

Introduction and data structure

What is loan default?

Components of expected loss (EL)

- Probability Of default or PD) (%)
- Exposure At default or EAD (\$ value)
- Loss given default or LGD (%)

EL= PD x EAD x LGD

Information used by banks

- Application information:
 - income
 - marital status
 - •
- Behavioral information
 - current account balance
 - payment arrears in account history
 - •

Raw data

```
> head(loan_data, 10)
   loan_status loan_amnt int_rate grade emp_length home_ownership annual_inc age
                     5000
                                                                           24000
                             10.65
                                                                 RENT
                                        В
                                                   10
                                                                                 33
             0
                     2400
                                                   25
                                                                RENT
                                                                           12252
                                                                                  31
                                NA
                    10000
                                                   13
                                                                RENT
                                                                           49200
                             13.49
                                                                                  24
                                                                RENT
                                                                           36000
                     5000
                                NA
                                                                                  39
4
                                        Α
                     3000
                                                                 RENT
                                                                           48000
                                NA
                                                                                  24
                                        В
                             12.69
                                                                 OWN
                    12000
                                                   11
                                                                           75000
                                                                                  28
                     9000
                             13.49
                                                                RENT
                                                                           30000
                                                                RENT
8
                     3000
                              9.91
                                        В
                                                                           15000
                                                                                  22
             0
                                        В
                                                                RENT
                    10000
                             10.65
                                                                          100000
                                                                                  28
10
                     1000
                             16.29
                                        D
                                                                RENT
                                                                           28000
                                                                                  22
```


Exploring the data

- Make crosstables, histograms
- Delete/manage outliers
- Manage missing data
 - Delete row/column
 - Replace
 - Keep —> coarse classification (or "binning")

Start analysis

training and test set

training and test set

Final data structure

11000(01	raining_set, 1	<u>_</u>			-			•
	loan_status	loan_amnt	grade	home_ownership	annual_inc	age	emp_cat	ir_cat
21655	0	25000	В	RENT	91000	34	0-15	11-13.5
25468	0	16000	D	RENT	45000	25	0-15	13.5+
18407	0	8500	Α	MORTGAGE	110000	29	0-15	0-8
14234	0	9800	В	MORTGAGE	102000	24	0-15	8-11
7588	0	3600	Α	MORTGAGE	40000	59	0-15	0-8
7026	0	6600	Α	OWN	26400	35	15-30	0-8
2180	0	3000	Α	RENT	10000	24	0-15	0-8
14930	0	7500	В	OWN	27168	24	0-15	8-11
17083	0	6000	Α	RENT	74970	26	0-15	0-8
15573	0	22750	Α	MORTGAGE	32004	25	0-15	0-8

Final data structure

```
> str(training_set)
'data.frame': 19394 obs. of 8 variables:
 $ loan_status : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 ...
 $ loan_amnt : int 25000 16000 8500 9800 3600 6600 3000 7500 6000 22750 ...
                : Factor w/ 7 levels "A", "B", "C", "D", ...: 2 4 1 2 1 1 1 2 1 1 ...
 $ grade
 $ home_ownership: Factor w/ 4 levels "MORTGAGE","OTHER",..: 4 4 1 1 1 3 4 3 4 1 ...
 $ annual_inc
             : num 91000 45000 110000 102000 40000 ...
$ age
          : int 34 25 29 24 59 35 24 24 26 25 ...
 $ emp_cat : Factor w/ 5 levels "0-15","15-30",..: 1 1 1 1 1 2 1 1 1 1 ...
                : Factor w/ 5 levels "0-8","11-13.5",..: 2 3 1 4 1 1 1 4 1 1 ...
 $ ir_cat
```


evaluate a model

model prediction

actual loan status

	no default (o)	default (1)
no default (o)	8	2
default (1)	1	3

evaluate a model

model prediction

actual loan status

	no default (o)	default (1)
no default (o)	TN	FP
default (1)	FN	TP

some measures...

- Accuracy = (8 + 3) / 14 = 78.57%
- Sensitivity = $\frac{3}{1+3} = 75\%$
- Specificity = 8/(8 + 2) = 80%

model prediction

actual loan status

	no default (o)	default (1)
no default (o)	8	2
default (1)	1	3