Feed Forward NNs and Perceptron Definition

https://en.wikipedia.org/wiki/Feedforward_neural_network

A feedforward neural network whose connections between the units do not form a cycle

Input layer
Hidden layer
Output layer

The Simplest form:

weights

The perceptron is a network for supervised learning, a binary classifier, e.g., maps its input x to an output f (x)

$$f(x) = egin{cases} 1 & ext{if} & w \cdot x + b > 0 \ 0 & ext{otherwise} \end{cases}$$

 $w \cdot x$ is the dot product $\displaystyle \sum_{i=1}^m w_i x_i$

1. number of inputs: n;

- 2. threshold phi (or denoted as b), or bias, does not affect the orientation of the decision function;
- 3. transfer functions can be step function or sigmoid

inputs $x_{1} \longrightarrow w_{1j}$ $x_{2} \longrightarrow w_{2j}$ $x_{3} \longrightarrow w_{3j}$ $\vdots \qquad \vdots$ $transfer \\ function$ $\psi_{net_{j}} \longrightarrow \psi_{nj}$ $\vdots \qquad \vdots$ $transfer \\ function$ $\psi_{net_{j}} \longrightarrow \psi_{nj}$ $\psi_{net_{j}} \longrightarrow \psi_{net_{j}}$ $\psi_{net_{j}}$

Feed Forward NN Example (1/3)

Given 2 traffic signs, train neural network to detect them based on moments (features)

$$M_{ij} = \sum_x \sum_y x^i y^j I(x,y)$$

Suppose moments of 2 traffic signs are computed for i=0, j=2, and i=2, j=0, shown below, and their values are plotted

in the figure below

$$y = f(\Sigma \omega: x: +\theta)$$
 ... (1)

Where

From stop sign group (3 stop sign samples)

From right turn group (3 right turns)

This is supervised learning for feed forward NNs

Feed Forward NN Example (2/3)

 $C_1: (1,2), (1,3), (2,3)$ $C_2: (2,1), (3,1), (3,2)$

The training algorithm:

where

of: desired the output.

y: actual output.

First, initialize

and

From the given data set, choose (1,2) from C_1, for w_1:

$$w_{i}^{+} = w_{i}^{-} + 2(1-y)x_{i}|_{x_{i}=1}$$

= 0.5+2(1-y).1

Then

$$y = f(\frac{z}{12}, w; x; +\theta)$$

$$= f(w; x; +w; x; +\theta)$$

$$= f(0.5x + 0.5) = f(2)$$

$$= 5gn(2) = 1$$

hence,

... (3)

See my handout, continue this process

Feed Forward NN Example (3/3)

Step by step from my handout, till w_i converged as

The convergence is achieve when w_i now longer updates and exhausted the input data

Now the NN is trained. We can conduct test (deployment)

Suppose from Stop sign we have (4,2), use the trained

NN we have

Appendix A: Raw Moments

The "raw moment" of order (p + q) for image f(x,y) is defined as:

$$M_{pq} = \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} x^p y^q f(x,y) \, dx \, dy$$
 (1)

For the discrete function, we have:

$$M_{ij} = \sum_{x} \sum_{y} x^i y^j I(x,y)$$
 (2)

We can treat image intensity as its probability density function

$$\sum_{x} \sum_{y} I(x, y) \tag{3}$$

Note: image I(x,y) can be binary image or gray scale images. But we start the discussion from the binary images first.

Reference: Robot Vision, by BPK, Horn, Chapter 3, pp. 46-64

Appendix B

Example On Simple Pattern Recognition

Given two binary images, derived from two objects, T and O, design a technique to identify

them

Example: Computation of

- (1) Area (size);
- (2) X-bar;
- (3) Y-bar;
- (4) Orientation, theta angle
- (5) Perimeter of an object

Fig2(a),(b)

Fig1(a),(b)

Good continuation or noise? What to do with this noise?

Feature Vector		Size	X-bar	Y-bar	Orientation	Perimeter	
V_1(v1,, v5)	T	v11	v12	v13	v14	v15	From Fig1(b)
V_2(v1,, v5)	L	v21	v22	v23	v24	v25	From Fig2(b)

Biologically Inspired Techniques

Rod, cone, bipolar cells and ganglion cells

Joint edited book with Professor Koch and myself

Prof. Mead

Prof. Koch

Prof. H. Li

VLSI Implementation

Harry Li, Ph.D.