

SILABO MATERIALES DE INGENIERÍA

ÁREA CURRICULAR: PRODUCCIÓN E INGENIERÍA INDUSTRIAL

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-II1.3 Código de la asignatura : 09008604040

1.4Ciclo:IV1.5Créditos:041.6Horas semanales totales:10

1.6.1 Horas lectivas (Total, Teoría, Práctica) : 5 (T=3, P=0, L=2))

1.6.2 Horas de trabajo independiente :

1.7 Condición de la asignatura : Obligatoria

1.8 Requisito(s) : 09007203050 Química Industrial

09005603050 Física I

1.9 Docentes : Ing. Arnaldo Falcón Soto

II. SUMILLA

El curso de materiales de ingeniería es un curso teórico experimental, cuyo propósito es brindar a los alumnos un conocimiento general que permita aplicar los conceptos y principios de la física, la química a la interpretación de las propiedades de los diferentes materiales de ingeniería. El desarrollo del curso comprende:

- I. Teoría de los metales
- II. Diagrama de fases
- III. Tratamientos térmicos y aceros especiales
- IV. Materiales cerámicos poliméricos y otros.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

Aplica las propiedades de los materiales en su elección

Identifica diferentes tipos y familias de materiales.

Enumera las diferentes estructuras y propiedades de los materiales.

Redacta informes sobre el comportamiento de los materiales.

3.2 Componentes

Capacidades

Explica el porqué de las propiedades de los materiales

Evalúa materiales de acuerdo a sus necesidades.

Diseña piezas con diferentes materiales

Resuelve problemas sobre el uso de los materiales

Contenidos actitudinales

Participa en los debates dirigidos sobre el porqué de las diferentes propiedades.

Decide cual es el material más adecuado para una prestación.

Experimenta en el uso de los materiales

Reconoce microestructuras del hierro y el acero

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : TEORÍA DE LOS METALES

• Capacidad: Evalúa los diferentes materiales de ingeniería

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS		
				L	T.I.	
1	Sesión 1 Los materiales de ingeniería y la importancia de su selección en proyectos industriales. La familia de los materiales Características. Sesión 2 Estructura atómica, los enlaces La celda unitaria, tipos y características.	Distingue los diferente materiales Conceptúa la diferencia entre las familias de materiales Explica las diferentes estructuras atómicas	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema - 3 Ejercicios en aula - 1 hora De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas	- 5	5	
2	Sesión 1 Prueba de entrada Estructuras microscópicas y macroscópicas. Sesión 2 Posición y dirección en la celda unitaria, planos direcciones, ejercicios	Responde la prueba de entrada Dibuja planos y direcciones en la celda unitaria Resuelve problemas de planos	Lectivas (L): Desarrollo de la prueba de entra - 1 hora Desarrollo del tema – 3 horas Ejercicios en aula - 1 horas De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 1 hora Trabajo grupal: 2 horas	5	5	
3	Sesión 1 Defectos estructuras, puntuales, lineales, superficiales Sesión 2 Grano, tamaño de grano. Control de Lectura N° 1.	Responde el control de lectura Distingue defectos estructurales y tipos de grano Resuelve problemas de tamaño de grano	Lectivas (L): Desarrollo del control de lectura - 1 hora Desarrollo del tema – 3 horas Ejercicios en aula - 1 horas De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 1 hora Trabajo grupal: 2 horas	- 5	5	
4	Sesión 1 Curvas de Esfuerzo deformación, construcción, interpretación. Semana 2 Propiedades de la curva Esfuerzo-deformación, dureza, ductilidad, módulo de elasticidad. Punto de Fluencia.	Construye curvas de esfuerzo deformación Relaciona las curvas de esfuerzo con las propiedades Resuelve problemas de esfuerzo	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema - 3 Ejercicios en aula - 1 hora De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas	- 5	5	

UNIDAD II: DIAGRAMA DE FASES

• Capacidad: Diseña un diagrama de fases simple

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS		
				L	T.I.	
5	Semana 1 Prueba de Materiales, tensión, Impacto, Izod, charpy, dureza, Brinell, Rockwell, fatiga. Sesión 2 Solidificación.Diagramas de Equilibrio o de Fases. Diagramas binarios, eutecticos, eutectoides, ferrita, cementita, austenita. Control de Lectura 2.	Responde el control de lectura Describe diferentes pruebas de materiales Diferencia diagramas eutécticos y eutéctoides Resuelve problemas de regla de la palanca	Lectivas (L): Desarrollo del control de lectura - 1 hora Desarrollo del tema – 3 horas Ejercicios en aula - 1 hora	5	5	
			 De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas 			
6	Sesión 1 Laboratorio de Ensayo de Tracción y Compresión (UNI) Grupo A	Responde el examen parcial	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 4 horas	5	5	
	Sesión 2 Laboratorio de Ensayo de Tracción y Compresión (UNI) Grupo B		 <u>De trabajo Independiente</u> (T.I): Resolución tareas - 1 hora Informe de investigación – 4 horas 			
7	Sesión 1 Diagrama de equilibrio Hierro - Carbono. Análisis del diagrama hierro carbono, Aleaciones Hierro-Carbono, Fundiciones Sesión 2	Responde el control de lectura Descifra el diagrama de equilibrio Hierro Carbono Resuelve problemas de balance de materia en aceros	Lectivas (L): Desarrollo del control de lectura - 1 hora Desarrollo del tema – 3 horas Ejercicios en aula - 1 hora	5	5	
	El hierro, obtención, el alto horno, productos, El acero, métodos de obtención, proceso Bessemer, hornos eléctricos, métodos especiales y otros. Control de Lectura		 De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas 			
8	Sesión 1 EXAMEN PARCIAL Sesión 2: Retroalimentación del examen	Responde el examen parcial	Resuelve el examen	5	5	

UNIDAD III: TRATAMIENTOS TÉRMICOS Y ACEROS ESPECIALES

Capacidad: Describe el proceso de tratamiento térmico de diferentes aceros

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НО	RAS T.I.
9	Sesión 1 Tratamiento térmico de los aceros, Recocido, normalizado, temple y revenido. Sesión 2 Control de Lectura 4.	Responde el control de lectura Distingue diferentes tratamientos térmicos Aplica diferentes tratamientos térmicos Resuelve problemas tratamientos térmicos	Lectivas (L): Desarrollo del control de lectura - 1 hora Desarrollo del tema – 3 horas Ejercicios en aula - 1 hora De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas	5	5
10	Sesión 1 Diagramas TTT Sesión 2 Visita a empresa de tratamientos térmicos	Dibuja diagramas TTT Aplica diferentes diagramas TTT Resuelve problemas de TTT	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema - 3 Ejercicios en aula - 1 hora De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas	5	5
11	Sesión 1 Aceros de alta aleación, inoxidables, ferriticos, austeniticos, martensiticos Aceros Maragin, Hadfield, de herramientas. Superaleaciones, Sesión 2 Aceros de baja aleación y alta resistencia. Control de Lectura 5.	Responde el control de lectura Distingue diferentes tratamientos térmicos Aplica diferentes tratamientos térmicos Resuelve problemas tratamientos térmicos	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema – 4 horas De trabajo Independiente (T.I): Resolución tareas - 1 hora Informe de investigación – 4 horas	5	5
12	Sesión 1 Cerámicos, propiedades, fuerzas de enlace, materiales cerámicos simples: el vidrio, procesamiento y productos. Asbestos: mica, arcilla, Mullita, titanato de bario. Sesión 2 Cementos, aspectos generales del concreto, Concreto Reforzado y pretensado	Clasifica los diferentes cerámicos Relaciona cementos con concretos Resuelve problemas de cerámicos	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema - 3 Ejercicios en aula - 1 hora De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas	5	5

UNIDAD IV: MATERIALES CERÁMICOS POLIMÉRICOS Y OTROS

• Capacidad: Elabora una lista de nuevos materiales

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	НС	DRAS
13	Sesión 1 Polímeros: Formación de estructuras poliméricas, mecanismos de polimerización, Grado de Polimerización, Sesión 2 Polímeros Cristales Líquidos. Termoplásticos, Termoestables. Elastómeros, Copolimeros. Adhesivos. Pet y Kevlar.	Diferencia tipos de polímeros Relaciona las propiedades de los polímeros Resuelve problemas sobre polimeros	Lectivas (L): Introducción al tema - 1 hora Desarrollo del tema - 3 Ejercicios en aula - 1 hora	5	T.I.
			 <u>De trabajo Independiente</u> (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas 		5
14	Sesión 1 Exposición de trabajos de investigación Grupo A Sesión 2 Exposición de trabajos de investigación Grupo B	Expone el trabajo de investigación	Lectivas (L): Desarrollo - 4 horas Exposición 1 hora De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas	5	5
15	Sesión 1 Exposición de trabajos de investigación Grupo C Sesión 2 Exposición de trabajos de investigación Grupo D	Expone el trabajo de investigación	Lectivas (L): Desarrollo - 4 horas Exposición 1 hora De trabajo Independiente (T.I): Resolución tareas - 1 hora Trabajo de investigación – 2 horas Trabajo grupal: 2 horas	5	5
16	EXAMEN FINAL	Responde el examen final	Resuelve el examen	5	5

V. ESTRATEGIAS METODOLÓGICAS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separata "Materiales de Ingeniería" Falcón Arnaldo, transparencias, direcciones electrónicas

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF= (PE + EP + EF) / 3

PE = (P1+P2+P3) / 3

Donde:

PF: Promedio Final

PE: Promedio de evaluaciones EP: Examen parcial (escrito)

EF: Examen Final (escrito)

P1...P3: Practicas Calificadas

VIII. FUENTES DE CONSULTA.

8.1 Bibliográficas

- Callister, William Rethwisch, David (2016) Ciencia e ingeniería de materiales Editorial Reverté S.A España
- Smith F, William. (2014) **Fundamentos de la ciencia e ingeniería de materiales**, Mexico, D.F. Mcgraw-Hill / Interamerica Editores, S.A. De C.V.
- Askelan R, Donald. (2012) Ciencia e Ingeniería de Materiales. Mexico, D.F. Cengage Learning, Editores S.A.
- Keyser Carl A; (1992) Ciencia de Materiales para Ingeniería. Editorial Limusa, S. A. De C. V. Sétima Reimpresión.
- Flinn Richard A Paul K. Trojan: (1993) Materiales de Ingeniería y sus Aplicaciones. Mcgraw-Hill/ Interamerica De México, S.A. De C.V.
- Landauro, Alberto; "Siderurgia". Editorial Gamma, 1996; Lima
- Lasheras Esteba, José; (1994); Tecnología de los Materiales Industriales, Ediciones Cedel. Barcelona

8.2 Electrónicas

Askelan Donal R., Phulé Pradeep P. (2006). The Science and Engineering of Materials. Cengage Learning

http://books.google.com.pe/books?id=fRbZsIUtpBYC&pg=PA432&lpg=PA432&dq=Cengage+Learning+askeland&source=bl&ots=wN0Zo79QbC&sig=7dCq67nH4ZJdZ9wwl3o2vkYqOyA&hl=es&ei=7sisS4aXGs2XtgfEy6DaDw&sa=X&oi=book_result&ct=result&resnum=8&ved=0CB8Q6AEwBw#v=onepage&q=Cengage%20Learning%20askeland&f=false

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Industrial, se establece en la tabla siguiente:

R = relacionado **K** = clave Recuadro vacío = no aplica R Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería (a) (b) Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos Κ Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades (c) requeridas Κ (d) Habilidad para trabajar adecuadamente en un equipo multidisciplinario Habilidad para identificar, formular y resolver problemas de ingeniería K (e) (f) Comprensión de lo que es la responsabilidad ética y profesional (g) Habilidad para comunicarse con efectividad Una educación amplia necesaria para entender el impacto que tienen las soluciones de la R (h) ingeniería dentro de un contexto social y global Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de R (i) su vida (j) Conocimiento de los principales temas contemporáneos Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la (k) Κ ingeniería