MIT 18.06 Exam 2, Spring 2023 Gilbert Strang and Andrew Horning

(printed)			
Student ID:			
Recitation:			

Problem 1 (12+10+12=34 points):

Record your final answer in the alloted spaces. You may use the remaining space for your calculations.

Consider the following 3×3 symmetric matrix

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array}\right)$$

1(a) Write down a basis for the nullspace of A using **only** vectors whose entries are 0, +1, and -1.

$$\text{nullspace basis} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$$

1(b) If you are allowed to add a column and row to make A a 4×4 matrix, how large can you make the rank of the new matrix?

largest possible rank =

Reason:

) True or false (Write ${f T}$ or ${f F}$ in the blank space provided) with a ${f reason}$.	
——— All vectors in the nullspace of A are in the nullspace of A^TA .	
Reason:	
The rank of A^TA is smaller than the rank of A^T .	
Reason:	
The orthogonal projector onto the column space of A has rank 1	
Reason:	
The orthogonal projector onto the null space of A has rank 1.	
Reason:	

(blank page for your work if you need it)

Problem 2 (10+10+8+8=36 points):

Record your final answer in the alloted spaces. You may use the remaining space for your calculations.

Consider the following 4×3 matrix

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & -1 \end{array}\right)$$

 $\mathbf{2(a)} \ \ \text{Use elimination to reduce } A \text{ to its reduced row echelon form } R = \left(\begin{array}{cc} I & F \\ \mathbf{0} & \mathbf{0} \end{array} \right).$

$$R = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

2(b) Write down a basis for the column space of A and a basis for the row space of A.

$$\operatorname{column\ space\ basis} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}, \quad \operatorname{row\ space\ basis} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$$

 $\mathbf{2(c)}$ Using the reduced row echelon form R from part (a), compute a basis for the nullspace of A.

$$\text{nullspace basis} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$$

2(d) Use the column space basis vectors in part (b) to calculate the orthogonal projection of $b = \begin{pmatrix} 0 & 3 & 3 & 0 \end{pmatrix}^T$ onto the column space of A.

$$Pb = \left(\begin{array}{c} \\ \end{array}\right)$$

(blank page for your work if you need it)

Problem 3 (6+6+6+6+6=30 points):

Record your final answer in the alloted spaces. You may use the remaining space for your calculations.

Given two column vectors $x = (1,0,1)^T$ and $y = (1,1,0)^T$, consider the following three 3×3 matrices (*I* is the 3×3 identity matrix):

$$A = I - \frac{xx^T}{x^Tx}, \qquad B = I - \frac{yy^T}{y^Ty}, \qquad C = I - \frac{yx^T}{x^Ty}.$$

Put a **T** next to each matrix for which the statement is true and an **F** next to each matrix for which the statement is false. Provide a **reason** for parts (a) and (c) in the space provided.

3(a) The vector $y = (1, 1, 0)^T$ is in the nullspace of this matrix.

____ A Reason:

____ B Reason:

____ C Reason:

3(b) The column space of this matrix is orthogonal to the vector $x = (1,0,1)^T$.

____ A

_____В

____ C

3(c)	The colu	ımn	space of this matrix has dimension 2.
		A	Reason:
		В	Reason:
		С	Reason:
3(d)	This ma	ıtrix	is symmetric (recall that M is symmetric if $M=M^T$).
		A	
		В	
		С	
3 (e)	This ma	trix	is its own square (i.e., a matrix that satisfies ${\cal M}^2={\cal M}).$
		A	
		В	
		С	

(blank page for your work if you need it)