# Algorithmen und Datenstrukturen SoSe25

- Zusatz Assignment -

Moritz Ruge

Matrikelnummer: 5600961

# 1 Problem: (2,3)-Bäume

## 1.1 Aufgabenstellung

Fügen Sie der Reihe nach die Schlüssel 1, 2, 3, 4, 5, 6, 7, 8 in einen leeren 2-3-Baum ein. Löschen Sie anschließend 3 und 6, und fügen Sie die Schlüssel 9 und 10 ein. Zeichnen Sie den 2-3-Baum nach jeder Umstrukturierung (nicht nur am Ende jeder Einfüge- oder Löschoperation), und markieren Sie die Knoten, wo die 2-3-Baum Eigenschaft verletzt ist. Es reicht, wenn Sie die Gestalt des 2-3-Baums und die Schlüssel in den Blättern zeichnen; die Schlüssel in den inneren Knoten brauchen Sie nicht anzugeben.

# 1.2 Gegeben

Ein (2,3)-Baum hat folgende Grenzen:

• min children: 2, max children: 3

• min entries: 1, max entries: 2

• Leerer Baum:

- Schlüssel(Einfügen): 1, 2, 3, 4, 5, 6, 7, 8

- Schlüssel(Löschen): 3, 6

- Schlüssel(Einfügen): 9, 10

# 1.3 Lösung

1. insert(1):

 $\prod^1$ 

[1]

2. insert(2):

 $[1]^2$ 

[1|2]

3. insert(3):

 $[1|2]^3$ 

[1|2|3]

- Maximale<br/>inträge in der Wurzel verletzt  $\rightarrow$  Split
- Suche die Mitte  $m = \lfloor \frac{b+1}{2} \rfloor$
- $m = \lfloor \frac{3+1}{2} \rfloor$
- $m = 2 \rightarrow \text{Eintrag } 2 = 2 \text{ wird zur neuen}$ Wurzel!



 $\Rightarrow (a,b)\mbox{-Baum}$  Eigenschaften wieder hergestellt!

4. insert(4):



5. insert(5):



- Maximaleinträge in dem Blatt [3|4|5] verletzt  $\rightarrow$  Split
- $m = 2 \rightarrow \text{Eintrag } 2 = 4 \text{ wird zur}$ Wurzel geschoben und Blatt aufgeteilt!



 $\Rightarrow$  (a,b)-Baum Eigenschaften wieder hergestellt!

### 6. insert(6):



### 7. insert(7):



- Maximaleinträge in dem Blatt [5|6|7]verletzt  $\rightarrow$  Split
- $m=2 \rightarrow \text{Eintrag } 2=6 \text{ wird zur}$ Wurzel geschoben und Blatt aufgeteilt!



- Maximaleinträge in dem Wurzel überschritten & die Maxiamle anzahl der Kinder verletzt  $\rightarrow$  Split der Wurzel
- $m = 2 \rightarrow \text{Eintrag } 2 = 4 \text{ wird zur}$ Wurzel geschoben und Blatt aufgeteilt!



 $\Rightarrow (a,b)\text{-Baum}$  Eigenschaft wiederhergestellt

### 8. insert(8):



### 9. remove(3):



- $\rightarrow$  Eintrag 3 wurde entfern, wir haben nun ein verletzung der min. Einträge in einem Blatt
- $\rightarrow$  alle direkten Nachbarn haben a-1 Einträge, also Verschmeltzen von Konten!



 $\rightarrow$  Der Elternknoten hat nun keine Kinder mehr und direkter Nachbar hat nur a-1 Einträge, wir klauen aus dem Elternknoten wieder ein Eintrag und Verschmelzen die Knoten!



 $\rightarrow$  Speziallfall, die Wurzel ist nun leer, wir können Sie einfach löschen und eine Neue Wurzel erschaffen.

$$[1|2] \qquad [4|6] \\ [5] \qquad [7|8]$$

 $\rightarrow\!(a,b)\text{-Baum}$  Eigenschaften wieder Hergestellt!

# 10. **remove(6)**:



 $\rightarrow$  Die Wurzel hat nun zu wenige Einträge um die Kinderstruktur aufrecht zu erhalten  $\rightarrow$  Wir suchen nun den Vorgänger von 6, also 5 und ersetzten 6 durch die 5!



 $\rightarrow$  Nun ist die Wurzel wieder Ordentlich, leider ist ein Blatt nun leer, wir leihen uns nun ein Eintrag aus einem linken teilbaum aus



 $\rightarrow (a,b)\text{-Baum}$  Eigenschaft wieder Hergestellt!

# 11. **insert(9)**:





- Maximaleinträge in dem Wurzel überschritten & die Maxiamle anzahl der Kinder verletzt → Split der Wurzel
- $m = 2 \rightarrow \text{Eintrag } 2 = 8 \text{ wird zur}$ Wurzel geschoben und Blatt aufgeteilt!



 $\rightarrow$  Die Wurzle hat nun zuviele Einträge, bzw. haben wir zu viele Kinder  $\rightarrow$  Wir spliten die Wurzel!



 $\rightarrow (a, b)$ -Baum Eigenschaft wiederhergestellt!

# 12. insert(10):

