Kockázatmodellezés és -előrejelzés

Salamon András, Szilágyi Gergő

Hitelek és kockázatok makro és mikro szinten

2023. tavaszi félév

Tartalomjegyzék

1.	Historikus VaR	3
2.	Szimulált VaR	3
3.	\mathbf{EWMA}	3
4.	Machine Learning	4

Ábrák jegyzéke

1.	EWMA a	MOO	idősoros	adatokon	a két	decay	faktor	mellett .			;
----	--------	-----	----------	----------	-------	-------	--------	-----------	--	--	---

1. Historikus VaR

2. Szimulált VaR

3. EWMA

Az EWMA (Exponentially Weighted Moving Average) segítségével szimulálható a pénzpiacokon megfigyelhető volatilitásklasztereződés. Eszerint azokat a napokat volatilisebb napok követik, amelyeken jobban ingadozik az árfolyam, valamint ez fordítva is igaz, a nyugodtabb napokat nyugodtabb napok követik. Az EWMA-ban az előző időszaki loghozamok négyzetét exponenciálisan csökkenő súlyokkal súlyozzuk. Az, hogy mennyire gyors az exponenciális csökkenés, a decay faktor értéke határozza meg. A súlyokat egyre normálva nagyobb decay faktor mellett kisebb súlyokat kapunk, azonban a súlyok lassabban csökkennek.

1. ábra. EWMA a MOO idősoros adatokon a két decay faktor mellett

Ahogy az ábrán látható, nagyobb decay faktor mellett nagyobb az előrejelzett volatilitás, azonban ebben az esetben a volatilitások jobban klasztereződnek, mivel nem olyan nagyok a

kilengések, mint kisebb decay faktor mellett.

4. Machine Learning