In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import sklearn
```

In [2]:

```
training= pd.read_csv('C:/Users/DELL/Desktop/sc/training_xjt.csv')
```

In [3]:

```
# extract the data start with d and h and id info
# train_id=training. filter(regex='id$', axis=1)
# train_d=training. filter(regex='^d1', axis=1)
# train_h=training. filter(regex='^h1', axis=1)
# resultd = pd. concat([train_id, train_d], axis=1, sort=False)
# resulth = pd. concat([train_id, train_h], axis=1, sort=False)
# resultdh = pd. concat([resultd, resulth], axis=1, sort=False)
```

Albumin

In [4]:

```
# variable: albumin
dfalbumin=training.filter(regex='albumin')

# check day values missing while hour values not
print(len(dfalbumin[(dfalbumin.h1_albumin_max.notna()) & (dfalbumin.d1_albumin_max.isna())]),
    len(dfalbumin[(dfalbumin.h1_albumin_min.notna()) & (dfalbumin.d1_albumin_min.isna())]))
```

0 0

In [5]:

```
# Check if missing values are in pairs for max and min
print(len(dfalbumin[(dfalbumin.dl_albumin_max.notna()) & (dfalbumin.dl_albumin_min.isna())]),
    len(dfalbumin[(dfalbumin.dl_albumin_max.isna()) & (dfalbumin.dl_albumin_min.notna())]))
#len(dfalbumin[(dfalbumin.albumin_apache.notna()) & (dfalbumin.dl_albumin_max.isna())])
#len(dfalbumin[dfalbumin.dl_albumin_max.notna()])
```

replace apache covariate with null values in d1 albumin
dfalbumin.loc[dfalbumin['d1_albumin_max'].isnull(),'d1_albumin_max']=dfalbumin['albumin_apache']
dfalbumin.loc[dfalbumin['d1_albumin_min'].isnull(),'d1_albumin_min']=dfalbumin['albumin_apache']

 $\label{limits} C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set ting\WithCopy\Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

This is separate from the ipykernel package so we can avoid doing imports until

In [7]:

[1.2, 1.4, 1.5, 1.6, 1.7, 2.3, nan, 1.3, 1.8, 1.9, 2.0, 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4. 3, 4.4, 4.5, 4.6] [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.3, nan, 1.8, 1.9, 2.0, 2. 1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5]

```
# data cleaning for min > max situation
dfalbumin[dfalbumin['d1_albumin_max'] < dfalbumin['d1_albumin_min']]

# where h1_albumin_max is taken as it is reasonable
dfalbumin.loc[(dfalbumin.d1_albumin_max < dfalbumin.d1_albumin_min) & (dfalbumin.h1_albumin_max.no
tnull()), 'd1_albumin_max'] = dfalbumin['h1_albumin_max']

# where apache covariate is taken as it is reasonable
dfalbumin.loc[(dfalbumin.d1_albumin_max < dfalbumin.d1_albumin_min) & (dfalbumin.albumin_apache >= d
falbumin.d1_albumin_min), 'd1_albumin_max'] = dfalbumin['albumin_apache']
```

C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self. setitem with indexer (indexer, value)

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:8: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [9]:

Out[9]:

outcoj.		
d1_albumin_min	d1_albumin_max	
3.0	3. 0	1965
	3. 1	102
	3. 2	83
	3. 3	63
	3. 4	54
	3. 5	32
	3. 6	28
	3. 7	22
	3. 8	12
	4.0	9
	3.9	8
	4. 1	4
	4.5	3
	4.2	1
3. 1	3. 1	1979
	3. 3	93
	3. 2	87
	3.4	64
	3. 5	61
	3.6	54
	3. 7	31
	3.8	12
	3. 9	12
	4. 0	7
	4. 1	3
	4. 3	3
	4. 5	2
	4. 2	1
0.0	4.4	1
3. 2	3. 2	1992
2.0	1 C	•••
3.9	4.6	8
	4. 4	5
4 0	4. 5	5 691
4.0	4. 0 4. 2	681
	4. 2	18 14
	4. 6	9
	4. 4	8
	4. 3	7
	4. 5	5
4.1	4. 1	467
	4. 2	11
	4. 3	9
	4.4	6
	4.5	4
	4.6	2
4.2	4.2	325
	4.4	11
	4.3	9
	4.6	7
	4.5	2
4. 3	4. 3	237
	4. 5	6
	4. 4	4
	4.6	2
4.4	4. 4	148
	4.6	4

```
4. 5 2
4. 5 4. 6 125
4. 5 1
```

Name: d1 albumin max, Length: 145, dtype: int64

In [10]:

 $\label{lem:cond} $$C:\Lambda pplication\ \P \cap \Lambda naconda\ lib\ site-packages\ pandas\ core\ lindexing.\ py:189: Setting\ With\ Copy\ Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [11]:

	albumin_apache	d1_albumin_max	d1_albumin_min	h1_albumin_max	h1_alb
2	NaN	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN
5	NaN	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	NaN	NaN
10	NaN	NaN	NaN	NaN	NaN
11	NaN	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	NaN	NaN
14	NaN	NaN	NaN	NaN	NaN
15	NaN	NaN	NaN	NaN	NaN
16	NaN	NaN	NaN	NaN	NaN
17	NaN	NaN	NaN NaN		NaN
18	NaN	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN	NaN
21	NaN	NaN	NaN	NaN	NaN
22	NaN	NaN	NaN	NaN	NaN
24	NaN	NaN	NaN	NaN	NaN
26	NaN	NaN	NaN	NaN	NaN
28	NaN	NaN	NaN	NaN	NaN
29	NaN	NaN	NaN	NaN	NaN
30	NaN	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN	NaN
34	NaN	NaN	NaN	NaN	NaN
36	NaN	NaN	NaN	NaN	NaN
37	NaN	NaN	NaN	NaN	NaN
38	NaN	NaN	NaN	NaN	NaN
39	NaN	NaN	NaN	NaN	NaN
41	NaN	NaN	NaN	NaN	NaN
87401	NaN	NaN	NaN	NaN	NaN
87402	NaN	NaN	NaN	NaN	NaN

	albumin_apache	d1_albumin_max	d1_albumin_min	h1_albumin_max	h1_alb
87406	NaN	NaN	NaN	NaN	NaN
87407	NaN	NaN	NaN	NaN	NaN
87410	NaN	NaN	NaN	NaN	NaN
87417	NaN	NaN	NaN	NaN	NaN
87418	NaN	NaN	NaN	NaN	NaN
87419	NaN	NaN	NaN	NaN	NaN
87420	NaN	NaN	NaN	NaN	NaN
87422	NaN	NaN	NaN	NaN	NaN
87425	NaN	NaN	NaN	NaN	NaN
87427	NaN	NaN	NaN	NaN	NaN
87429	NaN	NaN	NaN	NaN	NaN
87431	NaN	NaN	NaN	NaN	NaN
87436	NaN	NaN	NaN	NaN	NaN
87439	NaN	NaN	NaN	NaN	NaN
87442	NaN	NaN	NaN	NaN	NaN
87443	NaN	NaN	NaN	NaN	NaN
87449	NaN	NaN	NaN	NaN	NaN
87451	NaN	NaN	NaN	NaN	NaN
87452	NaN	NaN	NaN	NaN	NaN
87453	NaN	NaN	NaN	NaN	NaN
87459	NaN	NaN	NaN	NaN	NaN
87460	NaN	NaN	NaN	NaN	NaN
87462	NaN	NaN	NaN	NaN	NaN
87471	NaN	NaN	NaN	NaN	NaN
87474	NaN	NaN	NaN	NaN	NaN
87475	NaN	NaN	NaN	NaN	NaN
87481	NaN	NaN	NaN	NaN	NaN
87482	NaN	NaN	NaN	NaN	NaN

45887 rows × 5 columns

bilirubin

0 0

In [13]:

0 0

In [14]:

```
# replace apache covariate with null values in d1 albumin
dfbilirubin.loc[dfbilirubin['d1_bilirubin_max'].isnull(), 'd1_bilirubin_max']=dfbilirubin['biliru
bin_apache']
dfbilirubin.loc[dfbilirubin['d1_bilirubin_min'].isnull(), 'd1_bilirubin_min']=dfbilirubin['biliru
bin_apache']
```

 $\label{limits} C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\lindexing.\ py:189: Setting\WithCopy\Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

This is separate from the ipykernel package so we can avoid doing imports until

In [15]:

```
# list unique values in d1_max data to check for abnoramal data
# print(sorted(dfbilirubin. d1_bilirubin_max. unique()),
# sorted(dfbilirubin. d1_bilirubin_min. unique()))
```

In [16]:

	bilirubin_apache	d1_bilirubin_max	d1_bilirubin_min	h1_bilirubin_max	h1_bi
2	NaN	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN
5	NaN	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	NaN	NaN
10	NaN	NaN	NaN	NaN	NaN
11	NaN	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	NaN	NaN
14	NaN	NaN	NaN	NaN	NaN
15	NaN	NaN	NaN	NaN	NaN
16	NaN	NaN	NaN	NaN	NaN
17	NaN	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN	NaN
21	NaN	NaN	NaN	NaN	NaN
22	NaN	NaN	NaN	NaN	NaN
24	NaN	NaN	NaN	NaN	NaN
26	NaN	NaN	NaN	NaN	NaN
28	NaN	NaN	NaN	NaN	NaN
29	NaN	NaN	NaN	NaN	NaN
30	NaN	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN	NaN
34	NaN	NaN	NaN	NaN	NaN
36	NaN	NaN	NaN	NaN	NaN
37	NaN	NaN	NaN	NaN	NaN
38	NaN	NaN	NaN	NaN	NaN
39	NaN	NaN	NaN	NaN	NaN
41	NaN	NaN	NaN	NaN	NaN
87420	NaN	NaN	NaN	NaN	NaN
87422	NaN	NaN	NaN	NaN	NaN

	bilirubin_apache	d1_bilirubin_max	d1_bilirubin_min	h1_bilirubin_max	h1_bi
87425	NaN	NaN	NaN	NaN	NaN
87427	NaN	NaN	NaN	NaN	NaN
87429	NaN	NaN	NaN	NaN	NaN
87431	NaN	NaN	NaN	NaN	NaN
87436	NaN	NaN	NaN	NaN	NaN
87437	NaN	NaN	NaN	NaN	NaN
87439	NaN	NaN	NaN	NaN	NaN
87442	NaN	NaN	NaN	NaN	NaN
87443	NaN	NaN	NaN	NaN	NaN
87444	NaN	NaN	NaN	NaN	NaN
87446	NaN	NaN	NaN	NaN	NaN
87447	NaN	NaN	NaN	NaN	NaN
87449	NaN	NaN	NaN	NaN	NaN
87451	NaN	NaN	NaN	NaN	NaN
87453	NaN	NaN	NaN	NaN	NaN
87459	NaN	NaN	NaN	NaN	NaN
87460	NaN	NaN	NaN	NaN	NaN
87462	NaN	NaN	NaN	NaN	NaN
87464	NaN	NaN	NaN	NaN	NaN
87467	NaN	NaN	NaN	NaN	NaN
87469	NaN	NaN	NaN	NaN	NaN
87471	NaN	NaN	NaN	NaN	NaN
87474	NaN	NaN	NaN	NaN	NaN
87475	NaN	NaN	NaN	NaN	NaN
87479	NaN	NaN	NaN	NaN	NaN
87481	NaN	NaN	NaN	NaN	NaN
87482	NaN	NaN	NaN	NaN	NaN
87483	NaN	NaN	NaN	NaN	NaN

50083 rows × 5 columns

In [17]:

```
# variable: albumin
dfbun=training.filter(regex='bun')

# check day values missing while hour values not
print(len(dfbun[(dfbun.h1_bun_max.notna()) & (dfbun.d1_bun_max.isna())]),
    len(dfbun[(dfbun.h1_bun_min.notna()) & (dfbun.d1_bun_min.isna())]))
```

0 0

In [18]:

```
# Check if missing values are in pairs for max and min
print(len(dfbun[(dfbun.dl_bun_max.notna()) & (dfbun.dl_bun_min.isna())]),
    len(dfbun[(dfbun.dl_bun_max.isna()) & (dfbun.dl_bun_min.notna())]))
#len(dfbun[(dfbun.bun_apache.notna()) & (dfbun.dl_bun_max.isna())])
#len(dfbun[dfbun.dl_bun_max.notna()])
```

0 0

In [19]:

 $\label{limit} C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.\ py:189: Set\ ting\WithCopy\Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

[4.0, 4.3, 5.0, 5.3, 5.4, 5.6, 5.7, 5.8, 5.9, 6.0, 6.3, 6.6, 6.8, 6.9, 7.0, 7.1,7. 2, 7. 6, 8. 0, 8. 2, 8. 3, 8. 7, 8. 8, 9. 0, 9. 1, 9. 2, 9. 6, 9. 8, 9. 9, 10. 0, 10. 1, 10. 2, 10. 3, 10. 4, 10. 8, 11. 0, 11. 1, 11. 2, 11. 4, 11. 5, 11. 7, 11. 9, 12. 0, 12. 1, 12. 2, 12. 4, 12. 5, 12. 7, 12. 8, 13. 0, 13. 3, 13. 4, 13. 7, 13. 8, 13. 9, 14. 0, 14. 1, 14. 6, 14. 7, 1 5. 0, 15. 01, 15. 2, 15. 4, 15. 6, 16. 0, 16. 2, 16. 3, 16. 6, 16. 7, 16. 8, 17. 0, 17. 1, 17. 5, 17.6, 18.0, 18.5, 18.6, 19.0, 19.2, 19.3, 19.4, 19.6, 19.7, 20.0, 20.6, 20.8, 2 1. 0, 21. 5, 22. 0, 22. 1, 22. 2, 22. 8, 23. 0, 23. 2, 23. 3, 23. 4, 23. 5, 23. 6, 24. 0, 24. 2, 24.6, 24.9, 25.0, 25.7, 26.1, 26.3, 27.3, 27.4, 29.5, 29.6, 30.8, 30.9, 31.0, nan, 4. 1, 4. 4, 4. 6, 4. 7, 4. 8, 5. 1, 5. 5, 6. 1, 6. 2, 6. 4, 6. 5, 6. 7, 7. 3, 7. 4, 7. 5, 7. 7, 7. 8, 7.9, 8.1, 8.4, 8.5, 8.6, 8.9, 9.3, 9.4, 9.5, 9.7, 10.5, 10.6, 10.7, 10.9, 11.3, 11. 6, 11. 8, 12. 3, 12. 6, 12. 9, 13. 1, 13. 5, 13. 6, 14. 2, 14. 3, 14. 4, 14. 5, 14. 8, 14. 9, 15. 1, 15. 3, 15. 5, 15. 7, 15. 8, 15. 9, 16. 1, 16. 4, 16. 5, 16. 9, 17. 2, 17. 3, 17. 4, 1 7. 7, 17. 8, 17. 9, 18. 1, 18. 2, 18. 3, 18. 4, 18. 7, 18. 8, 18. 9, 19. 1, 19. 5, 19. 8, 20. 1, 20. 2, 20. 3, 20. 4, 20. 5, 20. 7, 20. 9, 21. 2, 21. 3, 21. 4, 21. 7, 21. 8, 21. 9, 22. 3, 22. 4, 22.6, 22.7, 22.9, 23.1, 23.7, 23.9, 24.1, 24.3, 24.4, 24.5, 24.7, 24.8, 25.1, 2 5. 2, 25. 4, 25. 5, 25. 6, 25. 8, 26. 0, 26. 2, 26. 4, 26. 6, 26. 7, 26. 8, 26. 9, 27. 0, 27. 2, 27. 5, 27. 8, 28. 0, 28. 1, 28. 2, 28. 3, 28. 7, 28. 8, 28. 9, 29. 0, 29. 1, 29. 3, 29. 4, 29. 9, 30.0, 30.7, 31.1, 31.3, 31.4, 31.5, 31.6, 31.7, 32.0, 32.2, 32.4, 32.5, 32.6, 3 2. 9, 33. 0, 33. 1, 33. 3, 33. 4, 33. 6, 33. 7, 33. 8, 33. 9, 34. 0, 34. 1, 34. 2, 34. 3, 34. 4, 34. 5, 34. 8, 34. 9, 35. 0, 35. 2, 35. 3, 35. 6, 35. 7, 36. 0, 36. 1, 36. 2, 36. 3, 36. 6, 36. 7, 36.8, 36.9, 37.0, 37.1, 37.2, 38.0, 38.6, 38.7, 39.0, 39.1, 39.2, 40.0, 40.1, 4 0. 2, 40. 5, 40. 7, 41. 0, 41. 2, 41. 3, 41. 5, 41. 7, 42. 0, 42. 2, 42. 4, 42. 5, 42. 7, 42. 8, 42. 9, 43. 0, 43. 4, 43. 7, 43. 8, 44. 0, 44. 1, 44. 8, 45. 0, 45. 5, 45. 7, 46. 0, 46. 9, 47. 0, 47.3, 47.7, 48.0, 48.1, 48.7, 49.0, 49.3, 49.5, 49.7, 50.0, 50.3, 50.8, 50.9, 5 1. 0, 51. 8, 51. 9, 52. 0, 52. 1, 52. 6, 52. 7, 53. 0, 53. 1, 53. 2, 53. 5, 53. 9, 54. 0, 54. 1, 54. 9, 55. 0, 55. 1, 55. 6, 55. 7, 55. 9, 56. 0, 56. 2, 56. 3, 57. 0, 57. 1, 57. 5, 58. 0, 59. 0, 59.3, 59.9, 60.0, 60.5, 60.6, 60.8, 61.0, 61.1, 61.3, 62.0, 62.1, 62.8, 63.0, 6 3. 5, 63. 9, 64. 0, 64. 3, 64. 8, 65. 0, 66. 0, 66. 8, 67. 0, 67. 4, 67. 7, 68. 0, 68. 3, 68. 4, 69. 0, 69. 2, 70. 0, 70. 1, 70. 5, 71. 0, 72. 0, 72. 1, 72. 4, 72. 5, 72. 7, 72. 8, 73. 0, 73. 4, 74.0, 75.0, 75.3, 75.4, 76.0, 76.6, 77.0, 77.3, 78.0, 79.0, 79.3, 80.0, 80.3, 8 1. 0, 82. 0, 82. 5, 82. 6, 83. 0, 83. 9, 84. 0, 84. 2, 85. 0, 85. 4, 86. 0, 87. 0, 88. 0, 89. 0, 89. 1, 90. 0, 90. 3, 90. 6, 91. 0, 91. 2, 92. 0, 92. 4, 92. 8, 93. 0, 93. 6, 94. 0, 95. 0, 95. 7, 96.0, 97.0, 98.0, 98.2, 98.3, 99.0, 99.2, 100.0, 101.0, 102.0, 103.0, 104.0, 10 5. 0, 105. 8, 106. 0, 106. 1, 107. 0, 107. 1, 108. 0, 109. 0, 110. 0, 111. 0, 111. 5, 112. 0, 113. 0, 114. 0, 115. 0, 116. 0, 117. 0, 118. 0, 119. 0, 120. 0, 121. 0, 122. 0, 123. 0, 124. 0, 125.0, 126.0] [3.0, 3.1, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.2, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6. 3, 6.5, 6.6, 6.7, 6.8, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8. 2, 8. 3, 8. 4, 8. 5, 8. 6, 8. 7, 8. 8, 8. 9, 9. 0, 9. 1, 9. 2, 9. 3, 9. 4, 9. 5, 9. 6, 9. 7, 9. 8, 9.9, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 1 1. 2, 11. 3, 11. 4, 11. 5, 11. 6, 11. 7, 11. 8, 11. 9, 12. 0, 12. 1, 12. 2, 12. 3, 12. 4, 12. 5, 12. 6, 12. 7, 12. 8, 12. 9, 13. 0, 13. 1, 13. 3, 13. 4, 13. 5, 13. 6, 13. 7, 13. 8, 13. 9, 14. 0, 14. 1, 14. 2, 14. 3, 14. 4, 14. 5, 14. 6, 14. 7, 14. 8, 14. 9, 15. 0, 15. 01, 15. 1, 15. 2, 15. 3, 15. 4, 15. 5, 15. 6, 15. 7, 15. 8, 15. 9, 16. 0, 16. 1, 16. 2, 16. 3, 16. 4, 16. 5, 16. 6, 16.7, 16.8, 16.9, 17.0, 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9, 1 8. 0, 18. 1, 18. 2, 18. 3, 18. 4, 18. 5, 18. 6, 18. 7, 18. 8, 18. 9, 19. 0, 19. 1, 19. 2, 19. 3, 19. 4, 19. 5, 19. 6, 19. 7, 20. 0, 20. 1, 20. 2, 20. 4, 20. 5, 20. 6, 20. 7, 20. 8, 20. 9, 21. 0, 21. 2, 21. 3, 21. 4, 21. 5, 21. 6, 21. 7, 21. 8, 21. 9, 22. 1, 22. 2, 22. 3, 22. 4, 22. 5, 2 2. 6, 22. 7, 22. 8, 22. 9, 23. 0, 23. 2, 23. 3, 23. 4, 23. 5, 23. 6, 23. 7, 23. 9, 24. 0, 24. 1, 24. 2, 24. 3, 24. 4, 24. 5, 24. 6, 24. 7, 24. 9, 25. 0, 25. 1, 25. 3, 25. 4, 25. 5, 25. 7, 25. 8, 26. 1, 26. 3, 26. 4, 26. 6, 26. 7, 26. 8, 26. 9, 27. 0, 27. 2, 27. 3, 27. 4, 27. 5, 28. 0, 2 8. 1, 28. 2, 28. 3, 28. 5, 28. 7, 28. 8, 29. 1, 29. 2, 29. 3, 29. 4, 29. 5, 29. 9, 30. 0, nan, 5. 0, 22. 0, 26. 0, 29. 0, 30. 4, 30. 5, 30. 7, 30. 8, 30. 9, 31. 0, 31. 1, 31. 3, 31. 4, 31. 5, 31. 6, 31. 7, 32. 0, 32. 1, 32. 2, 32. 3, 32. 4, 32. 5, 32. 6, 32. 9, 33. 0, 33. 1, 33. 4, 33. 6, 33.7, 33.8, 33.9, 34.0, 34.1, 34.2, 34.3, 34.4, 34.5, 34.7, 34.8, 34.9, 35.0, 3 5. 3, 35. 6, 35. 9, 36. 0, 36. 1, 36. 2, 36. 6, 36. 8, 36. 9, 37. 0, 37. 2, 37. 5, 38. 0, 38. 6, 38. 7, 38. 8, 39. 0, 39. 1, 39. 2, 39. 3, 40. 0, 40. 2, 40. 5, 40. 7, 41. 0, 41. 2, 41. 3, 41. 4, 41. 5, 42. 0, 42. 5, 42. 7, 42. 9, 43. 0, 43. 4, 43. 9, 44. 0, 44. 8, 45. 0, 45. 1, 45. 7, 4 6. 0, 46. 8, 47. 0, 47. 3, 47. 4, 48. 0, 48. 1, 48. 2, 48. 3, 48. 9, 49. 0, 49. 3, 49. 7, 50. 0, 50. 4, 50. 6, 50. 9, 51. 0, 52. 0, 52. 1, 52. 3, 52. 7, 53. 0, 53. 1, 53. 2, 53. 5, 53. 9, 54. 0, 54.9, 55.0, 55.6, 55.7, 55.9, 56.0, 56.3, 56.5, 57.0, 57.1, 58.0, 58.5, 58.7, 5 $\begin{array}{c} 9.\ 0,\ 60.\ 0,\ 60.\ 1,\ 60.\ 2,\ 60.\ 3,\ 60.\ 6,\ 60.\ 8,\ 61.\ 0,\ 61.\ 1,\ 61.\ 3,\ 61.\ 6,\ 61.\ 9,\ 62.\ 0,\ 62.\ 1,\\ 62.\ 4,\ 62.\ 7,\ 63.\ 0,\ 63.\ 5,\ 64.\ 0,\ 64.\ 2,\ 64.\ 8,\ 65.\ 0,\ 66.\ 0,\ 66.\ 7,\ 67.\ 0,\ 67.\ 7,\ 68.\ 0,\ 68.\\ 4,\ 69.\ 0,\ 69.\ 1,\ 69.\ 2,\ 69.\ 4,\ 69.\ 9,\ 70.\ 0,\ 71.\ 0,\ 72.\ 0,\ 72.\ 4,\ 72.\ 7,\ 73.\ 0,\ 74.\ 0,\ 74.\ 9,\ 75.\ 0,\ 76.\ 0,\ 77.\ 0,\ 77.\ 1,\ 77.\ 3,\ 78.\ 0,\ 78.\ 5,\ 79.\ 0,\ 79.\ 1,\ 80.\ 0,\ 80.\ 1,\ 80.\ 3,\ 81.\ 0,\ 81.\ 6,\\ 82.\ 0,\ 82.\ 5,\ 83.\ 0,\ 83.\ 4,\ 83.\ 9,\ 84.\ 0,\ 84.\ 5,\ 85.\ 0,\ 86.\ 0,\ 87.\ 0,\ 88.\ 0,\ 88.\ 8,\ 89.\ 0,\ 90.\\ 0,\ 90.\ 9,\ 91.\ 0,\ 92.\ 0,\ 92.\ 8,\ 93.\ 0,\ 93.\ 6,\ 94.\ 0,\ 95.\ 0,\ 96.\ 0,\ 97.\ 0,\ 98.\ 0,\ 99.\ 0,\ 99.\ 2,\ 1\\ 00.\ 0,\ 101.\ 0,\ 102.\ 0,\ 103.\ 0,\ 104.\ 0,\ 105.\ 0,\ 105.\ 8,\ 106.\ 0,\ 107.\ 0,\ 107.\ 1,\ 108.\ 0,\ 109.\ 0,\\ 110.\ 0,\ 111.\ 0,\ 112.\ 0,\ 113.\ 0,\ 113.\ 09]\\ \end{array}$

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

This is separate from the ipykernel package so we can avoid doing imports until

In [20]:

```
# data cleaning for min > max situation
dfbun[dfbun['d1_bun_max'] < dfbun['d1_bun_min']]

# taking the maximum value of h1 and apache is reasonable
dfbun.loc[(dfbun.d1_bun_max < dfbun.d1_bun_min), 'd1_bun_max'] = dfbun[['bun_apache', 'h1_bun_max']].m
ax(axis=1)

print(len(dfbun[dfbun['d1_bun_max'] < dfbun['d1_bun_min']]))</pre>
```

0

C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self. setitem with indexer (indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

In [21]:

	bun_apache	d1_bun_max	d1_bun_min	h1_bun_max	h1_bun_min
2	NaN	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN	NaN
49	NaN	NaN	NaN	NaN	NaN
50	NaN	NaN	NaN	NaN	NaN
51	NaN	NaN	NaN	NaN	NaN
55	NaN	NaN	NaN	NaN	NaN
58	NaN	NaN	NaN	NaN	NaN
64	NaN	NaN	NaN	NaN	NaN
66	NaN	NaN	NaN	NaN	NaN
68	NaN	NaN	NaN	NaN	NaN
74	NaN	NaN	NaN	NaN	NaN
78	NaN	NaN	NaN	NaN	NaN
86	NaN	NaN	NaN	NaN	NaN
89	NaN	NaN	NaN	NaN	NaN
100	NaN	NaN	NaN	NaN	NaN
115	NaN	NaN	NaN	NaN	NaN
131	NaN	NaN	NaN	NaN	NaN
139	NaN	NaN	NaN	NaN	NaN
141	NaN	NaN	NaN	NaN	NaN
143	NaN	NaN	NaN	NaN	NaN
148	NaN	NaN	NaN	NaN	NaN
160	NaN	NaN	NaN	NaN	NaN
170	NaN	NaN	NaN	NaN	NaN
191	NaN	NaN	NaN	NaN	NaN
87088	NaN	NaN	NaN	NaN	NaN
87089	NaN	NaN	NaN	NaN	NaN

	bun_apache	d1_bun_max	d1_bun_min	h1_bun_max	h1_bun_min
87097	NaN	NaN	NaN	NaN	NaN
87111	NaN	NaN	NaN	NaN	NaN
87131	NaN	NaN	NaN	NaN	NaN
87145	NaN	NaN	NaN	NaN	NaN
87155	NaN	NaN	NaN	NaN	NaN
87162	NaN	NaN	NaN	NaN	NaN
87173	NaN	NaN	NaN	NaN	NaN
87175	NaN	NaN	NaN	NaN	NaN
87207	NaN	NaN	NaN	NaN	NaN
87214	NaN	NaN	NaN	NaN	NaN
87236	NaN	NaN	NaN	NaN	NaN
87255	NaN	NaN	NaN	NaN	NaN
87257	NaN	NaN	NaN	NaN	NaN
87274	NaN	NaN	NaN	NaN	NaN
87279	NaN	NaN	NaN	NaN	NaN
87314	NaN	NaN	NaN	NaN	NaN
87315	NaN	NaN	NaN	NaN	NaN
87382	NaN	NaN	NaN	NaN	NaN
87385	NaN	NaN	NaN	NaN	NaN
87387	NaN	NaN	NaN	NaN	NaN
87392	NaN	NaN	NaN	NaN	NaN
87393	NaN	NaN	NaN	NaN	NaN
87394	NaN	NaN	NaN	NaN	NaN
87395	NaN	NaN	NaN	NaN	NaN
87422	NaN	NaN	NaN	NaN	NaN
87429	NaN	NaN	NaN	NaN	NaN
87459	NaN	NaN	NaN	NaN	NaN
87460	NaN	NaN	NaN	NaN	NaN

9230 rows × 5 columns

creatinine

```
In [22]:
```

```
# variable: creatinine
dfcreatinine=training.filter(regex='creatinine')

# check day values missing while hour values not
print(len(dfcreatinine[(dfcreatinine.hl_creatinine_max.notna()) & (dfcreatinine.dl_creatinine_ma
x.isna())]),
    len(dfcreatinine[(dfcreatinine.hl_creatinine_min.notna()) & (dfcreatinine.dl_creatinine_mi
n.isna())]))
```

0 0

In [23]:

```
# Check if missing values are in pairs for max and min
print(len(dfcreatinine[(dfcreatinine.dl_creatinine_max.notna()) & (dfcreatinine.dl_creatinine_mi
n.isna())]),
    len(dfcreatinine[(dfcreatinine.dl_creatinine_max.isna()) & (dfcreatinine.dl_creatinine_min
.notna())]),
    len(dfcreatinine[(dfcreatinine.creatinine_apache.notna()) & (dfcreatinine.dl_creatinine_ma
x.isna())]),
    len(dfcreatinine[dfcreatinine.dl_creatinine_max.notna()]))
```

0 0 730 77877

In [24]:

```
# replace apache covariate with null values in d1 creatinine
dfcreatinine.loc[dfcreatinine['d1_creatinine_max'].isnull(), 'd1_creatinine_max']=dfcreatinine['c
reatinine_apache']
dfcreatinine.loc[dfcreatinine['d1_creatinine_min'].isnull(), 'd1_creatinine_min']=dfcreatinine['c
reatinine_apache']
```

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self. setitem with indexer (indexer, value)

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

This is separate from the ipykernel package so we can avoid doing imports until

```
In [25]:
```

```
# data cleaning for min > max situation
dfcreatinine[dfcreatinine['dl_creatinine_max'] < dfcreatinine['dl_creatinine_min']]
# where apache covariate is taken as it is reasonable
dfcreatinine.loc[(dfcreatinine.dl_creatinine_max<dfcreatinine.dl_creatinine_min),'dl_creatinine_
max']=dfcreatinine['creatinine_apache']
len(dfcreatinine[dfcreatinine['dl_creatinine_max'] \langle dfcreatinine['dl_creatinine_min']])
C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set
tingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/
indexing.html#indexing-view-versus-copy
  self. setitem with indexer (indexer, value)
C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/

Out[25]:

indexing. html#indexing-view-versus-copy

0

In [26]:

	creatinine_apache	d1_creatinine_max	d1_creatinine_min	h1_creatinine_max
2	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN
49	NaN	NaN	NaN	NaN
50	NaN	NaN	NaN	NaN
51	NaN	NaN	NaN	NaN
55	NaN	NaN	NaN	NaN
58	NaN	NaN	NaN	NaN
64	NaN	NaN	NaN	NaN
66	NaN	NaN	NaN	NaN
68	NaN	NaN	NaN	NaN
74	NaN	NaN	NaN	NaN
78	NaN	NaN	NaN	NaN
86	NaN	NaN	NaN	NaN
89	NaN	NaN	NaN	NaN
100	NaN	NaN	NaN	NaN
115	NaN	NaN	NaN	NaN
131	NaN	NaN	NaN	NaN
139	NaN	NaN	NaN	NaN
141	NaN	NaN	NaN	NaN
143	NaN	NaN	NaN	NaN
148	NaN	NaN	NaN	NaN
160	NaN	NaN	NaN	NaN
170	NaN	NaN	NaN	NaN
191	NaN	NaN	NaN	NaN
87088	NaN	NaN	NaN	NaN
87089	NaN	NaN	NaN	NaN

	creatinine_apache	d1_creatinine_max	d1_creatinine_min	h1_creatinine_max
87097	NaN	NaN	NaN	NaN
87111	NaN	NaN	NaN	NaN
87131	NaN	NaN	NaN	NaN
87145	NaN	NaN	NaN	NaN
87155	NaN	NaN	NaN	NaN
87162	NaN	NaN	NaN	NaN
87173	NaN	NaN	NaN	NaN
87175	NaN	NaN	NaN	NaN
87207	NaN	NaN	NaN	NaN
87214	NaN	NaN	NaN	NaN
87236	NaN	NaN	NaN	NaN
87255	NaN	NaN	NaN	NaN
87257	NaN	NaN	NaN	NaN
87274	NaN	NaN	NaN	NaN
87279	NaN	NaN	NaN	NaN
87314	NaN	NaN	NaN	NaN
87315	NaN	NaN	NaN	NaN
87382	NaN	NaN	NaN	NaN
87385	NaN	NaN	NaN	NaN
87387	NaN	NaN	NaN	NaN
87392	NaN	NaN	NaN	NaN
87393	NaN	NaN	NaN	NaN
87394	NaN	NaN	NaN	NaN
87395	NaN	NaN	NaN	NaN
87422	NaN	NaN	NaN	NaN
87429	NaN	NaN	NaN	NaN
87459	NaN	NaN	NaN	NaN
87460	NaN	NaN	NaN	NaN

8878 rows × 5 columns

glucose

```
In [27]:
```

```
# variable: glucose
dfglucose=training.filter(regex='glucose')

# check day values missing while hour values not
print(len(dfglucose[(dfglucose.h1_glucose_max.notna()) & (dfglucose.d1_glucose_max.isna())]),
    len(dfglucose[(dfglucose.h1_glucose_min.notna()) & (dfglucose.d1_glucose_min.isna())]))
```

0 0

In [28]:

```
# Check if missing values are in pairs for max and min
print(len(dfglucose[(dfglucose.dl_glucose_max.notna()) & (dfglucose.dl_glucose_min.isna())]),
    len(dfglucose[(dfglucose.dl_glucose_max.isna()) & (dfglucose.dl_glucose_min.notna())]),
    len(dfglucose[(dfglucose.glucose_apache.notna()) & (dfglucose.dl_glucose_max.isna())]),
    len(dfglucose[dfglucose.dl_glucose_max.notna()]))
```

0 0 397 81978

In [29]:

```
# replace apache covariate with null values in d1 glucose
dfglucose.loc[dfglucose['dl_glucose_max'].isnull(), 'dl_glucose_max']=dfglucose['glucose_apache']
dfglucose.loc[dfglucose['dl_glucose_min'].isnull(), 'dl_glucose_min']=dfglucose['glucose_apache']
# list unique values in d1_max data to check for abnoramal data
# print(sorted(dfglucose.dl_glucose_max.unique()),
# sorted(dfglucose.dl_glucose_min.unique()))
```

 $\label{lem:cond} $$C:\Lambda pplication\ \P \cap \Lambda aconda \lib\ = -packages\ pandas\ core\ indexing. py:189: Setting \ With Copy \ Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

This is separate from the ipykernel package so we can avoid doing imports until

```
In [30]:
```

```
# data cleaning for min > max situation
dfglucose[dfglucose['dl_glucose_max'] <dfglucose['dl_glucose_min']]
# replace d1 with h1
dfglucose.loc[(dfglucose.dl glucose max<dfglucose.dl glucose min),'dl glucose max']=dfglucose['h
1_glucose_max']
print(len(dfglucose[dfglucose['dl_glucose_max'] < dfglucose['dl_glucose_min']]))</pre>
C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set
tingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/
indexing. html#indexing-view-versus-copy
  self._setitem_with_indexer(indexer, value)
C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/
indexing. html#indexing-view-versus-copy
In [31]:
# data cleaning for value 0 situation
```

```
dfglucose[dfglucose.dl_glucose_max==0]
dfglucose[dfglucose.dl glucose min==0]
# check all null after finishing data cleaning for glucose
len(dfglucose[(dfglucose.dl_glucose_max.isnull())& (dfglucose.hl_glucose_max.isnull())&
          (dfglucose.dl_glucose_min.isnull())& (dfglucose.hl_glucose_min.isnull())&
          (dfglucose.glucose_apache.isnull())])
```

Out[31]:

5110

hco3

```
In [32]:
# variable: hco3
dfhco3=training.filter(regex='hco3')
# check day values missing while hour values not
print(len(dfhco3[(dfhco3.h1_hco3_max.notna()) & (dfhco3.d1_hco3_max.isna())]),
      len(dfhco3[(dfhco3.h1_hco3_min.notna()) & (dfhco3.d1_hco3_min.isna())]))
# Check if missing values are in pairs for max and min
print(len(dfhco3[(dfhco3.dl_hco3_max.notna()) & (dfhco3.dl_hco3_min.isna())]),
      len(dfhco3[(dfhco3.dl hco3 max.isna()) & (dfhco3.dl hco3 min.notna())]),
      len (dfhco3[dfhco3. d1 hco3 max. notna()]))
0 0
0 0 73260
   [33]:
In
# data cleaning for min > max situation
dfhco3[dfhco3['d1_hco3_max'] <dfhco3['d1_hco3_min']]
# replace d1 max with h1 max
dfhco3. loc[(dfhco3['d1_hco3_max']<dfhco3['d1_hco3_min']) & (dfhco3. h1_hco3_max. notnul1()), 'd1_hc
```

C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/ indexing. html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

o3_max']=dfhco3['h1_hco3_max']

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel launcher.py:5: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/ indexing. html#indexing-view-versus-copy

In [34]:

Out[34]:

d1_hco3_min 31.0	d1_hco3_max 31.0 32.0 33.0	862 72 52
	34.0	27
	35. 0 36. 0	18 9
	39. 0	7
	38. 0 37. 0	6
	12. 0	2 1
	32. 3	1
31.1	40. 0 31. 1	1 4
31.2	31.2	1
31. 3 31. 4	31. 3 31. 4	1 2
31.5	31.5	1
31. 6 31. 7	31. 6 31. 7	2 4
31. 8	31. 8	2
01.0	33.8	1
31. 9 32. 0	31. 9 32. 0	1 668
	33.0	47
	34. 0 35. 0	33 27
	36.0	19
	37. 0 40. 0	6 5
	39. 0	4
36.0	36.0	192
	37. 0 38. 0	18 12
	40.0	10
	39. 0 12. 0	7 2
	36. 6	1
36. 2	36. 2	1
36. 3 36. 7	36. 3 36. 7	1 1
36. 9	38. 4	1
37. 0	37. 0 40. 0	167 10
	12.0	9
	38. 0 39. 0	6 6
37.1	37. 1	3
37. 6 37. 7	38. 0 37. 7	1 1
37. 8	37. 8	1
38.0	38. 0	133
	39. 0 40. 0	14 7
00.1	12.0	2
38. 1 38. 2	39. 3 12. 0	1 1
38. 7	38. 7	1

39. 0 40. 0 253 12. 0 83 39. 0 3

Name: d1 hco3 max, Length: 105, dtype: int64

In [35]:

replace d1 max with following strategies:
for all 39, impute 40
for others, which are blow 39, impute themselves
dfhco3.loc[(dfhco3['d1_hco3_max']<dfhco3['d1_hco3_min']) & (dfhco3.d1_hco3_min=39),'d1_hco3_ma
x']=40
dfhco3.loc[(dfhco3['d1_hco3_max']<dfhco3['d1_hco3_min']) & (dfhco3.d1_hco3_min<39),'d1_hco3_max']=dfhco3['d1_hco3_min']
data cleaning for min > max situation
dfhco3[dfhco3['d1_hco3_max']<dfhco3['d1_hco3_min']]</pre>

C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

after removing the cwd from sys. path.

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

Out[35]:

d1_hco3_max	d1_hco3_min	h1_hco3_max	h1_hco3_min

In [36]:

	d1_hco3_max	d1_hco3_min	h1_hco3_max	h1_hco3_min
2	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN
49	NaN	NaN	NaN	NaN
50	NaN	NaN	NaN	NaN
51	NaN	NaN	NaN	NaN
53	NaN	NaN	NaN	NaN
55	NaN	NaN	NaN	NaN
58	NaN	NaN	NaN	NaN
64	NaN	NaN	NaN	NaN
66	NaN	NaN	NaN	NaN
68	NaN	NaN	NaN	NaN
74	NaN	NaN	NaN	NaN
78	NaN	NaN	NaN	NaN
86	NaN	NaN	NaN	NaN
89	NaN	NaN	NaN	NaN
100	NaN	NaN	NaN	NaN
115	NaN	NaN	NaN	NaN
131	NaN	NaN	NaN	NaN
134	NaN	NaN	NaN	NaN
139	NaN	NaN	NaN	NaN
141	NaN	NaN	NaN	NaN
143	NaN	NaN	NaN	NaN
148	NaN	NaN	NaN	NaN
160	NaN	NaN	NaN	NaN
87197	NaN	NaN	NaN	NaN
87207	NaN	NaN	NaN	NaN

	d1_hco3_max	d1_hco3_min	h1_hco3_max	h1_hco3_min
87214	NaN	NaN	NaN	NaN
87236	NaN	NaN	NaN	NaN
87255	NaN	NaN	NaN	NaN
87257	NaN	NaN	NaN	NaN
87270	NaN	NaN	NaN	NaN
87274	NaN	NaN	NaN	NaN
87279	NaN	NaN	NaN	NaN
87285	NaN	NaN	NaN	NaN
87301	NaN	NaN	NaN	NaN
87314	NaN	NaN	NaN	NaN
87315	NaN	NaN	NaN	NaN
87345	NaN	NaN	NaN	NaN
87382	NaN	NaN	NaN	NaN
87385	NaN	NaN	NaN	NaN
87387	NaN	NaN	NaN	NaN
87392	NaN	NaN	NaN	NaN
87393	NaN	NaN	NaN	NaN
87394	NaN	NaN	NaN	NaN
87395	NaN	NaN	NaN	NaN
87408	NaN	NaN	NaN	NaN
87409	NaN	NaN	NaN	NaN
87414	NaN	NaN	NaN	NaN
87415	NaN	NaN	NaN	NaN
87422	NaN	NaN	NaN	NaN
87429	NaN	NaN	NaN	NaN
87459	NaN	NaN	NaN	NaN
87460	NaN	NaN	NaN	NaN
87474	NaN	NaN	NaN	NaN

14225 rows × 4 columns

```
In [37]:

dfhco3.loc[(dfhco3['d1_hco3_max']<dfhco3['d1_hco3_min']) & (dfhco3.h1_hco3_min==39),'d1_hco3_ma
x']

Out[37]:
Series([], Name: d1_hco3_max, dtype: float64)</pre>
```

hemoglobin

```
In [38]:
```

0 0

In [39]:

```
# Check if missing values are in pairs for max and min
print(len(dfhemaglobin[(dfhemaglobin.dl_hemaglobin_max.notna()) & (dfhemaglobin.dl_hemaglobin_mi
n.isna())]),
    len(dfhemaglobin[(dfhemaglobin.dl_hemaglobin_max.isna()) & (dfhemaglobin.dl_hemaglobin_min
.notna())]),
    len(dfhemaglobin[dfhemaglobin.dl_hemaglobin_max.notna()]))
```

0 0 75966

In [40]:

data cleaning for min > max situation
dfhemaglobin[dfhemaglobin['dl_hemaglobin_max'] < dfhemaglobin['dl_hemaglobin_min']]</pre>

	d1_hemaglobin_max	d1_hemaglobin_min	h1_hemaglobin_max	h1_hemaglok
2851	6.8	16.7	NaN	NaN
5726	6.8	16.2	17.2	17.2
8501	6.8	16.7	17.2	17.2
9651	6.8	16.7	NaN	NaN
14596	6.8	16.7	NaN	NaN
14828	6.8	16.7	NaN	NaN
14838	6.8	16.7	NaN	NaN
15480	6.8	16.7	NaN	NaN
18552	6.8	16.7	17.2	17.2
18559	6.8	16.7	NaN	NaN
20161	6.8	16.2	NaN	NaN
21253	6.8	16.7	NaN	NaN
21975	6.8	16.7	NaN	NaN
24603	6.8	16.7	NaN	NaN
26076	6.8	16.7	NaN	NaN
27716	6.8	16.7	NaN	NaN
29655	6.8	16.7	17.2	17.2
30087	6.8	16.7	NaN	NaN
37133	6.8	13.9	NaN	NaN
37388	6.8	16.1	NaN	NaN
40943	6.8	16.7	17.2	17.2
42152	6.8	12.8	17.2	17.0
42934	6.8	11.2	17.2	17.2
43189	6.8	13.3	NaN	NaN
44638	6.8	15.2	17.2	17.2
46496	6.8	16.7	NaN	NaN
50264	6.8	16.7	NaN	NaN
51725	6.8	16.7	NaN	NaN
52853	6.8	15.8	17.2	17.2
54369	6.8	12.8	17.2	17.2
55001	6.8	13.4	13.4	13.4
57969	6.8	16.7	NaN	NaN
59092	6.8	16.3	NaN	NaN

	d1_hemaglobin_max	d1_hemaglobin_min	h1_hemaglobin_max	h1_hemaglok
60683	6.8	16.7	NaN	NaN
61414	6.8	16.7	NaN	NaN
61696	6.8	13.7	14.6	14.6
62590	6.8	12.2	NaN	NaN
63155	6.8	12.7	15.1	15.1
65389	6.8	16.7	NaN	NaN
67061	6.8	15.9	17.2	17.2
70111	6.8	14.3	17.2	17.2
70575	6.8	14.7	NaN	NaN
75948	6.8	15.0	17.2	17.2
76601	6.8	15.1	17.2	17.2
78519	6.8	16.0	17.2	17.2
78948	6.8	15.5	17.2	17.2
79566	6.8	16.7	NaN	NaN
80357	6.8	15.2	NaN	NaN
80766	6.8	16.7	NaN	NaN
83614	6.8	16.7	NaN	NaN
86005	6.8	16.7	NaN	NaN
86590	6.8	16.7	NaN	NaN

In [41]:

data cleaning for min > max situation
dfhemaglobin[dfhemaglobin['dl_hemaglobin_max'] < dfhemaglobin['dl_hemaglobin_min']]

where hl_hemaglobin_max is taken as it is reasonable
dfhemaglobin.loc[(dfhemaglobin.dl_hemaglobin_max < dfhemaglobin.dl_hemaglobin_min) & (dfhemaglobin
.hl_hemaglobin_max > dfhemaglobin.dl_hemaglobin_max), 'dl_hemaglobin_max'] = dfhemaglobin['hl_hemaglobin_max']
len(dfhemaglobin[dfhemaglobin['dl_hemaglobin_max'] < dfhemaglobin['dl_hemaglobin_min']])

 $\label{lem:cond} $$C:\Lambda pplication\ \P \cap \Lambda aconda \lib\ = -packages\ pandas\ core\ indexing. py:189: Setting \ With Copy \ Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

Out[41]:

33

In [42]:

Out[42]:

d1_hemaglobin_min	d1_hemaglobin_max	
12.2	12.2	792
	12.6	28
	12.8	27
	13.2	26
	12.3	22
	12.7	22
	13.6	21
	13. 1	20
	12.5	18
	12.4	17
	12.9	17
	13. 0	16
	13. 3	16
	13. 5	15
	13. 7	13
	13. 9	11
	13. 8	8
	14. 4	7
	13. 4	6
	14. 5	6
	14. 3	5 5
	14. 6 14. 2	3 4
	14. 9	4
	15. 0	4
	15. 1	4
	14. 0	3
	14. 1	3
	15. 2	3
	14. 8	2
		• • •
16. 3	16. 3	64
	16. 7	5
	17. 2	5
	16. 5	3
	16. 6	2
	16. 9	2 2 1
	17. 0	
1.0 4	17. 1	1
16. 4	16. 4	63
	16. 8 17. 2	4 3
	16. 7	2
	16. 6	1
	17. 0	1
16. 5	16. 5	47
10.0	17. 2	3
	16. 8	1
	16. 9	1
	17. 0	1
	17. 1	1
16.6	16.6	40
	16. 7	6
	16. 9	2
	17. 2	2
	16.8	1
16. 7	17. 2	238
	16.8	37

```
16. 9 31
17. 1 29
17. 0 25
```

Name: d1 hemaglobin max, Length: 1048, dtype: int64

In [43]:

 $\label{limits} C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\lindexing.py:189: Set ting\WithCopy\Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:9: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

```
if __name__ == '__main__':
```

In [44]:

	d1_hemaglobin_max	d1_hemaglobin_min	h1_hemaglobin_max	h1_hemaglot
2	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN
11	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN
53	NaN	NaN	NaN	NaN
58	NaN	NaN	NaN	NaN
66	NaN	NaN	NaN	NaN
86	NaN	NaN	NaN	NaN
87	NaN	NaN	NaN	NaN
91	NaN	NaN	NaN	NaN
99	NaN	NaN	NaN	NaN
103	NaN	NaN	NaN	NaN
107	NaN	NaN	NaN	NaN
110	NaN	NaN	NaN	NaN
123	NaN	NaN	NaN	NaN
131	NaN	NaN	NaN	NaN
139	NaN	NaN	NaN	NaN
168	NaN	NaN	NaN	NaN
180	NaN	NaN	NaN	NaN
183	NaN	NaN	NaN	NaN
185	NaN	NaN	NaN	NaN
204	NaN	NaN	NaN	NaN
212	NaN	NaN	NaN	NaN
214	NaN	NaN	NaN	NaN
226	NaN	NaN	NaN	NaN
236	NaN	NaN	NaN	NaN
237	NaN	NaN	NaN	NaN
244	NaN	NaN	NaN	NaN
247	NaN	NaN	NaN	NaN
252	NaN	NaN	NaN	NaN
87270	NaN	NaN	NaN	NaN
87274	NaN	NaN	NaN	NaN

	d1_hemaglobin_max	d1_hemaglobin_min	h1_hemaglobin_max	h1_hemaglob
87279	NaN	NaN	NaN	NaN
87311	NaN	NaN	NaN	NaN
87314	NaN	NaN	NaN	NaN
87315	NaN	NaN	NaN	NaN
87329	NaN	NaN	NaN	NaN
87342	NaN	NaN	NaN	NaN
87366	NaN	NaN	NaN	NaN
87374	NaN	NaN	NaN	NaN
87378	NaN	NaN	NaN	NaN
87382	NaN	NaN	NaN	NaN
87385	NaN	NaN	NaN	NaN
87387	NaN	NaN	NaN	NaN
87393	NaN	NaN	NaN	NaN
87394	NaN	NaN	NaN	NaN
87395	NaN	NaN	NaN	NaN
87408	NaN	NaN	NaN	NaN
87415	NaN	NaN	NaN	NaN
87419	NaN	NaN	NaN	NaN
87422	NaN	NaN	NaN	NaN
87443	NaN	NaN	NaN	NaN
87449	NaN	NaN	NaN	NaN
87452	NaN	NaN	NaN	NaN
87458	NaN	NaN	NaN	NaN
87459	NaN	NaN	NaN	NaN
87463	NaN	NaN	NaN	NaN
87465	NaN	NaN	NaN	NaN
87468	NaN	NaN	NaN	NaN
87479	NaN	NaN	NaN	NaN

11519 rows × 4 columns

hematocrit

In [45]:

0 0

In [46]:

0 0 865 76453

In [47]:

[20. 6, 22. 3, 24. 1, 25. 5, 25. 7, 26. 6, 27. 0, 27. 4, 28. 9, 29. 7, 30. 3, 30. 8, 32. 0, 32. 2, 32.6, 33.1, 33.3, 36.9, nan, 16.2, 19.3, 19.9, 20.2, 20.3, 20.4, 20.5, 20.7, 2 0.8, 20.9, 21.0, 21.1, 21.2, 21.3, 21.4, 21.5, 21.6, 21.7, 21.8, 21.9, 22.0, 22.1, 22. 2, 22. 4, 22. 5, 22. 6, 22. 7, 22. 8, 22. 9, 23. 0, 23. 1, 23. 2, 23. 3, 23. 4, 23. 5, 23. 6, 23. 7, 23. 8, 23. 9, 24. 0, 24. 2, 24. 3, 24. 4, 24. 5, 24. 6, 24. 7, 24. 8, 24. 9, 25. 0, 2 5. 1, 25. 2, 25. 3, 25. 4, 25. 6, 25. 8, 25. 9, 26. 0, 26. 1, 26. 2, 26. 3, 26. 4, 26. 5, 26. 7, 26. 8, 26. 9, 27. 1, 27. 2, 27. 3, 27. 5, 27. 6, 27. 7, 27. 8, 27. 9, 28. 0, 28. 1, 28. 2, 28. 3, 28.4, 28.5, 28.6, 28.7, 28.8, 29.0, 29.1, 29.2, 29.3, 29.4, 29.5, 29.6, 29.8, 2 9. 9, 30. 0, 30. 1, 30. 2, 30. 4, 30. 5, 30. 6, 30. 7, 30. 9, 31. 0, 31. 1, 31. 2, 31. 3, 31. 4, 31. 5, 31. 6, 31. 7, 31. 8, 31. 9, 32. 1, 32. 3, 32. 4, 32. 5, 32. 7, 32. 8, 32. 9, 33. 0, 33. 2, 33. 4, 33. 5, 33. 6, 33. 7, 33. 8, 33. 9, 34. 0, 34. 1, 34. 2, 34. 3, 34. 4, 34. 5, 34. 6, 3 $4.\ 7,\ 34.\ 8,\ 34.\ 9,\ 35.\ 0,\ 35.\ 1,\ 35.\ 2,\ 35.\ 3,\ 35.\ 4,\ 35.\ 5,\ 35.\ 6,\ 35.\ 7,\ 35.\ 8,\ 35.\ 9,\ 36.\ 0,$ 36. 1, 36. 2, 36. 3, 36. 4, 36. 5, 36. 6, 36. 7, 36. 8, 37. 0, 37. 1, 37. 2, 37. 3, 37. 4, 37. 5, 37.6, 37.7, 37.8, 37.9, 38.0, 38.1, 38.2, 38.3, 38.4, 38.5, 38.6, 38.7, 38.8, 3 8. 9, 39. 0, 39. 1, 39. 2, 39. 3, 39. 4, 39. 5, 39. 6, 39. 7, 39. 8, 39. 9, 40. 0, 40. 1, 40. 2, 40. 3, 40. 4, 40. 5, 40. 6, 40. 7, 40. 8, 40. 9, 41. 0, 41. 1, 41. 2, 41. 3, 41. 4, 41. 5, 41. 6, 41.7, 41.8, 41.9, 42.0, 42.1, 42.2, 42.3, 42.4, 42.5, 42.6, 42.7, 42.8, 42.9, 4 3. 0, 43. 1, 43. 2, 43. 3, 43. 4, 43. 5, 43. 6, 43. 7, 43. 8, 43. 9, 44. 0, 44. 1, 44. 2, 44. 3, 44. 4, 44. 5, 44. 6, 44. 7, 44. 8, 44. 9, 45. 0, 45. 1, 45. 2, 45. 3, 45. 4, 45. 5, 45. 6, 45. 7, 45. 8, 45. 9, 46. 0, 46. 1, 46. 2, 46. 3, 46. 4, 46. 5, 46. 6, 46. 7, 46. 8, 46. 9, 47. 0, 4 7. 1, 47. 2, 47. 3, 47. 4, 47. 5, 47. 6, 47. 7, 47. 8, 47. 9, 48. 0, 48. 1, 48. 2, 48. 3, 48. 4, 48. 5, 48. 6, 48. 7, 48. 8, 48. 9, 49. 0, 49. 1, 49. 2, 49. 3, 49. 4, 49. 5, 49. 6, 49. 7, 49. 8, 49.9, 50.0, 50.1, 50.2, 50.3, 50.4, 50.5, 50.6, 50.7, 50.8, 50.9, 51.0, 51.1, 5 1. 2, 51. 3, 51. 4, 51. 5] [19. 8, 19. 9, 20. 0, 20. 5, 21. 8, 21. 9, 24. 1, 24. 4, 24. 5, 24. 8, 25. 5, 25. 7, 27. 0, 27. 2, 27. 3, 27. 4, 28. 0, 28. 3, 28. 5, 28. 7, 28. 9, 29. 0, 29. 7, 3 0. 1, 30. 3, 30. 4, 30. 5, 30. 7, 30. 8, 31. 2, 31. 8, 32. 0, 32. 2, 33. 1, 33. 4, 33. 8, 34. 4, 34. 7, 34. 9, 35. 1, 35. 6, 35. 7, 35. 9, 36. 0, 36. 1, nan, 16. 1, 16. 2, 16. 3, 16. 4, 16. 5, 16. 6, 16. 7, 16. 8, 16. 9, 17. 0, 17. 1, 17. 2, 17. 3, 17. 4, 17. 5, 17. 6, 17. 7, 17. 8, 17. 9, 18.0, 18.1, 18.2, 18.3, 18.4, 18.5, 18.6, 18.7, 18.8, 18.9, 19.0, 19.1, 19.2, 1 9. 3, 19. 4, 19. 5, 19. 6, 19. 7, 20. 1, 20. 2, 20. 3, 20. 4, 20. 6, 20. 7, 20. 8, 20. 9, 21. 0, 21. 1, 21. 2, 21. 3, 21. 4, 21. 5, 21. 6, 21. 7, 22. 0, 22. 1, 22. 2, 22. 3, 22. 4, 22. 5, 22. 6, 22.7, 22.8, 22.9, 23.0, 23.1, 23.2, 23.3, 23.4, 23.5, 23.6, 23.7, 23.8, 23.9, 2 4. 0, 24. 2, 24. 3, 24. 6, 24. 7, 24. 9, 25. 0, 25. 1, 25. 2, 25. 3, 25. 4, 25. 6, 25. 8, 25. 9, 26. 0, 26. 1, 26. 2, 26. 3, 26. 4, 26. 5, 26. 6, 26. 7, 26. 8, 26. 9, 27. 1, 27. 5, 27. 6, 27. 7, 27.8, 27.9, 28.1, 28.2, 28.4, 28.6, 28.8, 29.1, 29.2, 29.3, 29.4, 29.5, 29.6, 2 9. 8, 29. 9, 30. 0, 30. 2, 30. 6, 30. 9, 31. 0, 31. 1, 31. 3, 31. 4, 31. 5, 31. 6, 31. 7, 31. 9, 32. 1, 32. 3, 32. 4, 32. 5, 32. 6, 32. 7, 32. 8, 32. 9, 33. 0, 33. 2, 33. 3, 33. 5, 33. 6, 33. 7, 33.9, 34.0, 34.1, 34.2, 34.3, 34.5, 34.6, 34.8, 35.0, 35.2, 35.3, 35.4, 35.5, 3 5. 8, 36. 2, 36. 3, 36. 4, 36. 5, 36. 6, 36. 7, 36. 8, 36. 9, 37. 0, 37. 1, 37. 2, 37. 3, 37. 4, 37. 5, 37. 6, 37. 7, 37. 8, 37. 9, 38. 0, 38. 1, 38. 2, 38. 3, 38. 4, 38. 5, 38. 6, 38. 7, 38. 8, 38.9, 39.0, 39.1, 39.2, 39.3, 39.4, 39.5, 39.6, 39.7, 39.8, 39.9, 40.0, 40.1, 4 0. 2, 40. 3, 40. 4, 40. 5, 40. 6, 40. 7, 40. 8, 40. 9, 41. 0, 41. 1, 41. 2, 41. 3, 41. 4, 41. 5, 41. 6, 41. 7, 41. 8, 41. 9, 42. 0, 42. 1, 42. 2, 42. 3, 42. 4, 42. 5, 42. 6, 42. 7, 42. 8, 42. 9, 43.0, 43.1, 43.2, 43.3, 43.4, 43.5, 43.6, 43.7, 43.8, 43.9, 44.0, 44.1, 44.2, 4 4. 3, 44. 4, 44. 5, 44. 6, 44. 7, 44. 8, 44. 9, 45. 0, 45. 1, 45. 2, 45. 3, 45. 4, 45. 5, 45. 6, 45. 7, 45. 8, 45. 9, 46. 0, 46. 1, 46. 2, 46. 3, 46. 4, 46. 5, 46. 6, 46. 7, 46. 8, 46. 9, 47. 0, 47. 1, 47. 2, 47. 3, 47. 4, 47. 5, 47. 6, 47. 7, 47. 8, 47. 9, 48. 0, 48. 1, 48. 2, 48. 3, 4 8. 4, 48. 5, 48. 6, 48. 7, 48. 8, 48. 9, 49. 0, 49. 1, 49. 2, 49. 3, 49. 4, 49. 5, 49. 6, 49. 7, 49.8, 49.9, 50.0, 50.2, 51.4]

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self. setitem with indexer (indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

This is separate from the ipykernel package so we can avoid doing imports until

In [48]:

 $\label{lem:cond} $$C:\Lambda pplication\ Python\ Anaconda \ lib\ site-packages\ pandas\ core\ indexing. py:189: Set ting\ With\ Copy\ Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:6: Setting
WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [49]:

```
dfhematocrit[dfhematocrit['dl hematocrit max'] < dfhematocrit['dl hematocrit min']]
```

Out[49]:

	hematocrit_apache	d1_hematocrit_max	d1_hematocrit_min	h1_hematocrit_rr
28935	37.1	37.1	43.2	NaN
65541	NaN	20.4	50.0	NaN

```
In [50]:
```

```
# look into the data to find reasonable imputation method
# Check the frequency for ever d1 min value
backup=dfhematocrit[(dfhematocrit['dl_hematocrit_min']==43.2) | (dfhematocrit['dl_hematocrit_mi
n' ]==50) ]
backup=backup[backup['d1 hematocrit max']>=43.2]
freq= backup.groupby('dl_hematocrit_min')['dl_hematocrit_max'].value_counts()
freq
# Due to too many values for each d1 min values, impute the average of each group
hemaglobinmean=hemaglobinimpute.groupby('d1_hemaglobin_min')['d1_hemaglobin_max'].mean()
# print(hemaglobinmean)
# check1=dfhemaglobin[dfhemaglobin['d1_hemaglobin_max'] < dfhemaglobin['d1_hemaglobin_min']]
for i in ([43.2, 50.0]):
    imputation=backup.loc[backup['d1 hematocrit_min'] == i, 'd1_hematocrit_max'].mean()
    dfhematocrit.loc[(dfhematocrit.dl_hematocrit_max<dfhematocrit.dl_hematocrit_min) &
                     (dfhematocrit.dl_hematocrit_min==i), 'dl_hematocrit_max']=round(imputation, 1
)
# imputation check
# dfhematocrit[dfhematocrit.index.isin([28935, 65541])]
```

C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:17: Settin gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [51]:

```
dfhematocrit[dfhematocrit.index.isin([28935,65541])]
```

Out[51]:

	hematocrit_apache	d1_hematocrit_max	d1_hematocrit_min	h1_hematocrit_m
28935	37.1	43.7	43.2	NaN
65541	NaN	51.2	50.0	NaN

In [52]:

	hematocrit_apache	d1_hematocrit_max	d1_hematocrit_min	h1_hematocrit_m
2	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN
11	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN
58	NaN	NaN	NaN	NaN
66	NaN	NaN	NaN	NaN
86	NaN	NaN	NaN	NaN
87	NaN	NaN	NaN	NaN
91	NaN	NaN	NaN	NaN
99	NaN	NaN	NaN	NaN
107	NaN	NaN	NaN	NaN
123	NaN	NaN	NaN	NaN
131	NaN	NaN	NaN	NaN
139	NaN	NaN	NaN	NaN
180	NaN	NaN	NaN	NaN
183	NaN	NaN	NaN	NaN
185	NaN	NaN	NaN	NaN
204	NaN	NaN	NaN	NaN
212	NaN	NaN	NaN	NaN
214	NaN	NaN	NaN	NaN
226	NaN	NaN	NaN	NaN
236	NaN	NaN	NaN	NaN
237	NaN	NaN	NaN	NaN
244	NaN	NaN	NaN	NaN
247	NaN	NaN	NaN	NaN
252	NaN	NaN	NaN	NaN
271	NaN	NaN	NaN	NaN
281	NaN	NaN	NaN	NaN
300	NaN	NaN	NaN	NaN
314	NaN	NaN	NaN	NaN
87249	NaN	NaN	NaN	NaN
87255	NaN	NaN	NaN	NaN

	hematocrit_apache	d1_hematocrit_max	d1_hematocrit_min	h1_hematocrit_n
87257	NaN	NaN	NaN	NaN
87267	NaN	NaN	NaN	NaN
87274	NaN	NaN	NaN	NaN
87279	NaN	NaN	NaN	NaN
87311	NaN	NaN	NaN	NaN
87314	NaN	NaN	NaN	NaN
87315	NaN	NaN	NaN	NaN
87329	NaN	NaN	NaN	NaN
87342	NaN	NaN	NaN	NaN
87374	NaN	NaN	NaN	NaN
87378	NaN	NaN	NaN	NaN
87382	NaN	NaN	NaN	NaN
87385	NaN	NaN	NaN	NaN
87387	NaN	NaN	NaN	NaN
87393	NaN	NaN	NaN	NaN
87394	NaN	NaN	NaN	NaN
87395	NaN	NaN	NaN	NaN
87407	NaN	NaN	NaN	NaN
87419	NaN	NaN	NaN	NaN
87422	NaN	NaN	NaN	NaN
87443	NaN	NaN	NaN	NaN
87449	NaN	NaN	NaN	NaN
87452	NaN	NaN	NaN	NaN
87459	NaN	NaN	NaN	NaN
87463	NaN	NaN	NaN	NaN
87465	NaN	NaN	NaN	NaN
87468	NaN	NaN	NaN	NaN
87479	NaN	NaN	NaN	NaN

10167 rows × 5 columns

inr

```
In [53]:
```

```
# variable: inr
dfinr=training.filter(regex='inr')

# check day values missing while hour values not
print(len(dfinr[(dfinr.h1_inr_max.notna()) & (dfinr.d1_inr_max.isna())]),
    len(dfinr[(dfinr.h1_inr_min.notna()) & (dfinr.d1_inr_min.isna())]))
```

0 0

In [54]:

```
# Check if missing values are in pairs for max and min
print(len(dfinr[(dfinr.dl_inr_max.notna()) & (dfinr.dl_inr_min.isna())]),
    len(dfinr[(dfinr.dl_inr_max.isna()) & (dfinr.dl_inr_min.notna())]),
    len(dfinr[dfinr.dl_inr_max.notna()]))
```

0 0 32398

In [55]:

```
# data cleaning for min > max situation
dfinr[dfinr['d1_inr_max'] < dfinr['d1_inr_min']]

# data cleaning for value 0 situation
dfinr[dfinr.d1_inr_max==0]
dfinr[dfinr.d1_inr_min==0]</pre>
```

Out[55]:

```
d1_inr_max d1_inr_min h1_inr_max h1_inr_min
```

In [56]:

Out[56]:

55087

calcium

```
In [57]:
```

```
# variable: calcium
dfcalcium=training.filter(regex='calcium')
# check day values missing while hour values not
print(len(dfcalcium[(dfcalcium.hl calcium max.notna()) & (dfcalcium.dl calcium max.isna())]),
      len(dfcalcium[(dfcalcium.hl_calcium_min.notna()) & (dfcalcium.dl_calcium_min.isna())]))
# Check if missing values are in pairs for max and min
print(len(dfcalcium[(dfcalcium.dl_calcium_max.notna()) & (dfcalcium.dl_calcium_min.isna())]),
      len(dfcalcium[(dfcalcium.dl calcium max.isna()) & (dfcalcium.dl calcium min.notna())]),
      len(dfcalcium[dfcalcium.dl calcium max.notna()]))
# list unique values in d1_max data to check for abnoramal data
print(sorted(dfcalcium.dl calcium max.unique()),
      sorted(dfcalcium.dl_calcium_min.unique()))
0 0
0 0 75091
[6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7,
7.9, 8.5, 8.6, nan, 7.8, 8.0, 8.1, 8.2, 8.3, 8.4, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.
3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 1
0.8] [5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9,
7. 0, 7. 1, 7. 2, 7. 3, 7. 4, 7. 5, 7. 6, 7. 7, 8. 0, nan, 7. 8, 7. 9, 8. 1, 8. 2, 8. 3, 8. 4, 8.
5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10.0, 10.
1, 10.2, 10.3]
In [58]:
# data cleaning for min > max situation
dfcalcium[dfcalcium['dl_calcium_max'] < dfcalcium['dl_calcium_min']]
# where h1_calcium_max is taken as it is reasonable
dfcalcium.loc[(dfcalcium.dl_calcium_max<dfcalcium.dl_calcium_min) & (dfcalcium.hl_calcium_max.no
tnull()), 'd1 calcium max' ]=dfcalcium['h1 calcium max']
C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set
tingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/
indexing. html#indexing-view-versus-copy
  self. setitem with indexer (indexer, value)
C:\Application\Python\Anaconda3\lib\site-packages\ipykernel launcher.py:5: Setting
WithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/
indexing. html#indexing-view-versus-copy
```

```
In [59]:
```

[6.2] [7.2, 8.4, 8.5, 8.7, 8.9, 9.4, 9.6, 10.2, 10.3]

 $\label{limits} C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Setting\WithCopy\Warning:$

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [60]:

```
# data cleaning for value 0 situation
dfcalcium[dfcalcium.dl_calcium_max==0]
dfcalcium[dfcalcium.dl_calcium_min==0]
```

Out[60]:

```
d1_calcium_max d1_calcium_min h1_calcium_max h1_calcium_min
```

In [61]:

Out[61]:

12394


```
training = training.rename(columns={'ph_apache': 'arterial_ph_apache'})
arterial_ph=training.filter(regex='arterial_ph')
#impute h1 data once d1 data is null
arterial_ph.loc[arterial_ph['dl_arterial_ph_max'].isnull(),'dl_arterial_ph_max']=arterial_ph['hl_arterial_ph_max']
arterial_ph_loc[arterial_ph['dl_arterial_ph_min'].isnull(),'dl_arterial_ph_min']=arterial_ph['hl_arterial_ph_min']
# impute with apache covariate
arterial_ph.loc[arterial_ph['dl_arterial_ph_max'].isnull(),'dl_arterial_ph_max']=arterial_ph['arterial_ph_apache']
arterial_ph.loc[arterial_ph['dl_arterial_ph_min'].isnull(),'dl_arterial_ph_min']=arterial_ph['arterial_ph_apache']
```

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

after removing the cwd from sys. path.

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:7: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

import sys

C:\Application\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:8: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [63]:

#check the values with min>max
arterial_ph[arterial_ph. d1_arterial_ph_max<arterial_ph. d1_arterial_ph_min]. head(10)
#print(len(arterial_ph[arterial_ph. d1_arterial_ph_max<arterial_ph. d1_arterial_ph_min]))
##mpute the min>max data by h1 max since the max values are more likely to be wrong
arterial_ph. loc[(arterial_ph. d1_arterial_ph_max<arterial_ph. d1_arterial_ph_min) & (arterial_ph. h
1_arterial_ph_max. notnull()), 'd1_arterial_ph_max']=arterial_ph['h1_arterial_ph_max']
#impute by apache data
arterial_ph. loc[(arterial_ph. d1_arterial_ph_max<arterial_ph. d1_arterial_ph_min) & (arterial_ph. a
rterial_ph_apache. notnull())&(arterial_ph. h1_arterial_ph_max. isnull()), 'd1_arterial_ph_max']=art
erial_ph['arterial_ph_apache']

C:\Application\Python\Anaconda3\lib\site-packages\pandas\core\indexing.py:189: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

self._setitem_with_indexer(indexer, value)

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy import sys

In [64]:

arterial ph[arterial ph['dl arterial ph max'] <arterial ph['dl arterial ph min']]

Out[64]:

	arterial_ph_apache	d1_arterial_ph_max	d1_arterial_ph_min	h1_arterial_ph_r
30921	NaN	7.05428	7.420	NaN
40773	NaN	7.05428	7.537	NaN
65476	NaN	7.05428	7.400	NaN

In [65]:

[7.05428] [7.4, 7.42, 7.537000000000001]

In [66]:

freq

Out[66]:

dl_arterial_ph_min	dl_arterial_ph_max	
7. 400	7. 400	485
	7. 440	39
	7. 420	37
	7. 430	37
	7.410	32
	7. 450	31
	7. 460	28
	7.470	17
	7. 480	14
	7. 490	12
	7. 500	9
	7. 540	6
	7. 510	3
	7. 520	3
	7. 620	3
	7. 515	2
	7. 560 7. 600	2 2
	7. 401	1
	7. 407	1
	7. 419	1
	7. 426	1
	7. 429	1
	7. 432	1
	7. 434	1
	7.446	1
	7.453	1
	7. 455	1
	7. 459	1
	7. 472	1
7. 525	7. 525	4
	7. 527	1
7.526	7. 526	9
	7. 537	1
	7.541	1
	7. 565	1
7. 527	7. 527	5
	7. 538	1
	7. 597	1
7. 528	7. 528	4
	7. 532	1
7. 529	7. 529	3
5 500	7. 558	1
7. 530	7. 530	64
	7. 620	5
	7. 550 7. 560	3 2
	7. 560 7. 540	1
	7. 543	1
	7. 553	1
	7. 600	1
7. 531	7. 531	2
7. 532	7. 532	2
7. 533	7. 533	3
	7. 543	1
7. 534	7. 534	5
	7. 602	1

Name: d1_arterial_ph_max, Length: 1113, dtype: int64

In [67]:

training.head()

Out[67]:

	encounter_id	patient_id	hospital_id	hospital_death	age	bmi	elective_surgery
0	66154	25312	118	0	68	22.73	0
1	114252	59342	81	0	77	27.42	0
2	119783	50777	118	0	25	31.95	0
3	79267	46918	118	0	81	22.64	1
4	92056	34377	33	0	19	NaN	0

5 rows × 187 columns

In [68]:

```
# extract the data start with d and demographic info
train_id=training.filter(regex='id$', axis=1)
age=training.filter(regex='age', axis=1)
gender=training.filter(regex='gender', axis=1)
# train_d=training.filter(regex='^d1', axis=1)
# train_h=training.filter(regex='^h1', axis=1)
# resultd = pd. concat([train_id, train_d], axis=1, sort=False)
# resulth = pd. concat([train_id, train_h], axis=1, sort=False)
# resultdh = pd. concat([resultd, resulth], axis=1, sort=False)
```

In [69]:

Out[69]:

	d1_albumin_max	d1_albumin_min	d1_bilirubin_max	d1_bilirubin_min	d1_b
count	41598.000000	41598.000000	37402.000000	37402.000000	78255
mean	2.974751	2.900731	1.135617	1.067007	25.346
std	0.669813	0.673202	2.143682	2.032086	20.378
min	1.200000	1.100000	0.100000	0.100000	4.0000
25%	2.500000	2.400000	0.400000	0.400000	12.000
50%	3.000000	2.900000	0.600000	0.600000	19.000
75%	3.500000	3.400000	1.100000	1.000000	31.000
max	4.600000	4.500000	51.000000	51.000000	126.00

In [70]:

missing_clean=dataclean1.isnull().sum()/len(dataclean1)
missing_clean

Out[70]:

age	0.000000
gender	0.000149
_	
d1_albumin_max	0. 524513
d1_albumin_min	0. 524513
dl_bilirubin_max	0. 572475
dl_bilirubin_min	0. 572475
d1_bun_max	0.105504
d1_bun_min	0.105504
dl_calcium_max	0. 141670
d1_calcium_min	0. 141670
dl_creatinine_max	0.101480
dl_creatinine_min	0.101480
dl_glucose_max	0.058410
d1_glucose_min	0.058410
d1_hco3_max	0. 162599
d1_hco3_min	0. 162599
dl_hemaglobin_max	0. 131668
dl_hemaglobin_min	0. 131668
dl_hematocrit_max	0.116214
dl_hematocrit_min	0.116214
dl_inr_max	0.629674
d1_inr_min	0.629674
dtype: float64	

Data bining

```
In [71]:
```

```
# albumin
def albumin(x):
    # CF: 10. CF= conversion factor.
   x = x * 10
   if x <20:
       return 11
    if x<25:
       return 6
   if x<45:
       return 0
    if x \ge 45:
       return 4
   return 'Unknown'
def albumin1(x):
    # CF: 10. CF= conversion factor.
   x = x * 10
    if x <20:
       return 0
    if x<25:
       return 1
    if x<45:
       return 2
   if x \ge 45:
       return 3
   return 'Unknown'
# bilirubin
def bilirubin(x):
    # To convert results from mg/dL to \mu mol/L, multiply mg/dL by 17.1
   x = x * 17.1
    if x<2:
       return 0
    if x<3:
       return 5
    if x<5:
       return 6
    if x<8:
       return 8
    if x \ge 8:
       return 16
   return 'Unknown'
def bilirubin1(x):
    # To convert results from mg/dL to µ mol/L, multiply mg/dL by 17.1
    x = x * 17.1
    if x<2:
       return 0
    if x<3:
       return 1
    if x<5:
       return 2
    if x<8:
       return 3
    if x \ge 8:
       return 4
   return 'Unknown'
```

```
# bun
def bun(x):
    if x<=17:
       return 0
    if x<20:
       return 2
    if x<40:
       return 7
    if x<80:
       return 11
    if x \ge 80:
       return 12
   return 'Unknown'
def bun1(x):
    if x<=17:
       return 0
    if x<20:
       return 1
    if x<40:
       return 2
    if x<80:
       return 3
    if x \ge 80:
       return 4
   return 'Unknown'
# calcium: Chapter 143Serum Calcium
# https://www.ncbi.nlm.nih.gov/books/NBK250/
\# def calcium(x):
  return 'Unknown'
# creatinine
def creatinine(x):
   if x<0.5:
       return 3
    if x<1.5:
       return 0
    if x<1.95:
       return 4
    if x \ge 1.95:
       return 7
    return 'Unknown'
# creatinine
def creatinine1(x):
    if x<0.5:
       return 0
    if x<1.5:
       return 1
    if x<1.95:
       return 2
    if x \ge 1.95:
       return 3
   return 'Unknown'
```

```
# glucose
# Conversion Formula for Converting mmol/L to mg/dl: Multiply mmol/L by the number 18.
def glucose(x):
    x = x/18.
    if x<=2.1:
        return 8
    if x<=3.3:
        return 5
    if x<=11.1:
        return 0
    if x<19.4:
        return 3
    if x \ge 19.4:
        return 5
    return 'Unknown'
def glucose1(x):
    x = x/18.
    if x<=2.1:
        return 4
    if x<=3.3:
        return 3
    if x<=11.1:
        return 2
    if x<19.4:
        return 1
    if x > = 19.4:
        return 0
    return 'Unknown'
# hco3
# risk scale not found (apache 2)
def hco3(x):
    if x \ge 22 and x \le 31.9:
        return 0
    if x>31.9 and x<=40.9:
        return 1
    if x \ge 18 and x \le 22:
        return 2
    if x \ge 15 and x \le 52:
        return 3
    if x<15 or x>=52:
        return 4
    return 'Unknown'
def hco31(x):
    if x \ge 52:
        return 0
    if x \ge 41:
        return 1
    if x \ge 32:
        return 2
    if x \ge 22:
        return 3
    if x \ge 18:
        return 4
    if x \ge 15:
        return 5
    if x<15:
        return 6
```

```
return 'Unknown'
# dfhemoglobin
# reference: Chapter 151Hemoglobin and Hematocrit
# https://www.ncbi.nlm.nih.gov/books/NBK259/
\# def hemaglobin(x):
     if x \ge 12 and x \le 18:
#
         return 0
#
     if x<12 or x>18:
#
         return 1
#
     return 'Unknown'
# hematocrit
def hematocrit(x):
    if x \ge 41 and x < 50:
        return 0
    if x<41 or x>=50:
        return 3
    return 'Unknown'
# hematocrit
def hematocrit1(x):
    if x<41:
        return 0
    if x<50:
        return 1
    if x \ge 50:
        return 2
    return 'Unknown'
# # dfinr
# # https://www.vaughns-1-pagers.com/medicine/blood-INR-range-chart.htm
# def inr(x):
      if x<=1.2:
                   # min is 0.9, normal range 0.8-1.2
#
          return 0
#
      if x<=2:
#
          return 1
#
      if x<=3:
#
          return 2
#
      if x<=3.5:
#
          return 3
#
      if x<=4.5:
#
          return 4
#
      if x > 4.5:
#
          return 5
      return 'Unknown'
```

```
# create new columns bin respectively
dataclean1['alb_max_bin']=dataclean1.d1_albumin_max.apply(lambda x: albumin1(x))
dataclean1['alb min bin']=dataclean1.d1 albumin min.apply(lambda x: albumin1(x))
dataclean1['bil max bin']=dataclean1.dl bilirubin max.apply(lambda x: bilirubin1(x))
dataclean1['bil_min_bin']=dataclean1.dl_bilirubin_min.apply(lambda x: bilirubin1(x))
dataclean1['bun_max_bin']=dataclean1.d1_bun_max.apply(lambda x: bun1(x))
dataclean1['bun_min_bin']=dataclean1.d1_bun_min.apply(lambda x: bun1(x))
dataclean1['cre_max_bin']=dataclean1.dl_creatinine_max.apply(lambda x: creatinine1(x))
dataclean1['cre min bin']=dataclean1.d1 creatinine min.apply(lambda x: creatinine1(x))
dataclean1['glu max bin']=dataclean1.dl glucose max.apply(lambda x: glucose1(x))
dataclean1['glu_min_bin']=dataclean1.dl_glucose_min.apply(lambda x: glucose1(x))
dataclean1['hco3 max bin']=dataclean1.dl hco3 max.apply(lambda x: hco31(x))
dataclean1['hco3 min bin']=dataclean1.d1 hco3 min.apply(lambda x: hco31(x))
dataclean1['hto_max_bin']=dataclean1.d1_hematocrit_max.apply(lambda x: hematocrit1(x))
dataclean1['hto_min_bin']=dataclean1.dl_hematocrit_min.apply(lambda x: hematocrit1(x))
# dataclean1['inr max bin'] = dataclean1.dl inr max.apply(lambda x: inr(x))
# dataclean1['inr_min_bin']=dataclean1.dl_inr_min.apply(lambda x: inr(x))
# create new columns risk respectively
dataclean1['alb_max_risk']=dataclean1.d1_albumin_max.apply(lambda x: albumin(x))
dataclean1['alb min risk']=dataclean1.d1 albumin min.apply(lambda x: albumin(x))
dataclean1['bil max risk']=dataclean1.dl bilirubin max.apply(lambda x: bilirubin(x))
dataclean1['bil_min_risk']=dataclean1.dl_bilirubin_min.apply(lambda x: bilirubin(x))
dataclean1['bun_max_risk']=dataclean1.d1_bun_max.apply(lambda x: bun(x))
dataclean1['bun min risk']=dataclean1.d1 bun min.apply(lambda x: bun(x))
dataclean1['cre max risk']=dataclean1.d1 creatinine max.apply(lambda x: creatinine(x))
dataclean1['cre_min_risk']=dataclean1.d1_creatinine_min.apply(lambda x: creatinine(x))
dataclean1['glu_max_risk']=dataclean1.dl_glucose_max.apply(lambda x: glucose(x))
dataclean1['glu min risk']=dataclean1.dl glucose min.apply(lambda x: glucose(x))
dataclean1['hco3 max risk']=dataclean1.dl hco3 max.apply(lambda x: hco3(x))
dataclean1['hco3 min risk']=dataclean1.dl hco3 min.apply(lambda x: hco3(x))
dataclean1['hto max risk']=dataclean1.d1 hematocrit max.apply(lambda x: hematocrit(x))
dataclean1['hto min risk']=dataclean1.d1 hematocrit min.apply(lambda x: hematocrit(x))
# dataclean1['inr max bin']=dataclean1.d1 inr max.apply(lambda x: inr(x))
# dataclean1['inr min bin'] = dataclean1.d1 inr min.apply(lambda x: inr(x))
```

```
In [73]:
```

```
# add change columns
def changefunc(x, y):
    if x=='Unknown' and y=='Unknown':
        return 'Unknown'
    if x==v:
        return 0
    if x!=y:
        return 1
    return 'Error'
column_initials=['alb','bil','bun','cre','glu','hco3','hto']
for column_initials in column_initials:
    max = column_initials+'_max'+'_bin'
   min = column_initials+'_min'+'_bin'
    list=[]
    for i in range (0, len (dataclean1)):
        value=changefunc(dataclean1[max][i], dataclean1[min][i])
        list. append (value)
    dataclean1.loc[:,column_initials+'_change']=list
# column initials=['alb', 'bil', 'bun', 'cre', 'glu', 'hco3', 'hto']
# for i in column initials:
     print(change[i+' change'].unique())
```

In [74]:

```
# add final bin columns
column_initials=['alb','bil','bun','cre','glu','hco3','hto']
for column_initials in column_initials:
    maxbin = column_initials+'_max'+'_bin'
minbin = column_initials+'_min'+'_bin'
maxrisk = column_initials+'_max'+'_risk'
    minrisk = column initials+' min'+' risk'
    list=[]
    for i in range (0, len (dataclean1)):
         if dataclean1[maxrisk][i]=='Unknown' and dataclean1[minrisk][i]=='Unknown':
              value='Unknown'
         if dataclean1[maxrisk][i]>=dataclean1[minrisk][i]:
              value=dataclean1[maxbin][i]
         if dataclean1[maxrisk][i] < dataclean1[minrisk][i]:</pre>
              value=dataclean1[minbin][i]
         list.append(value)
    print(len(list))
    dataclean1.loc[:,column initials+' final']=list
```

Numeric Data

In [75]:

```
# calcium: Chapter 143Serum Calcium
# https://www.ncbi.nlm.nih.gov/books/NBK250/
# normal average is 9.5
calmaxmean=dataclean1.d1_calcium_max.mean()
calmaxstd=dataclean1.dl calcium max.std()
dataclean1['tempo calcium max'] = abs((dataclean1['d1 calcium max'] - calmaxmean)/calmaxstd-9.5)
calminmean=dataclean1.dl calcium min.mean()
calminstd=dataclean1.dl calcium min.std()
dataclean1['tempo_calcium_min'] = abs((dataclean1['d1_calcium_min'] - calminmean)/calminstd-9.5)
# dfhemoglobin
# reference: Chapter 151Hemoglobin and Hematocrit
# https://www.ncbi.nlm.nih.gov/books/NBK259/
# normal average is 15
hemoglobinmaxmean=dataclean1.dl hemaglobin max.mean()
hemoglobinmaxstd=dataclean1.dl hemaglobin max.std()
dataclean1['tempo_hemaglobin_max'] = abs((dataclean1['d1_hemaglobin_max'] - hemoglobinmaxmean)/he
moglobinmaxstd-15)
hemoglobinminmean=dataclean1.d1 hemaglobin min.mean()
hemoglobinminstd=dataclean1.dl hemaglobin min.std()
dataclean1['tempo_hemaglobin_min'] = abs((dataclean1['d1_hemaglobin_min'] - hemoglobinminmean)/he
moglobinminstd-15)
# # dfinr
# # https://www.vaughns-1-pagers.com/medicine/blood-INR-range-chart.htm
                   # min is 0.9, normal range 0.8-1.2
      if x<=1.2:
inrmaxmean=dataclean1.dl_inr_max.mean()
inrmaxstd=dataclean1.dl inr max.std()
dataclean1['tempo inr max'] = abs((dataclean1['d1 inr max'] - inrmaxmean)/inrmaxstd-1)
inrminmean=dataclean1.dl inr min.mean()
inrminstd=dataclean1.dl inr min.std()
dataclean1['tempo_inr_min'] = abs((dataclean1['d1_inr_min'] - inrminmean)/inrminstd-1)
```

```
In [91]:
```

```
# take the larger values with more risk
dataclean1 = dataclean1.fillna('Unknown')
column_names=['calcium','hemaglobin','inr']
for column names in column names:
    tempomax = 'tempo_'+column_names+'_max'
    tempomin = 'tempo_'+column_names+'_min'
    finalmax = 'd1_'+column_names+'_max'
finalmin = 'd1_'+column_names+'_min'
    list=[]
    for i in range(0, len(dataclean1)):
        if dataclean1[tempomax][i]=='Unknown' and dataclean1[tempomin][i]=='Unknown':
             value='Unknown'
        if dataclean1[tempomax][i]>=dataclean1[tempomin][i]:
             value=dataclean1[finalmax][i]
        if dataclean1[tempomax][i] < dataclean1[tempomin][i]:</pre>
             value=dataclean1[finalmin][i]
        list. append (value)
    print(len(list))
    dataclean1.loc[:,column_names+'_final']=list
```

87485 87485 87485

In [95]:

```
# extract the data start with d and h and id info
train_id=training.filter(regex='id$', axis=1)
train_d=dataclean1.filter(regex='^d1', axis=1)
train_bin=dataclean1.filter(regex='_bin', axis=1)
train_risk=dataclean1.filter(regex='risk', axis=1)
train_change=dataclean1.filter(regex='change', axis=1)
train_final=dataclean1.filter(regex='final', axis=1)
```

In [97]:

```
train_xjt = pd.concat([train_id, train_final, train_change, train_d,], axis=1, sort=False)
#train_xjt = pd.concat([train_risk, train_final, train_bin], axis=1, sort=False)
#train_xjt.filter(regex='alb', axis=1)
train_xjt.to_csv(r'C:\Users\DELL\Desktop\sc\train_cleaned_xjt.csv', index = False)
```