STATISTICS & ML WITH R

Mapping causal & predictive approaches

2024

M. Chiara Mimmi & Luisa M. Mimmi

DAY 4 - LECTURE OUTLINE

Mapping causal & predictive approaches

- Illustrating different study designs
- Learning the vocabulary of causal analysis
- Visual understanding of causal pathways, including:
 - Collider variables
 - Confounder variables
 - Mediator variables
- Learn how to address causal pathways in modeling, based on the research question
- Defining causal outcomes and commonly used "estimands" (ATE, ATT, ATU)
- Understand proper statistical methods to estimate ATE, ATT, ATU based on research question and target group
- Introducing Machine Learning (ML)
 - purpose
 - key algorithms' categories

From observational to experimental studies

- "OBSERVATIONAL STUDIES" on variables of interest and their relationships have no controlled assignment of the treatment
 - We may find CORRELATION / ASSOCIATION, but it DOES NOT IMPLY CAUSATION!
 Why?
 - ... hidden variables may affect the relationship between the explanatory variable and the response variable
 - ...but often used (implicitly or not) to estimate causal effect of an exposure!
- "EXPERIMENTAL STUDIES" seek to uncover CAUSATION, so they are designed to provoke a response
 - Researchers assign the treatment to an experimental unit (or subject) and observing its effect
 - These studies use some ad hoc design principles and controlled independent variables

Experimental and non-experimental study designs...

Source: https://bookdown.org/jbrophy115/bookdown-clinepi/design.html

Different goals of statistical modeling (part 1/2)

- 1. ASSOCIATION/CORRELATION → observational studies
 - aimed at **summarizing or representing the data structure**, <u>without</u> an underlying causal theory
 - may help form hypotheses for explanatory and predictive modeling
- 2. CAUSAL EXPLANATION → experimental studies
 - aimed at **testing "explanatory connection"** between <u>treatment</u> <u>and outcome</u> variables
 - prevalent in "causal theory-heavy" fields (economics, psychology, environmental science, etc.)
- Note:
 - ✓ The same modeling approach (e.g., fitting a regression model) can be used for different goals
 - ✓ While they shouldn't be confused, **explanatory power** and **predictive accuracy** are complementary goals: e.g., in bioinformatics (which has little theory and abundance of data), predictive models are pivotal in generating avenues for causal theory.
- 3. **EMPIRICAL PREDICTION** → algorithmic machine learning and datamining modeling

Different goals of statistical modeling (part 2/2)

- 1. ASSOCIATION/CORRELATION → observational studies
- 2. CAUSAL EXPLANATION → experimental studies
- 3. EMPIRICAL PREDICTION → algorithmic machine learning and datamining modeling
 - aimed at predicting new or future observations (without necessarily explaining how)
 - relies on big data
 - prevalent in fields like natural language processing, bioinformatics, etc.. In epidemiology, there is more of a mix <u>causal explanation & empirical</u> <u>prediction</u>
- Notes:
 - ✓ "Prediction" does not necessarily refer to future events, but rather to future datasets that were previously unseen to the algorithm

A framework for CAUSAL ANALYSIS

Key terminology and visual causal maps

The conceptual framework for causal analysis (1/3)

Fundamental vocabulary:

- Intervention decisions and actions that change the behaviors or situation of people/firms/other subjects (drug, vaccine, program participation)
 - TREATMENT = commonly used in experimental studies when researchers directly "assigns" the **causal variable**
 - EXPOSURE = commonly used observational studies when participants "naturally" experience the the **causal variable**
- Subjects = those that may be affected (at least in principle), in fact are
 - TREATED subjects
 - UNTREATED subjects
- Outcome = variable(s) that may be affected by the intervention
 - can be caused by exposure either directly or through an intermediate process
- Causation = causal processes that lead to the development of outcomes

The conceptual framework for causal analysis (2/3)

- Fundamental vocabulary ("tricky ones"):
 - **Bias** = systematic error that can occur <u>at different stages</u> of the study: *data collection*, *analysis* or *interpretation* of the causal relationship exposure-outcome.
 - **Selection bias** = both the exposure and the outcome affect whether an individual is included in the sampled population
 - **Sampling bias** = some members of the intended population are less likely to be included than others
 - Attrition bias = participants who drop out of a study systematically differ from those who remain
 - Non-response bias = participants who refuse to participate in the study systematically differ from those who take part
 - Recall bias = a systematic difference in the ability of participant groups to accurately recall information
 - Information bias = there is misclassification or inaccurate measurement (e.g., patients underreporting smoking habits)
 - •

Check out this list of all types of bias: https://quantifyinghealth.com/list-of-biases/

The conceptual framework for causal analysis (3/3)

- Fundamental vocabulary ("tricky ones" 6):
 - Collider = variable that is influenced by treatment and outcome (like a "common effect")
 - **EXAMPLE**: sleepiness (Z), with shift work (X) and apnea (Y)
 - Conditioning on or controlling for a collider in the causal model can create a distortion ("collider bias")
 - Confounder = variable that affect both treatment and outcome ("apparent" cause), but it is not in the causal pathway
 - **EXAMPLE**: smoking (Z), with exercise (X) and lung cancer (Y)
 - Most confounder variables involve some kind of selection (e.g., self-selection) that can be addressed stratifying subjects by it
 - Mediator = is a variable that is in the causal pathway and "explains" why treatment affects outcome (like a "mechanisms")
 - **EXAMPLE**: immune function (Z), with exercise (X) and lung cancer (Y)
 - Conditioning on or controlling for a mediator can be done to assess what part of the effect they play

Estimands, **Estimators**, **Estimates**

- The **estimand** is the target of interest
 - EXAMPLE: expected value of the difference in potential outcomes across all individuals
- The estimator is the method by which we approximate this estimand using data ("recipe")
 - EXAMPLE: in randomized controlled trial, our estimator could just be the average outcome among those who received the exposure A minus the average outcome among those who receive exposure B
- The estimate is the value we get when we plug our data into the estimator
 - EXAMPLE: randomized controlled trial, our estimator could just be the average outcome among those who received the exposure A minus the average outcome among those who receive exposure B

Visualizing causal maps

A helpful tool in guiding statistical modeling

Typical challenges in estimating causal effects: visual intuition

- Consider 3 distinct datasets: while their statistical summaries and visualizations are very similar, the **true causal effect differs!**
- **Deciding the** correct model requires knowledge of the data-generating mechanism (i.e. the random assignment to exposure/not exposure in experiments)

Source: Barrett, M., McGowan, L. D., & Gerke, T. (2024). Causal Inference in R. Retrieved from https://www.r-causal.org/

Typical challenges in estimating causal effects: visual intuition

- Directed acyclic graphs (DAGs) can offer visual intuition of the causal nexus at play in the 3 datasets. Failure to adjust models to these situation leads to BIAS
 - X is some continuous exposure of interest, Y a continuous outcome, and Z a known, <u>measured</u> factor

- X = sodium intake
- Y = systolic blood pressure
- Z = urinary protein excretion

(1) Collider

(3) a "**MEDIATOR**" is caused by X and then it causes Y. E.g.:

- X = screen time
- Y = obesity
- Z = physical exercise

Source: Barrett, M., McGowan, L. D., & Gerke, T. (2024). Causal Inference in R. Retrieved from https://www.r-causal.org/

How to address causal pathways in modeling

This will be re-visited through practical examples in Lab 4

How to deal with collider (common effect) when modeling?

- We must NOT control for collider.
- Colliders CAN HIDE REAL CAUSE EFFECTS
 - i.e., it would distort the true relationship between the exposure and the outcome

How to deal with confounder (common cause) when modeling?

Causal map with CONFOUNDER (Z)

- We must control for a <u>confounder</u>, so we reduce bias:
- 1) At **design** stage:
 - Random assignment
 - Restriction (only participants of a certain confounder category)
 - Matching observations (confounder distributed evenly by exposure)
- 2) In **analysis** stage:
 - Stratifying sample in subgroups (by confounding)
 - Including term in regression
 - Inverse probability weighting (equalizing frequency of counfounder by exposure)

23

 Instrumental variable estimation

Source: Excellent reading https://quantifyinghealth.com/control-confounding/

How to deal with mediator (mechanism) when modeling?

Causal map with MEDIATOR (Z)

- We could control for the mediator, depending on which effect we focus on:
 - with UNADJUSTED MODEL we get only the <u>total</u> effect (direct + indirect) of X on Y
 - with ADJUSTED MODEL we separate the <u>direct</u> effect of X on Y (not mediated), and the <u>indirect</u> effect of M on Y (mediated)
- Normally both models are shown
- The Adjusted model enables to see the PROPORTION of the MEDIATOR mechanism in the causal path

12/03/2024

Measuring causal outcomes of interest

Commonly used "estimands" (ATE, ATT, ATU) and how to select and interpret them correctly for making valid inferences

Defining potential outcomes at the subject level (experimental unit)

- NOTATION:
 - and are the potential outcomes in the absence and presence of treatment
 - for patient *i* in a study on a new drug on blood pressure,
 - •
 - = with takes new drug
- ITE = Individual Treatment Effect (*) = difference, for subject , between potential outcome if treated and if untreated

where treatment is

- (*) ITE is never observable!!
- Hence, we will look at averages...
- ATE = Average Treatment Effect = average of ITE differences across subjects
 - (*) The Avg of the differences = the difference of Averages!
 - ATE can hide different distributions of ITEs (e.g., positives and negatives that cancel each outer out)
 - Important to have a well-defined group or population

Defining potential outcomes at the subject level (experimental unit)

• ATT (or ATET) = Average Treatment effect on the Treated = average treatment effect across all subjects that end up TREATED

]

- This refers to the avg of the differences conditionally on the fact that both groups "received" the treatment ("")
- is essentially the counterfactual for in a 'parallel universe' where exactly the same people who were treated in this universe would not get the treatment
- ATU = Average Treatment effect on the Untreated = average treatment effect across all subjects who were NOT TREATED

]

- This time we seek the Avg of the differences ("") conditionally on the fact that both groups were "assigned" to the treatment
- is essentially the counterfactual for in a 'parallel universe' where **exactly the same people** who were NOT treated in this universe would get the treatment

BY THE WAY!

- treatment is a binary random vriable
- outcome of interest is
- ATE = Average Treatment Effect = average of ITE differences across subjects
- ATT/ATET = Average Treatment effect on the Treated = average treatment effect across all subjects that end up TREATED

Ex: Does hospitalization (T) increase health (Y) ?	
(ATE)	Avg health of hospitalized group – avg health of NOT hospitalized group
(ATT) +	Avg health of treated group – [counterfactual] avg health of treated group IF NOT hospitalized
(Selection bias) + (hospitalized have worse than non hospitalized)	Difference in [counterfactual] avg health of treated group IF NOT hospitalized - those who were NOT hospitalized

EXE. potential causal outcomes (depends on patients characteristics)

	Confounder	Treatment	Unobservable			Realized
	Age	Treated	Potential	outcomes /	ICE or ${\delta_i}^{\star}$	Outcome
ID	$\overline{Z_i}$	X_i	Y_i^1	Y_i^0	$Y_i^1-Y_i^0$	Y_i
1	Old	1	80	60	20	80
2	Old	1	75	70	5	75
3	Old	1	85	80	5	85
4	Old	0	70	60	10	60
5	Young	1	75	70	5	75
6	Young	0	80	80	0	80
7	Young	0	90	100	-10	100
8	Young	0	85	80	5	80
* ICE = in	dividual causal e	effect			`/	

(ATE decomposition)

Stratification to deal with confounder (i.e. combining the weighted averages for old and young people)

+ = 4.1667

After stratification based on the confounder we get a very close approximation of the ATE

Other ways to deal with confounders

- GIVEN THAT <u>IN REAL LIFE</u> WE NEVER HAVE THE ALTERNATIVE POTENTIAL OUTCOMES FOR EACH SUBJECT *i* , HOW DO WE DEAL?
 - **STRATIFYING** by Age was easy, but what if there is >1 confounder? What if it is continuous?
- WE'VE GOT TO DO SOMETHING ELSE TO GET TO COMPARABLE GROUPS:
 - MATCHING methods = dropping units from the sample or partitioning units into pairs or subclasses (e.g., *Propensity Score Matching*)
 - **WEIGHTING** methods = weighting the units so that the weighted distributions are similar between treatment groups (e.g., *Inverse probability weighting*)
- After adjustment the treatment effect is estimated in the resulting sample (incorporating the weights resulting from the matching or weighting)

Choosing the estimands and the proper statistical method to estimate the effect

- In a randomized trial, the treated and untreated groups will, on average, have the same distributions of patient characteristics, so the ATT, ATU, and ATE will be the same
- Without randomization, however, the treatment groups can have quite different distributions of characteristics, ATT, ATU, and ATE will differ when these characteristics also relate to the treatment effect
 - So, when using observational data: for whom should the treatment effect be estimated?
 - Some methods, such as PSM in its most commonly used form, cannot target the ATE, and so are inappropriate when the ATE is of interest!

Choosing the estimands based on the research question

<u>BEFORE</u> analyzing an observational dataset, let's consider which question we are asking, and about which target population group,

<u>THEN</u> choose a statistical method that corresponds to the chosen estimand.

Estimands	Target Population	Example research question and research/policy addressed
ATT	Treated patients	Examining an intervention that would only reach those currently receiving it: - e.g. decision to replace / withhold a treatment for currently treated patients
ATU	Untreated patients (control)	How would untreated patients respond to a new potential treatment/exposure? - e.g. decision to extend a medical practice (drug prescription/vaccine) to a group that would not otherwise receive it
ATE	Full sample / population	Should a specific policy be applied to all eligible patients? How would the outcome be on average? - e.g. regulating a system-wide policy for a previously unregulated practice - useful when treatment decisions are not well informed (ATE does not depend on current treatment assignment) - NOT OK when patients' benefit depend on clinical judgment

EXE [see LAB 4]: how to exploit "*matched*" untreated observation to estimate the ATT

• ANDREW HEISS ESEMPIO DI PSM (uso il suo che e' troppo bello!!!!

Shifting emphasis on empirical outcome prediction

Introduction to Machine Learning (ML) models

A conceptual framework to understand different types of statistical modeling (part 2/2)

- 1. association/correlation → observational studies
- 2. causal explanation \rightarrow experimental studies
- **3. empirical prediction** → algorithmic machine learning and data-mining modeling
 - aimed at predicting new or future observations (without necessarily explaining how)
 - relies on big data
 - prevalent in fields like natural language processing, bioinformatics, etc.. In epidemiology, there is more of a mix <u>causal explanation & empirical</u> prediction

NOTES:

✓ "Prediction" does not necessarily refer to future events, but rather
to future datasets that were previously unseen to the algorithm

...stay tuned for next chapter on ML

