Deep Learning for Content-Based Filtering

In this exercise, we implemented content-based filtering using a neural network to build a recommender system for movies.

```
import numpy as np
import numpy.ma as ma
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
import tabulate
```

2 - Movie ratings dataset

The data set is derived from the MovieLens ml-latest-small dataset.

```
In [2]: top10_df = pd.read_csv("..../top10_df.csv")
bygenre_df = pd.read_csv("..../bygenre_df.csv")
top10_df
```

genres	title	ave rating	num ratings	movie id	
Adventure Fantasy	Lord of the Rings: The Fellowship of the Ring,	4.1	198	4993	0
Adventure Fantasy	Lord of the Rings: The Two Towers, The	4.0	188	5952	1
Action Adventure Drama Fantasy	Lord of the Rings: The Return of the King, The	4.1	185	7153	2
Adventure Animation Children Comedy Fantasy Ro	Shrek	3.9	170	4306	3
Action Crime Drama	Dark Knight, The	4.2	149	58559	4
Action Adventure Comedy Fantasy	Pirates of the Caribbean: The Curse of the Bla	3.8	149	6539	5
Action Crime Drama Mystery Sci-Fi Thriller	Inception	4.1	143	79132	6
Adventure Animation Children Comedy	Finding Nemo	4.0	141	6377	7
Adventure Animation Children Comedy Fantasy	Monsters, Inc.	3.9	132	4886	8
Drama Romance Sci-Fi	Eternal Sunshine of the Spotless Mind	4.2	131	7361	9

The next table shows information sorted by genre. The number of ratings per genre vary substantially.

In [3]:	bygenre_df
---------	------------

-II [J].	٠, ۶	,			
Out[3]:		genre	num movies	ave rating/genre	ratings per genre
	0	Action	321	3.4	10377
	1	Adventure	234	3.4	8785
	2	Animation	76	3.6	2588
	3	Children	69	3.4	2472
	4	Comedy	326	3.4	8911
	5	Crime	139	3.5	4671
	6	Documentary	13	3.8	280
	7	Drama	342	3.6	10201
	8	Fantasy	124	3.4	4468
	9	Horror	56	3.2	1345
	10	Mystery	68	3.6	2497
	11	Romance	151	3.4	4468
	12	Sci-Fi	174	3.4	5894
	13	Thriller	245	3.4	7659

3 - Content-based filtering with a neural network

3.1 Training Data

```
In [4]: # Load Data, set configuration variables
   item_train, user_train, y_train, item_features, user_features, item_vecs, movie_dict,
   num_user_features = user_train.shape[1] - 3  # remove userid, rating count and ave rat
   num_item_features = item_train.shape[1] - 1  # remove movie id at train time
   uvs = 3  # user genre vector start
   ivs = 3  # item genre vector start
   u_s = 3  # start of columns to use in training, user
   i_s = 1  # start of columns to use in training, items
   print(f"Number of training vectors: {len(item_train)}")

Number of training vectors: 50884

In [5]: pprint_train(user_train, user_features, uvs, u_s, maxcount=5)
```

Out[5]:	[user id]	[rating count]	[rating ave]	Act ion	Adve nture	Anim ation	Chil dren	Com edy	Crime	Docum entary	Drama	Fan tasy		Mys tery	Rom ance
	2	22	4.0	4.0	4.2	0.0	0.0	4.0	4.1	4.0	4.0	0.0	3.0	4.0	0.0
	2	22	4.0	4.0	4.2	0.0	0.0	4.0	4.1	4.0	4.0	0.0	3.0	4.0	0.0
	2	22	4.0	4.0	4.2	0.0	0.0	4.0	4.1	4.0	4.0	0.0	3.0	4.0	0.0
	2	22	4.0	4.0	4.2	0.0	0.0	4.0	4.1	4.0	4.0	0.0	3.0	4.0	0.0
	2	22	4.0	4.0	4.2	0.0	0.0	4.0	4.1	4.0	4.0	0.0	3.0	4.0	0.0
1															•

The features in brackets "[]" such as the "user id", "rating count" and "rating ave" are not included when the model is trained and used. For each user, Zero entries are genre's which the user had not rated. The movie array contains the year the film was released, the average rating and an indicator for each potential genre. The target, y, is the movie rating given by the user.

5]:	pprint_	_trair	n(item_	trai	n, item	n_feat	ures,	ivs,	i_s, m	axcount	=5, use	r= Fal	se)		
	[movie id]	year	ave rating	Act ion	Adve nture	Anim ation	Chil dren	Com edy	Crime	Docum entary	Drama	Fan tasy	Hor ror	Mys tery	Rom ance
	6874	2003	4.0	1	0	0	0	0	1	0	0	0	0	0	0
	8798	2004	3.8	1	0	0	0	0	1	0	1	0	0	0	0
	46970	2006	3.2	1	0	0	0	1	0	0	0	0	0	0	0
	48516	2006	4.3	0	0	0	0	0	1	0	1	0	0	0	0
	58559	2008	4.2	1	0	0	0	0	1	0	1	0	0	0	0
															•

3.2 Preparing the training data

```
In [8]: # scale training data
        item_train_unscaled = item_train
        user train unscaled = user train
        y_train_unscaled
                          = y train
        scalerItem = StandardScaler()
        scalerItem.fit(item train)
        item train = scalerItem.transform(item train)
        scalerUser = StandardScaler()
        scalerUser.fit(user_train)
        user_train = scalerUser.transform(user_train)
        scalerTarget = MinMaxScaler((-1, 1))
        scalerTarget.fit(y train.reshape(-1, 1))
        y_train = scalerTarget.transform(y_train.reshape(-1, 1))
        # check if transformed data same with unscaled data
        print(np.allclose(item_train_unscaled, scalerItem.inverse_transform(item_train)))
        print(np.allclose(user_train_unscaled, scalerUser.inverse_transform(user_train)))
```

```
In [9]: ## split data into 80% train and 20% test
   item_train, item_test = train_test_split(item_train, train_size=0.80, shuffle=True, ra
   user_train, user_test = train_test_split(user_train, train_size=0.80, shuffle=True, ra
   y_train, y_test = train_test_split(y_train, train_size=0.80, shuffle=True, ra
   print(f"movie/item training data shape: {item_train.shape}")
   print(f"movie/item test data shape: {item_test.shape}")

movie/item training data shape: (40707, 17)
movie/item test data shape: (10177, 17)
```

4 - Neural Network for content-based filtering

```
In [12]: # we constructure 3 layers NN with the first layer 256 nodes, the second layer 128 nod
         num outputs = 32
          tf.random.set seed(1)
          user NN = tf.keras.models.Sequential([
             tf.keras.layers.Dense(256,activation="relu"),
             tf.keras.layers.Dense(128,activation="relu"),
             tf.keras.layers.Dense(32)
         ])
          item NN = tf.keras.models.Sequential([
             tf.keras.layers.Dense(256,activation="relu"),
             tf.keras.layers.Dense(128,activation="relu"),
             tf.keras.layers.Dense(32)
         1)
          # create the user input and point to the base network
          input user = tf.keras.layers.Input(shape=(num user features))
          vu = user NN(input user)
         vu = tf.linalg.12 normalize(vu, axis=1)
         # create the item input and point to the base network
          input item = tf.keras.layers.Input(shape=(num item features))
          vm = item NN(input item)
         vm = tf.linalg.12_normalize(vm, axis=1)
         # compute the dot product of the two vectors vu and vm
         output = tf.keras.layers.Dot(axes=1)([vu, vm])
          # specify the inputs and output of the model
         model = tf.keras.Model([input_user, input_item], output)
         model.summary()
```

Layer (type)	Output Shape	Param #	Connected to
======================================	[(None, 14)]	0	=======================================
input_2 (InputLayer)	[(None, 16)]	0	
sequential (Sequential)	(None, 32)	40864	input_1[0][0]
sequential_1 (Sequential)	(None, 32)	41376	input_2[0][0]
tf_op_layer_12_normalize/Square	[(None, 32)]	0	sequential[0][0]
tf_op_layer_l2_normalize_1/Squa	[(None, 32)]	0	sequential_1[0][0]
tf_op_layer_l2_normalize/Sum (T lize/Square[0	[(None, 1)]	0	tf_op_layer_l2_norma
tf_op_layer_l2_normalize_1/Sum lize_1/Square	[(None, 1)]	0	tf_op_layer_l2_norma
tf_op_layer_l2_normalize/Maximu lize/Sum[0][0	[(None, 1)]	0	tf_op_layer_l2_norma
tf_op_layer_l2_normalize_1/Maxi lize_1/Sum[0]	[(None, 1)]	0	tf_op_layer_l2_norma
tf_op_layer_l2_normalize/Rsqrt lize/Maximum[[(None, 1)]	0	tf_op_layer_l2_norma
tf_op_layer_l2_normalize_1/Rsqr lize_1/Maximu	[(None, 1)]	0	tf_op_layer_l2_norma
tf_op_layer_12_normalize (Tenso	[(None, 32)]	0	sequential[0][0] tf_op_layer_l2_norma
lize/Rsqrt[0]			
<pre>tf_op_layer_l2_normalize_1 (Ten lize_1/Rsqrt[</pre>	[(None, 32)]	0	<pre>sequential_1[0][0] tf_op_layer_12_norma</pre>
dot (Dot) lize[0][0]	(None, 1)	0	tf_op_layer_l2_norma

lize_1[0][0]

Total params: 82,240 Trainable params: 82,240 Non-trainable params: 0

```
In [14]: # mean squared error loss and Adam optimizer
         tf.random.set_seed(1)
         cost_fn = tf.keras.losses.MeanSquaredError()
         opt = keras.optimizers.Adam(learning_rate=0.01)
         model.compile(optimizer=opt,
                       loss=cost_fn)
```

```
In [15]: # model fitting
         tf.random.set_seed(1)
         model.fit([user_train[:, u_s:], item_train[:, i_s:]], y_train, epochs=30)
```

```
Train on 40707 samples
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 5/30
40707/40707 [============= ] - 5s 123us/sample - loss: 0.1001
Epoch 6/30
Epoch 7/30
40707/40707 [============== ] - 5s 123us/sample - loss: 0.0956
Epoch 8/30
Epoch 9/30
40707/40707 [============== ] - 5s 125us/sample - loss: 0.0916
Epoch 10/30
Epoch 11/30
Epoch 12/30
40707/40707 [============= ] - 5s 125us/sample - loss: 0.0865
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
40707/40707 [============= ] - 5s 123us/sample - loss: 0.0769
Epoch 22/30
Epoch 23/30
40707/40707 [============= ] - 5s 123us/sample - loss: 0.0755
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
Epoch 29/30
```

```
Epoch 30/30
40707/40707 [==========] - 5s 125us/sample - loss: 0.0713
Out[15]:

In [16]: # Evaluate the model with the test data
model.evaluate([user_test[:, u_s:], item_test[:, i_s:]], y_test)

10177/10177 [===========] - 0s 38us/sample - loss: 0.0815
0.08146006993124337
```

5 - Predictions

5.1 - Predictions for a new user

```
In [17]: # create a new user and let model suggest movies for this user
         new user id = 5000
         new_rating_ave = 0.0
         new action = 0.0
         new_adventure = 5.0
         new animation = 0.0
         new childrens = 0.0
         new\_comedy = 0.0
         new crime = 0.0
         new_documentary = 0.0
         new drama = 0.0
         new fantasy = 5.0
         new_horror = 0.0
         new mystery = 0.0
         new_romance = 0.0
         new scifi = 0.0
         new thriller = 0.0
         new_rating_count = 3
         user vec = np.array([[new user id, new rating count, new rating ave,
                                new_action, new_adventure, new_animation, new_childrens,
                                new comedy, new crime, new documentary,
                                new_drama, new_fantasy, new_horror, new_mystery,
                                new_romance, new_scifi, new_thriller]])
```

```
In [18]: # generate and replicate the user vector to match the number movies in the data set.
    user_vecs = gen_user_vecs(user_vec,len(item_vecs))

# scale our user and item vectors
    suser_vecs = scalerUser.transform(user_vecs)
    sitem_vecs = scalerItem.transform(item_vecs)

# make a prediction
    y_p = model.predict([suser_vecs[:, u_s:], sitem_vecs[:, i_s:]])

# unscale y prediction
    y_pu = scalerTarget.inverse_transform(y_p)

# sort the results, highest prediction first
    sorted_index = np.argsort(-y_pu,axis=0).reshape(-1).tolist() #negate to get largest r
    sorted_ypu = y_pu[sorted_index]
    sorted_items = item_vecs[sorted_index] #using unscaled vectors for display
```

print_pred_movies(sorted_ypu, sorted_items, movie_dict, maxcount = 10)

Out[18]:

y_p	movie id	rating ave	title	genres
4.5	98809	3.8	Hobbit: An Unexpected Journey, The (2012)	Adventure Fantasy
4.4	8368	3.9	Harry Potter and the Prisoner of Azkaban (2004)	Adventure Fantasy
4.4	54001	3.9	Harry Potter and the Order of the Phoenix (2007)	Adventure Drama Fantasy
4.3	40815	3.8	Harry Potter and the Goblet of Fire (2005)	Adventure Fantasy Thriller
4.3	106489	3.6	Hobbit: The Desolation of Smaug, The (2013)	Adventure Fantasy
4.3	81834	4	Harry Potter and the Deathly Hallows: Part 1 (2010)	Action Adventure Fantasy
4.3	59387	4	Fall, The (2006)	Adventure Drama Fantasy
4.3	5952	4	Lord of the Rings: The Two Towers, The (2002)	Adventure Fantasy
4.3	5816	3.6	Harry Potter and the Chamber of Secrets (2002)	Adventure Fantasy
4.3	54259	3.6	Stardust (2007)	Adventure Comedy Fantasy Romance

5.2 - Predictions for an existing user.

```
In [19]: | uid = 2
         # form a set of user vectors. This is the same vector, transformed and repeated.
         user vecs, y vecs = get user vecs(uid, user train unscaled, item vecs, user to genre)
         # scale our user and item vectors
         suser_vecs = scalerUser.transform(user_vecs)
         sitem_vecs = scalerItem.transform(item_vecs)
         # make a prediction
         y_p = model.predict([suser_vecs[:, u_s:], sitem_vecs[:, i_s:]])
         # unscale y prediction
         y_pu = scalerTarget.inverse_transform(y_p)
         # sort the results, highest prediction first
         sorted_index = np.argsort(-y_pu,axis=0).reshape(-1).tolist() #negate to get largest i
         sorted_ypu = y_pu[sorted_index]
         sorted_items = item_vecs[sorted_index] #using unscaled vectors for display
         sorted_user = user_vecs[sorted_index]
         sorted_y
                   = y_vecs[sorted_index]
         #print sorted predictions for movies rated by the user
         print_existing_user(sorted_ypu, sorted_y.reshape(-1,1), sorted_user, sorted_items, ive
```

у_р	у	user	user genre ave	movie rating ave	movie id	title	genres
4.5	5.0	2	[4.0]	4.3	80906	Inside Job (2010)	Documentary
4.2	3.5	2	[4.0,4.0]	3.9	99114	Django Unchained (2012)	Action Drama
4.1	4.5	2	[4.0,4.0]	4.1	68157	Inglourious Basterds (2009)	Action Drama
4.1	3.5	2	[4.0,3.9,3.9]	3.9	115713	Ex Machina (2015)	Drama Sci-Fi Thriller
4.0	4.0	2	[4.0,4.1,4.0,4.0,3.9,3.9]	4.1	79132	Inception (2010)	Action Crime Drama Mystery Sci- Fi Thriller
4.0	4.0	2	[4.1,4.0,3.9]	4.3	48516	Departed, The (2006)	Crime Drama Thriller
4.0	4.5	2	[4.0,4.1,4.0]	4.2	58559	Dark Knight, The (2008)	Action Crime Drama
4.0	4.0	2	[4.0,4.1,3.9]	4.0	6874	Kill Bill: Vol. 1 (2003)	Action Crime Thriller
4.0	3.5	2	[4.0,4.1,4.0,3.9]	3.8	8798	Collateral (2004)	Action Crime Drama Thriller
3.9	5.0	2	[4.0,4.1,4.0]	3.9	106782	Wolf of Wall Street, The (2013)	Comedy Crime Drama
3.9	3.5	2	[4.0,4.2,4.1]	4.0	91529	Dark Knight Rises, The (2012)	Action Adventure Crime
3.9	4.0	2	[4.0,4.0,3.9]	4.0	74458	Shutter Island (2010)	Drama Mystery Thriller
3.9	4.5	2	[4.1,4.0,3.9]	4.0	80489	Town, The (2010)	Crime Drama Thriller
3.8	4.0	2	[4.0]	4.0	112552	Whiplash (2014)	Drama
3.8	3.0	2	[3.9]	4.0	109487	Interstellar (2014)	Sci-Fi
3.8	5.0	2	[4.0]	3.7	89774	Warrior (2011)	Drama
3.7	3.0	2	[4.0,4.0,3.0]	3.9	71535	Zombieland (2009)	Action Comedy Horror
3.7	5.0	2	[4.0,4.2,3.9,3.9]	3.8	122882	Mad Max: Fury Road (2015)	Action Adventure Sci-Fi Thriller
3.5	5.0	2	[4.0]	3.6	60756	Step Brothers (2008)	Comedy

genres	title	movie id	movie rating ave	user genre ave	user	у	y_p
Drama Thriller	Girl with the Dragon Tattoo, The (2011)	91658	3.5	[4.0,3.9]	2	2.5	3.5
Comedy Documentary	Exit Through the Gift Shop (2010)	77455	4.0	[4.0,4.0]	2	3.0	3.1
Action Comedy	Talladega Nights: The Ballad of Ricky Bobby (2006)	46970	3.2	[4.0,4.0]	2	4.0	3.1

5.3 - Finding Similar Items

```
In [20]:
         # find the squared distance between two vectors(Vm(k) and Vm(i))
         def sq_dist(a,b):
             d = np.sum((a-b)**2)
             return d
In [21]: a1 = np.array([1.0, 2.0, 3.0]); b1 = np.array([1.0, 2.0, 3.0])
         a2 = np.array([1.1, 2.1, 3.1]); b2 = np.array([1.0, 2.0, 3.0])
         a3 = np.array([0, 1, 0]);
                                      b3 = np.array([1, 0, 0])
         print(f"squared distance between a1 and b1: {sq_dist(a1, b1):0.3f}")
         print(f"squared distance between a2 and b2: {sq dist(a2, b2):0.3f}")
         print(f"squared distance between a3 and b3: {sq dist(a3, b3):0.3f}")
         squared distance between a1 and b1: 0.000
         squared distance between a2 and b2: 0.030
         squared distance between a3 and b3: 2.000
In [23]: ## using trained 'item_NN' to build a small model to generate vm
         input item m = tf.keras.layers.Input(shape=(num item features))
                                                                             # input layer
         vm m = item NN(input item m)
                                                                             # use the trained i
         vm m = tf.linalg.12 normalize(vm m, axis=1)
                                                                             # incorporate norma
         model_m = tf.keras.Model(input_item_m, vm_m)
         model m.summary()
```

Layer (type)		Param #	Connected to
<pre>input_3 (InputLayer)</pre>	[(None, 16)]	0	
sequential_1 (Sequential)	(None, 32)	41376	input_3[0][0]
tf_op_layer_12_normalize_2/Squa	[(None, 32)]	0	sequential_1[1][0]
tf_op_layer_12_normalize_2/Sum lize_2/Square	[(None, 1)]	0	tf_op_layer_12_norma
tf_op_layer_l2_normalize_2/Maxi lize_2/Sum[0]	[(None, 1)]	0	tf_op_layer_12_norma
tf_op_layer_12_normalize_2/Rsqr lize_2/Maximu	[(None, 1)]	0	tf_op_layer_12_norma
tf_op_layer_12_normalize_2 (Ten lize_2/Rsqrt[[(None, 32)]	0	sequential_1[1][0] tf_op_layer_12_norma
Total params: 41,376 Trainable params: 41,376 Non-trainable params: 0			
<pre># using a set of item/movie vec scaled_item_vecs = scalerItem.t vms = model_m.predict(scaled_it print(f"size of all predicted m</pre>	ransform(item_vecs) em_vecs[:,i_s:])		
size of all predicted movie fear	ture vectors: (847, 3	32)	
<pre># find the closest movie by fine count = 50 # number of movies dim = len(vms) dist = np.zeros((dim,dim))</pre>	_	ng each row	
<pre>for i in range(dim): for j in range(dim): dist[i,j] = sq_dist(vms</pre>	[i, :], vms[j, :])		
<pre>m_dist = ma.masked_array(dist,</pre>	mask=np.identity(dis	t.shape[0]))	# mask the diagonal,
<pre>disp = [["movie1", "genres", "m for i in range(count): min_idx = np.argmin(m_dist[movie1_id = int(item_vecs[i</pre>	i])		

movie1	genres	movie2	
Save the Last Dance (2001)	Drama Romance	Mona Lisa Smile (2003)	
Wedding Planner, The (2001)	Comedy Romance	Mr. Deeds (2002)	
Hannibal (2001)	Horror Thriller	Final Destination 2 (2003)	
Saving Silverman (Evil Woman) (2001)	Comedy Romance	Down with Love (2003)	
Down to Earth (2001)	Comedy Fantasy Romance	Bewitched (2005)	
Mexican, The (2001)	Action Comedy	Rush Hour 2 (2001)	
15 Minutes (2001)	Thriller	Panic Room (2002)	
Enemy at the Gates (2001)	Drama	Kung Fu Hustle (Gong fu) (2004)	
Heartbreakers (2001)	Comedy Crime Romance	Fun with Dick and Jane (2005)	
Spy Kids (2001)	Action Adventure Children Comedy	Tuxedo, The (2002)	Acti
Along Came a Spider (2001)	Action Crime Mystery Thriller	Insomnia (2002)	
Blow (2001)	Crime Drama	25th Hour (2002)	
Bridget Jones's Diary (2001)	Comedy Drama Romance	Punch- Drunk Love (2002)	
Joe Dirt (2001)	Adventure Comedy Mystery Romance	Polar Express, The (2004)	Adven
Crocodile Dundee in Los Angeles (2001)	Comedy Drama	Bewitched (2005)	
Mummy Returns, The (2001)	Action Adventure Comedy Thriller	Rundown, The (2003)	Ac
Knight's Tale, A (2001)	Action Comedy Romance	Legally Blonde	

Out[25]:

	movie2	genres	movie1
	(2001)		
Adventure Animation Chil	Tangled (2010)	Adventure Animation Children Comedy Fantasy Romance	Shrek (2001)
	Notebook, The (2004)	Drama Romance	Moulin Rouge (2001)
	Bridget Jones: The Edge of Reason (2004)	Action Drama Romance	Pearl Harbor (2001)
	Dumb and Dumberer: When Harry Met Lloyd (2003)	Comedy	Animal, The (2001)
	Behind Enemy Lines (2001)	Comedy Sci-Fi	Evolution (2001)
	We Were Soldiers (2002)	Action Crime Drama	Swordfish (2001)
Advent	Cloudy with a Chance of Meatballs (2009)	Adventure Animation Children Fantasy	Atlantis: The Lost Empire (2001)
	National Treasure: Book of Secrets (2007)	Action Adventure	Lara Croft: Tomb Raider (2001)
	Legally Blonde 2: Red, White & Blonde (2003)	Comedy	Dr. Dolittle 2 (2001)
	xXx (2002)	Action Crime Thriller	Fast and the Furious, The (2001)
	Bubba Ho- tep (2002)	Adventure Drama Sci-Fi	A.I. Artificial Intelligence (2001)
	Robots (2005)	Children Comedy	Cats & Dogs (2001)
	Orange County (2002)	Comedy	Scary Movie 2 (2001)
Adv	Madagascar: Escape 2	Adventure Animation Fantasy Sci-Fi	Final Fantasy: The Spirits

movie1	genres	movie2	
Within (2001)		Africa (2008)	
Legally Blonde (2001)	Comedy Romance	Serendipity (2001)	
Score, The (2001)	Action Drama	Punisher, The (2004)	
Jurassic Park III (2001)	Action Adventure Sci-Fi Thriller	Men in Black II (a.k.a. MIIB) (a.k.a. MIB 2) (2002)	
America's Sweethearts (2001)	Comedy Romance	Maid in Manhattan (2002)	
Ghost World (2001)	Comedy Drama	Station Agent, The (2003)	
Planet of the Apes (2001)	Action Adventure Drama Sci-Fi	Day After Tomorrow, The (2004)	
Princess Diaries, The (2001)	Children Comedy Romance	Lake House, The (2006)	
Rush Hour 2 (2001)	Action Comedy	Mexican, The (2001)	
American Pie 2 (2001)	Comedy	Rat Race (2001)	
Others, The (2001)	Drama Horror Mystery Thriller	The Machinist (2004)	
Rat Race (2001)	Comedy	American Pie 2 (2001)	
Jay and Silent Bob Strike Back (2001)	Adventure Comedy	Mexican, The (2001)	
Training Day (2001)	Crime Drama Thriller	Frailty (2001)	
Zoolander (2001)	Comedy	Old School (2003)	
Serendipity (2001)	Comedy Romance	Legally Blonde (2001)	
Mulholland Drive (2001)	Crime Drama Mystery Thriller	Prisoners (2013)	
From Hell (2001)	Crime Horror Mystery Thriller	Identity (2003)	

	movie2	genres	movie1
	Warm Bodies (2013)	Animation Drama Fantasy	Waking Life (2001)
	Gosford Park (2001)	Drama Fantasy Mystery Sci-Fi	K-PAX (2001)
>			

The results show the model will generally suggest a movie with similar genre's.