PART4 贝叶斯决策

2020-05-25

河北师范大学 软件学院

要点:

- 1. 贝叶斯决策规则;
- 2. 正态分布概率密度函数形式、估计;
- 3. 朴素贝叶斯分类模型的学习与使用。

基本内容:

- 1. 掌握连续特征空间、离散特征空间两种情况下,基于最小错误率的贝叶斯分 类决策规则;
- 2. 掌握连续特征空间、离散特征空间两种情况下,基于最小风险的贝叶斯分类 决策规则;
- 3. 掌握正态分布概率密度函数:
 - (1)一维、多维连续特征空间,正态分布的类条件概率密度函数具体的形式? (2)对于多类别分类:若多维连续特征空间,各个特征类条件独立,正态分布的类条件概率密度函数具体形式?具有什么特点?
- 4. 已知原始d维特征空间的随机向量x的期望向量、协方差矩阵,该随机向量经 线性变换后的期望、协方差矩阵?

若
$$\begin{cases}$$
随机向量 $X = \begin{bmatrix} X_1, ..., X_d \end{bmatrix}^T & \mu_X, \Sigma_X \end{cases}$ 变换矩阵 $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix}$ d行 \times k列; 线性变换 $Y = A^T X$ 则 $\begin{cases} \mu_Y = A^T \mu_X \\ \Sigma_Y = A^T \Sigma_X A \end{cases}$ 特别地: $\begin{cases} y = a^T X \\ \mu_Y = a^T \mu_X \\ \sigma_Y^2 = a^T \Sigma_X a \end{cases}$

5. (1)一元、多元正态分布的概率密度函数的参数的最大似然估计结果?

参数
$$\mu$$
、 σ^2 的最大似然估计
$$\begin{cases}
\mu^* = \frac{1}{N} \sum_{i=1}^{N} x_i = \overline{x} \\
(\sigma^2)^* = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu^*)^2
\end{cases}$$

最大似然参数估计

期望
$$\mu^* = \frac{1}{N} \sum_{i=1}^{N} x_i = \overline{x}$$
协方差矩阵
$$\Sigma^* = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu^*) (x_i - \mu^*)^T$$

(2)特征独立时, 多元正态分布概率密度函数的参数的最大似然估计结果?

6. 给定连续特征空间/离散特征空间,已知类别标记的训练样本集,能够基于该样本集,实现两步法的(朴素)贝叶斯决策。

练习:

1. 对于二维连续特征空间的两类别分类问题,训练样本集 $X = \{(x_i, y_i), i = 1, ..., N\}$,按照 $p(x) = P(\omega_1)p(x|\omega_1) + P(\omega_2)p(x|\omega_2)$ 独立抽取,其中 $x_i = \left[x_i^{(1)}, x_i^{(2)}\right]^T \in R^2$, $y_i \in \{\omega_1, \omega_2\}$. 并且,训练集X中:来自第一类 ω_1 及第二类 ω_2 的样本集分别为 X_1 及 X_2 ,两类样本数目分别 N_1 及 N_2 .

请按要求完成如下工作:

(1) 若两个类别的类条件概率密度函数 $p(x|\omega_1)$ 、 $p(x|\omega_2)$ 均为正态分布,并且各自期望向量分别为 μ_1 , μ_2 ,协方差矩阵分别为 Σ_1 、 Σ_2 ,写出 $p(x|\omega_1)$ 、 $p(x|\omega_2)$ 的具体表达式。

参考答案:
$$p(x|\omega_i) = \frac{1}{(2\pi)^{d/2}|\Sigma_i|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)\right]$$
 $i = 1,2$

(2) 若基于样本集 X_1 及 X_2 ,采用最大似然法估计上述概率密度函数的参数 μ_1 , μ_2 及 Σ_1 、 Σ_2 ,请直接写出参数的估计结果。

参考答案: 以 ω_i 类的样本集 X_i 估计 $p(x|\omega_i)$ 的参数 μ_i 以及 Σ_i , i=1,2 其最大似然估计结果为:

$$\widehat{\mu}_i = \frac{1}{N_i} \sum_{x \in X_i} x$$

$$\widehat{\Sigma}_i = \frac{1}{N_i} \sum_{\mathbf{x} \in \mathbf{X}_i} (\mathbf{x} - \widehat{\boldsymbol{\mu}}_i) (\mathbf{x} - \widehat{\boldsymbol{\mu}}_i)^T$$

(3)对于每个类别,若二维连续特征空间两种特征相互独立,基于样本集 X_1 及 X_2 ,请直接写出上述概率密度函数的参数 μ_1 , μ_2 及 Σ_1 、 Σ_2 的最大似然估计结果。 参考答案:

$$\widehat{\boldsymbol{\mu}}_{i} = \left[\hat{\mu}_{i}^{(1)} \ \hat{\mu}_{i}^{(2)} \right]^{T} = \left[\frac{1}{N_{i}} \sum_{\mathbf{x} \in \mathbf{X}_{i}} x^{(1)} \ \frac{1}{N_{i}} \sum_{\mathbf{x} \in \mathbf{X}_{i}} x^{(2)} \right]^{T}$$

$$\widehat{\Sigma}_{i} = \begin{bmatrix} \left(\widehat{\sigma}_{i}^{(1)}\right)^{2} & 0\\ 0 & \left(\widehat{\sigma}_{i}^{(2)}\right)^{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{N_{i}} \sum_{x \in X_{i}} \left[x^{(1)} - \widehat{\mu}_{i}^{(1)}\right]^{2} & 0\\ 0 & \frac{1}{N_{i}} \sum_{x \in X_{i}} \left[x^{(2)} - \widehat{\mu}_{i}^{(2)}\right]^{2} \end{bmatrix}$$

$$i = 1,2$$

(4) 若 $\mathbf{x} = [x^{(1)}, x^{(2)}]^{\mathrm{T}} \in \mathbb{R}^{2}$,请基于问题(3) 的估计结果,分别写出 $\mathbf{p}(x^{(i)}|\omega_{1})$ 及 $\mathbf{p}(x^{(i)}|\omega_{2})$ 的具体表达式,i = 1,2

参考答案:

$$p(x^{(i)}|\omega_1) = \frac{1}{\sqrt{2\pi}\widehat{\sigma}_1^{(i)}} \exp\left[-\frac{1}{2}\left(\frac{x^{(i)}-\widehat{\mu}_1^{(i)}}{\widehat{\sigma}_1^{(i)}}\right)^2\right] \quad i=1, 2$$

$$p(x^{(i)}|\omega_2) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_2^{(i)}} \exp\left[-\frac{1}{2}\left(\frac{x^{(i)}-\hat{\mu}_2^{(i)}}{\hat{\sigma}_2^{(i)}}\right)^2\right]$$
 i=1, 2

(5)请采用上述给定的样本集 $X = X_1 \cup X_2$,分别估计 $P(\omega_1)$ 以及 $P(\omega_2)$ 。

参考答案:

$$\hat{P}(\omega_i) = \frac{N_i}{N}, \quad i=1,2$$

(6) 请基于上述估计结果,采用最小错误率的朴素贝叶斯分类模型对特征空间任意观测样本 $x = \left[x^{(1)}, x^{(2)}\right]^{\mathrm{T}} \in R^2$ 分类。

参考答案:

对于任意观测样本 $\mathbf{x} = \left[x^{(1)}, \ x^{(2)} \right]^{\mathrm{T}} \in \mathbb{R}^2$

首先, 计算:
$$\hat{P}(\omega_1)p(x^{(1)}|\omega_1)p(x^{(2)}|\omega_1)$$
, 以及 $\hat{P}(\omega_2)p(x^{(1)}|\omega_2)p(x^{(2)}|\omega_2)$

若 $\hat{P}(\omega_1)p(x^{(1)}|\omega_1)p(x^{(2)}|\omega_1) > \hat{P}(\omega_2)p(x^{(1)}|\omega_2)p(x^{(2)}|\omega_2)$, 则将观测样本x判断为 ω_1 类;

若 $\hat{P}(\omega_2)p(x^{(1)}|\omega_2)p(x^{(2)}|\omega_2) > \hat{P}(\omega_1)p(x^{(1)}|\omega_1)p(x^{(2)}|\omega_1)$, 则将观测样本x判断为 ω_2 类;

否则, 拒绝决策x的类别, 或结合具体问题, 进行决策。

- **2.** 对于二维连续特征空间的两类别分类问题,训练样本集 $X = \{(x_i, y_i), i = 1, ..., N\}$ 按照 $p(x) = P(\omega_1)p(x|\omega_1) + P(\omega_2)p(x|\omega_2)$ 独立抽取,其中 $x_i = \left[x_i^{(1)}, x_i^{(2)}\right]^T \in R^2$, $y_i \in \{\omega_1, \omega_2\}$. 并且,训练集X中:来自第一类 ω_1 及第二类 ω_2 的样本集分别为 X_1 及 X_2 ,两类样本数目分别 N_1 及 N_2 . 请按照要求完成如下工作:
- (1)基于训练样本集X设计一个最小错误率高斯朴素贝叶斯分类模型;
- (2) 基于上述模型,写出面向特征空间任意观测样本 $\mathbf{x} = \left[x^{(1)}, \ x^{(2)} \right]^{\mathrm{T}} \in \mathbb{R}^2$ 分类的决策规则。
- 3. 类似地,将问题1及2情况扩展至四维连续特征空间的鸢尾花数据集的分类问题。进行求解。
- **4.** 下表所示为来自二维离散特征空间关于两种类别的训练样本.其中: 样本特征描述为 $X = \left[X^{(1)}, X^{(2)} \right]^{\mathrm{T}}$,并且 $X^{(1)} \in \{1,2\}, X^{(2)} \in \{S,M,L\}$;类别标记 $Y \in \{-1,1\}$.

	1	2	3	4	5
特征 X ⁽¹⁾	1	1	2	2	1
特征 X ⁽²⁾	S	M	S	M	L
Y	-1	-1	-1	-1	1

请结合该表,采用 LAPLACE 平滑方式,估计朴素贝叶斯分类模型的有关概率信息,并进行给定观测样本的类别决策.

(1)两个类别的先验概率P(Y = -1), P(Y = 1);

(2)
$$P(X^{(1)} = 2|Y = -1)$$
, $P(X^{(1)} = 2|Y = 1)$

(3)
$$P(X^{(2)} = L|Y = -1)$$
, $P(X^{(2)} = L|Y = 1)$

(4)
$$P(X^{(1)} = 2, X^{(2)} = L|Y = -1)$$

(5)
$$P(X^{(1)} = 2, X^{(2)} = L|Y = 1)$$

(6) 对观测样本 $X = \begin{bmatrix} 2, L \end{bmatrix}^{T}$ 进行类别决策.

解: (1)先验概率
$$P(Y=-1) = \frac{1+4}{2\times 1+5} = \frac{5}{7}$$
 $P(Y=1) = \frac{1+1}{2\times 1+5} = \frac{2}{7}$

$$P(Y = -1) = \frac{\lambda + \sum_{i=1}^{N} I(Y = -1)}{C\lambda + N} = \frac{1+4}{2+5}$$
 $P(Y = 1) = \frac{\lambda + \sum_{i=1}^{N} I(Y = 1)}{C\lambda + N} = \frac{1+1}{2+5}$
所以: 先验概率 $P(Y = -1) = \frac{1+4}{2\times 1+5} = \frac{5}{7}$ $P(Y = 1) = \frac{1+1}{2\times 1+5} = \frac{2}{7}$

(2)由于
$$\mathbf{P}(X^{(1)} = 2 \mid Y = -1) = \frac{\lambda + \sum_{i=1}^{N} \delta(X^{(1)} = 2 + \mathbb{E}[X = -1))}{\lambda S_{(1)} + \sum_{i=1}^{N} \delta(Y = -1)} = \frac{1+2}{2+4} = \frac{1}{2}$$

同理:
$$P(X^{(1)} = 2 | Y = 1) = \frac{1+0}{2 \times 1+1} = \frac{1}{3}$$

$$(3) \mathbf{P}(X^{(2)} = L \mid Y = -1) = \frac{1+0}{3\times 1+4} = \frac{1}{7} \qquad \mathbf{P}(X^{(2)} = L \mid Y = 1) = \frac{1+1}{3\times 1+1} = \frac{1}{2}$$

$$(4) \mathbf{P} (X^{(1)} = 2, X^{(2)} = L \mid Y = -1) = \mathbf{P} (X^{(1)} = 2 \mid Y = -1) \mathbf{P} (X^{(2)} = L \mid Y = -1) = \frac{1}{2} \times \frac{1}{7} = \frac{1}{14}$$

$$(5) \mathbf{P}(X^{(1)} = 2, X^{(2)} = L \mid Y = 1) = \mathbf{P}(X^{(1)} = 2 \mid Y = 1) \mathbf{P}(X^{(2)} = L \mid Y = 1) = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$$

(6)
$$P(Y = -1) P(X^{(1)} = 2, X^{(2)} = L | Y = -1) = \frac{5}{7} \times \frac{1}{14} = \frac{5}{98}$$

$$P(Y = 1) P(X^{(1)} = 2, X^{(2)} = L | Y = 1) = \frac{2}{7} \times \frac{1}{6} = \frac{2}{42}$$
所以 $P(Y = 1) P(X^{(1)} = 2, X^{(2)} = L | Y = 1) < P(Y = -1) P(X^{(1)} = 2, X^{(2)} = L | Y = -1)$
观测样本 $X = [X^{(1)}, X^{(2)}]^T = [2, L]^T$ 决策结果为 $Y = -1$

5. 给定三个类别分类的训练集。其中: 样本特征描述为 $X = \begin{bmatrix} X^{(1)}, X^{(2)} \end{bmatrix}^{\mathrm{T}}$,并且 $X^{(1)} \in \{1,2,3\}$, $X^{(2)} \in \{S,M,L,XL\}$;类别标记 $Y \in \{1,2,3\}$.

	1	2	3	4	5	6	7	8	9
特征 X ⁽¹⁾	1	1	1	2	1	2	2	1	2
特征X ⁽²⁾	S	M	XL	XL	S	S	M	L	L
Y	2	2	1	3	2	2	2	1	1

完成如下小题:

(1) 三个类别的先验概率P(Y = 1), P(Y = 2), P(Y = 3)

(2)
$$P(X^{(1)} = 2|Y = 1)$$
, $P(X^{(1)} = 2|Y = 2)$, $P(X^{(1)} = 2|Y = 3)$

(3)
$$P(X^{(2)} = L|Y = 1)$$
, $P(X^{(2)} = L|Y = 2)$, $P(X^{(2)} = L|Y = 3)$

(4)
$$P(X^{(1)} = 2, X^{(2)} = L|Y = 1)$$

(5)
$$P(X^{(1)} = 2, X^{(2)} = L|Y = 2)$$

(6)
$$P(X^{(1)} = 2, X^{(2)} = L|Y = 3)$$

(7) 对观测样本 $X = \begin{bmatrix} 2, L \end{bmatrix}^{T}$ 进行类别决策.

6. 下表所示为来自二维离散特征空间关于两种类别的训练样本. 其中: 样本特征描述为 $X = \left[X^{(1)}, X^{(2)} \right]^{\mathrm{T}}$,并且 $X^{(1)} \in \{1,2\}, X^{(2)} \in \{S,M,L\}$;类别标记 $Y \in \{-1,1\}$.

	1	2	3	4	5	6	7	8	9
$X^{(1)}$	1	1	1	1	1	2	2	2	2
$X^{(2)}$	Š	M	M	S	S	S	M	M	L
Y	-1								

请基于该表,采用 LAPLACE 平滑方式,估计朴素贝叶斯分类模型的如下信息:

(1)两个类别的先验概率P(Y = -1), P(Y = 1);

$$(2)P(X^{(1)} = 1|Y = -1), \ P(X^{(1)} = 1|Y = 1)$$

(3)
$$P(X^{(2)} = L|Y = -1), P(X^{(2)} = L|Y = 1)$$

$$(4)P(X^{(1)} = 1, X^{(2)} = L|Y = -1)$$

$$(5)P(X^{(1)} = 1, X^{(2)} = L|Y = 1)$$

(7) 对观测样本 $X = \begin{bmatrix} 1, L \end{bmatrix}^{T}$ 进行类别决策