Math H185 Lecture64

Keshav Balwant Deoskar

January 31, 2024

These are notes taken from lectures on Complex Analysis delivered by Professor Tony Feng for UC Berekley's Math $\rm H185$ class in the Sprng 2024 semester.

Contents

1 January 28 - Integrating over curves		2	
	1.1	What is a curve?	2
	1.2	So, how do we actually integrate?	2
	1.3	Most fundamental example: $f(z) = z^n, n \in \mathbb{Z}$	3

1 January 28 - Integrating over curves

In calculus, we learned how to integrate over intervals. Today, we'll learn how to integrate complex valued functions over curves in the complex plane.

Integral over a curve

We define the integral of a function f(z) over a curve γ

$$\int_{\gamma} f(z)dz := \int_{\gamma} \operatorname{Re}(f(z))dz + i \int_{\gamma} \operatorname{Im}(f(z))dz$$

1.1 What is a curve?

- A parameterized curve is a continuous function $\gamma: \underbrace{[a,b]}_{\mathbb{C}^{\mathbb{D}}} \to \mathbb{C}$
- We say γ is **piece-wise smooth** if there exist finite subdivisions of [a, b] on which γ is smooth (in the Math 104 sense i.e. the real and imaginary parts are separately infinitely differentiable). [include graphs of piece-wise smooth paths]
- Example: $\gamma(t) = z_0 + re^{i\theta}$ where $z_0 \in \mathbb{C}$, $r \in \mathbb{R}_{\geq 0}$, $t \in [0, 2\pi]$. This path traces out a circle of radius r centered around the point z_0 . [include graph]
- Example: Given a path $\gamma:[a,b]\to\mathbb{C}$. Let $\gamma^-:[a,b]\to\mathbb{C}$ be $\gamma^-(t)=\gamma(a+b-t)$. Then γ^- is the same curve but traversed in reverse orientation.

1.2 So, how do we actually integrate?

Let $\gamma:[a,b]\to\mathbb{C}$ be a "nice" curve, where "nice" means piece-wise smooth parameterized. Then,

Theorem: The integral of f(z) over γ is

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

and these integrals have some nice properties:

1. Linearity: Say $\lambda, \mu \in \mathbb{C}$ Then

$$\int_{\gamma} \lambda f(z) + \mu g(z) dz = \lambda \in_{\gamma} f(z) dz + \mu \int_{\gamma} g(z) dz$$

2. orientation:

$$\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz$$

Examples:

(a) $\gamma:[a,b]\to\mathbb{C}$ given by $\gamma(t)=t$:

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(t)dt$$

(b) $\gamma:[a,b]\to\mathbb{C}$ given by $\gamma(t)=it$:

$$\int_{\gamma} f(z)dz = \int f(it)idt = i \int f(it)dt$$

Recall that a **primitive** (i.e. antiderivative) of f is F such that F'(z) = f(z). Then, the fundamental theorem of calculus is

Fundamental Theorem of Calculus: For a "nice" curve $\gamma : [a,b] \to \mathbb{C}$ and function f with primitive F,

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$$

Corollary: If γ is a **closed** curve i.e. $\gamma(a) = \gamma(b)$ and f has a primitive on (an open neighborhood of) γ , then

$$\int_{\gamma} f(z)dz = 0$$

1.3 Most fundamental example: $f(z) = z^n, n \in \mathbb{Z}$

Consider the function $f(z) = z^n, n \in \mathbb{Z}$ and the curve $\gamma : [0, 2\pi] \to \mathbb{C}$ where $\gamma(t) = re^{it}$. What is $\int_{\gamma} f(z)dz$?

The integral is

$$\int_{\gamma} f(z)dz = \int_{0}^{2\pi} re^{int}(rie^{it})dt$$
$$= r^{n+1}i \int_{0}^{2\pi} e^{i(n+1)t}dt$$

If $n \neq -1$: $e^{i(n+1)t}dt$ has primitive

$$\frac{1}{i(n+1)}e^{i(n+1)t}$$

So, the integral is

$$\int_{0}^{2\pi} e^{i(n+1)t} dt = 0$$

If n = -1: Then, we have

$$\int_{\gamma} f(z)dz = i \int_{0}^{2\pi} e^{i(n+1)t} dt$$
$$= \int_{0}^{2\pi}$$
$$= 2\pi i$$

Precisely why does the primitive not work for n=-1? The issue lies with the fact that the primitive of $\frac{1}{z}$ is the *logarithm*.

The complex logarithm isn't defined along a full circle around the origin. We'll revisit this when studying branch cuts soon.

Conclusion

We find that

$$\int_{\partial B_r(0)} z^n dz = \begin{cases} 0 & n \neq -1 \\ 2\pi i & n = 1 \end{cases}$$

Note: A very interesting observation is that this in $independent\ of\ r.$ This is surprising, and foreshadows some incredible results we'll see soon.