Skupina 18: Kemijski grafi

Avtorja: David Planinšek Šilc, Lenart Žerdin

Datum: 20. 12. 2024

Opis problema

Najina naloga temelji na raziskovanju kemijskih grafov in njihovem $\sigma_t^{f(n)}(G)$ indeksu. Zanima naju, kako se indeks v odvisnosti od različnih f(n) spreminja in katera stopenjska zaporedja grafa pridelajo njegov maksimum. Omejila sva se na funkcije $f(n) = \frac{1}{n}$ in f(n) = c za $c \in (0,1)$, kjer sva podrobneje gledala tiste c, ki so blizu 0 in 1.

Definicije

- 1. Graf je kemijski, če je neusmerjen, povezan in so vsa njegova vozlišča stopnje največ 4. Če ima kemijski graf a_i vozlišč stopnje i, $1 \le i \le 4$, potem njegovo stopenjsko zaporedje označimo kot $(1^{a_1}, 2^{a_2}, 3^{a_3}, 4^{a_4})$.
- 2. Definiramo totalni σ -indeks iregularnosti, v angleščini 'Total σ -irregularity', $\sigma_t^{f(n)}(G)$ kot:

$$\sigma_t^{f(n)}(G) = \sum_{\{u,v\} \subseteq V(G)} |d_G(u) - d_G(v)|^{f(n)},$$

kjer je n = |V(G)| in je f(n) funkcija, definirana za $n \ge 4$.

Izrek

Naj bo $n \geq 7$, $f(n) \leq \log_3\left(\frac{3n^2}{3n^2-8}\right)$, in naj bo $(1^{a_1}, 2^{a_2}, 3^{a_3}, 4^{a_4})$ stopenjsko zaporedje kemijskega grafa G z maksimalno vrednostjo $\sigma_t^{f(n)}(G)$. Potem velja:

- 1. Če n = 4k 1, potem $a_1 = a_3 = a_4 = k$ in $a_2 = k 1$.
- 2. Če n = 4k, potem $a_1 = a_2 = a_3 = a_4 = k$.
- 3. Če n = 4k + 1, potem $a_1 = a_2 = a_3 = k$ in $a_4 = k + 1$.
- 4. Če n=4k+2, potem velja bodisi $a_1=a_3=k$ in $a_2=a_4=k+1$, bodisi $a_1=a_3=k+1$ in $a_2=a_4=k$.

Ker je za kemijske grafe razlika med stopnjami vozlišč omejena, domnevamo naslednje:

- Domneva 1: Isti grafi, kot v Izreku, imajo maksimalno vrednost za $\sigma_t^{f(n)}$, če je $f(n) = \frac{1}{n}$.
- Domneva 2: Isti grafi, kot v Izreku, imajo maksimalno vrednost za $\sigma_t^{f(n)}$, če je f(n) = c, kjer je c konstanta v intervalu (0,1).

Algoritmi in psevdokode

Za preverjanje domnev sva napisala algoritme, ki generirajo kemijske grafe in izračunajo njihov $\sigma_t^{f(n)}$ indeks. Najprej sva se lotila sistematičnega iskanja za grafe zn vozlišči, kjer je $n \in [7,14], n \in \mathbb{N}$. Za večje grafe sva zaradi predolgega trajanja iskanja uporabila algoritma Hill climbing in Simulated annealing. Natančneje za grafe velikosti $n \in [15,20] \cup [50,53] \cup [100,103]$.

Sistematično iskanje

Pri sistematičnem iskanju sva generirala vsa možna stopenjska zaporedja z uporabu knjižnice $nauty_geng$, za različne n in izračunala $\sigma_t^{f(n)}(G)$ za različne f(n). Nato sva izbrala tiste grafe, kjer je bila pri določenih f(n) vrednostjo $\sigma_t^{f(n)}(G)$ največja.

Psevdokoda za sistematično iskanje

```
1: function GENERATEUNIQUECHEMICALGRAPHSCONFIGS(n)
        unique\_configs \leftarrow []
        for all g \vee graphs.nauty\_geng(f"n-c-D4") do
 3:
            config \leftarrow DegreeConfiguration(g)
 4:
 5:
            if config \notin unique\_configs then
 6:
                Dodaj config v unique_configs
 7:
            end if
        end for
 8:
        return\ unique\_configs
9:
10: end function
11: function SigmaTotalIrregularityFromConfig(config, f_n)
        \begin{array}{c} \textbf{for all } config \neq degree\_list \ \textbf{do} \\ \text{compute } \sigma_t^{f(n)}(G) \end{array}
12:
13:
        end for
14:
        return (config|\max(\sigma_t^{f(n)}(G)))
15:
16: end function
```

Hill climbing algoritem

Hill climbing algoritem je optimizacijski algoritem, ki iterativno izboljšuje trenutno rešitev tako, da na vsakem koraku poišče sosednjo rešitev z boljšo, v najinem primeru večjo, $\sigma_t^{f(n)}(G)$ vrednostjo. Algoritem sva ustavila po 100000 iteracijah.

Psevdokoda za Hill climbing algoritem

```
1: function GENERATEINITIALGRAPH(n)
       Ustvarimo drevo na n vozliščih
 3: end function
 4: function MUTATEGRAPH(g, u, v)
       if g vsebuje povezavo (u, v) then
 5:
           Odstrani povezavo (u, v) iz g
 6:
          if g je povezan then
 7:
              return g
 8:
          else
 9:
10:
              Dodaj nazaj (u, v)
              return g
11:
          end if
12:
       else
13:
14:
          Dodaj povezavo (u, v) \vee g
          if \max(\text{degree}(g)) \leq 4 then
15:
              return g
16:
17:
          else
              Odstrani (u, v)
18:
19:
              return g
          end if
20:
       end if
21:
22: end function
 1: function HILLCLIMBING(n, f, iterations)
```

```
    function HILLCLIMBING(n, f, iterations)
    current_graph ← GenerateInitialGraph(n)
    degree_counts ← seznam stopenj v current_graph
    for i in range(iterations) do
    vertices ← seznam vozlišč v current_graph
```

```
(u,v) \leftarrow \text{naključno izbran par vozlišč iz } vertices
 6:
            original\_contribution \leftarrow 0
 7:
            for all w 	ext{ vertices do}
 8:
                if w \neq u then
 9:
                    org\_contribution + = |degree\_counts[u] - degree\_counts[w]|^{f_n}
10:
                end if
11:
                if w \neq v in w \neq u then
12:
                    org\_contribution + = |degree\_counts[v] - degree\_counts[w]|^{f_n}
13:
                end if
14:
            end for
15:
            new\_graph \leftarrow MutateGraph(current\_graph, u, v)
16:
            new\_degree\_counts \leftarrow seznam stopenj v new\_graph
17:
18:
            new\_contribution \leftarrow 0
            for all w v vertices do
19:
                if w \neq u then
20:
                    new\_contribution + = |degre\_counts[u] - degree\_counts[w]|^{f_n}
21:
                end if
22:
                if w \neq v in w \neq u then
23:
                    new\_contribution + = |degree\_counts[v] - degree\_counts[w]|^{f_n}
                end if
25:
            end for
26:
            if new\_contribution > original\_contribution then
27:
28:
                current\_graph \leftarrow new\_graph
29:
                degree\_counts \leftarrow new\_degree\_counts
            end if
30:
        end for
31:
        \sigma_t^{f(n)}(G) \leftarrow 0
32:
        for all (x, y) \in \text{pari vozlišč v } current\_graph \text{ do}
33:
            \sigma_{t}^{f(n)}(G) + = |degree(x) - degree(y)|^{f_n}
34:
        end for
35:
        return (current\_graph, \sigma_t^{f(n)}(G))
36:
37: end function
```

Simulated annealing algoritem

Problem pri Hill climbing algoritmu je, da se lahko zatakne v lokalnem maksimumu. Simulated annealing algoritem je pristop, ki se temu izogne, tako da včasih sprejema tudi slabše rešitve. Algoritem sva ustavila po 100000 iteracijah.

Psevdokoda za Simulated annealing algoritem

```
1: function Simulated Annealing(n, f_n, iterations, T, \alpha)
2:
        T=1
        \alpha = 0.99
3:
        \Delta \leftarrow new\_contribution - original\_contribution
4:
        if \Delta > 0 or random() < \exp(\Delta/T) then
5:
            current\_graph \leftarrow new\_graph
6:
            degree\_counts \leftarrow new\_degree\_counts
7:
8:
        end if
        T \leftarrow T \cdot \alpha
10: end function
```

Tabele in grafi

Tabela za sistematično iskanje

n	$\frac{1}{n}$	0.0001	0.1	0.2	0.45	0.55	0.8	0.9	0.9995
7	(2,1,2,2)	(2, 2, 2, 1)	(2,1,2,2)	(2,1,2,2)	(2,1,2,2)	(3,1,1,2)	(3,0,1,3)	(3,0,1,3)	(3,0,1,3)
8	(2,2,2,2)	(2, 2, 2, 2)	(2, 2, 2, 2)	(2,2,2,2)	(3,1,1,3)	(3,1,1,3)	(3,1,1,3)	(4,0,0,4)	(4,0,0,4)
9	(2,2,2,3)	(2,3,2,2)	(2, 2, 2, 3)	(2,2,2,3)	(3, 2, 1, 3)	(3, 2, 1, 3)	(4, 1, 0, 4)	(4,1,0,4)	(4,1,0,4)
10	(3, 2, 3, 2)	(3, 2, 3, 2)	(3, 2, 3, 2)	(3, 2, 3, 2)	(4,1,2,3)	(4,1,2,3)	(5,0,1,4)	(5,0,1,4)	(5,0,1,4)
11	(3,2,3,3)	(3, 3, 3, 2)	(3, 2, 3, 3)	(3,2,3,3)	(4, 2, 2, 3)	(4,1,2,4)	(5,0,1,5)	(5,0,1,5)	(5,0,1,5)
12	(3,3,3,3)	(3, 3, 3, 3)	(3, 3, 3, 3)	(3,3,3,3)	(4, 2, 2, 4)	(4, 2, 2, 4)	(5,1,1,5)	(5,1,1,5)	(6,0,0,6)
13	(3,3,3,4)	(3, 3, 3, 4)	(3, 3, 3, 4)	(3,3,3,4)	(4, 3, 2, 4)	(4, 2, 2, 5)	(5,1,1,6)	(6,1,0,6)	(6,1,0,6)
14	(4, 3, 4, 3)	(4, 3, 4, 3)	(4, 3, 4, 3)	(4, 3, 4, 3)	(5, 2, 3, 4)	(5,2,3,4)	(6,1,2,5)	(7,0,1,6)	(7,0,1,6)

Tabela za Hill climbing algoritem

n	$\frac{1}{n}$	0.001	0.1	0.5	0.9	0.995
15	(4, 3, 4, 4)	(4, 3, 4, 4)	(5, 2, 3, 5)	(5, 2, 3, 5)	(6, 1, 2, 6)	(7,0,1,7)
16	(4, 4, 4, 4)	(4, 4, 4, 4)	(5, 3, 3, 5)	(5, 3, 3, 5)	(6, 1, 2, 7)	(6,1,2,7)
17	(4, 4, 4, 5)	(4, 4, 4, 5)	(5, 3, 3, 6)	(6, 3, 2, 6)	(6, 2, 2, 7)	(7,1,1,8)
18	(4, 5, 4, 5)	(5,4,5,4)	(5, 4, 3, 6)	(7, 2, 3, 6)	(7, 2, 1, 8)	(8,0,2,8)
19	(5,4,5,5)	(5,4,5,5)	(6, 3, 4, 6)	(7, 3, 3, 6)	(7, 1, 3, 8)	(9,0,1,9)
20	(5, 5, 5, 5)	(5, 5, 5, 5)	(6, 4, 4, 6)	(7, 3, 3, 7)	(7, 3, 1, 9)	(8,1,2,9)
50	(12, 13, 12, 13)	(12, 13, 12, 13)	(15, 10, 9, 16)	(17, 8, 9, 16)	(21, 4, 3, 22)	(21,4,1,24)
51	(13, 12, 13, 13)	(13, 12, 13, 13)	(16, 9, 10, 16)	(17, 8, 9, 17)	(21, 4, 3, 23)	(24, 1, 0, 26)
52	(13, 13, 13, 13)	(13, 13, 13, 13)	(16, 10, 10, 16)	(17, 9, 9, 17)	(22, 3, 4, 23)	(22, 3, 2, 25)
53	(13, 13, 13, 14)	(13, 13, 13, 14)	(17, 10, 9, 17)	(18, 9, 8, 18)	(23, 3, 3, 24)	(23, 3, 1, 26)
100	(25, 25, 25, 25)	(25, 25, 25, 25)	(31, 19, 19, 31)	(34, 16, 16, 34)	(44, 5, 6, 45)	(47, 3, 1, 49)
101	(25, 25, 25, 26)	(25, 25, 25, 26)	(32, 19, 18, 32)	(34, 17, 16, 34)	(45, 5, 5, 46)	(45, 5, 1, 50)
102	(25, 26, 25, 26)	(25, 26, 25, 26)	(32, 19, 18, 33)	(34, 17, 16, 35)	(46, 4, 6, 46)	(44, 6, 2, 50)
103	(26, 25, 26, 26)	(26, 25, 26, 26)	(27, 24, 25, 27)	(35, 16, 17, 35)	(47, 4, 5, 47)	(49, 2, 1, 51)
1000	(250, 250, 250, 250)	(250, 250, 250, 250)	(264, 236, 236, 264)	(337, 163, 163, 337)	(354, 128, 58, 460)	(353, 112, 37, 498)
1001	(250, 250, 250, 251)	(250, 250, 250, 251)	(264, 236, 236, 265)	(337, 163, 163, 338)	(361, 129, 51, 460)	(361, 112, 31, 497)

Tabela za Simulated annealing algoritem

		1	1	1		
n	$\frac{1}{n}$	0.001	0.1	0.5	0.9	0.995
15	(4, 3, 4, 4)	(4, 3, 4, 4)	(4, 3, 4, 4)	(5, 2, 3, 5)	(6, 1, 2, 6)	(7,0,1,7)
16	(4, 4, 4, 4)	(4, 4, 4, 4)	(4, 4, 4, 4)	(5, 3, 3, 5)	(7,1,1,7)	(6,1,2,7)
17	(4, 4, 4, 5)	(4, 4, 4, 5)	(4, 4, 4, 5)	(6, 3, 2, 6)	(6,2,2,7)	(7,1,1,8)
18	(4, 5, 4, 5)	(5,4,5,4)	(5,4,5,4)	(7, 2, 3, 6)	(6, 2, 2, 8)	(8,1,0,9)
19	(5,4,5,5)	(5,4,5,5)	(5,4,5,5)	(6, 3, 4, 6)	(8,1,2,8)	(8, 1, 0, 10)
20	(5, 5, 5, 5)	(5, 5, 5, 5)	(5, 5, 5, 5)	(7, 3, 3, 7)	(9,1,1,9)	(8, 1, 2, 9)
50	(12, 13, 12, 13)	(12, 13, 12, 13)	(13, 12, 11, 14)	(17, 8, 9, 16)	(20, 4, 4, 22)	(24, 0, 2, 24)
51	(13, 12, 13, 13)	(13, 12, 13, 13)	(14, 12, 12, 13)	(17, 8, 9, 17)	(21,4,3,23)	(23, 1, 1, 26)
52	(13, 13, 13, 13)	(13, 13, 13, 13)	(14, 12, 12, 14)	(17, 9, 9, 17)	(22, 3, 4, 23)	(24, 1, 2, 25)
53	(13, 13, 13, 14)	(13, 13, 13, 14)	(14, 13, 12, 14)	(18, 9, 8, 18)	(23, 3, 3, 24)	(25, 1, 1, 26)
100	(25, 25, 25, 25)	(25, 25, 25, 25)	(26, 24, 24, 26)	(34, 16, 16, 34)	(42, 7, 6, 45)	(46, 3, 2, 49)
101	(25, 25, 25, 26)	(25, 25, 25, 26)	(26, 24, 24, 27)	(34, 17, 16, 34)	(46, 5, 4, 46)	(44, 6, 0, 51)
102	(25, 26, 25, 26)	(25, 26, 25, 26)	(26, 25, 24, 27)	(34, 17, 16, 35)	(45, 6, 5, 46)	(46, 4, 2, 50)
103	(26, 25, 26, 26)	(26, 25, 26, 26)	(27, 24, 25, 27)	(35, 16, 17, 35)	(47, 4, 5, 47)	(42, 9, 0, 52)
1000	(250, 250, 250, 250)	(250, 250, 250, 250)	(264, 236, 236, 264)	(337, 163, 163, 337)	(360, 129, 52, 459)	(351, 111, 41, 497)
1001	(250, 250, 250, 251)	(250, 250, 250, 251)	(264, 236, 236, 265)	(337, 163, 163, 338)	(358, 124, 58, 461)	(356, 112, 34, 499)

Graf $\sigma_t^{f(n)}(G)$ indeksa v odvisnosti od števila vozliščn

Rezultati in ugotovitve

Ugotovila sva, da so največje vrednosti $\sigma_t^{f(n)}(G)$ za $f(n)=\frac{1}{n}$ dosežene pri grafih, ki imajo stopenjsko zaporedje enako kot v izreku. Enako velja za f(n)=c, kjer so vrednosti za c blizu 0. Nato se na neki točki začneta notranja člena stopenjskega zaporedja zmanjševati, zunanja pa povečevati. Za c blizu 1 pa so vrednosti $\sigma_t^{f(n)}(G)$ maksimizirane takrat, ko sta zunanja člena stopenjskega zaporedja $(1^{a_1}, 2^{a_2}, 3^{a_3}, 4^{a_4})$ čim večja, notranja pa čim manjša. Najini algoritmi teh vrednosti niso dosegli, saj sva uporabila omejeno število iteracij. Misliva, da za grafe drži naslednja trditev.

Trditev

Naj bo $n \geq 7$, f(n) = c, za c 'zelo blizu' 1 in naj bo $(1^{a_1}, 2^{a_2}, 3^{a_3}, 4^{a_4})$ stopenjsko zaporedje kemijskega grafa G z maksimalno vrednostjo $\sigma_t^{f(n)}(G)$. Potem velja:

- 1. Če n = 4k 1, potem $a_1 = 2k 1$, $a_2 = 1$, $a_3 = 0$ in $a_4 = 2k 1$.
- 2. Če n = 4k, potem $a_1 = a_4 = 2k$ in $a_2 = a_3 = 0$.
- 3. Če n = 4k + 1, potem $a_1 = a_4 = 2k$ in $a_2 = 1$ $(a_3 = 0)$ ali $a_3 = 1$ $(a_2 = 0)$.
- 4. Če n = 4k + 2, potem $a_1 = 2k$, $a_2 = 1$, $a_3 = 0$ in $a_4 = 2k + 1$.