## Filtering: Backtracking with Forward Checking

## **Example:**

|        | WA  | NT  | Q   | NSW | ٧   | SA  | T   |
|--------|-----|-----|-----|-----|-----|-----|-----|
| INTIAL | RGB |
| NT=R   | GB  | R   | GB  | RGB | RGB | GB  | RGB |
| NSW=G  | GB  | R   | В   | G   | RB  | В   | RGB |
| WA=B   | В   | R   | В   | G   | RB  |     | RGB |



Filtering: Backtracking with Arc Consistency/ Constraint Propagation Example:

WA=R

| Variable and remaining values           | Constraints | Constraints |
|-----------------------------------------|-------------|-------------|
| $\mathbf{W}\mathbf{A} = \{\mathbf{R}\}$ | SA≠WA       | WA≠SA       |
| $NT = \{ \mathbb{R}, G, B \}$           | SA≠NT       | NT≠SA       |
| $Q = \{R, G, B\}$                       | SA≠Q        | Q≠SA        |
| $NSW = \{R, G, B\}$                     | SA≠NSW      | NSW≠SA      |
| $V = \{R, G, B\}$                       | SA≠V        | V≠SA        |
| $SA = \{ \mathbb{R}, G, B \}$           | WA≠NT       | NT≠WA       |
| $T = \{R, G, B\}$                       | NT≠Q        | Q≠NT        |
|                                         | Q≠NSW       | NSW≠Q       |
|                                         | NSW≠V       | V≠NSW       |

Values are removed for  $SA \neq WA$  and  $NT \neq WA$ 

Q=G

| Variable and remaining values  | Constraints | Constraints |
|--------------------------------|-------------|-------------|
| $WA = \{R\}$                   | SA≠WA       | WA≠SA       |
| $NT = \{ \frac{G}{G}, B \}$    | SA≠NT       | NT≠SA       |
| Q= {G}                         | SA≠Q        | Q≠SA        |
| $-NSW = \{R, \frac{G}{G}, B\}$ | SA≠NSW      | NSW≠SA      |
| $V = \{R, G, B\}$              | SA≠V        | V≠SA        |
| $SA = \{G, B\}$                | WA≠NT       | NT≠WA       |
| $T = \{R, G, B\}$              | NT≠Q        | Q≠NT        |
|                                | Q≠NSW       | NSW≠Q       |
|                                | NSW≠V       | V≠NSW       |

Values are removed for  $SA \neq Q$ ,  $NT \neq Q$ ,  $NSW \neq Q$  and  $SA \neq NT$ 



## **Example (Arc Consistency):**

Identify the values of A, B, C so that the following problem becomes **arc consistent**:  $A=\{1,2,3\}$ ,  $B=\{1,2,3\}$ ,  $C=\{1,2,3\}$  and Constraints: A>B, B=C

 $V{:}\;\{A,B,C\}$ 

D: A= {1,2,3}, B= {1,2,3}, C= {1,2,3}

C: A>B, B=C

## **Solution:**

|   | Domain          | Constraints |
|---|-----------------|-------------|
|   | $A = \{1,2,3\}$ | A>B         |
| 1 | $B = \{1,2,3\}$ | B=C         |
|   | $C = \{1,2,3\}$ | B < A       |
|   |                 | C=B         |

|   | Domain          | Constraints |
|---|-----------------|-------------|
|   | $A = \{2,3\}$   | A>B         |
| _ | $B = \{1,2,3\}$ | B=C         |
| 1 | $C = \{1,2,3\}$ | B < A       |
|   | _               | C=B         |

| Domain                      | Constraints |
|-----------------------------|-------------|
| $A = \{2,3\}$               | A>B         |
| $B = \{1, 2, \frac{3}{4}\}$ | B=C         |
| $C = \{1,2,3\}$             | B < A       |
|                             | C=B         |

|   | Domain                      | Constraints       |
|---|-----------------------------|-------------------|
|   | $A = \{2,3\}$               | A>B               |
| 1 | $B = \{1,2\}$               | B=C               |
| / | $C = \{1, 2, \frac{3}{4}\}$ | B <a< th=""></a<> |
|   |                             | C=B               |

Now A=  $\{2,3\}$ , B=  $\{1,2\}$ , C=  $\{1,2\}$  are arc consistent.

|    | R2 |    |
|----|----|----|
| Rl | R4 |    |
|    | R3 | R5 |

 $R1 \neq R2$ ,  $R1 \neq R3$ 

 $R2\neq R3$ ,  $R2\neq R4$ 

R3≠R4, R3≠R5

R4≠R5

