(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Oktober 2004 (14.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/086963 A2

(51) Internationale Patentklassifikation7:

A61B 5/00

(21) Internationales Aktenzeichen:

PCT/AT2004/000117

(22) Internationales Anmeldedatum:

1. April 2004 (01.04.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

A 509/2003

1. April 2003 (01.04.2003) AT

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CNSYSTEMS MEDIZINTECHNIK GMBH [AT/AT]; Baumkircherstrasse 1, 8020 GRAZ (AT).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SKRABAL, Falko

[AT/AT]; Lindenhofweg 16, 8043 GRAZ (AT). FORTIN, Jürgen [AT/AT]; Baumkircherstrasse 1, 8020 GRAZ (AT).

- (74) Anwalt: BABELUK, Michael; Mariahilfer Gürtel 39/17, 1150 WIEN (AT).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW,

[Fortsetzung auf der nächsten Seite]

(54) Title: DEVICE AND METHOD FOR THE CONTINUOUS NON-INVASIVE MEASUREMENT OF BLOOD PRESSURE

(54) Bezeichnung: VORRICHTUNG UND VERFAHREN ZUR KONTINUIERLICHEN, NICHT-INVASIVEN MESSUNG DES BLUTDRUCKES

to a pre-determinable pressure function.

(57) Abstract: The invention relates to a method and a device for the continuous non-invasive measurement of blood pressure, according to the principle of the relaxed arterial wall, said device comprising at least one first pressure cuff (1) and one second pressure cuff (1) of a comparable or identical size. Said cuffs respectively comprise an inflatable pressure measuring chamber (4. 4') and can be applied to a first and a second body part or body region (3, 3') respectively containing an artery (2, 2') of a comparable or identical size. The first pressure cuff (1) has a first plethysmographic sensor device (5) connected to a regulating and control device (6) used to regulate the pressure in the first pressure measuring chamber (4) by means of the measuring signal of the plethysmographic sensor device (5). The pressure measuring chamber (4) is connected to at least one pressure sensor (7) in order to obtain a pressure measuring signal. According to the invention, the pressure measuring chamber of the second pressure cuff (1') is embodied as a reference pressure chamber (4') that can be regulated at the same time as the pressure measuring chamber (4) and independently therefrom. The pressure measuring chamber (4) of the first pressure cuff (1) and the reference pressure chamber (4') of the second pressure cuff (1') both have separate inlet valves (10, 10) and outlet valves (11, 11), and the pressure in the reference pressure chamber (4') can be regulated by means of the regulating and control device (6) according

WO 2004/086963 A2

GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur kontinuierlichen, nicht-invasiven Messung des Blutdruckes nach dem Prinzip der entspannten Arterienwand, mit zumindest einer ersten (1) und einer zweiten Druckmanschette (1') vergleichbarer oder identer Dimension, welche an einem ersten und an einem zweiten jeweils eine Arterie (2, 2') vergleichbarer oder identer Dimension enthaltenden Körperteil oder Körperbereich (3, 3') anbringbar sind und jeweils eine aufblasbare Druckmesskammer (4. 4') aufweisen, wobei die erste Druckmanschette (1) eine erste plethysmographische Sensoreinrichtung (5) aufweist, die mit einer Regel- und Steuereinrichtung (6) verbunden ist, welche den Druck in der ersten Druckmesskammer (4) mit Hilfe des Messsignals der plethysmographischen Sensoreinrichtung (5) regelt, und wobei die Druckmesskammer (4) mit zumindest einem Drucksensor (7) zur Gewinnung eines Druckmesssignals in Verbindung steh. Erfindungsgemäß ist die Druckmesskammer der zweiten Druckmanschette (1') als eine simultan und unabhängig von der Druckmesskammer (4) der ersten Druckmanschette regelbare Referenzdruckkammer (4') ausgebildet, wobei die Druckmesskammer (4) der ersten Druckmanschette (1) und die Referenzdruckkammer (4') der zweiten Druckmanschette (1') jeweils separate Einlass- (10, 10') und Auslassventile (11, 11') aufweisen, und wobei der Druck in der Referenzdruckkammer (4') über die Regel- und Steuereinrichtung (6) nach einer vorgebbaren Druckfunktion regelbar ist.