Relationale Algebra

Operatoren der Relationalen Algebra

- σ Selektion
- π Projektion ⊆
- x Kreuzprodukt ←
- ⋈ Join (Verbund)
- p Umbenennung ←
- Mengendifferenz
- - Division
- OVereinigung
- Mengendurchschnitt

- → Semi-Join (linker)
- ▶ Semi-Join (rechter)
- ▶ linker äußerer Join
- ▼ rechter äußerer Join

Operatoren stammen aus der Mengenlehre

Professoren					Stı	udenten			Ī	Vorlesungen								
Per	sNr	Name	9	Rang	Raur	m	Mat	trNr	N	ame	Sen	nester	Ī	VorlNr		Titel	sws	gelesen
21	25	Sokrate	es	C4	226		240	002	Xend	okrates		18	ŀ	E004			4	Von
21	26	Russe	ı	C4	232	:][254	403	Jo	onas		12	ŀ	5001	G	Grundzüge	4	2137
21	27	Kopernik	cus	C3	310		26:	120	Fi	chte		10	ŀ	5041		Ethik	4	2125
21	33	Poppe	r	C3	52	7	268	830	Arist	oxenos		8	L	5043	Erke	nntnistheorie	3	2126
21	34	Augustir	nus	C3	309	7	27!	550	Schop	enhauer		6	L	5049		Mäeutik	2	2125
21	36	Curie		C4	36	╢	28:	106	Ca	rnap		3	L	4052		Logik	4	2125
21	37	Kant		C4	7	╢	29:	120		ohrastos		2	L	5052	Wisseı	nschaftstheorie	3	2126
F	_		_			ᅦ	29!	555		erbach		2	L	5216		Bioethik	2	2126
		voraus								ren				5259	Der	Wiener Kreis	2	2133
	_	jänger	Na	chfolg	<mark>jer</mark>		H	Mat	rNr	VorlN	P-		I	5022	Glaub	e und Wissen	2	2134
		001		5041			H		120	5001			I	4630	Die	e 3 Kritiken	4	2137
L	5	001		5043	_		╌				-							
	5	001		5049			╌		550	5001	-							
	5	041		5216			╌		550	4052	-				Ac	cictonton		
	5	043		5052			╌	281		5041	-		_			sistenten		
	5	041		5052			L	281	106	5052	-	PersIN	_			Fachgebi		Boss
	5	052		5259			L	281	106	5216		3002		Plate	on	Ideenleh	re	2125
		n.	üfe	\ n	_		ı L	281	106	5259		3003		Aristo	teles	Syllogisti	k	2125
_			_			_	4	291	120	5001		3004		Wittger	nstein	Sprachtheo	orie	2126
_	trNr		_	ersNr			4 [291	120	5041		3005		Rheti	kus	Planetenbewe	egung	2127
-	106	5001	\rightarrow	2126	1		1	291	120	5049		3006		New	ton	Keplersche Ge	esetze	2127
-	403	5041	-	2125	2		11	295	555	5022		3007		Spin	oza	Gott und N	atur	2126
27	550	4630		2137	2		┛┞	254	103	5022						Hen	drik Gärt	ner 3

Formale Definition der Algebra

Basisausdrücke

- Relation der Datenbank oder
- konstante Relationen

· fleiste Attribute (spaltern) gleisten Naturen

Operationen

- Selektion: σ_n (E₁)
- Projektion: Π_{S} (E₁)
- Kartesisches Produkt: E₁ x E₂
- Umbenennung: $\rho_V(E_1)$, $\rho_{A \leftarrow B}(E_1)$
- Vereinigung: $E_1 \cup E_2 \leftarrow$ Schemagleichheit Differenz: $E_1 E_2 \leftarrow$

Satz der Operatoren ist vollständig, d.h. alle anderen (hier nicht aufgeführten) Operatoren lassen sich mit ihnen ausdrücken

Beispiel Vereinigung

Ermittle alle Namen der Unimitglieder:

- Unimitglieder befinden sich in den Tabellen Studenten, Professoren und Assistenten
- Die Schemen der Tabellen sind unterschiedlich
- → Die Schemen müssen im ersten Schritt angeglichen werden (Projektion und Umbenennung (wenn erforderlich))

Wie kann das erfolgen?

Durchführung einer Projektion auf den Namen, da $Sch(\Pi_{Name} (Professoren)) = Sch(\Pi_{Name} (Studenten)) = Sch(\Pi_{Name} (Assistenten))$

Beispiel Vereinigung

Berechnen aller Unimitglieder:

 Π_{Name} (Assistenten) \cup Π_{Name} (Professoren) \cup

 Π_{Name} (Studenten)

(SELECT Name FROM Professoren) UNION (SELECT Name FROM Assistenten) UNION (SELECT Name FROM Studenten) (UNION eliminiert Duplikate, UNION ALL nicht!)

Operator Differenz

Definition Differenzmenge

Zwischen zwei Relationen mit den gleichen Attributnamen und Attributtypen (Domänen) kann eine Mengen-Differenz gebildet werden. Dann sind in der Ergebnisrelation D = A - B alle Tupel aus A enthalten, die nicht in B enthalten sind.

Symbol: -

D = A - B

Verbindet zwei Relationen A und B mit gleichem (Attribut-)Schema:

$$e_{\Lambda} \cup R_{2}$$
 $R_{\Lambda} \cap R_{2}$

Berechnung aller Studenten (MatrNr), die bisher noch keine Prüfung abgelegt haben. Stud. FROM Matrix prue per. Mater Studentu. Matott Reujeropeahou (SELECT Martyr FROM Studenty > EXCEPT (SELECT MATRUR FROM prûjel) 11 Hate Nr 11 30 Kate Vr 1 Vol CVV rate Posur serviste

Beispiel Differenz

Berechnung aller Studenten, die bisher noch keine Prüfung abgelegt haben.

 Π_{MatrNr} (Studenten) - Π_{MatrNr} (pruefen)

In SQL gibt es dafür den Befehl EXCEPT

(select MatrNr from Studenten) **EXCEPT**¹ (select MatrNr from pruefen)

¹Except ist nicht in allen DB-Systemen implementiert (in PostgreSQL ja und in MySQL nein)

Berechnen aller Studenten (MatrNr, Name), die keine Vorlesung hören. I Studenty Maty No. Vame Studenter. Matr Vr = SELECT Shopenty. Matr Nr, +mp. Mahlr FROM Studenten (SECECT HOTTUR FROM Sindenten) EXCEPT Matrh (SELECT Matrix 1) 1 Natrhy Maria FROM hoeran) as timp, where Imp. Matrix hoeren Studen hu - Studenter. Matyly Matr Vr Studenters See Sty hatir// Name

Beispiel Differenz

Berechnen aller Studenten, die keine Vorlesung hören.

Mengendurchschnitt (1/2)

Als Beispielanwendung für den Mengendurchschnitt (Operatorsymbol

∩) betrachten wir folgende Anfrage: Finde die PersNr aller C4-

Professoren, die mindestens eine Vorlesung halten.

Profssore Volesurger

- Mengendurchschnitt nur auf zwei Argumentrelationen mit gleichem Schema anwendbar
- Deshalb ist die Umbenennung des Attribute gelesenVon in PersNr in der Relation Vorlesungen notwendig
- Der Mengendurchschnitt zweier Relationen R ∩ S kann durch die Mengendifferenz wie folgt ausgedrückt werden:

$$R \cap S = R - (R - S)$$

SQL: Befehl **INTERSECT** nicht in allen DBMS implementiert (in PostgreSQL ja in MySQL nein)

Mengendurchschnitt (2/2)

Als Beispielanwendung für den Mengendurchschnitt (Operatorsymbol ∩) betrachten wir folgende Anfrage: Finde die *PersNr* aller C4-Professoren, die mindestens eine Vorlesung halten.

$$\Pi_{\mathsf{PersNr}}(\rho_{\mathsf{PersNr}\leftarrow\mathsf{gelesenVon}}(\mathsf{Vorlesungen})) \cap \Pi_{\mathsf{PersNr}}(\sigma_{\mathsf{Rang}=\mathsf{C4}}(\mathsf{Professoren}))$$
 In SQL: (select gelesenVon as PersNr from Vorlesungen) INTERSECT (select PersNr from Professoren where rang='C4')

Welche Vorlesungen werden von Fichte und Schopenhauer gehört?

SELECT fitel FROM Vorlesungen V, hoeren ha, horanha, Studenten Sa, Studenten S2

Thirl

and 52. name = 'scropen have' and h. vorely = hz. Vorely and oud v. volly = hz. Vorely

17

Der natürliche Verbund (Join)

Gegeben seien zwei Relationen:

$$(R(A_1,..., A_m, B_1,..., B_l))$$

 $(S(B_1,..., B_k, C_1,..., C_n))$

$$(S(B_1,...,B_k,C_1,...,C_n)$$

$$R \bowtie S = \prod_{A1,...,Am, R.B1,...,R.Bk, C1,...,Cn} (\sigma_{R.B1=S.B1 ^...^R.Bk=S.Bk}(RxS))$$

	$R \bowtie S$										
R-S					$R \cap S$			S-R			
A_1	A_2		A _m	B ₁	B ₂		B_k	C ₁	C ₂		C _n

Beispiel Join

hören						
MatrNr	VorlNr					
26120	5001					
27550	5001					
27550	4052					
28106	5043					

Vorlesungen							
VorINr	Titel	SWS	gelesenV on				
5001	Grundzüge	4	2137				
5041	Ethik	4	2125				
5043	Erkenntnistheorie	3	2126				
5049	Mäeutik	2	2125				

hören ⋈ Vorlesungen

hören			Vorlesungen	_	
MatrNr	VorlNr	VorIMr	Titel	SWS	gelesenVon
26120	5001 ←	→ 5001	Grundzüge	4	2137
27550	5001 🛶	→ 5001	Grundzüge	4	2137
28106	5043 ←	5043	Erkenntnistheorie	3	2126

Einmal wird die Spalte VorlNr in der Relationalen Algebra eliminiert

3-Wege-Join

	(Studenten ⋈ hören) ⋈ Vorlesungen									
MatrNr	Name	Semester	VorlNr	Titel	SWS	Gelesen Von → PersNr				
26120	Fichte	10	5001	Grundzüge	4	2137				
27550	Jonas	12	5022	Glaube und Wissen	2	2134				
28106	Carnap	3	4052	Wissenschaftstheorie	3	2126				
	•••	•••	•••	•••	•••		•••			

Wenn Attribute mit unterschiedlichen Name verknüpft werden sollen, müssen diese umbenannt werden (z.B. PersNr gelesenVon wenn die lesenden Professoren verknüpft werden sollen

Studenten \bowtie Vorlesungen $\bowtie \rho_{\text{gelesenVon}} \leftarrow PersNr$ (Professoren)

Allgemeiner Join (Theta-Join)

Gegeben seien folgende Relationen(-Schemata)

R(A1, ..., An) und

Studenka

• S(B1, ..., Bm)

$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$

$$R \bowtie_{\theta} S$$

Angabe eines Professive //
beliebigen Join- Malesen kon = Postv
Prädikats θ Wessen για

Sholutu. Mark- hoven

$R\bowtie_{\theta} S$									
	F	7		S					
A_1	A_2		A _n	B ₁	B ₂		B _m		

SELECT * FROM Professorer (INVEK) Join Vorleguezer Of (seleguezer Post)

Beispiel: Assistenten, die mehr verdienen als die zugeordneten Profs

Professoren Professoren.Gehalt<assistenten.Gehalt Boss=Professoren.PersNr Assistenten

Vergleich Kartesisches Produkt/Join

- Der Join Operator entspricht einem Kartesischen Produkt inklusive einer Selektion
- Join-Operatoren, die auf Gleichheit von Attributen selektieren wird Equi-Join genannt
- Join-Operatoren mit beliebigem Selektionsprädikat wird Teta-Join genannt

Join Operatoren in SQL

Beispiel Welche Studenten hören welche Vorlesungen: select MatrNr, Name, Titel from (Studenten s join hoeren h on (s.MatrNr=h.MatrNr)) join Vorlesungen v on (v.VorlNr=h.MatrNr)

- im Prinzip sind die Join-Abfragen performanter, da weniger Zwischenergebnisse berechnet werden
- Da der Anfrageoptimierer der Datenbank vor dem Ausführen der Anfrage optimierenden Umformungen vornimmt, ist die Verwendung des natürlichen Joins nicht erforderlich

Natürlicher Join:

	R	
C	D	Ш
C_1	d_1	$e_{\scriptscriptstyle 1}$
C3	d_2	e_2

		R	esult	at	
=	Α	В	С	D	E

 b_1

 a_1

SEMI Ceff Outer Join

Linker äußerer Join:

 \bowtie

	L	
Α	В	С
a_1	b_1	C_1
a_2	b_2	C ₂

	R	
С	D	Е
C_1	d_1	$e_{\scriptscriptstyle 1}$
C ₃	d_2	e_2

Resultat						
Α	В	С	D	Е		
a_1	b_1	C_1	d_1	e ₁		
a_2	b_2	C ₂	し	1 rule		

27

HTW Berlin, SS2018 Hendrik Gärtner

 \bowtie

Rechter äußerer Join: Right Outo Joiv

L				
Α	В	С		
a_1	b_1	C_1		
a_2	b_2	C_2		

Resultat				
Α	В	С	D	E
a_1	b ₁	C ₁	d_1	$e_{\scriptscriptstyle 1}$
4 hll -	uwe	\mathbf{C}_3	d_2	e_2

Äußerer Join:

	L	
Α	В	С
a_1	b_1	C_1
a_2	b_2	C_2

M

R				
С	D	Ш		
C_1	d_1	e ₁		
C ³	d_2	e ₂		

Oute Join

Left Screi Join

Resultat				
Α	В	С	D	Е
a_1	b ₁	C ₁	d_1	e ₁
a_2	b_2	C ₂	well	uull -
ull -	reull -	C ₃	d_2	e ₂ <

Semi-Join von L mit R:

$$\begin{array}{c|cccc} & & L & & \\ A & B & C & \\ a_1 & b_1 & c_1 & \\ a_2 & b_2 & c_2 & \\ \end{array}$$

 \bowtie

	R	
С	D	Е
C_1	d_1	$e_{\scriptscriptstyle 1}$
C ₃	d_2	e_2

 $= \begin{array}{|c|c|c|}\hline \textbf{Resultat}\\ \textbf{A} & \textbf{B} & \textbf{C}\\ \textbf{a}_1 & \textbf{b}_1 & \textbf{c}_1\\ \hline \end{array}$

Semi-Join von R mit L:

L			
Α	В	Ŋ	
a_1	b ₁	C_1	
\mathbf{a}_{2}	b_2	\mathbf{C}_2	

Resultat			
С	Е		
C_1	$c_1 d_1$		