Series 2 Warmup

Numerical methods for PDEs Last edited: March 15, 2017 Due date: None at 23:59

Template codes are available on the course's webpage at https://moodle-app2.let.ethz.ch/course/view.php?id=3089.

This is a warmup problem. You do **NOT need to hand in** this problem.

Exercise 1 Linear Finite Elements for the Poisson equation in 2D

We consider the problem

$$-\Delta u = f(x) \quad \text{in } \Omega \subset \mathbb{R}^2$$
 (1)

$$u(\mathbf{x}) = 0 \quad \text{on } \partial\Omega$$
 (2)

where $f \in L^2(\Omega)$.

1a)

Write the variational formulation for (1)-(2).

We solve (1)-(2) by means of linear finite elements on triangular meshes of Ω . Let us denote by φ_N^i , $i=0,\ldots,N-1$ the finite element basis functions (hat functions) associated to the vertices of a given mesh, with $N=N_V$ the total number of vertices. The finite element solution u_N to (1) can thus be expressed as

$$u_N(\boldsymbol{x}) = \sum_{i=0}^{N-1} \mu_i \varphi_N^i(\boldsymbol{x}), \tag{3}$$

where $\boldsymbol{\mu} = \{\mu_i\}_{i=0}^{N-1}$ is the vector of coefficients. Notice that we don't know μ_i if i is an interior vertex, but we know that $\mu_i = 0$ if i is a vertex on the boundary $\partial\Omega$.

Hint: Here and in the following, we use zero-based indices in contrast to the lecture notes.

Inserting φ_N^i , i = 0, ..., N-1 as test functions in the variational formulation from subproblem **1a**) we obtain the linear system of equations

$$\mathbf{A}\boldsymbol{\mu} = \mathbf{F},\tag{4}$$

with $\mathbf{A} \in \mathbb{R}^{N \times N}$ and $\mathbf{F} \in \mathbb{R}^N$.

1b)

Write an expression for the entries of \mathbf{A} and \mathbf{F} in (4).

1c)

Complete the template file shape.hpp implementing the function

which computes the the value a local shape function $\lambda_i(\mathbf{x})$, with i that can assume the values 0, 1 or 2, on the reference element depicted in Fig. 1 at the point $\mathbf{x} = (x, y)$.

The convention for the local numbering of the shape functions is that $\lambda_i(\mathbf{x}_j) = \delta_{i,j}$, i, j = 0, 1, 2, with $\delta_{i,j}$ denoting the Kronecker delta.

Figure 1: Reference element \hat{K} for 2D linear finite elements.

1d)

Complete the template file grad_shape.hpp implementing the function

```
inline Eigen::Vector2d gradientLambda(const int i, double x, double y)
```

which returns the value of the derivatives (i.e. the gradient) of a local shape functions $\lambda_i(\boldsymbol{x})$, with i that can assume the values 0,1 or 2, on the reference element depicted in Fig. 1 at the point $\boldsymbol{x}=(x,y)$.

The routine makeCoordinateTransform contained in the file coordinate_transform.hpp computes the Jacobian matrix of the linear map $\Phi_l : \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$\Phi_l \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{12} \end{pmatrix} = oldsymbol{a}_1, \quad \Phi_l \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{21} \\ a_{22} \end{pmatrix} = oldsymbol{a}_2,$$

where $a_1, a_2 \in \mathbb{R}^2$ are the two input arguments.

1e)

Complete the template file stiffness_matrix.hpp implementing the routine

that returns the *element stiffness matrix* for the bilinear form associated to (1) and for the triangle with vertices a, b and c.

Hint: Use the routine gradientLambda from subproblem 1d) to compute the gradients and the routine makeCoordinateTransform to transform the gradients and to obtain the area of a triangle.

Hint: You do not have to analytically compute the integrals for the product of basis functions; instead, you can use the provided function integrate. It takes a function f(x, y) as a parameter, and it returns the value of $\int_K f(x, y) dV$, where K is the triangle with vertices in (0, 0), (1, 0) and (0, 1). Do not forget to take into account the proper coordinate transforms!

The routine integrate in the file integrate.hpp uses a quadrature rule to compute the approximate value of $\int_{\hat{K}} f(\hat{x}) d\hat{x}$, where f is a function, passed as input argument.

1f)

Complete the template file load_vector.hpp implementing the routine

that returns the element load vector for the linear form associated to (1), for the triangle with vertices a, b and c, and where f is a function handler to the right-hand side of (1).

Hint: Use the routine lambda from subproblem 1c) to compute values of the shape functions on the reference element, and the routines makeCoordinateTransform and integrate from the handout to map the points to the physical triangle and to compute the integrals.

1g)

Complete the template file stiffness_matrix_assembly.hpp implementing the routine

to compute the finite element matrix \mathbf{A} as in (4). The input argument vertices is a $N_V \times 3$ matrix of which the *i*-th row contains the coordinates of the *i*-th mesh vertex, $i=0,\ldots,N_V-1$, with N_V the number of vertices. The input argument triangles is a $N_T \times 3$ matrix where the *i*-th row contains the *indices* of the vertices of the *i*-th triangle, $i=0,\ldots,N_T-1$, with N_T the number of triangles in the mesh.

Hint: Use the routine computeStiffnessMatrix from subproblem 1e) to compute the local stiffness matrix associated to each element.

Hint: Use the sparse format to store the matrix A.

1h)

Complete the template file load_vector_assembly.hpp implementing the routine

to compute the right-hand side vector \mathbf{F} as in (4). The input arguments vertices and triangles are as in subproblem $\mathbf{1g}$), and \mathbf{f} is an in subproblem $\mathbf{1f}$).

Hint: Proceed in a similar way as for assembleStiffnessMatrix and use the routine computeLoadVector from subproblem 1f).

The routine

implemented in the file dirichlet_boundary.hpp provided in the handout does the following:

- it gets in input the matrices vertices and triangles as defined in subproblem 1g) and the function handle g to the boundary data, i.e. to q such that u = q on $\partial\Omega$ (in our case $q \equiv 0$);
- it returns in the vector interior VertexIndices the indices of the interior vertices, that is of the vertices that are not on the boundary $\partial\Omega$;
- if x_i is a vertex on the boundary, then it sets $u(i)=g(x_i)$, that is, in our case, it sets to 0 the entries of the vector u corresponding to vertices on the boundary.

1i)

Complete the template file fem_solve.hpp with the implementation of the function

This function takes in input the matrices vertices, triangles as defined in the previous subproblems, and the function handle f to the right-hand side f in (1). The output argument u has to contain, at the end of the function, the finite element solution u_N to (1).

Hint: Use the routines assembleStiffnessMatrix and assembleLoadVector from subproblems 1g) and 1h), respectively, to obtain the matrix A and the vector F as in (4), and then use the provided routine setDirichletBoundary to set the boundary values of u to zero and to select the free degrees of freedom.

1j)

Run the code in the file fem2d.cpp to compute the finite element solution to (1) when $\Omega = [0,1]^2$ is the unit square, the forcing term is given by $f(x) = 2\pi^2 \sin(\pi x) \sin(\pi y)$ and the mesh is square_5. \rightarrow mesh. Use then the routine plot_on_mesh.py to produce a plot of the solution.