PRODUCT RECOMMENDATION SYSTEM FOR E-COMMERCE PLATFORM

1. INTRODUCTION

This documentation provides a comprehensive overview of the recommendation system developed for an e-commerce platform. The goal of this project is to implement a machine learning model that recommends alternative products based on user search queries. The system identifies products with similar technical specifications but from different brands and suppliers, offering a range of price points.

2. PROJECT OVERVIEW

Objective

The primary objective is to create a recommendation system that can:

- Suggest alternative products based on user search queries.
- Identify products with similar technical specifications across various brands and suppliers.
- Provide a range of price points for the recommended products.

Datasets

Two datasets are used for this implementation:

- 1. Laptops Dataset ('ecommerce_data.csv'): Contains information about various laptop models.
- Columns: 'Company', 'TypeName', 'Inches', 'ScreenResolution', 'Cpu', 'Ram', 'Memory', 'Gpu', 'OpSys', 'Weight', 'Price'
- **2.** Electronics Dataset ('electronics_product.csv'): Contains information about various electronics products.
- Columns: 'name', 'main_category', 'sub_category', 'image', 'link', 'ratings', 'no_of_ratings', 'discount_price', 'actual_price'

3. IMPLEMENTATION DETAILS

3.1. Data Preprocessing

Laptops Dataset

- 1. Loading Data: Loaded the dataset using 'pandas'.
- 2. Dropping Unnecessary Columns: Removed the 'Unnamed: 0' column which was not needed.
- 3. Handling Missing Values: Dropped rows with missing values.
- 4. Lowercasing: Converted all text columns to lowercase to ensure uniformity.
- 5. Feature Combination: Combined various columns into a single `combined_features` column for vectorization.

Electronics Dataset

- 1. Loading Data: Loaded the dataset using 'pandas'.
- 2. Handling Missing Values: Dropped rows with missing values in the `name` column.
- 3. Lowercasing: Converted all text columns to lowercase to ensure uniformity.
- 4. Feature Combination: Combined `main_category` and `sub_category` into a single `combined features` column for vectorization.

3.2. Model Development

TF-IDF Vectorization

- 1. Initialization: Initialized 'TfidfVectorizer' for both laptops and electronics datasets.
- 2. Fitting: Fitted the vectorizer on the `combined_features` column of each dataset to create TF-IDF matrices.
- 3. Cosine Similarity: Computed cosine similarity between products within each dataset to determine similarity scores.

Recommendation Functions

- 1. Laptop Recommendations:
- Query Preparation: Created a query DataFrame and combined features similar to the training data.
 - Vectorization: Transformed the query into a TF-IDF vector.
 - Similarity Calculation: Calculated cosine similarity between the query and all products.
 - Top Recommendations: Sorted products based on similarity scores and selected the top 5.
- 2. Electronics Recommendations:
 - Query Preparation: Created a query DataFrame and combined features.
 - Vectorization: Transformed the query into a TF-IDF vector.
 - Similarity Calculation: Calculated cosine similarity between the query and all products.
 - Top Recommendations: Sorted products based on similarity scores and selected the top 5.

3.3. User Interface

- 1. Login System: Implemented a simple login system using Streamlit to manage access to the recommendation features.
- 2. Sidebar Filters: Provided options for users to select product types, and specific attributes (e.g., Company, CPU) for laptops, and categories for electronics.
- 3. Display Recommendations: Displayed recommended products with relevant details, including price and specifications for laptops, and price, ratings, and links for electronics.

4. CODE EXPLANATION

4.1. Importing Libraries

import pandas as pd

from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity import streamlit as st

4.2. Preprocessing Data

```
Load datasets

laptops_df = pd.read_csv('ecommerce_data.csv')

electronics_df = pd.read_csv('electronics_product.csv')

Preprocessing for laptops

laptops_df = laptops_df.drop(columns=['Unnamed: 0'])

laptops_df = laptops_df.dropna()

laptops_df = laptops_df.applymap(lambda s: s.lower() if type(s) == str else s)

laptops_df['combined_features'] = laptops_df['Company'] + ' ' + laptops_df['TypeName'] + ' ' + laptops_df['ScreenResolution'] + ' ' + laptops_df['Cpu'] + ' ' + laptops_df['Ram'] + ' ' ' + laptops_df['Memory'] + ' ' + laptops_df['Gpu'] + ' ' + laptops_df['OpSys']

Preprocessing for electronics

electronics_df = electronics_df.dropna(subset=['name'])

electronics_df = electronics_df.applymap(lambda s: s.lower() if type(s) == str else s)

electronics_df['combined_features'] = electronics_df['name'] + ' ' + electronics_df['main_category'] + ' ' + electronics_df['sub_category']
```

4.3. Model Initialization and Training

```
python

TF-IDF Vectorizer and Cosine Similarity for laptops
laptops_tfidf_vectorizer = TfidfVectorizer(stop_words='english')
```

```
laptops_tfidf_matrix = laptops_tfidf_vectorizer.fit_transform(laptops_df['combined_features'])
laptops_cosine_sim = cosine_similarity(laptops_tfidf_matrix, laptops_tfidf_matrix)

TF-IDF Vectorizer and Cosine Similarity for electronics
electronics_tfidf_vectorizer = TfidfVectorizer(stop_words='english')
electronics_tfidf_matrix = electronics_tfidf_vectorizer.fit_transform(electronics_df['combined_features'])
electronics_cosine_sim = cosine_similarity(electronics_tfidf_matrix, electronics_tfidf_matrix)
```

4.4. Recommendation Functions

```
python
 Function for laptop recommendations
def get laptop recommendations(query):
  query df = pd.DataFrame([query], columns=laptops df.columns[:-2])
  query df['combined features'] = query df['Company'] + ' ' + query df['TypeName'] + ' ' +
query df['ScreenResolution'] + ' ' + query df['Cpu'] + ' ' + query_df['Ram'] + ' ' + query_df['Memory']
+''+query df['Gpu']+''+query df['OpSys']
  query tfidf = laptops tfidf vectorizer.transform(query df['combined features'])
  query sim = cosine similarity(query tfidf, laptops tfidf matrix)
  sim scores = list(enumerate(query sim[0]))
  sim scores = sorted(sim scores, key=lambda x: x[1], reverse=True)
  sim scores = sim scores[1:6]
  product indices = [i[0]] for i in sim scores
  return laptops df.iloc[product indices]
 Function for electronics recommendations
def get electronics recommendations(query):
  query df = pd.DataFrame([query])
  query df = query df.dropna(subset=['main category', 'sub category'])
```

```
query_df['combined_features'] = query_df['main_category'] + ' ' + query_df['sub_category']
query_tfidf = electronics_tfidf_vectorizer.transform(query_df['combined_features'])
query_sim = cosine_similarity(query_tfidf, electronics_tfidf_matrix)
sim_scores = list(enumerate(query_sim[0]))
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
sim_scores = sim_scores[1:6]
product_indices = [i[0] for i in sim_scores]
return electronics_df.iloc[product_indices]
```

4.5. Streamlit Interface

```
streamlit app setup

st.title('Product Recommendation System')

User login

if 'login' not in st.session_state:
    st.session_state.login = False

if not st.session_state.login:
    username = st.text_input('Username')
    password = st.text_input('Password', type='password')

if st.button('Login'):
    if username == 'admin' and password == 'admin':
        st.session_state.login = True
    else:
        st.error('Invalid username or password')

else:
```

```
st.sidebar.title('Search Filters')
product_type = st.sidebar.selectbox('Product Type', ['Laptops', 'Electronics'])
if product_type == 'Laptops':
    Laptop search filters and recommendations
    ...
elif product_type == 'Electronics':
    Electronics search filters and recommendations
    ...
if st.button('Logout'):
    st.session_state.login = False
```

5. CONCLUSION

The implemented recommendation system is capable of providing product suggestions based on user queries. It uses TF-IDF vectorization and cosine similarity to find similar products across different brands and suppliers. The system is built with Streamlit to provide a user-friendly interface for interacting with the recommendation engine.