Criptografia de chave pública e RSA

© 2014 Pearson. Todos os direitos reservados

Princípios de criptossistemas de chave pública

- Os algoritmos assimétricos contam com uma chave para encriptação e uma chave diferente, porém relacionada, para a decriptação.
- Eles têm a seguinte característica importante:
- É computacionalmente inviável determinar a chave de decriptação dado apenas o conhecimento do algoritmo de criptografia e da chave de encriptação.
- Qualquer uma das duas chaves relacionadas pode ser usada para encriptação, com a outra para a decriptação.

Objetivos de aprendizagem

William Stallings

- Apresentar uma visão geral dos princípios básicos dos criptossistemas de chave pública.
- Explicar os dois usos distintos dos criptossistemas de chave pública.
- Listar e explicar os requisitos para um criptossistema de chave pública.
- Apresentar uma visão geral do algoritmo RSA.
- Entender o ataque de temporização.
- Resumir os aspectos relevantes relacionados à complexidade dos algoritmos.

© 2014 Pearson. Todos os direitos reservados.

Princípios de criptossistemas de chave pública

 Um esquema de encriptação de chave pública possui cinco elementos:

slide 4

© 2014 Pearson. Todos os direitos reservados.

slide 1

Princípios de criptossistemas de chave pública

 Um esquema de encriptação de chave pública possui cinco elementos:

Princípios de criptossistemas de chave pública

slide 5

slide 7

Criptossistema de chave pública – sigilo:

Princípios de criptossistemas de chave pública

Encriptação convencional e de chave pública:

ENCRIPTAÇÃO CONVENCIONAL	ENCRIPTAÇÃO DE CHAVE PÚBLICA			
Necessário para funcionar:	Necessário para funcionar:			
O mesmo algoritmo com a mesma chave é usado para encriptação e decriptação.	Um algoritmo é usado para encriptação, e um relacio- nado, para decriptação com um par de chaves, uma para encriptação e outra para decriptação.			
O emissor e o receptor precisam compartilhar o algo- ritmo e a chave.	O emissor e o receptor precisam ter, cada um, uma chave do par (não a mesma).			
Necessário para a segurança:	Necessário para a segurança:			
1. A chave precisa permanecer secreta.	1. Uma das duas chaves precisa permanecer secreta.			
Deverá ser impossível, ou pelo menos impraticável, deci- frar uma mensagem se a chave for mantida secreta.	Deverá ser impossível, ou pelo menos impraticável, decifra uma mensagem se uma das chaves for mantida secreta.			
O conhecimento do algoritmo mais amostras do texto cifrado precisam ser insuficientes para determinar a chave.	O conhecimento do algoritmo mais uma das chaves mai: amostras do texto cifrado precisam ser insuficientes para determinar a outra chave.			

Princípios de criptossistemas de chave pública

slide 6

© 2014 Pearson. Todos os direitos reservados

Criptossistema de chave pública – autenticação:

Princípios de criptossistemas de chave pública

Criptossistema de chave pública – autenticação e sigilo:

slide 9

© 2014 Pearson. Todos os direitos reservados

Algoritmo RSA (Rivest-Sharmir-Adleman)

- O esquema RSA é uma cifra de bloco em que o texto claro e o cifrado são inteiros entre 0 e n − 1, para algum n.
- Um tamanho típico para n é 1024 bits, ou 309 dígitos decimais.
- RSA utiliza uma expressão com exponenciais.
- O texto claro é encriptado em blocos, com cada um tendo um valor binário menor que algum número n.

Aplicações para criptossistemas de chave pública

ALGORITMO	RITMO ENCRIPTAÇÃO/ DECRIPTAÇÃO ASSINATURA DIGITAL		TROCA DE CHAVE		
RSA	Sim	Sim	Sim		
Curva elíptica	Sim	Sim	Sim		
Diffie-Hellman	Não	Não	Sim		
DSS	Não	Sim	Não		

slide 10

© 2014 Pearson. Todos os direitos reservados

William Stallings

Algoritmo RSA

O algoritmo RSA:

Gera	ção de chave por Alice
Selecione p, q	$p \in q$ são primos, $p \neq q$
Calcule $n = p \times q$	
Calcule $\phi(n) = (p-1)(q-1)$	
Selecione o inteiro e	$mdc(\phi(n), e) = 1; 1 < e < \phi(n)$
Calcule d	$d \equiv e^{-1} \pmod{\phi(n)}$
Chave pública	$PU = \{e, n\}$
Chave privada	$PR = \{d, n\}$
Encriptação por	Bob com chave pública de Alice
Texto claro:	M < n
Texto cifrado:	$C = M^e \mod n$
Decriptação por A	Alice com a chave privada de Alice
Texto cifrado:	C
Texto claro:	$M = C^d \mod n$

slide 11

© 2014 Pearson. Todos os direitos reservados.

slide 12

© 2014 Pearson. Todos os direitos reservados.

RSA: Exemplo

William Stallings

e Segurança de redes

Bob escolhe
$$p = 5$$
, $q = 7$. Depois, $n = 35$, $\varphi(n) = 24$.
 $e = 5$ "mdc(e, $\varphi(n)$)=1; $1 < e < \varphi(n)$ "
 $d = 29$ " $d*e=1 \pmod{\varphi(n)}$ ".

Criptografando mensagens de 8 bits.

criptografia:
$$\frac{\text{padr}\tilde{a}\text{o de bits}}{00001000}$$
 $\frac{\text{m}}{12}$ $\frac{\text{m}^e}{24832}$ $\frac{\text{c = m}^e \text{mod n}}{17}$

decriptação:

<u>c</u>d

 $m = c^d \mod n$

William Stallings

17 481968572106750915091411825223071697

slide 13

slide 15

© 2014 Pearson. Todos os direitos reservados

Algoritmo RSA

Algoritmo para calcular a^b mod n.

© 2014 Pearson, Todos os direitos reservados

A=7, b=560=1000110000 e n =561

i	9	8	7	6	5	4	3	2	1	0
bi	1	0	0	0	1	1	0	0	0	0
С	1	2	4	8	17	35	70	140	280	560
f	7	49	157	526	160	241	298	166	67	1

Algoritmo RSA

William Stallings

- Tanto encriptação quanto decriptação no RSA envolvem elevar um inteiro a uma potência inteira, mod n.
- Se a exponenciação fosse feita sobre os inteiros e depois reduzida módulo n, os valores intermediários seriam gigantescos.
- Felizmente, podemos utilizar uma propriedade da aritmética modular:

 $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$

slide 14

© 2014 Pearson. Todos os direitos reservados

Algoritmo RSA

- Para agilizar a operação do algoritmo RSA usando a chave pública, normalmente é feita uma escolha específica de e.
- A mais comum é 65537 (2¹⁶ + 1); duas outras escolhas populares são 3 e 17.
- Cada uma delas tem apenas dois bits 1, e, por isso, o número de multiplicações exigidas para realizar a exponenciação é minimizado.
- Porém, com uma chave pública muito pequena, como e = 3, o RSA torna-se vulnerável a um ataque simples.

slide 16

© 2014 Pearson. Todos os direitos reservados.

Algoritmo RSA

William Stallings

- Antes da aplicação do criptossistema de chave pública, cada participante precisa gerar um par de chaves.
- Isso envolve as seguintes tarefas:
- 1. Determinar dois números primos, *p* e *q*.
- 2. Selecionar e ou de calcular o outro.
- Resumindo, o procedimento para escolher um número primo é o seguinte:
- 1. Escolha um inteiro ímpar *n* aleatoriamente.

slide 17

© 2014 Pearson. Todos os direitos reservados

Segurança do RSA

- Cinco técnicas possíveis para atacar o algoritmo RSA são as seguintes:
- 1. Força bruta: isso envolve tentar todas as chaves privadas possíveis.
- 2. Ataques matemáticos: existem várias técnicas, todas equivalentes em esforço a fatorar o produto de dois primos.
- 3. Ataques de temporização: estes dependem do tempo de execução do algoritmo de decriptação.

Algoritmo RSA

- 2. Escolha um inteiro *a* < *n* aleatoriamente.
- 3. Realize o teste probabilístico de números primos, como Miller-Rabin, usando *a* como parâmetro. Se *n* falhar no teste, rejeite o valor dele e vá para a etapa 1.
- 4. Se *n* tiver passado por um número de testes suficiente, aceite-o; caso contrário, vá para a etapa 2.
- Esse processo é realizado com relativamente pouca frequência: somente quando um novo par (PU, PR) é necessário.

slide 18

© 2014 Pearson. Todos os direitos reservados

Segurança do RSA

- 4. Ataques baseados em falha de hardware: estes envolvem a indução de falhas de hardware no processador que está gerando as assinaturas digitais.
- **5. Ataques de texto cifrado escolhido**: esse tipo de ataque explora as propriedades do algoritmo RSA.
- A defesa contra a técnica de força bruta é a mesma para o RSA e para outros criptossistemas, ou seja, usar um espaço de chave grande.
- Assim, quanto maior o número de bits em d, melhor.

Troca de chaves Diffie-Hellman

William Stallings

- A finalidade do algoritmo é permitir que dois usuários troquem uma chave com segurança, que pode, então, ser usada para a criptografia subsequente das mensagens.
- O próprio algoritmo é limitado à troca de valores secretos.
- O algoritmo Diffie-Hellman depende, para a sua eficácia, da dificuldade de se calcular logaritmos discretos.
- A figura a seguir resume o algoritmo de troca de chaves Diffie-Hellman.

slide 21

slide 23

© 2014 Pearson. Todos os direitos reservados.

© 2014 Pearson. Todos os direitos reservados

William Stallings Ataque man-in-the-middle 6ª EDIÇÃO Chave privada XA Chave pública $Y_A = \alpha^{X_A} \mod q$ Chaves privadas X_{DI}, X_{D2} Chaves públicas $Y_{DI} = \alpha^{X_{DI}} \mod q$ $T_{D2} = \alpha^{X_{D2}} \mod q$ Chave secreta $K2 = (Y_{D2})^{X_A} \bmod q$ $K2 = (Y_A)^{X_{D2}} \bmod q$ Chave pública $Y_B = \alpha^{X_B} \mod q$ Chave secreta $KI = (Y_B)^{X_{DI}} \mod$ Chave secreta $KI = (Y_{DI})^{X_B} \mod q$ Alice e Darth Bob e Darth compartilham compartilham K2

Troca de chaves Diffie-Hellman

William Stallings

e segurança de redes

000 000

slide 22

William Stallings

© 2014 Pearson. Todos os direitos reservados

6ª EDIÇÃO

Exercício

Geração de chave por Alice $p \in q \text{ são primos, } p \neq q$

Selectione p, qCalcule $n = p \times q$

Calcule $\phi(n) = (p-1)(q-1)$ Selecione o inteiro eCalcule d

Calcule d
Chave pública
Chave privada

 $PU = \{e, n\}$ $PR = \{d, n\}$

 $mdc(\phi(n), e) = 1; 1 < e < \phi(n)$

 $d \equiv e^{-1} \pmod{\phi(n)}$

Encriptação por Bob com chave pública de Alice

Texto claro: Texto cifrado:

M < n $C = M^e \mod n$

Decriptação por Alice com a chave privada de Alice

Texto cifrado: Texto claro:

 $M = C^d \bmod n$

Para o algoritmo RSA, adote os valores, p = 17, q = 11 e e = 7:

- a) Determine a chave pública
- b) Determine a chave privada
- c) Encripte e decripte a mensagem, M = 88

slide 24

© 2014 Pearson. Todos os direitos reservados.