

In the Claims:

1. (currently amended) An aluminum alloy containing consisting of at least 0.0001 mass % and not more than 0.01 mass % of copper, at least 0.0005 mass % and not more than 0.1 mass % of silicon, at least 1.0 mass % and not more than 3.0 mass % of manganese, and at least 0.7 mass % and not more than 1.2 mass % of iron, at least 0.0 mass % and not more than 0.5 mass % of each of at least one additional element selected from a group consisting of chromium, titanium and zirconium, and a remainder containing consisting of aluminum and unavoidable impurities, and excluding zinc except for an unavoidable amount of zinc that may be included in said unavoidable impurities.

Claim 2 (canceled)

3. (currently amended) The aluminum alloy according to claim 1, further containing wherein a content of each of said at least one additional element selected from a group consisting of is at least 0.01 mass % and not more than 0.5 mass % of chromium, at least 0.01 mass % and not more than 0.5 mass % of titanium and at least 0.01 mass % and not more than 0.5 mass % of zirconium.
4. (previously presented) An aluminum alloy foil consisting of the aluminum alloy according to claim 1, and having a thickness, elongation and yield strength so selected that

4 the relation between the yield strength Y_S (N/mm^2) and the
5 thickness X (μm) satisfies an inequality
6 $Y_S > 28.7 \ln(X) - 30$ and the relation between the
7 elongation E_l (%) and the thickness X (μm) satisfies an
8 inequality $E_l > 0.15X + 3.5$.

- 1 5. (withdrawn) A method of preparing the aluminum alloy foil
2 according to claim 4, comprising steps of:

3 heating up an ingot of said aluminum alloy to a
4 temperature of at least $350^\circ C$ and not more than $580^\circ C$;

5 hot-rolling said ingot of said aluminum alloy at a
6 starting temperature of at least $350^\circ C$ and not more than
7 $530^\circ C$ after the heating up thereby obtaining a plate
8 material;

9 cold-rolling said plate material after the hot
10 rolling; and

11 softening said plate material after the cold rolling.

- 1 6. (withdrawn) The method of preparing the aluminum alloy foil
2 according to claim 5, further comprising

3 a step of retaining said ingot of said aluminum alloy
4 at a temperature of at least $350^\circ C$ and not more than $580^\circ C$
5 for not more than 15 hours after said step of heating up
6 said ingot, and

7 carrying out said step of hot-rolling said ingot for
8 obtaining said plate material after said holding step.

- 1 7. (withdrawn) The method of preparing the aluminum alloy foil
2 according to claim 5, comprising carrying out said step of
3 hot-rolling said ingot for obtaining said plate material
4 immediately after said step of heating up said ingot.
- 1 8. (withdrawn) The method of preparing the aluminum alloy foil
2 according to claim 5, wherein said step of softening said
3 plate material includes an operation of retaining said
4 plate material at a temperature of at least 270°C and not
5 more than 380°C for at least one hour and not more than 20
6 hours.
- 1 9. (currently amended) An aluminum alloy foil consisting of an
2 aluminum alloy containing consisting of at least 0.0001
3 mass % and not more than 0.01 mass % of copper, at least
4 0.0005 mass % and not more than 0.1 mass % of silicon, at
5 least 1.0 mass % and not more than 3.0 mass % of manganese,
6 and at least 0.7 mass % and not more than 1.2 mass % of
7 iron, at least 0.0 mass % and not more than 0.5 mass % of
8 each of at least one additional element selected from a
9 group consisting of chromium, titanium and zirconium, and
10 a remainder consisting of aluminum and
11 unavoidable impurities, and excluding zinc except for an
12 unavoidable amount of zinc that may be included in said
13 unavoidable impurities, and having a thickness, elongation
14 and yield strength so selected that the relation between
15 the yield strength Y_S (N/mm^2) and the thickness X (μm)
16 satisfies an inequality $Y_S > 28.7 \ln(X) - 30$ and the

17 relation between the elongation El (%) and the thickness
18 X (μm) satisfies an inequality $\text{El} > 0.15X + 3.5$.

1 10. (original) A container consisting of the aluminum alloy
2 foil according to claim 9 and having a thickness of at
3 least 50 μm and not more than 200 μm .

1 11. (previously presented) The aluminum alloy according to
2 claim 1, containing more than 1.0 mass % of said manganese.

1 12. (previously presented) An article of manufacture,
2 said article of manufacture consisting of the aluminum
3 alloy according to claim 1, and
4 said article of manufacture being an article selected
5 from the group consisting of a container, a food wrapping
6 foil material, a domestic article, and a decorative
7 article.

1 13. (previously presented) An aluminum alloy consisting of:
2 0.0001 to 0.01 mass % of copper;
3 0.0005 to 0.1 mass % of silicon;
4 1.0 to 3.0 mass % of manganese;
5 0.7 to 1.2 mass % of iron;
6 0.0 to 0.5 mass % of each of at least one additional
7 element selected from a group consisting of chromium,
8 titanium and zirconium; and
9 a remainder consisting of aluminum and unavoidable
10 trace amounts of unavoidable impurities.

- 1 14. (previously presented) The aluminum alloy according to
2 claim 13, including at least 0.01 mass % of each of at
3 least one said additional element selected from said group.

- 1 15. (previously presented) The aluminum alloy according to
2 claim 13, including not more than an unavoidable trace
3 amount of each said additional element selected from said
4 group.

- 1 16. (previously presented) An aluminum alloy foil consisting of
2 the aluminum alloy according to claim 13, and having a
3 thickness, elongation and yield strength so selected that
4 the relation between the yield strength Y_S (N/mm²) and the
5 thickness X (μm) satisfies an inequality
6 $Y_S > 28.7 \ln(X) - 30$ and the relation between the
7 elongation E_l (%) and the thickness X (μm) satisfies an
8 inequality $E_l > 0.15X + 3.5$.

- 1 17. (previously presented) The aluminum alloy according to
2 claim 13, containing more than 1.0 mass % of said
3 manganese.

[RESPONSE CONTINUES ON NEXT PAGE]