

ADA020471

TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS 77843

THEMIS

(12)

TEXAS A&M UNIVERSITY
PROJECT THEMIS

Technical Report No. 50 ✓

STATISTICAL PERT: DECOMPOSING
A PROJECT NETWORK

by

R. L. Sielken Jr. and N. E. Fisher

Texas A&M Research Foundation
Office of Naval Research
Contract N00014-68-A-0140
Project NR047-700

Reproduction in whole or in part
is permitted for any purpose of
the United States Government.

This document has been
approved for public release
and sale; its distribution
is unlimited.

D D C
DISTRIBUTION UNLIMITED
D D C

BY	DATE
DISTRIBUTION AVAILABILITY RECORDS	
INITIALS	DATE

ATTACHMENT I

STATISTICAL PERT: DECOMPOSING A PROJECT NETWORK

by

R. L. Sielken Jr. and N. E. Fisher

**THEMIS OPTIMIZATION RESEARCH PROGRAM
Technical Report No. 50**

**INSTITUTE OF STATISTICS
Texas A&M University
November 1975**

**Research conducted through the
Texas A&M Research Foundation
and sponsored by the
Office of Naval Research
Contract N00014-68-A-0140
Project NR047-700**

**Reproduction in whole or in part
is permitted for any purpose of
the United States Government.**

**This document has been
approved for public release
and sale; its distribution
is unlimited.**

ATTACHMENT II

TABLE OF CONTENTS

Program	Page
BREAKUP	1
General Description	1
Specific Input Instructions	2
Dimension Restrictions	2
Sample Network	3
Sample Input	4
Sample Output	5
Sample Problem: Schematic Representation	13
Program Listing	21
LOOP	33
Specific Input Instructions	33
Dimension Restrictions	34
Sample Problem	35
Program Listing	36

ABSTRACT

Statistical PERT is a new procedure for obtaining information about the distribution of a project's completion time when the project is comprised of a large number of activities and the time required to complete an individual activity once it can be begun is a random variable. The project is represented as an acyclic network whose arcs correspond to the project activities. This network is simplified by replacing various activity configurations by single equivalent activities and then decomposed into several subnetworks. The distribution and moments of each subnetwork's completion time are bounded and approximated on the basis of two points from each activity's completion time distribution by using some mathematical programming techniques and a new result in the theory of networks. The project's completion time distribution is then approximated by combining the approximate subnetwork distributions.

This report documents two computer programs. The first program BREAKUP decomposes a project network into several subnetworks which are connected in either series or parallel in the project network. The second program LOOP checks a given project network for loops (cycles) since any loop would contradict the assumed acyclic structure of the project network.

R

BREAKUP

General Description:

This program "breaks up" a network into a set of subnetworks which can be linked together either in series or parallel to yield the given network. This breakup is complete in the sense that none of the subnetworks in the set can be further broken up.

The basic breakup procedure involves two main subroutines, BUNDLE and CUT. BUNDLE partitions the activities in a given network or subnetwork into parallel subnetworks connecting the network's source and sink. CUT identifies the cut nodes in a given network or subnetwork and then identifies the sets of activities between each of the consecutive cut nodes. This series of activity sets represents a breakup of the given network or subnetwork into subnetworks in series. The complete breakup of the given network is the following sequential procedure:

- (1) Use BUNDLE to identify the parallel subnetworks connecting the source and sink of the network..
- (2) Use CUT separately on each parallel subnetwork identified in the previous step - (1) or (3) -, and breakup the parallel subnetwork into subnetworks in series. If no such breakup is possible for a parallel subnetwork, that subnetwork is not considered again. If no new series subnetwork is identified in this entire step, stop.
Otherwise go to (3).
- (3) Use BUNDLE separately on each series subnetwork identified in (2). If BUNDLE cannot breakup a series subnetwork, that subnetwork is not considered again. If no new parallel subnetwork is identified in this entire step,

A schematic example of this procedure accompanies the sample problem.

Specific Input Instructions:

Card 1. Col. 1-3: The number of arcs in the network, Format (I3).

Col. 4-6: The number of the node which is the source node,
Format (I3).

Col. 7-9: The number of the node which is the sink node,
Format (I3).

Col. 10-12: The largest node number in the network, Format (I3).

For each activity one card with:

Col. 1-3: The activity's number, Format (I3).

Col. 4-6: The activity's origin node number, Format (I3).

Col. 7-9: The activity's terminal node number, Format (I3).

The activities and nodes may be numbered in any way and may be read in
in any order.

Dimension Restrictions:

Currently this program will accomodate a network that has a
maximum of 300 nodes and a maximum of 300 arcs. It can store a
maximum of 100 subnetworks with each subnetwork having a maximum
of 300 arcs.

This program is written in FORTRAN G.

SAMPLE NETWORK

SAMPLE INPUT

4

34 1 18 20
2 1 7
15 15 16
12 13 14
27 4 6
3 7 3
28 6 18
29 1 13
4 7 9
5 9 8
13 13 15
6 8 10
15 14 16
17 16 17
14 15 14
7 9 10
18 12 17
30 1 19
19 17 18
8 8 11
20 1 2
31 19 20
21 1 3
9 10 11
10 11 12
22 3 2
23 2 4
32 19 20
33 19 20
34 20 18
24 3 4
25 4 5
26 5 6
1 1 18
11 11 13

INPUT STAGE

THE INITIAL NETWORK HAS 34 ARCS

THE SOURCE IS NODE NUMBER 1

THE SINK IS NODE NUMBER 18

THE LARGEST NODE IS NODE NUMBER 20

THE INITIAL NETWORK AS READ IN IS:

ARC NUMBER	ORIGIN NODE	TERMINAL NODE
2	1	7
15	15	16
12	13	14
27	4	6
3	7	8
28	6	18
29	1	18
4	7	9
5	9	3
13	13	15
6	8	10
16	14	16
17	16	17
14	15	14
7	9	10
18	12	17
33	1	19
19	17	18
3	8	11
20	1	2
31	19	20
21	1	3
17	10	11
10	11	12
22	3	2
23	2	4
32	19	20
33	19	20
34	20	18
24	3	4
25	4	5
26	5	6
1	1	18
11	11	13

SUBNETWORK 1 IS COMPOSED OF SUBNETWORKS:

2, 3, 4, 5, 6,

J PARALLEL

STAGE 1 BREAKUP

SUBNETWORK 2 IS COMPOSED OF SUBNETWORKS:

7, 8, 9, 10,

IN SERIES

SUBNETWORK 3 IS COMPOSED OF SUBNETWORKS:

11, 12, 13,

IN SERIES

SUBNETWORK 4 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 1

SINK NODE = 18

ARC	S(ARC)	T(ARC)
29	1	18

SUBNETWORK 5 IS COMPOSED OF SUBNETWORKS:

14, 15, 16,

IN SERIES

SUBNETWORK 6 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 1

SINK NODE = 18

ARC	S(ARC)	T(ARC)
1	1	18

SUBNETWORK 7 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 1

SINK NODE = 7

ARC S(ARC) T(ARC)
2 1 7

SUBNETWORK 8 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 7

SINK NODE = 11

ARC S(ARC) T(ARC)
3 7 8
4 7 9
6 8 10
8 8 11
5 9 8
7 9 10
9 10 11

SUBNETWORK 9 IS COMPOSED OF SUBNETWORKS:

17, 18,

IN PARALLEL

SUBNETWORK 10 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 17

SINK NODE = 18

ARC S(ARC) T(ARC)
19 17 18

SUBNETWORK 11 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 1

SINK NODE = 4

ARC	S(ARC)	T(ARC)
20	1	2
21	1	3
23	2	4
22	3	2
24	3	4

SUBNETWORK 12 IS COMPOSED OF SUBNETWORKS:

19, 20,

IN PARALLEL

SUBNETWORK 13 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 6

SINK NODE = 18

ARC	S(ARC)	T(ARC)
28	6	18

SUBNETWORK 14 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 1

SINK NODE = 19

ARC	S(ARC)	T(ARC)
30	1	19

SUBNETWORK 15 IS COMPOSED OF SUBNETWORKS:

21, 22, 23,

IN PARALLEL

SUBNETWORK 16 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 20

SINK NODE = 18

ARC	S(ARC)	T(ARC)
34	20	18

STAGE 3 BREAKUP

SUBNETWORK 17 IS COMPOSED OF SUBNETWORKS:

24, 25,

IN SERIES

SUBNETWORK 18 IS COMPOSED OF SUBNETWORKS:

26, 27, 28,

IN SERIES

SUBNETWORK 19 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 4

SINK NODE = 6

ARC	S(ARC)	T(ARC)
27	4	6

SUBNETWORK 20 IS COMPOSED OF SUBNETWORKS:

29, 30,

IN SERIES

SUBNETWORK 21 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 19

SINK NODE = 20

ARC	S(ARC)	T(ARC)
31	19	20

SUBNETWORK 22 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 19

SINK NODE = 20

ARC	S(ARC)	T(ARC)
32	19	20

SUBNETWORK 23 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 19

SINK NODE = 20

ARC	S(ARC)	T(ARC)
33	19	20

STAGE 4 BREAKUP

SUBNETWORK 24 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 11

SINK NODE = 12

ARC	S(ARC)	T(ARC)
10	11	12

SUBNETWORK 25 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 12

SINK NODE = 17

ARC	S(ARC)	T(ARC)
18	12	17

SUBNETWORK 26 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 11

SINK NODE = 13

ARC	S(ARC)	T(ARC)
11	11	13

SUBNETWORK 27 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 13

SINK NODE = 16

ARC	S(ARC)	T(ARC)
12	13	14
13	13	15
16	14	16
15	15	16
14	15	14

SUBNETWORK 28 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 16

SINK NODE = 17

ARC S(ARC) T(ARC)
17 16 17

SUBNETWORK 29 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 4

SINK NODE = 5

ARC S(ARC) T(ARC)
25 4 5

SUBNETWORK 30 IS A MINIMUM NETWORK
IT IS COMPOSED OF:

SOURCE NODE = 5

SINK NODE = 6

ARC S(ARC) T(ARC)
26 5 6

SAMPLE PROBLEM: SCHEMATIC REPRESENTATION**BREAKUP**

Arcs are designated as follows:

The arc number is written above or to the left of the arc activity line. The arrowhead indicates the direction of the activity. The circled numbers are node numbers. In this case the arc depicted is arc number 10, flowing from left to right with beginning node 5 and terminating node 7.

Subnetworks are designated as follows:

The subnetwork number is written above or to the left of the network activity direction line. The arrowhead indicates the direction of the subnetwork activity. The numbers enclosed in ovals are source and sink nodes. In this case the subnetwork depicted is subnetwork 11, flowing from left to right with source node 12 and sink node 15. A solid activity direction line indicates the subnetwork is a minimum network. A broken line indicates the subnetwork must be considered by at least one more subroutine of the BREAKUP program.

The above figure indicates subnetwork 8, flowing from left to right with source node 6 and sink node 17, is not yet a minimum network.

In the BREAKUP diagrams, the decomposition of the initial network is finished when all subnetworks are minimum networks, e.g. all lines are solid.

INITIAL NETWORK

(1)

1

↓

(18)

INPUT STAGE

STAGE 1

STAGE 2

STAGE 3

STAGE 4

BREAKUP FLOW

C PROGRAM BREAKUP

C BREAKUP IDENTIFIES PARALLEL SUBNETWORKS AND SERIES SUBNETWORKS

C MORE THAN ONE NETWORK MAY BE DECOMPOSED DURING A RUN.
C SEPARATE THE DATA FOR EACH SUBNETWORK BY A BLANK CARD

C
C THE FOLLOWING IS AN ALPHABETICAL LISTING OF THE VARIABLES AND
C ARRAYS THAT ARE USED IN THIS MAIN PROGRAM AND ITS SUBROUTINES

C ARCS = THE NUMBER OF ARCS IN THE SUBNETWORK
 C BONUM(I) = THE BUNDLE NUMBER TO WHICH NODE I IS ASSIGNED
 C CHECK = ARRAY USED TO STORE ARCS HAVING THE SOURCE AND THE
 C SINK AS THEIR ONLY NODES
 C CTNSUB = THE TEMPORARY NUMBER OF SUBNETWORKS FOUND IN THE
 C PREVIOUS STEP
 C LNODEN = THE LARGEST NODE NUMBER BEING READ IN
 C MAXND = THE LARGEST NODE NUMBER THAT HAS ALREADY BEEN ASSIGNED
 C AT LEAST TEMPORARILY TO A BUNDLE
 C NARCSS(I) = THE NUMBER OF ARCS IN SUBNETWORK I
 C NSUB = THE TOTAL OF SUBNETWORKS THUS FAR
 C NTARC = THE NUMBER OF ARCS IN THIS SUBNETWORK
 C NUMBD = THE NUMBER OF BUNDLES CREATED
 C S(I) = THE STARTING NODE FOR ARC I
 C SINK = THE NODE NUMBER CORRESPONDING TO THE SINK
 C SINKS(I) = THE SINK IN SUBNETWORK I
 C SOURC(I) = SOURCE NODE IN SUBNETWORK I
 C SOURCE = THE NODE NUMBER CORRESPONDING TO THE SOURCE
 C STEP = STAGE NUMBER
 C SUBNET(I,J) = THE ITH ARC IN THE JTH SUBNETWORK
 C SUMARC = THE CURRENT NUMBER OF ARCS IN SUBNETWORK NSUB
 C T(I) = THE TERMINATING NODE FOR ARC I
 C TARC = THE SUBNETWORK WITHOUT THE ARCS INVOLVING NODE K
 C TLNDEN = TEMPORARY LARGEST NODE NUMBER
 C TNSUB = THE NUMBER OF SUBNETWORKS CREATED IN THE CURRENT STAGE
 C TSNSUB = THE TEMPORARY SUBNETWORK BEING USED IN STAGE
 C SUBROUTINE
 C TSUBN = THE NUMBER OF THE SUBNETWORK CURRENTLY BEING CONSIDERED
 C TYPESN = THE TYPE OF SUBNETWORK BEING CONSIDERED:
 C 1 = BUNDLE SUBNETWORK 2 = CUT SUBNETWORK

C
C A MINIMUM SUBNETWORK IS ONE THAT IS NOT COMPOSED OF SMALLER
C SUBNETWORKS

C IMPLICIT INTEGER*2 (A-Z)

COMMON NSUB,TNSUB,S,T,SUBNET,SOURC,SINKS,NARCSS
 DIMENSION S(300),T(300),SUBNET(300,100),SOURC(100)
 DIMENSION SINKS(100),NARCSS(100)

C
C THIS PROGRAM WILL ACCOMMODATE A NETWORK THAT HAS A MAXIMUM OF
 C 300 NODES, A MAXIMUM OF 300 ARCS AND CAN STORE A MAXIMUM OF
 C 100 SUBNETWORKS IN THE BREAKUP PROCESS

C
C NA = THE NUMBER OF ARCS IN THE NETWORK TO BE CONSIDERED
 C NS = THE TOTAL NUMBER OF POSSIBLE SUBNETWORKS IN THE BREAKUP
 C PROCESS
 C IN THE CASE WHERE NO GOOD ESTIMATE CAN BE MADE OF NS, USE NA

C	FOR ALL DIMENSIONS	22	60
C	THE ARRAY DIMENSIONS ARE:		61
C	S(NA),T(NA),SUBNET(NA,NS),SOURC(NS),SINKS(NS),NARCSS(NS)		62
C			63
C	IN SUBROUTINE BUNDLE THE ARRAY DIMENSIONS ARE:		64
C	BDSNUM(NS),CHECK(NS)		65
C			66
C	IN SUBROUTINE CUT THE ARRAY DIMENSIONS ARE:		67
C	ORIGIN(NS),POST(NS),TARC(NS),RCUT(NA)		68
C			69
C	READ THE NETWORK IN		70
C			71
6000	CALL NETIN (LNODEN)		72
	STEP=1		73
	TYPESN=1		74
	TSUBN=1		75
	CALL BUNDLE (LNODEN,TSUBN)		76
C			77
C	PRINT OUT THIS STAGE OF THE BREAKUP		78
C			79
C	CALL STAGE (TYPESN,TSUBN)		80
	CTNSUB=TNSUB		81
	GO TO 70		82
C			83
C	FIND THE NUMBER OF NEWLY CREATED SUBNETWORKS		84
C			85
10	CTNSUR=0		86
	TSUBN=NSUB-LUOP		87
	TYPESN=1		88
	DO 20 I=1,LOOP		89
C			90
C	FIND THE NEXT SUBNETWORK TO BE FURTHER SUBDIVIDED		91
C			92
C	TSUBN=TSUBN+1		93
C			94
C	FIND THE LARGEST NODE NUMBER IN SUBNETWORK TSUBN		95
C			96
C	CALL NODER (TLNDEN,TSUBN)		97
C			98
C	FIND THE BUNDLE SUBNETWORKS		99
C			100
C	CALL BUNDLE (TLNDEN,TSUBN)		101
C			102
C	PRINT OUT THIS STAGE OF THE BREAKUP		103
C			104
C	CALL STAGE (TYPESN,TSUBN)		105
C			106
C	IF THERE IS ONLY ONE BUNDLE FOUND IN SUBNETWORK TSUBN, WE ARE		107
C	FINISHED. PRINT OUT ITS COMPONENT ARCS		108
C			109
C	IF (TNSUB.FQ.1) CALL ENDSNT (TSUBN)		110
C			111
C	COUNT THE NEW NUMBER OF SUBNETWORKS CREATED		112
C			113
20	CTNSUB=TNSUB+CTNSUB		114
C			115
C	IF ALL SUBNETWORKS ARE IN THEIR SMALLEST FORM, WE ARE FINISHED		116
C			117
C	IF (CTNSUB.EQ.0) GO TO 90		118
C	GO TO 70		119

80	LOOP=CTNSUB	120
	CTNSUB=0	121
	TSUBN=NSUB-LOOP	122
C		123
C	FIND THE NUMBER OF NEWLY CREATED SUBNETWORKS	124
C		125
TYPESN=2		126
DO 30 I=1,LOOP		127
C		128
C	FIND THE NEXT SUBNETWORK TO BE FURTHER SUBDIVIDED	129
C		130
TSUBN=TSUBN+1		131
IF (TSUBN.EQ.1) GO TO 55		132
C		133
C	FIND THE LARGEST NODE NUMBER IN SUBNETWORK TSUBN	134
C		135
CALL NODER (TLNDEN,TSUBN)		136
C		137
C	FIND THE CUT SUBNETWORKS	138
C		139
55	IF (TSUBN.EQ.1) TLNDEN=LNODEN	140
	CALL CUT (TSUBN,TLNDEN)	141
C		142
C	PRINT OUT THIS STAGE OF THE BREAKUP	143
C		144
CALL STAGE (TYPESN,TSUBN)		145
C		146
C	IF THERE ARE NO CUTS FOUND IN SUBNETWORK TSUBN, WE ARE FINISHED	147
C	PRINT OUT ITS COMPONENT ARCS	148
C		149
IF (TNSUB.EQ.1) CALL ENDSNT (TSUBN)		150
C		151
C	COUNT THE NEW NUMBER OF SUBNETWORKS CREATED	152
C		153
30	CTNSUB=TNSUB+CTNSUB	154
C		155
C	IF ALL SUBNETWORKS ARE IN THEIR SMALLEST FORM, WE ARE FINISHED	156
C		157
IF (CTNSUR.EQ.0) GO TO 90		158
GO TO 70		159
85	LOOP=CTNSUB	160
GO TO 10		161
70	WRITE (6,900) STEP	162
900	FORMAT (1H1,5X,'STAGE',I3,' BREAKUP')	163
	STEP=STEP+1	164
C		165
C	LET'S GO BACK TO THE APPROPRIATE LOOP FOR THE NEXT STAGE	166
C		167
GO TO (80,85),TYPESN		168
90	CONTINUE	169
READ (5,100,END=666)		170
100	FORMAT (I3)	171
	GO TO 6000	172
666	CONTINUE	173
	WRITE (6,9000)	174
9000	FORMAT (1H1)	175
	RETURN	176
	END	177
SUBROUTINE NETIN (LNODEN)		178

IMPLICIT INTEGER*2 (A-Z)
 COMMON NSUB,TNSUB,S,T,SUBNET,SOURC,SINKS,NARCSS
 DIMENSION S(300),T(300),SUBNET(300,100),SOURC(100)
 DIMENSION SINKS(100),NARCSS(100)

C
 C ZEROIZE SOURC ARRAY
 C
 20 DO 20 I=1,50
 SOURC(I)=0
 C
 C READ IN THE INITIAL NETWORK LIMITS
 C
 100 READ (5,100) ARCS, SOURCE, SINK, LNODEN
 FORMAT (4I3)
 WRITF (6,200)
 200 FORMAT (1H1,5X,'INPUT STAGE')
 WRITE (6,210) ARCS, SOURCE, SINK, LNODEN
 210 FORMAT (1H0,/6X,'THE INITIAL NETWORK HAS',12X,I4,' ARCS',//6X,
 *'THE SOURCE IS NODE NUMBER',11X,I3,/6X,'THE SINK IS NODE NUMBER',
 *13X,I3,/6X,'THE LARGEST NODE IS NODE NUMBER',5X,I3)
 WRITE (6,220)
 220 FORMAT (1H0,5X,'THE INITIAL NETWORK AS READ IN IS://',//6X,
 *'ARC NUMBER',5X,'ORIGIN NODE',5X,'TERMINAL NODE')

C
 C READ IN EACH ARC AND ITS STARTING AND TERMINATING NODES
 C THE ARCS AND NODES MAY BE NUMBERED ANY WAY AND READ IN IN ANY
 C ORDER
 C I = ARC NUMBER
 C S = THE NODE NUMBER FOR THE START OF AN ARC
 C T = THE TERMINAL NODE OF AN ARC
 C

20 DO 10 J=1,ARCS
 READ (5,100) I,S(I),T(I)
 WRITE (6,240) I,S(I),T(I)
 240 FORMAT (1H ,8X,I3,13X,I3,14X,I3)

C
 C CREATE THE FIRST SUBNETWORK
 C

10 SUBNET (J,1)=I
 SOURC(1)=SOURCE
 SINKS(1)=SINK
 NARCSS(1)=ARCS
 NSUB=1
 RETURN
 END

C
 C SUBROUTINE NODER (TLNDEN,TSUBN)

C FINDS LARGEST NODE NUMBER IN THE SUBNETWORK TSUBN

IMPLICIT INTEGER*2 (A-Z)
 COMMON NSUB,TNSUB,S,T,SUBNET,SOURC,SINKS,NARCSS
 DIMENSION S(300),T(300),SUBNET(300,100),SOURC(100)
 DIMENSION SINKS(100),NARCSS(100)
 ARCS=NARCSS(TSUBN)
 TLNDEN=0
 DO 20 J=1,ARCS
 A=SUBNET(J,TSUBN)
 M=S(A)
 N=T(A)

MAXND=N
 IF (M.GT.N) MAXND=M
 IF (MAXND.GT.TLNDEN) TLNDEN=MAXND
 CONTINUE
 RETURN
 END

SUBROUTINE ENDSNT (TSUBN)

C PRINTS SMALLEST BREAKDOWN OF SUBNETWORK TSUBN

IMPLICIT INTEGER*2 (A-Z)
 COMMON NSUB,TNSUB,S,T,SUBNET,SOURC,SINKS,NARCSS
 DIMENSION S(300),T(300),SUBNET(300,100),SOURC(100)
 DIMENSION SINKS(100),NARCSS(100)
 SOURCE=SOURC(TSUBN)
 SINK=SINKS(TSUBN)
 WRITE (6,100) TSUBN
 100 FORMAT (1H0,/16X,'SUBNETWORK ',I3,' IS A MINIMUM NETWORK',/16X,
 *'IT IS COMPOSED OF: ')
 WRITE (6,200) SOURCE,SINK
 200 FORMAT (1H0,19X,'SOURCE NODE = ',I3,/20X,'SINK NODE = ',I3)
 M=NARCSS(TSUBN)
 WRITE (6,400)
 400 FORMAT (1H0,19X,'ARC',2X,'S(ARC)',2X,'T(ARC)')
 DO 10 I=1,M
 N=SUBNET(I,TSUBN)
 10 WRITE (6,300) N,S(N),T(N)
 300 FORMAT (1H ,19X,I3,3X,I3,5X,I3)

C SET TNSUB=0 SO THAT THE REMAINING NUMBER OF SUBNETWORKS DOESN'T
 C INCLUDE THIS MINIMUM SUBNETWORK

TNSUB=0
 RETURN
 END

SUBROUTINE STAGE (TYPESN,TSUBN)

C PRINTS OUT THE CURRENT STAGE OF BREAKUP

IMPLICIT INTEGER*2 (A-Z)
 COMMON NSUB,TNSUB,S,T,SUBNET,SOURC,SINKS,NARCSS
 DIMENSION S(300),T(300),SUBNET(300,100),SOURC(100)
 DIMENSION SINKS(100),NARCSS(100)

C TNSUB=THE NUMBER OF NEW SUBNETWORKS RESULTING FROM THE BREAKUP
 C IN THIS STAGE

C TNSUB=1 IMPLIES NO BREAKUP OCCURRED IN THIS STAGE

IF (TNSUB.EQ.1) GO TO 600
 WRITE (6,100) TSUBN
 100 FORMAT (1H0,/6X,'SUBNETWORK ',I3,' IS COMPOSED OF SUBNETWORKS: ')
 TNSUB=NSUB-TNSUB
 M=TSNSUB+1
 WRITE (6,300)(I,I=M,NSUB)
 300 FORMAT (1H0,5X,20(I3,','))
 IF (TYPESN.EQ.1) GO TO 60
 WRITE (6,400)

400	FORMAT (1HO,5X,'IN SERIES')	26	296
GO TO 600			297
60	WRITE (6,500)		298
- 500	FORMAT (1HO,5X,'IN PARALLEL')		299
600	RETURN		300
END			301
SUBROUTINE BUNDLE (LNODEN,TSUBN)			302
C			303
C	BUNDLE IDENTIFIES PARALLEL SUBNETWORKS CONNECTING DESIGNATED		304
C	SOURCE AND SINK		305
C			306
IMPLICIT INTEGER*2 (A-Z)			307
COMMON NSUB,TNSUB,S,T,SUBNET,SOURC,SINKS,NARCSS			308
DIMENSION S(300),T(300),SUBNET(300,100),SOURC(100)			309
DIMENSION SINKS(100),NARCSS(100),BDNUM(300),CHECK(300)			310
C			311
C	GROUP NODES INTO BUNDLES		312
C			313
SOURCE=SOURC(TSUBN)			314
SINK=SINKS(TSUBN)			315
NUMBD=1			316
C			317
C	ZEROIZE THE BDNUM ARRAY		318
C			319
DO 10 I=1,LNODEN			320
10 BDNUM(I)=0			321
K=SUBNET(1,TSUBN)			322
M=S(K)			323
N=T(K)			324
BDNUM(M)=1			325
BDNUM(N)=1			326
MAXND=N			327
IF (M.GT.N) MAXND=M			328
ARCS=NARCSS(TSUBN)			329
IF (ARCS.EQ.1) GO TO 515			330
DO 1 K=2,ARCS			331
I=SUBNET(K,TSUBN)			332
BDNUM(SOURCE)=0			333
BDNUM(SINK)=0			334
M=S(I)			335
N=T(I)			336
IF(M.GT.MAXND) MAXND=M			337
IF(N.GT.MAXND) MAXND=N			338
C			339
C	IF AT LEAST 1 NODE ON THE ARC HAS NOT BEEN ASSIGNED TO A BUNDLE		340
C	GO TO 2		341
C			342
IF(BDNUM(M).EQ.0) GO TO 2			343
C			344
C	IF ONLY THE TERMINAL NODE ON THE ARC HAS NOT BEEN ASSIGNED TO A		345
C	BUNDLE, GO TO 3		346
C			347
IF(BDNUM(N).EQ.0) GO TO 3			348
C			349
C	IF BOTH NODES ON THE ARC HAVE BEEN ASSIGNED TO THE SAME BUNDLE		350
C	EVERYTHING IS OKAY, GO TRY ANOTHER ARC		351
C			352
IF(BDNUM(N).EQ.BDNUM(M)) GO TO 1			353
C			354

C IF THE NODES CN THE ARC ARE ASSIGNED TO DIFFERENT BUNDLES,
 C THEN THESE TWO BUNDLES SHOULD BE POOLED
 C
 C IF(BDNUM(N).LT.BDNUM(M)) GO TO 6
 C
 C POOL BUNDLES
 C THE BUNDLE WITH THE LARGER BUNDLE NUMBER IS POOLED INTO THE
 C BUNDLE WITH THE SMALLER BUNDLE NUMBER
 C THE BUNDLE NUMBERS OF ALL BUNDLES ARE ALL ADJUSTED
 C
 MAXBD=BDNUM(N) 355
 MINBD=BDNUM(M) 356
 GO TO 7 357
 6 MAXBD=BDNUM(M) 358
 MINBD=BDNUM(N) 359
 7 DO 5 J=1,MAXND 360
 B=BDNUM(J) 361
 IF (B.EQ.MAXBD) BDNUM(J)=MINBD 362
 IF (B.GT.MAXBD) BDNUM(J)=BDNUM(J)-1 363
 5 CONTINUE 364
 NUMBD=NUMBD-1 365
 GO TO 1 366
 C
 C IF BOTH NODES ON THE ARC ARE UNASSIGNED, GO TO 4 WHERE A NEW
 C BUNDLE IS CREATED 367
 C
 2 IF(BDNUM(N).EQ.0) GO TO 4 368
 C
 C ASSIGN THE ORIGIN NCDE OF THE ARC TO THE BUNDLE CONTAINING THE
 C TERMINAL NODE 369
 C
 BDNUM(M)=BDNUM(N) 370
 GO TO 1 371
 C
 C ASSIGN THE TERMINAL NODE OF THE ARC TO THE BUNDLE CONTAINING
 C THE ORIGIN NODE OF THE ARC 372
 C
 3 BDNUM(N)=BDNUM(M) 373
 GO TO 1 374
 C
 C CREATE A NEW BUNDLE 375
 C
 4 NUMBD=NUMBD+1 376
 BDNUM(M)=NUMBD 377
 BDNUM(N)=NUMBD 378
 1 CONTINUE 379
 CONTINUE 380
 BDNUM(SINK)=0 381
 C
 515 IF WE ONLY HAVE 1 BUNDLE FROM THE SUBNETWORK, WE ARE FINISHED 382
 C
 IF (NUMBD.EQ.1) GO TO 219 383
 C
 ZEROIZE CHECK ARRAY 384
 C
 DO 290 I=1,ARCS 385
 290 CHECK(I)=0 386
 L=0 387
 C
 C THE NODES ARE IN BUNDLES. PUT THE ASSOCIATED ARCS INTO 388

APPROPRIATE PARALLEL SUBNETWORKS

DO 33 I=1,NUMBD
 SUMARC=0
 NSUB=NSUB+1
 DO 34 K=1,ARCS
 M=SUBNET(K,TSUBN)
 N=S(M)

SOURCE AND SINK HAVE BUNDLE NUMBER 0

IF (N.EQ.SOURCE) N=T(M)
 IF (BDNUM(N).EQ.I) GO TO 239
 IF (N.EQ.SINK) GO TO 229
 GO TO 34

SPECIAL CASE: BUNDLE HAS ONLY 2 NODES: SOURCE, SINK.
 PUT ALL ARCS THAT ARE PARALLEL SUBNETWORKS BY THEMSELVES INTO
 THE CHECK ARRAY

229 DO 291 J=1,K
 W=CHECK(J)
 IF (W.EQ.0) GO TO 292
 IF (M.EQ.W) GO TO 34
 291 CONTINUE
 292 CHECK(J)=M
 GO TO 34

THIS ARC IS IN THE BUNDLE I, HENCE IT IS IN THE ITH NEW
 SUBNETWORK

239 SUMARC=SUMARC+1
 SUBNET(SUMARC,NSUB)=M
 34 CONTINUE

CREATE NEW SUBNETWORKS

IF THIS BUNDLE HAS NO NODES, PUT AN ARC SUBNETWORK INTO
 SUBNET (1,NSUB)

343 IF (SUMARC.EQ.0) GO TO 333
 NARCSS(NSUB)=SUMARC
 SOURC(NSUB)=SOURCE
 SINKS(NSUB)=SINK
 GO TO 33

STORE THE SUBNETWORKS THAT HAVE ONLY SOURCE AND SINK NODES

333 SUMARC=1
 L=L+1
 SUBNET(1,NSUB)=CHECK(L)
 GO TO 343
 343 CONTINUE
 TNSUB=NUMBD
 RETURN
 END

SUBROUTINE CUT (TSUBN,LNODEN)

```

C CUT IDENTIFIES CUT NODES EXCLUDING THE DESIGNATED SOURCE AND 474
C SINK 475
C 476
C CUT ALSO IDENTIFIES THE CUT GROUPS; THAT IS, THE SUBNETWORKS 477
C WHICH ARE IN SERIES AND CONNECTED BY THE CUT NODES 478
C 479
IMPLICIT INTEGER*2 (A-Z) 480
COMMON NSUB,TNSUB,S,T,SUBNET,SOURC,SINKS,NARCSS 481
DIMENSION S(300),T(300),SUBNET(300,100),SOURC(100),TARC(300) 482
DIMENSION SINKS(100),NARCSS(100),ORIGIN(300),POST(300),RCUT(100) 483
C FIND THE CUT NODES 484
C NCUT IS THE NUMBER OF CUT NODES FOUND THUS FAR 485
C 486
NCUT=0 488
ARCS=NARCSS(TSUBN) 489
SOURCE=SOURC(TSUBN) 490
SINK=SINKS(TSUBN) 491
C THE DO LOOP DOWN TO STATEMENT NUMBER 1 DETERMINES THE CUT NODES 492
C 493
DO 1 K=1,LNODEN 494
C CHECK TO SEE IF NODE K IS ACTUALLY IN THE SUBNETWORK 496
C 497
DO 20 J=1,ARCS 499
Z=SUBNET(J,TSUBN) 500
IF(S(Z).EQ.K) GO TO 21 501
IF (T(Z).EQ.K) GO TO 21 502
CONTINUE 503
C NODE K IS NOT IN THIS SUBNETWORK 504
C 505
GO TO 1 507
CONTINUE 508
C NODE K IS IN THIS SUBNETWRK 509
C 510
IF(K.EQ.SOURCE) GO TO 1 511
IF(K.EQ.SINK) GO TO 1 512
NTARC=0 513
DO 2 J=1,ARCS 514
Z=SUBNET(J,TSUBN) 515
IF (S(Z).EQ.K) GO TO 2 516
IF (T(Z).EQ.K) GO TO 2 517
NTARC=NTARC+1 518
TARC(NTARC)=SUBNET(J,TSUBN) 519
CONTINUE 520
C TARC IS THE SUBNETWORK WITHOUT THE ARCS INVOLVING NODE K 521
C IF TARC CONTAINS A PATH FROM THE SOURCE TO THE SINK, THEN NODE 522
C K IS NOT A CUT NODE 523
C OTHERWISE, K IS A CUT NODE 524
C 525
ORIGIN(1)=SOURCE 526
NORIG=1 527
CONTINUE 528
NPOST=0 529
C IF THERE ARE NO ARCS IN THE TARC ARRAY, K IS A CUT NODE 530
C 531
C 532
C 533

```

C IF (INTARC.EQ.0) GO TO 44
 C FIND ALL NODES WHICH COME AFTER AN ORIGIN; PUT THEM IN POST
 DO 4 I=1,NORIG
 DO 5 J=1,NTARC
 Y=ORIGIN(I)
 Z=TARC(J)
 U=S(Z)
 V=T(Z)
 IF (U.NE.Y) GO TO 5
 IF (V.EQ.SINK) GO TO 1

IF WE'VE REACHED THE SINK, NODE K IS NOT A CUT NODE

IF(NPOST.GE.1) GO TO 8
 NPOST=NPOST+1
 POST(NPOST)=V
 GO TO 5
 DO 9 L=1,NPOST

IF THIS TERMINAL NODE IS ALREADY A POST, LET'S IGNORE IT

IF (POST(L).EQ.V) GO TO 5
 CONTINUE
 NPOST=NPOST+1
 POST(NPOST)=V
 CONTINUE
 CONTINUE

IF THERE ARE NOW NO POSTS, NODE K IS A CUT NODE

IF(NPOST.NE.0) GO TO 13
 NCUT=NCUT+1
 RCUT(NCUT)=K
 GO TO 1
 NORIG=NPOST
 DO 14 L=1,NORIG

THESE ARE NOW OUR NEW ORIGINS

ORIGIN(L)=POST(L)

CHECK THE NEW ORIGINS FOR THEIR POSTS

GO TO 11
 CONTINUE
 IF (NCUT.EQ.0) GO TO 32
 NSUB=NSUB+1
 SOURC(NSUB)=SOURCE
 ORIGIN(1)=SOURCE

C NOW WE NEED TO FIND THE COMPONENTS OF THE SERIES SUBNETWORKS
 C THAT ARE SEPARATED BY THE CUT NODES

SUMARC=0
 NORIG=1
 NPOST=0

C ZEROIZE POST ARRAY 594
 C
 C DO 55 I=1,LNODEN 595
 55 POST(I)=0 596
 DO 24 I=1,NORIG 597
 Y=ORIGIN(I) 598
 DO 25 J=1,ARCS 599
 Z=SUBNET(J,TSUBN) 600
 C
 C ALL ARCS BEGINNING AT THIS ORIGIN GO INTO THE NEW SUBNETWORK 601
 C
 C IF (S(Z).NE.Y) GO TO 25 602
 SUMARC=SUMARC+1 603
 SUBNET(SUMARC,NSUB)=Z 604
 C
 C T(Z) WILL BE A NEW ORIGIN IF IT ISN'T A REPEAT OF A CURRENT 605
 C ORIGIN 606
 C
 C CHECK TO SEE IF IT IS A REPEAT 607
 C
 DO 30 K=1,NORIG 608
 X=T(Z) 609
 C
 C IF T(Z) IS A REPEAT OF A CURRENT ORIGIN, LET'S IGNORE IT 610
 C
 IF(X.EQ.ORIGIN(K)) GO TO 25 611
 CONTINUE 612
 30 NPOST=NPOST+1 613
 POST(NPOST)=X 614
 C
 C CHECK TO SEE IF ANY POST IS A CUT NODE 615
 C IF IT IS, REPLACE IT WITH A ZERO 616
 C
 DO 52 W=1,NCUT 617
 D=RCUT(W) 618
 IF (X.NE.D) GO TO 52 619
 POST(NPOST)=0 620
 NPOST=NPOST-1 621
 C
 C THIS CUT NODE IS THE SINK OF THE SUBNETWORK UNDER 622
 C CONSIDERATION AND THE SOURCE OF THE NEXT SUBNETWORK TO BE 623
 C
 C
 C SINKS(NSUB)=D 624
 SOURC(NSUB+1)=D 625
 C
 C CHECK TO SEE IF ANY POSTS ARE REPEATED IN THE POST ARRAY. IF 626
 C THEY ARE, REDUCE THE NUMBER OF POSTS TO WHERE THERE ARE NO 627
 C REPEATS 628
 C
 52 CONTINUE 629
 C
 C IF WE HAVE ONE OR LESS POSTS, THERE ARE NO ADJUSTMENTS OF THE 630
 C POST ARRAY TO BE MADE; LET'S CONTINUE 631
 C
 C
 C IF (NPOST.LE.1) GO TO 25 632
 POSTCK=NPOST-1 633
 DO 7 K=1,POSTCK 634
 IF (POST(K).EQ.POST(NPOST)) GO TO 61 635

7 CONTINUE
GU TO 25
61 POST(NPOST)=0
NPOST=NPOST-1
25 CONTINUE
24 CONTINUE
C

C IF WE HAVE NO POSTS LEFT, WE HAVE FOUND ALL OF THIS SUBNETWORK
C

IF (INPOST.EQ.0) GO TO 34
NORIG=NPOST
DO 28 L=1,NORIG
ORIGIN(L)=POST(L)
GO TO 23
34 NAKCSS(NSUB)=SUMARC
NSUB=NSUB+1
X=SOURC(NSUB)

C
C IF THE SOURCE OF NSUB IS NOT A CUT NODE, WE NEED TO ADJUST NSUB
C AND GO BACK TO THE MAIN PROGRAM FOR THE NEXT STAGE OF THE
C BREAKUP
C

IF (X.EQ.0) GO TO 31
ORIGIN(1)=X
GO TO 39
31 NSUB=NSUB-1
SINKS(NSUB)=SINK
32 TNSUB=NCUT+1
RETURN
END

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

55
LOOP

This short program will determine whether a given network is acyclic or contains loops (cycles). The program examines each node and indicates whether or not the node is part of a loop. If a node is part of a loop, the number of activities in the loop is also indicated.

The basic steps in determining whether or not the INODE-th node is part of a loop are as follows:

- (1) Identify all activities whose terminal node is the INODE-th node. Let A be the set of all origin nodes for these activities.
- (2) If INODE is in A, the INODE-th node is part of a loop and stop.
- (3) Identify all activities whose terminal node is in A. Rerdefine A to be the set of origin nodes for these activities. If A is now empty, stop and the INODE-th node is not part of a loop.
If A is not empty, return to step 2.

Specific Input Instructions:

Card 1. Col. 1-3: The number of activities in the network, Format I3).

Col. 4-6: The largest node number in the network, Format (I3).

For each activity one card with:

Col. 1-3: The activity's origin node number, Format (I3).

Col. 4-6: The activity's terminal node number, Format (I3).

The activities may be inputted in any order. The nodes may be numbered in any manner; however, the program is more efficient if the set of node numbers contains only the numbers 1 through N where N is the number of nodes in the network.

Dimension Restrictions:

This program is written in FORTRAN G. The current dimensions will allow a network with 300 activities and 200 nodes to be considered.

SAMPLE NETWORK

SAMPLE INPUT

6	5
1	2
1	3
4	3
3	2
2	4
4	5

SAMPLE OUTPUT

Activity	Tail	Head
1	1	2
2	1	3
3	4	3
4	3	2
5	2	4
6	4	5

Node 1 is not looped
Node 2 is looped. There are 3 activities in the loop.
Node 3 is looped. There are 3 activities in the loop.
Node 4 is looped. There are 3 activities in the loop.

```

C PROGRAM LOOP
C
C THIS PROGRAM DETERMINES WHETHER THE INPUTTED NETWORK IS ACYCLIC
C OR CONTAINS NODES WHICH ARE PART OF LOOPS (CYCLES)
C
C IMPLICIT INTEGER*2 (A-Z)
C DIMENSION A( 200),B( 200),HEAD(300),TAIL(300)
C
C THE ARRAY DIMENSIONS ARE: A(N),B(N),HEAD(M),TAIL(M)
C WHERE
C           N = THE NUMBER OF NODES IN THE NETWORK
C           M = THE NUMBER OF ACTIVITIES IN THE NETWORK
C
C
1   LOOP=0
2   READ (5,100) N,M
3   100 FORMAT (2I3)
4   READ(5,101) (TAIL(I),HEAD(I),I=1,M)
5   101 FORMAT(2I3)
6   WRITE(6,2001)
7   2001 FORMAT(1H1)
8   WRITE(6,2000) (I,TAIL(I),HEAD(I),I=1,M)
9
10  2000 FORMAT(' ACTIVITY      TAIL      HEAD',//,(4X,I3,7X,I3,6X,I3))
11  WRITE(6,2001)
12
13  C FORM THE 1ST HIERARCHY
14
15  INODE = 0
16  80 HIER = 2
17  INODE = INODE + 1
18  J = 0
19  DO 1 I= 1,M
20  IF(HEAD(I).NE.INODE) GO TO 1
21  J = J+1
22  A(J)=TAIL(I)
23  IF (TAIL(I).EQ.INODE) GO TO 998
24
25  1 CONTINUE
26  IF (J.EQ.0) GO TO 997
27  IA=J
28  J=0
29
30  C FORM THE SUBSEQUENT HIERARCHIES
31
32  102 CONTINUE
33  DO 2 II=1,IA
34  DO 3 I=1,M
35  IF (HEAD(I).NE.A(II)) GO TO 3
36  IF(TAIL(I).EQ.INODE) GO TO 998
37  IF(J.EQ.0) GO TO 40
38  DO 10 K=1,J
39  IF(TAIL(I).EQ.B(K)) GO TO 11
40
41  10 CONTINUE
42  40 CONTINUE
43  J=J+1
44  B(J)=TAIL(I)
45
46  11 CONTINUE
47
48  3 CONTINUE
49  2 CONTINUE
50  IF (J.EQ.0) GO TO 997
51  HIER = HIER+1
52  IA=J
53  J = 0
54  DO 20 I=1,IA
55  A(I)=B(I)
56
57  20
58
59

```

GO TO 102	60
997 CONTINUE	61
WRITE(6,2002) INODE	62
2002 FORMAT(' NODE',I5,' IS NOT LOOPED')	63
IF (INODE.NE.NMM) GO TO 80	64
IF(ILOOP.EQ.1) GO TO 50	65
WRITE(6,1000)	66
1000 FORMAT (' THERE ARE NO LOOPS IN THIS NETWORK')	67
GO TO 999	68
50 WRITE(6,51)	69
51 FORMAT(' THERE ARE NO OTHER LOOPS IN THIS NETWORK')	70
GO TO 999	71
998 WRITE (6,1001) INODE,HIER	72
1001 FORMAT (' NODE ',I5,' IS LOOPED. THERE ARE ',I3,' ACTIVITIES IN T *HE LOOP.')	73
ILOOP=1	74
INDDO=INODE+1	75
IF(INDDO.NE.NMM) GO TO 80	76
999 CONTINUE	77
WRITE(6,2001)	78
STOP	79
END	80
	81

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION unclassified
Texas A&M University		2b. GROUP unclassified
3. REPORT TITLE STATISTICAL PERT: DECOMPOSING A PROJECT NETWORK		
4. DESCRIPTIVE NOTES (Type of report and Inclusive dates) Progress Report		
5. AUTHOR(S) (First name, middle initial, last name) R. L. Sielken, Jr. ■ N. E. Fisher 10		
6. REPORT DATE 11. NOV 1975		7a. TOTAL NO. OF PAGES 37
7. CONTRACT OR GRANT NO. 15. NDD014-68-A-0140		7b. NO. OF REFS 0
8. PROJECT NO. NR047-700 16.		8a. ORIGINATOR'S REPORT NUMBER(S) Number 50 14. THEMIS-TR-50
9. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)		
10. DISTRIBUTION STATEMENT This document has been approved for public release and sale; its distribution is unlimited.		
11. SUPPLEMENTARY NOTES See page following Table of Contents		12. SPONSORING MILITARY ACTIVITY Office of Naval Research
13. ABSTRACT P. THEMIS optimization research program		

347 380 ✓
ATTACHMENT III

Unclassified

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Statistical PERT						
Project Scheduling						
Network Decomposition						

ATTACHMENT III (Continued)

ATTACHMENT III (Continued)

**BASIC DISTRIBUTION LIST FOR
UNCLASSIFIED TECHNICAL REPORTS**

Operations Research Office of Naval Research (Code 434) Arlington, Virginia 22217	Copies	Director Office of Naval Research Branch Office 495 Summer Street Boston, Massachusetts 02210 Attn: Dr. A.L. Powell	Copies
Director, Naval Research Laboratory Attn: Library, Code 2029 (ONRL) Washington, D.C. 20390	2	Director Office of Naval Research Branch Office 219 South Dearborn Street Chicago, Illinois 60604 Attn: Dr. A.R. Dawe	1
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12	Office of Naval Research San Francisco Area Office 760 Market St. - Room 447 San Francisco, California 94103	1
Defense Logistics Studies Information Exchange Army Logistics Management Center Fort Lee, Virginia 23801	1	Technical Library Naval Ordnance Station Indian Head, Maryland 20640	1
Technical Information Center Naval Research Laboratory Washington, D.C. 20390	6	Bureau of Naval Personnel Navy Department Technical Library Washington, D.C. 20370 STOP 82	2
Office of Naval Research New York Area Office 207 West 24th Street New York, New York 10011 Attn: Dr. J. Laderman	1	Library, Code 0212 Naval Postgraduate School Monterey, California 93940	1
Director, Office of Naval Research Branch Office 1030 East Green Street Pasadena, California 91101 Attn: Dr. A.R. Laufer	1	Naval Ordnance Station Louisville, Kentucky 40214	1
Lt. Dennis Johnston - ED3 Manned Spacecraft Center NASA Houston, Texas 77058	1	Library Naval Electronics Laboratory Center San Diego, California 92152	1
Mr. William Dejka Code 360 Naval Electronics Laboratory Center San Diego, California 92132	1	Naval Ship Engineering Center Philadelphia Division Technical Library Philadelphia, Pennsylvania 19112	1
Professor Lucien A. Schmit, Jr. Room 6731, Boelter Hall School of Engrng. & Applied Sci. University of California Los Angeles, California 90024	1	Dr. A.L. Slafkosky Scientific Advisor Commandant Marine Corps (Code AX) Washington, D.C. 20380	1

Copies		Copies	
Purdue University Graduate School of Ind. Admin. Lafayette, Indiana 47907 Attn: Prof. Andrew Whinston	1	Dr. Del Cilmer Naval Weapons Center (Code 607) China Lake, California 93555	1
Department of Economics Tisch Hall - 5th Floor Washington Square, NY Univ. New York City, NY 10003 Attn: Prof. O. Morgenstern	1	Dr. Paul Murrill Project Themis Department of Chemical Engineering Louisiana State University Baton Rouge, Louisiana 70803	1
Dept. of Statistics Syntex Research 3401 Hillview Palo Alto, CA 94304 Attn: Prof. Stuart Bessler	1	Director Army Materials & Mechanics Research Center Attn: Mr. J. Bluhm Watertown, Massachusetts 02172	1
University of California Department of Engineering Los Angeles, California 90024 Attn: Prof. R.R. O'Neill	1	Commanding Officer U.S. Army Ballistic Research Laboratories Attn: Dr. John H. Giese Aberdeen-Proving Ground, Maryland 21005	1
Maritime Transportation Research Board National Academy of Sciences 2101 Constitution Avenue Washington, D.C. 20418 Attn: RADM J.B. Oren USCG (RET)	1	University of Iowa Department of Mechanics and Hydraulics Iowa City, Iowa 52240 Attn: Prof. W.F. Ames	1
Stanford University Department of Operations Research Stanford, California 94305 Attn: Prof. A.F. Veinott, Jr.	1	Office of Naval Research Resident Representative 1105 Guadalupe Lowich Building Austin, Texas 78701 Attn: Mr. Francis M. Lucas	1
Texas A&M Foundation College Station, Texas 77843 Attn: Prof. H.O. Hartley	1	Dr. Jerome Bracken Institute of Defense Analyses 400 Army-Navy Drive Arlington, Virginia 22202	1
Case Western Reserve University Cleveland, Ohio 44106 Attn: Prof. B.V. Dean	1	Professor Richard L. Fox School of Engineering Case Western Reserve University Cleveland, Ohio 44106	1
University of California Center for Research in Management Science Berkeley, California 94720 Attn: Prof. W.I. Zangwill	1	Director, National Security Agency Ft. George G. Meade, Maryland 20755 Attn: Dr. Joseph Blum, R44	1
U.S. Naval Postgraduate School Department of Operations Research and Economics Monterey, California 93940 Attn: Prof. C.R. Jones			

Copies		Copies	
1	Naval Applied Science Laboratory Technical Library, Code 222 Flushing & Washington Avenues Brooklyn, New York 11251	Harvard University Department of Statistics Cambridge, Massachusetts 02139 Attn: Prof. W.G. Cochran	1
1	Naval Undersea Warfare Center 3202 E. Foothill Boulevard Pasadena, California 91107 Technical Library	Columbia University Department of Industrial Engineering New York, New York 10027 Attn: Prof. C. Derman	1
1	University of Chicago Statistical Research Center Chicago, Illinois 60637 Attn: Prof. W. Kruskal	New York University Institute of Mathematical Sciences New York, New York 10453 Attn: Prof. W.M. Hirsch	1
1	Stanford University Department of Statistics Stanford, California 94305 Attn: Prof. G.J. Lieberman	University of North Carolina Statistics Department Chapel Hill, North Carolina 27515 Attn: Prof. W.L. Smith and Prof. M.R. Leadbetter	1
1	Florida State University Department of Statistics Tallahassee, Florida 32306 Attn: Prof. I.R. Savage	Purdue University Division of Mathematical Sciences Lafayette, Indiana 47079 Attn: Prof. H. Rubin	1
1	Princeton University Department of Mathematics Princeton, New Jersey 08540 Attn: Prof. J.W. Tukey	University of California, San Diego Department of Mathematics P.O. Box 109 La Jolla, California 92038 Attn: Prof. M. Rosenblatt	1
1	Stanford University Department of Statistics Stanford, California 94305 Attn: Prof. T.W. Anderson	Florida State University Department of Statistics Tallahassee, Florida 32306 Attn: Prof. R.A. Bradley	1
1	University of California Department of Statistics Berkeley, California 94720 Attn: Prof. P.J. Bickel	New York University Department of Industrial Engineering & Operations Research Bronx, New York 10453 Attn: Prof. J.H.K. Kao	1
1	University of Washington Department of Mathematics Seattle, Washington 98105 Attn: Prof. Z.W. Birnbaum	University of Wisconsin Department of Statistics Madison, Wisconsin 53706 Attn: Prof. G.E.P. Box	1
1	Cornell University Department of Mathematics White Hall Ithaca, New York 14850 Attn: Prof. J. Kiefer		

Logistics Research Project The George Washington University 707 - 22nd Street, N.W. Washington, D. C. 20037 Attn: Dr. W. H. Marlow	Copies 1	The University of Michigan Department of Mathematics, W.E. Ann Arbor, Michigan 48104 Attn: Prof. R.M. Thrall	Copies 1
International Business Machines Corporation P.O. Box 218, Lamb Estate, Yorktown Heights, New York 10598 Attn: Dr. Alan Hoffman	1	Princeton University Department of Mathematics Princeton, New Jersey 08540 Attn: Prof. A.W. Tucker	1
University of California Management Sciences Research Project Los Angeles, California 90024 Attn: Dr. J.R. Jackson	1	Case Western Reserve University Systems Research Center Cleveland, Ohio 44106 Attn: Prof. M. Mesarovic	1
Harvard University Department of Economics Cambridge, Massachusetts 02138 Attn: Prof. K.J. Arrow	1	University of Texas Department of Mathematics Austin, Texas 78712 Attn: Dr. A. Charnes	1
Cowles Commission for Research in Economics Yale University New Haven, Connecticut 06520 Attn: Prof. Martin Shubik	1	Stanford University Department of Operations Research Stanford, California 94305 Attn: Dr. D.L. Iglehart	1
Carnegie-Mellon University Graduate School of Industrial Administration Pittsburgh, Pennsylvania 15213 Attn: Prof. G. Thompson	1	University of Delaware Department of Mathematics Newark, Delaware 19711 Attn: Prof. R. Remage, Jr.	1
University of California Department of Economics Berkeley, California 94720 Attn: Prof. R. Radner	1	Stanford University Department of Operations Research Stanford, California 94305 Attn: Prof. F.S. Hillier	1
University of California Operations Research Center Institute of Engineering Research Berkeley, California 94720 Attn: Prof. D. Gale	1	Dr. Claude-Alain Burdet Asst. Prof. Industrial Admin. Carnegie-Mellon University Pittsburgh, Pennsylvania 15213	1
University of California Graduate School of Business Administration Los Angeles, California 90024 Attn: Prof. J. Marschak	1	Stanford University Department of Operations Research Stanford, California 94305 Attn: Prof. G. B. Dantzig	1
		Chief of Naval Research (Code 436) Department of the Navy Arlington, Va. 22217	1
		Science Librarian Kresge Library Oakland University Rochester, Michigan 48063	1

Copies	Copies		
University of Connecticut Department of Statistics Storrs, Connecticut 06268 Attn: Prof. H.O. Posten	1	Professor Geoffrey S. Watson, Chairman Department of Statistics Princeton University Fine Hall Princeton, N. J. 08540	1
Prof. Emanuel Parzen Statistics Department State Univ. New York at Buffalo 4230 Ridge Lea Road Amherst, New York 14226	1	Stanford University Department of Mathematics Stanford, California 94305 Attn: Prof. S. Karlin	1
ARCON Corporation Lakeside Office Park North Avenue at Route 128 Wakefield, Massachusetts 01880 Attn: Dr. A. Albert	1	University of Sheffield Department of Probability and Statistics Sheffield 10, ENGLAND Attn: Prof. J. Gani	1
Stanford University Department of Statistics Stanford, California 94305 Attn: Prof. H. Chernoff	1	University of California Operations Research Center Institute of Engineering Research Berkeley, California 94720 Attn: Prof. R.E. Barlow	1
Yale University Department of Statistics New Haven, Connecticut 06520 Attn: Prof. L.A. Savage	1	Stanford University Department of Statistics Stanford, California 94305 Attn: Prof. H. Solomon	1
Rutgers-The State University Statistics Center New Brunswick, New Jersey 08903 Attn: Prof. H.F. Dodge	1	Applied Mathematics Laboratory Naval Ships Research Development Center Washington, D.C. 20007	1
Yale University Department of Statistics New Haven, Connecticut 06520 Attn: Prof. F. J. Anscombe	1	Systems Analysis Division Room E2760, Pentagon Washington, D.C. 20350 Attn: Mr. A.S. Rhodes, Op-964	1
Purdue University Division of Mathematical Sciences Lafayette, Indiana 47907 Attn: Prof. S.S. Gupta	1	Department of Statistics University of North Carolina Chapel Hill, North Carolina 27515 Attn: Prof. M.R. Leadbetter	1
Cornell University Department of Industrial Engineering Ithaca, New York 19850 Attn: Prof. R.E. Bechhofer	1	Southern Methodist University Department of Statistics Dallas, Texas 75222 Attn: Prof. D.B. Owen	1
Mrs. Barbara Eaudi Univ. Program Coordinator, B.E. NASA Johnson Space Center Houston, TX 77058	1	Israel Institute of Technology Technion Haifa, ISRAEL Attn: Prof. P. Naor	1

Office of Gifts & Exchanges Copies
Library
Texas A&M University
College Station, Texas 77843 2

Archives
Texas A&M University
College Station, TX 77843 1