Expressiveness modulo bisimilarity: a coalgebraic perspective

Yde Venema ILLC, UvA, Amsterdam http://staff.science.uva.nl/~yde

Highlights, Paris, 21 September 2013

 $M \equiv L/{\underline{\leftrightarrow}}$

$$M \equiv L/{\rm \longleftrightarrow}$$

▶ van Benthem: $ML \equiv FOL/$

$$M \equiv L/{\rm \longleftrightarrow}$$

- \blacktriangleright van Benthem: $\mathsf{ML} \equiv \mathsf{FOL}/{\leftrightarrows}$
- ▶ many variations, generalizations, . . .

$$M \equiv L/{\rm \longleftrightarrow}$$

- ▶ van Benthem: $ML \equiv FOL/$
- ▶ many variations, generalizations, . . .
- ▶ Janin & Walukiewicz: μ ML \equiv MSO/ \rightleftharpoons

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/\Leftrightarrow$

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/\hookrightarrow$ That is, there is a translation $(\cdot)^*: MSO \to \mu ML$ s.t.

 φ is bisimulation invariant iff $\varphi \equiv \varphi^*$.

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/ \hookrightarrow$ That is, there is a translation $(\cdot)^* : MSO \to \mu ML$ s.t.

 φ is bisimulation invariant iff $\varphi \equiv \varphi^*$.

Proof sketch: J & W use automata:

- 1. $MSO \equiv Aut(FOE)$ on tree models
- 2. μ ML \equiv Aut(FO).

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/ \Leftrightarrow$ That is, there is a translation $(\cdot)^* : MSO \to \mu ML$ s.t.

 φ is bisimulation invariant iff $\varphi \equiv \varphi^*$.

Proof sketch: J & W use automata:

- 1. MSO \equiv Aut(FOE) on tree models
- 2. $\mu ML \equiv Aut(FO)$.

Hence it suffices to prove that

3. $Aut(FO) \equiv_s Aut(FOE)/\Leftrightarrow$

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/ \hookrightarrow$ That is, there is a translation $(\cdot)^* : MSO \to \mu ML$ s.t. φ is bisimulation invariant iff $\varphi \equiv \varphi^*$.

Proof sketch: J & W use automata:

- 1. $MSO \equiv Aut(FOE)$ on tree models
- 2. $\mu ML \equiv Aut(FO)$.

Hence it suffices to prove that

3. $Aut(FO) \equiv_s Aut(FOE)/\Leftrightarrow$

Point of talk: Item 3 follows from observations on relation FOE/FO

Preliminaries: Models

Fix a set X of proposition letters.

A model is a structure $\mathbb{S} = \langle S, R, V \rangle$ with $R \subseteq S \times S$ and $V : X \to \wp S$.

Preliminaries: Models

Fix a set X of proposition letters.

A model is a structure $\mathbb{S} = \langle S, R, V \rangle$ with $R \subseteq S \times S$ and $V : X \to \wp S$.

▶ $R \subseteq S \times S$ induces $R : S \to \wp S$, with $R[s] := \{t \in S \mid Rst\}$ is the successor set of s

Preliminaries: Models

Fix a set X of proposition letters.

A model is a structure $\mathbb{S} = \langle S, R, V \rangle$ with $R \subseteq S \times S$ and $V : X \to \wp S$.

- ▶ $R \subseteq S \times S$ induces $R : S \rightarrow \wp S$, with $R[s] := \{t \in S \mid Rst\}$ is the successor set of s
- ▶ $V: X \to \wp S$ induces $m_V: S \to \wp X$, with $m_V(s) := \{p \in X \mid s \in V(p)\}$ is the color of s.

An automaton is a triple $\mathbb{A} = \langle A, \delta, \Omega \rangle$ with

- ► A a finite set of states/ propositional variables/monadic predicates
- $ightharpoonup \Omega: A
 ightarrow \mathbb{N}$ a priority map
- ▶ $\delta: A \times \wp X \to L(A)$, with L(A) some set of one-step formulas in A.

An automaton is a triple $\mathbb{A} = \langle A, \delta, \Omega \rangle$ with

- ► A a finite set of states/ propositional variables/monadic predicates
- $ightharpoonup \Omega: A
 ightarrow \mathbb{N}$ a priority map
- ▶ $\delta: A \times \wp X \to L(A)$, with L(A) some set of one-step formulas in A.

With such δ , \mathbb{A} belongs to Aut(L).

An automaton is a triple $\mathbb{A} = \langle A, \delta, \Omega \rangle$ with

- ► A a finite set of states/ propositional variables/monadic predicates
- $ightharpoonup \Omega: A
 ightarrow \mathbb{N}$ a priority map
- ▶ $\delta: A \times \wp X \to L(A)$, with L(A) some set of one-step formulas in A.

With such δ , \mathbb{A} belongs to Aut(L).

Initialized automaton: pair (\mathbb{A}, a_I) with $a_I \in A$

An automaton is a triple $\mathbb{A} = \langle A, \delta, \Omega \rangle$ with

- ► A a finite set of states/ propositional variables/monadic predicates
- $ightharpoonup \Omega: A
 ightarrow \mathbb{N}$ a priority map
- ▶ $\delta: A \times \wp X \to L(A)$, with L(A) some set of one-step formulas in A.

With such δ , \mathbb{A} belongs to Aut(L).

Initialized automaton: pair (\mathbb{A}, a_I) with $a_I \in A$

Acceptance game of an automaton \mathbb{A} on a model \mathbb{S} :

Position	Player	Admissible moves	Priority
$(a,s) \in A \times S$	3	$\{I:A ightarrow\wp\mathcal{S}\mid \text{``}I \text{ makes } \delta(a,m_V(s)) \text{ true''}\}$	$\Omega(a)$
$I:A o\wp S$	\forall	$\{(b,t)\in A\times S\mid t\in I(b)\}$	0

- ▶ fix a finite set A
- ▶ think of A as a signature of monadic predicates
- **structure** for A: pair $\langle D, I \rangle$ with $I : A \to \wp D$ an interpretation
- ► corresponding monadic first-order language:

$$\varphi ::= a(x) \mid x = y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \varphi$$

- ▶ fix a finite set A
- ▶ think of A as a signature of monadic predicates
- **structure** for A: pair $\langle D, I \rangle$ with $I : A \to \wp D$ an interpretation
- corresponding monadic first-order language:

$$\varphi ::= a(x) \mid x = y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \varphi$$

► FOE(A): sentences in language with equality FO(A): sentences in language without equality

- ► fix a finite set A
- ▶ think of A as a signature of monadic predicates
- **structure** for A: pair $\langle D, I \rangle$ with $I : A \to \wp D$ an interpretation
- corresponding monadic first-order language:

$$\varphi ::= a(x) \mid x = y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \varphi$$

- ► FOE(A): sentences in language with equality FO(A): sentences in language without equality
- ▶ Aut(FOE): automata with $\delta : A \times \wp X \to \mathsf{FOE}(A)$ Aut(FO): automata with $\delta : A \times \wp X \to \mathsf{FO}(A)$

- ▶ fix a finite set A
- ▶ think of A as a signature of monadic predicates
- **structure** for A: pair $\langle D, I \rangle$ with $I : A \to \wp D$ an interpretation
- ► corresponding monadic first-order language:

$$\varphi ::= a(x) \mid x = y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \varphi$$

- ► FOE(A): sentences in language with equality FO(A): sentences in language without equality
- ▶ Aut(FOE): automata with $\delta : A \times \wp X \to \mathsf{FOE}(A)$ Aut(FO): automata with $\delta : A \times \wp X \to \mathsf{FO}(A)$

Use in acceptance game:

▶ at position (a, s), \exists needs to find an interpretation $I : A \to \wp R[s]$ s.t. $\langle R[s], I \rangle \models \delta(a, m_V(s))$.

Acceptance Game

The acceptance game $\mathcal{A}(\mathbb{A},\mathbb{S})$ of an automaton \mathbb{A} on a model \mathbb{S} :

Position	Player	Admissible moves	Priority
$(a,s) \in A \times S$	3	$\{I: A \to \wp S \mid \langle R[s], I \rangle \models \delta(a, m_V(s))\}$	$\Omega(a)$
$I:A o\wp S$	\forall	$\{(b,t)\in A\times S\mid t\in I(b)\}$	0

$$(\mathbb{A},a_I)$$
 accepts (\mathbb{S},s) if $(a_I,s)\in \mathit{Win}_\exists(\mathcal{A}(\mathbb{A},\mathbb{S})).$

Logic & Automata

Theorem 1 (Janin & Walukiewicz)

- (a) MSO $\equiv Aut(FOE)$ on trees.
- (b) $\mu ML \equiv Aut(FO)$.

Logic & Automata

Theorem 1 (Janin & Walukiewicz)

- (a) MSO \equiv Aut(FOE) on trees.
- (b) $\mu ML \equiv Aut(FO)$.

The aim is now to prove

$$Aut(FO) \equiv_s Aut(FOE)/\Leftrightarrow$$

Logic & Automata

Theorem 1 (Janin & Walukiewicz)

- (a) MSO \equiv Aut(FOE) on trees.
- (b) $\mu ML \equiv Aut(FO)$.

The aim is now to prove

$$Aut(FO) \equiv_s Aut(FOE)/\Leftrightarrow$$

Focus on relation FOE/FO.

Definition

- ▶ Two A-structures (D, I) and (D', I') are P-similar if
 - $\forall d \in D \quad \exists d' \in D' \ m_I(d) = m_{I'}(d')$
 - $\forall d' \in D' \ \exists d \in D \ m_I(d) = m_{I'}(d')$

Definition

- ▶ Two A-structures (D, I) and (D', I') are P-similar if
 - $\forall d \in D \quad \exists d' \in D' \ m_I(d) = m_{I'}(d')$
 - $\forall d' \in D' \ \exists d \in D \ m_I(d) = m_{I'}(d')$
- ▶ A sentence φ is P-invariant if P-similar (D, I) and (D', I') satisfy

$$(D,I) \models \varphi \text{ iff } (D',I') \models \varphi$$

Definition

- ▶ Two A-structures (D, I) and (D', I') are P-similar if
 - $\forall d \in D \quad \exists d' \in D' \ m_I(d) = m_{I'}(d')$
 - $\forall d' \in D' \ \exists d \in D \ m_I(d) = m_{I'}(d')$
- ▶ A sentence φ is P-invariant if P-similar (D, I) and (D', I') satisfy

$$(D,I) \models \varphi \text{ iff } (D',I') \models \varphi$$

Proposition Let $\varphi \in FOE(A)$ be a sentence.

Then φ is P-invariant iff φ is invariant under surjective homomorphisms.

Definition

- ▶ Two A-structures (D, I) and (D', I') are P-similar if
 - $\bullet \ \forall d \in D \quad \exists d' \in D' \ m_I(d) = m_{I'}(d')$
 - $\forall d' \in D' \ \exists d \in D \ m_I(d) = m_{I'}(d')$
- ▶ A sentence φ is P-invariant if P-similar (D, I) and (D', I') satisfy

$$(D,I) \models \varphi \text{ iff } (D',I') \models \varphi$$

Proposition Let $\varphi \in FOE(A)$ be a sentence.

Then φ is P-invariant iff φ is invariant under surjective homomorphisms.

Theorem $FO \equiv_s FOE/P$:

There is a translation $(\cdot)^* : \mathsf{FOE} \to \mathsf{FO}$ s.t.

 φ is P-invariant iff $\varphi \equiv \varphi^*$.

Main Theorem

Theorem Let $M, L \subseteq FOE$ be two one-step languages.

If $M \equiv_s L/P$ then $Aut(M) \equiv_s Aut(L)/\Leftrightarrow$.

Main Theorem

Theorem Let $M, L \subseteq FOE$ be two one-step languages.

If
$$M \equiv_s L/P$$
 then $Aut(M) \equiv_s Aut(L)/\Leftrightarrow$.

Point of talk

$$\mu ML \equiv_s MSO/ \stackrel{\cdot}{\hookrightarrow} because FO \equiv_s FOE/P.$$

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/ \Leftrightarrow$

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/\hookrightarrow$ That is, there is a translation $(\cdot)^* : MSO \to \mu ML$ s.t.

 φ is bisimulation invariant iff $\varphi \equiv \varphi^*$.

Theorem (Janin & Walukiewicz) $\mu ML \equiv_s MSO/\hookrightarrow$ That is, there is a translation (·)*: MSO $\rightarrow \mu ML$ s.t.

 φ is bisimulation invariant iff $\varphi \equiv \varphi^*$.

Proof

- 1. (a) MSO \equiv Aut(FOE) on trees.
 - (b) μ ML \equiv Aut(FO).
- 2. $FO \equiv_s FOE/P$
- 3. If M = L/P then Aut(M) = Aut(L)/

► What is new here?

- ▶ What is new here?
- ▶ Main theorem works at coalgebraic level of generality:

If
$$M = L/T$$
 then $Aut(M) = Aut(L)/ \Leftrightarrow$.

- ▶ What is new here?
- ▶ Main theorem works at coalgebraic level of generality:

If
$$M = L/T$$
 then $Aut(M) = Aut(L)/ \Leftrightarrow$.

▶ Main Theorem generalizes to restricted classes of models:

- ▶ What is new here?
- ▶ Main theorem works at coalgebraic level of generality:

If
$$M = L/T$$
 then $Aut(M) = Aut(L)/ \Leftrightarrow$.

► Main Theorem generalizes to restricted classes of models: What about an FMT version of the Janin-Walukiewicz Theorem?

- ▶ What is new here?
- ▶ Main theorem works at coalgebraic level of generality:

If
$$M = L/T$$
 then $Aut(M) = Aut(L)/$ \Leftrightarrow .

- ► Main Theorem generalizes to restricted classes of models: What about an FMT version of the Janin-Walukiewicz Theorem?
- ► Approach works for restricted classes of automata:

- ▶ What is new here?
- ▶ Main theorem works at coalgebraic level of generality:

If
$$M = L/T$$
 then $Aut(M) = Aut(L)/ \Leftrightarrow$.

- ► Main Theorem generalizes to restricted classes of models: What about an FMT version of the Janin-Walukiewicz Theorem?
- ► Approach works for restricted classes of automata:

$$WMSO/ \Leftrightarrow = ?$$

(Carreiro, Facchini, Venema & Zanasi, forthcoming)

Reference

Y. Venema, Expressiveness modulo bisimilarity: a coalgebraic perspective, to appear in: A. Baltag and S. Smets (eds.), van Benthem, Outstanding Contributions to Logic, Springer, 201x.

Downloadable from http://staff.science.uva.nl/~yde