Frequent Itemsets and Association Rule Mining

Vinay Setty vinay.j.setty@uis.no

Slides credit: http://www.mmds.org/

Supermarket shelf management – Market-basket model:

Association Rule Discovery

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items
- A classic rule:

bought in one trip to the store

position tempting items

and raise the price of beer

about what customers buy together

- If someone buys diaper and milk, then he/she is likely to buy beer
- Don't be surprised if you find six-packs next to diapers!

2

Applications – (I)

Items = products; **Baskets** = sets of products someone

Real market baskets: Chain stores keep TBs of data

Tells how typical customers navigate stores, lets them

Amazon's people who bought X also bought Y

Suggests tie-in "tricks", e.g., run sale on diapers

Need the rule to occur frequently, or no \$\$'s

The Market-Basket Model

- A large set of items
 - e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
 - e.g., the things one customer buys on one day
- Want to discover association rules
 - People who bought $\{x,y,z\}$ tend to buy $\{v,w\}$
 - Amazon!

O---

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among "items", not "baskets"
 - For example:
 - Finding communities in graphs (e.g., Twitter)

Applications – (2)

- Baskets = sentences; Items = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be "in" baskets
- Baskets = patients; Items = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - But requires extension: Absence of an item needs to be observed as well as presence

Example:

- Finding communities in graphs (e.g., Twitter)
- Baskets = nodes; Items = outgoing neighbors
 - Searching for complete bipartite subgraphs $K_{s,t}$ of a big graph

How!

basket B_i of nodes i it points to

K. $\bullet = a$ set Y of size t that

• K_{s,t} = a set Y of size t that occurs in s buckets B_i

View each node i as a

 Looking for K_{s,t} → set of support s and look at layer t – all frequent sets of size t

Outline

First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- **Support** for itemset *I*: Number of baskets containing all items in I
 - · (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items	
1	Bread, Coke, Milk	
2	Beer, Bread	
3	Beer, Coke, Diaper, Milk	
4	Beer, Bread, Diaper, Milk	
5	Coke, Diaper, Milk	

Support of {Beer, Bread} = 2

Example: Frequent Itemsets

- Items = {milk, coke, pepsi, beer, juice}
- Support threshold = 3 baskets

$$\mathbf{B}_{1} = \{m, c, b\}$$

$$B_2 = \{m, p, j\}$$

$$B_3 = \{m, b\}$$

$$\mathbf{B_4} = \{c, j\}$$

$$\mathbf{B_5} = \{m, p, b\}$$
 $\mathbf{B_6} = \{m, c, b, j\}$

$$\mathbf{B_6} = \{ m, c, b \}$$

$$\mathbf{B_7} = /\{c, b, j\}$$

$$B_8 = \{b, c\}$$

Frequent itemsets: {m}, {c}, {b}, {j}, $\{m,b\}, \{b,c\}, \{c,i\}$

Association Rules

Association Rules:

If-then rules about the contents of baskets

- $\{i_p, i_2,...,i_k\} \rightarrow j$ means: "if a basket contains all of $i_p,...,i_k$ then it is **likely** to contain j"
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** of this association rule is the probability of jgiven $I = \{i_1, ..., i_k\}$

$$\operatorname{conf}(I \to j) = \frac{\operatorname{support}(I \cup j)}{\operatorname{support}(I)}$$

Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule $X \rightarrow milk$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- **Interest** of an association rule $I \rightarrow j$: difference between its confidence and the fraction of baskets that contain i

$$Interest(I \to j) = conf(I \to j) - Pr[j]$$

Interesting rules are those with high positive or negative interest values (usually above 0.5)

Example: Confidence and Interest

 $B_1 = \{m, c, b\}$

$$B_2 = \{m, p, j\}$$

 $B_3 = \{m, b\}$

$$\mathbf{B}_4 = \{\mathbf{c}, \, \mathbf{j}\}$$

 $B_5 = \{m, p, b\}$

$$B_6 = \{m, c, b, j\}$$

 $B_7 = \{c, b, j\}$

$$B_8 = \{b, c\}$$

- Association rule: {m, b} →c
 - Confidence = 2/4 = 0.5
 - Interest = |0.5 5/8| = 1/8
 - → Item **c** appears in 5/8 of the baskets
 - · Rule is not very interesting!

Finding Association Rules

- Problem: Find all association rules with support ≥s and confidence ≥c
 - Note: Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
 - If $\{i_1, i_2, ..., i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, ..., i_k\}$ and $\{ \emph{\textbf{i}}_1, \emph{\textbf{i}}_2,...,\emph{\textbf{i}}_k,\emph{\textbf{j}} \}$ will be "frequent"

 $conf(I \to j) = \frac{support(I \cup j)}{support(I)}$

Mining Association Rules

- Step I: Find all frequent itemsets I
 - (we will explain this next)
- Step 2: Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Variant I: Single pass to compute the rule confidence
 - · confidence($A,B \rightarrow C,D$) = support(A,B,C,D) / support(A,B)
 - · Variant 2:
 - **Observation:** If **A,B,C**→**D** is below confidence, so is A.B→C.D
 - · Can generate "bigger" rules from smaller ones!
 - Output the rules above the confidence threshold

Example

 $B_1 = \{m, c, b\}$

$$B_2 = \{m, p, j\}$$

 $B_3 = \{m, c, b, n\}$

$$\mathbf{B}_4 = \{\mathbf{c}, \, \mathbf{j}\}$$

 $B_5 = \{m, p, b\}$

$$B_6 = \{m, c, b, j\}$$

$$B_7 = \{c, b, j\}$$

$$B_8 = \{b, c\}$$

- Support threshold s = 3, confidence c = 0.75
- I) Frequent itemsets:
- {b,m} {b,c} {c,m} {c,j} {m,c,b}
- 2) Generate rules:

• **-b** • **m**: c = 4/6 **b** • **c**: c = 5/6

b,c→**m**: c=3/5

 \rightarrow **m** \rightarrow **b**: c=4/5

b,m \rightarrow **c**: c=3/4

 $b \rightarrow c.m$: c=3/6

Compacting the Output

- To reduce the number of rules we can post-process them and only output:
 - **Maximal frequent itemsets:**

No immediate superset is frequent

Gives more pruning

or

Closed itemsets:

No immediate superset has the same count (> 0)

Stores not only frequent information, but exact counts

Example: Maximal/Closed

	Support	Maximal(s	Frequent, but superset BC also frequent.
A	4	No	No Frequent, and
В	5	No	Yes its only superset, ABC, not freq.
C	3	No	No Superset BC has same count.
AB	4	Yes	Yes
AC	2	No	No Its only super-
ВС	3	Yes	Yes ← set, ABC, has smaller count.
ABC	2	No	Yes

A-Priori Algorithm – (1)

A two-pass approach called A-Priori limits the need for main memory

Key idea: monotonicity

- If a set of items I appears at least s times, so does every **subset** J of I
- Contrapositive for pairs:

If item i does not appear in s baskets, then no pair including i can appear in s baskets

So, how does A-Priori find freq. pairs?

A-Priori Algorithm

A-Priori Algorithm – (2)

- Pass I: Read baskets and count in main memory the occurrences of each individual item
 - Requires only memory proportional to #items
- Items that appear $\geq s$ times are the <u>frequent items</u>
- Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass I)
 - Requires memory proportional to square of frequent items only
 - Plus a list of the frequent items (so you know what must be

Main-Memory: Picture of A-Priori

Detail for A-Priori

- You can use the triangular matrix method with n = numberof frequent items
 - May save space compared with storing triples
- Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers

Pass 1 Pass 2

Frequent Triples, Etc.

- For each k, we construct two sets of **k-tuples** (sets of size k):
 - $C_k = candidate k-tuples = those that might be frequent$ sets (support \geq s) based on information from the pass for
 - L_k = the set of truly frequent k-tuples

Example

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1 . But that one can be more careful with candidate generation. For example, in C_2 we know $\{b, m_i\}$ cannot be frequent since $\{m_i\}$ is not frequent

Hypothetical steps of the A-Priori algorithm

- C₁ = { {b} {c} {j} {m} {n} {p} }
- \rightarrow Count the support of itemsets in C₁
- Prune non-frequent: $L_1 = \{ b, c, j, m \}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C₂
- Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C₃
- Prune non-frequent: L₃ = { {b,c,m} }

C_1 Scan D 2 3 5 300 1 2 3 5 400 {5} C_2 {1 2} temset sup {1 3} {1 3} {1 3} {15} {2 3} {2 3} Scan D {2 5} {2 3} itemset Scan D Scan D C₄is empty {235} 2

minsup = 2

Generating Candidates - Full Example

Pruning Step

{1 3} {2 3} {25}

For an itemset of size k, check if all the itemsets of size k-I are also frequent

itemset {2 3 5} {1 3 5}

If any of the k-I sized itemsets are not frequent prune the itemset of size k

{2 3} {3 5} {25}

{35} Not frequent!

{1 3}

A-Priori for All Frequent Itemsets

- One pass for each **k** (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), $\mathbf{k} = \mathbf{\hat{2}}$ requires the most memory
- Many possible extensions:

Database D

- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread. Butter → Fruitlam
 - BakedGoods, MilkProduct → PreservedGoods
- Lower the support s as itemset gets bigger

Frequent Itemsets in < 2 Passes

Frequent Itemsets in ≤ 2 Passes

- A-Priori takes k passes to find frequent itemsets of size k
- Can we use fewer passes?
- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets
 - Random sampling
 - · SON (Savasere, Omiecinski, and Navathe)
 - Toivonen (see textbook)

Random Sampling (1)

- Take a random sample of the market baskets
- Run a-priori or one of its improvements in main memory
 - So we don't pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size

Copy of sample baskets Main memory

Space counts

Random Sampling (2)

- Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass (avoid false positives)
- But you don't catch sets frequent in the whole but not in the
 - · Smaller threshold, e.g., s/125, helps catch more truly frequent itemsets
 - But requires more space

SON Algorithm – (I)

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - Note: we are not sampling, but processing the entire file in memory-sized chunks
- An itemset becomes a candidate if it is found to be frequent in *any* one or more subsets of the baskets.

SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

33

SON Summary

- ▶ Pass I Batch Processing
 - · Scan data on disk
 - Repeatedly fill memory with new batch of data
 - Run sampling algorithm on each batch
 - · Generate candidate frequent itemsets
- Candidate Itemsets if frequent in some batch
- Pass 2 Validate candidate itemsets
- Monotonicity Property

Itemset X is frequent overall \rightarrow frequent in at least one batch

SON – Distributed Version

- SON lends itself to distributed data mining
- Baskets distributed among many nodes
 - · Compute frequent itemsets at each node
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates

36

SON: Map/Reduce

- Phase I: Find candidate itemsets
 - · Map?
 - Reduce?
- Phase 2: Find true frequent itemsets
 - · Map?
 - Reduce?

PCY (Park-Chen-Yu) Algorithm

37

(Park-Chen-Yu) PCY Idea

- Improvement upon A-Priori
- ► Observe during Pass I, memory mostly idle
- Idea
 - Use idle memory for hash-table H
 - Pass I hash pairs from b into H
 - Increment counter at hash location
 - At end bitmap of high-frequency hash locations
 - Pass 2 bitmap extra condition for candidate pairs

Memory Usage PCY

39

PCY Algorithm

Pass I

- m counters and hash-table T
- Linear scan of baskets b
- Increment counters for each item in b
- Increment hash-table counter for each item-pair in b
- Mark as frequent, f items of count at least s
- Summarize T as bitmap (count > s \rightarrow bit = I)
- Pass 2
 - Counter only for F qualified pairs (X_i,X_i):
 - both are frequent
 - pair hashes to frequent bucket (bit=1)
 - Linear scan of baskets b
 - Increment counters for candidate qualified pairs of items in b

41

Multi-Stage PCY

- Problem False positives from hashing
- New Idea
 - Multiple rounds of hashing
 - After Pass I, get list of qualified pairs
 - In Pass 2, hash only qualified pairs
 - Fewer pairs hash to buckets → less false positives
 (buckets with count >s, yet no pair of count >s)
 - In Pass 3, less likely to qualify infrequent pairs
- Repetition reduce memory, but more passes
- Failure memory < O(f+F)

45

Multi-Stage PCY Memory

Literature

- Mining of Massive Datasets <u>Jure</u>
 <u>Leskovec</u>, <u>Anand Rajaraman</u>, <u>Jeff Ullman</u>,
 Chapter 6
- http://mmds.org
 http://infolab.stanford.edu/~ullman/mmds/ch6.pdf

44