Assignment 5

Jacob O

2023-11-09

Question 1

- 1. The infmort data set from the package faraway gives the infant mortality rate for a variety of countries. The information is relatively out of date (from 1970s?), but will be fun to graph. Visualize the data using by creating scatter plots of mortality vs income while faceting using region and setting color by oil export status. Utilize a log₁₀ transformation for both mortality and income axes. This can be done either by doing the transformation inside the aes() command or by utilizing the scale_x_log10() or scale_y_log10() layers. The critical difference is if the scales are on the original vs log transformed scale. Experiment with both and see which you prefer.
 - a) The rownames() of the table gives the country names and you should create a new column that contains the country names. *rownames

```
data(infmort)
yesssirrr <- infmort %>%
  mutate(rownames = rownames(infmort))
head(yesssirrr)
```

```
##
                          region income mortality
                                                               oil
## Australia
                            Asia
                                   3426
                                              26.7 no oil exports
## Austria
                          Europe
                                   3350
                                              23.7 no oil exports
## Belgium
                          Europe
                                   3346
                                              17.0 no oil exports
## Canada
                        Americas
                                   4751
                                              16.8 no oil exports
## Denmark
                          Europe
                                   5029
                                              13.5 no oil exports
## Finland
                          Europe
                                   3312
                                              10.1 no oil exports
##
                                   rownames
## Australia
                        Australia
## Austria
                        Austria
## Belgium
                        Belgium
## Canada
                        Canada
## Denmark
                        Denmark
## Finland
                        Finland
```

b) Create scatter plots with the `log10()` transformation inside the `aes()` command.

```
ggplot(yesssirrr, aes(x=log10(income), y=log10(mortality), color = oil)) +
  geom_point() +
  facet_wrap(vars(region))
```

Warning: Removed 4 rows containing missing values (`geom_point()`).

Create the scatter plots using the scale_x_log10() and scale_y_log10(). Set the major and minor breaks to be useful and aesthetically pleasing. Comment on which version you find easier to read.

```
big.slagga <- ggplot(yesssirrr, aes(x=income, y=mortality, color=oil)) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10() +
  facet_wrap(vars(region))
big.slagga</pre>
```

Warning: Removed 4 rows containing missing values (`geom_point()`).

didnt change the breaks cause I thought they were fine as is. I know how to do it though you just pass breaks = <vector of break #s> or do the same thing for minor_breaks.

d) The package `ggrepel` contains functions `geom_text_repel()` and `geom_label_repel()` that mimic the basic `geom_text()` and `geom_label()` functions in `ggplot2`, but work to make sure the labels don't overlap. Select 10-15 countries to label and do so using the `geom_text_repel()` function.

```
yesssirrr <- yesssirrr %>%
  mutate(Country = str_extract(rownames, pattern= '^[aA].*'))
big.slagga <- ggplot(yesssirrr, aes(x=income, y=mortality, color=oil)) +
  geom_point() +
  scale_x_log10() +
  scale_y_log10() +
  facet_wrap(vars(region)) +
  ggrepel::geom_text_repel(aes(label = Country))
big.slagga</pre>
```

Warning: Removed 4 rows containing missing values ('geom point()').

Warning: Removed 100 rows containing missing values (`geom_text_repel()`).

Question 2

##

- 3. Using the datasets::trees data, complete the following:
 - a) Create a regression model for y = Volume as a function of x = Height.

```
data(trees)
str(trees) #FUCK your promise
  'data.frame':
                    31 obs. of 3 variables:
##
    $ Girth : num
                   8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...
    $ Height: num
                   70 65 63 72 81 83 66 75 80 75 ...
   $ Volume: num
                  10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...
model.guy <- lm(Volume ~ Height, data=trees)</pre>
trees <- mutate(trees, yhat=fitted(model.guy))</pre>
b) Using the `summary` command, get the y-intercept and slope of the
    regression line.
summary(model.guy)
##
## Call:
## lm(formula = Volume ~ Height, data = trees)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
  -21.274 -9.894
                    -2.894 12.068
```

```
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -87.1236
                          29.2731 -2.976 0.005835 **
                           0.3839
                                    4.021 0.000378 ***
## Height
                 1.5433
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 13.4 on 29 degrees of freedom
## Multiple R-squared: 0.3579, Adjusted R-squared: 0.3358
## F-statistic: 16.16 on 1 and 29 DF, p-value: 0.0003784
c) Using `ggplot2`, create a scatter plot of Volume vs Height.
ggplot(trees, aes(x=Height, y=Volume)) +
 geom_point()
  80 -
  60 -
  20 -
                             70
                                                             80
```

d) Create a nice white filled rectangle to add text information to using by adding the following annotation layer.

Height

```
annotate('rect', xmin=65, xmax=75, ymin=60, ymax=74, fill='white', color='black') +
```


e) Add some annotation text to write the equation of the line $\hat{y}_i = -87.12 + 1.54 * x_i$ in the text area.

Warning in is.na(x): is.na() applied to non-(list or vector) of type
'expression'

Add annotation to add $R^2 = 0.358$

```
ggplot(trees, aes(x=Height, y=Volume)) +
  geom_point() +
 annotate('rect', xmin=65, xmax=75, ymin=60, ymax=74,
                fill='white', color='black') +
 annotate('text', x=70, y=70, label=latex2exp::TeX('\\hat{y}_i = -87.12 + 1.54 * x_i')) +
  annotate('text', x=70, y=64, label=latex2exp::TeX('R^2 = 0.358'))
```

```
## Warning in is.na(x): is.na() applied to non-(list or vector) of type
## 'expression'
```

Warning in is.na(x): is.na() applied to non-(list or vector) of type ## 'expression'

g) Add the regression line in red. The most convenient layer function to uses is `geom_abline()`. It appears that the `annotate` doesn't work with `geom_abline()` so you'll have to call it directly.

