

Engenharia de Controle e Automação

Controle Adaptativo

Prof. Dr. Paulo J. D. O. Evald

Prof. Dr. Paulo J. D. O. Evald

Centro de Engenharias Sala 211

paulo.evald@ufpel.edu.br

- Objetivos da aula:
 - Controle por Modelo de Referência
 - Formulação do MRC;
 - Projeto e implementação do MRC;
 - Origem do Controle Adaptivo.

O que é adaptação ?

Adaptar

Modificar o comportamento em resposta a novas condições

Na teoria de controle, a adaptação é um mecanismo utilizado para ajustar os ganhos de um controlador em função de perturbações no sistema:

Matched uncertainties: incertezas estruturadas são relacionados às variações de polos e zeros da planta;

Unmatched dynamics: incertezas não estruturadas são dinâmicas não-modeladas.

Que mecanismos de adaptação existem

Controle Adaptativo Direto

Controle Adaptativo Indireto

Inteligência Artificial

Gain-Scheduling

Controle Adaptativo Direto

Usa um modelo de referência para determinar o comportamento desejado para o sistema controlado;

Usa leis de adaptação do tipo Gradiente e *Least Squares* para ajustar os ganhos em resposta as perturbações do sistema;

Evolução do MRC (*Model Reference Control*).

Um exemplo motivador

Na figura, as saídas de um sistema em malha fechada:

- a) Controlador PI
- b) Controlador MRAC

O objetivo do MRC é modificar a dinâmica do sistema controlado para tornar seu comportamento equivalente à um sistema de referência desejado.

Aplicável à sistemas de única entrada e única saída, lineares e invariantes no tempo.

Não é um controle robusto.

Cancelamentos imperfeitos de polos e zeros tornam o sistema em malha fechada instável ou com baixo desempenho.

Seja a função de transferência de uma planta genérica, com os parâmetros conhecidos, dada por :

$$y_p = G_p(s)u_p$$

sendo:

$$G_p(s) = k_p \frac{Z_p(s)}{R_p(s)}$$

onde:

 k_p é o ganho de alta frequência

 $Z_p(s)$ e $R_p(s)$ são polinômios mônicos

Seja a função de transferência de uma planta genérica, com os parâmetros conhecidos, dada por :

$$y_p = G_p(s)u_p$$

sendo:

$$G_p(s) = k_p \frac{Z_p(s)}{R_p(s)}$$

onde:

 k_p é o ganho de alta frequência

 $Z_p(s)$ e $R_p(s)$ são polinômios mônicos

Um polinômio é dito mônico se o coeficiente do termo de mais alto grau do polinômio for 1.

Seja a função de transferência de uma planta genérica, com os parâmetros conhecidos, dada por :

$$y_p = G_p(\mathfrak{s})u_p$$

Ação de controle

sendo:

$$G_p(s) = k_p \frac{Z_p(s)}{R_p(s)}$$

onde:

 k_p é o ganho de alta frequência

 $Z_p(s)$ e $R_p(s)$ são polinômios mônicos

Hipóteses da planta:

- I. $Z_p(s)$ é um polinômio mônico Hurwitz de grau m_p
- II. Existe um limite superior n para o grau n_p de $R_p(s)$
- III. O grau relativo da planta é $n^* = n_p m_p$
- IV. O sinal do ganho de alta frequência k_p é conhecido

Um polinômio é dito Hurwitz se todos seus coeficientes são números reais positivos, cujos zeros são localizados no semiplano esquerdo dos números complexos.

A função de transferência do modelo de referência é representada da mesma forma que a planta.

$$y_m = G_m(s)r$$
 Referência

sendo:

$$G_m(s) = k_m \frac{Z_m(s)}{R_m(s)}$$

onde:

 k_m é o ganho de alta frequência

 $Z_m(s)$ e $R_m(s)$ são polinômios mônicos

Hipóteses do modelo de referência:

1. $Z_m(s)$ e $R_m(s)$ são polinômios mônicos Hurwitz de grau q_m e p_m , respectivamente, onde $p_m \le n$

II. O grau relativo do modelo de referência, $n_m^* = p_m - q_m$, é o mesmo da planta, ou seja, $n_m^* = n^*$

Se a planta for bem conhecida, a ação de controle é dada por

$$u_p = \frac{k_m Z_m R_p}{k_p R_m Z_p} r$$

Variações paramétricas acarretam em cancelamentos de zeros e polos imperfeitos;

Pode levar os estados intermediários à instabilidade devido à condições iniciais não nulas.

Alternativamente, se a planta tiver pequenas variações paramétricas, pode-se utilizar

$$u_p = \theta_1^{*T} \frac{\alpha}{\Lambda} + \theta_2^{*T} \frac{\alpha}{\Lambda} + \theta_3^{*T} y_p + C_0 r$$

onde:

$$\alpha(s) = 0$$
 para $n = 1$

$$\alpha(s) = \alpha_{n-2}(s) = [s_{n-2}, s_{n-3}, \dots, s, s_0]^{\mathsf{T}}$$
 para $n \ge 2$

e C_0 e $\theta_3^* \in \mathbb{R}^1$, θ_1^{*T} e $\theta_2^{*T} \in \mathbb{R}^{n-1}$ são os parâmetros do controle à projetar.

Como $\Lambda(s)$ é um polinômio arbitrário, mônico, Hurwitz, de grau n-1 que contém $Z_m(s)$ como fator, ou seja,

$$\Lambda(s) = \Lambda_0(s) Z_m(s)$$

que implica à $\Lambda_0(s)$ também ser um polinômio mônico, Hurwitz e com grau $n_0 = n - 1 - q_m$.

Além disso,

$$C_0 = \frac{K_n}{K_p}$$

Os filtros internos montados com $\Lambda(s)$ e $\alpha(s)$ são expressos na seguinte forma:

$$\dot{\omega}_1 = \frac{\alpha(s)}{\Lambda(s)} u_p \quad \text{com} \quad \omega_1(0) = 0$$

$$\dot{\omega}_2 = \frac{\alpha(s)}{\Lambda(s)} y_p \quad \text{com} \quad \omega_2(0) = 0$$

onde ω_i são os filtros internos $\in R^{n-1}$.

Obs.: Esses filtros não necessariamente reconstroem os estados da planta, mas sim sinais internos.

Esses filtros podem ser implementados no Espaço de Estados pelo par controlável (F,g), da seguinte forma

$$F = \begin{bmatrix} -\lambda_{n-2} & \cdots & -\lambda_0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \quad \text{e} \quad g = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$$

sendo que os λ_i são os coeficientes de

$$\Lambda(s) = det(sI - F) = s^{n-1} + \lambda_{n-2} s^{n-2} + ... + \lambda_1 s + \lambda_0$$

Em resumo,

Os valores de θ são obtidos resolvendo a seguinte igualdade,

$$\theta_1^{*T} \alpha(s) R_p(s) + k_p(\theta_2^{*T} \alpha(s) + \theta_3^{*A}(s)) Z_p = A(s)R_p(s) - Z_p(s)A_0(s)R_m(s)$$

ou o seguinte sistema linear, organizado pelas potências de s,

$$s \theta^* = p$$

onde:

S é uma matrix de dimensões
$$(n + n_p - 1) \times (2n - 1)$$

p é um vetor de dimensões
$$(n + n_p - 1) \times 1$$

A existência de um θ^* que satisfaça o sistema linear depende das propriedades da matriz s.

Se $n > n_p$, então existe mais de um vetor θ^* que satisfazem o sistema;

Se $n = n_p$ e S for não singular (possui determinante não nulo), então haverá somente uma única solução.

Projeto de um MRC

 $\begin{smallmatrix} 10111001 \\ 00100011 \\ 010100010 \\ 010100010 \\ 01010001 \\ 0010$

Para a planta:

$$G_p(s) = -0.88 \frac{s}{(s - 6.4)(s + 6.5)}$$

O MRC é aplicável?

Para a planta:

$$G_p(s) = -0.88 \frac{s}{(s - 6.4)(s + 6.5)}$$

O MRC é aplicável? Sim.

- $\checkmark Z_p(s)$ é mônico e Hurwitz
- ✓ O grau relativo da planta é conhecido
- ✓ O ganho de alta frequência é conhecido
- \checkmark Existe um limite n finito para o grau n_p de $R_p(s)$

Modelo de Referência

A planta tem grau relativo 1. Logo, o modelo de referência também deve possuir grau relativo unitário.

Alternativa: um sistema de segunda ordem,

$$W_m(s) = \frac{2 \, \xi_m \, \omega_m \, s + \, \omega_m^2}{s^2 + 2 \, \xi_m \, \omega_m \, s + \, \omega_m^2}$$

onde

ξ: coeficiente de amortecimento

ω_n: frequência natural

Modelo de Referência

A planta tem grau relativo 1. Logo, o modelo de referência também deve possuir grau relativo unitário.

Alternativa: um sistema de segunda ordem,

$$W_m(s) = \frac{2 \, \xi_m \, \omega_m \, s + \, \omega_m^2}{s^2 + 2 \, \xi_m \, \omega_m \, s + \, \omega_m^2}$$

Para $\xi_m = 1$ e $\omega_m = 90$ rad/s :

$$W_m(s) = \frac{180 s + 8100}{s^2 + 180 s + 8100} = 180 \frac{s + 45}{s^2 + 180 s + 8100}$$

O modelo de referência proposto satisfaz as hipóteses da técnica?

$$W_m(s) = 180 \frac{s + 45}{s^2 + 180 s + 8100}$$

O modelo de referência proposto satisfaz as hipóteses da técnica?

$$W_m(s) = 180 \frac{s + 45}{s^2 + 180 s + 8100}$$

 \checkmark $Z_m(s)$ e $R_m(s)$ são polinômios mônicos, Hurwitz, de grau q_m e p_m , respectivamente, onde

 $p_m \leq n$;

✓ O grau relativo do modelo de referência é o mesmo da planta.

Parâmetros do filtro:

Primeiramente, análise o grau:

grau de
$$\Lambda = n - 1 = ?$$

Assim para Λ_0 têm-se:

Grau de
$$\Lambda_0 = n - 1 - q_m = ?$$

Parâmetros do filtro:

Primeiramente, análise o grau:

grau de
$$\Lambda = n - 1 = 2 - 1 = 1$$

Assim para Λ_0 têm-se:

grau de
$$\Lambda_0 = n - 1 - q_m = 2 - 1 - 1 = 0$$

O parâmetro Λ_0 deve ser um polinômio mônico, Hurwitz e com grau nulo;

O parâmetro Λ deve ser mônico, Hurwitz, conter $Z_m(s)$, e ter grau unitário. Projete,

$$\Lambda(s) = \Lambda_0(s) \ Z_m(s)$$

$$\Lambda_0 = ?$$

$$\wedge = ?$$

O parâmetro Λ_0 deve ser um polinômio mônico, Hurwitz e com grau nulo;

O parâmetro Λ deve ser mônico, Hurwitz, conter $Z_m(s)$, e ter grau unitário. Projete,

$$\Lambda(s) = \Lambda_0(s) \ Z_m(s)$$

$$\Lambda_0 = 1$$

$$\Lambda = s + 45$$

Lembrando que

$$\alpha(s) = \alpha_{n-2}(s) = [s_{n-2}, s_{n-3}, ..., s, s_0]^T$$
 para $n \ge 2$

Como n = 2, então

$$\alpha(s) = [S_0]^{\mathsf{T}}$$

Para para que ganho dos filtros seja unitário em regime permanente, arbitrou-se

$$\alpha = [45]^{T}$$

Os filtros resultantes são obtidos com

$$\dot{\omega}_1 = \frac{\alpha(s)}{\Lambda(s)} u_p \quad \text{com} \quad \omega_1(0) = 0 \quad e \quad \dot{\omega}_2 = \frac{\alpha(s)}{\Lambda(s)} y_p \quad \text{com} \quad \omega_2(0) = 0$$

Como

$$\frac{\alpha(s)}{\Lambda(s)} = \frac{45}{s + 45}$$

Logo,

$$F = [-45]$$
 e $G = [45]$

Parâmetro de relação dos ganhos de alta frequência da planta e do modelo de referência:

$$C_0 = \frac{K_m}{K_p} = \frac{180}{-0.88} = -204,55$$

Monte o sistema linear a partir de

$$\theta_1^{*T} \alpha(s) R_p(s) + k_p(\theta_2^{*T} \alpha(s) + \theta_3^{*A}(s)) Z_p = A(s)R_p(s) - Z_p(s)A_0(s)R_m(s)$$

Resolva o sistema linear organizado pelas potências de s,

$$s \theta^* = p$$

Substituido todos parâmetros e organizando o sistema, obtém-se

$$s \theta^* = p$$

$$\begin{bmatrix} -45 & 0 & 0,9 \\ -10,7 & 39,6 & 39,6 \\ 1070,4 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{\theta}_1 \\ \mathbf{\theta}_2 \\ \mathbf{\theta}_3 \end{bmatrix} = \begin{bmatrix} 134,8 \\ 8113,1 \\ 1070,4 \end{bmatrix}$$

Logo,

$$\begin{bmatrix} \mathbf{\theta}_1 \\ \mathbf{\theta}_2 \\ \mathbf{\theta}_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0,87 \\ 204,27 \end{bmatrix}$$


```
content: ";
                                                   blockquote p { margin-bottom: 10px }
                                                   strong, b ( font-weight: bold )
   content: none:
                                                   em. i. cite [
table [
                                                      font-style: normal:
  border-collapse: collapse:
                                                      font-family: arial;
  border-spacing: 0;
                                                   small [ font-size: 100% ]
button, input, select, textarea ( margin: 0 )
                                                   figure [ margin: 10px 0 ]
:focus { outline: 0 }
                                                   code, pre [
a:link { -webkit-tap-highlight-color: #FF5E99 }
                                                     font-family: monospace,consolas,sans-serif;
img, video, object, embed (
                                                      font-weight: normal:
  max-width: 100%:
                                                      font-style: normal;
  height: auto!important;
iframe [ max-width: 100% ]
                                                      margin: 5px 0 20px 0:
blockquote (
                                                      line-height: 1.3em:
                                                      padding: 8px 10px;
  font-style: italic:
  font-weight: normal:
                                                      overflow: auto:
  font-family: Georgia.Serif:
  font-size: 15px;
  padding: 0 10px 20px 27px:
                                                            ng: 0 8px:
  position: relative:
                                                             eight: 1.5:
  margin-top: 25px:
blockquote:after [
                                                               1px 6px:
                                              </>
                                                              0 2px:
  position: absolute:
   content: "";
                                                             Jack
```

Implementação no Matlab/Octave


```
clear
close
clc()
% Planta
Ap = [0 1; 41.6 -0.1];
Bp = [-0.88; 0.088];
Cp = [1 \ 0];
Dp = [0];
Kp = -0.88;
```


% Modelo de referência com csi_m = 1; wn_m = 90;

```
Am = [ 0 1; -8100 -180];

Bm = [ 180 ; -24300];

Cm = [ 1 0];

Dm = [ 0 ];
```


% Condições iniciais

$$Xp(1:2,1) = [0\ 0]'; \quad Xm(1:2,1) = [0\ 0]'; \quad u(1) = 0; \quad yp(1) = 0;$$

% Filtros

$$F = -45$$
; $q = 45$; $w1(1) = 0$; $w2(1) = 0$;

% Controlador

$$C0 = Km / Kp;$$

Theta(1:3) =
$$[1 \quad 0.87 \quad 204.27]'$$
;

$$Ts = 1/1000;$$

for k = 1:1000

$$t(k) = k * Ts; % tempo$$

$$r(k) = 0.2;$$
 % referência

% Estados do modelo de referência

$$Xm(1:2,k+1) = (eye(2,2) + Am * Ts)*Xm(1:2,k) + Bm * Ts * r(k);$$

% Saída do modelo de referência

$$ym(k) = Cm * Xm(1:2,k);$$

% Estados da planta

$$Xp(1:2,k+1) = (eye(2,2) + Ap * Ts) * Xp(1:2,k) + Bp * Ts * u(k);$$

$$yp(k) = Cp * Xp(1:2,k);$$

% Filtros internos

$$w1(k+1)=(eye(1,1) + F*Ts)*w1(k) + Ts*q*u(k);$$

 $w2(k+1)=(eye(1,1) + F*Ts)*w2(k) + Ts*q*yp(k);$
 $w(1:3,k) = [w1(k); w2(k); yp(k)];$ % Vetor auxiliar

% Erro de rastreamento

$$e(k) = yp(k) - ym(k);$$

% Ação de controle

$$u(k+1) = w1(k+1)*Theta(1) + w2(k+1)*Theta(2) + yp(k)*Theta(3) + r(k)*C0;$$

end


```
figure
plot(t,ym,'r','LineWidth',3)
hold
plot(t,yp,'--k','LineWidth',3)
grid on;
xlabel('Tempo (s)', "fontsize", 24);
ylabel('Saída', "fontsize", 24);
```

```
legend('ym', 'y' );
set(gcf,'color','white');
h=get(gcf, "currentaxes");
```

set(h, "fontsize", 24);

Em geral, o controle alcançou seu objetivo rastreando a saída do modelo de referência;

Mas, e se ocorrer uma variação paramétrica?

Inclua dentro do loop do código:

if
$$(k > 500)$$

$$Ap = 2*[0$$

end

Prática

Suponha que um motor de corrente contínua precisa ser controlado para movimentação de uma base móvel de um processo de pintura automobilística automatizado, com 30 mm/s;

Após identificar os parâmetros do motor, a sua função de transferência é

$$G(s) = \frac{V_o(s)}{v(s)} = \frac{4,28}{s^2 + 370,8s + 1690,6}$$

Projete um MRC considerando que o comportamento desejado do sistema em malha fechada seja criticamente amortecido ($\zeta = 1$) e com uma frequência natural de 7, 64 rad/s.

- Obs.1: a ação de controle é a tensão de armadura, com valor máximo de 13 V.
- Obs.2: os filtros internos não podem cortar as informações de alta frequência;
 Use uma frequência de amostragem de 1 kHz.

Próxima aula:

Model Reference Adaptive Control

Regra MIT

Teoria + Simulações (aula no laboratório de informática)

Bibliografia Básica

PS-BRASIL

AGUIRRE, Luiz Antonio (Ed). **Enciclopédia de automática: controle & automação**. São Paulo: Atlas, 2007. 3 v. ISBN 9788521204084

ASTOLFI, Alessandro. **Nonlinear and Adaptive Control with Applications**. XVI, 290 p (Communications and Control Engineering, 0178-5354).

CHERNOUSKO, Felix L. Control of Nonlinear Dynamical Systems: Methods and Applications. XII, 396 p. 121 illus (Communications and Control Engineering, 0178-5354).

KHALIL, H. K., Nonlinear systems, 3rd Edition, Prentice Hall, 2002.

SLOTINE, J. J. E.; LI, W., Applied nonlinear control, Prentice Hall, 1991.

FRANKLIN, G.; POWELL, J.D.; EMAMI-NAEINI, A., Feedback Control of Dynamic Systems, 6^a Edition, Prentice Hall, 2010.

ZHOU, Jing. Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations. XIV, 242 p. 94 illus (Lecture Notes in Control and Information Sciences, 0170-8643; 372).

