How Many Processors Do We Really Need in Parallel Computing?

Guang Cheng¹

Department of Statistics Purdue University

> BaT Group Meeting Feb 10, 2016

¹Acknowledge NSF, ONR and Simons Foundation.

Big Data Era

At the 2010 Google Atmosphere Convention, Googles CEO Eric Schmidt pointed out that,

"There were 5 exabytes of information created between the dawn of civilization through 2003, but that much information is now created every 2 days."

No wonder that the era of Big Data has arrived. The best examples of Big Data are based on everyday life, medical records of all patients in a large healthcare network; world climate; a wireless sensor network; etc.

- Distributed: computation and storage bottleneck;
- Dirty: unstructured data cursed by heterogeneity
- Dimensionality: scale with sample size:
- Dynamic: varying and unknown underlying distribution.

- Distributed: computation and storage bottleneck;
- Dirty: unstructured data cursed by heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: varying and unknown underlying distribution.

- Distributed: computation and storage bottleneck;
- Dirty: unstructured data cursed by heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: varying and unknown underlying distribution.

- Distributed: computation and storage bottleneck;
- Dirty: unstructured data cursed by heterogeneity;
- Dimensionality: scale with sample size;
- Dynamic: varying and unknown underlying distribution.

Parallel Computing on Big Data

- In the parallel computing environment, a common practice is to distribute a massive dataset to multiple processors, and then aggregate local results obtained from separate machines into global counterparts;
- The above Divide-and-Conquer (D&C) strategy often requires a growing number of machines to deal with an increasingly large dataset;
- This computational consideration leads to the emergence of the so-called "Splitotics Theory," a statistical foundation of "Big Data Theory."

Parallel Computing on Big Data

- In the parallel computing environment, a common practice is to distribute a massive dataset to multiple processors, and then aggregate local results obtained from separate machines into global counterparts;
- The above Divide-and-Conquer (D&C) strategy often requires a *growing* number of machines to deal with an increasingly large dataset;
- This computational consideration leads to the emergence of the so-called "Splitotics Theory," a statistical foundation of "Big Data Theory."

Parallel Computing on Big Data

- In the parallel computing environment, a common practice is to distribute a massive dataset to multiple processors, and then aggregate local results obtained from separate machines into global counterparts;
- The above Divide-and-Conquer (D&C) strategy often requires a *growing* number of machines to deal with an increasingly large dataset;
- This computational consideration leads to the emergence of the so-called "Splitotics Theory," a statistical foundation of "Big Data Theory."

A Basic Question from Statisticians

What is the computational limit for parallel processing from a purely statistical theory perspective? (or shall we allocate *all* our computational resources to analyze massive data?)

- In this talk, we address this basic, yet fundamentally important, question by carefully analyzing statistical versus computational trade-off in the D&C framework;
- In particular, an intriguing phase transition phenomenon is discovered for the number of deployed machines that ends up being a simple proxy for computing cost, for both statistical estimation and testing.

A Basic Question from Statisticians

What is the computational limit for parallel processing from a purely statistical theory perspective? (or shall we allocate *all* our computational resources to analyze massive data?)

- In this talk, we address this basic, yet fundamentally important, question by carefully analyzing statistical versus computational trade-off in the D&C framework;
- In particular, an intriguing phase transition phenomenon is discovered for the number of deployed machines that ends up being a simple proxy for computing cost, for both statistical estimation and testing.

A Basic Question from Statisticians

What is the computational limit for parallel processing from a purely statistical theory perspective? (or shall we allocate all our computational resources to analyze massive data?)

- In this talk, we address this basic, yet fundamentally important, question by carefully analyzing statistical versus computational trade-off in the D&C framework;
- In particular, an intriguing phase transition phenomenon is discovered for the number of deployed machines that ends up being a simple proxy for computing cost, for both statistical estimation and testing.

Outline

1 Divide-and-Conquer Strategy

2 Computational Limit I: Estimation

3 Computational Limit II: Testing

A Flowchart of D&C

Consider a univariate nonparametric regression model:

$$Y = f_0(Z) + \epsilon.$$
Subset 1 (n) $\xrightarrow{\text{Machine 1}} \qquad \widehat{f_1}$
Big Data (N) $\xrightarrow{\text{Divide}} \qquad 2$ Subset 2 (n) $\xrightarrow{\text{Machine 2}} \qquad \widehat{f_2}$
... ...
Subset s (n) $\xrightarrow{\text{Machine s}} \qquad \widehat{f_s}$
Super \downarrow machine
Oracle Est. $\widehat{f_N}$
Agg. Est. $\overline{f_N}$

$$\bar{f}_N = (1/s) \sum_{i=1}^s \hat{f}_n^{(j)}.$$

²For simplicity, we assume equal-sized splitting, i.e., $N = s \times n$.

- We use the number of deployed machines s as a simple proxy for computing time.
- How fast can we allow s to diverge (w.r.t. N), say $s = N^a$, such that the aggregated estimate \bar{f}_N is minimax optimal or nonparametric testing based on \bar{f}_N is minimax optimal?
- We prove that there indeed exists a *sharp* upper bound for s, below which statistical optimality is achievable and above which statistical optimality is impossible.
- The sharpness is important in that it captures the *intrinsic* computational limit of D&C algorithm (existing literature is only concerned with (non-sharp) upper bound).

Statistical-and-Computational Tradeoff

- We use the number of deployed machines s as a simple proxy for computing time.
- How fast can we allow s to diverge (w.r.t. N), say $s = N^a$, such that the aggregated estimate \bar{f}_N is minimax optimal or nonparametric testing based on \bar{f}_N is minimax optimal?
- We prove that there indeed exists a *sharp* upper bound for s, below which statistical optimality is achievable and above which statistical optimality is impossible.
- The sharpness is important in that it captures the *intrinsic* computational limit of D&C algorithm (existing literature is only concerned with (non-sharp) upper bound).

Statistical-and-Computational Tradeoff

- We use the number of deployed machines s as a simple proxy for computing time.
- How fast can we allow s to diverge (w.r.t. N), say $s = N^a$, such that the aggregated estimate \bar{f}_N is minimax optimal or nonparametric testing based on \bar{f}_N is minimax optimal?
- We prove that there indeed exists a *sharp* upper bound for s, below which statistical optimality is achievable and above which statistical optimality is impossible.
- The sharpness is important in that it captures the *intrinsic* computational limit of D&C algorithm (existing literature is only concerned with (non-sharp) upper bound).

Statistical-and-Computational Tradeoff

- We use the number of deployed machines s as a simple proxy for computing time.
- How fast can we allow s to diverge (w.r.t. N), say $s = N^a$, such that the aggregated estimate \bar{f}_N is minimax optimal or nonparametric testing based on \bar{f}_N is minimax optimal?
- We prove that there indeed exists a *sharp* upper bound for s, below which statistical optimality is achievable and above which statistical optimality is impossible.
- The sharpness is important in that it captures the *intrinsic* computational limit of D&C algorithm (existing literature is only concerned with (non-sharp) upper bound).

A Plot for Computing Time

Figure: Computing time of \bar{f}_N based on a single replication under different choices of s when N=10,000. The larger the s, the smaller the computing time.

Figure: MSE of \bar{f}_N based on 500 independent replications with $f_0(z) = 0.6b_{30,17}(z) + 0.4b_{3,11}$. MSE stays at low levels as $\log s / \log N \le 0.2$.

Phase Transition Diagram

Results are based on smoothing spline regression with a smoothing parameter λ and smoothness $m \geq 1$.

Figure: Two lines indicate the choices of $s \approx N^a$ and $\lambda \approx N^{-b}$, leading to minimax optimal estimation (left) and minimax optimal testing (right). Whereas (a,b)'s outside these two lines lead to suboptimal rates.

Smoothing Spline Model with *Fixed* Design

• Observe samples from the following model

$$y_l = f(l/N) + \epsilon_l, \ l = 0, 1, \dots, N - 1,$$

where ϵ_l 's are *iid* zero-mean r.v.s with unit variances;

- The N samples $\{y_l, l/N\}_{l=0}^{N-1}$ are distributed to s machines with each machine being assigned n samples;
- We want the N covariates $t_l = l/N$ to appear in s machines as "evenly" as possible over the entire interval [0, 1].

Smoothing Spline Model with *Fixed* Design

• Observe samples from the following model

$$y_l = f(l/N) + \epsilon_l, \ l = 0, 1, \dots, N - 1,$$

where ϵ_l 's are *iid* zero-mean r.v.s with unit variances;

- The N samples $\{y_l, l/N\}_{l=0}^{N-1}$ are distributed to s machines with each machine being assigned n samples;
- We want the N covariates $t_l = l/N$ to appear in s machines

Smoothing Spline Model with *Fixed* Design

• Observe samples from the following model

$$y_l = f(l/N) + \epsilon_l, \ l = 0, 1, \dots, N - 1,$$

where ϵ_l 's are *iid* zero-mean r.v.s with unit variances;

- The N samples $\{y_l, l/N\}_{l=0}^{N-1}$ are distributed to s machines with each machine being assigned n samples;
- We want the N covariates $t_l = l/N$ to appear in s machines as "evenly" as possible over the entire interval [0, 1].

• Let $t_{1,j}, \ldots, t_{n,j}$ be evenly spaced points across [0, 1] (with a gap 1/n), i.e.,

$$t_{i,j} = \frac{is - s + j - 1}{N};$$

• For $1 \le j \le s$, the sub-model at the jth machine is

$$Y_{i,j} = f(t_{i,j}) + \epsilon_{i,j}, \ i = 1, \dots, n$$

• Let $t_{1,j}, \ldots, t_{n,j}$ be evenly spaced points across [0,1] (with a gap 1/n), i.e.,

$$t_{i,j} = \frac{is - s + j - 1}{N};$$

• For $1 \leq j \leq s$, the sub-model at the jth machine is

$$Y_{i,j} = f(t_{i,j}) + \epsilon_{i,j}, \ i = 1, \dots, n,$$

where $\epsilon_{i,j} = \epsilon_{is-s+j-1}$ and $Y_{i,j} = y_{is-s+j-1}$.

Smoothing Spline Estimate

At each machine, we obtain a smoothing spline sub-estimate as

$$\widehat{f}_{j} = \arg \min_{f \in S^{m}(\mathbb{I})} \frac{1}{n} \sum_{i=1}^{n} (Y_{i,j} - f(t_{i,j}))^{2} + \lambda ||f||_{\mathcal{H}}^{2},$$
 (1)

where $\langle f, g \rangle_{\mathcal{H}} = \int_0^1 f^{(m)}(t)g^{(m)}(t)dt$ is a roughness penalty and $\lambda > 0$ is a smoothing parameter;

rigonometric Eigen-System

We consider an m-order (m > 1/2) periodic Sobolev space

$$S^{m}(\mathbb{I}) = \{ \sum_{\nu=1}^{\infty} f_{\nu} \phi_{\nu}(\cdot) : \sum_{\nu=1}^{\infty} f_{\nu}^{2} \gamma_{\nu} < \infty \},$$

where for $k = 1, 2, \ldots$,

$$\phi_{2k-1}(t) = \sqrt{2}\cos(2\pi kt), \quad \phi_{2k}(t) = \sqrt{2}\sin(2\pi kt),$$

$$\gamma_{2k-1} = \gamma_{2k} = (2\pi k)^{2m}.$$

Main Theorem I: Upper Bound of MSE

Theorem

Suppose h > 0 and N is divisible by n. Then there exist absolute positive constants $b_m, c_m \geq 1$ (depending on m only) such that for any fixed $1 \le s \le N$,

$$E\{\|\bar{f}_N - E\{\bar{f}_N\}\|_2^2\} \le b_m \left(N^{-1} + (N\lambda^{1/(2m)})^{-1} A_n(m,\lambda)\right),$$

$$\|E\{\bar{f}_N\} - f_0\|_2 \le c_m \sqrt{\|f_0\|_{\mathcal{H}}(\lambda + n^{-2m} + N^{-1})},$$

where $A_n(m,\lambda) = \int_0^{\pi n \lambda^{1/(2m)}} (1+x^{2m})^{-1} dx$.

• From the above theorem and the well known fact that

$$MSE_{f_0}(\bar{f}_N) = E\{\|\bar{f}_N - E\{\bar{f}_N\}\|_2^2\} + \|E\{\bar{f}_N\} - f_0\|_2^2,$$

- $s = O(N^{2m/(2m+1)})$ and $\lambda \approx N^{-2m/(2m+1)}$;
- $s \times N^{2m/(2m+1)}$ and $\lambda = o(N^{-2m/(2m+1)})$;
- Denote $s^* = N^{2m/(2m+1)}$ and $\lambda^* = N^{-2m/(2m+1)}$;
- Improve the upper bound $s = O(N^{(2m-1)/(2m+1)}/\log N)$ derived in Zhang, Duchi and Wainwright (COLT'13) under $\lambda = \lambda^*$. For example, when m = 2 (cubic spline),

$$N^{0.6}/\log N \Longrightarrow N^{0.8}$$

³in the sense that $\|\bar{f}_N - f_0\|_2 = O_P(N^{-m/(2m+1)})$

• From the above theorem and the well known fact that

$$MSE_{f_0}(\bar{f}_N) = E\{\|\bar{f}_N - E\{\bar{f}_N\}\|_2^2\} + \|E\{\bar{f}_N\} - f_0\|_2^2,$$

- $s = O(N^{2m/(2m+1)})$ and $\lambda \approx N^{-2m/(2m+1)}$;
- $s \approx N^{2m/(2m+1)}$ and $\lambda = o(N^{-2m/(2m+1)})$:
- Denote $s^* = N^{2m/(2m+1)}$ and $\lambda^* = N^{-2m/(2m+1)}$.
- Improve the upper bound $s = O(N^{(2m-1)/(2m+1)}/\log N)$

$$N^{0.6}/\log N \Longrightarrow N^{0.8}$$

³in the sense that $\|\bar{f}_N - f_0\|_2 = O_P(N^{-m/(2m+1)})$

• From the above theorem and the well known fact that

$$MSE_{f_0}(\bar{f}_N) = E\{\|\bar{f}_N - E\{\bar{f}_N\}\|_2^2\} + \|E\{\bar{f}_N\} - f_0\|_2^2,$$

- $s = O(N^{2m/(2m+1)})$ and $\lambda \asymp N^{-2m/(2m+1)}$;
- $s \approx N^{2m/(2m+1)}$ and $\lambda = o(N^{-2m/(2m+1)})$;
- Denote $s^* = N^{2m/(2m+1)}$ and $\lambda^* = N^{-2m/(2m+1)}$;
- Improve the upper bound $s = O(N^{(2m-1)/(2m+1)}/\log N)$ derived in Zhang, Duchi and Wainwright (COLT'13) under $\lambda = \lambda^*$. For example, when m = 2 (cubic spline),

$$N^{0.6}/\log N \Longrightarrow N^{0.8}$$

³in the sense that $\|\bar{f}_N - f_0\|_2 = O_P(N^{-m/(2m+1)})$

• From the above theorem and the well known fact that

$$MSE_{f_0}(\bar{f}_N) = E\{\|\bar{f}_N - E\{\bar{f}_N\}\|_2^2\} + \|E\{\bar{f}_N\} - f_0\|_2^2,$$

- $s = O(N^{2m/(2m+1)})$ and $\lambda \approx N^{-2m/(2m+1)}$;
- $s \approx N^{2m/(2m+1)}$ and $\lambda = o(N^{-2m/(2m+1)})$;
- Denote $s^* = N^{2m/(2m+1)}$ and $\lambda^* = N^{-2m/(2m+1)}$;
- Improve the upper bound $s = O(N^{(2m-1)/(2m+1)}/\log N)$ derived in Zhang, Duchi and Wainwright (COLT'13) under $\lambda = \lambda^*$. For example, when m = 2 (cubic spline),

$$N^{0.6}/\log N \Longrightarrow N^{0.8}$$

³in the sense that $\|\bar{f}_N - f_0\|_2 = O_P(N^{-m/(2m+1)})$

• From the above theorem and the well known fact that

$$MSE_{f_0}(\bar{f}_N) = E\{\|\bar{f}_N - E\{\bar{f}_N\}\|_2^2\} + \|E\{\bar{f}_N\} - f_0\|_2^2,$$

- $s = O(N^{2m/(2m+1)})$ and $\lambda \approx N^{-2m/(2m+1)}$;
- $s \approx N^{2m/(2m+1)}$ and $\lambda = o(N^{-2m/(2m+1)});$
- Denote $s^* = N^{2m/(2m+1)}$ and $\lambda^* = N^{-2m/(2m+1)}$;
- Improve the upper bound $s = O(N^{(2m-1)/(2m+1)}/\log N)$ derived in Zhang, Duchi and Wainwright (COLT'13) under $\lambda = \lambda^*$. For example, when m = 2 (cubic spline),

$$N^{0.6}/\log N \Longrightarrow N^{0.8}$$

 $[\]overline{}^{3}$ in the sense that $\|\bar{f}_{N} - f_{0}\|_{2} = O_{P}(N^{-m/(2m+1)})$

Is there any room to improve s^* ?

Main Theorem II: Lower Bound of MSE

Theorem

Suppose h > 0 and N is divisible by n. Then for any constant C > 0, it holds that for any fixed 1 < s < N,

$$\sup_{\substack{f_0 \in S^m(\mathbb{I}) \\ \|f_0\|_{\mathcal{H}} \le C}} \|E\{\bar{f}_N\} - f_0\|_2^2 \ge C(a_m n^{-2m} - 8N^{-1}),$$

where $a_m \in (0,1)$ is an absolute constant depending on m only.

Remark: This is a "worst scenario" result. It implies that once s is beyond some threshold, the minimax rate optimality will break down for some true f_0 .

Un-Improvable s^*

• Our second theorem implies that

$$\sup_{\substack{f_0 \in S^m(\mathbb{I}) \\ \|f_0\|_{\mathcal{H}} \leq C}} \mathrm{MSE}_{f_0}(\bar{f}) \geq \sup_{\substack{f_0 \in S^m(\mathbb{I}) \\ \|f_0\|_{\mathcal{H}} \leq C}} \|E\{\bar{f}\} - f_0\|_2^2 \geq C(a_m n^{-2m} - 8N^{-1});$$

- It is easy to see that the above lower bound is strictly slower than the optimal rate $N^{-2m/(2m+1)}$ when $s \gg s^* = N^{2m/(2m+1)}$ (no matter how λ is chosen). Therefore, s^* cannot be further improved;
- From the above *sharpness* result, we claim that D&C approach prefers more smooth function (larger m) since we can save more computational efforts (larger s).

Un-Improvable s^*

• Our second theorem implies that

$$\sup_{\substack{f_0 \in S^m(\mathbb{I}) \\ \|f_0\|_{\mathcal{H}} \leq C}} \mathrm{MSE}_{f_0}(\bar{f}) \geq \sup_{\substack{f_0 \in S^m(\mathbb{I}) \\ \|f_0\|_{\mathcal{H}} \leq C}} \|E\{\bar{f}\} - f_0\|_2^2 \geq C(a_m n^{-2m} - 8N^{-1});$$

- It is easy to see that the above lower bound is strictly slower than the optimal rate $N^{-2m/(2m+1)}$ when $s \gg s^* = N^{2m/(2m+1)}$ (no matter how λ is chosen). Therefore, s^* cannot be further improved;
- From the above *sharpness* result, we claim that D&C approach prefers more smooth function (larger m) since we can save more computational efforts (larger s).

Un-Improvable s^*

• Our second theorem implies that

$$\sup_{\substack{f_0 \in S^m(\mathbb{I}) \\ \|f_0\|_{\mathcal{H}} \leq C}} \mathrm{MSE}_{f_0}(\bar{f}) \geq \sup_{\substack{f_0 \in S^m(\mathbb{I}) \\ \|f_0\|_{\mathcal{H}} \leq C}} \|E\{\bar{f}\} - f_0\|_2^2 \geq C(a_m n^{-2m} - 8N^{-1});$$

- It is easy to see that the above lower bound is strictly slower than the optimal rate $N^{-2m/(2m+1)}$ when $s \gg s^* = N^{2m/(2m+1)}$ (no matter how λ is chosen). Therefore, s^* cannot be further improved;
- From the above sharpness result, we claim that D&C approach prefers more smooth function (larger m) since we can save more computational efforts (larger s).

Set
$$\lambda \asymp N^{-2m/(2m+1)}$$
 and $s = N^a$ for $0 \le a \le 1$.

Upper bound of squared bias: $N^{-\rho_1(a)}$

Lower bound of squared bias: $N^{-\rho_2(a)}$

Upper bound of variance: $N^{-\rho_3(a)}$.

Figure: Plots of $\rho_1(a)$, $\rho_2(a)$, $\rho_3(a)$ versus a, indicated by thick solid lines. $\rho_1(a)$, $\rho_2(a)$ and $\rho_3(a)$ indicate upper bound of squared bias, lower bound of squared bias and upper bound of variance, respectively. Note that $\rho_2(a)$ is plotted only for $(2m-1)/(2m) < a \le 1$; when $0 \le a \le (2m-1)/(2m)$, $\rho_2(a) = \infty$, which is omitted.

What is the corresponding s^* for testing?⁴

⁴The minimax optimality of nonparametric testing is in the sense of Ingster (1993).

Wald-Type Test

• Consider the same smoothing spline model:

$$Y_{i,j} = f(t_{i,j}) + \epsilon_{i,j}, \ i = 1, \dots, n,$$

where $\epsilon_{i,j}$ are iid $N(0,1)^5$ and $f \in S^m(\mathbb{I})$.

• Test the following simple hypothesis:

$$H_0: f = 0 \text{ v.s. } H_1: f \in S^m(\mathbb{I}) \setminus \{0\};$$

• Define a Wald-type test statistic⁶:

$$T_{N,\lambda} = \|\bar{f}_N\|_2^2.$$

⁵Gaussian error assumption is not essential.

⁶ Aggregated likelihood ratio test also works with more technicalities

Wald-Type Test

• Consider the same smoothing spline model:

$$Y_{i,j} = f(t_{i,j}) + \epsilon_{i,j}, \ i = 1, \dots, n,$$

where $\epsilon_{i,j}$ are iid $N(0,1)^5$ and $f \in S^m(\mathbb{I})$.

• Test the following simple hypothesis:

$$H_0: f = 0 \text{ v.s. } H_1: f \in S^m(\mathbb{I}) \setminus \{0\};$$

• Define a Wald-type test statistic⁶:

$$T_{N,\lambda} = \|\bar{f}_N\|_2^2.$$

⁵Gaussian error assumption is not essential.

⁶Aggregated likelihood ratio test also works with more technicalities.

Wald-Type Test

• Consider the same smoothing spline model:

$$Y_{i,j} = f(t_{i,j}) + \epsilon_{i,j}, \ i = 1, \dots, n,$$

where $\epsilon_{i,j}$ are iid $N(0,1)^5$ and $f \in S^m(\mathbb{I})$.

• Test the following simple hypothesis:

$$H_0: f = 0 \text{ v.s. } H_1: f \in S^m(\mathbb{I}) \setminus \{0\};$$

• Define a Wald-type test statistic⁶:

$$T_{N,\lambda} = \|\bar{f}_N\|_2^2.$$

⁵Gaussian error assumption is not essential.

⁶Aggregated likelihood ratio test also works with more technicalities.

Main Theorem III: Testing Consistency

Theorem

Suppose that $\lambda \to 0$, $n \to \infty$ when $N \to \infty$, and $\lim_{N \to \infty} n\lambda^{1/2m}$ exists (which could be infinity). Then, we have under H_0 ,

$$\frac{T_{N,\lambda} - \mu_{N,\lambda}}{\sigma_{N,\lambda}} \xrightarrow{d} N(0,1), \quad as \ N \to \infty,$$

where $\mu_{N,\lambda} := E_{H_0}\{T_{N,\lambda}\}$ and $\sigma_{N,\lambda}^2 := Var_{H_0}\{T_{N,\lambda}\}.$

Remark: Our testing rule is thus

$$\phi_{N,\lambda} = I(|T_{N,\lambda} - \mu_{N,\lambda}| \ge z_{1-\alpha/2}\sigma_{N,\lambda}).$$

Comments

- It is a bit surprising that testing consistency essentially requires no condition on s as long as $N \to \infty$. In other words, s can be either fixed or diverge at any rate;
- However, the (non-asymptotic) power of our proposed test depends on s in a very subtle manner.

Comments

- It is a bit surprising that testing consistency essentially requires no condition on s as long as $N \to \infty$. In other words, s can be either fixed or diverge at any rate;
- However, the (non-asymptotic) power of our proposed test depends on s in a very subtle manner.

Minimal Separation Rate

- Separation rate of a testing method is defined as a rate measuring the deviation of local alternative sequences $H_{1n}: f = f_n$ to null hypothesis $H_0: f = 0$ such that a correct rejection of H_{1n} can be triggered;
- Minimal separation rate refects an intrinsic power of a testing method (Ingster, 1994);
- We next examine the impact of s on the separation rate of our proposed test. We are particularly interested in the choice of s leading to the minimal separation rate.

Minimal Separation Rate

- Separation rate of a testing method is defined as a rate measuring the deviation of local alternative sequences $H_{1n}: f = f_n$ to null hypothesis $H_0: f = 0$ such that a correct rejection of H_{1n} can be triggered;
- Minimal separation rate refects an intrinsic power of a testing method (Ingster, 1994);
- We next examine the impact of s on the separation rate of our proposed test. We are particularly interested in the choice of s leading to the minimal separation rate.

Minimal Separation Rate

- Separation rate of a testing method is defined as a rate measuring the deviation of local alternative sequences $H_{1n}: f = f_n$ to null hypothesis $H_0: f = 0$ such that a correct rejection of H_{1n} can be triggered;
- Minimal separation rate refects an intrinsic power of a testing method (Ingster, 1994);
- We next examine the impact of s on the separation rate of our proposed test. We are particularly interested in the choice of s leading to the minimal separation rate.

Computational Limit I: Estimation

Main Theorem IV: Type II Error

The following theorem says that our test can correctly reject $H_{1n}: f = f_n$ with a dominating probability once its alternative values f_n deviates from the null value 0 by an amount

$$d_{N,\lambda} = \sqrt{\lambda + n^{-2m} + \sigma_{N,\lambda}}.$$

Theorem

Suppose that $\lambda \to 0$, $n \to \infty$ when $N \to \infty$, and $\lim_{N\to\infty} n\lambda^{1/2m}$ exists (which could be infinity). Then for any $\varepsilon > 0$, there exist $C_{\varepsilon}, N_{\varepsilon} > 0$ s.t. for any $N > N_{\varepsilon}$,

$$\inf_{\substack{f \in \mathcal{B} \\ \|f\|_2 \ge C_{\varepsilon} \mathbf{d}_{N,\lambda}}} P_f(\phi_{N,\lambda} = 1) \ge 1 - \varepsilon, \tag{2}$$

where $\mathcal{B} = \{ f \in S^m(\mathbb{I}) : ||f||_{\mathcal{H}} \leq C \}$ for a positive constant C.

• The above theorem implies that the separation rate $d_{N,\lambda}$ achieves its minimal possible rate $d_{N.\lambda}^* := N^{-2m/(4m+1)}$ if one of the following two conditions hold:

```
• s = O(N^{(4m-1)/(4m+1)}) and \lambda \approx N^{-4m/(4m+1)};
• s \approx N^{(4m-1)/(4m+1)} and \lambda = o(N^{-4m/(4m+1)}):
```

• Denote $s^{**} = N^{(4m-1)/(4m+1)}$ and $\lambda^{**} = N^{-4m/(4m+1)}$

- The above theorem implies that the separation rate $d_{N,\lambda}$ achieves its minimal possible rate $d_{N,\lambda}^* := N^{-2m/(4m+1)}$ if one of the following two conditions hold:
 - $s = O(N^{(4m-1)/(4m+1)})$ and $\lambda \approx N^{-4m/(4m+1)}$;
 - $s \approx N^{(4m-1)/(4m+1)}$ and $\lambda = o(N^{-4m/(4m+1)})$:
- Denote $s^{**} = N^{(4m-1)/(4m+1)}$ and $\lambda^{**} = N^{-4m/(4m+1)}$

- The above theorem implies that the separation rate $d_{N,\lambda}$ achieves its minimal possible rate $d_{N,\lambda}^* := N^{-2m/(4m+1)}$ if one of the following two conditions hold:
 - $s = O(N^{(4m-1)/(4m+1)})$ and $\lambda \approx N^{-4m/(4m+1)}$:
 - $s \approx N^{(4m-1)/(4m+1)}$ and $\lambda = o(N^{-4m/(4m+1)})$;
- Denote $s^{**} = N^{(4m-1)/(4m+1)}$ and $\lambda^{**} = N^{-4m/(4m+1)}$

- The above theorem implies that the separation rate $d_{N,\lambda}$ achieves its minimal possible rate $d_{N,\lambda}^* := N^{-2m/(4m+1)}$ if one of the following two conditions hold:
 - $s = O(N^{(4m-1)/(4m+1)})$ and $\lambda \approx N^{-4m/(4m+1)}$;
 - $s \approx N^{(4m-1)/(4m+1)}$ and $\lambda = o(N^{-4m/(4m+1)})$;
- Denote $s^{**} = N^{(4m-1)/(4m+1)}$ and $\lambda^{**} = N^{-4m/(4m+1)}$.

Main Theorem V: Un-Improvable s^{**}

Theorem

Suppose that $s \gg s^{**}$, $\lambda \to 0$, $n \to \infty$ when $N \to \infty$, and $\lim_{N\to\infty} n\lambda^{1/2m}$ exists (which could be infinity). Then there exists a positive sequence $\beta_{N,\lambda}$ with $\lim_{N\to\infty} \beta_{N,\lambda} = \infty$ s.t.

$$\limsup_{N \to \infty} \inf_{\substack{f \in \mathcal{B} \\ \|f\|_2 \ge \frac{\beta_{N,\lambda}}{\delta_{N,\lambda}^*}}} P_f(\phi_{N,\lambda} = 1) \le \alpha.$$
 (3)

Recall that $(1 - \alpha)$ is the pre-specified significance level.

Remark: The above theorem says that when $s \gg s^{**}$, our proposed test is no longer powerful even when $||f||_2 \gg d_{N,\lambda}^*$. In other words, our test method fails to be optimal. Therefore, $s^{**} = N^{(4m-1)/(4m+1)}$ is a *sharp* upper bound.

A "Theoretical" Suggestion

When applying divide-and-conquer method to process massive data, we may want to allocate our data as follows:

• Distribute to

$$s \approx N^{2m/(2m+1)}$$

machines for obtaining an optimal estimate;

Distribute to

$$s \approx N^{4m/(4m+1)}$$

machines for performing an optimal test.

A "Theoretical" Suggestion

When applying divide-and-conquer method to process massive data, we may want to allocate our data as follows:

• Distribute to

$$s \approx N^{2m/(2m+1)}$$

machines for obtaining an optimal estimate;

Distribute to

$$s \simeq N^{4m/(4m+1)}$$

machines for performing an optimal test.

A "Theoretical" Suggestion

When applying divide-and-conquer method to process massive data, we may want to allocate our data as follows:

• Distribute to

$$s \simeq N^{2m/(2m+1)}$$

machines for obtaining an optimal estimate;

• Distribute to

$$s \approx N^{4m/(4m+1)}$$

machines for performing an optimal test.

Conjecture: D&C is a new form of tuning?

Figure: Two lines indicate the choices of $s \approx N^a$ and $\lambda \approx N^{-b}$, leading to minimax optimal estimation (left) and minimax optimal testing (right). Whereas (a,b)'s outside these two lines lead to suboptimal rates.