ML_Model_Evaluation_&_Analysis_Cheat_Sheet

August 4, 2025

1 Model Evaluation & Analysis Cheat Sheet

1.1 General Data Understanding (Use for all models)

- Mean, Median, Mode
- Standard Deviation, Variance, Coefficient of Variation
- Skewness (data shape)
- SEM (Standard Error of Mean)
- Z-Score Normalization

2 For Regression Models

2.1 Regression Evaluation

Use these when using: - Linear Regression - Decision Tree Regressor - Random Forest Regressor - SVR, XGBoost Regressor

2.1.1 Key Steps:

- Predict using: y = mx + c
- Check: R² score (how well model fits)
- Compute:
 - MAE (Mean Absolute Error)
 - MSE (Mean Squared Error)
 - RMSE (Root MSE)
 - SSR / SSE / SST
- Bias vs Variance:
 - .score() on train and test
- Plot Regression Line (matplotlib)

3 For Classification Models

3.1 Classification Evaluation

Use these when using: - Logistic Regression - Decision Tree Classifier - Random Forest Classifier - SVM, KNN, Naive Bayes, etc.

3.1.1 Key Metrics:

• Confusion Matrix

- Accuracy
- Precision
- Recall
- F1 Score
- ROC AUC Score (optional for binary)
- Bias vs Variance:
 - .score() on train and test

4 What to Use When (Table)

Step	Regression	Classification	Required?
Descriptive Stats			Always
Spread (std, var, CV)		Sometimes	Optional
Skew, SEM, Z-score			Recommended
R^2 , SSR, SSE, SST			Required
Confusion Matrix			Required
Accuracy, Precision, F1			Required
MSE, RMSE, MAE			Required
Bias vs Variance			Always

Tip

- For small datasets, always inspect visually
- Use .corr() to detect multicollinearity
- High bias = underfitting, High variance = overfitting
- Use learning curves to visually see bias vs variance

5 REGRESSION: Predicting Salary from Experience

5.1 Descriptive Statistics

[3]: print(df_reg.describe())

```
YearsExperience Salary
count 10.00000 10.000000
mean 5.50000 60500.000000
std 3.02765 17392.527131
```

```
      min
      1.00000
      35000.000000

      25%
      3.25000
      46250.000000

      50%
      5.50000
      62500.000000

      75%
      7.75000
      73750.000000

      max
      10.00000
      85000.000000
```

5.2 Spread (std, var, CV)

```
[4]: print("Standard Deviation:\n", df_reg.std())
print("Variance:\n", df_reg.var())
print("Coefficient of Variation:\n", df_reg.std() / df_reg.mean())
```

Standard Deviation:

YearsExperience 3.027650 Salary 17392.527131

dtype: float64
Variance:

YearsExperience 9.166667e+00 Salary 3.025000e+08

dtype: float64

Coefficient of Variation:
YearsExperience 0.550482
Salary 0.287480

dtype: float64

5.3 Skewness, SEM, Z-score

```
[5]: from scipy import stats

print("Skewness:\n", df_reg.skew())
print("SEM:\n", df_reg.sem())
print("Z-scores:\n", df_reg.apply(stats.zscore))
```

Skewness:

YearsExperience 0.000000 Salary -0.104538

dtype: float64

SEM:

YearsExperience 0.957427 Salary 5500.000000

dtype: float64

Z-scores:

YearsExperience Salary
0 -1.566699 -1.545455
1 -1.218544 -1.242424
2 -0.870388 -0.939394
3 -0.522233 -0.636364
4 -0.174078 -0.030303

```
5 0.174078 0.272727
6 0.522233 0.575758
7 0.870388 0.878788
8 1.218544 1.181818
9 1.566699 1.484848
```

5.4 Train Linear Regression

$5.5 R^2$, SSR, SSE, SST

```
[7]: import numpy as np

y_mean = np.mean(y_test)
SSR = np.sum((y_pred - y_mean)**2)
SSE = np.sum((y_test - y_pred)**2)
SST = SSR + SSE
print("R2:", model.score(X_test, y_test))
print("SSR:", SSR, "SSE:", SSE, "SST:", SST)
```

 $R^2: 0.9990129867717004$

SSR: 805962024.3757434 SSE: 789610.5826397156 SST: 806751634.9583831

5.6 MAE, MSE, RMSE

```
[8]: from sklearn.metrics import mean_absolute_error, mean_squared_error

print("MAE:", mean_absolute_error(y_test, y_pred))
print("MSE:", mean_squared_error(y_test, y_pred))
print("RMSE:", np.sqrt(mean_squared_error(y_test, y_pred)))
```

MAE: 625.0

MSE: 394805.2913198578 RMSE: 628.3353334962612

5.7 Bias vs Variance

```
[9]: print("Train R<sup>2</sup>:", model.score(X_train, y_train))
print("Test R<sup>2</sup>:", model.score(X_test, y_test))
```

Train R^2 : 0.9918138491729745 Test R^2 : 0.9990129867717004

5.8 Linear Regression – Result Explanation & Evaluation

Step 1: Descriptive Stats

Metric	YearsExperience	Salary
Mean	_	— (use df.mean())
Std Dev	3.03	17,393
Variance	9.17	$3.02~\mathrm{Cr}$
CV	0.55	0.29

Criteria:

- Std Dev tells spread: smaller = tight data
- CV < 0.5 = consistent data
- Variance is high for salary due to unit size ()

Step 2: Skewness

Feature	Skewness
	$0.00 \rightarrow \text{Normal}$
Salary	$-0.10 \rightarrow \text{Slightly left-skewed}$

Criteria:

- 0 = normal (best)
- 0 = right-skew (some high outliers)
- < 0 =left-skew (some low outliers)

Step 3: Standard Error of Mean (SEM)

Feature	SEM
Salary	5,500

Criteria:

- SEM < 5% of mean \rightarrow reliable
- Lower SEM \rightarrow mean is stable

Step 4: Z-Scores

Used to normalize and detect outliers.

Example	Z-Score
Salary $85,000 \rightarrow +1.48 \text{ std above mean}$	
Salary $35,000 \rightarrow -1.55$ std below mean	

Criteria:

- $Z = 0 \rightarrow at mean$
- Z > 2 or $< -2 \rightarrow$ potential outlier

Step 5: Model Fit $-R^2$, SSR, SSE, SST

Metric	Value	Meaning
R^2	0.999	99.9% of salary explained by model
SSR	$80.6 \mathrm{Cr}$	Variation explained
SSE	$0.007 \mathrm{\ Cr\ (low)}$	Small error
SST	$80.67~\mathrm{Cr}$	Total variation

Criteria:

- $R^2 > 0.9 = excellent$
- $SSR \gg SSE = great fit$
- SSE near 0 = low error

Step 6: Errors - MAE, MSE, RMSE

Metric	Value	Meaning
MAE	625	Avg absolute error
MSE	394,805	Avg squared error
RMSE	628	Similar to MAE

Criteria:

- Smaller values = better
- RMSE & MAE within small range \rightarrow no large outliers

Step 7: Bias vs Variance

Metric	Value	Meaning
Train R ² Test R ²		High = low bias High = low variance

Criteria:

- Train Test \rightarrow balanced model
- Train » Test \rightarrow overfitting
- Train & Test both low \rightarrow underfitting

Final Conclusion

Checkpoint	Result
${R^2 \text{ near } 1}$ Very low MAE/RMSE	Excellent model Accurate predictions
CV < 0.5 for salary	Stable data
Balanced train/test	No overfitting

Your regression model is performing perfectly on this dataset!

6 Tips

- Use this analysis after training any regression model
- Compare with other models like Decision Tree Regressor
- Add noise to test robustness

```
[]: Criteria Summary Table
     Metric
                     Good Value
                                         Problem Sign
     Std Dev / CV
                           Low CV (< 0.5)
                                                    High spread
                                           > \pm 1 = skewed
     Skewness
                       Close to 0
                                        > 10% = unstable
     SEM
                 < 5% of mean
     \mathbb{R}^2
                > 0.9
                               < 0.7 = weak fit
     MAE / RMSE
                         Low
                                      High error
     Train vs Test R<sup>2</sup>
                                Close values
                                                      Big gap = overfit
```

7 Classification: Predicting Pass/Fail

```
[10]: df_class = pd.DataFrame({
    'StudyHours': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    'Attendance': [50, 55, 60, 65, 70, 75, 80, 85, 90, 95],
    'Pass': [0, 0, 0, 0, 1, 1, 1, 1, 1]
})
```

7.1 Descriptive Statistics

[11]: print(df_class.describe())

```
StudyHours Attendance Pass count 10.00000 10.000000 10.000000 mean 5.50000 72.500000 0.600000 std 3.02765 15.138252 0.516398
```

```
min
          1.00000
                     50.000000
                                 0.000000
25%
          3.25000
                     61.250000
                                 0.000000
50%
          5.50000
                     72.500000
                                 1.000000
75%
          7.75000
                     83.750000
                                 1.000000
         10.00000
                     95.000000
                                 1.000000
max
```

7.2 Spread (optional)

```
[12]: print(df_class.std())
print(df_class.var())
```

 StudyHours
 3.027650

 Attendance
 15.138252

 Pass
 0.516398

dtype: float64

StudyHours 9.166667 Attendance 229.166667 Pass 0.266667

dtype: float64

7.3 Skew, SEM, Z-score

```
[13]: print("Skew:\n", df_class.skew())
print("SEM:\n", df_class.sem())
print("Z-score:\n", df_class.apply(stats.zscore))
```

Skew:

StudyHours 0.000000 Attendance 0.000000 Pass -0.484123

dtype: float64

SEM:

StudyHours 0.957427 Attendance 4.787136 Pass 0.163299

dtype: float64

Z-score:

StudyHours Attendance Pass 0 -1.566699 -1.566699 -1.224745 1 -1.218544 -1.218544 -1.224745 2 -0.870388 -0.870388 -1.224745 3 -0.522233 -0.522233 -1.224745 4 -0.174078 -0.174078 0.816497 5 0.174078 0.174078 0.816497 6 0.522233 0.522233 0.816497 7 0.870388 0.870388 0.816497 8 1.218544 1.218544 0.816497 9 1.566699 1.566699 0.816497

7.4 Train Logistic Regression

```
[14]: from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split

X = df_class[['StudyHours', 'Attendance']]
    y = df_class['Pass']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, \( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\
```

7.5 Confusion Matrix

```
[15]: from sklearn.metrics import confusion_matrix
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

Confusion Matrix:
    [[1 0]
    [0 2]]
```

7.6 Accuracy, Precision, Recall, F1

Accuracy: 1.0 Precision: 1.0 Recall: 1.0 F1 Score: 1.0

7.7 Bias vs Variance

```
[17]: print("Train Score:", clf.score(X_train, y_train))
print("Test Score:", clf.score(X_test, y_test))
```

Train Score: 1.0 Test Score: 1.0

7.8 Logistic Regression – Result Explanation & Evaluation

1. Descriptive Statistics

Feature	Mean	Std Dev	Min	25%	50%	75%	Max
StudyHours Attendance Pass		3.03 15.14 0.52	1.0 50 0	0 0	0.0	7.75 83.75 1	10.0 95 1

Criteria:

- Balanced values, no extreme outliers
- Binary target variable (0 = Fail, 1 = Pass)

2. Spread Measures (Optional)

Feature	Variance	Coefficient of Variation (CV)
StudyHours	9.17	0.55 (Moderate spread)
Attendance	229.17	0.21 (Low spread = stable)
Pass	0.27	0.86 (Binary target variable)

 $CV < 0.5 \rightarrow stable$

 $\mathrm{CV} > 0.5 \rightarrow \mathrm{some} \ \mathrm{variability}$

3. Skewness, SEM, Z-score

Skewness

Feature	Skewness	Interpretation
StudyHours	0.00	Normal distribution
Attendance	0.00	Normal distribution
Pass	-0.48	Slight left skew

Skew between -1 and +1 \rightarrow Acceptable

SEM (Standard Error of Mean)

Feature	SEM	Interpretation
· ·		$\begin{array}{c} \text{Low} \rightarrow \text{mean is stable} \\ \text{Stable mean} \\ \text{Target class is moderately stable} \end{array}$

 $\mathrm{SEM} < 5\text{--}10\%$ of mean is reliable

Z-score

Example: | StudyHours = $10 \rightarrow Z = +1.57$

| Pass = $0 \rightarrow Z = -1.22$ | Pass = $1 \rightarrow Z = +0.82$

Helps detect outliers and normalize data.

4. Model Performance – Confusion Matrix

[[1 0] [0 2]]

	Predicted 0	Predicted 1
Actual 0 (Fail)	1	0
Actual 1 (Pass)	0	2

100% correct predictions \rightarrow perfect model (on this test set)

** 5. Metrics – Accuracy, Precision, Recall, F1**

Metric	Value	Meaning
Accuracy	1.0	All predictions correct
Precision	1.0	No false positives
Recall	1.0	No false negatives
F1 Score	1.0	Perfect balance

Criteria for Classification Metrics

Metric	Good Value	Issue If
Accuracy	> 0.9	Low with class imbalance
Precision	> 0.8	False positives increase
Recall	> 0.8	False negatives increase
F1 Score	\sim Precision & Recall	Too low $=$ imbalance

6. Bias vs Variance

Metric	Score	Meaning
Train Score Test Score	1.0 1.0	Model fits training data perfectly Generalizes perfectly (for now)

Train Test = No overfitting

Final Conclusion

Observation	Verdict
Descriptive stats balanced	Good distribution

Observation	Verdict
SEM and Skew in control Model Metrics = All 1.0 Bias = Variance	Reliable stats Perfect classification No overfitting

Tip: Add more realistic or confusing samples to test robustness.

Recommendation

Use this as your checklist:

- Descriptive stats
- Skew, SEM, Z-score
- Confusion matrix
- Accuracy, precision, recall, F1
- Train vs test score

Then decide if your model is:

- Underfitting
- Overfitting
- Or well generalized