EE511-F18 (Silvester)

Project #1: Due Thursday Sept 14

- (1) Let $X \sim U(0,1)$, evaluate the mean, μ and variance, σ_X^2 .
- (2) Generate a sequence of $N\!=\!100$ random numbers between [0,1] and compute the

sample mean $m = \sum_{i=1}^{100} X_i$ and sample variance $s^2 = \frac{\sum_{i=1}^{N} (X_i - m)^2}{N - 1}$ and compare to μ

and σ^2 . Also estimate the (sample) variance of the sample mean. Repeat for N=10,000 .

- (3) The Central Limit Theorem says that $m=\frac{\sum_{i=1}^n X_i}{n} \to N(\mu,\sigma^2/n)$. Repeat the experiment in (2) (for N=100) 50 times to generate a set of sample means $\{m_j,\,j=1..50\}$. Do they appear to be approximately normally distributed values with mean μ and variance σ^2/n ?
- (4) We want to check whether there is any dependency between X_i and X_{i+1} Generate a sequence of N+1 random numbers that are $\sim U(0,1)$ for N=1,000 Compute

$$Z = \left[\frac{\sum\limits_{i=1}^{N} X_i X_{i+1}}{N}\right] - \left[\frac{\sum\limits_{i=1}^{N} X_i}{N}\right] \left[\frac{\sum\limits_{j=2}^{N+1} X_j}{N}\right]$$

Comment on what you expect and what you find.