

Towards Causal Federated Learning For Enhanced Robustness and Privacy

Sreya Francis, Irene Tenison, Irina Rish MILA, University Of Montreal

Problem Statement

- •Federated learned models are prone to learn easier—to-fit spurious correlations
- •Hence fail to generalize out of their training distribution (OOD)
- •Poor generalization can lead to higher risks of privacy attacks

Correlation Vs Causation

- •Spurious correlations are correlations that we do not expect to hold in the future use cases
- •Minimizing individual client training error leads to absorbing all the correlations found in training data.
- •However, spurious correlations stemming from data biases are unrelated to the causal explanation
- •Problem: identify which properties of the training data describe spurious correlations (landscapes and contexts), and which properties represent the phenomenon of interest (animal shapes).

Causal Risk Minimization (CRM)

- Learn invariant / causal features common to all participating client environments
- Find a data representation such that the optimal classifier on top of that representation matches for all participating client environments.
- •Keeping the client data private, we propose 2 approaches to enhance OOD (Out of Distribution) Accuracy and privacy of the final learned model.

Approach 1 - CausalFed

Algorithm 1 CausalFed

ServerCausalUpdate:

Initialize W_0^s for each server epoch, t = 1,2,...k do Select random set of S clients

Share initial model with the selected clients

for each client $k \in S$ do

 $(\phi(x_t^k), \mathbf{Y}^k) \leftarrow ClientRepresentation(k, \mathbf{W}_t^k)$ Evaluate loss \mathcal{L}_k

end for

 $\mathcal{L}_s = \sum_{k}^{S} \mathcal{L}_k + \lambda \sum_{k}^{S} \|\nabla \mathcal{L}_k\|^{2}$ $\mathbf{W}_{t+1}^s \leftarrow \mathbf{W}_{t}^s - \eta \nabla \mathcal{L}_s$

end for

 $\mathbf{W}_{t}^{k} \leftarrow ClientUpdate(\nabla \mathcal{L}_{s})$

ClientRepresentation (W_t^k) :

if k is first client to start training then $\mathbf{W}_{t}^{k} \leftarrow \text{initial weights from server}$

 $\mathbf{W}_{t}^{k} \leftarrow \mathbf{W}_{t-1}^{k-1}$ from the previous $ClientUpdate(\nabla \mathcal{L}_{s})$

end if for each local client epoch, i=1,2,..k do

Calculate hidden representation $\phi(x_t^k)$

end for

return $\phi(x_t^k)$ and \mathbf{Y}^k to server

Client Update: for each client $k \in S$ do

or each client $k \in S$ do $\mathbf{W}_{t+1}^k \leftarrow \mathbf{W}_t^k - \eta \nabla \mathcal{L}_s$

end for

 $\mathbf{return}~\mathbf{W}_{t+1}^k$ to server

Approach 2 - CausalFedGSD

Algorithm 2 CausalFedGSD

ServerUpdate:

 $G \leftarrow distribution$ over all environments present in server Initialize W_0

Initialize random portion of G as G_0

for each server epoch, t = 1,2,...k do

Select random set of S clients

Share G_0 and initial model with the selected clients

for each client $k \in S$ do $\mathbf{W}_{t+1}^k = ClientUpdate(k, \mathbf{W}_t)$

end for

 $\mathbf{W}_{t+1} = \sum_{k=1}^{K} \frac{\mathbf{n}_k}{\mathbf{n}} \mathbf{W}_{t+1}^k$ end for

ClientUpdate(W):

 $\mathcal{E}_{tr} \in [Client Env] \cup [Global Env]$

for each local client epoch, t=1,2,..k do $L_{IRM}(\Phi, \mathbf{W}_t^k) = \sum_{e \in \mathcal{E}_{tr}} R^e(\mathbf{W} \circ \Phi) + \lambda \cdot \mathbb{D}(\mathbf{W}, \Phi, e)$

 $\mathbf{W}_{t}^{k} = \mathbf{W}_{t}^{k} - \eta \nabla L_{\text{IRM}}(\mathbf{W}_{t}^{k})$

end for

return W to server

Experimental Setup (Ex: Colored MNIST)

Advantages of Proposed Approaches

OOD (Out Of Distribution) Test Results

Arch	Fed-Avg	Fed-ERM	CausalFed-RM	CausalFed-IRM
ResNet18	11%	10.2 %	65.62 %	60.3 %
ResNet18	82.7%	82.9 %	90.2 %	89.1 %
LeNet	72%	71.6%	74.6 %	73.9 %
	ResNet18 ResNet18	ResNet18 11% ResNet18 82.7%	ResNet18 11% 10.2 % ResNet18 82.7% 82.9 %	ResNet18 11% 10.2 % 65.62 % ResNet18 82.7% 82.9 % 90.2 %

Inference Attack Leakage

Dataset	Fed-Avg	Fed-ERM	CausalFed-RM	CausalFed-IRM
Colored MNIST	79.21 %	79.45 %	58.57 %	56.9 %
Rotated MNIST	84.4 %	85.24 %	68.3 %	64.4 %
Rotated FMNIST	76.61 %	78.23 %	57.55 %	55.7 %