

Informe 11: Laboratorio de Máquinas

"Cavitación"

Nombre: Constanza Puentes Vergara Asignatura: Laboratorio de máquinas ICM557-3 Escuela Ingeniería Mecánica PUCV Profesores: Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz Ayudante: Ignacio Ramos

Fecha de entrega: 11 de Diciembre del 2020

Índice

nforme 11: Laboratorio de Máquinas	1
Cavitación"	
ntroducción	
- fórmulas	
Oonde: γ: Peso específico del agua en [N/m3]	
/alores medidos	
/alores calculados	
Desarrollo	<u>c</u>
Grafique, comente y explique	
Conclusiones	

Introducción

En el presente informe, tiene como objetivo analizar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga, como apoyo y a continuación del informe anterior, de *"curvas de una bomba centrífuga"*.

Fórmulas

Las fórmulas a utilizar en el siguiente informe serán las siguientes:

• Caudal corregido:

$$Q = Qx * \left(\frac{n}{nx}\right) [m^3/h]$$
 Ecuación (1)

• Presión de aspiración:

$$pax = 0.1 * pax\% - 10 - \left(\frac{cpax}{1000}\right) [m_{ca}]$$
 Ecuación (2)

Donde: cpax=115 [mm].

Presión de descarga:

$$pdx = 0.4*pdx\% + \left(\frac{cpdx}{1000}\right) [m_{ca}] \qquad \textit{Ecuación (3)}$$

$$cpdx = 165 \ [mm].$$

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$ *Ecuación (4)*

Altura corregida:

$$H = Hx * \left(\frac{n}{nx}\right)^2 [m_{ca}]$$
 Ecuación (5)

• Potencia en el eje de la bomba:

$$Nex = 0.0007355 * Fx * nx [kW]$$
 Ecuación (6)

• Potencia en el eje de la bomba corregida:

Ne = Nex *
$$\left(\frac{n}{nx}\right)^3 [kW]$$
 Ecuación (7)

• Potencia hidráulica:

Nh =
$$\gamma * \frac{Q*H}{3600} [kW]$$
 Ecuación (8)

Donde: γ: Peso específico del agua en [N/m³]

• Rendimiento Global:

$$\eta_{gl} = 100 * \frac{Nh}{Ne} [\%]$$
 Ecuación (9)

· Velocidad del fluido:

$$V = \frac{4*Q}{3.600*\pi*D_A^2} \left[\frac{m}{s} \right] \quad Ecuación (10)$$

Donde: $D_A = 0.1023 [m]$

• Columna neta de succión positiva disponible, CNSPD:

$$CNSPD = pax + \frac{13,54*P_{Atm}}{1.000} + \frac{V^2}{2*g} - P_v [mca]$$
 Ecuación (11)

Valores medidos

		VA	LORES	MEDID	OS 290	0 (cur	va H vs	Q)	•	
	n	срах	cpdx	nx	рах	pdx	Dhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2899	91,8	5,6	140	1,19	18	757,1
2	2900	0,115	0,165	2899	93,8	10,2	128	1,27	18	757,1
3	2900	0,115	0,165	2898	96,3	14,6	115	1,34	18	757,1
4	2900	0,115	0,165	2899	98,6	19,4	101	1,42	18	757,1
5	2900	0,115	0,165	2898	100,8	24	87	1,48	18	757,1
6	2900	0,115	0,165	2897	103,2	28,5	74	1,53	18	757,1
7	2900	0,115	0,165	2899	104,8	32,2	63	1,53	18	757,1
8	2900	0,115	0,165	2896	107,3	37,7	50	1,57	18	757,1
9	2900	0,115	0,165	2897	109,7	42,2	36	1,53	18	757,1
10	2900	0,115	0,165	2898	112,2	46,5	22	1,45	18	757,1
11	2900	0,115	0,165	2899	115,2	50,3	9	1,21	19	757,1
12	2900	0,115	0,165	2900	121,1	54,3	0	0,82	19	757,1

Tabla 1: Datos registrados en la medición a 2900[rpm]

				P	UNTO 1					
	n	срах	cpdx	nx	рах	pdx	Dhx	Fx	T	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	0,115	0,165	2908	97,4	17,6	105	1,4	16	757,1
2	2900	0,115	0,165	2912	79,5	12,8	105	1,4	16	757,1
3	2900	0,115	0,165	2912	63	8,6	105	1,4	16	757,1
4	2900	0,115	0,165	2913	53,5	5,2	105	1,38	16	757,1
5	2900	0,115	0,165	2916	50,4	5	98	1,35	16	757,1
6	2900	0,115	0,165	2917	39,4	4,9	89	1,4	16,5	757,1
7	2900	0,115	0,165	2916	36,2	4,7	79	1,4	17	757,1

Tabla 2: Datos registrados en el PUNTO 1.

	PUNTO 2													
	n	n cpax cpdx		nx	рах	pdx	Dhx	Fx	Т	P _{atm}				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]				
1	2900	0,115	0,165	2917	102,3	27,8	78	1,52	17	757,1				
2	2900	0,115	0,165	2917	74	20,5	78	1,52	17	757,1				
3	2900	0,115	0,165	2917	48,4	10,6	78	1,48	17	757,1				
4	2900	0,115	0,165	2917	37,7	4,7	78	1,41	17,5	757,1				
5	2900	0,115	0,165	2915	35,9	4,6	73	1,4	17,5	757,1				
6	2900	0,115	0,165	2917	35,8	4,7	69	1,38	18	757,1				
7	2900	0,115	0,165	2916	36,1	4,4	64	1,35	18	757,1				

Tabla 3: Datos registrados en el PUNTO 2.

	PUNTO 3													
	n cpax cpdx nx pax pdx Dhx Fx T									P _{atm}				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]				
1	2900	0,115	0,165	2916	109,8	43,8	35	1,49	18	757,1				
2	2900	0,115	0,165	2917	86,1	36,8	35	1,55	18	757,1				
3	2900	0,115	0,165	2918	26,8	4	35	1,28	18	757,1				
4	2900	0,115	0,165	2918	27,8	3,7	34	1,25	18,5	757,1				
5	2900	0,115	0,165	2917	29,3	3,6	31	1,2	18,5	757,1				

Tabla 4: Datos registrados en el PUNTO 3.

Valores calculados

	PUNTO 1, N=2900[rpm]													
Q_x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	٧	CNSPD	CNSPR		
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]		
95,04	94,78	-0,37	7,21	7,58	7,80	2,99	3,13	2,05	65,70	3,20	10,12	2,78		
95,04	94,65	-2,17	5,29	7,45	7,65	3,00	3,12	2,01	64,48	3,20	8,33	2,78		
95,04	94,65	-3,82	3,61	7,42	7,61	3,00	3,12	2,00	64,22	3,20	6,68	2,78		
95,04	94,62	-4,77	2,25	7,01	7,19	2,96	3,07	1,89	61,53	3,20	5,73	2,78		
95,04	94,52	-5,08	2,17	7,24	7,41	2,90	3,00	1,95	64,90	3,19	5,41	2,78		
95,04	94,49	-6,18	2,13	8,30	8,49	3,00	3,11	2,23	71,72	3,19	4,31	2,78		
95,04	94,52	-6,50	2,05	8,54	8,74	3,00	3,11	2,29	73,81	3,19	3,99	2,78		

Tabla 5: Valores calculados para el PUNTO 1.

	PUNTO 2, N=2900[rpm]														
Q_x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	V	CNSPD	CNSPR			
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]			
82,80	82,32	0,12	11,29	11,17	11,42	3,26	3,37	2,61	77,45	2,78	10,48	4,20			
82,80	82,32	-2,72	8,37	11,08	11,33	3,26	3,37	2,59	76,82	2,78	7,65	4,20			
82,80	82,32	-5,28	4,41	9,68	9,90	3,18	3,28	2,26	68,93	2,78	5,09	4,20			
82,80	82,32	-6,35	2,05	8,39	8,58	3,03	3,13	1,96	62,71	2,78	4,02	4,02			
79,20	78,79	-6,53	2,01	8,53	8,74	3,00	3,11	1,91	61,46	2,66	3,81	4,20			
77,40	76,95	-6,54	2,05	8,58	8,78	2,96	3,06	1,88	61,25	2,60	3,76	4,20			
74,16	73,75	-6,51	1,93	8,43	8,63	2,90	3,00	1,77	58,96	2,49	3,76	4,20			

Tabla 6: Valores calculados para el PUNTO 2.

	PUNTO 3, N=2900[rpm]													
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	٧	CNSPD	CNSPR		
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]		
54,00	53,70	0,87	18,77	17,90	18,32	3,20	3,31	2,73	82,60	1,81	10,99	6,88		
54,00	53,69	-1,51	14,57	16,07	16,44	3,33	3,44	2,45	71,26	1,81	8,62	8,62		
54,00	53,67	-7,44	4,17	11,60	11,86	2,75	2,84	1,77	62,27	1,81	2,69	6,88		
52,92	52,59	-7,34	1,65	8,98	9,18	2,68	2,77	1,34	48,37	1,78	2,78	6,88		
51,48	51,18	-7,19	2,13	9,31	9,52	2,57	2,66	1,35	50,83	1,73	2,92	6,88		

Tabla 7: Valores calculados para el PUNTO 3.

Desarrollo

Grafique, comente y explique

 Trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos.

Gráfico 1: Caudal vs. Altura

¿Qué significan las desviaciones que se producen?

Para este caso, podemos ver que las distintas mediciones tienen gráficos similares, pues, a medida que el caudal levemente aumenta, también lo hacen sus alturas, de forma drástica, en comparación con la curva característica de la bomba, que tiene un comportamiento más regular; las desviaciones de este informe, se deben a la cavitación presentada.

 Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en [%] respecto al valor sin cavitación y ηgl, y en la abscisa la CNSPD.

Gráfico 2: Valores pedidos para el PUNTO 1.

Gráfico 3: Valores pedidos para el PUNTO 2.

Gráfico 4: Valores calculados para el PUNTO 3.

¿Cómo determina la CNSPD crítica y qué representa?

La podemos determinar mediante la visualización de los gráficos para cada punto evaluado, donde podemos notar el punto de inflexión en cada curva sea el caso, es decir donde hay un cambio notorio en su curva (en algunos casos más notorios que otros), donde esta CNSPD crítica, significará la mínima presión que se necesite a la entrada de la bomba, para que no se produzca cavitación.

• Grafique la CNSPR en función del caudal.

Gráfico 5: CNSPR vs. Caudal para los tres puntos medidos

¿La curva obtenida tiene la forma característica?

Si, debido a que mientras aumenta su caudal, disminuye su CNSPR, que es lo esperado.

• ¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Son apropiados, debido a que se cumple que: CNSPR < CNSPD, por lo que la bomba no cavita.

Conclusiones

En el presente informe, pudimos apreciar el comportamiento general de la bomba centrífuga vista en el informe anterior, pero con la particularidad de analizar su cavitación para tres puntos diferentes, a la misma velocidad rotacional (2900[rpm]).