UOA ćwiczenie 1

Denis Firat

June 2020

1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie sie z różnego rodzaju czujnikami do pomiaru temperatury, poziomu, predkości obrotowej, parametrów chemicznych i położenia.

Wykorzystane programy:

Matlab, paint, skrypt w pythonie do analizy danych.

2 Wyznaczenie parametrów transmitancji obiektu na podstawie pomiarów jego charakterystykistatycznej i dynamicznej

2.1 Charakterystyka dynamiczna

Figure 1: Charakterystyka dynamiczna obiektu

2.2 Wyznaczanie parametrów modelu zastepczego Strejca

Na charakterystyce rysujemy styczne by wyznaczyć parametry obiektu.

Figure 2: Charakterystyka dynamiczna z naniesonymi stycznymi

- $\bullet \ k = 19[mV] 1[mV] (poziomodniesienia) = 18[mV] \\$
- $t_i = 540[s]$
- $T_z = 645[s]$
- $T_m = 235[s]$

${f 2.3}$ Wyznaczanie parametrów dla modelu zastepczego Strejca

$$K(s) = \frac{k}{(Ts+1)^n} \cdot e^{s\tau}$$

$$\frac{T_m}{T_z}_{exp} = 0,364$$

Korzystajac z tabeli stwierdzam, że stosunek wynosi 0,318.

$$\tau = \left[\left(\frac{T_m}{T_z}_{exp} \right) - \left(\frac{T_m}{T_z}_{tab} \right) \right] \cdot T_z \approx 29[s]$$

Stała czasowa T:

$$T = \frac{t_i}{3} = 180[s]$$

Podstawiajac:

$$K(s) = \frac{18}{(180s+1)^4} \cdot e^{s29}$$

Wzór modelu zastepczego Kupfmullera:

$$K(s) = \frac{k}{(Ts+1)} \cdot e^{sT_0}$$

$$K(s) = \frac{18}{(645s+1)} \cdot e^{s235}$$

2.5 Schematy blokowe w Scilab z pomoca xcos

Figure 3: Schemat xcos dla modelu zastepczego Strejca

Figure 4: Schemat xcos dla modelu zastepczego Kupfmullera

2.6 Porównanie modeli z wartościami zmierzonymi

Figure 5: Porównanie charakterystyk modeli

3 Pytania i odpowiedzi

3.1 Co mierzy termoelement?

Termoelement, inaczej termopara, składa sie z dwóch różnych przewodników i wykorzystuje zjawisko Seeback'a. Różnica temperatur, na końcach termopary, generuje siłe termoelektryczna. Dzieki temu, termopara używana jest jako czujnik temperatury.

3.2 Do czego służa przewody kompensacyjne? Z czego sa zbudowane?

Przewody kompensacyjne sa elementem obwodu pomiaru temperatury z pomoca termopary. Przewody kompensacyjne wykonane sa z materiału, który tylko w ograniczonym i ściśle określonym zakresie temperatur, posiada takie same właściwości termoelektryczne jak sam termoelement.

3.3 Jak zidentyfikować czujnik pomiarowy temperatury w obiekcie przy pomocy multimetru i bez załaczania zasilania obiektu?

Czujnik podłaczyć do obiektu o innej temperaturze niż temperatura odniesienia dla czujnika, a nastepnie za pomoca multimetru zmierzyć napiecie i porównać jego wartość z tabela wartości siły termoelektrycznej SME (mV) miedzy spoinami.

3.4 Jaki parametr zmienia sie w tensometrze?

Tensometr to czujnik napreżenia. Tensometry wykorzystuje sie także pośrednio do pomiaru innych wielkości nieelektrycznych (np. siły, ciśnienia, przyspieszenia, masy).

3.5 Jakie sa warunki pomiaru predkości obrotowej przy pomocy pradnicy tachometrycznej pradu stałego?

Pomiar predkości obrotu za pomoca pradnicy tachometrycznej wymaga sprzeżenia osi pradnicy z wirujacym elementem, którego predkość chcemy zmierzyć.

4 Wnioski

Z pomoca modeli zastepczych Strejca i Kumpfmullera, udało mi sie zamodelować fizyczny obiekt, co szczerze mówiac było jednym z moich pierwszych praktycznych użyć, wiedzy zdobytej na MUD'ach. Zrozumiałem, jak bardzo wybór metody modelowania, dokładność pomiarów i zmierzenie parametrów ma wpływ na dokładność modelu