1.外形

板正面

2.硬件系统结构及使用 IO 口资源

板上主要芯片资源:

STM32f107VC (CPU)

1117-33

CP2102

W25Q16B W25×16 (16M Flash 4M*8bit)

AtmelHD012 (24C02) E2PROM(1K-128*8bit)

SP3485

DP83848

VP230

板上接口、开关、灯:

DC 电源, USB, SD 卡, JTAG, CR1220, RJ45, 按键(复位)、按键*2、485 接口, 电源指示灯, LED×4

硬件系统结构:

3.1 下载模块

J11为JTAG下载调试接口。

3.2 485 接口

P21: 1路 485 接口,采用芯片 3485 转接。

连接引脚	方向	功 能 描 述	
PD7	OUT	485 通道 1 读写控制, 0:读; 1: 写	
PD6	IN	USART2_RX 接收	
PD5	OUT	USART2_TX 发送	

3.3 CAN 总线接口

连接引脚	方向	功 能 描 述
PD0	IN	CAN1 接收
PD1	OUT	CAN1 发送
PB6	IN	CAN2 接收
PB5	OUT	CAN2 发送

3.4 USB 模块

JP41-JP41

- 1-2 连接使用 USBOTG
- 2-3 连接使用 CP2102 USB 转串口的数据通信

连接引脚	方向	功 能 描 述
VBUS		USB 口取电
PA9	OUT	UART1 TX/USB_VBUS
PA10	IN	UART1 RX/USB_ID
PA11	IN OUT	USB_DM
PA12	IN OUT	USB_DP

3.5 网口模块

J51: RJ45, 带网络变压器的网络接口。

3.6 IO 口模块

电源及指示:

从 USB 口 VBUS 取电。

LED0: 电源指示,系统 3.3V 供电正常时点亮。

E2PROM: AtmelHD012 (24C02) (1K-128*8bit)

连接引脚	方向	功 能 描 述	
PB6	OUT	I2C 总线 CLK	需要上拉
PB7	INOUT	I2C 总线 数据线	需要上拉

电位器:用于模块输入

连接引脚	方向	功 能 描 述
PC0	IN	输入模拟量接口

模拟输入接口:

连接引脚	方向	功 能 描 述	
PB0	IN	输入模拟量接口	
PB1	IN	输入模拟量接口	

按键: 配置成上拉输入

连接引脚	方向	功 能 描 述	
PA0	IN	输入数字量接口	
PC13	IN	输入数字量接口	

LED 指示: 必须配置与推挽输出

连接引脚	方向	功 能 描 述
PD2	OUT	输出数字量接口
PD3	OUT	输出数字量接口
PD4	OUT	输出数字量接口
PD7	OUT	输出数字量接口

3.7 SD 及 Flash 模块

U71: 为 SD 卡座。

连接引脚	方向	功 能 描 述
PC4	OUT	SD 卡座电源 0: 上电 1: 下电
PB14	IN	SD 卡检测 1: 无卡 0: 有卡
PA6	IN	SPI 总线 MISO
PA5	OUT	SPI 总线 CLK
PA7	OUT	SPI 总线 MOSI
PA4	OUT	SD 卡片选信号 0 有效
PB9	OUT	W25X16 片选信号 0 有效

3.8 TFT 接口

TFT 采用 SSD1289 控制器

3.板上接口跳线说明(阴影为缺省状态)

网口工作模式 MII/RMII

JP51	JP52	JP53	Mode
OPEN	1-2	1-2	MII(缺省)
Close	2-3	2-3	RMII

系统启动模式

воот1	воото	BOOT MODE
ANY	2-3	User Boot(缺省)
2-3	1-2	System Boot
1-2	1-2	SRAM_Boot

系统内部时钟供电方式:

JP04	供电方式
1-2	板上电源供电 (缺省)
2-3	CR1220 电池供电

USB 接口工作模式

JP05	JP07	JP41	JP42	USB MODE
1-2	1-2	1-2	1-2	USB-OTG
2-3	2-3	2-3	2-3	USB-TTL (缺省)

PAO 功能:

JP02	供电方式	
1-2	按键 wakeup	
2-3	可用网络的 MII 工作模式(缺省)	

PB6 功能:

JP06	PB6 管脚用
短接	I2C1_SCL
断开	CAN2_TX(缺省)

4.开发板运行说明

4.1 正常运行说明

(1) 上电

上电后,5V 电源指示灯亮

(2)下载程序,采用以下模式,程序下载到 flash 中运行 *系统启动模式*···

BOOT1	BOOT0	BOOT-MODE
ANY₽	2-3₽	User Boot(缺省)↓

(3) 工程配置

(4) 将开发板固件.hex 下载至开发板后,打开串口监视助手,115200 波特率,连接成功后上电。

1)显示 button 界面

点击 OK 后,

串口助手显示:

finsh>>touch->x:1571 touch->y:833

touch down: (57, 94)

touch->x:1570 touch->y:833

touch->x:1576 touch->y:832 touch->x:1574 touch->y:829 touch up: (56, 94)

hello, button!

点击 Run Simple Cacultor 后,

touch up: (80, 143)

Oh! Run caculator!

event->type:18

event->type:23

event->type:7

event->type:20

在串口助手中输入命令, calibration()后, 可进行触摸校准。

在串口助手中输入 ls(),可显示当前 SD 卡中文件

在串口助手中输入命令,显示当前网口信息:

连接网线至 PC 机,将 PC 机有线网口端口设置成 192.168.1.0-255 中任何一个(除去 30),后打开 cmd,用 ping 命令去查找开发板。能 ping 通,则正常。

关于 finsh ()的命令还有好多,自己去酌磨吧 ◎!!!

附录:

Finsh 的由来:

现有F语言, 然后才有应用到 shell 中, 所以是Fin shell, 简称 finsh.