Introduction à l'IA et au traitement de grandes masses de données

						Ryan OHOUENS	Sarah SALEH
	Problématique 1 (Echauffement)		Problématique 2		Problématique 3		Problématique 4
Description: Méthode	Nous souhaitons prédire si une catégorie sera rentable à partir des anciens films récoltés. Nous allons utilisé la médiane pour attribuer	Description :	Nous souhaitons maintenant savoir quels sont les bons ingrédients pour la réalisation d'un film, soit comment obtenir la meilleure note possible.	Description : Methode :	Nous désirons désormais déterminer la catégorie d'un film à partir des caractéristiques. Nous utilisons toujours la méthode de la	Description:	Enfin, nous voulons permettre de déterminer quels genres seraient à même de toucher le plus de public possible. De plus, nous sommes désireux de savoir quels genres se resemblent le plus
	une classe à nos données. Puis nous allons utiliser de la classification	Méthode	Nous allons toujours utilisé la méthode de la		médiane pour attribuer une classe à nos données.	Méthode :	ressemblent le plus. Dans un premier temps, la méthode du 'one-hot-encoding' concernant les genres des films.
	supervisée avec l'algorithme de k plus proches voisins.		médiane pour attribuer une classe à nos données. Ensuite, nous utilisons une régression supervisée grâce à l'algorithme des moindres		Par la suite, nous utilisons de la classification multi-classes. Pour cela, nous allons créer 20 data frames qui emploieront la méthode un contre tous pour permettre de définir la classe.		Ensuite, nous allons utiliser des clusters.
Résultats :			carrés. Puis nous nous entrainerons avec différentes combinaisons de paramètres pour savoir quels critères il faut prendre en compte pour la réalisation d'un film.		Nous allons ensuite créer des LabeledSet associés à ces bases que nous allons faire s'entrainer chacun dans un classifier réciproque.	Résultats :	
0.6	×	Résultats :	reansation d un film.		Cependant, pour permettre une bonne classification des données, nous allons les faire s'entrainer sur une base égale en terme de classes, puis calculer l'accuracy sur une base aléatoire.		
0.4	×			Résultats :			
0.0 - 0.0 0.2 Frontière de déc	2 0.4 0.6 0.8 1.0 cision avec l'algorithme de KNN						
	performances accuracy						
80 -							
50 -							
40 -							
0 2	20 40 60 80 100 N						