My neat title here

Figures

Figure 1: World map showing the spatial distribution of the observations extracted from the literature (n = xxx).

Figure 2: Results of the linear regressions between $a_{CDOM}(350)$ and $a_{CDOM}(\lambda)$. (**A**) Determination coefficients (R^2), (**B**) slopes and (**C**) intercepts of the linear regressions. Panels contain the results of 251 linear models, each based on 2321 data points. Note that at $\lambda = 350$ nm, $R^2 = 1$, slope = 1 and intercept = 0.

Figure 3: Boxplots showing the distribution of **(A)** absorption coefficients at 350 nm ($a_{CDOM}(350)$), **(B)** dissolved organic carbon (DOC) and **(C)** the *so-called a**. Y-axis are log-transformed given the wide ranges spanned by the data.

Figure 4: (**A**) Global relationship between absorption at 350 nm $a_{CDOM}(350)$ and dissolved organic carbon. The blue line is the fitted values of a linear model $y = log(x), R^2 = 0.93, p < 0.00001, n = 11562$. (**B**) Barplot showing the determination coefficient (R^2) of the linear relationships between $a_{CDOM}(350)$ and DOC by ecosystems. The dashed horizontal line represents the average of R^2 .

Figure 5: Segmentation analysis performed on the linear relationship between SUVA $_{254}$ and salinity ($R^2=0.74, p<0.00001, n=1841$). Dashed vertical lines represent the identified breakpoints at salinity 8.66 and 26.84.

Figure 6: Principal component analysis showing the linear relationships between selected variables (n = 1841). The total variance explained by the first two principal components is 67.5%.