Simplex method

Prof. (Dr.) Rajib Kumar Bhattacharjya

Professor, Department of Civil Engineering Indian Institute of Technology Guwahati, India

Room No. 005, M Block

Email: rkbc@iitg.ernet.in, Ph. No 2428

SIMPLEX METHOD

$$1x_{1} + 0x_{2} + \dots + 0x_{m} + a'_{1m+1}x_{m+1} + \dots + a'_{1n}x_{n} = b'_{1}$$

$$0x_{1} + 1x_{2} + \dots + 0x_{m} + a'_{2m+1}x_{m+1} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$0x_{1} + 0x_{2} + \dots + 0x_{m} + a'_{3m+1}x_{m+1} + \dots + a'_{3n}x_{n} = b'_{3}$$

$$\vdots$$

$$0x_{1} + 0x_{2} + \dots + 1x_{m} + a'_{mm+1}x_{m+1} + \dots + a'_{mn}x_{n} = b'_{m}$$

$$0x_{1} + 0x_{2} + \dots + 0x_{m} - f + c'_{m+1}x_{m+1} + \dots + c'_{n}x_{n} = -f'_{o}$$

$$x_{i} = b'_{i} \qquad \text{For } i = 1, 2, 3, \dots, m$$

If the basic solution is feasible, then $b_i' \ge 0$ for i = 1,2,3,...,m

For i = m + 1, m + 2, m + 3, ..., n

 $x_i = 0$

 $f = f_0'$

From the last row

$$0x_1 + 0x_2 + \dots + 0x_m - f + c'_{m+1}x_{m+1} + \dots + c'_nx_n = -f'_o$$

We can write that

$$f = f_o' + \sum_{i=m+1}^{n} c_i' x_i$$

If all c_i' are positive, it is not possible to improve (reduce) the objective function value by making a non basic variable as basic variable

Maximum benefit can be obtained by making the non-basic variable with minimum negative coefficient as basic variable

In case of a tie, any one can be selected arbitrarily

$$x_1 = b_1' - a_{1S}' x_S \qquad b_1' \ge 0$$

$$x_2 = b_2' - a_{2S}' x_S \qquad b_2' \ge 0$$

$$: : :$$

$$x_m = b'_m - a'_{ms} x_s \qquad b'_m \ge 0$$

If a'_{is} is positive, the maximum possible value of x_s is b'_i/a'_{is}

If a'_{is} is negative, the maximum possible value of x_s is $+\infty$

In this case, the problem has an unbounded solution

Example 1 (Unbounded solution)

Minimize
$$f = -3x_1 - 2x_2$$

Subject to

$$x_1 - x_2 \le 1$$

 $3x_1 - 2x_2 \le 6$
 $x_i \ge 0$ $i = 1,2,3$

$(x_1 - x_2 + x_3)$	= 1
$3x_1 - 2x_2$	$+ x_4 = 6$
$x_i \ge 0$	i = 1,2,3

Basic			Variable		t	hi	hi/aii	
Variable	x1	x2	х3	x4		bı	bi/aij	
x 3	1	-1	1	0	0	1	1	4
x4	3	-2	0	1	0	6	2	
f	-3	-2	0	0	-1	0		

Basic			Variable		t	h:	hi/aic	
Variable	x1	x2	х3	x4		bi	bi/ais	
x1	1	-1	1	0	0	1		
x4	0	1	-3	1	0	3	3	
f	0	-5	3	0	-1	3		

Basic			Variable		£	bi	bi/aic
Variable	x1	x2	х3	x4		DI	bi/ais
x 1	1	0	-2	1	0	4	
x2	0	1	-3	1	0	3	
f	0	0	-12	5	-1	18	

All a_{ij} are negative

Unbounded solution

CE 602: Optimization Method

Example 2 (Alternate optimal solutions)

Minimize
$$f = -40x_1 - 100x_2$$

Subject to

$$10x_1 + 5x_2 \le 2500$$

$$4x_1 + 10x_2 \le 2000$$

$$2x_1 + 3x_2 \le 900$$

$$x_i \ge 0 \qquad i = 1,2,3$$

Basic		Variable							
Variable	x1	x2	x3	x4	x5	f	b	bi/ais	
x 3	10	5	1	0	0	0	2500	500	
x4	4	10	0	1	0	0	2000	200	
x 5	2	3	0	0	1	0	900	300	
f	-40	-100	0	0	0	-1	0		

Solution is

x_3	=	1.	5	0	0

$$x_1 = x_4 = 0$$

$$f = -20000$$

		_							_
Basic			Variable	9					
Variable	x1	x2	х3	x4	x5	f	b	bi/ais	
x 3	8	0	1	-0.5	0	0	1500	187.5	•
x2	0.4	1	0	0.1	0	0	200	500	
x5	0.8	0	0	-0.3	1	0	300	375	
f	0	0	0	10	0	1	20000		

All c_j are positive, so no improvement is possible

Rajib Bhattacharjya, IIIG CE 602: Optimization Method

Basic			Variable					
Variable	x1	x2	x3	x4	x5	f	b	bi/ais
x 1	1	0	0.125	-0.0625	0	0	187.5	
x2	0	1	-0.05	0.125	0	0	125	
x 5	0	0	-0.1	-0.25	1	0	150	
f	0	0	0	10	0	-1	20000	

Solution is

$$x_1 = 187.5$$

$$x_2 = 125$$

$$x_5 = 0$$

$$x_3 = x_4 = 0$$

$$f = -20000$$

The problem has infinite number of optimal solutions, which can be obtained using the following equation

$$X(\lambda) = \lambda X^1 + (1 - \lambda)X^2$$

Example 3 (Artificial variable)

Minimize
$$f = 2x_1 + 3x_2 + 2x_3 - x_4 + x_5$$

Subject to

$$3x_1 - 3x_2 + 4x_3 + 2x_4 - x_5 = 0$$
 $3x_1 - 3x_2 + 4x_3 + 2x_4 - x_5 + y_1 = 0$
 $x_1 + x_2 + x_3 + 3x_4 + x_5 = 2$ $x_1 + x_2 + x_3 + 3x_4 + x_5 + y_2 = 2$

$$x_i \ge 0$$
 $i = 1, 2, ..., 5$ $x_i \ge 0$ $i = 1, 2, ..., 5$ $y_1 y_2 \ge 0$

 y_1 and y_2 Artificial variable

$$3x_1 - 3x_2 + 4x_3 + 2x_4 - x_5 + y_1 = 0$$

$$x_1 + x_2 + x_3 + 3x_4 + x_5 + y_2 = 2$$

$$2x_1 + 3x_2 + 2x_3 - x_4 + x_5 - f = 0$$

The Artificial variables have to be removed from the basis initially (Phase I)

This can be removed using the following formulation

Minimize
$$w = y_1 + y_2$$

Now the problem

$$3x_{1} - 3x_{2} + 4x_{3} + 2x_{4} - x_{5} + y_{1} = 0$$

$$x_{1} + x_{2} + x_{3} + 3x_{4} + x_{5} + y_{2} = 2$$

$$2x_{1} + 3x_{2} + 2x_{3} - x_{4} + x_{5} - f = 0$$

$$y_{1} + y_{2} - w = 0$$

$$3x_{1} - 3x_{2} + 4x_{3} + 2x_{4} - x_{5} + y_{1} = 0$$

$$x_{1} + x_{2} + x_{3} + 3x_{4} + x_{5} + y_{2} = 2$$

$$2x_{1} + 3x_{2} + 2x_{3} - x_{4} + x_{5} - f = 0$$

$$-4x_{1} + 2x_{2} - 5x_{3} - 5x_{4} + 0x_{5} - w = -2$$

Basic				Variable	e						
Variable	x1	x2	x3	x4	x5	y1	y2	f	W	b	bi/ais
y1	3	-3	4	2	-1	1	0	0	0	0	0
y2	1	1	1	3	1	0	1	0	0	2	0.67
f	2	3	2	-1	1	0	0	-1	0	0	
W	-4	2	-5	-5	0	0	0	0	-1	-2	

Rajib Bhattacharjya, IITG

CE 602: Optimization Method

Basic				Variab	le						
Variable	x1	x2	х3	x4	x5	y1	y2	f	W	b	bi/ais
x 4	1.5	-1.5	2	1	-0.5	0.5	0	0	0	0	
y2	-3.5	5.5	-5	0	2.5	-1.5	1	0	0	2	0.36
f	3.5	1.5	4	0	0.5	0.5	0	-1	0	0	
W	3.5	-5.5	5	0	-2.5	2.5	0	0	-1	-2	

Basic				Variab	le						
Variable	x1	x2	x3	x4	x5	y1	y2	f	W	b	bi/ais
x4	0.55	0	0.64	1	0.18	0.09	0.27	0	0	0.55	
	-										
x2	0.64	1	-0.91	0	0.45	-0.27	0.18	0	0	0.36	
f	4.45	00	5.36	0	-0.18	0.91	-0.27	-1	0	-0.55	
W	0	0	0	0	0	1	1	0	-1	0	

All c_j are positive, so no improvement is possible

Rajib Bhattacharjya, UTG

Phase II

Basic			Variable			bi/ais		
Variable	x1	x2	x3	x4	x5	f	b	
x4	0.55	0	0.64	1	0.18	0	0.55	3
x2	-0.64	1	-0.91	0	0.45	0	0.36	8.0
f	4.45	0	5.36	0	-0.18	-1	-0.55	

$$x_4 = 0.4$$

$$x_5 = 0.8$$

$$x_1 = x_2 = x_1 = 0$$

$$f = 0.4$$

Basic			Variable	e				bi/ais	
Variable	x1	x2	х3	x4	x5	f	b		v
x4	0.8	-0.4	1	1	0	0	0.4		X
x5	-1.4	2.2	-2	0	1	0	0.8		
f	4.2	0.4	5	0	0	-1	-0.4		
	Variable x4	Variable x1 x4 0.8	Variable x1 x2 x4 0.8 -0.4	Variable x1 x2 x3 x4 0.8 -0.4 1	Variable x1 x2 x3 x4 x4 0.8 -0.4 1 1	Basic Variable Variable x1 x2 x3 x4 x5 x4 0.8 -0.4 1 1 0	Basic Variable Variable x1 x2 x3 x4 x5 f x4 0.8 -0.4 1 1 0 0 x5 -1.4 2.2 -2 0 1 0	Basic Variable Variable x1 x2 x3 x4 x5 f b x4 0.8 -0.4 1 1 0 0 0.4 x5 -1.4 2.2 -2 0 1 0 0.8	Basic Variable x1 x2 x3 x4 x5 f bi/ais x4 x5 f b x4 0.8 -0.4 1 1 0 0 0.4 x5 -1.4 2.2 -2 0 1 0 0.8

All c_i are positive, so no improvement is possible

Optimal solution

Rajib Bhattacharjya, IITG

CE 602: Optimization Method

Example 4 (Unrestricted in sign)

Minimize
$$f = 4x_1 + 2x_2$$

Subject to

$$x_1 - 2x_2 \ge 2$$

 $x_1 + 2x_2 = 8$
 $x_1 - x_2 \le 11$
 $x_1 \ge 0$

 x_2 is unrestricted in sign

Where, x_3 , $x_4 \ge 0$

$$x_1 - 2x_3 + 2x_4 \ge 2$$
 $x_1 + 2x_3 - 2x_4 = 8$
 $x_1 - x_3 + x_4 \le 11$
 $x_i \ge 0$ $i = 1,3,4$

$$x_1 - 2x_3 + 2x_4 - x_5 + y_1 = 2$$
 $x_1 + 2x_3 - 2x_4 + y_2 = 8$
 $x_1 - x_3 + x_4 + x_6 = 11$
 $4x_1 + 2x_3 - 2x_4 - f = 0$

Phase I

Minimize
$$w = y_1 + y_2$$

Or, Minimize $w = -2x_1 + 0x_3 + 0x_4 + x_5 = -10$

Phase I problem can be written as

$$x_{1} - 2x_{3} + 2x_{4} - x_{5} + y_{1} = 2$$

$$x_{1} + 2x_{3} - 2x_{4} + y_{2} = 8$$

$$x_{1} - x_{3} + x_{4} + x_{6} = 11$$

$$4x_{1} + 2x_{3} - 2x_{4} - f = 0$$

$$-2x_{1} + 0x_{3} + 0x_{4} + x_{5} - w = -10$$

Basic				Vari	able			NA /	t	bi	bi/aij
Variable	x1	x 3	x4	x5	х6	y1	y2	W	,	DI	Di/aij
y1	1	-2	2	-1	0	1	0	0	0	2	2
y2	1	2	-2	0	0	0	1	0	0	8	8
x6	1	-1	1	0	1	0	0	0	0	11	11
f	4	2	-2	0	0	0	0	0	-1	0	
W	-2	0	0	1	0	0	0	-1	0	-10	

Basic				Vari	able	NA 7	t	bi	bi/aij *		
Variable	x1	x3	x4	x5	х6	y1	y2	W	ı	DI	bi/aij «¿Ալոսիս»
x 1	1	-2	2	-1	0	1	0	0	0	2	dian
y2	0	4	-4	1	0	-1	1	0	0	6	1.5
x6	0	1	-1	1	1	-1	0	0	0	9	9
f	0	10	-10	4	0	-4	0	0	-1	-8	
W	0	-4	4	-1	0	2	0	-1	0	-6	

Basic				Varia	able			NA /	t	bi	hi/aii
Variable	x1	x 3	x4	x5	х6	y1	y2	W	ı	DI	Di/aij
x1	1	0	0	-0.5	0	0.5	0.5	0	0	5	
х3	0	1	-1	0.25	0	-0.25	0.25	0	0	1.5	
х6	0	0	0	0.75	1	-0.75	-0.25	0	0	7.5	
f	0	0	0	1.5	0	-1.5	-2.5	0	-1	-23	
W	0	0	0	0	0	1	1	-1	0	0	

Phase II

Basic			Vari	able		t	bi	hi/aii
Variable	x1	х3	x4	x5	х6		DI	bi/aij
x 1	1	0	0	-0.50	0	0	5	
x 3	0	1	-1	0.25	0	0	1.5	
x6	0	0	0	0.75	1	0	7.5	
f	0	0	0	1.5	0	-1	-23	

It can be noted that all the coefficients of the cost function is positive, hence it is not possible to improve the objective function value

This the optimal solution of the problem is

$$x_1 = 5$$

$$x_2 = 1.5$$

$$x_3 = 1.5$$

$$x_6 = 7.5$$

$$x_2 = 1.5$$
 $x_3 = 1.5$ $x_6 = 7.5$ $x_4 = x_5 = 0$ $f = 23$

$$f = 23$$

Example 5

A manufacturer produces, A, B, C, and D, by using two types of machines (lathes and milling machines). The time required on the two machines to manufacture one unit of each of the four products, the profit per unit products and the total time available on the two types of machines per day are given below.

Machine	Time	required po	The second second	in) for	Available time
	Α	В	С	D	(min)
Lathe machine	7	10	4	9	1200
Milling machine	3	40	1	1	800
Profit per unit	45	100	30	50	

Find the number of units to be manufactured of each product per day for maximizing profit.

Rajib Bhattachariya, IITG CE 602: Optimization Method

LP Formulation

Maximize $f = 45x_1 + 100x_2 + 30x_3 + 50x_4$ Subject to

$$7x_1 + 10x_2 + 4x_3 + 9x_4 \le 1200$$

$$3x_1 + 40x_2 + x_3 + x_4 \le 800$$

$$x_i \ge 0$$
 $i = 1,2,3,4$

Minimize $f = -45x_1 - 100x_2 - 30x_3 - 50x_4$ Subject to

$$7x_1 + 10x_2 + 4x_3 + 9x_4 + x_5 = 1200$$

$$3x_1 + 40x_2 + x_3 + x_4 + x_6 = 800$$

$$x_i \ge 0$$
 $i = 1,2,3,4,5,6$

Basic			,	Variable	9		t	h:	hi/aii
Variable	x1	x2	х3	x4	x5	х6		bi	bi/aij
x5	7	10	4	9	1	0	0	1200	120
х6	3	40	1	1	0	1	0	800	20
f	-45	-100	-30	-50	0	0	-1	0	

bi/aij

114

800

2000

-1

					17				
Basic			,	Variable)		£	hi	
Variable	x1	x2	х3	x4	x5	x6		DI	
x5	6.25	0	3.75	8.75	1	-0.25	0	1000	
x2	0.075	1	0.025	0.025	0	0.025	0	20	

-47.5

-37.5

0

-27.5

Rajib Bhattacharjya, IITG CE 602: Optimization Method

0

2.5

Basic			,	Variable		r	h:	h:/a::		
Variable	x1	x2	х3	x4	x5	х6		bi	bi/aij	
x4	0.71	0	0.43	1	0.11	-0.03	0	114	266	4
x2	0.06	1	0.01	0	0.00	0.03	0	17	1200	
f	-3.57	0	-7.14	0	5.43	1.14	-1	7428		

Basic				Variable	£	hi	bi/aii		
Variable	x1	x2	x3	x4	x5	х6		bi	Di/aij
x 3	1.67	0	1	2.33	0.27	-0.07	0	267	
x2	0.03	1	0	-0.03	-0.01	0.03	0	13	
f	8.33	0	0	16.67	7.33	0.67	-1	9333	

This the optimal solution of the problem is

$$x_1 = 0$$

$$x_2 = 13$$

$$x_3 = 267$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_6 = 0$$

$$x_2 = 13$$
 $x_3 = 267$ $x_4 = 0$ $x_5 = 0$ $x_6 = 0$ $f = -9333$

Rajib Bhattacharjya, IITG CE 602: Optimization Method