

Melanoma Skin Cancer Detection

PRESENTED BY

Steven Wilson

- 01 Contextual Background
- 02 Understanding the Data
- 03 Training and Testing
- 04 Results
- 05 Discussion and Future Work

Table of Contents

Contextual Background

Melanoma is a type of cancer that starts in the cells that produce melanin. This cancer occurs when a melanocyte grows uncontrollably and turns into a tumor.

Melanoma is **less common** than other types of cancers, however, it is the **most serious** type of skin cancer and is much more likely to spread to other parts of the body if not found and treated.

Understanding the Data

- The dataset **Skin Cancer ISIC** contains 2,347 images of common and serious skin lesions and cancers.
- The images are **sorted** and classified among **9 categories**.
- There is a noticeable class imbalance. The images are unevenly distributed, with some classes having significantly more samples than others.

Data

Before

After

This image showcases a variety of skin lesions from the "Skin Cancer ISIC" dataset, including both malignant and benign types such as melanoma, basal cell carcinoma, and seborrheic keratosis.

Malignant and Benign

Data Sample

Training and Testing

Data Split

For this project **20**% of the dataset is allocated to the **validation set**, while **80**% is used for **training.**

Convolutional Neural Network

We used a Convolutional Neural Network (CNN) to automatically extract hierarchical features from skin lesion images, classify them into different skin cancer types.

Accuracy and Loss

The model is learning well as both accuracy increases and loss decreases, but slight overfitting may be occurring

Training vs Validation

Training vs Validation

Architecture

Results

Discussion & Future Work

Enhance Data Robustness

Expand our database by incorporating a more diverse set of images.

Comprehensive Testing & Evaluation

Incorporating broader evaluation techniques. To better understand model performance under various conditions and edge cases.

Improved Model Reliability

Implementation of rejection mechanisms.

Conclusions

Our project demonstrates the potential of using convolutional neural networks (CNNs) for early melanoma detection, showcasing promising initial results using the ISIC dataset.

We learnt the importance of creating a more robust training dataset that includes diverse negative samples and real-world variations.

Further testing and evaluation beyond traditional validation metrics are necessary to ensure reliability and safety in clinical settings.

Thanks

References

[1] Public Health Agency of Canada. (n.d.). Melanoma Skin Cancer. Retrieved 2025, from https://www.canada.ca/en/public-health/services/chronic-diseases/cancer/melanoma-skin-cancer.html

[2] American Cancer Society. (n.d.). What Is Melanoma Skin Cancer? Retrieved 2025, from https://www.cancer.org/cancer/types/melanoma-skin-cancer/about/what-is-melanoma.html [3] Skin Cancer Foundation. (n.d.). Melanoma Warning Signs. Retrieved 2025, from https://www.skincancer.org/skin-cancer-information/melanoma/melanoma-warning-signs-and-images/

[4] IEEE. (2023). Design of a Skin Cancer Detection Classification with Python GUI and Tensorflow. 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Palembang, Indonesia, pp. 38-42, doi: 10.1109/EECSI59885.2023.10295620. Retrieved from https://ieeexplore.ieee.org/document/10295620

[5] Muñoz, L. (n.d.). Python in Medical Imaging: A ROI Extraction Example. Retrieved 2025, from https://medium.com/@lamunozs/python-in-medical-imaging-a-roi-extraction-example-0f315336dd6d

[6] Analytics Vidhya. (2020). Image Classification Using CNN. Retrieved 2025, from https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3-datasets/

[7] Kriplani, A. (n.d.). Melanoma Skin Cancer Detection. Retrieved 2025, from https://github.com/akashkriplani/melanoma-skin-cancer-detection/tree/main?tab=readme-ov-file#model-summary