NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 8, Lecture 4

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

- * To multiply matrices A and B, need compatible dimensions
 - * A of dimension m x n, B of dimension n x p
 - * AB has dimension mp
- * Each entry in AB take O(n) steps to compute
 - * AB[i,j] is A[i,1]B[1,j] + A[i,2]B[2,j] + ... + A[i,n]B[n,j]
- * Overall, computing AB is O(mnp)

- * Matrix multiplication is associative
 - * ABC = (AB)C = A(BC)
 - * Bracketing does not change the answer ...
 - * ... but can affect the complexity of computing it!

- * Suppose dimensions are A[1,100], B[100,1], C[1,100]
 - * Computing A(BC)
 - * BC is [100,100], $100 \times 1 \times 100 = 10000$ steps
 - * A(BC) is [1,100],1 x 100 x 100 = 10000 steps
 - * Computing (AB)C
 - * AB is [1,1], 1 x 100 x 1 = 100 steps
 - * (AB)C is [1,100], $1 \times 1 \times 100 = 100$ steps
- * A(BC) takes 20000 steps, (AB)C takes 200 steps!

- * Given matrices M_1 , M_2 ,..., M_n of dimensions $[r_1,c_1]$, $[r_2,c_2]$, ..., $[r_n,c_n]$
 - * Dimensions match, so M₁ x M₂ x ...x M_n can be computed
 - * $c_i = r_{i+1}$ for $1 \le i < n$
- * Find an optimal order to compute the product
 - * That is, bracket the expression optimally

Inductive structure

- * Product to be computed: M₁ x M₂ x ...x M_n
- * Final step would have combined two subproducts
 - * $(M_1 \times M_2 \times ... \times M_k) \times (M_{k+1} \times M_{k+2} \times ... \times M_n)$, for some $1 \le k < n$
 - * First factor has dimension (r₁,c_k), second (r_{k+1},c_n)
 - * Final multiplication step costs O(r₁c_kc_n)
 - * Add cost of computing the two factors

Subproblems

- * Final step is $(M_1 \times M_2 \times ... \times M_k) \times (M_{k+1} \times M_{k+2} \times ... \times M_n)$
- * Subproblems are $(M_1 \times M_2 \times ... \times M_k)$ and $(M_{k+1} \times M_{k+2} \times ... \times M_n)$
- * Total cost is $Cost(M_1 \times M_2 \times ... \times M_k) + Cost(M_{k+1} \times M_{k+2} \times ... \times M_n) + r_1 c_k c_n$
- * Which k should we choose?
- * No idea! Try them all and choose the minimum!

Inductive formulation

```
* Cost(M<sub>1</sub> x M<sub>2</sub> x ...x M<sub>n</sub>) = minimum value, for 1 \le k < n, of Cost(M<sub>1</sub> x M<sub>2</sub> x ...x M<sub>k</sub>) + Cost(M<sub>k+1</sub> x M<sub>k+2</sub> x ...x M<sub>n</sub>) + r<sub>1</sub>C<sub>k</sub>C<sub>n</sub>
```

* When we compute $Cost(M_1 \times M_2 \times ... \times M_k)$ we will get subproblems of the form $M_j \times M_{j+1} \times ... \times M_k$

In general ...

```
* Cost(M<sub>i</sub> x M<sub>i+1</sub> x ...x M<sub>j</sub>) = minimum value, for i \le k < j, of Cost(M<sub>i</sub> x M<sub>i+1</sub> x ...x M<sub>k</sub>) + Cost(M<sub>k+1</sub> x M<sub>k+2</sub> x ...x M<sub>j</sub>) + r_i C_k C_j
```

* Write Cost(i,j) to denote Cost(Mi x Mi+1 x ...x Mj)

Final equation

- * Cost(i,i) = 0 No multiplication to be done
- * Cost(i,j) = min over $i \le k < j$ [Cost(i,k) + Cost(k+1,j) + $r_i c_k c_j$]
- * Note that we only require Cost(i,j) when i ≤ j

Subproblem dependency

- * Cost(i,j) depends on Cost(i,k), Cost(k+1,j) for all i ≤ k < j</p>
- * Can have O(n) dependent values, unlike LCS, LCW
- * Start with main diagonal and fill matrix by columns, bottom to top, left to right

MMCost(M1,...,Mn), DP

```
def MMCost(R,C):
\# R[0..n-1], C[0..n-1] have row/column sizes
for r in range(len(R)):
  MMC[r][r] = 0
for c in range(1,len(R)): \# c = 1,2,...n-1
  for r in range(c-1,-1,-1):# r = c,c-1,...,0
    MMC[r][c] = infinity # Something large
    for k in range(r,c) # k = r,r+1,...,c-1
      subprob = MMC[r][k] + MMC[k][c] +
                               R[r]C[k]C[c]
      if subprob < MMC[r][c]:
        MMC[r][c] = subprob
```

Complexity

- * As with LCS, we to fill an O(n2) size table
- * However, filling MMCost[i][j] could require examining O(n) intermediate values
- * Hence, overall complexity is O(n³)