IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)	Confirmation No. 9944
CHOO et al.)	Group Art Unit: 1648
Serial No.: 10/580,050)	Examiner: TBA
I.A. Filed: November 19, 2004)	Atty. Docket No. 51835-US-PCT

For: METHODS AND REAGENTS FOR TREATING, PREVENTING, AND DIAGNOSING BUNYAVIRUS INFECTION

PETITION UNDER 37 C.F.R. § 1.181 TO WITHDRAW HOLDING OF ABANDONMENT

U.S. Patent and Trademark Office Randolph Building 401 Dulany Street Alexandria, VA 22314

Dear Sir:

Applicants petition the Director under 37 C.F.R. § 1.181 to withdraw the holding of abandonment of the application referenced above as set forth in the Notification of Abandonment mailed May 14, 2009. Applicants believe no fee is due in connection with this petition. If a fee is due, please charge our Deposit Account No. 19-0733.

Statement of Facts

- 1. The present application (Serial No. 10/580,050) is a national phase application of PCT/US2004/039333 filed November 19, 2004. Serial No. 10/580,050 was filed by express mail on May 19, 2006.
- 2. A Notification of Missing Requirements requesting an executed declaration was mailed on January 16, 2007. The executed declaration was filed by express mail on August 10, 2007 together with payment for a five-month extension of time.
- 3. On January 31, 2008 Applicants filed by express mail a preliminary amendment and paper and computer readable forms of a sequence listing. The preliminary amendment inserted sequence identifiers into the specification and directed entry of the paper copy of the sequence listing into the specification. Exhibit 1 is a copy of Applicants' sequence listing transmittal letter downloaded from PAIR. The transmittal letter bears a U.S. Patent and Trademark Office receipt stamp of January 31, 2008.
- 4. Exhibit 2 is a copy of a SCORE placeholder sheet for IFW content downloaded from PAIR. The placeholder sheet is dated January 31, 2008 and indicates receipt of the computer readable form of the sequence listing.
- 5. Exhibit 3 is a printout of PAIR's "Supplemental Content" view for this application.
- 6. Exhibit 4 is a copy of the contents of the sequence listing downloaded from the Supplemental Content. tab in PAIR
- 7. A Notice to Comply with sequence listing requirements was mailed on February 18, 2009. The notice asserted that a computer readable form of the sequence listing had not been submitted. The Notice provided a two-month initial deadline to respond (*i.e.*, until April 18,

2009). The Notice also indicated that extensions of time were available under 37 C.F.R. § 1.136 up to six months from the mailing date of the notice (*i.e.*, until August 18, 2009).

- 8. On March 20, 2009 Applicants filed by express mail a response to the Notice to Comply. The response noted that the computer readable form of the sequence listing had been filed on January 31, 2008. The response also stated that copies of the sequence listing and preliminary amendment filed on January 31, 2008 were being resubmitted; however, PAIR does not indicate that the sequence listing and preliminary amendment were re-submitted with the response.
- 9. A Notification of Abandonment was mailed on May 14, 2009, less than one month after the initial deadline for responding to the Notice to Comply. The Notification states that the application is abandoned because "[t]he sequence requirements still haven't been met."

Point to be Reviewed

The point to be reviewed is whether the holding of abandonment should be withdrawn because the computer readable form of the sequence listing was filed on January 31, 2008.

Action Requested

Applicant requests that the holding of abandonment of this application be withdrawn.

Argument

The Notification of Abandonment appears to have been issued in error. As an initial

matter, the Notification of Abandonment was mailed before the end of the statutory period for

responding to the Notice to Comply.

Moreover, the Notice to Comply itself was erroneously issued. First, the U.S. Patent and

Trademark Office's own records indicate that the computer readable form of the sequence listing

was filed on January 31, 2008 (Exhibit 2). Second, the computer readable form of the sequence

listing actually is present under the "Supplemental Content" tab for this application in PAIR

(Exhibits 3 and 4). Third, the contents of the computer readable form downloaded from PAIR

appears to contain all 191 sequences present in the paper form of the sequence listing filed on

January 31, 2008 (Exhibit 4).

Applicants respectfully request that the holding of abandonment of this application be

withdrawn.

Respectfully submitted,

BANNER & WITCOFF, LTD.

/Lisa M. Hemmendinger/

Date: May 27, 2009

Customer No. 22907

By:_ Lisa M. Hemmendinger

Registration No. 42,653

IAPU/HEC' O PCI 31 JAN 2008

PATENT APPLICATION U.S. Appln. No. 10/580,050 International Application No. PCT/US04/39333 Attorney Docket No. PP021454.0004

Express Mail Label No.: ED 954551195 US Date: January 31, 2008

IN THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

In Re Application of: Qui-Lim Choo

U.S. Appln. No.: 10/580,050

Intl. Appln. No.: PCT/US04/39333

I.A. Filing Date: 11/19/2004

Priority Date: 11/19/2003

Title: METHODS AND REAGENTS FOR

TREATING, PREVENTING AND DIAGNOSING BUNYAVIRUS

INFECTION

Confirmation No.: 7391

Group Art Unit: To Be Assigned

Examiner: To Be Assigned

TRANSMITTAL LETTER

Mail Stop PCT Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Enclosed herewith are the following documents to complete the above-identified application:

1. TRANSMITTAL OF SEQUENCE LISTING INCLUDING:

- a. Statements Under 37 C.F.R. 1.821(f-g), including statement specifically directing entry of the sequence listing into the application.
- b. Paper Copy of the Sequence Listing (60 pages).
- c. Compact Disk Containing CRF Copy of Sequence Listing (1 CD).

2. PRELIMINARY AMENDMENT.

3. RETURN RECEIPT POSTCARD.

PATENT APPLICATION U.S. Appln. No. 10/580,050 International Application No. PCT/US04/39333 Attorney Docket No. PP021454.0004

The Commissioner is hereby authorized to charge any deficiency in fees or credit any overpayment associated with this communication and which may be required under 37 C.F.R. §§ 1.16 and 1.17 to Deposit Account No. 03-1664.

Respectfully submitted,

NOVARTIS VACCINES AND DIAGNOSTICS, INC.

Dated: 9/mory 31, 2008

By: 7/ C

Helen Lee

Registration No. 39,270

Customer No. 27476

NOVARTIS VACCINES AND DIAGNOSTICS, INC.

Corporate Intellectual Property – R338

P.O. Box 8097

Emeryville, CA 94662-8097 Telephone: (510) 923-2192 Facsimile: (510) 655-3542

Exhibit 2

DocCode - SEQ.TXT

SCORE Placeholder Sheet for IFW Content

Application Number: 10580050 Document Date: 01/31/2008

The presence of this form in the IFW record indicates that the following document type was received in electronic format on the date identified above. This content is stored in the SCORE database.

Sequence Listing

Since this was an electronic submission, there is no physical artifact folder, no artifact folder is recorded in PALM, and no paper documents or physical media exist. The TIFF images in the IFW record were created from the original documents that are stored in SCORE.

To access the documents in the SCORE database, refer to instructions developed by SIRA.

At the time of document entry (noted above):

- Examiners may access SCORE content via the eDAN interface.
- Other USPTO employees can bookmark the current SCORE URL (http://es/ScoreAccessWeb/).
- External customers may access SCORE content via the Public and Private PAIR interfaces.

Form Revision Date: February 8, 2006

Exhibit 3

Portal Home | Patents | Trademarks | Other | Sign-Off Authenticated Session

Patent eBusiness - 0 **Secured Patent Application Information Retrieval** Electronic Filing Order Certified Application As Filed Order Certified File Wrapper Patent Application Information (PAIR) Methods and reagents for treating, preventing and diagnosing Patent Ownership 10/580,050 F + Fees bunyavirus infection Supplemental Resources & Support Continuity Select New Case Application Transaction Supplemental Content Display References Image File Address & Data History Data Wrapper Attorney/Agent **Patent Information** Supplemental Content - Sequences Patent Guidance and General Info Use this page to view or retrieve a specific version of the Sequence Listing submitted for this Codes, Rules & Manuals application. Employee & Office Directories Previous Resources & Public Notices **Sub-Version Item Size** Number of Sequence **Patent Searches** Version Sequences Name **Item ID** Patent Official Gazette 0 US10580050 91.293 09323b6780b376d2 **Search Patents & Applications**

Copies, Products & Services Other

Bearch Biological Sequences

Copyrights
Trademarks
Policy & Law
Reports

If you need help:

- Call the Patent Electronic Business Center at (866) 217-9197 (toll free) or e-mail <u>EBC@uspto.gov</u> for specific questions about Patent Application Information Retrieval (PAIR).
- Send general questions about USPTO programs to the USPTO Contact Center (UCC).
- If you experience technical difficulties or problems with this application, please report them via e-mail to Electronic Business Support or call 1 800-786-9199.

You can suggest USPTO webpages or material you would like featured on this section by E-mail to the webmaster@uspto.qov. While we cannot promise to accommodate all requests, your suggestions will be considered and may lead to other improvements on the website.

SEQUENCE LISTING

- <110> CHOO, Qui-Lim HOUGHTON, Michael SCOTT, Elizabeth WEINER, Amy
- $<\!120\!>\,$ METHODS AND REAGENTS FOR TREATING, PREVENTING AND DIAGNOSING BUNYAVIRUS INFECTION
- <130> 21454
- <140> US 10/580,050
- <141> 2006-05-19
- <150> PCT/US04/039333
- <151> 2004-11-19
- <160> 191
- <170> PatentIn version 3.3
- <210> 1
- <211> 4527
- <212> DNA
- <213> La Crosse virus
- <400> 1

<400> 1						
agtagtgtac	taccaagtat	agataacgtt	tgaatattaa	agttttgaat	caaagccaaa	60
gatgatttgt	atattggtgc	taattacagt	tgcagctgca	agcccagtgt	atcaaaggtg	120
tttccaagat	ggggctatag	tgaagcaaaa	cccatccaaa	gaagcagtta	cagaggtgtg	180
cctgaaagat	gatgttagca	tgatcaaaac	agaggccagg	tatgtaagaa	atgcaacagg	240
agttttttca	aataatgtcg	caataaggaa	atggctagtc	tctgattggc	atgattgcag	300
gcctaagaag	atcgttgggg	gacacatcaa	tgtaatagaa	gttggtgatg	acctgtcact	360
ccatactgaa	tcatatgttt	gcagcgcaga	ttgtaccata	ggtgtagaca	aagagactgc	420
acaggtcagg	cttcagacag	ataccacaaa	tcattttgaa	attgcaggca	ctactgtgaa	480
gtcaggatgg	ttcaagagca	cgacatatat	aactcttgat	caaacttgcg	aacaccttaa	540
agtttcctgc	ggcccaaaat	ctgtacagtt	ccatgcctgc	ttcaatcagc	atatgtcttg	600
		caatattgcc				660
tatcgaaatc	ataattttag	ttacacttac	tctattaatc	tttatattgt	taagcatttt	720
aagtaagact	tatatatgtt	atttattaat	gcctatattc	atccccatag	catatatata	780
		cgtgcaaaaa				840
attcacagag	tgtggcacac	attgtgtctg	tggtgcccgc	tatgatactt	cagatagaat	900
gaaactgcat	agagcttctg	gattgtgccc	tggttataaa	agcctaagag	ctgccagagt	960
		ctgcatcaat				1020
aacctttgtg	acaccaatca	actccatggt	tttaggagag	agtaaagaaa	cctttgaact	1080
		tgttggaaat				1140
ctgtatcttg	aattatgctg	taagctgggg	tcttgttatc	attggattgt	tgatcgggct	1200
gctttttaag	aaataccagc	acagattctt	aaatgtttac	gcaatgtact	gtgaagaatg	1260
tgacatgtat	catgacaagt	ctgggttgaa	aagacatggt	gatttcacca	acaaatgcag	1320
acagtgcaca	tgtggtcaat	atgaagatgc	tgcaggtttg	atggctcaca	ggaaaaccta	1380
taactgctta	gtgcagtaca	aagcaaagtg	gatgatgaac	ttcctgataa	tttacatatt	1440
cttaattttg	atcaaagatt	ctgctatagt	tgtacaagct	gctggaactg	acttcaccac	1500
		taaattggaa				1560
		aagaacctta				1620
		atgtccctat				1680
tgctttaaga	tatatagaag	agaaggaaga	tttccatgtc	cagctaacta	tagaatatgc	1740

```
gatgttaagc aaatactgtg actattatac ccaattctca gataactcag gatacagtca
                                                                    1800
qacaacatqq aqaqtqtact taaqqtctca tqattttqaa qcctqtatac tatatccaaa
                                                                    1860
tcagcacttt tgcagatgtg taaaaaatgg tgagaagtgc agcagctcca attgggactt
                                                                    1920
tgccaatgaa atgaaagatt attactctgg gaaacaaaca aagtttgaca aggacttaaa
                                                                    1980
totaqcccta acaqctttqc atcatqcctt caqqqqqacc tcatctqcat atataqcaac
                                                                    2040
aatqctctca aaaaaqtcca atqatqactt qattqcatac acaaataaqa taaaaacaaa
                                                                    2100
attcccaggt aatgcattgt tgaaggctat aatagattat atagcatata tgaaaaqttt
                                                                    2160
gccaggtatg gcaaatttca aatatgatga attctgggat gaattactgt acaaacccaa
                                                                    2220
cccagcaaag gcctcaaacc ttgctagagg aaaggagtca tcttacaact tcaaactagc
                                                                    2280
aatttcatca aagtctataa aaacctgcaa gaatgttaag gatgttgcct gcttatcgcc
                                                                    2340
aaggtcaggt gctatatatg cttcaataat tgcgtgtggt gaacccaatg ggccaagtgt
                                                                    2400
gtataggaaa ccatcaggtg gtgtattcca atctagcact gatcggtcta tatactgctt
                                                                    2460
qctqqataqc cattqtctaq aaqaatttqa qqccatcqqc caqqaqqaqc tqqatqcqqt
                                                                    2520
aaagaaatcc aaatgttggg aaattgaata tcctgacgta aagctcatcc aagaaggcga
                                                                    2580
tgggactaaa agctgtagaa tgaaagattc tgggaactgc aatgttgcaa ctaacagatg
                                                                    2640
gccagtgata caatgtgaga atgacaaatt ttactactca gagcttcaaa aagattatga
                                                                    2700
caaagetcaa gatattggtc actattgett aageeetgga tgtactaetg teeggtaeee
                                                                    2760
tattaatcca aagcacatct ctaactgtaa ttggcaagta agcagatcta gcatagcgaa
                                                                    2820
                                                                    2880
gatagatgtg cacaatattg aggatattga gcaatataag aaagctataa ctcagaaact
tcaaacqagc ctatctctat tcaagtatqc aaaaacaaaa aacttqccqc acatcaaacc
                                                                    2940
                                                                    3000
aatttataaa tatataacta tagaaggaac agaaactgca gaaggtatag agagtgcata
cattqaatca qaaqtacctq cattqqctqq qacatctatc qqattcaaaa tcaattctaa
                                                                    3060
agagggcaag cacttgctag atgttatagc atatgtaaaa agtgcctcat actcttcagt
                                                                    3120
gtatacaaaa ttgtactcaa ctggcccaac atcagggata aatactaaac atgatgaatt
                                                                    3180
gtgtactggc ccatgcccag caaatatcaa tcatcaggtt gggtggctga catttgcaag
                                                                    3240
                                                                    3300
agagaggaca ageteatggg gatgegaaga gtttggttge etggetgtaa gtgatgggtg
tgtatttgga tcatgccaag atataataaa agaagaacta tctgtctata ggaaggagac
                                                                    3360
                                                                    3420
cgaggaagtg actgatgtag aactgtgttt gacattttca gacaaaacat actgtacaaa
cttaaaccct gttaccccta ttataacaga tctatttgag gtacagttca aaactgtaga
                                                                    3480
                                                                    3540
gacctacage ttgcctagaa ttgttgctgt gcaaaaccat gagattaaaa ttgggcaaat
aaatgattta ggagtttact ctaagggttg tgggaatgtt caaaaggtca atggaactat
                                                                    3600
ttatggcaat ggagttccca gatttgacta cttatgccat ttagctagca ggaaggaagt
                                                                    3660
cattgttaga aaatgcttcg acaatgatta ccaagcatgc aaatttcttc aaagccctgc
                                                                    3720
tagttacaga cttgaagaag acagtggcac tgtgaccata attgactaca aaaagatttt
                                                                    3780
aggaacaatc aagatgaagg caattttagg agatgtcaaa tataaaacat ttgctgatag
                                                                    3840
tgtcgatata accgcagaag ggtcatgcac cggctgtatt aactgcttcg aaaatatcca
                                                                    3900
ttgcqaatta acqttgcaca ccacaattga agccagctgc ccaattaaaa gctcgtgcac
                                                                    3960
agtatttcat gacaggattc ttgtgactcc aaatgaacac aaatatgcat tgaaaatggt
                                                                    4020
qtqcacaqaa aaqccaqqqa acacactcac aattaaaqtc tqcaatacta aaqttqaaqc
                                                                    4080
atctatggcc cttgtagacg caaagcctat catagaacta gcaccagttg atcagacagc
                                                                    4140
atatataaqa qaaaaaqatq aaaqqtqtaa aacttqqatq tqtaqqqtaa qaqatqaaqq
                                                                    4200
actgcaggtc atcttggagc catttaaaaa tttatttgga tcttatattg ggatatttta
                                                                    4260
cacatttatt atatctatag tagtattatt ggttattatc tatgtactac tacctatatg
                                                                    4320
ctttaaqtta aqqqataccc ttaqaaaqca tqaaqatqca tataaqaqaq aqatqaaaat
                                                                    4380
tagatagggg atctatgcag aacaaaattg agtcctgtat tatatacttc tatttgtagt
                                                                    4440
atagctgttg ttaagtgggg ggtggggaac taacaacagc gtaaatttat tttgcaaaca
                                                                    4500
ttattttata cttggtagca cactact
                                                                    4527
```

Tyr Gln Arg Cys Phe Gln Asp Gly Ala Ile Val Lys Gln Asn Pro Ser 20 25 30

Lys Glu Ala Val Thr Glu Val Cys Leu Lys Asp Asp Val Ser Met Ile 35 40 45

Lys Thr Glu Ala Arg Tyr Val Arg Asn Ala Thr Gly Val Phe Ser Asn 50 60

Asn Val Ala Ile Arg Lys Trp Leu Val Ser Asp Trp His Asp Cys Arg 65 70 75 80

Pro Lys Lys Ile Val Gly Gly His Ile Asn Val Ile Glu Val Gly Asp 85 90 95

Asp Leu Ser Leu His Thr Glu Ser Tyr Val Cys Ser Ala Asp Cys Thr 100 105 110

Ile Gly Val Asp Lys Glu Thr Ala Gln Val Arg Leu Gln Thr Asp Thr
115 120 125

Thr Asn His Phe Glu Ile Ala Gly Thr Thr Val Lys Ser Gly Trp Phe 130 135 140

Lys Ser Thr Thr Tyr Ile Thr Leu Asp Gln Thr Cys Glu His Leu Lys 145 150 155 160

Val Ser Cys Gly Pro Lys Ser Val Gln Phe His Ala Cys Phe Asn Gln 165 170 175

His Met Ser Cys Val Arg Phe Leu His Arg Thr Ile Leu Pro Gly Ser 180 185 190

Ile Ala Asn Ser Ile Cys Gln Asn Ile Glu Ile Ile Ile Leu Val Thr 195 200 205

Leu Thr Leu Leu Ile Phe Ile Leu Leu Ser Ile Leu Ser Lys Thr Tyr 210 215 220

Ile Cys Tyr Leu Leu Met Pro Ile Phe Ile Pro Ile Ala Tyr Ile Tyr 225 230 235 240

Gly Ile Ile Tyr Asn Lys Ser Cys Lys Lys Cys Lys Leu Cys Gly Leu 245 250 255

Val Tyr His Pro Phe Thr Glu Cys Gly Thr His Cys Val Cys Gly Ala 260 265 270

Arg Tyr Asp Thr Ser Asp Arg Met Lys Leu His Arg Ala Ser Gly Leu 275 280 285

Cys Pro Gly Tyr Lys Ser Leu Arg Ala Ala Arg 290 295

```
<211> 984
<212> DNA
<213> La Crosse virus
<400> 3
aqtaqtqtac cccacttqaa tactttqaaa ataaattqtt qttqactqtt ttttacctaa
ggggaaatta tcaagagtgt gatgtcggat ttggtgtttt atgatgtcgc atcaacaggt
gcaaatggat ttgatcctga tgcagggtat atggacttct gtgttaaaaa tgcagaatta
ctcaaccttg ctgcagttag gatcttcttc ctcaatgccg caaaggccaa ggctgctctc
tcgcgtaagc cagagaggaa ggctaaccct aaatttggag agtggcaggt ggaggttatc
aataatcatt ttcctggaaa caggaacaac ccaattggta acaacgatct taccatccac
agattatctg ggtatttagc cagatgggtc cttgatcagt ataacgagaa tgatgatgag
totcagcacg agttgatcag aacaactatt atcaacccaa ttgctgagtc taatggtgta
ggatgggaca gtgggccaga gatctatcta tcattctttc caggaacaga aatgtttttg
gaaactttca aattctaccc gctgaccatt ggaattcaca gagtcaagca aggcatgatg
gaccctcaat acctgaagaa ggccttaagg caacgctatg gcactctcac agcagataag
tggatgtcac agaaggttgc agcaattgct aagagcctga aggatgtaga gcagcttaaa
tggggaaaag gaggcctgag cgatactgct aaaacattcc tgcagaaatt tggcatcagg
cttccataaa tatggcatga ggcattcaaa ttaggttcta aattctaaat ttatatatgt
caatttgatt aattggttat ccaaaagggt tttcttaagg gaacccacaa aaatagcagc
atgtattcag tggggcacac tact
<210> 4
<211> 235
<212> PRT
<213> La Crosse virus
<400> 4
Met Ser Asp Leu Val Phe Tyr Asp Val Ala Ser Thr Gly Ala Asn Gly
               5
                                  10
Phe Asp Pro Asp Ala Gly Tyr Met Asp Phe Cys Val Lys Asn Ala Glu
Leu Leu Asn Leu Ala Ala Val Arg Ile Phe Phe Leu Asn Ala Ala Lys
                           40
Ala Lys Ala Ala Leu Ser Arg Lys Pro Glu Arg Lys Ala Asn Pro Lys
Phe Gly Glu Trp Gln Val Glu Val Ile Asn Asn His Phe Pro Gly Asn
                   70
Arg Asn Asn Pro Ile Gly Asn Asn Asp Leu Thr Ile His Arg Leu Ser
                                  90
Gly Tyr Leu Ala Arg Trp Val Leu Asp Gln Tyr Asn Glu Asn Asp Asp
           100
                               105
Glu Ser Gln His Glu Leu Ile Arg Thr Thr Ile Ile Asn Pro Ile Ala
                           120
```

Glu Ser Asn Gly Val Gly Trp Asp Ser Gly Pro Glu Ile Tyr Leu Ser

135

60

120

180

240

300

360

420

480

540

600 660

720

780

840

900

Phe Phe Pro Gly Thr Glu Met Phe Leu Glu Thr Phe Lys Phe Tyr Pro 145 150 155 160

Leu Thr Ile Gly Ile His Arg Val Lys Gln Gly Met Met Asp Pro Gln
165 170 175

Tyr Leu Lys Lys Ala Leu Arg Gln Arg Tyr Gly Thr Leu Thr Ala Asp 180 185 190

Lys Trp Met Ser Gln Lys Val Ala Ala Ile Ala Lys Ser Leu Lys Asp 195 200 205

Val Glu Gln Leu Lys Trp Gly Lys Gly Gly Leu Ser Asp Thr Ala Lys 210 215 220

Thr Phe Leu Gln Lys Phe Gly Ile Arg Leu Pro 225 230 235

<210> 5

<211> 6980

<212> DNA

<213> La Crosse virus

<400> 5

agtagtgtac ccctatctac aaaacttaca gaaaattcag tcatatcaca atatatgcat 60 aatggactat caagagtatc aacaattctt ggctaggatt aatactgcaa gggatgcatg 120 tgtagccaag gatatcgatg ttgacctatt aatggccaga catgattatt ttggtagaga 180 240 gctgtgcaag tccttaaata tagaatatag gaatgatgta ccatttgtag atataatttt ggatataagg cccgaagtag acccattaac catagatgca ccacatatta ccccagacaa 300 360 ttatctatat ataaataatg tgttatatat catagattat aaggtctctg tatcgaatga aagcagtgtt ataacatatg acaaatatta tgagttaact agggacatat ccgatagatt 420 480 aagtattoca atagaaatag ttatogtoog tatagacoot gtaagtaagg atttgcatat taactctgat agatttaaag aactttaccc tacaatagtg gtggatataa acttcaatca 540 atttttcgac ttaaaacaat tactctatga aaaattcggt gatgatgaag aattcctatt 600 gaaagttgca catggtgact tcactcttac agcaccctgg tgcaagactg ggtgccctga 660 attttqqaaa caccccattt ataaaqaatt taaaatqaqt atqccaqtac ctqaqcqqaq 720 780 gctctttgaa gaatctgtca agttcaatgc ttatgaatct gagagatgga atactaactt gqttaaaatc agagaatata caaagaaaga ctattcagag catatttcaa aatctqcaaa 840 900 aaatattttc ctqqctaqtq qattttataa qcaqccaaat aaqaatqaqa ttaqtqaqqq gtggacatta atggttgaga gggttcaaga tcagagagaa atctcaaaat ctctccatga 960 ccagaaacct agcatacatt ttatatgggg agcccataac ccaggaaata gtaataatgc 1020 aaccttcaaa ctcatattgc tttcaaagtc cttacaaagc ataaaaggta tatcaactta 1080 cacagaagcg ttcaaatctt taggaaaaat gatggatatt ggagataagg ctattgagta 1140 tgaagaattc tgcatgtccc taaaaagcaa agcaagatca tcatggaagc aaataatgaa 1200 caaaaaatta gagcctaaac aaataaacaa tgcccttgtt ttatgggaac agcagtttat 1260 ggtaaataat gacctgatag acaaaagtga gaagttgaaa ttattcaaaa atttctgcgg 1320 tataggcaaa cacaagcaat tcaagaataa aatgctagag gatctagaag tgtcaaagcc 1380 caaaatatta gactttgatg acgcaaatat gtatctagct agcctaacca tgatggaaca 1440 gagtaagaag atattgtcca aaagcaatgg gttgaagcca gataatttta tactgaatga 1500 atttggatcc aaaatcaaag atgctaataa agaaacatat gacaatatgc acaaaatatt 1560 tgagacaaga tattggcaat gtatatccga cttctctact ctgatgaaaa atatcttatc 1620 tgtgtcccaa tataacaggc acaacacatt taggatagct atgtgtgcta ataacaatgt 1680 ctttqctata qtatttcctt cqqctqacat aaaaactaaq aaaqcaactq taqtttataq 1740 cattatagtg ctgcataaag aggaagaaaa catattcaac ccaggatgtt tgcacggcac 1800 atttaagtgt atgaatgggt atatttccat atctagagct ataaggctag ataaagagag 1860 gtgccaqaga attgtttcct cacctggact gtttttaaca acttgcctac tattcaaaca 1920

```
1980
tgataatcca actctagtga tgagcgatat tatgaatttt tctatataca ctagcctgtc
tatcacaaaq aqtqttctat ctttaacaqa qccaqcacqc tacatqatta tqaactcatt
                                                                     2040
agctatctcc agcaatgtta aggactatat agcagagaaa ttttcccctt acacaaagac
                                                                     2100
actgttcagt gtctatatga ctagactaat taaaaatgct tgctttgatg cttatgacca
                                                                     2160
gagacagcgt gtccaactta gagatatata tttatctgat tatgacataa cccaaaaaagg
                                                                     2220
tattaaaqac aataqaqaqc taacaaqtat atqqttccct qqtaqtqtaa cattaaaqqa
                                                                     2280
gtatttaaca caaatatact taccatttta ttttaatgct aaaggactac atgagaagca
                                                                     2340
ccatgtcatg gtggatctag caaagactat attagaaata gagtgcgaac agagggaaaa
                                                                     2400
cataaaggag atatggtcta caaattgtac caaacagaca gtgaacctta aaattttgat
                                                                     2460
ccattccttg tgcaagaatt tactagcaga cacttcaaga cacaaccact tgcggaacag
                                                                     2520
aatagaaaat aggaacaatt ttagaaggtc tataacaact atttcaacat ttacaagttc
                                                                     2580
aaagtettge etcaaaatag gggaetttag aaaagagaaa gagetgeagt eagttaaaca
                                                                     2640
gaagaaaatc ttagaggtgc agagtcgcaa aatgagatta gcaaacccaa tgttcgtgac
                                                                     2700
agatgaacaa gtatgccttg aagttgggca ctgcaattat gagatgctga ggaatgctat
                                                                     2760
gccgaattat acagattata tatcaactaa agtatttgat aggttatatg agttattaga
                                                                     2820
                                                                     2880
taaaggagtt ttgacagaca agcctgttat agagcaaata atggatatga tggtcgacca
caaaaagttc tatttcacat ttttcaataa aggccagaaa acgtcaaaagg atagagagat
                                                                     2940
                                                                     3000
attogttgga gaatatgaag otaaaatgtg tatgtacgca gttgagagaa tagcaaaaga
                                                                     3060
aagatgtaaa ttaaatcctg atgaaatgat atctgagccg ggtgatggca agttgaaggt
gttggagcaa aaatcagaac aagaaattcg attcttggtc gagactacaa ggcaaaagaa
                                                                     3120
tcgtgaaatc gatgaggcaa ttgaagcatt agctgcagaa ggatatgaga gtaatctaga
                                                                     3180
aaaaattgaa aagctttcac ttggcaaagc aaagggccta aagatggaaa taaatgcaga
                                                                     3240
tatqtctaaa tqqaqtqctc aqqatqtttt ttataaatat ttctqqctca taqccttaqa
                                                                     3300
                                                                     3360
ccctatcctc tacccacagg aaaaagagag aatattatac tttatgtgca actacatgga
taaagaattg atactgccag atgaattatt attcaatttg ctggaccaaa aagttgcata
                                                                     3420
ccagaatgat ataatagcta ctatgactaa tcaattaaat tcaaatacag ttctgataaa
                                                                     3480
gagaaattgg ctccaaggga atttcaacta cacctcaagt tacgtccata gctgcgcaat
                                                                     3540
gtctgtgtat aaagaaatat taaaagaggc cataacatta ctagacgggt ctatattagt
                                                                     3600
caactcatta gtccattcgg atgataacca aacatcgata acaatagttc aggataagat
                                                                     3660
ggaaaatgat aaaattatag attttgcaat gaaagaattt gagagagcct gtttgacatt
                                                                     3720
tggatgccaa gcaaatatga aaaagacata tgtaacaaat tgcataaaag agtttgtttc
                                                                     3780
                                                                     3840
attatttaac ttgtacggcg aaccettttc aatatatggc agattcctat taacatctgt
gggtgattgt gcctatatag ggccttatga agatttagct agtcgaatat catcagccca
                                                                     3900
gacagccata aagcatggtt gtccacccag tctagcatgg gtgtccatag caataagtca
                                                                     3960
ttggatgacc tctctgacat acaacatgct accagggcag tcaaatgacc caattgatta
                                                                     4020
                                                                     4080
tttccctgca gaaaatagga aggatatccc tatagaattg aatggtgtat tagatgctcc
attqtcaatq attaqtacaq ttqqattqqa atctqqqaat ttatacttct tqataaaqtt
                                                                     4140
gttgagcaaa tataccccgg tcatgcagaa aagagagtca gtagtcaacc aaatagctga
                                                                     4200
agttaagaac tggaaggtcg aggatctaac agacaatgaa atatttagac ttaaaatact
                                                                     4260
                                                                     4320
cagatattta qttctaqatq cagaqatqqa ccctaqtqat attatqqqtq aqacaaqcqa
catqaqaqqq aqqtctattt tqacacctaq aaaattcaca acaqcaqqca qtttaaqqaa
                                                                     4380
attatattct ttcagtaagt accaggatag actgtcttcc cctggaggca tggttgaatt
                                                                     4440
                                                                     4500
gttcacttat ttgcttgaga aacctgagtt gttagtgact aaaggggaag atatgaaaga
ttatatggaa tctgtgatat tccgatataa ttccaaaagg ttcaaagaaa gtttgtcaat
                                                                     4560
acagaaccca gcacaattat ttatagaaca gatattgttc tcacataagc ccataataga
                                                                     4620
cttttctggt atcagggaca aatatataaa cctacatgat agtagagctc tagagaagga
                                                                     4680
                                                                     4740
acctgacata ttaggaaaag taacatttac agaggcttat agattattaa tgagggacct
                                                                     4800
gtctagccta gaactaacca atgatgacat tcaagtaatt tattcttaca taatacttaa
tgaccctatg atgataacta ttgcaaacac acatatattg tcaatatacg ggagtcctca
                                                                     4860
acggaggatg ggcatgtcct gttcaacgat gccagaattt agaaatttaa aattaataca
                                                                     4920
tcattcccca gccttagttt tgagagcata tagtaaaaat aatcctgaca tccagggtgc
                                                                     4980
tgatcccacg gaaatggcta gagatttagt tcatctgaaa gagtttgttg agaacacaaa
                                                                     5040
tttagaagaa aaaatgaaag ttaggattgc tataaatgaa gcagagaaag gacaacggga
                                                                     5100
tataqtcttt qaactaaaaq aqatqactaq attttatcaq qtttqctatq aqtatqtcaa
                                                                     5160
atctacagaa cacaagataa aagtcttcat tctcccgaca aaatcataca caacaacaga
                                                                     5220
tttctgttca ctcatgcagg ggaatttaat aaaagataaa gagtggtaca cagttcacta
                                                                     5280
cctaaaacaq atattqtctq qtqqccataa aqccataatq caqcataatq ccactaqtqa
                                                                     5340
```

```
gcaaaatatt gcttttgagt gtttcaaatt aattacccat tttgcagact cattcataga
                                                                     5400
ttcattatct aggtcagctt ttttgcagtt gataatagat gaattcagtt ataaagatgt
                                                                     5460
qaaqqttaqc aaactttatq acataataaa qaatqqqtat aatcqaactq acttcatacc
                                                                     5520
attgcttttt agaactggcg atttaagaca agctgactta gacaagtatg atgctatgaa
                                                                     5580
aagtcatgag agggttacat ggaatgattg gcaaacatct cgtcacttgg acatgggctc
                                                                     5640
aattaatcta acaataaccq qttacaataq atcaataaca ataatcqqaq aaqataacaa
                                                                     5700
attgacatat gcagaattat gtctgactag gaaaactcct gagaatataa ctataagtgg
                                                                     5760
cagaaaattg ctaggtgcaa ggcatggact taaatttgaa aatatgtcca aaatccaaac
                                                                     5820
atacccaggc aattattata taacatatag aaagaaagat cgccaccagt ttgtatacca
                                                                     5880
gatacattct catgaatcaa taacaaggag gaatgaagag catatggcta tcaggaccag
                                                                     5940
aatatacaat gaaataactc cagtatgtgt agttaacgtt gcagaggtgg atggggacca
                                                                     6000
acgtatattg ataagatctt tagactatct aaataatgat atattttctc tttcaaggat
                                                                     6060
taaagtcggg cttgacgaat ttgcaacaat aaaaaaagca cactttagta aaatggtctc
                                                                     6120
atttgaagga cccccaatta agacagggct cctcgacctt actgaattga tgaaatctca
                                                                     6180
agatttgctt aaccttaatt atgataatat aaggaatagc aacttgatat ctttttcaaa
                                                                     6240
attgatttgc tgtgaggggt cagataatat aaatgatggg ttagagtttc tgtccgatga
                                                                     6300
ccctatgaac tttacagagg gtgaagcaat acattcaaca ccgatcttta atatatatta
                                                                     6360
ctcaaaaaga ggagaaagac atatgacata caggaatgca attaaattac tgatagaaag
                                                                     6420
agaaactaag atttttgaag aagctttcac attcagtgag aatggcttca tatcgccaga
                                                                     6480
gaatcttggt tgcttagaag cagtagtatc attaataaaa ttgttgaaaa ctaatgagtg
                                                                     6540
gtccacagtt atagataaat gtattcatat atgtttaata aagaatggta tggatcacat
                                                                     6600
gtaccattca tttgatgtcc ctaaatgttt tatggggaat cctatcacta gagacatgaa
                                                                     6660
ttggatgatg tttagagaat tcatcaatag tttaccaggg acagatatac caccatggaa
                                                                     6720
                                                                     6780
tgtcatgaca gagaacttca aaaagaaatg tattgctctg ataaactcta agttagaaac
acagagagat ttctcagaat tcactaaact gatgaaaaag gaaggtggga ggagtaatat
                                                                     6840
agaatttgat tagtagttat gagtttacag agaacctaca attaggctat aaatttggga
                                                                     6900
gggttttgga aattggctaa aattcaaaaa gagggggatt aacagcaact gtataaattt
                                                                     6960
gtagataggg gcacactact
                                                                     6980
```

```
<210> 6
<211> 2263
<212> PRT
<213> La Crosse virus
<400> 6
Met Asp Tyr Gln Glu Tyr Gln Gln Phe Leu Ala Arg Ile Asn Thr Ala
Arg Asp Ala Cys Val Ala Lys Asp Ile Asp Val Asp Leu Leu Met Ala
Arg His Asp Tyr Phe Gly Arg Glu Leu Cys Lys Ser Leu Asn Ile Glu
Tyr Arg Asn Asp Val Pro Phe Val Asp Ile Ile Leu Asp Ile Arg Pro
Glu Val Asp Pro Leu Thr Ile Asp Ala Pro His Ile Thr Pro Asp Asn
65
                    70
                                                            80
Tyr Leu Tyr Ile Asn Asn Val Leu Tyr Ile Ile Asp Tyr Lys Val Ser
                                    90
Val Ser Asn Glu Ser Ser Val Ile Thr Tyr Asp Lys Tyr Tyr Glu Leu
```

105

110

Thr	Arg	Asp 115	Ile	Ser	Asp	Arg	Leu 120	Ser	Ile	Pro	Ile	Glu 125	Ile	Val	Ile
Val	Arg 130	Ile	Asp	Pro	Val	Ser 135	Lys	Asp	Leu	His	Ile 140	Asn	Ser	Asp	Arg
Phe 145	Lys	Glu	Leu	Tyr	Pro 150	Thr	Ile	Val	Val	Asp 155	Ile	Asn	Phe	Asn	Gln 160
Phe	Phe	Asp	Leu	Lys 165	Gln	Leu	Leu	Tyr	Glu 170	Lys	Phe	Gly	Asp	Asp 175	Glu
Glu	Phe	Leu	Leu 180	Lys	Val	Ala	His	Gly 185	Asp	Phe	Thr	Leu	Thr 190	Ala	Pro
Trp	Cys	Lys 195	Thr	Gly	Cys	Pro	Glu 200	Phe	Trp	Lys	His	Pro 205	Ile	Tyr	Lys
Glu	Phe 210	Lys	Met	Ser	Met	Pro 215	Val	Pro	Glu	Arg	Arg 220	Leu	Phe	Glu	Glu
Ser 225	Val	Lys	Phe	Asn	Ala 230	Tyr	Glu	Ser	Glu	Arg 235	Trp	Asn	Thr	Asn	Leu 240
Val	Lys	Ile	Arg	Glu 245	Tyr	Thr	Lys	Lys	Asp 250	Tyr	Ser	Glu	His	Ile 255	Ser
Lys	Ser	Ala	Lys 260	Asn	Ile	Phe	Leu	Ala 265	Ser	Gly	Phe	Tyr	Lys 270	Gln	Pro
Asn	Lys	Asn 275	Glu	Ile	Ser	Glu	Gly 280	Trp	Thr	Leu	Met	Val 285	Glu	Arg	Val
Gln	Asp 290	Gln	Arg	Glu	Ile	Ser 295	Lys	Ser	Leu	His	Asp 300	Gln	Lys	Pro	Ser
Ile 305	His	Phe	Ile	Trp	Gly 310	Ala	His	Asn	Pro	Gly 315	Asn	Ser	Asn	Asn	Ala 320
Thr	Phe	Lys	Leu	Ile 325	Leu	Leu	Ser	Lys	Ser 330	Leu	Gln	Ser	Ile	Lys 335	Gly
Ile	Ser	Thr	Tyr 340	Thr	Glu	Ala	Phe	Lys 345	Ser	Leu	Gly	Lys	Met 350	Met	Asp
Ile	Gly	Asp 355	Lys	Ala	Ile	Glu	Tyr 360	Glu	Glu	Phe	Cys	Met 365	Ser	Leu	Lys
Ser	Lys 370	Ala	Arg	Ser	Ser	Trp 375	Lys	Gln	Ile	Met	Asn 380	Lys	Lys	Leu	Glu
Pro 385	Lys	Gln	Ile	Asn	Asn 390	Ala	Leu	Val	Leu	Trp 395	Glu	Gln	Gln	Phe	Met 400
Val	Asn	Asn	Asp	Leu 405	Ile	Asp	Lys	Ser	Glu 410	Lys	Leu	Lys	Leu	Phe 415	Lys

Asn Phe Cys Gly Ile Gly Lys His Lys Gln Phe Lys Asn Lys Met Leu Glu Asp Leu Glu Val Ser Lys Pro Lys Ile Leu Asp Phe Asp Asp Ala Asn Met Tyr Leu Ala Ser Leu Thr Met Met Glu Gln Ser Lys Lys Ile Leu Ser Lys Ser Asn Gly Leu Lys Pro Asp Asn Phe Ile Leu Asn Glu Phe Gly Ser Lys Ile Lys Asp Ala Asn Lys Glu Thr Tyr Asp Asn Met His Lys Ile Phe Glu Thr Arg Tyr Trp Gln Cys Ile Ser Asp Phe Ser Thr Leu Met Lys Asn Ile Leu Ser Val Ser Gln Tyr Asn Arg His Asn Thr Phe Arg Ile Ala Met Cys Ala Asn Asn Asn Val Phe Ala Ile Val Phe Pro Ser Ala Asp Ile Lys Thr Lys Lys Ala Thr Val Val Tyr Ser Ile Ile Val Leu His Lys Glu Glu Glu Asn Ile Phe Asn Pro Gly Cys Leu His Gly Thr Phe Lys Cys Met Asn Gly Tyr Ile Ser Ile Ser Arg Ala Ile Arg Leu Asp Lys Glu Arg Cys Gln Arg Ile Val Ser Ser Pro Gly Leu Phe Leu Thr Thr Cys Leu Leu Phe Lys His Asp Asn Pro Thr Leu Val Met Ser Asp Ile Met Asn Phe Ser Ile Tyr Thr Ser Leu Ser Ile Thr Lys Ser Val Leu Ser Leu Thr Glu Pro Ala Arg Tyr Met Ile Met Asn Ser Leu Ala Ile Ser Ser Asn Val Lys Asp Tyr Ile Ala Glu Lys Phe Ser Pro Tyr Thr Lys Thr Leu Phe Ser Val Tyr Met Thr Arg Leu Ile Lys Asn Ala Cys Phe Asp Ala Tyr Asp Gln Arg Gln Arg Val

Gln Leu Arg Asp Ile Tyr Leu Ser Asp Tyr Asp Ile Thr Gln Lys Gly

- Ile Lys Asp Asn Arg Glu Leu Thr Ser Ile Trp Phe Pro Gly Ser Val 725 730 735
- Thr Leu Lys Glu Tyr Leu Thr Gln Ile Tyr Leu Pro Phe Tyr Phe Asn 740 745 750
- Ala Lys Gly Leu His Glu Lys His His Val Met Val Asp Leu Ala Lys 755 760 765
- Thr Ile Leu Glu Ile Glu Cys Glu Gln Arg Glu Asn Ile Lys Glu Ile
 770 780
- Trp Ser Thr Asn Cys Thr Lys Gln Thr Val Asn Leu Lys Ile Leu Ile 785 790 795 800
- His Ser Leu Cys Lys Asn Leu Leu Ala Asp Thr Ser Arg His Asn His 805 810 815
- Leu Arg Asn Arg Ile Glu Asn Arg Asn Asn Phe Arg Arg Ser Ile Thr 820 825 830
- Thr Ile Ser Thr Phe Thr Ser Ser Lys Ser Cys Leu Lys Ile Gly Asp 835 840 845
- Phe Arg Lys Glu Lys Glu Leu Gln Ser Val Lys Gln Lys Lys Ile Leu 850 855 860
- Glu Val Gln Ser Arg Lys Met Arg Leu Ala Asn Pro Met Phe Val Thr 865 870 875 880
- Asp Glu Gln Val Cys Leu Glu Val Gly His Cys Asn Tyr Glu Met Leu 885 890 895
- Arg Asn Ala Met Pro Asn Tyr Thr Asp Tyr Ile Ser Thr Lys Val Phe
 900 905 910
- Asp Arg Leu Tyr Glu Leu Leu Asp Lys Gly Val Leu Thr Asp Lys Pro 915 920 925
- Val Ile Glu Gln Ile Met Asp Met Met Val Asp His Lys Lys Phe Tyr 930 935 940
- Phe Thr Phe Phe Asn Lys Gly Gln Lys Thr Ser Lys Asp Arg Glu Ile 945 950 955 960
- Phe Val Gly Glu Tyr Glu Ala Lys Met Cys Met Tyr Ala Val Glu Arg 965 970 975
- Ile Ala Lys Glu Arg Cys Lys Leu Asn Pro Asp Glu Met Ile Ser Glu 980 985 990
- Pro Gly Asp Gly Lys Leu Lys Val Leu Glu Gln Lys Ser Glu Gln Glu 995 1000 1005
- Ile Arg Phe Leu Val Glu Thr Thr Arg Gln Lys Asn Arg Glu Ile 1010 1015 1020

Asp	Glu 1025	Ala	Ile	Glu	Ala	Leu 1030	Ala	Ala	Glu	Gly	Tyr 1035	Glu	Ser	Asn
Leu	Glu 1040	Lys	Ile	Glu	Lys	Leu 1045	Ser	Leu	Gly	Lys	Ala 1050	Lys	Gly	Leu
Lys	Met 1055	Glu	Ile	Asn	Ala	Asp 1060	Met	Ser	Lys	Trp	Ser 1065	Ala	Gln	Asp
Val	Phe 1070	Tyr	Lys	Tyr	Phe	Trp 1075	Leu	Ile	Ala	Leu	Asp 1080	Pro	Ile	Leu
Tyr	Pro 1085	Gln	Glu	Lys	Glu	Arg 1090	Ile	Leu	Tyr	Phe	Met 1095	Cys	Asn	Tyr
Met	Asp 1100	Lys	Glu	Leu	Ile	Leu 1105	Pro	Asp	Glu	Leu	Leu 1110	Phe	Asn	Leu
Leu	Asp 1115	Gln	Lys	Val	Ala	Tyr 1120	Gln	Asn	Asp	Ile	Ile 1125	Ala	Thr	Met
Thr	Asn 1130	Gln	Leu	Asn	Ser	Asn 1135	Thr	Val	Leu	Ile	Lys 1140	Arg	Asn	Trp
Leu	Gln 1145	Gly	Asn	Phe	Asn	Tyr 1150	Thr	Ser	Ser	Tyr	Val 1155	His	Ser	Cys
Ala	Met 1160	Ser	Val	Tyr	Lys	Glu 1165	Ile	Leu	Lys	Glu	Ala 1170	Ile	Thr	Leu
Leu	Asp 1175	Gly	Ser	Ile	Leu	Val 1180	Asn	Ser	Leu	Val	His 1185	Ser	Asp	Asp
Asn	Gln 1190	Thr	Ser	Ile	Thr	Ile 1195	Val	Gln	Asp	Lys	Met 1200	Glu	Asn	Asp
Lys	Ile 1205	Ile	Asp	Phe	Ala	Met 1210	Lys	Glu	Phe	Glu	Arg 1215	Ala	Cys	Leu
Thr	Phe 1220	Gly	Cys	Gln	Ala	Asn 1225	Met	Lys	Lys	Thr	Tyr 1230	Val	Thr	Asn
Cys	Ile 1235	Lys	Glu	Phe	Val	Ser 1240	Leu	Phe	Asn	Leu	Tyr 1245	Gly	Glu	Pro
Phe	Ser 1250	Ile	Tyr	Gly	Arg	Phe 1255	Leu	Leu	Thr	Ser	Val 1260	Gly	Asp	Cys
Ala	Tyr 1265	Ile	Gly	Pro	Tyr	Glu 1270	Asp	Leu	Ala	Ser	Arg 1275	Ile	Ser	Ser
Ala	Gln 1280	Thr	Ala	Ile	Lys	His 1285	Gly	Cys	Pro	Pro	Ser 1290	Leu	Ala	Trp
Val	Ser 1295	Ile	Ala	Ile	Ser	His 1300	Trp	Met	Thr	Ser	Leu 1305	Thr	Tyr	Asn

Met Leu 1310	Pro	Gly	Gln	Ser	Asn 1315	Asp	Pro	Ile	Asp	Tyr 1320	Phe	Pro	Ala
Glu Asn 1325	_	Lys	Asp	Ile	Pro 1330	Ile	Glu	Leu	Asn	Gly 1335	Val	Leu	Asp
Ala Pro 1340		Ser	Met	Ile	Ser 1345	Thr	Val	Gly	Leu	Glu 1350	Ser	Gly	Asn
Leu Tyr 1355		Leu	Ile	Lys	Leu 1360	Leu	Ser	Lys	Tyr	Thr 1365	Pro	Val	Met
Gln Lys 1370	_	Glu	Ser	Val	Val 1375	Asn	Gln	Ile	Ala	Glu 1380	Val	Lys	Asn
Trp Lys 1385		Glu	Asp	Leu	Thr 1390	Asp	Asn	Glu	Ile	Phe 1395	Arg	Leu	Lys
Ile Leu 1400	Arg	Tyr	Leu	Val	Leu 1405	Asp	Ala	Glu	Met	Asp 1410	Pro	Ser	Asp
Ile Met 1415	Gly	Glu	Thr	Ser	Asp 1420	Met	Arg	Gly	Arg	Ser 1425	Ile	Leu	Thr
Pro Arg 1430	_	Phe	Thr	Thr	Ala 1435	Gly	Ser	Leu	Arg	Lys 1440	Leu	Tyr	Ser
Phe Ser 1445	_	Tyr	Gln	Asp	Arg 1450	Leu	Ser	Ser	Pro	Gly 1455	Gly	Met	Val
Glu Leu 1460		Thr	Tyr	Leu	Leu 1465	Glu	Lys	Pro	Glu	Leu 1470	Leu	Val	Thr
Lys Gly 1475		Asp	Met	Lys	Asp 1480	Tyr	Met	Glu	Ser	Val 1485	Ile	Phe	Arg
Tyr Asn 1490	Ser	Lys	Arg	Phe	Lys 1495	Glu	Ser	Leu	Ser	Ile 1500	Gln	Asn	Pro
Ala Gln 1505		Phe	Ile	Glu	Gln 1510		Leu	Phe	Ser	His 1515	Lys	Pro	Ile
Ile Asp 1520		Ser	Gly	Ile	Arg 1525	Asp	Lys	Tyr	Ile	Asn 1530	Leu	His	Asp
Ser Arg 1535		Leu	Glu	Lys	Glu 1540	Pro	Asp	Ile	Leu	Gly 1545	Lys	Val	Thr
Phe Thr 1550		Ala	Tyr	Arg	Leu 1555	Leu	Met	Arg	Asp	Leu 1560	Ser	Ser	Leu
Glu Leu 1565	Thr	Asn	Asp	Asp	Ile 1570	Gln	Val	Ile	Tyr	Ser 1575	Tyr	Ile	Ile
Leu Asn 1580	Asp	Pro	Met	Met	Ile 1585	Thr	Ile	Ala	Asn	Thr 1590	His	Ile	Leu

Ser	Ile 1595	Tyr	Gly	Ser	Pro	Gln 1600	Arg	Arg	Met	Gly	Met 1605	Ser	Cys	Ser
Thr	Met 1610	Pro	Glu	Phe	Arg	Asn 1615	Leu	Lys	Leu	Ile	His 1620	His	Ser	Pro
Ala	Leu 1625	Val	Leu	Arg	Ala	Tyr 1630	Ser	Lys	Asn	Asn	Pro 1635	Asp	Ile	Gln
Gly	Ala 1640	_	Pro	Thr	Glu	Met 1645	Ala	Arg	Asp	Leu	Val 1650	His	Leu	Lys
Glu	Phe 1655	Val	Glu	Asn	Thr	Asn 1660	Leu	Glu	Glu	Lys	Met 1665	Lys	Val	Arg
Ile	Ala 1670	Ile	Asn	Glu	Ala	Glu 1675	Lys	Gly	Gln	Arg	Asp 1680	Ile	Val	Phe
Glu	Leu 1685	Lys	Glu	Met	Thr	Arg 1690	Phe	Tyr	Gln	Val	Cys 1695	Tyr	Glu	Tyr
Val	Lys 1700	Ser	Thr	Glu	His	Lys 1705	Ile	Lys	Val	Phe	Ile 1710	Leu	Pro	Thr
Lys	Ser 1715	Tyr	Thr	Thr	Thr	Asp 1720	Phe	Cys	Ser	Leu	Met 1725	Gln	Gly	Asn
Leu	Ile 1730	Lys	Asp	Lys	Glu	Trp 1735	Tyr	Thr	Val	His	Tyr 1740	Leu	Lys	Gln
Ile	Leu 1745	Ser	Gly	Gly	His	Lys 1750	Ala	Ile	Met	Gln	His 1755	Asn	Ala	Thr
Ser	Glu 1760	Gln	Asn	Ile	Ala	Phe 1765	Glu	Cys	Phe	Lys	Leu 1770	Ile	Thr	His
Phe	Ala 1775	Asp	Ser	Phe	Ile	Asp 1780	Ser	Leu	Ser	Arg	Ser 1785	Ala	Phe	Leu
Gln	Leu 1790	Ile	Ile	Asp	Glu	Phe 1795	Ser	Tyr	Lys	Asp	Val 1800	Lys	Val	Ser
Lys	Leu 1805	Tyr	Asp	Ile	Ile	Lys 1810	Asn	Gly	Tyr	Asn	Arg 1815	Thr	Asp	Phe
Ile	Pro 1820	Leu	Leu	Phe	Arg	Thr 1825	Gly	Asp	Leu	Arg	Gln 1830	Ala	Asp	Leu
Asp	Lys 1835	Tyr	Asp	Ala	Met	Lys 1840	Ser	His	Glu	Arg	Val 1845	Thr	Trp	Asn
Asp	Trp 1850	Gln	Thr	Ser	Arg	His 1855	Leu	Asp	Met	Gly	Ser 1860	Ile	Asn	Leu
Thr	Ile 1865	Thr	Gly	Tyr	Asn	Arg 1870	Ser	Ile	Thr	Ile	Ile 1875	Gly	Glu	Asp

Asn	Lys 1880	Leu	Thr	Tyr	Ala	Glu 1885	Leu	Cys	Leu	Thr	Arg 1890	Lys	Thr	Pro
Glu	Asn 1895	Ile	Thr	Ile	Ser	Gly 1900	Arg	Lys	Leu	Leu	Gly 1905	Ala	Arg	His
Gly	Leu 1910	Lys	Phe	Glu	Asn	Met 1915	Ser	Lys	Ile	Gln	Thr 1920	Tyr	Pro	Gly
Asn	Tyr 1925	Tyr	Ile	Thr	Tyr	Arg 1930	Lys	Lys	Asp	Arg	His 1935	Gln	Phe	Val
Tyr	Gln 1940	Ile	His	Ser	His	Glu 1945	Ser	Ile	Thr	Arg	Arg 1950	Asn	Glu	Glu
His	Met 1955	Ala	Ile	Arg	Thr	Arg 1960	Ile	Tyr	Asn	Glu	Ile 1965	Thr	Pro	Val
Cys	Val 1970	Val	Asn	Val	Ala	Glu 1975	Val	Asp	Gly	Asp	Gln 1980	Arg	Ile	Leu
Ile	Arg 1985	Ser	Leu	Asp	Tyr	Leu 1990	Asn	Asn	Asp	Ile	Phe 1995	Ser	Leu	Ser
Arg	Ile 2000	Lys	Val	Gly	Leu	Asp 2005	Glu	Phe	Ala	Thr	Ile 2010	Lys	Lys	Ala
His	Phe 2015	Ser	Lys	Met	Val	Ser 2020	Phe	Glu	Gly	Pro	Pro 2025	Ile	Lys	Thr
Gly	Leu 2030	Leu	Asp	Leu	Thr	Glu 2035	Leu	Met	Lys	Ser	Gln 2040	Asp	Leu	Leu
Asn	Leu 2045	Asn	Tyr	Asp	Asn	Ile 2050	Arg	Asn	Ser	Asn	Leu 2055	Ile	Ser	Phe
Ser	Lys 2060	Leu	Ile	Cys	Cys	Glu 2065	Gly	Ser	Asp	Asn	Ile 2070	Asn	Asp	Gly
Leu	Glu 2075	Phe	Leu	Ser	Asp	Asp 2080	Pro	Met	Asn	Phe	Thr 2085	Glu	Gly	Glu
Ala	Ile 2090	His	Ser	Thr	Pro	Ile 2095	Phe	Asn	Ile	Tyr	Tyr 2100	Ser	Lys	Arg
Gly	Glu 2105	Arg	His	Met	Thr	Tyr 2110	Arg	Asn	Ala	Ile	Lys 2115	Leu	Leu	Ile
Glu	Arg 2120	Glu	Thr	Lys	Ile	Phe 2125	Glu	Glu	Ala	Phe	Thr 2130	Phe	Ser	Glu
Asn	Gly 2135	Phe	Ile	Ser	Pro	Glu 2140	Asn	Leu	Gly	Cys	Leu 2145	Glu	Ala	Val
Val	Ser 2150	Leu	Ile	Lys	Leu	Leu 2155	Lys	Thr	Asn	Glu	Trp 2160	Ser	Thr	Val

```
Ile Asp Lys Cys Ile His Ile Cys Leu Ile Lys Asn Gly Met Asp
    2165
                        2170
                                             2175
His Met Tyr His Ser Phe Asp Val Pro Lys Cys Phe Met Gly Asn
    2180
                        2185
Pro Ile Thr Arg Asp Met Asn Trp Met Met Phe Arg Glu Phe Ile
                        2200
Asn Ser Leu Pro Gly Thr Asp Ile Pro Pro Trp Asn Val Met Thr
    2210
                        2215
Glu Asn Phe Lys Lys Cys Ile Ala Leu Ile Asn Ser Lys Leu
                        2230
Glu Thr Gln Arg Asp Phe Ser Glu Phe Thr Lys Leu Met Lys Lys
    2240
                        2245
Glu Gly Gly Arg Ser Asn Ile Glu Phe Asp
    2255
                        2260
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense primer derived from M segment of LACV genome
<400> 7
                                                                    25
cgatcaacaa tccaatgata acaag
<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Sense primer derived from M segment of LACV genome
<400> 8
                                                                    22
tggaaatggc atcgagaata aa
<210> 9
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from M segment of LACV genome
attatctcac ctgtatcttg aattatgctg taagctggg
                                                                    39
```

```
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Sense primer derived from S segment of LACV genome
<400> 10
gtctcagcac gagttgatca gaa
                                                                     23
<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense primer derived from S segment of LACV genome
<400> 11
                                                                     22
aatggtcagc gggtagaatt tg
<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 12
                                                                     25
tggtgtagga tgggacagtg ggcca
<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Sense primer derived from L segment of LACV genome
<400> 13
                                                                     21
aaagtcgggc ttgacgaatt t
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Antisense primer derived from L segment of LACV genome
```

<400> 14 cggacagaaa ctctaaccca tca													23				
<210 <211 <212 <213	-> :	15 25 DNA Artificial Sequence															
<220 <223		Probe	e dei	cive	d fro	om L	segr	ment	of I	LACV	geno	ome					
<400		15 tta a	agaca	aggg	ct co	ctcg											25
<211 <212	<pre> 210> 16 211> 25 212> DNA 2213> Artificial Sequence 220> 223> Synthetic oligonucleotide specific for LACV sequence </pre>																
		Syntl	netio	c ol:	igonı	ıcle	otide	e spe	ecif	ic fo	or LA	ACV s	seque	ence			
<400 cato		16 cat t	tcaaa	attaç	gg tt	cta											25
<pre>catgaggcat tcaaattagg ttcta <210> 17 <211> 174 <212> PRT <213> La Crosse virus</pre>																	
<400 Val 1		17 Cys	Lys	Ser 5	Lys	Gly	Pro	Ala	Ser 10	Ile	Leu	Ser	Ile	Ile 15	Thr		
Ala	Val	Leu	Val 20	Leu	Thr	Phe	Val	Thr 25	Pro	Ile	Asn	Ser	Met 30	Val	Leu		
Gly	Glu	Ser 35	Lys	Glu	Thr	Phe	Glu 40	Leu	Glu	Asp	Leu	Pro 45	Asp	Asp	Met		
Leu	Glu 50	Met	Ala	Ser	Arg	Ile 55	Asn	Ser	Tyr	Tyr	Leu 60	Thr	Cys	Ile	Leu		
Asn 65	Tyr	Ala	Val	Ser	Trp 70	Gly	Leu	Val	Ile	Ile 75	Gly	Leu	Leu	Ile	Gly 80		
Leu	Leu	Phe	Lys	Lys 85	Tyr	Gln	His	Arg	Phe 90	Leu	Asn	Val	Tyr	Ala 95	Met		
Tyr	Cys	Glu	Glu 100	Cys	Asp	Met	Tyr	His 105	Asp	Lys	Ser	Gly	Leu 110	Lys	Arg		
His	Gly	Asp 115	Phe	Thr	Asn	Lys	Cys 120	Arg	Gln	Cys	Thr	Cys 125	Gly	Gln	Tyr		

Glu Asp Ala Ala Gly Leu Met Ala His Arg Lys Thr Tyr Asn Cys Leu 130 135 140

Val Gln Tyr Lys Ala Lys Trp Met Met Asn Phe Leu Ile Ile Tyr Ile 145 150 155 160

Phe Leu Ile Leu Ile Lys Asp Ser Ala Ile Val Val Gl
n Ala 165 $$\rm 170$

<210> 18

<211> 968

<212> PRT

<213> La Crosse virus

<400> 18

Ala Gly Thr Asp Phe Thr Thr Cys Leu Glu Thr Glu Ser Ile Asn Trp 5 10 15

Asn Cys Thr Gly Pro Phe Leu Asn Leu Gly Asn Cys Gln Lys Gln Gln 20 25 30

Lys Lys Glu Pro Tyr Thr Asn Ile Ala Thr Gln Leu Lys Gly Leu Lys 35 40 45

Ala Ile Ser Val Leu Asp Val Pro Ile Ile Thr Gly Ile Pro Asp Asp 50 55 60

Ile Ala Gly Ala Leu Arg Tyr Ile Glu Glu Lys Glu Asp Phe His Val 65 70 75 80

Gln Leu Thr Ile Glu Tyr Ala Met Leu Ser Lys Tyr Cys Asp Tyr Tyr 85 90 95

Thr Gln Phe Ser Asp Asn Ser Gly Tyr Ser Gln Thr Thr Trp Arg Val 100 105 110

Tyr Leu Arg Ser His Asp Phe Glu Ala Cys Ile Leu Tyr Pro Asn Gln
115 120 125

His Phe Cys Arg Cys Val Lys Asn Gly Glu Lys Cys Ser Ser Ser Asn 130 135 140

Trp Asp Phe Ala Asn Glu Met Lys Asp Tyr Tyr Ser Gly Lys Gln Thr 145 150 155 160

Lys Phe Asp Lys Asp Leu Asn Leu Ala Leu Thr Ala Leu His His Ala 165 170 175

Phe Arg Gly Thr Ser Ser Ala Tyr Ile Ala Thr Met Leu Ser Lys Lys 180 185 190

Ser Asn Asp Asp Leu Ile Ala Tyr Thr Asn Lys Ile Lys Thr Lys Phe 195 200 205

Pro Gly Asn Ala Leu Leu Lys Ala Ile Ile Asp Tyr Ile Ala Tyr Met

Lys 225	Ser	Leu	Pro	Gly	Met 230	Ala	Asn	Phe	Lys	Tyr 235	Asp	Glu	Phe	Trp	Asp 240
Glu	Leu	Leu	Tyr	Lys 245	Pro	Asn	Pro	Ala	Lys 250	Ala	Ser	Asn	Leu	Ala 255	Arg
Gly	Lys	Glu	Ser 260	Ser	Tyr	Asn	Phe	Lys 265	Leu	Ala	Ile	Ser	Ser 270	Lys	Ser
Ile	Lys	Thr 275	Cys	Lys	Asn	Val	Lys 280	Asp	Val	Ala	Cys	Leu 285	Ser	Pro	Arg
Ser	Gly 290	Ala	Ile	Tyr	Ala	Ser 295	Ile	Ile	Ala	Cys	Gly 300	Glu	Pro	Asn	Gly
Pro 305	Ser	Val	Tyr	Arg	Lys 310	Pro	Ser	Gly	Gly	Val 315	Phe	Gln	Ser	Ser	Thr 320
Asp	Arg	Ser	Ile	Tyr 325	Cys	Leu	Leu	Asp	Ser 330	His	Cys	Leu	Glu	Glu 335	Phe
Glu	Ala	Ile	Gly 340	Gln	Glu	Glu	Leu	Asp 345	Ala	Val	Lys	Lys	Ser 350	Lys	Cys
Trp	Glu	Ile 355	Glu	Tyr	Pro	Asp	Val 360	Lys	Leu	Ile	Gln	Glu 365	Gly	Asp	Gly
Thr	Lys 370	Ser	Cys	Arg	Met	Lys 375	Asp	Ser	Gly	Asn	Cys 380	Asn	Val	Ala	Thr
Asn 385	Arg	Trp	Pro	Val	Ile 390	Gln	Cys	Glu	Asn	Asp 395	Lys	Phe	Tyr	Tyr	Ser 400
Glu	Leu	Gln	Lys	Asp 405	Tyr	Asp	Lys	Ala	Gln 410	Asp	Ile	Gly	His	Tyr 415	Cys
Leu	Ser	Pro	Gly 420	Cys	Thr	Thr	Val	Arg 425	Tyr	Pro	Ile	Asn	Pro 430	Lys	His
Ile	Ser	Asn 435	Cys	Asn	Trp	Gln	Val 440	Ser	Arg	Ser	Ser	Ile 445	Ala	Lys	Ile
Asp	Val 450	His	Asn	Ile	Glu	Asp 455	Ile	Glu	Gln	Tyr	Lys 460	Lys	Ala	Ile	Thr
Gln 465	Lys	Leu	Gln	Thr	Ser 470	Leu	Ser	Leu	Phe	Lys 475	Tyr	Ala	Lys	Thr	Lys 480
Asn	Leu	Pro	His	Ile 485	Lys	Pro	Ile	Tyr	Lys 490	Tyr	Ile	Thr	Ile	Glu 495	Gly
Thr	Glu	Thr	Ala 500	Glu	Gly	Ile	Glu	Ser 505	Ala	Tyr	Ile	Glu	Ser 510	Glu	Val
Pro	Ala	Leu	Ala	Gly	Thr	Ser	Ile	Gly	Phe	Lys	Ile	Asn	Ser	Lys	Glu

Gly	Lys 530	His	Leu	Leu	Asp	Val 535	Ile	Ala	Tyr	Val	Lys 540	Ser	Ala	Ser	Tyr
Ser 545	Ser	Val	Tyr	Thr	Lys 550	Leu	Tyr	Ser	Thr	Gly 555	Pro	Thr	Ser	Gly	Ile 560
Asn	Thr	Lys	His	Asp 565	Glu	Leu	Cys	Thr	Gly 570	Pro	Cys	Pro	Ala	Asn 575	Ile
Asn	His	Gln	Val 580	Gly	Trp	Leu	Thr	Phe 585	Ala	Arg	Glu	Arg	Thr 590	Ser	Ser
Trp	Gly	Cys 595	Glu	Glu	Phe	Gly	Cys 600	Leu	Ala	Val	Ser	Asp 605	Gly	Cys	Val
Phe	Gly 610	Ser	Cys	Gln	Asp	Ile 615	Ile	Lys	Glu	Glu	Leu 620	Ser	Val	Tyr	Arg
Lys 625	Glu	Thr	Glu	Glu	Val 630	Thr	Asp	Val	Glu	Leu 635	Cys	Leu	Thr	Phe	Ser 640
Asp	Lys	Thr	Tyr	Cys 645	Thr	Asn	Leu	Asn	Pro 650	Val	Thr	Pro	Ile	Ile 655	Thr
Asp	Leu	Phe	Glu 660	Val	Gln	Phe	Lys	Thr 665	Val	Glu	Thr	Tyr	Ser 670	Leu	Pro
Arg	Ile	Val 675	Ala	Val	Gln	Asn	His 680	Glu	Ile	Lys	Ile	Gly 685	Gln	Ile	Asn
Asp	Leu 690	Gly	Val	Tyr	Ser	Lys 695	Gly	Cys	Gly	Asn	Val 700	Gln	Lys	Val	Asn
Gly 705	Thr	Ile	Tyr	Gly	Asn 710	Gly	Val	Pro	Arg	Phe 715	Asp	Tyr	Leu	Cys	His 720
Leu	Ala	Ser	Arg	Lys 725	Glu	Val	Ile	Val	Arg 730	Lys	Cys	Phe	Asp	Asn 735	Asp
Tyr	Gln	Ala	Cys 740	Lys	Phe	Leu	Gln	Ser 745	Pro	Ala	Ser	Tyr	Arg 750	Leu	Glu
Glu	Asp	Ser 755	Gly	Thr	Val	Thr	Ile 760	Ile	Asp	Tyr	Lys	Lys 765	Ile	Leu	Gly
Thr	Ile 770	Lys	Met	Lys	Ala	Ile 775	Leu	Gly	Asp	Val	Lys 780	Tyr	Lys	Thr	Phe
Ala 785	Asp	Ser	Val	Asp	Ile 790	Thr	Ala	Glu	Gly	Ser 795	Cys	Thr	Gly	Cys	Ile 800
Asn	Cys	Phe	Glu	Asn 805	Ile	His	Cys	Glu	Leu 810	Thr	Leu	His	Thr	Thr 815	Ile
Glu	Ala	Ser	Cys	Pro	Ile	Lys	Ser	Ser	Cys	Thr	Val	Phe	His	Asp	Arg

820 825 830

Ile Leu Val Thr Pro Asn Glu His Lys Tyr Ala Leu Lys Met Val Cys 835 840 845

Thr Glu Lys Pro Gly Asn Thr Leu Thr Ile Lys Val Cys Asn Thr Lys 850 855 860

Val Glu Ala Ser Met Ala Leu Val Asp Ala Lys Pro Ile Ile Glu Leu 865 870 875 880

Ala Pro Val Asp Gln Thr Ala Tyr Ile Arg Glu Lys Asp Glu Arg Cys 885 890 895

Lys Thr Trp Met Cys Arg Val Arg Asp Glu Gly Leu Gln Val Ile Leu 900 905 910

Glu Pro Phe Lys Asn Leu Phe Gly Ser Tyr Ile Gly Ile Phe Tyr Thr 915 920 925

Phe Ile Ile Ser Ile Val Val Leu Leu Val Ile Ile Tyr Val Leu Leu 930 935 940

Pro Ile Cys Phe Lys Leu Arg Asp Thr Leu Arg Lys His Glu Asp Ala 945 950 955 960

Tyr Lys Arg Glu Met Lys Ile Arg 965

<210> 19

<211> 92

<212> PRT

<213> La Crosse virus

<400> 19

Met Met Ser His Gln Gln Val Gln Met Asp Leu Ile Leu Met Gln Gly 1 5 10 15

Ile Trp Thr Ser Val Leu Lys Met Gln Asn Tyr Ser Thr Leu Leu Gln 20 25 30

Leu Gly Ser Ser Ser Met Pro Gln Arg Pro Arg Leu Leu Ser Arg
35 40 45

Val Ser Gln Arg Gly Arg Leu Thr Leu Asn Leu Glu Ser Gly Arg Trp 50 55 60

Arg Leu Ser Ile Ile Ile Phe Leu Glu Thr Gly Thr Thr Gln Leu Val 65 70 75 80

Thr Thr Ile Leu Pro Ser Thr Asp Tyr Leu Gly Ile 85 90

<210> 20

<211> 25

<212> <213>	DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> ttgtaca	20 aagc tgctggaact gactt	25
<210><211><211><212><213>	21 22 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> tgtggtg	21 gccc gctatgatac tt	22
<212>	22 20 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> tgtggt	22 gccc gctatgatac	20
<211> <212>	23 21 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> ctgtggt	23 tgcc cgctatgata c	21
<210><211><211><212><213>	24 20 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> ctgtggt	24 tgcc cgctatgata	20

```
<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Forward primer derived from M segment of the LACV genome
<400> 25
tctgtggtgc ccgctatgat a
                                                                     21
<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 26
tctgtggtgc ccgctatgat
                                                                     20
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 27
gtgtctgtgg tgcccgctat
                                                                     20
<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
<400> 28
                                                                     23
agacagtggc actgtgacca taa
<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from M segment of the LACV genome
```

<400> agacag	29 tggc actgtgacca taat	24
<210><211><212><212><213>	30 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> aagaca	30 gtgg cactgtgacc ata	23
<210><211><212><212><213>	DNA	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> aagaca	31 gtgg cactgtgacc ataa	24
<210><211><212><212><213>	32 25 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> aagaca	32 gtgg cactgtgacc ataat	25
<210><211><211><212><213>	33 24 DNA Artificial Sequence	
<220> <223>	Forward primer derived from M segment of the LACV genome	
<400> gaagac	33 agtg gcactgtgac cata	24
<210><211><212><212><213>	34 25 DNA Artificial Sequence	

<220> <223>	Forward primer derived from M segment of the LACV genome		
<400> agaaga	34 cagt ggcactgtga ccata	25	
<210><211><212><213>	35 25 DNA Artificial Sequence		
<220> <223>	Probe derived from M segment of the LACV genome		
<400> ctgggc	35 catt tttgaacctc gggaa	25	
	36 24 DNA Artificial Sequence		
<220> <223>	Probe derived from M segment of the LACV genome		
<400> ctgggc	36 catt tttgaacctc ggga	24	
<210><211><212><212><213>	37 24 DNA Artificial Sequence		
<220> <223>	Probe derived from M segment of the LACV genome		
<400> 37 cactgggcca tttttgaacc tcgg 24			
<210><211><211><212><213>	38 23 DNA Artificial Sequence		
<220> <223>	Probe derived from M segment of the LACV genome		
<400> ctgggc	38 catt tttgaacctc ggg	23	
<210> <211>	39 25		

<212> <213>	DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400> tgaacct	39 cogg gaattgocaa aagca	25
	40	
<212>	DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400>	40 gggc catttttgaa cctcg	25
cycaccy	ggge cattetigaa ceteg	23
<210> <211> <212>		
<213>	Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400> actgggd	41 ccat ttttgaacct cggga	25
<210> <211>	42 24	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400> actgggd	42 ccat ttttgaacct cggg	24
<210> <211>	43 23	
<212> <213>	DNA Artificial Sequence	
<220>	Ducke denimed from M gormont of the TAGY gorner	
<223> <400>	Probe derived from M segment of the LACV genome 43	
	43 attt ttgaacctcg gga	23

```
<210> 44
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Probe derived from M segment of the LACV genome
<400> 44
tgggccattt ttgaacctcg ggaat
                                                                     25
<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from M segment of the LACV genome
<400> 45
cactgggcca tttttgaacc tcggg
                                                                     25
<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from M segment of the LACV genome
<400> 46
tgggccattt ttgaacctcg ggaa
                                                                     24
<210> 47
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from M segment of the LACV genome
<400> 47
                                                                     23
tgtgcaagtc gaaagggcct gca
<210> 48
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Probe derived from M segment of the LACV genome
```

<400> catgtg	48 caag togaaagggo otgo	24
	49 24 DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400> tcatgtq	49 gcaa gtcgaaaggg cctg	24
<210><211><211><212><213>	50 24 DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400> atgtgca	50 aagt cgaaagggcc tgca	24
<220>	51 25 DNA Artificial Sequence	
<223> <400> tcatgts	Probe derived from M segment of the LACV genome 51 gcaa gtcgaaaggg cctgc	25
<210><211><211><212><213>	52 24 DNA Artificial Sequence	
<220> <223>	Probe derived from M segment of the LACV genome	
<400> taaccgo	52 caga agggtcatgc accg	24
<210><211><212><212><213>	53 21 DNA Artificial Sequence	

<220> <223>	Probe derived from M segment of the LACV genome	
<400>	53	
	aagg gtcatgcacc g	21
<210>	54	
	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from M segment of the LACV genome	
<400>	54	
aaccgca	agaa gggtcatgca ccg	23
<210>	55	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
4.0.0		
<400>	55	25
acaacce	gcag aagggtcatg caccg	ر ک
	56	
<211>	22	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	56	
	gaag ggtcatgcac cg	22
-210-	57	
<210> <211>	57 23	
	DNA	
	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	57	
	ggtc atgcaccggc tgt	23
2 22		
-210-	50	
<210> <211>	58 21	

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from M segment of the LACV genome	
<400>	58	
	aggg tcatgcaccg g	21
- 55		
<210>	59	
	25	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from M segment of the LACV genome	
<400>	59	0.5
agtccc	ttta actgagttgc aatgt	25
<210>	60	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Reverse primer derived from M segment of the LACV genome	
\2257	Reverse primer derived from M beginere of the linev genome	
<400>	60	
aaggtt	aaga ccagtaccgc agtaa	25
<210>	61	
<211>	22	
	DNA	
	Artificial Sequence	
<220>		
<223>	Reverse primer derived from M segment of the LACV genome	
<400>	61	
	aacg ttaattcgca at	22
010		
<210>	62 22	
<211> <212>	DNA	
	Artificial Sequence	
~Z±J/	ALCILICIAI DOQUENCE	
<220>		
<223>	Reverse primer derived from M segment of the LACV genome	
4.0.0		
	62 gtgc aacgttaatt cg	22
LyLyyL	gege aacgeeaace og	22

```
<210> 63
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Reverse primer derived from M segment of the LACV genome
<400> 63
tcaattgtgg tgtgcaacgt ta
                                                                     22
<210> 64
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from M segment of the LACV genome
<400> 64
tcaattgtgg tgtgcaacgt taa
                                                                     23
<210> 65
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from M segment of the LACV genome
<400> 65
tcaattgtgg tgtgcaacgt t
                                                                     21
<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from M segment of the LACV genome
<400> 66
                                                                     24
tcaattgtgg tgtgcaacgt taat
<210> 67
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
```

<400> tctcago	67 cacg agttgatcag aac	23
<210><211><212><213>	68 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> ctcagca	68 acga gttgatcaga aca	23
<210><211><211><212><213>	69 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> tcagcad	69 Egag ttgatcagaa caa	23
<210><211><211><212><213>	70 22 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> tctacco	70 eget gaccattgga at	22
<210><211><211><212><213>	71 24 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> gagtgtg	71 gatg toggatttgg tgtt	24
<210><211><212><212><213>	72 24 DNA Artificial Sequence	

<220>	_ ,			_		_		_				
<223>	Forward	primer	derived	from	the	S	segment	οf	the	LACV	genome	
<400>	72											
agtctca	igca cgag	gttgatc	agaa									24
<210>	73											
<211>	24											
<212>												
<213>	Artifici	.al Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
4.00	72											
<400>	73 jcac gagt	taataa	aaaa									24
gucucas	cac gagi	.cgacca	gaac									24
<210>	74											
<211>	24											
	DNA	-										
<213>	Artifici	al Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400>	74											
	,. acg agtt	atcad	aaca									24
cccago	acy age	gaccag	aaca									2 1
<210>	75											
<211>	24											
	DNA											
<213>	Artifici	al Sequ	ience									
<220>												
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400>	75											
	.cga gttg	ratcaga	acaa									24
		,										
-210-	76											
<210> <211>	76 22											
<211>	DNA											
	Artifici	al Com	ience									
<21J>	ALCILICI	ar begu	rence									
<220>												
<223>	Forward	primer	derived	from	the	S	segment	of	the	LACV	genome	
<400>	76											
	76 :gag ttga	itcagaa	са									22
2245040	Jag cogo		34									22
0.1.0												
<210>	77											
<211>	21											

<212> <213>	DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> tctacco	77 Eget gaccattgga a	21
<210><211><212><213>	78 22 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400>	78 ctga ccattggaat tc	22
J		
<210><211><212><213>	79 24 DNA Artificial Sequence	
<220>		
	Forward primer derived from the S segment of the LACV genome	
<400> caagagt	79 tgtg atgtcggatt tggt	24
<210><211><211><212><213>	80 23 DNA Artificial Sequence	
<220>		
<223>	Forward primer derived from the S segment of the LACV genome	
<400> aagagto	80 gtga tgtcggattt ggt	23
<210><211><211><212><213>	81 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400>	81 gcag ggtatatgga ctt	23

```
<210> 82
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Forward primer derived from the S segment of the LACV genome
<400> 82
tgcagggtat atggacttct gtgt
                                                                     24
<210> 83
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 83
gatgagtctc agcacgagtt gatc
                                                                     24
<210> 84
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 84
gagtctcagc acgagttgat cagaa
                                                                     25
<210> 85
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
<400> 85
                                                                     25
agtctcagca cgagttgatc agaac
<210> 86
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from the S segment of the LACV genome
```

<400> tctacco	86 Eget gaccattgga	20
	87 21 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> ctacccq	87 gctg accattggaa t	21
<210><211><211><212><213>	88 21 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> cgctgad	88 ccat tggaattcac a	21
	89 24 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> cctgate	89 gcag ggtatatgga cttc	24
<210><211><212><212><213>	90 25 DNA Artificial Sequence	
<220> <223>	Forward primer derived from the S segment of the LACV genome	
<400> atgcago	90 ggta tatggacttc tgtgt	25
<210><211><212><212><213>	91 25 DNA Artificial Sequence	

<220> <223>	Probe derived from S segment of LACV genome	
<400>	91	
	aggc atgatggacc ctcaa	25
<210>	92	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	92	25
tcaagca	aagg catgatggac cctca	23
<210>	93	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	93	
	atca acaggtgcaa atgga	25
cgccgcc	recu usuggegedd deggd	25
<210>	94	
<211>	21	
<212> <213>	DNA Artificial Sequence	
\213/	Micrisoral bedacines	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	94	
	cgca aaggecaagg c	21
_		
<210>	95	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220> <223>	Probe derived from S segment of LACV genome	
~~~ <i>&gt;</i>	TIODE GETTVEG TIOM D BEGINETE OF DACV GETTOME	
<400>	95	
atgccg	caaa ggccaaggct gct	23
<210>	96	
<211>	22	

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
	96	0.0
ccgcaaa	aggc caaggctgct ct	22
<210>	0.7	
	97	
<211> <212>	24	
	Artificial Sequence	
(21)/	Artificial bequence	
<220>		
	Probe derived from S segment of LACV genome	
12207	11000 dollyod liem b bogmond of liter gonome	
<400>	97	
	agge caaggetget etet	24
5		
<210>	98	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	98	
atgccgc	caaa ggccaaggct g	21
010		
	99	
	21 DNA	
	Artificial Sequence	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
12257	11000 delived 110m b beginere of linev genome	
<400>	99	
	aaag gccaaggctg c	21
- 5 5		
<210>	100	
	23	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	100	
caatgco	gga aaggccaagg ctg	23

```
<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 101
aggccaaggc tgctctctcg cgta
                                                                     24
<210> 102
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 102
                                                                     23
cgcaaaggcc aaggctgctc tct
<210> 103
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 103
ccaaggctgc tctctcgcgt aagc
                                                                     24
<210> 104
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 104
                                                                     24
caaaggccaa ggctgctctc tcgc
<210> 105
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
```

<400> aggccaa	105 aggc tgctctctcg cg	22
	106 25 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> aaaggco	106 caag gctgctctct cgcgt	25
<210><211><212><212><213>	107 23 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> cttcct	107 caat gccgcaaagg cca	23
<210><211><212><212><213>	108 23 DNA Artificial Sequence	
<223>	Probe derived from S segment of LACV genome	
<400> tcttcct	108 tcaa tgccgcaaag gcc	23
<210><211><212><212><213>	109 24 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> aaggcca	109 aagg ctgctctctc gcgt	24
<210><211><212><212><213>	110 24 DNA Artificial Sequence	

<220> <223>	Probe derived from S segment of LACV genome	
<400>	110	
	caa tgccgcaaag gcca	24
<210>	111	
	25	
<212>		
	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<223 <i>&gt;</i>	Flobe delived from 5 segment of DACV genome	
	111	
tcttctt	cct caatgeegea aagge	25
<210>	112	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
	112	
tcaatgo	ccgc aaaggccaag gc	22
<210>	113	
<211>	25	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
4.0.0	112	
<400>	113 Etca atgeegeaaa ggeea	25
	acyccycaaa gycca	ر ک
<210>	114	
<211>	23	
	DNA	
<213>	Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	114	22
ccccaat	gcc gcaaaggcca agg	23
<210>	115	
<211>	25	

<212> <213>	DNA Artificial Sequence	
<220>		
	Probe derived from S segment of LACV genome	
<400>	115	
cttcct	caat gccgcaaagg ccaag	25
<210>	116	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	116	0.4
ttcttc	etca atgeegeaaa ggee	24
<210>	117	
	23	
<212>		
	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	117	
ctcaat	geeg caaaggeeaa gge	23
	118	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	118	2.2
ttcctca	aatg ccgcaaaggc caa	23
<210>	119	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	119	
tcctcaa	atgc cgcaaaggcc aag	23

```
<210> 120
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Probe derived from S segment of LACV genome
<400> 120
tcctcaatgc cgcaaaggcc a
                                                                     21
<210> 121
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 121
tcaatgccgc aaaggccaag gct
                                                                     23
<210> 122
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 122
caatgccgca aaggccaagg ct
                                                                     22
<210> 123
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 123
                                                                     25
cttcttcctc aatgccgcaa aggcc
<210> 124
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Probe derived from S segment of LACV genome
```

<400> ctcaato	124 gccg caaaggccaa gg	22
	125 22 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> aatgcc	125 gcaa aggccaaggc tg	22
<210><211><211><212><213>	126 22 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> atgccg	126 caaa ggccaaggct gc	22
<210><211><211><212><213>	127 20 DNA Artificial Sequence	
<223>	Probe derived from S segment of LACV genome	
<400> tgccgca	127 aaag gccaaggctg	20
<210><211><212><213>	128 24 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> ctcaato	128 gccg caaaggccaa ggct	24
<210><211><212><212><213>	129 22 DNA Artificial Sequence	

<220> <223>	Probe derived from S segment of LACV genome	
<400>	129	
	gcc gcaaaggcca ag	22
.010.	120	
	130 24	
<211>		
	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
4.0.0	100	
	130	24
CLLCCLC	caat gccgcaaagg ccaa	24
<210>	131	
<211>	25	
<212>		
<213>	Artificial Sequence	
000		
<220>	Probe derived from S segment of LACV genome	
<223 <i>&gt;</i>	Flobe delived from 5 segment of DACV genome	
<400>	131	
	caa tgccgcaaag gccaa	25
010	100	
	132 22	
	DNA	
	Artificial Sequence	
12107		
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>		22
LCCLCaa	tgc cgcaaaggcc aa	22
<210>	133	
<211>	22	
	DNA	
<213>	Artificial Sequence	
-220-		
<220> <223>	Probe derived from S segment of LACV genome	
~~~/	Trope derived from a pegment of pack genome	
<400>	133	
ttcctca	atg ccgcaaaggc ca	22
.010	124	
<210> <211>	134 24	
<211>	24	

	DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
	134 aatg ccgcaaaggc caag	24
<210>	135	
<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
4.00	125	
	135 agge tgeteteteg egt	23
aggood		
010	126	
<210> <211>		
<212>		
	Artificial Sequence	
000		
<220>	Probe derived from S segment of LACV genome	
12257	Tibbe delived from b beginning of linev genome	
	136	
caaggct	tgct ctctcgcgta agcca	25
	137	
<211> <212>	25 DNA	
	Artificial Sequence	
	-	
<220>	Drobe derived from C germont of IACV genera	
<223>	Probe derived from S segment of LACV genome	
<400>	137	
ccaaggo	ctgc tctctcgcgt aagcc	25
<210>	138	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe derived from S segment of LACV genome	
<400>	138	
	aggo tgotototog ogtaa	25

```
<210> 139
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 139
ccgcaaaggc caaggctgct c
                                                                     21
<210> 140
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 140
                                                                     25
aaggetgete tetegegtaa geeag
<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 141
aaggetgete tetegegtaa geea
                                                                     24
<210> 142
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
<400> 142
                                                                     24
caaggctgct ctctcgcgta agcc
<210> 143
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe derived from S segment of LACV genome
```

<400> cgcaaa	143 ggcc aaggctgctc tc	22
	144 23 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> ccgcaaa	144 aggc caaggctgct ctc	23
<210><211><212><212><213>	145 25 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> aaggcca	145 aagg ctgctctctc gcgta	25
<220>	146 23 DNA Artificial Sequence	
<223> <400> aaggcca	Probe derived from S segment of LACV genome 146 aagg ctgctctctc gcg	23
<210><211><212><213>	147 24 DNA Artificial Sequence	
<220> <223>	Probe derived from S segment of LACV genome	
<400> cgcaaa	147 ggcc aaggctgctc tctc	24
<210><211><212><213>	148 24 DNA Artificial Sequence	

```
<220>
<223> Probe derived from S segment of LACV genome
<400> 148
                                                                     24
aaaggccaag gctgctctct cgcg
<210> 149
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 149
caatggtcag cgggtagaat tt
                                                                     22
<210> 150
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 150
ccaatggtca gcgggtagaa tt
                                                                     22
<210> 151
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 151
                                                                     22
tccaatggtc agcgggtaga at
<210> 152
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 152
                                                                     23
tccttcaggc tcttagcaat tgc
<210> 153
<211> 22
```

	DNA Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	153	
ctttgcg	ggca ttgaggaaga ag	22
<210>	154	
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	154	
	agcg ggtagaattt ga	22
<210>	155	
	155 21	
<212>		
	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	155	
	gtca gcgggtagaa t	21
<210>	156	
<211>	21	
<212>		
	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	156	
	ggtc agcgggtaga a	21
-210-	157	
<210> <211>	157 20	
	DNA	
	Artificial Sequence	
<220>		
<223>	Reverse primer derived from S segment of LACV genome	
<400>	157	
	ggtc agcgggtaga	20
	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

```
<210> 158
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Reverse primer derived from S segment of LACV genome
<400> 158
catccttcag gctcttagca attg
                                                                     24
<210> 159
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 159
                                                                     21
tgcggcattg aggaagaaga t
<210> 160
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 160
                                                                     20
ttgcggcatt gaggaagaag
<210> 161
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 161
                                                                     21
ctttgcggca ttgaggaaga a
<210> 162
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Reverse primer derived from S segment of LACV genome
```

<400> gccact	162 ctcc aaatttaggg ttag	24
	163 23 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> cacctg	163 ccac tctccaaatt tag	23
<210><211><212><212><213>	164 23 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> tcagcg	164 ggta gaatttgaaa gtt	23
	165 22 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> tggtca	165 gcgg gtagaatttg aa	22
<210><211><212><213>	166 23 DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> atggtc	166 agcg ggtagaattt gaa	23
<210><211><212><213>	167 23 DNA Artificial Sequence	

```
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 167
                                                                     23
aatggtcagc gggtagaatt tga
<210> 168
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 168
                                                                     23
caatggtcag cgggtagaat ttg
<210> 169
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 169
                                                                     20
ccaatggtca gcgggtagaa
<210> 170
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 170
atccttcagg ctcttagcaa ttgc
                                                                     24
<210> 171
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from S segment of LACV genome
<400> 171
                                                                     24
tctacatcct tcaggctctt agca
<210> 172
<211> 23
```

<212> <213>	DNA Artificial Sequence	
<220> <223>	Reverse primer derived from S segment of LACV genome	
<400> acctgc	172 cact ctccaaattt agg	23
<211> <212>	173 22 DNA Artificial Sequence	
<220> <223>	Forward primer derived from L segment of LACV genome	
<400> taaagto	173 cggg cttgacgaat tt	22
<211> <212>	174 22 DNA Artificial Sequence	
<220> <223>	Forward primer derived from L segment of LACV genome	
<400> ttaaagt	174 togg gottgaogaa tt	22
<211> <212>	175 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from L segment of LACV genome	
<400> ttaaagt	175 tegg gettgaegaa ttt	23
<210><211><211><212><213>	176 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from L segment of LACV genome	
<400> attaaag	176 gtcg ggcttgacga att	23

```
<210> 177
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from L segment of LACV genome
<400> 177
attaaagtcg ggcttgacga attt
                                                                     24
<210> 178
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from L segment of LACV genome
<400> 178
                                                                     22
gattaaagtc gggcttgacg aa
<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from L segment of LACV genome
<400> 179
gattaaagtc gggcttgacg aat
                                                                     23
<210> 180
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from L segment of LACV genome
<400> 180
                                                                     24
gattaaagtc gggcttgacg aatt
<210> 181
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Forward primer derived from L segment of LACV genome
```

<400> gattaaa	181 agtc gggcttgacg aattt	25
<210><211><211><212><213>	182 22 DNA Artificial Sequence	
<220> <223>	Forward primer derived from L segment of LACV genome	
<400> caaggat	182 ctaa agtogggott ga	22
<210><211><211><212><213>	183 23 DNA Artificial Sequence	
<220> <223>	Forward primer derived from L segment of LACV genome	
<400> caaggat	183 ctaa agtogggott gao	23
<210><211><211><212><213>	184 23 DNA Artificial Sequence	
<223>	Forward primer derived from L segment of LACV genome	
<400> tcaagga	184 atta aagtogggot tga	23
<210><211><211><212><213>	185 24 DNA Artificial Sequence	
<220> <223>	Forward primer derived from L segment of LACV genome	
<400> tcaagga	185 atta aagtcgggct tgac	24
<210><211><212><212><213>	186 24 DNA Artificial Sequence	

```
<220>
<223> Forward primer derived from L segment of LACV genome
<400> 186
                                                                     24
ttcaaggatt aaagtcgggc ttga
<210> 187
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from L segment of LACV genome
<400> 187
cggacagaaa ctctaaccca tcat
                                                                     24
<210> 188
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from L segment of LACV genome
<400> 188
cggacagaaa ctctaaccca tcatt
                                                                     25
<210> 189
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from L segment of LACV genome
<400> 189
tcggacagaa actctaaccc atca
                                                                     24
<210> 190
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from L segment of LACV genome
<400> 190
                                                                     25
tcggacagaa actctaaccc atcat
<210> 191
<211> 25
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Reverse primer derived from L segment of LACV genome
<400> 191
```

atcggacaga aactctaacc catca

25