Linguaggi

Linguaggio: un insieme di stringhe

Stringa: una sequenza di simboli da un alfabeto

Esempio:

Stringhe: gatto, cane, casa

Linguaggio: {gatto, cane, casa}

Alfabeto: $\Sigma = \{a, b, c, \dots, z\}$

Linguaggi sono usati per descrivere problemi di calcolo:

$$PRIMI = \{2,3,5,7,11,13,17,...\}$$

$$Pari = \{0, 2, 4, 6, ...\}$$

Alfabeto:
$$\Sigma = \{0,1,2,...,9\}$$

Alfabeti e Stringe

Un alfabeto è un insieme di simboli

Esempio Alfabeto:
$$\Sigma = \{a, b\}$$

Una stringa è una sequenza di simboli da un alfabeto

ab abba aaabbbaabab

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

Alfabeto dei numeri decimali

$$\Sigma = \{0,1,2,\ldots,9\}$$

102345

567463386

Alfabeto dei numeri binari $\Sigma = \{0,1\}$

$$\Sigma = \{0,1\}$$

100010001

101101111

Alfabeto dei numeri unari $\Sigma = \{1\}$

Numeri unari: 11 111 1111 11111

Numeri decimali: 1 2 3 4

Zero?

Operazioni su stringhe

$$w = a_1 a_2 \cdots a_n$$

abba

$$v = b_1 b_2 \cdots b_m$$

bbbaaa

Concatenazione

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Inverso

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

Lunghezza di una stringa

$$w = a_1 a_2 \cdots a_n$$

Lunghezza:
$$|w| = n$$

$$|abba| = 4$$

$$|aa|=2$$

$$|a|=1$$

Lunghezza della concatenazine

$$|uv| = |u| + |v|$$

Esempio:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Stringa vuota

Una stringa con nessuna lettera è denotata:

Osservaziones:

$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = ab\lambda ba = abba$$

Sottostringa

Sottostringa di una stringa:

Una sequenza consecutiva di caratteri:

Stringa	Sottostringa
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
abbab	bbab

Prefisso e Suffisso

abbab

Prefisso Suffisso

abbab

a bbab

ab bab

abb ab

abba b

abbab

Altre operazioni

$$w^n = \underbrace{ww\cdots w}_n$$

Esempio: $(abba)^2 = abbaabba$

Definizione:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

L'operazione *

 Σ^* : L'insieme di tutte le possibili stringe che è possibile generare a partire dall'alfabeto

$$\sum$$

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

L'operazione +

 Σ^+ : L'insieme di tutte le possibili stringe che è possibile generare a partire dall'alfabeto Σ eccetto λ

$$\Sigma = \{a, b\}$$

 $\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$

$$\Sigma^+ = \Sigma * - \lambda$$

$$\Sigma^+ = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Linguaggi. estensionali

Un linguaggio su un alfabeto Σ

È un qualsiasi sottoinsieme di Σ *

Esempio:

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}$$

linguaggio : $\{\lambda\}$

linguaggio: $\{a,aa,aab\}$

linguaggio: $\{\lambda, abba, baba, aa, ab, aaaaaa\}$

Esempi di linguaggi

Alfabeto
$$\Sigma = \{a,b\}$$

Un linguaggio infinito
$$L = \{a^n b^n : n \ge 0\}$$

 $\left. \begin{array}{c} \lambda \\ ab \\ aabb \end{array} \right. \in L \qquad abb
otin L \\ aaaaabbbbb \end{array}$

Numeri primi

alfabeto
$$\Sigma = \{0,1,2,\ldots,9\}$$

Linguaggio:

$$PRIMES = \{x : x \in \Sigma^* \text{ and } x \text{ is prime}\}$$

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

Numeri pari e dispari

alfabeto
$$\Sigma = \{0,1,2,\ldots,9\}$$

$$EVEN = \{x : x \in \Sigma^* \text{ e } x \text{ è pari}\}$$

$$EVEN = \{0,2,4,6,...\}$$

$$ODD = \{x : x \in \Sigma^* \text{ e } x \text{ è dispari}\}\$$

 $ODD = \{1,3,5,7,...\}$

Somma unaria

alfabeto:
$$\Sigma = \{1,+,=\}$$

Linguaggio:

ADDITION =
$$\{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

$$11 + 111 = 111111 \in ADDITION$$

$$111 + 111 = 111 \notin ADDITION$$

Radici

Alfabeto:
$$\Sigma = \{1, \#\}$$

Linguaggio:

$$SQUARES = \{x \# y : x = 1^n, y = 1^m, m = n^2\}$$

11#1111 ∈ SQUARES 111#1111 ∉ SQUARES

Nota che:

Insieme vuoto
$$\emptyset = \{\} \neq \{\lambda\}$$
 Dimensione insiemi

$$\left|\{\,\}\right| = \left|\varnothing\right| = 0 \qquad \left|\{\lambda\}\right| = 1$$

Lunghezza di una stringa

$$|\lambda| = 0$$

Operazioni sui linguaggi

Le stesse degli insiemi

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complemento:
$$\overline{L} = \Sigma * -L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Inverso

Definizione:
$$L^R = \{w^R : w \in L\}$$

Esempio:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenazione

Definizione:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Esempio: $\{a,ab,ba\}\{b,aa\}$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Altre operazioni

Definizione:
$$L^n = \underbrace{LL \cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Casi speciale:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m} : n, m \ge 0\}$$

 $aabbaaabbb \in L^2$

Star-Closure-intensione (Kleene *)

Tutte le stringhe che possono essere costruite da

$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Definizione:

Definizione:
$$\{a,bb\}^* = \begin{cases} \lambda, \\ a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Chiusure

Definizione:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

Lo stesso come L^* without the λ

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$