

December 16, 2020

Machine learning tasks

Highly nonconvex unconstrained optimization problem

$$x^* = \arg\min_{x \in \mathbb{R}^d} f(x)$$

with the loss function

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) = \frac{1}{n} \sum_{i=1}^{n} \| \mathcal{N}_x(\hat{x}) - \hat{y} \|$$

x is the parameter vector

 \mathcal{N}_{x} represents a neural network representation

 $(\hat{x}_i, \hat{y}_i)_{i=1}^n$ is a set of labeled data

 $\|\cdot\|$ is the L^2 distance

 $d\gg 1$

Adam-CBO December 16, 2020

Outline

- Optimization methods: Zero-order or first-order?
- 2 CBO method
- Adam-CBO Method
- 4 Linear stability analysis of Adam-CBO
- Mumerical results
 - Rastirgin function
 - Machine learning tasks

First-order methods

gradient descent method

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

with α being the learning rate

stochastic gradient descent (SGD) method

$$x^{t+1} = x^t - \alpha \nabla f_i(x^t)$$

SGD method with momentum term¹

$$x^{t+1} = x^t - m^t$$

$$m^t = -\gamma m^{t-1} + \alpha \nabla f_i(x^t)$$

¹Ning Qian. "On the momentum term in gradient descent learning algorithms". In: Neural Networks 12.1 (1999), pp. 145-151. ISSN: 0893-6080. DOI: 10.1016/S0893-6080(98)00116-6.

Cont'd

Adaptive momentum method (Adam)²

$$x^{t+1} = x^{t} - \gamma \frac{\hat{m}^{t}}{\sqrt{\hat{v}^{t}} + \epsilon}$$

$$m^{t} = \beta_{1} m^{t-1} + (1 - \beta_{1}) \nabla f(x^{t}), \quad \hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$v^{t} = \beta_{2} v^{t-1} + (1 - \beta_{2}) \nabla^{2} f(x^{t}), \quad \hat{v}_{t} = \frac{v_{t}}{1 - \beta_{1}^{t}}$$

where $0 < \beta_1, \beta_2 < 1$

²Diederik P. Kingma and Jimmy Ba. "Adam: A method for stochastic optimization". In: arXiv preprint arXiv:1412.6980 (2014).

First-order methods

- mostly have problems with loss functions containing large noise or non-differentiable units
- gradient tends to explode or vanish as the neural network gets deeper³
- are easily influenced by the loss landscape⁴

³Boris Hanin. "Which neural net architectures give rise to exploding and vanishing gradients?" In: *Advances in neural information processing systems.* 2018, pp. 582–591.

⁴Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. "Bad global minima exist and sgd can reach them". In: *Advances in Neural Information Processing Systems* 33 (2020).

Zero-order methods: Gradient-free

- Nelder-Mead method
- genetic algorithm
- simulated annealing method
- particle swarm optimization
- consensus based optimization (CBO) method⁵⁶⁷

⁵José A. Carrillo et al. "An analytical framework for consensus-based global optimization method". In: *Mathematical Models and Methods in Applied Sciences* 28.06 (2018), pp. 1037–1066.

⁶Claudia Totzeck et al. "A Numerical Comparison of Consensus-Based Global Optimization to other Particle-based Global Optimization Schemes". In: *PAMM* 18.1 (2018), e201800291.

⁷René Pinnau et al. "A consensus-based model for global optimization and its mean-field limit". In: *Mathematical Models and Methods in Applied Sciences* 27.01 (2017), pp. 183–204.

Original CBO method

Interacting particles during the dynamic evolution

- tend to their weighted average
- undergo fluctuation due to the random noise

N particles X^i , $i = 1, \dots N$

$$\dot{X}^{i} = -\lambda(X^{i} - \bar{x}^{*}) + \sigma|X^{i} - \bar{x}^{*}|\dot{W}_{t}^{i}$$

weighted average
$$\bar{x}^* = \frac{1}{\sum_{i=1}^N e^{-\beta L(X^i)}} \sum_{i=1}^N X^i e^{-\beta L(X^i)}$$
 cost (loss) function $L(x)$ to be optimized white noise \dot{W}_t

Discretization of the above system with unit stepsize

$$X_{t+1}^i = X_t^i - \lambda(X^i - \bar{x}^*) + \sigma|X^i - \bar{x}^*|dW_t^i$$

Curse of dimensionality (CoD)

- Exponential convergence rate under dimension-dependent conditions⁸
- The larger the dimension, the smaller the learning rate (CoD)
- Replacement of the isotropic geometric Brownian motion with the component-wise one⁹

$$X_{t+1}^{i} = X_{t}^{i} - \lambda(X^{i} - \bar{x}^{*}) + \sigma(X^{i} - \bar{x}^{*})dW_{t}^{i}$$

Random mini-batch: $\mathcal{O}(N) \to \mathcal{O}(\frac{N}{M})$

• Convergence to the global minimizer with dimension-independent parameters¹⁰

¹⁰Seung-Yeal Ha, Shi Jin, and Doheon Kim, "Convergence of a first-order consensus-based global optimization algorithm". In: arXiv preprint arXiv:1910.08239 (2019).

⁸José A. Carrillo et al. "An analytical framework for consensus-based global optimization method". In: Mathematical Models and Methods in Applied Sciences 28.06 (2018), pp. 1037–1066.

⁹José A. Carrillo et al. "A consensus-based global optimization method for high dimensional machine learning problems". In: arXiv preprint arXiv:1909.09249 (2019).

Some practical issues in CBO

- the initial data need to be well-chosen
- difficult to optimize high dimensional no-convex function (Rastrigin Function over 20 dimension)
- difficult to optimize deep neural networks with many parameters

First-order momentum

The same system without random term but with inertial effect

$$\sigma \ddot{X}_t^i + \dot{X}_t^i = -(X_t - x^*), \quad i = 1, \cdots, N$$

An equivalent first-order system

$$\dot{X}_t^i = -M_t^i$$

$$\sigma \dot{M}_t^i + M_t^i = X_t^i - x^*$$

Discretization

$$\begin{split} X_{t+1}^i &= X_t^i - \delta t M_{t+\frac{1}{2}}^i \\ M_{t+\frac{1}{2}}^i &= \frac{\sigma - \delta t}{\sigma + \delta t} M_{t-\frac{1}{2}} + \frac{2\delta t}{\sigma + \delta t} (X_t^i - x^*) \end{split}$$

Cont'd

Relabel $M_{t+\frac{1}{2}}^i$ by M_{t+1}^i

$$X_{t+1}^{i} = X_{t}^{i} - \lambda M_{t+1}^{i}$$

$$M_{t+1}^{i} = \beta_{1} M_{t}^{i} + (1 - \beta_{1})(X_{t}^{i} - \bar{x}^{*})$$

with
$$\lambda=\delta t$$
 and $\beta_1=rac{\sigma-\delta t}{\sigma+\delta t}=1-rac{2\delta t}{\sigma+\delta t}$

 β_1 is near 1 (= 0.9 in practice) since δt is small

Add the stochastic term

$$\begin{split} X_{t+1}^i &= X_t^i - \lambda M_{t+1}^i + \sigma_t W_t^i \\ M_{t+1}^i &= \beta_1 M_t^i + (1 - \beta_1)(X_t^i - \bar{x}^*) \end{split}$$

Expectation

A recursive argument of M_{\star}^{i} yields

$$\begin{aligned} M_t^i &= \beta_1 M_{t-1}^i + (1 - \beta_1) (X_{t-1}^i - x^*) \\ &= \beta_1 (\beta_1 M_{t-2}^i + (1 - \beta_1) (X_{t-1}^i - x^*)) + (1 - \beta_1) (X_{t-2}^i - x^*) \\ &= (1 - \beta_1) \sum_{k=0}^{t-1} \beta_1^{t-k} (X_k^i - x^*). \end{aligned}$$

Stationary assumption of $X_k^i - x^*$ w.r.t. k leads to

$$\mathbb{E}[M_t^i] = (1 - \beta_1) \mathbb{E}[\sum_{k=0}^t \beta_1^{t-k} (X_k^i - x^*)]$$
$$= (1 - \beta_1^t) \mathbb{E}[X_t^i - x^*]$$

Unbiased estimation of first-order moment

$$M_{t+1}^{i}$$

Second-order momentum $\mathbb{E}(|X_t^i - x^*|^2)$

• Define $V_t^i = \beta_2 V_{t-1}^i + (1 - \beta_2)|X_t^i - x^*|^2$ Application of the same argument for $\mathbb{E}[X_t^i]$ yields

$$\mathbb{E}[V_t^i] = (1 - \beta_2^t) \mathbb{E}[|X_t^i - x^*|^2]$$

Unbiased estimation of $\mathbb{E}(|X_t^i - x^*|^2)$

$$\hat{V}_t^i = rac{V_t^i}{1-eta_2^t}$$

Modify the model

$$X_{t+1}^{i} = X_{t}^{i} - \frac{\lambda \hat{M}_{t+1}^{i}}{\sqrt{\hat{V}_{t+1}^{i}} + \epsilon} + \sigma^{t} W_{t}^{i}$$

with a small ϵ (1e – 8) to avoid the vanishing of denominator

Adam-CBO December 16, 2020

Output: $X_{t_N}^i$, $i = 1 \cdots N$

```
Input: \lambda, N, M, t_N, \beta_1, \beta_2
1 Initialize X_0^i, i = 1, \dots, N by the uniform distribution;
2 Initial M_0^i, V_0^i = 0; /* Initialize first order and second order moments.
3 for t = 0 to t_N do
         Generate a random permutation of index \{1, 2, \dots, N\} to form set P_k;
        Generate batch set of particles in order of P_k as B^1, \cdots B^{\frac{N}{M}} with each batch having M particles:
        for j=0 to \frac{N}{M} do
              Update x^* = \sum_{k \in \mathcal{B}^j} \frac{X_t^k \mu_t^k}{\sum_{t \in \mathcal{D}^j} \mu_t^i}, where \mu_t^i = \omega_f^{\alpha}(X_t^i);
7
             Update X_{i}^{j} for j \in B^{j} as follows
           M_{t+1}^i = \beta_1 M_t^i + (1 - \beta_1)(X_t^i - x^*) \hat{M}_{t+1}^i = M_{t+1}^i / (1 - \beta_1^i);
9
             V_{t+1}^i = \beta_2 V_t^i + (1 - \beta_2)(X_t^i - x^*)^2 \hat{V}_{t+1}^i = V_{t+1}^i / (1 - \beta_2^t):
10
              X_{t+1}^i = X_t^i - \lambda \hat{M}_t^i / (\sqrt{\hat{V}_t^i} + \epsilon) + \sigma^t \sum_{k=1}^d \vec{e}_k z_i.
         end
ıs end
```

December 16, 2020

Linear stability analysis of Adam-CBO

Continuous formulation without the stochastic term

$$\dot{m} = (\beta_1 - 1)m + (1 - \beta_1)(x - \bar{x})$$
 $\dot{v} = (\beta_2 - 1)v + (1 - \beta_2)(x - \bar{x})^2$
 $\hat{m} = \frac{m}{1 - \beta_1^t} \quad \hat{v} = \frac{v}{1 - \beta_2^t}$
 $\dot{x} = -\lambda \frac{\hat{m}}{\sqrt{\hat{v}} + \epsilon}$

December 16, 2020

Linearization around $m = 0, x = \bar{x}, v = 0$

$$\dot{m} = -(1 - \beta_1)m + (1 - \beta_1)\tilde{x}$$
 $\dot{v} = -(1 - \beta_2)v$
 $\dot{\tilde{x}} = -\frac{\lambda}{(1 - \beta_1^t)\epsilon}m \to -\frac{\lambda}{\epsilon}m = -\mu m \quad (t \to \infty)$

with $\tilde{x} = x - \bar{x}$ and $\mu = \lambda/\epsilon$, and in a vector form

$$d_t \begin{pmatrix} m \\ v \\ \tilde{x} \end{pmatrix} = \begin{pmatrix} -(1-\beta_1) & 0 & 1-\beta_1 \\ 0 & -(1-\beta_2) & 0 \\ -\mu & 0 & 0 \end{pmatrix} \begin{pmatrix} m \\ v \\ \tilde{x} \end{pmatrix}$$

Adam-CBO December 16, 2020

Theorem

The Adam-CBO method generates a sequence that converges to the optimal solution with rates independent of the learning rate λ .

Proof.

Eigenvalues of the matrix on the right-hand side are $\beta_2 - 1$ and $\frac{1}{2}(\beta_1-1\pm i\sqrt{1-\beta_1}\sqrt{\beta_1-1+4\mu})$ (typically $1-\beta_1\ll 4\mu$), respectively. Thus, m,v,\tilde{x} decay to 0 exponentially with rate $\beta_2 - 1$ when $\beta_1 > 2\beta_2 + 1$ and with rate $\frac{1}{2}(\beta_1 - 1)$ when $\beta_1 < 2\beta_2 + 1$ in an oscillatory way.

- $\beta_1 = 0.9$ and $\beta_2 = 0.99$
- Continuous formulation of CBO without random noise

$$\dot{x} = -\lambda(x - \bar{x})$$

• The decay rate of the CBO method depends exponentially on the learning rate λ

Rastrigin function

$$f(x) = \frac{1}{d} \sum_{i=1}^{d} \left[(x_i - B)^2 -10\cos(2\pi(x_i - B)) + 10 \right] + C$$
with $B = \arg\min f(x)$ and $C = \min f(x)$

19/30

Adam-CBO December 16, 2020

Massive local minima of Rastrigin function

- Exponential growth of the number of local minima: 5^d
- Number of minima is $5^{1000} \approx 10^{690}$, when d = 1000

d	1	2	30	100	1000
Number of local minima	5	5 ²	5 ³⁰	5^{100}	5^{1000}

Table: Number of local minima in terms of dimension

Adam-CBO December 16, 2020

Comparison with different random processes

d	N	М	СВО			
a N		IVI	$\mathcal{N}(0,1)$	$\mathcal{U}(-1,1)$	Wiener process	
2	50	40	100%	100%	99%	
10	50	40	100%	100%	2%	
20	50	40	98%	22%	0%	
20	50	20	66%	2%	0%	
30	50	40	26%	0%	0%	
30	500	5	0%	0%	0%	
d	N	М	Adam-CBO			
u	a N		$\mathcal{N}(0,1)$	$\mathcal{U}(-1,1)$	Wiener process	
30	500	5	99%	100%	0%	
100	5000	5	100%	100%	0%	
1000	8000	50	92%	20%	0%	

Adam-CBO December 16, 2020

$\lambda=0.1$, and $\sigma^t=0.99^{rac{t}{20}}$

d N		М	Adam-CBO		
u	/ / /	IVI	$\mathcal{N}(0,1)$	$\mathcal{U}(-1,1)$	
1000	8000	50	92%	20%	
1000	10000	50	100%	28%	
1000	12000	50	100%	28%	
1000	14000	50	100%	32%	
1000	16000	50	100%	32%	

Adam-CBO December 16, 2020

Spectrail bias [10]/Frequency principle [11]

$$u(x) = \sin(2\pi x) + \sin(8\pi x^2)$$

- Network width = 50, depth = 3, and 2701 parameters
- $\lambda = 0.2$
- N = 500 and M = 5 in the first 50000 iterations
- Afterwards the random term is ignored and M = 10

$$u(x) = \begin{cases} 1 & x < -\frac{7}{8}, x > \frac{7}{8}, -\frac{1}{8} < x < \frac{1}{8} \\ -1 & \frac{3}{8} < x < \frac{5}{8}, -\frac{5}{8} < x < -\frac{3}{8} \\ 0 & \text{otherwise} \end{cases}$$

The same setup as in the previous slide

Gradient exploding or vanishing: DNN with fixed width 10 and different depths

$$u(x) = \sin(k\pi x^k)$$

$$N = 500, M = 5$$

depth	Num of parameters	k = 2	k = 3	k = 4
4	141	6.62 e-03	1.32 e-02	1.71 e-01
7	471	4.78 e-03	1.42 e-02	7.54 e-03
12	1021	7.44 e-03	1.30 e-02	5.32 e-02
22	2121	1.00 e-02	1.01 e-02	1.21 e-01

Table: Absolute L^2 norm in terms of network depth when k = 2, 3, 4

SGD or Adam fails to converges well (with final error around 0.3) when the network depth is 4 and 10, respectively

Adam-CBO December 16, 2020

Solving PDEs by DNNs: Deep Ritz method 11

$$\begin{cases} -\nabla \cdot (A(x)\nabla u) = -\sum_{i=1}^{d} \delta(x_i) & x \in \Omega = [-1, 1]^{d} \\ u(x) = g(x) & x \in \partial\Omega \end{cases}$$

with

$$A(x) = \begin{bmatrix} (x_1^2)^{\frac{1}{4}} & & & \\ & \ddots & & \\ & & (x_d^2)^{\frac{1}{4}} \end{bmatrix}.$$

- Exact solution $u(x) = \sum_{i=1}^{d} |x_i|^{\frac{1}{2}}$ is only in $H^{1/2}(\Omega)$
- Derivatives have singularities at $x_i = 0$

December 16, 2020

 $^{^{11}}$ E Weinan and Bing Yu. "The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems". In: Communications in Mathematics and Statistics 6.1 (2018), pp. 1–12.

Loss function in Deep Ritz method

$$I[u] = \int_{\Omega} \frac{1}{2} (\nabla u)^T A(x) \nabla u(x) dx + \sum_{i=1}^d \int_{-1}^1 \delta(x_i) u(x) dx_i$$
$$+ \eta \int_{\partial \Omega} (u(x) - g(x))^2 dx,$$

d	n	m	Activation-Optimizer	L ² error	L [∞] error
2 20	2	ReLu-Adam	1.23 e-02	9.91 e-02	
		ReQu-Adam	2.22 e-02	4.21 e-01	
		sigmoid-Adam	2.19 e-02	3.14 e-01	
			$ x ^{0.5}$ - Adam-CBO	3.96 e-03	2.09 e-02
4 40	2	ReLu-Adam	6.72 e-03	3.70 e-01	
		ReQu-Adam	1.43 e-02	1.10 e -00	
	40	0 2	sigmoid-Adam	7.90 e-03	7.66 e -02
			$ x ^{0.5}$ -Adam-CBO	3.13 e-03	9.52 e -02

Table: Errors in L^2 and L^{∞} norms by Adam and Adam-CBO methods

Adam-CBO December 16, 2020

Cont'd

Adam-CBO December 16, 2020

Singularities

Adam-CBO December 16, 2020

Conclusion

Adam-CBO is

- able to find the global minimizer in high dimensions
- free of curse of dimensionality
- suitable for machine learning tasks with
 - gradient explosion or vanishing
 - non-different activation functions

Thank you for your attention!