1. 제목: 딥러닝을 이용한 PCB 불량 검출 (인용-262)

2. 초록

핵심 결과	딥러닝 알고리즘 YOLOv3(CNN)을 통해, PCB 불량 분류를 하고자 함
동기(기존 문제)	PCB 자재 Mount의 진성불량 분류를 작업자가 하므로 인해, 숙련도의 문제가 발생 함
나의 방법	자동화 검사를 통해 불량위치와 종류를 분류하고, 이를 모니터링 할 수 있도록 시리얼 통신을 통해 DarkNet framework와 LCD를 연동 함
논문의 결과	딥러닝 알고리즘을 통해 적은 량의 데이터 셋으로도, 정확도 높은 결과를 냈음
일반적 응용	다양한 데이터 셋을 이용해 훈련할 시, 전반적인 PCB 불량의 분류가 가능할 것으로 예상 함

3. 서론

분야 소개	PCB의 자재 실장(mount)기술: SMT(D) 산업 ※ SMT(Surface Mount Technology : 표면 실장 기술), PCB(Printed Circuit Board)
기존 문제	PCB 공정에서의 불량검사 방법 中, 현미경을 이용하는 육안검사 의존도 높음 이에 따라, 작업자의 숙련도/컨디션에 따른 검사 효율(정확도, 검사시간) 문제 발생
논문의 목적	수십 수백명의 직원의 육안검사를 → 자동화 시스템으로 대체하고자 함
나의 방법	딥러닝 기술(CNN)로, PCB 불량 검출 시스템 구축
결과	딥러닝 기술(CNN)로, PCB 불량 검출 시스템 제안 함

4. 본론

(풀고자 하는) 문제의 가정	머신비전 기반의 PCB 기판검사는 패턴매칭기술로 불량 판별 함이는 불량의 종류, 위치를 정확히 파악하기 어려움
(풀고자 하는) 문제 정의	자동화 시스템 구성도 정의
방법론	1. INPUT(PCB, 카메라) –(YOLOv3-tiny기반의 사전 학습)→ OUTPUT(모니터에 불량위치/종류 표시)
	2.
	3.
	4.

5. 실험 결과

실험 환경	1. 알고리즘: CNN(convolution neural network)의 YOLOv3-tiny버전 사용 - 학습률(0.001), 배치사이즈(16), subdivisions(4), iteration(4), train 횟수(13만번) 2. 준비물: G4 스마트폰으로 PCB 120장 사진 준비 (1000x500픽셀)
결과 소개	1. 학습 정확도(accuracy): 70~99% 2. 분류 상황 모니터링: ①Actuator ←(시리얼통신)→아두이노 연결 ② 아두이노에 연결된 LCD를 통해 분류상황 모니터링 (Darknet image.c 결과 이미지에 클래스 예상위치와 라벨박스를 구려주는 코드 수정)
결과 해석	Iteration 진행됨에 따라 평균 오차율도 줄어듬

과제 가이드라인

- 1. 본인 프로젝트와 관련 있고, 중요하다고 생각하는 논문 1편 선정
 - 국외, 국내, 학위 논문 등 종류는 상관 없음
 - 비교적 인용 횟수가 높은 논문 선정
 - 지난 주에 배운 논문 검색 방법 활용
- 2. 해당 논문을 정독함
- 3. 논문 내용에 대해 수업 시간에 배운 구성 요소별 내용이 적절하게 배치 되어있는지를 확인함
 - 제시한 표 양식 작성
- 4. 해당 논문의 구성 및 구조에 대한 적절성 평가
- 5. 작성된 ppt를 e-class에 업로드

6. 결론

개별적 결과	YOLOv3- tiny(경량화) 버전사용 시, 정확도:70~99% → YOLOv3 모델 사용 시, 정확도 상승 기대
학문적 의의	
응용 분야	PCB 120장 훈련 → 多 데이터셋 량을 높이면 다양한 불량 분류가 가능할 것으로 예상 됨

