Задача

Последовательностью Фибоначчи называется последовательность чисел

$$F_0 = 0, F_1 = 1, ..., F_k = F_{k-1} + F_{k-2} (k > 1).$$

На вход поступают индексы \mathbf{i} и \mathbf{j} двух чисел Фибоначчи $\mathbf{F_i}$ и $\mathbf{F_{j.}}$

Требуется найти наибольший общий делитель двух чисел $\overline{\Phi}$ ибоначчи \overline{F}_i и \overline{F}_i .

Условия

Входные данные:

На вход поступают два целых числа — индексы \mathbf{i} и \mathbf{j} ($\mathbf{1} \leq \mathbf{i}, \mathbf{j} \leq \mathbf{10^6}$) двух чисел Фибоначчи $\mathbf{F_i}$ и $\mathbf{F_j}$.

Выходные данные:

Требуется вывести остаток от деления **HO**Д чисел F_i и F_j на 10^9 .

Пример

Входные данные:

1. 5 10

2. 24

Выходные данные:

1. 5

2. 1

Разбор

Для достаточно простого решения данной задачи требуется знание одного из свойств чисел Фибоначчи: наибольший общий делитель двух чисел Фибоначчи равен числу Фибоначчи с индексом, равным наибольшему общему делителю индексов:

$$HOД(F_i, F_j) = F_{HOД(i, j)}.$$

Тогда всё решение будет заключаться в том, чтобы найти нужное число Фибоначчи $\mathbf{F_g}$, где $\mathbf{g} = \mathbf{HOД(i, j)}$.

Из условий задачи можно получить максимальное значение индекса д:

$$\mathbf{g}_{\text{max}} = \mathbf{HOД}(\mathbf{10^6}, \mathbf{10^6}) = \mathbf{10^6}$$

Разбор

Очевидно, что $\mathbf{F_{g.max}}$ будет достаточно большим и не поместится в стандартный тип данных в некоторых языках программирования. И так как нужно вывести остаток от деления $\mathbf{F_g}$ на $\mathbf{10^9}$, тогда при расчете чисел Фибоначчи будем записывать не сами числа, а остаток от деления их на $\mathbf{10^9}$:

$$F_k = (F_{k-1} + F_{k-2}) \mod m \pmod k > 1, m = 10^9$$

Покажем, что так делать возможно, пусть

$$F_{k-1} = q_1 m + r_1, F_{k-2} = q_2 m + r_2 (0 \le q_1, q_2; 0 \le r_1, r_2 \le m - 1).$$

Тогда $\mathbf{F_k} = (\mathbf{F_{k-1}} + \mathbf{F_{k-2}}) \bmod \mathbf{m} = (\mathbf{q_1m} + \mathbf{r_1} + \mathbf{q_2m} + \mathbf{r_2}) \bmod \mathbf{m} =$

$$= ((q_1 + q_2) m + r_1 + r_2) \text{ mod } m = (r_1 + r_2) \text{ mod } m.$$

Разбор

Предположим, что изначально

$$F_{k-1} = (q_1m + r_1) \mod m = r_1 \mod m,$$

$$F_{k-2} = (q_2m + r_2) \mod m = r_2 \mod m,$$

Тогда

$$F_k = (F_{k-1} + F_{k-2}) \mod m = (r_1 + r_2) \mod m$$

То есть наше предположение, что $F_k = (F_{k-1} + F_{k-2}) \mod m$ (при k > 1) было верно.

Посчитав $\mathbf{F_g}$ ($\mathbf{g} = \mathbf{HOД(i, j)}$) таким способом, получим ответ.