	Val	Glu	Ala 390	Arg	Asn	Gly	Val	Ser 395	Gly	Leu	Val	Thr	Ser 400	
Arg	Ser	Phe	Arg	Thr 405	Ala	Ser	Val	Ser	Ile 410	Asn	Gln	Thr	Glu	Pro 415	Pro	
Lys	Val	Arg	Leu 420	Glu	Gly	Arg	Ser	Thr 425	Thr	Ser	Leu	Ser	Val 430	Ser	Trp	
Ser	Ile	Pro 435	Pro	Pro	Gln	Gln	Ser 440	Arg	Val	Trp	Lys	Tyr 445	Glu	Val	Thr	
Tyr	Arg 450	Lys	Lys	Gly	Asp	Ser 455	Asn	Ser	Tyr	Asn	Val 460	Arg	Arg	Thr	Glu	
Gly 465	Phe	Ser	Val	Thr	Leu 470	Asp	Asp	Leu	Ala	Pro 475	Asp	Thr	Thr	Tyr	Leu 480	
Val	Gln	Val	Gln	Ala 485	Leu	Thr	Gln	Glu	Gly 490	Gln	Gly	Ala	Gly	Ser 495	Arg	
Val	His	Glu	Phe 500	Gln	Thr											
<210		24														
<21:	2> I	1689 DNA														
<213		Arti:	ficia	al Se	equer	ice										
<220 <220	B> I		ripti	ion d	of Ar	tif:	lcial	l Sec	queno	e:	Fusi	lon p	rote	ein o	construct	=
<400 atga		24 aaa 1	taate	gctag	gt tt	ttat	taca	ctt	atat	tag	ttag	tcta	icc a	atte	gcgcaa	60
caaa	ectga	aag	caaag	ggato	gc at	ctg	atto	aat	aaag	jaaa	atto	aatt	tc a	tcca	tggca	120
ccad	cago	at o	ctcc	gcctg	јс аа	gtc	ctaac	g acc	gccaa	tcg	aaaa	gaaa	ca c	gcgg	gatete	180
gago	aggg	gca a	aggaa	agtgg	gt ac	tgct	ggad	ttt	gctg	gcag	ctg	gaggg	ga g	gctc	gctgg	240
ctca	acaca	acc o	gtat	ggca	a aç	ggt	ggad	ctg	gatgo	aga	acat	cate	gaa t	gaca	tgccg	300
atct	acat	gt	actco	gtgt	g ca	acgt	gato	tct	ggcg	gacc	agga	caac	tg ç	getec	egcacc	360
aact	gggt	gt	accga	aggag	ga gg	gctga	agcgt	ato	ttca	ttg	agct	caag	jtt t	acto	gtacgt	420
gact	gcaa	aca ç	gette	ccts	gg to	gcg	ccago	tco	tgca	agg	agac	tttc	aa c	ctct	actat	480

540

600

gccgagtcgg acctggacta cggcaccaac ttccagaagc gcctgttcac caagattgac

accattgcgc ccgatgagat caccgtcagc agcgacttcg aggcacgcca cgtgaagctg

```
aacqtqqagg agcgctccgt ggggccgctc acccgcaaag gcttctacct ggccttccag
                                                                      660
gatateggtg cctqtgtggc gctgctctcc gtccgtgtct actacaagaa gtgccccgag
                                                                     720
ctgctgcagg gcctggccca cttccctgag accatcgccg gctctgatgc accttccctg
                                                                     780
gccactgtgg ccggcacctg tgtggaccat gccgtggtgc caccgggggg tgaaqaqccc
                                                                     840
cqtatgcact gtgcagtgga tggcgagtgg ctggtgccca ttgggcagtg cctgtgccag
                                                                     900
gcaggctacg agaaggtgga ggatgcctgc caggcctgct cgcctggatt ttttaagttt
                                                                     960
gaggeatetg agageceetg ettggagtge cetgageaca egetgeeate ceetgagggt
                                                                     1020
gecaectect gegagtgtga ggaaggette tteegggeae eteaggacee agegtegatg
                                                                     1080
cottquacae gaccccccte egecccaeae taceteacag cegtgggcat gggtgccaag
                                                                     1140
gtggagctgc gctggacgcc ccctcaggac agcgggggcc gcgaggacat tgtctacagc
                                                                     1200
gtcacctgcg aacagtgctg gcccgagtct ggggaatgcg ggccgtgtga ggccagtgtg
                                                                     1260
cgctactcgg agcctcctca cggactgacc cgcaccagtg tgacagtgag cgacctggag
                                                                     1320
ccccacatga actacacett caccgtggag gcccgcaatg gcgtctcagg cctggtaacc
                                                                     1380
agccgcagct tccgtactgc cagtgtcagc atcaaccaga cagagccccc caaggtgagg
                                                                     1440
ctggagggcc gcagcaccac ctcgcttagc gtctcctgga gcatcccccc gccgcagcag
                                                                     1500
agccgagtgt ggaagtacga ggtcacttac cgcaagaagg gagactccaa caqctacaat
                                                                     1560
gtgcgccgca ccgagggttt ctccgtgacc ctggacgacc tggccccaga caccacctac
                                                                     1620
ctggtccagg tgcaggcact gacgcaggag ggccaggggg ccggcagcag ggtgcacgaa
                                                                     1680
                                                                     1689
ttccagacg
```

```
<210> 25
```

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 40 45

<211> 563 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 25

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp Gly

Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu

Lys 305	Val	Glu	Asp	Ala	Сув 310	Gln	Ala	Cys	Ser	Pro 315	Gly	Phe	Phe	Lys	Phe 320
Glu	Ala	Ser	Glu	Ser 325	Pro	Cys	Leu	Glu	Cys 330	Pro	Glu	His	Thr	Leu 335	Pro
Ser	Pro	Glu	Gly 340	Ala	Thr	Ser	Сув	Glu 345	Cys	Glu	Glu	Gly	Phe 350	Phe	Arg
Ala	Pro	G1n 355	Asp	Pro	Ala	Ser	Met 360	Pro	Cys	Thr	Arg	Pro 365	Pro	Ser	Ala
Pro	His 370	Tyr	Leu	Thr	Ala	Val 375	Gly	Met	Gly	Ala	Lys 380	Val	Glu	Leu	Arg
Trp 385	Thr	Pro	Pro	Gln	Asp 390	Ser	Gly	Gly	Arg	Glu 395	Asp	Ile	Val	Tyr	Ser 400
Val	Thr	Cys	Glu	Gln 405	Cys	Trp	Pro	Glu	Ser 410	Gly	Glu	Сув	Gly	Pro 415	Сув
Glu	Ala	Ser	Val 420	Arg	Tyr	Ser	Glu	Pro 425	Pro	His	Gly	Leu	Thr 430	Arg	Thr
Ser	Val	Thr 435	Val	Ser	Asp	Leu	Glu 440	Pro	His	Met	Asn	Tyr 445	Thr	Phe	Thr
Val	Glu 450	Ala	Arg	Asn	Gly	Val 455	Ser	Gly	Leu	Val	Thr 460	Ser	Arg	Ser	Phe
465					470		Asn			475					480
				485			Ser		490					495	
			500				Trp	505					510		
-		515					Asn 520					525			
	Thr		Asp	Asp		Ala	Pro	Asp	Thr		Tyr 540		Val	Gln	Val

Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg Val His Glu 545

Phe Gln Thr

<210> 26 <211> 1989 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Fusion protein construct ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcqtt tcatctttag aagcqaattt cgccaatatt ataattatca aaagagaggg 180 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatq 240 aaaaaaataa tgctagtttt tattacactt atattagtta gtctaccaat tgcgcaacaa 300 actqaaqcaa aggatgcatc tgcattcaat aaagaaaatt caatttcatc catggcacca 360 ccagcatete egeetgeaag teetaagaeg ecaategaaa agaaacaege ggatggatee 420 gattataaag atgatgatga taaacaaggt aaagaagttg ttttattaga ttttgcagca 480 qcaggtggtg aattaggttg gttaacacat ccatatggta aaggttggga tttaatgcaa 540 600 aatattatqa atqatatqcc aatttatatg tatagtgttt gtaatgttat gagtggtgat caagataatt ggttacgtac aaattgggtt tatcgtggtg aagcagaacg tatttttatt 660 gaattaaaat ttacagttcg tgattgtaat agttttccag gtggtgcaag taqttgtaaa 720 gaaacattta atttatatta tgcagaaagt gatttagatt atggtacaaa ttttcaaaaa 780 cgtttattta caaaaattga tacaattgca ccagatgaaa ttacagttag tagtgatttt 840 gaagcacgtc atgttaaatt aaatgttgaa gaacgtagtg ttggtccatt aacacgtaaa 900 ggtttttatt tagcatttca agatattggt gcatgtgttg cattattaag tgttcgtgtt 960 1020 tattataaaa aatgtccaga attattacaa ggtttagcac attttccaga aacaattgca ggtagtgatg caccaagttt agcaacagtt gcaggtacat gtgttgatca tgcagttgtt 1080 1140 ccaccaqqtq qtqaaqaacc acqtatqcat tgtgcagttg atggtgaatg gttagttcca attggtcaat gtttatgtca agcaggttat gaaaaagttg aagatgcatg tcaagcatgt 1200 1260

agtccaggtt tttttaaatt tqaaqcaaqt qaaaqtccat gtttagaatg tccagaacat

acattaccaa qtccaqaaqq tqcaacaaqt tqtgaatgtg aagaaggttt ttttcgtgca 1320 ccacaagatc cagcaagtat gccatgtaca cgtccaccaa gtgcaccaca ttatttaaca 1380 qcaqttqqta tgggtgcaaa agttgaatta cgttggacac caccacaaga tagtggtggt 1440 cqtqaaqata ttgtttatag tgttacatgt gaacaatgtt ggccagaaag tggtgaatgt 1500 1560 ggtccatgtq aaqcaagtqt tcqttatagt qaaccaccac atggtttaac acgtacaagt gttacagtta gtgatttaga accacatatg aattatacat ttacagttga agcacgtaat 1620 qqtqttaqtg qtttaqttac aagtcgtagt tttcgtacag caagtgttag tattaatcaa 1680 acaqaaccac caaaagttcq tttagaaggt cqtagtacaa caagtttaag tgttagttgg 1740 aqtattccac caccacaaca aaqtcqtqtt tqqaaatatq aagttacata tcgtaaaaaa 1800 ggtgatagta atagttataa tgttcgtcgt acagaaggtt ttagtgttac attagatgat 1860 ttagcaccag atacaacata tttagttcaa gttcaagcat taacacaaga aggtcaaggt 1920 qcaqqtaqtc qtqttcatqa atttcaaaca qaacaaaaat taattaqtqa agaaqattta 1980 1989 tgagagete

<210> 27 <211> 581

<212> PRT

<400> 27

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Predicted fusion protein

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60

Asp Asp Asp Lys Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala

Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly 85 90 95

Trp	Asp	Leu	Met 100	Gln	Asn	Ile	Met	Asn 105	Asp	Met	Pro	Ile	Tyr 110	Met	Tyr
Ser	Val	Cys 115	Asn	Val	Met	Ser	Gly 120	Asp	Gln	Asp	Asn	Trp 125	Leu	Arg	Thr
Asn	Trp 130	Val	Tyr	Arg	Gly	Glu 135	Ala	Glu	Arg	Ile	Phe 140	Ile	Glu	Leu	Lys
Phe 145	Thr	Val	Arg	Asp	Cys 150	Asn	Ser	Phe	Pro	Gly 155	Gly	Ala	Ser	Ser	Cys 160
Lys	Glu	Thr	Phe	Asn 165	Leu	Tyr	Tyr	Ala	Glu 170	Ser	Asp	Leu	Asp	Tyr 175	Gly
Thr	Asn	Phe	Gln 180	Lys	Arg	Leu	Phe	Thr 185	Lys	Ile	Asp	Thr	Ile 190	Ala	Pro
Asp	Glu	Ile 195	Thr	Val	Ser	Ser	Asp 200	Phe	Glu	Ala	Arg	His 205	Val	Lys	Leu
Asn	Val 210	Glu	Glu	Arg	Ser	Val 215	Gly	Pro	Leu	Thr	Arg 220	Lys	Gly	Phe	Tyr
Leu 225	Ala	Phe	Gln	Asp	Ile 230	Gly	Ala	Cys	Val	Ala 235	Leu	Leu	Ser	Val	Arg 240
Val	Tyr	Tyr	Lys	Lys 245	Cys	Pro	Glu	Leu	Leu 250	Gln	Gly	Leu	Ala	His 255	Phe
Pro	Glu	Thr	Ile 260	Ala	Gly	Ser	Asp	Ala 265	Pro	Ser	Leu	Ala	Thr 270	Val	Ala
Gly	Thr	Cys 275	Val	Asp	His	Ala	Val 280	Val	Pro	Pro	Gly	Gly 285	Glu	Glu	Pro
Arg	Met 290	His	Cys	Ala	Val	Asp 295	Gly	Glu	Trp	Leu	Val 300	Pro	Ile	Gly	Gln
Cys 305	Leu	Cys	Gln	Ala	Gly 310	Tyr	Glu	Lys	Val	Glu 315	Asp	Ala	Cys	Gln	Ala 320
Cys	Ser	Pro	Gly	Phe 325	Phe	Lys	Phe	Glu	Ala 330	Ser	Glu	Ser	Pro	Cys 335	Leu
Glu	Cys	Pro	Glu	His	Thr	Leu	Pro	Ser	Pro	Glu	Gly	Ala	Thr	Ser	Cys

Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln 550 -Gly Ala Gly Ser Arg Val His Glu Phe Gln Thr Glu Gln Lys Leu Ile

Ser Glu Glu Asp Leu

<210> 28 <211> 1989

<212> DNA <213> Artificial Seguence

<220>

<223> Description of Artificial Sequence: Construct for fusion protein

<400> 28 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caaqcatata 120 180 atattqcqtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg qtqqcaaacq qtatttqqca ttattaqqtt aaaaaatgta gaaggagagt gaaacccatg 240 aaaaaaatta tgttagtttt tattacatta attttagtta gtttaccaat tgcacaacaa 300 acagaagcaa aagatgcaag tgcatttaat aaagaaaata gtattagtag tatggcacca 360 ccaqcaagtc caccagcaag tccaaaaaca ccaattgaaa aaaaacatgc agatggatcc 420 qattataaaq atqatqatqa taaacaaggt aaagaagttg ttttattaga ttttgcagca 480 gcaggtggtg aattaggttg gttaacacat ccatatggta aaggttggga tttaatgcaa 540 600 aatattatga atgatatgcc aatttatatg tatagtgttt gtaatgttat gagtggtgat caaqataatt qgttacgtac aaattgggtt tatcgtggtg aagcagaacg tatttttatt 660 qaattaaaat ttacaqttcq tqattqtaat agttttccag gtggtgcaag tagttgtaaa 720 gaaacattta atttatatta tgcagaaagt gatttagatt atggtacaaa ttttcaaaaa 780 cgtttattta caaaaattga tacaattgca ccagatgaaa ttacagttag tagtgatttt 840 qaaqcacqtc atgttaaatt aaatgttgaa gaacgtagtg ttggtccatt aacacgtaaa 900 960 ggtttttatt tagcatttca agatattggt gcatgtgttg cattattaag tgttcgtgtt 1020 tattataaaa aatgtccaga attattacaa ggtttagcac attttccaga aacaattgca ggtagtgatg caccaagttt agcaacagtt gcaggtacat gtgttgatca tgcagttgtt 1080 ccaccaggtg gtgaagaacc acgtatgcat tgtgcagttg atggtgaatg gttagttcca 1140 attgqtcaat qtttatqtca agcaggttat gaaaaagttg aagatgcatg tcaagcatgt 1200 agtccaggtt tttttaaatt tqaaqcaaqt qaaaqtccat gtttagaatg tccagaacat 1260 acattaccaa gtccagaagg tgcaacaagt tgtgaatgtg aagaaggttt ttttcgtgca 1320 ccacaagatc cagcaagtat gccatgtaca cgtccaccaa gtgcaccaca ttatttaaca 1380

1440 1500

qcaqttqqta tgqgtgcaaa agttgaatta cgttggacac caccacaaga tagtggtggt

cqtqaaqata ttqtttataq tgttacatgt gaacaatgtt ggccagaaag tggtgaatgt

ggtccatgtg aagcaagtgt tcgttatagt gaaccaccac atggtttaac acgtacaagt	1560
gttacagtta gtgatttaga accacatatg aattatacat ttacagttga agcacgtaat	1620
ggtgttagtg gtttagttac aagtcgtagt tttcgtacag caagtgttag tattaatcaa	1680
acagaaccac caaaagttcg tttagaaggt cgtagtacaa caagtttaag tgttagttgg	1740
agtattccac caccacaaca aagtcgtgtt tggaaatatg aagttacata tcgtaaaaaa	1800
ggtgatagta atagttataa tgttcgtcgt acagaaggtt ttagtgttac attagatgat	1860
ttagcaccag atacaacata tttagttcaa gttcaagcat taacacaaga aggtcaaggt	1920
gcaggtagtc gtgttcatga atttcaaaca gaacaaaaat taattagtga agaagattta	1980
tgagagete	1989
<210> 29	
<211> 581 <212> PRT	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Predicted Fusion protes	in
<400> 29	
Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15	
Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys	
20 25 30	
Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser	
35 40 45	
Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys	
50 55 60	
Asp Asp Asp Asp Lys Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala	
65 70 75 80	
Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly	
85 90 95	

Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr 115 \$120\$

Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr

105

100

Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met

Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly

- Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly 385 390 400
- Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro $405 \ \ \,$ 410 $\ \ \,$ 415
- Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu 420 425 430
- Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu 435
- Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser $450 \,$
- Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn 465 470 475 480
- Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser 485 490 495
- Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp $500 \hspace{1.5cm} 505 \hspace{1.5cm} 510 \hspace{1.5cm}$
- Lys Tyr Glu Val Thr Tyr Arg Lys Cly Asp Ser Asn Ser Tyr Asn 515 520 525
- Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro 530 540
- Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln 545 550 560
- Gly Ala Gly Ser Arg Val His Glu Phe Gln Thr Glu Gln Lys Leu Ile 565 570 575

Ser Glu Glu Asp Leu

- <210> 30
- <211> 1968 <212> DNA
- <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Pusion protein construct <400> 30 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 180 240 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 300 qcatacgaca gtcgttttga tgaatgggta cagaaactga aagaggaaag ctttcaaaac aatacqtttq accgccgcaa atttattcaa ggagcgggga agattgcagg actttctctt 360 ggattaacga ttgcccagtc ggttggggcc tttggatccg attataaaga tgatgatgat 420 aaacaaggta aagaagttgt tttattagat tttgcagcag caggtggtga attaggttgg 480 ttaacacatc catatggtaa aggttgggat ttaatgcaaa atattatgaa tgatatgcca 540 atttatatgt atagtgtttg taatgttatg agtggtgatc aagataattg gttacgtaca 600 aattqqqttt atcqtqqtqa aqcaqaacqt atttttattg aattaaaatt tacagttcgt 660 720 gattgtaata gttttccagg tggtgcaagt agttgtaaag aaacatttaa tttatattat gcagaaagtg atttagatta tggtacaaat tttcaaaaac gtttatttac aaaaattgat 780 acaattqcac caqatqaaat tacaqttaqt agtgattttg aagcacgtca tgttaaatta 840 aatqttqaaq aacqtaqtqt tqqtccatta acacgtaaag gtttttattt agcatttcaa 900 960 gatattggtg catgtgttgc attattaagt gttcgtgttt attataaaaa atgtccagaa ttattacaag gtttagcaca ttttccagaa acaattgcag gtagtgatgc accaagttta 1020 qcaacaqttq caqqtacatq tqttqatcat gcaqttqttc caccaggtgg tgaagaacca 1080 1140 cgtatgcatt gtgcagttga tggtgaatgg ttagttccaa ttggtcaatg tttatgtcaa gcaggttatg aaaaagttga agatgcatgt caagcatgta gtccaggttt ttttaaattt 1200 1260 gaagcaagtg aaagtccatg tttagaatgt ccagaacata cattaccaag tccagaaggt gcaacaagtt gtgaatgtga agaaggtttt tttcgtgcac cacaagatcc agcaagtatg 1320 ccatgtacac gtccaccaag tgcaccacat tatttaacag cagttggtat gggtgcaaaa 1380 gttgaattac gttggacacc accacaagat agtggtggtc gtgaagatat tgtttatagt 1440 gttacatgtg aacaatgttg gccagaaagt ggtgaatgtg gtccatgtga agcaagtgtt 1500 1560 cqttataqtq aaccaccaca tggtttaaca cgtacaagtg ttacagttag tgatttagaa ccacatatqa attatacatt tacagttqaa gcacgtaatg gtgttagtgg tttagttaca 1620 1680 agteqtaqtt tteqtacaqc aaqtqttaqt attaatcaaa caqaaccacc aaaagttegt ttagaaggtc gtagtacaac aagtttaagt gttagttgga gtattccacc accacaacaa 1740

agt	egtgt	ttt 9	ggaa	atate	ga aç	gtta	cata	t cg	taaaa	aaag	gtga	atag	taa	tagti	tataat	1800
gtt	gtc	gta (cagaa	aggti	tt ta	agtgi	taca	a tt	agato	gatt	tage	cacca	aga	tacaa	acatat	1860
ttag	gttca	aag 1	ttca	agca	tt aa	acaca	aagaa	a gg	tcaa	ggtg	cag	gtag	tcg	tgtt	catgaa	1920
ttt	caaa	cag a	aacaa	aaaa	tt aa	atta	gtgaa	a ga	agati	tat	gaga	agct	С			1968
<210 <211 <211 <211	1 > 5 2 > 1 3 > 2	31 574 PRT Arti:	ficia	al S	equer	nce										
<220 <22		Desc:	ript	ion (of A	rtif	icia	l Se	quen	ce:	Pre	dict	ed F	usio	n Prote	in
<40)> :	31														
Met 1	Ala	Tyr	Asp	Ser 5	Arg	Phe	Asp	Glu	Trp 10	Val	Gln	Lys	Leu	Lys 15	Glu	
Glu	Ser	Phe	Gln 20	Asn	Asn	Thr	Phe	Asp 25	Arg	Arg	Lys	Phe	Ile 30	Gln	Gly	
Ala	Gly	Lys 35	Ile	Ala	Gly	Leu	Ser 40	Leu	Gly	Leu	Thr	Ile 45	Ala	Gln	Ser	
Val	Gly 50	Ala	Phe	Gly	Ser	Asp 55	Tyr	Lys	Asp	Asp	Asp 60	Asp	Lys	Gln	Gly	
Lys 65	Glu	Val	Val	Leu	Leu 70	Asp	Phe	Ala	Ala	Ala 75	Gly	Gly	Glu	Leu	Gly 80	
Trp	Leu	Thr	His	Pro 85	Tyr	Gly	Lys	Gly	Trp 90	Asp	Leu	Met	Gln	Asn 95	Ile	
Met	Asn	Asp	Met 100	Pro	Ile	Tyr	Met	Tyr 105	Ser	Val	Cys	Asn	Val 110	Met	Ser	
Gly	Asp	Gln 115	Asp	Asn	Trp	Leu	Arg 120	Thr	Asn	Trp	Val	Tyr 125	Arg	Gly	Glu	
Ala	Glu 130	Arg	Ile	Phe	Ile	Glu 135	Leu	Lys	Phe	Thr	Val 140	Arg	Asp	Cys	Asn	
Ser 145	Phe	Pro	Gly	Gly	Ala 150	Ser	Ser	Cys	Lys	Glu 155	Thr	Phe	Asn	Leu	Tyr 160	
Tyr	Ala	Glu	Ser	Asp 165	Leu	Asp	Tyr	Gly	Thr	Asn	Phe	Gln	Lys	Arg 175	Leu	

Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu Lvs Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro

Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg 420 425 430	
Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe 435 440 445	
Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser 450 460	
Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val 465 470 475 480	
Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile 485 490 495	
Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg 500 505 505 500 510	
Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe $515 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln 530 540	
Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg Val His 545 $$550$$ $$555$$ Ser Arg Val His	
Glu Phe Gln Thr Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 565 570	
<210> 32 <221> 1254 <212> DNA <213> Homo sapiens	
<400> 32 caccqcaqqa qqaaqaacca gcqtgcccqc cagtccccgg aggacgttta cttctccaa	a
tcagaacaac tgaagccct gaagacatac gtggacccca acacatatga ggacccaa	_
caggetgtgt tgaagttcac taccgagatc catccatcct gtgtcactcg gcagaaggt	
atcggagcag gagagtttgg ggaggtgtac aagggcatgc tgaagacatc ctcggggaa	g
aaggaggtgc cggtggccat caagacgctg aaagccggct acacagagaa gcagcgagt	g
gactteeteg gegaggeegg cateatggge eagtteagee accaeaacat cateegeet	a

gagggcgtca tctccaaata caagcccatg atgatcatca ctgagtacat ggagaatggg

480 qccctqqaca aqttccttcg ggagaaggat ggcgagttca gcgtgctgca gctggtgggc atgctqcqqq qcatcqcaqc tqqcatgaag tacctggcca acatgaacta tgtgcaccgt 540 gacctggctg cccgcaacat cctcgtcaac agcaacctgg tctgcaaggt gtctgacttt 600 ggcctgtccc gcgtgctgga ggacgacccc gaggccacct acaccaccag tggcggcaag 660 atccccatcc gctggaccgc cccggaggcc atttcctacc ggaagttcac ctctgccagc 720 gacgtgtgga gctttggcat tgtcatgtgg gaggtgatga cctatggcga gcggccctac 780 tgggagttgt ccaaccacga ggtgatgaaa gccatcaatg atggcttccg gctccccaca 840 900 cccatqgact gccctccgc catctaccag ctcatgatgc agtgctggca gcaggagcgt 960 qccqcqcc ccaagttcgc tgacatcgtc agcatcctgg acaagctcat tcgtgcccct 1020 qactccctca aqaccctqqc tqactttqac ccccgcgtgt ctatccggct ccccagcacg ageggetegg agggggtgee etteegeaeg gtgteegagt ggetggagte cateaagatg 1080 cagcagtata cggagcactt catggcggcc ggctacactg ccatcgagaa ggtggtgcag 1140 atgaccaacg acgacatcaa gaggattggg gtgcggctgc ccggccacca gaagcgcatc 1200 gcctacagcc tgctgggact caaggaccag gtgaacactg tggggatccc catc 1254 <210> 33 <211> 1254

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Sequence Optimized for codon usage in Listeria

<400> 33 cacagacgta gaaaaaatca acgtgctcga caatccccag aagatgtgta tttttcgaaa 60 aqtgaacaat taaaaccatt aaaaacttat gttgatccgc atacgtacga agacccaaat 120 caaqcaqtat taaaatttac aacaqaaata cacccaagtt gtgttacaag acaaaaagtt 180 attggagcag gtgaattcgg agaggtatat aaaggtatgt taaaaacatc atcaggtaaa 240 aaagaagtto oggttgcaat taaaacotta aaggcaggat atacagaaaa acagogagtt 300 gattttttag gtgaagcagg aattatgggt caatttagcc atcataatat tattcgtttg 360 gaaggagtaa taagtaaata taaaccaatg atgattatta cagaatacat ggaaaacggt 420 gctttagata aatttttacg tgaaaaggat ggtgaattta gtgttttaca attggttggt 480 atgttaagag gaattgctgc aggtatgaaa tatttagcta atatgaatta tgttcaccgt 540 gatttggcag caagaaatat cctagtcaat tccaatttag tatgtaaagt tagtgatttt 600 660 qqtttaagca gagtattaga agacgatcca gaggcaacct atacaacatc gggaggtaaa

attectatte qttqqacage accagaaget atcagttace gtaaatttac aagtgcatca 720 gacgtgtgga gttttgggat tgtaatgtgg gaagttatga catatggaga aaqaccatat 780 tgggaattaa gtaatcatga agttatgaaa gcaattaacg atggatttag attaccaact 840 ccqatggatt gtccatctgc catttatcaa ctaatgatgc aatgttggca acaagaaaga 900 960 qcacqacqtc caaaatttqc aqatattqtt agtattttag acaaattaat tcgtgcacca gatagtttaa aaactttagc agactttgat cctcgtgtta gtattcgatt accaagtacg 1020 1080 traggttreg aaggagttre atttrgraca gtrtregaat ggttggaatr aattaaaatg caacaataca ccgaacactt tatggcagca ggttacacag caatcgaaaa agttgttcaa 1140 1200 atqacaaatq atqatattaa acqtattgga gttagattac caggccacca gaaacgtatt 1254 qcatattctt tattaqqttt aaaaqatcaa qttaataccq tgggaattcc aatt

- <210> 34 <211> 456
- <212> PRT
- <213> Homo sapiens

<400> 34

Val His Glu Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly Asn Leu Ala 1 5 10 15

Val Ile Gly Gly Val Ala Val Gly Val Val Leu Leu Leu Val Leu Ala 20 25 30

Gly Val Gly Phe Phe Ile His Arg Arg Arg Lys Asn Gln Arg Ala Arg 35 40 45

Gln Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro 50 55 60

Leu Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala 65 7070757575

Val Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln 85 90 95

Lys Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu 100 105 110

Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu 115 120 125

Lys Ala Gly Tyr Thr Glu Lys Gln Arq Val Asp Phe Leu Gly Glu Ala

Gly 145	Ile	Met	Gly	Gln	Phe 150	Ser	His	His	Asn	Ile 155	Ile	Arg	Leu	Glu	Gly 160
Val	Ile	Ser	Lys	туг 165	Lys	Pro	Met	Met	Ile 170	Ile	Thr	Glu	Tyr	Met 175	Glu
Asn	Gly	Ala	Leu 180	Asp	Lys	Phe	Leu	Arg 185	Glu	Lys	Asp	Gly	Glu 190	Phe	Ser
Val	Leu	Gln 195	Leu	Val	Gly	Met	Leu 200	Arg	Gly	Ile	Ala	Ala 205	Gly	Met	Lys
Tyr	Leu 210	Ala	Asn	Met	Asn	Tyr 215	Val	His	Arg	Asp	Leu 220	Ala	Ala	Arg	Asn
Ile 225	Leu	Val	Asn	Ser	Asn 230	Leu	Val	Cys	Lys	Val 235	Ser	Asp	Phe	Gly	Leu 240
Ser	Arg	Val	Leu	Glu 245	Asp	Asp	Pro	Glu	Ala 250	Thr	Tyr	Thr	Thr	Ser 255	Gly
Gly	Lys	Ile	Pro 260	Ile	Arg	Trp	Thr	Ala 265	Pro	Glu	Ala	Ile	Ser 270	Tyr	Arg
Lys	Phe	Thr 275	Ser	Ala	Ser	Авр	Val 280	Trp	Ser	Phe	Gly	Ile 285	Val	Met	Trp
Glu	Val 290	Met	Thr	туг	Gly	Glu 295	Arg	Pro	Tyr	Trp	Glu 300	Leu	Ser	Asn	His
Glu 305	Val	Met	Lys	Ala	Ile 310	Asn	Asp	Gly	Phe	Arg 315	Leu	Pro	Thr	Pro	Met 320
Asp	Cys	Pro	Ser	Ala 325	Ile	Tyr	Gln	Leu	Met 330	Met	Gln	Cys	Trp	Gln 335	Gln
Glu	Arg	Ala	Arg 340	Arg	Pro	Lys	Phe	Ala 345	Asp	Ile	Val	Ser	Ile 350	Leu	Asp
Lys	Leu	Ile 355	Arg	Ala	Pro	Asp	Ser 360	Leu	Lys	Thr	Leu	Ala 365	Asp	Phe	Asp
	Arg 370		Ser	Ile			Pro		Thr		Gly 380		Glu	Gly	Val

Tyr Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val 410 405 Val Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro 420 425 430 Gly His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln 435 440 445 Val Asn Thr Val Gly Ile Pro Ile 455 450 <210> 35 1437 <211> <212> DNA <213> Artificial Sequence <220> Description of Artificial Sequence: Fusion Protein <223> atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacc aattqcqcaa 60 caaactgaag caaaggatgc atctgcattc aataaagaaa attcaatttc atccatggca 120 ccaccaqcat etecgeetge aagteetaag aegecaateg aaaagaaaca egeggatete 180 gagcaccgca ggaggaagaa ccagcgtgcc cgccagtccc cggaggacgt ttacttctcc 240 aagtcagaac aactgaagcc cctgaagaca tacgtggacc cccacacata tgaggacccc 300 aaccaggetg tgttgaagtt cactaccgag atccatecat cetgtgtcae teggeagaag 360 420 qtqatcqqaq caqqaqatt tggggaggtg tacaagggca tgctgaagac atcctcgggg aagaaggagg tgccggtggc catcaagacg ctgaaagccg gctacacaga gaaqcaqcga 480 gtggacttcc tcggcgaggc cggcatcatg ggccagttca gccaccacaa catcatccgc 540 600 ctagagggcg tcatctccaa atacaagccc atgatgatca tcactgagta catggagaat

Pro Phe Arg Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln

395

390

385

400

660

720

780 840

900

ggqqccctgq acaagttcct tcqggagaag gatggcgagt tcagcgtgct gcagctggtg

qqcatqctqc qqqqcatcqc aqctggcatg aagtacctgg ccaacatgaa ctatgtgcac

cqtqacctqq ctqcccqcaa catcctcqtc aacaqcaacc tqgtctgcaa ggtgtctgac

tttggcctgt cccqcqtqct qqaqqacqac cccqaqqcca cctacaccac cagtggcggc

aagateeeca teegetggae egeeeeggag gecattteet aeeggaagtt cacetetgee

960 ageqacqtqt qqaqctttgg cattgtcatg tgggaggtga tgacctatgg cgagcggccc tactgggagt tgtccaacca cgaggtgatg aaagccatca atgatggctt ccggctcccc 1020 acaccatgg actgccctc cqccatctac cagctcatga tgcagtgctg gcagcaggag 1080 eqtqcccqcc gccccaagtt cgctgacatc gtcagcatcc tggacaagct cattcgtgcc 1140 1200 cctqactccc tcaaqaccct ggctgacttt gacccccgcg tgtctatccg gctccccagc acqaqcqqct cqqaqqqqt qcccttccqc acqqtqtccq aqtqqctgga gtccatcaag 1260 atgcagcagt atacggagca cttcatggcg gccggctaca ctgccatcga gaaggtggtg 1320 cagatgacca acgacgacat caagaggatt ggggtgcggc tgcccggcca ccagaagcgc 1380 atoqootaca qootqotqqq actoaaggac caggtgaaca ctgtggggat coccato 1437

<210> 36 <211> 479

<211> 479

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted Protein Sequence

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu His Arg Arg 50 55 60

Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe Ser 65 70 75 80

Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His Thr 85 90 95

Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile His

Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe Gly 115 120 125

Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu Arq Ala Arq Arq Pro Lys Phe Ala

Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser Leu

Lys Thr Le			Db -		D		17- 3	Co	T10	A w	T	Dra	Cox	
385	u Ala	Asp	390	Asp	PIO	Arg	vai	395	116	Arg	Leu	PIO	400	
Thr Ser Gl	y Ser	Glu 405	Gly	Val	Pro	Phe	Arg 410	Thr	Val	Ser	Glu	Trp 415	Leu	
Glu Ser Il	e Lys 420	Met	Gln	Gln	Tyr	Thr 425	Glu	His	Phe	Met	Ala 430	Ala	Gly	
Tyr Thr Al		Glu	Lys	Val	Val 440	Gln	Met	Thr	Asn	Asp 445	Asp	Ile	Lys	
Arg Ile Gl 450	y Val	Arg	Leu	Pro 455	Gly	His	Gln	Lys	Arg 460	Ile	Ala	туг	Ser	
Leu Leu Gl 465	y Leu	Lys	Asp 470	Gln	Val	Asn	Thr	Val 475	Gly	Ile	Pro	Ile		
<210> 37 <211> 173 <212> DNA <213> Art		al Se	equer	nce										,
<220> <223> Des	cript:	ion o	of Ar	tifi	icial	l Sed	quenc	e:	Fusi	ion p	rote	ein s	eque:	nce
	-												-	
<223> Des	ttgai	ttagt	a ta	atte	ctato	: tta	aagt	tac	ttt	atgt	gg a	aggca	attaa	c 60
<223> Des <400> 37 ggtacctect	ttgai gacgi	ttagt	a ta	atted gatag	ctato	tta	aagt agaa	tac itaa	tttt agct	atgi	gg a	aggca caago	attaa catat	c 60 a 120
<223> Des <400> 37 ggtacctcct atttgttaat	ttgai gacgi	ttagt tcaaa cttta	a ta aa go	atted gatag	ctato gcaag	tta g act	aagt agaa	tac itaa att	tttt agct ataa	atgi ataa	gg a	aggca caago aaaga	attaa atat agagg	c 60 a 120 g 180
<223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt	ttgai gacgi tcato	ttagt tcaaa cttta ttgga	a ta aa gg ag aa ca tt	atteo gataç agega satta	ctato gcaag aattt aggtt	tta g act c cgc	aaagt agaa ccaat	tac itaa att gta	tttt agct ataa gaag	atgi ataa attai ggaga	egg a	aggca caago aaaga gaaao	attaa catat agagge	c 60 a 120 g 180 g 240
<223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt gtggcaaacg	ttgal gacgi tcato gtati	ttagt tcaaa cttta ttggd agttt	ca ta aa gg ag aa ca tt	attoo gatag agoga atta	ctato gcaag aattt aggtt cactt	c tta g act c cgo c aaa c ata	aaagt agaa ccaat aaaat	tac itaa att gta itta	tttt agct ataa gaag	atgi atas attai ggags accs	agg a agg a cca a agt a	aggca caago aaaga gaaao	attaa atat agagg cccat	c 60 a 120 g 180 g 240 a 300
<223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt gtggcaaacg aaaaaaataa	ttgal gacgi tcato gtati tgcta	ttagt tcaaa cttta ttggd agttt	ta ta aa gg aag aa ta tt ta tc te	atted gatag agega satta attac	ctato gcaag aattt aggtt cactt	c tta g act c cgc c aaa c ata	aagt agaa ccaat aaaat attag	tac itaa att gta gta	tttt agct ataa gaag gtct	atgi ataa attai ggaga acca	agg a agg a agg agg agg agg agg agg agg	aggca caago aaaga gaaac tgcgo	attaa catat agagg cccat caaca	c 60 a 120 g 180 g 240 a 300 a 360
<223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt gtggcaaacg aaaaaaataa actgaagcaa	ttgal gacgi tcato gtati tgcta aggal	ttagt tcaaa cttta ttggd agttt tgcaa	ca ta aa gg aag aa ca tt ct ta cc tc	atted gatag agega catta attac geatt	ctato gcaac aattt aggtt cactt caat	c tta g act c cgc c aaa c ata c aaa	aaagt cagaa ccaat aaaat attag igaaa	tac itaa att gta gta gtta att	aget ataa gaag gtet caat	atgi ataa attai ggaga acca attca	agg a agg a agg agg agg agg agg agg agg	aggca caago aaaga gaaao tgcgo catgg	attaa agagg cccat aaca gcacc	c 60 a 120 g 180 g 240 a 300 a 360 c 420
<223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt gtggcaaacg aaaaaataa actgaagcaa ccagcatctc	ttgal gacgi tcate gtati tgcta aggal cgcci atgal	ttagt tcaaa cttta ttggd agttt tgcat tgcaa	a ta ta a a ga a a a ta ta ta ta ta ta ta ta a ga ta a a a	atted gatag agega catta attac geatt acetaa	ctato gcaag aatti aggti cacti ccaat	c tta g act c cgc c aaa c ata c aaa g cca	aaagt agaa ccaat aaaat attag agaaa aatcg	tac attaa att gta gta gtta att	tttt agct ataa gaag gtct caat agaa	catgi catas attai ggags caccs caccs	egg a age of age	aggca caaga aaaga gaaac tgcgc catgg ggatg	attaa catat agagg cccat caaca gcacc ggatc	c 60 a 120 g 180 g 240 a 300 a 360 c 420
<223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt gtggcaacg aaaaaataa actgaagcaa ccagcatctc gattataaag	ttgal gacgi tcato gtati tgcta aggal cgcci atgal	ttagt tcaaa cttta ttggc agttt tgcaa ttgatc	ta ta aa gg ag aa ta tt ta tc tc ag tc ga ta	atted gatag agega satta attac geatt ectaa aaaaa	ctato gcaag aattt aggtt cactt ccaat agacg acaga	tte tte cgc acceptance	aaagt caat aaaat attag agaa atcg	ataa att gta gta att aaaa aaa	tttt agct ataa gaag gtct caat agaa atca	atgi ataa attai attai acca acca acca acca	cca a cca	aggca caaga aaaga gaaaa tgcga catgg ggatg	attaa agagge cccate caaca gcacce ggatce caate	c 60 a 120 g 180 g 240 a 300 a 360 c 420 c 480 b 540
<223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt gtggcaacg aaaaaataa actgaagcaa ccagcatctc gattataaag	gacgi tcato gtati tgcta aggai cgcci atgai tgtai	ttagt tcaaa cttta ttgga tgcaa tgcaa tgatç ttttt	ta ta ta gg aa gg aa ta	ataggatag gataggaga atta gcatt cctaa aaca aaaag	gcaag gcaag gagtt ccaat agacg acaga acaga gacg	tta gact cgc aaa caa cgt caa gta	aaaagtaaaataagaaaattaagaaaatcgaaatcgaaatcgaaattaa	ataa att agta atta aat aaa aaa	ttttt agct ataa gaag gtct caat agaa atca catt	atas attas attas acca acca acaca acaca acaca acaca	aaag (aaag (aaaat)	aggca caagg gaaa catgg catgg catgg tcgac	attaa catat agagg cccat caaca gcacc ggatc caatc	c 60 a 120 g 180 g 240 a 300 a 360 c 420 c 480 t 540 a 600
<pre><223> Des <400> 37 ggtacctcct atttgttaat atattgcgtt gtggcaacg aaaaaataa actgaagcaa ccagcatctc gattataaag ccagaagatg ccgcatacgt</pre>	ttgal gacgi tcato gtati tgcta aggal cgcci atgal tgtal acgaa caaga	ttagt ttagt ttgg agttt tgcat ttgat tgat	aga ta	gatag gatag gagega atta datta cectaa aaaag aaaag	gcaaggtt cactt ccaat acagacg acaga acaga acaga acaga	tta	aaaagt agaa accaat attag agaa agaa agaa	ttac atta att gta att att att att aat aat aa	ttttt aget ataa gaag gtet caat agaa atca tttac	ataa attat attat acca acca acca acca ac	aag (cca aagt (cca aagt (cca aagt (cca aagt (cca aagt (cca aagt (cca aaga aaga aagagt aaggt aagg	aaggcaaaggaaaaggaaaaggaaaggaaaggaaagggaatggggaatggggaatgggaatgaagggaatgaaaaaa	attaa agaggg cccat aacac agatc aatc gttga acac aaagg	c 60 a 120 g 180 g 240 a 300 a 360 c 420 c 480 b 540 a 600 b 660

agccatcata atattattog tttggaagga gtaataagta aatataaacc aatgatgatt 840 attacagaat acatggaaaa cggtgcttta gataaatttt tacgtgaaaa ggatggtgaa 900 960 tttaqtgttt tacaattggt tggtatgtta agaggaattg ctgcaggtat gaaatattta qctaatatga attatgttca ccgtgatttg gcagcaagaa atatcctagt caattccaat 1020 ttaqtatqta aaqttaqtqa tttttgqttta aqcaqaqtat tagaagacga tccagaggca 1080 acctatacaa catcqqqaqq taaaattcct attcqttqqa caqcaccaqa agctatcagt 1140 taccgtaaat ttacaagtgc atcagacgtg tggagttttg ggattgtaat gtgggaagtt 1200 atqacatatq qaqaaagacc atattgggaa ttaagtaatc atgaagttat gaaagcaatt 1260 aacqatqqat ttaqattacc aactccqatq qattqtccat ctgccattta tcaactaatg 1320 atqcaatqtt qqcaacaaqa aaqaqcacqa cqtccaaaat ttqcaqatat tqttaqtatt 1380 ttagacaaat taattogtgo accagatagt ttaaaaaactt tagcagactt tgatootogt 1440 gttagtattc gattaccaag tacgtcaggt tccgaaggag ttccatttcg cacagtctcc 1500 qaatqqttqq aatcaattaa aatqcaacaa tacaccqaac actttatqqc agcaqqttac 1560 acagcaatcg aaaaagttgt tcaaatgaca aatgatgata ttaaacgtat tggagttaga 1620 ttaccaggcc accagaaacg tattgcatat tctttattag gtttaaaaga tcaagttaat 1680 accgtgggaa ttccaattga acaaaaatta atttccgaag aagacttata agagctc 1737

<210> 38 <211> 497 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 38

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 $\,$ 55 $\,$ 60

Asp Asp Asp Asp Lys His Arg Arg Lys Asn Gln Arg Ala Arg Gln

Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val 105 Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln Lys 120 Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys 145 150 Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala Gly 165 170 Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val 185 180 Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn 195 200 205 Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val 210 215 220

65

Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr 225 230 235 240

Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 245 250 255

Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser 260 265 270

Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly
275 280 285

Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys 290 295 300

Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu 305 310 315 320

Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu 330 325 Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp 345 340 Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu 355 360 Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys 370 375 380 Leu Ile Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro 395 385 390 Arg Val Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser Glu Gly Val Pro 405 410 Phe Arg Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr 420 425 430 Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val Val 435 440 445 Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly 450 455 460 His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val 465 470 475 480 Asn Thr Val Gly Ile Pro Ile Glu Gln Lys Leu Ile Ser Glu Glu Asp 485 490 495 Leu

<210> 39

<211> 1737

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion protein construct

<400> 39

ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60

```
atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caaqcatata
                                                                      120
atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg
                                                                      180
qtqqcaaacq gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg
                                                                      240
aaaaaaatta tqttagtttt tattacatta attttagtta gtttaccaat tgcacaacaa
                                                                      300
acaqaaqcaa aaqatqcaaq tqcatttaat aaaqaaaata gtattagtag tatggcacca
                                                                      360
ccaqcaagtc caccaqcaaq tccaaaaaca ccaattqaaa aaaaacatqc aqatqqatcc
                                                                      420
gattataaag acgatgatga taaacacaga cgtagaaaaa atcaacgtgc tcgacaatcc
                                                                      480
ccaqaaqatg tgtatttttc gaaaagtgaa caattaaaac cattaaaaac ttatgttgat
                                                                      540
ccqcatacqt acqaaqaccc aaatcaaqca qtattaaaat ttacaacaga aatacaccca
                                                                      600
agttqtqtta caaqacaaaa aqttattqqa qcaqqtqaat tcqqaqaqqt atataaaqqt
                                                                      660
atgttaaaaa catcatcagg taaaaaagga gttccggttg caattaaaac cttaaaggca
                                                                      720
ggatatacag aaaaacagcg agttgatttt ttaggtgaag caggaattat gggtcaattt
                                                                      780
agccatcata atattattcq tttqqaaqqa qtaataaqta aatataaacc aatqatqatt
                                                                      840
attacagaat acatggaaaa cggtgcttta gataaatttt tacgtgaaaa ggatggtgaa
                                                                      900
tttagtgttt tacaattggt tggtatgtta agaggaattg ctgcaggtat gaaatattta
                                                                      960
gctaatatga attatgttca ccgtgatttg gcagcaagaa atatcctagt caattccaat
                                                                     1020
ttaqtatqta aaqttaqtqa ttttqqttta agcaqaqtat taqaaqacqa tccaqaqqca
                                                                     1080
acctatacaa catcqqqaqq taaaattcct attcqttqqa caqcaccaqa aqctatcaqt
                                                                     1140
taccqtaaat ttacaaqtqc atcaqacqtq tqqaqttttq qqattqtaat qtqqqaaqtt
                                                                     1200
atgacatatg gagaaagacc atattgggaa ttaagtaatc atgaagttat gaaagcaatt
                                                                     1260
aacgatggat ttagattacc aactccgatg gattgtccat ctgccattta tcaactaatq
                                                                     1320
atgcaatgtt ggcaacaaga aagagcacga cgtccaaaat ttqcaqatat tqttaqtatt
                                                                     1380
ttagacaaat taattcqtqc accaqataqt ttaaaaactt taqcaqactt tqatcctcqt
                                                                     1440
gttagtattc gattaccaag tacgtcaggt tccgaaggag ttccatttcg cacagtctcc
                                                                     1500
gaatggttgg aatcaattaa aatgcaacaa tacaccgaac actttatggc agcaggttac
                                                                     1560
acagcaatcg aaaaagttgt tcaaatgaca aatgatgata ttaaacgtat tggagttaga
                                                                     1620
ttaccaggcc accagaaacq tattqcatat tctttattaq qtttaaaaqa tcaaqttaat
                                                                     1680
accqtqqqaa ttccaattqa acaaaaatta atttccqaaq aaqacttata aqaqctc
                                                                     1737
```

<210> 40

<211> 497 <212> PRT

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Predicted Fusion Protein <400> 40 Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 5 Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 25 20 Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 40 Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 Asp Asp Asp Lys His Arg Arg Lys Asn Gln Arg Ala Arg Gln 70 65 Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu 85 90 95 Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val 100 105 110 Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arq Gln Lys 115 120 125 Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu Lys 135 Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys 145 150 Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala Gly 170 Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn 200

Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val

Leu 225	Gln	Leu	Val	Gly	Met 230	Leu	Arg	Gly	Ile	Ala 235	Ala	Gly	Met	Lys	Tyr 240
Leu	Ala	Asn	Met	Asn 245	туг	Val	His	Arg	Asp 250	Leu	Ala	Ala	Arg	Asn 255	Ile
Leu	Val	Asn	Ser 260	Asn	Leu	Val	Cys	Lys 265	Val	Ser	Asp	Phe	Gly 270	Leu	Ser
Arg	Val	Leu 275	Glu	Asp	Asp	Pro	Glu 280	Ala	Thr	Tyr	Thr	Thr 285	Ser	Gly	Gly
гàа	Ile 290	Pro	Ile	Arg	Trp	Thr 295	Ala	Pro	Glu	Ala	Ile 300	Ser	туг	Arg	Lys
Phe 305	Thr	ser	Ala	Ser	Asp 310	Val	Trp	Ser	Phe	Gly 315	Ile	Val	Met	Trp	Glu 320
Val	Met	Thr	туг	Gly 325	Glu	Arg	Pro	Tyr	Trp 330	Glu	Leu	Ser	Asn	His 335	Glu
Val	Met	Lys	Ala 340	Ile	Asn	Asp	Gly	Phe 345	Arg	Leu	Pro	Thr	Pro 350	Met	Asp
Cys	Pro	Ser 355	Ala	Ile	туг	Gln	Leu 360	Met	Met	Gln	Cys	Trp 365	Gln	Gln	Glu
Arg	Ala 370	Arg	Arg	Pro	Lys	Phe 375	Ala	Asp	Ile	Val	Ser 380	Ile	Leu	Asp	Lys
Leu 385	Ile	Arg	Ala	Pro	Asp 390	Ser	Leu	Lys	Thr	Leu 395	Ala	Asp	Phe	Asp	Pro 400
Arg	Val	Ser	Ile	Arg 405	Leu	Pro	Ser	Thr	Ser 410	Gly	Ser	Glu	Gly	Val 415	Pro
Phe	Arg	Thr	Val 420	Ser	Glu	Trp	Leu	Glu 425	Ser	Ile	Lys	Met	Gln 430	Gln	туг
Thr	Glu	His 435	Phe	Met	Ala	Ala	Gly 440	Tyr	Thr	Ala	Ile	Glu 445	Lys	Val	Val
Gln	Met 450	Thr	Asn	Asp	Asp	Ile 455	Lys	Arg	Ile	Gly	Val 460	Arg	Leu	Pro	Gly

His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val 465 470 475 480

Asn Thr Val Gly Ile Pro Ile Glu Gln Lys Leu Ile Ser Glu Glu Asp 485 490 495

Leu

<210> 41 <211> 1716

<212> DNA <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion protein construct

-400> 41 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 attigitaat gacgicaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 180 qtqqcaaacq qtatttgqca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 gcatacgaca gtcgttttga tgaatgggta cagaaactga aagaggaaag ctttcaaaac 300 astacqtttq accqccqcaa atttattcaa qqaqcqqqqa agattqcaqq actttctctt 360 qqattaacqa ttgcccagtc ggttggggcc tttggatccg attataaaga tgatgatgat 420 agacacagac gtagaaaaaa tcaacgtgct cgacaatccc cagaagatgt gtatttttcg 480 aaaagtgaac aattaaaacc attaaaaact tatgttgatc cgcatacgta cgaagaccca 540 aatcaagcag tattaaaatt tacaacagaa atacacccaa gttgtgttac aagacaaaaa 600 qttattggag caggtgaatt cggagaggta tataaaggta tgttaaaaac atcatcaggt 660 aaaaaagaag ttccggttgc aattaaaacc ttaaaggcag gatatacaga aaaacagcga 720 780 gttgattttt taggtgaagc aggaattatg ggtcaattta gccatcataa tattattcgt ttggaaggag taataagtaa atataaacca atgatgatta ttacagaata catggaaaac 840 ggtgctttag ataaattttt acgtgaaaag gatggtgaat ttagtgtttt acaattggtt 900 ggtatgttaa gaggaattgc tgcaggtatg aaatatttag ctaatatgaa ttatgttcac 960 cgtgatttgg cagcaagaaa tatcctagtc aattccaatt tagtatgtaa agttagtgat 1020 1080 tttggtttaa gcagagtatt agaagacgat ccagaggcaa cctatacaac atcgggaggt aaaattccta ttcgttggac agcaccagaa gctatcagtt accgtaaatt tacaagtgca 1140 tcaqacqtgt ggagttttgg gattgtaatg tgggaagtta tgacatatgg agaaagacca 1200

tattgggaat (aagtaatca	tgaagttat	g aaagcaatta	acgatggatt	tagattacca 1260
actccgatgg a	attgtccatc	tgccatttai	t caactaatga	tgcaatgttg	gcaacaagaa 1320
agagcacgac g	gtccaaaatt	tgcagatat	t gttagtattt	tagacaaatt	aattcgtgca 1380
ccagatagtt t	aaaaacttt	agcagactt	t gatectegtg	ttagtattcg	attaccaagt 1440
acgtcaggtt o	cgaaggagt	tccatttcg	c acagtctccg	aatggttgga	atcaattaaa 1500
atgcaacaat a	acaccgaaca	ctttatggc	a gcaggttaca	cagcaatcga	aaaagttgtt 1560
caaatgacaa a	atgatgatat	taaacgtat	t ggagttagat	taccaggcca	ccagaaacgt 1620
attgcatatt (etttattagg	tttaaaaga	t caagttaata	ccgtgggaat	tccaattgaa 1680
caaaaattaa 1	ttccgaaga	agacttata	a gagctc		1716
<220>	ficial Seq		l Sequence:	Predicted f	usion protein
		_, .	a1	al - t t	Y G1
Met Ala Tyr 1	Asp Ser A	rg Phe Asp	Glu Trp Val 10	GIR Lys Leu	15
Glu Ser Phe	Gln Asn A 20	sn Thr Phe	Asp Arg Arg 25	Lys Phe Ile 30	Gln Gly
Ala Gly Lys 35	Ile Ala G	ly Leu Ser 40	Leu Gly Leu	Thr Ile Ala	Gln Ser
				13	
Val Gly Ala 50	Phe Gly S	er Asp Tyr 55	Lys Asp Asp		His Arg
50	Asn Gln A	55	Lys Asp Asp Gln Ser Pro 75	Asp Asp Lys	ė.

His Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe \$115\$

Thr Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile

105

100

Gly Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln Arq Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser

370	375	380

Leu 385	Lys	Thr	Leu	Ala	Asp 390	Phe	Asp	Pro	Arg	Val 395	Ser	Ile	Arg	Leu	Pro 400	
Ser	Thr	Ser	Gly	Ser 405	Glu	Gly	Val	Pro	Phe 410	Arg	Thr	Val	Ser	Glu 415	Trp	
Leu	Glu	Ser	Ile 420	Lys	Met	Gln	Gln	Tyr 425	Thr	Glu	His	Phe	Met 430	Ala	Ala	
Gly	Tyr	Thr 435	Ala	Ile	Glu	Lys	Val 440	Val	Gln	Met	Thr	Asn 445	Asp	Asp	Ile	
Lys	Arg 450	Ile	Gly	Val	Arg	Leu 455	Pro	Gly	His	Gln	Lys 460	Arg	Ile	Ala	Tyr	
Ser 465	Leu	Leu	Gly	Leu	Lys 470	Asp	Gln	Val	Asn	Thr 475	Val	Gly	Ile	Pro	Ile 480	
Glu	Gln	Lys	Leu	Ile 485	Ser	Glu	Glu	Asp	Leu 490							
<210 <211 <211 <211 <221	L> 9 2> I 3> I		ficia cipt:		-		icial	l Sed	quenc	ce:	Fusi	ion l	Prot	ein (Constru	ıct
<40		13 egt g	ggate	catt	t ct	ttaa	aattt	ato	, jctga	acga	cctt	tgaa	att '	tgcc	ttttt	60
ctta	agcaa	att t	cgat	tcct	t gt	gcct	gace	g tto	ectta	aatt	ttt	ttc	gtt	ctgai	ttctgc	120
ttga	atact	tg t	acaa	attca	aa to	jaca	agget	att	aato	caaa	cgc	etta	aat	tttc	atcttc	180
aata	accat	tc a	attga	agggt	a aa	attta	aagad	tto	cago	ggtt	gcc	cctl	aa	tttg	aatttg	240
atte	catca	at t	ctgt	taat	t ct	ttat	tatt	te	gtcct	aat	cgat	cta	att .	cagt	aacaat	300
aaca	atat	cc o	ctto	cacga	a ta	tagt	taag	g cat	agct	tgt	aatt	gtg	gc	gttc	gaccga	360
ttga	ccg	et t a	attt	gtct	g aa	aaga	acctt	aga	aaac	gccc	tgta	acgo	ett :	gtaa	ttgccg	420
atc	aagt	tc t	gtt	ettte	gc ta	actga	acacc	g tgo	ataa	acca	att	tage	cca	tttt	caacca	480
acci	ctaa	aaa t	tct	ctcgg	gt to	gcaat	aacc	aat	cago	caat	atct	act	tt	tcaat	tttcaa	540
att	gctta	atc a	agaaa	attgt	c tt	ttc	gtaag	g cga	ataaa	aatc	ttg	gcat	at	tgtt	gctcat	600
taaa	aata	agc o	cacca	actto	g to	att	tcta	aaa	actc	gata	aata	aatt	tt	ttcat	tttac	660

tcctcctatt atqcccaact taaatgacct attcaccaag tcaattatac tgctaaaatc 720 atattaggac aaataggtat actctattga cctataaatg atagcaactt aaaaqatcaa 780 qtqttcgctt cgctctcact gcccctcgac gttttagtag cctttccctc acttcgttca 840 900 qtccaaqcca actaaaagtt ttcgggctac tctctccttc tccccctaat aattaattaa aatottacto tgtatattto tgotaatoat toactaaaca gcaaagaaaa acaaacacgt 960 atcatagata taaatgtaat ggcatagtgc gggttttatt ttcagcctgt atcgtagcta 1020 aacaaatcga gttgtgggtc cgttttgggg cgttctgcca atttgtttag agtttcttga 1080 ataaatqtac qttctaaatt aaacgaagct gtcagcgcct ttatatagct ttctcgttct 1140 tcttttttta atttaatgat cgatagcaac aatgatttaa cactagcaag ttgaatgcca 1200 ccatttette etgetttaat ettaaagaaa attteetgat tegeetteag tacetteage 1260 aatttatcta atgtccgttc aggaatgcct agcacttctc taatctcttt tttggtcgtc 1320 gctaaataag gcttgtatac atcgcttttt tcgctaatat aagccattaa atcttctttc 1380 cattetgaca aatgaacaeg ttgacgtteg ettettttt tettgaattt aaaccaecet 1440 tgacggacaa ataaatcttt actggttaaa tcacttgata cccaagcttt gcaaagaatg 1500 qtaatqtatt ccctattagc cccttgatag ttttctgaat aggcacttct aacaattttg 1560 attacttctt tttcttctaa gggttgatct aatcgattat taaactcaaa catattatat 1620 tegeacgttt egattgaata geetgaacta aagtaggeta aagagagggt aaacataacg 1680 1740 ctattgcgcc ctactaaacc cttttctcct qaaaatttcg tttcgtgcaa taagagatta aaccagggtt catctacttg ttttttgcct tctgtaccgc ttaaaaccgt tagacttgaa 1800 cqaqtaaaqc ccttattatc tqtttqtttg aaagaccaat cttgccattc tttgaaagaa 1860 taacggtaat tgggatcaaa aaattctaca ttgtccgttc ttggtatacg agcaatccca 1920 aaatgattgc acgttagatc aactggcaaa gactttccaa aatattctcg gatattttgc 1980 gagattattt tggctgcttt gacagattta aattctgatt ttgaagtcac atagactggc 2040 gtttctaaaa caaaatatgc ttgataacct ttatcagatt tgataattaa cgtaggcata 2100 aaacctaaat caatagctgt tgttaaaata tcgcttgctg aaatagtttc tttttccgtg 2160 tgaatatcaa aatcaataaa gaaggtattg atttgtctta aattgttttc agaatgtcct 2220 ttagtgtatg aacggttttc gtctgcatac gtaccataac gataaacgtt tggtgtccaa 2280 tgcgtaaatg tatcttgatt ttcgtgaatc gcttcttcgg aagtcagaac aacgccacgt 2340 ccqccaatca tqctttttt tgagcgatac gcaaaaatag cccctttact tttacctggc 2400 ttqqtaqtqa ttqaqcqaat tttactattt ttaaatttgt actttaacaa gccgtcatga 2460 agcacagttt ctacaacaaa agggatattc attcagctgt tctcctttct tacgaaaatt 2520 aattagttag aagctacgat caaagttgaa tcacaacaaa aaaggcaatc aactaaqttt 2580 ttettaattq attqeetqgt atettettaa agaettgaaa teeectcaaa aaccegatat 2640 aatqqqttta caqatattta agtatctgat taataaagta attaaatact ttaccaaatt 2700 ttgggtctcg acttctttaa ttgattggtg gtaatcaatt aaggctcgca gttaaaattt 2760 ctcaggcttt aactggtcgt ggctcttttt ttgtattctt tattcagttc gttgtttcgt 2820 2880 tatatctaqt atatcgcttt ttaaaaaaaat aagcaatgat ttcgtgcatt attcacacga aatcattgct tttttcttct tccatttcta actccaatgt tacttgttct gtttctggtt 2940 3000 ctggttctgt tggctcattt gggattaaat ccactactag cgttgagtta gttccgtctc taatagccgg ttaagtaata gccggttaag tggtcaaact ttgggaaaat ctcaacccgc 3060 attaagtttt gatgccatga caatcgttgg aaatttgaac aaaactaatg ctaaaaaagct 3120 atctqacttt atqaqtqtaq aqccacaaat acqactttgg gatatacttc aaacaaagtt 3180 taaaqctaaq qcacttcaaq aaaaaqttta tatcqaatat gacaaagtaa aagcagatac 3240 ttgggataga cgtaatatgc gtgttgaatt taatcccaat aaactcacac atgaagaaat 3300 3360 gatttggtta aaacaaaata ttatcgacta catggaagat gacggtttta caagattaga cttaqctttt qattttqaaq atqatttqaq cqattactat gcaatgactg ataaagcagt 3420 3480 taagaaaact gttttttatg gtcgtaatgg caagccagaa acaaaatatt ttggtgtccg tgatagtgat agatttatta gaatttataa taaaaaacaa gaacgtaaag ataacgcaga 3540 tqttqaaqtt qtqtttqaac atttatggcg tgtagaagtt gaattaaaaa gagatatggt 3600 tqattactqq aatqattqtt ttaatgattt acacatcttt gaaacctgcg tgggctactt 3660 tagaaaaaat taatgagcaa gctatggttt atactttgtt gcatgaagaa agtatgtggg 3720 3780 qaaagctaag taagaatact aagactaaat ttaaaaaatt gattagagaa atatctccaa ttgatttaac ggaattaatg aaatcgactt taaaagcgaa cgaaaaacaa ttgcaaaagc 3840 agattqattt ttggcaacgt gaatttaggt tttggaagta aaataagttt tatttgataa 3900 aaattqctaa ttcaqtataa ttaatattta cqaqqtqaca taacqtatqa aaaaatcaga 3960 ggattattcc tcctaaatat aaaaatttaa aatttaggag gaagttatat atgactttta 4020 atattattqa attaqaaaat tgggatagaa aagaatattt tgaacactat tttaatcagc 4080 aaactactta taqcattact aaaqaaattq atattacttt gtttaaagat atgataaaaa 4140 aqaaaqqata tqaaatttat ccctctttaa tttatgcaat tatggaagtt gtaaataaaa 4200 ataaagtgtt tagaacagga attaatagtg agaataaatt aggttattgg gataagttaa 4260 atcctttgta tacagttttt aataagcaaa ctgaaaaatt tactaacatt tggactgaat 4320 ctgataaaaa cttcatttct ttttataata attataaaaa tgacttgctt gaatataaag 4380 ataaagaaga aatgttteet aaaaaacega tacetgaaaa caccataceg atttcaatga 4440 4500 ttccttqqat tqattttagt tcatttaatt taaatattgg taacaatagc agctttttat 4560 tqcctattat tacqataqqt aaattttata gtgagaataa taaaatttat ataccagttg ctctgcaact tcatcattct gtatgtgatg gttaccatgc ttcactattt atgaatgaat 4620 ttcaagatat aattcatagg gtagatgatt ggatttagtt tttagatttt gaaagtgaat 4680 ttaattttat acacgtaagt gatcataaaa tttatgaacg tataacaacc acattttttg 4740 gttgcttgtg gttttgattt tgaatttggt tttgaactta tggactgatt tattcagtcc 4800 attttttgtg cttgcacaaa aactagcctc gcagagcaca cgcattaatg acttatgaaa 4860 4920 cqtaqtaaat aagtctagtg tgttatactt tacttggaag atgcaccgaa taaaaaatat tgaagaacaa ctagcaaaag attttaaaga gttattttat tttaagtctt tataacatga 4980 qtqaaqcqaa tttttaaatt tcqataqaaa tttttacatc aaaaagcccc ctgtcaaaat 5040 tgacgaaggg ggttttttgg cgcacgcttt tcgttagaaa tatacaagat tgaaaatcgt 5100 qtataagtgc gccctttgtt ttgaacttag cacgttacat caatttttta aaatgatgta 5160 taagtgcgcc cttttaaatt ttgagtgatt atattttttg agttagaaaa agggattggg 5220 aaaatttccc aaaataattt aaaaaataag caaaaatttt cgatagagaa tgtgctattt 5280 tttgtcaaag gtgtatacct tgactgtqct tgctgttaca ttaagtttat ttttaagtta 5340 ttaaaaaaga aatagetttt aaagtttgge tegetgtege tttataaage tgattgaett 5400 ttgattgcaa actacttaaa gaaaacaaac tcggactatt cgttttcttc tctttggttt 5460 gaacatcage aattateeee tettgattge etattttage ttgtttagaa gaaacaaaag 5520 ctaaaaqctc ctcttqqqtt ttaaaacqct qtqtqqqqct tagaacqccc ttaaacqacc 5580 cttggtttac ttttatacta gcttccacct cgaaaaaagg ttctttttta aaattctcta 5640 5700 tggcttcctg gcgctgaaaa aataaggtat aaggtgggcg tttgaacacg tcctagtgaa aatqtacctt qtacqccct tctqttqtaa atttaacgta tacaaagggc ttgcgttcat 5760 geegateaac caateggeaa tttggegtgt ttgegettet tgataaaagg gatagtaatt 5820 5880 cattccaggt tgcaaatttt gaaaaccgct tcggattaca tctttttcta agctattgat ccatagtett ttaaatgttt tatettttga aaaggeattt getttatgga taategacea 5940 ggcgatattt tcaccttctc tgtcgctatc tgttgcaaca ataattgtat ttgccttttt 6000 6060 gagaagttct gcaacaattt taaactgctt tcccttatct tttgcaactt caaaatcgta togatcagga aaaatoggca aagattcaag tttccaattt tgccactttt cgtcataatg 6120

6180 acctggttct gctaattcca ctaaatgccc aaaaccaaag gtgataaacg tttcatctgt aaatagtggg totttgatot caaaataacc gtottttttg gtgctttgtt ttaaagcact 6240 tgcgtaggct aatgcctggc ttggtttttc agctaaaata accgtactca ttaactatcc 6300 ctcttttcat tgttttttct ttgatcgact gtcacgttat atcttgctcg ataccttcta 6360 aacgttcggc gattgattcc agtttgttct tcaacttctt tatcggataa accattcaaa 6420 aacaaatcga aagcatggat gcgccgcgtg cggctgctgg agatggcgga cgcgatggat 6480 atgttctgcc aagggttggt ttgcgcattc acagttctcc gcaagaattg attggctcca 6540 attettggag tggtgaatcc gttagcgagg tgccgccggc ttccattcag gtcgaggtgg 6600 6660 cocggotoca tgcaccgcga cgcaacgcgg ggaggcagac aaggtatagg gcggcgccta 6720 caatccatgc caacccgttc catgtgctcg ccgaggcggc ataaatcgcc gtgacgatca geggtecagt gategaagtt aggetggtaa gageegegag egateettga agetgteeet 6780 gatggtcgtc atctacctgc ctggacagca tggcctgcaa cgcgggcatc ccgatgccgc 6840 cggaagcgag aagaatcata atggggaagg ccatccagcc tcgcgtcgca atacgactca 6900 6960 ctatagggcg aattgggtac cgggccccc ctcgaggtcg acggtatcga taagcttgat 7020 ategaattee tgeageeegg gggateeact agttetagag eggeegeeac egeggtggag 7080 ctccagcttt tgttcccttt agtgagggtt aatgctagaa atattttatc tgattaataa 7140 gatgatette ttgagategt tttggtetge gegtaatete ttgetetgaa aacgaaaaaa ccgccttgca gggcggtttt tcgaaggttc tctgagctac caactctttg aaccgaggta 7200 actggcttgg aggagcgcag tcaccaaaac ttgtcctttc agtttagcct taaccggcgc 7260 7320 atgacttcaa gactaactcc tctaaatcaa ttaccagtgg ctgctgccag tggtgctttt 7380 gcatgtcttt ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcggac tgaacggggg gttcgtgcat acagtccagc ttggagcgaa ctgcctaccc ggaactgagt 7440 7500 qtcaqqcgtq gaatqagaca aacgcggcca taacagcgga atgacaccgg taaaccgaaa ggcaggaaca ggagagcgca cgagggagcc gccaggggga aacgcctggt atctttatag 7560 tcctgtcggg tttcgccacc actgatttga gcgtcagatt tcgtgatgct tgtcagggg 7620 geggagecta tggaaaaacg getttgeege ggeeetetea etteeetgtt aagtatette 7680 7740 ctggcatctt ccaggaaatc tccgccccgt tcgtaagcca tttccgctcg ccgcagtcga 7800 acgaccgagc gtagcgagtc agtgagcgag gaagcggaat atatcctgta tcacatattc 7860 tgctgacgca ccggtgcagc cttttttctc ctgccacatg aagcacttca ctgacaccct 7920 catcagtgcc aacatagtaa gccagtatac actccgctag cgctgatgtc cggcggtgct tttgccgtta cgcaccaccc cgtcagtagc tgaacaggag ggacagctga tagaaacaga 7980 agccactgga gcacctcaaa aacaccatca tacactaaat cagtaagttg gcagcatcac 8040 ccgacgcact ttgcgccgaa taaatacctg tgacggaaga tcacttcgca gaataaataa 8100 atcctggtgt ccctgttgat accgggaagc cctgggccaa cttttggcga aaatgagacg 8160 8220 ttgatcggca cgtaagaggt tccaactttc accataatga aataagatca ctaccgggcg tattttttga gttatcgaga ttttcaggag ctaaggaagc taaaatggag aaaaaaatca 8280 ctggatatac caccgttgat atatcccaat ggcatcgtaa agaacatttt gaggcatttc 8340 agtcagttgc tcaatgtacc tataaccaga ccgttcagct ggatattacg gcctttttaa 8400 agaccqtaaa qaaaaataag cacaagtttt atccggcctt tattcacatt cttgcccgcc 8460 8520 tgatgaatgc tcatccggaa ttccgtatgg caatgaaaga cggtgagctg gtgatatggg atagtgttca cccttgttac accgttttcc atgagcaaac tgaaacgttt tcatcgctct 8580 qqaqtqaata ccacgacgat ttccggcagt ttctacacat atattcgcaa gatgtggcgt 8640 qttacqqtqa aaacctqqcc tatttcccta aagggtttat tgagaatatg tttttcgtct 8700 cagccaatcc ctgggtgagt ttcaccagtt ttgatttaaa cgtggccaat atggacaact 8760 tettegecce egittteace atgggeaaat attatacgea aggegacaag gigetgatge 8820 egetggegat teaggtteat catgeogtet gtgatggett ceatgtegge agaatgetta 8880 atqaattaca acaqtactqc qatqaqtqqc aqqqcqqqqc qtaatttttt taagqcaqtt 8940 attggtgccc ttaaacgcct ggtgctacgc ctgaataagt gataataagc ggatgaatgg 9000 9060 cagaaattcg aaagcaaatt cgacccggtc gtcggttcag ggcagggtcg ttaaatagcc gettatgtet attgetggtt taccggttta ttgactaccg gaagcagtgt gaccgtgtgc 9120 ttctcaaatq cctqaqqcca qtttgctcag gctctccccg tggaggtaat aattgacgat 9180 atgatcattt attctgcctc ccagagcctg ataaaaacgg ttagcgcttc gttaatacag 9240 9300 atgtaggtgt tccacagggt agccagcagc atcctgcgat gcagatccgg aacataatgg 9360 tgcagggcgc ttgtttcggc gtgggtatgg tggcaggccc cgtggccggg ggactgttgg gegetgeegg cacetgteet acgagttgea tgataaagaa gacagteata agtgeggega 9420 9480 cgatagtcat gccccgcgcc caccggaagg agctaccgga cagcggtgcg gactgttgta actcagaata agaaatgagg ccgctcatgg cgttgactct cagtcatagt atcgtggtat 9540 9600 caccggttgg ttccactctc tgttgcgggc aacttcagca gcacgtaggg gacttccgcg tttccaqact ttacqaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 9660 9720 acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 9780 cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca

```
<210> 44
<211> 26
```

<212> PRT <213> Listeria monocytogenes

<400> 44

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp

<210> 45 <211> 59

<211> 59 <212> PRT

<213> Listeria monocytogenes

<400> 45

Glu Asn Lys Gly Met Thr Arg Arg Glu Met Leu Lys Leu Ser Ala Val 20 25 30

Ala Gly Thr Gly Ile Ala Val Gly Ala Thr Gly Leu Gly Thr Ile Leu 35 40 45

Asn Val Val Asp Gln Val Asp Lys Ala Leu Thr 50 55

<210> 46

<211> 53 <212> PRT

<213> Bacillus subtillus

<400> 46

Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu 1 10 15

Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly 20 25 30

Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser 35 40 45

Val Gly Ala Phe Gly

<211> <212>	21	
<220> <223>	Description of Artificial Sequence: Primer	
	47 sacat acgetettat e	21
<210> <211> <212> <213>	24	
<220> <223>	Description of Artificial Sequence: Primer	
<400> acataa	48 atcag tocaaagtag atgo	24
<210> <211> <212> <213>	29	
<220> <223>	Description of Artificial Sequence: Primer	
	49 gtacc tootttgatt agtatatto	29
<210><211><211><212><212><213>	29	
<220> <223>	Description of Artificial Sequence: Primer	
<400> ctctgg	50 gatec atoogogtgt ttottttog	29
<210> <211> <212> <213>	24 DNA	
<220> <223>	Description of Artificial Sequence: Epitope insert	
<400>	51 taaag atgatgatga taaa	24

```
<210> 52
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Epitope
<400> 52
Asp Tyr Lys Asp Asp Asp Lys
<210> 53
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Epitope insert
<400> 53
                                                                    30
gaacaaaaat taattagtga agaagattta
<210> 54
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Epitope
<400> 54
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
               5
<210> 55
<211> 9
<212> PRT
<213> Mus sp.
<400> 55
Ser Pro Ser Tyr Val Tyr His Gln Phe
<210> 56
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Epitope
```

```
<400> 56
Ser Pro Ser Tyr Ala Tyr His Gln Phe
<210> 57
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 57
ctctggtacc tcctttgatt agtatattc
                                                                     29
<210> 58
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 58
caatggatcc ctcgagatca taatttactt catccc
                                                                     36
<210> 59
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 59
                                                                     32
atttctcgag tccatggggg gttctcatca tc
<210> 60
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 60
ggtgetegag tgeggeegea agett
                                                                     25
<210> 61
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
```

<400>	61	
cgattc	ccct agttatgttt accaccaatt tgctgca	
<210>	62	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence	: Primer
<400>	62	
	tggt ggtaaacata actaggggaa t	
500000		
<210>	63	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>	Description of Artificial Sequence	. Poltono incont
<223>	Description of Aftificial Sequence	Epicope insert
	63	
agtcca	agtt atgcatatca tcaattt	
<210>	64	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence	: Primer
<400>	64	
cgatag	tcca agttatgcat atcatcaatt tgc	
<210>		
<211><212>		
	Artificial Sequence	
<213>	Altilitial sequence	
<220>		
<223>	Description of Artificial Sequence	: Primer
<400>	65	
gt cg ca	aatt gatgatatgc ataacttgga ctat	
<210>	66	
<211>		
<212>		
	Artificial Sequence	
<220>		
-222-	Description of Artificial Companse	· Concensus Seguence

```
<220>
<221> misc feature
<222> (1)..(1)
<223> n is a, c, g, or u
<400> 66
                                                                      8
naggaggu
<210> 67
<211> 19
<212> DNA
<213> Listeria monocytogenes
<400> 67
                                                                      19
aaggagagtg aaacccatg
<210> 68
 <211> 240
 <212> DNA
 <213> Listeria monocytogenes
 ggtacctcct ttgattagta tattcctatc ttaaagtgac ttttatgttg aggcattaac
                                                                    60
 atttgttaac gacgataaag ggacagcagg actagaataa agctataaag caagcatata
                                                                    120
 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagagg
                                                                     180
 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg
                                                                    240
 <210> 69
 <211> 240
 <212> DNA
<213> Listeria monocytogenes
 <400> 69
 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac
                                                                      60
 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata
                                                                     120
 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg
                                                                     180
 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg
                                                                     240
 <210> 70
 <211> 5
 <212> PRT
 <213> Listeria monocytogenes
 <400> 70
 Thr Glu Ala Lys Asp
```

<210> 71

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Figure 1

Figure 2

Figure 3

Human EphA2 Expression in CT26 Subclones

Generation of "the Super Clone"

A8-B5 (mean = 45.0) Average B7-D10 (mean = 73.18)

Medium B7-E6 (mean = 233.0)

Super Clone!

 Subclones of transfected clones obtained by FACS sorting into 96 well plates

CT26 Murine Colon Carcinoma Cells Human EphA2 Protein Expression in

Following FACS Sorting

231 468 469-1 Meo-1 7 huEphA2-3 huEphA2-5 * pooled populations of transfected cells sorted by FACS

Human EphA2 Protein Expression in B16F10 Cells

Figure 7

SHEET

Figure 8B

ECD of huEphA2 on CT26 Tumor Growth Effect of L. monocytogenes Expressing Therapeutic Study

Figure 9B

Effect of L. monocytogenes Expressing ECD of huEphA2 on CT26 huEphA2 Tumor Growth

Figure 10

Figure 11

Figure 12

Figure 13

BEFORE THE OFFICE OF ENROLLMENT AND DISCIPLINE UNITED STATE PATENT AND TRADEMARK OFFICE

LIMITED RECOGNITION UNDER 37 CFR § 10.9(b)

Dr. Abu-Shaar is hereby given limited recognition under 37 CFR §10.9(b) as an employee of Pennie & Edmonds, LLP to prepare and prosecute patent applications wherein the patent applicant is the client of Pennie & Edmonds, LLP, and the attorney or agent of record in the applications is a registered practitioner who is a member of Pennie & Edmonds, LLP. This limited recognition shall expire on the date appearing below, or when whichever of the following events first occurs prior to the date appearing below: (i) Dr. Abu-Shaar ceases to lawfully reside in the United States, (ii) Dr. Abu-Shaar's employment with Pennie & Edmonds, LLP ceases or is terminated, or (iii) Dr. Abu-Shaar ceases to remain or reside in the United States on an H-1B visa.

This document constitutes proof of such recognition. The original of this document is on file in the Office of Enrollment and Discipline of the U.S. Patent and Trademark Office.

Expires: May 28, 2004

Harry I. Moatz

Director of Enrollment and Discipline