(19) 日本国特許庁(JP)

(12)公表特許公報(A)

(11)特許出顧公表番号

特表2005-516059 (P2005-516059A)

(43) 公表日 平成17年6月2日(2005.6.2)

(51) Int.C1.7	FI			テーマコー	ド(参考)
CO7C 211/58	CO7C	211/58		2H068	
CO7D 209/86	CO7D	209/86		3K007	
CO7D 333/76	CO7D	333/76		4C2O4	
CO7F 7/10	CO7F	7/10	С	4H006	
CO9K 11/06	CO9K	11/06 €	320	4HO49	
	審査請求 未	請求 予備審	查請求 未請求	(全 33 頁)	最終頁に続く
(21) 出願番号	特願2003-563997 (P2003-563997)	(71) 出願人	504233775		
(86) (22) 出顧日	平成14年12月19日 (2002.12.19)		センシエント	イマジング	テクノロジイ
(85) 翻訳文提出日	平成16年6月17日 (2004.6.17)		ズ ゲーエム・	ベーハー	
(86) 国際出願番号	PCT/DE2002/004758		ドイツ国ウ	オルヘン 06	3766, エ ミ
(87) 国際公開番号	W02003/064373		ルーフィッシ	ャーーストラッ	ルセ 3, アレ
(87) 国際公開日	平成15年8月7日 (2003.8.7)		アルアー、・	ヘミーパーク	ビッターフェ
(31) 優先權主張番号	102 03 328.5		ルドーウォル	フェン	
(32) 優先日	平成14年1月28日 (2002.1.28)	(74) 代理人	100083714		
(33) 優先權主張国	ドイツ (DE)		弁理士 舟橋	榮子	
		(72) 発明者	リヒター,ア	ンドリース,コ	こム
			ドイツ国 プ	ロッスニッツ	06188,
			イム ミユー	レングルンド	25
		(72)発明者	リシェウスキ		
			ドイツ国 ウ	オルヘン 06	6766, セラ
			ーハッセース	トラッセ 13	3
				弄	長終頁に続く

(54) 【発明の名称】トリアリールアミン誘導体および有機エレクトロルミネセンスと電子写真デバイスへの使用

(57)【要約】

本発明は特定の空間充填翼群を含む新規のトリアリールアミン誘導体、および電子写真およびエレクトロルミネセンスデバイスにおけるホール輸送物質としての使用に関するものである。トリアリールアミン誘導体において、n=1-10、 R^1-R^4 は、任意に置換されたフェニル、ビフェニルイル、メチルフェニル、ナフチル、フェナントレニル、アントラセニル、フルオレニル、トリアリールメチルアリール、またはトリアリールシリルアリールを示し;Arはビフェニレンまたは置換されたフルオニレン架橋を示し、またはn=1ならばArは置換されたビフェニレン、トリフェニレン、またはテトラフェニレン架橋である。

【特許請求の範囲】

【請求項1】

一般式1で表わされるトリアリールアミン誘導体。

【化1】

10

式中、nは1から10までの整数であり; R^1 、 R^2 、 R^3 および R^4 は同じかまたは異なり、フェニル、ビフェニルイル、メチルフェニル、ナフチル、フェナントレニル、アントラセニル、フルオレニル、トリアリールメチルーアリール、またはトリアリールシリルーアリール、残基の R^1 から R^4 の少なくとも 1 は式 1 で表わされるトリアリールメチルーアリールまたはトリアリールシリルーアリールであり

【化2】

20

式中、芳香族または複素環芳香族化合物単位 X^1 から X^4 は同じかまたは異なり、フェニル、ナフチル、アントラセニル、フェナントレニル、ピレニル、ピリジルまたはキノリルであり、 $R^{1\ 0}$ 、 $R^{1\ 1}$ 、 $R^{1\ 2}$ および $R^{1\ 3}$ は同じかまたは異なり、 H 、 C_1 ないし C_4 アルキル、シクロアルキル、 C_2 ないし C_4 アルケニル、 C_1 ないし C_4 アルコキシ、 C_1 ないし C_4 ジアルキルアミノ、ジアリールアミノ、ハロゲン、ヒドロキシ、フェニル、ナフチルまたはピリジルであり、

30

そして R^1 から R^4 はフェニル、ビフェニル、メチルフェニル、ナフチル、フェナントレニル、アントラセニル、フルオレニルであり、1 またはそれ以上の置換基 C_1 ないし C_3 アルキル、 C_1 ないし C_2 アルコキシまたはハロゲンによって置換することができ; A_1 は式 2 または 3 の構造式であり

【化3】

40

構造式Arはn>1ならば同じかまたは異なり、そして式3中のZは次の構造式から選択され

【化4】

R 5 から R 9 は、同じかまたは異なり、H、C $_1$ ないしC $_1$ $_5$ アルキルであり、または R $_5$ および R $_6$ または R $_7$ および R $_8$ は結合して 5 員環または 6 員環の脂環式または 複素環式 を形成し、従ってそれらが結合している 5 員環と共にスピロ環系を形成し、O, Nまたは S は 複素環原子である;

またはArは式29、30、31または32の構造式であり

【化5】

29

30

31

32

そして R^{20} から R^{27} は、同じかまたは異なり、H、フェニル、 C_1 ないし C_5 アルキル、または C_1 ないし C_3 アルコキシ、および A_1 は任意のフリーの置換位置での隣接し

10

20

30

40

た窒素原子に結合し、

但し、n=1または2およびArがビフェニレンまたは式29から32の群の1である場合、残基の R^1 から R^4 の少なくとも1はトリアリールシリルーアリール残基または上記式4による置換されたトリアリールメチルーアリール単位であり、 R^{1} 0から R^{1} 2は上記と同じ意味をもつ。

【請求項2】

式1において、nは1から4の整数、好ましくは1または2である、請求項1記載のトリアリールアミン誘導体。

【請求項3】

一般式1の残基R¹ からR⁴ はフェニル、ビフェニリル、メチルフェニル、ナフチル、フルオレニル、トリアリールメチルーアリールまたはトリアリールシリルーアリールである、請求項1記載のトリアリールアミン誘導体。

【請求項4】

残基 R^5 から R^9 が、同じかまたは異なり、メチルまたはフェニルである、請求項1記載のトリアリールアミン誘導体。

【請求項5】

残基 R^5 および R^6 が結合しているC原子と共にスピロアルカン環を形成する、請求項1記載のトリアリールアミン誘導体。

【請求項6】

残基 R^{20} から R^{27} が、同じかまたは異なり、H、メチルまたはフェニルである、請求項 1 記載のトリアリールアミン誘導体。

【請求項7】

少なくとも1のホール輸送層および1の発光層を有し、少なくとも1のホール輸送層が請求項1記載のトリアリールアミン誘導体を含む、有機エレクトロルミネセンスデバイス。

【請求項8】

ルミネセンス層が請求項1記載のトリアリールアミン誘導体を含む、請求項7記載の有機 エレクトロルミネセンスデバイス。

【請求項9】

有機エレクトロルミネセンスデバイスにおいてホール輸送物質またはルミネセンス物質と して請求項1記載のトリアリールアミン誘導体の使用。

【請求項10】

電子写真配置においてホール輸送物質として請求項1記載のトリアリールアミン誘導体の 使用。

【請求項11】

一般式

【化6】

40

30

10

式中、nは1から10までの整数であり;

 R^1 、 R^2 、 R^3 および R^4 は、同じかまたは異なり、フェニル、ビフェニル、メチルフェニル、ナフチル、フェナントレニル、アントラセニル、フルオレニル、トリフェニルメチルまたはトリフェニルシリルであり、

残基 R^1 から R^4 の少なくとも 1 は式 4 によるトリフェニルメチルまたはトリフェニルシリルであり、

【化7】

 $R^{1\ 0}$ 、 $R^{1\ 1}$ および $R^{1\ 2}$ は、同じかまたは異なり、 H 、 C_1 ないし C_6 アルキル、シクロアルキル、 C_2 ないし C_4 アルケニル、 C_1 ないし C_4 アルコキシまたはハロゲンであり、

そしてR¹ からR⁴ は1またはそれ以上の置換基で置換することができ、

Arは

【化8】

Zは次の構造式から選択され

【化9】

 R^5 から R^9 は、同じかまたは異なり、Hまたは C_1 ないし C_5 アルキルであり、但し、n=1 および A_1 がビフェニルである場合、残基 R^1 から R^9 の少なくとも 1 は上記式 1 によるトリフェニルシリル残基であり、 R^{10} から R^{12} は上記の意味を有する、請求項 1 記載のトリアリールアミン誘導体。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は特定の空間充填翼群を用いて提供される新規のトリアリールアミン誘導体、および電子写真およびエレクトロルミネセンスデバイスにおけるホール輸送物質としての使用に関するものである。

【背景技術】

[0002]

電子写真およびエレクトロルミネセンスデバイスおよびトリアリールアミン誘導体、例えばトリアリールアミン二量体およびトリアリールアミン四量体の使用は、長い間知られて

10

20

30

•

いる。

最近、トリス(-8-ヒドロキシキノリノ)-アルミニウムが好適な発光物質として用いられており、この電界発光は1965年以来知られている。この金属キレートコンプレックスは、いくつかの場合には、クマリン、緑色のルミネセンスを用いてドーピングすることができ、使用した金属はまたベリリウムまたはガリウムである。

初期には10ボルト以上の比較的高い通電電圧を要するが、必要な電圧はアノードと発光層との間の追加のホール輸送層を配置することによって10ボルト以下に減らすことが出来る。

それらの良好なチャージ移動特性によって、トリアリールアミン誘導体、特にトリアリールアミン二量体の、電子写真およびエレクトロルミネセンス応用における使用は長い間知られてきた。特に、N,N'ービス(-4'ー(-N, Nージフェニルアミノービフェニリル)-N, N'ージフェニルーベンジジン(EP0650955A1)およびN,N'ービス(-4'ー(-N-フェニルーNーナフチー1ーイルーアミノービフェニリル)-N, N'ージフェニルーベンジジン(JP2000260572)が、単独またはTPDまたは $\alpha-NPD$ を組み合わせて二重層構造で用いられる。

一般に、既知のエレクトロルミネセンスデバイスの、サービスライフおよび効率、またはその時間経過による発達は、実際の要求には合わず改良の必要性がある。使用した電荷移動物質のフイルム形成特性およびバインダー層内の形態学的安定性もまた不充分である。特に、エレクトロルミネセンスデバイスまたは配置のサービスライフ中のバインダー層内の結晶中心を形成するための前記電荷移動物質を含む層の傾向は用いた物質のガラス転移温度に大いに依存する。一般に、ガラス転移温度が高いほど、与えられた温度での再結晶傾向が小さくなり、同時にガラス転移温度よりも低い結晶速度が極端に低くなる。したがって、ガラス転移温度が高い化合物を用いて作られた配置は高い許容される実施温度をもっことが期待される。

高いガラス転移温度は空間充填の存在、立体的に必要とする基の存在によって大いに好都合である。

【発明の開示】

【発明が解決しようとする課題】

[0003]

本発明の目的は電荷移動物質として適した新規の化合物を提供することであり、そのガラス転移温度は100℃、好ましくは150℃から、250℃までであり、100℃から約250℃までの範囲の温度に前記化合物を用いて製造したエレクトロルミネセンス配置の操作範囲を広げることである。

【課題を解決するための手段】

[0004]

本発明によれば、トリアリールアミン誘導体は一般式1に相当する。

[0005]

20

10

30

【化10】

10

20

式中、nは1から10までの整数であり; R^1 、 R^2 、 R^3 および R^4 は同じかまたは異なり、フェニル、ビフェニルイル、メチルフェニル、ナフチル、フェナントレニル、アントラセニル、フルオレニル、トリアリールメチルーアリール、またはトリアリールシリルーアリール、残基の R^1 から R^4 の少なくとも 1 は式 4 で表わされるトリアリールメチルーアリールまたはトリアリールシリルーアリールであり

[0006]

【化11】

30

式中、芳香族または複素環芳香族化合物単位 X^1 から X^4 は同じかまたは異なり、フェニル、ナフチル、アントラセニル、フェナントレニル、ピレニル、ピリジルまたはキノリルであり、 R^{10} 、 R^{11} 、 R^{12} および R^{13} は同じかまたは異なり、 H 、 C_1 ないし C_1 ないし C_2 ないし C_4 アルキル、シクロアルキル、 C_2 ないし C_4 アルケニル、 C_1 ないし C_4 アルコキシ、 C_1 ないし C_4 ジアルキルアミノ、ジアリールアミノ、ハロゲン、ヒドロキシ、フェニル、ナフチルまたはピリジルであり、

そして R^1 から R^4 はフェニル、ビフェニル、メチルフェニル、ナフチル、フェナントレニル、アントラセニル、フルオレニルであり、1 またはそれ以上の置換基C 1 ないしC 3 アルキル、C 1 ないしC 2 アルコキシまたはハロゲンによって置換することができ;

Arは式2または3の構造式であり

[0007]

【化12】

40

構造式Arはn>1ならば同じかまたは異なり、そして式3中のZは次の構造式から選択され

[0008]

【化13】

 R^5 から R^9 は、同じかまたは異なり、H、 C_1 ないし C_{15} アルキルであり、または R^5 および R^6 または R^7 および R^8 は結合して 5 員環または 6 員環の脂環式または 複素環式環を形成し、従ってそれらが結合している 5 員環と共にスピロ環系を形成し、O, N または S は複素環原子である;

またはArは式29、30、31または32の構造式であり

[0009]

【化14】

29

30

31

32

そして R^{20} から R^{27} は、同じかまたは異なり、H、フェニル、 C_1 ないし C_5 アルキ 50

10

20

30

ル、または C_1 ないし C_3 アルコキシ、および構造式 29、 30、 31 または 32 は任意のフリーの置換位置での隣接した窒素原子に結合し、

但し、n=1または2およびArがビフェニレンまたは式29から32の群の1である場合、残基の R^1 から R^4 の少なくとも1はトリアリールシリルーアリール残基または上記式4による置換されたトリアリールメチルーアリール単位であり、 R^{10} から R^{12} は上記と同じ意味をもつ。

[0010]

好ましいトリアリールアミン誘導体は式1に従うものであり、nが1から4までの整数、特に1または2である。

式 1 の好ましい残基 R^1 から R^4 はフェニル、ビフェニル、メチルフェニル、ナフチル、フルオレニル、トリアリールメチルーアリールまたはトリアリールシリルーアリールである。

好ましい残基 R^5 から R^9 は、同じかまたは異なり、メチルまたはフェニルである。本発明の他の例では、残基 R^5 および R^6 は結合するC原子と共にスピロアルカン環を形成する。

好ましい残基 R^{20} から R^{27} は、同じかまたは異なり、水素、メチルまたはフェニルである。

構造式Arは式3の少なくとも1ユニットを含む場合、少なくとも1の残基 R^1 から R^4 は式4のトリアリールシリルーアリールユニットまたは置換されたトリアリールメチルーアリールユニットであることが好ましい。

全構造Arは式2のユニットからなり、少なくとも1の残基R¹からR⁴は

式4のトリアリールシリルーアリールユニットであり、または式4のトリアリールメチルーアリールユニット、但し少なくとも1の残基 R^{10} から R^{13} はHではない、

または式4のトリアリールメチルーアリールユニットであり、但し少なくとも1の残基X 1 からX 4 は芳香族複素環物質である。

残基R 1 0 から R 1 3 は好ましくは H 、フェニル、 C $_{1}$ ないし C $_{3}$ アルキル、 C $_{1}$ ないし C $_{3}$ アルコキシまたはハロゲンである。

メチルまたはフェニルは特に好ましい。

ハロゲンは好ましくはFまたはC1である。

本発明の好適例は一般式1のトリアリールアミン誘導体に関する。

[0011]

【化15】

1

式中、nは1から10までの整数であり;

 R^1 、 R^2 、 R^3 および R^4 は、同じかまたは異なり、フェニル、ビフェニル、メチルフェニル、ナフチル、フェナントレニル、アントラセニル、フルオレニル、トリフェニルメチルまたはトリフェニルシリルであり、残基 R^1 から R^4 の少なくとも 1 は式 4 によるトリフェニルメチルまたはトリフェニルシリルであり、

[0012]

10

20

30

50

【化16】

R10
$$R = C, Si$$

$$R = C$$

 $R^{1\ 0}$ 、 $R^{1\ 1}$ および $R^{1\ 2}$ は、同じかまたは異なり、 H 、 C_1 ないし C_6 アルキル、シクロアルキル、 C_2 ないし C_4 アルケニル、 C_1 ないし C_4 アルコキシまたはハロゲンで 2 あり、

そしてR¹からR⁴は1またはそれ以上の置換基で置換することができ、

Arは

[0013]

【化17】

Zは次の構造式から選択され

[0014]

【化18】

 R^5 から R^9 は、同じかまたは異なり、Hまたは C_1 ないし C_5 アルキルであり、但し、n=1 および A_7 が式 5 でビフェニルである場合、残基 R^1 から R^4 の少なくとも 1 は上記式 4 による N リフェニルシリル残基であり、 N^{10} から N^{12} は上記の意味を有する。好ましい意味での上記 N^{12} から N^{12} はこの例にも適用する。 さらに本発明は少なくとも N^{12} のホール輸送層 N^{12} はこの例にも N^{12} である。 さらに本発明は少なくとも N^{12} のホール輸送層が式 N^{12} の N^{12} の N^{12} である。

本発明の他の例では有機エレクトロルミネセンスデバイスが式1によるトリアリールアミ

ン誘導体を含むルミネセンス層からなることである。

本発明はまた有機エレクトロルミネセンスデバイスにおいてホール輸送物質またはルミネセンス物質として式1のトリアリールアミン誘導体を用いること、および電子写真配置に おいてホール輸送物質として式1のトリアリールアミン誘導体を用いることに関する。

一般に、電子写真デバイスは次の構造を有する:

チャージ発生層は導電性の金属層の上に配置され、可撓性物質上に適用するかまたはアルミニウムドラムからなり、チャージ発生層は照射中にチャージ輸送層に正のチャージキャリヤを注入する事ができる。配置は照射前に数百ボルトまで静電気的にチャージされる。チャージ発生層とチャージ輸送層は一般に1525400円の間の厚さであり、前記プロセスによって生じた高い電場力の影響下に、注入した正のチャージキャリヤ(電子「ホール」)は負にチャージしたチャージ輸送層の方へ移動し、光が落ちた領域において表面の放電をもたらす。次のステップの電子写真サイクルでは絵に従ってチャージ(または放電)された表面にトナーを塗布し、トナーを印刷物上に移動し、必要に応じて、前記物質の上に固定し、最後に過剰のトナーおよび残りのチャージを除く。

エレクトロルミネセンスデバイスは、原則として、有機化合物を含み少なくとも 1 が透明である 2 つの電極間に配置されている 1 またはそれ以上のチャージ輸送層からなる。電圧をかけると、金属電極(大抵は C a 、 M g または A 1 、銀と組合せることが多い)は、その作用は小さく、電子を注入し、反対側の電極はホールを有機層に注入し、電子とホールは結合し単一のエクシトンを形成する。後者は短く発光した後、正常位置に戻る。

電子輸送層とエレクトロルミネセンス層の追加の分離は量子効率をもたらす。同時に、エレクトロルミネセンス層は非常に薄く選択される。蛍光物質をその電子輸送挙動に関係なく置きかえることができるので、放射波長を標的の方法で全可視スペクトル範囲に設置することができる。

またホール輸送層を組成の異なる2つの部分層に分けることができる。

本発明によれば、有機エレクトロルミネセンスデバイスはカソード、有機化合物を含むエレクトロルミネセンス層、およびアノードからなる層の組み合わせからなり、ホール輸送層に含まれる有機化合物は一般式1のトリアリールアミン誘導体である。

好ましい構造は次の層からなる:

基板、透明アノード、ホール輸送層、エレクトロルミネセンス層、電子輸送層、カソード

カソードは、A1, Mg, In, Agまたは前記金属の合金からなることができ、厚さが100ないし5000Aの範囲である。透明アノードは厚さが1000ないし3000Aの範囲のインジウム錫酸化物(ITO)からなることができ、インジウムアンチモニイ錫酸化物を被覆または半透明の金層をガラス基板に塗布する。

エレクトロルミネセンス層は、式

[0015]

10

20

...

【化19】

のトリス(-8-ヒドロキシキノリノ)-アルミニウムを通常のルミネセンス物質として含み、ある場合にはさらに蛍光物質、例えば置換したトリフェニルブタジエンおよび/または1,3,4-オキサジアゾール誘導体、ジスチリルアリレン誘導体、キナクリドン、サリチリデンZnコンプレックス、DCMでドーピングしたアルミニウムキレートコンプレックス、スクアリン誘導体、9,10-ビスシトリルアントラセン誘導体またはユーロピウムコンプレックスを含む。しかし、また本発明のみのルミネセンス化合物、または既知のルミネセンス物質との混合物を含むことができる。

一般式1のトリアリールアミン誘導体の一般的例は:

[0016]

【化20】

[0017]

【化21】

[0018]

【化22]

[0019]

【化23】

次の表 1 および 2 は式 1 の構造式ユニット A r および残基 R $^{\times}$ (R 1 から R 4) の好適例を示す。

【表1】

Table 1: Ar

-	~~~	001		002	-00	003	004
-	0,0	005	-050	006	CH ₃ CH ₃	007	008
,	.32 <u>.</u>	009	X	010		011	012
-	99	013		014			

[0021]

【表 2】

Table 2: Rx

	100	H ₃ C-	101	F F	116		117	
H ₃ C	102	CH ₃	103		118		119	
	104		105	H ₂ C	120		121	
	106		107		122		123	20
	108		109		124	CFF Si-C>-	125	
	110	H ₃ C CH ₃	111	H-C	126	CH ₃	127	30
\bigcirc	112	Ga	113	0-070-	128	сн₃о()	129	
00	114		115		130	·		

Ar および R^{\times} のための上記表にもとづき、次の表 3 、表 4 および 5 (表 3 の続き)、表 6 、表 7 (表 6 の続き)、表 8 、表 9 および表 1 の(表 8 の続き)は異なる n 値に対する 一般式 1 の好ましい特定例の化合物の組成を示す。

[0022]

Table 3:

n = 1: R^{1} R^{3} N-Ar(1)-N R^{2} R^{4}

	R ²	R ⁴		
R ¹	R ²	Ar(1)	R ³	R ⁴
100	118	001	100	118
100	119		100	119
100	120		100	120
100	121		100	121
100	122		100	122
100	123		100	123
100	124		100	124
100	125	Laurana	100	125
100	126	·	100	126
100	127		100	127
100	128		100	128
101	120		100	100
101	121		101	121
101	122		101	122
101	123		101	123
101	124		101	124
101	125		101	125 [·]
101	126	,	101	126
. 101	127		101	127
101	128		101	128
102	123		102	123
102	124		102	124
103	120		103	120
105	120		105	120
107	121		107	121
110	119		110	119
111	124		111	124
111	128		111	128
112	118	-	112	118
112	119		112	119
112	120		112	120

10

20

30

【表4】

R ¹	R²	Ar(1)	R ³	R⁴
112	121		112	121
112	122		112	122
112	123	,	112	123
112	124		112	124
112	125		112	125
112	126		112	126
112	127	Ī	112	127
112	128		112	128
113	124		113	124
115	124		115	124
124	124		124	124
129	127		129	127
129	128		129	128
100	120		100	120
100	124	002	100	124
100	128		100	128
102	124		102	124
100	117		100	117
100	124		100	124
100	118		100	118
101	117	003	102	117
101	124	003	101	124
103	120]	103	120
103	124		103	124
112	121]	112	121
100	117		100	117
100	124	004	100	124
101	117]	101	117 .
100	117		100	117
100	124		100	124
101	123	005	101	123
101	117] 005	101	117
103	117	1	103	117
103	122		103	122
100	117	006	100	117
100	124		100	124
101	123		101	123

10

20

30

【表 5】

R ¹	R²	Ar(1)	R ³	R ⁴
101	117		101	117
103	117	_	103	117
103	122	1	103	122
100	117	·	100	117
- 100	121	007	100	121
101	123	007	101	123
103	118		103	118
100	117		100	117
100	124	008	100	124
101	124		101	124
100	117		100	117
100	124	. 009	100	124
101	124		101	124
100	124		100	124
100	117	009	100	117
102	117	009	102	117
102	124		102	124
100	117		100	117
100	124	010	100	124
101	124		101	124
100	117		100	117
100	124	011	100	124
101	124		101	124
100	117		100	117
100	124	012	100	124
101	124	7	101	124
100	117		100	117
100	124	013	100	124
101	124	7	101	124
100	117		100	117
100	124	014	100	124
101	124		101	124

10

20

30

【表 6】

Table 4:

n=

5

R ¹	R²	Ar(1)	R³	Ar(2)	R ⁴	R ⁵
100	124		100		124	100
101	120		101		120	101
101	120		120		120	101
104	124	001	100	001	124	104
105	123	001	100	001	123	105
106	124		100		124	106
107	120		101		120	107
112	118		100		118	112
100	124		100		124	100
100	117		100		117	100
101	120		101		120	101
101	120		120		120	101
101	117		101	003	117	101
102	117	001	100		117	102
103	117	001	100		117	103
104	124		100		124	104
105	123		100		123	105
106	124		100		124	106
107	120		101		120	107
112	118		100		118	112
100	124	001	100	005	124	100
100	117	Ì	100		117	100
101	120		101		120	101
101	120		120		120	101
101	117		101]	117	101
102	117		100]	117	102
103	117		100]	117-	103
104	124		100]	124	104
105	123		100		123	105
106	124		100	1	124	106
107	120		101	1	120	107

[0026]

10

20

【表7】

R ¹	R ²	Ar(1)	R ³	Ar(2)	R ⁴	R ⁵
112	118		100		118	112
100	124		100		124	100
100	117		100		117	100
101	120	1	101		120	101
101	120	7	120	1	120	101
101	117		101	1	117	101
102	117	001	100	1	117	102
103	117	7 001	100	- 006	117	103
104	124	1	100		124	104
105	123]	100		123	105
106	124]	100		124	106
107	120]	101		120	107
112	118] [100		118	112
100	117		100		117	100
101	124	003	100	003	124	101
104	124	1	100		124	104
100	121		100		121	100
100	124	007	100	007	124	100
103	118	1 1	100		118	103
101	121	001	100	007	121	101

20

10

[0027]

【表 8】

Table 5:

30

RI	R ²	Ar(1)	\mathbb{R}^3	Ar(2)	R ⁴	Ar(3)	R ⁵	R ⁶
100	124		. 100		100		124	100
104	124	001	100	001	100	001	124	104
105	124]	100	1	100	1	124	105
100	117	001	100	003	100	001	117	100
101	120]	100		100	1 1	120	101
104	120	1 1	100	1 1	100	-	120	104

40

[0028]

【表 9】

R¹	R²	Ar(1)	R³	Ar(2)	R ⁴	Ar(3)	R ⁵	R ⁶
104	124		100		100		124	104
104	124		101		101		124	104
108	120		100		100		120	108
110	120		100		100		120	110
100	117		100		100		117	100
101	120		100		100		120	101
104	120		100		100		120	104
104	124	003	100	001	100	003	124	104
104	124		101		101		124	104
108	120		100		100		120	108
110	120		100		100		120	110
100	117		100		100		117	100
101	120		100		100		120	101
104	120	1	100		100		120	104
104	124	001	100	005	100	001	124	104
104	124		101		101		124	104
108	120		100		100		120	108
110	120	1	100	1	100		120	110
100	117		100		100		117	100
101	120		100		100		120	101
104	120	1	100		100		120	104
104	124	005	100	001	100	005	124	104
104	124	1	101	1	101		124	104
108	120	1	100		100		120	108
110	120	1	100		100		120	110
100	117		100		100		117	100
100	124	005	100	006	100	005	124	100
104	117	003	100	000	100	1 003	117	104
112	117	1	100	1	100		117	112
100	117		100		100		117	100
100	124	006	100	005	100	006	124	100
104	117	006	100	1 003	100] 000	117	104
112	117	1	100	1	100	1	117	112
100	117	001	100	013	100	001	117	100
101	120	1	100	1	100	1	120	101
104	120	1	100	1	100	1	120	104
104	124	1	100		100	1	124	104

[0029]

10

20

【表10】

R ¹	R ²	Ar(1)	R ³	Ar(2)	R ⁴	Ar(3)	R ⁵	R ⁶
104	124	,	101		101		124	104
108	120		100		100		120	108
110	120		100		100		120	110
100	117		100		100		117	100
101	120		100		100		120	101
104	120		100		100		120	104
104	124	001	100	014	100	001	124	104
104	124		101		101		124	104
108	120		100		100		120	108
110	120		100		100	1	120	110
100	117		100		100		117	100
101	120		100		100	1	120	101
104	120		100	1	100	1	120	104
104	124	001	100	007	100	001	124	104
104	124		101		101	1	124	104
108	120	İ	100	1	100	1	120	108
110	120	1	100	1	100		120	110
100	117		100		100		117	100
101	120	1	100	1	100		120	101
104	120		100	1	100	1	120	104
104	124	007	100	001	100	007	124	104
104	124		101	1	101	1	124	104
108	120		100	1	100	1	120	108
110	120	1	100	1	100	1	120	110

10

20

[0030]

新規化合物は既知の方法、例えばウルマン合成に従いまたは貴金属触媒を用い適当な一級および二級アミンおよび(式 2 および 3 の)ジハロゲンービフェニル、ジハロゲンージベンゾフラン、ジハロゲンージベンゾチオフェン、ジハロゲンカルバゾールまたはジハロゲンージベンゾシロール、または適当な三級ハロゲンービフェニルー4ーイルーアミンおよび(式 2 または 3 の)ヘテロ相似性のベンジジン誘導体に基づく反応プロセスによって合成される。

ウルマン合成は100℃ないし300℃の範囲の温度にて触媒としてCuまたはCuブロンズを用いアリールハロゲン化物、好ましくはアリールヨウ化物が適当な物質と反応しCアリール化生成物またはNアリール化生成物を生成する縮合反応であり、また機能的に置換されたアリールハロゲン化物は敏感な基が選択的に保護されている場合に反応することができる。

互いに配置された2つのホール輸送層を使用する場合、少なくとも1の層は式1によるトリアリールアミン誘導体、好ましくは1またはそれ以上の化合物6-24を含む。

追加の電子輸送層を用いる場合、既知の電子輸送物質、例えばビス(-アミノフェニル) -1、3、4-オキサジアゾール、トリアゾールまたはジチオレン誘導体を含む。

式 6 から 2 4 のホール輸送層の使用は層の高い暗い伝導性、従って 6 ボルト以下の低いターンオン電圧をもたらし、その結果デバイスに加えられる熱ストレスが減少する。同時に、本発明により用いられるホール輸送物質は 1 5 0 ℃以上 2 5 0 ℃までの高いガラス転移温度をもち、従って層における再結晶はきわめて低い傾向にある。前記特性およびこれらの比較的大きい分子の化学構造によって、これら物質の生成層は非常に安定であり、通常のスピン被覆技術を使用することができるバインダーの含有の有無は問題ではない。

真空金属化によって塗布された層は構造上の欠陥スポットを含まず、可視スペクトル範囲

.. .

40

で高い透明度を有する。前記特性は新規の有機エレクトロルミネセンスデバイス生成することができ、高いルミナンス(> 1 0, 0 0 0 c d / m 2) および、同時に、かなり改良された長期安定性(> 1 0, 0 0 0 時間)を有する。前記デバイスの実施範囲は 1 0 0 ないし 2 0 0 $\mathbb C$ 、好ましくは 1 2 0 ないし 2 0 0 $\mathbb C$ 、特に 1 2 0 ないし 1 5 0 $\mathbb C$ の温度範囲である。

次の実施例は本発明を例示するものでこれを限定するものではない。

【実施例1】

[0031]

N , N ' - ビスー (4 ' - (N - トリフェニルメチル) - フェニル) - N - ナフチー1 - イルーアミノ) - ビフェニルイル) - N , N ' - ビスフェニルー 2 , 7 - アミノー 9 - フェニルカルバゾール (式 2 3)

10

還流冷却器、磁気攪拌器、温度計およびガス入口パイプを備えた500mlの三つ口フラスコからなるガラス装置を120℃の温度で2時間加熱しガラス壁に付着した水を除く。窒素雰囲気で、Naで乾燥させた160mlのoーキシロールをN2を吹き込みながら装置に供給した。6.3mg酢酸パラジウムおよび乾燥oーキシロール中トリーtert.ーブチルホスフィンの1%溶液5.2mlを攪拌しながら添加し、触媒コンプレックスを生成する。

12.9gのソジウムーtert.-ブチレート、23.8gの2,7-ジアニリノーN-フェニルカルバゾールおよび69.1gのN-トリフェニルメチルーフェニルーN-ナフチー1-イルー(4-ブロモビフェニルイル)-アミンを、生成した澄んだ黄色溶液に添加する。

20

窒素雰囲気を維持し、フラスコの内容物を120℃まで攪拌しながら油浴で加熱する。NaBrは約30分後に沈殿を開始する。混合物を120℃の温度で3時間反応させる。続いて、フラスコの中身にトルオールを添加してその容量の2倍まで希釈し、次いで攪拌しながら10倍の量のメタノールに添加する。前記工程中に、原料が沈殿し濾過によって分離される。

原料を除去するためドデカンで再結晶し、続いてDMFから再結晶する。最後に、生成物を超高真空($<10^{-5}$ トル)にかける。この方法で、約30gの純粋なN, N' - ビス -(4' -(N-) リフェニルメチル) - フェニル) - N- ナフチー1- イルーアミノ) - ビフェニルイル) - N, N' - ビスフェニル- 2, 7- アミノ- 9- フェニルカルバゾールを得る。測定したT 。値は190 $\mathbb C$ であった。

30

【実施例2】

[0032]

N, N' -ジフェニル-N, N' -ビス-(4 -トリフェニル-メチル-フェニル) -アミノ-9-メチル-カルバゾール(式10)

実施例1に記載したような装置に、20.35gの2,7-ジアニリノー9-メチルカルバゾールおよび49.4gの4-ブロモフェニルートリ(-4-メチルフェニル)-メタンを同じ実施例で示した方法に従い脱水塩基として12.9gのソジウムーtertーブチレート、12.6mgの酢酸パラジウムおよび触媒としてトリーtertーブチレートの1%溶液10.4mlを反応させる。

40

反応生成物の分離、処理および精製は実施例1と同様に行う。この方法では、約17gの純粋なN,N'ージフェニルアミノーN,N'ービスー(4ー(トリー4ーメチルフェニル)-メチル)-フェニルアミノー9-メチル-カルバゾールが得られる。DVC測定装置を用いて測定したTg値は159℃であった。

【実施例3】

[0033]

N, N' - ジー (トリフェニルシリルーフェニル) - N, N' - ジフェニルーベンジジン (式 7)

に従い、脱水塩基として12.9gのナトリウムーtertーブチレート、12.6mgの酢酸パラジウムおよび触媒としてトリーtertーブチルホスフィンの1%溶液10.4mlを反応させる。

反応生成物は5%シリカゲルを添加したキシロールから再結晶によって精製し、そして、 第二段階で、DMFからの再結晶によって精製する。この方法で、16.5gのN,N' ージー(トリフェニルシリルーフェニル)ーN,N'ージフェニルーベンジジンが得られ 、DSCを用いて測定したそのガラス転移温度は164℃である。

【実施例4】

[0034]

N-4-メチルフェニル-N- (トリフェニルメチル-フェニル) -N ' -フェニル-N 10 ' -ナフチ-1 -イル-p, p ' -ベンジジン (式 1 2)

前記実施例に記載された装置において、18.9gのブロモビフェニリルーフェニルーナフチルーアミンおよび17.9gのトリチルーメチルージフェニルアミンを同様の方法で、脱水塩基として12.9gのナトリウムーtertーブチレート、12.6mgの酢酸パラジウムおよび触媒としてトリーtertーブチレートの1%溶液10.4mlを反応させる。

反応生成物を実施例1と同様に精製し、第一段階ではドデカンおよびキシロールを4:1の割合からなる溶媒混合物を第二段階ではDMFおよびn-ブタノール1:1の割合の混合物を用いる。

この方法で、20gのN-4-メチルフェニル-N-(トリフェニルメチルーフェニル)-N'-フェニル-N'-ナフチー<math>1-イルーp, p'-ベンジジンが得られる。前記化合物のガラス転移温度は151℃である。

【実施例5】

[0035]

N, N'-ビスー (-7-(N-(4-トリフェニルメチルーフェニル)-N-フェニルーアミノ)-ジベンゾチオフェン-2-イル)-N, <math>N'-ジフェニルーベンジジン (式 2 1)

前記装置で、36.1gのN, N'-ビスー(-7-ブロモージベンゾチオフェンー2-イル)-N, N'-ジフェニルーベンジジンを<math>34.6gのN-トリチルフェニルーN-フェニルアミンと反応させる。実施例1に示した化合物は触媒として同様の量で用いる。生成物は7時間反応後メタノールを用いて沈殿させる。

粗生成物はキシロールから再結晶しDMFから3回再結晶させて精製する。

この方法で22gのN, N'ービスー(-7-(N-(4-トリフェニルメチルーフェニル)-N-フェニルーアミノ)ージベンゾチオフェン-2-イル)-N, N'ージフェニルーベンジジンが得られ、そのガラス転移温度は186℃である。

【実施例6】

[0036]

エレクトロルミネセンス配置

超高真空(10⁻⁸ hPa)下に、インジウム酸化錫電極(ITO)を用いてコーティングしたガラス基板に塗布する。前記コーティングは既知の星形化合物 2 5

[0037]

40

【化24】

10

20

30

40

エレクトロルミネセンス曲線を決定するためにITO電極とアルミニウムカソードとの間に電圧をかける。発光率はガラス基板の直下に配置する大面積のSiフォトダイオードを用いて測定する。

次の結果が得られた。

ターンオン電圧(1 c d / m 2) 2 . 8 ボルト

最大輝度(15V) 31,200cd/m²

測光率 (100cd/m²) 2.40cd/A

発光率 (100cd/m²) 1.20cd/W

抽出量子効率 0.52%

【実施例7】

[0038]

エレクトロルミネセンス配置

実施例2によるN, N'ージフェニルーN, N'ービスー(4ートリフェニルーメチルーフェニル)ーアミノー9ーメチルーカルバゾールを放射層に用いた以外は実施例6と同様の配置の層を生成する。

次の結果が得られた。

ターンオン電圧 (1 c d/m²) 2.9ボルト

最大輝度(15V) 24,100cd/m²

測光率 (100cd/m²) 2.15cd/A

発光率 (100cd/m²) 1.28cd/W

抽出量子効率 0.39%

上記実施例は本発明に従い生成した物質が150℃以上のガラス転移温度をもつことを示している。さらに、前記物質は使用した生成物のアモルファス層において再結晶する傾向が極めて低いことを示した。

【国際調査報告】

Informational Application No INTERNATIONAL SEARCH REPORT PCT/DE 02/04758 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07C211/54 C07C211/61 H05B33/00 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C07C H05B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages WO 01 56091 A (KANITZ ANDREAS ; NUYKEN 1-3,6-11 X OSKAR (DE); SIEMENS AG (DE); MIELKE GEORG F) 2 August 2001 (2001-08-02) Seite 8, Verbindung TritTPD, Seite 19, Zeile 3 - Seite 20, Zeile 16 claims 1,2,7 US 6 251 531 B1 (ENOKIDA TOSHIO ET AL) 26 June 2001 (2001-06-26) 1-11 A Tabele 1, Eintrag (26) claim 1 X Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "I later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international tiling date Invantion "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 03/06/2003 23 May 2003 Name and malling address of the ISA Authorized officer European Patent Office, P.B. 5618 Patentiaan 2 NL - 2280 HV Filipwijk TEL (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Kleidernigg, O

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

International Application No PCT/DE 02/04758

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0156091	A	02-08-2001	MO	0156091 A2	02-08-2001
US 6251531	B1	26-06-2001	DE	69625018 D1	09-01-2003
			DΕ	69625018 T2	10-04-2003
			EP	1146034 A1	17-10-2001
			EΡ	0765106 A2	26-03-1997
			JP	3340687 B2	05-11-2002
			JP	11265788 A	28-09-1999
			JР	2924809 B2	26-07-1999
			JP	10072579 A	17-03-1998
			JP	2924810 B2	26-07-1999
•			JP	10072580 A	17-03-1998
			JP	10072581 A	17-03-1998
			KR	204220 B1	15-06-1999
			US	5759444 A	02-06-1998

Form PCT/ISA/210 (petent family ennex) (July 1992)

intervationales Aktenzeichen INTERNATIONALER RECHERCHENBERICHT PCT/DE 02/04758 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07C211/54 C07C211/61 H05B33/00 Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchleriter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07C H058Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowelt diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* WO 01 56091 A (KANITZ ANDREAS ; NUYKEN OSKAR (DE); SIEMENS AG (DE); MIELKE GEORG 1-3,6-11 X F) 2. August 2001 (2001-08-02) Seite 8, Verbindung TritTPD, Seite 19, Zeile 3 - Seite 20, Zeile 16 Ansprüche 1,2,7 US 6 251 531 B1 (ENOKIDA TOSHIO ET AL) 26. Juni 2001 (2001-06-26) 1-11 A Tabele 1, Eintrag (26) Anspruch 1 X Siehe Anhang Patentfamilie Weiters Veröffentlichungen sind der Fortsetzung von Feld C zu entrehmen T Spätere Verößentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätedatum veröffentlicht worden ist und mit dem Anmeldung nicht kollidiert, sondem nur zum Verstättdnist das der Erfindung zugrundetiegenden Prinzips oder der ihr zugrundetlegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzuenhen ist *E* ålteres Dokument, das jedoch enst am oder nach dam internationalen Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer fälligkeit beruhend betrachtet werden Anmeldedatum veröffertlicht worden ist 1.º Veröffertlichung, die geetignet ist, einen Prioritätsanspruch zweifelhaß erscheinen zu lassen, oder durch die das Veröffertlichungsdatum einer anderen im Precherchenbericht genannten Veröffertlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 1.º Veröffertlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 1.º Veröffentlichung, die vor dem intermationalen Anmeldedatum, aber nach dem beamspruchten Prioritätsdatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Veröfndung gebracht wird und diese Veröfndung für einen Fachmann nahellegend ist '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der Internationalen Recherche 23. Mai 2003 03/06/2003 Name und Postanschrift der Internationalen Recharchenbehörde Bevollmächtigter Bedlensteter Europäischee Patentami, P.B. 5618 Patentiaan 2 NL – 2290 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Kleidernigg, 0

Fombleti PCT/ISA/210 (Blett 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

im P	acharchanharicht		Datum der		Mitglied(er) de	r	Datum der	
im Recherchenbericht angeführtes Patentdokument			Veröffentlichung		Patentfamilie		Veröffentlichung	
WO	0156091	A	02-08-2001	WO	015609	1 A2	02-08-2001	
US	6251531	B1	26-06-2001	DE	6962501	8 D1	09-01-2003	
				DE	6962501	8 T2	10-04-2003	
				EP	114603	4 A1	17-10-2001	
				EP	076510	6 A2	26-03-1997	
				JP	334068	7 B2	05-11-2002	
				JP	1126578	8 A	28-09-1999	
				JP	292480	9 B2	26-07-1999	
				JP	1007257	9 A	17-03-1998	
				JP	292481	0 B2	26-07-1999	
				JP	1007258		17-03-1998	
				JP	1007258		17-03-1998	
				KR	20422		15-06-1999	
				US	575944	4 A	02-06-1998	

Formblatt PCT/ISA/210 (Anhang Patentiamilia)(Juli 1992)

フロントページの続き

(51) Int. C1. 7		FI			テーマコード(参考)
G 0 3 G	5/06	C 0 9 K	11/06	635	
H05B	33/14	C 0 9 K	11/06	6 4 5	
но5в	33/22	C 0 9 K	11/06	660	
		C 0 9 K	11/06	690	
		G 0 3 G	5/06	3 1 2	
		H 0 5 B	33/14	В	
		H 0 5 B	33/22	D	

(81) 指定国 AP (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), EP (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG), AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, M Z, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

Fターム(参考) 2H068 AA20 BA12

3K007 AB14 DB03 FA01

4C204 BB09 CB25 DB01 EB01 FB01 GB32

4H006 AA01 AA03 AB91

4H049 VN01 VP02 VQ35 VR24 VU25

【要約の続き】

R1 Ar-N R3 n R4