Aide-mémoire

Marc-André Désautels 24/09/2019

Voici un aide-mémoire pour accompagner la présentation de Marc-André Désautels, portant sur les travaux de Abraham Wald.

Quelques notations

Notation Définition			
\overline{N}	le nombre d'avions au total		
S	le nombre d'avions survivants		
D	le nombre d'avions disparus		
X_i	le nombre d'avions \dots touchés i fois		
P_i	la probabilité qu'un avion soit abattu par i coups au but		
Q_i	la probabilité de l'événement contraire		
p_i	la probabilité conditionnelle qu'un avion soit abattu par le i ème coup au but, étant donné que		
	les premiers $i-1$ coups ne l'ont pas abattu		
q_{i}	la probabilité de l'événement contraire		

Les hypothèses

- Nous connaissons N, le nombre d'avions total.
- Nous connaissons pour tout i ($i=0,1,2,\ldots$) les nombres S_i , c'est-à-dire le nombre d'avions ayant survécu à i coups.
- Nous supposons que tous les avions disparus le sont en raison de tirs ennemis et donc $D_0 = 0$. Ceci implique que nous supposons qu'aucun avion ne peut être porté disparu en raison de problèmes mécaniques.
- Le nombre de tirs sur un avion est borné, c'est-à-dire que $D_j = 0$ pour j plus grand qu'un certain entier m.
- Pour simplifier la notation, nous écrirons $N_{j\geq i}$ pour signifier $\sum_{j\geq i} N_j$.

Quelques résultats « évidents »

- Le nombre total d'avions envoyés au combat est égal à la somme des avions survivants et des avions disparus, c'est-à-dire que N=S+D.
- De façon similaire, en étudiant les avions touchés au but i fois, nous avons $N_i = S_i + D_i$.
- La probabilité qu'un avion ne soit pas abattu par i coups au but est en fait la probabilité de ne pas être abattu par 1 coup (en ayant survécu aux coups précédents) et de ne pas être abattu par 2 coups (en ayant survécu aux coups précédents), ... et de ne pas être abattu par i coups (en ayant survécu aux coups précédents). Nous avons donc $Q_i = q_1 q_2 \dots q_i$.
- La probabilité d'être abattu par i coups au but est donc $P_i = 1 Q_i = 1 q_1 q_2 \dots q_i$.

De fausses munitions...

Posons F_i le nombre d'avions ayant été touchés i fois par de fausses munitions.

Nous avons $F_i \ge S_i$ et $\sum_{j=0}^n F_i = N$.

Posons $Y_i = F_i - S_i$.

Nous avons $F_0 = S_0$ ce qui implique que $Y_0 = 0$.

Nous pouvons montrer que

$$\sum_{j=1}^{m} \frac{S_j}{q_1 q_2 \dots q_j} = N - S_0$$

Un exemple

Supposons que N=400 avions ont été envoyés en mission. Le nombre d'avion survivants est:

S_i	Nombre
$\overline{S_0}$	320
S_1	32
S_2	20
S_3	4
S_4	2
S_5	2

En utilisant nos données nous avons:

$$\frac{32}{q} + \frac{20}{q^2} + \frac{4}{q^3} + \frac{2}{q^4} + \frac{2}{q^5} = 80$$

que nous pouvons écrire sous forme de polynôme de degré cinq:

$$80q^5 - 32q^4 - 20q^3 - 4q^2 - 2q - 2 = 0$$

La valeur de q obtenue est 0.8510246.

En utilisant le résultat précédent et les équations que nous avons trouvées, nous pouvons évaluer le nombre d'avions disparus D_i .

Di	Nombre	Probabilité
0	0.0000000	0.0000000
1	11.9180343	0.5959017
2	5.3753263	0.2687663
3	1.5950262	0.0797513
4	0.7615048	0.0380752
5	0.3501084	0.0175054