Лекция 13

Вращение твердого тела вокруг неподвижной точки:

• Динамические уравнения Эйлера

Теорема об изменении кинетического момента $\overrightarrow{\mathcal{K}}_o$ твердого тела относительно его неподвижной точки О под действием сил, главный момент которых относительно этой же точки равен $\overrightarrow{\mathcal{M}}_O$, выражается равенством: $\frac{d}{dt}\overrightarrow{\mathcal{K}}_o = \overrightarrow{\mathcal{M}}_O$. Далее получаем: $\frac{d'}{dt}\overrightarrow{\mathcal{K}}_o + \overrightarrow{\omega} \times \overrightarrow{\mathcal{K}}_o = \overrightarrow{\mathcal{M}}_O$, где $\overrightarrow{\omega}$ - угловая скорость твердого тела.

Орты подвижного репера $(O, \vec{\imath}, \vec{j}, \vec{k})$, жестко связанного с телом, направлены по главным осям инерции этого тела, и ω_x , ω_y , ω_z , \mathcal{K}_x , \mathcal{K}_y , \mathcal{K}_z и \mathcal{M}_x , \mathcal{M}_y , \mathcal{M}_z – координаты векторов $\vec{\omega}$, $\vec{\mathcal{K}}_o$, $\vec{\mathcal{M}}_O$ в подвижном репере.

В рассматриваемом случае $\mathcal{K}_x=J_{xx}\omega_x$, $\mathcal{K}_y=J_{yy}\omega_y$, $\mathcal{K}_x=J_{xx}\omega_x$, $\mathcal{K}_z=J_{zz}\omega_z$. Относительная производная $d'\vec{\mathcal{R}}_o/dt$ - производная в подвижном репере. Отсюда следует: $\frac{d'^{\vec{\mathcal{R}}_o}}{dt}=J_{xx}\dot{\omega}_x\vec{\iota}+J_{yy}\dot{\omega}_y\vec{\jmath}+J_{zz}\dot{\omega}_z\vec{k}$. Проектируя равенство $\frac{d'}{dt}\vec{\mathcal{R}}_o+\vec{\omega}\times\vec{\mathcal{R}}_o=\vec{\mathcal{M}}_O$ на подвижные орты, получаем динамические уравнения Эйлера:

$$J_{xx}\dot{\omega}_x + (J_{zz} - J_{yy})\omega_y\omega_z = \mathcal{M}_x$$

$$J_{yy}\dot{\omega}_y + (J_{xx} - J_{zz})\omega_x\omega_z = \mathcal{M}_y$$

$$J_{zz}\dot{\omega}_z + (J_{yy} - J_{xx})\omega_x\omega_y = \mathcal{M}_z$$

• Кинематические уравнения Эйлера

 \mathcal{M}_{x} , \mathcal{M}_{y} , \mathcal{M}_{z} - могут быть функциями не только времени и неизвестных ω_{x} , ω_{y} , ω_{z} динамических уравнений Эйлера, но и других переменных: другими переменными могут быть углы Эйлера φ , ψ , ϑ . Чтобы интегрировать динамические уравнения Эйлера в этих случаях нужно дополнить какимито уравнениями относительно всех тех переменных, от которых величины \mathcal{M}_{x} , \mathcal{M}_{y} , \mathcal{M}_{z} зависят. Дифференциальные уравнения относительно углов Эйлера (кинематические уравнения Эйлера):

$$\omega_x = \dot{\Psi} \sin \varphi \sin \vartheta + \dot{\vartheta} \cos \varphi$$

$$\omega_y = \dot{\Psi} \cos \varphi \sin \vartheta + \dot{\vartheta} \sin \varphi$$

$$\omega_z = \dot{\Psi} \cos \varphi + \dot{\varphi}$$

Уравнения движения свободного твердого тела

Рассмотрим движение твердого тела в репере $(0, \vec{e}_{\xi}, \vec{e}_{\eta}, \vec{e}_{\zeta})$. В то же время с телом свяжем подвижный репер $(C, \vec{\iota}, \vec{j}, \vec{k})$, где C - центр масс твердого тела, а $\vec{\iota}, \vec{j}, \vec{k}$ направлены по его главным центральным осям инерции.

 ω_x , ω_y , ω_z , \mathcal{K}_x , \mathcal{K}_y , \mathcal{K}_z и \mathcal{M}_x , \mathcal{M}_y , \mathcal{M}_z - координаты векторов $\overrightarrow{\omega}$, $\overrightarrow{\mathcal{K}}_{\mathbb{C}}$, $\overrightarrow{\mathcal{M}}_{\mathbb{C}}$ в подвижном репере. Выведем динамические уравнения Эйлера для данного (свободного) движения:

$$J_{xx}\dot{\omega}_x + (J_{zz} - J_{yy})\omega_y\omega_z = \mathcal{M}_x$$

$$J_{yy}\dot{\omega}_y + (J_{xx} - J_{zz})\omega_x\omega_z = \mathcal{M}_y$$

$$J_{zz}\dot{\omega}_z + (J_{yy} - J_{xx})\omega_x\omega_y = \mathcal{M}_z$$

Также выведем кинематические уравнения Эйлера:

$$\omega_x = \dot{\Psi} \sin \varphi \sin \vartheta + \dot{\vartheta} \cos \varphi$$

$$\omega_y = \dot{\Psi} \cos \varphi \sin \vartheta + \dot{\vartheta} \sin \varphi$$

$$\omega_z = \dot{\Psi} \cos \varphi + \dot{\varphi}$$

Для определения положения и скоростей точек твердого тела в неподвижном репере достаточно знать радиус-вектор \vec{r}_c и скорость $\vec{v}_c = \vec{r}_c$ центра масс С. Эти величины нам дает теорема о движении центра масс твердого тела: $m\vec{r}_c = \vec{F}$, где m – масса, \vec{F} - главный вектор действующих на него сил.

Приведённые выше уравнения - уравнениями движения свободного твердого тела.

Динамика точки с переменной массой

Материальной точкой переменной массы - геометрическая точка, снабженная массой, величина которой зависит от времени. *Тело переменной массы* - твердое тело, плотность которого есть функция не только координат, но и времени.

Уравнение Мещерского

Рассматриваем на промежутке времени $[t,t+\Delta t]$ механическую систему, образованную частицами, из которых состоит материальная точка в момент времени t, и частицами, которые присоединяются к этой точке за этот промежуток времени. Пусть:

m(t) - масса материальной точки в момент ${\sf t}$

 Δm_1 - суммарная масса всех присоединившихся частиц за промежуток времени $\lceil t, t + \Delta t
ceil$

 Δm_2 - суммарная масса всех отсоединившихся частиц за промежуток времени $[t,t+\Delta t]$

 $ec{v}(t)$ - скорость материальной точки в момент t

 $ec{v}_1(t)$ - скорость центра масс всех присоединившихся частиц в момент ${
m t}$

 $ec{v}_2(t)$ - скорость центра масс всех присоединившихся частиц в момент ${
m t}$

Если $\vec{Q}(t)$ - главный вектор количества движения рассматриваемой системы, то $\vec{Q}(t)=m(t)\vec{v}(t)+\Delta m_1\vec{u}_1(t)$ и $\vec{Q}(t+\Delta t)=m(t+\Delta t)\vec{v}(t+\Delta t)+\Delta m_2\vec{u}_2(t+\Delta t)$, откуда можно получить: $\frac{d\vec{Q}(t)}{dt}=\vec{F}(t)$ и $\lim_{\Delta t\to 0}\frac{\vec{Q}(t+\Delta t)-\vec{Q}(t)}{\Delta t}=\vec{F}(t)$ ($\vec{F}(t)$ - главный вектор внешних сил, приложенных к системе)

Из полученных выше уравнений получаем уравнение Мещерского движения материальной точки переменной массы:

$$m(t)rac{dec{v}(t)}{dt}=ec{F}(t)+ec{R}(t),$$
а $ec{R}(t)=rac{dm_1(t)}{dt}ec{u}_1^r(t)-rac{dm_2(t)}{dt}ec{u}_2^r(t)$ (реактивная сила) и $ec{u}_1^r(t)=ec{v}_1(t)-ec{v}(t),$ $ec{u}_2^r(t)=ec{v}_2(t)-ec{v}(t)$

(относительные скорости центров масс присоединяющихся и отделяющихся частиц в момент t).

Первая задача Циолковского:

Тяга – реактивная сила, возникающая в результате истечения некоторого вещества из сопел ракеты. Рассмотрим такую модель движения ракеты, в которой все силы, кроме тяги, равны нулю, а сама ракета принимается за точку переменной массы.

Относительная скорость выброса частиц из сопел ракеты: $\vec{u}^r(t) = \vec{u}(t) - \vec{v}(t) = -u^r \vec{\iota}$, ($\vec{\iota}$ – орт вектора тяги). Первая задача Циолковского состоит в том, чтобы по заданному изменению массы ракеты за время от t0 до t найти приращение ее скорости за это же время.

Здесь движение точки переменной массы определяется уравнением: $m(t)\frac{d\vec{v}(t)}{dt}=-\frac{dm(t)}{dt}u^r\vec{t}$ <=> $d\vec{v}=-u^r\frac{dm}{dt}\vec{t}$. Далее интегрируем от t_0 до t и получаем форму Циолковского: $\vec{v}(t)=\vec{v}(t_0)+(u^r\ln\frac{m(t_0)}{m(t)})\vec{t}$

Вторая задача Циолковского:

Рассмотрим движение ракеты вертикально вверх в однородном поле силы тяжести планеты. Рассмотрим модель движения ракеты, в которой на неё действует тяга, направленная вертикально вверх и сила тяжести, направленная вертикально вниз. Сама ракета - точка переменной массы.

Относительная скорость выброса частиц из сопел ракеты: $\vec{u}^r(t) = \vec{u}(t) - \vec{v}(t) = -u^r \vec{\iota}$, ($\vec{\iota}$ – орт вектора тяги). Закон изменения массы ракеты как функции времени: $m(t) = m(0) \exp(-\alpha t)$, где α не зависит от времени. Пусть s(t) - путь, пройденный ракетой за время t ($s(t_0) = 0$).

Вторая задача Циолковского состоит в том, чтобы найти закон изменения пути, пройденного ракетой за данное время, используя величины α , $m(t_0)$ и начальному значению её скорости в начальный момент времени.

Здесь движение точки переменной массы определяется уравнением: $m(t) \frac{d \vec{v}(t)}{dt} = m(t) \vec{g} + \frac{d m(t)}{dt} \vec{u}^r$, где \vec{g} - ускорение свободного падения в данном однородном поле силы тяжести (направленно вертикально вниз).

Находим ускорение, скорость и путь точки:

$$\frac{dv(t)}{dt} = (q-1)g$$

$$v(t) = (q-1)gt + v(0)$$

$$s(t) = (q-1)\frac{gt^2}{2} + v(0)t$$