Stat 346 Homework #4

- 1. Assume that the annual losses on each individual policy are either 0 with probability 0.2 or follow an exponential distribution with a mean of 1000 with probability 0.8. There are 2500 independent, identically distributed policyholders in a book of business.
 - (a) What is the expected total loss from the book of business? [2,000,000]
 - (b) What is the variance of that total loss? [2,400,000,000]
 - (c) Using the normal approximation, what is the probability that the total loss is greater than 2,100,000 (the true probability is approximately 0.022)? [.021]
 - (d) Comment on how close you expect the normal approximation and the true probability to be in this example
- 2. Given that $X_i \sim N(\mu_i, \sigma_i^2)$ for $i=1,2,\ldots,n$ are independent normal random variables, prove that $S=\sum_{i=1}^n X_i$ is also normally distributed. Use the moment generating function (MGF) of the normal distribution, which is $M_X(t)=e^{\mu t+\frac{1}{2}\sigma^2t^2}$, in your proof.
- 3. Consider a portfolio of 1000 independent policies. Each policy has a 10% chance of incurring a loss, which, when it occurs, follows a gamma distribution with $\alpha = 3$ and $\theta = 500$. Using a normal approximation, what is TVaR_{.95} for aggregate losses? [184,361.35]
- 4. Let $S = \sum_{i=1}^{N} X_i$ be the aggregate loss, where N is the number of claims following a Poisson distribution with parameter $\lambda = 2$, and X_i are i.i.d. exponential random variables with mean 1000.
 - (a) Compute the mean and variance of S.
 - (b) Would this be a situation where you would use a normal approximation?
- 5. The cumulative loss distribution for a risk X_i is

$$F_i(x) = 1 - \frac{10^9}{(x+10^3)^3} \qquad x > 0$$

for all i. Assume $S = \sum_{i=1}^{N} X_i$ where N follows a negative binomial distribution with distribution with parameter r = 4 and $\beta = 2.5$. Calculate the mean and variance of S.

6. Consider a risk model where N, the number of claims, and X_i , the amount of each claim, are both discrete random variables. The probability distribution of N and X are given in the following tables:

n	Pr(N=n)	x	Pr(X = x)
0	0.5	100	0.5
1	0.3	200	0.3
2	0.2	300	0.2

1

Let $S = \sum_{i=1}^{N} X_i$ represent the total claim amount. Calculate Pr(S < 500).