(3O) Самостоятельная работа № 3 Циклические алгоритмы. Оператор for

Цель: приобретение навыков программирования алгоритма, содержащего цикл с параметром.

Задание. По заданной в таблице 1 числовой последовательности получить соответствующую рекуррентную формулу; разработать алгоритм вычисления суммы n первых элементов этой последовательности; представить алгоритм в виде схемы алгоритма; написать программу на языке C#; выполнить тестирование программы.

Отчет следует начать с титульного листа.

Далее привести цель и общее задание на всю работу.

Затем привести индивидуальное задание (по вариантам) и решение индивидуального задания, состоящее из схемы алгоритма, листинга программного кода (текста программы) и экранных форм (т. е. скриншотов работы программы).

В отчете, помимо прочего, необходимо отразить этап получения рекуррентной формулы, то есть ручное вычисление коэффициентов. Проверку работоспособности программы организовать на той последовательности, которая соответствует варианту.

В конце отчета поместить вывод.

Таблица 1 – Варианты заданий

Вариант	Последовательность	Вариант	Последовательность
1	1, 7, 37, 187, 937,	2	3, 14, 58, 234, 938,
3	4, 18, 74, 298, 1194,	4	2, 13, 68, 343, 1718,
5	2, 10, 42, 170, 682,	6	1, 5, 17, 53, 161,
7	3, 12, 39, 120, 363,	8	4, 14, 44, 134, 404,
9	1, 6, 16, 36, 76,	10	4, 12, 28, 60, 124,
11	4, 21, 106, 531, 2656,	12	1, 7, 25, 79, 241,
13	4, 17, 69, 277, 1109,	14	2, 9, 37, 149, 597,
15	3, 15, 63, 255, 1023,	16	4, 20, 84, 340, 1364,
17	2, 14, 74, 374, 1874,	18	3, 7, 15, 31, 63,
19	3, 8, 18, 38, 78,	20	4, 24, 124, 624, 3124,
21	2, 12, 62, 312, 1562,	22	4, 23, 118, 593, 2968,
23	4, 19, 79, 319, 1279,	24	1, 6, 31, 156, 781,
25	1, 4, 13, 40, 121,	26	3, 10, 24, 52, 108,
27	2, 12, 52, 212, 852,	28	2, 8, 26, 80, 242,
29	3, 19, 99, 499, 2499,	30	4, 10, 22, 46, 94,

Теоретические сведения

Рекуррентной формулой называется формула, которая связывает (p + 1)между собой соседних элементов некоторой числовой последовательности. Зная pпервых элементов этой числовой последовательности, можно с помощью такой формулы шаг за шагом последовательно вычислить (p + 1)-й, (p + 2)-й, (p + 3)-й, ... элементы.

Все заданные в таблице 1 последовательности вида a_1 , a_2 , a_3 , a_4 , a_5 , ... получены с применением рекуррентной формулы следующего вида: $a_i = ba_{i-1} + c$, где b и c — некоторые коэффициенты.

Эта формула связывает два соседних элемента последовательности a_i и a_{i-1} . Таким образом, зная только первый элемент последовательности (и саму формулу), можно вычислить второй, третий, четвёртый и т. д. Для определения значений коэффициентов b и c в рекуррентной формуле (другими словами, для получения рекуррентной формулы) достаточно решить систему двух линейных уравнений:

$$\begin{cases} a_2 = ba_1 + c; \\ a_3 = ba_2 + c. \end{cases}$$

Алгоритм вычисления суммы s первых n элементов числовой последовательности можно организовать следующим образом. Ввести значение n; задать значение a_1 и начальное значение s, равное a_1 ; для каждого значения i от 2 до n вычислить a_i по рекуррентной формуле $a_i = ba_{i-1} + c$ и увеличить сумму s на значение этого элемента последовательности; вывести полученное в итоге значение суммы s.

Поскольку в данной задаче после прибавления очередного элемента последовательности к сумме он необходим только для вычисления следующего элемента, **индексы элементов последовательности можно опустить** и тогда рекуррентная формула примет вид a = ba + c (разумеется, здесь знаком равенства = обозначена операция присваивания).

Повторяющиеся действия — циклы — в алгоритме, как правило, организуются с помощью некоторого изменяющегося параметра, называемого счетчиком цикла (параметром цикла). В схемах алгоритмов цикл с начальным значением i_n (in), заранее известным конечным значением i_k (ik) и шагом изменения i_h (ih) счетчика i (i) может быть представлен в виде, изображенном на рисунке 1.

Рисунок 1 – Способ реализации цикла с параметром в схеме алгоритма

В программах на языке программирования С# подобные циклы с параметром (со счетчиком) реализуются с помощью оператора for, имеющего следующий синтаксис:

for
$$(i = in; i \le ik; i += ih) <$$
тело цикла>

В случае если тело цикла состоит из более чем одного оператора, следует заключать эти операторы в фигурные скобки.

Требования к алгоритму и программе

Не забывайте, что алгоритмы и программы должны быть **универсальными**, то есть работать с различными наборами данных. Поэтому необходимо, чтобы исходные данные — первый элемент ряда, коэффициенты формулы и количество элементов — вводились с клавиатуры.

Необходимо, чтобы, помимо собственно ответа, программа вывела на экран и n элементов последовательности, суммирование которых было произведено программой.