

滑轮组 滑轮的应用

日期: 姓名: Date:_____ Time:_____ Name:____

初露锋芒

学习目标

1. 掌握滑轮组的画法

&

2. 能够进行简单的滑轮组力学计算

3. 识记滑轮实验原理

重难点

- 1. 滑轮组
- 2. 滑轮实验

根深蒂固

1、滑轮组的定义

(1)	定义:	由定滑轮和动滑轮	(至少有	定滑轮和	_动滑轮)	组成的滑轮组合。

(2) 实质: _____杠杆。

(3) 特点: 既可以 又可以 。

(4) 理想的滑轮组: 理想的滑轮组(不计轴间摩擦和动滑轮重力)

则: ;

只忽略轮轴间的摩擦则拉力_____;

绳子自由端移动距离 S_F (或 V_F)______n倍的重物移动的距离 S_G (或 V_G)。

2、滑轮组的使用

枝繁叶茂

1、滑轮组的使用

知识点一: 滑轮组的识别与画图

【例 1】如图, A、B 两个滑轮中, A 是_____滑轮, B 是____滑轮。

【例 2】用滑轮组提取重物:

- (1) 在图中画出最省力的绳子绕法。
- (2) 若假定重物被提高1米,则拉力使绳端移动 米。

【例3】使用滑轮组可以 ()

A. 省力又省距离

- B. 可以省力, 但不能改变力的方向
- C. 既可省力又可改变力的方向
- D. 费了力但可以省距离

知识点二: 滑轮组的计算

【例1】如图每只滑轮重都是2N, 当拉力 F 为5N 时, 物体 G 可保持静止。则物重 G 为 N, 图中所标 a 绳承受的力是 N, b 绳承受的力是 N。

【例2】用如下图所示的滑轮组提升物体,以及已知物体重200牛,物体匀速上升1米,不计滑轮组重及 摩擦,则 ()

- A. 拉力为 80 牛
- B. 拉力为 40 牛
- C. 绳的自由端拉出 4 米 D. 绳的自由端拉出 1 米

【例 3】用滑轮组提升重物时,承担重物的绳子由两段改为四段,重物被提升的高度保持不变,则拉绳的一端 ()

A. 移动的距离不变

- B. 移动的距离增大到原来的 2 倍
- C. 移动的距离减少为原来 1/2 倍
- D. 移动的距离增大到原来的 4 倍

2、滑轮的实验

知识点一:滑轮实验情景题

【例1】某同学研究定滑轮的使用特点,他每次都匀速提起钩码,研究过程如图所示,请仔细观察图中的操作和测量结果,然后归纳得出初步结论。

- (1) 比较(a) (b) 两图可知
- (2) 比较(b)、(c)、(d) 三图可知

【例2】小雯同学在"研究定滑轮和动滑轮特点"的实验中,完成了如图所示的实验,并记录了数据(如下表)。

	物重 G/N	使用定滑轮时测	使用动滑轮时测	
实验次数		力计的示数 F ₁ /N	力计的示数 F2/N	
1	1.00	0.60	0.65	
2	1.50	1.10	0.90	
3	2.00	1.60	1.15	

通过分析数据,她觉得与书中的结论偏差较大。请回答下列问题:

(1) 该实验中出现这样结果的主要原因是什么?

____;

(2) 请你对小雯的实验方法提出合理的改进意见。

随堂检测

1、如图甲、乙两个滑轮组,它们吊着的物体重都是G,滑轮重及摩擦均不计。当绳端拉力分别为

 F_{π} 和 F_{z} 时,物体匀速上升。则 F_{π} 与 F_{z} 之比是 ()

B. 2:3

D. 4:5

2、如图所示,摩擦不计,滑轮重2N,物体B重10N。在拉力F的作用下,物体以0.4m/s的速度匀速上升,则

B. F=7N, F向上的速度是0.2m/s

D. F=22N, F向上的速度是0.2m/s

- 3、下列说法中正确的是 ()
 - A. 滑轮组的省力情况是由其中的动滑轮个数决定的
 - B. 剪刀实际上是两个杠杆的组合
 - C. 费力杠杆是不好的,实际应用中应当尽量避免使用
 - D. 不论是定滑轮还是动滑轮, 其轮心都相当于杠杆的支点
- 4、下列几种说法中正确的是 ()
 - A. 任何一个滑轮组都具备既省力又改变动力方向的优点
 - B. 滑轮组的省力情况决定于动滑轮的个数
 - C. 滑轮组的省力情况决定于承担物重的绳子段数
 - D. 任何滑轮组都具有既省力又省距离的优点
- 5、在定滑轮和动滑轮的个数一定的情况下,决定滑轮组省力多少的规律是 ()
 - A. 绳子的长度越长越省力
- B. 拉住定滑轮的绳子的段数越多, 越省力
- C. 省力多少是一定的
- D. 拉住动滑轮和物体的绳子的段数越多, 越省力

6、如图所示,滑轮重不计,滑轮与	转轴的摩擦不计,在拉力F作用下可使物体匀i	速运动。
(1) 如果拉绳的速度是v,则物体移	多动的速度v _物 =v;	·
(2) 如果已知拉力F是6N, 那么可知	知 () 〇元	
A. 物重为12N	B. 物重为3N	manunankuunamanua.
C. 物重为2N	D. 物体受摩擦力12N	
E. 物体受摩擦力3N	F. 物体受摩擦力2N	
() A. 物重是27N,物体的速度是0B. 物重是18N,物体的速度是0C. 物体受到的摩擦力是27N,特D. 物体受到的摩擦力是18N,特	0.6m/s 物体的速度是0.4m/s	С С С С С С С С С С С С С С С С С С С
(2) 甲滑轮组有段绳子承担物 轮组更省力些;	为,而	Ф Ф'''
9、如图所示,起重机吊臂前端简单和A. 定滑轮 B. 动滑轮 C.		
	人用力拉绳,使装置处于静止。装置中的滑轮,不计轴摩擦及绳重,人对底板 C 的压力为	λ λ

11、某同学研究动滑轮的使用特点,他每次都匀速提起钩码,研究过程如图所示。请仔细观察图中的操作和测量结果(不计滑轮的重力),然后归纳得出初步结论。

(1) 比较 A、B 两图可知:	;
------------------	---

(2) 比较 B、C 两图可知:

12、某小组同学研究动滑轮的使用特点,他们先用弹簧测力计缓慢提起钩码,如图(a)所示,再分别用重力不同的动滑轮甲、乙、丙($G_{\mathfrak{m}} > G_{\mathbb{Z}} > G_{\mathfrak{p}}$)缓慢提起相同钩码,如图(b)、(c)、(d)所示。请仔细观察图中的操作和弹簧测力计的示数,然后归纳得出结论。

- (1) 比较图 (a) 与 (b) [或 (a) 与 (c),或 (a) 与 (d)]两图可得:____
- (2) 比较图 (b) 与 (c) 与 (d) 三图可得: ______

13、小明同学利用圆珠笔杆、钢丝、细绳制成了如图所示的滑轮组用其匀速提升重物,不考虑摩擦、笔杆和绳

- 重,下列说法正确的是 ()
 - A. 拉细绳的力 F 等于钩码重力 G 的 1/3
 - B. 拉细绳的力 F 等于钩码重力 G 的 1/7
 - C. 拉细绳的力 F 等于钩码重力 G 的 1/6
 - D. 拉细绳下降的距离是钩码上升高度的 1/6

14、小明和小杰握住两根较光滑的木棍,小华将绳子的一端系在其中一根木棍上,然后如图所示依次将绳子绕过两根木棍,小明和小杰相距一定的距离握紧木棍站稳后,小华在图 A 处拉绳子的另一端,用很小的力便能拉动他们。

- (1) 两根木棍和绳子组成的机械相当于。
- (2) 若小华所用的拉力为 20N,则小明和小杰受到的拉力分别为_____N、

N(摩擦忽略不计)。

瓜熟蒂落

- 1、将定滑轮和动滑轮组合在一起就组成了滑轮组,使用它既可以 又能够
- 2、如图所示的装置处于平衡状态,若滑轮重和摩擦均不计,则 G₁、G₂、G₃的关系是 (

B. $G_1=2G_2=G_3$

3、如图所示,绳子与滑轮重不计,物体处于静止状态,如果 $M_1=5kg$,那么 M_2 应等于

4、使用如图所示的装置来提升物体时,既能省力又能改变力的方向的装置是 (

5、如图所示的四种机械提起同一重物,不计机械自重和摩擦,最省力的是

6、同一物体沿相同水平地面被匀速移动,如下图所示,拉力分别为 $F_{\text{\tiny H}}$ 、 $F_{\text{\tiny Z}}$ 、 $F_{\text{\tiny B}}$,不计滑轮与轻绳间的摩擦, 比较它们的大小,则 ()

D. $F = F_{\mathbb{Z}} > F_{\mathbb{R}}$

7、小科想用滑轮组匀速提升重 1200N 的物体,却发到	现所用的绳 ⁻	子最多能承受	500N的力,若不计滑轮	重及摩
擦,则滑轮组中至少有()	B 144 14 1) H //		
A. 一个定滑轮和二个动滑轮 B. 一个定》				
C. 二个定滑轮和一个动滑轮 D. 二个定剂	骨轮和二个动	力滑轮		
8、利用一个定滑轮和一个动滑轮组成的滑轮组提起重	i 600 牛的物	体,最小的	拉力是(不计动滑轮重力及	支 摩擦)
()				
A. 600 牛 B. 300 牛 C.	200 牛	D.	100 牛	
9、有一滑轮组由三根绳子与动滑轮连接,已知动滑车	伦重 20N,提	<u></u> 起物体重 70	0N,不计绳重和摩擦,则	使重物
匀速上升时所用的拉力 ()				
A. 90N B. 50N C. 270N	Ι). 30N		
10、如图是胖子和瘦子两人用滑轮组锻炼身体的简易	装置(不考慮	志轮重和摩 捷	察)。使用时: (1)瘦子	固定不
动,胖子用力 FA 拉绳使货物 G 匀速上升。(2)胖子	固定不动,独	廋子用力 Fв	拉绳使货物 G 匀速上升。	下列说
法中正确的是 ()			4	
A. $F_A < G$ B. $F_B < G$ C. $F_A = 2G$	D. F	_B =2G		4
11、小明同学按照图所示装置对动滑轮特点进行了探	究,记录的数	ケ据如右表:	通过分析数据。她觉得与	"使用
动滑轮能省一半的力"的结论偏差较大。你一定也做				
augu 🛔	实验次数	物重 G/N	弹簧测力计的示数 F/N	
4	1	1.0	0.7	
\Box	2	1.5	1.0	
亡	3	2.0	1.3	
		1		
(1) 该实验中出现这样结果的主要原因是			o	
(2) 在该实验时还应注意	0			
12、用"一动、一定"组成的滑轮组来匀速提升重物 最多可省 () A. 1/3的力 B. 1/2的力 C.				目比较,
л. понту	<u></u>	Δ.	- H4/4	

能力提升

1、n个动滑轮和一个定滑轮组成滑轮组,每个动滑轮的质量与所悬挂的物体质量相等。不计一切摩擦和绳的重力,滑轮组平衡时拉力大小为 F,如图所示。若在图示中再增加一个同样质量的动滑轮,其它条件不变,则滑轮组再次平衡时拉力大小为 ()

- A. F/2
- B. F
- C. nF/(n+1)
- D. (n+1) F/n

2、已知重 500N 的人站在 2500N 重的小船上,如图所示,当他用 50N 的拉力拉绳时,船做匀速直线运动,则船所受阻力多大?

3、如图所示,一根细线绕过三个滑轮,两端固定在 A、B 两点,两动滑轮下所挂物体质量分别为 m_1 、 m_2 ,两动滑轮上细线的夹角分别为 α 和 β (α > β),不计一切摩擦,则 m_1 、 m_2 的大小关系是 ()

A. $m_1 > m_2$

B. $m_1 < m_2$

C. $m_1=m_2$

D. 无法确定

A

4、如图所示,是一个上肢力量健身器示意图。配重 A 受到的重力为 1200N,配重 A 的上方连有一根弹簧测力 计 D,可以显示所受的拉力大小,但当它所受拉力在 $0\sim2500$ N 范围内时,其形变可以忽略不计。B 是动滑轮,C 是定滑轮;杠杆 EH 可绕 O 点在竖直平面内转动,OE:OH=1:6。小阳受到的重力为 600N,他通过细绳在 H 点施加竖直向下的拉力为 T_1 时,杠杆在水平位置平衡,小阳对地面的压力为 F_1 ,配重 A 受到绳子的拉力为 F_{A1} ,配重 A 上方的弹簧测力计 D 显示受到的拉力 F_{D1} 为 2×10^3 N;小阳通过细绳在 H 点施加竖直向下的拉力为 T_2 时,杠杆仍在水平位置平衡,小阳对地面的压力为 F_2 ,配重 A 受到绳子的拉力为 F_{A2} ,配重 A 上方的弹簧测力计 D 显示受到的拉力 T_2 时,杠杆仍在水平位置平衡,小阳对地面的压力为 T_2 元 配重 A 上方的弹簧测力计 D 显示受到的拉力 T_2 为 T_2 元 见和绳的质量以及滑轮与轴的摩擦均忽略不计)。求:(1)拉力 T_2 ,位为 T_2 ,(3)压力 T_2 。