Análisis Matemático II

Ejercicios del Capítulo 1: La medida de Lebesgue en el espacio euclídeo.

- 1. (Ejemplos de espacios medibles). Dado un conjunto no vacío Ω ,
 - a) Probar que $\mathcal{P}(\Omega)$ es una σ -álgebra.
 - b) Si \mathcal{A} es una σ -álgebra sobre Ω y $E \in \mathcal{A}$ (E no vacío), podemos definir

$$\mathcal{A}_E = \{ A \cap E : A \in \mathcal{A} \} \subseteq \mathcal{P}(E) .$$

Probar que A_E es σ -álgebra sobre E (recibe el nombre de σ -álgebra inducida) y, por tanto, el par (E, A_E) es un espacio medible.

- c) Si \mathcal{A}_i son σ -álgebras sobre $\Omega \ \forall i \in I$, probar que también lo es $\bigcap_{i \in I} \mathcal{A}_i$ (I es un conjunto arbitrario de índices).
- d) Si $\mathcal{S} \subseteq \mathcal{P}(\Omega)$ (familia de subconjuntos de Ω), probar que existe la menor σ -álgebra que contiene a \mathcal{S} . La llamaremos "la σ -álgebra generada por la familia \mathcal{S} ".
- e) Sea (Ω, \mathcal{A}) un espacio medible y sea Ω' un nuevo conjunto. Sea $f: \Omega \to \Omega'$ una aplicación. Probar que $(\Omega', \{B \subseteq \Omega': f^{-1}(B) \in \mathcal{A}\})$ es un espacio medible.
- f) Si (Ω, \mathcal{T}) es un espacio topológico, la σ -álgebra generada por la topología \mathcal{T} recibe el nombre de " σ -álgebra de Borel", \mathcal{B} , y sus medibles se llaman "borelianos". Dados dos espacios topológicos $(\Omega_1, \mathcal{T}_1)$ y $(\Omega_2, \mathcal{T}_2)$, consideremos las correspondientes σ -álgebras generadas $(\mathcal{B}_1 \text{ y } \mathcal{B}_2 \text{ respectivamente})$. Probar que si $f: \Omega_1 \to \Omega_2$ es una función continua, entonces para todo $B \in \mathcal{B}_2$ se tiene $f^{-1}(B) \in \mathcal{B}_1$ (la pre-imagen de un boreliano es un boreliano). En particular, los homeomorfismos conservan los borelianos.
- 2. (Ejemplos de espacios de medida). Dado un conjunto no vacío Ω ,
 - a) Probar que $(\Omega, \mathcal{P}(\Omega), \mu)$ es un espacio de medida, donde μ se define como la "medida contadora", esto es, dado $A \subseteq \Omega$,

$$\mu(A) = \left\{ \begin{array}{ll} \text{número de elementos de } A & \text{(si A es finito),} \\ \\ \infty & \text{(si A es infinito).} \end{array} \right.$$

b) Probar que, fijado un elemento $\omega \in \Omega$, la terna $(\Omega, \mathcal{P}(\Omega), \delta_{\omega})$ es un espacio de medida, donde δ_{ω} se define como la "medida de Dirac": dado $A \subseteq \Omega$,

$$\delta_{\omega}(A) = \begin{cases} 1 & (\text{si } \omega \in A), \\ 0 & (\text{si } \omega \notin A). \end{cases}$$

1

- c) Si $(\Omega, \mathcal{A}, \mu)$ es un espacio de medida y $E \in \mathcal{A}$ (E no vacío), probar que la terna $(E, \mathcal{A}_E, \mu_E)$ es un nuevo espacio de medida, donde \mathcal{A}_E se define como en el ejercicio 1-(b) y μ_E es la restricción de μ a $\mathcal{A}_E \subseteq \mathcal{A}$ (cualquier subconjunto medible no vacío se convierte automáticamente en un nuevo espacio de medida, llamado "espacio de medida inducido").
- 3. Sean $A \subseteq \mathbb{R}^M$ y $B \subseteq \mathbb{R}^N$. Demuestre que

$$\lambda^*(A \times B) \le \lambda^*(A)\lambda^*(B).$$

- 4. Probar que la σ -álgebra de Lebesgue, \mathcal{M} , es la mayor σ -álgebra que contiene a los intervalos acotados y sobre la que λ^* es aditiva.
- 5. Probar que la existencia de conjuntos no-medibles equivale a la no aditividad de la medida exterior, λ^* .
- 6. Sean A un abierto de \mathbb{R}^N y $f:A\longrightarrow \mathbb{R}^M$ una función de clase \mathcal{C}^1 con N< M. Probar que f(A) es de medida cero.
- 7. Se
a $a,u,v\in\mathbb{R}^2$ y seaPel paralelogramo

$$P := \{(x, y) \in \mathbb{R}^2; \ (x, y) = a + tu + sv, \ t, s \in \{0, 1\}\}.$$

Probar que si $T: \mathbb{R}^2 \to \mathbb{R}^2$ está definida por T(t,s) = tu + sv entonces $\lambda(P) = |detT| = base \times altura.$

Deducir de lo anterior el área del triángulo, del círculo y de la elipse.

8. Se
a $a,u,v,w\in\mathbb{R}^3$ y seaPel paralelepípedo

$$P:=\{(x,y,z)\in\mathbb{R}^3;\ (x,y,z)=a+tu+sv+rw,\ t,s,r\in[0,1]\}.$$

Probar que si $T: \mathbb{R}^3 \to \mathbb{R}^3$ está definida por T(t,s,r)=tu+sv+rw entonces $\lambda(P)=|detT|$ =área de la base × altura.

9. Calcule el el volumen del cilindro, de la esfera y del elipsoide.