Amdt. Dated September 10, 2010

Reply to Office Action of May 13, 2010

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A method for labeling synthesis of phosgene, comprising:
- (a) providing a UV reactor assembly comprising a high pressure reaction chamber and a UV light source, wherein the high pressure reaction chamber having a window facing **a** the concave mirror, a first gas inlet and a second gas inlet,
- (b) providing a Cl_2 gas to be labeled,
- (c) introducing a carbon-isotope monoxide enriched gas-mixture into the reaction chamber of the UV reactor assembly via the first gas inlet,
- (d) introducing said Cl₂ gas into the reaction chamber via the second gas inlet,
- (e) turning on the UV light source and waiting for a predetermined time while the labeling synthesis occur, and
- (f) removing the labeled phosgene from the reaction chamber.
- 2. (Original) A method of claim 1, wherein the carbon-isotope monoxide enriched gasmixture is produced by a method comprising:
- (a) providing carbon-isotope dioxide in a suitable carrier gas,
- (b) converting carbon-isotope dioxide to carbon-isotope monoxide by introducing said gas mixture in a reactor device,
- (c) trapping carbon-isotope monoxide in a carbon monoxide trapping device, wherein carbon-isotope monoxide is trapped but not said carrier gas, and
- (d) releasing said trapped carbon-isotope monoxide from said trapping device in a well defined micro-plug, whereby a volume of carbon-isotope monoxide enriched gas-mixture is achieved.
- 3. (Original) A method of claim 1, wherein the carbon-isotope is ¹¹C, ¹³C, or ¹⁴C.
- 4. (Original) A method of claim 1, wherein the carbon-isotope is ¹¹C.

Amdt. Dated September 10, 2010

Reply to Office Action of May 13, 2010

- 5. (Original) A method of claim 1, wherein the UV light source is a UV lamp.
- 6. (Original) A method of claim 1, wherein the step of waiting a predetermined time comprises stirring in the reaction chamber to enhance the labeling synthesis.
- 7. (Original) A method of claim 7, wherein the step of waiting a predetermined time further comprises adjusting the temperature of the reaction chamber so that the labeling synthesis is enhanced.
- 8. (Currently Amended) A system for labeling synthesis of phosgene, comprising:
- (a) a UV reactor assembly comprising a high pressure reaction chamber,
- (b) a UV light source,
- wherein the high pressure reaction chamber having a window facing the UV light source, a first gas inlet and a second gas inlet in a top and/or bottom surface thereof, wherein the UV light beam enters the window of the reaction chamber.
- 9. (Original) A system of claim 8, further comprising a concave mirror facing the window of the high pressure reaction chamber, so that the concave mirror can focus the UV light beam from the UV light source.
- 10. (Original) A system of claim 8, further comprising a motor, a magnet, and a magnetic stirring bar inside the reaction chamber.
- 11. (Original) A system of claim 8, wherein the window is a sapphire window.
- 12. (Original) A system of claim 9, further comprising a protective housing and a bench where the reaction chamber, UV lamp and the concave mirror can be mounted.

Amdt. Dated September 10, 2010

Reply to Office Action of May 13, 2010

13. (Withdrawn) A method for radio-labeling comprising reaction of carbon-isotope phosgen synthesized according method of claim 1 with a compound of formula (I) and a compound of formula (II):

to give a labeled compound of formula (III):

(I)

(III)

wherein X is selected from N, O, S or Se, and R, R', R" and R" are independently void, H, linear or cyclic lower alkyl or substituted alkyl, aryl or substituted aryl.

- 14. (Withdrawn) A method of claim 13, wherein R, R', R" and R'" may contain carbonyl, hydroxy, thiol, halogen, nitrile, isonitrile, cyanate, isocyanate, thiocyanate, isothiocyanate functional groups, carbon-carbon double bonds or carbon-carbon triple bonds.
- 15. (Withdrawn) A method of claim 13, wherein R, R', R", R" may be connected in the case of ring closure reactions.
- 16. (Withdrawn) A method of claim 13, wherein the carbon-isotope monoxide is [¹¹C] monoxide.
- 17. (Withdrawn) A carbon-isotope labeled compound of formula (III) synthesized according to a method of claim 13,

(III)

- wherein X is selected from N, O, S or Se, and R, R', R" and R" are independently void, H, linear or cyclic lower alkyl or substituted alkyl, aryl or substituted aryl.
- 18. (Withdrawn) A carbon-isotope labeled compound of claim 17, wherein R, R', R" and R'" may contain carbonyl, hydroxy, thiol, halogen, nitrile, isonitrile, cyanate, isocyanate, thiocyanate, isothiocyanate functional groups, carbon-carbon double bonds or carbon-carbon triple bonds.
- 19. (Withdrawn) A carbon-isotope labeled compound of claim 17, wherein R, R', R", R" may be connected in the case of ring closure reactions.
- 20. (Withdrawn) A kit for PET study comprising a carbon-isotope labeled compound of formula (III),

- wherein X is selected from N, O, S or Se, and R, R', R" and R" are independently void, H, linear or cyclic lower alkyl or substituted alkyl, aryl or substituted aryl.
 - 21. (Withdrawn) A kit of claim 20, further comprising radioprotectant, antimicrobial preservative, pH-adjusting agent or filler.

Amdt. Dated September 10, 2010

Reply to Office Action of May 13, 2010

- 22. (Withdrawn) A kit of claim 21, wherein the radiopretectant is selected from ascorbic acid, para-aminobenzoic acid, gentisic acid and salts thereof.
- 23. (Withdrawn) A kit of claim 21, wherein the antimicrobial preservative is selected from the parabens, benzyl alcohol, phenol, cresol, cetrimide and thiomersal.
- 24. (Withdrawn) A kit of claim 21, wherein the pH-adjusting agent is a pharmaceutically acceptable buffer or a pharmaceutically acceptable base, or mixtures thereof.
- **25.** (Withdrawn) A kit of claim 21, wherein the filler is inorganic salts, water soluble sugars or sugar alcohols.