

# EE 046202 - Technion - Unsupervised Learning & Data Analysis

Tal Daniel (https://taldatech.github.io)

# Tutorial 03 - Classical Methods in Statistical Inference - Hypothesis Testing 1



# Agenda

- · Hypothesis Testing
- Hypothesis Testing Steps
- Error Types
- Example Body Weight Z-Statistic
- The Central Limit Theorem (CLT)
- · Relation to Confidence Intervals
- · Hypothesis Testing for the Mean Summary
- Recommended Videos
- Credits

In [1]: # imports for the tutorial
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib notebook



# **Hypothesis Testing**

Let's begin with an example: consider a radar system that uses radio waves to detect aircrafts. The system receives a signal, and based on the received signal, it needs to decide whether an aircraft is present or not. We formulate two hypotheses:

- 1.  $H_0$ : No aircraft is present.
- 2.  $H_1$ : An aircraft is present.

 $H_0$  is called the **null hypothesis** (also: the *default hypothesis*) and  $H_1$  is called the **alternative hypothesis**. We initially assume that  $H_0$  is **true** and based on the observed data we need to decide whether or not to accept  $H_1$  or reject it.

# Hypothesis Testing Steps

#### Step 1

**Null & Alternative Hypotheses** - Formulate the null hypothesis  $H_0$ :  $\theta \in \Theta_0$  (that the observations are the result of pure chance) and the alternative hypothesis  $H_1$ :  $\theta \in \Theta_1$  (that the observations show a real effect combined with a component of chance variation).

# Step 2

**Test Statistic** - Identify a test statistic that can be used to assess the truth of the null hypothesis. It is a value computed from sample data. The test statistic is used to assess the strength of evidence in support of a null hypothesis.

- A **statistic** is a real-valued function of the data. For example, the sample mean:  $W(X_1, X_2, \dots, X_n) = \frac{X_1 + X_2 + \dots + X_n}{n}$  is a statistic.
- A test satistic is a statistic on we which we build our test.
- Acceptence Region A A set  $A\subset\mathbb{R}$  is defined to be the set of all possible values of the test statistic for which we accept  $H_0$ .
- Rejection Region R A set  $R=\mathbb{R}-A$  is defined to be the set of all possible values of the test statistic for which we reject  $H_0$  and accept  $H_1$ .

# Step 3

**P-value & Interpretation** - Compute the P-value, which is the probability that a test statistic, at least as significant as the one observed, would be obtained assuming that the null hypothesis were true. The smaller the P-value, the stronger the evidence **against** the null hypothesis.

#### Step 4

Significance Level - Compare the p-value to an acceptable significance value  $\alpha$  (sometimes called an  $\alpha$  value, a probability threshold below which the null hypothesis will be rejected. Common values are 5% and 1%.). If  $p \leq \alpha$  (the observed effect is statistically significant), the null hypothesis is ruled out, and the alternative hypothesis is valid.

# The Two Competing Theories

- ullet NULL Hypothesis  $H_0$  any observed deviation from what we expect to see is due to chance variability.
- ALTERNATIVE Hypothesis  $H_a$  'claim', or a theory you wish to test (the reason for the observed statistic).

 $H_0$  is assumed **true** until enough evidence goes against it (we then refute it and believe the alternative  $H_a$ ).





False Positive

False Negative

- Type I Error (False Positive) the incorrect rejection of a true null hypothesis. Usually a type I error leads one to conclude that a supposed effect or relationship exists when in fact it doesn't.
  - For example, a test that shows a patient to have a disease when in fact the patient does not have the disease, a fire alarm going on indicating a fire when in fact there is no fire, or an experiment indicating that a medical treatment should cure a disease when in fact it does not
  - The chance of **rejecting the null hypthesis**  $H_0$ , **when it is TRUE**, denoted by lpha
  - ${\color{blue} \bullet} \ \to {\color{blue} \text{the chance}} \ \text{of} \ \text{accepting the null hypthesis} \ H_0, \text{ when it is TRUE} \ \text{is} \ 1-\alpha$
  - Formally:
    - $\circ$  Denote a test statistic as W
    - $P(\text{Type 1 Error}|\theta) = P(\text{Reject } H_0|\theta) = P(W \in R|\theta), \theta \in \Theta_0$ 
      - $\circ$  If  $P(\mathrm{Type}\ 1\ \mathrm{Error}|\theta) \leq lpha, orall heta \in \Theta_0$ , we say that the test has **significance level** lpha.
- Type II Error (False Negative) the failure to reject a false null hypothesis.
  - For example, a blood test failing to detect the disease it was designed to detect, in a patient who really has the disease; a fire breaking out and the fire alarm does not ring; or a clinical trial of a medical treatment failing to show that the treatment works when really it does.
  - The chance of **not rejecting the null hypothesis**  $H_0$ , **when it is FALSE**, denoted by  $\beta$
  - ullet the chance of **rejecting the null hypthesis**  $H_0$ , **when it is FALSE** is 1-eta (also called **power**)
  - Since the alternative hypothesis,  $H_1$ , usually contains more than one value of  $\theta$ , the probability of type II error is usually a **function of**  $\theta$ , and denoted by  $\beta$ .
  - ullet Formally:  $eta( heta) = P(\operatorname{Accept} H_0 | heta), \ ext{for } heta \in \Theta_1$

# **Example - Error Types**

- Hypothesis: "A patient's symptoms improve after treatment A more rapidly than after a placebo treatment."
- Null hypothesis  $(H_0)$ : "A patient's symptoms after treatment A are indistinguishable from a placebo."
- A Type I error would falsely indicate that treatment A is more effective than the placebo, whereas a Type II error would be a failure to
  demonstrate that treatment A is more effective than placebo even though it actually is more effective.



# **Example - Body Weight - Hypothesis Testing for the Mean**

The following example will be used to demonstrate the statistic process:

In the 1970s, 20–29 year old men in the U.S. had a mean  $\mu$  body weight of 170 pounds (77 kg). Standard deviation  $\sigma$  was 40 pounds (18 kg). We test whether mean body weight in the population is **bigger** now.

#### 1- Null & Alternative Hypotheses

• Under the **null hypothesis** there is no difference in the mean body weight between then and now, in which case  $\mu$  would still equal 170 pounds:

$$H_0: \mu=170$$

• Under the alternative hypothesis, the mean weight has increased:

$$H_a: \mu > 170$$

- This statement of the alternative hypothesis is one-sided. That is, it looks only for values larger than stated under the null hypothesis.
- There is another way to state the alternative hypothesis. We could state it in a "two-sided" manner, looking for values that are either higher- or lower-than expected. For the current illustrative example, the two-sided alternative is  $H_a: \mu \neq 170$ . Although for the current illustrative example, this seems unnecessary, two-sided alternative offers several advantages and are much more common in practice.

#### 2- Test Statistic (TS)

- It is a measure of how far the observed data is from what is expected under the null hypothesis  $H_0$ .
  - Compute the value of a test statistic (TS) from the data.
- The particular TS computed depends on the tested parameter.
  - For example, to test the population mean, the TS is the sample mean (or standardized sample mean), if the variance is known.
  - It is very similar to the process we did in point estimation, for choosing the correct estimator.
- ullet The null hypothesis  $H_0$  is rejected if the TS falls in a user-specified rejection region.
- Different hypothesis tests use different test statistics based on the probability model assumed in the null hypothesis. Common tests and their test statistics include:

| Hypothesis Test  | Test Statistic       |  |
|------------------|----------------------|--|
| Z-test           | Z-statistic          |  |
| t-tests          | t-statistic          |  |
| ANOVA            | F-statistic          |  |
| Chi-square tests | Chi-square statistic |  |

The Z-statistic has the standard normal distribution under the null hypothesis. It is a **mean** test when  $\sigma$  is known. We will use this statistic to test the

$$z_{stat} = rac{\overline{x} - \mu_0}{\sigma_{\overline{x}}}$$

Assumptions:

- $\mu_0$  is the **population mean** assuming  $H_0$  is **true**
- ullet  $\overline{x}=rac{x_1+x_2+..+x_n}{n}$  is the sample mean.
- $\bullet \ \ \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$

Solve for the "Body Weight" problem:

- $\mu_0 = 170$
- $\sigma = 40$
- We'll take sample size of n=64 samples,  $ightarrow \sqrt{n}=8$
- $\sigma_{\overline{x}}=rac{40}{8}=5$  If the variance is unknown (the variance of  $X_i$ ): we use the sample standard deviation S instead of  $\sigma$  (unbiased)

$$S = \sqrt{rac{1}{n-1}\sum_{k=1}^n (X_k - \overline{X})^2} = \sqrt{rac{1}{n-1}ig(\sum_{k=1}^n X_k^2 - n \overline{X}^2ig)}$$

- Note that you first estimate the variance for the **whole** population, and then still devide by  $\sqrt{n}$  to get the sample STD for  $z_{stat}$ .
- Read more (examples + exercises) (https://www.probabilitycourse.com/chapter8/8 4 3 hypothesis testing for mean.php).

Now, let's assume we found a sample mean of 173, then:

$$ullet z_{stat} = rac{ar x - \mu_0}{\sigma_{ar x}} = rac{173 - 170}{5} = 0.6$$

Now, let's assume we found a sample mean of 185, then:

$$ullet z_{stat}=rac{\overline{x}-\mu_0}{\sigma_{ar{x}}}=rac{185-170}{5}=3$$

# (A) Reminder: The Central Limit Theorem (CLT)

- . The CLT states that given a sufficiently large sample size from a population with a finite level of variance, the mean of all samples from the same population will be approximately equal to the mean of the population.
- When n is large, the distribution of the **sample means** will approach a normal distribution. More formally:

If  $X_1, X_2, \ldots, X_n$  is a random sample of size n taken from a population with mean  $\mu$  and variance  $\sigma^2$ , and if  $\overline{X}$  is the sample mean, the limiting form of the distribution:

$$Z=rac{\overline{X}-\mu}{rac{\sigma}{\sqrt{n}}}$$

as  $n \to \infty$ , is the standard normal distribution

CLT DEMO (http://onlinestatbook.com/stat\_sim/sampling\_dist/)

Sampling distribution of  $\overline{x}$  under  $H_0$ :

$$\overline{x} \sim N(170,5)$$



# 3 - P-value & Interpretation

- All hypothesis tests ultimately use a **p-value** to weigh the strength of the evidence (what the data are telling you about the population). The p-value is a number between 0 and 1, and is the probability of the observed test statistic (or one more extreme) when  $H_0$  is true
  - **P-value** is the *lowest* significance level  $\alpha$  that results in rejecting the null hypothesis.
- It corresponds to the f Area Under the f Curve (AUC) in the tail of the f Standard Normal Distribution beyond the  $f z_{stat}$
- Converting Z-statistics to P-value:

For 
$$H_1: \mu > \mu_0 
ightarrow P = Pr(Z>z_{stat}) = \textit{right-tail beyond } z_{stat}$$



• Image Source (https://courses.lumenlearning.com/wmopen-concepts-statistics/chapter/hypothesis-test-for-a-population-proportion-2-of-3/)

```
In [3]: # let's see for the body weight problem
    x = np.linspace(140, 200, 64)
    mu = 170  # H_0 is true!
    sigma = 5  # calcualted for 64 samples
    f_x = (1 / np.sqrt(2 * np.pi * sigma ** 2)) * np.exp(- (x - mu) ** 2 / (2 * sigma ** 2))
    x_normed = (x - mu) / sigma
```

```
p-val (AUC) = 0.298
```



```
In [9]: # let's see for the body weight problem
                               x = np.linspace(140, 200, 64)
                               mu = 170 # H_0 is true!
                               sigma = 5 # calcualted for 64 samples
                               f_x = (1 / np.sqrt(2 * np.pi * sigma ** 2)) * np.exp(- (x - mu) ** 2 / (2 * sigma ** 2))
                               x_{normed} = (x - mu) / sigma
                              def plot_p_auc():
                                              fig = plt.figure(figsize=(10,6))
                                              ax = fig.add_subplot(1,1,1)
                                              ax.plot(x, f_x, label='Standard Normal Distribution')
                                              ax.fill\_between(x[np.where(x.astype(int)==185)[0][0]:], y1=f\_x[np.where(x.astype(int)==185)[0][0]:], y1=f\_x[np.where(x.astype(int)==185)[0]:], y1
                                                                                                       color='red', label="P-value")
                                              ax.grid()
                                              ax.legend()
                                              ax.set_xlim([170, 195])
                                              ax.set_ylim([0, 0.05])
                                              ax.set_xlabel('x')
                                              ax.set_title('P-Value and AUC for z-stat = 3.0')
                                              p_val = np.sum(f_x[np.where(x.astype(int)==185)[0][0]:])
                                              print('p-val (AUC) = {:.3f}'.format(p_val))
```

In [10]: plot\_p\_auc()

p-val (AUC) = 0.001



#### Interpretation

- A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis H<sub>0</sub>, so you reject the null hypothesis.
- A large p-value (> 0.05) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis.
- p-values very close to the cutoff (0.05) are considered to be marginal (could go either way).

# 4- Significance Level ( $\alpha$ )

- It is the degree of certainty required in order to **reject** the null hypothesis  $H_0$ .
- A test statistic, TS, with p-value less than some pre-determined false positive (or size) is said to be statistically significant at that level.
- Commonly used p-values:

| P-Value                 | Wording               |  |
|-------------------------|-----------------------|--|
| p > 0.05                | Not Significant       |  |
| $0.01 \leq p \leq 0.05$ | Significant           |  |
| $0.001 \leq p < 0.01$   | Very Significant      |  |
| p<0.001                 | Extremely Significant |  |



# Formalization

Let's design a level  $\alpha$  test to choose between:

$$H_0: \mu = \mu_0$$
  
 $H_1: \mu \neq \mu_0$ 

 $H_0: \mu=\mu_0 \\ H_1: \mu\neq\mu_0$  We initially assume  $H_0$ , thus  $z_{stat}\sim\mathcal{N}(0,1).$  We will choose a threshold c. If  $|z_{stat}|\leq c$ , we **accept**  $H_0$ , and if  $|z_{stat}|>c$ , accept  $H_1.$ 

To choose c:

$$P(|z_{stat}|>c|H_0)=lpha$$

Since the standard normal PDF is **symmetric** around 0, we have:

$$P(|z_{stat}|>c|H_0)=2P(z_{stat}>c|H_0)
ightarrow P(z_{stat}>c|H_0)=rac{lpha}{2}
ightarrow c=z_{rac{lpha}{2}}$$

Therefore, we accept  $H_0$  if

$$|rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}| \leq z_{rac{lpha}{2}}$$

and reject it otherwise.

Notice that saying we accept  $H_0$  if

$$|rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}| \leq z_{rac{lpha}{2}}$$

can be interpreted as the following acceptance region for  $\mu_0$ :

$$\mu_0 \in ig[ \overline{X} - z_{rac{lpha}{2}} \cdot rac{\sigma}{\sqrt{n}}, \overline{X} + z_{rac{lpha}{2}} \cdot rac{\sigma}{\sqrt{n}} ig]$$

Which is the  $(1-\alpha)$  confidence interval for  $\mu_0$ .



# **Exercise - Hypothesis Testing**

We continue with the radar example. Recall that the system receives a signal and based upon that signal it decides whether an aircraft is present or not. We denote:

- X the received signal (R.V., sampled)
- · We suppose that:

$$X=W, ext{ if no aircraft is present} \ X=1+W, ext{ if an aircraft is present} \ W\sim \mathcal{N}(0,\sigma^2=rac{1}{9})$$

· We can write instead:

$$X = \theta + W$$

where  $\theta=0$  if there is no aircraft and  $\theta=1$  otherwise.

- The hypotheses:
  - $lacksquare H_0$  (null): No aircraft is present
  - lacksquare  $H_1$  (alternative): An aircraft is present
- 1. Write  $H_0$  and  $H_1$  in terms of possible values of heta.
- 2. Suggest a *simple* test statistic with level lpha=0.05 to decide between  $H_0$  and  $H_1$ .
- 3. Find the probability of missing a present aircraft, that is, find  $\beta$  (the probability of type 2 error).
- 4. If we observe X=0.6, is there enough evidence to reject  $H_0$  at a significance level lpha=0.01?
- 5. For a probability less than 5% to miss a present aircraft, what is the **smallest** significance level that we can achieve?
- Reminder:

$$W \sim \mathcal{N}(\mu, \sigma^2) 
ightarrow rac{W - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$



# Section 1 - Write $H_0$ and $H_1$ in terms of possible values of $\theta$ .

# The hypotheses:

- $H_0$  (null): No aircraft is present: heta=0
- $H_1$  (alternative): An aircraft is present : heta=1

- The *observed* data is a random variable X.
- Under  $H_0$  we have  $X \sim \mathcal{N}(0, \frac{1}{q})$  and under  $H_1$  we have  $X \sim \mathcal{N}(1, \frac{1}{q})$ .
- We suggest the following test: set a threshold c. If the observed value of X is less than c, choose  $H_0$  ( $\theta=\mathbb{E}[X]=0$ ), otherwise, choose  $H_1$  ( $\theta = \mathbb{E}[X] = 1$ ).
- To find the best c we use the required  $\alpha$ , that is, we demand:

$$P( ext{type I error}) = P( ext{Reject } H_0|H_0) = P(X>c|H_0) = P(W>c) = P(rac{Z}{3}>c) = 1-\phi(3c) = lpha$$

(the last transition is due to the fact that we assume  $H_0$  and  $X \sim \mathcal{N}(0, \frac{1}{9})$ , which is not the standard distribution).

• It holds that  $P(\text{type I error}) = \alpha$ , thus we get:

$$c = \frac{1}{3}\phi^{-1}(1-lpha) = \frac{1}{3}\phi^{-1}(1-0.05) = \frac{1}{3}\phi^{-1}(0.95) = 0.548$$

# Section 3 - Find the probability of missing a present aircraft, that is, find $\beta$ (the probability of type 2 error).

Note that the *alternative* hypothesis is simple, that is, it contains only one value  $(\theta=1)$ , so  $\beta(\theta)=\beta$  and we can write:  $\beta = P( ext{type II error}) = P( ext{Accept } H_0 | H_1) = P(X < c | H_1) = P(1 + W < c) = P(W < c - 1) = \phi(3(c - 1))$ Since we found out that for the given  $\alpha$ , c=0.548 then  $\beta=0.088$ .

# Section 4 - If we observe X=0.6, is there enough evidence to reject $H_0$ at a significance level lpha=0.01?

- For  $\alpha=0.01$  we get  $c=\frac{1}{3}\phi^{-1}(1-\alpha)=\frac{1}{3}\phi^{-1}(1-0.01)=\frac{1}{3}\phi^{-1}(0.99)=0.775$ , which is larger than 0.6.
- Thus, we **cannot** reject  $H_0$  at significance level  $\alpha=0.01$ .

#### Section 5 - For a probability less than 5% to miss a present aircraft, what is the smallest significance level that we can achieve?

We want  $\beta=0.05$ , and from (3) we deduce that  $c=1+\frac{1}{3}\phi^{-1}(\beta)=0.452$ . Thus, we need  $c\leq0.452$  to obtain  $\beta\leq0.05$ ). Let's calculate  $\alpha$ :  $P(\text{type I error}) = P(\text{Reject } H_0 | H_0) = 1 - \phi(3c) = 0.0875$ which means that the smallest significance level that we can achieve is 0.0875.



# Hypothesis Testing for the Mean Summary

All expansions can be found HERE (https://www.probabilitycourse.com/chapter8/8\_4\_3\_hypothesis\_testing\_for\_mean.php).

• 2-sided hypothesis testing for the mean:  $H_0: \mu = \mu_0, H_1: \mu 
eq \mu_0$ 

| Case                                               | Test Statistic                                       | Acceptance Region            |
|----------------------------------------------------|------------------------------------------------------|------------------------------|
| $X_i \sim \mathcal{N}(\mu, \sigma),  \sigma$ known | $W=rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}$ | $ W  \leq z_{rac{lpha}{2}}$ |
| $n$ large, $X_i$ non-normal                        | $W=rac{\overline{X}-\mu_0}{rac{S}{\sqrt{n}}}$      | $ W  \leq z_{rac{lpha}{2}}$ |

- 1-sided hypothesis testing for the mean:  $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$ 

| Case                                              | Test Statistic                                       | Acceptance Region |
|---------------------------------------------------|------------------------------------------------------|-------------------|
| $X_i \sim \mathcal{N}(\mu, \sigma), \sigma$ known | $W=rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}$ | $W \leq z_{lpha}$ |
| $n$ large, $X_i$ non-normal                       | $W = rac{\overline{X} - \mu_0}{rac{S}{\sqrt{n}}}$  | $W \leq z_{lpha}$ |

- The only difference is the  $\ensuremath{\textit{absolute}}$  sign on W



# **Recommended Videos**



- These videos do not replace the lectures and tutorials.
- · Please use these to get a better understanding of the material, and not as an alternative to the written material.

# Video By Subject

- Hypothesis Testing Hypothesis Testing Statistics Problems & Examples (https://www.youtube.com/watch?v=VK-rnA3-41c)
- p-Value <u>Understanding the p-value Statistics Help (https://www.youtube.com/watch?v=eyknGvncKLw)</u>
  - What is a P Value? What does it tell us? (https://www.youtube.com/watch?v=-MKT3yLDkqk)
- Test Statistics (t-stat is covered in the next tutorial):
  - Test Statistics: Crash Course Statistics (https://www.youtube.com/watch?v=QZ7kgmhdlwA)
  - Z-statistics vs. T-statistics (https://www.youtube.com/watch?v=5ABpqVSx33I)



- Examples, exercises and definitions from <a href="Introduction to Probability">Introduction to Probability</a>, <a href="Statistics and Random Processes">Statistics and Random Processes</a> (<a href="https://probabilitycourse.com/">https://probabilitycourse.com/</a>) <a href="https://probabilitycourse.c
- Icons from Icon8.com (https://icons8.com/) https://icons8.com (https://icons8.com)
- Datasets from Kaggle (https://www.kaggle.com/) https://www.kaggle.com/ (https://www.kaggle.com/)