The Superhero Machine Learning Api

For your consideration, my take on a Superhero ML API.

Superheroapi.zip

In the enclosed zip-archive you will find:

- Superheros_data.ipynb

a Jupyter Notebook detailing my investigation of the data, the selection of a classifier and the tuning of the feaure selector.

RestAPI/

Data.json

The 761 training examples from data.zip in a TinyDB-readable json-file

SHPersistence.py

exposes the SuperHeroStore-class which provides an abstraction of the TinyDB persistence – ideally to be able to switch persistence layer

SuperHeroModel.py

exposes the Model-class which provides two methods: "train" and "predict", thus encapsulating the objective – a Machine Learning model to predict Superhero Universe affiliation

SuperHeroREST.py

the REST-Api implementation – implemented using Flask, exposes the required endpoints, /article, /train and /predict

O Html/

a folder containing 5 html-files to interact with the RESTApi

- index.html index
- create hero.html upload a new hero to the API
- update_hero.html update an existing hero in the API
- delete hero.html delete an existing hero in the API
- predict_universe.html make a prediction from a hero article

Disclaimer

The enclosed code is a working prototype, not ready for production

Installation

To "install", simply extract contents of superheroapi.zip to a folder

The python code depends on **tinydb**, **flask**, **scikit-learn**, **numpy**, **scipy** (and cython for speed?). Install using pip or conda. The notebook requires Jupyter (+ everything), scipy, scikit-learn, matplotlib.

Switch working dir to RestAPI

Execute "python SuperHeroREST.py" to start the webserver on 127.0.0.1:5000 (configurable in file)

Optionally point a browser to http://127.0.0.1:5000/html to play around with it