Objective:

Solve the 2D wave equation using PINNs.

Workflow of the Code:

The code solves the 2D wave equation using a Physics-Informed Neural Network (PINN).

1. Initialization and Imports

- Import required libraries (torch, numpy, matplotlib, etc.).
- Configure the computational device (CPU/GPU).
- Set seeds for reproducibility across runs.

2. Define the Wave Equation

• Solve the 2D wave equation: $\frac{\partial^2 T}{\partial t^2} - c^2(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}) = 0$

3. Apply Boundary and Initial Conditions

• Boundary Conditions:

At x=0: $\partial T/\partial x - c \partial T/\partial t = 0$

At x=L: $\partial T/\partial x + c \partial T/\partial t = 0$

At y=0: $\partial T/\partial y + c \partial T/\partial t = 0$

At y=D: $\partial T/\partial y - c \partial T/\partial t = 0$

Initial Conditions

At t=0: T(x, y, 0) = 0 and $\partial T/\partial t(x, y, 0) = 0$

4. Center Point Ripple

• Introduce a sinusoidal disturbance at the center of the domain

$$T(x, y, t) = \sin(\pi x/L) \sin(\pi y/D) \cos(\omega t)$$

5. Loss Function Components:

1. Wave Equation Residual:

Wave Loss =
$$\frac{\partial^2 T}{\partial t^2} - c^2(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2})$$

2. Boundary Condition Loss:

Boundary Loss = MSE(Boundary Condition 1) + MSE(Boundary Condition 2)

3. Initial Condition Loss:

Initial Condition Loss = MSE(Initial Condition)

4. Center Point Ripple Loss:

Center Ripple Loss = MSE(Ripple at center)

6. Neural Network Model

For a feed-forward neural network with 5 hidden layers, using the tanh activation function and Xavier initialization:

Model definition class PINN(nn.Module): <u>def_init_(self, input_dim, output_dim):</u> super(PINN, self). init () self.fc1 = nn.Linear(input_dim, 50) self.fc2 = nn.Linear(50, 50) self.fc3 = nn.Linear(50, 50) self.fc4 = nn.Linear(50, 50)<u>self.fc5 = nn.Linear(50, 50)</u> self.fc6 = nn.Linear(50, output_dim) # Xavier initialization torch.nn.init.xavier_normal_(self.fc1.weight) torch.nn.init.xavier_normal_(self.fc2.weight) torch.nn.init.xavier normal (self.fc3.weight) torch.nn.init.xavier normal (self.fc4.weight) torch.nn.init.xavier_normal_(self.fc5.weight) torch.nn.init.xavier normal (self.fc6.weight) def forward(self, x): x = torch.tanh(self.fc1(x))x = torch.tanh(self.fc2(x))x = torch.tanh(self.fc3(x))x = torch.tanh(self.fc4(x))x = torch.tanh(self.fc5(x))x = self.fc6(x)

return x

7. Adam Optimizer

The Adam optimiser with a learning rate of 1×10 ^-4 is used for training:

Adam optimizer setup

optimizer = torch.optim.Adam(model.parameters(), Ir=1e-4)

8. Training Loop

```
# Training loop
```

for epoch in range(20001):

optimizer.zero grad()

loss value = loss fn(train points)

loss_value.backward()

optimizer.step()

if epoch % 100 == 0:

print(f"{epoch} {loss_value.item()}")

9. Visualization:

Generate a scatter plot to visualize the predicted wave field T(x,y,t):

Visualization code

<u>test points t = torch.tensor(test points t, dtype=torch.float32).to(device)</u> <u>predict = model(test points t).detach().cpu().numpy()</u>

Plotting

plt.scatter(x_te, y_te, c=predict[:, 0], cmap='jet', s=1, edgecolor='none', alpha=1)
plt.colorbar(orientation='vertical')

plt.show()