$\underline{\rm GDE\ Formels ammlung}$

Florian Leuze

Inhaltsverzeichnis

1	Grundlagen 4									
	1.1	Misc	4							
		1.1.1 Atome	4							
	1.2	Das elektrische Feld	4							
		1.2.1 Coulombsches Gesetz	4							
		1.2.2 Feldstärke und Ladung	4							
		1.2.3 Potentielle Energie einer Probeladung q im elektrischen Feld	5							
		1.2.4 Wegarbeit	5							
	1.3	Spannung und Potential	5							
	1.4	Bewegung von Ladungsträgern im Vakuum	6							
	1.5	Bewegung von Ladungsträgern in Materie	6							
	1.6	Energie und Leistung	6							
		1.6.1 Widerstände	6							
2	Glei	ichstromkreise	8							
_	2.1	Kirchhoffsche Gesetze	8							
	2.1	2.1.1 Kirchhoffsche Gesetze	8							
	2.2	Einfache Regeln für Widerstandsnetzwerke	8							
		2.2.1 Spannungsteiler	9							
	2.3	Brückenschaltungen	9							
		2.3.1 Brückenschaltung	9							
		2.3.2 Abgeglichene Brückenschaltung	9							
3	•		0							
	3.1	•	10							
		±	10							
	2.0		10 10							
	3.2	•	10 11							
	3.3		ι 1 [1							
	ა.ა	Quenenwandrung	LI							
4	Syst	tematische Verfahren zur Netzwerkanalyse	2							
	4.1	Grundbegriffe	12							
	4.2	Maschenstromanalyse	12							
	4.3	Knotenspannungsanalyse	15							
	4.4	Superpositionsprinzip nach Helmholtz	16							
5	Das	statische elektrische Feld	.8							
•	5.1		. o							
	5.2		18							
	5.3	•	18							
	-		18							
			19							
			19							

INHALTSVERZEICHNIS

		5.3.4 Kapazitiver Schaltungen	9
	5.4	Ladevorgang	9
	5.5	Entladevorgang)
6	Das	statische magnetische Feld 21	1
	6.1	Lorentzkraft und Flussdichte	1
	6.2	Magnetischer Fluss, Feldstärke und Durchflutung	1
	6.3	Stromdurchflossene Leiter	1
		6.3.1 Leiterschleife	1
	6.4	Magnetische Reluktanz	1
	6.5	Luftspalt	2
7	Zeit	lich veränderliche Felder	3
	7.1	Allgemeines Induktionsgesetz	3
	7.2	Induktivität einer Spule	3
		7.2.1 Ringspule	3
		7.2.2 Hubmagnet	3
	7.3	Magnetische Energie	3
	7.4	Schaltungen von Induktivitäten	4
	7.5	Einschaltvorgang	4
	7.6	Abschaltvorgang	4
8	Anh	länge 25	5
	8.1	Abkürzungen/Formelzeichen	
	8.2	Konstanten	
		8.2.1 Spezifische Widerstände $[\mu\Omega cm]$	3
		8.2.2 Temperaturkoeffizienten α ohmscher Widerstände bei $20^{\circ}C$ in $\left[\frac{1}{\circ C}\right]$	3
	8.3	SI-Basiseinheiten	
	8.4	Vorsatzzeichen	
	8.5	Kurzzusammenfassung	
		8.5.1 Elektrostatik	
		8.5.2 Kondensator	
		8.5.3 Magnet 1	
		8.5.4 Magnet 2	
		8.5.5 Spule	
		8.5.6 Komplexe Rechnung	
)

Versionierung

Datum	Vers.	Kürzel	Änderung
08.09.2018	0.1	FL	Erzeugung Dokument; Erzeugung 1-9 incl. An-
			hänge

1 Grundlagen

1.1 Misc

1.1.1 Atome

- Atome sind im Grundzustand neutral
- Ändert sich die Zahl der Elektronen spricht man von Ionisierung:
 - positives Ion = Kation (weniger Elektronen)
 - negatives ion = Anion (mehr Elektronen)
- Elektron $q_e = -e$, Elektronenmasse: $m_e = 9, 109... * 10^{-31} kg$
- Proton $q_p = +e$, Protonenmasse: $m_p = 1,672...*10^{-27} kg$

1.2 Das elektrische Feld

1.2.1 Coulombsches Gesetz

Coulombsches Gesetz :
$$\vec{F}_{21} = Q_1 = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \hat{r}$$
 (1.2.1)

1.2.2 Feldstärke und Ladung

Elektrische Feldstärke :
$$\vec{E} := \frac{\vec{F}}{q}$$
 (1.2.2)

Wobei \overrightarrow{E} die Kraft auf die positive Ladungseinheit bezeichnet.

Feldstärke verteilter :
$$\vec{E} = \sum_{i} \frac{1}{4\pi\varepsilon_{0}r_{i}^{2}}Q_{i}\frac{\vec{r}_{i}}{r_{i}}$$
 (1.2.3)

Elektrischer Fluss :
$$\Psi_E = \int \int \vec{E} \, d\vec{f}$$
 (1.2.4)

Elektrischer

Fluss - Spezialfall :
$$\Psi_E = \frac{Q}{\varepsilon_0}$$
 (1.2.5)

Punktladung

Ladungsdichte :
$$\varrho := \frac{\Delta Q}{\Delta V}$$
 (1.2.6)

Wobei Q die Ladung im Würfel und V das Volumen des Würfels bezeichnen.

Gesamtladung :
$$Q = \int \int_{V} \int \frac{\varrho}{\varepsilon_0} dV$$
 (1.2.7)

1. Maxwellsche Gleichung :
$$\operatorname{div} \vec{E} = \frac{\varrho}{\varepsilon_0}$$
 (1.2.8)

Poisson Gleichung :
$$\Delta \varphi = -\frac{\varrho}{\varepsilon_0}$$
 (1.2.9)

Laplace Sleichung :
$$\Delta \varphi = 0$$
 (1.2.10)

Zusammenhang

Feld und :
$$\vec{E} = -\operatorname{grad} \varphi$$
 (1.2.11)

Potential

1.2.3 Potentielle Energie einer Probeladung q im elektrischen Feld

V bezeichne im Folgenden die potentielle Energie, mit P_0 sei allgemein ein Bezugspunkt bezeichnet.

Potentielle Energie :
$$V(P) = \int_{P}^{P_0} \vec{F} d\vec{r} = -\int_{P_0}^{P} \vec{F} d\vec{r}$$
 (1.2.12)

Pot. Energie im Feld einer :
$$V(P) = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{R}$$
 (1.2.13)

1.2.4 Wegarbeit

Wegarbeit(a) :
$$W_{AB}(t) = \int_{A}^{B} = \overrightarrow{F}(\overrightarrow{r}, t)d\overrightarrow{r}$$
 (1.2.14)

1.3 Spanning und Potential

Spannung(a) :
$$U_{12} = \frac{1}{q} \int_{P_1}^{P_2} \vec{F} d\vec{r} = \int_{P_1}^{P_2} \vec{E} d\vec{r}$$
 (1.3.1)

Wobei (1.2.2) verwendet wurde.

Potential :
$$\varphi(P) = \int_{P}^{P_0} \vec{E} d\vec{r}$$
 (1.3.2)

Mit Integration von (1.3.1) und einsetzen von (1.3.2) erhält man für ausschließlich konservative Felder

Spannung(b) :
$$U_{12} = \int_{P_1} P_2 \vec{E} d\vec{r} = \int_{P_1}^{P_0} \vec{E} d\vec{r} + \int_{P_0}^{P_2} \vec{E} d\vec{r} = \varphi(P_1) - \varphi(P_2)$$
 (1.3.3)

1.4 Bewegung von Ladungsträgern im Vakuum

Ausgeübte Kraft :
$$\vec{F} = q\vec{E} = m\vec{a} = m\frac{d\vec{v}}{d}t$$
 (1.4.1)

Wegarbeit(a) :
$$W_{AB}(t) = \int_{A}^{B} = \overrightarrow{F}(\overrightarrow{r}, t) d\overrightarrow{r} = q \int_{A}^{B} \overrightarrow{E} d\overrightarrow{r} = q U_{AB} (1.4.2)$$

1.5 Bewegung von Ladungsträgern in Materie

Elektronen-
stromdichte :
$$J_n = q\mu_n n\varepsilon + qD_n \frac{dn}{dx} = \sigma_n \varepsilon + qD_n \frac{dn}{dx}$$
 (1.5.1)

Löcher-
stromdichte :
$$J_p = q\mu_p p \varepsilon + q D_p \frac{dp}{dx} = \sigma_p \varepsilon + q D_p \frac{dp}{dx}$$
 (1.5.2)

Gesamtstrom-
dichte :
$$J_{tot} = J_n + J_p$$
 (1.5.3)
$$= J_{drift,n} + J_{diff,n} + J_{drift,n} + J_{diff,n}$$

Stromdichte vereinfacht :
$$J = \frac{I}{A}$$
 (1.5.4)

Elektrischer Strom :
$$i(t) = \frac{dQ(t)}{dt} = \int_{A} \vec{j}(\vec{r}, t)d\vec{A}$$
 (1.5.5)

1.6 Energie und Leistung

Momentanleistung :
$$p(t) = \frac{dW}{dt} = i(t)u_{AB}(t)$$
 (1.6.1)

Gesamtenergie :
$$W = \int_{t=t_1}^{t_2} p(t)dt = \int_{t=t_1}^{t_2} i(t)u_{AB}(t)dt$$
 (1.6.2)

Leistung(a) :
$$p(t) = i(t) \cdot u(t)$$
 (1.6.3)

Leistung(b) :
$$p(t) = R \cdot i(t)^2$$
 (1.6.4)

Leistung(c) :
$$p(t) = G \cdot u(t)^2$$
 (1.6.5)

1.6.1 Widerstände

Ohmsches
$$u(t) = R \cdot i(t)$$
 (1.6.6)

Ohmwiderstand :
$$R = \frac{u(t)}{i(t)}$$
 (1.6.7)

Spezifischer Widerstand :
$$\varrho = \frac{1}{-enb}$$
 (1.6.8)

1 GRUNDLAGEN

Ohmsches Gesetz(b) : i(t) = Gu(t) (1.6.9)

Leitwert : $G = \frac{1}{R}$ (1.6.10)

Spezifischer Leitwert : $\kappa = -enb$ (1.6.11)

2 Gleichstromkreise

2.1 Kirchhoffsche Gesetze

1. Kirchhoffsches :
$$\sum_{n=1}^{k} i_n = i_1 + i_2 + \dots + i_k = 0$$
 (2.1.1)

Oder wörtlich gesprochen die Summe aller in einen Knoten hineinfließenden Ströme muss 0 ergeben.

2.1.1 Kirchhoffsche Gesetze

2. Kirchhoffsches :
$$\sum_{n=1}^{k} u_n = u_1 + u_2 + ... + u_k = 0$$
 (2.1.2)

Oder wörtlich gesprochen die Summe aller Spannungen in einer Masche muss immer 0 ergeben.

2.2 Einfache Regeln für Widerstandsnetzwerke

Spannungsteiler-
regel :
$$\frac{i_1}{i_2} = \frac{R_1}{R_2}$$
 (2.2.1)

Stromteilerregel :
$$\frac{i_1}{i_2} = \frac{G_1}{G_2} = \frac{R_2}{R_1}$$
 (2.2.2)

Reihenschaltung(a) :
$$R_g = \sum_{n=1}^k R_n = R_1 + R_2 + \dots + R_n$$
 (2.2.3)

Parallelschaltung(a) :
$$R_g = \frac{1}{\sum_{n=1}^k R_n} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}$$
 = $\frac{1}{G_1 + G_2 + \dots + G_n}$ (2.2.4)

Reihenschaltung(b) :
$$G_g = \frac{1}{\sum_{n=1}^k G_n} = \frac{1}{\frac{1}{G_1} + \frac{1}{G_2} + \dots + \frac{1}{G_n}}$$
 (2.2.5)
$$= \frac{1}{R_1 + R_2 + \dots + R_n}$$

Parallelschaltung(b) :
$$G_g = \sum_{n=1}^k G_n = G_1 + G_2 + \dots + G_n$$
 (2.2.6)

2.2.1 Spannungsteiler

Unbelasteter Spannungsteiler :
$$\frac{R_g}{R_2} = \frac{U_g}{U_2} \Rightarrow U_2 = \frac{R_2}{R_1 + R_2} U_g$$
 (2.2.7)

Belasteter Spannungsteiler :
$$U_2 = \frac{R_2 R_L}{R_1 R_2 + R_1 R_L + R_2 R_L} U_g$$
 (2.2.8)

2.3 Brückenschaltungen

2.3.1 Brückenschaltung

Betrachtet man zwei gegenüberliegende Spannungsteiler erhält man eine sogenannte Brückenschaltung. Greift man die Spannung zwischen den beiden mittleren Knoten der Spannungsteiler ab erhält man die Brückenspannung. Man bestimmt sie bei einer unbelasteten Brücke am besten über die Betrachtung der einzelnen Potentiale φ_1 und φ_2 .

$$\varphi_{1} = U_{a1} \stackrel{(??)}{=} \frac{R_{2}}{R_{1} + R_{2}} U_{g} , \qquad \varphi_{2} = U_{a2} \stackrel{(??)}{=} \frac{R_{4}}{R_{3} + R_{4}} U_{g}$$

$$U_{AB} = \varphi_{1} - \varphi_{2} = \left(\frac{R_{2}}{R_{1} + R_{2}} - \frac{R_{4}}{R_{3} + R_{4}}\right) U_{g}$$

$$(2.3.1)$$

2.3.2 Abgeglichene Brückenschaltung

Häufig ist man bemüht eine sogenannte abgeglichene Brückenschaltung zu erreichen. Bei einer abgeglichenen Brücke ist die Brückenspannung U_{AB} per Definition gleich Null.

Abgleichbedingung:
$$U_{AB} = \varphi_1 - \varphi_2 = 0 \Rightarrow \varphi_1 = \varphi_2$$
 (2.3.2)

Diese Schaltung wird häufig zur Messung eingesetzt, man spricht dann von Messbrücken. Aus obiger Abgleichbedingung lassen sich weiterhin die Verhältnisse für die Widerstände folgern:

$$\Rightarrow \frac{R_2}{R_1 + R_2} = \frac{R_4}{R_3 + R_4} \Rightarrow \frac{R_1}{R_2} = \frac{R_3}{R_4} \tag{2.3.3}$$

Das ist auch ganz logisch. Sollen die Potentiale im Mittelpunkt beider Spannungsteiler identisch sein müssen die Widerstandsverhältnisse beider Spannungsteiler ebenfalls identisch sein.

3 Quellen

Verbraucherstrom :
$$I = \frac{U_0}{R_i + R}$$
 (3.0.1)

Verbraucher-
spannung :
$$U = U_0 - U_i = \frac{R}{R_i + R} U_q = I \cdot R$$
 (3.0.2)

Quellenleistung :
$$P_q = U_0 \cdot I = \frac{U_0^2}{R_i + R}$$
 (3.0.3)

Verbraucherleistung :
$$P = UI = \frac{R}{(R_i + R)^2} U_0^2$$
 (3.0.4)

Wirkungsgrad :
$$\eta = \frac{P}{P_q} \le 1$$
 (3.0.5)

Leistungsanpas-
sung :
$$R_L \stackrel{!}{=} R_i$$
 (3.0.6)

Wirkungsgradmaximierung :
$$R_i \to 0$$
 (3.0.7)

3.1 Ideale Quellen

3.1.1 Ideale Stromquelle

Die ideale Stromquelle liefert unabhängig von der Belastung einen konstanten Strom. Es gilt:

$$I = const. (3.1.1)$$

$$P_q = I_q \cdot U \tag{3.1.2}$$

Leerlauf
$$(U \to \infty): P \to \infty$$
 (3.1.3)

3.1.2 Ideale Spannnungsquelle

Die ideale Spannungsquelle liefert unabhängig von der Belastung eine konstante Spannung. Es gilt:

$$U = const. (3.1.4)$$

$$P_q = U_g \cdot I \tag{3.1.5}$$

$$Kurzschluss (I \to \infty) : P \to \infty$$
 (3.1.6)

3.2 Reale Quellen

Reale Stromquelle :
$$I = I_q - I_i = I_q - G_i \dot{U}$$
 (3.2.1)

Reale Spannungsquelle :
$$U = U_q - U_i = U_q - I \cdot R_i$$
 (3.2.2)

3.2.1 Grenzfälle

Leerlauf
$$(I=0)$$
:
$$U = U_L = U_q = \frac{I_q}{G_i}$$
 (3.2.3)

$$Kurzschluss (U = 0) :$$

$$I = I_K = I_q = \frac{U_q}{R_i}$$
(3.2.4)

Reale Strom- und Spannungsquellen sind äquivalent richtig. Mit:

$$I_q = U_q G_i \text{ oder } U_q = I_q R_i \text{ und } G_i = \frac{1}{R_i}$$
(3.2.5)

Ist eine Umwandlung zwischen beiden Perspektiven möglich.

3.3 Quellenwandlung

Innenwider-
stand/Innenleitwert
$$G_0 = \frac{1}{R_0}$$
 (3.3.1)

Quellenstrom :
$$I_0 = \frac{U_0}{R_i} = U_0 \cdot G_0$$
 (3.3.2)

4 Systematische Verfahren zur Netzwerkanalyse

4.1 Grundbegriffe

Netzwerk : Ein zusammenhängendes Gebilde aus Knoten und

Zweigen.

Graph : Topologische Struktur des Netzwerks ohne Darstel-

lung der Bauelemente.

Pfad : Verbindung zwischen Knoten über mehrere Zweige.
 Masche : Geschlossener Pfad der sich nicht selbst schneidet.
 Vollständiger Baum : Verbindung aller Knoten im Netzwerk, ohne dass

eine Masche gebildet wird. Bei n Knoten besitzt der

Baum b = n - 1 Zweige.

Baumkomplement : Verbindet die restlichen Zweige des Baumes (Ver-

bindungszweige). Anzahl v=z-b=z+1-n wobei z die Gesamtanzahl der Zweige im Graphen ist. Wird der vollständige Baum um je einen Zweig des Baumkomplements ersetzt ergeben sich linear

unabhängige Maschen.

Durch Nutzung von Systemen wie der Maschenstromanalyse (siehe 4.2) und der Knotenpotentialanalyse (siehe 4.3) lässt sich die Anzahl der zu lösenden Gleichungen auf z - (n-1) bzw n-1 Gleichungen reduziert werden.

4.2 Maschenstromanalyse

Abbildung 1: Brückenschaltung mit Maschen

Zur Maschenstromanalyse werden zunächst linear unabhängige Maschen aufgestellt. Im nächsten Schritt sind die Spannungssummen zu bilden, die nach dem

2. Kirchhoffschen Gesetz Null ergeben müssen.

Masche a:
$$-U_{q14} + U_{q12} + U_{q24} + (I_a - I_b)R_{12} + (I_a - I_c)R_{24} + R_{14}I_a = 0$$

Masche b: $-U_{q12} + U_{q13} - U_{q23} + (I_b - I_c)R_{23} + (I_b - Ia)R_{12} + I_bR_{13} = 0$
Masche c: $-U_{q24} + U_{g23} + U_{q34} + (I_c - I_a)R_{24} + (I_c - I_b)R_{23} + I_cR_{34} = 0$
(4.2.1)

Aus diesen so erhaltenen Maschengleichungen wird nun ein LGS aufgebaut:

Dies lässt sich als Matrix einfacher darstellen

$$\begin{pmatrix}
R_{14} + R_{12} + R_{24} & -R_{12} & -R_{24} \\
-R_{12} & R_{12} + R_{13} + R_{23} & -R_{23} \\
-R_{24} & -R_{23} & R_{23} + R_{24} + R_{34}
\end{pmatrix} \cdot \begin{pmatrix}
I_a \\
I_b \\
I_c
\end{pmatrix}$$

$$= \begin{pmatrix}
U_{q14} - U_{q12} - U_{q24} \\
U_{q12} - U_{q23} + U_{q13} \\
U_{q24} - U_{q23} - U_{q34}
\end{pmatrix} (4.2.3)$$

Diese Matrix lässt sich nun am einfachsten mit der Cramerschen Regel lösen. Da es sich um eine 3×3 Matrix handelt, kann bequem mit der Sarruschen Regel gearbeitet werden.

Es gilt zunächst die Cramersche Regel:

$$I_a = \frac{\det D_a}{\det D}$$
 $I_b = \frac{\det D_b}{\det D}$ $I_c = \frac{\det D_c}{\det D}$ (4.2.4)

Die Determinanten werden über die Sarrussche Regel bestimmt:

$$\det X = \begin{vmatrix} X_{aa} & X_{ab} & X_{ac} \\ X_{ba} & X_{bb} & X_{bc} \\ X_{ca} & X_{cb} & X_{cc} \end{vmatrix} = \begin{vmatrix} X_{aa} & X_{ab} & X_{ac} \\ X_{ba} & X_{bb} & X_{bc} \\ X_{ca} & X_{cb} & X_{cc} \end{vmatrix} \begin{vmatrix} X_{aa} & X_{ab} \\ X_{ba} & X_{bb} \\ X_{ca} & X_{cb} & X_{cc} \end{vmatrix} \begin{vmatrix} X_{aa} & X_{ab} \\ X_{ba} & X_{bb} \\ X_{ca} & X_{cb} \end{vmatrix}$$

$$\Rightarrow \det X = X_{aa}X_{bb}X_{cc} + X_{ab}X_{bc}X_{ca} + X_{ac}X_{ba}X_{cb} - X_{ca}X_{bb}X_{ac} - X_{cb}X_{bc}X_{aa} - X_{cc}X_{ba}X_{ab}$$
(4.2.5)

Für die Berechnung der *Determinanten* D_a , D_b und D_c wird nach der Cramerschen Regel jeweils die Spalte in der Matrix mit dem gesuchten Strom durch die Quellenspalte ausgetauscht.

Allgemein gilt also:

$$X = \begin{pmatrix} X_{aa} & X_{ab} & X_{ac} \\ X_{ba} & X_{bb} & X_{bc} \\ X_{ca} & X_{cb} & X_{cc} \end{pmatrix} \cdot \begin{pmatrix} I_a \\ I_b \\ I_c \end{pmatrix} = \begin{pmatrix} Y_a \\ Y_b \\ Y_c \end{pmatrix}$$

$$\Rightarrow \det X_a = \begin{vmatrix} Y_a & X_{ab} & X_{ac} \\ Y_b & X_{bb} & X_{bc} \\ Y_c & X_{cb} & X_{cc} \end{vmatrix}$$

$$= Y_a X_{bb} X_{cc} + X_{ab} X_{bc} Y_c + X_{ac} Y_b X_{cb} - X_{ac} X_{bb} Y_c - Y_a X_{bc} X_{cb} - X_{ab} Y_b X_{cc}$$

$$\Rightarrow \det X_b = \begin{vmatrix} X_{aa} & Y_a & X_{ac} \\ X_{ba} & Y_b & X_{bc} \\ X_{ca} & Y_c & X_{cc} \end{vmatrix}$$

$$= X_{aa} Y_b X_{cc} + Y_a X_{bc} X_{ca} + X_{ac} X_{ba} Y_c - X_{ac} Y_b X_{ca} - X_{aa} X_{bc} Y_c - Y_a X_{ba} X_{cc}$$

$$\Rightarrow \det X_c = \begin{vmatrix} X_{aa} & X_{ab} & Y_a \\ X_{ba} & X_{bb} & Y_b \\ X_{ca} & X_{cb} & Y_c \end{vmatrix}$$

$$= X_{aa} X_{bb} Y_c + X_{ab} Y_b X_{ca} + Y_a X_{ba} X_{cb} - Y_a X_{bb} X_{ca} - X_{aa} Y_b X_{cb} - X_{ab} X_{ba} Y_c$$

$$= X_{aa} X_{bb} Y_c + X_{ab} Y_b X_{ca} + Y_a X_{ba} X_{cb} - Y_a X_{bb} X_{ca} - X_{aa} Y_b X_{cb} - X_{ab} X_{ba} Y_c$$

$$(4.2.7)$$

Somit ergibt sich für die einzelnen Ströme:

$$I_{a} = \frac{\det D_{a}}{\det D} = \frac{\begin{vmatrix} Y_{a} & X_{ab} & X_{ac} \\ Y_{b} & X_{bb} & X_{bc} \\ Y_{c} & X_{cb} & X_{cc} \end{vmatrix}}{\begin{vmatrix} X_{aa} & X_{ab} & X_{ac} \\ X_{ba} & X_{bb} & X_{bc} \\ X_{ca} & X_{cb} & X_{cc} \end{vmatrix}}$$

$$= \frac{Y_{a}(X_{bb}X_{cc} - X_{bc}X_{cb}) + Y_{b}(X_{ac}X_{cb} - X_{ab}X_{cc}) + Y_{c}(X_{ab}X_{bc} - X_{ac}X_{bb})}{X_{aa}X_{bb}X_{cc} + X_{ab}X_{bc}X_{ca} + X_{ac}X_{ba}X_{cb} - X_{ca}X_{bb}X_{ac} - X_{cb}X_{bc}X_{aa} - X_{cc}X_{ba}X_{ab}}$$

$$= \frac{\det D_{b}}{\det D} = \frac{\begin{vmatrix} X_{aa} & Y_{a} & X_{ac} \\ X_{ba} & Y_{b} & X_{bc} \\ X_{ca} & Y_{c} & X_{cc} \end{vmatrix}}{\begin{vmatrix} X_{aa} & X_{ab} & X_{ac} \\ X_{ba} & X_{bb} & X_{bc} \\ X_{ca} & X_{cb} & X_{cc} \end{vmatrix}}$$

$$= \frac{Y_{a}(X_{bc}X_{ca} - X_{ba}X_{cc}) + Y_{b}(X_{aa}X_{cc} - X_{ac}X_{ca}) + Y_{c}(X_{ac}X_{ba} - X_{aa}X_{bc})}{X_{aa}X_{bb}X_{cc} + X_{ab}X_{bc}X_{ca} + X_{ac}X_{ba}X_{cb} - X_{ca}X_{bb}X_{ac} - X_{cb}X_{bc}X_{aa} - X_{cc}X_{ba}X_{ab}}{(4.2.10)}$$

$$I_{c} = \frac{\det D_{c}}{\det D} = \frac{\begin{vmatrix} X_{aa} & X_{ab} & Y_{a} \\ X_{ba} & X_{bb} & Y_{b} \\ X_{ca} & X_{cb} & Y_{c} \end{vmatrix}}{\begin{vmatrix} X_{aa} & X_{ab} & X_{ac} \\ X_{ba} & X_{bb} & X_{bc} \\ X_{ca} & X_{cb} & X_{cc} \end{vmatrix}}$$

$$= \frac{Y_{a}(X_{ba}X_{cb} - X_{bb}X_{ca}) + Y_{b}(X_{ab}X_{ca} - X_{aa}X_{cb}) + Y_{c}(X_{aa}X_{bb} - X_{ab}X_{ba})}{X_{aa}X_{bb}X_{cc} + X_{ab}X_{bc}X_{ca} + X_{ac}X_{ba}X_{cb} - X_{ca}X_{bb}X_{ac} - X_{cb}X_{bc}X_{aa} - X_{cc}X_{ba}X_{ab}}$$

$$= \frac{Y_{a}(X_{ba}X_{cb} - X_{bb}X_{ca}) + Y_{b}(X_{ab}X_{ca} - X_{aa}X_{cb}) + Y_{c}(X_{aa}X_{bb} - X_{ab}X_{ba})}{X_{aa}X_{bb}X_{cc} + X_{ab}X_{bc}X_{ca} + X_{ac}X_{ba}X_{cb} - X_{ca}X_{bb}X_{ac} - X_{cb}X_{bc}X_{aa} - X_{cc}X_{ba}X_{ab}}$$

$$= \frac{Y_{a}(X_{ba}X_{cb} - X_{cb}X_{ca}) + Y_{b}(X_{ab}X_{ca} - X_{aa}X_{cb}) + Y_{c}(X_{aa}X_{bb} - X_{ab}X_{ba})}{X_{aa}X_{bb}X_{cc} + X_{ab}X_{bc}X_{ca} + X_{ac}X_{ba}X_{cb} - X_{ca}X_{bb}X_{ac} - X_{cb}X_{bc}X_{aa} - X_{cc}X_{ba}X_{ab}}$$

$$= \frac{Y_{a}(X_{ba}X_{cb} - X_{cb}X_{ca}) + Y_{b}(X_{ab}X_{ca} - X_{aa}X_{cb}) + Y_{c}(X_{aa}X_{bb} - X_{ab}X_{ba})}{X_{aa}X_{bb}X_{cc} + X_{ab}X_{bc}X_{ca} + X_{ac}X_{ba}X_{cb} - X_{ca}X_{bb}X_{ac} - X_{cb}X_{bc}X_{aa} - X_{cc}X_{ba}X_{ab}}$$

$$= \frac{Y_{a}(X_{ba}X_{cb} - X_{cb}X_{cb}) + Y_{b}(X_{ab}X_{ca} - X_{ca}X_{bb}X_{ca} - X_{cb}X_{bc}X_{ca} - X_{cb}X_{ca}X_{cb} - X_{cb}X_{cb}X_{ca}X_{cb} - X_{cb}X_{ca}X_{cb} - X_{cb}X_{ca}X_{cb}X$$

Nach Einsetzen der entsprechenden Werte erhält man somit die Lösungen für die einzelnen Maschenströme.

4.3 Knotenspannungsanalyse

Bei der Knotenspannungsanalyse (Knotenpotenzialverfahren) wird jedem Knoten i ein Potential φ_i gegenüber einem Bezugspotential (in der Regel Masse) zugeordnet. Bei der Knotenspannungsanalyse werden entsprechend die Kotenpotentiale berechnet. Aus der Differenz der Potentiale lässt sich so die Spannung zwischen zwei Knoten bestimmen. Dieses Verfahren eignet sich besonders für die Betrachtung von idealen Stromquellen. Sind Spannungsquellen vorhanden, sollten diese durch Einführung eines endlichen Innenwiderstandes R_i dann in ideale Stromquellen umformuliert werden. Bei der endgültigen Lösung muss dann allerdings zwingend $R_i \to 0$ beachtet werden.

- I_{qkl} ist die Summe aller Stromquellen zwischen den Knoten k und l.
- \bullet Es ergeben sich bei insgesamt n Knoten insgesamt n-1 unabhängige Knotengleichungen.

Allgemein ergibt sich damit:

Knoten	$arphi_1$	φ_2	 φ_{n-1}	Quellenstrom in Knoten
1:	G_{ii}	$-G_{12}$	 $-G_{1,n-1}$	$I_{q,1}$
2:	$-G_{21}$	G_{22}	 $-G_{1,n-1}$	$I_{q,2}$
	•••	•••	 •••	
n-1:	•••	•••	 $G_{n-1,n-1}$	$I_{q,n-1}$

(4.3.1)

Wobei gilt:

- G_{ii} ist die Summe aller Leitwerte die mit dem Knoten i direkt verbunden sind und positiv ins Schema einzutragen.
- G_{ij} ist die Summe aller Leitwerte zwischen den Knoten i und j und negativ ins Schema einzutragen.

- $\bullet \ I_{qi}$ ist die Summe aller durch Stromquellen in den Knoten ifließenden Ströme.
- Wurde als Bezugsknoten $\varphi_n = 0$ gewählt gilt für die Knotenspannungen: $U_{kn} = \varphi_k \varphi n = \varphi_k$.

Abbildung 2: Brückenschaltung mit Knoten

Diese Schaltung lässt sich einfach mit dem oben beschriebenen Schema als LGS formulieren:

Knoten
$$\varphi_1$$
 φ_2 φ_3 Quellen

1: $\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_q}$ $-\frac{1}{R_1}$ $-\frac{1}{R_2}$ I_q

2: $-\frac{1}{R_1}$ $\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_5}$ $-\frac{1}{R_5}$ 0

3: $-\frac{1}{R_2}$ $-\frac{1}{R_5}$ $\frac{1}{R_2} + \frac{1}{R_4} + \frac{1}{R_5}$ 0

Bzw. als Matrix:

$$\begin{pmatrix}
\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{q}} & -\frac{1}{R_{1}} & -\frac{1}{R_{2}} \\
-\frac{1}{R_{1}} & \frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{5}} & -\frac{1}{R_{5}} \\
-\frac{1}{R_{2}} & -\frac{1}{R_{5}} & \frac{1}{R_{2}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}
\end{pmatrix} \cdot \begin{pmatrix} \varphi_{1} \\ \varphi_{2} \\ \varphi_{3} \end{pmatrix}$$

$$= \begin{pmatrix} I_{q} \\ 0 \\ 0 \end{pmatrix} \tag{4.3.3}$$

4.4 Superpositionsprinzip nach Helmholtz

Bei Netzwerken mit ausschließlich linearen Netzwerken kann die Berechnung vereinfacht werden, in dem die Spannungsquellen/Stromquellen einzeln betrachtet werden, d.h. es werden immer alle Quellen bis auf eine "ausgeschaltet "betrachtet. Hierbei gilt für die nichtaktiven Quellen:

• Ideale Spannungsquelle: Kurzschließen

• Ideale Stromquelle : "Offen lassen ", d.h. Leerlauf

Es werden zunächste alle einzelnen Ströme für Quelle 1: $I_1', I_2', ..., I_n'$, Quelle 2: $I_1'', I_2'', ..., I_n''$, ... bis Quelle n im Zustand mit deaktivierten Quellen berechnet. Die Gesamtsröme ergeben sich dann aus

$$I_i = I_i' + I_i'' + \dots + i_i^{(n)}$$
(4.4.1)

5 Das statische elektrische Feld

Siehe hierzu insbesondere auch 1.2.

5.1 Elektrischer Fluss

Elektrische Flussdichte :
$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$$
 (5.1.1)

Wird manchmal auch als dielektrische Verschiebung bezeichnet.

Elektrischer Fluss :
$$\Psi = \int_{A} \overrightarrow{D} d\overrightarrow{A}$$
 (5.1.2)

Elektrischer

Fluss durch :
$$\Psi_K = |\vec{D}|A = Q$$
 (5.1.3)

Kugeloberfläche

5.2 Elektrische Dipole

Dipolmoment :
$$\overrightarrow{p} = Q\overrightarrow{r_{21}} \Rightarrow |\overrightarrow{p}| = Qd$$
 (5.2.1)

5.3 Kapazitäten

Kapazität :
$$C = \frac{Q}{U}$$
 (5.3.1)

Gespeicherte :
$$W = \frac{1}{2}CU_0^2$$
 (5.3.2)

5.3.1 Plattenkondensatoren

Kapazität ohne Dielektrikum :
$$C = \frac{Q}{U} = \varepsilon_0 \frac{A}{d}$$
 (5.3.3)

Kapazität mit Dielektrikum :
$$C = \frac{Q}{U} = \frac{D \cdot A}{E \cdot d} = \frac{\varepsilon_0 \varepsilon_r A}{d}$$
 (5.3.4)

Spanning :
$$U = E \cdot d = \frac{Qd}{A\varepsilon_0\varepsilon_r}$$
 (5.3.6)

Flussdichte :
$$D = \frac{\varepsilon_0 \varepsilon_r U}{d}$$
 (5.3.7)

Verhältnis :
$$\frac{Q}{A} = \frac{\varepsilon_0 \varepsilon_r U}{d} \leftrightarrow \frac{\varepsilon_0 \varepsilon_r A}{d} = C$$
 (5.3.8)

5.3.2 Kugelkondensator

Kapazität :
$$C = \frac{Q}{U} = 4\pi\varepsilon_0 \frac{r_i r_a}{r_i + r_a}$$
 (5.3.9)

5.3.3 Zylinderkondensator

Feld :
$$E = \frac{Q}{2\pi\varepsilon_0\varepsilon_r}$$
 (5.3.10)

Kapazität :
$$C = \frac{Q}{U} = 2\pi\varepsilon_0 l \frac{1}{\ln\left(\frac{r_a}{r_i}\right)}$$
 (5.3.11)

Kapazitätsbelag :
$$C' = \frac{C}{l} = \frac{2\pi\varepsilon_0}{\ln\left(\frac{r_a}{r_i}\right)}$$
 (5.3.12)

5.3.4 Kapazitiver Schaltungen

Spannugsteiler(a) :
$$\frac{U_1}{U_2} = \frac{\frac{Q_1}{C_2}}{\frac{Q_1}{C_1}} = \frac{C_2}{C_1}$$
 (5.3.13)

Spannungsteiler(b) :
$$\frac{U_3}{U_1} = \frac{C_2}{C_2 + C_3}$$
 (5.3.14)

Reihenschaltung(a) :
$$C_g = \frac{1}{\sum_{k=1}^{n} \frac{1}{C_k}}$$
 (5.3.15)

Ladungserhaltung(b) :
$$Q_1 = Q_2 = \dots = Q_n$$
 (5.3.16)

Parallelschaltung(a) :
$$C_g = \sum_{k=1}^n C_k$$
 (5.3.17)

Parallelschaltung(b) :
$$Q = Q_1 + Q_2 + \dots + Q_n$$
 (5.3.18)

5.4 Ladevorgang

Strom :
$$i(t) = C \frac{du_C(t)}{dt}$$
 (5.4.1)

Spanning Widerstand :
$$u_R(t) = RC \frac{du_C(t)}{dt}$$
 (5.4.2)

Ladezeitkonstante :
$$\tau = RC$$
 (5.4.3)

Zeitverlauf der Spannung :
$$u_c(t) = U_0 \left(1 - e^{-\frac{t}{\tau}}\right)$$
 (5.4.4)

Zeitverlauf des Stroms :
$$i(t) = C \frac{du_C(t)}{dt} = C \frac{U_0}{\tau} e^{-\frac{t}{\tau}} = \frac{U_0}{R} e^{-\frac{t}{\tau}} = I_0 e^{-\frac{t}{\tau}}$$
 (5.4.5)

Leistung :
$$p(t) = U_0 i(t) = \frac{U_0^2}{R} e^{-\frac{t}{\tau}}$$
 (5.4.6)

Entnommene :
$$W_Q = U_0^2 C$$
 (5.4.7)

Gespeicherte :
$$W_C = \frac{1}{2}U_0^2C$$
 (5.4.8)

5.5 Entladevorgang

Zeitverlauf der Spannung :
$$u_c(t) = U_0 e^{-\frac{t}{\tau}}$$
 (5.5.1)

Zeitverlauf des Stgroms :
$$i(t) = C \frac{du_C(t)}{dt} = -\frac{U_0}{R} e^{-\frac{t}{\tau}} = -I_0 e^{-\frac{t}{\tau}}$$
 (5.5.2)

6 Das statische magnetische Feld

6.1 Lorentzkraft und Flussdichte

Lorentzkraft(a) :
$$\overrightarrow{F_L} = q(\overrightarrow{v} \times \overrightarrow{B})$$
 (6.1.1)

Lorentzkraft(b) :
$$|\vec{v} \times \vec{B}| = |\vec{v}||\vec{B}|\sin\alpha$$
 (6.1.2)

Magnetische Flussdichte :
$$\vec{B} = \frac{\overrightarrow{F_L} \times \overrightarrow{v}_{max}}{q|\overrightarrow{v}_{max}|^2} = \mu_0 \mu_r \vec{H} = \frac{\phi}{A} = \frac{wI}{R_m A_i}$$
 (6.1.3)

6.2 Magnetischer Fluss, Feldstärke und Durchflutung

Magnetischer Fluss :
$$\phi = \int_{A} \vec{B} d\vec{A}$$
 (6.2.1)

Magnetische Feldstärke :
$$\vec{H} = \frac{\vec{B}}{\mu_0 \mu_r} = \frac{\phi}{\mu_0 \mu_r A} = \frac{wI}{R_m A \mu_0 \mu_r}$$
 (6.2.2)

Durchflutungs-
gesetz :
$$\oint_S \overrightarrow{H} d\overrightarrow{r} = \sum_n I_n = Iw = U_{m,q}$$
 (6.2.3)

Das Durchflutungsgesetz heißt auch das Ampersche Gesetz.

6.3 Stromdurchflossene Leiter

Lorentzkraft(c) :
$$\overrightarrow{F_L} = I(\overrightarrow{l} \times \overrightarrow{B})$$
 (6.3.1)

6.3.1 Leiterschleife

Magnetisches Dipolmoment :
$$\vec{m} = \mu_0 I \vec{A}$$
 (6.3.2)

Drehmoment :
$$\vec{T} = \frac{1}{\mu_0} \vec{m} \times \vec{B} = 2 \frac{w}{2} I l |\vec{B}| \sin \alpha$$
 (6.3.3)

6.4 Magnetische Reluktanz

Allgemeine Definition:

Reluktanz(a) :
$$R_m = \frac{U_m}{\phi}$$
 (6.4.1)

Reluktanz(b) :
$$R_m = \frac{l}{\mu_0 \mu_r A}$$
 (6.4.2)

Magnetische Spannung :
$$U_m = \phi R_m$$
 (6.4.3)

Magnetischer Fluss :
$$\phi = \frac{U_{q,m}}{R_m}$$
 (6.4.4)

6.5 Luftspalt

Luftspaltgerade :
$$B_M = -\mu_0 H_M \frac{l_M A_L}{l_L A_M}$$
 (6.5.1)

Flussdichte :
$$B_L = B_M \frac{A_M}{A_L}$$
 (6.5.2)

Fluss :
$$\phi_m = B_m A_L$$
 (6.5.3)

Optimaler
$$A_{M,opt} = \frac{A_L B_L}{B_{M,opt}}$$
 (6.5.4)

Optimale Länge :
$$l_{M,opt} = \frac{l_L B_L}{\mu_0 |H_{M,opt}|}$$
 (6.5.5)

7 Zeitlich veränderliche Felder

7.1 Allgemeines Induktionsgesetz

Induktionsgesetz :
$$\oint_{S} \vec{E} d\vec{r} = -\oint_{A} \frac{d\vec{B}(t)}{dt} d\vec{A}$$
$$= -\oint_{s} (\vec{u}(\vec{r}) \times \vec{B}(t)) d\vec{r} - \frac{d}{dt} \int_{A}^{(7.1.1)} \vec{B}(t) d\vec{A}$$

Magnetischer Fluss :
$$\phi(t) = \int_{A} \vec{B}(t)d\vec{A}$$
 (7.1.2)

Induktion vereinfacht :
$$U_{ind} = -\frac{d\phi(t)}{dt}$$
 (7.1.3)

7.2 Induktivität einer Spule

Spanning :
$$u(t) = L \frac{di(t)}{dt}$$
 (7.2.1)

Induktivität :
$$L = \frac{\mu_{FE} A_{FE}}{l_{FE}} w^2 = \frac{\Psi(t)}{i(t)}$$
 (7.2.2)

Magnetischer Fluss :
$$\phi(t) = \frac{L}{w}i(t)$$
 (7.2.3)

Flussverkettung :
$$\Psi(t) = w\phi(t) = Li(t)$$
 (7.2.4)

7.2.1 Ringspule

Reluktanz :
$$R_m = \frac{2\pi R - h}{\mu_0 \mu_r A}$$
 (7.2.5)

Induktivität :
$$L = w^2 G_m = \frac{w^2}{R_m} = w^2 \frac{\mu_0 \mu_r A}{2\pi R + h(\mu_r - 1)}$$
 (7.2.6)

7.2.2 Hubmagnet

Fläche Innen :
$$A_i = \pi(2r_ib + b^2)$$
 (7.2.7)

Fläche Aussen :
$$A_a = \pi (2r_ab - b^2)$$
 (7.2.8)

7.3 Magnetische Energie

Momentanleistung :
$$p(t) = u(t)i(t) = Li(t)\frac{di(t)}{dt}$$
 (7.3.1)

Energie :
$$W = \frac{1}{2}Li_0^2 = \frac{1}{2}\Psi i_0$$
 (7.3.2)

7.4 Schaltungen von Induktivitäten

Reihenschaltung :
$$L_g = \sum_{i} n = 1)^k L_n$$
 (7.4.1)

Parallelschaltung :
$$L_g = \frac{1}{\sum_{n=1}^k \frac{1}{L_n}}$$
 (7.4.2)

Reihenschaltung gekoppelt :
$$L_g = L_1 + L_2 \pm L_{12}$$
 (7.4.3)

regranderschaftung :
$$L_g = \frac{L_1 L_2 - L_{12}^2}{L_1 + L_2 \mp 2L_{12}^2}$$
 (7.4.4)

Stromteiler :
$$\frac{\phi_1}{\phi_g} = \frac{R_{m,g}}{R_{m,1}}$$
 (7.4.5)

7.5 Einschaltvorgang

$$\begin{array}{ll} \text{Ladezeitkon-} \\ \text{stante} & : \quad \tau = \frac{L}{R} \end{array} \tag{7.5.1}$$

Spanning :
$$u_L(t) = L \frac{di(t)}{dt} = U_0 e^{-\frac{t}{\tau}}$$
 (7.5.2)

Strom :
$$i(t) = \frac{U_0}{R} \left(1 - e^{-\frac{t}{\tau}} \right)$$
 (7.5.3)

7.6 Abschaltvorgang

Spanning :
$$u_L(t) = L \frac{di(t)}{dt} = -I_0 R e^{-\frac{t}{\tau}}$$
 (7.6.1)

Strom :
$$i(t) = I_o e^{-\frac{t}{\tau}}$$
 (7.6.2)

8 Anhänge

$\bf 8.1 \quad Abk\"{u}rzungen/Formelzeichen$

Zeichen	Einheit	Bedeutung
A	m^2	Fläche
a	$\frac{m}{s^2}$	Beschleunigung
b	$\frac{cm^2}{Vs}$	Ladungsträgerbeweglichkeit
d	m	Dicke
D_n	$\frac{m^2}{s}$	Diffusionskonstante für Elektronen
D_p	$\frac{m^2}{s}$	Diffusionskonstante für Löcher
e	C	Elementarladung
E	$\frac{N}{C} = \frac{VAs}{mAs} = \frac{V}{m}$	Elektrische Feldstärke
E_c	eV	Leitungsbandkante
E_F	eV	Fermi-Energie
E_g	eV	Energie der Bandlücke
E_v	eV	Valenzbandkante
f	Hz	Frequenz
$ec{F}$	$N = \frac{kgm}{s^2}$	Kraft
G	$\frac{A}{V} = \frac{1}{\Omega} = S$	Leitwert
h	eVs	Plank-Konstante
\hbar	eVs	Planksches Wirkungsquantum
i	A	Elektrischer Strom
j	$\frac{A}{m2}$	Elektrische Stromdichte
J_n	$\frac{A}{m2}$	Elektronenstromdichte
J_p	$\frac{A}{m2}$	Löcherstromdichte
J_{diff}	$\frac{A}{m2}$	Diffusionsstromdichte
J_{part}	$\frac{A}{m2}$	Partikelstromdichte
J_to	$\frac{A}{m2}$	Totale Stromdichte
J_r	$\frac{A}{m2}$	Rekombinationsstromdichte

Fortsetzung auf Folgeseite

 ${\bf Tabelle~1:~Abk\"{u}rzungen/Formelzeichen}$

Zeichen	Einheit	Bedeutung	
J_{drift}	$\frac{A}{m2}$	Driftstromdichte	
l	m	Länge	
L	m	Minoritätsladungsträgerdiffusionslänge	
L_n	m	Diffusionslänge Elektronen	
L_p	m	Diffusionslänge Löcher	
n		Elektronenkonzentration	
n_i		Intrinsische Ladungsträgerdichte	
n_{id}		Idealität einer Diode	
N_A	m^{-3}	Akzeptorendichte	
N_D	m^{-3}	Donatorendichte	
N_C	cm^{-3}	Effektive Zustandsdichte der Elektronen	
N_V	cm^{-3}	Effektive Zustandsdichte der Löcher	
p		Lochkonzentration	
q	C	Probeladung (in der Regel $= e$)	
$ec{r}$	m	Weg	
r	Ω	Differentieller Widerstand	
R	Ω	Widerstand	
R_F	$rac{\Omega}{square}$	Flächenwiderstand	
U	V	Elektrische Spannung	
U_g	V	Gesamtspannung	
v	$\frac{m}{s}$	Geschwindigkeit	
v_D, v_d	$\frac{m}{s}$	Driftgeschwindigkeit	
\overline{w}	m	Weite bzw. Breite	
W	$Ws = J = \frac{kgm^2}{s^2}$	Arbeit bzw. Energie	
α	$\frac{1}{\circ C}$	Temperturkoeffizient des Ohmwiderstandes	
ν	Hz	Hier Frequenz der Welle	
ρ	$\frac{Vcm}{A} = \Omega cm$	Spezifischer Widerstand	

Fortsetzung auf Folgeseite

 ${\bf Tabelle~1:~Abk\"{u}rzungen/Formelzeichen}$

Zeichen	Einheit	Bedeutung	
$ ho_e$		Ladungsdichte	
κ	$\frac{1}{\Omega cm} = \frac{S}{cm}$	Spezifische Leitfähigkeit	
ε_0	$\frac{As}{Vm}$	Dielektrizitätskonstante im Vakuum	
φ	V	Elektrisches Potential	
τ	S	Stoßzeit	
τ	S	Minoritätsladungsträgerlebensdauer	
μ	$\frac{cm^2}{Vs}$	Beweglichkeit	

8.2 Konstanten

Ze.	Wert	Bedeutung		
c	$2,998\cdot 10^8 [fracms]$	Lichtgeschwindigkeit		
e,q	$1,602176\cdot 10^{-19} [C]$	Elementarladung		
h	$6,63 \cdot 10^{-34} [Js]$	Planck-Konstante		
h	$4,136\cdot 10^{-15} [eVs]$	Planck-Konstante		
\hbar	$\frac{h}{2\pi}$	Plancksches Wirkungsquantum		
k	$8,6173 \cdot 10^{-5} \left[\frac{eV}{K} \right]$	Boltzmann Konstante		
kT	25,85[meV]	mit der Boltzmann Konstante und $T=300K$		
m_0	$9,11\cdot 10^{-31} [kg]$	Elektronenmasse		
m_{si}^*	$0, 2 \cdot m_0$	Effektive Masse Silizium		
m_{ge}^*	$0,1\cdot m_0$	Effektive Masse Germanium		
N_V	$1,04\cdot 10^{19}cm^{-3}$	Zustandsdichte im VB Silizium		
N_C	$2,80\cdot 10^{19}cm^{-3}$	Zustandsdichte im LB Silizium		
R	$1,09737 \cdot 10^7 m^{-1}$	Rydbergkonstante		
ε_0	$8,854\cdot 10^{-12} \left[\frac{As}{Vm}\right]$	Dielektrizitätskonstante des Vakuuums		
$arepsilon_{Si}$	11,90	Korrekturfaktor Dielektrizitätskonstante für Silizium		

Fortsetzung auf Folgeseite

Tabelle 2: Konstanten

Ze.	Wert	bedeutung
$arepsilon_{Ge}$	16	Korrekturfaktor Dielektrizitätskonstante für Germanium
$arepsilon_{Si0_2}$	3,9	Korrekturfaktor Dielektrizitätskonstante für Si02

8.2.1 Spezifische Widerstände $[\mu\Omega cm]$

Cu	Au	Ag	Al	Cr	Ta
1,673	2,35	1,59	2,655	14, 1	13,5

8.2.2 Temperaturkoeffizienten α ohmscher Widerstände bei $20^{\circ}C$ in $\left[\frac{1}{^{\circ}C}\right]$

Cu	Ag	Au	Al	Ta	Ni	Konst.
$3,9*10^{-3}$	$3,8*10^{-3}$	$3,7*10^{-3}$	$4,0*10^{-3}$	$3,3*10^{-3}$	$6,0*10^{-3}$	$1,0*10^{-3}$

8.3 SI-Basiseinheiten

Bezeichnung	Einheit	Bedeutung
Meter	m	Einnheit der Länge
Kilogramm	kg	Einheit der Masse
Sekunde	s	Einheit der Zeit
Ampere	A	Eineit der Stromstärke
Kelvin	K	Einheit der Temperatur
Mol	mol	Einheit der Stoffmenge
Candela	cd	Einheit der Lichtstärke

8.4 Vorsatzzeichen

Name	Zeichen	Zehnerpotenz	Name	Zeichen	Zehnerpotenz
Yotta	Y	10^{24}	Dezi	d	10^{-1}
Zetta	Z	10^{21}	Centi	c	10^{-2}
Exa	Е	10^{18}	Milli	m	10^{-3}
Peta	P	10^{15}	Mikro	μ	10^{-6}
Tera	Т	10^{12}	Nano	n	10^{-9}
Giga	G	10^{9}	Piko	p	10^{-12}
Mega	M	10^{6}	Femto	f	10^{-15}
Kilo	k	10^{3}	Atto	a	10^{-18}
Hekto	h	10^{2}	Zepto	Z	10^{-21}
Deka	da	10^{1}	Yokto	У	10^{-24}

8.5 Kurzzusammenfassung

8.5.1 Elektrostatik

Abbildung 3: Kurzzusammenfassung Elektrostatik

8.5.2 Kondensator

Abbildung 4: Kurzzusammenfassung Kondensator

8.5.3 Magnet 1

Abbildung 5: Kurzzusammenfassung Magnet 1

8.5.4 Magnet 2

Abbildung 6: Kurzzusammenfassung Magnet 2

8.5.5 Spule

Abbildung 7: Kurzzusammenfassung Spule

8.5.6 Komplexe Rechnung

Abbildung 8: Kurzzusammenfassung Komplexe Rechnung

8.5.7 Zeiger

Abbildung 9: Kurzzusammenfassung Zeiger

8.5.8 Übertrager

Abbildung 10: Kurzzusammenfassung Übertrager

8.6 Nachwort

Diese Formelsammlung wurde nahezu ausschließlich auf Basis des Grundlagen der Elektrotechnik I-II Scripts von Prof. Dr.-Ing. Norbert Frühauf erstellt. Nahezu sämtliche Formeln und Werte sind direkt dem Script und der Vorlesung entnommen und wurden nicht für diese Sammlung eigenständig hergeleitet. Für ausführlichere Beschreibungen empfehle ich sehr das eben angesprochene Script zu studieren. Diese Formelsammlung ist einzig ein Hilfsmittel für mich und meine Kommilitonen und sehr wahrscheinlich nicht fehlerfrei. Sollten Fehler gefunden werden, würde ich mich sehr freuen wenn man mir das kurz in einer E-Mail (f.leuze@outlook.de) mitteilen würde, damit ich entsprechende Korrekturen vornehmen kann. Die angefügte Kurzformelsammlung wurde freundlicherweise von unserem Elektrotechnik Tutor zur Verfügung gestellt.