

ЭТИКЕТКА

<u>СЛКН.431279.001 ЭТ</u> Микросхема интегральная 564 ЛП13В

Функциональное назначение – Три 3-х входовых мажоритарных логических элемента

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	8	Выход
2	Вход	9	Вход
3	Вход	10	Выход
4	Вход	11	Вход
5	Вход	12	Выход
6	Вход	13	Вход
7	Общий	14	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ 1.1 Основные электрические параметры (при t = $(25\pm10)^{\circ}$ C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
тынынование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, 10 \; B$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	U _{ОН}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, $U_{\rm IL}$ = 1,5 B $U_{\rm CC}$ = 10 B, $U_{\rm IL}$ = 3,0 B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IH} = 7,0 B	U_{OHmin}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	${ m I}_{ m IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_0 = 0,5 \; B \\ U_{CC} = 10 \; B, \; U_0 = 0,5 \; B$	I_{OL}	0,5 1,0	-

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5~B, U_O = 4,5~B$ $U_{CC} = 10~B, U_O = 9,5~B$	І _{ОН}	/-0,5/ /-1,0/	-
9. Ток потребления, мкА, при: $U_{CC} = 5 \; B \\ U_{CC} = 10 \; B \\ U_{CC} = 15 \; B$	I_{CC}	- - -	0,5 1,0 2,0
10. Ток потребления в динамическом режиме, мА, при: $U_{CC} = 10~B, C_L = 50~\pi\Phi$	I_{OCC}	-	0,17
11. Время задержки распространения при включении, нС, при: $U_{CC}=5$ B, $C_L=50$ пФ $U_{CC}=10$ B, $C_L=50$ пФ	t _{PHL}		320 160
12. Время задержки распространения при выключении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	t _{PLH}		320 160
13. Входная емкость, п Φ , при: U_{CC} = 10 В	Cı	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

Гамма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 - 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

Микросхемы 564ЛП13В соответствуют техническим условиям бК0.347.064 ТУ 1/02 и признаны годными для эксплуатации.

Приняты по(извеще	ние, акт и др.)	(дата)	
Место для штампа ОТ	К		Место для штампа ВП
Место для штампа « Г	Іерепроверка произве	дена	» (дата)
Приняты по	ние, акт и др.)	(дата)	
Место для штампа ОТ			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.