Homework 4: Dielectric, Magnetostatics & Lorentz force

- Determine the energy stored in the electric field created by two plates capacitor whose space is filled with a dielectric.
- **2.** A charged particle, Q=0.5 C, enters a region with a uniform magnetic field $\vec{B}=2\hat{x}+3\hat{y}+4\hat{z}$ (in Tesla). If its velocity is given by $\vec{v}=2\hat{x}+3\hat{y}+2\hat{z}$ (in m/s), what is the magnitude of the magnetic force on the particle (in N)?
- **3.** One end of a straight wire segment is located at (x, y, z) = (0,0,0) and the other end is at (1m, 2m, 3m). A current of 2A flows through the segment. The segment sits in a uniform magnetic field $\vec{B} = 2\hat{x} 1\hat{y}$ (inTesla). What is the magnitude of the magnetic force (in N) on the wire segment?
- **4.** An electric power transmission line located an average distance of $20\ m$ above the earth's surface carries a current of $800\ Amps$ from east to west, in a region where the earth's magnetic field is $0.8\ gauss$ due north at 60° below the horizontal. What is the magnitude of the force per meter on the line?
- **5.** A charged particle, Q=0.1 C, traveling in the x -direction with velocity $\vec{v}=v_0\hat{x}$ enters a region of space that has an electric field in the y -direction given by $\vec{E}=E_0$ \hat{y} with $E_0=10$ V and a magnetic field in the z -direction given by $\vec{B}=B_0$ \hat{z} with $E_0=0.2$ Tesla. If the particle experiences no net force and continues with the same speed and direction, what is its speed v_0 (in m/s)?
- **6.** A charged particle traveling in the y —direction with a momentum of $0.01 \, kg \, ms$ enters a region of space that has a uniform $1 \, Tesla$ magnetic field in the z —direction as shown the Figure. If the particle enters the magnetic field at the point A and then exits the magnetic field at the point B located a distance of $0.5 \, m$ to the left of the point A, what is the charge of the particle (in mC)?

7. A charged particle traveling in the y —direction enters a region of space that has a uniform $2 \, Tesla$ magnetic field in the z-direction as shown in the Figure. If the particle has a charge of $0.1 \, C$ and a mass of $0.2 \, kg$ how long (in seconds) does it take for the particle to reverse direction and exit the region?

8. Particle #1 and particle #2 travel along the y —axis and enter a region of space that has a uniform $2\ Tesla$ magnetic field in the z —direction as shown in the Figure. Both particles have the same charge, $Q=0.1\ C$, and both have the same speed, $v=10\ m/s$. If the particles are a distance $\Delta x=x2-x1=0.3$ meters apart when they exit the region, what is the difference in their mass, $\Delta M=M2-M1$ (in grams)?

9. A circular loop of wire of radius $R=1\,m$ is carrying a current of $2\,A$ as shown in the Figure, A particle with charge $Q=3\times 10^{-3}\,C$ is on the axis of the loop (z-axis) a distance of d=0.5 meters away from the loop and is moving with a speed of $2\times 10^6 m/s$ along the x -axis (i.e. perpendicular to the axis of the loop). What is the magnitude of the magnetic force on the particle due to the loop?

