1 定义 1

1 定义

- 1. R 中稠密 P4
- 2. 数列收敛 P9,13
- 3. 上界, 下界, 有界数列 P13
- 4. 子列 P14
- 5. 数列极限正负无穷大的定义 P24
- 6. 单调数列 P26
- 7. 基本类 P36
- 8. 上下确界 P40
- 9. 开覆盖 P43
- 10. 上下极限 P45
- 11. 映射, 定义域, 像, 原像 P55
- 12. 相等映射, 逆映射 P56
- 13. 满射, 单射, 一一对应 P57
- 14. 映射的复合 P57
- 15. 恒等映射 P58
- 16. 集合的等价 P59
- 17. 有限集, 无限集, 可数集, 不可数集, 至多可数集 P59
- 18. 函数, 反函数 P63
- 19. (严格) 单调函数,(严格) 递增函数,(严格) 递减函数 P66
- 20. 函数 f 在点 x₀ 有极限 l P69
- 21. 单边极限, 左极限, 右极限 P75
- 22. 在无穷处的函数极限 P81

2 实数 2

- 23. 无穷小, 无穷大 P84
- 24. 高阶无穷小, 同阶无穷小, 等价无穷小 P85
- 25. 高阶无穷大, 同阶无穷大, 等价无穷大 P85

2 实数

任何分数一定是有尽小数或无尽循环小数。 每一个实数都可以用有理数去逼近到任意精确的程度。 有理数集 Q 在 R 中是稠密的。

3 数列极限

定理 3.1 如果数列 $\{a_n\}$ 收敛,则它只有一个极限。

定理 3.2 收敛数列是有界的。

定理 3.3 设收敛数列 $\{a_n\}$ 的极限是 a, 那么 $\{a_n\}$ 的任何一个子列都收敛于 a。

推论 3.3.1 数列 $\{a_n\}$ 收敛的充分必要条件是它的偶数项子列 $\{a_{2n}\}$ 和奇数项子列 $\{a_{2n-1}\}$ 都收敛,并且有相同的极限。

定理 3.4 (极限的四则运算) 设 $\{a_n\}$ 与 $\{b_n\}$ 都是收敛数列,则 $a_n + b_n$, $a_n b_b$ 也是收敛数列。如果 $\lim_{n \to \infty} b_n \neq 0$,则 $\{a_n/b_n\}$ 也收敛,并且有:

- 1. $\lim_{n \to \infty} a_n + b_n = \lim_{n \to \infty} a_n;$
- 2. $\lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$, 特别的, 如果 c 是常数, 便有 $\lim_{n\to\infty}ca_n=c\lim_{n\to\infty}a_n$;
- 3. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}, \ \ \sharp \ \ \psi \ \ \lim_{n \to \infty} b_n \neq 0.$

定理 3.5 (夹逼定理) 设 $a_n \le b_n \le c_n (n \in N_*)$, 如果 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, 那么 $\lim_{n \to \infty} b_n = a$

定理 3.6 保号性

3 数列极限 3

1. 设 $\lim_{n\to\infty}a_n=a,\alpha,\beta$ 满足 $\alpha< a<\beta,$ 那么当 n 充分大时,有 $a_n>\alpha;$ 同样,当 n 充分大时,有 $a_n<\beta$

- 2. 设 $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$, 且 a < b, 那么当 n 充分大时,一定有 $a_n < b_n$.
- 3. 设 $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b,$ 并且当 n 充分大时 $a_n \le b_n,$ 那么有 $a \le b.$

命题 3.1 无穷大的性质

- 1. 如果 $\{a_n\}$ 是无穷大, 那么 $\{a_n\}$ 必然无界.
- 2. 从无界数列中一定能选出一个子列是无穷大.
- 3. 如果 $\lim_{n\to\infty}a_n=+\infty$ (或 $-\infty,\infty$), 那么对 $\{a_n\}$ 的任意子列 $\{a_{k_n}\}$, 也有

$$\lim_{n\to\infty} a_{k_n} = +\infty (\mathfrak{A} - \infty, \infty)$$

.

4. 如果
$$\lim_{n\to\infty} a_n = +\infty$$
, $\lim_{n\to\infty} b_n = +\infty$, 那么
$$\lim_{n\to\infty} (a_n + b_n) = +\infty$$
, $\lim_{n\to\infty} a_n b_n = +\infty$

 $5. \{a_n\}$ 是无穷大的充分必要条件是 $\{1/a_n\}$ 为无穷小.

定理 3.7 单调有界数列一定有极限.

定理 3.8 (闭区间套定理) 设 $I_n = [a_n, b_n] (n \in N^*)$, 并且 $I_1 \supset I_2 \supset I_3 \supset \cdots \supset I_n \supset I_{n+1} \supset \cdots$. 如果这一列区间的长度 $\langle I_n \langle = b_n - a_n \to 0 (n \to \infty),$ 那么交集 $\bigcap_{n=1}^{\infty} I_n$ 含有唯一的一点.

定理 3.9 自然对数的底是无理数.

引理 3.1 从任一数列中必可取出一个单调数列.

定理 3.10 (列紧性定理) 从任何有界数列必可选出一个收敛子列.

定理 **3.11** (Cauchy 收敛定理) 一个数列收敛的充分必要条件是, 它是基本列.

3 数列极限 4

定理 3.12 (确界定理) 非空有上界的集合必有上确界. 非空有下界的集合必有下确界.

命题 **3.2**
$$-sup(-E) = infE$$
 或 $sup(-E) = -infE$

定理 3.13 (紧致性定理,有限覆盖定理,Heine-Borel 定理) 设 [a,b] 是一个有限闭区间,并且它有一个开覆盖 $\{I_{\lambda}\}$,那么从这个开区间族必可选出有限个成员 (\mathcal{F}) 来,这有限个开区间所成的族仍是 [a,b] 的开覆盖.

定理 3.14 设 $\{a_n\}$ 为一数列,E 为 $\{a_n\}$ 所有极限点组成的集合, a^* 为上极限. 那么:

- 1. $a^* \in E$;
- 2. $\exists x > a^*$,则存在 $N \in N^*$,使得当 $n \leq N$ 时,有 $a_n < x$;
- 3. a* 是满足前两条性质的唯一数.

对下极限 a_* 也有类似定理.

定理 **3.15** 设 $\{a_n\},\{n\}$ 是两个数列.

- 1. $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$
- 2. $\lim_{n\to\infty} a_n = a$ 当且仅当 $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = a$;
- 3. 若 N 是某个正整数, 当 n > N 时, $a < b_n$, 那么

$$\liminf_{n\to\infty}a_n\leq \liminf_{n\to\infty}b_n, \limsup_{n\to\infty}a_n\leq \limsup_{n\to\infty}b_n$$

定理 3.16 对数列 $\{a_n\}$, 定义 $\alpha_n = \inf_{k \geq n} a_k$, $\beta_n = \sup_{k > n} a_k$, 那么:

- 1. $\{\alpha_n\}$ 是递增数列, $\{\beta_n\}$ 是递减数列;
- 2. $\lim_{n\to\infty} \alpha_n = a_*, \lim_{n\to\infty} \beta_n = a^*.$

定理 $\mathbf{3.17}$ (Sotlz 定理 $)_{\infty}^{\infty}$ 型 设 b_n 是严格递增且趋于 $+\infty$ 的数列. 如果

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = A$$

那么

$$\lim_{n \to \infty} \frac{a_n}{b_n} = A$$

其中 A 可以是 $+\infty$ 或 $-\infty$.

4 集合

5

4 集合

定理 4.1 可数集 A 的每一个无限子集是可数集.

定理 **4.2** 设 $E_n(n=1,2,3,\cdots)$ 是一列至多可数集. 令

$$S = \bigcup_{n=1}^{\infty} E_n$$

那么 S 是至多可数集.

定理 4.3 R 中的全体有理数是可数的.

定理 4.4 [0,1] 上的全体实数是不可数的

5 函数的连续性

5.1 函数

定理 5.1 设函数 f 在其定义域 X 上是严格递增 (递减) 的,那么反函数 f^{-1} 必存在, f^{-1} 的定义域为 f(X),并且 f^{-1} 在这一集合上也是严格递增 (递减) 的.

5.2 函数的极限

定理 5.2 函数 f 在 x_0 处有极限 l 的充分必要条件是,对任意一个收敛于 x_0 的数列 $\{x_n \neq x_0 : n = 1, 2, 3, \cdots\}$, 数列 $f(x_n)$ 有极限 l.

定理 5.3 (函数极限的唯一性) 若 $\lim_{x\to x_0} f(x)$ 存在, 则它是唯一的.

定理 5.4 若 f 在 x_0 有极限, 那么 f 在 x_0 的一个近旁是有界的. 也就是说, 存在整数 M 及 δ ,使得当 $0 < |x - x_0| < \delta$ 时, f(x) < M.

定理 5.5 设 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} g(x)$ 存在, 那么有:

- $\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x);$
- $\lim_{x \to x_0} fg(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$;
- $\lim_{x \to x_0} \frac{f}{g}(x) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \ \ \sharp \ \ \psi \ \ \lim_{x \to x_0} g(x) \neq 0.$

5 函数的连续性

定理 5.6 (央逼定理) 设函数 f,g与h 在点 x_0 的近旁 (点 x_0 自身可能是例 外) 满足不等式

6

$$f(x) \le h(x) \le g(x)$$

. 如果 f与g 在点 x_0 有相同的极限 l, 那么函数 h 在点 x_0 也有极限 l.

定理 5.7 设存在 r>0 使得当 $0<|x-x_0|< r$ 时,不等式 $f(x)\leq g(x)$ 成立.有设在 x_0 处这两个函数都有极限,那么 $\lim_{x\to x_0}f(x)\leq \lim_{x\to x_0}g(x)$

定理 **5.8** 函数 f 在 x_0 处有极限, 必须且只需对任意给定的 $\epsilon > 0$, 存在 $\delta > 0$, 使得对任意的 $x_1, x_2 \in B_{\delta}(\tilde{x}_0)$, 都有 $|f(x_1) - f(x_2)| < \epsilon$.

定理 5.9 设 $\lim_{x \to x_0} f(x) = l, \lim_{t \to t_0} g(t) = x_0$. 如果在 t_0 的某个领域 $B_{\eta}(t_0)$ 内 $g(t) \neq x_0$, 那么 $\lim_{t \to t_0} f(g(t)) = l$.

定理 5.10 设函数 f 在 x_0 的某个领域内 $(x_0$ 可能是例外) 有定义, 那么 $\lim_{x \to x_0} f(x)$ 存在的充分必要条件是

$$f(x_0+) = f(x_0-)$$

这个共同的值也就是函数 f 在 x_0 处的极限值.

定理 5.11 如果当 $x \rightarrow x_0$ $(x_0$ 可以是 a)