数理逻辑第三次作业

201300035 方盛俊

讲义 47 页: 8. 9. 10. 14.

讲义 48 页: 15. 16.

8.

定义谓词 P(x):x is glitter. Q(x):x is gold.

那么用一阶逻辑语言表示 "all that glitters is not gold" 可为:

$$eg(\forall x (P(x) \to Q(x)))$$

9.

$$FV(\forall x (P(x,y) \land \forall z \exists y (y \doteq z)) \lor (x \doteq x))$$

$$= FV(\forall x (P(x,y) \land \forall z \exists y (y \doteq z))) \cup FV(x \doteq x)$$

$$= (FV(P(x,y) \land \forall z \exists y (y \doteq z)) - \{x\}) \cup \{x\}$$

$$= (FV(P(x,y)) \cup FV(\forall z \exists y (y \doteq z)) - \{x\}) \cup \{x\}$$

$$= (\{x,y\} \cup (FV(\exists y (y \doteq z)) - \{z\}) - \{x\}) \cup \{x\}$$

$$= (\{x,y\} \cup ((FV(y \doteq z) - \{y\}) - \{z\}) - \{x\}) \cup \{x\}$$

$$= (\{x,y\} \cup ((\{y,z\} - \{y\}) - \{z\}) - \{x\}) \cup \{x\}$$

$$= \{x,y\}$$

10.

$$(\forall x (P(x,y) \land \forall z \exists y (y \doteq z)) \lor (x \doteq x)) [\frac{f(x)}{y}]$$

$$= (\forall x (P(x,y) \land \forall z \exists y (y \doteq z))) [\frac{f(x)}{y}] \lor (x \doteq x) [\frac{f(x)}{y}]$$

$$= (\forall r ((P(x,y) \land \forall z \exists y (y \doteq z)) [\frac{r}{x}] [\frac{f(x)}{y}])) \lor (x [\frac{f(x)}{y}] \doteq x [\frac{f(x)}{y}])$$

$$= (\forall r (P(x,y) [\frac{r}{x}] [\frac{f(x)}{y}] \land (\forall z \exists y (y \doteq z)) [\frac{r}{x}] [\frac{f(x)}{y}])) \lor (x \doteq x)$$

$$= (\forall r (P(r,f(x)) \land (\forall z (\exists y (y \doteq z)) [\frac{f(x)}{y}]))) \lor (x \doteq x)$$

$$= \forall r (P(r,f(x)) \land \forall z \exists y (y \doteq z)) \lor (x \doteq x)$$

$$(\forall x (P(x,y) \land \forall z \exists y (y \doteq z)) \lor (x \doteq x) [\frac{f(x)}{x}]$$

$$= \forall x (P(x,y) \land \forall z \exists y (y \doteq z)) \lor (x [\frac{f(x)}{x}] \doteq x [\frac{f(x)}{x}])$$

$$= \forall x (P(x,y) \land \forall z \exists y (y \doteq z)) \lor (x [\frac{f(x)}{x}] \doteq x [\frac{f(x)}{x}])$$

$$= \forall x (P(x,y) \land \forall z \exists y (y \doteq z)) \lor (x [\frac{f(x)}{x}] \doteq x [\frac{f(x)}{x}])$$

$$= \forall x (P(x,y) \land \forall z \exists y (y \doteq z)) \lor (f(x) \doteq f(x))$$

14.

定义语法 (a=b), 若 a=b 成立, 则 (a=b)=T, 否则 (a=b)=F

(1)

对于任意模型 (M,σ) , 均有

对于任意 $a \in M$,

$$(x \doteq x)_{M[\sigma[x:=a]]} = (x_{M[\sigma[x:=a]]} = x_{M[\sigma[x:=a]]}) = (a=a) = T$$

 $\therefore \forall x(x \doteq x)$ 为永真式.

(2)

对于任意模型 (M,σ) , 均有

对于任意 $a \in M, b \in M$,

$$egin{align*} &(x \doteq y
ightarrow y \doteq x)_{M[\sigma[x:=a][y:=b]]} \ = B_{
ightarrow} (x \doteq y)_{M[\sigma[x:=a][y:=b]]}, (y \doteq x)_{M[\sigma[x:=a][y:=b]]}) \ = B_{
ightarrow} (x_{M[\sigma[x:=a][y:=b]]} = y_{M[\sigma[x:=a][y:=b]]}), (y_{M[\sigma[x:=a][y:=b]]} = x_{M[\sigma[x:=a][y:=b]]})) \ = B_{
ightarrow} (a = b), (b = a)) \ = B_{
ightarrow} (a = b), (a = b)) \ = T \end{split}$$

 $\therefore \forall x \forall y (x \doteq y \rightarrow y \doteq x)$ 为永真式.

(3)

对于任意模型 (M,σ) , 均有

对于任意 $a \in M, b \in M, c \in M$,

$$egin{align*} &((x \doteq y \land y \doteq z)
ightarrow x \doteq z)_{M[\sigma[x:=a][y:=b][z:=c]]} \ &= B_{
ightarrow}((x \doteq y \land y \doteq z)_{M[\sigma[x:=a][y:=b][z:=c]]}, (x \doteq z)_{M[\sigma[x:=a][y:=b][z:=c]]}) \ &= B_{
ightarrow}(B_{\land}((x \doteq y)_{M[\sigma[x:=a][y:=b][z:=c]]}, (y \doteq z)_{M[\sigma[x:=a][y:=b][z:=c]]}), (x \doteq z)_{M[\sigma[x:=a][y:=b][z:=c]]}) \ &= B_{
ightarrow}(B_{\land}((a = b), (b = c)), (a = c)) \end{split}$$

当
$$a=b$$
 且 $b=c$ 时, 即 $B_{\wedge}((a=b),(b=c))=T$ 时, 有 $a=b=c$ 即 $(a=c)=T$

$$\therefore B_{
ightarrow}(B_{\wedge}((a=b),(b=c)),(a=c))=T$$

 $\therefore \forall x \forall y \forall z ((x \doteq y \land y \doteq z) \rightarrow x \doteq z)$ 为永真式.

15.

$$\therefore (A \leftrightarrow B)$$
指 $(A \rightarrow B) \land (B \rightarrow A)$

定义
$$B_{\leftrightarrow}(X,Y)=B_{\wedge}(B_{\rightarrow}(X,Y),B_{\rightarrow}(Y,X))$$

则可得真值表

Α	В	$B_{\leftrightarrow}(X,Y)$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

$$egin{aligned} &(\lnot(A \land B) \leftrightarrow ((\lnot A) \lor (\lnot B)))_{M[\sigma]} = \ &B_\leftrightarrow(B_\lnot(B_\land(A_{M[\sigma]},B_{M[\sigma]})),B_\lor(B_\lnot(A_{M[\sigma]}),B_\lnot(B_{M[\sigma]}))) \end{aligned}$$

对于任何的 $M[\sigma]$,

列真值表如下:

$A_{M[\sigma]}$	$B_{M[\sigma]}$	$(\lnot(A \land B))_{M[\sigma]}$	$((\neg A) \lor \\ (\neg B))_{M[\sigma]}$	$(\lnot(A \land B) \leftrightarrow ((\lnot A) \lor (\lnot B)))_{M[\sigma]}$
F	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	Т	Т	Т
Т	Т	F	F	Т

$A_{M[\sigma]}$	$B_{M[\sigma]}$	$(\lnot(A \land B))_{M[\sigma]}$	$((\neg A) \lor \\ (\neg B))_{M[\sigma]}$	$(\lnot(A \land B) \leftrightarrow ((\lnot A) \lor (\lnot B)))_{M[\sigma]}$
F	F	Т	Т	Т
F	Т	F	F	Т
Т	F	F	F	Т
Т	Т	F	F	Т

$$\therefore (\neg (A \land B) \leftrightarrow ((\neg A) \lor (\neg B))) \ \text{和} \ (\neg (A \land B) \leftrightarrow ((\neg A) \lor (\neg B))) \ \text{永真}.$$

(2)

对于任何的 $M[\sigma]$,

列真值表如下:

$A_{M[\sigma]}$	$B_{M[\sigma]}$	$(A\wedge B)_{M[\sigma]}$	$(B\wedge A)_{M[\sigma]}$	$((A \wedge B) \leftrightarrow (B \wedge A))_{M[\sigma]}$
F	F	F	F	Т
F	Т	F	F	Т
Т	F	F	F	Т
Т	Т	Т	Т	Т

$A_{M[\sigma}$	$B_{M[\sigma]}$	$(A\vee B)_{M[\sigma]}$	$(B\vee A)_{M[\sigma]}$	$((A \vee B) \leftrightarrow (B \vee A))_{M[\sigma]}$	
----------------	-----------------	-------------------------	-------------------------	---	--

$A_{M[\sigma]}$	$B_{M[\sigma]}$	$(A\vee B)_{M[\sigma]}$	$(B\vee A)_{M[\sigma]}$	$((A\vee B) \leftrightarrow (B\vee A))_{M[\sigma]}$
F	F	F	F	Т
F	Т	Т	Т	Т
Т	F	Т	Т	Т
Т	Т	Т	Т	Т

 $\therefore ((A \land B) \leftrightarrow (B \land A))$ 和 $((A \lor B) \leftrightarrow (B \lor A))$ 永真.

(3)

对于任何的 $M[\sigma]$,

列真值表如下:

$A_{M[\sigma]}$	$(A \to A)_{M[\sigma]}$
F	Т
Т	Т

$A_{M[\sigma]}$	$B_{M[\sigma]}$	$C_{M[\sigma]}$	$((A \to B) \land \\ (B \to C))_{M[\sigma]}$	$(A ightarrow \ C)_{M[\sigma]}$	$(((A o B)\wedge (B o C)) o (A o C))_{M[\sigma]}$
F	F	F	Т	Т	Т
F	F	Т	Т	Т	Т
F	Т	F	F	Т	Т
F	Т	Т	Т	Т	Т
Т	F	F	F	F	Т
Т	F	Т	F	Т	Т
Т	Т	F	F	F	Т
Т	Т	Т	Т	Т	Т

$$\therefore (A o A)$$
和 $(((A o B) \land (B o C)) o (A o C))$ 永真.

16.

$$\therefore (A \leftrightarrow B)$$
 指 $(A \to B) \land (B \to A)$

定义
$$B_{\leftrightarrow}(X,Y) = B_{\wedge}(B_{\rightarrow}(X,Y), B_{\rightarrow}(Y,X))$$

则可得真值表

Α	В	$B_{\leftrightarrow}(X,Y)$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

```
\models (\neg \forall x A) \leftrightarrow (\exists x \neg A)
```

- iff 对于任意模型 (M,σ) 均有 $B_{\leftrightarrow}((\neg \forall xA)_{M[\sigma]},(\exists x\neg A)_{M[\sigma]})=T$
- $ext{iff}$ 对于任意模型 (M,σ) 均有 $B_{\leftrightarrow}(B_{\lnot}($ 对所有 $x\in M$,均有 $A_{M[\sigma]}=T), (\exists x\lnot A)_{M[\sigma]})=T$
- $ext{iff}$ 对于任意模型 (M,σ) 均有 $B_\leftrightarrow(($ 并非对所有 $x\in M$,均有 $A_{M[\sigma]}=T),(\exists x\lnot A)_{M[\sigma]})=T$
- $ext{iff}$ 对于任意模型 (M,σ) 均有 $B_\leftrightarrow(($ 对某个 $x\in M,$ 有 $A_{M[\sigma]}=F),(\exists x\lnot A)_{M[\sigma]})=T$
- $ext{iff}$ 对于任意模型 (M,σ) 均有 $B_{\leftrightarrow}(($ 对某个 $x\in M,$ 有 $\neg A_{M[\sigma]}=T), (\exists x\neg A)_{M[\sigma]})=T$
- iff 对于任意模型 (M,σ) 均有 $B_{\leftrightarrow}((\exists x\neg A)_{M[\sigma]},(\exists x\neg A)_{M[\sigma]})=T$

$\models (\neg \exists x A) \leftrightarrow (\forall x \neg A)$

- iff 对于任意模型 (M,σ) 均有 $B_{\leftrightarrow}((\neg \exists xA)_{M[\sigma]},(\forall x\neg A)_{M[\sigma]})=T$
- $\text{iff} \quad \ \ \, \mathsf{对于任意模型}\left(M,\sigma\right)\ \, \mathsf{均有}\ \, B_{\leftrightarrow}(B_{\lnot}(\ \mathsf{yT}\ \mathsf{x} \cap M,\ \mathsf{f}\ A_{M[\sigma]}=T),(\forall x\lnot A)_{M[\sigma]})=T$
- $\text{iff} \quad \ \ \, \text{对于任意模型 } (M,\sigma) \ \ \, \text{均有 } B_{\leftrightarrow}(\big(\ \text{不可能对某个 } x \in M, \ \, \text{有 } A_{M[\sigma]} = T), (\forall x \neg A)_{M[\sigma]} \big) = T$
- $ext{iff}$ 对于任意模型 (M,σ) 均有 $B_\leftrightarrow(($ 对所有 $x\in M,$ 均有 $A_{M[\sigma]}=F),(orall x
 eg A)_{M[\sigma]})=T$
- $ext{iff}$ 对于任意模型 (M,σ) 均有 $B_\leftrightarrow(($ 对所有 $x\in M$,均有 $\neg A_{M[\sigma]}=T), (orall x \neg A)_{M[\sigma]})=T$
- iff 对于任意模型 (M,σ) 均有 $B_\leftrightarrow((orall x \lnot A)_{M[\sigma]},(orall x \lnot A)_{M[\sigma]}) = T$