Analog Transmission

Analog Signals

Modulation of Carrier Amp., Freq., or Phase

Modulation with digital signal

Modulation Techniques 0 (a) ASK

Amplitude Shift Keying

- encode 0/1 by different carrier amplitudes
 - usually have one amplitude zero
- susceptible to sudden gain changes
- inefficient
- used for
 - up to 1200bps on voice grade lines
 - very high speeds over optical fiber

Amplitude Shift Keying

Frequency Shift Keying

Phase Shift Keying

Quadrature Phase Shift Keying

Dibit	Phase		
00	0		
01	90		
10	180		
11	270		

Dibit (2 bits)

Constellation diagram

8-level Phase Shift Keying

Tribit	Phase		
000	0		
001	45		
010	90		
011	135		
100	180		
101	225		
110	270		
111	315		

Tribits (3 bits)

Constellation diagram

Performance of Digital to Analog Modulation Schemes

- bandwidth
 - ASK/PSK bandwidth directly relates to bit rate
 - multilevel PSK gives significant improvements
- in presence of noise:
 - bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK
 - for MFSK & MPSK have tradeoff between bandwidth efficiency and error performance

Quadrature Amplitude Modulation

- QAM used on asymmetric digital subscriber line (ADSL) and some wireless
- combination of ASK and PSK
- logical extension of QPSK
- send two different signals simultaneously on same carrier frequency
 - use two copies of carrier, one shifted 90°
 - each carrier is ASK modulated
 - two independent signals over same medium
 - demodulate and combine for original binary output

8-QAM

QAM Variants

- two level ASK
 - each of two streams in one of two states
 - four state system
 - essentially QPSK
- four level ASK
 - combined stream in one of 16 states
- have 64 and 256 state systems
- improved data rate for given bandwidth
 - but increased potential error rate

Modulation	Units	Bits/Baud	Baud rate	Bit Rate
ASK, FSK, 2-PSK	Bit	1	N	N
4-PSK, 4-QAM	Dibit	2	N	2N
8-PSK, 8-QAM	Tribit	3	N	3N
16-QAM	Quadbit	4	N	4N
32-QAM	Pentabit	5	N	5N
64-QAM	Hexabit	6	N	6N
128-QAM	Septabit	7	N	7N
256-QAM	Octabit	8	N	8N

Analog Data, Analog Signals

- modulate carrier frequency with analog data
- why modulate analog signals?
 - higher frequency can give more efficient transmission
 - permits frequency division multiplexing (chapter 8)
- types of modulation
 - Amplitude
 - Frequency
 - Phase

Analog Modulation Techniques

- Amplitude Modulation
- Frequency Modulation
- Phase Modulation

Frequency-modulated wave

 BW_m = bandwidth of the modulating signal (audio)

 BW_t = total bandwidth (radio)

 f_c = frequency of the carrier

