Mètodes Numèrics Pràctica 1: Errors

Raquel Garcia, Arnau Mas

12 de Març 2018

Problema 1

Considerem la funció

$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2} & \text{si } x = 0\\ \frac{1}{2} & \text{si } x \neq 0 \end{cases}$$

Primer observem que f està definida i és continua a tot \mathbb{R} . Això és clar per $x \leq 0$. I per x = 0 fem servir que $\cos x \sim 1 - \frac{1}{2}x^2$ quan $x \to 0$. I per tant

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}.$$

Hem de comprovar que per tot $x \in \mathbb{R}^{\times}$ es compleix $0 \leq f(x) < \frac{1}{2}$. Veure que f és positiva a tot arreu és senzill tenint en compte que per tot $x \in \mathbb{R}$ es té $1 - \cos x \geq 1 - 1 = 0$ i que $x^2 \geq 0$ per $x \in \mathbb{R}$. Per veure la fita superior procedim en dues parts. Primer observem que per tot $x \in \mathbb{R}^{\times}$ es té

$$\frac{1 - \cos x}{r^2} \le \left| \frac{1 - \cos x}{r^2} \right| < \frac{1 + \left| \cos x \right|}{r^2} < \frac{2}{r^2}.$$

Ara bé, aquesta fita només ens és útil per |x| > 2 ja que aleshores es té

$$\frac{1 - \cos x}{r^2} < \frac{2}{2^2} = \frac{1}{2}$$

ja que $\frac{1}{x^2}$ és estrictament decreixent per x>0 estrictament creixent per x<0. Per demostrar la fita prop del zero farem ús del teorema de Taylor amb la forma

de Lagrange per l'error. Primer trobem una designaltat equivalent a la designaltat que volem veure:

$$\frac{1 - \cos x}{x^2} < \frac{1}{2} \iff -\cos x < \frac{1}{2}x^2 - 1$$

$$\iff \cos x > 1 - \frac{1}{2}x^2. \tag{*}$$

El desenvolupament de Taylor fins a ordre 2 de $\cos x$ al voltant de 0 és $1 - \frac{x^2}{2}$. Si considerem $x \in [-2, 2]$ el teorema de Taylor ens garanteix que existeix 0 < a < x o x < a < 0 segons si x > 0 o x < 0 tal que

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{\sin a}{3!}x^3.$$

Si substituïm a (*) trobem que hem de veure que

$$\frac{\sin a}{3!}x^3 > 0$$

per $x \in [-2,2]$. Si x>0 tenim que a < x < 2. Com que $0 < 2 < \pi$ tenim sin a>0 i tenim la desigualtat que volem ja que $x^3>0$ si x>0. En canvi, si x<0 tenim $x^3<0$. Però en aquest cas -2 < x < a < 0. I per tant, com que ara $-\pi < a < 0$ es compleix que sin a<0 i per tant també tenim la desigualtat que voliem.

Els programes funcio_fl.c i funcio_do.c calculen f amb precisió simple i doble respectivament. Si avaluem al punt indicat, $x_0 = 1.2 \times 10^{-5}$ trobem que el programa amb precisió simple retorna 0 fins a 8 xifres, mentre que el programa amb precisió doble retorna un valor molt proper a $\frac{1}{2}$, concretament 0.499 999 7, arrodonint fins a 7 xifres decimals. Ja hem observat que f és continua —i de fet de classe \mathcal{C}^{∞} —, per tant, com que x_0 és proper a 0, és raonable pensar que $f(x_0)$ hauria de ser molt proper a $\frac{1}{2}$. Això és el que ens dóna el programa en precisió doble.

Si fem servir que $1 - \cos x = 2\sin(x/2)^2$ podem reescriure f com

$$f(x) = \frac{2\sin{(x/2)^2}}{r^2}$$

per $x \neq 0$. Si implementem això en codi —tal i com es fa en els programes problc_fl.c i problc_do.c— veiem que ara obtenim el resultat correcte tant en precisió doble com en simple.

L'error que apareix en la primera implementació de f és un error de representació. Si calculem $\cos x_0$ en precisió doble trobem que el resultat difereix de 1 a l'onzena xifra decimal. Quan representem aquest valor en precisió simple obtenim 1 degut a l'arrodoniment. Per tant obtenim 0 com a resultat de $f(x_0)$ en precisió simple. En canvi, quan executem la segona implementació, el càlcul $2\sin(x_0/2)^2$ retorna $x_0^2/4$ quan el representem en precisió simple, de manera que obtenim el resultat esperat.