Chapitre 10 : Dynamique dans des référentiels non galiléens

I Principe de relativité de Galilée

A) Principe d'inertie

Il existe une classe privilégiée de référentiels dans lesquels le mouvement de toute particule isolée est rectiligne uniforme.

Propriété:

Les référentiels galiléens sont en translation rectiligne uniforme les uns par rapport aux autres.

Démonstration:

• Soient (R), (R') deux référentiels galiléens, M une particule isolée.

Transformation des vitesses:

$$\vec{v}_{M/(R)} = \vec{v}_{M/(R')} + \vec{v}_{e(R')/(R)}(M,t)$$

$$\parallel \qquad \parallel$$

$$\overrightarrow{\text{cte}} \qquad \overrightarrow{\text{cte}}$$

Donc
$$\vec{v}_{e(R')/(R)} = \overrightarrow{\text{cte}}$$

Donc \vec{v}_e est uniforme et stationnaire (indépendante du temps et du lieu). Donc tous les points fixes de (R') ont la même vitesse dans (R).

Soient A, B fixes dans (R'). On a:

$$\frac{d\overrightarrow{AB}}{dt}\bigg|_{(R')} = \overrightarrow{0} \text{ et } \frac{d\overrightarrow{AB}}{dt}\bigg|_{(R)} = \overrightarrow{v}_{B/(R)} - \overrightarrow{v}_{A/(R)} = \overrightarrow{0}$$

Donc toutes les directions fixes de (R') sont fixes pour (R). Donc (R') est en translation par rapport à (R') (et inversement)

Pour un mouvement de translation, $\vec{v}_e = \vec{v}_{O'/(R)}$. Or, \vec{v}_e est indépendant du temps. Donc $\vec{v}_{O'/(R)} = \overrightarrow{\text{cte}}$. Le mouvement de O' est donc rectiligne uniforme.

• Réciproquement, si (R) est galiléen, tout référentiel en translation rectiligne uniforme avec (R) est galiléen (immédiat)

B) Principe de relativité de Galilée

1) Transformation de Galilée

Transformation des vitesses et accélérations par changement de référentiels galiléens. Soient $(R) = (0, \vec{i}, \vec{j}, \vec{k}), (R') = (0', \vec{i}, \vec{j}, \vec{k})$ galiléens.

Transformation des vecteurs position:

$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M} = \underbrace{\overrightarrow{OO'}_{t=0} + t \times \overrightarrow{v}_{O'/(R)}}_{\overrightarrow{OO'}(t)} + \overrightarrow{O'M}$$

Transformation des vitesses:

$$\vec{v}_{M/(R)} = \vec{v}_{M/(R')} + \vec{v}_{O'/(R)}$$

Transformation des accélérations :

$$\vec{a}_{M/(R)} = \vec{a}_{M/(R')} + \underbrace{\vec{a}_{O'/(R)}}_{=\vec{0} \text{ car}} + \underbrace{\vec{a}_c}_{=\vec{0} \text{ car}} = \vec{a}_{M/(R')}$$
rectiligne uniforme

2) Principe de relativité de Galilée

Relation fondamentale de la dynamique appliquée à M dans (R) galiléen :

$$\vec{F} = m.\vec{a}_{M/(R)}$$

Or, pour un autre référentiel (R') galiléen, $\vec{a}_{M/(R)} = \vec{a}_{M/(R')}$.

Donc
$$\vec{F} = m.\vec{a}_{M/(R')}$$

La relation fondamentale de la dynamique est donc invariante par transformation de galilée.

Principe de relativité : les lois de la mécanique s'écrivent de la même façon dans tout référentiel galiléen.

Relativité d'Einstein : Invariance des lois de la <u>physique</u> par changement de référentiel galiléen (dont la constance de la vitesse de la lumière...).

II Lois de la dynamique dans un référentiel non galiléen

A) Relation fondamentale de la dynamique dans (R) non galiléen

On considère un référentiel (R) non galiléen, (R_{gal}) un référentiel galiléen.

Soit M de masse m soumis à une résultante des forces \vec{F} .

Transformation des accélérations :

$$\vec{a}_{M/(R_{\rm gal})} = \vec{a}_{M/(R)} + \vec{a}_{e(R)/(R_{\rm gal})} + \vec{a}_c$$

Relation fondamentale de la dynamique appliquée à M dans $(R_{\rm gal})$:

$$m.\vec{a}_{M/(R_{\rm gal})} = \vec{F} \Longleftrightarrow m\vec{a}_{M/(R)} + m\vec{a}_e + m\vec{a}_c = \vec{F} \Longleftrightarrow m\vec{a}_{M/(R)} = \vec{F} - m\vec{a}_e + m\vec{a}_c$$

On pose $\vec{F}_{ie} = -m\vec{a}_e$: force d'inertie d'entrainement

$$\vec{F}_{ic} = -m\vec{a}_c$$
: force d'inertie de Coriolis

Donc
$$m\vec{a}_{M/(R)} = \vec{F} + \vec{F}_{ie} + \vec{F}_{ic}$$

On peut donc écrire la relation fondamentale de la dynamique dans un référentiel non galiléen à condition d'ajouter à \vec{F} (forces fondamentales) les "pseudo-forces" $\vec{F}_{\rm ie}$ et $\vec{F}_{\rm ic}$

Relation fondamentale de la statique :

Soit *M* à l'équilibre dans (*R*) non galiléen.

Donc
$$\vec{a}_{M/(R)} = \vec{0}$$
, soit $\vec{F} + \vec{F}_{ie} + \vec{F}_{ic} = \vec{0}$

$$\vec{a}_c = 2\dot{x}' \frac{d\vec{i}'}{dt} \bigg|_{(R_{\rm gal})} + 2\dot{y}' \frac{d\vec{j}'}{dt} \bigg|_{(R_{\rm gal})} + 2\dot{z}' \frac{d\vec{k}'}{dt} \bigg|_{(R_{\rm gal})}$$

Or, $\dot{x}' = \dot{y}' = \dot{z}' = 0$ car x', y', z' sont constants (M est immobile dans (R))

Donc
$$\vec{F}_{ic} = \vec{0}$$

La relation fondamentale de la statique s'écrit donc $\vec{F} + \vec{F}_{ie} = \vec{0}$

B) Théorème du moment cinétique

Soit O fixe dans (R) non galiléen.

$$\begin{split} \vec{\sigma}_{O/(R)} &= \overrightarrow{OM} \wedge m\vec{v}_{M/(R)} \\ \frac{d\vec{\sigma}_{O/(R)}}{dt} \bigg|_{(R)} &= \underbrace{\frac{d\overrightarrow{OM}}{dt}}_{(R)} \wedge m\vec{v}_{M/(R)} + \overrightarrow{OM} \wedge m\frac{d\vec{v}_{M/(R)}}{dt} \bigg|_{(R)} \\ &= \overrightarrow{OM} \wedge (\vec{F} + \vec{F}_{ie} + \vec{F}_{ic}) \end{split}$$

$$Donc \underbrace{\frac{d\vec{\sigma}_{O/(R)}}{dt}}_{(R)} \bigg|_{(R)} = \vec{M}_{O}(\vec{F}) + \vec{M}_{O}(\vec{F}_{ie}) + \vec{M}_{O}(\vec{F}_{ic}) \end{split}$$

C) Théorème de l'énergie cinétique

Dans (R) non galiléen :

$$\begin{split} E_{C_{M/(R)}} &= \frac{1}{2} m \vec{v}_{M/(R)}^2 \\ \text{Donc } dE_{C_{M/(R)}} &= \frac{1}{2} m \Big(2 \vec{v}_{M/(R)} . d \vec{v}_{M/(R)} \Big) \\ &= m . \vec{v}_{M/(R)} . \frac{d \vec{v}_{M/(R)}}{dt} \bigg|_{(R)} dt \\ &= \vec{v}_{M/(R)} . (\vec{F} + \vec{F}_{\text{ie}} + \vec{F}_{\text{ie}}) dt \\ &= \delta W(\vec{F}) + \delta W(\vec{F}_{\text{ie}}) + \delta W(\vec{F}_{\text{ie}}) \end{split}$$

Pour une translation de (R) par rapport à $(R_{\rm gal})$: $\vec{F}_{\rm ic} = -m\vec{a}_c = \vec{0} \Rightarrow \delta W(\vec{F}_{\rm ic}) = 0$

Pour une rotation uniforme, $\delta W(\vec{F}_{ic}) = (-2m\vec{\omega} \wedge \vec{v}_{M/(R)}).\vec{v}_{M/(R)}dt = 0$.

On admet que dans les autres cas aussi, $\delta W(\vec{F}_{ic}) = 0$ (démonstration faisable mais formelle...)

Ainsi,
$$dE_{C_{M/(R)}} = \delta W(\vec{F}) + \delta W(\vec{F}_{ie})$$
Ou
$$\frac{dE_{C_{M/(R)}}}{dt} = P(\vec{F}) + P(\vec{F}_{ie})$$
Ou
$$\Delta E_{C_{M/(R)}} = W(\vec{F}) + W(\vec{F}_{ie})$$

D) Expression des forces d'inertie

1) Translation

Si (R) est en translation par rapport à $(R_{\rm gal})$ galiléen :

$$\vec{F}_{\rm ie} = -m\vec{a}_{O'/(R_{\rm gal})} \text{ (où } O' \text{ est fixe dans } (R))$$

$$\vec{F}_{\rm ic} = \vec{0}$$

2) Rotation uniforme autour d'un axe fixe

Si (R) est en rotation uniforme autour d'un axe fixe par rapport à $(R_{\rm gal})$:

 $\vec{F}_{ie} = m\omega^2 \overrightarrow{HM}$ (où *H* est la projection de *M* sur l'axe de rotation)

$$\vec{F}_{ic} = -2m\vec{\omega} \wedge \vec{v}_{M/(R)} \quad (\vec{\omega} = \vec{\omega}_{(R)/(R_{gal})})$$

$$\delta W(\vec{F}_{ie}) = \vec{F}_{ie}.d\vec{OM} = \vec{F}_{ie}.d\vec{OH} + \vec{F}_{ie}.d\vec{HM}$$

$$= m\omega^{2} \underbrace{\vec{HM}.d\vec{OH}}_{=0} + m\omega^{2} \underbrace{\vec{HM}.d\vec{HM}}_{=0} + m\omega^{2} \underbrace{\vec{HM}.d\vec{HM}}_{=0}$$

$$= m\omega^{2} d\left(\frac{\vec{HM}^{2}}{2}\right) = -d\left(-\frac{1}{2}m\omega^{2}\vec{HM}^{2}\right)$$

Donc \vec{F}_{ie} est conservative pour une rotation uniforme autour d'un axe fixe.

$$E_{p_{ie}} = -\frac{1}{2}m\omega^{2}\rho^{2}$$

$$\xrightarrow{E_{p_{ie}}}$$

$$\vec{F}_{\rm ic} = -2m\vec{\omega} \wedge \vec{v}_{M/(R)}$$

Rappel: elle est nulle en statique et ne travaille pas.

III Référentiels galiléens

A) Etude du caractère (non) galiléen d'un référentiel

On considère un point M soumis à une résultante des forces \vec{F} (fondamentales) L'étude de la trajectoire dans (R) donne accès à $\vec{a}_{M/(R)}$

On écrit la relation fondamentale de la dynamique :

$$\vec{F} = m\vec{a}_{M/(R)} + m\vec{a}_e + m\vec{a}_c \Rightarrow \underbrace{\vec{F} - m\vec{a}_{M/(R)}}_{\text{accessible expérimentalement}} = m\vec{a}_e + m\vec{a}_c$$

On peut ainsi obtenir la nature du mouvement de (R) par rapport à un référentiel galiléen.

B) Référentiel terrestre (ou référentiel du laboratoire)

C'est un référentiel lié au solide Terre. Il peut être considéré comme galiléen pour une durée t << 24h et une dimension caractéristique $<< R_T = 6400 \text{km}$

C) Référentiel géocentrique

 $(R_{\scriptscriptstyle T})$ est en rotation uniforme par rapport à $(R_{\scriptscriptstyle {
m g\'eo}})$

$$(R_T) = (Ox, Oy, Oz)$$

$$\vec{\Omega} = \vec{\omega}_{(R_T)/(R)} = \Omega \vec{k} \text{ avec } \Omega = \frac{2\pi}{23\text{h}56\text{min}4\text{s}} = 7,29.10^{-5} \text{ rad.s}^{-1}$$

 $(R_{\rm g\acute{e}o})$ est galiléen pour tous les mouvements de durée t << lan et de dimension caractéristique << lu.a. = 1,5.10 11 m

D) Référentiel héliocentrique (Kepler)

 $(R_k) = (O', \vec{i}, \vec{j}, \vec{k})$ (où O' est le centre du soleil, $\vec{i}, \vec{j}, \vec{k}$ les directions de trois étoiles fixes – les mêmes que pour le référentiel géocentrique)

 $(R_{\rm géo})$ est en translation par rapport au référentiel héliocentrique (O décrit une ellipse dont O' est l'un des foyers). Période du mouvement de révolution : 365,25j.

Référentiel de Copernic : référentiel de centre le barycentre du système solaire, et en translation par rapport à (R_K) ou $(R_{\text{géo}})$. (Ce barycentre est situé très proche du soleil : à 100000km environ – le soleil représente 99% de la masse du système solaire).

Ce référentiel peut être considéré comme galiléen pour des durées $t << 250.10^6$ an et des dimensions caractéristiques << 10000 années lumières

IV Statique et dynamique dans (R_T) .

On suppose ici que $(R_{\rm g\acute{e}o})$ est galiléen. On étudie les corrections à apporter pour travailler dans $(R_{\scriptscriptstyle T})$.

A) Définition du poids

On étudie l'équilibre dans (R_T) d'un fil à plomb :

$$\vec{F}_{ic} = \vec{0}$$
 (équilibre)
 $\vec{F}_{ie} = m\Omega^2 \overrightarrow{HM}$

Equilibre de M dans $R_{T} \iff \vec{F}_{\text{grav}} + \vec{T} + \vec{F}_{\text{ie}} = \vec{0}$

Définition : Le poids de M est l'opposé de la tension de M à l'équilibre.

Ainsi,
$$\vec{P} = -\vec{T} = \vec{F}_{grav} + \vec{F}_{ie}$$

$$\vec{F}_{\text{grav}} = \frac{-GM_T m}{OM^2} \vec{u}_r$$
, avec $\vec{u}_r = \frac{\overrightarrow{OM}}{OM}$

Donc
$$\vec{P} = \frac{-GM_Tm}{OM^2}\vec{u}_r + m\Omega^2 \overrightarrow{HM} = m\vec{g}_0 + m\Omega^2 \overrightarrow{HM}$$

Avec $\vec{g}_0 = \frac{-GM_T}{OM^2} \vec{u}_r$ (champ gravitationnel créé en M par la terre)

Donc
$$\vec{P} = m(\vec{g}_0 + \Omega^2 \overrightarrow{HM})$$

 \vec{g} est l'accélération ou champ de pesanteur.

$$\vec{g} = \vec{g}_0 + \Omega^2 \overrightarrow{HM}$$

 \vec{g}_0 est la composante gravitationnelle de \vec{g} , représente 99,5% du champ de pesanteur. $\Omega^2 \overrightarrow{HM}$ est la composante liée à la rotation de la terre.

Définition : la verticale d'un point sur terre est la direction du poids en ce point.

(angle $\approx 3.10^{-3}$ rad). En première approximation, on peut donc considérer que la verticale passe par O.

Le champ de pesanteur \vec{g} dépend de la position de M. A petite échelle $(D \le 100 \text{km})$, il peut être considéré comme uniforme.

Dans le cas général : M est soumis aux forces \vec{F} , \vec{F}_{gray} , \vec{F}_{ie} , \vec{F}_{ie}

A l'équilibre, on a alors : $\vec{F} + \vec{F}_{\rm grav} + \vec{F}_{\rm ie} = \vec{0} \iff \vec{F} + \vec{P} = \vec{0}$

B) Dynamique dans (R_T)

On considère M de masse m soumis à \vec{F} , $\vec{F}_{\rm grav}$, $\vec{F}_{\rm ie}$, $\vec{F}_{\rm ie}$ (\vec{F} : forces fondamentales exceptée $\vec{F}_{\rm grav}$)

Relation fondamentale de la dynamique appliquée à M dans (R_T) :

$$m\vec{a}_{M/(R_T)} = \vec{F} + \underbrace{\vec{F}_{\text{grav}} + \vec{F}_{\text{ie}}}_{=\vec{P} \text{ car } \vec{F}_{\text{ie}} \text{ ne dépend que de la position de } M$$

$$\text{Donc} \quad m\vec{a}_{M/(R_T)} = \vec{F} + \vec{P} + \vec{F}_{\text{ic}}$$

1) Mouvement des vents

Dans l'hémisphère nord :

$$\vec{\Omega} = \vec{\Omega}_{/\!/} + \vec{\Omega}_{\perp}$$

Pour un centre dépressionnaire D :

On a donc un mouvement des masses d'air vers le centre dépressionnaire.

$$\vec{F}_{\rm ic} = -2m\vec{\Omega} \wedge \vec{v}$$

Pour la composante perpendiculaire :

$$\vec{F}_{\rm ic_{\perp}} = -2m\vec{\Omega}_{\perp} \wedge \vec{v}$$

Les masses d'air tournent donc dans le sens direct autour de D.

Dans l'hémisphère sud, $\vec{\Omega}$ est dans l'autre sens, donc les masses d'air vont dans le sens indirect.

Pour les anticyclones, c'est \vec{v} qui est dans l'autre sens.

2) Déviation vers l'est

 $(\vec{i} \text{ est dirigé vers l'est, } \vec{j} \text{ vers le nord, } \vec{k} \text{ vers le haut dans la direction verticale, que l'on considèrera comme passant par } O; <math>\lambda$ est la latitude)

On considère un point M en $M_0(x_0, y_0, z_0)$ à t = 0, avec $\vec{v}_0 = \vec{0}$

Relation fondamentale de la dynamique appliquée à M dans (R_T) :

$$\vec{P} + \vec{F}_{\rm ic} = m\vec{a}_{M/(R_T)}$$

$$ec{a}_{M/(R_T)}igg|_{\ddot{z}}^{\ddot{x}}$$

On a:
$$\vec{F}_{ic} = -2m\vec{\Omega} \wedge \vec{v}_{M/(R_T)}$$

$$\begin{array}{c} 0 \\ \vec{\Omega} \Omega \cos \lambda \\ \Omega \sin \lambda \end{array}$$

Donc
$$\vec{F}_{ic} = -2m \begin{vmatrix} 0 \\ \Omega \cos \lambda \wedge \\ \dot{y} = -2m\Omega \end{vmatrix} \dot{z} \cos \lambda - \dot{y} \sin \lambda$$

$$\dot{z} \begin{vmatrix} \dot{z} \cos \lambda - \dot{y} \sin \lambda \\ \dot{z} \end{vmatrix} - \dot{x} \cos \lambda$$

$$\vec{P} = m\vec{g} = -mg\vec{k}$$

Relation fondamentale de la dynamique :

$$\begin{cases} m\ddot{x} = 2m\Omega(\dot{y}\sin\lambda - \dot{z}\cos\lambda) \\ m\ddot{y} = -2m\Omega\dot{x}\sin\lambda \\ m\ddot{z} = -mg + 2m\Omega\dot{x}\cos\lambda \end{cases} \iff \begin{cases} \ddot{x} = 2\Omega(\dot{y}\sin\lambda - \dot{z}\cos\lambda) \\ \ddot{y} = -2\Omega\dot{x}\sin\lambda \\ \ddot{z} = -g + 2\Omega\dot{x}\cos\lambda \end{cases}$$

 Ω est très petit :

- A l'ordre 0 : on néglige les termes en Ω . L'équation différentielle s'écrit :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = 0 \\ \ddot{z} = -g \end{cases} \Rightarrow \begin{cases} \dot{x} = 0 \\ \dot{y} = 0 \\ \dot{z} = -g.t \end{cases} \Rightarrow \begin{cases} x = x_0 \\ y = y_0 \\ z = h - \frac{1}{2}g.t^2 \end{cases}$$

On a donc un mouvement rectiligne uniformément accéléré, $t_{\text{chute}} = \sqrt{\frac{2h}{g}}$

- A l'ordre 1 : on réutilise ce qu'on a à l'ordre 0 pour les termes en Ω L'équation différentielle s'écrit maintenant :

$$\begin{cases} \ddot{x} = 2\Omega g t \cos \lambda \\ \ddot{y} = 0 \\ \ddot{z} = -g \end{cases} \Rightarrow \begin{cases} \dot{x} = \Omega g t^{2} \cos \lambda \\ \dot{y} = 0 \\ \dot{z} = -g . t \end{cases} \Rightarrow \begin{cases} x = x_{0} + \frac{1}{3} \Omega g t^{3} \cos \lambda \\ y = y_{0} \\ z = h - \frac{1}{2} g t^{2} \end{cases}$$

Corrections apportées par la force de Coriolis :

$$t_{\text{chute}} = \sqrt{\frac{2h}{g}}$$
 (inchangé)

point de chute : $x_{\text{chute}} - x_0 = \frac{1}{3} \Omega g t^3 \cos \lambda > 0$

Donc M est dévié dans la direction est-ouest vers l'est.

Application numérique : $\lambda = 50^{\circ}$ (Paris)

 $h = 10 \text{m} \Rightarrow \Delta x = 0.5 \text{mm}$

 $h = 1000 \text{m} \Rightarrow \Delta x = 0.49 \text{m}$

V Introduction aux marées

A) Etude des marées solaires dans (R_{géo})

Point M (volume d'eau élémentaire) de masse m.

Bilan des forces:

$$\vec{F}_{T \to M} = \frac{-GM_T m}{OM^2} \vec{u}_r$$
; $\vec{F}_{S \to M} = \frac{-GM_S m}{SM^2} \vec{u}_r$

On remarque alors que le modèle n'est pas adapté : on observe 2 marées par jour, alors que le modèle en prévoit une seule. L'erreur est due au caractère non galiléen du référentiel géocentrique.

B) Etude des marées dans le référentiel héliocentrique

On suppose (R_K) galiléen. Le référentiel géocentrique est en translation par rapport à (R_K) . On reprend les notations précédentes : $\vec{u}_r = \frac{\overrightarrow{OM}}{OM}$; $\vec{u'}_r = \frac{\overrightarrow{SM}}{SM}$

M est soumis dans $(R_{\rm g\acute{e}o})$ à :

$$\begin{split} \vec{F}_{T \to M} &= \frac{-GM_Tm}{OM^2} \vec{u}_r \quad ; \quad \vec{F}_{S \to M} = \frac{-GM_Sm}{SM^2} \vec{u}'_r \\ \text{et } \vec{F}_{\text{ie}} &= -m\vec{a}_e = -m\vec{a}_{O/(R_k)} \end{split}$$

Relation fondamentale de la dynamique appliquée à la Terre dans (R_K) galiléen :

$$\begin{split} M_T \vec{a}_{O/(R_k)} &= \vec{F}_{S \to T} = \frac{-GM_S M_T}{OS^2} \frac{\overrightarrow{SO}}{OS} \\ \text{Donc } \vec{a}_{O/(R_k)} &= \frac{-GM_S}{OS^2} \frac{\overrightarrow{SO}}{OS} \end{split}$$

Equilibre de M dans $(R_{\rm g\acute{e}o})$: $\vec{F}_{T\to M} + \vec{F}_{S\to M} + \vec{F}_{\rm ic} = \vec{0}$

$$\vec{F}_{S \to M} + \underbrace{\vec{F}_{\text{ie}}}_{-m\vec{a}_{O(IR_k)}} = -\frac{GM_Sm}{SM^2} \frac{\overrightarrow{SM}}{SM} + \frac{GM_Sm}{OS^2} \frac{\overrightarrow{SO}}{OS} \stackrel{=}{\text{def}} \vec{F}_{\text{marée}}$$

Cas particulier où $M \in (SO)$:

$$\vec{F}_{\text{mar\'ee}} = GM_S m \times \left(\frac{1}{OS^2} - \frac{1}{SM^2}\right) \vec{u}$$
, avec $\vec{u} = \frac{\overrightarrow{SO}}{SO}$

