日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT $_{\sub{k}}$

EKU

26.01.00 recep 17 MAR 2000

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1999年 1月29日

出 願 番 号 Application Number:

平成11年特許願第021800号

出 願 Applicant (s):

松下電器産業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 3月 3日

特許庁長官 Commissioner, Patent Office

近 藤 隆

出証番号 出証特2000-3011578

【書類名】

特許願

【整理番号】

161223

【提出日】

平成11年 1月29日

【あて先】

特許庁長官殿等

【国際特許分類】

H01L 21/60

H05K+13/04

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

西田 一人

【発明者】

【住所又は居所】。 大阪府間真市大字門真1006番地。松下電器産業株式

会社内

【氏名】

西侧《英信

【発明者】

【住所又は居所】 大阪府間真市大字門真1006番地 松下電器産業株式

会社内**

【氏名】

和田 義則

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

大谷 博之

【特許出願人】

【識別番号】

000005821

【住所又は居所】

大阪府門真市大字門真1006番地

【氏名又は名称】

松下電器産業株式会社

【代理人】

【識別番号】

100062144

【弁理士】

【氏名又は名称】 青山 葆

【選任した代理人】

【識別番号】 100086405

【弁理士】

【氏名又は名称】 河宮 治

【選任した代理人】

【識別番号】 100091524

【弁理士】

【氏名又は名称】 和田 充夫

【手数料の表示】

【予納台帳番号】 013262

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】 要約書 1

【包括委任状番号】 9602660

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 電子部品の実装方法及びその装置

【特許請求の範囲】

【請求項1】 ワイヤボンディングと同様に金属線(95)の先端に電気スパークによりボール(96,96a)を形成し、上記形成されたボールをキャピラリー(93,193)により電子部品(1)の電極(2)に超音波熱圧着してバンプ(3,103)を形成し、

上記形成されたバンプをレベリングせずに、絶縁性樹脂(6m)に無機フィラー(6f)を配合した固体又は半固体の絶縁性樹脂層(6,6b)を介在させながら、上記電子部品の上記電極と回路基板(4)の電極(5)とを位置合わせして上記電子部品を上記基板に搭載し、

その後、上記電子部品側から加熱しながら、又は基板側から加熱しながら、又は、上記電子部品側と上記基板側の両方から加熱しながら、ツール(8)により上記電子部品を上記回路基板に1バンプあたり20g f以上の加圧力により押圧し、上記基板の反りの矯正と上記バンプを押しつぶしながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂層を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続するようにしたことを特徴とする電子部品の実装方法。

【請求項2】 上記バンプを形成したのち、上記絶縁性樹脂(6 m)に上記無機フィラー(6 f)を配合した上記固体又は半固体の絶縁性樹脂層(6,6 b)を介在させながら、上記電子部品の上記電極と上記回路基板(4)の上記電極(5)とを位置合わせして上記電子部品を上記基板に搭載する前に、

上記形成されたバンプを、一度、20gf以下の荷重で押圧して上記バンプの ネック部分の倒れを防止するように先端を整えるようにした請求項1に記載の電 子部品の実装方法。

【請求項3】 上記絶縁性樹脂(6m)が絶縁性熱硬化性エポキシ樹脂であり、この絶縁性熱硬化性エポキシ樹脂に配合する上記無機フィラーの量は上記絶縁性熱硬化性エポキシ樹脂の5~90 w t %である請求項1 又は2に記載の電子部品の実装方法。

【請求項4】 上記絶縁性樹脂(6 m)は当初上記基板に塗布する際に液体であり、上記基板に塗布後、上記基板を炉(503)内に入れて上記塗布された絶縁性樹脂の液体を硬化させることにより、又は、加熱されたツール(78)により上記塗布された絶縁性樹脂の液体を押圧することにより、半固体化したのち、上記電子部品を上記基板に搭載する請求項1~3のいずれかに記載の電子部品の実装方法。

【請求項5】 ワイヤボンディングと同様に金属線(95)の先端に電気スパークによりボール(96,96a)を形成し、上記形成されたボールをキャピラリー(93,193)により電子部品(1)の電極(2)に超音波熱圧着して金バンプ(3,103)を形成し、

上記形成されたバンプをレベリングせずに、絶縁性樹脂(6 m)に無機フィラー(6 f)を配合した固体又は半固体の絶縁性樹脂層(6,6 b)を介在させながら、上記電子部品の上記電極と回路基板(4)の電極(5)とを位置合わせして上記電子部品を上記基板に搭載し、

その後、ツール(8)により上記電子部品の上面側から荷重を印加して上記金 バンプのネック部分の倒れを防止するように先端を整えるとともに超音波を印加 して上記金バンプと上記基板の上記電極とを金属接合し、

次に、上記電子部品の上記上面側から加熱しながら、又は、上記基板側から加熱しながら、又は、上記電子部品側と上記基板側の両方から加熱しながら、上記電子部品を上記回路基板に1バンプあたり20gf以上の加圧力により押圧し、上記基板の反りの矯正と上記バンプを押しつぶしながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続するようにしたことを特徴とする電子部品の実装方法。

【請求項6】 上記電子部品(1)は複数の電極(2)を有し、上記位置合わせの前に、上記回路基板(4)に、上記絶縁性樹脂層として、上記電子部品(1)の上記複数の電極(2)を結んだ外形寸法(OL)より小さい形状寸法の固形の絶縁性樹脂シート(6)を貼り付けたのち上記位置合わせを行い、上記接合においては、上記絶縁性樹脂シート(6)を加熱しながら、上記電子部品を上記

回路基板に加圧押圧して、上記回路基板の反りの矯正を同時に行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合するようにした請求項1~5のいずれかに記載の電子部品の実装方法。

【請求項7】 上記バンプを上記電子部品上に形成する際にワイヤボシディングと同様に金属線 (95) の先端に電気スパークにより金ボール (96 a) を形成するとき、チャムファー角 (θ c) を100°以下とし、かつ、上記金ボールと接する部分に平らな部位を設けない先端形状を有する上記キャピラリーにより、先端が大略円錐状の上記金バンプを上記電子部品の上記電極に形成する請求項1~6のいずれかに記載の電子部品の実装方法。

【請求項8】 ワイヤボンディングと同様に金属線(95)の先端に電気スパークによりボール(96,96a)を形成し、上記形成されたボールをキャピラリー(93,193)により電子部品(1)の電極(2)にバンプ(3,103)を形成し、

上記形成されたバンプをレベリングせずに、絶縁性樹脂(6m)に無機フィラー(6f)を配合した固体又は半固体の絶縁性樹脂層(6,6b)を介在させながら、上記電子部品の上記電極と回路基板(4)の電極(5)とを位置合わせして上記電子部品を上記基板に搭載し、

その後、所定温度に加熱されたツール(8)により上記電子部品の上面から加熱しながら、加圧力として上記電子部品を上記回路基板に圧力P1により押圧して上記基板の反りの矯正を行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化し、

その後、所定時間後、上記加圧力を上記圧力P1より低い圧力P2に降下させて上記絶縁性樹脂の硬化時の応力を緩和しながら、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続するようにしたことを特徴とする電子部品の実装方法。

【請求項9】 上記圧力P1は20gf/バンプ以上、上記圧力P2は上記 圧力P1の1/2以下とする請求項8に記載の電子部品の実装方法。

【請求項10】 絶縁性樹脂(6m)に無機フィラー(6f)を配合した固

体又は半固体の絶縁性樹脂層(6,6b)を、回路基板(4)の電極(5)又は電子部品(1)に貼り付ける装置(7,109,200,201)と、

上記電子部品(1)の電極(2)にワイヤボンディングと同様に金属線(95)の先端に電気スパークによりボール(96,96a)を形成し、これをキャピラリー(93,193)により上記基板の上記電極に超音波熱圧着して形成してレベリングしないバンプ(3,103)を形成する装置(93,193)と、

上記電子部品を上記回路基板(4)の上記電極(5)に位置合わせして搭載する装置(600)と、

ツール(8)により、加熱しながら、上記電子部品を上記回路基板に1バンプあたり20gf以上の加圧力により押圧し、上記基板の反りの矯正を行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続する装置(8,9)とを備えるようにしたことを特徴とする電子部品の実装装置。

【請求項11】 上記絶縁性樹脂が絶縁性熱硬化性エポキシ樹脂であり、この絶縁性熱硬化性エポキシ樹脂に配合する上記無機フィラーの量は上記絶縁性熱硬化性エポキシ樹脂の5~90wt%である請求項10に記載の電子部品の実装装置。

【請求項12】 上記絶縁性樹脂(6m)は液体であり、上記絶縁性樹脂の液体を上記基板に塗布するディスペンサ(502)と、

該ディスペンサにより上記基板に塗布された上記絶縁性樹脂の液体を、上記塗布された基板を挿入して硬化させて上記絶縁性樹脂を半固体化する炉(503)と

を備えるようにした請求項10又は11に記載の電子部品の実装装置。

【請求項13】 上記絶縁性樹脂(6m)は液体であり、上記絶縁性樹脂の液体を上記基板に塗布するディスペンサ(502)と、

該ディスペンサにより上記基板に塗布された上記絶縁性樹脂の液体を押圧して 上記絶縁性樹脂を半固体化する装置(78)と

を備える請求項10又は11に記載の電子部品の実装装置。

【請求項14】

絶縁性樹脂 (6 m) に無機フィラー (6 f) を配合した固体又は半固体の絶縁性樹脂層 (6,6 b) を、回路基板 (4) の電極 (5) 又は電子部品 (1) に貼り付ける装置 (7,109,200,201) と、

上記電子部品(1)の電極(2)にワイヤボンディングと同様に金属線(95)の先端に電気スパークによりボール(96,96a)を形成し、これをキャピラリー(93,193)により上記基板の上記電極に超音波熱圧着して形成してレベリングしない金バンプ(3,103)を形成する装置(93,193)と、

上記電子部品を上記回路基板(4)の上記電極(5)に位置合わせして搭載する装置(600)と、

ツール (628) により上記電子部品の上面から荷重を印加して上記金バンプのネック部分の倒れを防止するように先端を整えるとともに超音波を印加して上記金バンプと上記基板の上記電極とを金属接合する装置 (620) と、

ツール (8) により加熱地ながら、上記電子部品を上記回路基板に1バンプあたり20gf以上の加圧力により押圧し、上記基板の反りの矯正を行うとともに上記バンプを押しつぶしながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続する装置(8,9)とを備えるようにしたことを特徴とする電子部品の実装装置。

【請求項15】 上記位置合わせの前に、上記回路基板(4)に、上記絶縁性樹脂層として、上記電子部品(1)の電極(2)を結んだ外形寸法(OL)より小さい形状寸法の固形の絶縁性樹脂シート(6)を貼り付ける装置(640)と、

この後、上記回路基板と電子部品の位置合わせを行い装着する装置(600) と、

接合においては、上記絶縁性樹脂シート(6)を加熱しながら、上記電子部品を上記回路基板に加圧押圧して、上記回路基板の反りの矯正を同時に行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂シートを硬化して、上記電子部品と上記回路基板を接合する装置(7,8)を具備する請求項10

~13のいずれかに記載の電子部品の実装装置。

【請求項16】 上記金ボール(96a)を形成する装置(93,193)は、上記金ボールと接する部分に平らな部位を設けない先端形状を有するとともにチャムファー角(θ c)が100°以下となる上記キャピラリーを有して、該キャピラリーにより、先端が大略円錐状の上記金バンプを上記電子部品の上記電極に形成する請求項10~15のいずれかに記載の電子部品の実装装置。

【請求項17】 絶縁性樹脂(6m)に無機フィラー(6f)を配合した固体又は半固体の絶縁性樹脂層(6,6b)を回路基板(4)又は電子部品(1)に貼り付ける装置(7,109,200,201)と、

上記電子部品(1)の電極(2)にワイヤボンディング同様に金属線(95)の先端に電気スパークによりボール(96,96a)を形成し、これをキャピラリー(93,193)により上記基板の上記電極に形成してレベリングしないバンプ(3,103)を形成する装置(93,193)と、

上記電子部品を上記回路基板(4)の上記電極(5)に位置合わせして搭載する装置(600)と、

所定温度に加熱されたツール(8)により、上記電子部品の上面から加熱しながら、加圧力として上記電子部品を上記回路基板に圧力P1により押圧して上記基板の反りの矯正を行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化し、その後、所定時間後、上記加圧力を上記圧力P1より低い圧力P2に降下させて上記絶縁性樹脂の硬化時の応力を緩和しながら上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続する装置(8,9)とを備えるようにしたことを特徴とする電子部品の実装装置。

【請求項18】 上記圧力P1は20gf/バンプ以上、上記圧力P2は上記圧力P1の1/2以下とする請求項17に記載の電子部品の実装装置。

【請求項19】 上記絶縁性樹脂に配合する上記無機フィラーの平均粒径が 3μm以上であることを特徴とする請求項1~3のいずれかに記載の電子部品の 実装方法。

【請求項20】 上記絶縁性樹脂に配合する上記無機フィラーは、異なる平

均粒径を持つ複数種類の無機フィラー(6 f -1, 6 f -2)である請求項 $1\sim$ 3、19のいずれかに記載の電子部品の実装方法。

【請求項21】 上記絶縁性樹脂に配合する上記無機フィラーは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラー(6 f-1, 6 f-2)であって、上記少なくとも2種類の無機フィラーのうちの一方の無機ディラー(6 f-1)の平均粒径は、上記少なくとも2種類の無機ディラーのうちの他病の無機フィラー(6 f-2)の平均粒径の2倍以上異なっている請求項1~3, 19のいずれかに記載の電子部品の実装方法。

【請求項22】 上記絶縁性樹脂に配合する上記無機フィラーは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラー(6 f-1, 6 f-2)であって、上記少なくとも2種類の無機フィラーのうちの一方の無機フィラー(6 f-1)は3 μ mを超える平均粒径を持ち、上記少なくとも2種類の無機フィラーのうちの他方の無機フィラー(6 f-2)は3 μ m以下の平均粒径を持つ請求項1~3, 19のいずれかに記載の電子部品の実装方法。

【請求項23】 上記絶縁性樹脂(6 m)に配合する上記無機ディラー(6 f)は、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラー(6 f ー 1, 6 f - 2)であって、上記少なくとも2種類の無機ディラーのうちの平均粒径の大きい一方の無機フィラー(6 f - 1)は上記絶縁性樹脂と同一材料からなることにより、応力緩和作用を奏する請求項1~3, 19のいずれかに記載の電子部品の実装方法。

【請求項24】 上記絶縁性樹脂(6m)に配合する上記無機フィラー(6f)は、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラー(6f-1,6f-2)であって、上記少なくとも2種類の無機フィラーのうちの平均粒径の大きい一方の無機フィラー(6f-1)は上記絶縁性樹脂(6m)であるエポキシ樹脂よりも柔らかく、上記一方の無機フィラー(6f-1)が圧縮されることにより、応力緩和作用を奏する請求項1~3,19のいずれかに記載の電子部品の実装方法。

【請求項25】 上記絶縁性樹脂層(6,6b)は、上記電子部品又は上記基板のいずれか一方に接触する部分が、他の部分よりも上記無機フィラー量が少

ないようにした請求項 $1\sim3$, $19\sim24$ のいずれかに記載の電子部品の実装方法。

【請求項26】 上記絶縁性樹脂層(6,6b)は、上記電子部品又は上記基板のいずれか一方に接触する部分に位置されかつ上記絶縁性樹脂と同一の絶縁性樹脂に上記無機フィラーを配合した第1樹脂層(6x)と、上記第1樹脂層に接触し、かつ、上記第1樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第2樹脂層(6y)とを備える請求項25に記載の電子部品の実装方法。

【請求項27】 上記絶縁性樹脂層(6,6b)は、上記電子部品及び上記基板にそれぞれ接触する部分が、他の部分よりも上記無機フィラー量が少ないようにした請求項25に記載の電子部品の実装方法。

【請求項28】 上記絶縁性樹脂層(6,6b)は、上記第1樹脂層の上記第2樹脂層とは反対側に、上記第1樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第3樹脂層(6z)をさらに備えて、上記第1樹脂層と上記第3樹脂層は、それぞれ、上記電子部品と上記基板に接触する請求項26に記載の電子部品の実装方法。

【請求項29】 上記電子部品及び上記基板にそれぞれ接触する部分は、その上記無機フィラー量が20wt%未満にする一方、上記他の部分はその上記無機フィラー量が20wt%以上である請求項27に記載の電子部品の実装方法。

【請求項30】 上記第1樹脂層及び上記第3樹脂層のそれぞれは、その上記無機フィラー量が20wt%未満にする一方、上記第2樹脂層はその上記無機フィラー量が20wt%以上である請求項28に記載の電子部品の実装方法。

【請求項31】 上記絶縁性樹脂層(6,6b)は、上記電子部品又は上記基板のいずれか一方に接触する部分から他の部分に向かって、上記無機フィラー量が徐々に又は段階的に少なくなるようにした請求項1~3,19~24のいずれかに記載の電子部品の実装方法。

【請求項32】 上記絶縁性樹脂層(6,6b)は、上記電子部品及び上記 基板にそれぞれ接触する部分から他の部分に向かって、上記無機フィラー量が徐々に又は段階的に少なくなるようにした請求項31に記載の電子部品の実装方法

【請求項33】 上記電子部品に接触する部分では、電子部品表面に用いられる膜素材に対して密着性を向上させる絶縁性樹脂を用いる一方、上記基板に接触する部分では、基板表面の材料に対して密着性を向上させる絶縁性樹脂を用いるようにした請求項25,27,29,31のいずれかに記載の電子部品の実装方法。

【請求項34】 上記電子部品に接触する上記樹脂層では、電子部品表面に用いられる膜素材に対して密着性を向上させる絶縁性樹脂を用いる一方、上記基板に接触する上記樹脂層では、基板表面の材料に対して密着性を向上させる絶縁性樹脂を用いるようにした請求項26,28,30,32のいずれかに記載の電子部品の実装方法。

【請求項35】 上記絶縁性樹脂層 (6,6b)は、上記電子部品又は上記基板のいずれか一方に接触する部分が、上記無機フィラーを配合しないようにした請求項3~3,19~24のいずれかに記載の電子部品の実装方法。

【請求項36】 上記絶縁性樹脂層(6,6b)は、上記電子部品又は上記基板のいずれか一方に接触する部分に位置されかつ上記絶縁性樹脂を同一の絶縁性樹脂に上記無機フィラーを配合した第1樹脂層、(6x)と、上記第1樹脂層に接触し、かつ、上記無機フィラーを配合しない絶縁性樹脂で構成される第2樹脂層(6y)とを備える請求項35に記載の電子部品の実装方法。

【請求項37】 上記絶縁性樹脂層(6,6b)は、上記電子部品及び上記 基板にそれぞれ接触する部分が、上記無機フィラーを配合しないようにした請求 項35に記載の電子部品の実装方法。

【請求項38】 上記絶縁性樹脂層(6,6b)は、上記第1樹脂層の上記第2樹脂層とは反対側に、上記無機フィラーを配合しない絶縁性樹脂で構成される第3樹脂層 (6z)をさらに備えて、上記第1樹脂層と上記第3樹脂層は、それぞれ、上記電子部品と上記基板に接触する請求項36に記載の電子部品の実装方法。

【請求項39】 上記電子部品及び上記基板にそれぞれ接触する部分は、上 記無機フィラーを配合しないようにする一方、上記他の部分はその上記無機フィ ラー量が20wt%以上である請求項37に記載の電子部品の実装方法。

【請求項40】 上記第1樹脂層及び上記第3樹脂層のそれぞれは、上記無機フィラーを配合しないようにする一方、上記第2樹脂層はその上記無機フィラー量が20wt%以上である請求項38に記載の電子部品の実装方法。

【請求項41】 上記絶縁性樹脂層(6,6b)は、上記電子部品及び上記基板に接触する部分に位置されかつ上記無機フィラーを配合した絶縁性樹脂で構成される第4樹脂層(6 v)と、上記電子部品と上記基板との中間部分に位置されかつ上記第4樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第5樹脂層(6 w)とを備える請求項1~3,19~24のいずれかに記載の電子部品の実装方法。

【請求項42】 上記絶縁性樹脂層(6,6b)は、上記電子部品及び上記基板に接触する部分に位置されかつ上記無機フィラーを配合した絶縁性樹脂で構成される第4樹脂層(6 v)と、上記電子部品と上記基板との中間部分に位置されかつ上記無機フィラー量が含まれていない絶縁性樹脂で構成される第5樹脂層(6 w)とを備える請求項1~3,19~24のいずれかに記載の電子部品の実装方法。

【請求項43】 上記絶縁性樹脂層(6,6b)は、上記電子部品及び上記基板にそれぞれ接触する部分から、上記電子部品及び上記基板との中間部分に向かって、上記無機フィラー量が徐々に少なくなるようにした請求項1~3,19~24のいずれかに記載の電子部品の実装方法。

【請求項44】 上記絶縁性樹脂層(6,6b)は、上記電子部品の近傍部分、次いで、上記基板の近傍部分、次いで、上記電子部品の近傍部分と上記基板の近傍部分との中間部分の順に上記無機フィラー量が少ないようにした請求項1~3,19~24のいずれかに記載の電子部品の実装方法。

【請求項45】 上記絶縁性樹脂層(6,6b)の上記電子部品の近傍部分と上記基板の近傍部分とのそれぞれの無機フィラー量は、上記電子部品の上記絶縁性樹脂層に接触する部分の線膨張係数と上記基板の上記絶縁性樹脂層に接触する部分の線膨張係数とにそれぞれ対応して配合されるようにした請求項43又は44に記載の電子部品の実装方法。

【請求項46】 電子部品(1)の電極(2)に形成されたバンプ(3, 1 03)を、絶縁性樹脂(6m)に無機フィラー(6f)が配合されかつ硬化された絶縁性樹脂層(6,6b)を介在させかつ上記バンプが押しつぶされた状態で、回路基板(4)の電極**(5)に接合されて上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続しており、

上記絶縁性樹脂層(6,6b)は、上記電子部品又は上記基板のいずれか一方に接触する部分が、他の部分よりも上記無機フィラー量が少ないようにしたことを特徴とする電子部品ユニット。

【請求項47】 電子部品(1)の電極(2)に形成されたバンプ(3, 1 03)を、絶縁性樹脂(6m)に無機フィラー(6f)が配合されかつ硬化された絶縁性樹脂層(6, 6b)を介在させかつ上記バンプが押しつぶされた状態で、回路基板(4)の電極(5)に接合されて上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続しており、

上記絶縁性樹脂層(6,6b)は、上記電子部品又は上記基板のいずれか一方に接触する部分に位置されかつ上記絶縁性樹脂と同一の絶縁性樹脂に上記無機フィラーを配合した第1樹脂層(6x)と、上記第1樹脂層に接触し、かつ、上記第1樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第2樹脂層(6y)とを備えるようにしたことを特徴とする電子部品ユニット。

【請求項48】 請求項1~9,19~45のいずれかに記載の電子部品の 実装方法により上記電子部品が上記基板に実装された電子部品ユニット。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電子回路用プリント基板(本明細書では、代表例として「基板」と称するが、この「基板」にはインタポーザや電子部品が装着される他の部品などの被装着体を意味する。)に電子部品例えばICチップや表面弾性波(SAW)デバイスなどを単体(ICチップの場合にはベアIC)状態で実装する回路基板への電子部品の実装方法及びその装置及び上記実装方法により上記電子部品が上記基板に実装された電子部品ユニットに関するものである。

[0002]

【従来の技術】

今日、電子回路基板は、あらゆる製品に使用されるようになり、日増しにその性能が向上し、回路基板上で用いられる周波数も高くなっており、インピーダンスが低くなるフリップチップ実装は高周波を使用する電子機器に適した実装方法となっている。また、携帯機器の増加から、回路基板にICチップをパッケージではなく裸のまま搭載するフリップチップ実装が求められている。このために、ICチップそのまま単体で回路基板に搭載したときのICチップや、電子機器及びフラットパネルディスブレイへ実装したICチップには、一定数の不良品が混在している。また、上記フリップチップ以外にもCSP(Chip Sizepackage)、BGA(Ba11 Grid Array)等が用いられるようになってきている。

[0003]

従来の電子機器の回路基板へICチップを接合する方法(従来例1)としては 特公平06-66355号公報等により開示されたものがある。これを図15に 示す。図15に示すように、バンプ73を形成したICチップ71にAgペース ト74を転写して回路基板76の電極75に接続したのちAgペースト74を硬 化し、その後、封止材78をICチップ71と回路基板76の間に流し込む方法 が一般的に知られている。

[0004]

また、液晶ディスプレイにICチップを接合する方法(従来例2)として、図16に示される特公昭62-6652号公報のように、異方性導電フィルム80を使用するものであって、絶縁性樹脂83中に導電性微片82を加えて構成する異方性導電接着剤層81をセパレータ85から剥がして基板や液晶ディスプレイ84のガラスに塗布し、ICチップ86を熱圧着することによって、Auバンプ87の下以外のICチップ86の下面と基板84の間に上記異方性導電接着剤層81が介在している半導体チップの接続構造が、一般に知られている。

[0005]

従来例3としては、UV硬化樹脂を基板に塗布し、その上にICチップをマウ

ントし加圧しながら、UV照射することにより両者の間の樹脂を硬化し、その収縮力により両者間のコンタクトを維持する方法が、知られている。

[0006]

このように、ICチップを接合するには、フラットパッケージのようなICチップをリードフレーム上にダイボンディングし、ICチップの電極とリードフレームをワイヤボンドしてつなぎ、樹脂成形してパッケージを形成地た後に、クリームハンダを回路基板に印刷し、その上にフラットパッケージICを搭載しリフローするという工程を行うことにより、上記接合が行われていた。これらのSMT(Surface Mount Technology)といわれる工法では、ICをパッケージにする工程が長く、IC部品の生産に時間を要し、また、回路基板を小型化するのが困難であった。例えばICチップは、フラットパックに封止された状態では、ICチップの約4~10倍程度の面積を必要とするため、小型化を妨げる要因となっていた。

[0007].

これに対し、工程の短縮と小型軽量化の為に「Cチップを裸の状態でダイレクトに基板に搭載するフリップチップ工法が最近では用いられるようになってきた。このフリップチップ工法は、「Cチップへのバンプ形成、バンプレベリング、Ag・Pdペースト転写、実装、検査、封止樹脂による封止、検査とを行うスタッド・バンプ・ボンディング(SBB)や、「Cチップへのバンプ形成と基板へのUV硬化樹脂塗布とを並行して行い、その後、実装、樹脂のUV硬化、検査を行うUV樹脂接合のような多くの工法が開発されている。

[0008]

【発明が解決しようとする課題】

ところが、どの工法においてもICチップのバンプと基板の電極を接合するペーストの硬化や封止樹脂の塗布硬化に時間がかかり生産性が悪いという欠点を有していた。また、回路基板として、反り量を管理されたセラミックやガラスを用いる必要が有り、高価となる欠点を有していた。

[0009]

また、従来例1のような導電性ペーストを接合材に用いる工法においては、そ

の転写量を安定化するために、ICチップのバンプはレベリングして、平坦化してから用いる必要があった。

[0010]

また、従来例2のような異方性導電接着剤による接合構造においては、回路基板の基材としてガラスを用いるものが開発されているが、導電性接着剤中の導電粒子を均一に分散することが困難であり、粒子の分散異常によりショートの原因になったり、導電性接着剤が高価であったり、バンプの高さをそろえる為に、ICチップの電極のバンプは電気メッキにより形成しなければならなかったりした

[0011]

また、従来例3のようにUV硬化樹脂を用いて接合する方法においては、バンプの高さバラツキを±1 (μm)以下にしなければならず、また、樹脂基板(ガラスエポキシ基板)等の平面度の悪い基板には接合することができないといった問題があった。また、ハンダを用いる方法においても、接合後に基板とICチップの熱膨張収縮差を緩和する為に封止樹脂を流し込み硬化する必要があった。この樹脂封止の硬化には、2~8時間の時間を必要とし、生産性がきわめて悪いといった問題があった。

[0012]

従って、本発明の目的は、上記問題を解決することにあって、回路基板と電子 部品を接合した後に、電子部品と基板の間に流し込む封止樹脂工程やバンプの高 さを一定に揃えるバンプレベリング工程を必要とせず、電子部品を基板に生産性 良くかつ高信頼性で接合する回路基板への電子部品の実装方法及び装置及び上記 実装方法により上記電子部品が上記基板に実装された電子部品ユニットを提供す ることにある。

[0013]

【課題を解決するための手段】

上記目的を達成するために、本発明は以下のように構成する。

[0014]

本発明の第1態様によれば、ワイヤボンディングと同様に金属線の先端に電気

スパークによりボールを形成し、上記形成されたボールをキャピラリーにより電 子部品の電極に超音波熱圧着してバンプを形成し、

上記形成されたバンプをレベリングせずに、絶縁性樹脂に無機フィラーを配合 した固体又は半固体の絶縁性樹脂層を介在させながら、上記電子部品の上記電極 と回路基板の電極とを位置合わせして上記電子部品を上記基板に搭載し、

その後、上記電子部品側から加熱しながら、又は基板側から加熱しながら、又は、上記電子部品側と上記基板側の両方から加熱しながら、ツールにより上記電子部品を上記回路基板に1バンプあたり20gf以上の加圧力により押圧し、上記基板の反りの矯正と上記バンプを押しつぶしながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂層を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続するようにしたことを特徴とする電子部品の実装方法を提供する。

[0.015]

本発明の第2.態様によれば、上記バンプを形成したのち、上記絶縁性樹脂に上記無機シィラーを配合した上記固体又は半固体の絶縁性樹脂層を介在させながら、上記電子部品の上記電極と上記回路基板の上記電極とを位置合わせして上記電子部品を上記基板に搭載する前に、

上記形成されたバンプを、一度、20gf以下の荷重で押圧して上記バンプのネック部分の倒れを防止するように先端を整えるようにした第1態様に記載の電子部品の実装方法を提供する。

[0016]

本発明の第3態様によれば、上記絶縁性樹脂が絶縁性熱硬化性エポキシ樹脂であり、この絶縁性熱硬化性エポキシ樹脂に配合する上記無機フィラーの量は上記 絶縁性熱硬化性エポキシ樹脂の5~90wt%である第1又は2態様に記載の電子部品の実装方法を提供する。

[0017]

本発明の第4態様によれば、上記絶縁性樹脂は当初上記基板に塗布する際に液体であり、上記基板に塗布後、上記基板を炉内に入れて上記塗布された絶縁性樹脂の液体を硬化させることにより、又は、加熱されたツールにより上記塗布され

た絶縁性樹脂の液体を押圧することにより、半固体化したのち、上記電子部品を 上記基板に搭載する第1~3のいずれかの態様に記載の電子部品の実装方法を提 供する。

[0018]

本発明の第5態様によれば、ワイヤボンディングと同様に金属線の先端に電気 スパークによりボールを形成し、上記形成されたボールをキャピラリーにより電 子部品の電極に超音波熱圧着して金バンプを形成し、

上記形成されたバンプをレベリングせずに、絶縁性樹脂に無機フィラーを配合 した固体又は半固体の絶縁性樹脂層を介在させながら、上記電子部品の上記電極 と回路基板の電極とを位置合わせして上記電子部品を上記基板に搭載し、

その後、ツールにより上記電子部品の上面側から荷重を印加して上記金バンプ のネック部分の倒れを防止するように先端を整えるとともに超音波を印加して上 記金バンプと上記基板の上記電極とを金属接合し、

次に、上記電子部品の上記上面側から加熱しながら、又は、上記基板側から加熱しながら、又は、上記電子部品側と上記基板側の両方から加熱しながら、上記電子部品を上記回路基板に1バンプあたり20gf以上の加圧力により押圧し、上記基板の反りの矯正と上記バンプを押しつぶしながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続するようにしたことを特徴とする電子部品の実装方法を提供する。

[0019]

本発明の第6態様によれば、上記電子部品は複数の電極を有し、上記位置合わせの前に、上記回路基板に、上記絶縁性樹脂層として、上記電子部品の上記複数の電極を結んだ外形寸法より小さい形状寸法の固形の絶縁性樹脂シートを貼り付けたのち上記位置合わせを行い、上記接合においては、上記絶縁性樹脂シートを加熱しながら、上記電子部品を上記回路基板に加圧押圧して、上記回路基板の反りの矯正を同時に行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合するようにした第1~5のいずれかの態様に記載の電子部品の実装方法を提供する。

[0020]

本発明の第7態様によれば、上記バンプを上記電子部品上に形成する際にワイヤボンディングと同様に金属線の先端に電気スパークにより金ボールを形成するとき、チャムファー角を100°以下とし、かつ、上記金ボールと接する部分に平らな部位を設けない先端形状を有する上記キャピラリーにより、先端が大略円錐状の上記金バンプを上記電子部品の上記電極に形成する第4~6のいずれかの態様に記載の電子部品の実装方法を提供する。

[0021]

本発明の第8態様によれば、ワイヤボンディングと同様に金属線の先端に電気 スパークによりボールを形成し、上記形成されたボールをキャピラリーにより電 子部品の電極にバンプを形成し、

上記形成されたバンプをレベリングせずに、絶縁性樹脂に無機フィラーを配合 した固体又は半固体の絶縁性樹脂層を介在させながら、上記電子部品の上記電極 と回路基板の電極とを位置合わせして上記電子部品を上記基板に搭載し、

その後、所定温度に加熱やれたツールにより上記電子部品の上面から加熱しながら、加圧力として上記電子部品を上記回路基板に圧力P1により押圧して上記基板の反りの矯正を行べながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化し、

その後、所定時間後、上記加圧力を上記圧力P1より低い圧力P2に降下させて上記絶縁性樹脂の硬化時の応力を緩和しながら、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続するようにしたことを特徴とする電子部品の実装方法を提供する。

[0022]

本発明の第9態様によれば、上記圧力P1は20gf/バンプ以上、上記圧力P2は上記圧力P1の1/2以下とする第8態様に記載の電子部品の実装方法を提供する。

[0023]

本発明の第10態様によれば、絶縁性樹脂に無機フィラーを配合した固体又は 半固体の絶縁性樹脂層を、回路基板の電極又は電子部品に貼り付ける装置と、 上記電子部品の電極にワイヤボンディングと同様に金属線の先端に電気スパークによりボールを形成し、これをキャピラリーにより上記基板の上記電極に超音波熱圧着して形成してレベリングしないバンプを形成する装置と、

上記電子部品を上記回路基板の上記電極に位置合わせして搭載する装置と、

ツールにより、加熱しながら、上記電子部品を上記回路基板に1バンプあたり20gf以上の加圧力により押圧し、上記基板の反りの矯正を行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続する装置とを備えるようにしたことを特徴とする電子部品の実装装置を提供する。

[0024]

本発明の第11態様によれば、上記絶縁性樹脂が絶縁性熱硬化性エポキシ樹脂であり、この絶縁性熱硬化性エポキシ樹脂に配合する上記無機フィラーの量は上記絶縁性熱硬化性エポキシ樹脂の5~90wt%である第10態様に記載の電子部品の実装装置を提供する。

[0025]

本発明の第12態様によれば、上記絶縁性樹脂は液体であり、上記絶縁性樹脂 の液体を上記基板に塗布するディスペンサと、

該ディスペンサにより上記基板に塗布された上記絶縁性樹脂の液体を、上記塗布された基板を挿入して硬化させて上記絶縁性樹脂を半固体化する炉と を備えるようにした第10又は11態様に記載の電子部品の実装装置を提供する

[0026]

本発明の第13態様によれば、上記絶縁性樹脂は液体であり、上記絶縁性樹脂 の液体を上記基板に塗布するディスペンサと、

該ディスペンサにより上記基板に塗布された上記絶縁性樹脂の液体を押圧して 上記絶縁性樹脂を半固体化する装置と

を備える第10又は11態様に記載の電子部品の実装装置を提供する。

[0027]

本発明の第14態様によれば、絶縁性樹脂に無機フィラーを配合した固体又は 半固体の絶縁性樹脂層を、回路基板の電極又は電子部品に貼り付ける装置と、

上記電子部品の電極にワイヤボンディングと同様に金属線の先端に電気スパークによりボールを形成し、これをキャピラリーにより上記基板の上記電極に超音波熱圧着して形成してレベリングしない金バンプを形成する装置と、

上記電子部品を上記回路基板の上記電極に位置合わせして搭載する装置と、

ツールにより上記電子部品の上面から荷重を印加して上記金バンプのネック部分の倒れを防止するように先端を整えるとともに超音波を印加して上記金バンプと上記基板の上記電極とを金属接合する装置と、

ツールにより加熱しながら、上記電子部品を上記回路基板に1バンプあたり2 Ogf以上の加圧力により押圧し、上記基板の反りの矯正を行うとともに上記バンプを押しつぶしながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化して、上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続する装置とを備えるようにしたことを特徴とする電子部品の実装装置を提供する。

[0028]

本発明の第15態様によれば、上記位置合わせの前に、上記回路基板に、上記 絶縁性樹脂層として、上記電子部品の電極を結んだ外形寸法より小さい形状寸法 の固形の絶縁性樹脂シートを貼り付ける装置と、

この後、上記回路基板と電子部品の位置合わせを行い装着する装置と、

接合においては、上記絶縁性樹脂シートを加熱しながら、上記電子部品を上記回路基板に加圧押圧して、上記回路基板の反りの矯正を同時に行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂シートを硬化して、上記電子部品と上記回路基板を接合する装置を具備する第10~13のいずれかの態様に記載の電子部品の実装装置を提供する。

[0029]

本発明の第16態様によれば、上記金ボールを形成する装置は、上記金ボールと接する部分に平らな部位を設けない先端形状を有するとともにチャムファー角が100°以下となる上記キャピラリーを有して、該キャピラリーにより、先端

が大略円錐状の上記金バンプを上記電子部品の上記電極に形成する第 1 0 ~ 1 5 のいずれかの態様に記載の電子部品の実装装置を提供する。

[0030]

本発明の第17態様によれば、絶縁性樹脂に無機フィラーを配合した固体又は 半固体の絶縁性樹脂層を回路基板又は電子部品に貼り付ける装置と、

上記電子部品の電極にワイヤボンディング同様に金属線の先端に電気スパークによりボールを形成し、これをキャピラリーにより上記基板の上記電極に形成してレベリングしないバンプを形成する装置と、

上記電子部品を上記回路基板の上記電極に位置合わせして搭載する装置と、

所定温度に加熱されたツールにより、上記電子部品の上面から加熱しながら、加圧力として上記電子部品を上記回路基板に圧力P1により押圧して上記基板の反りの矯正を行いながら、上記電子部品と上記回路基板の間に介在する上記絶縁性樹脂を硬化し、その後、所定時間後、上記加圧力を上記圧力P1より低い圧力P2に降下させて上記絶縁性樹脂の硬化時の応力を緩和しながら上記電子部品と上記回路基板を接合して上記電子部品の上記電極と上記回路基板の上記電極を電気的に接続する装置とを備えるようにしたことを特徴とする電子部品の実装装置を提供する。

[0031]

本発明の第18態様によれば、上記圧力P1は20gf/バンプ以上、上記圧力P2は上記圧力P1の1/2以下とする第17態様に記載の電子部品の実装装置を提供する。

[0032]

本発明の第19態様によれば、上記絶縁性樹脂に配合する上記無機フィラーの 平均粒径が3μm以上であることを特徴とする第1~3のいずれかの態様に記載 の電子部品の実装方法を提供する。

[0033]

本発明の第20態様によれば、上記絶縁性樹脂に配合する上記無機フィラーは、異なる平均粒径を持つ複数種類の無機フィラーである第1~3,19のいずれかの態様に記載の電子部品の実装方法を提供する。

本発明の第21態様によれば、上記絶縁性樹脂に配合する上記無機フィラーは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラーであって、上記少なくとも2種類の無機フィラーのうちの一方の無機フィラーの平均粒径は、上記少なくとも2種類の無機フィラーのうちの他方の無機フィラーの平均粒径の2倍以上異なっている第1~3,19のいずれかの態様に記載の電子部品の実装方法を提供する。

[0035]

本発明の第22態様によれば、上記絶縁性樹脂に配合する上記無機フィラーは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラーであって、上記少なくとも2種類の無機フィラーは3μmを超える平均粒径を持ち、上記少なくとも2種類の無機フィラーのうちの他方の無機フィラーは3μm以下の平均粒径を持つ第1~3,19のいずれかの態様に記載の電子部品の実装方法を提供する。

[0036]

本発明の第23態様によれば、上記絶縁性樹脂に配合する上記無機フィラーは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラーであって、上記少なくとも2種類の無機フィラーのうちの平均粒径の大きい一方の無機フィラーは上記絶縁性樹脂と同一材料からなることにより、応力緩和作用を奏する第1~3,19のいずれかの態様に記載の電子部品の実装方法を提供する。

[0037]

本発明の第24態様によれば、上記絶縁性樹脂に配合する上記無機フィラーは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラーであって、上記少なくとも2種類の無機フィラーのうちの平均粒径の大きい一方の無機フィラーは上記絶縁性樹脂であるエポキシ樹脂よりも柔らかく、上記一方の無機フィラーが圧縮されることにより、応力緩和作用を奏する第1~3,19のいずれかの態様に記載の電子部品の実装方法を提供する。

[0038]

本発明の第25態様によれば、上記絶縁性樹脂層は、上記電子部品又は上記基

板のいずれか一方に接触する部分が、他の部分よりも上記無機フィラー量が少ないようにした第1~3,19~24のいずれかの態様に記載の電子部品の実装方法を提供する。

[0039]

本発明の第26態様によれば、上記絶縁性樹脂層は、上記電子部品又は上記基板のいずれか一方に接触する部分に位置されかつ上記絶縁性樹脂と同一の絶縁性樹脂に上記無機フィラーを配合した第1樹脂層と、上記第1樹脂層に接触し、かつ、上記第1樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第2樹脂層とを備える第25態様に記載の電子部品の実装方法を提供する。

[0040]

本発明の第27態様によれば、上記絶縁性樹脂層は、上記電子部品及び上記基板にそれぞれ接触する部分が、他の部分よりも上記無機フィラー量が少ないようにした第25態様に記載の電子部品の実装方法を提供する。

[0041]

本発明の第28態様によれば、上記絶縁性樹脂層は、上記第1樹脂層の上記第2樹脂層とは反対側に、上記第1樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第3樹脂層をさらに備えて、上記第1樹脂層と上記第3樹脂層は、それぞれ、上記電子部品と上記基板に接触する第26態様に記載の電子部品の実装方法を提供する。

[0042]

本発明の第29態様によれば、上記電子部品及び上記基板にそれぞれ接触する部分は、その上記無機フィラー量が20wt%未満にする一方、上記他の部分はその上記無機フィラー量が20wt%以上である第27態様に記載の電子部品の実装方法を提供する。

[0043]

本発明の第30態様によれば、上記第1樹脂層及び上記第3樹脂層のそれぞれは、その上記無機フィラー量が20wt%未満にする一方、上記第2樹脂層はその上記無機フィラー量が20wt%以上である第28態様に記載の電子部品の実装方法を提供する。

[0044]

本発明の第31態様によれば、上記絶縁性樹脂層は、上記電子部品又は上記基板のいずれか一方に接触する部分から他の部分に向かって、上記無機フィラー量が徐々に又は段階的に少なくなるようにした第1~3,19~24のいずれかの態様に記載の電子部品の実装方法を提供する。

[0045]

本発明の第32態様によれば、上記絶縁性樹脂層は、上記電子部品及び上記基板にそれぞれ接触する部分から他の部分に向かって、上記無機フィラー量が徐々に又は段階的に少なくなるようにした第31態様に記載の電子部品の実装方法を提供する。

[0046]

本発明の第33態様によれば、上記電子部品に接触する部分では、電子部品表面に用いられる膜素材に対して密着性を向上させる絶縁性樹脂を用いる一方、上記基板に接触する部分では、基板表面の材料に対して密着性を向上させる絶縁性樹脂を用いるようにした第25,27,29,31のいずれかの態様に記載の電子部品の実装方法を提供する。

[0047]

本発明の第34態様によれば、上記電子部品に接触する上記樹脂層では、電子部品表面に用いられる膜素材に対して密着性を向上させる絶縁性樹脂を用いる一方、上記基板に接触する上記樹脂層では、基板表面の材料に対して密着性を向上させる絶縁性樹脂を用いるようにした第26,28,30,32のいずれかの態様に記載の電子部品の実装方法を提供する。

[0048]

本発明の第35態様によれば、上記絶縁性樹脂層は、上記電子部品又は上記基板のいずれか一方に接触する部分が、上記無機フィラーを配合しないようにした第1~3,19~24のいずれかの態様に記載の電子部品の実装方法を提供する

[0049]

本発明の第36態様によれば、上記絶縁性樹脂層は、上記電子部品又は上記基

板のいずれか一方に接触する部分に位置されかつ上記絶縁性樹脂と同一の絶縁性 樹脂に上記無機フィラーを配合した第1樹脂層と、上記第1樹脂層に接触し、か つ、上記無機フィラーを配合しない絶縁性樹脂で構成される第2樹脂層とを備え る第35態様に記載の電子部品の実装方法を提供する。

[0050]

本発明の第37態様によれば、上記絶縁性樹脂層は、上記電子部品及び上記基板にそれぞれ接触する部分が、上記無機フィラーを配合しないようにした第35 態様に記載の電子部品の実装方法を提供する。

[0051]

本発明の第38態様によれば、上記絶縁性樹脂層は、上記第1樹脂層の上記第2樹脂層とは反対側に、上記無機フィラーを配合しない絶縁性樹脂で構成される第3樹脂層をさらに備えて、上記第1樹脂層と上記第3樹脂層は、それぞれ、上記電子部品と上記基板に接触する第36態様に記載の電子部品の実装方法を提供する。

[0052]

本発明の第39態様によれば、上記電子部品及び上記基板にそれぞれ接触する部分は、上記無機フィラーを配合しないようにする一方、上記他の部分はその上記無機フィラー量が20wt%以上である第37態様に記載の電子部品の実装方法を提供する。

[0053]

本発明の第40態様によれば、上記第1樹脂層及び上記第3樹脂層のそれぞれは、上記無機フィラーを配合しないようにする一方、上記第2樹脂層はその上記無機フィラー量が20wt%以上である第38態様に記載の電子部品の実装方法を提供する。

[0054]

本発明の第41態様によれば、上記絶縁性樹脂層は、上記電子部品及び上記基板に接触する部分に位置されかつ上記無機フィラーを配合した絶縁性樹脂で構成される第4樹脂層と、上記電子部品と上記基板との中間部分に位置されかつ上記第4樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第5樹脂

層とを備える第 $1\sim3$, $19\sim24$ のいずれかの態様に記載の電子部品の実装方法を提供する。

[0055]

本発明の第42態様によれば、上記絶縁性樹脂層は、上記電子部品及び上記基板に接触する部分に位置されかつ上記無機ジィラーを配合した絶縁性樹脂で構成される第4樹脂層と、上記電子部品と上記基板との中間部分に位置されかつ上記無機フィラー量が含まれていない絶縁性樹脂で構成される第5樹脂層とを備える第1~3,19~24のいずれかの態様に記載の電子部品の実装方法を提供する

[0056]

本発明の第43態様によれば、上記絶縁性樹脂層は、上記電子部品及び上記基板にそれぞれ接触する部分から、上記電子部品及び上記基板との中間部分に向かって、上記無機フィラー量が徐々に少なくなるようにした第1~3,19~24のいずれかの態様に記載の電子部品の実装方法を提供する。

[0057]

本発明の第44態様によれば、上記絶縁性樹脂層は、上記電子部品の近傍部分、次いで、上記基板の近傍部分、次いで、上記電子部品の近傍部分と上記基板の近傍部分との中間部分の順に上記無機フィラー量が少ないようにした第1~3、19~24のいずれかの態様に記載の電子部品の実装方法を提供する。

[0058]

本発明の第45態様によれば、上記絶縁性樹脂層の上記電子部品の近傍部分と 上記基板の近傍部分とのそれぞれの無機フィラー量は、上記電子部品の上記絶縁 性樹脂層に接触する部分の線膨張係数と上記基板の上記絶縁性樹脂層に接触する 部分の線膨張係数とにそれぞれ対応して配合されるようにした第43又は44態 様に記載の電子部品の実装方法を提供する。

[0059]

本発明の第46態様によれば、電子部品の電極に形成されたバンプを、絶縁性 樹脂に無機フィラーが配合されかつ硬化された絶縁性樹脂層を介在させかつ上記 バンプが押しつぶされた状態で、回路基板の電極に接合されて上記電子部品の上 記電極と上記回路基板の上記電極を電気的に接続しており、

上記絶縁性樹脂層は、上記電子部品又は上記基板のいずれか一方に接触する部分が、他の部分よりも上記無機フィラー量が少ないようにしたことを特徴とする電子部品ユニットを提供する。

[0060]

本発明の第47態様によれば、電子部品の電極に形成されたバンプを、絶縁性 樹脂に無機フィラーが配合されかつ硬化された絶縁性樹脂層を介在させかつ上記 バンプが押しつぶされた状態で、回路基板の電極に接合されて上記電子部品の上 記電極と上記回路基板の上記電極を電気的に接続しており、

上記絶縁性樹脂層は、上記電子部品又は上記基板のいずれか一方に接触する部分に位置されかつ上記絶縁性樹脂と同一の絶縁性樹脂に上記無機フィラーを配合した第1樹脂層と、上記第1樹脂層に接触し、かつ、上記第1樹脂層よりも上記無機フィラー量が少ない絶縁性樹脂で構成される第2樹脂層とを備えるようにしたことを特徴とする電子部品ユニットを提供する。

[0061]

本発明の第48態様によれば、第1~9,19~45のいずれかの態様に記載の電子部品の実装方法により上記電子部品が上記基板に実装された電子部品ユニットを提供する。

[0062]

【発明の実施の形態】

以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。

(第1実施形態)

以下、本発明の第1実施形態にかかる電子部品例えばICチップの実装方法及びその装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置の一例としての回路基板へのICチップの実装方法及びその実装装置を図1(A)から図14を参照しながら説明する。

[0063]

まず、本発明の第1実施形態にかかる回路基板へのICチップ実装方法を図1

(A) ~図4 (C) を用いて説明する。図1 (A) の電子部品の一例であるIC チップ1においてICチップ1のA1パッド電極2にワイヤボンディング装置に より図3(A)~図3(F)のごとき動作によりバンプ(突起電極)3を形成す る。すなわち、図3 (A)でホルダであるキャピラリー9 3から突出したワイヤ 95の下端にボール96を形成し、図3(B)でワイヤ95を保持するキャピラ リー93を下降心せ、ボール96をICチップ1の電極心に接合して大略バンプ 3の形状を形成し、図3(C)でワイヤ95を下方に送りつつキャピラリー93 の上昇を開始し、図3(D)に示すような大略矩形のループ99にキャピラリー 93を移動させて図3(E)に示すようにバンプ3の上部に湾曲部98を形成し 、引きちぎることにより図3 (F)に示すようなバンプ3を形成する。あるいは 、図3 (B) でワイヤ95をキャピラリー93でクランプして、キャピラリー9 3を上昇させて上方に引き上げることにより、金属線、例えば、金ワイヤ(金線)95(な岩鴨 金属線の例をしては、スズニアルミニウム、銅、又はこれらの金 属に微量元素を含有はせた合金のワイヤなどがあるが、以下の実施形態では代表 例として金叉イヤ*(金線) として記載する。)を引きちぎり、図8(G)のよう なバンプ3の形状を形成するようにしてもよい。このように、ICチップ1の各 電極2にバンプ3を形成じた状態を図順 (B) に示す。

[0064]

次に、図1 (C)に示す回路基板4の電極5上に、図1 (D)に示すように、ICチップ1の大きさより若千大きな寸法にてカットされた無機フィラー6fを配合した固体又は半固体の絶縁性樹脂層の一例としての絶縁性樹脂シート例えば熱硬化性樹脂シート6を配置し、例えば80~120℃に熱せられた貼付けツール7により、例えば5~10kgf/cm²程度の圧力で熱硬化性樹脂シート6をステージ109上の基板4の電極5上に貼り付ける。この後、無機フィラー6fを配合した固体又は半固体の熱硬化性樹脂シート6のツール7側に取り外し可能に配置されたセパレータ6aを剥がすことにより、基板4の準備工程が完了する。このセパレータ6aは、ツール7に無機フィラー6fを配合した固体又は半固体の熱硬化性樹脂シート6が貼り付くのを防止するためのものである。ここで、図1 (G)に図1 (F)のG部分を部分的に拡大して示すように、熱硬化性樹

脂シート 6 は、球状又は破砕シリカ、アルミナ等のセラミクスなどの無機系フィラー 6 f を絶縁性樹脂 6 mに分散させて混合し、これをドクターブレード法などにより平坦化し溶剤成分を気化させ固体化したものが好ましいとともに、後工程のリフロー工程での高温に耐えうる程度の耐熱性(例えば、240℃に10秒間耐えうる程度の耐熱性)を有することが好ましい。上記絶縁性樹脂は、例えば、絶縁性熱硬化性樹脂(例えば、エポキシ樹脂、フェノール樹脂、ポリイミドなど)、又は絶縁性熱可塑性樹脂(例えば、ポニフェニレンサルファイド(PPS)、ポリカーボネイト、変性ポリフェニレンオキサイド(PPO)など)、又は、絶縁性熱硬化性樹脂に絶縁性熱可塑性樹脂を混合したものなどが使用できるが、ここでは、代表例として絶縁性熱硬化性樹脂として説明を続ける。この熱硬化性樹脂ののガラス転移点は一般に120~200℃程度である。なお、熱可塑性樹脂のみを使用する場合には、最初は加熱して一旦軟化させたのち、加熱を停止して自然冷却させることにより硬化させる一方、絶縁性熱硬化性樹脂に熱可塑性樹脂を混合したものを使用する場合には、熱硬化性樹脂のほうが支配的に機能するため、熱硬化性樹脂のみと場合と同様に加熱することにより硬化する。

[0065]

次に、図1(E)及び図1(F)に示すように、図20の電子部品搭載装置600において、部品保持部材601の先端の熱せられた接合ツール8により、上記前工程でバンプ3が電極2上に形成されたICチップ1をトレー602から吸着保持しつつ、該ICチップ1を、上記前工程で準備されかつステージ9上に載置された基板4に対して、ICチップ1の電極2が対応する基板4の電極5上に位置するように位置合わせしたのち、上記熱せられた接合ツール8によりICチップ1を基板4に押圧する。この位置合わせは、公知の位置認識動作を使用する。例えば、図21(C)に示すように、基板4に形成された位置認識マーク605又はリード若しくはランドパターンを、電子部品搭載装置600の基板認識用カメラ604で認識して、図21(D)に示すようにカメラ604で得られた画像606を基に、基板4のステージ9上での直交するXY方向のXY座標位置とXY座標の原点に対する回転位置とを認識して基板4の位置を認識する。一方、図21(A)に示すように、接合ツール8に吸着保持されたICチップ1の位置

特平11-021800

認識用マーク608又は回路パターンをICチップ用位置認識カメラ603で認 識して、図21(B)に示すようにカメラ603で得られた画像607を基に、 ICチップ1の上記XY方向のXY座標位置とXY座標の原点に対する回転位置 とを認識してICチップ1の位置を認識する。そして、上記基板4とICチップ 1との位置認識結果を基に、接合ツール8又はステージ9を移動总せて、ICチ ップ1の電極2が対応する基板4の電極5上に位置するように位置合わせしたの ち、上記熱せられた接合ツール8によりICチップ1を基板4に押圧する。 このとき、バンプ3は、その頭部3aが、基板4の電極5上で図4(A)から図 4 (B) に示すように変形されながら押しつけられていく。このとき、図2 (A)から図2(B)に示すように、熱硬化性樹脂6m中の無機フィラー6fは、接 合開始当初に熱硬化性樹脂6m中に入り込んできた尖っているバンプ3により、 バンプ3の外側方向へ押し出される。また、図2(C)に示すように、この外側 方向への押し出し作用によりバンプ3と基板電極5の間に無機ディラー6fが入 り込まないことにより、接続抵抗値を低示させる効果を発揮する。このとき、も し、バンプ3と基板電極5の間に無機フィラー6fが多少入り込んだとしても、 バンプ3と基板電極5とが直接接触していることにより、全く問題はない。 このとき、ICチップ1を介してバンプ3側に印加する荷重は、バンプ3の外径 により異なるが、折れ曲がって重なり合うようになっているバンプ3の頭部3 a が、必ず図4(C)のように変形する程度の荷重を加えることが必要である。こ の荷重は、最低で20 (gf/バンプ1ケあたり)を必要とする。すなわち、図 17には、80μmの外径のバンプの場合の抵抗値と荷重との関係のグラフより 20(g f /バンプ1ケあたり)未満では抵抗値100mmΩ/バンプより大き くなって抵抗値が大きくなりすぎて実用上問題があるため、20(gf/バンプ 1ケあたり)以上であることが好ましいことが示されている。また、図18には 、80μm, 40μmのそれぞれの外径のバンプと最低荷重との関係に基づき信 頼性の高い領域を示したグラフである。これより、40μm以上の外径のバンプ では最低荷重は25(gf/バンプ1ケあたり)以上であることが好ましく、4 0μm未満の外径のバンプでは最低荷重は20(gf/バンプ1ケあたり)以上 ぐらいが信頼性が高いことが推定される。なお、今後、リードの狭ピッチ化とと

もにバンプ外径が40μm未満と小さくなった場合、バンプの投影面積に応じて、その2乗に比例して荷重が減少する傾向があることが推定される。よって、ICチップ1を介してバンプ3側に印加する最低荷重は、最低で20(gf/バンプ1ケあたり)を必要とするのが好ましい。上記ICチップ1を介してバンプ3側に印加する荷重の上限は、ICチップ1、バンプ3、回路基板4などが損傷しない程度とする。場合によって、その最大荷重は150(gf/バンプ1ケあたり)を越えることもある。なお、図中、参照符号6sは、熱硬化性樹脂シート6のうち接合ツール8の熱により溶融した溶融中の熱硬化性樹脂6mが溶融後に熱硬化された樹脂である。

[0066]

なお、セラミックヒータ又はパルスヒータなどの内蔵ヒータ8aにより熱せられた接合ツール8により、上記前工程でバンプ3が電極2上に形成されたICチップ1を、上記前工程で準備された基板4に対してICチップ1の電極2が対応する基板4の電極5上に図1(E)に示すように位置するように位置合わせする位置合わせ工程と、位置合わせしたのち図1(F)に示すように押圧接合する工程とを、1つの位置合わせ兼押圧接合装置、例えば、図1(E)の位置合わせ兼押圧接合装置で行うようにしてもよい。しかしながら、別々の装置、例えば、多数の基板を連続生産する場合において位置合わせ作業と押圧接合作業とを同時的に行うことにより生産性を向上させるため、上記位置合わせ工程は図5(B)の位置合わせ装置で行い、上記押圧接合工程は図5(C)の接合装置で行うようにしてもよい。なお、図5(C)では、生産性を向上させるため、2つの接合装置8を示しており、1枚の回路基板4の2個所を同時に押圧接合できるようにしている。

[0067]

回路基板4は、セラミック多層基板、FPC、ガラス布積層エポキシ基板(ガラエポ基板)やガラス布積層ポリイミド樹脂基板、アラミド不織布エポキシ基板 (例えば、松下電器産業株式会社製の登録商標アリブ「ALIVH」として販売されている樹脂多層基板)などが用いられる。これらの基板4は、熱履歴や、裁断、加工により反りやうねりを生じており、必ずしも完全な平面ではない。そこ

で、図5 (A) 及び図5 (B) に示すように、例えば約10μm以下に調整されるように平行度がそれぞれ管理された接合ツール8とステージ9とにより、接合ツール8側からステージ9側に向けて熱と荷重をICチップ1を通じて回路基板4に局所的に印加することにより、その印加された部分の回路基板4の反りが矯正せしめられる。また、ICチップ1は、アクティブ面の中心を凹として反っているが、これを接合時に1バンプあたり20gf以上の強い荷重で加圧することで、基板4とICチップ1の両方の反りやうねりを矯正することができる。このICチップ1の反りは、ICチップ1を形成するとき、Siに薄膜を形成する際に生じる内部応力により発生するものである。バンプの変形量は10~25μm程度であり、この程度の基板が当初から持っている内層銅箔から表面に現れるうねりの影響にバンプ3の変形でそれぞれのバンプ3が順応することで許容できるようになる。

[0068]

こうして回路基板4の反りが矯正された状態で、例えば140~230℃の熱がICチップ1と回路基板4の間の熱硬化性樹脂シート6に例えば数秒~20秒程度印加され、この熱硬化性樹脂シート6が硬化される。このとき、最初は熱硬化性樹脂シート6を構成する熱硬化性樹脂6mが流れてICチップ1のエッジまで封止する。また、樹脂であるため、加熱されたとき、当初は自然に軟化するため、このようにエッジまで流れるような流動性が生じる。熱硬化性樹脂6mの体積はICチップ1と回路基板4との間の空間の体積より大きくすることにより、この空間からはみ出すように流れ出て、封止効果を奏することができる。この後、加熱されたツール8が上昇することにより、加熱源がなくなるためICチップ1と熱硬化性樹脂シート6の温度が急激に低下して、熱硬化性樹脂シート6は流動性を失い、図1(F)及び図4(C)に示すように、ICチップ1は硬化した熱硬化性樹脂6sにより回路基板4上に固定される。また、回路基板4側をステージ9のヒータ9aなどにより加熱しておくと、接合ツール8の温度をより低く設定することができる。

(第2実施形態)

次に、本発明の第2実施形態にかかる回路基板への電子部品例えばICチップ

の実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置を説明する。

[0069]

この第2実施形態においては、第1実施形態において、熱硬化性樹脂シート6に配合する無機フィラー6fの混合割合を上記絶縁性熱硬化性樹脂例えば絶縁性熱硬化性エポキシ樹脂6mの5~90wt%として、一層好適なものとしたものである。5wt%未満では無機フィラー6fを混合する意味がない一方、90wt%を超えると、接着力が極度に低下するとともに、シート化するのが困難になるため好ましくない。一例として、高い信頼性を維持させる観点から、樹脂基板では20~40wt%、セラミック基板では40~70wt%が好ましいとともに、ガラエポ基板では20wt%程度でもシート封止剤の線膨張係数をかなり低下させることができ、樹脂基板において効果がある。なお、体積%では、wt%のおよそ半分の割合、又はエポキシ樹脂が1に対してシリカ約2の比重の割合とする。通常では、熱硬化性樹脂6mのシート化する際の製造上の条件と基板4の弾性率、及び最終的には信頼性試験結果により、この無機フィラー6fの混合割合が決定される。

[0070]

上記したような混合割合の無機フィラー6 f を熱硬化性樹脂シート6に配合することにより、熱硬化性樹脂シート6の熱硬化性樹脂6mの弾性率を増加させることができ、熱膨張係数を低下させてICチップ1と基板4の接合信頼性を向上させることができる。また、基板4の材料に合わせて、熱硬化性樹脂6mの材料常数、すなわち弾性率、線膨張係数を最適なものとするように、無機フィラー6 f の混合割合を決定することができる。なお、無機フィラー6 f の混合割合が挿花するにつれて、弾性率は大きくなるが、線膨張係数は小さくなる傾向がある。

[0071]

第1実施形態及び第2実施形態においては、液体ではなく固体の熱硬化性樹脂シート6を使用するため取り扱いやすいとともに、液体成分が無いため高分子で 形成することができ、ガラス転移点の高いものを形成しやすいといった利点がある。

[0072]

なお、図1(A)から図1(G)及び図2(A)~図2(C)、後述する図6及び図7においては、絶縁性樹脂層の一例としての熱硬化性樹脂シート6又は熱硬化性接着剤6bを回路基板4側に形成することについて説明したが、これに限定されるものではなく、図14(A)又は図14(B)に示すように、ICチップ1側に形成したのち、基板4に接合するようにしてもよい。この場合、特に、熱硬化性樹脂シート6の場合には、熱硬化性樹脂シート6の回路基板側に取り外し可能に配置されたセパレータ6aとともに、ステージ201上のゴムなどの弾性体117に吸着ノズルなどの保持部材200により保持されたICチップ1を押し付けて、バンプ3の形状に沿って熱硬化性樹脂シート6がICチップ1に貼り付けられるようにしてもよい。

(第3実施形態)

次に、本発明の第3実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置を図6(A)~図6(C)及び図7(A)~図7(F)を用いて説明する。

[0073]

この第3実施形態では、第1実施形態において、熱硬化性樹脂シート6を基板4に貼り付ける代わりに、図6(A)及び図7(A), (D)に示すように、絶縁性樹脂層の一例としての液体状の熱硬化性接着剤6bを回路基板4上に、ディスペンス502などによる塗布、又は印刷、又は転写するようにしたのち、半固体状態、いわゆるBステージ状態、まで固化し。その後、上記第1又は第2実施形態と同様に、上記ICチップ1を上記基板4に搭載する。

[0074]

詳しくは、図6 (A)に示すように、液体状の熱硬化性接着剤6bを回路基板4上に、図7 (A)に示すような空気圧で吐出量が制御されかつ基板平面上で直交する2方向に移動可能なディスペンス502などによる塗布、又は印刷、又は転写する。次いで、図6 (B)のごとくヒータ78aを内蔵したツール78により、熱と圧力を印加して均一化しながら、図6 (C)のように半固体状態、いわ

ゆるBステージ状態、まで固化する。

[0075]

又は、液体状の熱硬化性接着剤 6 b の粘性が低い場合には、図 7 (A) に示すように、ディスペンサ 5 0 2 で基板 4 上の所定位置に液体の熱硬化性接着剤 6 b を塗布したのち、熱硬化性接着剤 6 b の粘性が低いために自然に基板上で広がり、図 7 (B) に示すような状態となる。その後、図 7 (C) に示すように、コンベヤのような搬送装置 5 0 5 により上記基板 4 を炉 5 0 3 内に入れて、炉 5 0 3 のヒータ 5 0 4 により上記塗布された絶縁性樹脂の液体状熱硬化性接着剤 6 b を硬化させることにより、半固体化、すなわち、いわゆるBステージ状態まで固化する。

[0076]

一方、液体状の熱硬化性接着剤 6 b の粘性が高い場合には、図 7 (D) に示すように、ディスペンサ 5 0 2 で基板 4 上の所定位置に液体の熱硬化性接着剤 6 b を塗布したのち、熱硬化性接着剤 6 b の粘性が高いために自然に基板上で広がらないため、図 7 (E), (F)に示すように、スキージ 5 0 6 で平らに延ばす。その後、図 7 (C)に示すように、コンベヤのような搬送装置 5 0 5 により上記基板 4 を炉 5 0 3 内に入れて、炉 5 0 3 のヒータ 5 0 4 により上記塗布された絶縁性樹脂の液体状熱硬化性接着剤 6 b を硬化させることにより、半固体化、すなわち、いわゆるBステージ状態、まで固化する。

[0077]

このように熱硬化性接着剤 6 b を半固体化するときには、熱硬化性接着剤 6 b 中の熱硬化性樹脂の特性により差はあるものの、該熱硬化性樹脂のガラス転移点の30~80%の温度である80~130℃で押圧する。通常は、熱硬化性樹脂のガラス転移点の30%程度の温度で行う。このように熱硬化性樹脂のガラス転移点の30~80%とする理由は、図19の樹脂シートの加熱温度と反応率とのグラフより、80~130℃の範囲内ならば、まだ、後工程でさらに反応する範囲を充分に残すことができる。言い換えれば、80~130℃の範囲内の温度ならば、時間にもよるが、絶縁性樹脂たとえばエポキシ樹脂の反応率が10~50%程度に抑制できるので、後工程のICチップ圧着時の接合に問題が生じない。

すなわち、ICチップ圧着時に押圧するときに所定の押圧量を確保することができ、押し切れなくなるという問題を生じにくい。なお、反応を抑えて溶剤分のみを気化させることにより、半固体化することもある。

[0078]

上記熱硬化性接着剤6 bを上記したように半固体化させたのち、基板4に複数のICチップ1を装着する場合には、基板4の複数のICチップ1を装着する複数の個所において上記熱硬化性接着剤6 bの上記半固体化工程を前段取り工程とし予め行っておき、このように前段取りされた基板4を供給して供給された基板4に複数のICチップ1を上記複数の個所に接合することでより生産性が高くなる。この後の工程では、熱硬化性接着剤6 bを使用する場合でも、基本的には上記した第1又は第2実施形態の熱硬化性樹脂シート6を用いる工程と同一の工程を行う。上記半固定化工程を加えることで、液体の熱硬化性接着剤6 bを熱硬化性樹脂シート6と同様に使用することができ、固体ゆえに取り扱いやすいとともに、液体成分が無いため高分子で形成することができ、ガラス転移点の高いものを形成しやすいといった利点がある。このように流動性のある熱硬化性接着剤6 bを使用する場合には、固体の熱硬化性樹脂シート6を使用する場合と比較して、基板4の任意の位置に任意の大きさに塗布、印刷、又は転写することができる利点をも合わせて持つ。

(第4実施形態)

次に、本発明の第4実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置を図22を用いて説明する。第4実施形態が第1実施形態と異なる点は、ICチップ1を基板4に接合するとき、荷重に加えて超音波も印加して、バンプ3をレベリングせずに、必要に応じて20g f 以下の荷重で押圧して、バンプ形成時の引き千切りにより生じた上記バンプ3の先端のネック(ヒゲ)部分の倒れによる隣接バンプ又は電極とのショートを防止するようにバンプ先端を整えたのち、ICチップ1と位置合わせしてICチップ1を基板4に搭載して、金属バンプ3を基板側の電極表面の金属と超音波併用熱圧着することである。ICチップ1を基板4に接合する状態

[0079]

この第4実施形態では、絶縁性熱硬化性樹脂6mに無機フィラー6fを配合し た固体の熱硬化性樹脂シート6又は液体の熱硬化性接着剤6bを上記したように 半固体化させたものを基板4に貼り付け、又は熱硬化性樹脂を含む熱硬化性接着 剤6bを基板4に塗布し半固体化させたのち、回路基板4の電極5と電子部品1 の電極2にワイヤボンディングと同様に図3(A)~図3(F)のごとき動作に より金線95の先端に電気スパークによりボール96を形成し、このボール96 をキャピラリー93により基板電極5に超音波熱圧着して形成されたバンプ3を 、レベリングせずに、ICチップ1と位置合わせしてICチップ1を基板4に撘 載する。ここで、上記「液体の熱硬化性接着剤6bを上記したように半固体化さ せたもの」とは、第3実施形態で説明したような液体の熱硬化性接着剤6bを半 分固体化したものであり、Bステージ化したものとほぼ同じものである。これを 使用することにより、シート封止材料やACF(異方性導電膜)よりも安価な材 料が利用できる。このとき、図22に示す超音波印加装置620において、内蔵 ヒータ622により予め加熱された接合ツール628により、該接合ツール62 8に吸着されたICチップ1の上面からエアシリンダ625による荷重と、ピエ ゾ素子のような超音波発生素子623により発生させられて超音波ホーン624 を介して印加される超音波とを作用させて金バンプ3のネック部分の倒れを防止 するように先端を整えつつ金バンプ3と基板側の金メッキとを金属接合する。次 に、ICチップ1の上面又は、及び基板側から加熱しながら、上記ICチップ1 を上記回路基板4に1バンプあたり20gf以上の加圧力により押圧し、上記基 板4の反りの矯正とバンプ3を押しつぶしながら、上記ICチップ1と上記回路 基板4の間に介在する上記熱硬化性樹脂シート6又は熱硬化性接着剤6bを上記 熱により硬化して、上記ICチップ1と上記回路基板4を接合して両電極2,5 を電気的に接続する。

[0080]

なお、1バンプあたり20gf以上の加圧力を必要とする理由は、このように 超音波を用いた接合でも摩擦熱が生じにくくなるので、接合できなくなるためで ある。金と金とを接合するような場合においても、ある一定加重でバンプを押しつけて、そこに超音波を印加することにより摩擦熱が生じて金属同士が接合される。したがって、この場合にもバンプを押圧する程度の一定荷重すなわち1バンプあたり20gf以上の加圧力が必要となる。加圧力の一例としては、1バンプあたり50gf以上とする。

[0081]

上記第4実施形態によれば、金属バンプ3と基板4の金属メッキが金属拡散接合されるので、よりバンプ部分での強度を持たせたいような場合や、接続抵抗値をさらに低くしたいような場合に好適である。

(第5 実施形態)

次に、本発明の第5実施形態にかかる回路基板への電子部品例えばICチップの実装

の実装

が法とび装置及び上記実装

方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置を図8(A)~図8

(C)及び図9(A)~図9(C)を用いて説明する。第5実施形態は、第1実施形態とは封止工程を省略することができる点が異なる。

[0082]

上記したようにICチップ1上の電極2に突起電極(バンプ)3を形成しておき、回路基板4には、図8(B),図8(C),図9(A)及び図23に示すように、ICチップ1の複数の電極2の内端縁を結んだ大略矩形の外形寸法OLより小さい形状寸法の矩形のシート状の熱硬化性樹脂シート6又は熱硬化性接着剤6bを回路基板4の電極5を結んだ中心部分に貼り付け又は塗布しておく。このとき、シート状の熱硬化性樹脂シート6又は熱硬化性接着剤6bの厚みは、その体積がICチップ1と基板4との隙間より大きくなるようにする。また、図23の貼り付け装置640により、巻き戻しロール644から巻き戻されて巻き付けロール643に巻き取られる矩形のシート状の熱硬化性樹脂シート656を、その切り目657が予め入れられた部分で、上下のカッター641により、ICチップ1の複数の電極2の内端縁を結んだ大略矩形の外形寸法OLより小さい形状寸法に切断する。切断された矩形のシート状の熱硬化性樹脂シート6は、内蔵ヒータ646で予め加熱された貼り付けヘッド642で吸着保持されて、上記回路

基板4の電極5を結んだ中心部分に貼り付けされる。次に、バンプ3と回路基板 4の電極5を位置合わせし、図8(A)及び図9(B)に示すように、ヒータ8 aにより加熱された接合ツール8によりICチップ1を回路基板4に加圧押圧し て、基板4の反りの矯正を同時に行いながら、ICチップ1と回路基板4の間に 介在する熱硬化性樹脂シート 6 又は熱硬化性接着剤 6 b を硬化する。このとき、 熱硬化性樹脂シート6又は熱硬化性接着剤6bは、接合ツール8からICチップ 1を介して加えられた熱により上記したように軟化し、図9(C)のごとく貼り 付けられた又は塗布された位置より加圧されて外側へ向かって流れ出る。この流 れ出た熱硬化性樹脂シート6又は熱硬化性接着剤6 bが封止材料(アンダーフィ ル)となり、バンプ3と電極5との接合の信頼性を著しく向上する。また、ある 一定時間がたつと、上記熱硬化性樹脂シート6又は熱硬化性接着剤6bでは徐々 に硬化が進行し、最終的には硬化した樹脂6sによりICチップ1と回路基板4 を接合することになる。ICチップ1を押圧している接合ツール8を上昇するこ とで、ICチップ1と回路基板4の電極5の接合が完了する。厳密に言えば、熱 硬化の場合には、熱硬化性樹脂の反応は加熱している間に進み、接合ツール8が 上昇するとともに流動性はほとんど無くなる。上記したような方法によると、接 合前では熱硬化性樹脂シート6又は熱硬化性接着剤6bが電極5を覆っていない ので、接合する際にバンプ3が電極5に直接接触し、電極5の下に熱硬化性樹脂 シート6又は熱硬化性接着剤6bが入り込まず、バンプ3と電極5との間での接 続抵抗値を低くすることができる。また、回路基板側を加熱しておくと、接合へ ッド8の温度をより低くすることができる。この方法を上記第3実施形態に適用 すると金バンプと回路基板の金電極(例えば、銅やタングステンにニッケル、金 メッキしたもの)との接合がより容易に行える。

(第6実施形態)

次に、第6実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置を図10~図11を用いて説明する。第6実施形態においては、第1実施形態と異なる点は、バンプ103を回路基板4の電極5にズレて実装された場合においても、信頼性の高い接合を達

成することもできる点である。

[0083]

第6実施形態においては、図10(A)に示すように、バンプ3をICチップ 1上に形成する際にワイヤボンディングと同様に金線95を電気スパークにより 金ボール96を形成する。次に、電気スパークするときの時間でボールの大きさ を調整しつつ、95aで示す直径Φd-Bumpのボール96aを形成し、 このように形成された直径Ф d - B u m p のボール 9 6 a を、電気スパークを発 生させるための時間又は電圧のパラメータを制御して、チャムファー角θ c が 1 O O°以下のキャピラリー193の93aで示すチャムファー直径φ Dが金ボー ル直径 d - B u m p の 1 / 2 から 3 / 4 となるようにボール 9 6 a を成形し、 図10(C)に示すようにキャピラリー93の金ボールと接する部分に平らな部 位93bを設けて図10(D)に示すようなバンプ3を形成するのではなく、図 10 (A) に示すようにキャピラリー193の金ボール96aと接する部分に平 らな部位を設励ない先端部位2 93 a を有する先端形状にしたキャピラリー19 3で、ICチップ1の電極2に、超音波熱压着により、図■ 0 (B) に示すよう なバンプ103を形成する。上記先端形状のキャピラリー193を用いることで 、図10(B)のbの紮うな先端が大略間錐状のバンプ103を4 Cチップ1の 電極2に形成することができる。上記方法で形成した先端が大略円錐状のバンプ 103を回路基板4の電極5に図11(C)のごとくズレて実装された場合にお いても、バンプ103がその先端が大略円錐形であるため、バンプ103の外径 の半分までのズレである場合は、バンプ103の一部が必ず基板4の電極5と接 触することができる。

[0084]

これに対して、図11(D)に示すようなバンプ3では、バンプ3を回路基板4の電極5に図11(C)のごとく寸法Zだけズレて実装された場合には、図11(E)に示すように、幅寸法dのいわゆる台座3gの一部が電極5に接触するが、部分的にしか接触せず、接触状態が不安定な接合となる。このような不安定な接合状態のままでは、このような基板4を冷熱衝撃試験やリフローにかけた場合には、上記不安定な接合状態の接合がオープンすなわち接合不良となってしま

う可能性があった。これに対して、上記第6実施形態では、図11(C)のごとく先端が大略円錐状のバンプ103が回路基板4の電極5に対して寸法Zだけズレて実装された場合においても、バンプ103が円錐形であるため、バンプ103の外径の半分までのズレである場合は、バンプ103の一部が必ず基板4の電極5と接触することができ、冷熱衝撃試験やリフローにかけた場合でも接合不良となることが防止できる。

(第7実施形態)

次に、第7実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置を図12~図13を用いて説明する。この第7実施形態では、第1実施形態において、回路基板4へのICチップ1の接合したのちの熱硬化性樹脂の硬化時にICチップ1と回路基板4の応力を緩和することができるようにしたものである。

[0085]

第7実施形態においては、絶縁性熱硬化性樹脂6mに無機フィラー6fを配合した固体又は半固体の熱硬化性樹脂シート6又は熱硬化性接着剤6bを介在させながら、ICチップ1の電極2に上記ワイヤボンディングにより形成されたバンプ3を、レベリングせずに、回路基板4の電極5と位置合わせする。例えば230℃程度の一定温度に加熱されたツール8によりICチップ1をその裏面から加熱しながら、上記ICチップ1を上記回路基板4に1バンプあたりセラミック基板の場合には圧力P1=80gf以上の加圧力により押圧し、上記基板4の反りの矯正を行いながら、上記ICチップ1と上記回路基板4の間に介在する上記熱硬化性樹脂シート6又は熱硬化性接着剤6bを上記熱により硬化する。次に、一定時間t1後、すなわち、全体時間を例えば20秒とすれば、材料の反応率により変わるが、その1/4とか1/2の5秒~10秒後、言い換えれば、材料の反応率が90%に達する前に、上記圧力P1より低い圧力P2まで下げて熱硬化性接着剤6bの硬化時の応力を緩和し、上記ICチップ1と上記回路基板4を接合して両電極2,5を電気的に接続する。好適には、バンプが変形していくためには最低限20gf程度は必要であるため、すなわち、バンプの変形及び順応に必

要な圧力を得るとともに、余分な樹脂をICチップ1と基板4との間から押し出すため、上記圧力P1は20gf/バンプ以上である一方、バンプの変形等の前に樹脂内部に偏在した硬化歪み除去するため、圧力P2は20gf/バンプ未満とすることにより、より信頼性が向上する。その理由は詳しくは以下のとおりである。すなわち、図12(C)に示すように、熱硬化性樹脂シート6又は熱硬化性接着剤6b中の熱硬化性樹脂の応力分布は圧着時にICチップ1と基板4側とで大きくなっている。

このままでは、信頼性試験や通常の長期使用で繰り返し疲労が与えられると、ICチップ1又は基板4側で熱硬化性樹脂シート6又は熱硬化性接着剤6b中の熱硬化性樹脂が応力に耐えきれずに剥離することがある。このような状態になると、ICチップ1と回路基板4の接着力が十分でなくなり、接合部がオープンすることになる。そこで、図13のように、より高い圧力P1とより低い圧力P2との2段階の圧力プロファイルを用いることにより、熱硬化性接着剤6bの硬化時に上記圧力P1より低い圧力P2まで下げることができて、図12(D)のごとく、圧力P2のときに樹脂内部に偏在した硬化歪み除去してICチップ1と回路基板4の応力を緩和する(言い換えれば、応力の集中度合いを減らす)ことができ、その後、上記圧力P1まで上げることにより、バンプの変形及び順応に必要な圧力を得るとともに、余分な樹脂をICチップ1と基板4との間から押し出すことができて、信頼性が向上する。

[0086]

なお、上記「I Cチップ1と回路基板4の接着力」とは、I Cチップ1と基板4をひっつける力のことを意味する。これは、接着剤による接着力と、接着剤を硬化したときの硬化収縮力と、Z方向の収縮力(例えば180℃に熱せられている接着剤が常温に戻るときに収縮するときの収縮力)のこれら3つの力によって、IC1と基板4とは接合されている。

(第8実施形態)

次に、第8実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置を図12~図13を用いて説

明する。この第8実施形態では、上記各実施形態において、上記絶縁性樹脂6mに配合する上記無機フィラー6fの平均粒径が3μm以上であるようにしたものである。ただし、上記無機フィラー6fの最大平均粒径は、ICチップ1と基板4との接合後の隙間寸法を超えない大きさとする。

[0087]

もし、無機フィラー6fを絶縁性樹脂6mに配合するときに、平均粒径が3μm未満の細かな粒子を無機フィラー6fとして用いると、それらの粒子の表面積自体が全体として大きくなり、平均粒径が3μm未満の細かな粒子である無機フィラー6fの周りに吸湿することがあり、ICチップ1と基板4との接合において好ましくない。

[0088]

従って、同じ重量の無機フィラー6fを配合する場合には、平均粒径が3μm以上の大きな無機フィラー6fを用いることで、無機フィラー6fの周りにおける吸湿量を減らしめることができ、耐湿性を向上させることが可能となる。また、一般に、平均粒径(言い換えれば平均粒度)の大きな無機フィラーの方が安価であるため、コスト的にも好ましい。また、図24(A)に示すように、ICチップ1と基板4との接合においてACF(Anisotropic Conductive Film:異方性導電膜)598を使用する工法では、ACF598中の導電粒子599をバンプ3と基板電極5との間に必ず挟む必要があるが、本発明の上記実施形態では導電粒子が無いためそのような必要は無く、図24(B)に示すようにバンプ3を基板電極5で押しつぶしながら圧着するので、この圧着のときにバンプ3と基板電極4との間の絶縁性樹脂層6,6bとともに無機フィラー6fもバンプ3と基板電極4と間から抜け出ることになり、基板電極4とバンプ3の間に不要な無機フィラー6fが挟まることにより導電性を阻害することがほとんど無いという特徴に基づき、3μm以上の大きな平均粒径の無機フィラー6fを使用することができる。

(第9実施形態)

次に、本発明の第9実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装さ

れた電子部品ユニット若しくはモジュール例えば半導体装置を図25,26を用いて説明する。図25,26は、それぞれ、上記第9実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置により製造された接合状態の模式断面図及びそのときに使用される樹脂シート6の部分拡大模式断面図である。この第9実施形態では、上記各実施形態において、上記絶縁性樹脂層6,6bの上記絶縁性樹脂6mに配合する上記無機フィラー6fは、複数の異なる平均粒径を持つ無機フィラー6fー1,6fー2とするものである。具体例としては、0.5 μ mの平均粒径を持つ無機フィラーと、2~4 μ mの平均粒径を持つ無機フィラーと、2~4 μ mの平均粒径を持つ無機フィラーとする。

[0089]

上記第9実施形態によれば、複数の異なる平均粒径を持つ無機フィラー6fー1, 6f-2を絶縁性樹脂6mに混合することにより、絶縁性樹脂6mに混合する無機フィラー6fの量を増加させることができて、、無機フィラーの周りにおける吸湿量を減らしめることができ、耐湿性を向上させることが可能となるとともに、フィルム化(固体化)することが容易になる。すなわち、重量%で考えた場合、一種類の無機フィラーよりも、粒径の異なる無機フィラーを混在して入れた方が、単位体積あたりの無機フィラーの量を増やすことが可能である。これによって、封止シートとしての樹脂シート6又は接着剤6bへの無機フィラー6fの配合量を増加し、樹脂シート6又は接着剤6bの線膨張係数を低下させることができ、より長寿命化させることができて、信頼性を向上させることができる。

(第10実施形態)

次に、本発明の第10実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置においては、上記第9実施形態における効果をより確実なものとするため、さらに、上記複数の異なる平均粒径を持つ無機フィラー6f-1の平均粒径は、他方の無機フィラー6f-2の平均粒径の2倍以上異なっているものである。具体例としては、0.5 μ mの平均粒径を持つ無機フィラーと、2 μ 00平均粒径を持つ無機フィラーと、2 μ 10平均粒径を持つ無機フィラーと、2 μ 10平均粒径を持つ無機フィラーとする。

[0090]

このようにすることにより、上記第9実施形態での効果をより一層高めることができる。すなわち、一方の無機フィラー6fー1の平均粒径は、他方の無機フィラー6fー2の平均粒径の2倍以上異なっている複数の異なる平均粒径を持つ無機フィラー6fー1, 6fー2を絶縁性樹脂6mに混合することにより、絶縁性樹脂6mに混合する無機フィラー6fの量をより確実に増加させることができて、フィルム化(固体化)することがより容易になり、樹脂シート6又は接着剤6bの無機フィラー6fの配合量を増加し、樹脂シート6又は接着剤6bの線膨張係数をより低下させることができ、より長寿命化させることができて、信頼性をより向上させることができる。

(第11実施形態)

次に、本発明の第11実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置においては、上記第9実施形態における効果をより確実なものとするため、さらに、上記絶縁性樹脂6mに配合する上記無機フィラー6fは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラー6f-1、6f-2であって、上記少なくとも2種類の無機フィラーのうちの一方の無機フィラー6f-1は3μmを超える平均粒径を持ち、上記少なくとも2種類の無機フィラーのうちの他方の無機フィラー6f-2は3μm以下の平均粒径を持つことが好ましい。具体例としては、0.5μmの平均粒径を持つ無機フィラーと、2~4μmの平均粒径を持つ無機フィラーと、2~4μmの平均粒径を持つ無機フィラーと、5~4μmの平均粒径を持つ無機フィラーと、5~4μmの平均粒径を持つ無機フィラーと、5~4μmの平均粒径を持つ無機フィラーと、5~4μmの平均粒径を持つ無機フィラーと、5~4μmの平均粒径を持つ無機フィラーとする。

(第12実施形態)

次に、本発明の第12実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置においては、上記各実施形態において、さらに、上記絶縁性樹脂6mに配合する上記無機フィラー6fは、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラー6f-1,6f-2であって、上記少なくとも2種類の無機フィラーのうちの平均粒径の

大きい一方の無機フィラー6 f - 1 は上記絶縁性樹脂 6 mと同一材料からなることにより、応力緩和作用を奏するようにすることもできる。具体例としては、0 . 5 μmの平均粒径を持つ無機フィラーと、 2 ~ 4 μmの平均粒径を持つ無機フィラーとする。

[0091]

この第12実施形態によれば、第9実施形態での作用効果に加えて、平均粒径の大きい一方の無機フィラー6f-1は上記絶縁性樹脂6mと同一材料からなることにより、上記絶縁性樹脂6mに応力が作用したとき、平均粒径の大きい一方の無機フィラー6f-1が上記絶縁性樹脂6mと一体化することにより、応力緩和作用を奏することができる。

(第13実施形態)

次に、本発明の第13実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置においては、上記各実施形態において、さらに、上記絶縁性樹脂6mに配合する上記無機フィラー6 f は、複数の異なる平均粒径を持つ少なくとも2種類の無機フィラー6 f - 1,6 f - 2であって、上記少なくとも2種類の無機フィラーのうちの平均粒径の大きい一方の無機フィラー6 f - 1 は上記絶縁性樹脂6mであるエポキシ樹脂よりも柔らかく、上記一方の無機フィラー6 f - 1 が圧縮されることにより、応力緩和作用を奏するようにすることもできる。

[0092]

この第13実施形態によれば、第9実施形態での作用効果に加えて、平均粒径の大きい一方の無機フィラー6f-1は上記絶縁性樹脂6mと同一材料からなることにより、上記絶縁性樹脂6mに応力が作用したとき、平均粒径の大きい一方の無機フィラー6f-1が上記絶縁性樹脂6mであるエポキシ樹脂よりも柔らかいため、上記応力により、上記一方の無機フィラー6f-1が図27に示すように圧縮されてその周囲で圧縮に対する反力である引張力が分散されることにより、応力緩和作用を奏することができる。

(第14実施形態)

次に、本発明の第14実施形態にかかる回路基板への電子部品例えばICチッ プの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装 された電子部品ユニット若しくはモジュール例えば半導体装置においては、上記 各実施形態において、さらに、図28(A), (B), 図29(A), (B), 図30及び図31に示されるように、上記絶縁性樹脂層6,6bは、上記ICチ ップ1又は上記基板4に接触する部分700又は層6×が、他の部分701又は 層6yよりも上記無機フィラー量が少ないか、もしくは上記無機フィラー6fを 配合しないようにすることができる。この場合、図28(A),(B)に示すよ うに、上記ICチップ1又は上記基板4に接触する部分700と、他の部分70 1とを明確に区別することなく、徐々に無機フィラー量が変わるようにしてもよ いし、図29(A), (B) 及び図30, 図31に示すように明確に区別するよ うにしてもよい。すなわち、図29(A),(B)及び図30,図31において 、上記絶縁性樹脂層6, 6bは、上記ICチップ1又は上記基板4に接触する部 分に位置されかつ上記絶縁性樹脂6mと同一の絶縁性樹脂に上記無機フィラー6 f を配合した第1樹脂層6xと、上記第1樹脂層6xに接触し、かつ、上記第1 樹脂層6xよりも上記無機フィラー量が少ないか、もしくは上記無機フィラー6 f を配合しない上記絶縁性樹脂で構成される第2樹脂層6yとを備えて多層構造 にすることもできる。

[0093]

このようにすれば、以下のような効果を奏することができる。すなわち、もし、上記無機フィラー6fを絶縁性樹脂層全体に同じ重量パーセント(wt%)で入れると、ICチップ側又は基板側又はその両方の対向面の近傍に無機フィラー6fが多くなることがあり、ICチップ1と基板4との中間部分では逆に少なくなる。この結果、ICチップ側又は基板側又はその両方の対向面の近傍に無機フィラー6fが多いため、絶縁性樹脂層6,6bとICチップ1又は基板4又はその両方との間での接着力が低下することがある。上記第14実施形態によれば、上記ICチップ1又は上記基板4のいずれか一方に接触する部分700又は層6×が、他の部分701又は層6yよりも上記無機フィラー量が少ないか、もしくは上記無機フィラー6fを配合しないようにすることにより、無機フィラー量が

多いために接着力が低下することを防止できる。

[0094]

以下に、この第14実施形態の種々の変形例について説明する。

[0095]

まず、第1の変形例として、図28(C),図29(C)及び図32(A)に示されるように、上記絶縁性樹脂層6,6bは、上記ICチップ1及び上記基板4の両方にそれぞれ接触する部分700が、他の部分701よりも上記無機フィラー量が少ないか、もしくは上記無機フィラー6fを配合しないようにすることもできる。この場合も、図28(C)に示すように、上記ICチップ1及び上記基板4の両方に接触する部分700と、他の部分701とを明確に区別することなく、徐々に無機フィラー量が変わるようにしてもよいし、図29(C)及び図32(A)に示されるように、明確に区別するようにしてもよい。すなわち、図29(C)及び図32(A)において、上記絶縁性樹脂層6,6bは、上記第1樹脂層6×の上記第2樹脂層6yとは反対側に、上記第1樹脂層6×よりも上記無機フィラー量が少ないか、もしくは上記無機フィラー6fを配合しない上記絶縁性樹脂で構成される第3樹脂層6zをさらに備えて多層構造とし、上記第1樹脂層6×と上記第3樹脂層6zは、それぞれ、上記ICチップ1と上記基板4とに接触するようにすることもできる。

[0096]

さらに、別の変形例として、上記ICチップ1又は上記基板4又はその両方にそれぞれ接触する部分700は、その上記無機フィラー量が20wt%未満か、もしくは上記無機フィラー6fを配合しないようにする一方、上記他の部分701はその上記無機フィラー量が20wt%以上であるようにすることもできる。この場合、図28(A), (B), (C)に示すように上記ICチップ1又は上記基板4又は両方に接触する部分700と、他の部分701とを明確に区別することなく、徐々に無機フィラー量が変わるようにしてもよいし、図29(A), (B), 図29(C), 図30, 図31, 及び図32(A)に示すように明確に区別するようにしてもよい。すなわち、上記第1樹脂層6x又は第1樹脂層6x及び上記第3樹脂層6zは、その上記無機フィラー量が20wt%未満か、もし

くは上記無機フィラー6fを配合しないようにする一方、上記第2樹脂層6yはその上記無機フィラー量が20wt%以上であるようにすることもできる。

[0097]

[0098]

また、別の変形例として、図28 (C), 図29 (C) 及び図32 (A) に示 す変形例と無機フィラーの配合量を逆にするようにしてもよい。すなわち、図2 8(D)に示されるように、上記絶縁性樹脂層6,6bは、上記ICチップ1及 び上記基板4の両方にそれぞれ接触する部分703の中間部分702が、上記Ⅰ Cチップ1及び上記基板4の両方にそれぞれ接触する部分703よりも上記無機 フィラー量が少ないか、もしくは上記無機フィラー6fを配合しないようにする こともできる。この場合も、上記ICチップ1又は上記基板4又は両方に接触す る部分703と、中間部分702とを明確に区別することなく、徐々に無機フィ ラー量が変わるようにしてもよいし、図29(D)及び図32(B)に示される ように、明確に区別するようにしてもよい。すなわち、図29 (D) 及び図32 (B) に示されるように、上記絶縁性樹脂層 6, 6 b は、上記 I C チップ 1 及び 上記基板4に接触する部分に位置されかつ上記無機フィラー6fを配合した絶縁 性樹脂6mで構成される第4樹脂層6∨と、上記ICチップ1と上記基板4との 中間部分に位置されかつ上記第4樹脂層6 vよりも上記無機フィラー量が少ない か又は含まれていない絶縁性樹脂6mで構成される第5樹脂層6wとを備えるよ うにすることもできる。

[0099]

このようにすれば、上記ICチップ1と上記基板4との上記中間部分702又 は上記第5樹脂層6wでは、上記ICチップ1と上記基板4とにそれぞれ接触す る部分703又は上記第4樹脂層6vよりも上記無機フィラー量が少ないか又は 含まれていないため、弾性率が低くなり、応力緩和効果を奏ずることができる。 また、上記ICチップ1と上記基板4とにそれぞれ接触する部分703又は上記 第4樹脂層6 vの絶縁性樹脂としてICチップ1と基板4とに対する密着力の高 いものを選択して使用すれば、上記ICチップ1に接触する部分703又はIC チップ1の近傍部分の上記第4樹脂層6vでは、ICチップ1の線膨張係数にで きるだけ近くなるように無機フィラー6fの配合量又は材料を選択する一方、上 記基板4に接触する部分703又は基板4の近傍部分の上記第4樹脂層6vでは 、基板4の線膨張係数にできるだけ近くなるように無機フィラー6fの配合量又 は材料を選択することができる。この結果、上記ICチップ1に接触する部分7 03又はICチップ1の近傍部分の上記第4樹脂層6vとICチップ1との線膨 張係数が接近するため、両者の間での剥離が生じにくくなるとともに、上記基板 4に接触する部分703又は基板4の近傍部分の上記第4樹脂層6vと基板4と の線膨張係数が接近するため、両者の間での剥離が生じにくくなる。

[0100]

さらに、図33(A), (B)に実線で示すように、上記絶縁性樹脂層6,6 bは、上記ICチップ1又は上記基板4のいずれか一方に接触する部分P1から 他の部分P2に向かって、上記無機フィラー量が徐々に又は段階的に少なくなる ようにすることもできる。

[0101]

また、図33(C), (D)に実線で示すように、上記絶縁性樹脂層6,6bは、上記ICチップ1及び上記基板4にそれぞれ接触する部分P3,P4から他の部分すなわちICチップ1と上記基板4との中間部分P5に向かって、上記無機フィラー量が徐々に又は段階的に多くなるようにすることもできる。

[0102]

また、図33(E)に実線で示すように、上記絶縁性樹脂層6,6bは、上記ICチップ1及び上記基板4にそれぞれ接触する部分(図28(D)の変形例に

おける接触部分703に相当する部分)から、上記ICチップ1及び上記基板4 との中間部分(図28(D)の変形例における中間部分702に相当する部分) に向かって、上記無機フィラー量が徐々に少なくなるようにすることもできる。

[0103]

また、図33(F)に実線で示すように、上記絶縁性樹脂層6,6 bは、上記 I Cチップ1の近傍部分、次いで、上記基板4の近傍部分、次いで、上記I Cチップ1の近傍部分と上記基板4の近傍部分との中間部分の順に上記無機フィラー量が少ないようにすることもできる。なお、図33(F)では、上記順に徐々に上記無機フィラー量が変化するように例示しているが、これに限られるものではなく、段階的に変化するようにしてもよい。

[0104]

上記図33(E), (F)の変形例のようにすれば、上記ICチップ1と上記 基板4との中間部分では、上記ICチップ1及び上記基板4にそれぞれ接触する 部分よりも上記無機フィラー量が少ないか又は含まれていないため、弾性率が低 くなり、応力緩和効果を奏することができる。また、上記ICチップ1及び上記 基板4にそれぞれ接触する部分の絶縁性樹脂としてICチップ1と基板4とに対 する密着力の高いものを選択して使用すれば、ICチップ1に接触する部分では 、ICチップ1の線膨張係数にできるだけ近くなるように無機フィラー6fの配 合量又は材料を選択する一方、基板4に接触する部分では、基板4の線膨張係数 にできるだけ近くなるように無機フィラー6 f の配合量又は材料を選択すること ができる。この観点で無機フィラー6 f の配合量を決定すると、 通常は、図33 (F) に実線で示すように、上記 I C チップ 1 の近傍部分、次いで、上記基板 4 の近傍部分、次いで、上記ICチップ1の近傍部分と上記基板4の近傍部分との 中間部分の順に上記無機フィラー量が少ないようなる。このような構成とするこ とにより、ICチップ1に接触する部分とICチップ1との線膨張係数が接近す るため、両者の間での剥離が生じにくくなるとともに、基板4に接触する部分と 基板4との線膨張係数が接近するため、両者の間での剥離が生じにくくなる。

[0105]

図33(A)~(F)のいずれの場合でも、実用上、上記無機フィラー量は5

~90wt%の範囲内とすることが好ましい。5wt%未満では無機フィラー6fを混合する意味がない一方、90wt%を超えると、接着力が極度に低下するとともに、シート化するのが困難になるため好ましくないためである。

[0106]

なお、上記のような複数の樹脂層 6 x, 6 y又は 6 x, 6 y, 6 z で構成される多層構造の膜を絶縁性樹脂層として用いて I C チップ 1 を基板 4 に熱圧着した場合には、接合時の熱により絶縁性樹脂 6 mが軟化、溶融して上記樹脂層が混じり合うので、最終的には、各樹脂層の明確な境界が無くなり、図33のように傾斜した無機フィラー分布となる。

[0107]

さらに、上記第14実施形態又は各変形例において、無機フィラー6fの入った部分又は層を有する絶縁性樹脂層、又は、無機フィラー分布が傾斜した絶縁性樹脂層において、上記部分又は樹脂層に応じて、異なった絶縁性樹脂を用いることも可能である。例えば、ICチップ1に接触する部分又は樹脂層では、ICチップ表面に用いられる膜素材に対して密着性を向上させる絶縁性樹脂を用いる一方、基板4に接触する部分又は樹脂層では、基板表面の材料に対して密着性を向上させる絶縁性樹脂を用いることも可能となる。

[0108]

上記第14実施形態及びそれらの上記種々の変形例によれば、ICチップ1又は上記基板4と絶縁性樹脂層6,6bとの接合界面では無機フィラー6fが存在しないかその量が少なく、絶縁性樹脂本来の接着性が発揮されて、上記接合界面で接着性の高い絶縁性樹脂が多くなり、ICチップ1又は上記基板4と絶縁性樹脂6mとの密着強度を向上させることができて、ICチップ1又は上記基板4との接着性が向上する。これにより、各種信頼性試験での寿命が向上するとともに、曲げに対しての剥離強度が向上する。

[0109]

もし、接着そのものには寄与しないが線膨張係数を下げる効果を持つ無機フィ ラー6fが絶縁性樹脂6m中に均一に分散されていると、基板4又はICチップ 表面に無機フィラー6fが接触し、接着に寄与する接着剤の量が減少することに なり、接着性の低下を招く。この結果、もしICチップ1または基板4と接着剤の間で剥離が生じると、そこから水分が侵入し、ICチップ1の電極の腐食などの原因となる。また、剥離部分から剥がれが進行すると、ICチップ1と基板4の接合そのものが不良となり、電気的に接続不良となる。

[0110]

これに対して、上記第14実施形態及びそれらの上記種々の変形例によれば、 上記したように、無機フィラー6fによる線膨張係数を下げる効果を持たせたま ま接着力を向上させることができる。これによって、ICチップ1及び基板4と の密着強度が向上し、信頼性が向上する。

[0111]

さらに、無機フィラー6fの少ない部分700又は樹脂層6×をICチップ側に配置した場合、又は、ICチップ側において無機フィラー分布を小さくした場合には、当該部分700又は樹脂層6×は、ICチップ表面の窒化シリコンや酸化珪素からなるパッシベイション膜に対して密着力を向上させることが可能となる。また、これらICチップ表面に用いられる膜素材に対して密着性を向上させる絶縁性樹脂を適宜選択して用いることも可能となる。また、ICチップ近傍での弾性率を下げることで、絶縁性樹脂層の一例である封止シート材料のなかでの応力集中が緩和される。基板4に用いられる材料がセラミックのように固い(弾性率の高い)場合には、このような構造をとると、基板近傍での封止シート材料との弾性率、線膨張係数がマッチングして、尚、好適である。

[0112]

一方、無機フィラー6fの少ない部分700又は樹脂層6xを基板側に配置した場合には、又は、基板側において無機フィラー分布を小さくした場合には、樹脂基板やフレキシブル基板(FPC)などのように基板4に曲げが加わるような場合において、基板4を電子機器の筐体に組み込む際に曲げ応力が加わるようなとき、基板4と絶縁性樹脂層の一例である封止シートとの密着強度を向上する目的で用いることができる。ICチップ側の表面層がポリイミド膜で形成された保護膜よりなる場合においては、一般に、絶縁性樹脂の密着が良好で、問題とならない場合にICチップ1から基板4にかけて、弾性率と線膨張係数が連続的また

は段階的に変化することで、ICチップ側で封止シートが固く、基板側では柔ら

かい材料とすることができる。これにより、封止シート内部での応力発生が小さ くなることから信頼性が向上する。

[0113]

さらに、ICチップ側と基板側の両側に無機フィラー6fの少ない部分700 又は樹脂層6x,6zを配置した場合、又は、ICチップ側と基板側の両側において無機フィラー分布を小さくした場合には、上記ICチップ側と基板側との2つの場合を両立させるものであり、ICチップ側及び基板側の両方での密着性を向上させることができるとともに、線膨張係数を下げてICチップ1と基板4の両者を高い信頼性で接続させることができる。また、ICチップ側表面の材質及び基板材質に応じて、より密着性、樹脂塗れ性の良好な絶縁性樹脂を選択して用いることができる。。また、これらの無機フィラー6fの量の多い少ないの傾斜は自由に変えることができるので、無機フィラー6fの少ない部分又は層を極薄くしたりすることで、基板材料とのマッチングが可能である。

(第15実施形態)

次に、本発明の第15実施形態においては、上記第8~14実施形態及びそれらの変形例にかかる回路基板への電子部品例えばICチップの実装方法及び装置及び上記実装方法により上記ICチップが上記基板に実装された電子部品ユニット若しくはモジュール例えば半導体装置により使用される絶縁性樹脂層の製造工程を図34,図35に基づいて説明する。

[0114]

まず、直接、回路基板4上で絶縁性樹脂層を形成する場合には、回路基板4の上に、第1樹脂シートを貼付け、その上に第2樹脂シートを貼付ける。このとき、第1樹脂シートに無機フィラー6fが多い場合は図28(A)または図30のようになり、逆の場合には図28(B)または図31のようになる。すなわち、前者の場合には、第1樹脂シートは上記無機フィラー6fが多い部分701又は第2樹脂層6yに対応する樹脂シートであり、後者の場合には、上記無機フィラー6fが少ない部分700又は第1樹脂層6xに対応する樹脂シートとなる。

[0115]

また、第2樹脂シートの上にさらに第3樹脂シートを形成して、第1樹脂シートと第3樹脂シートとが無機フィラー6fが少ない部分700又は第1樹脂層6xに対応する場合には、図28(C)または図32(A)のようになる。

[0116]

また、これらを、図34,図35に示すように、予めセパレータと呼ばれるベースフィルム672上で、第1樹脂シート673と第2樹脂シート674とをこの順に(図34,図35にはこの場合のみ示す。)、又はこれとは逆に、又はさらに第3樹脂シートをも、貼り付けて形成してもよい。この場合には、図34,図35のように、上下一対の加熱可能なローラ670,270などで複数の樹脂シート673,674を、必要に応じて加熱しつつ、貼り付けていく。その後、形成された樹脂シート体671を所定寸法毎に切断すれば、図28(A)~(C),図29(A)~(C),図30~32のいずれかに示すような上記絶縁性樹脂シート6となる。

[0117]

また、別の変形例として、絶縁性樹脂シート6が連続した絶縁性樹脂シート体 を作製する際には、溶剤に溶かせたエポキシ及び無機フィラーをドクターブレー ド法などによりセパレーターと呼ばれるベースフィルム上に塗布する。この溶剤 を乾燥させて絶縁性樹脂シート体が製作される。

[0118]

このとき、一旦、無機フィラー6fの濃度が低いか、又は、無機フィラー6fが入っていない液体状の絶縁性樹脂を第1層としてベースフィルム上に塗布し、場合によっては、その塗布された第1層の乾燥を行う。乾燥しない場合には、無機フィラー6fが、若干、第1層に第2層の無機フィラー6fが混入していき、図33のように無機フィラー分布が傾斜した構造となる。

[0119]

上記塗布形成された第1層の上に、無機フィラー6fを第1層よりも多く混入した液体状の絶縁性樹脂を塗布して第2層とする。第2層を乾燥することにより、ベースフィルム上に第1層と第2層とが形成された2層構造の絶縁性樹脂シート体が形成できる。絶縁性樹脂シート体を所定寸法毎に切断すれば、図28(A

), 図29 (A), 図30に示すような上記絶縁性樹脂シート6となる。

[0120]

なお、基板側に無機フィラー6fが少ない層を配置する場合には、上記と逆の工程、すなわち、ベースフィルム上に第2層を形成したのち、第2層上に第1層を形成して、2層構造の絶縁性樹脂シート体が形成できる。絶縁性樹脂シート体を所定対法毎に切断すれば、図28(B)、図29(B)、図31に示すような上記絶縁性樹脂シート6となる。

[0121]

また、一旦、無機フィラー6fの濃度が低い、又は、無機フィラー6fが入っていない絶縁性樹脂6mを第1層として塗布乾燥(省略されることもある。)し、第1層の上に無機フィラー3fを第1層よりも多く混入した絶縁性樹脂を塗布して第2層として塗布乾燥(省略されることもある。)し、この上に無機フィラーの量が第2層製り少ないまたは無い第3層を塗布する。これを乾燥することにより、ベースフィルム上に第1層と第2層と第3層とが形成された3層構造の絶縁性樹脂シート体が形成できる。絶縁性樹脂シート体を所定寸法毎に切断すれば、図28(C)、図29(C)、図32(A)に示すような上記絶縁性樹脂シート6となる。

[0122]

上記直接、回路基板4上で絶縁性樹脂層を形成する方法によれば、上記電子部品ユニットを製造する側で、上記絶縁性樹脂層において、電子部品に最適な材料の樹脂を選択して電子部品側に配置する一方、基板に最適な材料の樹脂を選択して基板側に配置することができ、樹脂の選択の自由度を高めることができる。

[0123]

これに対して、絶縁性樹脂シート体を製造する方法では、上記したほど選択の 自由度は無いが、一括して多数の上記絶縁性樹脂シート6を製造することかでき て、製造効率が良いとともに安価なものとなるとともに、貼り付け装置が1台で 十分になる。

[0124]

上記したように、本発明の上記各実施形態によれば、電子部品例えばICチッ

プと回路基板を接合するのに従来要した工程の多くを無くすことができ、非常に 生産性を向上させることができる。すなわち、例えば、従来例として記載したス タッド・バンプ・ボンディングや半田バンプによる接合では、フリップチップ接 合した後に封止材を注入してバッチ炉に入れて硬化する必要がある。この封止材 の注入には、1ケあたり数分、また、封止材の硬化に、2から5時間を要する。 スタッド・バンプ・ボンディング実装においては、さらにその前行程として、バ ンプにAgペーストを転写して、これを基板に搭載した後、Agペーストを硬化 するという工程が必要となる。この工程には2時間を要する。これに対して、上 記実施形態の方法では、上記封止工程を無くすことができ、非常に生産性を向上 させることができる。さらに、上記実施形態では、固体又は半固体の絶縁性樹脂 の封止シート等を用いることにより、例えば分子量の大きなエポキシ樹脂を用い ることができることとなり、10~20秒程度の短時間で接合が可能となり、接 合時間の短縮も図ることができ、さらに生産性を向上させることができる。また 、接合材料として導電粒子の無い熱硬化性樹脂シート6又は熱硬化性接着剤6b を用いた場合には、従来例2で示した方法に比べて絶縁性樹脂中に導電性微片を 加える必要が無いため、安価なICチップの実装方法及び装置を提供することが できる。

[0125]

さらに、以下のような効果をも奏することができる。

[0126]

(1) バンプ形成

バンプをメッキで形成する方法(従来例3)では、専用のバンプ形成工程を半導体メーカーで行う必要があり、限定されたメーカーでしかバンプの形成ができない。ところが、本発明の上記実施形態によれば、ワイヤボンディング装置により、汎用のワイヤボンディング用のICチップを用いることができ、ICチップの入手が容易となる。すなわち、汎用のワイヤボンディング用のICチップを用いることができる理由は、ワイヤボンディングであれば、A1パッドが形成された通常のICパッド上に、ワイヤボンディング装置やバンプボンディング装置を用いてバンプが形成可能であるからである。一方、バンプをメッキで形成する方

特平11-021800

法(従来例3)によりメッキバンプを形成するには、A1パッドの上に、Ti、Cu、Crなどのバリヤメタルを形成したのちにレジストをスピンコートで塗布し、露光してバンプ形成部のみ穴をあける。これに電気を通電して、その穴部分にAuなどからなるメッキを行うことで形成する。従って、メッキバンプを形成するには、大規模なメッキ装置や、シアン化合物などの危険物の廃液処理装置を必要とするので、通常のアセンブリ工程を行う工場では現実には実施不可能である。

[0127]

また、従来例1の方法に比べて、導電性接着剤の転写といった不安定な転写工程での接着剤の転写量を安定させるためのバンプレベリングが不要となり、そのようなレベリング工程用のレベリング装置が不要となる。その理由は、バンプを押圧しながら基板の電極上で押しつぶすため、予めバンプだけをレベリングしておく必要がないためである。

[0128]

また、上記実施形態において以下のようにすれば、バンプ103を回路基板4の電極5にズレて実装された場合においても、信頼性の高い接合を達成することもできる。すなわち、バンプ3をICチップ1上に形成する際にワイヤボンディングと同様に金線を電気スパークにより金ボール96aを形成する。次に、95aで示す直径Φd-Bumpのボール96aを形成し、これをチャムファー角θcが100°以下となるキャピラリー193の93aで示すチャムファー直径ΦDを金ボール96aの直径d-Bumpの1/2から3/4とし、キャピラリー193の金ボール96aと接する部分に平らな部位を設けない先端形状としたキャピラリー193でICチップ1の電極2に超音波及び熱圧着によりバンプ103を形成する。上記形状のキャピラリー193を用いることで図10(B)のような先端が大略円錐状のバンプ103をICチップ1の電極2に形成することができる。上記方法で形成したバンプ103を回路基板4の電極5に図11(C)のごとく寸法乙だけズレて実装された場合においても、バンプ103がその先端が大略円錐形であるためバンプ103の外径の半分までのズレである場合はバンプ103の一部が必ず基板4の電極5と接触することができる。従来のバンプ3

の図11(D)ではバンプ3のいわゆる台座3gの幅寸法dの一部が接触するが、部分的にしか接触せず不安定な接合となる。これを冷熱衝撃試験やリフローにかけた場合に接合部分がオープンとなる。本発明では、このような不安定な接合がなくなり、生産歩留まりと信頼性の高い接合を提供することができる。

[0129]

(2) I Cチップと回路基板の接合

従来例2の方法によれば、接続抵抗は、バンプと回路基板の電極の間に存在する導電粒子の数に依存していたが、本発明の上記実施形態では、独立した工程としてのレベリング工程においてバンプ3をレベリングせずに回路基板4の電極5に従来例1、2よりも強い荷重(例えば、1バンプ3あたり20gf以上の加圧力)で押しつけてバンプ3と電極5とを直接的に接合することができるため、介在する粒子数に接続抵抗値が依存せず、安定して接続抵抗値が得られる。

[0130]

また、従来のレベリング工程では基板電極との接合時のバンプ高さを一定に整えるために行っているが、本発明の上記各実施形態ではバンプ3の押しつぶしを電極2又は5への接合と同時に行うことができるので、独立したレベリング工程が不要であるばかりでなく、接合時に回路基板4の反りやうねりを変形させて矯正しながら接合することができるので、又は、バンプ3,103に付着させた導電性ペーストを硬化して接合時に導電性ペーストを変形させることにより、バンプ3,103のレベリングを一切不要として、接合時に回路基板4の反りやうねりを変形させて矯正しながら接合するので、反りやうねりに強い。

[0131]

ところで、従来例1では10μm/ICチップ(1個のICチップ当たり10μmの厚み反り寸法精度が必要であることを意味する。)、従来例2では2μm/IC、従来例3でも1μm/ICチップ(バンプ高さバラツキ±1μm以下)というような高精度の基板4やバンプ3,103の均一化が必要であり、実際上は、LCDに代表されるガラス基板が用いられている。これに対して、本発明の上記実施形態によれば、接合時に回路基板4の反りやうねりを変形させて矯正しながら接合するので、反りやうねりのある平面度の悪い基板、例えば、樹脂基板

、フレキシブル基板、多層セラミック基板などを用いることができ、より低廉で 汎用性のあるICチップの接合方法を提供することができる。

[0132]

また、ICチップ1と回路基板4との間の熱硬化性樹脂6mの体積をICチップ1と回路基板4との間の空間の体積より大きくするようにすれば、この空間からはみ出すように流れ出て、封止効果を奏することができる。よって、従来例1で必要とした導電性接着剤でICチップと回路基板を接合した後にICチップの下に封止樹脂(アンダーフィルコート)を行う必要がなく、工程を短縮することができる。

[0133]

なお、無機フィラー6fを熱硬化性樹脂6mにその5~90w t %程度配合することにより、熱硬化性樹脂の弾性率、熱膨張係数を基板がに最適なものにコントロールすることができる。これに加えて、通常のメッキバンプでこれを利用すると、バンプと回路基板の間に無機ディラーが入り込み、接合信頼性が低くなる。しかしながら、本発明の上記実施形態のようにスタッドバンプ(ワイヤーボンディングを応用した形成方法)を用いるようにすれば、接合開始当初に熱硬化性樹脂6m中に入り込んできた尖っているバンプ3,103により、無機フィラー6fを、よって、熱硬化性樹脂6mを、バンプ3,103の外側方向へ押し出さすことにより、バンプ3,103が変形していく過程で無機フィラー6fと熱硬化性樹脂6mをバンプ3,103と電極5,2の間から押し出し、不要な介在物を存在させないようにすることができ、より信頼性を向上させることができる。

[0134]

以上、本発明によれば、従来の接合工法よりも生産性よく、低廉な電子部品例 えばICチップと回路基板の接合方法及びその装置を提供することができる。

[0135]

【発明の効果】

上記したように、本発明によれば、電子部品と回路基板を接合するのに従来要した工程の多くを無くすことができ、非常に生産性を向上させることができる。

[0136]

また、接合材料として導電粒子の無い絶縁性樹脂(例えば、熱硬化性樹脂シート又は熱硬化性接着剤)を用いた場合には、従来例2で示した方法に比べて絶縁性樹脂中に導電性微片を加える必要が無いため、安価な電子部品の実装方法及び装置を提供することができる。

[0137]

さらに、以下のような効果をも奏することができる。

[0138]

(1) バンプ形成

バンプをメッキで形成する方法(従来例3)では、専用のバンプ形成工程を半導体メーカーで行う必要があり、限定されたメーカーでしかバンプの形成ができない。ところが、本発明によれば、ワイヤボンディング装置により、電子部品の例として汎用のワイヤボンディング用のICチップを用いることができ、ICチップの入手が容易となる。

[0139]

また、従来例1の方法に比べて、導電性接着剤の転写といった不安定な転写工程での接着剤の転写量を安定させるためのバンプレベリングが不要となり、そのようなレベリング工程用のレベリング装置が不要となる。

[0140]

また、先端が大略円錐状のバンプを電子部品の電極に形成すれば、バンプを回路基板の電極にズレて実装された場合においても、バンプがその先端が大略円錐形であるためバンプの外径の半分までのズレである場合はバンプの一部が必ず基板の電極と接触することができる。従来のバンプではバンプのいわゆる台座の一部が接触するが、部分的にしか接触せず不安定な接合となる。これを冷熱衝撃試験やリフローにかけた場合に接合部分がオープンとなる。本発明では、このような不安定な接合がなくなり、生産歩留まりと信頼性の高い接合を提供することができる。

[0141]

(2) I Cチップと回路基板の接合

従来例2の方法によれば、接続抵抗は、バンプと回路基板の電極の間に存在す

る導電粒子の数に依存していたが、本発明では、独立した工程としてのレベリング工程においてバンプをレベリングせずに回路基板の電極に従来例1、2よりも強い荷重(例えば、1バンプあたり20gf以上の加圧力)で押しつけてバンプと電極とを直接的に接合することができるため、介在する粒子数に接続抵抗値が依存せず、安定して接続抵抗値が得られる。

[0142]

また、従来のレベリング工程では基板電極との接合時のバンプ高さを一定に整えるために行っているが、本発明ではバンプの押しつぶしを電極への接合と同時に行うことができるので、独立したレベリング工程が不要であるばかりでなく、接合時に回路基板の反りやうねりを変形させて矯正しながら接合することができるので、又は、バンプに付着させた導電性ペーストを硬化して接合時に導電性ペーストを変形させることにより、バンプのレベリングを一切不要として、接合時に回路基板の反りやうねりを変形させて矯正しながら接合するので、反りやうねりに強い。

[0143]

ところで、従来例1では10μm/ICチップ(1個のICチップ当たり10μmの厚み反り寸法精度が必要であることを意味する。)、従来例2では2μm/IC、従来例3でも1μm/ICチップ(バンプ高さバラツキ±1μm以下)というような高精度の基板やバンプの均一化が必要であり、実際上は、LCDに代表されるガラス基板が用いられている。これに対して、本発明によれば、接合時に回路基板の反りやうねりを変形させて矯正しながら接合することができるので、反りやうねりのある平面度の悪い基板、例えば、樹脂基板、フレキシブル基板、多層セラミック基板などを用いることができ、より低廉で汎用性のあるICチップの接合方法を提供することができる。

[0144]

また、電子部品と回路基板との間の絶縁性樹脂の体積を電子部品と回路基板との間の空間の体積より大きくするようにすれば、この空間からはみ出すように流れ出て、封止効果を奏することができる。よって、従来例1で必要とした導電性接着剤でICチップと回路基板を接合した後にICチップの下に封止樹脂(アン

ダーフィルコート)を行う必要がなく、工程を短縮することができる。

[0145]

なお、無機フィラーを絶縁性樹脂にその5~90wt%程度配合することにより、絶縁性樹脂の弾性率、熱膨張係数を基板に最適なものにコントロールすることができる。これに加えて、通常のメッキバンプでこれを利用すると、バンプと回路基板の間に無機フィラーが入り込み、接合信頼性が低くなる。しかしながら、本発明のようにスタッドバンプ(ワイヤーボンディングを応用した形成方法)を用いるようにすれば、接合開始当初に絶縁性樹脂中に入り込んできた尖っているバンプにより、無機フィラーを、よって、絶縁性樹脂を、バンプの外側方向へ押し出さすことにより、バンプが変形していく過程で無機フィラーと絶縁性樹脂をバンプと電極の間から押し出し、不要な介在物を存在させないようにすることができ、より信頼性を向上させることができる。

[0146]

また、同じ重量の無機フィラーを配合する場合には、平均粒径が3μm以上の大きな無機フィラーを用いるようにするか、複数の異なる平均粒径を持つ無機フィラーを用いるようにするか、一方の無機フィラーの平均粒径は、他方の無機フィラーの平均粒径の2倍以上異なっている無機フィラーを用いるようにするか、少なくとも2種類の無機フィラーのうちの一方の無機フィラーは3μmを超える平均粒径を持ち、他方の無機フィラーは3μm以下の平均粒径を持つ無機フィラーを用いるようにすれば、無機フィラーの周りにおける吸湿量を減らしめることができ、耐湿性を向上させることが可能となるとともに、無機フィラーの量を増加させることができて、フィルム化(固体化)することが容易になる上に、絶縁性樹脂層例えば樹脂シート又は接着剤の線膨張係数を低下させることができ、より長寿命化させることができて、信頼性を向上させることができる。。

[0147]

さらに、平均粒径の大きい一方の無機フィラーは上記絶縁性樹脂と同一材料からなるようにすれば、応力緩和作用を奏するようにすることができ、又、平均粒径の大きい一方の無機フィラーは上記絶縁性樹脂であるエポキシ樹脂よりも柔らかく、上記一方の無機フィラーが圧縮されるようにすれば、応力緩和作用を奏す

るようにすることもできる。

[0148]

また、電子部品又は上記基板と絶縁性樹脂層との接合界面では無機フィラーが存在しないかその量を少なくすれば、絶縁性樹脂本来の接着性が発揮されて、上記接合界面で接着性の高い絶縁性樹脂が多くなり、電子部品又は上記基板と絶縁性樹脂との密着強度を向上させることができて、無機フィラーによる線膨張係数を下げる効果を持たせたまま、電子部品又は上記基板との接着性が向上する。これにより、各種信頼性試験での寿命が向上するとともに、曲げに対しての剥離強度が向上する。

[0149]

さらに、上記電子部品に接触する部分又は層では、電子部品表面に用いられる 膜素材に対して密着性を向上させる絶縁性樹脂を用いる一方、上記基板に接触す る部分又は層では、基板表面の材料に対して密着性を向上させる絶縁性樹脂を用 いるようにすれば、さらに密着性を向上させることができる。

[0150]

以上、本発明によれば、回路基板と電子部品を接合した後に、電子部品と基板の間に流し込む封止樹脂工程やバンプの高さを一定に揃えるバンプレベリング工程を必要とせず、電子部品を基板に生産性良くかつ高信頼性で接合する回路基板への電子部品の実装方法及び装置を提供することができる。

【図面の簡単な説明】

- 【図1】 (A)、(B)、(C)、(D)、(E)、(F)、(G)はそれぞれ本発明の第1実施形態にかかる回路基板への電子部品例えばI Cチップの実装方法を示す説明図である。
- 【図2】 (A), (B) はそれぞれ第1実施形態にかかる回路基板への電子部品例えばICチップの実装方法において、熱硬化性樹脂中の無機フィラーが接合開始当初に熱硬化性樹脂中に入り込んできた尖っているバンプによりバンプ外側方向へ押し出される状態を示す説明図、及び、(C) はバンプと基板電極の間に無機フィラーが入り込まない状態を示す説明図である。

【図3】 (A)、(B)、(C)、(D)、(E)、(F)、(G)はそ

れぞれ本発明の第1実施形態における実装方法において、ICチップのワイヤボンダーを用いたバンプ形成工程を示す説明図である。

- 【図4】 (A)、(B)、(C)はそれぞれ本発明の第1実施形態にかかる実装方法において、回路基板とICチップの接合工程を示す説明図である。
- 【図 5】 (A)、(B)、(C)はそれぞれ本発明の第1実施形態である 実装方法において回路基板とICチップの接合工程を示す説明図である。
- 【図 6】 (A)、(B)、(C)は、それぞれ、本発明の第3実施形態の 実装方法において熱硬化性樹脂シートに代えて、熱硬化性接着剤を回路基板上に 配置することを説明するための説明図である。
- 【図7】 (A)、(B)、(C)、(D)、(E), (F)は、それぞれ、本発明の第3実施形態の実装方法において、図6の変形例として、熱硬化性樹脂シートに代えて、熱硬化性接着剤を回路基板上に配置することを説明するための説明図である。
- 【図8】 (A)、(B)、(C)はそれぞれ本発明の第5実施形態にかかる実装方法において、回路基板とICチップの接合工程を示す説明図である。
- 【図9】 (A)、(B)、(C)はそれぞれ本発明の第5実施形態である 実装方法において回路基板とICチップの接合工程を示す説明図である。
- 【図10】 (A)、(B)、(C)、(D)はそれぞれ本発明の第6実施 形態である実装方法において回路基板とICチップの接合工程を示す説明図であ る。
- 【図11】 (A)、(B)、(C)、(D)、(E)はそれぞれ本発明の第6実施形態である実装方法において回路基板とICチップの接合工程を示す説明図である。
- 【図12】 (A)、(B)、(C)、(D)はそれぞれ本発明の第7実施 形態である実装方法において回路基板とICチップの接合工程を示す説明図であ る。
- 【図13】 は本発明の第7実施形態である実装方法において回路基板とI Cチップの接合工程を示す説明図である。
 - 【図14】 (A), (B)はそれぞれ熱硬化性樹脂シートをICチップ1

側に形成した第1実施形態の変形例を示す説明図、及び、熱硬化性接着剤をIC チップ1側に形成した第1実施形態の変形例を示す説明図である。

- 【図15】 従来の回路基板とのICチップの接合方法を示す断面図である
- 【図16】 (A)、(B)はそれぞれ従来の回路基板とのICチップの接合方法を示す説明図である。
- 【図17】 上記第1実施形態において、80μmの外径のバンプの場合の 抵抗値と荷重との関係のグラフの図である。
- 【図18】 上記第1実施形態において、80μm,40μmのそれぞれの外径のバンプと最低荷重との関係に基づき信頼性の高い領域を示したグラフの図である。
- 【図19】 上記第3実施形態において、樹脂シートの加熱温度と反応率とのグラフの図である。
- 【図20】 上記第1 実施形態で使用される電子部品搭載装置の斜視図である。
- 【図21】 (A)、(B)、(C)、(D)はそれぞれ図20の電子部品搭載装置での部品側での位置認識動作を示す斜視図、部品の位置認識画像の図、基板側での位置認識動作を示す斜視図、基板の位置認識画像の図である。
 - 【図22】 上記第4実施形態で使用する超音波印加装置の概略図である。
 - 【図23】 上記第5実施形態で使用される貼り付け装置の概略図である。
- 【図24】 (A), (B) はそれぞれACF工法と上記実施形態の工法との比較説明のためのバンプ付近の拡大断面図である。
- 【図25】 本発明の第9実施形態にかかる回路基板への電子部品例えばI Cチップの実装方法及び装置により接合された接合状態の模式断面図である。
- 【図26】 上記第9実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置により使用される樹脂シートの部分拡大模式断面図である。
- 【図27】 本発明の第13実施形態にかかる回路基板への電子部品例えば ICチップの実装方法及び装置により接合された接合状態での絶縁性樹脂と無機

フィラーの模式断面図である。

- 【図28】 (A), (B), (C), (D) はそれぞれ本発明の第14実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置により使用される絶縁性樹脂層の種々の例を示す電子部品ユニットの模式断面図である。
- 【図29】 (A), (B), (C), (D)はそれぞれ本発明の第14実施形態の変形例にかかる回路基板への電子部品例えばICチップの実装方法及び装置により使用される絶縁性樹脂層の種々の例の模式断面図である。
- 【図30】 図29(A)に示された上記第14実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置により使用される絶縁性樹脂層を使用して接合された接合状態の模式断面図である。
- 【図31】 図29 (B) に示された上記第14実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置により使用される絶縁性樹脂層を使用して接合された接合状態の模式断面図である。
- 【図32】 (A), (B)は図29(C), (D)にそれぞれ示された上記第14実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置により使用される絶縁性樹脂層を使用して接合された接合状態の模式断面図である。
- 【図33】 (A), (B), (C), (D), (E), (F) はそれぞれ上記第14実施形態にかかる回路基板への電子部品例えばICチップの実装方法及び装置により使用される絶縁性樹脂層の無機フィラーの量と絶縁性樹脂層の厚み方向の位置との様々な関係のグラフを示す図である。
- 【図34】 本発明の第15実施形態にかかる回路基板への電子部品例えば ICチップの実装方法及び装置により使用される絶縁性樹脂層の製造工程の説明 図である。

【図35】 図34の部分拡大図である。

【符号の説明】

1…ICチップ、2,5…電極、3,103…バンプ、3g…台座、4…回路 基板、6…熱硬化性樹脂シート、6a…セパレータ、6b…熱硬化性接着剤、6 f …無機フィラー、6 f − 1 …平均粒径の大きな無機フィラー、6 f − 2 …平均粒径の小さな無機フィラー、6 m … 絶縁性樹脂層(例としては熱硬化性樹脂)、6 s …熱硬化された樹脂、6 v …第4 樹脂層、6 w …第5 樹脂層、6 x …第1 樹脂層、6 y …第2 樹脂層。6 z …第3 樹脂層。7 …貼付けツール。8 …接合ツール、8 a …ヒータ、9、109、201…ステージ、93、198…キャピラリー、193 a …先端部位。9 3 b …平均な部位、9 5 …ワイヤ、9 6、9 6 a …ボール、9 8 …湾曲部、9 9 …ループ、200 …保持部材、6 7 0 …ローラ、671 …絶縁性樹脂シート体、6 7 2 …ベースフィルム、6 7 3 …第1 樹脂シート、6 7 4 …第2 樹脂シート、700 … I C チップ及び/又は基板に接触する部分(無機フィラー量が少ないか、もしくは上記無機フィラーを配合しない部分)、701 …他の部分(無機フィラー量が多い部分)、702 …無機フィラー量が少ないか、もしくは上記無機フィラーを配合しない部分、703 …無機フィラー量が多い部分。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

(B)

 【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

樹脂シート反応率

【図20】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

【図28】

【図29】

【図30】

【図31】

【図32】

【図33】

【図34】

【図35】

【要約】

【課題】 回路基板と電子部品との接合後、封止樹脂工程やバンプレベリング工程を必要とせず、電子部品を基板に生産性良くかつ高信頼性で接合する電子部品実装方法及び装置を提供する。

【解決手段】 I Cチップ1の電極2に形成されたバンプ3と基板電極との間に無機フィラー6fを含む絶縁性樹脂6,6b,10を介在させてバンプと基板電極を位置合わせし、ヘッド8によりチップを基板に1バンプあたり20gf以上の加圧力により押圧して、チップと基板の反り矯正、バンプを押しつぶしつつ絶縁性樹脂を硬化しチップと基板を接合する。

【選択図】図1

出 願 人 履 歴 情 報

識別番号

[000005821]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 大阪府門真市大字門真1006番地

氏 名 松下電器産業株式会社

f

Ļ,