Lösungen und Bemerkungen zu

Übungsblatt 9

Jendrik Stelzner

26. Juli 2017

Aufgabe 4

a)

Für alle $v \in V$ gilt

$$v \in \ker f \iff f(v) = 0$$

 $\iff \beta'(f(v), w) = 0 \text{ für alle } w \in W$
 $\iff \beta(v, f^{\text{ad}}(w)) = 0 \text{ für alle } w \in W$
 $\iff \beta(v, v') = 0 \text{ für alle } v' \in \text{im } f^{\text{ad}}$
 $\iff v \in (\text{im } f^{\text{ad}})^{\perp}.$

Dabei nutzen wir für die zweite Äquivalenz, dass β' nicht ausgeartet ist.

b)

Es seien $\mathcal{B}_V = (v_1, \dots, v_n)$ und $\mathcal{B}_W = (w_1, \dots, w_m)$, $A = M_{f, \mathcal{B}_V, \mathcal{B}_W}$ und $B = M_{f^{\mathrm{ad}}, \mathcal{B}_W, \mathcal{B}_V}$. Dann gilt $f(v_j) = \sum_{i=1}^m A_{ij} w_i$ für alle $j = 1, \dots, n$, sowie $f^{\mathrm{ad}}(w_j) = \sum_{i=1}^n B_{ij} v_i$ für alle $j = 1, \dots, m$.

Für alle $i=1,\ldots,n$ und $j=1,\ldots,m$ gelten somit

$$\beta'(f(v_i), w_j) = \beta'\left(\sum_{k=1}^m A_{ki}w_k, w_j\right) = \sum_{k=1}^m A_{ki}\underbrace{\beta'(w_k, w_j)}_{=\delta_{kj}} = A_{ji}$$

sowie

$$\beta\left(v_i, f^{\mathrm{ad}}(w_j)\right) = \beta\left(v_i, \sum_{k=1}^n B_{kj}v_k\right) = \sum_{k=1}^n \overline{B_{kj}} \underbrace{\beta(v_i, v_k)}_{=\delta_{ik}} = \overline{B_{ij}}.$$

Aus der Gleichheit $\beta'(f(v_i), w_j) = \beta(v_i, f^{ad}(w_j))$ folgt damit, dass $A_{ji} = \overline{B_{ij}}$. Somit gilt insgesamt $A^T = \overline{B}$.

c)

Für beliebige Basen gilt die Aussage nicht mehr: Es seien $V=W=\mathbb{R},\,f=\mathrm{id}_\mathbb{R},\,\beta=\beta'$ das Standardskalarprodukt, sowie $\mathscr{B}_V=(1)$ und $\mathscr{B}_W=(2)$. Dann gilt $f^{\mathrm{ad}}=\mathrm{id}_\mathbb{R}^{\mathrm{ad}}=\mathrm{id}_\mathbb{R}$ und somit

$$\overline{\mathbf{M}_{f,\mathcal{B}_V,\mathcal{B}_W}}^T = \overline{\left(\frac{1}{2}\right)}^T = \left(\frac{1}{2}\right) \neq (2) = \overline{(2)}^T = \overline{\mathbf{M}_{f^{\mathrm{ad}},\mathcal{B}_W,\mathcal{B}_V}}^T$$