IV Epidemiology model

1978 influenza outbreak in a British boarding school. Data: daily number of students in bed.

Susceptible-Infected-Recovered (SIR) model $\,$

$$Susceptible \xrightarrow{\beta S\frac{I}{N}} \overbrace{Infected} \xrightarrow{\gamma I} \overbrace{Recovered}$$

$$\begin{array}{lll} \dot{S} & = & -\beta SI/N \\ \dot{I} & = & \beta SI/N - \gamma I \\ \dot{R} & = & \gamma I \end{array}$$

Susceptible-Infected-Recovered (SIR) model

$$\begin{array}{lll} \dot{S} & = & -\beta SI/N \\ \dot{I} & = & \beta SI/N - \gamma I \\ \dot{R} & = & \gamma I \end{array}$$

 β : average of number of contacts per person.

 γ : rate of recovery of infected individuals.

Susceptible-Infected-Recovered (SIR) model $\,$

$$\beta$$
: average of number of contacts per person.

 $\gamma \colon$ rate of recovery of infected individuals.

$$p(\beta) = \text{normal}^+(2, 1)$$

 $p(\gamma) = \text{normal}^+(0.4, 0.5)$

Susceptible-Infected-Recovered (SIR) model

$$\dot{S} = -\beta SI/N$$

$$\dot{I} = \beta SI/N - \gamma I$$

$$\dot{R} = \gamma I$$

$$p(\beta) = \text{normal}^+(2, 1)$$

 $p(\gamma) = \text{normal}^+(0.4, 0.5)$

individuals.

Measurement model:

$$p(y(t) \mid \beta, \gamma, \phi) = \text{negative-Binomial}(I(t), \phi)$$

 $\phi^{-1} \sim \text{exponential}(5).$

Need additional blocks to fit this model:

functions: Here we'll construct a function that returns $\{\dot{S}, \dot{I}, \dot{R}\}$, which we can then pass to an ODE solver.

- vector sir (real t, vector y, real beta, real gamma, int N) $\{ \cdots \text{ return } dy_dt \};$
- t: time
- y: the solution to the ODE, y(t) = [S(t), I(t), R(t)]

transformed parameters: Allows us to do manipulations on the parameters

- compute the inverted ϕ
- compute I(t) by solving the ODE:

 $array[n_days]$ vector[3] y

- = ode_rk45(sir, y0, t0, ts, beta, gamma, N);
- y0: initial condition for $t = t_0$.
- ts: times at which we require a solution.

Exercise: Write and fit the SIR model for the 1978 influenza outbreak.

• Check the standard diagnostics (\widehat{R} and ESS) and examine the density and trace plots. Is the inference reliable?

• Do the posterior predictive checks: is the model accurately

- describing the data?

 How does the model change when using a Poisson likelihood rathe
- How does the model change when using a Poisson likelihood rather than a negative binomial?

For more discussion about this model (e.g. choice of priors, sensitivity tests), see [Grinsztajn et al., 2021].

References I

[Grinsztajn et al., 2021] Grinsztajn, L., Semenova, E., Margossian, C. C., and Riou, J. (2021).

Bayesian workflow for disease transmission modeling in stan.