COMP527 Data Mining and Visualisation Problem Set 0

Danushka Bollegala

Question 1 Consider two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^3$ defined as $\boldsymbol{x} = (1, 2, -1)^\top$ and $\boldsymbol{y} = (-1, 0, 1)^\top$. Answer the following questions about these two vectors.

A. Compute the length $(\ell_2 \text{ norm})$ of x and y. (4 marks)

B. Compute the inner product between x and y. (2 marks)

C. Compute the cosine of the angle between the two vectors x and y. (4 marks)

- D. Compute the Euclidean distance between the end points corresponding to the two vectors x and y. (4 marks)
- E. For any two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$ such that $||\boldsymbol{x}||_2 = ||\boldsymbol{y}||_2 = 1$ show that the following relationship holds between their cosine similarity $\cos(\boldsymbol{x}, \boldsymbol{y})$ and their Euclidean distance $\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})$. (6 marks)

$$\operatorname{Euc}(\boldsymbol{x}, \boldsymbol{y})^2 = 2(1 - \cos(\boldsymbol{x}, \boldsymbol{y}))$$

Question 2 Consider a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ defined as follows:

$$\mathbf{A} = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$$

Answer the following questions related to ${\bf A}.$

A. Compute the transpose \mathbf{A}^{\top} . (2 marks)

B. Compute the determinant det(A). (2 marks)

C. Compute the inverse A^{-1} . (4 marks)

D. Compute the eigenvalues and eigenvectors of A. (6 marks)

Question 3

- A. Given $\sigma(x) = \frac{1}{1+\exp(ax+b)}$, compute $\sigma'(x)$, the differential of $\sigma(x)$ with respect to x.
- B. Given $H(p) = -p \log(p) (1-p) \log(1-p)$, find the value of p that maximises H(p).
- C. Find the maximum value of $g(x,y) = x^2 + y^2$ such that $y \le -x + 1$.