In [1]: import pandas as pd

In [6]: df=pd.read_excel(r"C:\Users\admin\Desktop\abc.xlsx")
df

Out[6]:

sex	city	age	name	sr.no	
М	pune	4	а	1	0
М	mumbai	10	b	2	1
F	thane	20	С	3	2
М	kalyan	12	d	4	3
F	junnar	16	е	5	4
F	khed	33	f	6	5
М	chakan	26	g	7	6
F	talegoan	23	h	8	7
М	Ionawala	14	i	9	8
М	otur	13	j	10	9
F	junnar	21	k	11	10
F	hinjawadi	20	I	12	11
М	bhosari	12	m	13	12
М	pinpari	10	n	14	13
F	aakurdi	9	О	15	14

```
In [9]: import seaborn as sns
sns.boxplot(x=df["age"])
```

Out[9]: <Axes: xlabel='age'>

In [11]: import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot([0,1,2,3,4,5,6])

C:\Users\admin\AppData\Local\Temp\ipykernel_1920\2981748360.py:5: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot([0,1,2,3,4,5,6])

Out[11]: <Axes: ylabel='Density'>


```
In [14]:
         import pandas as pd
         import numpy as np
         df=pd.read_excel(r"C:\Users\admin\Desktop\abc.xlsx")
         df
         pd.crosstab(index=df["age"],columns=df["sex"])
Out[14]:
          sex F M
          age
            4 0 1
              1 0
           10 0 2
           12 0 2
           13 0
           14 0
                1
           16 1 0
           20 2 0
           21 1 0
           23 1 0
           26 0 1
           33 1 0
 In [2]: #crosstabulation
         import pandas as pd
         import numpy as np
         var=pd.read_excel(r"C:\Users\admin\Desktop\xyz.xlsx")
         var
         pd.crosstab(index=var['Age Group'],columns=var['sex'])
 Out[2]:
               sex F M
          Age Group
             middle
                   2
               old
                   3
                      0
             young 2 3
```

In [5]: import matplotlib.pyplot as sns
 import seaborn as sns
 import pandas as pd

In [19]: #dataset Load

var=sns.load_dataset("iris").head()
var

Out[19]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [20]: #correlation matrix

cor_mat=var.corr()
cor_mat

C:\Users\admin\AppData\Local\Temp\ipykernel_8320\55467275.py:3: FutureWarnin
g: The default value of numeric_only in DataFrame.corr is deprecated. In a fu
ture version, it will default to False. Select only valid columns or specify
the value of numeric_only to silence this warning.
 cor_mat=var.corr()

Out[20]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	0.680019	-0.170499	NaN
sepal_width	0.680019	1.000000	-0.136590	NaN
petal_length	- 0.170499	-0.136590	1.000000	NaN
petal_width	NaN	NaN	NaN	NaN

In [21]: #heatmap in corelation matrix sns.heatmap(cor_mat,cmap="Greens",annot=True)

Out[21]: <Axes: >


```
In [40]: var=sns.load_dataset("iris")
var
sns.histplot(var,x="sepal_length")
```

Out[40]: <Axes: xlabel='sepal_length', ylabel='Count'>


```
In [28]: import pandas as pd
import matplotlib.pyplot as sns
import seaborn as sns

#Loading dataset
var=sns.load_dataset("iris")
var

#bivariate analysis
sns.scatterplot(x="sepal_length",y="sepal_width",data=var,hue="species")
```

Out[28]: <Axes: xlabel='sepal_length', ylabel='sepal_width'>


```
In [33]: import pandas as pd
import matplotlib.pyplot as sns
import seaborn as sns

#Loading dataset
var=sns.load_dataset("iris").head(190)
var

#bivariate analysis
sns.boxplot(x="sepal_length",y="sepal_width",data=var,hue="species")
```

Out[33]: <Axes: xlabel='sepal_length', ylabel='sepal_width'>


```
In [38]: import pandas as pd
   import matplotlib.pyplot as sns
   import seaborn as sns

#Loading dataset
   var=sns.load_dataset("iris")
   var

#bivariate analysis
   sns.pairplot(data=var,hue="species",height=2)
```

Out[38]: <seaborn.axisgrid.PairGrid at 0x17f92d56c10>


```
In [3]: import pandas as pd
import matplotlib.pyplot as sns

data=pd.read_excel(r"C:\Users\admin\Desktop\data.xlsx")
```

In [4]: import pandas as pd
import matplotlib.pyplot as plt

var=pd.read_excel(r"C:\Users\admin\Desktop\data.xlsx")
var

Out[4]: sr.no name marks 0 1 15 а 2 1 b 13 2 3 С 18 3 4 d 14 4 5 е 12 5 6 f 14 6 7 19 g

```
#univariate data
In [19]:
         import pandas as pd
         import matplotlib.pyplot as plt
         data=pd.read_excel(r"C:\Users\admin\Desktop\data.xlsx")
         vari=data["marks"]
         #nongraphical univariate analysis
         mean=vari.mean()
         median=vari.median()
         std=vari.std()
         print("mean", mean)
         print("median", median)
         print("std",std)
         # graphical univarite analysis
         plt.hist(vari,bins=5)
         plt.xlabel("vari")
         plt.ylabel("frequency")
         plt.title("Univariate Analysis")
         plt.show()
```

mean 15.0 median 14.0 std 2.581988897471611


```
In [15]: import statistics
    data=[15,13,18,14,12,14,19]
    mean=statistics.mean(data)
    median=statistics.median(data)
    mode=statistics.mode(data)

    print(mean)
    print(median)
    print(mode)

In []:
In []:
```