1. What is the coordination number of the central metal ion in [Co(en)2Cl2]+?
A. 2
B. 4
C. 6
D. 3
Answer: C. 6
Explanation: Each 'en' (ethylenediamine) is bidentate (2 donor atoms). So, 2×2 (en) + 2×1 (Cl $^-$) = 6 coordination sites.
2. Which one of the following is a tridentate ligand?
A. EDTA
B. ox ²⁻
C. dien
D. en
Answer: C. dien
Explanation: Dien (diethylenetriamine) has 3 nitrogen donor atoms, making it tridentate.
3. What is the IUPAC name of [Cr(NH3)4Cl2]Cl?
A. Tetraamminedichloridochromium(III) chloride
B. Tetraamminedichloridochromium(I) chloride
C. Tetrachloridodiaminechromium(III) chloride
D. Tetraamminedichloridochromium(II) chloride
Answer: A. Tetraamminedichloridochromium(III) chloride
Explanation: Chromium is in +3 oxidation state; 4 NH3 and 2 Cl as ligands.
4. Which of the following shows geometrical isomerism?
A. [Pt(NH3)4]2+
B. [Pt(NH3)2Cl2]
C. [Co(NH3)6]3+
D. [CrCl3(NH3)3]

Answer:	В.	[Pt(N	H3)	2C	[2]
---------	----	-------	-----	----	-----

Explanation: It is square planar and shows cis-trans geometrical isomerism.

- 5. The complex [Fe(CN)6]3- is:
- A. Paramagnetic with one unpaired electron
- B. Paramagnetic with five unpaired electrons
- C. Diamagnetic
- D. Paramagnetic with three unpaired electrons

Answer: A. Paramagnetic with one unpaired electron

Explanation: CN^- is a strong field ligand. Low spin d5 \rightarrow 1 unpaired electron.

- 6. The effective atomic number (EAN) of Fe in [Fe(CN)6]3- is:
- A. 36
- B. 35
- C. 34
- D. 33

Answer: B. 35

Explanation: Fe³⁺ has 23 electrons. CN^- donates 12 electrons (6 × 2).

23 + 12 = 35.

- 7. In the complex [Ni(CO)4], the hybridisation and geometry are:
- A. sp3, tetrahedral
- B. dsp2, square planar
- C. sp2, trigonal planar
- D. d2sp3, octahedral

Answer: A. sp3, tetrahedral

Explanation: Ni(0) forms sp3 hybridisation with weak field CO ligands \rightarrow tetrahedral.

- 8. Which of the following ligands causes pairing of electrons in 3d orbital of metal ion?
- A. CI-

B. CN ⁻
C. OH ⁻
D. H2O
Answer: B. CN ⁻
Explanation: CN^- is a strong field ligand \rightarrow causes pairing \rightarrow low spin complex.
9. What is the charge on the central metal ion in [Pt(NH3)2Cl2]?
A. +4
B. +2
C. +3
D. 0
Answer: B. +2
Explanation: NH3 is neutral; Cl ⁻ contributes -2. For a neutral complex, Pt must be +2.
10. Which of the following complexes will be optically active?
A. [Co(en)3]3+
B. [Co(NH3)5CI]Cl2
C. [Pt(NH3)2Cl2]
D. [Fe(CN)6]4-
Answer: A. [Co(en)3]3+
Explanation: It has no plane of symmetry and is chiral $ ightarrow$ optically active.
11. The chelating ligand among the following is:
A. CN ⁻
B. NH3
C. en
D. CI ⁻
Answer: C. en
Explanation: en (ethylenediamine) has two donor atoms and forms a ring $ ightarrow$ chelate.

12. The geometry of [Cu(NH3)4]2+ is:
A. Tetrahedral B. Square planar C. Octahedral D. Trigonal planar
Answer: A. Tetrahedral Explanation: Cu ²⁺ forms tetrahedral geometry with neutral NH3 ligands.
13. The central atom in [Fe(C2O4)3]3- has an oxidation state of:
A. +2 B. +3 C. +4 D. +6
Answer: B. +3 Explanation: Each oxalate is -2, so $3 \times -2 = -6$. The charge on the complex is -3, so Fe = +3.
14. Which one is NOT a correct match?
A. EDTA – Hexadentate B. en – Bidentate C. CO – Anionic ligand D. Cl ⁻ – Monodentate
Answer: C. CO – Anionic ligand Explanation: CO is a neutral ligand.
15. In a coordination compound, secondary valency refers to:
A. Charge on central atom B. Number of ions outside coordination sphere C. Coordination number D. Oxidation state

Answer: C. Coordination number

Explanation: Secondary	/ valencv = numbe	r of ligands	directly bonded to metal.
	,		

- 16. In which of the following compounds, the metal exhibits zero oxidation state?
- A. [Ni(CN)4]2-
- B. [Ni(CO)4]
- C. [Co(NH3)6]3+
- D. [Fe(CN)6]3-

Answer: B. [Ni(CO)4]

Explanation: CO is a neutral ligand and the complex is neutral, so Ni is in 0 oxidation state.

- 17. Which type of isomerism is shown by [Cr(H2O)6]Cl3 and [CrCl(H2O)5]Cl2?
- A. Geometrical isomerism
- B. Ionisation isomerism
- C. Linkage isomerism
- D. Hydrate isomerism

Answer: D. Hydrate isomerism

Explanation: Water is present inside and outside the coordination sphere.

- 18. Which complex shows linkage isomerism?
- A. [Co(NH3)6]CI3
- B. [Co(NO2)(NH3)5]Cl2
- C. [Cr(H2O)6]Cl3
- D. [Ni(CO)4]

Answer: B. [Co(NO2)(NH3)5]Cl2

Explanation: $NO2^-$ can bind via N (nitro) or O (nitrito) \rightarrow linkage isomerism.

- 19. The number of unpaired electrons in [Fe(H2O)6]3+ is:
- A. 0
- B. 1
- C. 3

D. 5 Answer: D. 5 Explanation: Fe3+ is d5 and H2O is a weak field ligand \rightarrow no pairing \rightarrow 5 unpaired electrons. 20. In the complex [Zn(NH3)4]2+, the geometry is: A. Octahedral B. Square planar C. Tetrahedral D. Trigonal bipyramidal Answer: C. Tetrahedral Explanation: Zn2+ forms tetrahedral complexes with weak field ligands like NH3. 21. What is the oxidation number of cobalt in [Co(C2O4)3]3-? A. +3 B. +2 C. +6 D. +1 Answer: A. +3 Explanation: Each oxalate (C2O4²⁻) is -2. $3 \times (-2) = -6$. Complex charge = -3 \rightarrow Co = +3. 22. Which of the following is a homoleptic complex? A. [Co(NH3)6]3+ B. [Co(NH3)4Cl2]+ C. [Ni(CO)4] D. Both A and C Answer: D. Both A and C

Explanation: Homoleptic = only one kind of ligand. Both have only one type of ligand.

23. Which of the following is not a correct statement?

A. Ligands are Lewis bases B. CN ⁻ is a strong field ligand C. Cl ⁻ is a weak field ligand D. Coordination number is always 6
Answer: D. Coordination number is always 6 Explanation: It varies. For example, [Ni(CO)4] has coordination number 4.
24. Which hybridisation is involved in [Ni(CN)4]2-?
A. sp3 B. dsp2 C. sp2 D. d2sp3
Answer: B. dsp2 Explanation: CN^- is a strong field ligand \rightarrow pairing occurs \rightarrow dsp2 \rightarrow square planar geometry.
25. Which one does not show optical isomerism?
A. [Cr(en)3]3+ B. [Co(en)2Cl2]+ C. [PtCl2(NH3)2] D. [Co(en)(NH3)4]3+
Answer: C. [PtCl2(NH3)2] Explanation: Square planar complexes do not show optical isomerism.
26. The total number of ions produced in aqueous solution by [Co(NH3)6]Cl3 is:
A. 2 B. 3 C. 4 D. 1
Answer: C. 4 Explanation: $[Co(NH3)6]3+$ and $3Cl^- \rightarrow total 4 ions$.

- 27. Which complex will have the highest molar conductivity in aqueous solution?
- A. [Co(NH3)6]Cl3
- B. [Co(NH3)5CI]CI2
- C. [Co(NH3)4Cl2]Cl
- D. [Co(NH3)3Cl3]

Answer: A. [Co(NH3)6]Cl3

Explanation: Gives 4 ions in solution \rightarrow highest conductivity.

- 28. Which of the following is not a polydentate ligand?
- A. EDTA
- B. en
- C. NH3
- D. C2O42-

Answer: C. NH3

Explanation: NH3 is monodentate. Others are polydentate.

- 29. Which statement is true for [Fe(CN)6]4-?
- A. It is paramagnetic with 4 unpaired electrons
- B. It is diamagnetic
- C. It has 2 unpaired electrons
- D. It is tetrahedral

Answer: B. It is diamagnetic

Explanation: CN^- is strong field \rightarrow all electrons paired \rightarrow diamagnetic.

- 30. Which is the correct IUPAC name for K3[Fe(CN)6]?
- A. Potassium hexacyanoferrate(III)
- B. Potassium hexacyanoferrate(II)
- C. Hexacyanoferrate(III) potassium
- D. Potassium hexacyanoiron(II)

Answer: A. Potassium hexacyanoferrate(III)
Explanation: Fe oxidation state is $+3 \rightarrow$ correct name.
31. Which of the following complexes is expected to be coloured?
A. [Sc(H2O)6]3+
B. [Ti(H2O)6]3+
C. [Zn(H2O)6]2+
D. [Cu(NH3)4]2+
Answer: B. [Ti(H2O)6]3+
Explanation: Ti3+ has d1 configuration \rightarrow d–d transitions possible \rightarrow coloured.
32. Which of the following shows geometrical isomerism?
A [Dr/Au(2)2C/2] /
A. [Pt(NH3)2Cl2] (square planar)
B. [Co(NH3)6]3+
C. [Fe(CO)5]
D. [Ni(CO)4]
Angulari A [D+/NIII2/2CI2]
Answer: A. [Pt(NH3)2Cl2] Evaluation: Square planer complexes like Pt(NH3)3Cl2 show six transissmentians
Explanation: Square planar complexes like Pt(NH3)2Cl2 show cis-trans isomerism.
33. Which one is a bidentate ligand?
55. Which one is a bidentate ligand:
A. NO2 ⁻
B. en (ethylenediamine)
C. CN ⁻
D. NH3
Answer: B. en (ethylenediamine)
Explanation: en has two donor nitrogen atoms → bidentate ligand.
h
34. What is the coordination number of Cr in [Cr(NH3)4Cl2]+?
A. 2
D 4

C. 5 D. 6
Answer: D. 6 Explanation: 4 NH3 and 2 Cl⁻ ligands → total 6 coordination sites.
35. The complex [CoCl2(en)2]+ shows how many geometrical isomers?
A. 1 B. 2 C. 3 D. 4
Answer: B. 2 Explanation: Octahedral complex with 2 bidentate ligands + 2 monodentate \rightarrow cis & trans forms.
36. Which ligand forms chelate with a metal ion?
A. NH3 B. Cl ⁻ C. en D. H2O
Answer: C. en Explanation: en has two donor atoms \rightarrow forms chelate ring \rightarrow chelating ligand.
37. Which compound will have the maximum crystal field splitting energy (Δ)?
A. [Fe(CN)6]3- B. [FeF6]3- C. [Fe(H2O)6]3+ D. [FeCl6]3-
Answer: A. [Fe(CN)6]3– Explanation: CN^- is a strong field ligand \rightarrow causes maximum crystal field splitting.
38. The complex [Ni(CN)4]2– is:

A. Tetrahedral and paramagnetic B. Square planar and paramagnetic
C. Square planar and diamagnetic D. Tetrahedral and diamagnetic
Answer: C. Square planar and diamagnetic Explanation: CN^- is strong field ligand \rightarrow dsp2 hybridisation \rightarrow square planar \rightarrow paired electrons.
39. Which of the following can act as ambidentate ligand?
A. CO B. NO2 ⁻ C. NH3 D. Cl ⁻
Answer: B. $NO2^-$ Explanation: $NO2^-$ can bind through N (nitro) or O (nitrito) \rightarrow ambidentate ligand.
40. IUPAC name of [Pt(NH3)2Cl2] is:
A. Diammineplatinum(II) chloride
B. Diamminechloroplatinum(II)
C. Diammineplatinum(II) dichloride
D. Diammineplatinum(II) chloride chloride
Answer: C. Diammineplatinum(II) dichloride
Explanation: Neutral ligand NH3 written first, followed by anionic ligands.
41. The oxidation state of metal in [Fe(CO)5] is:
A. +2
B. +3
C. 0
D. +1
Answer: C. 0

Explanation: CO is neutral \rightarrow charge on Fe = 0.

42. Which of the following complexes is chiral?
A. [Co(en)3]3+ B. [Co(NH3)6]3+ C. [Pt(NH3)2Cl2] D. [Ni(CO)4]
Answer: A. [Co(en)3]3+ Explanation: [Co(en)3]3+ has no plane of symmetry \rightarrow exists in optical isomers (d & I forms).
43. Which one has the lowest magnetic moment?
A. [Fe(H2O)6]2+ B. [Fe(CN)6]4- C. [FeF6]3- D. [Fe(H2O)6]3+
Answer: B. [Fe(CN)6]4– Explanation: Fe2+ with strong field ligand $CN^- \rightarrow$ all electrons paired \rightarrow lowest magnetic moment.
44. Which complex shows ionisation isomerism?
A. [Co(NH3)5SO4]Br B. [Pt(NH3)2Cl2] C. [Fe(CO)5] D. [Ni(CN)4]2-
Answer: A. [Co(NH3)5SO4]Br Explanation: Br $^-$ and SO4 $^{2-}$ can switch inside/outside coordination sphere \Rightarrow ionisation isomerism.
45. What is the IUPAC name of [Cr(H2O)4Cl2]Cl?
A. Tetraaquadichlorochromium(III) chloride

B. Dichlorotetraaquachromium(III) chlorideC. Tetrachlorodiaquachromium(III) chlorideD. Tetraaquadichlorochromium(II) chloride

Answer: A. Tetraaquadichlorochromium(III) chloride

Explanation: Water (neutral) comes before chloride (anionic); Cr oxidation state is +3.