B.) AMENDMENTS TO THE CLAIMS

In the Claims

Please amend the claims as set forth below. This listing of claims will replace all prior versions and listings of claims in the Application:

- 1. 18. (Cancelled)
- 19. (Currently amended) A control circuit including:

at least two input terminals for electrically connecting with at least two conductors of a power source;

at lest at least two output terminals for electrically connecting with a load;

a sensor having a sensor relay that is energized in response to a reference signal being within a predetermined range, the reference signal being derived from a voltage differential between one or more of the conductors and a <u>floating</u> reference point that is electrically isolated from the conductors when in use, wherein the sensor provides a sensor signal in response to the sensor relay being energized; and

a switching device having a switching relay that is responsive to the sensor signal for progressing between a first mode and a second mode wherein: in the first mode the input and output terminals are respectively electrically connected for allowing the load to receive power from the source via the switching relay; and in the second mode, the input and output terminals are electrically disconnected for preventing the source from supplying power to the load via the switching relay.

- (Previously Presented) A circuit according to claim 19 wherein the sensor relay is a low voltage DC relay.
- (Previously Presented) A circuit according to claim 20 wherein the switching relay is a mains voltage relay.
- (Previously Presented) A circuit according to claim 20 wherein the switching relay is a DC voltage relay.

23. (Previously Presented) A circuit according to claim 19 wherein the sensor signal is:

an AC signal; or

derived from an AC signal.

- 24. (Cancelled)
- 25. (Currently Amended) A control circuit including:

at least two input terminals for electrically connecting with a power source:

at least two output terminals for electrically connecting with a load;

a switching relay having a switching coil that is selectively <u>de-energised and</u> energised to <u>respectively</u> progress the <u>switching</u> relay between two modes to a first mode and a second <u>mode</u> wherein: in one of the modes the first mode the input and output terminals are respectively electrically connected for allowing the load to receive power from the source via the switching relay; and in the <u>other second</u> mode, the input and output terminals are electrically disconnected for preventing the source from supplying power to the load via the switching relay; and

a sensor relay that is responsive to a predetermined condition for energising the coil of the switching relay, having only one sensor coil, the sensor coil being progressed to an energized state in response to a fault condition for energizing the switching coil.

- (Currently Amended) A circuit according to claim 25 wherein the sensor relay has coil is a low voltage coil that is energised in response to the fault condition.
- (Previously Presented) A circuit according to claim 26 wherein the low voltage coil is energised by a DC voltage.
- (Currently Amended) A circuit according to claim 27 wherein the low voltage coil is energised by a DC voltage of greater than [[1]] one Volt.
- 29. (New) A circuit according to claim 25 wherein the switching relay has only one switching coil.
- (New) A circuit according to claims 25 wherein by progressing to the energized state, the switching relay de-energizes the sensor coil.

31. (New) A control circuit including:

at least two input terminals for electrically connecting with a power source;

at least two output terminals for electrically connecting with a load;

a switching relay having a switching coil that is selectively energized in response to a signal to progress the relay between two modes wherein: in one of the modes the input and output terminals are respectively electrically connected for allowing the load to receive power from the source via the switching relay; and in the other mode, the input and output terminals are electrically disconnected for preventing the source from supplying power to the load via the switching relay; and

a sensor relay having a sensor coil for progressing to an energized state in response to a fault condition and providing the signal, wherein in the absence of a fault condition the circuit includes no coils that are energised.

- 32. (New) A circuit according to claim 31 wherein the sensor coil is a low voltage coil that is energized in response to the fault condition.
- (New) A circuit according to claim 32 wherein the low voltage coil is energized by a DC voltage.
- 34. (New) A circuit according to claim 33 wherein the DC voltage is greater than one volt.
- 35. (New) A circuit according to claim 31 wherein the switching relay has only one switching coil.
- 36. (New) A circuit according to claim 31 wherein the sensor relay has only one sensor coil.
- 37. (New) A circuit according to claim 35 wherein the sensor relay has only one sensor coil.
- (New) A circuit according to claim 31 wherein by progressing to the energized state the switching relay de-energizes the sensor coil.