## **CINEMATICA**

## **Esercizio 11**

Una sferetta di acciaio è lasciata cadere dal tetto di un edificio. Un uomo posto dietro una finestra alta h=1.2 m nota che la sferetta impiega un tempo  $\Delta t$ =0.125 s ad attraversare la luce della finestra. La sferetta continua la caduta fino ad urtare in modo completamente elastico il marciapiede e riappare sul davanzale della finestra dopo un tempo  $\Delta t$ =2.00 s che è passata la prima volta cadendo. Calcolare l'altezza dell'edificio.



Moto rettilineo uniformemente accelerato

$$y(t) = y_0 + v_0 t - \frac{1}{2} g t^2$$
  
 $v(t) = v_0 - g t$ 

 $y_0 = y_A = H$  (da determinare)

$$y_B - y_C = h = 1.2 \text{ m}$$

$$\Delta t_{BC} = \Delta t = 0.125 \text{ s}$$

 $\Delta t_{CD} = \Delta t'/2 = 1.00 \text{ s}$  (rimbalzo elastico)

Nel nostro caso: 
$$y(t) = H - \frac{1}{2} gt^2$$
  $y_D = y(t_D) = H - \frac{1}{2} g t_D^2 = 0 \rightarrow$   $H = \frac{1}{2} g t_D^2$ 

Determiniamo  $t_D$ :  $t_D = \Delta t_{AB} + \Delta t_{BC} + \Delta t_{CD} \rightarrow$ 

dobbiamo determinare Δt<sub>AB</sub>

$$\Delta t_{AB} = t_B - t_A = t_B - 0 = t_B$$
L'incognita è quindi t

$$y_B = y(t_B) = H - \frac{1}{2} g t_B^2$$
  $y_C = y(t_C) = H - \frac{1}{2} g t_C^2$ 

$$h = y_B - y_C = -\frac{1}{2} g t_B^2 + \frac{1}{2} g t_C^2 = \frac{1}{2} g (t_C^2 - t_B^2) = \frac{1}{2} g (t_C - t_B) (t_C + t_B)$$

ma  $\Delta t_{BC} = t_C - t_B = \Delta t$  e quindi  $t_C = \Delta t + t_B$ 

$$h = \frac{1}{2} g \Delta t (\Delta t + 2 t_B)$$
  $\rightarrow$   $(\Delta t + 2 t_B) = \frac{2 h}{g} \Delta t$ 

$$t_B = h / (g \Delta t) - \frac{1}{2} \Delta t = 1.2 / (9.8 \times 0.125) - 0.125 / 2 = 0.917 s$$

$$t_D = 0.917 + 0.125 + 1.00 = 2.042$$
 s

$$H = \frac{1}{2} g t_D^2 = \frac{1}{2} \times 9.8 \times (2.042)^2 = 20.4 \text{ m} \rightarrow \frac{20 \text{ m}}{20.042}$$