

Taller 5:

Fecha de asignación: 17 de mayo 2023 Fecha de entrega: 02 de junio 2023 Grupo: 2 personas Profesor: Luis Barboza Artavia

Este taller pretende estudiar la implementación de código utilizando MPI. Realice una pequeña búsqueda para responder las siguientes preguntas:

- 1. ¿Qué es Message Passing Interface (MPI)?
- 2. ¿Qué es un rank en un proceso?
- 3. ¿Cómo se establece el código que ejecuta el nodo *raíz* y aquellos nodos que están conectados a éste?
- 4. ¿Qué es MPICH?

1. Instalación

El presente taller simulará un cluster en un mismo equipo. Para ello, se conectará la computadora con una máquina virtual. Siga los siguientes pasos para realizar la instalación:

- 1. Instalar VirtuaBox según la distribución de Linux que tiene o ejecutar el comando: sudo apt install virtualbox.
- 2. Descargar una imagen de Linux. Se recomienda que sea la misma versión del sistema operativo que tiene en la computadora.
- 3. Instalar la distribución de Linux en la máquina virtual.
- 4. Con la máquina virtual apagada ir a la opción de File, luego Tools y luego Network Manager de VirtualBox.
- 5. Oprimir el botón Create. Se creará una Red llamada vboxnet0.
- 6. Abrir las opciones de la máquina virtual de la distribución creada. Elegir la opción Network.
- 7. Se presentan varias opciones de adaptadores, por lo que debe elegir Adapter 2. Se debe habilitar y en la opción de Attached to elegir Host-only Adapter. El nombre que aparecerá es vboxnet0.

- 8. Encender la máquina virtual y buscar la dirección IP. Se puede realizar con el comando ifconfig.
- 9. Buscar inet que se encuentra en enpos8. Por ejemplo, puede ser 192.168.56.102.
- 10. Se establecerá una dirección estática para la máquina virtual, por lo que se debe modificar el siguiente archivo con el siguiente comando:

sudo nano /etc/network/interfaces
y agregar el siguiente texto:

auto enp0s8 inet static address 192.168.56.102 netmask 255.255.255.0

Nota: en este ejemplo se está utilizando la dirección 192.168.56.102.

- 11. Reiniciar la red en la máquina virtual con el comando: sudo systemctl restart networking
- 12. Realizar ping desde y hacia la máquina virtual con el fin de determinar que existe una comunicación entre la máquina virtual y la "física". Adjuntar captura de pantalla evidenciando este paso.

1.1. Configurando el cluster

Una vez que se tiene configurada la máquina virtual, se procederá a crear el cluster. Estará compuesto por un nodo maestro y uno conectado a él (máquina virtual). Se establecerá cuál paso debe realizarse en el nodo maestro y cuál en el otro nodo.

1. (AMBOS) Modificar el archivo del nombre de los nodos, para ello ejecutar: sudo nano /etc/hosts

y agregar lo siguiente de acuerdo a las direcciones de ambas máquinas. node0 será el maestro:

192.168.0.3 node0 192.168.56.102 node1

- 2. (MAESTRO) Instalar NFS con el comando: sudo apt-get install nfs-server
- 3. (CLIENTE VM) Instalar NFS con el comando: sudo apt-get install nfs-client
- 4. (AMBOS) Crear una carpeta llamada *mirror* con el comando: mkdir /mirror
- 5. (MAESTRO) Compartir la carpeta del maestro con el comando: sudo nano /etc/exports y agregando la línea:

/mirror *(rw,sync,insecure)

Luego de realizar esto se reinicia NFS con el comando: sudo service nfs-kernel-server restart

- 6. (CLIENTE) Montar la carpeta del maestro en el nodo con el comando: sudo mount node0:/mirror/mirror
- 7. (AMBOS) Crear un usuario con el nombre *mpiu-suNombre*. Por ejemplo, *mpiu-luis*. Ambos deben tener la misma contraseña.
- 8. (MAESTRO) Cambiar el dueño de la carpeta *mirror* mediante el comando: sudo chown mpiu-luis /mirror
- 9. (AMBOS) Instalar SSH Server con el comando: sudo apt-get install openssh-server
- 10. (AMBOS) Realizar los siguientes comandos:
 - su mpiu-luis
 - ssh-keygen -t rsa
 - cd .ssh
 - cat id_rsa.pub >> authorized_keys
- 11. (MAESTRO) Copiar la llave pública generada por el nodo cliente. ssh-copy-id node1

- 12. (CLIENTE) Copiar la llave pública generada por el nodo maestro. ssh-copy-id node0
- 13. (AMBOS) Realizar SSH entre ambos nodos con el comando. Del lado del maestro utilizar node1 y del lado del cliente utilizar node0. Adjuntar captura de pantalla evidenciando este paso.

ssh nodeX hostname

- 14. (MAESTRO) Instalar GCC con el comando: sudo apt-get install build-essential
- 15. (AMBOS) Instalar MPICH con el comando: sudo apt-get install -y mpich
- 16. (MAESTRO) Ingresar a la carpeta *mirror* con el comando cd mirror/ y crear un archivo llamado *machinefile* con el comando:

sudo nano machinefile

y agregue lo siguiente. Esto indica que el nodo0 utilizará 4 procesos y el nodo1 dos procesos.

node0:6 node1:2

- 17. (MAESTRO) Copie el archivo *hello_mpi.c* en la carpeta *mirror*.
- 18. (MAESTRO) Compilar con el siguiente comando:

mpicc hello_mpi.c -o hello_mpi

19. (MAESTRO) Ejecutar con el siguiente comando:

mpiexec -n 8 -f machinefile ./hello_mpi

donde el 8 es la cantidad de procesos. Adjuntar captura de pantalla evidenciando este paso.

2. Análisis

Analice el código del archivo sum_mpi.c. Establezca el propósito de las siguientes llamadas:

- MPI_Send
- MPI_Recv
- MPI_Finalize

Compile y ejecute el código y muestre mediante una captura de pantalla el resultado.

3. Ejercicios prácticos

1. Proponga una aplicación que involucre procesamiento distribuido. Implemente dicha aplicación tanto serial (sin paralelismo) como con MPI. Mida tiempos de ejecución para diferentes tamaños y/o iteraciones.

4. Entregables

Se debe de subir en la sección de Evaluaciones los siguientes archivos en una carpeta comprimida: código fuente con la solución de los problemas, README con las instrucciones necesarias para compilar los archivos y un PDF con las respuestas de la investigación y análisis.

Si tienen dudas puede escribir al profesor al correo electrónico. Los documentos serán sometidos a control de plagios. La entrega se debe realizar por medio del TEC-Digital en la pestaña de evaluación. No se aceptan entregas extemporáneas después de la fecha de entrega a las 23:59 como máximo.

Taller 5 MPI Página 5 de 5