Variation 1 (Difficulty: ★☆☆☆☆)

Let

$$\phi(x) = egin{cases} 0 & x < -2 \ rac{1}{8}x + rac{1}{4} & -2 \leq x < 0 \ rac{1}{4} - rac{1}{16}x & 0 \leq x < 4 \ 0 & x \geq 4 \end{cases}$$

- (a) Verify that $\int_{-\infty}^{\infty}\phi(x)\,dx=1$. [2]
- **(b)** Find the distribution function F_X of X. [4]
- (c) Calculate $\mathbb{E}[X]$ and $\mathrm{Var}(X)$. [5]
- (d) Show $F_X|_{(-2,4)}:(-2,4) o (0,1)$ is a bijection. [3]
- (e) Verify $F_X|_{[-2,4]}:[-2,4] o [0,1]$ is a bijection. [1]
- (f) Find $F_X^{-1}|_{[-2,4]}$. [3]

Variation 2 (Difficulty: ★★☆☆☆)

Let

$$\phi(x) = egin{cases} 0 & x < -4 \ rac{1}{36}x + rac{1}{12} & -4 \leq x < -1 \ rac{1}{6} & -1 \leq x < 1 \ rac{1}{12} - rac{1}{72}(x - 3) & 1 \leq x < 4 \ 0 & x \geq 4 \end{cases}$$

- (a) Verify $\int \phi(x) \, dx = 1$. [2]
- **(b)** Derive F_X . [5]
- (c) Compute $\mathbb{E}[X]$ and $\mathrm{Var}(X)$. [5]
- (d) Prove $F_X|_{(-4,4)}:(-4,4) o (0,1)$ is bijective. [3]
- (e) Explain why $F_X|_{\lceil -4,4
 ceil}: [-4,4]
 ightarrow [0,1]$ is bijective. [1]
- (f) Find $F_X^{-1}|_{[-4,4]}.$ [4]

Variation 3 (Difficulty: ★★★☆☆)

Let

$$\phi(x) = egin{cases} 0 & x < 0 \ rac{1}{8}x & 0 \leq x < 2 \ rac{1}{4}e^{2-x} & 2 \leq x < 4 \ 0 & x \geq 4 \end{cases}$$

- (a) Show $\int \phi(x)\,dx=1$. [3] (Requires integration by parts)
- **(b)** Find F_X . [5]
- (c) Compute $\mathbb{E}[X]$ and $\mathrm{Var}(X)$. [6]
- (d) Prove bijectivity for $F_X|_{(0,4)}:(0,4) o (0,1)$. [3]
- (e) Show $F_X|_{[0,4]}:[0,4] o [0,1]$ is bijective. [1]
- **(f)** Derive $F_X^{-1}|_{[0,4]}$. [4] (Inverse involves logarithms)

Variation 4 (Difficulty: ★★★☆)

Let

$$\phi(x) = egin{cases} 0 & x < -\pi \ rac{1}{8}\cos\left(rac{x}{2}
ight) & -\pi \leq x < 0 \ rac{1}{8}(1+\sin x) & 0 \leq x < rac{\pi}{2} \ 0 & x \geq rac{\pi}{2} \end{cases}$$

- (a) Verify $\int \phi(x) \, dx = 1$. [4] (Trigonometric integrals)
- **(b)** Find F_X . [6] *(Multi-part integration)*
- (c) Calculate $\mathbb{E}[X]$ and $\mathrm{Var}(X)$. [7]
- (d) Prove $F_X|_{(-\pi,\pi/2)}: (-\pi,\pi/2) o (0,1)$ is bijective. [3]
- (e) Is $F_X|_{[-\pi,\pi/2]}:[-\pi,\pi/2] o [0,1]$ bijective? Justify. [2]
- **(f)** Find $F_X^{-1}|_{[-\pi,\pi/2]}$. [5] (Requires solving transcendental equations)

Variation 5 (Difficulty: ★★★★★)

Let

$$\phi(x) = egin{cases} 0 & x < -3 \ rac{1}{20}(x+5) & -3 \leq x < -1 \ rac{1}{10\sqrt{4-x^2}} & -1 \leq x < 1 \ rac{1}{20}(5-x) & 1 \leq x < 5 \ 0 & x \geq 5 \end{cases}$$

- (a) Prove $\int \phi(x)\,dx=1$. [5] (Uses geometry and trig substitution)
- **(b)** Derive F_X explicitly. [7] (Requires elliptic integral for $\sqrt{4-x^2}$)
- (c) Compute $\mathbb{E}[X]$ and $\mathrm{Var}(X)$. [8] (High-symmetry simplifies variance)
- (d) Show $F_X|_{(-3,5)}:(-3,5) o (0,1)$ is bijective. [4]
- (e) Verify $F_X|_{[-3,5]}:[-3,5] o [0,1]$ is bijective. [2]
- (f) Find $F_X^{-1}|_{[-3,5]}$ symbolically. [6] (Inverse for $\sqrt{4-x^2}$ is non-algebraic)

Progression Rationale

- 1. Variation 1: Asymmetric intervals, basic linear pieces.
- 2. Variation 2: Four segments with discontinuities and shifted intervals.
- 3. Variation 3: Exponential decay segment requiring advanced integration.
- 4. **Variation 4**: Trigonometric functions and transcendental inverse.
- 5. Variation 5: Elliptic integral in CDF, non-algebraic inverse, and asymmetric support.