ゼミノート#8

Algebraic-ness of Spaces and Stacks

七条彰紀

2019年1月9日

affine scheme, scheme. algebraic space, algebraic stack という貼り合わせの連なりを意識した定義をした後、algebraic stack が scheme の貼り合わせとして定義できることを示す。algebraic space と algebraic stack の定義は全く平行に行われる。そのことが分かりやすい記述を志向する。

1 Fiber Product of Fibered Categories

 ${f B}$:: category とする. この時, ${f Fib}^{
m bp}({f B})$ は以下のような圏であった.

Objects: fibered categories over B.

Arrows: base-preserving natural transformation.

新たに圏 CFG(B) を以下のように定義する.

Objects: categories fibered in groupoids(CFG) over B.

Arrows: base-preserving natural transformation.

重要なのは次の存在命題である.

命題 **1.1** ([1] p.10)

 ${f Fib}^{
m bp}({f B})$ と ${f CFG}({f B})$ は fibered product を持つ.

(証明). $\mathbf{Fib}^{\mathrm{bp}}(\mathbf{B})$ の射 $F: \mathfrak{X} \to \mathfrak{X}$ と $F: \mathcal{Y} \to \mathfrak{X}$ をとり、F, G の fiber product を実際に構成する.

■圏 P の構成 圏 P を以下のように定義する.

Objects: 以下の4つ組

- (i) $b \in \mathbf{B}$,
- (ii) $x \in \mathfrak{X}(b)$,
- (iii) $y \in \mathcal{Y}(b)$,
- (iv) \mathfrak{T} の恒等射上の同型射 α : $Fx \to Gy$.

Arrows:

射 $(b, x, y, \alpha) \rightarrow (b', x', y', \alpha')$ は、二つの射 $\phi_{\mathfrak{X}}: x \rightarrow x', \phi_{\mathfrak{Y}}: y \rightarrow y'$ であって以下を満たすもの:

 $\phi_{\mathfrak{X}}, \phi_{\mathfrak{Y}}$ は同じ射 $b' \to b$ 上の射で、以下の可換図式を満たすもの.

$$Fx \xrightarrow{\alpha} Gy$$

$$F\phi_{x} \downarrow \qquad \qquad \downarrow G\phi_{y}$$

$$Fx' \xrightarrow{\alpha'} Gy'$$

■Cartesian Lifting in P. この圏は π : $(b, x, y, \alpha) \mapsto b$ によって fibered category と成る. $f: b' \to b$ の $\xi = (b, x, y, \alpha)$ に関する Cartesian Lifting :: $f^*\xi \to \xi$ は次のように定義される.

$$\chi_{\xi} = (f^*x \xrightarrow{\chi_x} x, f^*y \xrightarrow{\chi_y} y) \colon f^*\xi = (b', f^*x, f^*y, \bar{\alpha}) \to \xi.$$

ここで χ_x : $f^*x \to x$ は f の x に関する Cartesian Lifting である. χ_y も同様. さらに $\bar{\alpha}$ は以下の Triangle Lifting で得られる射である^{†1}.

fibered category の間の射は cartesian arrow を保つので $F\chi_x$, $G\chi_y$ も cartesian. したがって Triangle Lifting が出来る. $\bar{\alpha}$ が同型であることは Triangle Lifting の一意性を用いて容易に証明できる. また, この可換図式から χ_ξ が ${\bf P}$ の射であることも分かる.

■ $\mathfrak{X}, \mathcal{Y}, \mathfrak{Z}$ が category fibered in groupoids(CFG) ならば P も CFG $\mathfrak{X}, \mathcal{Y}, \mathfrak{Z}$ が CFG ならば P も CFG となる. 実際, $\phi_{\mathfrak{X}}: x \to x'$ と $\phi_{\mathfrak{Y}}: y \to y'$ の両方が cartesian ならば $(\phi_{\mathfrak{X}}, \phi_{\mathfrak{Y}}): (b, x, y, \alpha) \to (b', x', y', \alpha')$ は cartesian である.

■P からの射影写像. 定義から明らかに $\operatorname{pr}_1\colon \mathbf{P}\to \mathfrak{X}, \operatorname{pr}_2\colon \mathbf{P}\to \mathcal{Y}$ が定義できる. 射の定義にある可換図 式は,以下の A が natural transformation であることを意味している.

$$\begin{array}{cccc} A\colon & F\operatorname{pr}_1 & \to & G\operatorname{pr}_2 \\ & (F\operatorname{pr}_1)((b,x,y,\alpha)) = Fx & \mapsto & \alpha(Fx) = \alpha((F\operatorname{pr}_1)((b,x,y,\alpha))) \end{array}$$

A が base-preserving であることは α が恒等射上のもの (i.e. $\pi_{\mathfrak{T}}(\alpha)=\mathrm{id}$) であることから,isomorphism であることは α が同型であることから示される.

 $f^*\alpha$: $f^*Fx \to f^*Gy$ とは異なる.同型 $Ff^*x \to F^*Fx$, $Gf^*y \to f^*Gy$ と $f^*\alpha$: $Fx \to Gy$ を合成しても $\bar{\alpha}$ は得られる.

■P:: fiber product. 今, $W \in \mathbf{CFG}(\mathbf{B})$ と射 $S: W \to \mathfrak{X}, T: W \to \mathcal{Y}$ 及び base-preserving isomorphism:: $\delta: FS \to GT$ をとる. base-preserving なので, 任意の $w \in W$ について $\pi_{\mathfrak{T}}(FS(w)) = \pi_{\mathfrak{T}}(GT(w))$. そこで次のように関手が定義できる.

このように置くと, $S=\operatorname{pr}_1H,T=\operatorname{pr}_2H$ となる.逆に $S\cong\operatorname{pr}_1H',T\cong\operatorname{pr}_2H'$ となる関手 $H':\mathcal{W}\to\mathbf{P}$ は H と同型に成ることが直ちに分かる.

注意 1.2

session4 命題 4.5 より、CFG の恒等射上の射は同型射である. したがって α : $Fx \to Gy$ に課せられた条件 は、 $\mathfrak Z$ が CFG ならば一つしか無い.

例 1.3

representable fibered category \mathcal{O} fiber product.

我々が扱うのは stack であるから、stack という性質が fiber product で保たれていて欲しいが、果たしてそうなる.

命題 1.4 ([2] Prop 4.6.4)

 $\mathfrak{X}, \mathcal{Y}, \mathfrak{X}$:: stack over \mathbf{C} とし、morphism of stacks :: $F: \mathfrak{X} \to \mathfrak{X}, G: \mathcal{Y} \to \mathfrak{X}$ をとる. この時、F, G についての fiber product :: $\mathfrak{X} \times_{\mathfrak{X}} \mathcal{Y}$ は stack である.

(証明). $\mathcal{P} = \mathfrak{X} \times_{\mathfrak{T}} \mathcal{Y}$ とおく. $U \in \mathbf{C}, \mathcal{U} = \{\phi_i \colon U_i \to U\} \in \mathrm{Cov}(U)$ を任意にとり, $\epsilon_{\mathcal{U}} \colon \mathcal{P}(U) \to \mathcal{P}(\mathcal{U})$ を計算する.

 $\blacksquare \epsilon_{\mathcal{U}}(\xi)$. $\xi = (b, x, y, \alpha)$ をとり、 $\epsilon_{\mathcal{U}}(\xi)$ を計算する. まず $\{\phi_i^* \xi\}_i$ は既に詳しく説明した. 注意が必要なのは同型 $\sigma_{ij}\colon \operatorname{pr}_2^* \phi_i^* \xi \to \operatorname{pr}_1^* \phi_i^* \xi$ である. 可換性は以下の図式から分かる.

 $\blacksquare \epsilon_{\mathcal{U}}(\kappa)$. (TODO)

2 Representable Morphism

注意 2.1

以下, S:: scheme とし, \mathbf{Sch}/S 上の site を \mathbf{C} と書く $((\mathbf{Sch}/S)_{\tau}$ といった表記も見かける). また, stack といえば stack in groupoid に限る.

注意 2.2

scheme :: S は Sch/S によって stack とみなす。また、sheaf:: \mathcal{F} は Grothendiek construction :: $\int \mathcal{F}$ に よって stack とみなす。

定義 2.3 (Representable by Scheme/Space)

stack :: $\mathfrak X$ が representable by scheme (resp. algebraic space) であるとは、ある scheme :: X (resp. space $\mathcal X$) が存在し、 $\mathfrak X\cong X=\mathbf{Sch}/X$ (resp. $\mathfrak X\cong \mathcal X=\int \mathcal X$) であるということ.

定義 2.4 (Representability of Morphism of Spaces/Stacks)

- (i) morphism of spaces :: $f: \mathcal{X} \to \mathcal{Y}$ が representable(by scheme) であるとは、任意の S-scheme :: U と \mathbf{C} の射 $U \to \mathcal{Y}$ について、fiber product :: $U \times_{\mathcal{Y}} \mathcal{X}$ (これは space) が representable by scheme であるということ。
- (ii) morphism of stacks :: $f: \mathfrak{X} \to \mathcal{Y}$ が representable (by algebraic space) であるとは、任意の S-space :: $U \succeq \mathbf{C}$ の射 $U \to \mathcal{Y}$ について、fiber product :: $U \times_{\mathcal{Y}} \mathfrak{X}$ (これは stack)が representable by

algebraic space であるということ.

補題 2.5

morphism of stacks :: $f: \mathfrak{X} \to \mathcal{Y}$ が representable by algebraic space であることは、任意の<u>S-scheme</u> :: $U \times_{\mathcal{Y}} \mathfrak{X}$ (これは stack) が representable by algebraic space であることと同値.

(TODO: algebraic space 定義の前に現れている.)

3 Property of Representable Space/Stack/Morphism

定義 3.1

- (i) \mathcal{P} を scheme の性質であって、local for etale topology であるものとする. この時、<u>representable</u> stack :: \mathcal{X} が性質 \mathcal{P} を持つとは、 \mathcal{X} を represent する algebraic space (resp. scheme) が性質 \mathcal{P} を持つということである.
- (ii) \mathcal{P} を morphism of scheme の性質であって, local on the target かつ stable under base change であるものとする (ここの部分は [2] と [1]&[3] で異なる). この時, representable morphism of algebraic stacks :: $f: \mathfrak{X} \to \mathcal{Y}$ が性質 \mathcal{P} を持つとは,任意の $U \in \mathbf{C}$ と射 $U \to \mathcal{Y}$ について, $\mathrm{pr}: \mathfrak{X} \times_{\mathcal{Y}} U \to U$ (に対応する morphism of algebraic spaces)が性質 \mathcal{P} を持つということである.

4 Diagonal Map

定義 4.1 (Diagonal Map)

 \mathfrak{X}/S (すなわち射 $\mathfrak{X} \to S$) の diagonal map :: Δ とは、以下の可換図式に収まる射のことである.

命題 4.2

 \mathcal{F} :: stack on $\tau(S)$ 以下は同値である.

- (i) $\Delta: \mathfrak{X} \to \mathfrak{X} \to \mathfrak{X} ::$ representable.
- (ii) 任意の scheme :: U について, $U \to \mathfrak{X}$:: representable.
- (iii) 任意の scheme :: U, V と射 $U \to \mathfrak{X}, V \to \mathfrak{X}$ について $U \times_{\mathfrak{X}} V$:: representable.

(証明). (TODO)

5 Algebraic-ness

5.1 Definition

定義 5.1 (Algebraic Space)

S:: scheme とし、 \mathcal{X} を space over S (すなわち big etale site $\mathrm{Et}(S)$ 上の sheaf) とする、 \mathcal{X} が algebraic であるとは、次が成り立つということである.

- (i) diagonal morphism :: $\Delta \colon \mathcal{X} \to \mathcal{X} \times_S \mathcal{X} \not \! \mathbb{N}$ representable $\mathfrak{C}\mathfrak{B}\mathfrak{S}$.
- (ii) scheme :: U からの etale surjective morphism :: $U \to \mathcal{X}$ が存在する.

定義 5.2 (Algebraic Stack)

[[2], [3]] S :: scheme, $\mathfrak X$ を stack in groupoid over S (すなわち big etale site $\operatorname{Et}(S)$ 上の stack in groupoid) とする。 $\mathfrak X$ が algebraic であるとは、次が成り立つということである。

- (i) diagonal morphism :: $\Delta \colon \mathfrak{X} \to \mathfrak{X} \times_S \mathfrak{X} \, \, \mathfrak{N}$ representable $\mathfrak{C}\mathfrak{B}\mathfrak{Z}$.
- (ii) algebraic space :: U からの etale surjective morphism :: $U \to \mathfrak{X}$ が存在する.

ここに現れる $U \to \mathfrak{X}$ は \mathfrak{X} の atlas と呼ばれる.

注意 5.3

以上で定義したものはいわゆる "Deligne-Mumford stack" の直接の一般化である。通常は上記に加えて Δ に quasi-compact, separated という条件を課す。 (ただし,実際に Deligne と Mumford が DM stack を導入し たとされる [3] での定義は上と全く同じである。) Δ :: quasi-compact, separated かつ $U \to \mathfrak{X}$ に smooth の み要求するものは "Artin stack"と呼ばれる。

注意 5.4

stack :: $\mathfrak X$ への algebraic space からの射 $U \to \mathfrak X$ が存在すれば、algebraic space の定義より、scheme から $\mathfrak X$ への射が存在する. surjective、etale、smooth などの性質は合成について安定なので、algebraic stack の定義の二つ目の条件は「scheme :: U からの……」と書き換えられる.

6 Property of Space/Stack/Morphism of Them

定義 **6.1** ([3] p.100, Local Property for the topology.)

S :: scheme とし、 (\mathbf{Sch}/S) 上の site :: \mathbf{C} を考える。X,Y :: scheme とし、 $\{\phi_i\colon X_i\to X\}\in \mathrm{Cov}(X), \{\psi_i\colon Y_i\to Y\}\in \mathrm{Cov}(Y)$ を任意に取る。

- (i) P を scheme の性質とする. P が local for the topology であるとは,以下が成り立つということ: X が P であることは,全ての U_i が P であることと同値.
- (ii) P を scheme の射の性質とする. P が local on the source であるとは,以下が成り立つということ: $f\colon X\to Y$ が P であることは,全ての $f\circ\phi_i$ が P であることと同値.
- (iii) P を scheme の射の性質とする. P が local on the target であるとは、以下が成り立つということ:

 $f: X \to Y$ が P であることは、全ての $\operatorname{pr}_2: X \times_Y Y_i \to Y_i$ が P であることと同値.

- (iv) ([2] 5.1.3) P を scheme の射の性質とする. 以下が全て成り立つ時, P は stable であると呼ばれる.
 - 任意の同型は P.
 - Pは、射の合成で保たれる。
 - P は、任意の \mathbb{C} の射による base change で保たれる.
 - local on the target.
- (v) ([1] 2.5) P を scheme の射の性質とする. 以下が全て成り立つ時, P は local on the source and target であると呼ばれる. : 任意の以下の可換図式について, f が P であることは f' が P であることと同値.

ただし $X' \to Y' \times X, Y' \to Y$ は、Artin (resp. DM) stack を考えているならば smooth (resp. etale) and surjective である.

注意 6.2

local on the source and target は, ${\rm ET}(S)$ を考えているならば次と同値: 任意の以下の可換図式について,fが P であることは f'が P であることと同値.

$$X' \longrightarrow X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \longrightarrow Y$$

ただし $X' \to Y' \times X, Y' \to Y$ は etale, surjective morphism である.

補題 6.3

ある atlas :: U が local for etale topology な性質を持つならば、任意の altas がその性質を持つ.

定義 6.4 (Property of Algebraic Stacks)

- (i) $\mathcal P$ を scheme の性質であって、local for etale topology であるものとする.この時、algebraic stack :: $\mathfrak X$ が性質 $\mathcal P$ を持つとは、 $\mathfrak X$ の atlas が性質 $\mathcal P$ を持つということである.
- (ii) algebraic stack :: $\mathfrak X$ が quasi-compact †2であるとは、 $\mathfrak X$ の atlas が性質 $\mathcal P$ を持つということである.
- (iii) $\mathcal P$ を morphism of scheme の性質であって、local on the source and target であるものとする.この時, morphism of algebraic stacks $:: f: \mathfrak X \to \mathcal Y$ が性質 $\mathcal P$ を持つとは,以下の可換図式にある f' (に対応する morphism of algebraic spaces) が性質 $\mathcal P$ を持つということである.

ただし $X' \to Y' \times \mathfrak{X}, Y' \to \mathcal{Y}$ は、Artin (resp. DM) stack を考えているならば smooth (resp. etale) and surjective である.

^{†2} 明らかに、これは local for etale topology ではない.

例 6.5 (i) local on the source and target である性質の例: flat, smooth, etale, unramified, normal, locally of finite type, locally of finite presentation.

参考文献

- [1] Tomàs L. Gòmez. Algebraic stacks. https://arxiv.org/abs/math/9911199v1.
- [2] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.
- [3] David Mumford Pierre Deligne. The irreducibility of the space of curves of given genus. *Publications Mathématiques de l'Institut des Hautes Études Scientifiques*, Vol. 36, No. 1, pp. 75–109, Jan 1969.