RECOMMENDER OF RELEVANT STORIES

IÑIGO BARAINCA, ÁNGELA HAIRONG JIMÉNEZ, MARTIN GOICOEHCEA

1- INTRODUCTION

2-LITERATURE REVIEW (SOTA)

- Historical context
- Advancements in NLP for Recommendation System
- Personalization Techniques
- Semantic Analysis and Relevance Matching
- Challenges and Considerations
- Future Directions

2-LITERATURE REVIEW (Relevant datasets)

MEWS

movielens

goodreads

Non-commercial, personalized movie recommendations.

3-SOLUTION CONCEPT

How could we make a recommender of relevant stories?

3.1- CONTENT BASED FILTERING

- Content of items and aligning it with user preference
- Create profiles for users and items

3.1- CONTENT BASED FILTERING

Used concepts:

- 1. Term Frequency (TF):
- 2. Inverse Document Frequency
- 3. TF-IDF Weight

$$idf_j = log \left| \frac{n}{df_j} \right|$$

3.2-COLLABORATIVE FILTERING

Similarity between users

Neighborhood X and user A

3.2- COLLABORATIVE FILTERING

- The recommendations are made based on a function that takes the model and user profile as input
- There are two types of collaborative filtering types:

3.2.1- User-based collaborative filtering

Neighbourhood users is needed

3.2.2- Item-based collaborative filtering

A new item is predicted

3.3 HYBRID FILTERING

• Employed for addressing the limitations of individual recommender techniques

Hybrid Recommendations

CF Based
Recommender

Combiner

Reco
Reco
Recommender

Incorporate the results
 achieved from separate technique

3.3-CHALLENGES

- COLD START PROBLEM
- SPARSITY PROBLEM
- SHILLING ATTACK PROBLEM
- GREY SHEEP PROBLEM

COLD START PROBLEM

SOLUTION: COLLABORATIVE FILTERING

SPARSITY PROBLEM

SOLUTION: NEIGHBORHOOD-BASED METHODS

SHILLING ATTACK PROBLEM

SOLUTION: DATA ANALYSIS AND ANOMALY DETECTION

GREY SHEEP PROBLEM

Research Problem: Identifying Grey Sheep Users

School of Applied Technology

SOLUTION: ADAPTIVE ALGORITHMS

4-PROJECT PROPOSAL

- OBJECTIVES
- METHODOLOGY

4.1-OBJECTIVES

- Develop a robust recommendation engine that analyses user preferences and behaviour to suggest relevant stories.
- Build a scalable and efficient system capable of handling a large volume of users and stories.
- Evaluate the performance of the recommender system using appropriate metrics and user feedback.

4.2-METHODOLOGY

- Data collection
- 2. Data preprocessing
- 3. Feature extraction
- 4. User Modelling
- 5. Recommendation Algorithms
- 6. Model Training and Validation
- 7. Evaluation

4.3-EVALUATION

- PERFORMANCE METRICS
- A/B TESTING
- USER FEEDBACK

shutterstock.com : 133940948

THANK YOU

Questions