Часть 1. Тест.

Вопрос 1 \clubsuit Если $\mathrm{E}(X)=6$, $\mathrm{E}(Y)=5$, $\mathrm{Var}(X)=6$, $\mathrm{Var}(Y)=7$, $\mathrm{Cov}(X,Y)=-1$, то $\mathrm{Cov}(3-X+2Y,3X)$ равна

A 24

D -12

G Нет верного ответа.

- B -33
- C 12

-24 F -15

Вопрос 2 \clubsuit В парной регрессии на уровне значимости 5%-ов гипотеза H_0 : $\beta_2=2016$ не отвергается. Из этого можно сделать вывод, что на соответствующем уровне значимости

- $oxed{A}$ доверительный интервал для eta_2 не содержит ноль
- $D H_0: \beta_2 = 0$ отвергается

 $\boxed{\mathsf{B}}\ H_0$: $\beta_2=0$ не отвергается

 $lackbox{E}\ H_a$: $eta_2
eq 0$ не отвергается

 \square H_a : $\beta_2 \neq 0$ отвергается

Нет верного ответа.

Вопрос 3 \clubsuit В парной регрессии величина $\bar{Y} - \hat{\beta}_1 - \hat{\beta}_2 \bar{X}$

А равна (-1)

- равна 0
- В может принимать любое положительное значение
- F может принимать любое неотрицательное значение

- С не существует
- D равна 1

G Нет верного ответа.

Вопрос 4 \clubsuit В модели парной регрессии $R^2=0.9,\,TSS=400$ и 12 наблюдений. Несмещённая оценка дисперсии случайной ошибки равна

- 4
- B 3.9
- B 3.9
 C 4.3

- D 3.8
- E 4.1
- F 4.2

G Нет верного ответа.

- Вопрос 5 \clubsuit Имеются данные по доходу жены, мужа и продолжительности брака. Доход семьи складывается из дохода жены и мужа. Вася оценил зависимость дохода семьи от продолжительности брака и получил регрессию $\hat{Y}_i = 20 + 3X_i$, Петя оценил зависимость дохода мужа от продолжительности брака и получил регрессию $\hat{Y}_i = 10 + 2X_i$. Маша оценивает зависимость дохода жены от продолжительности брака. Она получит регрессию:
 - $\hat{Y}_i = 10 + X_i$
 - $\boxed{\mathbf{B}} \ \hat{Y}_i = 10 X_i$
 - $\boxed{\mathbf{C}} \hat{Y}_i = 20 + 3X_i$

- Е недостаточно данных для ответа
- $\boxed{\mathbf{F}} \ \hat{Y}_i = 30 + 5X_i$
- G Нет верного ответа.

Условием теоремы Гаусса-Маркова, необходимым для несмещённости оценок коэффициентов регрессии в модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ является

- А гомоскедастичность случайных ошибок
- В некоррелированность случайных ошибок
- $E(u_i) = 0$
- |D| гетероскедастичность случайных ошибок
- $|\mathbf{E}| \mathbf{E}(u_i) \neq 0$
- F нормальность случайных ошибок
- |G| Нет верного ответа.

Вопрос 7 \clubsuit Если $\alpha = 0.05$ и P-значение равно 0.04, то

- |A| H_a не отвергается
- В недостаточно информации для ответа
- $|\mathsf{C}|\;H_0$ принимается
- $|D| H_a$ принимается

- H_0 отвергается
- $F \mid H_a$ отвергается
- |G| Нет верного ответа.

Если все Y_i в линейной регрессии увеличить в два раза, то оценка $\hat{\beta}_2$ Вопрос 8 👫

- помножится на 2
- не изменится
- С помножится на 4
- |D| поделится на 4

- Е поделится на 2
- F изменится в произвольную сторону, в зависимости от X_i
- |G| Нет верного ответа.

Вопрос 9 🐥 Свободно распространяемым программным обеспечением является

- A Excel
- C SPSS

- D Stata
- E | Eviews
- Matlab

|G| Нет верного ответа.

Вопрос 10 🖺 Предпосылки теоремы Гаусса-Маркова выполнены, случайные ошибки нормально распределены, уровень доверия равен 90%, критическое значение t-статистики равно 2.35, всего n наблюдений. Регрессия имеет вид $\hat{Y}_i = -4 + \mathop{5}\limits_{(3)} X_i$, в скобках указаны стандартные ошибки. Доверительный интервал

для β_2 равен

- A [3.95; 6.05]
- |B| [4.79; 5.21]
 - D [2.65; 7.35]

 $C \mid [0.3; 9.7]$

- [4.53; 5.47]

Часть 2. Задачи.

- 1. В течение 10 дней Василий записывал количество пойманных им покемонов, Y_i , и количество решённых задач по эконометрике, X_i . Оказалось, что $\sum X_i^2 = 120$, $\sum Y_i^2 = 75$, $\sum X_i = 20$, $\sum Y_i = 5$ и $\sum X_i Y_i = 50$. Василий предполагает корректность линейной модели $Y_i = \beta_1 + \beta_2 X_i + u_i$.
 - а) Найдите МНК-оценки коэффициентов регресси
 - б) Найдите RSS, ESS, TSS и R^2
- 2. Для модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ выполнены все предпосылки теоремы Гаусса-Маркова. Выведите формулу для дисперсии МНК-оценки, $\mathrm{Var}(\hat{\beta}_1)$.
- 3. Для модели $Y_i=\beta_1+\beta_2 X_i+u_i$ выполнены все предпосылки теоремы Гаусса-Маркова, а случайные ошибки нормально распределены. Известны все значенения Y_i , все значения \hat{Y}_i и часть значений X_i

X_i	1	3		
U			18	
\hat{Y}_i	5	11	20	8

- а) Найдите МНК-оценки коэффициентов регрессии
- б) Найдите стандартную ошибку коэффициента \hat{eta}_2
- в) Постройте 95%-ый доверительный интервал для коэффициента \hat{eta}_2
- r) Проверьте гипотезу о незначимости коэффициента β_2 на уровне значимости 5%
- 4. Рассмотрим модель $Y_i = \beta_1 + \beta_2 X_i + u_i$ с неслучайным регрессором. Аккуратно сформулируйте теорему Гаусса-Маркова, пояснив смысл используемых понятий
- 5. Для модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ выполнены все предпосылки теоремы Гаусса-Маркова. Докажите несмещённость МНК-оценки коэффициента β_1 .

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Randall Munroe, xkcd

Имя, фамилия:
Номер группы:

Вопрос 1 : A B C D **F** G

Вопрос 2 : A B C D E

Вопрос 3 : A B C D **F** G

Вопрос 4 : **В** В С D E F G

Вопрос 5 : **В** В С D E F G

Вопрос 6 : A B D E F G

Вопрос 7 : A B C D **F** G

Вопрос 8 : **В** С D E F G

Вопрос 10 : А В С D F