Object Detection in Videos

Jacob Munoz, Avery Olson, Akash Gaonkar

Can we mine YouTube videos for interesting clips?

Can we use them to improve an object detection algorithm?

Main Objectives Completed

- Analyze 10 hours of video for
 30 seconds of testing material
- 2. Make modifications to slightly improve algorithm (~20x on Akash's computer)

Boat Video

Bike Video

Car Video

Data Mining Continued

- Use Q1, Q2, and mean to find data centralization
- Sample from each for varying speeds
- As algorithm improves and handles clips better, increase threshold for faster clips

The Clips

These are the three clips we found and put then through the video difference program to show their variations

Slow Medium Fast

Knowledge Gained

- A video's "score" depends on the amount of movement
 - Low score = Low movement
- Using the distribution of frame differences you can select testing clips that best suit your algorithm

Knowledge Gained/Algorithm Comparison

Algorithm	tinyYOLO	YOLO	Cheapo
Classes accurately detected	≈ 5	≈ 30	≈ 30
Speed on Akash's laptop (no GPU)	≈ 8 fps	≈ 0.25 fps	≈ 8-15 fps
Bounding box accuracy	High	High	Medium
Consistency (common detections/adjacent frames)	High	High	Low

How can the knowledge be applied?

- Using this method of data mining, it becomes much easier to test for algorithm improvements.
- Can measure very slight increases of speed
- Can analyze clips that slow the algorithm down
- Can potentially be used to teach an algorithm to speed itself up by rewarding speed increases

Thanks to:

Python (usual libraries)

Darkflow

OpenCV