Kate Farrahi

ECS Southampton

March 7, 2019

Recurrent Neural Networks - Motivation

<i>x</i> :	Kate	Farrahi	and	Jonathon	Hare	teach	deep	learning
<i>y</i> :	1	1	0	1	1	0	0	0

Recurrent Neural Networks - Motivation

$$x: x^{<1>} x^{<2>} \dots x^{} \dots x^{} \dots x^{} \\ x: Kate Farrahi \dots Hare \dots learning \\ y: y^{<1>} y^{<2>} \dots y^{} \dots y^{} \\ y: 1 1 \dots 1 \dots 0$$

In this example, $T_x = T_y = 8$ but T_x and T_y can be different.

One Hot Encoding

How can we represent individual words?

¹https://ayearofai.com

Why Not a Standard Feed Forward Network?

► For a task such as "Named Entity Recognition" a feed forward network would have several disadvantages

Why Not a Standard Feed Forward Network?

- ► For a task such as "Named Entity Recognition" a feed forward network would have several disadvantages
- ▶ The inputs and outputs may have varying lengths

Why Not a Standard Feed Forward Network?

- ► For a task such as "Named Entity Recognition" a feed forward network would have several disadvantages
- ▶ The inputs and outputs may have varying lengths
- ► The features wouldn't be shared across different positions in the network

▶ RNNs are a family of ANNs for processing sequential data

²Image taken from https://towardsdatascience.com

- ▶ RNNs are a family of ANNs for processing sequential data
- RNNs have directed cycles in their computational graphs

²Image taken from https://towardsdatascience.com

- ▶ RNNs are a family of ANNs for processing sequential data
- ▶ RNNs have directed cycles in their computational graphs
- ▶ They can have complicated dynamics, difficult to train

2

²Image taken from https://towardsdatascience.com

- ▶ RNNs are a family of ANNs for processing sequential data
- RNNs have directed cycles in their computational graphs
- They can have complicated dynamics, difficult to train
- They are more biologically realistic

2

²Image taken from https://towardsdatascience.com

RNNs combine two properties which make them very powerful.

- Distributed hidden state that allows them to store a lot of information about the past efficiently. This is because several different units can be active at once, allowing them to remember several things at once.
- Non-linear dynamics that allows them to update their hidden state in complicated ways. They can however have complicated dynamics, making them difficult to train

Backpropagation Through Time (BPTT)

³Image taken from Andrew Ng

$$a^{< t>} = g(w_{aa}a^{< t-1>} + w_{ax}x^{< t>} + b_a)$$
 (1)

$$a^{} = g(w_{aa}a^{} + w_{ax}x^{} + b_a)$$
(1)
$$\hat{y}^{} = g(w_{ya}a^{} + b_y)$$
(2)

$$a^{} = g(w_{aa}a^{} + w_{ax}x^{} + b_a)$$
(1)
$$\hat{y}^{} = g(w_{ya}a^{} + b_y)$$
(2)
$$\mathcal{L}^{} = -y^{}log(\hat{y}^{}) - (1 - y^{})log(1 - \hat{y}^{})$$
(3)

$$a^{} = g(w_{aa}a^{} + w_{ax}x^{} + b_a)$$
(1)

$$\hat{y}^{} = g(w_{ya}a^{} + b_y)$$
(2)

$$\mathcal{L}^{} = -y^{}log(\hat{y}^{}) - (1 - y^{})log(1 - \hat{y}^{})$$
(3)

$$\mathcal{L} = \sum_{t=1}^{T_y} \mathcal{L}^{}$$
(4)

BPTT - Backwards Pass

$$\frac{\partial \mathcal{L}^{<3>}}{\partial w_{ya}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{y}^{<3>}} \frac{\partial \hat{y}^{<3>}}{\partial w_{ya}}$$
 (5)

BPTT - Backwards Pass

$$\frac{\partial \mathcal{L}^{<3>}}{\partial w_{ya}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{y}^{<3>}} \frac{\partial \hat{y}^{<3>}}{\partial w_{ya}}$$

$$\frac{\partial \mathcal{L}^{<3>}}{\partial w_{aa}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{y}^{<3>}} \frac{\partial \hat{y}^{<3>}}{\partial a^{<3>}} \frac{\partial \hat{a}^{<3>}}{\partial w_{aa}}$$
(5)

$$\frac{\partial \mathcal{L}^{<3>}}{\partial w_{aa}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{\mathbf{y}}^{<3>}} \frac{\partial \hat{\mathbf{y}}^{<3>}}{\partial a^{<3>}} \frac{\partial \hat{\mathbf{a}}^{<3>}}{\partial w_{aa}}$$
(6)

(7)

BPTT - Backwards Pass

$$\frac{\partial \mathcal{L}^{<3>}}{\partial w_{va}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{y}^{<3>}} \frac{\partial \hat{y}^{<3>}}{\partial w_{va}}$$
 (5)

$$\frac{\partial \mathcal{L}^{<3>}}{\partial w_{ya}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{y}^{<3>}} \frac{\partial \hat{y}^{<3>}}{\partial w_{ya}}
\frac{\partial \mathcal{L}^{<3>}}{\partial w_{aa}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{y}^{<3>}} \frac{\partial \hat{y}^{<3>}}{\partial a^{<3>}} \frac{\partial \hat{a}^{<3>}}{\partial w_{aa}}$$
(5)

Recall
$$a^{<3>} = g(w_{aa}a^{<2>} + w_{ax}x^{<3>} + b_a)$$

$$\frac{\partial \mathcal{L}^{<3>}}{\partial w_{aa}} = \frac{\partial \mathcal{L}^{<3>}}{\partial \hat{y}^{<3>}} \frac{\partial \hat{y}^{<3>}}{\partial a^{<2>}} \frac{\partial a^{<2>}}{\partial a^{<1>}} \frac{\partial a^{<1>}}{\partial w_{aa}}$$
(8)

(7)

⁴http://karpathy.github.io/2015/05/21/rnn-effectiveness/