ISP AUFGABE 3

Gruppe 3, Team 5

06.06.2017

Dimitri Meier, Saeed Shanidar, Andreas Berks

dimitri.meier@haw-hamburg.de, saeed.shanidar@haw-hamburg.de, andreas.berks@haw-hamburg.de

Inhaltsverzeichnis

0.	Allgemeine Definitionen	2
	0.1. Konkatenation	2
	0.2. Bias	3
1.	Lineare Regression	4
	1.1. Training mittels abgeschlossener Lösung	4
	1.1.1. Definition der Trainingsdaten	4
	1.1.2. Training des Modells	5
	1.1.3. Aufstellen der Hypothese	7
	1.1.4. Ergebnis	8
	1.1.5. Beantwortung der Fragen	9
	1.2. Training mittels Stochastic Gradient Descent (SGD)	10
	1.2.1. Definition der Trainingsdaten	10
	1.2.2. Training des Modells	11
	1.2.3. Aufstellen der Hypothese	13
	1.2.4. Ergebnis	14
	1.2.5. Beantwortung der Fragen	16
	2.1.5. Reantwortung der Fragen	21

0. Allgemeine Definitionen

0.1. Konkatenation

Wir definieren eine Funktion Konkatenation wie folgt:

$$Konkatenation: (\mathbb{R}^{m,1})^n \to \mathbb{R}^{m,n}, x \mapsto y$$

$$\forall i \in [1,m], j \in [1,n]: y_{i,j} = (x_i)_j$$

Beispiel:

Seien zwei Vektoren x_1 und x_2 gegeben:

$$x_1 = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \qquad x_2 = \begin{pmatrix} d \\ e \\ f \end{pmatrix}$$

Damit ergibt sich:

$$Konkatenation(\{x_1, x_2\}) = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$$

Implementation in Python:

```
def concatenate(M1, M2):
    return np.concatenate([M1, M2], axis = horizontal_axis)
```

0.2. Bias

Wir definieren eine Funktion Bias wie folgt:

$$Bias: \mathbb{R}^{m,n} \to \mathbb{R}^{m,1}, x \mapsto y$$

 $\forall i \in [1, m]: y_{i,1} = 1$

Beispiel:

Sei eine Matrix X gegeben:

$$X = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$$

Damit ergibt sich:

$$Bias(X) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Implementation in Python:

Wir definieren zuerst eine Hilfsfunktion, welche und die Anzahl der Zeilen und die Anzahl der Spalten der Matrix M liefert:

```
def get_dimensions(M):
    return np.shape(M)
```

Nun definieren wir eine Funktion zum Erzeugen des Bias:

```
def create_bias(M):
    m, n = get_dimensions(M)
    return np.ones((m,1))
```

Weiterhin definieren wir eine Funktion zum Hinzufügen eines Bias:

```
def add_bias(M):
    bias = create_bias(M)
    return concatenate(bias, M)
```

1. Lineare Regression

1.1. Training mittels abgeschlossener Lösung

1.1.1. Definition der Trainingsdaten

Gegeben sind die folgenden Trainingsdaten:

x_1	y
0.86	2.49
0.09	0.83
-0.85	-0.25
0.87	3.1
-0.44	0.87
-0.43	0.02
-1.1	-0.12
0.4	1.81
-0.96	-0.83
0.17	0.43

$$x_{1} = \begin{pmatrix} 0.86 \\ 0.09 \\ -0.85 \\ 0.87 \\ -0.44 \\ -0.43 \\ -1.1 \\ 0.4 \\ -0.96 \\ 0.17 \end{pmatrix} \qquad y = \begin{pmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.1 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{pmatrix}$$

Wir definieren nun eine Matrix $\,X\,$ welche sämtliche Trainingsdaten beinhaltet. Dazu konkatenieren wir sämtliche Spaten der Trainingsdaten:

$$Spalten = \{x_1\}$$

X = Konkatenation(Spalten)

1.1.2. Training des Modells

Im Folgenden definieren nun eine Methode fit(X,y) zum Training des Modells anhand von gegebenen Trainingsdaten.

Zuerst fügen wir der Matrix X den Bias x_0 hinzu. Die entstehende Matrix bezeichnen wir als X_{Bias} .

$$x_0 = Bias(X)$$

 $X_{Bias} = Konkatenation(\{x_0\} \cup Spalten)$

Die entsprechenden Matrizen $\,X\,$ und $\,X_{Bias}\,$ stehen wie folgt aus:

$$X = \begin{pmatrix} 0.86 \\ 0.09 \\ -0.85 \\ 0.87 \\ -0.44 \\ -0.43 \\ -1.1 \\ 0.4 \\ -0.96 \\ 0.17 \end{pmatrix} \qquad X_{Bias} = \begin{pmatrix} 1.0 & 0.86 \\ 1.0 & 0.09 \\ 1.0 & -0.85 \\ 1.0 & 0.87 \\ 1.0 & -0.44 \\ 1.0 & -0.43 \\ 1.0 & -1.1 \\ 1.0 & 0.4 \\ 1.0 & -0.96 \\ 1.0 & 0.17 \end{pmatrix}$$

Nun bestimmen wir die Gewichte $\, \theta \,$ mittels abgeschlossener Lösung:

$$\theta = (X_{Bias}{}^T X_{Bias})^{-1} X_{Bias}{}^T y$$

In diesem Beispiel entstehen dadurch die folgenden Gewichte:

$$\theta = \begin{pmatrix} 1.05881340999 \\ 1.61016841718 \end{pmatrix}$$

Implementation in Python: Wir definieren zuerst Hilfsfunktionen, um Matrizen zu multiplizieren, zu transponieren und zu invertieren: def multiply(M1, M2): return np.dot(M1, M2) def transpose(M): return np.transpose(M) def inverse(M): return np.linalg.inv(M) Nun definieren wir eine Funktion zum Bestimmen der Gewichte: def calcThetaClosedForm(X, y): XT = transpose(X)result = multiply(XT, X) result = inverse(result) result = multiply(result, XT) result = multiply(result, y) return result

Wir speichern uns die Werte von $\, heta\,$ und nutzen diese in der Definition von $\,predict(X_{Test})$.

Damit ist die Definition der Methode fit(X,y) zum Training des Modells anhand von gegebenen Trainingsdaten abgeschlossen.

1.1.3. Aufstellen der Hypothese

Weiterhin definieren wir eine Methode $\operatorname{Predict}(X_{Test})$ zur numerischen Vorhersage der Zielvariable.

Es gilt für $\,X_{Test}$:

$$X_{Test} = Konkatenation(\{x_{Test1}\})$$

 $Spalten_{Test} = \{x_{Test1}\}$

Zuerst fügen wir der Matrix X_{Test} den Bias $x_{0\,Test}$ hinzu. Die entstehende Matrix bezeichnen wir als $X_{Test\,Bias}$.

$$x_{Test0} = Bias(X_{Test})$$

 $X_{TestBias} = Konkatenation(\{X_{TestBias}\} \cup Spalten_{Test})$

Nun berechnen wir die Hypothese $h(X_{TestBias})$:

$$h(X_{TestBias}) = X_{TestBias}\theta$$
$$h(X_{TestBias})_{i,k} = \sum_{j=0}^{n} X_{TestBiasi,j} \cdot \theta_{j,k}$$

```
Implementation in Python:

def calcHypothesis(theta, X):
    thetaT = transpose(theta)
    result = multiply(X, thetaT)
    return result
```

Das Ergebnis der Hypothese $h(X_{TestBias})$ geben wir als Ergebnis zurück.

Damit ist die Definition der Methode $\operatorname{Predict}(X_{Test})$ zur numerischen Vorhersage der Zielvariable abgeschlossen.

1.1.4. Ergebnis

Zur Erinnerung: Gegeben waren die folgenden Trainingsdaten:

x_1	y	
0.86	2.49	
0.09	0.83	
-0.85	-0.25	
0.87	3.1	
-0.44	0.87	
-0.43	0.02	
-1.1	-0.12	
0.4	1.81	
-0.96	-0.83	
0.17	0.43	

$$x_1 = \begin{pmatrix} 0.86 \\ 0.09 \\ -0.85 \\ 0.87 \\ -0.44 \\ -0.43 \\ -1.1 \\ 0.4 \\ -0.96 \\ 0.17 \end{pmatrix}$$

$$y = \begin{pmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.1 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{pmatrix}$$

Das Ergebnis der Hypothese sieht wie folgt aus:

1.1.5. Beantwortung der Fragen

...

1.2. Training mittels Stochastic Gradient Descent (SGD)

1.2.1. Definition der Trainingsdaten

Gegeben sind die folgenden Trainingsdaten:

y	
2.49	
0.83	
-0.25	
3.1	
0.87	
0.02	
-0.12	
1.81	
-0.83	
0.43	

$$x_{1} = \begin{pmatrix} 0.86 \\ 0.09 \\ -0.85 \\ 0.87 \\ -0.44 \\ -0.43 \\ -1.1 \\ 0.4 \\ -0.96 \\ 0.17 \end{pmatrix} \qquad y = \begin{pmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.1 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{pmatrix}$$

Wir definieren nun eine Matrix $\,X\,$ welche sämtliche Trainingsdaten beinhaltet. Dazu konkatenieren wir sämtliche Spaten der Trainingsdaten:

$$Spalten = \{x_1\}$$

X = Konkatenation(Spalten)

1.2.2. Training des Modells

Im Folgenden definieren nun eine Methode fit(X,y) zum Training des Modells anhand von gegebenen Trainingsdaten.

Zuerst fügen wir der Matrix X den Bias x_0 hinzu. Die entstehende Matrix bezeichnen wir als X_{Bias} .

$$x_0 = Bias(X)$$

 $X_{Bias} = Konkatenation(\{x_0\} \cup Spalten)$

Die entsprechenden Matrizen $\,X\,$ und $\,X_{Bias}\,$ stehen wie folgt aus:

$$X = \begin{pmatrix} 0.86 \\ 0.09 \\ -0.85 \\ 0.87 \\ -0.44 \\ -0.43 \\ -1.1 \\ 0.4 \\ -0.96 \\ 0.17 \end{pmatrix} \qquad X_{Bias} = \begin{pmatrix} 1.0 & 0.86 \\ 1.0 & 0.09 \\ 1.0 & -0.85 \\ 1.0 & 0.87 \\ 1.0 & -0.44 \\ 1.0 & -0.43 \\ 1.0 & -1.1 \\ 1.0 & 0.4 \\ 1.0 & -0.96 \\ 1.0 & 0.17 \end{pmatrix}$$

Nun bestimmen wir die Gewichte $\, heta\,$ mittels Stochastic Gradient Descent:

Zuerst initialisieren wir eine Menge für costs zu speichernden Werte der Kosten und initialisieren zusätzlich die Gewichte θ mit dem Wert 1.0:

$$costs = \{\}$$

$$\theta = \begin{pmatrix} 1.0\\1.0\\...\\1.0\\1.0 \end{pmatrix}$$
n Elemente

Anschließend werden nach und nach die Gewichte in einer Schleife angenähert:

for iteration in [1, iterations]: for i in [1, m]: for j in [1, n]: $\theta_j = \theta_j + \alpha (y_i - h(x_i)) x_{i,j}$ $costs = costs \cup J(\theta)$ Seien nun die folgenden Parameter für das Training festgelegt:

```
alpha = 0.001, iterations = 1000
```

In diesem Beispiel entstehen dadurch die folgenden Gewichte:

$$\theta = \begin{pmatrix} 1.05350947347 \\ 1.60561505101 \end{pmatrix}$$

```
Implementation in Python:
Wir definieren zuerst Hilfsfunktionen, um die Gewichte zu initialisieren:
def initialize theta(X):
    m, n = get_dimensions(X)
    return np.ones((n))
Nun definieren wir eine Funktion zum Bestimmen der Gewichte:
# Initialisierung der Gewichte (inklusive Bias-Term)
# self.weights in der Form [n_features + 1]
self.weights = initialize_theta(X)
# Array zum Speichern des Errors für jeden SGD-Schritt
self.cost = []
# SGD Schleife über Iterationen
for _ in range(iterations):
     # Schleife über Datensätze
    for i in range(m):
         # Update der Gewichte
         # Schleife über Parameter (n+1 durch Bias-Term)
         for j in range(n+1):
             temp = y[i] - calc_hypothesis(self.weights, X[i])
             self.weights[j] = self.weights[j] + alpha * temp * X[i][j]
    # Berechne SSE des SGD-Schritts mit den aktuallisierten Gewichten
    self.cost = self.cost + [calc sum of squared errors(self.weights, X, y)]
Dabei ist die Kostenfunktion wie folgt definiert:
def calc sum of squared errors(w, X, y):
    m, n = get dimensions(X)
    result = 0
    for i in range(1, m):
        result += (y[i] - calc_hypothesis(w, X[i])) ** 2
    result = result / 2
    return result
```

Wir speichern uns die Werte von $\, heta\,$ und nutzen diese in der Definition von $\,predict(X_{Test})$.

Damit ist die Definition der Methode fit(X,y) zum Training des Modells anhand von gegebenen Trainingsdaten abgeschlossen.

1.2.3. Aufstellen der Hypothese

Weiterhin definieren wir eine Methode $\operatorname{Predict}(X_{Test})$ zur numerischen Vorhersage der Zielvariable.

Es gilt für X_{Test} :

$$X_{Test} = Konkatenation(\{x_{Test1}\})$$

 $Spalten_{Test} = \{x_{Test1}\}$

Zuerst fügen wir der Matrix X_{Test} den Bias x_{0Test} hinzu. Die entstehende Matrix bezeichnen wir als $X_{Test\,Bias}$.

$$x_{Test0} = Bias(X_{Test})$$

 $X_{TestBias} = Konkatenation(\{X_{TestBias}\} \cup Spalten_{Test})$

Nun berechnen wir die Hypothese $h(X_{TestBias})$:

$$h(X_{TestBias}) = X_{TestBias}\theta$$
$$h(X_{TestBias})_{i,k} = \sum_{j=0}^{n} X_{TestBiasi,j} \cdot \theta_{j,k}$$

```
Implementation in Python:

def calcHypothesis(theta, X):
    thetaT = transpose(theta)
    result = multiply(X, thetaT)
    return result
```

Das Ergebnis der Hypothese $h(X_{TestBias})$ geben wir als Ergebnis zurück.

Damit ist die Definition der Methode $\operatorname{Predict}(X_{Test})$ zur numerischen Vorhersage der Zielvariable abgeschlossen.

1.2.4. Ergebnis

Zur Erinnerung: Gegeben waren die folgenden Trainingsdaten:

x_1	y
0.86	2.49
0.09	0.83
-0.85	-0.25
0.87	3.1
-0.44	0.87
-0.43	0.02
-1.1	-0.12
0.4	1.81
-0.96	-0.83
0.17	0.43

$$x_{1} = \begin{pmatrix} 0.86 \\ 0.09 \\ -0.85 \\ 0.87 \\ -0.44 \\ -0.43 \\ -1.1 \\ 0.4 \\ -0.96 \\ 0.17 \end{pmatrix} \qquad y = \begin{pmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.1 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{pmatrix}$$

$$y = \begin{pmatrix} 2.49 \\ 0.83 \\ -0.25 \\ 3.1 \\ 0.87 \\ 0.02 \\ -0.12 \\ 1.81 \\ -0.83 \\ 0.43 \end{pmatrix}$$

Seien nun die folgenden Parameter für das Training festgelegt:

$$alpha = 0.001, iterations = 1000$$

Die Fehlerkurve sieht wie folgt aus:

Das Ergebnis der Hypothese sieht wie folgt aus:

1.2.5. Beantwortung der Fragen

1) Probieren sie unterschiedliche Werte für die Parameter alpha und iterations in der predict()-Funktion aus und betrachten Sie die Auswirkung auf den Graphen des CostWertes.

An den folgenden Testdaten lässt sich folgendes ableiten:

- Je kleiner der Wert für alpha, desto genauer, jedoch auch langsamer die Annährung
- Je größer der Wert für iterations, desto genauer die Annährung, jedoch wird irgendwann Konvergenz erreicht

Ergebnis der geschlossenen Form:

$$\theta = \begin{pmatrix} 1.05881340999 \\ 1.61016841718 \end{pmatrix}$$

Auswirkungen auf das Ergebnis der Gewichte:

$$alpha = 0.1, iterations = 10$$

$$\theta = \begin{pmatrix} 1.00765915784 \\ 1.62453957299 \end{pmatrix}$$

$$alpha = 0.1, iterations = 100$$

$$\theta = \begin{pmatrix} 1.00973007855 \\ 1.63122340317 \end{pmatrix}$$

$$alpha = 0.1, iterations = 1000$$

$$\theta = \begin{pmatrix} 1.00973007855 \\ 1.63122340317 \end{pmatrix}$$

$$alpha = 0.1, iterations = 10000$$

$$\theta = \begin{pmatrix} 1.00973007855 \\ 1.63122340317 \end{pmatrix}$$

$$\theta = \begin{pmatrix} 1.00973007855 \\ 1.63122340317 \end{pmatrix}$$

$$alpha = 0.001, iterations = 10$$

$$\theta = \begin{pmatrix} 0.997658304558 \\ 1.02852627072 \end{pmatrix}$$

$$alpha = 0.001, iterations = 100$$

$$\theta = \begin{pmatrix} 0.99579621399 \\ 1.23041284218 \end{pmatrix}$$

$$alpha = 0.001, iterations = 1000$$

$$\theta = \begin{pmatrix} 1.05689685516 \\ 1.60423833205 \end{pmatrix}$$

$$alpha = 0.001, iterations = 10000$$

$$\theta = \begin{pmatrix} 1.05845358299 \\ 1.61031794299 \end{pmatrix}$$

$$alpha = 0.01, iterations = 10$$

$$\theta = \begin{pmatrix} 0.992487384982 \\ 1.23107298601 \end{pmatrix}$$

$$alpha = 0.01, iterations = 100$$

$$\theta = \begin{pmatrix} 1.05350947347 \\ 1.60561505101 \end{pmatrix}$$

$$alpha = 0.01, iterations = 1000$$

$$\theta = \begin{pmatrix} 1.05510432059 \\ 1.61172165337 \end{pmatrix}$$

$$alpha = 0.01, iterations = 10000$$

$$\theta = \begin{pmatrix} 1.05510432059 \\ 1.61172165337 \end{pmatrix}$$

$$alpha = 0.0001, iterations = 10$$

$$\theta = \begin{pmatrix} 0.999742675707 \\ 1.00291674727 \end{pmatrix}$$

$$alpha = 0.0001, iterations = 100$$

$$\theta = \begin{pmatrix} 0.997713030451 \\ 1.02851629376 \end{pmatrix}$$

$$alpha = 0.0001, iterations = 1000$$

$$\theta = \begin{pmatrix} 0.996117326835 \\ 1.23034720164 \end{pmatrix}$$

$$alpha = 0.0001, iterations = 10000$$

$$\theta = \begin{pmatrix} 1.05722454986 \\ 1.60410615124 \end{pmatrix}$$

Auswirkungen auf den Graphen des CostWertes:

alpha=0.0001, iterations=1000

alpha=0.0001, iterations=10000

2) Warum wird in der Praxis Stochastic Gradient Descent (SGD) gegenüber Batch Gradient Descent (s. Vorlesung) bevorzugt?

...

2.1.5. Beantwortung der Fragen

1) Was müssten Sie tun, damit Sie mehr als zwei Klassen vorhersagen können?

Darstellung keiner Klasse:

Darstellung der Klasse 0:

Darstellung der Klasse 1:

Darstellung der Klassen 0 und 1:

Darstellung der Klasse 3:

Darstellung der Klassen 1, 2 und 3:

