

Joint RL meeting

Andrea Pierré November 18, 2023

Brown University

1. Context

2. Deep RL on toy task

3. Deep RL on half triangle task

1. Context

2. Deep RL on toy task

3. Deep RL on half triangle task

Context

Question

What are the representations needed to solve an spatial olfactory task?

Hypothesis

Both the agent & the animal need a conjuctive representation of {location + cue} to solve the task

Half triangle task

Paths followed until today...

- 1. RL package in Julia
- 2. Rewrite everything in Python and do backprop by hand
- 3. Rewrite in PyTorch
 - 3.1 Run on GPU on Oscar
 - 3.2 Downscaled task to run on CPU

1. Context

2. Deep RL on toy task

Deep RL on half triangle task

Toy task: Random Walk 1D

Network used

Rewards and steps

Policy learned

Cost function

1. Context

Deep RL on toy task

3. Deep RL on half triangle task

Network used

Rewards and steps

Cost function

Current algorithm

Algorithm 1: Deep RL algorithm used

```
initialize network with random weights
for episode \leftarrow 1...T do
       state \leftarrow reset(env)
       done ← False
       while done ≠ True do
               Q \leftarrow forward\_pass(state)
                                                                                              /* 4 values vector */
               action \leftarrow \epsilon_{areedy}(action\_space, state, q)
               state_{new}, reward, done \leftarrow env.step(action, state)
               O ← forward pass(statenew)
                                                                                              /* 4 values vector */
                                                                                                            /* scalar */
               Q_{new} \leftarrow reward + \gamma max(Q)
                                                                                                            /* scalar */
               V \leftarrow max(Q)
               if done = True then
                       \hat{y}_{pred} \leftarrow reward
                                                                                                            /* scalar */
               else
                                                                                                            /* scalar */
                       \hat{y}_{nred} \leftarrow Q_{new}
               end
               Loss \leftarrow (y - \hat{y}_{pred})^2
               update network weights to minimize Loss
       end
end
```

1. Context

2. Deep RL on toy task

Deep RL on half triangle task

Correlation matrix between brain data vs. simulation data

Ablation study?

- 1. Train the model on the task
- 2. Identify the congunctive cells
- 3. Knock-out the congunctive cells (equivalent to KO LEC?)
- 4. Measure the proportion of congiuntive cells the model needs to solve the task

Network architecure

From brain connectivity...

→Let the architecture being optimized?

Najarro, et al. (2023)

...To ANN architectures

Questions ?