TD HORS SÉRIE - ESPACES QUOTIENTS, TRANSVECTIONS

Exercice 1 (Endomorphisme quotient). Soit E un k-espace vectoriel, et $u \in \text{End}(E)$.

- 1. Soit $F \subset E$ un sous-espace de E globalement stable par u. On pose $\pi : E \to E/F$ la projection canonique. Montrer que u induit un endomorphisme \overline{u} de E/F.
- 2. Montrer que π induit un isomorphismes de k[X] modules entre le quotient $(E,u)/(F,u|_F)$ et $(E/F,\overline{u})$.
- 3. On suppose que E est de dimension finie. Soit $\mathcal{F} := (a_1, \ldots, a_r)$ une base de F, que l'on complète en une base $\mathcal{B} := (a_1, \ldots, a_r, b_{r+1}, \ldots, b_n)$ de E. Montrer que $\overline{\mathcal{B}} = (\pi(b_{r+1}), \ldots, \pi(b_n))$ est une base de E/F.
- 4. Montrer que la matrice de u dans la base \mathcal{B} est de la forme

$$\begin{pmatrix} A & * \\ 0 & Q \end{pmatrix}$$

où $A = Mat_{\mathcal{F}}(u_{|F})$ et $Q = Mat_{\overline{\mathcal{B}}}(\overline{u})$.

5. Réciproquement, montrer que si un endomorphisme de E admet une matrice de la forme ci-dessus dans une base $\mathcal{E} = (e_1, \dots, e_n)$, alors $F := \text{Vect}(e_1, \dots, e_r)$ est u-stable et $A = Mat_{(e_1, \dots, e_r)}(u_{|F})$ et $Q = Mat_{\overline{E}}(\overline{u})$.

Exercice 2 (Ma première transvection). Soit $E = k^2$, on définit

$$T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

1. Montrer par récurrence que

$$\forall n \geqslant 1, \quad T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

En déduire l'ordre de T (on fera attention à la caractéristique de k).

- 2. Montrer que det(T) = 1.
- 3. Montrer que T n'est pas diagonalisable.
- 4. Montrer que $\operatorname{Im}(T-I_2) \subset \operatorname{Ker}(T-I_2)$.

Exercice 3 (Transvections). Soit E un k-espace vectoriel. Soit $\alpha \in E^* \setminus \{0\}$ et $c \in \operatorname{Ker} \alpha \setminus \{0\}$. On pose $u = \tau(\alpha, c)$ l'endomorphisme de E

$$\forall x \in E, \ \tau(\alpha, c)(x) = x + \alpha(x)c$$

que l'on appelle transvection associée à α et c.

- 1. Montrer que $\operatorname{Ker} \alpha = \operatorname{Ker} (u \operatorname{Id})$ et que $\operatorname{Vect}(c) = \operatorname{Im} (u \operatorname{Id})$. On pose $H := \operatorname{Ker} \alpha$ et $D := \operatorname{Im} (u \operatorname{Id})$.
- 2. Montrer que les transvections sont inversibles, avec $(\tau(\alpha,c))^{-1} = \tau(\alpha,-c)$.
- 3. Montrer que H et D sont u-stables, et que $u_{|H} = \mathrm{Id}_H$, $u_{|D} = \mathrm{Id}_D$.
- 4. Montrer que les endomorphismes induits par u sur les quotients E/H et E/D sont respectivement $\mathrm{Id}_{E/H}$ et $\mathrm{Id}_{E/D}$.

Exercice 4 (Transvections en dimension finie). Soit E un k-espace vectoriel de dimension n. Soit $\alpha \in E^* \setminus \{0\}$ et $c \in \text{Ker } \alpha \setminus \{0\}$. On considère toujours $u = \tau(\alpha, c)$.

1. Montrer que l'ensemble

$$SL(E) := \{ u \in GL(E) \mid \det(u) = 1 \}$$

est un sous-groupe de GL(E) (bonus : montrer que c'est un sous-groupe distingué).

- 2. Soit (v_1, \ldots, v_{n-2}) une famille libre de H telle que $(v_1, \ldots, v_{n-2}, a)$ soit une base de H et soit $x_0 \in E$ tel que $\alpha(x_0) = 1$ (pourquoi un tel x_0 existe?). Déterminer la matrice de u dans la base $(v_1, \ldots, v_{n-2}, a, x_0)$ de E.
- 3. En déduire que $u \in SL(E)$.
- 4. Soit $u \in GL(E)$ tel que $u \neq Id_E$ et il existe un hyperplan H u-stable avec $u_{|H} = Id_H$ et $u_{E/H} = Id_{E/H}$. Montrer que u est une transvection avec Ker(u Id) = H. (indication: utiliser l'exercice 1).
- 5. Soit $u \in GL(E)$ tel que $u \neq Id_E$ et il existe une droite D u-stable avec $u_{|D} = Id_D$ et $u_{E/D} = Id_{E/D}$. Montrer que u est une transvection avec Im(u Id) = D. (indication: utiliser l'exercice 1).

Exercice 5 (Générateurs de SL(E)). Soit E un k-espace vectoriel de dimension finie. Dans cet exercice, on montre que les transvections engendrent le groupe SL(E). On procède par récurrence sur E (le cas dim E = 1 est trivial). On suppose dim $E \ge 2$. Soit $u \in SL(E)$, on cherche a décomposer u comme un produit de transvections.

- 1. Soient $x, y \in E$ tous les deux non nuls.
 - a) Montrer que, si $x, y \in E$ sont non colinéaires, alors il existe une transvection τ telle que $\tau(x) = y$.
 - b) En déduire qu'il existe toujours un produit p d'au plus deux transvections tel que p(x) = y.
- 2. Soit $c \in E \setminus \{0\}$, montrer que quitte à composer par des transvections, on peut supposer que u(c) = c.
- 3. On pose D = Vect(c). On pose $\pi : E \to E/D$ la projection canonique. On pose également $\overline{u} \in \text{End}(E/D)$ l'endomorphisme induit par u. Montrer que \overline{u} est inversible et de déterminant 1.
- 4. En déduire que \overline{u} est une composée de transvections, disons $\overline{u} = \tau(\overline{\alpha_1}, \overline{c_1}) \cdots \tau(\overline{\alpha_r}, \overline{c_r})$.
- 5. Pour $i \in [1, r]$, on pose $\alpha_i := \overline{\alpha_i} \circ \pi$ et $c_i \in E$ tel que $\pi(c_i) = \overline{c_i}$. Montrer que $v := \tau(\alpha_1, c_1) \cdots \tau(\alpha_r, c_r)$ est de déterminant 1 et tel que $\overline{v} = \overline{u}$ et v(c) = u(c).
- 6. Montrer que $v^{-1}u$ est une transvection (indication : utiliser la question 5 de l'exercice 4). Conclure.