Об алгоритмической разрешимости проблемы распознавания бесквадратности данного слова относительно системы из двух определяющих соотношений

Н. Л. Поляков

Аннотация

Проблема распознавания бесквадратности данного слова относительно произвольной системы из двух определяющих соотношений алгоритмически разрешима.

Пусть A — непустое рекурсивное множество, называемое $an\phi asumom$, элементы которого называются byksu. Cnosom в алфавите A называется конечная последовательность $x_1x_2\dots x_n$, $0 \le n < \omega$, элементов из множества A. Натуральное число n называется длиной слова $x = x_1x_2\dots x_n$ и обозначается символом |x|. Последовательность длины 0 является пустым множеством, поэтому пустое слово будет обозначаться символом \emptyset . Множество всех слов в алфавите A обозначается символом A^* . На этом множестве определена бинарная операция "приписывания", называемая иногда konkamenayun, ставящая в соответствие паре слов $(x_1x_2\dots x_n, y_1y_2\dots y_m)$ слово $x_1x_2\dots x_ny_1y_2\dots y_m$ и наделяющая множество A^* структурой полугруппы с единицей, которая называется свободным моноидом на множестве A. Мы будем обозначать ее тем же символом A^*

Слово w называется бесквадратным, если

$$w = ussv \Rightarrow s = \emptyset$$

для всех слов u, s, v из A^* . Множество всех бесквадратных слов в алфавите A мы будем обозначать SF(A). Согласно известному результату

А. Туэ (см. [1]), полученном в 1906 году, если алфавит A содержит по крайней мере три буквы, то множество SF(A) бесконечно (для одно- и двухбуквенных алфавитов, как легко проверить, верно обратное). Этот результат A. Туэ неоднократно переоткрывался и передоказывался другими авторами (см., напр. [2]). Обобщения этого результата и решение родственных задач можно найти в [3], [4], [5], [6] и др. В ряде работ исследовано понятие b бесквадратности относительно системы определяющих соотношений.

Системой определяющих соотношений называется произвольное бинарное иррефлексивное отношение π на множестве A^* . Системы определяющих соотношений часто записывают в виде множества "равенств" u=v, однако в данной работе мы будем использовать обозначение u=v, где $u,v\in A^*$ только для обозначения равенства в свободном моноиде, т.е. графического совпадения слов.

Для данной системы определяющих соотношений π на множестве A^* следующим образом определяется бинарное отношение $\stackrel{\pi}{\leftrightarrow}$ непосредственной выводимости: $x \stackrel{\pi}{\leftrightarrow} y$ тогда и только тогда, когда $x = rus \& y = rvs \& ((u,v) \in \pi \lor (v,u) \in \pi)$ для некоторых слов r,s,u,v из A^* . Рефлексивное и транзитивное замыкание отношения $\stackrel{\pi}{\leftrightarrow}$ называется равенством относительно системы определяющих соотношений π и обозначается символом $\stackrel{\pi}{=}$. Это отношение является конгруэнцией моноида A^* . Класс эквивалентности слова $w \in A^*$ обозначается символом $[w]_{\pi}$. Пара (A,π) иногда называется копредставлением любого моноида, изоморфного фактор-моноиду моноида A^* по конгруэнции $\stackrel{\pi}{=}$.

Слово $w \in A^*$ называется бесквадратным относительно системы соотношений π , если $[w]_{\pi} \subseteq SF(A)$. Множество всех таких слов будем обозначать $SF(A,\pi)$. Если множество $SF(A,\pi)$ рекурсивно, то говорят, что разрешима проблема распознавания бесквадратности данного слова относительно системы определяющих соотношений π . В общем случае эта проблема неразрешима (см. [4]). Однако, имеет место следующая

Теорема 1. Пусть даны алфавит A и система определяющих соотношений $\pi = \{ (u_i, u_j) \mid 1 \leq i < j \leq n \}$, где $n < \omega$, $u_i \in A^*$ и $u_i = u_j \Rightarrow i = j$ для всех i и j, $1 \leq i \leq n$, $1 \leq j \leq n$. Тогда множество $SF(A,\pi)$ рекурсивно.

В частности, разрешима проблема распознавания бесквадратности данного слова относительно одноэлементной системы определяющих соотношений $\{(u,v)\}, u \neq v$.

Эти результаты доказаны А. Карпи, А. де Лука в [4]. Ниже будет доказано, что относительно двухэлементной системы определяющих соотношений эта проблема также разрешима.

Последние результаты представляют интерес, в частности, в связи с открытостью вопроса о разрешимости проблемы равенства относительно произвольной одно- и двухэлементной системы определяющих соотношений, т.е. о рекурсивности отношений $x \stackrel{\pi}{=} y$ и $x \stackrel{\pi}{=} w$ для данного слова w, где π имеет вид $\{(u,v)\}$ или $\{(u,v),(r,s)\}$ (пример системы из mpex определяющих соотношений с неразрешимой проблемой равенства привел Матиясевич [7]; см. также обзор в [1]).

На самом деле в работе [4] доказано более сильное, чем теорема 1 утверждение. А именно, доказано, что для любой системы определяющих соотношений π вида $\{(u_i,u_j) \mid 1 \leq i < j \leq n\}, n < \omega$, выполнено следующее условие :

$$\forall w \in A^* \ w \in SF(A, \pi) \Rightarrow ||[w]_{\pi}|| < \omega. \tag{*}$$

Из этого утверждения, конечно, следует теорема 1. Действительно, для любого рекурсивного множества $P(A) \subseteq A^*$ его "релятивизация" относительно системы соотношений π , т.е. множество $P(A,\pi) = \{u \in A^* \mid [u]_\pi \subseteq P(A)\}$ также рекурсивно, если каждый его элемент w имеет конечный класс эквивалентности относительно системы соотношений π . Для доказательства этого факта можно рассмотреть для любого слова $w \in A^*$ последовательность конечных множеств слов $U_1, U_2, \ldots U_i, \ldots$, где $U_1 = \{w\}$, а $U_{i+1} = U_i \cup \{u \in A^* \mid \exists v \in U_i \ v \stackrel{\pi}{\leftrightarrow} u\}$. Алгоритм, осуществляющий последовательную проверку принадлежности множеству P(A) каждого элемента очередного множества U_i до тех пор, пока не будет получен отрицательный ответ или U_i не совпадет с U_{i-1} , разрешает вопрос о принадлежности слова w множеству $P(A,\pi)$ поскольку конечность множества $[w]_\pi = \bigcup_{i<\omega} U_i$ гарантирует, что одно из этих событий произойдет на некотором конечном шаге.

Теорема 2. Пусть даны алфавит A и система определяющих соотношений $\pi = \{ (u_i, u_j) \mid 1 \leq i < j \leq n \} \cup \{ (v_k, v_l) \mid 1 \leq k < l \leq m \},$ где $n, m < \omega, u_i, v_k \in A^*$ и $u_i = u_j \Rightarrow i = j \& v_k = v_l \Rightarrow k = l$ для всех номеров $i, j, k, l, 1 \leq i, j \leq n, 1 \leq k, l \leq n.$ Тогда выполнено условие (*).

Доказательство. Для каждой системы определяющих соотношений θ в алфавите A множество всех слов, входящих в определяющие соотношения, называется множеством определяющих слов и

обозначается символом D_{θ} : $x \in D_{\theta}$ тогда и только тогда, когда $\exists y \in A^* \ ((x,y) \in \theta \lor (y,x) \in \theta)$. Обозначим через σ систему соотношений $\{ (u_i,u_j) \mid 1 \leq i < j \leq n \}$, а через ρ систему соотношений $\{ (v_k,v_l) \mid 1 \leq k < l \leq m \}$. Обозначим символом \overline{D}_{σ} замыкание множества D_{σ} по отношению $\stackrel{\rho}{=}$, а символом \overline{D}_{ρ} замыкание множества D_{ρ} по отношению $\stackrel{\sigma}{=}$. Систему определяющих соотношений $(\overline{D}_{\sigma} \times \overline{D}_{\sigma} \cup \overline{D}_{\rho} \times \overline{D}_{\rho}) \setminus \{ (u,u) \mid u \in A^* \}$ обозначим τ . Очевидно, отношения $\stackrel{\pi}{=}$ и $\stackrel{\tau}{=}$ на множестве A^* совпадают. Для сокращения записи вместо выражения $(x,y) \in \overline{D}_{\sigma} \times \overline{D}_{\sigma} \cup \overline{D}_{\rho} \times \overline{D}_{\rho}$ будем использовать знакосочетание $x \sim y$.

Следующее утверждение легко следуют из выполненности условия (*) для систем определяющих соотношений вида $\{(u_i, u_j) \mid 1 \leq i < j \leq n\}.$

Утверждение 1. Условие (*) выполнено, если имеет место один из следующих фактов:

- 1. Хотя бы одно из множеств \overline{D}_{σ} , \overline{D}_{ρ} бесконечно.
- 2. Хотя бы одно из множеств \overline{D}_{σ} и \overline{D}_{ρ} не замкнуто по отношению $\stackrel{\sigma}{=}$ и $\stackrel{\rho}{=}$ соответственно.
- 3. $D_{\sigma} = \emptyset$ unu $D_{\rho} = \emptyset$ unu $\overline{D}_{\sigma} \cap \overline{D}_{\rho} \neq \emptyset$.

Действительно, пусть слово w бесквадратно относительно системы соотношений π .

Допустим, что множество \overline{D}_{σ} бесконечно. Если класс $[w]_{\pi}$ не содержит ни одного слова $w' \in A^*D_{\sigma}A^*$, то $[w]_{\pi} = [w]_{\rho}$, и $\|[w]_{\pi}\| < \omega$ ввиду очевидного включения $SF(A,\pi) \subseteq SF(A,\rho)$. Противоположный случай невозможен в силу следующей цепочки следствий: $\|[w']_{\rho}\| = \omega \Rightarrow w' \notin SF(A,\rho) \Rightarrow w \notin SF(A,\pi)$. Аналогично рассматривается симметричный случай бесконечности множества D_{ρ} , что доказывает первую часть утверждения.

Пусть теперь множество \overline{D}_{σ} не замкнуто по отношению $\stackrel{\sigma}{=}$. Тогда существуют слова r и s из A^* и слово u из D_{σ} , для которых имеет место включение $rus \in \overline{D}_{\sigma}$, причем слово rs непусто. Отсюда $u \stackrel{\pi}{=} rus \stackrel{\pi}{=} rruss \notin SF(A)$ и, следовательно, $A^*D_{\sigma}A^* \cap SF(A,\pi) = \emptyset$. Поэтому $[w]_{\pi} = [w]_{\rho}$. Симметричный случай рассматривается аналогично, что доказывает вторую часть утверждения.

Третью часть утверждения достаточно доказать в предположении конечности множеств \overline{D}_{σ} и \overline{D}_{ρ} . В этом случае она сразу следует из того,

что равенство относительно системы соотношений π совпадает с равенством относительно системы соотношений $\{(w_i, w_j) \mid 1 \leq i < j \leq k\}$, где множество $\{w_i \mid 1 \leq i \leq k\}$ есть $\overline{D}_{\sigma} \cup \overline{D}_{\rho}$.

В дальнейшем будем считать, что множества \overline{D}_{σ} и \overline{D}_{ρ} конечны, непусты, замкнуты по отношениям соответственно $\stackrel{\sigma}{=}$ и $\stackrel{\rho}{=}$, и имеют пустое пересечение. В частности, отсюда следует, что множество D_{π} не содержит пустого слова (в противном случае каждое из множеств \overline{D}_{σ} и \overline{D}_{ρ} бесконечно), а множество D_{τ} замкнуто по отношению $\stackrel{\pi}{=}$.

Определение 1. Последовательность непустых слов x_1, x_2, \ldots, x_n , $1 \le n < \omega$, назовем линейным разложением слова $x = x_1 x_2 \ldots x_n$, если существуют такие слова $p_i, q_i, u_i, v_i, 1 \le i \le n$, что выполнены следующие условия:

- (1) $p_i x_i q_i \sim q_{i-1} u_i$ для всех номеров $i, 1 < i \le n$,
- (2) $p_i x_i q_i \sim v_i p_{i+1}$ для всех номеров $i, 1 \le i < n$,
- (3) $q_i = \emptyset \lor p_{i+1} = \emptyset$ для всех номеров $i, 1 \le i < n$,
- (4) $p_1 = q_n = \emptyset$,
- (5) $n=1 \Rightarrow x_1 \in D_{\tau}$.

Для любого номера $i, 1 \leq i \leq n$, слова p_i и q_i будем называть соответственно i-ым левыми и i-ым правым дополнительным членом линейного разложения x_1, x_2, \ldots, x_n слова x. Слова, имеющие линейное разложение с числом членов не более n, назовем линейно разложимыми порядка n. Множество всех линейно разложимых слов порядка n будем обозначать символом Lin(n). Положим $Lin = \bigcup_{n < \omega} Lin(n)$. Элементы множества Lin будем называть линейно разложимыми словами.

Утверждение 2. Пусть последовательность x_1, x_2, \ldots, x_n , $1 \le n < \omega$, есть линейное разложение слова x, и слова p_i и q_i , $1 \le i \le n$, суть i-ые левые и i-ые правые дополнительные члены данного линейного разложения. Тогда:

1. Для каждого номера $i, 1 \le i \le n$, существуют такие слова f и g, что выполнены равенства $x_1x_2...x_{i-1} \stackrel{\pi}{=} fp_i$ и $x_{i+1}x_{i+2}...x_n \stackrel{\pi}{=} q_iq$.

- 2. Для каждого номера i, $1 \le i \le n$, последовательность слов $x_1, x_2, \ldots, x_i q_i$, есть линейное разложение слова $x_1 x_2 \ldots x_i q_i$, а последовательность слов $p_i x_i, x_{i+1}, \ldots, x_n$ есть линейное разложение слова $p_i x_i x_{i+1} \ldots x_n$.
- 3. Если для некоторого номера $i, 1 \le i \le n$, выполнено равенство $x_i \stackrel{\pi}{=} x'$, то последовательность $x_1, x_2, \ldots, x_{i-1}, x', x_{i+1}, \ldots, x_n$ есть линейное разложение слова $x_1 x_2 \ldots x_{i-1} x' x_{i+1} \ldots x_n$.
- 4. Пусть также последовательность слов y_1, y_2, \ldots, y_m , $1 \le m < \omega$, есть линейное разложение слова y, u для некоторых слов e, x', y' выполнено: $x_n = x'e \& y_1 = ey'$. Тогда слово $z = x_1x_2 \ldots x_{n-1}x'ey'y_2 \ldots y_{m-1}y_m$ принадлежит множеству Lin(n+m+sign(|x'y'|)-1), символ sign(t) обозначает функцию из ω в $\{0,1\}$, равную нулю при t=0, u единице иначе.

 Π ри этом в качестве линейного разложения слова z можно взять nocnedobameльность:

$$x_1, x_2, \ldots, x_{n-1}, x', y_1, \ldots, y_{m-1}, y_m$$
, если слово x' непусто, $x_1, x_2, \ldots, x_n, y', y_2, \ldots, y_{m-1}, y_m$ если слово y' непусто, u $x_1, x_2, \ldots, x_{n-1}, e, y_2, \ldots, y_{m-1}, y_m$ если $x' = y' = \emptyset$.

5. При любом натуральном n множество Lin(n) конечно.

Доказательство. 1. Индукцией по i. При i=1 слова $x_1x_2...x_{i-1}$ и p_i пусты (последнее по определению 1), поэтому пустое слово f удовлетворяет условию. Пусть $i \geq 2$, и утверждение доказано для всех j < i. Если слово q_{i-1} не пусто, то $p_i = \emptyset$ по определению 1, и можно положить $f = x_1x_2...x_{i-1}$. В противном случае по предположению индукции для некоторого слова f' имеет место равенство $x_1x_2...x_{i-1} \stackrel{\pi}{=} f'p_{i-1}x_{i-1}$, откуда по определению 1 имеем $x_1x_2...x_{i-1} \stackrel{\pi}{=} f'v_{i-1}p_i$ для некоторого слова v_{i-1} , и можно положить $f = f'v_{i-1}$. Второе равенство доказывается симметрично.

2. Тривиальной проверкой: для всех номеров $j \leq i$ j-ые левые и правые дополнительные члены линейного разложения $x_1, x_2, \ldots, x_i q_i$ можно положить равным соответствующим дополнительным членам линейного разложения x_1, x_2, \ldots, x_n , кроме i-го правого дополнительного члена, который надо положить равным пустому слову. Симметрично для последовательности $p_i x_i, x_{i+1}, \ldots, x_n$.

- 3. Следует из замкнутости множества D_{τ} по отношению $\stackrel{\pi}{=}$ (левые и правые члены линейного разложения ... $x_1, x_2, \ldots, x_{i-1}, x', x_{i+1}, \ldots, x_n$ можно положить равными соотвествующим левым и правым членам линейного разложения x_1, x_2, \ldots, x_n).
- 4. Обозначим для каждого линейного разложения ξ некоторого слова x символами $L(\xi)$ и $R(\xi)$ последовательности соответственно левых и правых дополнительных членов. Для доказательства данного пункта утверждения нужно для каждой последовательности ξ из его формулировки предъявить последовательности $L(\xi)$ и $R(\xi)$ и доказать выполненность условий определения 1. Пусть

$$L(x_1, x_2, \dots, x_n) = (p_1, p_2, \dots, p_n), R(x_1, x_2, \dots, x_n) = (q_1, q_2, \dots, q_n),$$

$$L(y_1, y_2, \dots, y_m) = (p'_1, p'_2, \dots, p'_m), R(y_1, y_2, \dots, y_m) = (q'_1, q'_2, \dots, q'_m).$$

Тогда если слово x' непусто, можно положить

$$L(x_1, x_2, \dots, x_{n-1}, x', y_1, \dots, y_{m-1}, y_m) = (p_1, p_2, \dots, p_n, p'_1, p'_2, \dots, p'_m),$$

$$R(x_1, x_2, \dots, x_{n-1}, x', y_1, \dots, y_{m-1}, y_m) = (q_1, q_2, \dots, q_{n-1}, e, q'_1, q'_2, \dots, q'_m).$$

Поскольку слово p_1' пусто, условие (3) определения 1 выполнено для номера i=n. Кроме того, слова p_nx_n и y_1q_1' принадлежат множеству D_{τ} , откуда следует, что $p_1'y_1q_1'\sim ey'q_1'$ и $p_nx'e\sim p_nx'ep_1'$, что показывает выполненность условия (1) определения 1 для номера i=n+1 и условия (2) для номера i=n. Слово q_n пусто, поэтому $p_nx'e=p_nx_nq_n\sim q_{n-1}v_n$ для некоторого слова v_n , что показывает выполненность условия (1) определения 1 для номера i=n. Для всех остальных номеров выполненность каждого из условий определения 1 гарантируется выполненностью соответствующего условия для линейных разложений x_1, x_2, \ldots, x_n и y_1, y_2, \ldots, y_n .

Если слово x'' непусто, можно положить

$$L(x_1, x_2, \dots, x_n, y', y_2, \dots, y_{m-1}, y_m) = (p_1, p_2, \dots, p_n, e, p'_2, \dots, p'_m),$$

$$R(x_1, x_2, \dots, x_n, y', y_2, \dots, y_{m-1}, y_m) = (q_1, q_2, \dots, q_n, q'_1, q'_2, \dots, q'_m).$$

Доказательство выполненности условий определения 1 аналогично. Наконец, если $x'=y'=\emptyset$ можно положить

$$L(x_1, x_2, \dots, x_{n-1}, e, y_2, \dots, y_{m-1}, y_m) = (p_1, p_2, \dots, p_n, p'_2, \dots, p'_m),$$

$$R(x_1, x_2, \dots, x_{n-1}, e, y_2, \dots, y_{m-1}, y_m) = (q_1, q_2, \dots, q_n, q'_2, \dots, q'_m).$$

Поскольку слово q_n пусто, условие (3) определения 1 выполнено для номера i=n. Слово $p_2'y_2q_2'$ принадлежит множеству D_{τ} , откуда следует, что $p_2'y_2q_2'\sim q_np_2'y_2q_2'$, что показывает выполненность условия (1) определения 1 для номера i=n+1. Слово $p_nx_nq_n=p_ne$ принадлежит множеству D_{τ} , поэтому если слово p_2' пусто, то $p_neq_n\sim p_neq_np_2'$. Если же $p_2'\neq\emptyset$, то $q_1'=\emptyset$ и слово $e=y_1$ принадлежит множеству D_{τ} , причем для некоторого слова v_1' выполнено $e\sim v_1'p_2'$. Тогда $p_neq_n\sim p_nv_1'p_2'$ в силу замкнутости множества D_{τ} по отношению $\stackrel{\pi}{=}$. Таким образом в обоих случаях выполнено условие (2) определения 1 для номера i=n. Для всех остальных номеров выполненность каждого из условий определения 1 гарантируется выполненностью соответствующего условия для линейных разложений x_1, x_2, \ldots, x_n и y_1, y_2, \ldots, y_n .

4. Следует из конечности множеств
$$\overline{D}_{\sigma}$$
 и \overline{D}_{ρ} .

Утверждение 3. Пусть последовательность $x_1, x_2, ..., x_n, 1 \le n < \omega$, есть линейное разложение слова $x \in SF(A, \pi)$, а слова p_i и q_i , $1 \le i \le n$, суть i-ые левые и i-ые правые дополнительные члены данного линейного разложения.

Тогда для любого номера $i, 1 \le i < n$, выполнено $\neg (p_i x_i q_i \sim p_{i+1} x_{i+1} q_{i+1})$.

Доказательство. Предположим обратное. Тогда по утверждению 2.1 для некоторых слов f и g имеет место равенство $x \stackrel{\pi}{=} f p_i x_i x_{i+1} q_{i+1} g$. Если $p_{i+1} \neq \emptyset$, то $q_i = \emptyset$, что влечет:

$$x \stackrel{\pi}{=} f p_{i+1} \underbrace{x_{i+1} q_{i+1}}_{x_{i+1}} \underbrace{x_{i+1} q_{i+1}}_{g \notin SF(A, \pi)}.$$

В противном случае

$$x \stackrel{\pi}{=} f \underbrace{p_i x_i p_i x_i}_{q_{i+1} g} q_{i+1} g \notin SF(A, \pi).$$

Противоречие.

Утверждение 4. Пусть последовательность $x_1, x_2, \ldots, x_n, 1 \le n < \omega$, есть линейное разложение слова x и слова p_i и $q_i, 1 \le i \le n$, суть i-ые левые и i-ые правые дополнительные члены данного линейного разложения.

1. Пусть также для некоторого номера $i, 1 \le i \le n, u$ слов x', x'', u, s, r, h, y выполнены условия:

$$x_i = x'x'' \& x'' \neq \emptyset,$$

 $xr = x_1x_2 \dots x_{i-1}x'us = ys \in SF(A, \pi),$
 $u = x''h \in D_{\tau}.$

Тогда существует линейное разложение y_1, y_2, \dots, y_m слова y, для которого ($y_m = u$) & ($m \le i + 1$) & ($u \sim p_i x_i q_i \Rightarrow m \le i$).

2. Пусть, иначе, для некоторого номера $i,\ 1 \le i \le n,$ и слов x',x'',u,s,r,h,y выполнены условия:

$$x_i = x'x'' \& x' \neq \emptyset,$$

$$rx = sux''x_{i+1} \dots x_{n-1}x_n = sy \in SF(A, \pi),$$

$$u = hx' \in D_{\tau}$$
.

Тогда существует линейное разложение y_1, y_2, \ldots, y_m слова y, для которого ($y_1 = u$) & ($m \le n - i + 2$) & ($u \sim p_i x_i q_i \Rightarrow m \le n - i + 1$).

Доказательство. Пусть выполнены условия пункта 1. Если $u \sim p_i x_i q_i$, то по утверждению 2.1 для некоторого слова f выполнено

$$ys = x_1 x_2 \dots x_{i-1} x' us \stackrel{\pi}{=} f p_i x' us \stackrel{\pi}{=} f p_i x' p_i x' x'' q_i s,$$

и, следовательно, слово p_ix' пусто. Из пустоты слова p_i по утверждению 2.2 имеем, что последовательность $x_1, x_2, \ldots, x_{i-1}, x_iq_i$ есть линейное разложение слова $x_1x_2\ldots x_{i-1}x_iq_i$. Далее, из предположения $u\sim p_ix_iq_i=x_iq_i$ по утверждению 2.3 имеем, что последовательность $x_1, x_2, \ldots, x_{i-1}, u$ есть линейное разложение слова $y=x_1x_2\ldots x_{i-1}u$. Это доказывает пункт 1 в рассматриваемом случае.

Пусть теперь $\neg(u \sim p_i x_i q_i)$. Если слово q_i пусто, то по утверждению 2.2 последовательность x_1, x_2, \ldots, x_i есть линейное разложение слова $x_1 x_2 \ldots x_i$. Далее, поскольку, очевидно, слово x''h принадлежит множеству Lin и имеет линейное разложение длины 1, последовательность $x_1, x_2, \ldots, x_{i-1}, x', u$ есть линейное разложение слова $y = x_1 x_2 \ldots x_{i-1} x' u$ по утверждению 2.4, из чего вновь следует пункт 1 доказываемого утверждения.

Если же $q_i \neq \emptyset$, то по определению 1 выполнено $i < n \& p_{i+1} = \emptyset$. Покажем, что это приводит к противоречию. Действительно, утверждению 3 в этом случае $u \sim p_{i+1}x_{i+1}q_{i+1} = x_{i+1}q_{i+1}$, откуда в силу утверждения 2.1 для некоторого слова g справедлива цепочка отношений:

$$ys \stackrel{\pi}{=} x_1 x_2 \dots x_i x_{i+1} q_{i+1} gr \stackrel{\pi}{=} x_1 x_2 \dots x_i ugr \stackrel{\pi}{=} x_1 x_2 \dots x' \underline{x''} \underline{x''} hgr \notin SF(A, \pi),$$

Второй пункт утверждения, симметричный первому, доказывается аналогично. \Box

Утверждение 5. Пусть для некоторых слов x, y, z, u выполнены условия $x = yuz \in SF(A, \pi) \cap Lin(n)$ и $u \sim v$. Тогда слово уvz принадлежит множеству Lin(n).

Доказательство. Рассмотрим линейное разложение x_1, x_2, \ldots, x_n слова x. Тогда существуют такие номера $i, j, 1 \le i \le j \le n$, и слова $x_i', x_i'', x_j',$ что

$$x_i = x_i' x_i'' \& x_i'' \neq \emptyset \& y = x_1 \dots x_{i-1} x_i' \& x_j = x_j' x_j'' \& x_j' \neq \emptyset \& z = x_j'' x_{j+1} \dots x_n.$$

Если i=j, то утверждение немедленно следует из утверждения 2.3. В противном случае из утверждения 4 следует существование линейного разложения $y_1, y_2, \ldots, y_{m_1-1}, y_{m_1}$ слова yu, для которого $y_{m_1}=u$ и $m_1 \leq i+1$, а также линейного разложения $z_1, z_2, z_3, \ldots, z_{m_2}$ слова uz, для которого $z_1=u$ и $m_2 \leq n-j+2$. Тогда по утверждению 2.3 последовательность $y_1, y_2, \ldots, y_{m_1-1}, v$ есть линейное разложение слова $y_1y_2\ldots y_{m_1-1}v$, а последовательность $v, z_2, z_3\ldots z_{m_2}$ есть линейное разложение слова $vz_2z_3\ldots z_{m_2}$. Тогда из утверждения 2.4 следует, что слово $yvz=y_1y_2\ldots y_{m_1-1}vz_2z_3\ldots z_{m_2}$ принадлежит множеству $Lin(m_1+m_2-1)$. Очевидно, при $j\geq i+2$ это влечет включение $yvz\in Lin(n)$. Если же j=i+1, то по утверждению 3 имеет место $u\sim p_ix_iq_i \vee u\sim p_jx_jq_j$, что по утверждению 4 влечет выполненность одного из неравенств $m_1\leq i$ и $m_2\leq n-i$. Это вновь приводит к справедливости доказываемого утверждения.

Следствие. Класс эквивалентности $[w]_{\pi}$ каждого линейно разложимого порядка n и бесквадратного относительно системы соотношений π слова w конечен и состоит только из линейно разложимых слов порядка n.

Утверждение 6. Пусть для некоторых слов x, y, e выполнены условия $xe \in Lin, ey \in Lin \ u \ xey \in SF(A, \pi)$. Тогда слово xey принадлежит множеству Lin.

Доказательство. Если слово e пусто, утверждение есть частный случай утверждения 2.4. Если $e \neq \emptyset$, рассмотрим линейное разложение y_1, y_2, \ldots, y_m слова ey. Тогда для некоторого номера $i, 1 \leq i \leq m$, и слов y', y'', e' выполнено:

$$e = y_1 y_2 \dots y_{i-1} y' \& y_i = y' y'' \& y = y'' y_{i+1} y_{i+2} \dots y_m \& y' \neq \emptyset.$$

По утверждению 2.1 существуют такие слова f и g что

$$y_1 y_2 \dots y_{i-1} \stackrel{\pi}{=} f p_i \text{ M } y_{i+1} y_{i+2} \dots y_m \stackrel{\pi}{=} q_i g,$$

где p_i и q_i — соответственно i-ый левый и i-ый правый дополнительные члены указанного линейного разложения. Заметим, что из этого следует, что слова $p_iy_iy_{i+1}\dots y_m$ и $xfp_iy_iq_ig$ (и все их подслова) бесквадратны относительно системы соотношений π .

По следствию из утверждения 5 слово $xfp_iy' \stackrel{\pi}{=} xe$ принадлежит множеству Lin. Покажем, что

$$xfp_iy_iq_i \in Lin,$$

причем некоторое линейное разложение слова $xfp_iy_iq_i$ имеет последний член $p_iy_iq_i$.

Действительно, выше замечено включение $xfp_iy_iq_i\in SF(A,\pi)$. Рассмотрим линейное разложение x_1,x_2,\ldots,x_n слова xfp_iy' . Поскольку слово p_iy' непусто, существует такой номер $j,1\leq j\leq n$, что

$$x_{i} = x'x'' \& x'' \neq \emptyset \& xfp_{i}y'y''q_{i} = x_{1}x_{2} \dots x_{i-1}x'p_{i}x_{i}q_{i},$$

и данный факт немедленно следует из утверждения 4, так как $p_i x_i q_i \in D_{\tau}$.

Рассмотрим теперь слово $p_i y_i y_{i+1} \dots y_m$. Оно принадлежит множеству Lin утверждению 2.2 и, как замечено выше, бесквадратно относительно системы соотношений π . Поэтому по следствию из утверждения 5 множество Lin содержит слово $p_i y_i q_i g \stackrel{\pi}{=} p_i y_i y_{i+1} \dots y_m$, причем слово $p_i y_i q_i$ есть первый член некоторого линейного разложения слова $p_i y_i q_i g$ (последнее следует, например, из утверждения 4).

Тогда слово $xfp_iy_iq_ig$ принадлежит множеству Lin по утверждению 2.4, а равное ему относительно системы соотношений π слово xey — по следствию из утверждения 5.

Дальнейшие рассуждения удобно проводить, используя понятие вхождение (см. [8]).

Пусть дан алфавит A. Вхождением слова e в алфавите A в слово x = peq в том же алфавите называется слово p * e * q в алфавите $A \cup \{*\}$, где символ * не принадлежит алфавиту A. Слово e называется основой вхождения p * e * q. Пусть для некоторых слов q, p, e, q, r, d, s в алфавите A имеют место равенства x = peq = rds. Будем говорить,

что вхождение p*e*q содержится во вхождении r*d*s, если $|r| \leq |p|$ и $|s| \leq |q|$. Вхождения p*e*q и r*d*s слов e и d в слово x = peq = rds пересекаются, если найдется некоторое вхождение v*f*w непустого слова f в то же слово x = vfs, которое содержится одновременно во вхождениях p*e*q и r*d*s. Максимальное по длине основы из таких вхождений называется пересечением вхождений p*e*q и r*d*s. Объединением вхождений называется минимальное по длине основы вхождение, в котором эти вхождения содержатся.

Определение 2. Вхождение φ слова $e \in Lin$ в слово $w \in A^*$ будем называть максимальным, если оно не содержится ни в каком отличном от себя вхождении с линейно разложимой основой. Для каждого $n < \omega$ множество всех максимальных вхождений φ различных слов $e \in Lin(n)$ в слово w будем обозначать символом MaxLin(n, w).

Из утверждения 6 следует следующее

Замечание. Если некоторое максимальное вхождение φ слова $e \in Lin$ в слово $w \in SF(A,\pi)$ пересекается с некоторым вхождением слова ψ слова $e' \in Lin$ в слово w, то вхождение ψ содержится во вхождении φ . Таким образом, максимальные вхождения линейно разложимых слов в бесквадратное относительно системы соотношений π слово не пересекаются.

Из последнего факта следует, что каждое слово $w \in SF(A,\pi)$ может быть представлено в виде:

$$w = r_1 x_1 r_2 x_2 \dots r_n x_n r_{n+1} \ (0 \le n < \omega),$$

где для всех $i,\ 1\leq i\leq n,\$ слова r_i не содержат определяющих подслов, а каждое из вхождений $r_1x_1r_2x_2\dots r_i*x_i*r_{i+1}\dots r_nx_nr_{n+1}$ принадлежит множеству $MaxLin(n_i,w)$ для некоторых натуральных чисел $n_i,\ 0< n_i<\omega.$ Считая натуральные числа n и $n_i,\ 1\leq i\leq n,\$ фиксированными, определим множество $T_w\rightleftharpoons$

 $\{r_1y_1r_2y_2\dots r_ny_nr_{n+1} \mid y_i \in Lin(n_i) \& r_1y_1r_2y_2\dots r_i * y_i * r_{i+1}\dots r_ny_nr_{n+1} \in MaxLin(n_i, r_1y_1r_2y_2\dots r_ny_nr_{n+1}), 1 \leq i \leq n\}.$

По утверждению 2.5 это множество конечно. Таким образом, для доказательства теоремы достаточно доказать следующее утверждение:

$$\forall w \in A^* \ w \in SF(A, \pi) \Rightarrow [w]_{\pi} \subseteq T_w. \tag{**}$$

Пусть слово $rus = r_1y_1r_2y_2\dots r_ny_nr_{n+1}$ принадлежит множеству $T_w \cap SF(A,\pi)$, и для каждого номера $i,\ 1 \le i \le n$, слово r_i не содержат определяющих слов, а вхождение $r_1x_1r_2x_2\dots r_i*x_i*r_{i+1}\dots r_nx_nr_{n+1}$ принадлежит множеству $MaxLin(n_i,w)$. Пусть выполнено $v \stackrel{\pi}{\leftrightarrow} u$. Докажем, что слово rvs принадлежит множеству T_w .

Согласно замечанию, вхождение r*u*s содержится в одном из вхождений $r_1y_1r_2y_2\dots r_i*y_i*r_{i+1}\dots r_ny_nr_{n+1}$, т.е. существуют такие слова r',s', что $r=r_1y_1r_2y_2\dots r_ir'$ и $y_i=r'us'$. Тогда по утверждению 5 имеет место включение $r'vs'\in Lin(n_i)$. Допустим, что вхождение $r_1y_1r_2y_2\dots r_i*r'vs'*r_{i+1}\dots r_ny_nr_{n+1}$ не максимально. Это означает, что для некоторых слов a,b,c,d выполнены равенства $r_1y_1r_2y_2\dots r_i=ab$ и $r_{i+1}y_{i+1}\dots r_ny_nr_{n+1}=cd$, причем слово br'vs'c принадлежит множеству Lin и $bc\neq\emptyset$. Тогда $br'us'c\in Lin$ по утверждению 5, и, следовательно, $r_1y_1r_2y_2\dots r_i*r'us'*r_{i+1}\dots r_ny_nr_{n+1}\notin MaxLin(n_i,rus)$; противоречие.

Таким образом, слово rvs принадлежит множеству T_w , что доказывает утверждение (**).

Следствие. Проблема распознавания бесквадратности данного слова относительно системы из двух определяющих соотношений алглоритмически разрешима.

Заключительные замечания. Минимальное количество соотношений, достаточное для построения копредставления с неразрешимой проблемой распознавания бесквадратности данного слова, неизвестно. Пример А. Карпи и А. де Лука содержит более двух тысяч соотношений.

Благодарности. Автор выражает глубокую благодарность академику РАН профессору Адяну Сергею Ивановичу за постановку задачи и рекомендации по выбору основных определений.

Список литературы

- [1] Ж. Лаллеман. Полугруппы и комбинаторные приложения. Москва, Мир, 1985.
- [2] С. Е. Аршон. Доказательство существования n-значных бесконечных ассиметрических последовательностей. Матем. сб., т. 2(44), (4), с.769-779, 1937.

- [3] J.Brinkhuis, Non-Repetitive Sequences on Three Symbols. Quart. J. Math. Oxford Ser. 2 34, 145-149, 1983.
- [4] A. Carpi, A. de Luca: Non-Repetitive Words Relative to a Rewriting System. Theor. Comput. Sci. 72(1), p. 39-53, 1990.
- [5] A. Carpi. On the Number of Abelian Square-free Words on Four Letters. Discrete Applied Mathematics 81(1-3), p. 155-167, 1998.
- [6] A. Carpi, A. de Luca. Repetitions, Fullness, And Uniformity In Two-Dimensional Words. Int. J. Found. Comput. Sci. 15(2), p. 355-383, 2004.
- [7] Ю. В. Матиясевич. Простые примеры неразрешимых ассоциативных исчислений. Докл. АН СССР, т. 173(6), с. 1264 1266; Труды Матем. ин-та В.А.Стеклова, т. 168, с. 218 235, 1967.
- [8] С. И. Адян. Проблема Бернсайда и тождества в группах. Москва, Наука, 1975.
- [9] R. Bean, A. Ehrenfeucht, G.F.McNulty. Avoidable pattern s in strings of symbols. Pacific J. of Math., vol. 85(2), p. 261 294, 1979.
- [10] J. Noonan, D. Zeilberger. The Goulden-Jackson Cluster Method: Extensions, Applications, and Implementations. J. Differ. Eq. Appl. 5, 355-377, 1999.