1. The Real Numbers 1.1. REALS 1.1.1. Prerequisites
1.1.2. Comparison 1.1.3. Bounds 1.2. CARDINALITY 1.3. TOPOLOGY 1.3.1. Points 1.3.2. Open and Closed Sets 1.3.3. Compactness 1.4.1. Reynold
1.4.1. Bounded 1.4.2. Cauchy 1.5. Series 2. Real Functions 2.1. Limits 2.2. Continuity 2.2.1. Composition 2.2.2. Results 3. Calculus
3.1. Derivatives 3.1.1. Differentiation 3.1.2. Function Character 3.1.3. The Mean Value Theorems 3.2. Function Graphs 3.2.1. Asymptotes 3.2.2. Convexity 3.3. Taylor's Theorem
3.3.1. Function Order 3.3.2. Taylor Series 3.4. INTEGRALS 1. The Real Numbers 1.1. REALS 1.1.1. Prerequisites
Theorem 1.1.1 (Induction) If $s \in \mathbb{N}$ such that (i) $1 \in S$ and (ii) when $n \in S$ it follows that $n + 1 \in S$ it follows that $S = \mathbb{N}$. Definition 1.1.2 (Injective/Surjective/Bijective) $f: X \to Y$ is injective (or one-to-one) if $x_* \neq x_* \Rightarrow f(x_*) \neq f(x_*)$ or
 f: X → Y is injective (or one-to-one) if x₁ ≠ x₂ ⇒ f(x₁) ≠ f(x₂) or equivalently if f(x₁) = f(x₂) ⇒ x₁ = x₂. f is surjective if ∀y ∃x: f(x) = y. f is bijective if is both injective and surjective or equivalently if each y is mapped to exactly one x. 1.1.2. Comparison Definition 1.1.3 (Equality)
$a = b \iff (\forall \varepsilon > 0 \Rightarrow a - b < \varepsilon)$ $\textbf{Theorem 1.1.4 (Triangle Inequalities)}$ $(i) a + b \leq a + b $ $(ii) a - b \leq a - c + c - b $ $(iii) a - b \geq a - b $ $\textbf{The reverse triangle inequality (iii) is seldom used.}$
 1.1.3. Bounds Axiom 1.1.5 (Supremum Property or Axiom of Completeness) Every bounded, non-empty set of real numbers has a least upper bound. i) Note
The same does not apply for the rationals. Definition 1.1.6 (Least Upper Bound) Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq \mathbb{R}$. Then, $s = \sup A \iff \forall \varepsilon > 0 \; \exists a \in A : s - \varepsilon < a.$ 1.2. CARDINALITY
Definition 1.2.1 (Cardinality) A has the same cardinality as B if there exists a bijective $f: A \to B$. Definition 1.2.2 (Countable/Uncountable) A is countable if $\mathbb{N} \sim A$. Otherwise, A is uncountable if there are infinite elements or finite if there are finite elements.
Theorem 1.2.3 (Countability of \mathbb{Q} , \mathbb{R}) $\mathbb{Q} \text{ is countable.}$ $Proof. \text{ Let } A_1 = \{0\} \text{ and let}$ $A_n = \{\pm p/q : p, q \in \mathbb{N}_+, \gcd(p,q) = 1, p+q = n\}$ for all $n \geq 2$. Each A_n is finite and every rational numbers appears in exactly one set.
Proof. Cantor's diagonalization method. I is uncountable. Proof. I = R \ Q where Q is countable. □ Theorem 1.2.4 (Density of Q in R) (i) $\forall a < b \in \mathbb{R} \ \exists r \in \mathbb{Q} : a < r < b$ (ii) $\forall y \in \mathbb{R} \ \exists (r_n) \in \mathbb{Q} : (r_n) \to y$
1.3. TOPOLOGY 1.3.1. Points Definition 1.3.1 (Limit Point) $x ext{ is a } limit \ point \ of \ A ext{ if every } V_{\varepsilon}(x) ext{ intersects } A ext{ at some point other than } x.$
Theorem 1.3.2 (Sequential Limit Point) x is a limit point of A if $x = \lim a_n$ for some $(a_n) \subseteq A : a_n \neq x \ \forall n \in \mathbb{N}$. Theorem 1.3.3 (Nested Interval Property) The intervals $\mathbb{R} \supseteq I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ all contain a point $a = \bigcap_{n=1}^{\infty} I_n$. 1.3.2. Open and Closed Sets
Definition 1.3.4 (Open/Closed Set) $A \subseteq \mathbb{R} \text{ is } open \text{ if } \forall a \in A \ \exists V_{\varepsilon}(a) \subseteq A \text{ or equivalently if its complement is closed.}$ $A \subseteq \mathbb{R} \text{ is } closed \text{ if it contains its limit points or equivalently if its complement is open.}$ Theorem 1.3.5 (Clopen Sets)
 R and Ø are clopen (both opened and closed). Theorem 1.3.6 (Unions/Intersections) The union of open (closed) sets is open (closed). The intersection of finitely many open (closed) sets is open (closed). 1.3.3. Compactness
Definition 1.3.7 (Compact) A set K in a topological space is $compact$ if every open cover has a finite subcover. Theorem 1.3.8 (Heine–Borel) A set $K \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.
(i) Note Compactness is like a generalization of closed intervals. 1.4. SEQUENCES Definition 1.4.1 (Sequence) A sequence is a function whose domain is N.
Definition 1.4.2 (Convergence)
We write this $\lim_{n\to\infty} a_n = \lim a_n = a$ or $a_n \to a$. Example. Template of a typical convergence proof: (i) Let $\varepsilon > 0$ be arbitrary. (ii) Propose an $N \in \mathbb{N}$ (found before writing the proof). (iii) Assume $n \geq N$. (iv) Show that $ a_n - a < \varepsilon$. Theorem 1.4.3 (Uniqueness of Limits)
The limit of a sequence, if it exists, is unique. 1.4.1. Bounded Definition 1.4.4 (Bounded) A sequence is bounded if $\exists M>0: a_n < M \ \forall n\in \mathbb{N}.$
Theorem 1.4.5 (Convergent) Every convergent series is bounded. If a sequence is monotone and bounded it converges. Subsequences of a convergent series converge to the same limit. Theorem 1.4.6 (Bolzano-Weierstrass) Every bounded sequence contains a convergent subsequence.
1.4.2. Cauchy Definition 1.4.7 (Cauchy Sequence) A sequence (a_n) is a Cauchy sequence if $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : m, n \geq N \Longrightarrow a_n - a_m < \varepsilon$. Theorem 1.4.8 (Cauchy Criterion) A sequence converges if and only if it is a Cauchy sequence
A sequence converges if and only if it is a Cauchy sequence. 1.5. SERIES Definition 1.5.1 (Infinite Series) Let $(a_j)_{j=0}^{\infty}$ and let $(s_n)_{n=0}^{\infty}$. The sum of the infinite series is defined as $\sum_{j=0}^{\infty} a_j = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{j=0}^n a_j.$
If $a_j \ge 0$ for every j we say that the series is positive. ① Caution Beware of treating infinite series like elementary algebra, e.g., by rearranging terms. Theorem 1.4.5 (Convergent)
Every convergent series is bounded. If a sequence is monotone and bounded it converges. Subsequences of a convergent series converge to the same limit. Theorem 1.5.2 (Cauchy Criterion for Series) The series $\sum_{k=0}^{\infty} a_k$ converges if and only if
$\forall \varepsilon>0 \;\exists N: n>m>N \Longrightarrow \left a_m+a_{m+1}+\cdots+a_{n-1}+a_n\right <\varepsilon.$ Corollary 1.5.2.1 (Series Term Test) If $\sum_{k=1}^\infty a_k$ converges, then $a_k\to 0$. However, the reverse implication is false. Theorem 1.5.3
The series $\sum_{j=1}^{\infty} 1/j$ is divergent. Proof. Theorem 1.5.4 The series $\sum_{j=1}^{\infty} 1/j^p$ converges if and only if $p>1$. Proof.
Theorem 1.5.5 (Ratio Test) Let (a_n) be a sequence of positive terms and define $L=\limsup_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right .$
Then: (i) If $L < 1$, the series $\sum_{n=1}^{\infty} a_n$ converges. (ii) If $L > 1$ (including $L = \infty$), the series diverges. (iii) If $L = 1$, the test is inconclusive. Theorem 1.5.6 (Cauchy Condensation Test) Let (a_n) be a decreasing sequence of non-negative real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.
Theorem 1.5.7 Let $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} b_j$ be positive series with terms such that $\lim_{j\to\infty} \frac{a_j}{b_j} = K$ for some $K\neq 0$. Then, $\sum_{j=0}^{\infty} a_j$ converges if and only if $\sum_{j=0}^{\infty} b_j$ converges.
Theorem 1.5.8 (Comparison Test) Let (a_k) and (b_k) satisfy $0 \le a_k \le b_k$. Then, (i) $\sum_{k=1}^{\infty} (a_k)$ converges if $\sum_{k=1}^{\infty} (b_k)$ converges. (ii) $\sum_{k=1}^{\infty} (b_k)$ diverges if $\sum_{k=1}^{\infty} (a_k)$ diverges. Theorem 1.5.9 (Alternating Series Test)
Let (a_n) satisfy (i) $a_1 \geq a_2 \geq \cdots \geq a_n \geq a_{n+1} \geq \cdots$ and (ii) $(a_n) \to 0$. Then, $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges. Definition 1.5.10 (Absolutely Convergent) A series $\sum_{j=0}^{\infty} a_j$ is absolutely convergent if $\sum_{j=0}^{\infty} a_j $ is convergent.
Theorem 1.5.11 If a series is absolutely convergent then it is convergent. Theorem 1.5.12 (Geometric Series) If $ x < 1$, then $\sum_{i=1}^{\infty} r^{i} = \frac{1}{1-1}$
$\sum_{j=0}^{\infty} x^j = \frac{1}{1-x}$ since $s_n = \sum_{j=0}^n x^j = \frac{1-x^{n+1}}{1-x}.$ 2. Real Functions
2.1. LIMITS Theorem 2.1.1 (Function Limit) Given $f: A \to \mathbb{R}$ with the limit point c , (i) $\lim_{x \to c} f(x) = L$ is equivalent to (ii) if $\forall (x_n) \subseteq A: (x_n \neq c \text{ and } x_n \to c)$ it follows that $f(x_n) \to L$.
In the $\varepsilon\delta$ -definition of limits, the additional restriction that $0< x-a $ is just a way to say $x\neq c$. Definition 2.1.2 (Infinite Limit) Given a limit point $c\in D_f$, we say that $\lim_{x\to c} f(x)=\infty$ if $\forall M\;\exists \delta>0: 0< x-c <\delta\Longrightarrow f(x)\geq M$.
2.2. CONTINUITY Theorem 2.2.1 (Continuity) The following are equivalent: (i) $f: A \to \mathbb{R}$ is continuous at $c \in \mathbb{R}$. (ii) $\forall \varepsilon > 0 \; \exists \delta > 0: x - c < \delta \Longrightarrow f(x) - f(c) < \varepsilon$, where $x \in A$. (iii) $\forall V_{\varepsilon}(f(c)) \; \exists V_{\delta}(c): x \in V_{\delta} \cap A \Longrightarrow f(x) \in V_{\varepsilon}$ (iv) $x_n \to c$, where $(x_n) \subseteq A$, implies $f(x_n) \to f(c)$.
If c is a limit point of A : (v) $\lim_{x\to c} f(x) = f(c)$, also written $\lim_{h\to 0} f(c+h) - f(c) = 0$. Note that (ii) defines (i). Mostly (v) is used in practice. Theorem 2.2.2 (Isolated Continuity) All functions are continuous at isolated points.
Theorem 2.2.3 (Dirichlet Discontinuous) The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 1$ if $x \in \mathbb{Q}$ and $f(x) = 0$ if $x \in \mathbb{I}$ is discontinuous everywhere. 2.2.1. Composition Theorem 2.2.4 (Composition) Given $f: A \to B$ and $g: B \to \mathbb{R}$ with $f(A) \subseteq B$, if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c .
Theorem 2.2.5 (Composition Limit) If f is continuous at y and $\lim_{x\to c} g(x) = y$, then $\lim_{x\to c} f(g(x)) = f\left(\lim_{x\to c} g(x)\right) = f(y).$ 2.2.2. Results
Theorem 2.2.6 (Intermediate Value) If f is continuous on $[a,b]$, then for any y between $f(a)$ and $f(b)$, there exists some $c \in (a,b)$ such that $f(c) = y$. Theorem 2.2.7 (Weierstrass Extreme Value) If f is continuous on the compact set K , then f attains a maximum and a minimum value on K .
3. Calculus 3.1. Derivatives 3.1.1. Differentiation Theorem 3.1.1 (Chain Rule) Let $f: X \to Y$ and $g: Y \to \mathbb{R}$. If f is differentiable at $c \in X$ and g is
differentiable at $f(c) \in Y$, then $g \circ f$ is differentiable at c with $ (g \circ f)'(c) = g'(f(c))f'(c). $ Theorem 3.1.2 (Basic Derivatives) $ \frac{\mathrm{d}}{\mathrm{d}x}(\arcsin x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x $ $ \frac{\mathrm{d}}{\mathrm{d}x}(\arccos x) = -\frac{1}{\sqrt{1-x^2}} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x $
$\frac{\mathrm{d}x}{\mathrm{d}x}(\arctan x) = \frac{1}{1+x^2} \qquad \frac{\mathrm{d}x}{\mathrm{d}x}(\tan x) = \frac{1}{\cos^2 x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(\arctan x) = -\frac{1}{1+x^2} \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\ln x) = \frac{1}{x}$ $\frac{\mathrm{d}}{\mathrm{d}x}(x^a) = ax^{a-1} (a \neq 0) \qquad (f^{-1})'(y) = -\frac{1}{f'(x)} (f'(x) \neq 0)$
Theorem 3.1.3 (L'Hôpital's Rule) Let $f(x)$ and $g(x)$ be defined and, with the possible exception of at the limit point c , differentiable. If (i) $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ or $\pm \infty$ and (ii) $g'(x) \neq 0$ for all $x \neq c$, then $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L \implies \lim_{x\to c} \frac{f(x)}{g(x)} = L.$
Proof of the zero case. Assume the limits are zero. Let the functions be differentiable on the open interval (c, x) . Then, rewriting and applying Theorem 3.1.9 gives $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x \to c} \frac{f'(p)}{g'(p)} = \lim_{p \to c} \frac{f'(p)}{g'(p)}$
for some p between c and x . \Box Proof of the infinity case. The proof is too complicated. \Box
Proof of the infinity case. The proof is too complicated. Important This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum)
Proof of the infinity case. The proof is too complicated. Important This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum) Let $f:(a,b)\to\mathbb{R}$ be differentiable at the local extremum $c\in(a,b)$. Then $f'(x)=0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 3.1.5 (Darboux's) If f is differentiable on $[a,b]$ and if g lies strictly between $f'(a)$ and
 Proof of the infinity case. The proof is too complicated. Important This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum) Let f: (a, b) → ℝ be differentiable at the local extremum c ∈ (a, b). Then f'(x) = 0. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 3.1.5 (Darboux's) If f is differentiable on [a, b] and if y lies strictly between f'(a) and f'(b), then ∃c ∈ (a, b) : f'(c) = y. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that f'(a) < y < f'(b). Let g(x) = f(x) - yx with g'(x) = f'(x) - y. Note that f'(c) = y if g'(c) = 0 for some c ∈ (a, b). Theorem 2.2.7 states that g must have a minimum point c ∈ [a, b]. More
Proof of the infinity case. The proof is too complicated. Important This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum) Let $f: (a,b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a,b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 3.1.5 (Darboux's) If f is differentiable on $[a,b]$ and if g lies strictly between $f'(a)$ and $f'(b)$, then $\exists c \in (a,b): f'(c) = g$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that $f'(a) < g < f'(b)$. Let $g(x) = f(x) - yx$ with $g'(x) = f'(x) - y$. Note that $f'(c) = g$ if $g'(c) = 0$ for some $c \in (a,b)$. Theorem 2.2.7 states that g must have a minimum point $c \in [a,b]$. More precisely $c \in (a,b)$ since, from the assumption, $g'(a) < 0$ and $g'(b) > 0$. Furthermore, $g'(c) = 0$ according to Theorem 3.1.4.
Proof of the infinity case. The proof is too complicated. This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum) Let $f: (a,b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a,b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 3.1.5 (Darboux's) If f is differentiable on $[a,b]$ and if g lies strictly between $f'(a)$ and $f'(b)$, then $\exists c \in (a,b): f'(c) = y$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that $f'(a) < g < f'(b)$. Let $g(x) = f(x) - yx$ with $g'(x) = f'(x) - y$. Note that $f'(c) = g$ if $g'(c) = 0$ for some $c \in (a,b)$. Theorem 2.2.7 states that g must have a minimum point $c \in [a,b]$. More precisely $c \in (a,b)$ since, from the assumption, $g'(a) < 0$ and $g'(b) > 0$. Furthermore, $g'(c) = 0$ according to Theorem 3.1.4. Theorem 3.1.6 (Newton's Method) Find roots to a differentiable function $f(x)$. Given x_n with the coordinates $(x_n, f(x_n))$, the tangent line is given by $T(x) = f'(x_n)(x - x_n) + f(x_n)$ and intersects the x -axis at $T(x_{n+1}) = 0 \iff x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$ The method fails if it iterates endlessly or $f'(x_n) = 0$. 3.1.3. The Mean Value Theorems Let f and g be continuous on $[a,b]$ and differentiable on (a,b) .
Proof of the infinity case. The proof is too complicated. Differential Important This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum) Let $f: (a,b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a,b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 3.1.5 (Darboux's) If f is differentiable on $[a,b]$ and if g lies strictly between $f'(a)$ and $f'(b)$, then $\exists c \in (a,b): f'(c) = g$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that $f'(a) < g < f'(b)$. Let $g(x) = f(x) - yx$ with $g'(x) = f'(x) - y$. Note that $f'(c) = g$ if $g'(c) = 0$ for some $c \in (a,b)$. Theorem 2.2.7 states that g must have a minimum point $c \in [a,b]$. More precisely $c \in (a,b)$ since, from the assumption, $g'(a) < 0$ and $g'(b) > 0$. Furthermore, $g'(c) = 0$ according to Theorem 3.1.4. Theorem 3.1.6 (Newton's Method) Find roots to a differentiable function $f(x)$. Given x_n with the coordinates $(x_n, f(x_n))$, the tangent line is given by $T(x) = f'(x_n)(x - x_n) + f(x_n)$ and intersects the x -axis at $T(x_{n+1}) = 0 \iff x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$ The method fails if it iterates endlessly or $f'(x_n) = 0$.
Proof of the infinity case. The proof is too complicated. □ Important This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum) Let $f: (a,b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a,b)$. Then $f'(x) = 0$. However, note that a zero-derivative point may also be a stationary point of inflection. Theorem 3.1.5 (Darboux's) If f is differentiable on $[a,b]$ and if g lies strictly between $f'(a)$ and $f'(b)$, then $\exists c \in (a,b) : f'(c) = y$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IVP). Proof. Assume that $f'(a) < y < f'(b)$. Let $g(x) = f(x) - yx$ with $g'(x) = f'(x) - y$. Note that $f'(c) = y$ if $g'(c) = 0$ for some $c \in (a,b)$. Theorem 2.2.7 states that g must have a minimum point $c \in [a,b]$. More precisely $c \in (a,b)$ since, from the assumption, $g'(a) < 0$ and $g'(b) > 0$. Furthermore, $g'(c) = 0$ according to Theorem 3.1.4. Theorem 3.1.6 (Newton's Method) Find roots to a differentiable function $f(x)$. Given x_n with the coordinates $(x_n, f(x_n))$, the tangent line is given by $T(x) = f'(x_n)(x - x_n) + f(x_n)$ and intersects the x -axis at $T(x_{n+1}) = 0 \iff x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$ The method fails if it iterates endlessly or $f'(x_n) = 0$. 3.1.3. The Mean Value Theorems Let f and g be continuous on $[a,b]$ and differentiable on (a,b) . Theorem 3.1.7 (Rolle's) $f(a) = f(b) \Longrightarrow \exists c \in (a,b) : f'(c) = 0$ Proof. $f(x)$ is bounded and $f'(x) = 0$ at its extreme points.
Proof of the infinity case. The proof is too complicated.
Proof of the infinity case. The proof is too complicated.
Proof of the infurity case. The proof is too complicated.
Proof of the infinity case. The proof is too complicated.
Proof of the infinity case. The proof is too complicated. Important
Theorem 3.1.4 (Remarks or interior Extremum) 1.1. If $(x,b) = 0$ is included into an equivalence, so there may easist some other solution if this method falls. 3.1.2 Function Character Theorem 3.1.4 (Remarks or Interior Extremum) 1.4. If $(x,b) = 0$ is the inferential does the boad coordinate $x \in (a,b)$. Then $f'(x) = 0$. 1.6. However, note that a zero-derivative point may also be a studionary point of offer into. Theorem 3.1.5 (Dauboun's) if f is differentiable on (a,b) and $f'(y)$ its variety between $f'(a)$ and $f'(b)$; then $b \in (a,b)$; $f'(c) = y$. In other words, if f is differentiable on an interval, then f' satisfies the intermediate b on the rows $f'(a) = y$. In other words, if f is differentiable on an interval, then f' satisfies the intermediate b of $f'(a) = y \in f'(b)$. 1.4. If $g(x) = \{(a,b) : f(a) = y \in f'(b) = y$. Note that $f'(c) = y$ if $g'(c) = 0$ for some $c \in (a,b)$ is the samplion, $g'(a) < 0$ and $g'(b) > 0$. Furthermore, $g'(c) = 0$ according to Theorem 3.1.4. Theorem 3.1.6 (Novelands Method) Find roots to a differentiable theorem $f(x)$. Given x_a with the coordinate $(x_a, f(x_a))$, the tangent line is given by $f'(x) = f'(x_a) = f'(x_a)$. The method falls if it iterates endicasty or $f'(x_a) = 0$. 3.1.3. The Mean Value Theorems Let f and g be continuous on $[a, b]$ and differentiable on (a,b) . Theorem 3.1.7 (Rolle's) $f(x) = f(x) : f'(x) = f(x) = f(x) = f(x)$ $f'(x) = f(x) : f'(x) = f(x) = f(x) = f(x)$ Theorem 3.1.8 (Mean Value) $g = (a_{1},b) : f'(c) = f(b) = f(c)$ $g = (a_{1},b) : g'(c) = g(b) = g(c) = g(b) = g(c)$ Theorem 3.1.8 (Mean Value) $g = (a_{1},b) : f'(c) = f(b) = f(c)$ $g = (a_{1},b) : g'(c) = g(b) = g(c) = g(b) = g(c)$ Theorem 3.1.9 (Generalized Mean Value) $g = (a_{1},b) : g'(c) = g(b) = g(c) = g(b) = g(c)$ Theorem 3.1.9 (Generalized Mean Value) $g = (a_{1},b) : g'(c) : g'(c) = g(b) = g(c) : g'(c) : g(c) = g(c) : g'(c) : g(c) : g(c) : g'(c) : g(c) : g'(c) $
Proof of the infinity case. The proof is too complicated. [] Important This is only an implication, not an equivalence, so there may exist some other solution if this method fails. 3.1.2. Function Character Theorem 3.1.4 (Fermat's or Interior Extremum) Let $f: (a,b) \to \mathbb{R}$ be differentiable at the local extremum $c \in (a,b)$. Then $f(x) = 0$. However, note that a zero-derivative point may also be a stationary point of indection. Theorem 3.1.5 (Darboux's) If f is differentiable on $[a,b]$ and if g his shirtly between $f'(a)$ and $f'(b)$, then $b \in (a,b)$; $f'(c) = g$. In other words, if f is differentiable on an interval, then f' satisfies the Intermediate Value Property (IP). Proof, Assume that $f'(a) < g < f'(b)$. Let $g(x) = f(x) = y = y \sin b g'(x) = f'(x) - y$. Note that $f'(c) = y$ if $g'(c) = 0$ for some $c \in (a,b)$. Theorem 2.2.2 states that g must have a minimum point $c = [a,b]$. More root $g(x) = (a,b)$ since, from the assumption, $g'(c) < 0$ and $g'(b) > 0$. Furthermore, $g'(c) = 0$ according to Theorem 3.1.4. Theorem 3.1.6 (Newton's Mothod) Find roots to a differentiable function $f(a)$. Given x_a , with the coordinates $(x_a, f(x_a))$, the tategral $f(a)$ is given by $f'(x) = 0$ and $f'(b) > 0$. The sum of the coordinates $f(a) = f(a) = f(a)$. The method falls if it iterates endlessly or $f'(x_a) = 0$. 3.1.3. The Mean Value Theorems Let $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$. Theorem 3.1.8 (Mean Value) $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ $f''(a) = f''(a) = f''(a) = f''(a) = f''(a) = f''(a)$ f
Proof of the adjustly occu. The proof is two complements. \Box \Box Important. \Box \Box Important. \Box \Box
Proof of the Popisity case. The proof is few computation.]
From (a) St. Selecty cases. The proof is fore complicated. D. Important This is only as included on, not so explorations, so there can exist some open deficient of this various of all the property of the control of the property of the
Frod of the tanking sense. The proof is two complexed. D. Important The is may an implication, and at explanation, with the stage must some states which, it like mattered like. 3.1.2. Function Character Theorem 3.1.1 (Weinrah vor Interior Extraturum) Let $f:(n, h) = b$ be differentiable with the son extrement $a \in (n, h)$. Then $f:(n) = b$ be differentiable with may also be a standard plotted in the standard $f(h)$, then $f:(n) = b$. Theorem 3.1.5 (Problems's) Theorem 3.1.5 (Problems's) It is differentiable in $b_i^{(h)}$ and $f(h)$, then $f:(n) = b$ is rather worth $f:(n) = b$. Frod, American the $f:(n) < y \in f(h)$. It is $g(h) = f(h) = y$ is the standard on an internal, then $f'(h) = a^{(h)}$ is rather worth $f(h) = b^{(h)}$. It is $g(h) = f(h) = y$ is $g(h) = f(h) = b$. Frod, American the $f(h) = f(h) = f(h) = b$. Frod, Problems $f(h) = f(h) = f(h) = f(h) = b$. It is $g(h) = f(h) = f(h) = f(h) = f(h) = b$. From the standard $f(h) = f(h) = f(h) = b$. Theorem 3.1.5 (Newton's Mechand) Find count to a differentiable function $f(h) = f(h) $
Disspersion
Story of the depths case. The provide are complianted. D.
Processor A. December De
Proop of the Angeles content to provide the compliance of the proposate
Proof of the emission contributions of C is the proof of the emission of the method falls. 5.1.2 For extination Characteristic way are applied to the emission of the method falls. 5.1.2 For extination Characteristic way are applied to the emission of the fall of the emission of th
Post of the explanation of the proof is not considerated Comparison of the explanation of the explana
Post of the Section of the Complication
Society that a plane is a manifest to the complete of a plane is a plane is a manifest to the complete of a plane is a plane is a manifest to the complete of a plane is a plan