Corps des nombres réels

MP2I

Aperçu

- 1. Structures
- 2. Relation d'ordre sur \mathbb{R}
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans \mathbb{R}

- 1. Structures
- 1.1 Le corps des nombres réels
- 1.2 Soustraction, division
- 1.3 Une propriété importante
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans $\mathbb R$

- 1. Structures
- 1.1 Le corps des nombres réels
- 1.2 Soustraction, division
- 1.3 Une propriété importante
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans $\mathbb R$

- A 1 L'ensemble \mathbb{R} est muni d'une première loi de composition interne, l'addition notée « + », qui possède les propriétés suivantes:
 - L'addition des nombres réels est associative

$$\forall (x, y, z) \in \mathbb{R}^3, (x + y) + z = x + (y + z).$$

On note cette somme x + y + z.

L'ensemble \mathbb{R} des nombres réels possède un **élément neutre pour l'addition**. Cet élément est noté 0:

$$\forall x \in \mathbb{R}, x + 0 = 0 + x = x.$$

Pour tout nombre réel x, il existe un nombre réel x' tel que x + x' = 0 (x' est unique).

$$\forall x \in \mathbb{R}, \exists x' \in \mathbb{R}, x + x' = 0.$$

Le nombre x' est noté -x et est appelé l'**opposé** de x.

 \blacktriangleright La loi de composition interne « + » est commutative dans \mathbb{R} :

$$\forall (x, y) \in \mathbb{R}^2, x + y = y + x.$$

- A 2 L'ensemble \mathbb{R} est muni d'une second loi de composition interne, la **multiplication**, notée ou bien $\times\times$ ou bien, plus simplement par juxtaposition. À tout couple (x,y) de nombres réels, cette loi fait correspondre le nombre réel $z=x\times y=xy$.
 - La multiplications des nombres réels est associative.

$$\forall (x, y, z) \in \mathbb{R}^3, x(yz) = (xy)z = xyz.$$

Le nombre réel 1, qui est différent de 0, est neutre pour la multiplication.

$$\forall x \in \mathbb{R}, x \times 1 = 1 \times x = x.$$

Tout nombre réel sauf 0 admet un inverse pour la multiplication.

$$\forall x \in \mathbb{R} \setminus \{0\}, \exists x' \in \mathbb{R}, xx' = x'x = 1.$$

x' est appelé l'**invers**e de x; on le note $\frac{1}{x}$ ou x^{-1} .

ightharpoonup La multiplication dans $\mathbb R$ est une opération commutative.

$$\forall (x, y) \in \mathbb{R}^2, xy = yx.$$

A 3 De plus, ces propriétés sont liées par la propriété de **distributivité** de la la multiplication par rapport à l'addition :

$$\forall (x, y, z) \in \mathbb{R}^3, x.(y + z) = x.y + x.z \text{ et } (x + y).z = x.z + y.z.$$

L'ensemble de ces propriétés ce résume de la façon suivante:

T 4 Le triplet $(\mathbb{R}, +, \times)$ est un corps.

Ν

On note \mathbb{R}^* l'ensemble des éléments qui admettent un inverse pour la multiplication. On a donc $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$.

- 1. Structures
- 1.1 Le corps des nombres réels
- 1.2 Soustraction, division
- 1.3 Une propriété importante
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans ℝ

Dans l'ensemble R des nombre réels, l'opération «réciproque» de l'addition est définie par l'application

$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$(a,b) \mapsto a + (-b)$$

On note cette loi de composition interne par le signe «-», et on l'appelle la soustraction.

R

- 1. La loi «+» est associative. La loi «-» n'est pas associative.
- 2. La loi «+» est commutative. La loi «-» n'est pas commutative.
- 3. La loi «+» admet dans ℝ un élément neutre. La loi «−» n'admet pas dans ℝ d'élément neutre.

D 6

L'opération «réciproque» de la multiplication est la **division**, définie sur $\mathbb{R} \times \mathbb{R}^*$ par

$$\begin{array}{ccc} \mathbb{R} \times \mathbb{R}^{\star} & \to & \mathbb{R} \\ (a,b) & \mapsto & a \times \frac{1}{b} \end{array}.$$

Le **quotient** x de a par b est noté $x = \frac{a}{b} = a/b$.

- 1. Structures
- 1.1 Le corps des nombres réels
- 1.2 Soustraction, division
- 1.3 Une propriété importante
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans $\mathbb R$

T 7 La nullité du produit de deux nombres réels implique celle d'un facteur au moins:

$$\forall (x, y) \in \mathbb{R}^2, xy = 0 \iff (x = 0 \text{ ou } y = 0).$$

Plus généralement, pour qu'un produit de facteurs soit nul, il faut et il suffit que l'un au moins des facteurs soit nul.

Démonstration.

Supposons x = 0, puisque x = 0 = 0 + 0 = x + x,

$$xy = (x+x)y = xy + xy$$

et donc

$$xy - (xy) = 0 = xy + xy - (xy) = xy.$$

Ainsi xy = 0. En supposant y = 0, on aurait démontré de même que xy = 0.

La nullité du produit de deux nombres réels implique celle d'un facteur au moins:

$$\forall (x, y) \in \mathbb{R}^2, xy = 0 \iff (x = 0 \text{ ou } y = 0).$$

Plus généralement, pour qu'un produit de facteurs soit nul, il faut et il suffit que l'un au moins des facteurs soit nul.

Réciproquement, supposons

$$x \neq 0$$
 et $xy = 0$;

le nombre x, n'étant pas nul, admet un inverse $\frac{1}{x}$; xy étant nul, on a

$$\frac{1}{x}(xy) = \frac{1}{x} \times 0 = 0;$$

le premier membre devient par associativité:

$$\left(\frac{1}{x} \times x\right) \times y = 1 \times y = y.$$

On a donc y=0. En supposant $y\neq 0$ et xy=0, on aurait démontré de même que x=0.

E 8 Déterminer les réels $x \in \mathbb{R}$ vérifiant

$$x^2 - 5x + 6 = 0.$$

On peut écrire

$$x^{2} - 5x + 6 = (x - 2)(x - 3).$$

Ainsi

$$x^{2} - 5x + 6 = 0 \iff (x - 2)(x - 3) = 0$$
$$\iff \boxed{x - 2 = 0 \text{ ou } x - 3 = 0}$$

- 2. Relation d'ordre sur ℝ
- 2.1 Ordre total sur \mathbb{R}
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède
- 2.5 Partie entière
- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans ℝ

- 2. Relation d'ordre sur ℝ
- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède
- 2.5 Partie entière
- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans R

D 9

L'ensemble $\mathbb R$ est muni d'une relation notée \leq . Cette relation entre deux réel, $x \leq y$, ou $y \geq x$, se lit $\ll x$ est inférieur ou égal à $y \gg$, $\ll x$ est au plus égal à $y \gg$, $\ll y$ est supérieur ou égal à $x \gg$, $\ll y$ est au moins égal à $x \gg$.

Cette relation englobe le cas d'égalité; pour l'exclure on utilise la relation x < y qui se lit «x est strictement inférieur à y», ou «y est strictement supérieur à x».

$$x < y \iff x \le y \text{ et } x \ne y.$$

On a donc

$$x \le y \iff x < y \text{ ou } x = y.$$

N

$$\begin{array}{ll} \mathbb{R}_{+} = \{ \; x \in \mathbb{R} \; | \; x \geq 0 \; \} & \quad \mathbb{R}_{-} = \{ \; x \in \mathbb{R} \; | \; x \leq 0 \; \} & \quad \mathbb{R}^{\star} = \{ \; x \in \mathbb{R} \; | \; x \neq 0 \; \} \\ \mathbb{R}_{+}^{\star} = \{ \; x \in \mathbb{R} \; | \; x > 0 \; \} & \quad \mathbb{R}_{-}^{\star} = \{ \; x \in \mathbb{R} \; | \; x < 0 \; \} \end{array}$$

- P 10 On dit que la relation \leq est une relation d'ordre total sur \mathbb{R} , ce qui signifie que
 - ► La relation \leq sur \mathbb{R} est **réflexive**:

$$\forall x \in \mathbb{R}, x \le x.$$

La relation ≤ sur ℝ est **antisymétrique**:

$$\forall (x, y) \in \mathbb{R}^2, (x \le y \text{ et } y \le x) \implies x = y.$$

► La relation \leq sur \mathbb{R} est **transitive**:

$$\forall (x, y, z) \in \mathbb{R}^3, (x \le y \text{ et } y \le z) \implies x \le z.$$

La relation ≤ sur R est totale:

$$\forall (x, y) \in \mathbb{R}^2, x \le y \text{ ou } y \le x.$$

- **T** 11 \blacktriangleright La relation < sur \mathbb{R} est-elle réflexive?
 - \triangleright La relation < sur \mathbb{R} est-elle transitive?
 - ightharpoonup La relation < sur \mathbb{R} est-elle totale?
 - La relation < sur R est-elle antisymétrique?

- 2. Relation d'ordre sur ℝ
- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède
- 2.5 Partie entière
- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans R

P 12

1. Pour comparer deux nombres réels, on peut étudier le signe de leur différence.

$$\forall (x, y) \in \mathbb{R}^2, x \le y \iff y - x \ge 0.$$

2. La relation d'ordre sur \mathbb{R} est compatible avec l'addition.

$$\forall (x, y, z) \in \mathbb{R}^3, x \le y \iff x + z \le y + z.$$

3. La relation d'ordre sur \mathbb{R} est compatible avec la multiplication par les réels positifs.

$$\forall (x, y, z) \in \mathbb{R}^3, (z \ge 0 \text{ et } x \le y) \implies xz \le yz.$$

Nous n'insisterons jamais assez sur le piège tendu par l'assertion 12.3. En effet, on voit encore des gens affirmer

$$\frac{a}{b} \le 1 \implies a \le b$$

sans prendre garde au signe de b.

$$x \le y \iff x^2 \le y^2$$
 et $x < y \iff x^2 < y^2$.

L 13 Soit $x \ge 0$ et $y \ge 0$, alors $x \le y \iff x^2 \le y^2 \quad \text{et} \quad x < y \iff x^2 < y^2.$ En d'autre termes, on dit que la fonction $x \mapsto x^2$ est strictement croissante sur $[0, +\infty[$.

2. Relation d'ordre sur ℝ

- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède
- 2.5 Partie entière
- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans R

D 14 Pour $x \in \mathbb{R}$, on appelle valeur absolue de x le réel

$$|x| = \max \{ x, -x \} = \begin{cases} -x & x \le 0 \\ x & x \ge 0 \end{cases}$$

- 1. On a $|x| \ge 0$; de plus |x| = 0 si et seulement si x = 0.
- 2. $|xy| = |x| \cdot |y|$; en particulier |-x| = |x|.
- 3. $|x| = |y| \iff (x = y \text{ ou } x = -y)$.
- 4. $|x| \le a \iff -a \le x \le a$.
- 5. $|x| < a \iff -a < x < a$.

- 6. $\sqrt{x^2} = |x|$ et $|x|^2 = x^2$.
- 7. Si $x \neq 0$, alors $\left| \frac{y}{x} \right| = \frac{|y|}{|x|}$.
- 8. Si $n \in \mathbb{N}$, alors $|x^n| = |x|^n$.
- 9. $\max(x, y) = \frac{1}{2}(x + y + |x y|).$
- 10. $\min(x, y) = \frac{1}{2}(x + y |x y|).$

P 16 Inégalité triangulaire

Soient $x, y \in \mathbb{R}$. Alors

$$|x+y| \le |x| + |y|$$

De plus, |x + y| = |x| + |y| si et seulement si $xy \ge 0$.

Etant donné $(x_1, \dots, x_n) \in \mathbb{R}^n$, une récurrence immédiate montre que l'on a toujours l'inégalité

$$\left| \sum_{k=1}^{n} x_k \right| \le \sum_{k=1}^{n} |x_k|.$$

C 17 Soient $x, y \in \mathbb{R}$. Alors

$$||x| - |y|| \le |x \pm y| \le |x| + |y|$$

2. Relation d'ordre sur ℝ

- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue

2.4 Axiome d'Archimède

- 2.5 Partie entière
- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité

3. Le premier degré

- 4. Puissances, racines
- 5. Congruences dans R

P 18 Caractère archimédien de R

Pour tous réels a > 0 et b > 0, il existe $n \in \mathbb{N}$ tel que

 $n \times a > b$.

En particulier, pour tout réel x, il existe un entier $n \in \mathbb{Z}$ tel que n > x.

2. Relation d'ordre sur ℝ

- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède

2.5 Partie entière

- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité

3. Le premier degré

- 4. Puissances, racines
- 5. Congruences dans ℝ

$$n \le x < n + 1$$
.

On l'appelle partie entière de x et on le note |x| ou E(x).

La double inégalité $|x| \le x < |x| + 1$ s'écrit également

$$x - 1 < \lfloor x \rfloor \le x.$$

La partie entière de x est donc le plus grand entier inférieur ou égal à x. Autrement dit,

$$\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, (n \le x \implies n \le \lfloor x \rfloor).$$

E 20

1.
$$|\pi| =$$

5.
$$\lfloor -23.8 \rfloor =$$
 6. $\lfloor 11.8 \rfloor =$

$$[1.345] =$$

4.
$$|-5| =$$

6.
$$[11.8] =$$

La partie entière n'est ni «l'entier sans la virgule», ni «l'entier le plus proche».

P 21

1. La partie entière d'un réel est un entier

$$\forall x \in \mathbb{R}, [x] \in \mathbb{Z}.$$

2. Les nombres entiers sont les seuls égaux à leurs parties entières

$$\forall x \in \mathbb{R}, \lfloor x \rfloor = x \iff x \in \mathbb{Z}.$$

3.
$$\forall x \in \mathbb{R}, \forall m \in \mathbb{Z}, \lfloor x + m \rfloor = \lfloor x \rfloor + m$$
.

2. Relation d'ordre sur ℝ

- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède
- 2.5 Partie entière

2.6 Partie entière supérieure

- 2.7 Valeur approchée d'un réel
- 2.8 Densité

3. Le premier degré

- 4. Puissances, racines
- 5. Congruences dans R

En informatique, on utilise fréquemment la **partie entière supérieure**, notée $\lceil x \rceil$, caractérisée

$$\lceil x \rceil \in \mathbb{Z}$$
 et $\lceil x \rceil - 1 < x \le \lceil x \rceil$

On a donc

par

$$\lceil x \rceil = \left\{ \begin{array}{ll} \lfloor x \rfloor + 1 & : x \notin \mathbb{Z} \\ \lfloor x \rfloor & : x \in \mathbb{Z} \end{array} \right.$$

2. Relation d'ordre sur ℝ

- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède
- 2.5 Partie entière
- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité
- Le premier degré
- 4. Puissances, racines
- 5. Congruences dans R

Un nombre décimal est un nombre rationnel de la forme $\frac{a}{10^p}$ avec $a \in \mathbb{Z}$ et $p \in \mathbb{N}$. L'ensemble des nombres décimaux se note \mathbb{D} .

Soit $x \in \mathbb{R}$ et $p \in \mathbb{N}$. On a

$$\lfloor x \times 10^p \rfloor \le x \times 10^p < \lfloor x \times 10^p \rfloor + 1$$

D'où, en divisant chaque membre par 10^p on trouve

$$\frac{\left\lfloor x\times 10^p\right\rfloor}{10^p}\leq x<\frac{\left\lfloor x\times 10^p\right\rfloor}{10^p}+\frac{1}{10^p}.$$

- **P 22** Soit $x \in \mathbb{R}$ et $p \in \mathbb{N}$. Alors
 - 1. $\frac{\lfloor x \times 10^p \rfloor}{10^p}$ est un nombre décimal approchant x à 10^{-p} près par défaut.
 - 2. $\frac{\lfloor x \times 10^p \rfloor + 1}{10^p}$ est un nombre décimal approchant $x \ à \ 10^{-p}$ près par excès.

E 23 Le nombre de Neper e = 2.7182818284590... peut être successivement encadré par

$$2 \le e < 3$$

 $2.7 \le e < 2.8$
 $2.71 \le e < 2.72$
 $2.718 \le e < 2.719$
 $2.7182 \le e < 2.7183$

valeurs approchées à 10^0 près par défaut et par excès. valeurs approchées à 10^{-1} près par défaut et par excès. valeurs approchées à 10^{-2} près par défaut et par excès. valeurs approchées à 10^{-3} près par défaut et par excès. valeurs approchées à 10^{-4} près par défaut et par excès.

2. Relation d'ordre sur ℝ

- 2.1 Ordre total sur R
- 2.2 Compatibilité de l'ordre et des opérations
- 2.3 Valeur absolue
- 2.4 Axiome d'Archimède
- 2.5 Partie entière
- 2.6 Partie entière supérieure
- 2.7 Valeur approchée d'un réel
- 2.8 Densité
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans ℝ

- Si x et y sont deux réels tels que x < y, alors il existe un nombre rationnel, et même un nombre décimal z, tel que x < z < y.
- Si x et y sont deux réels tels que x < y, alors il existe un nombre irrationnel, tel que x < z < y.

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 3.1 L'équation ax + b = 0
- 3.2 Système linéaire (2×2)
- 4. Puissances, racines
- 5. Congruences dans R

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 3.1 L'équation ax + b = 0
- 3.2 Système linéaire «2×2»
- 4. Puissances, racines
- 5. Congruences dans R

On considère l'équation ax + b = 0 où $a, b \in \mathbb{R}$ et l'inconnue est $x \in \mathbb{R}$. On note \mathcal{S} l'ensemble des solution de cette équation.

Si $a \neq 0$, l'équation a une solution unique -b/a.

$$ax + b = 0 \iff x = -\frac{b}{a}.$$

On a $S = \{ -b/a \}$.

- Si a = 0,
 - ▶ si $b \neq 0$, l'équation n'a pas de solution. On a $S = \emptyset$.
 - \blacktriangleright si b=0, tout nombre réel en est solution. On a $\mathcal{S}=\mathbb{R}$.

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 3.1 L'équation ax + b = 0
- 3.2 Système linéaire $\ll 2 \times 2 \gg$
- 4. Puissances, racines
- 5. Congruences dans R

Commençons par deux équations très simples,

$$2x - y = 1 \tag{1}$$

$$x + y = 5. (2)$$

Nous pouvons interpréter ce système par lignes ou par colonnes. La première approche consiste à s'intéresser séparément à chaque équation (les lignes). L'équation 2x-y=1 est représentée par une droite dans le plan (Oxy). La seconde équation x+y=5 est représentée par une seconde droite.

La seconde approche est de s'intéresser aux *vecteurs colonnes* du membre de gauche qui produisent le vecteur du membre de droite. Les deux équations s'écrivent sous forme d'un seule *équation vectorielle* :

$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

$$\begin{cases} ax +by = u \\ cx +dy = v \end{cases}$$

est le réel ad - bc, noté $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

T 26 On considère le système

$$\begin{cases} ax +by = u \\ cx +dy = v \end{cases}$$

- 1. $Si \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$, alors le système admet une et une seule solution.
- 2. $Si \begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$, alors
 - le système admet aucune solution
 - ou bien le système admet une infinité de solutions.

E 27 Résoudre les systèmes suivants

1.
$$\begin{cases} -3x + y = 9 \\ 4x - 3y = -17 \end{cases}$$

3.
$$\begin{cases} -3x + y = 9 \\ 6x -2y = -18 \end{cases}$$

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 4.1 Puissances entières
- 4.2 Racines
- 4.3 Équation du second degré
- 5. Congruences dans $\mathbb R$

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 4.1 Puissances entières
- 4.2 Racines
- 4.3 Équation du second degré
- 5. Congruences dans $\mathbb R$

- **D 28** Pour tout $a \in \mathbb{R}$, $a^0 = 1$.
 - Pour tout $a \in \mathbb{R}$, et $n \in \mathbb{N}^*$, $a^n = 1 \cdot a \cdot a \dots a$. n fois
 - Pour tout $a \in \mathbb{R}^*$, et $n \in \mathbb{N}^*$, $a^{-n} = \frac{1}{a^n}$.

P 29 Pour tous $a, b \in \mathbb{R}$ et $p, q \in \mathbb{N}$:

$$1. \ a^p \cdot a^q = a^{p+q};$$

2.
$$a^p/a^q = a^{p-q}$$
;

3. Si
$$a \neq 0$$
, $a^{-p} = 1/a^p = (1/a)^p$;

4.
$$(a^p)^q = a^{pq}$$
;

5.
$$a^p b^p = (ab)^p$$
;

6.
$$a^p/b^p = (a/b)^p$$
;

7.
$$a > 1$$
 et $p < q \implies a^p < a^q$;

8.
$$0 < a < 1$$
 et $p < q \implies a^p > a^q$;

9.
$$p > 0$$
 et $0 < a < b \implies a^p < b^p$;

10.
$$p < 0$$
 et $0 < a < b \implies a^p > b^p$.

Ceci reste valable pour $a, b \in \mathbb{R}^*$ et $p, q \in \mathbb{Z}$.

P 30 Pour tous $a, b \in \mathbb{R}$,

$$a^2 = b^2 \iff |a| = |b| \iff (a = b \text{ ou } a = -b).$$

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 4.1 Puissances entières
- 4.2 Racines
- 4.3 Équation du second degré
- 5. Congruences dans ${\mathbb R}$

- P 32 1. Pour tout $x \in \mathbb{R}$, $\sqrt{x^2} = |x|$.
 - 2. Pour tous $a \ge 0$ et $b \ge 0$, $\sqrt{ab} = \sqrt{a}\sqrt{b}$.
 - 3. Pour tous $a \ge 0$ et b > 0, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 4.1 Puissances entières
- 4.2 Racines
- 4.3 Équation du second degré
- 5. Congruences dans ${\mathbb R}$

Soient $a,b,c\in\mathbb{R}$ avec $a\neq 0$. On considère l'équation du second degré suivante :

$$ax^2 + bx + c = 0, \quad x \in \mathbb{R}.$$
 (E)

On appelle discriminant du trinôme le nombre :

$$\Delta = b^2 - 4ac.$$

Le signe du discriminant permet de déterminer le nombre de solutions réelles de l'équation :

Si $\Delta > 0$, l'équation admet deux solutions réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$

Si $\Delta = 0$, l'équation admet une unique solution réelle (double racine) :

$$x_0 = \frac{-b}{2a}.$$

Si $\Delta < 0$, l'équation n'a pas de solution réelle.

Selon la valeur du discriminant, le signe du trinôme varie comme suit :

Si $\Delta > 0$:

x		$\frac{-b-\sqrt{\Delta}}{2a}$		$\frac{-b+\sqrt{\Delta}}{2a}$	
$ax^2 + bx + c$	sgn(a)	0	$-\operatorname{sgn}(a)$	0	sgn(a)

Le trinôme change de signe autour de ses racines.

Si $\Delta = 0$:

x	$\frac{-b}{2a}$		
$ax^2 + bx + c$	sgn(a)	0	sgn(a)

Le trinôme a le signe de *a* partout sauf à la racine où il est nul.

Si $\Delta < 0$: le trinôme a partout le signe de a.

En résumé, le trinôme $ax^2 + bx + c$ a le signe de a sauf éventuellement entre ses racines.

- 1. Structures
- 2. Relation d'ordre sur R
- 3. Le premier degré
- 4. Puissances, racines
- 5. Congruences dans \mathbb{R}

D 33 Soit x, y, ω trois réels. L'écriture

$$x \equiv y \pmod{\omega}$$

signifie qu'il existe $k \in \mathbb{Z}$ tel que $x = y + k\omega$. On dit que «x est congru à y modulo ω ». Les réels x et y diffèrent donc d'un multiple entier de ω , ce que l'on peut écrire $x - y \in \omega \mathbb{Z}$.

Ν

Soit deux nombres réels x et ω .

On note $\omega \mathbb{Z}$ l'ensemble des multiples du réel ω :

$$\omega\mathbb{Z} = \{ \ k\omega \mid k \in \mathbb{Z} \ \} = \{ \ \dots, -3\omega, -2\omega, -\omega, 0, \omega, 2\omega, 3\omega, \dots \} \ .$$

On note $x + \omega \mathbb{Z}$ l'ensemble des nombres réels de la forme $x + k\omega$, où $k \in \mathbb{Z}$. Autrement dit

$$x + \omega \mathbb{Z} = \{ x + k\omega \mid k \in \mathbb{Z} \}.$$

Cet ensemble est la classe de congruence de x modulo ω . Il contient notamment x lui-même.

Ainsi, pour tout $x, y \in \mathbb{R}$,

$$x \equiv y \pmod{\omega} \iff x - y \in \omega \mathbb{Z} \iff x \in y + \omega \mathbb{Z} \iff y \in x + \omega \mathbb{Z}.$$

E 34 Soit $\omega = 1$. La classe de congruence de 0 modulo 1 n'est autre que \mathbb{Z} ; celle de $\frac{1}{3}$ est l'ensemble suivant

$$\left\{ \dots, -\frac{5}{3}, -\frac{2}{3}, \frac{1}{3}, \frac{4}{3}, \frac{7}{3}, \dots \right\}.$$

P 36 Règles de calcul sur les congruences

Soient $x, x', y, y', \omega \in \mathbb{R}$, $\lambda \in \mathbb{R} \setminus \{0\}$ et $n \in \mathbb{Z}$.

- 1. Si $x \equiv y \pmod{\omega}$ et $x' \equiv y' \pmod{\omega}$ alors $x + x' \equiv y + y' \pmod{\omega}$.
- 2. $x \equiv y \pmod{\omega}$ si et seulement si $\lambda x \equiv \lambda y \pmod{\lambda \omega}$.
- 3. $Si \ x \equiv y \pmod{n\omega}$ alors $x \equiv y \pmod{\omega}$

T 37 Déterminer l'unique nombre réel α appartenant à $[0, 2\pi[$ et congru à $-\frac{7}{15}\pi$ modulo 2π .

T 38 L'assertion suivante est-elle vraie en général?

$$x \equiv y \pmod{\varphi} \implies x^2 \equiv y^2 \pmod{\varphi}.$$

T 39 Démêler le nécessaire et le suffisant entre les trois propositions suivantes

$$x \equiv y \pmod{\pi}, \quad x \equiv y \pmod{2\pi}, \quad x \equiv y \pmod{\frac{\pi}{2}}.$$