Exercice 1:

Algo 1:

Ligne 3 exécutée j fois avec j ≤ n-1 L3+L4 ~ O(1)

L2 bacle n fois, L2+L3+L4 ~ O(n²) L1 bacle n fois, L1+L2+L3+L4 ~ O(n³)

Ls+16 ~ O(n)

Au final, $O(n^3) + O(n) = O(n^3)$

La boude de 0 à j fera:

Titeration, puis 2, puis ... n-1 itérations

Formule de la somme, on Fait au max $\sim \frac{n(n+1)}{2} \sim \frac{n^2}{2}$

La constante 1 disparant avec big O

On a aw Final O(n) pour cette boucle

Algo 2:

Your appliquer le Master Theorem On vout une récursion qui renvoire une Fraction de la valeur

I ci on a pas de fraction en entrée, pas de MI On note c la somme du temps des opérations élémentaires et t(n) la complexité de l'algorithme sur l'entrée n t(n-1) = 2t(n-2)tc

 $+(0) \leq 2 + (0-1) + c$

remplace
$$\leq 2(2t(n-2)+c)+c$$

Simplifie $\leq 4t(n-2)+3c$
 $\leq 4t(n-2)+3c$

remplace $\leq 4(2t(n-3)+c)+3c$

simplifie $\leq 8t(n-3)+7c$
 $\leq 2^{n}t(n-i)+(2^{n}-1)c$

Montrons par récurrence qu'après i appels récursifs, on retrouve sa.

Au rang O_{+} i=0 et on a;

 $t(n) \leq 1 \times t(n-0)+(1-1)c$
 $\leq 1 \times t(n)$
 $\leq t \times t(n)$
 $\leq t \times t(n)$
 $\leq t \times t(n-i)+(2^{n}-1)c$
 $\leq 2^{n}\times 2 \times t(n-i-1)+c+(2^{n}-1)c$
 $\leq 2^{n}\times 2 \times t(n-(n-1)+c)+(2^{n}-1)c$
 $\leq 2^{n}\times 2 \times t(n-(n-1)+c)+(2^{n}-1)c$

(tat les i deciennent (it1)) Vrai au rang it 1 Après n appels récursifs, on a: $t(n) \le 2^{n} \times t(n-n) + (2^{n}-1)c$ $\leq 2^{n} \times \epsilon(0) + 2^{n} c - c$ $\leq 2^{n}(E(0)+c)-c$ Constante C1 < 2 × c₁ Donc $t(n) = O(2^n)$ Algo 3: On note c les opérations élémentaires £(n) complexité proportionnelle aux nombres de while L'algo fait k boucles avec $\frac{1}{3R} \le 1$ En prenant Log base 2, qui est croissant (on cherche a faire tomber le le pour trouver une égalité). On a: $\log\left(\frac{\pi}{3k}\right) \leq \log\left(1\right)$ $Log n - log (3^k) \leq 0$ $\log n \leq \log (3^k)$

Log
$$n \le k \log(3)$$

Log $n \le k$

Log $n \le k$

Log $n \le k$

Log $n \le k$

Donc on $n : E(n) = O(\log n)$

Algo $n : E(n) = O(\log n)$
 $E(n) \le n : E(n-1)$

Le terme precedent

remplace $E(n) = E(n-1) : E(n-2)$

remplace $E(n) = E(n-1) : E(n-2)$

Log $E(n) = E(n-1) : E(n-1)$

Log $E(n)$

n < 3 k l'algorithme

Etant donné que
$$\frac{n}{3} = \frac{1}{3} \times n$$
, avec big 0 , la constante disparaît. Au final, $t(n) = O(n)$

Algo 6: On a une Fraction dans la récurrence: Master Theorem

Formule:

 $t(n) \le a \cdot t(\lceil \frac{n}{b} \rceil) + O(n^d)$

nombre | temps en dehois | des récursions |

 t' appeds récursifs | des récursions |

 t' anthrée est divisée

 t' a = 1, t' = 2, t' = 0

 t' = 2 = 1 donc t' = 0 (t' log t')

Algo 7: t' = 2, t' = 0 (t' complexité t' (t')

2 récursions | en dehos |

 t' de t' en dehos |

 t'

Algo 8:
$$a=2$$
, $b=3$, $d=1$

$$b^{d}=2 < a \text{ Donc on } a: t(n)=O(n^{1})$$

$$=O(n)$$

Donc on a:
$$t(n) = O(n \frac{\log 3}{\log 2}) = O(n \log 3)$$

Exercice 2:

Autre méthode: On note x (a valeur du 1er dé et y du second dé.

$$P_{\Gamma}[X=Y] = \underbrace{\sum_{t=1}^{6} P_{\Gamma}[X=t \land Y=t]}_{t=1}$$

$$= \underbrace{\sum_{t=1}^{6} P_{\Gamma}[X=t] \times P_{\Gamma}[Y=t]}_{t=1}$$

Comme
$$\forall t = 1...6$$
, $P_{\epsilon}[X = t] = \frac{1}{6}$
et $P_{\epsilon}[Y = t] = \frac{1}{6}$

t=166 36 6

Con cherche cos probabilités Soit: 36-6 (11),(2,2)...(6,6) 2 La moitié (6,6)

Méthodo rigoureuse:

$$P_{r}[X \land Y] = \sum_{t=1}^{6} P_{r}[X=t] \times P_{r}[Y>t]$$

$$= \sum_{t=1}^{6} P_{r}[X=t] \times P_{r}[Y>t]$$

Comme
$$\forall t = 1...6$$
, $P_r[X=t] = \frac{1}{6}$
et $P_r[Y>t] = \frac{6-t}{6}$

Donc
$$P_{\epsilon}[X(Y] = \frac{6}{2} \frac{1}{6} \times (\frac{6-t}{6})$$

$$=\frac{1}{36} = \frac{6}{5} = \frac{$$

$$=\frac{1}{36}\times(5+4+3+2+1)$$

$$=\frac{5}{12}=\frac{15}{36}$$

Exercice 3:

$$= \frac{1}{2} \frac{1}{k} \times v = \frac{1}{2} \frac{1}{k} \times v = \frac{1}{2} \times \left(\frac{1}{k} \times \frac{1}{2} \right)$$

$$= \frac{1}{k} \times v = \frac{1}{k} \times \left(\frac{1}{k} \times \frac{1}{2} \right)$$

$$=\frac{k+1}{2}$$

$$(2) E[X] = \sum_{\rho=0}^{10} P_{\rho}[X=\rho] \times \rho$$

Probabilité d'avoir exactement p piles On découpe en 10 tirages:

$$= \underbrace{\sum_{i=1}^{10} \left[X_{i} \right]}_{10} = \underbrace{\sum_{i=1}^{10} \left(1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} \right)}_{10} = \underbrace{10 \cdot \frac{1}{2}}_{10} = \underbrace{5}_{10}$$

Exercice 4: 9 AlgoNaif: Pas 100% correct, il faut
tant que i < n, faire: juste comprendre comment

| SET[i] = 2e il Fonctionne.
| retourner i $T(\Lambda) = O(\Lambda)$ ② ① $\frac{1}{n}$ car X suit une (oi géométrique de paramètre ρ , P, $[X=i]=\rho(1-\rho)^{i-1}$.
On pout calculer directement son espérance Formule de l'espérance totale: E[X] = E[X| "2 trouvé "] x Pr["2 trouvé "] +

E[X] "2 pas trouvé "] x Pr["2 pas trouvé "]

E[X| "2 pas trouvé "] x Pr["2 pas trouvé "] $=1\times\frac{1}{n}+E[\text{"se pas trowe"}]\times\frac{n-1}{n}$ Mais E[X1" expastrouvér] = 1+ E[X] < même espérance que précédomment et +1 pour le premier tirage du coup, $E[X] = \frac{1}{n} + \left(1 + E[X]\right) \times \left(\frac{n-1}{n}\right)$ $\frac{1}{n}E[X] = \frac{1}{n} + \frac{n-1}{n} = 1 \longrightarrow E[X] = n$

