Solving nonlinear equations

1.2: Interval Bisection

MA385 - Numerical Analysis

September 2025

0. Outline

- 1 Bisection
- 2 The bisection method works

- 3 Improving upon bisection
- 4 Exercises

For more details, see Section 1.6 (The Bisection Method) of Süli and Mayers, *An Introduction to Numerical Analysis*

The most elementary algorithm is the "Bisection Method" (also known as "Interval Bisection"). Suppose that we know that f changes sign on the interval $[a, b] = [x_0, x_1]$ and, thus, f(x) = 0 has a solution, τ , in [a, b]. Proceed as follows

- 1. Set x_2 to be the midpoint of the interval $[x_0, x_1]$.
- 2. Choose one of the sub-intervals $[x_0, x_2]$ and $[x_2, x_1]$ where f change sign;
- 3. Repeat Steps 1–2 on that sub-interval, until f is sufficiently small at the end points of the interval.

This may be expressed more precisely using some pseudocode.

The Bisection Algorithm

```
Set eps to be the stopping criterion.
If |f(a)| \leq eps, return a. Exit.
If |f(b)| \leq eps, return b. Exit.
Set x_I = a and x_R = b.
Set k=1
while (|f(x_k)| > eps)
    x_{k+1} = (x_l + x_R)/2:
    if (f(x_l)f(x_{k+1}) < 0)
        x_R = x_{k+1};
    else
        x_l = x_{k+1}
    end if:
    k = k + 1
end while;
```

Example 1

Find an estimate for $\sqrt{2}$ that is correct to 6 decimal places. **Solution:** Use bisection to solve $f(x) := x^2 - 2 = 0$ on the interval [0, 2].

Example 1

Find an estimate for $\sqrt{2}$ that is correct to 6 decimal places. **Solution:** Use bisection to solve $f(x) := x^2 - 2 = 0$ on the interval [0, 2].

k	× _k	$ f(x_k) $	$ \tau-x_k $
0	0.000000	2.00e+00	1.41e+00
1	2.000000	2.00e+00	5.86e-01
2	1.000000	1.00e+00	4.14e-01
3	1.500000	2.50e-01	8.58e-02
4	1.250000	4.38e-01	1.64e-01
5	1.375000	1.09e-01	3.92e-02
6	1.437500	6.64e-02	2.33e-02
7	1.406250	2.25e-02	7.96e-03
8	1.421875	2.17e-02	7.66e-03
9	1.414062	4.27e-04	1.51e-04
:	:	:	:
22	1.414214	1.62e-06	5.72e-07
23	1.414214	2.69e-07	9.50e-08

2. The bisection method works

One of the main advantages of the Bisection method is that it will always work, providing only that f is continuous on [a, b], and that the solution exists. Furthermore, we can prove...

Theorem 2.1

Let x_k be the kth iteration generated by the Bisection Method. Then

$$|\tau - x_k| \le \left(\frac{1}{2}\right)^{k-1}|b-a|$$
, for $k = 2, 3, 4, ...$

Proof: Since
$$a \le T \le b$$
, so $x_0 \le T \le x_1$
So $|T-x_1| \le |x_1-x_0| = |b-a|$.
Since x_2 is the midpoint of $x_0 \in x_1$, so $|T-x_2| \le \frac{b}{2}|b-a|$.

2. The bisection method works

Simlorly
$$|T-x_3| \leq |x_1-x_2|$$

$$\leq |x_2| |x_1-x_2|$$

$$\leq |x_2| |x_1-x_2|$$

$$\leq |x_2| |x_1-x_2|$$

$$\leq |x_2| |x_1-x_2|$$
And (by induction)
$$|T-x_{K}| \leq |x_2| |x_1-x_2|$$

$$|T-x_{K}| \leq |x_2| |x_1-x_2|$$
Note: as $K \to \infty$, so $(|x_2|^k \to 0)$
So $|T-x_{K}| \to 0$ is $x_{K} \to T$.

3. Improving upon bisection

A disadvantage of bisection is that it is not particularly efficient. So our next goal will be to derive better methods, particularly the **Secant Method** and **Newton's method**. We also have to come up with some way of expressing what we mean by "better".

4. Exercises

Exercise 1.1

Suppose we want to find $\tau \in [a,b]$ such that $f(\tau)=0$ for some given f, a and b. Write down an estimate for the number of iterations K required by the bisection method to ensure that, for a given ε , we know $|x_k - \tau| \le \varepsilon$ for all $k \ge K$. In particular, how does this estimate depend on f, a and b?

Exercise 1.2

How many (decimal) digits of accuracy are gained at each step of the bisection method? (If you prefer, how many steps are needed to gain a single (decimal) digit of accuracy?)

4. Exercises

Exercise 1.3

Let $f(x) = e^x - 2x - 2$. Show that there is a solution to the problem: find $\tau \in [0,2]$ such that $f(\tau) = 0$. Taking $x_0 = 0$ and $x_1 = 2$, use 6 steps of the bisection method to estimate τ . You may use a computer program to do this, but please note that in your solution. Give an upper bound for the error $|\tau - x_6|$.

4. Exercises

Exercise 1.4

We wish to estimate $\tau = \sqrt[3]{4}$ numerically by solving f(x) = 0 in [a, b] for some suitably chosen f, a and b.

- (i) Suggest suitable choices of f, a, and b for this problem.
- (ii) Show that f has a zero in [a, b].
- (iii) Use 6 steps of the bisection method to estimate $\sqrt[3]{4}$. You may use a computer program to do this, but please note that in your solution.
- (iv) Use Theorem 2.1 to give an upper bound for the error $|\tau x_6|$.