ANN

Dr. Mrunal Rane

Structure

Input

Error

Feed-Forward NN

Backpropagation

Back Propagation

• Features:

- it is the **gradient descent** method as used in the case of simple perceptron network with the differentiable unit.
- it is different from other networks in respect to the **process by which the weights are calculated** during the learning period of the network.
- training is done in the three stages :
 - the feed-forward of input training pattern
 - the calculation and **backpropagation of the error**
 - updation of the weight

Algorithm

- Step 1: Inputs X, arrive through the preconnected path.
- Step 2: The input is modeled using true weights W. Weights are usually chosen randomly.
- Step 3: Calculate the output of each neuron from the input layer to the hidden layer to the output layer.
- Step 4: Calculate the error in the outputs

Backpropagation Error= Actual Output - Desired Output

- Step 5: From the output layer, go back to the hidden layer to adjust the weights to reduce the error.
- Step 6: Repeat the process until the desired output is achieved.

Parameters:

- $x = inputs training vector x = (x_1, x_2, ..., x_n).$
- $t = target vector t = (t_1, t_2, t_n)$
- δ_k = error at output unit.
- δ_i = error at hidden layer.
- α = learning rate.
- V_{0i} = bias of hidden unit j.

Algorithm

BACKPROPAGATION (training_example, η, n_{in}, n_{out}, n_{hidden})

- Each training example is a pair of the form (x, t), where (x) is the vector of network input
 values, and (t) is the vector of target network output values.
- η is the learning rate (e.g., 0.05).
- · n_i, is the number of network inputs,
- · n_{hidden} the number of units in the hidden layer, and
- n_{out} the number of output units.
- The input from unit i into unit j is denoted x_{ji}, and the weight from unit i to unit j is denoted

Wii

- Create a feed-forward network with n_i inputs, n_{hidden} hidden units, and n_{out} output units. •
- Initialize all network weights to small random numbers
- Until the termination condition is met, Do
- For each (x, t), in training examples, Do
 - Propagate the input forward through the network:
 - 1. Input the instance x, to the network and compute the output o_u of every unit u in the network.
 - Propagate the errors backward through the network

2. For each network unit k, calculate its error term δ_k

- $\delta_k \leftarrow o_k (1 o_k) (t_k o_k)$
 - 3. For each network unit h, calculate its error term δ_h $\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$
Where

4. Update each network weight wii

Where
$$\Delta\,\mathrm{w_{ji}} = \eta \delta_j x_{\mathrm{ji}}$$

Problem

 Assume that the neurons have a sigmoid activation function, perform a forward pass and a backward pass on the network.
 Assume that the actual output of y is 0.5 and learning rate is 1.
 Perform another forward pass.

Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_j = o_j (1 - o_j)(t_j - o_j) \qquad \text{if } j \text{ is an output unit}$$

$$\delta_j = o_j (1 - o_j) \sum_{i} \delta_k w_{kj} \qquad \text{if } j \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- tj is the correct teacher output for unit j
- δj is the error measure for unit j

$$W_{13} = 0.1$$
 $W_{13} = 0.1$
 $W_{13} = 0.68$
 $W_{13} = 0.1$
 $W_{14} = 0.4$
 $W_{23} = 0.8$
 $W_{23} = 0.8$
 $W_{24} = 0.6$
 $W_{24} = 0.6$
 $W_{24} = 0.6$
 $W_{25} = 0.9$
 $W_{45} = 0.9$

Backward Pass: Compute $\delta 3$, $\delta 4$ and $\delta 5$.

Compute new weights

For hidden unit:

$$\delta_3 = y_3(1-y_3) w_{35} * \delta_5$$

=
$$0.68*(1 - 0.68)*(0.3 * -0.0406) = -0.00265$$

 $_4 = y_4(1-y_4)w_{45} * \delta_5$

Compute new weights
$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\delta_4 = y_4(1-y_4)w_{45} * \delta_5$$

= 0.6637*(1 - 0.6637)* (0.9 * -0.0406) = -0.0082

Compute new
$$\Delta w_{ji} = \eta \delta_j o_i$$

Similarly update other weights

i	j	W íj	δ_{i}	\mathbf{x}_{i}	η	Updated \mathbf{w}_{ij}
1	3	0.1	-0.00265	0.35	1	0.0991
2	3	0.8	-0.00265	0.9	1	0.7976
1	4	0.4	-0.0082	0.35	1	0.3971
2	4	0.6	-0.0082	0.9	1	0.5926
3	5	0.3	-0.0406	0.68	1	0.2724
4	5	0.9	-0.0406	0.6637	1	0.8731

Forward Pass: Compute output for y3, y4 and y5.

$$a = \sum_{i=1}^{n} (w_i + x_i) \qquad w_i = F(a_i) = \frac{1}{n}$$

$$a_j = \sum_j (w_{i,j} * x_i)$$
 $yj = F(aj) = \frac{1}{1 + e^{-a_j}}$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

$$= (0.0991 * 0.35) + (0.7976 * 0.9) = 0.7525$$

$$y_3 = f(a_1) = 1/(1 + e^{-0.7525}) = 0.6797$$

$$W_{14} = 0.3971$$
 $W_{23} = 0.7976$
 $W_{24} = 0.5926$
 $W_{45} = 0.8731$
 $W_{45} = 0$

W₃₅=0.2724

 $y_3 = 0.68$

 H_3

 $W_{13} = 0.0991$

 $x_1 = 0.35$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

= $(0.2724 * 0.6797) + (0.8731 * 0.6620) = 0.7631$
 $y_5 = f(a_3) = 1/(1 + e^{-0.7631}) = 0.6820$ (Network Output)

$$Error = y_{target} - y_5 = -0.182$$

Where
$$W_{ji} \leftarrow W_{ji} + \Delta W_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

To begin, notice that weight wji can influence the rest of the network only through netj.
 Therefore, we can use the chain rule to write,

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$= \frac{\partial E_d}{\partial net_i} x_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial net_j} x_{ji}$$

$$net_j = \sum_i w_{ji} X_{ji}$$

$$\frac{\partial net_j}{\partial w_{ji}} = x_{ji}$$

• Our remaining task is to derive a convenient expression for $\frac{\partial E_d}{\partial net_j}$

To derive a convenient expression for $\frac{\partial E_d}{\partial net_j}$

We consider two cases in turn:

- Case 1, where unit j is an output unit for the network, and
- Case 2, where unit j is an internal unit of the network.

Case 1: Training Rule for Output Unit Weights

• Just as *wji* can influence the rest of the network only through *net_j*, *net_j* can influence the network only through *oj*. Therefore, we can invoke the chain rule again to write,

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} \qquad \frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2 \qquad \frac{\partial o_j}{\partial (net_j)} = \frac{\partial \sigma(net_j)}{\partial (net_j)} \qquad \frac{\partial \sigma(x)}{\partial (x)} = \sigma(x) (1 - \sigma(x))$$

$$= \frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2 \qquad = o_j (1 - o_j)$$

$$= \frac{1}{2} 2(t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j) \qquad \frac{\partial E_d}{\partial net_j} = -(t_j - o_j) o_j (1 - o_j)$$

Case 1: Training Rule for Output Unit Weights

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$$

$$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j) \ o_j (1 - o_j)$$

$$\Delta w_{ji} = -\eta \ \frac{\partial E_d}{\partial net_j} \ x_{ji}$$

$$\Delta w_{ji} = \eta \ \underline{(t_j - o_j) \ o_j (1 - o_j)} x_{ji}$$

$$\delta_j = (t_j - o_j) \ o_j (1 - o_j).$$

$$\Delta w_{ji} = \eta \, \delta_{j} \, x_{ji}$$