Package 'wfGn'

October 29, 2010

Type Package

Title Estimation of the Hurst Parameter for Contaminated Fractional Gaussian Noises		
Version 1.2-1		
Date 2010-10-29		
Author Wonsang You		
Maintainer Wonsang You < you@ifn-magdeburg.de>		
Description Estimation of Hurst parameter of a fractional Gaussian noise on the basis of the modified Whittle maximum likelihood estimator in presence of outliers or an additive noise		
License GPL (>= 2.0)		
LazyLoad yes		
Depends multitaper, rgenoud, snow, Matching		
WfGn-package 2 CetaFGN 3 circFGN 4 Csum 5 fspecBFGN 6 fspecFGN 7 fspecPFGN 8 Lpvar 9 per 10 perturbFGN 11 Qeta 12		
QLCfun 14 wFGN 15 wFGN.eval 17		
Index 19		

2 wfGn-package

wfGn-package	Estimation of the Hurst Parameter for Contaminated Fractional Gaussian Noises

Description

Estimates the Hurst parameter of a contaminated fractional Gaussian noises by using the modified Whittle estimator.

Details

Package: wfGn
Type: Package
Version: 1.2-1
Date: 2010-10-29
License: GPL (>=2.0)
LazyLoad: yes

Author(s)

Wonsang You and Jan Beran

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

Percival and Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

S. Achard and J.-F. Coeurjolly (2009). Discrete variations of the fractional Brownian in the presence of outliers and an additive noise.

```
n<-10000; H<-0.2 z<-perturbFGN(n, H, type="WN", SNR=-10, plot=TRUE) wFGN(z)
```

CetaFGN 3

CetaFGN

Covariance Matrix of fGn Parameters

Description

Covariance matrix of parameters $\widehat{\eta}$ of fractional Gaussian noise.

Usage

```
CetaFGN (eta, snr=NULL)
```

Arguments

eta a positive value of the Hurst exponent which is less than 1.

snr the signal-to-noise ratio. Default is NULL.

Details

The most parts of this function were adopted from the S-PLUS codes originally developed by Jan Beran. See Beran (1994) for details.

Value

A covariance matrix of the estimated fGn parameters with size $M \times M$ where M is the length of $\widehat{\eta}$.

Author(s)

Jan Beran (original) and Wonsang You (fine tuning)

References

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

fspecFGN

```
eta <- c(H=0.7); SNR <- 10
cov <- CetaFGN(eta, SNR)</pre>
```

4 circFGN

circFGN

Simulation of a fractional Gaussian noise

Description

Generates a sample path of fractional Gaussian noise with scaling coefficient C=1 and Hurst parameter H in (0,1)

Usage

```
circFGN(n, H, C=1, plot=FALSE)
```

Arguments

n	sample size
Н	Hurst parameter
С	scaling coefficient
plot	plot of the generated sample path

Details

This simulation is achieved by computing the lag difference of a fractional Brownian motion which is generated by the method in the package longmemo.

Value

```
a vector of length n.
```

Author(s)

Jan Beran (original) and Wonsang You (fine tuning)

References

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
perturbFGN, wFGN
```

```
n<-10000; H<-0.2
ts <- circFGN(n,H)
```

Csum 5

Csum

Cumulative Qeta Difference Function

Description

Cumulative Qeta Difference Function to be minimized to estimate the parameters of a fractional Gaussian noise.

Usage

```
Csum(eta,n,yper,snr,pertype)
```

Arguments

a positive value of the Hurst exponent which is less than 1.

n the number of time points.

yper a vector of periodogram with length of the largest integer less than (n-1)/2

snr the signal-to-noise ratio.

pertype the type of periodogram. Possible modes are "per", "taper".

Details

Let $I(f_i)$ and $S(f_i)$ be respectively the periodogram of a given perturbed fractional Gaussian noise and the spectral density of perturbed fGn with Hurst exponent eta and the signal-to-noise ratio SNR where $f_i = 2\pi * i/n$ with i = 1, ..., (n-1)/2. Then, the value of cumulative Qeta difference function is determined as

$$\eta = \frac{1}{m^*} \sum_{t=1}^{m^*} (I_t - S_t)^2$$

where

$$I_t = \sum_{j=1}^t I(f_j) / \sum_{j=1}^{m^*} I(f_j)$$
 and $S_t = \sum_{j=1}^t S_X(f_j) / \sum_{j=1}^{m^*} S_X(f_j)$.

Some parts of this function were adopted from the S-PLUS codes originally developed by Jan Beran. See Beran (1994) for details.

Value

A,B,Tn	defined in Qeta.
Z	the test statistics
pval	the p-value
fspec	a vector of spectral density with length of the largest integer less than $(m-1)/2$.
theta1	a value of the first component of theta.
value	a value for minimization

Author(s)

Wonsang You

6 fspecBFGN

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
Qeta, Lpvar, QLCfun
```

Examples

```
n<-1000; H<-0.7; SNR<-10
ts <- perturbFGN(n,H,type="WN",SNR=SNR)
yper<-per(ts)
ts.csum<-Csum(H,n,yper,snr=SNR,pertype="per")</pre>
```

fspecBFGN

Spectral Density of a bivariate Fractional Gaussian Noise

Description

Generation of the spectral density of a bivariate fractional Gaussian noise.

Usage

```
fspecBFGN(eta1, eta2, m)
```

Arguments

eta1	the Hurst exponent of the first component of a bivariate fractional Gaussian noise.
eta2	the Hurst exponent of the second component of a bivariate fractional Gaussian noise.
m	the number of time points.

Details

This function produces the spectral density of a bivariate fractional Gaussian noise.

Value

fspec	a vector of spectral density with length of the largest integer less than $(m-1)/2$.
theta1	a value of the first component of theta.

fspecFGN 7

Author(s)

Wonsang You

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
fspecFGN, fspecPFGN, wFGN
```

Examples

```
eta1<-0.7; eta2<-0.8; m<-1000
fspec<-fspecBFGN(eta1,eta2,m)</pre>
```

fspecFGN

Spectral Density of a Fractional Gaussian Noise

Description

Generation of the spectral density of a fractional Gaussian noise.

Usage

```
fspecFGN(eta, m)
```

Arguments

eta a positive value of the Hurst exponent which is less than 1.

m the number of time points.

Details

This function produces the spectral density of a fractional Gaussian noise.

Value

fspec a vector of spectral density with length of the largest integer less than (m-1)/2. theta1 a value of the first component of theta.

Author(s)

Jan Beran (original) and Wonsang You (fine tuning)

8 fspecPFGN

References

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
fspecBFGN, fspecPFGN, wFGN
```

Examples

```
eta<-0.7; m<-1000 fspec<-fspecFGN(eta,m)
```

fspecPFGN

Spectral Density of a perturbed Fractional Gaussian Noise

Description

Generation of the spectral density of a fractional Gaussian noise contaminated by white noise.

Usage

```
fspecPFGN(eta, m, SNR=NULL)
```

Arguments

eta a positive value of the Hurst exponent which is less than 1.

m the number of time points.

SNR the signal-to-noise ratio.

Details

This function produces the spectral density of a fractional Gaussian noise contaminated by white noise.

Value

fspec a vector of spectral density with length of the largest integer less than (m-1)/2.

thetal a value of the first component of theta.

Author(s)

Wonsang You

Lpvar 9

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
fspecFGN, fspecPFGN, wFGN
```

Examples

```
eta<-0.7; m<-1000; SNR=0 fspec<-fspecPFGN(eta,m,SNR)
```

Lpvar

Log Periodogram Variance Function

Description

Log Periodogram Variance Function to be minimized to estimate the parameters of a fractional Gaussian noise.

Usage

```
Lpvar (eta, n, yper, snr, pertype)
```

Arguments

eta a positive value of the Hurst exponent which is less than 1.

n the number of time points.

yper a vector of periodogram with length of the largest integer less than (n-1)/2

snr the signal-to-noise ratio.

pertype the type of periodogram. Possible modes are "per", "taper".

Details

Let $I(f_i)$ and $S(f_i)$ be respectively the periodogram of a given perturbed fractional Gaussian noise and the spectral density of perturbed fGn with Hurst exponent eta and the signal-to-noise ratio SNR where $f_i = 2\pi * i/n$ with i = 1, ..., (n-1)/2. Then, the value of log periodogram variance function is determined as

$$\epsilon(f) \equiv \log\left(\frac{I(f)}{S_X(f)}\right) + \gamma.$$

See Percival and Walden (2000) for details. Some parts of this function were adopted from the S-PLUS codes originally developed by Jan Beran.

10 per

Value

z the test statistics pval the p-value fspec a vector of spectral density with length of the largest integer less than (m-1)/2 thetal a value of the first component of theta. value a value for minimization	A,B,Tn	defined in Qeta.
fspec a vector of spectral density with length of the largest integer less than (m-1)/2 thetal a value of the first component of theta.	Z	the test statistics
theta1 a value of the first component of theta.	pval	the p-value
•	fspec	a vector of spectral density with length of the largest integer less than $\ (m-1) / 2$.
value a value for minimization	theta1	a value of the first component of theta.
	value	a value for minimization

Author(s)

Wonsang You

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

Percival and Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
Qeta, Csum, QLCfun
```

Examples

```
n<-1000; H<-0.7; SNR<-10
ts <- perturbFGN(n,H,type="WN",SNR=SNR)
yper<-per(ts)
ts.lpvar<-Lpvar(H,n,yper,snr=SNR,pertype="per")</pre>
```

per

Periodogram Estimator

Description

Estimation of periodogram of a given time series.

Usage

```
per(z)
```

Arguments

z a vector which indicates a time series

perturbFGN 11

Value

a vector of periodogram with length of 1 + floor(n/2) where n is the length of z. This function is originated from Jan Beran. See Beran (1994) for details.

Author(s)

Jan Beran

References

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

Examples

```
n<-1000; H<-0.7;
ts <- circFGN(n,H)
yper<-per(ts)</pre>
```

perturbFGN

Simulation of a perturbed fGn

Description

Simulation of a sample path of a fractional Gaussian noise contaminated by outliers or an additive Gaussian noise

Usage

```
perturbFGN(n, H, C = 1, type = "no", p=.005, SNR=NULL, plot = FALSE)
```

Arguments

n	sample size
Н	Hurst parameter in $(0,1)$
С	scaling coefficient. Default is 1.
type	type of perturbation. Possible modes are "no", "WN", "AO".
р	the ratio of perturbation by outliers. Default is 0.005.
SNR	Signal to noise ratio
plot	plot of perturbed fGn. Default is FALSE.

Details

The types of contamination are listed below. The most parts of this function were adopted from the package \mathtt{dvfBm} .

[&]quot;no" no contamination

[&]quot;AO" contamination by additive outliers of 0.5%

[&]quot;WN" contamination by i.i.d. standard Gaussian noise

12 Qeta

Value

```
a vector of length n.
```

Author(s)

Wonsang You

References

S. Achard and J.-F. Coeurjolly (2009). Discrete variations of the fractional Brownian in the presence of outliers and an additive noise.

See Also

```
circFGN, wFGN
```

Examples

```
ts1<-perturbFGN(1000,0.2,type="no",plot=TRUE)
ts2<-perturbFGN(1000,0.7,type="AO",SNR=20,plot=TRUE)
ts3<-perturbFGN(10000,0.3,type="WN",SNR=10,plot=TRUE)
```

Qeta

Qeta function

Description

Function to be minimized to obtain the maximum likelihood of a fractional Gaussian noise.

Usage

```
Qeta(eta,n,yper,snr,pertype)
```

Arguments

eta a positive value of the Hurst exponent which is less than

n the number of time points.

yper a vector of periodogram with length of the largest integer less than (n-1)/2

snr the signal-to-noise ratio.

pertype the type of periodogram. Possible modes are "per", "taper".

Qeta 13

Details

Let $I(f_i)$ and $S(f_i)$ be respectively the periodogram of a given perturbed fractional Gaussian noise and the spectral density of perturbed fGn with Hurst exponent eta and the signal-to-noise ratio SNR where $f_i = 2\pi * i/n$ with i = 1, ..., (n-1)/2. Then, the value is determined as

$$B = \frac{2\pi}{n} \sum_{i} 2 \times \left[\frac{I(f_i)}{S(f_i)} \right]^2.$$

Also, A and Tn are defined as follows.

$$A = \frac{2\pi}{n} \sum_{i} 2 \times \left[\frac{I(f_i)}{S(f_i)} \right], T_n = \frac{A}{B^2}$$

The most parts of this function were adopted from the S-PLUS codes originally developed by Jan Beran. See Beran (1994) for details.

Value

A,B,Tn	defined in the above section
Z	the test statistics
pval	the p-value
fspec	a vector of spectral density with length of the largest integer less than $$ (m-1) $$ /2.
theta1	a value of the first component of theta.
value	a value for minimization

Author(s)

Jan Beran (original) and Wonsang You (modifying)

References

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
Csum, Lpvar, QLCfun
```

```
n<-1000; H<-0.7; SNR<-10
ts <- perturbFGN(n,H,type="WN",SNR=SNR)
yper<-per(ts)
ts.qeta<-Qeta(H,n,yper,snr=SNR,pertype="per")</pre>
```

14 QLCfun

QLCfun Combinational Minimization Function
--

Description

Combinational function of Qeta, Cumulative Qeta Difference, and Log Periodogram Variance Function to be minimized to estimate the parameters of a fractional Gaussian noise.

Usage

```
QLCfun(eta,n,yper,snr,pertype,weights)
```

Arguments

eta	a positive value of the Hurst exponent which is less than 1.
n	the number of time points.
yper	a vector of periodogram with length of the largest integer less than $(n-1)/2$
snr	the signal-to-noise ratio.
pertype	the type of periodogram. Possible modes are "per", "taper".
weights	a vector of length 3 which indicates the weights of Qeta, Cumulative Qeta Dif-

ference, and Log Periodogram Variance Functions

Details

Let $\widetilde{L}_1(y;\theta)$, $\widetilde{L}_2(y;\theta)$, $\widetilde{L}_3(y;\theta)$ be Qeta, Cumulative Qeta Difference, and Log Periodogram Variance Functions respectively. Also, let $p=(p_1,p_2,p_3)$ be a weight vector, and let $\widetilde{L}(y;\theta)$ be a combinational minimization function. Then, the value of the combinational function is determined as

$$\widetilde{L}\left(y;\theta\right)=p_{1}\times\widetilde{L}_{1}\left(y;\theta\right)+p_{2}\times\widetilde{L}_{2}\left(y;\theta\right)+p_{3}\times\widetilde{L}_{3}\left(y;\theta\right).$$

Some parts of this function were adopted from the S-PLUS codes originally developed by Jan Beran. See Beran (1994) for details.

Value

A,B,Tn	defined in Qeta.
Z	the test statistics
pval	the p-value
fspec	a vector of spectral density with length of the largest integer less than $(m-1)/2$.
theta1	a value of the first component of theta.
value	a value for minimization

Author(s)

Wonsang You

wFGN 15

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

Percival and Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge University Press.

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
Qeta, Csum, Lpvar
```

Examples

```
n<-1000; H<-0.7; SNR<-10
ts <- perturbFGN(n,H,type="WN",SNR=SNR)
yper<-per(ts)
ts.qlc<-QLCfun(H,n,yper,snr=SNR,pertype="per")</pre>
```

wFGN

The Whittle estimator for a contaminated fGn

Description

Whittle estimator of the Hurst parameter of a fractional Gaussian noise contaminated by additive outliers or noise.

Usage

```
wFGN(x, istart=1, iend=length(x), nloop=1, init=c(0.55,0.01), ndeps=c(1e-7,1e-2), noise=TRUE, pertype="per", minfun="qeta", weights=c(1,1,0), cluster=FALSE, print.level=2)
```

Arguments

X	a time series
istart	the index of start. Default is 1
iend	the index of end. Default is the length of x .
nloop	the number of sub-series. The Hurst parameter of each sub-series is estimated respectively. Default is 1.
init	the initial search values of Hurst parameter and SNR. Default is c (0 . 55 , 0 . 01) .
ndeps	A vector of step sizes for optimization. Default is c ($1e-7$, $1e-2$).
noise	Enable the assumption of noise corruption. Default is TRUE.
pertype	type of periodogram. Possible modes are "per", "taper".

16 wFGN

minfun	type of minimization function. Possible modes are "qeta", "lp", "csum", and "combi".
weights	A vector of weights for each minimization function when $minfun="combi"$.
cluster	A vector of machine names for parallel processing. For details, refer to the manual of package genoud.
print.level	The logic value which controls the printing level. Four levels are available: 0 (minimal), 1 (normal), 2 (detailed), and 3 (debug). Default is 2. Refer to the manual of package regenous for details.

Details

The Hurst parameter of a pure or corrupted fractional Gaussian noise is estimated by a modified Whittle estimator. The most parts of this function were adopted from the S-PLUS codes originally developed by Jan Beran. See Beran (1994) for details.

Value

thetavector	a vector of scaling coefficient and Hurst parameter
Hlow	the lower limit of 95% confidence interval of Hurst parameter
Нир	the upper limit of 95% confidence interval of Hurst parameter
SNR	the signal-to-noise ratio
fest	the spectral density of an estimated fGn

Author(s)

Wonsang You

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

Jan Beran (1994) Statistics for Long-Memory Processes, Chapman & Hall.

See Also

```
circFGN, perturbFGN, wFGN.eval
```

```
n<-1000; H1<-0.2; H2<-0.7
ts1 <- circFGN(n,H1)
dat1 <- wFGN(ts1,noise=FALSE)
ts2 <- perturbFGN(n,H2,type="WN",SNR=10)
dat2 <- wFGN(ts2,pertype="per",minfun="combi")</pre>
```

wFGN.eval

wFGN.eval	Evaluation of the modified Whittle estimator for a contaminated fGn

Description

Statistical performance evaluation of the modified Whittle estimator of the Hurst parameter of a fractional Gaussian noise contaminated by additive outliers or noise.

Usage

```
wFGN.eval(H=NULL, n=1000, m=100, type="no", SNR=NULL, ndeps=c(1e-7,1e-2), noise=TRUE, pertype="per", minfun="qeta", weights=c(1,1,0), cluster=FALSE, plot=TRUE, sav=FALSE)
```

Arguments

Н	Hurst parameter. If $\mathrm{H=NULL}$, $H=0.1,0.2,,0.9$ are tested. Default is NULL .
n	sample size. Default is 1000.
m	the number of repetitions. Default is 100.
type	type of perturbation. Possible modes are "no", "WN", "AO". Refer to wFGN for details.
SNR	Signal to noise ratio.
ndeps	A vector of step sizes for optimization. Default is $c(1e-7, 1e-2)$.
noise	Enable the assumption of noise corruption. Default is TRUE.
pertype	type of periodogram. Possible modes are "per", "taper".
minfun	type of minimization function. Possible modes are "qeta", "lp", "csum", "combi".
weights	A vector of weights for each minimization function when minfun="combi".
cluster	A vector of machine names for parallel processing. For details, refer to the manual of package genoud.
plot	a boxplot of parameter estimation. Default is TRUE.
sav	Enable sample plots. Default is FALSE.

Details

The Hurst parameter of a fractional Gaussian noise is estimated by the modified Whittle estimator. This function evaluates the consistency of the Whittle estimator by several repetitions.

18 wFGN.eval

Value

Hdata	a $m\times 1$ or $m\times 9$ matrix of Hurst parameter estimates for fGn with different Hurst parameters
Hstat	a 4×1 or 4×9 matrix with a sample Hurst parameter, mean, standard deviation, and mean squared error (MSE) of Hurst parameter estimates
SNRdata	a $m \times 1$ or $m \times 9$ matrix of SNR estimates for fGn with different Hurst parameters
SNRstat	a 4×1 or 4×9 matrix with a sample SNR, mean, standard deviation, and mean squared error (MSE) of SNR estimates
Theta	a $m \times 1$ or $m \times 9$ matrix of scaling coefficient estimates

Author(s)

Wonsang You

References

Wonsang You (2010) Modified Whittle's Maximum Likelihood Estimator for Fractional Gaussian Noises Contaminated by Additive Noises, Technical Reports of the Leibniz Institute for Neurobiology, TR10015.

See Also

```
circFGN, perturbFGN, wFGN
```

```
dat <- wFGN.eval(H=0.2, n=10000, m=10, type="WN", SNR=-20, plot=TRUE)
```

Index

```
*Topic package
    wfGn-package, 1
CetaFGN, 2
circFGN, 3, 12, 16, 18
Csum, 4, 10, 13, 14
fspecBFGN, 6, 7
fspecFGN, 3, 6, 7, 8
\texttt{fspecPFGN}, \textit{6}, \textit{7}, \textit{8}, \textit{8}
Lpvar, 5, 9, 13, 14
per, 10
perturbFGN, 4, 11, 16, 18
Qeta, 5, 9, 10, 12, 14
QLCfun, 5, 10, 13, 13
wFGN, 4, 6–8, 12, 15, 17, 18
wfGn-package, 1
wFGN.eval, 16, 16
```