Directions: Let $f: A \to B$ be a function, A_1 and A_2 be subsets of A, and B_1 and B_2 be subsets of B.

1. Prove that $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

```
Proof. Let x \in f^{-1}(B_1 \cap B_2). By definition 3.1.7, x \in f^{-1}(B_1 \cap B_2) \Rightarrow f(x) \in (B_1 \cap B_2) \Rightarrow f(x) \in B_1 and f(x) \in B_2.
Thus, again by definition 3.1.7, x \in f^{-1}(B_1) and x \in f^{-1}(B_2).
```

2. Prove that $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ but $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$ doesn't necessarily hold.

```
Proof. Let y \in f(A_1 \cap A_2). By definition 3.1.7, y \in f(A_1 \cap A_2) \Rightarrow y = f(x) for some x \in A_1 \cap A_2.
 Thus, f(x) \in f(A_1) and f(x) \in f(A_2).
 Therefore, y \in f(A_1) \cap f(A_2), and so f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2).
 However, let f : \{1, 2, 3\} \to \{a, b\} be defined by f(1) = a, f(2) = a, and f(3) = b.
 and let A_1 = \{1, 3\} and A_2 = \{2, 3\}.
 Then f(A_1) = \{a, b\}, f(A_2) = \{a, b\}, and A_1 \cap A_2 = \{3\}.
 Then f(A_1) \cap f(A_2) = \{a, b\}, f(A_1 \cap A_2) = \{b\}, and so f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2) doesn't necessarily hold. □
```

3. Explain what about the definition of functions enables the statement in (a) to be true, but precludes $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$. (Hint: Think about what all counterexamples to this statement have in common.) The definition of functions enables the statement in (a) to be true because for any $x \in f^{-1}(B_1 \cap B_2)$, $f(x) \in B_1$ and $f(x) \in B_2$. A function maps each input to a unique output. However, the definition of functions precludes $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$ because for any $x \in A_1 \cap A_2$, f(x) may be in $f(A_1)$ and $f(A_2)$, but not in $f(A_1 \cap A_2)$. A function is not necessarily injective.