

Content

- → Introduction
- → Business Understanding
- → Literature review
- → Exploratory data analysis (EDA)
- → Data Preparation
- → Modeling, Training & Evaluation
- → Conclusion
- Challenges & Future work

Introduction: Situation and Problem

- The healthcare sector has a high workload.
- The prevalence of have diabetes is increasing.
- One in five people with diabetes doesn't know they have it.

- Untreated diabetes affects many major organs, including heart, blood vessels, nerves, eyes and kidneys.
- The combination of increasing prevalence of diabetes and the increasing workload for GP's.

Creating a machine learning model which classifies if a patient visiting a GP is having diabetes

Methodology

"Target Group" Patients without Diabetes and with glucose exams history

Methodology to follow: CRISP-DM

Main research question:

"What methodologies and techniques should be used for developing a machine learning model to assist general practitioners in accurately diagnosing diabetes, while simultaneously alleviating their workload, considering key objectives, available data, data preprocessing, choice of algorithms, and hyperparameter tuning?"

Business Understanding - Patient Registration Flow

→ First contact with the medical facility

Manage costs and efficient billing

Patient Data

Decision Maker

Medical Facility

Registration Form

Appointment

Business Understanding - Appointment Flow + AI Feature

"Target Group" Patients without Diabetes and with glucose exams history

"Diabetes Risk Predictor" in the General Practioner system showing the Diabetes risk on patient profile.

Literature Review/Related Work

Author	Year	Project Name	Algorithms used	Accuracy	Adoptions made		
Li, Mingqi, Xiaoyang Fu, and Dongdong Li.	2020	Diabetes prediction based on XGBoost algorithm	XGBoost	80.20%			
Mahabub, Atik.	2019	A robust voting approach for diabetes prediction using traditional machine learning techniques.	AdaBoost, gradient boost, XGBoost, random forest, etc.	84.42%	Gradient Boost		
Mushtaq, Zaigham, Muhammad Farhan Ramzan, Sikandar Ali, Samad Baseer, Ali Samad, and Mujtaba Husnain.	2022	Voting classification-based diabetes mellitus prediction using hypertuned machine-learning techniques.	Voting Classifier (includes Random Forest, logistic regression, Support Vector Machine, KNN, Naive Bayes Theorem, and Gradient Boosting Classifier	81.50%	Voting Classifier		
Shahid Mohammad Ganie	2023	An ensemble learning approach for diabetes prediction using boosting techniques	Gradient boosting algorithm	96.00%	Gradient boosting		
Lai, Hang, Huaxiong Huang, Karim Keshavjee, Aziz Guergachi, and Xin Gao.	2019	Predictive models for diabetes mellitus using machine learning techniques	Logistic Regression	88.00%	Logistic Regression		

Data Understanding

- 'Diabetes prediction dataset' sourced from Kaggle repository
- Contains 100,000 records with 9 features
- The data is a collection of medical and demographic data from patients
- Categorical variables: Gender, smoking history
- Numerical variables: Age, hypertension, heart disease, smoking history, BMI, HbA1c level, diabetes
- Dependent/Predicted Variable: Diabetes status (binary classification: 1 or 0).
- Independent/Predictor Variables: Age, gender, BMI, hypertension, heart disease, smoking history, HbA1c level, and blood glucose levels.

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
0	Female	80.00	0	1	never	25.19	6.60	140	0
1	Female	54.00	0	0	No Info	27.32	6.60	80	0
2	Male	28.00	0	0	never	27.32	5.70	158	0
3	Female	36.00	0	0	current	23.45	5.00	155	0
4	Male	76.00	1	1	current	20.14	4.80	155	0

EDA Summary

Data Cleaning and Feature Engineering

Outliers - BMI

Outliers - HbA1c Level

Outliers - Blood glucose level

-0.75

-0.50

-0.25

Correlation Matrix

Features Correlating with Diabetes

diabetes	1				
HbA1c_level	0.3				
blood_glucose_level	0.25				
age	0.22				
hypertension	0.16				
bmi	0.15				
heart_disease	0.14				
smoking_history_former	0.068				
gender_Male	0.054				
smoking_history_ever	0.0068				
smoking_history_not current	-0.0063				
smoking_history_current	-0.011				
smoking_history_never	-0.039				
gender_Female	-0.054				
	diabetes				

age	1	0.25	0.23	0.2	0.068	0.053	0.22	-0.048	0.038	0.22	-0.16	0.022	-0.02	0.02
hypertension	0.25	1	0.12	0.12	0.05	0.043	0.16	-0.0075	0.0082	0.062	-0.026	-0.027	-0.03	0.03
heart_disease	0.23	0.12	1	0.045	0.04	0.036	0.14	-0.0067	0.038	0.095	-0.079	-0.0021	-0.092	0.092
bmi	0.2	0.12	0.045	1	0.041	0.04	0.15	0.0079	0.019	0.082	-0.067	-0.01	-0.062	0.062
HbA1c_level	0.068	0.05	0.04	0.041	1	0.071	0.3	-0.0062	0.0029	0.019	-0.011	-9.4e-06	-0.021	0.021
blood_glucose_level	0.053	0.043	0.036	0.04	0.071	1	0.25	-0.0006	-0.0018	0.016	-0.0068	-0.0055	-0.018	0.018
diabetes	0.22	0.16	0.14	0.15	0.3	0.25	1	-0.011	0.0068	0.068	-0.039	-0.0063	-0.054	0.054
smoking_history_current	-0.048	-0.0075	-0.0067	0.0079	-0.0062	-0.0006	-0.011	1	-0.11	-0.17	-0.45	-0.14	-0.05	0.05
smoking_history_ever	0.038	0.0082	0.038	0.019	0.0029	-0.0018	0.0068	-0.11	1	-0.11	-0.29	-0.087	-0.021	0.021
smoking_history_former	0.22	0.062	0.095	0.082	0.019	0.016	0.068	-0.17	-0.11	1	-0.45	-0.14	-0.077	0.077
smoking_history_never	-0.16	-0.026	-0.079	-0.067	-0.011	-0.0068	-0.039	-0.45	-0.29	-0.45	1	-0.37	0.1	-0.1
smoking_history_not current	0.022	-0.027	-0.0021	-0.01	-9.4e-06	-0.0055	-0.0063	-0.14	-0.087	-0.14	-0.37		0.00038	-0.00038
gender_Female	-0.02	-0.03	-0.092	-0.062	-0.021	-0.018	-0.054	-0.05	-0.021	-0.077	0.1	0.00038		-1
gender_Male	0.02	0.03	0.092	0.062	0.021	0.018	0.054	0.05	0.021	0.077	-0.1	-0.00038		1
	age	hypertension	heart_disease	bmi	HbA1c_level	_glucose_level	diabetes	history_current	ig_history_ever	history_former	_history_never	ory_not current	gender_Female	gender_Male

ML Flow overview

miro

Splitting Train, Test and validation Set

```
from sklearn.model_selection import train_test_split

# Split the dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)

# Further split the train set into train and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, train_size=0.9)
```


Modeling Training Results - Accuracy

Feature Importance

Gender and smoking history more important for Logistic Regression

Modeling - Overall Results

Modeling - Performance per label

Best Results: Gradient Boost and Random Forest

Modeling - Confusion Matrix

Predicted labels

Lowest False Negative: KNN

Lowest False Positive: Gradient Boost

Predicted labels

Conclusion

Main research question:

"What methodologies and techniques should be used for developing a machine learning model to assist general practitioners in accurately diagnosing diabetes, while simultaneously alleviating their workload, considering key objectives, available data, data preprocessing, choice of algorithms, and hyperparameter tuning?"

- Gradient Boosting technique
- Based on: HBA1C-level and Blood Glucose level
- 566 false negatives of the 22484 patients
- Reducing workload GP's
- Increasing accuracy in identifying diabetes

Challenges & Future Work

Limitations:

Number of (relevant) features to further:

- Decrease the workload of a GP
- Create a machine learning model based on demographic data

Future work:

- Cluster different types of patients to further increase accuracy
- Create a risk predictor algorithm
 which predicts the risk of
 getting/having diabetes
 expressed in percentages

References

- Mahabub, Atik. "A Robust Voting Approach for Diabetes Prediction Using Traditional Machine Learning Techniques." SN Applied Sciences 1, no. 12 (November 25, 2019): 1667. https://doi.org/10.1007/s42452-019-1759-7.
- Ganie, Shahid Mohammad, Pijush Kanti Dutta Pramanik, Majid Bashir Malik, Saurav Mallik, and Hong Qin. "An Ensemble Learning Approach for Diabetes Prediction Using Boosting Techniques." *Frontiers in Genetics* 14 (October 26, 2023). https://doi.org/10.3389/fgene.2023.1252159.
- Li, Mingqi, Xiaoyang Fu, and Dongdong Li. "Diabetes Prediction Based on XGBoost Algorithm." *IOP Conference Series: Materials Science and Engineering* 768, no. 7 (March 2020): 072093. https://doi.org/10.1088/1757-899X/768/7/072093.
- Lai, Hang, Huaxiong Huang, Karim Keshavjee, Aziz Guergachi, and Xin Gao. "Predictive Models for Diabetes Mellitus Using Machine Learning Techniques." *BMC Endocrine Disorders* 19, no. 1 (October 15, 2019): 101. https://doi.org/10.1186/s12902-019-0436-6.
- Mushtaq, Zaigham, Muhammad Farhan Ramzan, Sikandar Ali, Samad Baseer, Ali Samad, and Mujtaba Husnain. "Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques." Mobile Information Systems 2022 (March 19, 2022): e6521532.
 https://doi.org/10.1155/2022/6521532.
- Tasin, Isfafuzzaman, Tansin Ullah Nabil, Sanjida Islam, and Riasat Khan. "Diabetes Prediction Using Machine Learning and Explainable AI Techniques."
 Healthcare Technology Letters 10, no. 1–2 (December 14, 2022): 1–10. https://doi.org/10.1049/httl2.12039.
- "Patient Registration RCM Glossary | MD Clarity." Accessed March 01, 2024. https://www.mdclarity.com/glossary/patient-registration.

Thank you!