Tema 3. Opciones avanzadas de Express.js

3.4. Desarrollo de aplicaciones con Nest.js

Nest.js es un framework de desarrollo web en el servidor que, apoyándose en el framework **Express**, permite construir aplicaciones robustas y escalables utilizando una terminología muy similar a la que se emplea en el framework de cliente *Angular*. Al igual que Angular, utiliza lenguaje TypeScript para definir el código, aunque también es compatible con JavaScript.

Nest.js proporciona la mayoría de características que cualquier framework de desarrollo en el servidor proporciona, tales como mecanismos de autenticación, uso de ORM para acceso a datos, desarrollo de servicios REST, enrutado, etc.

3.4.1. Instalación y creación de proyectos

Nest.js se instala como un módulo global al sistema a través del gestor de paquetes npm, con el siguiente comando:

```
npm i -g @nestjs/cli
```

Una vez instalado, para crear un proyecto utilizamos el comando nest, con la opción new, seguida del nombre del proyecto.

```
nest new nombre_proyecto
```

NOTA: en la creación del proyecto, puede que el asistente pregunte qué gestor de paquetes vamos a utilizar. Lo normal es seleccionar npm.

Esto creará una carpeta con el nombre del proyecto en nuestra ubicación actual, y almacenará dentro toda la estructura básica de archivos y carpetas de los proyectos Nest. Podemos consultar la información del proyecto generado con el comando i (o info):

```
nest i
```

Obtendremos una salida similar a esta (variando los números de versión):

```
[System Information]
OS Version : Linux 5.15
NodeJS Version : v18.12.1
NPM Version : 8.19.2
[Nest CLI]
```

```
Nest CLI Version: 9.1.5

[Nest Platform Information]
platform-express version: 9.2.0
schematics version: 9.0.3
testing version: 9.2.0
common version: 9.2.0
core version: 9.2.0
cli version: 9.1.5
```

3.4.1.1. Estructura de un proyecto Nest.js

La estructura de carpetas y archivos creada por el comando nest tiene una serie de elementos clave que conviene resaltar. La mayor parte de nuestro código fuente se ubicará en la carpeta src. Entre otras cosas, podemos encontrar:

- El módulo principal app. module. ts, ya definido
- Un controlador de ejemplo, llamado app. controller.ts, con una ruta definida hacia la raíz de la aplicación.
- El archivo main.ts, que define la inicialización de la aplicación Crea una instancia del módulo principal AppModule, y se queda escuchando por un puerto determinado (que se puede modificar en este mismo archivo). Define para ello una función asíncrona, que luego se lanza para poner en marcha todo:

```
import { NestFactory } from '@nestjs/core';
import { AppModule } from './app.module';

async function bootstrap() {
  const app = await NestFactory.create(AppModule);
  await app.listen(3000);
}
bootstrap();
```

3.4.1.2. Poner en marcha el proyecto

El asistente de creación del proyecto lo habrá dejado todo preparado, con las dependencias ya instaladas, e incluso el archivo package . j son ya generado, para poder poner en marcha el proyecto. Sólo tenemos que ejecutar el siguiente comando:

```
npm run start
```

Si intentamos acceder a http://localhost:3000 veremos un mensaje de bienvenida proporcionado por el módulo principal ("Hello World!").

3.4.1.3. Conexión con Express

Como hemos comentado, Nest.js utiliza internamente el framework Express para trabajar sobre él. Esto hace que no tengamos por qué acceder directamente a ciertos elementos que tenemos disponibles en dicho framework, como la petición (req), respuesta (res), parámetros de la URL (req. params), cuerpo de la petición (req. body), etc. En su lugar, Nest.js proporciona una serie de decoradores que iremos viendo más adelante, y que internamente se comunican con estas propiedades de Express. Por ejemplo, el decorador @Param lo emplearemos para acceder a parámetros de la URL, y el decorador @Body para acceder al cuerpo de la petición.

3.4.2. Estructurando la aplicación: módulos, controladores y servicios

Cuando creamos una aplicación Nest, inicialmente ya tenemos algo de código generado en la carpeta src. En concreto, disponemos del módulo principal de la aplicación, app.module.ts, que se encargará de coordinar al resto de módulos que definamos. Cada módulo debe encargarse de encapsular y gestionar un conjunto de características sobre un concepto de la aplicación. Por ejemplo, en una aplicación de una tienda online podemos tener un módulo que gestione los clientes (listados, altas, bajas), otro para el stock de productos, otro para los pedidos, etc.

Cada uno de los módulos de nuestra aplicación puede (suele) disponer de una serie de elementos adicionales que le ayuden a dividir el trabajo. Así, en cada uno de los módulos podemos tener:

- **Controladores** (*controllers*), que se encargarán de atender las peticiones relacionadas con dicho módulo. Por ejemplo, en un módulo de clientes, tendremos un controlador que se encargará de atender peticiones de listados de clientes, altas, bajas, etc.
- Servicios (services), que se encargarán de gestionar el acceso a los datos para un determinado
 módulo. Así, volviendo al ejemplo de los clientes, podremos tener un servicio que se encargue de
 realizar efectivamente las búsquedas, inserciones, borrados, etc, en la colección de datos
 correspondiente. En realidad, los servicios son un tipo especial de proveedores (providers),
 elementos que utiliza Nest para realizar tareas específicas y relativamente complejas, descargando
 así de trabajo a los controladores, que se limitan a atender peticiones.

De hecho, nuestro módulo principal app.module.ts cuenta con un servicio asociado app.service.ts y un controlador, app.controller.ts, ya creados. Inicialmente no hacen gran cosa, ya que el controlador sólo dispone de una ruta para cargar una página de bienvenida con un saludo simple, y el servicio se encarga de proporcionar ese mensaje de saludo. Pero es un punto de partida para comprender cómo se estructura el reparto de tareas en aplicaciones Nest.

3.4.2.1. Definiendo módulos, controladores y servicios

Volvamos al tema de los módulos. Un módulo básicamente es una clase TypeScript anotada con el decorador @Module, que proporciona una serie de metadatos para construir la estructura de la aplicación. Como ya hemos visto, toda aplicación Nest tiene al menos un módulo raíz o *root*, el archivo app.module.ts explicado anteriormente, que sirve de punto de entrada a la aplicación, de forma similar a como funciona Angular.

```
import { Module } from '@nestjs/common';
import { AppController } from './app.controller';
import { AppService } from './app.service';
```

```
@Module ({
    imports: [],
    controllers: [AppController],
    providers: [AppService],
})
export class AppModule {}
```

El decorador @Module toma un objeto como parámetro, donde se definen los controladores, proveedores de servicios y otros elementos que iremos viendo más adelante.

Para **crear un nuevo módulo** para nuestro proyecto, escribimos el siguiente comando desde la raíz del proyecto:

```
nest g module nombre_modulo
```

Se creará una carpeta nombre_modulo dentro de la carpeta src, y se añadirá la correspondiente referencia en la sección imports del módulo principal AppModule. Por ejemplo, si creamos un módulo llamado contacto, se creará la carpeta contacto, y la sección imports del módulo principal quedará así (notar que a la clase que se genera se le añade el sufijo "Module" automáticamente):

```
@Module({
   imports: [ContactoModule],
   ...
})
```

Así, el módulo principal ya incorpora al módulo contacto, y todo lo que éste contenga a su vez. En la carpeta correspondiente (contacto, siguiendo el ejemplo anterior) se generará un archivo TypeScript (contacto.module.ts, en nuestro ejemplo) con la nueva clase del módulo generada.

Del mismo modo, podemos generar controladores y servicios, con estos comandos:

```
nest g controller nombre_controlador
nest g service nombre_servicio
```

Si seguimos con el caso anterior, podemos crear un controlador llamado contacto y un servicio con el mismo nombre. Esto generará respectivamente los archivos src/contacto/contacto.controller.ts y src/contacto/contacto.service.ts en nuestro proyecto.

Al seguir estos pasos, el propio módulo contacto. module. ts tendrá ya registrados su controlador y servicio, con lo que está ya todo conectado para poder empezar a trabajar:

```
import { Module } from '@nestjs/common';
import { ContactoController } from './contacto.controller';
```

```
import { ContactoService } from './contacto.service';

@Module({
   controllers: [ContactoController],
   providers: [ContactoService]
})
export class ContactoModule {}
```

Observemos la jerarquía de dependencias que se está creando: el módulo principal incorpora en su bloque imports al módulo contacto, y éste a su vez contiene en su interior las dependencias con el controlador y el servicio propios.

Es importante definir los elementos en este orden (primero el módulo, y luego sus controladores y servicios), ya que de lo contrario tendríamos que definir estas dependencias a mano en el código.

Ejercicios propuestos

1. Instala Nest si todavía no lo has hecho, y crea un proyecto llamado tareas-nest con el siguiente comando: nest new tareas-nest.

Después, crea desde la carpeta principal del proyecto un módulo llamado tarea, con el comando nest g module tarea. Se habrá creado una carpeta src/tarea en el proyecto, con el módulo tarea. module. ts en su interior.

De forma similar, crea también el controlador y servicio con el mismo nombre tarea.

3.4.2.2. Preparando el modelo de datos

A la hora de almacenar en la aplicación los datos con los que vamos a trabajar, es recomendable definir dos elementos:

- Una interfaz (interface) que defina los campos de cada objeto a tratar
- Un DTO (*Data Transfer Object*) que defina los datos que se van a enviar entre cliente y servidor, especialmente en las peticiones de inserción (POST) y modificación (PUT).

La interfaz simplemente almacenará los campos a tratar. Básicamente es una definición de clase, pero en TypeScript esto se suele hacer definiendo interfaces. La creamos con el siguiente comando desde la raíz del proyecto (suponiendo el ejemplo de contacto que hemos venido contando):

```
nest g interface contacto/interfaces/contacto
```

Esto creará un archivo src/contacto/interfaces/contacto.interface.ts. Podemos editarlo para definir qué campos va a tener un objeto de este tipo:

```
export interface Contacto {
  id: string;
  nombre: string;
  edad: number;
```

```
telefono: string;
}
```

Esta interfaz se puede incorporar al servicio o servicios que vayan a hacer uso de estos datos. Por ejemplo, en el servicio de contactos (archivo src/contacto/contacto.service.ts) podemos definir un atributo que sea un array de objetos de la interfaz Contacto, importando previamente dicha interfaz:

```
import { Injectable } from '@nestjs/common';
import { Contacto } from './interfaces/contacto/contacto.interface';

@Injectable()
export class ContactoService {
   contactos: Contacto[] = [];
}
```

De forma similar, creamos el DTO como una clase. Podemos crearla en la misma subcarpeta <u>interfaces</u> donde hemos definido la interfaz, o en una subcarpeta <u>dto</u> propia:

```
nest g class contacto/dto/ContactoDto
```

Esto creará la clase ContactoDto en el archivo src/contacto/dto/contacto-dto.ts. Podemos definir dentro campos similares a los de la interfaz, ya que en principio se enviarán cliente y servidor los mismos campos aproximadamente que luego se van a almacenar para cada objeto. En el caso del DTO, podemos definir los campos como readonly, ya que son de sólo lectura (se envían al servidor para que los recoja y almacene):

```
export class ContactoDto {
   readonly nombre: string;
   readonly edad: number;
   readonly telefono: string;
}
```

Ejercicios propuestos

2. Sobre el proyecto anterior, crea ahora la interfaz tarea en la subcarpeta interfaces, con el comando nest g interface tarea/interfaces/tarea. Define los siguientes campos para cada tarea que vamos a gestionar:

- Un id de tipo texto
- El nombre de la tarea (texto)
- La prioridad de la tarea (entero)
- La fecha tope de finalización de la tarea (fecha)

Añade un array de tareas (objetos de la interfaz Tarea que acabas de crear) en el servicio de la tarea (src/tarea/tarea.service.ts).

Después, crea un DTO llamado TareaDto con el comando nest g class tarea/dto/TareaDto. Define dentro los mismos campos que hemos definido para la interfaz (salvo el *id*), de tipo *sólo lectura*.

3.4.3. Más sobre los controladores

Los controladores en Nest.js se encargan de gestionar las peticiones y respuestas a los clientes. Internamente, son clases con el decorador @Controller, que añade metainformación para crear un mapa de enrutado. Gracias este mapa, Nest sabe cómo enviar las peticiones que lleguen al controlador adecuado.

Ya hemos visto cómo crear controladores en Nest, y que queden asociados a un módulo previamente creado. Suponiendo el controlador de contacto del ejemplo anterior, su estructura básica al crearse es la siguiente:

```
import { Controller } from '@nestjs/common';

@Controller('contacto')
export class ContactoController {
    ...
}
```

El parámetro que tiene el controlador es el prefijo en la URL para acceder a él. Así, cualquier ruta que vaya a ser recogida por este controlador tendrá la estructura http://localhost:3000/contacto (suponiendo la ruta y puerto por defecto definido en main.ts).

3.4.3.1. Definir handlers para recoger las peticiones

Para gestionar estas peticiones, se deben definir unos métodos en el controlador, llamados manejadores o handlers. Estos métodos utilizan decoradores que son verbos HTTP, que indican a qué tipo de método responder (@Get, @Post, @Put, @Delete...). Entre paréntesis, podemos indicar una ruta adicional al prefijo del controlador. Si no especificamos ninguna, se entiende que responden a la ruta raíz del controlador.

@Get

Por ejemplo, así podríamos definir *handlers* de tipo @Get para obtener un listado general, y un dato a partir de su *id*, respectivamente. Deberemos importar el decorador junto con el resto de elementos necesarios del paquete @nestjs/common.

```
import { Controller, Get, Param } from '@nestjs/common';

@Controller('contacto')
export class ContactoController {

    // GET /contacto
    @Get()
```

En el caso del segundo *handler*, utilizamos un decorador @Param para acceder al parámetro que queramos de la URL (en este caso, el parámetro id), y asociarlo a un nombre de variable, que será el que utilicemos en el código del *handler*. En este caso, la variable se llama igual que el parámetro, pero podría tener un nombre diferente si quisiéramos.

A la hora de emitir una respuesta, deberemos devolver (return) un resultado. Nest.js serializa automáticamente objetos JavaScript a formato JSON, mientras que si enviamos un tipo simple (por ejemplo, un entero, o una cadena de texto), lo envía como texto plano. Por lo tanto, normalmente no tendremos que preocuparnos por esta tarea. Podemos devolver algo como esto:

```
// GET /contacto
@Get()
listar() {
    return {
        resultado: ... // Datos buscados
    };
}
```

@Post

Para trabajar con peticiones de tipo POST, utilizaremos el decorador @Body para recoger los datos del cuerpo de la petición. Sin embargo, para que estos datos puedan ser procesados, necesitamos definir un **DTO** (*Data Transfer Object*) en TypeScript. Como ya hemos visto antes, un DTO es básicamente un objeto que define cómo se enviarán los datos por la red. Podemos hacerlo con interfaces o con clases, aunque Nest.js recomienda la segunda opción, ya que dichas clases se mantienen al transpilar el código a JavaScript (los interfaces no), y esto proporciona alguna funcionalidad añadida, como poder trabajar con *pipes*.

Lo más habitual es crear una subcarpeta *dto* dentro del controlador que lo vaya a utilizar, con la clase dentro. En nuestro caso, ya hemos creado previamente nuestro DTO en

src/contacto/dto/contacto.dto.ts, con la información que se enviará del contacto. Recordemos su estructura:

```
export class CrearContactoDto {
  readonly nombre: string;
  readonly edad: number;
```

```
readonly telefono: string;
}
```

Podemos importar este DTO desde el controlador, y utilizarlo en los *handlers* de tipo POST que lo requieran:

```
import { Controller, Get, Post, Body, Param }
    from '@nestjs/common';
import { ContactoDto } from './dto/contacto-dto/contacto-dto';

@Controller('contacto')
export class ContactoController {
    ...

    // POST /contacto
    @Post()
    crear(@Body() crearContactoDto: ContactoDto) {
        // Aquí podemos utilizar
        // crearContactoDto.nombre, o edad, etc.
    }
}
```

@Put y @Delete

Del mismo modo se definen los *handlers* para las operaciones PUT y DELETE. En el caso de PUT, también será necesario utilizar un DTO para recoger los datos de la petición. Puede ser el mismo que para la inserción, si se van a enviar los mismos datos.

3.4.3.2. Códigos de estado, cabeceras de respuesta y redirecciones

Por defecto, los manejadores o *handlers* en Express devuelven automáticamente un código 200 junto con la respuesta, salvo en el caso de peticiones POST, donde se devuelve un estado 201. Si queremos devolver

otro estado diferente, podemos utilizar el decorador @HttpCode en el encabezado del *handler*, indicando el código a devolver:

```
@Post
@HttpCode(204)
crear() {
    ...
}
```

Además, también podemos emplear el decorador @Header para enviar cabeceras de respuesta (una vez por cada cabecera), indicando en cada caso el nombre de la cabecera y su valor asociado.

```
@Post
@HttpCode(204)
@Header('Cache-Control', 'none')
crear() {
    ...
}
```

Finalmente, podemos utilizar el decorador @Redirect para hacer que un handler redirija a otra URL.

```
@Get('prueba')
@Redirect('http://....', 302)
prueba() {
    ...
}
```

Por defecto, la redirección genera un código 301, pero podemos cambiarlo en el segundo parámetro. De hecho, también podemos hacer que tanto la ruta a la que redirigir como el código de estado cambien, devolviendo desde el *handler* un objeto con los campos ur l y statusCode establecidos con los valores indicados (ambos campos son opcionales):

```
@Get('prueba')
@Redirect('http://....', 302)
prueba() {
   if (...)
      return { statusCode: 300 };
}
```

NOTA: deberemos importar en la instrucción <u>import</u> correspondiente estos decoradores desde @nestjs/common.

Ejercicios propuestos:

3. Sobre el proyecto que venimos desarrollando de tareas, vamos a rellenar el contenido del controlador de tareas creado en ejercicios anteriores, y que debería estar ubicado en src/tarea/tarea.controller.ts. El controlador responderá al prefijo /tarea. Define en el controlador los métodos (vacíos, de momento) para:

- Listar todas las tareas (GET)
- Buscar una tarea por su id (GET)
- Insertar una tarea (POST)
- Borrar una tarea (DELETE)
- Modificar una tarea (PUT)

Haz que cada método, de momento, simplemente devuelva una cadena de texto con la información del método al que se ha accedido. Por ejemplo, para el listado de tareas, podemos devolver "Listado de tareas".

Utiliza el DTO TareaDto creado en ejercicios anteriores para las operaciones de POST y PUT.

Crea una colección en Postman llamada <u>TareasNest</u> y define una petición de prueba para cada uno de los servicios implementados.

3.4.4. Conexión con una base de datos MongoDB

Vamos ahora a conectar desde Nest con una base de datos MongoDB. Utilizaremos Mongoose, como hemos venido haciendo en temas anteriores, pero esta vez lo haremos a través de una librería puente de Nest, llamada @nestjs/mongoose. Por lo tanto, debemos instalar ambas librerías en nuestro proyecto:

```
npm install @nestjs/mongoose mongoose
```

3.4.4.1. Conectando a la base de datos

En el módulo principal del proyecto (app.module.ts), importamos @nestjs/mongoose y conectamos a la base de datos empleando el método forRoot en la sección de imports:

```
import { Module } from '@nestjs/common';
import { AppController } from './app.controller';
import { AppService } from './app.service';
import { ContactoModule } from './contacto/contacto.module';
import { MongooseModule } from '@nestjs/mongoose';

@Module({
   imports: [ContactoModule,
        MongooseModule.forRoot('mongodb://localhost/contactos')],
   controllers: [AppController],
   providers: [AppService],
})
export class AppModule {}
```

3.4.4.2. Definiendo esquemas y modelos

Igual que hemos hecho en temas previos, necesitamos definir los esquemas y modelos de nuestra base de datos MongoDB. En este caso, es conveniente ubicar los esquemas junto al módulo que los vaya a utilizar. En nuestro caso, definiríamos el esquema de los contactos en una subcarpeta schemas dentro de la carpeta src/contacto. Crearíamos un archivo src/contacto/schema/contacto. schema.ts con la definición del esquema, de forma similar a como hemos hecho en temas previos:

```
import * as mongoose from 'mongoose';
export const ContactoSchema = new mongoose.Schema({
  nombre: {
      type: String,
      required: true,
      minlength: 3
  },
  edad: {
      type: Number,
      required: true,
      min: ⊙,
      max: 120
  },
  telefono: {
      type: String,
      required: true,
      minlength: 9
  }
});
```

El siguiente paso será incluir el esquema en el módulo asociado (archivo

src/contacto/contacto.module.ts):

Asociamos el esquema con un nombre de modelo (Contacto, en este caso), mediante el método forFeature.

Ahora que ya tenemos definido el esquema, lo importamos en el servicio asociado (el de contactos, en este caso), utilizando el mismo nombre que usamos en el módulo principal (Contacto). Deberemos importar el

decorador @InjectModel para poder invectar el modelo en el servicio:

```
import { Model } from 'mongoose';
import { InjectModel } from '@nestjs/mongoose';
import { Contacto } from './interfaces/contacto.interface';

@Injectable()
export class ContactoService {
   constructor(@InjectModel('Contacto')
      private readonly contactoModel: Model<Contacto>) {}
}
```

NOTA: el modelo se asocia a la interfaz Contacto que hemos creado en pasos previos, a través del genérico Model<Contacto>, de manera que se transforman los objetos del modelo para acoplarlos al interfaz.

A partir del constructor que hemos definido, ya podemos hacer referencia al objeto this.contactoModel en el resto de métodos que definamos, y así podremos realizar las correspondientes inserciones, búsquedas, etc, sobre el modelo.

Por ejemplo, así podemos definir un método (asíncrono, en este caso) para obtener un listado de todos los contactos:

```
async listar(): Promise<Contacto[]> {
   return await this.contactoModel.find().exec();
}
```

Y este otro método permite insertar un contacto a partir de su DTO:

```
async insertar(crearContactoDto: ContactoDto): Promise<Contacto> {
   const nuevoContacto = new this.contactoModel(crearContactoDto);
   return await nuevoContacto.save();
}
```

Lo que nos queda es utilizar estos métodos del servicio desde los correspondientes *handlers* del controlador. Los métodos del controlador también podemos definirlos como asíncronos si queremos:

```
@Controller('contacto')
export class ContactoController {
   constructor(private readonly contactoService: ContactoService) {}
```

```
// GET /contacto
@Get()
async listar() {
    return this.contactoService.listar();
}

// POST /contacto
@Post()
async crear(@Body() crearContactoDto: ContactoDto) {
    return this.contactoService.insertar(crearContactoDto);
}

...
}
```

Notar que en el constructor del controlador inyectamos el servicio, y luego podemos hacer uso de él, y de sus métodos, en cualquier *handler*.

Ejercicios propuestos:

- 4. Sobre el proyecto anterior de tareas, vamos a añadir las siguientes funcionalidades:
 - Instalaremos los módulos @nestjs/mongoose y mongoose para conectar desde el módulo principal con una base de datos llamada tareas-nest.
 - Definiremos un esquema llamado TareaSchema en el archivo src/tarea/schemas/tarea.schema.ts, con el esquema de cada tarea. Incluiremos los tres campos que ya tenemos (nombre, prioridad y fecha). Todos serán obligatorios, el nombre debe tener una longitud mínima de 5 caracteres, y la prioridad debe tener unos valores entre 1 y 5 (inclusive). Recuerda incorporar este esquema tanto al módulo de tareas como al servicio, de forma similar a como hemos hecho con el ejemplo de contactos.
 - Implementaremos el servicio de tareas, definiendo métodos para realizar las cinco operaciones básicas sobre la base de datos anterior: listado general, búsqueda por *id*, inserción, borrado y modificación. Define todos los métodos como asíncronos.
 - Modificaremos el controlador de tareas para hacer uso de los métodos del servicio en cada handler. Haz también asíncronos los métodos del controlador.

Prueba el funcionamiento adecuado de todos los servicios desde la colección de Postman que habrás creado previamente.

3.4.5. Vistas y contenido estático en Nest.js

Desde Nest.js también podemos emplear nuestro motor de plantillas preferido y renderizar las vistas que queramos. En nuestro caso, volveremos a utilizar Nunjucks, como en sesiones anteriores. Lo primero que debemos hacer es instalar la librería. También podemos instalar Bootstrap de paso, si tenemos pensado utilizarlo:

```
npm install nunjucks bootstrap
```

Después, editamos el archivo principal main. ts. Debemos importar por un lado la librería nunjucks, y por otra, el objeto NestExpressApplication, ya que ahora necesitamos especificar que nuestra aplicación Nest. js se va a apoyar en Express para utilizar los métodos asociados para la gestión del motor de plantillas.

En el código del método bootstrap de este archivo main.ts, crearemos ahora una aplicación que será un subtipo de NestExpressApplication y, antes de ponerla en marcha, configuraremos Nunjucks como lo hacíamos en sesiones previas, y emplearemos los métodos useStaticAssets y setViewEngine de la aplicación app para especificar el/las carpeta(s) donde habrá contenido estático, y el motor de plantillas a utilizar, respectivamente. En nuestro caso, puede quedar algo así:

```
import { NestExpressApplication } from '@nestjs/platform-express';
import * as nunjucks from 'nunjucks';

async function bootstrap() {
  const app =
    await NestFactory.create<NestExpressApplication>(AppModule);

nunjucks.configure('views', {
    autoescape: true,
    express:app
  });

app.useStaticAssets(__dirname + '/../public', {prefix: 'public'});
  app.useStaticAssets(__dirname + '/../node__modules/bootstrap/dist');
  app.setViewEngine('njk');

await app.listen(3000);
}
bootstrap();
```

Las carpetas public y views deberán ubicarse, de acuerdo al código anterior, en la raíz del proyecto Nest. Después, para renderizar cualquier vista desde un *handler* (método de un controlador), basta con que le pasemos la respuesta como parámetro con el decorador @Res (), para poder acceder a su método render, como hemos hecho en sesiones previas:

```
@Get()
async prueba(@Res() res) {
   return res.render('index');
}
```

Ejercicios propuestos:

5. Instala Nunjucks y Bootstrap en el proyecto <u>tareas-nest</u> que hemos venido desarrollando. Configura la aplicación principal <u>main.ts</u> para que use Nunjucks como motor de plantillas, y cargue el contenido estático de Bootstrap.

Define una carpeta views para las vistas, y una vista base. nj k de la que heredará el resto, con un bloque para poder definir su título en la cabecera (*title*), y otro bloque para su contenido. Haz que la

vista base incorpore los estilos de Bootstrap.

6. Crea un nuevo módulo llamado web, con su controlador asociado. Antes de seguir, deberás exportar el servicio TareaService en el módulo de tareas para poderlo utilizar en este otro módulo:

```
@Module({
  imports: ...
  controllers: ...
  providers: ...
  exports: [TareaService]
})
```

Después, deberás importar el módulo de tareas entero desde el nuevo módulo web:

```
@Module({
  imports: [TareaModule],
  controllers: [WebController]
})
```

Ahora, define un par de handlers en el controlador de web (archivo src/web/web.controller.ts) para responder a las rutas /web/tareas y /web/tareas/:id. El primero deberá renderizar la vista tareas_listado.njk, que deberás crear, con un listado con los nombres de las tareas. Al hacer click en cada una de ellas se llamará al segundo handler, que renderizará la vista tareas_ficha.njk, que también deberás implementar, con la ficha de cada tarea, indicando su nombre, prioridad y fecha.

Finalmente, haz que la ruta raíz redireccione al listado de tareas.