Adaptive Cluster Sampling

Week 9

Stat 260, St. Clair

1/33

Adaptive designs

- Adaptive design: sampling units are determined "on the fly" based on observed characteristics of previously sampled units
- Adaptive *cluster* sampling (ACS): goal is to sample rare, clustered populations
- cluster denotes a spatial, social or genetic "closeness"
 - rare animal/plant species that are spatially clustered
 - rare disease/trait that are spatially *or* socially or genetically clustered

2 / 33

Example

A simplified "strawberry field" example: how many plants (dots) in the field?

Adaptive designs

- Idea of ACS:
- (1) get an initial SRS of units
- (2) if sampled unit i meet a condition ${\cal C}$ and add is neighboring units to the sample
- (3) repeat (2) until no more units can be added

ACS design:

- Divide the region into grid plots to create a sampling frame
- Sampling unit: grid plot (N=25)

Example

Sampling frame grid:

5/33 6/33

Example

ACS design:

- define a neighborhood:
 - $\circ~$ plot i 's neighbors are cells to the north/south/east/west

Example

Neighborhood of plot i

7 / 33 8/33

ACS design:

ullet Determine condition C: we want to find the plots with plants!

 $\circ \ y_i = ext{number of plants in plot } i$

 $\circ \ C: y_i > 0$, add neighbors if plot i contains plants

- All that matters in the population is units, neighborhoods and y_i values

Example

Let's just look at y_i s

5						
	0	0	0	0	2	
3-	0	0	0	4	2	
» 2	3	7	0	3	0	
	0	0	0	0	0	
	0	0	0	0	0	
0	1	2	× 3	4	5	

9/33 × 10/33

Example

ACS design:

(1) Initial SRS of $n_1=3$ plots and count plants y_i

(2) **adaptively add units:** If $y_i>0$, add plot i's neighbors

(3) Repeat (2) until no more neighbors are adaptively added

ullet all neighbors have $y_i=0$

Example

(1) Initial SRS of size 3 is highlighted

5	0	0	srs O	0	2	
4	0	0	0	4	2	
3 *	srs 3	7	0	3	0	
2	0	0	0	0	srs O	
1	0	0	0	0	0	
0	0 1	2	×	3	5	

11/33 × 12/33

(2) add first round of neighbors:

5						
	0	0	srs O	0	2	
4	wave 1	0	0	4	2	
	srs 3	wave 1 7	0	3	0	
2	wave 1	0	0	0	srs O	
1	0	0	0	0	0	
0	1	2			5	
			×			13/

Example

(2) add second (and final!) round of neighbors:

5						
	0	0	srs O	0	2	
4	wave 1	wave 2	0	4	2	
3 >>	srs 3	wave 1	wave 2	3	0	
2	wave 1	wave 2	0	0	o O	
0	0	0	0	0	0	
	0		2 3		5	
			×			

14/33

Estimation

Should we use the SRS estimate? Will it be biased?

$$Nar{y} = 25rac{3+7+0+\cdots+0}{9}pprox 27.78$$

Estimation

- Units have unequal selection probabilities
 - $\circ~$ need to use a Horvitz-Thompson estimate of total!
 - $\circ~$ units with $y_i>0$ have higher inclusion probabilities
- ullet Inclusion probability for unit i looks like

 $\pi_i = P(\text{unit } i \text{ is in the SRS or adaptively added})$

Estimation

Problem: unless we see the *entire population*, we can't compute all π_i for observed units

ullet can't tell if unit i borders a cluster unless we've seen all units around it

Networks instead of plots

Solution: define observations in terms of *networks*

- Network: a cluster of units generated by selection of any of the units within the cluster
- · networks either
 - \circ contain units that all satisfy condition C
 - \circ are a single unit where C is not satisfied

17 / 33

Example

Two networks satisfy $y_i>0$, 19 other networks are single plot with $y_i=0$.

5						
	single	single	single	single	network 2	
	0	0	0	0	2	
4-	single	single	single	network 2	network 2	
	0	0	0	4	2	
	Ĭ		Ĭ	i i	_	
3						
	network 1	network 1	single	network 2	single	
>	3	/	0	3	0	
2						
2	single	single	single	single	single	
	0	0	0	0	0	
1						
	single	single	single	single	single	
	0	0	0	0	0	
0						
	0	1 2	2	3 4	1	5

Networks

- Population has \boldsymbol{K} distinct networks

$$\circ~$$
 Ex: $K=19+2=21$

- Sample has κ distinct networks

$$\circ~$$
 Ex: $\kappa=3$

Three networks were sampled

5						
	0	0	net_1 O	0	2	
4	0	0	0	4	2	
>	net_3 3	net_3 7	0	3	0	
2	0	0	0	0	net_2 O	
1	0	0	0	0	0	
0	0 1	2		4	5	
			×			21/33

Networks

- Let \boldsymbol{y}_k^* be the total response of all units in network k

$$y_k^* = \sum_{i \in net_k} y_i$$

• We still have the same population total:

$$t=\sum_{i=1}^N y_i=\sum_{k=1}^K y_k^*$$

ullet Use HT estimator to weight the observed network totals y_k^*

22/33

Network inclusion probabililities

- α_k is the inclusion probability for network k:
 - $\circ\,$ network k is included in the ACS if at least one of its units is in the initial SRS
- Compute α_k using the complement rule:

 $\alpha_k = 1 - P(\text{no units in } k \text{ are in the initial SRS})$

Network inclusion probabililities

- There are $\binom{N}{n_1}$ possible SRS of size n_1
- $x_k =$ number of units in network k
- There are $\binom{N-x_k}{n_1}$ possible SRS of size n_1 that **don't contain any units** in network K

$$lpha_k = 1 - P(ext{no units in } k ext{ are in the initial SRS}) = 1 - rac{inom{N-x_k}{n_1}}{inom{N}{n_1}}$$

• Three sampled networks:

$$ullet \ net_3=\{3,4\}, y_3^*=10, x_1=2, lpha_3=1-rac{inom{25-2}{3}}{inom{25}{3}}=0.23$$

•
$$net_1 = \{1\}$$

•
$$net_2 = \{2\}$$

Example

• Estimated total: $\hat{t}_{HT} = ?$

25 / 33

Network inclusion probabililities

- Joint inclusion probability that both networks j and k are in the ACS
 - \circ Use the rule: P(j or k) = P(j) + P(k) P(j and k)
- So the probability of j and k is

$$egin{aligned} lpha_{jk} &= lpha_j + lpha_k - P(j ext{ or } k ext{ in ACS}) \ &= lpha_j + lpha_k - (1 - P(ext{neither } j, k ext{ in ACS})) \ &= lpha_j + lpha_k - \left(1 - rac{inom{N-x_j - x_k}{n_1}}{inom{N}{n_1}}
ight) \end{aligned}$$

Example

• Joint prob for networks 1 and 2:

$$lpha_{12} = 0.12 + 0.12 - \left(1 - rac{inom{25 - 1 - 1}{3}}{inom{25}{3}}
ight) = 0.01$$

• Joint prob for networks 1 and 3, and also 2 and 3?

$$lpha_{13} = lpha_{23} = 0.12 + 0.23 - \left(1 - rac{inom{25-1-2}{3}}{inom{25}{3}}
ight) = 0.01957$$

$$\hat{V}_{HT}(\hat{t}_{|HT}) = \sum_{i=1}^{n} rac{1-\pi_i}{\pi_i^2} t_i^2 + 2 \sum_{i} \sum_{\substack{k \ i < k}} rac{\pi_{ik} - \pi_i \pi_k}{\pi_{ik}} rac{t_i}{\pi_i} rac{t_k}{\pi_k}$$

• SE for \hat{t}_{HT} : only need to sum over non-zero network responses (and all joint products are 0!)

$$SE_{HT}(\hat{t}_{\;HT}) = \sqrt{rac{1-0.23}{0.23^2}10^2 + 2(0)} = 38.15$$

Example

• To estimate in R, enter network level data: y_k^* and x_k

```
> acs_data <- data.frame(
+ y_net = c(0,0,10),
+ x_net = c(1,1,2) )</pre>
```

• Then get single network inclusion probabilities:

```
> n1 <- 3
> N <- 25
> acs_data$pi_single <- 1- choose(N - acs_data$x_net,n1)/choose(N,n1)
> acs_data
    y_net x_net pi_single
1     0     1     0.12
2     0     1     0.12
3     10     2     0.23
```

29/33 30/33

Example

• Joint inclusion probabilities take more work \circ jnt_fun computes $lpha_{jk}$ for all $k=1,\ldots,\kappa$

Example

Fill the rows of the inclusion matrix:

• Then use "pps" design:

- Again, get $\hat{t}_{HT}=43.48$ and SE of 38.15.
- ullet Note: Unless n is very large and clusters not "too clustered", you can't trust conventional confidence intervals for ASC data!