DATA MINING FISSIGNMENT-5 Parampiee & Imaly 1(a) det c be a projuint itemset, tracque mumimin use se que nim

D be the took rehevalor data, a set of

Liveral seadates My no, of Ivanuactions in D = (1) true \_troque triviti trueperol a is 2 simi2 (1) rque-rim 2 of 2 of the man man purply set of S Win 2 townst would not not somet your strength of the other wints of the other support count (2) townst (2) townst (2) towns of (2) towns of (2) IN I Thus, i've also a frequent itermet No P (b) Let D be the task retrant data, a set of database transaction, I DI be the no. of tronsection in so, support(s) = support\_count(s) s be the Let s' be the non-empty subsit of s support(s') = support\_ant(s')

we know that support(s) > support(s) structed will be greater mon-smul cupport of s. c) given progressit itemset I and subset s of, (2) tropport (2) (2-1) (-2) surport (1) 2 tolders ytems new your od's the (12) tracque s((12-116-2) singloi pro) we already know that support (s') > support (s) (2-1)=2) simply as > ((2-1)=2) simplified. Inspredt 2-1=2 show at po simplified is offered cannot be more than me confidence of the rule 5->(l-5)

| 3.    | Given database has 5 transacham,                   |         |
|-------|----------------------------------------------------|---------|
| =     | Let min_sup = 60%.                                 |         |
|       | Lit min_sup = 60%. min_sup = 80%.                  |         |
|       |                                                    |         |
|       | TID Items_bought                                   |         |
|       | TID I tems_bought  TIOO & M,O,N, 1<,E, Y'Cy        | 1       |
|       | T000 (DONKE, 73                                    |         |
|       | 7300 (M, A, KEY                                    |         |
|       | T400 (M, U, C, K, Y)                               |         |
|       | 7500 {(,0,0,K,1,t}                                 | T       |
|       |                                                    | 1       |
| (a) A | priori Algeriami -                                 | -       |
|       |                                                    | M       |
|       | So, No. of Manuaction = 5                          |         |
|       |                                                    |         |
|       | win should count? 60 x (total up of homertinas)    | IR<br>Z |
|       | win support count 2 60 x (total no. of hamactary)  | 9       |
|       |                                                    | By      |
|       | 2 60 p ≤ ≥ 3                                       |         |
| 10    | in culidance court a so (+ +) I toursetout         |         |
| VV    | in onlighme count 2 800 (total no. of transaction) |         |
|       | 2 Do C . 1.                                        | _       |
|       | 2 80 ps 2 4                                        | -       |
|       | · ·                                                |         |
|       | CK = condidate items of<br>- R = Brequent items of |         |
| L     | K 7 Prigrent Hemsel                                |         |
|       | V                                                  | C       |
|       |                                                    |         |

graphent stemset by scanning me We will D13 49M -> Need to remove the repeated item in some transaction based on association rule mirning {my -> 1+1+1=3 Ky > 1+1+1+1+125 - 1+1+1:3 Cy > 1+1=2 1=1 (M,043 1=1 EM, 13->141=2 20, Ey-314)+1=3

```
20, 43 → 2

20, 43 → 4

20, 43 → 4

20, 43 → 3

20, 43 → 3

20, 43 → 3

20, 43 → 3

20, 43 → 3
                                                    L3
[k,0,67-3
(m, k, 0 3 => 1=1
 (M, k, E 9 > 1H > 2
(P, k, 79 > 1+1>2
\{k,0,E\} \rightarrow 1+1+1=3
\{k,0,1\} \rightarrow 1+1=2
\{k,0,1\} \rightarrow 1+1=2
 (0, E, 73-5 1+1 = 2
 So the total frequent itemsets are

(M, O, K,E, N, MK, OE, OK, KE, KV, KOE'Y
 FP growth Algorithm:-
winimum support=60 ps=3
                                     ordered frequent itemset
   Item sup
                                           E= 4
                                           M=3
                                             0-3
```



Scanned with CamScanner

| Tome      | conditional Pattern                                                                                                 | Conditional     | Frequent Pattern    |
|-----------|---------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
|           | Base                                                                                                                | FPT             | genevaled           |
| Y         | ((k,E,N,0:1) (K,M:1)                                                                                                | (K:3)           | {1c/Y: 34           |
| 0         | C(k, r,n:143, (k,5:244                                                                                              | ER: 33, (1:33   | (1/c,0:33, (x,0:33) |
| M         | (ik, 6:23, (k: 133                                                                                                  | Sk: 33          | ¿1c,n'.39           |
| E         |                                                                                                                     | (K: 43          | (K) E:43            |
|           | {{K:13}}                                                                                                            |                 | -                   |
| 1 rec     | quent patterns gru                                                                                                  | K pmw bitous    | u F-Pgrowth         |
| tree      |                                                                                                                     |                 | 0                   |
| to over   | will tree                                                                                                           |                 | <b>41</b>           |
| VSK.      | 1:34, [0, K:34 (0, E                                                                                                | :34, (O, K, E:  | 34 (M, K: 34,       |
| IE. K     | :44 (E:44) {K:44                                                                                                    | PM: 34 (4:34    | (0:394              |
| Apris     | ori algorithm a                                                                                                     | remember como   | Vidater itemsets    |
| Man       | be large in no.                                                                                                     | I he trusch     | · in the            |
| dali      | base is home. It                                                                                                    | needs wullit    | le som a            |
| M         | datubase and this                                                                                                   | a makes un      | ry Jow !            |
|           |                                                                                                                     |                 | U                   |
| lu        | Apgrown Mu pro<br>Mun is solved.<br>The ave generated<br>along condidate if<br>orimm need on<br>epresents Mu databa | oblemy in the   | Aprioni             |
| alask.    | books is mill                                                                                                       | he this algorit | hun frequent        |
| orte v    | are conevated                                                                                                       | without M       | u need of _         |
| an to a k | atme candidate it                                                                                                   | imists. FPa     | row th              |
| Jala      | avikum need on                                                                                                      | h two db        | scans and           |
| it w      | adalah M databa                                                                                                     | nd in the form  | n of Poture         |
| U V       | ALIST NO MENORS                                                                                                     |                 | 0 0)                |
| That      | le the reason for                                                                                                   | Minople Muse    | im a more           |
| 1100      | is the reason fp g                                                                                                  | Viewi Acakille  | in a more           |
| all'c     | MAIL MANI OF LIF-                                                                                                   |                 |                     |
| V         |                                                                                                                     |                 |                     |



D buys (x, nick) , buys (x, cheese) => buys (x, Bread) Support = o(Milk, Cheek, bread) = 3 4100= 754 [757,1004.] 5 Buys (x, Bread) , buys (x, Cheur) => buys (x, NUK) Support = = (Bread, cheep, Milk) = 3 proce 75%. Confidence = o (Broad, Cheese, Milk) = 3 x100: 100% p-1 Bread, Chrese) [75%, 100%] b) The largest frequent itemset for k=3 is & [ wonden ] bread, sunset\_milk, Boiryland\_checks, E Doiryland-Milk, Touty-pie, worder Broad I } 各門 wive association ruly me algorithm Pollows -> firety we need to find on local frequent in each store and here suppose, IF be she union of all local frequent itemsets in her four stores, so in each store we need to find I have beach itemset in

And shim me must obtaining the global (absolute) Support for each itemset in 1F1, the can be down by anximing up for each this itemset, the local support of most itemset in the state Doing this for path itemset in IFI will give the shirt global supports supports. Itemset whose global supports pass the support threshold are good suggest the support.

-

-

3

-3

3

3

then lastly need to also devive strong essociation mulus from the global frequent itemset.

Thus there are the mulus for the mine global association mulus for the mine global association mulus for also into manulus for the mine global association mulus man algorithm.

| 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 |

(a) Given rule:

Notdags => hamburgers

mim\_sup = 25%.

min\_confidence = soy. Support = 2000 = 40% Confidence = 2000 : 66.7. Support 40% confidence 66.7% is greater stand the given winimmon support somed winimmon confidence. . The given rule association is strong 6) Correlation (hotolog, hamburger) PUE hotdag, hamburgens & P ( Hotolog 30 P ( Hamburgery (or (A,B) = P(AAB), (2000/5000) P(A).P(3) (3000/(2500) (3000) (2000) > 0.4 > 1.33 (>1) so the correlation value is greaten than Therefore the purchase of hotolog is not independent of hu purchase of homborgens and there is a positive correlation. A II