EXERCICE 1.1 (École polytechnique).

Soit E un ensemble fini muni d'une loi de composition interne associative.

Montrer qu'il existe $s \in E$ tel que $s^2 = s$

EXERCICE 1.2.

Soit G un sous-groupe de $\mathrm{GL}_{\mathrm{n}}\left(\mathbb{C}\right)$ constitué d'un nombre fini de matrices M_{1},\cdots,M_{r} .

En calculant $\left(\sum_{i=1}^{r} M_i\right)^2$, montrer que $\operatorname{Tr}\left(\sum_{i=1}^{r} M_i\right)$ est un entier divisble par r

EXERCICE 1.3.

Soit (G, .) un groupe et H une partie non vide de G, finie et stable.

Montrer que H est un sous-groupe de (G, .).

EXERCICE 1.4 (Commutant et centre).

Soit (G, .) un groupe multiplicatif. On note $Z(G) = \{a \in G \text{ tel que } \forall b \in G, \text{ on a } ab = ba\}$ (centre de G), et pour $a \in G$: $C(a) = \{b \in G \text{ tel que } ab = ba\}$ (commutant de a).

1. Montrer que C(a) et Z(G) sont des sous-groupes de G.

2. Soit $n \geqslant 2$. Trouver les centres de S_n et $\operatorname{GL}_n(\mathbb{K})$

EXERCICE 1.5 (Sous-groupes de $(\mathbb{R}, +)$).

Soit $(a,b) \in \mathbb{R} \times \mathbb{R}^*$, on pose $H := a\mathbb{Z} + b\mathbb{Z} = \{an + bm \mid (m,n) \in \mathbb{Z}^2\}$.

- 1. Montrer: $\frac{a}{b} \in \mathbb{Q} \iff \exists \gamma \in \mathbb{R} \text{ tel que } H = \gamma \mathbb{Z}$ 2. Montrer que $(\cos(n))_{n \in \mathbb{N}}$ est dense dans [-1,1]

EXERCICE 1.6 (Groupes dont l'ensemble des sous-groupes est fini).

Caractériser les groupes dont l'ensemble des sous-groupes est fini.

Exercice 1.7.

Soit H un sous-groupe strict d'un groupe (G, \star) .

Déterminer le groupe engendré par le complémentaire de H dans G.

EXERCICE 1.8 (Ens Ulm).

 $\|$ Trouver les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Soit G un sous-groupe de \mathbb{Z}^n non réduit à $\{0\}$. Montrer qu'il existe $r \in [1, n]$ tel que G soit isomorphe à \mathbb{Z}^r

EXERCICE 1.10 (Ordre d'une rotation palne)

Soit
$$\theta \in \mathbb{R}$$
, on pose $r = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in GL_2(\mathbb{R})$.

- Soit $\theta \in \mathbb{R}$, on pose $r = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$.

 1. Montrer que r est d'ordre fini si et seulement si $\frac{\theta}{2\pi} \in \mathbb{Q}$ 2. Si $\frac{\theta}{2\pi} = \frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $p \wedge q = 1$. Déterminer l'ordre de r

EXERCICE 1.11 (Classique).

Soient a et b deux éléments d'un groupe G.

- 1. Montrer qu'un isomorphisme de groupes conserve l'ordre des éléments.
- 2. Comparer les ordres de ab et de ba.

EXERCICE 1.12 (Sous-groupes d'un groupe cyclique). Soit $n \in \mathbb{N}^*$ et $G = \mathbb{Z} / n\mathbb{Z}$. Soit $k \in \mathbb{Z}$ et $d = k \wedge n$.

- Déterminer l'ordre de k dans (G,+).
 Montrer que k et d engendrent le même sous-groupe de G.
 Quels sont tous les sous-groupes de G?

EXERCICE 1.13 (Produit de deux groupes cycliques).

Soient H et K deux groupes notés multiplicativement.

- 1. Montrer que si h est un élément d'ordre p de H et k un élément d'ordre q de K alors (h,k) est un élément d'ordre ppcm(p,q) de $H \times K$.
- 2. On suppose H et K cycliques. Montrer que le groupe produit $H \times K$ est cyclique si, et seulement si, les ordres de H et K sont premiers entre eux.

EXERCICE 1.14 (Groupe d'exposant 2).

Soit G un groupe fini tel que : $\forall x \in G, x^2 = e$.

- 1. Montrer que G est abélien 2. Soit H un sous-groupe de G et $x \in G \setminus H$. On note $K = H \cup xH$. Montrer que K est un sous-groupe de (G, .) et que $\mathbf{Card}K = 2\mathbf{Card}H$.
- 3. En déduire que $\mathbf{Card}G$ est une puissance de 2.

EXERCICE 1.15 (Décomposition d'un élément d'ordre fini).

Soit G un groupe multiplicatif et $a \in G$ d'ordre np avec $n \wedge p = 1$.

Montrer qu'il existe $b, c \in G$ uniques tels que: $\begin{cases} b \text{ est d'ordre } n; \\ c \text{ est d'ordre } p; \\ a = bc = cb \end{cases}$

EXERCICE 1.16 (Classique).

Soit G un groupe fini de cardinal pair. Montrer qu'il existe un élément d'ordre 2.

EXERCICE 1.17.

|| Soit G un groupe fini de cardinal impair. Montrer que : $\forall x \in G, \exists ! y \in G \text{ tel que } x = y^2.$

EXERCICE 1.18 (Ens Lyon).

Soit G un groupe de cardinal 2p, avec $p \ge 3$ premier. Montrer que G contient un élément d'ordre p.

EXERCICE 1.19 (Groupe sans sous-groupe non trivial).

Soit G un groupe non trivial qui n'ayant pas de sous-groupe non trivial. Montrer que G est monogène, fini, et que Card(G) est un nombre premier.

EXERCICE 1.20 (Théorème du rang).

Soit $f: G \longrightarrow G'$ un morphisme de groupes où G est un groupe fini. Montrer que $\mathbf{Card}(\mathrm{Ker}f) \times \mathbf{Card}(\mathrm{Im}f) = \mathbf{Card}(G)$.

EXERCICE 1.21 (Commutant d'une transposition).

Soit n un entier supérieur à 2, deux entiers $i, j \in [1, n]$ tels que $i \neq j$ et $\sigma \in \mathcal{S}_n$. Montrer que σ et $\tau = (i \ j)$ commutent si, et seulement si, $\{i, j\}$ est stable par σ .

EXERCICE 1.22 (Commutant d'un n-cycle).

Montrer que si c et c' sont des n-cycles de S_n commutant entre eux, il existe r tel que $c'=c^r$

EXERCICE 1.23 (Conjugué d'un cycle).

Soit $n \ge 2$, σ une permutation de S_n et $c = (a_1 \ a_2 \ \dots \ a_p)$ un p-cycle. Calculer la permutation $\sigma c \sigma^{-1}$.

EXERCICE 1.24 (Générateurs de S_n).

Soit n un entier supérieur ou égal à 3. Sachant que le groupe S_n est engendré par l'ensemble des transpositions de $\{1,\cdots,n\}$. Montrer que S_n est engendré par les ensembles suivants de permutations :

1.
$$(1 \ 2), \cdots, (1 \ n);$$

1.
$$(1 2), \dots, (1 n);$$

2. $(1 2), (2 3), \dots, (n-1 n)$
3. $(1 2), (2 3 \dots n)$

$$3. (1 \quad 2), (2 \quad 3 \quad \cdots \quad n)$$

EXERCICE 1.25 (Générateurs de A_n).

Soit n un entier. On note A_n le sous-groupe de S_n formé par les permutations paires.

- 1. Montrer que le produit de deux transpositions distinctes de S_n est un 3-cycle ou un produit de deux 3-cycles. En déduire que A_n est engendré par l'ensemble des 3-cycles de S_n .
- 2. Montrer que, pour $n \ge 3$, A_n est engendré par l'ensemble des 3-cycles : $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \dots, \begin{pmatrix} 1 & 2 & n \end{pmatrix}$.

EXERCICE 1.26 (Centre d'un p-groupe).

Soit G un groupe fini de cardinal p^k où p est un nombre premier et $k \in \mathbb{N}^*$. On note Z le centre de G.

- 1. En considérant l'action de G sur lui-même par automorphismes intérieurs, montrer que $\mathbf{Card}(Z) \equiv 0[p]$.
- 2. En déduire que tout groupe d'ordre p^2 , p premier, est commutatif et est isomorphe soit à $\mathbb{Z}/p^2\mathbb{Z}$ soit

EXERCICE 1.27 (Un théorème de Sylow).

Soit G un groupe fini, d'ordre $n = p^{\alpha}m$ avec p premier et $p \wedge m = 1$.

On note X l'ensemble des parties de G de cardinal p^{α} , et Y l'ensemble des sous-groupes de G d'ordre p^{α} .

Le but du jeu est de montrer que $Y \neq \emptyset$, et plus précisément que le nombre de sous-groupes de G d'ordre p^{α} (les p-Sylow de G) est congru à 1 modulo p.

Pour cela, on fait opérer G sur X par translation à gauche : si $g \in G$ et $E \in X$, on pose

$$g \cdot E = gE = \{ga \; ; \; a \in E\} \; .$$

- 1. Soit $E \in X$. Montrer que son stabilisateur $\mathcal{G}_E = \{g \in G \mid g \cdot E = E\}$ est de cardinal au plus égal à p^{α} .
- 2. Soit $E \in X$. Montrer que le cardinal du stabilisateur \mathcal{G}_E est égal à p^{α} si et seulement si E est une classe à droite modulo un sous-groupe d'ordre p^{α} (c'est-à-dire $E = H \cdot x$ avec $x \in G$ et $H \in Y$).
- 3. Montrer que |X| est congru à m|Y| modulo p.
- 4. Montrer que |X| est congru à m modulo p.
- 5. Conclure.

EXERCICE 1.1: Soit a un élément quelconque de E. Comme E est fini la suite (a^{2^n}) n'est pas injective, donc on peut trouver $n \in \mathbb{N}^*$ et p > 0 tels que $a^{2^{n+p}} = a^{2^n}$. On pose $b = a^{2^n}$, alors $b^{2^p} = b$ puis on prend $s = b^{2^p-1}$, on a bien

$$s^2 = b^{2 \cdot 2^p - 2} = b^{2^p} b^{2^p - 2} = bb^{2^p - 2} = b^{2^p - 1} = s$$

EXERCICE 1.2: Posons $S = \sum_{i=1}^{r} M_i$

- 1. Soit M_{i_0} un élément de G. L'application de G dans G qui à M associe $M_{i_0}M$ est une bijection. Par suite, on a: $M_{i_0}S=S$ et $S^2=rS$
- 2. D'après la relation ci-dessus, on peut écrire: $\left(\frac{S}{r}\right)^2 = \frac{S}{r}$. Par conséquent $\frac{S}{r}$ est un projecteur, sa trace est donc un entier. En conclusion $\text{Tr}\left(S\right) = \text{Tr}\left(\frac{S}{r}\right)r$ est un entier divisble par r

EXERCICE 1.3: Il suffit de montrer que l'inverse d'un élément x de H est encore dans H. Puisque H est stable, la suite des itérés $(x^n)_{n\geqslant 1}$ est incluse dans H. Mais puisque H est fini, l'application $n\longmapsto x^n$ ne peut pas être injective. Il existe donc deux entiers n,p, avec p>n, tels que $x^n=x^p$. On simplifie par x^n (dans le groupe G) et on trouve $x^{p-n}=e$. Il en découle que e est dans H et que x^{p-n-1} (qui est lui aussi dans H) est l'inverse de x. Conclusion : H est un sous-groupe de G.

EXERCICE 1.4: Posons e l'élément neutre de G.

- 1. Commençons par montrer que C(a) est un sous groupe de (G,.).
 - $C(a) \neq \emptyset$ car ea = ae = a, donc $e \in C(a)$
 - Soit $x, y \in C(a)$, alors

$$(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy)$$

Donc $xy \in C(a)$

• Soit $x \in C(a)$, on a ax = xa et multiplions cette égalité à gauche et à droite par x^{-1} , on obtient donc $x^{-1}a = ax^{-1}$

Ceci montre bien que C(a) est un sous-groupe de (G,.).

Il suffit de voir que $Z(G) = \bigcap_{a \in G} C(a)$ est l'intersection d'une famille de sous-groupes de G indexée par un ensemble non vide, donc c'est un sous-groupe.

- 2. Déterminons le centre de S_n
 - Si n=2, alors $S_2=\left\{\mathrm{Id}_{\llbracket 1,2\rrbracket},(12)\right\}$ est abélien et donc $Z\left(S_2\right)=S_2$
 - Si $n \ge 3$. Montrons que $Z(S_n) = \{ \mathrm{Id}_{[1,n]} \}$. Soit $\sigma \in Z(S_n)$ et $i \in [1,n]$. Comme $n \ge 3$, il existe deux éléments j,k disrincts de $[1,n] \setminus \{i\}$. La permutation σ commute en particulier avec les deux transpositions (i,j) et (i,k). Avec $\sigma(i,j)\sigma^{-1} = (\sigma(i),\sigma(j))$ et d'autre part $\sigma(i,j)\sigma^{-1} = (i,j)$, on tire $\{\sigma(i),\sigma(j)\} = \{i,j\}$. De même $\{\sigma(i),\sigma(k)\} = \{i,k\}$. L'intersection des ensembles $\{i,j\}$ et $\{i,k\}$ est le singleton $\{i\}$, et $\{\sigma(i),\sigma(j)\} \cap \{\sigma(i),\sigma(k)\} = \{\sigma(i)\}$, donc $\sigma(i) = i$
 - Déterminons le centre de $GL_n(\mathbb{K})$. Soit $A = (a_{k,l})_{1 \leq k,l \leq n} \in GL_n(\mathbb{K})$.

Si A commute avec toute matrice de $GL_n(\mathbb{K})$, en particulier : $\forall (i,j) \in \{1,...,n\}^2$, $A(I_n+E_{i,j})=(I_n+E_{i,j})A$, soit $AE_{i,j}=E_{i,j}A$. Maintenant,

$$AE_{i,j} = \sum_{k,l} a_{k,\ell} E_{k,\ell} E_{i,j} = \sum_{k=1}^n a_{k,i} E_{k,j} \text{ et } E_{i,j} A = \sum_{k,\ell} a_{k,\ell} E_{i,j} E_{k,\ell} = \sum_{\ell=1}^n a_{j,\ell} E_{i,\ell}.$$

On note que si $k \neq i$ ou $l \neq j$, $E_{k,j} \neq E_{i,l}$. Puisque la famille $(E_{i,j})_{1 \leq i,j \leq n}$ est libre, on peut identifier les coefficients et on obtient : si $k \neq i$, $a_{k,i} = 0$. D'autre part, le coefficient de $E_{i,j}$ est $a_{i,i}$ dans la première somme et $a_{i,j}$ dans la deuxième. Ces coefficients doivent être égaux.

Finalement, si A commute avec toute matrice inversible, ses coefficients non diagonaux sont nuls et ses coefficients diagonaux sont égaux. Par suite, il existe un scalaire $\lambda \in \mathbb{K}^*$ tel que $A = \lambda I_n$. Réciproquement, si A est une matrice scalaire non nulle, A commute avec toute matrice inversible.

- **EXERCICE 1.5:** 1. \Leftarrow) Supposons qu'il existe $\gamma \in \mathbb{R}$ tel que $H = \gamma \mathbb{Z}$. Il existe p et q entiers tels que: $a = \gamma.p$ et $b = \gamma.q$. Alors $\frac{a}{b} = \frac{p}{q} \in \mathbb{Q}$
 - \Rightarrow) Réciproquement, si $\frac{a}{b}$ est rationnel, il existe p et q entiers premiers entre eux tels que $\frac{a}{b} = \frac{p}{q}$. Posons $\gamma = \frac{b}{q}$. On a $a = \gamma p$ et $b = \gamma q$, ce qui prouve que a et b appartiennent à $\gamma \mathbb{Z}$, donc $H \subset \gamma \mathbb{Z}$. D'autre part, il existe m et n premiers entre eux tels que mp + nq = 1. Donc, en multipliant par γ

$$\gamma = mp\gamma + nq\gamma = ma + nb$$

ce qui montre que γ appartient à H, et donc que $\gamma \mathbb{Z}$ est inclus dans H. On a bien l'égalité $H = \gamma \mathbb{Z}$.

- 2. cos est continue sur \mathbb{R} et $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} , donc par parité et periodicité de cos, la famille $(\cos(n))_{n \in \mathbb{N}}$ est dense dans $\cos(\mathbb{R}) = [-1, 1]$
- Exercice 1.6: Les groupes finis vérifient bien sûr la condition. Nous allons montrer que ce sont les seuls.

Soit G un groupe dont l'ensemble des sous-groupes est fini. Tout x de G est d'ordre fini, sinon G contiendrait un sous-groupe isomorphe à \mathbb{Z} , qui contiendrait lui-même une infinité de sous-groupes.

Si E' désigne l'ensemble des sous-groupes cycliques de G, alors $G = \bigcup_{H \in E'} H$. Comme E' est par hypothèse fini et que les éléments de E' sont tous des ensembles finis, G est bien fini.

EXERCICE 1.7: Notons K le complémentaire de H dans G et montrons $\langle K \rangle = G$.

- On a évidemment $\langle K \rangle \subset G$.
- Inversement, on a $K \subset < K >$ et il suffit d'établir $H \subset < K >$ pour conclure. Puisque H est un sous-groupe strict de G, son complémentaire K est non vide et donc il existe $a \in K$. Pour $x \in H$, l'élément a.x ne peut appartenir à H car sinon $a = (a.x)x^{-1}$ serait élément du sous-groupe H. On en déduit que $a.x \in K$ et donc $x = a^{-1}.(a.x) \in < K >$. Ainsi $G = H \cup K \subset < K >$ et on peut conclure < K > = G.

EXERCICE 1.8: Soit f un tel morphisme. Son image est un sous-groupe de \mathbb{Z} , c'est-à-dire un certain $n\mathbb{Z}$, $n \in \mathbb{N}$. Si $n \ge 1$, soit x un antécédent de n. On a alors 2f(x/2) = f(x) = n, donc $n/2 = f(x/2) \in n\mathbb{Z}$, ce qui est absurde. On a donc n = 0, et f est nul.

EXERCICE 1.9: Par récurrence sur n:

- Pour n=1: les sous-groupes de \mathbb{Z} sont les $c\mathbb{Z}$, $c\in\mathbb{N}$. G est non nul alors $c\neq 0$, et G est isomorphe à \mathbb{Z} , un isomorphisme étant $\mathbb{Z}\longrightarrow c\mathbb{Z}$, $x\longmapsto cx$.
- Soit $n \in \mathbb{N}^*$, supposons que pour tout $k \leq n-1$, si H est un sous-groupe de $(\mathbb{Z}^k, +)$, alors il existe $r \in [\![1, k]\!]$ tel que H est isomorphe à \mathbb{Z}^r .

Soit alors H un sous-groupe de \mathbb{Z}^n . On considère $f:\mathbb{Z}^n\longrightarrow\mathbb{Z}, (x_1,\cdots,x_n)\longmapsto x_n$, morphisme surjectif de groupe. Alors f(H) est un sous-groupe de $(\mathbb{Z},+)$; il existe donc $c\in\mathbb{N}$ tel que $f(H)=c\mathbb{Z}$.

- Si c=0, alors $H \subset \operatorname{Ker}(f) = \mathbb{Z}^{n-1} \times \{0\} \simeq \mathbb{Z}^{n-1}$. Par hypothèse de récurrence, H est donc isomorphe à un certain \mathbb{Z}^r où $r \in [1, n-1]$.
- Si c>0: Soit $v\in H$ tel que f(v)=c. Alors, pour $h\in H,$ $\frac{f(h)}{c}=\alpha\in\mathbb{Z}.$ Ainsi,

$$f(h - \alpha v) = f(h) - f(\alpha v) = \alpha c - f(\alpha v) = 0$$

Donc $h-\alpha v\in \operatorname{Ker}(f)\cap H$. Posons $H'=\operatorname{Ker}(f)\cap H$. Alors $H'\sim \mathbb{Z}^r$ pour un certain $r\in \llbracket 1,n-1\rrbracket$ Considérons maintenant l'application $u:H'\times \mathbb{Z}\longrightarrow H, (h,v)\longmapsto h+nv$. Alors u est un morphisme. u est surjectif: soit $h\in H$. Il existe alors $\alpha\in \mathbb{Z}$ tel que $h-\alpha v\in H'$. Ainsi, si on pose $h'=h-\alpha v$, on a $h=u(h',\alpha)$. u est injectif: si u(h',n)=0, alors h'+nv=0, donc f(h'+nv)=f(h')+nc=0, d'où n=0, puis h'=0. Donc u est un isomorphisme, et H est isomorphe à \mathbb{Z}^{r+1} $(r+1\in \llbracket 1,n\rrbracket)$, ce qui achève la récurrence.

1. Soit $k \in \mathbb{Z}^*$, alors EXERCICE 1.10:

$$r^{k} = I_{2} \iff \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix} = I_{2}$$

$$\iff \begin{cases} \cos k\theta = 1 \\ \sin k\theta = 0 \end{cases}$$

$$\iff k\theta \in 2\pi\mathbb{Z}$$

$$\iff \exists m \in \mathbb{Z}, \quad k\theta = 2\pi m$$

r est d'ordre fini s'il existe $(k,m) \in \mathbb{Z}^* \times \mathbb{Z}$ tel que $\frac{\theta}{2\pi} = \frac{m}{k}$. Autrement-dit si, et seulement, si $\frac{\theta}{2\pi} \in \mathbb{Q}$ Si $\frac{\theta}{2\pi} \notin \mathbb{Q}$, alors r est d'ordre infini

2. Si
$$\frac{\theta}{2\pi} \in \mathbb{Q}$$
, alors r est d'ordre fini. Cherchons son ordre n . On écrit $\frac{\theta}{2\pi} = \frac{p}{q} \in \mathbb{Q}$, avec $\begin{cases} (p,q) \in \mathbb{Z} \times \mathbb{N}^* \\ p \wedge q = 1 \end{cases}$, alors

$$r^k = I_2 \iff k \in q\mathbb{Z}$$

Donc $\circ(r) = q$

1. Soient $f:G\to G'$ un isomorphisme de groupes et a un élément de G d'ordre n. Comme $e' = f(e) = f(a^n) = (f(a))^n$, on en déduit que f(a) est d'ordre fini, divisant n. Si $f(a)^k = e'$, alors $f(a^k) = e'$ donc $a^k = e$ car f injective, d'où n divise k. Il en résulte que f(a) est d'ordre n.

2. $\varphi: G \longrightarrow G, x \longmapsto axa^{-1}$ est un isomorphisme et $ba = \varphi_a(ba)$

EXERCICE 1.12: Soit n' et k' de \mathbb{Z} tels que n = dn' et k = dk'

- 1. Il s'agit d'un résultat de cours, $\circ (\overline{k}) = \frac{n}{n \wedge k} = \frac{n}{d}$
- 2. On sait déjà que k=dk', donc $\overline{k}=k'\overline{d}$ et $\overline{k} \in <\overline{d}>$, puis l'inclusion $<\overline{k}>\subset <\overline{d}>$. Or $<\overline{d}>$ est d'ordre $\frac{n}{d}=\mathbf{Card}\left(<\overline{k}>\right)$, donc l'égalité
- 3. Soit H un sous groupe additif de $\mathbb{Z}/n\mathbb{Z}$, alors H est cyclique: il existe $k \in \mathbb{Z}$ tel que $H = \langle \overline{k} \rangle$. On pose $d=n \wedge k$, on a $H=<\overline{d}>$. On conclut donc qu'il existe d diviseur de n tel que $H=<\overline{d}>$. Inversement si d est un diviseur de n il est clair que $<\overline{d}>$ est un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$. Bilan H est un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ si et seulement s'il existe d diviseur de n tel que $H=<\overline{d}>$

1. Posons $m = \mathbf{ppcm}(p,q)$, alors il existe $a, b \in \mathbb{N}$ tels que m = ap et m = bq. Par définition du groupe produit

$$(h,k)^m = (h^m, k^m) = (e_H, e_K)$$

donc (h, k) est d'ordre fini. Soit $k \in \mathbb{Z}$, on a:

$$(h,k)^{\alpha} = (e_H, e_K) \iff (h^{\alpha}, k^{\alpha}) = (e_H, e_K)$$

$$\iff \begin{cases} h^{\alpha} = e_H \\ k^{\alpha} = e_K \end{cases}$$

$$\iff \begin{cases} p \mid \alpha \\ q \mid \alpha \end{cases}$$

$$\iff m \mid \alpha$$

On conclut donc que $\circ ((h, k)) = m$

- 2. Soit h et k respectivement les générateurs de H et K et p et q sont respectivement leurs ordres
 - \Leftarrow) Si $p \land q = 1$, alors (h, k) est d'ordre pq, avec $(h, k) \in H \times K$ et $\mathbf{Card}(H \times K) = pq$, on conclut que $H \times K$ est cyclique de générateur (h, k)
 - \Rightarrow) Par contraposée, si p et q ne sont pas premiers entre eux, alors tout élément de $H \times K$ est d'ordre inférieur au $\mathbf{ppcm}(p,q) < pq = \mathbf{Card}(H \times K) = pq$,

EXERCICE 1.14: 1. Soit x et y deux éléments de G. Alors $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$, donc G est abélien.

- 2. Montrons que $H \cup xH$ est un sous-groupe de G, plus précisément qu'il est égal au sous-groupe K engendré par x et H.
 - On a clairement $H \cup xH \subset K$.
 - Réciproquement, x étant d'ordre 2, tout élément de K s'écrit $x^{\alpha}h$, avec $\alpha \in \{0,1\}$ et $h \in H$, donc $K \subset H \cup xH$.

H est disjoint de xH, car sinon il existerait $h \in H$ qui s'écrirait h = xk, mais alors $x = k^{-1}h$ serait dans H

3. Montrons par récurrence sur CardG que CardG est une puissance de 2.

Il n'y a rien à vérifier pour CardG = 1.

Supposons $\mathbf{Card}G \geqslant 2$. On considère les sous-groupes de G distincts de G. Il en existe, par exemple $\{e\}$. Choisissons-en un de cardinal maximal, que l'on notera H. D'après l'hypothèse de récurrence, $\mathbf{Card}H$ est une puissance de 2 (en effet, H vérifie la même propriété que G).

Soit $a \in G \setminus H$. Donc $\mathbf{Card}(H \cup aH) = 2\mathbf{Card}H$. De la maximalité du cardinal de H, on déduit alors que $G = H \cup aH$. Donc $\mathbf{Card}G = 2\mathbf{Card}H$ est encore une puissance de 2.

EXERCICE 1.15: • **Existence:** Comme p et n sont premiers entre eux, il existe $u, v \in \mathbb{Z}$ tel que nu + pv = 1. Posons alors $b = a^{pv}$ et $c = a^{nu}$. Alors

- $-bc = cb = a^{nu+pv} = a$
- L'égalité nu + pv = 1 montre que $n \wedge v = 1$ et $p \wedge u = 1$ et, par suite, $\circ(b) = \circ(a^{pv}) = \frac{np}{np \wedge pv} = n$. De même $\circ(c) = p$
- Unicité: Soit $b', c' \in G$ tels que: $\begin{cases} b' \text{ est d'ordre } n; \\ c' \text{ est d'ordre } p; \\ a = b'c' = c'b'. \end{cases}$

Montrons que b = b'.

De a = b'c' = c'b' on tire $a^{pv} = b'^{pv}$, puis on utilise $b'^{nu} = e$, on obtient $b' = b'^{pv+nu} = b'^{pv}b'^{nu} = a^{pv} = b$ En fin de bc = a = bc', on obtient c = c'

EXERCICE 1.16: On définit la relation \mathcal{R} sur G par

$$x\mathcal{R}y \iff y = x \text{ ou } y = x^{-1}$$

La relation est immédiatement est une relation d'équivalence (à vérifier).

S'il n'existe pas dans (G,.) d'élément d'ordre 2, les classes d'équivalence de la relation \mathcal{R} comportent toutes deux éléments sauf celle de e qui ne comporte qu'un élément. Les classes d'équivalence étant disjointes de réunion G, le cardinal de G est alors impair ce qui est contraire aux hypothèses.

EXERCICE 1.18: D'après le théorème de Lagrange, les éléments de G sont d'ordre 1, 2, p ou 2p. Supposons par l'absurde qu'il n'y a aucun élément d'ordre p. Alors, en particulier, G n'est pas cyclique (car si x engendre G, alors x^2 est d'ordre p), et si $x \in G$, x est d'ordre 1 ou 2. En particulier, $p \geqslant 3$, et pour tout $x \in G$, $x^2 = 1$, alors G est abélien et $\mathbf{Card}G$ est une puissance de 2, donc p est une puissance de 2, ce qui est absurde.

EXERCICE 1.19: • Soit $a \in G \setminus \{e\}$, alors < a > est un sous-groupe de G autre que $\{e\}$, donc < a >= G. Ainsi G est monogène

• Si a n'est pas d'ordre fini, alors le sous-groupe engendré par a^2 est non trivial de G. Absurde

• Notons $n = \mathbf{Card}(G) = \circ(a)$. On a bien $n \ge 2$. Si n n'est pas premier alors il existe un diviseur propre p de n. On écrit n = pq et on pose $b = a^q$, alors < b > est un sous-groupe de G d'ordre p et donc non trivial. Absurde

EXERCICE 1.20: Le premier théorème d'isomorphisme

EXERCICE 1.21: Si $\{i, j\}$ est stable par σ alors $\{\sigma(i), \sigma(j)\} = \{i, j\}$. On a alors

$$\forall x \notin \{i, j\}, \quad (\sigma \circ \tau)(x) = \sigma(x) = (\tau \circ \sigma)(x)$$

Pour x=i alors $(\sigma \circ \tau)(i) = \sigma(j) = (\tau \circ \sigma)(i)$ et pour $x=j, (\sigma \circ \tau)(j) = \sigma(i) = (\tau \circ \sigma)(j)$. Par suite

$$\sigma \circ \tau = \tau \circ \sigma$$

Inversement, si $\sigma \circ \tau = \tau \circ \sigma$ alors $\sigma(i) = (\sigma \circ \tau)(j) = (\tau \circ \sigma)(j) = \tau(\sigma(j))$. Puisque $\tau(\sigma(j)) \neq \sigma(j)$ on a $\sigma(j) \in \{i, j\}$. De même $\sigma(i) \in \{i, j\}$ et donc $\{i, j\}$ stable par σ .

EXERCICE 1.22: On a c.c' = c'.c où c et c' sont deux cycles d'ordre n. On écrit $c = \begin{pmatrix} 1 & c(1) & \cdots & c^{n-1}(1) \end{pmatrix}$ et $c = \begin{pmatrix} 1 & c'(1) & \cdots & c'^{(n-1)}(1) \end{pmatrix}$.

L'ensemble $\{1, \dots, n\}$ est égal à $\{1, c(1), \dots, c^{n-1}(1)\}$. Il existe donc r tel que $c'(1) = c^r(1)$ avec $0 \le r \le n-1$. De plus, si $i \in [1, n]$, il existe s tel que $i = c^s(1)$, avec $0 \le s \le n-1$; Donc

$$c'(i) = c' \circ c^s(i) = c^s \circ c'(1)$$
$$= c^s \circ c^r(1) = c^r \circ c^s(1) = c^r(i)$$

Donc $c' = c^r$

EXERCICE 1.23: Soit, pour $1 \le i \le p$, $y_i = \sigma(x_i)$ et $y_{p+1} = y_1$. Alors $\sigma(a_1 \ a_2 \ \dots \ a_p) \sigma^{-1}(y_i) = y_{i+1}$. Si $y \notin \{y_1, \dots, y_p\}$ alors $\sigma(a_1 \ a_2 \ \dots \ a_p) \sigma^{-1}(y) = y$. Donc

$$\sigma (a_1 \quad a_2 \quad \dots \quad a_p) \sigma^{-1} = (\sigma(x_1), \dots, \sigma(x_p))$$

EXERCICE 1.24: 1. $(i \ j) = (1 \ i) (1 \ j) (1 \ i)$

2. On prend i < j. Supposons i + 1 < j. Alors,

$$(i \quad j) = (j-1 \quad j) (i \quad j-1) (j-1 \quad j) \tag{1}$$

Si j-1=i+1, $(i-j)\in\{\begin{pmatrix} 1&2 \end{pmatrix}, \begin{pmatrix} 2&3 \end{pmatrix}, \cdots, \begin{pmatrix} n-1&n \end{pmatrix}\}$. Sinon, on applique la formule (1) en remplaçant (i-j) par (i-j-1) dans cette formule. Et de proche en proche, on arrive au résultat.

3. Par récurrence sur $i \in [2, n]$, on montre

$$(1 \quad i) = (2 \quad 3 \quad \cdots \quad n)^{i-2} (1 \quad 2) (2 \quad 3 \quad \cdots \quad n)^{2-i}$$

Ce qui donne la conclusion en utilisant la première question.

EXERCICE 1.25: 1. Soit $i, j, k, \ell \in [1, n]$ tels que $\{i, j\} \cap \{k, \ell\} = \emptyset$, alors

Tout élément σ de A_n est le produit d'un nombre pair de transpositions. Donc, σ est produit de 3-cycles. Le sous-groupe de A_n engendré par les 3-cycles contient donc A_n . C'est donc A_n .

2. Soit i, j et k deux à deux distincts et supérieurs ou égaux à 3.

$$(ijk) = (12i)(2jk)(12i)^{-1}$$

 $(2jk) = (12j)(12k)(12j)^{-1}$

Donc, $A_n \subset \langle (123), \cdots, (12n) \rangle$, ce qui prouve que $A_n = \langle (123), \cdots, (12n) \rangle$.

Exercice 1.26: 1. Voir le devoir libre 01

- 2. G est abélien (Voir le devoir libre 01)
 - S'il existe un élément de G d'ordre p^2 , alors G est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$
 - Sinon tout élément de $G \setminus \{e\}$ est d'ordre p. Soit alors $a \in G \setminus \{e\}$ et $b \in G \setminus \operatorname{gr}(a)$. Le sous-groupe $\operatorname{gr}(a,b) = \{a^m b^n , m,n \in [0,p-1]\}$ est ismorphe à $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ et par suite $G = \operatorname{gr}(a,b) \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$
- **EXERCICE 1.27:** 1. Les translations étant des permutations de G, si $E \in X$, on a bien $g \cdot E \in X$, c'est-à-dire $|g \cdot E| = |E| = p^{\alpha}$. De plus, avec $E \in X$, les égalités $e \cdot E = E$ et $(gh) \cdot E = g \cdot (h \cdot E)$ sont immédiates, on a donc bien une action du groupe G sur l'ensemble X.

Soit $E \in X$, soit $a \in E$ donné ; si $g \in \mathcal{G}_E$, alors $ga \in g \cdot E = E$, donc $g \in Ea^{-1}$. On a donc $\mathcal{G}_E \subset Ea^{-1}$, où a est un élément quelconque de E, d'où $|\mathcal{G}_E| \leq |Ea^{-1}| = |E| = p^{\alpha}$.

Rappelons que le stabilisateur \mathcal{G}_E d'un élément E de X est un sous-groupe de G (vérification immédiate).

2. • Si E = Hx avec $H \in Y$, alors

$$g \in \mathcal{G}_E \iff gE = E \iff gHx = Hx \iff gH = H$$

mais, H étant un sous-groupe, cette dernière condition équivaut à $g \in H$. On a alors $\mathcal{G}_E = H$, d'où $|\mathcal{G}_E| = p^{\alpha}$. • Si $|\mathcal{G}_E| = p^{\alpha}$, alors \mathcal{G}_E est un sous-groupe d'ordre p^{α} , posons $H = \mathcal{G}_E \in Y$. Si on se donne $a \in E$, on a $H \subset Ea^{-1}$ d'après la question 1., d'où $H = Ea^{-1}$ (égalité des cardinaux), donc E = Ha: E est une classe à droite modulo a.

3. Les éléments de X de la forme Hx avec $H \in Y$ et $x \in G$ sont au nombre de m|Y|: chaque sous-groupe d'ordre p^{α} , s'il en existe, définit m classes à droite distinctes et deux sous-groupes distincts ne peuvent engendrer une même classe à droite (supposons $H_1x_1 = H_2x_2$, alors $x_1 = ex_1 \in H_2x_2$, donc $x_1x_2^{-1} \in H_2$ puis $x_2x_1^{-1} = (x_1x_2^{-1})^{-1} \in H_2$ et enfin $H_1 = H_2x_2x_1^{-1} = H_2$). Les autres éléments E de E0 ont un stabilisateur E2 dont le cardinal est strictement inférieur à E3, mais divise

Les autres éléments E de X ont un stabilisateur \mathcal{G}_E dont le cardinal est strictement inférieur à p^{α} , mais divise $p^{\alpha}m$ (car les stabilisateurs sont des sous-groupes de G), donc $|\mathcal{G}_E|$ est de la forme p^kd , avec $0 \ge k \ge \alpha - 1$ et $d \mid m$. Ils ont donc une orbite dont le cardinal (qui est l'indice du stabilisateur), $[G : \mathcal{G}_E] = p^{\alpha - k} \frac{m}{d}$, est multiple de p.

Les orbites de X sous l'action de G par translation à gauche étant deux à deux disjointes, on déduit $|X| \equiv m|Y|$ modulo p.

- 4. Le cardinal de X ne dépend que de l'ordre du groupe G et non de sa structure : c'est le nombre de parties à p^{α} éléments d'un ensemble à $n=p^{\alpha}m$ éléments. On peut donc supposer ici que $G=\mathbb{Z} \ /_{n\mathbb{Z}}$. Dans ce cas, G, cyclique d'ordre $p^{\alpha}m$, admet un unique sous-groupe d'ordre p^{α} , donc |Y|=1 et $|X|\equiv m$ modulo p. Cette question est d'ordre purement combinatoire : il s'agit de prouver que, pour p premier, $\alpha\in\mathbb{N}$ et $m\wedge p=1$, on a $C_{p^{\alpha}m}^{p^{\alpha}}\equiv m$ modulo p. Si quelqu'un a une démonstration élémentaire de ce résultat, je suis preneur...
- 5. On a $m|Y| \equiv m \mod p$ d'après les questions 3. et
- 4. Comme m et p sont premiers entre eux, on peut simplifier cette congruence : il reste $|Y| \equiv 1$ modulo p, ce que l'on voulait prouver et, en particulier, $|Y| \neq 0$.