

Exhibit B

Deposition of:
Rebecca Betensky , Ph.D.

July 26, 2016

In the Matter of:
Clare-Austin vs. C.R. Bard

Tiffany Alley, A Veritext Company
1075 Peachtree St. NE , Suite 3625
Atlanta, GA, 30309
800.808.4958 | calendar-ga@veritext.com | 770.343.9696

Page 15

1 doing an analysis of particular adverse events that
2 may have been associated with those drugs.

3 Q. And my understanding is, your analysis
4 there depended on a database called FAERS,
5 F-A-E-R-S?

6 A. I used the FAERS database for that
7 analysis.

8 Q. And for the analysis that you did in this
9 case, did you use the MAUDE database?

10 A. This case, today's case?

11 Q. Yes.

12 A. I used information from the MAUDE database.

13 Q. And when you say information from the MAUDE
14 database, you are talking about calculations that
15 Bard itself made based on that database?

16 A. I'm talking about data that was provided
17 from Bard that was taken from that database, in
18 addition to their own data.

19 Q. You in this case did not make an
20 independent research of the MAUDE database, did you?

21 A. I did not.

22 Again, let me clarify. So I certainly
23 did analysis and you might want to call it research
24 on the MAUDE database. I did not myself go into the
25 MAUDE database website and extract data, but I did

Page 39

1 Simon Nitinol filter?

2 A. I don't recall.

3 Q. Now, you are not a medical doctor; correct?

4 A. That's correct.

5 Q. And you do not treat patients?

6 A. Correct.

7 Q. You're not a radiologist?

8 A. Correct.

9 Q. You're not an expert in human anatomy;
10 correct?

11 MR. MANKOFF: Object to form.

12 A. Correct.

13 Q. Have you ever seen an inferior vena cava
14 filter?

15 A. I've seen photographs of some.

16 Q. Prior to being retained to work in this
17 case on this litigation, had you ever seen a
18 photograph of an inferior vena cava filter?

19 A. I don't know.

20 Q. You're not an expert in blood clots or
21 hematology; correct?

22 MR. MANKOFF: Object to form.

23 A. I could certainly do -- I'm certainly a
24 statistical expert in any aspect of clots or
25 hematology that -- yes.

1 Q. But only from the statistical standpoint,
2 not from the medical standpoint; correct?

3 A. Correct.

4 Q. And you're not an expert in cardiology?

5 MR. MANKOFF: Object to form.

6 A. So I'd give the same answer there.

7 Q. Prior to your work in this litigation, you
8 had never done any research regarding inferior vena
9 cava filters, had you?

10 A. As far as I can remember, I did not.

11 Q. And never published anything?

12 A. Again --

13 MR. MANKOFF: Object to form.

14 A. -- as far as I can remember. It's possible
15 that -- I have a long publication list, and some of
16 those publications have looked at complications, and
17 so it's possible that those may have been somewhere
18 buried in some articles. So I wouldn't completely
19 rule it out, but I can't think of an example right
20 now.

21 Q. The calculations you performed in this case
22 looked at the frequency of complications, I believe
23 you told us?

24 A. I looked at relative risks that were
25 reported.

1 Q. And by relative risks that were reported,
2 you mean relative risks based on the frequency of
3 complications reported in one filter versus another
4 filter?

5 A. As we've defined it, yes.

6 Q. And as I understand it, the relative risks
7 you looked at were only between the Recovery filter
8 and the Simon Nitinol filter or between the G2
9 filters and the Simon Nitinol filter; correct?

10 MR. MANKOFF: Object to form.

11 A. For the purpose of this case and this
12 analysis.

13 Q. And you did not do any comparable relative
14 risk analysis between Bard filters and competitive
15 filters; correct?

16 A. So first, I want to again be careful with
17 the language. These are reporting relative risks or
18 reporting risk ratios, as I call them, but -- so
19 that's what we're dealing with.

20 And for this case, that's correct.

21 Q. What's the significance of that limitation,
22 reporting risk ratios?

23 MR. MANKOFF: Object to form.

24 Q. Or relative risks, reporting relative
25 risks? I'm sorry.

1 A. Because I just want to be clear that the
2 basis of the analysis and the basis of the estimates
3 are based on what is reported.

4 Q. And that limitation, does that impact the
5 accuracy of those relative risks?

6 MR. MANKOFF: Object to form.

7 A. It means that I have to be careful in
8 interpreting them; and when you say accuracy, of
9 course, you have a target in mind, and as far as how
10 closely they estimate the true or actual risk ratio,
11 so that's a consideration that needs to be thought
12 through.

13 Q. Now, what sort of complications were -- did
14 you look at, as far as relative risks?

15 MR. MANKOFF: Object to form.

16 A. So I'm going to -- may I look at my --

17 Q. Yes.

18 A. So I looked at maybe six. So I looked at
19 filter embolization deaths, migration events, caval
20 perforations, filter fractures, tilted filters, and
21 then combinations of some of those.

22 Q. In calculating these reported relative
23 risks, did you break them down as to specific
24 complications? Did you analyze a reported relative
25 risk for the Recovery filter versus Simon Nitinol

1 Q. But it was clear, even if you didn't
2 perform the exact calculations, it was clear that
3 the frequency of these reported adverse events was
4 not huge; correct?

5 MR. MANKOFF: Object to form.

6 A. Correct, relative to the reported sales
7 numbers and the reported events, that's correct.

8 Q. Now, you've been using and we've been using
9 interchangeably as you said reported risk ratio,
10 that term, with reported relative risk. How does a
11 reported relative risk differ from a relative risk?

12 A. So the qualifier "reported" is important,
13 and that's indicating that the data are coming from
14 reports, and are not being derived from a
15 beautifully run and designed experiment like a
16 clinical trial, in which there's perfect follow-up
17 and in which it's really a true experiment.

18 So the "reporting" qualifier is there to
19 say and to suggest that these are numbers that are
20 reported. These are based on reports.

21 Q. And that's different from a true relative
22 risk; correct?

23 A. A relative risk, which is what the target
24 is, which is what would be of interest, wouldn't be
25 entangled with issues around reporting.

Page 62

1 Q. And we don't know whether that occurred in
2 this instance with this particular data set, do we?

3 MR. MANKOFF: Object to form.

4 A. We don't whether what occurred?

5 Q. Underreporting or overreporting. You said
6 it could lead to it.

7 A. No --

8 Q. We don't know whether it led to either way
9 in this case, do we?

10 A. I'm sorry; I said --

11 MR. MANKOFF: Just let the court
12 reporter catch up.

13 Object to form.

14 A. Okay. I didn't say anything about
15 overreporting. What I said was overestimates. So
16 these data could -- they provide an estimate, we
17 call it the reporting risk ratio. And this estimate
18 could be an overestimate or it could be an
19 underestimate.

20 Q. Okay, and I stand corrected. Let me
21 rephrase that question.

22 And we cannot say, sitting here today,
23 whether the reported relative risk that you
24 calculated overestimates or underestimates in this
25 particular data set, can we?

1 you were to give, you know, implant these devices in
2 millions of people and then compare, have a perfect,
3 beautiful experiment and compare risks of events,
4 that would be pretty much close to or exactly equal
5 to the so-called true relative risk, the population
6 level theoretical relative risk.

7 Any smaller study or sample that's used,
8 its whole purpose being to try to estimate or make
9 inference on that population level relative risk, or
10 reported -- I'm sorry; relative risk or risk ratio,
11 is an estimate of that truth.

12 So I'm making the distinction, I'm being
13 careful to make the distinction between the data,
14 which in any case just provide an estimate. Any
15 data in any context, whether it's a clinical trial
16 or anything, any data allow us to estimate; and what
17 we try to estimate is something true and
18 theoretical, and at a population level.

19 Q. And when it's based on reports, when the
20 data is based on reports, it can be even more of an
21 estimate than otherwise; correct?

22 MR. MANKOFF: Object to form.

23 A. That's part of the -- it's part of the
24 estimation. It's part of the messiness of the data.
25 There's lots of messiness in even perfect, beautiful

1 clinical trial data. There's noise; that's what I
2 mean by messiness. There's noise in the data, and
3 that's part of it.

4 Q. But this analysis that you've conducted, as
5 I understand it, generates a hypothesis,
6 essentially; correct?

7 MR. MANKOFF: Object to form.

8 A. So I'm not sure what you mean by "generates
9 a hypothesis."

10 Q. Well, you have tried to analyze the
11 reported relative risk, and if I understand what
12 you're saying, you think that generates a hypothesis
13 as to what the relative risk itself may be.

14 MR. MANKOFF: Object to form.

15 Q. Or maybe you don't. You tell me.

16 A. I don't know what you mean by "hypothesis."
17 "Hypothesis" is a very technical term for a
18 statistician, and so I don't know how to interpret
19 what you're saying.

20 Q. Tell me what that means to a statistician,
21 "hypothesis."

22 A. A hypothesis would be a statement about the
23 truth, about truth in the world.

24 Q. I understand you to say a hypothesis is a
25 truth in the world?

1 Q. Other than that, you did not review
2 regulations, did you?

3 A. No.

4 Q. And you have not yourself reviewed the
5 underlying data for the data set you've used; right?

6 A. That's not correct.

7 So the company provided, as we've
8 discussed, many summary sheets that listed, much as
9 I have done, a first tab with all of the data put
10 together with the counts of the adverse events and
11 sales numbers.

12 And then separately within each
13 subsequent tab, they list it out by device or by
14 filter, in many cases individual-level data. So
15 individual people who reported adverse events. So
16 line by line, those are listed out. I reviewed
17 several of those, as well as the Excel calculations
18 that were used to translate from those individual
19 listings to the summary data, and found mistakes,
20 but I definitely did review those individual-level
21 data.

22 Q. Are you aware of the fact that Bard
23 prepares a detailed investigation report for every
24 adverse event that's reported?

25 A. I would only -- I assume that to be true.

1 Q. And you didn't review those lengthy reports
2 for each individual event, did you?

3 A. No.

4 Q. What P-value is recognized as the standard
5 for statistical significance?

6 MR. MANKOFF: Object to form.

7 A. Very typically a P-value of .05 -- or a
8 threshold of .05 would be used as a threshold for
9 significance. It's arbitrary, but that's commonly
10 used in some settings.

11 Q. Let's look at Exhibit 4.

12 A. Yes.

13 Q. Look under Tilted Filter, with the Fisher's
14 exact P-values.

15 A. Yes.

16 Q. Do any of those rise to the level of .05?

17 MR. MANKOFF: Object to form.

18 A. Yes. The highlighted ones, the six
19 highlighted ones do.

20 Q. And excuse my ignorance here; I'm missing
21 something. Like the first one for Recovery versus
22 SNF on November 9 is .0005 here on the chart;
23 correct?

24 A. Correct.

25 Q. How is that greater than .05?

1 (Question read.)

2 A. I don't have the documents to show what
3 Bard -- any steps that Bard took. All I have are
4 the end results, which are, the results are what
5 they -- any steps that they would have taken, what
6 they would have been trying to target.

7 So all I see are the very end results,
8 and those don't -- it's not just that they're not
9 consistent over time; they're actually increasing
10 over time. So those aren't supportive of any steps,
11 but it is correct that I have not seen the Bard
12 documents about remediation steps, regarding
13 reporting.

14 Q. Okay; let's look two paragraphs down there.
15 The sentence begins, "While there are several
16 potential limitations with the available data
17 sources that must be considered."

What are these potential limitations?

19 A. Okay; so I think we've talked about some of
20 them. I put them on my list to remind myself to
21 make sure to discuss them.

22 So underreporting is a potential
23 limitation of any such database, whether it's the
24 FAERS database or the MAUDE database or a company
25 database.

1 So then the question in evaluating any
2 of these is, well, what difference does it make? So
3 with regard to underreporting, it really actually
4 makes no difference at all unless it's differential
5 underreporting. So in other words, if one product
6 is underreported more than another product, that's
7 where there would be a problem.

8 But if every product is just -- if
9 adverse events for this patient population are just
10 uniformly underreported in some way and consistently
11 so across products, then that would not be a
12 limitation.

13 Q. What are other limitations, potential
14 limitations?

15 A. So another limitation are the data errors.
16 So I found several errors -- counting errors, Excel
17 errors, that kind of thing -- in the Bard data
18 sheets, and I've listed out some of them. Some of
19 them are pretty considerable.

20 So there's, for example, on the
21 November -- on the data sheet that is cumulative
22 through November 2007, there was sort of a blatant
23 Excel error that counted Recovery migrations to be
24 zero, when in fact once that error in the Excel
25 calculation is corrected, there were 37 of them. So

1 there's several instances of that.

2 There's instances of counting the tilted
3 filters but not the filter tilts; so in other words,
4 misidentifying text fields and not including clearly
5 the same event, which was just flipped in the tilter
6 filt (sic) versus the tilted -- sorry; the filter
7 tilt versus the tilted filter.

8 So anyway, there are many of these data
9 errors, and in fact, they're -- in my review, and
10 like I said there are many instances of these, there
11 are more of them for Recovery than for SNF.

12 And I think the reason for this is that
13 there are just more listings, individual listings,
14 which leads whoever is putting the spreadsheet
15 together to use Excel formulas, and we all know that
16 you can easily go wrong with these Excel formulas.

17 And the other thing is that I would say
18 that in every instance that I found of one of these
19 errors, it was always an undercount, so the error
20 was always leading to an undercount of Recovery of
21 events, whether it was migration events or tilted
22 filters or filter embolization deaths. So there
23 were always undercounts.

24 So that's another problem with the
25 database.

1 respect to that is just looking at the sales data
2 over time across ten years of time for some
3 products, and less so for others because they were
4 removed from the market earlier. The sales data
5 seems pretty constant month by month, which is the
6 granularity at which I have the data.

7 So I would imagine that these are
8 expensive devices and nobody wants too many of them
9 sitting on the shelf; and so over time, institutions
10 or physicians learn better how to estimate their
11 needs, and so that wouldn't be a very big problem.

12 So I did also address that through one
13 of my sensitivity analyses, and just assumed -- or
14 just considered what would happen if I discounted
15 the sales data by 20 percent and just assumed that
16 20 percent are sitting on the shelf and 80 percent
17 are implanted, and I obtained comparable results to
18 when I didn't do that discounting.

19 Q. Other limitations?

20 A. So another limitation is that these are
21 crude estimates of risk and reflect different times
22 of exposure to devices, partly due to when the SNF,
23 for example, was available prior to the start time
24 of 2000; also reflecting the permanent versus
25 retrievable issue.

1 Q. Have you spoken with any of the other
2 experts in this case?

3 A. I'm sorry; would you like me to continue
4 with my list?

5 Q. Oh, yes, I'm sorry; more potential
6 limitations.

7 A. Let's see.

8 So the other potential limitations to
9 consider in any of these types of analyses would be
10 any kind of confounding due to patient-level
11 characteristics, and I was unable to address those
12 head-on because patient-level characteristics are
13 not part of the data sheets or the data reports from
14 Bard. So that is always an issue in every single
15 analysis.

16 Again, it would seem -- and that could
17 go in different directions.

18 It would seem that typically that has --
19 across, over many, many different kinds of these
20 analyses across such observational databases, it
21 tends to have a small, could make a small
22 difference. So with reporting risk ratios of 100 or
23 200 or 40, I feel pretty confident in believing that
24 it's not going to put them below 1. It may move
25 them a little bit, even if there is confounding, and

July 26, 2016
Page 110

1 I don't even know that there is; it's just something
2 that any statistician should think about.

3 Q. So we just don't know whether there are
4 confounding factors like you're discussing now one
5 way or the other, do we?

6 MR. MANKOFF: Object to form.

7 A. I don't know if there are.

8 Q. Other limitations?

9 A. So then within these spontaneous reporting,
10 as they're called, databases -- the FAERS or
11 MAUDE -- there's always a potential that there's
12 increased reporting when a product first launches or
13 that there's increased reporting surrounding some
14 kind of notoriety.

15 It doesn't seem to be the case here, and
16 especially since, my understanding is there's no FDA
17 warning that was published which in other cases is
18 really what is associated -- what has been seen to
19 be associated with notoriety, when the FDA comes out
20 with some kind of a warning letter or something like
21 that.

22 Q. Doesn't attorney advertising for litigation
23 involving a product contribute to notoriety that may
24 influence these numbers?

25 A. I don't know. I don't know the extent to

Page 112

1 MR. ROTMAN: Can I see it?

2 (Marked, Exhibit 6, typewritten notes
3 made by the witness.)

4 MR. ROTMAN: Richard, is it okay to take
5 a short break?

6 MR. NORTH: Mm-hmm.

7 MR. ROTMAN: Thank you.

8 THE VIDEOGRAPHER: The time is 12:13,
9 and we are off the record.

10 (Recess)

11 THE VIDEOGRAPHER: We are back on the
12 record. The time is 12:17.

13 Q. Doctor, in view of these limitations we
14 were talking about right before the break, have you
15 been able to identify or calculate a rate of error
16 for your calculations?

17 MR. MANKOFF: Object to form.

18 MR. ROTMAN: Can I have the question
19 reread?

20 (Question read.)

21 A. So no, as I have listed, there are many
22 different potential limitations which can go in
23 different directions. I can view each one by itself
24 and make a comment on, for example, what the
25 difference in reporting probabilities would have to

1 be between two products in order to observe a
2 reporting risk ratio of 288 if the true ratio should
3 be 1, for example. So I can draw conclusions such
4 as that.

5 But to come up with a single measure of
6 bias relative to a true risk ratio is not even --
7 not possible here.

8 I think on the other hand, I do feel
9 comfortable -- while the estimate we recognize is
10 not the truth and is different in some ways from the
11 truth, I do feel comfortable in concluding that it
12 is different from 1, that it's communicating a risk
13 ratio greater than 1 for Recovery versus SNF, for
14 example, and for other products versus SNF.

15 Q. You just said it's communicating a risk
16 ratio. Wouldn't it be more accurate to say it's
17 communicating a reported risk ratio?

18 A. No, I'm actually saying it's communicating
19 a risk ratio. So we have the reporting risk ratio,
20 and -- of 200 or 100 or 40, and I agree that there
21 are potential limitations with that estimate. It's
22 just an estimate, and there are various factors that
23 I've listed that influence that estimate.

24 So I'm not concluding that the estimate
25 is the true risk ratio, in other words, that the

1 estimate.

2 An estimate, we also call it a point
3 estimate; it's just a single number. The confidence
4 interval tells us, gives us an interval, of course,
5 about which we can be 95 percent certain that the
6 truth lies within that interval. So that provides a
7 measure of the variability.

8 So all of those statistical analyses
9 that are contained here, the P-values and the
10 confidence intervals for the through-2010 case, are
11 all about accounting for randomness and error. What
12 they don't do -- which was my original response.

13 But what they don't do is account for
14 potential, these potential external limitations,
15 which can't be addressed exclusively by the numbers
16 on the page.

17 And so for those, there's additional
18 error or overestimation/underestimation, and that's
19 not part of the error that is accounted for in these
20 sheets.

21 Q. Had you done an analysis like this, or
22 someone done an analysis like this, and submitted it
23 for publication to meet publication standards of
24 statistical analysis, would any different kind of
25 error rates be calculated?

1 nature of any underreporting or lack of detection.

2 So anyway, putting it all together and
3 thinking about directionality, thinking about
4 everything, I would have to -- I do conclude that
5 it's not 1.5, it's hard to pin down a number, and I
6 don't want to pin down a number, but it would have
7 to be, in my opinion, very likely to be something
8 much larger than 1.

9 Q. And do you hold that opinion to at least a
10 reasonable degree of scientific and statistical
11 certainty?

12 A. Yes, I do.

13 Q. Now, you were asked about some specifics
14 about the plaintiff in this case, Ms. Austin. Do
15 you recall that?

16 A. Yes.

17 Q. And you were asked about what type of -- if
18 you knew what type of filter Ms. Austin had
19 implanted --

20 A. Yes.

21 Q. -- and what kind of complications she had.

22 Was it important to you to review the
23 medical facts or the medical records for Ms. Austin
24 for purposes of your analysis?

25 A. No, it wasn't. So I'm a statistician, I'm

Page 133

1 a statistical expert, I'm not a medical expert, and
2 my task was to compare the set of filters as
3 compared to this predicate SNF.

4 And so the details didn't really matter.

5 Q. Well, did it matter to you whether she had
6 a Recovery filter or a G2 filter or an Eclipse
7 filter?

8 A. No. That doesn't make any difference.

9 Q. Assuming that the evidence at trial is that
10 Ms. Austin had a G2 filter, would that affect your
11 analysis or your opinions?

12 A. No.

13 Q. Would it affect how you would undertake
14 your analysis?

15 A. No.

16 Q. You were also asked questions about the
17 magnitude of the reported complication frequency. I
18 believe Mr. North said it's 1 percent or 2 percent,
19 certainly less than 50 percent. He used the term
20 small, not large. Do you recall that? Do you
21 recall that?

22 A. Yes.

23 Q. In your opinion, is that a meaningful
24 observation, the size of the frequency of adverse
25 event reports as compared to sales --

1 MR. NORTH: Objection to the form.

2 Q. -- or as compared to some exposure measure?

3 A. So the absolute numbers are not --

4 certainly not as important as comparisons. So a
5 product should only be available if it's just as
6 safe as every other product, or not too much less
7 safe than any other product.

8 And I didn't look at those individually,
9 as I mentioned previously, because looking at those
10 individual numbers, frequencies, is much less robust
11 than looking at ratios, for example, such as I've
12 done. Because in looking at ratios, as I've
13 discussed previously, any kinds of -- many kinds of
14 potential underreporting or potential discrepancy
15 between sales and implantation washes out in a
16 ratio, whereas it doesn't wash out in the absolute
17 numbers.

18 So I wasn't interested and didn't look
19 at those or focus on those in any way.

20 Q. If you're looking at reporting rates, as
21 you were, as my understanding that's what you were
22 looking at, rates of reports of adverse events --
23 correct?

24 A. Yes.

25 Q. -- what does that tell you, if anything,

1 about the actual complication rate or adverse event
2 rate?

3 MR. NORTH: Objection to the form.

4 A. So again, there's the link -- or the leap,
5 I should say, between the reporting rates or risks
6 and the actual risks. And so there may be a
7 discrepancy there. There may be underreporting.
8 There's likely underreporting.

9 And then, it's the differential
10 underreporting that matter in the comparisons, and
11 that doesn't go away. The underreporting doesn't go
12 away from an absolute estimate. So it makes it even
13 more difficult to interpret those absolute estimates
14 of risk.

15 Q. You were asked a question about whether you
16 went beyond the internal documents with adverse
17 event data to the actual medical literature to
18 extract adverse event data and to include that as
19 part of your analysis. Do you recall that?

20 A. Yes.

21 Q. And I believe you testified that it would
22 not be a good statistical practice to do that?

23 MR. NORTH: Objection to the form.

24 Q. Do you recall that?

25 A. Yes.