1 Theory

Let Σ be a truth assignment, let $\Delta = \{ wff's \text{ that } \Sigma \text{ satisfies} \}.$

 Δ is trivially finitely satisfiable.

 Δ is maximal: $\varphi \in \Delta$ or $(\neg \varphi) \in \Delta$ for any wff.

 Δ is the theory of Σ .

The truth assignment

$$\Sigma(P) = \begin{cases} T & \text{if } P \in \Delta \\ T & \text{otherwise} \end{cases}$$

satisfies Δ , Δ is the theory of Σ .

2 First order logic

Let M be a set, a k-nary on M is a subset R of M^k .

We often write $R(x_1, x_2, \dots, x_k)$ for $(x_1, x_2, \dots, x_k) \in R$.

If R is a binary relation, we write xRy when R(x, y).

A k-nary function on M is a function $f: M^k \to M$.

2.1 First order language

A first order language L is a set of formal symbols consisting of:

- Logical symbols:
 - $\neg, \lor, \land, \rightarrow, \leftrightarrow, \forall, \exists$
 - Parathesis: (,)
 - Equality: =
- Variables: x, y, z, \cdots
- k-ary relation symbols: R, S, \cdots
- \bullet k-ary function symbols: f,g,h,\cdots
- Constant symbols: c, c'

First order language can be uncountable, but we can usually take L to be countable.

An L-structure \mathcal{M} is a nonempty M together with

• a k-ary relation $R^{\mathcal{M}}$ on M for every k-ary relation symbol

- ullet a k-ary function $f^{\mathcal{M}}$ on M for every k-ary function symbol
- \bullet an element $c^{\mathcal{M}}$ for each constant symbol c

 \mathcal{M} is the structure.

M is the underlying set (domain) of \mathcal{M} . \mathcal{M} is a symmetric L-structure if $xR^{\mathcal{M}y}$ iff $yR^{\mathcal{M}x}$ for all $x,y\in M$.