Cryptocurrency and the Wisdom of the Crowds

Predicting changes in Bitcoin prices using Public Interest Measures

Abstract

- This project aims to study the influence of <u>public sentiment & interest</u> on the price of the most popular cryptocurrency, **Bitcoin**
- Study the specific correlation between changes in Bitcoin prices and three social media interest measures
 - Google Trends
 - Twitter Sentiment
 - Reddit Networks
- Train a classification model that predicts the direction of changing Bitcoin prices given the sentiment interest scores
- Used datasets are both <u>Daily</u> and and <u>Hourly</u> granularity

Business UnderstandingWhy Predict Bitcoin Prices?

- Bitcoin is one of the most widely used forms of digital currency
- Cryptocurrency prices are highly volatile
- No clear reason for the changing price Different from stock market
- A lot of research assume the public sentiment mostly affects price
- Various attempts have been made to predict Bitcoin prices using various factors
 - No conclusive result these attempts were on single data sentiment

Prior Works

- Google Trends
 - [1] Weekly Google Search trends are correlated to Bitcoin prices
 - [2] Dissent that Google Trends alone are a strong predictor of price changes
- Twitter Sentiment
 - [3] Validates that Twitter feeds being an efficient predictor of a massive conglomerate
 - [4] Proved the efficacy of taking into consideration the tweet volumes of users along with the sentiment as a predictor
 - [5] High degree of correlation between the twitter user sentiment -> Helps in predicting extremely volatile asset like Bitcoin
- Reddit Networks
 - [6] Defines a medium-term positive correlation between price & online activity
 - [6] Reddit has been successfully used as a data source used to model user behavior
 - [6] Combination of the features from Reddit along with past price fluctuations gave better forecasting -> Insights to gain 3 different web data
- [1] "Bitcoin meets google trends and wikipedia: Quantifying the relationship between phenomenaof the internet era,", L. Kristoufek
- [2] "What drives cryptocurrency prices? an investigation of google trends and telegram sentiment,", N. Smuts
- [3] "Algorithmic trading of cryptocurrency based on twitter sentiment analysis,", S. Colianni and M. Signorotti
- [4] "Cryptocurrency price prediction using tweetvolumes and sentiment analysis,", J. Abraham
- [5] "Does twitter predict bitcoin?", A. Urquhart and Wang
- [6] "Extracting cryptocurrency price movements from the reddit network sentiment,", S. Wooley, A. Edmonds, A. Bagavathi, and S. Krishnan

Data Understanding and Preparation Google Trends Data

- Daily Google Search Numbers (PyTrends API)
- Constellation of Keywords related to Bitcoin
- Daily Search Score
 - Average Score
 - Average daily score for all keywords
 - Weighted Score
 - Weighted by how much the term is usually searched for
- Hourly Search Score
 - Replicate the Daily Search Score

Data Understanding and Preparation

Twitter Sentiment

- Scrapped tweets using the hashtag #bitcoin
 - Kaggle Dataset, Twitter API
- VADER Sentiment Analysis
 - Compound Score: Measure of how Positive (+), Negative (-), or Neutral (0)
- Daily and Hourly Sentiment Score
 - Average Compound Sentiment per Day/Hour

```
'$TRB from 37$ to 55%. Sweet little profits in a day. #\(\pi\)\n\n#Bitcoin #BTC #DogecoinRise tps://t.co/aw0IX7Xt0n'
{'neg': 0.0, 'neu': 0.699, 'pos': 0.301, 'compound': 0.6815}
```

Data Understanding and Preparation

Reddit Sentiment

- Scrap Reddit comments under subreddit "r/Bitcoin"
 - PushShift API
- VADER Sentiment Analysis
 - Compound Score: Measure of how Positive (+), Negative (-), or Neutral (0)
- Hourly Sentiment Score
 - Average Compound Sentiment per Hour
 - Hour of Comment referred to the original comment, not the thread

Date	body	sentiment	neg	neu	pos	compound
o 2021-02-12 14:23:46	Bitcoin is the profits	{'neg': 0.0, 'neu': 0.508, 'pos': 0.492, 'comp	0.000	0.508	0.492	0.4404

Data Understanding and Preparation

Bitcoin Prices

- Daily and Hourly Bitcoin Prices
 - AlphaVantage API and CryptoDataDownload
- Categorization of Price Change
- Daily Price Change (5 Categories)

Hourly Price Change (3 Categories)

Figure 1: The number of days vs the difference between daily Bitcoin values

Figure 2: The number of hours vs the difference between Hourly Bitcoin values

Modeling and Deployment

Granger Causality Analysis

- Granger Causality
 - Chi Square Test
 - Stationary Time Series
 - P Value: 0.05 (Causality Values < 0.05 implies Causation)
- Daily Granularity

•	Hourly	Granu	larity
---	--------	-------	--------

	Daily Bitcoin Open Price
Daily Twitter Sentiment	0.0011
Daily Reddit Sentiment	0.2147
Daily Average Google Search Score	0.0420
Daily Weighted Google Search Score	0.0502

Table 1: Granger Causality Matrix for Daily Granularity

	Hourly Bitcoin Open Price
Hourly Twitter Sentiment	0.0010
Hourly Reddit Sentiment	0.6644
Hourly Average Google Search Score	0.0075

Table 2: Granger Causality Matrix for Hourly Granularity

Twitter Sentiment and Google Trends Granger Cause Bitcoin Prices

Modeling and Deployment

Supervised Learning

- Missing Values: Averaged Sentiment Score
- Random Forest Classifier, Decision Tree Classifier, Support Vector Classifier

Performance Measure	Random Forest Classifier	Decision Tree Classifier	Support Vector Classifier
Accuracy	0.545	0.454	0.272
F1-Score	0.546	0.464	0.116
Precision	0.753	0.772	0.074
Recall	0.545	0.454	0.272

Table 3: Evaluation of Different Algorithms to predict Daily Bitcoin Price Change

Performance Measure	Random Forest Classifier	Decision Tree Classifier	Support Vector Classifier
Accuracy	0.409	0.467	0.500
F1-Score	0.417	0.537	0.374
Precision	0.431	0.493	0.353
Recall	0.409	0.537	0.500

Table 4: Evaluation of Different Algorithms to predict Hourly Bitcoin Price Change

Evaluation

Hyperparameter Tuning using Grid Search

Daily Granularity

Performance Measure Hyperparameter-Optimized Random Forest Class	
Accuracy	0.566
F1-Score	0.481
Precision	0.589
Recall	0.4137

Table 5: Performance of Random Forest Model after Hyperparameter Optimization

Hourly Granularity

Performance Measure	Hyperparameter-Optimized Decision Tree Classifier
Accuracy	0.588
F1-Score	0.495
Precision	0.433
Recall	0.557

Table 6: Performance of Decision Tree Model after Hyperparameter Optimization

Conclusion

Observations and Future Scope

- Relationship between Public Interest Measures and Bitcoin Prices
- Supervised Learning Models (~60% Accurate)
- Future Scope and Improvements
 - More Data, Different Time Frame
 - Different type of Cryptocurrency
 - Complex Sentiment Score Aggregation Techniques

Questions