Fine-Grained Activity Detection in the Kitchen with UWB

University of Alberta

Steven Phan

 $08~\mathrm{April}~2023$

Contents

1	Intr	oducti	on	4			
2	$\operatorname{Lit}\epsilon$	Literature Review					
	2.1	Overvi	iew	7			
	2.2	Backgr	round for Diseases and Conditions in Aging	9			
		2.2.1	Frailty	9			
		2.2.2	Dementia	10			
		2.2.3	Hearing Loss	10			
		2.2.4	Vision Loss	10			
		2.2.5	Dizziness	10			
		2.2.6	Heart Failure	11			
		2.2.7	Ischemic Heart Disease	11			
		2.2.8	Diabetes Mellitus	12			
		2.2.9	Osteoarthritis	12			
		2.2.10		13			
	2.3	Tradit	ional Assessment of ADLs	13			
		2.3.1	Barthel index	15			
		2.3.2	Katz Index of Independence in ADLs	16			
		2.3.3	Functional Independence Measure	17			
		2.3.4	ADL Profile	18			
		2.3.5	ADL Questionnaire	19			
		2.3.6	Australian Therapy Outcome Measures	21			
		2.3.7	Melbourn Low-Vision ADL Index	22			
		2.3.8	Self-Assessment PD Disability Scale	22			
		2.3.9	Frenchay Activities Index	25			
		2.3.10	ADL Profile Instrumental	26			
		2.3.11	Lawton Instrumental ADL Scale	27			
		2.3.12		29			

		2.3.13	Texas Functional Living Scale	29
			Summary	29
	2.4		me Monitoring of ADLs	32
		2.4.1	Camp et al's Tech Used to Recognize ADL in Community-	
			Dwelling Older Adults	32
		2.4.2	Gadey et al's Tech for Monitoring ADL in Older Adults	37
	2.5	Motiva	ation	39
	2.6		oring Cooking	39
	2.7		Steps	43
3	Syst	tem Te	esting and Tuning at the Independent Living Suite	45
	3.1		n Tuning Review	46
	3.2	Metho	dology	46
		3.2.1	Setup	46
		3.2.2	Protocol	49
	3.3	Result	S	50
	3.4	Discus	sion	54
		3.4.1	X Position	54
		3.4.2	Y Position	54
		3.4.3	Z Position	54
		3.4.4	Overall	55
4	Clas	ssificat	ion of Time Series Data	57
	4.1	Classic	Machine Learning Methods	58
		4.1.1	k-Nearest Neighbours (kNN)	58
		4.1.2	Support Vector Machines (SVM)	60
		4.1.3	Random Forests	67
		4.1.4	Shapelet Transform	70
	4.2	Neural	l Networks	73
		4.2.1	Overview	73
		4.2.2	Deep Neural Networks (DNN)	74
		4.2.3	Convolutional Neural Networks (CNN)	81
		4.2.4	Recurrent Neural Networks (RNN)	81
		4.2.5	Long Short Term Memory (LSTM) Neural Networks .	81
		4.2.6	Transformer Neural Networks	81
	13	Footur	o Extraction	Ω 1

5	Pilo	t Testing of Detecting Activities to make a Sandwich	82
	5.1	Experimental Protocol	74
		5.1.1 Setup	74
		5.1.2 Data Collection	75
	5.2	Feature Extraction	76
	5.3	Model Selection	78
	5.4	Results	78
	5.5	Discussion	85
6	PAS	SS Tasks	86

Chapter 1 Introduction

Chapter 2 Literature Review

Chapter 3

System Testing and Tuning at the Independent Living Suite

Chapter 4

Classification of Time Series Data

Based on the findings in Chapter 3, it was determined that Machine Learning (ML) would be a suitable method for classifying the data obtained from the Pozyx system. Prior to attempting any experimentation, this chapter will conduct a survey of the current ML techniques available for the classification of Time Series Data. These techniques can be split into the Classic ML methods and Neural Networks.

4.1 Classic Machine Learning Methods

4.1.1 k-Nearest Neighbours (kNN)

Overview

The k-Nearest Neighbours is a classifier that assigns a class to an unlabeled observation by looking at the class of k neighbours and choosing the class that appears the most within these k neighbours. The "nearest neighbours" are determined through a measure of Euclidean-Distance D between a neighbour p and unlabeled point q with n features is shown in Equation 4.1 [81]

$$D(p,q) = \sqrt{(p_1 - q_1)^2 + (p_1 - q_2)^2 + \dots + (p_n - q_n)^2}$$
(4.1)

Using Equation 4.1 the top k neighbours with the lowest distance are considered and the class that occurs the most within these nearest neighbours is the class chosen for the unlabeled observation. In the event that there is a tie between the classes, resolution of the tie depends on the implementation of the library used. In R kNN() resolves ties by picking a random tied candidate class [81] and scikit-learn's kNeighboursClassifier uses scipy's "mode" method which returns the first class that ties in the array [82].

Dynamic Time Warping (DTW) as a Distance

Though Euclidean-Distance may be suitable for problems with a fixed feature set, or vectors with the same length, patterns that manifest in time-series data may be stretched, compressed, or shifted in the temporal domain. Using Euclidean distance, a signal compared with the same signal shifted t+1 may result in large distances even though the signals compared were the same signals [83]. A method called Dynamic Time Warping (DTW), was devised to counter the shortcomings of Euclidean distance and is robust to temporal variation that occurs naturally. It achieves this by calculating all

the distances from one point to every other point and chooses a path that costs the least, finding the minimum distance between two vectors that do not have to be the same length. Mathematically, for $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_m)$ be two time series of length n and m respectively, DTW first begins with calculating the Cost Matrix which is the cost between each pair in the time series [83]

$$\forall_i \in 1, ..., n, \forall_j \in 1, ..., n, C_{ij} = f(i, j)$$
(4.2)

Where f is the squared Euclidean-Distance (equation 4.1 squared) for multivariate time-series [83].

$$f(x,y) = D(x,y)^2 \tag{4.3}$$

A warping path is defined as $p = (p_1, ..., p_L)$ through the cost matrix C begins on $p_1 = (1, 1)$, must end on $p_L = (n, m)$ and moves with step $p_{l+1}-p_1 \in \{(1,0),(1,1),(0,1)\}$. The costs in the along the paths are summed And the DTW score is the path that costs the least [83].

$$DTW(X,Y) = \min_{p \in P} C_p(X,Y)$$
(4.4)

Though every path does not need to be calculated as dynamic programming can be leveraged, the time complexity is still high at O(nm) [83] and this time complexity must be considered when designing a real-time classification system.

Tunable Parameters

The tunable parameter in kNN is k and controls the number of neighbours selected. The optimal k should be empirically chosen by varying k for the selected dataset. When using kNN, the entire training dataset is used as-is. Therefore, class imbalance should also be considered. For example, a higher number of class A than class B could lead to a higher density of class A. Even though the unlabeled observation may be closer to class B, the classifier may choose class A because class B has "run out" of neighbours. With increasing k, the inaccuracy caused by class imbalance becomes even more apparent. If k exceeds the number of samples in the class with the lower number of samples, then the class with the higher number of samples will always be chosen.

4.1.2 Support Vector Machines (SVM)

Overview

Support Vector Machines (SVM) involves finding a hyperplane that best separates 2 classes. There are two cases, the linearly separable case and the non-linearly separable case. In the linearly separable case, the hyperplane perfectly separates the two classes (see Figure 4.1). The idea is to maximize the "margin" which is the training data that is closest to the hyperplane [84]. Cervantes et al. depict this as maximizing the distance between parallel hyperplanes H1 and H2 (which pass through the "support vector" data-points of the training dataset) in Figure 4.1 to optimize the generalization capability of the model.

Figure 4.1: SVM Best Hyperplane in the linearly separable case [84].

The linearly separable case is rare in real life. Instead, datapoints from one class may seem to mix with the other class at the optimal boundary (Figure 4.2). To still find this optimal boundary, a positive slack factor ζ_i is introduced and controlled by a parameter C that controls the width of the margin. A lower C allows for a wider margin that may improve generalizability in real life at the cost of more misclassification of the training dataset, whereas a higher C tightens the margin and minimizes the classification errors in the training dataset but may decrease generalizability in real life [84].

Figure 4.2: SVM Best Hyperplane in the non linearly separable case [84].

SVM can also be used separate data that is not separable by a linear hyperplane (Figure 4.3) by using a kernel. Kernels reframe the problem in a highly dimensional space called the "feature space" and in this feature space, it is simple for the algorithm to find the hyperplane. In the next subsection that will detail the convex optimization problem for SVM, it is found that the function that needs to be optimized depends on the inner product between every sample $\langle x_i \cdot x_j \rangle$. Transforming the original dataset to this feature space through a transfer function ϕ yields an optimization problem that depends on $\langle \phi(x_i) \cdot \phi(x_j) \rangle$. Kernel functions $K(x_i, x_j)$ are special functions that provide an equivalent way to calculate $\phi(x_i) \cdot \phi(x_j)$ (ie $\phi(x_i) \cdot \phi(x_j) = K(x_i, x_j)$) without having to initially transform the original dataset using ϕ since transforming the dataset to the feature space may be a costly operation if there are many features. The following are popular kernels [84]:

- 1. Linear Kernel: $K(x_i, x_j) = x_i \cdot x_j$
- 2. Polynomial Kernel: $K(x_i, x_j) = (1 + x_i \cdot x_j)^p$
- 3. Gaussian Kernel: $K(x_i, x_j) = e^{-\frac{\left\|x_i x_j\right\|^2}{2\sigma^2}}$
- 4. RBF Kernel: $K(x_i, x_j) = e^{-\gamma(x_i x_j)^2}$
- 5. Sigmoid Kernel: $K(x_i, x_j) = tanh(\eta x_i \cdot x_j + v)$

Figure 4.3: SVM non-linear classifier (green line) [84].

Since SVM can only separate between 2 classes as a binary classifier, a further step must be done to separate multiple classes. Scikit-learn uses a one vs. rest strategy by default. For each class a decision boundary between itself and the rest of the samples are created. For an unlabeled point a probability of membership to each class is calculated and an argmax function is used to determine the membership [85].

Theory of SVM: Linearly Separable

Consider a training dataset $X = \{x_i, y_i\}_{i=1}^n$ consisting of n samples of feature vectors $x_i \in \mathbb{R}$ and labels $y_i \in (-1,1)$. In the linearly separable case of SVM, the two classes in our training dataset can be separated perfectly by a hyperplane. The data labelled with class y = 1 will be on one side of the hyperplane and the other class y = -1 will be on the other side of the hyperplane. The equation for a hyperplane is given in Equation 4.5

$$\mathbf{w} \cdot \mathbf{x} + b = 0 \tag{4.5}$$

Where $x \in \mathbb{R}^d$, and **w** the weights for the hyperplane and b the bias. For simplicity of visualization, consider $x \in \mathbb{R}^2$. The SVM optimization problem tries to find **w** and b such that the margin (ie. the distance to the closest point(s) to the hyperplane) is maximized. One variation of this margin called the functional margin F uses the y_i label to ensure that the margin is positive for individual samples correctly classified by some hyperplane with parameters (**w**, b) and is given by the Equation 4.6

$$F = \min_{i=1...n} \left[y_i(\mathbf{w} \cdot x_i + b) \right] \tag{4.6}$$

In the SVM optimization problem, this functional margin is set to F=1 as shown in 4.1 and results in the parallel hyperplanes H1 and H2 as the constraint of the problem (Eq. 4.7).

$$y_i(\mathbf{w} \cdot x_i + b) \ge 1 \ \forall \ i \tag{4.7}$$

The goal now is to maximize the distance between the hyperplanes H1 and H2 to obtain the optimal hyperplane H which falls in the middle of H1 and H2. The minimum distance from H to H2 (or H to H1) is called the geometric margin. This minimum distance can be found be taking the vector between any point on H2: p_{H2} and any point on H1: p_{H1} and projecting it onto the unit normal vector of H1 or H2 given by \mathbf{w} . Keep in mind that p_{H2} must satisfy $\mathbf{w} \cdot \mathbf{x} + b = 1$ and p_{H1} must satisfy $\mathbf{w} \cdot \mathbf{x} + b = -1$

$$d = \|\operatorname{proj}_{\mathbf{w}}(p_{H2} - p_{H1})\|$$

$$= \left\| \left((p_{H2} - p_{H1}) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) \frac{\mathbf{w}}{\|\mathbf{w}\|} \right\|$$

$$= \left\| (p_{H2} \cdot \mathbf{w} - p_{H1} \cdot \mathbf{w}) \frac{\mathbf{w}}{\|\mathbf{w}\|^2} \right\|$$

 p_{H2} must satisfy $\mathbf{w} \cdot p_{H2} + b = 1$ (ie $\mathbf{w} \cdot p_{H2} = b - 1$) to be on hyperplane H2 and p_{H1} must satisfy $\mathbf{w} \cdot p_{H1} + b = -1$ to be on hyperplane H1 (ie $\mathbf{w} \cdot p_{H1} = -b - 1$)

$$= \left\| ((1-b) - (-b-1)) \frac{\mathbf{w}}{||\mathbf{w}||^2} \right\|$$

$$= \left\| 2 \frac{\mathbf{w}}{||\mathbf{w}||^2} \right\|$$

$$d = \frac{2}{||\mathbf{w}||}$$
(4.8)

To find the optimal hyperplane, the distance $d = 2/||\mathbf{w}||$ must be maximized or equivalently $||\mathbf{w}||^2$ (which is a convex function [84]) can be minimized giving rise to the following convex optimization problem that can be solved using Lagrange Duality. The primal problem is:

$$\min ||\mathbf{w}||^2
\text{s.t. } y_i(\mathbf{w} \cdot x_i + b) \ge 1 \,\forall i$$
(4.9)

Converting equation 4.9 to the Lagrange Formulation which causes the constraint to move to the objective function and act as a penalty if the constraint is violated:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \langle \mathbf{w} \cdot \mathbf{w} \rangle - \sum_{i=1}^{n} \alpha_i [y_i (\langle \mathbf{w} \cdot x_i \rangle + b) - 1]$$
 (4.10)

Setting partial derivatives with respect to ${\bf w}$ and b equal to zero to minimize the Lagrangian:

$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \to \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i = 0 \to \sum_{i=1}^{n} \alpha_i y_i = 0$$
(4.11)

Substituting these into the Lagrange Formulation and simplifying yields the dual that depends only on the Lagrange Multipliers α [84].

$$L(\mathbf{w}, b, \alpha) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i y_i \alpha_j y_j \langle x_i \cdot x_j \rangle + \sum_{i=1}^{n} \alpha_i$$
 (4.12)

Then the dual optimization problem is shown in Equation 4.13 and the solution to the dual is the same as the solution to the primal given that the Karush-Kuhn-Tucker conditions (KKT) are satisfied [84]:

$$\max_{\alpha_i} -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i y_i \alpha_j y_j \langle x_i \cdot x_j \rangle + \sum_{i=1}^n \alpha_i$$
s.t. $\alpha_i \ge 0, 1, ..., n$

$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$(4.13)$$

The solution to the Lagrangian Multipliers α_i can be found using quadratic programming. It is observed that $\alpha_i > 0$ are called the support vectors and all other $\alpha_i = 0$ [84]. Once α_i is found, \mathbf{w} can be found using the training data and α_i in Equation 4.11. Since the support vectors have been found and known to fall on hyperplane H1 and H2, and the normal \mathbf{w} has been found, the optimal b can be found by isolating for b in H2: $(\mathbf{w} \cdot x_{H2}) + b = 1$ or H1: $(\mathbf{w} \cdot x_{H1}) + b = -1$ for a support vector that falls on H2 or H1 respectively.

Theory of SVM: Not Linearly Separable

The optimization problem for the not linearly separable case is very similar to the linearly separable case, only now there is the addition of a slack variables ζ_i to the constraint (see Figure 4.2). The optimization problem then becomes

(Equation 4.14) [84] with the squared sum of the slack variables modified by a weight C added to the original cost function:

$$\min ||\mathbf{w}||^2 + C \sum_{i=1}^n \zeta_i^2$$
s.t. $y_i(\mathbf{w} \cdot x_i + b) \ge 1 - \zeta_i \ \forall i$

$$\zeta_i > 0$$

$$(4.14)$$

A higher C increases the cost of permitting slack variables and therefore a higher C tends toward perfectly separating the data. The problem is solved in a similar way using Lagrangian Duality and details can be found in Cervantes et al.'s article [84]

Tunable Parameters

In SVM the tunable parameters are C, the type of kernel selected and the kernel's tunable parameter(s). In Section 4.1.2, it was discussed that the larger the C the larger the penalty on slack variables and therefore the classifier tends toward perfect separation of the data points. It doesn't seem like there is agreement on what kernel and what kernel parameter is appropriate for a specific application [84]. However, in practice it is common for datasets with many features to use the basic linear kernel [84]. If the data requires non-linear separation, the Gaussian Kernel is most widely used and its parameter σ can be appropriately chosen using a search [84].

4.1.3 Random Forests

Overview

Random Forests consist of Decision Trees that must be first discussed [86]. A decision tree can be built upon features that are categorical (eg. has astigmatism) or numerical (eg. age). Training a decision tree results in a the structure shown in Figure 4.4 with nodes representing the feature and edges representing the options or ranges of values that the feature can take. Typically, the classifier starts at a starting point called the root node. Edges extend uni-directional from the root node presents a decision that the classifier must make based on the features of the new data point. Picking an option or range of values (choosing one of the edges extending from the node) advances the classifier along that edge to the next node in the next level of the tree. The classifier repeats this decision process until there is no more next node; the classifier has reached a "leaf" node and can classify the data point.

Figure 4.4: Example of a Decision Tree [87]

Random Forests extend the use of Decision Trees by training multiple trees, classifying the new data with each tree and doing a majority vote on the output of each decision tree [88]. Each Decision Tree is trained using a random subset of data drawn from the original training data with replacement. These trees are grown to maximum depth without pruning using the

Classification and Regression Tree (CART) methodology and at each node a random subset of features is used [88]. In situations where there are many features with each feature providing only a small amount of information (eg. medical diagnosis), the single decision tree will have an accuracy slightly better than random classification, whereas using a Random Forest can produce improved accuracy [88].

In time series data, features can be extracted by taking the mean, standard deviation and slope of random subsequences in sequence labelled a certain class 4.5. The number of features is then 3 * the number of subsequences extracted. These features are used to train a random forest and new sequences of time series data can be classified by following the same methodology for feature extraction [83].

Figure 4.5: Decision Trees used for time-series classification. Mean, standard deviation and slope of random subsequences in a time-series sequence defining a class are used as features. [83]

Classification and Regression Tree (CART) Methodology

The Classification and Regression Tree (CART) method to grow trees outlined by Breiman et al. has the objective of splitting the dataset L at each node such that the descendent nodes—nodes one level down—are "purer" than

the parent node. Purity in sklearn's implementation of decision trees can be evaluated using Gini's Impurity and Entropy [89] and the most common, Gini's Impurity, is shown in Equation 4.15 [89].

$$G = \sum_{k} p_{mk} (1 - p_{mk}) \tag{4.15}$$

Where p_{mk} is the proportion or probability of observing a class k in subset Q_m

$$p_{mk} = \frac{1}{n_m} \sum_{y \in Q_m} I(y = k) \tag{4.16}$$

At some node m, some subset of the data at node m designated as Q_m , and k classes. At each node, candidate splits $\theta = (j, t_m)$ consisting of a feature j and threshold t_m are evaluated for impurity. According to the source code for sklearn, these candidate splits are chosen by randomly selecting a feature, sorting the feature's values, and using each of the feature's values as a threshold t_m for a candidate split (ie. the thresholds t_m are the values of feature j for the datapoints in the subset Q_m). This process is repeated until the max number of features to be evaluated (an input argument in the Decision Tree Classifier) is reached. The candidate split θ that minimizes the (Gini) impurity is selected to split the data in a binary fashion with 2 descendant nodes [90]. The same process repeats at the descendent nodes recursively until a termination condition (eg. max depth of tree) is reached or the descendant node only contains a single class.

Tunable Parameters

The tunable parameters for Random Forests are similar to Decision Trees and the full list may be found on sklearn's Documentation page for Random Forests [91]. Sklearn mentions that the default values for controlling the size of the tree (eg. max_depth, min_samples_leaf) leads to large, unpruned and fully grown trees which may be very memory intensive. They recommend to control these parameters to limit the memory consumption [91]. Otherwise, similar to other ML methods, a grid search should be used to find the optimal hyperparameters for the training dataset [92]. Parameters that should be considered for tuning in order of highest positive effect on the Area Under the Curve (AUC) is mtry (max_features in sklearn), sample size drawn for

training a tree, and the minimum number of observations in a terminal node (min_samples_leaf in sklearn) [92].

4.1.4 Shapelet Transform

Overview

A shapelet is a small but discriminating subsection of a time series waveform that represents a class [93]. To classify with shapelets, the authors in [93] propose using a decision tree with split criteria based on the inclusion shapelets from a shapelet dictionary (inclusion is determined by the distance between a subsequence from a new time-series signal and the shapelet being less than some threshold–Figure 4.6 shows that the inclusion threshold distance is 5.1). Shapelets address some of the shortcomings of using kNN-DTW presented in Section 4.1.1 that result in large time and space complexity and limit its applicability.

Figure 4.6: Example of a shapelet and the criteria for classifying a new timeseries [93].

Determining Shapelets

The authors in [93] mention that the total number of possible shapelets can be calculated by the following equation

$$\sum_{l=MINLEN}^{MAXLEN} \sum_{T_i \in D} (m_i - l + 1)$$

$$\tag{4.17}$$

for every timeseries T_i in dataset D, l is the length of a candidate shapelet and m_i is the length of the i-th timeseries in the dataset D. For the Trace

dataset with has 200 instances, each with length of 275. If MINLEN=3 and MAXLEN=275, the total number of candidates would be 7,480,200. A brute force approach (Algorithm 1) would be inefficient at finding the best shapelet. The time complexity is $O(\bar{m}^3k^2)$ for average length of timeseries \bar{m} , so the authors propose a pruning strategy to find the best shapelets for classification.

Algorithm 1 Brute Force approach for finding the best shapelet [93], bsf_gain is the information gain calculated using Entropy.

```
candidates \leftarrow \text{GenerateCandidates}(D, MAXLEN, MINLEN)
bsf\_gain \leftarrow 0
for each \mathcal{S} in candidates do
gain \leftarrow \text{CheckCandidates}(D, \mathcal{S})
if gain > bsf\_gain then
bsf\_gain \leftarrow gain
bsf\_shapelet \leftarrow \mathcal{S}
end if
end for
return bsf\_shapelet
```

To speed up the calculations, the authors use the early abandon method in the CheckCandidates (D, \mathcal{S}) function. Instead of calculating the entire Euclidean distance between the shapelet and the subsection of the time series, a minimum distance variable (initialized to infinity) is used to track the minimum distance calculated. If, at any point in the Euclidean distance calculation, the minimum distance is exceeded, the calculation is stopped and moves onto the next step. If the full distance between the shapelet and the subsection of the timeseries is less than the minimum distance in memory, then the minimum distance is updated [93].

Another optimization involves entropy pruning which occurs once again at the CheckCandidates (D, \mathcal{S}) function. Another variable is created to store the best so far information gain. Since the minimum distance calculation between the timeseries and the candidate shapelet is the most costly, these distances are calculated one by one. At each distance calculation, the optimal split point is determined for the distances already calculated and the information gain in the most ideal situation (the rest of Class A on one side and the rest of Class B on the other) is calculated. If the information gain in

the most ideal situation is less than the best so far gain, then the candidate shapelet can be pruned and no further minimum distance calculations will need to be done. Otherwise, continue calculating the minimum distances between the timeseries and the candidate shapelet and checking the information gain for the ideal situation at each step. If after calculating all of the distances between the candidate shapelet and the timeseries dataset and the information gain is still greater than the best so far information gain, then the best so far gain is updated and the process continues until all of the candidate shapelets have been considered [93].

Multi-Class Classification with Shapelets

To classify multiple classes, the authors of [93] proposed growing a decision tree. At each node a shapelet is found using the optimized Algorithm 1 outlined in the previous subsection. The split point identified using the shapelet at the node splits the dataset into a left and right subset of data. On the left and right subset of data, the optimized Algorithm 1 is used to find the shapelet and the split point for that subset of data. The process continues recursively until a leaf node is reached. This process creates a decision tree and a dictionary of shapelets shown in Figure 4.7 that can be used for classifying time-series data.

Figure 4.7: An example of a shapelet based decision tree [93].

4.2 Neural Networks

4.2.1 Overview

Neural networks are loosely based on the biological structure of the brain; it consists of nodes called neurons which are connected to each other. Some input x passes through the trained layers of neurons and produces an output $f(x,\theta)$ that can be used in applications such as classification (single point output) and forecasting (vector output) [94]. An example of a neural network is shown in Figure 4.8. Each neuron is a simple function consisting of a weighted sum of the incoming signal added to some bias b, and the result z is passed to an activation function $\sigma(z)$ which determines if the neuron fires or not. A very simple example of an activation function called the perceptron is shown in Equation 4.18. Note that due to the loss of information in the perceptron (ie. no information on the strength of activation), however, it is not used in neural networks found in literature [94].

Figure 4.8: A neural network with input x and output $f(x,\theta)$. The input is transformed at each intermediate layer $s^{(1)}, s^{(2)}, s^{(3)}$ until it reaches the output. [94].

$$\sigma(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 1 \end{cases}$$
 (4.18)

There are also different types of layers depending on the type of input x and the application of the neural network. The following subsections will briefly discuss these different types of layers used in their respective neural network. These layers include the linear layers, convolutional layers, recurrent layers, long short term memory (LSTM) layers and transformer layers.

4.2.2 Deep Neural Networks (DNN)

The Neuron

Deep Neural Networks consist of many stacked layers of neurons [94]. The threshold for considering a neural network "deep" is 3 layers [95]. As mentioned in the Overview, a neuron consists of the weighted sum of the incoming signal x added to some bias b, Equation 4.19. The weights for each layer are stored in a weight matrix W.

$$z_i(x) = b_i + \sum_{j=1}^{n_{in}} W_{ij} x_j \text{ for } i = 1, ..., n_{out}$$
 (4.19)

Each *i*-th output goes through an activation function $\sigma_i = \sigma(z_i)$ to determine whether the neuron "fires" to the *i*-th one in the next layer [94]. Examples of these activation functions can be seen in Figure 4.9.

The inputs and outputs of each layer can then be modeled as follows (Equation 4.20) with superscripts indicating the layer number [94]:

$$z_{i}^{(1)}(x_{\alpha}) = b_{i}^{(1)} + \sum_{j=1}^{n_{0}} W_{ij}^{(1)} x_{j;\alpha} \text{ for } i = 1, ..., n_{1}$$

$$z_{i}^{(l+1)}(x_{\alpha}) = b_{i}^{(l+1)} + \sum_{j=1}^{n_{l}} W_{ij}^{(l+1)} \sigma(z_{j}^{(l)}(x_{\alpha})) \text{ for } i = 1, ..., n_{l+1}, \ l = 1, ..., L - 1$$

$$(4.20)$$

Where L is the total number of layers (the depth of the neural network), and $n_{l=1,..,L-1}$ is the number of outputs (the width) at layer l. n_0 and n_L

Figure 4.9: Examples of some activation functions [94].

are the input and output dimensions of the neural network respectively [94]. Figure 4.10 depicts the inputs and outputs of a single neuron.

Figure 4.10: Visual representation of the equation of a neuron (Equation 4.20) [94]. The image on the right shows the inputs to the neuron and its corresponding outputs.

Training the Neural Network: Gradient Descent

Training a neural network involves repeatedly updating the weights W_{ij} and biases b_i of the model using a gradient-based method such as gradient descent. Gradient-based methods optimize (minimize) a loss function that calculates the error between the output layer result $z^{(L)}(x)$ and the human-annotated labels y; the goal of the optimization of the loss function is to decrease the error between the output layer result and the labels. Though the choice of loss function depends on the application, an example of a loss function \mathcal{L} can mean-squared error (MSE) shown in Equation 4.21 [94].

$$\mathcal{L}_{MSE}(z(x_{\delta};\theta), y_{\delta}) = \frac{1}{2} \left[z(x_{\delta};\theta) - y_{\delta} \right]^{2}$$
(4.21)

With the objective of minimizing the loss in mind, training a simple neural network may have the following steps [94]:

1. Model parameters $W_{ij}^{(l)}$ and $b_i^{(l)}$ (collectively referred to as θ hereon) initialized by independently sampling from an easy to sample distribution such as a zero-mean Gaussian Distribution with variances

$$\mathbb{E}[b_{i_1}^{(l)}b_{i_2}^{(l)}] = \delta_{i_1 i_2} C_b^{(l)}$$

$$\mathbb{E}[W_{i_1 j_1}^{(l)} W_{i_2 j_2}^{(l)}] = \delta_{i_1 i_2} \delta_{j_1 j_2} \frac{C_W^{(l)}}{n_l - 1}$$
(4.22)

With variances C and the above presentation uses the Kronecker Delta $\delta_{i_1i_2}$ (Equation 4.23) to show that the values for each weight and each bias are drawn independently from each other.

$$\delta_{i_1 i_2} = \begin{cases} 1 & \text{if } i_1 = i_2 \\ 0 & \text{if } i_1 \neq i_2 \end{cases}$$
 (4.23)

2. Using the initial weights and biases, the data from the training dataset \mathcal{A} is passed through the neural network using Equation 4.20 which predicts the last layer $z^{(L)}(x_{\alpha};\theta)_{\alpha\in\mathcal{A}}$. The loss is then calculated as the

¹Note that the subscript δ in $(z(x_{\delta};\theta), y_{\delta})$ is a placeholder to show the δ -th data point in a certain dataset that x and y are from (ie. training dataset \mathcal{A} has data points $(x_{\alpha}, y_{\alpha})_{\alpha \in \mathcal{A}}$ or testing dataset \mathcal{B} has data points $(x_{\beta}, y_{\beta})_{\beta \in \mathcal{B}}$)

average of the loss for each training sample in the training dataset \mathcal{A} and is shown in Equation 4.24

$$\mathcal{L}_{\mathcal{A}}(\theta) \equiv \frac{1}{|\mathcal{A}|} \sum_{\alpha \in \mathcal{A}} \mathcal{L}\left(z^{(L)}(x_{\alpha}; \theta), y_{\alpha}\right) \tag{4.24}$$

Also note that there can be multiple neurons in the output layer which the label y_{α} should match in size. The losses from each *i*-th output neuron with the corresponding *i*-th portion of the label for the data point α are summed together. In other words:

$$\mathcal{L}_{\mathcal{A}}(\theta) \equiv \frac{1}{|\mathcal{A}|} \sum_{\alpha \in \mathcal{A}} \sum_{i=1}^{n_L} \mathcal{L}\left(z_i^{(L)}(x_\alpha; \theta), y_{i;\alpha}\right)$$
(4.25)

3. The gradient of this loss is calculated with respect to each model parameter θ_{μ} and is used to iteratively update the model parameters in the negative direction of the gradient²

$$\theta_{\mu}(t+1) = \theta_{\mu}(t) - \eta \left. \frac{d\mathcal{L}_{\mathcal{A}}}{d\theta_{\mu}} \right|_{\theta_{\mu} = \theta_{\mu}(t)}$$
(4.26)

Where η is a positive hyperparameter called the learning rate and dictates the size of the step in the direction of the negative gradient, μ is added as a subscript to account for all parameters ($[W_{ij}^{(1)}, b_i^{(1)}, ..., W_{ij}^{(L)}, b_i^{(L)}]$), t is the number of steps in the iterative training process usually starting at t = 0.

The derivative $d\mathcal{L}_{\mathcal{A}}/d\theta_{\mu}$ is done iteratively starting at the last layer and propagating the results backwards layer by layer. This step is called

²While Equation 4.26 guarantees at least a local minimum with a small learning rate η . A popular variant of gradient descent called **Stochastic gradient descent** (SGD) uses a random subset of the training data $\mathcal{S}_t \in \mathcal{A}$. \mathcal{S}_t is called a batch and training is organized into "epochs" which is a complete pass through the training dataset. Using SGD has the advantage of better generalization and scalability since training time scales with a fixed size \mathcal{S}_t instead of the entire training set \mathcal{A} (since Equation 4.26 requires the calculation of the gradient for all data points in the data set used, the computation scales linearly with the set used. Assuming that the gradient can be approximated with \mathcal{S}_t , computing the gradient with a smaller subset \mathcal{S}_t is faster than the full \mathcal{A} because there are less gradients to calculate).

backpropagation and using the chain rule, it is shown generalized for any parameter θ_{μ} in Equation 4.27³:

$$\frac{d\mathcal{L}_{\mathcal{A}}}{d\theta_{\mu}} = \sum_{i=1}^{n_L} \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{i:\alpha}^{(L)}} \frac{dz_{i:\alpha}^{(L)}}{d\theta_{\mu}}$$
(4.27)

Starting at the last layer L and using the definition of $z_i^{(l+1)}$ in Equation 4.20, parameters associated with the m-th output neuron $m = 1, ..., n_L$ can be calculated as⁴:

$$\frac{d\mathcal{L}_{\mathcal{A}}}{db_{m}^{(L)}} = \sum_{i=1}^{n_{L}} \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{i;\alpha}^{(L)}} \frac{dz_{i;\alpha}^{(L)}}{db_{m}^{(L)}} = \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{m;\alpha}^{(L)}} (1)$$

$$\frac{d\mathcal{L}_{\mathcal{A}}}{dW_{mj}^{(L)}} = \sum_{i=1}^{n_{L}} \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{i;\alpha}^{(L)}} \frac{dz_{i;\alpha}^{(L)}}{dW_{mj}^{(L)}} = \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{m;\alpha}^{(L)}} \sigma_{j}^{(L-1)}$$

$$(4.28)$$

To get the parameters in the subsequent layer L-1, the chain rule is once again used:

$$\frac{d\mathcal{L}_{\mathcal{A}}}{db_{j}^{(L-1)}} = \sum_{i=1}^{n_{L}} \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{i;\alpha}^{(L)}} \frac{dz_{i;\alpha}^{(L)}}{d\sigma_{j}^{(L-1)}} \frac{d\sigma_{j}^{(L-1)}}{dz_{j;\alpha}^{(L-1)}} \frac{dz_{j;\alpha}^{(L-1)}}{db_{j}^{(L-1)}}$$

$$= \sum_{i=1}^{n_{L}} \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{i;\alpha}^{(L)}} W_{ij}^{(L)} \sigma_{j}^{\prime(L-1)} (1)$$

$$\frac{d\mathcal{L}_{\mathcal{A}}}{dW_{jk}^{(L-1)}} = \sum_{i=1}^{n_{L}} \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{i;\alpha}^{(L)}} \frac{dz_{i;\alpha}^{(L)}}{d\sigma_{j}^{(L-1)}} \frac{d\sigma_{j}^{(L-1)}}{dz_{j;\alpha}^{(L-1)}} \frac{dz_{j;\alpha}^{(L-1)}}{dW_{jk}^{(L-1)}}$$

$$= \sum_{i=1}^{n_{L}} \sum_{\alpha \in \mathcal{A}} \frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial z_{i;\alpha}^{(L)}} W_{ij}^{(L)} \sigma_{j}^{\prime(L-1)} \sigma_{k}^{(L-2)}$$
(4.29)

Note that the $dz_{i;\alpha}^{(L)}/d\theta_{\mu}$ term evaluates to zero if the *i*-th $z_{i;\alpha}^{(L)}$ doesn't depend on the parameter θ_{μ} .

⁴note that the sum from i to n_L vanishes because $dz_{i;\alpha}^{(L)}/\theta_{\mu}^{(L)}$ will evaluate to zero if $i \neq m$

More generally the following Equations 4.30 may be used iteratively by sequential multiplication of the chain rule factors to determine the parameters θ_{μ} in the *l*-th layer l = L - 1, ..., 1 (once again working backwards from layer L):

$$\frac{dz_{i;\alpha}^{(L)}}{db_{j}^{(l)}} = \frac{dz_{i;\alpha}^{(L)}}{dz_{j;\alpha}^{(l)}}$$

$$\frac{dz_{i;\alpha}^{(L)}}{dW_{jk}^{(l)}} = \sum_{m} \frac{dz_{i;\alpha}^{(L)}}{dz_{m;\alpha}^{(l)}} \frac{dz_{m;\alpha}^{(L)}}{dW_{jk}^{(l)}} = \frac{dz_{i;\alpha}^{(L)}}{dz_{j;\alpha}^{(l)}} \sigma_{k;\alpha}^{(l-1)}$$

$$\frac{dz_{i;\alpha}^{(L)}}{dz_{j;\alpha}^{(l)}} = \sum_{k=1}^{n_{l+1}} \frac{dz_{i;\alpha}^{(L)}}{dz_{k;\alpha}^{(l+1)}} W_{kj}^{(l+1)} \sigma_{j;\alpha}^{\prime(l)} \quad \text{for} \quad l < L$$
(4.30)

As a rule of thumb, The change in the loss function $\mathcal{L}_{\mathcal{A}}$ with respect to some parameter $\theta_{\mu}^{(l)}$ in layer l < L will depend on all of the neurons in the layer above l+1 (causing the summations to stack as the change in the loss function with parameters in lower layers are calculated).

Equation 4.26 is run until there is convergence at a least a local minimum or the number of iterations specified is completed [94].

- 4.2.3 Convolutional Neural Networks (CNN)
- 4.2.4 Recurrent Neural Networks (RNN)
- 4.2.5 Long Short Term Memory (LSTM) Neural Networks
- 4.2.6 Transformer Neural Networks

4.3 Feature Extraction

Time series data is a series of data that each consists of a value at an associated timestamp. In terms of the system investigated in this thesis, this could be a series of position in the x-axis measured at time $t_1, t_2, t_3...$ respectively. The data can be said to be indexed by time [96] typically in ascending order.

Chapter 5

Pilot Testing of Detecting Activities to make a Sandwich

Chapter 6
PASS Tasks

Bibliography

- [1] Pozyx, "Creator One Kit for research and prototyping Pozyx." [Online]. Available: https://www.pozyx.io/creator-one-kit
- [2] S. С. Government of Canada, "The Daily Popu-Canada, lation projections: the provinces and territo-2013 to 2063," Sep. 2014, last Modified: 2014-09ries, [Online]. Available: https://www150.statcan.gc.ca/n1/dailyquotidien/140917/dq140917a-eng.htm
- [3] L. M. Tijsen, E. W. Derksen, W. P. Achterberg, and B. I. Buijck, "Challenging rehabilitation environment for older patients," *Clinical Interventions in Aging*, vol. Volume 14, pp. 1451–1460, Aug. 2019. [Online]. Available: https://www.dovepress.com/challenging-rehabilitation-environment-for-older-patients-peer-reviewed-article-CIA
- [4] I. Wilkinson and Α. Harper, "Comprehensive geriatric planning," sessment. rehabilitation and discharge Medicine. 1, vol. 49, pp. 10-16, Jan. 2021. [Online]. Available: no. https://linkinghub.elsevier.com/retrieve/pii/S1357303920302711
- [5] P. F. Edemekong, D. L. Bomgaars, S. Sukumaran, and S. B. Levy, "Activities of Daily Living," in *StatPearls*. Treasure Island (FL): StatPearls Publishing, 2022. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK470404/
- [6] E. Jaul and J. Barron, "Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population," Frontiers in Public Health, vol. 5, p. 335, Dec. 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732407/

- [7] J. Hewitt, S. Long, B. Carter, S. Bach, K. McCarthy, and A. Clegg, "The prevalence of frailty and its association with clinical outcomes in general surgery: a systematic review and meta-analysis," *Age and Ageing*, vol. 47, no. 6, pp. 793–800, Nov. 2018. [Online]. Available: https://doi.org/10.1093/ageing/afy110
- [8] S. Conroy, "Defining frailty the holy grail of geriatric medicine," The Journal of Nutrition, Health and Aging, vol. 13, no. 4, pp. 389–389, Apr. 2009. [Online]. Available: http://link.springer.com/10.1007/s12603-009-0050-9
- [9] X. Chen, G. Mao, and S. X. Leng, "Frailty syndrome: an overview," Clinical Interventions in Aging, vol. 9, pp. 433–441, Mar. 2014. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964027/
- [10] "Diagnosis and Management of Dementia: Review | Dementia and Cognitive Impairment | JAMA | JAMA Network." [Online]. Available: https://jamanetwork.com/journals/jama/fullarticle/2753376
- [11] I. Arevalo-Rodriguez, N. Smailagic, M. Roqué I Figuls, A. Ciapponi, E. Sanchez-Perez, A. Giannakou, O. L. Pedraza, X. Bonfill Cosp, and S. Cullum, "Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI)," *The Cochrane Database of Systematic Reviews*, vol. 2015, no. 3, p. CD010783, Mar. 2015.
- [12] M. Desai, L. A. Pratt, H. Lentzner, and K. N. Robinson, "Trends in vision and hearing among older Americans," *Aging Trends (Hyattsville, Md.)*, no. 2, pp. 1–8, Mar. 2001.
- [13] J. R. Evans, A. E. Fletcher, R. P. L. Wormald, E. S.-W. Ng, S. Stirling, L. Smeeth, E. Breeze, C. J. Bulpitt, M. Nunes, D. Jones, and A. Tulloch, "Prevalence of visual impairment in people aged 75 years and older in Britain: results from the MRC trial of assessment and management of older people in the community," The British Journal of Ophthalmology, vol. 86, no. 7, pp. 795–800, Jul. 2002.
- [14] B. K. Swenor, M. J. Lee, V. Varadaraj, H. E. Whitson, and P. Y. Ramulu, "Aging With Vision Loss: A Framework for Assessing the Impact of Visual Impairment on Older Adults," The

- Gerontologist, vol. 60, no. 6, pp. 989–995, Aug. 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427480/
- [15] M. E. Tinetti, C. S. Williams, and T. M. Gill, "Dizziness among older adults: a possible geriatric syndrome," *Annals of Internal Medicine*, vol. 132, no. 5, pp. 337–344, Mar. 2000.
- [16] S. Iwasaki and T. Yamasoba, "Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System," *Aging and Disease*, vol. 6, no. 1, pp. 38–47, Feb. 2014. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306472/
- [17] G. Savarese and L. H. Lund, "Global Public Health Burden of Heart Failure," Cardiac Failure Review, vol. 3, no. 1, pp. 7–11, Apr. 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494150/
- [18] B. Ziaeian and G. C. Fonarow, "Epidemiology and aetiology of heart failure," *Nature Reviews. Cardiology*, vol. 13, no. 6, pp. 368–378, Jun. 2016.
- [19] R. D. S. Watson, C. R. Gibbs, and G. Y. H. Lip, "Clinical features and complications," *BMJ : British Medical Journal*, vol. 320, no. 7229, pp. 236–239, Jan. 2000. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117436/
- [20] I. o. M. U. C. o. S. S. C. D. Criteria, "Ischemic Heart Disease," in *Cardiovascular Disability: Updating the Social Security Listings.* National Academies Press (US), 2010. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK209964/
- [21] M. V. Madhavan, B. J. Gersh, K. P. Alexander, C. B. Granger, and G. W. Stone, "Coronary Artery Disease in Patients â‰¥80 Years of Age," Journal of the American College of Cardiology, vol. 71, no. 18, pp. 2015–2040, May 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0735109718336167
- [22] A. Sapra and P. Bhandari, "Diabetes Mellitus," in *StatPearls*. Treasure Island (FL): StatPearls Publishing, 2021. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK551501/

- [23] "Glucose tolerance tests: What exactly do they involve?" in InformedHealth.org [Internet]. Institute for Quality and Efficiency in Health Care (IQWiG), Oct. 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK279331/
- [24] M. J. Lespasio, A. A. Sultan, N. S. Piuzzi, A. Khlopas, M. E. Husni, G. F. Muschler, and M. A. Mont, "Hip Osteoarthritis: A Primer," The Permanente Journal, vol. 22, pp. 17–084, Jan. 2018. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760056/
- [25] J. M. Hootman and C. G. Helmick, "Projections of US prevalence of arthritis and associated activity limitations," *Arthritis and Rheumatism*, vol. 54, no. 1, pp. 226–229, Jan. 2006.
- [26] D. Prieto-Lhambra, D. Hunter, and N. Arden, Osteoarthritis: The Facts, second edition ed., ser. The Facts Series. Oxford, New York: Oxford University Press, Sep. 2014.
- [27] D. J. Hunter and S. Bierma-Zeinstra, "Osteoarthritis," *The Lancet*, vol. 393, no. 10182, pp. 1745–1759, Apr. 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140673619304179
- [28] R. Altman, E. Asch, D. Bloch, G. Bole, D. Borenstein, K. Brandt, W. Christy, T. D. Cooke, R. Greenwald, and M. Hochberg, "Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association," Arthritis and Rheumatism, vol. 29, no. 8, pp. 1039–1049, Aug. 1986.
- [29] J. E. Compston, M. R. McClung, and W. D. Leslie, "Osteoporosis," The Lancet, vol. 393, no. 10169, pp. 364–376, Jan. 2019, publisher: Elsevier. [Online]. Available: https://www-thelancetcom.login.ezproxy.library.ualberta.ca/journals/lancet/article/PIIS0140-6736(18)32112-3/fulltext
- [30] J. L. Porter and M. Varacallo, "Osteoporosis," in *StatPearls*. Treasure Island (FL): StatPearls Publishing, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK441901/
- [31] D. L. Glaser and F. S. Kaplan, "Osteoporosis: Definition and Clinical Presentation," *Spine*, vol. 22, no. 24, p. 12S, Dec. 1997.

- [32] M. Pashmdarfard and A. Azad, "Assessment tools to evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in older adults: A systematic review," *Medical Journal of the Islamic Republic of Iran*, vol. 34, p. 33, Apr. 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320974/
- [33] E. McMahon, "Katz Index of Independence in Activities of Daily Living," p. 2.
- [34] P. P. Katz for the Association of Rheumatology Health Professionals Outcomes Measures Task Force, "Measures of adult general functional status: The Barthel Index, Katz Index of Activities of Daily Living, Health Assessment Questionnaire (HAQ), MACTAR Patient Preference Disability Questionnaire, and Modified Health Assessment Questionnaire (MHAQ)," Arthritis Care & Research, vol. 49, no. S5, S15–S27, 2003, _eprint: pp. https://onlinelibrary.wiley.com/doi/pdf/10.1002/art.11415. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/art.11415
- [35] AHS, "Barthel Index of Activities of Daily Living."
- [36] S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, and M. W. Jaffe, "Studies of Illness in the Aged: The Index of ADL: A Standardized Measure of Biological and Psychosocial Function," *JAMA*, vol. 185, no. 12, pp. 914–919, Sep. 1963. [Online]. Available: https://doi.org/10.1001/jama.1963.03060120024016
- [37] M. Davidson, "Functional Independence Measure," in *Encyclopedia of Quality of Life and Well-Being Research*, A. C. Michalos, Ed. Dordrecht: Springer Netherlands, 2014, pp. 2373–2376.
- [38] "FIM(TM)." [Online]. Available: https://www.tbims.org/combi/FIM/
- [39] E. Dutil, A. Forget, M. Vanier, and C. Gaudreault, "Development of the ADL Profile: An Evaluation for Adults with Severe Head Injury," Occupational Therapy In Health Care, vol. 7, no. 1, pp. 7–22, Jan. 1990.
- [40] C. L. Bottari, C. Dassa, C. M. Rainville, and E. Dutil, "The IADL profile: development, content validity, intra- and interrater agreement," *Canadian Journal of Occupational Therapy. Revue Canadienne D'ergotherapie*, vol. 77, no. 2, pp. 90–100, Apr. 2010.

- [41] N. Kennedy, A. Barion, A. Rademaker, G. Rehkemper, and S. Weintraub, "The Activities of Daily Living Questionnaire A Validation Study in Patients with Dementia," *Alzheimer disease and associated disorders*, vol. 18, pp. 223–30, Oct. 2004.
- [42] A. Perry, M. Morris, C. Unsworth, S. Duckett, J. Skeat, K. Dodd, N. Taylor, and K. Reilly, "Therapy outcome measures for allied health practitioners in Australia: the AusTOMs," *International Journal for Quality in Health Care*, vol. 16, no. 4, pp. 285–291, Aug. 2004. [Online]. Available: https://doi.org/10.1093/intqhc/mzh059
- [43] S. A. Haymes, A. W. Johnston, and A. D. Heyes, "The Development of the Melbourne Low-Vision ADL Index: A Measure of Vision Disability," *Investigative Ophthalmology & Visual Science*, vol. 42, no. 6, pp. 1215–1225, May 2001.
- [44] R. G. Brown, B. MacCarthy, M. Jahanshahi, and C. D. Marsden, "Accuracy of Self-Reported Disability in Patients With Parkinsonism," *Archives of Neurology*, vol. 46, no. 9, pp. 955–959, Sep. 1989. [Online]. Available: https://doi.org/10.1001/archneur.1989.00520450025014
- |45| M. Holbrook and C. Ε. Skilbeck, "AN ACTIVITIES **INDEX** FOR USE WITH STROKE PATIENTS," AqeAgeing, 2, and12, 166-170, 1983. vol. no. pp. [Online]. Available: https://academic.oup.com/ageing/articlelookup/doi/10.1093/ageing/12.2.166
- [46] M. P. Lawton and E. M. Brody, "Assessment of older people: self-maintaining and instrumental activities of daily living," The Gerontologist, vol. 9, no. 3, pp. 179–186, 1969.
- [47] J. C. Rogers, "Performance Assessment of Self-Care Skills," Apr. 2014. [Online]. Available: http://doi.apa.org/getdoi.cfm?doi=10.1037/t16068-000
- [48] D. Chisholm, P. Toto, K. Raina, M. Holm, and J. Rogers, "Evaluating capacity to live independently and safely in the community: Performance Assessment of Self-care Skills," *The British journal of occupational therapy*, vol. 77, no. 2, pp. 59–63, Feb. 2014. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186770/

- [49] C. M. Cullum, K. Saine, L. D. Chan, K. Martin-Cook, K. F. Gray, and M. F. Weiner, "Performance-Based instrument to assess functional capacity in dementia: The Texas Functional Living Scale," Neuropsychiatry, Neuropsychology, and Behavioral Neurology, vol. 14, no. 2, pp. 103–108, 2001.
- [50] A. Staff, "The (Original) Barthel Index of ADLs," Sep. 2008. [Online]. Available: https://www.elitelearning.com/resource-center/rehabilitation-therapy/the-original-barthel-index-of-adls/
- [51] "Measures of adult general functional status: The Barthel Index, Katz Index of Activities of Daily Living, Health Assessment Questionnaire (HAQ), MACTAR Patient Preference Disability Questionnaire, and Modified Health Assessment Questionnaire (MHAQ)." [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/art.11415
- [52] K. M. Hall, B. B. Hamilton, W. A. Gordon, and N. D. Zasler, "Functional Independence Measure and Functional Assessment Measure," Jun. 2014, institution: American Psychological Association. [Online]. Available: http://doi.apa.org/getdoi.cfm?doi=10.1037/t28782-000
- [53] "ADL Profile Strokengine." [Online]. Available: https://strokengine.ca/en/assessments/adl/
- [54] cunsworth2014, "AusTOMs," Nov. 2019. [Online]. Available: https://austoms.com/
- [55] "Self-assessment Parkinson's Disease Disability Scale | RehabMeasures Database," May 2013. [Online]. Available: https://www.sralab.org/rehabilitation-measures/self-assessment-parkinsons-disease-disability-scale
- [56] J. Schuling, R. De Haan, M. Limburg, and K. H. Groenier, "The Frenchay Activities Index. Assessment of functional status in stroke patients." *Stroke*, vol. 24, no. 8, pp. 1173–1177, Aug. 1993. [Online]. Available: https://www.ahajournals.org/doi/10.1161/01.STR.24.8.1173
- [57] E. McMahon, "Lawton â€"Brody Instrumental Activities of Daily Living Scale (IADL)."

- [58] "Performance Assessment of Self-Care Skills | RehabMeasures Database," Jun. 2015. [Online]. Available: https://www.sralab.org/rehabilitation-measures/performance-assessment-self-care-skills
- [59] U. F. O. Themes, "Texas Functional Living Scale (TFLS)," Jul. 2017. [Online]. Available: https://nursekey.com/texas-functional-living-scale-tfls/
- [60] N. Camp, M. Lewis, K. Hunter, J. Johnston, M. Zecca, A. Di Nuovo, and D. Magistro, "Technology Used to Recognize Activities of Daily Living in Community-Dwelling Older Adults," *International Journal of Environmental Research and Public Health*, vol. 18, no. 1, p. 163, Jan. 2021, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1660-4601/18/1/163
- [61] N. Gadey, P. Pataunia, A. Chan, and A. RÃos Rincón, "Technologies for monitoring activities of daily living in older adults: a systematic review," *Disability and Rehabilitation. Assistive Technology*, pp. 1–10, Mar. 2023.
- [62] S. A. Sikkes and J. d. Rotrou, "A qualitative review of instrumental activities of daily living in dementia: what's cooking?" *Neurodegenerative Disease Management*, vol. 4, no. 5, pp. 393–400, Oct. 2014. [Online]. Available: https://www.futuremedicine.com/doi/10.2217/nmt.14.24
- [63] B. Bouchard, K. Bouchard, and A. Bouzouane, "A smart cooking device for assisting cognitively impaired users," *Journal of Reliable Intelligent Environments*, vol. 6, no. 2, pp. 107–125, Jun. 2020. [Online]. Available: https://link.springer.com/10.1007/s40860-020-00104-3
- [64] E. Dubuc, M. Gagnon-Roy, M. Couture, N. Bier, S. Giroux, and C. Bottari, "Perceived needs and difficulties in meal preparation of people living with traumatic brain injury in a chronic phase: Supporting long-term services and interventions," *Australian Occupational Therapy Journal*, vol. 66, no. 6, pp. 720–730, 2019, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1440-1630.12611. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/1440-1630.12611

- [65] P. Malani, J. Kullgren, E. Solway, J. Wolfson, C. Leung, D. Singer, and M. Kirch, "The Joy of Cooking and its Benefits for Older Adults," University of Michigan, Tech. Rep., Jun. 2020.
- [66] R. Yared, B. Abdulrazak, T. Tessier, and P. Mabilleau, "Cooking risk analysis to enhance safety of elderly people in smart kitchen," in *Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments*. Corfu Greece: ACM, Jul. 2015, pp. 1–4. [Online]. Available: https://dl.acm.org/doi/10.1145/2769493.2769516
- J. [67] D. Cook, "Learning Setting-Generalized Activity Modfor Smart els Spaces," IEEEintelligent systems, vol. [Online]. 2010, no. 99, p. 1, Sep. 2010. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068197/
- [68] B. Logan and J. Healey, "Sensors to Detect the Activities of Daily Living," in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 2006, pp. 5362–5365, iSSN: 1557-170X.
- [69] N. Sarma, S. Chakraborty, and D. S. Banerjee, "Activity Recognition through Feature Learning and Annotations using LSTM," in 2019 11th International Conference on Communication Systems & Networks (COMSNETS). Bengaluru, India: IEEE, Jan. 2019, pp. 444–447. [Online]. Available: https://ieeexplore.ieee.org/document/8711147/
- [70] M. Mokhtari, B. Abdulrazak, and H. Aloulou, Eds., Smart Homes and Health Telematics, Designing a Better Future: Urban Assisted Living: 16th International Conference, ICOST 2018, Singapore, Singapore, July 10-12, 2018, Proceedings, ser. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, vol. 10898. [Online]. Available: http://link.springer.com/10.1007/978-3-319-94523-1
- [71] K. Yordanova, S. Lüdtke, S. Whitehouse, F. Krüger, A. Paiement, M. Mirmehdi, I. Craddock, and T. Kirste, "Analysing Cooking Behaviour in Home Settings: Towards Health Monitoring," *Sensors*, vol. 19, no. 3, p. 646, Jan. 2019, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/19/3/646

- [72] D. J. Cook and M. Schmitter-Edgecombe, "Assessing the Quality of Activities in a Smart Environment," *Methods of Information in Medicine*, vol. 48, no. 05, pp. 480–485, 2009. [Online]. Available: http://www.thieme-connect.de/DOI/DOI?10.3414/ME0592
- [73] P. N. Dawadi, D. J. Cook, M. Schmitter-Edgecombe, and C. Parsey, "Automated Assessment of Cognitive Health Using Smart Home Technologies," *Technology and health care : official journal of the European Society for Engineering and Medicine*, vol. 21, no. 4, pp. 323–343, 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143248/
- [74] P.-W. Chen, N. A. Baune, I. Zwir, J. Wang, V. Swamidass, and A. W. Wong, "Measuring Activities of Daily Living in Stroke Patients with Motion Machine Learning Algorithms: A Pilot Study," *International Journal of Environmental Research and Public Health*, vol. 18, no. 4, p. 1634, Feb. 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915561/
- [75] S. Pan, M. Berges, J. Rodakowski, P. Zhang, and H. Y. Noh, "Fine-Grained Activity of Daily Living (ADL) Recognition Through Heterogeneous Sensing Systems With Complementary Spatiotemporal Characteristics," Frontiers in Built Environment, vol. 6, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fbuil.2020.560497
- [76] J. Chung, G. Demiris, and H. J. Thompson, "Ethical Considerations Regarding the Use of Smart Home Technologies for Older Adults: An Integrative Review," *Annual Review of Nursing Research*, vol. 34, no. 1, pp. 155–181, Jan. 2016. [Online]. Available: http://connect.springerpub.com/lookup/doi/10.1891/0739-6686.34.155
- [77] G. Demiris, "Privacy and social implications of distinct sensing approaches to implementing smart homes for older adults," Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2009, pp. 4311–4314, 2009.
- [78] J. Leo and D. Goodwin, "Negotiated Meanings of Disability Simulations in an Adapted Physical Activity Course: Learning From Student Reflections," Adapted Physical Activity Quarterly,

- vol. 31, no. 2, pp. 144–161, Apr. 2014. [Online]. Available: https://journals.humankinetics.com/view/journals/apaq/31/2/article-p144.xml
- [79] Pozyx, "Hardware setup." [Online]. Available: https://docs.pozyx.io/creator/hardware-setup
- [80] —, "Configuration of the UWB parameters (Arduino)." [Online]. Available: https://docs.pozyx.io/creator/configuration-of-the-uwb-parameters-arduino
- [81] Z. "Introduction machine learning: K-nearest Zhang, to neighbors," vol. 4. no. 11, p. 218. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916348/
- [82] Scipy.stats.mode SciPy v0.7 Reference Guide (DRAFT). [Online]. Available: https://docs.scipy.org/doc/scipy-0.7.x/reference/generated/scipy.stats.mode.html
- [83] J. Faouzi, "Time Series Classification: A Review of Algorithms and Implementations," in *Time Series Analysis Recent Advances, New Perspectives and Applications*, J. Rocha, C. M. Viana, and S. Oliveira, Eds. IntechOpen. [Online]. Available: https://www.intechopen.com/chapters/1185930
- [84] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, "A comprehensive survey on support vector machine classification: Applications, challenges and trends," vol. 408, pp. 189–215. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231220307153
- [85] 1.12. Multiclass and multioutput algorithms. scikit-learn. [Online]. Available: https://scikit-learn/stable/modules/multiclass.html
- [86] Y. Liu, Y. Wang, and J. Zhang, "New Machine Learning Algorithm: Random Forest," in *Information Computing and Applications*, B. Liu, M. Ma, and J. Chang, Eds. Springer, pp. 246–252.
- [87] V. E. Lee and L. Liu, "Decision Trees: Theory and Algorithms."
- [88] L. Breiman, "Random Forests," vol. 45, no. 1, pp. 5–32. [Online]. Available: https://doi.org/10.1023/A:1010933404324

- [89] 1.10. Decision Trees. scikit-learn. [Online]. Available: https://scikit-learn/stable/modules/tree.html
- [90] Scikit-learn/sklearn/tree/splitter.pyx at main · scikit-learn/scikit-learn · GitHub. [Online]. Available: https://github.com/scikit-learn/scikit-learn/blob/0b0b90b75102226d27e3947b9766729325d7042c/sklearn/tree/_splitter.pyx
- [91] RandomForestClassifier. scikit-learn. [Online]. Available: https://scikit-learn/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
- [92] P. Probst, M. Wright, and A.-L. Boulesteix, "Hyperparameters and Tuning Strategies for Random Forest," vol. 9, no. 3, p. e1301. [Online]. Available: http://arxiv.org/abs/1804.03515
- [93] L. Ye and E. Keogh, "Time series shapelets: A new primitive for data mining," in *Proceedings of the 15th ACM SIGKDD International Con*ference on Knowledge Discovery and Data Mining. ACM, pp. 947–956. [Online]. Available: https://dl.acm.org/doi/10.1145/1557019.1557122
- [94] D. A. Roberts, S. Yaida, and B. Hanin, *The Principles of Deep Learning Theory*. [Online]. Available: http://arxiv.org/abs/2106.10165
- [95] What is a Neural Network? IBM. [Online]. Available: https://www.ibm.com/topics/neural-networks
- [96] Y. "Prediction of Yin, and analysis time series data based granular computing," vol. [Onon 17. line]. Available: https://www.frontiersin.org/journals/computationalneuroscience/articles/10.3389/fncom.2023.1192876/full