Analisi Numerica

Alessandro Sosso, Marco Ambrogio Bergamo

Anno 2023-2024

Indice

Ι	Primo semestre	3		
1	Buona posizione e numero di condizionamento di un problema			
	1.1 Problema numerico			
	1.2 Metodo numerico	4		
2		6		
	2.1 Operazioni in \mathbb{F}	7		
3	Metodi diretti per sistemi lineari	8		
	3.1 Sistemi lineari	8		
	3.2 Sistemi triangolari			
	3.3 Eliminazione di Gauss e Fattorizzazione LU	10		
	3.3.1 Eliminazione di Gauss			
	3.3.2 Fattorizzazione LU			
	3.3.3 Per matrici a bande			
	3.3.4 Stabilità dell'eliminazione di Gauss			
	3.3.5 Pivoting (scambiare righe)			
	3.4 Fattorizzazione QR			
	3.5 Sistemi sovradeterminati	14		
4	Metodi iterativi per sistemi lineari	15		
	4.1 Metodi iterativi stazionari			
	4.1.1 Metodi di Jacobi e di Gauss-Seidel	16		
	4.1.2 Metodi di Richardson (NO)	17		
	4.2 Metodo del gradiente (non stazionario)	18		
	4.2.1 Metodo del gradiente coniugato	19		
	4.2.2 Metodo del gradiente coniugato precondizionato	22		
	4.3 Precondizionatori algebrici, Sparsità	22		
5	Calcolo di Autovalori e Autovettori	23		
	5.1 Localizzazione geometrica degli autovalori	23		
	5.2 Analisi del condizionamento	23		
	5.3 Metodi delle potenze	24		
	5.4 Metodi basati sulla fattorizzazione QR (NO)	26		
II	I Secondo semestre	2 9		
6	Zeri di funzione e ottimizzazione	29		
	6.1 Metodo di Punto Fisso	30		
	6.1.1 Stabilità del metodo delle iterazioni di punto fisso			
	6.2 Sistemi non lineari			
	6.3 Radici di Polinomi			

7	App	prossimazione di funzioni	34
	7.1	Interpolazione polinomiale di Lagrange	34
	7.2	Forma di Newton del polinomio interpolatore	39
	7.3	Interpolazione composita di Lagrange (polinomiale a tratti)	40
	7.4	Funzioni spline	40
		7.4.1 Spline di grado 1 $(k=1)$	41
		7.4.2 Spline di grado 3 $(k=3)$	41
	7.5	Interpolazione in più variabili	41
	7.6	Interpolazione astratta	42
	7.7	Interpolazione nel senso dei minimi quadrati	42
8	Inte	egrazione Numerica	45
	8.1	Formule di quadratura interpolatorie - formule di Newton-Cotes	45
		8.1.1 Formula del punto medio $(n = 0)$	45
		8.1.2 Formula del trapezio $(n = 1)$	
		8.1.3 Formula di Cavalieri-Simpson $(n=2)$	46
		8.1.4 Formule di Newton-Cotes (generalizzazione)	47
		8.1.5 Adattività	47
	8.2	Integrazione Gaussiana	47
9	App	prossimazione di Equazioni Differenziali Ordinarie	50
	9.1	Metodi ad un passo	50
	9.2	Sistemi di Equazioni Differenziali Ordinarie	52
	9.3	Metodi a più passi (multistep)	52
		9.3.1 Stabilità per i metodi multistep	53
ΙΙ	Ι Ι	Recap ed esame	54
10) Rec	cap Barabba	54
11	Scri	itto: formule e osservazioni per esercizi (da Epic)	55
		Primo semestre	
		Secondo semestre	

Preliminari Meschini

Definizione 0.1 : Spazio vettoriale, Norma

Teo. 1 (Disuguaglianza di Cauchy-Schwarz). $\langle x,y\rangle = \left|x^T\cdot y\right| \leq \left\|x\right\|_2 \cdot \left\|y\right\|_2$

Definizione 0.2 (Norma matriciale): $\|A\cdot B\| \leq \|A\|\cdot \|B\|$ e Norma matriciale indotta

$$||A|| := \sup_{x \in \mathbb{R}^n} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$

Definizione 0.3 : Spettro di una matrice $\Lambda\left(A\right)$, Raggio spettrale $\rho\left(A\right) = \max_{\lambda \in \Lambda\left(A\right)} |\lambda|$

Teo. 2 . Se A simmetrica $\Longrightarrow \|A\|_2 = \rho(A)$

Prop. 1 . $\|A\|$ norma matriciale indotta $\Longrightarrow \rho(A) \leq \|A\|$

Teo. 3 . $\rho(A) = \inf \|A\|$ per tutte le possibili norme matriciali

Teo. 4 (Decomposizione in valori singolari). $A \in \mathbb{R}^{m \times n}$, allora $\exists U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ ortogonali, $\exists \Sigma \in \mathbb{R}^{m \times n}$ diagonale (di elementi detti valori singolari) tali che $A = U\Sigma V^T$

Dimostrazione. P. 11. Supponiamo $m \geq n$. Per induzione su m

Definizione 0.4 (Raggio spettrale): $\rho(A) := \max_{\lambda \in \sigma(A)} |\lambda|$ è l'autovalore di modulo massimo

Parte I

Primo semestre

1 Buona posizione e numero di condizionamento di un problema

1.1 Problema numerico

Definizione 1.1 (Problema ben posto/stabile): $d \in D$, $x \in X$ con D, X sottoinsiemi di spazi **normati**. Un problema ben posto è

$$F\left(x,d\right) = 0$$

tale che

- (i) Esiste una soluzione
- (ii) La soluzione è unica
- (iii) La soluzione dipende con continuità coi dati

Esempio (**Problema mal posto**) Numero di soluzioni di $P_a(x) = x^4 - x^2(2a - 1) + a(a - 1)$ in funzione di a

Definizione 1.2 (Funzione risolvente): Se il problema è ben posto, ovvero ammette soluzione unica, allora esiste una funzione

$$G: D \rightarrow X$$
 continua $d \mapsto x$

e abbiamo F(G(d), d) = 0 e $x + \delta x = G(d + \delta d)$.

Definizione 1.3 (Errore): In generale i dati saranno perturbati $d + \delta d$ e $G(d + \delta d) = x + \delta x$ in modo che

$$F(x + \delta x, d + \delta d) = 0$$

Assoluto
$$\|\delta x\|_X$$
 Relativo $\frac{\|\delta x\|_X}{\|x\|_X}$ se $\|x\|_X \neq 0$

Proprietà di Lipschitzianità In generale richiediamo oltre alla dipendenza continua dai dati, anche la lip., ovvero che valga:

$$\exists K_0 = K_0(d) \mid \forall \delta d : d + \delta d \in D, \ \|\delta x\|_X \le K_0 \|\delta d\|_D$$

Questa proprietà è più adatta ad esprimere il concetto di **stabilità numerica**: piccole perturbazioni sui dati danno luogo a perturbazioni **dello stesso ordine di grandezza** sulla soluzione.

Definizione 1.4 (Numero di condizionamento): Data $G: D \to X$ risolvente e $\delta x := G(d + \delta d) - G(d)$

Relativo
$$K(d) = \lim_{\delta \to 0} \left(\sup_{\|\delta d\| \le \delta} \left\{ \frac{\|\delta x\|/\|x\|}{\|\delta d\|/\|d\|} \right\} \right) = \lim_{\delta \to 0} \left(\sup_{\|\delta d\| \le \delta} \left\{ \frac{\|\delta x\|}{\|\delta d\|} \frac{\|d\|}{\|x\|} \right\} \right)$$
Assoluto $\hat{K}(d) = \lim_{\delta \to 0} \left(\sup_{\|\delta d\| \le \delta} \left\{ \frac{\|\delta x\|}{\|\delta d\|} \right\} \right)$

L'assoluto è utile per es. quando d=0 o x=0. È una **misura** della bontà di dipendenza continua dai dati.

Osservazione Il libro la definisce

$$\text{Relativo } K\left(d\right) = \sup \left\{ \frac{\|\delta x\|/\|x\|}{\|\delta d\|/\|d\|}, \ \delta d \neq 0, \ d + \delta d \in D \right\} \quad \text{Assoluto } K_{\text{abs}}\left(d\right) = \sup \left\{ \frac{\|\delta x\|}{\|\delta d\|}, \ \delta d \neq 0, \ d + \delta d \in D \right\}$$

Definizione 1.5 (Buon condizionamento): K(d) piccolo (o $\hat{K}(d)$). Cioè ad un errore relativo sui dati corrisponde un errore piccolo sulla soluzione.

Osservazione $K(d) < +\infty$ vuol dire $\exists k_0 > 0$ tale che $\frac{\|\delta x\|}{\|x\|} \le k_0 \frac{\|\delta d\|}{\|d\|}$ per $\|\delta d\|$ sufficientemente piccolo. Infatti, fissato δ "piccolo", ho che

$$\sup_{\|\delta d\| < \delta} \left\{ \frac{\|\delta x\|/\|x\|}{\|\delta d\|/\|d\|} \right\} \approx K(d) \geq \frac{\|\delta x\|/\|x\|}{\|\delta d\|/\|d\|} \quad \forall \delta d \in D: \|\delta D\| \leq \delta$$

e quindi $\frac{\|\delta x\|}{\|x\|} \le K(d) \frac{\|\delta d\|}{\|d\|}$

Esempio (Sistema lineare) Per semplicità perturbo solo il termine noto:

$$\begin{cases} Ax = b \\ A(x + \delta x) = b + \delta b \end{cases} \implies A\delta x = \delta b \implies \delta x = A^{-1}\delta b$$

allora

$$\sup_{\delta b \neq 0} \frac{\|\delta x\|}{\|\delta b\|} = \sup \frac{\|A^{-1}\delta b\|}{\|\delta b\|} = \|A^{-1}\|$$

e quindi

$$K(b) = ||A^{-1}|| \cdot \frac{||b||}{||x||} = \frac{||A^{-1}|| ||Ax||}{||x||} \stackrel{\star}{\leq} ||A^{-1}|| ||A|| =: K(A)$$

 \star poiché $||Ax|| \leq ||A|| ||x||$. In conclusione abbiamo che

$$\frac{\|\delta x\|}{\|x\|} \le K(A) \frac{\|\delta b\|}{\|b\|} \quad \text{con } K(A) = \|A^{-1}\| \|A\|$$

Osservazione (Funzione risolvente differenziabile) Supponiamo $D \subseteq \mathbb{R}^m$ e $X \subseteq \mathbb{R}^n$, G differenziabile. Allora

$$G(d + \delta d) = G(d) + G'(d) \cdot \delta d + o(||\delta d||)$$
 Taylor

allora $\delta x = G(\tilde{d}) - G(d) = G'(d) \cdot \delta d + o(\|\delta d\|)$ e

$$K_{\mathrm{abs}}\left(d\right) = \lim_{\delta \to 0} \left(\sup_{\|\delta d\| \le \delta} \left\{ \frac{\|\delta x\|}{\|\delta d\|} \right\} \right) \approx \lim_{\delta \to 0} \left(\sup_{\|\delta d\| \le \delta} \left\{ \frac{\|G'(d) \cdot \delta d\| + o(\|\delta d\|)}{\|\delta d\|} \right\} \right) = \|G'\left(d\right)\|$$

$$K(d) \approx ||G'(d)|| \frac{||d||}{||G(d)||}$$

ovvero:

Definizione 1.6 (Numero di condizionamento al primo ordine): Dal ragionamento appena fatto per funzioni risolventi derivabili:

$$K(d) \approx ||G'(d)|| \frac{||d||}{||G(d)||}$$
 $K_{abs}(d) \approx ||G'(d)||$

Esempio (Equazione non lineare)

1.2 Metodo numerico

Definizione 1.7 (Metodo numerico): Successione di problemi $F_n(x_n, d_n) = 0$ (detti problemi approssimati) tali che $x_n \to x$ quando $d_n \to d$, ovvero che la **soluzione numerica** x_n converga alla **soluzione esatta** x. Consideriamo il problema ben posto con risolvente $G: D \to X$. Un metodo numerico è un **insieme di trasformazioni elementari**

$$\phi_i: D_i \to D_{i+1} \quad i = 1, \dots, r$$

tali che

- $D_0 = D$, $D_{r+1} = X$
- $x_0 = d$, $x_{i+1} = \phi_i(x_i)$, $x_{r+1} = x$
- $\phi_r \circ \cdots \circ \phi_0 =: \widetilde{G} \approx G$

NB: ogni operazione è affetta da **roundoff**: $\tilde{x}_{i+1} = fl(\phi_i(\tilde{x}_i))$

Definizione 1.8 (Metodo ben posto): Se i problemi approssimati $F_n(x_n, d_n) = 0$ sono ben posti $\forall n$

Definizione 1.9 (Metodo consistente): Un metodo numerico $\{F_n\}_n$ si dice

Consistente $F_n(x,d) \longrightarrow F(x,d) = 0$ Fortemente consistente $F_n(x,d) = 0 \quad \forall n$

Definizione 1.10 (Metodo stabile/ben condizionato): Se i problemi approssimati $F_n(x_n, d_n) = 0$ sono ben condizionati, ovvero $K_n(d_n)$ piccolo $\forall n$, o anche

$$K_{\phi_i}(x_i) = \frac{\|J\phi_i(x_i)\| \|x_i\|}{\|\phi_i(x_i)\|} \quad \text{è "piccola"}$$

 $\{F_n\}_n$ stabile se $\exists k_0 > 0, \delta_0 > 0$ tali che $\forall n \|\delta x_n\| \le k_0 \|\delta d_n\|$ con $\|\delta d_n\| \le \delta_0 \quad \forall \delta d_n$, ovvero i problemi sono uniformemente ben condizionati

Definizione 1.11 (Numero di condizionamento asintotico rel/ass):

$$K^{num}(d) = \lim_{k \to \infty} \sup_{n \ge k} K_n(d) \qquad K^{num}_{abs}(d) = \lim_{k \to \infty} \sup_{n \ge k} K_{abs,n}(d)$$

Osservazione $\{F_n\}_n$ stabile $\iff \sup_n K_n(d_n) \le +\infty$

Definizione 1.12 (Convergenza): $\{F_n\}_n$ convergente se

$$\forall \varepsilon > 0 \quad \exists \begin{cases} n_0(\varepsilon) \\ \delta_0(n_0, \varepsilon) > 0 \end{cases} \quad \text{tali che } \forall \begin{cases} n \geq n_0 \\ \delta d_n \text{ con } \|\delta d_n\| \leq \delta_0 \end{cases} \quad \text{vale} \quad \|G(d) - G_n(d + \delta d_n)\| \leq \varepsilon$$

Definizione 1.13 (Errore ass/rel di un metodo): Danno misura della convergenza di x_n :

$$E(x_n) = ||x - x_n||$$
 $E_{rel}(x_n) = \frac{||x - x_n||}{||x||}$ $(x \neq 0)$

Teo. 5 (Lax-Richtmyer). Un metodo

convergente
$$\underset{+\text{consistente}}{\Longrightarrow}$$
 stabile

Dimostrazione (per i sistemi lineari).

$$\implies \left\| \overbrace{G_n\left(d\right) - G_n\left(d + \delta d_n\right)}^{\delta x_n} \right\| \leq \left\| \overbrace{G_n\left(d\right) - G\left(d\right)}^{\text{oper convergenza}} + \left\| \overbrace{G\left(d\right) - G\left(d + \delta d_n\right)}^{\text{oper convergenza}} \right\| + \left\| \overbrace{G\left(d + \delta d_n\right)}^{\text{oper convergenza}} \right\| + \left\| \overbrace{G\left(d + \delta d_n\right)}^{\text{oper convergenza}} \right\|$$

$$\iff \left\| G\left(d\right) - G_n\left(d + \delta d_n\right) \right\| \leq \left\| \overbrace{G\left(d\right) - G_n\left(d\right)}^{\text{oper convergenza}} + \left\| \overbrace{G_n\left(d\right) - G_n\left(d + \delta d_n\right)}^{\text{oper convergenza}} \right\| + \left\| \overbrace{G_n\left(d\right) - G_n\left(d + \delta d_n\right)}^{\text{oper convergenza}} \right\|$$

Definizione 1.14 (Analisi a priori e a posteriori dell'errore):

- Analisi a priori:
 - Analisi in avanti: dato l'errore δd studio l'effetto sull'errore della soluzione δx
 - Analisi all'indietro: dato l'errore della soluzione δx cerco di determinare δd
- Analisi a posteriori: Stimo l'errore della soluzione dopo il calcolo (per esempio col residuo $r = F(x_n, d)$)

Definizione 1.15 (Sorgenti di errore):

$$e = \begin{cases} e_{\text{matematico}} \begin{cases} e_{\text{sul PF}} = \text{errore sul modello matematico del problema fisico} \\ e_{\text{sui dati}} = \text{errore sulla misurazione dei dati} \end{cases} + \\ e_{\text{computazionale}} \begin{cases} e_n = \text{discretizzazione numerica (troncamento, numero finito di passi nei $\lim_{n \to \infty}$)} \\ e_n = \text{di arrotondamento (roundoff)} \end{cases}$$

Un metodo numerico è convergente se l' $e_{\rm computazionale}$ può essere ridotto arbitrariamente aumentando lo sforzo computazionale.

Definizione 1.16 (Altre caratteristiche di un metodo numerico): Abbiamo:

- Accuratezza: errori piccoli rispetto a tolleranza fissata. Quantificata con l'ordine di infinitesimo di e_n risp. al parametro della discretizzazione.
- Affidabilità: se applicato a tanti test l'errore totale può essere tenuto al di sotto di una tolleranza con probabilità maggiore rispetto a quella prestabilita
- Efficienza: colplessità computazionale sia la più bassa possibile
- Complessità (di un problema): minima complessità tra tutti gli algoritmi (che è il loro tempo di esecuzione)

2 Aritmetica finita

Un calcolatore può rappresentare solo un numero finito di numeri $\mathbb{F} \subset \mathbb{R}$. Ci sono due limitazoni:

- (i) Non si possono rappresentare numeri troppo grandi o troppo piccoli
- (ii) I numeri rappresentati sono in un numero discreto

Numeri floating point $x \in F$ è rappresentato come

$$x = (-1)^s (0.a_1 \dots a_t) \beta^e$$

con

- $s = \{0, 1\}$ segno
- a_i cifre significative
- t numero di cifre significative
- β base
- e ordine di grandezza

Doppia precisione

Definizione 2.1 (Unità di roundoff): Aritmetica finita $F \subseteq \mathbb{R}$, u unità di roundoff per cui $\forall x \in \mathbb{R} \ \exists x' \in F$ tale che $|x - x'| \le u |x|$

Definizione 2.2 (
$$\varepsilon$$
 macchina): Sia $x \in \mathbb{R}$, $x_{min} < |x| < x_{max} \implies \exists \varepsilon \in \mathbb{R}$, $|\varepsilon| \le u \quad | \quad fl(x) = x(1 - \varepsilon)$
$$\varepsilon_{mc} = \min\{x \in F \mid 1 \oplus x > 1\}$$

2.1 Operazioni in \mathbb{F}

$$* \to \text{ operazione in } \mathbb{R}$$

$$\circledast \to \text{ operazione in } F : \boxed{x \circledast y \coloneqq fl(x * y)}$$

usando l' ε macchina si ha $\exists \varepsilon \in \mathbb{R}, \; |\varepsilon| \leq u$ tale che

$$x \circledast y = (x * y)(1 + \varepsilon)$$

Osservazione Molte proprietà delle operazioni in $\mathbb R$ non valgono in aritmetica finita, come la **proprietà** associativa

Stabilità In somma multipla sommare prima le coppie che hanno somma in modulo minore

Cancellazione L'errore relativo di a-b diventa molto grande se sono vicini

3 Metodi diretti per sistemi lineari

Definizione 3.1 (Metodi diretti/iterativi): Abbiamo:

- Metodi diretti: calcolano la soluzione esatta in un numero finito di passaggi
- Metodi iterativi: calcolano la soluzione esatta in un numero infinito di passaggi, ovvero calcolano una successione $(x_k)_k$ a valori in \mathbb{R}^n t.c. $x_k \to x$

3.1 Sistemi lineari

Definizione 3.2 (Sistema lineare approssimato): $Ax = b \longrightarrow (A + \delta A)(x + \delta x) = (b + \delta b)$

Definizione 3.3 (Numero di condizionamento di una matrice): È

$$K(A) \coloneqq \|A\| \cdot \|A^{-1}\|$$

Osservazione $K(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$, (σ valori singolari), per A SPD vale $K_2(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$ (λ autovalori)

Dimostrazione. $||A||_2 \stackrel{\star}{=} \sqrt{\rho(A^TA)} = \sqrt{\rho(A^2)} = \sqrt{\sigma_{max}^2} = \sigma_{max}$ dove non dimostriamo \star e ρ è il raggio spettrale.

Inoltre vale $\sigma(A^{-1}) = 1/\sigma(A)$ e dalla def. di numero di cond. segue la tesi.

 $Osservazione \ \ K\left(A\right)>1 \ \text{in quanto} \ 1=\left\Vert I\right\Vert =\left\Vert A\cdot A^{-1}\right\Vert \leq\left\Vert A\right\Vert \cdot\left\Vert A^{-1}\right\Vert =K\left(A\right)$

Prop. 2 (Stima a priori dell'errore). Abbiamo che

Dimostrazione. Per semplicità perturbo solo il termine noto:

$$\begin{cases} Ax = b \\ A(x + \delta x) = b + \delta b \end{cases} \implies A\delta x = \delta b \implies \delta x = A^{-1}\delta b$$

allora

$$K_{abs} = \sup_{\delta b \neq 0} \frac{\|\delta x\|}{\|\delta b\|} = \sup \frac{\|A^{-1}\delta b\|}{\|\delta b\|} = \|A^{-1}\|$$

e quindi

$$K(b) = K_{abs} \cdot \frac{\|b\|}{\|x\|} = \|A^{-1}\| \cdot \frac{\|b\|}{\|x\|} = \frac{\|A^{-1}\| \|Ax\|}{\|x\|} \stackrel{\star}{\leq} \|A^{-1}\| \|A\| =: K(A)$$

 \star poiché $||Ax|| \le ||A|| ||x||$.

Lemma 1 . Preso $||B|| < 1 \Longrightarrow I + B$ invertibile e $\left\| (I+B)^{-1} \right\| \le \frac{1}{1-||B||}$

 $\begin{array}{l} \textit{Dimostrazione.} \text{ Per assurdo, } I+B \text{ non invertibile} \Longrightarrow \exists x \in \ker\left(I+B\right) \text{ non nullo} \Longrightarrow I \cdot x = -B \cdot x \Longrightarrow \|x\| = \|B \cdot x\| \leq \|B\| \cdot \|x\| \Longrightarrow \|B\| \geq 1, \ \end{cases}$

$$I = (I+B)^{-1} (I+B) \implies (I+B)^{-1} = I - B (I+B)^{-1} \implies ||(I+B)^{-1}|| \le 1 + ||B|| \cdot ||(I+B)^{-1}||$$

Cor. 1 . Se A invertibile e $||A^{-1}|| \cdot ||\delta A|| < 1 \implies A + \delta A$ invertibile

Dimostrazione. $A + \delta A$ invertibile \iff $A^{-1}(A + \delta A) = I + A^{-1}\delta A$ invertibile

$$||A^{-1}\delta A|| < ||A^{-1}|| ||\delta A|| < 1$$

da cui la tesi e $\|\delta A\| \le \frac{1}{\|A^{-1}\|}$ per il lemma

Teo. 6 . Preso δA tale che $||A^{-1}|| \cdot ||\delta A|| < 1$, allora per il Sistema lineare approssimato vale:

$$\frac{\left\|\delta x\right\|}{\left\|x\right\|} \leq \frac{K\left(A\right)}{1 - K\left(A\right) \frac{\left\|\delta A\right\|}{\left\|A\right\|}} \left(\frac{\left\|\delta A\right\|}{\left\|A\right\|} + \frac{\left\|\delta b\right\|}{\left\|b\right\|}\right)$$

Dimostrazione.

$$(A + \delta A)(x + \delta x) = (b + \delta b) \implies A \cdot x + (A + \delta A)\delta x = b + \delta b$$

$$\implies \delta x = (A + \delta A)^{-1}(\delta b - \delta A \cdot x)$$

$$\| \clubsuit \| \stackrel{\star}{=} \| A^{-1} \left(I + A^{-1} \delta A \right)^{-1} \| \le \| A^{-1} \| \| \left(I + A^{-1} \delta A \right)^{-1} \| \stackrel{\text{per } (1)}{\le} \frac{\| A^{-1} \|}{1 - \| A^{-1} \delta A \|} \le \frac{\| A^{-1} \|}{1 - \| A^{-1} \| \| \delta A \|}$$
 in \star : $(A + \delta A)^{-1} = (AA^{-1}(A + \delta A))^{-1} = (A(I_n + A^{-1} \delta A))^{-1}$

$$\| \spadesuit \| \leq \| \delta A \| \, \| x \| + \| \delta b \| \stackrel{\star}{\leq} \| A \| \, \| x \| \left(\frac{\| \delta A \|}{\| A \|} + \frac{\| \delta b \|}{\| b \|} \right) \qquad \text{in } \star \text{ moltiplico per } 1 = \frac{\| A x \|}{\| b \|} \leq \frac{\| A \| \, \| x \|}{\| b \|}$$

Osservazione Se $\frac{\|\delta A\|}{\|A\|}$, $\frac{\|\delta b\|}{\|b\|} = O(u)$, con u unità di roundoff e $O(\bullet)$ <<ord>
<ordine di>> allora

$$\frac{\|\delta x\|}{\|x\|} \le \frac{K(A)}{1 - K(A)O(u)}O(u) = K(A)O(u) \tag{1}$$

3.2 Sistemi triangolari

Definizione 3.4 (Matrice triangolare superiore/inferiore): $A \in \mathbb{R}^{n \times n}$ con $a_{ij} = 0$ per i > j (superiore) o i < j (inferiore)

Prop. 3 (Determinante di matirice triangolare). det $A = \prod_{i=1}^{n} a_{ii}$

Cor. 2 . Abbiamo

- A triangolare è invertibile $\iff a_{ii} \neq 0 \quad \forall i = 1 \dots n$
- A triangolare $\implies \sigma(A) = \{a_{ii} \mid i = 1 \dots n\}$

Prop. 4. A, B triangolari superiori (inferiori) $\implies A \cdot B$ triangolare supreiore (inferiore)

Backward substitution Se A trangolare superiore

$$Ax = b \implies \begin{cases} a_{11}x_1 + \dots + & a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + & a_{2n}x_n = b_2 \\ & \vdots \\ & a_{nn}x_n = b_n \end{cases}$$

Per risolvere il sistema si usa backsubstitution:

$$x_n = \frac{b_n}{a_{nn}}$$

$$x_{n-1} = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}}$$

$$\vdots$$

$$x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij}x_j}{a_{ii}}$$

Forward substitution Se A trangolare inferiore il sistema il sistema si risolve con forward substitution:

$$x_1 = \frac{b_1}{a_{11}}$$

$$\vdots$$

$$x_i = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j}{a_{ij}}$$

Definizione 3.5 (Costo computazionale): numero di operazioni floating point (flops) effettuate dall'algoritmo

Osservazione Per i gli algoritmi di backsubstitution/forward substitution il numero di operazioni per calcolare x_i è: (n-i) prodotti, (n-i) somme, 1 divisione. Quindi il costo computazionale è:

$$\sum_{i=1}^{n} 2(n-i) + 1 \approx 2\sum_{i=1}^{n} (n-i) = 2\left[\sum_{i=1}^{n} n - \sum_{i=1}^{n} i\right] = 2(n^2 - \frac{n(n-1)}{2}) = 2n^2 - n^2 + n = n^2 + n \approx n^2 = O(n^2)$$

Teo. 7 (Inversa di una matrice triangolare). A triangolare superiore (inferiore) $\implies A^{-1}$ triangolare superiore (inferiore)

$$\begin{array}{lll} \textit{Dimostrazione.} \text{ Sia } A^{-1} &= \left[x^{(1)}, \dots, x^{(n)}\right], \text{ risolvo } AA^{-1} &= I \rightarrow Ax^{(i)} = e_i \text{ con backsubstitution ottengo} \\ x^{(i)} &= \left(x_1^{(i)}, \dots, x_i^{(i)}, 0, \dots, 0\right)^T \end{array}$$

Teo. 8 .
$$|\delta T| \le (nu + O(u^2)) |T|$$

Cor. 3.
$$\frac{\|\delta x\|}{\|x\|} \le \frac{K(T) \cdot n \cdot u}{1 - K(T) \cdot n \cdot u} = K(T) \cdot n \cdot u + O(u^2)$$

3.3 Eliminazione di Gauss e Fattorizzazione LU

3.3.1 Eliminazione di Gauss

Voglio trovare un algoritmo che mi porti da un sistema lineare ad uno triangolare:

$$Ax = b \longrightarrow Ux = y$$
 U triangolare

faccio successione di sistemi lineari $A^{(i)}x=b^{(i)}$ t.c. $\begin{cases} A^{(1)}=A \\ b^{(1)}=b \end{cases} \quad \text{e} \begin{cases} A^{(n)}=U \\ b^{(n)}=y \end{cases}$

(1)
$$\begin{cases} A^{(1)} = A \\ b^{(1)} = b \end{cases}$$

(2)
$$\begin{cases} a_{ij}^{(2)} = a_{ij}^{(1)} - l_{i1}a_{1j}^{(1)} \\ b_i^{(2)} = b_i^{(1)} - l_{i1}b_1^{(1)} \end{cases} \quad \text{per } i = 2 \dots n, \ j = 1 \dots n \ \text{con } l_{i1} = \frac{a_{i1}^{(1)}}{a_{11}^{(1)}} \implies \text{ho "eliminato" la prima colonna (tranne a_{11})}$$

(k+1)
$$\begin{cases} a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik} a_{kj}^{(k)} \\ b_i^{(k+1)} = b_i^{(k)} - l_{ik} b_k^{(k)} \\ \text{prime } k \text{ colonne} \\ \text{ovvero} \end{cases} \quad \text{per } i = k+1 \dots n, \ j = k+1 \dots n \text{ con } l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} \implies \text{ho "reso triangolari" le }$$

$$\begin{cases} A^{(k+1)} = L_k A^{(k)} \\ b^{(k+1)} = L_k b^{(k)} \end{cases} \quad \text{con} \quad L_k = \mathbf{I}_n - l_k \cdot e_k^T = \begin{bmatrix} 1 & 0 & \dots & & \dots & 0 \\ 0 & \ddots & & & & & \\ \vdots & & 1 & & & & \vdots \\ & -l_{k+1,k} & 1 & & & & \\ & -l_{k+2,k} & 0 & 1 & & & \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \dots & -l_{nk} & 0 & \dots & 0 & 1 \end{bmatrix} \quad \text{e } l_k = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ l_{k+1,k} \\ \vdots \\ l_{nk} \end{pmatrix}$$

oppure: colonna della sottomatrice che parte dalla riga k+1-esima e colonna k-esima:

$$A_j^{(k+1)} = A_j^{(k)} - a_{kj}^{(k)} \boldsymbol{l}_k \quad \text{con } (\boldsymbol{l}_k)_i = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$$

(n)
$$\begin{cases} A^{(n)} = U \\ b^{(n)} = y \end{cases}$$

Costo computazionale al passo k ho

- n-k divisioni
- 2(n-k)(n-k+1) prodotti e sottrazioni

$$= (n-k)(1+2(n-k+1)+2) = (n-k)(2n-2k+5) \implies \sum_{k=1}^{n-1} (n-k)(2n-2k+5) \approx 2\sum_{k=1}^{n-1} (n-k)^2 = 2\sum_{k=1}^{n-1} k^2 = 2\frac{(2n-1)(n-1)}{6} \approx \frac{2}{3}n^3 = O(n^3)$$

Osservazione $e_i^T l_k = 0 \ \forall j \le k$

Osservazione Abbiamo

$$L_k^{-1} = I_n + l_k e_k^T$$

$$L_k^T = I_n + l_k e_k^T$$
Dim: $(I_n - l_k e_k^T)(I_n + l_k e_k^T) = I_n - l_k e_k^T + l_k e_k^T - l_k \underbrace{(e_k^T l_k)}_{=0} e_k^T = I_n$

3.3.2Fattorizzazione LU

Vediamo da prima con L_k k-esimo passaggio dell'eliminazione di Gauss che

$$U = A^{(n)} = L_{n-1}A^{(n-1)} = L_{n-1}L_{n-2}A^{(n-2)} = \dots = L_{n-1}\dots L_1\underbrace{A^{(1)}}_{=A}$$

Allora

$$A = \underbrace{L_1^{-1} L_2^{-1} \dots L_{n-1}^{-1}}_{:=L} U = LU$$

Vediamo che L è triangolare: dato che $L_k^{-1} = (\boldsymbol{I}_n - l_k \cdot e_k^T)^{-1} = \boldsymbol{I}_n + l_k \cdot e_k^T$, allora $L = \prod_{k=1}^n (\boldsymbol{I}_n + l_k \cdot e_k^T) = \boldsymbol{I}_n + \sum_{k=1}^n (\boldsymbol{I}_k - l_k \cdot e_k^T)$ $\boldsymbol{I}_n + \sum_{k=1}^n l_k \cdot e_k^T$

$$L = \mathbf{I}_n + \sum_{i=1}^{n-1} l_i e_i^T = \begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & & \vdots \\ \vdots & & \ddots & 0 \\ l_{n1} & l_{n2} & \dots & 1 \end{bmatrix}$$

Le entrate di L sono i coefficienti dell'eliminazione di Gauss

Definizione 3.6 (Fattorizzazione LU): data $A \in \mathbb{R}^{n \times n}$ è la sua scomposizione in A = LU con $L \in \mathbb{R}^{n \times n}$ triangolare inferiore e $U \in \mathbb{R}^{n \times n}$ triangolare superiore

 $Ax = b \implies LUx = b$ e quindi risolvo $\left\{ egin{array}{l} L\hat{b} = b \\ Ux = \hat{b} \end{array} \right. \longrightarrow$ è equivalente all'eliminazione di Gauss

Teo. 9 . Sia $A \in \mathbb{R}^{n \times n}$, esiste ed è unica la sua fattorizzazione LU \iff la matrice $A_k = \begin{bmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & \vdots \\ & & \end{bmatrix}$ (minore principale k-esimo) è non singolare ($\det \neq 0$) per $k = 1 \cdots n - 1$

□ | P. 25 Dimostrazione.

3.3.3 Per matrici a bande

Definizione 3.7 (Matrice a banda): A matrice a banda di ampiezza p se $a_{ij} = 0$ per |i - j| > p

Prop. 5. Sia A a banda di ampiezza p, se \exists ! la sua fattorizzazione $LU \implies L, U$ anch'esse a banda con la stessa ampiezza

Dimostrazione.

— P. 26

 $Osservazione\ Posso\ modificare$ l'algoritmo per calcolare la fattorizzazione LU se A è a banda per renderlo più efficiente. P. 27

3.3.4 Stabilità dell'eliminazione di Gauss

Abbiamo A = LU e dall'aritmetica finita

$$\begin{cases} \widetilde{L} = L + \delta L \\ \widetilde{U} = U + \delta U \\ \widetilde{A} = A + \delta A = (L + \delta L)(U + \delta U) = LU + \delta LU + L\delta U + \delta L\delta U \end{cases}$$

Supponiamo che

$$\frac{\|\delta L\|}{\|L\|} = O(u), \qquad \frac{\|\delta U\|}{\|U\|} = O(u) \quad \text{ per } u \to 0$$

allora

$$\|\delta A\| = \|\widetilde{A} - A\| \le \|\delta L U\| + \|L\delta U\| + \|\delta L \delta U\|$$

$$\le \|\delta L\| \|U\| + \|L\| \|\delta U\|$$

$$= O(u\|L\| \|U\|) + O(u\|L\| \|U\|)$$

E quindi

$$\frac{\|\delta A\|}{\|A\|} = O\left(u\frac{\|L\|\|U\|}{\|A\|}\right), \qquad \frac{\|\delta x\|}{\|x\|} = O\left(K(A)\frac{\|\delta A\|}{\|A\|}\right) \quad \text{ricorda 1}$$

Osservazione Se ||L||, $||U|| \gg ||A||$ può esserci instabilità. Vediamo che scambiando le equazioni (ovvero le righe) queste due norme possono passare da essere molto maggiori di quella di A ad essere piccole, per esempio mi conviene mettere alla prima riga la riga col primo elemento maggiore. Quindi adottiamo il seguente:

3.3.5 Pivoting (scambiare righe)

Sia $A^{(k)}$ la matrice ottenuta al k-esimo passo del metodo di Gauss.

Definizione 3.8 (Elemento pivotale): Nel MEG l'elemento $a_{kk}^{(k)}$

Definizione 3.9 (Pivoting parziale): Al passo k scambio

riga k-esima
$$\longleftrightarrow$$
 riga i-esima con $i = \underset{s=k}{\operatorname{arg max}} \left| a_{sk}^{(k)} \right|$

ovvero a ogni passaggio dell'eliminazione di Gauss faccio $A^{(k+1)} = L_k P_k A^{(k)}$ (P matrice di permutazione delle righe per il pivoting parziale), quindi $L_{n-1}P_{n-1}\dots L_1P_1A = U$, definisco ora $L_k' = P_{n-1}\dots P_{k+1}L_k P_{k+1}^{-1}\dots P_{n-1}^{-1}$ da cui $\underbrace{L_{n-1}'\dots L_1'P_{n-1}\dots P_1}_{P}A = U$ e quindi PA = LU.

Osservazione L'_k ha la stessa struttura di L_k :

$$L'_{k} = \mathbf{I}_{n} - P_{n-1} \dots P_{k+1} l_{k} \underbrace{e_{k}^{T} P_{k+1}^{-1} \dots P_{n-1}^{-1}}_{e_{k}^{T}} = \mathbf{I}_{n} - (P_{n-1} \dots P_{k+1} l_{k}) e_{k}^{T}$$

Definizione 3.10 (Matrice di permutazione): Prendo la matrice identità e ne permuto le righe. Se moltiplicata a sx ad una matrice mi permuta le righe

Prop. 6. La fattorizzazione con il pivoting esiste sempre se A non singolare:

$$A \in \mathbb{R}^{n \times n}$$
 non singolare $\implies \exists P \in \mathbb{R}^{n \times n}$ matrice di perm. : $PA = LU$

Osservazione Il sistema lineare diventa

$$Ax = b \longrightarrow \underbrace{PA}_{=LU} x = Pb \longrightarrow \begin{cases} Ly = Pb \\ Ux = y \end{cases}$$

Definizione 3.11 (Pivoting totale):

Esempio (Calcolo del determinante) Normalmente det $A = \sum_{i=1}^{i+j} a_{ij} \det(A_{ij})$ che ha costo O(n!).

$$PA = LU \implies A = P^{-1}LU \implies \det(A) = \underbrace{\det(P^{-1})\det(L)}^{(-1)^{\delta}} \det(U) = (-1)^{\delta} \prod_{i=1}^{n} u_{ii}$$

Ha il costo della LU ovvero $O(\frac{2}{3}n^3)$

Esempio (Calcolo dell'inversa) $A \in \mathbb{R}^{n \times n}$ invertibile, $A^{-1} := X$, $\begin{cases} X = (x^{(1)}, \dots, x^{(n)}) \\ I_n = (e^{(1)}, \dots, e^{(n)}) \end{cases}$, $AX = I_n \iff Ax^{(j)} = e^{(j)}$ con $j = 1, \dots, n$. Allora

$$PA = LU \implies A = P^{-1}LU \implies L\underbrace{Ux^{(j)}}_{y^{(j)}} = Pe^{(j)} \iff \begin{cases} Ux^{(j)} = y^{(j)} \\ Ly^{(j)} = Pe^{(j)} \end{cases}$$

algoritmo di Thomas [...]

Fattorizzazione di Cholesky Per A SPD \implies si può scrivere come $A=H^TH$ con H triangolare superiore.

$$A = \begin{bmatrix} a & w^T \\ w & \boldsymbol{K} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ w & \boldsymbol{I}_{n-1} \end{bmatrix} \cdot \begin{bmatrix} a & w^T \\ 0 & \boldsymbol{K} - \frac{w^T}{a} \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ \frac{w}{\alpha} & \boldsymbol{I}_{n-1} \end{bmatrix} \cdot \begin{bmatrix} \alpha & w^T/\alpha \\ 0 & \boldsymbol{K} - \frac{ww^T}{a} \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ \frac{w}{\alpha} & \boldsymbol{I}_{n-1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & \boldsymbol{K} - \frac{ww^T}{a} \end{bmatrix} \cdot \begin{bmatrix} \alpha & w^T/\alpha \\ 0 & \boldsymbol{I}_{n-1} \end{bmatrix}$$

3.4 Fattorizzazione QR

Definizione 3.12 (fattorizzazione QR): $A \in \mathbb{R}^{m \times n}$ con $m \ge n$. Una fattorizzazione del tipo

$$A = QR$$

con $Q \in \mathbb{R}^{m \times m}$ ortogonale e $R \in \mathbb{R}^{m \times n}$ trapezio
idale con le righe dalla n+1 in poi nulle

Definizione 3.13 (fattorizzazione QR ridotta): $A = \widetilde{Q}\widetilde{R} \in \mathbb{R}^{m \times n}$ con $\widetilde{Q} \in \mathbb{R}^{m \times n}$ a colonne ortonormali e $\widetilde{R} \in \mathbb{R}^{n \times n}$ triangolare superiore

Osservazione
$$A = QR = (\widetilde{Q} \mid X) \begin{pmatrix} \widetilde{R} \\ \mathbf{0} \end{pmatrix} = \widetilde{Q}\widetilde{R} + \mathbf{XO}$$

Osservazione Metodi per il calcolo:

- Completa: metodo di Householder
- Ridotta: metodo di Gram-Schmidt standard (instabile) e modificato

Osservazione A ha rango massimo $\iff \widetilde{R}$ invertibile

Prop. 7 .
$$\sigma_i(A) = \sigma_i(R)$$
 e quindi $K(A) = \frac{\sigma_1(A)}{\sigma_n(A)} = K(R)$

Dimostrazione. Abbiamo:
$$A^TA = V\Sigma^TU^TU\Sigma V^T = V\Sigma^T\Sigma V^T$$
 quindi $\sigma_i(A) = \sqrt{\lambda(A^TA)}$.

Allora $\sigma_i(A) = \sqrt{\lambda(A^TA)} = \sqrt{\lambda(R^TQ^TQR)} = \sqrt{\lambda(R^TR)} = \sigma_i(R)$

metodo di Gram-Schmidt standard (s.g.s) Presi $A = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$ e $Q = \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix}$ abbiamo

$$A = QR \begin{cases} a_1 = r_{11}q_1 \\ a_2 = r_{12}q_1 + r_{22}q_2 \\ \vdots \\ a_n = r_{1n}q_1 + r_{2n}q_2 + \ldots + r_{nn}q_n \end{cases} \begin{cases} q_1 = \frac{1}{r_{11}}(a_1) \\ q_2 = \frac{1}{r_{22}}(a_2 - r_{12}q_1) \\ \vdots \\ q_n = \frac{1}{r_{nn}}\left(a_n - \sum_{i=1}^{n-1} r_{in}q_i\right) \end{cases} \begin{cases} r_{ij} = \langle q_i, a_j \rangle & i < j \\ r_{jj} = \|\widetilde{q}_j\|_2 \end{cases}$$

Costo: $2mn^2 + O(mn)$

metodo di Gram-Schmidt modificato (s.g.m) Più stabile in aritmetica discreta, al posto di fissare a_j e rimuovere le proiezioni di a_j dai vettori q_i , fisso q_i e ne sottraggo le proiezioni a tutti i vettori a_j Costo: $2mn^2$

metodo di Houseolder

p. 43-44

3.5 Sistemi sovradeterminati

Sia Ax = b con $A \in \mathbb{R}^{m \times n}$, $m \ge n$, $b \in \mathbb{R}^m$, rango(A) = n. In generale non ha soluzione, a meno che $b \in \text{rango}(A)$: al posto di trovare Ax = b, ovvero Ax - b = 0, trovo il vettore x che ha immagine **più vicina** a b, ovvero il

$$\min_{x \in \mathbb{R}^n} \|b - Ax\|_2^2 = \min_{x \in \mathbb{R}^n} \sum_{i=1}^n (b_i - \sum_{j=1}^m a_{ij} x_j)^2$$

detto problema dei minimi quadrati. Devo trovare il minimo della funzione

$$\begin{split} \varphi(x) &= \|b - Ax\|_2^2 \\ &= (b - Ax)^T (b - Ax) \\ &= \|b\|_2^2 + x^T A^T Ax \underbrace{-b^T Ax - x^T A^T b}_{-2x^T A^T b} \quad b^T Ax = \text{al trasposto poich\'e scalare} \\ &= \|b\|_2^2 + x^T A^T Ax - 2x^T A^T b \quad \text{scegliere } x^T \text{ nel raccogliere} \end{split}$$

- $\nabla \varphi(x) = 2A^T Ax 2A^T b$
- $H_{\varphi}=2A^TA>0$ poiché $x^T(A^TA)x=(Ax)^T(Ax)=\|Ax\|_2^2>0$ per $x\neq 0$ poiché A iniettival

allora esiste punto di minimo (unico) in corrispondenza di $\nabla \varphi(x) = 0 \iff A^T A x = A^T b$

Osservazione Questo sistema può essere molto mal condizionato

$$K(A^T A) = (K(A))^2$$

Dimostrazione. Dobbiamo usare

• $K(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$

 $\|A\|_2 \stackrel{\star}{=} \sqrt{\rho(A^TA)} = \sqrt{\rho(A^2)} = \sqrt{\sigma_{max}^2} = \sigma_{max} \text{ dove non dimostriamo } \star \text{ e } \rho \text{ è il raggio spettrale.}$ Inoltre vale $\sigma(A^{-1}) = 1/\sigma(A)$ e dalla def. di numero di cond. segue la tesi.

• $\sigma_i(A) = \sqrt{\lambda_i(A^TA)}$ abbiamo: $A^TA = V\Sigma^TU^TU\Sigma V^T = V\Sigma^T\Sigma V^T$ quindi $\sigma_i(A) = \sqrt{\lambda(A^TA)}$.

Quindi

$$K(A^TA) = \frac{\lambda_{\max}(A^TA)}{\lambda_{\min}(A^TA)} = \frac{\sigma_{\max}^2(A)}{\sigma_{\min}^2(A)} = \left(\frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}\right)^2 = K(A)^2$$

Osservazione (con QR) Se A = QR abbiamo $\mathcal{R}^{\mathcal{T}}Q^TQRx = \mathcal{R}^{\mathcal{T}}Q^Tb \implies \boxed{Rx = Q^Tb}$ e so che K(R) = K(A)

4 Metodi iterativi per sistemi lineari

Definizione 4.1 (metodo iterativo): $\lim_{k\to+\infty} x^{(k)} = x$ con x soluzione di Ax = b

4.1 Metodi iterativi stazionari

Definizione 4.2 (metodo iterativo stazionario): $x^{(k+1)} = Bx^{(k)} + f$

Definizione 4.3 (consistenza): Un metodo iterativo stazionario si dice consistente se vale x = Bx + f per Ax = b

Prop. 8. In un metodo iterativo convergente \implies consistente

Dimostrazione.
$$x^{(k+1)} = Bx^{(k)} + f \stackrel{x^{(k) \text{ converge}}}{\Longrightarrow} x = Bx + f$$

Osservazione (Errore) Se il metodo è consistente ($\iff x = Bx + f$) risulta

$$\underbrace{x - x^{(k+1)}}_{:=e^{(k+1)}} = (Bx + \chi) - (Bx^{(k)} + \chi) = B\underbrace{(x - x^{(k)})}_{:=e^{(k)}} \implies \boxed{e^{(k+1)} = Be^{(k)}}$$

e quindi

$$\begin{split} e^{(k+1)} &= Be^{(k)} \\ e^{(k)} &= B^k e^{(0)} \\ \left\| e^{(k)} \right\| &\leq \left\| B^k \right\| \left\| e^{(0)} \right\| \implies \frac{\left\| e^{(k)} \right\|}{\left\| e^{(0)} \right\|} \leq \left\| B^k \right\| \end{split}$$

Teo. 15 . Un metodo iterativo stazionario consistente converge $\forall x_0 \in \mathbb{R}^n \iff \rho(B) < 1 \ (\rho(B) := \max_{\lambda \in \Lambda(B)} |\lambda|)$

Dimostrazione. Abbiamo:

 \implies Se fosse $\rho(B) \ge 1$ prendo autovalore λ con $|\lambda| \ge 1$ e $x^{(0)} = x - v$ con x sol. esatta e v autovettore associato, così

$$e^{(k+1)} = B^{k+1} \underbrace{e^{(0)}}_{=x-x^{(0)}=v} = B^{k+1}v = \lambda^{k+1}v$$

e quindi $\left\|e^{(k+1)}\right\| = \left|\lambda\right|^{k+1} \|v\|$ diverge per $k \to \infty$

 $\longleftarrow \ \rho\left(B\right) = \inf_{\left\|\cdot\right\|} \left\|B\right\|, \ \text{quindi} \ \exists \left\|\cdot\right\|_* \ \text{per cui} \ \rho\left(B\right) \leq \left\|B\right\|_* < 1, \ \text{dunque} \ \left\|e^{(k)}\right\|_* \leq \left\|B\right\|_*^k \left\|e^{(0)}\right\|_* \overset{k \to \infty}{\to} 0$

Osservazione Se $\|B\| < 1 \implies$ il metodo converge e la convergenza è monotona (in quella norma), ovvero $\|e^{(k+1)}\| = \|Be^{(k)}\| \le \|B\| \cdot \|e^{(k)}\| < \|e^{(k)}\|$

metodo di Splitting Pongo

$$A = P - N$$

con P (invertibile) detto precondizionatore. Quindi si ha

$$(P - N)x = b \implies Px = Nx + b \implies x^{(k+1)} = P^{-1}(Nx^{(k)} + b)$$

Vale che

$$x^{(k+1)} = P^{-1}\left(Nx^{(k)} + b\right) = P^{-1}\left(\left(P - A\right)x^{(k)} + b\right) = x^{(k)} + P^{-1}\left(b - Ax^{(k)}\right) = x^{(k)} + P^{-1}r^{(k)}$$

Quindi posso riscrivere come

$$x^{(k+1)} = x^{(k)} + P^{-1}r^{(k)} = x^{(k)} + \delta^{(k)}$$

dove $r^{(k)} = b - Ax^{(k)}$ è chiamato **residuo al passo** k. Ovvero a ogni passo prendo il vettore precedente e ci aggiungo la preimmagine (tramite P) del residuo.

Osservazione (**Convergenza**) Dato che $B = P^{-1} \underbrace{N}_{P-A} = I - P^{-1}A$, allora

metodo splitting converge
$$\iff \rho(I_n - P^{-1}A) < 1$$

Una situazione ideale è quella in cui $I_n - P^{-1}A \approx 0$ ovvero $P \approx A$, ovvero P "simile" ad A, ma più facile da invertire.

Vediamo che $\sigma(I - P^{-1}A) = \{1 - \lambda, \ \lambda \in \sigma(P^{-1}A)\}$ quindi deve essere $|1 - \lambda| < 1 \quad \forall \lambda \in \sigma(P^{-1}A)$ e quindi Metodo converge $\iff \sigma(P^{-1}A) \subseteq \{z \in \mathbb{C} \mid |1 - z| < 1\}$

Osservazione Il metodo di Splitting è consistente, $Ax = b \implies (P - N)x = b \implies x = P^{-1}(Nx + b)$.

Osservazione (Criterio d'arresto) L'algoritmo si ferma se

$$\frac{\left\|r^{(k)}\right\|_{2}}{\left\|r^{(0)}\right\|_{2}} \leq \eta \longrightarrow \text{ tolleranza fissata}$$

Se il criterio d'arresto è soddisfatto vale $r^{(k)} = b - Ax^{(k)} = A(\underbrace{A^{-1}b}_{x} - x^{(k)}) = Ae^{(k)}$

4.1.1 Metodi di Jacobi e di Gauss-Seidel

Considerando ora

$$A = D - E - F$$
 D diagonale $(d_{ii} = a_{ii})$ E strett. inferiore $(e_{ij} = -a_{ij})$ F strett. superiore $(f_{ij} = -a_{ij})$

metodo di Jacobi Preso A = D - (E + F), ho

$$Dx^{(k+1)} = (E+F)x^{(k)} + b x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) B_J = I - D^{-1}A$$

metodo di Gauss-Seidel Preso $A = \overbrace{D-E}^P - \overbrace{F}^N$, ho

$$(D-E) x^{(k+1)} = F x^{(k)} + b x_i^{(k+1)} = \underbrace{\frac{1}{a_{ii}}}_{D^{-1}} \left(\underbrace{b_i - \sum_{j=i+1}^n a_{ij} x_j^{(k)}}_{F x^{(k)} + b} - \underbrace{\sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)}}_{E x^{(k+1)}} \right) B_{GS} = (D-E)^{-1} F$$

Lemma 2. $||A||_{\infty} = \sup_{x \in \mathbb{R}^n} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_i \sum_{j=1}^n |a_{ij}|$

Dimostrazione.

Definizione 4.4 (dominanza diagonale stretta per righe): $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$ $\forall i = 1, \dots, n$

Teo. 19 . Se A è a dominanza diagonale stretta per righe per righe, il metodo di Jacobi e il metodo di Gauss-Seidel sono convergenti, cioè Ax = b converge $\forall x^{(0)} \in \mathbb{R}^n$

Dimostrazione.

$$(B_J)_{ij} = D^{-1}(E+F) = \begin{cases} -\frac{a_{ij}}{a_{ii}} & \text{se } i \neq j \\ 0 & \text{se } i = j \end{cases} \qquad ||B_J||_{\infty} = \max_i \sum_{\substack{j=1 \ j \neq i}}^n \frac{|a_{ij}|}{|a_{ii}|} = \max_i \frac{1}{a_{ii}} \sum_{\substack{j=1 \ j \neq i}}^n |a_{ij}| < 1$$

quindi $\rho(B_J) \le ||B_J||_{\infty} < 1 \iff \text{converge}$

Teo. 20 . Se A è SPD \Longrightarrow il metodo di Gauss-Seidel converge.

Teo. 21 . Se A è tridiagonale $\Longrightarrow \rho\left(B_{GS}\right) = \rho^2\left(B_J\right)$

Cor. 4. Se A è SPD e tridiagonale, il metodo di Jacobi converge.

Osservazione (Costo computazionale) Sia

$$x^{(k+1)} = x^{(k)} + \underbrace{P^{-1} \left(b - Ax^{(k)}\right)}_{=\delta^{(k)}}$$

quindi

- Calcolo del residuo: $b Ax^{(k)} = r^{(k)} \implies 2n^2$
- Risoluzione di $P\delta^{(k)}=r^{(k)} \implies n$ (Jacobi) o n^2 (Gauss-Seidel)
- Calcolo di $x^{(k+1)} = x^{(k)} + \delta^{(k)}$

in tutto abbiamo = $O(n^2)$ flops per iterazione, quindi se il numero di iterazioni per avere la convergenza è $\ll n$ questi approcci sono convenienti rispetto alle $O(n^3)$ operazioni dei metodi diretti (come la LU)

Esempio Esempi di criteri di arresto

Tolleranza scelta
$$\left\|r^{(k)}\right\| \leq \eta$$
 (vale $\left\|e^{(k)}\right\|_{2} \leq K(A)\left\|r^{(k)}\right\|_{2}$ Numero di iterazioni $k > N_{\max}$

4.1.2 Metodi di Richardson (NO)

Definizione 4.5 (metodo di Richardson): $x^{(k+1)} = x^{(k)} + \alpha P^{-1} r^{(k)}$. P (invertibile) e $R_{\alpha} = I - \alpha P^{-1} A$

Osservazione Il metodo di Richardson è consistente, $x = x + \alpha P^{-1}(b - Ax)$.

Teo. 22. Un metodo di Richardson converge $\forall x_0 \in \mathbb{R}^n \iff \frac{2 \cdot \text{Re}(\lambda)}{\alpha |\lambda|^2} > 1 \quad \forall \lambda \in \Lambda \left(P^{-1}A\right)$

Dimostrazione.

$$\rho\left(R_{\alpha}\right) = \max_{\lambda \in \Lambda(P^{-1}A)} |1 - \alpha\lambda| < 1 \qquad |1 - \alpha\lambda|^{2} = (1 - \alpha \cdot \operatorname{Re}\left(\lambda\right))^{2} + \alpha^{2} \operatorname{Im}^{2}\left(\lambda\right) < 1 \qquad \alpha \left|\lambda\right|^{2} < 2 \cdot \operatorname{Re}\left(\lambda\right)$$

Cor. 5. Se gli autovalori di $P^{-1}A$ sono reali e positivi $\lambda_1 \geq \ldots \geq \lambda_n > 0$, la condizione diventa $0 < \alpha < \frac{2}{\lambda_1}$. Inoltre $\alpha_{\mathrm{opt}} = \frac{2}{\lambda_1 + \lambda_n}$ minimizza il raggio spettrale, ovvero $\rho\left(R_{\alpha_{\mathrm{opt}}}\right) = \min_{\alpha} \rho\left(R_{\alpha}\right) = \frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}$

Dimostrazione. Conseguenza diretta del teorema precedente. $\rho\left(R_{\alpha}\right)=\max\left(1-\alpha\lambda_{n},\alpha\lambda_{1}-1\right)$, da cui $\alpha_{\mathrm{opt}}=\frac{2}{\lambda_{1}+\lambda_{n}}$

Definizione 4.6 (condizionamento spettrale): $\chi(M) = \frac{\lambda_1}{\lambda_n}$, con M di autovalori reali e positivi $\lambda_1 \geq \ldots \geq \lambda_n > 0$

 $Osservazione \ \chi\left(M\right) \geq 1,\, \mathrm{e} \ \mathrm{se} \ M \ \mathrm{SPD} \ \chi\left(M\right) = K_{2}\left(M\right) = \left\|M\right\|_{2} \cdot \left\|M^{-1}\right\|_{2}$

Osservazione $\rho\left(R_{\alpha_{\mathrm{opt}}}\right) = \frac{\chi\left(P^{-1}A\right)-1}{\chi\left(P^{-1}A\right)+1}$

Definizione 4.7 : Data A SPD, pongo $\|M\|_A = \sqrt{v^T A v}$

Teo. 23 . Siano P, A SPD e α che soddisfa la condizione di 5, allora $\left\|e^{(k+1)}\right\|_A \leq \rho\left(R_{\alpha}\right)\left\|e^{(k)}\right\|_A$.

Dimostrazione.

$$\begin{split} \left\| e^{(k+1)} \right\|_A &= \left\| R_\alpha e^{(k)} \right\|_A = \left\| A^{1/2} R_\alpha e^{(k)} \right\|_2 = \left\| A^{1/2} R_\alpha A^{-1/2} A^{1/2} e^{(k)} \right\|_2 \leq \left\| A^{1/2} R_\alpha A^{-1/2} \right\|_2 \left\| A^{1/2} e^{(k)} \right\|_2 \\ &= \left\| I - \alpha A^{1/2} P^{-1} A^{-1/2} \right\|_A \left\| e^{(k)} \right\|_A \\ \left\| I - \alpha A^{1/2} P^{-1} A^{-1/2} \right\|_A &= \rho \left(I - \alpha A^{1/2} P^{-1} A^{-1/2} \right) = \rho \left(I - \alpha P^{-1} A \right) = \rho \left(R_\alpha \right) \end{split}$$

Osservazione Se P=I, allora $\rho\left(R_{\alpha_{\mathrm{opt}}}\right)=\frac{\chi(A)-1}{\chi(A)+1}=\frac{K_2(A)-1}{K_2(A)+1}$, se $K_2\left(A\right)\gg 1$ la convergenza può essere lenta. Il precondizionatore serve a ridurre $\chi\left(P^{-1}A\right)\approx 1$

4.2 Metodo del gradiente (non stazionario)

Se A SPD, per risolvere Ax = b basta trovare il minimo di

$$\Phi\left(y\right) = \frac{1}{2}y^{T}Ay - y^{T}b$$

siccome $\nabla\Phi\left(y\right)=\frac{1}{2}\left(A^{T}+A\right)y-b=Ay-b$, e dunque $\nabla\Phi\left(x\right)=0 \Leftrightarrow Ax=b$. Inoltre se in x il gradiente è nullo, tale punto è di minimo globale, infatti:

$$\Phi\left(y\right) = \Phi\left(x + (y - x)\right) = \frac{1}{2}x^{T}Ax + \frac{1}{2}\left(y - x\right)^{T}A\left(y - x\right) + \left(y - x\right)^{T}Ax - x^{T}b - \left(y - x\right)^{T}b =$$

$$= \Phi\left(x\right) + \underbrace{\frac{1}{2}\left(y - x\right)^{T}\left(Ax - b\right)}_{=0} + \underbrace{\frac{1}{2}\left(y - x\right)^{T}A\left(y - x\right)}_{>0} > \Phi\left(x\right) \qquad \Longrightarrow \qquad \frac{1}{2}\left\|y - x\right\|_{A} = \Phi\left(y\right) - \Phi\left(x\right)$$

Impostazione del metodo $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$ dove $\begin{cases} \alpha_k \text{ passo} \\ p^{(k)} \text{ direzione di spostamento} \end{cases}$ con

• $p^{(k)}$ da scegliere $\forall k$

•
$$\alpha_k = \arg\min_{\alpha} \Phi \underbrace{(x^{(k)} + \alpha_k p^{(k)})}_{:=F(\alpha)}$$

poiché

$$-F(\alpha) = \frac{1}{2}(x^{(k)} + \alpha p^{(k)})^T A(x^{(k)} + \alpha p^{(k)}) - (x^{(k)} + \alpha p^{(k)})^T b = \frac{\alpha^2}{2} p^{(k)T} A p^{(k)} + \alpha p^{(k)^T} A x^{(k)} - \alpha p^{(k)^T} b + \text{costanti}$$
 (parabola)

$$-F'(\alpha) = \alpha p^{(k)^T} A p^{(k)} + p^{(k)^T} (A x^{(k)} - b) = 0 \iff \alpha = \frac{p^{(k)T} r^{(k)}}{p^{(k)T} A p^{(k)}}$$

Quindi sarà

$$\alpha_k = \frac{p^{(k)T}r^{(k)}}{p^{(k)T}Ap^{(k)}} = \frac{(p^{(k)}, r^{(k)})}{(p^{(k)}, p^{(k)})_A}$$

quindi otteniamo l'algoritmo (bisogna scegliere $p^{(k)}$ per ogni k):

$$\alpha_k = \frac{p^{(k)T}r^{(k)}}{p^{(k)T}Ap^{(k)}}$$
$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$
$$r^{(k+1)} \stackrel{*}{=} r^{(k)} - \alpha_k Ap^{(k)}$$

dove
$$\star = b - Ax^{(k+1)} = b - A(x^{(k)} + \alpha_k p^{(k)}) = b - Ax^{(k)} - \alpha_k Ap^{(k)} = \star$$
.

Osservazione Questa scelta di α_k implica ed è equivalente a $r^{(k+1)} \perp p^{(k)}$, infatti (scrivendo p per $p^{(k)}$)

$$(r^{(k+1)}, p^{(k)}) = (r - \alpha_k Ap, p) = (r, p) - \alpha_k (Ap, p) = (r, p) - \frac{(p, r)}{(Ap, p)} (Ap, p) = (r, p) - (r, p) = 0$$

metodo del gradiente Scegliamo

• $p^{(k)} = -\nabla \Phi\left(x^{(k)}\right) = b - Ax^{(k)} = r^{(k)}$ (direzione in cui Φ decresce più velocemente)

•
$$\alpha_k = \frac{r^{(k)T}r^{(k)}}{r^{(k)T}Ar^{(k)}} = \frac{(r^{(k)}, r^{(k)})}{(r^{(k)}, r^{(k)})_A}$$

quindi otteniamo l'algoritmo

$$\alpha_k = \frac{r^{(k)T}r^{(k)}}{r^{(k)T}Ar^{(k)}}$$

$$x^{(k+1)} = x^{(k)} + \alpha_k r^{(k)}$$

$$r^{(k+1)} \stackrel{\star}{=} r^{(k)} - \alpha_k A r^{(k)}$$

dove
$$\star = b - Ax^{(k+1)} = b - A(x^{(k)} + \alpha_k r^{(k)}) = b - Ax^{(k)} - \alpha_k Ar^{(k)} = \star$$

Osservazione Questa scelta di α_k implica ed è equivalente a $r^{(k+1)} \perp r^{(k)} = p^{(k)}$ è quindi $p^{(k+1)} \perp p^{(k)} = p^{(k)}$, infatti (scrivendo r per $r^{(k)}$)

$$(r^{(k+1)}, r^{(k)}) = (r - \alpha_k Ar, r) = (r, r) - \alpha_k (Ar, r) = (r, r) - \frac{(r, r)}{(Ar, r)} (Ar, r) = (r, r) - (r, r) = 0$$

ovvero ogni direzione è perpendicolare a quella precedente, ovvero con questo passo arrivo a tangere una curva di livello.

In questo modo la convegenza è molto lenta se $\frac{\lambda_1}{\lambda_-}$ è grande (immagina ellissi molto stirate).

Teo. 26. Sia A SPD, allora per il metodo del gradiente vale $\|e^{(k+1)}\|_A \leq \frac{K_2(A)-1}{K_2(A)+1} \|e^{(k)}\|_A$.

Dimostrazione. Direttamente da 23 con P = I e A SPD.

4.2.1 Metodo del gradiente coniugato

Voglio $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$ con

$$p^{(k)} = r^{(k)} + \begin{bmatrix} \text{diff. da prima} \\ \beta_k p^{(k-1)} \end{bmatrix}$$

con β_k scelto in modo che $p^{(k-1)}Ap^{(k)}=0$ (A-ortogonale). Allora deve essere

$$p^{(k-1)}Ap^{(k)} = p^{(k-1)}A(r^{(k)} + \beta_k p^{(k-1)}) = 0 \implies \beta_k = -\frac{p^{(k-1)T}Ar^{(k)}}{p^{(k-1)T}Ap^{(k-1)}} = \boxed{-\frac{(p^{(k)-1}, r^{(k)})_A}{(p^{(k-1)}, p^{(k-1)})_A}}$$

Prop. 9 .
$$\alpha_k = \frac{\|r^{(k)}\|_2^2}{p^{(k)T}Ap^{(k)}} e \beta_k = \frac{\|r^{(k+1)}\|_2^2}{\|r^{(k)}\|_2^2}$$

Osservazione Ciò, come vedremo con spazi di Krylov, implica che $p^{(j)}Ap^{(k)} = 0 \quad \forall j < k$, ovvero ogni nuova direzione è A-ortogonale a **tutte** quelle prima.

Definizione 4.8 (spazio di Krylov): $V_k = \langle r^{(0)}, Ar^{(0)}, \dots, A^{k-1}r^{(0)} \rangle$, $V_j \subseteq V_k$ per $j \leq k$. In generale sono definiti

$$K_k(A, \boldsymbol{v}) = \operatorname{span}\{\boldsymbol{v}, A\boldsymbol{v}, \dots, A^{k-1}\boldsymbol{v}\}$$

Osservazione Abbiamo

- $V_k \subseteq V_{k+1}$
- $v \in V_k \implies Av \in V_{k+1}$
- Se $x^{(0)} = 0 \implies r^{(0)} = b Ax^{(0)} = b$ e $V_k = \langle b, Ab, \dots, A^{k-1}b \rangle$

Lemma 3. $V_k = \langle r^{(0)}, \dots, r^{(k-1)} \rangle = \langle p^{(0)}, \dots, p^{(k-1)} \rangle$, in particolare

$$x^{(k+1)} = \sum_{i=0}^{k} \alpha_i p^{(i)} + x^{(0)} \in V_k + x^{(0)}$$
 (spazio affine)

Dimostrazione. Per induzione su k

- k = 1 ovvio
- Dimostriamo che $V_k = \langle r^{(0)}, \dots, r^{(k-1)} \rangle = \langle p^{(0)}, \dots, p^{(k-1)} \rangle \implies V_{k+1} = \langle r^{(0)}, \dots, r^{(k)} \rangle = \langle p^{(0)}, \dots, p^{(k)} \rangle$. Abbiamo

$$\begin{cases} p^{(k-1)} \in \langle r^{(0)}, \dots, r^{(k-1)} \rangle & \text{ip. indutt.} \\ p^{(k)} = r^{(k)} + \beta_k p^{(k-1)} \end{cases} \implies \begin{cases} p^{(k)} = r^{(k)} + \beta_k p^{(k-1)} \in \langle r^{(0)}, \dots, r^{(k)} \rangle \\ r^{(k)} = p^{(k)} - \beta_k p^{(k-1)} \in \langle p^{(0)}, \dots, p^{(k)} \rangle \end{cases} \implies \text{tesi}$$

- $r^{(k)} = b Ax^{(k)} = b A(x^{(k-1)} + \alpha_{k-1}p^{(k)}) = \underbrace{r^{(k-1)}}_{\in V_k} \alpha_k \underbrace{Ap^{(k-1)}}_{\in A_{k+1}} \in A_{k+1}$
- $A^k r^{(0)} = A(A^{k-1} r^{(0)}) \stackrel{\text{ip.ind.}}{=} A(\sum_{i=0}^{k-1} \alpha_i p^{(i)}) = \sum_{i=0}^{k-1} \alpha_i A p^{(i)} \in \langle r^{(0)}, \dots, r^{(k)} \rangle$ Se $\alpha_i \neq 0 : A p^{(i)} = \frac{r^{(i+1)} - r^{(i)}}{\alpha^{(i)}} \in \langle r^{(0)}, \dots, r^{(i+1)} \rangle$

Definizione 4.9 (A-ortogonalità a uno spazio): $u \in \mathbb{R}^n, V \subseteq \mathbb{R}^\infty$ allora $u \perp_A V$ se $\forall v \in V : u^T A v = 0$ (A SPD)

Teo. 27. Un metodo della forma $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$ per cui valga l'A-ortogonalità a uno spazio soddisfa

$$\begin{cases} r^{(k)} \perp V_k \\ p^{(k)} \perp_A V_k \end{cases} \forall k \in \mathbb{N}$$

Dimostrazione. Per induzione su k.

- Per k=1, ho $V_1=\left\langle p^{(0)}\right\rangle$ e $\begin{cases} r^{(1)}\perp p^{(0)} & \text{per def. di }\alpha_0\\ p^{(1)}\perp_A p^{(0)} & \text{per def. di }\beta_0 \end{cases}$
- Supponendo $\begin{cases} r^{(k)} \perp V_k \\ p^{(k)} \perp_A V_k \end{cases} \iff \begin{cases} p^{(j)T} r^{(k)} = 0 & \forall j = 0, \dots, k-1 \\ p^{(j)T} A p^{(k)} = 0 & \forall j = 0, \dots, k-1 \end{cases}, \text{ siccome } V_k = \left\langle p^{(0)}, \dots, p^{(k-1)} \right\rangle$
 - Dimostriamo $r^{(k+1)} \perp V_{k+1}$. Abbiamo

$$r^{(k+1)} \perp V_{k+1} \iff p^{(j)T} r^{(k+1)} = 0 \quad \forall j \leq k$$

Vediamo che:

$$p^{(j)T}r^{(k+1)} = \begin{cases} p^{(k)T}r^{(k+1)} = 0 & \text{per costr. di } \alpha_k & \text{se } j = k \\ p^{(j)T}r^{(k+1)} = p^{(j)T}\left(r^{(k)} - \alpha_k A p^{(k)}\right) = p^{(j)T}r^{(k)} - \alpha_k p^{(j)T}A p^{(k)} = 0 & \text{se } j < k \end{cases}$$

– Dimostriamo $p^{(k+1)} \perp_A V_{k+1}$. Abbiamo

$$p^{(k+1)} \perp_A V_{k+1} \iff p^{(j)T} A p^{(k+1)} = 0 \quad \forall j \le k$$

Vediamo che:

$$p^{(j)T}Ap^{(k+1)} = \begin{cases} p^{(k)T}Ap^{(k+1)} = 0 & \text{per costr. di } \beta_k \\ p^{(j)T}Ap^{(k+1)} = p^{(j)T}A\left(r^{(k+1)} + \beta_k p^{(k)}\right) = \widetilde{p^{(j)T}Ar^{(k+1)}} + \beta_k \widetilde{p^{(j)T}Ap^{(k)}} = 0 & \text{se } j < k \end{cases}$$

dove il primo addendo è zero poiché per il lemma $p^{(j)} \in V_{j+1} \implies Ap^{(j)} \in V_{j+2} \subseteq V_{k+1}$ (poiché $j \leq k+1$). Quindi $p^{(j)T}Ar^{(k+1)} = (Ap^{(j)})^Tr^{(k+1)} = 0$ in quanto $r^{(k+1)} \perp V_k$

metodo del gradiente coniugato $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$ con

$$p^{(k)} = \begin{cases} r^{(0)} & k = 0 \\ r^{(k)} + \beta_{k-1} p^{(k-1)} & k \ge 1 \end{cases} \qquad \beta_k = \frac{p^{(k)T} A r^{(k+1)}}{p^{(k)T} A p^{(k)}} \qquad \alpha_k = \frac{p^{(k)T} r^{(k)}}{p^{(k)T} A p^{(k)}}$$

 $\frac{\beta_k}{\beta_k} \stackrel{\text{è tale che }}{} p^{(k)T} A p^{(k+1)} = 0, \text{ siccome }} p^{(k)T} A p^{(k+1)} = p^{(k)T} A \left(r^{(k+1)} + \beta_k p^{(k)} \right) = p^{(k)T} A r^{(k+1)} + \beta_k p^{(k)T} A p^{(k)}$

Prop. 10 . Se \underline{k} tale che $\dim(V_{\underline{k}}) = \dim(V_{\underline{k}+1}) = \underline{k}$ (equivalentemente $V_{\underline{k}} = V_{\underline{k}+1}) \Longrightarrow x^{(\underline{k})} = x$ soluzione esatta

 $\textit{Dimostrazione.} \ \ V_{\underline{k}} = V_{\underline{k}+1} = \left\langle r_0, \dots, r_{\underline{k}} \right\rangle \quad \Longrightarrow \quad r_{\underline{k}} \in V_{\underline{k}}, \ \text{ma} \ r_{\underline{k}} \perp V_{\underline{k}} \ \text{quindi} \ r_{\underline{k}} = 0$

Cor. 6. Il metodo del gradiente coniugato converge sempre in al più n iterazioni

Teo. 29 . Sia $\|\cdot\|_A$ la norma indotta da A (indotta dal prod. scalare $(x,y)_A=x^TAy)$, allora

$$\left\| e^{(k)} \right\|_A = \left\| x - x^{(k)} \right\|_A = \min_{y \in x^{(0)} + V_k} \left\| x - y \right\|_A$$

ovvero ogni soluzione approssimata $x^{(k)}$ è il punto più vicino (rispetto alla distanza indotta da A) dello spazio $x^{(0)} + V_k$ alla soluzione esatta x.

In particolare $\|e^{(k+1)}\|_A \le \|e^{(k)}\|_A$

Dimostrazione. $x^{(k)} = x^{(0)} + \sum_{j=0}^{k-1} \alpha_j p^{(j)} \in x^{(0)} + V_k$. Sia $y \in x^{(0)} + V_k$, $y \neq x^{(k)} \implies y - x^{(k)} \in V_k$. Allora

$$\left\|y - x\right\|_{A}^{2} = \left\|\left(y - x^{(k)}\right) + \left(x^{(k)} - x\right)\right\|_{A}^{2} = \left\|\underbrace{x^{(k)} - x}_{-e^{(k)}}\right\|_{A}^{2} + \left\|y - x^{(k)}\right\|_{A}^{2} - 2\left(y - x^{(k)}\right)\underbrace{Ae^{(k)}}_{r^{(k)}} \ge \left\|x^{(k)} - x\right\|_{A}^{2}$$

Prop. 11 . $V_k = \left\{r^{(0)}, Ar^{(0)}, \dots, A^{k-1}r^{(0)}\right\} = \left\{p\left(A\right)r^{(0)} \mid p \in \mathbb{P}_{k-1}\right\}$ con \mathbb{P}_k polinomi di deg $\leq k$

Dimostrazione. Per induzione su k

Teo. 30. Sia $\Pi_k := \{ p \in \mathbb{P}_k \mid p(0) = 1 \} = \{ a_0 + a_1 X + \dots + a_k X^k : a_0 = 1 \}$, allora

$$\frac{\left\|e^{(k)}\right\|_{A}}{\left\|e^{(0)}\right\|_{A}} = \min_{p \in \Pi_{k}} \frac{\left\|p\left(A\right)e^{(0)}\right\|_{A}}{\left\|e^{(0)}\right\|_{A}} \leq \min_{p \in \Pi_{k-1}} \left(\max_{\lambda \in \Lambda(A)} \left|p\left(\lambda\right)\right|\right)$$

Dimostrazione.

p. 56

Cor. 7. Se A ha l autovalori distinti, il metodo del gradiente coniugato converge in al più l iterazioni.

Dimostrazione.

Teo. 31 . Vale

$$\min_{p \in \Pi_{k-1}} \left(\max_{\lambda \in \Lambda(A)} |p(\lambda)| \right) \le 2 \left(\frac{\sqrt{K_2(A)} - 1}{\sqrt{K_2(A)} + 1} \right)^k$$

e dunque in particolare

$$\left\| e^{(k)} \right\|_{A} \le 2 \left(\frac{\sqrt{K_2(A)} - 1}{\sqrt{K_2(A)} + 1} \right)^k \left\| e^{(0)} \right\|_{A}$$

Osservazione Il metodo del gradiente coniugato converge più rapidamente del metodo del gradiente siccome $\sqrt{K_2(A)} \le K_2(A)$ (26 e 31).

Se $K(A) \approx 1$ la convergenza è rapida, se $K(A) \gg 1$ la convergenza potrebbe essere lenta

4.2.2 Metodo del gradiente coniugato precondizionato

Provo ora a risolvere con il metodo del gradiente coniugato $P^{-1/2}AP^{-1/2}\widetilde{x}=P^{-1/2}b$ sostituendo $\widetilde{x}^{(k)}=P^{-1/2}$, $x^{(k)}\widetilde{r}^{(k)}=P^{-1/2}r^{(k)}$ e $\widetilde{p}^{(k)}=P^{-1/2}p^{(k)}$

metodo del gradiente coniugato precondizionato $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$ con

$$p^{(k)} = \begin{cases} r^{(0)} & k = 0 \\ r^{(k)} + \beta_{k-1} p^{(k-1)} & k \ge 1 \end{cases} \qquad z^{(k)} = P^{-1} r^{(k)} \qquad \beta_k = \frac{r^{(k+1)T} z^{(k+1)}}{r^{(k)T} r^{(k)}} \qquad \alpha_k = \frac{r^{(k)T} z^{(k)}}{p^{(k)T} A p^{(k)}}$$

4.3 Precondizionatori algebrici, Sparsità

Considerando ora

$$A = D - E - F$$
 D diagonale E strett. inferiore F strett. superiore

 ${\it Esempio}\;$ Esempi di precondizionatori algebrici

Jacobi
$$P_J=D$$
 Gauss-Seidel simmetrico $P_{SGS}=(D-E)\,D^{-1}\,(D-E)^T$ Gauss-Seidel $P_{GS}=D-E$ Cholesky incompleto $A=\hat{R}^T\hat{R}$

5 Calcolo di Autovalori e Autovettori

Dato che non esiste una formula per calcolare le radici di un polinomio di grado maggiore o uguale a 5 (teo.), tutti i metodi sono **iterativi**.

5.1 Localizzazione geometrica degli autovalori

Siccome $|\lambda| \leq ||A|| \quad \forall \lambda \in \Lambda(A)$, tutti gli autovalori si trovano in un cerchio di raggio ||A|| centrato nell'origine

Teo. 33 (teorema dei cerchi di Gershgorin). Data $A \in \mathbb{C}^{n \times n}$, allora

$$\Lambda(A) \subseteq S_R := \bigcup_{i=1}^n R_i \quad \text{con} \quad R_i := \left\{ z \in \mathbb{C} \mid |z - a_{ii}| \le \sum_{j=1, j \ne i}^n |a_{ij}| \right\}$$

 R_i detti cerchi riga. Analogamente $\Lambda(A) \subseteq S_C$ per le colonne $(S_R \text{ per } A^T)$

Dimostrazione. Sia $\lambda \in \Lambda(A)$. Se $\lambda = a_{ii}$ per qualche i ho finito. Preso $\lambda \neq a_{ii}$, il suo autovettore v e D = diag(A) diagonale di A, vale

$$Av = \lambda v$$

$$Av - Dv = \lambda v - Dv$$

$$(A - D)v = (\lambda I - D)v \quad \text{con } (\lambda I - D) \text{ diag. e invertibile}$$

$$v = (\lambda I - D)^{-1}(A - D)v$$

da cui

$$\|v\|_{\infty} \le \left\| (\lambda I - D)^{-1} (A - D) \right\|_{\infty} \|v\|_{\infty} \quad \stackrel{\|v\| \ne 0}{\Longrightarrow} \quad 1 \le \left\| (\lambda I - D)^{-1} (A - D) \right\|_{\infty} \stackrel{\exists i}{=} \sum_{\substack{j=1 \ j \ne i}}^{n} \frac{|a_{ij}|}{|\lambda - a_{ii}|} = \frac{1}{|\lambda - a_{ii}|} \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}|$$

nella sommatoria abbiamo messo $j \neq i$ poiché per j=i il numeratore è 0 essendo elemento della matrice A-D che ha la diagonale vuota.

Cor. 8. Una matrice a dominanza diagonale stretta per righe è non singolare

Dimostrazione. Siccome $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$, nessun R_i interseca l'origine e dunque 0 non può essere autovalore

Teo. 34 (primo teorema di Gershgorin). $\Lambda(A) \subseteq S_R \cap S_C$

Dimostrazione. $\Lambda(A) = \Lambda(A^T)$

Teo. 35 (secondo teorema di Gershgorin). Se $\exists 1 \leq m \leq n$ tale che $S_1 := \bigcup_{i=1}^m R_i$ e $S_2 := \bigcup_{i=m+1}^n R_i$ sono disgiunti, allora S_1 contiene esattamente m autovalori (con molteplicità) e S_2 ne contiene m-n. Analogamente per le colonne.

Cor. 9. Un cerchio di Gershgorin disgiunto dagli altri contiene esattamente 1 autovalore, e se $A \in \mathbb{R}^{n \times n}$ tale autovalore è reale (poiché se fosse complesso dovrebbe contenere anche il coniugato)

5.2 Analisi del condizionamento

 $\widetilde{A} = A + E$ con E matrice di perturbazione ($||E|| \ll ||A||$)

Teo. 36 (teorema di Bauer-Fike). $A \in \mathbb{C}^{n \times n}$ diagonalizzabile e $E \in \mathbb{C}^{n \times n}$, allora $\forall \mu \in \Lambda (A + E)$ vale

$$\min_{\lambda \in \Lambda(A)} |\lambda - \mu| \le K_p(X) \|E\|_p$$

con X matrice con colonne gli autovettori di A (e dunque $K_p(X) = \|X\|_p \cdot \|X^{-1}\|_p$).

Dimostrazione. Preso $\lambda \notin \Lambda(A)$, autovettore v, e posto $v = X\hat{v}$ e $D = X^{-1}AX$ diagonale

$$(A+E)\,v = \mu v \qquad X^{-1}\,(A+E)\,X\hat{v} = \mu\hat{v} \qquad \left(D+X^{-1}EX\right)\hat{v} = \mu\hat{v} \qquad (\mu I-D)\,\hat{v} = X^{-1}EX\hat{v}$$

$$\|\hat{v}\|_p = \left\| (\mu I-D)^{-1}\,X^{-1}EX\hat{v} \right\|_p \leq \left\| (\mu I-D)^{-1} \right\|_p \|E\|_p \underbrace{\left\| X^{-1} \right\|_p \|X\|_p}_{K_p(X)} \|\hat{v}\|_p$$

5.3 Metodi delle potenze

Data $A \in \mathbb{C}^{n \times n}$ diagonalizzabile di autovalori $|\lambda_1| \ge \ldots \ge |\lambda_n| \ge 0$ e base di autovettori unitari $\mathscr{B} = \{x_1, \ldots, x_n\}$

metodo delle potenze Per determinare l'autovalore di modulo max: $q^{(k+1)} = \frac{Aq^{(k)}}{\|Aq^{(k)}\|_2} = \frac{A^kq^{(0)}}{\|A^kq^{(0)}\|_2}$ con

$$\left\|q^{(0)}\right\|_2=1 \ \mathrm{e} \ \nu^{(k)}=\left(q^{(k)}\right)^*Aq^{(k)}$$

$$q^{(0)} = \sum_{i=1}^n \alpha_i x_i \qquad \qquad A^k q^{(0)} = \sum_{i=1}^n \alpha_i A^k x_i = \sum_{i=1}^n \alpha_i \lambda_i^k x_i$$

Definizione 5.1 (*O*-grande): Se g(x) è definitivamente $\neq 0$ per $x \to x_0$ allora f(x) = O(g(x)) significa $\frac{f(x)}{g(x)}$ definitivamente limitato per $x \to x_0$, ovvero

$$\frac{f(x)}{g(x)} \leq c \iff f(x) \leq cg(x) \quad \text{defin. per } x \to x_0$$

Teo. 38 (Ordine di convergenza). Se $|\lambda_1| > |\lambda_2|$ e $\alpha_1 \neq 0$, allora

$$\min_{\substack{x \in \langle x_1 \rangle \\ \|x\|_0 = 1}} \left\| x - q^{(k)} \right\|_2 \le c \left| \frac{\lambda_2}{\lambda_1} \right|^k = O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \qquad \left| \lambda_1 - \nu^{(k)} \right| = O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right)$$

Il min nella tesi serve perché so che $q^{(k)}$ tende alla **direzione** dell'autovalore max (ovvero all'autospazio $\langle x_1 \rangle$) ma se l'autovalore è negativo continua a oscillare avvicinandosi a $+x_1$ o $-x_1$, quindi l'errore lo calcolo da quello più vicino dei due.

Dimostrazione. (I) Scompongo

$$A^k q^{(0)} = \sum_{i=1}^n \alpha_i \lambda_i^k x_i = \alpha_1 \lambda_1^k (x_1 + \sum_{i=2}^n \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k x_i)$$

Ho che

$$\begin{cases} x^{(k)} \coloneqq \frac{\alpha_1 \lambda_1^k}{\left\|\alpha_1 \lambda_1^k\right\|} x_1 \in \langle x^{(1)} \rangle, \quad \left\| x^{(k)} \right\|_2 = 1 \\ q^{(k)} = \frac{A^k q^{(0)}}{\left\|A^k q^{(0)}\right\|} = \frac{\alpha_1 \lambda_1^k}{\left\|\alpha_1 \lambda_1^k\right\|} \frac{x^{(1)} + W^{(k)}}{\left\|x^{(1)} + W^{(k)}\right\|} \end{cases}$$

$$\begin{aligned} \left\|q^{(k)} - x^{(k)}\right\|_2 &= \left\|\left(\frac{x_1 + W^{(k)}}{\left\|x_1 + W^{(k)}\right\|} - x_1\right) \frac{\alpha_1 \lambda_1^k}{\left|\alpha_1 \lambda_1^k\right|}\right\|_2 \\ &= \left\|\frac{x_1 + W^{(k)}}{\left\|x_1 + W^{(k)}\right\|} - x_1\right\|_2 \\ &\leq \left|\frac{1}{\left\|x_1 + W^{(k)}\right\|} - 1\right| + \frac{\left\|W^{(k)}\right\|}{\left\|x_1 + W^{(k)}\right\|} \quad \text{ho raccolto } x^{(1)} \text{ che ha norma } 1 \\ &\stackrel{\star}{=} O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \quad \star \text{ per dim. vedi sotto} \end{aligned}$$

Vediamo che $\|W^{(k)}\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$:

$$\left\|W^{(k)}\right\| = \left\|\sum_{i=2}^{n} \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k x^{(i)}\right\| = \left\|\sum_{i=2}^{n} \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k\right\| \le \left|\frac{\lambda_i}{\lambda_1}\right|^k \sum_{i=2}^{n} \left|\frac{\alpha_i}{\alpha_1}\right| = c \left|\frac{\lambda_i}{\lambda_1}\right|^k$$

Quindi valgono (ricordando la def. di O grande):

$$\begin{cases} \left\| x^{(1)} + W^{(k)} \right\| = 1 + O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \\ O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) / \left(1 + O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \right) = O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \end{cases}$$

e così otteniamo la tesi.

(II) Abbiamo (* =trasposto coniugato):

$$\begin{cases} \nu^{(k)} = q^{(k)*}Aq^{(k)} = q^{(k)*}A(q^{(k)} - x^{(1)}) + q^{(k)*}Ax^{(1)} \\ \lambda_1 = x^{(1)*}Ax^{(1)} \end{cases} \implies \nu^{(k)} - \lambda_1 = q^{(k)*}A(q^{(k)} - x^{(1)}) + (q^{(k)} - x^{(1)})^*Ax^{(1)} \end{cases}$$

Quindi

$$\begin{split} \left| \boldsymbol{\nu}^{(k)} - \lambda_1 \right| &\leq \left| \boldsymbol{q}^{(k)*} \boldsymbol{A} (\boldsymbol{q}^{(k)} - \boldsymbol{x}^{(1)}) \right| + \left| (\boldsymbol{q}^{(k)} - \boldsymbol{x}^{(1)})^* \boldsymbol{A} \boldsymbol{x}^{(1)} \right| \\ &\leq \underbrace{\left\| \boldsymbol{q}^{(k)} \right\|}_{=1} \| \boldsymbol{A} \| \underbrace{\left\| \boldsymbol{q}^{(k)} - \boldsymbol{x}^{(1)} \right\|}_{O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)} + \underbrace{\left\| \boldsymbol{q}^{(k)} - \boldsymbol{x}^{(1)} \right\|}_{O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)} \| \boldsymbol{A} \| \underbrace{\left\| \boldsymbol{x}^{(1)} \right\|}_{=1} \end{split}$$

Osservazione La convergenza è rapida se $\lambda_1 \gg \lambda_2$

Cor. 10 (Velocità di convergenza per mat. reali simm.). Se $|\lambda_1| > |\lambda_2|$ e A è inoltre reale e simmetrica, allora

$$\left|\lambda_1 - \nu^{(k)}\right| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

Se $|\lambda_1| = |\lambda_2|$ allora prendere il **primo autovalore in modulo minore di** λ_1 .

Dimostrazione.

Osservazione (Criterio d'arresto) Se (λ, v) autocoppia di A, allora $Av = \lambda v \iff ||Av - \lambda v|| = 0$. Allora se $(\nu^{(k)}, q^{(k)})$ approssimano (λ, v) abbiamo $||Aq^{(k)} - \nu^{(k)}q^{(k)}|| \approx 0$ e quindi un criterio d'arresto può essere

$$\left\| r^{(k)} \right\|_2 = \left\| Aq^{(k)} - \nu^{(k)} q^{(k)} \right\|_2 \le \varepsilon$$

Presa $E^{(k)} \coloneqq -r^{(k)} \left(q^{(k)}\right)^*$ si ha

$$\left(A+E^{(k)}\right)q^{(k)}=Aq^{(k)}-r^{(k)}=\nu^{(k)}q^{(k)} \qquad \qquad \left\|E^{(k)}\right\|_2=\left\|r^{(k)}\right\|_2\left\|q^{(k)}\right\|_2=\left\|r^{(k)}\right\|_2\leq\varepsilon$$

E quindi per il teorema di Bauer-Fike $\min_{\lambda \in \Lambda(A)} \left| \lambda - \nu^{(k)} \right| \leq K_2\left(X\right) \left\| E \right\|_2 \leq \varepsilon \cdot K_2\left(X\right)$

Osservazione (Costo computazionale) $z^{(k)} = Aq^{(k-1)}$: $2n^2$ flops se A densa, $2 \cdot \text{nnz}(A)$ flops se A sparsa (con nnz(A) i non zeri di A)

metodo delle potenze inverse Per determinare l'autovalore più vicino a μ (detto shift) applico il metodo delle potenze su $(A - \mu I)^{-1}$ infatti ha gli stessi autovettori:

$$(\lambda, v) \text{ autocoppia di } A \iff Av = \lambda v$$

$$\iff Av - \mu v = \lambda v - \mu v$$

$$\iff (A - \mu I)v = (\lambda - \mu)v$$

$$\iff (A - \mu I)^{-1}v = \frac{1}{(\lambda - \mu)}v$$

$$\iff \left(\frac{1}{\lambda - \mu}, v\right) \text{ autocoppia di } (A - \mu I)^{-1}$$

e quindi l'autovalore di modulo massimo di $(A - \mu I)^{-1}$ corrisponde all'autovalore di A più vicino a μ

Osservazione (Ordine di convergenza) Il Ordine di convergenza assicura che se $\exists m \in \{1, ..., n\}$ t.c. $|\mu - \lambda_m| < 1$ $|\mu - \lambda_i| \quad \forall i \neq m \text{ allora } \begin{cases} q^{(k)} \to x_m \\ \nu^{(k)} \to \lambda_m \end{cases}$ L'ordine di convergenza è

$$O\left(\frac{|\lambda_m - \mu|}{|\lambda_t - \mu|}\right)^k$$
 dove $|\lambda_t - \mu| \ge |\lambda_i - \mu| \quad \forall i \ne m$

Osservazione Nel caso in cui $|\lambda_1| = |\lambda_2|$ il metodo delle potenze

- per $\lambda_1 = \lambda_2$ converge ancora, siccome $A^k q^{(0)} = \sum_{i=1}^n \alpha_i \lambda_i^k x_i \approx \lambda_1^k (\alpha_1 x_1 + \alpha_2 x_2)$
- $\bullet\,$ per $\lambda_1 \neq \lambda_2$ la convergenza non è garantita

Metodi basati sulla fattorizzazione QR (NO)

metodo QR Per approssimare tutti gli autovalori: Fattorizzato $T_{k-1} = Q_k R_k$, scrivo $T_k = R_k Q_k$ $(T_0 = A)$.

Osservazione Vale che $T_k = (Q_1Q_2\dots Q_k)^T A(Q_1Q_2\dots Q_k)$, quindi tutti i T_k sono simili a A attraverso matrici ortogonali. Inoltre la stabilità non cambia, in quanto

$$\widetilde{T_k} = \widehat{Q}_k^T \widetilde{A} \widehat{Q}_k^T = \widehat{Q}_k^T (A + E) \widehat{Q}_k^T = T_k + \widehat{Q}_k^T E \widehat{Q}_k^T$$

$$\left\| \widehat{Q}_k^T E \widehat{Q}_k^T \right\|_2 = \left\| E \right\|_2$$

Teo. 41. Presa $A \in \mathbb{R}^{n \times n}$ di autovalori $|\lambda_1| > \ldots > |\lambda_n| > 0$, allora

$$\lim_{k \to +\infty} T_k = \begin{bmatrix} \lambda_1 & t_{1\,2} & \cdots & t_{1\,n} \\ 0 & \lambda_2 & \cdots & t_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

e se A è simmetrica, T_k converge a una diagonale

Lemma 4 .
$$A^k = Q_1 \cdots Q_k R_k \cdots R_1 \quad \forall k \geq 1$$

Dimostrazione. Per induzione, dato $A^k = Q_1 \cdots Q_k R_k \cdots R_1$ ho che

Dimostrazione del teorema. Prendo $A=X\Lambda Y,$ con Λ diagonale con gli autovalori in ordine decrescente, Xcolonne autovettori, $Y = X^{-1}$, X = QR e Y = LU, da cui

$$Q_1 \cdots Q_k R_k \cdots R_1 = A^k = X \Lambda^k Y = QR \Lambda^k L U = QR \left(\overbrace{\Lambda^k L \Lambda^{-k}}^{\to I \text{ per } k \to +\infty} \Lambda^k U \right)$$

$$\underbrace{Q_1\cdots Q_k}_{\hat{Q}_k}\underbrace{R_k\cdots R_1U^{-1}\Lambda^{-k}R^{-1}}_{\hat{R}_k}D = \underbrace{QR\Lambda^kL\Lambda^{-k}R^{-1}}_{\text{ord}}D \qquad \qquad \text{dunque } \begin{cases} \hat{Q}_k \longrightarrow QD \\ \hat{R}_kD \longrightarrow I \end{cases}$$

$$T_k = \left(\underbrace{Q_1 \cdots Q_k}_{\hat{Q}_k}\right)^T T_0 \left(\underbrace{Q_1 \cdots Q_k}_{\hat{Q}_k}\right) = \hat{Q}_k^T X \Lambda X^{-1} \hat{Q}_k = \underbrace{\hat{Q}_k^T Q}_{\to D} R \Lambda R^{-1} \underbrace{Q^T \hat{Q}_k}_{\to D} \longrightarrow DR \Lambda R^{-1} D$$

Osservazione Il metodo QR può essere visto come una serie di metodi delle potenze in cui parto da una matrice I moltiplico le colonne per A e poi a ogni passaggio ortogonalizzo.

Definizione 5.2 (matrice di Hessenberg): H di Hessenberg se $h_{ij} = 0 \quad \forall i > j+1$

metodo di Hessenberg-QR Trasformo A in una matrice di Hessenberg tramite 44 e poi applico il metodo QR (la complessità computazionale per la fattorizzazione QR di una matrice di Hessenberg è di $O(n^2)$)

Definizione 5.3 (trasformazioni di Householder):

$$P = I - 2 \frac{vv^{T}}{\|v\|_{2}^{2}} \qquad v = x \pm e_{m} \|x\|_{2} \qquad Px = \pm e_{m} \|x\|_{2} = \begin{pmatrix} 0 & \dots & 0 & \|x\|_{2} & 0 & \dots & 0 \end{pmatrix}^{T}$$

triangolarizzazione di Householder $Q_{n-1} \dots Q_1 A = R \text{ con } Q_j = \begin{bmatrix} I_{j-1} & 0 \\ 0 & P_j \end{bmatrix}$ e P_j matrice di Householder opportuna

$$\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \longrightarrow \begin{bmatrix} \times & \times & \times \\ \odot & \times & \times \\ \odot & \times & \times \end{bmatrix} \longrightarrow \begin{bmatrix} \times & \times & \times \\ \odot & \times & \times \\ \odot & \odot & \times \end{bmatrix}$$

$$A$$

riduzione a matrice di Hessenberg Devo trovare $T_0 = Q_0^T A Q_0$, $Q_0 = P_1 \dots P_{n-2}$ con $Q_k = \begin{bmatrix} I_k & 0 \\ 0 & \widehat{P_k} \end{bmatrix}$ e $\widehat{P_k}$ matrice di Householder

Definizione 5.4 (matrici elementari di Givens): $i, k \in \{1, ..., n\}$ e $\theta \in [0, 2\pi]$, $G(i, k, \theta)$ ortogonale è la rotazione di θ sul piano $\langle e_i, e_k \rangle$

$$G(i, k, \theta) = \begin{bmatrix} I_{i-1} & & & \\ & \cos \theta & & \sin \theta \\ & & I_{k-i-1} \\ & -\sin \theta & & \cos \theta \\ & & I_{n-k} \end{bmatrix}$$

Osservazione $G(i, k, \theta)$ permette di annullare 1 componente di un vettore lasciandone inalterate n-2

$$\theta = \arctan\left(-\frac{x_k}{x_i}\right) \qquad \begin{bmatrix} y_i \\ y_k \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_i \\ x_k \end{bmatrix} = \begin{bmatrix} \sqrt{x_i^2 + x_k^2} \\ 0 \end{bmatrix}$$

fattorizzazione QR di una matrice di Hessenberg A matrice di Hessenberg, $R=Q^TA$ con $Q^T=G_{n-1}^T\ldots G_1^T$ (applico le matrici di Givens per annullare l'ultima componente per ogni colonna)

$$\begin{bmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & \times & \times
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & \times & \times
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & \times & \times
\end{bmatrix}$$

$$G_{3}^{T}G_{2}^{T}G_{1}^{T}A$$

Teo. 46 (formula di Shermann-Morris). $A \in \mathbb{R}^{n \times n}$ invertibile e $u, v \in \mathbb{R}^n$, $A + uv^T$ invertibile $\iff 1 + v^T A^{-1} u \neq 0$, e

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$$

Parte II

Secondo semestre

6 Zeri di funzione e ottimizzazione

Teo. 47 (Condizionamento del problema di ottimizzazione). Radice di molteplicità m,

$$K_{\mathrm{abs}}\left(d\right) \simeq \left|\frac{m! \cdot \delta d}{f^{(m)}\left(\alpha\right)}\right|^{1/m} \frac{1}{\left|\delta d\right|}$$

In particolare per m=1 abbiamo

$$K_{\mathrm{abs}}\left(d\right) \simeq \frac{1}{|f'(x)|} \qquad K\left(d\right) \simeq \frac{1}{|f'(x)|} \frac{|d|}{|\alpha|}$$

Dimostrazione.

 \star dato che le derivate $k=1\dots m-1$ si annullano per ipotesi. Allora

$$K_{
m abs}\left(d
ight)\simeq rac{\left|\deltalpha
ight|}{\left|\delta d
ight|}\simeq \left|rac{m!\cdot\delta d}{f^{(m)}\left(lpha
ight)}
ight|^{1/m}rac{1}{\left|\delta d
ight|}$$

Osservazione Per |f'(x)| piccola il problema è mal condizionato.

Definizione 6.1 (Ordine di convergenza): $x^{(k)}$ converge ad α con ordine p se:

$$\frac{\left|x^{(k+1)} - \alpha\right|}{\left|x^{(k)} - \alpha\right|^p} \le C$$

definitivamente in k

Impostazione del metodo $f: [a,b] \to \mathbb{R}$ continua, $f(\alpha) = 0$, per il teo. di Lagrange $\exists \xi$ t.c.

$$\frac{f(\alpha) - f(x)}{\alpha - x} = f'(\xi) \quad \xi \in [\alpha, x]$$

da cui otteniamo, essendo $f(\alpha) = 0$

$$f(x) + (\alpha - x)f'(\xi) = 0$$

che suggerisce il metodo iterativo: dato $\boldsymbol{x}^{(k)}$ si calcola $\boldsymbol{x}^{(k+1)}$ risolvendo

$$f(x^{(k)}) + (x^{(k+1)} - x^{(k)})q_k = 0$$

dove q_k è opportuna approssimazione di $f'(x^{(k)})$. Ciò equivale a trovare il punto di intersezione tra asse x e retta di pendenza q_k passante per $(x^{(k)}, f(x^{(k)}))$, scritta in forma più esplicita (voglio y = 0)

$$y - f(x^{(k)}) = q_k \left(x^{(k+1)} - x^{(k)} \right)$$

esplicitando l'incognita:

$$x^{(k+1)} = x^{(k)} - q_k^{-1} f(x^{(k)})$$

Metodo di Bisezione IPOTESI: $f: [a, b] \to \mathbb{R}$ continua, $f(a) \cdot f(b) < 0$

Vari metodi

$$\begin{array}{lll} \textit{Metodo delle corde} & q_k = \frac{f(b) - f(a)}{b - a} & (\cos f(a) \cdot f(b) < 0) & \text{ordine 1} \\ \textit{Metodo delle secanti} & q_k = \frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}} & (\text{assegnati i due dati iniziali } x^{(-1)}, x^{(0)}) & \text{ordine } \frac{1 + \sqrt{5}}{2} \\ \textit{Regula falsi} & q_k = \frac{f(x^{(k)}) - f(x^{(k')})}{x^{(k)} - x^{(k')}} & (\cos k' \text{ più grande } < k \text{ tale per cui } f(x^{(k)}) \cdot f(x^{(k')}) < 0) \\ \textit{Metodo di Newton} & q_k = f'(x^{(k)}) & (\cos f \in C^1(J), f'(x) \neq 0 \ \forall x \in J) & \text{ordine 2 (se rad. sempl.)} \\ \end{array}$$

Teo. 51 (Teorema di convergenza locale). Sia
$$f: I \to \mathbb{R}$$
, $x_0 \in I$, $f \in C^2$, se $\exists M$ tale che $\left| \frac{f''(x)}{f'(y)} \right| \leq M$ $\forall (x,y) \in I^2$, allora $|x_0 - \alpha| < \frac{2}{M}$ (con α zero di f) \Longrightarrow Metodo di Newton converge con ordine 2.

Dimostrazione. Sviluppo di Taylor in $x^{(k)}$ al primo ordine con errore di Lagrange:

$$f(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) + \frac{f''(\xi)}{2} \left(x - x^{(k)}\right)^2$$

In particolare vale per $x = \alpha$:

$$0 = f(\alpha) = f(x^{(k)}) + f'(x^{(k)})(\alpha - x^{(k)}) + \frac{f''(\xi)}{2} \left(\alpha - x^{(k)}\right)^{2}$$

$$= \underbrace{\left[\frac{f(x^{(k)})}{f'(x^{(k)})} - x^{(k)}\right]}_{-x^{(k+1)}} + \alpha + \frac{f''(\xi)}{2f'(x^{(k)})} \left(\alpha - x^{(k)}\right)^{2} \quad \text{ho raccolto } f'(x^{(k)})$$

Quindi

$$\frac{\left(\alpha - x^{(k+1)}\right)}{\left(\alpha - x^{(k)}\right)^2} \stackrel{\star}{=} -\frac{1}{2} \frac{f''(\xi)}{f'(x^{(k)})} \quad \text{ovvero} \quad |e_{k+1}| \le \frac{1}{2} \left| \frac{f''(\xi)}{f'(x^{(k)})} \right| e_k^2$$

Dimostriamo che converge: abbiamo, con J intorno di α

$$f \in C^{2}(J) \implies \frac{1}{2} \left| \frac{f''(x)}{f'(y)} \right| \leq M \quad \text{per un } M \in \forall x, y \in J$$

$$\implies |e_{k+1}| \leq Me_{k}^{2}$$

$$\implies M|e_{k+1}| \leq (Me_{k})^{2} \leq (Me_{0})^{2k+1}$$

$$\implies |e_{k+1}| \leq \frac{1}{M} (Me_{0})^{2k+1}$$

$$\implies |e_{k}| \leq \frac{1}{M} (Me_{0})^{2k} \stackrel{k \to +\infty}{\longrightarrow} 0 \quad \text{se } |Me_{0}| < 1 \iff |e_{0}| < \frac{1}{M}$$

quindi se $|e_k| = |\alpha - x_0|$ è abbastanza piccolo il metodo converge e da \star

$$\frac{\left|\alpha - x^{(k+1)}\right|}{\left|\alpha - x^{(k)}\right|^2} = \left|\frac{1}{2} \frac{f''\left(\xi\right)}{f'\left(x^{(k)}\right)}\right| \le M \implies \text{converge di ordine 2}$$

6.1 Metodo di Punto Fisso

Data $f:[a,b]\to\mathbb{R}$ la posso scomporre in $f(x)=x-\phi(x)$ e quindi $\phi(x)=x-f(x)$ e ottengo

$$f(x) \iff x - \phi(x) = 0 \iff \phi(x) = x \quad (x \text{ punto fisso di } \phi)$$

La scelta di ϕ non è unica: mi basta scegliere $\phi(x) = x + F(f(x))$ con F continua e F(0) = 0 (stessi zeri di f)

Metodo di Picard o di punto fisso Presa $\phi \colon \mathbb{R} \to \mathbb{R}$ cerchiamo $\alpha \in \mathbb{R}$ tale che $\phi(\alpha) = \alpha$. Prendo x_0 fissato e $x_{n+1} = \phi(x_n)$

Teo. 53 (Teorema delle Contrazioni). Presa ϕ : $[a,b] \to [a,b]$ continua, essa ha un punto fisso. Se è contrattiva $(|\phi(x) - \phi(y)| \le L|x - y| \ \forall x, y \in [a,b] \ \text{con } L < 1)$, tale punto è unico.

Dimostrazione. Esistenza Prendo $g(x) = \phi(x) - x$, ho

$$\begin{cases} g\left(a\right) \leq 0 & \text{essendo } \phi(x) \geq a \; \forall x \in [a,b] \text{ quindi } \phi(a) \geq a \\ g\left(b\right) \geq 0 & \text{essendo } \phi(x) \leq b \; \forall x \in [a,b] \text{ quindi } \phi(b) \leq b \end{cases} \implies \text{teorema degli zeri}$$

Unicità Per assurdo α_1 e α_2 punti fissi distinti, $|\alpha_1 - \alpha_2| = |\phi(\alpha_1) - \phi(\alpha_2)| \le L |\alpha_1 - \alpha_2| \text{ con } L < 1$

Teo. 54 (Teorema di convergenza globale). Per il metodo di Picard, se ϕ continua e contrattiva allora

$$\lim_{k\to\infty} x_k = \alpha \quad \forall x_0 \in [a,b] \quad \text{convergenza globale}$$

$$|x_k - \alpha| \leq \frac{L^k}{1-L} \, |x_1 - x_0| \quad \text{stima a priori dell'errore}$$

$$|x_k - \alpha| \leq \frac{L}{1-L} \, |x_k - x_{k-1}| \quad \text{stima a posteriori dell'errore}$$

Dimostrazione. Convergenza globale: per ogni x_k

$$\begin{aligned} |x_k - \alpha| &= |\phi(x_{k-1}) - \phi(\alpha)| \\ &\leq \boxed{L|x_{k-1} - \alpha|} \\ &\leq [\ldots] \text{ ripetere questo procedimento a } |x_{k-1} - \alpha| \\ &\stackrel{\heartsuit}{\leq} \boxed{L^k|x_0 - \alpha|} \stackrel{k \to +\infty}{\longrightarrow} 0 \quad \text{(essendo } L < 1) \end{aligned}$$

Stima a priori:

$$|x_0 - \alpha| \le |x_0 - x_1| + |x_1 - \alpha|$$

$$\le |x_0 - x_1| + L|x_0 - \alpha|$$

$$\le \frac{|x_0 - x_1|}{1 - L} \quad \text{ho portato a sx un addendo e poi diviso}$$

ora sostituire in \heartsuit .

Stima a posteriori:

$$\begin{aligned} |x_{k-1} - \alpha| &\leq |x_{k-1} - x_k| + |x_k - \alpha| \\ &\leq |x_{k-1} - x_k| + L|x_{k-1} - \alpha| \\ &\leq \frac{|x_{k-1} - x_k|}{1 - L} \quad \text{ho portato a sx un addendo e poi diviso} \end{aligned}$$

ora sostituire in .

Cor. 11 (Convergenza globale nei chiusi). Se ϕ derivabile con $|\phi'(x)| \le L < 1 \ \forall x \in [a, b]$, allora $x_k \longrightarrow \alpha \ \forall x_0 \in [a, b]$. Ovvero

$$|\phi'(x)| < 1 \ \forall x \in [a,b] \quad (\alpha \in [a,b]) \implies \text{convergente in } [a,b]$$

Teo. 55 (Teorema di convergenza locale). Se α punto fisso di $\phi \in C^1(J)$, J intorno di α

se
$$|\phi'(\alpha)| < 1 \implies \exists \delta > 0 : \quad x_k \longrightarrow \alpha \quad \forall |x_0 - \alpha| \le \delta$$

. Vale inoltre che

$$\lim_{k \to +\infty} \frac{x_{k+1} - \alpha}{x_k - \alpha} = \phi'(\alpha)$$

Dimostrazione. Convergenza locale: $\begin{cases} |\phi'\left(\alpha\right)| < 1 \\ \phi(x) \text{ continua} \end{cases} \implies \exists \delta > 0 \text{ t.c. } |\phi'\left(\alpha\right)| < 1 \quad \forall x \in [\alpha - \delta, \alpha + \delta],$ quindi $\phi > 0$ contrariore of ϕ

quindi ϕ è contrazione su $[\alpha - \delta, \alpha + \delta]$. Dobbiamo verificare che ϕ mappa tale intervallo in se stesso: per induzione (no sbatti). Applico teo. convergenza globale a tale int.

Limite:

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha) \stackrel{\text{teo.Lagr.}}{=} \phi'(\xi_k)(x_k - \alpha) \quad \xi_k \in [\alpha, x_k]$$

Abbiamo
$$\begin{cases} x_k \to \alpha \implies \xi_k \to \alpha \\ \phi' \quad \text{continua in intorno di } \alpha \end{cases} \implies \phi'(\xi_k) \to \phi'(\alpha)$$

Quindi la tesi applicando questo all'ugualianza appena sopra.

Osservazione Se $|\phi'(\alpha)| = 1$ non si può dire niente a priori sulla convergenza, se $|\phi'(\alpha)| > 1$ non si può avere convergenza

Prop. 12. Se $|\phi'(\alpha)| > 1$ non si può avere convergenza

Dimostrazione.

$$|x_{k+1} - \alpha| = |\phi(x_k) - \phi(\alpha)| \stackrel{\text{teo.Lagr.}}{=} |\phi'(\xi_k)(x_k - \alpha)| = |\phi'(\xi_k)||(x_k - \alpha)|$$

essendo ϕ' continua in un intorno di $\alpha \implies \text{per } x_k$ suffic. vicino ho $\phi'(\xi_k) > 1 \implies |x_{k+1} - \alpha| > |x_k - \alpha| \implies$ no convergenza

Osservazione (Newton come caso particolare di punto fisso) $\phi(x) = x - \frac{f(x)}{f'(x)}$, punti fissi di $\varphi \leftrightarrow$ zeri di f

Teo. 56 (Ordine di convergenza di Picard). Dato $\alpha \in I \subseteq \mathbb{R}$ punto fisso di $\phi \in C^{p+1}(I)$ tale che $\begin{cases} \phi^{(i)}(\alpha) = 0 & i = 1, \dots, p \\ \phi^{(p+1)}(\alpha) \neq 0 \end{cases}$, allora il metodo di punto fisso converge localmente con ordine p+1 e vale

$$\lim_{k \to +\infty} \frac{x_{k+1} - \alpha}{(x_k - \alpha)^{p+1}} = \frac{\phi^{(p+1)}(\alpha)}{(p+1)!}$$

Dimostrazione. Taylor con errore di Lagrange:

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha) = \sum_{i=1}^{p} \frac{\phi^{(i)}(\alpha)}{i!} (x_k - \alpha)^i + \frac{\phi^{(p+1)}(\xi)}{(p+1)!} (x_k - \alpha)^{p+1}$$

quindi si ha la prima tesi dividendo per l'ultimo fattore e la seconda tesi ricordando che $\xi \stackrel{k \to \infty}{\to} \alpha$ poiché $x_k \stackrel{k \to \infty}{\to} \alpha$

Osservazione A parità di ordine di convergenza, tanto più piccola è $\phi^{(p+1)}(\alpha)$ tanto più rapida è la convergenza. (devo scegliere bene ϕ)

Prop. 13 (Ordine metodo Newton con punto fisso). Se α radice semplice ha ordine 2, altrimenti 1

Dimostrazione. Se α radice semplice $\phi(x) = x - \frac{f(x)}{f'(x)}$, calcolare $\phi'(x)$ e vedi che $\phi''(\alpha) = 0$, poi $\phi''(x)$ e vedi che $\phi''(\alpha) \neq 0$.

Se α radice multipla scrivo $f(x) = (x - \alpha)^m h(x)$ con m > 1 molteplicità e $h(\alpha) \neq 0$, rifaccio il procedimento di prima e vedo $\phi'(\alpha) = 1 - \frac{1}{m} \neq 0$

Metodo di Newton modificato Se la radice α ha molteplicità m > 1 voglio trovare un modo per ripristinare l'ordine quadratico. Ho visto che in Newton ho $\phi'(\alpha) = 1 - \frac{1}{m}$ quindi se avessi $\phi'(\alpha) = 1 - \frac{1}{m} \cdot m = 0$ sarei a posto. Quindi pongo:

$$x_{k+1} = x_k - m \frac{f(x)}{f'(x)}$$

Osservazione (criteri di arresto) Ponendo $f(\alpha + \delta \alpha) = \delta d$ (residuo) e ricordando

$$\frac{|\delta\alpha|}{|\delta d|}\approx K_{abs}=\frac{1}{|f'(x)|}\implies |\delta\alpha|\approx \frac{1}{|f'(\alpha)|}|\delta d|$$

nel caso di metodi iterativi $\alpha + \delta \alpha = x_k$ e $\delta d = f(x_k)$. Esempi di criteri d'arresto:

• Controllo del residuo:

$$|f(x_k)| \le \varepsilon$$
 $|e_k| = |\alpha - x_k| \le \frac{1}{|f'(\alpha)|} |f(x_k)|$

Vediamo che se

$$\begin{cases} |f'(\alpha)| \approx 1 \implies |e_k| \approx \varepsilon \\ |f'(\alpha)| \ll 1 \implies \frac{1}{|f'(x)|} \gg 1 \implies \text{test non affidabile} \\ |f'(\alpha)| \gg 1 \implies \frac{1}{|f'(x)|} \ll 1 \implies \text{test troppo restrittivo} \end{cases}$$

• Controllo dell'incremento:

si arresta se
$$[x_{k+1} - x_k] \le \varepsilon$$
 $x_{k+1} - x_k = e_k - e_{k+1}$ $|e_k| \approx \frac{1}{|1 - f'(\alpha)|} [x_{k+1} - x_k]$

$$\begin{cases} x_{k+1} - x_k = (x_{k+1} - \alpha) + (\alpha - x_k) = e_k - e_{k+1} \\ e_{k+1} = \alpha - x_{k+1} = \phi(\alpha) - \phi(x_{k+1}) \stackrel{\text{Lagr.}}{=} \phi'(\xi_k)(\alpha - x_k) = \phi'(\xi_k)e_k \end{cases}$$

Allora

$$x_{k+1} - x_k = e_k - e_{k+1} = e_k - \phi'(\xi_k)e_k = (1 - \phi'(\xi_k))e_k$$

e quindi

$$e_k = \frac{1}{1 - \phi'(\xi_k)} (x_{k+1} - x_k)$$
 dove $\phi'(\xi_k) \approx \phi'(\alpha)$ se ϕ' varia poco nell'intorno $|e_k| \approx \frac{1}{|1 - \phi'(\alpha)|} |x_{k+1} - x_k|$

Vediamo che

$$\begin{cases} \phi'(\alpha) \approx 1 \implies \text{test non affidabile} \\ \phi'(\alpha) = 0 \implies \text{test è ottimale} \\ -1 \ge \phi'(\alpha) \ge 0 \implies \text{test affidabile} \end{cases}$$

6.1.1 Stabilità del metodo delle iterazioni di punto fisso

Vogliamo vedere come si propagano gli errori di arrotondamento dovuti al fatto che non operiamo in aritmetica esatta.

Teo. 58 (Stabilità del metodo di punto fisso). $\tilde{x}_{k+1} = \phi(\tilde{x}_k) + \delta_k, \ \phi: \mathbb{R} \to \mathbb{R}$ derivabile con derivata $\leq L < 1$ e $|\delta_k| \leq \delta$, allora

$$|\tilde{x}_k - \alpha| \le \frac{\delta}{1 - L} + \frac{L^k}{1 - L} |\tilde{x}_1 - \tilde{x}_0|$$

Dimostrazione.

□ | P. 18

6.2 Sistemi non lineari

Metodo di Newton vettoriale $x_{k+1} = x_k - [D\phi(x_k)]^{-1}\phi(x_k)$ (con det $(D\phi) \neq 0$)

6.3 Radici di Polinomi

Definizione 6.2 (Formula di Horner): $P_n(x) = a_0 + x (a_1 + x (a_2 + ... + x (a_{n-q} + a_n x)...))$

Definizione 6.3 (Metodo di deflazione): Trovo uno zero, divido con Ruffini, ripeto.

Definizione 6.4 (Funzione Logistica): $f_{\lambda} \colon [0,1] \to \mathbb{R}$ $x \mapsto \lambda x (1-x)$, con $1 \le \lambda \le 4$ (per avere almeno un punto fisso e $f_{\lambda} \le 1$). Il punto fisso $x = \frac{\lambda-1}{\lambda}$ è attrattivo per $1 < \lambda < 3$

7 Approssimazione di funzioni

Definizione 7.1 (Funzione interpolante): $p: \mathbb{R} \to \mathbb{R}$ interpola $\begin{pmatrix} \text{nodi dati} \\ x_i \end{pmatrix}$ se vale $p(x_i) = y_i \ \forall i$

Tipi di interpolazione Abbiamo

- polinomiale: con polinomio
- trigonoetrica: con polinomio trigonometrico
- composita (spline): è solo localmente un polinomio

A cosa serve :

- \bullet sostituire f con funzione più semplice da trattare (integrare/derivare)
- trovare funzione polinomiale che descriva dati sperimentali (se sono molti)

7.1 Interpolazione polinomiale di Lagrange

Date n+1 coppie $\{(x_i,y_i)\}_{i=0,\dots,n}$ si cerca polinomio interpolatore di grado m $\Pi_m(x) \in \mathbb{P}_m$

- n < m problema sottodeterminato
- n = m unicità (vedi sotto)
- n > m problema sovradeterminato (minimi quadrati)

Teo. 60 (Lagrange - esistenza e unicità del polinomio interpolatore). Date n+1 coppie $\{(x_i, y_i)\}_{i=0,\dots,n}$ esiste un unico polinomio p di grado al più n che le interpola

Dimostrazione. Dimostrando unicità e esistenza

Unicità. Prendo $p,q \in \mathbb{P}_n$ interpolanti, $p-q=\omega$ con $\omega\left(x_i\right)=0 \quad \forall i=0,\ldots,n,$ quindi è di grado n con n+1 zeri $\stackrel{\text{th.Fond.Algebra}}{\Longrightarrow} \omega \equiv 0$ e dunque $p \equiv q$.

Esistenza. Costruzione esplicita di p dalla base di Lagrange $\{l_i\}_{i=0}^n$ e $p(x) = \sum_{i=0}^n l_i(x) \cdot y_i$

$$l_{i}(x) = \frac{(x - x_{0}) \cdots (x - x_{i-1}) (x - x_{i+1}) \cdots (x - x_{n})}{(x_{i} - x_{0}) \cdots (x_{i} - x_{i-1}) (x_{i} - x_{i+1}) \cdots (x_{i} - x_{n})} = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

Quindi abbiamo

$$\begin{cases} l_i(x_i) = 1 \\ l_i(x_j) = 0 \end{cases} \implies l_i(x_j) = \delta_{ij}$$

Dimostriamo che sono linearmente indipendenti: dobbiamo vedere che

$$q(x) = \sum_{i=0}^{n} a_i l_i(x) \equiv 0 \implies a_i = 0 \quad \forall i = 0, \dots, n$$

in effetti questo dovrebbe valere in particolare per gli x_j :

$$q(x_j) = \sum_{i=0}^n a_i \underbrace{l_i(x_j)}_{=\delta_{ij}} = 0 \implies a_j = 0 \quad \forall j = 0, \dots, n$$

Quindi essendo $\{l_i\}_{i=0}^n$ n+1 polinomi di grado n linearmente indip. formano una base per \mathbb{P}_n . Verificare l'inerpolazione (ovvia).

Definizione 7.2 (Polinomio interpolatore e nodale): Polinomio interpolatore $\Pi_n f$ di grado al più n, Polinomio nodale

$$\omega_{n+1} \coloneqq \prod_{i=0}^{n} (x - x_i)$$

Osservazione Possiamo riscrivere gli elementi della base di Lagr. in funzione del polinomio nodale:

$$l_i(x) = \frac{\omega_{n+1}(x)}{(x - x_i)\omega'_{n+1}(x_i)}$$

Teo. 61 (Errore di Lagrange in uno sviluppo di Taylor). Sia $f:(a,b)\to\mathbb{R}$ derivabile n volte in $x_0\in(a,b)$ allora sia $T_n(x)$ il polinomio di Taylor di grado n generato da f con centro x_0 . Se inoltre $f\in C^{n+1}((a,b))$ allora $\forall x\in(a,b)\ \exists \xi\in[x_0,x]$ t.c.

$$f(x) - T_n(x) := E_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \qquad \xi \in [x_0, x]$$

Dimostrazione. Wlog $x > x_0$ Vogliamo dimostrare

$$\frac{g(x)}{w(x)} := \underbrace{\frac{f(x) - T_n(x)}{(x - x_0)^{n+1}}}_{:=w(x)} = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Osserviamo che

$$\begin{cases} g(x_0) = g'(x_0) = \dots = g^{(n)}(x_0) = 0 \\ g^{(n+1)}(x) = f^{(n+1)}(x) \quad (\star) \end{cases} \qquad \begin{cases} w(x_0) = w'(x_0) = \dots = w^{(n)}(x_0) = 0 \\ w^{(n+1)}(x) = (n+1)! \quad (\star) \end{cases}$$

Vediamo che g(x), w(x) soddisfano le ip. del th. di Cauchy in $[x_0, x]$: $\exists \xi_1 \in (x_0, x)$ t.c

$$\frac{g(x) - g(x_0)}{w(x) - w(x_0)} = \frac{g'(\xi_1)}{w'(\xi_1)} \implies \frac{g(x)}{w(x)} = \frac{g'(\xi_1)}{w'(\xi_1)}$$

Vediamo che g'(x), w'(x) soddisfano le ip. del th. di Cauchy in $[x_0, x]: \exists \xi_2 \in (x_0, x)$ t.c

$$\frac{g'(x) - g'(x_0)}{w'(x) - w'(x_0)} = \frac{g''(\xi_2)}{w''(\xi_2)} \implies \frac{g'(x)}{w'(x)} = \frac{g''(\xi_1)}{w''(\xi_1)}$$

Procedere così ottenendo una sequenza di (n+1) numeri ξ_1,\ldots,ξ_{n+1} t.c. $x_0<\xi_{n+1}<\cdots<\xi_1$ e ponendo $\xi\coloneqq\xi_{n+1}$

$$\frac{g(x)}{w(x)} = \frac{g'(\xi_1)}{w'(\xi_1)} = \frac{g''(\xi_2)}{w''(\xi_2)} = \dots = \frac{g^{(n+1)}(\xi_{n+1})}{w^{(n+1)}(\xi_{n+1})} \stackrel{(\star)}{=} \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Teo. 62 (Errore di interpolazione di Lagrange). Sia $x \in \text{Dominio}(f)$, supponiamo $f \in C^{n+1}(I_x)$, con I_x il più piccolo intervallo che contiene i nodi $\{x_i\}_{i=0}^n$ e il punto x. Allora l'errore di interpolazione nel punto x è dato da:

$$E_n(x) := f(x) - \Pi_n f(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x) \qquad \xi_x \in I_x$$

Dimostrazione. La tesi è ovvia per $x=x_i$ per un certo $i=0,\ldots,n$. Allora fissiamo $x\neq\{x_i\}_i$ e definisco

$$G(t) = E_n(t) - \omega_{n+1}(t) \underbrace{\frac{E_n(x)}{\omega_{n+1}(x)}}_{\text{cost}} \qquad t \in I_x$$

Vediamo che $\begin{cases} f \in C^{n+1}(I_x) \\ \omega_{n+1} \in \mathbb{P}_{n+1} \end{cases} \implies G \in C^{n+1}(I_x) \text{ e che } G \text{ si annulla in } n+2 \text{ punti distinti } \{x_i\}_{i=1}^n, x:$

$$G(x_i) = \underbrace{E_n(x_i)}_{=0} - \underbrace{\omega_{n+1}(x_i)}_{=0} \frac{E_n(x)}{\omega_{n+1}(x)} = 0$$

$$G(x) = E_n(x) - \underbrace{\omega_{n+1}(x)}_{=0} \underbrace{E_n(x)}_{\underbrace{\omega_{n+1}(x)}} = 0$$

Quindi

$$\begin{cases} G \in C^{n+1}(I_x) & \overset{\text{th.Rolle}}{\Longrightarrow} G'(t) \text{ ha } n+1 \text{ zeri } \overset{\text{reiterato}}{\Longrightarrow} G^{(j)} \text{ ha } n+2-j \text{ zeri } \Longrightarrow G^{(n+1)} \text{ ha zero in } \xi_x \end{cases}$$

Calcoliamo

$$G^{(n+1)}(t) = E_n^{(n+1)}(t) - \omega_{n+1}^{(n+1)}(t) \frac{E_n(x)}{\omega_{n+1}(x)}$$

vediamo che

$$\begin{cases} E_n^{(n+1)}(t) = f^{(n+1)}(t) - \overbrace{(\Pi_n f)^{(n+1)}(t)}^{=0} = f^{(n+1)}(t) \quad \text{poich\'e } \Pi_n f \in \mathbb{P}_n \\ \omega_{n+1}^{(n+1)}(t) = (n+1)! \quad \text{poich\'e derivata } (n+1) \text{ di } p \in \mathbb{P}_{n+1} \text{ \`e la derivata del solo termine di grado } n+1 \end{cases}$$

e quindi

$$G^{(n+1)}(t) = f^{(n+1)}(t) - (n+1)! \frac{E_n(x)}{\omega_{n+1}(x)} \stackrel{G^{(n+1)}(\xi_x) = 0}{\Longrightarrow} E_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x)$$

Definizione 7.3 (matrice di interpolazione): X matrice triangolare inferiore con n-esima riga la n-upla di punti di interpolazione all'n-esimo passaggio (riga \leftrightarrow set di nodi in numero crescente)

Definizione 7.4 (Norma del massimo/infinito): Sia $f \in C^0([a,b])$, allora

$$||f||_{\infty} \coloneqq \max_{x \in [a,b]} |f(x)|$$

Definizione 7.5 (Polinomio di miglior approssimazione uniforme): Fissata f e la matrice di interpolazione X, indichiamo:

$$E_{n.\infty} := ||f - \Pi_n f||_{\infty}$$
 $n = 0, 1, \dots$ (righe di X)

Allora $p_n^* \in \mathbb{P}_n$ è il polinomio di miglior approssimazione uniforme (ovvero nella norma infinito) se

$$E_n^* := \|f - p_n^*\|_{\infty} = \min_{q_n \in \mathbb{P}_n} \|f - q_n\|_{\infty}$$

Non è detto che p_n^* sia un polinomio interpolatore di f

Definizione 7.6 (Operatore di interpolazione): Esso è

$$\Pi_n: C^0([a,b]) \rightarrow \mathbb{P}_n \subset C^0([a,b])$$
 $f \mapsto \Pi_n f$

è lineare e $\Pi_n p = p \quad \forall p \in \mathbb{P}_n$. Inoltre

$$\|\Pi_n\|_{\infty} := \sup_{\substack{f \in C^0([a,b]) \\ \|f\|_{\infty} = 1}} \|\Pi_n f\|_{\infty}$$

Definizione 7.7 (Costante di Lebesgue): Sia X matrice di interpolazione, è

$$\Lambda_n(X) = \left\| \sum_{i=0}^n |l_i(x)| \right\|_{\infty}$$

Teo. 63 (Significato della costante di Lebesgue). Vale

$$\Lambda_n(X) = \|\Pi_n\|_{\infty}$$

36

Dimostrazione. Facciamo \geq e poi \leq .

• $\|\Pi_n\|_{\infty} \leq \left\|\sum_{i=0}^n \left|l_i^{(n)}\right|\right\|_{\infty}$:

$$\|\Pi_{n}\|_{\infty} = \sup_{\substack{f \in C^{0}[a,b] \\ \|f\|_{\infty} = 1}} \|\Pi_{n}f\|_{\infty}$$

$$= \sup_{\substack{f \in C^{0}[a,b] \\ \|f\|_{\infty} = 1}} \max_{x \in [a,b]} |\Pi_{n}f(x)|$$

$$\leq \sup \max \sum_{i=0}^{n} \underbrace{|f|_{\infty} = 1}_{f(x_{i})} |l_{i}^{(n)}|$$

$$\leq \sup \max_{x \in [a,b]} \sum_{i=0}^{n} |l_{i}^{(n)}| = \left\|\sum_{i=0}^{n} |l_{i}^{(n)}|\right\|_{\infty}$$

 $\bullet \ \underline{\left\|\Pi_n\right\|_{\infty} \geq \left\|\sum_{i=0}^n \left|l_i^{(n)}\right|\right\|_{\infty}} : \text{dimostrando che esiste } \overline{\frac{f}{f}} \in C^0[a,b], \text{ tale che } \left\|\Pi_n \overline{f}\right\|_{\infty} \geq \left\|\sum_{i=0}^n \left|l_i^{(n)}\right|\right\|_{\infty}. \text{ Presidential problem}$

$$\begin{cases} \overline{x} \text{ t.c. } \left\| \sum_{i=0}^{n} \left| l_{i}^{(n)} \right| \right\|_{\infty} = \sum_{i=0}^{n} \left| l_{i}^{(n)} \left(\overline{x} \right) \right|_{\infty} \\ \overline{f} = \text{sign} \left(l_{i}^{(n)} \left(\overline{x} \right) \right) \end{cases}$$

abbiamo

$$\begin{split} \left\| \Pi_{n} \overline{f} \right\|_{\infty} &= \max_{x \in [a,b]} \left| \Pi_{n} \overline{f} \left(x \right) \right| \\ &\geq \left| \Pi_{n} \overline{f} \left(\overline{x} \right) \right| \\ &= \left| \sum_{i=0}^{n} \overline{f} \left(x_{i} \right) l_{i}^{(n)} \left(\overline{x} \right) \right| \\ &= \left| \sum_{i=0}^{n} \operatorname{sign} \left(l_{i}^{(n)} \left(\overline{x} \right) \right) l_{i}^{(n)} \left(\overline{x} \right) \right| \\ &= \sum_{i=0}^{n} \operatorname{sign} \left(l_{i}^{(n)} \left(\overline{x} \right) \right) l_{i}^{(n)} \left(\overline{x} \right) \\ &= \sum_{i=0}^{n} \left| l_{i}^{(n)} \left(\overline{x} \right) \right| = \max_{x \in [a,b]} \sum_{i=0}^{n} \left| l_{i}^{(n)} \right| = \left\| \sum_{i=0}^{n} \left| l_{i}^{(n)} \right| \right\| \end{split}$$

Cor. 12. Vale che

$$E_{n,\infty} \leq (1 + \Lambda_n(X)) E_n^*$$

Dimostrazione. (Lunga, p. 37)

$$E_{n,\infty} := \|f - \Pi_n f\|_{\infty} \le \|f - p_n^*\|_{\infty} + \left\| \underbrace{p_n^* - \Pi_n f}^{\Pi_n(p_n^* - f)} \right\|_{\infty} \le (1 + \|\Pi_n\|_{\infty}) \|f - p_n^*\|_{\infty}$$

con $\|\Pi_n\|_{\infty} \coloneqq \sup_{f \in C^0[a,b]} \|\Pi_n f\|_{\infty}$, poi applico Significato della costante di Lebesgue. $\|f\|_{\infty} = 1$

Osservazione Abbiamo

- L'effetto della scelta dei nodi d'interpolazione su $E_{n,\infty}(x)$ dipende dal valore della costante di Lebesgue
- Si ha che $\exists X^*$ matrice d'interpolazione che minimizza la costante di Lebesgue, ma in generale non è possibile determinare esplicitamente gli elementi
- \forall matrice di interpolazione $X \exists C > 0$ tale che

$$\Lambda_{n}(X) \ge \frac{2}{\pi} \log (n+1) - C$$

$$\Longrightarrow \Lambda_{n} \xrightarrow{n \to +\infty} +\infty$$

• \forall matrice di interpolazione X su [a,b] $\exists f \in C^0([a,b])$ t.c. $\Pi_n f$ non converge uniformemente a $f \Longrightarrow$ non è possibile approssimare con l'interpolazione polinomiale tutte le funzioni continue (v. controesempio di Runge)

Esempio (**Fenomeno di Runge**) Interpolando su [-5,5] con nodi equispaziati $f(x) = \frac{1}{1+x^2}$, vale che $\lim_{n\to+\infty} |f-\Pi_n f| = +\infty$ per |x| > 3.63

Definizione 7.8 (nodi di Chebyshev): (per far funzionare meglio le cose) $x_i = \cos\left(\frac{2i-1}{2n}\pi\right)$ oppure $x_i = \cos\left(\frac{i}{n}\pi\right)$

Osservazione Per i nodi equispaziati vale $\Lambda_n(X) = \frac{2^{n+1}}{e \cdot n \cdot \log n}$, mentre i nodi di Chebyshev minimizzano $\Lambda_n(X) = O(\log(n))$, e vale che $\lim_{n \to +\infty} |f - \Pi_n f| = 0$

Teo. 64 (Stabilità di Π_n). Per quanto riguarda la stabilità dell'operatore Π_n , vale che

$$\left\| \Pi_{n} f - \Pi_{n} \tilde{f} \right\|_{\infty} \leq \Lambda_{n} (X) \left\| f - \tilde{f} \right\|_{\infty}$$

dove

- $\left\| f \tilde{f} \right\|_{\infty}$ è la massima perturbazione sui dati
- $\Lambda_n\left(X\right)$ è il coefficiente di amplificazione delle perturbazioni sui dati quindi la perturbazione massima è controllata da $\Lambda_n\left(X\right)$

Dimostrazione. Siano $\tilde{f}(x_i)$ approssimazioni dei valori $f(x_i) \ \forall i = 0, \dots, n$

$$\left\| \Pi_{n} f - \Pi_{n} \tilde{f} \right\|_{\infty} = \max_{x \in [a,b]} \left| \sum_{i=0}^{n} \left(f(x_{i}) - \tilde{f}(x_{i}) \right) l_{i}^{(n)}(x) \right| \leq \max_{x \in [a,b]} \sum_{i=0}^{n} \left| f(x_{i}) - \tilde{f}(x_{i}) \right| \left| l_{i}^{(n)}(x) \right| =$$

$$\leq \max_{i=0,\dots,n} \left| f(x_{i}) - \tilde{f}(x_{i}) \right| \underbrace{\max_{x \in [a,b]} \sum_{i=0}^{n} \left| l_{i}^{(n)}(x) \right|}_{\Lambda_{n}(X)} \leq \Lambda_{n}(X) \max_{i=0,\dots,n} \left| f(x_{i}) - \tilde{f}(x_{i}) \right|$$

Osservazione Abbiamo

- A piccole perturbazioni sui dati corrispondono piccole variazioni sul polinomio interpolatore purché $\Lambda_n(X)$ sia piccola
- $\Lambda_n(X)$ fornisce il **numero di condizionamento** del problema dell'interpolazione polinomiale
- ullet per n grande l'iterpolazione polin. sui nodi equispaziati può essere instabile

Prop. 14 . $\Lambda_n(X) \geq 1$

Dimostrazione. Abbiamo

$$\Pi_n 1 = 1 = \sum_{j=0}^n 1 \cdot l_j(x) \implies \sum_{j=0}^n l_j(x) = 1$$

Quindi

$$1 = \|1\|_{\infty} = \left\| \sum_{j=0}^{n} l_j(x) \right\|_{\infty} = \max_{[a,b]} \left| \sum_{j=0}^{n} l_j(x) \right| \le \max_{[a,b]} \sum_{j=0}^{n} |l_j(x)| = \left\| \sum_{j=0}^{n} |l_j(x)| \right\|_{\infty} = \Lambda_n$$

7.2 Forma di Newton del polinomio interpolatore

Impostazione Date $\{(x_i, y_i)\}_{i=0}^n$ vogliamo scrivere il polinomio interpolatore come

$$\Pi_n f = \Pi_{n-1} f + q_n \quad \text{con } \begin{cases} \Pi_{n-1} f \text{ interpolatore su } \{(x_i, y_i)\}_{i=0}^{n-1} \\ q_n(x_i) = 0 \text{ per } x_i = 0, \dots, n-1 \end{cases}$$

Dovendo essere q_n di grado n con n zeri deve essere per forza

$$q_n(x) = \prod_n f - \prod_{n-1} f = a_n \underbrace{(x - x_0)(x - x_1) \dots (x - x_{n-1})}_{=\omega_n} \quad \text{con } \begin{cases} a_n \in \mathbb{R} \\ \omega_n \text{ polinomio nodale } n\text{-esimo} \end{cases}$$

quindi

$$q_n(x) = a_n \cdot \omega_n(x)$$

Un modo comodo per trovare a_n è valutarlo in x_n (impongo $\Pi_n f(x_n)$ interpolatore):

$$a_{n} = \frac{q_{n}(x_{n})}{w_{n}(x_{n})} = \frac{\prod_{n} f(x_{n}) - \prod_{n-1} f(x_{n})}{w_{n}(x_{n})} = \frac{f(x_{n}) - \prod_{n-1} f(x_{n})}{\omega_{n}(x_{n})} =: f[x_{0}, \dots, x_{n}]$$

Definizione 7.9 (n-esima differenza divisa): Dall'impostazione precedente è

$$f[x_0, \dots, x_n] := \frac{f(x_n) - \prod_{n=1} f(x_n)}{\omega_n(x_n)} = a_n$$

Definizione 7.10 (Rappresentazione di Newton): Se poniamo $f[x_0] = f(x_0)$ e $\omega_0(x) \equiv 1$ otteniamo per ricorsione

$$\Pi_n f = \sum_{j=0}^n f[x_0, \dots, x_j] \omega_j(x)$$
(2)

Osservazione Notiamo che

$$\Pi_{n}f = \sum_{j=0}^{n} f\left[x_{0}, \dots, x_{j}\right] \omega_{j}\left(x\right) = \sum_{j=0}^{n} f\left(x_{j}\right) l_{j}^{(n)}\left(x\right) = \sum_{j=0}^{n} \left[\frac{\omega_{n+1}\left(x\right)}{\left(x-x_{j}\right) \omega_{n+1}'\left(x_{j}\right)}\right] f\left(x_{j}\right) = \omega_{n+1}\left(x\right) \sum_{j=0}^{n} \frac{f\left(x_{j}\right)}{\left(x-x_{j}\right) \omega_{n+1}'\left(x_{j}\right)} dx$$

e quindi uguagliando i coefficienti di ω_n (facendo attenzione alla semplificazione a destra $\omega_{n+1}/(x-x_n) = \omega_n$):

$$f\left[x_{0},\ldots,x_{\mathbf{n}}\right] = \sum_{j=0}^{n} \frac{f\left(x_{j}\right)}{\omega'_{n+1}\left(x_{j}\right)}$$

Teo. 65 . Vale che

$$f[x_0, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}$$

Dimostrazione. (LUNGA, p. 47) Uguagliando i coefficienti di x^n di Rappresentazione di Newton si ha $f[x_0, \dots, x_n] = \sum_{j=0}^n \frac{f(x_j)}{\omega'_{n+1}(x_j)}$, da cui

$$\frac{f\left[x_{1},\ldots,x_{n}\right]-f\left[x_{0},\ldots,x_{n-1}\right]}{x_{n}-x_{0}} = \frac{\sum_{j=1}^{n} \frac{f(x_{j})}{\omega_{n+}'(x_{j})} - \sum_{j=0}^{n-1} \frac{f(x_{j})}{\omega_{n-}'(x_{j})}}{x_{n}-x_{0}}$$

$$= \frac{\frac{f(x_{n})}{\omega_{n+}'(x_{n})} + \sum_{j=1}^{n-1} f\left(x_{j}\right) \left(\frac{1}{\omega_{n+}'(x_{j})} - \frac{1}{\omega_{n-}'(x_{j})}\right) - \frac{f(x_{0})}{\omega_{n-}'(x_{0})}}{x_{n}-x_{0}}$$

$$= \frac{\frac{f(x_{n})(x_{n}-x_{0})}{\omega_{n+}'(x_{n})} + \sum_{j=1}^{n-1} f\left(x_{j}\right) \frac{x_{n}-x_{0}}{\omega_{n+1}'(x_{j})} - \frac{f(x_{0})(x_{n}-x_{0})}{\omega_{n-}'(x_{0})}}{x_{n}-x_{0}} = f\left[x_{0},\ldots,x_{n}\right]$$

Osservazione (Costo computazionale)

p. 50

Prop. 15 (Errore di interpolazione con le differenze).

7.3 Interpolazione composita di Lagrange (polinomiale a tratti)

Impostazione Dato che in generale con nodi equispaziati $\Pi_n f$ non converge uniformemente a f per $n \to \infty$ allora, dato intervallo [a, b]

- Divido [a,b] in N sottointervalli $I_j = [x_j, x_{j+1}]$ con $j = 0, \ldots, N-1$ di ampiezza h_j e sia $h := \max h_j$.
- Uso interpolazione di Lagr. su ogni sottointervallo: ognuno lo divido in k+1 nodi equispaziati (k grado del polin.)

Definizione 7.11 (Spazio dei polinomi a tratti di grado k): esso è

$$X_h^k = \{ v \in C^0([a,b]) : v|_{I_i} \in \mathbb{P}_k(I_j) \quad \forall j = 0, \dots, N-1 \}$$

Definizione 7.12 (Polinomio interpolatore composito): è $\Pi_h^k \in X_h^k$ ovvero

$$\left(\Pi_h^k f\right)|_{I_j} = \Pi_h^k \left(f|_{I_j}\right)$$

Esempio (Interpolazione lineare a tratti)

Prop. 16 (Errore). In generale vale:

$$\boxed{ \left\| f - \Pi_h^k f \right\|_{\infty} \le C h^{k+1} \left\| f^{(k+1)} \right\|_{\infty} }$$

in particolare, per l'interpolazione lineare a tratti (k=1) vale C=1/8, ovvero

$$\left\|f - \Pi_h^1 f\right\|_{\infty} \le \frac{1}{8} h^2 \|f''\|_{\infty}$$

p. 53

Dimostrazione.

Osservazione Se $h \to 0$ allora converge sempre uniformemente.

7.4 Funzioni spline

Siano x_0, \ldots, x_n n+1 nodi distinti in [a,b] t.c. $\boxed{a=x_0} < x_1 < \cdots < \boxed{x_n=b}$

Definizione 7.13 (Spline): s_k : $[a,b] \to \mathbb{R}$ si dice spline di grado $k \ge 1$ se $s_k|_{[x_i,x_{i+1}]} \in \mathbb{P}_k$ e $s_k \in C^{k-1}([a,b])$

Osservazione (Gradi di libertà) Abbiamo

- $s_k|_{[x_i,x_{i+1}]} \in \mathbb{P}_k \implies [\text{coeff. per ogni } I_j] \cdot [\text{numero di intervalli}] = (k+1)n$ coefficienti
- $s_k \in C^{k-1}([a,b]) \implies [k \text{ condizioni di continuità}] \cdot [numero di nodi interni] = k(n-1)$

Quindi [gradi di libertà]-[restrizioni]= (k+1)n - k(n-1) = |n+k| gradi di libertà

• Interpolatoria: $s_k(x_i) = f(x_i)$ $i = 0, ..., n \implies [\text{condizioni di interpolazione}] = n + 1$

In totale n + k - (n + 1) = k - 1 gradi di libertà.

Definizione 7.14 (Spline periodiche e naturali): Dato che le spline interpolatorie hanno k-1 gradi di libertà, posso imporre k-1 condizioni aggiuntive ai bordi:

Spline Periodiche
$$s_k^{(m)}(a)=s_k^{(m)}(b) \quad \forall m=1,\ldots,k-1$$
 Spline Naturali $s_k^{(l+j)}(a)=s_k^{(l+j)}(b)=0 \quad \forall j=0,\ldots,l-2 \quad \text{con } k=2l-1,\ l\geq 1 \quad k$ dispari

Esempio (spline cubiche) per k=3 le condizioni diventano

Spline Periodiche
$$s'\left(x_{0}\right)=f'\left(x_{0}\right), s'\left(x_{n}\right)=f'\left(x_{n}\right)$$

Spline Naturali $s''\left(x_{0}\right)=s''\left(x_{n}\right)=0$

7.4.1 Spline di grado 1 (k = 1)

Stima dell'errore:

$$||f - \Pi_h^1 f||_{\infty} \le \frac{M}{8} h^2 \qquad \text{con } M : |f''(x)| \le M \ \forall x \in [a, b] \qquad \text{e } h = \max_{i=1...n} h_i$$

7.4.2 Spline di grado 3 (k = 3)

Teo. 66 (Proprietà di minimo dell'energia). s spline cubica naturale o vincolata, vale che

$$\int_{x_{0}}^{x_{n}}\left(s^{\prime\prime}\left(x\right)\right)^{2}dx\leq\int_{x_{0}}^{x_{n}}\left(g^{\prime\prime}\left(x\right)\right)^{2}dx$$

 $\forall g \in C^{k-1}([x_0, x_n])$ che allo stesso modo interpola i punti e ha le stesse condizioni in x_0 e x_n

Dimostrazione. Ricordando $(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta = \alpha^2 - \beta^2 + 2\beta^2 - 2\alpha\beta = \alpha^2 - \beta^2 - 2\beta(\alpha - \beta)$, quindi ponendo $\alpha = g''$ e $\beta = s''$

$$0 \le \int_{x_0}^{x_n} \left(\left(g\left(x \right) - s\left(x \right) \right)'' \right)^2 dx = \int_{x_0}^{x_n} \left(g''\left(x \right) \right)^2 dx - \int_{x_0}^{x_n} \left(g''\left(x \right) \right)^2 dx - \left[2 \int_{x_0}^{x_n} s''\left(x \right) \left(g''\left(x \right) - s''\left(x \right) \right) dx \right] dx$$

Vediamo che

(I)
$$[s''(g'-s')]' = s^{(3)}(g'-s') + s''(g''-s'') \stackrel{\text{teo.Fond.Int.}}{\Longrightarrow} [s''(g'-s')]_{x_k}^{x_{k+1}} = \int s^{(3)}(g'-s') + \int s''(g''-s'') \int$$

(II)
$$\left[s^{(3)}(g-s)\right]' = s^{(4)}(g-s) + s^{(3)}(g'-s') \stackrel{\text{teo.Fond.Int.}}{\Longrightarrow} \left[s^{(3)}(g-s)\right]_{x_k}^{x_{k+1}} = \int s^{(4)}(g-s) + \int s^{(3)}(g'-s') ds = \left[s''(g'-s')\right]_{x_k}^{x_{k+1}} - \left[s^{(3)}(g-s)\right]_{x_k}^{x_{k+1}} + \int s^{(4)}(g-s) ds$$

$$\int_{x_0}^{x_n} s''(x) \left(g''(x) - s''(x)\right) dx = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} s''(g'' - s'') dx$$

$$= \sum_{k=0}^{n-1} \left[s''(g' - s')\right]_{x_k}^{x_{k+1}} - \sum_{k=0}^{n-1} \left[s^{(3)}(g - s)\right]_{x_k}^{x_{k+1}} + \sum_{k=0}^{n-1} \left[\int_{x_k}^{x_{k+1}} s^{(4)}(g - s)\right] \quad \text{per (I-II)}$$

$$= \left[s''(g' - s')\right]_{x_0}^{x_n} - \left[s^{(3)}(g - s)\right]_{x_0}^{x_n} + \sum_{k=0}^{n-1} \left[\int_{x_k}^{x_{k+1}} s^{(4)}(g - s)\right] \quad \text{i nodi interni si canc.}$$

$$= 0$$

$$\clubsuit = s''(x_n)(g'(x_n) - s'(x_n)) - s''(x_0)(g'(x_0) - s'(x_0)) = 0$$
 per le condizioni in x_0 e x_n

Osservazione Quindi tra tutte le funzioni $C^2([a,b])$ che interpolano g nei nodi $a=x_0 < x_1 < \cdots < x_n = b$, la pline cubica naturale è quella che minimizza la curvatura, ovvero che oscilla di meno.

Prop. 17 (Proprietà d'approssimazione). p. 65

7.5 Interpolazione in più variabili

Cerco una base di Lagrange per i nodi su cui voglio interpolare per avere l'unisolvenza. Di solito interpolo sui triangoli per i polinomi generici o sui quadrati per i polinomi omogenei

Parte grossa da p.
59 a 63

7.6 Interpolazione astratta

Definizione 7.15 (Interpolazione in senso astratto): Prendo un \mathbb{R} -spazio vettoriale V (può essere di funzioni, come \mathbb{P}) di base $\{\varphi_1, \ldots, \varphi_n\}$ e con una base del duale $\langle \mathcal{L}_1, \ldots, \mathcal{L}_n \rangle = V^*$ con

$$\mathcal{L}_i: V \to \mathbb{R}$$

detti gradi di libertà o **funzionali lineari** (funzionali perché possono prendere in pancia funzioni, come la valutazione della funzione di input in un punto). $v \in V$ interpola in senso astratto $(y_1, \ldots, y_n) \in \mathbb{R}^n$ se

$$\mathscr{L}_i(v) = y_i \quad \forall i = 1, \dots, n$$

Definizione 7.16 (Unisolvenza): Un sistema di gradi di libertà è unisolvente se $\forall (y_1, \dots, y_n)$ esiste unico $v \in V$ che li interpola.

Definizione 7.17 (Matrice di Haar):
$$(H)_{ij} = \mathcal{L}_i(\varphi_j), H = \begin{pmatrix} \mathcal{L}_1(\varphi_1) & \cdots & \mathcal{L}_1(\varphi_n) \\ \vdots & \ddots & \vdots \\ \mathcal{L}_n(\varphi_1) & \cdots & \mathcal{L}_n(\varphi_n) \end{pmatrix}$$

Teo. 67. Un sistema di gradi di libertà è unisolvente \iff det $(H) \neq 0$, ovvero i funzionali sono linearmente indipendenti.

Dimostrazione. p. 67

Esempio (Interpolazione polinomiale)

7.7 Interpolazione nel senso dei minimi quadrati

Definizione 7.18 (Prodotto scalare e norma L^2 (euclidea)): Per f, g funzioni $[a, b] \to \mathbb{R}$, ho

$$(f,g) = \int_{a}^{b} f(x) g(x) dx$$
 $||f||_{L^{2}} = \sqrt{\int_{a}^{b} |f(x)|^{2} dx} = \sqrt{(f,f)}$

Mentre per il caso **discreto**: $f(x_i)$ con i = 0, ..., n

$$(f,g) = \sum_{i=0}^{n} f(x_i) g(x_i) \qquad ||f||_{L^2} = \sqrt{\sum_{i=0}^{n} |f(x_i)|^2} = \sqrt{(f,f)}$$

Definizione 7.19 (Funzioni ortogonali): p. 70

Definizione 7.20 (Sistema ortonogonale/ortonormale):

Prop. 18.

 \square

Cor. 13.

Dimostrazione.

Teo. 68 (di miglior approssimazione nel senso dei minimi quadrati - caso continuo). Siano $f \in C^0([a,b])$, $\{\phi_0,\ldots,\phi_n\}$ linearmente indipendenti, $\phi_i \in C^0([a,b])$. Allora

$$\exists ! g_n^* \in U := \text{span}\{\phi_0, \dots, \phi_n\} \text{ t.c } ||f - g_n^*||_2 = \min_{g_n \in U} ||f - g_n||_2$$

Inoltre g_n^* risolve il seguente sistema lineare

$$(f-g_n^*,\phi_k)=0 \quad \forall k=0,\ldots,n$$
 equazioni normali

dove (\cdot, \cdot) è il prodotto scalare sopra definito.

Dimostrazione. Abbiamo

$$\begin{cases} g_n^* \in U = \operatorname{span}\{\phi_0, \dots, \phi_n\} \implies g_n^* = \sum_{j=0}^n c_j^* \phi_j \\ (f - g_n^*, \phi_k) = 0 \stackrel{\text{lin.}}{\Longrightarrow} (g_n^*, \phi_k) = (f, \phi_k) \end{cases} \implies \sum_{j=0}^n c_j^* (\phi_j, \phi_k) = (f, \phi_k) \quad \forall k = 0, \dots, n \quad \text{Sist. lin.}$$

• ESISTENZA/UNICITÀ: i coefficienti c_j^* sono soluzione di tale sistema lineare. Essendo la matrice $(\phi_j, \phi_k)_{jk}$ quadrata mi basta dimostrare che è non singolare (invertibile) e ho sia la suriettività (esistenza della sol.) che l'inniettività (unicità della sol.).

Se **per assurdo fosse singolare**, il sistema omogeneo ammetterebbe soluzione non nulla (ker \neq 0), ovvero:

$$\exists c_0, \dots, c_n \text{ non tutti nulli } | \sum_{j=0}^n c_j(\phi_j, \phi_k) = 0 \quad \forall k = 0, \dots, n$$

e quindi

$$\left\| \sum_{j=0}^{n} c_j \phi_j \right\|_2^2 = \left(\sum_{k=0}^{n} c_k \phi_k, \sum_{j=0}^{n} c_j \phi_j \right) = \sum_{k=0}^{n} c_k \underbrace{\left(\sum_{j=0}^{n} c_j (\phi_k, \phi_j) \right)}_{=0} = 0 \xrightarrow{\text{norma}} \sum_{j=0}^{n} c_j \phi_j = 0 \quad \text{4 essendo } \{\phi_j\} \text{ l.i.}$$

• PROPRIETÀ DI MINIMO: dimostriamo che $\forall g_n = \sum_{j=0}^n c_j \phi_j$ con $c_j \neq c_j^*$ per almeno un indice j è tale che $\|f - g_n\|_2 \ge \|f - g_n^*\|_2$. Abbiamo

$$\begin{cases} f - g_n = f - g_n^* + \sum_{j=0}^n c_j^* \phi_j - \sum_{j=0}^n c_j \phi_j = f - g_n^* + \sum_{j=0}^n (c_j^* - c_j) \phi_j \\ (f - g_n^*, \sum_{j=0}^n (c_j^* - c_j) \phi_j) = \sum_{j=0}^n (c_j^* - c_j) \underbrace{(f - g_n^*, \phi_j)}_{=0} = 0 \end{cases}$$

e quindi

$$||f - g_n||_2^2 = (f - g_n, \ f - g_n) = ||f - g_n^*||_2^2 + \underbrace{\left\| \sum_{j=0}^n (c_j + c_j^*) \phi_j \right\|_2^2}_{\geq 0} + 2 \underbrace{\left(f - g_n^*, \sum_{j=0}^n (c_j^* - c_j) \phi_j \right)}_{=0}$$

quindi $\left\|f-g_n\right\|_2^2 \geq \left\|f-g_n^*\right\|_2^2 \implies \left\|f-g_n\right\|_2 \geq \left\|f-g_n^*\right\|_2$

Definizione 7.21 (minimi quadrati discreti):

$$(f,g) = \sum_{i=0}^{n} \omega_i f(x_i) g(x_i) dx \qquad ||f||_{L^2-\text{discreta}} = \sqrt{\sum_{i=0}^{n} \omega_i f^2(x_i)}$$

Teo. 69 (di miglior approssimazione nel senso dei minimi quadrati - caso discreto). Dati $f(x_i)$, $\{x_i\} = S$ con i = 0, ..., m (m grado del polinomio, caso significativo quando m > n), siano $\{\phi_0, ..., \phi_n\}$ linearmente indipendenti, $\phi_i \in C^0([a, b])$. Allora

$$\exists ! g_n^* \in U := \operatorname{span}\{\phi_0, \dots, \phi_n\} \text{ t.c } ||f - g_n^*||_2 = \min_{q_n \in U} ||f - g_n||_2$$

Inoltre g_n^* risolve il seguente sistema lineare

$$(f - g_n^*, \phi_k) = 0 \quad \forall k = 0, \dots, n$$
 equazioni normali

dove (\cdot, \cdot) è il prodotto scalare sopra definito.

Dimostrazione. Abbiamo

$$\begin{cases} g_n^* \in U \implies g_n^* = \sum_{i=0}^n c_i^* \phi_i \\ g_n \in U \implies g_n = \sum_{i=0}^n c_i \phi_i \end{cases} \quad \text{e} \quad \|f - g_n\|_{2,S}^2 = \sum_{i=0}^m |f(x_i) - g_n(x_i)|^2$$

allora cerco il minimo della funzione

$$d: \mathbb{R}^{n+1} \to \mathbb{R}$$
$$(c_0, \dots, c_n) \mapsto \|f - g_n\|_{2.S}^2$$

risolvendo $\nabla d = \mathbf{0}$, ovvero risolvendo

$$\frac{\partial d}{\partial c_k} = \sum_{i=0}^m 2 \left(f(x_i) - \sum_{j=0}^n c_j \phi_j(x_i) \right) \phi_k(x_i) = 0 \quad \forall k = 0, \dots, n$$

che divenda

$$\sum_{i=0}^{n} \sum_{j=0}^{n} c_j \phi_j(x_i) \phi_k(x_i) = \sum_{i=0}^{n} f(x_i) \phi_k(x_i) \quad \forall k = 0, \dots, n$$

Vediamo che definendo

$$tab f := \begin{pmatrix} f(x_0) \\ \vdots \\ f(x_m) \end{pmatrix} \qquad c := \begin{pmatrix} c_0 \\ \vdots \\ c_n \end{pmatrix} \qquad A := [tab \phi_0 \mid \cdots \mid tab \phi_n] \in \mathbb{R}^{(m+1) \times (m+1)}$$

è equivalente a risolvere

$$\sum_{i=0}^{m} (Ac)_i \phi_k(x_i) = (A^T \operatorname{tab} f)_k \implies (A^T Ac)_k = (A^T \operatorname{tab} f)_k \implies \boxed{A^T Ac = A^T \operatorname{tab} f}$$

dove $A^T A$ è SPD \implies rango massimo \implies soluzione unica.

Teo. 70. Se c vettore dei coefficienti di g e A matrice matrice di valutazione della base nei punti $\{x_i\}$, allora

$$\|f - g\|^2 = \sum_{i=0}^{n} \left(f \begin{pmatrix} b \\ (x_i) - g \begin{pmatrix} A \cdot c \\ (x_i) \end{pmatrix} \right)^2 = \|b - A \cdot c\|_2^2 \quad \text{minimo quando} \quad A^T \cdot A \cdot c = A^T \cdot b$$

Dimostrazione.

$$\phi\left(x\right) = \left\|b - A \cdot c\right\|_{2}^{2} = (b, b) - (b, A \cdot c) - (A \cdot c, b) + (A \cdot c, A \cdot c) = b^{T} \cdot b - 2 \cdot c^{T} \cdot A^{T} \cdot b + c^{T} \cdot A^{T} \cdot A \cdot c$$

$$\nabla \phi\left(x\right) = -2 \cdot A^{T} \cdot b + 2A^{T} \cdot A \cdot c = 0 \qquad \Longrightarrow \qquad A^{T} \cdot A \cdot c = A^{T} \cdot b$$

 $\textbf{Definizione 7.22} \text{ (Polinomi ortogonali di Legendre): } \phi_{0}\left(x\right)=1, \phi_{1}\left(x\right)=x, \phi_{i+1}\left(x\right)=\frac{2i+1}{i+1}x\phi_{i}\left(x\right)-\frac{1}{i+1}\phi_{i-1}\left(x\right)$

Definizione 7.23 (Polinomi ortogonali di Chebyshev): $T_i(x) = \cos(i \arccos(x))$, oppure $T_{i+1}(x) = 2xT_i(x) - T_{i-1}(x)$

8 Integrazione Numerica

Definizione 8.1 (formula di quadratura): è una formula del tipo

$$I_n(f) = \sum_{i=0}^{n} \alpha_i f(x_i)$$
 con α_i pesi di quadratura α_i punti di quadratura

che serve per approssimare $\int_{a}^{b} f(x) dx = I(f)$.

Definizione 8.2 (formula interpolatoria): Formula di quadratura in cui i pesi sono definiti come

$$\alpha_i := \int_a^b l_i(x) dx$$

con

$$f_n = \prod_{i=0}^n f(x_i)l_i(x)$$
 $l_i(x) = \text{i-esimo polin. base lagr.}$

Quindi è ottenuta sostituendo il polinomio interpolatore di grado n nei punti di quadratura

$$I_{n}(f) = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) l_{i}(x) dx = \sum_{i=0}^{n} f(x_{i}) \overbrace{\int_{a}^{b} l_{i}(x) dx}^{\alpha_{i}}$$

ovvero è

$$I_n(f) := I(f_n)$$

Definizione 8.3 (grado di esattezza/precisione): Massimo $r \geq 0$ per cui $I_n(p) = I(p) \quad \forall p \in \mathbb{P}_r$

Teo. 71. Una formula di quadratura a n+1 punti è interpolatoria \iff ha grado di esattezza/precisione $\geq n$

Dimostrazione. Doppia implicazione

 \implies ovvio per la def.: $\Pi_n f = f$

 \Leftarrow Dato che la formula ha grado di precisione n, integra esattamente (\star) i polinomi di grado n, in particolare gli l_i :

 $\int_{a}^{b} l_{i}(x) \stackrel{\star}{=} \sum_{j=0}^{n} \alpha_{j} \underbrace{l_{i}(x_{j})}_{=\delta_{i,i}} = \alpha_{i} \quad \forall i = 0, \dots, n$

8.1 Formule di quadratura interpolatorie - formule di Newton-Cotes

8.1.1 Formula del punto medio (n = 0)

formula del punto medio si sostituisce f con $\Pi_0 f$ relativo al nodo $x_0 = \frac{a+b}{2}$

$$I_{0}\left(f\right)=\left(b-a\right)f\left(\frac{a+b}{2}\right) \qquad E_{0}\left(f\right)\coloneqq I\left(f\right)-I_{0}\left(f\right)=\frac{\left(b-a\right)^{3}}{24}f''\left(\xi\right) \qquad \xi\in\left(a,b\right) \quad \left(\operatorname{Se}\,f\in C^{2}\left(\left[a,b\right]\right)\right)$$

 $Dimostrazione \ dell'errore. \ \text{Preso} \ c = \frac{a+b}{2} \ \text{e la serie di Taylor} \ f\left(x\right) = f\left(c\right) + f'\left(c\right)\left(x-c\right) + \frac{f''\left(\xi_{x}\right)}{2}\left(x-c\right)^{2}$

$$E_{0}(f) := \int_{a}^{b} f(x) dx - \int_{a}^{b} f(c) dx = \int_{a}^{\text{dispari in } [a, b]} f'(c) (x - c) dx + \int_{a}^{b} \frac{f''(\xi_{x})}{2} (x - c)^{2} dx \stackrel{\text{media integ.}}{=} \frac{f''(\xi)}{2} \int_{a}^{b} (x - c)^{2} dx$$

$$\stackrel{*}{=} \frac{f''(\xi_{x})}{2} (x - c)^{2} \frac{2}{3} \left(\frac{b - a}{2}\right)^{3} = \frac{(b - a)^{3}}{24} f''(\xi)$$

dove
$$\star : \int_a^b (x-c)^2 dx = 2 \int_c^b (x-c)^2 = \frac{2}{3} (x-c)^3 |_c^b = \frac{2}{3} \left(\frac{b-a}{2}\right)^3$$
 dove $\spadesuit : (c-c)^3 - (b-c)^3 = -(b-\frac{a+b}{2})^3 = -(\frac{a-b}{2})^3$

Osservazione (Grado di precisione) ha g.d.p 1: $f \in \mathbb{P}_1 \implies f'' = 0 \implies E_0(f) = 0$

formula del punto medio composita m sottointervalli di ampiezza $h = \frac{b-a}{m}$, con nodi $x_k = a + (2k+1)\frac{h}{2}$ (multipli dispari di h/2)

$$I_{0,m}(f) = h \sum_{k=0}^{m-1} f(x_k) \qquad E_0(f) = \sum_{k=0}^{m-1} \frac{h^3}{24} f''(\xi_k) = \frac{h^3}{24} m f''(\xi) = \frac{h^2(b-a)}{24} f''(\xi) \quad \xi \in (a,b)$$

Teo. 74 (teorema della media integrale). Presi $f \in C^0([a,b])$ e g integrabile che non cambia segno in [a,b], allora $\exists \xi \in (a,b)$ tale che

$$\int_{a}^{b} f(x) g(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$

Teo. 75 (teorema del valor medio discreto). Presi $u \in C^0([a,b]), x_{i=0,...,s} \in [a,b]$ e $\delta_{i=0,...,s}$ costanti con lo stesso segno (ad esempio ≥ 0), allora $\exists \eta \in (a,b)$ tale che

$$\sum_{i=0}^{s} \delta_{i} u(x_{i}) = u(\eta) \sum_{i=0}^{s} \delta_{i}$$

Dimostrazione. Presi $u_m = \min_{x \in [a,b]} u(x) = u(x_m), u_M = \max_{x \in [a,b]} u(x) = u(x_M),$ ho

$$u_{m} \sum_{i=0}^{s} \delta_{i} \leq \sum_{i=0}^{s} \delta_{i} u\left(x_{i}\right) \leq u_{M} \sum_{i=0}^{s} \delta_{i}$$

da cui definendo $U\left(x\right)=u\left(x\right)\sum_{i=0}^{s}\delta_{i}$ ho $U\left(x_{m}\right)\leq\sum_{i=0}^{s}\delta_{i}u\left(x_{i}\right)\leq U\left(x_{M}\right),$ e dunque $U\left(\eta\right)=\sum_{i=0}^{s}\delta_{i}u\left(x_{i}\right)$

8.1.2 Formula del trapezio (n = 1)

formula del trapezio si sostituisce f con $\Pi_1 f$ relativo ai nodi $x_0 = a$ e $x_1 = b$

$$I_1(f) = \frac{b-a}{2} (f(a) + f(b))$$
 $E_1(f) = -\frac{(b-a)^3}{12} f''(\xi)$ $\xi \in (a,b)$ (Se $f \in C^2([a,b])$)

Dimostrazione dell'errore. Dalla formula dell'Errore di interpolazione di Lagrange

$$E_{1}\left(f\right) \coloneqq \int_{a}^{b} f\left(x\right) - \Pi_{1}f\left(x\right)dx = \int_{a}^{b} \frac{f''\left(\xi_{x}\right)}{2}\left(x-a\right)\left(x-b\right)dx \stackrel{\text{media integ.}}{=} \frac{f''\left(\xi\right)}{2} \int_{a}^{b} \left(x-a\right)\left(x-b\right)dx$$

Osservazione g.d.p.=1

formula del trapezio composita m sottointervalli di ampiezza $h = \frac{b-a}{m}, x_k = a + kh$

$$I_{1,m}(f) = \sum_{k=0}^{m} \frac{h}{2} \left(f(x_i) + f(x_{i+1}) \right) = \frac{h}{2} \left(f(a) + 2 \sum_{k=1}^{m-1} f(x_k) + f(b) \right)$$

$$E_{1,m}(f) = -\sum_{k=0}^{m-1} \frac{h^3}{12} f''(\xi_k) = -\frac{h^2 (b-a)}{12} f''(\xi) \quad \xi \in (a,b)$$

8.1.3 Formula di Cavalieri-Simpson (n = 2)

formula di Cavalieri-Simpson si sostituisce f con $\Pi_2 f$ relativo ai nodi $x_0, x_1, x_2 = a, \frac{a+b}{2}, b$, i pesi sono $\alpha_i = \int_a^b l_i(x) dx$

$$I_{2}\left(f\right)=\frac{b-a}{6}\left(f\left(a\right)+4f\left(\frac{a+b}{2}\right)+f\left(b\right)\right) \qquad \qquad E_{2}\left(f\right)=\frac{1}{90}\left(\frac{b-a}{2}\right)^{5}f^{(4)}\left(\xi\right) \quad \xi\in\left(a,b\right)$$

Osservazione g.d.p.=3

formula di Cavalieri-Simpson composita $h = \frac{b-a}{m}, x_k = a + k\frac{h}{2}$

$$I_{2,m}(f) = \frac{h}{6} \left(f(a) + 2 \sum_{k=1}^{m-1} f(x_{2k}) + 4 \sum_{k=1}^{m-1} f(x_{2k+1}) + f(b) \right) \quad E_{2,m}(f) = -\frac{b-a}{180} \left(\frac{h}{2} \right)^4 f^{(4)}(\xi) \quad \xi \in (a,b)$$

8.1.4 Formule di Newton-Cotes (generalizzazione)

formule di Newton-Cotes si sostituisce f con $\Pi_n f$ relativo ai nodi equispaziati $x_k = x_0 + k \frac{x_n - x_0}{n} = x_0 + k h$

 $chiuse se x_0 = a x_n = b$

aperte se $x_0 = a + h$ $x_n = b - h$

Attuo cambio di variabile $x = x_0 + th$:

$$l_{i}\left(x\right) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} = \prod_{\substack{j=0\\j\neq i}}^{n} \underbrace{d + th - d - jh}_{d + ih - d - jh} = h \prod_{\substack{j=0\\j\neq i}}^{n} \frac{t - j}{i - j} \qquad \alpha_{i} = \int_{a}^{b} l_{i}\left(x\right) dx = h \int_{0}^{n} \underbrace{\prod_{\substack{j=0\\j\neq i}}^{n} \frac{t - j}{i - j}}_{i - j} dt$$

$$I_{n}\left(f\right) = \sum_{i=0}^{n} \alpha_{i} f\left(x_{i}\right) \qquad E_{n}\left(f\right) = \begin{cases} M_{n}\left(b-a\right)^{n+3} f^{\left(n+2\right)}\left(\xi\right) & n \text{ pari} & f \in C^{n+2}\left([a,b]\right) \\ K_{n}\left(b-a\right)^{n+2} f^{\left(n+1\right)}\left(\xi\right) & n \text{ dispari} & f \in C^{n+1}\left([a,b]\right) \end{cases}$$

Osservazione (**Grado di precisione**) $\begin{cases} n \text{ pari} \implies n+1 \\ n \text{ dispari} \implies n \end{cases}$

formule di Newton-Cotes composite [...]

Teo. 82 . $E_{n,m}(f) = O(h^{n+p})$ con p=2 per n pari, p=1 per n dispari

Dimostrazione. Per n pari

$$E_{n,m}(f) = \sum_{k=1}^{m} M_n h^{n+3} f^{(n+2)}(\xi_k) = M_n h^{n+3} \sum_{k=1}^{m} f^{(n+2)}(\xi_k) = M_n h^{n+3} m f^{(n+2)}(\xi) = M_n (b-a) h^{n+2} f^{(n+2)}(\xi)$$

Osservazione (analisi a posteriori dell'errore) Siccome $E_{n,m}(f) = O(h^{n+p})$, vale che $E_{n,2m}(f) \approx \frac{1}{2^{n+p}} E_{n,m}(f)$, da cui

$$E_{n,2m}\left(f\right)\approx\frac{1}{2^{n+p}-1}\left(I_{n,2m}\left(f\right)-I_{n,m}\left(f\right)\right)$$

Dimostrazione.

$$\left(1 - \frac{1}{2^{n+p}}\right)I(f) \approx I_{n,2m}(f) - \frac{1}{2^{n+p}}I_{n,m}(f) \qquad I(f) \approx \frac{2^{n+p}}{2^{n+p}-1}I_{n,2m}(f) - \frac{1}{2^{n+p}-1}I_{n,m}(f)$$

Sottra
endo da ambo i lati $I_{n,2m}\left(f\right)$ ho la tesi

8.1.5 Adattività

[...]

8.2 Integrazione Gaussiana

Approccio alternativo a Newton-Cotes. Sia $w \colon [-1,1] \to \mathbb{R}$ non negativa, integrabile e assolutamente continua (funzione peso).

$$L_w^2([-1,1]) = \left\{ f \colon [-1,1] \to \mathbb{R}, \int_{-1}^1 f(x) w(x) dx < +\infty \right\} \qquad (f,g)_w = \int_{-1}^1 f(x) g(x) w(x) dx$$
$$I_w(f) = \int_{-1}^1 f(x) w(x) dx \approx I_{n,w}(f) := \sum_{i=0}^n \alpha_i f(x_i)$$

$$I_{n,w}(f) = \int_{-1}^{1} \Pi_n f(x) w(x) dx \qquad \qquad \alpha_i = \int_{-1}^{1} l_i(x) w(x) dx$$

Teo. 83 (teorema di Jacobi). Preso m > 0, $I_{n,w}(f) = \sum_{i=0}^{n} \alpha_i f(x_i)$ ha grado di esattezza/precisione n + m \iff il polinomio nodale ω_{n+1} è ortogonale a \mathbb{P}_{m-1} , ovvero

$$\int_{-1}^{1} \omega_{n+1}(x) p_{m-1}(x) w(x) dx = 0 \quad \forall p \in \mathbb{P}_{m-1}$$

Dimostrazione. Doppia implicazione

 $\iff \text{Preso } f \in \mathbb{P}_{n+m}, \text{ posso scriverlo } f = \omega_{n+1} p_{m-1} + q_n \text{ con } \begin{cases} p_{m-1} \in \mathbb{P}_{m-1} \\ q_n \in \mathbb{P}_n \end{cases} \text{ e quindi } q_n = f - \omega_{n+1} p_{m-1}.$ Se la formula è interpolatoria $(n+1 \text{ nodi}) \implies \text{ha g.d.p. almeno } n \implies q_n \in \mathbb{P}_n \text{ integrato esattamente:}$

$$\sum_{i=0}^{n} \alpha_{i} f(x_{i}) = \sum_{i=0}^{n} \alpha_{i} \underbrace{\omega_{n+1}(x_{i})}_{=0} p_{m-1}(x_{i}) + \underbrace{\sum_{i=0}^{n} \alpha_{i} q_{n}(x_{i})}_{=\int_{-1}^{1} q_{n}(x) w(x) dx} = \int_{-1}^{1} f(x) w(x) dx - \int_{-1}^{1} \underbrace{\omega_{n+1}(x_{i})}_{=0} p_{m-1} w(x)$$

Quindi $\int_{-1}^{1} f(x)w(x)dx = \sum_{i=0}^{n} \alpha_{i}f(x_{i}) \stackrel{f \in \mathbb{P}_{n+m}}{\Longrightarrow}$ la formula di quadratura ha g.d.p. n+m

 \implies Preso $p_{m-1} \in \mathbb{P}_{m-1}$,

$$\int_{-1}^{1} \underbrace{\omega_{n+1}(x) \, p_{m-1}(x)}_{\in \mathbb{P}_{m+n}} w(x) \, dx \stackrel{\text{g.d.p}=m+n}{=} \sum_{i=0}^{n} \alpha_{i} \underbrace{\omega_{n+1}(x_{i})}_{i} p_{m-1}(x_{i}) = 0$$

Cor. 14. Il grado massimo di una formula con n+1 punti è 2n+1

Dimostrazione. Per assurdo 2n+2, prendo ad esempio $p=\omega_{n+1}$ e ottengo $\int_{-1}^{1}\omega_{n+1}^{2}\left(x\right)w\left(x\right)dx=0,$

Osservazione Scegliendo m = n + 1, si ha che

$$\begin{split} I_{n,\omega}(f) \text{ ha g.d.p } 2n+1 \text{ (massimo)} &\iff \int_{-1}^{1} \omega_{n+1} \left(x \right) p\left(x \right) w\left(x \right) dx = 0 \quad \forall \, p \in \mathbb{P}_{n} \\ &\iff \overset{\in \mathbb{P}_{n+1}}{\omega_{n+1}} \perp \mathbb{P}_{n} \\ &\iff \text{nodi } x_{i} \text{ sono radici di polin. (grad. } n+1) \perp \mathbb{P}_{n} \end{split}$$

Tale polinomio è il polinomio nodale ω_{n+1} ortogonale a \mathbb{P}_n . La dimensione di $\mathbb{P}_n^{\perp} \subseteq \mathbb{P}_{n+1}$ è 1, quindi esisterà solo un polinomio nodale di questo tipo. Voglio dunque trovare una successione di polinomi **monici** $p_n \in \mathbb{P}_n$ tali che

$$p_n \perp \underbrace{p_0, \dots, p_{n-1}}_{\text{base}} \quad \mathbb{P}_{n-1} = \text{span}\{p_0, \dots, p_{n-1}\}$$

i nodi saranno gli zeri di tale p_n .

I pesi si trovano risolvendo:

$$\int_{-1}^{1} p_j(x)\omega(x)dx = \sum_{i=0}^{n} \alpha_i p_j(x_i) \quad \forall j = 0, \dots, n-1 \quad \text{(impongo il g.d.p. max)}$$

oppure

$$\alpha_i = \int_{-1}^1 l_i(x)$$
 (def. di pesi interpolatori)

$$con l_i = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Definizione 8.4 (polinomi ortogonali della quadratura gaussiana): Dati $p_{-1}(x) = 0$ e $p_0(x) = 1$

$$p_{k+1}\left(x\right) = \left(x - \gamma_k\right)p_k\left(x\right) - \beta_k p_{k-1}\left(x\right) \qquad \qquad \gamma_k \coloneqq \frac{\left(x p_k, p_k\right)_w}{\left(p_k, p_k\right)_w} \qquad \qquad \beta_k \coloneqq \frac{\left(p_k, p_k\right)_w}{\left(p_{k-1}, p_{k-1}\right)_w}$$

Dimostrazione. Per induzione, k=1 ovvio, suppongo $p_i \perp p_j$ per $j < i \le k$, voglio dimostrare $p_{k+1} \perp p_j$ per $j \le k$

$$j \leq k - 2 \qquad (p_{k+1}, p_j)_w = (xp_k, p_j)_w - \gamma_k (p_k, p_j)_w - \beta_k (p_{k-1}, p_j)_w = (p_k, xp_j)_w = 0$$

$$j = k - 1 \quad (p_{k+1}, p_{k-1})_w = (xp_k, p_{k-1})_w - \gamma_k (p_k, p_{k-1})_w - \beta_k (p_{k-1}, p_{k-1})_w = (p_k, xp_j)_w - (p_k, p_k)_w = 0$$

$$j = k \qquad (p_{k+1}, p_{k-1})_w = (xp_k, p_k)_w - \gamma_k (p_k, p_k)_w - \beta_k (p_{k-1}, p_k)_w = 0$$

Lemma 5. Se w(x) è pari, allora $p_k(-x) = (-1)^k p_k(x)$

$$Dimostrazione.$$
 [...]

Prop. 19 . Se w(x) è pari, allora vale $\gamma_k = 0 \quad \forall k$

Dimostrazione. Dal teorema sopra, in γ_k vale $(xp_k, p_k)_w = \int_{-1}^1 x p_k^2(x) w(x) dx = 0$ perché l'integranda è dispari

Definizione 8.5 (polinomi ortogonali di Lagrange): Per $w(x) \equiv 1$, allora i polinomi sono detti di Lagrange e valgono

$$p_0(x) = 1$$
 $p_1(x) = x$ $p_{i+1}(x) = xp_i(x) - \beta_k p_{i-1}(x)$ $\beta_k := \frac{(p_k, p_k)}{(p_{k-1}, p_{k-1})}$

e si dimostra che $(p_k,p_k)=\left(k+\frac{1}{2}\right)^{-1}$ e dunque $\beta_k=\frac{k-\frac{1}{2}}{k+\frac{1}{2}}=\frac{2k-1}{2k+1}$

9 Approssimazione di Equazioni Differenziali Ordinarie

Definizione 9.1 (problema di Cauchy): Dato $I = [a, b] \subseteq \mathbb{R}$, $f: I \times \mathbb{R} \to \mathbb{R}$ continua, $t \in I, y_0 \in \mathbb{R}$, trovare $y \in C^1(I)$ tale che

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

Definizione 9.2 (equazione integrale di Volterra): $y\left(t\right)=y_{0}+\int_{t_{0}}^{t}f\left(s,y\left(s\right)\right)ds \quad \forall t\in\left(a,b\right)$

Definizione 9.3 (lipschitzianità):

Definizione 9.4 (stabilità secondo Lyapunov): Il problema di Cauchy è detto stabile se $\exists C > 0$ tale che $\forall \varepsilon > 0$ sufficientemente piccolo, il problema perturbato

$$\begin{cases} z'(t) = f(t, z(t)) + \delta(t) \\ z(t_0) = y_0 + \delta_0 \end{cases} \quad \operatorname{con} |\delta_0| < \varepsilon \, e \, |\delta(t)| < \varepsilon \, \forall t \in I$$
 (3)

soddisfa $|y(t) - z(t)| < C\varepsilon \quad \forall t \in I$

Teo. 84 . Se f Lipschitz \Longrightarrow Il problema di Cauchy ammette una e una sola soluzione ed è stabile secondo Lyapunov

9.1 Metodi ad un passo

Presi N+1 punti equispaziati in $I=[t_0,t_0+T],\ t_j=t_0+jh$ con $h=\frac{T}{N},$ approssimo $y(t_j)=:y_j\approx u_j$ (con $u_0=y_0$)

Definizione 9.5 (metodi a un passo): Se $\forall j \geq 0$ la stima u_{j+1} dipende solo da u_j

metodo di Eulero in avanti $u_{j+1} = \mathbf{u_j} + hf\left(t_j, u_j\right)$

$$\text{Definiti ora } e_j \coloneqq y_j - u_j = \overbrace{(y_j - z_j)}^{\text{discretiz.}} + \overbrace{(z_j - u_j)}^{\text{propagaz.err.}} \text{ e } z_{j+1} \coloneqq \underline{\textbf{\textit{y}}_j} + hf\left(t_j, y_j\right)$$

Definizione 9.6 (errore locale/globale di troncamento): abbiamo

Errore locale di troncamento: $\tau_{j}\left(h\right)\coloneqq\frac{y_{j}-z_{j}}{h}$ Errore globale di troncamento: $\tau\left(h\right)\coloneqq\max_{j=0}|\tau_{j}\left(h\right)|$

Da Taylor

$$y_{j+1} = y_j + h \underbrace{y'(t)}_{f(t_j, y_j)} + \frac{h^2}{2} y''(\xi_j) \quad \Rightarrow \quad \tau_{j+1}(h) = \frac{h}{2} y''(\xi_j)$$

Si ha che

$$|y_{j+1} - z_{j+1}| \le h\tau(h) \quad |z_{j+1} - u_{j+1}| \le |y_j + hf(t_j, y_j) - u_j - hf(t_j, u_j)| \le |e_j| + h |f(t_j, y_j) - f(t_j, u_j)|$$

$$|e_{j+1}| = |y_{j+1} - u_{j+1}| \le |z_{j+1} - u_{j+1}| + |y_{j+1} - z_{j+1}| \le (1 + hL)|e_j| + h\tau(h) \le \frac{e^{LT} - 1}{L}\tau(h)$$

Teo. 86 . Il metodo di Eulero in avanti con $u_0=y_0,\,f\in C^1\left(I\times\mathbb{R}\right)$ e $M\coloneqq\max_I|y''(\xi)|$ soddisfa

$$|e_{j+1}| \le \frac{e^{L(t_{j+1}-t_0)}-1}{L} \frac{M}{2} h$$

Con gli errori di arrotondamento $\overline{u_0} = y_0 + \eta_0$, $\overline{u_{j+1}} = \overline{u_j} + hf(t_j, \overline{u_j}) + \eta_{j+1}$ e $\eta = \max |\eta_k|$ diventa

$$|e_{j+1}| \le e^{L(t_{j+1}-t_0)} \left(|\eta_0| + \frac{1}{L} \left(\frac{M}{2} h + \frac{\eta}{h} \right) \right)$$

non è più $\to 0$ per $h \to 0^+$, ma ci sarà un $h_{\rm opt}$ che minimizzerà l'errore

metodo di Eulero all'indietro/implicito $u_{j+1} = u_j + hf(t_{j+1}, u_{j+1})$

metodo di Crank-Nicolson $u_{j+1} = u_j + \frac{h}{2} \left(f\left(t_j, u_j\right) + f\left(t_{j+1}, u_{j+1}\right) \right)$

Proviene da

$$y_{j+1} - y_j = \int_{t_j}^{t_{j+1}} f(s, y(s)) ds \overset{\text{metodoTrapezi}}{\approx} \frac{h}{2} \left(\underbrace{f(t_j, y_j)}_{\text{eul.esplicito}} + \underbrace{f(t_{j+1}, y_{j+1})}_{\text{eul.implicito}} \right)$$

metodo di Heun (versione esplicita di C-N) $u_{j+1} = u_j + \frac{h}{2} \left(f(t_j, u_j) + f(t_{j+1}, u_j + hf(t_j, u_j)) \right)$

Prop. 20 . Se hL < 1, allora il metodo di Eulero all'indietro/implicito e il metodo di Crank-Nicolson hanno una e una sola soluzione.

Dimostrazione (Eulero). La funzione $g(z) = u_j + hf(t_{j+1}, z)$ è una contrazione per hL < 1

metodo a un passo generalizzato $u_{j+1} = u_j + h\Phi\left(t_j, u_j, h, f\right)$, da cui si può scrivere $y\left(t+h\right) = y\left(t\right) + h\Phi\left(t, y\left(t\right), h, f\right) + \sigma\left(t, h\right)$

Definizione 9.7 (errore di troncamento globale): $\tau(h) = \max_{t \in [t_0, t_0 + T]} \frac{|\sigma(t, h)|}{h}$

Definizione 9.8 (consistenza di un metodo): Se $\lim_{h\to 0^+} \tau(h) = 0$. Consistenza di ordine p se $\tau(h) = O(h^p)$ errore di troncamento/discretizzazione controllato

Prop. 21. Se $f \in C^1(I \times \mathbb{R})$ il metodo di Eulero all'indietro/implicito è consistente di ordine 1

Dimostrazione.

$$\Phi\left(t,y\left(t\right),h,f\right)=f\left(t+h,z\right)\quad z=y\left(t\right)+hf\left(t+h,z\right)\\ \rightarrow z-y\left(t\right)=O\left(h\right)\\ \rightarrow f\left(t+h,z\right)=f\left(t,y\left(t\right)\right)+O\left(h\right)\\ \sigma\left(t,h\right)=\overbrace{y\left(t+h\right)-y\left(t\right)}^{hf\left(t,y\left(t\right)\right)+O\left(h^{2}\right)}-hf\left(t+h,z\right)=O\left(h^{2}\right)$$

Prop. 22 . Se $f \in C^2(I \times \mathbb{R})$ il metodo di Crank-Nicolson è consistente di ordine 2

Prop. 23 . Se $f \in C^2(I \times \mathbb{R})$ il metodo di Heun è consistente di ordine 2

Definizione 9.9 (zero stabilità per metodi a un passo): Se $\exists h_0 > 0, C > 0$ tali che $\forall h \in (0, h_0)$ vale che $|z_j - u_j| \leq C\varepsilon$ con $\{z_j\}$ soluzione del problema perturbato

$$z_{j+1} = z_j + h \left[\Phi\left(t_j, u_j, h, f\right) + \delta_{j+1} \right] \qquad z_0 = y_0 + \delta_0 \qquad \text{con } |\delta_i| \le \varepsilon$$

errore di propagazione controllato

Teo. 91 . Se Φ è Lipschitziana di costante Λ rispetto al secondo argomento uniformemente rispetto a $h \leq h_0$ e $t \in [t_0, t_0 + T]$, allora il metodo è zero-stabile.

Dimostrazione.

$$\begin{split} |e_j| &= |z_j - u_j| = |z_{j-1} + h\Phi\left(t_{j-1}, z_{j-1}\right) + h\delta_j - u_{j-1} - h\Phi\left(t_{j-1}, u_{j-1}\right)| \leq \\ &\leq |e_j| + h\underbrace{\left|\Phi\left(t_{j-1}, z_{j-1}\right) - \Phi\left(t_{j-1}, u_{j-1}\right)\right|}_{\Lambda|e_j|} + h\left|\delta_j\right| \leq (1 + h\Lambda)\left|e_{j-1}\right| + h\varepsilon \leq e^{\Lambda T}\left(1 + \frac{1}{\Lambda}\right)\varepsilon \end{split}$$

Definizione 9.10 (convergenza di un metodo): Se $\lim_{h\to 0^+} |y_j - u_j| = 0$, convergenza di ordine p se $|y_j - u_j| = O(h^p)$

Dimostrazione.

$$y_{j+1} = y_j + h \left[\Phi\left(t_j, y_j\right) + \frac{\sigma\left(t_j, h\right)}{h} \right] \qquad u_{j+1} = u_j + h \Phi\left(t_j, u_j\right) \qquad \frac{\sigma\left(t_j, h\right)}{h} \leq \tau\left(h\right) \stackrel{h \to 0^+}{\longrightarrow} 0$$

La tesi da (91) con $z_j = y_j$, $\frac{\sigma(t_j,h)}{h} = \delta_{j+1}$ e $\varepsilon = \tau(h)$

Dato $\lambda \in \mathbb{C}^{-} = \{z \in \mathbb{C} \mid \operatorname{Re}(z) < 0\}$, introduciamo il problema modello

$$\begin{cases} y'(t) = \lambda \cdot y(t) \\ y(t_0) = 1 \end{cases}$$

Definizione 9.11 (assoluta stabilità): Un metodo è assolutamente stabile se per il problema modello $u_j \stackrel{t_j \to +\infty}{\longrightarrow} 0$. La regione di assoluta stabilità è $A = \left\{ z = h\lambda \in \mathbb{C} \mid u_j \stackrel{t_j \to +\infty}{\longrightarrow} 0 \right\}$

Definizione 9.12 (A-stabilità): Quanto a regione di assoluta stabilità è $A = \mathbb{C}^-$

9.2 Sistemi di Equazioni Differenziali Ordinarie

Ez

9.3 Metodi a più passi (multistep)

Definizione 9.13 (metodo multistep): [...]

metodo del punto medio $u_{i+1} = u_{i-1} + 2hf(t_i, u_i)$

metodo di Simpson $u_{j+1} = u_{j-1} + \frac{h}{3} \left[f(t_{j-1}, u_{j-1}) + 4f(t_j, u_j) + f(t_{j+1}, u_{j+1}) \right]$

metodo multistep generalizzato Dato un metodo multistep a p+1 passi ($b_{-1}=0$ per metodo esplicito):

$$u_{j+1} = \sum_{k=0}^{p} a_k u_{j-k} + h \sum_{k=-1}^{p} b_k f(t_{j-k}, u_{j-k})$$

metodo di Adams $u_{j+1} = u_j + h \sum_{k=-1}^{p} b_k f\left(t_{j-k}, u_{j-k}\right)$ implicito se $b_{-1} \neq 0$ (Adams-Moulton) con i coefficienti ottenuti interpolando f con un polinomio nei punti $t_{j-p}, \dots, t_{j} \left(t_{j+1}\right)$

Definizione 9.14 (residuo): $\sigma\left(t,h\right)=y\left(t+h\right)-\sum_{k=0}^{p}a_{k}y\left(t-kh\right)-h\sum_{k=-1}^{p}b_{k}y'\left(t-kh\right)$

Teo. 97 . Un metodo multistep è consistente (9.8) $\iff \sum_{k=0}^p a_k = 1$ e $-\sum_{k=0}^p ka_k + \sum_{k=-1}^p b_k = 1$; è consistente di ordine $q \iff$ vale la condizione precedente e $\sum_{k=0}^p (-k)^q a_k + q \sum_{k=-1}^p (-k)^{q-1} b_k = 1$

Dimostrazione. Sostituendo y(t - kh) = y(t) - khy'(t) + o(h) e f(t - kh, y(t - kh)) = f(t, y(t)) + o(1) in 9.14

$$\sigma(t,h) = y(t) - h \underbrace{y'(t)}_{f(t,y(t))} - \sum_{k=0}^{p} a_k (y(t) - khy'(t)) - h \sum_{k=-1}^{p} b_k f(t,y(t)) + o(h)$$

$$= \left(1 - \sum_{k=0}^{p} a_k\right) y(t) + h f(t,y(t)) \left(1 - \sum_{k=0}^{p} a_k k - \sum_{k=-1}^{p} b_k\right) + o(h)$$

$$\frac{\sigma(t,h)}{h} = \frac{(1 - \sum_{k=0}^{p} a_k)}{h} y(t) + f(t,y(t)) \left(1 - \sum_{k=0}^{p} a_k k - \sum_{k=-1}^{p} b_k\right) + o(1) \longrightarrow 0$$

Per l'ordine q la dimostrazione è analoga sviluppando con Taylor fino al grado q e q+1 rispettivamente \Box

Osservazione Se $y \in \mathbb{C}^2$, un metodo consistente lo è di ordine almeno 1

9.3.1 Stabilità per i metodi multistep

Studiando il problema $\begin{cases} y'\left(t\right)=0\\ y\left(0\right)=1 \end{cases}$ si ottiene il metodo multistep $u_{j+1}=\sum_{k=0}^{p}a_{k}u_{j-k}$

Definizione 9.15 (1° polinomio caratteristico): $\rho(r) = r^{p+1} - \sum_{k=0}^{p} a_k r^{p-k}$ associato al metodo multistep $u_{j+1} = \sum_{k=0}^{p} a_k u_{j-k}$

Osservazione Se il metodo è consistente $\Longrightarrow 1 - \sum_{k=0}^{p} a_k = 0 \Longrightarrow 1$ è radice del 1° polinomio caratteristico $\rho(r)$

Definizione 9.16 (zero stabilità per metodi multistep): Se $\exists h_0 > 0, C > 0$ tali che $\forall h \in (0, h_0)$ vale che $|z_j - u_j| \leq C\varepsilon$ con $\{z_j\}$ soluzione del problema perturbato

$$z_{j+1} = \sum_{k=0}^{p} a_k z_{j-k} + h \delta_{j+1} \qquad z_k = y_k + \delta_k \text{ per } k = 0, \dots, p \qquad \text{con } |\delta_i| \le \varepsilon$$

Condizione della radice: Un metodo multistep soddisfa la condizione della radice se date r_0, \ldots, r_p radici di $\rho(r)$ vale $|r_i| \leq 1$ e se $|r_i| = 1 \Rightarrow r_i$ è una radice semplice.

Teo. 98 . Un metodo multistep consistente è zero stabile \iff soddisfa la Stabilità per i metodi multistep

$$\begin{array}{ll} \textit{Dimostrazione} \ (\Longrightarrow). \ \text{Supponiamo} \ |r| > 1 \ \text{radice reale di} \ \rho \left(r \right) \ \text{e definiamo} \ w_j = \varepsilon \frac{r^j}{r^p} \eqqcolon \gamma r^j, \ \text{prendo} \ \delta_j = \left\{ \begin{aligned} w_j & j = 0, \dots, p \\ 0 & j \ge p+1 \end{aligned} \right. \ \text{e} \ u_0 = \dots = u_p = 0 \Longrightarrow u_j = 0 \ \forall j \ge 0, \ \text{da cui} \ z_j = w_j \ \text{e} \ |z_j| = |z_j - u_j| \longrightarrow 0 \end{array} \qquad \Box$$

Esempio

$$\begin{array}{lll} \text{metodo del punto medio} & \rho\left(r\right) = r^2 - 1 & r_0 = 1, r_1 = -1 \\ \text{metodo di Simpson} & \rho\left(r\right) = r^2 - 1 & r_0 = 1, r_1 = -1 \\ \text{metodo di Adams} & \rho\left(r\right) = r^{p-1} - r^p & r_1 = \ldots = r_p = 0 \end{array}$$

Teo. 99 (teorema di equivalenza). Un metodo multistep è convergente \iff è zero stabile e l'errore sui dati iniziali $\to 0$ per $h \to 0^+$. In tal caso il metodo ha ordine $q \iff$ è consistente di ordine q

Teo. 100 (prima barriera di Dahlquist). Un metodo multistep zero stabile a q passi non può avere ordine maggiore di q + p con p = 2 per q pari, p = 1 per q dispari.

Parte III

Recap ed esame

10 Recap Barabba

Errore di Lagrange
$$E_{n}\left(x\right)\coloneqq f\left(x\right)-\Pi_{n}f\left(x\right)=\frac{f^{\left(n+1\right)}\left(\xi\right)}{\left(n+1\right)!}\omega_{n+1}\left(x\right)$$

Minimi quadrati
$$A^T \cdot A \cdot c = A^T \cdot b$$

$$\text{METODI STAZIONARI} \quad \text{Covergenza} \Longleftrightarrow \rho\left(B\right) < 1 \quad \text{(serve consistenza)} \qquad \left\|B\right\| < 1 \Longrightarrow \left\|e^{(k+1)}\right\| \leq \left\|B\right\| \cdot \left\|e^{(k)}\right\|$$

METODI DI RICHARDSON Covergenza
$$\iff \frac{2 \cdot \operatorname{Re}(\lambda)}{\alpha |\lambda|^2} > 1 \quad \forall \lambda \in \Lambda(P^{-1}A) \qquad \alpha_{\operatorname{opt}} = \frac{2}{\lambda_1 + \lambda_n} \qquad \rho(R_{\alpha_{\operatorname{opt}}}) = \frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}$$

$$\text{GERSHGORIN} \quad \Lambda(A) \subseteq S_R \coloneqq \bigcup_{i=1}^n R_i \quad \text{con} \quad R_i \coloneqq \left\{ z \in \mathbb{C} \mid |z - a_{ii}| \le \sum_{j=1, j \neq i}^n |a_{ij}| \right\}$$

GERSHGORIN
$$\Lambda(A) \subseteq S_R \coloneqq \bigcup_{i=1}^n R_i$$
 con $R_i \coloneqq \left\{ z \in \mathbb{C} \mid |z - a_{ii}| \le \sum_{j=1, j \neq i}^n |a_{ij}| \right\}$

Matrice di Householder
$$P = I - 2 \frac{vv^T}{\left\|v\right\|_2^2}$$
 $v = x \pm e_m \left\|x\right\|_2$

SHERMANN-MORRIS
$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$$

$$\begin{aligned} & \text{Shermann-Morris} \quad \left(A + uv^T\right)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u} \\ & \text{Errore Newton-Cotes} \quad E_n\left(f\right) = \begin{cases} M_n\left(b - a\right)^{n+3} f^{(n+2)}\left(\xi\right) & n \text{ pari} \\ K_n\left(b - a\right)^{n+2} f^{(n+1)}\left(\xi\right) & n \text{ dispari} \end{cases} \\ & E_{n,2m}(f) \approx \frac{1}{2^{n+p}-1}(I_{n,2m}(f) - I_{n,m}(f)) \end{cases}$$

Errore Metodi ODE
$$|e_{j+1}| \le \frac{e^{L(t_{j+1}-t_0)}-1}{L}\tau\left(h\right)$$

$$\text{MULTISTEP GENERALIZZATO} \quad u_{j+1} = \sum_{k=0}^{p} a_k u_{j-k} + h \sum_{k=0}^{p} b_k f\left(t_{j-k}, u_{j-k}\right) + h b_{-1} f\left(t_{j+1}, u_{j+1}\right)$$

Consistenza consistente di ordine
$$q \Longleftrightarrow \sum_{k=0}^{p} a_k = 1$$
 e $\sum_{k=0}^{p} (-k)^q a_k + q \sum_{k=-1}^{p} (-k)^{q-1} b_k = 1$

1° POLINOMIO CARATT.
$$\rho\left(r\right)=r^{p+1}-\sum_{k=0}^{p}a_{k}r^{p-k}$$
 condizione della radice: $|r_{i}|<0$ o semplici se $|r_{i}|=1$

CONDIZIONE ZERO STABILITÀ zero stabile \iff condizione della radice (serve consistenza)

Sistemi lineari
Backsubstitution $O(n^2) = n^2$
Forwardsubstitution

QR						
Standard	$Q \in \mathbb{R}^{m \times m}$ ortog	$Q \in \mathbb{R}^{m \times n}$ colonne ortonorm	$O\left(mn^2\right) = 2mn^2$			
Ridotta	$R \in \mathbb{R}^{m \times n}$ triang inf	$R \in \mathbb{R}^{n \times n}$ triang sup	_			

LU						
Standard			$\det\left(A_{1:k,1:k}\right) \neq 0$	$O(n^3) = 2n^3$		
Pivoting parziale	L triang inf	U triang sup	$\det\left(A\right) \neq 0$	- $ 3$ n		
Thomas	_		A tridiagonale	O(n) = 8n		
Cholesky			A SPD	$O\left(n^3\right) = \frac{1}{3}n^3$		

11 Scritto: formule e osservazioni per esercizi (da Epic)

11.1 Primo semestre

• Per ricavare il condizionamento del problema del calcolo di una funzione G nel punto d si usa la seguente formula, ricordando che lo jacobiano per $G: I \to \mathbb{R}$ corrisponde a G':

$$K_{ass}(d) = ||J_G(d)||, \quad K_{rel}(d) = \frac{||J_G(d)|| \, ||d||}{||G(d)||}$$

• Per stimare l'errore relativo in un metodo iterativo di matrice di iterazione B e soluzione x si può sfruttare che Bx + f = x, $Bx^{(k-1)} + f = x^{(k)}$ quindi, fissata una norma $||\cdot||$ vale:

$$\frac{||x - x^{(k)}||}{||x||} \le ||B||^k$$

Si ricorda che $||B||_{\infty} = \max_{i} \sum_{j} |B_{ij}|$

- Se un cerchio di Gershgorin è disgiunto dagli altri dello stesso tipo (riga o colonna) allora conterrà un unico autovalore, che dovrà essere reale. Per avere matrice con tutti autovalori reali è sufficiente avere cerchi riga o colonna tutti disgiunti fra loro. Posso sfruttare cerchi di Gershgorin per dare stima dello spettro, del raggio spettrale, degli autovalori minimo e massimo della matrice.
- Per risolvere problema ai minimi quadrati $\min_{x \in \mathbb{R}^2} ||b Ax||_2$ devo risolvere sistema delle equazioni normali: $A^T A x = A^T b$. Sfruttando la fattorizzazione QR di A mi riduco al sistema triangolare $Rx = Q^T b$. Altrimenti posso affrontarlo come visto nel secondo semestre (vedere sotto).
- Formula Sherman-Morrison per il calcolo dell'inversa di una matrice a cui sommo una "modifica di rango uno" ottenendo l'inversa della matrice iniziale sommata ancora a una "modifica di rango uno":

$$(A + uv^{T})^{-1} = A^{-1} - \frac{A^{-1}uv^{T}A^{-1}}{1 + v^{T}A^{-1}u}$$

11.2 Secondo semestre

- Per studiare la convergenza di un metodo iterativo $\phi(x)$ devo trovare i punti fissi e guardare il comportamento delle successioni: limitatezza e monotonia (disuguaglianze). Ricordo infatti che se ho convergenza, essa deve essere a un punto fisso di ϕ . Per calcolare l'ordine di convergenza uso teorema di ordine di convergenza guardando il valore delle derivate nei punti fissi: $\phi^{(k)}(\bar{x}) = 0$ allora ho ordine almeno k + 1.
- Per trovare polinomio interpolatore $\Pi_n f(x)$ della funzione f(x) di grado massimo n nei nodi $\{x_i\}_{i=0}^n$, posso usare la scrittura di Lagrange $\Pi_n f(x) = \sum_{i=0}^n f(x_i) l_i(x)$, dove $l_i(x)$ sono i polinomi della base di Lagrange:

$$l_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

O posso usare la scrittura di Newton $\Pi_n f(x) = \sum_{i=0}^n f[x_0, \dots, x_i] \omega_i(x)$ dove $\omega_i(x) = \prod_{k=0}^{k=i} (x - x_k)$ è il polinomio nodale riferito ai primi i nodi, mentre $f[x_0, \dots, x_i]$ sono le differenze divise:

$$f[x_0, \dots, x_j] = \frac{f[x_0, \dots, x_{j-1}] - f[x_1, \dots, x_j]}{x_0 - x_j}, \quad f[x_k] = f(x_k)$$

Per trovare una stima dell'errore di interpolazione uso

$$f(x) - \Pi_n f(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega_{n+1}(x)$$

• Formula dei trapezi e di Cavalieri-Simpson:

$$I_1(f) = \frac{(b-a)}{2} \left[f(a) + f(b) \right], \quad I_2(f) = \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

• Per la stima dell'errore di interpolazione con una spline lineare (lineare a tratti), uso la disuguaglianza:

$$||f - \Pi_h^1 f||_{\infty} \le ||f''||_{\infty} \frac{h^2}{8}$$

S spline cubica su [a, b] è naturale se S''(a) = 0 = S''(b).

- Per trovare g_n^* polinomio di migliore approssimazione di f devo risolvere il sistema delle equazioni normali. Prima trovo $\{\phi_i\}_{i=0}^n$ base dello spazio vettoriale su cui sto cercando g_n^* , non mi interessa sia ortogonale, quindi posso considerare base canonica per i polinomi, importante è che sia base, e scrivo $g_n^* = \sum_{i=0}^n c_i \phi_i$.
 - (i) Caso continuo su intervallo [a, b]: per trovare i coefficienti c_i pongo le condizioni $(g_n^*, \phi_i) = (f, \phi_i) \, \forall i = 0, \ldots, n$ dove $(h, g) = \int_a^b h(x)g(x)dx$
 - (ii) Caso discreto su punti $\mathbf{x} = \{x_i\}_{i=0}^m$: risolvo sistema delle equazioni normali $A^T A \mathbf{c} = A^T \mathbf{y}$ dove $\mathbf{c} = (c_i)_{i=0}^n$ è il vettore colonna dei coefficienti di g_n^* mentre indicando con $tab g = g(\mathbf{x})$ vettore colonna di valutazione di un funzione g nei punti x_i ho, y = tab f mentre

$$A = [tab \,\phi_0, \dots, tab \,\phi_n] = \begin{bmatrix} \phi_0(x_0) & \dots & \phi_n(x_0) \\ \dots & \dots & \dots \\ \phi_0(x_m) & \dots & \phi_n(x_m) \end{bmatrix}$$

- Dato problema generale di interpolazione lineare nello spazio V, data $\{\Phi_i\}_{i=0}^n$ base di V dove sto cercando interpolazione, e siano L_i i funzionali lineari del problema, si ha esistenza e unicità della soluzione se $|(L_i(\Phi_j))_{i,j}| \neq 0$. I funzionali possono essere valutazione in un punto, integrale su intervallo, calcolo della derivata in un punto...
- Si ha in generale che una formula di quadratura a n+1 nodi è interpolatoria \iff ha gdp almeno n. Grado di precisione n significa che deve essere esatta $\forall p \in \mathbb{P}_n$ quindi per trovare i pesi della formula posso imporre l'esattezza per $p=1,x,\ldots,x^n$.

Per trovare nodi in modo che gdp = k, impongo che la formula di quadratura sia esatta $\forall p \in \mathbb{P}_k$, ovvero per $p = 1, x, \dots, x^k$.

Una formula di quadratura interpolatoria a n+1 nodi ha gdp al massimo pari a 2n+1, in questo caso è detta formula di Gauss. I nodi della formula di Gauss a n+1 nodi, sono dati dalle radici del polinomio monico di grado n+1 ortogonale a tutti i polinomi di grado $\leq n$ rispetto al prodotto $(g,h)=\int_a^b g(x)h(x)w(x)dx$ con w(x) funzione peso: considero una base $\mathcal B$ di $\mathbb P_n$ (canonica va bene) e cerco il polinomio che annulla l'integrale indicato $\forall p \in \mathcal B$.

• Dato un metodo multistep a p+1 passi ($b_{-1}=0$ per metodo esplicito):

$$u_{j+1} = \sum_{k=0}^{p} a_k u_{j-k} + h \sum_{k=-1}^{p} b_k f(t_{j-k}, u_{j-k})$$

Per avere consistenza devo avere:

$$\sum_{k=0}^{p} a_k = 1, \quad \sum_{k=0}^{p} (-k)a_k + \sum_{k=-1}^{p} b_k = 1$$

Un metodo ha ordine $q \ge 1$ se e solo se:

$$\sum_{k=0}^{p} (-k)^{i} a_{k} + i \sum_{k=-1}^{p} (-k)^{i-1} b_{k} = 1 \quad \forall i = 1, \dots, q$$

Diciamo $\rho(r)=r^{p+1}-\sum_{k=0}^p a_k r^{p-k}$ il primo polinomio caratteristico associato.

- Un metodo consistente è 0-stabile \iff tutte le radici r_0, \ldots, r_p di $\rho(r)$ hanno modulo ≤ 1 e per $|r_i| = 1$ si ha r_i radice semplice.
- Un metodo consistente è convergente ⇔ è 0-stabile.

Diciamo $\Pi(r) = \rho(r) - h\lambda \sum_{k=-1}^{p} b_k r^{p-k}$ il polinomio caratteristico associato.

– Un metodo è assolutamente stabile se tutte le radici di $\Pi(r)$ hanno modulo < 1, ciò dipende dal valore di h.