Boolean algebra reference sheet

Matthew T. Ireland, October MMXIV

Let A, B, C and D be Boolean variables. Let . denote logical AND, + denote logical OR, and \oplus denote logical EXCLUSIVE OR.

Truth tables

\boldsymbol{A}	1	\boldsymbol{A}	В	A.B		\boldsymbol{A}	B	A+B	\boldsymbol{A}	B	$A \oplus B$
0	1	0	0	0	-	0	0	0	0	0	0
1	0	0	1	0		0	1	1	0	1	1
		1	0	0		1	0	1	1	0	1
		1	1	1		1	1	1	1	1	0

Logical identities

De Morgan's laws

Commutativity	$A + B \equiv B + A$		$A.B \equiv B.A$						
Associativity	$A + (B + C) \equiv 0$	(A+B)+C	$A.(B.C) \equiv (A.B).C$						
Properties of .	$0.A \equiv 0$	$1.A \equiv A$	$A.A \equiv A$	$A.\overline{A} \equiv 0$					
Properties of +	$0+A \equiv A$	$1 + A \equiv 1$	$A + A \equiv A$	$A + \overline{A} \equiv 1$					
Double inversion law	$\overline{\overline{A}} \equiv A$								
Distributive laws	$A.(B+C+\ldots) \equiv A.B+A.C+\ldots$								
	$A + (B.C) \equiv$	$\equiv (A+B).(A+C)$							
Product laws	$(A+B).(A+B) \equiv A.A + A.B + B.A + B.B$								
	$A + (B.C) \equiv (A+B).(A+C)$								
Absorption laws	$A + A.B \equiv A$		$A.(A+C) \equiv A$						
Redundancy law	$A.B + A.B.C + A.B.D \equiv A.B$								

 $\overline{A+B} \equiv \overline{A}.\overline{B}$

 $\overline{A.B} \equiv \overline{A} + \overline{B}$