Leveraging Lock Contention to Improve Transaction Applications

Cong Yan Alvin Cheung University of Washington

Background

- Database transactions
 - Airline ticket reservation, banking, online shopping...

Background

- Database transactions
 - Airline ticket reservation, banking, online shopping...

"AND TO THINK, JUST THE OTHER DAY I WAS WORRIED ABOUT STRANGERS TOUCHING MY JUNK AT THE AIRPORT."

Background

Database transactions

 Parallelism under high data contention? atomicity and consistency

Concurrency protocols:

Time

- Example transaction: online shopping
 - Alice(A) and Cong(C) buying Echo at the same time

select(Echo)

update(Echo.num)

select(Alice)

update(Alice.bal)

- Example transaction: online shopping
 - Alice(A) and Cong(C) buying Echo at the same time

select(Echo)

update(Echo.num)

select(Alice)

update(Alice.bal)

select(Echo)

update(Echo.num)

select(Cong)

update(Cong.bal)

- Problem: serialization of all transactions
 - Changing the order of queries within transactions shortens lock waiting time
- Other concurrency control protocols:
 OCC, MVCC
 - 2PL is more efficient under high data contention(*)

^{*: &}quot;Staring into the abyss, An Evaluation of Concurrency Control with One-thousand Cores", VLDB-14

select(Cong)

select(Cong)

select(Cong)

More threads...

More threads...

- Manually reordering queries is hard
- QURO: a query-aware compiler
 - Automatically reorders queries in transactions based on data contention
 - Preserves original program semantics

Input: C++ transaction code with embedded SQL queries

Output: C++ code with reordered SQL queries

- Profile the applications
 - Know which queries are likely to access contentious data
 - Calculate the variance of running time for each query

- Analyze application code
 - Reordering preserves program semantics
 - Data dependency among program variables

```
    v1 = select("table1");
    v2 = select("table2", v1);
    update("table1", input);
```

Statement 1 should appear before statement 2

Database constraints (same table, view, foreign key...)

```
    v1 = select("table1");
    v2 = select("table2", v1);
    update("table1", input);
```

Statement 1 should appear before statement 3

- Goal: contentious queries appear as late as possible in transactions
- Constraint: data dependencies & database constraints

- Goal: contentious queries appear as late as possible in transactions
- Constraint: data dependencies & database constraints

Optimization problem!

- Goal: contentious queries appear as late as possible in transactions
- Constraint: data dependencies & database constraints

Optimization problem!

- Formalize into ILP
- Optimizations: reordering long transactions within seconds

Evaluation

- Experiment overview:
 - Benchmarks: TPC-C, TPC-E
 - Throughput: original Vs. reordered implementation (by QURO)
 - Increasing data contention
 - smaller data size
 - more threads

Evaluation

- Benchmark: TPC-C payment transaction
 - changing data size

scaling to more threads

latency: -83%

latency: -70%

Evaluation

- Benchmark: TPC-E trade update transaction
 - changing data size

scaling to more threads

latency: -75%

latency: -66%

Experiments

- Mix of different transactions
 - TPC-C standard mix: 5 types of transactions

Experiments

- More complicated transactions
 - TPC-E trade order and result
 - Each >500 lines of code, >20 queries, complicated logic

"AND TO THINK, JUST THE OTHER DAY I WAS WORRIED ABOUT STRANGERS TOUCHING MY JUNK AT THE AIRPORT,"

"AND TO THINK, JUST THE OTHER DAY I WAS WORRIED ABOUT STRANGERS TOUCHING MY JUNK AT THE AIRPORT."

"AND TO THINK, JUST THE OTHER DAY IN TOUCHING MY JUNK AT THE AIR.

Better black friday!

Conclusion

- The order of query has large impact on transaction performance.
- QURO leverages information about query contention, and automatically reorders the queries.
- Reordered code generated by QURO can improve throughput up to 6.53x, and can be applied to a wide range of applications.
- We are in the process of releasing code (congy@cs.washington.edu).