CNNs for dense image labeling

image classification

semantic segmentation

object detection

instance segmentation

Outline

- Early "hacks"
 - Hypercolumns
 - Zoom-out features
 - Fully convolutional networks
- Deep network operations for dense prediction
 - Transposed convolutions
 - Unpooling
 - Dilated convolutions
- Instance segmentation
 - Mask R-CNN
- Other dense prediction problems

Early "hacks"

 Do dense prediction as a post-process on top of an image classification CNN

Hypercolumns

 Idea: to obtain a feature representation for an individual pixel, upsample all feature maps to original image resolution and concatenate values from feature maps "above" that pixel

Convolutional Network

Hypercolumn

Hypercolumn

Conv upsample ups

B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik, <u>Hypercolumns for Object Segmentation and Fine-grained Localization</u>, CVPR 2015

Zoom-out features

M. Mostajabi, P. Yadollahpour and G. Shakhnarovich, Feedforward semantic segmentation with zoom-out features, CVPR 2015

Zoom-out features: Example results

Zoom-out features: Evaluation

Metric: mean IoU

 Intersection over union of predicted and ground truth pixels for each class, averaged over classes

Method	VOC2010	VOC2011	VOC2012
zoom-out (ours)	69.9	69.4	69.6
Hypercolumns [13]	·-	_	62.6
FCN-8s [26]	-	62.7	62.2
DivMbest+convnet [8]	-	-	52.2
SDS [15]	-	52.6	51.6
DivMbest+rerank [39]	-	_	48.1
Codemaps [24]	_	_	48.3
O2P [4]		47.6	47.8
Regions & parts[2]	-	40.8	-
D-sampling [27]	33.5	_	_
Harmony potentials [3]	40.1	_	_

class	mean	bg	*	Á	•	2			*		h	773		×	77	₹	Å	8		图		ð
acc	69.6	91.9	85.6	37.3	83.2	62.5	66	85.1	80.7	84.9	27.2	73.3	57.5	78.1	79.2	81.1	77.1	53.6	74	49.2	71.7	63.3

Fully convolutional networks

 Design a network with only convolutional layers, make predictions for all pixels at once

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

Dense prediction: Outline

- Early "hacks"
 - Hypercolumns
 - Zoom-out features
 - Fully convolutional networks
- Deep network operations for dense prediction
 - Transposed convolutions
 - Unpooling
 - Dilated convolutions
- Instance segmentation
 - Mask R-CNN
- Other dense prediction problems

Fully convolutional networks

- Design a network with only convolutional layers, make predictions for all pixels at once
- Can the network operate at full image resolution?

Source: Stanford CS231n

Fully convolutional networks

- Design a network with only convolutional layers, make predictions for all pixels at once
- Can the network operate at full image resolution?
- Practical solution: first downsample, then upsample

Source: Stanford CS231n

Fully convolutional networks (FCN)

Comparison on a subset of PASCAL 2011 validation data:

	pixel	mean	mean
	acc.	acc.	IU
FCN-32s-fixed	83.0	59.7	45.4
FCN-32s	89.1	73.3	59.4
FCN-16s	90.0	75.7	62.4
FCN-8s	90.3	75.9	62.7

J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

Outline

- Early "hacks"
 - Hypercolumns
 - Zoom-out features
 - Fully convolutional networks
- Deep network operations for dense prediction
 - Transposed convolutions
 - Unpooling
 - Dilated convolutions

Regular convolution (stride 1, pad 0)

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	x ₂₄
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
x ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	x ₄₄

$$w_{11}$$
 w_{12} w_{13}
 w_{21} w_{22} w_{23}
 w_{31} w_{32} w_{33}

Matrix-vector form:

$$\begin{pmatrix} w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} & 0 & 0 & 0 & 0 & 0 \\ 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} & 0 \\ 0 & 0 & 0 & 0 & 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} & 0 \\ 0 & 0 & 0 & 0 & 0 & w_{11} & w_{12} & w_{13} & 0 & w_{21} & w_{22} & w_{23} & 0 & w_{31} & w_{32} & w_{33} \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{14} \\ \vdots \\ x_{44} \end{pmatrix} = \begin{pmatrix} z_{11} \\ z_{12} \\ z_{21} \\ z_{22} \end{pmatrix}$$

4x4 input, 2x2 output

Transposed convolution

$$_{*}T$$
 $\begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$

x_{11} x_{12} x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{31} x_{32} x_{33} x_{34}				
x ₃₁ x ₃₂ x ₃₃ x ₃₄	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
X41 X42 X42 X44	<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	x ₃₄
741 742 743 744	x ₄₁	x ₄₂	x ₄₃	x ₄₄

$\left(w_{11} \right)$	0	0	0	\		(x_{11})
w_{12}	w_{11}	0	0			<i>x</i> ₁₂
w_{13}	w_{12}	0	0			<i>x</i> ₁₃
0	w_{13}	0	0			x_{14}
w_{21}	0	w_{11}	0			x_{21}
w_{22}	w_{21}	w_{12}	w_{11}	$ (z_{11}) $		x_{22}
w_{23}	w_{22}	w_{13}	w_{12}			x_{23}
0	w_{23}	0	w_{13}	$\begin{bmatrix} z_{12} \end{bmatrix}$	=	x_{24}^{23}
<i>w</i> ₃₁	0	w_{21}	0	$ z_{21} $	_	$\begin{vmatrix} x_{31}^2 \end{vmatrix}$
w_{32}	w_{31}	w_{22}	w_{21}	$\begin{bmatrix} z_{22} \end{bmatrix}$		x_{32}
w_{33}	w_{32}	w_{23}	w_{22}			x_{33}
0	w_{33}	0	w_{23}			γ_{-}
0	0	w_{31}	0			x_{34}
0	0	w_{32}	w_{31}			x_{41}
0	0	W_{33}	w_{32}			<i>x</i> ₄₂
0	0	0	W_{33})		x_{43}
						$\left(x_{44}\right)$

2x2 input, 4x4 output

Not an inverse of the original convolution operation, simply reverses dimension change!

Transposed convolution

*T

<i>w</i> ₁₁	w ₁₂	w ₁₃
w ₂₁	w ₂₂	w ₂₃
w ₃₁	w ₃₂	w ₃₃

x_{11}	=	w_{11}	z_1

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	x ₄₂	x ₄₃	x ₄₄

$\left(w_{11} \right)$	0	0	0				$\begin{pmatrix} x_{11} \end{pmatrix}$	$x_{11} =$
w ₁₂	w_{11}	0	0	Γ			<i>x</i> ₁₂	
<i>w</i> ₁₃	w_{12}	0	0				x_{13}	
0	w_{13}	0	0				$\begin{vmatrix} x_{14}^{13} \end{vmatrix}$	
w ₂₁	0	w_{11}	0				x_{21}	
w_{22}	w_{21}	w_{12}	w_{11}	C 2	z_{11}		x_{22}	
w_{23}	w_{22}	w_{13}	w_{12}				$\begin{vmatrix} x_{23} \end{vmatrix}$	
0	w_{23}	0	w_{13}		Z ₁₂	_	$\begin{vmatrix} x_{23} \\ x_{24} \end{vmatrix}$	
w ₃₁	0	w_{21}	0	2	Z ₂₁	_	$\begin{vmatrix} x_{24} \\ x_{31} \end{vmatrix}$	
w_{32}	w_{31}	w_{22}		2	\mathbb{Z}_{22}		$\begin{vmatrix} x_{31} \\ x_{32} \end{vmatrix}$	
w_{33}	w_{32}	w_{23}	w_{22})			
0	w_{33}	0	w_{23}				x_{33}	
0	0	w_{31}	0				$\begin{vmatrix} x_{34} \\ y \end{vmatrix}$	
0	0	w_{32}	w_{31}				x_{41}	
0	0	W_{33}	w_{32}				x_{42}	
(0	0	0	w_{33})			x_{43}	
							$\left(x_{44} \right)$	

Transposed convolution

 w_{11}

 w_{12}

 w_{13}

0

 w_{21}

 w_{22}

 w_{23}

0

 w_{31}

 w_{32}

 w_{21}

 w_{22}

0

 Z_{11}

 z_{12}

 z_{21}

 Z_{22}

 $_*T$

<i>w</i> ₁₁	<i>w</i> ₁₂	w ₁₃
w ₂₁	w ₂₂	w ₂₃
w ₃₁	w ₃₂	w ₃₃

w ₁₁	0	0	0	x_{11}	Convolve inp
w_{12}	w_{11}	0	0	x_{12}	$x_{12} = w_{12}z_{11} + w_{11}z_{12}$
W_{13}	w_{12}	0	0	χ ₁₂	

 x_{14} x_{21}

 x_{22}

 x_{23}

 x_{24}

 x_{31}

 x_{32}

 χ_{33}

 x_{34}

 x_{41}

 x_{42}

 x_{43} x_{44}

Transposed convolution

 $_*T$

w ₁₁	w ₁₂	<i>w</i> ₁₃
w ₂₁	w ₂₂	w ₂₃
w ₃₁	w ₃₂	w ₃₃

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

$$x_{13} = w_{13}z_{11} + w_{12}z_{12}$$

Transposed convolution

 x_{43}

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
x ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
x ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
x ₄₁	x ₄₂	x ₄₃	x ₄₄

	$\left(w_{11} \right)$	0	0	0	١		(x_{11})	Cor
	w_{12}	w_{11}	0	0			<i>x</i> ₁₂	
	W_{13}	W_{12}	0	0	L		x_{13}	
	0	w_{13}	0	0			x_{14}	$x_{14} = w_{13} z_{12}$
Ī	<i>w</i> ₂₁	0	w_{11}	0	Γ		x_{21}	714 713212
	w_{22}	w_{21}	w_{12}	w_{11}	$ (z_{11}) $		x_{22}	
	w_{23}	w_{22}	w_{13}	w_{12}	11		x_{23}	
	0	w_{23}	0	w_{13}	$ z_{12}$	_	x_{24}	
	w ₃₁	0	w_{21}	0	$ z_{21} $	_	x_{24}	
	w_{32}	w_{31}	w_{22}	w_{21}	$ z_{22} $		x_{32}	
	w_{33}	w_{32}	w_{23}	w_{22})	,		
	0	w_{33}	0	w_{23}			x_{33}	
	0	0	w_{31}	0			x_{34}	
	0	0	w_{32}	w_{31}			x_{41}	
	1		-		1		ν	

Transposed convolution

 x_{23} x_{24} x_{31} x_{32} x_{33} x_{34} x_{41} x_{42}

 x_{11} x_{12}

17	11	-	-	I
<i>w</i> ₁₃	w_{12}	0	0	
0	W_{13}	0	0	L
<i>w</i> ₂₁	0	w_{11}	0	
w_{22}	w_{21}	w_{12}	w_{11}	$\left[\left(z_{11} \right) \right]$
w_{23}	w_{22}	w_{13}	w_{12}	
0	w_{23}	0	w_{13}	$ z_{12} $
w_{31}	0	w_{21}	0	$ z_{21} $
w_{32}	w_{31}	w_{22}	w_{21}	$ z_{22} $
w_{33}	w_{32}	w_{23}	w_{22}	
0	W_{33}	0	w_{23}	
0	0	w_{31}	0	
0	0	w_{32}	w_{31}	
0	0	W_{33}	w_{32}	
0	0	0	W_{33}	

 x_{13} $x_{21} = w_{21}z_{11} + w_{11}z_{21}$

Transposed convolution

 Z_{11}

 Z_{12}

 z_{21}

 Z_{22}

 $egin{array}{c} x_{12} \\ x_{13} \\ x_{14} \\ x_{21} \\ \hline x_{22} \\ \hline x_{23} \\ x_{24} \\ x_{31} \\ \hline \end{array}$

 x_{11}

 $egin{array}{c} x_{32} \\ x_{33} \\ x_{34} \\ x_{41} \\ x_{42} \\ x_{43} \\ x_{44} \\ \end{array}$

$$x_{22} = w_{22}z_{11} + w_{21}z_{12} + w_{12}z_{21} + w_{11}z_{22}$$

Transposed convolution

Convolve input with flipped filter

$$x_{23} = w_{23}z_{11} + w_{22}z_{12} + w_{13}z_{21} + w_{12}z_{22}$$

4 5+\$1.-0.", '#0120\\(67\\801\'\8.\'79\\'.\\$:\\\9-\\+\$7\\801\\\$.\' ;\\$\#)*\\$+,.\'-\\$..\\\9+\\+\\<6\\\$\\$+\\\#0120\\\67\\801\\

Transposed convolution

$$_{*}T$$
 $\begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
x ₃₁	x ₃₂	x ₃₃	x ₃₄
x ₄₁	x ₄₂	x ₄₃	x ₄₄

1	w_{11}	0	0	0	١		(x_{11})
١	w_{12}^{-1}	w_{11}	0	0			x_{12}
١	w_{13}	w_{12}	0	0			x_{13}
١	0	w_{13}	0	0			x_{14}^{13}
١	w_{21}	0	w_{11}	0			x_{21}^{14}
١	w_{22}	w_{21}	w_{12}	w_{11}	$ (z_{11}) $		x_{22}
١	w_{23}	w_{22}	w_{13}	w_{12}			x_{23}
١	0	w_{23}	0	w_{13}	$ z_{12} $	=	x_{24}
١	w_{31}	0	w_{21}	0	$ x_{21} $		x_{31}
١	w_{32}	w_{31}	w_{22}	w_{21}	$\begin{bmatrix} z_{22} \end{bmatrix}$		x_{32}
١	w_{33}	w_{32}	w_{23}	w_{22}			
١	0	W_{33}	0	w_{23}			$\begin{bmatrix} x_{33} \\ x_{34} \end{bmatrix}$
١	0	0	w_{31}	0			X_{41}
١	0	0	w_{32}	w_{31}			
١	0	0	W_{33}	w_{32}			<i>x</i> ₄₂
1	0	0	0	W_{33}			x_{43}
,							$\lfloor x_{44} \rfloor$

Transposed convolution

*T

<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₁₃
<i>w</i> ₂₁	w ₂₂	w ₂₃
w ₃₁	w ₃₂	w ₃₃

=

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

Alternate view:

 Place copies of the filter on the output, weighted by entries of the input

Transposed convolution

$$egin{array}{c|ccccc} w_{11} & w_{12} & w_{13} \\ \hline w_{21} & w_{22} & w_{23} \\ \hline w_{31} & w_{32} & w_{33} \\ \hline \end{array}$$

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
x ₄₁	x ₄₂	x ₄₃	x ₄₄

	_						
()	W ₁₁	0	0	0 /	1		(x_{11})
	w_{12}	w_{11}	0	0			x_{12}
	w_{13}	w_{12}	0	0			<i>x</i> ₁₃
	0	w_{13}	0	0			x_{14}^{13}
	w_{21}	0	w_{11}	0			x_{21}
	w_{22}	w_{21}	w_{12}	w_{11}	$ (z_{11}) $		x_{22}
1	w_{23}	w_{22}	w_{13}	w_{12}			$x_{23}^{}$
	0	w_{23}	0	w_{13}	<i>Z</i> ₁₂	=	x_{24}^{23}
	w_{31}	Ü	w_{21}	0	x_{21}		x_{31}
	W ₃₂	w_{31}	w_{22}	w_{21}	$\begin{bmatrix} z_{22} \end{bmatrix}$		x_{32}
1	w_{33}	w_{32}	w_{23}	w_{22}			x_{33}
	0	W_{33}	0	w_{23}			x_{33}
	0	U	w_{31}	0			γ.,
	0	0	w_{32}	w_{31}			<i>x</i> ₄₁
	0	0	W_{33}	w_{32}			x_{42}
	0	0	0	W_{33}			x_{43}
	_					l	$\langle x_{44} \rangle$

Alternate view:

- Place copies of the filter on the output, weighted by entries of the input
- Sum where copies of the filter overlap

Transposed convolution

$$egin{array}{c|ccccc} w_{11} & w_{12} & w_{13} \\ \hline w_{21} & w_{22} & w_{23} \\ \hline w_{31} & w_{32} & w_{33} \\ \hline \end{array}$$

x ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
x ₂₁	x ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄
x ₃₁	x ₃₂	<i>x</i> ₃₃	x ₃₄
x ₄₁	x ₄₂	x ₄₃	x ₄₄

$\left(w_{11} \right)$	0	0	0	١	1	(x_{11})
w_{12}	w_{11}	0	0			x_{12}
w_{13}	w_{12}	0	0			x_{13}
0	w_{13}	0	0			x_{14}^{13}
w_{21}	0	<i>w</i> ₁₁	0			x_{21}
w_{22}	w_{21}	w_{12}	w_{11}	$\begin{bmatrix} z_{11} \\ z_{12} \end{bmatrix}$	x_{22}	
w_{23}	w_{22}	w_{13}	w_{12}		x_{23}^{-1}	
0	w_{23}	Ü	w_{13}		x_{24}	
w_{31}	0	w_{21}	0	x_{21}	_	x_{31}
w_{32}	w_{31}	w_{22}	w_{21}	$\left(z_{22}\right)$	x_{32}	
w_{33}	w_{32}	W_{23}	w_{22}			
0	w_{33}	0	w_{23}			x_{33}
0	0	W ₃₁	0		x_{34}	
0	0	w_{32}	w_{31}		x_{41}	
0	0	W_{33}	W_{32}			x_{42}
0	0	0	w_{33}			x_{43}
					ļ	$\langle x_{44} \rangle$

Alternate view:

- Place copies of the filter on the output, weighted by entries of the input
- Sum where copies of the filter overlap

Transposed convolution

*T

w ₁₁	w ₁₂	w ₁₃
<i>w</i> ₂₁	w ₂₂	<i>w</i> ₂₃
w ₃₁	<i>w</i> ₃₂	<i>w</i> ₃₃

=

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄
x ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	x ₂₄
x ₃₁	x ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄
x ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄

$\left(w_{1}\right)$	1 0	0	0	\		(x_{11})
$ w_1 $		0	0			x_{12}
$ w_1 $	w_{12}	0	0			<i>x</i> ₁₃
0	w_{13}	0	0			x_{14}^{13}
$ w_2 $	1 0	w_{11}	0			x_{21}
$ w_2 $	w_{21}	w_{12}	w_{11}	$\left(Z_{11} \right)$	$\begin{bmatrix} z_{11} \\ z \end{bmatrix}$	x_{22}
w_2	w_{22}		w_{12}	11 1		x_{23}
0	w_{23}	, 0	w_{13}	$ z_{12} $	=	x_{24}
W_3		w_{21}	0	x_{21}	_	χ_{31}
$ w_3 $			w_{21}	Z_{22}		x_{32}
W_3			w_{22}			x_{33}
0	w_{33}		w_{23}			x_{34}
0	0	w_{31}	0			x_{41}
0	0	w_{32}	w_{31}			
0	0	w_{33}	w_{32}			x_{42}
(0	0	0	w_{33}			x_{43}
			$\overline{}$			x_{44}

Alternate view:

- Place copies of the filter on the output, weighted by entries of the input
- Sum where copies of the filter overlap

1D example

1D example

1D example

1D example

 Backwards-strided convolution: to increase resolution, use output stride > 1

 Backwards-strided convolution: to increase resolution, use output stride > 1

 Backwards-strided convolution: to increase resolution, use output stride > 1

 Backwards-strided convolution: to increase resolution, use output stride > 1

 Backwards-strided convolution: to increase resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

 Backwards-strided convolution: to increase resolution, use output stride > 1

Animation: https://distill.pub/2016/deconv-checkerboard/

- Backwards-strided convolution: to increase resolution, use output stride > 1
 - For stride 2, dilate the input by inserting rows and columns of zeros between adjacent entries, convolve with flipped filter
 - Sometimes called convolution with fractional input stride 1/2

Q: What 3x3 filter would correspond to bilinear upsampling?

$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$
$\frac{1}{2}$	1	$\frac{1}{2}$
$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

V. Dumoulin and F. Visin, <u>A guide to convolution arithmetic for deep learning</u>, arXiv 2018

 Alternative to transposed convolution: max unpooling

(sometimes called deconvolution instead of transposed convolution, but this is not accurate)

convolution layer

DeconvNet

H. Noh, S. Hong, and B. Han, <u>Learning Deconvolution Network for Semantic Segmentation</u>, ICCV 2015

DeconvNet

H. Noh, S. Hong, and B. Han, <u>Learning Deconvolution Network for Semantic Segmentation</u>, ICCV 2015

DeconvNet results

PASCAL VOC 2012	mloU
Hypercolumns	59.2
ZoomOut	64.4
FCN-8	62.2
DeconvNet	69.6
Ensemble of DeconvNet and FCN	71.7

Similar architecture: SegNet

Drop the FC layers, get better results

V. Badrinarayanan, A. Kendall and R. Cipolla, <u>SegNet: A Deep Convolutional</u>
<u>Encoder-Decoder Architecture for Image Segmentation</u>, PAMI 2017

U-Net

- Like FCN, fuse upsampled higher-level feature maps with higher-res, lower-level feature maps
- Unlike FCN, fuse by concatenation, predict at the end

O. Ronneberger, P. Fischer, T. Brox <u>U-Net: Convolutional Networks for Biomedical Image Segmentation</u>, MICCAI 2015

Summary of upsampling architectures

Recall: Feature pyramid networks

- Improve predictive power of lower-level feature maps by adding contextual information from higherlevel feature maps
- Predict different sizes of bounding boxes from different levels of the pyramid (but share parameters of predictors)

Outline

- Early "hacks"
 - Hypercolumns
 - Zoom-out features
 - Fully convolutional networks
- Deep network operations for dense prediction
 - Transposed convolutions
 - Unpooling
 - Dilated convolutions

- Idea: instead of reducing spatial resolution of feature maps, use a large sparse filter
 - Also known as à trous convolution

 Idea: instead of reducing spatial resolution of feature maps, use a large sparse filter

V. Dumoulin and F. Visin, <u>A guide to convolution arithmetic for deep learning</u>, arXiv 2018

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille, <u>DeepLab: Semantic Image Segmentation with Deep Convolutional Nets</u>, <u>Atrous Convolution</u>, <u>and Fully Connected CRFs</u>, PAMI 2017

 Can be used in FCN to remove downsampling: change stride of max pooling layer from 2 to 1, dilate subsequent convolutions by factor of 2 (in theory, can be done without re-training any parameters)

 Can increase receptive field size exponentially with a linear growth in the number of parameters

Feature map 1 (F1) produced from F0 by 1-dilated convolution

Receptive field: 3x3

Receptive field: 7x7

Receptive field: 15x15

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, ICLR 2016

- Context module with dilation
 - Returns same number of feature maps at the same resolution as the input, so can be plugged in to replace components of existing dense prediction architectures
 - Requires identity initialization

Layer	1	2	3	4	5	6	7	8
Convolution	3×3	3×3	3×3	3×3	3×3	3×3	3×3	1×1
Dilation	1	1	2	4	8	16	1	1
Truncation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Receptive field	3×3	5×5	9×9	17×17	33×33	65×65	67×67	67×67
Output channels						··		*6
Basic	C	C	C	C	C	C	C	C
Large	2C	2C	4C	8C	16C	32C	32C	C

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, ICLR 2016

Dilated convolutions: Evaluation

Results on VOC 2012

	aero	bike	bird	boat	bottle	snq	car	cat	chair	cow	table	gop	horse	mbike	person	plant	sheep	sofa	train	tv	mean IoU
Front end	86.3	38.2	76.8	66.8	63.2	87.3	78.7	82	33.7	76.7	53.5	73.7	76	76.6	83	51.9	77.8	44	79.9	66.3	69.8
Front + Basic	86.4	37.6	78.5	66.3	64.1	89.9	79.9	84.9	36.1	79.4	55.8	77.6	81.6	79	83.1	51.2	81.3	43.7	82.3	65.7	71.3
Front + Large	87.3	39.2	80.3	65.6	66.4	90.2	82.6	85.8	34.8	81.9	51.7	79	84.1	80.9	83.2	51.2	83.2	44.7	83.4	65.6	72.1

*Front end: re-implementation of FCN-8 with last two pooling layers dropped (5% better than original FCN-8)

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, ICLR 2016

Dilated convolutions: Evaluation

Outline

- Early "hacks"
 - Hypercolumns
 - Zoom-out features
 - Fully convolutional networks
- Deep network operations for dense prediction
 - Transposed convolutions
 - Unpooling
 - Dilated convolutions
- Instance segmentation
 - Mask R-CNN

Instance segmentation

Source: Kaiming He

Mask R-CNN

Mask R-CNN = Faster R-CNN + FCN on Rols

for each possible class

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

RolAlign vs. RolPool

RolPool: nearest neighbor quantization

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

RolAlign vs. RolPool

- RolPool: nearest neighbor quantization
- RolAlign: bilinear interpolation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Mask R-CNN

 From RolAlign features, predict class label, bounding box, and segmentation mask

Classification/regression head from an established object detector (e.g., FPN)

Separately predict binary mask for each class with per-pixel sigmoids, use average binary crossentropy loss

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Mask R-CNN

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Example results

Example results

Instance segmentation results on COCO

	backbone	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	1-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

AP at different IoU thresholds

AP for different size instances

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, ICCV 2017 (Best Paper Award)

Keypoint prediction

• Given K keypoints, train model to predict K $m \times m$ one-hot maps with cross-entropy losses over m^2 outputs

Outline

- Early "hacks"
 - Hypercolumns
 - Zoom-out features
 - Fully convolutional networks
- Deep network operations for dense prediction
 - Transposed convolutions
 - Unpooling
 - Dilated convolutions
- Instance segmentation
 - Mask R-CNN
- Other dense prediction problems

Recently proposed task: Panoptic segmentation

A. Kirillov et al. Panoptic segmentation. CVPR 2019

Panoptic feature pyramid networks

A. Kirillov et al. Panoptic feature pyramid networks. CVPR 2019

Panoptic feature pyramid networks

Figure 2: Panoptic FPN results on COCO (top) and Cityscapes (bottom) using a single ResNet-101-FPN network.

A. Kirillov et al. Panoptic feature pyramid networks. CVPR 2019

Another recent task: Amodal instance segmentation

K. Li and J. Malik. Amodal instance segmentation. ECCV 2016

Even more dense prediction problems

- Depth estimation
- Surface normal estimation
- Colorization
- •

Depth and normal estimation

D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels</u> with a Common Multi-Scale Convolutional Architecture, ICCV 2015

Depth and normal estimation

D. Eigen and R. Fergus, <u>Predicting Depth, Surface Normals and Semantic Labels</u> with a Common Multi-Scale Convolutional Architecture, ICCV 2015

Estimation of everything at the same time

Figure 2: UberNet architecture: an image pyramid is formed by successive down-sampling operations, and each image is processed by a CNN with tied weights; the responses of the network at consecutive layers (\mathbf{C}_i) are processed with Batch Normalization (\mathbf{B}_i) and then fed to task-specific skip layers (\mathbf{E}_i^t); these are combined across network layers (\mathcal{F}^t) and resolutions (\mathcal{S}^t) and trained using task-specific loss functions (\mathcal{L}^t), while the whole architecture is jointly trained end-to-end. For simplicity we omit the interpolation and detection layers mentioned in the text.

I. Kokkinos, <u>UberNet: Training a Universal Convolutional Neural Network for Low-,</u>

<u>Mid-, and High-Level Vision using Diverse Datasets and Limited Memory,</u>

ICCV 2017

Colorization

R. Zhang, P. Isola, and A. Efros, Colorful Image Colorization, ECCV 2016