Lecture 16

Spatial Data and Cartography (Part 2)

3/22/2018

Plotting

Example Data - NC SIDS

```
nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE) %>%
 select(-(AREA:CNTY ID), -(FIPS:CRESS ID))
tbl df(nc)
## # A tibble: 100 x 8
##
     NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
                                                            geometrv
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                   <MULTIPOLYGON [°]>
                                   0. 19. (((-81.47276 36.23436. -~
## 1 Ashe 1091.
                  1. 10. 1364.
## 2 Alle~ 487. 0. 10. 542. 3. 12. (((-81.23989 36.36536. -~
   3 Surry 3188. 5. 208. 3616.
                                   6. 260. (((-80.45634 36.24256, -~
## 4 Curr~ 508. 1. 123. 830.
                                   2. 145. (((-76.00897 36.3196. -7~
## 5 Nort~ 1421. 9. 1066. 1606.
                                   3.
                                       1197. (((-77.21767 36.24098, -~
## 6 Hert~ 1452. 7.
                     954. 1838.
                                   5.
                                       1237. (((-76.74506 36.23392, -~
## 7 Camd~ 286. 0.
                    115. 350.
                                      139. (((-76.00897 36.3196. -7~
                                   2.
   8 Gates 420. 0. 254. 594.
                                   2.
                                         371. (((-76.56251 36.34057, -~
##
## 9 Warr~ 968. 4. 748. 1190.
                                   2. 844. (((-78.30876 36.26004, -~
## 10 Stok~ 1612. 1. 160. 2038.
                                   5.
                                        176. (((-80.02567 36.25023. -~
## # ... with 90 more rows
```

Base Plots

plot(nc)

Geometry Plot

plot(st_geometry(nc), axes=TRUE)

plot(nc[,"SID79"], graticule=st_crs(nc), axes=TRUE)

Graticules (EPSG:3631)

plot(st_transform(nc[,"SID79"], 3631), graticule=st_crs(nc), axes=TRUE)

ggplot2 (dev)

```
{\tt devtools::install\_github("tidyverse/ggplot2")}
```

```
ggplot(nc) +
  geom_sf(aes(fill=SID79))
```


ggplot2 + projections

```
ggplot(st_transform(nc, 3631)) +
  geom_sf(aes(fill=SID79 / BIR79))
```


Example Data - Meuse

```
data(meuse. meuse.riv. package="sp")
meuse = st as sf(meuse, coords=c("x", "v"), crs=28992)
meuse riv = st_polygon(list(meuse.riv)) %>% st_sfc() %>% st_set_crs(28992)
tbl df(meuse)
## # A tibble: 155 x 13
##
     cadmium copper lead zinc elev dist
                                          om ffreg soil lime
## * <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <fct>
## 1
      11.7
              85. 299. 1022. 7.91 0.00136 13.6 1
                                                       1
## 2
              81. 277. 1141. 6.98 0.0122 14.0 1
      8.60
## 3
      6.50 68. 199. 640. 7.80 0.103 13.0 1
                                                 1
                                                       1
## 4 2.60 81. 116. 257. 7.66 0.190 8.00 1
## 5 2.80 48. 117. 269. 7.48 0.277 8.70 1
## 6 3.00 61. 137. 281. 7.79 0.364 7.80 1
## 7
      3.20 31. 132. 346. 8.22 0.190 9.20 1
## 8 2.80 29. 150. 406. 8.49 0.0922 9.50 1
## 9 2.40 37, 133, 347, 8.67 0.185 10.6 1
                                                 1
                                                       0
## 10
      1.60
              24.
                   80. 183. 9.05 0.310 6.30 1
## # ... with 145 more rows, and 3 more variables: landuse <fct>,
      dist.m <dbl>. geometry <POINT [m]>
## #
```

Meuse

plot(meuse, pch=16)

Layering plots

```
plot(meuse[,"lead"], pch=16, axes=TRUE)
plot(meuse_riv, col=adjustcolor("lightblue", alpha.f=0.5), add=TRUE, border = NA)
```


Layering plots (oops)

plot(meuse, pch=16) plot(meuse_riv, col=adjustcolor("lightblue", alpha.f=0.5), add=TRUE, border = NA) cadmium lead zinc copper dist ffreq soil lime om

```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1)
```


ggplot2 - axis limits

```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1) +
  ylim(50.95, 50.99)
```


ggplot2 - axis limits

```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1) +
  ylim(329714, 333611)
```


ggplot2 - bounding box

```
ggplot() +
  geom_sf(data=st_sf(meuse_riv), fill="lightblue", color=NA) +
  geom_sf(data=meuse, aes(color=lead), size=1) +
  ylim(st_bbox(meuse)["ymin"], st_bbox(meuse)["ymax"])
```


Geometry Manipulation

Casting

```
nc pts = st cast(nc, "MULTIPOINT")
tbl df(nc pts)
## # A tibble: 100 x 8
##
    NAME RTR74 STD74 NWRTR74 BTR79 STD79 NWRTR79
                                                           geometry
## * <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
                                     <dbl>
                                                    <MULTIPOINT [°]>
## 1 Ashe 1091. 1. 10. 1364.
                                  0. 19. (-81.47276 36.23436, -81~
## 2 Alle~ 487. 0. 10. 542. 3. 12. (-81.23989 36.36536, -81~
##
  3 Surry 3188. 5. 208. 3616.
                                   6.
                                        260. (-80.45634 36.24256. -80~
  4 Curr~ 508. 1.
                    123. 830.
                                  2. 145. (-76.00897 36.3196, -76.~
##
## 5 Nort~ 1421. 9. 1066. 1606.
                                   3.
                                       1197. (-77.21767 36.24098. -77~
## 6 Hert~ 1452. 7. 954. 1838. 5.
                                      1237. (-76.74506 36.23392, -76~
## 7 Camd~ 286. 0. 115. 350.
                                   2. 139. (-76.00897 36.3196, -75.~
                                  2.
## 8 Gates 420. 0. 254. 594.
                                        371. (-76.56251 36.34057. -76~
## 9 Warr~ 968. 4. 748. 1190.
                                  2. 844. (-78.30876 36.26004, -78~
## 10 Stok~ 1612. 1. 160. 2038. 5. 176. (-80.02567 36.25023. -80~
## # ... with 90 more rows
```

```
plot(st_geometry(nc), border='grey')
plot(st_geometry(nc_pts), pch=16, cex=0.5, add=TRUE)
```


Casting - POINT

```
st cast(nc, "POINT")
## Simple feature collection with 2529 features and 7 fields
## geometry type:
                 POINT
## dimension:
                 XY
## hhox:
                 xmin: -84.32385 vmin: 33.88199 xmax: -75.45698 vmax: 36.58965
## epsg (SRID): 4267
## proj4string: +proj=longlat +datum=NAD27 +no defs
## First 10 features:
##
     NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
                                                                 geometry
## 1 Ashe 1091
                   1
                          10 1364
                                             19 POINT (-81.47276 36.23436)
                                       0
## 2 Ashe 1091
                   1
                          10 1364
                                       0
                                             19 POINT (-81.54084 36.27251)
## 3 Ashe 1091
                          10 1364
                                             19 POINT (-81.56198 36.27359)
## 4 Ashe 1091
                          10 1364
                                       0
                                             19 POINT (-81.63306 36.34069)
                    1
                                             19 POINT (-81.74107 36.39178)
## 5 Ashe 1091
                          10 1364
                                       0
## 6
     Ashe 1091
                          10 1364
                                             19 POINT (-81.69828 36.47178)
## 7 Ashe 1091
                                             19 POINT (-81.7028 36.51934)
                          10 1364
                                       0
## 8
    Ashe 1091
                   1
                          10 1364
                                       0
                                             19
                                                   POINT (-81.67 36.58965)
## 9 Ashe 1091
                          10 1364
                                                 POINT (-81.3453 36.57286)
## 10 Ashe 1091
                          10 1364
                                       0
                                             19 POINT (-81.34754 36.53791)
```

```
plot(st_geometry(nc), border='grey')
plot(st_geometry(st_cast(nc, "POINT")), pch=16, cex=0.5, add=TRUE)
```


Casting - LINESTRING

```
st cast(nc, "MULTILINESTRING") %>% as tibble()
## # A tibble: 100 x 8
##
    NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
                                                           geometry
  * <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                <MULTILINESTRING [°]>
                  1. 10. 1364.
                                   0. 19. ((-81.47276 36.23436, -8~
## 1 Ashe 1091.
## 2 Alle~ 487. 0. 10. 542. 3. 12. ((-81.23989 36.36536, -8~
  3 Surry 3188. 5. 208. 3616. 6. 260. ((-80.45634 36.24256, -8~
##
## 4 Curr~ 508. 1. 123. 830. 2. 145. ((-76.00897 36.3196, -76~
## 5 Nort~ 1421. 9.
                     1066. 1606.
                                   3.
                                       1197. ((-77.21767 36.24098. -7~
## 6 Hert~ 1452. 7.
                    954. 1838.
                                   5.
                                       1237. ((-76.74506 36.23392, -7~
## 7 Camd~ 286. 0. 115. 350.
                                   2. 139. ((-76.00897 36.3196. -75~
## 8 Gates 420. 0. 254. 594.
                                   2. 371. ((-76.56251 36.34057, -7~
## 9 Warr~ 968. 4. 748. 1190.
                                   2. 844. ((-78.30876 36.26004, -7~
                                        176. ((-80.02567 36.25023. -8~
## 10 Stok~ 1612. 1. 160. 2038. 5.
## # ... with 90 more rows
```


Grouping Features

```
nc_state = st_union(nc)
plot(nc_state)
```



```
nc_state
## Geometry set for 1 feature
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
## epsg (SRID): 4267
## proj4string: +proj=longlat +datum=NAD27 +no_defs
## MULTIPOLYGON (((-76.54427 34.58783. -76.55515 3...
```

25

More Grouping

```
nc cut = nc %>%
  mutate(X = st centroid(nc) %>% st coordinates() %>% .[,1]) %>%
  mutate(region = cut(X. breaks = 5))
nc_cut
## Simple feature collection with 100 features and 9 fields
## geometry type: MULTIPOLYGON
## dimension:
                 XY
## bbox:
                xmin: -84.32385 vmin: 33.88199 xmax: -75.45698 vmax: 36.58965
## epsg (SRID): 4267
## proi4string: +proi=longlat +datum=NAD27 +no defs
## First 10 features:
##
           NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
## 1
           Ashe 1091
                         1
                               10 1364
                                                 19 -81,49826
## 2 Alleghany 487
                                           3 12 -81.12515
                         0 10
                                   542
                        5
                              208 3616
                                           6
                                                260 -80.68575
## 3
          Surry 3188
## 4
       Currituck 508
                         1
                              123 830
                                                145 -76.02750
## 5 Northampton 1421
                             1066 1606
                                               1197 -77.41056
## 6
        Hertford 1452
                             954 1838
                                               1237 -76.99478
## 7
        Camden 286
                         0
                              115 350
                                           2
                                                139 -76.23435
## 8
        Gates 420
                         0
                              254 594
                                                371 -76.70448
                                           2 844 -78.11043
## 9
       Warren 968
                         4
                              748 1190
## 10
       Stokes 1612
                         1
                              160 2038
                                                176 -80.23428
##
           region
                                     geometry
## 1 (-82.4,-80.8] MULTIPOLYGON (((-81.47276 3...
## 2 (-82.4,-80.8] MULTIPOLYGON (((-81.23989 3...
## 3 (-80.8.-79.1] MULTIPOLYGON (((-80.45634 3...
```

/ (77 E 7E 0] MULTIPOLYCON (// 7C 00007 2

```
ggplot(nc_cut) +
  geom_sf(aes(fill=region))
```


dplyr and sf

```
nc_cut %>%
  group_by(region) %>%
  summarize() %>%
  ggplot() +
   geom_sf(aes(fill=region))
```


Affine Transfomations

```
rotate = function(a) matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2)

ctrd = st_centroid(nc_state)
state_rotate = lwgeom::st_make_valid( (nc_state) * rotate(-pi/4) )
plot(state_rotate, axes=TRUE)
```


Scaling Size

```
ctrd = st_centroid(st_geometry(nc))
area = st_area(nc) %>% strip_attrs()

nc_rot = nc
st_geometry(nc_rot) = (st_geometry(nc) - ctrd) * rotate(pi/2) * .5 + ctrd

plot(nc_rot[,"SID79"])
```

SID79

Highway Example

Highways

```
hwy = st_read("../data/gis/us_interstates/", quiet=TRUE, stringsAsFactors=FALSE) %>% s
ggplot() +
  geom_sf(data=nc) +
  geom_sf(data=hwy, col='red')
```


NC Interstate Highways

```
hwy_nc = st_intersection(hwy, nc)
## although coordinates are longitude/latitude, st_intersection assumes that they are

ggplot() +
   geom_sf(data=nc) +
   geom_sf(data=hwy nc, col='red')
```


Counties near the interstate (Projection)

```
nc_utm = st_transform(nc, "+proj=utm +zone=17 +datum=NAD83 +units=m +no_defs")
ggplot() +
   geom_sf(data=nc_utm) +
   geom_sf(data=hwy_nc, col='red')
```


Counties near the interstate (Buffering)

```
hwy_nc_buffer = hwy_nc %>%
    st_transform("+proj=utm +zone=17 +datum=NAD83 +units=m +no_defs") %>%
    st_buffer(10000)

ggplot() +
    geom_sf(data=nc_utm) +
    geom_sf(data=hwy_nc, color='red') +
    geom_sf(data=hwy_nc_buffer, fill='red', alpha=0.3)
```


Counties near the interstate (Buffering + Union)

```
hwy_nc_buffer = hwy_nc %>%
    st_transform("+proj=utm +zone=17 +datum=NAD83 +units=m +no_defs") %>%
    st_buffer(10000) %>%
    st_union() %>%
    st_sf()

ggplot() +
    geom_sf(data=nc_utm) +
    geom_sf(data=hwy_nc, color='red') +
    geom_sf(data=hwy_nc_buffer, fill='red', alpha=0.3)
```


Example

How many counties in North Carolina are within 5, 10, 20, or 50 km of an interstate highway?

Example

How many counties in North Carolina are within 5, 10, 20, or 50 km of an interstate highway?

Gerrymandering Example

```
nc house = st read(".../data/nc districts114.shp", stringsAsFactors = FALSE,
  select(ID, DISTRICT)
tbl_df(nc house)
## # A tibble: 13 x 3
##
      TD
            DISTRICT
                                                                      geometr
   <chr> <chr>
                                                           <MULTIPOLYGON [°]
##
                            (((-80.05325\ 35.80178, -80.04671\ 35.92066, -79.5
## 1 037113114002 2
                            (((-75.52398\ 35.77489,\ -75.50243\ 35.74291,\ -75.4
##
   2 037113114003 3
##
   3 037113114004 4
                            (((-79.47249 36.11374. -79.46936 36.12507. -79.4
##
   4 037113114001 1
                            (((-76.68697\ 36.11117, -76.6848\ 36.11495, -76.67)
                            (((-81.91805 36.2872, -81.90814 36.30201, -81.89
##
   5 037113114005 5
##
   6 037113114006 6
                            (((-80.97462\ 36.45285, -80.96323\ 36.45917, -80.96323)
## 7 037113114007 7
                            (((-79.37719 34.97479, -79.37112 34.97781, -79.3
                            (((-80.72606 35.21124, -80.7225 35.21661, -80.72
## 8 037113114008 8
## 9 037113114009 9
                            (((-81.10803 35.77749, -81.10582 35.7819, -81.10
                            (((-82.6516 35.60073, -82.64091 35.60736, -82.62
## 10 037113114010 10
## 11 037113114011 11
                            (((-84.3218 34.98897, -84.29024 35.22557, -84.28
## 12 037113114012 12
                            (((-80.97461\ 35.24055, -80.97357\ 35.24584, -80.97357)
## 13 037113114013 13
                            (((-78.87711\ 35.75273,\ -78.87338\ 35.77312,\ -78.87338)
```

```
nc_house = nc_house %>%
    st_transform("+proj=utm +zone=17 +datum=NAD83 +units=km +no_defs")
plot(nc house[,"DISTRICT"], axes=TRUE)
```


Measuring Compactness - Reock Score

The Reock score the a measure of compactness that is calculated as the the ratio area of a shape to the area of its minimum bounding circle.

```
circs = nc_house %>% st_geometry() %>% lwgeom::st_minimum_bounding_circle()
sub = nc_house$DISTRICT == 1
plot(circs[sub])
plot(nc_house[sub,"DISTRICT"], add=TRUE)
```


plot(nc_house[,"DISTRICT"])
plot(circs,add=TRUE)

DISTRICT

Calculating Reock

```
nc_house = nc_house %>%
  mutate(reock = st_area(nc_house) / st_area(circs))
plot(nc_house[,"reock"])
```



```
tbl_df(nc house) %>%
 arrange(reock) %>%
 print(n=13)
## # A tibble: 13 x 4
## ID
                DISTRICT reock
                                                              geometr
                                                    <MULTIPOLYGON [km]
##
     <chr> <chr> <chr> <s3: units>
##
  1 037113114012 12
                   0.0711997215878126 (((502.31 3899.72. 502.4045 3
##
  2 037113114009 9 0.169405525617443 (((490.2361 3959.275. 490.436
##
  3 037113114004 4 0.1735809490213 (((637.4776 3997.644. 637.739
##
   4 037113114006 6 0.240919191926239
                                         (((502.2744\ 4034.178,\ 503.294
   5 037113114003 3 0.251285019523225 (((995.1797 3972.839, 997.330
##
##
   6 037113114011 11 0.264255107593438
                                         (((196.7812 3876.863, 200.530
                                         (((888.2895 4004.901, 888.466
##
   7 037113114001 1 0.289934134507595
##
   8 037113114010 10 0.34012606752961
                                          (((350.3919 3940.92, 351.3727
## 9 037113114008 8 0.353232490504049
                                         (((524.9335 3896.503, 525.255
## 10 037113114013 13 0.382195549931454
                                         (((691.9403 3958.602, 692.228
                                         (((417.5582 4016.195, 418.464
## 11 037113114005 5 0.397082589710882
                                         (((648.136 3871.45, 648.6853
## 12 037113114007 7 0.414888641986656
                                          (((585.5425 3962.377, 586.005
## 13 037113114002 2 0.42590009492903
```

Raster Data

Example data - Meuse

```
plot(meuse_rast)
plot(meuse_riv, add=TRUE, col=adjustcolor("lightblue",alpha.f = 0.5), border=NA)
```


raster class

```
str(meuse rast)
## Formal class 'RasterLayer' [package "raster"] with 12 slots
    ..@ file :Formal class '.RasterFile' [package "raster"] with 13 slots
##
##
    ..... name : chr "/usr/local/lib/R/3.4/site-library/raster/external/te
    .. .. .. datanotation: chr "FLT4S"
##
    ..... byteorder : Named chr "little"
##
    .. .. .. - attr(*, "names")= chr "value"
##
##
    .. .. .. a nodatavalue : num -3.4e+38
##
    .. .. .. .. NAchanged : logi FALSE
##
    .. .. .. nbands : int 1
##
    .. .. .. a bandorder : Named chr "BIL"
    .. .. .. - attr(*, "names")= chr "value"
##
##
    .. .. .. offset : int 0
##
    .. .. ..@ toptobottom : logi TRUE
##
    ..... a blockrows : int 0
##
    .. .. ..@ blockcols : int 0
    .. .. .. a driver : chr "raster"
##
    ..... open : logi FALSE
##
    ..@ data :Formal class '.SingleLayerData' [package "raster"] with 13 slots
##
    .. .. .. .. a values : logi(0)
##
##
    .. .. ..∂ offset : num 0
##
    .. .. .. a gain : num 1
    ..... .. inmemory : logi FALSE
##
##
    .. .. .. a fromdisk : logi TRUE
    .. .. ..@ isfactor : logi FALSE
##
##
    .. .. .. attributes: list()
##
    .. .. .. a haveminmax: logi TRUE
                                                                              48
##
    .. .. ..a min
                       : num 128
```

raster features

```
extent(meuse rast)
## class
              : Extent
## xmin
              : 178400
              : 181600
## xmax
## vmin
              : 329400
## vmax
              : 334000
dim(meuse rast)
               1
## [1] 115 80
res(meuse rast)
## [1] 40 40
projection(meuse rast)
## [1] "+init=epsg:28992 +towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035
meuse_rast[20,]
## [1]
                    NA
                            NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
            NA
  [9]
##
            NA
                    NA
                           NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [17]
            NA
                    NA
                           NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [25]
            NA
                    NA
                           NA
                                           NA
                                                           NA
                                    NA
                                                   NA
                                                                   NA
## [33]
            NA
                    NA
                           NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [41]
            NA
                    NA
                                           NA
                           NA
                                    NA
                                                   NA
                                                           NA
                                                                   NA
## [49]
            NA
                    NA
                            NA
                                    NA
                                           NA
                                                   NA
                                                           NA
                                                                   NA
## [57]
            NA
                    NA
                            NA 749.536 895.292 791.145 607.186 511.044
## [65] 468.404 399.325 350.362 306.180 300.483 310.082 283.940 285.771
## [73] 304.709 309.690 301.799 308.753 328.357 345.611
                                                           NΑ
                                                                   NA
```

49

Rasters and Projections

```
library(rgdal)
meuse_rast_ll = projectRaster(meuse_rast, crs="+proj=longlat +datum=NAD27 +no_defs")
par(mfrow=c(1,2))
plot(meuse_rast)
plot(meuse_rast_ll)
334000
                                                50.98
                                                                                       15
                                       1500
332000
                                                                                       10
                                       1000
                                                50.97
                                       500
                                                                                       50
                                                50.96
330000
    178500
               180000
                           181500
                                                      5.72
                                                               5.74
                                                                         5.76
```

50

```
meuse rast
```

class : RasterLayer

dimensions : 115, 80, 9200 (nrow, ncol, ncell)

resolution : 40, 40 (x, v)

extent : 178400, 181600, 329400, 334000 (xmin, xmax, ymin, ymax)

coord. ref.: +init=epsg:28992 +towgs84=565.237,50.0087,465.658,-0.406857

data source : /usr/local/lib/R/3.4/site-library/raster/external/test.grd : test

names

values : 128.434, 1805.78 (min, max)

meuse_rast_ll

class : RasterLayer

dimensions : 131, 91, 11921 (nrow, ncol, ncell)

resolution : 0.000569, 0.00036 (x, y)

extent : 5.717362, 5.769141, 50.95089, 50.99805 (xmin, xmax, ymin,

coord. ref.: +proj=longlat +datum=NAD27 +no defs +ellps=clrk66 +nadgrids

data source : in memory

names : test

values : 135.647, 1693.578 (min. max)

Simple Features \longleftrightarrow Rasters

```
meuse_riv_rast = rasterize(meuse_riv, meuse_rast)
## Error in (function (classes, fdef, mtable) : unable to find an inherited method for
meuse_riv_rast = rasterize(as(meuse_riv, "Spatial"), meuse_rast)
plot(meuse riv rast)
```


Rasters and Spatial Models

##

1 181072 333611 ## 2 181025 333558

3 181165 333537

```
head(meuse)
## Simple feature collection with 6 features and 12 fields
## geometry type:
                POINT
## dimension:
                 XY
## bbox: xmin: 181025 ymin: 333260 xmax: 181390 ymax: 333611
## epsg (SRID): 28992
## proj4string: +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0
                                            om ffreg soil lime landuse
##
    cadmium copper lead zinc elev
                                     dist
## 1
       11.7
               85 299 1022 7.909 0.00135803 13.6
                                                                  Δh
    8.6
               81 277 1141 6.983 0.01222430 14.0
## 2
                                                                  Ah
## 3
    6.5 68 199 640 7.800 0.10302900 13.0
                                                                  Ah
    2.6
               81 116 257 7.655 0.19009400 8.0
## 4
                                                                  Ga
## 5 2.8 48 117 269 7.480 0.27709000 8.7
                                                                  Ah
## 6
       3.0
               61 137 281 7.791 0.36406700 7.8
                                                                  Ga
##
    dist.m
                      geometry
    50 POINT (181072 333611)
## 1
## 2 30 POINT (181025 333558)
## 3 150 POINT (181165 333537)
## 4 270 POINT (181298 333484)
## 5
       380 POINT (181307 333330)
       470 POINT (181390 333260)
## 6
head(st coordinates(meuse))
```

53

```
library(fields)

tps = Tps(x = st_coordinates(meuse), Y=meuse$elev)
pred_grid = xyFromCell(meuse_rast, seq_along(meuse_rast))

meuse_elev_pred = meuse_rast
meuse_elev_pred[] = predict(tps, pred_grid)

plot(meuse_elev_pred)
```


ggplot and rasters

```
p = rasterToPolygons(meuse_elev_pred) %>% st_as_sf()
(ggplot() + geom_sf(data=meuse, aes(color=elev), size=1)) +
(ggplot() + geom_sf(data=p, aes(fill=test), color=NA))
```

