TICNI					
C NI I					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)
III Semester B. E. Examinations Nov/Dec-19
Computer Science and Engineering
DATA STRUCTURES USING C

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Convert the following infix expression to postfix expression:	00
	1.0	$A + B * (C - (D/E^{F}) * G) * H.$	02
	1.2	What is dangling pointer problem in C? How can it be avoided?	01
	1.3	Given pointer to node 'x' in a singly linked list, delete the node 'x' from	0.0
		the given linked list (pointer to starting node is not given).	02
	1.4	What does the following function do for a given linked list with first	
		node as head	
		void fun1(struct node * head)	
		 {	
		if(head == NULL)	
		return;	
		$fun1(head \rightarrow next);$	
		$printf("%d", head \rightarrow data);$	
		}	02
	1.5	A circular queue of size 5 has three elements 20,40 and 60 where	
		front= 0 and rear= 2. Show the value of front and rear after each of	
		these operations.	
		a) insert 50.	
		b) insert 10.	
		c) insert 30.	
		d) delete an item.	02
	1.6	State the condition to check whether the Circular Queue is full.	02
	1.7	On constructing a binary scorch tree for the elements	
		17,85,100,24,7,2,5,12 and 99. Identify the left and the right child for	
		node 7.	02
	1.8	Construct a splay tree for the elements 12,18,17,2,15	02
	1.9	Identify the ideal data structure for the following:	
		a) to implement a dictionary	
		b) to implement token system in a bank.	02
	1.10	Write a non-recursive algorithm or function to perform the preorder	
		traversal on a binary tree.	02
	1.11	In the delete operation on a heap node is always deleted	01

PART-B

		PART-B			
2	a	Discuss on algorithm to evaluate a given postfix expression and trace the same for $234 * 6/+$	08		
	b	Write a C program to check whether the given string is a palindron			
		or not using stack operations.	08		
3	a	Discuss the Enqueue operation on a linear queue.	02		
	b	Discuss the Josephus problem. Implement the same using the	00		
		appropriate data structure. Bring out the difference between:	08		
		i) malloc and calloc. ii) Enqueue and dequeue.	06		
		OR			
4	a	Write a C program to find the sum of an array using dynamic			
	b	memory allocation. Bring out difference between linear queue and circular queue and	04		
	D	their applications.	04		
	С	Write a C program to implement a queue using stacks.	08		
5		Write a C function to delete a node based on position in a singly			
		linked list.	06		
	b	Discuss the implementation of a stack using a singly linked list with header node.	08		
	c	What is a header node? What are the advantages of using header			
		node?	02		
		OR			
6	a	Write a C program to check whether the given double linked list with	10		
	b	header node is a palindrome Write a <i>C</i> function to delete alternate nodes in a doubly linked list.	10 06		
	~	Wille a b Tailetion to desce atternate near in a deast, imize non	0.0		
7	a	Perform The following: i) Construct an <i>AVL</i> tree by inserting the following elements in			
		the given order: 63, 9, 19, 27, 18, 108, 99, 81			
		ii) Consider the AVL tree given in Fig.7c and delete 72 from it.			
		45			
		35 3			
		多 通 图			
		(18)			
		Fig. 7e			
	b	Write a <i>C</i> function to perform deletion of a node in Binary search tree.	08 08		
	<u>.</u>	write a b ranction to perform detection of a node in binary scarcif free.	00		
8	а	Define Hashing. Explain any one method to resolve collision. Given			
		the values: $\{10,11,12,13,14,15,22,33,44,55,66,16,99,0\}$ and a hash function $h(x) = x \mod 7$, show the resulting tables after inserting the			
		values in the given order using separate chaining strategy.	08		
	b	What is the difference between a binary search tree and a heap? For a given sequence of numbers construct max heap and a BST			
		34,23,67,45,12,54,87,43,98,75,84,93,31	08		