

# All Roads Lead to TinyML: The Rome of Efficient Machine Learning in Engineering

Dinuka Sahabandu<sup>1</sup>, Nushara Wedasinghe<sup>2</sup>, Madusha Weerasooriya<sup>2</sup>, Asiri Gawesha Lindamulage<sup>3\*</sup>, Sanka Mohottala<sup>2\*</sup>

1) University of Washington, USA 2) Sri Lanka Institute of Information Technology, Sri Lanka 3) Open University of Sri Lanka, Sri Lanka

\*sanka.mo@sliit.lk













# Connecting Connectme-Inspired ANNs with the TinyML Landscape

**Parameter** 

Data

Computation

### Purpose

- Convergence point of multiple efficiency paradigms parameter,
   data, computation, energy, and connectivity.

  TinyML
- Binary classification application

### My Role in the Roadmap

- Focus: on Connectome-based Artificial Neural

  Networks (ANNs) and Spike Neural Networks (SNNs).
- **Key Link:** Brain-inspired architectures (e.g., ElegansAI) embody multiple efficiencies naturally high connectivity sparsity, event-driven computation, and parameter parsimony making them ideal for TinyML integration.

- Relevance to Others' Work:
  - Complements **compression** by exploiting structural sparsity from the connectome.
  - Enhances **parameter efficiency** through biologically-constrained architectures.
  - Supports **energy efficiency** via SNN event-driven processing.
  - Informs **deployment** through neuromorphic hardware compatibility.
- Connectome-based Artificial Neural Networks (ANNs) and Spiking Neural Networks(SNNs).

### **Takeaway**

38

Device

Brain-inspired models are not just another "road" to TinyML – they are the evolutionary blueprint from which all emergency strategies can learn.

Bardis, F., et al. — "ElegansAI: From the connectome of a living organism to artificial neural networks." Neurocomputing, 2024.

Somathilaka, S., et al. — "Wet TinyML: Bio-inspired architectures for efficient ML on constrained devices." IEEE Access, 2024.





### **Bio-Inspired Artificial Neuron**



I. Alnaib and A. Alsammak, Advance Artificial Neural Networks. Sep. 2022.





### Artificial Neural Networks (ANNs)

#### Overview

**Definition**: ANNs are computational models inspired by biological neurons, designed to recognize patterns and solve complex tasks.

**Structure:** Composed of layers of interconnected nodes (neurons) – typically including an input layer, one or more hidden layers, and an output layer.

### **Functioning:**

Each neuron processes inputs and passes information to subsequent layers.

Neurons are connected via weights that adjust based on learning to optimize output accuracy.

**Not Outdated:** Despite being an early AI approach, ANNs remain relevant and widely used.

**Modern Architectures:** CNNs and RNNs, key DL models, are advanced extensions of ANNs.

#### **Behavior**



### **Learning Process:**

• Uses algorithms like **backpropagation** to adjust **weights** and minimize error.

### **Applications**

- Image Recognition
- Natural Language Processing
- Predictive Analytics
- Speech Recognition
- Cybersecurity
- Robotics and etc.





### ANs: Inspired, Not Replicated

- 1. Simplified Representation: ANs abstract brain processes; biological neurons are far more complex.
- 2. Functional Differences: ANs use math-based weights; and lack neuroplasticity and neuron-like spikes.
- **3. Structural Differences**: ANs have fixed layers; unlike the brain's interconnected, hierarchical networks.
- 4. Origins: Developed from mathematical models, not detailed brain studies, for engineering tasks.



#### **Hardware Limitations**

- •Computational Power: Requires costly, high-performance GPUs/TPUs.
- •Energy: High training power consumption.
- •Slow inference: not ideal for real-time.
- •Scalability: Expensive, complex distributed setup.

#### **Software Limitations**

- •**High complexity:** Neural networks need heavy computation and resources.
- •Framework limits: Some don't support custom designs or special hardware.
- •Data needs: Require large labeled datasets, often scarce.
- •Maintenance: Need strong infrastructure, monitoring, and updates.





### **Bio-Plausible Neurons/Neural Networks**

#### Types

Bio-plausible neural networks have two types,

- 1. Spiking Neurons (SNs).
- 2. Biological Connectome-Based Neural Networks.





J. Wen, L. Zhang, Y.-Z. Wang, and X. Guo, "Artificial Tactile Perception System Based on Spiking Tactile Neurons and Spiking Neural Networks," *ACS Applied Materials & Interfaces*, vol. 16, no. 1, pp. 998–1004, Jan. 2024, doi: 10.1021/acsami.3c12244

https://doi.org/10.53053/BWTN6816





### Spiking Neural Network (SNNs) code

### **Core Concept**

networks

• Event-driven processing

### **Coding Schemes**

- Rate coding
- Temporal coding
- Population coding

### **Learning Paradigms**

- STDP (Spike-Timing-Dependent Plasticity)
- Supervised
- Unsupervised learning
- Reinforcement learning

#### **Research Directions**

Hybrid models

Bio-inspired learning rules

Applications – Event-based vision (DVS), tactile sensing, auditory processing, robotics.

Theoretical neuroscience links – Understanding brain computation.

### Third-generation neural









#### Advantages

Energy efficiency – Event-driven computation suitable for neuromorphic hardware (e.g., Loihi, SpiNNaker, TrueNorth). Temporal information processing – Ideal for time-series and sensory event data.

Sparse representation – Lower memory footprint.

### Challenges

- •**Training difficulty** Non-differentiability of spikes.
- •Lack of large-scale SNN datasets and benchmarks.
- •Hardware–algorithm co-design required for real gains.
- •Scalability Efficient mapping on neuromorphic hardware.





Biological Connectome-Based Neural Networks

### Concept

• AI models whose architecture, connectivity, and dynamics are inspired or directly derived from biological connectome data.

**Foundation:** Built using neuron—synapse maps from organisms (e.g., C. elegans, Drosophila melanogaster).

• Goal: Leverage biological wiring efficiency, modularity, and functional specialization to improve AI adaptability and efficiency.

#### **Data Sources**

- Electron Microscopy (EM) Reconstructions nanoscale mapping of synapses.
- Tracing & Registration Tools CATMAID, FlyWire, Neuroglancer.

### **Example Datasets:**

- *C. elegans* 302 neurons fully mapped.
- Drosophila larva brain  $-\sim3,000$  neurons, >500,000 synapses.

### **Research Directions**

Connectome-to-Computational Model Translation, Multi-Scale Modeling, Neuroevolution, Comparative Connectomics, Neuromorphic Hardware Implementation

### Advantages

- Data Efficiency
- Energy Efficiency
- Inductive Biases
- Functional Robustness



### Challenges

- •Incomplete Data
- Noisy Biological Data
- Functional Mapping Gap
- Simulation Costs







### **Background & Motivation**

**Human brain** 



# Computing units

Storage

Size

Power consumption

Comp. unit density

100 B neurons

~2500 Tb

1300 cm<sup>3</sup>

20 W

7.7x10<sup>4</sup> mm<sup>-3</sup>

Loihi 2



1 M neurons

24 MB

31 mm<sup>2</sup>

100 mW

3.2x10<sup>4</sup> mm<sup>-2</sup>

Bacteria



100-11000 genes

~1.2 MB

 $\sim 0.4 - 3 \mu m^3$ 

<0.1pW

5 x10<sup>12</sup> mm<sup>-3</sup>

**C** Elegan



~302 neurons

~7000 genes

~1 mm (length), ~0.5 mm³ volume

~10−20 µW

~600 mm<sup>-3</sup> (302 neurons / ~0.5 mm<sup>3</sup>)





### Biological Connectome-Based Neural Networks

To date, the complete connectomes—detailed maps of all neural connections—have been mapped for the following organisms:

- Caenorhabditis elegans (a nematode worm) "Successfully converted to ANN"
- **Drosophila Larva** (fruit fly)
- Platyneresis Dumerilli (Marine Worm)

Connectome of C.elegans







C. Verasztó, S. Jasek, M. Gühmann, R. Shahidi, N. Ueda, J. D. Beard, S. Mendes, K. Heinz, L. A. Bezares-Calderón, E. Williams, and G. Jékely, "Whole-animal connectome and cell-type complement of the three-segmented *Platynereis dumerilii* larva," *bioRxiv*, p. 2020.08.21.260984, 2020, doi: 10.1101/2020.08.21.260984.

F. Bardozzo, A. Terlizzi, C. Simoncini, P. Lió, and R. Tagliaferri, "Elegans-AI: How the connectome of a living organism could model artificial neural networks," *Neurocomputing*, vol. 584, p. 127598, 2024, doi: 10.1016/j.neucom.2024.127598.

M. Winding, B. D. Pedigo, C. L. Barnes, H. G. Patsolic, Y. Park, T. Kazimiers, A. Fushiki, I. V. Andrade, A. Khandelwal, J. Valdes-Aleman, F. Li, N. Randel, E. Barsotti, A. Correia, R. D. Fetter, V. Hartenstein, C. E. Priebe, J. T. Vogelstein, A. Cardona, and M. Zlatic, "The connectome of an insect brain," *Science*, vol. 379, no. 6636, p. eadd9330, 2023, doi: 10.1126/science.add9330.



C Elegan



# Elegans-AI: How the Connectome of a Living Organism Could Model Artificial Neural Networks



Authors: Francesco Bardozzo, Andrea Terlizzi, Claudio Simoncini, Pietro Lió, Roberto Tagliaferri



Journal: Neurocomputing, 2024

Elegans-Al Repo





### Background, Motivation, and Core Concept

### Background & Motivation

- Biological connectomes represent neuronlevel wiring diagrams
- C. elegans is fully mapped: 302 neurons,
   ~7,000 synapses
- Aim: Translate biological wiring efficiency into AI architectures

### Core Concept

- Elegans-AI Models: AI inspired by C. elegans topology
  - 1. Convert biological connectomes to artificial representations
  - 2. Embed connectomic topologies in deep

learning & reservoir networks

3. Structural explainability via motifs





### Methodology

### C. elegans Connectome → Al Mapping



F. Bardozzo, A. Terlizzi, C. Simoncini, P. Lió, and R. Tagliaferri, "Elegans-AI: How the connectome of a living organism could model artificial neural networks," *Neurocomputing*, vol. 584, p. 127598, 2024, doi: 10.1016/j.neucom.2024.127598.

- Architecture Construction: Map connectome graphs into ANNs
- Maintain small-world & motif structures
- Learning: Deep Connectomic Networks,
   Reservoir (Echo-State Transformers)
- Explainability: Analyze heterophilic vs. homophilic connections.





### Elegans-AI

### **Key Features**

- Bio-inspired priors as topological constraints
- Neurodynamic memory (short/long term)
- Connectomic motifs as inductive biases
- Evolutionary optimization embedded

### **Experimental Setup**

Benchmarks: CIFAR-10, CIFAR-100, MNIST Unsup

- Comparisons: Randomly rewired & bio-plausible

networks

**Metrics:** Accuracy, parameter efficiency, memory

#### Results

**Accuracy:** 99.99% (CIFAR-10 & CIFAR-100), 99.84% (MNIST Unsup)

### **Efficiency:**

- Fewer trainable parameters vs. DNNs
- Reservoir networks' strong performance
- Small-world topology boosts learning





### **Architecture Components**

### M1: Deep Connectomic Network (DCN)

### **Concept:**

- •Instead of training all connections, the connectome is used as a **reservoir** (fixed recurrent structure).
- •Only the **readout layer is trained**, reducing training cost and improving stability.

### **Implementation**:

- •Biological connectome  $\rightarrow$  reservoir structure (fixed recurrent graph).
- •External inputs injected into the reservoir (mimicking sensory neuron activation).
- •Outputs read from specific nodes mapped to motor/output neurons.
- •Training is restricted to linear readout weights, making it computationally efficient.

### **Strengths**:

- •Provides short- and long-term memory via recurrent loops.
- •Very **parameter-efficient** and **energy-efficient** (good for neuromorphic hardware).
- •Achieves state-of-the-art accuracy (99.99% CIFAR-10/100, 99.84% MNIST Unsup) with much fewer parameters.

#### **Limitations**:

- •Less flexible than fully trainable DCNs.
- •Performance highly dependent on how input/output mappings are chosen.





### **Results over Metrics**

Elegans-AI: How the connectome of a living organism could model artificial neural networks,"

Neurocomputing, vol. 584, p. 127598, 2024, doi: 10.1016/j.neucom.2024.127598.



Elegans-AI M1 vs. SOTA models for Cifar10 and Cifar100.

| Model                        | Cifar10    |                  | Cifar100   |                  |
|------------------------------|------------|------------------|------------|------------------|
|                              | Top-1 Acc. | Trainable params | Top-1 Acc. | Trainable params |
| Elegans-AI M1 DNN (ours)     | 99.9       | 107M             | 99.9       | 313M             |
| Elegans-AI M1 ESN (ours)     | 99.9       | 5K               | 99.9       | 34M              |
| EfficientNet V2-L (SAM) [97] | 99.1       | 121M             | 96.08°     | 120M             |
| ViT-H/14 [34]                | 99.5ª      | 632M             | _          | _                |
| μ2Net [38]                   | 99.5a      | 111K             | 94.95b     | 100K             |
| ViT-L/16 [34]                | 99.4b      | 307M             | _          | _                |
| CaiT-M-36 U 224 [36]         | 99.4       | 86M              | _          | _                |
| CvT-W24 [35]                 | 99.4       | 276.7M           | 94.09      | 276.7M           |
| BiT-L [96]                   | 99.4       | 928M             | 93.51      | 928M             |
| ViT-B [103]                  | 99.3       | 928M             | _          | _                |
| Heinsen Rout.+BEiT-l. 16     | 99.2       | 309.5M           | 93.8       | 309.8M           |
| 224 [67]                     |            |                  |            |                  |
| ViT-B/16 [104]               | 99.1       | 86M              | 93.9       | 86.5M            |
| CeiT-S [105]                 | 99.1       | 24.2M            | _          | _                |
| AutoFormer-S 384 [106]       | 99.1       | 23M              | _          | _                |
| TNT-B [107]                  | 99.1       | 65.6M            | _          | _                |
| DeiT-B [37]                  | 99.1       | 86M              | _          | _                |
| EfficientNetV2-L [33]        | 99.1       | 121M             | 92.3       | 121M             |
| BPSR SNN ResNet [28]         | 90.74      | 260.7M           | _          | _                |
| Swin-L + ML-Decoder [108]    | _          | _                | 95.1       | _                |
| ViT-B-16(ImageNet-21K-PT)    | _          | _                | 94.2       | 87M              |
| [109]                        |            |                  |            |                  |
| Astroformer [110]            | _          | _                | 93.36      | 161.75M          |
| CaiT-M-36 U 224 [36]         | _          | _                | 93.1       | 86M              |
| ViT-L(attn fine-tune) [103]  | _          | _                | 93.0       | 306M             |
| TResNet-L-V2 [111]           | _          | _                | 92.6       | 77.1M            |
| EfficientNetV2-M [33]        | _          | _                | 92.2       | 55M              |
| BiT-M(ResNet) [96]           | _          | _                | 92.17      | 235M             |

Highest accuracy is in bold.





a The second-best.

b The third-best.

### **Architecture Components**

### M2: Connectome-Based Reservoir Network (Echo-State Inspired)

### **Concept:**

- Uses the biological connectome as a **fixed recurrent reservoir**, inspired by **echo-state networks**.
- Only the readout layer is trained, lowering training cost and improving stability.

### **Implementation**:

- Connectome graph → reservoir structure with fixed recurrent loops.
- Inputs injected into the reservoir, simulating sensory activations.
- Outputs mapped from designated motor/output neurons.
- Training limited to linear readout weights, keeping computation lightweight.

### **Strengths**:

- Same efficiency benefits as M1.
- Strong **temporal dynamics** from echo-state formulation.
- Excellent **memory retention** with low cost.

#### **Limitations:**

- Less flexible than fully trainable networks.
- Performance strongly depends on **input/output mapping choices**.
- May underperform on tasks requiring adaptive recurrent dynamics beyond fixed wiring.





### **Results over Metrics**

Table 1
Elegans-AI M2 vs. SOTA models for MNIST Unsup.

| Model                            | Top-1 Acc.        |
|----------------------------------|-------------------|
| Elegans-AI M2 DNN (ours)         | 99.8              |
| IIC [100]                        | 99.3ª             |
| Sparse Manifold Transform [41]   | 99.3ª             |
| Elegans-AI M2 ESN (ours)         | 98.5 <sup>b</sup> |
| SubTab [42]                      | 98.3              |
| Stacked Capsule Autoencoder [39] | 98.0              |
| Self-Organizing Map [43]         | 96.9              |
| Bidirectional InfoGAN [99]       | 96.6              |
| Adversarial Autoencoder [40]     | 95.9              |
| CatGAN [98]                      | 95.7              |
| InfoGAN [102]                    | 95.0              |
| PixelGAN AE [69]                 | 94.7              |
| Model                            | F1 (%)            |
| Elegans-AI M2 DNN (ours)         | 99.3              |
| DenMune [101]                    | 96.6ª             |
| Elegans-AI M2 ESN (ours)         | 94.9 <sup>b</sup> |

Highest accuracy is in bold.

Elegans-AI: How the connectome of a living organism could model artificial neural networks," *Neurocomputing*, vol. 584, p. 127598, 2024,

doi: 10.1016/j.neucom.2024.127598.





a The second-best.

b The third-best.

### **Results over Metrics**



Elegans-AI: How the connectome of a living organism could model artificial neural networks," *Neurocomputing*, vol. 584, p. 127598, 2024, doi: 10.1016/j.neucom.2024.127598.





### Strengths and Contributions

### Advantages

- Data efficiency with fewer parameters
- Topology-driven generalization
- Structural explainability
- Bio-aligned with evolutionary design

### Challenges & Limitations

- Scaling beyond C. elegans
- Biological noise vs. artificial precision
- Limited general-purpose applicability
- Hardware demands

#### **Future Directions**

- Larger connectomes: Drosophila
- Hybrid ANNs, SNNs, and BCNNs
- Neuromorphic implementations
- Comparative connectomics for AI principles







### References

Bardis, F., et al. — "ElegansAI: From the connectome of a living organism to artificial neural networks." Neurocomputing, 2024.

F. Bardozzo, A. Terlizzi, C. Simoncini, P. Lió, and R. Tagliaferri, "Elegans-AI: How the connectome of a living organism could model artificial neural networks," *Neurocomputing*, vol. 584, p. 127598, 2024, doi: 10.1016/j.neucom.2024.127598.

Somathilaka, S., et al. — "Wet TinyML: Bio-inspired architectures for efficient ML on constrained devices." IEEE Access, 2024.

Alnaib and A. Alsammak, Advance Artificial Neural Networks. Sep. 2022.

J. Wen, L. Zhang, Y.-Z. Wang, and X. Guo, "Artificial Tactile Perception System Based on Spiking Tactile Neurons and Spiking Neural Networks," *ACS Applied Materials & Interfaces*, vol. 16, no. 1, pp. 998–1004, Jan. 2024, doi: 10.1021/acsami.3c12244

#### https://doi.org/10.53053/BWTN6816

C. Verasztó, S. Jasek, M. Gühmann, R. Shahidi, N. Ueda, J. D. Beard, S. Mendes, K. Heinz, L. A. Bezares-Calderón, E. Williams, and G. Jékely, "Whole-animal connectome and cell-type complement of the three-segmented *Platynereis dumerilii* larva," *bioRxiv*, p. 2020.08.21.260984, 2020, doi: 10.1101/2020.08.21.260984.

F. Bardozzo, A. Terlizzi, C. Simoncini, P. Lió, and R. Tagliaferri, "Elegans-AI: How the connectome of a living organism could model artificial neural networks," *Neurocomputing*, vol. 584, p. 127598, 2024, doi: 10.1016/j.neucom.2024.127598.

M. Winding, B. D. Pedigo, C. L. Barnes, H. G. Patsolic, Y. Park, T. Kazimiers, A. Fushiki, I. V. Andrade, A. Khandelwal, J. Valdes-Aleman, F. Li, N. Randel, E. Barsotti, A. Correia, R. D. Fetter, V. Hartenstein, C. E. Priebe, J. T. Vogelstein, A. Cardona, and M. Zlatic, "The connectome of an insect brain," *Science*, vol. 379, no. 6636, p. eadd9330, 2023, doi: 10.1126/science.add9330.

#### <u>FlyWire</u>

#### github.com

Welcome to CATMAID — CATMAID 2021.12.21 documentation

## Thank You