Xida Ren (757) 279-4582 | renresear.ch | xida@renresear.ch

EDUCATION

University of Virginia September 2019 - Current

PhD in Computer Science | Machine Learning and Computer Architecture | GRE: Verbal:167, Quant:168 College of William and Marv

August 2016 - May 2019

Bachelors of Science | Double Major in Computer Science and Mathematics

GPA: 3.8

GPA: 4.0

SKILLS

Programming Languages C++, C, Python, Rust, Zig, SQL, MatLab, Haskell Software Pandas, Numpy, Keras, TensorFlow, PyTorch, sklearn, Linux, GNUPLOT Specializations Machine Learning, Queuing Theory, Statistics, Probability, CPU Performance Profiling Interests Security, Hardware Accelerators, Formal Verification, Hearthstone, FengShui

WORK EXPERIENCE

Intel Labs - Architecture Tooling Group | Research Intern

Oct 2022 - Jan 2023

- Accelerate SimPoint generation by 200x using hardware performance counters sampling to avoid instrumentation
- Achieve <3% CPI and <10% MPKI estimation accuracy while retaining 1,000,000x benchmarking speedup from SimPoint
- Use differential privacy to enable trace-sharing across organizational boundaries without concern for leaking sensitive IP

University of Virginia - Computer Science Department | PhD Candidate

Sep 2019 - Current

- Applied formal verification to ensure that quantized machine learning models remained invulnerable to adversarial attacks using DNNV (https://github.com/dlshriver/dnnv), ONNX, and ReluPlex (https://arxiv.org/abs/1702.01135)
- Discovered 2 critical security flaws that threatened execution integrity and data security in modern x86 processors.
- Mentored 5 undergraduate students on computer architecture and machine learning projects, breaking down large projects into digestible chunks, as well as providing instruction on computer architecture, side-channel attacks, machine learning compilers, and ML models (incl. model specification, feature engineering, parameter tuning, and cross-validation).

NXP Semiconductors – Edge Security | ML Research Intern

May 2022 - Aug 2022

- Applied statistical and machine learning algorithms (incl. logistic regression, perceptrons, time-convolutional neural networks, decision trees, k-nearest neighbors, random forests, support vector regressions) to monitor CPU performance counters for Spectre and Meltdown type side-channel attacks (Python, scikit-learn, pandas, statsmodels, NumPy, MLJar)
- Leveraged semi-supervised learning-based ML Algorithms (e.g. naive bayes, clustering, mixture models, one-class SVM, isolation forest) to generalize detectors to zero-day attacks with 85% accuracy (Python, scikit-learn)
- Performed usability testing with VP of Edge Software to iterate on detector parameters and maintain usable levels of overhead Lawrence Berkeley National Lab - Computer Architecture Group | PARADISE++ Project Aug 2020 - Nov 2020
- Implement memory subsystem of an optimistically synchronized parallel discrete-event simulator.

SELECTED PROJECTS

ProxyVM - In collaboration with Intel Labs and the Semiconductor Research Corporation

Jan 2022 - Current

- Augment profiling tools with differential privacy to enable ML hardware supply chain collaboration without loss of privacy
- Accelerated pre-silicon hardware simulations while maintaining high performance predictability by generating augmented performance traces (basic block vectors augmented with data access pattern vectors).
- Extended existing system to emerging hardware and workloads using LLVM and MLIR as a compatibility layer
- Modify cross-platform machine learning compiler to generate execution traces for benchmarking on CPU, GPU, FPGA, and ASIC I See Dead Micro-Ops Sep 2019 - Jan 2021
- Analyzed Intel x86 processor design documents to discover potential vulnerability, craft microbenchmarks to reverse undocumented CPU features, and design proof-of-concept exploits for novel vulnerabilities
- Designed micro-architectural benchmarks that characterized undocumented x86 instruction translation mechanisms
- Published novel spectre-type attack in International Symposium on Computer Architecture (15% acceptance rate).
- Published SMT performance-preserving speculative side-channel defenses to protect processors without compromising performance. <u>USENIX security</u> (18% acceptance rate)

Equity AI (Honors Thesis, Summa Cum Laude)

Dec 2017 - May 2019

- Applied multivariate time-series machine learning to investigate inefficiencies in Chinese stock markets
- Implemented distributed hyperparameter search system to exploit unused computing power in undergraduate computer labs
- Develop paper trading strategies using multi-armed bandit & bayesian optimization for hyperparameter discovery

Int'l Genetically Engineered Machines Contest (iGEM 2017, Int'l 2nd Place & Best Model Award)

Oct 2016 - Sep 2017

- Won 2nd place overall & best math model in international genetic engineering contest (iGEM 2017)
- Modeled behavior of genetic circuits with partial differential models and tested predictions against wet-lab experimental results
- Designed plasmid to implement protein-protease gene circuit to demonstrate novel gene expression rate control method
- Infer physical parameters for PDE protein degradation model using bayesian parameter estimation on Monte Carlo simulations