Интерфейсы и периферийные устройства

Раздел 3. Устройства ввода-вывода

Тема 7. Звуковая подсистема ПЭВМ

Лекция 11. Синтез звука. Звуковые карты

Запись и воспроизведение произвольного звука Основные методы синтеза звука и особенности их реализации.

Конструкция и принцип действия звуковой карты.

Звук

Звук представляет собой колебания физической среды (обычно воздуха) частотой приблизительно 20 ÷ 20000 Гц.

Все современные системы обработки звука основаны на

- преобразовании этих колебаний в электрический сигнал,
- последующей его (аналоговой или цифровой) обработки,
- вывода вновь в виде колебаний физической среды.

Эффект стереофонии достигается временной разницей колебаний, улавливаемой благодаря наличию приблизительно 20 см базы между приемниками аудиоинформации – ушами (разница порядка 7×10⁻⁴ сек).

Из истории звуковых подсистем

Примитивный динамик (посредством драйвера SPEAKER.DRV) для воспроизведения звуков одного тона без регулировки уровня звука;

1987 г., Фирма **Creative Labs** разработала *Creative Music System*, представлявший собой 12-голосный стереомузыкальный синтезатор, начавший распространяться в 1989 г. под маркой *Game Blaster*.

Карта **AdLib**; в основе их функционирования лежит метод, известный как '**синтез путем частотной модуляции**' (*FM Syntesis*).

Звуковые карты, как правило, оснащены **DSP** (*Digital Signal Processor*), обладающими многими дополнительными возможностями обработки звука (распознавание речи, реверберация, спецэффекты типа 3-х мерного звучания и др.).

АЦП

Запись произвольного звука осуществляется путем прямой оцифровки аналогового сигнала, представляющего собой электрическую копию звукового давления (преобразователем является датчик звукового давления - микрофон).

Частота оцифровки (частота преобразования) называется частотой выборки сигнала и по известной теореме **Котельникова-Найквиста** должна быть не ниже удвоенного значения максимальной частоты преобразуемого сигнала.

Преобразование аналогового сигнала в цифровую форму выполняет аналого-цифровой преобразователь (АЦП), служащий для дискретизации сигнала по времени (частота оцифровки) и квантования по уровню (собственно цифровое представление сигнала).

Характеристики процесса АЦП

Обычно в АЦП применяется технология преобразования с импульсно-кодовой модуляцией (РСМ, *Pulse Code Modulation*). Временные промежутки между моментами преобразования сигнала называют **интервалами выборки** (*Sampling Interval*); эта величина обратно пропорциональна частоте выборки (сэмплинг, *Sampling Rate*). Амплитуда аналогового сигнала (*Sample Value*) при каждом преобразовании делится (квантуется) по уровню и кодируется в соответствующий параллельный **цифровой код** (*Digital Sample*), Время преобразования аналогового сигнала в цифровой код именуется **временем выборки** (*Sampling Time*)

Разрешающая способность - наименьшее значение аналогового сигнала, которое приводит к изменению цифрового кода.

Разрешающая способность АЦП

Разрядность выборки - Измеренная амплитуда (выборка) преобразуется в целое число с некоторой погрешностью, определяемой разрядностью этого числа. Это преобразование в числа с заданной разрядностью называется квантованием. Погрешность при квантовании вносит шум тем больший, чем меньше разрядность. Теоретически, при празрядном квантовании отношение сигнал/шум будет составлять 6 п дБ.

На CD-DA применяется 16-разрядное квантование. Звуковые платы компьютеров обычно используют 8- и 16-разрядное квантование.

Пример:

если АЦП выдает 8-разрядный код, разрешающая способность равна 1/(2⁸)=1/256 от максимальной амплитуды аналогового сигнала (около 0,4% в относительных единицах),

16-разрядный АЦП имеет точность представления сигнала не хуже $1/(2^{16})=1/65536$ (0,0015%).

ЦАП - Сглаживание

Обратное преобразование звука в аналоговый сигнал осуществляется цифро-аналоговым преобразователем (ЦАП).

FM-синтез звука

Наиболее часто применяют цифровой FM-синтез звука, основы которого заложены в конце 70-х годов студентом Стенфордского университета Джоном Чоунингом (*John Chowning*):

Основан на генерации огибающей, управляющей амплитудой отдельных VCO-генераторов (Voltage-Controlled Oscillator). В цифровом FM-синтезе каждый из таких генераторов называется оператором.

В операторе выявляются два базовых элемента:

- •фазовый модулятор задает частоту (высоту) звука
- •генератор огибающей задает амплитуду (громкость) звука.

Обычно пара операторов определяет голос;

современные наборы микросхем для FM-синтеза звука содержат до 36 ÷ 40 голосов, осуществляя различные режимы (алгоритмы) FM-синтеза (в том числе и самые сложные, предполагающие использовать 18 и более операторов для синтеза речи).

В звуковых картах обычно присутствует специальный генератор шума, обрабатываемый одним оператором (оператором огибающей).

Два оператора

Генерация сигналов с заданной огибающей при получении звука посредством FM-синтеза

В большинстве случаев для синтеза одного инструмента достаточно двух операторов:

- оператора несущей (основной тон)
- оператора
 модулирующей частоты
 (обертон).

ADSR-генератор огибающей

Например, для струнных инструментов (фортепиано, гитара и др.) можно выделить общие моменты –

•при нажатии произвольной клавиши (возбуждении колебаний струны) амплитуда сначала быстро возрастает до максимума, *Attack* •затем несколько спадает, *Decay*,

•после чего следует относительно продолжительный участок медленного падения амплитуды *Sustain*,

Release

•наконец, участок быстрого затухания.

Табличный или WT-синтез (Wave Table)

Идея состоит в использовании специальных алгоритмов, позволяющих по одному лишь характерному тону (*выборке*) музыкального инструмента воспроизвести все остальные тона (фактически восстановить его полное звучание).

Выборки сигналов (таблицы) сохраняются в ROM или программно загружаются в RAM звуковой карты, после чего специализированный WT-процессор выполняет операции над выборками сигнала, изменяя их амплитуду и частоту.

При этом генерируемое WT-методом звучание ближе к звуку реальных инструментов, нежели при FM-технологии. Дополнительную гибкость WT-методу дает возможность простого изменения таблиц выборок; многие карты поддерживают как FM- так и WT-синтез.

WF-метод

WF-метод (*Wave Form***)** генерации звучания основан на преобразовании звуков в сложные математические формулы и дальнейшем применении этих формул для управления мощным процессором с целью воспроизведения звука;

от WF-синтеза ожидают еще лучшей (относительно FM и WTтехнологий) реальности звучания музыкальных инструментов при ограниченных объемах звуковых файлов.

Методы сжатия звука

Для сокращения потока данных используются иные (отличные от PCM) методы кодирования аналогового сигнала.

 Кодирование, основанное на известных характеристиках аналогового сигнала; при т.н. µ -кодировании аналоговый сигнал преобразуется в цифровой код, определяемый логарифмом величины сигнала (а не его линейным преобразованием).

Недостаток метода - необходимость иметь априорную информацию о характеристиках исходного сигнала.

• Методы преобразования, не требующие априорной информации об исходном сигнале.

При дифференциальной импульсно-кодовой модуляции (DPCM, Differential Pulse Code Modulation) сохраняется только разность между текущим и предшествующим уровнями сигнала (разница требует для цифрового представления меньшего количества бит, чем полная величина амплитуды).

Наибольшее распространение получила *адаптивная импульсно-кодовая модуляция* (*ADPCM, Adaptive Pulse Code Modulation*), исп-ся 8-или 4-разрядное кодирование для разности сигналов (предложила фирма *Creative Labs*), обеспечивает сжатие данных до 4:1.

Методы сжатия звука (продолжение)

Технологии дифференциальной импульсно-кодовой модуляции связаны с накапливающейся со временем ошибкой, поэтому применяются специальные меры периодической калибровки АЦП. При дельта-модуляции (DM, Delta Modulation) каждая выборка состоит всего из одного бита, определяющего знак изменения исходного сигнала (увеличение или уменьшение); дельта-модуляция требует повышенной частоты сэмплинга.

• Часто применяются иные (программные) методы сжатия/распаковки аудиоинформации; среди них в последнее время наиболее популярен формат MP3, разработанный институтом Fraunhofer IIS (Fraunhofer Institute Integrierte Schaltungen, www.iis.fhg.de) и фирмой THOMSON (полная спецификация формата MP3 опубликованы на сайте www.mp3tech.org). Полное название стандарта MP3 звучит MPEG-Audio Layer-3 (где MPEG суть Moving Picture Expert Group, не путать с предназначенным для использовании в телевидении высокой четкости стандартом MPEG-3).

конкурент MP3 - формат MPEG-4

Форматы звуковых файлов

- WAVE (.wav) наиболее широко распространённый звуковой фомат, но не обеспечивает достаточно хорошего сжатия.
- MPEG-3 (.mp3) Используя для оцифровки музыкальных записей. При кодировании применяется психоакустическая компрессия, при которой из мелодии удаляются звуки, плохо воспринимаемые человеческим ухом.
- RealAudio (.ra, .ram) формат, разработанный для воспроизведения звука в Интернет в реальном времени. Получающееся качество в лучшем случае соответствует посредственной аудиокассете.
- MIDI (.mid) цифровой интерфейс музыкальных инструментов (Musical Instrument Digital Interface). Интерфейс MIDI представляет собой протокол передачи музыкальных нот и мелодий. Т.е. в файле хранятся описания высоты и длительности звучания музыкальных инструментов. МIDI файлы занимают меньший объём (единица звукового звучания в секунду), чем эквивалентные файлы оцифрованного звука.

Wave-формат

- Обычно в АЦП применяется технология преобразования с импульсно-кодовой модуляцией (PCM, *Pulse Code Modulation*).
- WAVE-форма звука получается при **оцифровке**, или **дискретизации**, непрерывной звуковой волны (англ. wave волна), точнее, аналогового аудиосигнала.

- (СМ. СЛАЙД 5 : АЦП измеряет амплитуду волны через равные промежутки времени и запоминает в Wave-файл измеренные значения (выборки, по англ. sample, откуда еще одно название дискретизации сэмплинг).
 - Обратное преобразование WAVE-формы звука в аналоговый сигнал осуществляется ЦАП)

Параметры РСМ

WAVE-форма цифрового звука характеризуется пятью параметрами:

- частотой дискретизации (количество выборок в секунду)
- разрядностью выборок
- числом каналов или звуковых дорожек, Обычные звуковые платы позволяют использовать 1 или 2 звуковых канала (дорожки) WAVE-звука "моно" и "стерео". Оба канала обрабатываются отдельно по одним и тем же алгоритмам, хотя и одновременно.
- алгоритмом компрессии/декомпрессии кодеком стандарты Motion Picture Experts Group -Группы экспертов в области кино,

форматом хранения - часто кодек определяет и формат аудиофайла

Кодеки

- Для сжатия используются стандарты MP2 и MP3; применяется психоакустическая компрессия, при которой удаляются звуки, не воспринимаемые человеческим ухом; сжимает в несколько десятков раз при довольно высоком качестве;
- **MP3** -- сокращение от MPEG Layer3. Данная схема является наиболее сложной схемой семейства MPEG Layer 1/2/3. Она требует наибольших затрат машинного времени для кодирования по сравнению с двумя другими и обеспечивает более высокое качество кодирования. Используется главным образом для передачи аудио в реальном времени по сетевым каналам и для кодирования CD Audio.

Формат хранения (расширение) - ".mpa", ".mp3",

RealAudio – метод, разработанный фирмой RealNetworks, сжимает в несколько десятков раз, но с невысоким качеством; используется в Интернете для проигрывания звуковых файлов в реальном времени.

Формат хранения (расширение) - ".ra", ".rm".

MIDI-формат

- Musical Instrument Digital Interface цифровой интерфейс музыкальных инструментов. Разработан в 1982 г. группой ведущих производителей электронных инструментов для унификации методов управления ими и объединения нескольких инструментов в единую систему.
- Под MIDI понимается как способ соединения инструментов кабели, разъемы, способ передачи сигналов так и набор команд-сообщений, передаваемых между инструментами. Большинство сообщений передается в реальном времени и отражает воздействия исполнителя на клавиатуру, педали, регуляторы и прочие органы управления инструментом. Прочие сообщения служат для установки общих режимов работы инструмента, переноса параметров звука, оцифровок, партитур и т.п.
- В настоящее время MIDI является обязательным интерфейсом любого электронного инструмента и стандартным интерфейсом в музыкальных студиях. С его помощью соединяются не только музыкальные инструменты, но и средства записи, воспроизведения и обработки звука, вспомогательная аппаратура. Синтезаторы звуковых карт также управляются по MIDI аппаратно или с помощью программного драйвера-интерпретатора.

Звуковые карты

- чисто звуковые, содержащие только тракт цифровой записи/воспроизведения. Эти платы позволяют только записывать или воспроизводить непрерывный звуковой поток, наподобие магнитофона. Вся работа по запоминанию записываемого и подготовке воспроизводимого потока возлагается на программное обеспечение; оцифрованный звук при этом в самой плате не хранится. Некоторые звуковые платы имеют встроенные сигнальные процессоры для обработки звука в процессе его записи или воспроизведения.
- чисто музыкальные, содержащие только музыкальный синтезатор. Такие платы ориентированы прежде всего на генерацию относительно коротких музыкальных звуков по командам от центрального процессора; сами звуки при этом либо создаются параметрически, либо воспроизводятся оцифровки, заранее помещенные в память синтезатора (ПЗУ или ОЗУ). Музыкальные платы не имеют возможности записи звука и, даже при наличии ОЗУ в синтезаторе, не рассчитаны на воспроизведение непрерывного звукового потока, хотя иногда этого можно добиться при помощи особых методов. Некоторые музыкальные платы содержат эффект-процессор для обработки создаваемого звука.
- комбинированные, или звуко-музыкальные, с объединенным на одной плате цифровым трактом и музыкальным синтезатором (обычно WT); платы только с FM-синтезатором, который сильно ограничен для музыкального применения, чаще всего относят к категории чисто звуковых.

Аналоговые карты

По степени использования аналоговой обработки цифровой технологией фирма Intel различает три градации звуковых карт: аналоговые Digital Ready digital only

Аналоговые (analog) карты имеют аналоговые входные (микрофон, линейный вход, CD) и выходные (линейный вход и вход от усилителя) цепи. В этих картах чаще всего применяются аналоговые микшеры. На картах располагается и порт традиционного аналогового джойстика и MIDI. В первом поколении карт использовалась шина ISA, аудиокристаллы располагались и на некоторых системных платах. Теперь их сменяют карты для PCI, но при этом обычно сохраняется совместимость с SB 16.

Kapты Digital Ready

Карты Digital Ready позволяют заменить входные и выходные аналоговые интерфейсы цифровыми, используя шины общего назначения (USB, FireWire) и специальные цифровые аудиоинтерфейсы (S/PDIF, I2S) для подключения цифровой аудиоаппаратуры. В этих картах аудиопоток от любого источника внутри карты представляется в цифровом виде и может перенаправляться как на аналоговые, так и на цифровые внешние интерфейсы или носители информации. В отличие от первых карт, где характеристики АЦП (разрядность, максимальная частота преобразования) часто были хуже, чем у ЦАП, теперь упор сделан на АЦП.

Полностью цифровые (digital only)

В полностью цифровых (digital only) картах совершенно отсутствуют аналоговые интерфейсы, в них используются интерфейсы S/PDIF, I2S, AC-Link, а также ввод-вывод по шинам USB и FireWire. В этих картах от традиционных 16-битных стереостандартов переходят к многоканальным системам большей разрядности и с частотой квантования 48 кГц и выше. Переход на полностью цифровую обработку аудиосигналов, включая микширование, фильтрацию, позиционирование и применение эффектов, стал возможен даже для программной реализации на современных процессорах (для этого, в частности, предназначалась еще технология ММХ).

Схема звуковой карты

- 3 формы звуковых данных: аналоговая, WAVE-, MIDI-форма.
- Внешний (по отношению к звуковой плате) аналоговый сигнал поступает по
- 1. микрофонному входу от микрофона,
- 2. **линейному входу** от линейного аудиовыхода любого теле-радио устройства,
- 3. **внутреннему аналоговому аудиокабелю**, идущему от аналогового аудиовыхода дисковода CD-ROM (такой дисковод имеет собственный ЦАП, позволяющий ему автономно, т.е. без участия звуковой платы проигрывать цифровые аудиодиски).

Аналоговых выхода на плате два:

- 1. **наушниковый** на наушники или пассивные акустические колонки с предварительным усилением с помощью внутреннего усилителя (не очень качественного),
- 2. **линейный** (без усиления, но с сохранением качества) на линейный аудиовход любого воспроизводящего или записывающего теле-радио устройства (активные акустические колонки, магнитофон и т.п.).
- Входной микшер соединяет (микширует) все поступающие к нему аналоговые потоки в один, который передаётся на оцифровку и запись в WAVE-файл. Выходной микшер соединяет все поступающие к нему аналоговые потоки в один, который передаётся на аналоговые выходы. Оба микшера могут управлять уровнем каждого канала каждого своего входного потока и отключать ненужные потоки. Работают они одновременно и, как правило, независимо друг от друга.

Комбинированные карты

- Блок цифровой записи/воспроизведения, называемый также цифровым каналом, или трактом, карты. Осуществляет преобразования аналог->цифра и цифра->аналог в режиме программной передачи или по DMA. Состоит из узла, непосредственно выполняющего аналогово-цифровые преобразования АЦП/ЦАП (международное обозначение coder/decoder, codec), и узла управления. АЦП/ЦАП либо интегрируется в состав одной из микросхем карты, либо применяется отдельная микросхема (AD1848, CS4231, CT1703 и т.п.). От качества применяемого АЦП/ЦАП во многом зависит качество оцифровки и воспроизведения звука; не меньше зависит она и от входных и выходных усилителей.
- Цифровой канал большинства распространенных карт (кроме GUS) совместим с Sound Blaster Pro (8 разрядов, 44 кГц моно, 22 кГц стерео).
- Разрядность оцифровки, передаваемой по каналу DMA, не зависит от разрядности самого канала и определяется только возможностями карты.

- **Блок синтезатора**. Построен либо на базе микросхем FM-синтеза OPL2 (YM3812) или OPL3 (YM262), либо на базе микросхем WT-синтеза (GF1, WaveFront, EMU8000, Dream и т.п.), либо того и другого вместе.
- Работает либо под управлением драйвера (FM, большинство WT) программная реализация MIDI, либо под управлением собственного процессора - аппаратная реализация. Почти все FM-синтезаторы совместимы между собой, различные WT-синтезаторы - нет. Большинство WT-синтезаторов содержит встроенное ПЗУ со стандартным набором инструментов General MIDI (128 мелодических и 37 ударных инструментов), некоторые также содержат ОЗУ для загрузки дополнительных оцифрованных звуков, которые будут использоваться при исполнении музыки. Загружаемые звуки обычно оформляются в наборы (банки), содержащие тематические или универсальные наборы звуков (инструментов). Для композиции или арранжировки в основном применяются различные тематические банки, многие из которых зачастую используются одновременно, для простого проигрывания MIDI-файлов - универсальные (GM, GS, MT-32 и т.п.).

- **Блок микшера**. Осуществляет регулирование уровней, коммутацию и сведение используемых на карте аналоговых сигналов. В состав микшера входят предварительные, промежуточные и выходные усилители звуковых сигналов.
- Аналоговые сигналы от различных источников микрофона, CD (здесь обычно используется аналоговый интерфейс CD-ROM), линейного входа, а также ЦАП и синтезатора смешиваются микшером. Микшер для каждого входа имеет аналоговые регуляторы с цифровым управлением, позволяющие изменять усиление и баланс стереоканалов. Микшер может быть дополнен регулятором тембра простейшим регулятором усиления высоких и низких частот или многополосным эквалайзером (на рисунке не показан). С выхода микшера аналоговый сигнал поступает на линейный выход и оконечный усилитель.
- HRTF Head Related Transfer Function. Специальный алгоритм преобразования звукового сигнала, учитывающий особенности восприятия звука слуховым аппаратом человека. Используется в различных технологиях создания объемного звучания.

Звуковая подсистема

- Традиционно архитектура ПК не предусматривала возможности обработки звука, поскольку изначально ПК был ориентирован на деловые задачи.
- Первые звуковые устройства были реализованы в виде карт расширения для стандартной периферийной шины, в то время шины ISA. Они обрабатывали два типа данных оцифрованный звук в линейном формате (РСМ) и музыкально-нотные данные (МIDI). Обмен осуществлялся через порты ввода/вывода и каналы DMA.
- При переходе к шине PCI возникли проблемы совместимости, которые решались с помощью механизмов PC-PCI и DDMA (эмуляция стандартного DMA-контроллера шины ISA).
- Переход звуковых карт на шину PCI Express неизбежен, хотя никаких преимуществ это не дает.
- Современные аудиокарты оснащаются цифровыми процессорами (DSP) для реализации функций аппаратной обработки звука.

Параметры звуковой карты

Основные параметры - разрядность, максимальная частота дискретизации, количество каналов (моно или стерео), параметры синтезатора, расширяемость, совместимость.

Под разрядностью карты имеется в виду разрядность цифрового представления звука - 8 или 16 бит. 8-разрядные карты дают качество звука, близкое к телефонному; 16-разрядные уже подходят под определение "Hi-Fi" и теоретически могут обеспечить студийное качество звучания, хотя практически это реализуется очень редко. (Разрядность представления звука не имеет никакой связи с разрядностью системной шины для карты, однако карта для 32-разрядной шины, напр., PCI, будет работать с несколько меньшими накладными расходами на запись/воспроизведение оцифрованного звука, чем карта для ISA).

Максимальная частота дискретизации (оцифровки) определяет максимальную частоту записываемого/воспроизводимого сигнала, которая примерно равна половине частоты дискретизации. Для записи/воспроизведения речи может быть достаточно 6-8 кГц, для музыки среднего качества - 20-25 кГц, для высококачественного звучания необходимо 44 кГц и больше. В некоторых картах можно повысить частоту дискретизации ценой отказа от стереозвука: два канала по 22 кГц, либо один канал на 44 кГц.

Параметры звуковой карты

Параметры синтезатора определяют возможности карты в синтезе звука и музыки. **Тип синтеза** - FM или WT - определяет вид звучания музыки: на FM-синтезаторе инструменты звучат очень бедно, со "звенящим" оттенком, имитация классических инструментов весьма условна; на WT-синтезаторе звучание более "живое", "сочное", классические инструменты звучат естественно, а синтетические - более приятно, на хороших WT-синтезаторах может даже создаться впечатление "живой игры" или "слушания CD". Число голосов (polyphony) определяет предельное количество элементарных звуков, могущих звучать одновременно. Объем ПЗУ или ОЗУ WT-синтезатора говорит о количестве различных инструментов или качестве их звучания (ПЗУ на 4 Мб может содержать 500 инструментов среднего качества или обычный, но хороший GM), но большой объем ПЗУ не означает автоматически хорошего качества самплов, и наоборот. Для собственного музыкального творчества большое значение имеют возможности синтезатора по обработке звука (огибающие, модуляция, фильтрование, наличие эффект-процессора), а также возможность загрузки новых инструментов.

Параметры звуковой карты

Расширяемость определяет возможности по подключению

дополнительных устройств, установке микросхем, расширению объема ПЗУ или ОЗУ и т.п. На многих картах есть 26-разрядный внутренний разъем для подключения дочерней платы, представляющей собой дополнительный WT-синтезатор. Практически на каждой карте есть разъем для подключения CD-ROM с интерфейсом Sony, Mitsumi, Panasonic или IDE (сейчас популярны в основном последние два; IDEинтерфейс многих карт допускает подключение винчестера), бывают разъемы цифрового выхода (SPDIF) для подключения к студийному оборудованию, разъемы для подключения модема и другие. Некоторые карты допускают установку DSP и дополнительной памяти для самплов WT-синтезатора.