Algoritmusok és adatszerkezetek II

Boda Bálint 2022. őszi félév

1. Minimális feszítőfák(MST)

1.1. Kruskal algoritmus

- a) A Kruskal algoritmus egy tetszőleges G gráf egy minimális feszítőerdejét állítja elő. Az algoritmus továbbá visszaad egy számot ami, ha 1 a gráf összefüggő. Nyilván ekkor a feszítőerdő egyetlen egy komponensből áll, azaz egy feszítőfa.
- b)

c) **Tétel.** Ha a G = (V, E) irányítatlan, összefüggő, élsúlyozott gráfon

- 1. az A élhalmaz részhalmaza G valamelyik minimális feszítőfája élhalmazának
- 2. az $(S, V \setminus S)$ vágás elkerüli az A élhalmazt
- 3. $(u, v) \in E$ könnyű él az $(S, V \setminus S)$ vágásban,

akkor az (u, v) él biztonságosan hozzávehető az A élhalmazhoz.

Definíció. A G=(V,E) irányítatlan összefüggő gráf feszítőfája a T=(V,F) gráf, ha $F\subseteq E$ és T fa.

Definíció. A G irányítatlan összefüggő élsúlyozott gráf **minimális feszítőfája** (angolul: minimum spanning tree) T, ha T feszítőfája G-nek és G bármely T' feszítőfája esetén:

Definíció. Legyen G=(V,E) egy gráf. Ha $\emptyset \neq S \subset V$, akkor az $(S,V\setminus S)$ gráfot vágásnak nevezzük.

Definíció. A G = (V, E) gráf, egy (u, v) éle keresztezi a $(S, V \setminus S)$ vágást, ha

$$(u \in S \land v \in V \setminus S) \lor (u \in V \setminus S \land v \in S)$$

Definíció. A G = (V, E) gráfban az $(S, V \setminus S)$ vágás elkerüli az $A \subseteq E$ élhalmazt, ha A egyetlen éle sem keresztezi a vágást.

Definíció. A G = (V, E) élsúlyozott gráf egy $(u, v) \in E$ élét könnyű élnek nevezzük, ha keresztezi az $(S, V \setminus S)$ vágást, és költsége kisebb vagy egyenlő mint bármely más a vágást keresztező élé.

Definíció. Tegyük fel, hogy G = (V, E) élsúlyozott, irányítatlan, összefüggő gráf és A részhalmaza G valamely minimális feszítőfája élhalmazának. Ekkor az $(u, v) \in E$ él biztonságosan hozzávehető az A élhalmazhoz, ha $(u, v) \notin A$ és $A \cup \{(u, v)\}$ részhalmaza G valamely minimális feszítőfája élhalmazának.

d) A Kruskal algoritmus invariánsa miatt teljesülnek a tétel feltételei, ezáltal egy adott él az algoritmus futása során, A-hoz csak biztonságos éleket veszünk.

e)

Így a műveletigény: $(n + m + m \cdot \log n) \in \Theta(m \cdot \log n)$, ha feltesszük, hogy a makeSet és union műveletek műveletigénye $\Theta(1)$ a findSet-é pedig $\Theta(\log n)$, illetve a minimum prioritásos sor inicializálása $\Theta(m)$, a remMin() metódus költsége pedig max. $\Theta(\log m)$.

1.2. Prim algoritmus

- a) A Prim algoritmus egy összefüggő élsúlyozott irányítatlan gráf egy minimális feszítőfáját adja meg.
- b)

- c) **Tétel.** Ha a G = (V, E) irányítatlan, összefüggő, élsúlyozott gráfon
 - 1. az A élhalmaz részhalmaza G valamelyik minimális feszítőfája élhalmazának
 - 2. az $(S, V \setminus S)$ vágás elkerüli az A élhalmazt
 - 3. $(u,v) \in E$ könnyű él az $(S,V \setminus S)$ vágásban,

akkor az (u, v) él biztonságosan hozzávehető az A élhalmazhoz.

Definíció. A G=(V,E) élsúlyozott gráf egy $(u,v)\in E$ élét könnyű élnek nevezzük, ha keresztezi az $(S,V\setminus S)$ vágást, és költsége kisebb vagy egyenlő mint bármely más a vágást keresztező élé.

Definíció. Legyen G=(V,E) egy gráf. Ha $\emptyset \neq S \subset V$, akkor az $(S,V\setminus S)$ gráfot vágásnak nevezzük.

d) Az algoritmus egy tetszőleges csúcsból indulva elkezdi építeni a (V,F) minimális feszítőfát a T=(N,A) kezdetben egyetlen egy csúcsból álló fából. Minden lépésben T-hez egy újabb biztonságos élt és az ahhoz tartozó csúcsot adjuk. Így az algoritmus futása során végig igaz marad az $N\subseteq V \land A\subseteq F$ invariáns. Ehhez minden lépésben egy könnyű élt választunk ki az $(N,V\setminus N)$ vágásban, ami a tétel miatt biztonságos él.

e)

$$MT_{prim} \in \underbrace{\Theta(n)}_{\text{inicializáló ciklus}} + \underbrace{\Theta(n)}_{\text{minPrQ inicializálása}} + \underbrace{O(n \cdot \log n)}_{\text{külső ciklus}} + \underbrace{O(m \cdot \log n)}_{\text{belső ciklus}} \in O((n+m) \cdot logn)$$

2. Legrövidebb utak

2.1. Dijkstra algoritmus

- a) Egy élsúlyozott G gráf tetszőleges s csúcsából optimális utat ad meg G minden s-ből elérhető csúcsára. Minden élnek pozitív élsúlyúnak kell lennie.
- b)
- c)

- d) Ha a prioritásos sort minimum kupacként ábrázoljuk. Ekkor az a kupac inicializálása $\Theta(n)$, az adjust () $\in \Theta(\log n)$
- e
- f) Ekkor a remMin() eljárás műveletigénye $\Theta(n)$. Ez az eljárás a fő ciklus minden iterációjában lefut, figyelembe véve még a belső ciklust is $MT_{Dijkstra} \in O((n+m) \cdot n)$ műveletigény adódik. A minimális esetben egyetlen egyszer fut le a külső és egyszer sem a belső ciklus így abban az esetben az minimum prioritásos sor és a d és π tömbök inicializálása lesz meghatározó, ami $mT_{Dijkstra} \in \Theta(n)$ műveletigényt eredményez.

2.2. DAG legrövidebb utak algoritmus

2.3. Soralapú Bellman-Ford algoritmus

3. Mintaillesztés

3.1. Brute-force

Nem túl hatékony:

$$mT_{BF}\in\Theta(n)$$

$$MT_{BF}\in\Theta(n\cdot m), \text{ ami kellően nagy } m \text{ esetén } \Theta(n^2)$$

ahol n a szöveg m pedig a minta hossza.

3.2. Quicksearch

a) A Quicksearch algoritmus, egy $T/1:\Sigma[n]$ szövegben a $P/1:\Sigma[m]$ minta összes érvényes eltolását, azaz az

$$\big\{ s \in [0..(n-m)] \mid T[s+1..s+n] = P[1..m] \big\}$$

halmazt adja meg. ([0..(n - m)] intervallumot mígT[s+1..s+n]réssztringet jelöl)

b)

c)

d)

e)

$$mT(n,m)\in\Theta\left(\frac{n}{m+1}+m\right)\quad \text{(pl. ha }T[1..n]\text{ \'es }P[1..m]\text{ diszjunktak)}$$

$$MT(n,m)\in\Theta\left((n-m+2)\cdot m\right)\quad \text{(pl. ha }T=AA...A\text{ \'es }P=A...A)$$

Definíció. Legyen G=(V,E) egy gráf. Ha $\emptyset \neq S \subset V$, akkor az $(S,V\setminus S)$ gráfot vágásnak nevezzük.

f) Maximális futási ideje rosszabb mint a többi algoritmusnak. Átlagos futási ideje rosszabb mint a KMP algoritmusnak és a visszalépések miatt nem használható szekvenciális fájlokon egy ideiglenes tárhely bevezetése nélkül.

3.3. KMP

a) A KMP algoritmus, egy $T/1:\Sigma[n]$ szövegben a $P/1:\Sigma[m]$ minta összes érvényes eltolását, azaz az

$${s \in [0..(n-m)] \mid T[s+1..s+n] = P[1..m]}$$

halmazt adja meg. ([0..(n - m)] intervallumot mígT[s+1..s+n]réssztringet jelöl)

b)

Így a nexttömb a következő:

P[j]	В	A	В	A	A	В	A	В
\overline{j}	1	2	3	4	5	6	7	8
next[j]	0	0	1	2	0	1	2	3

c)

d)

- e) Az init() függvény ciklusa minimum m-1, maximum 2m-2 alkalommal iterál így műveletigénye $\Theta(m)$. A fő eljárás ciklusa legalább n-szer, legfeljebb 2n-szer iterál, továbbá egyszer lefut az inicializáló függvény, így $m_{KMP} \in \Theta(m+n) = \Theta(n)$.
- f) A KMP algoritmus műveletigénye jobb, továbbá, mivel az algoritmus során nem lépünk vissza a T szövegben, ezért szekvenciális inputfájlokkal is használható átmeneti tároló bevezetése nélkül.