Réactions d'oxydo-réductions

Situation-problème

La formation de rouille sur les structures en fer est due à l'oxydation du fer dans les marais humides. Cette transformation chimique est appelée réaction d'oxydoréduction.

- Qu'est-ce qu'un oxydant? Et qu'est-ce qu'un réducteur?
- Qu'est-ce qu'une réaction d'oxydoréduction?

Objectifs

- 🦃 Définir l'oxydant et le réducteur.
- 🍄 Connaître le couple oxydoréduction et sa semi-équation associe.
- 🦤 Définir la réaction d'oxydoréduction et savoir écrire son équation.
- 🤏 Savoir équilibrer une demi-équation d'oxydo-réduction .

$\{\hat{\mathbf{I}}\}$

La réaction d'oxydo-réduction

① Activité

On introduit une plaque de Zinc dans un bécher contenant une solution de sulfate de cuivre II $(Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-})$ de couleur bleu (voir la figure ①) Lorsque la transformation est déminée, on verse un peu de la solution du bécher dans un tube à essai contenant une solution aqueuse d'hydroxyde de sodium $(Na_{(aq)}^+ + HO_{(aq)}^-)$, et on remarque la formation d'un précipité blanc (voir la figure②)

- Déterminer les espèces chimiques présentes dans le mélange à l'état initial.
- **Q**uel est l'espèce chimique responsable de la couleur bleue dans le bécher ?

- **4** Quel est le nom du précipité blanc formé dans le tube à essai après avoir ajouté une quantité de la solution contenant le bécher ? Que montre ce teste ?
- 6 Déduire les espèces chimiques présentes dans le mélange du bécher à l'état final .
- 6 Ecrire la demi-équation qui conduit à la formation de cuivre Cu.
- $m{arphi}$ Écrire la demi-équation qui conduit à la formation des ions de Zinc $Zn_{(aq)}^{2+}$
- © Écrire l'équation de la réaction chimique qui se produit dans le mélange du bécher, déterminant particules échangées entre les réactifs.
- Octte transformation est appelée réaction d'oxydoréduction . proposer une définition appropriée pour celle-ci .

© Definitions	
	• • • • •
	• • • • • •
	• • • • •
	• • • • • •
	• • • • •
	• • • • •
	• • • • •
3 Le couple ox/red	
1 227	
	• • • • •
	• • • • •
	• • • • •
	• • • • •
L'équation de la réaction d'oxydoréduction	
	• • • • •
	• • • • •
	• • • • •
	• • • • •
	• • • • •
	• • • • •

• •	
• •	
• •	
• 1	
• (
*	Remarque
*	Application
	Écrire la demi-équation de réduction pour chacun des couples suivants: $Fe_{(aq)}^{3+}/Fe_{(aq)}^{2+}; Br_{2(aq)}/Br_{(aq)}^{-}; H_{(aq)}^{+}/H_{2(g)}$ Écrire l'équation de la réaction d'oxydoréduction qui se produit entre les ions $H_{(aq)}^{+}$ et l'aluminium $Al_{(s)}$
Ė	
i I I	

i				
				H
				H
				H
&Équilibre d'une	demi-équatio	n d'oxydoréduc	tion dans un milieu ac	cide
		<u> </u>		
	• • • • • • • • • • • • • • • • • • • •		••••••	• • • •
	• • • • • • • • • • • • • • • • • • • •		••••••	• • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••	
			• • • • • • • • • • • • • • • • • • • •	• • • •
				••••
* Application				
1 Écrire la demi-équat			pour chacun des couples	
1 Écrire la demi-équat suivants: MnO _{4(aq)} /	$Mn_{(aq)}^{2+}$; $CO_{2(aq)}/$	$H_2C_2O_{4(aq)}$		
1 Écrire la demi-équat suivants: MnO _{4(aq)} /	$Mn^{2+}_{(aq)}$; $CO_{2(aq)}/$	$H_2C_2O_{4(aq)}$	pour chacun des couples chacun des couples suivants	

