Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 2.2.6

по курсу общей физики на тему:

«Определение энергии активации по температурной зависимости вязкости жидкости»

Работу выполнил: Баринов Леонид (группа Б02-827)

Долгопрудный 2019 год

1 Аннотация

В работе будет измерена скорость падения шариков при разной температуре жидкости. Будет вычислена вязкость жидкости по закону Стокса и расчитана энергии активации.

2 Теоритические сведения

В жидкостях, как и в кристаллах, каждая молекула находится в потенциальной яме электрического поля, создаваемого окружающими молекулами. Молекулы колеблются со средней частотой, близкой к частоте колебаний атомов в кристаллических телах ($\sim 10^{12}~\Gamma$ ц), и с амплитудой, определяемой размерами объема, предоставленного ей соседними молекулами. Глубина потенциальной ямы жидкостях больше средней кинетической энергии колеблющейся молекулы, поэтому молекулы колеблются вокруг более или менее стабильных положений равновесия. Однако у жидкостей различие между этими двумя энергиями невелико, так что молекулы нередко выскакивают из «своей» потенциальной ямы и занимают место в другой.

Для того чтобы перейти в новое состояние, молекула должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Вследствие этого переходы молекул из одного положения равновесия в другое происходят сравнительно редко и тем реже, чем больше энергия активации.

Отмеченный характер движения молекул объясняет как медленность диффузии в жидкостях, так и большую (по сравнению с газами) их вязкость. В газах вязкость объясняется происходящим при тепловом движении молекул переносом количества направленного движения. В жидкостях такие переходы существенно замедлены. Количество молекул, имеющих энергии больше W, в соответствии с формулой Больцмана экспоненциально зависит от W. Температурная зависимость вязкости жидкости выражается формулой (1):

$$\eta = Ae^{W/kT} \tag{1}$$

Из формулы (1) следует, что вязкость жидкости при повышении температуры должна резко уменьшаться. Если отложить на графике логарифм вязкости $\ln \eta$ в зависимости от $1/\mathrm{T}$, то согласно (1) должна получиться прямая линия, по угловому коэффициенту которой можно определить энергию активации молекулы W исследуемой жидкости.

Сила сопротивления, действующая при ламинарном обтекании шарика безграничной жидкостью (Закон Стокса):

$$F = 6\pi\eta r v \tag{2}$$

где η – вязкость жидкости, v – скорость шарика, r – его радиус.

Уравнение движения шарика в жидкости:

$$v(t) = v_{\text{ycr}} - [v_{\text{ycr}} - v(0)]e^{-t/\tau}$$
 (3)

v(0) – скорость шарика в момент начала его движения в жидкости

$$v_{\text{yct}} = \frac{2}{9}gr^2 \frac{\rho - \rho_{\text{jk}}}{\eta}$$

$$\tau = \frac{2}{9} \frac{r^2 \rho}{\eta}$$

$$(4)$$

Как видно из (3), скорость шарика экспоненциально приближается к установившейся скорости $v_{\text{уст}}$. Установление скорости определяется величиной τ , имеющей размерность времени и называющейся временем релаксации.

Измеряя на опыте установившуюся скорость падения шариков $v_{\text{уст}}$ и величины $r, \rho, \rho_{\text{ж}}$, можно определить вязкость жидкости по формуле, следующей из (4):

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\mathcal{K}}}{v_{\text{ycr}}} \tag{5}$$

Характер обтекания определяется значением числа Рейнольдса

$$Re = \frac{vr\rho_{xx}}{\eta} \tag{6}$$

Путь S может быть найден посредством интегрирования (3). v(0) = 0

$$S = \upsilon_{\text{ycr}} \tau \left(\frac{t}{\tau} - 1 + e^{-t/\tau} \right) \tag{7}$$

Из формулы (7) легко видеть, что $S\gg \tau v_{\rm уст}$ при $t\gg \tau$

После неравенство определяет допустимое расстояние между границей жидкости и верхней меткой.

3 Оборудование

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром около 1мм)

3.1 Экспериментальная установка

- 1. блок терморегулирования
- 2. ванна
- 3. индикаторное табло
- 4. ручка установки температуры
- 5. кнопка переключения режимов установки/контроля температуры
- 6. индикатор уровня жидкости

Рис. 1: Установка для определения коэффициента вязкости жидкости

- 7. индикатор включения нагревателя
- 8. сетевой выключатель прибора
- 9. крышка
- 10. входной и выходной патрубки насоса
- 11. входной и выходной патрубки теплообменника (вода из водопровода)
- 12. температура жидкости (равна температуре воды в термостате).

Сосуд В помещен в рубашку D

3.2 Микроскоп

Радиусы шариков измеряются горизонтальным компаратором или микроскопом. Плотность шариков ρ определяется из таблиц

$$\rho_{\text{стекла}} = 2.5 \Gamma / \text{см}^3$$

$$\rho_{\text{стали}} = 7.8 \Gamma / \text{см}^3$$

Плотность исследуемой жидкости определяется по графику $\rho_{\mathbf{x}}(\mathbf{T})$, Рис. 2.

4 Результаты измерений и обработка результатов

Выберем 10 стеклянных и 10 стальных шариков. Измерим их радиусы.

Измерьте установившиеся скорости падения шариков и вычислите вязкость η по формуле (5). Измерения выполним для 4-5 значений температуры в интервале

Рис. 2: Зависимость плотности глицерина от температуры

$T,^{\circ}C$	d, mm	t, c	$v_{ m yct}$, mm/c	$\eta, 10^{-3} \; \Pi \mathrm{a \cdot c}$	$\Delta \eta, 10^{-3} \; \Pi \text{a} \cdot \text{c}$	
Стеклянные шарики						
22,9	1,8	36,67	2,73	802	16	
22,9	1,9	35,65	2,81	869	16	
30,1	1,8	27,13	3,69	593	12	
	1,9	24,86	4,02	606	12	
38,1	1,8	14,08	7,10	310	7	
	1,9	13,68	7,31	336	8	
46	1,8	7,51	13,32	166	5	
	1,9	7,21	13,87	177	6	
55	2	4,93	20,28	134	6	
00	2	4,63	21,60	126	6	
Стальные шарики						
22,9	0,8	38,49	2,60	877	78	
22,9	0,8	46,68	2,14	1064	95	
20.1	0,8	29,25	3,42	667	59	
30,1	0,75	23,35	4,28	468	45	
38,1	0,85	11,71	8,54	302	26	
	0,85	14,25	7,02	367	31	
46	0,75	9	11,11	181	18	
	0,9	7,01	14,27	202	17	
55	0,75	5,67	17,64	114	12	
	0,8	4,28	23,36	98	10	

Таблица 1: Определение вязкости глицерина

от комнатной до 50-60°C. Результаты занесем в Таблицу 1. Время измеряется при прохождением шарика расстояния l=0.1м

Для каждого из опытов вычислим значение числа Рейнольдса Re, оценим время релаксации τ (по формуле (4)) и путь релаксации S. Результаты занесем в Таблицу 2. Усредним значения вязкости. Результат занесем в Таблицу 3.

$T, ^{\circ}C$	d, mm	$v_{ m yct}$, mm/c	Re	τ , MC	S, mkm
Стеклянные шарики					
22,9	1,8	2,73	0,004	0,56	1,53
	1,9	2,81	0,004	0,58	1,62
30,1	1,8	3,69	0,007	0,76	2,80
	1,9	4,02	0,008	0,83	3,33
38,1	1,8	7,10	0,026	1,45	10,29
	1,9	7,31	0,026	1,49	10,91
46	1,8	13,32	0,091	2,72	36,18
	1,9	13,87	0,094	2,83	39,26
55	2	20,28	0,190	4,14	83,97
55	2	21,60	0,216	4,41	95,20
Стальные шарики					
22.0	0,8	2,60	0,001	0,32	0,82
22,9	0,8	2,14	0,001	0,26	0,56
30,1	0,8	3,42	0,003	0,42	1,42
	0,75	4,28	0,004	0,52	2,23
38,1	0,85	8,54	0,015	1,04	8,86
	0,85	7,02	0,010	0,85	5,98
46	0,75	11,11	0,029	1,35	15,00
	0,9	14,27	0,040	1,73	24,73
55	0,75	17,64	0,073	2,14	37,80
	0,8	23,36	0,121	2,84	66,33

Таблица 2: Значение числа Рейнольдса Re, времени релаксации au, пути релаксации S

Построим график зависимости $\ln \eta$ от 1/T по результатам в Таблице 4. Из графика получаем:

$$W = (0.88 \pm 0.03) \cdot 10^{-19}$$
Дж $W = (0.55 \pm 0.02)$ эВ

5 Обсуждение результатов и выводы

В работе было поведение вычисление вязкости глицерина η для каждого шарика при заданной температуре. (Таблица 1)

Для каждого из опытов было вычислено значение числа Рейнольдса Re (Таблица 2). Re < 0.5, что свидетельствует о ламинарном характере обтекания шариков жидкостью.

Была проведена оценка времени релаксации τ и пути релаксации S. Значение оказалась малы по сравнению со значением пути и времени при измерениях установившийся скоростью, что в данном эксперименте было возможно применение формулы Стокса.

T, K	$\eta, 10^{-3} \; \Pi \mathrm{a} \cdot \mathrm{c}$	$\sigma_{\rm cл}, \ \Pi {\rm a} \cdot {\rm c}$	$\sigma_{\text{сист}}$, $\Pi \mathbf{a} \cdot \mathbf{c}$	$\sigma_{\eta}, \Pi a \cdot c$
295,9	902,96	97,29	116,34	151,66
303,1	583,38	72,31	77,85	106,25
311,1	328,85	25,47	41,09	48,34
319	181,44	13,35	24,82	28,19
328	117,92	13,77	18,43	23,01

Таблица 3: Зависимость вязкости глицерина η от температуры T

$\ln \eta$, $\Pi a \cdot c$	$\Delta \ln \eta$, $\Pi a \cdot c$	1/T, MK, -1
6,81	0,168	3,38
6,37	0,182	3,30
5,80	0,147	3,21
5,20	0,155	3,13
4,77	0,195	3,05

Таблица 4: Данные для построения графика

Рис. 3: Зависимость логарифма вязкости $ln\eta$ от величины, обратной температуре глицерина 1/T

Было получено усредненное значение вязкости жидкости для каждой из измеряемых температур. (Таблица 3). Данные в пределах погрешности совпадают с табличными.

По графику зависимости логарифма вязкости $ln\eta$ от величины, обратной тем-

пературе глицерина 1/T было получено значение энергии активации молекул глицерина:

$$W=(0.88\pm0.03)\cdot10^{-19}$$
Дж
$$W=(0.55\pm0.02)~\mathrm{9B}$$

Экспериментальные данные совпадают с табличными. (W=0.54эВ)