

Yann DOUZE
Twitter: @yann_douze

Linkedin:

https://www.linkedin.com/in/yanndouze/

The Internet Of Things C6: Radio Transmission and propagation

Radio Transmission and propagation

- ✓ Units and definitions: Decibel, dBm, RSSI, Sensitivity and SNR
- ✓ Examples and studies of technical documentation

Units and definitions: Decibel - 1

dB: Ratio between two powers

An <u>attenuation</u>

→ represented by a <u>negative number (-)</u>.

A gain

→ represented by a positive number (+).

 \mathbf{P}_{T} \longrightarrow \mathbf{P}_{R}

Power ratio in dB	Power ratio in dB Power ratio	
10 dB	Multiplication by 10	
3 dB	Multiplication by 2	
0 dB	Equality	
- 3 dB	Division by 2	
-10 dB	Division by 10	

P_R = 10 P_T

 $P_R = 2 P_T$

 $P_R = P_T$

 $P_R = P_T/2$

 $P_R = P_T/10$

Interest?

dB 🛶

Units and definitions: Decibel - 2

Transmitter

Receiver

Air

Pt: 90 dB attenuation

P _T :	iransmit	power

Power ratio in dB	Power ratio	
+ 10 dB	Multiplication by 10	—
+3 dB	Multiplication by 2	
0 dB	Equality	

POWEI TALIO III UD	Powel latio
+ 10 dB	Multiplication by 10
+3 dB	Multiplication by 2
0 dB	Equality
-3 dB	Division by 2
-10 dB	Division by 10
	+ 10 dB +3 dB 0 dB -3 dB

P_R: Received power

 P_R is <u>1 billion</u> times smaller than P_T

The decibel for power: dBm

dBm: Ratio (in decibel) between a power and the power of 1mW

Power in dBm	Power ratio	
10 dBm	Multiplication by 10	x10 → 10 mW
3 dBm	Multiplication by 2	$x2 \rightarrow 2 \text{ mW}$
0 dBm	Equality	1 mW
-3 dBm	Division by 2	0,5 mW
-10 dBm	Division by 10	0,1 mW

The walkie-talkie has a transmission power of 2W. What is the transmission power in dBm?

$$P_T = 1mI$$
 ($P_{T(dBm)} = ImI$) $P_{T(dBm)} = ImI$ ($P_{T(dBm)} = I$

Definitions: RSSI, Sensitivity, SNR

Definitions: Link Budget

☐ **Link Budget**: P_T - Sensitivity

✓ **In LTE (4G):** 130 dB

✓ In LoRa: 157 dB

BIG LINK BUDGET **LONG** DISTANCE

Example - 1

A transmitter uses 13dBm with a 2dBi gain antenna. The air loss is 60dB. Then a 2dBi gain antenna is connected to a receiver with a 80dBm sensitivity.

- 1) Will the signal be received? **YES**
- 2) The noise on the receiver is measured at -50dBm. What is the SNR? \checkmark SNR = 7 dB

Example - 2

A transmitter uses 13dBm with a 2dBi gain antenna. The air loss is 60 dB. Then a 2dBi gain antenna is connected to a receiver with a 80dBm sensitivity.

3) What is the link budget?

LET'S RECAP

□ The decibel helps to represent ratio (dB) or power (dBm).
□ RSSI is the power received.
□ If the RSSI is above the receiver sensitivity, the transmission is successful.
□ The Link budget evaluate the potential of the transmission.
□ The SNR is the ratio between the signal and the noise.
□ With a high SF, the reception capabilities are improved (sensitivity and SNR)