33

Claims

- Plane-parallel structures of silicon/silicon oxide, obtainable by heating plane-parallel structures of SiO_y in an oxygen-free atmosphere at a temperature above 400 °C, wherein 0.70 ≤ y ≤ 1.8, or plane-parallel structures of silicon/silicon oxide, obtainable by heating plane-parallel structures of SiO_x in an oxygen-free atmosphere at a temperature above 400 °C, wherein 0.03 ≤ x ≤ 0.95, especially 0.05 ≤ x ≤ 0.50, very especially 0.10 ≤ x ≤ 0.30.
- A plane-parallel pigment, comprising a silicon/silicon oxide layer, obtainable by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C, wherein 0.70 ≤ y ≤ 1.8, or a plane-parallel pigment, comprising a silicon/silicon oxide layer, obtainable by heating plane-parallel structures of SiO_x, wherein 0.03 ≤ x ≤ 0.95, especially 0.05 ≤ x ≤ 0.50, very especially 0.10 ≤ x ≤ 0.30.

15

- 3. A pigment according to claim 2, wherein the silicon/silicon oxide layer; obtainable by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C, forms the core of the pigment; wherein $0.70 \le y \le 1.8$.
- 4. A pigment according to claim 3, comprising a further layer of a dielectric material having a "high" refractive index.
- A pigment according to claim 4, wherein the dielectric material is selected from silicon carbide (SiC), zinc sulfide (ZnS), zinc oxide (ZnO), zirconium oxide (ZrO₂), titanium dioxide (TiO₂), carbon, indium oxide (In₂O₃), indium tin oxide (ITO), tantalum pentoxide (Ta₂O₅), cerium oxide (CeO₂), yttrium oxide (Y₂O₃), europium oxide (Eu₂O₃), iron oxides such as iron(II)/iron(III) oxide (Fe₃O₄) and iron(III) oxide (Fe₂O₃), hafnium nitride (HfN), hafnium carbide (HfC), hafnium oxide (HfO₂), lanthanum oxide (La₂O₃), magnesium oxide (MgO), neodymium oxide (Nd₂O₃), praseodymium oxide (Pr₆O₁₁), samarium oxide (Sm₂O₃), antimony trioxide (Sb₂O₃), silicon monoxides (SiO), selenium trioxide (Se₂O₃), tin oxide (SnO₂), tungsten trioxide (WO₃) and combinations thereof, especially TiO₂, ZrO₂, Fe₂O₃, Fe₃O₄, Cr₂O₃, ZnO, or a mixture of those oxides, or an iron titanate, an iron oxide hydrate, a titanium suboxide or a mixture or mixed phase of those compounds.

35

6. A pigment according to claim 2 comprising in this order:

5

- (a) a silicon/silicon oxide layer obtainable by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C,
- (b) a reflective layer, especially a metal layer, and
- (c) a silicon/silicon oxide layer obtainable by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C, wherein $0.70 \le y \le 1.8$.
 - 7. A pigment according to claim 2, wherein the pigment comprises in this order:
 - (a2) a silicon/silicon oxide layer obtainable by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C,
- 10 (b2) a silicon/silicon oxide layer obtainable by heating a SiO_{1.00-1.80} layer in an oxygenfree atmosphere at a temperature above 400 °C, and
 - (c2) a silicon/silicon oxide layer obtainable by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C, or the pigment comprises in this order:
- (a3) a silicon/silicon oxide layer obtainable by heating a SiO_{1.00-1.80} layer in an oxygenfree atmosphere at a temperature above 400 °C,
 - (b3) a silicon/silicon oxide layer obtainable by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C, and
- (c3) a silicon/silicon oxide layer obtainable by heating a SiO_{1.00-1.80} layer in an oxygenfree atmosphere at a temperature above 400 °C.
 - 8. A pigment according to claim 2, wherein the pigment comprises in this order:
 - (a4) a silicon/silicon oxide layer obtainable by heating a $SiO_{0.03-0.69}$ layer in an oxygen-free atmosphere at a temperature above 400 °C,
- (b4) a silicon/silicon oxide layer obtainable by heating a SiO_{1,00-1,8} layer in an oxygenfree atmosphere at a temperature above 400 °C, and
 - (c4) a silicon/silicon oxide layer obtainable by heating a $SiO_{0.03-0.69}$ layer in an oxygen-free atmosphere at a temperature above 400 °C and optionally further layers, or the pigment comprises in this order:
- 30 (a5) a silicon/silicon oxide layer obtainable by heating a SiO_{0.03-0.69} layer in an oxygenfree atmosphere at a temperature above 400 °C,
 - (b5) a silicon/silicon oxide layer obtainable by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C, and
- (c5) a silicon/silicon oxide layer obtainable by heating a SiO_{0.03-0.69} layer in an oxygenfree atmosphere at a temperature above 400 °C and optionally further layers, or the pigment comprises in this order:

30

- (a6) a silicon/silicon oxide layer obtainable by heating a $SiO_{0.70-0.99}$ layer in an oxygen-free atmosphere at a temperature above 400 °C,
- (b6) a silicon/silicon oxide layer obtainable by heating a SiO_{0.03-0.69} layer in an oxygen-free atmosphere at a temperature above 400 °C, and
- (c6) a silicon/silicon oxide layer obtainable by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C and optionally further layers, or the pigment comprises in this order:
 - (a7) a silicon/silicon oxide layer obtainable by heating a SiO_{1.00-1.80} layer in an oxygen-free atmosphere at a temperature above 400 °C,
- (b7) a silicon/silicon oxide layer obtainable by heating a SiO_{0.03-0.69} layer in an oxygen-free atmosphere at a temperature above 400 °C, and
 - (c7) a silicon/silicon oxide layer obtainable by heating a SiO_{1.00-1.80} layer in an oxygen-free atmosphere at a temperature above 400 °C and optionally further layers.
- 4 composition comprising a high molecular weight organic material and from 0.01 to 80 % by weight, preferably from 0.1 to 30 % by weight, based on the high molecular weight organic material, of a pigment according to any one of claims 2 to 8.
- 10. A cosmetic preparation or formulation comprising from 0.0001 to 90 % by weight of the plane-parallel structures of silicon/silicon oxide according to claims 1 or the pigment according to any one of claims 2 to 8 and from 10 to 99.9999 % of a cosmetically suitable carrier material, based on the total weight of the cosmetic preparation or formulation.
- Use of a pigment according to any one of claims 2 to 8, in ink-jet printing, for dyeing textiles, for pigmenting surface coatings, printing inks, plastics, cosmetics, glazes for ceramics and glass.
 - 12. A method of producing plane-parallel structures of silicon/silicon oxide, comprising the steps:
 - a) vapour-deposition of a separating agent onto a movable carrier to produce a separating agent layer,
 - b) vapour-deposition of an SiO_y layer onto the separating agent layer,
 - c) dissolution of the separating agent layer in a solvent,
- 35 d) separation of the SiO_y from the solvent, wherein $0.70 \le y \le 1.8$, and
 - e) heating the SiO_y in an oxygen-free atmosphere to a temperature above 400°C.