Solutions to Assignment 6

Math 217, Fall 2002

3.3.18 Suppose that all entries in A are integers and det A = 1. Explain why all the entries in A^{-1} are integers.

We know that $A^{-1} = \frac{1}{\det A}$ adj A. Because $\det A = 1$ we only need to show that adj A has all integer entries (in this particular situation . . . it won't be true in general). The i, jth entry of adj A is $(-1)^{i+j} \det A_{j,i}$. So now it is enough to show that the determinate of $A_{j,i}$ is an integer.

Here $A_{i,j}$ is a matrix with integer entries. If we can prove that any matrix with integer entries has an integer determinate, we will be done. So let's prove a little lemma.

Lemma 1. If $A \in M_n(\mathbb{Z})$ then det A is an integer.

Proof. The proof is by induction on n. If n=2 (we didn't define determinates for 1×1 matrices), then $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ for some $a,b,c,d\in\mathbb{Z}$, and the determinate of A is ad-bc, clearly an integer. So suppose n>2. A formula for the determinate of A is

$$\sum_{j=1}^{n} (-a)^{j+1} a_{1,j} \det A_{1,j}.$$

By induction, det $A_{1,j}$ is an integer for all j = 1, ..., n (because $A_{1,j}$ is an $(n-1) \times (n-1)$ matrix). We know that sums of multiples of integers are integers, so

$$\sum_{j=1}^{n} (-a)^{j+1} a_{1,j} \det A_{1,j}$$

is an integer, completing the result.

3.3.28 Let S be the parallelogram determined by the vectors $\mathbf{b}_1 = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and let $A = \begin{bmatrix} 7 & 2 \\ 1 & 1 \end{bmatrix}$. Compute the area of the image of S under the mapping $\mathbf{x} \to A\mathbf{x}$.

We have the formula {area of T(S)} = $|\det A|$ {area of S} (see theorem 10). We also know that the area of the parallelogram determined by S is $\left|\det \begin{bmatrix} 4 & 0 \\ -7 & 1 \end{bmatrix}\right|$ (see theorem 9). So we have that {area of T(S)} = $\left|\det \begin{bmatrix} 7 & 2 \\ 1 & 1 \end{bmatrix}\right| \cdot \left|\det \begin{bmatrix} 4 & 0 \\ -7 & 1 \end{bmatrix}\right| = 20$ square units!

- **3.3.32** Let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $\mathbf{0}$, \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 . Let S' be the tetrahedron with vertices at vectors $\mathbf{0}$, \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . See the figure in the book on page 210.
 - (a) Describe a linear transformation that maps S onto S'. Suppose we call this transformation T. We will describe the action of T by giving its standard matrix. We know that $T(\mathbf{e}_i) = \mathbf{v}_i$ for i = 1, 2, 3, so we need to find the matrix A such that $A\mathbf{e}_i = \mathbf{v}_i$ for i = 1, 2, 3. Because $A\mathbf{e}_i$ is the ith column of A, we see that $A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$. Thus the standard matrix of T is $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$
 - (b) Find a formula for the volume of the tetrahedron S' using the fact that $\{\text{volume of } S\} = (1/3)\{\text{area of base}\} \cdot \{\text{height}\}.$

We use the formula given in the problem along with theorems 9 and 10 from the text. So

$$\begin{aligned} \{\text{vol. of } T(S)\} &= |\det A| \{\text{vol. of } S\} \\ &= |\det A| \cdot (1/3) \{\text{area of base}\} \cdot \{\text{height}\} = |\det A| \cdot (1/3) \cdot (1/2) \cdot (1) \\ &= (1/6) \left|\det \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} \right| \end{aligned}$$

units cubed!

4.1.12 Let W be the set of all vectors of the form $\begin{bmatrix} s+3t\\ s-t\\ 2s-t\\ 4t \end{bmatrix}$. Show that W is a subspace

of \mathbb{R}^4 .

Note that

$$W = \left\{ \begin{bmatrix} s+3t \\ s-t \\ 2s-t \\ 4t \end{bmatrix} \mid s,t \in \mathbb{R} \right\} = \left\{ s \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ -1 \\ -1 \\ 4 \end{bmatrix} \mid s,t \in \mathbb{R} \right\}$$
$$= \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ -1 \\ 4 \end{bmatrix} \right\}.$$

We proved in class that the Span of a set of vectors is a subspace, thus W is a subspace.

4.1.20 The set of all continuous real-valued functions defined on a closed interval [a, b] in \mathbb{R} is denoted by C[a, b]. This set is a subspace of the vector space of all real-valued functions defined on [a, b].

 2

(a) What facts about continuous functions should be proved in order to demonstrate that C[a, b] is indeed a subspace as claimed?

Well, we need to know that 0 is a continuous function on [a,b], that given any two continuous functions f and g on [a,b], then their sum f+g is a continuous function on [a,b], and given any $c \in \mathbb{R}$ and $f \in C[a,b]$, then cf is a continuous function on [a,b]. Each of these facts is true and typically discussed in a calculus class.

- (b) Show that $\{f \in C[a,b] \mid f(a) = f(b)\}$ is a subspace of C[a,b]. Well, there are some things we need to check. Let $S = \{f \in C[a,b] \mid f(a) = f(b)\}$. It is true that the constant function 0 is in S (because 0 evaluated at any c such that $a \le c \le b$ is 0). If $f,g \in S$, then we know that f(a) = f(b) and g(a) = g(b). Thus (f+g)(a) = f(a) + g(a) = f(b) + g(b) = (f+g)(b) as required. Finally, if $f \in S$, then f(a) = f(b), so for any $c \in \mathbb{R}$, (cf)(a) = c(f(a)) = c(f(b)) = (cf)(b) (for the first and last equality I am using the fact that cf is the function that takes x to c(f(x)), that is, that (cf)(x) = c(f(x))).
- **4.1.32** Let H and K be subspaces of a vector space V. The intersection of H and K, written as $H \cap K$, is the set of \mathbf{v} in V that belong to both H and K. Show that $H \cap K$ is a subspace of V. Give an example in \mathbb{R}^2 to show that the union of two subspaces is not, in general, a subspace.

Well, there are some things we have to check. It is clear that $\mathbf{0} \in (H \cap K)$, because $\mathbf{0} \in H$ and $\mathbf{0} \in K$. Suppose that \mathbf{u} and \mathbf{v} are two vectors in $H \cap K$. Then $\mathbf{u}, \mathbf{v} \in H$, and $\mathbf{u}, \mathbf{v} \in K$. This implies that $\mathbf{u} + \mathbf{v} \in H$ (because H is a subspace), and similarly for K. We conclude that $\mathbf{u} + \mathbf{v} \in (H \cap K)$ as required. Finally, if $\mathbf{u} \in (H \cap K)$, then $\mathbf{u} \in H$ and $\mathbf{u} \in K$. Thus for each $c \in \mathbb{R}$, $c\mathbf{u} \in H$ (again because H is a subspace), and similarly for K. We conclude that $c\mathbf{u} \in (H \cap K)$ for all $c \in \mathbb{R}$ as required. We have proved that $(H \cap K)$ is a subspace of V.

In general unions do not give subspaces. Let $H = \left\{ a \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mid a \in \mathbb{R} \right\}$, and $K = \left\{ b \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mid b \in \mathbb{R} \right\}$. Then $H \cup K$ is the set of all things whose form is either $a \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ for some $a \in \mathbb{R}$ or of the form $b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ for some $b \in \mathbb{R}$. This is not a subspace, because $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is not in $H \cup K$ and subspaces must be closed under addition $(\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is not of the form $a \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ for some $a \in \mathbb{R}$ or of the form $b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ for some $b \in \mathbb{R}$).

4.2.32 Define a linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ by $T(p) = \begin{bmatrix} p(0) \\ p(0) \end{bmatrix}$. Find polynomials \mathbf{p}_1 and \mathbf{p}_2 in \mathbb{P}_2 that span the kernel of T and describe the range of T. Suppose that p is in the kernel of T and write $p(t) = a + bt + ct^2$. Then $T(p) = \begin{bmatrix} a \\ a \end{bmatrix}$. So it must be the case that a = 0. This means that any polynomial

of the form $bt + ct^2$ for some $b, c \in \mathbb{R}$ is in the kernel of T. A spanning set for these two vectors is the set $\{t, t^2\}$.

To describe the range, let $p(t) = a + bt + ct^2$ be any polynomial in \mathbb{P}_2 , and note that $T(p) = \begin{bmatrix} a \\ a \end{bmatrix}$. We see right away that the range is contained in the set $\left\{ \begin{bmatrix} a \\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$. For each $\begin{bmatrix} b \\ b \end{bmatrix} \in \left\{ \begin{bmatrix} a \\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$ the polynomial p(t) = b + t has $T(p) = \begin{bmatrix} b \\ b \end{bmatrix}$. This implies that the set $\left\{ \begin{bmatrix} a \\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$ is contained in the range. We conclude that the range is $\left\{ \begin{bmatrix} a \\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$. (You might note that this is isomorphic to \mathbb{R}^1).

4.2.34 Define $T: C[0,1] \to C[0,1]$ as follows: For f in C[0,1], let T(f) be the antiderivative F of f such that F(0) = 0. Show that T is a linear transformation, and describe the kernel of T.

I remind you that the antiderivative F of f which has F(0) = 0 is

$$F(x) = \int_0^x f(t) dt.$$

This means that T(f) is the function

$$\int_0^x f(t) dt.$$

So if $f, g \in C[0, 1]$ then

$$T(f+g) = \int_0^x (f(t) + g(t))dt = \int_0^x f(t)dt + \int_0^x g(t)dt = T(f) + T(g).$$

Furthermore, for all $c \in \mathbb{R}$,

$$T(cf) = \int_0^x cf(t)dt = c \int_0^x f(t)dt = cT(f).$$

Thus T is a linear transformation.