Deep Learning - Foundations and Concepts Chapter 14. Sampling

nonlineark@github

March 29, 2025

Outline

Basic Sampling Algorithms

Markov Chain Monte Carlo

Expectations

For some applications the goal is to evaluate expectations with respect to the distribution. Suppose we wish to find the expectation of a function f(z) with respect to a probability distribution p(z):

$$E(f) = \int f(z)p(z)dz$$

The general idea behind sampling methods is to obtain a set of samples $z^{(l)}$ drawn independently from the distribution p(z). This allows the expectation to be approximated by a finite sum:

$$\bar{f} = \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})$$

Expectations

Let's calculate the expectation and variance of \bar{f} :

$$E(\bar{f}) = E(\frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})) = E(f)$$

$$E(\bar{f}^2) = E(\frac{1}{L^2} \sum_{l,l'} f(z^{(l)}) f(z^{(l')})) = (E(f))^2 + \frac{1}{L} var(f)$$

$$var(\bar{f}) = E(\bar{f}^2) - (E(\bar{f}))^2 = \frac{1}{L} var(f)$$

Which shows that:

- \bullet \bar{f} is an unbiased estimator of E(f).
- ullet Due to the linear decrease of the variance with increasing L, in principle, high accuracy may be achievable with a relatively small number of samples $z^{(l)}$.

Problem

Suppose that z is uniformly distributed over the interval (0,1). Given a probability density function p, find a function g such that the random variable y=g(z) has p as its probability density function.

Let U be the probability density function of the uniform distribution over the interval (0,1), we have:

$$p(y)dy = U(z)dz$$

$$f(y_0) = \int_{-\infty}^{y_0} p(y)dy = \int_{-\infty}^{z_0} U(z)dz = z_0$$

$$y_0 = f^{-1}(z_0)$$

So we have to transform the uniformly distributed random numbers using a function that is the inverse of the cumulative distribution function of the desired probability density function.

Some examples:

- Exponential distribution $p(y) = \lambda \exp(-\lambda y)$:
 - $z = f(y) = \int_0^y p(t) dt = 1 \exp(-\lambda y).$
 - $y = -\frac{1}{\lambda} \log(1-z)$.
- Cauchy distribution $p(y) = \frac{1}{\pi} \frac{1}{1+y^2}$:
 - $z = f(y) = \int_{-\infty}^{y} p(t) dt = \frac{1}{\pi} \arctan y + \frac{1}{2}$.
 - $y = \tan(\pi(z \frac{1}{2})).$

The generalization to multiple variables involves the Jacobian of the change of variables, so that:

$$p_Y(y_1,\ldots,y_M) = p_Z(z_1,\ldots,z_M) \left| \frac{\partial(z_1,\ldots,z_M)}{\partial(y_1,\ldots,y_M)} \right|$$

The Box-Muller method for generating samples from a Gaussian distribution. First, suppose we generate pairs of uniformly distributed random numbers $z_1,z_2\in(-1,1)$. Next, we discard each pair unless it satisfies $z_1^2+z_2^2\leq 1$. This leads to a uniform distribution of points inside the unit circle with $p_Z(z_1,z_2)=\frac{1}{\pi}$. Then, for each pair z_1,z_2 we evaluate the quantities:

$$y = z \frac{\sqrt{-4\log||z||}}{||z||}$$

The joint distribution of y_1 and y_2 is given by:

$$p_Y(y_1, y_2) = p_Z(z_1, z_2) \left| \frac{\partial(z_1, z_2)}{\partial(y_1, y_2)} \right| = \left(\frac{1}{\sqrt{2\pi}} \exp(-\frac{y_1^2}{2}) \right) \left(\frac{1}{\sqrt{2\pi}} \exp(-\frac{y_2^2}{2}) \right)$$

So y_1 and y_2 are independent and each has a Gaussian distribution with zero mean and unit variance.

- 4日 > 4個 > 4 恵 > 4 恵 > - 恵 - 夕久(*)

Suppose that:

- We wish to sample from a distribution p(z), and sampling directly from p(z) is difficult.
- We are easily able to evaluate p(z) for any given value of z, up to some normalizing constant Z_p , so that $p(z)=\frac{1}{Z_p}\tilde{p}(z)$, where $\tilde{p}(z)$ can readily be evaluated, but Z_p is unknown.

To apply rejection sampling:

- ullet Find a simpler distribution q(z), called a proposal distribution, from which we can readily draw samples.
- Introduce a constant k whose value is chosen such that $kq(z) \geq \tilde{p}(z)$ for all values of z.
- Generate a number z_0 from the distribution q(z).
- \bullet Generate a number u_0 from the uniform distribution over $[0,kq(z_0)].$
- If $u_0 > \tilde{p}(z_0)$ then the sample is rejected, otherwise u_0 is retained.
- ullet The corresponding z values in the remaining pairs are distributed according to p(z).

Figure: Illustration of the rejection sampling method

Let's verify the correctness of the rejection sampling method. Suppose that random variable Z is distributed according to q(z), and random variable U is uniformly distributed over [0,kq(Z)]. We want to calculate the probability density function of the random variable $Z|0\leq U\leq \tilde{p}(Z)$:

$$\begin{split} P(Z \in E | 0 \leq U \leq \tilde{p}(Z)) &= \frac{P(Z \in E, 0 \leq U \leq \tilde{p}(Z))}{P(0 \leq U \leq \tilde{p}(Z))} \\ &= \frac{\int_{E} q(z) \frac{\tilde{p}(z)}{kq(z)} \mathrm{d}z}{\int_{\mathbb{R}} q(z) \frac{\tilde{p}(z)}{kq(z)} \mathrm{d}z} \\ &= \int_{E} p(z) \mathrm{d}z \end{split}$$

We see that the random variable $Z|0 \le U \le \tilde{p}(Z)$ is indeed distributed according to p(z).

Let's calculate the probability that a sample will be accepted:

$$P_{\text{accept}} = \int_{\mathbb{R}} q(z) \frac{\tilde{p}(z)}{kq(z)} dz = \frac{Z_p}{k}$$

We see that the constant k should be as small as possible subject to the limitation that kq(z) must be nowhere less than $\tilde{p}(z)$.

Adaptive rejection sampling

- In many instances, it can be difficult to determine a suitable analytic form for the envelope distribution q(z).
- ullet An alternative approach is to construct the envelope function on the fly based on measured values of the distribution p(z).
- ullet Constructing an envelope function is particularly straightforward when p(z) is log concave.

Adaptive rejection sampling

- ullet Evaluate the function $\log p(z)$ and its gradient at some initial set of grid points.
- The intersections of the resulting tangent lines are used to construct the envelope function.
- Draw a sample value from the envelope distribution. This is straightforward because the envelope function comprises a piecewise exponential distribution.
- If the sample is accepted, then it will be a draw from the desired distribution.
- If the sample is rejected, then it is incorporated into the set of grid points, a new tangent line is computed, and the envelope function is thereby refined.

Adaptive rejection sampling

Figure: Illustration of the construction of an envelope function for adaptive rejection sampling

Importance sampling

The technique of importance sampling provides a framework for approximating expectations directly but does not itself provide a mechanism for drawing samples from a distribution p(z).

Suppose we wish to calculate the expectation of a function f(z) with respect to a distribution p(z):

- The distribution p(z) can be evaluated only up to a normalization constant, so that $p(z)=\frac{\tilde{p}(z)}{Z_p}$, where Z_p is unknown.
- ullet Because it is difficult to draw samples directly from p(z), we rely on a proposal distribution q(z) from which it is easy to draw samples.
- \bullet The distribution q(z) also has an unknown normalization constant Z_q , so that $q(z)=\frac{\tilde{q}(z)}{Z_q}.$

Importance sampling

Let's calculate the expectation of f(z) with respect to p(z):

$$\begin{split} E(f) &= \int f(z) p(z) \mathrm{d}z = \int f(z) \frac{p(z)}{q(z)} q(z) \mathrm{d}z \\ &\approx \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \frac{p(z^{(l)})}{q(z^{(l)})} = \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)}) \frac{\tilde{p}(z^{(l)})}{\tilde{q}(z^{(l)})} \\ &\frac{Z_p}{Z_q} = \frac{1}{Z_q} \int \tilde{p}(z) \mathrm{d}z = \frac{1}{Z_q} \int \frac{\tilde{p}(z)}{q(z)} q(z) \mathrm{d}z \\ &\approx \frac{1}{Z_q} \frac{1}{L} \sum_{l=1}^{L} \frac{\tilde{p}(z^{(l)})}{q(z^{(l)})} = \frac{1}{L} \sum_{l=1}^{L} \frac{\tilde{p}(z^{(l)})}{\tilde{q}(z^{(l)})} \end{split}$$

where the samples $\{z^{(l)}\}$ are drawn from q(z).

Importance sampling

Let:

$$ilde{r}_l = rac{ ilde{p}(z^{(l)})}{ ilde{q}(z^{(l)})} \ w_l = rac{ ilde{r}_l}{\sum_{l'} ilde{r}_{l'}}$$

we see that:

$$E(f) \approx \frac{\sum_{l=1}^{L} f(z^{(l)}) \tilde{r}_{l}}{\sum_{l=1}^{L} \tilde{r}_{l}} = \sum_{l=1}^{L} w_{l} f(z^{(l)})$$

Sampling-importance-resampling

- Draw L samples $z^{(1)}, \ldots, z^{(L)}$ from q(z).
- Construct weights w_1, \ldots, w_L using $w_l = \frac{\tilde{r}_l}{\sum_{l'} \tilde{r}_{l'}} = \frac{\tilde{p}(z^{(l)})/q(z^{(l)})}{\sum_{l'} \tilde{p}(z^{(l')})/q(z^{(l')})}$.
- Draw L samples from the discrete distribution $(z^{(1)}, \ldots, z^{(L)})$ with probabilities given by the weights (w_1, \ldots, w_L) .

Sampling-importance-resampling

Let's verify the correctness of the sampling-importance-resampling method.

$$P(z \le a) = \sum_{l=1}^{L} I(z^{(l)} \le a) w_l = \frac{\sum_{l=1}^{L} I(z^{(l)} \le a) \frac{\tilde{p}(z^{(l)})}{q(z^{(l)})}}{\sum_{l=1}^{L} \frac{\tilde{p}(z^{(l)})}{q(z^{(l)})}}$$

where I is the indicator function. Taking the limit $L \to \infty$:

$$P(z \le a) = \frac{\int I(z \le a) \frac{\tilde{p}(z)}{q(z)} q(z) dz}{\int \frac{\tilde{p}(z)}{q(z)} q(z) dz} = \frac{\int_{-\infty}^{a} \tilde{p}(z) dz}{\int_{-\infty}^{\infty} \tilde{p}(z) dz} = \int_{-\infty}^{a} p(z) dz$$

Markov Chain Monte Carlo

Suppose that:

- We wish to sample from a distribution p(z), and sampling directly from p(z) is difficult.
- We are easily able to evaluate p(z) for any given value of z, up to some normalizing constant Z_p , so that $p(z) = \frac{1}{Z_p} \tilde{p}(z)$, where $\tilde{p}(z)$ can readily be evaluated, but Z_p is unknown.
- We maintain a record of the current state $z^{(\tau)}$, and the proposal distribution $q(z|z^{(\tau)})$ is conditioned on this current state.
- ullet At each cycle of the algorithm, we generate a candidate sample z^* from the proposal distribution and then accept the sample according to an appropriate criterion.

The Metropolis algorithm

In the basic Metropolis algorithm, we assume that the proposal distribution is symmetric, that is $q(z_A|z_B)=q(z_B|z_A)$ for all values of z_A and z_B . The candidate sample is then accepted with probability:

$$A(z^*, z^{(\tau)}) = \min(1, \frac{\tilde{p}(z^*)}{\tilde{p}(z^{(\tau)})})$$

As we will see, if $q(z_A|z_B)$ is positive for any values of z_A and z_B , the distribution of $z^{(\tau)}$ tends to p(z) as $\tau \to \infty$.

The Metropolis algorithm

Algorithm 1: Metropolis sampling

```
\begin{split} z_{\text{prev}} &\leftarrow z^{(0)};\\ \text{for } \tau &\leftarrow 1 \text{ to } T \text{ do} \\ & z^* \sim q(z|z_{\text{prev}});\\ & u \sim \mathcal{U}(0,1);\\ & \text{if } \frac{\tilde{p}(z^*)}{\tilde{p}(z_{\text{prev}})} > u \text{ then} \\ & \mid z_{\text{prev}} \leftarrow z^*;\\ & \text{end} \end{split}
```

end

return $z_{\rm prev}$;

Markov chains

For a first-order Markov chain $z^{(1)}, \ldots, z^{(M)}, \ldots$

- The transition probability $T_m(z^{(m)},z^{(m+1)})$ from $z^{(m)}$ to $z^{(m+1)}$ is defined as $p(z^{(m+1)}|z^{(m)})$.
- ullet A Markov chain is called homogeneous if the transition probabilities are the same for all m.
- A distribution is said to be invariant with respect to a Markov chain if the marginal distributions $p(z^{(m)})$ are invariant.

Markov chains

A transition probability $T(z,z^\prime)$ is said to satisfy detailed balance with respect to a distribution p(z) if:

$$p(z)T(z,z') = p(z')T(z',z)$$

It is easily seen that p(z) is invariant:

$$\int p(z)T(z,z')dz = \int p(z')T(z',z)dz = p(z')\int p(z|z')dz = p(z')$$

A Markov chain that respects detailed balance is said to be reversible.

Markov chains

Our goal is to use Markov chains to sample from a given distribution $p^*(z)$:

- We can achieve this if we set up a Markov chain such that $p^*(z)$ is invariant.
- We must also require that for $m \to \infty$, the distribution $p(z^{(m)})$ converges to $p^*(z)$, irrespective of the choice of initial distribution $p(z^{(0)})$. This property is called ergodicity, and the invariant distribution is then called the equilibrium distribution.

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, which is a generalization of the basic Metropolis algorithm, applies when the proposal distribution is no longer a symmetric function of its arguments. The candidate sample is accepted with probability:

$$A_k(z^*, z^{(\tau)}) = \min(1, \frac{\tilde{p}(z^*)q_k(z^{(\tau)}|z^*)}{\tilde{p}(z^{(\tau)})q_k(z^*|z^{(\tau)})})$$

Here k labels the members of the set of possible transitions being considered. For a symmetric proposal distribution, the Metropolis-Hastings criterion reduces to the standard Metropolis criterion.

The Metropolis-Hastings algorithm

Algorithm 2: Metropolis-Hastings sampling

```
\begin{split} z_{\text{prev}} &\leftarrow z^{(0)}; \\ & \text{for } \tau \leftarrow 1 \text{ to } T \text{ do} \\ & k \leftarrow M(\tau); \\ & z^* \sim q_k(z|z_{\text{prev}}); \\ & u \sim \mathcal{U}(0,1); \\ & \text{if } \frac{\tilde{p}(z^*)q_k(z_{\text{prev}}|z^*)}{\tilde{p}(z_{\text{prev}})q_k(z^*|z_{\text{prev}})} > u \text{ then} \\ & \mid z_{\text{prev}} \leftarrow z^*; \\ & \text{end} \end{split}
```

end

return $z_{\rm prev}$;

The Metropolis-Hastings algorithm

We can show that p(z) is an invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm by showing that detailed balance is satisfied:

$$p(z)T_{k}(z,z') = p(z)q_{k}(z'|z)A_{k}(z',z)$$

$$= \min(p(z)q_{k}(z'|z), p(z')q_{k}(z|z'))$$

$$= \min(p(z')q_{k}(z|z'), p(z)q_{k}(z'|z))$$

$$= p(z')q_{k}(z|z')A_{k}(z,z')$$

$$= p(z')T_{k}(z',z)$$

Algorithm 3: Gibbs sampling

```
\begin{array}{l} \text{for } \tau \leftarrow 1 \text{ to } T \text{ do} \\ & | \text{ for } m \leftarrow 1 \text{ to } M \text{ do} \\ & | z_m \sim p(z_m | \{z_{m' \neq m}\}); \\ & | \text{ end} \\ \\ \text{end} \\ \text{return } \{z_1, \ldots, z_M\}; \end{array}
```

Let's first verify that the distribution p(z) is an invariant of each of the Gibbs sampling steps individually. Suppose at a certain step, z is transitioned to z', and the variable that has been updated is z_m :

$$\int T(z, z') p(z) dz$$

$$= \int p(z'_m | z'_{m' \neq m}) p(z'_1, \dots, z'_{m-1}, z_m, z'_{m+1}, \dots, z'_M) dz_m$$

$$= p(z'_m | z'_{m' \neq m}) p(z'_{m' \neq m}) = p(z')$$

To ensure that the Gibbs sampling procedure samples from the correct distribution, it has to be ergodic. A sufficient condition for ergodicity is that none of the conditional distributions are anywhere zero.

The Gibbs sampling procedure is a particular instance of the Metropolis-Hastings algorithm. Consider a Metropolis-Hastings sampling step, at which z is transitioned to z^* , and the variable that has been updated is z_m . The factor that determines the acceptance probability is given by:

$$A(z^*, z) = \min(1, \frac{p(z^*)q_m(z|z^*)}{p(z)q_m(z^*|z)})$$

$$= \min(1, \frac{p(z_m^*|z_{m'\neq m}^*)p(z_{m'\neq m}^*)p(z_m|z_{m'\neq m}^*)}{p(z_m|z_{m'\neq m})p(z_{m'\neq m})p(z_m^*|z_{m'\neq m}^*)})$$

$$= 1$$

Thus the Metropolis-Hastings steps are always accepted.

One approach to reducing the random walk behavior in Gibbs sampling is called over-relaxation. It applies to problems for which the conditional distributions are Gaussian. At each step of the Gibbs sampling algorithm, the conditional distribution for a particlar component z_m has some mean μ_m and some variance σ_m^2 . In the over-relaxation framework, the value of z_m is replaced with:

$$z_m' = \mu_m + \alpha_m(z_m - \mu_m) + \sigma_m \sqrt{1 - \alpha_m^2} \nu$$

where ν is a Gaussian random variable with zero mean and unit variance, and α is a parameter such that $-1 < \alpha < 1$. This step leaves the desired distribution invariant because z_m' also has mean μ_m and variance σ_m^2 . The effect of over-relaxation is to encourage directed motion through state space when the variables are highly correlated.

Ancestral sampling

For a directed graph with no observed variables, it is straightforward to sample from the joint distribution using the following ancestral sampling approach:

$$p(z) = \prod_{m=1}^{M} p(z_m | pa(m))$$

To obtain a sample from the joint distribution, we make one pass through the set of variables in the order z_1, \ldots, z_M sampling from the conditional distributions $p(z_m|pa(m))$.

Ancestral sampling

Consider a directed graph in which some of the nodes, which comprise the evidence set \mathcal{E} , are instantiated with observed values. The likelihood weighted sampling method:

- For each variable in turn:
 - If that variable is in the evidence set, the it is just set to its instantiated value.
 - If it is not in the evidence set, then it is sampled from the conditional distribution $p(z_m|pa(m))$.
- The weighting associated with the resulting sample z is then given by $r(z) = \prod_{z_m \notin \mathcal{E}} \frac{p(z_m | \mathrm{pa}(m))}{p(z_m | \mathrm{pa}(m))} \prod_{z_m \in \mathcal{E}} \frac{p(z_m | \mathrm{pa}(m))}{1} = \prod_{z_m \in \mathcal{E}} p(z_m | \mathrm{pa}(m)).$