Group Theory Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today or, rigorous. Any result of the above is not the author's fault.

0 Notation

We commonly deal with the following concepts in Group Theory which I will abbreviate as follows for brevity:

Term	Notation
$\{1,2,\ldots\}$	N
$\{0, 1, 2, \ldots\}$	\mathbb{N}_0
The set of primes	\mathbb{P}
$(F\setminus\{0_F\},\times)$	F^*
(invertible $n \times n$ matrices on F, \times)	$GL_n(F)$

Contents

0	Not	ation	1
1	The	Fundamentals	3
	1.1	Binary Operations	3
	1.2	Groups	3
		1.2.1 Symmetric Groups	3
		1.2.2 Cyclic Groups	3
		1.2.3 Dihedral Groups	4
		1.2.4 The Infinite Cyclic/Dihedral Group	4
	1.3	Order	4
		1.3.1 Torsion Groups	5
	1.4	<i>p</i> -groups	5
	1.5	Isomorphisms	5
	1.6	Set Multiplication	6

1 The Fundamentals

1.1 Binary Operations

A binary operation on a set X is a map $X \times X \to X$.

Take a binary operation * on a set X, we say that * is associative if for all x, y, z in X:

$$x * (y * z) = (x * y) * z.$$

Furthermore, we say e in X is an identity element of * if for all x in X:

$$e * x = x * e$$

and we say that y in X is the inverse to x if x * y and y * x are both identities of *.

1.2 Groups

A group (G,*) is a non-empty set G combined with a binary operation * such that:

- * is associative,
- G contains an identity for *,
- for each element in G, there exists some inverse in G with respect to *.

1.2.1 Symmetric Groups

For a set X, the set of bijections $X \to X$ is a group under function composition denoted by $\operatorname{Sym}(X)$. We typically write $\operatorname{Sym}(\{1, 2, \dots, n\})$ as S_n .

1.2.2 Cyclic Groups

If we consider a regular n-gon P_n , we take rotations of $\frac{2\pi}{n}$ radians about the centre to be r and can define:

$$C_n = \{e, r, r^2, \dots, r^{n-1}\},\$$

to be the group of rotational symmetries of P_n , the cyclic group on P_n .

1.2.3 Dihedral Groups

If we consider again, a regular n-gon P_n and take:

$$r =$$
 a rotation of $\frac{2\pi}{n}$ radians about the centre,
 $s =$ reflection in some fixed line of symmetry,

then we have that:

$$Sym(P_n) = \{e, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s\},\$$

called the dihedral group, denoted by D_{2n} .

1.2.4 The Infinite Cyclic/Dihedral Group

A map φ from $\mathbb{Z} \to \mathbb{Z}$ is a symmetry if for some n and m in \mathbb{Z} :

$$|\varphi(m) - \varphi(n)| = |m - n|.$$

Taking r to be the symmetry $n \mapsto n+1$, we can define the infinite cyclic group:

$$C_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots\}.$$

Taking s to be the symmetry $n \mapsto -n$, we can define the infinite dihedral group:

$$D_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots, r^{-2}s, r^{-1}s, s, rs, r^2s\}.$$

1.3 Order

For a group G = (X, *), G has order |X|. The order of an element x of X is defined as follows:

$$|x| = \infty$$
 if $x^n \neq e_G$ for any n in \mathbb{N} , $|x| = \min\{n \in \mathbb{N} \mid x^n = e_G\}$ otherwise.

Taking x in X, if x has finite order, then:

- 1. $x^n = e_G$ if and only if |x| divides n,
- 2. $x^n = x^m$ if and only if |x| divides m n,

and if x has infinite order:

3. $x^n = x^m$ if and only if n = m.

Proof. For (1), we take n = q|x| + r for some q in \mathbb{Z} , r in $\{0, 1, \ldots, |x| - 1\}$. Thus:

$$x^{n} = x^{q|x|}x^{r},$$

$$= e_{G}^{q}x^{r},$$

$$= x^{r}.$$

and we can see that $x^r = e_G$ if and only if r = 0 as r < |x| and |x| is minimal. Thus, $x^n = e_G$ if and only if r = 0 which occurs if and only if |x| divides n.

For (2) and (3), we take x to have any order and consider:

$$x^n = x^m,$$
$$x^{m-n} = e_G.$$

Thus, if $|x| < \infty$ then |x| divides m - n by (1) and if $|x| = \infty$ then m - n = 0 by the definition of order.

1.3.1 Torsion Groups

A group is a torsion group if every element has finite order and torsion-free if every non-identity element has infinite order.

1.4 p-groups

For p in \mathbb{P} , we say that a group G is a p-group if the order of each element of G is a power of p.

1.5 Isomorphisms

For (G, *), (H, \circ) groups, an isomorphism $\varphi : G \to H$ is a bijection such that $\varphi(x * y) = \varphi(x) \circ \varphi(y)$ for all x, y in G. If such a map exists, we say G is isomorphic to H, denoted by $G \cong H$.

For G, H, and K groups, $\varphi: G \to H$ and $\psi: H \to K$ isomorphisms, we have that:

- φ^{-1} is an isomorphism,
- $(\psi \circ \varphi)$ is an isomorphism,

which means \cong is an equivalence relation on any set of groups.

1.6 Set Multiplication

For X, Y subsets of a group (G, *), we define:

$$X * Y = \{x * y : x \in X, y \in Y\},\$$

the product set of X and Y (which is a subset of G). We have that * is an associative binary operation on $\mathcal{P}(G)$. Additionally, we define:

$$X^{-1} = \{x^{-1} : x \in X\}.$$

However, these definitions do not define a group on $\mathcal{P}(G)$ as an inverse does not necessarily exist for each element, despite the existence of an identity $\{e_G\}$.