

SEQUENCE LISTING

<110> Stern, David
Yan, Shi Du

<120> A MODEL OF ALZHEIMER'S-TYPE PATHOLOGY DOUBLE TRANSGENIC
MICE: ABAD AND APP (MUTANT)

<130> 0575/62176

<140> Not Yet Known
<141> 2000-08-14

<160> 7

<170> PatentIn Ver. 2.1

<210> 1
<211> 261
<212> PRT
<213> RAT

<400> 1
Met Ala Ala Ala Val Arg Ser Val Lys Gly Leu Val Ala Val Ile Thr
1 5 10 15

Gly Gly Ala Ser Gly Leu Gly Leu Ser Thr Ala Lys Arg Leu Val Gly
20 25 30

Gln Gly Ala Thr Ala Val Leu Leu Asp Val Pro Asn Ser Glu Gly Glu
35 40 45

Thr Glu Ala Lys Lys Leu Gly Gly Asn Cys Ile Phe Ala Pro Ala Asn
50 55 60

Val Thr Ser Glu Lys Glu Val Gln Ala Ala Leu Thr Leu Ala Lys Glu
65 70 75 80

Lys Phe Gly Arg Ile Asp Val Ala Val Asn Cys Ala Gly Ile Ala Val
85 90 95

Ala Ile Lys Thr Tyr His Glu Lys Lys Asn Gln Val His Thr Leu Glu
100 105 110

Asp Phe Gln Arg Val Ile Asn Val Asn Leu Ile Gly Thr Phe Asn Val
115 120 125

Ile Arg Leu Val Ala Gly Val Met Gly Gln Asn Glu Pro Asp Gln Gly

130

135

140

Gly Gln Arg Gly Val Ile Ile Asn Thr Ala Ser Val Ala Ala Phe Glu
145 150 155 160

Gly Gln Val Gly Gln Ala Ala Tyr Ser Ala Ser Lys Gly Gly Ile Val
165 170 175

Gly Met Thr Leu Pro Ile Ala Arg Asp Leu Ala Pro Ile Gly Ile Arg
180 185 190

Val Val Thr Ile Ala Pro Gly Leu Phe Ala Thr Pro Leu Leu Thr Thr
195 200 205

Leu Pro Asp Lys Val Arg Asn Phe Leu Ala Ser Gln Val Pro Phe Pro
210 215 220

Ser Arg Leu Gly Asp Pro Ala Glu Tyr Ala His Leu Val Gln Met Val
225 230 235 240

Ile Glu Asn Pro Phe Leu Asn Gly Glu Val Ile Arg Leu Asp Gly Ala
245 250 255

Ile Arg Met Gln Pro
260

<210> 2
<211> 261
<212> PRT
<213> Human

<400> 2
Met Ala Ala Ala Cys Arg Ser Val Lys Gly Leu Val Ala Val Ile Thr
1 5 10 15

Gly Gly Ala Ser Gly Leu Gly Leu Ala Thr Ala Glu Arg Leu Val Gly
20 25 30

Gln Gly Ala Ser Ala Val Leu Leu Asp Leu Pro Asn Ser Gly Gly Glu
35 40 45

Ala Gin Ala Lys Lys Leu Gly Asn Asn Cys Val Phe Ala Pro Ala Asp
50 55 60

Val Thr Ser Glu Lys Asp Val Gln Thr Ala Leu Ala Leu Ala Lys Gly
65 70 75 80

Lys Phe Gly Arg Val Asp Val Ala Val Asn Cys Ala Gly Ile Ala Val
 85 90 95

 Ala Ser Lys Thr Tyr Asn Leu Lys Lys Gly Gln Thr His Thr Leu Glu
 100 105 110

 Asp Phe Gln Arg Val Leu Asp Val Asn Leu Met Gly Thr Phe Asn Val
 115 120 125

 Ile Arg Leu Val Ala Gly Glu Met Gly Gln Asn Glu Pro Asp Gln Gly
 130 135 140

 Gly Gln Arg Gly Val Ile Ile Asn Thr Ala Ser Val Ala Ala Phe Glu
 145 150 155 160

 Gly Gln Val Gly Gln Ala Ala Tyr Ser Ala Ser Lys Gly Gly Ile Val
 165 170 175

 Gly Met Thr Leu Pro Ile Ala Arg Asp Leu Ala Pro Ile Gly Ile Arg
 180 185 190

 Val Met Thr Ile Ala Pro Gly Leu Phe Gly Thr Pro Leu Leu Thr Ser
 195 200 205

 Leu Pro Glu Lys Val Cys Asn Phe Leu Ala Ser Gln Val Pro Phe Pro
 210 215 220

 Ser Arg Leu Gly Asp Pro Ala Glu Tyr Ala His Leu Val Gln Ala Ile
 225 230 235 240

 Ile Glu Asn Pro Phe Leu Asn Gly Glu Val Ile Arg Leu Asp Gly Ala
 245 250 255

 Ile Arg Met Gln Pro
 260

<210> 3
 <211> 973
 <212> DNA
 <213> Human

<400> 3
 tccccgtggag tggccggcga caagatggca gcagcggtgc ggagcggtaa gggcctggtg 60
 gcggtaataa cccgaggagc ctggggcctg ggcctggcca cggcggagcg acttgtgggg 120
 cagggagcct ctgctgtgt tctggacctg cccaaactcggt gttggggaggc ccaaggccaag 180
 aagtttaggaa acaactgcgt tttcgccccca gcccacgtga cctctgagaa ggatgtgcaa 240
 acagctctgg ctctagcaaa aggaaagtggt ggcgcgtgtgg atgttagctgt caactgtgca 300

ggcatcgccg tggcttagcaa gacgtacaac ttaaagaagg gccagaccca taccttggaa 360
gacttccagc gagttcttga tgtgaatctc atgggcacct tcaatgtat ccgcctggtg 420
gctgggtgaga tgggccagaa tgaaccagac cagggaggcc aacgtgggtt catcatcaac 480
actgcacgtg tggctgcctt cgagggtcag gttggacaag ctgcatactc tgcttccaag 540
ggggaaatag tggcatgac actgcccatt gctcgggatc tggctccat aggtatccgg 600
gtgatgacca ttgccccagg tctgttggc accccactgc tgaccagcct cccagagaaa 660
gtgtgcaact tcttgccag ccaagtggcc ttcccttagcc gactgggtga ccctgctgag 720
tatgctcacc tcgtacaggg catcatcgag aaccattcc tcaatggaga ggtcatccgg 780
ctggatgggg ccattcgtat gcagccttga agggagaagg cagagaaaac acacgctcct 840
ctgcccattcc tttccctggg gtactactct ccagtcttgg gaggaagccc agtagccatt 900
ttgttaactgc ctaccagtcg ccctctgtgc ctaataaaagt ctcttttct cacagaaaaaa 960
aaaaaaaaaaa aaa 973

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primers

<400> 4
ggcagcagcg tgtcggagcg

20

<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primers

<400> 5
agggcagagg agcgtgtgt

19

<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primers

<400> 6
gacaagtatc tcgagacacc tggggatgag

30

<210> 7
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
PCR Primer

<400> 7
aaagaacttg taggttggat tttcgtacc

29