เริ่มต่ออุปกรณ์ + Micropython

โมดูล Machine สำหรับใมโครไพธอน

- from module import xxxx
- **PWM** ใช้สร้างสัญญาณ PWM ช่วงความถี่จาก 1 Hz ถึง 40 MHz
- ADC ใช้แปลงจากสัญญาณอนาลอกเป็นดิจิทัล อยู่ที่ขาระหว่าง 32 ถึง 39
- DAC ใช้แปลงจากสัญญาณดิจิทัลเป็นอนาลอก
- Pin ใช้ควบคุมการทำงานของขอ I/O
 - ขา 1 และ 3 ใช้สำหรับ REPL UART TX and RX respectively
 - ขา 6, 7, 8, 11, 16, และ 17 สำหรับเชื่อมต่อ embedded flash
 - ขา 34-39 ใช้เป็น input เท่านั้น ไม่มีตัวต้านทาง pull-up

ปรับแรงคัน HW-131 ให้ถูกต้อง

5V สำหรับ ด้านบน 3.3 V สำหรับ ด้านล่าง

จัดวางอุปกรณ์ดังรูป

เชื่อมต่อสัญญาณ GND SCL SDA GND 3V3 **IO22** IO21 L2 L1 R1 R2 R1 R2 L1 L2 R2 R1 **GND** RST 1022 1026 1022 IO18 IO21 1017 1019 IO17 1023 IO34 IO16 GND 105 IO5 GND VCC LED0 3V3 3V3 VCC SD0 Pin Lables Pin Lables

```
₫ uPyCraft V1.1
                                                             File Edit Tools Help
device Serial

ightharpoonup ssd1306.py 	imes
                              1306 OLED driver, I2C and SPI i
 ■ sa
■ uPy
        Download
work.
        DownloadAndKun F3
        Stop
        BurnFirmware
        InitConfig
        Preferences
                                  = const(0x81)
        8 SET_ENTIRE_ON
                                  = const(0xa4)
         9 SET NORM INV
                                  = const(0xa6)
        10 SET DISP
                                  = const(@xae)
       11 SET MEM ADDR
                                  = const(0x20)
       12 SET COL ADDR
                                  = const(0x21)
       13 SET PAGE ADDR
                                  = const(0x22)
        14 SET_DISP_START_LINE = const(0x40)
       15 SET SEG REMAP
                                  = const(0xa0)
       16 SET MUX RATIO
                                  = const(0xa8)
       17 SET COM OUT DIR
                                  = const(0xc0)
        >>>
        >>>
        >>>
        Ready to download this file, please wait!
        download ok
```

ดาวน์โหลด ssd1306.py ลงไปยังบอร์ด

```
from machine import Pin, SoftI2C
import ssd1306

i2c = SoftI2C(scl=Pin(22), sda=Pin(21))

oled = ssd1306.SSD1306_I2C(128, 64, i2c)
oled.text('Hello World ', 0, 0)

for i in range(10, 60, 10):
    oled.text("line {}".format(i), i, i)
oled.show()
```


ฟังก์ชัน	รายละเอียด
fill(x)	x = 0 ลบหน้าจอทั้งหมด x = 1 เขียนหน้าจอทั้งหมด
contrast(x)	ปรับความสว่างหน้าจอ ค่า x ต่ำจะให้ความสว่างที่ต่ำ
poweroff	ปิดหน้าจอ

ผลที่ควรได้

โมดูลเพิ่มเติม gfx สำหรับวาดรูปจาก บ. Adufruit

```
from machine import Pin, SoftI2C
import ssd1306
import gfx
i2c = SoftI2C(scl=Pin(22), sda=Pin(21))
display = ssd1306.SSD1306_I2C(128, 64, i2c)
draw = gfx.GFX(128, 64, display.pixel)
draw.line(0, 0, 0, 63, 1)
draw.line(0, 63, 120, 63, 1)
draw.rect(3,40,23,20,1)
draw.fill_circle(43, 20, 10, 1)
draw.fill_circle(83, 20, 10, 1)
draw.triangle(53,50,73,50,63,30,1)
display.show()
```


machine import https://printensor.edu.com/sensor.measure()temp = sensor temperature()humi = sensor humidity()print(temp) print(humi)

ทดสอบอุณหภูมิ ความชื้น

L2

• ป้อนโค้ดต่อไปนี้

```
1 from machine import Pin
2 import dht
3 sensor = dht.DHT22(Pin(16))
4 sensor.measure()
5 temp = sensor.temperature()
6 humi = sensor.humidity()
7 print("temperature: %3.1f" %temp)
8 print("Huminity: %3.1f" %humi)
```

ต่อสายไม่ดี อ่านไม่ได้ครับ

>>> sensor. measure()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "dht.py", line 17, in measure
OSError: [Errno 110] ETIMEDOUT

ทคสอบการแสดงผลร่วมกับจอ OLED

```
1 from machine import Pin, SoftI2C
2 import ssd1306
3 import dht
6 i2c = SoftI2C(scl=Pin(22), sda=Pin(21))
7 display = ssd1306.SSD1306_I2C(128, 64, i2c)
10 sensor = dht.DHT22(Pin(16))
11 sensor.measure()
13 temp = sensor.temperature()
14 humi = sensor.humidity()
16 temp_str = "Temp: {0:3.1f}".format(temp)
17 humi str = "Humi: {0:3.1f}".format(humi)
18
19 display.text(temp_str, 0, 0)
20 display.text(humi str, 0, 10)
22 display.show()
```

ทดสอบอ่านค่าอนาลอกจากเซ็นเซอร์วัดความชื้นดิน


```
1 from machine import ADC, Pin
2
3 adc35 = ADC(Pin(35))
4 adc35.read()
5
6 adc35.atten(ADC.ATTN_11DB)
7 adc35.width(ADC.WIDTH_12BIT)
8 adc35.read()
9
```

การลดทอน สัญญาณ

- ADC.ATTN_ODB: 0dB รองรับแรงดันสูงสุด 1.0 ไวลต์(ดีฟอลท์)
- ADC.ATTN_2_5DB: ลดทอน 2.5dB รองรับแรงดันสูงสุดประมาณ 1.34v
- ADC.ATTN_6DB: ลดทอน 6dB รองรับแรงดันสูงสุดประมาณ 2.00v
- ADC.ATTN_11DB: ลดทอน 11dB รองรับแรงดันสูงสุดประมาณ 3.6v

การกำหนด จำนวนบิตของ สัญญาณ

- ADC.WIDTH_9BIT: ข้อมูล 9 บิต
- ADC.WIDTH_10BIT: ข้อมูล 10 บิต
- ADC.WIDTH_11BIT: ข้อมูล 11 บิต
- ADC.WIDTH_12BIT: ข้อมูล 12 บิต (ดีฟอลท์)

รีเลย์

ประเภทของรีเลย์

1. รีเลย์ทั่วไป

2. โซลิดสเตตรีเลย์ (Solid State Relay)

รีเลย์ (Relay)	โซลิดสเตตรีเลย์ (Solid State Relay)
	PH PRIMUS TRACOGOUS STRACE BEAUTY HEATTHEN.
อายุการใช้งานสั้น เนื่องจากหน้าสัมผัสแบบแมคคานิค	มือายุการใช้งานนาน
มีเสียงระหว่างการตัดต่อ	ไม่มีเสียเวลาตัดต่อ
อาจเกิดสัญญาณรบกวน เนื่องจากการตัดต่อ	ไม่เกิดการรบกวน
สามารถตรวจสอบได้ง่าย	เกิดความร้อนการใช้งานเป็นเวลานาน ควรมีการใช้ฮี สซิงค์เพื่อระบายความร้อน

ส่วนประกอบของรีเลย์ทั่วไป

- 1. ขดลวด (Coil)
- 2. หน้าสัมผัส (Contact)

- 1. จุดต่อ NC : จุดต่อ NC ย่อมาจาก normal close หมายความว่า ปกติปิดหรือหากยัง ไม่จ่ายไฟให้ขดลวดเหนี่ยวนำหน้าสัมผัสจะติดกัน โดยทั่วไปเรามักต่อจุดนี้เข้ากับ อุปกรณ์หรือเครื่องใช้ไฟฟ้าที่ต้องการให้ทำงานตลอดเวลา
- 2. จุดต่อ NO : จุดต่อ NO ย่อมาจาก normal open หมายความว่า ปกติเปิดหรือหาก ยังไม่จ่ายไฟให้ขดลวดเหนี่ยวนำหน้าสัมผัสจะไม่ติดกัน โดยทั่วไปเรามักต่อจุดนี้เข้ากับ อุปกรณ์หรือเครื่องใช้ไฟฟ้าที่ต้องการควบคุมการเปิดปิด
- 3. จุดต่อ C : Common (C) หมายถึง จุดร่วมที่ต่อมาจากแหล่งจ่ายไฟ

ข้อคำถึงในการ เลือกซื้อหรือใช้ งานรีเลย์ทั่วไป

- 1. พิกัดแรงดัน
- 2. ชนิดของโหลด
- 3. พิกัดโหลด
- 4. ขั้วต่อของรีเลย์ (Terminals)
- 5. ตัวบอกสถานะการทำงาน (Indicator)

รีเลย์บนบอร์ด

การเชื่อมต่อรีเลย์

การจ่ายไฟให้กับรีเลย์

ขา	หน้าที่	หมายเหตุ
1	GND	เชื่อมต่อกราวนต์ด์ร่วมกับวงจรภายใน
2	VCC	ขาไฟเลี้ยงบนบอร์ดวงจร ร่วมไฟขาเข้า
3	JD-VCC	ขาไฟเลี้ยงเพื่อขับรีเลย์

ทดสอบรีเลย์ 4 ช่องสัญญาณ

from machine import Pin relay1 = Pin(26, Pin.OUT) relay2 = Pin(27, Pin.OUT) relay3 = Pin(32, Pin.OUT) relay4 = Pin(33, Pin.OUT)relay1.value(0) # on relay1.value(1) # off

การใช้งาน Solid State Relay เพื่อขับมอเตอร์

การใช้งาน Magnetic Relay และ Overload เพื่อขับมอเตอร์

โซลินอยค์วาล์ว

สภาวะปกติ และ หลังจากสั่งทำงาน

