SBĚRNICE - souhrn

Pozice sběrnice v počítači

 Systémová sběrnice nebo vstup/výstupní sběrnice.

Systémová sběrnice – komunikace mezi procesorem a ostatními komponentami počítače Operace: zápis/čtení do/z registru, zápis/čtení do/z paměti, žádost o přerušení, žádost o přímý přístup do paměti,

V/V sběrnice – řízení periferních operací na různé úrovni (uvědomme si např. rozhraní Centronics v. sběrnice SCSI).

Paralelní v. sériový spoj

- Platí: systémové sběrnice ISA, PCI jsou paralelními sběrnicemi.
- Do systémové sběrnice PCI Express je vložena sériová komunikace.
- Jedním z V/V spojů (tzn. pro komunikaci mezi řadičem PZ a PZ) postaveným na nových sériových technologiích – SATA.

<u>Důvody pro přechod z paralelní</u> komunikace na komunikaci sériovou

- Možnosti zvyšování rychlosti paralelní sběrnice (MB/S): kmitočet sběrnice a její šířka.
- V jisté fázi vývoje paralelních komunikačních protokolů se oba parametry dostaly na svou mez.
- V čem byl problém?
 Paralelní rozvody technologická náročnost (ať rozvody v tištěných spojích, tak rozvody kabelové).
- Problém "clock skew".
 Přechod na sériovou komunikaci

Problém "clock skew"

T_{setup} – informace vkládaná do registru musí být na datovém vstupu přítomna v časovém předstihu před rozhodující hranou synchronizačního signálu

T_{hold} – informace vkládaná do registru musí být na datovém vstupu přítomna jistou dobu po rozhodující hraně synchronizačního signálu

Tyto parametry jsou sice v praktické aplikaci (v našem případě na sběrnici) dodrženy, může se ale stát, že v některém bitu nastane výrazný časový posuv. Posuv může nastat také v rozvodech synchronizačního signálu, pak tento problém existuje potenciálně pro všechny datové bity.

Řešení: přechod na sériovou komunikaci: synchronizace není vedena odděleně, dodržení parametru RL v přenášeném signálu (zakódovaná data), nižší logické úrovně (vyšší rychlost přepínání), diferenciální signál, větší odolnost proti rušení, možnost instalace většího počtu samostatných sériových spojů.

Synchronní v. asynchronní spoj

 Synchronní spoj v paralelní systémové sběrnici

Platí:

součástí rozhraní je synchronizační signál, na přijímací straně je synchronizace využívána pro synchronizaci příjmu přenášených dat (tzn. jako synchronizační signál registru, do něhož se vkládají přenášená data).

Asynchronní spoj

 Asynchronní komunikace v systémové sběrnici: posuzovaným parametrem je opět to, zda synchronizační signál je/není využíván k synchronizaci přijímaných dat (nikoliv pouze přítomnost synchronizace ve sběrnici).

Příklad:

součástí sběrnice ISA je synchronizace, není však na přijímací straně využívána k synchronizaci příjmu dat – sběrnice ISA byla označována jako asynchronní.

Asynchronní komunikace ve V/V sběrnici

- Mluvíme o rozhraní mezi řadičem PZ a PZ.
- V žádném z rozhraní, které se vyskytují v PC, se nevyskytuje synchronizace.
- Asynchronnost spoje spočívá v tom, že jde o komunikaci "dotaz – odpověď" (handshake).
- Princip komunikace "dotaz odpověd":
 pomalejší zařízení dává najevo svou
 připravenost ke komunikaci, druhé zařízení na
 tuto situaci reaguje generováním patřičného
 signálu (viz např. BUSY STROBE v rozhraní
 Centronics SPP).

Synchronizace v sériovém spoji

- Jsou dvě možnosti:
 - 1) Data jsou zakódována tak, že naplňují parametr RL patří sem např. SATA, PCI Express. Přijímací strana generuje synchronizaci pomocí prvku PLL (Phase Locked Loop) fázový závěs.
 - 2) Synchronizace je vedena samostatným vodičem, pak existuje stejně jako v paralelní sběrnici problém označovaný jako "clock skew" (problém se zvyšováním kmitočtu přenosu) např. spoj DVI (vyšší rozlišení vyšší kmitočet přechod na 2 kanály).

Komunikace "dotaz – odpověď"

- Paralelní spoj komunikace "dotaz odpověď" je realizována na úrovni signálů (např. rozhraní Centronics).
- Sériový spoj komunikace "dotaz odpověď" je realizována na úrovni paketů.
 - Jedním paketem vyslaným ze zdroje do cíle se žádá konkrétní činnost, cíl ji potvrdí.

Tyto mechanismy byly vysvětleny v přednášce o PCI Express, včetně principů tvorby paketů na jednotlivých úrovních na straně vysílací a analýzy paketů na straně přijímací.

Komunikace "dotaz – odpověď" paralelní sběrnice / spoj

AC – acceptor control, SC – source control

Platnost dat – data musí být platná v okamžiku nástupné hrany SC (v případě, že je použit hranově citlivý registr (tzn. data se vkládají do registru nástupnou hranou)

Principy "dotaz – odpověď" jsou zde uplatněny na úrovni signálů.

Komunikace "dotaz – odpověď" – sériová sběrnice (USB)

 Principy komunikace "dotaz – odpověď" jsou uplatněny na úrovni paketů.

Komunikace "dotaz – odpověď" – sériová sběrnice (FireWire)

S přerušením spojení

Bez přerušení spojení

Komunikace "dotaz – odpověď" – sériová sběrnice (FireWire)

Isochronní přenos

Proč "dotaz – odpověď": požadovaná činnost je potvrzovaná (paket ACK).

Komunikace "dotaz – odpověď" – sériová sběrnice

- Token (řídicí paket), jímž se žádá typ konkrétní činnosti v paketu je tato činnost identifikována (obdoba SC v paralelní sběrnici).
- ACK (ACKnowledge potvrzení příjmu paketu (obdoba AC v paralelní sběrnici).
- Funkci arbitra plní kořenový opakovač (rozbočovač) v počítači – např. ve sběrnici USB.

Typy signálů v paralelním rozhraní

- Signály, které se podílejí na komunikaci, např. realizují "dotaz – odpověď".
- Signály, které stanovují režim (např. směr přenosu).
- Datové signály.
- Adresové signály.
- Příznakové signály pokud se přes datové signály přenáší více typů informace (data, adresa,....).
- Důležité zjištění: jakým způsobem je zpřístupněna stavová informace.
 - Možnosti: čtení obsahu stavových registrů nebo na základě příkazu (ohlaš závady).
- Žádosti o přidělení sběrnice: předchází všem dalším datovým operacím.

Principy přidělování sběrnice

• 2 principy:

- centralizované (výrazně častější) a distribuované (setkali jsme se pouze ve sběrnici SCSI).
- Centralizované arbitr: prvek, který je v architektuře počítače blízko procesoru (severní v. jižní most ve sběrnici PCI, kořenový rozbočovač v USB,)

Centralizované přidělování sběrnice - paralelní sběrnice (PCI)

<u>Centralizované přidělování sběrnice – paralelní</u> <u>sběrnice, slabikový přenos</u>

<u>Posloupnost kroků</u>

- Klient A generoval REQ A (ještě před nástupnou hranou synchronizačního signálu CLK-1). Arbitr analyzuje tento požadavek od okamžiku nástupné hrany CLK-1.
- Během cyklu 1 generoval svůj požadavek klient B, REQ B.
- Arbitr generoval pro klienta A signál GNT A.
- Na začátku cyklu 2 rozpoznal klient A, že byl generován GNT A. Zjistí, že TRDY a IRDY nejsou aktivní, tzn. sběrnice je neaktivní (není obsazena). Vygeneruje signál FRAME a vloží na sběrnici adresu a příkaz na C/BE (není uvedeno v časovém diagramu), stal se tak BUS MASTERem. Nechává nastaven signál REQ A, protože bude žádat pokračování přenosů.
- Na začátku cyklu 3 vzorkuje arbitr stav všech signálů REQ a rozhodne o tom, že klient B dostane v dalším cyklu přidělenou sběrnici. Aktivuje GNT B a deaktivuje GNT B. Klient B nebude schopen začít využívat sběrnici, dokud na ní nebude skončena veškerá činnost.
- Klient A deaktivuje signál FRAME. Vloží na sběrnici postupně adresu a data a generuje IRDY. Adresovaný prvek (TARGET) sejme data ze sběrnice na začátku dalšího cyklu.
- Na začátku cyklu 5 klient B zjistí, že IRDY a FRAME jsou neaktivní, takže převezme řízení sběrnice generováním signálu FRAME. Deaktivuje také signál REQ, protože potřebuje provést pouze jednu transakci.

Centralizované přidělování sběrnice – sériová sběrnice

To, co se odehrává v paralelní sběrnici na úrovni signálů, odehrává se v sériové sběrnici na úrovni paketů: žádost o sběrnici, přenosy dat a adresace prvků,

Různá technologická úroveň zařízení ve sběrnici

- Různá technologická úroveň zařízení ve sběrnici v počítači pak existují zařízení pracující na různé rychlosti.
- Výsledek zařízení nejsou rychlostně kompatibilní.
- Řešení: vkládání čekacích stavů, pomalejší zařízení si vynucuje zpomalení přenosů dat.
- Příklad: Sběrnice PCI, účastníci komunikace indikují svou připravenost signály IRDY, TRDY

Sběrnice PCI – vkládání čekacích stavů

Připravenost komunikujících zařízení – stav signálů IRDY, TRDY.

Co je možné vyčíst z časového diagramu?

- PCI je synchronní sběrnice, synchronizační signál se využívá k příjmu dat/vyhodnocování stavu sběrnice.
- Je sběrnicí sdílenou signály C/BE: přes tyto vodiče se přenáší buď kód příkazu (C) nebo informace o platnosti slabik na sběrnici (BE – Byte Enable).
- Podobně: část adresové části systémové sběrnice je využívána pro přenos dat.
- Komunikace sestává z adresové a datové části.
- Blokový (nárazový) režim: redukce režie (adresa se posílá pouze jednou, opakovaně data)
- Komunikace je vymezena signálem FRAME.
- Zařízení indikují svou připravenost ke komunikaci (IRDY, TRDY) – možnost vkládání čekacích stavů.

Souvislost architektur a sběrnic

Souvislost architektur a sběrnic

Souvislost architektur a sběrnic

FireWire – V/V sběrnice

Shrnutí – systémová sběrnice

- Systémová sběrnice by měla pokrývat tyto funkce:
 - přenosy informace mezi prvky (registry, pamětí) přenosy dat a adres prvků,
 - přenos synchronizace a její případné využití při realizaci přenosů,
 - prostředky pro nulování logiky klientů sběrnice,
 - prostředky pro generování žádosti o přidělení sběrnice a poskytnutí sběrnice,
 - prostředky pro generování žádosti o přerušení,
 - prostředky pro testování počítače (nový pohled uplatněný poprvé u sběrnice PCI).

Shrnutí – V/V sběrnice

- Velmi různé a odlišné architektury V/V sběrnic.
- Typy zařízení připojitelné k V/V sběrnici (zařízení pro uložení dat, audio a video zařízení).
- Typy a struktura paketů.
- Komunikace na úrovni paketů.