Question 1

Imagine a gear box created out of the different characters of your first name. For example instead of displaying N for neutral it displays F and instead of displaying R for reverse it displays I and son on. Write a truth table for the seven segment decoder used in this gear box. Your gear box should have the following inputs: P, N, R, and D. From the truth table write the Boolean expressions of the different decoder outputs. **Hint:** look at lecture 16 slide 5.

Question 2

The truth table of a 4 input priority encoder is as follows:

I1	I2	I3	I4	01	O2
0	0	0	0	X	X
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

- 1. In few words, explain how the priority encoder works. ~
- 2. Using K-map find the simplified Boolean expression of O1 as sum of product.
- 3. Realize the expression in 2 using two input Nand/Not gates only and count the number of transistors.
- 4. Using K-map find the simplified Boolean expression of O2 as product of sum.
- 5. Realize the expression in 4 using Nor/Not gates only and count the number of transistors

A priority encoder outputs the position of the most significant bit of the input.

Question 3

- 1. Write the Boolean expression of an 8 to 1 multiplexer where S_2 , S_1 , and S_0 are used for the selection and D_0 to D_7 are the single bit inputs.
- 2. Write the Boolean expressions of a 1 to 8 demultiplexer where S_2 , S_1 , and S_0 are used for the selection and D_0 to D_7 are the single bit outputs.
- 3. Explain what need to be done to transform the above mux/demuxes to accept input/output signals of 8 bits each.

Increase the number of inputs or outputs to 8.

Question 4

In this problem please assume the select input as active high.

1. Continue the following truth table for a 2-to-1 multiplexer, where input 1 and input 2 are the two inputs to the multiplexer and Sel is the select.

Input1	Input2	Sel	output	
0	0	0	0	
0	1	0	1	
1	0	0	0	
1	1	0	1	
0	0	1	0	
0	1	1	0	
1	0	1	1	
1	1	1	1	

2. Based on this truth table, draw the waveform of the output for the following input waveforms.

Question 5

Continue the truth table for a 1 to 4 demultiplexer:

Input	Sel1	Sel2	Output1	Output2	Output3	Output4
0	0	0	0	0	0	0
()	0	1	0		Q	()
0		\bigcirc		0		Q
O		•			i Q	0
	()	0		į.		Ó
	0		0		()	
		Q	\bigcirc	0		
			0	0	0	

