COMS 4771 Lecture 13

- 1. Beyond prediction error
- 2. Beyond binary classification

Beyond prediction error

PREDICTION ERROR / ZERO-ONE LOSS

P is a distribution over $\mathcal{X} \times \{-1, +1\}$, and $(X,Y) \sim P$. For any classifier $f \colon \mathcal{X} \to \{-1, +1\}$, $\operatorname{err}(f) \ = \ \Pr\Big[f(X) \neq Y\Big] \ = \ \mathbb{E}\Big[\ell_{0/1}(Yf(X))\Big].$

Prediction error / zero-one loss

P is a distribution over $\mathcal{X} \times \{-1, +1\}$, and $(X, Y) \sim P$.

For any classifier $f: \mathcal{X} \to \{-1, +1\}$,

$$\mathrm{err}(f) \ = \ \mathrm{Pr}\Big[f(X) \neq Y\Big] \ = \ \mathbb{E}\Big[\ell_{0/1}(Yf(X))\Big].$$

Also works with **real-valued predictors** $f: \mathcal{X} \to \mathbb{R}$; for example:

- ▶ Linear classifiers: $x \mapsto \langle w, x \rangle \theta$.
- ▶ (Binary) plug-in classifiers $x \mapsto \widehat{\Pr}[Y = +1 \mid X = x] 1/2.$

Prediction error / zero-one loss

P is a distribution over $\mathcal{X} \times \{-1, +1\}$, and $(X, Y) \sim P$.

For any classifier $f: \mathcal{X} \to \{-1, +1\}$,

$$\operatorname{err}(f) \ = \ \operatorname{Pr} \Bigl[f(X) \neq Y \Bigr] \ = \ \mathbb{E} \Bigl[\ell_{0/1}(Y f(X)) \Bigr].$$

Also works with **real-valued predictors** $f: \mathcal{X} \to \mathbb{R}$; for example:

- ▶ Linear classifiers: $x \mapsto \langle w, x \rangle \theta$.
- ▶ (Binary) plug-in classifiers: $x \mapsto \widehat{\Pr}[Y = +1 \mid X = x] 1/2$.

Often useful to adjust threshold (e.g., θ and 1/2 above). adjust the line the lose function

THRESHOLDS

Uses for adjusting threshold t

Often have different costs for different kinds of mistakes (recall HW1):

	$f(X) \le t$	f(X) > t
Y = -1	0	c
Y = +1	1-c	0

THRESHOLDS

Uses for adjusting threshold t

Often have different costs for different kinds of mistakes (recall HW1):

	$f(X) \le t$	f(X) > t
Y = -1	0	c
Y = +1	1-c	0

Also, often interested in different performance criteria.

► Precision:

$$\Pr[Y = +1 \mid f(X) > t]$$

► Recall (a.k.a. Sensitivity, True Positive Rate):

$$\Pr[f(X) > t \mid Y = +1]$$

► Specificity:

$$\Pr[f(X) \le t \,|\, Y = -1]$$

► False Positive Rate:

$$\Pr[f(X) > t \,|\, Y = -1]$$

CONDITIONAL PROBABILITY ESTIMATION

Sometimes would like real-valued predictor f to be related to the **conditional probability function** η :

$$\eta(x):=\Pr[Y=+1\,|\,X=x].$$

CONDITIONAL PROBABILITY ESTIMATION

Sometimes would like real-valued predictor f to be related to the **conditional probability function** η :

$$\eta(x) := \Pr[Y = +1 \,|\, X = x].$$

Option #1: Can use **generative models** to construct **plug-in classifier**, but could fail if class conditional distributions are not accurate.

CONDITIONAL PROBABILITY ESTIMATION

motivation

Sometimes would like real-valued predictor f to be related to the conditional probability function η :

$$\eta(x) := \Pr[Y = +1 \mid X = x].$$
 for a random x

- Option #1: Can use **generative models** to construct **plug-in classifier**, but could fail it class conditional distributions are not accurate.
- Option #2: Can use a loss function that is minimized by η (or some invertible transformation thereof).

Goal: loss function that is minimized by (some invertible transformation of) the conditional probability function

$$\eta(x) = \Pr[Y = +1 \,|\, X = x].$$

▶ Square loss: $\ell_{sq}(z) = (1-z)^2$

$$\mathbb{E}[\ell_{\mathrm{sq}}(Yf(x))|X=x] \text{ is minimized by } f(x)=2\eta(x)-1.$$

▶ Logistic loss: $\ell_{\log}(z) = \ln(1 + \exp(-z))$

$$\mathbb{E}[\ell_{\log}(Yf(x))|X=x] \text{ is minimized by } f(x) = \ln\Bigl(\frac{\eta(x)}{1-\eta(x)}\Bigr).$$

Using loss functions: easy with linear/affine functions whenever the loss function ℓ is a convex function (due to affine composition rule).

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \qquad R(\boldsymbol{w}) + \frac{1}{n} \sum_{i=1}^n \ell(\boldsymbol{w}; \boldsymbol{x}^{(i)}, y^{(i)})$$

(Here, the regularization function R is also assumed to be convex.)

Using loss functions: easy with linear/affine functions whenever the loss function ℓ is a convex function (due to affine composition rule).

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \qquad R(\boldsymbol{w}) + \frac{1}{n} \sum_{i=1}^n \ell(\boldsymbol{w}; \boldsymbol{x}^{(i)}, y^{(i)})$$

(Here, the regularization function R is also assumed to be convex.)

Good news: Both $\ell_{\rm sq}$ and $\ell_{\rm log}$ are convex!

A non-example:

▶ Hinge loss: $\ell_{\rm hl}(z) = \max\{0, 1-z\}$

$$\mathbb{E}[\ell_{\mathrm{hl}}(Yf(x))|X=x]$$
 is minimized by $f(x)=\mathrm{sign}(2\eta(x)-1).$

Can't recover $\eta(x)$ from f(x).

A non-example:

▶ Hinge loss: $\ell_{\rm hl}(z) = \max\{0, 1-z\}$

$$\mathbb{E}[\ell_{\mathrm{hl}}(Yf(x))|X=x]$$
 is minimized by $f(x)=\mathrm{sign}(2\eta(x)-1).$

Can't recover $\eta(x)$ from f(x).

Caveat: Might not be possible to represent

$$m{x} \mapsto 2\eta(m{x}) - 1 \quad ext{or} \quad m{x} \mapsto \ln\!\left(rac{\eta(m{x})}{1 - \eta(m{x})}
ight)$$

as (say) a linear function $oldsymbol{x} \mapsto \langle oldsymbol{w}, oldsymbol{x}
angle.$

A non-example:

▶ Hinge loss: $\ell_{\rm hl}(z) = \max\{0, 1-z\}$

$$\mathbb{E}[\ell_{\mathrm{hl}}(Yf(x))|X=x]$$
 is minimized by $f(x)=\mathrm{sign}(2\eta(x)-1).$

Can't recover $\eta(x)$ from f(x).

Caveat: Might not be possible to represent

$$m{x} \mapsto 2\eta(m{x}) - 1 \quad ext{or} \quad m{x} \mapsto \ln\!\left(rac{\eta(m{x})}{1 - \eta(m{x})}
ight)$$

as (say) a linear function $x \mapsto \langle w, x \rangle$.

Common solutions: enhance the feature space via feature expansion or kernels, or use more flexible models—discussed later.

Beyond binary classification

Suppose we have a good algorithm ${\mathcal A}$ for learning binary classifiers.

Question: Can we use \mathcal{A} to solve other machine learning problems?

Suppose we have a good algorithm ${\cal A}$ for learning binary classifiers.

Question: Can we use A to solve other machine learning problems?

A **reduction** from Problem 1 to Problem 2 is specified by two procedures:

- ▶ Instance map R: transforms Problem 1 instance S into a Problem 2 instance S'.
- ▶ Solution map T: transforms solution f' for Problem 2 instance S' into a solution f for Problem 1 instance S.

Suppose we have a good algorithm ${\cal A}$ for learning binary classifiers.

Question: Can we use A to solve other machine learning problems?

A **reduction** from Problem 1 to Problem 2 is specified by two procedures:

- ▶ Instance map R: transforms Problem 1 instance S into a Problem 2 instance S'.
- ▶ Solution map T: transforms solution f' for Problem 2 instance S' into a solution f for Problem 1 instance S.

Desired property:

If f' is a good solution for S', then f is a good solution for S.

In machine learning, typically have

- ▶ Problem 1: the problem you have to solve for a real application
- ▶ Problem 2: a well-studied problem in machine learning
- ▶ Problem instance: training data and (implicitly) a probability distribution P
- Solution: prediction function
- ▶ A: the latest, greatest learning algorithm for Problem 2

EXAMPLES

- 1. Problem: importance-weighted classifiation
 - Reduction: rejection sampling (Reduces problem to unweighted classification.)
- 2. Problem: multi-class classification
 - ► **Reduction #1**: One-Against-All
 - Reduction #2: Error Correcting Output Codes (Both reduce problem to binary classification.)

IMPORTANCE-WEIGHTED CLASSIFICATION

Problem:

- ▶ **Setting**: Random triple $(X,Y,W) \sim P$ for some probability distribution P over $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$.
 - W = importance weight for labeled example (X, Y).
- ▶ **Goal**: Function $f: \mathcal{X} \to \mathcal{Y}$ with small **importance-weighted error**:

$$\mathbb{E}\Big[W \cdot \mathbb{1}\{f(X) \neq Y\}\Big].$$

Importance-weighted classification

Problem:

- ▶ **Setting**: Random triple $(X,Y,W) \sim P$ for some probability distribution P over $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$.
 - W =importance weight for labeled example (X, Y).
- ▶ **Goal**: Function $f: \mathcal{X} \to \mathcal{Y}$ with small **importance-weighted error**:

$$\mathbb{E}\Big[W\cdot\mathbb{1}\{f(X)\neq Y\}\Big].$$

Problem instance:

▶ Training data S: collection of triples $(x, y, w) \in \mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$, presumed to be drawn i.i.d. from P.

Importance-weighted classification

Problem:

- ▶ Setting: Random triple $(X,Y,W) \sim P$ for some probability distribution P over $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$.
 - W =importance weight for labeled example (X, Y).
- ▶ Goal: Function $f: \mathcal{X} \to \mathcal{Y}$ with small importance-weighted error:

$$\mathbb{E}\Big[W \cdot \mathbb{1}\{f(X) \neq Y\}\Big].$$

Problem instance:

▶ Training data S: collection of triples $(x, y, w) \in \mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$, presumed to be drawn i.i.d. from P.

Where it comes up:

- ► Class-specific weights: e.g., $W = 100 \Leftrightarrow Y = 0$ (and W = 1 otherwise).
- Covariate-specific weights: e.g., $W = 100 \Leftrightarrow X \in \mathcal{X}_0$ (and W = 1 o.w.).
- Boosting, domain adaptation, causal inference, . . .

(Note: many learning algorithms natively handle importance weights.)

Importance-weighted classification

Problem:

- ▶ Setting: Random triple $(X,Y,W) \sim P$ for some probability distribution P over $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$.
 - W =importance weight for labeled example (X, Y).
- ▶ **Goal**: Function $f: \mathcal{X} \to \mathcal{Y}$ with small **importance-weighted error**:

$$\mathbb{E}\Big[W \cdot \mathbb{1}\{f(X) \neq Y\}\Big].$$

Problem instance:

▶ Training data S: collection of triples $(x, y, w) \in \mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$, presumed to be drawn i.i.d. from P.

Where it comes up:

- ► Class-specific weights: e.g., $W = 100 \Leftrightarrow Y = 0$ (and W = 1 otherwise).
- ► Covariate-specific weights: e.g., $W = 100 \Leftrightarrow X \in \mathcal{X}_0$ (and W = 1 o.w.).
- Boosting, domain adaptation, causal inference, . . .

(Note: many learning algorithms natively handle importance weights.)

Would like to reduce to (unweighted) classification.

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

$$\mathbb{E}_{(X,Y,W)\sim P}\Big[W\cdot \mathbb{1}\{f(X)\neq Y\}\Big] \ = \ \mathbb{E}_{(X',Y')\sim P'}\Big[\mathbb{1}\{f(X')\neq Y'\}\Big].$$

Main idea: Transform training data S so it looks like it came from a distribution P^\prime , where

$$\mathbb{E}_{(X,Y,W)\sim P}\Big[W\cdot\mathbbm{1}\{f(X)\neq Y\}\Big]\ =\ \mathbb{E}_{(X',Y')\sim P'}\Big[\mathbbm{1}\{f(X')\neq Y'\}\Big].$$

Instance mapping procedure

Input Training data S from $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$.

- 1: Initialize $S' = \emptyset$.
- 2: Let $w_{\max} := \max_{(x,y,w) \in S} w$.
- 3: for each $(x, y, w) \in S$ do
- 4: Toss a coin with heads bias $\frac{w}{w_{\text{max}}}$.
- 5: If heads, keep example—put (x, y) into S'.
- 6: If tails, discard example.
- 7: end for
- 8: **return** Training data S' from $\mathcal{X} \times \mathcal{Y}$.

Main idea: Transform training data S so it looks like it came from a distribution P^\prime , where

$$\mathbb{E}_{(X,Y,W)\sim P}\Big[W\cdot\mathbbm{1}\{f(X)\neq Y\}\Big]\ =\ \mathbb{E}_{(X',Y')\sim P'}\Big[\mathbbm{1}\{f(X')\neq Y'\}\Big].$$

Instance mapping procedure

Input Training data S from $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$.

- 1: Initialize $S' = \emptyset$.
- 2: Let $w_{\max} := \max_{(x,y,w) \in S} w$.
- 3: for each $(x, y, w) \in S$ do
- 4: Toss a coin with heads bias $\frac{w}{w_{\text{max}}}$.
- 5: If heads, keep example—put (x, y) into S'.
- 6: If tails, discard example.
- 7: end for
- 8: **return** Training data S' from $\mathcal{X} \times \mathcal{Y}$.

Solution mapping procedure: identity map

Why rejection sampling works: (Assume for simplicity that $w_{\rm max}=1$.)

Define random variable

$$Q:=\mathbb{1}\{\mathsf{Keep}\;\mathsf{example}\;(X,Y)\}$$

which, after conditioning on (X,Y,W), has mean W.

Why rejection sampling works: (Assume for simplicity that $w_{\text{max}} = 1$.)

Define random variable

$$Q:=\mathbb{1}\{\mathsf{Keep}\;\mathsf{example}\;(X,Y)\}$$

which, after conditioning on (X,Y,W), has mean W.

Distribution of examples in S' is same as that of (X,Y) conditioned on Q=1.

Why rejection sampling works: (Assume for simplicity that $w_{\rm max}=1$.)

Define random variable

$$Q := \mathbb{1}\{\mathsf{Keep}\;\mathsf{example}\;(X,Y)\}$$

which, after conditioning on (X,Y,W), has mean W.

Distribution of examples in S^\prime is same as that of (X,Y) conditioned on Q=1.

Moreover,

$$\mathbb{E}\bigg[Q\cdot\mathbb{1}\{f(X)\neq Y\}\bigg]$$

Why rejection sampling works: (Assume for simplicity that $w_{\text{max}} = 1$.)

Define random variable

$$Q := \mathbb{1}\{\mathsf{Keep}\ \mathsf{example}\ (X,Y)\}$$

which, after conditioning on (X, Y, W), has mean W.

Distribution of examples in S^\prime is same as that of (X,Y) conditioned on Q=1.

Moreover,

$$\mathbb{E}\bigg[Q\cdot\mathbb{1}\{f(X)\neq Y\}\bigg]\quad =\quad \mathbb{E}\bigg[\mathbb{E}\bigg[Q\cdot\mathbb{1}\{f(X)\neq Y\}\,\Big|\,(X,Y,W)\bigg]\bigg]$$

Why rejection sampling works: (Assume for simplicity that $w_{\text{max}} = 1$.)

Define random variable

$$Q := \mathbb{1}\{\mathsf{Keep}\ \mathsf{example}\ (X,Y)\}$$

which, after conditioning on (X, Y, W), has mean W.

Distribution of examples in S^\prime is same as that of (X,Y) conditioned on Q=1.

Moreover,

$$\mathbb{E}\Big[Q \cdot \mathbb{1}\{f(X) \neq Y\}\Big] = \mathbb{E}\Big[\mathbb{E}\Big[Q \cdot \mathbb{1}\{f(X) \neq Y\} \mid (X, Y, W)\Big]\Big]$$
$$= \mathbb{E}\Big[W \cdot \mathbb{1}\{f(X) \neq Y\}\Big]$$

Why rejection sampling works: (Assume for simplicity that $w_{\text{max}} = 1$.)

Define random variable

$$Q := \mathbb{1}\{\mathsf{Keep}\ \mathsf{example}\ (X,Y)\}$$

which, after conditioning on (X, Y, W), has mean W.

Distribution of examples in S^\prime is same as that of (X,Y) conditioned on Q=1.

Moreover,

$$\mathbb{E}\Big[Q \cdot \mathbb{1}\{f(X) \neq Y\}\Big] = \mathbb{E}\Big[\mathbb{E}\Big[Q \cdot \mathbb{1}\{f(X) \neq Y\} \,\Big|\, (X, Y, W)\Big]\Big]$$
$$= \mathbb{E}\Big[W \cdot \mathbb{1}\{f(X) \neq Y\}\Big]$$

Conclusion:

Prediction error w.r.t. P' = importance-weighted error w.r.t. P.

MULTI-CLASS CLASSIFICATION

Problem:

- ▶ **Setting**: Random pair $(X,Y) \sim P$ for some probability distribution P over $\mathcal{X} \times \{1,2,\ldots,K\}$.
- ▶ **Goal**: Function $f: \mathcal{X} \to \mathcal{Y}$ with small prediction error $\Pr(f(X) \neq Y)$.

MULTI-CLASS CLASSIFICATION

Problem:

- ▶ **Setting**: Random pair $(X,Y) \sim P$ for some probability distribution P over $\mathcal{X} \times \{1,2,\ldots,K\}$.
- ▶ **Goal**: Function $f: \mathcal{X} \to \mathcal{Y}$ with small prediction error $\Pr(f(X) \neq Y)$.

Problem instance:

▶ Training data S: collection of pairs $(x,y) \in \mathcal{X} \times \{1,2,\ldots,K\}$, presumed to be drawn i.i.d. from P.

MULTI-CLASS CLASSIFICATION

Problem:

- ▶ **Setting**: Random pair $(X,Y) \sim P$ for some probability distribution P over $\mathcal{X} \times \{1,2,\ldots,K\}$.
- ▶ **Goal**: Function $f: \mathcal{X} \to \mathcal{Y}$ with small prediction error $\Pr(f(X) \neq Y)$.

Problem instance:

▶ Training data S: collection of pairs $(x,y) \in \mathcal{X} \times \{1,2,\ldots,K\}$, presumed to be drawn i.i.d. from P.

Would like to reduce to binary classification.

ONE-AGAINST-ALL REDUCTION

Main idea: Create K binary classification problems given $x \in \mathcal{X}$, predict whether or not y = i.

Create K examples from each $(x, y) \in S$:

$$(x,y) \longrightarrow \left\{ \begin{array}{ccc} (x,\mathbbm{1}\{y=1\}) & \longrightarrow & S_1' \\ (x,\mathbbm{1}\{y=2\}) & \longrightarrow & S_2' \\ & \vdots & \vdots & \vdots \\ (x,\mathbbm{1}\{y=K\}) & \longrightarrow & S_K' \end{array} \right.$$

ONE-AGAINST-ALL REDUCTION

Instance mapping procedure

```
Input Training data S from \mathcal{X} \times \{1,2,\ldots,K\}.

1: Initialize empty sets S_1', S_2', \ldots, S_k'.

2: for each (x,y) \in S do

3: for each i=1,2,\ldots,K do

4: Put (x,\mathbb{1}\{y=i\}) \in \mathcal{X} \times \{0,1\} into S_i'.

5: end for

6: end for

7: return Training data sets S_1', S_2', \ldots, S_K' from \mathcal{X} \times \{0,1\}.
```

ONE-AGAINST-ALL REDUCTION

Instance mapping procedure

```
\begin{array}{lll} \textbf{Input} & \text{Training data } S \text{ from } \mathcal{X} \times \{1,2,\ldots,K\}. \\ 1: & \text{Initialize empty sets } S_1', S_2',\ldots,S_k'. \\ 2: & \textbf{for each } (x,y) \in S \text{ do} \\ 3: & \textbf{for each } i=1,2,\ldots,K \text{ do} \\ 4: & \text{Put } (x,\mathbb{1}\{y=i\}) \in \mathcal{X} \times \{0,1\} \text{ into } S_i'. \\ 5: & \textbf{end for} \\ 6: & \textbf{end for} \\ 7: & \textbf{return} & \text{Training data sets } S_1',S_2',\ldots,S_K' \text{ from } \mathcal{X} \times \{0,1\}. \end{array}
```

Solution mapping procedure

$$\begin{array}{ll} \textbf{Input} \ \ K \ \ \text{binary predictors} \ f_1', f_2', \dots, f_K' \colon \mathcal{X} \to \{0,1\}. \\ \textbf{return} \ \ \ \text{Function} \ \ f \colon \mathcal{X} \to \{1,2,\dots,K\} \ \ \text{where} \\ \\ f(x) = \mathop{\arg\max}_{i \in \{1,2,\dots,K\}} f_i'(x) \quad \ \ \text{(breaking ties arbitrarily)}. \end{array}$$

PROBLEM WITH OAA

OAA multi-class predictor:

$$f(x) = \underset{i \in \{1, 2, \dots, K\}}{\arg \max} f'_i(x).$$

PROBLEM WITH OAA

OAA multi-class predictor:

$$f(x) = \underset{i \in \{1, 2, \dots, K\}}{\arg \max} f'_i(x).$$

Only get correct classification on (x,y) if $f'_y(x)=1$ and $f'_i(x)=0$ for all $i\neq y$. (Could err if any of the f'_i errs!)

PROBLEM WITH OAA

OAA multi-class predictor:

$$f(x) = \underset{i \in \{1, 2, \dots, K\}}{\arg \max} f'_i(x).$$

Only get correct classification on (x,y) if $f'_y(x)=1$ and $f'_i(x)=0$ for all $i\neq y$. (Could err if any of the f'_i errs!)

Common solution: use conditional probability estimation

$$f_i'(x) = \text{estimate of } \Pr[Y = i \, | \, X = x].$$

Main idea: Create m binary classification problems given $x \in \mathcal{X}$, predict whether or not $y \in L_i$ for m pre-specified subsets $L_i \subset \{1,2,\ldots,K\}$.

Error correcting output codes

Main idea: Create m binary classification problems

given $x \in \mathcal{X}$, predict whether or not $y \in L_i$

for m pre-specified subsets $L_i \subset \{1, 2, \dots, K\}$.

Subsets specified using *error correcting codes* ($m \times K$ binary matrix):

Let *i*-th column $c_i \in \{0,1\}^m$ be the *code word* for class $i \in \{1,2,\ldots,K\}$.

Main idea: Create m binary classification problems

given $x \in \mathcal{X}$, predict whether or not $y \in L_i$

for m pre-specified subsets $L_i \subset \{1, 2, \dots, K\}$.

Subsets specified using *error correcting codes* ($m \times K$ binary matrix):

Let *i*-th column $c_i \in \{0,1\}^m$ be the *code word* for class $i \in \{1,2,\ldots,K\}$. Use m binary classifiers f_1', f_2', \ldots, f_m' to *predict* entire code word.

Instance mapping procedure: similar to OAA.

Instance mapping procedure: similar to OAA.

Solution mapping procedure:

Input m binary predictors $f_1', f_2', \dots, f_m' \colon \mathcal{X} \to \{0, 1\}$. return Function $f \colon \mathcal{X} \to \{1, 2, \dots, K\}$ where

$$f(x) = \underset{i \in \{1, 2, \dots, K\}}{\operatorname{arg \, min}} \left\| \begin{bmatrix} f'_1(x) \\ f'_m(x) \\ \vdots \\ f'_m(x) \end{bmatrix} - \boldsymbol{c}_i \right\|.$$

Instance mapping procedure: similar to OAA.

Solution mapping procedure:

Input m binary predictors $f_1', f_2', \dots, f_m' \colon \mathcal{X} \to \{0, 1\}$. **return** Function $f \colon \mathcal{X} \to \{1, 2, \dots, K\}$ where

$$f(x) = \underset{i \in \{1, 2, \dots, K\}}{\operatorname{arg\,min}} \left\| \begin{bmatrix} f_1'(x) \\ f_m'(x) \\ \vdots \\ f_m'(x) \end{bmatrix} - \boldsymbol{c}_i \right\|.$$

Error correction: can still get correct multi-class prediction even if several binary classifiers err.

Instance mapping procedure: similar to OAA.

Solution mapping procedure:

Input m binary predictors $f_1', f_2', \dots, f_m' \colon \mathcal{X} \to \{0, 1\}$. return Function $f \colon \mathcal{X} \to \{1, 2, \dots, K\}$ where

$$f(x) = \underset{i \in \{1, 2, \dots, K\}}{\operatorname{arg \, min}} \left\| \begin{bmatrix} f_1'(x) \\ f_m'(x) \\ \vdots \\ f_m'(x) \end{bmatrix} - \boldsymbol{c}_i \right\|.$$

Error correction: can still get correct multi-class prediction even if several binary classifiers err.

Still also useful to use conditional probability estimation

$$f_i'(x) = \text{estimate of } \Pr[Y \in L_i \mid X = x]$$

("Probabilistic ECOC").

Instance mapping procedure: similar to OAA.

Solution mapping procedure:

Input m binary predictors $f_1', f_2', \dots, f_m' \colon \mathcal{X} \to \{0, 1\}$. return Function $f \colon \mathcal{X} \to \{1, 2, \dots, K\}$ where

$$f(x) = \underset{i \in \{1, 2, \dots, K\}}{\operatorname{arg min}} \left\| \begin{bmatrix} f'_1(x) \\ f'_m(x) \\ \vdots \\ f'_m(x) \end{bmatrix} - \boldsymbol{c}_i \right\|.$$

Error correction: can still get correct multi-class prediction even if several binary classifiers err.

Still also useful to use conditional probability estimation

$$f_i'(x) = \text{estimate of } \Pr[Y \in L_i \mid X = x]$$

("Probabilistic ECOC").

Caveat: binary prediction problems could be challenging / unnatural (e.g., predict if handwritten digit is an even digit or not).

COMPARING OAA AND ECOC

Empirical comparison

- ► Eight multi-class problems (from the UCI repository).
- A = classregtree from the MATLAB statistics toolbox, estimate conditional probabilities using square loss.
- ▶ ECOC based on Hadamard matrix (similar to Fourier transform).

Data set	Number of classes	One-against-all	ECOC
ecoli	8	0.0985	0.0517
glass	6	0.3874	0.3462
pendigits	10	0.0985	0.0517
satimage	6	0.1679	0.1376
soybean	19	0.6580	0.5993
splice	3	0.0642	0.0699
vowel	11	0.6356	0.5780
yeast	10	0.4893	0.4479

RECAP

- ▶ **Reductions**: reuse existing technology to solve new problems.
 - Multi-class (OAA, ECOC, tournaments, . . .)
 - Multi-label prediction
 - Ranking
 - Sequence prediction
 - **.** . . .
- ▶ Lots of different problems and objectives beyond binary classification and prediction error—can be application-/domain-specific.
- Very useful tools:
 - Importance-weighted classification (using reductions)
 - Conditional probability estimation (using certain loss functions)