EE301 - Tutorial 4

- 1. Find the Poynting vector on the surface of a long straight conducting wire (of radius 'a' and conductivity o) that carries a direct current I. Assume current flow in positive z direction.
- A metallic conductor has a circular cross section of radius 1 cm and $\sigma = 2 \times 10^7$ S/m. The conductor carries uniformly distributed current of 100 Amp d.c. in the $\overline{a_z}$ direction. Calculate:
 - Resistance R of one meter length and use I²R to find dc power loss in that length.
 - if. Calculate \overline{J} , \overline{E} , \overline{H} and Poynting vector within the conductor.
 - Integrate \bar{P} over the cylindrical surface enclosing one meter length of conductor and iii. show that the answer is same as in part (i).
- 3. In free space $\overline{H} = 0.2\cos(\omega t \beta x)\overline{a_z}$ (A/m). Find the total average power passing through A square plate of side 10 cm on plane x + z = 1 and
 - A circular disc of radius 5 cm on plane x = 1.
 - 4. Electric field of an electromagnetic wave propagating in a medium in $+\overline{a_z}$ direction is given

$$\overline{E_s} = E_0 \left(\overline{a_y} - j \overline{a_z} \right) e^{-j\beta x}$$

Determine the polarization of the wave.

5. An electromagnetic wave has the electric field intensity in the phasor form given by $\overline{E_s} = 4(\overline{a_z} - j\overline{a_x})e^{-j\beta y}$

The EM wave is incident on a perfect conductor located at y = 0. What will be the polarization of the reflected wave?

- 6. The electric field of an electromagnetic wave propagation in the positive direction is given by $\bar{E} = \overline{a_x} sin(\omega t - \beta z) + \overline{a_y} sin(\omega t - \beta z + \pi/2)$. Determine the polarization of the wave.
- 7. Two plane waves propagate in positive z direction. Both waves are at the same frequency and have equal amplitudes. Wave A is polarized linearly in the x direction, and wave B is polarized in the direction $\overline{a_x} + \overline{a_y}$. In addition, wave B lags behind wave A by a small angle θ . What is the polarization of the sum of the two waves?

Review Questions

- 1. Does the Poynting theorem apply to static fields? Explain
- 2. Define complex permittivity. Is this quantity only a convenient notation or is it a physically measurable quantity? If so, what are the meanings of its real and imaginary parts?
- 3. Comment on how the dispersion will change with frequency in a lossy dielectric material.

Scanned by CamScanner

