

Introduction: basic information about datasets

Transcriptions

Labels of match events

EDA: text analysis

Tokens density analysis

Token to type relation

Text complexity - Flesch reading ease score

 $Y = 206.835 - 1.015(X_1) - 84.6(X_2)$ Y = Reading Ease Score $X_1 = Average Sentence Length$ $X_2 = Average number of syllables per word$

Reading Ease Score	Descriptive Categories	Estimated Reading Grade
90 – 100	Very Easy	5 th Grade
80 – 90	Easy	6 th Grade
70 – 80	Fairly Easy	7 th Grade
60 – 70	Standard / Plain English	8 th and 9 th Grade
50 – 60	Fairly Difficult	10 th to 12 th Grade (High School Sophomore to Senior)
30 – 50	Difficult	In College
0 - 30	Very Difficult	College Graduate

Text complexity - Flesch reading ease score

Text richness – token to type ratio

Text richness – Hapax score

Richenss measure defined as the number of words that occured only once by the number of all the words in the text

Results and statistical analysis

Sentiment histogram

Sentiment histogram – modified flair

Wordclouds for sentiments extracted by Vader

Sentiment density

Sentiment density cutoff

Vader – zero neighbourhood and whole dataset comparison

Flair – sentiment across events

Vader – sentiment across events

Flair – Moving Average Approach

Flair – capturing the context

Flair – MA(5) cutoff

Events distribution in top peak

Difference in events distribution

Events distribution in bottom peak

Difference in events distribution

Chasing the dreams

$$\hat{\hat{Y}}$$

Text related research questions answers

 How well does the tabulated data we have, explain the estimated sentiment?

Answer: NO

Statistical differences between lexical and ML approaches?

Answer: NO

• Do we really need audio data to spot interesting relationships? Is text alone not enough?

Answer: YES, WE NEED AUDIO!

EDA: audio analysis

Single match example

Emotion detection distribution

Emotion Detection across events

Predictions Probability Distribution

Sad Predictions Probability Distribution

Happy Predictions Probability Distribution

Angry Predictions Probability Distributions

Neutral Predictions Probability Distributions

Answers to audio related research questions

- Can audio emotions serve as an indicator of important match events?
 Answer: NO
- Do we really need audio data to spot interesting relationships? Is text alone not enough?

Answer: AUDIO ALONE (IN THE CURRENT FORM OF DATA PREPARATION) IS NOT ENOUGH

Modelling

Sentiment classification (Flair – Negative, Positive)

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
catboost	CatBoost Classifier	0.6263	0.5829	0.6263	0.6144	0.5320	0.0668	0.1115	187.1740
xgboost	Extreme Gradient Boosting	0.6237	0.5751	0.6237	0.6046	0.5312	0.0625	0.1017	19.9180
lightgbm	Light Gradient Boosting Machine	0.6221	0.5689	0.6221	0.6501	0.4948	0.0312	0.0903	29.2900
gbc	Gradient Boosting Classifier	0.6160	0.5502	0.6160	0.6090	0.4771	0.0089	0.0395	532.7720
ada	Ada Boost Classifier	0.6149	0.5424	0.6149	0.5771	0.4835	0.0116	0.0352	112.0540
lda	Linear Discriminant Analysis	0.6149	0.5293	0.6149	0.5947	0.4712	0.0030	0.0207	17.1580
ridge	Ridge Classifier	0.6148	0.0000	0.6148	0.5943	0.4711	0.0029	0.0203	6.3260
dummy	Dummy Classifier	0.6145	0.5000	0.6145	0.3776	0.4677	0.0000	0.0000	6.8100
Ir	Logistic Regression	0.6144	0.5265	0.6144	0.5061	0.4677	0.0000	0.0006	19.5060
qda	Quadratic Discriminant Analysis	0.5984	0.5313	0.5984	0.5472	0.5263	0.0253	0.0335	14.9280
nb	Naive Bayes	0.5894	0.5205	0.5894	0.5418	0.5325	0.0226	0.0273	7.3180
rf	Random Forest Classifier	0.5881	0.5726	0.5881	0.5763	0.5800	0.1038	0.1048	507.8360
et	Extra Trees Classifier	0.5825	0.5673	0.5825	0.5751	0.5780	0.1026	0.1030	233.4040
knn	K Neighbors Classifier	0.5792	0.5750	0.5792	0.5722	0.5744	0.0959	0.0965	620.6680
dt	Decision Tree Classifier	0.5658	0.5362	0.5658	0.5608	0.5630	0.0728	0.0729	61.4480
svm	SVM - Linear Kernel	0.4559	0.0000	0.4559	0.4549	0.3515	0.0012	0.0025	151.1920

Sentiment classification (Flair – Negative, Neutral, Positive)

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
xgboost	Extreme Gradient Boosting	0.5572	0.5714	0.5572	0.5812	0.4402	0.0530	0.0984	38.0800
catboost	CatBoost Classifier	0.5556	0.5705	0.5556	0.5982	0.4311	0.0437	0.0897	393.9500
lightgbm	Light Gradient Boosting Machine	0.5541	0.5645	0.5541	0.6209	0.4134	0.0290	0.0851	53.0200
gbc	Gradient Boosting Classifier	0.5481	0.5485	0.5481	0.5870	0.3962	0.0095	0.0417	1256.1200
ada	Ada Boost Classifier	0.5464	0.5334	0.5464	0.5032	0.3984	0.0086	0.0294	88.3367
dummy	Dummy Classifier	0.5460	0.5000	0.5460	0.2981	0.3857	0.0000	0.0000	7.7867

Events detection from audio emotions

	Classifier	Accuracy	AUC	Precision	Recall	F1 Score
0	Logistic Regression	0.706198	0.500683	0.000000	0.000000	0.000000
1	XGBoost	0.705885	0.502156	0.263158	0.000592	0.001181
2	CatBoost	0.706181	0.502027	0.333333	0.000059	0.000118
3	Dummy Classifier	0.706198	0.500000	0.000000	0.000000	0.000000
4	AdaBoost	0.706198	0.500010	0.000000	0.000000	0.000000

Plans for the future (Project 2)

- Analyse accordance beetween audio emotions and text sentiment.
- Add audio emotions as another feature in the statistical exploration.
- Compare text sentiment and audio emotions accorss different languages (or translations).
- Post events emotions intensification assesement.
- Employ Recurrent Neural Network for game events prediction.