Problem 4.42 (USAMO 1988/4). Suppose $\triangle ABC$ is a triangle with incenter I. Show that the circumcenters of $\triangle IAB$, $\triangle IBC$, and $\triangle ICA$ lie on a circle whose center is the circumcenter of $\triangle ABC$.

Solution Mark the circumcenters of $\triangle IBC$, $\triangle ICA$, $\triangle IAB$ as A_1 , B_1 , and C_1 .

Proof. If we prove C_1 lies on (ABC), we can prove A_1 , B_1 lie on (ABC) similarly. We prove this by proving $\angle AC_1B + \angle ACB = 180^\circ$.

$$\angle AIB = 180^{\circ} - \frac{1}{2} \angle BAC - \frac{1}{2} \angle CBA = 180^{\circ} - \frac{1}{2} (180^{\circ} - \angle ACB) = 90^{\circ} + \frac{1}{2} \angle ACB$$

 $\angle AC_1B = 2(180^{\circ} - \angle AIB) = 180^{\circ} - \angle ACB$

Similarly A_1 , B_1 lie on (ABC). Hence C_1 lies on (ABC).