Mestrado Integrado em Eng. Electrónica Industrial e Computadores

Introdução à família MCS-51

Microprocessadores I 2º Ano – A05

AT89C51RD2

- · 80C52 Compatible
 - 8051 Instruction Compatible
 - Six 8-bit I/O Ports (64 Pins or 68 Pins Versions)
 - Four 8-bit I/O Ports (44 Pins Version)
 - Three 16-bit Timer/Counters
 - 256 Bytes Scratch Pad RAM
 - 9 Interrupt Sources with 4 Priority Levels
- ISP (In-System Programming) Using Standard V_{CC} Power Supply
- 2048 Bytes Boot ROM Contains Low Level Flash Programming Routines and a Default Serial Loader
- · High-speed Architecture
 - In Standard Mode:
 - 40 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution)
 - 60 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
 - In X2 mode (6 Clocks/machine cycle)
 - 20 MHz (Vcc 2.7V to 5.5V, both Internal and external code execution)
 - 30 MHz (Vcc 4.5V to 5.5V and Internal Code execution only)
- 64K Bytes On-chip Flash Program/Data Memory
 - Byte and Page (128 Bytes) Erase and Write
 - 100k Write Cycles
- On-chip 1792 bytes Expanded RAM (XRAM)
 - Software Selectable Size (0, 256, 512, 768, 1024, 1792 Bytes)
 - 768 Bytes Selected at Reset for T89C51RD2 Compatibility
- On-chip 2048 Bytes EEPROM Block for Data Storage (AT89C51ED2 Only)
- 100K Write Cycles
- · Keyboard Interrupt Interface on Port 1
- SPI Interface (Master/Slave Mode)
- · 8-bit Clock Prescaler
- 16-bit Programmable Counter Array
 - High Speed Output
 - Compare/Capture
 - Pulse Width Modulator
 - Watchdog Timer Capabilities

Organização da memória

- Nesta arquitectura há dois tipos de memórias:
 - A memória de código/programa (tipo-ROM);
 - A memória de dados (tipo-RAM).
- Dependendo do microcontrolador, as memórias podem:
 - Estar implementadas internamente (dentro do chip CODE ou DATA);
 - Podemos implementá-las externamente usando barramentos (endereços, dados e controlo) e uma latch externa (XCODE e XDATA).

Espaço de memória do 8031

Organização da memória de dados interna – IDATA/IRAM

 Os bancos de registos permitem uma forma rápida e eficiente de comutação de contexto em que parcelas de código usam um conjunto privado de registos independentemente.

Organização da memória

- 1. Os primeiros 128 bytes da RAM interna podem ser acedidos directa ou indirectamente;
- 2. Os SFR's só podem ser acedidos por endereçamento directo;
- 3. Os segundos 128 bytes da RAM interna só podem ser acedidos indirectamente;
- 4. Os 768 bytes da RAM expandida (ERAM 00h-2FFh) são acedidos indirectamente pela instrução de MOVX e com o bit EXTRAM a zero.

SFR – *Special Function Registers*

Table 1. Special Function Registers

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB	ADDRES	S, SYMB	OL, OR A	LTERNAT	TIVE POR	RT FUNCT	ION LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	_	_	_	_	_	_	EXTRAM	AO	xxxxxxx10B
AUXR1#	Auxiliary 1	A2H	_	-	ENBOOT	-	GF2	0	-	DPS	xxxxxxxx0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CCAP0H#	Module 0 Capture High	FAH									xxxxxxxxB
CCAP1H#	Module 1 Capture High	FBH									xxxxxxxxB
CCAP2H# CCAP3H#	Module 2 Capture High Module 3 Capture High	FCH FDH									xxxxxxxxxB
CCAP4H#	Module 3 Capture High	FEH									xxxxxxxxB xxxxxxxxB
CCAP0L#	Module 0 Capture Low	EAH									xxxxxxxxxB
CCAP1L#	Module 1 Capture Low	EBH									xxxxxxxxB
CCAP2L# CCAP3L#	Module 2 Capture Low	ECH									xxxxxxxxxB
CCAP3L#	Module 3 Capture Low Module 4 Capture Low	EDH EEH									xxxxxxxxB xxxxxxxxB
CCAPM0#	Module 0 Mode	DAH		ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM1#	Module 1 Mode	DBH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM2#	Module 2 Mode	DCH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM3#	Module 3 Mode	DDH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM4#	Module 4 Mode	DEH	<u> </u>	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
			DF	DE	DD	DC	DB	DA	D9	D8	
CCON*#	PCA Counter Control	D8H	CF	CR	<u> </u>	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000B
CH#	PCA Counter High	F9H	Ci	CIX		CCI 4	CCF5	CCF2	CCFT	CCFU	00X00000D
CL#	PCA Counter Low	E9H									00H
CMOD#	PCA Counter Mode	D9H	CIDL	WDTE	_	_	_	CPS1	CPS0	ECF	00xxx000B
DPTR: DPH DPL	Data Pointer (2 bytes) Data Pointer High Data Pointer Low	83H 82H	AF	AE	AD	AC	AB	AA	A9	A8	00H 00H
IE*	Interrupt Enable 0	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
"	Interrupt Enable 0	Aori	BF	BE	BD	BC	BB	BA	B9	B8	1 0011
IP*	Interrupt Priority	B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000B
			B7	В6	B5	B4	В3	B2	B1	В0	1
IPH#	Interrupt Priority High	В7Н	_	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000B
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	1
P1*	Port 1	90H	CEX4	CEX3	CEX2	CEX1	CEX0	ECI	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0]
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	1
P3*	Port 3	В0Н	RD	WR	T1	T0	INT1	INT0	TxD	RxD	FFH
PCON#1	Power Control	87H	SMOD1	SMOD0	_	-	GF1	GF0	PD	IDL	00xxx000B

Table 1. Special Function Registers (Continued)

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB	ADDRES	S, SYMB	OL, OR A	LTERNAT	IVE POR	T FUNCT	ION LSB	RESET VALUE
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000B
RCAP2H# RCAP2L#	Timer 2 Capture High Timer 2 Capture Low	CBH CAH									00H 00H
SADDR# SADEN#	Slave Address Slave Address Mask	A9H B9H									00H 00H
SBUF	Serial Data Buffer	99H	9F	9E	9D	9C	9B	9A	99	98	xxxxxxxxB
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SP	Stack Pointer	81H	8F	8E	8D	8C	8B	8A	89	88	07H
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
			CF	CE	CD	СС	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	_	-	-	_	-	_	T2OE	DCEN	xxxxxxx00B
TH0 TH1 TH2# TL0 TL1 TL2#	Timer High 0 Timer High 1 Timer High 2 Timer Low 0 Timer Low 1 Timer Low 2	8CH 8DH CDH 8AH 8BH CCH									00H 00H 00H 00H 00H
TMOD WDTRST	Timer Mode Watchdog Timer Reset	89H A6H	GATE	C/T	M1	M0	GATE	C/T	M1	M0	00H

 ^{*} SFRs are bit addressable.

P89C51RD2

SFRs are modified from or added to the 80C51 SFRs.

Reserved bit

Modelo de Programação

80C51 Program Model - Calcutt

Modelo de Programação

Adaptado de:

AYALA
"8051
Microcontroller
Architecture
Programming
and Applications"

Família i8052

REGISTER	ADDRESS	DESCRIPTION	BIT-ADDRESSABLE
T2CON	C8H	Control	Yes
RCAP2L	CAH	Low-byte capture	No
RCAP2H	ÇBH	High-byte capture	No
TL2	CCH	Timer 2 low-byte	Na
TH2	CDH	Timer 2 high-byte	No

Estado do microcontrolador após *reset*

REGISTER(S)	CONTENTS	•	
Program counter Accumulator	0000H	·	
3 register	00H	Registo(s)	Conteúdo
P8W SP	00H 07H	Program Counter	0000H
PTR	0000H	Accumulator, B register, PSW	00H
orts 0-3	FFH	SP	07H
(8031/8051) (8032/8052)	XXX000000B 8000000XX	DPTR	0000H
E (8031/8051)	0XX00000B	Ports 0-3	FFH
E (8032/8052)	0X000000B	IP	XXX00000B
imer registers CON	00H	Timer registers, SCON	00H
BUF CON (HMOS) CON (CMOS)	00000000000000000000000000000000000000		ı

Notas sobre o conjunto de instruções e modos de endereçamento

	notae control o conjunto ao menaye co o meno ao emacreyamente
Rn	Registo (R0 a R7) do banco de registos seleccionado
direct	Endereço directo de 8-bit de uma posição da memória interna de dados.
	Pode-se tratar da RAM de dados interna (0-127) ou de um SFR (porto I/O, reg de estado, etc (128-255))
@Ri	Endereço de 8-bit de uma posição da RAM interna, endereçada indirectamente através de R0 ou R1.
#data	Constante de 8-bit incluída na instrução
#data16	Constante de 16-bit incluída na instrução
addr16	Endereço de destino de 16-bit. Usado por LCALL e LJMP. O salto pode ser para qualquer localização da ROM.
addr11	Endereço de destino de 11-bit. Usado por ACALL e AJMP.
	O salto pode ser para qualquer localização dentro da página de 2KB da ROM.
rel	Offset de destino de 8-bit com sinal. Usado por SJMP e todos os saltos condicionais.
	O alcance vai de -128 a 127 bytes relativamente ao endereço da próxima instrução.
bit	Bit da RAM de dados interna ou do SFR

Instruções que afectam as flags da ALU							
		Flag	s		Flags		
Instrução	С	O¥	AC	Instrução	C OV AC		
ADD	Х	×	Х	CLRC	0		
ADDC	Х	×	×	CPLC	×		
SUBB	Х	×	X	ANLC,bit	X		
MUL	0	×		ANLC,/bit	X		
DIV	0	×		ORLC,bit	X		
DA	Х			ORLC,/bit	×		
RRC	Х			MOVC,bit	×		
RLC	X			CJNE	X		
SETBC	1						

Mneumónica: Nome da instrução assembly

Tamanho: Nº de bytes que a mneumónica ocupa na memória de programa

Ciclos: Nº de ciclos máquina necessários para efectuar a operação. Um ciclo=12 impulsos de relógio

	Operações Aritméticas							
	Mneu	mónica	Tamanho	Ciclos	Descrição			
	ADD	A,Rn	1	1	Somar ao Acumulador o registo			
	ADD	A _i direct	2	1	Somar ao Acumulador o endereço directo de RAM			
\ \ \ \	ADD	A,@Ri	1	1	Somar ao Acumulador o endereço indirecto de RAM			
	ADD	A.#data	2	1	Somar ao Acumulador o bute de dados directo			
	ADDC	A,Rn	1	1	Somar ao Acumulador o registo com carry			
	ADDC	A,direct	2	1	Somar ao Acumulador o endereço directo de RAM com carry			
	ADDC	A,@Ri	1	1	Somar ao Acumulador o endereço indirecto de RAM com carry			
	ADDC	A.#data	2	1	Somar ao Acumulador o bute de dados directo com carru			
	SUBB	A,Rn	1	1	Subtrair ao Acumulador o registo com borrow			
	SUBB	A _i direct	2	1	Subtrair ao Acumulador o endereço directo de RAM com borrow			
	SUBB	A,@Ri	1	1	Subtrair ao Acumulador end. indirecto de RAM com borrow			
	SUBB	A,#data	2	1	Subtrair ao Acumulador o byte de dados directo com borrow			
	INC	А	1	1	Incrementar Acumulador			
	INC	Rn	1	1	Incrementar Registo			
	INC	direct	2	1	Incrementar endereço directo de RAM			
	INC	@Ri	1	1	Incrementar endereço indirecto de RAM			
	DEC	Α	1	1	Decrementar Acumulador			
	DEC	Rn	1	1	Decrementar registo			
	DEC	direct	2	1	Decrementar endereço directo de RAM			
	DEC	@Ri	1	1	Decrementar endereco indirecto de RAM			
	INC	DPTR	1	2	Incrementar DPTR (apontador para dados)			
	MUL	AB	1	4	Multiplicar A por B			
	DIV	AB	1	4	Dividir A por B			
	DA	Α	1	1	Ajuste decimal ao Acumulador			

Operações Lógicas								
Mne	eumónica	Tamanho	Ciclos	Descrição				
ANL	A,Rn	1	1	AND do Acumulador com registo				
ANL	A _i direct	2	1	AND do Acumulador com o endereço directo de RAM				
ANL	A,@Ri	1	1	AND do Acumulador com endereço indirecto de RAM				
ANL	A,#data	2	1	AND do Acumulador com o byte de dados directo				
ANL	direct,A	2	1	AND do endereço directo de RAM com o Acumulador				
ANL	direct,#data	3	2	AND do endereço directo de RAM com o byte de dados				
ORL	A,Rn	1	1	OR do Acumulador com registo				
ORL	A,direct	2	1	OR do Acumulador com o endereço directo de RAM				
ORL	A,@Ri	1	1	OR do Acumulador com endereço indirecto de RAM				
ORL	A,#data	2	1	OR do Acumulador com o byte de dados directo				
ORL	direct,A	2	1	OR do endereço directo de RAM com o Acumulador				
ORL	direct,#data	3	2	OR do endereço directo de RAM com o bute de dados				
XRL	A,Rn	1	1	XOR do Acumulador com registo				
XRL	A,direct	2	1	XOR do Acumulador com o endereço directo de RAM				
XRL	A,@Ri	1	1	XOR do Acumulador com endereço indirecto de RAM				
XRL	A,#data	2	1	XOR do Acumulador com o byte de dados directo				
XRL	direct,A	2	1	XOR do endereço directo de RAM com o Acumulador				
XRL	direct,#data	3	2	XOR do endereço directo de RAM com o byte de dados				
CLR	А	1	1	Limpar Acumulador				
CPL	Α	1	1	Complementar Acumulador				
RL	A	1	1	Rodar à esquerda Acumulador				
RLC	A	1	1	Rodar à esquerda Acumulador através do carry				
RR	A	1	1	Rodar à direita Acumulador				
RRC	Α	1	1	Rodar à direita Acumulador através do carry				
SWAP	Α	1	1	Trocar os nibbles do Acumulador				

	Operações de Tranferência de Dados							
Mn	eumónica	Tamanho	Ciclos	Descrição				
MOV	A,Rn	1	1	Mover para o Acumulador do registo				
MOV	A,direct	2		Mover para o Acumulador do endereço directo de RAM				
MOV	A,@Ri	1	i	Mover para o Acumulador do endereço indirecto de RAM				
MOV	A,#data	2	1	Mover para o Acumulador do byte de dados directo				
MOV	Rn,A	1	1	Mover para o registo do Acumulador				
MOV	Rn,direct	2	2	Mover para o registo do endereço directo de RAM				
MOV	Rn,#data	2	1	Mover para o registo do byte de dados directo				
MOV	direct,A	2	1	Mover para o endereço directo de RAM do Acumulador				
MOV	direct,Rn	2	2	Mover para o endereço directo de RAM do Registo				
MOV	direct, direct	3	2	Mover para o endereço directo de RAM do end, directo de RAM				
MOV	direct,@Ri	2	2	Mover para o endereço directo de RAM do end. indirecto de RAM				
MOV	direct,#data	3	2	Mover para o endereço directo de RAM do byte de dados directo				
MOV	@Ri,A	1	1	Mover para o endereço indirecto de RAM do Acumulador				
MOV	@Ri,direct	2	2	Mover para o endereço indirecto de RAM do end. directo de RAM				
MOV	@Ri,#data	2	1	Mover para o endereço indirecto de RAM do byte de dados directo				
MOV	DPTR,#data16	3	2	Mover para o DPTR dois bytes de dados				
MOVC	A,@A+DPTR	1	2	Mover para o Acumulador o byte de código relativo a DPTR				
MOVC	A,@A+PC	1	2	Mover para o Acumulador o byte de código relativo a PC				
MOVX	A,@Ri	1	2	Mover para o Acumulador o endereço indirecto (8-bit) de XRAM				
MOVX	A,@DPTR	1	2	Mover para o Acumulador o endereço indirecto (16-bit) de XRAM				
MOVX	@Ri,A	1	2	Mover para o endereço indirecto (8-bit) de XRAM o Acumulador				
MOVX	@DPTR,A	1	2	Mover para o endereço indirecto (16-bit) de XRAM o Acumulador				
PUSH	direct	2	2	Colocar (Push) na stack do endereço directo de RAM				
POP	direct	2	2	Retirar (Pop) da stack do endereço directo de RAM				
XCH	A,Rn	1	1	Trocar entre Acumulador e registo				
хсн	A _i direct	2	1	Trocar entre Acumulador e endereço directo de RAM				
XCH	A,@Ri	1	1	Trocar entre Acumulador e endereço indirecto de RAM				
XCHD	A,@Ri	1	1	Trocar digito menor entre Acumulador e endereço indirecto de RAM				

	Operações de Manipulação sobre booleanos							
Mneu	mónica	Tamanho	Ciclos	Descrição				
CLR	O	1	1	Limpar carry				
CLR	bit	2	1	Limpar bit directo da RAM				
SETB	С	1	1	Activar carry				
SETB	bit	2	1	Acitvar bit directo da RAM				
CPL	С	1	1	Complementar carry				
CPL	bit	2	1	Complementar bit directo da RAM				
ANL	C,bit	2	2	AND do carry com o bit directo da RAM				
ANL	C,/bit	2	2	AND do carry com o complemento do bit directo da RAM				
ORL	C,bit	2	2	OR do carry com o bit directo da RAM				
ORL	C,/bit	2	2	OR do carry com o complemento do bit directo da RAM				
MOV	C,bit	2	1	Mover para o carry o bit directo da RAM				
MOV	bit,C	2	2	Mover para o bit directo da RAM o carry				
JC	rel	2	2	Saltar (para end. relativo) se o carry estiver activo				
JNC	rel	2	2	Saltar se o carry estiver limpo				
JB	bit,rel	3	2	Saltar se o bit directo da RAM estiver activo				
JNB	bit,rel	3	2	Saltar se o bit directo da RAM estiver limpo				
JBC	bit,rel	3	2	Saltar se o bit directo da RAM estiver activo e limpar bit				

	Operações de Salto na Execução									
Mne	Mneumónica		Ciclos	Descrição						
ACALL	addr11	2	2	Invocação end. absoluto de subrotina						
LCALL	addr16	3	2	Invocação end. longo de subrotina						
RET		1	2	Retorno de subrotina						
RETI		1	2	Retorno de interrupção						
AJMP	addr11	2	2	Salto para endereço absoluto						
LJMP	addr16	3	2	Salto para endereço longo						
SJMP	rel	2	2	Salto curto para endereço relativo						
JMP	@A+DPTR	1	2	Salto indirecto relativo a DPTR						
JZ	rel	2	2	Salto (para end. relativo) se acumulador for zero						
JNZ	rel	2	2	Salto se acumulador não for zero						
CJNE	A,direct,rel	3	2	Comparar A com end. directo de RAM e saltar se diferente						
CJNE	A,#data,rel	3	2	Comparar A com byte de dados directo e saltar se diferente						
CJNE	Rn,#data,rel	3	2	Comparar reg. com byte de dados directo e saltar se diferente						
CJNE	@Ri,#data,rel	3	2	Comp end. indirecto de RAM com byte de dados e saltar se diferente						
DJNZ	Rn,rel	2	2	Decrementar registo e saltar se registo não for zero						
DJNZ	direct,rel	3	2	Decrementar end. Directo de RAM e saltar senão for zero						
NOP		1	1	Nenhuma operação						