NCERT 11.15. Q10

EE23BTECH11010 - Venkatesh Bandawar*

Question: For the travelling harmonic wave $y(x,t) = 2.0\cos 2\pi (10t - 0.0080x + 0.35)$ where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of

- (a) 4 m
- (b) 0.5 m
- (c) $\lambda/2$
- (d) $3\lambda/4$

Solution: Harmonic wave :

Parameter	Description	Value
k	angular wave number	$2\pi (0.008)$
$\lambda = \frac{2\pi}{k}$	wavelength	125 cm
f	natural frequency	10
A	amplitude	2.0
φ	phase	$2\pi (0.35)$

$$y(x,t) = 2.0\cos 2\pi (10t - 0.0080x + 0.35)$$
 (1)

Phase of harmonic wave (at x):

$$= 2\pi \left(10t - 0.0080x + 0.35\right) \tag{2}$$

$$k = 2\pi(0.008) \tag{3}$$

$$\therefore k = \frac{2\pi}{\lambda} \tag{4}$$

$$\lambda = \frac{2\pi}{k} \tag{5}$$

$$\lambda = \frac{2\pi}{2\pi \times 0.008}$$

$$\lambda = 125 \text{cm} \tag{6}$$

Phase difference =
$$\theta_1 - \theta_2$$
 (7)

$$= (kx_1 + \omega t + \phi) - (kx_2 + \omega t + \phi)$$
(8)

$$=k\left(x_{1}-x_{2}\right) \tag{9}$$

(a) :
$$(x_1 - x_2) = 400 cm$$

phase difference =
$$k(x_1 - x_2)$$
 (??)
= $2\pi \times 0.0080 \times 400$
= 6.4π radians (10)

(b)
$$:: (x_1 - x_2) = 50 \, cm$$

phase difference = $k(x_1 - x_2)$

phase difference =
$$k(x_1 - x_2)$$
 (??)
= $2\pi \times 0.0080 \times 50$
= 0.8π radians (11)

(c) :
$$(x_1 - x_2) = \frac{\lambda}{2} cm$$

phase difference =
$$k(x_1 - x_2)$$
 (??)
= $2\pi \times 0.0080 \times \frac{\lambda}{2}$ (12)
= $2\pi \times 0.0080 \times \frac{125}{2}$ (:: $\lambda = 125$)
= π radians (13)

(d)
$$: (x_1 - x_2) = \frac{3\lambda}{4} cm$$

phase difference =
$$k(x_1 - x_2)$$
 (??)
= $2\pi \times 0.0080 \times 3 \times \frac{\lambda}{4}$ (14)
= $2\pi \times 0.0080 \times 3 \times \frac{125}{4}$ (:: $\lambda = 125$)
= $\frac{3\pi}{2}$ radians (15)