STA2001 Probability and Statistics (I)

Lecture 9

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Review

Exponential distribution with parameter $\theta = \frac{1}{\lambda}$: X, the waiting time until the first occurrence in an approximate Poisson process with parameter $\lambda > 0$ and its pdf takes the form of

$$first occur$$

$$f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, \quad x \ge 0, \theta > 0$$

Mean and Variance:

$$E[X] = \theta, Var[X] = \theta^2$$

Mgf:

$$M(t) = \frac{1}{1-t\theta}, \quad t < \frac{1}{\theta}$$

Review

Definition

X, the waiting time until the α th occurrence, and its pdf takes the form of

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\theta}}, \quad x \ge 0,$$

where $\theta > 0$ and $\alpha > 0$ are the two parameters,

$$\Gamma(t) = \int_0^\infty y^{t-1} e^{-y} dy, \quad t > 0$$

$$\Gamma(t) = (t-1)\Gamma(t-1), \qquad \Gamma(n) = (n-1)!$$

- $\alpha = 1$, exponential distribution. $\alpha = 1$ exponential distribution.
- $\theta = 2$, $\alpha = \frac{r}{2}$, r is an integer, chi square distribution (r is called the degrees of freedom). A = 2, A = 2

Review

Be able to calculate probabilities of events by looking up tables.

The tables of cdf of chi-square distribution are given

$$F(x) = P(X \le x) = \int_0^x f(t)dt.$$

3.3 Normal Distribution

Description

When observed over a large population, many things of interests have a "bell-shaped" relative frequency distribution.

- Weight of male students in CUHKsz
- Height
- TOFEL,IELTS test score

Normal Distribution

Definition

A continuous RV X is said to be normal or Gaussian if it has

a pdf of the form
$$\int_{(x)} = \frac{1}{\sqrt{2\pi}6^2} e^{\frac{-(x-y)^2}{26^2}}$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}), \quad -\infty < x < \infty$$

where μ and σ^2 are two parameters characterizing the normal distribution. Briefly, $X \sim N(\mu, \sigma^2)$

pdf of Normal Distribution

f(x) is a well-defined pdf

1.
$$f(x) > 0$$
 for all x . $f(x) > 0$ for all x .

2. $\int_{-\infty}^{\infty} f(x) dx = 1$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

We will prove $\int_{-\infty}^{\infty} f(x)dx = 1$ shortly, if time permits. $\frac{dx}{dx} = \frac{dx}{6}$

$$I = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}6^{2}} \exp\left(-\frac{1}{2} \frac{(x-u)^{2}}{6^{2}}\right) dx = 1$$

Assume
$$X \sim N(\mu, \sigma^2)$$

$$I^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{\lambda^2}{2}} d\lambda \int_{-\infty}^{\infty} e^{-\frac{\lambda^2}{2}} d\lambda$$

$$M(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} dx$$

$$e^{tx} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} = \exp\left\{-\frac{1}{2\sigma^2}[x^2 - 2(\mu + \sigma^2 t)x + \mu^2]\right\} \left[\chi - (\mu + \delta^2 t)\right]^2$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\lambda^2}{2}t\gamma^2} dy d\lambda$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\lambda^2}{2}t\gamma^2} dy d\lambda$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\lambda^2}{2}t\gamma^2} dy d\lambda$$

Consider

$$x^{2} - 2(\mu + \sigma^{2}t)x + \mu^{2} = [x - (\mu + \sigma^{2}t)]^{2} - 2\mu\sigma^{2}t - \sigma^{4}t^{2}$$

$$M(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} \left[x - (\mu + \sigma^2 t)\right]^2\right) dx$$
$$\cdot \exp\left(\frac{-2\mu\sigma^2 t - \sigma^4 t^2}{-2\sigma^2}\right)$$

Recall that

$$I = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx = 1$$
, independent of μ

Therefore,

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} [x - (\mu + \sigma t)]^2\right) dx = 1$$

$$M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

$$M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right) \implies M(0) = 1;$$

$$M'(t) = (\mu + \sigma^2 t) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right) \implies M'(0) = \mu$$

$$M''(t) = \sigma^2 \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right) + (\mu + \sigma^2 t)^2 \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

$$\implies M''(0) = \mu^2 + \sigma^2$$

Recall that

$$E[X] = M'(0) = \mu$$

$$Var[X] = E[X^2] - (E[X])^2$$

$$=M''(0)-M'(0)^2=\sigma^2$$

For $X \sim N(\mu, \sigma^2)$,

$$E[X] = \mu, \quad Var[X] = \sigma^2$$

The two parameters μ, σ^2 are the mean and variance, respectively.

A RV X has its pdf in the form of

$$f(x) = \frac{1}{\sqrt{32\pi}} \exp\left[-\frac{(x+7)^2}{32}\right], -\infty < x < \infty$$

A RV X has its pdf in the form of

$$f(x) = \frac{1}{\sqrt{32\pi}} \exp\left[-\frac{(x+7)^2}{32}\right], -\infty < x < \infty$$

$$\Leftrightarrow$$
 $X \sim N(-7, 16)$

$$\Leftrightarrow X \sim N(-7, 16)$$

$$X \sim N(-7, 16)$$

$$U = -7 \quad G^2 = 16$$

$$\Leftrightarrow E(X) = -7, Var(X) = 16$$

$$\Leftrightarrow M(t) = \exp(-7t + 8t^2).$$

$$M(t) = \exp(ut + \frac{6^2}{2}t^2)$$

Standard Normal Distribution

Y is said to be a standard normal distribution if

$$Y \sim N(0,1) \Leftrightarrow \text{ its pdf } f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$

$$Y \sim N(0,1) \Leftrightarrow \text{pdf } f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$
Its cdf

$$\Phi(y) = P(Y \le y) = \int_{-\infty}^{y} f(z) dz = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

Due to the symmetry of f(y), $\Phi(-y) = 1 - \Phi(y)$, for any y

pdf of N(0,1)

$$Y \sim N(0,1) \Leftrightarrow ext{ its pdf } f(y) = rac{1}{\sqrt{2\pi}} e^{-rac{y^2}{2}}$$

Due to the symmetry of f(y), $\Phi(-y) = 1 - \Phi(y)$, for any y

pdf of N(0,1)

Values of $\Phi(y)$ for values of $y \ge 0$ are in Appendix B (page 502).

pdf of N(0,1)

Values of $\Phi(y)$ for values of $y \ge 0$ are in Appendix B (page 502).

1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

 $Z \sim N(0,1)$ Then compute

$$P(Z \le 1.24) = \Phi(1.24) = 0.8925$$

$$P(1.24 \le Z \le 2.37) = \Phi(2.37) - \Phi(1.24)$$

 $Z \sim N(0,1)$ Then compute

$$P(Z \le 1.24) = \Phi(1.24) = 0.8925$$

$$P(1.24 \le Z \le 2.37) = \Phi(2.37) - \Phi(1.24)$$

$$= 0.9911 - 0.8925 = 0.0986$$

$$P(-2.37 \le Z \le -1.24) = P(1.24 \le Z \le 2.37) = 0.0986$$

The upper 100α percent point

Definition

The number z_{α} such that $P(Z \geq z_{\alpha}) = \alpha$.

 $P(X \le \pi_p) = p$, π_p is 100pth percentile.

Note:

$$P(Z < z_{\alpha}) = 1 - P(Z \ge z_{\alpha})$$

= 1 - \alpha

So z_{α} is the $100(1-\alpha)$ th percentile

The upper 100α percent point

 $Z \sim N(0,1)$, Find $Z_{0.0125}$. That is

$$P(Z \ge z_{0.0125}) = 0.0125$$

 $Z \sim N(0,1)$, Find $Z_{0.0125}$. That is

$$P(Z \ge z_{0.0125}) = 0.0125$$

check the table $\Rightarrow z_{0.0125} = 2.24$

What about $z_{0.05}$ and $z_{0.025}$?

 $Z \sim N(0,1)$, Find $Z_{0.0125}$. That is

$$P(Z \ge z_{0.0125}) = 0.0125$$

check the table $\Rightarrow z_{0.0125} = 2.24$

What about $z_{0.05}$ and $z_{0.025}$?

$$\Rightarrow z_{0.05} = 1.645, \quad z_{0.025} = 1.960$$

Now we know how to compute $\Phi(y)$ by looking up the table for $Y \sim N(0,1)$.

 $Z \sim N(0,1)$, Find $Z_{0.0125}$. That is

$$P(Z \ge z_{0.0125}) = 0.0125$$

check the table $\Rightarrow z_{0.0125} = 2.24$

What about $z_{0.05}$ and $z_{0.025}$?

$$\Rightarrow z_{0.05} = 1.645, \quad z_{0.025} = 1.960$$

Now we know how to compute $\Phi(y)$ by looking up the table for $Y \sim N(0,1)$. What if Y is not standard normal?

Theorem 3.3-1

Theorem

If Y is $N(\mu, \sigma^2)$, then $X = \frac{Y - \mu}{\sigma}$ is N(0, 1)

Proof: The idea is to show X has the same cdf as N(0,1)

$$P(X \le x) = P(\frac{Y - \mu}{\sigma} \le x) = P(Y \le \sigma x + \mu) = \int_{-\infty}^{\sigma x + \mu} f(y) dy$$
$$= \int_{-\infty}^{\sigma x + \mu} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(y - \mu)^2}{\sigma^2}\right) dy$$

Theorem 3.3-1

coordinate change

$$w = \frac{y - \mu}{\sigma} \Longrightarrow \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}w^2) dw. \longrightarrow \text{cdf of } N(0, 1).$$

Therefore, $P(X \le x) = \Phi(x)$ and this completes the proof.

With the above theorem, for $X \sim N(\mu, \sigma^2)$

$$P(a \le X \le b) = P(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma})$$
$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

where $\Phi(\cdot)$ is the cdf of N(0,1).

 $X \sim N(3, 16)$ Compute $P(4 \le X \le 8)$, $P(0 \le X \le 5)$.

$$X \sim N(3, 16)$$
 Compute $P(4 \le X \le 8)$, $P(0 \le X \le 5)$.

$$P(4 \le X \le 8) = P(\frac{4-3}{4} \le \frac{X-3}{4} \le \frac{8-3}{4})$$

$$= \Phi(1.25) - \Phi(0.25) = 0.8944 - 0.5987$$

$$P(0 \le X \le 5) = P(\frac{0-3}{4} \le \frac{X-3}{4} \le \frac{5-3}{4})$$

$$= \Phi(0.5) - \Phi(-0.75) = 0.6915 - 0.2266.$$

Relation between normal and χ^2 distribution

Theorem 3.3-2

If X is $N(\mu, \sigma^2)$ with $\sigma^2 > 0$, then

$$\frac{(X-\mu)^2}{\sigma^2} \sim \chi^2(1)$$

Proof: Let $V = \frac{(X-\mu)^2}{\sigma^2}$. Then consider the cdf of V,

$$G(v) = P(V \le v) = P(-\sqrt{v} \le Z \le \sqrt{v})$$

where
$$Z = \frac{X - \mu}{\sigma}$$
, with $\nu \geq 0$.

$$\sqrt{=\frac{(X-N)^2}{(X-N)^2}}$$

th
$$v \ge 0$$
.

$$V = \frac{(\chi - u)^2}{6}$$

$$Z = \frac{\chi - u}{6}$$

$$V = Z^2$$

Relation between normal and χ^2 distribution

$$G(v) = \int_{-\sqrt{v}}^{\sqrt{v}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = 2 \int_{0}^{\sqrt{v}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz$$

Change the variable of integration $z = \sqrt{y}$ $\frac{dz}{dy} = \frac{1}{2\sqrt{y}}$

$$z = \sqrt{y}$$
 $\frac{dz}{dy} = \frac{1}{2\sqrt{y}}$

$$G(v) = 2 \int_0^v \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y} \frac{1}{2\sqrt{y}} dy = \int_0^v \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} dy, v \ge 0$$

$$g(v) = G'(v) = \frac{1}{\sqrt{2\pi}} v^{\frac{1}{2} - 1} e^{-\frac{1}{2}v}, v \ge 0. \quad \int_{0}^{\sqrt{1}} \int_{2\pi}^{\sqrt{2}} e^{-\frac{1}{2}z^{2}} dz$$
Now recall the pdf of $\chi^{2}(1)$:
$$Z = \int_{0}^{\sqrt{2}} \int_{2\pi}^{\sqrt{2}} dz$$

$$Z = \int_{0}^{\sqrt{2}} \int_{2\pi}^{\sqrt{2}} dz$$

$$T(\frac{1}{2}) 2^{\frac{1}{2}} x^{-\frac{1}{2}} e^{-\frac{1}{2}x}, \quad x \ge 0,$$

$$f(x) = \frac{1}{\Gamma(\frac{1}{2})2^{\frac{1}{2}}} x^{-\frac{1}{2}} e^{-\frac{1}{2}x}, \quad x \ge 0,$$

Theorem 3.3-2

Since g(v) is a pdf, then $\int_0^\infty g(v)dv = 1$

$$1 = \int_0^\infty \frac{1}{\sqrt{2\pi}} v^{\frac{1}{2} - 1} e^{-\frac{1}{2}v} dv \stackrel{x = \frac{1}{2}v}{=} \frac{1}{\sqrt{\pi}} \int_0^\infty x^{\frac{1}{2} - 1} e^{-x} dx$$

$$= \frac{1}{\sqrt{\pi}} \Gamma(\frac{1}{2}) \Rightarrow \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\implies g(v) = \frac{1}{\Gamma(\frac{1}{2})2^{\frac{1}{2}}} v^{\frac{1}{2}-1} e^{-\frac{v}{2}}, v > 0$$