Synthèse

UE LU3IN033 Réseaux 2020-2021

Prométhée Spathis promethee.spathis@sorbonne-universite.fr

Liste des rappels

- Structuration en couches
 - Encapsulation et désencapsulation : entêtes (et enquête)
 - Multiplexage et démultiplexage : champs type, protocole, numéro de port
- Remplissage des entêtes
 - Entête IP: DHCP, DNS
 - Entête Ethernet : ARP
- Taille des champs données
 - MTU et fragmentation
- Adressage
 - Plat vs hiérarchique
- Acheminement et routage
 - Calcul de chemin
- Réseaux locaux
 - Ethernet et CSMA/CD
- Connexion et états
 - états durs vs mous vs mobiles

Encapsulation des données

Structuration en couches

Structuration en couches

5

Périphérie versus cœur du réseau

Machines hôtes vs routeurs

Périphérie versus cœur du réseau

Périphérie versus cœur du réseau

Machines hôtes vs commutateurs 7 4 TCP UDP 4 3 IP 1P 3 2 Ethernet Ethernet 1 1 PHY PHY PHY PHY 1

Commutateur vs routeur

Domaine de collision

Remplissage des entêtes

Dé-multiplexage

13

Exemple de trace (1)

Entête Ethernet

Entête Ethernet

Entête Ethernet

Paquet IP

Entête Ethernet

Paquet IP

					•
	4	5	ToS: 0x00	Longueur total : 72	
	Identifiant : 0x49ba		t : 0x49ba	DF = 0, MF = 0, FO = 0	
	TTL	= 30	6 :TCP	Checksum 0x698d	20 octets pas d'option IP
1	Numéro port source : 0x1770			Numéro port Destination : 0x96d4	
Entête TCP					
20 octets	5 0x018111c				
	0x99bc0000				
Données X 32 octets V	18				

(Dé-)multiplexage: numéros de port

(Dé-)multiplexage: numéros de port

Adressage MAC plat (non hiérarchique)

- Attribution des adresses MAC indépendamment de leur réseau d'appartenance
- Tables de commutation : une entrée par machine hôte

Adressage IP hiérarchique

- Attribution des adresses réseau :
 - 1.2.3.0/24 pour le LAN1
 - 5.6.7.0/24 pour le LAN2
- Puis, numérotation des machines hôtes
- Tables de routage : une entrée par réseau

Longueur des préfixes

Adressage avec classes

(A, B, C)

- Les adresses IP sont divisées en 3 classes : A, B, et C
- La classe d'une adresse IP est déterminée par ses premiers bits :
 - Classe A: 0*
 - Classe B: 107
 - Classe C: 110
- La longueur du préfixe d'une adresse IP est déterminée par sa classe :
 - Classe A : préfixe long de 8 bits
 - Classe B : préfixe long de 16 bits
 - Classe C : préfixe long de 24 bits

Adressage sans classe (CIDR)

- La longueur du préfixe est déterminée par une 'adresse' supplémentaire appelée masque :
 - Les bits du préfixe sont positionnés à 1 dans le masque
- Exemple:
 - Le masque 255.255.248.0 indique que le préfixe est long de 21 bits
 - Ce masque est adapté à des réseaux hébergeant 2046 (2³²⁻²¹-2) machines

hostid réservés :

- tout à 0 : adresse réseau
- tout à 1 : adresse de diffusion

172.16.10.100/16
00:00:0C:94:36:AB

00:00:0C:94:36:AB

172.16.20.100/16
00:00:0C:94:36:CD

172.16.20.100/16
00:00:0C:94:36:DD

23

A connaît:

- son adresse IP (DHCP)
- le masque de son sous-réseau (DHCP)
- l'adresse IP de R (DHCP) В l'adresse MAC de R (ARP) 00:00:0C:94:36:AA 00:00:0C:94:36:AB 172.16.10.100 172.16.10.100/24 172.16.10.200/24 172.16.20.200 00:00:0C:94:36:AA 00:00:0C:94:36:BB 172.16.10.0/24 172.16.10.99/24 00:00:0C:94:36:AB R 00:00:0C:94:36:CD 00:00:0C:94:36:DD 172.16.20.99/24 172.16.10.100 00:00:0C:94:36:CD 172.16.10.0/24 172.16.20.200 172.16.20.100/24 172.16.20.200/24 00:00:0C:94:36:CC 00:00:0C:94:36:DD

UDP (datagramme) vs TCP (flux d'octets)

Données

Fragmentation IP

33

Fragmentation IP

- Flags: 3 bits (Réservé: 0, DF, MF)
 - DF: Don't Fragment (les paquets trop grands sont rejetés)
 - MF: More Fragment (positionné si dernier fragment)
- Fragment Offset:
 - taille en octets hors entête des fragments précédant le fragment courant divisée par 8

- Exemple:
 - Données: 1292 octets
 - Datagramme UDP: 1300 octets
 - Entêtes des fragments sur le réseau 2 :
 - → 576 20 = 556, valeur multiple de 8 la plus proche : 552 = 69 * 8
 - F1 : offset 0 MF = 1(taille des données : 552 octets) • F2 : offset 69 = 552/8 MF = 1 (taille des données : 552 octets)
 - F3 : offset 69*2 (taille des données : 196 octets) MF = 0

Acheminement des paquets

Mode datagramme (non connecté)

Les paquets de données sont commutés (forwardés) de proche en proche vers leur destination finale

35

Routage vs Acheminement

Routage

- Création et maintien des table de routage
 - Calcul et mise à jour des routes
- Algorithmes de routage
 - Dijkstra, Bellman-Ford
- Protocoles de routage
 - OSPF, IS-IS, RIP, BGP,...

Algorithme de routage				
Table de routage				
Adresse	Interface			
0100	3			
0101	2			
0111	2			
1001	1			

Acheminement

- Commutation proche en proche des paquets
 - Choix de l'interface de sortie sur laquelle aiguiller les paquets

Acheminement des paquets

Longest prefix match LPM

- Les routeurs choisissent l'entrée dont l'adresse destination partage le plus grand nombre de bits avec l'adresse destination du paquet
- Pire cas : parcours complet de la table de routage pour identifier cette entrée

37

Comparaison des protocoles de routage

Etat de liens

- Les information de topologie sont inondées dans tout le réseau
- Les routeurs calculent les chemins complets les plus courts vers toutes les destinations du réseau
- Les sauts suivants sont déterminés en calculant les chemins complets
- Différentes politiques de routage selon le choix des coûts des liens
- Exemples : OSPF, IS-IS

Vecteur de distance

- Un routeur ne connait que la distance des chemins annoncés par ses voisins
- Les routeurs sélectionnent le voisin qui annonce le chemin le plus court pour une destination donnée
- Aucun routeur ne connait les chemins complets
- Le chemin résulte de la séquence des sauts suivants sélectionnés par chaque routeur
- Une seule politique de routage : nombre de sauts des chemins
- Exemples : RIP, BGP

RIP

	Chemin le plus court pour joindre D		
Routeur	Saut suivant	Coût	
А	В	3 10	
В	D	2	
С	А	5	

Saut suivant	Coût	
В	10	
С	7	
Saut suivant	Coût	
В	10	
С	8	

Saut suivant	Coût
Α	5
D	6
Saut suivant	Coût
Α	9
D	6
:	
Saut suivant	Coût
Α	10

39

Types de réseaux

Réseaux point à point

- Chaque lien connecte:
 - deux stations
 - ces stations peuvent être des routeurs
 - elles exécutent un protocole liaison de données en mode point à point :
 - HDLC (mode ABM), PPP
- Topologie adaptée aux réseaux longue distance

Réseaux à diffusion naturelle

- Plusieurs stations partagent un même support de transmission
 - une trame est reçue par toutes les stations connectées au support
- Nécessitent des méthodes de contrôle d'accès au support
- Topologie adaptée aux réseaux locaux

– Exemple : Ethernet, WiFi

40

CSMA/CD

- Transmission d'une trame pour la première fois :
 - le support est occupée
 - attendre qu'il le devienne
 - le support est libre
 - · commencer à transmettre en continuant à écouter le support
 - si collision détectée : procédure de résolution de collision (2)
 - pas de collision : remettre à 0 le compteur de retransmissions et terminer la transmission
- Résolution de collision :
 - transmission d'une signal de brouillage (jam signal)
 - incrémenter le compteur de retransmission
 - si le nombre maximal de retransmission est atteint
 - abandon de la transmission
 - sinon
 - · calculer la durée du retrait aléatoire en fonction du nombre de collisions
 - attendre pour cette durée avant d'aller à la procédure de transmission (1)

41

Détection des collisions

- Une collision est détectée en comparant le signal émis et le signal reçu
- Une station doit transmettre pendant une durée min
- Les trames ont une taille min
 - 1518 octets pour Ethernet (hors préambule)

Méthodes d'accès et partage de la bande passante

- Evitement des collisions
 - transmettre uniquement si le canal est libre
- Détection des collisions
 - transmettre des trames de taille min tout en écouter le canal
- Réparation des collisions non coordinée
 - attendre une durée tirée aléatoire avant de retransmettre
- Ajustement du débit selon la charge du réseau
 - attendre plus longtemps en cas de collisions répétées
- Partage équitable
 - silence obligatoire après une transmission en succès

43

Concentrateur vs commutateur vs routeur

44

Etats durs et mode connecté

- Les protocoles en mode connecté installent des états durs
 - installés suite à la reception d'un message
 - mis à jour tout au long des échanges qu'ils caractérisent
- Etats durs : supprimés de manière explicite
 - réception d'un message spécial
 - prévenir les pertes de ces messages
- TCP, ...
 - numéros de séquence, temporisateurs, fenêtres

45

Etats mous et mobiles

- Etats mous : supprimés de manière implicite
 - rafraîchis régulièrement de manière explicite
 - supprimés à l'expiration d'un temporisateur
 - Exemples dans Internet :
 - bail DHCP
 - Table de translation des NAT
 - table ARP
- Etats mobiles : transportés un message
 - option Timestamp de l'entête TCP
 - données des messages ICMP

Conclusion

• Notions abordées :

- Récurrentes en informatique :
 - Hiérarchisation (IP, DNS), indirection (nommage et DNS), caching (HTTP, DNS, ARP), randomisation (Ethernet, TCP), pipelining (HTTP), fenêtre glissante (HDLC, TCP), ...
- Spécifiques aux réseaux :
 - Conception de bout en bout, structuration en couches, multiplexage, états mous, ...
- Conception d'un système distribué connecté très large échelle
 - Spécification et placement des fonctions nécessaires
 - · contrôle d'erreur, réparation des pertes, partage de la bande passante, ...
 - Types de noeuds, informations échangées et états installés
 - machines hôtes, proxies, routeurs, commutateurs, ...
 - Performances, efficacité, passage à l'échelle, manageabilité, sécurité, ...