Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4,4',5,5'-Tetrakis(benzylsulfanyl)tetrathiafulvalene

Cheng-Xiang Yu,^a Yu-Lan Zhu,^{b*} Zhao-Xiang Chen,^b Ming-Zhu Lu^b and Kun Wang^a

^aDepartment of Chemistry, Northeast Normal University, Changchun 130021, People's Republic of China, and ^bJiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, People's Republic of China

Correspondence e-mail: yulanzhu2008@126.com

Received 24 January 2011; accepted 2 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.008$ Å; R factor = 0.048; wR factor = 0.157; data-to-parameter ratio = 15.0.

The asymmetric unit of the title compound, $C_{34}H_{28}S_8$, contains two crystallographically independent half-molecules. The molecules lie on centers of inversion. The four benzene rings of each molecule are substantially twisted from the planes of the 1,3-dithiole rings, forming dihedral angles of 43.6 (2) and 61.4 (1)° in one molecule and 54.2 (1) and 65.2 (1)° in the other.

Related literature

For related structures, see: Abashev *et al.* (2003); Wang *et al.* (1997). For the synthesis of 4,5-bis(3-picolylthio)-1,3-dithiole-2-thione, see: see: Jia *et al.* (2001). For tetrathiafulvalene derivatives, see: Shibaeva & Yagubskii (2004); Varma *et al.* (1987); Williams *et al.* (1984). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{34}H_{28}S_8$ $M_r = 693.04$

Triclinic, $P\overline{1}$ $V = 1630.1 (4) Å^3$ Z = 2 b = 17.052 (2) Å Mo Kα radiation c = 18.701 (3) Å $μ = 0.57 \text{ mm}^{-1}$ T = 296 K β = 95.238 (2)° Ω = 0.3 × 0.2 × 0.1 mm

Data collection

 $\begin{array}{ll} \mbox{Bruker SMART APEXII} & 11631 \mbox{ measured reflections} \\ \mbox{diffractometer} & 5688 \mbox{ independent reflections} \\ \mbox{Absorption correction: multi-scan} & 3518 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{} (SADABS; \mbox{ Bruker}, 2000) & R_{\rm int} = 0.033 \\ \mbox{} T_{\rm min} = 0.871, \mbox{} T_{\rm max} = 0.944 \\ \end{array}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 379 parameters $wR(F^2) = 0.157$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.32 {\rm e \ \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.33 {\rm e \ \AA}^{-3}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the National Natural Science Foundation of China (Nos. 20671038, 20975043) and the Jiangsu Key Laboratory for the Chemistry of Low Dimensional Materials (No. JSKC09061). They also thank Dr K.-R. Ma for assistance with the crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2088).

References

Abashev, G. G., Shklyaeva, E. V., Tenishev, A. G., Kazheva, O. N., Shilov, G. V. & Dyachenko, O. A. (2003). *Synth. Met.* **133**, 329–331.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). *J. Chem. Soc. Perkin Trans.* 2, pp. S1–19.

Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Jia, C.-Y., Zhang, D.-Q., Xu, W. & Zhu, D.-B. (2001). Org. Lett. 12, 1941–1944. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shibaeva, R. P. & Yagubskii, E. B. (2004). Chem. Rev. 104, 5347-5378.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Varma, K. S., Bury, A., Harris, N. J. & Underhill, A. E. (1987). *Synthesis* pp. 837–838.

Wang, C., Bryce, M. R., Batsanov, A. S., Goldenberg, L. M. & Howard, J. A. K. (1997). J. Mater. Chem. 7, 1189–1197.

Williams, J. M., Emge, T. J., Wang, H. H., Beno, M. A., Copps, P. T., Hall, L. N., Carlson, K. D. & Crabtree, G. W. (1984). *Inorg. Chem.* 23, 2558–2560.

supplementary m	aterials	

Acta Cryst. (2011). E67, o821 [doi:10.1107/S1600536811007823]

4,4',5,5'-Tetrakis(benzylsulfanyl)tetrathiafulvalene

C.-X. Yu, Y.-L. Zhu, Z.-X. Chen, M.-Z. Lu and K. Wang

Comment

Many researchers have focused on a particularly important class of complexes with TTF (tetrathiafulvalene) and BEDT-TTF [bis(ethylenedithio)tetrathiafulvalene] derivatives (Shibaeva & Yagubskii, 2004; Varma *et al.*, 1987). They have found related the wide range of technological applications, such as high electronic conductivity or superconductivity (Williams *et al.*, 1984). In order to obtain materials involved in nonlinear optics, opto-electronics, molecular electronics, currently, our research is focused on the synthesis and crystal structures of TTF derivatives.

The asymmetric unit of the title compound, $C_{34}H_{28}S_{8}$, contains two crystallographically independent half-molecules. The molecules lie on centers of inversion. They adopt chair-like conformations and the four benzene rings of each molecule are severely twisted from the planarity of the 1,3-dithiole rings (Fig. 1). Due to the C_{i} symmetry of the molecules, the substituent groups of the TTF core are located in opposite directions, resulting in chair-like molecular conformations. The four benzene rings of each molecule are severely twisted from the planarity of the 1,3-dithiole rings. The C—S bonds in the five-membered rings fall in the range of 1.742 (4)–1.761 (4) Å and are shorter than a typical C—S single bond (1.82 Å; Allen *et al.*, 1987), revealing the high degree of conjugation into the five-membered rings of the title compound. On the other hand, the S—C(CH₂Ph) bond distances are longer than the C-S bonds of the rings falling in the range of 1.794 (5)-1.837 (5) Å, similar to a typical C—S single bond. The mean planes of the C5–C10 and C12–C13 benzene rings [C22–C27 and C29–C34] form dihedral angles of 43.6 (2) and 61.4 (1)° [54.2 (1) and 65.2 (1)°] with the least-squares plane of the central dithiolane ring, respectively. The crystal packing diagram of the title compound is shown in Fig. 2. The shortest intermolecular S-S distances, S(1)—S(2) and S(5)—S(6) distances, are 3.793 (2) Å and 3.855 (2) Å, respectively.

Experimental

A total of 42.15 mg (0.3 mmol) of K₂CO₃ was dissolved in less than 5 ml of water, and 100 mg (0.61 mmol) of 3-picolyl chloride hydrochloride was added at room temperature. After the gas evolution was stopped, a colorless dense liquid was present. Subsequently, 143.35 mg (0.15 mmol) of TBA2[Zn(DMIT)2] dissolved in 15 ml of acetonitrile was mixed with this dense liquid, and the solution was stirred at 50–60 °C for 1.5–2 h. The reaction mixture was filtered, and the solid residue was washed twice with dichloromethane (20 ml). The combined filtrate and washings were decolorized by activated charcoal. After removing the solvent, column chromatography of the crude reaction mixture on silica gel with ethyl acetate/methanol (10:1) afforded compound 1a as a yellow solid (85.5 mg, 75%). Benzyl chloride (12 ml) was added dropwise to a solution of TBA2[Zn(DMIT)2] (10 mmol) in acetone (100 ml). The mixture was refluxed under N₂ for 24 h. Stirring was continued overnight. The resulting orange precipitate was filtered off. The product was further purified by recrystallization from methanol to give yellow needle like crystals (yield 76%). All solvent were distilled before use. 95 mg (0.25 mmol) of 4,5-bis(3-picolylthio)-1,3-dithiole-2-thione and 144 mg (0.4 mmol) of 4,5- bis(benzylthio)-1,3-dithione- 2-thione (0.3 mmol) were stirred in 30 ml of dry toluene under N₂. Then, 2.5 ml of P(OEt)₃ was added and the yellowish suspension was refluxed for 4 h at 120 °C. The resulting orange yellow precipitate that formed was filtered off. The red filtrate was left to stand for several days, giving pale red crystals suitable for a X-ray structure analysis.

Refinement

All non-hydrogen atoms were located from the difference Fourier maps, and were refined anisotropically. All H atoms were positioned geometrically, and were allowed to ride on their corresponding parent atoms with $U_{\rm iso}$ = 1.2 $U_{\rm eq}$.

Figures

Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids.

Fig. 2. Packing diagram.

4,4',5,5'-Tetrakis(benzylsulfanyl)tetrathiafulvalene

Crystal data

$C_{34}H_{28}S_8$	$V = 1630.1 (4) \text{ Å}^3$
$M_r = 693.04$	Z = 2
Triclinic, $P\overline{1}$	F(000) = 720
Hall symbol: -P 1	$D_{\rm x} = 1.412 \; {\rm Mg \; m}^{-3}$
a = 5.7450 (7) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
b = 17.052 (2) Å	$\theta = 1.2 - 25.0^{\circ}$
c = 18.701 (3) Å	$\mu = 0.57 \text{ mm}^{-1}$
$\alpha = 115.199 (2)^{\circ}$	T = 296 K
$\beta = 95.238 \ (2)^{\circ}$	Needle, red
$\gamma = 95.922 (2)^{\circ}$	$0.3\times0.2\times0.1~mm$

Data collection

Bruker SMART APEXII diffractometer	5688 independent reflections
Radiation source: fine-focus sealed tube	3518 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.033$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$
ω–scan	$h = -6 \rightarrow 6$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$k = -19 \rightarrow 20$
$T_{\min} = 0.871, T_{\max} = 0.944$	$l = -22 \rightarrow 19$

11631 measured reflections

Refinement

Refinement on F^2 Primary atom site location: structure-invariant direct methods

Least-squares matrix: full

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring

 $R[F^2 > 2\sigma(F^2)] = 0.048$ sites

 $wR(F^2) = 0.157$ H-atom parameters constrained

S = 1.06 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0745P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

5688 reflections $(\Delta/\sigma)_{max} = 0.001$

379 parameters $\Delta \rho_{max} = 0.32 \ e \ \text{Å}^{-3}$

0 restraints $\Delta \rho_{min} = -0.33 \ e \ \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	\boldsymbol{x}	y	z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.76116 (19)	0.45649 (8)	0.06508 (7)	0.0626(3)
S2	0.7452 (2)	0.41173 (8)	-0.10618 (7)	0.0624(3)
S3	0.2978 (2)	0.28449 (8)	-0.15494 (7)	0.0675 (4)
S4	0.30556 (19)	0.33663 (8)	0.03726 (7)	0.0634(3)
S5	1.18791 (19)	0.39890 (7)	0.44406 (7)	0.0604(3)
S6	1.37020 (19)	0.51995 (7)	0.61260 (7)	0.0634(3)
S7	0.9859 (2)	0.44729 (8)	0.67531 (7)	0.0707 (4)
S8	0.77397 (19)	0.31193 (7)	0.48536 (8)	0.0666 (4)
C1	0.8989 (7)	0.4720(3)	-0.0086 (2)	0.0521 (10)
C2	0.5204 (7)	0.3564(3)	-0.0793 (3)	0.0525 (10)
C3	0.5289 (7)	0.3773 (2)	-0.0010(3)	0.0503 (10)
C4	0.4542 (9)	0.1914(3)	-0.2040 (3)	0.0772 (14)
H4A	0.3542	0.1486	-0.2525	0.093*
H4B	0.5966	0.2120	-0.2192	0.093*
C5	0.5204 (8)	0.1480(3)	-0.1528 (3)	0.0588 (11)
C6	0.3653 (9)	0.0843 (3)	-0.1473 (3)	0.0846 (16)
Н6	0.2151	0.0674	-0.1773	0.101*

C7	0.4232 (10)	0.0452 (3)	-0.0998 (4)	0.0864 (16)
H7	0.3148	0.0020	-0.0977	0.104*
C8	0.6399 (11)	0.0697 (4)	-0.0556 (4)	0.0893 (16)
H8	0.6809	0.0432	-0.0229	0.107*
C9	0.7975 (10)	0.1321 (4)	-0.0583 (3)	0.0893 (16)
H9	0.9465	0.1485	-0.0276	0.107*
C10	0.7390 (8)	0.1713 (3)	-0.1062(3)	0.0745 (14)
H10	0.8490	0.2146	-0.1074	0.089*
C11	0.4694 (8)	0.3179 (3)	0.1146 (3)	0.0768 (14)
H11A	0.5860	0.2803	0.0928	0.092*
H11B	0.5503	0.3730	0.1573	0.092*
C12	0.2902 (7)	0.2742 (3)	0.1453 (3)	0.0576 (11)
C13	0.2587 (10)	0.1853 (4)	0.1199 (3)	0.0823 (15)
H13	0.3578	0.1525	0.0862	0.099*
C14	0.0888 (10)	0.1439 (3)	0.1422 (3)	0.0807 (15)
H14	0.0690	0.0833	0.1236	0.097*
C15	-0.0532 (9)	0.1920 (4)	0.1922 (3)	0.0787 (15)
H15	-0.1715	0.1637	0.2078	0.094*
C16	-0.0264 (9)	0.2797 (4)	0.2199 (3)	0.0754 (14)
H16	-0.1243	0.3120	0.2544	0.090*
C17	0.1477 (9)	0.3207 (3)	0.1963 (3)	0.0734 (13)
H17	0.1684	0.3814	0.2156	0.088*
C18	1.4097 (7)	0.4832 (2)	0.5118 (2)	0.0515 (10)
C19	1.1169 (7)	0.4427 (2)	0.5933 (2)	0.0524 (10)
C20	1.0339 (7)	0.3877 (2)	0.5165 (3)	0.0519 (10)
C21	1.1842 (9)	0.3938 (3)	0.7156 (3)	0.0731 (13)
H21A	1.3445	0.4247	0.7265	0.088*
H21B	1.1398	0.3982	0.7658	0.088*
C22	1.1795 (7)	0.2990(3)	0.6602(2)	0.0538 (10)
C23	1.3551 (8)	0.2731 (3)	0.6152 (3)	0.0731 (13)
H23	1.4791	0.3147	0.6185	0.088*
C24	1.3509 (10)	0.1866 (4)	0.5652 (3)	0.0910 (17)
H24	1.4714	0.1696	0.5345	0.109*
C25	1.1736 (12)	0.1262 (3)	0.5603 (3)	0.0902 (18)
H25	1.1743	0.0673	0.5269	0.108*
C26	0.9954 (9)	0.1488 (3)	0.6025 (3)	0.0768 (15)
H26	0.8715	0.1065	0.5979	0.092*
C27	0.9989 (8)	0.2348 (3)	0.6522 (3)	0.0738 (14)
H27	0.8756	0.2508	0.6817	0.089*
C28	0.8508 (9)	0.2203 (3)	0.4031 (3)	0.0909 (18)
H28A	0.8838	0.2367	0.3610	0.109*
H28B	0.9915	0.2024	0.4206	0.109*
C29	0.6469 (8)	0.1459 (3)	0.3725 (3)	0.0634 (12)
C30	0.4469 (9)	0.1446 (3)	0.3250 (3)	0.0723 (13)
H30	0.4372	0.1901	0.3104	0.087*
C31	0.2629 (8)	0.0768 (3)	0.2992 (3)	0.0754 (14)
H31	0.1279	0.0763	0.2674	0.090*
C32	0.2775 (9)	0.0106 (3)	0.3199 (3)	0.0768 (14)
H32	0.1516	-0.0353	0.3024	0.092*

C33 H33 C34	0.4706 (9) 0.4786 0.6527 (9)	0.0101 (3) -0.0358 0.0760 (3)	0.365 0.379 0.390	22 (4 (3)	0.0744 (14) 0.089* 0.0784 (14)	
H34	0.7873	0.0743	0.421	0	0.094*	
Atomic displ	lacement parameters	$s(\mathring{A}^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0595 (7)	0.0670(7)	0.0542 (7)	-0.0072 (5)	0.0140 (5)	0.0227 (6)
S2	0.0632 (7)	0.0664 (7)	0.0577 (7)	-0.0015 (6)	0.0148 (5)	0.0287 (6)
S3	0.0635 (7)	0.0725 (8)	0.0667 (8)	-0.0025 (6)	-0.0086 (6)	0.0371 (7)
S4	0.0483 (6)	0.0828 (8)	0.0765 (8)	0.0003 (6)	0.0072 (5)	0.0541 (7)
S5	0.0561 (7)	0.0603 (7)	0.0583 (7)	-0.0096 (5)	0.0001 (5)	0.0257 (6)
S6	0.0623 (7)	0.0568 (7)	0.0607 (7)	-0.0053 (5)	-0.0011 (6)	0.0214 (6)
S7	0.0860 (9)	0.0560 (7)	0.0689 (8)	0.0178 (6)	0.0295 (7)	0.0214 (6)
S8	0.0556 (7)	0.0486 (6)	0.0825 (8)	-0.0014 (5)	0.0199 (6)	0.0167 (6)
C1	0.051(2)	0.051(2)	0.056(3)	0.0040 (18)	0.014(2)	0.025 (2)
C2	0.049(2)	0.054(2)	0.062(3)	0.0076 (19)	0.010(2)	0.032(2)
C3	0.046(2)	0.050(2)	0.060(3)	0.0034 (18)	0.0080 (19)	0.029(2)
C4	0.092 (4)	0.070(3)	0.055(3)	0.000(3)	0.001(3)	0.019(3)
C5	0.066(3)	0.048(2)	0.055(3)	0.003(2)	0.011(2)	0.017(2)
C6	0.068(3)	0.069(3)	0.105 (4)	-0.006(3)	0.008(3)	0.032(3)
C7	0.092 (4)	0.063(3)	0.118 (5)	0.002(3)	0.027 (4)	0.053(3)
C8	0.097 (4)	0.082 (4)	0.103 (4)	0.027(3)	0.025 (4)	0.050(3)
C9	0.074 (4)	0.100 (4)	0.103 (4)	0.015(3)	0.005(3)	0.055 (4)
C10	0.060(3)	0.073 (3)	0.088 (4)	-0.002(2)	0.012(3)	0.035(3)
C11	0.063(3)	0.105 (4)	0.085 (4)	0.009(3)	0.006(3)	0.065(3)
C12	0.057(3)	0.072(3)	0.055(3)	0.014(2)	0.009(2)	0.038(2)
C13	0.104 (4)	0.085 (4)	0.081 (4)	0.036(3)	0.042(3)	0.047(3)
C14	0.116 (4)	0.058 (3)	0.083 (4)	0.019(3)	0.038(3)	0.040(3)
C15	0.085 (4)	0.096 (4)	0.079 (4)	0.006(3)	0.020(3)	0.060(3)
C16	0.086 (4)	0.094 (4)	0.063 (3)	0.032(3)	0.032(3)	0.043 (3)
C17	0.091 (4)	0.065(3)	0.063 (3)	0.012(3)	0.007(3)	0.028(3)
C18	0.054(2)	0.044 (2)	0.060(3)	0.0030 (18)	0.001(2)	0.028(2)
C19	0.057 (2)	0.043 (2)	0.057(3)	0.0114 (19)	0.011 (2)	0.021 (2)
C20	0.052(2)	0.043 (2)	0.061 (3)	0.0092 (18)	0.011 (2)	0.023 (2)
C21	0.101 (4)	0.065 (3)	0.049 (3)	0.011 (3)	0.011 (2)	0.021 (2)
C22	0.064(3)	0.060(3)	0.041 (2)	0.008(2)	0.005 (2)	0.027(2)
C23	0.066 (3)	0.073 (3)	0.076 (3)	0.003(3)	0.017 (3)	0.030(3)
C24	0.092 (4)	0.086 (4)	0.089 (4)	0.035 (3)	0.029(3)	0.026(3)
C25	0.104 (5)	0.059 (3)	0.092 (4)	0.009(3)	-0.021 (4)	0.026(3)
C26	0.067 (3)	0.064 (3)	0.096 (4)	-0.017 (3)	-0.010(3)	0.043 (3)
C27	0.062(3)	0.093 (4)	0.076 (3)	0.003(3)	0.011 (2)	0.048 (3)
C28	0.074 (3)	0.074 (3)	0.082 (4)	-0.020 (3)	0.026 (3)	-0.001 (3)
C29	0.060 (3)	0.060 (3)	0.049 (3)	-0.004 (2)	0.015 (2)	0.006 (2)
C30	0.084 (3)	0.060 (3)	0.077 (3)	0.009 (3)	0.009 (3)	0.035 (3)
C31	0.061 (3)	0.066 (3)	0.088 (4)	0.003 (2)	-0.008 (3)	0.028 (3)
C32	0.075 (3)	0.059 (3)	0.080 (4)	-0.006 (2)	0.001 (3)	0.021 (3)

C33	0.089 (4)	0.053 (3)	0.074(3)	0.001 (3)	-0.005 (3)	0.027 (3)
C34	0.074(3)	0.079 (4)	0.069(3)	0.012 (3)	-0.004(3)	0.022(3)
Geometric pa	arameters (Å, °)					
S1—C3		1.742 (4)	C13-	—H13	0.9	300
S1—C1		1.750 (4)		—C15		56 (7)
S2—C2		1.756 (4)		—H14		300
S2—C1		1.757 (4)		_C16		44 (7)
S3—C2		1.735 (4)		—H15		300
S3—C4		1.837 (5)		—C17		72 (6)
S4—C3		1.745 (4)		—Н16		300
S4—C11		1.813 (4)		—Н17		300
S5—C20		1.749 (4)		—С18 ^{іі}		33 (7)
S5—C18		1.752 (4)		—C20		44 (6)
S6—C19		1.757 (4)		—C22		99 (6)
S6—C18		1.761 (4)		—H21A		700
S7—C19		1.745 (4)		—H21B		700
S7—C21		1.827 (5)		—C23		60 (6)
S8—C20		1.744 (4)		—C27		76 (6)
S8—C28		1.794 (5)		—C24		66 (7)
C1—C1 ⁱ		1.343 (7)		—Н23		300
C2—C3		1.347 (6)		—C25		39 (7)
C4—C5		1.486 (6)		—H24		300
C4—H4A		0.9700		—C26		37 (7)
C4—H4B		0.9700		—H25		300
C5—C6		1.377 (6)		—C27		58 (7)
C5—C10		1.378 (6)		—H26		300
C6—C7		1.356 (7)	C27-	—H27	0.9	300
C6—H6		0.9300	C28-	—C29	1.5	05 (6)
C7—C8		1.349 (7)	C28-	—H28A	0.9	700
C7—H7		0.9300	C28-	—Н28В	0.9	700
C8—C9		1.345 (7)	C29-	—C34	1.3	71 (7)
C8—H8		0.9300	C29-	—C30	1.3	79 (6)
C9—C10		1.365 (7)	C30-	—C31	1.3	66 (6)
C9—H9		0.9300	C30-	—Н30	0.9	300
C10—H10		0.9300		—C32		48 (6)
C11—C12		1.503 (6)		—Н31		300
C11—H11A		0.9700		—C33		36 (6)
C11—H11B		0.9700		—Н32		300
C12—C17		1.357 (6)		—C34		40 (6)
C12—C13		1.368 (6)		—Н33		300
C13—C14		1.345 (6)	C34-	—Н34	0.9	300
C3—S1—C1		95.58 (19)		—С16—Н16	120).5
C2—S2—C1		95.26 (19)		C17C16	121	1.1 (5)
C2—S3—C4		100.3 (2)		—С17—Н17	119	
C3—S4—C11		102.9 (2)		—С17—H17	119	0.4
C20—S5—C1	8	95.82 (19)	C18 ⁱ	i—C18—S5	122	2.4 (4)

C19—S6—C18	95.26 (18)	C18 ⁱⁱ —C18—S6	123.4 (4)
C19—S7—C21	101.0 (2)	S5—C18—S6	114.2 (2)
C20—S8—C28	102.0 (2)	C20—C19—S7	125.4 (3)
C1 ⁱ —C1—S1	122.5 (4)	C20—C19—S6	117.4 (3)
C1 ⁱ —C1—S2	122.9 (4)	S7—C19—S6	117.1 (2)
S1—C1—S2	114.5 (2)	C19—C20—S8	123.9 (3)
C3—C2—S3	125.7 (3)	C19—C20—S5	117.2 (3)
C3—C2—S2	116.9 (3)	S8—C20—S5	118.8 (2)
S3—C2—S2	117.3 (2)	C22—C21—S7	113.2 (3)
C2—C3—S1	117.6 (3)	C22—C21—H21A	108.9
C2—C3—S4	123.0 (3)	S7—C21—H21A	108.9
S1—C3—S4	119.1 (2)	C22—C21—H21B	108.9
C5—C4—S3	113.3 (3)	S7—C21—H21B	108.9
C5—C4—H4A	108.9	H21A—C21—H21B	107.8
S3—C4—H4A	108.9	C23—C22—C27	117.2 (4)
C5—C4—H4B	108.9	C23—C22—C21	120.8 (4)
S3—C4—H4B	108.9	C27—C22—C21	122.0 (4)
H4A—C4—H4B	107.7	C22—C23—C24	120.6 (5)
C6—C5—C10	116.2 (5)	C22—C23—H23	119.7
C6—C5—C4	122.2 (4)	C24—C23—H23	119.7
C10—C5—C4	121.5 (4)	C25—C24—C23	120.1 (5)
C7—C6—C5	122.6 (5)	C25—C24—H24	120.1 (3)
C7—C6—H6	118.7	C23—C24—H24	120.0
C5—C6—H6	118.7	C26—C25—C24	121.3 (5)
C8—C7—C6	119.2 (5)	C26—C25—H25	119.3
C8—C7—H7	120.4	C24—C25—H25	119.3
C6—C7—H7	120.4	C25—C26—C27	118.7 (5)
C9—C8—C7	120.7 (6)	C25—C26—H26	120.7
C9—C8—H8	119.7	C27—C26—H26	120.7
C7—C8—H8	119.7	C26—C27—C22	122.0 (5)
C8—C9—C10	120.1 (5)	C26—C27—H27	119.0
C8—C9—H9	120.0	C22—C27—H27	119.0
C10—C9—H9	120.0	C29—C28—S8	108.6 (3)
C9—C10—C5	121.3 (5)	C29—C28—H28A	110.0
C9—C10—H10	119.3	S8—C28—H28A	110.0
C5—C10—H10	119.3	C29—C28—H28B	110.0
C12—C11—S4	106.2 (3)	S8—C28—H28B	110.0
C12—C11—H11A	110.5	H28A—C28—H28B	108.3
S4—C11—H11A	110.5	C34—C29—C30	117.1 (4)
C12—C11—H11B	110.5	C34—C29—C28	121.2 (5)
S4—C11—H11B	110.5	C30—C29—C28	121.7 (5)
H11A—C11—H11B	108.7	C31—C30—C29	120.3 (5)
C17—C12—C13	117.8 (4)	C31—C30—H30	119.9
C17—C12—C11	121.4 (4)	C29—C30—H30	119.9
C13—C12—C11	120.7 (4)	C32—C31—C30	119.9 (5)
C14—C13—C12	121.9 (5)	C32—C31—H31	120.1
C14—C13—H13	119.0	C30—C31—H31	120.1
C12—C13—H13	119.0	C33—C32—C31	120.8 (5)
			. ,

C13—C14—C15	118.9 (5)	C33—C32—H32	119.6
C13—C14—H14	120.5	C31—C32—H32	119.6
C15—C14—H14	120.5	C32—C33—C34	119.9 (5)
C16—C15—C14	121.3 (5)	C32—C33—H33	120.1
C16—C15—H15	119.4	C34—C33—H33	120.1
C14—C15—H15	119.4	C33—C34—C29	122.1 (5)
C15—C16—C17	118.9 (5)	C33—C34—H34	119.0
C15—C16—H16	120.5	C29—C34—H34	119.0
C3—S1—C1—C1 ¹	-178.8 (5)	C20—S5—C18—C18 ⁱⁱ	177.2 (5)
C3—S1—C1—S2	3.6 (3)	C20—S5—C18—S6	-3.6(3)
C2—S2—C1—C1 ¹	178.7 (5)	C19—S6—C18—C18 ⁱⁱ	-177.2(5)
C2—S2—C1—S1	-3.7(3)	C19—S6—C18—S5	3.6 (3)
C4—S3—C2—C3	-108.3 (4)	C21—S7—C19—C20	104.9 (4)
C4—S3—C2—S2	75.8 (3)	C21—S7—C19—S6	-78.2(3)
C1—S2—C2—C3	2.3 (4)	C18—S6—C19—C20	-2.2(4)
C1—S2—C2—S3	178.6 (2)	C18—S6—C19—S7	-179.4(2)
S3—C2—C3—S1	-176.1 (2)	S7—C19—C20—S8	1.4 (6)
S2—C2—C3—S1	-0.2 (5)	S6—C19—C20—S8	-175.4 (2)
S3—C2—C3—S4	-2.2 (6)	S7—C19—C20—S5	176.9 (2)
S2—C2—C3—S4	173.7 (2)	S6—C19—C20—S5	0.1 (5)
C1—S1—C3—C2	-2.1 (4)	C28—S8—C20—C19	-143.4 (4)
C1—S1—C3—S4	-176.2 (2)	C28—S8—C20—S5	41.1 (3)
C11—S4—C3—C2	141.7 (4)	C18—S5—C20—C19	2.1 (4)
C11—S4—C3—S1	-44.4 (3)	C18—S5—C20—S8	177.9 (2)
C2—S3—C4—C5	65.9 (4)	C19—S7—C21—C22	-65.1 (4)
S3—C4—C5—C6	84.5 (5)	S7—C21—C22—C23	101.7 (5)
S3—C4—C5—C10	-93.5 (5)	S7—C21—C22—C27	-78.0(5)
C10—C5—C6—C7	-0.9 (8)	C27—C22—C23—C24	-0.7(7)
C4—C5—C6—C7	-179.0(5)	C21—C22—C23—C24	179.6 (4)
C5—C6—C7—C8	0.5 (9)	C22—C23—C24—C25	-0.3(8)
C6—C7—C8—C9	0.0 (9)	C23—C24—C25—C26	1.3 (9)
C7—C8—C9—C10	0.0 (9)	C24—C25—C26—C27	-1.2(8)
C8—C9—C10—C5	-0.4 (8)	C25—C26—C27—C22	0.2(7)
C6—C5—C10—C9	0.9 (7)	C23—C22—C27—C26	0.8 (7)
C4—C5—C10—C9	179.0 (5)	C21—C22—C27—C26	-179.5 (4)
C3—S4—C11—C12	-174.6 (3)	C20—S8—C28—C29	176.3 (4)
S4—C11—C12—C17	-77.4 (5)	S8—C28—C29—C34	-103.0(5)
S4—C11—C12—C13	99.8 (5)	S8—C28—C29—C30	77.3 (5)
C17—C12—C13—C14	1.9 (7)	C34—C29—C30—C31	1.4 (7)
C11—C12—C13—C14	-175.4 (5)	C28—C29—C30—C31	-178.9(4)
C12—C13—C14—C15	-0.9 (8)	C29—C30—C31—C32	-0.4(8)
C13—C14—C15—C16	-0.2 (8)	C30—C31—C32—C33	-0.3(8)
C14—C15—C16—C17	0.3 (8)	C31—C32—C33—C34	-0.1 (8)
C13—C12—C17—C16	-1.7 (7)	C32—C33—C34—C29	1.3 (8)
C11—C12—C17—C16	175.5 (4)	C30—C29—C34—C33	-1.9(7)
C15—C16—C17—C12	0.7 (7)	C28—C29—C34—C33	178.4 (4)
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$; (ii) $-x+3$, $-y+1$, $-z+1$.		

Fig. 1

Fig. 2

