Chapitre 2 Espaces de probabilité, indépendance et conditionnement

Espaces de probabilité

Définition 1. Soit Ω un ensemble. On appelle tribu sur Ω un sous-ensemble \mathcal{T} de $\mathcal{P}(\Omega)$ vérifiant les propriétés suivantes.

- 1. $\Omega \in \mathcal{T}$.
- 2. Pour tout $A \in \mathcal{T}$, $A^c \in \mathcal{T}$.
- 3. Soit $\{A_j\}_{j\in\mathbb{N}}$ vérifiant $A_j\in\mathcal{T}$ pour tout j. Alors $\cup_{j\in\mathbb{N}}A_j\in\mathcal{T}$.

Un élément de \mathcal{T} sera appelé un événement.

Définition 2. On appelle probabilité sur \mathcal{T} (ou sur (Ω, \mathcal{T})) une application $\mathbb{P}: \mathcal{T} \to [0, 1]$ satisfaisant les deux propriétés suivantes.

- 1. $\mathbb{P}(\Omega) = 1$.
- 2. Soit $\{A_j\}_{j\in\mathbb{N}}$ deux à deux disjoints et vérifiant $A_j\in\mathcal{T}$ pour tout j. Alors

$$\mathbb{P}(\cup_{j\in\mathbb{N}}A_j) = \sum_{j\in\mathbb{N}}\mathbb{P}(A_j).$$

Le triplet $(\Omega, \mathcal{T}, \mathbb{P})$ est appelé espace de probabilité.

Dans toute la suite, on considère un espace de probabilité $(\Omega, \mathcal{T}, \mathbb{P})$.

Exemple 1. Soit Ω un ensemble fini et \mathbb{P} l'équiprobabilité, alors $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ est un espace de probabilité.

Propriétés

Théorème 1. Soient A et $B \in \mathcal{T}$. On a les propriétés suivantes.

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$.
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- 4. Si $A \cap B = \emptyset$, alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.
- 5. Si $A \subset B$, alors $\mathbb{P}(A) \leq \mathbb{P}(B)$.

Formules des probabilités totales

Définition 3. On appelle système complet d'événements un sous-ensemble $\{A_j\}_{j\in\mathbb{N}}$ de \mathcal{T} (A_j) est donc un événement pour tout j) vérifiant $\bigcup_{j\in\mathbb{N}}A_j=\Omega$ et pour tous i,j tels que $i\neq j$ on a $A_i\cap A_j=\emptyset$ (deux à deux disjoints).

Théorème 2 (Formules des probabilités totales). Soient $\{A_j\}_{j\in\mathbb{N}}$ un système complet d'événements et $B\in\mathcal{T}$. On a

$$\mathbb{P}(B) = \sum_{j \in \mathbb{N}} \mathbb{P}(B \cap A_j).$$

En particulier, pour tout $A \in \mathcal{T}$, on a

$$\mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap A^c).$$

Indépendance

Définition 4.

- Deux événements A et B sont indépendants (par rapport à \mathbb{P}) si $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- n événements $A_1, A_2, ... A_n$ sont (mutuellement) indépendants (par rapport à \mathbb{P}) si pour tout $j \in \{1, \dots, n\}$ et pour tous $i_1, i_2, ..., i_j \in \{1, \dots, n\}$,

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_j}) = \mathbb{P}(A_{i_1})\mathbb{P}(A_{i_2})...\mathbb{P}(A_{i_j}).$$

• n événements $A_1, A_2, ... A_n$ sont deux à deux indépendants (par rapport à \mathbb{P}) si pour tous $i \neq j$, A_i et A_j sont indépendants.

Probabilités conditionnelles

Définition 5. Soit B un événement tel que $\mathbb{P}(B) > 0$. On appelle probabilité conditionnelle par rapport à B (ou probabilité conditionnelle sachant B ou probabilité sachant B) l'application $\mathbb{P}_B : \mathcal{T} \to [0, 1]$ telle que pour tout $A \in \mathcal{T}$,

$$\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

On note aussi $\mathbb{P}(A|B) = \mathbb{P}_B(A)$.

Propriétés

Théorème 3. Soient A et B deux événements et $\{A_j\}_{j\in\mathbb{N}}$ un système complet d'événements. Supposons $\mathbb{P}(A)>0$, $\mathbb{P}(B)>0$, $\mathbb{P}(A_0)>0$, $\mathbb{P}(A_1)>0$, $\mathbb{P}(A_2)>0$, ... On a les propriétés suivantes.

1. A et B indépendants $\Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$.

2.
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A)}{\mathbb{P}(B)}\mathbb{P}(B|A).$$

3.
$$\mathbb{P}(B) = \sum_{j \in \mathbb{N}} \mathbb{P}(B|A_j)\mathbb{P}(A_j).$$

Formule des conditionnements successifs

Théorème 4 (Formule des conditionnements successifs). Soient n événements $A_1, A_2, ..., A_{n-1}$ et A_n tels que $\mathbb{P}(A_1 \cap A_2 \cap ... \cap A_{n-1}) \neq 0$. On a

$$\mathbb{P}(A_n \cap A_{n-1} \cap \dots \cap A_1) = \mathbb{P}(A_n | A_{n-1} \cap A_{n-2} \cap \dots \cap A_1)$$

$$\times \mathbb{P}(A_{n-1} | A_{n-2} \cap A_{n-3} \cap \dots \cap A_1)$$

$$\vdots$$

$$\times \mathbb{P}(A_2 | A_1)$$

$$\times \mathbb{P}(A_1).$$