ISC 5228

Markov Chain Monte Carlo

In-class Assignment

Due: In 20 minutes

The (Euclidean) distance between two points R_i and R_j in 3D is 1

$$R_{ij} = |\mathbf{R}_i - \mathbf{R}_j| = \sqrt{(\mathbf{R}_{i,x} - \mathbf{R}_{j,x})^2 + (\mathbf{R}_{i,y} - \mathbf{R}_{j,y})^2 + (\mathbf{R}_{i,z} - \mathbf{R}_{j,z})^2}$$

I want to find the average distance between two points inside a sphere of unit radius.

- (i) Describe how you would sample $N \approx 1000$ random points inside the sphere.
- (ii) What are the theoretical maximum and minimum values that R_{ij} can take?
- (iii) Imagine what the PDF of R_{ij} might look like?
- (iv) Consider every pair of points in the sample and compute the corresponding distance. What are the maximum, minimum, and average values of R_{ij} in the sample?²
- (v) One way to characterize the error in the estimated average is to compute the standard error. This is given by the standard deviation divided by the square-root of the number of samples.

 $^{^{1}}$ In numpy this can be computed using np.linalg.norm(Ri, Rj), where Ri and Rj are arrays with three elements.

²This part is optional; The true answer is 36/35.