MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

7^a Lista de Exercícios - Resolução dos Exercícios

1-) Seja:

$$f: \ \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 0, & x \leq 0 \\ \exp(-1/x), & x > 0 \end{cases}$$

Mostre que f é de classe C^{∞} e não é analítica.

Demonstração:

O fato de f não ser analítica decorre do princípio do prolongamento analítico (vide resolução da lista #5); com efeito, a função identicamente nula $\mathbb{R} \to \mathbb{R}$ é analítica, e coincide com f em $(-\infty,0]$ (que é um subconjunto de \mathbb{R} que tem um ponto de acumulação); assim, se f fosse analítica, deveria coincidir com a função identicamente nula em \mathbb{R} , o que não é o caso. Mostremos que f é \mathbb{C}^{∞} .

Afirmo que, para todo $n \in \mathbb{Z}_+$, f é derivável até ordem n, e existe uma função polinomial P_n tal que $f^{(n)}(x) = P_n(1/x) \exp(-1/x)$ se x > 0 e $f^{(n)}(x) = 0$ se $x \le 0$. Provemos tal afirmação por indução sobre n.

- (i) Para n=0, a afirmação é trivial, pondo $P_0(x)=cte.=1$.
- (ii) Passo de indução: suponha que, dado $k \in \mathbb{N}$, a afirmação valha para n = k; provemos que a mesma também será verdadeira para n = k + 1. Com efeito, trivialmente segue-se que (1) $f^{(k)}$ é derivável em $(-\infty,0)$ e sua derivada aí se anula identicamente; (2) pela hipótese de indução, pela regra de Leibnitz e pela regra da cadeia, $f^{(k)}$ é derivável em $(0,+\infty)$ e sua derivada aí é dada por $x \mapsto -\frac{1}{x^2} P_k'(1/x) \exp(-1/x) + \frac{1}{x^2} P_k(1/x) \exp(-1/x) = P_{k+1}(1/x) \exp(-1/x)$, onde $P_{k+1}(x) \doteq -x^2 P_k'(x) + x^2 P_k(x)$. Resta mostrar que $f^{(k)}$ é derivável no zero e sua derivada aí se anula. Trivialmente, a derivada à esquerda de $f^{(k)}$ no zero existe e vale zero; verifiquemos que a derivada à direita no zero também existe e vale zero. De fato, para todo x > 0, tem-se:

$$\frac{f^{(k)}(x) - f^{(k)}(0)}{x} = \frac{P_k(1/x)\exp(-1/x)}{x} = P(1/x)\exp(-1/x),$$

onde $P(x) \doteq xP_k(x)$.

A tese decorre, então, do seguinte:

Lema: Seja P uma função polinomial; então $\exists \lim_{x\to 0^+} P(1/x) \exp(-1/x) = 0$.

Demonstração do Lema:

Por indução sobre o grau n de P.

- (i) Se n=0, a afirmação é trivial, pois $\lim_{x\to 0^+} \exp(-1/x) = \lim_{x\to -\infty} \exp(x) = 0$.
- (ii) Passo de indução: suponha que, dado $k \in \mathbb{N}$, a afirmação valha para n=k; provemos que a mesma também será verdadeira para n=k+1. Seja P uma função polinomial de grau k+1. Como $k+1\geqslant 1$, tem-se: $\lim_{x\to 0^+}|P(1/x)|=\lim_{x\to +\infty}|P(1/x)|=+\infty$, e $\lim_{x\to 0^+}\exp(1/x)=\lim_{x\to +\infty}\exp(x)=+\infty$. Pela hipótese de indução, $\exists \lim_{x\to 0^+}P'(1/x)\exp(-1/x)=0$ (pois P' é função polinomial de grau k), i.e. $\lim_{x\to 0^+}\frac{P'(1/x)}{\exp(1/x)}=0$. Assim, pela segunda regra de l'Hôpital (vide lista #5), segue-se que $\exists \lim_{x\to 0^+}\frac{P(1/x)}{\exp(1/x)}=0$.

2-) Sejam $a, b \in \mathbb{R}$, a < b. Mostre que existe $\phi : \mathbb{R} \to \mathbb{R}$ de classe C^{∞} tal que: (i) $0 \leqslant \phi \leqslant 1$; (ii) $\phi \equiv 0$ em $(-\infty, a]$ e $\phi \equiv 1$ em $[b, +\infty)$.

DEMONSTRAÇÃO: Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida na questão anterior. Então, pela regra da cadeia, são de classe C^∞ as funções $\mathbb{R} \to \mathbb{R}$ dadas por $x \mapsto f(x-a)$ e $x \mapsto f(b-x)$; portanto, o produto destas duas funções, $g: \mathbb{R} \to \mathbb{R}$, também é de classe C^∞ . Além disso, como f se anula em $(-\infty, 0]$ e é estritamente positiva em $(0, +\infty)$, segue-se que g se anula em $(-\infty, a]$ e $[b, +\infty)$, e é estritamente positiva em (a, b). Agora basta tomar $K \doteq \int_a^b g$, e $\phi: \mathbb{R} \to \mathbb{R}$ dada por $x \mapsto \frac{1}{K} \int_a^x g$.

Exercícios do Elonzão:

15-) Seja $(f_n)_{n\in\mathbb{N}}$ uma seqüência de funções uniformemente contínuas $X\subset\mathbb{R}\to\mathbb{R}$, uniformemente convergente em X para $f:X\to\mathbb{R}$. Então f é uniformemente contínua em X.

DEMONSTRAÇÃO:

Seja $\epsilon > 0$. Por hipótese, existe $n_0 \in \mathbb{N}$ tal que $(\forall n \geqslant n_0, \forall x \in X) |f_n(x) - f(x)| < \epsilon/3$. Também por hipótese, f_{n_0} é uniformemente contínua, logo existe $\delta > 0$ tal que $x, y \in X, |x - y| < \delta \Rightarrow |f_{n_0}(x) - f_{n_0}(y)| < \epsilon/3$. Assim, pela desigualdade triangular, $x, y \in X, |x - y| < \delta \Rightarrow |f(x) - f(y)| \leqslant |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(y)| + |f_{n_0}(y) - f(y)| < \epsilon$.

23-) Seja $(f_n)_{n\in\mathbb{N}}$ uma seqüência de funções uniformemente contínuas $X\subset\mathbb{R}\to\mathbb{R}$, uniformemente convergente em X para $f:X\to\mathbb{R}$. Sejam $a\in X$ e $(x_n)_{n\in\mathbb{N}}$ uma seqüência em X tal que $x_n\to a$. Então $f_n(x_n)\to f(a)$.

Demonstração: Seja $\epsilon > 0$. Por hipótese, existe $n_0 \in \mathbb{N}$ tal que $(\forall n \geqslant n_0, \forall x \in X) |f_n(x) - f(x)| < \epsilon/2$. Além disso, por ser o limite de uma seqüência de funções contínuas uniformemente convergente, f é contínua, logo $f(x_n) \to f(a)$; portanto, existe $n_1 \in \mathbb{N}$ tal que $(\forall n \geqslant n_1) |f(x_n) - f(a)| < \epsilon/2$. Usando a desigualdade triangular, conclui-se que, para $n \geqslant \max\{n_0, n_1\}$, tem-se $|f_n(x_n) - f(a)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(a)| < \epsilon$.

37-) Dada uma série de potências $\sum a_n x^n$, sejam c > 0 e M > 0 tais que $(\forall n \in \mathbb{N}) |a_n c^n| \leq M$. Então (-c,c) está contido no intervalo de convergência da série considerada.

Demonstração: Seja R o raio de convergência da série em questão. Se $R=+\infty$, não há o que fazer; suponha $R<+\infty$. Tem-se $R=\frac{1}{\overline{\lim}\ \sqrt[n]{|a_n|}}$. Por hipótese, para todo $n\in\mathbb{N},\ \sqrt[n]{|a_n|}c\leqslant\sqrt[n]{M}$, portanto $\overline{\lim}\ \sqrt[n]{|a_n|}c\leqslant\overline{\lim}\ \sqrt[n]{M}$, i.e. $\frac{c}{R}\leqslant 1$, donde $c\leqslant R$.

42-) Suponha $a_n \ge 0$ para todo n, que $f(x) = \sum a_n x^n$ no intervalo (-r,r), e que $\lim_{x \to r^-} f(x) = L$. Então $\sum a_n r^n = L$.

DEMONSTRAÇÃO: Como $a_n \geqslant 0$, para todo $n \in \mathbb{N}$, a função $x \mapsto a_n x^n$ é crescente em [0,r), portanto f é crescente em [0,r), donde $L = \lim_{x \to r^-} f(x) = \sup\{f(x) \mid x \in [0,r)\}$. Assim, para todo $x \in [0,r)$, a seqüência das reduzidas $\{s_n(x)\}_{n \in \mathbb{N}}$ de $\sum a_n x^n$ é limitada superiormente por L; ou seja, dados $n \in \mathbb{N}$ e $x \in [0,r)$, tem-se $s_n(x) = \sum_{k=0}^n a_k x^k \leqslant L$. Como $s_n : \mathbb{R} \to \mathbb{R}$ é contínua, conclui-se, tomando-se o limite para $x \to r^-$, que $\sum_{k=0}^n a_k r^k \leqslant L$, para todo $n \in \mathbb{N}$. Ou seja, a série $\sum a_n r^n$ é de termos positivos e limitada, portanto convergente, e sua soma é menor ou igual a L. Para verificar que a sua soma é L, basta aplicar o teorema de Abel: segue-se do referido teorema que, pelo fato de a série $\sum a_n x^n$ ser convergente em x = r, a mesma é uniformemente convergente em [0,r], portanto sua soma deve ser uma função contínua no referido intervalo, donde $\sum a_n r^n = \lim_{x \to r} f(x) = L$.