

COMPUTATIONAL SCIENCE · NUMERICAL OPTIMIZATION · HIGH-PERFORMANCE COMPUTING · AI / ML

□+1 (571) 344-2831 | ■ alp.dener@me.com | ★ alp.dener.me | ★ adener | □ denera

Summary_

I am a computational scientist specializing on gradient-based and constrained numerical optimization methods, with large-scale applications in artificial intelligence, machine learning, simulation-based design and scientific discovery. I am also a member of the core development team for PETSc/TAO, one of the premiere numerical libraries in the US Department of Energy research software portfolio. In this capacity, I develop and maintain high-performance parallel implementations of optimization algorithms using test-based development and CI/CD workflows.

Skills_

Numerical OptimizationPDE-constrained Problems, Gradient-based Algorithms, Multidisciplinary Design OptimizationMachine LearningPhysics-Informed Neural Networks, Constrained Training Methods, Supervised LearningSoftware DevelopmentParallel Programming, Heterogeneous Architectures, Test-based Development, CI/CD

Tools & Languages Python3, PyTorch, Cython, F2Py, ANSI C, C++11, Boost, MPI, CUDA, Fortran77/90/95, MATLAB, LaTeX

Experience

Argonne National Laboratory

Lemont, Illinois

ASSISTANT COMPUTATIONAL SCIENTIST

Oct. 2021 - PRESENT

- · Research and develop large-scale optimization methods for engineering design and scientific machine learning.
- Collaborate with domain experts on challenging applications in plasma physics and Earth systems modeling.
- Maintain the Toolkit for Advanced Optimization (TAO) package in the PETSc library.
- Prepare the PETSc library for next-generation exascale supercomputer architectures.

POSTDOCTORAL RESEARCHER Feb. 2018 - Sep. 2021

- · Developed novel stochastic optimization methods for training deep neural networks under physics constraints.
- Extended conjugate gradient, quasi-Newton and Newton optimization methods in the PETSc/TAO library with active-set bound constraints.
- Implemented a Python interface for using PETSc/TAO optimization algorithms in PyTorch training workflows.
- Spearheaded the transition of PETSc/TAO development to a full CI/CD workflow with a Jenkins prototype.

Rensselaer Polytechnic Institute

Troy, New York

GRADUATE RESEARCH AND TEACHING ASSISTANT

Aug. 2012 - Dec. 2017

- · Researched simulation-driven multidisciplinary design optimization problems.
- Developed matrix-free optimization library for large-scale engineering design applications.
- $\bullet \ \ \text{Integrated parallel}, high-fidelity, coupled aero-structural solvers with optimization algorithms via adjoint-based sensitivity analysis.$
- Served as a grader, proctor, tutor and substitute lecturer for undergraduate-level mechanical and aeronautical engineering courses.

University of Maryland, Baltimore County

Maryland, Baltimore

Undergraduate Research Assistant & Machinist

Oct. 2010 - May 2011

- Developed an optical aerosol measurement instrument for deployment on ground and air vehicles.
- Designed and manufactured micrometer-tolerance aluminum mounts for optical components.

Turkish Aerospace Industries

Ankara, Turkey

Jun. 2009 - Sep. 2009

- AERODYNAMIC ANALYSIS AND DESIGN INTERN
- · Modeled geometry and generated meshes for A129 hardpoints.
- Analyzed effects of rotor downwash on fired ordnance using CFD tools.

Education

Rensselaer Polytechnic Institute

Troy, New York

Ph.D. in Aeronautical Engineering

Aug. 2012 - Dec. 2017

• Thesis: A Modular Matrix-Free Approach to Multidisciplinary Design Optimization

University of Maryland, Baltimore County

Baltimore, Maryland

B.S. IN MECHANICAL ENGINEERING

Jan. 2008 - May. 2012

Honors & Awards

2021 Impact Award, Enhancement of Argonne's Reputation – DoE National Science Bowl Volunteer

2018 **1st Place**, AIAA AVIATION 2018 Student Paper Competition – Multidisciplinary Design Optimization

SEPTEMBER 30, 2021 ALP DENER · CURRICULUM VITAE

Publications

JOURNAL ARTICLES

- Mills, R. T., Adams, M. F., Balay, S., Brown, J., **Dener, A.**, Knepley, M., Kruger, S. E., Morgan, H., Munson, T., Rupp, K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, J. (2021). "Toward performance-portable PETSc for GPU-based exascale systems (accepted)". In: *IEEE Transactions on Parallel and Distributed Systems (Special Section on Innovative R&D toward the Exascale Era*). DOI: 10.1016/j.parco.2021.102831.
- **Dener**, **A.**, Miller, M. A., Churchill, R. M., Munson, T., and Chang, C.-S. (2020). "Training neural networks under physical constraints using a stochastic augmented Lagrangian approach (submitted)". In: *Journal of Computational Physics*. arXiv: 2009.07330.
- Miller, M. A., Churchill, R. M., **Dener**, **A.**, Chang, C.-S., Munson, T., and Hager, R. (2020). "Encoder-decoder neural network for solving the nonlinear Fokker-Planck-Landau collision operator in XGC". In: *Journal of Plasma Physics*. DOI: 10.1017/S0022377821000155.
- **Dener**, **A.** and Hicken, J. E. (2017). "Matrix-free algorithm for the optimization of multidisciplinary systems". In: *Structural and Multidisciplinary Optimization, Springer*. DOI: 10.1007/s00158-017-1734-0.
- Hicken, J. E. and **Dener**, **A.** (2015). "A flexible iterative solver for nonconvex, equality-constrained quadratic subproblems". In: *Journal on Scientific Computing, SIAM*. DOI: 10.1137/140994496.

REFEREED PROCEEDINGS

- **Dener**, A., Munson, T., Miller, M. A., Churchill, R. M., and Chang, C.-S. (2021). "Toward Constrained Optimization in Machine Learning: An Error-Tolerant Multisecant Method for Training PINNs". In: *SIAM Conference on Computational Science and Engineering (CSE21)*. Virtual.
- **Dener**, **A.** (2020). "Investigating quasi-Newton Outer Product Representations on GPUs". In: *SIAM Conference on Parallel Processing for Scientific Computing (PP20)*. Seattle, WA, USA.
- Suh, H., **Dener**, **A.**, Isaac, T., and Munson, T. (2020). "Using the PETSc/TAO ADMM Methods on GPUs". In: *SIAM Conference on Parallel Processing for Scientific Computing (PP20)*. Seattle, WA, USA.
- **Dener**, **A.**, Denchfield, A., and Munson, T. (2019). "Preconditioning nonlinear conjugate gradient with diagonalized quasi-Newton". In: *Proceedings for the Platform for Advanced Scientific Computing Conference*. Zurich, Switzerland. DOI: 10.1145/3324989.3325712.
- **Dener**, **A.** and Munson, T. (2019). "Accelerating limited-memory quasi-Newton convergence for large-scale optimization". In: *International Conference on Computational Science*. Faro, Portugal. DOI: 10.1007/978-3-030-22744-9_39.
- **Dener**, **A.**, Denchfield, A., and Munson, T. (2019). "Acelerating Quasi-Newton and Conjugate Gradient Convergence for Large-Scale Optimization". In: *SIAM Conference on Computational Science and Engineering (CSE19)*. Spokane, WA, USA.
- **Dener**, A., Hicken, J. E., Kenway, G. K. W., and Martins, J. R. R. A. (2018). "Enabling modular aerostructural optimization: Individual discipline feasible without the Jacobians". In: 2018 Multidisciplinary Analysis and Optimization Conference, AIAA AVIATION Forum. Atlanta, GA, USA. DOI: 10.2514/6.2018-3570.
- **Dener**, **A.**, Meng, P., Hicken, J. E., Kennedy, G. J., Hwang, J., and Gray, J. S. (2016). "Kona: A parallel optimization library for engineering-design problems". In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum. San Diego, CA, USA. DOI: 10.2514/6.2016–1422.
- **Dener**, **A.**, Kenway, G. K. W., Hicken, J. E., and Martins, J. R. R. A. (2015). "Comparison of inexact- and quasi-Newton algorithms for aerodynamic shape optimization". In: *53rd AIAA Aerospace Sciences Meeting, AIAA SciTech Forum*. Kissimmee, FL, USA. DOI: 10.2514/6.2015–1945.
- **Dener**, **A.** and Hicken, J. E. (2014). "Revisiting individual discipline feasible with matrix-free inexact-Newton-Krylov". In: *10th AIAA Multidisciplinary Design Optimization Conference*, *AIAA SciTech Forum*. National Harbor, MD, USA. DOI: 10.2514/6.2014–0110.

TECHNICAL REPORTS

- **Dener**, **A.**, Denchfield, A., Suh, H., Munson, T., Sarich, J., Wild, S., Benson, B., and Curfman-McInnes, L. (2020). *TAO users manual*. ANL/MCS-TM-322 Revision 3.14. Argonne National Laboratory.
- **Balay**, **S.**, Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., Curfman-McInnes, L., Mills, Todd Munson, R. T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H. (2020). *PETSc users manual*. ANL-95/11 Revision 3.14. Argonne National Laboratory.

Presentations

CONFERENCES

- **Dener**, A., Munson, T., Miller, M. A., Churchill, R. M., and Chang, C.-S. (2021). "Toward Constrained Optimization in Machine Learning: An Error-Tolerant Multisecant Method for Training PINNs". In: *SIAM Conference on Computational Science and Engineering (CSE21)*. Virtual.
- **Dener**, **A.** (2020). "Investigating quasi-Newton Outer Product Representations on GPUs". In: *SIAM Conference on Parallel Processing for Scientific Computing (PP20)*. Seattle, WA, USA.
- Suh, H., **Dener**, **A.**, Isaac, T., and Munson, T. (2020). "Using the PETSc/TAO ADMM Methods on GPUs". In: *SIAM Conference on Parallel Processing for Scientific Computing (PP20)*. Seattle, WA, USA.
- **Dener**, **A.**, Denchfield, A., and Munson, T. (2019). "Preconditioning nonlinear conjugate gradient with diagonalized quasi-Newton". In: *Proceedings for the Platform for Advanced Scientific Computing Conference*. Zurich, Switzerland. DOI: 10.1145/3324989.3325712.
- **Dener**, **A.** and Munson, T. (2019). "Accelerating limited-memory quasi-Newton convergence for large-scale optimization". In: *International Conference on Computational Science*. Faro, Portugal. DOI: 10.1007/978-3-030-22744-9 39.
- **Dener**, **A.**, Denchfield, A., and Munson, T. (2019). "Acelerating Quasi-Newton and Conjugate Gradient Convergence for Large-Scale Optimization". In: *SIAM Conference on Computational Science and Engineering (CSE19)*. Spokane, WA, USA.
- **Dener**, A., Hicken, J. E., Kenway, G. K. W., and Martins, J. R. R. A. (2018). "Enabling modular aerostructural optimization: Individual discipline feasible without the Jacobians". In: *2018 Multidisciplinary Analysis and Optimization Conference*, AIAA AVIATION Forum. Atlanta, GA, USA. DOI: 10.2514/6.2018-3570.
- **Dener**, **A.**, Meng, P., Hicken, J. E., Kennedy, G. J., Hwang, J., and Gray, J. S. (2016). "Kona: A parallel optimization library for engineering-design problems". In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum. San Diego, CA, USA. DOI: 10.2514/6.2016–1422.
- **Dener**, **A.**, Kenway, G. K. W., Hicken, J. E., and Martins, J. R. R. A. (2015). "Comparison of inexact- and quasi-Newton algorithms for aerodynamic shape optimization". In: *53rd AIAA Aerospace Sciences Meeting, AIAA SciTech Forum*. Kissimmee, FL, USA. DOI: 10.2514/6.2015–1945.
- **Dener, A.** and Hicken, J. E. (2014). "Revisiting individual discipline feasible with matrix-free inexact-Newton-Krylov". In: 10th AIAA Multidisciplinary Design Optimization Conference, AIAA SciTech Forum. National Harbor, MD, USA. DOI: 10.2514/6.2014-0110.

INVITED TALKS

- Dener, A. Numerical optimization using PETSc/TAO. ATPESC 2021.
- Dener, A. Large-scale optimization using PETSc/TAO. ATPESC 2020.
- **Dener**, **A.** *PDE-constrained optimization using PETSc/TAO*. ATPESC 2019.
- Mills, R. T., Knepley, M., Munson, T., **Dener**, **A.**, and Zhang, H. *PDEs*, *optimization*, *and eigenproblems with PETSc/TAO and SLEPc*. ECP Annual Meeting 2019.

Proposal Contributions

- "Distributed Workflows and Infrastructure to Couple Experiments and AI Services for Scientific Discovery", PI: Scott Klasky (ORNL), Role: Senior Personnel, Sponsor: DOE-ASCR, DE-FOE-0002482, 2021, Status: Not Funded
- "Quantum Dynamics in Systems with Strong Electron-Phonon and Electron-Electron Interactions", **PI:** Ivar Martin (ANL), **Role:** Senior Personnel, **Sponsor:** DOE-BES/ASCR, DE-FOA-0002441, 2021, **Status:** Not Funded
- "Development of a Machine Learning Toolkit in PETSc", PI: Richard Tran Mills (ANL), Role: Senior Personnel, Sponsor: LDRD Prime Future Computing, 2021-0177, 2021, Status: Funded, \$295K
- "Frameworks, Algorithms and Scalable Technologies for Mathematics (FASTMath) SciDAC Institute", PI: Scott Klasky (ORNL), Role: Senior Personnel, Sponsor: DOE-ASCR, DE-FOE-0002482, 2021, Status: Funded, \$4.05M
- "Machine Learning and Artificial Intelligence for Simulation Acceleration and Real-Time Scientific Discovery of Fusion Science on Exascale Computers (MASS)", PI: Choong-Seock Chang (PPPL), Role: Senior Personnel, Sponsor: DOE-FES/ASCR, LAB 20-2224, 2020, Status: Not Funded
- "Machine learning enhanced sampling methods for the stochastic multi-fidelity optimization of complex systems", PI: Marc Day (LBNL), Role: Senior Personnel, Sponsor: DOE-ASCR, LAB 20-2321, 2020, Status: Not Funded

Projects

ML-Collision: Approximating the Fokker-Planck-Landau Collision Operator with a PINN

Pvthon3

(gitlab.com/adener/ml-collision-python)

CREATOR, MAINTAINER, DEVELOPER Mar. 2020 - PRESENT

- · Using nuclear fusion simulation data to train an encoder-decoder DNN under physical conservation and entropy constraints to approximate the FPL operator.
- · Developing a stochastic extension of the augmented Lagrangian method to train NNs with nonlinear constraints.
- Integrating trained model into the XGC1 nuclear fusion simulation to improve scaling and performance of particle collisions.

MADtorch: Multisecant Accelerated Descent Optimizer for PyTorch (gitlab.com/adener/madtorch)

Python3

CREATOR, MAINTAINER, DEVELOPER

Feb. 2021 - PRESENT

- · Lead architect of a novel PyTorch optimizer for stochastic mini-batch training under general nonlinear constraints.
- Currently used in research efforts to accelerate large-scale nuclear fusion simulations using a physics-informed neural network.

TScoupled: Scalable Parallel Navier-Stokes Solver for Ocean-Atmosphere Interaction

(gitlab.com/adener/tscoupled-petsc)

ANSI C / Python3

CREATOR, MAINTAINER, DEVELOPER Nov. 2020 - PRESENT Ported a serial 2D N-S solver implemented in Julia to an equivalent scalable parallel implementation in ANSI C using PETSc/TAO.

- · Solved an ocean-atmosphere interaction problem with velocity and temperature couplings at the boundary using the 4-stage Range-Kutta integrator in PFTSc/TS.
- · Currently extending the solver to handle 3D cases, and investigating multi-rate time integrators to iterate ocean and atmosphere sides at different rates.

TAOster & CUTEst: Framework for Testing TAO Optimization Solvers on Canonical CUTEst Benchmark Problems (gitlab.com/adener/TAOster & gitlab.com/adener/CUTEst)

Python3 / Fortran77

CREATOR, MAINTAINER, DEVELOPER

Mar. 2019 - PRESENT

- Defined interfaces for connecting TAO solvers to CUTEst problems via FORTRAN.
- Created Python scripts to control the execution flow of bulk test runs on CUTEst problems.

TAO: Toolkit for Advanced Optimization (gitlab.com/petsc/petsc)

ANSI C / Fortran90

MAINTAINER, DEVELOPER

Feb. 2018 - PRESENT

- Principal maintainer and code reviewer, point-of-contact for users and contributors, and lead developer for constrained optimization methods.
- Refactored existing nonlinear conjugate gradient (NCG), quasi-Newton (QN) and truncated-Newton methods with active-set bound projections.
- · Developed new quasi-Newton-based preconditioner and sparse Hessian initialization for NCG and QN methods.
- Implemented a bound-constrained Gauss-Newton method with built-in support for commonly used regularization terms.
- Supervised a summer student for implementing the alternating direction method of multipliers with closed-form solutions for commonly used regularization terms.
- Currently developing new error-tolerant constrained optimization algorithm for solving problems with inaccurate gradients.
- Currently developing Python interfaces linking TAO with pyTorch for ML training problems (funded by LDRD Prime).

PETSc: Parallel Extensible Toolkit for Scientific Computing (gitlab.com/petsc/petsc)

ANSI C / Fortran90

Feb. 2018 - PRESENT

- · Member of the core development team. Contributor and maintainer for new features required by TAO solvers.
- Implemented quasi-Newton Jacobian/Hessian approximations as abstract matrix objects used in both optimization and nonlinear solvers.
- · Contributed vector projection tools to support bound-constraint projections, and vector subspace manipulation tools to support primal-dual algorithms in TAO.
- Lead architect for Jenkins CI/CD prototype, leading up to PETSc's eventual migration to GitLab.

MACH: MDO for Aircraft Configurations with High Fidelity (github.com/mdolab/MACH-Aero)

Python3 / C++11 / Fortran95

EXTERNAL CONTRIBUTOR

Jun. 2014 - Dec. 2017

- · Software suite for aerodynamic and aero-structural shape optimization, developed and maintained by MDOLab at University of Michigan, Ann
- Implemented a new MDO coupling architecture and related second-order adjoint-based matrix-free Hessian-vector products.

ElasticNozzleMDO: 2D Multidisciplinary Analysis and Optimization for an Elastic Nozzle

C++11 / Python3

(github.com/OptimalDesignLab/ElasticNozzleMDO)

DEVELOPER Jan. 2013 - Dec. 2017

- Developed a 2D linear elasticity model with finite-element analysis and coupled to a solver for quasi-1D Euler equations via fluid pressure force transfer
- Implemented Python interfaces for the C++ solver using Boost.Python bindings to integrate solver into an optimization workflow.

Kona: A Parallel Optimization Framework for Engineering Design Problems

Pvthon3

(github.com/OptimalDesignLab/Kona) CREATOR, MAINTAINER, DEVELOPER

Jan 2013 - Dec 2017

- Lead architect of the core optimization research library for Optimal Design Lab at RPI.
- Designed parallel-agnostic implementations of SQP methods using abstract data structured and reverse-communication-based linear algebra.

Teaching Experience _____

Hansol Suh, Georgia Institute of Technology

_	
Rensselaer Polytechnic Institute	Troy, New York
GUEST LECTURER	
 MANE 4280/6963 Design Optimization MANE 4060 Aerospace Structures & Materials 	Fall 2016, Fall 2017 Fall 2012
Teaching Assistant	
MANE 4280/6963 Design Optimization	Fall 2016, Fall 2017
ENGR 2530 Strength of MaterialsMANE 4920 Aerospace Structures & Control Laboratory	Summer 2017 Spring 2013
MANE 4060 Aerospace Structures & Materials	Fall 2012
MANE 4070 Aerodynamics I	Fall 2012
Professional Activities & Service	
REVIEW COMMITTEES	
INFORMS, Mathematics of Optimization Research	2018 - PRESENT
SIAM, Journal of Scientific Computing	2018 - PRESENT
Springer, Optimization and Engineering	2018 - PRESENT
AIAA, AIAA Journal	2018 - PRESENT
US Dept. of Energy, SBIR Phase I Review Panel	2019
Conferences	
Minisymposium Organizer, SIAM Conference on Computational Science and Engineering	Mar. 2021
Minisymposium Organizer, SIAM Conference on Computational Science and Engineering	Feb. 2019
ARGONNE TRAINING PROGRAM ON EXTEREME SCALE COMPUTING	
Member, ATPESC Program Committee	2021
Lead Organizer, Numerical Algorithms & Software Track	2021
Co-organizer & Lecturer, Numerical Algorithms & Software Track	2020
Lecturer, Numerical Algorithms & Software Track	2019 - PRESENT
VOLUNTEERING & OUTREACH	
Invited Panelist, University of Pittsburgh Graduate Student Career Q&A	2021
Questions Judge, DoE Science Bowl Illinois Regionals & Nationals	2021
Professional Societies	
MoS, Mathematical Optimization Society	2018 - PRESENT
INFORMS, Institute for Operations Research and the Management Sciences	2018 - PRESENT
SIAM , Society of Industrial and Applied Mathematics	2012 - PRESENT
AIAA, American Institute of Aeronautics and Astronautics	2012 - PRESENT
SUPERVISED STUDENTS	
Jamal Shabani, Lousiana State University	2021

2019, 2021