The Relationship of Serving to Winning in Volleyball

Eric Geisler, Daniel Hrusovsky

John Carroll University

October 30, 2024

Introduction

We will be analyzing serving data from collegiate women's games (~3000) to determine the relationship between aces and errors on sets won. We hypothesize that service aces, service errors, service aces against, and service errors against will all be significant predictors of the number of sets won in a match.

Analysis and Discussion

			miss			Statistic	s	
					Cumulative	miss		
		Frequency	Percent	Valid Percent	Percent	N	Valid	3084
Valid	.00	3084	100.0	100.0	100.0		Missing	0

Firstly, we establish that there is no missing data in the dataset used.

Now, we can begin by analyzing the descriptive statistics of the data.

			Statistic	s		
		SetsWon Sets Won	ServiceAcesAg ainst Service Aces Against	ServiceErrorsA gainst Service Errors Against	TotalMissedSe rves Total Missed Serves	TotalServiceAc es Total Service Aces
N	Valid	3084	3084	3084	3084	3084
	Missing	0	0	0	0	0
Mean		2.01	4.80	6.55	6.61	5.36
Skewnes	S	681	.862	.715	.634	.946
Std. Error	of Skewness	.044	.044	.044	.044	.044
Kurtosis		-1.262	1.281	.835	.533	1.654
Std. Error	of Kurtosis	.088	.088	.088	.088	.088
Minimum		0	0	0	0	0
Maximum		4	23	23	21	26

The data for all of the selected variables is normal, as all skewness values are within the range of -3 to 3, and all kurtosis values are within the adjusted range for large sample sizes of -20 to 20.

Now, we can move on to the assumptions for regression. First, we must determine if the data has adequate variance. Specifically, we must see if there is one value or a close set of values that make up over 90% of the values in our data.

ServiceAcesAgainst Service Aces Against

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	78	2.5	2.5	2.5
	1	221	7.2	7.2	9.7
	2	377	12.2	12.2	21.9
	3	441	14.3	14.3	36.2
	4	479	15.5	15.5	51.8
	5	404	13.1	13.1	64.9
	6	313	10.1	10.1	75.0
	7	262	8.5	8.5	83.5
	8	205	6.6	6.6	90.1
	9	118	3.8	3.8	94.0
	10	58	1.9	1.9	95.8
	11	60	1.9	1.9	97.8
	12	30	1.0	1.0	98.8
	13	17	.6	.6	99.3
	14	9	.3	.3	99.6
	15	4	.1	.1	99.7
	16	2	.1	.1	99.8
	17	4	.1	.1	99.9
	19	1	.0	.0	100.0
	23	1	.0	.0	100.0
	Total	3084	100.0	100.0	

For *ServiceAcesAgainst*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

0

ServiceErrorsAgainst Service Errors Against

		•					
		Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	0	20	.6	.6	.6		
vallu							
	1	62	2.0	2.0	2.7		
	2	152	4.9	4.9	7.6		
	3	259	8.4	8.4	16.0		
	4	342	11.1	11.1	27.1		
	5	418	13.6	13.6	40.6		
	6	413	13.4	13.4	54.0		
	7	386	12.5	12.5	66.5		
	8	301	9.8	9.8	76.3		
	9	230	7.5	7.5	83.8		
	10	144	4.7	4.7	88.4		
	11	133	4.3	4.3	92.7		
	12	68	2.2	2.2	94.9		
	13	72	2.3	2.3	97.3		
	14	40	1.3	1.3	98.6		
	15	16	.5	.5	99.1		
	16	10	.3	.3	99.4		
	17	8	.3	.3	99.7		
	18	3	.1	.1	99.8		
	19	3	.1	.1	99.9		
	20	1	.0	.0	99.9		
	21	2	.1	.1	100.0		
	23	1	.0	.0	100.0		
	Total	3084	100.0	100.0			

For *ServiceErrorsAgainst*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

TotalMissedServes Total Missed Serves

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	19	.6	.6	.6
	1	64	2.1	2.1	2.7
	2	147	4.8	4.8	7.5
	3	254	8.2	8.2	15.7
	4	342	11.1	11.1	26.8
	5	409	13.3	13.3	40.0
	6	391	12.7	12.7	52.7
	7	379	12.3	12.3	65.0
	8	307	10.0	10.0	75.0
	9	245	7.9	7.9	82.9
	10	170	5.5	5.5	88.4
	11	128	4.2	4.2	92.6
	12	76	2.5	2.5	95.0
	13	69	2.2	2.2	97.3
	14	37	1.2	1.2	98.5
	15	17	.6	.6	99.0
	16	14	.5	.5	99.5
	17	9	.3	.3	99.8
	18	2	.1	.1	99.8
	19	2	.1	.1	99.9
	20	1	.0	.0	99.9
	21	2	.1	.1	100.0
	Total	3084	100.0	100.0	

For *TotalMissedServes*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

TotalServiceAces Total Service Aces

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	56	1.8	1.8	1.8
	1	179	5.8	5.8	7.6
	2	318	10.3	10.3	17.9
	3	385	12.5	12.5	30.4
	4	443	14.4	14.4	44.8
	5	397	12.9	12.9	57.7
	6	344	11.2	11.2	68.8
	7	283	9.2	9.2	78.0
	8	213	6.9	6.9	84.9
	9	160	5.2	5.2	90.1
	10	102	3.3	3.3	93.4
	11	75	2.4	2.4	95.8
	12	44	1.4	1.4	97.2
	13	33	1.1	1.1	98.3
	14	21	.7	.7	99.0
	15	15	.5	.5	99.5
	16	3	.1	.1	99.6
	17	6	.2	.2	99.8
	18	2	.1	.1	99.8
	19	2	.1	.1	99.9
	20	1	.0	.0	99.9
	24	1	.0	.0	100.0
	26	1	.0	.0	100.0
	Total	3084	100.0	100.0	

For Total *Service Aces*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

SetsWon Sets Won

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	647	21.0	21.0	21.0
	1	415	13.5	13.5	34.4
	2	275	8.9	8.9	43.4
	3	1746	56.6	56.6	100.0
	4	1	.0	.0	100.0
	Total	3084	100.0	100.0	

For *SetsWon*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

We have found there to be adequate variance in all variables. Moving on, we must analyze any influential cases.

Outlier Statistics^a

		Case Number	Statistic	Sig. F
Stud. Deleted Residual	1	2922	-3.512	
	2	2941	-2.919	
	3	2935	-2.848	
	4	2920	-2.784	
	5	890	-2.616	
	6	2262	-2.537	
	7	2927	-2.525	
	8	522	-2.487	
	9	2579	-2.460	
	10	1244	-2.439	
Mahal. Distance	1	2536	50.935	
	2	3061	50.460	
	3	2696	47.550	
	4	675	32.195	
	5	1616	29.442	
	6	3037	28.713	
	7	1598	28.130	
	8	1718	28.051	
	9	2874	27.005	
	10	696	26.298	
Cook's Distance	1	3061	.017	1.000
	2	2922	.010	1.000
	3	2519	.005	1.000
	4	2930	.005	1.000
	5	3079	.003	1.000
	6	2924	.003	1.000
	7	589	.003	1.000
	8	2941	.003	1.000
	9	2536	.003	1.000
	10	1112	.003	1.000

a. Dependent Variable: SetsWon Sets Won

The Cook's Distance value examines both the predictor and dependent values and measures the amount by which a regression model changes by removing a single point. We can see that the case number (3061) with the maximum Cook's Distance value in the data appears 2nd highest for Mahal. Distance (measures Independent Variables) and does not appear for Stud. Deleted Residuals (measures Dependent Variables). Since the maximum of Cook's Distance is less than 1 (.017) however, we have no influential cases.

For the last primary assumption, we must analyze the linearity of the data. Plots were excluded for simplicity. While, for some variables, the differences between the R^2 cubic value and the R^2 linear value as well as the R^2 quadratic value and the R^2 linear value exceeded 2%, there were no major violations of linearity between the independent variables and the dependent variable.

Moving onto our secondary assumptions, we now must examine if there is sufficiently constant error variance (homoscedasticity).

Plots again were excluded for simplicity. The ratio for the difference in the greatest part of the scatter and the smallest part of the scatter for each variable and the standardized predicted values was less than 3:1, and thus we can assume that there is sufficiently constant error variance.

We have sufficiently constant error variance for all variables. For the next secondary assumption, we must examine if there is sufficient normality of the error residuals.

From the P-P Plot and the Histogram for the studentized deleted residuals, it appears as though there is sufficient normality of the error residuals. However, the data does deviate slightly in the

P-P Plot and the Histogram data appears to be leptokurtic/bimodal, so we need to check the underlying statistics to be sure.

Statistics

SDR_6 Studentized Deleted Residual

N	Valid	3084
	Missing	0
Mean		0000982
Skewness	384	
Std. Error o	fSkewness	.044
Kurtosis		841
Std. Error o	f Kurtosis	.088
Minimum		-3.51181
Maximum		2.18252

We can assume normality for the error residuals, as the skewness of -.384 is between -3 and 3, and the kurtosis of -.841 is within the adjusted range of -20 to 20 for large sample sizes.

We have now met all the primary and secondary assumptions, and can continue with our regression analysis.

Correlations TotalMissedSe TotalServiceAc ServiceAcesAg ServiceErrorsA SetsWon Sets ainst Service rves Total es Total gainst Service Won Missed Serves Service Aces Aces Against Errors Against Pearson Correlation SetsWon Sets Won 1 000 184 .419 - 272 - 010 TotalMissedServes Total .184 1 000 .217 060 200 Missed Serves TotalServiceAces Total .217 1.000 .000 .419 .016 Service Aces ServiceAcesAgainst -.272 .060 .016 1.000 .247 Service Aces Against ServiceErrorsAgainst 200 .000 .247 1.000 Service Errors Against .285 Sig. (1-tailed) SetsWon Sets Won <.001 <.001 <.001 TotalMissedServes Total .000 .000 .000 .000 Missed Serves TotalServiceAces Total .000 .000 .195 .493 Service Aces ServiceAcesAgainst .000 .000 .195 .000 Service Aces Against ServiceErrorsAgainst .493 .000 .285 .000 Service Errors Against N SetsWon Sets Won 3083 3083 3083 3083 3083 TotalMissedServes Total 3083 3083 3083 3083 3083 Missed Serves TotalServiceAces Total 3083 3083 3083 3083 3083 Service Aces ServiceAcesAgainst 3083 3083 3083 3083 3083 Service Aces Against ServiceErrorsAgainst 3083 3083 3083 3083 3083

From the correlation table, we can see that:

Service Errors Against

- The correlation relationship between *TotalMissedServes* and *SetsWon* is significant, with $\mathbf{r(3083)} = .184$ and $\mathbf{p} < .001$. The coefficient of determination of the association is .184, meaning there is a positive, low correlation between total missed serves and sets won.
- The correlation relationship between *TotalServiceAces* and *SetsWon* is significant, with $\mathbf{r(3083)} = .419$ and $\mathbf{p} < .001$. The coefficient of determination of the association is .419, meaning there is a positive, moderate correlation between total service aces and sets won.
- The correlation relationship between *ServiceAcesAgainst* and *SetsWon* is significant, with $\mathbf{r(3083)} = -.272$ and $\mathbf{p} < .001$. The coefficient of determination of the association is -.272, meaning there is a positive, low correlation between total service aces against and sets won.
- The correlation relationship between ServiceErrorsAgainst and SetsWon is not significant, with r(3083) = -.010 and p = .285.

Moving onto our ANOVA analysis within the overall regression analysis, our null hypothesis, H_0 , is that there is no independent predictor variable that helps predict our dependent observation variable, where $\alpha = .05$. If the F-statistic is significant (p < .05), we have sufficient evidence to reject the null hypothesis.

ΔΝΟVΔ^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1267.689	4	316.922	280.251	<.001 b
	Residual	3480.766	3078	1.131		
	Total	4748.455	3082			

- a. Dependent Variable: SetsWon Sets Won
- b. Predictors: (Constant), ServiceErrorsAgainst Service Errors Against, TotalServiceAces
 Total Service Aces, ServiceAcesAgainst Service Aces Against, TotalMissedServes
 Total Missed Serves

Based on the ANOVA table, there is an independent predictor variable that helps predict our dependent observation variable, as F(4,3078) = 280.251 and p < .001. Thus, there is sufficient statistical evidence that at least one IPV has significant explanatory power.

Model Summaryb

					Change Statistics						
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change		
1	.517ª	.267	.266	1.063	.267	280.251	4	3078	<.001		

- a. Predictors: (Constant), ServiceErrorsAgainst Service Errors Against, TotalServiceAces Total Service Aces, ServiceAcesAgainst Service Aces Against, TotalMissedServes Total Missed Serves
- b. Dependent Variable: SetsWon Sets Won

Looking at the adjusted R-Square statistic ($\mathbb{R}^2 = .266$), 26.6% of the variance in *SetsWon* is explained by *TotalServiceAces*, *TotalMissedServes*, *ServiceAcesAgainst*, and *ServiceErrorsAgainst*.

	Coefficients ^a												
	Unstandardized Coefficients		d Coefficients	Standardized Coefficients			95.0% Confider	nce Interval for B		Correlations		Collinearity	/ Statistics
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	1.403	.065		21.616	<.001	1.276	1.530					
	TotalMissedServes Total Missed Serves	.042	.006	.107	6.614	<.001	.029	.054	.184	.118	.102	.913	1.095
	TotalServiceAces Total Service Aces	.158	.006	.400	25.280	<.001	.146	.171	.419	.415	.390	.951	1.052
	ServiceAcesAgainst Service Aces Against	129	.007	295	-18.517	<.001	143	116	272	317	286	.939	1.065
	ServiceErrorsAgainst Service Errors Against	.016	.006	.041	2.524	.012	.004	.029	010	.045	.039	.903	1.108

a. Dependent Variable: SetsWon Sets Won

Based on the coefficients table:

• For every increase of one missed serve, we predict an increase of .042 in *SetsWon* (b = .042, t = 6.614, p < .001, 95% CI [.029, .054]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = .107, meaning for every one standard deviation increase in *TotalMissedServes*, we predict a .107 standard deviation increase in *SetsWon*. Without controlling for the influence of any other Independent

- Predictor Variables, the associative relationship between *TotalMissedServes* and *SetsWon* is .184. When controlling for all other Independent Predictor Variables, the associative relationship between *TotalMissedServes* and *SetsWon* decreases to .102.
- For every increase of one service ace, we predict an increase of .158 in *SetsWon* (b = .158, t = 25.280, p < .001, 95% CI [.146, .171]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = .400, meaning for every one standard deviation increase in *TotalServiceAces*, we predict a .400 standard deviation increase in *SetsWon*. Without controlling for the influence of any other Independent Predictor Variables, the associative relationship between *TotalServiceAces* and *SetsWon* is .419. When controlling for all other Independent Predictor Variables, the associative relationship between *TotalServiceAces* and *SetsWon* decreases to .390.
- For every increase of one service ace against, we predict a decrease of -.129 in *SetsWon* (b = -.129, t = -18.517, p < .001, 95% CI [-.143, -.116]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = -.295, meaning for every one standard deviation increase in *ServiceAcesAgainst*, we predict a -.295 standard deviation decrease in *SetsWon*. Without controlling for the influence of any other Independent Predictor Variables, the associative relationship between *ServiceAcesAgainst* and *SetsWon* is -.272. When controlling for all other Independent Predictor Variables, the associative relationship between *ServiceAcesAgainst* and *SetsWon* decreases to -.286.
- For every increase of one service error against, we predict an increase of .016 in *SetsWon* (b = .016, t = 2.524, p = .012, 95% CI [.004, .029]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = .041, meaning for every one standard deviation increase in *ServiceAcesAgainst*, we predict a .041 standard deviation decrease in *SetsWon*. Without controlling for the influence of any other Independent Predictor Variables, the associative relationship between *ServiceErrorsAgainst* and *SetsWon* is -.010. When controlling for all other Independent Predictor Variables, the associative relationship between *ServiceErrorsAgainst* and *SetsWon* increases to .039.

Conclusion

As expected, these findings show that service aces, service errors, service aces against, and service errors against are all significant predictors of the number of sets a team wins in a given game. Most surprisingly, there is a positive relationship between service errors and sets won. We theorize that the reason for this positive relationship could be:

1) serving aggressively equates to winning (high numbers of service errors are equated with high numbers of service aces)

- 2) the data contains copious amounts of lopsided matchups where high numbers of service errors are overcome by an overall gap in skill (possible future research can explore this)
- 3) there are confounding factors not accounted for in our data

Overall, these results suggest that serving aggressively has strategic value when compared to the risk of missing serves. For every one standard deviation increase in service aces, we predict a .400 standard deviation increase in sets won in a match, compared to just a .107 standard deviation increase in sets won for a one standard deviation increase in service errors. This relationship is more clearly displayed by service and service errors against: for every one standard deviation increase in service aces against, we predict a -.295 standard deviation decrease in sets won, compared to just a .041 standard deviation increase in sets won for a one standard deviation increase in service errors against.

Now, we will conduct another regression analysis just on data from Division III matches.

			Statistic	s		
		SetsWon Sets Won	TotalMissedSe rves Total Missed Serves	TotalServiceAc es Total Service Aces	ServiceAcesAg ainst Service Aces Against	ServiceErrorsA gainst Service Errors Against
N	Valid	798	798	798	798	798
	Missing	0	0	0	0	0
Mean		2.12	6.20	6.57	5.51	6.44
Skewne	ess	858	.664	.936	.865	.740
Std. Erro	or of Skewness	.087	.087	.087	.087	.087
Kurtosis		-1.019	.398	1.666	1.214	.538
Std. Error of Kurtosis		.173	.173	.173	.173	.173
Minimum		0	0	0	0	0
Maximu	m	3	18	26	23	19

The data for all of the selected variables is normal, as all skewness values are within the range of -3 to 3, and the kurtosis values are all within the adjusted range for large sample sizes of -20 to 20.

Now, we can move on to the assumptions for regression. First, we must determine if the data has adequate variance. Specifically, we must see if there is one value or a close set of values that make up over 90% of the values in our data.

ServiceAcesAgainst Service Aces Against

		_			Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	0	20	2.5	2.5	2.5
	1	47	5.9	5.9	8.4
	2	74	9.3	9.3	17.7
	3	102	12.8	12.8	30.5
	4	103	12.9	12.9	43.4
	5	100	12.5	12.5	55.9
	6	76	9.5	9.5	65.4
	7	80	10.0	10.0	75.4
	8	68	8.5	8.5	84.0
	9	38	4.8	4.8	88.7
	10	18	2.3	2.3	91.0
	11	32	4.0	4.0	95.0
	12	17	2.1	2.1	97.1
	13	8	1.0	1.0	98.1
	14	5	.6	.6	98.7
	15	3	.4	.4	99.1
	16	2	.3	.3	99.4
	17	4	.5	.5	99.9
	23	1	.1	.1	100.0
	Total	798	100.0	100.0	

For *ServiceAcesAgainst*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

ServiceErrorsAgainst Service Errors Against

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	0	8	1.0	1.0	1.0
	1	20	2.5	2.5	3.5
	2	42	5.3	5.3	8.8
	3	81	10.2	10.2	18.9
	4	93	11.7	11.7	30.6
	5	100	12.5	12.5	43.1
	6	101	12.7	12.7	55.8
	7	96	12.0	12.0	67.8
	8	75	9.4	9.4	77.2
	9	50	6.3	6.3	83.5
	10	37	4.6	4.6	88.1
	11	33	4.1	4.1	92.2
	12	9	1.1	1.1	93.4
	13	25	3.1	3.1	96.5
	14	11	1.4	1.4	97.9
	15	6	.8	.8	98.6
	16	5	.6	.6	99.2
	17	4	.5	.5	99.7
	18	1	.1	.1	99.9
	19	1	.1	.1	100.0
	Total	798	100.0	100.0	

For *ServiceErrorsAgainst*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

TotalMissedServes Total Missed Serves

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	19	.6	.6	.6
7 411 4	1	64	2.1	2.1	2.7
	2	147	4.8	4.8	7.5
	3	254	8.2	8.2	15.7
	4	342	11.1	11.1	26.8
	5	409	13.3	13.3	40.0
	6	391	12.7	12.7	52.7
	7	379	12.3	12.3	65.0
	8	307	10.0	10.0	75.0
	9	245	7.9	7.9	82.9
	10	170	5.5	5.5	88.4
	11	128	4.2	4.2	92.6
	12	76	2.5	2.5	95.0
	13	69	2.2	2.2	97.3
	14	37	1.2	1.2	98.5
	15	17	.6	.6	99.0
	16	14	.5	.5	99.5
	17	9	.3	.3	99.8
	18	2	.1	.1	99.8
	19	2	.1	.1	99.9
	20	1	.0	.0	99.9
	21	2	.1	.1	100.0
	Total	3084	100.0	100.0	

For *TotalMissedServes*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

TotalServiceAces Total Service Aces

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	9	1.1	1.1	1.1
	1	26	3.3	3.3	4.4
	2	51	6.4	6.4	10.8
	3	74	9.3	9.3	20.1
	4	91	11.4	11.4	31.5
	5	96	12.0	12.0	43.5
	6	93	11.7	11.7	55.1
	7	83	10.4	10.4	65.5
	8	66	8.3	8.3	73.8
	9	53	6.6	6.6	80.5
	10	45	5.6	5.6	86.1
	11	38	4.8	4.8	90.9
	12	23	2.9	2.9	93.7
	13	15	1.9	1.9	95.6
	14	10	1.3	1.3	96.9
	15	10	1.3	1.3	98.1
	16	3	.4	.4	98.5
	17	6	.8	.8	99.2
	18	2	.3	.3	99.5
	19	1	.1	.1	99.6
	20	1	.1	.1	99.7
	24	1	.1	.1	99.9
	26	1	.1	.1	100.0
	Total	798	100.0	100.0	

For *TotalServiceAces*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

SetsWon Sets Won

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	153	19.2	19.2	19.2
	1	96	12.0	12.0	31.2
	2	52	6.5	6.5	37.7
	3	497	62.3	62.3	100.0
	Total	798	100.0	100.0	

For *SetsWon*, there is no violation of adequate variance, as no single response or close group of responses constitutes over 90% of the values.

We have found there to be adequate variance in all variables. Moving on, we must analyze any influential cases.

Outlier Statistics^a

		Case Number	Statistic	Sig. F
Stud. Deleted Residual	1	2922	-3.286	0.9.1
otaa. Deletea Nesidaal	2	2941	-2.823	
	3	2935	-2.802	
	4	2920	-2.703	
	5	2927	-2.562	
	6	2932	-2.545	
	7	2579	-2.473	
	8	2772	-2.418	
	9	2302	-2.335	
	10	2854	-2.329	
Mahal, Distance		2536	35.259	
	2	3061	34.463	
	3	2696	32.861	
	4	2287	20.338	
	5	3079	19.144	
	6	3037	18.116	
	7	2874	17.433	
	8	2839	17.284	
	9	2321	16.865	
	10	3004	16.527	
Cook's Distance	1	3061	.028	1.000
	2	2922	.021	1.000
	3	2536	.015	1.000
	4	2519	.014	1.000
	5	3079	.012	1.000
	6	2746	.011	1.000
	7	2930	.010	1.000
	8	3058	.009	1.000
	9	2939	.009	1.000
	10	2924	.009	1.000

a. Dependent Variable: SetsWon Sets Won

The Cook's Distance value examines both the predictor and dependent values and measures the amount by which a regression model changes by removing a single point. We can see that the case number (3061) with the maximum Cook's Distance value in the data appears 2nd highest for Mahal. Distance (measures Independent Variables) and does not appear for Stud. Deleted Residuals (measures Dependent Variables). Since the maximum of Cook's Distance is less than 1 (.028) however, we have no influential cases.

For the last primary assumption, we must analyze the linearity of the data. Plots were excluded for simplicity. While, for some variables, the differences between the R^2 cubic value and the R^2 linear value as well as the R^2 quadratic value and the R^2 linear value exceeded 2%, there were no major violations of linearity between the independent variables and the dependent variable.

Moving onto our secondary assumptions, we now must examine if there is sufficiently constant error variance (homoscedasticity).

Plots again were excluded for simplicity. The ratio for the difference in the greatest part of the scatter and the smallest part of the scatter for each variable and the standardized predicted values was less than 3:1, and thus we can assume that there is sufficiently constant error variance.

We have sufficiently constant error variance for all variables. For the next secondary assumption, we must examine if there is sufficient normality of the error residuals.

From the P-P Plot and the Histogram for the studentized deleted residuals, it appears as though there is sufficient normality of the error residuals. However, the data does deviate slightly in the P-P Plot and the Histogram data appears to be leptokurtic, so we need to check the underlying statistics to be sure.

Statistics

SDR_6 Studentized Deleted Residual

N	Valid	798
	Missing	0
Mean		.0232618
Skewness		464
Std. Error o	fSkewness	.087
Kurtosis		473
Std. Error o	f Kurtosis	.173
Minimum		-3.51181
Maximum		1.96831

We can assume normality for the error residuals, as the skewness of -.464 is between -3 and 3, and the kurtosis of -.473 is within the adjusted range of -20 to 20 for large sample sizes.

Correlations

		SetsWon Sets Won	TotalMissedSe rves Total Missed Serves	TotalServiceAc es Total Service Aces	ServiceAcesAg ainst Service Aces Against	ServiceErrorsA gainst Service Errors Against
Pearson Correlation	SetsWon Sets Won	1.000	.174	.389	313	.007
	TotalMissedServes Total Missed Serves	.174	1.000	.245	.142	.262
	TotalServiceAces Total Service Aces	.389	.245	1.000	.010	.029
	ServiceAcesAgainst Service Aces Against	313	.142	.010	1.000	.294
Sin (1-tailed)	ServiceErrorsAgainst Service Errors Against	.007	.262	.029	.294	1.000
Sig. (1-tailed)	SetsWon Sets Won		<.001	<.001	<.001	.425
	TotalMissedServes Total Missed Serves	.000		.000	.000	.000
	TotalServiceAces Total Service Aces	.000	.000		.384	.208
	ServiceAcesAgainst Service Aces Against	.000	.000	.384		.000
	ServiceErrorsAgainst Service Errors Against	.425	.000	.208	.000	
N	SetsWon Sets Won	798	798	798	798	798
	TotalMissedServes Total Missed Serves	798	798	798	798	798
	TotalServiceAces Total Service Aces	798	798	798	798	798
	ServiceAcesAgainst Service Aces Against	798	798	798	798	798
	ServiceErrorsAgainst Service Errors Against	798	798	798	798	798

From the correlation table, we can see that:

- The correlation relationship between *TotalMissedServes* and *SetsWon* is significant, with $\mathbf{r}(798) = .174$ and $\mathbf{p} < .001$. The coefficient of determination of the association is .174, meaning there is a positive, low correlation between total missed serves and sets won.
- The correlation relationship between *TotalServiceAces* and *SetsWon* is significant, with $\mathbf{r}(798) = .389$ and $\mathbf{p} < .001$. The coefficient of determination of the association is .389, meaning there is a positive, moderate correlation between total service aces and sets won.
- The correlation relationship between *ServiceAcesAgainst* and *SetsWon* is significant, with $\mathbf{r}(798) = -.313$ and $\mathbf{p} < .001$. The coefficient of determination of the association is -.313, meaning there is a positive, low correlation between total service aces against and sets won.
- The correlation relationship between ServiceErrorsAgainst and SetsWon is not significant, with $\mathbf{r}(798) = .007$ and $\mathbf{p} = .425$.

Moving onto our ANOVA analysis within the overall regression analysis, our null hypothesis, H_O , is that there is no independent predictor variable that helps predict our dependent observation variable, where $\alpha = .05$. If the F-statistic is significant (p < .05), we have sufficient evidence to reject the null hypothesis.

	ANOVA ^a										
Model		Sum of Squares	df	Mean Square	F	Sig.					
1	Regression	325.085	4	81.271	74.197	<.001 ^b					
	Residual	868.605	793	1.095							
	Total	1193.690	797								

- a. Dependent Variable: SetsWon Sets Won
- b. Predictors: (Constant), ServiceErrorsAgainst Service Errors Against, TotalServiceAces
 Total Service Aces, ServiceAcesAgainst Service Aces Against, TotalMissedServes
 Total Missed Serves

Based on the ANOVA table, there is an independent predictor variable that helps predict our dependent observation variable, as F(4,793) = 74.197 and p < .001. Thus, there is sufficient statistical evidence that at least one IPV has significant explanatory power.

	Model Summary ⁶										
	Change Statistics										
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change		
1	.522ª	.272	.269	1.047	.272	74.197	4	793	<.001		

- a. Predictors: (Constant), ServiceErrorsAgainst Service Errors Against, TotalServiceAces Total Service Aces, ServiceAcesAgainst Service
 Aces Against, TotalMissedServes Total Missed Serves
- b. Dependent Variable: SetsWon Sets Won

Looking at the adjusted R-Square statistic ($\mathbb{R}^2 = .269$), 26.9% of the variance in *SetsWon* is explained by *TotalServiceAces*, *TotalMissedServes*, *ServiceAcesAgainst*, and *ServiceErrorsAgainst*.

	Coefficients ^a												
		Unstandardize		Standardized Coefficients			95.0% Confiden			Correlations		Collinearity	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	1.603	.118		13.610	<.001	1.372	1.835					
	TotalMissedServes Total Missed Serves	.044	.012	.117	3.614	<.001	.020	.068	.174	.127	.109	.871	1.148
	TotalServiceAces Total Service Aces	.122	.011	.362	11.580	<.001	.101	.142	.389	.380	.351	.939	1.065
	ServiceAcesAgainst Service Aces Against	131	.012	354	-11.128	<.001	155	108	313	368	337	.909	1.100
	ServiceErrorsAgainst Service Errors Against	.026	.012	.070	2.136	.033	.002	.049	.007	.076	.065	.863	1.158

a. Dependent Variable: SetsWon Sets Won

Based on the coefficients table:

- For every increase of one missed serve, we predict an increase of .044 in *SetsWon* (b = .044, t = 3.614, p < .001, 95% CI [.020, .068]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = .117, meaning for every one standard deviation increase in *TotalMissedServes*, we predict a .117 standard deviation increase in *SetsWon*. Without controlling for the influence of any other Independent Predictor Variables, the associative relationship between *TotalMissedServes* and *SetsWon* is .174. When controlling for all other Independent Predictor Variables, the associative relationship between *TotalMissedServes* and *SetsWon* decreases to .109.
- For every increase of one service ace, we predict an increase of .158 in *SetsWon* (b = .122, t = 11.580, p < .001, 95% CI [.101, .142]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = .362, meaning for every one standard deviation increase in *TotalServiceAces*, we predict a .362 standard deviation increase in *SetsWon*. Without controlling for the influence of any other Independent Predictor Variables, the associative relationship between *TotalServiceAces* and *SetsWon* is .389. When controlling for all other Independent Predictor Variables, the associative relationship between *TotalServiceAces* and *SetsWon* decreases to .351.
- For every increase of one service ace against, we predict a decrease of -.131 in *SetsWon* (b = -.131, t = -11.128, p < .001, 95% CI [-.155, -.108]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = -.354, meaning for every one standard deviation increase in *ServiceAcesAgainst*, we predict a -.354 standard deviation decrease in *SetsWon*. Without controlling for the influence of any other Independent Predictor Variables, the associative relationship between *ServiceAcesAgainst* and *SetsWon* is -.313. When controlling for all other Independent Predictor Variables, the associative relationship between *ServiceAcesAgainst* and *SetsWon* decreases to -.337.
- For every increase of one service error against, we predict an increase of .026 in *SetsWon* (b = .026, t = 2.136, p = .033, 95% CI [.002, .049]). Because the p-value is below .05, the predictor is statistically significant. Additionally, B = .070, meaning for every one

standard deviation increase in *ServiceAcesAgainst*, we predict a .070 standard deviation decrease in *SetsWon*. Without controlling for the influence of any other Independent Predictor Variables, the associative relationship between *ServiceErrorsAgainst* and *SetsWon* is .007. When controlling for all other Independent Predictor Variables, the associative relationship between *ServiceErrorsAgainst* and *SetsWon* increases to .065.

Conclusion

For only Division III matches, the outputs largely remain the same. All variables are significant predictors. Again, the value of accruing (and preventing) aces is notable.