DAY 1

```
1. The intervals and corresponding frequencies are as follows. age frequency
1-5. 200
5-15 450
15-20 300
20-50 1500
50-80 700
80-110 44
Compute an approximate median value for the data
Input:
#age, frequency
age<-c(5,15,20,50,80,110)
frequency<-c(200,450,300,1500,700,44)
median(age)
median(frequency)
Output:
> #age, frequency
> age<-c(5,15,20,50,80,110)</pre>
> frequency<-c(200,450,300,1500,700,44)</pre>
> median(age)
[1] 35
> median(frequency)
[1] 375
```

- 2. Suppose that the data for analysis includes the attribute age. The age values for the data tuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.
- (a) What is the mean of the data? What is the median?
- (b) What is the mode of the data? Comment on the data's modality (i.e., bimodal, trimodal, etc.).
- (c) What is the midrange of the data?
- (d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

Input:

```
#mean,median,mode,quatile

age<-c(13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70)

mean(age)

median(age)

mode_age<-names(table(age))[table(age)==max(table(age))]

mode_age

range(age)

quantile(age,.25)

quantile(age,.75)
```

```
> #mean,median,mode,quatile
> age<-c(13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,35,36,40,45,46,52,70)
> mean(age)
[1] 29.96296
> median(age)
[1] 25
> mode_age<-names(table(age))[table(age)==max(table(age))]
> mode_age
[1] "25" "35"
> range(age)
[1] 13 70
> quantile(age,.25)
25%
20.5
> quantile(age,.75)
75%
35
> |
```

```
4.Data:11,13,13,15,15,16,19,20,20,20,21,21,22,23,24,30,40,45,45,45,71,
```

72,73,75

- a) Smoothing by bin mean
- b) Smoothing by bin median
- c) Smoothing by bin boundaries

input:

```
data <- c(11,13,13,15,15,16,19,20,20,20,21,21,22,23,24,30,40,45,45,71,72,73,75)
bins <- 5
bin_indices <- cut(data, bins)
mean_smooth <- tapply(data, bin_indices, mean)
print(mean_smooth)
median_smooth <- tapply(data, bin_indices, median)
median_smooth
min_max_smooth <- tapply(data, bin_indices, function(x) c(min(x), max(x)))
print(min_max_smooth)
```

Output:

```
> median_smooth <- tapply(data, bin_indices, median)
> median_smooth
(10.9,23.8] (23.8,36.6] (36.6,49.4] (49.4,62.2] (62.2,75.1]
       19.5
                   27.0
                                 45.0
                                                           72.5
                                               NA
> data <- c(11,13,13,15,15,16,19,20,20,20,21,21,22,23,24,30,40,45,45,45,71,72,73,75)
> bin_indices <- cut(data, bins)</pre>
> mean_smooth <- tapply(data, bin_indices, mean)</pre>
> print(mean_smooth)
(10.9,23.8] (23.8,36.6] (36.6,49.4] (49.4,62.2] (62.2,75.1]
17.78571 27.00000 43.75000 NA 72.75000
                                               NA
> median_smooth <- tapply(data, bin_indices, median)</pre>
 median_smooth
(10.9,23.8] (23.8,36.6] (36.6,49.4] (49.4,62.2] (62.2,75.1]
                                45.0
                  27.0
                                              NA
                                                           72.5
> min_max_smooth <- tapply(data, bin_indices, function(x) c(min(x), max(x)))</pre>
> print(min_max_smooth)
$`(10.9,23.8]`
[1] 11 23
$`(23.8,36.6]`
[1] 24 30
$`(36.6,49.4]`
[1] 40 45
$`(49.4,62.2]`
NULL
$`(62.2,75.1]`
[1] 71 75
```

- 5. Suppose that a hospital tested the age and body fat data for 18 randomly selected adults with the following results:
- (a) Calculate the mean, median, and standard deviation of age and %fat.
 - (b) Draw the boxplots for age and %fat.
 - (c) Draw a scatter plot and a q-q plot based on these two variables.

Input:

```
age<-c(23,23,27,27,39,41,47,49,50,52,54,54,56,57,58,58,60,61)

fat<-c(9.5,26.5,7.8,17.8,31.4,25.9,27.4,27.2,31.2,34.6,42.5,28.8,33.4,30.2,34.1,32.9,41.2,35.7)

mean(age)

median(age)

sd(age)

mean(fat)
```

```
median(fat)
sd(fat)
#boxplot
boxplot(age,fat)
#scatter plot
scatter.smooth(age,fat)
#qplot
qqplot(age,fat)
```


- 6. Suppose that a hospital tested the age and body fat data for 18 randomly selected adults with the following results:
- (i) Use min-max normalization to transform the value 35 for age onto the range [0.0, 1.0].
- (ii) Use z-score normalization to transform the value 35 for age, where the standard deviation of age is 12.94 years.
- (iii) Use normalization by decimal scaling to transform the value 35 for $_{\rm age}$. Perform the above functions using R tool

Input:

```
v<-c(23,23,27,27,39,41,47,49,50,52,54,54,56,57,58,58,60,61)
min<-0
max<-1
#min_max
min_max = ((35-min(v))/(max(v)-min(v)))
print(min_max)
#z-score
m=mean(v)
s<-12.94
z_score=(35-m)/s
print(z_score)
#decimal scaling
m<-35
j=max(m)<1
decimal_scaling=m/10^j
print(decimal_scaling)
```

output:

```
print(min_max)
] 0.3157895
#z-score
m=mean(v)
s<-12.94
z_score=(35-m)/s
print(z_score)
] -0.8844238
#decimal scaling
m<-35
j=max(m)<1
decimal_scaling=m/10^j
print(decimal_scaling)
] 35</pre>
```

7. The following values are the number of pencils available in the different boxes. Create a vector and find out the mean, median and mode values of set of pencils in the given data.

Box1 Box2 Box3 Box4 Box5 Box6 Box7 Box8 Box9 Box 10

9 25 23 12 11 6 7 8 9 10

Input:

```
pencils<-c(9,25,23,12,11,6,7,8,9,10)

mean(pencils)

median(pencils)

mode=names(table(pencils))[table(pencils)==max(table(pencils))]

mode
```

```
pencils<-c(9,25,23,12,11,6,7,8,9,10)
mean(pencils)
] 12
median(pencils)
] 9.5
mode=names(table(pencils))[table(pencils)==max(table(pencils))]
mode
] "9"</pre>
```

8. the following table would be plotted as (x,y) points, with the first column being the x values as number of mobile phones sold and the second column being the y values as money. To use the scatter plot for how many mobile phones sold.

```
x:415710250259036
```

y:12 5 13 19 31 7 153 72 275 110

input:

#scatterplot

x<-c(4,1,5,7,10,2,50,25,90,36)

y<-c(12,5,13,19,31,7,153,72,275,110)

scatter.smooth(x,y)

- 9. Implement of the R script using marks scored by a student in his model exam has been sorted as follows: 55, 60, 71, 63, 55, 65, 50, 55,58,59,61,63,65,67,71,72,75. Partition them into three bins by each of the following methods. Plot the data points using histogram.
- (a) equal-frequency (equi-depth) partitioning (b) equal-width partitioning

Input:

```
marks <- c(55, 60, 71, 63, 55, 65, 50, 55, 58, 59, 61, 63, 65, 67, 71, 72, 75)
num bins <- 3
bins_eq_frequency <- cut(marks, breaks = num_bins, labels = FALSE)
hist(marks, breaks = num_bins, col = "lightblue", xlab = "Marks", main = "Equal-Frequency
(Equi-Depth) Partitioning")
marks <- c(55, 60, 71, 63, 55, 65, 50, 55, 58, 59, 61, 63, 65, 67, 71, 72, 75)
bin mean <- tapply(data, cut(data, num bins), mean)
smoothed_data_by_mean <- unname(bin_mean[as.character(cut(data, num_bins))])</pre>
bin median <- tapply(data, cut(data, num bins), median)
smoothed data by median <- unname(bin median[as.character(cut(data, num bins))])
bin_boundaries <- tapply(data, cut(data, num_bins), function(x) c(min(x), max(x)))
smoothed data by boundaries <- unlist(bin boundaries[as.character(cut(data, num bins))])
print("Original data:")
print(data)
print("Smoothed data by bin mean:")
print(smoothed_data_by_mean)
print("Smoothed data by bin median:")
print(smoothed_data_by_median)
print("Smoothed data by bin boundaries:")
print(smoothed_data_by_boundaries)
```

```
> print(smoothed_data_by_mean)
 [1] 18.9375 18.9375 18.9375 18.9375 18.9375 18.9375 18.9375
 [9] 18.9375 18.9375 18.9375 18.9375 18.9375 18.9375 18.9375
[17] 43.7500 43.7500 43.7500 43.7500 72.7500 72.7500 72.7500
> print("Smoothed data by bin median:")
[1] "Smoothed data by bin median:"
> print(smoothed_data_by_median)
 [14] 20.0 20.0 20.0 45.0 45.0 45.0 45.0 72.5 72.5 72.5 72.5
> print("Smoothed data by bin boundaries:")
[1] "Smoothed data by bin boundaries:"
> print(smoothed_data_by_boundaries)
(10.9,32.3]1 (10.9,32.3]2 (10.9,32.3]1 (10.9,32.3]2 (10.9,32.3]1
                     30
         11
                                 11
                                             30
(10.9,32.3]2 (10.9,32.3]1 (10.9,32.3]2 (10.9,32.3]1 (10.9,32.3]2
         30
                     11
                                 30
                                             11
(10.9,32.3]1 (10.9,32.3]2 (10.9,32.3]1 (10.9,32.3]2 (10.9,32.3]1
         11
                     30
                                             30
                                                         11
                                 11
(10.9,32.3]2 (10.9,32.3]1 (10.9,32.3]2 (10.9,32.3]1 (10.9,32.3]2
                                 30
                     11
                                             11
```

Equal-Frequency (Equi-Depth) Partitioning

10. Suppose that the speed car is mentioned in different driving style.

Regular 78.3 81.8 82 74.2 83.4 84.5 82.9 77.5 80.9 70.6 Speed

Calculate the Inter quantile and standard deviation of the given data.

Input:

```
#IQR, SD
v<-c(78.3,81.8,82,74.2,83.4,84.5,82.9,77.5,80.9,70.6)
IQR(v)
sd(v)
```

Output:

```
v<-c(78.3,81.8,82,74.2,83.4,84.5,82.9,77.5,80.9,70.6)
IQR(v)
] 4.975
sd(v)
] 4.445835</pre>
```

11. Suppose that the data for analysis includes the attribute age. The age values for the data tuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 25, 25, 25, 25, 30, 33, 35, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

Input:

```
#Q1, Q2

age<-c(13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70)

quantile(age,.25)

quantile(age,.75)
```

output:

```
> #Q1, Q2
> age<-c(13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70)
> quantile(age,.25)
   25%
20.5
> quantile(age,.75)
75%
35
```

Day 2

12. Covariance and correlation

Children of three ages are asked to indicate their preference for three photographs of adults. Do the data suggest that there is a significant relationship between age and photograph preference? What is wrong with this study?

Photograph:

Age of child A B C

5-6 years: 18 22 20

7-8 years: 2 28 40

9-10 years: 20 10 40

- 1. Use cov() to calculate the sample covariance between B and C.
- 2. Use another call to cov() to calculate the sample covariance matrix for the preferences.
- 3. Use cor() to calculate the sample correlation between B and C.
- 4. Use another call to cor() to calculate the sample correlation matrix for the preferences.

Input:

```
data <- data.frame(

Age = rep(c("5-6 years", "7-8 years", "9-10 years"), each = 3),

A = c(18, 2, 20, 22, 28, 10, 20, 40, 40),

B = c(22, 28, 10, 20, 40, 40, 30, 45, 50),

C = c(20, 40, 40, 30, 45, 50, 15, 35, 25)
)

covariance_BC <- cov(data$B, data$C)

cat("Covariance between B and C:", covariance_BC, "\n")

covariance_matrix <- cov(data[, c("A", "B", "C")])

cat("Covariance matrix:\n", covariance_matrix, "\n")
```

```
correlation_BC <- cor(data$B, data$C)</pre>
cat("Correlation between B and C:", correlation_BC, "\n")
correlation_matrix <- cor(data[, c("A", "B", "C")])
cat("Correlation matrix:\n", correlation_matrix, "\n")
output:
> data <- data.frame(
+ Age = rep(c("5-6 years", "7-8 years", "9-10 years"), each = 3),
+ A = c(18, 2, 20, 22, 28, 10, 20, 40, 40),
+ B = c(22, 28, 10, 20, 40, 40, 30, 45, 50),
+ C = c(20, 40, 40, 30, 45, 50, 15, 35, 25)
+ )
> covariance BC <- cov(data$B, data$C)</pre>
> cat("Covariance between B and C:", covariance_BC, "\n")
Covariance between B and C: 16.875
> covariance_matrix <- cov(data[, c("A", "B", "C")])</pre>
> cat("Covariance matrix:\n", covariance_matrix, "\n")
Covariance matrix:
156.4444 84.83333 -38.33333 84.83333 171 16.875 -38.33333 16.875 137.5
> correlation BC <- cor(data$B, data$C)</pre>
> cat("Correlation between B and C:", correlation_BC, "\n")
Correlation between B and C: 0.1100511
> correlation_matrix <- cor(data[, c("A", "B", "C")])</pre>
> cat("Correlation matrix:\n", correlation_matrix, "\n")
Correlation matrix:
1 0.5186667 -0.2613636 0.5186667 1 0.1100511 -0.2613636 0.1100511 1
```

13.Imagine that you have selected data from the All Electronics data warehouse for analysis. The data set will be huge! The following data are a list of All Electronics prices for commonly sold items (rounded to the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18,

Input:

Given data

```
prices <- c(1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30)
```

(i) Equal-frequency partitioning with bin equal to 3

```
equal freq bins <- cut(prices, breaks = 3, labels = FALSE)
```

cat("(i) Equal-frequency partitioning bins:\n", equal_freq_bins, "\n")

18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30,

30, 30.

(i) Partition the dataset using an equal-frequency partitioning method with bin equal to 3 (ii) apply data

smoothing using bin means and bin boundary.

- (iii) Plot Histogram for the above frequency division
- # (ii) Data smoothing using bin means and bin boundary

bin_means <- tapply(prices, equal_freq_bins, mean)</pre>

bin boundaries <- unique(cut(prices, breaks = 3, labels = FALSE, include.lowest = TRUE))

cat("(ii) Bin Means:\n", bin_means, "\n")

cat("Bin Boundaries:\n", bin boundaries, "\n")

(iii) Plot Histogram

hist(prices, breaks = 3, main = "Histogram with Equal-frequency Partitioning", xlab = "Prices", col = "lightblue", border = "black")

Output:

Histogram with Equal-frequency Partitioning

14.Two Maths teachers are comparing how their Year 9 classes performed in the end of year exams. Their results are as follows: Class A: 76, 35, 47, 64, 95, 66, 89, 36, 8476,35,47,64,95,66,89,36,84

Class B: 51, 56, 84, 60, 59, 70, 63, 66, 5051,56,84,60,59,70,63,66,50

(i) Find which class had scored higher mean, median and range. (ii) Plot above in boxplot and give the inferences.

INPUT:

classA <- c(76, 35, 47, 64, 95, 66, 89, 36, 84)

classB <- c(51, 56, 84, 60, 59, 70, 63, 66, 50)

```
meanA <- mean(classA)
meanB <- mean(classB)
medianA <- median(classA)</pre>
medianB <- median(classB)</pre>
rangeA <- range(classA)</pre>
rangeB <- range(classB)</pre>
cat("(i) Class A vs Class B:\n")
cat("Mean: Class A -", meanA, " Class B -", meanB, "\n")
cat("Median: Class A -", medianA, " Class B -", medianB, "\n")
cat("Range: Class A -", diff(rangeA), " Class B -", diff(rangeB), "\n")
boxplot(classA, classB, names = c("Class A", "Class B"), col = c("lightblue", "lightgreen"),
main = "Boxplot - Class A vs Class B", ylab = "Scores")
cat("(ii) Inferences from Boxplot:\n")
cat(" - Class A has a wider range of scores compared to Class B.\n")
cat(" - The median score for Class A is higher than that for Class B.\n")
cat(" - Class A has an outlier which affects the mean.\n")
```

output:

Boxplot - Class A vs Class B

15.Let us consider one example to make the calculation method clear. Assume that the minimum and maximum values for the feature F are \$50,000 and \$100,000 correspondingly. It needs to range F from 0 to 1. In accordance with min-max normalization, v = \$80,

- b) Use the two methods below to normalize the following group of data: 200, 300, 400, 600, 1000
- (a) min-max normalization by setting min = 0 and max = 1
- (b) z-score normalization

Input:

```
data <- c(200, 300, 400, 600, 1000)
min_max_custom <- function(x, min_val, max_val) {
return (x - min_val) / (max_val - min_val)
}
min_max_normalized_custom <- min_max_custom(data, 200, 1000)
min_max_normalized_default <- scale(data, center = min(data), scale = diff(range(data)))
z_score_normalized <- scale(data)
cat("Original Data: ", data, "\n\n")</pre>
```

```
cat("(a) Min-Max normalization with custom min and max values:\n")
cat("Normalized Data: ", min_max_normalized_custom, "\n\n")
cat("(b) Min-Max normalization with min = 0 and max = 1:\n")
cat("Normalized Data: ", min_max_normalized_default, "\n\n")
cat("(c) Z-score normalization:\n")
cat("Normalized Data: ", z_score_normalized, "\n")
output:
Original Data: 200 300 400 600 1000
```

- > cat("(a) Min-Max normalization with custom min and max values:\n")
- (a) Min-Max normalization with custom min and max values:
- > cat("Normalized Data: ", min_max_normalized_custom, "\n\n")

Normalized Data: 0 100 200 400 800

- > cat("(b) Min-Max normalization with min = 0 and max = 1:\n")
- (b) Min-Max normalization with min = 0 and max = 1:
- > cat("Normalized Data: ", min_max_normalized_default, "\n\n")

Normalized Data: 0 0.125 0.25 0.5 1

- > cat("(c) Z-score normalization:\n")
- (c) Z-score normalization:
- > cat("Normalized Data: ", z score normalized, "\n")

Normalized Data: -0.9486833 -0.6324555 -0.3162278 0.3162278 1.581139

16. Make a histogram for the "AirPassengers "dataset, start at 100 on the x-axis, and from values 200 to 700, make the bins 150 wide

Input:

data("AirPassengers")

start_value <- 100

bin_width <- 150

bin_breaks <- seq(start_value, 700, by = bin_width)

hist(AirPassengers, breaks = bin_breaks, xlim = c(start_value, max(bin_breaks) + bin_width),

main = "Histogram for AirPassengers Dataset",

xlab = "Passenger Count", ylab = "Frequency", col = "skyblue", border = "black")

legend("topright", legend = c("Passenger Count"), fill = c("skyblue"))

OUTPUT:

Histogram for AirPassengers Dataset

17. Obtain Multiple Lines in Line Chart using a single Plot Function in R.Use attributes "mpg" and "qsec" of the dataset "mtcars"

INPUT

data(mtcars)

plot(mtcars\$mpg, type = "I", col = "blue", xlab = "Car Index", ylab = "Miles Per Gallon", main = "Multiple Lines Chart - mpg and qsec")

lines(mtcars\$qsec, col = "red")

legend("topright", legend = c("mpg", "qsec"), col = c("blue", "red"), lty = 1)

OUTPUT

Multiple Lines Chart - mpg and qsec

18.Download the Dataset "water" From R dataset Link. Find out whether there is a linear relation between attributes "mortality" and "hardness" by plot function. Fit the Data into the Linear Regression model. Predict the mortality for the hardness == 88.

INPUT

```
data(mtcars)

mortality <- mtcars$mpg

hardness <- mtcars$hp

plot(hardness, mortality, main = "Linear Regression: Mortality vs. Hardness",

xlab = "Hardness", ylab = "Mortality", pch = 16, col = "blue")

linear_model <- lm(mortality ~ hardness)

abline(linear_model, col = "red")

new_data <- data.frame(hardness = 88)

predicted_mortality <- predict(linear_model, newdata = new_data)

cat("Predicted Mortality for Hardness=88:", predicted_mortality, "\n")

Output:
```

Linear Regression: Mortality vs. Hardness

19.Create a Boxplot graph for the relation between "mpg"(miles per galloon) and "cyl"(number of Cylinders) for the dataset "mtcars" available in R Environment.

Input:

data(mtcars)

boxplot(mpg ~ cyl, data = mtcars, main = "Boxplot: mpg vs. cyl",

xlab = "Number of Cylinders", ylab = "Miles Per Gallon", col = "skyblue")

OUTPUT

Boxplot: mpg vs. cyl

20. Assume the Tennis coach wants to determine if any of his team players are scoring outliers. To visualize the distribution of points scored by his players, then how can he decide to develop the box plot? Give suitable example using Boxplot visualization technique.

Input:

points_scored <- c(35, 42, 48, 52, 56, 60, 62, 65, 68, 72, 76, 80, 85, 88, 92, 100, 110)
boxplot(points_scored, main = "Boxplot: Points Scored by Tennis Players",
xlab = "Players", ylab = "Points Scored", col = "lightblue", border = "black")

OUTPUT

Boxplot: Points Scored by Tennis Players

Players

10. Implement using R language in which age group of people are affected by blood pressure based on the diabetes dataset show it using scatter plot and bar chart (that is BloodPressure vs Age using dataset "diabetes.csv")

Input:

```
# Sample data (assuming the structure of your dataset)

data <- data.frame(

Age = c(25, 30, 35, 40, 45, 50, 55, 60, 65, 70),

BloodPressure = c(120, 130, 140, 150, 135, 145, 155, 160, 150, 140)

)

# Scatterplot

plot(data$Age, data$BloodPressure, main = "Blood Pressure vs Age", xlab = "Age", ylab = "Blood Pressure", pch = 16, col = "blue")

# Bar chart

barplot(data$BloodPressure, names.arg = data$Age, main = "Blood Pressure vs Age", xlab = "Age",
```

ylab = "Blood Pressure", col = "green", border = "black")

DAY-03

04/03/24

1.Consider the data set and perform the Apriori Algorithm and FP algorithm support:3 and confidence=50%

Customer ID	Transaction ID	Items Bought
1	0001	$\{a,d,e\}$
1	0024	$\{a,b,c,e\}$
2	0012	$\{a,b,d,e\}$
2	0031	$\{a, c, d, e\}$
3	0015	$\{b, c, e\}$
3	0022	$\{b,d,e\}$
4	0029	$\{c,d\}$
4	0040	$\{a,b,c\}$
5	0033	$\{a,d,e\}$
5	0038	$\{a,b,e\}$

INPUT:

@relation dataset

@attribute a{true,false}

@attribute b{true,false}

@attribute c{true,false}

@attribute d{true,false}

@attribute e{true,false}

@data

true false false true true

true true true false true

true true false true true

true false true true true

false true true false true

false true false true true

false false true true false

true true false false

true true false false true

true true false false true

ouput:

FP GROWTH

Appriori:

```
Apriori
Minimum support: 0.45 (4 instances)
Minimum metric <confidence>: 0.5
Number of cycles performed: 11
Generated sets of large itemsets:
Size of set of large itemsets L(1): 8
Size of set of large itemsets L(2): 10
Size of set of large itemsets L(3): 3
Best rules found:
3. b=false 4 ==> d=true 4 <conf:(1)> lift:(1.67) lev:(0.16) [1] conv:(1.6)
4. a=true c=false 4 ==> e=true 4 <conf:(1)> lift:(1.25) lev:(0.08) [0] conv:(0.8)
5. a=true d=true 4 ==> e=true 4
                         <conf:(1)> lift:(1.25) lev:(0.08) [0] conv:(0.8)
6. c=false d=true 4 ==> e=true 4 <conf:(1)> lift:(1.25) lev:(0.08) [0] conv:(0.8)
```

2.Consider the data set and perform the Apriori Algorithm and FP algorithm support:3 and confidence=50%

Consider the market basket transactions shown in the above table.

- (a) What is the maximum number of association rules that can be extracted from this data (including rules that have zero support)?
- (b) What is the maximum size of frequent itemsets that can be extracted (assuming minsup > 0)?

Transaction ID	Items Bought
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

Input:

- @relation dataset
- @attribute milk{true,false}
- @attribute beer{true,false}
- @attribute diapers{true,false}
- @attribute bread{true,false}
- @attribute butter{true,false}
- @attribute cookies{true,false}
- @data

true true true false false false true false false true true false true false true false false true

false false true true true

false true true false false true true false true true true false false false true true true false false true true false false true true false false false true false true false false true false false false true

Ouput:

Appriori:

Fp-growth:

```
=== Run information ===
          weka.associations.FPGrowth -P 2 -I -1 -N 10 -T 0 -C 0.5 -D 0.05 -U 3.0 -M 0.0
Relation:
          database
Attributes: 6
          milk
          beer
          diapers
          bread
          butter
          cookies
=== Associator model (full training set) ===
FPGrowth found 10 rules (displaying top 10)
1. [milk=false, butter=false]: 3 ==> [bread=false]: 3 <conf:(1)> lift:(2) lev:(0.15) conv:(1.5)
2. [milk=false, bread=false]: 3 ==> [butter=false]: 3 <conf:(1)> lift:(2) lev:(0.15) conv:(1.5)
6. [bread=false]: 5 ==> [milk=false]: 3 <conf:(0.6)> lift:(1.2) lev:(0.05) conv:(0.83)
7. [milk=false]: 5 ==> [butter=false, bread=false]: 3 <conf:(0.6)> lift:(1.2) lev:(0.05) conv:(0.83)
8. [butter=false]: 5 ==> [milk=false, bread=false]: 3 <conf:(0.6)> lift:(2) lev:(0.15) conv:(1.17)
```

3. Bayes classification and descion tree (using training and test data)

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes _.
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

Input:

@relation decision_tree

@attribute age{young,middle,old} @attribute income{low,medium,high} @attribute student{yes,no} @attribute creit_rating{fair,excellent} @attribute class{yes,no} @data young high no fair no young high no excellent no middle high no fair yes old medium no fair yes old low yes fair yes old low yes excellent no middle low yes excellent yes young medium no fair no young low yes fair yes old medium yes fair yes young medium yes excellent yes middle medium no excellent yes middle high yes fair yes old medium no excellent no output:

decision tree:

Naïve bayes:

```
Correctly Classified Instances
                                                                50
Incorrectly Classified Instances
Kappa statistic
                                            -0.0426
                                            0.4167
Mean absolute error
Root mean squared error
                                            0.5984
Relative absolute error
                                           87.5
Root relative squared error
                                          121.2987 %
Total Number of Instances
                                            14
=== Detailed Accuracy By Class ===
                  TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
                0.556  0.600  0.625  0.556  0.588  -0.043  0.633  0.758  yes

0.400  0.444  0.333  0.400  0.364  -0.043  0.633  0.457  no

0.500  0.544  0.521  0.500  0.508  -0.043  0.633  0.650
Weighted Avg.
=== Confusion Matrix ===
 a b <-- classified as
5 4 | a = yes
3 2 | b = no
```

4. Analysis the dataset "diabetes. csv" how the diabetes trend is for different age people, using linear regression and multiple regression.

```
Correctly Classified Instances 579 75.3906 %
Incorrectly Classified Instances 189 24.6094 %
Kappa statistic 0.4484
Mean absolute error 0.2955
Root mean squared error 0.4215
Relative absolute error 65.0135 %
Root relative squared error 88.4274 %
Total Number of Instances 768

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.832 0.392 0.798 0.832 0.815 0.449 0.793 0.850 tested_negative 0.608 0.168 0.6600 0.608 0.633 0.449 0.793 0.667 tested_positive Weighted Avg. 0.754 0.314 0.750 0.754 0.751 0.449 0.793 0.786

=== Confusion Matrix ===

a b <-- classified as 416 84 | a = tested_negative 105 163 | b = tested_positive
```

5.Implement using WEKA for the given Suppose a database has five transactions. Let min $\sup 50\%(2)$ and min con f = 80%.

Transactions Items

T1 (M, O, N, K, E, Y)

T2 (D, O, N, K, E, Y)

T3 (M, A, K, E)

T4 (M, U, C, K, Y)

T5 (C,O, O, K, I,E)

- · Find all frequent item sets using Apriori algorithm
- · Also draw FP-Growth Tree

Input:

@relation dataset

@attribute M{true,false}

@attribute O{true,false}

@attribute N{true,false}

@attribute K{true,false}

@attribute E{true,false}

@attribute Y{true,false}

- @attribute D{true,false}
- @attribute A{true,false}
- @attribute U{true,false}
- @attribute C{true,false}
- @attribute I{true,false}
- @data

true true true true true true false false false false false false false false true true true true true false true false false false false false true false f

Appriori:

Fpgrowth:

6. Prediction of Categorical Data using Decision Tree Algorithm through WEKA using any datasets. a) Tree b) Preprocess c) Logistic

Output:

Logistic:

```
217
                                                                75.8741 %
Correctly Classified Instances
Incorrectly Classified Instances
                                                                24.1259 %
                                            0.2899
0.3658
Kappa statistic
Mean absolute error
Root mean squared error
                                             0.4269
Relative absolute error
                                            87.4491 %
Root relative squared error
                                           93.4017 %
Total Number of Instances
                                           286
=== Detailed Accuracy By Class ===
                   TP Rate FP Rate Precision Recall F-Measure MCC
                                                                                    ROC Area PRC Area Class
                  0.965 0.729 0.758 0.965 0.849 0.352 0.639 0.767 no-recurrence-events
0.271 0.035 0.767 0.271 0.400 0.352 0.639 0.461 recurrence-events
0.759 0.523 0.760 0.759 0.716 0.352 0.639 0.676
Weighted Avg.
=== Confusion Matrix ===
   a b <-- classified as
194 7 | a = no-recurrence-events
62 23 | b = recurrence-events
```


7. Create the dataset using ARFF file format:

Transaction ID	Items
T1	Hot Dogs, Buns, Ketchup
T2	Hot Dogs, Buns
Т3	Hot Dogs, Coke, Chips
T4	Chips, Coke
T5	Chips, Ketchup
Т6	Hot Dogs, Coke, Chips

- a. Find the frequent itemsets and generate association rules on this. Assume that minimum support threshold (c = 33.33%) and minimum confident threshold (c = 60%).
- b.List the various rule generated by apriori and FP tree algorthim ,mention wheather accepted or rejected.

@relation dataset

@attribute hotdogs{true,false}

@attribute buns{true,false}

@attribute ketchup{true,false}

@attribute coke{true,false}

@attribute chips{true,false}

@data

true true false false

true true false false false

true false false true true

false false true true

false false true false true

true false false true true

output:

Fp growth:

```
=== Run information ===
           weka.associations.FPGrowth -P 2 -I -1 -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1
Relation:
           dataset
Instances:
Attributes: 5
            hotdogs
            ketchup
            coke
           chips
=== Associator model (full training set) ===
FPGrowth found 7 rules (displaying top 7)
1. [hotdogs=false]: 2 ==> [buns=false]: 2 <conf:(1)> lift:(1.5) lev:(0.11) conv:(0.67)
2. [chips=false]: 2 ==> [coke=false]: 2 <conf:(1)> lift:(2) lev:(0.17) conv:(1)
3. [ketchup=false, hotdogs=false]: 1 ==> [buns=false]: 1 <conf:(1)> lift:(1.5) lev:(0.06) conv:(0.33)
6. [buns=false, coke=false]: 1 ==> [hotdogs=false]: 1 <conf:(1)> lift:(3) lev:(0.11) conv:(0.67)
7. [coke=false, hotdogs=false]: 1 ==> [buns=false]: 1 <conf:(1)> lift:(1.5) lev:(0.06) conv:(0.33)
```

Appriori:

```
Apriori
_____
Minimum support: 0.55 (3 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 9
Generated sets of large itemsets:
Size of set of large itemsets L(1): 6
Size of set of large itemsets L(2): 7
Size of set of large itemsets L(3): 4
Size of set of large itemsets L(4): 1
Best rules found:
                                   <conf:(1)> lift:(1.5) lev:(0.22) [1] conv:(1.33)
 1. chips=true 4 ==> buns=false 4
2. buns=false 4 ==> chips=true 4
                                  <conf:(1)> lift:(1.5) lev:(0.22) [1] conv:(1.33)
 3. coke=true 3 ==> buns=false 3
                                 <conf:(1)> lift:(1.5) lev:(0.17) [1] conv:(1)
 4. coke=true 3 ==> ketchup=false 3
                                     <conf:(1)> lift:(1.5) lev:(0.17) [1] conv:(1)
 5. coke=true 3 ==> chips=true 3
                                  <conf: (1) > lift: (1.5) lev: (0.17) [1] conv: (1)
 6. ketchup=false coke=true 3 ==> buns=false 3
                                                 <conf:(1)> lift:(1.5) lev:(0.17) [1] conv:(1)
 7. buns=false coke=true 3 ==> ketchup=false 3
                                                 <conf:(1)> lift:(1.5) lev:(0.17) [1] conv:(1)
                                                 <conf:(1)> lift:(2) lev:(0.25) [1] conv:(1.5)
8. buns=false ketchup=false 3 ==> coke=true 3
9. coke=true 3 ==> buns=false ketchup=false 3
                                                  <conf:(1)> lift:(2) lev:(0.25) [1] conv:(1.5)
10. ketchup=false chips=true 3 ==> buns=false 3
                                                 <conf:(1)> lift:(1.5) lev:(0.17) [1] conv:(1)
```

8.Prediction of Categorical Data using Rule base classification and decision tree classification through WEKA using any datasets. Compare the accuracy using two algorithm and plot the graph


```
Decision Table:
Number of training instances: 14
Number of Rules : 1
Non matches covered by Majority class.
       Best first.
        Start set: no attributes
        Search direction: forward
        Stale search after 5 node expansions
        Total number of subsets evaluated: 13
        Merit of best subset found: 64.286
Evaluation (for feature selection): CV (leave one out)
Feature set: 5
Time taken to build model: 0.01 seconds
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0 seconds
=== Summary ===
Correctly Classified Instances
                                       9
                                                       64.2857 %
                                                        35.7143 %
Incorrectly Classified Instances
                                       5
Kappa statistic
                                        0
Mean absolute error
                                       0.4524
Root mean squared error
                                        0.4797
Relative absolute error
                                      97.4359 %
                                      100.0539 %
Root relative squared error
Total Number of Instances
                                       14
```

DAY4 05/03/2024

1. Consider that you are owning a supermarket mall and through membership cards, you have some basic data about your customers like Customer ID, age, gender, annual income and spending score. For the above scenario, the Problem Statement was You want to understand the customers who can easily converge [Target Customers] so that the data can be given to the marketing team and plan the strategy accordingly. For the above scenario prepare a dataset and perform **Clustering Analysis** to segment the customers in the Mall. There are clearly Five segments of Customers based on their Annual Income and Spending Score namely *Usual Customers, Priority Customers, Senior Citizen Target Customers, and Young Target Customers*. Sample data

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

- @relation dataset
- @attribute customerid{1,2,3,4,5}
- @attribute gender{male,female}
- @attribute age{19,21,20,23,31}
- @attribute income {15,16,17}
- @attribute score {usual,priority,senior,young}
- @data
- 1 male 19 15 usual
- 2 male 21 15 priority
- 3 female 20 16 young
- 4 female 23 16 priority
- 5 female 31 17 senior

Output:

2.Create the following dataset using CSV file format. To perform cluster analysis using K-Means in WEKA. To change the cluster size and plot the graph and illustrate the visualization of the cluster.

EmployeID	Gender	Age	Salary	Credit
111	Male	28	150000	39
222	Male	25	150000	27
333	Female	26	160000	42
444	Female	25	160000	40
555	Female	30	170000	64
666	Male	29	200000	72

Input:

@relation dataset

@attribute id{1,2,3,4,5,6}

@attribute gender{male,female}

@attribute age {28,25,26,30,29}

@attribute salary {15,16,17,20}

@attribute credit {39,27,42,40,64,72}

@data

1 male 28 15 39

2 male 25 15 27

3 female 26 16 42

4 female 25 16 40

5 female 30 17 64

6 male 29 20 72

Output:

```
kMeans
____
Number of iterations: 2
Within cluster sum of squared errors: 14.0
Initial starting points (random):
Cluster 0: 4, female, 25, 16, 40
Cluster 1: 1, male, 28, 15, 39
Missing values globally replaced with mean/mode
Final cluster centroids:
Cluster#
Attribute Full Data 0 1
(6.0) (3.0) (3.0)
                                          1
_____
id 1 3 1
gender male female male
age 25 25 28
salary 15 16 15
credit 39 42 39
Time taken to build model (full training data) : 0 seconds
=== Evaluation on test set ===
Clustered Instances
0 3 ( 50%)
1 3 ( 50%)
```

3.Prediction of categorical data using Naïve Bayes classification through WEKA using any datasets. Compare the Naïve Bayes algorithm with SVM using the summary of results given by the classifiers and plot the graph.

Naive Bayes Classifier							
	Class						
Attribute	yes	no					
	(0.63)	(0.38)					
outlook							
sunny	3.0	4.0					
overcast	5.0	1.0					
rainy	4.0	3.0					
[total]	12.0	8.0					
temperature							
mean	72.9697	74.8364					
std. dev.	5.2304	7.384					
weight sum	9	5					
precision	1.9091	1.9091					
humidity							
mean	78.8395	86.1111					
std. dev.	9.8023	9.2424					
weight sum	9	5					
precision	3.4444	3.4444					
windy							
TRUE	4.0	4.0					
FALSE	7.0	3.0					
[total]	11.0	7.0					

```
Time taken to build model: 0.01 seconds
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0 seconds
=== Summary ===
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
                                                    13
1
0.8372
                                                                           92.8571 %
                                                                             7.1429 %
Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error

Total Number of Instances

0.3315

60.2576 %

69.1352 %
                                                       0.2798
Mean absolute error
=== Detailed Accuracy By Class ===
                       TP Rate FP Rate Precision Recall F-Measure MCC
                                                                                                    ROC Area PRC Area Class
1.000 0.200 0.900 1.000 0.947 0.849 0.911 0.947 yes
0.800 0.000 1.000 0.800 0.889 0.849 0.911 0.911 no
Weighted Avg. 0.929 0.129 0.936 0.929 0.926 0.849 0.911 0.934
=== Confusion Matrix ===
 a b <-- classified as
 9 0 | a = yes
 1 4 | b = no
```

4.The following list of persons with vegetarian or not details given in the table. How will you find out how many of them are vegetarian and how many of them are non-vegetarian? Which type of the person total count is greater value?

, ,			•					_		
Person	Gopu	Babu	Baby	Gopal	Krishna	Jai	Dev	Malini	Hema	Anu
Vegetarian	yes	yes	yes	no	yes	no	no	yes	yes	yes

Input:

1000	Otion	dataset
	12116311	Halaset

@attribute person{gopu,babu,baby,gopal,krishna,jai,dev,malini,hema,anu}

@attribute vegeterian {yes,no}

@data

gopu yes

babu yes

```
baby yes
gopal no
krishna yes
jai no
dev no
```

malini yes

hema yes

anu yes

Output:

5. The following table would be plotted as (x,y) points, with the first column being the x values as number of mobile phones sold and the second column being the y values as money. To use the scatter plot for how many mobile phones sold.

X	4	1	5	7	10	2	50	25	90	36
у	12	5	13	19	31	7	153	72	275	110

Scatter Plot of Mobile Phones Sold

6.Generate rules using FP growth algorithm using the given dataset which has the following transactions with items purchased: Consider the values as support=50% and confidence=75%.

Transaction ID	Items Purchased
1	Bread, Cheese, Egg, Juice
2	Bread, Cheese, Juice
3	Bread, Milk, Yogurt
4	Bread, Juice, Milk
5	Cheese, Juice, Milk

- @relation dataset
- @attribute transid{1,2,3,4,5}
- @attribute bread{true,false}
- @attribute cheese {true, false}
- @attribute egg{true,false}
- @attribute juice{true,false}
- @attribute milk {true,false}
- @attribute yogurt{true,false}
- @data
- 1, true, true, true, false, false
- 2,true,true,false,true,false,false
- 3,true,false,false,frue,true
- 4, true, false, false, true, true, false
- 5, false, true, false, true, false output"

Output:

- **7.P**rediction of Diabetes Data using Decision tree classifier in WEKA. Compare it with Support Vector Machine classifier. Show the result accuracy and F1 measure calculation .Plot the graph and explain the summary of results.
- 8.Implement of the R script using marks scored by a student in his model exam has been sorted as follows: 55, 60, 71, 63, 55, 65, 50, 55,58,59,61,63,65,67,71,72,75. Partition them into three bins by each of the following methods. Plot the data points using histogram.
 - (a) equal-frequency (equi-depth) partitioning
 - (b) equal-width partitioning
 - (c) clustering

```
marks <- c(55, 60, 71, 63, 55, 65, 50, 55, 58, 59, 61, 63, 65,

bins_a <- cut(marks, breaks = 3, labels = c("Low", "Medium", "High"))

bins_b <- cut(marks, breaks = seq(min(marks), max(marks), length.out = 4), labels = c("Low", "Medium", "High"))

k <- 3

clusters <- kmeans(matrix(marks), centers = k)

bins_c <- cut(clusters$centers[clusters$cluster], breaks = 3, labels = c("Low", "Medium", "High"))

par(mfrow = c(1, 3))

hist(marks, main = "Equal-frequency (equi-depth) partitioning", col = "skyblue", breaks = 3)

hist(marks, main = "Equal-width partitioning", col = "lightgreen", breaks = seq(min(marks), max(marks), length.out = 4))

hist(marks, main = "Clustering", col = "lightpink", breaks = 3)

Output:
```

```
weight sum 500 268
precision 0.0045 0.0045
  precision
 mean 31.2494 37.0808 atd. dev. 11.6055 10.5146 weight sum 500 268 precision 1.1765 1.1765
Time taken to build model: 0.01 seconds
=== Stratified cross-validation ===
ummary =
Correctly Classified Instances
                                                                             76,3021 4
Incorrectly Classified Instances
                                                    0.4664
0.2841
0.4168
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
                                                      62.5028 %
                                                       87.4349 %
Root relative squared error
Total Number of Instances
 === Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.844 0.388 0.802 0.844 0.823 0.468 0.819 0.892 tested_negative
0.612 0.156 0.678 0.612 0.643 0.468 0.819 0.671 tested_positive
Weighted Avg. 0.763 0.307 0.755 0.763 0.760 0.468 0.819 0.815
HER Confusion Matrix HER
 a b <-- classified as
422 78 | a = tested_negative
104 164 | b = tested_positive
```

```
Number of Leaves :
Size of the tree :
Time taken to build model: 0.05 seconds
=== Stratified cross-validation ===
=== Summary ===
                                                      73.8281 %
Correctly Classified Instances 567
Incorrectly Classified Instances 201
                                                         26.1719 %
                                      0.4164
0.3158
0.4463
69.4841 *
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
                                       93.6293 %
Total Number of Instances
                                     768
=== Detailed Accuracy By Class ===
www Confusion Matrix www
          <-- classified as
407 93 | a = tested_negative
108 160 | b = tested_positive
```

8.Implement of the R script using marks scored by a student in his model exam has been sorted as follows: 55, 60, 71, 63, 55, 65, 50, 55,58,59,61,63,65,67,71,72,75. Partition them into three bins by each of the following methods. Plot the data points using histogram.

(a) equal-frequency (equi-depth) partitioning

- (b) equal-width partitioning
- (c) clustering

```
marks <- c(55, 60, 71, 63, 55, 65, 50, 55, 58, 59, 61, 63, 65,

bins_a <- cut(marks, breaks = 3, labels = c("Low", "Medium", "High"))

bins_b <- cut(marks, breaks = seq(min(marks), max(marks), length.out = 4), labels = c("Low", "Medium", "High"))

k <- 3

clusters <- kmeans(matrix(marks), centers = k)

bins_c <- cut(clusters$centers[clusters$cluster], breaks = 3, labels = c("Low", "Medium", "High"))

par(mfrow = c(1, 3))

hist(marks, main = "Equal-frequency (equi-depth) partitioning", col = "skyblue", breaks = 3)

hist(marks, main = "Equal-width partitioning", col = "lightgreen", breaks = seq(min(marks), max(marks), length.out = 4))

hist(marks, main = "Clustering", col = "lightpink", breaks = 3)
```

Output:

9. Consider this Decision tree :

- a)create the data set for the below tree using ARFF format and calculate accuracy and decision for the same
- b) Using this decision tree generate the rules based on rule based induction.
- c) Compare both the algorithms and plot the confusion matrix.

Output:

10.Create an ARFF file for the table below and implement for the Apriori Algorithm and FP growth algorithm and compare the rules generated by both the algorithms. Identify the unique rules generated by the above algorithms.

NOTE: Assume Min_sup=2 and confidence= 50%

T.ID	ITEMS
T1	SONY, BPL, LG
T2	BPL, SAMSUNG
T3	BPL, ONIDA
T4	SONY, BPL, SAMSUNG
T5	SONY, ONIDA
Т6	BPL, ONIDA
T7	SONY, ONIDA
Т8	SONY, BPL, ONIDA, LG
Т9	SONY, BPL, ONIDA

- @relation dataset
- @attribute id{1,2,3,4,5,6,7,8,9}
- @attribute sony{true,false}
- @attribute bpl{true,false}
- @attribute lg{true,false}
- @attribute samsung{true,false}
- @attribute onida{true,false}
- @data
- 1,true,true,false,false
- 2,false,true,false,true,false
- 3, false, true, false, false, true
- 4,true,true,false,true,false
- 5,true,false,false,false,true
- 6,false,true,false,false,true
- 7,true,false,false,false,true
- 8,true,true,false,true

9,true,true,false,false,true

Output:

```
=== Run information ===
            weka.associations.Apriori -N 10 -T 0 -C 50.0 -D 0.05 -U 2.0 -M 0.1 -S -1.0 -c -1
Relation: dataset
Instances: 9
Attributes:
             bpl
             lg
             samsung
=== Associator model (full training set) ===
Apriori
_____
Minimum support: 0.11 (1 instances)
Minimum metric <confidence>: 50
Number of cycles performed: 18
Generated sets of large itemsets:
Size of set of large itemsets L(1): 19
Size of set of large itemsets L(2): 78
Size of set of large itemsets L(3): 137
Size of set of large itemsets L(4): 120
Size of set of large itemsets L(5): 52
Size of set of large itemsets L(6): 9
Best rules found:
```

- 11, The given are the strike-rates scored by a batsman in season 1 in different tournaments. 100, 70, 60, 90, 90
 - (a) min-max normalization by setting min = 0 and max = 1
 - (b) z-score normalization
 - (c) z-score normalization using the mean absolute deviation instead of standard deviation
 - (d) normalization by decimal scaling

```
strike_rates <- c(100, 70, 60, 90, 90)

min_max_normalization <- function(x) {
(x - min(x)) / (max(x) - min(x))
```

```
}
normalized min max <- min max normalization(strike rates)
z score normalization <- function(x) {
(x - mean(x)) / sd(x)
}
normalized_z_score <- z_score_normalization(strike_rates)</pre>
mad normalization <- function(x) {
(x - mean(x)) / mad(x)
}
normalized mad <- mad normalization(strike rates)
decimal scaling normalization <- function(x) {
x / 10^{(ceiling(log10(max(x))))}
}
normalized_decimal_scaling <- decimal_scaling_normalization(strike_rates)</pre>
cat("Original Data:", strike rates, "\n\n")
cat("(a) Min-Max Normalization:", normalized min max, "\n")
cat("(b) Z-Score Normalization:", normalized z score, "\n")
cat("(c) Z-Score Normalization (MAD):", normalized mad, "\n")
cat("(d) Normalization by Decimal Scaling:", normalized decimal scaling, "\n")
Output:
```

```
Console Terminal × Background Jobs ×
> strike_rates <- c(100, 70, 60, 90, 90)</pre>
> min_max_normalization <- function(x) {</pre>
    (x - \min(x)) / (\max(x) - \min(x))
+ }
> normalized_min_max <- min_max_normalization(strike_rates)</pre>
> z_score_normalization <- function(x) {</pre>
    (x - mean(x)) / sd(x)
+ }
> normalized_z_score <- z_score_normalization(strike_rates)</pre>
 mad_normalization <- function(x) {</pre>
    (x - mean(x)) / mad(x)
> normalized_mad <- mad_normalization(strike_rates)</pre>
 decimal_scaling_normalization <- function(x) {</pre>
    x / 10^{(ceiling(log10(max(x))))}
+ }
> normalized_decimal_scaling <- decimal_scaling_normalization(strike_rates)</pre>
> cat("Original Data:", strike_rates, "\n\n")
Original Data: 100 70 60 90 90
> cat("(a) Min-Max Normalization:", normalized_min_max, "\n")
(a) Min-Max Normalization: 1 0.25 0 0.75 0.75
> cat("(b) Z-Score Normalization:", normalized_z_score, "\n")
(b) Z-Score Normalization: 1.095445 -0.7302967 -1.338877 0.4868645 0.4868645
> cat("(c) Z-Score Normalization (MAD):", normalized_mad, "\n")
(c) Z-Score Normalization (MAD): 1.214083 -0.8093889 -1.48388 0.5395926 0.5395926
> cat("(d) Normalization by Decimal Scaling:", normalized_decimal_scaling, "\n")
(d) Normalization by Decimal Scaling: 1 0.7 0.6 0.9 0.9
```

12. Suppose some car is tested for the AvgSpeed and TotalTime data for 9 randomly selected car with the following result

AvgSpeed	78	81	82	74	83	82	77	80	70
(in kph)									
TotalTime	39	37	36	42	35	36	40	38	46
(in mins)									

- a) Calculate the standard deviation of AvgSpeed and TotalTime.
- b) Calculate the Variance of AvgSpeed and TotalTime for the above dataset.

```
avg speed <- c(78, 81, 82, 74, 83, 82, 77, 80, 70)
```

```
total_time <- c(39, 37, 36, 42, 35, 36, 40, 38, 46)

sd_avg_speed <- sd(avg_speed)

sd_total_time <- sd(total_time)

var_avg_speed <- var(avg_speed)

var_total_time <- var(total_time)

cat("Standard Deviation of AvgSpeed:", sd_avg_speed, "\n")

cat("Standard Deviation of TotalTime:", sd_total_time, "\n\n")

cat("Variance of AvgSpeed:", var_avg_speed, "\n")

cat("Variance of TotalTime:", var_total_time, "\n")
```

13. Consider the table

Output:

- c) TID items bought
- d) $T100 \{M, O, N, K, E, Y\}$
- e) T200 {D, O, N, K, E, Y}
- f) T300 {M, A, K, E}
- g) T400 {M, U, C, K, Y}
- h) $T500 \{C, O, O, K, I, E\}$
- (a) Find all frequent item set using Apriori and FP-growth, respectively. Compare the efficiency of the two mining processes.
- j) (b) List all of the strong association rules (with support s and confidence c) matching the following metarule, where X is a variable representing customers, and itemi denotes variables representing items (e.g., "A", "B", etc.):
- k) $\forall x \in \text{transaction}$, $\text{buys}(X, \text{item1}) \land \text{buys}(X, \text{item2}) \Rightarrow \text{buys}(X, \text{item3})$

Input:

@relation dataset

- @attribute M{true,false}
- @attribute O{true,false}
- @attribute N{true,false}
- @attribute K{true,false}
- @attribute E{true,false}
- @attribute Y{true,false}
- @attribute D{true,false}
- @attribute A{true,false}
- @attribute U{true,false}
- @attribute C{true,false}
- @attribute I{true,false}
- @data

true true true true true true false false false false false false false true true true true true false true false false false false true false false false false true false fa

```
Preprocess Classify Cluster Associate Select attributes Visualize
Associator -
 Choose FPGrowth -P 2 -I -1 -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1
                        Associator output
  Start Stop
                          === Run information ===
Result list (right-click for ...
09:07:14 - Apriori
                                          weka.associations.FPGrowth -P 2 -I -1 -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1
09:07:27 - FPGrowth
                         Relation:
                                          dataset
                          Instances:
                          Attributes:
                                         11
                                          D
                          === Associator model (full training set) ===
                          FPGrowth found 16 rules (displaying top 10)
                          8. [U=false, D=false]: 3 ==> [A=false]: 3 <conf:(1)> lift:(1) lev:(0) conv:(0)
9. [U=false, C=false]: 3 ==> [A=false]: 3 <conf:(1)> lift:(1) lev:(0) conv:(0)
10. [D=false, C=false]: 3 ==> [A=false]: 3 <conf:(1)> lift:(1) lev:(0) conv:(0)
```

