[Sequence Listing]

<110> Lifenza Co., Ltd.

<120> PROTEIN WITH ACTIVITY OF HYDROLYZING DEXTRAN, STARCH, MUTAN,
5 INULIN AND LEVANN, GENE ENCODING THE SAME, CELL EXPRESSING THE
SAME, AND PRODUCTION METHOD THEREOF

<150> KR2004-0006185

<151> _ 2004-01-30

10

<160> 4

<170> Kopatent In 1.71

15 <210> 1

<211> 608

<212> PRT

<213> Artificial Sequence

20 <220>

<223> S. cerevisiae/pYES2-LSD1

<400> 1

25 Met Thr Leu IIe Tyr Val Pro Ser IIe Phe Thr Met Val Pro Ser IIe 1 5 10 15

Thr Arg IIe Val Leu Val Asn IIe Leu Leu Ala Thr Leu Val Leu Gly
20 25 30

30

35

Ala Ala Val Leu Pro Arg Asp Asn Arg Thr Val Cys Gly Ser Gln Leu 35 40 45

Cys Thr Trp Trp His Asp Ser Gly Glu lle Asn Thr Gly Thr Pro Val 50 55 60

Gin Ala Gly Asn Val Arg Gin Ser Arg Lys Tyr Ser Val His Val Ser

65 70 75 80

Leu Ala Asp Arg Asn Gln Phe Tyr Asp Ser Phe Val Tyr Glu Ser IIe 85 90 95

Pro Arg Asn Gly Asn Gly Arg I le Tyr Ser Pro Thr Asp Pro Pro Asn

5

20

25

35

.5

Ser Asn_Thr Leu Asn Ser Ser I le Asp Asp Gly lle Ser I le Glu Pro 10 115 120 125

Ser Leu Gly lle Asn Met Ala Trp Ser Gln Phe Glu Tyr Arg Arg Asp 130 135 140

Val Asp Ile Lys Ile Thr Thr Ile Asp Gly Ser Ile Leu Asp Gly Pro 145 150 155 160

Leu Asp IIe Val IIe Arg Pro Thr Ser Val Lys Tyr Ser Val Lys Arg 165 170 175

Cys Val Gly Gly IIe IIe IIe Arg Val Pro Tyr Asp Pro Asn Gly Arg 180 185 190

Lys Phe Ser Val Glu Leu Lys Ser Asp Leu Tyr Ser Tyr Leu Ser Asp 195 200 205

Gly Ser Gln Tyr Val Thr Ser Gly Gly Ser Val Val Gly Val Glu Pro 210 215 220

Lys Asn Ala Leu Val IIe Phe Ala Ser Pro Phe Leu Pro Arg Asp Met225230235240

Val Pro His Met Thr Pro His Asp Thr Gln Thr Met Lys Pro Gly Pro 245 250 255

lle Asn Asn Gly Asp Trp Gly Ser Lys Pro lle Leu Tyr Phe Pro Pro 260 265 270 Gly Val Tyr Trp Met Asn Glu Asp Thr Ser Gly Asn Pro Gly Lys Leu 275 280 285

5 Gly Ser Asn His Met Arg Leu Asp Pro Asn Thr Tyr Trp Val His Leu 290 295 300

Ala Pro Gly Ala Tyr Val Lys Gly Ala Ile Glu Tyr Phe Thr Lys Gln 305 _ 310 315 320

Asn Phe Tyr Ala Thr Gly His Gly Val Leu Ser Gly Glu Asn Tyr Val

Tyr Gin Ala Asn Ala Ala Asp Asn Tyr Tyr Ala Val Lys Ser Asp Gly

340 345 350

Thr Ser Leu Arg Met Trp Trp His Asn Asn Leu Gly Gly Gln Thr 355 360 365

20 Trp Phe Cys Met Gly Pro Thr IIe Asn Ala Pro Pro Phe Asn Thr Met 370 375 380

25

Asp Phe Asn Gly Asn Ser Asn IIe Ser Ser Arg IIe Ser Asp Tyr Lys 385 390 395 400

Gin Vai Gly Ala Tyr Phe Phe Gin Thr Asp Gly Pro Glu lle Tyr Glu 405 410 415

Asp Ser Val Val His Asp Val Phe Trp His Val Asn Asp Asp Ala Ile 30 420 425 430

Lys Thr Tyr Tyr Ser Gly Ala Ser Ile Ser Arg Ala Thr Ile Trp Lys 435 440 445

35 Cys His Asn Asp Pro IIe IIe Gln Met Gly Trp Thr Ser Arg Asn Leu 450 455 460

	Thr 465	Gly	He	Ser	He	Asp 470	Asn	Leu	His	Val	lle 475	His	Thr	Arg	Tyr	Phe 480
5	Lys	Ser	Glu	Thr	Val 485	Val	Pro	Ser	Ala	lle 490	He	Gly	Ala	Ser	Pro 495	Phe
	Tyr	Ala	Ser	Gly 500	Met	Thr	Val	Asp	Pro 505	Ser	Glu	Ser	lle	Ser 510	Met	Thr
10	lle	Ser	Asn 515	Val	Val	Cys	Glu	Gly 520	Leu	Cys	Pro	Ser	Leu 525	Phe	Arg	He
		Pro 530	Leu	Gln	Ser	Tyr	Asn 535	Asn	Leu	Val	Val	Lys 540	Asn	Val	Ala	Phe
15	Pro 545	Asp	Gly	Leu	Gln	Thr 550	Asn	Pro	lle	Gly	lle 555	Gly	Glu	Ser	lle	11e 560
20	Pro	Ala	Ala	Ser	Gly 565	Cys	Thr	Met	Asp	Leu 570	Glu	He	Thr	Asn	Trp 575	Thr
	Val	Lys	Gly	Gln 580	Lys	Val	Thr	Met	Gln 585	Asn	Phe	GIn	Ser	Gly 590	Ser	Leu
25	Gly	GIn	Phe 595	Asp	lle	Asp	Gly	Ser 600	Tyr	Trp	Gly	GIn	Trp 605	Ser	lle	Asn

30

<210> 2

<211> 2052

<212> DNA

<213> Artificial Sequence

35

<220>

<223> S. cerevisiae/pYLSD1

<400> 2 tgggtgtgtc ccttgctctg ccaacgttgt tgattgtttt catgacatta atctacgtgc 60 5 cttcaatatt tacaatggtc ccctcaatca cacggattgt actggttaac attctgttgg 120 cgacgttggt tttgggagct gcagtccttc cacgagacaa cagaactgtt tgcgggagtc 180 10 aactotgcac atggtggcac gactocggcg agataaacac cggtactcot gtacaggcag 240 gaaacgttcg acaatcccga aagtactctg tccatgtgag cctggcagac cgtaaccaat 300 360 tetacgacte titegiatat gaategatae etaggaaegg caatggeaga attiatiete 15 ccaccgaccc acctaacagc aatacattga atagtagcat tgacgacggt atatcaatcg 420 aaccatetet eggeateaac atggettggt eccagttega atatagaega gatgtegaea 480 20 ttaagattac tacaatcgat ggctcaatat tggatggccc tttggacatt gttattcggc 540 600 cgacttctgt taagtactca gtcaaaagat gtgtgggtgg tatcattatt agagtccctt 660 atgatcccaa tggtcgaaaa ttctctgttg agttaaagag tgacctttac agttacctct 25 720 ccgacggttc gcaatatgtg acctctggag ggagcgtggt tggtgtggag ccaaaaaatg ccctggtgat ctttgccagc cctttcttgc cacgggatat ggttcctcat atgacaccac 780 30 acgacaccca gacaatgaag ccgggcccaa tcaataatgg ggactggggt tcaaagccta 840 tactctactt cccgcctggc gtatactgga tgaacgagga tacctctggt aaccccggga 900 960 agctcggctc aaatcatatg cggctggatc ccaataccta ctgggtccat ctagccccag 35 gagectatgt gaaaggagec attgagtatt teacgaagea aaatttetat geaacgggte 1020

;	atggcgttct	ctcaggtgag	aactatgttt	atcaggccaa	tgcagctgat	aactactatg	1080
(ccgtcaagag	tgatggcaca	agcttgagaa	tgtggtggca	caacaacctt	ggaggcggtc	1140
i	aaacatggtt	ttgcatgggg	cccaccatta	atgcaccgcc	gtttaatacg	atggacttca	1200
i	acggaaactc	taatatttcc	agccggatta	gtgactataa	gcaggttggc	gcttattttt	1260
	tccaaacaga	cggaccggag	atctacgagg	acagtgttgt	ccatgacgtc	ttctggcatg	1320
	ttaatgatga	tgccatcaag	acatattatt	ccggagcttc	aatttcacga	gcaaccatct	1380
9	ggaagtgtca	caatgacccg	atcatacaga	tgggctggac	gtcacgaaat	ctcaccggaa	1440
	tcagcattga	taacctgcac	gtcatccaca	cgagatattt	caaatctgaa	acagtggttc	1500
. (cttcagcaat	cattggagcg	tctccattct	acgcaagtgg	aatgactgtt	gatcccagcg	1560
i	agtccatcag	catgaccatc	tctaacgtgg	tgtgtgaggg	tctatgcccc	tcactgttcc	1620
(gtatcactcc	gcttcagagc	tacaacaacc	ttgttgtcaa	gaacgtggcc	tttcccgatg	1680
9	gactgcagac	aaatccaatc	ggaataggag	agagcattat	accagcagct	tccggctgta	1740
(caatggactt	ggaaatcaca	aactggaccg	tcaaaggaca	aaaagtcacc	atgcaaaact	1800
	ttcagtccgg	gtcacttggc	cagttcgata	tcgatggttc	atactggggt	caatggtcca	1860
	taaactaaag	ctattcccat	tcacctgagt	attttcgtgg	gttcaatgag	ttcttgttac	1920
	tgatggggcc	cttgctagtg	gtaaaagtag	agggacttgt	cctcgccggg	cgccaaggaa	1980
•	gttcatgtct	tctagttgaa	tagtatttgt	ttcttctctc	tcgttaaaaa	aaaaaaaaa	2040
i	aaaaaaaaaa	aa					2052

WO 2005/073368 PCT/KR2005/000234 7/7

3

<211> 18

<210>

<212> DNA

<213> Artificial Sequence

5

<220>

<223> L. starkeyi DX-F primer(sense)

10 <400> 3

gtcccttgag ctcccaac 18

<210> 4

15 <211> 23

<212> DNA

<213> Artificial Sequence

<220>

20 <223> L. starkeyi DX-R primer(antisense)

<400> 4

tcaactagaa ttcatgaact tcc

23

25