OPTIMISATION EN NOMBRES ENTIERS:

MÉTHODE DE COUPE

Hacène Ouzia

MAIN (5 ème année) Sorbonne Université

TABLE DES MATIÈRES

- Coupes de Dantzig
 - Exemple
 - Question 1
 - Question 2
 - Question 4
- Coupes de Gomory
 - Questions a,b,c et d
 - Question e
 - Cas général
- Cas du ATSP
 - Formulation DFJ
 - Relaxation DFJ
 - Exemple 1
 - Exemple 2
 - Exemple 3
- Séparation vs Optimisation
 - Description linéaire
 - Séparation
 - Théorème fondamental

AGENDA

- Coupes de Dantzig
 - Exemple
 - Question 1
 - Question 2
 - Question 4
- Coupes de Gomory
- Cas du ATSP
- Séparation vs Optimisation

Instance

Considérons le problème d'optimisation suivant :

min
$$-x-2y$$

 $s.c.$

$$-2x+2y \le 3$$

$$2x+2y \le 9$$

$$9x-4y \le 21$$

$$x, y \in \mathbb{N}.$$

Question 1

FIGURE – Ensembles P et Ω .

5/39

Question 2 - I

L'ensemble P_0 est définit par :

$$P_0 = \left\{ (x, y) \in \mathbb{R}^2_+ : -2x + 2y \le 3, 2x + 2y \le 9, 9x - 4y \le 2 \right\}.$$
 (2)

Voici les itérations de la méthode simplexe :

Tableau initial:

							_
	-z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	
	0	-1	-2	0	0	0	
<i>x</i> ₃	3	-2	2	1	0	0	1
x_4	9	2	2	0	1	0	ı
x ₃ x ₄ x ₅	21	9	-4	0	0	1	

Le point extrême initial est : (0, 0) de valeur 0.

Itération 1 :

	-z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
	3	-3	0	1	0	0
<i>x</i> ₂	3/2	-1	1	1/2	0	0
<i>x</i> ₄ <i>x</i> ₅	6 27	4 5	0	-1 2	1 0	0 1

Le nouveau point extrême est : $\left(0, \frac{3}{2}\right)$ de valeur -3.

Question 2 - II

	-z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅
	15/2	0	0	1/4	3/4	0
<i>x</i> ₂	3	0	1	1/4	1/4	0
X	3/2	1	0	-1/4	1/4	0
<i>x</i> ₅	39/2	0	0	13/4	-5/4	1

Le point extrême optimal est : $\hat{x}_1 = (\frac{3}{2}, 3)$ de valeur $-\frac{15}{2}$.

Question 4

La nouvelle coupe s'écrit donc :

$$x_3+x_4\geq 1.$$

Pour exprimer celle-ci dans l'espace des variables (x, y) il suffit de se référer aux équations initiales, c'est-à-dire :

$$-2x + 2y + x_3 = 3,$$

 $2x + 2y + x_4 = 9$

D'où la contrainte :

$$y \leq \frac{11}{4}$$
.

Question 4

FIGURE – Région de la nouvelle relaxation de Ω .

9/39

Hacène Ouzia **OPTIMISATION EN NOMBRES ENTIERS** 2020

AGENDA

- Coupes de Dantzig
- Coupes de Gomory
 - Questions a,b,c et d
 - Question e
 - Cas général
- Cas du ATSP
- Séparation vs Optimisation

Questions a,b et c

Le tableaux simplexe optimal est le suivant :

	-z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5			
	15/2	0	0	1/4	3/4	0			
<i>X</i> ₂	3	_0	1	1/4	1/4	0			
<i>X</i> ₁	3/2	_1	0	-1/4	1/4	0			
<i>X</i> ₅	39/2	0	0	13/4	-5/4	1			

La nouvelle coupe de Gomory :

$$\frac{1}{4}x_3 + \frac{3}{4}x_4 \ge \frac{1}{2}.$$

D'où la nouvelle relaxation :

min
$$-x - 2y$$

s.c.
$$\frac{1}{4}x_3 + \frac{3}{4}x_4 \ge \frac{1}{2}$$

$$(x, y) \in P_0,$$

où P_0 est la relaxation continue de P.

FIGURE - Première coupe de Gomory.

Comment résoudre le problème suivant?

min
$$-x - 2y$$

s.c. $-2x + 2y \le 3$
 $2x + 2y \le 9$
 $9x - 4y \le 21$
 $\frac{1}{4}x_3 + \frac{3}{4}x_4 \ge \frac{1}{2}$
 $x, y, x_3, x_4 \ge 0$.

Tableau simplexe optimal de la relaxation continue du problème :

	-z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5
	15/2	0	0	1/4	3/4	0
<i>X</i> ₂	3	0	1	1/4	1/4	0
<i>X</i> ₁	3/2	_1	0	-1/4	1/4	0
<i>X</i> ₅	39/2	0	0	13/4	-5/4	1

Tableau simplexe initial pour résoudre la nouvelle relaxation continue :

	-z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆
	15/2	0	0	1/4	3/4	0	0
<i>X</i> ₂	3	0	1	1/4	1/4	0	0
<i>X</i> ₁	3/2	1	0	-1/4	1/4	0	0
<i>X</i> ₅	39/2	0	0	13/4	-5/4	1	0
<i>X</i> ₆	-1/2	0	0	J-1/4	-3/4	0	1

- Notez ce tableau est dual réalisable mais non primal réalisable.
- Colonne entrant en base

$$j \in \operatorname{argmax} \left\{ \frac{\frac{1}{4}}{\frac{-1}{4}}, \frac{\frac{3}{4}}{\frac{-3}{4}}, \right\}.$$

Hacène Ouzia

Après pivot :

	-z	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆
	7	0	0	0	0	0	1
<i>x</i> ₂ <	5/2	0	1	0	-1/2	0	
<i>X</i> ₁	2	1	0	0	1 1	0	-1
<i>X</i> ₅	13	0	0	0	-11	1	13
<i>X</i> ₃	2	0	0	7/1)	3	0	-4

On peut générer, à partir de la première ligne, la coupe de Gomory suivante :

$$\frac{1}{2}x_4\geq \frac{1}{2}.$$

Qui s'écrit dans l'espace des variables (x, y) comme suit :

$$x + y \leq 4$$
.

Partie B: Question e

FIGURE - Deuxième coupe de Gomory.

2020

Hacène Ouzia Optimisation en nombres entiers

Question 1

Considérant une ligne k du dernier tableau simplexe optimal :

$$x_k + \sum_{j \in \mathcal{N}} y_{kj} x_j = \hat{b}_k, \tag{3}$$

où ${\mathcal N}$ est l'ensemble des variables hors base. Nous avons :

Par non négativité des variables hors bas x_i, nous avons :

$$\sum_{j \in \mathcal{N}} \lfloor y_{kj} \rfloor x_j \le \sum_{j \in \mathcal{N}} y_{kj} x_j. \tag{4}$$

D'où:

$$x_k + \sum_{j \in \mathcal{N}} \lfloor y_{kj} \rfloor x_j \leq \hat{b}_k.$$

Par argument d'intégrité, nous avons :

$$x_k + \sum_{j \in \mathcal{N}} \lfloor y_{kj} \rfloor x_j \le \lfloor \hat{b}_k \rfloor.$$
 (5)

En soustrayant de (3) cette dernière inégalité nous obtenons :

$$\sum_{j\in\mathcal{N}} \left(y_{kj} - \lfloor y_{kj} \rfloor \right) x_j \ge \hat{b}_k - \lfloor \hat{b}_k \rfloor.$$

Question 2

```
Fonction CoupesGomory( Prob)
  Entrée : Prob :: Problème ! Implémentation du problème à résoudre.
  Sortie: Xopt :: Solution optimale ! Implémentation d'une solution.
1 Début
     Xopt.init()! Intialisation de la solution.
     Realisable ← Oui
3
     R ← Prob.relax() ! Extraction de la relaxation continue du
      problème
     Xopt ← resoudre (Q)
5
     Tant que Xopt.fractionnaire() et Realisable faire
        Coupe ← GomoryGenerer (R) ! Coupe est la coupe générée à
7
         partir de R
        R.ajouter (Coupe)
8
        Xopt ← R.simplexeDuale()
        Si R. dualNonBorne () alors Realisable ← Non
10
     Fin tant que
11
     return Xopt
13 Fin
```


AGENDA

- Coupes de Dantzig
- Coupes de Gomory
- Cas du ATSP
 - Formulation DFJ
 - Relaxation DFJ
 - Exemple 1
 - Exemple 2
 - Exemple 3
- 4 Séparation vs Optimisation

Formulation DFJ

La formulation de Dantzig, Fulkerson et Johnson du ATSP est la suivante :

min
$$\sum_{uv \in E} \gamma_{uv} x_{uv}$$
s.c.
$$\sum_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V,$$

$$\sum_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V,$$

$$\sum_{u \in S, v \notin S: uv \in E} x_{vu} \ge 1, \forall S \subsetneq V, |S| \ge 2,$$

$$x_{uv} \in \{0, 1\}, \forall uv \in E.$$

$$(7)$$

Les contraintes :-

$$\sum_{u \in S, v \notin S: uv \in E} x_{vu} \ge 1, \ \forall S \subsetneq V, \ |S| \ge 2,$$

sont celles des sous-tours. Pourquoi?

21/39

Hacène Ouzia Optimisation en nombres entiers 2020

Relaxation DFJ

La relaxation DFJ est la suivante :

min
$$\sum_{uv \in E} \gamma_{uv} x_{uv}$$
s.c.
$$\sum_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V,$$

$$\sum_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V,$$

$$\sum_{v \in V: vu \in E} x_{vu} \ge 1, \forall S \subsetneq V, |S| \ge 2,$$

$$\sum_{u \in S, v \notin S: uv \in E} x_{uv} \ge 1, \forall v \in E.$$

$$|x_{uv} \in [0, 1], \forall v \in E.$$

Problème d'optimisation linéaire avec un nombre exponentiel de contraintes!

2020

Hacène Ouzia

Résoudre la relaxation DFJ

Ignorer les contraintes de sous-tours :

min
$$\sum_{uv \in E} \gamma_{uv} X_{uv}$$
s.c.
$$\sum_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V,$$

$$\sum_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V,$$

$$X_{uv} \in [0, 1], \forall uv \in E.$$
(9)

- ② Si une contrainte sous-tour n'est pas satisfaite l'ajouter.
 - PROBLÈME DE SÉPARATION

Un premier exemple

FIGURE - Première instance ATSP.

 $\min \quad \sum_{uv \in E} \gamma_{uv} X_{uv}$

S.C.

$$\begin{split} &\sum_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V, \\ &\sum_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V, \\ x_{uv} \in [0, 1], \ \forall uv \in E. \end{split}$$

FIGURE - Solution de la relaxation DFJ initiale.

Hacène Ouzia Optimisation en nombres entiers

$$\min \quad \sum_{uv \in E} \gamma_{uv} x_{uv}$$

S.C.

$$\begin{split} &\sum_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V, \\ &\sum_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V, \\ x_{uv} \in [0,1] \,, \, \forall uv \in E. \end{split}$$

Il faut prendre au moins un arc rouge! Donc, ajouter l'inégalité :

$$x_{12} + x_{14} + x_{32} + x_{52} > 1$$
.

FIGURE - Solution de la relaxation DFJ initiale.

 $\sum_{uv \in E} \gamma_{uv} X_{uv}$ min

S.C.

$$\begin{split} & \sum_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V, \\ & \sum_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V, \\ & x_{12} + x_{14} + x_{32} + x_{52} \ge 1, \\ & x_{uv} \in [0, 1], \ \forall uv \in E. \end{split}$$

Solution optimale!

FIGURE - Solution de la nouvelle relaxation DFJ initiale.

2020

Hacène Ouzia

Un deuxième exemple

FIGURE - Deuxième instance ATSP.

2020

28 / 39

$$\min \quad \sum_{uv \in E} \gamma_{uv} \mathbf{X}_{uv}$$

S.C.

$$\sum_{\substack{v \in V: uv \in E}} x_{uv} = 1, \forall u \in V,$$
$$\sum_{\substack{v \in V: vu \in E}} x_{vu} = 1, \forall u \in V,$$
$$x_{uv} \in [0, 1], \forall uv \in E.$$

🙇 Ajouter l'inégalité :

$$\sum_{uv \in \delta^+(\{1,2,3\})} x_{uv} \geq 1.$$

FIGURE - Solution de la relaxation DFJ initiale.

29 / 39

Hacène Ouzia Optimisation en nombres entiers 2020

$$\min \quad \sum_{uv \in E} \gamma_{uv} X_{uv}$$

S.C.

$$\sum_{\substack{v \in V: uv \in E}} x_{uv} = 1, \forall u \in V,$$

$$\sum_{\substack{v \in V: vu \in E}} x_{vu} = 1, \forall u \in V,$$

$$\sum_{\substack{uv \in \delta^+(\{1,2,3\})\\ x_{uv} \in [0,1]}} x_{uv} \ge 1,$$

🔼 Ajouter l'inégalité :

$$\sum_{uv \in \delta^+(\{1,4,5,6\})} x_{uv} \ge 1.$$

FIGURE - Solution de la relaxation DFJ.

30 / 39

$$\min \quad \sum_{uv \in E} \gamma_{uv} \mathbf{X}_{uv}$$

S.C.

$$\begin{array}{l} \sum\limits_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V, \\ \sum\limits_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V, \\ \sum\limits_{uv \in \delta^{+}(\{1,2,3\})} x_{uv} \geq 1, \\ \sum\limits_{uv \in \delta^{+}(\{1,4,5,6\})} x_{uv} \geq 1, \\ x_{uv} \in [0,1], \forall uv \in E. \end{array}$$

FIGURE - Solution de la relaxation DFJ.

Ajouter l'inégalité :

$$\sum_{uv \in \delta^+(\{1,2,3,6\})} x_{uv} \ge 1.$$

$$\begin{array}{ll} \min & \sum_{uv \in E} \gamma_{uv} x_{uv} \\ s.c. & \sum_{v \in V: uv \in E} x_{uv} = 1, \forall u \in V, \\ & \sum_{v \in V: vu \in E} x_{vu} = 1, \forall u \in V, \\ & \sum_{uv \in \delta^+(\{1,2,3\})} x_{uv} \geq 1, \\ & \sum_{uv \in \delta^+(\{1,4,5,6\})} x_{uv} \geq 1, \\ & \sum_{uv \in \delta^+(\{1,2,3,6\})} x_{uv} \geq 1, \\ & x_{uv} \in [0,1], \ \forall uv \in E. \end{array}$$

FIGURE - Solution de la relaxation DFJ.

Encore la solution optimale!
Est-ce toujours le cas?

Hacène Ouzia Optimisation en nombres entiers 2020 32 / 39

Dernier exemple

Hacène Ouzia Optimisation en nombres entiers 2020 33 / 39

Dernier exemple

FIGURE - Solution de la relaxation DFJ.

🙇 Ajouter l'inégalité :

$$\sum_{uv \in \delta^+(\{1,4,5,6,7,8,9,10,11,12,13\})} x_{uv} \ge 1.$$

Dernier exemple

- Toutes les inégalités de sous-tours sont satisfaites.
- La solution n'est pas optimale!

AGENDA

- Coupes de Dantzig
- Coupes de Gomory
- Cas du ATSP
- Séparation vs Optimisation
 - Description linéaire
 - Séparation
 - Théorème fondamental

Hacène Ouzia

Description linéaire

Considérons le problème :

min
$$\sum_{uv \in E} \gamma_{uv} X_{uv}$$
s.c.
$$\sum_{v \in V: uv \in E} X_{uv} = 1, \forall u \in V,$$

$$\sum_{v \in V: vu \in E} X_{vu} = 1, \forall u \in V,$$

$$\sum_{u \in S, v \notin S: uv \in E} X_{vu} \ge 1, \forall S \subsetneq V, |S| \ge 2,$$

$$X_{uv} \in [0, 1], \forall uv \in E.$$
(10)

- Les contraintes définissant l'ensemble des solutions réalisables est une description linéaire.
- Ce problème est-il polynomial?

Hacène Ouzia Optimisation en nombres entiers 2020

■ DÉFINITION PROBLÈME DE SÉPARATION

Le problème de séparation associé au problème (10) est le suivant : Pour tout vecteur $\hat{x} \in \mathbb{O}^E$.

- \triangle Est-ce que \hat{x} est solution réalisable du problème (10)?
- \triangle Sinon, exhiber un sous-ensemble \hat{S} tel que :

$$\hat{x}\left(\delta^{+}\left(\hat{S}\right)\right)<1.$$

Coupes de Dantzig Coupes de Gomory Cas du ATSP Sépar. vs optim. Description linéaire Séparation Théorème fondamental

Théorème de séparation

■ THÉORÈME GRÖTSCHEL, LOVASZ ET SCHRIJVER

Nous avons l'équivalence suivante :

OPTIMISATION \equiv SÉPARATION.

