DFS DISCOVERS COMPONENTS

- Note: DEPTH-FIRST-SEARCH calls DFS repeatedly.
- DFS (inner function) calls itself on unseen neighbors.
- Theorem: If DFS is started on vertex is then it will finish and the vertices in the connected component of v before terminating.

 https://tutorcs.com
- Proof:
 - Suppose for contradiction that a weight is not visited.
 - ullet Let ${oldsymbol u}$ be the unvisited vertex that is the fewest hops away from ${oldsymbol v}$

ullet $oldsymbol{w}$ must have been visited, and from there $oldsymbol{u}$. Contradiction!

TYPES OF EDGES IN DFS EXPLORATION

THE DFS TREE

- ullet G is a connected graph and we start depth-first search at node ${oldsymbol {\cal V}}$.
- Tree edges actually form a tree rooted at ${\cal U}$.
- There is a unique path from vassignment Project Exam Help
- Structure of tree = recursive stru
 - If x is parent of y then DFS(x) calls DFS(y)
 - DFS(y) finishes before DFS(x) Chat: cstutorcs
 - Z is a descendant of X if it lies in subtree rooted at X (X is an ancestor of Z)
 - Define S(x), f(x): start and finish time of x
 - z descendant of $x \Leftrightarrow s(x) < s(z) < f(z) < f(x)$

ONE MORE OBSERVATION:

"NO STONE UNTURNED"

- Suppose we are starting DFS(v).
- Suppose:
 - There is a path P from v to u something to v to
 - ullet Every vertex on P is unseen at hetps://tutorcs.com
- ullet Then u will become a descendant of v in the DFS tree.

WeChat: cstutorcs

Proof: Similar to the proof that DFS started at a vertex will discover every vertex in the component.

ABOUT BACK EDGES

- Back edges always go between descendants and ancestors in DFS Tree.
- Why?
 - Suppose (u, v) is a backssignment Project Exam Help
 - Say u was discovered before v (no loss of generality here). Let v the same v the same v and v are v and v are v and v are v and v are v are v and v are v and v are v are v are v and v are v are v are v and v are v and v are v are v and v are v are v and v are v and v are v are v are v and v are v are v and v are v are v and v are v are v are v and v are v are v and v are v are v are v and v are v and v are v are v are v and v are v are v are v are v and v are v and v are v and v are v are v are v are v are v and v are v are v are v and v are v a
 - (u, v) must be tried before DFS(u) finishes.
 - v must be discovered before D must be discovered before D finishes tutores
 - So $\boldsymbol{\mathcal{V}}$ is a descendant of $\boldsymbol{\mathcal{U}}$.
 - (u, v) goes between ancestor and descendant.