6. Is SNWD variation spatial or temporal

April 30, 2020

0.1 Analyze whether early or late snow changes more year to year or place to place.

- We know from previous notebooks that the value of coef_2 corresponds to whether the snow season is early or late.
- We want to study whether early/late season is more dependent on the year or on the location.
- We will use RMS Error to quantify the strength of these dependencies.

```
[1]: import pandas as pd
import numpy as np
import urllib
import math
```

```
[]: %pylab inline
import numpy as np
from lib.numpy_pack import packArray,unpackArray
from lib.spark_PCA import computeCov
from lib.computeStatistics import *
```

```
[]: ### Read the data frame from pickle file

data_dir='../Data/Weather'
state='NY'
meas='SNWD'

from pickle import load
```

```
#read statistics
     filename=data_dir+'/STAT_%s.pickle'%state
     STAT,STAT_Descriptions = load(open(filename, 'rb'))
     print('keys from STAT=',STAT.keys())
[]: #!ls -ld $data_dir/*.parquet
     #read data
     filename=data_dir+'/decon_%s_%s.parquet'%(state,meas)
     df=sqlContext.read.parquet(filename)
     print(df.count())
[]: tmp=df.filter(df.Station=='USC00306411').toPandas()
     tmp.head(1)
[7]: #extract longitude and latitude for each station
     feature='coeff_1'
     sqlContext.registerDataFrameAsTable(df,'weather')
     Features='station, year, coeff 2'
     Query="SELECT %s FROM weather"%Features
     print(Query)
     pdf = sqlContext.sql(Query).toPandas()
     pdf.head()
    SELECT station, year, coeff 2 FROM weather
[7]:
            station year
                               coeff_2
     0 USW00014735 1939 -169.322319
     1 USW00014735 1943
                            272.354092
     2 USW00014735 1945
                          790.579389
     3 USW00014735 1947 -216.302832
     4 USW00014735 1948 1028.612179
[8]: year_station_table=pdf.pivot(index='year', columns='station', values='coeff_2')
     year_station_table.tail(5)
[8]: station USC00300015 USC00300023 USC00300047 USC00300055
                                                                  USC00300063 \
     vear
     2009
                      NaN
                                   NaN
                                                NaN
                                                              NaN
                                                                           NaN
     2010
                      NaN
                                   NaN
                                                NaN
                                                              NaN
                                                                           NaN
                                                                    472.534062
     2011
                                                NaN -120.642691
                      NaN
                                   NaN
     2012
                      NaN
                                   {\tt NaN}
                                                \mathtt{NaN}
                                                              NaN
                                                                           NaN
     2013
                      NaN
                            149.013363
                                                \mathtt{NaN}
                                                              NaN
                                                                      0.977231
     station USC00300077 USC00300085 USC00300090 USC00300093 USC00300159 \
```

year						
2009	NaN	NaN	Nal	N 870.77386	7 NaN	
2010	NaN	NaN	Nal	√ -31.80530	3 NaN	
2011	NaN	NaN	Nal	N 907.92566	7 NaN	
2012	NaN	NaN	Nal	Na Na	N NaN	
2013	NaN	97.643753	Nal	Na Na	N NaN	
station	U	SW00014786	USW00014797	USW00014798	USW00094704 \	
year	•••					
2009	•••	NaN	NaN	NaN	NaN	
2010	•••	NaN	NaN	NaN	NaN	
2011	•••	NaN	NaN	NaN	NaN	
2012	•••	NaN	NaN	NaN	NaN	
2013	•••	NaN	NaN	NaN	NaN	
station	USW00094725	USW00094728	3 USW00094745	5 USW0009478	9 USW00094790	\
year						
2009	NaN	NaN	Nal	Na Na	N NaN	
2010	NaN	NaN	Nal	Na Na	N NaN	
2011	NaN	806.258001	l Nal	Na Na	N NaN	
2012	NaN	NaN	Nal	Na Na	N NaN	
2013	NaN	NaN	Nal	Na Na	N NaN	
station	USW00094794					
year						
2009	NaN					
2010	NaN					
2011	NaN					
2012	NaN					
2013	NaN					

[5 rows x 329 columns]

0.1.1 Data Cleaning

As can be seen in the table above, most of the values of coeff_2 are undefined.

We want to focus on a part where they are defined.

```
[9]: station_nulls=pd.isnull(year_station_table).mean()
    station_nulls.hist();
    xlabel('Fraction of years that are undefined')
    ylabel('Number of stations')
```

[9]: Text(0,0.5,'Number of stations')


```
[10]: year_nulls=pd.isnull(year_station_table).mean(axis=1)
    year_nulls.plot();
    grid()
    ylabel('fraction of stations that are undefined')
```

[10]: Text(0,0.5,'fraction of stations that are undefined')

- The last figure shows that more data is available Since the 1960's
- Based on that we restrict our analysis to the years 1960 2012

```
[]: pdf2=pdf[pdf['year']>1960]
    year_station_table=pdf2.pivot(index='year', columns='station', values='coeff_2')
    year_station_table.tail(5)

[12]: station_nulls=pd.isnull(year_station_table).mean()
    station_nulls.hist();
    xlabel('Fraction of years that are undefined')
    ylabel('Number of stations')
```


0.1.2 Estimating the effect of the year vs the effect of the station

To estimate the effect of time vs. location on the second eigenvector coefficient we compute:

- The average row: mean-by-station
- The average column: mean-by-year

We then compute the RMS before and after subtracting either the row or the column vector.

```
[13]: def RMS(Mat):
          return np.sqrt(np.nanmean(Mat**2))
      mean_by_year=np.nanmean(year_station_table,axis=1)
      mean_by_station=np.nanmean(year_station_table,axis=0)
      tbl_minus_year = (year_station_table.transpose()-mean_by_year).transpose()
      tbl_minus_station = year_station_table-mean_by_station
      print('total RMS
                                         = ',RMS(year station table))
      print('RMS removing mean-by-station=_
      →',RMS(tbl_minus_station), 'reduction=',RMS(year_station_table)-RMS(tbl_minus_station))
      print('RMS removing mean-by-year
       →',RMS(tbl minus_year), 'reduction=',RMS(year_station_table)-RMS(tbl_minus_year))
     total RMS
                                   753.145449514645
     RMS removing mean-by-station= 701.5445524111517 reduction= 51.60089710349325
     RMS removing mean-by-year
                                 = 531.4823870967629 reduction= 221.6630624178821
```

0.1.3 Conclusion Of Analysis

The effect of time is about four times as large as the effect of location.

0.1.4 Iterative reduction

- After removing one component, the other component can have an effect.
- We can use alternating minimization to remove the combined effect of location and time.

```
[14]: T=year_station_table
      print('initial RMS=',RMS(T))
      for i in range(5):
          mean_by_year=np.nanmean(T,axis=1)
          T=(T.transpose()-mean_by_year).transpose()
          print(i, 'after removing mean by year
                                                  =',RMS(T))
          mean_by_station=np.nanmean(T,axis=0)
          T=T-mean_by_station
          print(i, 'after removing mean by stations=',RMS(T))
     initial RMS= 753.145449514645
     O after removing mean by year
                                       = 531.4823870967629
     O after removing mean by stations= 490.58111029852466
     1 after removing mean by year
                                       = 490.11149394795615
     1 after removing mean by stations= 490.08333935027764
     2 after removing mean by year
                                       = 490.08010695597295
     2 after removing mean by stations= 490.0794679008307
     3 after removing mean by year
                                       = 490.0793022334803
     3 after removing mean by stations= 490.07925486768687
     4 after removing mean by year
                                       = 490.0792408655066
     4 after removing mean by stations= 490.0792366758466
[15]: T['mean_by_year']=mean_by_year
      T['mean_by_year'].head()
[15]: year
      1961
             -0.115733
      1962
            -0.142607
      1963
            -0.143292
      1964
             -0.149812
      1965
             -0.130511
      Name: mean_by_year, dtype: float64
[16]: figure(figsize=(10,6))
      T['mean_by_year'].plot();
      grid()
      title('A graph showing that in NY state, Snow season has been getting earlier_
```


0.2 Summary

- The problem of missing data is prevalent and needs to be addressed.
- RMS can be used to quantify the effect of different factors (here, time vs. space)
- The snow season in NY has been getting earlier and earlier since 1960.