

# THAMILMANI MURUGAN

 $tham il the dal@gmail.com | +91-9952-6740-98 \ | \ Mumbai \ | \ linked in.com/in/tham il the dal \ | \ github.com/tham il the dal.com$ 

# **SUMMARY**

Passionate CFD researcher on applications of turbulence, heat transfer, energy, aerodynamics, turbomachinery. Currently pursuing PhD on supercritical heat transfer modelling at IIT Bombay and I constantly dabble with problems that are challenging and exciting to solve.

# WORK EXPERIENCE

# Consultant, Tabrej DesignLife Inc.,

 Conducted a feasibility study and thermodynamic system analysis.

# Project Officer, COPT, IIT Madras

Involved in a DRDO project under Prof. BVSSS
Prasad (Late) on computational analysis to
assess the effect of tip vortices on gas turbine
blade cooling.

# **EDUCATION**

# PhD., Mechanical Engineering,

Indian Institute of Technology Bombay, Mumbai

- Thesis on "Analysis of flow transitions, heat transfer characteristics in supercritical heat transfer"
- Developed a novel turbulent Prandtl number model for predicting heat transfer deterioration at supercritical fluids.
- Managed and maintained HPC Cluster in the lab.

# M.Tech, Thermal and Fluids Engineering,

Amrita University, Kollam, Kerala

- Thesis on "Numerical analysis of aerodynamics of multiple bluff bodies in tandem arrangement"
- Gold medallist with 9.48 CGPA
- Project Intern for six months at IIT Bombay PIV Lab under Prof. Amit Agrawal for my dissertation.

Dec 2022 – Feb 2023

July - Dec 2018

Jan 2019 - Present

Aug 2016 - June 2018

# **KEY SKILLS**

Programming Languages: Python, C, C++, MATLAB, BASH,

Software/Tools: Ansys Fluent, CFX, ICEM, OpenFOAM, SolidWorks, ROCKS

Cluster

Technical Skills: CFD, Turbulence modelling, Workflow automation, HPC

Management

# PUBLICATIONS & CONFERENCES

#### **Journal Articles:**

- Murugan et al., "Proposal of turbulent Prandtl number models for predicting heat transfer deterioration in supercritical flows", Physics of Fluids, (accepted in August 2025)
- Murugan et al., "Study on Convective Heat Transfer of Supercritical Water in Annular Square Channel", Heat Transfer Engineering, Jan 2023.
- 3. Narasimhan *et al.*, "Studies on the inward spherical solidification of a phase change material dispersed with macro particles", *Journal of Energy Storage*, vol. 15, pp. 158-171, Feb, 2018.

### **Conference Presentations:**

- 1. "Characterization of Helmholtz oscillator for mitigating heat transfer deterioration in supercritical flows", ECOS 2025, Ecole des Mines, PSL, Paris, France, June 29 July 4, 2025.
- "Numerical studies on flow over multiple cylinders in tandem arrangement: Effect of number of cylinders", FMFP 2018, IIT Bombay, Mumbai, India, Dec 2018

# **OTHER WORKS**

# **Teaching Assistance:**

Courses on Computational Fluid Dynamics and Heat Transfer, Air-conditioning system design, Heat transfer, Advanced Thermodynamics, etc. at IIT Bombay, Mumbai from 2019 – 2024.

### **Side Projects:**

- Built Python based CLI Tools to automate and integrate CFD Workflows:
  - a. foam\_to\_fluent2D (Convert 2.5D OpenFOAM generated meshes to 2D ANSYS Fluent Meshes),
  - b. **residual\_HPC** (Generates residual monitor in real time for ANSYS Fluent cases running in a HPC),
  - postprocess\_CLI (Integrated batch postprocessing utility for ANSYS Fluent results to generate report)
  - d. **supercritical\_CLI** (full-fledged automated tool from model, meshing, analysis, postprocessing to report generation)
- 2. Freelance Consulting different CFD projects for others under **Thedal Flow Code**