04/02/2022, 19:25 StackEdit

Machine Learning Demolished

Linear Regression

The goal of Regression is to predict the value of one or more continuous target variables **t** given the value of a D-dimensional vector **x** of input variables.

• Training Data: $X = \{x_1, x_2, \dots, x_N\}$ $\hookrightarrow N$ training examples.

• Response / Target: $\{t_n\}, n=1,2,\ldots,N$ \hookrightarrow vector ${f t}$ (of dimension N)

The D-dimensional vectors \mathbf{x}_i , $i=1,\ldots,N$ are known as variables and they can come from different sources:

- quantitative inputs (e.g. Income, Age, etc.)
- basis function, e.g. $\phi_i = \mathbf{x}^j$ (polynomial regression)
- numeric or "dummy" encodings of qualitative inputs
- interactions between variables, e.g. $\mathbf{x_1} = \mathbf{x_2} \cdot \mathbf{x_3}$

and we assume that these data points are drawn independently from the population distribution.

The simplest form of Linear Regression model is linear functions of the input variables.

Simplest Formula:
$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_D x_D$$

 $\hookrightarrow \mathbf{x} = (x_1, \dots, x_D)^T$

- ▲ This formual has the following properties:
 - 1. linear function of the parameters, w_1, \ldots, w_D
 - 2. linear function of the input variables, x_1, \ldots, x_D

In order to remove *limitation number 2*, we introduce the **basis functions** so that the simplest formula is *extended* to:

Basis Formula:
$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x) =$$

$$\hookrightarrow \boldsymbol{\phi_j} \text{ : basis functions}$$

$$= \sum_{j=0}^{M-1} w_j \phi_j = \boldsymbol{w}^T \boldsymbol{\phi}(\mathbf{x}) \rightarrow \boldsymbol{\phi} = (\phi_0, \dots, \phi_{M-1})$$

$$\hookrightarrow \boldsymbol{w} = (w_0, \dots, w_{M-1})^T$$

- \triangle The basis function can be fixed non-linear functions of the input variables x_i so that the basis formula follows the properties:
 - 1. linear function of the parameters, w_1, \dots, w_D

Assumption 1: The linear regression formula is a linear function of the parameters w_1, \cdots, w_D

To use a model for prediction, we need to derive the weight parameter \mathbf{w} . To do this, we have to define a $loss\ function$ to minimize.

Typical Loss/Error Functions

1. Sum of Squares:
$$E_D(w)=rac{1}{2}\sum\limits_{n=1}^N(t_n-\mathbf{w}^Toldsymbol{\phi}(\mathbf{x_n}))^2$$
2. Absolute Error: $E_D(w)=rac{1}{2}\sum\limits_{n=1}^N|t_n-\mathbf{w}^Toldsymbol{\phi}(\mathbf{x_n})|$

▲ The most common loss function is the **Sum of Squares**.

These are some of the reasons why:

1.

Sum of Squares can be motivated as the Maximum Likelihood Solution under an assumed Gaussian noise m

https://stackedit.io/app#

04/02/2022, 19:25 StackEdit

Squared differences have the nice mathematical properties; continuously differentiable which is convenient when try 3. Sum of Squares is a **convex function** which mean that the local minimum=global minimum.

In the context of Machine Learning, selecting a Loss function to minimize is more than enough considering that the only interest is to "fit" a line into some data. In other words, minimizing the Sum of Squares is a mathematical minimization problem with no assumptions made for the distribution of the data. To ensure that our **w** estimate is unbiased, we need to extend our assumptions about the data.

As a reminder, we made the assumption that a linear function can be adequately approximated by a linear function. In other words, we hope that

$$E(t|x) \approx y(\mathbf{x}, \mathbf{w})$$

holds true and is a reasonable approximation.

We can then safely write:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

where,

1. $\mathbf{t} o$ target variable

2. $y(\mathbf{x}, \mathbf{w}) o$ deterministic function

3. $\epsilon o \mathbb{N}(0,\sigma^2)$

 \hookrightarrow residuals (estimation of the error)

Assumption 2:

The residuals are normally distributed with mean=0

Note: This is called "Normality" of the residuals.

Assumption 3:

The residuals have constant variance for every input of the data $\mathbf{x_n}, n=1,\dots,N$

Note: This is known as "homoscedasticity".

Assumption 4:

The residuals are not correlated with each other, i.e. not auto-correlated.

Auto-correlation takes place when there is a pattern in the rows fo the data (e.g. time-series).

Our goal is to estimate the $m{w}$ parameters that minimize the selected **Loss Function**; in our case the Sum of Squares:

$$E_D(w) = RSS = rac{1}{2} \sum_{n=1}^N (t_n - \mathbf{w}^T oldsymbol{\phi}(\mathbf{x_n}))^2$$

 \hookrightarrow Residual Sum of Squares

In mathematics. to find the minimum of a function, we have to set the derivative of a function to 0. Therefore:

$$egin{aligned} 0 &= igtriangledown E_D(oldsymbol{w}) = rac{1}{2} \cdot 2 \sum_{n=1}^N (oldsymbol{t}_n - oldsymbol{w}^T oldsymbol{\phi}(\mathbf{x_n}) (oldsymbol{t_n} - oldsymbol{w}^T oldsymbol{\phi}(\mathbf{x_n}))' \ &= \sum_{n=1}^N (oldsymbol{t}_n - oldsymbol{w}^T oldsymbol{\phi}(\mathbf{x_n})) oldsymbol{\phi}(\mathbf{x_n})^T \ &= \sum_{n=1}^N (oldsymbol{t}_n oldsymbol{\phi}(\mathbf{x_n})^T - oldsymbol{w}^T oldsymbol{\phi}(\mathbf{x_n})^T) \end{aligned}$$

Converting the equation above into using Matrix notation, we get:

$$egin{aligned} 0 &= oldsymbol{\Phi}^T - oldsymbol{\Phi}^T oldsymbol{\Phi} oldsymbol{w} &\Leftrightarrow oldsymbol{\Phi}^T oldsymbol{\Phi} oldsymbol{w} &= oldsymbol{\Phi} oldsymbol{t}^{-1} oldsymbol{\Phi}^T oldsymbol{t} & \longrightarrow oldsymbol{ ext{Normal equations}} \end{aligned}$$

https://stackedit.io/app#

04/02/2022, 19:25 StackEd

where
$$m{\Phi}$$
 is called the *design matrix* $m{\Phi} = egin{pmatrix} \phi_o(x_1) & \phi_1(x_1) & \cdots & \phi_d(x_1) \\ \phi_o(x_2) & \phi_1(x_2) & \cdots & \phi_d(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_o(x_N) & \phi_1(x_N) & \cdots & \phi_d(x_N) \end{pmatrix}$

▲ Note:

1.
$$\boldsymbol{\phi} = (\phi_0, \dots, \phi_D)^T$$

Assumption 5:

For the $(\Phi^T \Phi)^{-1}$ we need to assume that Φ is of full rank, i.e. the independent variables are not correlated (e.g. $\phi_1 = 3\phi_3$.

Note: This is know as no multicollinearity.

Model Evaluation

Metric	Syntax	Advantages	Disadvantages
Mean Squared Error (MSE)	$rac{1}{N}\sum_{n=1}^{N}(t_i-\hat{t_i})$	Differentiable so can be used as a Loss Function	Not robust to outliers as it penalizes them to the power of 2
Mean Absolute Error (MAE)	$rac{1}{N}\sum_{n=1}^{N}\ t_i-\hat{t_i}\ $	More robust to outliers	Not differentiable which needs to the application of optimisers such as Gradient Descent
Root Mean Squared Error (RMSE)	$RMSE = \sqrt{MSE}$	Output is at the same unit as the input (interpretation usefullness)	Not that robust to outliers

- R-Squared $(R^2) \rightarrow \text{Not a performance metric}$
 - \hookrightarrow Coefficient of Determinition
 - \hookrightarrow Goodness of Fit
- **Description:** R^2 measures how much variance can be explained by your model. R^2 can also be viewed as how much the regression line is better than the mean line.

• Formula:
$$R^2=1-rac{ ext{Unexplained Variance}}{ ext{Total Variation}}=1-rac{SS_{reg}}{SS_{mean}}=1-rac{\sum\limits_{i=1}^{N}(t_i-\hat{t_i})^2}{\sum\limits_{i=1}^{N}(t_i-\overline{t_i})}$$

 \hookrightarrow mean of target variable

• Value's Range: From 0 (bad model) to 1 (perfect model)

Note: A problem with the R^2 metric is that sometimes it increases as we add more variables even if the added variables as In other words, the model can always map some data to a target variable.

- Adjusted R-Squared (R^2)
- **Description:** R^2 Adjusted overcomes the incorrect increase of the R^2 by adding extra independent variables. In other words, it penalaizes the excess amount of independent variables.
- Formula: $R_a^2=1-\{(\frac{n-1}{n-k-1})(1-R^2)\}$ $\hookrightarrow \operatorname{Adjusted} R^2$

where n = Number of observations,

k = number of features

• Value's Range: From 0 (bad model) to 1 (perfect model)

Note: As k increases, the denominator decreases which makes the entire value to be subtracted from 1 a large value.

https://stackedit.io/app#

04/02/2022, 19:25 StackEdit

As a result, the R_a^2 is decreased which means that the more (irrelevant features, the worse the model.)

https://stackedit.io/app# 4/4