CLAIMS

1. A process for the preparation of compound AQ4N of formula (2):

5

or a salt or solvate thereof wherein the said process includes the reaction step:

where compound AQ4 of formula (1) is oxidised to compound 10 AQ4N of formula (2) with an oxidising agent at a reaction

temperature not exceeding 10°C.

2. A process according to claim 1 where the oxidising agent in the reaction step is either hydrogen peroxide, an

15 oxaziridine, a peracid or a salt of a peracid.

WO 2005/080314 PCT/GB2005/000496

21

 A process according to claim 2 where the oxidising agent is magnesium monoperoxyphthalate.

- 4. A process according to either claim 2 or claim 3 where
- 5 the reaction is conducted at a temperature not exceeding 0°C.
 - A process according to any one of claims 1 to 4 where the reaction solvent is 1,2-propagediol, dichloromethane or an aliphatic alkyl alcohol.

10

6. A process according to any one of claims 1 to 5 for the preparation of a salt of AQ4N, where the salt of AQ4N, or a solvate thereof, is prepared by reaction of compound AQ4N of formula (2) with a solution of hydrogen chloride.

15

7. A process according to any one of claims 1 to 6 where a solution containing AQ4N or a salt of AQ4N is treated with activated charcoal.

 A process for the preparation of compound AQ4N of formula (2)

WO 2005/080314 PCT/GB2005/000496

that includes the reaction step:

5

wherein the said reaction step is conducted in a stirrable solvent at a temperature not exceeding $200\,^{\circ}\text{C}$.

- 9. A process according to claim 8 wherein the solvent is tetramethylene sulfone.
- 10. A process according to claims 8 or 9 where the crude 10 compound DDA of formula (6) is treated by slurrying several times with aqueous hydrochloric acid.
- 11. A process according to any one of claims 8 to 10 where the crude compound DDA of formula (6) is treated by adding a 15 chelating agent.
 - 12. A process for the preparation of compound AQ4N of formula (2)

WO 2005/080314 PCT/GB2005/000496

according to claim 1 which includes the reaction step:

wherein the reaction solution of the said reaction step is 5 treated with an ammonium hydroxide and brine solution cooled to $0\,^\circ\text{C}.$

5

 A process for the preparation of compound AQ4N of formula (2):

or a salt or solvate thereof wherein the said process includes the reaction step:

where compound AQ4 of formula (1) is oxidised to compound

10 AQ4N of formula (2) with an oxidising agent at a reaction
temperature not exceeding 10°C, where the oxidising agent is
a peracid or salt of a peracid, and where the oxidising agent
is added at a temperature not exceeding 0°C.

15 2. A process according to claim 1 where the oxidising agent is magnesium monoperoxyphthalate.

- 3. A process according to either claim 1 or claim 2 where the reaction is conducted at a temperature not exceeding 0° C.
- A process according to any one of claims 1 to 3 where
 the reaction solvent is 1,2-propanediol, dichloromethane or an aliphatic alkyl alcohol.
- A process according to any one of claims 1 to 4 for the preparation of a salt of AQ4N, where the salt of AQ4N, or a solvate thereof, is prepared by reaction of compound AQ4N of formula (2) with a solution of hydrogen chloride.
 - A process according to any one of claims 1 to 5 where a solution containing AQ4N or a salt of AQ4N is treated with activated charcoal.
 - 7. A process for the preparation of compound AQ4N of formula (2)

20 that includes the reaction step:

1.5

(4) DFPA (5) DDA (6)

wherein the said reaction step is conducted in a stirrable solvent at a temperature not exceeding 200°C.

- 5 8. A process according to claim 7 wherein the solvent is tetramethylene sulfone.
 - 9. A process according to claims 7 or 8 where the crude compound DDA of formula (6) is treated by slurrying several times with aqueous hydrochloric acid.
 - 10. A process according to any one of claims 7 to 9 where the crude compound DDA of formula (6) is treated by adding a chelating agent.

15

10

11. A process for the preparation of compound AQ4N of formula (2)

according to claim 1 which includes the reaction step:

wherein the reaction solution of the said reaction step is treated with an ammonium hydroxide and brine solution cooled to 0°C.