Iron Kaggle Mini Project

Predicting House Prices Using Machine Learning Models

Team Ravenclaw:

Abhi, Debora, Emilia, & Zhoubin 21.03.2025

Focus of Analysis

- Primary Objective
 - Experimenting with different models to predict house prices
- Secondary Focus
 - Explore properties valued \$650K and above for deeper insights
- Target Variable
 - price: The sale price of the house is the central target measure

Key Features in the Dataset

- Unique Identifier
 - Unique ID for each house as id
- Temporal Data
 - Sale date of the house as date
- Target Variable
 - Sale price of the house (prediction target) as price
- Property Characteristics
 - o **bedrooms**: Number of bedrooms
 - bathrooms: Number of bathrooms per bedroom
 - o sqft_living: Interior living space (sq. ft.)
 - o sqft_lot: Land space (sq. ft.)
 - floors: Number of floors
 - waterfront: Whether the house has a waterfront view.
 - o view: Number of times the house was viewed
 - o condition: Overall condition of the house
 - o grade: Overall grade based on King County grading system

- **Timeframe**: May 2014 to May 2015 (one-year data)
- Location: King County, including Seattle
- Size: 21 columns, 20K+ rows;

Additional Features

Structural Details

- sqft_above: Square footage excluding the basement
- sqft_basement: Square footage of the basement
- o **yr_built**: Year the house was built
- yr_renovated: Year the house was renovated

Location Data

- o **zipcode**: ZIP code area
- lat: Latitude coordinate
- o **long**: Longitude coordinate

Renovation Indicators

- o sqft_living15: Living room area in 2015 (implies renovations)
- o sqft_lot15: Lot size area in 2015 (implies renovations)

EDA and Data Clean up

- 21613 rows and 21 columns
- 1 object (date) and 20 float/int columns
- Clean dataset by default (no NaN values, no empty spaces)
- High correlation (> 0.5) between price and the following features:

```
    sqft_living 0.702
    grade 0.667
    sqft_above 0.606
```

sqft_living15 0.585

o bathrooms 0.525

Baseline Models

No feature engineering, only dropped: columns=["id", "date"]

How can we improve the models?

Multicollinearity

Feature Engineering Scenarios

- Removing the outliers using quartile measures
- Adding a house age feature and removing yr renovated

```
o df["age"] = 2014 - df["yr_built"]
o df.drop(columns=["yr built", inplace=True)
```

Adding a binary feature was renovated with 0/1 values

```
o df["was_renovated"] = (df["yr_renovated"] > 0).astype(int)
o df.drop(columns=["yr renovated", inplace=True)
```

Selecting a subset of top 10 most influential features

```
features = ['sqft_living', 'grade', 'sqft_above', 'sqft_living15',
    'bathrooms', 'view', 'sqft_basement', 'bedrooms',
    'lat', 'waterfront']
```

One-hot encode categorical features

```
o features = pd.get_dummies(features, columns=["zipcode"], drop_first=True)
```

Feature Engineering

- **age**: 2014 year_built
- total_rooms = bedrooms + bathrooms
- is renovated or not
- dropped: sqft_above,sqft_living15, sqft_lot15

May be just train with numerical columns?

Benchmark of 7 Baseline Models

	MAE	RMSE	R²
Linear Regression	127493.3	212539.5	0.701
Lasso Regression	127493.3	212539.6	0.701
Ridge Regression	127491.4	212540.1	0.701
Decision Tree	103550.5	206398.9	0.718
XGBoost	100812.0	190203.0	0.761
KNN Regressor	93170.4	182449.3	0.780
Random Forest	73092.7	148833.0	0.853

Lasso Regression

- Applied Lasso Regression to numerical variables initially, then included categorical variables.
- All variates contributed to predicting house prices.

Ridge Regression

• Room for improvement, but somewhat accurate.

Influential Features by Random Forest Regressor

Price by Grade (High-value Properties > \$650K)

House Prices w/wo Waterfront

Price vs. Living Space (High-value Properties > \$650K)

KNeighborsRegressor

Baseline

	RMSE (\$)	R ²
n_neighbours=5 (default)	269117.94	0.498329
n_neighbours=10	266571.79	0.507777
n_neighbours=20	270203.56	0.494274
n_neighbours=50	276997.80	0.468521

Price > \$650k

	RMSE (\$)	R ²
n_neighbours=5 (default)	404199.33	0.391227
n_neighbours=10	409527.92	0.375070
n_neighbours=20	418582.92	0.347129
n_neighbours=50	430495.21	0.309441

Benchmark of 7 Models without Price Outliers

	MAE (\$)	RMSE (\$)	R ²
Linear Regression	87328.13	116316.73	0.678946
Lasso Regression	87328.29	116316.263	0.678949
Ridge Regression	87327.40	116314.75	0.678957
Decision Tree	75147.10	108486.97	0.720715
XGBoost	69213.10	96724.81	0.775342
KNeighborsRegressor	125943.00	16320.77	0.367738
Random Forest	53559.07	77638.15	0.856965

Summary

- Baseline and feature engineered models are almost similar in accuracy
- Removing multicollinearity did not improve efficiency
- Lasso performed better in all key metrics compared to Ridge
- **KNR** is not a great model for this dataset
- Random Forest is the best predictor model in terms of R² and RMSE

Thank you for listening!!

Any question?

