Cálculo Proposicional

LÓGICA

M. Lurdes Teixeira Dep. Matemática Univ. Minho

2º semestre de 2023/2024

M. Lurdes Teixeira Dep. Matemática Univ. Minho

- Conjuntos definidos indutivamente
- Princípio de Indução Estrutural
 Funções definidas recursivamente
- Cálculo Proposicional
- 2 Cálculo de Predicados de Primeira Ordem

Cálculo de Predicados de Primeira Ordem	
Cálculo Proposicional	
Indução estrutural ●ooóooooooo	onjuntos definidos indutivamente
Índice o	Conjuntos del

Definições

- Chamaremos affabeto a um conjunto de símbolos e letras aos seus elementos.
- Dado um alfabeto A, chamaremos palavra sobre A a uma sequência finita de letras: ε representa a palavra vazia e e₁ e₂ ··· en uma palavra de comprimento n ∈ N, para e₁, ··· , en ∈ A.

O conjunto de todas as palavras sobre A representa-se por A*.

- Um subconjunto de A* diz-se uma linguagem.
- Se u e v são palavras então uv é a sequência resultante da concatenação das sequências u e v.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Indução estrutural	Cálculo Proposicional	Cálculo de Predicados de Primeira Ordem
000000000000	00	00

Por definição indutiva de um conjunto / entende-se uma coleção de regras que permite descrever /, indicando um processo de construir os seus elementos. As regras podem ser de vários tipos:

- regras básicas, que indicam que certos objetos pertencem ao conjunto;
- regras indutivas, que permitem construir elementos de / a partir de outros elementos de / já conhecidos;
- regra de fecho, regra única em cada definição, que estabelece que os elementos de / são os construídos a partir da utilização das regras básicas e das indutivas um número finito de vezes.

```
regra básica \longrightarrow \underbrace{s \in I}_{\text{conclusão}} \underbrace{s \in I}_{\text{conclusão}} \underbrace{s_1 \in I \dots s_n \in I}_{S \in I} então \underbrace{s \in I}_{S \in I}
```

Vamos considerar um exemplo. Sejam $A = \{a, b\}$ e L o subconjunto das palavras sobre A definido por:

- $oldsymbol{0}$ a sequência vazia ε é um elemento de L;
- se $w \in L$, então $awb \in L$;
- se $w \in L$, então $bwa \in L$; se $u, w \in L$, então $uw \in L$.

A esta definição corresponde o seguinte conjunto de regras:

$$(b_{\varepsilon})$$
 $\overline{\varepsilon \in L}^{b_{\varepsilon}}$ \longrightarrow um conjunto base $B = \{\varepsilon\}$

$$(i_1) \frac{w \in L}{awb \in L} i_1 \longrightarrow f_1$$

$$(i_2) \quad w \in L \\ bwa \in L \quad i_2$$

$$f_2 : L \rightarrow L$$

$$w \mapsto bwa$$

$$(i_3) \quad \frac{u \in L \ w \in L}{uw \in L} \quad \longrightarrow \quad i_3: \quad L \times L \quad \to \quad L$$

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Índice o	Indução estrutural ooo●oooooooo	Cálculo Proposicional	Cálculo de Predicados de Primeira Orde ○○
Conjuntos defini	Conjuntos definidos indutivamente		

$u \in L \ w \in S$	(ε)) (ab)) (baba))
$w \in L$ $bwa \in L^{l_2}$	(por b_{ε}) (por i_{l} , ou seja, $f_{1}(\varepsilon)$) (por i_{2} , ou seja, $f_{2}(ab)$) (por i_{2} , ou seja, $f_{2}(baba)$
$w \in L$ $awb \in L$	$arepsilon \in \mathcal{L}$ $ab \in \mathcal{L}$ $baba \in \mathcal{L}$ $b^2aba^2 \in \mathcal{L}$
$f \in \mathcal{L}$	7. III. IX.

A conclusão é que $b^2aba^2\in L$. A sequência $(\varepsilon,~ab,~baba,~b^2aba^2)$ diz-se uma sequência de formação de b^2aba^2 .

Alternativamente, podemos elaborar a seguinte árvore:

$$\frac{\varepsilon \in L}{a\varepsilon b \in L}^{b_{\varepsilon}}$$

$$\frac{a\varepsilon b \in L}{baba \in L}^{i_{t}}$$

efinidos indutivame

 $u \in L \ w \in L$ $uw \in L^{-i_3}$ bwa ∈ L $w \in L$ $awb \in L^{i_1}$ $M \in \mathcal{L}$ $\varepsilon \in \overline{L}^{b_{\varepsilon}}$

 $\begin{array}{ll} i. & \varepsilon \in L \\ ii. & ba \in L \\ iii. & baba \in L \\ iii. & baba \in L \\ iv. & b^2aba^2 \in L \\ (por i_3, ou seja, f_2(\varepsilon)) \\ iv. & b^2aba^2 \in L \\ (por i_2, ou seja, f_2(baba)) \end{array}$

(por i_3 , ou seja, $f_3(ba, ba)$)

A conclusão é novamente que $b^2aba^2\in L$ e $(\varepsilon,\ ba,\ baba,\ b^2aba^2)$ é (outra) sequência e formação de b^2aba^2 .

A árvore correspondente é:

 $\frac{\varepsilon \notin L}{\varepsilon \notin L}^{b_{\varepsilon}} \quad \frac{\varepsilon \notin L}{\varepsilon \notin L}^{b_{\varepsilon}}$ $ba \notin L^{i_{\varepsilon}} \quad ba \in L^{i_{\varepsilon}}$ $bbabaa \in L^{-i_2}$ $baba \in L$

Conjuntos definidos indutiva

Definições

Considere-se uma definição indutiva de um conjunto L e $x \in L$.

- O Sequência de formação de x é uma sequência de elementos de L em que o último elemento é x e cada elemento
- é obtido por uma regra básica,
- ou é o resultado de aplicar a elementos anteriores na sequência uma regra indutiva.
- Arvore de formação de x é uma árvore construída a partir da aplicação das regras e em que:
- cada nodo é uma afirmação do tipo $s \in L$;
- as folhas resultam da aplicação de regras básicas;
- os restantes nodos resultam da aplicação de regras indutivas;
- cada aresta representa a relação entre uma premissa e a conclusão de uma regra;
- a raiz da árvore é $x \in L$.

Índice Indução estrutural Cálculo Proposicional Cálculo de Predicados de Primeira Ordem o oocoooo•oocoo o o o Conjuntos definidos indutivamente

Proposição

Seja L um conjunto definido indutivamente e x um elemento de um universo que contém L. Então, teremos que $x \in L$ se e só se x admite uma árvore (alternativamente, uma sequência) de formação.

$$\varepsilon \in \overline{L} b_{\varepsilon} \qquad w \in L \qquad w \in L \qquad u \in L w \in L$$

$$\overline{awb \in L}^{i_1} \qquad \overline{bwa \in L}^{i_2} \qquad \overline{uw \in L}^{i_2}$$

Será que *b²ab* ∈ *L*?

Definição

Sejam L um conjunto definido indutivamente e $x \in L$. Os elementos de L que ocorrem nos nodos de uma árvore de formação de x designam-se sub-objetos de x.

M. Lurdes Teixeira Dep, Matemática Univ. Minho

Índice Indução estrutural Cálculo Proposicional coccionado conjuntos definidos indutivamente

Cálculo de Predicados de Primeira Or oo

Na linguagem L do exemplo anterior, a palavra b^2aba^2 admite duas árvores de formação:

ilnição

Chama-se definição indutiva determinista de um conjunto L a uma definição indutiva de L tal que se existirem duas instâncias de regras com igual conclusão, então a regra usada é a mesma e, caso seja uma regra indutiva, as premissas da regra também são as mesmas.

Proposição

Uma definição indutiva de um conjunto L é determinista se e só se cada elemento de L admite uma única árvore de formação.

 $uw \in L^{-i_3}$ $u \in L \ w \in L$ $bwa \in L^{i_2}$ $M \in \mathcal{L}$ $awb \in L^{-l_1}$ $M \in \mathcal{L}$ $arepsilon \in \overline{\mathsf{L}}^{b_{arepsilon}}$

o número de ocorrências de a é igual ao número de ocorrências de b' Seja P a propriedade relativa a palavras sobre o alfabeto $A = \{a, b\}$:

É verdadeira ou falsa a afirmação P(bbabaa)?

$$egin{array}{ll} \overline{arepsilon \in L}^{b_{arepsilon}} & \overline{arepsilon \in L}^{b_{arepsilon}} \\ \overline{ba \in L}^{b_{arepsilon}} & \overline{ba \in L}^{b_{arepsilon}} \\ \overline{babaa \in L}^{b_{arepsilon}} \end{array}$$

Se u e v forem palavras tal que P(u) e P(v) (são verdadeiras), o que pode dizer sobre P(aub)? Sobre P(bua)? E sobre P(uv)?

Será que pode tirar conclusões sobre todas as palavras de L?

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Considere-se uma definição indutiva de um conjunto L sobre um alfabeto X e P uma propriedade relativa aos elementos de X^* . Princípio de Indução Estrutural para linguagens

- $oldsymbol{0}$ para cada regra básica $\overline{s \in L}^{b_s}$, P(s) é verdadeira;
- 2 para cada regra indutiva $\frac{s_1 \in L \dots s_n \in L}{f(s_1, \dots, s_n) \in L}_i \text{ , se}$ $P(s_1), \dots P(s_n) \text{ são verdadeiras, então } P(f(s_1, \dots, s_n)) \text{ \'e}$ verdadeira;

então P(s) é verdadeira, para todo o $s \in L$.

ndice 0	Induçao estrutural ○○○○○○○○○○	Calculo Proposicional	Calculo de Predicados de F 00
Princípio de Indução Estrutural	ıção Estrutural		

Retomemos o exemplo da linguagem que temos vindo a estudar.

$$\frac{\varepsilon \in L}{\varepsilon \in L} b_{\varepsilon} \qquad \frac{w \in L}{awb \in L} i_{i} \qquad \frac{w \in L}{bwa \in L} i_{b} \qquad \frac{u \in L \ w \in L}{uw \in L} i_{b}$$

Princípio de Indução Estrutural para L

Considere-se P uma propriedade relativa aos elementos de A*.

- **1** $P(\varepsilon)$ é verdadeira;
- 2 se P(w) é verdadeira, então P(awb) é verdadeira;
- \odot se P(w) é verdadeira, então P(bwa) é verdadeira;
- $^{\circ}$ se P(u) e P(w) são verdadeiras, então P(uw) é verdadeira;

então P(x) é verdadeira, para todo o $x \in L$.

Considere ${\it P}$ a propriedade: o número de ocorrências de ${\it a}$ é igual ao número de ocorrências de ${\it b}$ '

Prove que P(x) é verdadeira, para todo o $x \in L$.

Considere-se os exemplos de definições seguintes:

$$fat: \mathbb{N}_0 \longrightarrow \mathbb{N}$$
 $fat(0) = 1$
 $fat(n) = n \times fat(n-1)$, para $n \in \mathbb{N}$

$$fib: \mathbb{N} \longrightarrow \mathbb{N}$$
 $fib(1) = 1$ $fib(2) = 1$ $fib(n+2) = fib(n) + fib(n+1)$, para $n \in \mathbb{N}$

$$egin{aligned} s: \mathbb{N} \longrightarrow \mathbb{Q} \ s(1) &= 2 \ s(n+1) &= rac{2}{s(n)}, \ ext{para} \ n \in \mathbb{N} \end{aligned}$$

Cálculo Proposicional

Indução estrutural

Teorema da Recursão Estrutural

① para cada regra básica do tipo $s \in L^{b_s}$,

$$g(s) = y_s \in Y$$
;

2 para cada regra indutiva do tipo $\frac{s_1 \in L \dots s_n \in L}{f(s_1, \dots, s_n) \in L}$

$$g(f(s_1,\ldots,s_n))=\overline{f}(g(s_1),\ldots,g(s_n)).$$

A definição de uma função g por aplicação do teorema anterior diz-se uma definição recursiva da função g.

M. Lurdes Teixeira Dep. Matemática Univ. Minho

Cálculo de Predicados de Primeira Orden oo

Funções definidas recursivamente

<u>determinista</u> e Y um conjunto. Para cada regra indutiva de L com n hipóteses, seja \overline{t} uma função de $Y^n \to Y$. Então, existe e é única a Considere-se um conjunto L caraterizado por uma definição indutiva função g:L o Y tal que:

Definição