Problem 1d: Solution to Kinematics Problem

The solution provided in the original sample solutions is only approximate. You can still use the graph to solve this exercise but here I provide a solution based on the equations of constant acceleration motion.

Given:

- Initial position $x_0 = -10 \text{ m}$
- Initial velocity $v_0 = 8 \text{ m/s}$
- Final velocity at t = 8 s is v = -6 m/s
- Motion has constant acceleration

Step 1: Find acceleration

Using the velocity equation for constant acceleration:

$$v = v_0 + at$$

$$-6 = 8 + a(8)$$

$$-14 = 8a$$

$$a = -1.75 \text{ m/s}^2$$

Step 2: Find time when velocity is zero

This will help us calculate total distance:

$$0 = v_0 + at$$

 $0 = 8 + (-1.75)t$
 $t = 4.57 \text{ s}$

Step 3: Find position at t = 4.57 s

Using the position equation:

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$x = -10 + 8(4.57) + \frac{1}{2}(-1.75)(4.57)^2$$

$$x = -10 + 36.56 - 18.27$$

$$x = 8.29 \text{ m}$$

Step 4: Find position at t = 8 s

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$x = -10 + 8(8) + \frac{1}{2}(-1.75)(8)^2$$

$$x = -10 + 64 - 56$$

$$x = -2 \text{ m}$$

Step 5: Calculate displacement (s)

$$s=x_{
m final}-x_{
m initial}$$
 $s=-2-(-10)$ $s=8~{
m m}$ to the right

Step 6: Calculate total distance (d)

The particle moves:

- From x = -10 m to x = 8.29 m: |18.29| meters
- From x = 8.29 m to x = -2 m: |10.29| meters

Total distance:

$$d = |18.29| + |10.29|$$

$$d = 28.58 \text{ m}$$

Final Values at t = 8 s

- Total distance (d) = 28.58 m
- Displacement (s) = 8 m to the right
- Position (x) = -2 m
- Velocity (v) = -6 m/s
- Acceleration (a) = -1.75 m/s^2

Question 2(a): Physics Energy Conservation Problem

The problem here was at the last part of the question (iv) which did not consider the friction.

Given Information:

- Mass m = 10 kg
- Initial height $h=2.0~\mathrm{m}$
- Incline angle $\theta = 30$
- Spring constant k = 500 N/m
- Maximum spring compression x = 0.75 m
- Horizontal surface is frictionless

(i) Speed at bottom of incline (V_1)

From spring maximum compression:

Spring potential energy =
$$\frac{1}{2}kx^2$$

= $\frac{1}{2} \times 500 \times (0.75)^2$
= 140.63 J

This equals kinetic energy at bottom:

$$\frac{1}{2}mV_1^2 = 140.63$$

$$V_1 = \sqrt{\frac{2 \times 140.63}{10}}$$
= 5.30 m/s

(ii) Work of friction

Initial gravitational potential energy:

$$E_h = mgh$$

$$= 10 \times 9.8 \times 2$$

$$= 196 J$$

Work of friction:

$$E_f = E_h - E_k$$

= 196 - 140.63
= 55.37 J

(iii) Speed when returning to base

Since horizontal surface is frictionless, spring energy is conserved:

$$V_2 = V_1 = 5.30 \text{ m/s}$$

(iv) Distance up incline

Calculate frictional force f:

$$f = \frac{E_f}{h/\sin(30)}$$

$$= \frac{55.37}{2/\sin(30)}$$

$$= \frac{55.37}{4}$$
= 13.84 N

Using energy conservation for upward motion:

$$mgd\sin(30) + fd = 140.63$$

$$10 \times 9.8 \times d \times 0.5 + 13.84d = 140.63$$

$$49d + 13.84d = 140.63$$

$$62.84d = 140.63$$

$$d = 2.24 \text{ m}$$

Question3: RC Circuit Analysis

The problem here was at (iii) and (iv) please check.

Problem

A 500 Ω resistor, an uncharged 1.50 μF capacitor, and a 6.16 V emf are connected in series.

Solutions

(i) Initial current [2 marks]

$$I = \frac{V}{R}$$
= $\frac{6.16 \text{ V}}{500 \Omega}$
= $0.012 32 \text{ A}$
= 12.32 mA

(ii) RC time constant [2 marks]

$$\begin{split} \tau &= RC \\ &= 500 \,\Omega \times 1.50 \, \text{pF} \\ &= 500 \times (1.50 \times 10^{-6}) \\ &= 750 \, \text{ps} \end{split}$$

(iii) Current after one time constant [4 marks]

$$I(\tau) = I_0 e^{-1}$$
= 0.012 32 A × e^{-1}
= 0.012 32 A × 0.368
= 0.004 54 A
= 4.54 mA

(iv) Voltage on capacitor after one time constant [3 marks]

$$V = V_0(1 - e^{-t/\tau})$$
= 6.16 V(1 - e⁻¹)
= 6.16 V(1 - 0.368)
= 6.16 V × 0.632
= 3.89 V

Question 5b

h= 4/3

n, sin 0: = N2 SIN Or

When viewing from ab

Oi , Or = small

Sind o tan o

Sind; ~ tand; = 3

sindr= tanor= 3

Hence 1. = 4 3

$$\Rightarrow$$
 31 = 4a

Problem 6(a)

The problem here was that there was no reason to add the radius to the distance - given that the distance is from the centre of the sphere.

A hollow metal sphere with a diameter of 10 cm has a net charge of 4 μ C distributed uniformly across its surface. What is the magnitude of the field a distance 2.0 m from the center of the sphere? [4 marks]

For a point charge Q, electric field
$$E=k\frac{Q}{r^2}$$
 where $k=9\times 10^9~{\rm N\cdot m^2/C^2}$ Given:

$$Q = 4 \ \mu \text{C} = 4 \times 10^{-6} \ \text{C}$$

$$r = 2.0 \text{ m}$$

$$E = \frac{(9 \times 10^9)(4 \times 10^{-6})}{(2.0)^2}$$
$$= \frac{36 \times 10^3}{4}$$
$$= 9,000 \text{ N/C}$$