La circunferencia

La circunferencia

Secciones cónicas como lugares geométricos

Hans Sigrist

Liceo Mixto Los Andes

hsigrist@liceomixto.cl

Agenda

1 La circunferencia como lugar geométrico

Definición

Considere L una recta en una posición fija en el espacio y A un punto tal que $A \in L$. Si se trazan infintas rectas L_1 que pasan por A y forman un cierto ángulo α con L, se genera un doble cono de revolución.

La circunferencia

Definición

P(x, y) La circunferencia es el lugar geométrico de todos los puntos P(x, y) del plano que se encuentran a una distancia determinada r de un punto dado O(h, k) de dicho plano.

$$\mathscr{C}(O,r) = \{ P \in \mathscr{P} / OP = r \}$$

Ecuación principal de la circunferencia

Definición

$$(x-h)^2 + (y-k)^2 = r^2$$

Esta expresión corresponde a la ecuación principal de la circunferencia, con h y k las coordenadas del centro y r el radio.

rcunferencia

Ejemplo

Determinar la ecuación principal de la circunferencia cuyo centro es (4,2) y su radio es 3.

Ejemplo'

Determinar la ecuación principal de la circunferencia cuyo centro es (4,2) y su radio es 3.

La circunferencia centrada en el origen

Caso h = k = 0: ecuación canónica de la circunferencia

Ecuación general de la circunferencia

Definición

A partir de la ecuación principal de la circunferencia:

$$(x-h)^2 + (y-k)^2 = r^2$$

podemos obtener la denominada ecuación general de la circunferencia:

$$x^2 + y^2 + Dx + Ey + F = 0$$

Ejemplo

Determine los coeficientes D, E y F de la ecuación general de la circunferencia con centro en (2,5) y radio r=6.

$$h = 2, k = 5, r = 6 \Rightarrow (x - 2)^{2} + (y - 5)^{2} = 6$$
$$\Rightarrow x^{2} + y^{2} - 4x - 10y - 7 = 0$$
$$\Rightarrow D = -4, E = -10 \land F = -7.$$

Determine la ecuación de la circunferencia si uno de sus diámetros es el segmento que une los puntos A(-5,7) y B(7,-3).

Determine la ecuación de la circunferencia si uno de sus diámetros es el segmento que une los puntos A(-5,7) y B(7,-3).

$$(h,k) = \left(\frac{-5+7}{2}, \frac{7-3}{2}\right)$$

$$= (1,2)$$

$$\Rightarrow r = \sqrt{(7-1)^2 + (-3-2)^2}$$

$$= \sqrt{36+25}$$

$$= \sqrt{61}$$

$$\Rightarrow (x-1)^2 + (y-2)^2 = \left(\sqrt{61}\right)^2$$

$$\Rightarrow x^2 + y^2 - 2x - 4y - 56 = 0$$

Parametrización de una circunferencia

Depende de tres parámetros

De acuerdo a lo visto anteriormente, la ecuación de una circunferencia se puede escribir en su forma principal:

$$(x-h)^2 + (y-k)^2 = r^2$$

o bien, en su forma general

$$x^2 + y^2 + Dx + Ey + F = 0$$

En ambos casos, la ecuación depende de tres parámetros:

$$h, k, r \lor D, E, F$$

Encontrar la ecuación de la circunferencia que pasa por los puntos A(1,0), B(3,-2) y C(1,-4)

Encontrar la ecuación de la circunferencia que pasa por los puntos A(1,0), B(3,-2) y C(1,-4)

$$\begin{cases} 1+0+D\cdot 1+E\cdot 0+F=0\\ 9+4+D\cdot 3+E\cdot (-2)+F=0\\ 1+16+D\cdot 1+E\cdot (-4)+F=0 \end{cases} \begin{cases} 1+D+F=0\\ 13+3D-2E+F=0\\ 17+D-4E+F=0 \end{cases} \begin{cases} D=-2\\ E=4\\ F=1 \end{cases}$$

$$\therefore x^2 + y^2 - 2x + 4y + 1 = 0$$

Encontrar la ecuación de la circunferencia que pasa por los puntos A(-2,5), B(3,2) y C(0,0)

Apéndice

¡Carpe diem!

Una copia del presente trabajo, se encuentra en el enlace

La circunferencia .