

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LICENSED TRANSMITTER

Test Report No. : OT-199-RWD-006

AGR No. : A197A-418

Applicant : Suntech International Ltd.

Address : A-1705, A-1706, Greatvally, 32, Digital-ro 9-gil, Geumcheon-Gu, Seoul, Korea

Manufacturer : Suntech International Ltd.

Address : A-1705, A-1706, Greatvally, 32, Digital-ro 9-gil, Geumcheon-Gu, Seoul, Korea

Type of Equipment: Tracking Device

FCC ID. : WA2ST4310

Model Name : ST4310

Serial number : N/A

Total page of Report : 81 pages (including this page)

Date of Incoming : August 02, 2019

Date of issue : September 02, 2019

SUMMARY

The equipment complies with the regulation; Part 2, Part 27 Subpart C

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Reviewed by:

Tae-Ho, Kim / Senior Manager ONETECH Corp.

Approved by:

Ki-Hong, Nam / Chief Engineer

Report No.: OT-199-RWD-006

ONETECH Corp.

PAGE

CONTENTS

1. VERIFICATION OF COMPLIANCE	7
2. TEST SUMMARY	8
2.1 TEST ITEMS AND RESULTS	8
2.2 ADDITIONS, DEVIATIONS, EXCLUSIONS FROM STANDARDS	8
2.3 RELATED SUBMITTAL(S) / GRANT(S)	8
2.4 PURPOSE OF THE TEST	8
2.5 TEST METHODOLOGY	8
2.6 TEST FACILITY	8
3. GENERAL INFORMATION	9
3.1 PRODUCT DESCRIPTION	9
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	9
4. EUT MODIFICATIONS	9
5. SYSTEM TEST CONFIGURATION	10
5.1 JUSTIFICATION	10
5.2 PERIPHERAL EQUIPMENT	10
5.3 MODE OF OPERATION DURING THE TEST	11
5.5 CONFIGURATION OF TEST SYSTEM	16
6. PRELIMINARY TEST	16
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	16
6.2 GENERAL RADIATED EMISSIONS TESTS	16
7. CONDUCTED OUTPUT POWER	17
7.1 OPERATING ENVIRONMENT	17
7.2 TEST SET-UP	17
7.3 TEST EQUIPMENT USED.	17
7.4 TEST DATA	18
8. EQUIVALENT ISOTROPIC RADIATED POWER	20
8.1 OPERATING ENVIRONMENT	20
8.2 METHODS OF MEASUREMENT	20
8.3 LIMITS	20
8.4 TEST SET-UP	20
8.5 TEST EQUIPMENT USED	21

It should not be reproduced except in full, without the written approval of ONETECH Corp.

8.6 TEST DATA FOR LTE BAND 4 QPSK	22
8.7 TEST DATA FOR LTE BAND 4 16QAM	22
9. EFFECTIVE RADIATED POWER	23
9.1 OPERATING ENVIRONMENT	23
9.2 METHODS OF MEASUREMENT	23
9.3 LIMITS	23
9.4 Test set-up	23
9.5 TEST EQUIPMENT USED	24
9.6 TEST DATA FOR LTE BAND 12 QPSK	25
9.7 TEST DATA FOR LTE BAND 12 16QAM	25
9.8 TEST DATA FOR LTE BAND 13 QPSK	26
9.9 TEST DATA FOR LTE BAND 13 16QAM	26
10. RADIATED SPURIOUS EMISSIONS	27
10.1 OPERATING ENVIRONMENT	27
10.2 TEST SET-UP	27
10.3 TEST EQUIPMENT USED	29
10.4 TEST DATA	30
10.4.1 Test data for LTE Band 4 QPSK	30
10.4.2 Test data for LTE Band 12 QPSK	
10.4.2 Test data for LTE Band 13 QPSK	32
11. PEAK-TO-AVERAGE RATIO	33
11.1 OPERATING ENVIRONMENT	33
11.2 TEST SET-UP	33
11.3 TEST EQUIPMENT USED	34
11.4 TEST DATA	34
11.4.1 Test data LTE Band 4	34
11.4.2 Test data LTE Band 12	37
11.4.3 Test data LTE Band 13	40
12. OCCUPIED BANDWIDTH	42
12.1 OPERATING ENVIRONMENT	42
12.2 TEST SET-UP	
12.3 TEST EQUIPMENT USED	
12.4 TEST DATA	
12.4.1 Test data for LTE Band 4	
12.4.2 Test data for LTE Band 12	
12.4.3 Test data for LTE Band 13	

13. CONDUCTED BAND EDGE	51
13.1 OPERATING ENVIRONMENT	51
13.2 TEST SET-UP	51
13.3 METHODS OF MEASUREMENT	51
13.4 LIMITS	52
13.5 TEST EQUIPMENT USED	52
13.6 TEST DATA	53
13.6.1 Test data for LTE Band 4	53
13.6.2 Test data for LTE Band 4 QPSK	54
13.6.3 Test data for LTE Band 4 16QAM	55
13.6.4 Test data for LTE Band 12	56
13.6.5 Test data for LTE Band 12 QPSK	57
13.6.6 Test data for LTE Band 12 16QAM	58
13.6.7 Test data for LTE Band 13	59
13.6.8 Test data for LTE Band 13 QPSK	60
13.6.9 Test data for LTE Band 13 16QAM	61
14. CONDUCTED SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMIANL	62
14.1 OPERATING ENVIRONMENT	62
14.2 TEST SET-UP	62
14.3 LIMITS	63
14.4 TEST EQUIPMENT USED	63
14.5 TEST DATA	64
14.5.1 Test data for LTE Band 4 QPSK	64
14.5.2 Test data for LTE Band 4 16QAM	67
14.5.3 Test data for LTE Band 12 QPSK	70
14.5.4 Test data for LTE Band 12 16QAM	73
14.5.5 Test data for LTE Band 13 QPSK	76
14.5.6 Test data for LTE Band 13 16QAM	77
15. FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	78
15.1 OPERATING ENVIRONMENT	78
15.2 TEST SET-UP	78
15.3 TEST EQUIPMENT USED	78
15.4 TEST DATA	
15.4.1 Test data for Voltage(V)_LTE Band 4	
15.4.2 Test data for Temperature(°C) _LTE Band 4	
15.4.3 Test data for Voltage(V)_LTE Band 12	

15.4.4 Test data for Temperature(°C) _LTE Band 12	80
15.4.5 Test data for Voltage(V)_LTE Band 13	81
15.4.6 Test data for Temperature(°C) _LTE Band 13	81

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-199-RWD-006	September 02, 2019	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant : Suntech International Ltd.

Address : A-1705, A-1706, Greatvally, 32, Digital-ro 9-gil, Geumcheon-Gu, Seoul, Korea

Contact Person : Yohan, Kim / Manager

Telephone No. : 82-2-6327-5661 FCC ID : WA2ST4310

Model Name : ST4310 Serial Number : N/A

Date : September 02, 2019

EQUIPMENT CLASS	PCB-PCS Licensed Transmitter	
EQUIPMENT DESCRIPTION	Tracking Device	
THIS REPORT CONCERNS	Original Grant	
MEASUREMENT PROCEDURES	ANSI C63.26:2015, KDB Publication 971168 D01	
TYPE OF EQUIPMENT TESTED	Pre-Production	
KIND OF EQUIPMENT	Codification	
AUTHORIZATION REQUESTED	Certification	
EQUIPMENT WILL BE OPERATED	ECC Part 2 Part 27 Submort C	
UNDER FCC RULES PART(S)	FCC Part 2, Part 27 Subpart C	
Modifications on the Equipment to Achieve	None	
Compliance	None	
Final Test was Conducted On	3 m Semi Anechoic Chamber	

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

Report No.: OT-199-RWD-006

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS	
2.1049	Occupied Bandwidth	Met the Limit / PASS	
2.1051, 27.53(g), 27.53(f), 27.53(h)	Band Edge / Spurious and Harmonic Emissions at Antenna Termianl	Met the Limit / PASS	
2.1046	Conducted Output Power	Met the Limit / PASS	
27.50(d)(5), KDB Publication 971168 D01	Peak-to-Average Ratio	Met the Limit / PASS	
2.1055, 27.54	Frequency stability	Met the Limit / PASS	
27.50(d)(4)	Equivalent Isotropic Radiated Power	Met the Limit / PASS	
27.50(b)(10), 27.50(c)(10)	EFFECTIVE RADIATED POWER	Met the Limit / PASS	
2.1053, 27.53(g), 27.53(f), 27.53(h)	Radiated Spurious and Harmonic Emissions	Met the Limit / PASS	

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in Part 27 Subpart C.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.26:2015. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/C-14617/G-10666/T-1842

IC (Industry Canada) – Registration No. Site# 3736A-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) – Designation No. KR0013

It should not be reproduced except in full, without the written approval of ONETECH Corp.

3. GENERAL INFORMATION

3.1 Product Description

The Suntech International Ltd., Model ST4310 (referred to as the EUT in this report) is a Tracking Device. Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Tracking Device		
	LTE D. 10	TX	1 850 MHz ~ 1 910 MHz
	LTE Band 2	RX	1 930 MHz ~ 1 990 MHz
	ATTER 14	TX	1 710 MHz ~ 1 755 MHz
	LTE Band 4	RX	2 110 MHz ~ 2 155 MHz
OPED ATING EDECLIENCY	LTED 15	TX	824 MHz ~ 849 MHz
OPERATING FREQUENCY	LTE Band 5	RX	869 MHz ~ 894 MHz
	LITTE D. 110	TX	699 MHz ~ 716 MHz
	LTE Band 12	RX	729 MHz ~ 746 MHz
	LITTE D. 112	TX	777 MHz ~ 787 MHz
	LTE Band 13	RX	746 MHz ~ 756 MHz
LTE Channel Bandwidth	10 MHz		
Modulation Type	QPSK, 16QAM		
Maximum EIRP Power	LTE Band 4 20.41 dBm		dBm
Maximum ERP Power	LTE Band 12	22.05	dBm
Maximum ERP Power	LTE Band 13	21.71	dBm
ANTENNA TYPE	PIFA Antenna		
	LTE Band 2 1.16 dBi		Bi
	LTE Band 4	1.13 dBi	
ANTENNA GAIN	LTE Band 5	2.14 dBi	
	LTE Band 12	-1.55	dBi
	LTE Band 13 1.00 dBi		Bi
List of each Osc. or crystal	26 MHz		
Freq.(Freq. >= 1 MHz)	ZU IVITIZ		

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	N/A	N/A	N/A
Battery	N/A	N/A	N/A
Antenna	N/A	N/A	N/A

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Manufacturer Description	
GP-4303D	LG Precision Co.,Ltd	DC Power Supply	EUT

5.3 Mode of operation during the test

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports. The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	EIRP	Radiated Emission
LTE Band 4	Y-plane	Y-axis
LTE Band 12	Y-plane	Y-axis
LTE Band 13	Y-plane	Y-axis

Test Mode: LTE Band 4

Test Item	Channel Bandwdith	Modulation	Mode	Test Channel
Conducted Output Power	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index 1 RB / 5 RB Offset / 0 RB Index 1 RB / 0 RB Offset / 3 RB Index 1 RB / 5 RB Offset / 3 RB Index 1 RB / 0 RB Offset / 7 RB Index 1 RB / 5 RB Offset / 7 RB Index 1 RB / 5 RB Offset / 7 RB Index 3 RB / 0 RB Offset / 0 RB Index 3 RB / 0 RB Offset / 7 RB Index 6 RB / 0 RB Offset / 7 RB Index	1 715 MHz 1 732.5 MHz 1 750 MHz
Equivalent Isotropic Radiated Power	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index	1 715 MHz 1 732.5 MHz 1 750 MHz
Frequency stability	10 MHz	QPSK	1 RB / 0 RB Offset / 0 RB Index	1 732.5 MHz

Channel Test Item Modulation Mode Test Channel Bandwdith 1 715 MHz 10 MHz QPSK, 16QAM Occupied Bandwidth 6 RB / 0 RB Offset / 0 RB Index 1 732.5 MHz 1 750 MHz 1 715 MHz 1 RB / 0 RB Offset / 0 RB Index Peak-to-Average 10 MHz QPSK, 16QAM 1 732.5 MHz Ratio 6 RB / 0 RB Offset / 0 RB Index 1 750 MHz 1 RB / 0 RB Offset / 0 RB Index 1 715 MHz 6 RB / 0 RB Offset / 0 RB Index Band Edge 10 MHz QPSK, 16QAM 1 RB / 5 RB Offset / 0 RB Index 1 750 MHz 6 RB / 5 RB Offset / 0 RB Index 1 715 MHz Spurious and Harmonic Emissions 10 MHz QPSK, 16QAM 1 RB / 0 RB Offset / 0 RB Index 1 732.5 MHz at Antenna Termianl 1 750 MHz 1 715 MHz **Radiated Spurious** and Harmonic 10 MHz QPSK, 16QAM 1 RB / 0 RB Offset / 0 RB Index 1 732.5 MHz Emissions 1 750 MHz

Test Mode: LTE Band 12

Test Item	Channel Bandwdith	Modulation	Mode	Test Channel
			1 RB / 0 RB Offset / 0 RB Index	
			1 RB / 5 RB Offset / 0 RB Index	
			1 RB / 0 RB Offset / 3 RB Index	
			1 RB / 5 RB Offset / 3 RB Index	T04357
Conducted Output	10 MI	ODGIV 160AM	1 RB / 0 RB Offset / 7 RB Index	704 MHz
Power	10 MHz	QPSK, 16QAM	1 RB / 5 RB Offset / 7 RB Index	707.5 MHz
			3 RB / 0 RB Offset / 0 RB Index	711 MHz
			3 RB / 3 RB Offset / 7 RB Index	
			6 RB / 0 RB Offset / 0 RB Index	
			6 RB / 0 RB Offset / 7 RB Index	
				704 MHz
Equivalent Isotropic Radiated Power	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index	707.5 MHz
				711 MHz
Frequency stability	10 MHz	QPSK	1 RB / 0 RB Offset / 0 RB Index	707.5 MHz
			1 DD / 0 DD Offert / 0 DD Is deep	704 MHz
Peak-to-Average Ratio	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index 6 RB / 0 RB Offset / 0 RB Index	707.5 MHz
			0 KB / 0 KB Offset / 0 KB fildex	711 MHz
			1 RB / 0 RB Offset / 0 RB Index	704 MHz
Band Edge	10 MHz	QPSK, 16QAM	6 RB / 0 RB Offset / 0 RB Index	/U+ WITIZ
Danu Euge	10 MIUZ	QLSIX, 10QAM	1 RB / 5 RB Offset / 0 RB Index	711 MHz
			6 RB / 5 RB Offset / 0 RB Index	/ 11 IVIIIZ

Test Item	Channel Bandwdith	Modulation	Mode	Test Channel
				704 MHz
Occupied Bandwidth	10 MHz	QPSK, 16QAM	6 RB / 0 RB Offset / 0 RB Index	707.5 MHz
				711 MHz
Spurious and				704 MHz
Harmonic Emissions	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index	707.5 MHz
at Antenna Termianl				711 MHz
Radiated Spurious				704 MHz
and Harmonic	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index	707.5 MHz
Emissions				711 MHz

Test Mode: LTE Band 13

Test Item	Channel Bandwdith	Modulation	Mode	Test Channel
			1 RB / 0 RB Offset / 0 RB Index	
			1 RB / 5 RB Offset / 0 RB Index	
			1 RB / 0 RB Offset / 3 RB Index	
			1 RB / 5 RB Offset / 3 RB Index	
Conducted Output	40.3.55		1 RB / 0 RB Offset / 7 RB Index	
Power	10 MHz	QPSK, 16QAM	1 RB / 5 RB Offset / 7 RB Index	782 MHz
			3 RB / 0 RB Offset / 0 RB Index	
			3 RB / 3 RB Offset / 7 RB Index	
			6 RB / 0 RB Offset / 0 RB Index	
			6 RB / 0 RB Offset / 7 RB Index	
Equivalent Isotropic Radiated Power	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index	782 MHz
Frequency stability	10 MHz	QPSK	1 RB / 0 RB Offset / 0 RB Index	782 MHz
Occupied Bandwidth	10 MHz	QPSK, 16QAM	6 RB / 0 RB Offset / 0 RB Index	782 MHz
Peak-to-Average	10 MH-	ODCH 160AM	1 RB / 0 RB Offset / 0 RB Index	792 MIL
Ratio	10 MHz	QPSK, 16QAM	6 RB / 0 RB Offset / 0 RB Index	782 MHz
			1 RB / 0 RB Offset / 0 RB Index	792 MHz
Pand Edga	10 MHz	ODSV 160AM	6 RB / 0 RB Offset / 0 RB Index	782 MHz
Band Edge	10 MHZ	QPSK, 16QAM	1 RB / 5 RB Offset / 0 RB Index	782 MHz
			6 RB / 5 RB Offset / 0 RB Index	702 MINZ
Spurious and Harmonic Emissions at Antenna Termianl	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index	782 MHz
Radiated Spurious and Harmonic Emissions	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset / 0 RB Index	782 MHz

Page 16 of 81 Report No. : OT-199-RWD-006

5.4 Frequency List of Low/Middle/High Channels

	LTE Band	4 Channel and Frequenc	y List	
Bandwidth	Channel / Frequency	Low	Middle	High
40.197	Channel	20000	20175	20350
10 MHz	Frequency	1 715 MHz	1 732.5 MHz	1 750 MHz

	LTE Band 12	2 Channel and Frequence	y List	
Bandwidth	Channel / Frequency	Low	Middle	High
403.55	Channel	23060	23095	23130
10 MHz	Frequency	704 MHz	707.5 MHz	711 MHz

	LTE Band 13	3 Channel and Frequenc	y List	
Bandwidth	Channel / Frequency	Low	Middle	High
	Channel	-	23230	1
10 MHz	Frequency	-	782 MHz	-

5.5 Configuration of Test System

Radiated Emission Test:

Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10: 2013 to determine the worse operating conditions. Final radiated emission tests were conducted at 3 m Semi Anechoic Chamber.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both vertical and horizontal polarization.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

As this product is only using DC power, AC conducted emission test has not been performed.

6.2 General Radiated Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	X

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 17 of 81 Report No. : OT-199-RWD-006

7. CONDUCTED OUTPUT POWER

7.1 Operating environment

Temperature : $24 \, ^{\circ}\text{C}$

Relative humidity : 48 % R.H.

7.2 Test set-up

Conducted Output Power is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v04, April 9, 2018, Section 5.2.

A base station simulator was used to establish communication with the EUT, and Spectrum analyzer was used for test results. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■.	- MT8821C	ANRITSU	Radio Communication Analyzer	6261849029	Jul. 26, 2019 (1Y)
	- GP-4303D	LG Precision Co.,Ltd	DC Power Supply	5071069	Jan. 10, 2019 (1Y)

All test equipment used is calibrated on a regular basis.

Page 18 of 81 Report No. : OT-199-RWD-006

7.4 Test data

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

Conducted Average Output Power (dBm)

					QPSK			16QAM	
Band /	RB	RB	RB	LOW	MIDDLE	HIGH	LOW	MIDDLE	HIGH
Bandwidth	Size	Offset	Index	1715 MHz	1732.5 MHz	1750 MHz	1715 MHz	1732.5 MHz	1750 MHz
	1	0	0	22.81	22.64	22.96	22.41	22.42	22.58
	1	5	0	22.80	22.61	22.94	22.38	22.29	22.55
	1	0	3	22.73	22.62	22.85	22.33	22.21	22.54
	1	5	3	22.76	22.59	22.88	22.31	22.19	22.56
Band 4	1	0	7	22.71	22.62	22.86	22.30	22.21	22.57
/ 10 MHz	1	5	7	22.74	22.60	22.85	22.29	22.29	22.56
	3	0	0	22.63	22.54	22.82	22.32	22.30	22.48
	3	3	7	22.77	22.46	22.78	22.35	22.35	22.47
	6	0	0	22.56	22.53	22.82	22.28	22.39	22.53
	6	0	7	22.53	22.51	22.84	22.29	22.38	22.52

Conducted Average Output Power (dBm)

					QPSK			16QAM	
Band /	RB	RB	RB	LOW	MIDDLE	HIGH	LOW	MIDDLE	HIGH
Bandwidth	Size	Offset	Index	704 MHz	707.5 MHz	711 MHz	704 MHz	707.5 MHz	711 MHz
	1	0	0	23.32	23.38	23.36	22.87	22.93	23.05
	1	5	0	23.28	23.30	23.35	22.89	22.96	23.03
	1	0	3	23.28	23.34	23.25	22.90	22.97	22.97
	1	5	3	23.30	23.31	23.27	22.94	22.98	22.94
Band 12	1	0	7	23.26	23.14	23.08	22.98	22.93	22.78
/ 10 MHz	1	5	7	23.20	23.13	23.06	22.96	22.81	22.76
	3	0	0	23.06	23.20	23.14	23.03	23.17	22.98
	3	3	7	23.15	23.27	23.19	23.08	23.08	22.92
	6	0	0	23.22	23.16	23.22	22.88	22.89	22.95
	6	0	7	23.21	23.06	23.08	22.87	22.85	22.97

Conducted Average Output Power (dBm)

				-	QPSK			16QAM	
Band /	RB	RB	RB	LOW	MIDDLE	HIGH	LOW	MIDDLE	HIGH
Bandwidth	Size	Offset	Index	-	782 MHz	-	-	782 MHz	-
	1	0	0	-	23.48	-	_	23.28	-
	1	5	0	-	23.46	-	1	23.27	-
	1	0	3	-	23.44	-	1	23.23	=
	1	5	3	-	23.43	=	-	23.26	=
Band 13	1	0	7	-	23.45	-	-	23.24	-
/ 10 MHz	1	5	7	-	23.42	-	-	23.22	-
	3	0	0	-	23.39	-	-	23.16	-
	3	3	7	-	23.37	-	-	23.19	-
	6	0	0	-	23.36	-	-	23.22	-
	6	0	7	-	23.42	-	-	23.18	-

Tested by: Ju Yun Park / Assistant Manager

Report No.: OT-199-RWD-006

8. EQUIVALENT ISOTROPIC RADIATED POWER

8.1 Operating environment

Temperature : 23 °C

Relative humidity : 48 % R.H.

8.2 Methods of Measurement

- 1. The testing follows ANSI C63.26 (2015) Section 5.5.3.
- 2. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 3. The substitution antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step 2. Record the power level of S.G.
- 4. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution antenna power can be Calculated. E.R.P power = E.I.P.R power 2.15 dBi.

8.3 Limits

Rule Part 27.50(d) (4) specifies that "Fixed, mobile and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP"

Limit 1 W (30 dBm)

8.4 Test set-up

The EUT and measurement equipment were set up as shown in the diagram below.

It should not be reproduced except in full, without the written approval of ONETECH Corp.

8.5 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ -	ESR	Rohde & Schwarz	EMI Test Receiver	101470	Oct. 22, 2018 (1Y)
■ -	310N	Sonoma Instrument	AMPLIFIER	312544	Mar. 18, 2019 (1Y)
■ -	FSV30	Rohde & Schwarz	Signal Analyzer	101372	Jul. 24, 2019 (1Y)
□ -	BBV9718B	Schwarzbeck	Broadband Preamplifier	009	Mar. 20, 2019 (1Y)
■ -	SCU-03	Rohde & Schwarz	Signal Conditioning Unit	100333	Mar. 11, 2019 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	102266	Jul. 24, 2019 (1Y)
■ -	MA-4000XPET	Innco Systems GmbH	Antenna Master	MA4000/509	N/A
□ -	HD100	HD GmbH	Position Controller	N/A	N/A
■ -	DT3000-3t	Innco Systems GmbH	Turn Table	N/A	N/A
□ -	FMZB 1513	Schwarzbeck	LOOP ANTENNA	1513-235	May. 13, 2018 (2Y)
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-255	Jun 05, 2018 (2Y)
■ -	VULB9163	Schwarzbeck	Hybrid Antenna	777	Apr, 13, 2018 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	9120D-1366	Jul. 16, 2019 (1Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	9120D-295	Jul. 16, 2019 (1Y)
-	SCU40A	Rohde & Schwarz	Pre-Amplifier	100436	Mar. 11, 2019 (1Y)
-	MT8821C	ANRITSU	Radio Communication Analyzer	6261849029	Jul. 26, 2019 (1Y)
= -	GP-4303D	LG Precision Co.,Ltd	DC Power Supply	5071069	Jan. 10, 2019 (1Y)

All test equipment used is calibrated on a regular basis.

Page 22 of 81 Report No. : OT-199-RWD-006

8.6 Test data for LTE Band 4 QPSK

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBi)	EIRP (dBm)	Limits (dBm)	Margin (dB)
Test Data for QPSK							
1 715.0	14.22	Н	1.21	7.40	20.41	30.00	9.59
1 715.0	11.03	V	1.21	7.40	17.22	30.00	12.78
1 732.5	14.27	Н	1.23	7.30	20.34	30.00	9.66
1 732.5	11.07	V	1.23	7.30	17.14	30.00	12.86
1 750.0	14.49	Н	1.23	7.10	20.36	30.00	9.64
1 750.0	11.22	V	1.23	7.10	17.09	30.00	12.91

Remark: "H": Horizontal, "V": Vertical

8.7 Test data for LTE Band 4 16QAM

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBi)	EIRP (dBm)	Limits (dBm)	Margin (dB)
Test Data for 16QAM							
1 715.0	13.82	Н	1.21	7.40	20.01	30.00	9.99
1 715.0	10.65	V	1.21	7.40	16.84	30.00	13.16
1 732.5	13.87	Н	1.23	7.30	19.94	30.00	10.06
1 732.5	10.65	V	1.23	7.30	16.72	30.00	13.28
1 750.0	14.09	Н	1.23	7.10	19.96	30.00	10.04
1 750.0	10.88	V	1.23	7.10	16.75	30.00	13.25

Remark: "H": Horizontal, "V": Vertical

Tested by: Ju Yun Park / Assistant Manager

9. EFFECTIVE RADIATED POWER

9.1 Operating environment

Temperature : 23 °C

Relative humidity : 48 % R.H.

9.2 Methods of Measurement

- 1. The testing follows ANSI C63.26 (2015) Section 5.5.3.
- 2. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 3. The substitution antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step 2. Record the power level of S.G.
- 4. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution antenna power can be Calculated. E.R.P power = E.I.P.R power 2.15 dBi.

9.3 Limits

Rule Part 27.50(b) (10) specifies that "Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP"

Rule Part 27.50(c) (10) specifies that "Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP"

Limit	3 W (34.77 dBm)

9.4 Test set-up

The EUT and measurement equipment were set up as shown in the diagram below.

It should not be reproduced except in full, without the written approval of ONETECH Corp.

9.5 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ -	ESR	Rohde & Schwarz	EMI Test Receiver	101470	Oct. 22, 2018 (1Y)
■ -	310N	Sonoma Instrument	AMPLIFIER	312544	Mar. 18, 2019 (1Y)
■ -	FSV30	Rohde & Schwarz	Signal Analyzer	101372	Jul. 24, 2019 (1Y)
□ -	BBV9718B	Schwarzbeck	Broadband Preamplifier	009	Mar. 20, 2019 (1Y)
■ -	SCU-03	Rohde & Schwarz	Signal Conditioning Unit	100333	Mar. 11, 2019 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	102266	Jul. 24, 2019 (1Y)
■ -	MA-4000XPET	Innco Systems GmbH	Antenna Master	MA4000/509	N/A
□ -	HD100	HD GmbH	Position Controller	N/A	N/A
■ -	DT3000-3t	Innco Systems GmbH	Turn Table	N/A	N/A
□ -	FMZB 1513	Schwarzbeck	LOOP ANTENNA	1513-235	May. 13, 2018 (2Y)
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-255	Jun 05, 2018 (2Y)
■ -	VULB9163	Schwarzbeck	Hybrid Antenna	777	Apr, 13, 2018 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	9120D-1366	Jul. 16, 2019 (1Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	9120D-295	Jul. 16, 2019 (1Y)
-	SCU40A	Rohde & Schwarz	Pre-Amplifier	100436	Mar. 11, 2019 (1Y)
-	MT8821C	ANRITSU	Radio Communication Analyzer	6261849029	Jul. 26, 2019 (1Y)
= -	GP-4303D	LG Precision Co.,Ltd	DC Power Supply	5071069	Jan. 10, 2019 (1Y)

All test equipment used is calibrated on a regular basis.

Page 25 of 81 Report No.: OT-199-RWD-006

9.6 Test data for LTE Band 12 QPSK

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBd)	ERP (dBm)	Limits (dBm)	Margin (dB)
Test Data for QPSK							
704.0	17.35	Н	0.85	5.45	21.95	34.77	12.82
704.0	13.92	V	0.85	5.45	18.52	34.77	16.25
707.5	17.47	Н	0.87	5.45	22.05	34.77	12.72
707.5	14.03	V	0.87	5.45	18.61	34.77	16.16
711.0	17.54	Н	0.86	5.25	21.93	34.77	12.84
711.0	14.09	V	0.86	5.25	18.48	34.77	16.29

Remark: "H": Horizontal, "V": Vertical

9.7 Test data for LTE Band 12 16QAM

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBd)	ERP (dBm)	Limits (dBm)	Margin (dB)
		Te	st Data for 16Q	QAM			
704.0	16.98	Н	0.85	5.45	21.58	34.77	13.19
704.0	13.25	V	0.85	5.45	17.85	34.77	16.92
707.5	17.07	Н	0.87	5.45	21.65	34.77	13.12
707.5	13.33	V	0.87	5.45	17.91	34.77	16.86
711.0	17.22	Н	0.86	5.25	21.61	34.77	13.16
711.0	13.44	V	0.86	5.25	17.83	34.77	16.94

Remark: "H": Horizontal, "V": Vertical

Tested by: Ju Yun Park / Assistant Manager

Page 26 of 81 Report No. : OT-199-RWD-006

9.8 Test data for LTE Band 13 QPSK

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBd)	ERP (dBm)	Limits (dBm)	Margin (dB)		
	Test Data for QPSK								
782.0	782.0 17.64 H 0.88 4.95 21.71 34.77 13.06								
782.0	13.88	V	0.88	4.95	17.95	34.77	16.82		

Remark: "H": Horizontal, "V": Vertical

9.9 Test data for LTE Band 13 16QAM

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBd)	ERP (dBm)	Limits (dBm)	Margin (dB)		
	Test Data for 16QAM								
782.0	782.0 17.19 H 0.88 4.95 21.26 34.77 13.51								
782.0	13.52	V	0.88	4.95	17.59	34.77	17.18		

Remark: "H": Horizontal, "V": Vertical

Tested by: Ju Yun Park / Assistant Manager

DUETECH

10. RADIATED SPURIOUS EMISSIONS

10.1 Operating environment

Temperature : 23 °C

Relative humidity : 48 % R.H.

10.2 Test set-up

Radiated emission measurements are performed in the Semi-Anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI C63.26 (2015) Section 5.5.3. The turntable is rotated through 360°, and the receiving antenna scans in order to determine the level of the maximized emission. The level and position of the maximized emission is recorded with the spectrum analyzer using RMS detector.

A vertically polarized half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

Where: Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.

The maximum EIRP is calculated by adding the forward power to the calibrated source plus its appropriate gain value.

These steps are repeated with the receiving antenna in both vertical and horizontal polarization, the difference between the gain of the horn and an isotropic antenna are taken into consideration

Limits

LTE -4 Rule Part 27.53(h) specifies that "for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB."

LTE -12 Rule Part 27.53 (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 +10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

LTE -13 Rule Part 27.53(f)For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-003 (Rev.2)

authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

LTE Band 4 / 12 Limit

Limit	-13 dBm
LTE Band 13 Limit	
Limit out of the band 1559-1610 MHz	-13 dBm
Limit in the band 1559-1610 MHz	-40 dBm

Radiated spurious emissions

band measurements.

- 1. Frequency Range: 9 kHz ~ 10th Harmonics of highest channel fundamental frequency.
- 2. The EUT was setup to maximum output power. The 100 kHz RBW was used to scan from 30 MHz to 1 GHz. Also, the 1 MHz RBW was used to scan from 1 GHz to 20 GHz. The high, low and a middle channel were tested for out of

10.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
-	ESR	Rohde & Schwarz	EMI Test Receiver	101470	Oct. 22, 2018 (1Y)
■ -	310N	Sonoma Instrument	AMPLIFIER	312544	Mar. 18, 2019 (1Y)
■ -	FSV30	Rohde & Schwarz	Signal Analyzer	101372	Jul. 24, 2019 (1Y)
□ -	BBV9718B	Schwarzbeck	Broadband Preamplifier	009	Mar. 20, 2019 (1Y)
■ -	SCU-03	Rohde & Schwarz	Signal Conditioning Unit	100333	Mar. 11, 2019 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	102266	Jul. 24, 2019 (1Y)
■ -	MA-4000XPET	Innco Systems GmbH	Antenna Master	MA4000/509	N/A
-	HD100	HD GmbH	Position Controller	N/A	N/A
■ -	DT3000-3t	Innco Systems GmbH	Turn Table	N/A	N/A
-	FMZB 1513	Schwarzbeck	LOOP ANTENNA	1513-235	May. 13, 2018 (2Y)
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-255	Jun 05, 2018 (2Y)
■ -	VULB9163	Schwarzbeck	Hybrid Antenna	777	Apr, 13, 2018 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	9120D-1366	Jul. 16, 2019 (1Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	9120D-295	Jul. 16, 2019 (1Y)
□ -	SCU40A	Rohde & Schwarz	Pre-Amplifier	100436	Mar. 11, 2019 (1Y)
-	MT8821C	ANRITSU	Radio Communication Analyzer	6261849029	Jul. 26, 2019 (1Y)
■ -	GP-4303D	LG Precision Co.,Ltd	DC Power Supply	5071069	Jan. 10, 2019 (1Y)

All test equipment used is calibrated on a regular basis.

Page 30 of 81 Report No. : OT-199-RWD-006

10.4 Test data

10.4.1 Test data for LTE Band 4 QPSK

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Detector : RMS-. Measurement distance : 3 m-. Result : PASSED

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBi)	Corrected Readiang (dBm)	Limits (dBm)	Margin (dB)				
	Test Data for Low Channel										
3 430.00	-76.73	Н	2.16	12.51	-66.38	-13.00	53.38				
5 145.00	-77.88	Н	2.80	12.50	-68.18	-13.00	55.18				
6 860.00	-75.18	V	3.31	12.31	-66.18	-13.00	53.18				
8 575.00	-71.60	Н	4.05	12.05	-63.60	-13.00	50.60				
10 290.00	-67.20	V	4.11	11.08	-60.23	-13.00	47.23				
	Test Data for Middle Channel										
3 465.00	-72.57	V	2.16	12.51	-62.22	-13.00	49.22				
5 197.50	-78.50	V	2.80	12.50	-68.80	-13.00	55.80				
6 930.00	-75.83	V	3.31	12.31	-66.83	-13.00	53.83				
8 662.50	-71.93	Н	4.05	12.05	-63.93	-13.00	50.93				
10 395.00	-66.95	V	4.11	11.08	-59.98	-13.00	46.98				
		7	Test Data for H	igh Channel							
3 500.00	-72.70	Н	2.16	12.51	-62.35	-13.00	49.35				
5 250.00	-80.35	V	2.80	12.50	-70.65	-13.00	57.65				
7 000.00	-74.37	V	3.31	12.31	-65.37	-13.00	52.37				
8 750.00	-71.21	V	4.05	12.05	-63.21	-13.00	50.21				
10 500.00	-66.48	Н	4.11	11.08	-59.51	-13.00	46.51				

Remark: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst case was found in QPSK modulation

3. Rule Part 27.53(h) specifies that "the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB."

Limit: $30.00 - 43 + 10\log(1.00) = -13 \text{ dBm}$

"C.L": Cable Loss, "H": Horizontal, "V": Vertical

Tested by: Ju Yun Park / Assistant Manager

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 31 of 81 Report No. : OT-199-RWD-006

10.4.2 Test data for LTE Band 12 QPSK

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Detector : RMS-. Measurement distance : 3 m-. Result : PASSED

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBi)	Corrected Readiang (dBm)	Limits (dBm)	Margin (dB)	
	Test Data for Low Channel							
1 408.00	-68.68	V	1.28	7.50	-62.46	-13.00	49.46	
2 112.00	-62.72	Н	1.52	6.70	-57.54	-13.00	44.54	
2 816.00	-55.91	V	1.67	5.00	-52.58	-13.00	39.58	
3 520.00	-81.43	V	1.98	12.33	-71.08	-13.00	58.08	
4 224.00	-80.73	V	2.26	12.74	-70.25	-13.00	57.25	
	Test Data for Middle Channel							
1 415.00	-59.12	Н	1.28	7.50	-52.90	-13.00	39.90	
2 122.50	-62.75	Н	1.52	6.70	-57.57	-13.00	44.57	
2 830.00	-55.51	V	1.67	5.00	-52.18	-13.00	39.18	
3 537.50	-81.39	Н	1.98	12.33	-71.04	-13.00	58.04	
4 245.00	-80.20	V	2.26	12.74	-69.72	-13.00	56.72	
	Test Data for High Channel							
1 422.00	-59.87	Н	1.28	7.50	-53.65	-13.00	40.65	
2 133.00	-63.01	V	1.52	6.70	-57.83	-13.00	44.83	
2 844.00	-55.24	V	1.67	5.00	-51.91	-13.00	38.91	
3 555.00	-81.15	V	1.98	12.33	-70.80	-13.00	57.80	
4 266.00	-80.28	V	2.26	12.74	-69.80	-13.00	56.80	

Remark: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

- 2. The worst case was found in QPSK modulation
- 3. Rule Part 27.53 (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 +10 log (P) dB.

Limit: $34.77 - 43 + 10\log(3.00) = -13 \text{ dBm}$

"C.L": Cable Loss, "H": Horizontal, "V": Vertical

Tested by: Ju Yun Park / Assistant Manager

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 32 of 81 Report No. : OT-199-RWD-006

10.4.2 Test data for LTE Band 13 QPSK

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Detector : RMS-. Measurement distance : 3 m-. Result : PASSED

Frequency (MHz)	Substituted Level (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Ant Gain (dBi)	Corrected Readiang (dBm)	Limits (dBm)	Margin (dB)
	Test Data for Middle Channel						
1 564.00	-63.02	Н	1.29	6.70	-57.61	-40.00	17.61
2 346.00	-59.22	V	1.56	5.90	-54.88	-13.00	41.88
3 128.00	-80.31	Н	1.69	11.00	-71.00	-13.00	58.00
3 910.00	-80.89	V	2.38	12.44	-70.83	-13.00	57.83
4 692.00	-79.54	V	2.51	12.46	-69.59	-13.00	56.59

Remark: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

- 2. The worst case was found in QPSK modulation
- 3. Rule Part 27.53(f)For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

Limit out of the band 1559-1610 MHz : $34.77 - 43 + 10\log(3.00) = -13 \text{ dBm}$

Limit in the band 1559-1610 MHz : -40 dBm "C.L" : Cable Loss, "H": Horizontal, "V": Vertical

Tested by: Ju Yun Park / Assistant Manager

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 33 of 81 Report No. : OT-199-RWD-006

11. PEAK-TO-AVERAGE RATIO

11.1 Operating environment

Temperature : 24 °C

Relative humidity : 48 % R.H.

11.2 Test set-up

Peak to Average Power Ratio is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v04, April 9, 2018, Section 5.7.

- Section 5.7.2 Measurement of peak power in a broadband noise-like signal using CCDF

- a) Set resolution/measurement bandwidth ≥ OBW or specified reference bandwidth.
- b) Set the number of counts to a value that stabilizes the measured CCDF curve.
- c) Set the measurement interval as follows:
 - 1) For continuous transmissions, set to the greater of $[10 \times (number\ of\ points\ in\ sweep) \times (transmission\ symbol\ period)]$ or 1 ms.
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration.
 - 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers.
- d) Record the maximum PAPR level associated with a probability of 0.1%.
- e) The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

- Section 5.7.3 Alternate Procedure for PAPR

Some regulatory requirements specify a PAPR limit when the output power limits are specified in terms of average power. If it becomes necessary to provide measurement data to demonstrate compliance to a PAPR limit, then the appropriate procedure from those provided in 5.2.3 shall be utilized to determine the peak power (or peak PSD) and the appropriate procedure from those provided in 5.2.4 shall be used to determine the average power (or average PSD). The data from these measurements is then used in Equation (2) to determine the PAPR of a narrowband CW-like signal. See 5.2.3.4 for guidance on determining the PAPR of a broadband noise-like signal.

PAPR (dB) =
$$P_{Pk}$$
 (dBm or dBW) - P_{Avg} (dBm or dBW)

where

PAPR peak-to-average power ratio, in dB

P_{Pk} measured peak power or peak PSD level, in dBm or dBW

 $P_{\mbox{\scriptsize Avg}}$ measured average power or average PSD level, in dBm or dBW

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 34 of 81 Report No. : OT-199-RWD-006

11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV30	Rohde & Schwarz	Signal Analyzer	101372	Jul. 24, 2019 (1Y)
■ -	AAMCS-UDC	AA-MCS	Directional Coupler	400	Jul. 25, 2019 (1Y)
■ -	MT8821C	ANRITSU	Radio Communication Analyzer	6261849029	Jul. 26, 2019 (1Y)
-	GP-4303D	LG Precision Co.,Ltd	DC Power Supply	5071069	Jan. 10, 2019 (1Y)

All test equipment used is calibrated on a regular basis.

11.4 Test data

11.4.1 Test data LTE Band 4

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

LTE Band 4 QPSK

Test Mode	Channel	Peak-Average Ratio(PAR) CCDF 0.1 %	Limit (dB)	Result
	20000	4.81	13.00	PASS
1 RB	20175	4.84	13.00	PASS
	20350	4.99	13.00	PASS
	20000	4.87	13.00	PASS
6 RB	20175	4.99	13.00	PASS
	20350	4.99	13.00	PASS

Remark: Measured the using CCDFof spectrum analyzer.

LTE Band 4 16QAM

Test Mode	Channel	Peak-Average Ratio(PAR) CCDF 0.1 %	Limit (dB)	Result
	20000	5.57	13.00	PASS
1 RB	20175	5.59	13.00	PASS
	20350	5.54	13.00	PASS
	20000	5.68	13.00	PASS
6 RB	20175	6.06	13.00	PASS
	20350	6.23	13.00	PASS

Remark: Measured the using CCDFof spectrum analyzer.

Tested by: Ju Yun Park / Assistant Manager

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 37 of 81 Report No. : OT-199-RWD-006

11.4.2 Test data LTE Band 12

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

LTE Band 12 QPSK

Test Mode	Channel	Peak-Average Ratio(PAR) CCDF 0.1 %	Limit (dB)	Result
	23060	4.70	13.00	PASS
1 RB	23095	4.67	13.00	PASS
	23130	4.72	13.00	PASS
	23060	4.81	13.00	PASS
6 RB	23095	4.81	13.00	PASS
	23130	4.84	13.00	PASS

Remark: Measured the using CCDFof spectrum analyzer.

LTE Band 12 16QAM

Test Mode	Channel	Peak-Average Ratio(PAR) CCDF 0.1 %	Limit (dB)	Result
	23060	5.30	13.00	PASS
1 RB	23095	5.51	13.00	PASS
	23130	5.28	13.00	PASS
	23060	5.48	13.00	PASS
6 RB	23095	5.77	13.00	PASS
	23130	5.65	13.00	PASS

Remark: Measured the using CCDFof spectrum analyzer.

Tested by: Ju Yun Park / Assistant Manager

Page 40 of 81 Report No. : OT-199-RWD-006

11.4.3 Test data LTE Band 13

-. Test Date : August 05, 2019 ~ August 23, 2019

-. Test Result : Pass

LTE Band 13 QPSK

Test Mode	Channel	Peak-Average Ratio(PAR) CCDF 0.1 %	Limit (dB)	Result
1 RB	23230	4.72	13.00	PASS
6 RB	23230	4.87	13.00	PASS

Remark: Measured the using CCDFof spectrum analyzer.

LTE Band 13 16QAM

Test Mode	Channel	Peak-Average Ratio(PAR) CCDF 0.1 %	Limit (dB)	Result
1 RB	23230	5.33	13.00	PASS
6 RB	23230	5.86	13.00	PASS

Remark: Measured the using CCDFof spectrum analyzer.

Tested by: Ju Yun Park / Assistant Manager

