Chapter 4. Multiple Access Techniques and Wireless Standards

B. Razavi, RF Microelectronics, Prentice Hall

2008-2 RF IC 공학

범 진 욱

서강대학교 전자공학과

Microelectronics Lab.

Contents

4.1 Mobile RF Communications

4.2 Multiple Access Techniques

- 4.2.1 Time- and Frequency-Division Duplexing
- 4.2.2 Frequency-Division Multiple Access
- 4.2.3 Time-Division Multiple Access
- 4.2.4 Code-Division Multiple Access

4.3 Wireless Standards

- 4.3.1 Advanced Mobile Phone Service
- 4.3.2 North American Digital Standard
- 4.3.3 Global System for Mobile Communication
- 4.3.4 Qualcomm CDMA
- 4.3.5 Digital European Cordless Telephone

Mobile RF Communications

- Mobile unit: mobile phone
 - Terminal, hand-held unit
- Base station: fixed expensive unit
- □ Forward channel or downlink
 - Base station → Mobile unit
- □ Reverse channel or uplink
 - Mobile unit → Base station
- Cellular System

Figure 4.1 (a) Simple cellular system, (b) 7-cell reuse pattern.

- Mobile communication in cellular structure
- Frequency reuse
- "7-cell" reuse pattern: efficient frequency assignment
- A base station in each cell
- All base station is controlled by a "mobile telephone switching office" (MTSO)

Co-Channel Interference (CCI)

- How much two cells that use the same frequency interfere with each other
- Depends on the ratio of the distance between two cochannel cells to the cell radius
- Independent of the transmitted power
- Ratio ~ 4.6 for 7 cell pattern
- Signal-to-co-channel interference ratio ~18 dB

□ Handoff

Change of base station

Figure 4.2 Co-channel interference.

Figure 4.3 Problem of handoff.

Path loss and Multipath Fading

Path loss and Multipath Fading

- Signal travels through direct and indirect path

Figure 4.4 Indirect signal propagation and resulting loss profile.

Diversity and Interleaving

- Diversity
 - Effect of fading can be lowered by adding redundancy
 - Space diversity (Antenna diversity)
 - ☐ Use of 2 or more antennas
 - Frequency diversity
 - Multiple carrier frequencies are used
 - Time diversity
 - Data is transmitted or received more than once.
- Interleaving
 - An interleaver scrambles the time order of the bits according to an algorithm known by the receiver to lower the errors related to multipath fading

Delay Spread

Delay spread

- Two signals in a multipath environment are equal in magnitude, but different in phase
- $x(t) = A \cos\omega(t-\tau_1) + A \cos\omega(t-\tau_2)$ $= 2A \cos[(2\omega t \omega \tau_1 \omega \tau_2)/2] \cos[\omega(\tau_1 \tau_2)/2]$
- Delay spread $\Delta \tau = \tau_1 \tau_2$
- Fade is related with delay spread.
- Fade is frequency dependent. cos[ωΔτ/2]
- For a large delay spread, considerable variation in the spectrum
 - \square Rms delay spread as large as $\sim \mu s \rightarrow$ order of 100 kHz
 - Large delay spread also give rise to intersymbol interference.

Figure 4.7 (a) Flat and (b) frequency-selective fading.

Contents

4.1 Mobile RF Communications

4.2 Multiple Access Techniques

- 4.2.1 Time- and Frequency-Division Duplexing
- 4.2.2 Frequency-Division Multiple Access
- 4.2.3 Time-Division Multiple Access
- 4.2.4 Code-Division Multiple Access

4.3 Wireless Standards

- 4.3.1 Advanced Mobile Phone Service
- 4.3.2 North American Digital Standard
- 4.3.3 Global System for Mobile Communication
- 4.3.4 Qualcomm CDMA
- 4.3.5 Digital European Cordless Telephone

Time- and Frequency- Division Dultiplexing

- Duplexing: Two way communication
- - Rx (receive), Tx (transmit) at the same frequency, but
 - different time
 - High Rx, Tx isolation ~ 100 dB
- □ FDD
 - Rx, Tx at different frequency
 - Duplexer filter: ~50 dB isolation, 2~3 dB insertion loss

TDD Command

Figure 4.8 Time-division duplexing.

Figure 4.9 Frequency-division duplexing.

Frequency-Division Multiple Access (FDMA)

- Frequency band partitioned into many channels
- Each channel assigned to a single user
- □ FDMA with FDD: two channel assigned to each user

Figure 4.10 Frequency-division multiple access.

Time-Division Multiple Access (TDMA)

- \Box A time slot (T_{sl}) assigned to each user
- □ Frame (T_F): Overall period for all of the time slot
- Advantages over FDMA
 - \blacksquare PA is on only during communication \rightarrow Power save
 - Speech can be compressed in time by a large factor
 - ☐ Required BW is smaller, overall capacity is larger
 - Even with FDD, rx and tx are not on at the same time.

Drawbacks

- Complex: ADC, digital modem, time slot and frame synchronization are required.
 - → not a problem

Code-Division Multiple Access (CDMA)

- Signals overlap in time and frequency, but employ "orthogonal message"
- □ Similar to different language → CDMA
 - Different time → TDMA
 - Different pitch → FDMA

Direct-Sequence CDMA

Orthogonal digital code

- Assigned to each Rx/Tx pair at the beginning of communication
- Each bit in baseband is translated into the code before modulation
- Orthogonal code generation based on Walsh's recursive equation

$$W_1 = 0$$

$$W_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, W_4 = \begin{bmatrix} W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_1 & W_2 \\ W_2 & \overline{W_2} \end{bmatrix}$$

$$W_{2n} = \begin{bmatrix} W_1 & W_1 & W_1 & W_1 & W_1 & W_1 & W_1 \\ W_1 & \overline{W_1} & \overline{W_$$

DS-CDMA - cont.

- Rx: demodulated signal decoded by multiplying the same Walsh code
- \square Encoding: increase BW \rightarrow poor spectral efficiency?
- CDMA allows widened spectra of many users
 - Special case of spread spectrum (SS) communication
- □ DS-SS CDMA
 - direct-sequence spread spectrum CDMA

DS-CDMA - cont.

- □ Spreading sequence or Pseudo-random noise
 - Each pulse in spreading sequence is called chip
 - Rate of the sequence : chip rate
 - ☐ cf. bit rate: baseband data rate
- Decoding (Despreading)

CDMA Soft capacity limit

Increase in number of users raises the noise floor

Power control in DS-CDMA

- Interferer with strong signal raises noise floor
 - High power transmitter can halt all the communication

- □ CDMA transmitters should have equal power
 - Rx at base station periodically sends a power adjustment request.
 - □ Received signal level are controlled within 1 dB.
- Complex power control
 - Helps to save power dissipation

Frequency-Hoping CDMA

- FDMA with pseudorandom channel allocation
- Short-term spectrum of a transmitter may overlap with those of others.
- Overall trajectory of the spectrum distinguishes each transmitter.

- Less sensitive to different received power levels
- □ FH requires fast settling in the control loop of the oscillator.

Contents

4.1 Mobile RF Communications

4.2 Multiple Access Techniques

- 4.2.1 Time- and Frequency-Division Duplexing
- 4.2.2 Frequency-Division Multiple Access
- 4.2.3 Time-Division Multiple Access
- 4.2.4 Code-Division Multiple Access

4.3 Wireless Standards

- 4.3.1 Advanced Mobile Phone Service
- 4.3.2 North American Digital Standard
- 4.3.3 Global System for Mobile Communication
- 4.3.4 Qualcomm CDMA
- 4.3.5 Digital European Cordless Telephone

Advanced Mobile Phone Service (AMPS)

- Earliest wireless standard
- FDMA with analog FM and FDD
- 30 kHz per channel
- □ Receive band: 869-894 MHz (25 MHz)
- □ Transmit band: 824-849 MHz (25 MHz)
- 830 users simultaneously
- Rx and Tx band: 20 MHz apart
 - Low loss duplexer
- Voice+ control and supervision signal
 - Transmitted over the same channel

North American Digital Standard (NADC)

- First digital cellular system in US
- TDMA with π/4-DQPSK and FDD
- □ Compatible with AMPS
 - Identical Rx and Tx bands, and channel spacing with AMPS
 - 6 times the capacity of AMPS
 - 48.6 kb/s
 - 1 frame (1944 bits) → 6 slots (324 bits: 260 data+64 control)
 - Rx and Tx time slot offset by 1.85 ms
 - □ No leakage power problem from Tx to Rx
- □ IS-54

Figure 4.18 NADC (a) air interface, (b) frame structure, (c) TX and RX time slots.

Globl System for Mobile Communication (GSM)

- Unified wireless standard for Europe
- GSM supports voice, fax, and ISDN.
- □ TDMA/FDD with GMSK
- □ Transmit band: 890-915 MHz
- □ Receive band: 935-960 MHz
- Channel BW: 200 kHz,270 kb/s per user
- □ Total capacity 1000

Figure 4.19 GSM (a) air interface and (b) frame structure.

Qualcomm CDMA

- □ DS-CDMA
- \square IS-95 (\rightarrow IS-98 \rightarrow)
 - OQPSK/FDD
 - 9.6 kb/s spread to 1.23 MHz
 - Coherent detection
 - Pilot tone at the beginning for phase synchronization
 - Power control
 - □ 1 dB received power level variation
 - \square Open-loop procedure at the beginning \rightarrow rough, fast
 - Received power from BS + transmitted power = -73 dBm
 - P_{bs}-k+P_m=-73 dBm k: attenuation, Pm: mobile power
 - \blacksquare P_m-k=-P_{bs}-73 dBm
 - □ Closed-loop power control
 - BS sends feedback signal to adjust the power every 1.25 ms

Frequency and Time Diversity

- Frequency Diversity
 - Multipath fading → notch in a channel transfer function
 - Spread spectrum 1.25 MHz: frequency diveristy
 - □ Only 25 % loss of band
- Time Diversity
 - Rake receiver
 - $lue{}$ Delayed replicas combined with weighting factor α_i

Variable Coding Rate and Soft Handoff

- Variable Coding Rate
 - Buffer slower data and transmit for a short period of time
 - Example: speech rate 2400 b/s
 - □ Data accumulation 50%
 - □ Data transmission 50 %
 - Reduces the average power transmitted
- Soft Handoff
 - Signal strength of adjacent channel is monitored at the same time
 - Switch to the next base station only if the signal is stronger

Digital European Cordless Telephone (DECT)

- □ TDMA/FDMA with TDD
- Cordless phone framework
- Allowed connection to GSM

