Distributed GPGPU Computing

Martin Stumpf

Stellar Group, Louisiana State University

September 16, 2014

Table of Contents

- GPGPU Overview
 - GPGPU
 - OpenCL
- 2 The MPI way
- The HPX way
 - Advantages
 - Affect on distributed GPGPU
- 4 HPXCL
 - Layout
 - Implementing "Hello, World!"
- 5 Performance and Scaling
 - The mandelbrot Renderer

- GPGPU Overview
 - GPGPU
 - OpenCL
- 2 The MPI way
- The HPX way
 - Advantages
 - Affect on distributed GPGPU
- 4 HPXCL
 - Layout
 - Implementing "Hello, World!"
- 5 Performance and Scaling
 - The mandelbrot Renderer

CPU vs GPU

"<IMAGE GPU vs CPU>"

Why GPGPU?

The theoretical calculation power of a GPU is much higher than a CPU.

Example

CPU (Intel Xeon E5-2670 v3):

- 12 Cores, 2.3 GHz, 32 FLOPS/cycle
 - 884 GFLOPS
- Prize: ∼ 1500 \$

GPU (NVidia Tesla K40):

- 2880 Cores, 745 MHz, 2 FLOPS/cycle
 - 4291 GFLOPS
- Prize: ~ 4000 \$

So, what computational tasks are actually suitable for GPGPU?

Problems suitable for GPGPU

Every problem that fits the SPMD programming scheme, can benefit greatly from GPGPU.

Examples:

- Fluid Simulations
- Mathematical Vector Operations
- Image Processing
- Stencil Based Simulations

SPMD based Programming Languages:

- CUDA (NVidia)
- OpenCL (Platform independent)

OpenCL

- GPGPU Overview
 - GPGPU
 - OpenCL
- 2 The MPI way
- The HPX way
 - Advantages
 - Affect on distributed GPGPU
- 4 HPXCL
 - Layout
 - Implementing "Hello, World!"
- 5 Performance and Scaling
 - The mandelbrot Renderer

Distributed GPGPU with MPI

- GPGPU Overview
 - GPGPU
 - OpenCL
- 2 The MPI way
- The HPX way
 - Advantages
 - Affect on distributed GPGPU
- 4 HPXCL
 - Layout
 - Implementing "Hello, World!"
- Derformance and Scaling
 - The mandelbrot Renderer

Advantages over MPI

Affect on distributed GPGPU programming

Distributed GPGPU Computing

- GPGPU Overview
 - GPGPU
 - OpenCL
- 2 The MPI way
- The HPX way
 - Advantages
 - Affect on distributed GPGPU
- 4 HPXCL
 - Layout
 - Implementing "Hello, World!"
- 5 Performance and Scaling
 - The mandelbrot Renderer

Layout

Layout

Getting devices

Writing data to the device

Creating a kernel

Executing the kernel

Reading the result

- GPGPU Overview
 - GPGPU
 - OpenCL
- The MPI way
- The HPX way
 - Advantages
 - Affect on distributed GPGPU
- 4 HPXCL
 - Layout
 - Implementing "Hello, World!"
- Performance and Scaling
 - The mandelbrot Renderer

bla

Scaling

Parallel Efficiency