Problem set 4: Cardinality, metric spaces, limit points

Math 521 Section 001, UW-Madison, Spring 2024

February 12, 2024

Please solve the following problems in a clear, complete, and concise manner. You are welcome to work together, but your write-up must be your own. Use of outside internet resources is prohibited.

Due on paper at the beginning of class on Wednesday, Feb. 21st. Please be sure to staple your writeup.

- 1. Suppose that $g: A \to B$ is surjective and $f: B \to C$ is not injective. Show that $f \circ g$ is also not injective. (*Hint*: It may be helpful to start by drawing a picture.)
- 2. Let $f: S \to T$ be a function. Suppose that S is uncountable and for each $y \in T$, $f^{-1}(\{y\})$ is countable. Prove that T is uncountable.
- 3. Consider the following subsets of \mathbb{R}^2 . Which ones are open? Which ones are closed? Please justify each claim briefly; you do not have to give a full proof. (*Note*: For this problem, you are welcome to use drawings as justification.)
 - (a) $[0,1] \times (0,1)$
 - (b) $\{0\} \times (0,1)$
 - (c) $\{(n, n^2) \mid n \in \mathbb{Z}\}.$
- 4. Rudin 2.5, 10 (except the "...compact?" part), 11.
- 5. (Extra credit + 1) Let S be a nonempty set. Prove that S and its power set $\mathcal{P}(S)$ do not have the same cardinality.