Interfaz multimodal para KUKA LBR iiwa 7 R800

Generado por Doxygen 1.9.8

1 Índice de clases	1
1.1 Lista de clases	1
2 Índice de archivos	3
2.1 Lista de archivos	3
3 Documentación de clases	5
3.1 Referencia de la clase iiwa_surgery	5
3.1.1 Descripción detallada	6
3.1.2 Documentación de constructores y destructores	6
3.1.2.1init()	6
3.1.3 Documentación de funciones miembro	7
3.1.3.1 move_cartesian()	7
3.1.3.2 move_cartesian_fulcrum()	7
3.1.3.3 move_joint()	7
3.1.3.4 set_fulcrum_fi()	8
3.1.3.5 set_robot_ip()	8
3.1.3.6 set_tool_data()	8
3.1.3.7 set_work_mode()	8
3.1.4 Documentación de datos miembro	9
3.1.4.1 cartesian_pub	9
3.1.4.2 fulcrum_fi	9
3.1.4.3 joint_pub	9
3.1.4.4 Pf	9
3.1.4.5 Ptcp	9
3.1.4.6 robot_ip	9
3.1.4.7 simulation_mode	10
3.1.4.8 tool length	10
3.1.4.9 tool_orientation	10
3.1.4.10 work_mode	10
3.2 Referencia de la clase iiwa_surgery_node_class	10
3.2.1 Descripción detallada	11
3.2.2 Documentación de constructores y destructores	11
3.2.2.1 <u>init () </u>	11
3.2.3 Documentación de funciones miembro	12
3.2.3.1 cartesian_pose_callback()	12
3.2.3.2 joint_command_callback()	12
3.2.3.3 joint_position_callback()	12
3.2.3.4 joint_state_callback()	12
3.2.3.5 pose_command_callback()	14
3.2.3.6 run()	14
3.2.4 Documentación de datos miembro	14
3.2.4.1 cartesian_pose_sub	14
0.2.7.1 variesiaii_pose_sub	14

	3.2.4.2 ef_pose_pub	14
	3.2.4.3 first_position	14
	3.2.4.4 fulcrum_fi	15
	3.2.4.5 iiwa	15
	3.2.4.6 joint_position_sub	15
	3.2.4.7 joint_pub	15
	3.2.4.8 joint_state_sub	15
	3.2.4.9 joint_sub	15
	3.2.4.10 pose_sub	15
	3.2.4.11 robot_ip	16
	3.2.4.12 simulation_mode	16
	3.2.4.13 tcp_pose_pub	16
	3.2.4.14 tool_length	16
	3.2.4.15 tool_orientation	16
	3.2.4.16 work_mode	16
4 Documentació	n de archivos	17
4.1 Referenci	a del archivo TFM_JavierLara/Archivos comentados para Doxygen/iiwa_control_class.py	17
4.2 Referenci	a del archivo TFM_JavierLara/Archivos comentados para Doxygen/iiwa_control_node.py	17
Índice alfabético		19

Índice de clases

1.1. Lista de clases

Lista de clases, estructuras, uniones e interfaces con breves descripciones:

iiwa_surgery	
Clase para controlar un robot KUKA LBR iiwa con fines quirúrgicos en un entorno de ROS	Ę
iiwa_surgery_node_class	
Clase que define el nodo ROS para el control del robot KUKA LBR iiwa con fines quirúrgicos .	10

2 Índice de clases

Índice de archivos

2.1. Lista de archivos

Lista de todos los archivos con breves descripciones:

TFM_JavierLara/Archivos comentados para Doxygen/iiwa_control_class.py	 17
TFM JavierLara/Archivos comentados para Doxygen/iiwa control node.py	 17

4 Índice de archivos

Documentación de clases

3.1. Referencia de la clase iiwa_surgery

Clase para controlar un robot KUKA LBR iiwa con fines quirúrgicos en un entorno de ROS.

Métodos protegidos

- __init__ (self, simulation_mode=True)
 - Inicializa una instancia de la clase iiwa_surgery.
- move_cartesian (self, pose)
 - Mueve el robot en el espacio cartesiano.
- move_cartesian_fulcrum (self, pose, increment_vector, j)
 - Mueve el robot en el espacio cartesiano alrededor de un punto de fulcro.
- move_joint (self, joint_config)
 - Mueve el robot en el espacio de articulación.
- set_fulcrum_fi (self, fulcrum_fi)
 - Configura el punto de fulcro.
- set_robot_ip (self, robot_ip)
 - Configura la dirección IP del robot.
- set_tool_data (self, tool_length, tool_orientation)
 - Configura los datos de la herramienta.
- set_work_mode (self, work_mode)
 - Configura el modo de trabajo del robot.

Atributos protegidos

- cartesian pub
 - Publicador ROS utilizado para enviar mensajes de posición cartesiana al robot.
- fulcrum fi
 - Valor que indica en que punto de la longitud de la herramienta se encuentra el punto de fulcro.
- joint_pub
 - Publicador ROS utilizado para enviar mensajes de posición articular al robot.
- Pf
- Vector que almacena la posición del punto de fulcro en el espacio cartesiano.

Ptcp

Vector que almacena la posición del TCP (Tool Center Point) en el espacio cartesiano.

robot_ip

Cadena que representa la dirección IP del robot.

simulation_mode

Booleano que indica si el sistema está en modo de simulación.

tool_length

Valor que representa la longitud de la herramienta.

tool orientation

Lista que almacena la orientación de la herramienta en radianes con el en formato [roll, pitch, yaw].

work_mode

Cadena que indica el modo de trabajo del robot ('free' o 'pivot').

3.1.1. Descripción detallada

Clase para controlar un robot KUKA LBR iiwa con fines quirúrgicos en un entorno de ROS.

Esta clase permite configurar el robot, establecer datos de la herramienta y realizar movimientos articulares y movimientos en el espacio cartesiano.

Configuración del robot:

- Esta clase se utiliza para controlar el robot KUKA LBR iiwa en un entorno de simulación con Gazebo o en un robot real.
- Es posible configurar la dirección IP del robot utilizando el método <code>set_robot_ip</code>.
- El modo de trabajo del robot se puede configurar como 'free' o 'pivot' utilizando el método set work mode.

Configuración de la herramienta:

• Utilizar el método set_tool_data para definir la longitud de la herramienta y su orientación. La herramienta a utilizar siempre se encuentra alineada con el eje Z del efector dinal (EF).

Movimiento articular preciso:

• El método move_joint te permite mover el robot en el espacio articular proporcionando una configuración de las articulaciones del robot.

Movimiento libre en el espacio cartesiano:

• El método move_cartesian permite mover el robot en el espacio cartesiano proporcionando una posición y orientación deseada del TCP.

Movimiento en el espacio cartesiano alrededor de un punto de fulcro:

• El método move_cartesian_fulcrum permite mover el robot alrededor de un punto de fulcro. Proporcionar una posición y orientación deseada del TCP, un vector de incrementos y un indicador de posición.

3.1.2. Documentación de constructores y destructores

Inicializa una instancia de la clase iiwa_surgery.

Parámetros

simulation_mode	(bool, opcional): Indica si se está ejecutando en modo simulación. El valor predeterminado	1
	es True.	

3.1.3. Documentación de funciones miembro

3.1.3.1. move_cartesian()

```
move_cartesian ( self, \\ pose ) \quad [protected]
```

Mueve el robot en el espacio cartesiano.

Parámetros

pose (geometry_msgs.msg.PoseStamped): Posición y orientación deseada del Tool Center Point (TCP) en espacio cartesiano.

3.1.3.2. move_cartesian_fulcrum()

Mueve el robot en el espacio cartesiano alrededor de un punto de fulcro.

Parámetros

pose	(geometry_msgs.msg.PoseStamped): Posición y orientación deseada del Tool Center Point (TCP) en espacio cartesiano.
increment_vector	(list): Vector de incrementos [Ph1, Ph2, Ph3] para mover la herramienta.
j	(int): Indicador de posición, 0 para la posición inicial, 1 para las posiciones sucesivas.

3.1.3.3. move_joint()

Mueve el robot en el espacio de articulación.

Parámetros

3.1.3.4. set_fulcrum_fi()

```
\begin{tabular}{ll} set\_fulcrum\_fi \ ( & & \\ self, & & \\ fulcrum\_fi \ ) & [protected] \end{tabular}
```

Configura el punto de fulcro.

Parámetros

fulcrum←	(float): Posición del punto de fulcro, un valor entre 0 y 1.
_fi	

3.1.3.5. set_robot_ip()

Configura la dirección IP del robot.

Parámetros

robot⊷	(str): Dirección IP del robot.
_ip	

3.1.3.6. set_tool_data()

Configura los datos de la herramienta.

Parámetros

tool_length	(float): Longitud de la herramienta.
tool_orientation	(list): Orientación de la herramienta en formato [roll, pitch, yaw].

3.1.3.7. set_work_mode()

```
set\_work\_mode \ ( \\ self, \\ work\_mode \ ) \ \ [protected]
```

Configura el modo de trabajo del robot.

Parámetros

work_mode	(str): Modo de trabajo del robot ('free' o 'pivot').
-----------	--

3.1.4. Documentación de datos miembro

3.1.4.1. cartesian_pub

```
cartesian_pub [protected]
```

Publicador ROS utilizado para enviar mensajes de posición cartesiana al robot.

3.1.4.2. fulcrum_fi

```
fulcrum_fi [protected]
```

Valor que indica en que punto de la longitud de la herramienta se encuentra el punto de fulcro.

Debe estar entre 0 y 1, siendo 0 el EF y el 1 el TCP.

3.1.4.3. joint_pub

```
joint_pub [protected]
```

Publicador ROS utilizado para enviar mensajes de posición articular al robot.

3.1.4.4. Pf

```
Pf [protected]
```

Vector que almacena la posición del punto de fulcro en el espacio cartesiano.

3.1.4.5. Ptcp

```
Ptcp [protected]
```

Vector que almacena la posición del TCP (Tool Center Point) en el espacio cartesiano.

3.1.4.6. robot_ip

```
robot_ip [protected]
```

Cadena que representa la dirección IP del robot.

Ej: "192.228.17.57"

3.1.4.7. simulation_mode

```
simulation_mode [protected]
```

Booleano que indica si el sistema está en modo de simulación.

3.1.4.8. tool length

```
tool_length [protected]
```

Valor que representa la longitud de la herramienta.

3.1.4.9. tool_orientation

```
tool_orientation [protected]
```

Lista que almacena la orientación de la herramienta en radianes con el en formato [roll, pitch, yaw].

3.1.4.10. work mode

```
work_mode [protected]
```

Cadena que indica el modo de trabajo del robot ('free' o 'pivot').

La documentación de esta clase está generada del siguiente archivo:

■ TFM_JavierLara/Archivos comentados para Doxygen/iiwa_control_class.py

3.2. Referencia de la clase iiwa_surgery_node_class

Clase que define el nodo ROS para el control del robot KUKA LBR iiwa con fines quirúrgicos.

Métodos protegidos

__init__ (self)

Constructor de la clase.

cartesian pose callback (self, msg)

Callback para recibir estados de posición cartesiana y posteriormente publicarlos en el topic iiwa_surgery/output/ef⇔_pose y tras trasnformación en iiwa_surgery/output/tcp_pose.

joint_command_callback (self, msg)

Callback para recibir comandos de posición articular y posteriormente enviarlos al método move_joint de la clase iiwa_surgery.

joint_position_callback (self, msg)

Callback para recibir estados de posición articular y posteriormente publicarlos en el topic iiwa_surgery/output/joints.

joint_state_callback (self, msg)

Callback para recibir estados de posición articular y posteriormente publicarlos en el topic iiwa_surgery/output/joints.

pose_command_callback (self, msg)

Callback para recibir comandos de posición cartesiana y posteriormente enviarlos a los métodos move_cartesian o move_cartesian_fulcrum de la clase iiwa_surgey dependiendo si el movimiento es libre o de pivoteo.

run (self)

Ejecuta el bucle principal mientras el nodo está en funcionamiento.

Atributos protegidos

cartesian_pose_sub

Suscriptor ROS utilizado para recibir estados de posición cartesiana.

ef_pose_pub

Publicador ROS utilizado para enviar estados de posición final del efector (EF) del robot.

first_position

Variable que se utiliza para almacenar la primera posición recibida en el callback pose command callback.

• fulcrum fi

Valor que indica en que punto de la longitud de la herramienta se encuentra el punto de fulcro.

iiwa

Es una instancia de la clase iiwa_surgery que se utiliza para controlar el robot iiwa.

joint_position_sub

Suscriptor ROS utilizado para recibir estados de posición articular.

joint_pub

Publicador ROS utilizado para enviar mensajes de posición articular.

joint_state_sub

Suscriptor ROS utilizado para recibir estados de posición articular.

joint sub

Suscriptor ROS utilizado para recibir comandos de posición articular.

pose_sub

Suscriptor ROS utilizado para recibir comandos de posición cartesiana.

robot_ip

Almacena la dirección IP del robot iiwa.

simulation_mode

Indica si el robot está en modo de simulación o no, siendo True para simulación y False para el robot real.

tcp pose pub

Publicador ROS utilizado para enviar estados de posición del Tool Center Point (TCP).

tool_length

Almacena la longitud de la herramienta utilizada en el robot.

tool_orientation

Lista que almacena la orientación de la herramienta en radianes con el en formato [roll, pitch, yaw].

work mode

Indica el modo de trabajo predeterminado del robot ("free" para movimiento libre y "pivot" para movimiento alrededor de punto de fulcro).

3.2.1. Descripción detallada

Clase que define el nodo ROS para el control del robot KUKA LBR iiwa con fines quirúrgicos.

3.2.2. Documentación de constructores y destructores

Constructor de la clase.

3.2.3. Documentación de funciones miembro

3.2.3.1. cartesian pose callback()

Callback para recibir estados de posición cartesiana y posteriormente publicarlos en el topic iiwa_ surgery/output/ef_pose y tras trasnformación en iiwa_surgery/output/tcp_pose.

Parámetros

msg | Mensaje de estado de posición cartesiana (PoseStamped).

3.2.3.2. joint_command_callback()

```
joint_command_callback ( self, \\ msg \ ) \quad [protected]
```

Callback para recibir comandos de posición articular y posteriormente enviarlos al método move_joint de la clase iiwa_surgery.

Parámetros

msg Mensaje de posición articular (JointPosition).

3.2.3.3. joint_position_callback()

```
joint_position_callback ( self, \\ msg \ ) \quad [protected]
```

Callback para recibir estados de posición articular y posteriormente publicarlos en el topic iiwa_ surgery/output/joints.

Parámetros

msg Mensaje de estado de posición articular (JointPosition).

3.2.3.4. joint_state_callback()

```
\begin{tabular}{ll} \verb|joint_state_callback|| & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

Callback para recibir estados de posición articular y posteriormente publicarlos en el topic iiwa_ curgery/output/joints.

Parámetros

msg | Mensaje de estado de posición articular (JointState).

3.2.3.5. pose_command_callback()

Callback para recibir comandos de posición cartesiana y posteriormente enviarlos a los métodos move_cartesian o move_cartesian_fulcrum de la clase iiwa_surgey dependiendo si el movimiento es libre o de pivoteo.

Parámetros

msg Mensaje de posición cartesiana (PoseStamped).

3.2.3.6. run()

```
{\tt run \ (} \\ {\tt \it self \ ) \ [protected]}
```

Ejecuta el bucle principal mientras el nodo está en funcionamiento.

3.2.4. Documentación de datos miembro

3.2.4.1. cartesian_pose_sub

```
cartesian_pose_sub [protected]
```

Suscriptor ROS utilizado para recibir estados de posición cartesiana.

3.2.4.2. ef_pose_pub

```
ef_pose_pub [protected]
```

Publicador ROS utilizado para enviar estados de posición final del efector (EF) del robot.

3.2.4.3. first_position

```
first_position [protected]
```

Variable que se utiliza para almacenar la primera posición recibida en el callback pose_command_callback.

3.2.4.4. fulcrum_fi

```
fulcrum_fi [protected]
```

Valor que indica en que punto de la longitud de la herramienta se encuentra el punto de fulcro.

Debe estar entre 0 y 1, siendo 0 el EF y el 1 el TCP.

3.2.4.5. iiwa

```
iiwa [protected]
```

Es una instancia de la clase iiwa_surgery que se utiliza para controlar el robot iiwa.

3.2.4.6. joint_position_sub

```
joint_position_sub [protected]
```

Suscriptor ROS utilizado para recibir estados de posición articular.

3.2.4.7. joint_pub

```
joint_pub [protected]
```

Publicador ROS utilizado para enviar mensajes de posición articular.

3.2.4.8. joint_state_sub

```
joint_state_sub [protected]
```

Suscriptor ROS utilizado para recibir estados de posición articular.

3.2.4.9. joint sub

```
joint_sub [protected]
```

Suscriptor ROS utilizado para recibir comandos de posición articular.

3.2.4.10. pose_sub

```
pose_sub [protected]
```

Suscriptor ROS utilizado para recibir comandos de posición cartesiana.

3.2.4.11. robot_ip

```
robot_ip [protected]
```

Almacena la dirección IP del robot iiwa.

3.2.4.12. simulation_mode

```
simulation_mode [protected]
```

Indica si el robot está en modo de simulación o no, siendo True para simulación y False para el robot real.

3.2.4.13. tcp_pose_pub

```
tcp_pose_pub [protected]
```

Publicador ROS utilizado para enviar estados de posición del Tool Center Point (TCP).

3.2.4.14. tool_length

```
tool_length [protected]
```

Almacena la longitud de la herramienta utilizada en el robot.

3.2.4.15. tool_orientation

```
tool_orientation [protected]
```

Lista que almacena la orientación de la herramienta en radianes con el en formato [roll, pitch, yaw].

3.2.4.16. work_mode

```
work_mode [protected]
```

Indica el modo de trabajo predeterminado del robot ("free" para movimiento libre y "pivot" para movimiento alrededor de punto de fulcro).

La documentación de esta clase está generada del siguiente archivo:

TFM_JavierLara/Archivos comentados para Doxygen/iiwa_control_node.py

Documentación de archivos

4.1. Referencia del archivo TFM_JavierLara/Archivos comentados para Doxygen/iiwa_control_class.py

Clases

class iiwa_surgery

Clase para controlar un robot KUKA LBR iiwa con fines quirúrgicos en un entorno de ROS.

Espacios de nombres

namespace iiwa_control_class

4.2. Referencia del archivo TFM_JavierLara/Archivos comentados para Doxygen/iiwa_control_node.py

Clases

class iiwa_surgery_node_class

Clase que define el nodo ROS para el control del robot KUKA LBR iiwa con fines quirúrgicos.

Espacios de nombres

■ namespace iiwa control node

Variables

node = iiwa_surgery_node_class()

Índice alfabético

```
init
                                                             cartesian_pose_sub, 14
     iiwa_surgery, 6
                                                             ef_pose_pub, 14
     iiwa_surgery_node_class, 11
                                                             first_position, 14
                                                             fulcrum_fi, 14
C:/Users/Javier/Desktop/TFM/Repositorio/Archivos co-
                                                             iiwa, 15
          mentados para Doxygen/iiwa_control_class.py,
                                                             joint_command_callback, 12
                                                             joint_position_callback, 12
C:/Users/Javier/Desktop/TFM/Repositorio/Archivos co-
                                                             joint position sub, 15
          mentados para Doxygen/iiwa control node.py,
                                                             joint pub, 15
                                                             joint_state_callback, 12
cartesian pose callback
                                                             joint_state_sub, 15
     iiwa_surgery_node_class, 12
                                                             joint_sub, 15
cartesian_pose_sub
                                                             pose_command_callback, 14
     iiwa_surgery_node_class, 14
                                                             pose_sub, 15
cartesian_pub
                                                             robot_ip, 15
     iiwa_surgery, 9
                                                             run, 14
                                                             simulation_mode, 16
ef pose pub
                                                             tcp pose pub, 16
     iiwa_surgery_node_class, 14
                                                             tool length, 16
                                                             tool orientation, 16
first position
                                                             work_mode, 16
     iiwa_surgery_node_class, 14
fulcrum fi
                                                        joint command callback
     iiwa surgery, 9
                                                             iiwa_surgery_node_class, 12
     iiwa_surgery_node_class, 14
                                                        joint_position_callback
                                                             iiwa_surgery_node_class, 12
                                                        joint_position_sub
     iiwa_surgery_node_class, 15
                                                             iiwa_surgery_node_class, 15
iiwa_surgery, 5
                                                        joint_pub
     ___init___, 6
                                                             iiwa surgery, 9
     cartesian_pub, 9
                                                             iiwa surgery node class, 15
     fulcrum_fi, 9
                                                        joint_state_callback
    joint_pub, 9
                                                             iiwa_surgery_node_class, 12
     move cartesian, 7
                                                        joint_state_sub
     move cartesian fulcrum, 7
                                                             iiwa_surgery_node_class, 15
     move_joint, 7
                                                        joint_sub
     Pf, 9
                                                             iiwa_surgery_node_class, 15
     Ptcp, 9
     robot ip, 9
                                                        move_cartesian
     set_fulcrum_fi, 8
                                                             iiwa_surgery, 7
     set_robot_ip, 8
                                                        move cartesian fulcrum
     set tool data, 8
                                                             iiwa surgery, 7
     set_work_mode, 8
                                                        move joint
     simulation_mode, 9
                                                             iiwa surgery, 7
     tool length, 10
     tool orientation, 10
                                                        Ρf
    work mode, 10
                                                             iiwa surgery, 9
iiwa_surgery_node_class, 10
                                                        pose command callback
     __init__, 11
                                                             iiwa_surgery_node_class, 14
     cartesian_pose_callback, 12
                                                        pose_sub
```

20 ÍNDICE ALFABÉTICO

```
iiwa_surgery_node_class, 15
Ptcp
    iiwa_surgery, 9
robot_ip
    iiwa_surgery, 9
    iiwa_surgery_node_class, 15
run
    iiwa_surgery_node_class, 14
set fulcrum fi
    iiwa_surgery, 8
set_robot_ip
    iiwa_surgery, 8
set_tool_data
    iiwa_surgery, 8
set_work_mode
    iiwa_surgery, 8
simulation_mode
    iiwa_surgery, 9
    iiwa_surgery_node_class, 16
tcp_pose_pub
    iiwa_surgery_node_class, 16
tool length
    iiwa_surgery, 10
    iiwa_surgery_node_class, 16
tool_orientation
    iiwa_surgery, 10
    iiwa_surgery_node_class, 16
work mode
    iiwa_surgery, 10
    iiwa_surgery_node_class, 16
```