

1.0

0.2

0.4

 $\sigma_C 1$

0.6

8.0

0.0

1.0

0.2

0.0

0.4

0.6

 σ_C 2

8.0

 σ_C 2

 $\varepsilon_C 1$ at T = 280 K. Other vals = 0.00.

 $\varepsilon_C 1$

1.0

0.2

0.4

 $\varepsilon_C 1$

0.6

8.0

0.0

1.0

0.2

0.0

0.4

 $\varepsilon_C 1$

0.6

8.0

900

 $\varepsilon_C 1$

 $\varepsilon_C 1$ at T = 280 K. Other vals = 0.80.

 $\varepsilon_C 1$ at T = 280 K. Other vals = 1.00.

1.0

0.2

0.4

0.6

 $\varepsilon_C 2$

8.0

0.0

600

 ε_C 2 at T = 280 K. Other vals = 0.30.

 ε_C 2 at T = 280 K. Other vals = 0.80.

 ε_C 2 at T = 280 K. Other vals = 1.00.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.00.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.10.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.20.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.70.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.90.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 1.00.

 ε_F 2 at T = 280 K. Other vals = 0.00.

 $\varepsilon_F 2$

 ε_F 2 at T = 280 K. Other vals = 0.30.

 ε_F 2 at T = 280 K. Other vals = 0.60.

 $\varepsilon_{\rm F}$ 2 at T = 280 K. Other vals = 0.80.

 ε_F 2 at T = 280 K. Other vals = 0.90.

R134a_sim_liq_density $\varepsilon_H 1$ at T = 280 K. Other vals = 0.00.

 $\varepsilon_H 1$

0.4

 $\varepsilon_H 1$

0.6

8.0

1.0

0.2

0.0

R134a_sim_liq_density $\varepsilon_H 1$ at T = 280 K. Other vals = 0.40. 1200 1175 Liquid Density [kg/m > 3] 1100 -1050 1025 0.2 0.4 1.0 0.0 0.6 8.0

 $\varepsilon_H 1$

1.0

8.0

0.2

0.0

0.4

 $\varepsilon_H 1$

0.6

1025

1000

R134a_sim_liq_density $\varepsilon_H 1$ at T = 280 K. Other vals = 0.80. 1200 1150 -1100 -

R134a_sim_liq_density

 $\varepsilon_H 1$

1.0

0.8

0.2

0.0

0.4

0.6

 $\sigma_C 1$

50

 σ_C 2

 σ_C 2 at T = 280 K. Other vals = 0.20.

0.2

0.0

0.4

 $\sigma_F 1$

0.6

1.0

8.0

80

60

1.0

0.2

0.0

0.4

 $\sigma_F 1$

0.6

8.0

 $\sigma_F 2$

 $\sigma_F 2$

 $\sigma_F 2$

 $\sigma_F 2$ at T = 280 K. Other vals = 0.50.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.60.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.70.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.80.

0.2

0.0

0.4

 $\sigma_H 1$

0.6

8.0

0.0

0.4

 $\sigma_H 1$

0.6

8.0

1.0

 $\sigma_H 1$

 $\sigma_H 1$ at T = 280 K. Other vals = 0.60.

 $\sigma_H 1$

0.8

0.2

0.0

0.4

 $\varepsilon_C 1$

0.6

0.0

0.4

 $\varepsilon_C 2$

0.6

1.0

8.0

0.8

0.2

0.0

0.4

 $\varepsilon_C 2$

0.6

 $\varepsilon_C 2$ at T = 280 K. Other vals = 0.50.

 $\varepsilon_C 2$ at T = 280 K. Other vals = 0.60.

 $\varepsilon_{\it F} 1$

0.6

0.2

0.0

1.0

0.8

0.8

0.2

0.0

0.4

 $\varepsilon_{\it F} 1$

0.6

50

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.30.

0.2

0.0

0.4

 $\varepsilon_{\it F} 1$

0.6

8.0

 $\varepsilon_{\it F} 1$

 $\varepsilon_F 2$ at T = 280 K. Other vals = 0.20.

 $\varepsilon_F 2$ at T = 280 K. Other vals = 0.30.

 ε_F 2 at T = 280 K. Other vals = 0.40.

 ε_F 2 at T = 280 K. Other vals = 0.50.

 $\varepsilon_H 1$

0.6

0.2

0.0

1.0

8.0

Vapor Density [kg/m^3]

R134a_sim_vap_density

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.30.

0.0

0.4

 $\varepsilon_H 1$

0.6

1.0

8.0

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.50.

 $\varepsilon_H 1$

0.6

8.0

0.2

0.0

1.0

-50

0.2

0.0

0.4

0.6

 $\sigma_C 1$

0.8

1.0

20

 $\sigma_C 1$ at T = 280 K. Other vals = 0.10.

 $\sigma_C 1$ at T = 280 K. Other vals = 0.20.

0.2

0.0

0.4

 $\sigma_C 1$

0.6

8.0

1.0

-5

 $\sigma_C 2$ at T = 280 K. Other vals = 0.10.

 $\sigma_C 2$ at T = 280 K. Other vals = 0.20.

 $\sigma_C 2$ at T = 280 K. Other vals = 0.30.

 $\sigma_C 2$ at T = 280 K. Other vals = 0.40.

 $\sigma_F 1$

 $\sigma_F 1$ at T = 280 K. Other vals = 0.10.

 $\sigma_F 1$

 $\sigma_F 1$

 $\sigma_F 1$

 $\sigma_F 1$ at T = 280 K. Other vals = 0.50.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.00.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.10.

 σ_F 2 at T = 280 K. Other vals = 0.20.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.30.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.40.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.50.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.60.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.70.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.80.

 $\sigma_H 1$ at T = 280 K. Other vals = 0.00.

 $\sigma_H 1$ at T = 280 K. Other vals = 0.10.

 $\sigma_H 1$ at T = 280 K. Other vals = 0.50.

 $\sigma_H 1$ at T = 280 K. Other vals = 0.60.

 $\varepsilon_C 1$ at T = 280 K. Other vals = 0.10.

 $\varepsilon_C 1$ at T = 280 K. Other vals = 0.20.

 $\varepsilon_C 1$ at T = 280 K. Other vals = 0.30.

 $\varepsilon_C 1$ at T = 280 K. Other vals = 0.40.

0.6

 $\varepsilon_C 1$

8.0

0.0

 ε_C 2 at T = 280 K. Other vals = 0.00.

 ε_C 2 at T = 280 K. Other vals = 0.10.

 ε_C 2 at T = 280 K. Other vals = 0.30.

 ε_C 2 at T = 280 K. Other vals = 0.40.

 ε_C 2 at T = 280 K. Other vals = 0.50.

 $\varepsilon_C 2$

-2

-4 -

0.2

0.0

0.4

 $\varepsilon_C 2$

0.6

0.8

1.0

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.00.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.10.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.20.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.30.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.50.

 ε_F 2 at T = 280 K. Other vals = 0.00.

 $\varepsilon_F 2$

 ε_F 2 at T = 280 K. Other vals = 0.20.

 ε_F 2 at T = 280 K. Other vals = 0.30.

 ε_F 2 at T = 280 K. Other vals = 0.40.

 $\varepsilon_F 2$

R134a_sim_Pvap

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.00.

R134a_sim_Pvap

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.10.

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.20.

 $\varepsilon_H 1$

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.60.

0.4

0.6

 $\sigma_C 1$

8.0

0.2

0.0

1.0

 $\sigma_C 1$ at T = 280 K. Other vals = 0.30.

 $\sigma_C 1$ at T = 280 K. Other vals = 1.00.

 $\sigma_C 2$

 σ_C 2

 σ_C 2 at T = 280 K. Other vals = 0.80.

 σ_C 2

 $\sigma_C 2$ at T = 280 K. Other vals = 1.00.

 $\sigma_F 1$ at T = 280 K. Other vals = 0.80.

 $\sigma_F 2$ at T = 280 K. Other vals = 0.30.

1.0

0.8

0.2

0.0

0.4

0.6

 $\sigma_F 2$

140

135

0.2

0.0

0.4

0.6

 $\sigma_F 2$

1.0

0.8

 $\sigma_H 1$ at T = 280 K. Other vals = 0.30.

0.4

 $\sigma_H 1$

0.6

1.0

0.8

0.2

0.0

0.4

 $\sigma_H 1$

0.6

1.0

0.8

0.2

0.0

0.6

 $\sigma_H 1$

0.8

0.0

 $\varepsilon_C 1$

 $\varepsilon_C 1$

 $\varepsilon_C 1$ at T = 280 K. Other vals = 0.60.

 $\varepsilon_C 1$

R134a_sim_Hvap

 $\varepsilon_C 1$ at T = 280 K. Other vals = 1.00.

 ε_C 2 at T = 280 K. Other vals = 0.50.

 ε_C 2 at T = 280 K. Other vals = 0.70.

 ε_C 2 at T = 280 K. Other vals = 1.00.

 $\varepsilon_{\it F} 1$

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.20.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.30.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.40.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.50.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.60.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.80.

 $\varepsilon_F 1$ at T = 280 K. Other vals = 0.90.

 ε_F 2 at T = 280 K. Other vals = 0.20.

 $\varepsilon_F 2$ at T = 280 K. Other vals = 0.30.

 $\varepsilon_F 2$ at T = 280 K. Other vals = 0.50.

 ε_F 2 at T = 280 K. Other vals = 0.60.

 $\varepsilon_F 2$

 ε_F 2 at T = 280 K. Other vals = 0.80.

 $\varepsilon_F 2$ at T = 280 K. Other vals = 0.90.

 $\varepsilon_F 2$ at T = 280 K. Other vals = 1.00.

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.10.

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.30.

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.60.

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.80.

 $\varepsilon_H 1$ at T = 280 K. Other vals = 0.90.

--- R134a_sim_Hvap

 $\varepsilon_H 1$ at T = 280 K. Other vals = 1.00.

