1. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Определение 6. Любой открытый n- мерный шар радиуса ε называется n- мерной ε - окрестностью точки P_0 .

Пусть функция u = f(P) определена в окрестности точки P_0 , за исключением, быть может, самой точки P_0 .

Определение 7. Число A называется *пределом функции* u=f(P) при стремлении точки $P(x_1,x_2,...,x_n)\in D$ к точке $P_0(a_1,a_2,...,a_n)\in D$, если для любого $\varepsilon>0$ существует такое $\delta>0$, что из условия $0<\rho(P,P_0)=\sqrt{(x_1-a_1)^2+...+(x_n-a_n)^2}<\delta$ следует $\left|f(x_1,x_2,...,x_n)-A\right|<\varepsilon$.

Обозначение:
$$A = \lim_{P \to P_0} f(P) = \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2 \\ \dots \dots \\ x_r \to a_r}} f(x_1, x_2, \dots, x_n)$$
.

Для функции нескольких переменных остаются справедливыми правила предельного перехода, установленные для функции одной переменной.

Пример 4. Найти пределы функций:

a)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{3 - \sqrt{xy + 9}}$$

Решение.

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{3 - \sqrt{xy + 9}} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{(3 - \sqrt{xy + 9})(3 + \sqrt{xy + 9})} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(3 + \sqrt{xy + 9})}{9 - xy - 9} = -\lim_{\substack{x \to 0 \\ y \to 0}} (3 + \sqrt{xy + 9}) = -6.$$

$$\mathbf{6)} \lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin xy}{xy}$$

Решение. $\lim_{\substack{x\to 0\\y\to 0}}\frac{\sin(xy)}{(xy)}=1$, как первый замечательный предел.

B)
$$\lim_{\substack{x\to 0\\y\to 0}} (1+x^2+y^2)^{\frac{1}{x^2+y^2}}$$

Решение. Пусть $x^2 + y^2 = \alpha$, тогда если $x \to 0$, $y \to 0$, то $\alpha \to 0$. Поэтому $\lim_{\alpha \to 0} (1+\alpha)^{\frac{1}{\alpha}} = e$.

г) Показать, что при $x \to 0$, $y \to 0$ функция $z = \frac{x}{y-x}$ может стремиться к любому пределу. Привести примеры такого приближения точки (x,y) к точке (0,0), при котором $\lim z = 3$, $\lim z = 2$, $\lim z = 1$, $\lim z = -2$.

Решение. Пусть точка P(x,y) стремится к точке $P_0(0,0)$. Рассмотрим изменение x и y вдоль прямой y=kx. Имеем: $\lim_{\substack{x\to 0\\y\to 0}}\frac{x}{y-x}=\lim_{\substack{x\to 0\\y\to 0}}\frac{x}{kx-x}=\lim_{\substack{x\to 0\\x\to 0}}\frac{x}{x(k-1)}=\frac{1}{k-1}$. Результат зависит от k.

Если
$$\lim_{\substack{x\to 0\\y\to 0}} z=3$$
, то $3=\frac{1}{k-1} \Rightarrow 3k-3=1$, $3k=4$, $k=\frac{4}{3}$. Таким образом, $\lim_{\substack{x\to 0\\y\to 0}} z=3$ при $k=\frac{4}{3}$. Аналогично $\lim_{\substack{x\to 0\\y\to 0}} z=2$ при $k=\frac{3}{2}$; $\lim_{\substack{x\to 0\\y\to 0}} z=1$ при $k=2$; $\lim_{\substack{x\to 0\\y\to 0}} z=-2$ при $k=\frac{1}{2}$.

Определение 8. Функция u = f(P) называется непрерывной в точке P_0 , если выполнены следующие три условия: 1) функция f(P) определена в точке P_0 и ее окрестности, 2) существует предел функции при $P \to P_0$, то есть $\lim_{P \to P_0} f(P)$, 3) предел функции при $P \to P_0$ равен значению функции в этой точке, то есть $\lim_{P \to P_0} f(P) = f(P_0)$.

Определение 9. Функция называется *непрерывной в области*, если она непрерывна в каждой точке этой области.

Для непрерывных функций нескольких переменных также сохраняются все свойства, установленные для непрерывной функции одной переменной.

Определение 10. Если в точке P_0 хотя бы одно из условий непрерывности нарушено, то точка P_0 называется *точкой разрыва функции* f(P).

Точки разрыва могут быть изолированными, образовывать линии разрыва, поверхности разрыва и т.д.

Пример 5. Найти точки разрыва функции:

a)
$$z = \frac{1}{(x-1)^2 + (y+1)^2}$$
.

Решение. Данная функция определена для всех точек $(x,y) \in \mathbb{R}^2$, кроме точки (1,-1), так как в этой точке знаменатель $(x-1)^2+(y+1)^2=(1-1)^2+(-1+1)^2=0+0=0$. Точка (1,-1) есть точка разрыва данной функции.

6)
$$z = \ln(1 - x^2 - y^2)$$
.

Решение. Функция $z = \ln(1 - x^2 - y^2)$ не определена в тех точках, где $1 - x^2 - y^2 \le 0 \implies x^2 + y^2 \ge 1$. Следовательно, точки разрыва данной функции попадают во внешность и на границу круга с центром в начале координат и радиусом, равным 1.

B)
$$u = \frac{1 - xyz}{2x + 3y - z + 4}$$
.

Решение. Функция не определена в точках, в которых знаменатель обращается в нуль, то есть в точках, удовлетворяющих общему уравнению плоскости 2x+3y-z+4=0. Таким образом, точки разрыва расположены на вышеуказанной плоскости.