Implementation of $SecCos([g_a], [g_b])$

Given two encrypted gradients $[g_a] = \{[x'_{a_1}], [x'_{a_2}], ..., [x'_{a_m}]\}$ and $[g_b] = \{[x'_{b_1}], [x'_{b_2}], ..., [x'_{b_m}]\}$:

• @ S_1 : Once receiving $\llbracket g_a \rrbracket$ and $\llbracket g_b \rrbracket$, S_1 first selects m random noises $r_{k \in [1,m]} \leftarrow \mathbb{Z}_N^*$, and blinds r_k to $\llbracket g_a \rrbracket$ and $\llbracket g_b \rrbracket$. As computed in Eq. 14, $\llbracket \overline{g}_a \rrbracket = \{ \llbracket \overline{x}_{a_1} \rrbracket, ..., \llbracket \overline{x}_{a_m} \rrbracket \}$ and $\llbracket \overline{g}_b \rrbracket = \{ \llbracket \overline{x}_{b_1} \rrbracket, ..., \llbracket \overline{x}_{b_m} \rrbracket \}$ are obtained. Then, S_1 executes

$$[\overline{x}_{a_k}]_1 \leftarrow \mathsf{PartDec}_{sk_1}([\![\overline{x}_{a_k}]\!]), \ [\overline{x}_{b_k}]_1 \leftarrow \mathsf{PartDec}_{sk_1}([\![\overline{x}_{b_k}]\!]), \\ s.t., \ [\![\overline{x}_{a_k}]\!] \in [\![\overline{g}_a]\!], [\![\overline{x}_{b_k}]\!] \in [\![\overline{g}_b]\!],$$

and sends $[\overline{g}_a]_1, [\overline{g}_b]_1, [\overline{g}_a], [\overline{g}_b]$ to S_2 .

• $@S_2$: Once obtaining these encrypted numbers, S_2 calls Part-Dec and FullDec to obtain $\overline{g_a}$ and $\overline{g_b}$. Then, S_2 implements

$$\overline{\cos}_{ab} = \overline{g_a} \odot \overline{g_b} = \sum_{k=1}^m \overline{x}_{a_k} \cdot \overline{x}_{b_k}. \tag{16}$$

 S_2 calls the Enc algorithm to return $[\overline{\cos}_{ab}]$ to S_1 .

- @ S_1 : To remove the noise r_k in $[\![\overline{\cos}_{ab}]\!]$, S_1 implements Eq. 15 to obtain the final cosine similarity $[\![\cos_{ab}]\!]$.
- @ S_2 : The decryption share $[\cos_{ab}]_2 \leftarrow \mathsf{PartDec}_{sk_2}([\![\cos_{ab}]\!])$ is executed to return S_1 .
- @ S_1 : To obtain \cos_{ab} between $[g_a]$ and $[g_b]$ as shown in Eq. 13, S_1 computes the cosine similarity \cos_{ab} with $[\cos_{ab}]_2 \leftarrow \mathsf{PartDec}_{sk_2}([\cos_{ab}])$ and $\cos_{ab} \leftarrow \mathsf{FullDec}([\cos_{ab}]_1, [\cos_{ab}]_2)$. Note that the precise degree of \cos_{ab} is expanded as deg^2 after HE.Mul. To keep the degree deg consistent, the final result is truncated as $\cos_{ab} \leftarrow \lfloor \frac{\cos_{ab}}{deg} \rfloor$.