Types de contraintes pouvant être utilisés pour plusieurs CSPs

<u>Note</u> : Il peut y avoir plusieurs manières de modéliser un CSP, et selon ces différentes modélisations possibles, les solutions données ne sont pas toujours les mêmes

Coloration de graphe

1ère manière possible de modéliser un problème de coloration de graphe

Soient $S = \{1, ..., n\}$ un ensemble d'entiers naturels représentant des sommets.

Soient $X = \{X_i : i \text{ dans } S\}$ un ensemble d'entiers naturels entre 1 et n représentant des couleurs de sommets.

Soient $Y = \{Yij : (i,j)\}$ un ensemble d'entiers binaires (0 ou 1). Pour tout i,j dans S, si les sommets i et j sont égaux ou s'il y a a une arête entre les sommets i et j, alors Yij = 1.

Contraintes d'égalité

Pour tout i dans S, Yii = 1.

Pour tout (i,j) dans S^2 , $Y_{ij} = 1 \le Y_{ji} = 1$.

Contrainte alldiff

Pour tout (i,j) dans S^2 , (i \neq j et Yij = 1) <=> Xi \neq Xj

n-reines

Note : Il y a forcément une reine par ligne, donc on va se concentrer sur les colonnes.

1ère manière possible de modéliser un problème de n-reines

Soient $R = \{1, ..., n\}$ un ensemble d'entiers naturels représentant le nombre de reines (et aussi le nombre de lignes et de colonnes).

Soient $X = \{X_{ij} : (i,j) \text{ dans } R^2\}$ un ensemble d'entiers binaires (0 ou 1) représentant la présence de la reine n°i dans la colonne n°j (et la ligne n°i)

Contrainte diff

Pour tout (i,j,k) dans R³, (j \neq k et Xij = 1) <=> Xik \neq 1

2ème manière possible de modéliser un problème n-reines

Soient $R = \{1, ..., n\}$ un ensemble d'entiers naturels représentant le nombre de reines (et aussi le nombre de lignes et de colonnes).

Soient $X = \{Xi : i \text{ dans } R\}$ un ensemble d'entiers naturels représentant le numéro de colonnes de la reine i (qui se trouve à la ligne i)

Contrainte alldiff

Pour tout (i,j) dans R^2 , $i \neq j \le Xi \neq Xj$

Sudoku

1ère manière possible de modéliser un sudoku

Soient $S = \{1, ..., 9\}$ un ensemble d'entiers.

Soient $X = \{X_{ij} : (i,j) \text{ dans } S^2\}$ un ensemble d'entiers naturels entre 1 et 9 représentant le numéro de la case à la ligne i et la colonne j.

Contraintes alldiff

```
Pour tout (i,j,k) dans S^3:

1) j \neq k <=> Xij \neq Xik

2) i \neq j <=> Xik \neq Xjk

Pour tout (i,j,k) dans S^3 et tout (p,q) dans \{0,1,2\}^2:

1) ((3p \le i < 3(p+1)) et (3q \le j,k < (3(q+1)) et (j \ne k)) <=> Xij \ne Xik

2) ((3p \le i,j < 3(p+1)) et (3q \le k < (3(q+1))) et (i \ne j)) <=> Xik \ne Xjk
```