SOUMAHORO Fanta

African Institute for Mathematical Sciences, AIMS-Senegal Sous la supervision de : Dr Mouhamadou Lamine BA Université Alioune Diop de Bambey (UADB), Sénégal

Plan

- Contexte & problématique Contexte & motivation Définition du problème Exemple
- Revue de l'état de l'art Classification des algorithmes de recherche de vérité Recherche de vérité et algorithmes parallèles
- Contribution Algorithmes parallèles vs. algorithmes non parallèles Proposition TruthFinder parallèle
- Validation de notre approche Validation expérimentale Données synthétiques Données réelles
- G Conclusion

Contexte & motivation

Contexte & problématique

Recherche de vérité

Réduction du temps d'exécution

Définition du problème

Contexte & problématique

Fonction de recherche de vérité F

F prend comme entrée un ensemble de valeurs V fourni par un ensemble de sources S sur un ensemble O d'objets et P de propriétés et retourne deux fonctions $C_v: V \to [0,1]$ le score de confiance pour chaque valeur $v \in V$ et $T_s: S \to [0, 1]$ la fiabilité de chaque source $s \in S$.

- La difficulté du mécanisme de recherche de vérité
- Le caractère hétérogène des données
- La taille des données

Solution : Parallélisation des algorithmes de recherche de vérité.

Exemple

catégorie Géogra- phie	Q1 - Dans quel continent est situé le Brésil?		
·	Q2 - Quelle est la superficie de la Côte d'ivoire?		
	Q3 - Le Ghana fait-il partie de la CEDEOA?		
catégorie Informa- tique	Q1- Que signifie RAM?		
•	Q2 - Quel est le langage de progammation le plus utilisé?		
	Q3 - Qu'affiche ce code python? print(6**2)		

Table 1 - Questions concours

postulant	catégorie	Q1	Q2	Q3
postulant 1	Géographie	Afrique	322,463 km²	Non
postulant 2	Géographie	Amérique du Sud	233 km²	Oui
postulant 3	Géographie	Amérique du Sud	320,463 km²	Non
postulant 1	Informatique	Random Access Manager	Python	12
postulant 2	Informatique	Random Access Memory	Java	36
postulant 3	Informatique	Random Allow Memory	Python	36

Table 2 - Réponses concours

Classification des algorithmes de recherche de vérité

Revue de l'état de l'art

Familles	Algorithmes	Auteurs
Méthode probabi- listes bayesiens	TruthFinder	Yin et al., 2008
	Découverte de la vérité par cor- roboration des informations	Galland et al., 2010
	Modèle de vérité latente	Zhao et al., 2012
	Découverte de la vérité par es- timation de la vraisemblance maximale	Wang et al., 2012
	Découverte de la vérité avec dé- pendance des sources	Dong et al., 2009
	Analyse de crédibilité latente	Pasternack et Roth, 2013
Méthodes basées sur l'optimisation	Recherche de la vérité semi- supervisée	Yin et Tan, 2011
Méthodes basées sur partitionnement de données	Recherche de la vérité avec par- titionnement des attributs	Ba et al., 2015
	Découverte de la vérité basée sur le partitionnement efficace des données	Osias Noël et Ba, 2021

Table 3 – Classification des algorithmes de recherche de vérité

Proposition d'approche parallèle

Une approche proposée par (Ouyang et al.) en 2016 qui utilise le paradigme MapReduce et a prouvé l'efficacité de la découverte de la vérité sur de grands ensembles de données. Cet algorithme est utilisé dans les applications de crowdsourcing.

- Crowdsourcing est un processus qui consiste à obtenir le contenu, les informations ou les services nécessaires en sollicitant les contributions d'un grand groupe de personnes généralement indéterminées.
- Cet algorithme utilise seulement les données quantitatives.

Contribution

Algorithmes parallèles vs. algorithmes non parallèles

Critères de parallélisation

Nous considérons un algorithme parallélisable si :

- C_{V} et T_{S} sont des sommes
- C_v et T_s sont des produits
- la distribution des données se fait par partitionnement

Algorithmes parallèles vs. algorithmes non parallèles

Plan

Algorithme parallèles vs. algorithmes non parallèles

Algorithmes parallélisables

Les algorithmes parallélisables sont :

- MajorityVoting
- TruthFinder
- Recherche de la vérité avec partitionnement des attributs
- Découverte de la vérité basée sur le partitionnement efficace des données
- Recherche de la vérité semi-supervisée
- Depen
- Analyse de crédibilité latente

Contribution

Algorithmes parallèles vs. algorithmes non parallèles

Algorithmes non parallélisables

Les algorithmes non parallélisables sont :

- Cosine
- 2-estimate
- 3-estimate
- Découverte de la vérité par estimation de la vraisemblance maximale

TurthFinder (Yin, Han et Yu 2008)

Contexte & problématique

Approche bayesienne avec support mutuel des valeurs similaires. L'algorithme TruthFinder contient les différentes fonctions suivantes :

Contribution

- fonction de la fiabilité d'une source (1)
- fonction de confidence d'une valeur utilisant une fonction logistique (4)
- fonction de confidence d'une valeur (2)

$$T_s = \sum_{v \in V_s} \frac{C_v}{|V_s|} \tag{1}$$

$$\sigma_{\nu} = -\sum_{s \in S_{\nu}} \ln\left(1 - T_{s}\right) \tag{2}$$

$$\sigma_{v}^{*} = \sigma_{v} + \rho \sum_{v^{*} \in V_{d}} \sigma_{v^{*}}.sim(v, v^{*})$$

$$\tag{3}$$

$$C_{\nu} = \frac{1}{1 + e^{-\gamma \sigma_{\nu}^*}} \tag{4}$$

Proposition TruthFinder parallèle

Paradigme MapReduce

Version parallèle σ_{ν}

Contexte & problématique

Nous proposons une parallélisation de la fonction de confidence d'une valeur.

Contribution

Algorithme 1 Fonction de calcul de la confidence d'une valeur : (S,O,A,V,C_n,T_s)

Pré-conditions: $\forall s \in S : T_s \leftarrow 0.8$ **Pré-conditions**: $\forall v \in V : C_v \leftarrow 0$

- 1. Écriture de la fonction MAP
- 2: Pour tout $(o, p, v, s, t_s) \in (O, P, V, S, T_S)$ (en parallele) faire
- 3: $\sigma'_{\cdot \cdot \cdot} \leftarrow -ln(1-t_{\cdot \cdot})$
- 4. Fin Pour
- 5: Retourne un couple $(\langle o, p, v \rangle, \langle \sigma'_v, s, t_s \rangle)$
- 6. Écriture de la fonction REDUCE
- 7: Pour tout $(\langle o, p, v \rangle, \langle \sigma_v, s, t_s \rangle) \in (\langle O, P, V \rangle, \langle \sigma_V, S, T_S \rangle)$ (en parallèle) faire
- $\sigma_v \leftarrow \sum_{s \in S_v} \sigma_v'$
- 9. Fin Pour
- 10: Retourne $(O, P, <(V_i, \sigma_{V_i}), ..., (V_n, \sigma_{V_n}) >, S, T_S)$

Version parallèle C_{ν}

Contexte & problématique

Nous proposons une parallélisation de la fonction de confidence d'une valeur utilisant une fonction logistique.

Contribution

Algorithme 2 Fonction de calcul de la confidence d'une utilisant une fonction logistique valeur :(S,O,P,V,C $_v$, T_s , σ_v , ρ , γ)

Pré-conditions : $\gamma \leftarrow 0.5, \rho \leftarrow 0.7$

Pré-conditions : $\forall v \in V : c_v \leftarrow \sigma_v$

- 1: Écriture de la fonction MAP
- 2: Pour tout $(o, p, <(v_i, \sigma_{v_i} >, s, t_s) \in (O, P, <(V_i, \sigma_{v_i} >, S, T_S)$ (en parallèle) faire
- 3: $c_v \leftarrow \rho \sigma'_v \times sim(v, v')$
- 4: $C_v \leftarrow 1/(1 + \exp(-\gamma \times c_v))$
- 5: Fin Pour
- 6: Retourne un couple $(\langle o, p \rangle, \langle v, c_v, s, t_s \rangle)$
- 7: Écriture de la fonction REDUCE
- 8: Pour tout $(< o, p >, < v, c_v, s, t_s >) \in (< O, P >, < V, C_V, S, T_S >)$ (en parallèle) faire
- $C_v \leftarrow \sum_{s \in S_v} c_v$
- 10. Fin Pour
- 11: retourne (O, P, V, T_S, C_V)

Proposition TruthFinder parallèle

Contexte & problématique

Nous proposons une parallélisation de la fonction de calcule de fiabilité d'une source.

Algorithme 3 Fiabilité source : (S,O,P,V,C_v,T_s)

- 1. Écriture de la fonction MAP
- 2: Pour tout $(s, o, p, v, c_v, t_s) \in (S, O, A, V, C_v, T_s)$ (en parallèle) faire
- $t_s \leftarrow c_v/|V_s|$
- 4. Fin Pour
- 5: Retourne un couple $(\langle o, p, v, c_v \rangle, \langle s, t_s \rangle)$
- 6. Écriture de la fonction REDUCE
- 7: Pour tout $(< o, p, v, c_v >, < s, t_s >) \in (< O, P, V, C_v >, < S, T_S >)$ (en parallèle) faire
- $T_s \leftarrow \sum_{v \in V} t_s$
- 9: Fin Pour
- 10: Retourne (S, O, A, V, C_v, T_s)

Mesures de performance

Contexte & problématique

Nous effectuons une comparaison entre notre approche et la version séquentielle en utilisant les mesures de performance suivantes :

Contribution

- L'accuracy
- La précision
- Le recall
- Le f1-score

Nous prouvons l'efficacité de notre approche avec les mesures de performance suivantes:

- Le temps d'exécution
- La mémoire consommée.

Contribution

Données de validation

Contexte & problématique

Nous validons notre approche sur deux types de jeux de données

- Données synthétiques
- Données réelles

Données synthétiques

Informations	DS1	DS2	DS3
na	6	10	10
no	1000	1000	2000
ns	10	10	50
td	60.000	100.000	1.000.000

Table 4 - Information concernant les données synthétiques

Contexte & problématique

Performance sur les Données synthétiques

Données	Versions	Recall	Précision	Accuracy	F1-score	Temps(s)	Nbr Iter
	Séquentielle	0.84	0.79	0.89	0.81	2700	2
DS1	Parallèle	0.84	0.79	0.89	0.81	7,8	2

Table 5 – Performance des versions sur le jeu de données synthétique DS1

Données	Versions	Recall	Précision	Accuracy	F1-score	Temps(s)	Nbr Iter
	Séquentielle	0.93	0.88	0.92	0.90	9219	3
DS2	Parallèle	0.93	0.88	0.92	0.90	20,79	3

Table 6 – Performance des versions sur le jeu de données synthétique DS2

Données	Versions	Recall	Précision	Accuracy	F1-score	Temps(s)	Nbr Iter
	Séquentielle	0.96	0.91	0.95	0.93	494049	2
DS3	Parallèle	0.96	0.91	0.95	0.93	252	2

Table 7 – Performance des versions sur le jeu de données synthétique DS3

Contexte & problématique

Temps d'exécution & consommation en mémoire

Données	Versions	Temps(s)
	Séquentielle	2700
DS1	Parallèle	7.8
	Séquentielle	9219
DS2	Parallèle	20.79
	Séquentielle	494049
DS3	Parallèle	252

Table 8 – Temps d'exécution

Données	Versions	Mémoire(Go)
	Séquentielle	0.0502
DS1	Parallèle	0.0009
	Séquentielle	0.0720
DS2	Parallèle	0.0015
	Séquentielle	0.7207
DS3	Parallèle	0.0024

Table 9 – Consommation en mémoire

- Réduction de temps de 99,71% pour le jeux de donnée DS1
- Réduction de temps de 99,77% pour le jeux de données DS2
- Réduction de temps de 99,99% pour le jeux de données DS3

Données réelles

Données	Stocks	Vols
Nombre de sources	55	37
Nombre d'objets	100	100
Nombre d'attributs	15	6
Nombre d'observations	56992	8771

Table 10 - Caractéristiques des jeux de données réelles

Contribution

Contexte & problématique

Temps d'execution & consommation en mémoire

Données	Versions	Temps(s)
	Séquentielle	48
Vols	Parallèle	2.43
	Séquentielle	5227
Stocks	Parallèle	8.40

Table 1:	_ Tomne	d'avácution

Données	Versions	Mémoire(Go)
	Séquentielle	0.0010
Vols	Parallèle	0.0001
	Séquentielle	0.0101
Stocks	Parallèle	0.0008

Table 12 - Consommation en mémoire

- Réduction du temps est de 94,43% pour le jeux de données Vols.
- Réduction du temps est de 99,83% pour les jeux de données Stocks.

Contexte & problématique Revue de l'état de l'art

Conclusion & perspective

- Les deux versions ont les mêmes performances en terme de precision. accuracy, recall et F1 score
- La version parallèle est efficace en terme de temps d'exécution et de consommation en mémoire.
- Améliorer notre approche en faisant une exécution sur système a plusieurs noeuds pour réduire plus le temps d'exécution et la consommation en mémoire.

Fin

Merci pour votre aimable attention