Intro to Data Analytics and Visualizations

Lecture 11 - Managing Data Fall 2014, September19

Outline

- 1. Fixing data quality problems
 - 1.1 Dealing with Missing Values
 - 1.2 Transformations
- 2. Organizing your data for the modeling process

Why Manage?

- Spotted issues in the exploring step (numerical summaries and visualizations)
- Decide what to do about the spotted issues
- Fix
- Re-Organize
 Note: keep track of everything you do.

3

Sampling and Validation

- · Test and training splits
- · Creating a sample group column
- Record grouping
- Data provenance

Sampling and Validation

- Sample to:
- Make models run faster;
- Make graphs more informative;
- Ensure that the dataset is representative;
- Similar to population sampling for political polling.

Test and Training Splits

- Training data set: available data that you use to build a model;
- Test (or hold-out) set: once the model is built, does it work correctly? Us the test set to "test" the model.
- Split the available dataset in two parts: training and test set before you start modeling. Next insurance example could use that.

Data Science Problem

- Progressive, the insurance company, would like to have a quick way to quote the premium for an insurance policy on a car.
- The insurance agent only has 5 minutes to spend on the phone with a potential new customer.
- The only information the agent gets is the caller's age and the caller's vehicle age.
- How can a data scientist help with this problem?

Data Science Problem

 Suppose the company has data from the insurance policies written in the past. If saved in a data frame, we would have three variables: Premium, Driver Age and Vehicle Age. How can we fit a model so that we can predict the Premium for a future, only knowing the Driver Age and Vehicle Age?

Data Science Problem

Historical Data

Decision Trees (Predictive task)

- We can build a decision tree. Decision trees are a class of techniques used to characterize the relationship between a response and a collection of covariates. In R, you can fit a decision tree, and then plot it to have a visualization of the tree.
- In R:
- library(tree)
- insurance_tree <- tree(Premium ~ Driver_age + Vehicle_age, data = training.cars)
- plot(insurance_tree)

Decision Trees (Training Set=20% of data)																								
																								L
Vehicle Age	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	L
0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	3	3	3	3	3	3	3	ŀ
1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	3	3	3	3	3	3	3	H
2	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	3	3	3	3	3	3	3	H
<u>3</u>	10	10	10	10	10	10	10	10	10	10	10	10	10	10 10	10 10	10 10	3	3	3	3	3	3	3	H
_		10	10	10	10	10	10	10	10	10	10	10	10		_									H
<u>5</u>	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8 8	5	5 5	5 5	5 5	5 5	5	5	5 5	H
<u>6</u> 7	8	8	8	8	8	8		8			8			8	8			5		5	5 5	5 5	5	H
8	8	8	8	8	8	8	8	8	8	8	8	8		8	8	5		5	5	5	5	5	5	H
9	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	5	5	5	5	5	5	5	5	H
10	8	8	8	o	o	0	0	o	0	o	o	0	0	0	o	٦	٦	;	5	5	5	5	5	H
10	U	U	U																3			,	3	۲
																		_						-
						10	ehicle		< 4.5	7	<u>∕er_A</u>	-		Vehic 3	le_Aç	je < 4	.5 5							

Decision Trees (Testing Set)

Predict.tree(insurance_tree, data = testing.cars)

In_class3

- 1) Merge median income dataset and custdata dataset. (Lookup the "merge" R function in help and how to use it).
- Create a new variable called "norm.income" by scaling the "income" variable. Use the appropriate median income for scaling.
- Get numerical summaries of the new variable.
- Comment on a situation when this normalization would make sense (e.g take the new job in that other state or not?).
- 2) Split the new dataset into a 30% training set and a 70% testing set.