

CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS

MEMORIA DEL TRABAJO FINAL

Desarrollo de un sistema embebido para un titulador potenciométrico automático

Autor: Ing. Fernando Ezequiel Daniele

Director: Dr. Javier Andrés Redolfi(UTN FRSFco)

Jurados:

Esp. Ing. Alexis Pojomovsky (Ekumen, FIUBA) Mg. Ing. Leandro Lanzieri Rodriguez (UTN FRA - HAW Hamburg) Mg. Ing. Christian Yanez Flores (FIUBA)

Este trabajo fue realizado en la ciudad de San Francisco, entre junio de 2020 y septiembre de 2021.

Resumen

La presente memoria describe el desarrollo e implementación de un sistema embebido que permite automatizar el método de análisis químico denominado titulación o valoración. El sistema realiza la medición de pH de la muestra a analizar mientras se agrega volúmenes controlados de una sustancia conocida, para hallar el punto en el cual ambas sustancias reaccionan. El trabajo se enmarca dentro un proyecto de investigación y desarrollo de la UTN FRSFco, que busca ofrecer un titulador de bajo costo para el laboratorio de servicios de la facultad.

Para el desarrollo de sistema se aplicó una arquitectura de software modular y se utilizaron conceptos de sistemas de tiempo real, comunicaciones, protocolos, máquinas de estado y diseño de circuitos impresos.

Índice general

Re	sumen	Ι
1.	Introducción general	1
	1.1. Concepto de titulación	1
	1.1.1. Métodos de titulación	1
	1.1.2. Curvas de titulación	3
	1.1.3. Potenciometría	3
	1.2. Descripción de tituladores automáticos	4
	1.3. Estado del arte	4
	1.4. Motivación	6
	1.5. Objetivos y alcance	6
2.	Introducción específica	9
	2.1. Electrodos de pH	9
	2.2. Bombas peristálticas	11
	2.3. Otras tecnologías utilizadas	11
	2.3.1. Microcontrolador ESP32	12
	2.3.2. Pantalla táctil	13
	2.3.3. <i>Driver</i> para motor	13
	2.3.4. Módulo de adaptación para electrodo	14
	2.4. Requerimientos	14
3.	Diseño e implementación	17
	3.1. Arquitectura del sistema	17
	3.2. Medición de pH y control de la bomba	17
	3.3. Interfaz de usuario	17
	3.4. Almacenamiento de datos	17
	3.5. Servidor web	17
	3.6. Esquemáticos y PCB	17
4.	Ensayos y resultados	19
	4.1. Banco de pruebas	19
	4.2. Pruebas unitarias	19
	4.3. Validación y verificación	19
5.	Conclusiones	21
	5.1. Resultados obtenidos	21
	5.2. Trabajo futuro	21
Bil	liografía	23

Índice de figuras

1.1.	Titulación ácido-base manual mediante indicador de color ¹	2
1.2.	Titulación ácido-base manual mediante electrodo de pH^2	2
1.3.	Curva de titulación del tipo sigmoidea	3
1.4.	Primera y segunda derivada del pH respecto al volumen	3
1.5.	Curva de titulación del tipo sigmoidea ³	4
1.6.	Ejemplo de titulador automático. Marca THERMO SCIENTIFIC ⁴	5
1.7.	Diagrama en bloques simplificado	7
2.1.	Electrodo combinado de pH de Ag/AgCl ⁵	10
2.2.	Electrodo HI-1230B	11
2.3.	Bomba peristáltica ⁶	11
2.4.	1 0	
	mecánica. Vista del motor	12
2.5.	Bomba peristáltica desarrollada por el área de Ingeniería Electro-	
	mecánica. Vista de los rodillos.	12
2.6.	Placa de desarrollo ESP32-DevKitC	12
2.7.	LCD táctil MCUFRIEND	13
2.8.	Driver para motor paso a paso DRV8825	14
2.9.	Módulo pH-4502C	14

Índice de tablas

1	caption corto																															Г
L.I.	capiton conto	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	$\overline{}$

Introducción general

En este capítulo se presentan los conceptos necesarios para comprender el método de titulación y el funcionamiento de los tituladores automáticos, así como también se realiza una exploración de trabajos de I+D y productos comerciales similares al prototipo presentado. Por último, se destaca el origen de la propuesta y los objetivos y alcances del trabajo realizado.

1.1. Concepto de titulación

La titulación es una técnica analítica que permite realizar la determinación cuantitativa de la concentración de una sustancia o grupo de sustancias químicas (analitos) en una muestra problema. Este método de análisis químico se basa en medir la cantidad de un reactivo de concentración conocida, denominado titulante, que es consumida por un analito durante una reacción química o electroquímica. En una titulación se determina el volumen o la masa de titulante necesario para reaccionar completamente con el analito, y este dato permite calcular la cantidad del analito presente en una muestra. El punto final de una reacción se puede determinar por el cambio de color en un indicador o por el cambio en una respuesta instrumental como, por ejemplo, el pH [1].

El punto de equivalencia es el punto teórico que se alcanza cuando la cantidad de titulante añadido es químicamente equivalente a la cantidad de analito en la muestra y no puede determinarse de manera experimental. En cambio, se puede estimar su valor en base al punto final, que se da cuando se observa una variación física asociada con la condición de equivalencia [1]. Existen diferentes tipos de titulaciones que implican diferentes métodos de análisis. En el caso de este trabajo, se utilizaron las titulaciones del tipo ácido-base, para las cuales se utilizan el método del cambio de color de un indicador y el del cambio de potencial de un electrodo.

1.1.1. Métodos de titulación

El cambio de color es la técnica que se utiliza actualmente de manera manual en el laboratorio de la UTN FRSFco. La figura 1.1 describe el proceso para realizar una titulación manual de un ácido con una base. Por un lado, se tiene una bureta con el titulante de concentración conocida, y por el otro, un recipiente con la solución acuosa a ser analizada, a la cual se le agrega un reactivo indicador. De manera lenta, se agrega el titulante a la solución problema hasta detectar el cambio de color producido por el indicador. Esto es lo que se conoce como punto final y el

resultado es el volumen de titulante gastado, que le permite al analista químico calcular la concentración del analito de la solución problema.

Pasos para titular un ácido con una base

FIGURA 1.1. Titulación ácido-base manual mediante indicador de color¹.

El cambio en el potencial de un electrodo de pH es la técnica que utilizan los tituladores potenciométricos automáticos, y por lo tanto, se utilizó para este trabajo. En la figura 1.2 se observa un proceso manual que utiliza el método de cambio de potencial. En este caso, el usuario utiliza una computadora que registra los datos de la cantidad de gotas que añade y el valor de pH leído por el electrodo, para cada cantidad añadida de titulante. De esta forma, se grafica una curva de titulación que permite encontrar el valor del volumen gastado en el punto final.

FIGURA 1.2. Titulación ácido-base manual mediante electrodo de pH^2 .

¹Imagen tomada de https://2.bp.blogspot.com/-a9RepHphLgc/WgOVnU_U_QI/AAAAAAAAAGM/ulzSDSrbOKYNvtwqNhe_D5TE6bzxiT9aACLcBGAs/s1600/acido-base. webp

²Imagen tomada de https://www.elsevier.es/es-revista-educacion-quimica-78-articulo-titulaciones-acido-base-con-el-emp

1.1.2. Curvas de titulación

Una curva de titulación es una gráfica de alguna variable asociada a la concentración en función del volumen de titulante agregado. Generalmente, se dan dos tipos de curvas: la sigmoidea y la de segmento lineal [1]. Para el trabajo desarrollado se tuvo en cuenta la curva del tipo sigmoidea, como se muestra en la figura 1.3. La misma corresponde a una titulación de 50 mL de HCI 0,0500 M con NaOH 0,100 M, y el punto final coincide con el punto de inflexión de la curva, característica que permite determinar de manera aproximada el punto de equivalencia.

FIGURA 1.3. Curva de titulación del tipo sigmoidea.

Generalmente, el analista químico recurre a las curvas de la primera y segunda derivada del pH respecto al volumen añadido para poder calcular de manera efectiva el punto final. En la figura 1.3 se muestran las curvas de las derivadas correspondientes a la titulación de HCI con NaOH. El punto final coincide con un máximo en la curva de la primera derivada y con un pase por 0 en la curva de la segunda derivada.

FIGURA 1.4. Primera y segunda derivada del pH respecto al volumen.

1.1.3. Potenciometría

La potenciometría se basa en la medición del potencial entre celdas electroquímicas. Para llevar a cabo este medición se utilizan dos electrodos: un electrodo de

referencia con potencial conocido e independiente de la solución analizada, y un electrodo indicador cuya tensión varía en función de la actividad del analito, separados por un puente salino que previene que los componentes de la disolución de analito se mezclen con los componentes del electrodo de referencia, tal y como se muestra en la figura 1.5 [1].

FIGURA 1.5. Curva de titulación del tipo sigmoidea³.

1.2. Descripción de tituladores automáticos

Un titulador automático es un dispositivo que agrega titulante en la solución a analizar y registra alguna variable física por cada unidad de volumen o masa de titulante agregada. En base a esos datos, se puede elaborar la curva de titulación y calcular el volumen o masa en el punto final. Existen diferentes tipos de tituladores que se usan para diferentes análisis, como por ejemplo el titulador potenciométrico, el de conductividad o el Karl Fischer, entre otros.

Un titulador potenciométrico automático hace uso de un electrodo para medir el potencial de la celda a la vez que inyecta el titulante mediante el uso de algún sistema de dosificación, y registra cada valor potencial en mV o en pH en función de la cantidad de volumen añadido. Además, estos dispositivos suelen incluir un agitador que permite acelerar el proceso de mezcla entre el titulante añadido y la solución, para que el cambio en el potencial se visualice de manera más rápida. En la figura 1.6 se observa un ejemplo de un titulador comercial para titulaciones del tipo ácido-base.

1.3. Estado del arte

Existen gran variedad de tituladores potenciométricos automáticos en el mercado con diferentes características. La tabla 1.1 ilustra una comparativa entre algunos modelos de tituladores que disponen diferentes laboratorios de la región. El principal punto a tener en cuenta es la exactitud que, en los casos analizados, se mide en un porcentaje de la capacidad de la bureta que contiene el titulante. Por ejemplo, para una bureta de 20 mL, que es la que incluyen estos tituladores, la

³Imagen tomada de https://www.lifeder.com/potenciometria/

⁴Imagen tomada de https://www.equiposylaboratorio.com/portal/productos/titulador-automAtico-thermo-scientific-start9100-orion-star-t910

1.3. Estado del arte 5

FIGURA 1.6. Ejemplo de titulador automático. Marca THERMO SCIENTIFIC⁴.

exactitud sería de 0,02 mL para los modelos Kem AT710 y Hanna HI901C1-01, y de 0,04 mL para el modelo Mettler Toledo G20. Otra característica importante son las opciones que tiene el usuario de interactuar con el titulador, que incluyen un display LCD y botones o panel táctil, conexión para impresora y unidad de almacenamiento, y capacidad de agregar un teclado o pantalla externa.

TABLA 1.1. Comparativa de tituladores comerciales

Marca y modelo	Exactitud	Display	Interfaces
Kem AT710	0,1%	5,7"	RS232, USB
Mettler Toledo G20	0,2%	5,7"Touch	Ethernet, COM, USB
Hanna HI901C1-01	0,1%	5,7"	VGA, USB, RS232

Además de los datos mencionados en la tabla, cabe destacar que todos los tituladores tienen la capacidad de adicionar un sensor de temperatura y de cambiar el modelo de electrodo para poder realizar diferentes tipos de titulaciones potenciométricas. Debido a que la adquisición de los tituladores comerciales se justifica en laboratorios con gran número muestras a analizar y con diferentes tipos de titulaciones, diversos autores han propuesto alternativas para automatizar el proceso para laboratorios pequeños o con fines educativos [2][3][4]. Estos trabajos incluyen el manejo de una bomba peristáltica y de un potenciómetro conectados a una computadora [2]; el diseño de un sistema de dosificación para titulaciones [3]; y el diseño de un titulador que usa una bomba peristáltica y adapta la señal que entrega un electrodo de pH [4].

1.4. Motivación

El desarrollo de un titulador automático surgió de la iniciativa del grupo de I+D GISAI, perteneciente a la UTN FRSFco, con el fin de encarar un proyecto multidisciplinar en el que se involucren las cuatro carreras de ingeniería de la facultad. Luego de confirmar los integrantes del proyecto, se decidió en conjunto construir un titulador de bajo costo para el laboratorio de servicios de química, ya que los tituladores comerciales son económicamente inaccesibles para universidades y laboratorios en los que existe una frecuencia baja de muestras a analizar. Una vez planteado el proyecto, se dividieron los objetivos particulares de cada área disciplinar, los cuales se detallan a continuación:

- Ingeniería Química: encargada de establecer los requerimientos y de validar el prototipo.
- Ingeniería Electrónica: encargada de diseñar e implementar el sistema embebido que controle el proceso de titulación.
- Ingeniería Electromecánica: encargada de diseñar y desarrollar la bomba y otros componentes mecánicos, como la carcasa.
- Ingeniería en Sistemas de Información: encargada de elaborar el software que procesará los datos entregados por el titulador y otros datos asociados a la muestra analizada y al cliente que lo solicita.

En esta memoria se describen las tareas realizadas dentro del área de Ingeniería Electrónica, cuyos objetivos y alcances se encuentran detallados en la sección 1.5.

1.5. Objetivos y alcance

El trabajo realizado consistió en desarrollar el prototipo de un sistema embebido que permita automatizar y controlar el método de titulación potenciométrica.

El trabajo incluye:

- Una interfaz de usuario que permite realizar las configuraciones correspondientes, calibrar el dispositivo, y dar inicio y fin al proceso de titulación.
- La visualización de la curva de pH respecto al tiempo.
- El control de la bomba que inyecta el titulante en la solución a analizar.
- El cálculo y visualización del volumen del titulante en el punto final.
- El almacenamiento de los datos del ensayo en una memoria SD.
- La visualización de los datos del ensayo en una página web, a través de una conexión Wi-Fi local.

El trabajo no incluye:

- El manejo del dispositivo de manera remota.
- El diseño de la carcasa u otras partes mecánicas.

En el diagrama de la figura 1.7 se muestra como interactúa el sistema desarrollado con las partes intervinientes. El sistema embebido es el encargado de controlar el volumen de titulante que la bomba agrega a la solución, y de leer el valor de

pH obtenido por el electrodo. Una vez obtenidos todos los valores del proceso, los almacena en una tabla y calcula el volumen correspondiente al punto final. Ambos datos son enviados al software de la computadora.

FIGURA 1.7. Diagrama en bloques simplificado.

Introducción específica

En este capítulo se realiza un revisión detallada de los dispositivos y tecnologías utilizados y que fueron desarrollados por terceros para comprender las decisiones de diseño tomadas que se mencionan en el capítulo 3.

2.1. Electrodos de pH

Un electrodo muy usado hoy en día, es el electrodo combinado que está formado por dos electrodos dentro del mismo encapsulado. En la figura 2.1 se observa un electrodo combinado que está formado por un electrodo de referencia, que consiste en un alambre clorurado de plata en una solución de KCl saturada, y un electrodo indicador, formado por el alambre clorurado de plata más una membrana de vidrio sensible al pH.

El potencial de un electrodo está dado por la ecuación de Nernst, que se puede escribir de manera simplificada como muestra la ecuación 2.1.

$$E = E_0 + kpH (2.1)$$

[5]

donde E es el potencial corregido del electrodo, E_0 es el potencial en condiciones estándar (valores tabulados), k una variable que depende de la temperatura y pH es el valor de pH de la muestra.

En este trabajo se utilizó el electrodo comercial marca HANNA HI-1230B de la figura 2.2, definido por el área de Ingeniería Química, ya que permite realizar titulaciones potenciométricas ácido-base para detectar nitrógeno en suelo y alcalinidad en agua. Específicamente, este electrodo es de plata sumergido en una disolución de cloruro de potasio que se ha saturado con cloruro de plata, y presenta un potencial de 0 mV para un valor de pH de 7,01, y una pendiente de -0,0174pH/mV. En base a estos datos se puede crear la recta que relaciona la potencial del electrodo con el valor de pH y que está dada por la ecuación 2.2:

$$pH = -0.0174E + 7.01 (2.2)$$

¹Imagen tomada de http://depa.fquim.unam.mx/amyd/archivero/ ELECTRODOSDEMEDIDAYDEREFERENCIA_22645.pdf

 $\label{eq:figura2.1.} Figura \ 2.1. \ Electrodo \ combinado \ de \ pH \ de \ Ag/AgCl^1.$

donde E es el potencial entregado por el electrodo y pH es el valor correspondiente de pH de la muestra a 25 °C. Para una muestra con ph 0 la salida del electrodo es de 402,8 mV y para una muestra de ph 14 el potencial es de -401,7 mV.

FIGURA 2.2. Electrodo HI-1230B.

2.2. Bombas peristálticas

Una bomba peristáltica es un tipo de bomba hidráulica que se emplea para transportar diferentes tipos de líquidos, y generalmente es usada cuando se emplean fluidos limpios o estériles ya que el mecanismo de la bomba no los contamina al desplazarlos [6]. Está formada por una manguera flexible situada dentro de la cubierta de la bomba, que puede ser circular o lineal, y un rotor compuesto por varios rodillos que comprimen la manguera, tal y como se muestra en la figura 2.3. Cuando el rotor gira, se genera un vacío que hace que el líquido ingrese y fluya por la manguera.

FIGURA 2.3. Bomba peristáltica².

Para este trabajo se utilizó la bomba desarrollada por el área de electromecánica, que hace uso de un motor paso a paso bipolar Nema 17 marca Usongshine, como se aprecia en la figura 2.4.

La carcasa, el rotor y la cubierta exterior están impresas con ácido poliláctico (PLA) Grilon y contiene dos tipos de mangueras: una manguera PharMed BPT de 4 mm de diámetro exterior y 0,8 mm de diámetro interior que soporta las deformaciones cíclicas producidas por los rodillos del rotor, y dos mangueras genéricas de silicona para los tramos de entrada y salida. En las figura 2.5 se observan los componentes mencionados.

2.3. Otras tecnologías utilizadas

Este trabajo se enfocó en el diseño de un prototipo de titulador, con el foco puesto en el software más que en el hardware. Es por eso que se buscaron alternativas

²Imagen tomada de https://www.researchgate.net/figure/Figura-3-Principio-de-funcionamiento-de-una-bomba-perifig2_275959587

FIGURA 2.4. Bomba peristáltica desarrollada por el área de Ingeniería Electromecánica. Vista del motor.

FIGURA 2.5. Bomba peristáltica desarrollada por el área de Ingeniería Electromecánica. Vista de los rodillos.

del tipo "módulo" para los diferentes componentes, de tal forma que permita una rápida conexión del hardware y delegar la mayor parte del tiempo al desarrollo del firmware. En cada una de las siguientes secciones se describen los módulos utilizados.

2.3.1. Microcontrolador ESP32

Para el desarrollo del prototipo se utilizó la placa de desarrollo ESP32-DevKitC de la figura 2.6. Esta placa contiene un módulo ESP32 con Wi-Fi y Bluetooth integrado y un sistema de doble núcleo, cada uno con un CPU Xtensa LX6 de 32 bit.

FIGURA 2.6. Placa de desarrollo ESP32-DevKitC.

Las principales características de esta placa de desarrollo que se tuvieron en cuenta para el desarrollo del trabajo son las siguientes:

- Clock a 160 MHz.
- 4 MB de memoria flash.

- Wi-Fi: 802.11 b/g/n.
- 12-bit SAR ADC de hasta 18 canales.
- 3 × UART
- Controlador host SD
- PWM

Para el desarrollo del software se utilizó el framework ESP-IDF de Espressif Systems, que ofrece una API para trabajar con una versión de FreeRTOS adaptada para aprovechar el doble núcleo del procesador, asi como también para el resto de los periféricos mencionados anteriormente.

2.3.2. Pantalla táctil

Los tituladores comerciales cuentan con una pantalla a través de la cuál se muestra una interfaz de usuario que permite acceder a las configuraciones y controlar las distintas funciones. En algunos casos la pantalla está acompañada por un teclado y en otros casos cuenta directamente con un panel táctil. Para este trabajo se decidió optar por la segunda opción ya que permite mayor flexibilidad a la hora de realizar cambios en la interfaz.

Entre las opciones disponibles en el mercado, se optó por módulo MCUFRIEND de la figura 2.7 que contiene una pantalla LCD de 2,4çon un panel táctil y un lector de tarjetas SD.

FIGURA 2.7. LCD táctil MCUFRIEND.

2.3.3. *Driver* para motor

Previamente, en la sección 2.2, se mencionó que la bomba utiliza un motor paso a paso. Para que el módulo ESP32 pueda controlarlo es necesario utilizar un *driver* que otorgue los niveles de tensión y corriente necesarios para su correcto funcionamiento.

Para este trabajo se utilizó el módulo DRV8825 de la figura 2.8, que permite el manejo de motores paso a paso de hasta 2,5 A y tiene la posibilidad de utilizar *microsteping* 1/32.

La técnica de *microsteping* permite multiplicar la cantidad de pasos que puede dar un motor para realizar una vuelta. De esta forma se puede aumentar la resolución de giro, es decir, disminuir el ángulo de paso del motor, lo que se traduce a una menor cantidad de volumen inyectada por cada paso.

FIGURA 2.8. Driver para motor paso a paso DRV8825.

2.3.4. Módulo de adaptación para electrodo

En la sección 2.1 se mencionó que el electrodo entrega un potencial que va a depender del pH de la muestra y se ubica entre -401,7 y 402,8 mV. Para poder procesar estos valores con el ADC del ESP32, cuyo rango de entrada es de 0 a 3500 mV, es necesario adaptar esa señal para amplificar la tensión y adaptar impedancias. Para eso se utilizó el módulo pH-4502C de la figura 2.9.

FIGURA 2.9. Módulo pH-4502C.

El módulo PH-4502C está formado por dos etapas. En la Fig. 4 se observa la etapa de amplificación de la señal, la cual utiliza un amplificador operacional con una configuración del tipo no inversor y con una ganancia de 2. En la Fig. 5 se muestra la etapa que permite regular la tensión de referencia. Está formado por un amplificador operacional en configuración de seguidor de tensión y un divisor resistivo con un potenciómetro que permite calibrar el nivel de tensión para evitar valores negativos en la salida del circuito.

2.4. Requerimientos

En esta sección se detallan los requerimientos del sistema que fueron planteados en el plan trabajo, con ligeros cambios que surgieron durante el desarrollo del trabajo.

- Interfaces Externas
 - El hardware debe contar con una pantalla TFT táctil. [TPA-ERH-01-REQ001]
 - El hardware debe contar con un lector de tarjetas SD. [TPA-ERH-01-REQ002]
 - El hardware debe contar con un *driver* para un motor paso a paso Nema 17. [TPA-ERH-01-REQ003]
 - El hardware debe contar con una entrada para un electrodo de pH. [TPA-ERH-01-REQ004]

Funciones

- El usuario debe poder elegir mediante la pantalla táctil el volumen de corte de la titulación. [TPA-ERS-01-REQ001]
- El usuario debe poder elegir mediante la pantalla táctil si utilizar o no el agitador. Cuando el proceso de titulación comienza, el agitador debe activarse si así lo indicó el usuario. [TPA-ERS-01-REQ002]
- El usuario debe poder realizar mediante la pantalla táctil el proceso de calibración con cada uno de los tres buffers. [TPA-ERS-01-REQ003]
- Los valores de potencial obtenidos en el proceso de la calibración se deben guardar en la memoria flash del ESP32. [TPA-ERS-01-REQ004]
- El valor de pH se debe calcular de manera proporcional a la recta de ajuste de los valores de potencial obtenidos en la calibración. [TPA-ERS-01-REQ005]
- El usuario debe poder dar inicio al proceso de titulación mediante la pantalla táctil. [TPA-ERS-01-REQ006]
- Durante la titulación, la pantalla debe mostrar el valor actual leído en mV y en pH y una gráfica de pH en función del tiempo. [TPA-ERS-01-REQ007]
- Cada valor de volumen añadido junto al valor de potencial asociado durante el proceso de titulación deben almacenarse en un archivo de texto en la tarjeta sd. No es necesario que esto se haga en tiempo real. [TPA-ERS-01-REQ008]
- Cada valor de volumen añadido junto al valor de potencial asociado durante el proceso de titulación deben mostrarse en una página web almacenada en la memoria flash, una vez finalizada la titulación. [TPA-ERS-01-REQ009]
- El usuario debe poder acceder a la página web mediante una conexión Wi-Fi. No es necesario que esto se haga en tiempo real. [TPA-ERS-01-REQ010]
- El sistema debe ser capaz de leer y mostrar el potencial entregado por un electrodo de pH, con una resolución de 1 mV para la lectura del potencial y de 0,01 pH para su conversión a pH. [TPA-ERS-01-REQ011]
- El sistema deberá inyectar una cantidad de 0,1 mL y luego esperar 5 segundos para realizar la medición de pH. La cantidad inyectada puede ser de 1 mL si el cambio de ph entre las últimas dos mediciones es menor a 0,2. [TPA-ERS-01-REQ012]
- El sistema debe dejar de agregar titulante cuando se alcanza la cantidad de volumen indicada por el usuario como volumen de corte. [TPA-ERS-01-REQ013]

• Requisitos de Rendimiento

- El sistema debe ser capaz de realizar titulaciones que involucren una cantidad máxima de 100 ml. [TPA-ERS-01-REQ014]
- Restricciones de Diseño

- Se utiliza el módulo ESP32 como computadora principal. [TPA-ERS-01-REQ015]
- Se utiliza la pantalla táctil MCUFRIEND 2,4" como interfaz de usuario. [TPA-ERS-01-REQ016]

Diseño e implementación

NOTA: ESTE CAPÍTULO SE ENCUENTRA EN CONSTRUCCIÓN.

- 3.1. Arquitectura del sistema
- 3.2. Medición de pH y control de la bomba
- 3.3. Interfaz de usuario
- 3.4. Almacenamiento de datos
- 3.5. Servidor web
- 3.6. Esquemáticos y PCB

Ensayos y resultados

NOTA: ESTE CAPÍTULO SE ENCUENTRA EN CONSTRUCCIÓN.

- 4.1. Banco de pruebas
- 4.2. Pruebas unitarias
- 4.3. Validación y verificación

Conclusiones

NOTA: ESTE CAPÍTULO SE ENCUENTRA EN CONSTRUCCIÓN.

- 5.1. Resultados obtenidos
- 5.2. Trabajo futuro

Bibliografía

- [1] Douglas A. Skoog; Donald M. West. Fundamentos de química analítica. Novena edición. Cengage Learning Editores, 2014.
- [2] Montoya E.; Rodríguez I. «Implementación y evaluación de un titulador potenciométrico computarizado». En: *IPEN-Institucional* (2002).
- [3] R. M. Álzate Rodríguez E; Montes Ocampo J; Escobar. «Descripción del diseño, construcción y ajuste del sistema de dosificación para realizar titulaciones automáticas». En: *Scientia et Technica Año XVII*, *No* 52 (2012).
- [4] S. Pazos; M. Fabbro; G. Donnadio. «Valorador/Titulador Potenciométrico Automático.» En: (2013).
- [5] Lyl M. Ciganda. «Electrodos para medir pH.» En: XIII Seminario de Ing. Biomédica. (2004).
- [6] O. F. Altamirano; L. S. Furlong Contreras; A. M. Reynoso Tapia. «Desarrollo de un prototipo de una bomba peristáltica de bajo costo capaz de desplazar fluidos en ambos sentidos para diversas aplicaciones.» En: *Universidad Iberoamericana Puebla.* (2018).