Оценивание вещественного параметра

Малов Сергей Васильевич

Санкт-Петербургский государственный электротехнический университет

26 сентября / 3 октября 2020 г.

План

- Параметрические семейства распределений
- Выборка из нормального распределения
- Постановка задачи оценивания вещественного парметра
- Построение статистических оценок

Семейство нормальных распределений $\xi \in \mathcal{N}(a, \sigma^2)$

- Тип: абсолютно непрерывное распределение
- Параметр распределения: $\theta = (a, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+$
- Плотность распределения: $p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$

- Носитель распределения: $\mathbb R$
- ullet а парметр сдвига; σ параметр масштаба
- Математическое ожидание: $\mathbb{E}_{\theta}\xi$ = a
- Дисперсия: $\mathbb{D}_{\theta}\xi = \sigma^2$

Семейство гамма распределений (Эрланга) $\xi \in \Gamma(a,b)$

- Тип: абсолютно непрерывное распределение
- Параметр распределения: $\theta = (a, b) \in \mathbb{R}_+ \times \mathbb{R}_+$
- Плотность распределения: $p_{\theta}(x) = \frac{1}{\Gamma(a)b^a} x^{a-1} \exp(-x/b) \mathbb{1}_{\{x \geq 0\}}$
 - $\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$ гамма функция Эйлера, a > 0.

- Носитель распределения: [0, ∞)
- а параметр формы; b параметр масштаба
- Математическое ожидание: $\mathbb{E}_{\theta}\xi$ = ab
- Дисперсия: $\mathbb{D}_{\theta}\xi = ab^2$

Семейство бета распределений $\xi \in \mathrm{B}(a,b)$

- Тип: абсолютно непрерывное распределение
- Параметр распределения: $\theta = (a, b) \in \mathbb{R}_+ \times \mathbb{R}_+$
- Плотность распределения: $p_{\theta}(x) = \frac{x^{a-1}(1-x)^{b-1}1_{\{x \in (0,1)\}}}{\beta(a,b)}$
 - $\mathcal{B}(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 x^{a-1} (1-x)^{b-1} dx$ бета-функция, a,b>0.

- Носитель распределения: [0,1]
- *a*, *b* параметры формы
- Математическое ожидание: $\mathbb{E}_{\theta}\xi = a/(a+b)$

• Дисперсия:
$$\mathbb{D}_{\theta}\xi = \frac{ab}{(a+b)^2(a+b+1)}$$

Семейство равномерных распределений $\xi \in \mathrm{U}(a,b)$

- Тип: абсолютно непрерывное распределение
- Параметр распределения: $\theta = (a,b) \in \{(x,y) \in \mathbb{R} : x < y\}$
- Плотность распределения: $p_{\theta}(x) = \frac{1}{b-a} \mathbb{1}_{\{x \in [a,b]\}}$

- Носитель распределения: [a, b]
- а левая граница носитемя; b правая граница носителя
- Математическое ожидание: $\mathbb{E}_{\theta}\xi = (a+b)/2$
- Дисперсия: $\mathbb{D}_{\theta}\xi = (b-a)^2/12$

Семейство распределений Коши $\xi \in \mathrm{C}(a,b)$

- Тип: абсолютно непрерывное распределение
- Параметр распределения: $\theta = (a, b) \in \mathbb{R} \times \mathbb{R}_+$
- Плотность распределения: $p_{\theta}(x) = \frac{b}{\pi \left((x-a)^2 + b^2 \right)}$

- Носитель распределения: \mathbb{R}
- а параметр сдвига; b параметр масштаба
- Математическое ожидание: $\mathbb{E}_{\theta}\xi$ не существует

План

- 🕕 Параметрические семейства распределений
- 2 Выборка из нормального распределения
- Постановка задачи оценивания вещественного парметра
- Построение статистических оценок

Полезные распределения

Определение

Пусть $\xi_0, \xi_1, \dots, \xi_n$ – выборка из стандартного нормального распределения $\mathcal{N}(0,1)$.

- Распределение случайной величины $\chi_n^2 = \sum_{i=1}^n \xi_i^2$ называется хи-квадрат с n степенями свободы.
- Распределение случайной величины $S_n = \frac{\xi_0}{\sqrt{\frac{1}{n}\chi_n^2}}$ называется распределением Стьюдента (W. Gosset) с n степенями свободы

Определение

Пусть χ^2_n и χ^2_m — независимые случайные величины, имеющие распределения χ^2 с n и m степенями свободы соответственно.

• Распределение случайной величины $\psi_{n,m} = \frac{\chi_n^2/n}{\chi_m^2/m}$ называется распределением Фишера—Снедекора с n и m степенями свободы.

Распределения χ^2

Плотность хи-квадрат распределения ξ_n^2

$$p_n(x) = \frac{1}{\Gamma(n/2)2^{n/2}} x^{n/2-1} \exp(-x/2) 1_{\{x \ge 0\}}$$

- \bullet Хи-квадрат частный случай гамма распределения: $\chi^2_n \sim \Gamma(n/2,2)$
- Носитель распределения: \mathbb{R}_+
- Математическое ожидание: $\mathbb{E}_{\theta}\chi_{n}^{2} = n$
- Дисперсия: $\mathbb{D}_{\theta}\chi_{n}^{2} = 2n$

Распеределения Стьюдента

Плотность распределения Стьюдента

$$t_n(x) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi n} \Gamma(\frac{n}{2}) (1+x^2/n)^{(n+1)/2}}, x \in \mathbb{R}.$$

- Распределения Стьюдента также называются *t*-распределениями
- Распределения Стьюдента симметричны отосительно нуля
- С ростом числа степеней распределение Стьюдента приближается (сходится) к стандартному нормальному распределению

Плотности распределений Стьюдента с различными ч.с.с.

Распределения Фишера-Снедекора

Плотность распределения Фишера-Снедекора $F_{n,m}$

$$p_{n,m}(x) = \frac{(m/n)^{m/2}}{\mathcal{B}(n/2, m/2)} \frac{x^{n/2-1}}{(x+m/n)^{(n+m)/2}} \mathbb{1}_{\{x \ge 0\}}$$

• $\mathcal{B}(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 x^{a-1} (1-x)^{b-1} dx$ – бета-функция, a,b>0.

- Распределение $F_{n,m}$ сходится к χ_n^2 при $m \to \infty$
- ullet Если $\nu \sim S_m$ (распределение Стьюдента), то $\nu^2 \sim F_{1,m}$
- Математическое ожидание: $\mathbb{E}_{\theta} f_{n,m} = m/(m-2), m > 2$
 - Дисперсия: $\mathbb{D}_{\theta} f_{n,m} = 2m^2(m+n-2)/(n(m-2)^2(m-4))$, m > 4

Выборка из нормального распределения

Теорема (Лемма Фишера)

Пусть X_1, X_2, \dots, X_n – выборка из нормального распределения $\mathcal{N}(a, \sigma^2)$. Тогда

- (i) $\sqrt{n} \frac{\overline{X} a}{\sigma} \in \mathcal{N}(0, 1);$
- (ii) \overline{X} и s^2 независимые статистики;
- (iii) $\frac{ns^2}{\sigma^2}$ имеет χ^2 -распределение с (n-1) степенью свободы;
- (iv) $\sqrt{n-1} \; \frac{\overline{X}-a}{s}$ имеет распределение Стьюдента с n-1 степенями свободы.

Доказательство леммы Фишера

Доказательство. Введем случайные величины $Y_k = X_k - \mathbb{E} X_k$, $1 \le k \le n$. Они независимы и имеют нормальное распределение $N(0,\sigma^2)$. Рассмотрим произвольную ортонормированную $n \times n$ -матрицу A, первая строка которой состоит из чисел, равных $\frac{1}{\sqrt{n}}$ (построение ортонормированного базиса). Пусть ξ_k , $1 \le k \le n$ — новые случайные величины, такие что $\xi = (\xi_1, \dots, \xi_n)' = \frac{1}{\sigma} AY$, $Y = (Y_1, \dots, Y_n)'$. В этом случае

$$\xi_1 = \frac{1}{\sigma\sqrt{n}} \sum_{k=1}^n Y_k = \frac{\sqrt{n}}{\sigma} \overline{Y}, \quad \mathbb{E}\xi_k = 0, \quad \mathbb{D}\xi_k = 1, \ 1 \le k \le n,$$
$$\operatorname{cov}(\xi_k, \xi_l) = 0 \quad (k \ne l).$$

Кроме того, можно выразить s^2 через случайные величины ξ_k , $1 \le k \le n$, которые независимы, как некоррелированные нормальные N(0,1). Поскольку A – ортогональна, суммы квадратов Y_k/σ^2 и ξ_k равны, так что

$$\frac{ns^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{k=1}^n Y_k^2 - \left(\frac{\overline{Y}}{\sigma}\right)^2 = \xi_2^2 + \ldots + \xi_n^2.$$

Отсюда уже следует независимость ns^2/σ^2 и $\overline{X} = \frac{\sigma}{\sqrt{n}} \xi_1 + a$.

Утверждение о распределениях ns^2/σ^2 и \overline{X} теперь очевидно.

Следствие из леммы Фишера

Следствие

Пусть X_1, X_2, \ldots, X_n и Y_1, Y_2, \ldots, Y_m – независимые выборки из нормальных распределений $\mathcal{N}(a, \sigma_1^2)$ и $\mathcal{N}(b, \sigma_2^2)$ соответственно. Тогда

$$F=rac{ns_1^2}{ms_2^2}rac{\sigma_2^2}{\sigma_1^2}$$
 имеет распределение Фишера–Снедекора $F_{n-1,m-1}$

- $S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^2$ выборочная дисперсии, построенная по X_1, X_2, \dots, X_n
- $S_2^2 = \frac{1}{m} \sum_{j=1}^m (Y_j \overline{Y})^2$ выборочная дисперсии, построенная по Y_1, Y_2, \dots, Y_m .

План

- 🕕 Параметрические семейства распределений
- Выборка из нормального распределения
- 3 Постановка задачи оценивания вещественного парметра
- Построение статистических оценок

Точечное оценивание

Пусть $(\mathfrak{X},\mathfrak{F},\mathcal{P}),\ \mathcal{P}=\{P_{\theta}:\theta\in\Theta\},\ \Theta\subseteq\mathbb{R}$ — статистический эксперимент

- Задача точечного оценивания: по результатам наблюдений найти приближенное значение параметра $\tilde{\theta}(X) \in \Theta$
- \bullet Точечная оценка статистика $\tilde{\theta}:\mathfrak{X}\to\Theta$ (измеримая)
- Для определения близости оценки $\tilde{\theta}$ к истинному значению параметра θ вводится функция потерь $W(\tilde{\theta}, \theta)$, удовлетворяющая следующим условиям:
 - неотрицательность: $W(\tilde{\theta}, \theta) \ge 0$
 - ullet если $ilde{ heta}$ = heta, то потери нулевые: W(heta, heta) = 0
- Наиболее употребительные функции потерь:
 - $W(\tilde{\theta},\theta) = (\tilde{\theta}-\theta)^2$ функция потерь Гаусса
 - $W(\tilde{\theta}, \theta) = |\tilde{\theta} \theta|$ функция потерь Лапласа
- Риск оценки $R_{\tilde{\theta}}:\Theta \to [0,\infty)$
 - $R_{\tilde{\theta}}(\theta) = \mathbb{E}_{\theta} W(\tilde{\theta}(X), \theta)$ среднее значение потерь при каждом фиксированном $\theta, \theta \in \Theta$

Точечное оценивание

Оптимальное оценивание

• Наиболее часто для измерения точности оценки $\tilde{\theta}$ используют гауссовский риск

$$R_{\tilde{\theta}}(\theta) = E_{\theta}(\tilde{\theta}(X) - \theta)^2$$

- Оценку, имеющую наименьший риск по сравнению с другими оценками при каждом значении θ , разумно считать оптимальной
 - в классе всевозможных оценок не существует оценки, минимизирующей риск при каждом значении θ
- Различают два подхода в задаче оптимального оценивания:
 - поиск оценки, минимизирующей риск при всех значениях $\theta \in \Theta$ в ограниченном классе разумных оценок
 - например, среди несмещенных оценок
 - использование функционалов от риска (байесовский, минимаксный подходы)

План

- 🕕 Параметрические семейства распределений
- Выборка из нормального распределения
- Постановка задачи оценивания вещественного парметра
- 4 Построение статистических оценок

Метод максимального правдоподобия

Функция правдоподобия

- Пусть $\mathcal{P} \ll \mu$, т.е. любая мера семейства распределений доминирована мерой μ : $\mathbb{P}_{\theta} \ll \mu$
 - $\mathbb{P}_{\theta} \ll \mu$, если $\forall A \in \mathfrak{F}$: $\mu(A) = 0 \Rightarrow \mathbb{P}_{\theta}(A) = 0$
 - по теоореме Радона–Никодима существует плотность $p_{\theta} \equiv \frac{dP_{\theta}}{du}$
 - $P_{\theta}(A) = \int_{A} p_{\theta}(x) d\mu(x), A \in \mathfrak{F}.$
- В качестве доминирующей меры обычно используют
 - меру Лебега: p_{θ} плотность распределения абсолютно непрерывной случайной величины
 - считающая мера на \mathbb{Z} : $p_{\theta}(x) = \mathbb{P}(X = x), x \in \mathbb{Z}$
- Функция правдоподобия $L: \mathfrak{X} \times \Theta \to \mathbb{R}_+$:

$$L(x;\theta) = p_{\theta}(x), \quad x \in \mathfrak{X}, \theta \in \Theta.$$

Оценки максимального правдоподобия

Определение

Оценка $\hat{\theta}(X)$, максимизирующая функцию правдоподобия $L(X;\theta)$ по θ при каждом фиксированном X (т.е. $L(X;\hat{\theta}(X)) \geq L(X;\tilde{\theta}(X))$ при каждом $X \in \mathfrak{X}$ для любой оценки $\tilde{\theta}(X)$), называется оценкой максимального правдоподобия (ОМП).

- Если $\hat{\theta}$ оценка максимального правдоподобия параметра θ , g параметрическая функция, то $g(\hat{\theta})$ является оценкой максимального правдоподобия для $g(\theta)$.
- Если X_1, \dots, X_n выборка из распределения с плотностью распределения $p_{\theta}, \ \theta \in \Theta$, то
 - функция правдоподобия распадается в произведение $L(X;\theta) = \prod_{i=1}^n p_{\theta}(X_i)$
 - логарифм функции правдоподобия представляется в виде суммы $LL(X;\theta) = \log L(X;\theta) = \sum_{i=1}^{n} \log p_{\theta}(X_i)$

Оценки максимального правдоподобия

Нахождение ОМП

• В силу монотонности логарифма задача максимизации функции правдоподобия сводится к задаче максимизации её логарифма по всем $\theta \in \Theta$

$$\log L(X; \theta) = \sum_{i=1}^{n} \log p_{\theta}(X_i).$$

- удобнее максимизировать сумму, а не произведение
- Если $\theta = (\theta_1, \dots, \theta_d) d$ -мерный параметр и p_θ дифференцируема по θ , то для нахождения максимума надо найти решения системы уравнений

$$U(X; \theta) = \frac{\partial}{\partial \theta_i} \log L(X; \theta) = 0, i = 1, ..., d.$$

 Если функция правдоподобия не дифференцируема по параметру, то переход от функции правдоподобия к её логарифму обычно не имеет смысла

Метод моментов

Пусть X_1, \ldots, X_n – выборка из распределения $P_{\theta}, \theta = (\theta_1, \ldots, \theta_d)$, и существуют $\mu_k(\theta) = \mathbb{E}_{\theta} X_1^k, \ k = 1, \ldots, n$.

Определение

Если существует единственное решение $\tilde{ heta}(X)$ системы уравнений

$$\hat{\mu}_k(\tilde{\theta}) = \mu_k(\tilde{\theta}), \quad k = 1, \dots, d,$$

где $\hat{\mu}_k(\tilde{\theta}) = \frac{1}{n} \sum_{i=1}^n X_i^k$ – выборочный момент k-го порядка, то $\tilde{\theta}(X)$ называется оценкой по методу моментов (ОММ).

- Выборочное распределение иногда называют непараметрической оценкой максимального правдоподобия распределения выборки
- Для построения ОММ используются моменты выборочного распределения
- Довольно часто ОММ и ОМП совпадают

Построение статистических оценок

Упражнение

Пусть X_1, \dots, X_n – выборка из двухпараметрического нормального распределения $N(a, \sigma^2)$. Найти ОМП и ОММ для параметра распределения $\theta = (a, \sigma^2)$.

Решение. (ОМП) Логарифм функции правдоподобия имеет вид

$$\log L(X; \theta) = -\frac{n}{2} \log(2\pi\sigma^2) - \sum_{i=1}^{n} \frac{(X_i - a)^2}{2\sigma^2}.$$

Точка максимума функции правдоподобия находится из системы уравнений

$$\begin{cases} 2 \sum_{i=1}^{n} (X_i - a) = 0, \\ n/\sigma - \sum_{i=1}^{n} \frac{(X_i - a)^2}{\sigma^3} = 0. \end{cases}$$

Получаем ОМП $(\hat{a}, \hat{\sigma^2}) = (\overline{X}, s^2)$.

Получаем ОМП ($\hat{a}, \hat{\sigma^2}$) = (\overline{X}, s^2).

(ОММ) Известно, что $\mathbb{E}_{\theta}X_1=a$ и $\mathbb{D}_{\theta}X_1=\sigma^2$. Следовательно, система метода моментов

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{n} X_i = a, \\ \frac{1}{n} \sum_{i=1}^{n} X_i^2 = a^2 + \sigma^2. \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{n} \sum_{i=1}^{n} X_i, \\ \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2 \end{cases}$$

Построение статистических оценок

Упражнение

Пусть X_1, \dots, X_n – выборка из двухпараметрического равномерного распределения на интервале (a, b) $(\theta = (a, b))$.

Решение. (ОМП) Функция правдоподобия имеет вид

$$L(x;\theta) = \prod_{i=1}^{n} \frac{1}{(b-a)} 1_{[a,b]}(x_i) = \frac{1}{(b-a)^n} 1_{[a,b]}(\min_i(x_i)) 1_{[a,b]}(\max_i(x_i)),$$
где
$$1_A(x) = \begin{cases} 1, \text{ если } x \in A; \\ 0, \text{ в остальных случаях.} \end{cases}$$

Функция правдоподобия не дифференцируема, но максимизация функции правдоподобия сводится к максимизации $(b-a) \to \max_{a,b}$ при условии $a \leq \min_{1 \leq i \leq n} (X_i) \leq \max_{1 \leq i \leq n} (X_i) \leq b$.

Решение данной задачи оптимизации – ОМП: $(\hat{a}, \hat{b}) = (\min_{1 < i < n} (X_i), \max_{1 < i < n} (X_i))$.

(ОММ) Известно, что $\mathbb{E}_{\theta}X_1 = \frac{a+b}{2}$ и $\mathbb{E}_{\theta}X_1^2 = \frac{a^2+ab+b^2}{2}$. Система ММ:

$$\begin{cases} \overline{X} = a, \\ \overline{X^2} = \frac{a^2 + ab + b^2}{3} \end{cases} \Leftrightarrow \begin{cases} b + a = 2\overline{X}, \\ b - a = 4\sqrt{3}\sqrt{\overline{X} - \overline{X^2}} \end{cases} \Leftrightarrow \begin{cases} a = \overline{X} - 2\sqrt{3}\sqrt{\overline{X} - \overline{X^2}}, \\ b = \overline{X} + 2\sqrt{3}\sqrt{\overline{X} - \overline{X^2}} \end{cases}$$

Таким образом, ОММ: $(\tilde{a}, \tilde{b}) = (\overline{X} - 2\sqrt{3}s, \overline{X} + 2\sqrt{3}s)$.