Electronic Configurations for Tetrahedral Complexes

☐ Tetrahedral splitting is seldom large enough to result in pairing of the electrons. As a result, low-spin tetrahedral complexes are not common.

d-electrons	configuration	CFSE
d^1	e ¹ t ₂ ⁰	-0.6 Δ _t
d ²	$e^{2}t_{2}^{0}$	-1.2 Δ _t
<i>d</i> ³	$e^2t_2^1$	-0.8 Δ _t
d^4	$e^2t_2^2$	-0.4 Δ _t
d ⁵	$e^2t_2^3$	0.0 Δ _t
d ⁶	$e^3t_2^3$	-0.6 Δ _t
d ⁷	$e^4t_2^3$	-1.2 Δ _t
d ⁸	e ⁴ t ₂ ⁴	-0.8 Δ _t
d ⁹	e ⁴ t ₂ ⁵	-0.4 Δ _t
<i>d</i> ¹⁰	$e^{4}t_{2}^{6}$	$0.0 \; \Delta_t$

- \Box If Δ_t is smaller than Δ_o ($\Delta_t = 4/9 \Delta_o$), why would tetrahedral complexes form?
- But what if we take a particular metal ion and a particular ligand? Can we predict whether it will form an octahedral or a tetrahedral complex, for example?
- If we make the assumption that $\Delta_t = 4/9 \Delta_o$, we can calculate the difference in stabilization energy between octahedral and tetrahedral geometries by referencing everything in terms of Δ_o .

Example Problem:

Which is the preferred configuration for a d³ metal: tetrahedral or octahedral?

- ☐ To answer this, the *Crystal Field Stabilization Energy* has to be calculated for a metal in both configurations. The geometry with the greater stabilization will be the preferred geometry.
- \Box For a d³ octahedral configuration, the CFSE is 3 x -0.4 Δ_o = -1.2 Δ_o
- **Stabilization Energy** is -0.8 $Δ_t$
- Remember that because Δ_{tet} is less than half the size of Δ_{o} , tetrahedral complexes are often high spin. We can now put this in terms of Δ_{o} (we can make this comparison because we're considering the same metal ion and the same ligand: all that's changing is the geometry)
- □ So for tetrahedral d³, the Crystal Field Stabilization Energy is: CFSE = -0.8 x 4/9 Δ_0 = -0.355 Δ_0 .
- **And the difference in Crystal Field Stabilization Energy between the two** geometries will be: 1.2 0.355 = 0.845 $Δ_0$.

If we do a similar calculation for the other configurations, we can construct a Table of Δ_o , Δ_t and the difference between them (we'll ignore their signs since we're looking for the difference between them).

	Octahedral	Tetrahedral	Difference
d^0 , d^5 , d^{10}	0	0	0
d ¹ , d ⁶	0.4	0.27	0.13
d^2 , d^7	0.8	0.53	0.27
d³, d ⁸	1.2	0.36	0.84
d ⁴ , d ⁹	0.6	0.18	0.42

- ☐ Plot these numbers.
- ☐ Remember: These are CFSE numbers for hypothetical molecules in octahedral and tetrahedral geometry.

- Notice that the Crystal Field Stabilization Energy almost always favors octahedral over tetrahedral in most cases, but the degree of favorability varies with the electronic configuration.
- ☐ In other words, for d¹ there's only a small gap between the oct and tet lines, whereas at d³ and d8 there's a big gap. However, for d⁰, d⁵ high spin and d¹⁰, there is no CFSE difference between octahedral and tetrahedral.
- ☐ The order of favourability of octahedral vs tetrahedral is:

$$d^3$$
, $d^8 > d^4$, $d^9 > d^2$, $d^7 > d^1$, $d^6 > d^0$, d^5 , d^{10}

Tetrahedral Complexes: Summary

- The following factors favour tetrahedral complexes:
 - ☐ Use large ligands.
 - \Box Use of metal ions with d^0 , d^5 , d^{10} configuration.
 - ☐ Use of weak field ligand with other d^x configurations
- **□** Examples:

d^0	MnO ₄ -
d ¹	TiCl ₄ -
d ²	Cr(OR) ₄

d ⁵	MnCl ₄ ²⁻	
d^6	FeCl ₄ ²⁻	
d^7	CoCl ₄ ²⁻	

Did We Forget Square Planar Complexes?

- Imagine that we have an octahedral complex from which we are removing the axial ligands. As ligands move away along the z-axis, d-orbitals with a z-component will fall in energy.
- The d_{z2} orbital falls the most, as its electrons are concentrated in lobes along the z-axis.
- \Box The d_{xz} and d_{yz} orbitals also drop in energy, but not as much.
- Conversely, the d_{x2-y2} and the d_{xy} orbitals increase in energy. The splitting diagram for square planar complexes is more complex than for octahedral and tetrahedral complexes, and is shown below with the relative energies of each

