model using a particular parameter setting on a particular cross-validation split can be done completely independently from the other parameter settings and models. This makes grid search and cross-validation ideal candidates for parallelization over multiple CPU cores or over a cluster. You can make use of multiple cores in Grid SearchCV and cross_val_score by setting the n_jobs parameter to the number of CPU cores you want to use. You can set n jobs=-1 to use all available cores.

You should be aware that scikit-learn does not allow nesting of parallel operations. So, if you are using the n_jobs option on your model (for example, a random forest), you cannot use it in GridSearchCV to search over this model. If your dataset and model are very large, it might be that using many cores uses up too much memory, and you should monitor your memory usage when building large models in parallel.

It is also possible to parallelize grid search and cross-validation over multiple machines in a cluster, although at the time of writing this is not supported within scikit-learn. It is, however, possible to use the IPython parallel framework for parallel grid searches, if you don't mind writing the for loop over parameters as we did in "Simple Grid Search" on page 261.

For Spark users, there is also the recently developed spark-sklearn package, which allows running a grid search over an already established Spark cluster.

Evaluation Metrics and Scoring

So far, we have evaluated classification performance using accuracy (the fraction of correctly classified samples) and regression performance using R^2 . However, these are only two of the many possible ways to summarize how well a supervised model performs on a given dataset. In practice, these evaluation metrics might not be appropriate for your application, and it is important to choose the right metric when selecting between models and adjusting parameters.

Keep the End Goal in Mind

When selecting a metric, you should always have the end goal of the machine learning application in mind. In practice, we are usually interested not just in making accurate predictions, but in using these predictions as part of a larger decisionmaking process. Before picking a machine learning metric, you should think about the high-level goal of the application, often called the business metric. The consequences of choosing a particular algorithm for a machine learning application are

called the business impact.² Maybe the high-level goal is avoiding traffic accidents, or decreasing the number of hospital admissions. It could also be getting more users for your website, or having users spend more money in your shop. When choosing a model or adjusting parameters, you should pick the model or parameter values that have the most positive influence on the business metric. Often this is hard, as assessing the business impact of a particular model might require putting it in production in a real-life system.

In the early stages of development, and for adjusting parameters, it is often infeasible to put models into production just for testing purposes, because of the high business or personal risks that can be involved. Imagine evaluating the pedestrian avoidance capabilities of a self-driving car by just letting it drive around, without verifying it first; if your model is bad, pedestrians will be in trouble! Therefore we often need to find some surrogate evaluation procedure, using an evaluation metric that is easier to compute. For example, we could test classifying images of pedestrians against nonpedestrians and measure accuracy. Keep in mind that this is only a surrogate, and it pays off to find the closest metric to the original business goal that is feasible to evaluate. This closest metric should be used whenever possible for model evaluation and selection. The result of this evaluation might not be a single number—the consequence of your algorithm could be that you have 10% more customers, but each customer will spend 15% less—but it should capture the expected business impact of choosing one model over another.

In this section, we will first discuss metrics for the important special case of binary classification, then turn to multiclass classification and finally regression.

Metrics for Binary Classification

Binary classification is arguably the most common and conceptually simple application of machine learning in practice. However, there are still a number of caveats in evaluating even this simple task. Before we dive into alternative metrics, let's have a look at the ways in which measuring accuracy might be misleading. Remember that for binary classification, we often speak of a positive class and a negative class, with the understanding that the positive class is the one we are looking for.

Kinds of errors

Often, accuracy is not a good measure of predictive performance, as the number of mistakes we make does not contain all the information we are interested in. Imagine an application to screen for the early detection of cancer using an automated test. If

² We ask scientifically minded readers to excuse the commercial language in this section. Not losing track of the end goal is equally important in science, though the authors are not aware of a similar phrase to "business impact" being used in that realm.

the test is negative, the patient will be assumed healthy, while if the test is positive, the patient will undergo additional screening. Here, we would call a positive test (an indication of cancer) the positive class, and a negative test the negative class. We can't assume that our model will always work perfectly, and it will make mistakes. For any application, we need to ask ourselves what the consequences of these mistakes might be in the real world.

One possible mistake is that a healthy patient will be classified as positive, leading to additional testing. This leads to some costs and an inconvenience for the patient (and possibly some mental distress). An incorrect positive prediction is called a *false positive*. The other possible mistake is that a sick patient will be classified as negative, and will not receive further tests and treatment. The undiagnosed cancer might lead to serious health issues, and could even be fatal. A mistake of this kind—an incorrect negative prediction—is called a *false negative*. In statistics, a false positive is also known as *type I error*, and a false negative as *type II error*. We will stick to "false negative" and "false positive," as they are more explicit and easier to remember. In the cancer diagnosis example, it is clear that we want to avoid false negatives as much as possible, while false positives can be viewed as more of a minor nuisance.

While this is a particularly drastic example, the consequence of false positives and false negatives are rarely the same. In commercial applications, it might be possible to assign dollar values to both kinds of mistakes, which would allow measuring the error of a particular prediction in dollars, instead of accuracy. This might be much more meaningful for making business decisions on which model to use.

Imbalanced datasets

Types of errors play an important role when one of two classes is much more frequent than the other one. This is very common in practice; a good example is click-through prediction, where each data point represents an "impression," an item that was shown to a user. This item might be an ad, or a related story, or a related person to follow on a social media site. The goal is to predict whether, if shown a particular item, a user will click on it (indicating they are interested). Most things users are shown on the Internet (in particular, ads) will not result in a click. You might need to show a user 100 ads or articles before they find something interesting enough to click on. This results in a dataset where for each 99 "no click" data points, there is 1 "clicked" data point; in other words, 99% of the samples belong to the "no click" class. Datasets in which one class is much more frequent than the other are often called *imbalanced datasets*, or *datasets with imbalanced classes*. In reality, imbalanced data is the norm, and it is rare that the events of interest have equal or even similar frequency in the data.

Now let's say you build a classifier that is 99% accurate on the click prediction task. What does that tell you? 99% accuracy sounds impressive, but this doesn't take the

class imbalance into account. You can achieve 99% accuracy without building a machine learning model, by always predicting "no click." On the other hand, even with imbalanced data, a 99% accurate model could in fact be quite good. However, accuracy doesn't allow us to distinguish the constant "no click" model from a potentially good model.

To illustrate, we'll create a 9:1 imbalanced dataset from the digits dataset, by classifying the digit 9 against the nine other classes:

In[37]:

```
from sklearn.datasets import load_digits
digits = load_digits()
y = digits.target == 9
X_train, X_test, y_train, y_test = train_test_split(
    digits.data, y, random state=0)
```

We can use the DummyClassifier to always predict the majority class (here "not nine") to see how uninformative accuracy can be:

In[38]:

```
from sklearn.dummy import DummyClassifier
    dummy_majority = DummyClassifier(strategy='most_frequent').fit(X_train, y_train)
    pred most frequent = dummy majority.predict(X test)
    print("Unique predicted labels: {}".format(np.unique(pred_most_frequent)))
    print("Test score: {:.2f}".format(dummy majority.score(X test, y test)))
Out[38]:
    Unique predicted labels: [False]
```

We obtained close to 90% accuracy without learning anything. This might seem striking, but think about it for a minute. Imagine someone telling you their model is 90% accurate. You might think they did a very good job. But depending on the problem, that might be possible by just predicting one class! Let's compare this against using an actual classifier:

In[39]:

Test score: 0.90

```
from sklearn.tree import DecisionTreeClassifier
    tree = DecisionTreeClassifier(max_depth=2).fit(X_train, y_train)
    pred_tree = tree.predict(X_test)
    print("Test score: {:.2f}".format(tree.score(X_test, y_test)))
Out[39]:
    Test score: 0.92
```

According to accuracy, the DecisionTreeClassifier is only slightly better than the constant predictor. This could indicate either that something is wrong with how we used DecisionTreeClassifier, or that accuracy is in fact not a good measure here.

For comparison purposes, let's evaluate two more classifiers, LogisticRegression and the default DummyClassifier, which makes random predictions but produces classes with the same proportions as in the training set:

In[40]:

```
from sklearn.linear_model import LogisticRegression
    dummy = DummyClassifier().fit(X_train, y_train)
    pred dummy = dummy.predict(X test)
    print("dummy score: {:.2f}".format(dummy.score(X_test, y_test)))
    logreg = LogisticRegression(C=0.1).fit(X_train, y_train)
    pred logreg = logreg.predict(X test)
    print("logreg score: {:.2f}".format(logreg.score(X test, y test)))
Out[40]:
    dummy score: 0.80
    logreg score: 0.98
```

The dummy classifier that produces random output is clearly the worst of the lot (according to accuracy), while LogisticRegression produces very good results. However, even the random classifier yields over 80% accuracy. This makes it very hard to judge which of these results is actually helpful. The problem here is that accuracy is an inadequate measure for quantifying predictive performance in this imbalanced setting. For the rest of this chapter, we will explore alternative metrics that provide better guidance in selecting models. In particular, we would like to have metrics that tell us how much better a model is than making "most frequent" predictions or random predictions, as they are computed in pred_most_frequent and pred dummy. If we use a metric to assess our models, it should definitely be able to weed out these nonsense predictions.

Confusion matrices

One of the most comprehensive ways to represent the result of evaluating binary classification is using confusion matrices. Let's inspect the predictions of LogisticRegres sion from the previous section using the confusion_matrix function. We already stored the predictions on the test set in pred logreg:

In[41]:

```
from sklearn.metrics import confusion_matrix

confusion = confusion_matrix(y_test, pred_logreg)
print("Confusion matrix:\n{}".format(confusion))

Out[41]:

Confusion matrix:
[[401 2]
[ 8 39]]
```

The output of confusion_matrix is a two-by-two array, where the rows correspond to the true classes and the columns correspond to the predicted classes. Each entry counts how often a sample that belongs to the class corresponding to the row (here, "not nine" and "nine") was classified as the class corresponding to the column. The following plot (Figure 5-10) illustrates this meaning:

In[42]:

mglearn.plots.plot_confusion_matrix_illustration()

Figure 5-10. Confusion matrix of the "nine vs. rest" classification task

Entries on the main diagonal³ of the confusion matrix correspond to correct classifications, while other entries tell us how many samples of one class got mistakenly classified as another class.

If we declare "a nine" the positive class, we can relate the entries of the confusion matrix with the terms *false positive* and *false negative* that we introduced earlier. To complete the picture, we call correctly classified samples belonging to the positive class *true positives* and correctly classified samples belonging to the negative class *true negatives*. These terms are usually abbreviated FP, FN, TP, and TN and lead to the following interpretation for the confusion matrix (Figure 5-11):

In[43]:

mglearn.plots.plot_binary_confusion_matrix()

Figure 5-11. Confusion matrix for binary classification

Now let's use the confusion matrix to compare the models we fitted earlier (the two dummy models, the decision tree, and the logistic regression):

In[44]:

```
print("Most frequent class:")
print(confusion_matrix(y_test, pred_most_frequent))
print("\nDummy model:")
print(confusion_matrix(y_test, pred_dummy))
print("\nDecision tree:")
print(confusion_matrix(y_test, pred_tree))
print("\nLogistic Regression")
print(confusion_matrix(y_test, pred_logreg))
```

³ The main diagonal of a two-dimensional array or matrix A is A[i, i].

Out[44]:

```
Most frequent class:
[[403
       0]
[ 47
       011
Dummy model:
[[361 42]
[ 43 4]]
Decision tree:
[[390 13]
[ 24 23]]
Logistic Regression
[[401 2]
[ 8 39]]
```

Looking at the confusion matrix, it is quite clear that something is wrong with pred most frequent, because it always predicts the same class. pred dummy, on the other hand, has a very small number of true positives (4), particularly compared to the number of false negatives and false positives—there are many more false positives than true positives! The predictions made by the decision tree make much more sense than the dummy predictions, even though the accuracy was nearly the same. Finally, we can see that logistic regression does better than pred_tree in all aspects: it has more true positives and true negatives while having fewer false positives and false negatives. From this comparison, it is clear that only the decision tree and the logistic regression give reasonable results, and that the logistic regression works better than the tree on all accounts. However, inspecting the full confusion matrix is a bit cumbersome, and while we gained a lot of insight from looking at all aspects of the matrix, the process was very manual and qualitative. There are several ways to summarize the information in the confusion matrix, which we will discuss next.

Relation to accuracy. We already saw one way to summarize the result in the confusion matrix—by computing accuracy, which can be expressed as:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

In other words, accuracy is the number of correct predictions (TP and TN) divided by the number of all samples (all entries of the confusion matrix summed up).

Precision, recall, and f-score. There are several other ways to summarize the confusion matrix, with the most common ones being precision and recall. *Precision* measures how many of the samples predicted as positive are actually positive:

$$Precision = \frac{TP}{TP + FP}$$

Precision is used as a performance metric when the goal is to limit the number of false positives. As an example, imagine a model for predicting whether a new drug will be effective in treating a disease in clinical trials. Clinical trials are notoriously expensive, and a pharmaceutical company will only want to run an experiment if it is very sure that the drug will actually work. Therefore, it is important that the model does not produce many false positives—in other words, that it has a high precision. Precision is also known as *positive predictive value* (PPV).

Recall, on the other hand, measures how many of the positive samples are captured by the positive predictions:

$$Recall = \frac{TP}{TP + FN}$$

Recall is used as performance metric when we need to identify all positive samples; that is, when it is important to avoid false negatives. The cancer diagnosis example from earlier in this chapter is a good example for this: it is important to find all people that are sick, possibly including healthy patients in the prediction. Other names for recall are *sensitivity*, *hit rate*, or *true positive rate* (TPR).

There is a trade-off between optimizing recall and optimizing precision. You can trivially obtain a perfect recall if you predict all samples to belong to the positive class—there will be no false negatives, and no true negatives either. However, predicting all samples as positive will result in many false positives, and therefore the precision will be very low. On the other hand, if you find a model that predicts only the single data point it is most sure about as positive and the rest as negative, then precision will be perfect (assuming this data point is in fact positive), but recall will be very bad.

Precision and recall are only two of many classification measures derived from TP, FP, TN, and FN. You can find a great summary of all the measures on Wikipedia. In the machine learning community, precision and recall are arguably the most commonly used measures for binary classification, but other communities might use other related metrics.

So, while precision and recall are very important measures, looking at only one of them will not provide you with the full picture. One way to summarize them is the *f-score* or *f-measure*, which is with the harmonic mean of precision and recall:

$$F = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

This particular variant is also known as the f_1 -score. As it takes precision and recall into account, it can be a better measure than accuracy on imbalanced binary classification datasets. Let's run it on the predictions for the "nine vs. rest" dataset that we computed earlier. Here, we will assume that the "nine" class is the positive class (it is labeled as True while the rest is labeled as False), so the positive class is the minority class:

In[45]:

We can note two things here. First, we get an error message for the most_frequent prediction, as there were no predictions of the positive class (which makes the denominator in the *f*-score zero). Also, we can see a pretty strong distinction between the dummy predictions and the tree predictions, which wasn't clear when looking at accuracy alone. Using the *f*-score for evaluation, we summarized the predictive performance again in one number. However, the *f*-score seems to capture our intuition of what makes a good model much better than accuracy did. A disadvantage of the *f*-score, however, is that it is harder to interpret and explain than accuracy.

If we want a more comprehensive summary of precision, recall, and f_1 -score, we can use the classification_report convenience function to compute all three at once, and print them in a nice format:

In[46]:

Out[46]:

support	f1-score	recall	precision	
403	0.94	1.00	0.90	not nine
47	0.00	0.00	0.00	nine
450	0.85	0.90	0.80	avg / total

The classification_report function produces one line per class (here, True and False) and reports precision, recall, and f-score with this class as the positive class. Before, we assumed the minority "nine" class was the positive class. If we change the positive class to "not nine," we can see from the output of classification_report that we obtain an f-score of 0.94 with the most_frequent model. Furthermore, for the "not nine" class we have a recall of 1, as we classified all samples as "not nine." The last column next to the f-score provides the support of each class, which simply means the number of samples in this class according to the ground truth.

The last row in the classification report shows a weighted (by the number of samples in the class) average of the numbers for each class. Here are two more reports, one for the dummy classifier and one for the logistic regression:

0.82

450

In[47]:

```
print(classification_report(y_test, pred_dummy,
                                target_names=["not nine", "nine"]))
Out[47]:
                 precision
                              recall f1-score
                                                 support
       not nine
                      0.90
                                0.92
                                          0.91
                                                      403
           nine
                      0.11
                                0.09
                                          0.10
                                                       47
```

In[48]:

avg / total

0.83

Out[48]:

support	f1-score	recall	precision	
403 47	0.99 0.89	1.00 0.83	0.98 0.95	not nine nine
450	0.98	0.98	0.98	avg / total

0.81

As you may notice when looking at the reports, the differences between the dummy models and a very good model are not as clear any more. Picking which class is declared the positive class has a big impact on the metrics. While the *f*-score for the dummy classification is 0.13 (vs. 0.89 for the logistic regression) on the "nine" class, for the "not nine" class it is 0.90 vs. 0.99, which both seem like reasonable results. Looking at all the numbers together paints a pretty accurate picture, though, and we can clearly see the superiority of the logistic regression model.

Taking uncertainty into account

The confusion matrix and the classification report provide a very detailed analysis of a particular set of predictions. However, the predictions themselves already threw away a lot of information that is contained in the model. As we discussed in Chapter 2, most classifiers provide a decision_function or a predict_proba method to assess degrees of certainty about predictions. Making predictions can be seen as thresholding the output of decision_function or predict_proba at a certain fixed point—in binary classification we use 0 for the decision function and 0.5 for predict_proba.

The following is an example of an imbalanced binary classification task, with 400 points in the negative class classified against 50 points in the positive class. The training data is shown on the left in Figure 5-12. We train a kernel SVM model on this data, and the plots to the right of the training data illustrate the values of the decision function as a heat map. You can see a black circle in the plot in the top center, which denotes the threshold of the decision_function being exactly zero. Points inside this circle will be classified as the positive class, and points outside as the negative class:

In[49]:

Figure 5-12. Heatmap of the decision function and the impact of changing the decision threshold

We can use the classification_report function to evaluate precision and recall for both classes:

In[51]:

print(classification_report(y_test, svc.predict(X_test)))

Out[51]:

support	f1-score	recall	precision	
104	0.93	0.89	0.97	0
9	0.46	0.67	0.35	1
113	0.89	0.88	0.92	avg / total

For class 1, we get a fairly small recall, and precision is mixed. Because class 0 is so much larger, the classifier focuses on getting class 0 right, and not the smaller class 1.

Let's assume in our application it is more important to have a high recall for class 1, as in the cancer screening example earlier. This means we are willing to risk more false positives (false class 1) in exchange for more true positives (which will increase the recall). The predictions generated by svc.predict really do not fulfill this requirement, but we can adjust the predictions to focus on a higher recall of class 1 by changing the decision threshold away from 0. By default, points with a decision_function value greater than 0 will be classified as class 1. We want *more* points to be classified as class 1, so we need to *decrease* the threshold:

In[52]:

```
y_pred_lower_threshold = svc.decision_function(X_test) > -.8
```

Let's look at the classification report for this prediction:

In[53]:

```
print(classification_report(y_test, y_pred_lower_threshold))
```

Out[53]:

support	f1-score	recall	precision	
104	0.90	0.82	1.00	0
9	0.49	1.00	0.32	1
113	0.87	0.83	0.95	avg / total

As expected, the recall of class 1 went up, and the precision went down. We are now classifying a larger region of space as class 1, as illustrated in the top-right panel of Figure 5-12. If you value precision over recall or the other way around, or your data is heavily imbalanced, changing the decision threshold is the easiest way to obtain better results. As the decision_function can have arbitrary ranges, it is hard to provide a rule of thumb regarding how to pick a threshold.

If you do set a threshold, you need to be careful not to do so using the test set. As with any other parameter, setting a decision threshold on the test set is likely to yield overly optimistic results. Use a validation set or cross-validation instead.

Picking a threshold for models that implement the predict_proba method can be easier, as the output of predict_proba is on a fixed 0 to 1 scale, and models probabilities. By default, the threshold of 0.5 means that if the model is more than 50% "sure" that a point is of the positive class, it will be classified as such. Increasing the threshold means that the model needs to be more confident to make a positive decision (and less confident to make a negative decision). While working with probabilities may be more intuitive than working with arbitrary thresholds, not all models provide realistic models of uncertainty (a DecisionTree that is grown to its full depth is always 100% sure of its decisions, even though it might often be wrong). This relates to the concept of *calibration*: a calibrated model is a model that provides an accurate measure of its uncertainty. Discussing calibration in detail is beyond the scope of this book, but you can find more details in the paper "Predicting Good Probabilities with Supervised Learning" by Alexandru Niculescu-Mizil and Rich Caruana.

Precision-recall curves and ROC curves

As we just discussed, changing the threshold that is used to make a classification decision in a model is a way to adjust the trade-off of precision and recall for a given classifier. Maybe you want to miss less than 10% of positive samples, meaning a desired recall of 90%. This decision depends on the application, and it should be driven by business goals. Once a particular goal is set—say, a particular recall or precision value for a class—a threshold can be set appropriately. It is always possible to set a threshold to fulfill a particular target, like 90% recall. The hard part is to develop a model that still has reasonable precision with this threshold—if you classify everything as positive, you will have 100% recall, but your model will be useless.

Setting a requirement on a classifier like 90% recall is often called setting the operating point. Fixing an operating point is often helpful in business settings to make performance guarantees to customers or other groups inside your organization.

Often, when developing a new model, it is not entirely clear what the operating point will be. For this reason, and to understand a modeling problem better, it is instructive to look at all possible thresholds, or all possible trade-offs of precision and recalls at once. This is possible using a tool called the precision-recall curve. You can find the function to compute the precision-recall curve in the sklearn.metrics module. It needs the ground truth labeling and predicted uncertainties, created via either decision function or predict proba:

In[54]:

```
from sklearn.metrics import precision_recall_curve
precision, recall, thresholds = precision recall curve(
    y_test, svc.decision_function(X_test))
```

The precision recall curve function returns a list of precision and recall values for all possible thresholds (all values that appear in the decision function) in sorted order, so we can plot a curve, as seen in Figure 5-13:

In[55]:

```
# Use more data points for a smoother curve
X, y = make_blobs(n_samples=(4000, 500), centers=2, cluster_std=[7.0, 2],
                  random_state=22)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
svc = SVC(gamma=.05).fit(X_train, y_train)
precision, recall, thresholds = precision_recall_curve(
    y_test, svc.decision_function(X_test))
# find threshold closest to zero
close_zero = np.argmin(np.abs(thresholds))
plt.plot(precision[close_zero], recall[close_zero], 'o', markersize=10,
         label="threshold zero", fillstyle="none", c='k', mew=2)
plt.plot(precision, recall, label="precision recall curve")
plt.xlabel("Precision")
plt.ylabel("Recall")
```


Figure 5-13. Precision recall curve for SVC(gamma=0.05)

Each point along the curve in Figure 5-13 corresponds to a possible threshold of the decision_function. We can see, for example, that we can achieve a recall of 0.4 at a precision of about 0.75. The black circle marks the point that corresponds to a threshold of 0, the default threshold for decision_function. This point is the trade-off that is chosen when calling the predict method.

The closer a curve stays to the upper-right corner, the better the classifier. A point at the upper right means high precision *and* high recall for the same threshold. The curve starts at the top-left corner, corresponding to a very low threshold, classifying everything as the positive class. Raising the threshold moves the curve toward higher precision, but also lower recall. Raising the threshold more and more, we get to a situation where most of the points classified as being positive are true positives, leading to a very high precision but lower recall. The more the model keeps recall high as precision goes up, the better.

Looking at this particular curve a bit more, we can see that with this model it is possible to get a precision of up to around 0.5 with very high recall. If we want a much higher precision, we have to sacrifice a lot of recall. In other words, on the left the curve is relatively flat, meaning that recall does not go down a lot when we require increased precision. For precision greater than 0.5, each gain in precision costs us a lot of recall.

Different classifiers can work well in different parts of the curve—that is, at different operating points. Let's compare the SVM we trained to a random forest trained on the same dataset. The RandomForestClassifier doesn't have a decision_function, only predict_proba. The precision_recall_curve function expects as its second argument a certainty measure for the positive class (class 1), so we pass the probability of a sample being class 1—that is, rf.predict_proba(X_test)[:, 1]. The default threshold for predict_proba in binary classification is 0.5, so this is the point we marked on the curve (see Figure 5-14):

In[56]:

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100, random_state=0, max_features=2)
rf.fit(X train, y train)
# RandomForestClassifier has predict proba, but not decision function
precision_rf, recall_rf, thresholds_rf = precision_recall_curve(
    y_test, rf.predict_proba(X_test)[:, 1])
plt.plot(precision, recall, label="svc")
plt.plot(precision[close_zero], recall[close_zero], 'o', markersize=10,
         label="threshold zero svc", fillstyle="none", c='k', mew=2)
plt.plot(precision_rf, recall_rf, label="rf")
close_default_rf = np.argmin(np.abs(thresholds_rf - 0.5))
plt.plot(precision_rf[close_default_rf], recall_rf[close_default_rf], '^', c='k',
         markersize=10, label="threshold 0.5 rf", fillstyle="none", mew=2)
plt.xlabel("Precision")
plt.ylabel("Recall")
plt.legend(loc="best")
                   1.0
                   0.8
                   0.6
                   0.4
                          threshold zero svo
                           threshold 0.5 rf
```

Figure 5-14. Comparing precision recall curves of SVM and random forest

From the comparison plot we can see that the random forest performs better at the extremes, for very high recall or very high precision requirements. Around the middle (approximately precision=0.7), the SVM performs better. If we only looked at the f_1 -score to compare overall performance, we would have missed these subtleties. The f_1 -score only captures one point on the precision-recall curve, the one given by the default threshold:

In[57]:

```
print("f1 score of random forest: {:.3f}".format(
        f1_score(y_test, rf.predict(X_test))))
    print("f1_score of svc: {:.3f}".format(f1_score(y_test, svc.predict(X_test))))
Out[57]:
    f1 score of random forest: 0.610
    f1 score of svc: 0.656
```

Comparing two precision-recall curves provides a lot of detailed insight, but is a fairly manual process. For automatic model comparison, we might want to summarize the information contained in the curve, without limiting ourselves to a particular threshold or operating point. One particular way to summarize the precision-recall curve is by computing the integral or area under the curve of the precision-recall curve, also known as the average precision.4 You can use the average_precision_score function to compute the average precision. Because we need to compute the ROC curve and consider multiple thresholds, the result of decision function or predict proba needs to be passed to average_precision_score, not the result of predict:

In[58]:

```
from sklearn.metrics import average_precision_score
    ap_rf = average_precision_score(y_test, rf.predict_proba(X_test)[:, 1])
    ap_svc = average_precision_score(y_test, svc.decision_function(X_test))
    print("Average precision of random forest: {:.3f}".format(ap_rf))
    print("Average precision of svc: {:.3f}".format(ap_svc))
Out[58]:
    Average precision of random forest: 0.666
    Average precision of svc: 0.663
```

When averaging over all possible thresholds, we see that the random forest and SVC perform similarly well, with the random forest even slightly ahead. This is quite different from the result we got from f1 score earlier. Because average precision is the area under a curve that goes from 0 to 1, average precision always returns a value between 0 (worst) and 1 (best). The average precision of a classifier that assigns decision function at random is the fraction of positive samples in the dataset.

Receiver operating characteristics (ROC) and AUC

There is another tool that is commonly used to analyze the behavior of classifiers at different thresholds: the receiver operating characteristics curve, or ROC curve for short. Similar to the precision-recall curve, the ROC curve considers all possible

⁴ There are some minor technical differences between the area under the precision-recall curve and average precision. However, this explanation conveys the general idea.

thresholds for a given classifier, but instead of reporting precision and recall, it shows the *false positive rate* (FPR) against the *true positive rate* (TPR). Recall that the true positive rate is simply another name for recall, while the false positive rate is the fraction of false positives out of all negative samples:

$$FPR = \frac{FP}{FP+TN}$$

The ROC curve can be computed using the roc_curve function (see Figure 5-15):

In[59]:

Figure 5-15. ROC curve for SVM

For the ROC curve, the ideal curve is close to the top left: you want a classifier that produces a *high recall* while keeping a *low false positive rate*. Compared to the default threshold of 0, the curve shows that we can achieve a significantly higher recall (around 0.9) while only increasing the FPR slightly. The point closest to the top left might be a better operating point than the one chosen by default. Again, be aware that choosing a threshold should not be done on the test set, but on a separate validation set.

You can find a comparison of the random forest and the SVM using ROC curves in Figure 5-16:

In[60]:

Figure 5-16. Comparing ROC curves for SVM and random forest

As for the precision-recall curve, we often want to summarize the ROC curve using a single number, the area under the curve (this is commonly just referred to as the AUC, and it is understood that the curve in question is the ROC curve). We can compute the area under the ROC curve using the roc_auc_score function:

In[61]:

```
from sklearn.metrics import roc_auc_score
  rf_auc = roc_auc_score(y_test, rf.predict_proba(X_test)[:, 1])
  svc_auc = roc_auc_score(y_test, svc.decision_function(X_test))
  print("AUC for Random Forest: {:.3f}".format(rf_auc))
  print("AUC for SVC: {:.3f}".format(svc_auc))

Out[61]:
  AUC for Random Forest: 0.937
  AUC for SVC: 0.916
```

Comparing the random forest and SVM using the AUC score, we find that the random forest performs quite a bit better than the SVM. Recall that because average precision is the area under a curve that goes from 0 to 1, average precision always returns a value between 0 (worst) and 1 (best). Predicting randomly always produces an AUC of 0.5, no matter how imbalanced the classes in a dataset are. This makes AUC a much better metric for imbalanced classification problems than accuracy. The AUC can be interpreted as evaluating the *ranking* of positive samples. It's equivalent to the probability that a randomly picked point of the positive class will have a higher score according to the classifier than a randomly picked point from the negative class. So, a perfect AUC of 1 means that all positive points have a higher score than all negative points. For classification problems with imbalanced classes, using AUC for model selection is often much more meaningful than using accuracy.

Let's go back to the problem we studied earlier of classifying all nines in the digits dataset versus all other digits. We will classify the dataset with an SVM with three different settings of the kernel bandwidth, gamma (see Figure 5-17):

In[62]:

```
y = digits.target == 9
X train, X test, y train, y test = train test split(
    digits.data, y, random_state=0)
plt.figure()
for gamma in [1, 0.05, 0.01]:
    svc = SVC(gamma=gamma).fit(X_train, y_train)
    accuracy = svc.score(X_test, y_test)
    auc = roc auc score(y test, svc.decision function(X test))
    fpr, tpr, _ = roc_curve(y_test , svc.decision_function(X_test))
    print("gamma = {:.2f} accuracy = {:.2f} AUC = {:.2f}".format(
    gamma, accuracy, auc))
    plt.plot(fpr, tpr, label="gamma={:.3f}".format(gamma))
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.xlim(-0.01, 1)
plt.ylim(0, 1.02)
plt.legend(loc="best")
```

Out[62]:

```
gamma = 1.00 accuracy = 0.90 AUC = 0.50 gamma = 0.05 accuracy = 0.90 AUC = 0.90 gamma = 0.01 accuracy = 0.90 AUC = 1.00
```


Figure 5-17. Comparing ROC curves of SVMs with different settings of gamma

The accuracy of all three settings of gamma is the same, 90%. This might be the same as chance performance, or it might not. Looking at the AUC and the corresponding curve, however, we see a clear distinction between the three models. With gamma=1.0, the AUC is actually at chance level, meaning that the output of the decision_function is as good as random. With gamma=0.05, performance drastically improves to an AUC of 0.5. Finally, with gamma=0.01, we get a perfect AUC of 1.0. That means that all positive points are ranked higher than all negative points according to the decision function. In other words, with the right threshold, this model can classify the data perfectly!⁵ Knowing this, we can adjust the threshold on this model and obtain great predictions. If we had only used accuracy, we would never have discovered this.

For this reason, we highly recommend using AUC when evaluating models on imbalanced data. Keep in mind that AUC does not make use of the default threshold, though, so adjusting the decision threshold might be necessary to obtain useful classification results from a model with a high AUC.

Metrics for Multiclass Classification

Now that we have discussed evaluation of binary classification tasks in depth, let's move on to metrics to evaluate multiclass classification. Basically, all metrics for multiclass classification are derived from binary classification metrics, but averaged

⁵ Looking at the curve for gamma=0.01 in detail, you can see a small kink close to the top left. That means that at least one point was not ranked correctly. The AUC of 1.0 is a consequence of rounding to the second decimal point.

over all classes. Accuracy for multiclass classification is again defined as the fraction of correctly classified examples. And again, when classes are imbalanced, accuracy is not a great evaluation measure. Imagine a three-class classification problem with 85% of points belonging to class A, 10% belonging to class B, and 5% belonging to class C. What does being 85% accurate mean on this dataset? In general, multiclass classification results are harder to understand than binary classification results. Apart from accuracy, common tools are the confusion matrix and the classification report we saw in the binary case in the previous section. Let's apply these two detailed evaluation methods on the task of classifying the 10 different handwritten digits in the digits dataset:

In[63]:

```
from sklearn.metrics import accuracy score
   X_train, X_test, y_train, y_test = train_test_split(
      digits.data, digits.target, random state=0)
   lr = LogisticRegression().fit(X_train, y_train)
   pred = lr.predict(X_test)
   print("Accuracy: {:.3f}".format(accuracy score(y test, pred)))
   print("Confusion matrix:\n{}".format(confusion_matrix(y_test, pred)))
Out[63]:
   Accuracy: 0.953
   Confusion matrix:
   [[37 0 0 0 0 0 0 0 0 0]
    [03900002020]
    [0 0 41 3 0 0 0 0 0 0]
    [0 0 1 43 0 0 0 0 0 1]
    [0 0 0 0 38 0 0 0 0 0]
    [0 1 0 0 0 47 0 0 0 0]
    [00000052000]
    [0 1 0 1 1 0 0 45 0 0]
    [0 3 1 0 0 0 0 0 43 1]
    [0001010144]]
```

The model has an accuracy of 95.3%, which already tells us that we are doing pretty well. The confusion matrix provides us with some more detail. As for the binary case, each row corresponds to a true label, and each column corresponds to a predicted label. You can find a visually more appealing plot in Figure 5-18:

In[64]:

```
scores_image = mglearn.tools.heatmap(
    confusion_matrix(y_test, pred), xlabel='Predicted label',
    ylabel='True label', xticklabels=digits.target_names,
    yticklabels=digits.target_names, cmap=plt.cm.gray_r, fmt="%d")
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
```


Figure 5-18. Confusion matrix for the 10-digit classification task

For the first class, the digit 0, there are 37 samples in the class, and all of these samples were classified as class 0 (there are no false negatives for class 0). We can see that because all other entries in the first row of the confusion matrix are 0. We can also see that no other digits were mistakenly classified as 0, because all other entries in the first column of the confusion matrix are 0 (there are no false positives for class 0). Some digits were confused with others, though—for example, the digit 2 (third row), three of which were classified as the digit 3 (fourth column). There was also one digit 3 that was classified as 2 (third column, fourth row) and one digit 8 that was classified as 2 (thrid column, fourth row).

With the classification_report function, we can compute the precision, recall, and *f*-score for each class:

In[65]:

print(classification_report(y_test, pred))

Out[65]:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	37
1	0.89	0.91	0.90	43
2	0.95	0.93	0.94	44
3	0.90	0.96	0.92	45
4	0.97	1.00	0.99	38
5	0.98	0.98	0.98	48
6	0.96	1.00	0.98	52
7	1.00	0.94	0.97	48
8	0.93	0.90	0.91	48
9	0.96	0.94	0.95	47
avg / total	0.95	0.95	0.95	450

Unsurprisingly, precision and recall are a perfect 1 for class 0, as there are no confusions with this class. For class 7, on the other hand, precision is 1 because no other class was mistakenly classified as 7, while for class 6, there are no false negatives, so the recall is 1. We can also see that the model has particular difficulties with classes 8 and 3.

The most commonly used metric for imbalanced datasets in the multiclass setting is the multiclass version of the f-score. The idea behind the multiclass f-score is to compute one binary f-score per class, with that class being the positive class and the other classes making up the negative classes. Then, these per-class f-scores are averaged using one of the following strategies:

- "macro" averaging computes the unweighted per-class f-scores. This gives equal weight to all classes, no matter what their size is.
- "weighted" averaging computes the mean of the per-class f-scores, weighted by their support. This is what is reported in the classification report.
- "micro" averaging computes the total number of false positives, false negatives, and true positives over all classes, and then computes precision, recall, and fscore using these counts.

If you care about each sample equally much, it is recommended to use the "micro" average f_1 -score; if you care about each *class* equally much, it is recommended to use the "macro" average f_1 -score:

In[66]:

```
print("Micro average f1 score: {:.3f}".format
           (f1 score(y test, pred, average="micro")))
    print("Macro average f1 score: {:.3f}".format
          (f1 score(y test, pred, average="macro")))
Out[66]:
   Micro average f1 score: 0.953
   Macro average f1 score: 0.954
```

Regression Metrics

Evaluation for regression can be done in similar detail as we did for classification for example, by analyzing overpredicting the target versus underpredicting the target. However, in most applications we've seen, using the default R^2 used in the score method of all regressors is enough. Sometimes business decisions are made on the basis of mean squared error or mean absolute error, which might give incentive to tune models using these metrics. In general, though, we have found R^2 to be a more intuitive metric to evaluate regression models.

Using Evaluation Metrics in Model Selection

We have discussed many evaluation methods in detail, and how to apply them given the ground truth and a model. However, we often want to use metrics like AUC in model selection using GridSearchCV or cross val score. Luckily scikit-learn provides a very simple way to achieve this, via the scoring argument that can be used in both GridSearchCV and cross_val_score. You can simply provide a string describing the evaluation metric you want to use. Say, for example, we want to evaluate the SVM classifier on the "nine vs. rest" task on the digits dataset, using the AUC score. Changing the score from the default (accuracy) to AUC can be done by providing "roc_auc" as the scoring parameter:

In[67]:

```
# default scoring for classification is accuracy
    print("Default scoring: {}".format(
        cross_val_score(SVC(), digits.data, digits.target == 9)))
    # providing scoring="accuracy" doesn't change the results
    explicit_accuracy = cross_val_score(SVC(), digits.data, digits.target == 9,
                                         scoring="accuracy")
    print("Explicit accuracy scoring: {}".format(explicit_accuracy))
    roc_auc = cross_val_score(SVC(), digits.data, digits.target == 9,
                              scoring="roc_auc")
    print("AUC scoring: {}".format(roc_auc))
Out[67]:
    Default scoring: [ 0.9 0.9 0.9]
    Explicit accuracy scoring: [ 0.9 0.9 0.9]
    AUC scoring: [ 0.994 0.99 0.996]
```

Similarly, we can change the metric used to pick the best parameters in Grid SearchCV:

In[68]:

```
X_train, X_test, y_train, y_test = train_test_split(
    digits.data, digits.target == 9, random state=0)
# we provide a somewhat bad grid to illustrate the point:
param grid = {'gamma': [0.0001, 0.01, 0.1, 1, 10]}
# using the default scoring of accuracy:
grid = GridSearchCV(SVC(), param_grid=param_grid)
grid.fit(X_train, y_train)
print("Grid-Search with accuracy")
print("Best parameters:", grid.best_params_)
print("Best cross-validation score (accuracy)): {:.3f}".format(grid.best_score_))
print("Test set AUC: {:.3f}".format(
    roc_auc_score(y_test, grid.decision_function(X_test))))
print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))
```

Out[68]:

```
Grid-Search with accuracy
    Best parameters: {'qamma': 0.0001}
    Best cross-validation score (accuracy)): 0.970
    Test set AUC: 0.992
    Test set accuracy: 0.973
In[69]:
    # using AUC scoring instead:
    grid = GridSearchCV(SVC(), param grid=param grid, scoring="roc auc")
    grid.fit(X train, y train)
    print("\nGrid-Search with AUC")
    print("Best parameters:", grid.best_params_)
    print("Best cross-validation score (AUC): {:.3f}".format(grid.best_score_))
    print("Test set AUC: {:.3f}".format(
        roc auc score(y test, grid.decision function(X test))))
    print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))
Out[691:
    Grid-Search with AUC
    Best parameters: {'qamma': 0.01}
    Best cross-validation score (AUC): 0.997
    Test set AUC: 1.000
    Test set accuracy: 1.000
```

When using accuracy, the parameter gamma=0.0001 is selected, while gamma=0.01 is selected when using AUC. The cross-validation accuracy is consistent with the test set accuracy in both cases. However, using AUC found a better parameter setting in terms of AUC and even in terms of accuracy.⁶

The most important values for the scoring parameter for classification are accuracy (the default); roc_auc for the area under the ROC curve; average_precision for the area under the precision-recall curve; f1, f1_macro, f1_micro, and f1_weighted for the binary f_1 -score and the different weighted variants. For regression, the most commonly used values are r2 for the R^2 score, mean_squared_error for mean squared error, and mean_absolute_error for mean absolute error. You can find a full list of supported arguments in the documentation or by looking at the SCORER dictionary defined in the metrics.scorer module:

⁶ Finding a higher-accuracy solution using AUC is likely a consequence of accuracy being a bad measure of model performance on imbalanced data.

```
In[70]:
```

```
from sklearn.metrics.scorer import SCORERS
    print("Available scorers:\n{}".format(sorted(SCORERS.keys())))
Out[70]:
   Available scorers:
    ['accuracy', 'adjusted_rand_score', 'average_precision', 'f1', 'f1_macro',
     'f1_micro', 'f1_samples', 'f1_weighted', 'log_loss', 'mean_absolute_error',
     'mean_squared_error', 'median_absolute_error', 'precision', 'precision_macro',
     'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall',
     'recall macro', 'recall micro', 'recall samples', 'recall weighted', 'roc auc']
```

Summary and Outlook

In this chapter we discussed cross-validation, grid search, and evaluation metrics, the cornerstones of evaluating and improving machine learning algorithms. The tools described in this chapter, together with the algorithms described in Chapters 2 and 3, are the bread and butter of every machine learning practitioner.

There are two particular points that we made in this chapter that warrant repeating, because they are often overlooked by new practitioners. The first has to do with cross-validation. Cross-validation or the use of a test set allow us to evaluate a machine learning model as it will perform in the future. However, if we use the test set or cross-validation to select a model or select model parameters, we "use up" the test data, and using the same data to evaluate how well our model will do in the future will lead to overly optimistic estimates. We therefore need to resort to a split into training data for model building, validation data for model and parameter selection, and test data for model evaluation. Instead of a simple split, we can replace each of these splits with cross-validation. The most commonly used form (as described earlier) is a training/test split for evaluation, and using cross-validation on the training set for model and parameter selection.

The second point has to do with the importance of the evaluation metric or scoring function used for model selection and model evaluation. The theory of how to make business decisions from the predictions of a machine learning model is somewhat beyond the scope of this book.7 However, it is rarely the case that the end goal of a machine learning task is building a model with a high accuracy. Make sure that the metric you choose to evaluate and select a model for is a good stand-in for what the model will actually be used for. In reality, classification problems rarely have balanced classes, and often false positives and false negatives have very different consequences.

⁷ We highly recommend Foster Provost and Tom Fawcett's book Data Science for Business (O'Reilly) for more information on this topic.

Make sure you understand what these consequences are, and pick an evaluation metric accordingly.

The model evaluation and selection techniques we have described so far are the most important tools in a data scientist's toolbox. Grid search and cross-validation as we've described them in this chapter can only be applied to a single supervised model. We have seen before, however, that many models require preprocessing, and that in some applications, like the face recognition example in Chapter 3, extracting a different representation of the data can be useful. In the next chapter, we will introduce the Pipeline class, which allows us to use grid search and cross-validation on these complex chains of algorithms.