Boosting

CSci 5525: Machine Learning

Instructor: Nicholas Johnson

November 12, 2020

Announcements

- Project progress report due in < 1 week (Nov 17)
- Exam 2 coming up (Monday Nov 23, due 48 hours later)
 - Covers lectures 11 (Deep Learning I) 21 (tentatively PCA)

Boosting

- Boosting is a class of algorithms which combine weak learners to create a strong learner
- Rooted in learning theory
- Works very well in practice
- Idea:
 - Apply algorithm to subset of data
 - Obtain weak leaner
 - Apply algorithm to another subset of data
 - Obtain another learner
 - ..
 - · Combine learners at the end

Boosting

- How to choose data in each round?
 - Concentrate on "hardest" samples (those misclassified by previous weak learners)
- How to combine learners into single strong learner?
 - Weighted majority vote
- Adaboost is boosting method that implements these ideas

The Boosting Model

- Boosting converts a weak learner to a strong learner
- Boosting proceeds in rounds

- Booster constructs weight distribution D_t on X (train set)

 Weak learner produces a hypothesis $h_t \in \mathcal{H}$ so that $P_{X \sim D_t}[h_t(X) \neq c(X)] \leq \frac{1}{2} \gamma_t$
 - After T rounds, the weak hypotheses h_t , $[t]_1^T$ are combined into a final hypothesis h_{final}
 - We need procedures,
 - \longrightarrow of for obtaining D_t at each step
 - for combining the weak hypotheses

Boosting Algorithms

- Weight decreased on correct samples
- Weight increased on incorrect samples

Adaboost

Adaboost Training

- Weight on (\mathbf{x}_i, y_i) is $D_t(i) = w_t(i)$, learn classifier $G_t(\mathbf{x})$
- → The error rate

$$\underbrace{e_t} = \underbrace{P_{\mathsf{x} \sim w_t}[G_t(\mathsf{x}) \neq y]} = \sum_{i=1}^{N} w_t(i) \mathbb{1}(y_i \neq G_t(\mathsf{x}_i)) = \underbrace{\sum_{i=1}^{N} w_i(i)}_{i \in Y_t \neq G_t(\mathsf{x}_i)}$$

The combined classifier

$$\underbrace{g(\mathbf{x})} = \operatorname{sign}\left[\sum_{t=1}^{T} \alpha_t G_t(\mathbf{x})\right]$$

Adaboost Algorithm

Input: Training set
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_n) \in \underbrace{\mathcal{X} \times \{-1, 1\}}_{}$$

Algorithm: Initialize $w_1(i) = 1/n$

For
$$t = 1, \ldots, T$$

- For $t=1,\ldots,T$ Train a weak learner using distribution w_t
 - Get weak hypothesis G_t with error $\epsilon_t = \sum_i w_t(i) \mathbb{1}[G_t(\mathbf{x}_i) \neq y_i]$

Update

$$w_{t+1}(i) = \frac{w_t(i) \exp(-\alpha_t y_i G_t(\mathbf{x}_i))}{Z_t}$$

where Z_t is the normalization factor

4054

$$g(\mathbf{x}) = \operatorname{sign}\left[\sum_{t=1}^{T} \alpha_t G_t(\mathbf{x})\right]$$

 \bullet X_1, \dots, X_{10} are univariate independent Gaussians

$$Y = \begin{cases} 1 & \text{if } \sum_{j} X_j^2 > \chi_{10}^2(0.5) \\ -1 & \text{otherwise} \end{cases}$$

• $\chi^2_{10}(0.5) = 9.34$, median of chi-squared r.v. with 10 degrees of freedom

Ideas Behind Adaboost

Hypothesis class Adaboost selects from is

$$\{x o ext{sign}(f(x)): f(x) = \sum_{t=1}^T lpha_t G_t(x) ext{ for some}$$
 $lpha_1, \dots, lpha_T \geq 0 ext{ and}$ $G_1, \dots, G_T \in \mathcal{H} ext{ and}$ $T \geq 1\}$

- \bullet \mathcal{H} is weak learner class (e.g. decision stumps)
- Adaboost greedily minimizes empirical exponential loss $\frac{1}{n} \sum_{i} \exp(-y_i f(x_i))$

Ideas Behind Adaboost

- At round t algorithm greedily improves on f_{t-1} by finding (G_t) and (α_t) to minimize

$$\sum_{i=1}^{n} \exp(-y_i f_t(x_i)) = \sum_{i=1}^{n} \underbrace{\exp(-y_i f_{t-1}(x_i))} \exp(-\alpha_t y_i G_t(x_i))$$

$$\propto \sum_{i=1}^{n} w_t(i) \underbrace{\exp(-\alpha_t y_i G_t(x_i))}$$
Last line follows from definition of w_t :

$$w_t(i) \propto w_{t-1}(i) \exp(-\alpha_{t-1} y_i G_{t-1}(x_i)) \propto \cdots \propto \exp(-y_i f_{t-1}(x_i))$$

The Training Error

• The training error of the final classifier is bounded

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(G(\mathbf{x}_i) \neq y_i) \leq \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i G(\mathbf{x}_i)) = \prod_{t=1}^{T} Z_t$$

• Training error can be reduced most rapidly by choosing α_t that minimizes

$$Z_t = \sum_{i=1}^n w_t(i) \exp(-\alpha_t y_i G_t(\mathbf{x}_i))$$

- Adaboost chooses the optimal α_t
 - Margin is (sort of) maximized
- Other boosting algorithms minimize other upper bounds

Obtaining α_t

• For a given $G_t(\mathbf{x})$, goal is to minimize

For a given
$$G_t(\mathbf{x})$$
, goal is to $\frac{\min m}{\sum_{i=1}^{n} w_t(i) \exp(-\alpha y_i G_t(\mathbf{x}_i))}$

$$= \sum_{i:y_i = G_t(\mathbf{x}_i)} w_t(i) \exp(-\alpha) + \sum_{i:y_i \neq G_t(\mathbf{x}_i)} w_t(i) \exp(\alpha)$$

$$= (1 - \epsilon_t) \exp(-\alpha) + \epsilon_t \exp(\alpha) \quad (\epsilon_t \text{ is error rate of } G_t)$$

$$= \epsilon_t (\exp(\alpha) - \exp(-\alpha)) + \exp(-\alpha)$$

- Recall the error rate at t: $\epsilon_t = \sum_{i=1}^n w_t(i) \mathbb{1}(y_i \neq G_t(\mathbf{x}_i))$
- Minimizing $f(\alpha)$ over α gives:

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

The Training Error (cont.)

The training error of the final classifier is bounded

$$\frac{1}{n}\sum_{i=1}^n \mathbb{1}(g(\mathbf{x}_i) \neq y_i) \leq \frac{1}{n}\sum_{i=1}^n \exp(-y_i G(\mathbf{x}_i)) = \prod_{t=1}^T Z_t$$

• For round t, with $\epsilon_t = 1/2 - \gamma_t/2$

$$Z_t = \sqrt{1 - \gamma_t^2}$$

• Then the total training error

$$\frac{1}{n}\sum_{i=1}^n\mathbb{1}(g(\mathbf{x}_i)\neq y_i)\leq \prod_{t=1}^T\sqrt{1-\gamma_t^2}$$

Boosting is General Framework

- Boosting is a general framework for constructing ensembles
- Can by viewed as gradient descent in function space with convex cost function
- Many other boosting algorithms: LogitBoost, Gradient Boosted Regression Tree (i.e., gradient boosting), etc.
- Works very well in practice