Why deal with missing data?

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Consultant

Why does missing data exist?

Real world data is messy data

Did you know that 72% of organizations believe that data quality issues hinder customer trust and perception?

¹ [Top 9 Benefits of Data Cleansing for Businesses](https://bit.ly/2QwMrab)

Why does missing data exist?

- Values are missed during data acquisition process
 - Faulty weather sensors during weather analysis
 - Incomplete patient information for medical diagnosis etc.
- Values deleted accidentally
 - Data loss
 - Mistakenly deleted due to human error

In this course, you'll learn

- the significance of treating missing values
- to detect missing values in your messy data
- analyze the types for missingness
- treat the missing values appropriately for
 - numerical
 - time-series
 - categorical values

In this course, you'll learn

- to impute(replace) missing values using simple techniques
- to impute using advanced techniques
- to finally evaluate the best method of treating missing values

Workflow for treating missing values

- 1. Convert all missing values to null values.
- 2. Analyze the amount and type of missingness in the data.
- 3. Appropriately delete or impute missing values.
- 4. Evaluate & compare the performance of the treated/imputed dataset.

NULL value Operations

None

None or True # Same for False
True

None + True # For all operators

TypeError: unsupported operand

None / 3 # For all operators

TypeError: unsupported operand

type(None)

NoneType

np.nan

```
import numpy as np
np.nan or True # Same for False
nan
```

```
np.nan * True # For all operators
nan
np.nan - 3 # For all operators
nan
```

```
type(np.nan)
float
```

NULL value operations

None

None == None

True

np.isnan(None)

False

np.nan

np.nan == np.nan

False

np.isnan(np.nan)

True

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

Handling missing values

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi

Deep Learning & Computer Vision Consultant

Missing values

• Usually filled with values like 'NA', '-' or '.' etc.

Detect missing values in College dataset

College Dataset

```
college = pd.read_csv('college.csv')
college.head()
```

```
lenroll rmbrd private stufac csat act
gradrat
  59.0
            5.1761497326 3.75
                                1.0
                                      10.8
                                               . 21.0
  52.0
            4.7791234931 3.74
                                1.0
                                     17.7
                                               . 21.0
                                1.0
                                      11.4
  75.0
       6.122492809500001
                                          1052.0 24.0
  56.0
                       4.1 1.0
                                      11.6 940.0 23.0
            5.3181199938
  71.0
       5.631211781799999
                                1.0
                                      18.3
                                               . 17.0
```


Detect missing values in College dataset

college.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 7 columns):
gradrat
       200 non-null object
<u>lenroll</u> 200 non-null object
rmbrd 200 non-null object
       200 non-null float64
private
stufac
          200 non-null object
          200 non-null object
csat
          200 non-null object
act
dtypes: float64(1), object(6)
```


Detect missing values in College dataset

```
csat_unique = college.csat.unique()
np.sort(csat_unique)
```

```
array(['.', '1000.0', '1006.0', '1010.0', '1013.0', '1020.0', '1024.0',
       '1026.0', '1028.0', '1036.0', '1039.0', '1040.0', '1044.0',
       '1045.0', '1050.0', '1052.0', '1060.0', '1070.0', '1080.0',
       '1092.0', '1096.0', '1109.0', '1111.0', '1120.0', '1139.0',
       '940.0', '943.0', '947.0', '950.0', '951.0', '964.0', '970.0',
       '979.0', '980.0', '989.0', '992.0', '994.0', '996.0', '997.0',
       '998.0'], dtype=object)
```


Replace missing values in College dataset

```
college = pd.read_csv('college.csv', na_values='.')
college.head()
```

```
lenroll
gradrat
                 rmbrd
                       private stufac
                                         csat
                                               act
                           1.0
  59.0
        5.176150
                  3.75
                                 10.8
                                         NaN
                                             21.0
                                         NaN
  52.0
        4.779123 3.74
                           1.0 17.7
                                              21.0
  75.0
        6.122493
                   NaN
                           1.0 11.4
                                       1052.0 24.0
  56.0 5.318120
                  4.10
                           1.0
                                11.6
                                        940.0 23.0
  71.0 5.631212
                           1.0
                                 18.3
                                          NaN
                                              17.0
                   NaN
```


Replace missing values in College dataset

college.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 7 columns):
       187 non-null float64
gradrat
lenroll 199 non-null float64
rmbrd 114 non-null float64
       200 non-null float64
private
stufac 199 non-null float64
          105 non-null float64
csat
act
          104 non-null float64
dtypes: float64(7)
```


Pima Indian Diabetes dataset

contains various clinical diagnostic information of the patients from the Pima community

```
diabetes = pd.read_csv('pima-indians-diabetes.csv')
```

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
0	6.0	148.0	72.0	35.0	NaN	33.6	0.627	50	1.0
1	1.0	85.0	66.0	29.0	NaN	26.6	0.351	31	0.0
2	8.0	183.0	64.0	NaN	NaN	23.3	0.672	32	1.0
3	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21	0.0
4	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33	1.0

diabetes.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
Pregnant
                    768 non-null float64
Glucose
                    763 non-null float64
Diastolic_BP
                    733 non-null float64
Skin_Fold
                    541 non-null float64
Serum_Insulin
                    394 non-null float64
                    768 non-null float64
BMI
Diabetes_Pedigree
                    768 non-null float64
                    768 non-null int64
Age
Class
                    768 non-null float64
dtypes: float64(8), int64(1)
```


diabetes.describe()

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	BMI	Diabetes_Pedigree	Age	Class
count	768.000000	763.000000	733.000000	541.000000	394.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	121.686763	72.405184	29.153420	155.548223	31.992578	0.471876	33.240885	0.348958
std	3.369578	30.535641	12.382158	10.476982	118.775855	7.884160	0.331329	11.760232	0.476951
min	0.000000	44.000000	24.000000	7.000000	14.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	64.000000	22.000000	76.250000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	141.000000	80.000000	36.000000	190.000000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000


```
diabetes.BMI[diabetes.BMI == 0]
```

```
0.0
        0.0
        0.0
60 |
        0.0
81 |
        0.0
145|
        0.0
371|
        0.0
426|
        0.0
494|
522|
       0.0
        0.0
684|
        0.0
706
Name: BMI, dtype: float64
```


Replace missing values with NaN

```
diabetes.BMI[diabetes.BMI == 0] = np.nan
diabetes.BMI[np.isnan(diabetes.BMI)]
```

```
NaN
       NaN
       NaN
       NaN
145|
       NaN
371|
       NaN
426|
       NaN
494|
       NaN
522|
       NaN
684|
       NaN
       NaN
7061
Name: BMI, dtype: float64
```


Summary

- detect missing value characters like "etc.
- detect the inherent missing values within the data like '0'.
- replace them values with NaN

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

Analyze the amount of missingness

DEALING WITH MISSING DATA IN PYTHON

Suraj Donthi
Deep Learning & Co

Deep Learning & Computer Vision Consultant

Load Air Quality dataset

Air Quality dataset

• contains the sensor recordings of Ozone, Solar, Temperature and Wind

```
Ozone Solar Wind Temp
Date
           41.0 190.0
1976-05-01
                                67
           36.0 118.0
1976-05-02
                                72
1976-05-03
          12.0 149.0 12.6
                                74
1976-05-04
            18.0 313.0 11.5
                                62
1976-05-05
             NaN
                   NaN 14.3
                                56
```

Nullity DataFrame

• Use either .isnull() or .isna() methods on the DataFrame

```
airquality_nullity = airquality.isnull()
airquality_nullity.head()
```

```
Ozone Solar Wind Temp
Date

1976-05-01 False False False
1976-05-02 False False False
1976-05-03 False False False
1976-05-04 False False False
1976-05-05 True True False False
```


Total missing values

```
airquality_nullity.sum()
```

```
Ozone 37
Solar 7
Wind 0
Temp 0
dtype: int64
```

Percentage of missingness

```
airquality_nullity.mean() * 100
```

```
Ozone 24.183007
Solar 4.575163
Wind 0.000000
Temp 0.000000
dtype: float64
```

Nullity Bar

Missingno package

Package for graphical analysis of missing values

import missingno as msno

0.2

0.0

Nullity Matrix for time-series data

msno.matrix(airquality, freq='M')

Nullity Matrix for time-series data

msno.matrix(airquality, freq='M')

Fine tuning the matrix

```
msno.matrix(airquality.loc['May-1976': 'Jul-1976'], freq='M')
```


Summary

In this lesson we learned to analyze

- the amount of missingness numerically
- the amount of missingness graphically
- the percentage of missingness
- the nullity matrix for regular datasets
- the nullity matrix for time-series datasets

Let's practice!

DEALING WITH MISSING DATA IN PYTHON

