Foundation of Analytics: Lecture 4

Dihui Lai

dlai@wustl.edu

October 1, 2020

Logistic Regression: Likelihood Function

Assuming two possible outcomes 1 and 0, the probability of being 1 is modeled as

$$p_i = \frac{1}{1 + \exp(-\vec{\beta} \cdot \vec{x}^i)}$$

The likelihood function is defined as

$$Likelihood = \prod_{i=1}^{n} p_i^{y^i} (1 - p_i)^{1 - y^i}$$

The log-likelihood function is the defined as the log transformation of the likelihood function

$$\ell = \log(Likelihood) = \sum_{i=1}^{n} y^{i} \log(p_{i}) + (1 - y^{i}) \log(1 - p_{i})$$

Logistic Regression: Optimization Attempt

It follows that

$$\ell = \sum_{i=1}^{n} y^{i} \log \frac{p_{i}}{1 - p_{i}} + \log(1 - p_{i})$$

$$= \sum_{i=1}^{n} y^{i} (\vec{\beta} \cdot \vec{x}^{i}) - \log(1 + \exp(\vec{\beta} \cdot \vec{x}^{i})))$$

Take the gradient against β s, we have

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n \left(y^i - \frac{1}{1 + \exp(-\vec{\beta} \cdot \vec{x}^i)} \right) x_j^i, j = 1, 2, 3, ..., m$$

 β s can NOT be solved by setting $\nabla \ell = 0$ because of the nonlinear term of x^i , which is $\frac{1}{1+\exp(\vec{x}^i\cdot\vec{\beta})}$.

Newton-Raphson Method for Optimizing Non-linear Functions

Consider a function of one parameter $\ell(\beta)$ and assume β_0 is close to the point that minimizes $\ell(\beta)$. We can therefore use Talyor expansion for approximation

$$\ell(\beta) = \ell(\beta_0) + \ell'(\beta_0)(\beta - \beta_0) + \frac{1}{2}\ell''(\beta_0)(\beta - \beta_0)^2$$

The β^* that minimize the function have derivative at the point 0 i.e. $\ell'(\beta)|_{\beta=\beta^*}=0$, by setting $\ell'(\beta)=0$, we get an iterative evaluation methods for β^*

$$\ell'(\beta_{0}) + \frac{1}{2} 2\ell''(\beta_{0})(\beta - \beta_{0}) = 0 \to \beta = \beta_{0} - \frac{\ell'(\beta_{0})}{\ell''(\beta_{0})}$$
i.e.
$$\beta^{(k+1)} = \beta^{(k)} - \frac{\ell'(\beta^{(k)})}{\ell''(\beta^{(k)})}$$

4 / 16

Multivariate Newton-Raphson Method

For multivarite function, the iteration formula becomes

$$\beta^{(k+1)} = \beta^{(k)} - H^{-1}(\beta^{(k)}) \nabla \ell(\beta^{(k)})$$

here $H(\beta^{(k)})$ is the Hessian matrix of $\ell(\beta)$ evaluated at $\beta = \beta^{(k)}$, defined as

$$H_{ab} = \frac{\partial^2 \ell}{\partial \beta_a \partial \beta_b} |_{\beta = \beta^{(k)}}$$

and $H^{-1}(\beta^{(k)})$ is the inverse of $H(\beta^{(k)})$

Logistic Regression

Apply Newton-Raphson methods to optimize the logistic regression, we calculate the Hessian of the log-likelihood function

$$\frac{\partial^2 \ell}{\partial \beta_a \partial \beta_b} = -\sum_{i=1}^n x_b^i \frac{\exp(-\vec{\beta} \cdot \vec{x}^i)}{(1 + \exp(-\vec{\beta} \cdot \vec{x}^i))^2} x_a^i$$
$$= -\sum_{i=1}^n x_b^i p_i (1 - p_i) x_a^i$$

written in matrix formula, the Hessian of the loglikelihood function is

$$H = -X^T W X$$
, $W = \begin{bmatrix} p_1(1-p_1) & & & \\ & \ddots & & \\ & & p_n(1-p_n) \end{bmatrix}$

Logistic Regression: Optimization Algorithm

Use Newton Raphson Methods, we have

$$\vec{\beta}^{(k+1)} \leftarrow \vec{\beta}^{(k)} - H^{-1} \nabla \ell$$
$$\vec{\beta}^{(k+1)} \leftarrow \vec{\beta}^{(k)} + (X^T W X)^{-1} X^T (y - p)$$

Recall in linear regression case

$$\beta = (X^T X)^{-1} X^T y$$

