# EXPERIMENT RESULT: TWO PHASE FLOW

#### A PREPRINT

#### Jayjay, Tuna, Jason, Richard

2024-09-30

We now evaluate surrogate models in two different criteria, forward simulation and inverse problem.

# 1 Pipeline

- FNO-NF.jl: create two-phase flow dataset, eigenvector of FIM, and vJp
  - Now we differentiate each time step saturation,  $S^1(K), \dots S^8(K)$  with respect to K
  - Rather than differentiating  $\{S^t(K)\}_{t=1}^8$  with respect to K and repeating it the 8 times.
- Diff\_MultiPhysics: train (written in pytorch) and posterior estimation

# 2 Updates on training scheme: respecting the time dynamics of GCS PDE Equation

Before discussing what steps I took to compute  $\tilde{K}$ , our MLE estimate, I want to briefly go over new training scheme we tried.

| Setting        | Previous Experiment                        | Updated Experiment                           |
|----------------|--------------------------------------------|----------------------------------------------|
| Dataset        | 2000 pairs of $\{K, S^t(K)\}_{t=1}^8$      | 1000 pairs of $\{K, S^t(K)\}_{t=1}^8$        |
|                | Train/Test split: [1800, 200]              | Train/Test split: [800, 200]                 |
| FIM            | Number of observations $= 10$              | Number of observations $= 2$                 |
|                | Number of eigenvectors $= 1$               | Number of eigenvectors $= 1$                 |
|                | For a single pair of datapoints, 1 FIM is  | For a single pair of datapoints, 8 FIMs are  |
|                | obtained. And we repeat it for 8 times.    | obtained (for 8 time steps).                 |
| Likelihood     | Difference between perturbed and true time | Difference between perturbed and true single |
|                | series $\{S^t(K)\}_{t=1}^8$                | time step Saturation for instance,           |
|                | 776-1                                      | $S^1(K), \cdots S^8(K)$                      |
| Hyperparameter | Batch size = $100$                         | Batch size = 100                             |

Now, for the sake of clarity, I am going to call:

- eigenvector obtained from the full time series (or across all time steps), **static eigenvector** as it does not evolve over time.
- eigenvector obtained from each time step, **dynamic eigenvector** as it reflects how the system's dynamics evolve.

In case we need to recall how we computed FIM..

$$\left\{X_i\right\}_{i=1}^N \sim p_X(X), \ \epsilon \sim \mathcal{N}(0, \Sigma), \ \Sigma = I$$

For a single data pair, we generate multiple observations.

$$Y_{i,J} = F(X_i) + \epsilon_{i,J}, \quad where \left\{\epsilon_{i,J}\right\}_{i,J=1.1}^{N,M}$$

As we assumed Gaussian, we define likelihood as following.

$$p(Y_{i,J}|X_i) = e^{-\frac{1}{2}\|Y_{i,J} - F(X_i)\|_2^2}$$

$$\log p(Y_{i,J}|X_i) \approx \frac{1}{\Sigma} \|Y_{i,J} - F(X_i)\|_2^2$$

A FIM for a single data pair i is:

$$FIM_i = \mathbb{E}_{Y_{i,\{J\}_{i=1}^m} \sim p(Y_{i,J}|X_i)} \left[ \left( \nabla log \ p(Y_{i,J}|X_i) \right) \left( \nabla log \ p(Y_{i,J}|X_i) \right)^T \right]$$

#### 3 Forward Simulation

So, now we compare how the learning becomes different when compared with

- that of static eigenvector
- that of dynamic eigenvector, respecting the time dynamics of GCS PDE equation.

Like before, we evaluate the training result of PBI model:

- 1. Loss behavior
- 2. Forward simulation
- 3. Inversion

#### 3.1 How does changed eigenvector look like?



Figure 1: Static eigenvector



Figure 2: Dynamic eigenvector

### 3.2 How does it impact training?

When we look at the test loss, we observe that unlike static model, dynamic model's test curve is always lower than that of MSE model.

|                    | Epochs       | λ           | Train Loss                                                   | Test Loss                                           |
|--------------------|--------------|-------------|--------------------------------------------------------------|-----------------------------------------------------|
| FNO-MSE<br>FNO-PBI | 1000<br>1000 | N.A.<br>1.0 | MSE/GM<br>$6.5207 \times 10^{-8}$<br>$8.3925 \times 10^{-8}$ | MSE $1.3088 \times 10^{-7}$ $1.3030 \times 10^{-7}$ |
| FINO-FDI           | 1000         | 1.0         | 6.3925 × 10                                                  | 1.5050 × 10                                         |



Figure 3: Loss plot static vs dynamic



Figure 4: Example of Forward Prediction

#### 3.3 Forward Simulation on Test dataset

# 3.4 Sanity check: how does vJp of MSE model and PBI model look like?



Figure 7: Learned vJp (MSE)



Figure 5: Absolute Difference (x 5) plot of test samples



Figure 8: Abs Diff in vJp (MSE)



Figure 9: Learned vJp (PBI)



Figure 10: Abs Diff in vJp (PBI)

#### **Inverse**

Previously, we showed MLE estimate of  $\tilde{K}$ .

- The inversion result looked too good to be true.
- This is because initial  $K_0$  is unperturbed true K, so there was nothing to optimize upon. So now we perturbed  $K_0$  like Francis did.

### 4.1 Setting

We wanted to evaluate surrogate model's performace in MLE/posterior estimation quickly, so for now, we kept inversion method as simple as possible. (least squares method)

$$\min_K \lVert S_{\theta}(K) - S(K) \rVert_2^2$$

where:

- $K_0 = H(K)$   $S_\theta$ : Neural Network model
- We obtain  $100~\{S^t(K)\}_{t=1}^8$  from test data. We generate  $H(K_0)$  by averaging over all  $K_0$  where H is observation operator.

Now we look at two different cases:

- 1. static
- 2. dynamic

#### **4.2** Loss

With dynamic eigenvector, the loss during inversion falls under that of MSE model.



Figure 11: Loss (static)



Figure 12: Loss (dynamic)

#### 4.3 Ablation test: finding optimal lambda and number of epoch

#### 4.3.1 Choosing the best parameters for MLE optimization

We conduct hyperparameter search for the  $\lambda$ . The number of epochs chosen were based on the loss plot convergence. If it converged, we stopped training.

This is unconstrained.

#### **4.3.1.1** Unconstrained (static)

|         | Epochs | λ     | Loss (MSE)              | SSIM   |
|---------|--------|-------|-------------------------|--------|
| FNO-PBI | 400    | 20.0  | $8.9021 \times 10^{-5}$ | 0.5550 |
| FNO-PBI | 300    | 50.0  | $6.1867 \times 10^{-5}$ | 0.5555 |
| FNO-PBI | 200    | 100.0 | $5.5757 \times 10^{-5}$ | 0.5709 |
| FNO-MSE | 400    | 20.0  | $5.3901 \times 10^{-5}$ |        |
| FNO-MSE | 300    | 50.0  | $3.4602 \times 10^{-5}$ | 0.5428 |
| FNO-MSE | 200    | 100.0 | $2.9429 \times 10^{-5}$ | 0.5564 |

# 4.3.2 Updated Result

Out of all 100 test samples, I brought some interesting cases. Some looks good, some looks questionable. (Test sample 3, 5). Does SSIM values make sense here?



Figure 13: Test sample 1 (static)



Figure 14: Test sample 2 (static)



Figure 15: Test sample 3 (static)



Figure 16: Test sample 4 (static)



Figure 17: Test sample 5 (static)

# 4.3.3 What other things can be evaluated in terms of forward simulation?

- 1. **Stability**: predict longer saturation evolution 9th to 16th.
- 2. **Generalization**: test with out of distribution test samples.
- 3. Towards learning true governing PDE equation: One step prediction rather than multi-step prediction
- Current one is time discretized.

#### 5 Conclusion

- As of right now, we don't see significant difference between MSE and PBI model in terms of posterior estimate.
  - It is likely undertrained.

# **6 Updates:**

- To train FNO with multiple eigenvectors, have been generating dataset. For 1000 data points, we are obtaining the first 20 eigenvectors.
- However, number of observation is 20 (before it was 2) to get the FIM and we call Zygote.pullback 20 times per sample to get vJp, so it takes some time.
- We also had some debugged some code issues.
- So right now, tested with
  - 100 training sample,
  - 50 test samples
  - 500 epochs.
- And we show preliminary results with 3 different scenarios: when number of vector is 1, 3, 5.

#### 6.1 Forward Simulation on Test Dataset

|         | number of $\vec{x}$ | λ    | Train Loss              | Test Loss                |
|---------|---------------------|------|-------------------------|--------------------------|
|         |                     |      | MSE/GM                  | MSE                      |
| FNO-MSE | N.A.                | N.A. | $2.0915 \times 10^{-7}$ | $8.08192 \times 10^{-7}$ |
| FNO-PBI | 1                   | 0.65 | $3.8140 \times 10^{-7}$ | $8.0472 \times 10^{-7}$  |
| FNO-PBI | 3                   | 0.65 | $3.0985 \times 10^{-7}$ | $8.2933 \times 10^{-7}$  |
| FNO-PBI | 5                   | 0.65 | $2.6275 \times 10^{-7}$ | $8.2738 \times 10^{-7}$  |





Figure 18: When number of eigenvector = 1





Figure 19: When number of eigenvector = 3





Figure 20: When number of eigenvector = 5

# **6.2** MLE Estimate vs Number of Eigenvector

|         | number of $\vec{x}$ | SSIM   | Forward Loss            | MSE      |  |
|---------|---------------------|--------|-------------------------|----------|--|
| FNO-MSE | N.A.                | 0.7644 | $4.9598 \times 10^{-5}$ | 698.5997 |  |
| FNO-PBI | 1                   | 0.7667 | $4.6305 \times 10^{-5}$ | 667.3286 |  |
| FNO-PBI | 3                   | 0.7670 | $4.7811 \times 10^{-5}$ | 676.3323 |  |
| FNO-PBI | 5                   | 0.7650 | $4.7420 \times 10^{-5}$ | 684.8894 |  |

#### 6.3 Some comments on these mediocre results

1.

# 6.4 Side note: testing with one step prediction

#### 6.5 Other comment

Will try to finish draft for ML4seismic presentation by Saturday.

#### 6.6 Future Step

- 1. TODO: Debug NS eigenvector and vjp.
- 2. TODO: Want to generate the full dataset for Francis' dataset (which might take 1 or 2 days).
- 3. TODO: Try it on Jason's dataset (Now that we fixed the problem with FIM computation, we are optimistic about the experiment, so we want to try it again.)