MATH356 - Probability

Based on lectures from Fall 2024 by Prof. Masoud Asgharian. Notes by Louis Meunier

Contents

1 Prerequisites	2
2 Probability	2
2.1 Sample Space	2
3 Combinatorics - Finite σ -fields	5
3.1 Counting	5
3.2 Conditional Probability	5
4 Random Variables and Probability Distributions	6
4.1 Discrete and Continuous Random Variables	7
4.2 Functions of a Random Variable	8
5 Moments and Moment Generating Functions	9
5.1 Variance	10
5.2 Some Particular Distributions	11
5.2.1 Hypergeometric	11
5.2.2 Uniform Distribution	11
5.2.3 Binomial Distribution	11
5.3 MGF, PGF	12
5.4 Moment Inequalities	13
6 Multiple Random Variables	15
6.1 Conditional Distributions	16
6.2 Covariance, Correlation	
7 Convergence of Random Variables	19
7.1 Consequences of Convergence in Probability	19

§1 Prerequisites

 \hookrightarrow **Definition 1.1** (limsup, liminf of sets): Let $\{A_n\}_{n>1}$ be a sequence of sets. We define

$$\overline{\lim}_{n\to\infty} = \limsup_{n\to\infty} A_n := \{x : x \in A_n \text{ for infinitely many } n\} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

and

$$\underline{\lim}_{n\to\infty} = \liminf_{n\to\infty} A_n := \{x : x \in A_n \text{ for all but finitely many } n\} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

If $\lim \inf A_n = \lim \sup A_n$, we say A_n converges to this value and write $\lim_{n \to \infty} A_n = \lim \inf A_n = \lim \sup A_n$

 \hookrightarrow **Proposition 1.1**: lim inf A_n ⊆ lim sup A_n

Example 1.1: Let $A_n = \{n\}$. Then $\liminf A_n = \limsup A_n = \emptyset = \lim A_n$. Let $A_n = \{(-1)^n\}$. Then $\liminf A_n = \emptyset$, $\limsup A_n = \{-1, 1\}$.

- \hookrightarrow **Definition 1.2** (sigma-field): A non-empty class of subsets of a set Ω which is closed under countable unions and complement, and contains \emptyset is called a *σ-field* or *σ-algebra*.
- \hookrightarrow **Definition 1.3** (Borel sigma-algebra): The *σ*-algebra generated by the class of all bounded, semi-closed intervals is called the *Borel algebra* of subsets of \mathbb{R} , denoted $\mathfrak{B}, \mathfrak{B}(\mathbb{R})$.
- **→Theorem 1.1**: Every countable set is Borel.

PROOF.
$$\{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x\right]$$
 for any $x \in \mathbb{R}$, so $A := \{x_n : n \in \mathbb{N}\} = \bigcup_{n=1}^{\infty} \{x_n\} \in \mathfrak{B}$.

 \hookrightarrow Theorem 1.2: $\mathfrak{B} = \sigma$ ({open sets in ℝ}).

§2 Probability

§2.1 Sample Space

2.1 Sample Space 2

- → Definition 2.1 (Random/statistical experiment): A *random/statistical experiment* (stat. exp.) is one in which
- 1. all outcomes are known in advance;
- 2. any performance of the experiment results in an outcome that is not known in advance;
- 3. the experiment can be repeated under identical conditions.
- \hookrightarrow Definition 2.2 (Sample space): The *sample space* of a stat. exp. is the pair (Ω, \mathcal{F}) where Ω the set of all possible outcomes and \mathcal{F} a σ -algebra of subsets of Ω .

We call points $\omega \in \Omega$ sample points, $A \in \mathcal{F}$ events. If Ω countable, we call (Ω, \mathcal{F}) a discrete sample space.

- \hookrightarrow **Definition 2.3**: Let (Ω, 𝒯) be a sample space. A set function *P* is called a *probability measure* or simply *probability* if
- 1. $P(A) \ge 0$ for all $A \in \mathcal{F}$
- 2. $P(\Omega) = 1$
- 3. For $\{A_n\} \subseteq \mathcal{F}$, disjoint, then $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$.
- \hookrightarrow Theorem 2.1: P monotone ($A \subseteq B \Rightarrow P(A) \le P(B)$) and subtractive $P(B \setminus A) = P(B) P(A)$.
- **Theorem 2.2**: For all $A, B \in \mathcal{F}$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- \hookrightarrow Corollary 2.1: *P* subadditive; for any *A*, *B* ∈ \mathcal{F} , $P(A \cup B) \leq P(A) + P(B)$.
- \hookrightarrow Corollary 2.2: $P(A^c) = 1 P(A)$.

2.1 Sample Space

→Theorem 2.3 (Principle of Inclusion/Exclusion): Let $A_1, ..., A_n \in \mathcal{F}$. Then

$$\begin{split} P\bigg(\bigcup_{k=1}^{n}A_{k}\bigg) &= \sum_{k=1}^{n}P(A_{k})\\ &- \sum_{k_{1}< k_{2}}P\Big(A_{k_{1}}\cap A_{k_{2}}\Big)\\ &+ \sum_{k_{1}< k_{2}< k_{3}}P\Big(A_{k_{1}}\cap A_{k_{2}}\cap A_{k_{3}}\Big)\\ &+ \ldots + (-1)^{n}P\bigg(\bigcap_{k=1}^{n}A_{k}\bigg). \end{split}$$

 \hookrightarrow Theorem 2.4 (Bonferroni's Inequality): For $A_1, ..., A_n$,

$$\sum_{i=1}^n P(A_i) - \sum_{i < j} P\Big(A_i \cap A_j\Big) \le P\bigg(\bigcup_{i=1}^n A_i\bigg) \le \sum_{i=1}^n P(A_i).$$

Theorem 2.5 (Boole's Inequality): $P(A \cap B) \ge 1 - P(A^c) - P(B^c)$.

 \hookrightarrow Corollary 2.3: For $\{A_n\} \subseteq \mathcal{F}$,

$$P(\cap_{n=1}^{\infty} A_n) \ge 1 - \sum_{n=1}^{\infty} P(A_n^c)$$

Theorem 2.6 (Implication Rule): If A, B, C ∈ \mathcal{F} and A and B imply C (i.e. $A \cap B \subseteq C$) then $P(C^c) \leq P(A^c) + P(B^c)$.

Theorem 2.7 (Continuity): Let $\{A_n\}$ ⊆ \mathcal{F} non-decreasing i.e. $A_n \supseteq A_{n-1} \forall n$, then

$$\lim_{n \to \infty} P(A_n) = P\left(\bigcup_{n=1}^{\infty} A_n\right).$$

Let $\{A_n\}$ non-increasing, then

$$\lim_{n\to\infty} P(A_n) = P\bigg(\bigcap_{n=1}^{\infty} A_n\bigg).$$

Finally, more generally, for $\{A_n\}$ such that $\lim_{n\to\infty}A_n=A$ exists, then

$$P(A) = \lim_{n \to \infty} P(A_n).$$

§3 Combinatorics - Finite σ -fields

§3.1 Counting

We consider now $\Omega = \{\omega_1, ..., \omega_n\}$ finite sample spaces, and consider $\mathcal{F} = 2^{\Omega}$.

 \hookrightarrow **Definition 3.1** (Permutation): An ordered arrangement of r distinct objects is called a permutation. The number of ways to order n distinct objects taken r at a time is

$$P_r^n = \frac{n!}{(n-r)!}.$$

 \hookrightarrow **Definition 3.2** (Combination): The number of combinations of n objects taken r at a time is the number of subsets of size r that can be formed from n objects,

$$C_r^n = \binom{n}{r} = \frac{P_r^n}{r!} = \frac{n!}{r!(n-r)!}.$$

 \hookrightarrow Theorem 3.1: The number of unordered arrangements of r objects out of a total of n objects when sampling with replacement is

$$\binom{n+r-1}{r}$$
.

§3.2 Conditional Probability

Theorem 3.2: Let $A, H ∈ \mathcal{F}$. We denote by P(A | H) the probability of A given H has occured. We have, in particular,

$$P(A \mid H) = \frac{P(A \cap H)}{P(H)},$$

if $P(H) \neq 0$.

Definition 3.3: We say two events *A*, *B* are independent if P(A | B) = P(A), or equivalently $P(A \cap B) = P(A)P(B)$.

→Proposition 3.1 (Multiplication Rule):

$$P\left(\bigcap_{j=1}^{n} A_j\right) = \prod_{i=1}^{n} P\left(A_i \mid \bigcap_{j=0}^{i-1} A_j\right),$$

taking $A_0 := \Omega$ by convention.

Proposition 3.2 (Law of Total Probability): Let $\{H_n\}$ ⊆ \mathcal{F} be a partition of \mathcal{F} , namely $H_i \cap H_j = \emptyset$ for all $i \neq j$, and $\bigcup_{j=1}^{\infty} H_j = \Omega$. If $P(H_n) > 0 \,\forall n$, then

$$P(B) = \sum_{n=1}^{\infty} P(B \mid H_n) P(H_n) \ \forall \ B \in \mathcal{F}.$$

Theorem 3.3 (Baye's): Let { H_n } be a partition of Ω with all strictly nonzero measure and let B ∈ 𝒯 with nonzero measure. Then

$$P(H_n \mid B) = \frac{P(H_n)P(B \mid H_n)}{\sum_{n=1}^{\infty} P(H_n)P(B \mid H_n)}.$$

→ Definition 3.4 (Mutual Independence): A family of sets A is said to be *mutually independent* iff \forall finite sub collections $\{A_{i_1},...,A_{i_k}\}$, the following holds

$$P(\bigcap_{j=1}^k A_{i_j}) = \prod_{j=1}^k P(A_{i_j}).$$

§4 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

We tacitly fix some sample space (Ω, \mathcal{F}) .

 \hookrightarrow **Definition 4.1** (Random Variable): A real-valued function $X: \Omega \to \mathbb{R}$ is called a *random variable* or *rv* if

$$X^{-1}(B)\in\mathcal{F}$$

for all $B \in \mathfrak{B}_{\mathbb{R}}$.

 \hookrightarrow Theorem 4.1: X an $rv \Leftrightarrow for all <math>x \in \mathbb{R}$,

$$\{X\leq x\}\in\mathcal{F}.$$

- **Theorem 4.2**: If *X* a rv, then so is aX + b for all $a, b \in \mathbb{R}$.
- **Theorem 4.3**: Fix an rv *X* defined on a probability space $(Ω, \mathcal{F}, P)$. Then, *X* induces a measure on the sample space $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$, denote *Q* and given by

$$Q(B) := P\big(X^{-1}B\big)$$

for any Borel set B.

Remark 4.1: If X a random variable, then the sets $\{X = x\}$, $\{a < x \le b\}$, $\{X < x\}$, etc are all events.

 \hookrightarrow **Definition 4.2** (Distribution Function): An \mathbb{R} -valued function F that is non-decreasing, right-continuous and satisfies

$$F(-\infty) = 0, F(+\infty) = 1$$

is called a distribution function or df.

 \hookrightarrow Theorem 4.4: {*x* | *F* discontinuous} is at most countable.

 \hookrightarrow **Definition 4.3**: Given a random variable *X* and a probability space (Ω, \mathcal{F}, P) , we define the df of *X* as

$$F(x) = P(X \le x)$$
.

Remark 4.2: It is not obvious a priori that this is indeed a df.

Theorem 4.5: If *Q* a probability on (\mathbb{R} , $\mathfrak{B}_{\mathbb{R}}$), then there exists a df *F* where

$$F(x) = Q(-\infty, x],$$

and conversely, given a df F, there exists a unique probability on $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$.

§4.1 Discrete and Continuous Random Variables

 \hookrightarrow **Definition 4.4**: *X* called "discrete" if ∃ countable set E ⊂ ℝ such that $P(X \in E) = 1$.

 \hookrightarrow **Proposition 4.1**: Suppose E = $\{x_n\}_{n=1}^{\infty}$ and put $p_n := P(X = x_n)$. Then,

$$\sum_{n=1}^{\infty} p_n = 1,$$

where $\{p_n\}$ defines a non-negative sequence.

Definition 4.5 (PMF): Such a sequence $\{p_n\}$ satisfying $0 \le p_n = P(X = x_n)$ for a sequence $\{x_n\}$ and $\sum p_n = 1$ is called a *probability mass function* (pmf) of X. Then,

$$F_X(x) = P_X((-\infty, x]) = \sum_{n: x_n \le x} p_n$$

and

$$X(\omega) = \sum_{n=1}^{\infty} x_n \mathbb{1}_{\{X = x_n\}}(\omega).$$

 \hookrightarrow **Definition 4.6**: *X* called *continuous* if *F* induced by *X* is absolutely continuous, i.e. if there exists a non-negative function f(t) such that

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

for all $x \in \mathbb{R}$. Such a function f is called the *probability density function* (pdf) of X.

 \hookrightarrow Theorem 4.6: Let *X* continuous with pdf *f*. Then

$$P(B) = \int_{B} f(t) \, \mathrm{d}t$$

for every $B \in \mathfrak{B}_{\mathbb{R}}$.

Theorem 4.7: Every nonnegative real function f that is integrable over \mathbb{R} and such that $\int_{-\infty}^{\infty} f(x) dx = 1$ is the PDF of some continuous X.

§4.2 Functions of a Random Variable

Theorem 4.8: Let *X* be an rv and *g* a Borel-measurable function on \mathbb{R} . Then, *g*(*X*) also an rv.

Theorem 4.9: Let Y = g(X) as above. Then, $P(Y \le y) = P(X ∈ g^{-1}(-\infty, y])$.

Example 4.1: Let *X* be an RV with Poisson distribution; we write $X \sim \text{Poisson}(\lambda)$; where

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

for $k \in \mathbb{N} \cup \{0\}$. Let $Y = X^2 + 3$. We say that X has *support* $\{0, 1, 2, \text{dots}\}$ (more generally, where X can take values), and so Y has support on $\{3, 4, 7, ...\} =: B$. Then

$$P(Y = y) = P(X = \sqrt{y-3}) = \frac{e^{-\lambda}\lambda^{\sqrt{y-3}}}{\sqrt{y-3}!},$$

for $y \in B$ and P(Y = y) = 0 for $y \notin B$.

Theorem 4.10: Let *X* cont. rv with pdf f_*X*. Let Y = g(X) be differentiable for all *x* and with either strictly positive or negative derivative. Then, Y = g(X) also a continuous rv with pdf given by

$$h(y) = \begin{cases} f_x(g^{-1}(y)) \mid \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \mid \text{ for } \alpha < y < \beta \\ 0 \text{ else} \end{cases},$$

where

$$\alpha := \min\{g(-\infty), g(\infty)\}, \beta := \max\{g(-\infty), g(\infty)\}.$$

 \hookrightarrow Theorem 4.11: Let *X* continuous rv with cdf $F_X(x)$. Let $Y = F_X(X)$. Then, $Y \sim \text{Unif } (0, 1)$.

Proof.

$$P(Y \le y) = P(F_X(X) \le y)$$
$$= P(X \le F_X^{-1}(y)).$$

Theorem 4.12: Let *X* continuous rv with pdf f_X and y = g(x)

§5 Moments and Moment Generating Functions

Definition 5.1 (Expected Value): Let *X* be a discrete (continuous) rv with PMF (PDF) $p_k = P(X = x_k)$ (*f*). If $\sum |x_k| p_k < \infty$ ($\int |x| f_X(x) dx < \infty$) then we say the *expected value* of *X* exists, and write

$$\mathbb{E}(X) = \sum x_k p_k \Big(= \int x \cdot f(x) \, \mathrm{d}x \Big).$$

Theorem 5.1: If *X* symmetric about *α* ∈ \mathbb{R} , i.e. $P(X \ge \alpha + x) = P(X \le \alpha - x)$ for all $x \in \mathbb{R}$ (or in the continuous case, $f(\alpha - x) = f(\alpha + x)$), then $\mathbb{E}(X) = \alpha$.

→Theorem 5.2: Let *g* Borel-measurable and Y = g(X). Then,

$$\mathbb{E}(Y) = \sum_{j=1}^{\infty} g(x_j) P_X(X = x_j).$$

If *X* continuous,

$$= \int g(x)f(x) \, \mathrm{d}x.$$

 \hookrightarrow **Definition 5.2**: For *α* > 0, we say $\mathbb{E}(|X|^{\alpha})$ (if it exists) is the *α*-th moment of *X*.

Example 5.1: Let *X* such that $P(X = k) = \frac{1}{N}$, k = 1, ..., N, namely $X \sim \text{Unif}_{\{1,...,N\}}$. Then

$$\mathbb{E}(X) = \sum_{k=1}^{N} \frac{k}{N} = \frac{N+1}{2}.$$

 \hookrightarrow Theorem 5.3: If the *t*th moment of *X* exists, so does the *s*th moment for s < t.

 →Theorem 5.4: If $\mathbb{E}(|X|^k)$ < ∞ for some k > 0, then

$$n^k P(|X| > n) \to 0$$

as $n \to \infty$.

§5.1 Variance

Let *X* a random variable. Put $\mu_X := \mathbb{E}[X]$. We define the *variance* of *X*, denoted σ_X^2 , by

$$\sigma_X^2 = \operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mu_X\right)^2\right]$$

or eqiuvalently

$$\begin{aligned} \operatorname{Var}(X) &= \mathbb{E}\big[X^2\big] - 2\mu_X \mathbb{E}[X] + \mathbb{E}\big[\mu_X^2\big] \\ &= \mathbb{E}\big[X^2\big] - 2\mu_X^2 + \mu_X^2 = \mathbb{E}\big[X^2\big] - \mathbb{E}[X]^2 \end{aligned}$$

Let $S \sim \text{Bin}(n, p)$. Then, $\text{Var}[S] = \mathbb{E}[S^2] - (np)^2$. To compute $\mathbb{E}[S^2] = \mathbb{E}[S(S-1) + S]$, we may abuse combinatorial identities and eventually find

$$Var[S] = np(1-p).$$

5.1 Variance 10

 \hookrightarrow Theorem 5.5: If X a random variable and g a Borel-measurable function, then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) \, dx \text{ if continuous}$$

$$\mathbb{E}[g(X)] = \sum_{k=0}^{\infty} h(x_k) p_k \text{ if discrete}$$

§5.2 Some Particular Distributions

5.2.1 Hypergeometric

Consider a population of N objects, and a subpopulation of M objects. Let X_i be a random variable equal to 1 if a sampled object is from the M-subpopulation, 0 else, and put $Y = \sum_{i=1}^{n} X_i$. Then,

$$P(Y = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

for any k = 0, ..., n. We have

$$\mathbb{E}[Y] = \frac{1}{\binom{N}{n}} \sum_{k=0}^{n} k \binom{M}{k} \binom{N-M}{n-k}$$

$$= \frac{1}{\binom{N}{n}} \sum_{k=0}^{n} k \frac{M!}{k(k-1)!(N-k)!} \binom{N-M}{n-k}$$

$$= \frac{M}{\binom{N}{n}} \sum_{k=0}^{n} \binom{M-1}{k-1} \binom{N-M}{n-k}$$

$$= \frac{M}{\binom{N}{n}} \sum_{k=0}^{n-1} \binom{M-1}{k} \binom{N-M}{(n-1)-k}$$

$$= \frac{M}{\binom{N}{n}} \binom{N-1}{n-1}$$

$$= M \cdot \frac{n!(N-n)!(N-1)!}{N!(n-1)!(N-n)!}$$

$$= M \binom{n}{N}.$$

5.2.2 Uniform Distribution

Let *X* be a discrete uniformly distributed random variable, with $P(X = x) = \frac{1}{N}$ for $x \in \{1,...,N\}$ (one typically writes $X \sim \text{unif}\{1,N\}$). Then,

$$\mathbb{E}[X] = \sum_{k=1}^{N} \frac{k}{N} = \frac{N(N+1)}{2N} = \frac{N+1}{2}.$$

5.2.3 Binomial Distribution

5.2.3 Binomial Distribution 11

Let X_i for i = 1, ..., n be a discrete boolean rv with $P(X_i = 1) = p, P(X_i = 0) = 1 - p$. Put $S = \sum_{i=1}^{n} X_i$. We say S has binomial distribution, and write

$$S \sim \text{Bin}(n, p)$$
.

Then, we have that

$$P(S) = \binom{n}{k} p^k (1-p)^{n-k}$$

and so

$$\mathbb{E}[S] = \sum_{k=0}^{n} kP(S=k) = \dots = np.$$

An easier way to compute this is by using the linearity of \mathbb{E} , namely,

$$\mathbb{E}[S] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} 1 \cdot p + 0 \cdot (p-1) = np.$$

§5.3 MGF, PGF

 \hookrightarrow **Definition 5.3** (PGF): Given a discrete random variable *X* with support in the naturals and pmf $\{p_k\}$, the *probability generating function* (PGF) of *X* is defined as

$$P(s) = \sum_{k=0}^{\infty} p_k s^k,$$

wherever this series converges.

$$Proposition 5.1: $\frac{1}{n!}P^{(n)}(0) = p_n \text{ for any } n \ge 0. \text{ Similarly,}$

$$P'(s)|_{s=1} = \mathbb{E}[X], \qquad P''(s)|_{s=1} = \mathbb{E}[X(X-1)], \qquad \dots$$$$

Solution Example 5.2: If $X \sim \text{Poisson}(\lambda)$, then

$$P(s) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} s^k$$
$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!}$$
$$= e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}.$$

5.3 MGF, PGF 12

 \hookrightarrow **Definition 5.4** (MGF): The *moment generating function* (MGF) of a continuous random variable *X* with pdf f_X is given by, where the integral converges,

$$M_X(s) := \mathbb{E}[e^{sX}] = \int_{-\infty}^{\infty} e^{sx} f_X(x) dx.$$

Example 5.3: Let $X \sim \exp(\lambda)$ for $\lambda > 0$, namely

$$f_X(x) = \lambda e^{-\lambda x}$$

for x > 0, 0 otherwise. Then,

$$M_X(s) = \int_0^\infty e^{sx} \lambda e^{\lambda x} dx = \dots = \left(\frac{\lambda}{\lambda - s}\right) \text{ if } \lambda > s,$$

and does not exist (does not converge) otherwise.

→ Theorem 5.6: A given MGF uniquely determines a CDF, and conversely, if an MGF of a random variable exists, it is unique.

Theorem 5.7: If $M_X(s)$ exists for $|s| < s_0$, then the derivatives of M_X of all order exists at s = 0, and can be evaluated under the integral; namely,

$$M_X^{(k)}(s)|_{s=0} = \mathbb{E}[X^k], \quad k > 0.$$

Ie,

$$M_X(s) = \sum_{k=0}^{\infty} M^{(k)}(0) \frac{s^k}{k!}$$

Example 5.4: Let $X \sim \text{Geom}(p)$, 1 > p > 0, where $p_k = p(1-p)^{k-1}$, k = 1, Then,

§5.4 Moment Inequalities

Theorem 5.8 (Markov's): Let h(x) ≥ 0 a function of a random variable X. If $\mathbb{E}[h(X)]$ exists, then for every ε > 0,

$$P({h(X) \ge \varepsilon}) \le \frac{\mathbb{E}[h(X)]}{\varepsilon}.$$

PROOF. Let $A = \{h \ge \varepsilon\}$ and denote the pdf of X by f_X . Then,

5.4 Moment Inequalities 13

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) \, \mathrm{d}x$$

$$= \int_A h(x) f_X(x) \, \mathrm{d}x + \int_{A^c} h(x) f_X(x) \, \mathrm{d}x$$

$$\geq \varepsilon \int_A f_X(x) \, \mathrm{d}x = \varepsilon P(\{X \in A\}) = \varepsilon P(\{h(X) \ge \varepsilon\}).$$

 \hookrightarrow Corollary 5.1: For any k, r > 0,

$$P\{|X| \ge k\} \le \frac{\mathbb{E}[|X|^r]}{k^r}.$$

PROOF. Let $\varepsilon = k^r$, $h(x) = |x|^r$.

Corollary 5.2 (Chebychev's Inequality): Let $\mu_X = \mathbb{E}[X]$ and $\sigma_X^2 = \text{Var}(X)$. Then, for any $k \ge 1$,

$$P(\{|X - \mu_X| > k\sigma\}) \le \frac{1}{k^2}.$$

Proof. Let
$$h(x) = (X - \mu_X)^2$$
, $\varepsilon = h^2 \sigma_X^2$.

Example 5.5: When k = 3, this tells us that the likelihood of X being more than three standard deviations $(\sqrt{\text{Var}(X)})$ away from the mean is less that $\frac{1}{3^2} = \frac{1}{9}$, i.e. at least 89% of the time, X is within 3 stdevs of the mean. We can sharpen this bound in general.

Theorem 5.9 (Gauss's Inequality): Let $X \sim f$ be unimodal with mode $v = \operatorname{argmax}_{x}(f(x))$. Put $\tau^{2} = \mathbb{E}[(X - v)^{2}]$. Then,

$$P\{|X - v| > \varepsilon\} \le \begin{cases} \frac{4\tau^2}{9\varepsilon^2} & \text{if } \varepsilon \ge \tau \frac{2}{\sqrt{3}} \\ 1 - \frac{\varepsilon}{\tau\sqrt{3}} & \text{else.} \end{cases}$$

Theorem 5.10 (Vysochanskij-Petunin (VP) Inequality): Let *X* unimodal and put $\xi^2 = \mathbb{E}[(X - \alpha)^2]$ for $\alpha \in \mathbb{R}$. Then, for any $\varepsilon > 0$,

$$P(|X - \alpha| > \varepsilon) \le \begin{cases} \frac{4\xi^2}{9\varepsilon^2} & \text{if } \varepsilon \ge \xi \sqrt{\frac{8}{3}} \\ \frac{4\xi^2}{9\varepsilon^2} - \frac{1}{3} & \text{else} \end{cases}.$$

5.4 Moment Inequalities 14

Example 5.6: If $\alpha = \mu_X = \mathbb{E}[X]$ and we take $\varepsilon = \sigma_X$, the previous inequality gives that

$$P\{|X - \mu_X| > 3\sigma\} \le \frac{4}{81} \approx 0.05,$$

namely, gives rise to the "3- σ " rule.

Theorem 5.11: Let *X* be a random variable with $\mathbb{E}[X] = 0$, $Var(X) = \sigma^2$. Then,

$$P(X > x) \le \frac{\sigma^2}{\sigma^2 + x^2}, \quad \text{for } x > 0$$

$$P(X > x) \ge \frac{x^2}{\sigma^2 + x^2}, \quad \text{for } x < 0.$$

Lemma 5.1:
$$|a + b|^r \le C_r(|a|^r + |b|^r)$$
 where $C_r = \begin{cases} 1 \text{ if } 0 \le r \le 1 \\ 2^{r-1} \text{ if } r > 1 \end{cases}$.

Theorem 5.12: Let *X*, *Y* be random variables and let *r* > 0. If $\mathbb{E}|X|^r$, $\mathbb{E}|Y|^r$ exist, then $\mathbb{E}|X + Y|^r$ exists, and we have

$$\mathbb{E}|X+Y|^r \le C_r(\mathbb{E}|X|^r + \mathbb{E}|Y|^r).$$

§6 Multiple Random Variables

 \hookrightarrow **Definition 6.1**: A vector of random variables $X = (X_1, ..., X_n)$. We say $X_1, ..., X_n$ jointly distributed according to some F if

$$P(X \le a) = P(X_1 \le a_1, ..., X_n \le a_n) = F(a_1, ..., a_n).$$

One must be careful in defining *F* appropriately, as there are some caveats compared to the one dimensional case. See the text for details.

We only deal with cases to follow where all random variables are of the same type.

 \hookrightarrow **Definition 6.2** (Marginal Distribution): Given $X, Y \sim F$, the marginal cumulative distribution of X is defined as

$$F_1(x) = \lim_{y \to \infty} F(x, y)$$

if *X*, *Y* continuous and

$$F_1(x_i) = \sum_{i:x_i \le 1} \sum_{j=1} p_{ij}$$

when *X* discrete.

The marginal pdf of *X* is given by

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y,$$

when continuous, and when discrete,

$$P(X = x_i) = p_{i\bullet} = \sum_{j=1}^{\infty} p_{i,j}$$

§6.1 Conditional Distributions

 \hookrightarrow **Definition 6.3**: Let *X*, *Y* be two jointly distributed random variables. We define

$$p_{i|j} = P(X = x_i \mid Y = y_j) = \frac{p_{i,j}}{p_{\bullet,j}},$$

which yields conditional cdf

$$F_{X|Y}(x,y) = P(X \le x \mid Y = y) = \frac{P(X \le x, Y = y)}{P(Y = y)},$$

as long as $P(Y = y) \neq 0$.

When continuous, we define the conditional cdf

$$F_{X|Y}(x,y) = \frac{\int_{-\infty}^{x} f(y,y) \, \mathrm{d}u}{f_2(y)},$$

where f_2 the marginal pdf of Y. By extension, the conditional pdf is given by

$$f_{X|Y}(x,y) = \frac{f(x,y)}{f_2(y)}.$$

6.1 Conditional Distributions

 \hookrightarrow **Definition 6.4**: We say two jointly distributed random variables X, Y are independent if

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

for every x_i, y_j in the respective supports if X, Y discrete, and

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

for every x, y where defined if X, Y continuous. Similarly, X_1 , ..., X_n are said to be mutually independent if

$$P_X(X_i \in A_i) = \prod_{i=1}^n P(X_i \in A_i)$$

for every Borel set A_i .

If $X_1, ..., X_n$ are independent, and all have the same marginal distributions, call it f, we say $X_1, ..., X_n$ are independent and identically distributed, and write $X_1, ..., X_n \stackrel{\text{iid}}{\sim} f$.

 \hookrightarrow **Definition 6.5**: The expected value of a function h of two jointly distributed random variables X, Y is defined to be

$$\mathbb{E}[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

We defined the conditional expectation

$$\mathbb{E}[h(X,Y) \mid Y = y] = \int_{-\infty}^{\infty} h(x,y) f_{X|Y}(x|y) \, \mathrm{d}x.$$

 \hookrightarrow Proposition 6.1: $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$, $Var(X) = \mathbb{E}[Var(X|Y)] + Var(\mathbb{E}(X|Y))$.

Example 6.1: Let $X_i \stackrel{\text{iid}}{\sim} f$, i = 1, ..., n. Let $X_{(j)} = \max_{1 \le i \le j} X_i$. Then,

$$P(X_{(j)} \le x) = F_X(x)^j,$$

where F_X the common cdf of the X_i 's.

Let $Y_{(i)} = \min_{1 \le i \le i} X_i$ Then,

$$P(Y_{(j)} \le y) = [1 - F_X(x)]^n$$

Theorem 6.1: Let $(X_1,...,X_n) \sim f_X(x)$. Let $u_i = g_i(x), i = 1,...,n$ be continuous one-to-one maps with continuous inverses $x_i = h_i(u) = h_i(u_1,...,u_n)$, such that the partials $\frac{\partial x_i}{\partial u_j}$ exists and are continuous for $1 \le i,j \le n$, and such that the Jacobian

$$J = \frac{\partial(x_1, ..., x_n)}{\partial(u_1, ..., u_n)} \neq 0,$$

in the range of definition. Then, the new random variable $\mathbf{U} = (U_1, ..., U_n)$ has joint, absolutely continuous distribution function with joint pdf given by

$$w(u_1,...,u_n) = |J|f_X(h_1(u),...,h_n(u)).$$

⊗ Example 6.2: Rocket

§6.2 Covariance, Correlation

⇒ Definition 6.6 (Covariance, Correlation): Given two random variables X, Y with means μ_X , μ_Y respectively, define

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)].$$

Let σ_X^2 , σ_Y^2 be the variance of X, Y respectively, then define, if σ_X , $\sigma_Y > 0$, the correlation of X, Y

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}.$$

- **→Proposition 6.2**: Correlation is translation, scaling invariant.
- \hookrightarrow Proposition 6.3: If *X*, *Y* independent, Cov(*X*, *Y*) = 0.
- **→Theorem 6.2** (Holders): Let p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Then,

$$\mathbb{E}[XY] \leq \left(\mathbb{E}|X|^p\right)^{\frac{1}{p}} \big(\mathbb{E}|X|^q\big)^{\frac{1}{q}}.$$

In particular, if p=q=2, we have the Cauchy-Schwarz inequality, and if $X \to X - \mu_X$, $Y \to Y - \mu_Y$, then this tells us $|\text{Cov}(X,Y)| \le \sigma_X \sigma_Y$, and hence $|\rho(X,Y)| \le 1$.

 \hookrightarrow Corollary 6.1 (Lyapunov's): For every 1 ≤ $r < s < \infty$,

$$(\mathbb{E}|X|^r)^{\frac{1}{r}} \leq (\mathbb{E}|X|^s)^{\frac{1}{s}}.$$

18

 \hookrightarrow Corollary 6.2 (Jensen's): Let g be a convex function. Then,

$$g(\mathbb{E}[X]) \leq \mathbb{E}\big[g(X)\big].$$

 \hookrightarrow Theorem 6.3 (Minkowski's): Let $p \ge 1$. Then, assuming all expectations exist,

$$\left(\mathbb{E}\;|X+Y|^p\right)^{\frac{1}{p}}\leq \left(\mathbb{E}\;|X|^p\right)^{\frac{1}{p}}+\left(\mathbb{E}\;|Y|^p\right)^{\frac{1}{p}}.$$

§7 Convergence of Random Variables

Definition 7.1 (Almost Sure Convergence): Let $\{X_n\}$ be a sequence of random variables. We say X_n converges to an rv X_0 almost surely (a.s.) and write $X_n \stackrel{\text{a.s.}}{\to} X_0$ if

$$P\{\lim_{n\to\infty}X_n=X_0\}=1.$$

 \hookrightarrow Definition 7.2 (Convergence in Probability): We say X_n → X_0 in probability if for every ε > 0,

$$\lim_{n\to\infty} P(|X_n - X_0| > \varepsilon) = 0.$$

Compare this to the notation of convergence in measure.

Definition 7.3 (Convergence in Law/Weak Convergence): Suppose $X_n \sim F_n$. If F_0 another cdf with $X_0 \sim F_0$, we say X_n converges to X_0 in law/distribution/weakly and write $X_n \stackrel{L}{\to} X_0$ or $F_n \stackrel{W}{\to} F_0$ if

$$F_n(x) \to F_0(x)$$

for every x such that F_0 continuous at x.

Example 7.1: Let $0 \le p \le 1$ and let $X_i = \{1 \text{ with } p, 0 \text{ with } 1 - p\}$. Let

$$T_n = \frac{1}{n} \sum_{i=1}^n X_i$$

for all $n \ge 1$. We claim that $T_n \to p$ in probability.

Example 7.2: Let $X_i \stackrel{\text{iid}}{\sim} \text{Unif}(0, \theta)$. Let $M_n = \max\{X_1, ..., X_n\}$. Prove that $M_n \to \theta$ in probability.

§7.1 Consequences of Convergence in Probability

Remark 7.1: See page 260 of the textbook.

- **→Theorem 7.1** (Continuous Mapping Theorem): Let $X_n(\to)^P X$ and $g: \mathbb{R} \to \mathbb{R}$ a continuous function. Then, $g(X_n) \stackrel{P}{\rightarrow} g(X)$.
- **Solution Theorem 7.2**: $X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{L}{\to} X$.
- **Theorem 7.3** (Slutsky's Theorem): If $|X_n X| \stackrel{P}{\to} 0$ and $Y_n \stackrel{L}{\to} Y$, then $X_n \stackrel{L}{\to} Y$.
- **→Theorem 7.4** (Cramer's Theorem):

- 1. $X_n \xrightarrow{L} X, Y_n \xrightarrow{P} c \Rightarrow X_n \pm Y_n \xrightarrow{L} Y_n \pm c$. 2. $X_n \xrightarrow{L} X, Y_n \xrightarrow{P} c \Rightarrow \begin{cases} X_n Y_n \xrightarrow{L} cx \text{ of } c \neq 0 \\ X_n Y_n \xrightarrow{P} 0 \text{ if } c = 0 \end{cases}$. 3. $X_n \xrightarrow{L} X, Y_n \xrightarrow{P} c \Rightarrow \frac{X_n}{Y_n} \xrightarrow{L} \frac{x}{c} \text{ if } c \neq 0$.