CREDIT CARD FRAUD DETECTION REPORT

Hiranmai Karedla AITS VIJAYAWADA hiranmai.k15@iiits.in

ABSTRACT

Now a days cyber crimes have been increased. The problem we are dealing is finding a credit card transaction is fraudulent or not using machine learning. This is binary classification problem solved using 3 layered neural networks.

Exploratory Data Analysis, Data Preprocessing, Modeling, Evaluation tasks are performed for the data.

INTRODUCTION

Dataset:

- The dataset is of size 284807 rows with 30 independent variables and 1 target variable.
- The data set contains
 285315 non fraud cases and
 492 fraud cases.

EXPLORATORY DATA ANALYSIS

 Distribution of Amount of Transaction

- Normalization of the Data
- Correlation between the variables

Distribution of one of the important variable

and 1. Probability above 0.5 as one class and below 0.5 as other.

MODELING

- The Dataset is split into (80-20) train and test sets.
- Create a three layered neural network with nodes [10 -5 -1]
- Input dimension is 30 (No of features)

- Layers are Dense(fully connected)
- At the output Sigmoid
 Activation function is used.It
 gives probability between 0

 Adam Optimization function is used for updating weights through backpropagation

For each Parameter w^{j} $\nu_{t} = \beta_{1} * \nu_{t-1} - (1 - \beta_{1}) * g_{t}$ $s_{t} = \beta_{2} * s_{t-1} - (1 - \beta_{2}) * g_{t}^{2}$ $\Delta\omega_{t} = -\eta \frac{\nu_{t}}{\sqrt{s_{t} + \epsilon}} * g_{t}$ $\omega_{t+1} = \omega_{t} + \Delta\omega_{t}$

- $\eta: Initial\ Learning\ rate$
- g_t : Gradient at time t along ω^j
- ν_t : Exponential Average of gradients along ω_i
- s_t : Exponential Average of squares of gradients along ω_j
- $\beta_1, \beta_2: Hyperparameters$

EVALUATION METRICS

used or classification problems

Confusion Matrix:

F1 score :
 2 * (Precision * Recall)
 (precision + Recall)

RESULTS

Training Accuracy: 99.944 %

Test Accuracy: 99.827%

Hence there is no overfitting and

no under fitting.

ision	recall	f1-score	support 56864	
	1.00	1.00	56864	
0.00				
0.00	0.00	0.00	98	
		1.00	56962	
0.50	0.50	0.50	56962	
1.00	1.00	1.00	56962	
			0.50 0.50 0.50	0.50 0.50 0.50 56962

CONCLUSION

From the above results the three layered neural network model performed well for the data in both train and test set with satisfying results.