Answer the following questions.

- 1. What does the dimension formula say?
- 2. Assume you are given the singular value decomposition (SVD) $U\Sigma V^{\top} = A$ of some matrix $A \in \mathbb{R}^{m \times n}$ with rank(A) = r. Find a singular value decomposition of A^{\top} as well as a basis for Im(A) and $Im(A^{\top})$, respectively.
- 3. Let $R=(r_{ij})_{ij}\in\mathbb{R}^{n\times n}$ be a (lower or upper) triangular matrix with $r_{nn}=0$. Is R invertible? Explain your answer.
- 4. What is the definition of an orthogonal matrix? What does it mean for the columns of the matrix?
- 5. What is the purpose of the QR Algorithm? Write down its iteration instruction.
- 6. Draw the sets $\{x \in \mathbb{R}^2 \colon ||x||_p = 1\}$ for $p = 1, 2, \infty$.

Solution:

- 1. (1P) $\operatorname{rank}(A) + \operatorname{dim}(\ker(A)) = n \text{ (for } A \in \mathbb{R}^{m \times n})$
- 2. (0.5P): $A^{\top} = (U\Sigma V^{\top})^{\top} = V\Sigma^{\top}U^{\top}$ (0.5P): Since $r = \operatorname{rank}(A) = \operatorname{rank}(A^{\top})$ we have

$$\operatorname{Im}(A) = \operatorname{span}\{u_1, \dots, u_r\}$$

 $\operatorname{Im}(A^\top) = \operatorname{span}\{v_1, \dots, v_r\}$

3. (0.5P) Purpose: Compute eigenvalues of a matrix $A \in \mathbb{R}^{n \times n}$

(0.5P)
$$A_0 := A$$

for $i = 1, ..., n$
 $Q_i R_i := A_i$
 $A_{i+1} := R_i Q_i$

- 4. (1P) R is not invertible, because triangular matrices are invertible if and only if all diagonal entries are nonzero (see backward/forward substitution)
- norms.pdf
- 6. (0.5P) $Q \in \mathbb{R}^{n \times n}$ orthogonal : $\Leftrightarrow Q^TQ = I$ (0.5P) Thus the columns of Q are mutually orthonormal.