Multiplexer and Demultiplexer

Himanshu K. Gajera Department of Computer Science & Engineering Pandit Deendayal Energy University, Gandhinagar

Multiplexer and Demultiplexer

- In-network transmission, both the multiplexer and demultiplexer are combinational circuits.
- A multiplexer selects an input from several inputs then it is transmitted in the form of a single line.
- An alternative name of the multiplexer is MUX or data selector.
- ➤ A demultiplexer uses one input signal and generates many.
- > It is known as Demux or data distributor.

- ➤ A MULTIPLEXER is a digital circuit that has multiple inputs and a single output.
- The selection of one of the n inputs is done by the select inputs
- ➤ It has one output selected at a time.
- > It is also known as **DATA SELECTOR**.
- A multiplexer has
 - N data inputs(multiple)
 - 1 output (single)
 - M select inputs, with $2^M = N$

Block Diagram of Multiplexer

2 to 1 line multiplexer:

Block Diagram

Truth Table

S	OUTPUT Y
0	D0
1	D1

- The logical level applied to the S input determines which AND gate is enabled, so that its data input passes through the OR gate to the output.
- ➤ The output, Y=D0S'+D1S
- > When
 - S=0,AND gate 1 is enabled and AND gate 2 is disabled. So, Y=D0
 - S=1,AND gate 1 is disabled and AND gate 2 is enabled . So, Y=D1

4 to 1 line multiplexer:

Block Diagram

Truth Table

S1	S0	Υ
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Selection Lines		Output
s_1	s_0	Υ
0	0	I ₀
0	1	I ₁
1	0	I ₂
1	1	I ₃

$$Y = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$$

- ➤ The logical level applied to the S input determines which AND gate is enabled, so that its data input passes through the OR gate to the output.
- > The output, Y=S1'S0'D0+S1'S0D1+S1SO'D2+S1S0D3

8 to 1 line multiplexer:

Block Diagram

Truth Table

S2	S1	S0	Υ
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	9/18/2014	D7 ₉

➤ In this 8*1 multiplexer, for any selection line input, one AND gate gives a value of 1 and the remaining all AND gates give 0. And, finally, by using OR gates, all the AND gates are added; and, this will be equal to the selected value.

➤ De-multiplexer is also a device with one input and multiple output lines. It is used to send a signal to one of the many devices.

1-4 Demultiplexer : The 1-to-4 demultiplexer comprises 1- input bit, 4-output bits, and control bits. The 1x4 demultiplexer circuit diagram is shown below.

Selection Inputs		Outputs			
s_1	s_0	Y ₃	Y ₂	\mathbf{Y}_{1}	\mathbf{Y}_{0}
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

1-4 Demultiplexer : The 1-to-4 demultiplexer comprises 1- input bit, 4-output bits, and control bits. The 1x4 demultiplexer circuit diagram is shown below.

1X4 Demux

When the control i/p AB = 01, the upper second AND gate is permitted while the remaining AND gates are restricted. Thus, only data bit D is transmitted to the output, and Y1 = Data.

1-8 Demultiplexer: The demultiplexer is also called a data distributor as it requires one input, 3 selected lines, and 8 outputs.

The input bit is considered as data D and it is transmitted to the output lines. This depends on the control input value of the AB. When AB = 01, the upper second gate F1 is enabled, while the remaining AND gates are disabled, and the data bit is transmitted to the output giving F1= data. If D is low, the F1 is low, and if D is high, the F1 is high. So the value of the F1 depends on the value of D, and the remaining outputs are in the low state

8 x 1 Mux using lower order Multiplexers

Implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer.

8 x 1 Mux using 2 x 1 Mux

Implement 8x1 Multiplexer using 2x1 Multiplexer.

16 x 1 Mux

16x1 Multiplexer

Selection Inputs			Output	
S 3	S ₂	S ₁	So	Y
0	0	0	0	Io
0	0	0	1	I ₁
0	0	1	0	I2
0	0	1	1	I 3
0	1	0	0	I4
0	1	0	1	I5
0	1	1	0	I ₆
0	1	1	1	I 7
1	0	0	0	I 8
1	0	0	1	I 9
1	0	1	0	I 10
1	0	1	1	I 11
1	1	0	0	I 12
1	1	0	1	I 13
1	1	1	0	I 14
1	1	1	1	I 15

Differences: Multiplexer vs. Demultiplexer

Criteria	Multiplexer	Demultiplexer
Function		A DEMUX takes a single input signal and transmits it to one of several output lines.
Number of input lines	A MUX can have 'n' input lines, where 'n' can be any number.	A DEMUX typically has a single (1) input line.
Number of output lines		A DEMUX has n output lines, where 'n' can be any number.
Selection inputs	of the input lines for transmission to the output	A DEMUX has selection inputs used to select which output line the input signal should be transmitted through.
Example		A DEMUX is used for distributing a digital signal to multiple devices.
Applications	signal routing, memory addressing, computer	Demultiplexers are used in memory decoding, signal routing, communication systems, computer networks, Data Distributor and more.