Computação Gráfica I

Introdução

Prof. Cláudio M. N. A. Pereira

Sumário

- 1. Definição
- 2. Níveis de atuação
- 3. Áreas da CG
- 4. Aplicações da CG
- 5. Representação
- 6. Arquitetura de uma aplicação em CG

Uma definição

Computação Gráfica é um conjunto de metodologias e técnicas utilizadas para converter dados para ou de uma imagem em um dispositivo gráfico através do computados.

Níveis de atuação

Utilização de ferramentas de alto nível (engines de jogos, 3D Studio, blender 3D, CAD, etc)

- envolve pouca ou nenhuma programação
- não necessita conhecimento dos modelos matemáticos utilizados na ferramenta

Desenvolvimento através de bibliotecas (OpenGL, Direct 3D, etc)

- programação utilizando bibliotecas com diversos modelos/técnicas de CG já implementadas;
- necessita um pouco de conhecimento dos modelos matemáticos

Desenvolvimento/programação de modelos/algoritmos/bibliotecas

- programação dos modelos matemáticos
- profundo conhecimento dos modelos matemáticos

Niveis de atuação

Utilização de ferramentas de alto nível

Unreal Engine (UDK)

Unity 3D

Níveis de atuação

Desenvolvimento através de bibliotecas

```
#include <gl/glut.h>
// Função de exibição
void Display () {
 glMatrixMode(GL MODELVIEW);
 glLoadIdentity();
 glOrtho (-100, 100, -100, 100, -100, 100);
 glClearColor (1, 1, 1, 1);
 glClear(GL COLOR BUFFER BIT);
 glColor3f (1, 0, 0);
 glBegin (GL LINES);
   glVertex3f (-100,0,0);
   glVertex3f (100,0,0);
 glEnd();
 glBegin (GL POLYGON);
   glVertex2f (25, 25);
   glVertex2f (75, 25);
    glVertex2f (75, 75);
   glVertex2f (25, 75);
 glEnd();
 glScalef(S, S, S);
 glTranslatef((Tx+25), (Ty+25), 0);
 glRotatef(R, 0, 0, 1);
```

```
// Controle de Teclado
//-----
void Keyboard (unsigned char key, int x, int y) {
  switch (key) {
    case 'd':
                   Tx = Tx + 10; break;
    case 'e':
                    Tx = Tx - 10: break:
 glutPostRedisplay();
// Principal
void main (int argc, char** argv) {
 glutInit (&argc, argv);
 glutInitDisplayMode (GLUT DOUBLE | GLUT RGB);
 glutInitWindowSize (400,400);
 glutInitWindowPosition (50,50);
 glutCreateWindow ("Primitivas");
 glutDisplayFunc (Display);
 glutKeyboardFunc (Keyboard);
 glutMainLoop();
```

Níveis de atuação

Desenvolvimento de modelos/algoritmos/bibliotecas

```
// Carrega bibliotecas
// Traçado simplificado de segmento de reta
// (Bresenham)
//-----
void bresenham1(int x1, int y1, int x2, int y2){
   int slope;
   int dx, dy, incE, incNE, d, x, y;
   // Onde inverte a linha x1 > x2
   if (x1 > x2)
      bresenham1(x2, y2, x1, y1);
      return;
   dx = x2 - x1;
   dy = y2 - y1;
   if (dy < 0)
      slope = -1;
      dy = -dy;
```

```
else{
  slope = 1;
// Constante de Bresenham
incE = 2 * dy;
incNE = 2 * dy - 2 * dx;
d = 2 * dy - dx;
y = y1;
for (x = x1; x \le x2; x++)
   putpixel(x, y);
   if (d \le 0)
    d += incE;
   else {
    d += incNE;
    y += slope;
```


Análise de Imagem

Áreas da CG

Síntese de Imagem

É a representação de objetos gráficos através das especificações geométricas e visuais de seus componentes.

Dados/modelos são usados para representar e gerar as imagens.

Áreas da CG

Processamento de Imagem

Promove alterações/modificações na imagem de forma a destacar ou eliminar determinadas características (realce de certas partes, retirada de ruídos ou partes indesejáveis etc).

Imagens são alteradas para gerar novas imagens.

Áreas da CG

Análise de Imagem

É a extração de características de imagens digitais para geração de seu modelo matemático (de dados).

Dados/modelos são gerados a partir de imagens.

• Interfaces Homem-Máquina

•Arquitetura

•Engenharia (protótipos, simulações, visualização científica)

•Geografia (mapas / geo-localização)

•Medicina

• Realidade Virtual

•Treinamento (simuladores)

• Cinema (filmes, efeitos especiais)

•Jogos

Representação da Imagem

Vetorial

Utilizada para a representação/modelagem sintética de objetos.

Triângulo =
$$\{(0,2),(2,4),4,2)\}$$

Retângulo = $\{(0,0),(0,2),(4,2),4,0)\}$

Representação da Imagem

Matricial

Arranjo bidimensional em forma de matriz onde os elementos representam os pixels. Esta representação é utilizada para gerar a imagem na memória dos dispositivos gráficos

Arquitetura de uma aplicação em CG

Processador + Memória

GPU +Frame buffer

Teclado Mouse Joystic Touch-screen Mesa digitalizadora

Scanner Luvas (RV)

Disp. Tracking Câmera

Processador principal e sua memória GPU=Graphics processing unity (coprocessador gráfico)

Frame buffer

Memória que mapeia os pixels da imagem a ser gerada no dispositivo de saída

Dispositivo de Saída

Impressora Plotter Monitor Capacete (RV) Óculos (RV) Caves (RV)

Alguns softwares para CG

- Ferramentas de alto nível engines para modelagem de ambientes virtuais (UDK, Blender, Unity, etc); modelagem de objetos, cenas e etc (3D Studio, etc); CAD
- Bibliotecas gráficas (OpenGL, Direct 3D)
- Linguagens de programação

Pipeline de uma aplicação gráfica

Objeto

Imagem

Transformações Geométricas

Alteram escala, rotação, translação e forma em geram do objeto Elimina partes não visíveis do objeto, de acordo com o ponto de vista do observador

Recorte

Projeção

Mudança de 3D para 2D, Os vértices dos objetos são projetados em um plano, de acordo com o ponto de vista do observador

Transformação da representação por vértices para uma representação por pixels (matricial)

Rasterização