MATH602 Real Analysis II

Pingbang Hu

August 30, 2022

Abstract

Additionally, we'll use . This course is taken in Fall 2022, and the date on the covering page is the last updated time.

Contents

1	Introduction	2
	1.1 Linear Space	2
	1.2 Quotient Space	2
	1.3 Normed Spaces	3
\mathbf{A}	Additional Proofs	6

Chapter 1

Introduction

Lecture 1: Introduction

We first briefly review different kinds of vector spaces.

05 Jan. 11:00

1.1 Linear Space

Definition 1.1.1 (Linear vector space). A set with operations of addition and multiplication (by a scalar) is called a *linear vector space*.

Example. Denote the multiplicative scalar by λ , then

- $\lambda \in \mathbb{R} \Rightarrow \text{real vector space}$.
- $\lambda \in \mathbb{C} \Rightarrow$ complex vector space

Lemma 1.1.1. Given E a linear vector space, if $v, w \in E$, $\lambda, \mu \in \mathbb{R}$ (or \mathbb{C}), then $\lambda v + \mu w \in E$.

we also have usual rules of associativity and commutativity.

Example. \mathbb{R}^n a *n* dimensional linear vector space, \mathbb{C}^n a *n* dimensional complex linear vector space.

We concentrate on ∞ dimensional linear vector space.

Example. Let K is a compact Hausdorff space, then

$$E = \{ f \colon K \to \mathbb{R} \mid f(\cdot) \text{ is continuous} \}.$$

We then see that E is an ∞ dimensional real linear vector space.

1.2 Quotient Space

Observe that a linear vector space can have many subspaces. Say E is a linear vector space, and $E_1 \subset E$ where E_1 is a proper subspace, i.e., $E_1 \neq E$.

Definition 1.2.1 (Quotient Space). The *quotient space* E/E_1 is the set of equivalence classes of vectors in E where equivalence is given by $x \sim y$ if $x - y \in E_1$. Additionally, denote [x] as the equivalence class of $x \in E$, i.e., $[x] = x + E_1$.

Note that E/E_1 is a linear vector space since if $x_1 + x_2 \in E$, $[x_1] + [x_2] = [x_1 + x_2]$, and also, $\lambda[x] = [\lambda x]$ for $\lambda \in \mathbb{R}$ or \mathbb{C} , i.e., $v, w \in E/E_1$, $\lambda, \mu \in \mathbb{R}$ or \mathbb{C} implies $\lambda v + \mu w \in E$.

Definition 1.2.2 (Codimension). If E / E_1 has finite dimension, then the dimension of E / E_1 is called the *cdimension* of E_1 in E.

Example. There exists the case that $\dim(E) = \infty$, $\dim(E_1) < \infty$ where $\dim(E/E_1) < \infty$.

Proof. Let $E = \{f : K \to \mathbb{R} \mid f(\cdot) \text{ continuous}\}$, and $E_1 = \{f \in E : f(k_1) = 0\}$ where $k_1 \in K$ is fixed. We see that the dimension of E / E_1 is exactly 1 since E / E_1 is the set of constant functions.

Theorem 1.2.1. If E is finite dimensional, then $\operatorname{codim}(E_1) + \dim(E_1) = \dim(E)$

Definition 1.2.3 (Linear operator). A map $T: E \to F$ between 2 linear spaces is a linear operator if it preserves the properties of addition and multiplication by a scalar, i.e., $T(\lambda v + \mu w) = \lambda T(v) + \mu T(w)$ for $v, w \in E$ and $\lambda, \mu \in \mathbb{R}$ or \mathbb{C} .

Definition. Given a inear operator $T \colon E \to F$ we have the following.

Definition 1.2.4 (Kernel). The kernel of T is the subspace $ker(T) = \{x \in E \mid Tx = 0\}$.

Definition 1.2.5 (Image). The *image* of T is the subspace $Im(T) = \{Tx \in F \mid x \in E\}$.

1.3 Normed Spaces

We review some basic notions.

Definition 1.3.1 (Norm). Let E be a linear vector space. A norm $\|\cdot\|: E \to \mathbb{R}$ on E is a function from E to \mathbb{R} with the properties:

- (a) $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$.
- (b) $\|\lambda x\| = |\lambda| \|x\|, \lambda \in \mathbb{R}$ or \mathbb{C} .
- (c) $||x + y|| \le ||x|| + ||y||$.

Definition 1.3.2 (Normed vector space). A linear vector space E equipped with a norm $\|\cdot\|$ is called a normed vector space.

Remark (Induced metric space). A normed vector space E induces a metric space with metric d(x, y) = ||x - y||, where the metric has properties

- (a) $d(x,y) \ge 0$. Also, d(x,x) = 0 and d(x,y) implies x = y.
- (b) d(x, y) = d(y, x).
- (c) $d(x,z) \le d(x,y) + d(y,z)$.

Example (Bounded sequences ℓ_{∞}). Let ℓ_{∞} be the space of bounded sequences $x=(x_1,x_2,\ldots)$ with $x_i \in \mathbb{R}$ for $i=1,2,\ldots$ Then we define $\|x\|=\|x\|_{\infty}=\sup_{i\geq 1}|x_i|$.

Example (Absolutely summable sequences ℓ_1). Let ℓ_1 be the space of absolutely summable sequences $x=(x_1,x_2,\ldots)$ and $\sum_{i=1}^{\infty}|x_i|<\infty$. Then we define $\|x\|=\|x\|_1=\sum_{i=1}^{\infty}|x_i|<\infty$.

Example (Continuous functions C(k)). The space C(k) of continuous functions $f: K \to \mathbb{R}$ where K is compact Hausdorff. Then we define $||f|| = ||f||_{\infty} = \sup_{x \in K} |f(x)|$.

1.3.1 Geometry of Normed Spaces

Definition 1.3.3 (Ball). A (closed) *ball* centered at a point $x_0 \in E$ with radius r > 0 is the set $B(x_0, r) = \{x \in E \mid ||x - x_0|| \le r\}.$

Definition 1.3.4 (Sphere). The *sphere* centered at x_0 with radius r > 0 is the set $S(x_0, r) = \{x \in E \mid ||x - x_0|| = r\}$.

Remark. We see that $S(x_0, r)$ is the **boundary** of $B(x_0, r)$, i.e., $S(x_0, r) = \partial B(x_0, r)$.

Note (Nonequivalency in infinite dimensional spaces). We know that in finite dimensional, all norms are equivalent, which is not true for infinite dimensional vector spaces.

This has something to do with the geometry of balls.

Explicitly, balls can have different geometries depending on the properties of the norms. We see that an $\|\cdot\|_{\infty}$ can have multiple supporting hyperplane at the corner, while for an $\|\cdot\|_2$ can have only one at each point.

Also, unit balls for $\|\cdot\|_1$ is also a **square**, where we have

$$B(0,1) = \{x = (x_1, x_2, \dots) \mid -1 < y_{\epsilon} < 1 \forall \epsilon \}$$

such that $y_{\epsilon} = \sum_{i=1}^{\infty} \epsilon_i x_i$, $\epsilon_i = \pm 1$ and $\epsilon = (\epsilon_1, \epsilon_2, \ldots)$.

We see that different norms give different geometry, but they have important common features, most notably, convexity properties.

Definition 1.3.5 (Convex set). Given E a linear vector space, a set $K \subset E$ is convex if $x, y \in K$ and $0 \le \lambda \le 1$, we have $\lambda xe(1-\lambda)y \in K$.

Definition 1.3.6 (Convex function). Given E a linear vector space, a function $f: E \to \mathbb{R}$ is called *convex* if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for $x, y \in E$, $0 \le \lambda \le 1$.

Remark. If $f: E \to \mathbb{R}$ is a convex function, then for any $M \in \mathbb{R}$ the set $\{x \in E \mid f(x) \leq M\}$ is convex

The upshot is that norms are convex, and the unit balls are convex as well.

Appendix

Appendix A Additional Proofs