Growth of Bianchi modular forms

Weibo Fu

Department of Mathematics Princeton University

International Seminar on Automorphic Forms, April 2022

Backgrounds

Let $S_k(\Gamma_1(N))$ be the space of cuspidal modular forms of weight k and principal level $N \geq 5$. If $k \geq 2$, one has a dimension formula for $\dim_{\mathbb{C}} S_k(\Gamma_1(N))$ via the Riemann-Roch theorem. When $k \geq 3$ and N fixed, $\dim_{\mathbb{C}} S_k(\Gamma_1(N))$ is a linear function in terms of k. Next consider the case F is quadratic over the rational number field. In this case the notion of weight is indexed by two positive even integers k_1, k_2 . If $\Gamma \subset \mathrm{SL}_2(\mathcal{O}_F)$ is a congruence subgroup, we use $S_{k_1,k_2}(\Gamma)$ to denote the space of cuspidal modular forms of weight k_1, k_2 and level Γ . If Γ is real quadratic, Shimizu (1963) has proven that

$$\dim_{\mathbb{C}} S_{k_1,k_2}(\Gamma) \sim C \cdot k_1 k_2$$

for a constant C depending only on Γ . But if F is imaginary quadratic, things become much more complicated. Unlike the real situation, $S_{k,k}(\Gamma)$ does not grow quadratically!

Cohomological reinterpretation

Let $K_f\subset \mathrm{SL}_2(\mathrm{A}_F^\infty)$ be compact open level subgroup, and $\Gamma=K_f\cap\mathrm{SL}_2(F)$. We consider the following locally symmetric space as a double quotient

$$Y(K_f) := \mathrm{SL}_2(F) \backslash \mathrm{SL}_2(A_F) \times \mathrm{SL}_2(\mathbb{C}) / K_f \times \mathrm{SU}_2(\mathbb{C}).$$

It is an arithmetic hyperbolic 3-manifold with universal cover $\mathrm{SL}_2(\mathbb{C})/\mathrm{SU}_2(\mathbb{C})\simeq H^3$. Consider the representation $W_k:=\mathrm{Sym}^{k/2-1}\otimes\overline{\mathrm{Sym}}^{k/2-1}$ of $\mathrm{SL}_2(\mathbb{C})$, it descends to a local system on $Y(K_f)$. As a consequence of the Eichler-Shimura isomorphism, we have

$$\dim_{\mathbb{C}} H_c^1(Y(K_f), W_k) = \dim_{\mathbb{C}} S_{k,k}(\Gamma).$$

Conjecture for Bianchi modular forms

Conjecture

If ${\cal F}$ is imaginary quadratic, there exists a constant c depending only on ${\cal K}_f$ such that

$$\dim_{\mathbb{C}} S_k(K_f) \le c \cdot k.$$

This conjecture is supported by experimental data of Finis-Grunewald-Tirao and the work of Calegari-Mazur (for Hida families). And such an upper bound of linear growth rate is sharp from base change of classical elliptic modular forms. A trivial upper bound is $\dim_{\mathbb{C}} S_{\mathbf{k}}(K_f) \leq O(k^2)$.

Previous progresses

Finis-Grunewald-Tirao (2010) established a $\log k$ saving bound

$$\dim_{\mathbb{C}} S_k(K_f) \ll_{K_f} \frac{k^2}{\log k},$$

using trace formula.

Simon Marshall (2012) proved a power saving bound

$$\dim_{\mathbb{C}} S_k(K_f) \ll_{\epsilon, K_f} k^{5/3+\epsilon},$$

using Emerton's completed homology.

Yongquan Hu (2021) proved a better power saving bound

$$\dim_{\mathbb{C}} S_k(K_f) \ll_{\epsilon, K_f} k^{3/2+\epsilon},$$

making full uses of the $\mathrm{SL}_2(\mathbb{Q}_p)$ -action.

Main global result

From now on we assume ${\cal F}$ is imaginary quadratic.

Theorem (Fu)

The conjecture holds true and we have

$$\dim_{\mathbb{C}} S_k(K_f) \ll_{K_f} k.$$

Completed homology

We pick a prime such that p splits in F. Let G be a compact open subgroup of $\mathrm{SL}_2(F_n)$, $K^p \subset \mathrm{SL}_2(\mathbb{A}_F^{p,\infty})$ be a tame level.

Let's first recall Emerton's completed homology (2006) and list two important properties for us (Calegari-Emerton, 2009):

$$\widetilde{H}_{\bullet}(K^p) := \varprojlim_{s} \varprojlim_{K_p \subset G} H_{\bullet}(Y(K_pK^p), \mathbb{Z}/p^s\mathbb{Z}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p,$$

- Because $\mathrm{SL}_2(\mathbb{C})$ does not admit discrete series, $H_*(K^p)$ is a finitely generated torsion $\mathbb{Q}_p[[G]]$ -module.
- There is a spectral sequence

$$E_2^{i,j} = H_i(G, \widetilde{H}_j(K^p) \otimes W_{\mathbf{k}}) \Longrightarrow H_{i+j}(Y(GK^p), W_{\mathbf{k}}), \tag{1}$$

for $K_f = GK^p$.

This spectral sequence provides us an upper bound

$$\dim_{\mathbb{Q}_p} H_q(Y(K_f), W_k) \le \sum_{i+j=q} \dim_{\mathbb{Q}_p} H_i(G, \widetilde{H}_j(K^p) \otimes W_k).$$

Main local result

We may assume G is the first principal subgroup (example) so that G is uniform pro-p. It suffices for us to prove

Theorem (Fu)

$$\dim_{\mathbb{Q}_p} H_*(G, \widetilde{M} \otimes W_k) \ll_{\widetilde{M}} k$$

for any finitely generated torsion $\mathbb{Q}_p[[G]]$ -module \widetilde{M} .

We can associate to (such a uniform pro-p group) G a \mathbb{Z}_p -Lie algebra \mathfrak{g}_0 by the fundamental work of Lazard (1965) such that

Microlocalisation

 $\mathfrak{g}:=\mathfrak{g}_0\otimes_{\mathbb{Z}_p}\mathbb{Q}_p\simeq\mathfrak{sl}_{2,\mathbb{Q}_p}\oplus\mathfrak{sl}_{2,\mathbb{Q}_p}$, along with the *completed universal* enveloping algebra

$$\widehat{U(\mathfrak{g}_0)} := \varprojlim_a \left(\frac{U(\mathfrak{g}_0)}{p^a U(\mathfrak{g}_0)} \right), \ \widehat{U(\mathfrak{g})} := \widehat{U(\mathfrak{g}_0)} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.$$

We pass our problem to Lie algebra level by a microlocalisation of Ardakov-Wadsley (2013) $\mathbb{Q}_p[[G]] \to \widehat{U(\mathfrak{g})}$ which is a flat ring extension, and $\widehat{M} := \widehat{U(\mathfrak{g})} \otimes_{\mathbb{Q}_p[[G]]} \widetilde{M}$.

Comparison of algebraic quotients

Let $\widetilde{M}_k, \widehat{M}_k$ be respectively the maximal W_k -quotients of $\widetilde{M}, \widehat{M}$. For example, $(\mathbb{Q}_p[[G]])_k \simeq \mathrm{End}_{\mathbb{Q}p}(W_k) \simeq (\widehat{U(\mathfrak{g})})_k$ as a Peter-Weyl theorem in our setting. We prove a comparison of algebraic quotients using results from Ardakov-Wadsley.

Theorem (Fu)

If \widetilde{M} is a finitely generated Iwasawa module over $\mathbb{Q}_p[[G]]$, then

$$\widetilde{M}_k \xrightarrow{\sim} \widehat{M}_k$$
.

Genericity of Iwasawa modules

As $\mathfrak{g}\simeq\mathfrak{sl}_{2,\mathbb{Q}_p}\oplus\mathfrak{sl}_{2,\mathbb{Q}_p}$, $\widehat{U(\mathfrak{g})}$ contains central Casimir elements Δ_1,Δ_2 $(\Delta=\frac{1}{2}h^2-h+2ef$, $\mathbf{e}=\begin{pmatrix}0&1\\0&0\end{pmatrix}$). For $(\lambda_1,\lambda_2)\in\mathbb{Z}_p^2$, we consider the quotient algebra $\widehat{U(\mathfrak{g})}_{\lambda}:=\widehat{U(\mathfrak{g})}/(\Delta_1-\lambda_1,\Delta_2-\lambda_2)$.

Theorem (Ardakov-Wadsley, Fu)

For any pair $(\lambda_1, \lambda_2) \in \mathbb{Z}_p^2$, the following composition of maps is injective

$$\mathbb{Q}_p[[G]] \to \widehat{U(\mathfrak{g})} \to \widehat{U(\mathfrak{g})}_{\lambda}.$$

For any $\delta \in \mathbb{Q}_p[[G]]$, we may assume $\delta \in \widehat{U}(\mathfrak{g}_0)$ up to multiplication of a p-power. Since \mathbb{Z}_p^2 is compact, we can find a positive integer n_δ such that $\widehat{U(\mathfrak{g}_0)}_\lambda/p^{n_\delta}$ for all $\lambda \in \mathbb{Z}_p^2$.

Sketch of proof

By a homological degree-shifting argument, we reduce to prove

$$\dim_{\mathbb{Q}_p} H_0(G,\widetilde{M}\otimes W_k) = \dim_{\mathbb{Q}_p} \operatorname{Hom}_{\mathbb{Q}_p[[G]]}(\widetilde{M},W_k) \ll_{\widetilde{M}} k$$

for a cyclic torsion module $M \simeq \mathbb{Q}_p[[G]]/\mathbb{Q}_p[[G]] \cdot \delta$. By our comparison, it suffices to prove

$$\dim_{\mathbb{Q}_p}(\widehat{U(\mathfrak{g})}/\widehat{U(\mathfrak{g})}\cdot\delta)_k\ll_{\delta}k^3.$$

It can be proven that taking maximal W_k -quotient is right exact, we apply it to the short exact sequence of left $\widehat{U(\mathfrak{g})}$ -modules

$$0 \to \widehat{U(\mathfrak{g})} \to \widehat{U(\mathfrak{g})} \to \widehat{U(\mathfrak{g})} / \widehat{U(\mathfrak{g})} \cdot \delta \to 0.$$

We prove this theorem by relating this dimension to the dimension of a Poincaré–Birkhoff–Witt filtration on $\widehat{U(\mathfrak{g})}_{\lambda}$, induced from the filtration on $\widehat{U(\mathfrak{g})}_{\lambda}$.

Summary of ingredients

There exists a positive integer α such that

$$\delta \in \operatorname{Fil}_{\alpha}(\widehat{U(\mathfrak{g}_0)}/p^{n_{\delta}}).$$

Eventually we prove the image of $(\widehat{U}(\mathfrak{g}_0))_k \to (\widehat{U}(\mathfrak{g}_0))_k$ is of dimension at least $(\frac{k}{2} - \alpha)^4$, therefore

$$\dim_{\mathbb{Q}_p}(\widehat{U(\mathfrak{g})}/\widehat{U(\mathfrak{g})}\cdot\delta)_k \le (\frac{k}{2})^4 - (\frac{k}{2} - \alpha)^4.$$

In summary, we crucially use 1. the PBW-filtration on $\widehat{U}(\mathfrak{g})$ 2. genericity of δ as an element in image of the Iwasawa algebra (in some sense, this means Iwasawa modules are generic) 3. We also need to utilize the integral structure of $\widehat{U}(\mathfrak{g})$ and its image in the endomorphism ring of W_k .