

Ver.1.2

データベースとSQL

- ・リレーショナルデータベース
- SQL

データベース

大量のデータを扱う場合、データベース(DB)を利用してデータの保管や検索を行わせるのが一般的。主流はリレーショナルデータベース(RDB)。

・リレーショナルデータベースは、データを表形式で扱い管理する。

id	name	price
1	ボールペン	100
2	万年筆	1000
3	鉛筆	50

RDB の仕組みと用語

- データベーステーブルの集合体
- テーブル(表)情報が格納された箱
- レコード(行)テーブルの行
- カラム(列)テーブルの列

データベース

データベースは SQL(Structured Query Language)を使用して、データの操作や問い合わせを行う。

1	SELECT	テーブルから特定の条件に該当する情報を検索する
2	INSERT	テーブルに新しいデータを挿入(追加)する
3	UPDATE	テーブルに登録されているデータを更新する(書き換える)
4	DELETE	テーブルに登録されているデータを削除する

- 上記は操作言語(DML: Data Manipulation Language)と呼ばれる。
- この他、テーブルを作成・更新・削除する等の処理は定義言語(DDL: Data Definition Language)と呼ばれる。

テーブルの作成

MySQL を利用した、データベースとテーブルの作成手順。

① コマンドプロンプトを起動 (windows + R \rightarrow 「cmd」と入力してEnter)して、以下のコマンドにより MySQL に接続する。

```
> mysql -u root -p
```

② パスワードを聞かれるので、passwordを入力する。

```
Enter password: ******
```

③ 既存のデータベースを表示する。

```
mysql> show databases;
```

④ データベースを作成する。(show databasesで確認しましょう)

```
mysql> create database lesson20xx;
```

⑤ ④ で作成したデータベースに接続する。

テーブルの作成

MySQL を利用した、データベースとテーブルの作成手順。

⑤ ④ で作成したデータベースに接続する。

```
mysql> use lesson20xx;
```

⑥テーブルを作成する。

```
mysql> create table item (
    id int,
    name varchar(20),
    price int
    );

カラム名

型名
```

MySQLのデータ型 ①

型名	値の範囲	UNSIGNEDを付与した場合 の範囲
TINYINT	-128~+127	0~+255
SMALLINT	-32768~+32767	0~+65535
MEDIUMINT	-8388608~+8388607	0~+16777215
INT	-2147483648~+2147483647	0~+4294967295
BIGINT	-9223372036854775808~+9223372036854775807	0~+18446744073709551615
FLOAT(M.D)	-3.402823466E+38 ~ -1.175494351E-38, 0, 1.175494351E-38 ~ 3.402823466E+38	負数は使用不可
DOUBLE(M.D)	-1.7976931348623157E+308 \sim - 2.2250738585072014E-308, 0, 2.2250738585072014E-308 \sim 1.7976931348623157E+308	負数は使用不可
DECIMAL(M.D)	MとDで変化する	なし (利用不可)

MySQLのデータ型 ②

型名	値の範囲(バイト)	挿入に必要なサイズ
CHAR(M)	255	Mバイト
VARCHAR(M)	255	X+1バイト
TINYBLOB	255	X+1バイト
BLOB	65535	X+2バイト
MEDIUMBLOB	16777215	X+3バイト
LONGBLOB	4294967295	X+4バイト
TINYTEXT	255	X+1バイト
TEXT	65535	X+2バイト
MEDIUMTEXT	16777215	X+3バイト
LONGTEXT	4294967295	X+4バイト
ENUM("選択肢1","選択肢2",・・・)	65535 選択肢	1~2バイト
SET("選択肢1","選択肢2",・・・)	64選択肢	1/2/4/8バイト

- 前述の手順を参考に、MySQL に接続して item テーブルを作成しましょう。
- ・以下のコマンドでテーブルの一覧を表示しましょう。

```
mysql> show tables;
```

以下のコマンドでテーブルのカラム一覧を表示しましょう。

```
mysql> show columns from item;
```

・以下のコマンドで作成した item テーブルを削除しましょう。

mysql> drop table item;

プライマリキー

テーブルからレコードを一意に特定するためのキーとなる列。 「プライマリキー」は「主キー」、「PKEY」とも呼ばれる。 プライマリキーに指定された列は値を重複して登録できない。

(例) id をプライマリキーとしてテーブルを作成

```
mysql> create table item (
    id int primary key,
    name varchar(20),
    price int
);
```

not null

必ず情報を入力しなければいけない列。 プライマリキーの列は自動的に not null となる。

(例) name を not null としてテーブルを作成

```
mysql> create table item (
    id int,
    name varchar(20) not null,
    price int
);
```


- 前頁の手順を参考に、id をプライマリキー、name を not null として item テーブルを作成しましょう。
- 以下のコマンドでテーブルのカラム一覧を表示しましょう。

mysql> show columns from item;

テーブルの更新

テーブルの更新(列の追加)方法

- ① コマンドプロンプトを起動して、以下のコマンドにより MySQL に接続する。
 - > mysql -u root -p
- ②作成済のデータベースに接続する。

mysql> use lesson20xx;

③ テーブルを更新(列を追加)する。

mysql> alter table item add cat_id int;

④テーブルを更新(列を削除)する。

mysql> alter table item drop cat_id;

INSERT 文

テーブルにレコードを追加するには INSERT 文を使用する。

· 基本文法

insert into テーブル名 values (値,値,...);

(例) insert into item values (1, "ボールペン", 100);

- ~複数のレコードを一度に追加する場合~ (例) insert into item values (2,"万年筆",1000),(3,"鉛筆",50);
- ~カラムを指定してレコードの追加をする場合~ (例) insert into item (id,name) values (4, "消しゴム");

SELECT 文

テーブルに必要なデータを問い合わせるには SELECT 文を使用する。

基本文法select 列名 from テーブル名 where 条件文;

(例) select price from item where price >= 100;

(例) select * from item;

「*」は、すべての列を表す指定 「where 条件文」を省略すると指定テーブル内の全データが対象となる

条件文

条件文には以下の演算子が利用できる。

演算子	説明
=	等しい
>	大きい
<	小さい
>=	大きい、もしくは等しい
<=	小さい、もしくは等しい
!= <>	等しくない
AND	2つの条件を結合し、両方の条件が真
OR	2つの条件のうち、どちらか一方が真
NOT	式の結果を反転
BETWEEN a AND b	対象のフィールドが a と b の範囲内
IN	対象のフィールドが式の一覧の1つに一致
LIKE	対象のフィールドがパターンに一致

ORDER BY 句

データをソートするには ORDER BY 句を使用する。

SELECT 文への ORDER BY 句の適用
 select 列名 from テーブル名 where 条件文 order by 列名 [asc|desc];

(例) select * from item order by price asc;

最大值、最小值

最大値、最小値を抽出するには max, min を使用する。

SELECT 文への max の適用
 select max(列名) from テーブル名 where 条件文;

(例) select max(price) from item;

• INSERT 文を使用し、以下の情報を item テーブルに追加しましょう。

id	name	price
1	ボールペン	100
2	万年筆	1000
3	鉛筆	50

- SELECT 文を使用し、item テーブルの全データを表示しましょう。
- SELECT 文を使用し、「price が 100 以下」 かつ 「id が 2 以上」 の データを表示しましょう。

UPDATE 文

テーブル内のレコードを更新するには UPDATE 文を使用する。

•基本文法

update テーブル名 set カラム名=値 where 条件文;

(例) update item set price = 110 where id = 1;

※where 条件文を指定しない場合はレコード全件が更新されてしまうので注意。

DELETE 文

テーブル内のレコードを削除するには DELETE 文を使用する。

•基本文法

delete from テーブル名 where 条件文;

(例) delete from item where id = 1;

※where 条件文を指定しない場合はレコード全件が削除されてしまうので注意。

- UPDATE 文を使用し、ボールペンの価格を 110 に更新しましょう。
- ・ DELETE 文を使用し、ボールペンのレコードを削除しましょう。

JOIN によるテーブル結合

■ category テーブル

複数のテーブルから情報を取得する必要がある場合、JOINによるテーブル結合を行う場合があります。

■ item テーブル

id	name	price	cat_id	id	name	
1	ボールペン	100	1	1	文房具	
2	万年筆	1000	1	2	化粧品	
3	鉛筆	50	1	9	その他	
4	口紅	2500	2			
5	マウス	3200	3			

JOIN によるテーブル結合

- 内部結合(INNER JOIN)の基本構文

SELECT (列名) FROM テーブル名1 INNER JOIN テーブル名2 ON (結合条件);

(例) select item.name, category.name

from item inner join category on item.cat_id = category.id;

実行結果

name	name
ボールペン	文房具
万年筆	文房具
鉛筆	文房具
口紅	化粧品

※ 結合できなかった「マウス」や「その他」は表示されない。

JOIN によるテーブル結合

- 外部結合(OUTER JOIN)の基本構文

SELECT (列名) FROM テーブル名1 [LEFT|RIGHT] OUTER JOIN テーブル名2

ON (結合条件);

(例) select item.name, category.name

from item left outer join category on item.cat_id = category.id;

実行結果

name	name
ボールペン	文房具
万年筆	文房具
鉛筆	文房具
口紅	化粧品
マウス	NULL

- ※ left outer join の場合、左の表(item)の結合できない「マウス」も出力の対象となる。
- ※ right outer join の場合、 右の表(category)の結合できない 「その他」も出力の対象となる。

副問い合わせ

SELECT 文の中に SELECT 文を記述できる。

SELECT 文の実行結果を WHERE 句の条件に組み込む。

(例) select name from item where cat_id =

(select id from category where name="文房具");

name ボールペン 万年筆 鉛筆

SQLを用いて以下の操作を実行しましょう。

① 在庫テーブルの作成

```
create table zaiko (
    id int primary key,
    name varchar(20) not null,
    price int,
    quantity int
);
```


① 値の挿入

1001、ノート、100、400 1002、マウス、3000、500 1003、口紅、130、80 1004、万年筆、1000、50 1005、模造紙、100、1000 1006、鉛筆、50、100

- ②「在庫テーブル」から「id」「name」「price」を一覧で出力。
- ③ id 1003 の価格を「2500」に更新、id 1005 の name を「上質紙」 に更新。
- ④ id 1006の行を削除する。

- ⑤「在庫テーブル」から「商品コード」が 1001 から 1003 までの商品を抽出。
- ⑥価格を昇順にして表示させる。
- ⑦ 数量を降順にして表示させる。
- ⑧ id が 1007 から 1010 までレコードを作成(値は任意でよい)。
- ⑨ 価格の最大値、最小値をそれぞれ表示させる。

⑪ カテゴリテーブルを作成

```
create table category (
id int primary key,
name varchar(20) not null
);
```

- ① カテゴリテーブルに値の挿入
 - 1、文房具
 - 2、化粧品
 - 3、パソコン用品
 - 9、その他

- ① 在庫テーブルに cat_id 列(int)を追加
- ① cat_id 列に値を格納
- (4) JOIN を利用し、商品名とカテゴリ名を一覧で表示
- ⑤ 副問い合わせを利用し、カテゴリが「化粧品」以外の全ての商品を表示する