	Je travaille pour une banque. Je dispose des données de transactions bancaires par client, et j'aimerais détecter une utilisation suspecte - une anomalie. Je ne sais pas à quoi ça peut ressembler une anomalie : je ne peux pas vraiment faire de classification supervisée. Et puis quand bien même : un nouveau type de fraude pourrait apparaitre, que je ne saurais pas reconnaitre Détection d'anomalies par analyse des distributions gaussiennes Il existe plusieurs classes d'algorithmes pour la détection d'anomalies. Celle présentée ici n'est pas la meilleure mais c'est probablement la plus simple à comprendre / appliquer. Accessoirement, elle n'est pas mauvaise non plus Distribution gaussienne ? Une variable aléatoire X est gaussienne (ou normale) lorsqu'elle suit une loi normale, dont la densité de probabilité est : $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
In [2]:	avec μ la moyenne des valeurs de cette variable, et σ l'écart-type. On note la distribution $\mathcal{N}(\mu, \sigma^2)$, le carré de l'écart type étant la <i>variance</i> . Comme je suis lucide, je me doute que c'est par forcément plus clair pour autant, alors un peu de visuel ne fera pas de mal : voici quelques courbes représentatives de f pour différentes valeurs de μ et de σ
	<pre>for sigma in [1, 2, 0.5]: i+=1 x = np.linspace(-10, 10, 200) y = gaussian(x , mu, sigma) fig.add_subplot(3,3,i) plot.xlim(-10, 10) plot.ylim(0, 1) plot.plot(x, y) plot.plot([mu,mu], [gaussian(mu, mu, sigma), 0], "r") plot.plot([mu-sigma, mu+sigma], [gaussian(mu-sigma, mu, sigma), gaussian(mu-plot.title('Gaussian with mu=%s and sigma=%s' % (str(mu), str(sigma)))</pre>
	Gaussian with mu=0 and sigma=1 10 Gaussian with mu=0 and sigma=2 10 Gaussian with mu=0 and sigma=2 10 0.8 0.6 0.4 0.4 0.2 0.00 0.75 50 75 100 0.00 775 50 75 100
	Gaussian with mu=-2.5 and sigma=1 1.0 Gaussian with mu=-2.5 and sigma=1 1.0 0.8 0.6 0.4 0.2 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0
	0.0
	La valeur de μ est la valeur de x qui maximise la fonction (le progeté en rouge pointillé). La valeur de σ correspond à la largeur de la cloche. • A une hauteur de 60% environ de la courbe, on retrouve une largeur de 2σ (plus exactement à $\frac{1}{\sqrt{e}}$ qu
	vaut environ 0.606) • On parle parfois de Largeur à mi hauteur (LMH, ou Full width at half maximum, FWHM en anglais) : à 50% de la hauteur, la largeur est de 2.35σ La surface sous la courbe vaut 1, quoi qu'il arrive : • l'intégrale de Gauss est connue : $\int_{-\infty}^{\infty} e^{-\frac{x^2}{\alpha}} dx = \sqrt{\frac{\pi}{\alpha}}$ • avec $\alpha = \frac{1}{2\sigma^2}$, on trouve $\sigma\sqrt{2\pi}$
In [3]:	<pre>sigma = 3 x = np.linspace(-10, 10, 200) y = gaussian(x , mu, sigma) plot.xlim(-10, 10)</pre>
	<pre>plot.ylim(0, 1) plot.plot(x, y) plot.title('Gaussian with mu=%s and sigma=%s' % (str(mu), str(sigma))) x_range = np.array([-9, -5, -2, 0, 2.3, 5, 6, 9]) plot.scatter(x_range, np.zeros(x_range.shape), c = gaussian(x_range, mu, sigma), cm plot.show() Gaussian with mu=2 and sigma=3 Gaussian with mu=2 and sigma=3</pre>
	0.8 - 0.6 - 0.4 - 0.2 -
	On peut voir sur cette figure que la probabilité d'avoir une valeur de 0 est plus élevée que d'avoir une valeur de -5, mais moins que d'avoir 2.3. Pour être tout à fait exact, la probabilité d'avoir exactement 0 est nulle, comme toute probabilité d'avoir une valeur exacte sur ce genre de distributions. Mais la probabilité d'avoir une valeur dans un rayon ϵ autour de 0 est plus importante que pour le même rayon autor de -5 mais moins que pour 2.3.
	Détection d'anomalies à une dimension $ \text{L'algorithme dans une version à une seule dimension est assez simple à appréhender.} $ Considérons un ensemble de m valeurs "conformes" : on établit à partir de cette liste une distribution normale. $ \mu = \frac{\sum x}{m} \text{ la moyenne des valeurs} $
In [4]:	Pour toute nouvelle valeur x , on considérera qu'elle est une anomalie si $f_{\mu,\sigma}(x)<\epsilon$, avec ϵ une constante, très petite, à définir. Exemple :
	<pre>mu = np.mean(amount) sigma = np.std(amount) def anomaly_1D(x, mu, sigma, epsilon): gaussian_value = gaussian(x, mu, sigma) return gaussian_value < epsilon #Densité, et gaussienne associée - mu et sigma statistiquement déterminés plot.hist(amount, 50, density=True) plot.plot(np.arange(400), gaussian(np.arange(400), mu, sigma), "r") plot.title('Amout density + gaussian') plot.epsilon</pre>
	<pre>plot.show() test_set = np.array([-80, 5, 20, 50, 200, 400, 800, 1000]) epsilon = 1e-7 anomalies = anomaly_1D(test_set, mu, sigma, epsilon) for i in range(len(test_set)): print('An amount of \$%i %s detected as an anomaly' % (test_set[i], 'is' if anom Amout density + gaussian 0.008</pre>
	0.007 - 0.006 - 0.005 - 0.004 - 0.003 - 0.002 - 0.001 -
	An amount of \$-80 is detected as an anomaly An amount of \$5 is not detected as an anomaly An amount of \$50 is not detected as an anomaly An amount of \$50 is not detected as an anomaly An amount of \$50 is not detected as an anomaly An amount of \$200 is not detected as an anomaly An amount of \$400 is not detected as an anomaly An amount of \$800 is detected as an anomaly An amount of \$1000 is detected as an anomaly An amount of \$1000 is detected as an anomaly An amount of \$1000 is detected as an anomaly
	comme ça, c'est équivalent à
	Cet algortihme rentre dans la catégorie des méthodes d'apprentissage non-supervisé : on ne sait pas ce qu'est une erreur dans ce modèle mais on va les trouver malgré tout. Par contre, il est nécessaire d'avoir pour cela une valeur de seuil (ϵ) et son choix est crucial : trop petit on incorpore des erreurs, trop grand on rejette des bonnes mesures Du coup, bien que le jeu de train ne nécessite pas de données "en erreur" on peut réaliser un apprentissage. Mais il est tout de même nécessaire d'en avoir quelques unes dans le jeu de données de dev pour calibrer correctement ϵ Note sur le caractère gaussien d'une variable
	Pour que cette méthode fonctionne, il faut toutefois que la variable (ou les variables quand il y en a plusieurs) suivent une distribution normale, et c'est loin d'être systématiquement le cas Dans tous mes exemples ci-dessous notamment, on va tricher un peu mais c'est de la génération "gaussienne". On verra plus bas comment traiter du non-gaussien, ou essayer du moins. Détection d'anomalies sur plusieurs dimensions
	Sur le principe, rien ne change : pour chaque dimension on va calculer la même quantité que précedemment. Seulement, au lieu de comparer chacune à un seuil, on va plutôt comparer leur produit à un seuil global. $\prod_{i=1}^n f_{\mu_i,\sigma_i}(x) < \epsilon_{global}$ Intuitivement : si une valeur est vraiment faible dans le lot, le produit va baisser et donc l'élément sera probablement une anomalie, à cause d'une de ses composantes "faible" par rapport à la distribution attendue.
In [5]:	<pre>def anomaly_nD (x, mus, sigmas, epsilon): gaussian_values = np.product(gaussian(x, mus, sigmas), axis = 1) return gaussian_values < epsilon</pre>
	<pre>], axis = 1) mus = np.mean(dataset, axis = 0).reshape(1, -1) sigmas = np.std(dataset, axis = 0).reshape(1, -1) plot.xlim(0,300) plot.ylim(0,3000) plot.scatter(dataset[:,0], dataset[:,1], marker = "x",c='orange') plot.title('Reference data, with tested values') test_set = np.array([[70, 1000], [180, 750], [250, 1500], [100, 2500], [120,1200]])</pre>
	<pre>epsilon = 1e-7 results = anomaly_nD(test_set, mus, sigmas, epsilon) plot.scatter(test_set[:,0], test_set[:,1], c=results, cmap=colors.ListedColormap(['plot.show()]) Reference data, with tested values 2000 2500 2500 2500 2600 2700 2800 2800 2800 2800 2800 2800 28</pre>
	Problème des dimensions fortement corrélées
In [7]:	Jusqu'ici, le modèle n'a pas l'air trop mal. Cependant, lorsque les variables ne sont pas indépendantes, on peut avoir des soucis. Par exemple :
	<pre>],axis = 1) dataset = np.concatenate([300 + dataset[:,:1] - dataset[:,1:], 100+dataset[:,:1] + mus = np.mean(dataset, axis = 0).reshape(1, -1) sigmas = np.std(dataset, axis = 0).reshape(1, -1) plot.xlim(0,2000) plot.ylim(0,2000) plot.scatter(dataset[:,0], dataset[:,1], marker='x', color='orange') plot.title('Reference data, with tested values')</pre>
	<pre>test_set = np.array([[250,1500], [1750,250], [1000, 1000], [250,250]]) epsilon = 1e-9 results = anomaly_nD(test_set, mus, sigmas, epsilon) plot.scatter(test_set[:,0], test_set[:,1], c=results, cmap=colors.ListedColormap(['plot.show()]) Reference data, with tested values 1750 1500</pre> Reference data, with tested values
	1250 - 1000 - 750 - 500 - 250 - 0 250 500 750 1000 1250 1500 1750 2000
	On voit bien sur le graphique que les deux mesures sont un peu dépendantes : quand l'une augmente, l'autre aussi. Et on a clairement un souci : certains points sont verts, ils devraient être rouges, et le seul rouge devrait être vert. On a mis ϵ à un pour un milliard, augmenter cette valeur excluera les 2 mauvais points verts, mais va exclure encore plus fortement le mauvais point rouge. Inversement, baisser cette valeur passera tout en vert.
	Explication: • sur la première dimension, on est entre 200 et 1200 à chaque fois : si on projette les données de référence sur l'axe des abscisses et les points testés, on est dans la bonne zone! • sur la seconde dimension, en projettant sur l'axe des ordonnées, pareil. Pour contourner ce problème, on peut utiliser une variante à base de matrice de covariance. Soit une matrice X , on note $\Sigma = X^T$. X sa matrice de covariance.
	La distribution gaussienne multivariée (μ,Σ) répond à la fonction suivante, pas trop différente : $f(x)=\frac{1}{\sqrt{(2\pi)^N \Sigma }}e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$ avec : $ \mu \text{ le vecteur des moyennes par dimension (dimension : n x 1)} $
	• Σ une matrice carrée, la matrice de covariance de nos données (dimension: n x n) • x la multivariable qu'on teste (dimension n x 1) • $ M $ le déterminant de la matrice M Dans notre implémentation • le dataset comporte un point par colonne, μ est calculé comme un vecteur ligne, les x aussi : on permute les transpositions $\to (x-\mu)\Sigma^{-1}(x-\mu)^T$
In [8]:	 le résultat pour m tests simultanés est une matrice carrée au lieu d'un vecteur : on en prend la diagonale def anomaly_multi(x, mus, cov, epsilon): n = cov.shape[0] return np.diag(1/((2*np.pi)**(n/2)*np.linalg.det(cov)**(1/2)) *
	<pre>plot.xilm(0,2000) plot.ylim(0,2000) plot.scatter(dataset[:,0], dataset[:,1], marker='x', color='orange') plot.title('Reference data, with tested values') test_set = np.array([[250,1500], [1750,250], [1000, 1000], [250,250]]) epsilon = 3e-8 results = anomaly_multi(test_set, mus, cov, epsilon) plot.scatter(test_set[:,0], test_set[:,1], c=results, cmap=colors.ListedColormap(['plot.show()</pre>
	Reference data, with tested values 1750 - 1500 - 1000 - 750 -
	Cas de variables non gaussiennes Parfois, les données ne suivent pas une loi normale. Il convient alors de voir si on peut les transformer un minimum pour obtenir quelque chose de plus gaussien. Exemple :
In [9]:	<pre>np.random.seed(1) samples = 10000 amount = np.floor(np.exp(np.random.normal(1000,500,1000).reshape(-1,1)/1000)*10) fig = plot.figure(figsize=(10, 5)) fig.add_subplot(121) plot.xlim(-20, 100) mu = np.mean(amount) sigma = np.std(amount) plot.hist(amount, density = True)</pre>
	<pre>plot.plot(np.arange(-20, 100), gaussian(np.arange(-20, 100), mu, sigma)) plot.title('Amount density: not very gaussian') fig.add_subplot(122) log_amount = np.log(amount) log_mu = np.mean(log_amount) log_sigma = np.std(log_amount) plot.hist(log_amount, density = True) plot.plot(np.arange(0, 8,0.1), gaussian(np.arange(0, 8,0.1), log_mu, log_sigma)) plot.title('Amount density "Log version": a bit more gaussian!')</pre>
	Amount density : not very gaussian O.025 O.020 O.015 Amount density "Log version": a bit more gaussian! O.8 O.7 O.6 O.5
	0.010 - 0.4 - 0.3 - 0.2 - 0.1 - 0.005 - 0.2 - 0.1 - 0.0
n [10]:	Visualiser les histogrammes de densités peut aider à mieux y voir, et partir sur des mesures transformées peut améliorer leur caractère gaussien, et donc l'efficacité de la détection. Un autre type de souci Quand les données sont un peu partitionnées, on peut aussi avoir des soucis : np.random.seed(1) samples = 50
	<pre>dataset = np.concatenate([np.random.rand(samples, 2)*30 + 10, np.random.rand(sample) mus = np.mean(dataset, axis = 0).reshape(1, -1) sigmas = np.std(dataset, axis = 0).reshape(1, -1) plot.xlim(0,200) plot.ylim(0,200) plot.scatter(dataset[:,0], dataset[:,1], marker='x', color='orange') plot.title('Reference data, with tested values') test set = np.array([[75, 75], [25, 25], [125, 125]])</pre>
	<pre>epsilon = 1e-1 results = anomaly_nD(test_set, mus, sigmas, epsilon) plot.scatter(test_set[:,0], test_set[:,1], c=results, cmap=colors.ListedColormap([' plot.show()) Reference data, with tested values 175 - 150 -</pre>
	125 - 100 - 75 - 50 - 25 - 0 25 50 75 100 125 150 175 200
	Là, c'est un autre genre de problème : le point au milieu sera difficilement détectable avec notre modèle. Pour tant ϵ est beaucoup plus élevé que d'habitude, on devrait avoir plus de rejet, mais on n'y arrivera pas point barre : autant sur les x que sur les y, le point est bien dans l'ensemble attendu :(Pour résoudre ce problème, il faudra procéder différement. Par exemple : • dans un premier temps, classer les données en clusters (via les k-means) • puis détecter l'anomalie sur chaque cluster (en fonction de ses propres μ et σ ou Σ)
	 Est une anomalie un point qui est détecté comme tel, sur chaque cluster. Retour à la mise en situation Chargement des données Je dispose de 10.000 transactions passées avec les informations suivantes : montant de la transaction nombre de transactions précédentes sur 24 heures glissantes
n [11]:	 nombre de transactions précédentes sur 24 heures glissantes devise utilisée Heure de la journée data = np.load('data/d12_data.npy') fig = plot.figure(figsize=(20,5)) fig.add_subplot(141) plot.title('Amount') plot.hist(data[:,0].reshape(-1), density=True)
	<pre>fig.add_subplot(142) plot.title('# of transactions over the last 24 hours') plot.hist(data[:,1].reshape(-1), density=True) fig.add_subplot(143) plot.title('Currency used (USD:0, EUR: 1)') plot.hist(data[:,2].reshape(-1), 2, density=True) fig.add_subplot(144) plot.title('Time (minutes sice midnight)') plot.hist(data[:,3].reshape(-1), density=True)</pre>
	plot.hist(data[:,3].reshape(-1), density= True) plot.show() Amount # of transactions over the last 24 hours
n [12]:	
	Rien n'est vraiment gaussien :(On va essayer de pré-traiter tout ça # Visualisation de amount, en version log fig = plot.figure(figsize=(10,5)) fig.add_subplot(121) plot.title('Amount') mu=np.mean(data[:,0])
	Rien n'est vraiment gaussien :(On va essayer de pré-traiter tout ça # Visualisation de amount, en version log fig = plot.figure(figsize=(10,5)) fig.add_subplot(121) plot.title('Amount')
	Rien n'est vraiment gaussien:(On va essayer de pré-traiter tout ça # Visualisation de amount, en version log fig = plot.figure(figsize=(10,5)) fig.add_subplot(121) plot.title('Amount') mu=np.mean(data[:,0]) sigma=np.std(data[:,0]).reshape(-1), density=True) plot.plot(np.arange(200), gaussian(np.arange(200), mu, sigma)) fig.add_subplot(122) plot.title('Log (amount)') plot.hist(np.log(data[:,0]).reshape(-1), density=True) l_mu=np.mean(np.log(data[:,0])) l_sigma=np.std(np.log(data[:,0]))
	Rien n'est vraiment gaussien: (On va essayer de pré-traiter tout ça # Visualisation de amount, en version log fig = plot.figure(figsize=(10,5)) fig.add_subplot(121) plot.hist(data[:,0]).reshape(-1), density=True) plot.plot(np.arange(200), gaussian(np.arange(200), mu, sigma)) fig.add_subplot(122) plot.title('Log (amount)') plot.hist(np.log(data[:,0])) l_mu=np.mean(np.log(data[:,0])) l_sigma=np.std(data[:,0])) plot.plot(np.arange(0,6,0.1), gaussian(np.arange(0,6,0.1), l_mu, l_sigma)) plot.show() Amount Log (amount) O025 Amount Log (amount) Log (amount)
n [13]:	Rien riest vraiment gaussien: (On valessayer de pré-traiter tout ça # Visualisation de amount, en version log fig = plot.figure(figsize=(10,5)) fig.add_subplot(121) plot.title('Amount') mumpp.mean(data[:,0]) sigma=pp.std(data[:,0]) plot.hist(data[:,0]).reshape(-1), density=True) plot.plot(np.arange(200), gaussian(np.arange(200), mu, sigma)) fig.add_subplot(122) plot.title('Log (amount)') plot.hist(np.log (data[:,0])).reshape(-1), density=True) 1_mu=np.mean(np.log(data[:,0])) 1_sigma=np.std(np.log(data[:,0])) plot.plot(np.arange(0,6,0.1), gaussian(np.arange(0,6,0.1), 1_mu, 1_sigma)) plot.show() Amount Log (amount) O25 Amount Log (amount) O25 C'est clairement mieux d'utiliser du log pour la première mesure! Passons à la seconde. Pour éviter des logs de 0, on va compter le nombre de transactions sur 24h en comptant celle-ci.
n [13]:	Rien nest vraiment gaussien: (On va essayer de pré-traiter tout ça \$ Visualisation de amount, en version log fig = plot.figure(figsizee(10,5)) fig.add_subplot(21) plot.hist(data[;,0].reshape(-1), density=True) plot.plot (trice ('Log (amount)') mu=pp.mean(data[;,0].reshape(-1), density=True) plot.plot (imp.aranqe(200), gaussian(np.arange(200), mu, sigma)) fig.add_subplot(122) plot.title('Log (amount)') plot.plot(np.log (data[;,0])) l_sigma=np.sid(np.log (data[;,0])) l_sigma=np.sid(np.log (data[;,0])) plot.plot(np.arange(0,6,0.1), gaussian(np.arange(0,6,0.1), 1_mu, 1_sigma)) plot.show() C'est clairement mieux d'utiliser du log pour la première mesure! Passons à la seconde. Pour éviter des logs de 0, on va compter le nombre de transactions sur 24h en comptant celle-ci. \$ Visualisation de \$ de transactions, en version log t = data[;,1] + 1 fig = plot figure(figsize=(10,5)) fig.add_subplot(21) plot.hist(t.reshape(-1), density=True) plot.hist(t.reshape(-1), density=True) plot.plot(tup.arange(0,10,0.1), gaussian(np.arange(0,10,0.1), mu, sigma)) fig.add_subplot(122) plot.title('Log version') t = np.log(t) plot.hist(t.reshape(-1), density=True) l_mm=p.mean(t) i_mm=p.mean(t) i_m
n [13]:	Rien mest variment gaussien: (On we assayer de pré-traiter tout ça \$ Visualisation de assunt, en version log fiq = plot.figure(fiqsize=(10,5)) plot.plot(plot(plot(plot(plot(plot(plot(plot(
n [13]:	Ren n'ost varianch gaussien: (On va essayor de pré-traiter tout ça * Visualization de amunt, en version leg fig = plot.fiqure(fiquisec(10,5)) fiq:and_mupho(12) plot.title(fiquisec(10,1)) signaemp.acd(data;.0) signaemp.acd(data;.0) signaemp.acd(data;.0) signaemp.acd(data;.0) signaemp.acd(data;.0) signaemp.acd(data;.0) signaemp.acd(data;.0) plot.title(fiquisec(20), gaussian(np.arange(200), mu, signa)) fiquad mupho(122) plot.title(fiquisec(10,1), density=True) jout.hister(n) leg (data[c,0], acabape(-1), density=True) jout.hister(n) none OOS Amount OOS OOS Amount OOS OOS Amount OOS OOS OOS OOS OOS OOS OOS O
n [13]:	Ren nost varianch gaussien: (D n valesayer de pré-traiter tout ça # Visualization de amount, en version Joy fig = plot.fisture(fignise=(10,5)) fig.add eubje(til2) plot.fist(afignise=(10,5)) plot.plot(pp.senseq.2000), gaussian(pp.senseq.2000), mu, nigma)) fig.add eubje(til2) plot.fist(afignise=(10,0)) plot.plot(pp.senseq.2000), gaussian(pp.senseq.2000), mu, nigma)) fig.add eubje(til2) plot.fist(plog (data(1,0))) plot.plot(pp.senseq.2000), gaussian(pp.senseq.2000), mu, nigma)) plot.nist(pp.log(data(1,0))) plot.plot(pp.senseq.2000), gaussian(pp.senseq.2000), mu, nigma)) plot.senv() Amount OOS OOS OOS Amount OOS OOS OOS OOS OOS OOS OOS O
n [13]:	Rien n'est variament gaussient (On valessayer de pré-traite tout ça # y saud hand from de amount, en veralion log # gaussi hand from de amount, en veralion log # gaussi hand from de amount, en veralion log # gaussi hand from de amount, en veralion log # gaussi hand from de amount, en veralion log # gaussi hand from de amount, en veralion log # gaussi hand from de la gaussi hand from de antary (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), ma, signat) # gaussi hand from planessayer (200), qualisation (200), planessayer (200), ma, signation (200), planessayer (200), planessaye
	Ren ricet writing gaussian; (In wa essayer de pré-trater tout ça **Transference de associé, en europea (og. 1) **Julia politic (Julia (1973)) **Julia (Julia (Julia (Julia (1973))) **Julia (Julia (Julia (1973)) **Julia (Julia (Julia (1973)) **Julia (Julia (Julia (19
	Ren meet varianted (pause on 10 mos easywar ce profession to 15 g. 15 g. 16 mos (pause of 15 g. 16 g.
	Ran meta variant gaussient (On the essage de pré-trater tout que l'application de source, en repedies dong (Eg. pl.) (1.6 pl.)
	Room not women agreement (Christ assessing daily in trader tout or # Journal State of the Christ of State of the Christ of State
	Rom nost varions gaussian (C) we ecogon do not incorror out on # Journal Joseph Land Base Service (1) # Journal Journal Land Base Service (1) # Journal Journal Land Base Service (1) # Journal Land Ba
	Remotest cannot general color an analysis or ad-transforcing. ** Experimental color and analysis or consequence (2) ** ** ** ** ** ** ** ** ** ** ** ** **
n [14]:	Boundary or all registers of a resultant process of patholes had go. 2 Constitution of the control of the cont
n [14]:	Reministration and general 15th value supplies to problem introducts - consideration in a security or recorded by the ministration (consequent 0.5) the m
n [14]:	Ref. Not shared passed of the State of the S
n [14]:	The Contraction of American Section 1997 A contraction 1997 A co
n [14]:	Bern et varant promoter total economic experience to total **Construction of the control of the
n [14]:	The rest of an impact of Commonwhall for Parish State 19 (2) **Control of Commonwhall State 19