Arkitektur

Hardware tabell

	Tommy - Apple Macbook Pro mid 2012	Svein - MSI GP70 2PE Leopard	Kjetil - Lenovo B50	Rune Lenovo G50 (modell 80e5)	Anders Dell Latitude E6520	Ådne Apple MacBook Pro 2011
Prosesso r	Intel i7 i7-3615Q M Quad Core @ 2,3GHz (6mb cache)	Intel i7-4710H QCPU @ 2.50GHz (6mb cache)	Intel(R) Celeron(R) CPU N2840 @ 2.16GHz (1 mb cache)	Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz (3mb cache)	Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz	Intel Core i5 2,3 GHz (3mb cache)
RAM	2x8GB Corsair GT @ 1600 MHz	2x6 GB DDR3L-16 00 MHz	4 GB DDR3L 1333MHz	4 GB 1600 MHz DDR3L /PC3L-12 800	2x4 GB Dual-chan nel DDR3 @ 665MHz	2x2 GB 1333 MHz DDR3
Lagrings medium	1x 180 GB Corsair SSD, 1x 500 GB Toshiba SATA disk	1x 256 GB SSD + 1TB SATA 7200 RPM	500GB SATA 5400RPM	Kingston 120gb SSDnow V300	LiteOn IT LCT 128M3S	320 GB SATA
Grafikk	NVIDIA GeForce GT 650M 512MB	NVIDIA GeForce 840M	Intel(R) HD Graphics	Intel HD Graphics 5500 (integrate d	NVIDIA NVS 4200M	Intel HD Graphics 3000 384 MB
Skjerm	1440x900, 15,4 tommer	1920x108 0, 17,3 tommer	1366x768, 15.6 tommer	15.6" 1366 x 768	1920x108 0 - 15,6 tommer	13" 1280 x 800
os	OS X EI Capitan 10.11.4 Beta	Windows 10	Windows 8.1	Windows 7 ultimate, Service pack 1.	Windows 7 Profession al	OS X EI Capitan 10.11.1

PC komponenter

CPU: Består av to deler; ALU (Arithmetic Logic Unit) utfører aritmetiske og logiske operasjoner og CU (Control Unit) henter instruksjoner fra minne, dekoder og utfører dem, ved hjelp av ALU hvis det er nødvendig. Prosessoren får instruksjoner fra programmet, dekoder dette til "Assembly language" og videre til binær kode. Deretter utføres operasjonen.

RAM: Data som er lagrert i RAM kan aksesseres direkte, uavhengig av hvor dataen befinner seg. Andre typer datalagring må først finne data før den kan aksesseres, så RAM er mye raskere enn f.eks harddisk. Når et program kjøres på datamaskinen, eller en fil åpnes, blir det midlertidig lastet fra HDD til RAM. Så kan man bruke denne dataen med minimale forsinkelser.

HDD: En harddisk består av en magnetisk plate som er delt inn i mange milliarder små områder. Hvert av disse områdene kan bli magnetisert for å lagre en 0 eller 1 - en bit. Magnetisme benyttes i datalagring fordi informasjonen fortsatt lagres selv om strømmen er av.

GPU: Skjermkortet tar instruksjoner fra CPU'en i form av binær data. Disse instruksjonene sier hvordan hver enkelt pixel skal se ut. GPU'en tolker instruksjonene og sender signal til skjermen om hvordan pixlene skal vises frem.

Skjerm: De fleste moderne skjermer er "liquid crystal display", LCD. Disse består av to stykker polarisert glass, og mellom dem er det et flytende krystallmateriale. Et backlight skaper lys som går gjennom det første glasstykket, og samtidig får elekstrisk strøm de flytende krystallmolekylene til å posisjonere seg for å slippe varierende nivåer lys igjennom til det andre glasstykket og skape fargene og bildene vi ser.

Specs

PC	Macbook Pro	MSI GP70 2PE Leopard	Lenovo B50	Lenovo G50	Dell Latitude E6520	MacBook Pro
CPU	Intel i7-3615QM Quad Core @ 2,3GHz	Intel i7-4710HQ CPU @ 2.50GHz	Intel Celeron CPU N2840 @ 2.16GHz	Intel Core i5-5200U CPU @2.20GHz	Intel Core i5- 2520M CPU @ 2.50GHz	Intel Core i5 @ 2.30 GHz
RAM	2x8GB Corsair GT @ 1600 MHz	2x6 GB DDR3L- 1600 MHz	1x4 GB DDR3L 1333MHz	1x4 GB DDR3L-1600 MHz	2x4 GB DDR3 @ 665MHz	2x2 GB 1333 MHz DDR3
HDD	1x 180 GB SSD 1x 500 GB SATA	1x 256 GB SSD 1TB SATA 7200	500 GB SATA 5400	120GB SSD	128GB SATA	320 GB SATA
GPU	NVIDIA GeForce GT 650M 512MB	NVIDIA GeForce 840M	Intel HD Graphics	Intel HD Graphics 5500	NVIDIA NVS 4200M	Intel HD Graphics 3000
Skjerm	15.4" - 1440x900	17.3" - 1920x1080	15.6" - 1366x768	15.6" - 1366 x 768	15.6" - 1920x1080	13" -1280 x 800
os	OS X El Capitan	Windows 10	Windows 8.1	Windows 7 SP1	Windows 7 Pro	OS X El Capitan
timeit	Fast:6.8259 Slow:8.1419	Fast: 8.8304 Slow: 8.8801	Fast: 2.1544 Slow: 2.8819	Fast: 6.5313 Slow: 6.3960	Fast: 9.1001 Slow: 9.1613	Fast:1.1533 Slow:1.2223

Big O notation

Big O blir brukt for å forklare effektiviteten eller kompleksiteten til en

algoritme.

Flere typer, eksempelvis

- Konstant (grå linje)
- Lineær (blå linje)
- Logaritmisk (rød linje)
- eksponentielle (lyseblå linje)

Bruke Big O til å si noe om grafene vi får?

- fast_search er logaritmisk
 - Stigningen vil være mindre og mindre per verdi.
 - Effektiv, selv med ekstremt mange elementer
- slow search er lineær.
 - Stigningen vil være konstant.

Kilder

http://www.explainthatstuff.com/harddrive.html

http://www.buildcomputers.net/what-is-ram.html

http://computer.howstuffworks.com/graphics-card.htm

http://computer.howstuffworks.com/monitor5.htm

http://www.makeuseof.com/tag/cpu-technology-explained/