

Lecture 7: Tree ADT

01204212 Abstract Data Types and Problem Solving

Department of Computer Engineering Faculty of Engineering, Kasetsart University Bangkok, Thailand.

Outline

- Terminologies
- Implementation
- Tree Traversals
- Forests

What is a Tree ADT?

Data:

- A set of linked nodes (elements) that form a hierarchical tree structure with a root and its subtrees
- This is a recursive definition

Defined operations:

- attach(tree, parent, child)
- detach(tree, node)
- search(tree, node)
- degree(tree, node)
- is_root(tree, node)

– ...

attach(t,3,6)

detach(t,6)

Terminology: Parent, Child, and Sibling

- A tree consists of nodes with a parent-child relation
- All nodes will have zero or more child(ren)
 e.g., B has two children: D and E
- All nodes, except the first node, have only one parent e.g., A is the parent of B

Nodes with the same parent are siblings
 e.g., B and C are siblings

В

Terminology: Root, Internal, and Leaf

- Root node without parent
 e.g., A is the root of the tree
- Internal node node with at least one child e.g., A, B, C, D, E, and F are internal nodes
- External node (a.k.a. leaf) node without children
 e.g., G, H, I, J, K, L, and M are leaves

rooted tree

Terminology: Degree

The degree of a node is defined as the number of its children

e.g., A has degree 2

All leaf nodes have zero-degree

Terminology: Path and Path Length

- A path is a sequence of nodes $\langle a_i, a_{i+1}, a_{i+2}, \dots, a_j \rangle$ where a_{i+1} is a child of a_i
- The length of a path is defined as the number of links along that path

e.g., the path (B, E, J) has length 2

Terminology: Depth

- For each node in a tree, there exists a unique path from the root node to that node
- The length of this path is the depth of the node

e.g., E has depth 2 L has depth 3

Terminology: Height

- The height of a tree is defined as the maximum depth of any node within the tree
 e.g., the height of the example tree is 3
- The height of a tree with one node is 0

 For convenience, we define the height of the empty tree to be -1

Terminology: Ancestor and Descendant

- Ancestor the connected higher-level nodes
- Descendant the connected lower-level nodes
- However, a node is both an ancestor and a descendant of itself

e.g., the ancestors of node E are A, B, and E the descendants of node C are C, F, G, K, L and M

Terminology: Subtree

- Another approach is to define a tree recursively:
 - (Base case) A zero-degree node is a tree
 - (Recursion) A node with degree n is a tree if it has n children and all of its children are disjoint trees—subtrees with no intersecting nodes
- Subtree is a part of tree consisting of a node and its descendants

Important Properties

- A tree with n nodes always has n-1 edges
- Any two nodes in a tree have at most one path between them

Application: HTML Structure

The nested tags of HTML can be defined as a tree:

Application: Arithmetic Expression Tree

- A tree associated with an arithmetic expression
 - Internal nodes: operators
 - External nodes: operands

$$(2 \times (a-1) + (3 \times b))$$

Application: Decision Tree

- A tree associated with a decision process
 - Internal nodes: questions (with yes/no answer)
 - External nodes: decisions

Outline

- Terminologies
- Implementation
- Tree Traversals
- Forests

Abstract Trees

- A hierarchical ordering of a finite number of objects may be stored in a tree data structure
- Operations on a hierarchically stored container include:
 - Accessing the root
 - Given a node
 - Access its parent
 - Find the degree
 - Get a reference to a child
 - Attach a new subtree
 - Detach this subtree from its parent

Abstract Trees: Design

- A general tree does not strict the number of children
 - One possible pointer-based implementation
- What will be stored in an individual node?
 - A value
 - A pointer to next sibling
 - A pointer to the 1st child

Tree Implementation

Tree Implementation

Assume that all data are distinct positive integers

```
1: #include <stdio.h>
   #include <stdlib.h>
 3:
                                         node
    typedef struct node {
                                          value
 5:
     int value;
                                          next_sibling
    struct node *next_sibling;
                                          first_child
   struct node *first_child;
   } node_t;
 9:
    typedef node t tree t;
11:
   int main(void) {
13:
     tree t *t = NULL;
14:
    return 0;
15: }
```


The search() Operation

Return position of node v in tree t if found, otherwise NULL

The attach() Operation

Insert a node/subtree c as a child of p in tree t

Exercise 1: Other Operations

Implement the following functions for a rooted tree

- detach(t,n) delete a node/subtree n from tree t
 - Return t after the deletion
- degree(t,n) find the number of children of a node n
 - Return the number of children
- is_root(t,n) check whether a node n is root
 - return 1 if that node is the root node, otherwise 0
- is_leaf(t,n) check whether a node n is leaf
 - return 1 if that node is a leaf node, otherwise 0

Outline

- Terminologies
- Implementation
- Tree Traversals
- Forests

What is a traversal?

Once the objects are stored in a data structure, how do we access them all?

- For an array or linked list, those objects can be accessed sequentially
 - $\Rightarrow \Theta(n)$
- For a stack or queue, we can run multiple pop() or dequeue() operations
 - $\Rightarrow \Theta(n)$
- However, how can we iterate through all the objects in a tree in an efficient manner
 - ightharpoonup Require $\Theta(n)$ in running time

Types of Tree Traversal

Tree traversal algorithms can be classified broadly in two categories by the order in which the nodes are visited:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Breadth-First Search (BFS)

"It starts from the root node and visits all nodes of current depth before moving to the next depth of tree."

Breadth-First Search (BFS)

BFS can be implemented using a queue

Breadth-First Search (BFS)

BFS can be implemented using a queue

Algorithm: BFS(t)
 q ← allocate a queue
 enqueue(q, root)
 while q is not empty
 node ← dequeue(q)
 print(node)
 enqueue(q, node's all children)

Output: A B C D E F G H I J K L M

What is the running time?

Drawback: Memory is potentially expensive – maximum nodes at a given depth

"It starts with the root node and first visits all nodes of one branch as deep as possible before backtracking, it visits all other branches in a similar fashion."

DFS can be implemented using a stack

Output: A C G F M ...

So on ...

The sequence is not correct as expected!

What should we do?

DFS can be implemented using a stack

Output: A B D H E ...

```
Algorithm for DFS
Step 1: push({A})
Step 2: pop() and then push({C,B})
Step 3: pop() and then push({E,D})
Step 4: pop() and then push({H})
```

So on ...

DFS can be implemented using a stack


```
Algorithm: DFS(t)
  s ← allocate a stack
  push(s, root)
  while s is not empty
    node ← pop(s)
    print(node)
    push(s, node's all children in reverse order)
```

Output: A B D H E I J C F K L M G

What is the running time?

Note: The memory required is the height of the tree $\Theta(h)$

DFS can also be implemented using a recursion

We have already seen this approach!!!

```
Algorithm: DFS(t)
  node ← root of t
  print(node)
  DFS(node's first child)
  DFS(node's sibling)
```

Output: A B D H E I J C F K L M G

Applications of DFS

- Finding the height of a tree
- Printing a hierarchical structure
- Calculating the total value of subtrees

Finding the Height

Printing a Hierarchical Structure

Output:

Calculating the Total Value of Subtrees

Output:

Outline

- Terminologies
- Implementation
- Tree Traversals
- Forests

Definition

A Forest is a data structure that is a collection of disjoint rooted trees

Note that:

- Any tree can be converted into a forest by removing the root node
- Any forest can be converted into a tree by adding a root node that has the roots of all the trees in the forest as children

Traversals

Traversals on forests can be achieved by treating the roots as children of a notional root

- Breadth-first traversal: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
- Depth-first traversal: A E B F O P U G H C I Q V W J D K R L M S T X Y Z N

Application

In Windows, each drive form the root if its own directory structure

Each of the directories is hierarchical—that is, a rooted tree

Any Question?

