Linear regression with one input

Cost function illustrated

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

Properties of cost function:

- "Bowl"-shaped
- Unique local and global minimum (under

"regular" conditions)

Linear hypothesis

Hypothesis (one input):

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Hypothesis (multiple input features):

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$$

Example: h(x) = 50 + 0.5*kneeheight + 0.3*armspan + 0.1*age

More compact notation:

$$h_{m{ heta}}(m{x}) = m{x}^Tm{ heta}$$
 $m{x} = egin{pmatrix} x_0 \ x_1 \ dots \ y_{n} \end{pmatrix}$ $m{ heta} = egin{pmatrix} heta_0 \ heta_1 \ dots \ heta_n \end{pmatrix}$ Introduce $x_0 = 1$ Why? Notation convenience!

Matrix and vector notation

X 0	Knee Height x ₁	Arm span X2	Age X3	Height y
1	50	166	32	171
1	56	172	17	175
1	52	174	62	168

$$m{X} = egin{pmatrix} 1 & 50 & 166 & 32 \ 1 & 56 & 172 & 17 \ 1 & 52 & 174 & 62 \end{pmatrix} \ m{y} = egin{pmatrix} 171 \ 175 \ 168 \end{pmatrix}$$

$$\boldsymbol{x}^{(i)} = \begin{pmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{pmatrix}$$

 $m{y} = egin{pmatrix} y^{(1)} \ y^{(2)} \ dots \ y^{(m)} \end{pmatrix}$

features of i'th training example $(n+1) \times 1$

design matrix

m × (n+1)

output/target vector *m* × 1

Analytical solution

• Set all partial derivatives of cost function $J(\theta) = 0$

Solving system of linear equations yields:

$$\left[\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}\right]$$

Moore-Penrose Pseudoinverse of $oldsymbol{X}$

 $oldsymbol{X}$... design matrix $oldsymbol{y}$... output/target vector

• Note: This analytical solution requires that columns of $m{X}$ are linearly independent ("regular" conditions)

Non-linear (quadratic) fit

X	У
0.01	-0.27
-1.22	2.63
0.17	-0.13

$$\boldsymbol{\Phi} = \begin{pmatrix} 1 & \phi_1 = x & \phi_2 = x^2 \\ 1 & 0.01 & 0.01^2 \\ 1 & -1.22 & (-1.22)^2 \\ 1 & 0.17 & (0.17)^2 \end{pmatrix} \quad \boldsymbol{y} = \begin{pmatrix} -0.27 \\ 2.63 \\ -0.13 \\ \vdots \end{pmatrix}$$

design matrix with non-linear features

Hypothesis:
$$h_{\boldsymbol{\theta}}(\boldsymbol{\phi}) = \theta_0 + \theta_1 \cdot \phi_1 + \theta_2 \cdot \phi_2$$

Optimal parameters:
$$oldsymbol{ heta}^* = \left(oldsymbol{\Phi}^Toldsymbol{\Phi}
ight)^{-1}oldsymbol{\Phi}^Toldsymbol{y}$$