Tillämpad matematik - Linjära system FMAF10

 $\begin{array}{c} {\rm Emil~Wihlander} \\ {\rm dat15ewi@student.lu.se} \end{array}$

 $8~{\rm februari}~2017$

Kapitel 1: Svängningar och komplexa tal

1.1 a) Allmänna funktionen för odämpad harmonisk svängning är $u(t) = A \sin(\omega t + \alpha)$ där ω är vinkelfrekvensen.

$$u(t) = 3\sin(2t - 5) \Rightarrow \omega = 2$$

$$T = \frac{2\pi}{\omega} \Rightarrow T = \frac{2\pi}{2} = \pi$$

$$f = \frac{1}{T} \Rightarrow f = \frac{1}{\pi}$$

Svar: vinkelfrekvens: 2, period: π , frekvens: $\frac{1}{\pi}$

b) Allmänna funktionen för odämpad harmonisk svängning är $u(t) = A\sin(\omega t + \alpha)$ där ω är vinkelfrekvensen.

$$u(t) = 50\sin(100\pi t + 1) \Rightarrow \omega = 100\pi$$

$$T = \frac{2\pi}{\omega} \Rightarrow T = \frac{2\pi}{100\pi} = \frac{1}{50}$$

$$f = \frac{1}{T} \Rightarrow f = 50$$

Svar: vinkelfrekvens: 100π , period: $\frac{1}{50}$, frekvens: 50

- 1.2 a)
 - **b**)
 - $\mathbf{c})$
 - d)
 - $\mathbf{e})$
 - f)
 - 1.3 Använd regeln $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ från formelbladet.

$$\begin{split} u(t) = &6\sin(3t + \frac{\pi}{4}) = 6(\sin(3t)\cos(\frac{\pi}{4}) + \cos(3t)\sin(\frac{\pi}{4})) = \\ = &6\frac{1}{\sqrt{2}}\sin(3t) + 6\frac{1}{\sqrt{2}}\cos(3t) = 3\sqrt{2}\cos(3t) + 3\sqrt{2}\sin(3t) \end{split}$$

Svar: $a = b = 3\sqrt{2}, \omega = 3 \Rightarrow 3\sqrt{2}\cos(3t) + 3\sqrt{2}\sin(3t)$

1.4 a) låt $u(t) = A\sin(\omega t + \alpha) = A\sin\alpha\cos(\omega t) + A\cos\alpha\sin(\omega t) = \sqrt{3}\cos(\omega t) - \sin(\omega t)$ där A är amplituden och α är fasförskjutningen.

$$\begin{cases} A \sin \alpha = \sqrt{3} \\ A \cos \alpha = -1 \end{cases} \Leftrightarrow \sqrt{(A \sin \alpha)^2 + (A \cos \alpha)^2} = \sqrt{(\sqrt{3})^2 + (-1)^2} \Leftrightarrow \Leftrightarrow \sqrt{A^2} \sqrt{\sin \alpha^2 + \cos \alpha^2} = \sqrt{4} \Rightarrow A\sqrt{1} = 2 \Leftrightarrow A = 2$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{A \sin \alpha}{A \cos \alpha} = \frac{\sqrt{3}}{-1} \Rightarrow$$
$$\Rightarrow \alpha = \arctan(-\frac{\sqrt{3}}{1}) + \pi = -\frac{\pi}{6} + \pi = \frac{2\pi}{3} \quad (+\pi \text{ ty } -4 < 0)$$

eller:

$$u(t) = \sqrt{3}\cos(\omega t) - \sin(\omega t) = 2(\frac{\sqrt{3}}{2}\cos(\omega t) - \frac{1}{2}\sin(\omega t)) =$$
$$= 2(\sin\frac{2\pi}{3}\cos(\omega t) + \cos\frac{2\pi}{3}\sin(\omega t)) = \sin(\omega t + \frac{2\pi}{3})$$

Svar: Amplitud: 2 och fasförskjutning: $\frac{2\pi}{3}$

1.4 b) låt $u(t) = A\sin(\omega t + \alpha) = A\sin\alpha\cos(\omega t) + A\cos\alpha\sin(\omega t) = -2\cos(\omega t) - 4\sin(\omega t)$ där A är amplituden och α är fasförskjutningen.

$$\begin{cases} A \sin \alpha = -2 \\ A \cos \alpha = -4 \end{cases} \Leftrightarrow \sqrt{(A \sin \alpha)^2 + (A \cos \alpha)^2} = \sqrt{(-2)^2 + (-4)^2} \Leftrightarrow \\ \Leftrightarrow \sqrt{A^2} \sqrt{\sin \alpha^2 + \cos \alpha^2} = \sqrt{4 + 16} \Rightarrow A\sqrt{1} = \sqrt{20} \Leftrightarrow A = 2\sqrt{5}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{A \sin \alpha}{A \cos \alpha} = \frac{-2}{-4} \Rightarrow$$
$$\Rightarrow \alpha = \arctan \frac{1}{2} + \pi \ (+\pi \ \text{ty} \ -4 < 0)$$

Svar: Amplitud: $2\sqrt{5}$ och fasförskjutning: $\arctan \frac{1}{2} + \pi$

1.5 a) Eftersom $|a + bi| = \sqrt{a^2 + b^2}$.

$$|i| = \sqrt{0^2 + 1^2} = 1$$

Svar: |i| = 1

b) Eftersom $|a + bi| = \sqrt{a^2 + b^2}$.

$$|-i| = \sqrt{0^2 + (-1)^2} = 1$$

Svar: |-i| = 1

c) Eftersom $|e^{i\phi}| = 1$ oberoende av vad vinkeln ϕ är.

Svar: $|e^{5\pi i/7}| = 1$

1.6 a) låt $e^{i\phi}=e^{5\pi i/7}\Leftrightarrow \phi=\frac{5\pi}{7}$. Eftersom $\frac{\pi}{2}<\phi<\pi\Rightarrow e^{5\pi i/7}$ ligger i andra kvadranten.

Svar: andra kvadranten

b) Låt $e^{i\phi} = e^{-34\pi i/7} \Leftrightarrow \phi = -\frac{34}{7}\pi = -\frac{35}{7}\pi + \frac{1}{7}\pi = -6\pi + \pi + \frac{1}{7}\pi \Rightarrow \phi = \pi + \frac{1}{7}\pi$. Eftersom perioden är $2\pi \Rightarrow e^{i\phi} = e^{i\phi}$ vilket innebär $\pi < \phi < \frac{3}{2}\pi \Rightarrow e^{-34\pi i/7}$ ligger i tredje kvadranten.

Svar: tredje kvadranten

c) Låt $e^{i\phi}=e^{2000\pi i/13}\Leftrightarrow \phi=\frac{2000}{13}\pi=\frac{1989}{13}\pi+\frac{11}{13}\pi=152\pi+\pi+\frac{11}{13}\pi\Rightarrow \phi=\pi+\frac{11}{13}\pi.$ Eftersom perioden är $2\pi\Rightarrow e^{i\phi}=e^{i\phi}$ vilket innebär $\frac{3}{2}\pi<\phi<2\pi\Rightarrow e^{2000\pi i/13}$ ligger i fjärde kvadranten.

Svar: fjärde kvadranten

1.7 a) Absolutbelopp:

$$|2-2i| = \sqrt{2^2 + (-2)^2} = \sqrt{8}$$

Argument:

$$\arctan\left(\frac{-2}{2}\right) + 2k\pi = -\frac{\pi}{4} + 2k\pi, \qquad k \in \mathbb{Z}$$

b) Absolutbelopp:

$$\left|\sqrt{3} - i\right| = \sqrt{\sqrt{3}^2 + (-1)^2} = \sqrt{4} = 2$$

Argument:

$$\arctan\left(\frac{-1}{\sqrt{3}}\right) + 2k\pi = -\frac{\pi}{6} + 2k\pi, \qquad k \in \mathbb{Z}$$

c) Absolutbelopp:

$$|1| = 1$$

Argument:

$$\arctan\left(\frac{0}{1}\right) + 2k\pi = 2k\pi, \qquad k \in \mathbb{Z}$$

d) Absolutbelopp:

$$|-1| = 1$$

Argument:

$$\arctan\left(\frac{0}{1}\right) + 2k\pi = \pi + 2k\pi, \qquad k \in \mathbb{Z}$$

1.8 a) Låt $z = -1 - i = re^{i\phi}$ där r är absolutbeloppet och ϕ är argumentet.

$$r = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

$$\begin{split} \phi &= \arctan\left(\frac{\operatorname{Im} z}{\operatorname{Re} z}\right) + 2k\pi, \qquad k \in \mathbb{Z} \qquad \Rightarrow \\ \phi &= \arctan\left(\frac{-1}{-1}\right) + 2k\pi = \frac{\pi}{4} + \pi + 2k\pi = \frac{5}{4}\pi + 2k\pi, \qquad k \in \mathbb{Z} \\ z &= \sqrt{2}e^{i(3\pi/4 + 2k\pi)}, \qquad k \in \mathbb{Z} \end{split}$$

Partikulärlösning:

$$z = \sqrt{2}e^{i3\pi/4}$$

Svar:
$$z = \sqrt{2}e^{i3/4\pi}$$

b) Låt $z = i = re^{i\phi}$ där r är absolutbeloppet och ϕ är argumentet.

$$r = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = \sqrt{0^2 + 1^2} = 1$$

Eftersom Rez=0och Imz>0är $\phi=\frac{\pi}{2}+2k\pi$ $\qquad k\in\mathbb{Z}$

$$z = e^{i(\pi/2 + 2k\pi)}, \qquad k \in \mathbb{Z}$$

Partikulärlösning:

$$z = e^{i\pi/2}$$

Svar: $z = e^{i\pi/2}$

1.9 Utnyttja sambandet $e^{i\theta} = \cos \theta + i \sin \theta$.

$$5e^{2\pi i/3} = 5\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) = 5\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = -\frac{5}{2} + i\frac{5\sqrt{3}}{2}$$

Svar: $-\frac{5}{2} + i \frac{5\sqrt{3}}{2}$

1.10 a) Låt $z = re^{i\phi}, r \ge 0$

$$z^{4} + 1 = 0 \Leftrightarrow (re^{i\phi})^{4} = -1 \Leftrightarrow r^{4}e^{i4\phi} = e^{\pi + 2k\pi}, \quad k \in \mathbb{Z} \Leftrightarrow \begin{cases} 4\phi = \pi + 2k\pi, & k \in \mathbb{Z} \\ r^{4} = 1 \end{cases} \Leftrightarrow \begin{cases} \phi = \frac{\pi}{4} + \frac{k\pi}{2}, & k \in \mathbb{Z} \\ r = 1 \end{cases}$$

 $k = \{0, 1, 2, 3\}$ ger alla unika lösningar.

Svar: $e^{\pi i/4 + k\pi i/2}$ $k = \{0, 1, 2, 3\}$

Eller:

Använd
$$\sqrt{i}=(e^{\pi i/2})^{1/2}=e^{\pi i/4}=\frac{1}{\sqrt{2}}(1+i)$$
 och $\sqrt{-i}=(e^{-\pi i/2})^{1/2}=e^{-\pi i/4}=\frac{1}{\sqrt{2}}(1-i)$
$$z^4+1=0 \Leftrightarrow z^4=-1 \Leftrightarrow \sqrt{z^4}=\pm \sqrt{-1} \Leftrightarrow z^2=\pm i \Leftrightarrow \sqrt{z^2}=\pm \sqrt{\pm i} \Leftrightarrow \Leftrightarrow z=\pm \frac{1}{\sqrt{2}}(1\pm i)=\frac{1}{\sqrt{2}}(\pm 1\pm i)$$

b) Låt $z = re^{\phi i}, \quad r \ge 0$

$$z^{5} = 32 \Leftrightarrow (re^{\phi i})^{5} = 32 \Leftrightarrow r^{5}e^{5\phi i} = 32e^{2k\pi i}, \quad k \in \mathbb{Z} \Leftrightarrow \begin{cases} 5\phi = 2k\pi, & k \in \mathbb{Z} \\ r^{5} = 32 \end{cases} \Leftrightarrow \begin{cases} \phi = \frac{2k\pi}{5}, & k \in \mathbb{Z} \\ r = 2 \end{cases}$$

 $k = \{0, 1, 2, 3, 4\}$ ger alla unika lösningar.

Svar: $e^{2k\pi i/5}$ $k = \{0, 1, 2, 3, 4\}$

1.11

$$e^{3ix} = (e^{ix})^3 = (\cos x + i\sin x)^3 = \cos^3 x + i3\cos^2 x \sin x - 3\cos x \sin^2 x - i\sin^3 x$$
$$\cos 3x = \operatorname{Re} e^{3ix} = \cos^3 x - 3\cos x \sin^2 x = \cos^3 x - 3\cos x (1 - \cos^2 x) =$$
$$= \cos^3 x - 3\cos x + 3\cos^3 x = 4\cos^3 x - 3\cos x$$

Svar: $4\cos^3 x - 3\cos x$

 $C = b + ai \, \operatorname{d\ddot{a}r} \, a \cos \omega t + b \sin \omega t$

$$\sqrt{3}\cos\omega t - \sin\omega t \Leftrightarrow \begin{cases} a = \sqrt{3} \\ b = -1 \end{cases} \Leftrightarrow C = -1 + i\sqrt{3}$$

Svar: $C = -1 + i\sqrt{3}$

 $C = b + ai \, \operatorname{d\ddot{a}r} \, a \cos \omega t + b \sin \omega t$

$$-2\cos\omega t - 4\sin\omega t \Leftrightarrow \begin{cases} a = -2 \\ b = -4 \end{cases} \Leftrightarrow C = -4 - 2i$$

Svar: C = -4 - 2i

1.13 Period:
$$2 \cdot 2 = 4$$

Frekvens: $\frac{1}{4}$

Vinkelfrekvens: $\frac{2\pi}{4} = \frac{\pi}{2}$

Fas:
$$-\frac{\pi}{2} \cdot \frac{3}{2} = -\frac{3\pi}{4}$$

1.14 a) Låt
$$z = 3.15 - 8.88i = re^{\phi i}$$

$$r = |z| = \sqrt{3.15^2 + (-8.88)^2} \approx 9.42$$

$$A\sin\phi = -8.88$$

$$A\cos\phi = 3.15$$

$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{A \sin \phi}{A \cos \phi} = \frac{-8.88}{3.15}$$
$$\phi = \arctan \frac{-8.88}{3.15} \approx -1.23$$

Svar: $9.42e^{-1.23i}$

b) Låt
$$z = -99 - 118i = re^{\phi i}$$

$$r = |z| = \sqrt{(-99)^2 + (-118)^2} \approx 154.03$$

$$A\sin\phi = -118$$

$$A\cos\phi = -99$$

$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{A \sin \phi}{A \cos \phi} = \frac{-118}{-99}$$
$$\phi = \arctan \frac{118}{99} + \pi \approx 4.01$$

Svar: $9.42e^{4.01i}$ eller $9.42e^{-2.27i}$ (pga period 2π)

1.15 a) Använd regeln $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

$$\begin{split} u(t) = & A \sin(\omega t + \delta) = A \sin \delta \cos \omega t + A \cos \delta \sin \omega t = \\ = & 22.4 \cos \omega t + 11.3 \sin \omega t \Leftrightarrow \begin{cases} A \sin \delta = 22.4 \\ A \cos \delta = 11.3 \end{cases} \Leftrightarrow \\ \Leftrightarrow & \sqrt{(A \sin \delta)^2 + (A \cos \delta)^2} = \sqrt{22.4^2 + 11.3^2} \Leftrightarrow \\ \Leftrightarrow & \sqrt{A^2 (\sin^2 \delta + \cos^2 \delta)} \approx 25.09 \Leftrightarrow A \approx 25.09 \end{split}$$

$$\tan \delta = \frac{\sin \delta}{\cos \delta} = \frac{A \sin \delta}{A \cos \delta} = \frac{22.4}{11.3}$$
$$\delta = \arctan \frac{22.4}{11.3} \approx 1.10$$

$$C = b + ai \Leftrightarrow \begin{cases} a = A \sin \delta \\ b = A \cos \delta \end{cases} \Leftrightarrow C = 11.3 + 22.4i$$

Svar: $u(t) = 25.09\sin(\omega t + 1.10), 11.3 + 22.4i$

b) Använd regeln $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

$$\begin{split} u(t) = & A \sin(\omega t + \delta) = A \sin \delta \cos \omega t + A \cos \delta \sin \omega t = \\ = & 5.19 \sin \omega t - 3.14 \cos \omega t \Leftrightarrow \begin{cases} A \cos \delta = 5.19 \\ A \sin \delta = -3.14 \end{cases} \Leftrightarrow \\ \Leftrightarrow & \sqrt{(A \sin \delta)^2 + (A \cos \delta)^2} = \sqrt{5.19^2 + (-3.14)^2} \Leftrightarrow \\ \Leftrightarrow & \sqrt{A^2 (\sin^2 \delta + \cos^2 \delta)} \approx 6.07 \Leftrightarrow A \approx 6.07 \end{split}$$

$$\tan \delta = \frac{\sin \delta}{\cos \delta} = \frac{A \sin \delta}{A \cos \delta} = \frac{-3.14}{5.19}$$
$$\delta = \arctan \frac{-3.14}{5.19} \approx -0.54$$

$$C = b + ai \Leftrightarrow \begin{cases} a = A\sin\delta \\ b = A\cos\delta \end{cases} \Leftrightarrow C = 5.19 - 3.14i$$

Svar: $u(t) = 6.07\sin(\omega t - 0.54), 5.19 - 3.14i$