Why polls work

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - \mathbf{p}\right| > \epsilon\right\} \le \frac{1}{4n\epsilon^2}$$

A model for a poll

Random sample: repeated independent trials

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

A model for a poll

Random sample: repeated independent trials

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Binomial(n, p):
$$S_n = X_1 + X_2 + \cdots + X_n$$

A model for a poll

Random sample: repeated independent trials

Bernoulli(p) trials:
$$X_1, X_2, ..., X_n = \begin{cases} 1 & \text{with probability p,} \\ 0 & \text{with probability q.} \end{cases}$$

Binomial(n, p):
$$S_n = X_1 + X_2 + \cdots + X_n$$

Estimate the fixed but unknown population proportion p by the relative frequency S_n/n of accumulated successes in the sample.

If $n \ge 1/(4\varepsilon^2\delta)$ then the estimate has an error of no more than ε with confidence at least $1 - \delta$.

Error E	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

If
$$n \ge 1/(4\varepsilon^2\delta)$$
 then the estimate has an error of no more than ε with confidence at least $1 - \delta$.

Slogan

A relatively small, honest, random sample whose size does not depend upon the size of the underlying population or its composition gives a good estimate of the underlying population proportions (sentiments).