GIẢI ĐỀ 3 – THPT NHÂN CHÍNH

BẢNG ĐÁP ÁN

1.A	2.A	3.C	4.C	5.D	6.B	7.D	8.A	9.C	10.D
11.D	12.D	13.C	14.A	15.B	16.C	17.B	18.B	19.D	20.B
21.B	22.D	23.B	24.A	25.A	26.C	27.C	28.A	29.B	30.C

Câu 1: + Tính $y' = x^3 - 4x + 3$

+ Phương trình tiếp tuyến tại điểm $M\left(x_{\scriptscriptstyle 0};y_{\scriptscriptstyle 0}\right)$ có dạng:

$$y = y'(x_0).(x-x_0) + y_0$$

+ Vì tiếp tuyến // với d: y = 3x - 1.

$$\Rightarrow y'(x_0) = 3 \Leftrightarrow x_0^2 - 4x_0 + 3 = 3 \Leftrightarrow x_0(x_0 - 4) = 0 \Leftrightarrow \begin{bmatrix} x_0 = 0 \\ x_0 = 4 \end{bmatrix}$$

+ Với $x_0 = 0$, Phương trình tiếp tuyến là: y = 3(x-0) + y(0) = 3x + 1.

+ Với
$$x_0 = 4$$
, Phương trình tiếp tuyến là: $y = 3(x-4) + y(4) = 3x - \frac{29}{3}$.

Vậy một tiếp tuyến cần tìm là: y = 3x + 1. Chọn <u>A.</u>

Câu 2: + Ta có:
$$y' = \left(3\sin^2 x + 3x - \frac{1}{2}\right)' = 3.2.\sin x.\cos x + 3 = 3(1 + \sin 2x).$$

+ $y' = 0 \Leftrightarrow 3(1 + \sin 2x) = 0 \Leftrightarrow \sin 2x = -1 \Leftrightarrow 2x = \frac{-\pi}{2} + 2k\pi \Leftrightarrow x = -\frac{\pi}{4} + k\pi.$
Mà $x \in [-\pi; 2\pi]$ nên: $x = \frac{-\pi}{4}; \frac{3\pi}{4}; \frac{7\pi}{4}$. Chọn A.

Câu 3: + Các mặt bên của một hình chóp đều là các tam giác cân. Chọn C.

Câu 4: + Ta có:
$$y' = \left(\frac{1}{4}x^4 - 2x^2 - 3\right) = x^3 - 4x$$

+ $y' > 0 \Leftrightarrow x^3 - 4x > 0 \Leftrightarrow \begin{bmatrix} x > 2 \\ -2 < x < 0 \end{bmatrix}$. Chọn C.

Câu 5: + Vì M là điểm bất kì thuộc (P), nên chưa chắc d(A,(P))đã là AM. **Chọn** $\underline{\mathbf{D}}$.

Câu 6: + Ta có:
$$y' = \frac{(3x-2)'(x+1)-(x+1)'(3x-2)}{(x+1)^2} = \frac{3(x+1)-(3x-2)}{(x+1)^2} = \frac{5}{(x+1)^2}$$
.
+ Công thức tính nhanh: $y = \frac{ax+b}{cx+d} \Rightarrow y' = \frac{ad-bc}{(cx+d)^2} = \frac{3.1-1.(-2)}{(x+1)^2} = \frac{5}{(x+1)^2}$. Chọn B.

Câu 7: + Công thức dòng cường độ dòng điện tức thời theo thời gian là: I(t) = Q'(t) = 2t. $\Rightarrow I(2) = 2.2 = 4(A)$. **Chọn D.**

Câu 8: + Ta có:
$$y' = (\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x = 1 + \frac{\sin^2 x}{\cos^2 x}$$

$$\Rightarrow y' - y^2 - 1 = 1 + \frac{\sin^2 x}{\cos^2 x} - \left(\frac{\sin x}{\cos x}\right)^2 - 1 = 0. \text{ Chọn } \underline{\mathbf{A}}.$$

Câu 9: + Ta có:
$$y' = x^2 - 2(m-1)x + 2m^2 + m - 3$$
.

$$+y'=0 \Leftrightarrow x^2-2(m-1)x+2m^2+m-3=0$$
. Để phương trình bên có hai nghiệm phân biệt thì:

$$\Delta' > 0 \Leftrightarrow (m-1)^2 - (2m^2 + m - 3) > 0 \Leftrightarrow m^2 + 3m - 4 < 0 \Leftrightarrow (m+4)(m-1) < 0 \Leftrightarrow -4 < m < 1.$$

+ Tổng các giá trị nguyên của m thỏa mãn bài toán là: -3+-2+-1+0=-6. Chọn C.

Câu 10: + Hình hộp không phải là lăng trụ đứng (Ví dụ hình hộp xiên). Chọn D.

Câu 11:

+ Do:
$$\begin{cases} BC \perp AB \\ BC \perp SA \end{cases} \Rightarrow BC \perp (SAB) \Rightarrow (SBC) \perp (SAB)$$

Nên khẳng định B đúng.

$$+SA \perp (ABC) \Rightarrow (SAC) \perp (ABC)$$
. Khẳng định A đúng.

+ Ta có:
$$\mathit{IH} / /\mathit{SA} \! \Rightarrow \! \mathit{IH} \perp \! \big(\mathit{ABC}\big) \! \Rightarrow \! \big(\mathit{BIH}\big) \! \perp \! \big(\mathit{ABC}\big)$$
 .Khẳng

định C đúng.

+ Vậy khẳng định D sai. Chọn D.

Câu 12: + Ta có:
$$y' = 2x - 3$$
; $y'(3) = 2.3 - 3 = 3$.

+ Phương trình tiếp tuyến cần tìm là:
$$y = y'(3)(x-3) + y(3) = 3x-5$$
. Chọn D.

Câu 13: + Ta có:
$$y' = 4x^3 - x \Rightarrow k = y'(1) = 3$$
. Chọn C.

Câu 14: + Phương trình vận tốc theo thời gian là:
$$v(t) = S'(t) = 14 - 2t$$
.

$$+v(t)=0 \Leftrightarrow 14-2t=0 \Leftrightarrow t=7$$
. Chọn A.

Câu 15: + Số gia của hàm số ứng với
$$x_0 = 1$$
 và $\Delta x = 1$ là: $f(x_0 + \Delta x) - f(x_0) = f(2) - f(1) = 6$. Chọn B.

Câu 16: + Ta có:
$$y' = \left(cos\left(x + \frac{3\pi}{4}\right)\right) = -\sin\left(x + \frac{3\pi}{4}\right)$$
. Chọn C.

Câu 17: + Ta có:
$$y = \tan x (2\cos x - 3\cot x) = \tan x . 2\cos x - 3 = 2\sin x - 3$$
.

$$\Rightarrow$$
 y'= $(2\sin x - 3)$ '= $2\cos x$. Chọn B.

Câu 18: + Ta có:
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$
. Vậy khẳng định B sai. **Chọn B**.

Câu 19: +
$$y = \frac{x-3}{x-1} \Rightarrow y' = \frac{-1+3}{(x-1)^2} = \frac{2}{(x-1)^2}$$

+ Ta có:
$$2 = \frac{x-3}{x-1} \Rightarrow x = -1$$
. Khi đó hoành độ tiếp điểm là: $x = -1$.

+ Phương trình tiếp tuyến là:
$$y = y'(-1)(x+1) + y(-1) \Leftrightarrow y = \frac{2}{(-1-1)^2}(x+1) + 2 \Leftrightarrow y = \frac{1}{2}x + \frac{5}{2}$$
.

Chọn D.

Câu 20: + Ta có:
$$\begin{cases} f(0) = 2m - 4 \\ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin 4x}{2x} = 2 \cdot \lim_{x \to 0} \frac{\sin 4x}{4x} = 2 \end{cases}$$

+ Khi đó để hàm số liên tục tại x = 0 thì: $2m - 4 = 2 \Leftrightarrow m = 3$. Chọn <u>B.</u>

Câu 21: + Ta có công thức đạo vào:
$$\left(\frac{u}{v}\right)^{\cdot} = \frac{u'v - v'u}{v^2}$$
. Vậy khẳng B sai. **Chọn B.**

Câu 22: + Định lý: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với một mặt phẳng thì giao tuyến của chúng vuông góc với mặt phẳng đó. **Chọn** <u>D.</u>

Câu 23: + Ta có:
$$y' = 4x^3 - 4mx \Rightarrow y'(1) = 4 - 4m$$
.

+ Phương trình tiếp tuyến tại A của đồ thị hàm số (Cm) là:

$$(d)$$
: $y = (4-4m)(x-1)+1-m \Leftrightarrow (d)$: $4(m-1)x+y-3(m-1)=0$.

$$\Rightarrow d(B/d) = \frac{\left|4(m-1) \cdot \frac{3}{4} + 1 - 3(m-1)\right|}{\sqrt{16(m-1)^2 + 1}} = \frac{1}{\sqrt{16(m-1)^2 + 1}} \le 1.$$

Dâu bằng xảy ra khi và chỉ khi m=1. Chọn <u>B.</u>

Câu 24:

+ Do
$$\begin{cases} (SAB) \perp (ABCD) \\ (SAC) \perp (ABCD) \end{cases} \Rightarrow SA \perp (ABCD).$$

+ Ta có:
$$AC = 2OC \Rightarrow d(A/(SBC)) = 2d(O/(SBC))$$
.

+ Kė
$$AH \perp BC = \{H\}; AK \perp AH = \{K\}$$
: ta suy ra:

$$d(A/(SBC)) = AK = \frac{SA.AH}{\sqrt{SA^2 + AH^2}}.$$

+ Ta có:
$$SA = a$$
.

+ Tam giác ABC đều có đường cao AH nên:

$$AH = \frac{a\sqrt{3}}{2}$$
.

$$\Rightarrow d(A/(SBC)) = \frac{a\sqrt{21}}{7}.$$

$$\Rightarrow d(O/(SBC)) = \frac{1}{2}d(A/(SBC)) = \frac{a\sqrt{21}}{14}$$
. Chọn A.

Câu 25: + Với $m=0 \Rightarrow y=-10x \Rightarrow y'=-10<0$. Thỏa mãn.

+ Với
$$m \neq 0$$
, ta có: $y' = mx^2 - 2mx - \left(2m + 10\right) < 0 \Leftrightarrow \begin{cases} m < 0 \\ \Delta' = m^2 + m\left(2m + 10\right) < 0 \end{cases} \Leftrightarrow \frac{-10}{3} < m < 0.$

Mà m nguyên nên: m = -3; -2; -1.

Từ 2 trường hợp trên ta suy ra có tất cả 4 giá trị nguyên của m
 thỏa mãn bài toán. Chọn $\underline{\mathbf{A}}$.

Câu 26: + Xét hàm số
$$f(x) = (m^2 - m + 3)x^{2018} - 2x - 4$$
 ta có:

-Hàm số f(x) liên tục trên tập xác định $D = \mathbb{R}$

$$-f(0) = -4; f(-1) = m^2 - m + 1 = \left(m - \frac{1}{2}\right)^2 + \frac{3}{4} > 0 \forall m \in \mathbb{R}$$

 \Rightarrow f(0).f(-1)<0 nên theo định lý về nghiệm của phương trình ta suy ra:

+ Phương trình f(x)=0 luôn tồn tại ít nhất một nghiệm trong khoảng (0;1) với mọi $m \in \mathbb{R}$.

Chọn <u>C.</u>

Câu 27:

+ Lấy D sao cho ABCD là hình vuông và kẻ $AH \perp SD$ + Vì $DC//AB \Rightarrow AB//(SCD) \Rightarrow d(AB;SC) = d(A;(SCD))$ + Ta có: $\begin{cases} AD \perp DC \\ DC \perp SA \end{cases} \Rightarrow DC \perp (SAD) \Rightarrow DC \perp AH$ + $\Rightarrow \begin{cases} AH \perp SD \\ DC \perp AH \end{cases} \Rightarrow AH \perp (SCD)$ $\Rightarrow d(A;SCD) = AH$ + $SA = \sqrt{SB^2 - AB^2} = 2a$ + $\frac{1}{AH^2} = \frac{1}{SA^2} + \frac{1}{AD^2} = \frac{1}{4a^2} + \frac{1}{a^2} \Rightarrow AH = \frac{2a\sqrt{5}}{5}$. Chọn \underline{C} .

Câu 28:

+ Lấy M là trung điểm BC,G là trọng tâm tam giác đáy $\Rightarrow \begin{cases} SG \perp (ABC) \\ GM \perp BC \end{cases}$ + Ta có: $\begin{cases} BC \perp SG \\ BC \perp GM \end{cases} \Rightarrow BC \perp (SGM) \Rightarrow BC \perp SM$ $\Rightarrow ((SBC); (ABC)) = SMG$ + $\tan SMG = \frac{SG}{GM} = \frac{\frac{a}{2}}{\frac{1}{2}AM} = \frac{\frac{a}{2}}{\frac{1}{2}\frac{3a\sqrt{3}}{3}} = \frac{\sqrt{3}}{3} \Rightarrow SMG = 30^{\circ}$. Chọn $\underline{\mathbf{A}}$.

Câu 29:

+ Gọi M,N là trung điểm của AB,SC

$$\Rightarrow \begin{cases} SM \perp (ABC) \\ AN \perp SC \\ BN \perp SC \end{cases} \Rightarrow ((SAC); (SBC)) = ANB$$

+ Tam giác SMC vuông tại M có SM = MC do $\Delta SAB = \Delta CAB$ nên ΔSMC vuông cân tại M

$$\Rightarrow MN = \frac{SC}{2} = \frac{SM\sqrt{2}}{2} = \sqrt{a^2 - x^2} \cdot \frac{\sqrt{2}}{2}$$

+ Để
$$(SAC)$$
; (SBC) = $90^{\circ} \Rightarrow \Delta ANB$ vuông tại $N \Leftrightarrow MN = \frac{AB}{2}$

$$\Leftrightarrow \sqrt{a^2 - x^2} \cdot \frac{\sqrt{2}}{2} = x \Leftrightarrow a^2 - x^2 = 2x^2 \Leftrightarrow x = \frac{a\sqrt{3}}{3}$$
. Chọn B.

Câu 30:

+ Ta có:
$$AB^2 + BC^2 = 5a^2 = (A'C')^2 = AC^2 \Rightarrow \Delta ABC; \Delta A'B'C'$$
 vuông tại $B; B'$
+ Lại có:
$$\begin{cases} C'B' \perp A'B' \\ C'B' \perp BB' \end{cases} \Rightarrow C'B' \perp (AA'B'B) \Rightarrow C'B' \perp AB'$$

$$\Rightarrow \tan((A'B'C'), (AB'C')) = \tan A'B'A = \frac{AA'}{A'B'} = 1$$

$$\Rightarrow ((A'B'C'), (AB'C')) = 45^0 \Rightarrow C \text{ sai. Chọn } \underline{C}.$$

