Aprendizagem de Máquina

Redes Neurais Multilayer Perceptron

Universidade Federal Rural de Pernambuco Unidade Acadêmica de Garanhuns Bacharelado em Ciências da Computação Disciplina obrigatória: Reconhecimento de Padrões 2013.2

Professor: Tiago B. A. de Carvalho tbac@cin.ufpe.br

Roteiro

- Arquiteturas
- Back-propagation
 - Ajuste de parâmetros
 - Variações
 - Critérios de parada
 - Convergência
- Projeto da arquitetura
- Vantagens e desvantagens

Arquiteturas de redes Multicamadas

- Camada de entrada
- Camadas intermediárias (escondidas)
- Camada de saída

Conectividade entre camadas

 Um neurônio pode estar [Completamente ou Localmente ou Parcialmente] conectado aos neurônios da camada anterior

Redes feedforward ou recorrente

 Feedforward é o tipo de rede aplicado em problemas de classificação ou regressão sem dependência temporal

 Redes recorrentes são utilizadas em tarefas como reconhecimento de linguagem, previsão em bolsa

de valores etc.

Rede multicamadasras

- Sem camadas intermediárias a rede pode aproximar apenas funções lineares
 - Superfície de decisão linearmente separável
- Com uma camada intermediária a rede pode aproximar qualquer função contínua
 - Superfície de decisão formada por polígonos ou regiões
- Com duas camas intermediárias a rede pode aproximar qualquer função
 - Superfície de decisão qualquer

Superfícies de decisão para número de camadas

Rede MLP

- Multilayer perceptron (perceptron de múltiplas camadas)
- Geralmente cada camada é completamente conectada com a camada imediatamente anterior
- Utiliza funções de ativação não lineares nas camadas intermediárias
 - Caso contrário seria equivalente a uma rede com apenas uma camada
- A camada de saída contém um neurônio para cada classe $\mathbf{y}_i = (y_i^1, ..., y_i^c)$

Cada camada têm seu papel

Algoritmo Back-propagation

- Para treinamento de uma rede MLP
- Restringe que cada neurônio deve ter uma função de ativação contínua, diferenciável, monotonicamente crescente, ex. Função sigmóide
- Duas fases
 - Para frente: calcula a saída da rede
 - Para trás: atualiza os pesos
 - Calcula o erro na camada de saída e propaga para as outras camadas
 - A atualização das camadas escondidas depende do erro na cama seguinte

Atualização dos pesos

$$^{(t+1)}w_k^j = ^{(t)}w_k^j + \eta x^j \delta_k$$

- A atualização dos pesos é diferente na camada de saída em relação às camadas intermediárias
- O peso da entrada j do neurônio k é atualizado em função do δ (lê-se delta) para aquele neurônio, da taxa de aprendizagem η e do valor x^j que entrou j.

Atualização dos pesos

$$\delta_k = \begin{cases} f_k'(u_k) \big(y_i - f_k(u_k) \big), \text{ na camada de saída} \\ f_k'(u_k) \sum_m w_m^k \delta_m, \text{ nas camadas es condidas} \end{cases}$$

- O valor de δ na entrada é o produto entre a derivada da saída e o erro – o erro é a saída desejada menos a saída do neurônio
- O delta em um neurônio de camada escondida é uma combinação do δs dos neurônios para quem ele transmite multiplicado pelo peso da sua saída para o receptor

Função sigmóide e derivada

The sigmoid function, also called the sigmoidal curve (von Seggern 2007, p. 148) or logistic function, is the function

$$y=\frac{1}{1+e^{-x}}.$$

It has derivative

$$\frac{dy}{dx} = [1 - y(x)] y(x)$$

$$= e^{-x}$$

$$(1 + e^{-x})^{2}$$

$$= e^{x}$$

$$(1 + e^{x})^{2}$$

$$f(u) = \frac{1}{1 + \exp(-u)}$$

$$f'(u) = (1 - f(u))f(u)$$

$$\delta_k = \begin{cases} f_k(u_k) (1 - f_k(u_k)) (y_i - f_k(u_k)), \text{ na saída} \\ f_k(u_k) (1 - f_k(u_k)) \sum_m w_m^k \delta_m, \text{ internamente} \end{cases}$$

$$^{(t+1)}w_k^j = ^{(t)}w_k^j + \eta x^j \delta_k$$

Treinando uma MLP para XOR (OU-EXCLUSIVO)

$$\delta_k = \begin{cases} f_k(u_k) (1 - f_k(u_k)) (y_i - f_k(u_k)), \text{ na saída} \\ f_k(u_k) (1 - f_k(u_k)) \sum_m w_m^k \delta_m, \text{ internamente} \end{cases}$$

$$u1 = -0.6$$
, $f(u1)=0.27$
 $u2=-0.7$, $f(u2)=0.27$
 $u3=-0.73$, $f(u3)=0.27$

$$\delta_3$$
 = (0.27 *(1-0.27)*(0-0.27)) = -0.05
W13 = 0.1 +2 *0.27 * (-0.05) = -0.2
W23 = 0.9 +20 *0.27 * (-0.05) = 0.6
W03 = 1 +20 *(-1)* (-0.05) = 2

$$u1 = -0.6$$
, $f(u1)=0.27$
 $u2=-0.7$, $f(u2)=0.27$
 $u3=-0.73$, $f(u3)=0.27$

$$\delta_3 = (0.27 * (1-0.27)* (0-0.27)) = -0.05$$
W13 = 0.1 +2 *0.27 * (-0.05) = -0.2
W23 = 0.9 +20 *0.27 * (-0.05) = 0.6
W03 = 1 +20 * (-1)* (-0.05) = 2

$$\delta_k = \begin{cases} f_k(u_k) (1 - f_k(u_k)) (y_i - f_k(u_k)), \text{ na saída} \\ f_k(u_k) (1 - f_k(u_k)) \sum_m w_m^k \delta_m, \text{ internamente} \end{cases}$$

$$\delta$$
2=0.27(1-0.27)(0.6*(-0.05))=-0.0059130 Wa2 = 0.2 + 20*0* δ 2 = 0.2 Wb2 = 0.5 + 20*0* δ 2 = 0.5 W02 = 0.27+ 20*(-1)* (-0.0059130)=0.4

$$u1 = -0.6$$
, $f(u1)=0.27$
 $u2=-0.7$, $f(u2)=0.27$
 $u3=-0.73$, $f(u3)=0.27$

$$\delta_3$$
 = (0.27 *(1-0.27)*(0-0.27)) = -0.05
W13 = 0.1 +2 *0.27 * (-0.05) = -0.2
W23 = 0.9 +20 *0.27 * (-0.05) = 0.6
W03 = 1 +20 *(-1)* (-0.05) = 2

$$\delta_k = \begin{cases} f_k(u_k) (1 - f_k(u_k)) (y_i - f_k(u_k)), \text{ na saída} \\ f_k(u_k) (1 - f_k(u_k)) \sum_m w_m^k \delta_m, \text{ internamente} \end{cases}$$

$$\delta_{2=0.27(1-0.27)(0.6*(-0.05))=-0.0059130}$$
 Wa2 = 0.2 + 20*0* δ_{2} = 0.2
 Wb2 = 0.5 + 20*0* δ_{2} = 0.5
 Wo2 = 0.27+ 20*(-1)* (-0.0059130)=0.4

Ajuste de Parâmetros

- Taxa de aprendizagem
 - Pequena: convergência lenta
 - Grande: pode oscila demais e não convergir
 - Diminuir a taxa a cada época de treino
- Termo momentum
 - Provê uma "inércia" no ajuste do treinamento
 - Evita oscilações
 - Acelera uma direção específica

$$(t+1)W_l^j = (t)W_l^j + \eta x^j \delta_l + \alpha (t)W_l^j - (t-1)W_l^j$$

Variações

- Batch Backpropagation
 - Atualiza os pesos pelo erro médio para todos os padrões
- Quickprop, Rprop, ...
 - Algoritmos de treinamento mais rápidos
- Momentum de segunda ordem
- Outros métodos de otimização
 - Para realizar o treinamento (pesos ótimos)
 - Newton, Levenberg-Marquardt, ...

Critério de parada

- Cada padrão atualiza os pesos
- Época (ciclo) de treinamento: cada padrão de treino atualizou exatamente uma vez a rede
- O treinamento leva várias épocas
- O algoritmo pára
 - Após um número fixo de épocas
 - Taxa máxima de erro sobre conjunto de validação
 - Conjunto de Validação é uma partição do treino para testa a rede
 - A rede é testada a cada 10 ou 100 épocas
 - O erro sobre a validação começa a crescer por 10 épocas seguidas

Overfitting

http://web.engr.oregonstate.edu/~tgd/classes/534/slides/part10.pdf

Overfitting

Two dividers which discriminate between Democrats and Republicans.

Convergência do algoritmo backpropagation

- Lenta
- Requer muitas épocas
- Pode parar em um mínimo local
- Não tem garantia de convergência como o perceptron

Projetos de arquiteturas de uma RNA

- Função de ativação
- Topologia
 - Número de camadas
 - Neurônios por camadas
- Quanto mais camadas, mais demorado o treinamento
- Estratégia
 - Empírica: começando com apenas uma camada escondida
 - Meta-heurística: gera e testa várias por vez, pode utilizar algoritmos genéticos
 - Poda: elimina nós enquanto o erro de validação permanece aceitável
 - Construtiva: vai inserindo nós nas camadas

Vantagens e Desvantagens

- Vantagens
 - Generalização
 - Tolerância a falhas e ruídos
 - Degradação graciosa
 - Resolve tarefas de baixo nível, ex. visão computacional
 - Paralela
- Desvantagens
 - Não fica claro como a rede chega às suas conclusões
 - Extração de regras?
 - Dificuldade de escolhas de parâmetros

Referência

- Katti Faceli, Ana Carolina Lorena, João Gama, André C. P. L. F. de Carvalho.
 Inteligência Artificial – Uma abordagem de Aprendizado de Máquina. LTC. 2011.
 - MLP (Perceptron multicamadas)
 (cap. 7 AM, p.115-122)