

FIG.3

FIG.4

FIG.5

2 VACUUM
2 VACUUM
1 ETCHING TRANSPORT TRANSPORT TRANSPORT TRANSPORT TRANSPORT TRANSPORT TRANSPORT TO LOADER

1 ETCHING TRANSPORT TRANSPORT TRANSPORT TO LOADER

1 ETCHING TRANSPORT TO LOADER

2 VACUUM
1 ETCHING TRANSPORT TO LOADER

3 ETCHING TRANSPORT TO LOADER

4 ETCHING TRANSPORT TO LOADER

4 ETCHING TRANSPORT TO LOADER

5 ETCHING TRANSPORT TO LOADER

5 ETCHING TRANSPORT TO LOADER

5 ETCHING TRANSPORT TO LOADER

6 ETC

FIG.10 Nife ALLOY SURFACE IMMEDIATELY AFTER CHEMICAL REACTION HCI REACTS WITH **ETCHING** WHEN LEFT IN AIR Fe TO CORRODE C12 MELECULES ADSORBED THE SURFACE ON THE SURFACE REACT WITH HCI IS PHYSICALLY AND L 二 ΦCI2 FORMED CHEMICALLY Ni ATOM Fe ATOM CHEMICAL REACTION WHEN WATER RINSED INMEDIATELY AFTER ETCHING R~HYDROGEN ATOM 乊 HCI MOLECULE REMOVAL OF ADSORBED C12 MOLECULE BY BONDING WITH

FIG.12

HYDROGEN ATOM

EXPERIMENTAL CONDITIONS*	TIME UNTIL CORROSION OCCURS
LEFT IN AIR AFTER ETCHING OF GAP LAYER	5 MIN.
LEFT IN AIR AFTER PURE WATER RINSING/DRYING WITHIN 2 MIN. AFTER ETCHING OF GAP LAYER	AFTER MORE THAN 2 WEEKS

ITEM	UNIT	RESULT
RATE	nm/min	108.5

*OTHER CONDITIONS

ITEM	CONDITIONS	
DEVICE STRUCTURES PRIOR TO & AFTER ETCHING	UPPER MAG. POLE GAP LAYER SHIELD LAYER (NIFE ALLOY)	
GAS	CI 20sccm+BCI3 30sccm	
PRESSURE	0.3Pa	
STAGE TEMP.	40℃	
SOURCE RF POWER	750W	
SOURCE RF FREQ.	13.56MHz	
BIAS RF POWER	60W	
BIAS RF FREQ.	800 KHz	