Parallel Computing in RAPID

By Cédric H. David (cedric.david@jpl.nasa.gov) 18 Jun 2012, updated 21 Jan 2015

Muskingum method applied to one river reach

Conceptual river network

Muskingum method applied to a river network in a matrix-based approach

Simultaneous computation on entire river

15 Cédric H. David network

4

Network and parameter matrices

$$\mathbf{Q} = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \\ Q_5 \end{bmatrix}$$

Vector of outflows

Network matrix N_{i,j}=1 if reach j flows into reach i

$$C_{1} = \begin{bmatrix} C_{1_{1}} & & & & & & \\ & C_{1_{2}} & & & & & \\ & & C_{1_{3}} & & & & \\ & & & C_{1_{4}} & & & \\ & & & & C_{1_{5}} \end{bmatrix}$$

Parameter matrix

$$\mathbf{I} - \mathbf{C_1} \cdot \mathbf{N} = \begin{bmatrix} 1 & & & & \\ & 1 & & \\ -C_{1_3} & -C_{1_3} & 1 & & \\ & & 1 & & \\ & & -C_{1_5} & -C_{1_5} & 1 \end{bmatrix}$$
 a matrix

How to solve this linear system on multiple cores?

Core 1, diagonal block
Core 2, diagonal block
Inter-core communication

..... Core 1, off-diagonal block Core 2, off-diagonal block

One core

Two cores

Preconditioning not enough

Ok

Solver

Example for San Antonio and Guadalupe Basins in Texas

Further information

RAPID website: http://rapid-hub.org/

RAPID source code: https://github.com/c-h-david/rapid/