]: # Importing th	Decision Tree Classifier ecision Tree classifer and visualize it graphically the required libraries
<pre>import pandas import numpy a import matplo %matplotlib in # Importing ar iris = pd.read</pre>	as np tlib.pyplot as plt
RangeIndex: 15	ad()) .core.frame.DataFrame'> 0 entries, 0 to 149 total 6 columns): Non-Null Count Dtype
0 Id 1 SepalLeng 2 SepalWidt 3 PetalLeng 4 PetalWidt 5 Species	150 non-null int64 thCm 150 non-null float64 hCm 150 non-null float64 thCm 150 non-null float64 thCm 150 non-null float64 hCm 150 non-null float64 150 non-null object
memory usage: Id SepalLe 0 1 1 2 2 3 3 4	ngthCm
4 5]: iris.shape]: (150, 6)	5.0 3.6 1.4 0.2 Iris-setosa
]: iris.describe]: Id count 150.000000 mean 75.500000	SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm 150.000000 150.000000 150.000000 150.000000
std 43.445368 min 1.000000 25% 38.250000 50% 75.500000	0.828066 0.433594 1.764420 0.763161 4.300000 2.000000 1.000000 0.100000 5.100000 2.800000 1.600000 0.300000
75 % 112.750000 max 150.000000	6.400000 3.300000 5.100000 1.800000 7.900000 4.400000 6.900000 2.500000
]: iris.isnull()]: Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm	<pre>.sum() 0 0 0 0 0 0 0 0 0</pre>
Species dtype: int64	0 '].value_counts()
<pre>Iris-versicolo Iris-setosa Name: Species, species = { 'Iris-setosa</pre>	r 50 50 dtype: int64
'Iris-vir	<pre>sicolor':1, ginica':2 '] = iris['Species'].map(species)</pre>
_	'].unique()], dtype=int64) any model using sklearn we have to specifically define the target variable and all the independent
<pre>variables # Separating of y = iris['Spec</pre>	dependent and independent variables cies']
X = 1715.drop	
# and to creat	date how our model will perform on unseen data, we need to create a validation set te this we will use train test split vaidation set of sklearn modelselection module model_selection import train_test_split
X_train, X_val	e train and validation set lid, y_train, y_valid = train_test_split(X, y, random_state = 101, stratify=y, test_size=0.25) ill make similar distribution of classes in both training and validation set and test_size=0.25 means n will contain 75% of the data and test data will contain only 25% of the data.
y_train.value # and normaliz]: 2 0.339286	n in training set _counts(normalize= True) #value_counts will return the counts of all classes. ze=True will return the %
]: # Similarly cl	dtype: float64 heck in validation set _counts(normalize = True)
•	dtype: float64 same in training and validation set
]: ((38, 4), (38,	
from sklearn. # creating the dt_model = Dec	cision tree classifier tree import DecisionTreeClassifier e decision tree function cisionTreeClassifier(random_state=10)
]: DecisionTreeCl	<pre>model X_train, y_train) assifier(random_state=10) training score</pre>
dt_model.score	training score e(X_train, y_train) # using gini criterion 00% accurate on the training set, wow great! but wait check accuracy on validation set.
# checking val dt_model.score	lidation score e(X_valid, y_valid) 9473
Lets try another	to 92% means accuracies of training and validation set are not in sink. r criterion i.e 'Entropy' opy = DecisionTreeClassifier(criterion = 'entropy', random_state = 10)
]: DecisionTreeCl]: # checking the	opy.fit(X_train, y_train) assifier(criterion='entropy', random_state=10) e training score
]: 1.0]: # checking va	opy.score(X_train, y_train) lidation score opy.score(X_valid, y_valid)
0.921052631578 There is no s	9473 Buch difference in the score in using 'gini' or 'entropy'.
Tuning min_s	se our model lets tune the parameters of the decision tree. samples_split opy2 = DecisionTreeClassifier(criterion = 'entropy', min_samples_split= 50, random_state = 10)
# checking the print('Accurace # checking va. print('Accurace	opy2.fit(X_train, y_train) e training score cy of training set:', dt_model_entropy2.score(X_train, y_train)) lidation score cy of validation set: ', dt_model_entropy2.score(X_valid, y_valid)) aining set: 0.9732142857142857
Accuracy of va Tuning maxir dt_model_entro	lidation set: 0.9210526315789473
# checking the print('Accurace # checking va. print('Accurace Accuracy of tr	e training score cy of training set:', dt_model_entropy3.score(X_train, y_train)) lidation score cy of validation set: ', dt_model_entropy3.score(X_valid, y_valid)) aining set: 0.9732142857142857
Tuning max_	<pre>lidation set: 0.9210526315789473 leaf_node opy4 = DecisionTreeClassifier(criterion = 'entropy', max_leaf_nodes = 3, random_state = 10) opy4.fit(X_train, y_train)</pre>
# checking the print('Accurace # checking va. print('Accurace Accuracy of va	e training score cy of validation set: ', dt_model_entropy4.score(X_train, y_train)) lidation score cy of validation set: ', dt_model_entropy4.score(X_valid, y_valid)) lidation set: 0.9732142857142857
Now we can se	lidation set: 0.9210526315789473 e that the accuracies of training dataset and validation dataset are in sink as compare to the model we got in beginning. ur model (decision tree)
]: !pip install (graphviz ready satisfied: graphviz in c:\users\maniz\anaconda3\lib\site-packages (0.16)
Collecting pac Solving enviro	kage metadata (current_repodata.json):working done nment:working done d packages already installed.
]: our_model_1 =	need to restart the kernel to use updated packages. tree.export_graphviz(dt_model_entropy, out_file= 'tree.dot', feature_names = X_train.columns, filled =True) ee.dot -o tree.png
plt.figure(fig plt.imshow(ima	
]: <matplotlib.im< th=""><th>PetalWidthCm <= 0.8</th></matplotlib.im<>	PetalWidthCm <= 0.8
	entropy = 1.585 samples = 112 value = [37, 37, 38]
100 -	True False PetalWidthCm <= 1.65
sai	ropy = 0.0 inples = 37 e = [37, 0, 0]
	Value – [0, 37, 36]
300 -	PetalLengthCm <= 4.95 entropy = 0.384 samples = 40 entropy = 0.0 samples = 35
400 -	value = [0, 37, 3]
	entropy = 0.0 entropy = 0.0 samples = 37 samples = 3
]: our_model_2 =	_samples_split= 50 tree.export_graphviz(dt_model_entropy2, out_file= 'tree2.dot', feature_names = X_train.columns, filled =True) ee2.dot -o tree2.png
<pre>image2 = plt.: plt.figure(fig plt.imshow(image)</pre>	<pre>imread('tree2.png') gsize=(15,15))</pre>
0	PetalWidthCm <= 0.8 entropy = 1.585
50 -	samples = 112 value = [37, 37, 38]
100 -	True
sa	tropy = 0.0 $tropy = 0.0$ $tropy = 0.0$ $tropy = 1.0$ $tropy = 1.0$ $tropy = 1.0$ $tropy = 7.0$ $tropy = 7.0$
200 - val u	
300 -	entropy = 0.384 $entropy = 0.0$
350 -	samples = 40 value = $[0, 37, 3]$ samples = 35 value = $[0, 0, 35]$
With max_de	spth = 2 tree.export_graphviz(dt_model_entropy3, out_file= 'tree3.dot', feature_names = X_train.columns, filled =True)
<pre>image3 = plt.: plt.figure(fig plt.imshow(image)</pre>	
o <matplotlib.im< td=""><td>PetalWidthCm <= 0.8</td></matplotlib.im<>	PetalWidthCm <= 0.8
50 -	entropy = 1.585 samples = 112 value = [37, 37, 38]
100 -	True False
150 - en	representation = 1.65 entropy = 1.0 entropy = 1.0 entropy = 7.5
	samples = 37 e = [37, 0, 0] $value = [0, 37, 38]$
valu	
200 - Sa valu 250 -	ontropy = 0.384
valu	entropy = 0.384 samples = 40 value = $[0, 37, 3]$ entropy = 0.0 samples = 35 value = $[0, 0, 35]$
200 - Sa valu 250 -	samples = 40 $samples = 35$
with max 2 our_model_4 = !dot -Tpng tro image4 = plt.: plt.figure(figure)	<pre>samples = 40 value = [0, 37, 3] samples = 35 value = [0, 0, 35] c_leaf_nodes = 3 tree.export_graphviz(dt_model_entropy4, out_file= 'tree4.dot', feature_names = X_train.columns, filled =True) ee4.dot -o tree4.png imread('tree4.png') gsize=(15, 15))</pre>
250 - With max 2 our_model_4 = !dot -Tpng tro image4 = plt.: plt.figure(fig plt.imshow(image)	<pre>samples = 40 value = [0, 37, 3] samples = 35 value = [0, 0, 35] c_leaf_nodes = 3 tree.export_graphviz(dt_model_entropy4, out_file= 'tree4.dot', feature_names = X_train.columns, filled =True) ee4.dot -o tree4.png imread('tree4.png') gsize=(15, 15))</pre>

100

150

200 -

250

300

350 -

True

100

50

entropy = 0.0 samples = 37 value = [37, 0, 0] False

250

300

entropy = 0.384 samples = 40 value = [0, 37, 3]

200

150

 $PetalWidthCm \le 1.65$

entropy = 1.0 samples = 75 value = [0, 37, 38]

> entropy = 0.0 samples = 35 value = [0, 0, 35]

> > 400

350