OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

TEST DE DÉCEMBRE 2015 : CORRIGÉ

Exercice 1. Soit a_1, a_2, \ldots, a_{2n} des réels tels que $a_1 + a_2 + \cdots + a_{2n} = 0$. Prouver qu'il existe au moins 2n - 1 couples (a_i, a_j) avec i < j tels que $a_i + a_j \ge 0$.

<u>Solution de l'exercice 1</u> Sans perte de généralité, on peut supposer que $a_1 \le a_2 \le \cdots \le a_{2n}$. On distingue deux cas :

- Si $a_n + a_{2n-1} \ge 0$ alors on a $a_i + a_{2n-1} \ge 0$ pour $i = n, \dots, 2n-2$, et $a_i + a_{2n} \ge 0$ pour $i = n, \dots, 2n-1$. Cela fournit bien 2n-1 sommes positives ou nulles.
- Si $a_n + a_{2n-1} < 0$ alors

$$a_1 + \dots + a_{n-1} + a_{n+1} + \dots + a_{2n-2} + a_{2n} > 0.$$
 (1)

D'autre part, on a $0 > a_n + a_{2n-1} \ge a_{n-1} + a_{2n-2} \ge \cdots \ge a_2 + a_{n+1}$, donc

$$a_2 + a_3 + \dots + a_{n-1} + a_{n+1} + \dots + a_{2n-2} < 0.$$
 (2)

De (1) et (2), on déduit que $a_1 + a_{2n} \ge 0$, ce qui assure que $a_i + a_{2n} \ge 0$ pour $i = 1, \dots 2n - 1$.

Autre solution. Notons $b_1 \leqslant b_2 \leqslant \cdots \leqslant b_\ell$ les entiers positifs ou nuls parmi a_1, \ldots, a_{2n} .

Premier cas : $\ell > n$. Alors il y a au moins $\frac{\ell(\ell-1)}{2} \ge \frac{n(n+1)}{2}$ couples (a_i, a_j) avec i < j, $a_i \ge 0$ et $a_j \ge 0$. Or, $\frac{n(n+1)}{2} - (2n-1) = \frac{n^2 - 3n + 2}{2} = \frac{(n-1)(n-2)}{2} \ge 0$, donc il y a au moins 2n-1 couples (a_i, a_j) avec i < j tels que $a_i + a_j \ge 0$.

Deuxième cas : $\ell \leqslant n$. Notons $c_1 \leqslant \cdots \leqslant c_\ell$ les plus petits entiers parmi a_1, \ldots, a_{2n} . Comme $\ell \leqslant n$, on a $c_\ell < 0$. De plus, $\sum_{i=1}^{2n} a_i$ est égal à la somme de $\sum_{i=1}^{\ell} (b_i + c_i)$ et de termes négatifs, donc $\sum_{i=1}^{\ell} (b_i + c_i) \geqslant 0$. Or, $b_\ell + c_\ell \geqslant b_i + c_i$ pour tout i, donc $b_\ell + c_\ell \geqslant 0$.

On forme ainsi déjà $2n - \ell$ couples (a_i, a_j) en prenant $a_j = b_\ell$ et a_i autre que $c_1, \ldots, c_{\ell-1}, b_\ell$.

De plus, pour tout $k=1,\ldots,\ell-1$, on a $\sum_{i=1}^{\ell}(b_i+c_{i+k})\geqslant 0$ (où par convention $c_{\ell+1}=c_1$, $c_{\ell+2}=c_2$, etc.), donc pour tout k il existe i tel que $b_i+c_{i+k}\geqslant 0$. Ceci fournit encore $\ell-1$ couples supplémentaires.

Exercice 2. Soit ABC un triangle dont tous les angles sont aigus, et H son orthocentre. Les bissectrices de \widehat{ABH} et \widehat{ACH} se coupent en un point I. Montrer que I est aligné avec les milieux de [BC] et de [AH].

Solution de l'exercice 2

Notons D, E, F les pieds des hauteurs, O le centre du cercle circonscrit, M le milieu de [BC] et N le milieu de [AH]. On a $2\overrightarrow{MN} = 2\overrightarrow{ON} - 2\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OH} - \overrightarrow{OB} - \overrightarrow{OC}$.

Or, $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ donc $\overrightarrow{MN} = \overrightarrow{OA}$. Par conséquent, il suffit de montrer que (MI) est parallèle à (OA).

Comme BCF est un triangle rectangle en F, le point F est situé sur le cercle de centre M passant par B et C. Il en va de même pour le point E. La bissectrice de \widehat{ABH} passe par le milieu de l'arc EF, et de même pour la bissectrice de \widehat{ACH} , donc I est le milieu de l'arc EF. En notant C' le milieu de [AB], on en déduit les égalités d'angles de droites (MI, MB) = 2(CI, CB) = (CE, CB) + (CF, CB) = (CA, CB) + (CF, AB) + (AB, CB).

D'autre part, (OA, MB) = (OA, OC') + (OC', AB) + (AB, MB) = (CA, CB) + (CF, AB) + (AB, CB) car (OC') et (CF) sont parallèles.

Par conséquent, (OA, MB) = (MI, MB), ce qui prouve que (OA) et (MI) sont parallèles.

Exercice 3. Pour tout entier $n \in \mathbb{N}^*$, on note $v_3(n)$ la valuation 3-adique de n, c'est-à-dire le plus grand entier k tel que n est divisible par 3^k . On pose $u_1 = 2$ et $u_n = 4v_3(n) + 2 - \frac{2}{u_{n-1}}$ pour tout $n \ge 2$ (si tant est que u_{n-1} soit défini et non nul).

Montrer que, pour tout nombre rationnel strictement positif q, il existe un et un seul entier $n \ge 1$ tel que $u_n = q$.

Solution de l'exercice 3

Tout d'abord, notons que $u_1=2$, $u_2=1$, $u_3=3$, $u_4=\frac{3}{2}$, $u_5=\frac{2}{3}$ et $u_6=3$. On prouve par récurrence que, pour tout entier $n\geq 2$, on a $0< u_n$ et

$$0 < u_{3n-1} < 1 < u_{3n-2} < 2 < u_{3n} = 2 + u_n$$
:

c'est déjà vrai pour n=2.

Puisque $u_{3n} = u_n + 2$, on montre successivement que u_{3n+1} , u_{3n+2} et u_{3n+3} sont bien définis, avec

$$\begin{array}{l} u_{3n+1} = 2 - \frac{2}{u_{3n}} = 1 + \frac{u_n}{2 + u_n} \text{, donc } 1 < u_{3n+1} < 2 \text{ ;} \\ u_{3n+2} = 2 - \frac{2}{u_{3n+1}} = 1 + \frac{u_n}{1 + u_n} \text{, donc } 0 < u_{3n+2} < 1 \text{ ;} \\ u_{3n+3} = 4v_3 \big(3(n+1) \big) + 2 - \frac{2}{u_{3n+2}} = 4v_3 \big(n \big) + 4 - \frac{2}{u_n} = 2 + u_{n+1}. \end{array}$$

Ceci conclut la récurrence.

Maintenant, considérons la fonction $\varphi: \{x \in \mathbb{Q}: 0 < x \text{ et } x \notin \{1,2\}\} \mapsto \{x \in \mathbb{Q}: 0 < x\}$ telle que

$$\varphi: x \mapsto \frac{x}{1-x} \text{ si } 0 < x < 1;$$

$$x \mapsto 2\frac{x-1}{2-x} \text{ si } 1 < x < 2;$$

$$x \mapsto x - 2 \text{ si } 2 < x.$$

En outre, pour toute fraction irréductible $\frac{p}{q}$, avec $p \ge 0$ et q > 0, on pose $\left\| \frac{p}{q} \right\| = p + q$. Alors:

•
$$\left\| \varphi\left(\frac{p}{q}\right) \right\| = \left\| \frac{p}{q-p} \right\| = p < p+q = \left\| \frac{p}{q} \right\| \text{ si } 0 < p < q ;$$

•
$$\left\| \varphi\left(1 + \frac{p}{q}\right) \right\| = \left\| 2\frac{p}{q-p} \right\| \le 2q < (p+q) + q = \left\| 1 + \frac{p}{q} \right\| \text{ si } 0 < p < q ;$$

•
$$\left\| \varphi\left(2 + \frac{p}{q}\right) \right\| = \left\| \frac{p}{q} \right\| = p + q < (p + 2q) + q = \left\| 2 + \frac{p}{q} \right\| \text{ si } 0 < p \text{ et } 0 < q.$$

Dans tous les cas, si x est un rationnel strictement positif tel que $x \notin \{1,2\}$, on a $\|\varphi(x)\| < \|x\|$. Or, pour tout rationnel strictement positif x et pour tout entier $n \ge 1$:

- si 0 < x < 1, alors $u_n = \varphi(x) \Leftrightarrow u_{3n+2} = x$;
- si 1 < x < 2, alors $u_n = \varphi(x) \Leftrightarrow u_{3n+1} = x$;
- si 2 < x, alors $u_n = \varphi(x) \Leftrightarrow u_{3n} = x$.

Une récurrence sur ||x|| montre donc immédiatement que, pour tout rationnel strictement positif x, il existe un entier unique entier $n \ge 1$ tel que $u_n = x$, ce qui conclut l'exercice.