Prof. Dr. J. W. Kolar Übung Nr. 12

Name, Vorname	Testat

Aufgabe 1: Hall-Effekt und Strommessung mittels eines Hall-Sensors (Teilaufgabe e) nicht testatpflichtig)

Ein vom Strom I_H durchflossenes planares Hall-Element befinde sich gemäss **Fig. 1a)** in einem homogenen Magnetfeld der Flussdichte $B_{\rm ext}$, das senkrecht zur Stromflussebene weist. Aufgrund der Lorentz-Kraft wird die bewegte Ladung senkrecht zu Strom I_H und zur Flussdichte $B_{\rm ext}$ abgelenkt. Somit tritt an den beiden Rändern des Hall-Elementes ein Ladungsüberschuss bzw. -mangel auf. Es bildet sich demnach ein elektrisches Feld derart aus, dass die resultierende Coulomb-Kraft der Lorentz-Kraft das Gleichgewicht hält. Die dann zwischen den Punkten A und B auftretende Spannung wird als Hall-Spannung U_H bezeichnet.

Fig. 1: a) Hall-Effekt sowie b) Darstellung einer Vorrichtung zur Strommessung mittels Hall-Element

- Leiten Sie allgemein aus der Lorentz-Kraft und der Coulomb-Kraft die resultierende Hallspannung
 U_H nach Richtung und Betrag her.
- b) Wie gross ist die zu messende Hallspannung U_H für ein Hall-Element aus n-dotiertem Silizium ($n^- = 10^{15} \text{ cm}^{-3}$) mit der Dicke $h_H = 0,1$ mm sowie dem Strom $I_H = 100$ mA, wenn die magnetische Flussdichte $B_{\text{ext}} = 0,5$ T beträgt?

Mit Hilfe des nach **b)** gegebenen Hall-Sensors soll eine Strommessvorrichtung realisiert werden. Dazu wird gemäss **Fig. 1b)** um einen stromführender Leiter mit dem Strom I_{ext} ein Magnetkreis vorgesehen, in dessen Luftspalt δ der Hall-Sensor eingebracht wird. Die dabei auftretende Hallspannung U_{H} ist somit ein Mass für den Strom I_{ext} .

- c) Berechnen Sie die im Luftspalt δ auftretende Flussdichte $B_{\rm ext}$ in Abhängigkeit des Stromes $I_{\rm ext}$. Die Luftspaltlänge sei dabei δ = 3 mm. Der magnetische Widerstand des Magnetmaterials kann vernachlässigt werden ($\mu_{\rm r} \rightarrow \infty$).
- d) Wie gross ist dann allgemein die sich in Abhängigkeit des Stromes I_{ext} einstellende Hallspannung U_{H} ? Welchen Zahlenwert weist U_{H} für einen Strom von I_{ext} = 1200 A auf?
- e) Berechnen Sie die Erhöhung der Induktivität des den Strom I_{ext} führenden Leiters. Die Abmessungen des Magnetkreises betragen $a_k = 15$ mm, $b_k = 20$ mm, $d_k = 10$ mm und $l_k = 50$ mm?

Prof. Dr. J. W. Kolar Übung Nr. 12

Aufgabe 2: Dimensionierung einer Induktivität für einen Gleichspannungswandler

Für einen Gleichspannungswandler muss zur Energieübertragung eine Induktivität von $L = 50 \,\mu\text{H}$ realisiert werden. Bei Betrieb des Wandlers tritt in der Induktivität ein Spitzenstrom von $I_p = 5$ A auf. Die Induktivität soll als Toroidspule aufgebaut werden, wobei die Kupferwicklung mit dem Leiterdurchmesser $d_{\text{cu}} = 1$ mm gleichmässig auf einen Kunststoffring gemäss **Fig. 2a)** aufgewickelt wird. Die Abmessungen des Kunststoffrings seien $D_a = 3.5$ cm und $D_i = 1.8$ cm.

Fig. 2: a) Luft-Toroidspule und b) Toroidspule mit Luftspalt

- a) Berechnen Sie die benötige Windungszahl N, damit der vorgegebene Induktivitätswert L erreicht wird. Wie gross ist dann der resultierende ohmsche Widerstand der Wicklung und wie hoch sind die Wicklungsverluste bei einem Stromeffektivwert von $I_{eff} = 3$ A?
- b) Damit die Windungszahl und somit die Wicklungsverluste reduziert werden können, wird der Kunststoffring durch einen Ferritkern mit denselben Abmessungen ersetzt. Die relative Permeabilität sei $\mu_r = 3000$. Wie gross wird nun die erforderliche Windungszahl N und welche maximale Flussdichte B_{max} würde auftreten? Welchen Strom I_{max} kann die Induktivität maximal führen, wenn die Sättigungsinduktion des Ferritkerns bei $B_{\text{sat}} = 0.3$ T liegt?
- c) Um den Maximalwert der Flussdichte auf einen Wert unterhalb der Sättigungsgrenze zu beschränken, wird gemäss **Fig. 2b**) ein Luftspalt δ in den magnetischen Kreis eingefügt. Berechnen Sie die Länge des Luftspalts δ sowie die Windungszahl N derart, dass für den gegebenen Induktivitätswert gerade eine Sättigung des Kernmaterials verhindert wird. Der magnetische Widerstand des Kernmaterials kann dabei vernachlässigt werden ($\mu_r \to \infty$). Wie hoch sind nun die Wicklungsverluste bei einem Stromeffektivwert von $I_{\text{eff}} = 3$ A?