(13.1)

13-1  $1/\beta_{00} = 1+20/100 = 1.2 \text{ V/V} = 1.584 dB, \text{Ne}-3$  gardless of  $\sqrt{2}$ .

 $N_z = 10 \text{ V}$ :  $e = 26 \Omega$ ,  $e = 100 \text{ k}\Omega$ ,  $R_1 = (10 \text{ k}\Omega)||(100 \text{ k}\Omega)||(2 \text{ M}\Omega) = 9.05 \text{ k}\Omega$ ,  $R_2 = 26 + 4.3 \text{ k}\Omega = 4.33 \text{ k}\Omega$ ;  $1/\beta_0 = R_2/R_1 = 0.478 \text{ V/V} = -6.40 \text{ dB}$ ;  $f_z = 1/(2\pi \times 9.05 \times 10^{-3} \times 120 \times 10^{-12}) = 147 \text{ kHz}$ ;  $f_p = 367 \text{ kHz}$ .

NT = 10 mV:  $Y_e = 26 \text{ kR}, Y_o = 100 \text{ MR},$   $R_1 \approx 10 \text{ kR}, R_2 = 30.3 \text{ kR}; 1/\beta_o = 9.7 \text{ dB};$  $f_e = 133 \text{ kHz}; f_p = 52.5 \text{ kHz}.$ 

 $\sigma_{\rm I} = 1 \text{ mV}$ :  $v_{\rm e} = 260 \text{ k}\Omega$ ,  $R_{\rm I} = 264.3 \text{ k}\Omega$ ;  $1/\beta_{\rm o} = 28.4 \text{ dB}$ ;  $f_{\rm Z} = 133 \text{ kHz}$ ;  $f_{\rm p} = 6.0 \text{ kHz}$ .

[13.2] Worst case is  $N_{T} = 10V$ , when  $R_{1} = 9.05$  kR,  $R_{2} = 4.33$  kR,  $f_{z} = 147$  kHz,  $f_{p} = 367$  kHz;  $T = a\beta \approx \frac{106}{9} \frac{9.05}{4.33} \frac{1+34/367 \times 10^{3}}{1+34/147 \times 10^{3}}$  Using trial and error we find that |T| = 1 for  $f = I_{x} = 893$  kHz, where  $X T = -103^{\circ}$ . Thus,  $f_{yy} = -103 + 180 = 77^{\circ}$ .

13.3 -2.303 (1+R2/R1) 0.026 = -2  $\Rightarrow$  R2=32.4 R1. Use R1=1 KD Q81 type, R2=32.4 KD, 1%. For optimum logging range,

(13.2)

leave R=10.0 kL. Then,  $\frac{i_{\text{I}}}{I_{\text{i}}} = \frac{\mathcal{V}_{\text{I}}/R}{V_{\text{REF}}/R_{\text{V}}} = \frac{\mathcal{V}_{\text{I}}}{1 \text{ V}} \Rightarrow \frac{R}{R_{\text{V}}} \text{ Vref} = 1 \text{ V} \Rightarrow R_{\text{V}} = 1 \text{ V} \Rightarrow R_{\text{V}} = 10^{4} \times 6.95 = 69.8 \text{ k/L}, 1\%.$  All remaining components remain the same.

13.4 (a)  $i_{e1}/i_{e2} = (I_{s1}/I_{s2})e^{\sqrt{B1/V_{ep}}}$ . Us- $i_{rog} e^{x} = 10^{x/2.303}$  and letting  $i_{e2} = i_{o}$ ,  $i_{e3} = I_{o} = I_{o} \times |0|^{\sqrt{V_{e}}}$ , where  $I_{o} = \frac{I_{c2}}{I_{s1}}i_{c1} = \frac{I_{c2}}{I_{s1}}\frac{V_{REF}}{R_{r}}$ , and  $V_{i} = -2.303 \frac{R_{1}+R_{2}}{R_{1}}V_{T1}$ .

(b)  $I_0 = 10 \mu A \Rightarrow R_r = 6.95/0.01 = 698 kR$ , 1%. Using  $10^{2} = 2^{3.322 \times 2}$  and improsing  $-1 V = -\frac{2.303}{3.322} \left(1 + \frac{R_2}{R_1}\right) 26 \text{ mV gives. } R_2 = 54.49 R_1$ . Use  $R_1 = 1 \text{ kR Q81 type, and } R_2 = 54.6 \text{ kR}_1 1\%$ .

(c) Assuming the -15V supply is well regulated and clean, connect a resistor  $R_3$  between the base of  $Q_1$  and -15V to down-shift  $V_{B1}$ . In part (a)  $V_{B1}$  varied over the range  $-90.11 \,\text{mV} \le v_{B1} \le +90.11 \,\text{mV}$ . To ensure the same range of variability, we now need, for  $V_{I}=0$ ,

$$\frac{0-(-0.09011)}{R_2} + \frac{0-(-0.09011)}{R_1} = \frac{-0.09011-(-15)}{R_3}$$
and, for  $N_{\rm I} = +10 \, {\rm V}$ ,
$$\frac{10-0.09011}{R_2} = \frac{0.09011}{R_1} + \frac{0.09011+15}{R_3}$$

letting Q=1 kr Q81 type and solving, we get R2=54.15 kr (use 53.6 kr, 1%), and R3=162.46 kr (use 162 kr, 1%).

[B.5] (a) By Eq. (13.5) and KVL,  $N_0 = -N_B = -N_V = -N_T \ln \frac{N_I}{RI_s} - \frac{v_s}{R} N_I$ , or abo  $N_0 = -N_T \ln \frac{i_I}{I_s} - v_s i_I$ . For  $i_I = 1 \text{ mA}$ ,  $v_s i_I$  = 1 mV; for  $i_I = 0.1 \text{ mA}$ ,  $v_s i_I = 0.1 \text{ mV}$ . The percentage input evror p is such that  $v_s i_I = 0.6 \text{ mV}$ )  $\ln (1+p)$ . Substituting we find p(1mA) = 3.92%, p(0.1mA) = 0.385%.



 $V_0 = V_B - V_{BE} - V_S i_I$   $= \frac{R_X}{R_X + R_y} V_I - \left[ V_T \times \frac{V_I}{R} + \frac{V_S}{R} V_I \right]$   $Imposing \frac{R_X}{R_X + R_y} = \frac{V_S}{R},$ or  $R_y/R_X = R/V_S - 1$ 

gives No=-VTh (VI/RIs), regardles of vs.

13.4)

[13.6] The compensation network for the case of the logarithmic amplifier becomes:



The nottages across Rc and the 2.2-kn resistance are  $V_{R_c} = V_{B2} - V_{D_c} - V_1$   $V_{2.2 \text{ kn}} = V_{B2} - V_{BE2} - V_1$ 

As long as  $v_{Dc} \cong v_{BEZ}$  we have  $v_{Rc} \cong v_{2.2\,kR}$ , so  $i_{Re} = v_{Re}/R_c \cong v_{2.2\,kR}/R_c = [(2.2\,kR)/R_c] \times (i_I + I_{REF})$ . The current  $i_{Re}$  shifts  $v_{B2}$  and, hence,  $v_E$ , by the amount  $\Delta v_E = \Delta v_{B2} = -(R_I/IR_Z)i_{Re} = -(R_I/IR_Z)i_{Re} = -(R_I/IR_Z)i_{Re} (i_I + I_{REF})$ ; the bulk resistance  $v_s$  of  $Q_I$  causes the shift  $\Delta v_E = -v_s i_I$ . Imposing  $-(R_I/IR_Z)\frac{2.2\,kR}{R_c}i_I = -v_s i_I$  will compensate for the error due to  $v_s$ . This requires using  $v_E = (R_I/IR_Z)(2.2\,kR)/v_s$ , and also recalibrating  $v_E = (R_I/IR_Z)(2.2\,kR)/v_s$ , and also recalibrating  $v_E = (R_I/IR_Z)(2.2\,kR)/v_s$ , and also recalibrating  $v_E = (R_I/IR_Z)(2.2\,kR)/v_s$ .

For the circuit shown, use  $R_c = (1/15.7) \times 10^3 \times 2.2 \times 10^3 / 0.5 = 4.12 \text{ N.R.}$ 

(13.5)



 $V_{Z_1} = \frac{1}{2} (V_0 + 10 V); V_{Z_2} = 10 V; V_{Z_1} - V_{Z_2} = \frac{1}{2} V_0 - 5 V.$ By Eq. (13.21) with k = 1/10,

$$\frac{1}{2}V_0 - 5 = \frac{1}{10} (10\cos \omega t - 0)(0 - 10\cos \omega t) = -10\cos^2 \omega t$$

$$= 7V_0 = 10 - 20 \frac{1 + \cos 2\omega t}{2} = 10\cos 2\omega t \quad V.$$

(b) Connect as follows:

$$v_0 \sim \frac{Z_1}{R_1} \sim \frac{Z_2}{R_2} \sim 15 \text{ V}$$

We want  $V_{Z_1} - V_{Z_2} = \frac{1}{2}V_0 - 5V$ . The Thévenin equivalent of the circuit to the right of Rz is a source  $15R_3/(R_3+R_4)$  with a series resistance  $R_3/(R_4)$ , so

$$V_{Z_1} - V_{Z_2} = R_2 \frac{V_0 - 15R_3/(R_3 + R_4)}{R_1 + R_2 + (R_3 || R_4)} = \frac{1}{2} V_0 - 5V.$$

Use R3=20.0 km, R4=10.0 km, R2=10 km, R1=3.32 kR, all 1%. (13.6)

By Eq. (13.21),  $10\left(\frac{7.3}{12}v_0 - v_{\pm}\right) = \left(\frac{3}{12}v_0 - \frac{18}{28}v_{\pm}\right) \times (v_{\pm} - 0), \text{ or }$ 

 $\overline{v_0} = \frac{840v_{\text{I}} - 54v_{\text{I}}^2}{511 - 21v_{\text{I}}} \approx 10 \text{sin} \left(\frac{v_{\text{I}}}{10}90^\circ\right) = 10 \text{sin} 9v_{\text{I}}.$ 

| l | $V_{r}(v)$ | $v_{I}(\circ)$ | No (actual) | Vo (ideal) | % error |
|---|------------|----------------|-------------|------------|---------|
|   | 10         | 90             | 9.967       | 10         | -0.330  |
|   | 5          | 45             | 7.020       | 7.071      | -0.725  |
|   | 0          | o              | 0           | 0          | 0       |
|   | 10/3       | 30             | 4.989       | 5          | -0.227  |
|   | 20/3       | 60             | 8.625       | 8.660      | -0.400  |
|   | 5/3        | 15             | 2.626       | 2.588      | +1.470  |
|   | 25/3       | 75             | 9.673       | 9.659      | +0.141  |

(b) As shown in the accompanying diagram, we use an absolute-value vircuit to map the  $\pm 5\,\mathrm{V}$  range of  $v_{TR}$  to the range of 0 to 10 V needed by the sine converter, and then we use a programmable samplifier with a fain of +0.5 V/V when  $v_{T}>0$ , and a gain of -0.5 V/V when  $v_{T}>0$ .





For the absolute realise circuit use Fig. (9.30) with  $R_1=R_2=2R_3=R_4=K_5/2=10.0$  kr. For the sine converter use part (a) above. For the polarity detector and programmable gain amplifier use the accompanying circuit.





 $V_{1}-V_{2} = \frac{1}{10} \left( V_{1}-0 \right) \times \left( 0 - \frac{R_{2}}{R_{1}+R_{2}} V_{0} \right) \Rightarrow V_{0} = \left( 1 + \frac{R_{1}}{R_{2}} \right) 10 \frac{V_{2}-V_{1}}{V_{1}}.$ Vse  $R_{1} = 18 \text{ kR}, R_{2} = 2 \text{ kR}.$ 

[13.10]  $V_{X_1} = V_{Z_2} = 10 - R20/[R+R(1+\delta)] = 105/(2+\delta)$ , indicating a monlinear dependence on S, as we know. Now, since  $V_{X_2} = V_{Y_2} = 0$  and  $V_{Y_1} = V_{Z_1} = V_0$ , Eq. (13.21) gives:  $V_0 - V_{X_1} = (1/10)(V_{X_1} - 0)(V_0 - 0)$ , that is,  $V_0 = 10X_1/(10-V_{X_1})$ . Substituting the above expression for  $V_{X_1}$  yields  $V_0 = 5S$ , a linear dependence on S.



[13.12] Let V, be the output of gm1, and let I, and Iz be the outputs of gm1 and gm2. We then have

$$\begin{split} & V_{0} = V_{i} + \frac{1}{sC_{1}} I_{z} = V_{i} + \frac{q_{mz}}{sC_{1}} \left( V_{i} - V_{0} \right) \\ & V_{1} = \frac{1}{sC_{2}} I_{1} = \frac{q_{ml}}{sC_{2}} \left( V_{i} - V_{0} \right) . \ Eliminating V_{1} \,, \\ & \left( 1 + s^{2} \frac{GC_{2}}{q_{ml}} \right) V_{i} = \left( s^{2} \frac{C_{1}C_{2}}{q_{ml}} + s \frac{C_{2}}{q_{ml}} + 1 \right) V_{0} \\ & \frac{V_{0}}{V_{i}} = \frac{1 - (w/w_{0})^{2}}{1 - (w/w_{0})^{2} + (jw/w_{0})Q} \,, \ w_{0} = \sqrt{C_{1}C_{2}/q_{ml}q_{uz}} \\ & Q = \sqrt{(C_{1}/C_{2})(q_{ml}/q_{mz})} \,. \ \ Notch \ \text{perposse} \,. \end{split}$$



to a sensitivity of 1 oct/V we need 2.303 (1+R2/R1) 0.026 = 2, that is, Rz=32.4 R1. Use R1=1 kr Q81 type, and Rz=32.4 kr, 1%.
To calibrate, set v=0, Vc=0, and adjust the 1-kr pot for vo=0. Then, set v=to a 1-kHz, 5-V amplitude sine wave, and adjust the 5-kr pot so that vo has a 5-V amplitude.

[13.14] Use the circuit of Fig. 13.19 with the exponential V-I converter of Eig. 13.17. For a sensitivity of 1 octove prolt, use R2=32.4 kg, 1% in Fig. 13.17. Since for Vo=0 the V-I converter gives Ic=1 mA, which is then split in half by the AD821 pair of Fig. 13.19, we must have, by Eq. (13.30), 20 kHz=0.5 mA/(2× TX12.2C) or C=326 pF. Vse two 330-pF capacitors, and make the 2.49-kiz re-sister of Fig. 13.17 adjustable until fo=20 kHz with Vo=0.



 $V_{1} = -\frac{1}{sR_{1}C}V_{0} - \frac{1}{sR_{2}C}V_{0}; V_{0} = 0.01 \times 10^{-2V_{C}} \times V_{1}.$ Substituting,  $\frac{V_{0}}{V_{c}} = -\frac{R^{2}}{R_{1}} \frac{1}{1+\hat{\eta}ff_{0}}, f_{0} = \frac{10^{-2V_{0}}}{200\pi R^{2}C}.$ Unity dc fair =>  $R_{1}=R_{2}$ . For  $V_{c}=-2V$ we want fo = 1MHZ, or  $10^{6} = 10^{4}/(200\pi R_{2}C)$ .
Let C = 10 mF. Then  $R_{1}=R_{2}=1.58 \text{ kR}, 1\%$ .

13.16 (a) No = 5 V => DISCH pin floating =>

15 V 10 V 5 V 0 V

OTA inputs are  $V_p = 2.5V$  and  $N_N = 1.36 V \Rightarrow 0.7A/s$  input stage saturates such that OTA sources

the control current Ic to the capacitor.

No=0V > DISCH pin shorted to ground > Np=
0V and N=1.36V > OTA now sinks Ic from capacitor. Thus, Nc is a triangular wave alternating between 1/3 Vcc and 2/3 Vcc.

CAV=IAt => C (10-5)=IcT/2 => fo=1/T=
Ic/10C.

(b)  $C = I_c/10f_0 = 10^{-3}/(10 \times 10^5) = 1$  mF.

Generate Ic with the exponential V-I converter of Fig. 13.17, where  $R_2 = 32.4$  ks in order to achieve the desired sensitivity.

To calibrate, make the 2.49 ks resistor in Fig. 13.17 adjustable, and set it so that  $f_0 = 100$  kHz with  $V_C = 0$  V.

13.17 With F(s)=1 we have  $V_{e}(s)=K_{e}K_{a}\theta_{d}(s)$   $= (10^{4}/\pi 10^{4}) \theta_{d}(s) = \theta_{d}(s)/\pi, \text{ or } \theta_{d}(s)=\pi V_{e}(s).$ (a)  $\theta_{d}(t)=\pi \times 0.2 \left[1-e^{-t/(100\mu s)}\right] \mu(t)$   $= 36^{0} \left[1-e^{-t/(100\mu s)}\right] \mu(t).$ (b)  $\theta_{d}(t)=19.33^{\circ} \cos \left(2\pi 2500t-57.52^{\circ}\right).$ 

[13.18] (a) With  $R_2=0$  we get  $\mp(s)=1/(1+s/w_p)$ ,  $w_p=1/R_1C=100$  rad/s. Then,  $\mp(j\omega)=1/[j\omega/104)(1+j\omega/100)]$ , Vsing trial and error, we find that  $|\mp|=1$  for  $w_x=997.5$  rad/s, where  $\mp \mp=-174.30$ , so  $\phi_m=5.70$ , an inadequate margin.

(b) For  $p_m=45^\circ$  mipose  $w_p=k_v=10^4$  vad/s. The actual crossover frequency and phase margin are then  $w_x=7,860$  rad/s, and  $p_m=51.8^\circ$ .

[13.19]  $R_1 C = 1/100$ ,  $R_2 C = 1/10^3$ . Let  $C = 0.1 \mu F$ . Then,  $R_1 = 100 \, \text{kR}$ , and  $R_2 = 10 \, \text{kSL}$ .  $T(j \omega) = [1+j \omega/10^3]/[(j \omega/10^4)(j \omega/10^2)]$ . |T|=1 for  $\omega_x = 1272 \, \text{rad/s}$ , and  $\rho_m = 51.8^\circ$ .

13.20 Passive filter:

$$H(s) = \frac{K_{v} F(s)}{s + K_{v} F(s)} = \frac{K_{v} (1 + s/\omega_{z})/(1 + s/\omega_{p})}{s + K_{v} (1 + s/\omega_{z})/(1 + s/\omega_{p})}$$

$$= \frac{K_{v} + K_{v} s/\omega_{z}}{s + s^{2}/\omega_{p} + K_{v} + K_{v} s/\omega_{z}} = \frac{1 + s/\omega_{z}}{s^{2}/K_{v}\omega_{p} + s(1/K_{v} + 1/\omega_{z}) + 1}$$

$$= \frac{N(s)}{(s/\omega_{m})^{2} + 23(s/\omega_{m}) + 1}, \quad \omega_{m} = \sqrt{K_{v}\omega_{p}};$$

$$235/w_{n} = s(1/k_{v} + 1/w_{z}) \Rightarrow 7 = \frac{\omega_{n}}{2w_{z}} \left(1 + \frac{\omega_{z}}{k_{v}}\right);$$

$$N(s) = 1 + \frac{23s}{w_{n}} - \frac{s}{k_{v}} = 1 + \frac{s}{w_{n}} \left(23 - \frac{\omega_{n}}{k_{v}}\right).$$

Active filter:

$$H(s) = \frac{k_V (H \leq / \omega_2)/(s/\omega_p)}{s + K_V (H \leq / \omega_2)/(s/\omega_p)} = \frac{K_V + K_V \leq / \omega_2}{s^2 / \omega_p + K_V + s / \omega_2}$$

$$= \frac{1 + s / \omega_2}{s^2 / K_V \omega_p + s / \omega_2 + 1} = \frac{1 + 23 (s/\omega_n)}{(s/\omega_p)^2 + 23 (s/\omega_n) + 1},$$

$$\omega_n = \sqrt{K_V \omega_p}, \quad J = \frac{\omega_n}{2\omega_2}.$$

[B.21]  $K_V = 0.2 \times 1 \times 2\pi 10^6 = 2\pi 10^5 = 1$ ;  $W_m \cong W_0/100$ =  $2\pi 10^4 \text{ rad/s}$ .  $R_1 C = 1/W_p = K_V/W_m^2 = 1/2\pi 10^3 = 3$ ;  $R_2 C = 1/W_Z = 27/W_m = 1/Q_W_m = 1/\pi 10^4 = 3$ . Let C = 10 mF. Then,  $R_1 = 15.8$  kQ and  $R_2 = 3.16$  hQ.

13.22 Let 
$$Z_2 = R_2/(1/sC_2) = R_2/(1+sR_2C_2)$$
. Then,  
 $V_i \circ V_i = V_0 = \frac{Z_2+1/sC_1}{R_1+Z_2+1/sC_1}$ 

$$C = \frac{1+sR_2(C_2+s(R_1C+R_2C_2)+1)}{s^2R_1R_2C_2+s(R_1C+R_2C_2)+1}$$

Substituting Cz=C1/10, Rz=1/366C, and R1= 1/25C-1/366C we get

$$T(\hat{q}\omega) = K_V \frac{P(\hat{q}\omega)}{\hat{q}\omega} = \frac{10^4 (1+\hat{q}\omega/332.7)}{\hat{q}\omega \left[1-\omega^2/98208+\hat{q}\omega/24.83\right]}$$

By trial and error we find  $\omega_x = 797 \text{ rad/s}$ , and  $\phi_m = 57.7^\circ$ ;  $\omega_x$  micreases by 40 rad/s, and  $\phi_m$  decreases by 8.3°.

13.23 Case DI = Do = Y2:



Case DI = 1/2, Do = 1/3:



13.15)

## Case DI = 1/3, Do = 1/2:





(13.16)



13.25 (a)  $K_a = 5/\pi$ ;  $K_a = 1$ ;  $K_b = 2\pi \times 5 \times 10^6 = \pi 10^7$ ;  $K_V = (5/\pi) \times 1 \times \pi 10^7 = 5 \times 10^7 \text{ s}^{-1}$ .  $W_m = \pi 10^4 \text{ rad/s}$ .  $V_{SMS} \neq f_{QS}$ . (13.46),  $W_p = W_m^2/K_V = (\pi 10^4)^2/(5 \times 10^7) = 19.74 \text{ rad/s}$   $\Rightarrow (R_1 + R_2)(1 = 1/19.74)$   $= 1/2Q = 1/(2 \times 0.5) = 1 = \pi 10^4 (\frac{1}{2W_z} + \frac{1}{2 \times 5 \times 10^7})$   $= \pi 10^4/(2W_z) \Rightarrow W_z = \frac{\pi}{2} 10^4 = 15,708 \text{ rad/s}$   $\Rightarrow R_2(1 = 1/15,708)$ . Pick C = 100 mF. Then,  $R_2 = 637 \text{ s}$  (Use 634 s, 1%), and  $R_1 = 507 \text{ kg}$  (use 511 kg, 1%). Use  $C_2 = 10 \text{ mF}$ .

(b) fo =  $10^9 + (V_E - 2.5)5 \times 10^6$ ; fo = 7.5MHz  $\Rightarrow N_E = 2V$ .  $\theta_I - \theta_0 = V_E/K_d = 2/(5/\pi) = 1.257$  radians. The were forms are as follows: (13.17)



13.26  $W_p = 553 \text{ rad/s}, W_z = 22.5 \times 10^3 \text{ rad/s},$   $7 = 1/\sqrt{2}, K_0 = 1.122 \times 10^6 \text{ rad/s}, K_V = 1.786 \times 10^6 \text{ s}^{-1}, W_m = \sqrt{W_p K_V} = 3.143 \times 10^4 \text{ rad/s}; 27 - W_m/K_V = 1.397. Substituting into Eq. (13.46a),$   $1/(5) = \frac{5/(2.25 \times 10^4) + 1}{[5/(3.143 \times 10^4)]^2 + 5/(2.22 \times 10^4) + 1}$ 

Computing at  $S = j\omega_m = j2\pi \times 10^3$  we get  $H(j2\pi 10^3) = 1.0373 - 0.820$ . Then,

Ve(t) = |wil 60373 cos (2103t-0.820).

Subtituting  $|w_i| = 2\pi \times 10 \times 10^3$  rad/s and  $K_0=1.122$   $\times 10^6$  rad/s we finally get  $ve(t) = (58.09 \text{ mV}) \cos(2\pi 10^3 t - 0.82^\circ)$ .



Design for fI= 55 Hz. Then, fo= 55 x 216 = 3.60 MHz. Arbitrarily impose  $2f_R = 2MHz$ , so that  $K_0 = 2\pi \times 2 \times 106/(3.9-1.1) = 4.49 (Mrad/s)/V. To meet these specifications, the PLL Design Program sufferts using <math>R_1 = 22 \text{ kg}$ ,  $R_2 = 39 \text{ kg}$ , and C = 100 pF.

Using PCz, we get Kd = 5/4TT. Then, Ky= (5/4TT)× 4.49×106/214 = 27.2 51.

Choose  $w_n = w_1/20 = 2\pi 55/20 = 17 \text{ rad/s}, and <math>3 = 1/\sqrt{2}$ . Then,  $w_p = w_n^2/K_v = 11 \text{ rad/s}, and <math>w_z = 21.5 \text{ rad/s}$ . Let  $C_1 = 1 \text{ nF}$ . Then,  $R_4 = 1/w_z C_1 = 47 \text{ k/C}$ , and  $R_3 = 1/w_p C - R_4 = 91 \text{ k/C}$ .



Use a 4059 counter configured as a modulo1000 counter to divide the 1-MHZ input down
to a 1-kHZ seference signal for the phase romparator. The other input to the phase romparator is obtained from the 8030's open-col
lector output using the 3.3-kR pullup resistor. Buffer the filter with a FET-input of amp to avoid loading.  $OV \leq v_E \leq$   $5V \Rightarrow 12V \leq V_8 \leq 13V$ . Let fo=1 kHZ
for  $V_E = 2.5V$ ; i.e. for  $V_8 = 12.5V$ . Impose  $i_{R_3} = 0.1$  mA, so  $R_3 = (15-12.5)/0.1 =$  24.9 kR. Using  $C_2OV = IDt$  with  $OV = 2\times$ 

(B.20)

(15/3) = 10 V, I=0.1 mA,  $\Delta t = 1/f_0 = 1$  ms gives  $C_2 = 10$  mF. The purpose of the diode is to protect the 8038 against possible excessively negative swints of VE at power turn-on.

To design the filter, observe that  $K_d = 5/4\pi \text{ V/rad.}$  Moreover,  $\Delta V_E = 5V \Rightarrow \Delta V_R = 1V$   $\Rightarrow \Delta i_{R_3} = 1/(25 \text{ k2}) = 40 \text{ MA} \Rightarrow \Delta f_0 = (40 \text{ MA})/(10 \text{ V} \times 10 \times 10^9 \text{ F}) = 400 \text{ Hz.}$  So,  $K_0 = \Delta f_0/\Delta V_E = 400/5 = 80 \text{ Hz/V} = 160 \pi \text{ (rad/s)/V. Consequently,}$   $K_V = (5/4\pi) 160\pi = 200 \text{ s}^{-1}$ . Arbitrarily impose  $W_m = 2\pi \text{ rad/s}$ , so  $W_P = W_m^2/K_V = 0.2 \text{ rad/s}$ ; and  $3 = 1/\sqrt{2}$ , so  $W_Z = (23/W_m - 1/K_V)^{-1} = 4.54 \text{ Vad/s.}$  Let  $C = 3.3 \mu \text{F.}$  Then,  $R_2 = 68 \text{ kg.}$ ,  $R_1 = 1.5 \text{ Mg.}$ 



PLL Design program => C1=33 mF, R1 = 91 kn, R2 = 1.3 M.R. R3C2 = 1/2TfH => C2=33 mF, R3 = 2 kn.

13.21)

With reference to Fig. 13.26 we can write fo = ANE+B; substituting fo (NE=1.1)=1800-1000 and fo (NE=3.9)=1800+1000, we get fo = (5000NE+100)/7. The control voltages required to make the VCO oscillate at fo = 1200 Hz and fo = 2400 Hz are, respectively, VEL=83/50=1.66 V, and VEH=83/25=3.32 V. According to Fig. 13.29b, the corresponding phase differences are  $\Theta_{DL}\cong 120^{\circ}$  and  $\Theta_{DH}\cong 240^{\circ}=-120^{\circ}$ .

Case fr = 1200 HZ (VE = 1.66 V):



Caref= = 2400 Hz (VE= 3.32 V):



The use of PCs simplifies the D-flip-flop timing considerably.