1

NCERT-Analog-11.15-6

EE22BTECH11004 - Allu lohith

Q: A bat emits ultrasonic sound of frequency 1000kHz in air. If the sound meets a water surface, what is the wavelength of

(t)he reflected sound

(b) the transmitted sound?

Speed of sound in air is $340ms^{-1}$ and in water is $1486ms^{-1}$.

Ans: Given that the frequency of the Ultra sonic sound = 1000KHz

As we know that the frequency of sound does not change with medium, So the frequency in water is equal to in air.

let the wavelength in air = λ_a and speed in air = v_a

let the wavelength in water = λ_w and speed in water = ν_w

As,

wavelength
$$(\lambda)$$
 · frequency $(f) = speed(v)$ (1)

So,

$$\lambda_w = v_w / f \tag{2}$$

$$\lambda_w = 1486/1000KHz$$
 (3)

$$\lambda_w = 1.486mm \tag{4}$$

And similarly,

$$\lambda_a = v_a / f \tag{5}$$

$$\lambda_a = 340/1000KHz \tag{6}$$

$$\lambda_a = 0.34mm \tag{7}$$

So the wavelngth in air is 0.34mm and wavelength in water is 1.486mm

Parameter	Description	Value
λ	Wavelength of light	
$y_i(t)$	Displacement produced by S_{ith}	
ω	Angular frequency	
I	Intensity of light at $\Delta x = \lambda$	K
k	Wave number	$\frac{2\pi}{\lambda}$
$I_{ m net}, I_{ m R}$	Net Intensities of resulting waves	kA^2
		λ
$\Delta x = x_1 - x_2$	Path difference	λ
		3
A	Amplitudes of light waves	$A_1 = A_2$

TABLE 0
Parameters