Language of ML: linear algebra

Calculations with vectors and matrices

Calculations with vectors and matrices

 $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Calculations with vectors and matrices

 $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Calculations with vectors and matrices

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

- Calculations with vectors and matrices
- For example, scaling a vector

$$0.5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \qquad - \begin{bmatrix} 1.5 \\ 2 \end{bmatrix}$$

- Calculations with vectors and matrices
- For example, scaling a vector

$$-0.5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} -1.5 \\ -2 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

- Calculations with vectors and matrices
- Or matrix-vector multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 11 \\ 25 \end{bmatrix}$$

Language of ML: linear algebra – why do we care?

 Machine learning algorithms are implemented and defined in linear algebra. Linear regression prediction:

$$\hat{Y} = X^T \hat{\beta}$$

Language of ML: linear algebra – why do we care?

- Games require parallel calculations of many transformations of 3D vectors to rotate and show objects in 3D as you move around.
 - This has given us GPUs which are geared to do that immensely quickly and in parallel (GeForce GTX 690: ~5622 * 10^9/second)
 - And now TPUs or Tensor Processing Units which are geared more towards ML applications.
- Take advantage of that!

Language of ML: linear algebra – why do we care?

Get rid of all the loops in your code and make it much faster.
 Win-win!

Language of ML: linear algebra – vectors

Scalar multiplication (scales the vector):

$$5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix}$$

Language of ML: linear algebra – vectors

Scalar multiplication (scales the vector):

$$5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix}$$

Vector addition:

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

Language of ML: linear algebra – vectors

Scalar multiplication (scales the vector):

$$5 \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix}$$

Vector addition:

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

Vector transpose (from column vector to row vector):

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix}^T = \begin{bmatrix} 3 & 4 \end{bmatrix}$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 & 1 \\ 40 & 45 & 9 \end{bmatrix} = ERROR$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$

Matrix transpose:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix}^T = \begin{bmatrix} 2 & 8 \\ 3 & 9 \end{bmatrix}$$

Scalar multiplication (scales the matrix):

$$5 \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix}$$

Matrix addition:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} + \begin{bmatrix} 10 & 15 \\ 40 & 45 \end{bmatrix} = \begin{bmatrix} 12 & 18 \\ 48 & 54 \end{bmatrix}$$

Matrix transpose:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix}^T = \begin{bmatrix} 2 & 8 \\ 3 & 9 \end{bmatrix}$$

Note: vector special case of matrix where one dimension is 1.

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

of columns in A matches # of rows in B

Matrix-vector multiplication:

$$\begin{bmatrix} 10 \\ 8 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 8 \end{bmatrix} = ERROR$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 1 vector times 2 by 2 matrix is undefined

of columns in A does not match # of rows in B

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

of columns in A matches # of rows in B

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -2 by 2 matrix times 2 by 1 vector becomes 2 by 1 vector.

of rows in matrix and number of columns in vector defines shape new vector

Matrix-vector multiplication:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \\ 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \\ 0 \cdot 10 + 4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 \\ 152 \\ 32 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix * each element in the *column* of the vector
- -3 by 2 matrix times 2 by 1 vector becomes 3 by 1 vector.

of rows in matrix and number of columns in vector defines shape new vector

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \\ 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 10 + 9 \cdot 8 \\ 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 \\ ? \\ ? \\ ? \end{bmatrix}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 & 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 10 + 9 \cdot 8 & 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ ? & ? \end{bmatrix}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 & 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 10 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & ? \end{bmatrix}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 & 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 10 + 9 \cdot 8 & 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & 151 \end{bmatrix}$$

- Matrix-matrix multiplication:
 - Matrix really just concatenated vector, so similar process:

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 + 3 \cdot 8 & 2 \cdot 2 + 3 \cdot 15 \\ 8 \cdot 10 + 9 \cdot 8 & 8 \cdot 2 + 9 \cdot 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & 151 \end{bmatrix}$$

- -Sum of each element in the *row* of the matrix A * each element in the *column* of matrix B.
- -2 by 2 matrix times 2 by 2 matrix becomes 2 by 2 matrix.

of columns in A matches # of rows in B

Matrix-matrix multiplication is non-commutative: order matters!

$$\begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} = \begin{bmatrix} 44 & 49 \\ 152 & 151 \end{bmatrix}$$

$$\begin{bmatrix} 10 & 2 \\ 8 & 15 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 8 & 9 \end{bmatrix} = \begin{bmatrix} 36 & 48 \\ 136 & 159 \end{bmatrix}$$

$$2 \cdot 3 = 6$$

$$3 \cdot 2 = 6$$

Language of ML: linear algebra -application

 That's a lot of mathiness. How is this useful for linear regression?

 $h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene \, 1 + \theta_2 \cdot Gene \, 2 + \theta_n \cdot Gene \, n$

That's a lot of mathiness. How is this useful for linear

regression?

Gene 2

Sample 1

Sample 2

Sample 2

Sample n

Sample 3

$$-2$$
 -2

Sample n

 -2
 -2
 -2
 -2
 -2

That's a lot of mathiness. How is this useful for linear

regression?
$$h_{\theta}(x) = \theta_{0} + \theta_{1} \cdot Gene \ 1 + \theta_{2} \cdot Gene \ 2 + \theta_{n} \cdot Gene \ n$$
Sample 1 \[2 \ 3 \ -2 \]
Sample 2 \[8 \ 9 \ 1 \]
Sample 1... \[0 \ 4 \ 5 \]
Sample n \[5 \ -2 \ 2 \]
$$\theta_{n} \begin{bmatrix} 3 \\ -0.5 \\ 5 \\ -1 \end{bmatrix}$$

$$\begin{array}{c|c}
\theta_0 \\
\theta_1 \\
-0.5 \\
\vdots \\
\theta_n
\end{array}$$

That's a lot of mathiness. How is this useful for linear

Sample 1
$$\begin{bmatrix} 2 & 3 & -2 \\ 8 & 9 & 1 \\ 5 & 5 & 5 \end{bmatrix}$$

Sample ...
$$\begin{bmatrix} 0 & 4 \\ 5 & -2 \end{bmatrix}$$

$$h_{\theta}(x)$$

$$(x) = \theta_0 + \theta_1$$

Gene
$$1+\theta_2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene \, 1 + \theta_2 \cdot Gene \, 2 + \theta_n \cdot Gene \, n$$

$$\theta_0$$

$$\theta_1 \mid -0.3$$

$$\begin{bmatrix} \dots & 5 \\ \theta_n & -1 \end{bmatrix}$$

To get vector of predictions from vector of thetas and matrix of data, want to multiply them

That's a lot of *mathiness*. How is this useful for linear

To get vector of predictions from vector of thetas and matrix of data, want to multiply them

Dimensions don't match, easy fix: new feature

That's a lot of *mathiness*. How is this useful for linear regression? $h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene \ 1 + \theta_2 \cdot Gene \ 2 + \theta_n \cdot Gene \ n$

That's a lot of *mathiness*. How is this useful for linear regression? $h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene \ 1 + \theta_2 \cdot Gene \ 2 + \theta_n \cdot Gene \ n$

That's a lot of mathiness. How is this useful for linear

regression?

$$\begin{array}{c|c} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{array} \begin{bmatrix} 3 \\ -0.5 \\ 5 \\ -1 \end{array}$$

That's a lot of mathiness. How is this useful for linear

regression?

$$\begin{array}{c}
 1 \cdot 3 + 2 \cdot -0.5 + 3 \cdot 5 + -2 \cdot -1 = 19 \\
 \hline
 43 \\
 \hline
 18 \\
 -11.5
 \end{array}$$

That's a lot of mathiness. How is this useful for linear

regression?

That's a lot of mathiness. How is this useful for linear

regression?

Code comparison

```
#not vectorised
totalPredictions = []
for sample, sampleData in featureDataFrame.iterrows():
    thisPrediction = 0
    for index, feature in enumerate(sampleData):
        thisPrediction += feature * thetas[index]
        totalPredictions.append(thisPrediction)

print(totalPredictions)

[19.0, 43.0, 18.0, -11.5]
```

```
#vectorised
totalPredictionsLA = featureDataFrame @ thetas
print(totalPredictionsLA)

Sample1    19.0
Sample2    43.0
Sample3    18.0
Sample4   -11.5
dtype: float64
```

Code comparison

```
#not vectorised
totalPredictions = []
for sample, sampleData in featureDataFrame.iterrows():
    thisPrediction = 0
    for index, feature in enumerate(sampleData):
        thisPrediction += feature * thetas[index]
        totalPredictions.append(thisPrediction)

print(totalPredictions)

[19.0, 43.0, 18.0, -11.5]
```

```
#vectorised
totalPredictionsLA = featureDataFrame @ thetas
print(totalPredictionsLA)

Sample1    19.0
Sample2    43.0
Sample3    18.0
Sample4   -11.5
dtype: float64
```

Code comparison

```
#not vectorised
totalPredictions = []
for sample, sampleData in featureDataFrame.iterrows():
    thisPrediction = 0
    for index, feature in enumerate(sampleData):
        thisPrediction += feature * thetas[index]
        totalPredictions.append(thisPrediction)

print(totalPredictions)

[19.0, 43.0, 18.0, -11.5]
```

```
#vectorised
totalPredictionsLA = featureDataFrame @ thetas
print(totalPredictionsLA)

Sample1    19.0
Sample2    43.0
Sample3    18.0
Sample4   -11.5
dtype: float64
```

Summary

- Linear algebra is the basis of ML: algorithms are defined in it and run quickly due to hardware optimised for matrix and vector operations
- Using linear algebra cuts down on code complexity
- You always add a "dummy" feature that is 1 to multiply with θ_0
- We covered how to multiply and add matrices and vectors, and showed that matrix multiplication is non-commutative: order matters!

Practical

- Practicing vector and matrix operations with numpy
- Changing cost function, hypothesis function, and gradient descent to work with matrices and vectors
- Working with a real biological dataset

HAVE FUN!

• That's a lot of *mathiness*. How is this useful for linear regression? $h_{\theta}(x) = \theta_0 + \theta_1 \cdot Gene \ 1 + \theta_2 \cdot Gene \ 2 + \theta_n \cdot Gene \ n$