$$S = \left\{ (x, y, z) \left| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, z \ge 0 \right\},\right.$$

con la orientación determinada por la normal hacia arriba. Calcular $\iint_S \mathbf{F} \cdot d\mathbf{S}$ donde $\mathbf{F}(x, y, z) = (x^3, 0, 0)$.

22. Si S es la semiesfera superior $\{(x,y,z) \mid x^2 + y^2 + z^2 = 1, z \geq 0\}$ orientada según la normal que apunta hacia fuera de la esfera, calcular $\iint_S \mathbf{F} \cdot d\mathbf{S}$ para los apartados (a) y (b).

- (a) $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j}$
- (b) $\mathbf{F}(x, y, z) = y\mathbf{i} + x\mathbf{j}$
- (c) Para cada uno de estos campos vectoriales, calcular $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ y $\int_C \mathbf{F} \cdot d\mathbf{s}$, donde C es la circunferencia unidad en el plano xy recorrida en sentido antihorario (vista desde el eje z positivo). (Obsérvese que C es la frontera de S. El fenómeno ilustrado aquí se estudiará más detalladamente en el siguiente capítulo, usando el teorema de Stokes).

7.7 Aplicaciones a la geometría diferencial, la física y las formas de la vida*

En la primera mitad del siglo XIX, el gran matemático alemán Karl Friedrich Gauss desarrolló una teoría de las superficies curvadas en \mathbb{R}^3 . Más de un siglo antes, Isaac Newton había definido una medida de la curvatura de una curva en el espacio y Gauss fue capaz de hallar extensiones a esta idea de curvatura que aplicaría a las superficies. En este proceso, Gauss hizo varios descubrimientos destacables.

Curvatura de superficies

Para trayectorias $\mathbf{c}:[a,b]\to\mathbb{R}^3$ que tienen rapidez unidad—es decir, $\|\mathbf{c}'(t)\|=1$ —la curvatura κ de la curva imagen $\kappa(\mathbf{c}(t))$ en el punto $\mathbf{c}(t)$ se define como la longitud del vector aceleración. Es decir, $\|\mathbf{c}'(t)\|=\kappa(\mathbf{c}(t))$. Para trayectorias \mathbf{c} en el espacio, la curvatura es realmente una medida de la curvatura de la curva imagen geométrica C. Como hemos visto al final de la Sección 7.1, la "curvatura total" $\int \kappa \, ds$ sobre C tiene implicaciones "topológicas". Lo mismo, e incluso más, se cumple para la definición de Gaussde la curvatura total de una superficie. Comencemos viendo algunas definiciones.

Sea $\Phi \colon D \to \mathbb{R}^3$ una superficie suave parametrizada. Entonces, como ya sabemos,

$$\mathbf{T}_u = \frac{\partial \mathbf{\Phi}}{\partial u}$$
 \mathbf{y} $\mathbf{T}_v = \frac{\partial \Phi}{\partial v}$

son vectores tangentes a la superficie imagen $S = \Phi(D)$ en el punto $\Phi(u, v)$. También vamos a suponer que existe un vector normal bien definido; es decir, suponemos que la superficie es regular: $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$.

^{*}Esta sección se puede saltar en una primera lectura sin pérdida de continuidad.