Name	E-mail

School of Systems & Enterprises, Stevens Institute of Technology

By:		

Question 1:

LECTURE 8

- a. A country in South America has experienced inflation for the past 2 years as follows: the first year's periodic inflation rate is 8%, and the second year's periodic inflation rate is 11%. Calculate the average inflation rate for a 2-year period. [2 points]
- b. Assume that the expected inflation rate for this year is 9%. If the current inflation free interest rate is 10%, what ought the market interest rate to be? [2 points]
- c. A series of five constant dollar (or real-dollar) payments, beginning with \$12,000 at the end of the first year, are increasing at the rate of 6% per year. Assume that the average general inflation rate is 3%, and the market interest rate is 9% during this inflationary period. What is the equivalent present worth of the series? [6 points]

Question 2:

LECTURE 8

Dixie Cups Inc. is considering purchasing a computer to control plant packaging for a spectrum of various products. The financial data is as follows:

Investment: \$280,000

50% debt equity ratio. Loan (\$140,000) borrowed at 11% interest.

Project life: 6 yearsSalvage value: \$40,000

Year 0 dollars

Depreciation method: 5-year MACRS

• Income tax rate: 40%

• Annual Revenue: \$225,000

Year 0 dollars

Annual Expense: \$110,000

Year 0 dollars

- Does NOT include depreciation
- Does NOT include interest
- Market interest rate (i): 14%

If the general inflation rate (effects revenues, expenses, salvage value) during the next 6 years is expected to increase by 5% annually:

a. Develop the income statement for the project. [3 points]

Name	E-mail

School of Systems & Enterprises, Stevens Institute of Technology

"I PI	FDGF MY	HONOR THAT	I HAVE ARID	FD BY THE ST	EVENS HONOI	R SYSTFM"
						V O I O I EIVI

B	y:														

- b. Develop the cash flow statement for the project. [3 points] (Hint: Don't forget the Financing Activities)
- c. Determine the PW of the project. Is the project economically viable?
 Why? [4 points]
 (Hint: Cash flows in Actual dollars, given market interest rate. Therefore, no need to convert to constant dollars before calculating PW)

Question 3:

LECTURE 9

Mark one correct answer for each of the following questions.

Please place a mark in the **O** symbol to indicate which is the correct answer.

There is ONLY one correct answer for each question.

Each question (a, b, c, d & e) is worth: [2 points]

Total marks for question 3: [10 points]

- a. The remaining useful life of an asset that results in the minimum annual equivalent cost is known as the:
 - O Useful Life
 - O Economic Service Life
 - Economic Salvage Life
 - Operating Life
- b. Which of the following statements is incorrect in relation to Sunk Costs:
 - Any past cost that is unaffected by any future investment decision.
 - O Costs that have already been incurred and which cannot be recovered to any significant degree.
 - O Should be considered when making economic decisions.
 - Economic decisions should be based on the best possible future results.

Name	- E	E-mail	

		School of Systems & Enterprises, Stevens Institute of Technology
	"I PLEDG	E MY HONOR THAT I HAVE ABIDED BY THE STEVENS HONOR SYSTEM"
		By:
c.	True or I	-alse:
	Different	operating costs must be included for both the defender and the challenger
	0	True
	0	False
d.	True or I	False:
	The curre	ent market value and the trade-in allowance typically differ?
	0	True
	0	False
e.		f the following statements is incorrect in relation the guidelines forment Analysis with Tax Considerations:
	0	Incorporate the tax effects (gains / losses) whenever an asset is disposed of.
	0	When calculating the net proceeds from sale of the old asset, any gains or losses can be omitted.

- 0 Incorporate the tax effects of depreciation allowances.
- 0 Whenever possible, replacement decisions should be based on the cash flows after taxes.

Question 4:

LECTURE 9

Boeing is considering replacing a machine that has been used to make a certain kind of fuselage bolt.

The financial data for the new improved machine is as follows:

- Investment cost \$50,000 (installed)
- Estimated useful life of 5 years

Name	E-mail

School of Systems & Enterprises, Stevens Institute of Technology

"I PLEDGE MY HONOR THAT I HAVE ABIDED BY THE STEVENS HONOR SYSTEM"

B	y :														

- Salvage value of \$19,000 after the first year, decreasing at a rate of 10% each vear.
- Operating and maintenance costs are expected to be \$6,300 in the first year increasing at a rate of 27% each year.

The financial data for the existing machine is as follows:

- Investment cost \$47,000 (installed), 2 years ago
- Estimated useful life of 7 years from time of purchase
- Salvage value of \$16,000 after the first year (from today), decreasing at a rate of 12% each year.
- Current market value of \$43,000
- Operating and maintenance costs for the next 5 years are expected to be \$5,000 in the first year increasing at a rate of
- 60% each year.

With a MARR of 18%, calculate the following:

- a. Calculate the economic service life for each option. [4 + 4 points]
- b. What are your conclusions? [2 points]
- c. When should the defender be replaced? What are your final conclusions? [4 + 1 points]

Question 5:

LECTURE 10

Consider the following 5 investment opportunities for a drug development project:

Project	Required Investment	Annual Savings over 10 years
Α	\$300	\$105
В	\$600	\$180
С	\$900	\$210
D	\$750	\$150
Е	\$300	\$90

Projects A and B are mutually exclusive.

Project C is contingent upon Project A.

Projects D and E are also mutually exclusive.

a. How many mutually exclusive decision alternatives are in the problem including the

Name	E-mail

School of Systems & Enterprises, Stevens Institute of Technology

"I PLEDGE MY HONOR THAT I HAVE ABIDED BY THE STEVENS HONOR SYSTEM"

By:

do-nothing alternatives? [6 points]

- b. What is the total required investment for each alternative? [2 points]
- c. What is the total annual savings over 10 years for each alternative? [2 points]

Question 6:

LECTURE 10

LittleZé Pharmaceutical Company needs to raise \$23,000,000 in order to build a new process unit for a new drug they are launching in 2018.LittleZé Pharmaceutical Company's target capital structure calls for a debt ratio of 30%. Therefore, \$16.1 million needs to be financed from equity from the following sources:

Sources	Amount
Retained earnings	\$3,300,000
New Common Stock	\$10,000,000
Preferred Stock	\$2,800,000

The following details the financial data for both the common stock and preferred stock options:

	Common Stock	Preferred Stock
Market Price	\$63	\$129
Annual Cash Dividend	\$9	\$15
Annual Cash Dividend Growth Rate	11%	-
Issue Price	\$59	\$102
Flotation Costs	12%	8%

1. Calculate the cost of equity required to finance the new process unit. [10 points]

Question 7:

LECTURE 11

LittleZé Pharmaceutical Company needs to raise \$11,000,000 in order to build a new process unit for a new drug they are launching in 2019. The following table lists 4 critical input variables for the financial analysis and the associated limits of uncertainty:

Name	E-mail

School of Systems & Enterprises, Stevens Institute of Technology

"I PLEDGE MY HONOR THAT I HAVE ABIDED BY THE STEVENS HONOR SYSTEM"

By:

Input	Lower Limit	Base Case	Upper Limit
Building Cost	80%	\$2,300,000	125%
Equipment Cost	90%	\$6,500,000	110%
Annual Revenue	90%	\$3,500,000	110%
Annual O&M Costs	85%	\$700,000	115%

With a MARR of 21% and a project life of 7 years, perform a sensitivity analysis on the data using PW as the figure of merit assessed.

- a. Present the data in tabular format as shown in the lecture. [6 points]
- b. Present the data in a spiderplot format. [3 points]
- c. Which input has the biggest impact on the PW? [1 point]

Question 8:

LECTURE 12

Mark one correct answer for each of the following questions.

Please place a mark in the **O** symbol to indicate which is the correct answer.

There is ONLY one correct answer for each question.

Each question (a, b, c) is worth: [2 points] Each question (d, e) is worth: [3 points] Total marks for question 8: [12 points]

a. When comparing mutually exclusive risky alternatives (project A and B), if EA < EB and VA ≥ VB,

where EA and EB represents the expected values of project A and B, and VA and VB represent the variances of project A and B Which project should be selected?

- O Select project A.
- O Select project B.
- Select Project A or Project B, the decision is indifferent.
- O Do not select either project A or project B.

Name	E-mail
Name	F-maii

School of Systems & Enterprises, Stevens Institute of Technology

'I PLEDG	E MY HONOR THAT I HAVE ABIDED BY THE STEVENS HONOR SYSTEM"
	By:
A circle	in a decision tree represents which of the following?
0	A decision node.
0	A possible alternative from the decision node.
0	A probability node.
0	None of the above.
True or l	False,
	n variable is a parameter or variable that can have more than one possible nultaneously?
0	True
0	False
When sh	nould risk simulation be used?
What is	Decision Tree Analysis?
	A circle O O O True or A randor value sin O O When si

Name	E-mail
	EM 600 Engineering Economics and Cost Analysis, Final Examination

Due xx/xx/18 by 3pm School of Systems & Enterprises, Stevens Institute of Technology

"I PLEDGE MY HONOR THAT I HAVE ABIDED BY THE STEVENS HONOR SYSTEM"

By:				

Question 9:

LECTURE 12

A microchip company is considering two mutually exclusive projects, both of which have an economic service life of one year with no salvage value. The initial cost and the netyear-end revenue for each project are given in the following table:

	Proje	ct 1	Project 2		
Initial Cost \$9,000		00	\$8,000		
	Probability	Revenue	Probability	Revenue	
	0.2	\$10,000	0.25	\$9,000	
Net Revenue given in PW	0.55	\$11,000	0.45	\$10,500	
-	0.25	\$12,000	0.3	\$11,000	

Assuming both projects are statistically independent of each other,

- a. Calculate the expected value for each project. [5 points]
- **b.** Calculate the variance for each project. [5 points]
- c. Which project should be chosen? Why? [2 + 1 points]