ESCUELA COLOMBIANA DE INGENIERÍA LÓGICA CALCULATORIA

Taller 03 Semántica

- 1. Para cada una de las siguientes proposiciones, escribir la tabla de verdad y definir la función booleana:
 - p
 - $(p \equiv r)$
 - $((p \to (\neg q)) \to r)$
 - $\bullet \ ((p \to q) \lor ((\neg p) \to (\neg q)))$
 - $(p \to (q \to p))$
 - $\bullet \ ((p \vee r) \wedge (p \to q))$
 - $(\neg((r \to (r \land (p \lor s))) \equiv (\neg((p \to q) \lor (r \land (\neg r))))))$
- 2. Escriba la tabla de verdad de la proposición $((p \lor (q \lor r)) \equiv ((p \lor q) \lor r))$.
- 3. Justifique que la implicación no es asociativa, es decir, que las proposiciones $(p \to (q \to r))$ y $((p \to q) \to r)$ no tienen el mismo significado.
- 4. Escriba la tabla de verdad de la proposición $(((p \to q) \land (\neg true)) \equiv (r \lor q)).$
- 5. Considere un conectivo lógico binario * cuya interpretación está dada por la función Booleana $H_*: B^2 \to B$ definida de la siguiente manera:

$$H_*(F,T) = H_*(T,F) = H_*(T,T) = F$$

 $H_*(F,F) = T$

- Proponga una proposición que defina * en términos de los conectivos lógicos $\{true, false, \neg, \equiv, \neq, \vee, \wedge, \rightarrow, \leftarrow\}$.
- Encuentre una proposición que únicamente mencione la variable proposicional p y el conectivo *, y que tenga la misma tabla de verdad de $(\neg p)$.
- Encuentre una proposición que únicamente mencione las variables proposicionales p, q y el conectivo *, y que tenga la misma tabla de verdad de $(p \land q)$.
- Justifique o refute:
 - -* es conmutativo.
 - * es asociativo.
- 6. Considere un conectivo lógico binario * cuya interpretación está dada por la función Booleana $H_*: B^2 \to B$ definida de la siguiente manera:

$$H_*(F,F) = H_*(T,F) = H_*(T,T) = F$$

 $H_*(F,T) = T$

- Proponga una proposición que defina * en términos de los conectivos lógicos $\{true, false, \neg, \equiv, \neq, \vee, \wedge, \rightarrow, \leftarrow\}$.
- Justifique o refute:
 - * es asociativo.
 - * es transitivo.
- 7. Considere valuaciones v y w tales que

$$\begin{array}{rclcrcl} v & = & \{ & p \mid \rightarrow T, & q \mid \rightarrow F, & r \mid \rightarrow F, & \dots & \} \\ w & = & \{ & p \mid \rightarrow T, & q \mid \rightarrow F, & r \mid \rightarrow T, & \dots & \} \end{array}$$

Demuestre $v((p \equiv (\neg q))) = w((p \equiv (\neg q)))$

8. Demuestre que $v(\phi) \neq v((\neg \phi))$ para cualquier valuación v.