+
$$\sum_{s^0 \le s_k < s} X(s, s_k +) \left[f(\psi^{-1}(s_k), x(s_k)) - f(\psi^{-1}(s_k), \phi_{\zeta}(s_k)) \right] \delta_k$$

implies for $s \geq s^0$ that

$$||x(s) - \phi_{\zeta}(s)|| \leq Ne^{-\lambda(s-s^{0})} ||y_{0} - \phi_{\zeta}(s^{0})|| + \int_{s^{0}}^{s} NL_{f}e^{-\lambda(s-r)} ||x(r) - \phi_{\zeta}(r)|| dr$$

$$+ \sum_{s^{0} \leq s_{k} \leq s} NL_{f}\bar{\delta}e^{-\lambda(s-s_{k})} ||x(s_{k}) - \phi_{\zeta}(s_{k})||.$$

Applying the Gronwall-Bellman Lemma for piecewise continuous functions [6] to the last inequality, one can obtain that

$$||x(s) - \phi_{\zeta}(s)|| \le N(1 + NL_f \bar{\delta})^p ||y_0 - \phi_{\zeta}(s^0)|| e^{[-\lambda + NL_f + p \ln(1 + NL_f \bar{\delta})/\psi(\omega)](s - s^0)}, \ s \ge s^0.$$

Therefore, we have for $t \geq t^0$, $t \in \mathbb{T}_0$, that

$$||y(t) - \varphi_{\zeta}(t)|| \le N(1 + NL_f \bar{\delta})^p ||y_0 - \varphi_{\zeta}(t^0)|| e^{[-\lambda + NL_f + p \ln(1 + NL_f \bar{\delta})/\psi(\omega)](\psi(t) - \psi(t^0))}.$$

Consequently, $||y(t) - \varphi_{\zeta}(t)|| \to 0$ as $t \to \infty$, $t \in \mathbb{T}_0$. \square

In the next section, we will deal with the presence of chaos in system (1.1).

4 The chaotic dynamics

The map (1.2) is called Li-Yorke chaotic on Λ if [11, 13, 29, 35, 36]: (i) For every natural number p_0 , there exists a p_0 -periodic point of F in Λ ; (ii) There is an uncountable set $\mathcal{S} \subset \Lambda$, the scrambled set, containing no periodic points, such that for every $\zeta^1, \zeta^2 \in \mathcal{S}$ with $\zeta^1 \neq \zeta^2$, we have $\limsup_{k \to \infty} ||F^k(\zeta^1) - F^k(\zeta^2)|| > 0$ and $\liminf_{k \to \infty} ||F^k(\zeta^1) - F^k(\zeta^2)|| = 0$; (iii) For every $\zeta^1 \in \mathcal{S}$ and a periodic point $\zeta^2 \in \Lambda$, we have $\limsup_{k \to \infty} ||F^k(\zeta^1) - F^k(\zeta^2)|| > 0$.

Let us denote by Θ the set of all sequences $\zeta = \{\zeta_k\}$, $k \in \mathbb{Z}$, obtained by equation (1.2). A pair of sequences $\zeta = \{\zeta_k\}$, $\tilde{\zeta} = \{\tilde{\zeta}_k\} \in \Theta$ is proximal if $\liminf_{k \to \infty} \|\zeta_k - \tilde{\zeta}_k\| = 0$. Moreover, the pair is frequently separated if $\limsup_{k \to \infty} \|\zeta_k - \tilde{\zeta}_k\| > 0$.

We say that a pair $\varphi_{\zeta}(t)$, $\varphi_{\tilde{\zeta}}(t)$ of bounded solutions of (1.1) is proximal if for an arbitrary small real number $\epsilon > 0$ and arbitrary large natural number E, there exists an integer m such that $\|\varphi_{\zeta}(t) - \varphi_{\tilde{\zeta}}(t)\| < \epsilon$ for all $t \in [\theta_{2m-1}, \theta_{2(m+E)}] \cap \mathbb{T}_0$. On the other hand, the pair $\varphi_{\zeta}(t)$, $\varphi_{\tilde{\zeta}}(t)$ is frequently (ϵ_0, Δ) -separated if there exist numbers $\epsilon_0 > 0$, $\Delta > 0$ and infinitely many disjoint intervals $J_q \subset \mathbb{T}_0$, $q \in \mathbb{N}$, each with a length no less than Δ , such that $\|\varphi_{\zeta}(t) - \varphi_{\tilde{\zeta}}(t)\| > \epsilon_0$ for each t from these intervals. Furthermore, a pair $\varphi_{\zeta}(t)$, $\varphi_{\tilde{\zeta}}(t)$ of solutions of (1.1) is called a Li-Yorke pair if it is proximal and frequently (ϵ_0, Δ) -separated for some positive numbers ϵ_0 and Δ .