Discrete Mathematics Assignment 4

12312706 Zhou Liangyu

- 1. (a) Let $A = \{P \mid P \text{ can be proved by weak induction}\}$, $B = \{P \mid P \text{ can be proved by strong induction}\}$.
 - \because The inductive step in weak induction is "Prove $\forall k \in \mathbb{Z}^+, \ P(k) \to P(k+1)$ is true", the inductive step in strong induction is "Prove $\forall k \in \mathbb{Z}^+, \ P(1) \land \dots \land P(k) \to P(k+1)$ is true"
 - .. If a statement P can be proved by strong induction, then it can also be proved by weak induction.
 - $\therefore A \subset B$.
 - .: Strong induction implies weak induction.

Let P be a statement in B, then we know that when P(1) is true, $P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$.

Let
$$Q(n) = P(1) \wedge \cdots \wedge P(n)$$
, then $Q(1) = P(1)$.

$$\therefore P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$$

$$\therefore P(1) \land \cdots \land P(k) \rightarrow P(1) \land \cdots \land P(k) \land P(k+1)$$
, i.e. $Q(k) \rightarrow Q(k+1)$

- $\therefore Q$ can be proved by weak induction.
- \therefore Whenever Q is true, P is true
- \therefore *P* can be proved by weak induction.
- $\therefore B \subset A$.
- ... Weak induction implies strong induction.
- ... Weak induction and strong induction are equivalent.
- (b) Let P be a statement that can be proved by weak induction,

S be the set that contains all $n \in \mathbb{N}$ such that P(n) is false.

If weak induction doesn't implies the well-ordering principle, then S must be non-empty.

By well-ordering principle, let the smallest element in S be k.

- $\therefore P(1)$ is true.
- $\therefore k \neq 1$.
- $\therefore k-1 \in \mathbb{N}$, k is the smallest element in S
- $\therefore k-1 \notin S$, i.e. P(k-1) is true.
- $\therefore P(1)$ is true, by weak induction we can prove that P(k) is true.
- $\therefore k \notin S$, which contradicts to our assumption.
- \therefore If P can be proved by weak induction, then S must be empty.
- ... Weak induction implies the well-ordering principle.
- 2. Proof: Let P(n) represent $(A_1 B) \cap (A_2 B) \cap \cdots \cap (A_n B) = (A_1 \cap A_2 \cap \cdots \cap A_n) B$.

Base step: When n=1, $LHS=A_1\cap B$, $RHS=A_1\cap B$. $\therefore P(1)$ is true.

Inductive step: Assume that for an arbitrary positive integer k, P(k) is true.

$$\therefore (A_1 - B) \cap (A_2 - B) \cap \cdots \cap (A_k - B) = (A_1 \cap A_2 \cap \cdots \cap A_k) - B.$$

$$\therefore (A_1-B)\cap (A_2-B)\cap \cdots \cap (A_k-B)\cap (A_{k+1}-B)$$

$$= ((A_1\cap A_2\cap \cdots \cap A_k) - B)\cap (A_{k+1}-B)$$

$$=((A_1\cap A_2\cap\cdots\cap A_k)\cap B^c)\cap (A_{k+1}\cap B^c)$$

$$= (A_1 \cap A_2 \cap \dots \cap A_k \cap A_{k+1}) \cap B^c$$
$$= (A_1 \cap A_2 \cap \dots \cap A_k \cap A_{k+1}) - B.$$
$$\therefore P(k+1) \text{ is true.}$$

... By mathematical induction, we know that

$$(A_1-B)\cap (A_2-B)\cap \cdots \cap (A_n-B)=(A_1\cap A_2\cap \cdots \cap A_n)-B$$
 holds for all positive integer n .

3. Proof: Let P(n) represent that for any real number h > -1 and integer $n \ge 0$, we have $(1+h)^n \ge 1 + nh$.

Base step: When n = 0, $(1 + h)^0 = 1 + 0 \cdot h$. P(1) is true.

Inductive step: Assume that for an arbitrary positive integer k, P(k) is true.

$$\therefore (1+h)^k \ge 1 + kh.$$

$$\therefore (1+h)^{k+1} = (1+kh) \cdot (1+h) = 1 + (k+1)h + kh^2 \ge 1 + (k+1)h.$$

$$\therefore P(k+1) \text{ is true.}$$

- \therefore By mathematical induction, we know that $(1+h)^n \ge 1 + nh$ holds for all positive integer n.
- 4. Proof: Let P(n) represent "if p is a prime and $p \mid a_1 a_2 \cdots a_n$, where each a_i is an integer, then $p \mid a_i$ for some integer $i \in {1, 2, ..., n}$ ".

Base step: When n = 1, the condition $p \mid a_1$ given in the problem directly implies $p \mid a_1$. P(1) is true.

Inductive step: Assume that for an arbitrary positive integer k, P(k) is true.

$$\therefore$$
 If $p \mid a_1 a_2 \cdots a_k$, then $p \mid a_i$ for some integer $i \in 1, 2, \dots, k$.

Suppose that $p \mid a_1 a_2 \cdots a_k a_{k+1}$.

$$\therefore p \mid a_1 a_2 \cdots a_k \text{ or } p \mid a_{k+1}.$$

If $p \mid a_1 a_2 \cdots a_k$, then we know that $p \mid a_i$ for some integer $i \in 1, 2, \ldots, k$,

which also satisfies $p \mid a_i$ for some integer $i \in {1, 2, ..., k+1}$.

If $p \mid a_{k+1}$, then we are directly done.

$$\therefore P(k+1)$$
 is true.

- \therefore By mathematical induction, we know that "if p is a prime and $p \mid a_1 a_2 \cdots a_n$, where each a_i is an integer, then $p \mid a_i$ for some integer $i \in {1, 2, ..., n}$ " holds for all positive integer n.
- 5. (a) : Four 3-cent stamps form a 12-cent stamp. : P(12) is true.
 - \because Two 3-cent stamps and one 7-cent stamp form a 13-cent stamp. $\therefore P(13)$ is true.
 - : Two 7-cent stamps form a 14-cent stamp. : P(14) is true.
 - (b) The inductive hypothesis of the proof is "for an arbitrary positive integer k, Postage of k cents can be formed using just 3-cent stamps and 7-cent stamps is true".
 - (c) We need to prove P(k+1) is true in the inductive step.
 - (d) Since $k+1 \ge 15$, $k-2 \ge 12$, by the inductive hypothesis, we know that P(k), P(k-1), P(k-2) are true.

$$:: k+1 = (k-2)+3$$

 \therefore By adding one 3-cent stamp to the k-2 situation, we can get a postage of k+1 cents.

- $\therefore P(k+1)$ is true.
- (e) In (a), we have proved P(12), P(13) and P(14) is true by completing the base step.

For $n \ge 15$ situations, we have proved P(n) is true by completing the inductive step.

Therefore, we can show that this statement is true whenever $n \ge 12$.

6. Let the elements a_i in the ordered array A be numbered from 1 to n. x is the target number.

binarySearch(A, x, l, r)

if l > r then return 0

$$m := \lfloor (l+r)/2 \rfloor$$

if $a_m = x$ then return m

else if $a_m > x$ then return binarySearch(A, x, l, m - 1)

else $a_m < x$ then return binarySearch(A, x, m + 1, r)

7. : $1 \le a < 2$

$$(and a)^k \le 1, \ k \ge 0. \ a^{\log_2 n} = n^{\log_2 a} < n.$$

$$\therefore \sum_{i=0}^{m} \left(\frac{a}{2}\right)^{i} = 1 + \frac{a}{2} + \frac{a^{2}}{2^{2}} + \ldots + \frac{a^{m}}{2^{m}} = \Theta(1).$$

$$egin{aligned} \dots & extstyle \sum_{i=0}^{l} (rac{1}{2})^i = 1 + rac{1}{2} + rac{1}{2^2} + \dots + rac{1}{2^m} = O(1), \\ & T(n) = aT(n/2) + n \\ & = a^2T(n/2^2) + (a/2+1)n \\ & = a^3T(n/2^3) + (a^2/2^2 + a/2 + 1)n \\ & = \dots \\ & = a^{log_2n}T(n/2^{log_2n}) + n \sum_{i=0}^{log_2n-1} (rac{a}{2})^i \end{aligned}$$

 $= n^{log_2 a} T(1) + n \cdot \Theta(1).$

$$T(n) = \Theta(n).$$

8. The number of all bit strings of length 8 is: $2^8 = 256$.

0000 can be placed at 5 positions in the string: 1 - 4, 2 - 5, 3 - 6, 4 - 7, 5 - 8.

The rest 4 positions can be any numbers, and there are $2^4 = 16$ possible combinations for the four numbers.

 \therefore The number of bit strings containing 4 consecutive 0s is $5 \cdot 16 = 80$.

Similarly, the number of bit strings containing 4 consecutive 1s is 80.

- : Bit strings containing both 4 consecutive 0s and 4 consecutive 1s are 00001111 and 11110000, and they are counted twice in the calculation above.
- \therefore The number of bit strings of length 8 that contain either 4 consecutive 0s or 4 consecutive 1s is 80 + 80 2 = 158.
- 9. (a) Choose the three-card rank: $\binom{13}{1}$. Choose 3 cards: $\binom{4}{3}$.

Choose the two-card rank: $\binom{12}{1}$. Choose 2 cards: $\binom{4}{2}$

- \therefore The number of full houses is $\binom{13}{1} \cdot \binom{4}{3} \cdot \binom{12}{1} \cdot \binom{4}{2}$.
- (b) Choose 2 two-card ranks: $\binom{13}{2}$. Choose 2 cards for each rank: $\binom{4}{2}^2$.

Choose the third rank: $\binom{11}{1}$. Choose 1 card for the rank: $\binom{4}{1}$.

- \therefore The number of two pairs is $\binom{13}{2} \cdot \binom{4}{2}^2 \cdot \binom{11}{1} \cdot \binom{4}{1}$.
- (c) Choose a suit for the flush: $\binom{4}{1}$. Choose 5 cards in the suit: $\binom{13}{5}$.
 - \therefore The number of flushes is $\binom{4}{1} \cdot \binom{13}{5}$.
- (d) According to the problem description, there are 10 possible combinations of cards to form a straight.

Choose a combination: $\binom{10}{1}$. Choose a suit for each card in the straight: $\binom{4}{1}^5$.

- \therefore The number of straights: $\binom{10}{1} \cdot \binom{4}{1}^5$.
- (e) Choose a rank: $\binom{4}{1}$. Choose 4 cards in the rank: $\binom{13}{4}$.

Choose another rank: $\binom{3}{1}$. Choose 1 card in the rank: $\binom{13}{1}$.

- \therefore The number of quads is $\binom{4}{1} \cdot \binom{13}{4} \cdot \binom{3}{1} \cdot \binom{13}{1}$.
- 10. : For all $0 \le k \le n$ the combinations $\binom{n}{k}$ are integers
 - $\therefore \binom{2020}{1010} \text{ is divisible by some integers.}$
 - $\therefore 2022 = 2 \cdot 1011$, 2 and 1011 are coprime

... Decompose the problem into two subproblems: check if the binomial coefficient can is divisible by 2 and 1011.

The power of 2 in 2020! =
$$\lfloor \frac{2020}{2^1} \rfloor + \lfloor \frac{2020}{2^2} \rfloor + \lfloor \frac{2020}{2^3} \rfloor + \ldots + \lfloor \frac{2020}{2^{10}} \rfloor$$

$$= 1010 + 505 + 252 + 126 + 63 + 31 + 15 + 7 + 3 + 1 = 2013.$$

The power of 2 in $1010! \cdot 1010! = 2 \cdot \left(\left\lfloor \frac{1010}{2^1} \right\rfloor + \left\lfloor \frac{1010}{2^2} \right\rfloor + \left\lfloor \frac{1010}{2^3} \right\rfloor + \ldots + \left\lfloor \frac{1010}{2^9} \right\rfloor \right)$

$$= 2 \cdot (505 + 252 + 126 + 63 + 31 + 15 + 7 + 3 + 1) = 2006.$$

$$\therefore 2013 - 2006 = 7 > 0$$

$$\therefore \binom{2020}{1010} = \frac{2020!}{1010! \cdot 1010!} \text{ can is divisible by 2.}$$

The power of 1011 in $2020! = \lfloor \frac{2020}{1011^1} \rfloor = 1$.

The power of 1011 in 1010! \cdot 1010! $= 2 \cdot \lfloor \frac{1010}{1011} \rfloor = 0$.

$$1 - 0 = 1 > 0$$

$$\therefore \binom{2020}{1010}$$
 can is divisible by 1011.

$$\therefore \binom{2020}{1010} \text{ can is divisible by } 2 \cdot 1011 = 2022.$$

11.
$$LHS = \sum_{k=0}^{r} \binom{n+k}{k} = \sum_{k=0}^{r} \binom{n+k}{n}, RHS = \binom{n+r+1}{r} = \binom{n+r+1}{n+1}.$$

The right hand side asks how many ways to pick n+1 elements from a set with size of n+r+1, and the answer is $\binom{n+r+1}{n+1}$.

We can divide the process into r different cases:

We number the elements in the set from 1 to n + r + 1.

Assume that the number of the rest n elements should be larger than the first element.

First we should pick one element from the first r + 1 elements.

If the number of the first element is 1, then we have to pick n elements from the rest n+r elements, i.e. $\binom{n+r}{n}$.

If the number of the first element is 2, then we have to pick n elements from the rest n+r-1 elements, i.e. $\binom{n+r-1}{n}$.

Therefore if the number of the first element is k, the rest of the n committee members can be chosen from the remaining n+r+1-k persons in exactly $\binom{n+r+1-k}{n}$ ways,

This applies to $k = 1, 2, \ldots, r + 1$.

Add these combinations together, we can get $\binom{n+r}{n} + \binom{n+r-1}{n} + \ldots + \binom{n+2}{n} + \binom{n+1}{n} = \sum_{k=0}^{r} \binom{n+k}{n} = \sum_{k=0}^{r} \binom{n+k}{k}$.

$$\therefore \sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{n+1} = \binom{n+r+1}{r}.$$

12. :
$$a_n = 3a_{n-2} + 2a_{n-3}$$

 \therefore The characteristic equation is $r^3-3r-2=0$, i.e. $(r+1)^2(r-2)=0$.

 \therefore The CE has 2 distinct roots: $r_1 = -1$ and $r_2 = 2$. $m_1 = 2$, $m_2 = 1$.

$$\therefore a_n = r_1^n(\alpha_{1,0}n^0 + \alpha_{1,1}n) + r_2^n\alpha_{2,0}n^0 = (-1)^n(\alpha_{1,0} + \alpha_{1,1}n) + 2^n\alpha_{2,0}.$$

$$: a_0 = \alpha_{1,0} + \alpha_{2,0} = 1,$$

$$a_1 = (-1)(\alpha_{1,0} + \alpha_{1,1}) + 2\alpha_{2,0} = -5,$$

$$a_2=lpha_{1,0}+2lpha_{1,1}+2^2lpha_{2,0}=0$$

$$\therefore \alpha_{1,0} = 2, \ \alpha_{1,1} = 1, \ \alpha_{2,0} = -1.$$

$$\therefore a_n = (-1)^n (2+n) - 2^n$$
.

13. (a) The characteristic equation of the associated linear homogeneous recurrence relation is r-2=0. The root is 2.

Assume $a_n = p(n) = An^2 + Bn + C$ is a particular solution to the original recurrence relation,

then
$$An^2 + Bn + C = 2(A(n-1)^2 + B(n-1) + C) + n^2$$
.

$$\therefore (A+1)n^2 + (-4A+B)n + 2A - 2B + C = 0.$$

$$A + 1 = 0$$
, $-4A + B = 0$, $2A - 2B + C = 0$.

$$A = -1, B = -4, C = -6.$$

 \therefore All of the solutions are of the form $a_n = \alpha_1 \cdot 2^n - n^2 - 4n - 6$.

(b) : The initial condition $a_1 = \alpha_1 \cdot 2 - 11 = 2$.

$$\therefore \alpha_1 = \frac{13}{2}.$$

... The solution of the recurrence relation is $a_n=13\cdot 2^{n-1}-n^2-4n-6$.

14. Let G(x) be the generating function of a_n for $n \ge 0$, we have $G(x) - a_0 = G(x) = 4xG(x) + \frac{x}{1 - 8x}$.

$$\therefore G(x) = \frac{x}{(1 - 4x)(1 - 8x)}.$$

$$= \frac{1}{4} \left(\frac{1}{1 - 8x} - \frac{1}{1 - 4x} \right)$$

$$= \frac{1}{4} \left(\sum_{n=0}^{\infty} 8^n x^n - \sum_{n=0}^{\infty} 4^n x^n \right)$$

$$= \frac{1}{4} \sum_{n=0}^{\infty} (8^n - 4^n) x^n.$$

$$\therefore a_n = \frac{1}{4}(8^n - 4^n).$$