Algorithms Dynamic Programming Group Project (75 pts)

This project requires you to first theoretically solve the dynamic programming problem below and then write a program that implements your solution. ¹ You are not allowed to use the internet or consult any references. The only people you can work with on this project are your group members.

1. Problem Description: Given a sequence x[1..n] of n characters, find the longest subsequence that reads the same whether read from left to right or right to left.

Example. Suppose the sequence is

ACGTGTCAAAATCG

then the longest such subsequence is

CTAAAATC

- 2. Deliverables: Please submit a **hard copy** of all of the items requested below. Please don't send this by email as I would have to print it out anyway.
 - (a) [40 pts] Theory: Devise a dynamic programming algorithm that solves the problem. Demonstrate each of the following dynamic programming steps:
 - i. Describe the main idea of your approach including how you break the problem into smaller recursive problems [20 pts].
 - ii. Write pseudocode for your dynamic programming algorithm [10 pts].
 - iii. Develop a traceback algorithm that returns a longest subsequence [10 pts].
 - (b) [10 pts] Theory: Derive the complexity of your algorithm in terms of n.
 - (c) [15 pts] Implementation: Implement your algorithm and submit the print-out of your code. If you were unable to get your code to compile/run, please state this clearly. Although we don't plan to run everybody's code, we might choose a few groups randomly and ask them to demonstrate that their code works. (It would look pretty bad if you claim your code runs, but it doesn't!)
 - (d) [10 pts] Implementation: Demonstrate that your code works correctly by showing its results on a small example. (Provide the example you used so that we can verify this while grading.)
 - (e) Submit group effort percentages and indicate who did what. These must be agreed upon by the group. See syllabus to determine how I will use this to compute your individual grade.

¹The problem has been adapted from the text by Dasgupta et al.