ROBEM I Assume $(N_t : t \ge 0)$ is Possion process with parameter α , and $\{\xi_n : n \in \mathbb{N}^+\}$ is a sequence of i.i.d random variable. More over, assume $(N_t : t \ge 0) \perp \{\xi_n : n \in \mathbb{N}^+\}$. Let $X_t = \sum_{k=1}^{N_t} \xi_k$. Let t > 0, prove that:

- 1. $(N_{t+r} N_r : t \ge 0)$ is Possion process.
- 2. $\{\xi_{N_r+n}: n \in \mathbb{N}^+\}$ is also i.i.d sequence with the same distribution of $\{\xi_n: n \in \mathbb{N}^+\}$.
- 3. $(N_{t+r} N_r : t \ge 0) \perp (\xi_{N_r+k} : k \in \mathbb{N}^+)$.
- 4. For $0 = t_0 < t_1 < \cdots < t_n$, we have $(X_{t_1}, X_{t_{k+1}} X_{t_k} : k = 1, 2, \cdots, n-1)$ are independent.
- SPETION. 1. Let $\mathcal{F}_t := \sigma(N_s : 0 \le s \le t)$ and $\mathcal{G}_t := \sigma(N_{r+s} N_r : 0 \le s \le t)$. For $0 \le s \le t$, we have $N_{t+r} N_r (N_{s+r} N_r) = N_{t+r} N_{s+r} \sim Possion(\alpha(t-s))$. And easily to know $N_{r+s} N_r \in \mathcal{F}_{r+s}$, so $\mathcal{G}_t \subset \mathcal{F}_{t+r}, \forall t \ge 0$. Since $(N_t : t \ge 0)$ is Possion process, easily $\mathcal{F}_{s+r} \perp N_{t+r} N_{s+r}$. Since $\mathcal{G}_t \subset \mathcal{F}_{t+r}$, we obtain $\mathcal{G}_t \perp N_{t+r} N_{s+r} = N_{t+r} N_r (N_{s+r} N_r)$. Easily since N_t is right-continuous we get $N_{t+r} N_r$ is right-continuous. For the same reason, we know $\forall s \in [0, \infty)$, $\lim_{t \to s-} N_{t+r} N_r$ exists. So $(N_{t+r} : t \ge 0)$ is Possion process.
- 2. Only need to prove that for $m \in \mathbb{N}^+$, the distribution of $(\xi_{N_r+k} : 1 \le k \le m)$ is same as that of $(\xi_k : 1 \le k \le m)$. For $A_1, A_2, \dots, A_m \in \mathcal{B}$, we have:

$$\mathbb{P}(\xi_{N_r+k} \in A_k, 1 \le k \le m)$$

$$= \sum_{t=0}^{\infty} \mathbb{P}(\xi_{N_r+k} \in A_k, 1 \le k \le m, N_r = t)$$

$$= \sum_{t=0}^{\infty} \mathbb{P}(\xi_{t+k} \in A_k, 1 \le k \le m, N_r = t)$$

$$(N_r \perp (\xi_n : n \in \mathbb{N}^+)) = \sum_{t=0}^{\infty} \mathbb{P}(\xi_{t+k} \in A_k, 1 \le k \le m) \mathbb{P}(N_r = t)$$

$$= \sum_{t=0}^{\infty} \prod_{k=1}^{m} \mathbb{P}(\xi_{k+t} \in A_k) \mathbb{P}(N_r = t)$$

$$= \sum_{t=0}^{\infty} \prod_{k=1}^{m} \mu(A_k) \mathbb{P}(N_r = t)$$

$$= \prod_{k=1}^{m} \mu(A_k)$$
(1)

where μ is the distribution of ξ_1 . So we get for $m \in \mathbb{N}^+$, the distribution of $(\xi_{N_r+k} : 1 \le k \le m)$ is same as that of $(\xi_k : 1 \le k \le m)$.

3. We know that $\forall t \in \mathbb{N}^+, \xi_{N_r+t} \in \sigma(N_r, \xi_k : k \in \mathbb{N}^+)$. So $\sigma(\xi_{N_r+k} : k \in \mathbb{N}^+) \subset \sigma(N_r, \xi_k : k \in \mathbb{N}^+)$. Since $(N_t : t \geq 0)$ is Possion process, we get that $N_{t+r} - N_r \perp N_r, \forall t \geq 0$. So $\sigma(N_{t+r} - N_r : t \geq 0) \perp N_r$. Easily $\sigma(N_{t+r} - N_r : t \geq 0) \perp \sigma(\xi_k : k \in \mathbb{N}^+)$, so finally we get that $\sigma(N_{t+r} - N_r : t \geq 0) \perp \sigma(N_r, \xi_k : k \in \mathbb{N}^+) \supset \sigma(\xi_{N_r+k} : k \in \mathbb{N}^+)$.

$$\begin{aligned} 4. \ \forall 0 &= t_0 < t_1 < \dots < t_n, \ \text{then} \ X_{t_1} = \sum_{i=1}^{N_{t_1}} \xi_i, X_{t_k} - X_{t_{k-1}} = \sum_{i=1}^{N_{t_k}-N_{t_{k-1}}} \xi_{N_{t_{k-1}}+i} \xi_i, k = 2, \dots, n, \ \text{then} \ \forall \{A_k \in \mathscr{E} : k = 1, \dots, n\}, \\ & \mathbb{P}(\bigcap_{k=1}^n \sum_{i=1}^{N_{t_k}-N_{t_{k-1}}} \xi_{i+N_{t_{k-1}}} \in A_k) \\ &= \mathbb{P}(\bigcup_{0 \le u_1 \le \dots \le u_n} \{\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k, N_{t_k} = u_k, k = 1, \dots, n\}) \\ &= \sum_{0 \le u_1 \le \dots \le u_n} \mathbb{P}(\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k, k = 1, \dots, n|N_{t_k} = u_k, k = 1, \dots, n\}) \mathbb{P}(N_{t_k} = u_k, k = 1, \dots, n) \\ &= \sum_{0 \le u_1 \le \dots \le u_n} \prod_{k=1}^n \mathbb{P}(\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k, k = 1, \dots, n\}) \mathbb{P}(N_{t_k} = u_k, k = 1, \dots, n) \\ &= \sum_{0 \le u_1 \le \dots \le u_n} \prod_{k=1}^n \mathbb{P}(\sum_{i=u_{k-1}+1}^{u_k} \xi_i \in A_k) \prod_{j=1}^n \mathbb{P}(N_{t_j} = u_j) \\ &= \sum_{0 \le u_1 \le \dots \le u_n} \prod_{k=1}^n \mathbb{P}(\sum_{i=1}^{u_k-u_{k-1}} \xi_{u_{k-1}+i} \in A_k) \prod_{j=1}^n \mathbb{P}(N_{t_j} - N_{t_{j-1}} = u_j - u_{j-1}) \\ &= \sum_{0 \le u_1 \le \dots \le u_n} \prod_{k=1}^n \mathbb{P}(\sum_{i=1}^{u_k-u_{k-1}} \xi_{u_{k-1}+i} \in A_k) \mathbb{P}(N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1}) \\ &= \sum_{u_1-u_0 \in \mathbb{N}} \sum_{u_n-u_{k-1} \in \mathbb{N}} \prod_{k=1}^n \mathbb{P}(\sum_{i=1}^{u_k-u_{k-1}} \xi_{u_{k-1}+i} \in A_k, N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1}) \\ &= \prod_{k=1}^n \sum_{u_k-u_{k-1} \in \mathbb{N}} \mathbb{P}(\sum_{i=1}^{u_k-u_{k-1}} \xi_{u_{k-1}+i} \in A_k, N_{t_k} - N_{t_{k-1}} = u_k - u_{k-1}) \\ &= \prod_{k=1}^n \mathbb{P}(\sum_{i=1}^{N_{t_k}-N_{t_{k-1}}} \xi_{i+N_{t_{k-1}}} \in A_k) \end{aligned}$$

ROBEM II Assume that X is Possion random measure on (E, \mathcal{E}) with intensity μ , which is a σ -finite measure. Assume $f: E \to \mathbb{R}$ is measurable and non-negative, prove that:

$$\mathbb{E}(e^{-X(f)}) = \exp\left\{-\int_{E} (1 - e^{-f(x)})\mu(\mathrm{d}x)\right\}$$

SOUTON. Let $\mathcal{L} := \{g \in \mathcal{M}(E, [0, \infty)) : \mathbb{E}(e^{-X(f)}) = \exp(-\int_E (1 - e^{-f(x)})\mu(\mathrm{d}x))\}$. First we prove that if g is simple measurable function from E to $[0, \infty)$, then $g \in \mathcal{L}$. Assume $g(x) = \sum_{k=1}^n a_k \mathbb{1}_{A_k}(x)$, where $A_k \in \mathcal{E}, a_k > 0, A_i \cap A_j = \emptyset$. Then $\mathbb{E}(\exp(-X(g))) = \mathbb{E}(\prod_{k=1}^n \exp(-a_k X(A_k))) = \mathbb{E}(\prod_{k=1}^n \exp(-a_k X(A_k)))$

 $\prod_{k=1}^n \mathbb{E}(\exp(-a_k X(A_k)))$, since $X(A_k): k=1,\cdots,n$ are independent. Easily to know

$$\mathbb{E}(\exp(-a_k X(A_k))) = \sum_{i=0}^{\infty} \mathbb{P}(X(A_k) = i) \exp(-a_k i) = \sum_{i=0}^{\infty} \frac{\exp(-\mu(A_k))\mu(A_k)^i}{i!} \exp(-a_k i)$$

Noting that

$$\exp(-\int_{E} (1 - \exp(-a_k \mathbb{1}_{A_k}(x))) \mu(\mathrm{d}x)) = \exp(\exp(-a_k) \mu(A_k) - \mu(A_k)) = \exp(-\mu(A_k)) \sum_{i=0}^{\infty} \frac{(\exp(-a_k) \mu(A_k))^i}{i!}$$

we get $\mathbb{E}(\exp(-a_k X(A_k))) = \exp(-\int_E (1-\exp(-a_k \mathbb{1}_{A_k}(x)))\mu(\mathrm{d}x))$. Noting $\int_E (1-\exp(-g(x)))\mu(\mathrm{d}x) = \sum_{k=1}^n \int_E (1-\exp(-a_k \mathbb{1}_{A_k}(x)))\mu(\mathrm{d}x)$, we get $\mathbb{E}(\exp(-X(g))) = \exp(-\int_E (1-\exp(-g(x)))\mu(\mathrm{d}x))$. Now for non-negative function f, consider f_n satisfy that $\forall n, f_n$ is simple, and $f_n \nearrow f$ and $f_n \ge 0$. Then easily to know $\mathbb{E}(\exp(-X(f))) = \lim_{n\to\infty} \mathbb{E}(\exp(-X(f_n))) = \lim_{n\to\infty} \exp(-\int_E (1-\exp(-f(x)))\mu(\mathrm{d}x))$.

ROBEM III Assume μ is finite measure on (E, \mathcal{E}) , and X is Possion random measure with intensity μ . Assume $\phi: (E, \mathcal{E}) \to (F, \mathcal{F})$ is measurable, prove that $X \circ \phi^{-1}$ is Possion random measure with intensity $\mu \circ \phi^{-1}$.

SOLITION. Assume $B_k \in \mathcal{F}, \forall k \in \mathbb{N}$ and $\forall i \neq j, B_i \cap B_j = \emptyset$. Then $X \circ \phi^{-1}(\bigcup_{k \in \mathbb{N}} B_k) = X(\bigcup_{k \in \mathbb{N}} \phi^{-1}(B_k)) = \sum_{k \in \mathbb{N}} X(\phi^{-1}(B_k))$. Since X is possion random measure with intensity μ , and for $B_1, \dots, B_n \in \mathcal{F}$ and $B_i \cap B_j = \emptyset$, we have $\phi^{-1}(B_k)$ are disjoint set in (E, \mathcal{E}) , so $\mathbb{E}(\exp(i\sum_{k=1}^n \alpha_k X \circ \phi^{-1}(B_k))) = \exp(\sum_{k=1}^n (\exp(i\alpha_k) - 1)\mu \circ \phi^{-1}(B_k))$. So $X \circ \phi^{-1}$ is Possion random measure on (F, \mathcal{F}) with intensity $\mu \circ \phi^{-1}$.

ROBEM IV Assume $\alpha \geq 0$, and μ is probability measure on \mathbb{R} with $\mu(\{0\}) = 0$. Let $N(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u)$ is Possion random measure on $\mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^+$ with intensity $\mathrm{d}s\mu(\mathrm{d}z)\,\mathrm{d}u$. Let $Y_t = Y_0 + \int_0^t \int_{\mathbb{R}} \int_0^\alpha z N(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u)$, where $Y_0 \perp N$. Prove that $(Y_t : t \geq 0)$ is compound Possion process with rate α and jumping distribution μ .

SOUTON. We know that $\forall t \geq 0, \forall r: 0 \leq r \leq t, Y_r \in \sigma(N(B): B \subset [0,r] \times \mathbb{R} \times [0,\alpha])$. And $\forall w \geq t, Y_w - Y_t \in \sigma(N(B): B \subset (t,w] \times \mathbb{R} \times [0,\alpha])$. Easily $(t,w] \cap [0,r] = \emptyset$, so we get $Y_w - Y_t \perp (Y_r: 0 \leq r \leq t)$. Now we only need to check the distribution of $Y_w - Y_t$. Since $ds\mu(dz) du$ has the same distribution with $d(s-t)\mu(dz) du$, we get that $Y_w - Y_t \stackrel{d}{=} Y_{w-t} - Y_0$. So we only need to check the distribution of $Y_t - Y_0$.

Since the distribution of $Y_t - Y_0$ is determined by the distribution of N on the set $[0,t] \times \mathbb{R} \times [0,\alpha]$, so we can assume N is constructed as 1.5.5, because this will not change the distribution of N on $[0,t] \times \mathbb{R} \times [0,\alpha]$. Let $\eta \sim Possion(\alpha t)$ and ξ_1, \cdots are i.i.d r.v. range in $[0,t] \times \mathbb{R} \times [0,\alpha]$ with distribution $\mathrm{d} s\mu(\mathrm{d} z)\,\mathrm{d} u$, and $\eta \perp (\xi_n:n\in\mathbb{N}'+)$. Assume for $B\subset [0,t]\times \mathbb{R}\times [0,\alpha]$ we have $N(B)=\sum_{j=1}^{\eta}\delta_{\xi_j}(B)$. Then we get $Y_t-Y_0=\sum_{j=1}^{\eta}\xi_j(2)$, where $\xi_j(2)$ is the second ordinate of ξ_j . Easily $\xi_j(2)\sim \mu,\eta\sim Possion(\alpha t)$, so finally we get $(Y_t:t\geq 0)$ is the compound distribution with rate α and jumping distribution μ .

ROBEM V Assume X is Possion random measure on (E, \mathcal{E}) with intensity μ , a finite measure. Assume f, g are non-negative measure function on E. Prove that:

- 1. $\mathbb{E}(X(f)e^{-X(g)}) = \mu(fe^{-g})\mathbb{E}(e^{-X(g)}).$
- 2. $\mathbb{E}(X(f)^2 e^{-X(g)}) = (\mu(f^2 e^{-g} + \mu(f e^{-g})'2))\mathbb{E}(e^{-X(g)}).$

SOUTION. 1. Let
$$h(\theta) := \mathbb{E}(e^{-X(\theta f + g)}) = \exp\left(-\int_E (1 - e^{-\theta f(x) - g(x)} \mu(\mathrm{d}x))\right)$$
. Then

$$h'(\theta) = \mathbb{E}(X(f)\mathrm{e}^{-X(\theta f + g)}) = \exp\left(-\int_E (1 - \mathrm{e}^{-\theta f(x) - g(x)}\mu(\mathrm{d}x))\right) \cdot \int_E f(x)\mathrm{e}^{-\theta f(x) - g(x)}\mu(\mathrm{d}x)$$

Since they are all non-negative, the differential is valid. Let $\theta = 0$, we get $\mathbb{E}(X(f)e^{-X(g)}) = \mu(fe^{-g})\mathbb{E}(e^{-X(g)})$.

2. Take h as above, easily to get $h''(\theta) = \mathbb{E}(X(f)^2) e^{-X(g)} = \exp\left(-\int_E (1 - e^{-\theta f(x) - g(x)} \mu(\mathrm{d}x))\right) \cdot \left(\int_E f(x) e^{-\theta f(x) - g(x)} \mu(\mathrm{d}x)\right)^2 + \exp\left(-\int_E (1 - e^{-\theta f(x) - g(x)} \mu(\mathrm{d}x))\right) \cdot \int_E f(x)^2 e^{-\theta f(x) - g(x)} \mu(\mathrm{d}x).$ Let $\theta = 0$, then easily $\mathbb{E}(X(f)^2 e^{-X(g)}) = (\mu(f^2 e^{-g} + \mu(f e^{-g})'2))\mathbb{E}(e^{-X(g)}).$