V	ersi	on N	0.			R	OLL	NU.	MBE	ER	,	INTERMEDIATE AND SEC.	
												ONOS ANTINE	
0	0	0	0		0	0	0	0	0	0	0		
1	1	1	1		1	1	1	1	1	1	1	7SLAMABAD	
2	2	2	2		2	2	2	2	2	2	2	Anguar Shoot No	
3	3	3	3		3	3	3	3	3	3	3	Answer Sheet No	
4	4	4	4		4	4	4	4	4	4	4		
(5)	(5)	(5)	(5)		(5)	5	(5)	(5)	(5)	(5)	(5)	Sign. of Candidate	
6	6	6	6		6	6	6	6	6	6	6		
7	7	7	7		7	7	7	7	7	7	7		
8	8	8	8		8	8	8	8	8	8	8	Sign. of Invigilator	
9	9	9	9		9	9	9	9	9	9	9		
							PF	IYS	ICS	S H S	SSC	!—I	
									N - A				
Section	on –	A is	comp	oulsoi	ry. A	ll pa			owed sect			utes be answered on this page and har	ıded
			_		-	-						not allowed. Do not use lead pend	
Q.1	Fil	l the	e relev	vant l	bubb	ole fo	r ea	ch pa	art. I	Each	part	t carries one mark.	
	1.					he fo	llow	ing is	s a di			ess quantity?	
			A. C.		ess rface	tens	ion))	E E		Energy () Strain ()	
	2.							Eart	h un			fect of gravity, neglecting air	
			resist	ance,	its n	notio							
			A. C.		ee fal rabol)	E E		Gravitational () Uniform ()	
	3.						llow	ing a) manti			r change for collision of two bodies	in
	٥.		an iso	olated	l syst	em?			-			o comment of the court	
			A. B.				of ea body		ody			O	
			C.						e sys	tem		Ŏ	
			D.				the s	•				O	
	4.		A sto							ectile	mot	tion, which one of the following is t	rue
			A.	Zei		CICIA	lion (01 810	JIIC.				
			B.		nstar		4 1. 1 . 1	.					
			C. D.				_	-	point proje		n (
	5.		Whic				-					`work?	
			A.	Jou	ıle			Č)	E	3.	Kg.m / s	
	_		C.	N.1			1 0) 	. [-	Ws	
	6.		Incre A.		the ms ⁻¹	spee	d of s	sound (d in t)	he ai E		degree rise in temperature is:	
			C.	0.6	ol cm	1s		\subset	Ó	Γ		6.1 ms ⁻¹	
								P	age 1	l of 2	2		

7.	For a	simple harmonic os	cillator, a	$= -\omega^2$	^{2}x , its frequency is:							
	A.	$2\pi \omega$	0	B.	2π	0						
	C.	$\frac{\omega}{2\pi}$	\circ	D.	$\frac{\omega}{1}$	0						
8.	The e	xpression for orbital	l velocity	is:								
	A.	$v = \sqrt{MGR}$	0	B.	$v = \sqrt{\frac{GM}{R}}$	0						
	C.	$v = \sqrt{\frac{GR}{M}}$	0	D.	$v = \sqrt{\frac{GM}{R}}$ $v = \sqrt{\frac{2GM}{R}}$	0						
9.	Maxi				9.8 N, its weight wil	1 be:						
	A. C.	1 N 19.8 N	0	B. D.	9.8 N 4.9 N	0						
10.	Wher will b		pendulum	is doub	oled, the ratio of old t	o new time period						
	A.	2:1	0	B.	1:1	0						
	C.	1:2	0	D.	$1:1$ $1:\sqrt{2}$	0						
11.		Stoke's law is valid f	or:									
		A. All objects B. Spherical objects falling at high speed										
	C. Spherical objects falling at slow speed C. Spherical objects falling at slow speed Cubical objects											
	D.	Cubical objects			0							
12.		ocus of all points in Crest	a medium		the same phase of vi	ibration is called:						
	A. C.	Wavelength	\circ	B. D.	Trough Wave front	0						
13.	Whic	C	the first la	aw of th	ermodynamics for is	othermal						
	expar A.	nsion process? Q = W	\cap	D	O = W	\circ						
		$W = -\Delta U$	Ö		$Q = -W$ $W = \Delta U$	0						
14.	The p				s or leaves the system							
	A. C.	Adiabatic process Isobaric process	Ξ		Isothermal process Isochoric process							
15.		•	•		a vertical circle by m							
13.	tensio	on in the string will b	oe maximi	um:	•	_						
	A. C.	At the highest point At horizontal leve	nt () 1 ()	B. D.	At the lowest poin At every point	t ()						
16.			•		ass "M" and length "	L" about its center						
	is:											
	A.	$\frac{\frac{1}{2}ML^2}{\frac{1}{12}ML^2}$	0	В.	$\frac{2}{5}ML^2$ ML^2	O						
	C.	$\frac{12}{12}ML^2$	\circ	D.	ML^2	O						
17.		tuning forks of from the number of beats	per second	d is:	f ₂ are sounded toget	her such that $f_2 > f_1$						
		$\begin{array}{c} f_2-f_1 \\ f_1-f_2 \end{array}$	\bigcirc	B.	$f_2 + f_1 f_1 + 2f_2$	\circ						
	C.	11 - 12	\cup	<i>D</i> .	11 + 212	\cup						
			Page 2	of 2								

Federal Board HSSC-I Examination Physics Model Question Paper (Curriculum 2006)

Time allowed: 2.35 hours Total Marks: 68

Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any **FOURTEEN** parts. All parts carry equal marks.

 $(14 \times 3 = 42)$

- i. List applications of moment due to a force.
- ii. Show that the equation $v = \sqrt{\frac{TxL}{M}}$ is dimensionally consistent, where v = speed of transverse wave in a stretched string, T = tension in a stretched string, L = length of string and M = mass of string.
- iii. How are the cranes able to lift very heavy load without toppling?
- iv. Find the angle between two forces of equal magnitude such that the magnitude of their resultant is equal to either of them.
- v. Show that the rate of change of momentum is equal to the applied force.
- vi. When a driver applies brake suddenly then why does the upper part of the passenger get jerk or move in the forward direction?
- vii. Calculate the orbital radius from the centre of the Earth for a Geostationary satellite.
- viii. A motorcar is traveling at a speed of 30ms⁻¹. If the wheel has a diameter of 1.5m, find its angular speed in rad s⁻¹ and rev s⁻¹?
- ix. Is it possible for a person to distinguish between a raw egg and a hard-boiled egg by spinning each on a table?
- x. When a tractor moves with uniform velocity, its larger wheel rotates slowly than its smaller wheel. Why?
- xi. What is the function of shock absorber in a car?
- xii. (a) For what values of the angle 'θ' between two vectors their scalar product is positive?
 - (b) For what values of the angle ' θ ' between two vectors their scalar product is negative?
- xiii. What is the power of an airplane of mass 3000kg, if on a runway it is capable of attaining a speed of 80ms⁻¹ from rest in 4.0 seconds?
- xiv. A source of sound and an observer are moving away from each other. What happens to the apparent pitch heard by the observer?
- xv. Why are Polaroid sunglasses better than ordinary sunglasses?

Page 1 of 2

- xvi. In Young's double slit experiment the second order maximum occurs at $\theta = 25^{\circ}$ when the slits are illuminated by light of the wavelength 650nm. Determine the slit separation.
- xvii. Why is it not possible to see interference where light beams from head lamps of a car overlap?
- xviii. Why do bowlers shine one side of a cricket ball?
- xix. Why can efficiency of a thermodynamic system never be 100%?
- xx. What length of an open pipe will produce a frequency of 1200Hz as its first overtone on a day when speed of sound is 340ms⁻¹.

SECTION – C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. Define the molar heat capacity at constant pressure ' C_P ' and molar heat capacity at constant volume ' C_v ' for a gas. Prove that $C_P C_v = R$ (02+04)
 - b. 25200J of heat is supplied to the system while the system does 6000J of work. Calculate the change in internal energy of the system. (04)
 - c. Why is it not possible to obtain diffraction of x-rays by Young's double slit experiments? (03)
- Q.4 a. Define Simple Harmonic Motion (SHM). Show that motion of a simple pendulum is SHM. Also derive an expression for its time period "T". (02+04)
 - b. What should be the length of simple pendulum whose time period is one second? What is its frequency? (03)
 - c. Identify the factors on which speed of sound in air depends. (04)
- Q.5 a. Using equations of uniformly accelerated motion, determine height, range and time of flight for a projectile. (02+02+02)
 - b. Water flows through a pipe of 1 cm diameter with 1 ms⁻¹ speed. What should be the diameter of the nozzle if water is ejecting at an average speed of 2.1 ms⁻¹. (04)
 - c. Why does smoke rise faster in a chimney on a windy day (03)

* * * * *

PHYSICS HSSC-1 MODEL QUESTION PAPER SLOs (Curriculum 2006)

SECTION-A

Q.1 Choose the correct answer A/B/C/D by filling the relevant bubble for each question.

- 1. Check the homogeneity of physical equations by using dimensionality and base units.
- 2. Distinguish between positive and negative acceleration, uniform and variable acceleration.
- 3. Describe that while momentum of a system is always conserved in interaction between bodies some change in K.E. usually takes place.
- 4. Communicate the ideas of a projectile in the absence of air resistance that. (i) Horizontal component (VH) of velocity is constant. (ii) Acceleration is in the vertical direction and is the same as that of a vertically free falling object. (iii) The horizontal motion and vertical motion are independent of each other.
- 5. Describe the concept of work in terms of the product of force F and displacement d in the direction of force (Work as scalar product of F and d).
- 6. Identify the factors on which speed of sound in air depends
- 7. Identify and use the equation; $a = -\omega 2 x$ as the defining equation of SHM.
- 8. Define the term orbital velocity and derive relationship between orbital velocity, the gravitational constant, mass and the radius of the orbit.
- 9. Describe that real fluids are viscous fluids.
- 10. analyze the motion of a simple pendulum is SHM
- 11. Describe that viscous forces in a fluid cause a retarding force on an object moving through it.
- 12. State Huygen's principle and use to construct wavefront.
- 13. Explain that first law of thermodynamics expresses the conservation of energy.
- 14. Explain that first law of thermodynamics expresses the conservation of energy.
- 15. describe situations in which the centripetal acceleration is caused by a tension force
- 16. define moment of inertia of a body
- 17. Describe the phenomenon of formation of beats due to interference of non-coherent sources.

SECTION-B

Q.2 Attempt FOURTEN parts from following

- 1. List applications of torque or moment due to a force.
- 2. Check the homogeneity of physical equations by using dimensionality and base units.
- 3. Describe how cranes are able to lift heavy loads without toppling.
- 4. Determine sum of vectors using perpendicular components.
- 5. Describe the Newton's second law of motion as rate of change of momentum
- 6. Apply Newton's laws to explain the motion of objects in a variety of context.
- 7. Describe that communication satellites are usually put into orbit high above the equator and that they orbit the earth once a day so that they appear stationary when viewed from earth.
- 8. Solve problems by using $S=r \theta$ and $v=r\omega$.

- 9. Explain conservation of angular momentum as a universal law and describe examples of conservation of angular momentum.
- 10. Explain conservation of angular momentum as a universal law and describe examples of conservation of angular momentum.
- 11. Describe practical examples of damped oscillations with particular reference to the efforts of the degree of damping and the importance of critical damping in cases such as a car suspension system.
- 12. distinguish between positive, negative and zero work with suitable examples
- 13. Express power as scalar product of force and velocity
- 14. Explain the observed change in frequency of a mechanical wave coming from a moving object as it approaches and moves away (i.e. Doppler effect).
- 15. Identify and express that polarization is produced by a Polaroid.
- 16. Determine the wavelength of light using diffraction grating.
- 17. State the necessary conditions to observe interference of light.
- 18. Describe that the pressure difference can arise from different rates of flow of a fluid (Bernoulli effect).
- 19. Explain the working principle of Carnot's engine
- 20. Determine the wavelength of sound in air using stationary waves and calculate speed of sound.

SECTION-C

- Q.3 (a) Define specific heat of gas. Apply first law of thermodynamics to derive Cp Cv = R
 - (b) Apply first law of thermodynamics
 - (c) State the necessary conditions to observe interference of light.
- Q.4 (a+b) analyze the motion of a simple pendulum is SHM and calculate its time period.
 - (c) Identify the factors on which speed of sound in air depends
- Q.5 (a) Evaluate using equations of uniformly accelerated motion that for a given initial velocity of frictionless projectile. 1. How higher does it go? 2. How far would it go along the level land? 3. Where would it be after a given time? 4. How long will it remain in air?
 - (b) Describe equation of continuity Av = Constant, for the flow of an ideal and incompressible fluid and solve problems using it.
 - (c) Describe that the pressure difference can arise from different rates of flow of a fluid (Bernoulli Effect)

PHYSICS HSSC-I Table of Specifications

Topics	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Marks	% age
Knowledge based		Q 2(i)3	Q 1(2)1 Q 1(3)1 Q 5(a)6	Q 1(5)1	Q 1(16)1 Q 1(8)1		Q 4(a)6	Q1(6)1 Q 4(c)4	Q 1(12)1	Q 3(a)6 Q1(13)1 Q 1(14)1	34	29.3%
Understanding based		Q 2(iv)3 Q 2(iii)3	Q 1(4)1 Q 2(v)3	Q 2(xii)3 Q2(xiii)3	Q 1(15)1 Q 2(vii)3 Q 2(viii)3	Q 1(9)1 Q 1(11)1 Q5(b)4	Q 2(xi)3 Q 4(b)3 Q 1(7)1	Q1(17)1 Q 2(xiv)3 Q 2(xx)3	Q2(xv)3 Q2(xvii)3 Q 3(c)3 Q 2(xvi)3	Q 2(xix)3 Q 3(b)4	62	53.4%
Application based	Q1(1)1 Q2(ii)3		Q 2(vi)3		Q 2(ix)3 Q 2(x)3	Q2(xviii)3 Q5(c)3	Q 1(10)1				20	17.2%
Total marks	4	9	15	7	15	12	14	12	13	15	116	100%

KEY:

1(1)(01) Question No (Part No.) (Allocated Marks)