Use siRNA to knowdown 3T3

BY YUEJIAN MO April 18, 2018

1 Introduction

We choose two target gene from paper.

Tranditinal PCR is an in vitro techniques which allows the amplification of a specific DNA region that lies between two regions of known DNA sequence. Here are three phases of PCR, including exponential phase, linear phase and plateau phase. Nowadays, we

Relative PCR

- 2 Method
- 2.1 Choose a target gene
- 2.2 Design siRNA and qPCR primer
- 2.3 Abstracte qPCR

2.4 Test Primers for Real-time PCR

To determine if an assay is optimal, we will use stardard curve to test primers for real-time PCR.Calculate the Ct and E

- 2.5 siRNA Transfection
- 2.6 Isolation RNA & reverse RNA
- 2.7 qPCR

Firstly, we prepare threePCR mixture as following table.(Table 1)

Section 6

Reagent	Volume	18srRNA premix
	(3.5 tubles)	(60 tubes)
SYBR Premix EX Taq	3.5	600
II(Tli RNaseH plus)(2x)		
PCR Forward Primer (10µl)	2.8	48
PCR Reverse Primer (10µl)	1.4	48
ROX Reference Dye	2.8	48
Template (<100 ng)	7	
H ₂ O(sterile distilled water)	21	360
Total	70	1080

Table 1.

Then, we made a PCR set-up sheet in 96-well PCR plate as following table.

	18s rRNA	GAPDH	18s rRNA	Target gene	
	#1 $#2$ $#3$	#1 $#2$ $#3$	#1 $#2$ $#3$	#1 $#2$ $#3$	
NC-1					Test 1-1
NC-2					Test 1-2
NC-3					Test 1-3
PC-1					Test 2-1
PC-2					Test 2-2
PC-3					Test 2-3
					NTC
					Target Gene
		NC-1	NC-2	NC-3	
Table 2.					

For test sample: $2^{-[(Ct_{target gene}-Ct_{18srRNA})-(Ct_{18sRNA})}$ For postive control $2^{-[(Ct_{GAPDH}-Ct_{18srRNA})-(Ct_{GAPDH gene}-Ct_{18srRNA})]}$

3 Results

4 Discussion

5 Reference

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. *Nucleic Acids Research*, 29(9), e45.

6 Contribution

Xu wenxin and I finish this work together.

Figures 3

7 Figures

Section 7

Melt Curve or PriCEBPa-MX2

Derivative Reporter (-Rn.)

Figures 5

 $\textbf{Figure 1.} \ \ \text{The Gel Graph of 4 isolativte RNAs.} \ \ \ \text{(From left to right: Postive Control, Negative control, siRNA 1, siRNA 2}$