TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI KHOA CƠ KHÍ BỘ MÔN CƠ KHÍ Ô TÔ

BÀI TẬP LỚN LÝ THUYẾT Ô TÔ

Tên đề tài: Tính toán sức kéo ô tô

Loại ô tô: Xe khách

Tải trọng/Số chỗ ngồi: 16

Vận tốc chuyển động cực đại: 260 Km/h

Hệ số cản tổng cộng của đường lớn nhất: Ψmax = 0.45

Xe tham khảo: Ford Transit, 4x2

Sinh viên: MSV:

Lớp: Khóa:

Hệ: Chính quy.

GV hướng dẫn: Vũ Văn Tấn, Đào Mạnh Hùng

Hà Nội 2020

Muc luc

Mục lục

Lời Nói Đầu

CHƯƠNG 1: THIẾT KẾ TUYẾN HÌNH Ô TÔ

- 1.1.Xác định các kích thước cơ bản của xe.
- 1.2.Các thông số thiết kế, thông số chọn và tính chọn:
- 1.3.Xác định trọng lượng và phân bố trọng lượng lên ô tô.

CHƯƠNG 2: TÍNH TOÁN SỰC KÉO

- 2.1 Xây dựng đường đặc tính tốc độ ngoài của động cơ
- 2.2 Xác định tỷ số truyền của hệ thống truyền lực
- 2.2.1. Tỷ số truyền của truyền lực chính.
- 2.2.2, Tỷ số truyền của hộp số.
- 2.3.Xây dựng đồ thị.
- 2.3.1.Phương trình cân bằng lực kéo và đồ thị cân bằng lực kéo của ôtô.
- 2.3.2.Phương trình cân bằng công suất và đồ thị cân bằng công suất của ôtô
- 2.3.3.Đồ thị nhân tố động lực học.
- 2.3.4.Xác định khả năng tăng tốc của ôtô xây dựng đồ thị gia tốc
- 2.3.5.Xây dựng đồ thị thời gian tăng tốc quãng đường tăng tốc
- 2.3.5.1. Xây dựng đồ thị gia tốc ngược
- 2.3.5.2.Cách tính thời gian tăng tốc quãng đường tăng tốc của ôtô

- 2.3.5.3. Lập bảng tính giá trị thời gian tăng tốc quãng đường tăng tốc của ôtô
- 2.3.5.4. Vẽ đồ thị thời gian tăng tốc và quãng đường tăng tốc.

KÉT LUẬN

Lời Nói Đầu

Lý thuyết ôtô là một trong những môn cơ sở then chốt của chuyên ngành cơ khí ôtô có liên quan đến các tính chất khai thác để đảm bảo tính an toàn, ổn định và hiệu quả trong quá trình sử dụng. Các tính chất bao gồm: động lực học kéo, tính kinh tế nhiên liệu, động lực học phanh, tính ổn định, cơ động, êm dịu...

Bài Tập lớn môn học Lý thuyết ôtô là một phần của môn học, với việc vận dụng những kiến thức đã học về các chỉ tiêu đánh giá khả năng kéo của ôtô để vận dụng để tính toán sức kéo và động lực học kéo, xác định các thông số cơ bản của động cơ hay hệ thống truyền lực của một loại ôtô cụ thể. Qua đó, biết được một số thông số kỹ thuật, trạng thái, tính năng cũng như khả năng làm việc ôtô khi kéo, từ đó hiểu được nội dung, ý nghĩa của bài tập và góp phần vào việc củng cố nâng cao kiến thức phục vụ cho các môn học tiếp theo và bổ sung thêm vào vốn kiến thức phục vụ cho công việc sau này.

Nội dung bài tập lớn gồm 2 chương :

- **CHƯƠNG 1** : THIẾT KẾ TUYẾN HÌNH Ô TÔ
- CHƯƠNG 2 : TÍNH TOÁN SỰC KÉO Ô TÔ

Nội dung bài tập lớn được hoàn thành dưới sự hướng dẫn của thầy Đào Mạnh Hùng, Vũ Văn Tấn. Bộ môn cơ khí ôtô – Đại học Giao Thông Vận Tải.

Sinh viên thực hiện

CHƯƠNG 1: THIẾT KẾ TUYẾN HÌNH Ô TỐ

1.1.Xác định các kích thước cơ bản của xe.

Ba hình chiếu của xe Ford Transit.

Các kích thước cơ bản:

STT	Thông số	Ký hiệu	Kích thước	Đơn vị
1	Chiều dài toàn bộ	L_0	5780	mm
2	Chiều rộng toàn bộ	B ₀	2000	mm
3	Chiều cao toàn bộ	H ₀	2360	mm
4	Chiều dài cơ sở	L	3750	mm
5	Vết bánh trước	B ₁	1740	mm
6	Vết bánh sau	B_2	1704	mm
7	Khoảng sáng gầm xe	H₁	160	mm

8	Góc thoát trước	Υ ₁	21	Độ
9	Góc thoát sau	Y ₂	19	Độ
10	Vận tốc tối đa	V_{max}	260	km/h

1.2.Các thông số thiết kế, thông số chọn và tính chọn:

- a) Thông số theo thiết kế phác thảo:
 - Loại động cơ: Động cơ : Động cơ Turbo Diesel 2.4L TDCi, trục cam kép có làm mát khí nạp.
 - Dung tích công tác: $V_c = 2402$ (cc)
 - $n_N = 3200 \left(\frac{v \circ ng}{ph \acute{u}t} \right)$
 - Vận tốc lớn nhất: $V_{max} = 260 \text{ (km/h)} = 72.222 \text{ (m/s)}$
 - Hệ thống truyền lực:
 - + Động cơ đặt trước, cầu sau chủ động
 - + Hộp số tự động 6 cấp.

b) Thông số chọn

- Trọng lượng bản thân: 2455 kg
- Trọng lượng hành khách: 60 kg/người
- Trọng lượng hành lý: 20 kg/người
- Hiệu suất truyền lực: $\eta_{tl} = 0.92$
- Hệ số cản không khí: K=0.2
- Hệ số cản lăn: $f_0 = 0.016$ (Khi V<22.22 m/s)
- Độ nghiêng mặt đường bằng 0 độ

c) Thông số tính chọn

- Hệ số cản mặt đường ứng với $V_{\it max}$:

$$f = f_o * (1 + \frac{V_{max}^2}{1500}) \implies f = 0.016 * (1 + \frac{72.222^2}{1500}) = 0.07164$$

- Thông số bánh xe

Lốp xe có ký hiệu: 215/75R16

(Bề rộng mặt lốp: 215mm, tỉ lệ H/B = 0.75, bán kính: 16 in)

- ⇒ Chiều cao lốp: H = 0.75*215 = 161.25 (mm)
- \Rightarrow Bán kính thiết kế của xe: $r_o = 161.25 + \frac{16*25.4}{2} = 364.45$ (mm)
- ⇒ Bán kính động học và bán kính động lực học của bánh xe:
 - + $r_b=r_k=\lambda*r_o$ (chọn hệ số biến dạng lốp $\lambda=0.94$) \to $r_b=r_k=0.94*364.45=342.583$ (mm)
- Diện tích cản chính diện

F=0.78 *
$$B_o$$
 * H_o = 0.78*2000*2360=3681600 (mm^2)= 3.682 (m^2)

- Công thức bánh xe 4x2

1.3.Xác định trọng lượng và phân bố trọng lượng lên ô tô.

- + Xe Ford Transit có 16 chỗ.
 - Trọng lượng không tải: $G_o = 2455 \text{ kg}$
 - Trọng lượng hành khách: 60 kg
 - Trọng lượng hành lý: 20 kg
- \Rightarrow Trọng lượng G = 2455 + 16*(60+20) = 3735 kg = 36640.35 N
- + Phân bố tải trọng (Chọn tải trọng cầu trước chiếm 55% tổng tải trọng)
 - $Z_1 = 0.55*36640.35 = 20152.193 N$ (cầu trước)
 - $Z_2 = (1-0.55)*36640.35 = 16488.158 N (cầu sau)$

CHƯƠNG 2: TÍNH TOÁN SỰC KÉO

2.1 Xây dựng đường đặc tính tốc độ ngoài của động cơ

Các đường đặc tính tốc độ ngoài của động cơ là những đường cong biểu diễn sự phụ thuộc của các đại lượng công suất, mômen và suất tiêu hao nhiên liệu của động cơ theo số vòng quay của trục khuỷu động cơ. Các đường đặc tính này gồm:

- + Đường công suất: N_e = f(n_e)
- + Đường momen xoắn : $M_e = f(n_e)$

Công suất động cơ được xác định

$$N_e = N_{emax} * (a * \lambda + b * \lambda^2 - c * \lambda^3)$$

- + Trong đó
 - a,b,c: hệ số phù thuộc vào thuộc vào từng loại động cơ
 (Chọn a=0.5, b=1.5, c=1 Động cơ diesel 4 kỳ buồng cháy trực tiếp)
 - $\lambda = \frac{n_{emax}}{n_N}$: chọn $\lambda = 1$

Để tính công suất suất động cơ ta cần tính:

- + Công suất cần thiết của động cơ N_{ev}
- + Công suất cực đại của động cơ $N_{\it emax}$

Công suất cần thiết:

$$N_{ev} = \frac{1}{\eta_{tt}} * (G * \psi_v * V_{max} + K * F * V_{max}^3) [W]$$

- + Trong đó:
 - $\eta_{\it tl}$: hiệu suất truyền lực
 - G: tổng trọng lượng
 - ψ_{ν} : hệ số cản tổng cộng($\psi_{\nu} = f + i = f$ vì đang xét ô tô chuyển động trên đường không có độ dốc)

- K: hệ số cản không khí

- F: diện tích cản chính diện

$$\Rightarrow N_{ev} = \frac{1}{0.92} * (36640, 35 * 0, 07164 * 72, 222 + 0, 2 * 3, 682 * 72, 222^3) = 507, 594 \ KW$$

Công suất cực đại:

$$N_{emax} = \frac{N_{ev}}{a*\lambda + b*\lambda^2 - c*\lambda^3}$$

$$\Rightarrow N_{emax} = 507,594/(0.5 * 1 + 1.5 * 1^2 - 1 * 1^3) = 507,594 KW$$

Vậy:

+ Công suất được xác định:

$$N_e = 507,594 * (0.5 * \lambda + 1.5 * \lambda^2 - 1 * \lambda^3)$$
 (CT-1)

Ta có:

+ Tốc độ vòng quay:

$$n_e = \lambda * n_N = \lambda * 3200$$
 (CT-2)

+ Momen

$$M_e = 9550 * \frac{N_e}{n_e}$$
 (CT-3)

Từ CT-1, CT2, CT3 ta thiết lập được đồ thị đường đặc tính tốc độ ngoài của động cơ.

Kết quả tính được ghi bên dưới:

λ	N_e	n_e	M_e
0,1	32,486	320	969,504
0,2	77,154	640	1151,282
0,3	130,959	960	1302,769
0,4	190,855	1280	1423,957
0,5	253,797	1600	1514,851
0,6	316,739	1920	1575,447
0,7	376,635	2240	1605,743

0,8	430,44	2560	1605,743		
0,9	475,108	2880	1575,445		
1	507,594	3200	1514,851		

Từ bảng giá trị trên ta có biểu đồ sau:

Đồ thi đặc tính tốc đô ngoài của đông cơ

+ Nhận xét:

- Giá trị $M_{\it emax}$ được xác định theo công thức Laydecman như sau :

$$\mathsf{M}_{\mathsf{e}} = \frac{N_e}{\omega_e} = \frac{N_{emax}}{\omega_N} \left[a + b * \frac{\omega_e}{\omega_N} - c * \left(\frac{\omega_e}{\omega_N} \right)^2 \right]$$

Đạo hàm 2 vế ta được:
$$0 = \frac{N_e}{\omega_e} = \frac{N_{emax}}{\omega_N} \left[b - 2 * c * \left(\frac{\omega_e}{\omega_N} \right) \right]$$

$$\Rightarrow b-2*c*\left(\frac{\omega_e}{\omega_N}\right)=0$$

$$\Rightarrow \frac{\omega_e}{\omega_N} = \frac{b}{2c}$$

Vậy
$$M_{emax} = \frac{N_{emax}}{\omega_N} * \left[a + \frac{b^2}{2c} - c * \left(\frac{b}{2c} \right)^2 \right]$$

(với
$$\omega_N = n_N * 2 * 3.14/60 = 334,933 \ rad/s$$
)

$$\Rightarrow M_e = \frac{507,594}{334,933} * \left[0.5 + \frac{1.5^2}{2*1} - 1 * \left(\frac{1.5}{2*1}\right)^2\right]$$

Trị số công suất N_{emax} ở trên chỉ là phần công suất động cơ dùng để khắc phục các lực cản chuyển động. Để chọn động cơ đặt trên ô tô, cần tăng thêm phần công khắc phục các lực cản phụ, quạt gió, máy nén khí ...

Vì vật phải chọn công suất lớn nhất là:

$$N_{\rm emax} = 1.1*N_e = 1.1*507,594 = 558,353$$
 [KW]

2.2 Xác định tỷ số truyền của hệ thống truyền lực

+ Tỉ số truyền của hệ thống truyền lực:

$$i_{tl} = i_o * i_h * i_c * i_p$$

Trong đó:

- i_{tl} : tỷ số truyền của HTTL

- i_o: tỷ số truyền của truyền lực chính

- i_h : tỷ số truyền của hộp số

- ic: tỷ số truyền của truyền lực cuối cùng

- i_p : tỷ số truyền của hộp số phụ

2.2.1. Tỷ số truyền của truyền lực chính.

 Được xác định theo điều kiện đảm bảo ôtô chuyển động với vận tốc lớn nhất ở tay số cao nhất của hộp số.

$$I_o = \frac{2\Pi . r_b . n_{emax}}{60 . I_{hn} . I_{pc} . V_{max}}$$

+ Trong đó:

- r_b : bán kính bánh xe

- n_{emax}: tốc độ quay max

- I_{hn} : tỷ số truyền tại tay số lớn nhất(chọn =1)

- I_{pc} : tỷ số truyền tại hộp số phụ (chọn=1)
- V_{max} :vận tốc lớn nhất

$$\Rightarrow I_o = \frac{2\Pi * 342,583 * 3200}{60 * 1 * 1 * 72.222 * 1000} = 1,589$$

2.2.2. Tỷ số truyền của từng tay số.

- a) Tỷ số truyền của tay số 1.
 - Tỷ số truyền của tay số 1 được xác định trên cơ sở đảm bảo khắc phục được lực cản lớn nhất của mặt đường mà bánh xe chủ động không bị trượt quay trong mọi điều kiện chuyển động.
 - Theo điều kiện chuyển động, ta có:

$$P_k \ge P_{\Psi} + P_{W}$$

- + Trong đó:
 - P_k: lực kéo phát động
 - P_{ψ} : lực cản tổng cộng của mặt đường
 - P_w : lực cản của không khí (Vì xe đi số nhỏ nên coi P_w =0)

$$\Rightarrow P_k \ge P_{\Psi}$$

$$\Leftrightarrow \frac{M_{emax}.I_{h1}.I_{o}.I_{pc}.\eta_{tl}}{r_{h}} \geq \psi_{max}.G$$

$$\Rightarrow I_{h1} \geq \frac{\psi_{max}.G.r_b}{M_{emax}.I_o.I_{pc}.\eta_{tl}}$$

(vì xét chuyển động có độ dốc đường bằng 0 nên $\psi_{max} = f$)

$$\Rightarrow I_{h1} \geq \frac{0.07164*36640,35*342,583}{1610,228*1,589*1*0.92*1000} \text{ =0,382 (KQ-1)}$$

- Theo điều kiện bám đường:

$$P_{\varphi} \geq P_k$$

$$\Rightarrow \frac{M_{emax}.I_{h1}.I_{o}.I_{pc}.\eta_{tl}}{r_{h}} \leq m.G_{\varphi}.\varphi$$

+ Trong đó

- m: hệ số phân bố tải trọng (chọn m=1.1)

- G_{\odot} : tải trọng tác dụng lên cầu chủ động

- ϕ : hệ số bám của bánh xe với mặt đường (chọn ϕ =0.9)

$$\Rightarrow I_{h1} \leq \frac{m.G_{\emptyset}.\phi.r_b}{M_{emax}.I_o.I_{pc}.\eta_{tl}}$$

$$\Rightarrow I_{h1} \leq \frac{1,1*16488,158*0,9*342,583}{1610,228*1,589*1*0,9*1000} \text{ = 2,376 (KQ-2)}$$

- Từ KQ-1, KQ-2 $\Rightarrow 0,382 \le I_{h1} \le 2,376$
- Chọn tỷ số truyền tay số 1: $I_{h1} = 2,27$
- b) Tỷ số truyền tại các tay số trung gian
 - Chọn hệ thống tỷ số truyền của các cấp số trong hộp số theo 'cấp số nhân'
 - Công bội được xác định theo biểu thức:

$$q = \sqrt[n-1]{\frac{I_{h1}}{I_{hn}}}$$

+ Trong đó

- n: cấp hộp số (n=6)

- I_{h1} : tỷ số truyền tay số 1

- I_{hn} : tỷ số truyền tay số lớn nhất (I_{hn} =1)

$$\Rightarrow q = \sqrt[6-1]{\frac{2,27}{1}} = 1,178$$

 Tỷ số truyền của tay số thứ i trong hộp số được xác định theo công thức sau:

$$I_{hi} = \frac{I_{h1}}{q^{i-1}}$$

- Chú ý: đối với tỷ số truyền tại số lùi phải thỏa mãn điều kiện bám, trong bài toán này chọn tỷ số tại số lùi bằng tỷ số truyền tay số 1 $\Rightarrow I_{hl} = I_{h1} = 2,27$

+ Bảng tỷ số truyền tại các tay số

Số 1	Số 2	Số 3	Số 4	Số 5	Số 6	Số lùi
2,27	1,927	1,636	1,389	1,179	1,00	2,27

2.3 Xây dựng đồ thị

2.3.1. Phương trình cân bằng lực kéo và đồ thị cân bằng lực kéo.

- Phương trình cân bằng lực kéo của ôtô:

$$P_k = P_f + P_i + P_j + P_w$$

- Trong đó

+ P_k : lực phát động $P_k = \frac{M_e I_{hn} I_o I_{pc}.\eta_{tl}}{r_b}$

+ P_f : Lực cản lăn $P_f = G.f$

+ P_i : Lực cản nghiêng mặt đường=0

+ P_w : Lực cản không khí $P_w = K.F.V^2$

- Vận tốc: $V_n=rac{2\Pi.r_b.n_e}{60.I_o.I_{hn}.I_{pc}}$

- Bảng giá trị lực kéo tại các tay số

Tốc độ	Momen		Tay số 1 Tay số		y số 2	ố 2 Tay số 3		Tay số 4		Tay số 5		Tay số 6	
quay ne	Me	V1	Pk1	V2	Pk2	V3	Pk3	V4	Pk4	V5	Pk5	V6	Pk6
320	969,504	3,181	9391,206	3,747	7972,183	4,414	6768,288	5,199	5746,425	6,125	4877,635	7,214	4141,232
640	1151,282	6,362	11152,019	7,495	9466,934	8,828	8037,314	10,397	6823,856	12,249	5792,172	14,428	4917,696
960	1302,769	9,543	12619,414	11,242	10712,604	13,242	9094,873	15,596	7721,747	18,374	6554,312	21,642	5564,772

1280	1423,957	12,724	13793,315	14,989	11709,127	17,655	9940,909	20,795	8440,05	24,499	7164,017	28,855	6082,426
1600	1514,851	15,905	14673,769	18,737	12456,544	22,069	10575,457	25,994	8978,795	30,624	7621,31	36,069	6470,68
1920	1575,447	19,086	15260,739	22,484	12954,821	26,483	10998,489	31,192	9337,959	36,748	7926,172	43,283	6729,515
2240	1605,743	22,268	15554,205	26,231	13203,944	30,897	11209,991	36,391	9517,529	42,873	8078,594	50,497	6858,925
2560	1605,743	25,449	15554,205	29,978	13203,944	35,311	11209,991	41,59	9517,529	48,998	8078,594	57,711	6858,925
2880	1575,445	28,63	15260,72	33,726	12954,805	39,725	10998,475	46,789	9337,947	55,123	7926,162	64,925	6729,507
3200	1514,851	31,811	14673,769	37,473	12456,544	44,138	10575,457	51,987	8978,795	61,247	7621,31	72,138	6470,68

- Phương trình lực cản

$$P_c = P_f + P_w$$

$$\Rightarrow Pc = f.G + K.F.V^2$$

- + chú ý:
 - Nếu vận tốc xét <22,22m/s thì $f = f_o$ (chọn $f_o = 0,016\,$)
 - Nếu vận tốc xét >22,22m/s thì $f = f_o.(1 + \frac{V^2}{1500})$
- Lực bám đường:

$$P_{\varphi} = m.G_{\varphi}.\varphi$$

(chọn m=1,1 và
$$\phi = 0,9$$
)

- Bảng giá trị lực cản, lực bám đường

Vận tốc	Lực bám	Lực cản		
0	16323,276	586,246		
10	16323,276	659,886		
20	16323,276	880,806		
30	16323,276	1600,753		
40	16323,276	2389,814		
50	16323,276	3404,322		
60	16323,276	4644,275		
70	16323,276	6109,675		
80	16323,276	7800,52		

Ta có đồ thị cân bằng lực kéo

DO THI CAN BANG LUC KEO OTO

+ Nhân xét:

- Trục tung biểu diễn P_k , P_f , P_w . Trục hoành biểu diễn v (m/s)
- Dạng đồ thị lực kéo của ôtô P_{ki} = f(v) tương tự dạng đường cong M_e = f(n_e) của đường đặc tính tốc độ ngoài của động cơ.
- Khoảng giới hạn giữa các đường cong kéo P_{ki} và đường cong tổng lực cản là lực kéo dư (P_{kd}) dùng để tăng tốc hoặc leo dốc.
- Tổng lực kéo của ôtô phải nhỏ hơn lực bám giữa bánh xe và mặt đường:
- Vận tốc lớn nhất là giao điểm của lực cản và lực ở tay số lớn nhất

2.3.2. Phương trình cân bằng công suất và đồ thị cân bằng công suất.

- Phương trình cân bằng công suất tại bánh xe chủ động:

$$N_k = N_f + N_i + N_j + N_W$$

 Công suất truyền đến các bánh xe chủ động khi kéo ở tay số thứ I được xác định theo công thức:

$$N_{kn} = N_e.\eta_{tl}$$

Công suất cản được xác định theo công thức sau:

$$N_c = N_f + N_w = G.f.V + K.F.V^3$$

(Chú ý giá trị cản lăn theo vận tốc chuyển động)

- Bảng giá trị công suất ứng với từng vận tốc tại các tay số

Công	Tay số 1		Tay	Tay số 2		Tay số 3		Tay số 4		Tay số 5		Tay số 6	
suất Ne	Vận tốc	Nk1	Vận tốc	Nk2	Vận tốc	Nk3	Vận tốc	Nk4	Vận tốc	Nk5	Vận tốc	Nk6	
32,486	3,181	29,887	3,747	29,887	4,414	29,887	5,199	29,887	6,125	29,887	7,214	29,887	
77,154	6,362	70,982	7,495	70,982	8,828	70,982	10,397	70,982	12,249	70,982	14,428	70,982	
130,959	9,543	120,482	11,242	120,482	13,242	120,482	15,596	120,482	18,374	120,482	21,642	120,482	
190,855	12,724	175,587	14,989	175,587	17,655	175,587	20,795	175,587	24,499	175,587	28,855	175,587	
253,797	15,905	233,493	18,737	233,493	22,069	233,493	25,994	233,493	30,624	233,493	36,069	233,493	
316,739	19,086	291,4	22,484	291,4	26,483	291,4	31,192	291,4	36,748	291,4	43,283	291,4	
376,635	22,268	346,504	26,231	346,504	30,897	346,504	36,391	346,504	42,873	346,504	50,497	346,504	
430,44	25,449	396,005	29,978	396,005	35,311	396,005	41,59	396,005	48,998	396,005	57,711	396,005	
475,108	28,63	437,099	33,726	437,099	39,725	437,099	46,789	437,099	55,123	437,099	64,925	437,099	
507,594	31,811	466,986	37,473	466,986	44,138	466,986	51,987	466,986	61,247	466,986	72,138	466,986	

- Bảng giá trị công suất cản:

Vận tốc	Công suất cản chuyển động
0	0
10	6,599
20	17,616
30	48,023
40	95,593
50	170,216
60	278,657
70	427,677
80	624,042

- Biểu đồ cân bằng công suất:

- + Nhận xét:
 - Giá trị giao nhau của công suất tại tay số lớn nhất với công suất cản là vận tốc lớn nhất

2.3.3. Nhân tố động lực học.

 Nhân tố động lực học là tỷ số giữa hiệu số của lực kéo tiếp tuyến P_k và lực cản không khí P_w với trọng lượng toàn bộ của ôtô. Tỷ số này được ký hiệu là "D"

$$D = \frac{P_k - P_w}{G}$$

- Xây dựng biểu đồ
 - + Nhân tố động lực học ứng với từng tay số được xác định:

$$D_n = \frac{P_k - P_w}{G} = \left(\frac{M_e I_{hn} I_o I_{pc} \cdot \eta_{tl}}{G \cdot r_b} - \frac{K \cdot F \cdot V^2}{G}\right)$$

 Nhân tố động lực học theo điều kiện bám của bánh xe với mặt đường:

$$D_{\varphi} = \frac{P_{\varphi} - P_{w}}{G} = \left(\frac{m \cdot \varphi \cdot G_{\varphi}}{G} - \frac{K \cdot F \cdot V^{2}}{G}\right)$$

+ Để bảo đảm chuyển động thì

$$D_{\varphi} \geq D_n \geq \Psi$$

- Bảng giá trị nhân tố động lực học ứng với từ vận tốc trong các tay số

Tay s	ố 1	Tay số 2		Tay số 3		Tay số 4		Tay số 5		Tay số 6	
Vận tốc	D1	Vận tốc	D2	Vận tốc	D3	Vận tốc	D4	Vận tốc	D5	Vận tốc	D6
3,181	0,256	3,747	0,217	4,414	0,184	5,199	0,156	6,125	0,132	7,214	0,112
6,362	0,304	7,495	0,257	8,828	0,218	10,397	0,184	12,249	0,155	14,428	0,13
9,543	0,343	11,242	0,29	13,242	0,245	15,596	0,206	18,374	0,172	21,642	0,142
12,724	0,373	14,989	0,315	17,655	0,265	20,795	0,222	24,499	0,183	28,855	0,149
15,905	0,395	18,737	0,333	22,069	0,279	25,994	0,231	30,624	0,189	36,069	0,15
19,086	0,409	22,484	0,343	26,483	0,286	31,192	0,235	36,748	0,189	43,283	0,146
22,268	0,415	26,231	0,347	30,897	0,287	36,391	0,233	42,873	0,184	50,497	0,136
25,449	0,411	29,978	0,342	35,311	0,281	41,59	0,225	48,998	0,172	57,711	0,12
28,63	0,4	33,726	0,331	39,725	0,268	46,789	0,211	55,123	0,155	64,925	0,099
31,811	0,38	37,473	0,312	44,138	0,249	51,987	0,191	61,247	0,133	72,138	0,072

- Bảng giá trị nhân tố động lực học theo điều kiện cản

Vận tốc	Nhân tố động lực học ĐK bám	Lực cản tổng cộng
0	0,446	0,016
10	0,443	0,016
20	0,437	0,016
30	0,427	0,026
40	0,413	0,033
50	0,395	0,043
60	0,373	0,054
70	0,347	0,068
80	0,317	0,084

- Đồ thị nhân tố động lực học

DO THI NHAN TO DONG LUC HOC OTO

+ Nhân xét:

- Dạng của đồ thị nhân tố động lực học D = f(v) tương tự như dạng đồ thị lực kéo P_k = f(v); nhưng ở những vận tốc lớn thì đường cong dốc hơn.
- Khi chuyển động ở vùng tốc độ v > v_{th i} (tốc độ v_{th i} ứng với D_{i max} ở từng tay số) thì ôtô chuyển động ổn định, vì trong trường hợp này thì sức cản chuyển động tăng, tốc độ ôtô giảm và nhân tố động lực học D tăng. Ngược lại, vùng tốc độ v < v_{th i} là vùng làm việc không ổn định ở từng tay số của ôtô.
- Giá trị nhân tố động lực học cực đại D_{1 max} ở tay số thấp nhất biểu thị khả năng khắc phục sức cản chuyển động lớn nhất của đường: D_{1 max} = ψ_{max}
- + Vùng chuyển động không trượt của ôtô:
 - Cũng tương tự như lực kéo, nhân tố động lực học cũng bị giới
 hạn bởi điều kiện bám của các bánh xe chủ động với mặt đường.
 - Nhân tố động học theo điều kiện bám D_ϕ được xác định theo công thức bên trên
 - Để ôtô chuyển động không bị trượt quay thì nhân tố động lực học D phải thoả mãn điều kiện sau : $\Psi \leq D \leq \mathit{D}_{\phi}$
 - Vùng giới hạn giữa đường cong D_ϕ và đường cong Ψ trên đồ thị nhân tố động lực học là vùng thỏa mãn điều kiện trên. Khi $D > D_\phi$

trong giới hạn nhất định có thể dùng đường đặc tính cục bộ của động cơ để chống trượt quay nếu điều kiện khai thác thực tế xảy ra.

2.3.4.Xác định khả năng tăng tốc - xây dựng biểu đồ gia tốc chuyển động .

Từ công thức nhân tố động lực học

$$D = \psi + \frac{\delta_i}{g}.J$$

+ Với:

- Ψ : hệ số cản tổng cộng - δ_i : hệ số tính đến chuyển động quay $\delta_i = 1,05+0,05.I_h^2$

$$\Rightarrow J = (D - f) \cdot \frac{g}{\delta_i}$$

Ta có bảng giá trị hệ số tính đến chuyển động xoay

	Tay số 1	Tay số 2	Tay số 3	Tay số 4	Tay số 5	Tay số 6
δ_i	1,308	1,236	1,184	1,146	1,12	1,1

Bảng giá trị gia tốc với từng vận tốc tại các tay số

Tay s	Tay số 1 Tay số 2		Tay số 3		Tay số 4		Tay số 5		Tay số 6		
V1	J1	V2	J2	V3	J3	V4	J4	V5	J5	V6	J6
3,181	1,8	3,747	1,595	4,414	1,392	5,199	1,198	6,125	1,016	7,214	0,856
6,362	2,16	7,495	1,913	8,828	1,674	10,397	1,438	12,249	1,217	14,428	1,017
9,543	2,453	11,242	2,175	13,242	1,897	15,596	1,626	18,374	1,366	21,642	1,124
12,724	2,678	14,989	2,373	17,655	2,063	20,795	1,763	24,499	1,407	28,855	1,107
15,905	2,843	18,737	2,516	22,069	2,179	25,994	1,779	30,624	1,428	36,069	1,071
19,086	2,948	22,484	2,537	26,483	2,175	31,192	1,786	36,748	1,389	43,283	0,981
22,268	2,953	26,231	2,569	30,897	2,161	36,391	1,737	42,873	1,3	50,497	0,828
25,449	2,911	29,978	2,511	35,311	2,085	41,59	1,631	48,998	1,142	57,711	0,611
28,63	2,814	33,726	2,404	39,725	1,948	46,789	1,469	55,123	0,934	64,925	0,339
31,811	2,649	37,473	2,23	44,138	1,758	51,987	1,251	61,247	0,674	72,138	0,004 ~ 0

Biểu đồ gia tốc chuyển động của xe.

Nhận xét

- + Gia tốc cực đại của ôtô lớn nhất ở tay số một và giảm dần đến tay số cuối cùng.
- + Tốc độ nhỏ nhất của ôtô v_{min} = 3,181 (m/s) tương ứng với số vòng quay ổn định nhỏ nhất của động cơ n_{min} = 320 (vòng/phút).
- + Trong khoảng vận tốc từ 0 đến v_{min} ôtô bắt đầu khởi hành, khi đó, ly hợp trượt và bướm ga mở dần dần.
- + \mathring{O} tốc độ v_{max} = 72,222 (m/s) thì j_v = 0, lúc đó xe không còn khả năng tăng tốc.

2.3.5.Xác định thời gian tăng tốc - quãng đường tăng tốc

2.3.5.1. Xây dựng đồ thị gia tốc ngược

- Ta có bảng giá trị gia tốc ngược

Tay số 1 Tay số		số 2	Tay số 3		Tay số 4		Tay số 5		Tay số 6		
V1	1/J1	V2	1/J2	V3	1/J3	V4	1/J4	V5	1/J5	V6	1/J6
3,181	0,556	3,747	0,627	4,414	0,718	5,199	0,835	6,125	0,984	7,214	1,168
6,362	0,463	7,495	0,523	8,828	0,597	10,397	0,695	12,249	0,822	14,428	0,983
9,543	0,408	11,242	0,46	13,242	0,527	15,596	0,615	18,374	0,732	21,642	0,89
12,724	0,373	14,989	0,421	17,655	0,485	20,795	0,567	24,499	0,711	28,855	0,903
15,905	0,352	18,737	0,397	22,069	0,459	25,994	0,562	30,624	0,7	36,069	0,934
19,086	0,339	22,484	0,394	26,483	0,46	31,192	0,56	36,748	0,72	43,283	1,019
22,268	0,339	26,231	0,389	30,897	0,463	36,391	0,576	42,873	0,769	50,497	1,208

25,449	0,344	29,978	0,398	35,311	0,48	41,59	0,613	48,998	0,876	57,711	1,637
28,63	0,355	33,726	0,416	39,725	0,513	46,789	0,681	55,123	1,071	64,925	2,95
31,811	0,378	37,473	0,448	44,138	0,569	51,987	0,799	61,247	1,484	72,138	XXX

- Biểu đồ gia tốc ngược

DO THI GIA TOC NGUOC

2.3.5.2.Cách tính thời gian tăng tốc – quãng đường tăng tốc của ôtô

- a) Thời gian tăng tốc
- Từ công thức tính gia tốc:

$$J = \frac{dv}{dt}$$

$$\Rightarrow dt = J.dv$$

- Xét ô tô tăng tốc từ v1 đến v2 ta có công thức tính thời gian như sau:

$$t = \int_{v_1}^{v_2} \left(\frac{1}{J}\right) . dv$$

- Vậy:
$$\Delta t_i = \left(\frac{v2-v1}{2}\right) \cdot \left(\frac{1}{J_{i1}} + \frac{1}{J_{i2}}\right)$$

$$\Rightarrow$$
 Thời gian tăng tốc: t = $\Delta t_1 + \Delta t_2 + ... + \Delta t_i$

- b) Quãng đường tăng tốc
- Từ công thức tính vận tốc:

$$v = \frac{ds}{dt}$$

$$\Rightarrow ds = v.dt$$

- Xét quãng đường đi được của ô tô khi tăng tốc v1 đến v2:

$$S = \int_{v1}^{v2} v.dv$$

- Vây khoảng quãng đường tăng tốc là $\Delta S_i = \left(rac{{V_{i1}} + {V_{i2}}}{2}
 ight).\Delta t_i$
- Quãng đường tăng tốc được xác định:

$$S = \Delta S_1 + \Delta S_2 + \dots + \Delta S_n$$

2.3.5.3. Lập bảng tính giá trị thời gian tăng tốc – quãng đường tăng tốc của ôtô

- Khi có xét đến sự mất mát tốc độ và thời gian khi chuyển số.
 - + Sự mất mát về tốc độ khi chuyển số sẽ phụ thuộc vào trình độ người lái,
 - + Kết cấu của hộp số và loại động cơ đặt trên ôtô.
- Tính toán sự mất mát tốc độ trong thời gian chuyển số (giả thiết: người lái xe có trình độ thấp và thời gian chuyển số giữa các tay số là khác nhau):

$$\Delta v_c = \psi . g . \frac{t_c}{\delta_i}$$

- + Trong đó:
 - ψ : Hệ số cản tổng cộng (vì xe đi trên đường có độ dốc =0 nên ψ = f)
 - t_c : Thời gian chuyển số (chọn = 2,5 s)
 - δ_i : Hệ số tính đến chuyển động quay $(\delta_i = 1,05+0,05*I_{hn})$
- Quãng đường xe đi được trong quá trình chuyển số là:

$$\Delta S_c = v_i.t_c$$

+ Trong đó:

- v_i : Vận tốc max từng tay số

- t_c : Thời gian chuyển số (chọn=2,5s)

- Bảng giá trị độ giảm vận tốc, quãng đường đi được:

Chuyển số	Độ giảm vận tốc Δv_c	Quãng đường ΔS_c
Số 1 sang số 2	0,502	79,528
Số 2 sang số 3	0,615	93,683
Số 3 sang số 4	0,762	110,345
Số 4 sang số 5	0,959	129,968
Số 5 sang số 6	1,227	153,118

- Bảng giá trị:

$$\text{Dặt:}\quad (\frac{1}{J_{n+1}}+\frac{1}{J_n}).\frac{1}{2}=J_{tb}\;;\;\; v_{n+1}-v_n=\Delta v\;;\;\; (v_{n+1}+v_n)/2=V_{tb}$$

Vận tốc	1/J	ΔV	J_{tb}	ΔT	Thời gian tăng tốc	Vtb	ΔS	Quãng đường tăng tốc
0	0	3,181	0,278	0,884	0	1,591	1,406	0
3,181	0,556	3,181	0,51	1,622	0,884	4,772	7,74	1,406
6,362	0,463	3,181	0,436	1,387	2,506	7,953	11,031	9,146
9,543	0,408	3,181	0,391	1,244	3,893	11,134	13,851	20,177
12,724	0,373	3,181	0,363	1,155	5,137	14,315	16,534	34,028
15,905	0,352	3,181	0,346	1,101	6,292	17,496	19,263	50,562
19,086	0,339	3,181	0,339	1,078	7,393	20,677	22,29	69,825
22,268	0,339	3,182	0,342	1,088	8,471	23,859	25,959	92,115
25,449	0,344	3,181	0,35	1,113	9,559	27,04	30,096	118,074
28,63	0,355	3,181	0,367	1,167	10,672	30,221	35,268	148,17
31,811	0,378	XXX	xxx	xxx	11,839	XXX	XXX	183,438

31,309	0,378	2,417	0,397	0,96	14,339	32,518	31,217	262,966
33,726	0,416	3,747	0,432	1,619	15,299	35,6	57,636	294,183
37,473	0,448	XXX	xxx	xxx	16,918	XXX	xxx	351,819
36,858	0,448	2,867	0,481	1,379	19,418	38,292	52,805	445,502
39,725	0,513	4,413	0,541	2,387	20,797	41,932	100,092	498,307
44,138	0,569	XXX	xxx	xxx	23,184	XXX	xxx	598,399
43,376	0,569	3,413	0,625	2,133	25,684	45,083	96,162	708,744
46,789	0,681	5,198	0,74	3,847	27,817	49,388	189,996	804,906
51,987	0,799	xxx	xxx	xxx	31,664	XXX	xxx	994,902
51,028	0,799	4,095	0,935	3,829	34,164	53,076	203,228	1124,87
55,123	1,071	6,124	1,278	7,826	37,993	58,185	455,356	1328,098
61,247	1,484	XXX	xxx	xxx	45,819	XXX	xxx	1783,454
60,02	1,484	4,905	2,217	10,874	48,319	62,473	679,331	1936,572
64,925	2,95	3,606	26,725	96,37	59,193	66,728	6430,577	2615,903
68,531	50,5	XXX	XXX	xxx	155,563	XXX	xxx	9046,48

2.3.5.4. Vẽ đồ thị thời gian tăng tốc và quãng đường tăng tốc.

DO THI THOI GIAN, QUANG DUONG TANG TOC

KẾT LUẬN

Việc tính toán động lực học kéo của ôtô chỉ có ý nghĩa về mặt lý thuyết do tính tương đối của phép tính và sự lựa chọn các hệ số trong quá trình tính toán không chính xác so với thực tế. Trong thực tế, việc đánh giá chất lượng kéo của ôtô được thực hiện trên đường hoặc trên bệ thử chuyên dùng.