La classificazione dei gruppi finiti di riflessioni

Francesco Mussin

14 luglio 2023

Laureando: Relatore: Mussin Francesco Pablo Spiga

Riflessioni

Definizione

In uno spazio euclideo ($V,(\cdot,\cdot)$), una riflessione è una qualsiasi applicazione lineare $s:V\longrightarrow V$ che manda un qualche vettore non nullo $\alpha\in V\smallsetminus\{0\}$ in $-\alpha$, fissando ogni vettore ad esso ortogonale. Si scrive in tal caso $s=s_{\alpha}$.

Riflessioni

Definizione

In uno spazio euclideo $(V,(\cdot,\cdot))$, una riflessione è una qualsiasi applicazione lineare $s:V\longrightarrow V$ che manda un qualche vettore non nullo $\alpha\in V\smallsetminus\{0\}$ in $-\alpha$, fissando ogni vettore ad esso ortogonale. Si scrive in tal caso $s=s_{\alpha}$.

Per ogni $\beta \in V$ si ha:

$$s_{\alpha}\beta = \beta - 2\frac{(\beta, \alpha)}{(\alpha, \alpha)}\alpha,$$

Riflessioni

Definizione

In uno spazio euclideo $(V,(\cdot,\cdot))$, una riflessione è una qualsiasi applicazione lineare $s:V\longrightarrow V$ che manda un qualche vettore non nullo $\alpha\in V\smallsetminus\{0\}$ in $-\alpha$, fissando ogni vettore ad esso ortogonale. Si scrive in tal caso $s=s_{\alpha}$.

Per ogni $\beta \in V$ si ha:

$$s_{\alpha}\beta = \beta - 2\frac{(\beta, \alpha)}{(\alpha, \alpha)}\alpha,$$

- s_{α} è lineare.
- s_{α} è ortogonale.
- $s_{\alpha}^2 = 1$.
- $\det(s_{\alpha}) = -1$.

Definizione

Dato lo spazio euclideo $(V,(\cdot,\cdot))$, un gruppo finito di riflessioni su V è un qualsiasi sottogruppo finito W di O(V) che sia generato da riflessioni.

Sia W il gruppo delle trasformazioni ortogonali che fissano un tetraedro con centro all'origine di \mathbb{R}^3 .

Definizione

Dato lo spazio euclideo $(V, (\cdot, \cdot))$, un gruppo finito di riflessioni su V è un qualsiasi sottogruppo finito W di O(V) che sia generato da riflessioni.

Sia W il gruppo delle trasformazioni ortogonali che fissano un tetraedro con centro all'origine di \mathbb{R}^3 . Possiamo interpretare $W \subseteq \mathcal{S}_4$.

Tuttavia W contiene le seguenti riflessioni:

Tuttavia *W* contiene le seguenti riflessioni:

Tuttavia *W* contiene le seguenti riflessioni:

Proposizione

Siano $\alpha, \beta \in V$ due vettori linearmente indipendenti di angolo $\theta \in (0, \pi)$. Allora $s_{\beta}s_{\alpha}$ agisce sul complemento ortogonale di $\mathbb{R}\alpha \oplus \mathbb{R}\beta$ come l'identità, mentre su $\mathbb{R}\alpha \oplus \mathbb{R}\beta$, indicando con $\mathcal{B} = \{\widehat{\alpha}, \widehat{\beta}\}$ la base di $\mathbb{R}\alpha \oplus \mathbb{R}\beta$ ottenuta da $\{\alpha, \beta\}$ applicando il processo di ortonormalizzazione di Gram-Schmidt, risulta che la matrice rappresentativa di $s_{\beta}s_{\alpha}$ in tale base è:

$$\begin{bmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{bmatrix}$$

Sistemi di radici

Definizione

Un sistema di radici $\Phi \subseteq V$ è un sottoinsieme finito di V soddisfacente:

- R1 Per ogni $\alpha \in \Phi$ vale $\Phi \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$.
- R2 Per ogni $\alpha \in \Phi$ si ha $s_{\alpha}\Phi = \Phi$.

Definiamo poi $W(\Phi)$ come il gruppo generato dalle riflessioni s_{α} al variare di $\alpha \in \Phi$.

Sistemi di radici

Definizione

Un sistema di radici $\Phi \subseteq V$ è un sottoinsieme finito di V soddisfacente:

- R1 Per ogni $\alpha \in \Phi$ vale $\Phi \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$.
- R2 Per ogni $\alpha \in \Phi$ si ha $s_{\alpha}\Phi = \Phi$.

Definiamo poi $W(\Phi)$ come il gruppo generato dalle riflessioni s_{α} al variare di $\alpha \in \Phi$.

Si scopre che:

- $W(\Phi)$ è sempre finito.
- Ogni gruppo finito di riflessioni possiede un sistema di radici che lo genera.

Sistemi di radici

Sistemi semplici e positivi

Definizione

Dato il sistema di radici $\Phi \subseteq V$, $\Delta \subseteq \Phi$ si dice sistema semplice per Φ se:

- Δ è una base di span(Φ).
- Per ogni $\beta \in \Phi$, se $\beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha$, allora vale $k_{\alpha} \geq 0$ per ogni $\alpha \in \Delta$ oppure $k_{\alpha} \leq 0$ per ogni $\alpha \in \Delta$.

L'insieme Π dei vettori Φ che sono combinazioni lineari non negative dei vettori di Δ è detto sistema positivo relativo a Δ .

Teorema

Se Δ un sistema semplice per Φ , allora dati $\alpha, \beta \in \Delta$ si ha $(\alpha, \beta) \leq 0$.

Sistemi semplici e positivi

Sistemi semplici e positivi

Teorema

Se Δ è un sistema semplice per il sistema di radici Φ , allora:

$$W(\Phi) = \langle \{ s_{\alpha} : \alpha \in \Delta \} \rangle,$$

ed ogni singola relazione di $W(\Phi)$ può essere ricondotta ad una relazione del tipo:

$$(s_{\alpha}s_{\beta})^{m(\alpha,\beta)}=1,$$

per opportune radici semplici $\alpha, \beta \in \Delta$, ed un opportuno intero positivo $m(\alpha, \beta) \geq 2$.

Corollario

Qualora $\alpha, \beta \in \Delta$ abbiano $s_{\alpha}s_{\beta}$ di ordine $m(\alpha, \beta)$, allora essi si trovano ad un angolo di $\pi - \pi/m(\alpha, \beta)$ radianti.

$$W = \left\langle egin{array}{c|c} s_{lpha_1}, s_{lpha_2} & s_{lpha_1}^2 = s_{lpha_2}^2 = s_{lpha_3}^2 = (s_{lpha_1} s_{lpha_2})^3 = \ & = (s_{lpha_1} s_{lpha_3})^2 = (s_{lpha_2} s_{lpha_3})^3 = 1 \end{array}
ight
angle$$

Grafi di Coxeter

Definizione

Dato il sistema semplice $\Delta \subseteq \Phi$, chiamiamo grafo di Coxeter (relativo a Δ) il grafo etichettato Γ avente Δ come insieme di vertici e nel quale $\alpha, \beta \in \Delta$ sono collegati da un lato etichettato con $m(\alpha, \beta)$ qualora $m(\alpha, \beta) \geq 3$.

Grafi di Coxeter

Definizione

Dato il sistema semplice $\Delta \subseteq \Phi$, chiamiamo grafo di Coxeter (relativo a Δ) il grafo etichettato Γ avente Δ come insieme di vertici e nel quale $\alpha, \beta \in \Delta$ sono collegati da un lato etichettato con $m(\alpha, \beta)$ qualora $m(\alpha, \beta) \geq 3$.

Definizione

Definizione

$$\Phi=\Phi_1\cup\Phi_2\ con\ (\Phi_1,\Phi_2)=0$$

Definizione

$$\Phi = \Phi_1 \cup \Phi_2 \text{ con } \big(\Phi_1, \Phi_2\big) = 0$$

$$\updownarrow$$

$$\Delta = \Delta_1 \cup \Delta_2 \text{ con } (\Delta_1, \Delta_2) = 0$$

Definizione

$$\Phi=\Phi_1\cup\Phi_2 \; {\sf con}\; (\Phi_1,\Phi_2)=0$$
 \Leftrightarrow $\Delta=\Delta_1\cup\Delta_2 \; {\sf con}\; (\Delta_1,\Delta_2)=0$

$$\Delta = \Delta_1 \cup \Delta_2 \ \mathsf{con} \ ig(\Delta_1, \Delta_2ig) = 0$$
 \updownarrow

$$\Gamma = \Gamma_1 \cup \Gamma_2 \text{ con } \Gamma_1 \cap \Gamma_2 = \varnothing$$

Proposizione

Sia Φ un sistema di radici riducibile con $\Phi = \Phi_1 \cup \cdots \cup \Phi_r$, dove Φ_1, \ldots, Φ_r sono sistemi di radici ortogonali a due a due. Allora:

$$W(\Phi) \cong W(\Phi_1) \times \cdots \times W(\Phi_r).$$

I gruppi di tipo $I_2(m)$

$$W = \langle s_1, s_2 \mid s_1^2 = s_2^2 = (s_1 s_2)^m = 1 \rangle$$

= $\langle s, r \mid s^2 = (sr)^2 = r^m = 1 \rangle = \mathcal{D}_m.$

I gruppi di tipo A_n

$$\Delta^n = \left\{ (x_1, \dots, x_{n+1}) \in [0, 1]^{n+1} : \sum_{i=1}^{n+1} x_i = 1 \right\}$$

Si tratta del gruppo degli scambi di coordinate; è isomorfo a \mathcal{S}_{n+1} .

I gruppi di tipo BC_n - Il gruppo Iperottaedrale

I gruppi di tipo BC_n - Il gruppo Iperottaedrale

I gruppi di tipo D_n

Può essere pensato come lo stabilizzatore nel gruppo iperottaedrale del mezzo ipercubo.

I gruppi di tipo D_n

Può essere pensato come lo stabilizzatore nel gruppo iperottaedrale del mezzo ipercubo.

I gruppi di tipo E_6 , E_7 , ed E_8

I gruppi di tipo E_6 , E_7 , ed E_8

Il sistema di radici Φ per E₈ è:

$$\{\pm \epsilon_i \pm \epsilon_j: \ 1 \leq i < j \leq 8\} \cup \left\{\frac{1}{2} \sum_{i=1}^8 (-1)^{k_i} \epsilon_i: \ \prod_{i=1}^8 (-1)^{k_i} = 1\right\}.$$

$$\{\pm \epsilon_i \pm \epsilon_j: \ 1 \leq i < j \leq 8\} \cup \left\{\frac{1}{2} \sum_{i=1}^8 (-1)^{k_i} \epsilon_i: \ \prod_{i=1}^8 (-1)^{k_i} = 1\right\}.$$

Come sistema semplice si prende:

$$\{\pm \epsilon_i \pm \epsilon_j: \ 1 \leq i < j \leq 8\} \cup \left\{\frac{1}{2} \sum_{i=1}^8 (-1)^{k_i} \epsilon_i: \ \prod_{i=1}^8 (-1)^{k_i} = 1\right\}.$$

Come sistema semplice si prende:

$$\underbrace{\epsilon_{2} \overset{\epsilon_{3} - \epsilon_{4}}{\circ} \overset{\epsilon_{5} - \epsilon_{6}}{\circ}}_{\epsilon_{4} - \epsilon_{5}} \overset{\epsilon_{5} - \epsilon_{6}}{\circ} \overset{\epsilon_{6} + \epsilon_{7}}{\circ} \circ -\frac{1}{2} \sum_{i=1}^{8} \epsilon_{i}$$

$$\{\pm \epsilon_i \pm \epsilon_j: \ 1 \leq i < j \leq 8\} \cup \left\{\frac{1}{2} \sum_{i=1}^8 (-1)^{k_i} \epsilon_i: \ \prod_{i=1}^8 (-1)^{k_i} = 1\right\}.$$

Come sistema semplice si prende:

Il gruppo di tipo F₄

Il gruppo di tipo H_3

Il gruppo di tipo H_4

