M1 Informatique # Protocoles réseaux

Fiche examen

Débit et latence (Source : Poly du cours)

Deux mesures indépendantes de la performance d'un canal de communication

- Le débit (throughput, parfois incorrectement appelé bande passante ou bandwidth), c'est-à-dire la quantité de données qu'on peut transmettre par unité de temps.
- La latence : temps nécessaire aux données pour transiter à travers la liaison.

La mesure habituelle de la latence d'une liaison réseau est Le temps d'aller-retour ($round-trip\ time$, RTT ou ping),

- Défini comme le temps nécessaire pour envoyer un message de taille négligeable et recevoir une réponse (figure 5).
- Des RTT typiques de liaisons de bonne qualité sont en deçà de la milliseconde pour des communications sur le lien local, et de plusieurs dizaines de millisecondes pour des liaisons transatlantiques.
- Des RTT de l'ordre d'une seconde sont couramment constatés sur les liaisons par satellite en orbite géostationnaire (les latences des satellites en orbite basse sont excellentes).
- À la différence du débit, qui augmente avec le progrès des technologies de couche physique, les améliorations de la latence sont limitées par la vitesse de propagation du signal, et donc par la vitesse de la lumière.
- La latence est donc incompressible au-delà d'un certain point il n'y a aucun espoir d'amélioration de la latence.

Débit /capacité de la liaison (bits/s) = $\frac{\text{Longueur du message émis (bits)}}{\text{temps de transmission totale (sec)}}$

Transmission : si on suppose négligeable la latence, alors : le temps de transmission = temps d'émission

Te: Délai (temps) d'émission du message

 $Te = \frac{\text{Longueur du message émis (bits)}}{\text{Débit /capacité de la liaison (bits/s)}}$

Te en secondes

Tp: Délai (temps) de propagation Le temps mis pour que le signal se propage sur le matériel

$$Tp ext{ (sec)} = \frac{d}{V} = \frac{\text{Distance à parcourir (m)}}{\text{Vitesse de propagation du signal sur le support (m/s)}}$$

$$Tp ext{ (sec)} = \frac{d}{V} = \frac{\text{Distance à parcourir (km)}}{\text{Vitesse de propagation du signal sur le support (km/s)}}$$

kilooctet (ko): 103 octets

Mo = MB

 $1Mo \simeq 1~000~000~octets = 10^6~octets~~un~mégaoctet~vaut~environ~1~000~000~d'octets~~$

Go = GB

 $1Go \simeq 10^9$ octets « un gigaoctet 10^9 octets»

To = TB

 $1To \simeq 10^{12}$ octets « un téraoctet vaut environ 10^{12} »

Mbps = Megabits per second

Mb(mégabit) = 106 bits

seconds =
$$\frac{\text{milliseconds}}{1\,000}$$

seconds $\cdot 1000$ = milliseconds

Application	(7)
Transport	(4)
Internet ou Réseau	(3)
Lien	(2)
Physique	(1)

4 La suite de protocoles TCP/IP

La suite TCP/IP est la suite de protocoles utilisée sur l'Internet Global. Elle est structurée selon le modèle OSI simplifié.

NTP, DNS, WebRTC, FTP, SMTP, HTTP, Bittorrent etc.	(7)
UDP, TCP	(4)
IP	(3)
SLIP, PPP, Ethernet, 802.11 etc.	(2)
RS-232, 10Base2, 100BaseTX, radio 2,4 GHz, etc.	(1)

Une trame Ethernet

IP	ТСР	Charge utile
20 octets	20 octets	

Débit max(bits/sec) =
$$\frac{\text{TCP Window Size (bits)}}{\frac{\text{RTT (ms)}}{1000}} (\text{sec})$$

Unités de bits								
in	Système ternational (SI)		Ordre de				
Unité	Notation	Valeur	Unité	Notation	Valeur	grandeur		
bit	bit	1 bit	bit	bit	1 bit	1		
kilobit	kbit ou kb	10 ³ bits	kibibit	Kibit (ou Kb, par usage)	2 ¹⁰ bits	10 ³		
mégabit	Mbit ou Mb	10 ⁶ bits	mébibit	Mibit	2 ²⁰ bits	10 ⁶		
gigabit	Gbit ou Gb	10 ⁹ bits	gibibit	Gibit	2 ³⁰ bits	10 ⁹		
térabit	Tbit ou Tb	10 ¹² bits	tébibit	Tibit	2 ⁴⁰ bits	10 ¹²		
pétabit	Pbit	10 ¹⁵ bits	pébibit	Pibit	2 ⁵⁰ bits	10 ¹⁵		
exabit	Ebit	10 ¹⁸ bits	exbibit	Eibit	2 ⁶⁰ bits	10 ¹⁸		
zettabit	Zbit	10 ²¹ bits	zébibit	Zibit	2 ⁷⁰ bits	10 ²¹		
yottabit	Ybit	10 ²⁴ bits	yobibit	Yibit	2 ⁸⁰ bits	10 ²⁴		

Multiples de l'octet : préfixes décimaux du SI et mésusages

Nom	Symbole	Valeur	Mésusage ^a						
kilooctet	ko	10 ³	2 ¹⁰						
mégaoctet	Мо	10 ⁶	2 ²⁰						
gigaoctet	Go	10 ⁹	2 ³⁰						
téraoctet	То	10 ¹²	2 ⁴⁰						
pétaoctet	Po	10 ¹⁵	2 ⁵⁰						
exaoctet	Eo	10 ¹⁸	2 ⁶⁰						
zettaoctet	Zo	10 ²¹	2 ⁷⁰						
yottaoctet	Yo	10 ²⁴	2 ⁸⁰						

Multiples de l'octet : préfixes binaires

Nom	Symbole	Valeur		
kibioctet	Kio	2 ¹⁰		
mébioctet	Mio	2 ²⁰		
gibioctet	Gio	2 ³⁰		
tébioctet	Tio	2 ⁴⁰		
pébioctet	Pio	2 ⁵⁰		
exbioctet	Eio	2 ⁶⁰		
zébioctet	Zio	2 ⁷⁰		
yobioctet	Yio	280		

Voici la table des multiples et sous-multiples de la seconde :

10 ^N ♦	Nom ◆	Symbole +	Quantité ⁷ ♦	
10 ²⁴	yottaseconde	Ys	Quadrillion	
10 ²¹	zettaseconde	Zs	Trilliard	
10 ¹⁸	exaseconde	Es	Trillion	
10 ¹⁵	pétaseconde	Ps	Billiard	
10 ¹²	téraseconde	Ts	Billion	
10 ⁹	gigaseconde	Gs	Milliard	
10 ⁶	mégaseconde	Ms	Million	
10 ³	kiloseconde	ks	Mille	
10 ²	hectoseconde	hs	Cent	
10 ¹	décaseconde	das	Dix	
1	seconde	s	Un	
10 ⁻¹	déciseconde	ds	Dixième	
10 ⁻²	centiseconde cs		Centième	
10 ⁻³	milliseconde	ms	Millième	
10 ⁻⁶	microseconde	μs	Millionième	
10 ⁻⁹	nanoseconde	ns	Milliardième	
10 ⁻¹²	picoseconde	ps	Billionième	
10 ⁻¹⁵	femtoseconde	fs	Billiardième	
10 ⁻¹⁸	attoseconde	as	Trillionième	
10 ⁻²¹	zeptoseconde	ZS	Trilliardième	
10 ⁻²⁴	yoctoseconde	ys	Quadrillionième	

Х	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

X	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
	3	6	9	12	15	18	21	24	27	30
	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
	10	20	30	40	50	60	70	80	90	100

Ou exclusif

Etant donné deux mots de code pouvant être émis ou reçus, par exemple 10001001 et 10110001, il est possible de déterminer de combien de bits ils diffèrent. Dans notre exemple, ils diffèrent de 3 bits.

Pour évaluer cette différence, il suffit d'effectuer un OU exclusif entre les deux mots de code et de compter le nombre de 1 du résultat.

Par exemple,

10001001

10110001

00111000

Le nombre de bits de différence entre deux mots de code est appelé distance de Hamming.

Source: Andrew Tanenbaum, David Wetherall. Computer Networks.. (Edition française)

Remarquez les propriétés suivantes :

Comme l'application du *ou exclusif* deux fois avec la même valeur redonne la valeur initiale, le chiffrement et le déchiffrement utilisent exactement le même programme :

$$ightharpoonup M \bigoplus K = C$$
 $ightharpoonup C \bigoplus K = M$

Source: Cryptographie appliquée: protocoles, algorithmes et codes source en C/ Bruce Schneier

DELAIS

Soit:

C: Capacité/Débit de la ligne (bit/s)
 L: Longueur de la trame (bits)
 d: distance de propagation (m)
 L': Longueur de l'acquittement (bits)

V : vitesse du support (m/s)

Te: délai d'émission de la trame = L / C

Tp: délai de propagation de la trame = d / V

T'e: délai d'émission de l'acquitement = L' / C

T'p: délai de propagation de l'ACK = Tp = d / V

Texec : délai de traitement de la trame/ACK = négligeable

T: délai de transmission (total) = Te + 2Tp + T'e = ((L+L')/C) + 2d/V

délai de blocage de l'émetteur = 2Tp + L'/C

Efficacité d'un protocole = Taux d'occupation du canal

= délai d'émission des données/Délai de transmission

= Débit utile / Débit de la ligne

T

Temps (délai) de transmission du message

Temps qui s'écoule entre le début de la transmission d'un message et la fin de la réception par le destinataire (sec)

Т

= Temps de d'émission + Temps de propagation

= Te + Tp

E

Le taux d'utilisation de la liaison (efficacité de la liaison)

$$E = \frac{D_U}{D} = \frac{\text{débit utile}}{Débit de la liaison}$$

Débit de la liaison

$$D_U = \frac{L}{T_T} = \frac{longueur \, du \, message \, \acute{e}mis}{\textit{temps de transmission totale}}$$

Donc

$$E = \frac{D_U}{D} = \frac{\left(\frac{L}{T_T}\right)}{D} = \frac{L}{D \cdot T_T}$$

Vitesse de la lumière

Sa valeur exacte est 299 792 458 m/s (environ 3 \times 10⁸ m/s ou 300 000 km/s)