APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo Winter 2015

Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

Today:

Introduction to digital image

Problem Setup

- Improve the quality of binary image (e.g., fingerprint)
- What are your strategies?

Morphology

- Techniques that deal with the <u>shape of features</u> in an image
- Also called "morphological" image processing
- Typically applied to remove imperfections

Morphology Operations

- Inputs
 - A binary image
 - A "structuring element" image
- Going through the input image to find the regions that "fit" or "hit" the structure elements

Structuring Elements, Fit, and Hit

Structuring Element

Fit: All on pixels in the structuring element cover on pixels in the image

Hit: Any on pixel in the structuring element covers an on pixel in the image

"Fit" Operation — Erosion Original Image

Processed Image

Structuring Element

imerode()

```
originalBW = imread('circles.png');
subplot( 1, 3, 1); imshow(originalBW);
se = strel('disk', 7);
erodedBW = imerode(originalBW, se);
subplot( 1, 3, 2); imshow(erodedBW);
se = strel('disk', 11);
erodedBW = imerode(originalBW, se);
subplot( 1, 3, 3); imshow(erodedBW);
```


Effects of Erosion

Splitting joined objects and stripping extrusions

Erosion example

Original image

Erosion by 3×3 square structuring element

Erosion by 5×5 square structuring element

Note: In these examples a 1 refers to a black pixel!

Y.-F. Kuo

"Hit" Operation – Dilation Original Image Processe

Processed Image With Dilated Pixels

Structuring Element

imdilate()

```
bw = imread('text.png');
subplot( 1, 3, 1); imshow(bw);
se = strel('line', 11, 90);
dilatedBW = imdilate(bw, se);
subplot( 1, 3, 2); imshow(dilatedBW);
se = strel('line', 11, 0);
dilatedBW = imdilate(bw, se);
subplot( 1, 3, 3); imshow(dilatedBW);
```

... divides areas drained by different river systems.

Effects of Dilation

Repairing breaks and intrusions

Erosion example

A

Original image

A

Dilation by 3×3 square structuring element

Dilation by 5×5 square structuring element

Structuring Element

- Can be any size and make any shape
- Check strel()

Flat Structuring Elements				
'arbitrary'	<u>'pair'</u>			
'diamond'	<u>'periodicline'</u>			
'disk'	'rectangle'			
<u>'line'</u>	'square'			
'octagon'				

0	1 0		
1	1	1	
0	1	0	

1	1	1
1	1	1
1	1	1

0	0	1	0	0
0	1	1	1	0
1	1	1	1	1
0	1	1	1	0
0	0	1	0	0

Compound Operations – Opening and Closing

Opening: erosion → dilation

Closing: dilation → erosion

Elimination of Small Objects Using Opening

```
I = imread('07Squares_example.tif');
subplot(1, 3, 1); imshow(I);
J = imopen(I, strel('square', 10));
subplot(1, 3, 2); imshow(J);
K = imopen(I, strel('square', 18));
subplot(1, 3, 3); imshow(K);
```


Fingerprint Example

```
I = imread('07FP_example.jpg');
subplot(1, 2, 1); imshow(I);
J = imopen(I, strel('square', 3));
K = imclose(J, strel('square', 3));
subplot(1, 2, 2); imshow(K);
```


End of Class

