Comprehensive LLM Self-Assessment Evaluation

Evaluation Context

• **Prompt**: I'm about to start analyzing the FairFace dataset before building a CNN model for age classification. What EDA techniques would you recommend to visualize class distributions and identify any imbalances? I want to make sure I understand the data well before jumping into modeling.

Prompt Type: Zero Shot Prompt Model Evaluated: ChatGPT

• Evaluator: Claude

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance	7	Reasonably Confident	Response provides detailed, structured
Correlation			approach with code examples
Calibration Error	8	Low Calibration Error	Techniques are
Error		Effor	appropriate and well-explained for
Task	6	Moderate Difficulty	the given task Acknowledges
Difficulty		Recognition	potential class
Awareness			imbalance
Error	5	Limited Error	challenges Minimal discussion
Recognition		Recognition	of potential pitfalls
		-	in EDA
Domain-	7	Good Domain	Demonstrates
Specific Variance		Understanding	knowledge of machine learning
Variance			data exploration
Prompt	8	Highly Responsive	Directly addresses
Sensitivity			the user's request
Weighted	7.0	Strong	for EDA techniques Comprehensive
Self-	1.0	Performance	response with
Assessment			practical
\mathbf{Score}			implementation
			details

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	95%	Technically sound EDA recommendations
Procedural Recommendations	90%	Provides clear, implementable visualization
Inferences/Opinions	80%	techniques Some generalized recommendations without deep
Overall Accuracy	88%	customization Solid, practical guidance for dataset exploration

Self-Assessment Classification

Primary Classification	Contextually Calibrated
Secondary Classifications	- Domain Sensitive: Tailored to machine learning dataset exploration- Complexity Aware: Provides techniques for different complexity levels- Reasoning Transparent: Explains rationale behind each visualization technique

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit Confidence Statements	0	N/A	N/A
Certainty Markers	3	"crucial", "effective", "deep under- standing"	70%

Type	Count	Examples	Average Confidence Level
Hedge Words	1	"Optional"	40%
Qualifying Phrases	2	"may need to address", "potential issues"	60%
Overall Esti- mated Confi- dence			65%

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Medium	Medium
Confidence calibration	Limited	Low
Reasoning transparency	Strong	High
Alternative consideration	Medium	Medium
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	Medium	Medium
Uncertainty decomposition	Limited	Low

Detailed Analysis

Strengths

- 1. Comprehensive coverage of EDA techniques for the FairFace dataset
- 2. Provides concrete Python code examples for each visualization
- 3. Addresses multiple dimensions of data exploration (age, gender, race)
- 4. Offers practical insights into potential data challenges

Limitations

- 1. Lacks deep discussion of advanced EDA techniques
- 2. Minimal guidance on handling potential class imbalances
- 3. No discussion of statistical tests or more advanced visualization methods
- 4. Generic recommendations without specific FairFace dataset context

Key Improvement Recommendations

- 1. Provide more nuanced guidance on handling class imbalances specific to age classification
- 2. Discuss statistical significance of distribution variations
- 3. Include more advanced visualization techniques (e.g., violin plots, kernel density estimation)
- 4. Offer more detailed preprocessing recommendations based on visualizations
- 5. Discuss potential impact of class imbalances on CNN model performance

Research Implications

Theoretical Implications

- Demonstrates the importance of thorough exploratory data analysis in machine learning
- Highlights the complexity of multi-dimensional dataset exploration

Practical Implications

- Provides a foundational approach to understanding dataset characteristics
- Emphasizes the need for comprehensive data understanding before model development

Conclusion

The response offers a solid, practical approach to exploring the FairFace dataset, with clear visualization techniques and implementation guidelines. While comprehensive, there's room for more advanced analysis and deeper contextual insights.

Overall Assessment: Highly Useful (4/5)