

Global United Technology Services Co., Ltd.

Report No.: GTS16000394E01

FCC Report (WIFI)

Applicant: Seeed Technology Co., Ltd.

Address of Applicant: F5, Building 8, Shiling Industrial Park, Xinwei, Number32,

Tongsha Road Xili Town, Nanshan, Shenzhen, China

Equipment Under Test (EUT)

Product Name: 2.4G WiFi Module

Model No.: SEEEDAIR

Trade Mark: Seeedstudio

Z4T-SEEEDAIR FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014

Date of sample receipt: March 11, 2016

Date of Test: March 11-16, 2016

March 17, 2016 Date of report issued:

Test Result: PASS *

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	March 17, 2016	Original

Prepared By:	Zolward.Pan	Date:	March 17, 2016
	Project Engineer		
Check By:	hank. yan	Date:	March 17, 2016
	Reviewer		

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES.	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT.	5
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	7
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES.	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	13
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2		
8	TES	T SETUP PHOTO	52
۵	EUT	CONSTRUCTIONAL DETAILS	E.A

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Reamrk: Test according to ANSI C63.10 2013 and ANSI C63.4: 2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)	
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)	
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)	
AC Power Line Conducted Emission $0.15 \text{MHz} \sim 30 \text{MHz}$ $\pm 3.45 \text{dB}$ (1)				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.	

5 General Information

5.1 Client Information

Applicant:	Seeed Technology Co., Ltd.	
Address of Applicant:	F5, Building 8, Shiling Industrial Park, Xinwei, Number32, Tongsha Road Xili Town, Nanshan, Shenzhen, China	
Manufacturer/ Factory:	Seeed Technology Co., Ltd.	
Address of Manufacturer/ Factory:	F5, Building 8, Shiling Industrial Park, Xinwei, Number32, Tongsha Road Xili Town, Nanshan, Shenzhen, China	

5.2 General Description of EUT

Product Name:	2.4G WiFi Module
Model No.:	SEEEDAIR
Operation Frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz
	802.11n(HT40): 2422MHz~2452MHz
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
	802.11(HT40): 7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(H20)/802.11n(H40):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Chip Antenna
Antenna gain:	1.5dBi (declare by Applicant)
Power supply:	DC 5.0V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Γ		Frequency	(MHz)
	Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)
	Lowest channel	2412MHz	2422MHz
	Middle channel	2437MHz	2437MHz
	Highest channel	2462MHz	2452MHz

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode (Duty cycle >98%)
-------------------	--

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
DELTA	ADAPTER	ADP-60ADT	N/A	FCC VOC
Apple	PC	A1278	C1MN99ERDTY3	FCC DOC

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 27 2015	Mar. 26 2016	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 03 2015	Dec. 02 2016	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 30 2015	June 29 2016	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 30 2015	June 29 2016	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 26 2015	June 25 2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 30 2015	June 29 2016	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 30 2015	June 29 2016	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 26 2015	June 25 2016	
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016	
17	Power Meter	Anritsu	ML2495A	GTS540	June 30 2015	June 29 2016	
18	Power Sensor	Anritsu	MA2411B	GTS541	June 30 2015	June 29 2016	

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 06 2015	Sep. 05 2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 30 2015	June 29 2016		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 30 2015	June 29 2016		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 30 2015	June 29 2016		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	June 30 2015	June 29 2016		
6	Coaxial Cable	GTS	N/A	GTS227	June 30 2015	June 29 2016		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Gen	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is chip antenna, the best case gain of the antenna is 1.5dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,			
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Francisco (MILIF)	Limit (d	IBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test setup:	Reference Plane		_		
	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	ver		
Test procedure:	The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe	n network (L.I.S.N.). Th	nis provides a		
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).				
	Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10:	d the maximum emission all of the interface cab	on, the relative bles must be changed		
Test Instruments:	Refer to section 6.0 for details	· · · · · · · · · · · · · · · · · · ·			
Test mode:	Refer to section 5.3 for details	· · · · · · · · · · · · · · · · · · ·			
Test results:	Pass				

Measurement data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0394 Test mode : WiFi mode Test Engineer: Arslan

est	Engineer.	Read		Cable		Limit	0ver	
	Freq		Factor					Remark
	MHz	dBuV	dB	d B	dBuV	dBu√	dB	
1	0.169	46.64	0.27	0.12	46.91	64.99	-18.08	QP
2	0.211	44.39	0.26	0.13	44.65	63.18	-18.53	QP
3	0.252	40.13	0.23	0.11	40.36	61.69	-21.33	QP
4 5	0.494	35.11	0.23	0.11	35.34	56.10	-20.76	QP
5	0.641	38.15	0.26	0.13	38.41	56.00	-17.59	QP
6	1, 296	35, 07	0. 25	0.13	35, 32	56, 00	-20.68	ΩP

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0394 Test mode : WiFi mode Test Engineer: Arslan

	Freq	Read Level	Factor	Cable Loss		Limit Line	Over Limit	Remark
8	MHz	dBuV	dB	dB	dBuV	dBuV	dB	177
1	0.168	47.64	0.19	0.12	47.83		-17.25	
2 3	0. 211 0. 505	45. 27 38. 08	0. 20 0. 17		38.25	56.00	-17. 71 -17. 75	QP
4 5	0.641 1.449	38. 52 36. 96	0. 20 0. 22		38. 72 37. 18		-17. 28 -18. 82	
6	4.202	35.04	0.29	0.15	35.33			

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

Test CH		Peak Outp	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Liiiit(abiii)	rvesuit
Lowest	13.96	12.22	12.58	10.56		
Middle	13.45	12.37	12.03	11.30	30.00	Pass
Highest	15.33	14.06	13.76	11.35		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Limit(KHz)	Result			
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Lilliu(Ki iz)	Nesuit
Lowest	10.561	16.559	17.812	36.624		
Middle	10.519	16.568	17.828	36.607	>500	Pass
Highest	9.341	16.549	17.829	36.416		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Power Sp	Limit(dBm/3kHz)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Elillit(dBill/3Ki12)	Nesuit
Lowest	2.50	-2.96	-5.10	-9.59		
Middle	1.04	-3.61	-5.27	-9.04	8.00	Pass
Highest	4.32	0.52	-3.71	-9.29		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method: ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 delow that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Peak Search

R T

Test plot as follows:

Agilent

Test mode:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement: FCC Part15 C Section 15,209 and 15,205 Test Method: ANSI C63.10:2013 Test Frequency Range: All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Value Above 1GHz Peak 1MHz 3MHz Peak Above 1GHz RMS 1MHz 3MHz Peak Above 1GHz Peak 1MHz 3MHz Peak Average Test setup: Test setup: Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded	7.6.2 Radiated Emission Me	etnoa					
Test Frequency Range: All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. Test site:	Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test site: Measurement Distance: 3m Frequency Detector RBW VBW Value Peak 1MHz 3MHz Average Limit: Frequency Limit (dBuV/m @3m) Value Above 1GHz Frequency Limit (dBuV/m @3m) Value Above 1GHz Frequency Limit (dBuV/m @3m) Value Above 1GHz Frequency Above 1GHz Tation Peak Test setup: Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.	Test Method:	ANSI C63.10:2013					
Test site: Receiver setup: Frequency Detector RBW VBW Value	Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Receiver setup: Frequency	Test site:	, , , , , , , , , , , , , , , , , , ,					
Limit: Frequency	Receiver setup:					Value	
Limit: Frequency Limit (dBuV/m @3m) Value Above 1GHz Frequency Above 1GHz Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and then rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 6.0 for details Test mode:	•			1MHz			
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tunned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 5.3 for details		Above 1GHz					
Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Refer to section 6.0 for details Refer to section 5.3 for details	Limit:	Freque			·		
Test setup: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was tuned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Refer to section 6.0 for details Test mode: Refer to section 5.3 for details				· · · · · · · · · · · · · · · · · · ·			
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then tota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 5.3 for details		Above 1	GHZ	74.0	0		
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 6.0 for details Refer to section 5.3 for details	rest setup.	EUT Turn Table	m im	Horn Anter Spectrum Analyzer	nna		
Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.3 for details	Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rotathe maximum 5. The test-rece Specified Ba 6. If the emission the limit specified ba 10dB meak or average sheet. 7. The radiation And found the self-minimum sheet.	t a 3 meter came position of the set 3 meters a ch was mounted the mand of the termine the termine was turned and the termine	ber. The tall highest race way from the don the top of the top of the tall from one not included in the EUT of the top of the tall from 0 decays as set to Peak as set to Peak as could be done of the tall from 0 decays as a could be done of the tall from 0 decays as a could be done of the tall from the tall fr	ble was rotal diation. The interference of a variable neter to four the of the field the antenna at the was arranged has from 1 mgrees to 360 at Detect Full diagnostic mode was a stopped and the emissione by one und then reported in X, Y, it is worse call	ated 360 degrees to ace-receiving le-height antenna or meters above the strength. Both are set to make the ed to its worst case meter to 4 meters of degrees to find function and another to a degree to the ed to its worst case meter to 4 meters of degrees to find another to another to another to another to a degree to find another to a degree to find another to a degree to find a degree to find another to a degree to find another to find a degree to find a degree to find a degree to find a degree to find another to find a degree	
Test mode: Refer to section 5.3 for details	Test Instruments:			o rope			

Lowest

Measurement data:

Test mode:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:

802.11b

Peak value:		•						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	52.18	27.59	5.38	34.01	51.14	74.00	-22.86	Horizontal
2400.00	61.37	27.58	5.39	34.01	60.33	74.00	-13.67	Horizontal
2390.00	53.90	27.59	5.38	34.01	52.86	74.00	-21.14	Vertical
2400.00	63.31	27.58	5.39	34.01	62.27	74.00	-11.73	Vertical
Average va	lue:	•		•	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.79	27.59	5.38	34.01	37.75	54.00	-16.25	Horizontal
2400.00	47.14	27.58	5.39	34.01	46.10	54.00	-7.90	Horizontal
2390.00	40.65	27.59	5.38	34.01	39.61	54.00	-14.39	Vertical
2400.00	48.31	27.58	5.39	34.01	47.27	54.00	-6.73	Vertical
		-		-	•	-		-
Test mode:		802.1	1b	Te	st channel:	ŀ	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	53.07	27.53	5.47	33.92	52.15	74.00	-21.85	Horizontal
2500.00	48.72	27.55	5.49	29.93	51.83	74.00	-22.17	Horizontal
2483.50	55.43	27.53	5.47	33.92	54.51	74.00	-19.49	Vertical
2500.00	51.33	27.55	5.49	29.93	54.44	74.00	-19.56	Vertical
Average va	lue:							
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polarization

2500.00 Remark:

(MHz)

2483.50

2500.00

2483.50

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

(dB)

5.47

5.49

5.47

5.49

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

(dB)

33.92

29.93

33.92

29.93

(dBuV/m)

38.31

38.34

40.31

40.25

(dBuV/m)

54.00

54.00

54.00

54.00

(dBuV)

39.23

35.23

41.23

37.14

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

(dB/m)

27.53

27.55

27.53

27.55

(dB)

-15.69

-15.66

-13.69

-13.75

Horizontal

Horizontal

Vertical

Vertical

802.11g

Test mode:

Report No.: GTS16000394E01

Lowest

			3					
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.73	27.59	5.38	34.01	49.69	74.00	-24.31	Horizontal
2400.00	59.44	27.58	5.39	34.01	58.40	74.00	-15.60	Horizontal
2390.00	52.35	27.59	5.38	34.01	51.31	74.00	-22.69	Vertical
2400.00	60.99	27.58	5.39	34.01	59.95	74.00	-14.05	Vertical
Average va	lue:			•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.76	27.59	5.38	34.01	36.72	54.00	-17.28	Horizontal
2400.00	45.95	27.58	5.39	34.01	44.91	54.00	-9.09	Horizontal
2390.00	39.51	27.59	5.38	34.01	38.47	54.00	-15.53	Vertical
2400.00	47.01	27.58	5.39	34.01	45.97	54.00	-8.03	Vertical
Test mode:		802.1	1g	Tes	st channel:	F	lighest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.00	27.53	5.47	33.92	50.08	74.00	-23.92	Horizontal
2500.00	47.12	27.55	5.49	29.93	50.23	74.00	-23.77	Horizontal
2483.50	53.07	27.53	5.47	33.92	52.15	74.00	-21.85	Vertical
2500.00	49.46	27.55	5.49	29.93	52.57	74.00	-21.43	Vertical
Average va	lue:				_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.99	27.53	5.47	33.92	37.07	54.00	-16.93	Horizontal
2500.00	34.26	27.55	5.49	29.93	37.37	54.00	-16.63	Horizontal
2483.50	39.85	27.53	5.47	33.92	38.93	54.00	-15.07	Vertical
2500.00	36.11	27.55	5.49	29.93	39.22	54.00	-14.78	Vertical
Remark:								

Test channel:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone,

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

 ${\it Xixiang Road, Baoan District, Shenzhen, Guangdong, China}$

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:

Report No.: GTS16000394E01

Lowest

Peak value:		•		•		•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.78	27.59	5.38	34.01	49.74	74.00	-24.26	Horizontal
2400.00	59.50	27.58	5.39	34.01	58.46	74.00	-15.54	Horizontal
2390.00	52.40	27.59	5.38	34.01	51.36	74.00	-22.64	Vertical
2400.00	61.06	27.58	5.39	34.01	60.02	74.00	-13.98	Vertical
Average va	lue:			•	•	•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.79	27.59	5.38	34.01	36.75	54.00	-17.25	Horizontal
2400.00	45.99	27.58	5.39	34.01	44.95	54.00	-9.05	Horizontal
2390.00	39.54	27.59	5.38	34.01	38.50	54.00	-15.50	Vertical
2400.00	47.05	27.58	5.39	34.01	46.01	54.00	-7.99	Vertical
				•	•	•		•
Test mode:		802.1	1n(HT20)	Те	st channel:	H	lighest	
Peak value:	!							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.06	27.53	5.47	33.92	50.14	74.00	-23.86	Horizontal
2500.00	47.17	27.55	5.49	29.93	50.28	74.00	-23.72	Horizontal
2483.50	53.14	27.53	5.47	33.92	52.22	74.00	-21.78	Vertical
2500.00	49.51	27.55	5.49	29.93	52.62	74.00	-21.38	Vertical
Average va	Average value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	38.02	27.53	5.47	33.92	37.10	54.00	-16.90	Horizontal
2500.00	34.29	27.55	5.49	29.93	37.40	54.00	-16.60	Horizontal
2483.50	39.89	27.53	5.47	33.92	38.97	54.00	-15.03	Vertical
2500.00	36.14	27.55	5.49	29.93	39.25	54.00	-14.75	Vertical
Remark:								

Test channel:

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

802.11n(HT20)

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:

Report No.: GTS16000394E01

Lowest

Peak value	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	49.89	27.59	5.38	34.01	48.85	74.00	-25.15	Horizontal
2400.00	58.31	27.58	5.39	34.01	57.27	74.00	-16.73	Horizontal
2390.00	51.45	27.59	5.38	34.01	50.41	74.00	-23.59	Vertical
2400.00	59.64	27.58	5.39	34.01	58.60	74.00	-15.40	Vertical
Average va	lue:				<u>.</u>			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.16	27.59	5.38	34.01	36.12	54.00	-17.88	Horizontal
2400.00	45.26	27.58	5.39	34.01	44.22	54.00	-9.78	Horizontal
2390.00	38.84	27.59	5.38	34.01	37.80	54.00	-16.20	Vertical
2400.00	46.25	27.58	5.39	34.01	45.21	54.00	-8.79	Vertical
				•	•	•		
Test mode:		802.1	1n(HT40)	Te	st channel:	H	lighest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	49.79	27.53	5.47	33.92	48.87	74.00	-25.13	Horizontal
2500.00	46.18	27.55	5.49	29.93	49.29	74.00	-24.71	Horizontal
2483.50	51.69	27.53	5.47	33.92	50.77	74.00	-23.23	Vertical
2500.00	48.36	27.55	5.49	29.93	51.47	74.00	-22.53	Vertical
Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.26	27.53	5.47	33.92	36.34	54.00	-17.66	Horizontal
2500.00	33.69	27.55	5.49	29.93	36.80	54.00	-17.20	Horizontal
2483.50	39.05	27.53	5.47	33.92	38.13	54.00	-15.87	Vertical
2500.00	35.51	27.55	5.49	29.93	38.62	54.00	-15.38	Vertical
Remark:								

Test channel:

802.11n(HT40)

Nemark.

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Test plot as follows:

Test mode: 802.11b

30MHz~10GHz

R T Peak Search Agilent Next Peak ef 20 dBm Atten 30 dB Next Pk Right Next Pk Left Min Search Stop 25.000 GH: Sweep 1.434 s (601 pts) Start 10.000 GHz #VBW 300 kHz Pk-Pk Search Res BW 100 kHz Type Freq Trace (1) X Axis 14.175 GHz Amplitude -51.95 dBm Mkr → CF More 1 of 2

10GHz~25GHz

Copyright 2000-2012 Agilent Technologies

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Test mode:

802.11g

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Peak Search

Test mode:

802.11n(HT20)

Lowest channel

30MHz~10GHz

Next Peak Atten 30 dE Next Pk Right Next Pk Left Min Search Stop 25.000 GH: Sweep 1.434 s (601 pts) Start 10.000 GHz #VBW 300 kHz Pk-Pk Search Res BW 100 kHz Type Freq Amplitude -51.92 dBm Trace (1) X Axis 15.000 GHz Mkr → CF More 1 of 2 Copyright 2000-2012 Agilent Technologies

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Test mode:

802.11n(HT40)

Lowest channel

30MHz~10GHz

Peak Search 14.600 GHz -51.50 dBm Atten 30 dB Next Peak Next Pk Right Next Pk Left Min Search Stop 25.000 GH Sweep 1.434 s (601 pts) ■Res BW 100 kHz Pk-Pk Search #VBW 300 kHz X Axis 14.600 GHz -51.50 dBm Mkr → CF More 1 of 2 Copyright 2000-2012 Agilent Technologies

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209								
Test Method:	ANSI C63.10:201	13								
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz								
Test site:	Measurement Dis	Measurement Distance: 3m Frequency Detector RBW VBW Value								
Receiver setup:	Frequency	Frequency Detector RBW VBW								
	30MHz-1GHz	30MHz-1GHz Quasi-peak 120KHz 300KHz C								
	Al 4011-	Above 1GHz Peak 1MHz 3MHz								
	Above IGHZ	Above 1GHz RMS 1MHz 3MHz								
Limit:	Frequen	ісу	Limit (dBuV	/m @3m)	Value					
	30MHz-88	MHz	40.0	00	Quasi-peak					
	88MHz-216	88MHz-216MHz 43.50 Quasi-p								
	216MHz-96	216MHz-960MHz 46.00 Quasi-peak								
	960MHz-1	960MHz-1GHz 54.00 Quasi-peak								
	A1	54 00 Average								
	Above 10	Above 1GHz 74.00 Peak								
	Turn Table 0.8m	4m		Search Antenna RF Test Receiver						
	Above 1GHz Antenna Tower Horn Antenna Spectrum									
	Turn Table v 1.5	m ; 🔻 🗀		Analyzer						

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
36.00	37.02	14.58	0.62	30.06	22.16	40.00	-17.84	Vertical
96.10	40.10	14.90	1.16	29.72	26.44	43.50	-17.06	Vertical
155.91	53.27	10.51	1.60	29.38	36.00	43.50	-7.50	Vertical
213.02	44.20	12.97	1.92	29.32	29.77	43.50	-13.73	Vertical
574.63	33.66	20.03	3.63	29.30	28.02	46.00	-17.98	Vertical
798.98	31.40	22.06	4.45	29.20	28.71	46.00	-17.29	Vertical
71.83	46.50	10.32	0.96	29.84	27.94	40.00	-12.06	Horizontal
119.86	42.21	12.48	1.36	29.57	26.48	43.50	-17.02	Horizontal
155.91	50.05	10.51	1.60	29.38	32.78	43.50	-10.72	Horizontal
215.27	47.03	13.03	1.93	29.35	32.64	43.50	-10.86	Horizontal
270.38	43.06	14.38	2.22	29.80	29.86	46.00	-16.14	Horizontal
390.72	38.28	16.87	2.81	29.54	28.42	46.00	-17.58	Horizontal

■ Above 1GHz

Test mode:		802.11b		Test	channel:	Lowe	st	
Peak value:		•		'		•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.58	31.79	8.62	32.10	48.89	74.00	-25.11	Vertical
7236.00	34.40	36.19	11.68	31.97	50.30	74.00	-23.70	Vertical
9648.00	32.84	38.07	14.16	31.56	53.51	74.00	-20.49	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.21	31.79	8.62	32.10	47.52	74.00	-26.48	Horizontal
7236.00	34.13	36.19	11.68	31.97	50.03	74.00	-23.97	Horizontal
9648.00	32.41	38.07	14.16	31.56	53.08	74.00	-20.92	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.64	31.79	8.62	32.10	37.95	54.00	-16.05	Vertical
7236.00	23.26	36.19	11.68	31.97	39.16	54.00	-14.84	Vertical
9648.00	23.19	38.07	14.16	31.56	43.86	54.00	-10.14	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.73	31.79	8.62	32.10	37.04	54.00	-16.96	Horizontal
7236.00	22.70	36.19	11.68	31.97	38.60	54.00	-15.40	Horizontal
9648.00	22.16	38.07	14.16	31.56	42.83	54.00	-11.17	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		-	Test o	channel:	Mi	ddle	
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pread Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m	i i imit	polarization
4874.00	39.59	31.85	8.66	32.1	2	47.98	74.00	-26.02	Vertical
7311.00	34.44	36.37	11.71	31.9)1	50.61	74.00	-23.39	Vertical
9748.00	33.84	38.27	14.25	31.5	6	54.80	74.00	-19.20	Vertical
12185.00	*						74.00		Vertical
14622.00	*						74.00		Vertical
17059.00	*						74.00		Vertical
4874.00	40.03	31.85	8.66	32.1	2	48.42	74.00	-25.58	Horizontal
7311.00	33.06	36.37	11.71	31.9	91	49.23	74.00	-24.77	Horizontal
9748.00	33.72	38.27	14.25	31.5	6	54.68	74.00	-19.32	Horizontal
12185.00	*						74.00		Horizontal
14622.00	*						74.00		Horizontal
17059.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m	I I imit	polarization
4874.00	30.42	31.85	8.66	32.1	2	38.81	54.00	-15.19	Vertical
7311.00	22.75	36.37	11.71	31.9	91	38.92	54.00	-15.08	Vertical
9748.00	23.09	38.27	14.25	31.5	6	44.05	54.00	-9.95	Vertical
12185.00	*						54.00		Vertical
14622.00	*						54.00		Vertical
17059.00	*						54.00		Vertical
4874.00	30.13	31.85	8.66	32.1	2	38.52	54.00	-15.48	Horizontal
7311.00	22.15	36.37	11.71	31.9	91	38.32	54.00	-15.68	Horizontal
9748.00	23.43	38.27	14.25	31.5	6	44.39	54.00	-9.61	Horizontal
12185.00	*						54.00		Horizontal
14622.00	*						54.00		Horizontal
17059.00	*						54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	45.29	31.90	8.70	32.15	53.74	74.00	-20.26	Vertical
7386.00	35.22	36.49	11.76	31.83	51.64	74.00	-22.36	Vertical
9848.00	37.21	38.62	14.31	31.77	58.37	74.00	-15.63	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	44.53	31.90	8.70	32.15	52.98	74.00	-21.02	Horizontal
7386.00	34.09	36.49	11.76	31.83	50.51	74.00	-23.49	Horizontal
9848.00	33.37	38.62	14.31	31.77	54.53	74.00	-19.47	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val			,					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	36.17	31.90	8.70	32.15	44.62	54.00	-9.38	Vertical
7386.00	25.13	36.49	11.76	31.83	41.55	54.00	-12.45	Vertical
9848.00	25.71	38.62	14.31	31.77	46.87	54.00	-7.13	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.87	31.90	8.70	32.15	43.32	54.00	-10.68	Horizontal
7386.00	23.47	36.49	11.76	31.83	39.89	54.00	-14.11	Horizontal
9848.00	22.62	38.62	14.31	31.77	43.78	54.00	-10.22	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. " \ast ", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.24	31.79	8.62	32.10	47.55	74.00	-26.45	Vertical
7236.00	33.55	36.19	11.68	31.97	49.45	74.00	-24.55	Vertical
9648.00	32.24	38.07	14.16	31.56	52.91	74.00	-21.09	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.07	31.79	8.62	32.10	46.38	74.00	-27.62	Horizontal
7236.00	33.39	36.19	11.68	31.97	49.29	74.00	-24.71	Horizontal
9648.00	31.85	38.07	14.16	31.56	52.52	74.00	-21.48	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	28.41	31.79	8.62	32.10	36.72	54.00	-17.28	Vertical
7236.00	22.44	36.19	11.68	31.97	38.34	54.00	-15.66	Vertical
9648.00	22.60	38.07	14.16	31.56	43.27	54.00	-10.73	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	27.67	31.79	8.62	32.10	35.98	54.00	-18.02	Horizontal
7236.00	21.99	36.19	11.68	31.97	37.89	54.00	-16.11	Horizontal
9648.00	21.62	38.07	14.16	31.56	42.29	54.00	-11.71	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. " \ast ", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.48	31.85	8.66	32.12	46.87	74.00	-27.13	Vertical
7311.00	33.74	36.37	11.71	31.91	49.91	74.00	-24.09	Vertical
9748.00	33.34	38.27	14.25	31.56	54.30	74.00	-19.70	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.09	31.85	8.66	32.12	47.48	74.00	-26.52	Horizontal
7311.00	32.45	36.37	11.71	31.91	48.62	74.00	-25.38	Horizontal
9748.00	33.26	38.27	14.25	31.56	54.22	74.00	-19.78	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:		•	•	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.40	31.85	8.66	32.12	37.79	54.00	-16.21	Vertical
7311.00	22.07	36.37	11.71	31.91	38.24	54.00	-15.76	Vertical
9748.00	22.61	38.27	14.25	31.56	43.57	54.00	-10.43	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.25	31.85	8.66	32.12	37.64	54.00	-16.36	Horizontal
7311.00	21.55	36.37	11.71	31.91	37.72	54.00	-16.28	Horizontal
9748.00	22.99	38.27	14.25	31.56	43.95	54.00	-10.05	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. " \ast ", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Te	st channel:	High	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	43.38	31.90	8.70	32.15	51.83	74.00	-22.17	Vertical
7386.00	34.02	36.49	11.76	31.83	50.44	74.00	-23.56	Vertical
9848.00	36.35	38.62	14.31	31.77	57.51	74.00	-16.49	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	42.92	31.90	8.70	32.15	51.37	74.00	-22.63	Horizontal
7386.00	33.04	36.49	11.76	31.83	49.46	74.00	-24.54	Horizontal
9848.00	32.57	38.62	14.31	31.77	53.73	74.00	-20.27	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	i revei	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	34.41	31.90	8.70	32.15	42.86	54.00	-11.14	Vertical
7386.00	23.97	36.49	11.76	31.83	40.39	54.00	-13.61	Vertical
9848.00	24.88	38.62	14.31	31.77	46.04	54.00	-7.96	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	33.36	31.90	8.70	32.15	41.81	54.00	-12.19	Horizontal
7386.00	22.45	36.49	11.76	31.83	38.87	54.00	-15.13	Horizontal
9848.00	21.86	38.62	14.31	31.77	43.02	54.00	-10.98	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.90	31.79	8.62	32.10	48.21	74.00	-25.79	Vertical
7236.00	33.97	36.19	11.68	31.97	49.87	74.00	-24.13	Vertical
9648.00	32.54	38.07	14.16	31.56	53.21	74.00	-20.79	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.63	31.79	8.62	32.10	46.94	74.00	-27.06	Horizontal
7236.00	33.75	36.19	11.68	31.97	49.65	74.00	-24.35	Horizontal
9648.00	32.13	38.07	14.16	31.56	52.80	74.00	-21.20	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.02	31.79	8.62	32.10	37.33	54.00	-16.67	Vertical
7236.00	22.85	36.19	11.68	31.97	38.75	54.00	-15.25	Vertical
9648.00	22.89	38.07	14.16	31.56	43.56	54.00	-10.44	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.19	31.79	8.62	32.10	36.50	54.00	-17.50	Horizontal
7236.00	22.34	36.19	11.68	31.97	38.24	54.00	-15.76	Horizontal
9648.00	21.88	38.07	14.16	31.56	42.55	54.00	-11.45	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

 ${\it Xixiang Road, Baoan District, Shenzhen, Guangdong, China}$

Test mode:		802.11n(H	IT20)		Test channel:			Midd	le	
Peak value:				l						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit (dBu		Over Limit (dB)	polarization
4874.00	39.03	31.85	8.66	32.	.12	47.42	74.	00	-26.58	Vertical
7311.00	34.08	36.37	11.71	31.	.91	50.25	74.	00	-23.75	Vertical
9748.00	33.59	38.27	14.25	31.	.56	54.55	74.	00	-19.45	Vertical
12185.00	*						74.	00		Vertical
14622.00	*						74.	00		Vertical
17059.00	*						74.	00		Vertical
4874.00	39.55	31.85	8.66	32.	.12	47.94	74.	00	-26.06	Horizontal
7311.00	32.75	36.37	11.71	31.	.91	48.92	74.	00	-25.08	Horizontal
9748.00	33.49	38.27	14.25	31.	.56	54.45	74.	00	-19.55	Horizontal
12185.00	*						74.	00		Horizontal
14622.00	*						74.	00		Horizontal
17059.00	*						74.	00		Horizontal
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit (dBu)		Over Limit (dB)	polarization
4874.00	29.90	31.85	8.66	32.	.12	38.29	54.	00	-15.71	Vertical
7311.00	22.41	36.37	11.71	31.	.91	38.58	54.	00	-15.42	Vertical
9748.00	22.85	38.27	14.25	31.	.56	43.81	54.	00	-10.19	Vertical
12185.00	*						54.	00		Vertical
14622.00	*						54.	00		Vertical
17059.00	*						54.	00		Vertical
4874.00	29.68	31.85	8.66	32.	.12	38.07	54.	00	-15.93	Horizontal
7311.00	21.84	36.37	11.71	31.	.91	38.01	54.	00	-15.99	Horizontal
9748.00	23.21	38.27	14.25	31	.56	44.17	54.	00	-9.83	Horizontal
12185.00	*						54.	00		Horizontal
14622.00	*						54.	00		Horizontal
17059.00	*						54.	00		Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	High	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.32	31.90	8.70	32.15	52.77	74.00	-21.23	Vertical
7386.00	34.61	36.49	11.76	31.83	51.03	74.00	-22.97	Vertical
9848.00	36.78	38.62	14.31	31.77	57.94	74.00	-16.06	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.71	31.90	8.70	32.15	52.16	74.00	-21.84	Horizontal
7386.00	33.56	36.49	11.76	31.83	49.98	74.00	-24.02	Horizontal
9848.00	32.97	38.62	14.31	31.77	54.13	74.00	-19.87	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val			,		_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.28	31.90	8.70	32.15	43.73	54.00	-10.27	Vertical
7386.00	24.54	36.49	11.76	31.83	40.96	54.00	-13.04	Vertical
9848.00	25.29	38.62	14.31	31.77	46.45	54.00	-7.55	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.11	31.90	8.70	32.15	42.56	54.00	-11.44	Horizontal
7386.00	22.95	36.49	11.76	31.83	39.37	54.00	-14.63	Horizontal
9848.00	22.23	38.62	14.31	31.77	43.39	54.00	-10.61	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT40)			Test	channel:		Lowe	st	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)	polarization
4844.00	38.68	31.81	8.63	32.11		47.01	74.00		-26.99	Vertical
7266.00	33.20	36.28	11.69	31.94		49.23	74.00		-24.77	Vertical
9688.00	31.98	38.13	14.21	31.52		52.80	74.00		-21.20	Vertical
12060.00	*						74.00			Vertical
14472.00	*						74.	00		Vertical
16884.00	*						74.	00		Vertical
4844.00	37.60	31.81	8.63	32.11		45.93	74.	00	-28.07	Horizontal
7266.00	33.07	36.28	11.69	31.94		49.10	74.	00	-24.90	Horizontal
9688.00	31.62	38.13	14.21	31.52		52.44	74.	00	-21.56	Horizontal
12060.00	*						74.	00		Horizontal
14472.00	*						74.	00		Horizontal
16884.00	*						74.	00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	27.89	31.81	8.63	32.11	36.22	54.00	-17.78	Vertical
7266.00	22.10	36.28	11.69	31.94	38.13	54.00	-15.87	Vertical
9688.00	22.36	38.13	14.21	31.52	43.18	54.00	-10.82	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4844.00	27.22	31.81	8.63	32.11	35.55	54.00	-18.45	Horizontal
7266.00	21.68	36.28	11.69	31.94	37.71	54.00	-16.29	Horizontal
9688.00	21.39	38.13	14.21	31.52	42.21	54.00	-11.79	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:		802.11n(H	IT40)		Test channel:		Middle			
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)	polarization
4874.00	38.01	31.85	8.66	32.12		46.40	74.	00	-27.60	Vertical
7311.00	33.44	36.37	11.71	31.91		49.61	74.	00	-24.39	Vertical
9748.00	33.13	38.27	14.25	31.56		54.09	74.	00	-19.91	Vertical
12185.00	*						74.00			Vertical
14622.00	*						74.	00		Vertical
17059.00	*						74.00			Vertical
4874.00	38.70	31.85	8.66	32	.12	47.09	74.	00	-26.91	Horizontal
7311.00	32.19	36.37	11.71	31	.91	48.36	74.	00	-25.64	Horizontal
9748.00	33.06	38.27	14.25	31.56		54.02	74.00		-19.98	Horizontal
12185.00	*						74.00			Horizontal
14622.00	*						74.	00		Horizontal
17059.00	*						74.	00		Horizontal
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor IB)	Level (dBuV/m)	Limit (dBu)		Over Limit (dB)	polarization
4874.00	28.97	31.85	8.66	32	.12	37.36	54.	00	-16.64	Vertical
7311.00	21.79	36.37	11.71	31	.91	37.96	54.	00	-16.04	Vertical
9748.00	22.41	38.27	14.25	31	.56	43.37	54.	00	-10.63	Vertical
12185.00	*						54.	00		Vertical
14622.00	*						54.	00		Vertical
17059.00	*						54.	00		Vertical
4874.00	28.88	31.85	8.66	32	.12	37.27	54.	00	-16.73	Horizontal
7311.00	21.30	36.37	11.71	31	.91	37.47	54.	00	-16.53	Horizontal
9748.00	22.80	38.27	14.25	31	.56	43.76	54.	00	-10.24	Horizontal
12185.00	*						54.	00		Horizontal
14622.00	*						54.	00		Horizontal
17059.00	*						54.	00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:		802.11n(HT40)		Test	channel:	Highest			
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4904.00	42.57	31.88	8.68	32.13	51.00	74.00	-23.00	Vertical	
7356.00	33.51	36.45	11.75	31.86	49.85	74.00	-24.15	Vertical	
9808.00	35.99	38.43	14.29	31.68	57.03	74.00	-16.97	Vertical	
12310.00	*					74.00		Vertical	
14772.00	*					74.00		Vertical	
17234.00	*					74.00		Vertical	
4904.00	42.24	31.88	8.68	32.13	50.67	74.00	-23.33	Horizontal	
7356.00	32.59	36.45	11.75	31.86	48.93	74.00	-25.07	Horizontal	
9808.00	32.24	38.43	14.29	31.68	53.28	74.00	-20.72	Horizontal	
12310.00	*					74.00		Horizontal	
14772.00	*					74.00		Horizontal	
17234.00	*					74.00		Horizontal	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4904.00	33.67	31.88	8.68	32.13	42.10	54.00	-11.90	Vertical	
7356.00	23.47	36.45	11.75	31.86	39.81	54.00	-14.19	Vertical	
9808.00	24.53	38.43	14.29	31.68	45.57	54.00	-8.43	Vertical	
12310.00	*					54.00		Vertical	
14772.00	*					54.00		Vertical	
17234.00	*					54.00		Vertical	
4904.00	32.72	31.88	8.68	32.13	41.15	54.00	-12.85	Horizontal	
7356.00	22.02	36.45	11.75	31.86	38.36	54.00	-15.64	Horizontal	
9808.00	21.53	38.43	14.29	31.68	42.57	54.00	-11.43	Horizontal	
12310.00	*					54.00		Horizontal	
14772.00	*					54.00		Horizontal	
17234.00	*					54.00		Horizontal	

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----