PSYCH 260/BBH 203

Sensation

Rick Gilmore 2022-03-29 08:30:23

Prelude (4:56)

Announcements

• Exam 3 this Thursday

Today's Topics

- Sensory systems
- Somatosensation
- Pain

Sensory systems

My smartphone and me...

Let's design the Galaxy 20/iPhone XX

- What information do your users need to acquire?
- Why do they need to know it? In what context, for what purpose?
- What types of information does your device need to gather, through which channels?

Multisensory processing in a smartphone

- Accelerometer
- Gyroscope
- Magnetometer
- Proximity sensor
- Ambient light sensor
- Barometer

http://www.phonearena.com/news/Did-you-know-how-many-different-kinds-of-sensors-go-inside-a-smartphone_id57885

Multisensory processing in a smartphone

- Thermometer
- Mic
- Camera
- Radios (Bluetooth, wifi, cellular, GPS)

http://www.phonearena.com/news/Did-you-know-how-many-different-kinds-of-sensors-go-inside-a-smartphone_id57885

My turn...

- What information do I need to acquire?
- Why do I need to know it? In what context & for what purpose?
- What types of information do I need to gather, through which channels?

Dimensions of sensory processing

- Interoceptive
 - How am I?
- Exteroceptive
 - What's in the world, where is it?

Questions for interoception: How are you?

- Tired or rested?
- · Well or ill?
- Hungry or thirsty or sated?
- Stressed vs. coping?
- Emotional state?
- Where are you?

Questions for exteroception

- Who/What is out there?
- · Where is it?

Mrs. Potraz was wrong...there aren't 5 senses

TABLE 8.1 Classification of Sensory Systems

Type of sensory system	Modality	Adequate stimuli	
Mechanical	Touch	Contact with or deformation of body surface	
	Hearing	Sound vibrations in air or water	
	Vestibular	Head movement and orientation	
	Joint	Position and movement	
	Muscle	Tension	
Photic	Seeing	Visible radiant energy	
Thermal	Cold	Decrement of skin temperature	
	Warmth	Increment of skin temperature	
Chemical	Smell	Odorous substances dissolved in air or water in the nasal cavity	
	Taste	Substances in contact with the tongue or other taste receptor	
	Common chemical	Changes in CO ₂ , pH, osmotic pressure	
	Vomeronasal	Pheromones in air or water	
Electrical	Electroreception	Differences in density of electrical currents	

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.1 © Sinauer Associates, Inc.

How sensory channels differ

- What is the energy/chemical source?
- How does the channel inform...
 - What's there?
 - Where's it located or moving?

Somatosensation

What is somatosensation

Sensations about the body

Types of somatosensation

- Internal (interoceptive)
 - Where am I? How do I feel?
 - Proprioception (perception of the self)
- External (exteroceptive)
 - What's in the world?
 - Where is it?

Internal senses

- Vestibular sense
 - Head position (relative to gravity)
 - Head movement (rotation, translation)

Vesibulo-ocular response (VOR)

- Keeps eyes steady when head moves
- Can't walk & text without it

Internal senses

- Kinesthesia
 - Body position
 - Movement
- Pain

External senses

- Cutaneous senses (touch)
 - Hot, cold
 - Pressure
 - Vibration
 - Damage (pain)
- Plus kinesthesia (why?)

Cutaneous (in the skin) receptors

Receptors specialize

Combined thermo and chemo receptors

- Why are minty foods cool?
- Why are spicy foods hot?

Combined thermo (heat/cold) and chemo receptors

- Menthol/mint receptor (CMR1)
 - Also signals "cool" temperatures
- Vanilloid Receptors (TrpV1/VR1, VRL1)
 - Respond to capsaicin (in peppers), allyl isothiocyanate (in mustard, wasabi)
 - Also signal "hot" temperatures

Menthol & vanilloid receptors

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 8.23 © 2004 Sinauer Associates, Inc.

Size/speed trade-off

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Αα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Αδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5-2

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.2 © Sineuer Associates, Inc.

From skin to brain

- Cutaneous receptors
- Dorsal root ganglion
- Ventral posterior lateral thalamus
- Primary somatosensory cortex (S-I)
 - Post-central gyrus of parietal lobe

Dermatomes

Dermatomes

BISLOGICAL PETCHOLOGY Assett Salton, Figure 8.51 (Part 2). 1 (11) Traver Innovent, Inc.

Functional segregation

Functional segregation

- Separate pathways for different information types
- Dorsal column/medial leminiscal pathway
 - Touch, proprioception
- Spinothalamic tract
 - Pain, temperature

Somatatopic maps

Non-uniform mapping of skin surface

Non-uniform mapping of skin surface

http://jov.arvojournals.org/data/Journals/JOV/933499/jov-3-10-1-fig001.jpeg

Columnar organization/functional segregation

Phantom Limbs

What/where

- Perceiving Where
 - Somatotopic maps where on skin
 - Kinesthesia configuration of limbs
- Perceiving What
 - Patterns of smoothness, roughness, shape, temperature

Somatosensation in other animals

Pain

The neuroscience of pain

- Nociceptors (Latin nocere to harm or hurt) detect harmful or potentially harmful stimuli of varied types:
 - chemical
 - mechanical
 - thermal

Nociception

- External
 - Skin, cornea (eye), mucosa
- Internal
 - Muscles, joints, bladder, gut

Different types of nociceptors...

- metabolism (acidic pH, hypoxia, ...)
- cell rupture (ATP and glutamate)
- cutaneous parasite penetration (histamine)
- mast cell (white blood cell) activation (serotonin, bradykinin, ...)
- immune and hormonal activity (cytokines and somatostatin)

Fast ($A\delta$) and slow (C) transmission to CNS

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Aα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Αδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5–2

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.2 © Sinauer Associates, Inc.

Projection to brain via anterolateral system

(Craig, 2002)

Key CNS nodes in network

- Periaqueductal grey (PAG) in midbrain
- Insular cortex (insula)
- Hypothalamus
- Amygdala

Key CNS nodes in network

- · Thalamus
 - Ventroposterior lateral nucleus
 - Ventroposterior medial nucleus
 - Ventromedial nucleus

Nature Reviews | Neuroscience

(Craig, 2002)

Pain in the brain

(Wager et al., 2013)

Pain in the brain

"...we used machine-learning analyses to identify a pattern of fMRI activity across brain regions — a neurologic signature — that was associated with heat-induced pain. The pattern included the thalamus, the posterior and anterior insulae, the secondary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray matter, and other areas..."

(Wager et al., 2013)

- Prostaglandins
 - hormone-like effects, but released in many places
 - trigger vasodilation and inflammation

- Paracetymol (acetaminophen)
 - Mechanism not fully understood
 - inhibits synthesis of prostaglandins via cyclooxygenase (COX) enzyme
 - may modulate endocannabinoid system
- Nonsteroidal anti-inflamatory drugs (NSAIDs): aspirin, ibuprofen
 - Also inhibit prostaglandins via COX

- Opioids
 - Activate endogenous opioid systems
 - multiple receptor types (δ , κ , μ ,...)
 - peripheral sensory neurons, amygdala, hypothalamus, PAG, spinal cord, cortex, medulla, pons,...
 - brainstem opioid neurons provide *descending* inhibition of nociceptors

- Capsaicin
 - Binds to TrpV1/VR1 thermo/nociceptors
 - Eventually causes decrease in TrpV1 response
 - Alters how peripheral neuron responds to mechanical stimulation
 - (Borbiro, Badheka, & Rohacs, 2015)

Why rubbing can help

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Aα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Αδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5–2

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.2 © Sinauer Associates, Inc.

Gate control theory (Melzack & Wall, 1965)

By self - self-made in Inkscape, CC BY 3.0, Link

Gate control theory (Melzack & Wall, 1965)

By self - self-made in Inkscape, CC BY-SA 3.0, Link

Psychological & physical components of pain

(Papini, Fuchs, & Torres, 2015)

Main points

- Somatosensation
 - Exteroception via
 - Cutaneous receptors + proprioception
 - Interoception via
 - Widely distributed receptors
 - Specific and non-specific

Main points

- Pain
 - Multiple receptor channels
 - Highly interconnected CNS network
 - Multiple targets for modulation

Next time...

• Exam 3

References

- Borbiro, I., Badheka, D., & Rohacs, T. (2015). Activation of TRPV1 channels inhibits mechanosensitive piezo channel activity by depleting membrane phosphoinositides. *Sci. Signal.*, *8*(363), ra15. https://doi.org/10.1126/scisignal.2005667
- Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. *Nat. Rev. Neurosci.*, *3*(8), 655–666. https://doi.org/10.1038/nrn894
- Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. *Science*, *150*(3699), 971–979. https://doi.org/10.1126/science.150.3699.971
- Papini, M. R., Fuchs, P. N., & Torres, C. (2015). Behavioral neuroscience of psychological pain. *Neurosci. Biobehav. Rev.*, 48, 53–69. https://doi.org/10.1016/j.neubiorev.2014.11.012
- Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. *N. Engl. J. Med.*, *368*(15), 1388–1397. https://doi.org/10.1056/NEJMoa1204471