课程代号: 100180121 北京理工大学 2019-2020 学年第一学期

物理学院《大学物理 AII》期末考试题 A 卷

2020年1月15日 14:00-16:00

班级_	学号		<u></u>	姓名		总分		
任课教	如师姓名							
			模均	央三 电磁气	学(63 分)			
	填空题	空题 选择题		1 计算 2	计算3	计算 4	合计	复核人
得分								
				-		•		
			模块	四 近代物	理(37分)	T	ı	
	填空	ア ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ ラ	先择题	计算 1	计算 2	合计	复核人	
得	分							
- · //·	i量 <i>m</i> _e =9			块三 电磁气		$\frac{1}{2} m_{\rm p} = 1.67$		
一、墳	[空题(共	21 分,每	乒题3分,	将答案写在	试卷指定的	り横线 "	"上	<u>:</u>)
1. (3	分)如图原	听示,空门	可内电场3	虽度分量为E	$a_x = b\sqrt{x}$, B	$E_y = 0$,	<i>y</i>	
$E_z = 0$,若正力	方体边长	:为a,贝	训该正方体	内的电荷	电量为	0 a	
		o				,		a a
				在半径为 R 自				
				:电势为		,	过 O 点	的 ^Q (o
)面的面积;				↓ # :上目	/ ; }> ↓ □	등 (리)	
				2R 的导体球 分别为 P。和				R_1
				分别为 R_2 和 Q 的点电荷				R ₃ A
	电量为			° ≈ H1W.□H	2 21 14 CAS 20	12 12 12 N	145.45717	B 22

- 4. (3 分) 在真空中, 若一均匀电场中的电场能量密度与 0.50T 的均匀磁场中的磁场能量 密度相等,该电场的电场强度为
- 5. (3分)一带电粒子,垂直射入到均匀磁场中,如果粒子质量增大到2倍,入射速度 增大到2倍,磁场的磁感应强度增大到4倍,则通过粒子运动轨道所包围范围内的磁 通量增大到原来的倍。
- 6. (3分)一根无限长的载流直导线被弯成图示形状。圆形部分的直径为 10cm,且其圆心 O 到直线部分的垂直距离为 r。为使圆心 O 处的磁感应 强度为零,r=。

7. (3分)如图,一带电量为q的点电荷,以匀角速度 ω 作半径为R的圆周 运动。设 t=0时,点电荷所在的坐标为 (R,0),以 \vec{i},\vec{j} 分别表示 x,y轴上 的单位矢量,则圆心处 O 点的位移电流密度矢量为

二、选择题 (单选, 共9分, 每题3分, 将答案写在试卷上指定的方括号"[]"内)

1.(3分) 带正电粒子通过点电荷0的电场时运动轨迹如图实线所示,虚线为 等势面,设 φ_B 和 φ_A 分别为 B 点和 A 点的电势, 粒子在由 B 到 A 的运动过程中

1

- (A) $\varphi_B > \varphi_A$, 粒子电势能减小; (B) $\varphi_B < \varphi_A$, 粒子电势能减小;
- (C) $\varphi_B > \varphi_A$, 粒子动能减小; (D) $\varphi_B < \varphi_A$, 粒子动能和电势能总量不变。
- 2.(3分)已知两共轴细长螺线管等长,外管线圈半径为n,内管线圈半径为n,匝数分 别为 N_1 、 N_2 ,设它们的自感系数分别为 L_1 、 L_2 。则它们的互感系数为

(A)
$$M = \frac{r_1}{r_2} \sqrt{L_1 L_2}$$
; (B) $M = \frac{r_2}{r_1} \sqrt{L_1 L_2}$; (C) $M = \sqrt{L_1 L_2}$; (D) $M = L_1 L_2$ •

3. (3分) 如图,导体棒 MCN 长度为 L,在均匀磁场 \vec{B} 中绕通过 C点的垂直于棒长且沿磁场方向的轴 OO 转动(角速度 $\vec{\omega}$ 与 \vec{B} 同向), CN 的长度为 L/3,则 C, N 两点的电动势大小是

- (A) $B\omega L^2/18$; (B) $B\omega L^2/9$; (C) $B\omega L^2/2$; (D) 0.

三、计算题(共33分,将答案写在试卷空白处)

1. (9分) 如图所示,同轴电缆由半径为 R_1 的导线和半径为 R_3 的导体圆筒构成,在内、外导体间用两层电介质隔离,分界面的半径为 R_2 ,其介电常数分别为 ϵ_1 和 ϵ_2 。试求:

- (1) ει/ε₂ 为何值时两层电介质中最大电场强度相等?
- (2) 满足(1) 情况下的电缆单位长度的电容。

2. (9分) 如图所示,在均匀磁场中,半径为 R 的均匀带电薄圆盘以角速度 ω 绕中心轴转动,圆盘电荷面密度为 σ 。求它的磁矩及所受的磁力矩。

- 3. (9 分) 大线圈的半径为 a,共有 N 匝。大线圈与小线圈同轴放置,小线圈面积为 S (小线圈的面积远小于大线圈的面积)。小线圈沿大线圈的轴线运动,如图所示。已知 t 时刻,在离大线圈中心 O 为 x 时,小线圈的速度大小为 v。试求:
- (1) 此时两个线圈间的互感系数;
- (2) 若小线圈通有电流 I,忽略小线圈中的电流变化及大线圈的自感,则大线圈中感应电动势大小。

4. $(6 \, f)$ 半径为 R 的超导圆环,电阻为零,自感为 L,放在磁感强度为 \vec{B} 的均匀磁场中,环的轴线(垂直纸面)与 \vec{B} 垂直(如图 a),环内没有电流。现将这环绕垂直于 \vec{B} 的直径(图 a 中纸面内虚线)旋转 90° ,使它的轴线平行于 \vec{B} (如图 b)。试求:

- (1)环内的电流;
- (2)外力做的功。

模块四 近代物埋(37 分)
一、填空题(共 15 分,每题 3 分,将答案写在试卷指定的横线""上)
1. (3 分) 匀质细棒静止时的质量为 m_0 ,长度为 l_0 ,当它沿棒长方向作高速的匀速直线
运动时,测得它的长为 l ,则该棒的速度 v =,该棒所具有的动能 E
=
2. (3 分) 一个静止的物体自发分裂成两部分,静止质量分别为 3kg 和 5.33kg,已知前
一部分的速度为 0.8c (c 为真空中的光速),则分裂前原物体的静止质量为
kg 。 试 说 明 分 裂 过 程 遵 守 的 物 理 原 理
。 3. (3分)用波长为0.2μm的单色光照射一铜球,铜球放出电子。若将铜球充电,电势至
少充到V时,再用此种单色光照射,铜球将不再放出电子。已知铜
的逸出功为4.47eV。
4. $(3 分)$ 在一次康普顿散射中,入射光子传递给静止电子的最大能量为 E_k ,电子的静
止质量为 m_0 ,入射光子的能量为 m_0 。
5. (3 分) 波长 λ = 500nm的光沿 x 轴正方向传播,光的波长不确定量 $\Delta \lambda$ = 10^{-4} nm,则
利用不确定关系式 $\Delta x \Delta p_x \ge h$,可得光子的 x 坐标的不确定量至少为
o
二、选择题(共6分,单选,每题3分,将答案写在试卷上指定的方括号"[]"内》
1. (3分)在某个位置找到某一频率的光子的概率
(A) 正比于光强; (B) 随着光的波长减小而增大;
(C) 正比于电场强度; (D) 正比于该光子能量。
2. (3 分) 设氢原子处于状态 $\psi_{21-1} = R_{21}(r)Y_{1-1}(\theta,\varphi)$,此时角动量和它在 z 方向的投影
值有确定值,它们分别是
(A) \hbar , $-\hbar$; (B) $\sqrt{2}\hbar$, $-\hbar$;

三、计算题(共 16 分,将答案写在试卷空白处)

(C) $\sqrt{6}\hbar$, $2\hbar$;

(D) 以上都不对。

[

]

1. (10分) 粒子在一维势场中运动, 其束缚定态波函数为

$$\psi(x) = \begin{cases} A(a^2 - x^2), & |x| \le a \\ 0, & |x| > a \end{cases}$$

若已知x=0处为势能零点。试求

- (1) 归一化常数A;
- (2) 势能零点处的概率密度;
- (3) 势函数 U(x)。(一维定态薛定谔方程: $-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + U\psi = E\psi$)

- 2. $(6\, \%)$ 一飞船相对于地球以 0.80c 的速度飞行,光脉冲从船尾发出(事件 1)传到船头(事件 2),飞船上观察者测得飞船长为 90m。
- 试求(1)飞船上的钟测得这两个事件的时间间隔;
 - (2) 地面观察者测得这两个事件的空间间隔和时间间隔。