Bin 2 Problems

January 1, 2024

This document holds problems that fit into the Bin 2 according to the prelim syllabus. Or are approached in a way most compatible with Bin 2

Contents

1 Prelim Problems 1

2 Axler Problems 2

1 Prelim Problems

1. Let u be a unit vector in an n – dimensional inner product space V over \mathbb{R} . Define $T \in \mathcal{L}(V)$ as:

$$T(x) = x - 2\langle x, u \rangle u, \quad x \in V$$

Show that

- (a) T is an isometry
- (b) If $A = \mathcal{M}(T)$ is a matrix representation of T, then det A = -1
- (c) If $S \in \mathcal{L}(V)$ is an isometry with 1 as an eigenvalue, and if the eigenspace of 1 is of dimension n-1, then there exists some $w \in V$ where w is a unit vector and for all $x \in V$:

$$S(x) = x - 2 \langle x, w \rangle w$$

- 2. Let V be a finite dimensional real vector space with basis e_1, \ldots, e_n (the standard basis of \mathbb{R}^n)
 - (a) Let A be a positive definite bijective matrix in V (This means A is a matrix representation of some invertible linear operator in $\mathcal{L}(V)$). For any $v, w \in V$, expressed as coordinate vectors according to this basis (their standard representation if you were to write them down), define

$$\langle v, w \rangle := v^{\top} A w.$$

Show that this is an inner product.

- (b) Let $\langle \cdot, \cdot \rangle$ be an inner product in V. Define A to be a matrix such that $A_{ij} = \langle e_i, e_j \rangle$ is a positive bijective matrix such that $\langle v, w \rangle = v^{\top} A w$.
- 3. V be a finite-dimensional inner product space over \mathbb{C} . Let T be a normal operator on V. Let $\lambda \in \mathbb{C}$ and let $v \in V$ be a unit vector (ie ||v|| = 1). Prove that T has an eigenvalue λ' such that

$$\|\lambda - \lambda'\| \le \|Tv - \lambda v\|.$$

2 Axler Problems

- 1. Suppose $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ are inner products on V over a field $\mathbb F$ such that for all $u, v \in V$, $\langle u, v \rangle_1 = 0 \iff \langle u, v \rangle_2 = 0$. Prove that there is a positive number c such that $\langle u, v \rangle_1 = c \langle u, v \rangle$ for all $u, v \in V$.
- 2. Suppose e_1, \ldots, e_m is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, \dots, e_m)$.