

North America 2021

RESILIENCE REALIZED

A K8s-based Workload Allocation Optimizer for Minimizing Power Consumption

Ying-Feng Hsu (Speaker) Kazuhiro Matsuda Morito Matsuoka

Matsuoka Laboratory Cybermedia Center, Osaka University

Outline

- ➤ Who are we
- **≻**Background
 - Challenge of Power consumption on Cloud-Edge computing system
- ➤ Our proposed solution: K8s-based Workload Allocation Optimizer (WAO)
 - WAO scheduler
 - WAO load balancer (WAOLB)
- ➤ Performance evaluation
 - What is the WAO's performance?
 - How much data center power reduction can be obtained by using WAO?
 - Evaluation of WAO based scheduler and WAO based load balancer
- **≻**Conclusion

Who are we: Matsuoka Lab at Osaka Univ.

Power consumption Models

Our technology: Liquid immersion cooling

- * Liquid immersion cooling technology with natural convection in data center Morito Matsuoka, Kazuhiro Matsuda, Hideo Kubo (IEEE CloudNet 2017)
- * Proposal of **liquid immersion cooling** with bubble-assisted natural convection for HPC-based cloud computing system <u>Morito Matsuoka</u>, <u>Kazuhiro Matsuda</u>, <u>Hideo Kubo (opencompute.org)</u>

Our technology: optimal task allocation

North America 2021

Outline

- >Who are we
- **≻**Background
 - Challenge of Power consumption on Cloud-Edge computing system
- ➤ Our proposed solution: K8s-based Workload Allocation Optimizer (WAO)
 - WAO scheduler
 - WAO load balancer (WAOLB)
- > Performance evaluation
 - What is the WAO's performance?
 - How much data center power reduction can be obtained by using WAO?
 - Evaluation of WAO based scheduler and WAO based load balancer
- **≻**Conclusion

The complexity of edge computing systems

Spread of Microservices & Power consumption increases

Significant increase in cloud edge systems used to provide microservices

- K8s provides complex container management
- Solution of increasing in power consumption?

Outline

- >Who are we
- **≻**Background
 - Challenge of Power consumption on Cloud-Edge computing system
- ➤ Our proposed solution: K8s-based Workload Allocation Optimizer (WAO)
 - WAO scheduler
 - WAO load balancer (WAOLB)
- > Performance evaluation
 - What is the WAO's performance?
 - How much data center power reduction can be obtained by using WAO?
 - Evaluation of WAO based scheduler and WAO based load balancer
- **Conclusion**

Our Approach: WAO

Workload Allocation Optimizer (WAO)

Allocate tasks using power consumption prediction

Making the power consumption prediction using machine learning

Our Approach: WAO on K8s

Pod: smallest deployable unit and consist of single or multiple containers

Node: either virtual or physical machines

Our Approach

Employing WAO for power consumption reduction through the K8s platform

- Pod allocation: WAO based scheduler (WAO-scheduler)
- Task allocation: WAO based load balancer (WAO-LB)

WAO power saving operation strategy

Scheduler Framework on K8s

Architecture of WAO Based Scheduler

PCS: Power Consumption based Scorer

Architecture of WAO Based Load Balancer

Setting of Machine Learning

North America 2021 -

Power consumption (PC) model

CPU usage, temperature around Node

Response time (RT) model

CPU usage, memory info, network info, temperature around Node, data-time information

Outline

- >Who are we
- **≻**Background
 - Challenge of Power consumption on Cloud-Edge computing system
- ➤ Our proposed solution: K8s-based Workload Allocation Optimizer (WAO)
 - WAO scheduler
 - WAO load balancer (WAOLB)
- Performance evaluation
 - What is the WAO's performance?
 - How much data center power reduction can be obtained by using WAO?
 - Evaluation of WAO based scheduler and WAO based load balancer
- **≻**Conclusion

How does it work? How is the performance?

Environment

- A real private data center with about 200 servers located in Osaka, Japan
- Each servers with two Intel Xeon Silver 4108 CPUs (8 cores \times 2), 16 GB of memory, and a 1 TB HDD

Microservices Application

Used a service that performs object detection

Preset Temperature of Air Conditioner

North America 2021

When the preset temperature was 24°C, WAO-scheduler reduced most power consumption

• fix the temperature parameter at 24°C

Power Consumption Model

Significant increased in PC between CPU usage of 10% and 30%

Evaluation Value in WAO Based Load Balancer

Evaluation Value = $\alpha PC + \beta RT$

- PC, RT: indexes: increase of Power Consumption and Response Time
- α , β : weights of each index ($\alpha + \beta = 1$)
- Get values of PC and RT using neural network
- Decide α and β according to operating requirements
 - Autonomous driving: response time is critical
 - Non-real-time related application:
 lowering power consumption can be prioritized
 - ✓ Correlation between *PC* and *RT*: -0.569

Evaluation of Power Consumption Reduction

North America 2021

	WAO-LB	MetalLB
WAO-scheduler	3	1
default Kube-scheduler	2	Baseline

Evaluation of "WAO Scheduler" + MetalLB

- 1. Achieved power saving in allocating 10, 30, and 50 Pods
- 2. Consumed about 8% less power compared to the Kube-scheduler
 - Total CPU usage : 20%
 - Number of Pods: 10

Evaluation of Kube Scheduler + "WAOLB"

 About 9.9% less power consumption than MetalLB at the total CPU usage of 20% (WAO-LB (PC:RT=10:0))

Evaluation of complete K8s-WAO solution

 About 13% less power consumption than default Kube-scheduler + MetalLB

Evaluation of Kubernetes-based WAO

 K8s-based WAO reached over of 12% reduction at the total CPU usage of 15-39%

Evaluation of Response Time

Conclusion

 A WAO (workload allocation optimizer) to K8s platform for optimizing power consumption

Power consumption reduction

	WAO-LB	MetalLB
WAO-scheduler	13%	8%
default Kube-scheduler	9.9%	baseline

According the response time requirements of applications,
 WAO-LB can achieved great power consumption reduction

Thank you For your attention!

Any Questions

