Cryptography 0x02 - 在家輕鬆學 RSA

oalieno

2020/06/04

Table of Contents

- 1 RSA Public Key Cryptosystem
 - What happens if you pick wrong primes p, q
 - What happens if you pick wrong e
 - What happens if you pick wrong d
 - What happens if you reuse parameters
 - Chosen Ciphertext Attack
 - Coppersmith Method
 - Related Message Attack
- 2 RSA Digital Signature
 - Signature Forgery

RSA Public Key Cryptosystem

RSA

RSA 產生金鑰

- 選兩個質數 p, q 和一個整數 e
- ■計算
 - *n* := *pq*
 - $\varphi(n) = (p-1)(q-1)$
 - $d := e^{-1} \mod \varphi(n)$
- 公鑰是 (n, e) 私鑰是 (n, d)

碎碎念

- n, e 要滿足 $gcd(e, \varphi(n)) = 1$,沒有滿足就重選
- 不然 e 在模 $\varphi(n)$ 下沒有模反元素,無法解密

RSA 加解密

- 明文 m 密文 c
- 加密 $c = m^e \mod n$
- 解密 $m = c^d \mod n$

RSA 正確性

目標

驗證 $m^{ed} \equiv m \pmod{n}$

拆解成小問題

- ■分別驗證

 - $2 m^{ed} \equiv m \pmod{q}$
- 再用中國剩餘定理拼起來得證 $m^{ed} \equiv m \pmod{n}$

RSA 正確性

推論一下

$$d \equiv e^{-1} \pmod{\varphi(n)}$$

 $\Rightarrow ed \equiv 1 \pmod{\varphi(n)}$
 $\Rightarrow ed = k\varphi(n) + 1 \text{ for some k}$
 $= k(p-1)(q-1) + 1$

RSA 正確性

驗證 $m^{ed} \equiv m \pmod{p}$

if
$$\gcd(\mathsf{m}, \mathsf{p}) = 1$$

$$\rightarrow m^{ed} = m^{k(p-1)(q-1)+1} = (m^{(p-1)})^{k(q-1)} m \equiv m \pmod{p}$$
if $\gcd(\mathsf{m}, \mathsf{p}) = \mathsf{p}$

$$\rightarrow m^{ed} \equiv 0 \equiv m \pmod{p}$$

驗證
$$m^{ed} \equiv m \pmod{q}$$

By the same argument

組起來

■ 另 $x = m^{ed}$,現在已知

$$x \equiv m \pmod{p}$$
$$x \equiv m \pmod{q}$$

- 想求 x 模 n 會是多少
- 中國剩餘定理告訴我們在模 n = pq 下存在唯一解
- x 模 n 等於 m 是一個解,那就只能是他了
- 所以 $m^{ed} \equiv m \pmod{n}$,得證

factor $n \rightarrow obtain private key$

- 如果我們可以分解 n
- 就可以順著原本的步驟產生私鑰,進而解密密文

obtain private key \rightarrow factor n

■ 如果我們有一個很有效率的演算法 f 能找到模 n 下的開方根,那我們就能分解 n

利用 f 分解 n

- 選一個 x,計算 $y \equiv x^2 \pmod{n}$
- 利用那個演算法 f 找出 y 在模 n 下的開方根 z
- y 的模開方根會有四個解,有 $\frac{1}{2}$ 的機率 $z \neq \pm x$
- 如果 z ≠ ±x
 - $z^2 \equiv x^2 \pmod{n} \Rightarrow (z+x)(z-x) \equiv 0 \pmod{n}$
 - $1 < \gcd(n, z + x) < n$ 或 $1 < \gcd(n, z x) < n$ 會成立
 - 那就成功分解 n
- 如果 $z = \pm x$,就再選一次 x

有效率的演算法 f 找模 n 下得開方根

- \blacksquare 選一個 g,計算 $g^{ed-1} \equiv 1 \pmod{n}$
- $\bullet ed 1 = k\varphi(n) = 2^t r$
- 這樣 $g^{2^t r} \equiv (g^{2^{t-1}r})^2 \pmod{n}$ 就會是一組模開方根
- $g^{2^tr} \equiv 1 \equiv (\pm 1)^2 \pmod{n}$, ± 1 已經是一組模開方根的解
- 如果 $g^{2^{t-1}r} \not\equiv \pm 1$,就可以用剛剛講的方法分解 n
- $g^{2^t r}, g^{2^{t-1} r}, g^{2^{t-2} r}, \cdots g^r$ 都找不到就再選一次 g

Factoring Tools

- http://www.factordb.com/index.php
- https://github.com/DarkenCode/yafu

同態(Homomorphic)

同態的定義

- f(x*y) = f(x)*f(y)
- * 可以是任意的一種運算元

RSA 的乘法

- RSA 的乘法有 homomorphic 的特性
- $ullet E(m_1)E(m_2)=m_1^em_2^e \mod n=(m_1m_2)^e \mod n=E(m_1m_2)$
- Leads to chosen ciphertext attack

- RSA Public Key Cryptosystem

What happens if you pick wrong primes p, q

RSA

What happens if you pick wrong primes p, ${\sf q}$

How to pick large primes p, q

- |p-q| 太小 \rightarrow fermat factorization
- p-1 的最大質因數很小 \rightarrow Pollard's p-1 Algorithm
- p+1 的最大質因數很小 \rightarrow Williams's p+1 Algorithm
- r-1 的最大質因數很小 \rightarrow Cycling Attack
 - r 是 p 1 的最大質因數

Strong Primes

- 能抵檔針對質因數小的攻擊的質數我們叫他 Strong Primes
- 那建議 p, q 一定要選 Strong Primes ... 嗎?
- 其實隨機產生不會比 Strong Primes 還差 [1]

Strong Primes

- p 1 has a large prime factor, denoted r (Pollard [2])
- $lue{}$ p + 1 has a large prime factor (Williams [3])
- r 1 has a large prime factor (Cycling Attack)

Pollard's p - 1 Algorithm

- p-1 是一個 B-smooth 的數,也就是他最大的質因數是 B
- 如果 B 很小,就可以有效的分解 n

$$p-1 \mid 1 \times 2 \times \cdots B$$

$$\Rightarrow 2^{1 \times 2 \times \cdots B} = 2^{k(p-1)} \equiv 1 \pmod{p}$$

$$\Rightarrow \gcd(2^{1 \times 2 \times \cdots B} - 1, n) > 1$$

What happens if you pick wrong primes p, q

Pollard's p - 1 Algorithm

```
def pollard(n):
    a = 2
    b = 2
    while True:
        a = pow(a, b, n)
        d = gcd(a - 1, n)
        if 1 < d < n: return d
        b += 1</pre>
```

What happens if you pick wrong e

RSA

What happens if you pick wrong e

How to choose public exponent e

- ullet e 太小 o direct eth root, broadcast attack
- e 太大 → 加密很慢
- 常見的 e 會選 2^x + 1 這種形式的質數,例如
 2¹⁶ + 1 = 65537,這樣在做 Square and Multiply 時只需要
 16 + 1 次運算

Square and Multiply

```
def SquareAndMultiply(x, y):
    if y == 0: return 1
    k = SquareAndMultiply(x, y // 2) ** 2
    return k * x if y % 2 else k
```

Direct eth Root

- 如果 m, e 都很小,使得 $m < n^{\frac{1}{e}} \Rightarrow m^e < n$
- 直接在整數下取 eth root 就可以還原 m
- 所以我們需要做 random padding

Broadcast Attack

- 用 e 個不同的 n 加密相同的 m,中國剩餘定理可以直接解 回 m
- 以 e = 3 為例

$$\begin{cases} m^3 & \equiv c_1 \pmod{n_1} \\ m^3 & \equiv c_2 \pmod{n_2} \\ m^3 & \equiv c_3 \pmod{n_3} \end{cases}$$
 Use CRT to get c, $m^3 \equiv c \pmod{n_1 n_2 n_3}$
$$m^3 < n_1 n_2 n_3 \to m^3 = c \to \text{direct eth root}$$

└What happens if you pick wrong d

RSA What happens if you pick wrong d

What happens if you pick wrong d

How to choose private exponent d

- 基本上 d 也不是我們選的,是從 e 算出來的
- ullet d 太小 o Wiener's attack, Boneh-Durfee's attack, \cdots

歷年來攻擊小 d 的演進

Bound for d	Assumed Interval for γ	Year	Citation
$d<\frac{1}{3}N^{\frac{1}{4}}$	No γ	1990	[4]
$d<rac{1}{8}N^{rac{3}{4}-\gamma}$	$0.25 \leq \gamma < 0.5$	2002	[5]
$d < N^{\frac{1-\gamma}{2}}$	$0.25 \leq \gamma < 0.5$	2008	[6]
$d < N^{\frac{3}{4}-\gamma}$	$0.25 \leq \gamma < 0.5$	2009	[7]
$d<rac{\sqrt{6\sqrt{2}}}{6}N^{rac{1}{4}}$	No γ	2013	[8]
$d<rac{1}{2}N^{rac{1}{4}}$	No γ	2015	[9]
$d < \frac{\sqrt{3}}{\sqrt{2}}N^{\frac{3}{4}-\gamma}$	$0.25 \leq \gamma < 0.5$	2019	[10]

Table: Comparison of the bounds on d for RSA modulus N = pq [10]

What happens if you pick wrong d

Wiener Attack

Wiener Attack

$$\bullet$$
 $ed = k\varphi(n) + 1$

$$d < \frac{1}{3}n^{\frac{1}{4}}$$
 $\Rightarrow \left| \frac{e}{n} - \frac{k}{d} \right| < \frac{1}{2d^2}$
 $\Rightarrow \frac{k}{d}$ 會在 $\frac{e}{n}$ 的收斂連分數裡面

■ 遍歷所有 $\frac{e}{n}$ 的收斂連分數,其中一個會是 $\frac{k}{d}$

Wiener Attack

Wiener Attack (cont.)

$$extit{eq} \frac{ed-1}{k} = \varphi(n) = (p-1)(q-1) = n-p-\frac{n}{p}+1$$

$$p^2 + p(\frac{ed-1}{k} - n - 1) + n = 0$$

■ 求解一元二次方程式可得 p,再驗證 p 是否為 n 的因子即可

Wiener Attack - 什麼是收斂連分數

■ $\frac{13}{17}$ 的收斂連分數是 $[c_0, c_1, c_2, c_3]$

$$c_0 = 0 = \frac{0}{1}$$

$$c_1 = 0 + \frac{1}{1} = \frac{1}{1}$$

$$c_2 = 0 + \frac{1}{1 + \frac{1}{3}} = \frac{3}{4}$$

$$c_3 = 0 + \frac{1}{1 + \frac{1}{3 + \frac{1}{2}}} = \frac{13}{17}$$

Wiener Attack - 證明

假設
$$d < \frac{1}{3}n^{\frac{1}{4}}$$

$$\begin{aligned} \left| \frac{e}{n} - \frac{k}{d} \right| &= \left| \frac{ed - nk}{nd} \right| \\ &= \left| \frac{1 + k\varphi(n) - nk}{nd} \right| \\ &= \frac{k(n - \varphi(n)) - 1}{nd} < \frac{3k\sqrt{n} - 1}{nd} < \frac{3k\sqrt{n}}{nd} \\ &< \frac{1}{n^{\frac{1}{4}}d} < \frac{1}{2d^2} \end{aligned}$$

└What happens if you pick wrong d

Wiener Attack - 證明

稍微解釋一下中間的代換

■ 假設 $p \approx q \approx \sqrt{n}$

$$n - \varphi(n) = n - (p - 1)(q - 1)$$

$$= n - pq + p + q - 1$$

$$= p + q - 1$$

$$< 3\sqrt{n}$$

└What happens if you pick wrong d

Wiener Attack - 證明

稍微解釋一下中間的代換 (cont.)

$$k\varphi(n) = ed - 1 < ed < \varphi(n)d$$

 $\Rightarrow k < d < \frac{1}{3}n^{\frac{1}{4}}$

Wiener Attack - 證明

稍微解釋一下中間的代換 (cont.)

$$d < \frac{1}{3}n^{\frac{1}{4}}$$

$$\Rightarrow 2d < 3d < n^{\frac{1}{4}}$$

$$\Rightarrow \frac{1}{2d} > \frac{1}{n^{\frac{1}{4}}}$$

What happens if you pick wrong d

Wiener Attack - 證明

Legendre's theorem in Diophantine approximations

給定 $\alpha \in \mathbb{R}, \frac{a}{b} \in \mathbb{Q}$,並且滿足 $|\alpha - \frac{a}{b}| < \frac{1}{2b^2}$ 那麼 $\frac{a}{b}$ 會是 α 的收斂連分數

根據這個定理

- 剛剛已經推得 $\left|\frac{e}{n} \frac{k}{d}\right| < \frac{1}{2d^2}$
- 對應上述定理 $\alpha = \frac{e}{n}, a = k, b = d$
- 所以 $\frac{k}{d}$ 會是 $\frac{e}{n}$ 的收斂連分數,得證

RSA Public Key Cryptosystem

What happens if you pick wrong d

Wiener Attack - 時間複雜度

- 計算收斂連分數時,是在做輾轉相除法,需要 O(log(e))
- 解一元二次方程式只需要 O(1)
- 時間複雜度: O(log(e))

What happens if you reuse parameters

RSA

What happens if you reuse parameters

RSA Public Key Cryptosystem

What happens if you reuse parameters

Common Factor Attack

情境

■ 當兩把公鑰的 modulus n_1, n_2 有共同的質因數

解法

■ 使用 gcd(n₁, n₂) 求出共同質因數

Batch GCD

- 當你有很多公鑰想找裡面有沒有共同的質因數
- 參考這篇 [11],他們有實作工具 https://factorable.net/

Common Modulus Attack

情境

- 已知兩把公鑰 (n, e₁), (n, e₂) 有相同的 modulus n
- e_1, e_2 滿足 $gcd(e_1, e_2) = 1$
- 用這兩把公鑰加密明文 *m* 為 *c*₁, *c*₂
- 可以在不分解 n 的情況下找出 m

解法

- 根據貝祖定理 $e_1s_1 + e_2s_2 = \gcd(e_1, e_2) = 1$ 有整數解 s_1, s_2
- 整數解 s₁, s₂ 可由擴展歐幾里德演算法求出
- 計算 $c_1^{s_1}c_2^{s_2} \equiv m^{e_1s_1+e_2s_2} \equiv m \pmod{n}$

RSA Chosen Ciphertext Attack

Chosen Ciphertext Attack

情境

- 有一個 oracle 給他密文可以得到明文
- 但是唯獨不能解某個特定的密文 c

解法

- 使用 oracle 解 2^ec 得 2m
- $2^{-1} \cdot 2m \equiv m \pmod{n}$

LSB Oracle Attack

情境

- Least Significant Bit Oracle Attack
- 有一個 oracle 給他密文可以得到明文的最低位那個 bit
- 類似 Chosen Ciphertext Attack 但是只能拿 1 bit

Oracle

$$2^e c \xrightarrow{\text{oracle}} 2m$$

推論

- $\begin{cases} \lfloor \lfloor 2m \rfloor_n \rfloor_2 = \lfloor 2m \rfloor_2 = 0, & \text{if } m \in [0, \frac{n}{2}) \\ \lfloor \lfloor 2m \rfloor_n \rfloor_2 = \lfloor (2m n) \rfloor_2 = 1, & \text{if } m \in [\frac{n}{2}, n) \end{cases}$
- 根據最低位那個 bit 是 0 或 1 推論 m 在 $\frac{n}{2}$ 之前或之後

Oracle

$$4^e c \xrightarrow{\text{oracle}} 4m$$

推論

- 如果 $m \in [0, \frac{n}{2})$
- $\begin{cases} \lfloor \lfloor 4m \rfloor_n \rfloor_2 = \lfloor 4m \rfloor_2 = 0, & \text{if } m \in [0, \frac{n}{4}) \\ \lfloor \lfloor 4m \rfloor_n \rfloor_2 = \lfloor (4m n) \rfloor_2 = 1, & \text{if } m \in [\frac{n}{4}, \frac{2n}{4}) \end{cases}$
- 根據最低位那個 bit 是 0 或 1 推論 m 在 $\frac{n}{4}$ 之前或之後
- 如果 $m \in [\frac{n}{2}, n)$,同理

碎碎念

- 每次可以縮小一半的範圍,需要 $O(\log(n))$ 次 oracle
- 有點像是在二分搜尋

$$m = x_0 + 2y_1$$

$$r \equiv \lfloor x_0 + 2y_1 \rfloor_n \pmod{2}$$

$$\equiv x_0 \pmod{2}$$

$$\Rightarrow x_0 \equiv r \pmod{2}$$

Oracle

$$(2^{-1})^e c \xrightarrow{\text{oracle}} 2^{-1} m$$

推論

$$y_{2}$$

$$2^{-1}m = 2^{-1}x_{0} + x_{1} + 2y_{2}$$

$$r \equiv \lfloor 2^{-1}x_{0} + x_{1} + 2y_{2} \rfloor_{n} \pmod{2}$$

$$\equiv \lfloor 2^{-1}x_{0} \rfloor_{n} + x_{1} \pmod{2}$$

$$\Rightarrow x_{1} \equiv r - \lfloor 2^{-1}x_{0} \rfloor_{n} \pmod{2}$$

Oracle

$$(2^{-2})^e c \xrightarrow{\text{oracle}} 2^{-2} m$$

推論

碎碎念

- x_i 代表 m 的第 i 個 bit
- y; 代表 m 整段從最高位的 bit 到最低位數來第 i 個 bit
- 每次可以推論一個 bit,需要 $O(\log(n))$ 次 oracle

LSB Oracle Attack - CTF

CTF 考古題

- Google CTF QUALS 2018 PERFECT-SECRECY
- TokyoWesterns CTF 4th 2018 mixed-cipher
- HITCON CTF 2018 Lost-Key

Bleichenbacher 1998 (BB98)

- 介紹一個 Real World 的例子 Bleichenbacher 1998 年的論文
- 也是一種 Chosen Ciphertext Attack, 這次的 oracle 是給他 密文可以得到明文的最高位那個 byte 是不是 0x0002
- 這個情境很像 Padding Oracle Attack, 會告訴你給他的格式 正不正確
- 這個格式是 PKCS#1 v1.5

Figure: PKCS #1 v1.5

Chosen Ciphertext Attack

Bleichenbacher 1998

推論 (cont.)

■ sm = kn + (sm%n) for some unknown k

$$2B \le sm\%n < 3B$$

$$\Rightarrow 2B \le sm - kn < 3B$$

$$\Rightarrow \frac{2B + kn}{s} \le m < \frac{3B + kn}{s}$$

■ 雖然我們不知道 k,但是我們可以考慮所有可能的 k

推論 (cont.)

■ 要考慮所有可能的 k,那就要看一下 k 的範圍

$$2B \le sm - kn < 3B$$
$$\Rightarrow \frac{sm - 3B}{n} < k \le \frac{sm - 2B}{n}$$

- 我們知道原本的明文會滿足 0 ≤ m < n
- 所以就可以用舊的 *m* 的範圍推論 *k* 的範圍
- 再用 k 的範圍推論新的 m 的範圍

Chosen Ciphertext Attack

Bleichenbacher 1998

假設 s=1 格式正確

- k 只可能是 0
- 新的 *m* 的範圍 2*B* ≤ *m* < 3*B*

假設 s=10 格式正確

- 綠色是 m 舊的範圍,藍色這次 oracle 得到的新範圍
- 兩個交集的地方就是 *m* 新的可能的範圍

總結一下

- 每次 oracle 會把這些範圍和舊的範圍交集起來
- \blacksquare m 的範圍就會越來越小,直到只剩一個

後續影響

- 2016 : DROWN: Breaking TLS Using SSLv2 [12]
- 2018 : Return Of Bleichenbacher Oracle Threat (ROBOT)[13]
- 2019 : The 9 Lives of Bleichenbacher's CAT [14]
- 到近幾年還是會看到他的身影

RSA Coppersmith Method [15]

Coppersmith Method - 問題敘述

Given

- A monic polynomial $f(x) = x^{\delta} + \cdots$
- An integer *N* of unknown factorization
- An upper bound X

Goal

- Find all $|x_0| \le X$ satisfy $f(x_0) \equiv 0 \pmod{b}$
- Where b is a divisor of N, and $b \ge N^{\beta}$

碎碎念

■ 這個演算法就是 find small modular root

換個問題解

- Let $X_0 = \{ x_0 \mid f(x_0) \equiv 0 \pmod{b}, |x_0| \leq X \}$
- Find a function g such that $\forall x_0 \in X_0, g(x_0) = 0$

碎碎念

- 計算 mod b 下的根很難,就算根的範圍縮小了,還是不知 道要怎麼做啊
- 如果我們能找到一個 g(x),他在整數底下求出來的根和 f(x) 在 mod b 下求出來的根一樣就好,在整數底下求根我會做

g(x) 從哪裡來

- Pick two integers m, t
- Construct a collection of polynomial from f(x)

$$f_i(x) = \begin{cases} g_{i,j}(x) = x^j N^{m-i} f^i(x) & \text{for } 0 \le i < m, \ 0 \le j < \delta \\ h_i(x) = x^i f^m(x) & \text{for } 0 \le i < t \end{cases}$$

■ Satisfy $\forall x_0 \in X_0, \ g_{i,j}(x_0) \equiv h_i(x_0) \equiv 0 \pmod{b^m}$

碎碎念

■ 生成一堆滿足 mod $b^m = 0$ 的變種 f

嘗試製造 g(x)

• Construct an integer linear combination g(x)

$$g(x) = \sum_{i=0}^{n-1} a_i f_i(x), \text{ for } a_i \in \mathbb{Z}$$

Where $n = m\delta + t$

碎碎念

■ 把變種 f 看成 coefficent vector,考慮變種 f 生成的 lattice

如果 $|g(x_0)| < b^m$ 的話

- 我們構造的 $f_i(x)$ 都滿足 $f_i(x_0) \equiv 0 \pmod{b^m}$, g(x) 也滿足
- $\forall x_0 \in X_0$

$$\begin{cases} g(x_0) \equiv 0 \pmod{b^m} \\ |g(x_0)| < b^m \end{cases} \Rightarrow g(x_0) = 0$$

■ 這樣我們找 g(x) 上所有根,裡面就會包含我們要的答案 X_0

再換個問題解

• $\forall |x_0| < X, \ \|g(xX)\| < \frac{b^m}{\sqrt{n}} \Rightarrow |g(x_0)| < b^m$

碎碎念

- 這個小定理幫我們把問題轉成在 lattice 找 short vector
- 覺得很熟悉嗎,登愣,Shortest Vector Problem,那我們就用 LLL 演算法來做搞定了
- 這裡的 ||g(xX)|| 是指 g(xX) 的 coefficient vector 的 norm

Proof of the previous statement

■ Let c_i be the coefficients of g(x), then $\forall |x_0| < X$

$$|g(x_0)| = \sum_{i=0}^{n} c_i x_0^i \le \sum_{i=0}^{n} |c_i x_0^i|$$

$$\le \sum_{i=0}^{n} |c_i X^i| = \sqrt{(\sum_{i=0}^{n} |c_i X^i|)^2} \le \sqrt{n \sum_{i=0}^{n} |c_i X^i|^2}$$

$$= \sqrt{n} ||g(xX)|| < b^m$$

碎碎念

■ 中間用到了柯西不等式,忘記的同學們可以回去複習一下

LLL 找到的 short vector 夠嗎?

- Let L be the coefficient matrix formed by $f_0(x), f_1(x), \cdots$, and v be the vector found using LLL
- 現在要證明 v 滿足 $||g(xX)|| < \frac{b^m}{\sqrt{n}}$
- 已知 v 會滿足 $||v|| \le 2^{\frac{n-1}{4}} \det(L)^{\frac{1}{n}}$
- 所以我們只要讓 $2^{\frac{n-1}{4}} \det(L)^{\frac{1}{n}} < \frac{b^m}{\sqrt{n}} < \frac{N^{\beta m}}{\sqrt{n}}$ 就可以了

Compute det(*L*)

- Notice that the degree of $f_i(x)$ is i, therefore the basis of L forms a lower triangular matrix
- So the det(L) is simply the product of all entries on the diagonal

$$\det(L) = N^{\frac{1}{2}\delta m(m+1)} X^{\frac{1}{2}n(n-1)}$$

決定 m, t, X

- 我們其實還沒決定 m, t, X 要是多少
- 基本上我們想要 m, t 越小越好,這樣 lattice 會小一點
- *X* 則是越大越好,這樣我們能解的東西越多
- 而且最好可以消掉一些變數,比較好化簡
- 這裡引入了一個新的常數 ε ,滿足 $0 < \varepsilon \le \frac{1}{7}\beta$,可以調參

最後的最後

- 最後就剩驗證 $2^{\frac{n-1}{4}} \det(L)^{\frac{1}{n}} < \frac{N^{\beta m}}{\sqrt{n}}$
- 把 m, t, X, det(L) 代進去喇—喇就行了

Given

- A monic polynomial $f(x) = x^{\delta} + \cdots$
- An integer *N* of unknown factorization
- \blacksquare A rational number β

Coppersmith Method

- Find all $|x_0| \leq \frac{1}{2} N^{\frac{\beta^2}{\delta} \varepsilon}$ satisfy $f(x_0) \equiv 0 \pmod{b}$
- Where b is a divisor of N, and $b \ge N^{\beta}$

Coppersmith Method - 總結

Push the bound

- 我們可以很輕易的把 X 推廣到 $cN^{\frac{\beta^2}{\delta}}$ for some constant c
- $lacksymbol{\blacksquare}$ 選 $arepsilon=rac{1}{\log N}$ 那 $X=rac{1}{4}N^{rac{eta^2}{\delta}}$
- 接著把 $[-cN^{\frac{\beta^2}{\delta}}, cN^{\frac{\beta^2}{\delta}}]$ 切成 4c 個區間
- 假設 x_i 是每個區間的中點,那把所有 $f(x x_i)$ 的根收集起來就是答案了
- 可以平行去跑所有區間

Coppersmith Method - 總結

Given

- A monic polynomial $f(x) = x^{\delta} + \cdots$
- An integer *N* of unknown factorization
- \blacksquare A rational number β

Coppersmith Method

- Find all $|x_0| \le cN^{\frac{\beta^2}{\delta}}$ satisfy $f(x_0) \equiv 0 \pmod{b}$
- Where b is a divisor of N, and $b \ge N^{\beta}$

Coppersmith Method - 演算法步驟

Step 1 - 選參數

• 選
$$m = \left\lceil \frac{\beta^2}{\delta \epsilon} \right\rceil, t = \left\lfloor \delta m (\frac{1}{\beta} - 1) \right\rfloor$$
,計算 $X = \left\lceil N^{\frac{\beta^2}{\delta} - \epsilon} \right\rceil$

Step 2 - 計算變種 f

■計算

$$g_{i,j}(x) = x^j N^{m-i} f(x)$$
 for $0 \le i < m$, $0 \le j < \delta$
 $h_i(x) = x^i f(x)$ for $0 \le i < t$

Coppersmith Method

Coppersmith Method - 演算法步驟

Step 3 - LLL

- $g_{i,j}(xX), h_i(xX)$ 的 coefficient vetors 組成的 lattice basis B
- 對 B 做 LLL algorithm

Step 4 - 還原 g

- 假設 v 是 shortest vector in LLL reduced basis
- 那 v 是某個 g(xX) 的 coefficient vector,從 v 還原 g(x)

RSA Public Key Cryptosystem

Coppersmith Method

Coppersmith Method - 演算法步驟

Step 5 - 找根

- 找出 g(x) 的所有根
- 檢查根 x_0 是否滿足 $gcd(N, f(x_0)) \ge N^{\beta}$,沒有滿足的丟掉

Stereotyped messages

- 已知大部分的訊息,比如某個固定格式
- 明文 $m = \tilde{m} + x_0$,已知 \tilde{m} ,未知 x_0 滿足 $x \leq N^{\frac{1}{e}}$
- 密文 $c \equiv m^e \equiv (\tilde{m} + x_0)^e \pmod{N}$
- x_0 會是 $f(x) \equiv (\tilde{m} + x)^e c \pmod{N}$ 的小根

Coppersmith Method

- small_roots 參數選擇
 - $\beta = 1, \delta = e$
 - ullet ϵ 調小,更大的 X,花更多時間 (預設 $\epsilon = rac{eta}{8}$)
 - 能找到的範圍 $X < \frac{1}{2}n^{\frac{1}{e}-\epsilon}$

Known High Bits of p

- N = pq,質數 $p = \tilde{p} + x_0$,已知 \tilde{p} ,未知 x_0 滿足 $|x_0| < N^{\frac{1}{4}}$
- x_0 會是 $f(x) = \tilde{p} + x \pmod{p}$ 的小根

Coppersmith Method

- small_roots 參數選擇
 - $\beta = \frac{1}{2}, \delta = 1$
 - 洩漏高位的 p 不一定大於 $n^{\frac{1}{2}}$, β 可調小一點,但 X 會縮小
 - \bullet ϵ 調小,更大的 X,花更多時間 (預設 $\epsilon = \frac{\beta}{8}$)
 - 能找到的範圍 $X < \frac{1}{2}n^{\frac{1}{4}-\epsilon}$

Real World

Real World Example

- 2013 : Factoring RSA Keys from Certified Smart Cards [16]
- 2017 : The Return of Coppersmith's Attack (ROCA) [17]

RSA Related Message Attack

Related Message Attack

Franklin-Reiter Related Message Attack

情境

- 已知公鑰 n, e,加密兩個明文 m_1, m_2 為密文 c_1, c_2
- m_1, m_2 滿足 $m_2 = f(m_1)$ 對某個多項式 f

Franklin-Reiter Related Message Attack

解法

■ 考慮下面兩個多項式

$$g_1(x, y) \equiv x^e - c_1 \pmod{n}$$

$$g_2(x, y) \equiv f(x)^e - c_2 \pmod{n}$$

- m_2 同時是 g_1, g_2 的根,也就是 $(x m_1)$ 可以整除 g_1, g_2
- $\gcd(g_1,g_2)=x-m_1$

情境

- 已知公鑰 n, e,加密兩個明文 m_1, m_2 為密文 c_1, c_2
- $m_1 = 2^k M + r_1, m_2 = 2^k M + r_2$
- r_1, r_2 是 padding,M 是真正的明文

解法

■ 考慮下面兩個雙變量多項式

$$g_1(x,y) \equiv x^e - c_1 \pmod{n}$$

$$g_2(x,y) \equiv (x+y)^e - c_2 \pmod{n}$$

- 設 $\bar{y} = r_2 r_1$
- $g_1(x,\bar{y}),g_2(x,\bar{y})$ 有公因式 $x-m_1\Leftrightarrow res(g_1(x,\bar{y}),g_2(x,\bar{y}))=0$
- 計算 g_1, g_2 對 x 的 resultant $h(y) = res_x(g_1, g_2)$
- 使用 Coppersmith 求 *h*(*y*) 的小根, *y* 會是其中一個答案
- y = ȳ 代回式子,簡化為 Franklin-Reiter Related Message

Resultant

- Sylvester matrix 是由兩個單變量的多項式算出來的
- 兩個單變量多項式的 Resultant 就是他們的 Sylvester matrix 的 Determinant,而這個 Resultant 等於 0 若且唯若他們有 common root

Coppersmith Method

- res_x(g1,g2) 會是 e² 次多項式
- small_roots 參數選擇
 - $\beta = 1, \delta = e^2$
 - lacksquare 。 ϵ 調小,更大的 X,花更多時間 (預設 $\epsilon = rac{eta}{8}$)
 - 能找到的範圍 $X < \frac{1}{2}n^{\frac{1}{e^2}-\epsilon}$

RSA Digital Signature

RSA

How RSA Digital Signature works

- RSA 也可以用來做數位簽章
- 明文 m
- 簽章 $s = m^d \mod n$
- 驗證 $v = s^e \mod n$ 是否等於 m
- 因為 m < n,所以實務上會先做 hash 然後 padding

RSA Signature Forgery

Random Signature Forgery

- RSA 乘法的同態性質讓我們能夠偽造隨機的簽章
- 給 (*m*, *s*) 可以偽造出 (*m^k*, *s^k*) for some *k*
- $s^k = (m^d)^k = (m^k)^d$ 所以簽章是合法的
- 但沒辦法控制偽造出什麼明文
- 只對 textbook RSA 有用,有 hash 有 padding 就沒用了

Bleichenbacher 2006 (BB06)

- 介紹一個 Real World 的例子 Bleichenbacher 2006 年的論文
- 針對 PKCS#1 v1.5 (RFC 2313) 格式的 Signature Forgery
- 後續有一系列的衍生的攻擊
 - 2016 : RSA Signature Forgery in python-rsa [18]
 - 2019 : A Decade After Bleichenbacher '06, RSA Signature Forgery Still Works [19]

- R. L. Rivest and R. D. Silverman, "Arestrong' primes needed for rsa?," in The 1997 RSA Laboratories Seminar Series. Seminars Proceedings, 1997.
- J. M. Pollard, "Theorems on factorization and primality testing," in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 76, pp. 521–528, Cambridge University Press, 1974.
- \blacksquare H. C. Williams, "A p + 1 method of factoring," *Mathematics* of Computation, vol. 39, no. 159, pp. 225–234, 1982.
- M. J. Wiener, "Cryptanalysis of short rsa secret exponents," IEEE Transactions on Information theory, vol. 36, no. 3, pp. 553-558, 1990.
- B. De Weger, "Cryptanalysis of rsa with small prime difference," Applicable Algebra in Engineering, Communication and Computing, vol. 13, no. 1, pp. 17-28, 2002.

- S. Maitra and S. Sarkar, "Revisiting wiener's attack-new weak keys in rsa," in International Conference on Information Security, pp. 228–243, Springer, 2008.
- C.-Y. Chen, C.-C. Hsueh, and Y.-F. Lin, "A generalization of de weger's method," in 2009 Fifth International Conference on Information Assurance and Security, vol. 1, pp. 344–347, IEEE. 2009.
- A. Nitaj, "Diophantine and lattice cryptanalysis of the rsa cryptosystem," in Artificial Intelligence, Evolutionary Computing and Metaheuristics, pp. 139–168, Springer, 2013.
- M. Asbullah, Cryptanalysis on the Modulus N=p2q and Design of Rabin-like Cryptosystem Without Decryption Failure.
 - PhD thesis, PhD thesis, Universiti Putra Malaysia, 2015.

M. Kamel Ariffin, S. Abubakar, F. Yunos, and M. Asbullah, "New cryptanalytic attack on rsa modulus n= pq using small prime difference method," *Cryptography*, vol. 3, no. 1, p. 2, 2019.

H. Böck, J. Somorovsky, and C. Young, "Return of bleichenbacher's oracle threat ({ROBOT})," in 27th

- E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom, "The 9 lives of bleichenbacher's cat: New cache attacks on tls implementations," in 2019 IEEE Symposium on Security and Privacy (SP), pp. 435–452, IEEE, 2019.
- A. May, "Using III-reduction for solving rsa and factorization problems," in *The LLL algorithm*, pp. 315–348, Springer, 2009.
- D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou, N. Heninger, T. Lange, and N. Van Someren, "Factoring rsa keys from certified smart cards: Coppersmith in the wild," in *International Conference on the Theory and Application of Cryptology and Information Security*, pp. 341–360, Springer, 2013.
- M. Nemec, M. Sys, P. Svenda, D. Klinec, and V. Matyas, "The return of coppersmith's attack: Practical factorization of

widely used rsa moduli," in *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security*, pp. 1631–1648, ACM, 2017.

