Date: 24-10-2023

Artificial Intelligence and Its Applications 3rd Semester

Assignement-2

- **Q1.** What is constraint propagation? Give a suitable example.
- Q2. What is Dempster-Shafer theory? Explain with suitable example.
- **Q3.** Find the value of the function "maximum" in hill- climbing, assuming the function to be negative of the number of tiles "out of place" in the 8-puzzle problem, give the initial and goal states as shown:

I	aiti	al	State	Goa	ıl S	tate
	2	8	3	1	2	3
	1	6	4	8	-	4
	7	_	5	7	6	5

- Q4. Describe classical relations and fuzzy relations in detail?
- Q5. Explain Neuro-fuzzy System its modelling and control in detail.

AI Assignment -2

De Wrot is constraint Propagation? Give a suitable example?

ans) It is a technique used in constraint tatisfaction publicens (CSP) to reduce space of possible solutions by nemoring inconsistent values from the domain of variables

Example - Map Coloning Problem - Give color to vertices constantint

→ Neighbours should not have & one colour

Algorithm for CSP => Backtracking

L) which is also used in

Depth First Search

But in (51 we use Intelligent backtracking

 $V = \{1, 2, 3, 4\}$ $0 = \{ \text{Red}, \text{Green}, \text{Blue} \}$ $C = \{ 1 \neq 2, 1 \neq 3, 1 \neq 4, 2 \neq 4, 3 \neq 6 \}$ constraints

while coloning

		2	3	4
Initial domain	R, G, B (c.e iritally any colour may be given)	R, G, B	R, G, B	R, G, B
et 1=R	ine. 1=R	G, B (Possible domains)	G, B called ligals	G,B
			eigals	
2=G	R	'G	G, B	В
3 = B 4 Backtrack Now	R	9	В	No legal value (No value latisfyring constraint)
3=9	R	G	9	B

I what is Dampsten Shafen Throng? Explain with suitable example?

and DST is an evidence theory, it combines all possible outcomes of the peoblem. Hence it is used to solve peoblem where there may be a chance that a piece of different evidence that vill lead to some different result.

- The uncontainity in this model is given by
 O consider all possible outcomes
- @ Evidence supposeds belief in some possibility, leading to a higher degree of belief in that specific possibility
- 3) plansibility identifies the range of possible outcomes that aux compatible with given evidence.

Granple— In a swoom with A, B, C, D, B is found stabled after lights go out. It is known B has not committed suicide. We have to find who the nurders is. There are a following possibilities:

i) Either EAZ on ECZ on EDZ has killed him

ii) le come of them have killed him fog (let's say)

The power let of 1 C P is set of possible conclusions?

Power set contains en elements whose n represents

no . of elements in P

eq - Tf P=fa, 5, c3. then power set is fo, £a3, £b\$, £c3, £a, d3, £d, c3, £a, c3 £a, c, d, y33=23 elements

The mass function m(K or B) represents sevidence for (Kor B)

The helief in k as sum of masses of the element which are subsets of k.

Example > lets say x = &a,d,cg

Bel(x) = m(a) + m(d) + m(c) + m(a,d) + m(a,c) + m(d,c) + m(a,d,c)

Plausibility in K. It is hum of masses of set that intersects with K

ire- Pe(K) = m(a) + m(d) + m(c) + m(a,d) + m(a,d) Example @ A housewife finds a stain on her husband short. Her husband denies that it is a lipstick stown. She know that applying a little C2H5OH to a stain & softening with washing up almost always removes eigstick stain - she also knows that this method hardly ever nocks on other stacks. She applies this method to the short & finds that it removes the stains, As a result she concludes that it was almost Containly a lifetick stain.

P(lipstick) = 0.25 $P(X|Y) = P(X) \cdot P(Y|X)$

P (Works/ lipstice) = 009

P(lipstick/works) = P(works)'-P(works/ lipstick) P (lipstice)

 $=\frac{0.3(0.9)}{0.25}=0.75\rightarrow \text{ one piece of evidence}$

P (late forom office/lip) =0.6 P (late) = 0°5

P(lipstick/late) = P (lipstick) * P(late/lipstick)

P(lotte)

= 0.25(0.6) = 0.3 - 1 and piece of emotion ce

Then we measure plausibility

Of the number of tiles "6 out of place" in the 8 puzzle publish given the initial & goal states as shown;

	مه	show	N.						,		
		2	8	3			1	2	3		·
		}	6	4			8		4		
		7	_	5			7	6	5		
		Initi	al St	ate		-	G e	sal	state	-	
•	1		<u></u>	7 6	7)	
	2	8	3		2 6		3	-	2	8	3
f(n)=-5		6	4		Ĺ		4	-		6	4
		7	5		7 6		5		7	5	
		1				n)=	-3			(n) =	-6
	5		7 .		V			-	6		
2.	8	3	Con	=-52	8 3	Additional law in			2		3
l	4		1011	3	1 4		F	(n)=-5		8	
17	6	5				-					4
f(1	n)= -	-4	1	7	6 5	Manager Services			7	6	5
										THE PARTY OF THE P	
_	4		_ +	V			- W				
	2	8 3	7		3	(8	3	2	3	4
	CANCEL OF STREET	6 5		6	5	7	6	5	17		
	f(n)	= -3		f(n)=	-4	/	f (n)=		I		
					2		. ,		7	f (n)=	=- 4

Hence the value of function maximum in hill climbing is 0

By Describe classical relationship & firzy relations in detail Fuzzy relation : Fuzzy relation relates element of one Universe(X) to shose of another universe (4) through the cautisian product of two universe. AEX, BEY, R= AXBCXXY if A = {(a,0,2); (b,0.7), (c,0.4)} & B= & (a, 0.5), (b, 0.6)} Mr (x,4) = HaxB (x,4) = min [pa(X), pb(Y)] PR(XIV) = a [0.2 0.6 0.6 0.4 0.4 0.4 The matrix representating a fuzzy is called "Fuzzy Matrix 13 Operation on fuzzy Relation-(a) Union: H RUS (2,4) = max (pr (2,4), ps (2,4)) Let $PR(x,y) = a \begin{bmatrix} 0.2 & 0.2 \\ 0.5 & 0.6 \end{bmatrix}$ $C \begin{bmatrix} 0.4 & 0.4 \end{bmatrix}$ Us (x,y) = a [0.3 0.5 b 0°1 0°4 c 0°3 0°6 0.3 0.5 0.5 0.6 purus (my) =

$$V_{RNS}(x,y) = min (V_{R}(x,y), V_{S}(x,y))$$

$$V_{RNS}(x,y) = a = 0.2 0.2$$

$$0.1 0.4$$

$$0.3 0.4$$

$$PR(x,y) = a \begin{bmatrix} 0.0 = 2 \\ 0.1 \\ 0.4 \end{bmatrix}$$
 $C \begin{bmatrix} 0.3 \\ 0.4 \end{bmatrix}$

Classical Relationship?

Relations are mapping b/v 2 sets - Presence on Absence of a connection or association blue elements of 2 set S.

Consider two cuip sets A and B, the courtesian puddent Of two crisp sets AxB is denoted by AXB= { ca, b) | a = A, b = B3

Peroperties - (1) AXB = BXA (2)(AXA = (A) X (B)

(3) Cantesian pudduct of 2 sets is not same es

the authmetic product of two or more sets

consider the elements A and B

Cartesian product of 2 sets

$$A_{RB} = \{(2,3), (2,7), (2,8), (2,9), (4,7), (4,7), (4,7), (4,9), (4,9), (6,37, (6,7), (6,8), (6,9$$

A particular mapping is done from a $\in A$ to $b \in B$ which is denoted by R (sulation).

Let us define a relation.

$$R = \{(a,b) \mid a=b-1; (a,b) \in A \times B \}$$

then $R = \{(2,3), (8,9)\}$

Crisp Relations

We can represent R in matrix form $R = 2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Operations on Crisp Relations: let R & S be turo separate relations on cartesian ARB defined over two was set S a era and bell (i) Union = R (a,b) Us(a,b) = max (R(a,b), S(a,b)) (li) Intersection ? R(a,b) $\Lambda S(a,b) = min (R(a,b), S(a,b))$ (iii) complement: R(a,b) = 1-R(a,b) (iv) Containment $\leftarrow R \subset S \longrightarrow R(a, b) \leq S(a, b)$ 03 Explain Newso-Fuzzy System its modelling and control in detail soln A neueral network en general, is highly interconnected network of large processing clements called neurons in an ouchitecture inspired by human brain . The objective of newal network is to tevansform input meaningful output . Neural networks by examples furry means not clear, distinct, pricise on blumed (with unclear outline) · It is flexible nachine learning technique - First logic deals with uncertainty and vagueness existing in a system and formulating fuzzy sules to find a solution to publims.

- -> Firzy logic use values b/w 0 & 1
- Rizry set also consist of fizzy rule base to perform approximate reasoning somewhat similar to human berain

furry logic Totaditional Logic True False True False

is can chose?: 0-1 (Ronge of No to Yeb Brakes: 0-1 (Range of off to ON)

- I Central Buiring fonce for the creation of Hybrid Soft Commuting System
- i) Every soft computing technique has particular computations parameters which make them swited for a particular publish and not for others

L) Ability to learn & decision making

- -> Newal networks are good at recognising patterns but they are not good at explaining how they reach their
- > firzy logic is good at explaining the deasions but cannot automatically acquire the scales used for making the decision
- -> These limitations acts as a centeral during force for creation of hybrid roft computing systems where I or more techniques are combined in a suitable manner that overcomes the limitation of individual activities
- The aim is to build highly automated, intelligent machines for the future generations using all of these Eachmiques