

Paradigmas de Linguagens de Programação

Informações

Prof. Ausberto S. Castro V.

ascv@uenf.br

3.4 INF01113 Paradigmas de Linguagens de Programação

• Ementa:

Conceitos fundamentais sobre linguagens de programação; Histórico; Características de Projeto; Paradigmas de linguagens de programação: procedimentais ou estruturado (declarativo e imperativo), funcionais, lógicas, transformacionais e orientadas a objetos.

• Bibliografia Básica:

- SEBESTA, R. Conceitos de Linguagens de Programação -9a Edição, Ed. Bookman, 2011.
- MELO, Ana Cristina Vieira de; SIIVA, Flávio Soares Corrêa.
 Princípios de Linguagens de Programação Editora Edgard Blücher Ltda. 1^a Edição - 2003.
- TUCKER, Allen; NOONAN, R., Linguagens de Programação: Princípios e Paradigmas, 2a.Ed., Porto Alegre: McGraw-Hill, 2009.

• Bibliografia Complementar:

- WATT, David A., Programming Language Design Concepts, New York: John Wiley & Sons, 2006.
- GABRIELLI, Maurizio; MARTINI, Simone, Programming Languages: Principles and Paradigms, London: Springer-Verlag, 2010.
- SCOTT, Michael L., Programming Language Pragmatics,
 Ed, New York: Elsevier, 2009.
- HARPER, Robert, Practical Foundations for Programming Languages, Cambridge University Press, 2012.
- LOUDEN, Kenneth C.; LAMBERT, Kenneth A., Programming Languages: Principles and Practices, 3a.Ed., Boston: Cengage Learning, 2011.
- VAN ROY, Peter; HARIDI, Seif Concepts. Techniques and Models of Computer Programming, Massachusetts: The MIT Press, 2004.

Ementa da disciplina como aparece no Projeto Pedagógico do Curso

Bibliografia Básica

Bibliografia Complementar

Pearson Education; 12 edition 2019

Springer; 2 edition 2017

Wiley; 1 edition (May 21, 2004)

http://www.levenez.com/lang/

Avaliação

Média:

- 1. Laboratório (L) (4)
 - Completo Nota 2.5 Peso 1
 - Incompleto* Nota 1,0
- 2. Provas Escritas (P)
 - Pelo menos duas
- 3. Trabalho Individual (T) Peso 3
 - Relatório (LaTeX)

Peso 2

^{*} Incompleto = pelo menos 2/3 do total

Relatório de uma linguagem de Programação escrito em LaTeX

Relatório de uma linguagem de Programação escrito em LaTeX

Introdução à Linguagem R

Paradigmas de Linguagens de Programação

Aluno Fulano de tal Ausberto S. Castro Vera

6 de agosto de 2021

Relatório de uma linguagem de Programação escrito em LaTeX

Relatório de uma linguagem de Programação escrito em LaTeX

Trabalho Individual – datas importantes

Introdução + Bibliografia

- Autor, datas, motivações, livros e artigos (docs PDF)
- NÃO considerar páginas web
- Entrega: até 31 de Agosto de 2021

Aspectos BÁSICOS da linguagem

- Estruturas, comandos, funções, etc.
- Entrega: até 21 de setembro de 2021

Aspectos AVANÇADOS da linguagem

- Módulos, funções, objetos, etc.
- Entrega: até 14 de outubro de 2021

Aplicações

- 5 aplicações: calculadora, quicksort, gráfico, ...
- Entrega: até 04 de novembro de 2021

Ferramentas e Conclusões

- Compiladores, interpretadores, editores, IDEs
- Entrega FINAL: até 30 de novembro 2021

Entrega completa: 10,0 Entrega incompleta: 5,0

Trabalho Individual - Opcional

Relatório de uma linguagem de Programação escrito em LaTeX

Trabalho Individual - Links

https://www.python.org/

https://www.javascript.com/ https://en.wikipedia.org/wiki/JavaScript

https://www.scala-lang.org/

Ciência da Computação

- AL Algorithms and Complexity
- AR Architecture and Organization
- CN Computational Science
- DS Discrete Structures
- GV Graphics and Visualization
- · HCI Human-Computer Interaction
- IAS Information Assurance and Security
- IM Information Management
- IS Intelligent Systems
- NC Networking and Communications
- OS Operating Systems
- PBD Platform-based Development
- PD Parallel and Distributed Computing
- PL Programming Languages
- SDF Software Development Fundamentals
- SE Software Engineering
- SF Systems Fundamentals
- SP Social Issues and Professional Practice

18 ÁREAS

Computer Science Curricula 2013

Curriculum Guidelines for Undergraduate Degree Programs in Computer Science

December 20, 2013

The Joint Task Force on Computing Curricula Association for Computing Machinery (ACM) IEEE Computer Society

A Cooperative Project of

PL – Programming Languages

- PL/Object-Oriented Programming
- PL/Functional Programming
- PL/Event-Driven and Reactive Programming
- PL/Basic Type Systems
- PL/Program Representation
- PL/Language Translation and Execution
- PL/Syntax Analysis
- PL/Compiler Semantic Analysis
- PL/Code Generation
- PL/Runtime Systems
- PL/Static Analysis
- PL/Advanced Programming Constructs
- PL/Concurrency and Parallelism
- PL/Type Systems
- PL/Formal Semantics
- PL/Language Pragmatics
- PL/Logic Programming

SE-Engenharia de Software

- 1. Software Requirements
- 2. Software Design
- 3. Software Construction
- 4. Software Testing
- 5. Software Maintenance
- 6. Software Configuration Management
- 7. Software Engineering Management
- 8. Software Engineering Process
- 9. Software Engineering Models and Methods
- 10.Software Quality
- 11. Software Engineering Professional Practice
- 12. Software Engineering Economics
- **13.Computing Foundations**
- 14.Mathematical Foundations
- 15. Engineering Foundations

Chapter 13: Computing Foundations

1. Problem Solving Techniques

- 1.1. Definition of Problem Solving
- 1.2. Formulating the Real Problem
- 1.3. Analyze the Problem
- 1.4. Design a Solution Search Strategy
- 1.5. Problem Solving Using Programs

2. Abstraction

- 2.1. Levels of Abstraction
- 2.2. Encapsulation
- 2.3. Hierarchy
- 2.4. Alternate Abstractions

3. Programming Fundamentals

- 3.1. The Programming Process
- 3.2. Programming Paradigms

4. Programming Language Basics

 4.1. Programming Language Overview

- 4.2. Syntax and Semantics of Programming Languages
- 4.3. Low-Level Programming Languages
- 4.4. High-Level Programming Languages
 4.5. Declarative vs. Imperative Programming Languages

5. Debugging Tools and Techniques

- 5.1. Types of Errors
- 5.2. Debugging Techniques
- 5.3. Debugging Tools

6. Data Structure and Representation

- 6.1. Data Structure Overview
- 6.2. Types of Data Structure
- 6.3. Operations on DataStructures

Chapter 13: Computing Foundations

7. Algorithms and Complexity

- 7.1. Overview of Algorithms
- 7.2. Attributes of Algorithms
- 7.3. Algorithmic Analysis
- 7.4. Algorithmic Design Strategies
- 7.5. Algorithmic Analysis Strategies

8. Basic Concept of a System

- 8.1. Emergent System Properties
- 8.2. Systems Engineering
- 8.3. Overview of a Computer System

9. Computer Organization

- 9.1. Computer Organization Overview
- 9.2. Digital Systems
- 9.3. Digital Logic
- 9.4. Computer Expression of Data
- 9.5. The Central Processing Unit (CPU)
- 9.6. Memory System Organization
- 9.7. Input and Output (I/O)

11. Operating Systems Basics

11.1. Operating Systems Overview

- 11.2. Tasks of an Operating System
- 11.3. Operating System Abstractions
- 11.4. Operating Systems Classification

12. Database Basics and Data Management

- 12.1. Entity and Schema
- 12.2. Database Management Systems (DBMS)
- 12.3. Database Query Language
- 12.4. Tasks of DBMS Packages
- 12.5. Data Management
- 12.6. Data Mining

13. Network Communication Basics

- 13.1. Types of Network
- 13.2. Basic Network Components
- 13.3. Networking Protocols and Standards
- 13.4. The Internet
- 13.5. Internet of Things
- 13.6. Virtual Private Network (VPN)

Chapter 13: Computing Foundations

14. Parallel and Distributed Computing

- 14.1. Parallel and Distributed Computing Overview
- 14.2. Difference between Parallel and Distributed Computing
- 14.3. Parallel and Distributed Computing Models
- 14.4. Main Issues in Distributed Computing

15. Basic User Human Factors

- 15.1. Input and Output
- 15.2. Error Messages
- 15.3. Software Robustness

16. Basic Developer Human Factors

- 16.1. Structure
- 16.2. Comments

17. Secure Software Development and Maintenance

- 17.1. Software Requirements Security
- 17.2. Software Design Security
- 17.3. Software Construction Security
- 17.4. Software Testing Security
- 17.5. Build Security into Software Engineering Process
- 17.6. Software Security Guidelines

Ciência da Computação 2020

Table 4.1. Elements of Computing Knowledge

Users and Organizations	Systems Modeling	Systems Architecture and Infrastructure	Software Development	Software Fundamentals	Hardware
Social Issues and	Security Issues	Virtual Systems and	Software Quality,	Graphics and	Architecture and
Professional	and Principles	Services	Verification and	Visualization	Organization
Practice	Systems Analysis	Intelligent Systems (AI)	Validation	Operating Systems	Digital Design
Security Policy and	& Design	Internet of Things	Software Process	Data Structures,	Circuits and
Management	Requirements	Parallel and Distributed	Software	Algorithms and	Electronics
IS Management and	Analysis and	Computing	Modeling and	Complexity	Signal Processing
Leadership	Specifications	Computer Networks	Analysis	Programming	
Enterprise	Data and	Embedded Systems	Software Design	Languages	
Architecture	Information	Integrated Systems	Platform-Based	Programming	
Project Management	Management	Technology	Development	Fundamentals	
User Experience		Platform Technologies		Computing Systems	
Design		Security Technology and		Fundamentals	
		Implementation			

A Computing Curricula Series Report 2020 December 31

Computing Curricula 2020

CC2020

Paradigms for
Global Computing Education

encompassing undergraduate programs in
Computer Engineering
Computer Science
Cybersecurity
Information Systems
Information Technology
Software Engineering
with data science

©computer society

lifehacker

Five Best Programming Languages for First-Time Learners

http://lifehacker.com/five-best-programming-languages-for-first-time-learners-1494256243

TIOBE Index for Agust 2021

Aug 2021	Aug 2020	Change	Programming Language	Ratings	Change
1	1		⊙ c	12.57%	-4.41%
2	3	^	Python	11.86%	+2.17%
3	2	•	🤏, Java	10.43%	-4.00%
4	4		© C++	7.36%	+0.52%
5	5		© C#	5.14%	+0.46%
6	6		VB Visual Basic	4.67%	+0.01%
7	7		JS JavaScript	2.95%	+0.07%
8	9	^	php PHP	2.19%	-0.05%
9	14	*	Assembly language	2.03%	+0.99%
10	10		SQL SQL	1.47%	+0.02%
11	18	*	Groovy	1.36%	+0.59%
12	17	*	Classic Visual Basic	1.23%	+0.41%
13	42	*	Fortran	1.14%	+0.83%
14	8	*	R R	1.05%	-1.75%
15	15		Ruby	1.01%	-0.03%
16	12	*	Swift	0.98%	-0.44%
17	16	~	✓ MATLAB	0.98%	+0.11%

The 9 Best Programming Languages to Learn in 2021

- 1. JavaScript
- 2. Swift
- 3. Scala
- 4. Go
- 5. Python
- 6. Elm
- 7. Ruby
- 8.C#
- 9. Rust

- + HTML+ CSS
- IOS
- concorrente
- Google
- User-friendly
- Fast-executing
- web
- Microsoft, VR, Xamarin
- Mozilla

Which Programming Language to Learn

Based on Your Career Goals

What Programming Languages Engineers and Employers Love—and Hate

SPECTRUM

8. PHP 9. Java 10. HTML 11. Swift 12. Python 13. C++ 14. C

JavaScript 7. Objective-C

Skills

1. Go

2. Scala

3. Ruby

TypeScript

5. Kotlin

Bay Area
3
4
2
1
5
6
10
7
9
8
11
12
13
14
15

San

Francisco

New

York

2

7

1

5

10

4

3

6

12

9

8

11

14

15

13

16

Toronto

8

13

2

1

12

3

10

6

9

5

14

7

15

11

4

16

Developers

7%

3%

10%

12%

2%

62%

3%

12%

42%

36%

6%

42%

14%

9%

17%

2%

London

3

2

4

1

9

5

13

8

7

6

15

10

14

12

11

16

Paris

1

14

15

2

8

4

11

3

7

6

12

13

10

5

9

16

Source: Hired

16

15. C#

16. R

Top 10 IT Skills and Tech Skills for 2021

- 1. IT Support
- 2. Remote IT Jobs
- 3. Artificial Intelligence (AI)
- 4. Cybersecurity
- 5. Project Management
- 6. Software Development
- 7. Cloud Computing
- 8. Augmented Reality (AR) and Virtual Reality (VR)
- 9. Data Science
- 10.Business Intelligence (BI) Analysis

2020

- 1. Mobile Development
- 2. Artificial Intelligence
- 3. Pythor
- 4. Data Science
- 5. Cybersecurity
- 6. Cloud/Amazon Web Services
- 7. Blockchain
- 8. Virtual Reality
- 9. IT Support
- 10. Internet of Things (IoT)

Top 10 In-Demand Programming languages to learn in 2020

Popularidade, salario, demanda de trabalho, Usos

- 1.Python
- 2.JavaScript
- 3.Java
- 4.C#
- **5.C**
- 6.C++
- 7.PHP
- 8.Swift
- 9.Go
- 10.Ruby

Top 10: Most In-Demand Programming Languages 2021

- 1. JavaScript (62%)
- 2. Java (59%)
- 3. Python (48%)
- 4. C# (40%)
- 5. PHP (32%)
- 6. C++ (27%)
- 7. Typescript (24%)
- 8. C (15%)
- 9. Kotlin (15%)
- 10.Swift (14%)

Empresas RH para TI: Entrevistados estão em busca de candidatos com essa habilidade

ENTERPRISE

The Next Big Programming Language You've Never Heard Of

http://dlang.org/

Picking a Language for Introductory CS — The Argument Against Python

Python is that it is "simple" and easy for students to learn

Então, quais fatores devem ser considerados ao escolher uma linguagem para a instrução CS1? Minha lista curta para esta postagem é a seguinte:

- Capacidade de cobrir conceitos importantes.
- Aplicar boas práticas para que os alunos não desenvolvam hábitos ruins.
- Baixa sobrecarga para pequenos programas.
- Capacidade de resolver problemas razoáveis sem introduzir muita complexidade.
- Relatórios de erros iniciais.
- Facilite o aprendizado de outras linguagens de programação.
- Capacidade de escrever coisas que sejam interessantes no primeiro semestre.
- Pontos de bônus: ser aberto, multiplataforma e de preferência de código aberto.
 Uma coisa que devo apontar aqui é que estou considerando especificamente CS1

Uma coisa que devo apontar aqui e que estou considerando especificamente CS com a intenção de que os alunos em CS1 pretendam adquirir um conhecimento mais profundo de programação, desenvolvimento de software e ciência da computação em geral.

Python: a possibilidade de os alunos adquirirem hábitos ruins que a linguagem não impede.

Prof. Dr. Ausberto S. Castro Vera Ciência da Computação UENF-CCT-LCMAT Campos, RJ

ascv@uenf.br ausberto.castro@gmail.com

