Advanced Python for Neuroscientists

Lecture 2: Dimensionality Reduction

• Dimension in physical space - position coordinate(s)

- Dimension in physical space position coordinate(s)
- Dimension in neuroscience neural activities

Population space

- Dimension in physical space position coordinate(s)
- Dimension in neuroscience neural activities

Population space

Dimensionality Reduction

Dimension of the population space - # neurons / voxels / channels

Dimensionality Reduction

• Dimension of the population space - # neurons / voxels / channels

- Dimension of the population space # neurons / voxels / channels
- Alternative names for "dimensions" features / predictors / variables
- Reduce the number of variables to look at

Dimensionality Reduction

- PCA
- Factor analysis
- Manifold learning
 - t-SNE
- Autoencoders

Linearity

• Definition: f(x + y) = f(x) + f(y), $f(\alpha x) = \alpha f(x)$

• Example: $3r_1 + 2.5r_2 + ...0r_n + 100$

PCA - if a linear model works, go with it first

PCA

- Principal component analysis
- Linear projection: $w_1r_1 + w_2r_2 + \dots$
- arg max $V(w_1r_1 + w_2r_2 + ...)$ w_1, w_2
- Continue to do step 3 after "removing" previous components by $\mathbf{X} \sum_{k=1}^{k-1} \mathbf{X} \mathbf{w}_{(s)} \mathbf{w}_{(s)}^{\mathsf{T}}$

s=1

Components are orthogonal

• n_components: number of directions to project onto

PCA applied to an ellipsoidically shaped point cloud

- n_components: number of directions to project onto
- explained_variance: the amount of variance retained after projecting onto the PC

- n_components: number of directions to project onto
- explained_variance: the amount of variance retained after projecting onto the PC
- loadings: principal component direction w_1, w_2, \ldots

- n_components: number of directions to project onto
- explained_variance: the amount of variance retained after projecting onto the PC
- loadings: principal component direction w_1, w_2, \ldots
- components: latent factors, latent variables

PCA

Principal Component Analysis

Widely used

PCA

Principal Component Analysis

Widely used

- Demix-PCA
 - Do PCA on data averaged by condition of interest

- Demix-PCA
- ICA independent component analysis
 - For each projected $s_i = w_{i1}r_1 + \ldots$, maximum some measure of independent of $F(s_1, s_2, \ldots)$

- Demix-PCA
- ICA independent component analysis
 - For each projected $s_i = w_{i1}r_1 + \ldots$, maximum some measure of independent of $F(s_1, s_2, \ldots)$
 - Face
 - PCA: brightness, average face
 - ICA: nose, eyes,...

- Demix-PCA
- ICA independent component analysis
- FA factor analysis
 - r_i of each neuron is made up of series factors f_1, f_2, \dots
 - Probability based fitting
 - When f_i are orthonormal, probabilistic PCA

Manifold Learning - nonlinear

Manifold learning

Original S-curve samples

Manifold learning t-SNE

- SNE stochastic neighborhood embedding
 - Probability of point i would pick point j as neighbor $p_{j|i} = -$
 - Make embedded $q_{j|i}$ as similar as possible with $p_{j|i}$
- t Student's t-distribution
 - Use it to measure distance (heavier tails)

Auto-encoders - NN based

Auto-encoders

NN to infer latent variable

Auto-encoders

NN to infer latent variable

