PHYS 1111 Formulas

by Frank Chen

	Angular	Linear
Acceleration	$\alpha = \frac{\Delta \omega}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$
Moment of inertia	$I = \sum m_i r_i^2$	$m = \sum_{i=1}^{n} m_i$
Kinetic energy	$K_r = \frac{1}{2}I\omega^2$	$K_t = \frac{1}{2}mv^2$
Torque/Force	$\tau = I\alpha$	F = ma
Work	$W = \tau \Delta \theta$	W = Fs
Power	$P = \tau \omega$	P = F v
Momentum	$L = I\omega$	p = mv
Equilibrium	$\Sigma \tau = 0$	$\Sigma F = 0$
Precession of gyroscope	$\Omega = \frac{\Delta \phi}{\Delta t} = \frac{ \tau_w }{ L } = \frac{1}{2}$	$rac{wr}{I\omega}$
Young's modulus	$Y = \frac{F_{\perp}/A}{\Delta l/l_0}$	
Bulk modulus	$B = \frac{\Delta p}{\Delta V/V_0}$	
Shear modulus	$S = \frac{F_{//}/A}{x/h} = \frac{F_{//}/A}{\phi}$	
Simple harmonic motion	$T = 2\pi \sqrt{\frac{m}{k}}$	
Simple pendulum	$T = 2\pi \sqrt{\frac{L}{g}}$	
Speed of transverse wave	$v = \sqrt{\frac{F_T}{\mu}}, \mu = \frac{M}{L}$	
Open pipe	$\lambda_n = \frac{2L}{n}, f_1 = \frac{v}{2L},$	$f_n = n \frac{v}{2L} = n f_1$ $(n = 1, 2, 3,)$
Stopped pipe	$\lambda_n = \frac{4L}{n}, f_1 = \frac{v}{4L},$	$f_n = n \frac{v}{4L} = n f_1 (n = 1, 3, 5,)$
Power	$P \propto A^2 f^2$	
Sound Intensity	$I = \frac{P}{4\pi r^2}$	
Intensity level	$\beta = 10 \log \frac{I}{I_0}, I_0 =$	10^{-12}W/m^2
Beat frequency	$f_{\text{beat}} = f_1 - f_2$	
Doppler effect	$f_L = \frac{v + v_L}{v + v_S} f_S$	
Specific heat capacity	$Q = c m \Delta T$	
Phase change	$Q = mL_{f/v}$	
Thermal expansion	$\Delta L = \alpha L_0 \Delta T, \Delta V =$	$= \beta V_0 \Delta T, \beta = 3\alpha$
Heat current	$H = \frac{\Delta Q}{\Delta t} = kA \frac{T_H - T_H}{L}$	T_C

Stefan-Boltzmann law	$H = Ae\sigma T^4$ $H_{\text{net}} = Ae\sigma (T^4 - T_s^4)$
Boyle's law Guy-Lussac's law	$p \propto 1/V$ $p \propto T$
Charles's law	$V \propto T$
Ideal-gas equation	pV = nRT
Total translational KE	$U \stackrel{\text{ideal}}{=} K_{\text{tt}} = \begin{cases} \frac{3}{2} nRT & \text{monatomic} \\ \frac{5}{2} nRT & \text{diatomic} \end{cases}$
Average translational KE	$K_{\text{avt}} = \begin{cases} \frac{3}{2}kT & \text{monatomic} \\ \frac{5}{2}kT & \text{diatomic} \end{cases}$
Root-mean-square speed	$v_{\rm rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3kT}{m}}$
Molar heat capacity	$Q = Cn\Delta T$ $C = Mc$ $C_p = C_V + R$
For monatomic gas	$C_V = \frac{3}{2}R$
For diatomic gas	$C_V = \frac{5}{2}R$
First law of thermodynamics	$Q = \Delta U + W$
Isothermal (constant T) process	$W = p_1 V_1 \ln \left(\frac{V_2}{V_1}\right) \qquad \Delta U = 0, \ Q = W$
Isochoric (constant <i>V</i>) process	$W = 0 \qquad \qquad \Delta U = Q$
Isobaric (constant p) process	$W = p(V_2 - V_1) \qquad \Delta U, Q, W \neq 0$
Adiabatic ($Q = 0$) process	$W = -\Delta U = \frac{1}{1 - \gamma} (p_1 V_1 - p_2 V_2)$
	$p_1 V_1^{\gamma} = p_2 V_2^{\gamma}, T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1} (\gamma = \frac{C_p}{C_V})$
Heat engine	$ Q_H = Q_c + W $ $Q_H > 0, Q_C < 0, W > 0$
Thermal efficiency	$e = \frac{W}{Q_H}$
Efficiency of Otto cycle	$e = 1 - \left(\frac{V_1}{V_2}\right)^{\gamma - 1}$
Refrigerator	$ Q_c + W = Q_H $ $Q_H < 0, Q_C > 0, W < 0$
Performance coefficient	$K = \frac{ Q_C }{W} = \frac{ Q_C }{ Q_H - Q_C } = \frac{H}{P}$
Efficiency of Carnot engine	$e = \frac{T_H - T_C}{T_H}$
Efficiency of Carnot refrigerato	$rK = \frac{T_C}{T_H - T_C}$
Entropy	$\Delta S = S_2 - S_1 = \frac{Q}{T}$
	T