Math 217 – Midterm 1 Winter 2022 Solutions

Student ID Number:	G 1:
Student III Number	Section:
Student ID Number	DCC01011

Question	Points	Score
1	12	
2	12	
3	12	
4	14	
5	15	
6	12	
7	11	
8	12	
Total:	100	

- 1. (12 points) Write complete, precise definitions for, or precise mathematical characterizations of, each of the following (italicized) terms.
 - (a) The function $f: X \to Y$ is injective

Solution: The function $f: X \to Y$ is *injective* if for all $x_1, x_2 \in X$, if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$.

Solution: The function $f: X \to Y$ is *injective* if for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

(b) The image of the linear transformation $T:V\to W$ from the vector space V to the vector space W

Solution: The *image* of the linear transformation $T: V \to W$ is the set im $T = \{T(\vec{v}) \in W : \vec{v} \in V\}.$

(c) The span of the finite list of vectors $(\vec{v}_1, \dots, \vec{v}_n)$ in the vector space V

Solution: The *span* of the finite list of vectors $(\vec{v}_1, \ldots, \vec{v}_n)$ in the vector space V is the set

$$\operatorname{Span}(\vec{v}_1, \dots, \vec{v}_n) = \left\{ \sum_{i=1}^n c_i \vec{v}_i : c_1, \dots, c_n \in \mathbb{R} \right\}.$$

Solution: The *span* of the finite list of vectors $(\vec{v}_1, \ldots, \vec{v}_n)$ in the vector space V is the set of all vectors in V that can be expressed as a linear combination of the vectors $\vec{v}_1, \ldots, \vec{v}_n$.

(d) The list of vectors $(\vec{v}_1, \dots, \vec{v}_n)$ in \mathbb{R}^m is linearly independent

Solution: The list of vectors $(\vec{v}_1, \ldots, \vec{v}_n)$ in \mathbb{R}^m is linearly independent if for all scalars $c_1, \ldots, c_n \in \mathbb{R}$, if $\sum_{i=1}^n c_i \vec{v}_i = \vec{0}$ then $c_i = 0$ for all $i \in \{1, \ldots, n\}$.

- 2. State whether each statement is True or False and provide a short proof of your claim.
 - (a) (4 points) If the linear system $A\vec{x} = \vec{b}$ has more variables than equations, then it has infinitely many solutions.

Solution: FALSE, since the linear system could have *no* solutions. For instance, if

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

then the linear system $A\vec{x} = \vec{b}$ has two equations and three variables but no solutions!

(b) (4 points) There is a linear transformation from \mathcal{P}_3 to \mathbb{R} whose kernel is the set of constant functions in \mathcal{P}_3 . (Here \mathcal{P}_3 is the vector space of all polynomial functions from \mathbb{R} to \mathbb{R} of degree at most 3.)

Solution: FALSE. Suppose $T: \mathcal{P}_3 \to \mathbb{R}$ is linear. Then since dim $\mathcal{P}_3 = 4$, by Rank-Nullity we have

$$\dim \ker T = \dim \mathcal{P}_3 - \dim \operatorname{im} T = 4 - \dim \operatorname{im} T.$$

Since im $T \subseteq \mathbb{R}$ and dim $\mathbb{R} = 1$, this implies dim ker $T \geq 3$. But the set of constant functions in \mathcal{P}_3 is a subspace of dimension 1, so it cannot be ker T.

(c) (4 points) For every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ and subspace V of \mathbb{R}^n , the set $S = \{T(\vec{v}) : \vec{v} \in V\}$ is a subspace of \mathbb{R}^m .

Solution: TRUE. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear, let V be a subspace of \mathbb{R}^n , and let $S = \{T(\vec{v}) : \vec{v} \in V\}$. Then $\vec{0} \in V$ since V is a subspace, and $T(\vec{0}) = \vec{0}$ since T is linear, so $\vec{0} \in S$. For closure under addition and scalar multiplication, let $\vec{y}_1, \vec{y}_2 \in S$ and $c \in \mathbb{R}$. Fix $\vec{x}_1, \vec{x}_2 \in V$ such that $T(\vec{x}_1) = \vec{y}_1$ and $T(\vec{v}_2) = \vec{y}_2$. Then $\vec{x}_1 + \vec{x}_2 \in V$ and $c\vec{v}_1 \in V$ since V is a subspace, so by linearity of T we have

$$\vec{y}_1 + \vec{y}_2 = T(\vec{x}_1) + T(\vec{x}_2) = T(\vec{x}_1 + \vec{x}_2) \in S$$

and

$$c\vec{y_1} = cT(\vec{x_1}) = T(c\vec{x_1}) \in S.$$

Thus S contains 0 and is closed under vector addition and scalar multiplication, so it is indeed a subspace of \mathbb{R}^m .

3. Consider the 3×5 matrices

$$A = \begin{bmatrix} | & | & | & | & | \\ \vec{v_1} & \vec{v_2} & \vec{v_3} & \vec{v_4} & \vec{v_5} \\ | & | & | & | & | \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

where we are given that B is the reduced row echelon form of A. (No justification is required in parts (a) or (b), but you should show your work in part (c).)

(a) (4 points) Find integers m and n such that the solution set of the linear system $A\vec{x} = \vec{0}$ is an m-dimensional subspace of \mathbb{R}^n .

Solution: Since A has 5 columns, the linear system $A\vec{x} = \vec{0}$ has 5 variables, so its solution set is a subset of \mathbb{R}^5 . By examining B we see that there are 3 free variables (i.e., 3 non-pivot columns), so the solution set of the system $A\vec{x} = \vec{0}$ is 3-dimensional. Thus n = 5 and m = 3.

(b) (4 points) Assuming that $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\vec{v}_4 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, find A explicitly as a matrix with numerical entries.

Solution: Since the columns of A and B satisfy the same linear relations, we have

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

(c) (4 points) Find the solution set of the linear system with augmented matrix A; that is, find the solution set of the linear system $C\vec{x} = \vec{b}$ where $\begin{bmatrix} C & \vec{b} \end{bmatrix} = A$.

Solution: The solution set is

$$\left\{ \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + x_3 \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} : x_2, x_3 \in \mathbb{R} \right\}.$$

4. Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ a \\ 0 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} b \\ 1 \\ 0 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, where a and b are real numbers.

(a) (3 points) Without using determinants, find all values of a and b for which $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of \mathbb{R}^3 .

Solution: The set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ forms a basis of \mathbb{R}^3 if and only if the matrix $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$ has rank 3. Row reducing, we have

$$\begin{bmatrix} 1 & b & 2 \\ a & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & b & 2 \\ 0 & 1 - ab & -2a \\ 0 & 0 & 1 \end{bmatrix},$$

so we see that A has rank 3 if and only if $ab \neq 1$. Thus $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of \mathbb{R}^3 if and only if $ab \neq 1$.

(b) (3 points) Assuming a=2 and b=1, write $\vec{w}=\begin{bmatrix}1\\2\\3\end{bmatrix}$ explicitly as a linear combination of \vec{v}_1 , \vec{v}_2 and \vec{v}_3 .

Solution: Assuming a = 2 and b = 1, we have

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} - 12 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

(Problem 4, Continued).

Recall that $\vec{v}_1 = \begin{bmatrix} 1 \\ a \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} b \\ 1 \\ 0 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, where a and b are real numbers.

(c) (4 points) Assuming a=1 and b=0, find the inverse of the matrix $B=\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$ with column vectors \vec{v}_1 , \vec{v}_2 and \vec{v}_3 .

Solution: If we row reduce $[B | I_3]$ to $[I_3 | R]$, we will have $R = B^{-1}$. Row reducing, we obtain

$$\begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -2 \\ 0 & 1 & 0 & -1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix},$$

so
$$B^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
.

(d) (4 points) Assuming a=b=1, find a matrix A whose kernel is the span of $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$.

Solution: Assuming a = b = 1, we have

$$V = \operatorname{Span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \operatorname{Span}\left(\begin{bmatrix}1\\1\\0\end{bmatrix}, \begin{bmatrix}1\\1\\0\end{bmatrix}, \begin{bmatrix}2\\0\\1\end{bmatrix}\right) = \operatorname{Span}\left(\begin{bmatrix}1\\1\\0\end{bmatrix}, \begin{bmatrix}2\\0\\1\end{bmatrix}\right).$$

so V is a plane in \mathbb{R}^3 . If \vec{w} is a vector in \mathbb{R}^3 that is perpendicular to this plane, then the row vector \vec{w}^{\top} will be a (1×3) matrix whose kernel is V. Solving for \vec{w} either by taking a cross-product, by solving the linear system $\vec{w} \cdot \vec{v}_1 = \vec{w} \cdot \vec{v}_3 = 0$, or by inspection, we obtain the matrix

$$\vec{w}^{\top} = \begin{bmatrix} 1 & -1 & -2 \end{bmatrix}.$$

If we want a 3×3 matrix whose kernel is V, we could repeat this row to obtain

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & -1 & 2 \\ 1 & -1 & 2 \end{bmatrix}.$$

5. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation about the origin by an angle of $\frac{\pi}{3}$ radians, or 60° , so the standard matrix A of S is the matrix

$$A = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}.$$

Also let $P: \mathbb{R}^2 \to \mathbb{R}^2$ be orthogonal projection onto the x-axis in \mathbb{R}^2 . (No justification is necessary on any part of this problem.)

(a) (3 points) Find the standard matrix of $P \circ S$.

Solution: Since

$$P(S(\vec{e}_1)) = P\left(\begin{bmatrix} 1/2\\ \sqrt{3}/2 \end{bmatrix}\right) = \begin{bmatrix} \frac{1}{2}\\ 0 \end{bmatrix} \text{ and } P(S(\vec{e}_2)) = P\left(\begin{bmatrix} -\sqrt{3}/2\\ 1/2 \end{bmatrix}\right) = \begin{bmatrix} \frac{-\sqrt{3}}{2}\\ 0 \end{bmatrix},$$

the standard matrix of $P \circ S$ is $\begin{bmatrix} 1/2 & -\sqrt{3}2 \\ 0 & 0 \end{bmatrix}$.

(b) (4 points) Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T \circ T = S$. (It is enough to give a geometric description of such T.)

Solution: For instance, we could take T to be counterclockwise rotation about the origin by an angle of $\frac{\pi}{6}$ radians.

(c) (4 points) Find a basis of $im(S \circ P)$ and a basis of $ker(S \circ P)$.

Solution: A basis of $\operatorname{im}(S \circ P)$ is $\left(\begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}\right)$ and a basis of $\ker(S \circ P)$ is $\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$.

(d) (4 points) Letting B be the standard matrix of P, circle all matrices listed below that are invertible, and cross out those that are not:

 $A B BA AB A^2 B^2 2B - I_2 A^3 + I_2$

Solution: The matrices A, A^2 , and $2B - I_2$ are invertible, while the rest are not. (Note that $2B - I_2$ is a reflection, and $A^3 + I_2$ is the zero matrix.)

- 6. Let \mathcal{P}_3 be the vector space of polynomial functions from \mathbb{R} to \mathbb{R} of degree at most 3, and consider the function $T: \mathcal{P}_3 \to \mathbb{R}$ defined by T(p) = p(1) for each $p \in \mathcal{P}_3$.
 - (a) (4 points) Show that T is a linear transformation.

Solution: Let $p, q \in \mathcal{P}_3$ and $c \in \mathbb{R}$. Then

$$T(p+q) = (p+q)(1) = p(1) + q(1) = T(p) + T(q)$$

and

$$T(cp) = (cp)(1) = cp(1) = cT(p).$$

(b) (3 points) Is T surjective? Briefly justify your answer.

Solution: Yes, T is surjective, since given $c \in \mathbb{R}$, the constant function p(x) = c gets mapped to c by T.

(c) (5 points) Find a basis of ker(T), and briefly justify your answer.

Solution: We know dim $\mathcal{P}_3 = 4$, and dim im T = 1 by part (b), so by Rank-Nullity we have dim ker T = 3. But it is easy to check that the functions x - 1, $(x - 1)^2$, and $(x - 1)^3$ all belong to ker(T), and they are linearly independent since they all have different degrees, so

$$\left(x-1, (x-1)^2, (x-1)^3\right)$$

is a basis of ker(T).

- 7. Let A and B be $n \times n$ matrices, and let T_A and T_B be the linear transformations induced by A and B, respectively, so that $T_A(\vec{x}) = A\vec{x}$ and $T_B(\vec{x}) = B\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.
 - (a) (3 points) Prove that $im(AB) \subseteq im(A)$.

Solution: Let $\vec{y} \in \text{im}(AB)$, and fix $\vec{x} \in \mathbb{R}^n$ such that $(AB)\vec{x} = \vec{y}$. Then

$$\vec{y} = (AB)\vec{x} = A(B\vec{x}),$$

so $\vec{y} \in \text{im}(A)$.

(b) (3 points) Prove that $ker(B) \subseteq ker(AB)$.

Solution: Let $\vec{x} \in \ker(B)$, so $B\vec{x} = \vec{0}$. Then

$$(AB)\vec{x} = A(B\vec{x}) = A\vec{0} = \vec{0},$$

so $\vec{x} \in \ker(AB)$.

(c) (5 points) Prove that if $\ker(AB) \subseteq \ker(B)$ and T_B is surjective, then T_A is injective.

Solution: Suppose $\ker(AB) \subseteq \ker(B)$ and that T_B is surjective. Let $\vec{x} \in \ker(T_A)$, so $A\vec{x} = \vec{0}$. Using the fact that T_B is surjective, fix $\vec{y} \in \mathbb{R}^n$ such that $B\vec{y} = \vec{x}$. Then $\vec{0} = A\vec{x} = A(B\vec{y}) = (AB)\vec{y}$, so $\vec{y} \in \ker(AB)$ and thus $\vec{y} \in \ker(B)$. But then $\vec{x} = B\vec{y} = \vec{0}$. This shows $\ker(T_A) = \{\vec{0}\}$, so T_A is injective as desired.

- 8. Let U and V be finite-dimensional vector spaces, and let $T:U\to V$ and $S:V\to U$ be linear transformations.
 - (a) (6 points) Let $k \in \mathbb{N}$, and let $(\vec{u}_1, \ldots, \vec{u}_k)$ be a list of vectors in U. Prove that if $(\vec{u}_1, \ldots, \vec{u}_k)$ spans U and $(T(\vec{u}_1), \ldots, T(\vec{u}_k))$ is linearly independent, then T is injective.

Solution: Let $\vec{x} \in \ker(T)$, so $\vec{x} \in U$ and $T(\vec{x}) = \vec{0}$. Using the fact that $(\vec{u}_1, \dots, \vec{u}_k)$ spans U, fix $c_1, \dots, c_k \in \mathbb{R}$ such that $\vec{x} = \sum_{i=1}^k c_i \vec{u}_i$. Then

$$\vec{0} = T(\vec{x}) = T\left(\sum_{i=1}^{k} c_i \vec{u}_i\right) = \sum_{i=1}^{k} T(\vec{u}_i),$$

which implies that $c_i = 0$ for each i since $(T(\vec{u}_1), \dots, T(\vec{u}_k))$ is linearly independent. Thus $\vec{x} = \vec{0}$, so $\ker(T) = \{\vec{0}\}$, which means T is injective.

(b) (6 points) Prove that if $S \circ T$ is surjective, then $\dim(U) \leq \dim(V)$.

Solution: Suppose $S \circ T$ is surjective. Then $U = \operatorname{im}(S \circ T) \subseteq \operatorname{im} S$, so in fact $\operatorname{im}(S) = U$ and thus $\dim \operatorname{im}(S) = \dim(U)$. But by Rank-Nullity we have $\dim \operatorname{im}(S) + \dim \ker(S) = \dim V$. Thus $\dim(U) = \dim V - \dim \ker(S)$, and since $\dim \ker(S) \geq 0$, this implies $\dim(U) \leq \dim(V)$ as desired.