Tema 2:

b) p^ q

c) p->q

d) r->p

e) q<>r

1 Determine si cada una de las sentencias es una declaración	
a. En 2003 George W. Bush fue el presidente de EUA	
b. x+3 es un entero positivo	
c. 15 es un número par	
d. ¿Qué hora es?	
R= (a), (c), (d) son declaraciones, (b) no es una declaración.	
2 Demostrar que, para cualquier par de enteros x e y, el producto xy es par si y sólo si x es par o es par.	У
R= Primero probamos, utilizando el método directo, que si x es par o y es par, entonces el producto xy es par. Supongamos que x es par, es decir, x=2n, para algún entero n. Entonces xy=2ny, por lo tanto, xy es par. El mismo argumento nos servirá para el caso en el que supongamos que y es par.	
3 Demuestre, o demuestre que es falso: existen enteros positivos y m, n son cuadrados perfectos, entonces m+n es un cuadrado perfecto	;
R= Esto en general no es verdad, pues $m=4^2$ y $n=1^2$ entonces $m+n=5$ y 5 no es un cuadrado perfecto	
4 Si n es un entero impar, entonces n+1 es par.	
R= Dado que n es impar tenemos que n=2a+1 para los enteros. entonces n+11= $(2a+1) +11=2a+12=2(a+6)$; a+6 es entero, entonces n+11 es par.	2)
5 Sean p, q, r las proporciones para un triángulo abc particular; p: el triángulo abc es isósceles; q el triángulo abc es equilátero; q: el triángulo abc es equiángula. traduzca las siguientes frases a español	1:
a) q->p	

R= a) si el triángulo abc es equilátero, entonces es isósceles

- b) si el triángulo ABC no es isósceles, entonces no es equilátero
- c) Triángulo ABC es equilátero si y sólo si es equiángula
- d) el triángulo ABC es isósceles pero no es equilátero
- e) si el triángulo ABC es equiángula, entonces es isósceles
- 6.- Demuestre que, para todo entero n, n^2 es par si y sólo si n es par.

R= Sea un número entero par. Entonces 2 es factor de n, por tanto, se puede expresar como n=2m para algún entero m. Se sigue qué. $n^2 = 2$ (m) $^2 = 4^2$ Ahora, $4m^2$ se puede escribir como $2(2m^2)$ donde 2m² es también un entero, por lo que 2(2m²) es par y como 2(2m²) = n², llegamos a que n² es par.

- 7.- Sea p(x) la proposición abierta de "X^2=2x" donde el universo comprende todos enteros. determine si cada una de las proposiciones son verdaderas o falsas
 - a) p(0)
- b) p(1)
- c) p(2)
- d) p(-2)

- R= a) x=0, verdadero b) x=1, verdadero c) x=1, verdadero d) x=1, falso
- 8.- Sea p(x), q(x) las siguientes proposiciones abiertas:

p(x): $x \le 3$ q(x): x+1 es impar

Si el universo consta de todos los enteros x. ¿cuáles son los valores de verdad de las siguientes proposiciones?

- a. p(1)
- b. q(1)

R= a) $P(3)V(Q(3) V \sim R(3)) \rightarrow 3 <= 3$, es verdadera dado que 3 es igual o idéntico que 3, si evaluamos en 3+1=4, comprobamos que la proposición es falsa puesto que 4 no es un número primo, tanto que 3>0 es verdadero, pero como se pide la negación, esto automáticamente se convierte en falso.

- b) $^{\circ}$ P(3) $^{\circ}$ (Q(3) V $^{\circ}$ R(3)) -> 3<=3, esta preposición si es verdadera dado que 3=3, pero la negación nos dice que 3+1= 4, por lo que es falsa, pues 4 no es un numero primo, 3>0 es verdadero dado que 3 es mayor que 0,, pero el paréntesis dice que (falso V verdadero= a verdadero.
- 9.- Demostrar que 2 es irracional.

R= Suponemos que 2 es racional y llegamos a una contradicción. Supongamos que 2 es racional, por lo tanto 2= m/n donde m y n son números enteros, con n≠0. Podemos suponer que la fracción m/ n es una fracción reducida (irreducible), es decir, que m y n no tienen factores en común. ahora:

2= m/n -> 2= m²/n² -> $2n^2=m^2$, m^2 es par -> m^2 es par asi, m=2p, $p\in >Z$, $m^2=4p^2$ Sustituyendo este resultado en la ecuación tenemos: $2n^2=4p^2$ -> n^2 es par -> n es par

10.-