Regressão Logística: Função Custo Simplificada e Método do Gradiente

Onde estamos e para onde vamos

Na aula anterior, definimos a função perda e a função custo para a Regressão Logística.

Nesta aula, iremos simplificar a definição da função custo e aplicar o Método do Gradiente para encontrar seu mínimo global.

Relembrando da Regressão Logística

Na aula passada, vimos que a Função de perda para Regressão Logística é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \left\{ \begin{array}{c} -\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 1 \\ -\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 0 \end{array} \right.$$

OBS: $y^{(i)}$ é sempre 1 ou 0 (tumor maligno ou não)

Relembrando da Regressão Logística

Na aula passada, vimos que a Função de perda para Regressão Logística é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \left\{ \begin{array}{c} -\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 1 \\ -\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 0 \end{array} \right.$$

OBS: $y^{(i)}$ é sempre 1 ou 0 (tumor maligno ou não)

Note que é possível simplificar, escrevendo da seguinte forma equivalente:

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = -y^{(i)}\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) - (1-y^{(i)})\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)$$

Pergunta:

Como a função de perda abaixo é simplificada para o caso em que a amostra i correspondente possui valor alvo $u^{(i)} = 1$?

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = -y^{(i)}\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) - (1-y^{(i)})\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)$$

A)
$$-\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)$$

$$\mathsf{B)} - \log \left(f_{\overrightarrow{w},b} \left(1 - \overrightarrow{x}^{(i)} \right) \right)$$

4/12

Função custo simplificada

A função custo que queremos minimizar na Regressão Logística é a média das perdas:

$$J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} L\left(f_{\overrightarrow{w}, b}\left(\overrightarrow{x}^{(i)}\right), y^{(i)}\right)$$

onde

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = -y^{(i)}\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) - (1-y^{(i)})\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)$$

Sendo assim, note que podemos reescrever

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{\left(i\right)} \log \left(f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{\left(i\right)} \right) \right) + (1-y^{\left(i\right)}) \log \left(1 - f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{\left(i\right)} \right) \right) \right]$$

5/12

Função custo simplificada

A função custo que queremos minimizar na Regressão Logística é a média das perdas:

$$J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right), y^{(i)}\right)$$

onde

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{\left(i\right)}\right),y^{\left(i\right)}\right)=-y^{\left(i\right)}\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{\left(i\right)}\right)\right)-(1-y^{\left(i\right)})\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{\left(i\right)}\right)\right)$$

Sendo assim, note que podemos reescrever

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{(i)} \right) \right) + (1-y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{(i)} \right) \right) \right]$$

Observação:

- $lackbox{0}$ O Método do Gradiente agora pode ser aplicado para encontrar quais são os parâmetros \overrightarrow{w},b que minimizam $J(\overrightarrow{w},b)$
- Lembrando que $J(\overrightarrow{w}, b)$ será convexa (único mínimo), ainda que o modelo seja:

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

onde $f_{\overrightarrow{w},b}(\overrightarrow{x})$ é a probabilidade de y ser 1.

Precisamos encontrar os valores de \overrightarrow{w} , b que minimizam

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{(i)} \right) \right) + (1-y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{(i)} \right) \right) \right]$$

Precisamos encontrar os valores de \overrightarrow{w} , b que minimizam

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{\left(i\right)} \log \left(f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{\left(i\right)} \right) \right) + (1-y^{\left(i\right)}) \log \left(1-f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{\left(i\right)} \right) \right) \right]$$

Sabemos que o Método do Gradiente consiste em repetir:

$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w}, b)$$
 $j = 1, \dots, n$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

Precisamos encontrar os valores de \overrightarrow{w} , b que minimizam

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{\left(i\right)} \log \left(f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{\left(i\right)} \right) \right) + (1-y^{\left(i\right)}) \log \left(1 - f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{\left(i\right)} \right) \right) \right]$$

Sabemos que o Método do Gradiente consiste em repetir:

$$\begin{split} w_j &= w_j - \alpha \frac{\partial}{\partial w_j} J(\overrightarrow{w}, b) \qquad j = 1, \cdots, n \\ \\ b &= b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b) \end{split}$$

É possível provar que, para a função $J(\overrightarrow{w},b)$ acima, tem-se:

$$\frac{\partial}{\partial w_{j}}J(\overrightarrow{w},b) = \frac{1}{m}\sum_{i=1}^{m}\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) - y^{(i)}\right)x_{j}^{(i)}$$

$$\frac{\partial}{\partial b}J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b} \left(\overrightarrow{x}^{(i)} \right) - y^{(i)} \right)$$

$$\frac{\partial m^2}{\partial y} + 2p(x) = \frac{\partial m^2}{\partial y} \left(x + c_{(2, c_{+})} \right)_{x} = -\left(x + c_{(2, c_{+})} \right)_{x} + \left(x + c_{(2, c_{+})}$$

7/12

Método do Gradiente para Regressão Logística consiste em repetir:

$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w}, b} \left(\overrightarrow{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \right]$$

$$b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w}, b} \left(\overrightarrow{x}^{(i)} \right) - y^{(i)} \right) \right]$$

Parece idêntico à Regressão Linear. Porém, devemos lembrar que:

Regressão linear:

$$f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) = \overrightarrow{w}\cdot\overrightarrow{x} + b$$

Regressão Logística:

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

Conceitos importantes

Quando estudamos Regressão Linear, é recomendado:

- Monitorar o Método do Gradiente (curva de aprendizado)
- Realizar implementação Vetorizada
- Escalonamento de Características

Todos estes conceitos continuam valendo agora para o contexto de Regressão Logística

De olho no código!

De olho no código!

Vamos agora implementar o algoritmo de Regressão Logística na prática.

Acesse o Python Notebook usando o QR code ou o link abaixo:

Atividade de aula

Parte 1

Rode todo o código. Certifique-se de que você o compreendeu.

Parte 2

- Explique, com as suas próprias palavras, quais são os passos necessários para implementar a Regressão Logística na prática.
- 2 Faça modificações no conjunto de dados que está no código, e verifique como essas modificações alteram a fronteira de decisão do modelo estimado.