

Prova de Logaritmo e Função Exponencial – ITA

1 - (ITA-99) Seja $a \in \Re$ com a > 1. Se b = $\log_2 a$, então o

$$\log_4 a^3 + \log_2 4a + \log_2 \frac{a}{a+1} + (\log_8 a)^2 - \log_\frac{1}{2} \frac{a^2 - 1}{a - 1}$$
 é:

$$(a) \frac{65}{18} b + 2$$

a)
$$2b-3$$
 b) $\frac{65}{18}b+2$ c) $\frac{2b^2-3b+1}{2}$

d)
$$\frac{2b^2 + 63b + 36}{18}$$
 e) $\frac{b^2 + 9b + 7}{9}$

e)
$$\frac{b^2 + 9b + 7}{9}$$

2 - (ITA-98) O valor de $y \in \Re$ que satisfaz a igualdade: $\log_y 49 = \log_{y^2} 7 + \log_{2y} 7$, é:

a)
$$\frac{1}{2}$$
 b) $\frac{1}{3}$ c) 3 d) $\frac{1}{8}$ e) 7

3 - (ITA-98) A inequação:

$$4x \log_5(x+3) \ge (x^2+3) \log_{\frac{1}{5}}(x+3)$$

é satisfeita para todo $x \in S$. Então:

a)
$$S =] - 3, -2] \cup [-1, +\infty[$$

b) S =]
$$-\infty$$
 , $-3[\cup [-1$, $+\infty[$

c)
$$S =] - 3, -1]$$

d)
$$S =] - 2, + \infty]$$

e) S =
$$]-\infty$$
, $-3[\cup]-3$, $+\infty[$

4 - (ITA-97) Dado um número real a com a > 1, seja S o conjunto solução da inequação

$$log_{1/a}log_{a}\left(\frac{1}{a}\right)^{x-7} \leq log_{1/a}\left(x-1\right)$$

Então S é o intervalo:

- a) $[4, +\infty[$ b) [4, 7[
- c)]1, 5]

- d)]1, 4]
- e) [1, 4[

5 - (ITA-96) Seja $a \in \Re$, a > 1. Para que:

 $]4, 5[= \{x \in \Re_+^* ; \log_{1/a} [\log_a(x^2 - 15)] > 0\}. O \text{ valor de a}]$ é:

- a) 2
- b) 3
- c) 5
- d) 9
- e) 10

6 - (ITA-96) Se (x₀, y₀) é uma solução real do sistema $\begin{cases} log_2(X+Y) - log_3(X-2Y) = 2 \\ X^2 - 4Y^2 = 4 \end{cases} \quad \text{então } x_0 + \ y_0 \text{ \'e igual a:}$

- a) $\frac{7}{4}$ b) $\frac{9}{4}$ c) $\frac{11}{4}$ d) $\frac{13}{4}$ e) $\frac{17}{4}$

7 - (ITA-95) Se x é um número real positivo com $x \ne 1$ e $x \neq 1/3$, satisfazendo

$$\frac{2 + \log_3 x}{\log_{(x+2)} x} - \frac{\log_x (x+2)}{1 + \log_3 x} = \log_x (x+2) \text{ então x pertence}$$

ao intervalo I, onde:

- a) I = (0, 1/9) b) I = (0, 1/3) c) I = (1/2, 1)
- d) I = (1, 3/2) e) I = (3/2, 2)

8 - (ITA-94) Sejam x e y números reais, positivos e ambos diferentes de 1, satisfazendo o sistema:

$$\begin{cases} x^y = \frac{1}{y^2} \\ logx + logy = log\frac{1}{\sqrt{x}} \end{cases}. \ Então o \ conjunto \ (x, \ y) \ está \end{cases}$$

contido no intervalo:

- a) [2, 5]
- b)]0, 4[c) [-1, 2]
- d) [4, 8[
- e) [5, ∞ [

9 - (ITA-93) O conjunto solução da inequação $\log_{x}[(1-x)x] < \log_{x}[(1+x)x^{2}]$ é dado por:

- a) 1 < x < 3/2 c) $0 < x < (\sqrt{2} 1)/2$ e) $0 < x < \sqrt{2} 1$
- b) 0 < x < 1 d) $0 < x < \sqrt{2}/2$

10 - (ITA-92) Seja
$$\alpha = \frac{1}{2} \frac{\log 2}{\log 2 - \log 3}$$
. O conjunto solução

da desigualdade $2^{\text{sen x}} \le \left(\frac{2}{3}\right)^{\alpha}$ no intervalo $[0, 2\pi)$ é:

- a) $[0, \pi/3] \cup [2\pi/3, 2\pi)$ b) $[0, 7\pi/6] \cup [11\pi/6, 2\pi)$
- c) $[0, 4\pi/3] \cup [5\pi/3, 2\pi)$ d) $[0, \pi/6] \cup [5\pi/6, 2\pi)$
- e) n.d.a.

11 - (ITA-91) O conjunto dos números reais que verificam a inequação $3\log x + \log (2x + 3)^3 < 3 \log 2$, é dado por:

- a) $\{x \in \Re: x > 0\}$ b) $\{x \in \Re: 1 \le x \le 3\}$
- c) $\{x \in \Re: 0 < x \le \frac{1}{2}\}$ d) $\{x \in \Re: \frac{1}{2} \le x < 1\}$

e) n.d.a.

12 - (ITA-91) Sejam A =
$$\sum_{k=0}^{n} {n \brack k} 3^k$$
 e B = $\sum_{k=0}^{n-1} {n-1 \brack k} 11^k$.

Se ln B – ln A = $\ln \frac{6561}{4}$ então n é igual a:

- a) 5
- b) 6 c) 7
- d) 8 e) n.d.a.

13 - (ITA-90) Sabendo-se que 3x – 1 é fator de 12x³ – $19x^2 + 8x - 1$ então as soluções reais da equação $12(3^{3x})$ $-19(3^{2x}) + 8(3^{x}) - 1 = 0$ somam:

- a) log₃12
- b) 1 c)- $\frac{1}{3}\log_3 12$ d) 1 e) $\log_3 7$

14 - (ITA-89) Sobre a expressão $M = \frac{1}{\log_2 x} + \frac{1}{\log_5 x}$

onde 2 < x < 3, qual das afirmações abaixo está correta?

- a) $1 \le M \le 2$
- b) 2 < M < 4
- c) $4 \le M \le 5$

d)
$$5 < M < 7$$
 e) $7 \le M \le 10$

- **15** (ITA-88) Seja α um número real, $\alpha > \sqrt{5}$ tal que (α + 1)^m = 2^p, onde m é um inteiro positivo maior que 1 e p = m[log 2] [(log m (α^2 – 5)]. O valor de α é:
- b) 5
- c) $\sqrt{37}$
- d) 32
- e) Não existe valor de α nestas condições
- **16** (ITA-88) Seja a um número real com 0 < a < 1. Então, os valores reais de x para os quais a^{2x} – (a + a^2) $a^x + a^3 < 0$ são:
- a) $a^2 < x < a$
- b) x < 1 ou x > 2 c) 1 < x < 2

- d) $a < x < \sqrt{a}$
- e) 0 < x < 4
- 17 (ITA-87) Acrescentando 16 unidades a um número, seu logaritmo na base 3 aumenta de 2 unidades. Esse número é:
- a) 5
- b) 8
- c) 2
- **18** (ITA-87) Considere u = x.ln(3), v = x.ln(2) e $e^{u}.e^{v} =$ 36. Nestas condições, temos:
- a) x = -4x = 2
- b) x = 12
- c) x = -3

d) 4

- d) x = 9
- e)
- **19** (ITA-87) Se x e y são números reais e $ln[(y^2 + 1).e^x]$ $- In(y^2 + 1)^4 = x - 3$ então:
- a) $y = 1 + \sqrt{e-1}$ b) $y = 10 \sqrt{e-1}$ c) $y = \pm$

- d) $v = \pm \sqrt{e-1}$ e) $v = \sqrt{e-1}/2$
- **20** (ITA-85) Dada a equação $3^{2x} + 5^{2x} 15^{x} = 0$, podemos afirmar que:
- a) Não existe x real que a satisfaça.
- b) x = log₃ 5 é uma solução desta equação.
- c) x = log₅ 3 é uma solução desta equação.
- d) x = log₃ 15 é uma solução desta equação.
- e) x = 3.log₅ 15 é uma solução desta equação.
- 21 (ITA-84) Os valores de a e k reais que tornam verdadeira a expressão
- $\log_a 2a + \frac{\log_{2a} k}{\log_{6a} k} \log_a 2a = (\log_a 2a)(\log_a 3)s\tilde{a}o:$
- a) $a = \frac{\sqrt{2}}{2}$ e qualquer valor de k, k > 0
- b) a = 2 e qualquer valor de k, k > 0, $k \ne 1$ c) $a = \frac{\sqrt{2}}{2}$ e qualquer valor de k, k > 0, $k \ne 1$
- d) quaisquer valores de a e k com $k \neq 6a$
- e) qualquer valor de a positivo com $a \ne 1$ e $a \ne 1/6$, e qualquer valor positivo de k

GABARITO

1	D
2	D
3	Α
4	D
5	E
6	D
7	В
8	В
9	E
10	D
11	С
12	E
14	В
15	Α
16	С
17	С
18	E
19	С
20	Α
21	С