Set Theory Proofs

Problem 1: Cardinality of Power Sets

Question: How does $|\mathcal{P}(A)|$ relate to |A|?

Small Examples

Let's examine some small sets:

- $A = \emptyset$: $\mathcal{P}(A) = \{\emptyset\}$, so $|\mathcal{P}(A)| = 1 = 2^0 = 2^{|A|}$
- $\begin{array}{l} \bullet \ \ A=\{1\}; \ \mathcal{P}(A)=\{\emptyset,\{1\}\}, \ \text{so} \ |\mathcal{P}(A)|=2=2^1=2^{|A|} \\ \bullet \ \ A=\{1,2\}; \ \ \mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{1,2\}\}, \ \text{so} \ |\mathcal{P}(A)|=4=2^2=2^{|A|} \\ \end{array}$
- $A = \overline{\{1,2,3\}}$: $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$, so $|\mathcal{P}(A)| = 8 = 2^3 = 2^{|A|}$

Conjecture: $|\mathcal{P}(A)| = 2^{|A|}$

Theorem: For any finite set A, $|\mathcal{P}(A)| = 2^{|A|}$.

Proof by induction on |A|:

Base case: When |A| = 0, we have $A = \emptyset$. Then $\mathcal{P}(A) = {\emptyset}$, so $|\mathcal{P}(A)| = 1 = 2^0 = 2^{|A|}.$

Inductive step: Assume the statement holds for all sets with n elements. Let A be a set with n+1 elements.

We can write $A = B \cup \{x\}$

Then....its a bit tricky :-) work in progress....

Problem 2: Distributivity of Intersection over Union

Theorem: For all sets A, B, and C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

$$A\cap (B\cup C)=\{x\mid x\in A \text{ and } x\in B\cup C\}$$

$$= \{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\}$$

$$= \{x \mid x \in A \text{ and } x \in B \text{ or } x \in A \text{ and } x \in C\}$$

$$= \{x \mid x \in A \cap B \text{ or } x \in A \cap C\}$$

$$= (A \cap B) \cup (A \cap C)$$

Problem 3: Inclusion-Exclusion Principle

Theorem: For any finite sets A and B: $|A \cup B| = |A| + |B| - |A \cap B|$ **Proof:** We partition the union $A \cup B$ into three sets: 1. $A \setminus B = \{x \in A : x \notin B\}$ (elements only in A) 2. $B \setminus A = \{x \in B : x \notin A\}$ (elements only in A) 3. $A \cap B$ (elements in both A and B)

$$|A \cup B| = |A \setminus B| + |B \setminus A| + |A \cap B|$$

Now we express $|A \setminus B|$ and $|B \setminus A|$ in terms of the given quantities: - Since A is the union of $A \setminus B$ and $A \cap B$: $|A| = |A \setminus B| + |A \cap B|$ - Since B is the union of $B \setminus A$ and $A \cap B$: $|B| = |B \setminus A| + |A \cap B|$ Therefore: - $|A \setminus B| = |A| - |A \cap B|$ - $|B \setminus A| = |B| - |A \cap B|$ Substituting back:

$$|A \cup B| = (|A| - |A \cap B|) + (|B| - |A \cap B|) + |A \cap B|$$
$$= |A| + |B| - |A \cap B| - |A \cap B| + |A \cap B|$$
$$= |A| + |B| - |A \cap B|$$