Roger Ignazio – PuppetConf 2015

MANAGING MESOS, DOCKER, AND CHRONOS WITH PUPPET

\$(whoami)

ABOUT ME

Roger Ignazio

Infrastructure Automation Engineer @ Mesosphere

@rogerignazio

\$(whoami)

MESOS IN ACTION

mesosinaction.com

Code: ctwpuppet

AGENDA

- Getting started
- Deploying a Mesos cluster
- Building a Docker image
- Creating a Chronos job
- Demo
- Provisioning infrastructure bare-metal and cloud
- Q & A

AUDIENCE POLL

ABOUT MESOS, DOCKER, AND CHRONOS

Mesos

- Represent many machines (thousands) as a single entity
- Advertise resources directly to applications

Docker

- Easily package and deploy apps (with dependencies)
- Analogous to VMs, but minus the overhead*

Chronos

- Distributed, highly available Cron for Mesos
- Run scheduled tasks in cgroups, Docker containers

ABOUT PUPPET

- Declare desired state for your infrastructure
- Wide range of OS support
- Idempotent
- Extensible (via custom facts, types, providers)
- Open source Apache License, version 2

PUPPET'S ROLE

Mesos Apps ("Frameworks")

(Chronos, Marathon, etc)

Mesos

Operating System

(RHEL, Ubuntu, Windows, etc)

Virtual Infrastructure and laaS

(vSphere, OpenStack, AWS, Azure, etc)

Physical Infrastructure

(Cisco, Dell, HP, etc)

PUPPET'S ROLE

If Mesos is the abstraction layer for your applications,
Puppet is the abstraction layer for infrastructure management

PUPPET'S ROLE

If Mesos is the abstraction layer for your applications, Puppet is the abstraction layer for infrastructure management

But it can also be more ...

PUPPET'S ROLE

Custom types and providers can interact with external services (AWS, Chronos, ...)

DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYMENT OVERVIEW

- Install/configure Mesos, ZooKeeper, Docker
- Stage a Docker image on the Mesos agents
- Install and configure Chronos
- Create a Chronos job (that runs in a Docker container)

DEPLOYMENT OVERVIEW

DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYMENT OVERVIEW

- Puppet's roles/profiles pattern
- Using the following Puppet modules
 - deric-zookeeper
 - deric-mesos
 - garethr-docker
 - puppetlabs-chronos

All of these modules are open source and available via the Puppet Forge: https://forge.puppetlabs.com

DEPLOYING MESOS (MASTER)

```
class role::mesos::master {
  include profile::base
  include profile::chronos
  include profile::mesos::master
  include profile::zookeeper
}
```

DEPLOYING MESOS (MASTER)

```
class profile::mesos::master {
 include profile::mesos::common
 class { '::mesos::master': # From deric-mesos
   listen_address => $::ipaddress_eth0,
   work_dir => '/var/lib/mesos',
   options => {
     log_dir => '/var/log/mesos',
     quorum => '1',
   },
```

DEPLOYING ZOOKEEPER

```
class profile::zookeeper {
 include java
              # Include defaults from puppetlabs-java
 class { '::zookeeper': # From deric-zookeeper
   client_ip => $::ipaddress_eth0,
   id
         => '1',
            => 'cloudera',
   repo
   require => Class['java'],
```

DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYING MESOS (AGENT)

```
class role::mesos::agent {
  include profile::base
  include profile::docker
  include profile::mesos::agent
}
```

DEPLOYING MESOS (AGENT)

```
class profile::mesos::agent {
 include profile::mesos::common
 class { '::mesos::slave': # From deric-mesos
   listen_address => $::ipaddress_eth0,
   work_dir => '/var/lib/mesos',
   options => {
     log_dir => '/var/log/mesos',
    },
```

DEPLOYING MESOS (COMMON)

```
class profile::mesos::common {
  class { '::mesos': # From deric-mesos
    repo => 'mesosphere',
    zookeeper => 'zk://192.168.248.10:2181/mesos',
  }
}
```

DEPLOYING DOCKER

```
# Include defaults from garethr-docker
include ::docker
class { '::mesos::slave': # Let's reconfigure the Mesos agent
  . . .
  options => {
    containerizers
                                   => 'docker,mesos',
   isolation
                                   => 'cgroups/cpu,cgroups/mem',
    executor_registration_timeout => '5mins',
  },
```

DEPLOYING MESOS, DOCKER, AND CHRONOS

DEPLOYING CHRONOS

```
class profile::chronos {
  include ::chronos # Include defaults from puppetlabs-chronos
}
```

BUILDING DOCKER IMAGES WITH PUPPET

Synopsis:

Build a Docker image declaratively

Two approaches:

- puppet agent pre-shared key to use existing Puppet infra
- puppet apply directly apply manifests during build

Synopsis:

Build a Docker image declaratively

Two approaches:

- puppet agent pre-shared key to use existing Puppet infra
- puppet apply directly apply manifests during build

```
FROM debian:wheezy
MAINTAINER Roger Ignazio <roger@mesosphere.com>
WORKDIR /tmp
RUN curl -sOL https://apt.puppetlabs.com/puppetlabs-release-wheezy.deb
RUN dpkg -i puppetlabs-release-wheezy.deb
RUN apt-get update
RUN apt-get -y install puppet
COPY * ./
RUN puppet apply example.pp
```

```
package { ['ruby', 'ruby-dev', 'build-essential']: ensure => installed, }
package { 'httparty': ensure => installed, provider => gem, }
file { '/usr/bin/query_mesos':
 ensure => file,
 mode => '0755',
  source => '/tmp/query_mesos.rb',
```

BUILDING DOCKER IMAGES WITH PUPPET

GETTING STARTED WITH PUPPET AND DOCKER

```
Step 10: RUN puppet apply example.pp
 ---> Running in 12eda5e24ff8
Notice: Compiled catalog for 90c88c41cdaa.bad in environment production in 0.16 seconds
Notice: Package[build-essential]/ensure: ensure changed 'purged' to 'present'
Notice: File[/usr/bin/query_mesos]/ensure: defined content as '{md5}
e44268ac8e31f75f1aeee961d0ebe36b'
Notice: Package[ruby-dev]/ensure: ensure changed 'purged' to 'present'
Notice: Package[httparty]/ensure: created
Notice: Finished catalog run in 33.22 seconds
 ---> 1a8fefd724ee
Removing intermediate container 12eda5e24ff8
Successfully built 1a8fefd724ee
```

STAGING DOCKER IMAGES ON NODES

```
Using the garethr-docker Puppet module

docker::image { 'rogerignazio/basic-puppet-example':
    image_tag => 'latest',
}

Equivalent to
$ docker pull rogerignazio/basic-puppet-example:latest
```

MANAGING CHRONOS JOBS WITH PUPPET

MANAGING CHRONOS JOBS WITH PUPPET

A CUSTOM TYPE AND PROVIDER

- Bundled with a module
- Found at lib/puppet/type and lib/puppet/provider
- Model the API of an external service as Puppet code

A CUSTOM TYPE AND PROVIDER

```
chronos_job { 'fetch_mesos_master_metrics':
  command
          => 'query_mesos 192.168.248.10',
  job_schedule => 'R/2015-10-09T00:00:00.000Z/PT1M',
  container => {
   type => 'DOCKER',
    image => 'rogerignazio/basic-puppet-example',
  },
              => 0.5,
  cpus
              => 256,
 mem
              => 'roger@mesosphere.com',
  owner
```

DEMO

PROVISIONING INFRASTRUCTURE

PROVISIONING INFRASTRUCTURE

CLOUD PROVISIONING WITH AWS

- Declare AWS infrastructure as Puppet resources
- Custom types and providers hit the AWS API
 - Ensures resources are in desired state

CLOUD PROVISIONING WITH AWS

PROVISIONING INFRASTRUCTURE

CLOUD PROVISIONING WITH AWS

Some of the available resource types:

- ec2_instance
- ec2_securitygroup
- ec2_vpc
- elb_loadbalancer
- route53_a_record

A more complete example: http://bit.ly/puppet-aws-example

PROVISIONING INFRASTRUCTURE

BARE-METAL PROVISIONING WITH RAZOR

- Auto-discover inventory
- Policy-based provisioning
- Pluggable "brokers"
- Razor is open source Apache License, v2

BARE-METAL PROVISIONING WITH RAZOR

BARE-METAL PROVISIONING WITH RAZOR

For more information, check out http://bit.ly/razor-intro

Q&A

```
puppetconf_talk { 'managing_mesos':
    ensure => presented,
    speaker => 'Roger Ignazio',
    email => 'roger@mesosphere.com',
    twitter => '@rogerignazio',
}
```