

Distance Sensor

Micro-python - IoT

ESP32-WROOM-DA DEVELOPMENT BOARD PINOUT

Power

Distance Sensor

Ultrasonic Sensor

Bat eye - ultrasonic

Ultrasonic

Ultrasonic Sensor

• Trigger pin is used to trigger ultrasonic sound pulses. By setting this pin to HIGH for 10µs, the sensor initiates an ultrasonic burst.

 Echo pin goes high when the ultrasonic burst is transmitted and remains high until the sensor receives an echo, after which it goes low

Ultrasonic Sensor

Trigger		
Transmit		
Echo	 38ms	

Ultrasonic Sensor

- By measuring the time the Echo pin stays high, the distance can be calculated.
- Distance = Speed x time
 - Speed is known: 343 m/s = 0.0343 cm/µs
 - time: Calculate time difference between start and reflected time
 - distance = (0.0343 * time) / 2

Ultrasonic Diagram

GND (Ground)

GPIO 26: Trigger

GPIO 27: Echo

Vin : VCC

LED Diagram

GPIO 14

Circuit Diagram

Initialization

from machine import Pin, PWM, time_pulse_us from time import sleep_us, sleep

```
# Ultrasonic sensor
TRIGGER_PIN = 26
ECHO PIN = 27
SPEED = 0.0343
# LED
LED PIN = 14
# BUZZER/SPEAKER
SPEAKER_PIN = 12
# Initialize Pin
trigger = Pin(TRIGGER_PIN, Pin.OUT)
echo = Pin(ECHO_PIN, Pin.IN)
led = Pin(LED_PIN, Pin.OUT)
buzzer = Pin(SPEAKER_PIN, Pin.OUT)
buz = PWM(buzzer)
```


Detect distance

```
while True:
  # Reset Trigger
  trigger.value(0)
  sleep_us(5) # stabilize and wait 5 us
  trigger.value(1)
  # send pulse for 10 us
  sleep_us(10)
  # Stop the pulse
  trigger.value(0)
  # Read pulse time for 1 value
  pulse_time = time_pulse_us(echo, 1)
  # Calculate distance
  distance = (SPEED * pulse_time) / 2
  if (distance < 50):
     print('distance:', distance)
```


Exercise-1

- If Obstacle is detected
 - LED ON
 - Beep sound
- Otherwise, LED and Sound OFF

Exercise-2

- Make Reverse Car Parking sensor
 - Assume 3 level distance: 50 cm, 30 cm, 10 cm
 - For example
 - 50 cm => Beep intensity 1 second
 - 30 cm => Beep intensity 0.5 second
 - 10 cm => Beep intensity 0.2 second

Upload / Burn Firmware

Menu Tools -> Options

Press Enable/Reset
Button

UINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 D3/5 D3/4 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 D3/5 D3/4 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 2 DI 4 D2/02/6D26D39 03/2 UN OP EN

DI SUINGNO DI 3 DI 3 DI

