

WHAT IS CLAIMED IS:

1 1. An optical device that compensates for polarization mode dispersion (PMD)
2 of an optical signal, comprising;

3 a first rotating device that rotates the polarization angle of the optical signal in a
4 frequency-dependent manner; and

5 a first-order PMD compensator that receives the rotated signal and compensates
6 for first-order PMD; and

7 a second rotating device that receives the compensated signal and rotates the
8 polarization angle of the compensated signal in a frequency-dependent manner to
9 compensate for higher-order PMD.

1 2. The optical device of claim 1, wherein the first rotating device and the second
2 rotating device use substantially the same components.

1 3. The optical device of claim 2, wherein the first rotating device performs a
2 transform $\mathbf{R}(\omega\mathbf{K})$ and also performs a transform $\mathbf{R}^{-1}(\omega\mathbf{K})$, wherein \mathbf{R} is an operator whose
3 effect is equivalent to rotation in Stokes space, ω denotes the deviation from a central
4 angular frequency of the optical signal and \mathbf{K} relates to a variable delay.

1 4. The optical device of claim 1, wherein the first rotating device performs a
2 transform $\mathbf{R}(\omega\mathbf{K})$ and the second rotating device performs a transform $\mathbf{R}^{-1}(\omega\mathbf{K})$, wherein
3 \mathbf{R} is an operator whose effect is equivalent to rotation in Stokes space, ω denotes the
4 deviation from a central angular frequency of the optical signal and \mathbf{K} relates to a variable
5 delay.

1 5. The optical device of claim 1, wherein the first rotating device comprises a
2 second polarization rotator, an interferometer and a third polarization rotator.

1 6. The optical device of claim 1, wherein the optical device is adjusted such that
2 the polarization at the center frequency of the optical signal is substantially not changed.

1 7. The optical device of claim 1, wherein the optical device has two adjustable
2 delays.

1 8. The optical device of claim 1, wherein passing an optical signal through the
2 first rotation device in a forward direction causes a first transformation $\mathbf{R}(\omega\mathbf{K})$ of the
3 optical signal and passing the optical signal in a backward direction causes a second

4 transformation $\mathbf{R}^{-1}(\omega \mathbf{K})$, wherein ω denotes the deviation from a central angular
5 frequency of the optical signal and \mathbf{K} relates to a variable delay.

1 9. The optical device of claim 1, wherein a transform is performed according to
2 the equation:

3
$$\mathbf{M}(\omega) = \mathbf{R}(\theta)\mathbf{R}(\omega \mathbf{K}) \begin{bmatrix} \exp(i\omega\tau/2) & 0 \\ 0 & \exp(-i\omega\tau/2) \end{bmatrix} \mathbf{R}^{-1}(\omega \mathbf{K}),$$

4 wherein \mathbf{R} is an operator whose effect is equivalent to rotation in Stokes space, its
5 argument (θ or $\omega \mathbf{K}$ in the equation above) is a three-dimensional rotation vector whose
6 direction is the axis of rotation in Stokes space and whose angle is the angle of rotation. ω
7 denotes the deviation from a central angular frequency of the optical signal, \mathbf{K} (the
8 magnitude of \mathbf{K}) and τ relate to adjustable delays.

1 10. In an optical device that compensates for polarization mode dispersion
2 (PMD), a method for adjusting the optical device, comprising:

3 adjusting a group delay device; and

4 adjusting a device that performs a frequency-dependent polarization rotation in
5 Stokes space.

1 11. The method of claim 10, wherein the group delay device is used to
2 substantially compensate for first-order PMD, and the device that performs
3 frequency-dependent polarization rotation is used to compensate for higher-order PMD.

1 12. The method of claim 10, wherein the group delay device includes at least a
2 first adjustable frequency-independent rotating device and a delay τ .

1 13. The method of claim 10, wherein the device that performs the first and last
2 frequency-dependent polarization rotation includes at least a second and third adjustable
3 frequency -independent rotating devices and a delay \mathbf{K} .

1 14. The method of claim 10, wherein the optical device is adjusted such that the
2 polarization at a center frequency of an optical signal is substantially not changed.

1 15. A method for compensating for polarization mode dispersion (PMD) of an
2 optical signal, comprising;

3 first rotating a first polarization angle of the optical signal in a
4 frequency-independent manner to generate an intermediate optical signal; and

5 —— second-rotating a second polarization angle of the intermediate optical signal in a
6 frequency-dependent manner to compensate for higher-order PMD.

1 16. The method of claim 15, further comprising compensating the intermediate
2 optical signal for first-order PMD of the intermediate optical signal before second
3 rotating.

1 17. The method of claim 16, wherein compensating the intermediate optical
2 signal comprises:

3 splitting the intermediate optical signal into a plurality of portions;
4 delaying at least one of the portions; and
5 combining the at least one delayed portion with at least a second portion of the
6 plurality of portions.

1 18. The method of claim 15, wherein first rotating and second rotating is
2 performed by a single polarization rotation device.

1 19. The method of claim 15, wherein first rotating causes a first transformation
2 $\mathbf{R}(\omega\mathbf{K})$ of the optical signal and second rotating causes a second transformation $\mathbf{R}^{-1}(\omega\mathbf{K})$,
3 wherein ω denotes the deviation from a central angular frequency of the optical signal
4 and \mathbf{K} relates to a variable delay.

5 20. The method of claim 15, wherein \mathbf{R} is an operator whose effect is equivalent
to rotation in Stokes space.

1 21. The method of claim 15, wherein performing the first rotating comprises at
2 least performing a polarization state rotation of an angle θ about the axis defined by the
3 frequency-independent polarization controllers, causing an interference of the optical
4 signal and performing a second polarization state rotation by an angle $-\theta$ around the same
5 axis.

1 22. The method of claim 15, wherein a transform is performed according to the
2 equation:

3
$$\mathbf{M}(\omega) = \mathbf{R}(\theta)\mathbf{R}(\omega\mathbf{K}) \begin{bmatrix} \exp(i\omega\tau/2) & 0 \\ 0 & \exp(-i\omega\tau/2) \end{bmatrix} \mathbf{R}^{-1}(\omega\mathbf{K}),$$

4 4 wherein \mathbf{R} is an operator whose effect is equivalent to rotation in Stokes space, its
5 argument (θ or $\omega\mathbf{K}$ in the equation above) is a three-dimensional rotation vector whose
6 direction is the axis of rotation in Stokes space and whose angle is the angle of rotation, ω

Docket No. 1999-0532 CON

17

- 7 denotes the deviation from a central angular frequency of the optical signal, and K and τ
8 relate to adjustable delays.