

High dimensional Lotka-Volterra with random interactions

M-Y. Gueddari⁽¹⁾, W. Hachem⁽¹⁾, J. Najim⁽¹⁾ ¹CNRS and Université Gustave Eiffel, France 5 Bd Descartes, 77420 Champs-sur-Marne

A MOTIVATION FROM THEORETICAL ECOLOGY

• Interactions in ecological systems: The interactions between species in an ecological environment can be modeled using Lotka Volterra differential equations, i.e. $\forall i \in [n]$

$$\begin{cases} \frac{d}{dt} \boldsymbol{x}_i(t) = \boldsymbol{x}_i(t) \left(\boldsymbol{r}_i - \boldsymbol{x}_i(t) + \sum_j A_{ij} \boldsymbol{x}_i(t) \right) \\ \boldsymbol{x}_i(t) \ge 0, \quad \forall t \end{cases}$$

- $\rightarrow A_{ij}$ is the effect of species j on species i.
- $\rightarrow x_i$ and r_i are natural abundance and intrinsic growth of species *i* respectively.

• Goal: Study of the asymptotic be-

• **Tool**: The iterates of Approximate Mes-

sage Passing (AMP) $x^{\bar{k}}$ converge to the

equilibrium x^* . This algorithm pro-

vides rich information about $\lim_{n\to\infty}\mu^{x^k}$.

and uniqueness of x^* . We also gener-

alized AMP for sparse and correlated

• **Contribution**: We proved the existence

 $\mu^{x^*} = \frac{1}{n} \sum_{k=1}^{n} \delta_{x_k^*}$ when n is large.

havior of the empirical distribution

CONTRIBUTION

matrices.

- \bullet **Model**: The interaction matrix Ais a large random matrix such that $Var(A_{ij}) = v_{ij}$ and $Corr(A_{ij}, A_{ji}) = \tau_{ij}$. $V = (v_{ij})$ and $T = (\tau_{ij})$ are variance and correlation profiles.
- Problem: We study the existence, uniqueness as well as the statistical properties of the equilibrium point x^* (ex: proportion of surviving species),

$$\boldsymbol{x}_{i}^{\star} \left(\boldsymbol{r}_{i} - \boldsymbol{x}_{i}^{\star} + [A\boldsymbol{x}^{\star}]_{i}\right) = 0, \ \forall i \in [n]$$
 (1)

STRATEGY OF PROOF [2, 3]

- We prove AMP for $f_k = p_k$ polynomial.
- Having $V_{ii} = 0$, we use combinatorial techniques to study the moments of x^k .
- We use density arguments to capture general functions

$$f_k \approx p_k^{(\varepsilon)}$$
 with error ε

$$f_k \approx p_k^{(\varepsilon)}$$
 with error ε .

• Finally, we use a perturbation argument to prove AMP of a general (nonzero diagonal) variance profile.

$$V = \Delta^{\text{diag}} + V^{\text{zero diag}}.$$

A MIXTURE OF TRUNCATED GAUSSIANS!

We rigorously show that μ^{x^*} is a mixture of truncated gaussians as n goes to ∞ . Proportion of surviving species is $\gamma = \int 1_{\mathbb{R}_+^*} d\mu^{x^*}$.

- **Figure (a)** Mixture of 3 truncated gaussians for $r = (1, \dots, 1, 3, \dots, 3, 6, \dots, 6)^{\top}$.
- **Figure (b)** Effect of the correlation on the surviving species' distribution.
- **Figure (c)** Proportion of surviving species for correlations $\rho = 0.7, 0, 0.4$.

Conclusion

- We proved the existence and uniqueness of the equilibrium in a general setting.
- We analyzed the statistical properties of the equilibrium x^* by tracking $\mu^{x_{AMP}^k}$.
- We developed of a new AMP algorithm adapted to a general class of random matrices.

EXISTENCE OF EQUILIBRIUM

A non spectral property of random matrices: In addition to equation (1), the equilibrium x^* is taken to be Lyapunov stable (non-invadavility condition). Hence:

$$\begin{cases} \boldsymbol{x}_{i}^{\star} \geq 0, \\ \boldsymbol{x}_{i}^{\star} \left(\boldsymbol{r}_{i} - \left[\left(I_{n} - A\right) \boldsymbol{x}^{\star}\right]_{i}\right) = 0, \\ \boldsymbol{r}_{i} - \left(I_{n} - A\right) \boldsymbol{x}_{i}^{\star} \leq 0, \end{cases}$$

for all $i \in [n]$.

Consequence: x^* is a solution to $LCP(I_n - A, -r)$ "Linear Complementarity Problem" a classical non-linear optimization problem generalizing LP and QP.

AMP FOR ELLIPTIC MATRICES

For a matrix A with uniform variance profile and a fixed correlation ρ , AMP gets the following form

$$\boldsymbol{x}^{k+1} = Af_k\left(\boldsymbol{x}^k\right) - \rho \langle f'_k(\boldsymbol{x}^k) \rangle_n f_{k-1}\left(\boldsymbol{x}^{k-1}\right),$$

The "Onsager term" is modified. We show that

$$\mu^{(\boldsymbol{x^1},\cdots,\boldsymbol{x^k})} \xrightarrow[n \to \infty]{w,L^2} \mathcal{L}(Z^1,\cdots,Z^k) \text{ a.s.}$$

where
$$(Z^1, \dots, Z^k) \sim DE(f, k)$$
.

Recursive definition of DE:

$$(Z^1, \cdots, Z^{k+1}) \sim \mathcal{N}_k(0, R^{k+1})$$
 such that

$$\mathbf{R}^{k+1} = \alpha^{-1} \mathbb{E} \begin{bmatrix} f_0(x^0) \\ f_1(\mathbf{Z}^1) \\ \cdots \\ f_k(\mathbf{Z}^k) \end{bmatrix}^{\otimes 2},$$

where $(Z^1, \dots, Z^k) \sim \mathcal{N}_k(0, R^k)$.

STATISTICS OF EQUILIBRIUM

Consider $A = (\alpha \sqrt{n})^{-1}G$, where $G \sim$ Elliptic(ρ). Suppose $\mu^r \to \mathcal{L}(\bar{r})$. The system of unknown $(\delta, \sigma^2, \gamma)$ has a unique solution if $\alpha > \sqrt{2(1+\rho)}$.

$$\begin{cases} \alpha &= \delta + \rho \frac{\gamma}{\delta}, \\ \sigma^2 &= \frac{1}{\delta^2} \mathbb{E} \left[(\sigma \xi + \bar{r})_+^2 \right], \\ \gamma &= \mathbb{P} \left[\sigma \xi + \bar{r} > 0 \right], \end{cases}$$

where $\xi \sim \mathcal{N}(0,1)$.

Result - Asymptotic behavior

$$\mu^{x^*} \xrightarrow[n \to \infty]{w, L^2} \mathcal{L}\left(\left(1 + \rho \frac{\gamma}{\delta^2}\right) (\sigma \xi + \bar{r})_+\right) a.s.$$

Remark. For k large enough, $x^k \approx x^*$.

REFERENCES

- [1] M. Bayati, A. Montanari. and M. Lelarge. Universality in polytope phase transitions and message passing algorithms
- [2] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with applications to compressed sensing, 2011.
- [3] W. Hachem. Approximate Message Passing for sparse matrices with application to the equilibria of large ecological Lotka-Volterra systems.
- [4] Akjouj, I. and Hachem, W. and Maïda, M. and Najim, J. Equilibria of large random Lotka-Volterra systems with vanishing species: a mathematical approach, 2023.