Package 'GOSemSim'

August 19, 2013

Type Package

Title GO-terms Semantic Similarity Measures

Version 1.18.0

Author Guangchuang Yu

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively for estimating GO semantic similarities. Support many species, including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, Coelicolor, E coli strain K12 and Sakai, Fly, Human, Malaria, Mouse, Pig,Rhesus, Rat, Worm, Xenopus, Yeast, and Zebrafish.

Depends R (>= 2.10), Rcpp

LinkingTo Rcpp

Imports methods, AnnotationDbi, GO.db, org.Hs.eg.db

Suggests DOSE, clusterProfiler, BiocInstaller

biocViews GO, Clustering, Pathways, NetworkAnalysis

Collate

'clusterSim.R' 'combineMethods.R' 'computeIC.R' 'ICMethods.R' 'gene2GO.R' 'geneSim.R' 'goSim.R' 'termSim.R' 'Wackage.R' 'mgeneSim.R' 'mgoSim.R' 'mclusterSim.R'

License GPL-2

URL http://bioinformatics.oxfordjournals.org/content/26/7/976.full

2 GOSemSim-package

R topics documented:

GOSei	mSim-package	Gei	ne (Ont	ole	ogy	y-b	ase	ed	Se	m	ati	c S	Sim	ile	arı	ity	M	lea	su	ıre	S								
Index																														13
	wangMethod				•	•		•	•		•	٠	•		•	٠	•		•	•	٠	•	 	•	٠	٠	•	•	•	12
	termSim																													
	mgoSim																						 							10
	mgeneSim																						 							9
	mclusterSim																													8
	loadICdata																													8
	infoContentMethod																													7
	goSim																													6 7
	geneSim																													5
	combineScores																													4
	clusterSim																													3
	GOSemSim-packag	e .																					 							2

Description

Implementation of semantic similarity measures to estimate the functional similarities among Gene Ontology terms and gene products

Details

Quantitative measure of functional similarities among gene products is important for post-genomics study. and widely used in gene function prediction, cluster analysis and pathway modeling. This package is designed to estimate the GO terms' and genes' semantic similarities. Implemented five methods proposed by Resnik, Schlicker, Jiang, Lin and Wang respectively. Support many species, including Anopheles, Arabidopsis, Bovine, Canine, Chicken, Chimp, E coli strain K12 and strain Sakai, Fly, Human, Malaria, Mouse, Pig, Rhesus, Rat, Worm, Xenopus, Yeast, Zebrafish.

Package: GOSemSim Type: Package Version: 1.6.0 Date: 09-11-2012

biocViews: GO, Clustering, Pathways, Anopheles_gambiae, Arabidopsis_thaliana, Bos_taurus, Caenorhabditis_elegans, Ca

Depends:

Imports: methods, AnnotationDbi, GO.db, org.Hs.eg.db, org.Ag.eg.db, org.At.tair.db, org.Bt.eg.db, org.Ce.eg.db, org.Cf.e

Suggests: clusterProfiler License: GPL Version 2 clusterSim 3

Author(s)

Guangchuang Yu

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

goSim mgoSim geneSim mgeneSim clusterSim mclusterSim

clusterSim

Semantic Similarity Between Two Gene Clusters

Description

Given two gene clusters, this function calculates semantic similarity between them.

Usage

```
clusterSim(cluster1, cluster2, ont = "MF",
  organism = "human", measure = "Wang", drop = "IEA",
  combine = "BMA")
```

Arguments

cluster1 A set of gene IDs.
cluster2 Another set of gene IDs.

ont One of "MF", "BP", and "CC" subontologies.

measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.

organism One of "anopheles", "arabidopsis", "bovine", "canine", "chicken", "chimp", "coeli-

color", "ecolik12", "ecsakai", "fly", "human", "malaria", "mouse", "pig", "rat",

"rhesus", "worm", "xenopus", "yeast" and "zebrafish".

drop A set of evidence codes based on which certain annotations are dropped. Use

NULL to keep all GO annotations.

combine One of "max", "average", "rcmax", "BMA" methods, for combining semantic

similarity scores of multiple GO terms associated with protein or multiple pro-

teins assiciated with protein cluster.

Value

similarity

4 combineScores

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

goSim mgoSim geneSim mgeneSim mclusterSim

Examples

```
## cluster1 <- c("835", "5261","241", "994")
## cluster2 <- c("307", "308", "317", "321", "506", "540", "378", "388", "396")
## clusterSim(cluster1, cluster2, ont="MF", organism="human", measure="Wang")</pre>
```

combineScores

combining similarity matrix to similarity score

Description

Functions for combining similarity matrix to similarity score

Usage

```
combineScores(SimScores, combine)
```

Arguments

SimScores similarity matrix combine combine method

Value

similarity value

Author(s)

Guangchuang Yu http://ygc.name

geneSim 5

geneSim Semantic	Similarity Between two Genes

Description

Given two genes, this function will calculate the semantic similarity between them, and return their semantic similarity and the corresponding GO terms

Usage

```
geneSim(gene1, gene2, ont = "MF", organism = "human",
  measure = "Wang", drop = "IEA", combine = "BMA")
```

Arguments

gene1	Entrez gene id.
gene2	Another entrez gene id.
ont	One of "MF", "BP", and "CC" subontologies.
organism	One of "anopheles", "arabidopsis", "bovine", "canine", "chicken", "chimp", "coelicolor", "ecolik12", "ecsakai", "fly", "human", "malaria", "mouse", "pig", "rat", "rhesus", "worm", "xenopus", "yeast" and "zebrafish".
measure	One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
drop	A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine	One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.

Value

list of similarity value and corresponding GO.

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

```
goSim mgoSim mgeneSim clusterSim mclusterSim
```

Examples

```
geneSim("241", "251", ont="MF", organism="human", measure="Wang")
```

6 goSim

goSim	Semantic Similarity Between Two GO Terms

Description

Given two GO IDs, this function calculates their semantic similarity.

Usage

```
goSim(GOID1, GOID2, ont = "MF", organism = "human",
  measure = "Wang")
```

Arguments

GOID1	GO ID 1.
GOID2	GO ID 2.
ont	One of "MF", "BP", and "CC" subontologies.
organism	One of "anopheles", "arabidopsis", "bovine", "canine", "chicken", "chimp", "coelicolor", "ecolik12", "ecsakai", "fly", "human", "malaria", "mouse", "pig", "rat", "rhesus", "worm", "xenopus", "yeast" and "zebrafish".

One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.

Value

similarity

measure

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

 ${\tt mgoSim}$ ${\tt geneSim}$ ${\tt mgeneSim}$ ${\tt clusterSim}$ ${\tt mclusterSim}$

Examples

```
goSim("GO:0004022", "GO:0005515", ont="MF", measure="Wang")
```

IC 7

IC

Information content of GO terms

Description

These datasets are the information contents of GOterms.

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

infoContentMethod

information content based methods

Description

Information Content Based Methods for semantic similarity measuring

Usage

```
infoContentMethod(ID1, ID2, ont = "D0", method,
  organism = "human")
```

Arguments

ID1	Ontology Term
ID2	Ontology Term
ont	Ontology

method one of "Resnik", "Jiang", "Lin" and "Rel".

organism one of supported species

Details

implemented for methods proposed by Resnik, Jiang, Lin and Schlicker.

Value

semantic similarity score

Author(s)

Guangchuang Yu http://ygc.name

8 mclusterSim

loadICdata

Load IC data

Description

Load Information Content data to DOSEEnv environment

Usage

```
loadICdata(organism, ont)
```

Arguments

```
organism "human" ont "DO"
```

Value

NULL

Author(s)

Guangchuang Yu http://ygc.name

mclusterSim

Pairwise Semantic Similarities for a List of Gene Clusters

Description

Given a list of gene clusters, this function calculates pairwise semantic similarities.

Usage

```
mclusterSim(clusters, ont = "MF", organism = "human",
  measure = "Wang", drop = "IEA", combine = "BMA")
```

Arguments

clusters A list of gene clusters.

ont One of "MF", "BP", and "CC" subontologies.

measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.

One of "anopheles", "arabidopsis", "bovine", "canine", "chicken", "chimp", "coeli-

color", "ecolik12", "ecsakai", "fly", "human", "malaria", "mouse", "pig", "rat",

"rhesus", "worm", "xenopus", "yeast" and "zebrafish".

mgeneSim 9

drop A set of evidence codes based on which certain annotations are dropped. Use

NULL to keep all GO annotations.

combine One of "max", "average", "rcmax", "BMA" methods, for combining semantic

similarity scores of multiple GO terms associated with protein or multiple pro-

teins assiciated with protein cluster.

Value

similarity matrix

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

goSim mgoSim geneSim mgeneSim clusterSim

Examples

```
## cluster1 <- c("835", "5261","241")
## cluster2 <- c("578","582")
## cluster3 <- c("307", "308", "317")
## clusters <- list(a=cluster1, b=cluster2, c=cluster3)
## mclusterSim(clusters, ont="MF", organism="human", measure="Wang")</pre>
```

mgeneSim

Pairwise Semantic Similarity for a List of Genes

Description

Given a list of genes, this function calculates pairwise semantic similarities.

Usage

```
mgeneSim(genes, ont = "MF", organism = "human",
  measure = "Wang", drop = "IEA", combine = "BMA",
  verbose = TRUE)
```

Arguments

genes A list of entrez gene IDs.

ont One of "MF", "BP", and "CC" subontologies.

measure One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.

10 mgoSim

organism	One of "anopheles", "arabidopsis", "bovine", "canine", "chicken", "chimp", "coelicolor", "ecolik12", "ecsakai", "fly", "human", "malaria", "mouse", "pig", "rat", "rhesus", "worm", "xenopus", "yeast" and "zebrafish".
drop	A set of evidence codes based on which certain annotations are dropped. Use NULL to keep all GO annotations.
combine	One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.
verbose	show progress bar or not.

Value

similarity matrix

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

goSim mgoSim geneSim clusterSim mclusterSim

Examples

```
mgeneSim(c("835", "5261","241"), ont="MF", organism="human", measure="Wang")
```

mgoSim Semantic Similarity Between two GO terms lists

Description

Given two GO term sets, this function will calculate the semantic similarity between them, and return their semantic similarity

Usage

```
mgoSim(GO1, GO2, ont = "MF", organism = "human",
  measure = "Wang", combine = "BMA")
```

termSim 11

Arguments

G01	A set of go terms.
G02	Another set of go terms.
ont	One of "MF", "BP", and "CC" subontologies.
organism	One of "anopheles", "arabidopsis", "bovine", "canine", "chicken", "chimp", "coelicolor", "ecolik12", "ecsakai", "fly", "human", "malaria", "mouse", "pig", "rat", "rhesus", "worm", "xenopus", "yeast" and "zebrafish".
measure	One of "Resnik", "Lin", "Rel", "Jiang" and "Wang" methods.
combine	One of "max", "average", "rcmax", "BMA" methods, for combining semantic similarity scores of multiple GO terms associated with protein or multiple proteins assiciated with protein cluster.

Value

similarity

References

Yu et al. (2010) GOSemSim: an R package for measuring semantic similarity among GO terms and gene products *Bioinformatics* (Oxford, England), 26:7 976–978, April 2010. ISSN 1367-4803 http://bioinformatics.oxfordjournals.org/cgi/content/abstract/26/7/976 PMID: 20179076

See Also

goSim geneSim mgeneSim clusterSim mclusterSim

Examples

```
go1 <- c("G0:0004022", "G0:0004024", "G0:0004023")
go2 <- c("G0:0009055", "G0:0020037")
mgoSim("G0:0003824", go2, measure="Wang")
mgoSim(go1, go2, ont="MF", organism="human", measure="Wang")</pre>
```

termSim termSim

Description

measuring similarities between two term vectors.

Usage

```
termSim(t1, t2, method = "Wang", organism = "human", ont)
```

12 wangMethod

Arguments

t1 term vector t2 term vector

method one of "Wang", "Resnik", "Rel", "Jiang", and "Lin".

organism only "human" supported

ont ontology

Details

provide two term vectors, this function will calculate their similarities.

Value

score matrix

Author(s)

Guangchuang Yu http://ygc.name

wangMethod wangMethod

Description

Method Wang for semantic similarity measuring

Usage

```
wangMethod(ID1, ID2, ont)
```

Arguments

ID1 Ontology TermID2 Ontology Termont Ontology

Value

semantic similarity score

Author(s)

Guangchuang Yu http://ygc.name

Index

*Topic datasets	Info_Contents_coelicolor_CC (IC), 7
IC, 7	<pre>Info_Contents_coelicolor_MF (IC), 7</pre>
*Topic manip	<pre>Info_Contents_ecolik12_BP (IC), 7</pre>
clusterSim, 3	<pre>Info_Contents_ecolik12_CC(IC), 7</pre>
geneSim, 5	<pre>Info_Contents_ecolik12_MF (IC), 7</pre>
goSim, 6	<pre>Info_Contents_ecsakai_BP (IC), 7</pre>
mclusterSim, 8	<pre>Info_Contents_ecsakai_CC (IC), 7</pre>
mgeneSim, 9	<pre>Info_Contents_ecsakai_MF (IC), 7</pre>
mgoSim, 10	Info_Contents_fly_BP (IC), 7
*Topic package	<pre>Info_Contents_fly_CC (IC), 7</pre>
GOSemSim-package, 2	<pre>Info_Contents_fly_MF (IC), 7</pre>
	<pre>Info_Contents_human_BP(IC), 7</pre>
clusterSim, 3, 3, 5, 6, 9–11	<pre>Info_Contents_human_CC (IC), 7</pre>
combineScores, 4	<pre>Info_Contents_human_MF (IC), 7</pre>
	<pre>Info_Contents_malaria_BP (IC), 7</pre>
geneSim, 3, 4, 5, 6, 9–11	<pre>Info_Contents_malaria_CC(IC), 7</pre>
GOSemSim (GOSemSim-package), 2	<pre>Info_Contents_malaria_MF (IC), 7</pre>
GOSemSim-package, 2	<pre>Info_Contents_mouse_BP (IC), 7</pre>
goSim, 3-5, 6, 9-11	<pre>Info_Contents_mouse_CC(IC), 7</pre>
TO 7	<pre>Info_Contents_mouse_MF (IC), 7</pre>
IC, 7	Info_Contents_pig_BP (IC), 7
Info_Contents_anopheles_BP (IC), 7	Info_Contents_pig_CC (IC), 7
Info_Contents_anopheles_CC (IC), 7	Info_Contents_pig_MF (IC), 7
Info_Contents_anopheles_MF (IC), 7	Info_Contents_rat_BP (IC), 7
Info_Contents_arabidopsis_BP (IC), 7	Info_Contents_rat_CC (IC), 7
<pre>Info_Contents_arabidopsis_CC (IC), 7 Info_Contents_arabidopsis_MF (IC), 7</pre>	Info_Contents_rat_MF (IC), 7
• • • • • • • • • • • • • • • • • • • •	Info_Contents_rhesus_BP (IC), 7
Info_Contents_bovine_BP(IC), 7	Info_Contents_rhesus_CC (IC), 7
<pre>Info_Contents_bovine_CC (IC), 7 Info_Contents_bovine_MF (IC), 7</pre>	Info_Contents_rhesus_MF (IC), 7
* **	Info_Contents_worm_BP (IC), 7
Info_Contents_canine_BP(IC),7	Info_Contents_worm_CC (IC), 7
Info_Contents_canine_CC (IC), 7	Info_Contents_worm_MF (IC), 7
Info_Contents_canine_MF (IC), 7	Info_Contents_xenopus_BP (IC), 7
Info_Contents_chicken_BP (IC), 7	Info_Contents_xenopus_CC (IC), 7
Info_Contents_chicken_CC (IC), 7	Info_Contents_xenopus_MF (IC), 7
Info_Contents_chicken_MF (IC), 7	Info_Contents_yeast_BP (IC), 7
Info_Contents_chimp_BP (IC), 7	Info_Contents_yeast_CC (IC), 7
Info_Contents_chimp_CC (IC), 7	• • • • • • • • • • • • • • • • • • • •
Info_Contents_chimp_MF (IC), 7	Info_Contents_yeast_MF(IC), 7
<pre>Info_Contents_coelicolor_BP(IC), 7</pre>	<pre>Info_Contents_zebrafish_BP (IC), 7</pre>

INDEX

```
\label{eq:contents_zebrafish_CC} Info\_Contents\_zebrafish\_MF (IC), 7\\ Info\_Contents\_zebrafish\_MF (IC), 7\\ infoContentMethod, 7\\ loadICdata, 8\\ mclusterSim, 3-6, 8, 10, 11\\ mgeneSim, 3-6, 9, 9, 11\\ mgoSim, 3-6, 9, 10, 10\\ termSim, 11\\ wangMethod, 12\\
```