Assignment 3.1

Pradyot Prakash - 130050008 Utkarsh Mall - 130050037 Samarth Mishra - 130260018

March 26, 2017

(a)

RRMSE Between Noisy and Noiseless Image

RRMSE = 0.2612

(b)

Quadratic Prior

- Optimal α is 0.0005
- RRMSE ar α is 2.438248e 01
- RRMSE at 0.8α is 2.438240e 01
- RRMSE at 1.2α is 2.501484e 01
- \bullet γ does not affects the quadratic prior

Huber Prior

- Optimal α is 0.00005 and γ is 0.23
- RRMSE ar α and γ is 2.368141e 01
- RRMSE at 0.8α and γ is 2.368141e 01
- RRMSE at 1.2α and γ is 2.370435e 01
- RRMSE at α and 0.8γ is 2.372921e 01
- RRMSE at α and 1.2γ is 2.372365e 01

Discontinuity-adaptive Prior

- Optimal α is 0.000006 and γ is 0.04
- RRMSE ar α and γ is 1.990510e 01
- RRMSE at 0.8α and γ is 1.997076e 01
- RRMSE at 1.2α and γ is 2.003708e 01
- RRMSE at α and 0.8γ is 1.985012e-01
- RRMSE at α and 1.2γ is 2.006748e 01

(c)

(d)

