Decoding speech comprehension in ESL learners using

Temporal Response Function (TRF)

Aim & Introduction

- Several linguistic features affecting speech comprehension (e.g., phonemes, semantics, word order, sentence structure)
- Neural activities induced from discrete stimuli were commonly used in the experiments (Di Liberto et al., 2015).
- Word onset, speech envelope, and those linguistic features had an effective influence when using Temporal response function (TRF) to decode EEG data (Brodbeck et al., 2022)

Aim: To use TRF to decode speech comprehension in Mandarin native speakers who are ESL learners

Temporal Response Function (TRF)

Stimuli & Procedure

Stimuli:

- Audiobook: *Alice's Adventures in Wonderland* Chapter one
- 2,129 words, 12 tapes, lasted 12.4 minutes

Procedure (for Natives & ESLs)

Participants (EEG)

Natives

- EEG recordings: Open Alice EEG dataset (Bhattasali et al., 2020)
- N = 33 native English speaker (M_{age} = 20.30 yrs)

Sampling rate: 100 Hz (down sample from 500Hz)

- EEG Cap: 61 channels
- Filter: $5 \sim 20 \text{ Hz}$

ESLs

- EEG was recorded from NCU, Taiwan
- N = 26 native Mandarin speaker adults (M_{age} = 22.25 yrs)
- Sampling rate: 100 Hz (down sample from 1000Hz)
- EEG Cap: 64 channels
- Filter: $5 \sim 20 \text{ Hz}$

Envelope (one sample t-test)

Natives:

 $\alpha = 0.05, 33 \text{ clusters}, p < .001$

n-sensors	tstart	tstop	duration	V	p	<u>sig</u>
44	-0.12	0.28	0.4	2475.7	0.0001	***
55	0.19	1.02	0.83	-5495.3	0	***

ESLs:

 $\alpha = 0.05, 32 \text{ clusters}, p < .001$

n-sensors	tstart	tstop	duration	V	p	<u>sig</u>
51	-0.12	0.45	0.57	3995.8	0	***
36	0.56	0.82	0.26	-612.63	0.0176	*
40	0.81	1.02	0.21	-968.33	0.0063	**

Word onset (one sample t-test)

600

800 555 ms 1000

0 170 ms 200

Natives:

 $\alpha = 0.05, 74 \text{ clusters}, p < .001$

n-sensors	tstart	tstop	duration	V	р	sig
54	0.03	0.42	0.39	3156.8	0	***
36	0.37	0.53	0.16	-374.92	0.042	*

ESLs:

 $\alpha = 0.05, 49 \text{ clusters}, p < .001$

n-sensors	tstart	tstop	duration	V	p	sig
41	0.13	0.19	0.06	227.91	0.0185	*
46	0.34	0.63	0.29	1810.7	0	***

Lexicality (Natives, paired t-test)

Natives:

n = 33, $\alpha = 0.05$, 55 clusters, p < .001

n-sensors	tstart	tstop	duration	V	p	sig
57	0.06	0.56	0.5	3443.3	0	***
37	0.55	0.85	0.3	506.42	0.0124	*

Lexicality (ESLs, paired t-test)

ESLs:

$$n = 26$$
, $\alpha = 0.1^*$, 93 clusters, $p = .009$

n-sensors	tstart	tstop	duration	V	p	sig
49	0.55	0.78	0.23	606.72	0.0089	**

Conclusion

The TRF results of the ESLs showed a different pattern with the natives

- 1. Envelope: ESLs showed a <u>longer</u> and <u>slower</u> response (frontal area)
- 2. Onset: ESLs presented a more <u>significant longer</u> response
- 3. Lexicality (non-lexical lexical): ESLs presented a <u>delayed</u> and <u>shorter</u> response

Summary:

TRFs shown by ESLs indicated that comprehending speeches in the second language might require more effort to parse linguistic information.