MHPC 2023

Quantum Algorithms Advanced (Part 1)

Mengoni Riccardo, PhD

3 May 2023

Quantum Computing @ CINECA

CINECA: Italian HPC center

CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

What is Quantum Computing?

A Quantum Computer is NOT simply a smaller or faster version of traditional computers or HPC systems

What is Quantum Computing?

A fundamentally new paradigm for information processing and computation

Based on the principles of Quantum Physics

Quantum Algorithms ≠ Classical Algorithms

- No such thing as "porting" on QPUs
 - A completely different approach is required to solve problems

Vectors

Ket:
$$|\Psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{pmatrix}$$
 $\psi_{\lambda} \in \mathbb{C}$ Complex Number

Bra:
$$\langle \psi \rangle = (\psi_1^* \psi_2^* - \psi_N^*)$$

Scalar Product

$$\langle \phi | \psi \rangle = (\phi_{1}^{*} \phi_{2}^{*} - \phi_{N}^{*}) \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N} \end{pmatrix}$$
 $\langle \phi | \psi \rangle \in \mathbb{C}$
Complex Number

Scalar Product

$$\langle \phi | \psi \rangle = (\phi_{1}^{*} \phi_{2}^{*} - ... \phi_{n}^{*}) \begin{pmatrix} \psi_{2} \\ \psi_{2} \\ \vdots \\ \psi_{n} \end{pmatrix}$$

$$\langle \phi | \psi \rangle \in C$$
Complex Number

Outer Product

$$|\Psi\rangle \langle \Phi| = \begin{pmatrix} \psi_{\perp} \\ \psi_{2} \\ \vdots \\ \psi_{n} \end{pmatrix} \begin{pmatrix} \phi_{\perp}^{*} & \phi_{2}^{*} & \cdots & \phi_{n}^{*} \end{pmatrix} = \begin{pmatrix} \psi_{\perp} & \phi_{\perp}^{*} & \psi_{\perp} & \phi_{2}^{*} & \cdots & \psi_{2} & \phi_{n}^{*} \\ \psi_{2} & \phi_{2}^{*} & \psi_{2} & \phi_{2}^{*} & \cdots & \psi_{2} & \phi_{n}^{*} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \psi_{n} & \phi_{\perp}^{*} & \psi_{n} & \phi_{2}^{*} & \cdots & \psi_{n} & \phi_{n}^{*} \end{pmatrix}$$

Dimension = $n \times n$

Tensor Product

$$| \phi \rangle \otimes | \psi \rangle = \begin{pmatrix} \phi_{1} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N} \end{pmatrix} \\ \phi_{2} \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N} \end{pmatrix}$$
Dimension = n^{2}

Tensor Product

Dimension = n^2

Compact form:

Unitary Operator

A unitary operator is a matrix U such that

$$\bigcup \bigcup^{\dagger} = \bigcup^{\dagger} \bigcup = I$$

Where \bigcup^{\dagger} is the adjoint i.e. the conjugate transpose

Hermitian Operator

An Hermitian operator is a matrix A such that

$$A = A^{\dagger}$$

Where \bigwedge^{\dagger} is the adjoint i.e. the conjugate transpose

Eigenvalue and Eigenvector

Given a matrix A, $|\lor\rangle$ is an eigenvector of A with assiciate eigenvalue \rangle if the following relation is satisfied

$$A | V = \lambda | V$$

1. Unit of Information

Classically

Unit of classical information is the bit State of a bit:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Quantumly

To a closed quantum system is associated a space of states *H* which is a Hilbert space. The pure state of the system is then represented by a unit norm vector on such Hilbert space.

The unit of quantum information is the quantum bit a.k.a. Qubit

State of a qubit:

$$|\Psi\rangle = |\Delta|0\rangle + |\beta|1\rangle = \begin{pmatrix} |\Delta|\\ |\beta| \end{pmatrix}$$

Space of states: $\mathcal{H} \simeq \mathbb{C}^2$

State of a qubit:

$$|\Psi\rangle = |\Delta|0\rangle + |\beta|1\rangle = |\Delta|\beta\rangle$$

$$|\Delta|\beta \in \mathbb{C} \qquad |\Delta|^2 + |\beta|^2 = 1$$

Space of states: $\mathcal{H} \simeq \mathbb{C}^2$

State of a qubit:

$$|\Psi\rangle = |\Delta|0\rangle + |\beta|1\rangle = |\Delta|$$

$$|\Delta|^2 + |\beta|^2 = 1$$

Can be parametrized as:

$$|\Psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

$$\theta \in [0,\pi] \qquad \phi \in [0,2\pi]$$

2. Composite systems

Classically

State of N bits:

Quantumly

The space of states of a composite system is the tensor product of the spaces of the subsystems

State of N qubits:

$$||d_1|| = 000..0 + ||d_2|| = 1$$

$$||d_1||^2 = 1$$

Quantum Entanglement

States that can be written as tensor product

$$|\Psi\rangle = |\Psi_1\rangle \otimes |\Psi_2\rangle \otimes \ldots \otimes |\Psi_N\rangle$$

are called factorable or product states

Quantum Entanglement

States that can NOT be written as tensor product

$$|\Psi\rangle\neq|\Psi_{1}\rangle\otimes|\Psi_{2}\rangle\otimes...\otimes|\Psi_{N}\rangle$$

are called entangled states

Quantum Entangled

Bell's states

$$\frac{1}{N_2} \left(|00\rangle + |111\rangle \right) \qquad \frac{1}{N_2} \left(|01\rangle + |10\rangle \right)$$

$$\frac{1}{\sqrt{2}}\left(101)+110\right)$$

$$\frac{1}{\sqrt{2}}\left(100\rangle - 111\rangle\right)$$

$$\frac{1}{\sqrt{2}}\left(100\rangle - 1112\right) \qquad \frac{1}{\sqrt{2}}\left(101\rangle - 110\right)$$

3. State Change

Classically: logic gates

Logic Gate	Symbol	Description	Boolean
AND		Output is at logic 1 when, and only when all its inputs are at logic 1,otherwise the output is at logic 0.	X = A•B
OR		Output is at logic 1 when one or more are at logic 1.If all inputs are at logic 0,output is at logic 0.	X = A+B
NAND		Output is at logic 0 when,and only when all its inputs are at logic 1,otherwise the output is at logic 1	X = A-B
NOR	→	Output is at logic 0 when one or more of its inputs are at logic 1.If all the inputs are at logic 0,the output is at logic 1.	X = A+B
XOR		Output is at logic 1 when one and Only one of its inputs is at logic 1. Otherwise is it logic 0.	X = A⊕ B
XNOR		Output is at logic 0 when one and only one of its inputs is at logic1. Otherwise it is logic 1. Similar to XOR but inverted.	X = A ⊕ B
NOT	→ >	Output is at logic 0 when its only input is at logic 1, and at logic 1 when its only input is at logic 0. That's why it is called and INVERTER	X = A

Quantumly

The state change of a closed quantum system is described by a unitary operator

$$\frac{1}{3t} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1$$

Schrodinger Equation

Quantumly: Quantum Gates

4. Measurement

Classically

Measuring returns the state of a bit with certainty

$$|0\rangle \xrightarrow{\text{Measure}} |0\rangle$$
 Outcome $|1\rangle \xrightarrow{\text{Measure}} |1\rangle$

Measurements do not affect the state of a bit

Quantumly

Measuring returns the bit state with some probability

Outcome

Measurement affects the state of a qubit

Quantumly

To any observable physical quantity is associated an hermitian operator O

$$O | O_i \rangle = O_i | O_i \rangle$$

- A measurement outcomes are the possibile eigenvalues $\{o_i\}$.
- The **probability of obtaining** o_i as a result of the measurement is

$$P_r(\sigma_i) = |\langle \Psi | \sigma_i \rangle|^2$$

• The effect of the measure is to change the state $|\psi\rangle$ into the eigenvector of O

$$|\Psi\rangle \rightarrow |\sigma_i\rangle$$

Quantum Algorithms

Quantum Algorithm = Quantum Circuit

A quantum circuit with *n* input qubits and *n* output qubits is defined by a unitary transformation

$$U \in U(2^n)$$

$$egin{pmatrix} U^\dagger U = U U^\dagger = I \ U^{-1} = U^\dagger \end{pmatrix}$$

Quantum Algorithms

Single Qubit Gates

Generic single

qubit rotation:
$$R_{\vec{N}}(\theta) = cos(\frac{\theta}{2}) \pm - i sin(\frac{\theta}{2}) \vec{n} \cdot \vec{\sigma}$$

Pauli matrices:

$$\sigma_{x} = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{y} = Y = \begin{pmatrix} 0 & -\lambda \\ \lambda & 0 \end{pmatrix} \qquad \sigma_{z} = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\text{Identity: } \underline{T} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Single Qubit Gates: Hadamard

$$H = \frac{1}{N_{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H = -H$$

$$H(0) = \frac{1}{N_{2}} (10) + 112 = 1+2$$

$$H(12) = \frac{1}{N_{2}} (10) - (12) = 1-2$$

Single Qubit Gates: Phase

$$\left(\begin{array}{ccc} \phi & \phi \\ \phi & \phi \end{array} \right) = \phi \mathcal{U}$$

$$U_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$$

$$U_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$$

$$U_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$$

$$U_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$$

Two Qubit Gates: SWAP

$$\bigcup_{SWAR} |Z_{1}\rangle |Z_{2}\rangle = |Z_{2}\rangle |Z_{1}\rangle$$
 $Z_{1}, Z_{2} \in \{0,1\}$

$$U_{SWAR} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
SWAP = $\frac{X}{X}$

Two Qubit Gates: Control Not

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right) \left| \frac{1}{2} \right| = \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| \right| + \left| \frac{1}{2} \right|$$

$$\left(\left| \frac{1}{2} \right| + \left| \frac{1}{2} \right|$$

$$\left(\left|$$

Two Qubit Gates: Control Unitary

$$\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(1\right) & \left(\frac{1}{2}\right) \end{array}\right) & \left(\frac{1}{2}\right) \end{array}\right) & \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) & \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) & \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) & \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) & \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) & \left(\frac{1}{2}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\frac$$

Control Phase

$$\left(\begin{array}{c} \left(\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{\frac{1}{2}} \end{array} \right) \right) = \begin{array}{c} \left(\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{1}{2}} \end{array} \right) \end{array}$$

Three Qubit Gates: Toffoli

$$\bigcup_{C_2X} |_{\Xi_1} Z_2 Z_3 \rangle = |_{\Xi_1} Z_2 \rangle \times |_{\Xi_3}$$

$$|z_1\rangle = |z_2\rangle$$

$$|z_2\rangle = |z_3\theta z_1 \cdot z_2\rangle$$

$$|z_3\rangle = |z_3\theta z_1 \cdot z_2\rangle$$

Quantum Algorithms: Universality

Universal set of Quantum Gates

We can exactly build any unitary $\mathcal{T} \in \mathcal{T}(2^n)$ on n qubits by means of single qubit gates and Control-Not

$$G_{ex} = \left\{ U \in U(2) ; U_{cx} \right\}$$

Universal set of Quantum Gates

We can exactly build any unitary $\mathcal{T} \in \mathcal{T}(2^n)$ on n qubits by means of single qubit gates and Control-Not

$$Q_{ex} = \left(\bigcup \in U(2) \right) \quad U_{cx}$$

$$R_{\vec{n}}(\theta) = cos\left(\frac{\theta}{2}\right) I - i sin\left(\frac{\theta}{2}\right) \vec{n} \cdot \vec{\sigma} \quad U_{cx} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Quantum Algorithms: Universality

Universal set of Quantum Gates

Given
$$(), ()' \in U(2^n), U'$$
 approximates $()$ within ε (ε) o (ε) if $d(U,U') < \varepsilon$

Quantum Algorithms: Universality

Universal set of Quantum Gates

Given
$$(), ()' \in U(2^n), U' \text{ approximates } U \text{ within }$$

$$\varepsilon \quad (\varepsilon) \circ) \quad \text{if} \quad d(U,U') < \varepsilon$$

where
$$d(U,U') = \max_{l, \psi} ||(U-U')l\psi\rangle||$$

Universal set of Quantum Gates

We can approximate any unitary $\mathcal{T} \in \mathcal{T}(2^n)$ on n qubits by means of the following gates

$$H = \frac{1}{N^{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{\lambda T} \end{pmatrix}$$

Single Qubit Gates: Hadamard

$$H = \frac{1}{N_{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H = -H$$

$$H(0) = \frac{1}{N_{2}} (10) + 112 = 1+3$$

$$H(1) = \frac{1}{N_{2}} (10) - (12) = 1-3$$

$$H = \frac{1}{\sqrt{2}} \left(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1| \right)$$

$$\left(\begin{array}{c} & & \\ & \\ \end{array} \right) \otimes N \xrightarrow{H^{\otimes N}} \frac{1}{\sqrt{2^{N}}} \sum_{x_1 y \in \{0,1\}^N} (-1)^{X \cdot y} |X \rangle \langle y | 0 \rangle = 0$$

Quantum Computing @ CINECA

CINECA: Italian HPC center

CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

