

Modelling pollution in the urban environment using neural networks

Hanson Shen
Dr Claire E. Heaney
Dr Christopher C. Pain

CONTENTS

1 Introduction

4 Results

2 Literature Review

5 Conclusion

3 Methodology

INTRODUCTIOIN

Topic

Air Pollution

Public Health Concern

Question

Prediction Accuracy

Limitations of Traditional Methods

Answer

Comprehensive Framework incorporating

- Neural Networks
- Computational Fluid Dynamic
- Data Assimilation

LITERATURE REVIEW

1

Neural Networks &
Computational Fluid Dynamics

- NN-based Solver for PDEs
- Potential and Performance

Traditional Modelling v.s. Convolutional VAE

- Generation of Predictions
- Computational Resources
- Reducing Dimensionality

Assimilation with Observational Data

- Refining the Model
- Adjusting to Realistic Environment
- Accuracy of Predictions

Using ai libraries for incompressible computational fluid dynamics (Chen et al.)

Bridging observations, theory and numerical simulation of the ocean using machine learning (Sonnewald et al.)

Data assimilation in the latent space of a neural network (Amendola et al.)

METHODOLOGY – Overview of the Workflow

METHODOLOGY - Setup of a Test Case

Sensor locations: Optimising sensor location using neural networks applied to air pollution (Zhan Xuan & Hong Xuan)

METHODOLOGY – Data Preprocessing

METHODOLOGY – Convolutional VAE

Convolutional VAE

Training Set

METHODOLOGY – Convolutional VAE

METHODOLOGY – CFD Simulation

METHODOLOGY - Observational Data

METHODOLOGY – Data Assimilation

METHODOLOGY – Data Assimilation Loop

RESULTS - Velocity and Pollution Field

Wind Velocity in X-Direction

Pollution Concentration Field

RESULTS - Velocity and Pollution Field

Wind Velocity in Z-Direction

Wind Velocity in Y-Direction

RESULTS - Detailed Analysis

(Velocity Field in x-direction at 1-Meter Height)

RESULTS – Data Mismatch & Sensor Performance

CONCLUSION & DISCUSSION

1 2

Novel Framework

- Neural Networks
- Computational Fluid Dynamic
- Data Assimilation

Large-Scale Predictions

- Feasibility for a smaller domain
- Relative Error < 10%
- Environmental Policy

Moving Window Strategy

- Memory Issue
- Stored and Reloaded

Modelling pollution in the urban environment using neural networks

Hanson Shen
Dr Claire E. Heaney
Dr Christopher C. Pain