Appendix 1 - Feature descriptions

Table 1. Descriptions of all features that were explored

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
L_{Te} Total length of the drawn line, accounting for the actual, i.e. Euclidean tance L_{Tx}/t L_{Tx} relative to drawing duration L_{Ty}/t L_{Ty} relative to drawing duration L_{Te}/t L_{Te} relative to drawing duration V_{Tx} Velocity mass of the drawn line, accounting only for the horizontal part V_{Ty} Velocity mass of the drawn line, accounting only for the vertical part V_{Ty}	
L_{Te} Total length of the drawn line, accounting for the actual, i.e. Euclidean tance L_{Tx}/t L_{Tx} relative to drawing duration L_{Ty}/t L_{Ty} relative to drawing duration L_{Te}/t L_{Te} relative to drawing duration V_{Tx} Velocity mass of the drawn line, accounting only for the horizontal part V_{Ty} Velocity mass of the drawn line, accounting only for the vertical part V_{Ty}	
$\begin{array}{ccc} L_{Tx}/t & L_{Tx} \text{ relative to drawing duration} \\ L_{Ty}/t & L_{Ty} \text{ relative to drawing duration} \\ L_{Te}/t & L_{Te} \text{ relative to drawing duration} \\ V_{Tx} & \text{Velocity mass of the drawn line, accounting only for the horizontal part} \\ V_{Ty} & \text{Velocity mass of the drawn line, accounting only for the vertical part } y \end{array}$	${x}$
L_{Ty}/t L_{Ty} relative to drawing duration L_{Te}/t L_{Te} relative to drawing duration V_{Tx} Velocity mass of the drawn line, accounting only for the horizontal part V_{Ty} Velocity mass of the drawn line, accounting only for the vertical part y	$\frac{1}{x}$
L_{Te}/t L_{Te} relative to drawing duration V_{Tx} Velocity mass of the drawn line, accounting only for the horizontal part V_{Ty} Velocity mass of the drawn line, accounting only for the vertical part y	$\frac{1}{x}$
V_{Tx} Velocity mass of the drawn line, accounting only for the horizontal part V_{Ty} Velocity mass of the drawn line, accounting only for the vertical part y	\overline{x}
V_{Ty} Velocity mass of the drawn line, accounting only for the vertical part y	x
Very Velocity mass of the drawn line accounting for the actual i.e. Fuelig	
viewing in the actual, i.e. Euclideric viewing in the actual, i.e. Euclideric	dean,
distance	
V_{Tx}/t V_{Tx} relative to drawing duration	
V_{Ty}/t V_{Ty} relative to drawing duration	
V_{Te}/t V_{Te} relative to drawing duration	
A_{Tx} Acceleration mass of the drawn line, accounting only for the horizontal p	art x
A_{Ty} Acceleration mass of the drawn line, accounting only for the vertical part	ty
A_{Te} Acceleration mass of the drawn line, accounting for the actual, i.e. Euclid	lean,
distance	
A_{Tx}/t A_{Tx} relative to drawing duration	
A_{Ty}/t A_{Ty} relative to drawing duration	
A_{Te}/t A_{Te} relative to drawing duration	
J_{Tx} Jerk mass of the drawn line, accounting only for the horizontal part x	
J_{Ty} Jerk mass of the drawn line, accounting only for the vertical part y	
J_{Te} Jerk mass of the drawn line, accounting for the actual, i.e. Euclidean, dist	ance
J_{Tx}/t J_{Tx} relative to drawing duration	
J_{Ty}/t J_{Ty} relative to drawing duration	
J_{Te}/t J_{Te} relative to drawing duration	
D_T Directional mass, i.e. accumulated directional change, in radians	
D_T/t D_T relative to drawing duration	
P_T Pressure mass	
P_T/t P_T relative to drawing duration	
NCP Number of local extrema in pressure, i.e. number of changes in pressure	e di-
rection	
NCP/t NCP relative to drawing duration	
t Drawing duration	

Appendix 2 - Features excluded and included after initial feature filtering

Table 1. Features included during in initial feature filtering for single slicing

Test type	Features included in initial filtering
pcontinue	$L_{Ty}, L_{Tx}/t, L_{Ty}/t, L_{Te}/t, V_{Tx}/t, V_{Ty}/t, V_{Te}/t, A_{Tx}/t, A_{Ty}/t,$
	$A_{Te}/t, J_{Tx}/t, J_{Te}/t, D_T, P_T, NCP, t$
plcontinue	$L_{Ty}, L_{Tx}/t, L_{Ty}/t, L_{Te}/t, V_{Tx}/t, V_{Ty}/t, V_{Te}/t, A_{Tx}/t, A_{Ty}/t,$
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, D_T, P_T, NCP, t$
рсору	L_{Tx}/t , L_{Ty}/t , L_{Te}/t , V_{Tx}/t , V_{Ty}/t , V_{Te}/t , A_{Tx}/t , A_{Ty}/t ,
	$A_{Te}/t, J_{Tx}/t, J_{Te}/t, D_T, D_T/t, NCP$
plcopy	L_{Tx}/t , L_{Ty}/t , L_{Te}/t , V_{Tx}/t , V_{Ty}/t , V_{Te}/t , A_{Tx}/t , A_{Ty}/t ,
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, NCP$
ptrace	L_{Tx}/t , L_{Ty}/t , L_{Te}/t , V_{Tx}/t , V_{Ty}/t , V_{Te}/t , A_{Tx}/t , A_{Ty}/t ,
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, D_T, NCP$
pltrace	L_{Tx}/t , L_{Ty}/t , L_{Te}/t , V_{Tx}/t , V_{Ty}/t , V_{Te}/t , A_{Tx}/t , A_{Ty}/t ,
	A_{Te}/t , J_{Tx}/t , J_{Ty}/t , J_{Te}/t , D_T , D_T/t , NCP , t

Table 2. Features excluded in initial feature filtering for single slicing

Test type	Features excluded in initial filtering
pcontinue	$L_{Tx}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te}, J_{Ty}/t,$
	$D_T/t, P_T/t, NCP/t$
plcontinue	$L_{Tx}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te}, D_T/t,$
	P_T/t , NCP/t
рсору	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$J_{Ty}/t, P_T, P_T/t, NCP/t, t$
plcopy	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$D_T, D_T/t, P_T, P_T/t, NCP/t, t$
ptrace	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$D_T/t, P_T, P_T/t, NCP/t, t$
pltrace	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$P_T, P_T/t, NCP/t$

Table 3. Features included in initial feature filtering for accumulated slicing

Test type	Features included in initial filtering
pcontinue	$L_{Ty}, L_{Tx}/t, L_{Ty}/t, L_{Te}/t, V_{Tx}/t, V_{Ty}/t, V_{Te}/t, A_{Tx}/t, A_{Ty}/t,$
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, NCP, t$
plcontinue	$L_{Ty}, L_{Te}, L_{Tx}/t, L_{Ty}/t, L_{Te}/t, V_{Tx}/t, V_{Ty}/t, V_{Te}/t, A_{Ty},$
	$A_{Tx}/t, A_{Ty}/t, A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, D_T, P_T, NCP, t$
рсору	$\left L_{Tx}/t, L_{Ty}/t, L_{Te}/t, V_{Tx}/t, V_{Ty}/t, V_{Te}/t, A_{Tx}/t, A_{Ty}/t, \right $
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, D_T, NCP, t$
plcopy	$\left L_{Tx}/t, L_{Ty}/t, L_{Te}/t, V_{Tx}/t, V_{Ty}/t, V_{Te}/t, A_{Tx}/t, A_{Ty}/t, \right $
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, D_{T}/t$
ptrace	$L_{Tx}/t, L_{Ty}/t, L_{Te}/t, V_{Tx}/t, V_{Ty}/t, V_{Te}/t, A_{Tx}/t, A_{Ty}/t,$
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, D_T, NCP$
pltrace	L_{Tx}/t , L_{Ty}/t , L_{Te}/t , V_{Tx}/t , V_{Ty}/t , V_{Te}/t , A_{Tx}/t , A_{Ty}/t ,
	$A_{Te}/t, J_{Tx}/t, J_{Ty}/t, J_{Te}/t, D_T, NCP, t$

Table 4. Features excluded in initial feature filtering for accumulated slicing

Test type	Features excluded in initial filtering
pcontinue	$L_{Tx}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te}, D_{T},$
	$D_T/t, P_T, P_T/t, NCP/t$
plcontinue	$L_{Tx}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te}, D_T/t, P_T/t,$
	NCP/t
рсору	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$D_T/t, P_T, P_T/t, NCP/t$
plcopy	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$D_T, P_T, P_T/t, NCP, NCP/t, t$
ptrace	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$D_T/t, P_T, P_T/t, NCP/t, t$
pltrace	$L_{Tx}, L_{Ty}, L_{Te}, V_{Tx}, V_{Ty}, V_{Te}, A_{Tx}, A_{Ty}, A_{Te}, J_{Tx}, J_{Ty}, J_{Te},$
	$D_T/t, P_T, P_T/t, NCP/t$

Appendix 3 - Pcontinue feature scores

Table 1. Fisher's scores of features on single slicings in *pcontinue*

_					Single	slicing	[
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.16	0.02	0.04	0.03	0.03	0.02	0.02	0.03	0.01	0.02
L_{Ty}	0.53	0.01	0.12	0.04	0.07	0.01	0.23	0.07	0.39	0.20
L_{Te}	0.33	0.00	0.09	0.03	0.09	0.03	0.06	0.09	0.09	0.07
L_{Tx}/t	0.75	0.14	0.46	0.35	0.34	0.42	0.36	0.66	0.54	0.40
L_{Ty}/t	0.57	0.22	0.07	0.25	0.54	0.25	0.11	0.26	0.22	0.09
L_{Te}/t	0.81	0.21	0.56	0.41	0.38	0.47	0.39	0.70	0.58	0.42
V_{Tx}	0.20	0.00	0.01	0.02	0.00	0.00	0.04	0.05	0.00	0.02
V_{Ty}	0.23	0.00	0.16	0.04	0.06	0.05	0.10	0.21	0.15	0.16
V_{Te}	0.23	0.00	0.14	0.03	0.03	0.02	0.07	0.18	0.08	0.11
V_{Tx}/t	0.68	0.14	0.45	0.38	0.39	0.42	0.34	0.69	0.62	0.41
V_{Ty}/t	0.75	0.22	0.07	0.20	0.07	0.10	0.11	0.04	0.17	0.08
V_{Te}/t	0.88	0.24	0.67	0.68	0.70	0.72	0.61	1.08	1.04	0.58
A_{Tx}	0.28	0.04	0.11	0.03	0.01	0.02	0.12	0.13	0.03	0.06
A_{Ty}	0.33	0.01	0.21	0.05	0.07	0.07	0.10	0.26	0.21	0.17
A_{Te}	0.29	0.01	0.20	0.03	0.02	0.04	0.09	0.26	0.13	0.12
A_{Tx}/t	0.58	0.13	0.42	0.39	0.44	0.38	0.32	0.65	0.58	0.35
A_{Ty}/t	0.56	0.21	0.07	0.20	0.08	0.10	0.13	0.04	0.18	0.10
A_{Te}/t	0.72	0.21	0.61	0.71	0.80	0.63	0.61	0.97	0.91	0.51
J_{Tx}	0.13	0.00	0.00	0.01	0.07	0.03	0.04	0.03	0.04	0.01
J_{Ty}	0.12	0.00	0.13	0.04	0.02	0.02	0.06	0.18	0.12	0.12
J_{Te}	0.10	0.00	0.08	0.02	0.00	0.00	0.04	0.13	0.02	0.07
J_{Tx}/t	0.45	0.12	0.38	0.36	0.45	0.40	0.31	0.62	0.56	0.35
J_{Ty}/t	0.53	0.15	0.07	0.20	0.12	0.12	0.14	0.03	0.16	0.10
J_{Te}/t	0.65	0.19	0.54	0.65	0.87	0.65	0.58	0.92	0.83	0.50
D_T	0.39	0.11	0.34	0.19	0.14	0.35	0.14	0.24	0.36	0.10
D_T/t	0.09	0.00	0.07	0.06	0.22	0.08	0.07	0.08	0.02	0.00
P_T	0.35	0.04	0.24	0.06	0.12	0.40	0.18	0.39	0.52	0.22
P_T/t	0.03	0.05	0.04	0.11	0.02	0.00	0.00	0.00	0.01	0.16
NCP	0.49	0.09	0.46	0.13	0.18	0.56	0.14	0.23	0.48	0.16
NCP/t	0.00	0.03	0.04	0.04	0.08	0.09	0.03	0.01	0.06	0.00
t	0.59	0.11	0.31	0.08	0.26	0.48	0.20	0.37	0.32	0.15

Table 2. P-values of features on single slicings in *pcontinue*

Г					Single	slicing				
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.033	0.447	0.269	0.359	0.369	0.463	0.410	0.308	0.550	0.420
L_{Ty}	0.001	0.707	0.083	0.252	0.146	0.679	0.015	0.171	0.006	0.019
L_{Te}	0.004	0.911	0.120	0.308	0.100	0.381	0.161	0.102	0.114	0.135
L_{Tx}/t	0.001	0.117	0.010	0.019	0.023	0.015	0.020	0.003	0.008	0.010
L_{Ty}/t	0.001	0.055	0.247	0.038	0.003	0.046	0.164	0.040	0.049	0.161
L_{Te}/t	0.001	0.061	0.005	0.012	0.017	0.011	0.015	0.002	0.006	0.008
V_{Tx}	0.020	0.726	0.620	0.436	0.974	0.830	0.283	0.212	0.874	0.382
V_{Ty}	0.025	0.942	0.054	0.236	0.204	0.293	0.123	0.026	0.089	0.037
V_{Te}	0.021	0.994	0.064	0.326	0.400	0.448	0.181	0.034	0.202	0.081
V_{Tx}/t	0.002	0.123	0.011	0.016	0.015	0.015	0.023	0.002	0.005	0.007
V_{Ty}/t	0.001	0.037	0.258	0.058	0.215	0.166	0.139	0.342	0.079	0.193
V_{Te}/t	0.001	0.047	0.003	0.002	0.002	0.002	0.004	0.000	0.001	0.002
A_{Tx}	0.008	0.293	0.085	0.354	0.690	0.481	0.069	0.048	0.350	0.180
A_{Ty}	0.009	0.706	0.030	0.221	0.192	0.214	0.111	0.015	0.047	0.033
A_{Te}	0.009	0.649	0.030	0.301	0.421	0.322	0.124	0.011	0.102	0.061
A_{Tx}/t	0.004	0.137	0.013	0.015	0.011	0.020	0.027	0.003	0.006	0.012
A_{Ty}/t	0.002	0.039	0.248	0.055	0.185	0.157	0.118	0.360	0.075	0.145
A_{Te}/t	0.001	0.060	0.004	0.002	0.001	0.004	0.004	0.001	0.001	0.003
J_{Tx}	0.078	0.764	0.952	0.484	0.187	0.415	0.320	0.369	0.332	0.544
J_{Ty}	0.109	0.981	0.088	0.259	0.518	0.512	0.239	0.045	0.120	0.077
J_{Te}	0.128	0.955	0.176	0.374	0.773	0.925	0.329	0.071	0.543	0.169
J_{Tx}/t	0.010	0.155	0.018	0.018	0.010	0.017	0.029	0.004	0.007	0.014
J_{Ty}/t	0.004	0.085	0.263	0.063	0.124	0.132	0.113	0.427	0.081	0.147
J_{Te}/t	0.002	0.074	0.007	0.003	0.001	0.004	0.005	0.001	0.001	0.004
D_T	0.002	0.071	0.003	0.022	0.041	0.003	0.040	0.011	0.003	0.077
D_T/t	0.120	0.882	0.158	0.180	0.020	0.149	0.162	0.142	0.531	0.897
P_T	0.003	0.322	0.015	0.174	0.063	0.002	0.027	0.002	0.001	0.014
P_T/t	0.435	0.284	0.378	0.129	0.502	0.993	0.737	0.855	0.672	0.067
NCP	0.001	0.098	0.001	0.051	0.025	0.000	0.041	0.012	0.001	0.032
NCP/t	0.878	0.409	0.329	0.311	0.150	0.129	0.404	0.583	0.222	0.867
t	0.000	0.078	0.005	0.108	0.009	0.001	0.018	0.002	0.004	0.039

Table 3. Fisher's scores of features on accumulated slicings in *pcontinue*

ъ .				A	ccumula	ated slic	cing			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.16	0.21	0.23	0.07	0.08	0.09	0.09	0.11	0.12	0.14
L_{Ty}	0.53	0.31	0.22	0.09	0.11	0.12	0.13	0.14	0.18	0.19
L_{Te}	0.33	0.27	0.22	0.08	0.09	0.10	0.11	0.12	0.14	0.16
L_{Tx}/t	0.75	0.67	0.81	0.81	0.92	0.91	0.91	0.92	1.02	1.09
L_{Ty}/t	0.57	0.50	0.59	0.67	0.54	0.62	0.58	0.57	0.61	0.56
L_{Te}/t	0.81	0.68	0.88	0.86	0.92	0.94	0.94	0.95	1.00	1.03
V_{Tx}	0.20	0.14	0.11	0.04	0.04	0.04	0.04	0.05	0.05	0.06
V_{Ty}	0.23	0.23	0.31	0.12	0.15	0.17	0.19	0.24	0.32	0.35
V_{Te}	0.23	0.17	0.22	0.07	0.08	0.08	0.09	0.12	0.15	0.17
V_{Tx}/t	0.68	0.68	0.78	0.84	0.96	1.00	0.99	0.99	1.10	1.17
V_{Ty}/t	0.75	0.69	0.67	0.74	0.69	0.71	0.69	0.68	0.69	0.64
V_{Te}/t	0.88	0.76	0.85	0.86	0.94	0.97	0.96	0.97	1.01	1.04
A_{Tx}	0.28	0.23	0.23	0.08	0.08	0.09	0.10	0.13	0.12	0.13
A_{Ty}	0.33	0.35	0.45	0.17	0.19	0.23	0.25	0.31	0.42	0.43
A_{Te}	0.29	0.25	0.32	0.10	0.11	0.12	0.13	0.18	0.21	0.23
A_{Tx}/t	0.58	0.58	0.69	0.75	0.85	0.89	0.87	0.86	0.99	1.06
A_{Ty}/t	0.56	0.55	0.52	0.63	0.59	0.61	0.61	0.60	0.60	0.57
A_{Te}/t	0.72	0.64	0.73	0.76	0.83	0.86	0.86	0.85	0.90	0.94
J_{Tx}	0.13	0.05	0.03	0.02	0.01	0.01	0.01	0.01	0.00	0.01
J_{Ty}	0.12	0.09	0.21	0.11	0.11	0.13	0.15	0.19	0.27	0.27
J_{Te}	0.10	0.04	0.07	0.04	0.04	0.03	0.04	0.05	0.06	0.07
J_{Tx}/t	0.45	0.50	0.56	0.65	0.74	0.82	0.79	0.79	0.93	0.98
J_{Ty}/t	0.53	0.47	0.46	0.58	0.55	0.58	0.60	0.59	0.60	0.57
J_{Te}/t	0.65	0.55	0.63	0.69	0.75	0.80	0.81	0.81	0.87	0.90
D_T	0.39	0.31	0.35	0.42	0.37	0.44	0.38	0.37	0.37	0.30
D_T/t	0.09	0.11	0.17	0.18	0.26	0.27	0.27	0.27	0.26	0.25
P_T	0.35	0.33	0.33	0.16	0.16	0.21	0.21	0.25	0.30	0.33
P_T/t	0.03	0.03	0.04	0.06	0.06	0.04	0.04	0.04	0.03	0.04
NCP	0.49	0.34	0.42	0.43	0.41	0.48	0.42	0.41	0.44	0.38
NCP/t	0.00	0.02	0.04	0.04	0.03	0.04	0.04	0.05	0.05	0.05
t	0.59	0.47	0.45	0.32	0.34	0.40	0.39	0.42	0.46	0.43

Table 4. P-values of features on accumulated slicings in *pcontinue*

F4				A	ccumula	ted slici	ng			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.033	0.016	0.013	0.136	0.118	0.103	0.088	0.066	0.059	0.044
L_{Ty}	0.001	0.005	0.016	0.097	0.069	0.060	0.052	0.041	0.026	0.020
L_{Te}	0.004	0.007	0.015	0.122	0.094	0.084	0.074	0.058	0.042	0.032
L_{Tx}/t	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000
L_{Ty}/t	0.001	0.003	0.002	0.001	0.003	0.001	0.002	0.002	0.001	0.002
L_{Te}/t	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000
V_{Tx}	0.020	0.051	0.090	0.256	0.258	0.274	0.259	0.204	0.231	0.191
V_{Ty}	0.025	0.019	0.007	0.056	0.040	0.029	0.021	0.011	0.004	0.003
V_{Te}	0.021	0.039	0.018	0.141	0.121	0.110	0.092	0.058	0.040	0.028
V_{Tx}/t	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000
V_{Ty}/t	0.001	0.001	0.002	0.001	0.002	0.001	0.002	0.002	0.001	0.002
V_{Te}/t	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000
A_{Tx}	0.008	0.016	0.016	0.121	0.110	0.110	0.093	0.057	0.061	0.051
A_{Ty}	0.009	0.006	0.002	0.030	0.020	0.012	0.009	0.004	0.001	0.001
A_{Te}	0.009	0.015	0.006	0.085	0.072	0.060	0.048	0.026	0.016	0.012
A_{Tx}/t	0.004	0.004	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.000
A_{Ty}/t	0.002	0.003	0.005	0.003	0.003	0.002	0.002	0.003	0.002	0.003
A_{Te}/t	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001
J_{Tx}	0.078	0.259	0.441	0.425	0.551	0.676	0.639	0.563	0.712	0.672
J_{Ty}	0.109	0.147	0.038	0.074	0.067	0.055	0.041	0.022	0.008	0.007
J_{Te}	0.128	0.317	0.198	0.250	0.290	0.325	0.294	0.207	0.191	0.156
J_{Tx}/t	0.010	0.006	0.005	0.003	0.002	0.001	0.002	0.002	0.001	0.001
J_{Ty}/t	0.004	0.006	0.009	0.004	0.004	0.003	0.003	0.003	0.003	0.003
J_{Te}/t	0.002	0.004	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001
D_T	0.002	0.005	0.003	0.001	0.002	0.001	0.002	0.003	0.002	0.005
D_T/t	0.120	0.084	0.033	0.028	0.009	0.009	0.009	0.009	0.009	0.010
P_T	0.003	0.005	0.005	0.031	0.031	0.017	0.015	0.010	0.005	0.004
P_T/t	0.435	0.365	0.347	0.246	0.261	0.331	0.341	0.367	0.404	0.362
NCP	0.001	0.003	0.002	0.001	0.002	0.001	0.001	0.002	0.001	0.002
NCP/t	0.878	0.423	0.320	0.337	0.340	0.295	0.302	0.271	0.238	0.254
t	0.000	0.001	0.001	0.004	0.003	0.002	0.002	0.001	0.001	0.001

Appendix 4 - Plcontinue feature scores

Table 1. Fisher's scores of features on single slicings in *plcontinue*

_					Single	slicing	[
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.08	0.14	0.15	0.11	0.11	0.08	0.17	0.11	0.09	0.05
L_{Ty}	0.35	0.57	0.16	0.06	0.37	0.24	0.13	0.06	0.17	0.13
L_{Te}	0.29	0.49	0.19	0.09	0.23	0.23	0.25	0.11	0.19	0.14
L_{Tx}/t	0.30	0.94	0.44	0.00	0.63	0.45	0.76	0.47	0.42	0.63
L_{Ty}/t	0.43	0.19	0.34	0.00	0.11	0.38	0.53	1.59	0.44	0.44
L_{Te}/t	0.40	0.93	0.46	0.00	0.74	0.46	0.80	0.61	0.46	0.69
V_{Tx}	0.01	0.01	0.04	0.01	0.01	0.00	0.03	0.02	0.00	0.00
V_{Ty}	0.03	0.31	0.06	0.04	0.17	0.10	0.09	0.01	0.03	0.07
V_{Te}	0.03	0.11	0.07	0.00	0.07	0.08	0.08	0.01	0.03	0.04
V_{Tx}/t	0.44	1.14	0.67	0.00	0.67	0.51	0.71	0.64	0.47	0.84
V_{Ty}/t	0.56	0.39	0.79	0.04	0.32	0.57	0.83	0.89	0.84	0.87
V_{Te}/t	0.54	1.44	0.82	0.00	1.11	0.60	0.91	1.79	0.76	1.12
A_{Tx}	0.05	0.03	0.08	0.05	0.02	0.02	0.06	0.05	0.02	0.09
A_{Ty}	0.14	0.39	0.07	0.01	0.16	0.14	0.12	0.03	0.04	0.10
A_{Te}	0.11	0.19	0.08	0.00	0.07	0.11	0.11	0.03	0.04	0.08
A_{Tx}/t	0.33	1.23	0.67	0.00	0.65	0.52	0.66	0.62	0.44	0.71
A_{Ty}/t	0.42	0.41	0.78	0.04	0.37	0.53	0.78	0.87	0.86	0.86
A_{Te}/t	0.42	1.45	0.80	0.00	1.13	0.58	0.86	1.65	0.74	1.02
J_{Tx}	0.03	0.07	0.02	0.00	0.01	0.00	0.02	0.01	0.00	0.00
J_{Ty}	0.04	0.19	0.01	0.06	0.08	0.05	0.06	0.00	0.00	0.02
J_{Te}	0.04	0.02	0.02	0.03	0.01	0.02	0.06	0.00	0.00	0.01
J_{Tx}/t	0.33	1.07	0.70	0.00	0.61	0.48	0.66	0.66	0.44	0.78
J_{Ty}/t	0.41	0.40	0.80	0.06	0.37	0.53	0.81	0.77	0.81	0.91
J_{Te}/t	0.41	1.42	0.84	0.01	1.15	0.57	0.87	1.65	0.72	1.10
D_T	0.50	0.28	0.27	0.36	0.22	0.26	0.78	0.31	0.43	0.32
D_T/t	0.10	0.02	0.01	0.02	0.21	0.07	0.01	0.00	0.00	0.23
P_T	0.28	0.53	0.18	0.31	0.12	0.17	0.60	0.29	0.29	0.39
P_T/t	0.07	0.01	0.09	0.00	0.03	0.00	0.02	0.01	0.01	0.18
NCP	0.48	0.52	0.30	0.49	0.18	0.28	0.47	0.40	0.41	0.33
NCP/t	0.02	0.12	0.04	0.09	0.08	0.01	0.06	0.13	0.10	0.00
t	0.34	0.54	0.15	0.17	0.20	0.06	0.11	0.30	0.52	0.41

Table 2. P-values of features on single slicings in *plcontinue*

.					Single	slicing				
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.101	0.054	0.029	0.086	0.079	0.149	0.057	0.090	0.183	0.309
L_{Ty}	0.003	0.001	0.037	0.169	0.003	0.009	0.053	0.218	0.027	0.069
L_{Te}	0.006	0.003	0.021	0.105	0.012	0.012	0.019	0.106	0.037	0.080
L_{Tx}/t	0.029	0.004	0.011	0.728	0.010	0.029	0.007	0.021	0.032	0.007
L_{Ty}/t	0.023	0.120	0.016	0.916	0.185	0.038	0.018	0.000	0.028	0.022
L_{Te}/t	0.023	0.004	0.008	0.839	0.006	0.027	0.006	0.011	0.027	0.006
V_{Tx}	0.484	0.641	0.248	0.495	0.621	0.813	0.318	0.361	0.772	0.957
V_{Ty}	0.315	0.013	0.183	0.322	0.040	0.086	0.136	0.623	0.341	0.208
V_{Te}	0.293	0.120	0.142	0.807	0.151	0.135	0.137	0.552	0.344	0.343
V_{Tx}/t	0.015	0.002	0.007	0.766	0.010	0.022	0.008	0.012	0.026	0.003
V_{Ty}/t	0.012	0.036	0.005	0.256	0.039	0.015	0.005	0.003	0.005	0.002
V_{Te}/t	0.012	0.001	0.004	0.682	0.001	0.014	0.003	0.000	0.007	0.001
A_{Tx}	0.172	0.350	0.096	0.193	0.386	0.396	0.155	0.193	0.378	0.101
A_{Ty}	0.036	0.005	0.147	0.628	0.042	0.051	0.077	0.423	0.310	0.116
A_{Te}	0.063	0.038	0.105	0.897	0.144	0.087	0.079	0.368	0.256	0.169
A_{Tx}/t	0.028	0.002	0.007	0.767	0.011	0.021	0.009	0.012	0.028	0.004
A_{Ty}/t	0.024	0.031	0.005	0.279	0.031	0.017	0.005	0.003	0.004	0.002
A_{Te}/t	0.022	0.001	0.004	0.695	0.002	0.015	0.004	0.000	0.007	0.001
J_{Tx}	0.320	0.194	0.467	0.940	0.664	0.730	0.447	0.521	0.932	0.757
J_{Ty}	0.299	0.056	0.555	0.232	0.153	0.251	0.222	0.914	0.821	0.450
J_{Te}	0.265	0.543	0.434	0.413	0.593	0.458	0.220	0.859	0.832	0.683
J_{Tx}/t	0.034	0.003	0.007	0.832	0.014	0.026	0.010	0.010	0.029	0.004
J_{Ty}/t	0.028	0.034	0.005	0.191	0.033	0.019	0.006	0.005	0.006	0.002
J_{Te}/t	0.027	0.001	0.004	0.549	0.002	0.016	0.005	0.000	0.008	0.001
D_T	0.000	0.005	0.005	0.002	0.010	0.006	0.000	0.003	0.001	0.003
D_T/t	0.094	0.510	0.670	0.420	0.017	0.169	0.642	0.849	0.941	0.017
P_T	0.012	0.000	0.019	0.004	0.047	0.027	0.000	0.005	0.004	0.002
P_T/t	0.258	0.684	0.202	0.872	0.491	0.825	0.577	0.685	0.604	0.090
NCP	0.001	0.000	0.004	0.000	0.019	0.005	0.002	0.001	0.001	0.003
NCP/t	0.470	0.067	0.328	0.154	0.181	0.612	0.264	0.095	0.165	0.765
t	0.004	0.000	0.028	0.021	0.020	0.149	0.201	0.004	0.000	0.001

Table 3. Fisher's scores of features on accumulated slicings in *plcontinue*

Feature				A	ccumula	ated slic	cing			
reature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.08	0.11	0.16	0.16	0.16	0.16	0.19	0.18	0.18	0.20
L_{Ty}	0.35	0.66	0.46	0.39	0.43	0.46	0.46	0.43	0.42	0.43
L_{Te}	0.29	0.47	0.40	0.36	0.37	0.40	0.43	0.40	0.39	0.42
L_{Tx}/t	0.30	0.65	0.94	0.96	1.02	1.02	0.94	1.03	1.08	1.14
L_{Ty}/t	0.43	0.57	0.69	0.82	0.79	0.73	0.67	0.81	0.84	0.87
L_{Te}/t	0.40	0.66	0.81	0.89	0.92	0.85	0.79	0.92	0.95	1.00
V_{Tx}	0.01	0.00	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02
V_{Ty}	0.03	0.23	0.17	0.09	0.14	0.15	0.17	0.15	0.13	0.15
V_{Te}	0.03	0.09	0.11	0.07	0.08	0.09	0.11	0.09	0.08	0.10
V_{Tx}/t	0.44	0.81	0.99	1.04	1.13	1.14	1.09	1.18	1.23	1.27
V_{Ty}/t	0.56	0.72	0.83	0.92	0.96	0.91	0.87	1.01	1.05	1.09
V_{Te}/t	0.54	0.80	0.91	0.97	1.06	1.01	0.98	1.09	1.12	1.18
A_{Tx}	0.05	0.06	0.08	0.08	0.07	0.06	0.07	0.07	0.06	0.07
A_{Ty}	0.14	0.44	0.27	0.19	0.22	0.24	0.27	0.24	0.21	0.24
A_{Te}	0.11	0.22	0.19	0.15	0.14	0.16	0.18	0.16	0.14	0.17
A_{Tx}/t	0.33	0.68	0.87	0.90	1.01	1.02	0.99	1.07	1.09	1.13
A_{Ty}/t	0.42	0.55	0.71	0.80	0.87	0.82	0.79	0.92	0.96	1.01
A_{Te}/t	0.42	0.65	0.78	0.85	0.96	0.92	0.89	0.99	1.02	1.09
J_{Tx}	0.03	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
J_{Ty}	0.04	0.17	0.11	0.03	0.06	0.07	0.08	0.06	0.05	0.05
J_{Te}	0.04	0.05	0.05	0.02	0.02	0.02	0.03	0.02	0.02	0.02
J_{Tx}/t	0.33	0.68	0.85	0.88	1.02	1.02	0.99	1.07	1.09	1.13
J_{Ty}/t	0.41	0.56	0.72	0.79	0.86	0.81	0.80	0.90	0.94	1.00
J_{Te}/t	0.41	0.65	0.79	0.84	0.96	0.92	0.90	0.99	1.02	1.08
D_T	0.50	0.40	0.36	0.39	0.38	0.40	0.50	0.53	0.54	0.57
D_T/t	0.10	0.09	0.04	0.04	0.06	0.07	0.07	0.06	0.06	0.07
P_T	0.28	0.49	0.35	0.41	0.30	0.28	0.33	0.35	0.34	0.38
P_T/t	0.07	0.03	0.07	0.06	0.07	0.06	0.05	0.05	0.05	0.06
NCP	0.48	0.55	0.46	0.54	0.46	0.46	0.56	0.61	0.61	0.68
NCP/t	0.02	0.02	0.05	0.06	0.08	0.08	0.08	0.10	0.12	0.10
t	0.34	0.67	0.36	0.34	0.37	0.30	0.31	0.35	0.37	0.42

Table 4. P-values of features on accumulated slicings in *plcontinue*

Б				A	ccumula	ted slici	ng			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.101	0.059	0.025	0.025	0.024	0.024	0.016	0.019	0.019	0.015
L_{Ty}	0.003	0.000	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001
L_{Te}	0.006	0.001	0.002	0.002	0.002	0.001	0.001	0.001	0.002	0.001
L_{Tx}/t	0.029	0.006	0.003	0.003	0.002	0.002	0.003	0.002	0.002	0.002
L_{Ty}/t	0.023	0.010	0.006	0.004	0.004	0.005	0.006	0.004	0.003	0.003
L_{Te}/t	0.023	0.007	0.004	0.003	0.003	0.003	0.004	0.003	0.003	0.002
V_{Tx}	0.484	0.683	0.426	0.422	0.454	0.488	0.439	0.418	0.456	0.463
V_{Ty}	0.315	0.014	0.023	0.095	0.042	0.032	0.027	0.040	0.049	0.039
V_{Te}	0.293	0.103	0.063	0.138	0.112	0.089	0.070	0.092	0.105	0.086
V_{Tx}/t	0.015	0.004	0.003	0.002	0.002	0.002	0.002	0.002	0.001	0.001
V_{Ty}/t	0.012	0.006	0.004	0.003	0.003	0.003	0.004	0.003	0.003	0.002
V_{Te}/t	0.012	0.005	0.004	0.003	0.002	0.003	0.003	0.002	0.002	0.002
A_{Tx}	0.172	0.154	0.101	0.100	0.132	0.142	0.125	0.127	0.147	0.123
A_{Ty}	0.036	0.001	0.006	0.020	0.012	0.009	0.006	0.009	0.015	0.010
A_{Te}	0.063	0.012	0.016	0.035	0.037	0.030	0.020	0.028	0.037	0.026
A_{Tx}/t	0.028	0.007	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002
A_{Ty}/t	0.024	0.012	0.007	0.005	0.004	0.005	0.005	0.004	0.003	0.003
A_{Te}/t	0.022	0.008	0.005	0.004	0.003	0.003	0.004	0.003	0.003	0.002
J_{Tx}	0.320	0.756	0.623	0.675	0.836	0.923	0.830	0.767	0.813	0.851
J_{Ty}	0.299	0.044	0.078	0.386	0.212	0.175	0.131	0.195	0.237	0.215
J_{Te}	0.265	0.261	0.220	0.509	0.492	0.455	0.334	0.404	0.449	0.431
J_{Tx}/t	0.034	0.009	0.005	0.004	0.003	0.003	0.003	0.003	0.002	0.002
J_{Ty}/t	0.028	0.013	0.007	0.006	0.004	0.005	0.006	0.004	0.004	0.003
J_{Te}/t	0.027	0.009	0.006	0.005	0.003	0.004	0.004	0.003	0.003	0.002
D_T	0.000	0.001	0.002	0.001	0.001	0.001	0.000	0.000	0.000	0.000
D_T/t	0.094	0.103	0.257	0.263	0.194	0.168	0.166	0.212	0.220	0.171
P_T	0.012	0.001	0.002	0.001	0.004	0.005	0.003	0.002	0.002	0.002
P_T/t	0.258	0.418	0.249	0.265	0.250	0.286	0.325	0.328	0.340	0.283
NCP	0.001	0.000	0.001	0.000	0.001	0.001	0.000	0.000	0.000	0.000
NCP/t	0.470	0.483	0.289	0.231	0.169	0.194	0.193	0.147	0.133	0.155
t	0.004	0.000	0.002	0.002	0.002	0.004	0.004	0.003	0.002	0.001

Appendix 5 - Pcopy feature scores

Table 1. Fisher's scores of features on single slicings in *pcopy*

					Single	slicing	<u> </u>			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.07	0.00	0.06	0.00	0.04	0.03	0.00	0.01	0.02	0.06
L_{Ty}	0.05	0.07	0.06	0.01	0.02	0.00	0.00	0.01	0.01	0.00
L_{Te}	0.06	0.05	0.05	0.00	0.05	0.00	0.02	0.01	0.00	0.01
L_{Tx}/t	0.62	0.51	0.72	0.28	0.40	0.30	0.23	0.71	0.22	0.08
L_{Ty}/t	0.54	0.20	0.32	0.68	0.43	0.83	0.33	0.48	0.43	0.84
L_{Te}/t	0.63	0.75	0.69	0.41	0.46	0.40	0.26	0.79	0.25	0.12
V_{Tx}	0.19	0.29	0.00	0.03	0.04	0.11	0.02	0.15	0.05	0.12
V_{Ty}	0.01	0.04	0.00	0.00	0.01	0.00	0.01	0.08	0.00	0.03
V_{Te}	0.04	0.00	0.01	0.02	0.01	0.02	0.00	0.15	0.00	0.07
V_{Tx}/t	0.68	0.62	0.60	0.27	0.28	0.30	0.27	0.68	0.20	0.17
V_{Ty}/t	0.49	0.16	0.47	0.58	0.39	0.63	0.24	0.47	0.37	0.48
V_{Te}/t	0.60	0.82	0.59	0.50	0.40	0.53	0.41	0.65	0.40	0.40
A_{Tx}	0.00	0.04	0.02	0.00	0.08	0.02	0.00	0.00	0.00	0.04
A_{Ty}	0.03	0.06	0.01	0.00	0.02	0.00	0.02	0.03	0.00	0.01
A_{Te}	0.00	0.00	0.01	0.00	0.03	0.01	0.00	0.05	0.00	0.02
A_{Tx}/t	0.52	0.59	0.48	0.21	0.22	0.27	0.26	0.51	0.17	0.16
A_{Ty}/t	0.42	0.14	0.41	0.54	0.33	0.63	0.22	0.39	0.29	0.39
A_{Te}/t	0.50	0.74	0.50	0.40	0.32	0.49	0.35	0.52	0.32	0.34
J_{Tx}	0.05	0.18	0.00	0.07	0.01	0.07	0.02	0.06	0.00	0.08
J_{Ty}	0.00	0.02	0.01	0.00	0.00	0.01	0.00	0.09	0.00	0.03
J_{Te}	0.01	0.03	0.01	0.05	0.00	0.08	0.00	0.12	0.00	0.06
J_{Tx}/t	0.46	0.61	0.34	0.18	0.21	0.18	0.25	0.43	0.10	0.15
J_{Ty}/t	0.38	0.13	0.38	0.49	0.27	0.53	0.19	0.36	0.29	0.34
J_{Te}/t	0.45	0.66	0.40	0.36	0.28	0.36	0.34	0.44	0.21	0.30
D_T	0.29	0.66	0.29	0.19	0.15	0.12	0.30	0.16	0.66	0.18
D_T/t	0.10	0.84	0.20	0.10	0.02	0.02	0.07	0.14	0.32	0.10
P_T	0.27	0.14	0.23	0.13	0.32	0.30	0.13	0.23	0.11	0.17
P_T/t	0.02	0.02	0.00	0.02	0.00	0.00	0.01	0.10	0.03	0.04
NCP	0.52	0.44	0.30	0.21	0.19	0.17	0.33	0.15	0.38	0.23
NCP/t	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.00
t	0.38	0.37	0.24	0.13	0.23	0.19	0.29	0.21	0.24	0.22

Table 2. P-values of features on single slicings in *pcopy*

					Single	slicing				
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.199	0.995	0.231	0.778	0.337	0.364	0.782	0.556	0.528	0.222
L_{Ty}	0.289	0.200	0.217	0.640	0.430	0.984	0.729	0.717	0.683	0.943
L_{Te}	0.222	0.286	0.247	0.778	0.281	0.907	0.470	0.579	0.943	0.672
L_{Tx}/t	0.002	0.007	0.001	0.015	0.005	0.012	0.040	0.001	0.034	0.157
L_{Ty}/t	0.004	0.050	0.022	0.001	0.009	0.000	0.022	0.002	0.011	0.000
L_{Te}/t	0.003	0.002	0.002	0.005	0.004	0.004	0.031	0.001	0.025	0.097
V_{Tx}	0.038	0.017	0.808	0.381	0.366	0.113	0.483	0.063	0.267	0.096
V_{Ty}	0.720	0.329	0.987	0.932	0.690	0.812	0.632	0.189	0.976	0.427
V_{Te}	0.364	0.776	0.720	0.500	0.609	0.452	0.963	0.071	0.906	0.207
V_{Tx}/t	0.002	0.004	0.002	0.017	0.020	0.013	0.031	0.001	0.038	0.052
V_{Ty}/t	0.006	0.087	0.007	0.004	0.009	0.003	0.038	0.006	0.017	0.005
V_{Te}/t	0.003	0.001	0.003	0.004	0.010	0.003	0.010	0.002	0.007	0.007
A_{Tx}	0.827	0.354	0.470	0.973	0.173	0.495	0.805	0.748	0.953	0.362
A_{Ty}	0.418	0.246	0.561	0.802	0.470	0.798	0.476	0.435	0.883	0.679
A_{Te}	0.735	0.869	0.691	0.926	0.375	0.596	0.773	0.300	0.835	0.447
A_{Tx}/t	0.005	0.004	0.006	0.036	0.038	0.019	0.033	0.004	0.055	0.056
A_{Ty}/t	0.010	0.096	0.010	0.005	0.015	0.003	0.047	0.010	0.030	0.010
A_{Te}/t	0.005	0.001	0.005	0.008	0.019	0.004	0.014	0.004	0.016	0.012
J_{Tx}	0.270	0.053	0.773	0.220	0.729	0.197	0.481	0.234	0.939	0.163
J_{Ty}	0.980	0.545	0.556	0.790	0.743	0.632	0.741	0.168	0.877	0.414
J_{Te}	0.599	0.409	0.674	0.274	0.826	0.190	0.777	0.099	0.959	0.229
J_{Tx}/t	0.007	0.004	0.014	0.047	0.044	0.050	0.033	0.008	0.140	0.068
J_{Ty}/t	0.012	0.117	0.013	0.007	0.025	0.006	0.061	0.012	0.031	0.013
J_{Te}/t	0.007	0.002	0.010	0.011	0.025	0.010	0.016	0.007	0.041	0.016
D_T	0.013	0.001	0.013	0.038	0.061	0.087	0.011	0.052	0.000	0.041
D_T/t	0.124	0.000	0.033	0.126	0.512	0.498	0.182	0.065	0.009	0.118
P_T	0.016	0.075	0.024	0.080	0.010	0.011	0.074	0.023	0.098	0.051
P_T/t	0.537	0.510	0.858	0.522	0.857	0.950	0.622	0.130	0.425	0.364
NCP	0.002	0.003	0.012	0.029	0.037	0.045	0.009	0.061	0.005	0.023
NCP/t	0.936	0.783	0.632	0.862	0.621	0.803	0.940	0.649	0.768	0.899
t	0.005	0.005	0.020	0.088	0.023	0.037	0.012	0.030	0.021	0.025

Table 3. Fisher's scores of features on accumulated slicings in *pcopy*

				A	ccumula	ated slic	cing			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.07	0.05	0.11	0.05	0.09	0.08	0.07	0.07	0.07	0.05
L_{Ty}	0.05	0.08	0.07	0.04	0.05	0.05	0.05	0.04	0.04	0.03
L_{Te}	0.06	0.07	0.07	0.03	0.05	0.04	0.05	0.04	0.04	0.03
L_{Tx}/t	0.62	0.68	0.71	0.70	0.72	0.75	0.71	0.74	0.71	0.72
L_{Ty}/t	0.54	0.74	0.73	0.77	0.69	0.77	0.74	0.79	0.83	0.78
L_{Te}/t	0.63	0.80	0.80	0.82	0.78	0.86	0.80	0.85	0.84	0.83
V_{Tx}	0.19	0.30	0.18	0.15	0.07	0.10	0.08	0.10	0.10	0.12
V_{Ty}	0.01	0.02	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.00
V_{Te}	0.04	0.03	0.02	0.03	0.01	0.02	0.01	0.03	0.03	0.04
V_{Tx}/t	0.68	0.72	0.72	0.65	0.65	0.66	0.63	0.66	0.63	0.64
V_{Ty}/t	0.49	0.59	0.57	0.56	0.53	0.55	0.54	0.54	0.56	0.54
V_{Te}/t	0.60	0.71	0.69	0.65	0.63	0.64	0.63	0.64	0.63	0.62
A_{Tx}	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
A_{Ty}	0.03	0.11	0.08	0.05	0.06	0.06	0.06	0.03	0.03	0.01
A_{Te}	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
A_{Tx}/t	0.52	0.60	0.58	0.52	0.53	0.53	0.52	0.54	0.51	0.52
A_{Ty}/t	0.42	0.50	0.49	0.49	0.45	0.47	0.47	0.46	0.47	0.45
A_{Te}/t	0.50	0.60	0.58	0.55	0.53	0.54	0.53	0.54	0.53	0.52
J_{Tx}	0.05	0.14	0.06	0.07	0.04	0.06	0.05	0.06	0.05	0.06
J_{Ty}	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
J_{Te}	0.01	0.03	0.03	0.04	0.02	0.03	0.03	0.05	0.04	0.05
J_{Tx}/t	0.46	0.57	0.50	0.46	0.47	0.46	0.45	0.47	0.43	0.44
J_{Ty}/t	0.38	0.44	0.44	0.43	0.39	0.41	0.40	0.41	0.42	0.40
J_{Te}/t	0.45	0.54	0.50	0.47	0.46	0.46	0.46	0.47	0.45	0.45
D_T	0.29	0.40	0.37	0.32	0.28	0.24	0.25	0.24	0.27	0.26
D_T/t	0.10	0.26	0.31	0.29	0.24	0.22	0.21	0.20	0.24	0.25
P_T	0.27	0.22	0.29	0.27	0.31	0.32	0.30	0.31	0.29	0.28
P_T/t	0.02	0.02	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.02
NCP	0.52	0.53	0.45	0.40	0.35	0.31	0.34	0.30	0.32	0.31
NCP/t	0.00	0.00	0.01	0.01	0.02	0.01	0.01	0.02	0.02	0.01
t	0.38	0.40	0.38	0.32	0.32	0.30	0.33	0.32	0.33	0.32

Table 4. P-values of features on accumulated slicings in *pcopy*

				A	ccumula	ted slici	ng			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.199	0.246	0.103	0.259	0.152	0.181	0.180	0.192	0.189	0.262
L_{Ty}	0.289	0.170	0.187	0.319	0.240	0.284	0.261	0.329	0.332	0.395
L_{Te}	0.222	0.194	0.183	0.355	0.250	0.299	0.270	0.331	0.325	0.396
L_{Tx}/t	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001
L_{Ty}/t	0.004	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
L_{Te}/t	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
V_{Tx}	0.038	0.012	0.045	0.062	0.198	0.131	0.169	0.124	0.117	0.090
V_{Ty}	0.720	0.552	0.669	0.786	0.689	0.665	0.605	0.939	0.951	0.847
V_{Te}	0.364	0.412	0.458	0.392	0.630	0.536	0.636	0.391	0.411	0.303
V_{Tx}/t	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
V_{Ty}/t	0.006	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.003	0.004
V_{Te}/t	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
A_{Tx}	0.827	0.499	0.863	0.905	0.711	0.920	0.979	0.959	0.951	0.806
A_{Ty}	0.418	0.117	0.174	0.268	0.218	0.237	0.228	0.403	0.416	0.602
A_{Te}	0.735	0.744	0.725	0.827	0.591	0.750	0.729	0.952	0.932	0.891
A_{Tx}/t	0.005	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.004	0.004
A_{Ty}/t	0.010	0.005	0.005	0.006	0.007	0.006	0.006	0.006	0.006	0.007
A_{Te}/t	0.005	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.004	0.004
J_{Tx}	0.270	0.089	0.243	0.194	0.319	0.257	0.272	0.235	0.270	0.230
J_{Ty}	0.980	0.640	0.928	0.981	0.907	0.997	0.929	0.775	0.758	0.634
J_{Te}	0.599	0.385	0.426	0.324	0.484	0.379	0.419	0.299	0.324	0.281
J_{Tx}/t	0.007	0.004	0.005	0.006	0.006	0.006	0.007	0.006	0.007	0.007
J_{Ty}/t	0.012	0.007	0.007	0.008	0.010	0.009	0.009	0.009	0.009	0.010
J_{Te}/t	0.007	0.004	0.005	0.006	0.007	0.006	0.007	0.006	0.007	0.007
D_T	0.013	0.004	0.006	0.009	0.014	0.021	0.018	0.022	0.016	0.018
D_T/t	0.124	0.018	0.010	0.013	0.022	0.028	0.031	0.031	0.021	0.018
P_T	0.016	0.030	0.013	0.015	0.010	0.009	0.011	0.010	0.012	0.013
P_T/t	0.537	0.481	0.617	0.605	0.718	0.744	0.721	0.584	0.559	0.486
NCP	0.002	0.001	0.003	0.005	0.007	0.011	0.008	0.011	0.009	0.010
NCP/t	0.936	0.850	0.633	0.614	0.555	0.572	0.584	0.548	0.554	0.604
t	0.005	0.004	0.005	0.009	0.009	0.011	0.008	0.009	0.008	0.009

Appendix 6 - Plcopy feature scores

Table 1. Fisher's scores of features on single slicings in *plcopy*

					Single	slicing	ŗ.			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.19	0.02	0.01	0.02	0.00	0.03	0.02	0.01	0.03	0.01
L_{Ty}	0.13	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.02	0.05
L_{Te}	0.20	0.00	0.02	0.02	0.01	0.03	0.01	0.00	0.04	0.00
L_{Tx}/t	0.65	0.99	0.83	0.44	0.63	0.51	0.41	0.51	0.54	0.37
L_{Ty}/t	0.73	1.55	0.66	0.59	0.46	0.61	0.43	0.51	0.58	0.56
L_{Te}/t	0.81	1.53	0.82	0.47	0.60	0.53	0.41	0.52	0.54	0.40
V_{Tx}	0.03	0.03	0.12	0.01	0.05	0.00	0.01	0.01	0.03	0.13
V_{Ty}	0.03	0.10	0.00	0.17	0.02	0.06	0.00	0.02	0.01	0.01
V_{Te}	0.02	0.05	0.05	0.04	0.02	0.01	0.01	0.02	0.00	0.04
V_{Tx}/t	0.97	0.93	0.89	0.49	0.72	0.58	0.53	0.56	0.53	0.39
V_{Ty}/t	1.14	1.16	0.72	0.51	0.45	0.51	0.36	0.40	0.49	0.46
V_{Te}/t	1.22	1.26	0.85	0.51	0.61	0.57	0.41	0.47	0.50	0.49
A_{Tx}	0.17	0.06	0.00	0.05	0.01	0.06	0.02	0.05	0.14	0.00
A_{Ty}	0.08	0.00	0.01	0.01	0.09	0.00	0.01	0.00	0.00	0.01
A_{Te}	0.09	0.01	0.00	0.01	0.01	0.01	0.00	0.00	0.04	0.00
A_{Tx}/t	0.86	0.76	0.86	0.46	0.69	0.54	0.52	0.53	0.46	0.32
A_{Ty}/t	1.06	1.08	0.66	0.47	0.45	0.54	0.36	0.45	0.46	0.40
A_{Te}/t	1.15	1.15	0.78	0.47	0.62	0.60	0.41	0.52	0.46	0.42
J_{Tx}	0.00	0.00	0.04	0.00	0.05	0.02	0.02	0.01	0.02	0.04
J_{Ty}	0.01	0.05	0.02	0.06	0.01	0.04	0.01	0.02	0.02	0.00
J_{Te}	0.00	0.01	0.06	0.01	0.04	0.00	0.03	0.03	0.00	0.01
J_{Tx}/t	0.77	0.53	0.93	0.47	0.74	0.51	0.59	0.57	0.55	0.36
J_{Ty}/t	0.91	0.99	0.68	0.47	0.54	0.54	0.38	0.47	0.52	0.41
J_{Te}/t	1.02	0.98	0.80	0.47	0.73	0.59	0.45	0.53	0.53	0.43
D_T	0.22	0.21	0.23	0.26	0.28	0.32	0.42	0.24	0.35	0.31
D_T/t	0.06	0.20	0.34	0.24	0.47	0.14	0.22	0.38	0.26	0.22
P_T	0.34	0.29	0.39	0.29	0.34	0.32	0.30	0.28	0.30	0.24
P_T/t	0.08	0.08	0.00	0.02	0.05	0.00	0.01	0.03	0.02	0.13
NCP	0.37	0.30	0.39	0.21	0.49	0.29	0.52	0.38	0.37	0.42
NCP/t	0.00	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00
t	0.40	0.39	0.41	0.22	0.16	0.27	0.20	0.27	0.17	0.26

Table 2. P-values of features on single slicings in *plcopy*

Eastuma					Single	slicing				
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.026	0.437	0.627	0.475	0.936	0.373	0.421	0.586	0.381	0.596
L_{Ty}	0.074	0.889	0.998	0.836	0.694	0.485	0.802	0.804	0.475	0.299
L_{Te}	0.025	0.730	0.479	0.518	0.578	0.386	0.608	0.796	0.345	0.729
L_{Tx}/t	0.004	0.001	0.002	0.014	0.005	0.008	0.019	0.009	0.008	0.025
L_{Ty}/t	0.002	0.000	0.004	0.007	0.013	0.005	0.017	0.012	0.007	0.007
L_{Te}/t	0.001	0.000	0.002	0.012	0.006	0.008	0.020	0.009	0.009	0.020
V_{Tx}	0.388	0.407	0.092	0.582	0.232	0.914	0.620	0.551	0.402	0.098
V_{Ty}	0.422	0.196	0.856	0.061	0.542	0.232	0.915	0.488	0.608	0.573
V_{Te}	0.484	0.355	0.249	0.306	0.480	0.550	0.663	0.496	0.868	0.324
V_{Tx}/t	0.001	0.001	0.001	0.010	0.003	0.006	0.009	0.008	0.008	0.022
V_{Ty}/t	0.000	0.001	0.002	0.012	0.015	0.011	0.028	0.022	0.013	0.013
V_{Te}/t	0.000	0.000	0.001	0.011	0.006	0.007	0.021	0.015	0.011	0.011
A_{Tx}	0.045	0.179	0.745	0.244	0.611	0.189	0.529	0.216	0.052	0.939
A_{Ty}	0.173	0.912	0.628	0.637	0.138	0.872	0.612	0.933	0.763	0.588
A_{Te}	0.157	0.572	0.952	0.648	0.681	0.628	0.773	0.776	0.311	0.919
A_{Tx}/t	0.001	0.002	0.001	0.012	0.003	0.007	0.009	0.009	0.010	0.032
A_{Ty}/t	0.000	0.001	0.003	0.014	0.014	0.009	0.028	0.017	0.014	0.017
A_{Te}/t	0.000	0.000	0.002	0.013	0.005	0.006	0.020	0.011	0.013	0.016
J_{Tx}	0.862	0.724	0.293	0.768	0.262	0.475	0.516	0.542	0.510	0.332
J_{Ty}	0.699	0.308	0.500	0.207	0.730	0.324	0.614	0.431	0.496	0.834
J_{Te}	0.916	0.639	0.236	0.705	0.361	0.773	0.417	0.342	0.937	0.566
J_{Tx}/t	0.001	0.007	0.001	0.011	0.003	0.008	0.006	0.007	0.005	0.026
J_{Ty}/t	0.001	0.001	0.003	0.013	0.008	0.009	0.025	0.015	0.010	0.016
J_{Te}/t	0.000	0.001	0.002	0.012	0.003	0.006	0.017	0.010	0.008	0.014
D_T	0.016	0.019	0.016	0.010	0.008	0.006	0.002	0.013	0.004	0.006
D_T/t	0.215	0.026	0.005	0.020	0.001	0.070	0.027	0.003	0.042	0.019
P_T	0.007	0.010	0.003	0.008	0.005	0.006	0.008	0.009	0.007	0.017
P_T/t	0.186	0.213	0.760	0.459	0.314	0.735	0.668	0.445	0.477	0.124
NCP	0.004	0.007	0.003	0.020	0.001	0.008	0.001	0.003	0.003	0.002
NCP/t	0.950	0.997	0.507	0.563	0.590	0.898	0.952	0.921	0.786	0.893
t	0.003	0.003	0.002	0.018	0.039	0.010	0.030	0.010	0.045	0.011

Table 3. Fisher's scores of features on accumulated slicings in *plcopy*

ъ .				A	ccumula	ated slic	cing			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.19	0.22	0.26	0.25	0.20	0.19	0.20	0.20	0.21	0.16
L_{Ty}	0.13	0.03	0.04	0.02	0.04	0.03	0.03	0.02	0.03	0.02
L_{Te}	0.20	0.08	0.10	0.07	0.07	0.07	0.06	0.05	0.06	0.05
L_{Tx}/t	0.65	1.04	1.11	0.91	0.88	0.84	0.69	0.66	0.62	0.61
L_{Ty}/t	0.73	1.14	1.04	0.90	0.76	0.73	0.60	0.58	0.53	0.54
L_{Te}/t	0.81	1.23	1.13	0.93	0.83	0.79	0.65	0.62	0.57	0.58
V_{Tx}	0.03	0.00	0.03	0.04	0.06	0.03	0.03	0.04	0.01	0.03
V_{Ty}	0.03	0.01	0.01	0.05	0.02	0.04	0.03	0.03	0.03	0.03
V_{Te}	0.02	0.00	0.02	0.03	0.04	0.03	0.04	0.03	0.02	0.03
V_{Tx}/t	0.97	1.24	1.26	1.01	0.96	0.92	0.80	0.77	0.72	0.70
V_{Ty}/t	1.14	1.24	1.10	0.92	0.82	0.80	0.66	0.62	0.58	0.58
V_{Te}/t	1.22	1.36	1.21	0.97	0.89	0.86	0.72	0.68	0.63	0.63
A_{Tx}	0.17	0.12	0.07	0.07	0.06	0.07	0.07	0.07	0.09	0.07
A_{Ty}	0.08	0.03	0.03	0.01	0.02	0.01	0.01	0.01	0.01	0.01
A_{Te}	0.09	0.06	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02
A_{Tx}/t	0.86	1.05	1.14	0.93	0.91	0.89	0.77	0.75	0.70	0.67
A_{Ty}/t	1.06	1.21	1.08	0.88	0.79	0.78	0.65	0.62	0.58	0.57
A_{Te}/t	1.15	1.30	1.17	0.92	0.86	0.85	0.71	0.68	0.63	0.62
J_{Tx}	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.01
J_{Ty}	0.01	0.00	0.01	0.03	0.02	0.03	0.03	0.04	0.04	0.03
J_{Te}	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.04	0.03	0.03
J_{Tx}/t	0.77	0.89	1.15	0.99	0.98	0.92	0.83	0.83	0.77	0.75
J_{Ty}/t	0.91	1.15	1.11	0.90	0.85	0.84	0.69	0.67	0.63	0.62
J_{Te}/t	1.02	1.21	1.22	0.96	0.93	0.91	0.76	0.74	0.69	0.68
D_T	0.22	0.22	0.23	0.24	0.25	0.26	0.28	0.28	0.29	0.29
D_T/t	0.06	0.18	0.26	0.32	0.49	0.43	0.45	0.51	0.58	0.55
P_T	0.34	0.36	0.41	0.39	0.40	0.40	0.41	0.40	0.40	0.41
P_T/t	0.08	0.09	0.05	0.04	0.05	0.05	0.04	0.03	0.03	0.05
NCP	0.37	0.34	0.36	0.31	0.36	0.36	0.38	0.39	0.39	0.40
NCP/t	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
t	0.40	0.42	0.43	0.36	0.30	0.30	0.31	0.32	0.31	0.34

Table 4. P-values of features on accumulated slicings in *plcopy*

Б				A	ccumula	ted slici	ng			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.026	0.017	0.015	0.018	0.040	0.041	0.034	0.032	0.026	0.059
L_{Ty}	0.074	0.423	0.286	0.460	0.336	0.359	0.338	0.417	0.390	0.431
L_{Te}	0.025	0.157	0.114	0.181	0.192	0.190	0.195	0.235	0.196	0.246
L_{Tx}/t	0.004	0.000	0.000	0.001	0.001	0.001	0.003	0.004	0.005	0.005
L_{Ty}/t	0.002	0.000	0.001	0.001	0.003	0.003	0.006	0.007	0.009	0.009
L_{Te}/t	0.001	0.000	0.000	0.001	0.002	0.002	0.005	0.005	0.007	0.007
V_{Tx}	0.388	0.985	0.360	0.329	0.218	0.335	0.344	0.326	0.566	0.340
V_{Ty}	0.422	0.619	0.596	0.299	0.465	0.353	0.381	0.385	0.402	0.385
V_{Te}	0.484	0.769	0.450	0.369	0.353	0.357	0.355	0.364	0.472	0.391
V_{Tx}/t	0.001	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003
V_{Ty}/t	0.000	0.000	0.001	0.001	0.002	0.002	0.005	0.006	0.008	0.008
V_{Te}/t	0.000	0.000	0.000	0.001	0.002	0.002	0.004	0.004	0.006	0.006
A_{Tx}	0.045	0.075	0.171	0.168	0.189	0.170	0.182	0.162	0.116	0.153
A_{Ty}	0.173	0.433	0.406	0.644	0.470	0.578	0.530	0.592	0.604	0.576
A_{Te}	0.157	0.223	0.345	0.405	0.421	0.434	0.448	0.483	0.427	0.463
A_{Tx}/t	0.001	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004
A_{Ty}/t	0.000	0.000	0.001	0.001	0.002	0.002	0.005	0.006	0.007	0.007
A_{Te}/t	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	0.005	0.005
J_{Tx}	0.862	0.746	0.826	0.886	0.676	0.844	0.743	0.654	0.817	0.678
J_{Ty}	0.699	0.761	0.586	0.400	0.508	0.394	0.359	0.340	0.343	0.367
J_{Te}	0.916	0.873	0.506	0.501	0.401	0.418	0.356	0.304	0.389	0.369
J_{Tx}/t	0.001	0.001	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.002
J_{Ty}/t	0.001	0.000	0.000	0.001	0.001	0.002	0.004	0.004	0.006	0.006
J_{Te}/t	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.003	0.004	0.004
D_T	0.016	0.017	0.016	0.014	0.013	0.011	0.009	0.009	0.008	0.008
D_T/t	0.215	0.036	0.013	0.007	0.001	0.002	0.002	0.001	0.001	0.001
P_T	0.007	0.006	0.003	0.003	0.003	0.003	0.002	0.003	0.003	0.002
P_T/t	0.186	0.175	0.309	0.326	0.287	0.317	0.378	0.391	0.408	0.328
NCP	0.004	0.005	0.004	0.006	0.004	0.004	0.003	0.003	0.003	0.002
NCP/t	0.950	0.971	0.752	0.613	0.767	0.766	0.878	0.883	0.948	0.872
t	0.003	0.002	0.002	0.004	0.007	0.007	0.006	0.005	0.006	0.004

Appendix 7 - Ptrace feature scores

Table 1. Fisher's scores of features on single slicings in *ptrace*

					Single	slicing				
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.08	0.06	0.08	0.11	0.04	0.04	0.07	0.18	0.04	0.14
L_{Ty}	0.13	0.05	0.03	0.01	0.00	0.03	0.00	0.05	0.01	0.07
L_{Te}	0.13	0.03	0.13	0.00	0.09	0.02	0.05	0.04	0.03	0.09
L_{Tx}/t	0.92	1.11	1.39	0.95	1.14	1.32	1.03	1.24	0.81	1.05
L_{Ty}/t	0.76	0.42	0.99	0.45	0.97	0.39	0.91	0.51	0.81	1.07
L_{Te}/t	0.91	1.51	1.34	1.15	1.13	1.59	1.05	1.41	0.83	1.13
V_{Tx}	0.00	0.45	0.06	0.85	0.07	0.04	0.10	0.04	0.01	0.00
V_{Ty}	0.02	0.01	0.00	0.00	0.01	0.02	0.00	0.05	0.00	0.03
V_{Te}	0.00	0.49	0.02	0.56	0.02	0.05	0.08	0.00	0.00	0.01
V_{Tx}/t	0.88	1.35	1.49	1.09	1.24	1.06	1.01	1.51	0.80	0.88
V_{Ty}/t	0.82	1.28	1.16	0.90	0.96	1.15	1.09	1.14	1.04	0.92
V_{Te}/t	0.90	1.51	1.47	1.11	1.18	1.24	1.17	1.46	1.04	0.97
A_{Tx}	0.11	0.13	0.00	0.03	0.01	0.00	0.00	0.01	0.02	0.08
A_{Ty}	0.11	0.00	0.03	0.09	0.10	0.08	0.02	0.10	0.00	0.10
A_{Te}	0.09	0.16	0.00	0.00	0.02	0.00	0.01	0.02	0.01	0.06
A_{Tx}/t	0.68	1.22	1.17	0.90	1.06	0.89	0.84	1.33	0.73	0.69
A_{Ty}/t	0.72	1.24	1.03	0.63	0.77	1.07	0.85	0.93	0.88	0.71
A_{Te}/t	0.77	1.42	1.22	0.91	1.03	1.08	0.98	1.32	0.96	0.78
J_{Tx}	0.00	0.35	0.10	0.37	0.04	0.12	0.18	0.07	0.00	0.00
J_{Ty}	0.00	0.13	0.01	0.01	0.00	0.01	0.08	0.01	0.01	0.00
J_{Te}	0.00	0.49	0.09	0.31	0.03	0.16	0.26	0.03	0.00	0.00
J_{Tx}/t	0.65	1.14	1.04	0.94	0.98	0.80	0.86	1.34	0.72	0.62
J_{Ty}/t	0.71	1.46	0.92	0.70	0.67	1.18	1.00	0.84	0.87	0.71
J_{Te}/t	0.74	1.47	1.14	1.02	0.93	1.04	1.04	1.24	0.97	0.73
D_T	0.89	0.71	0.96	0.40	0.31	0.41	0.31	0.29	0.93	0.42
D_T/t	0.10	0.33	0.13	0.37	0.16	0.43	0.17	0.19	0.20	0.34
P_T	0.27	0.24	0.48	0.20	0.24	0.29	0.25	0.27	0.20	0.37
P_T/t	0.02	0.02	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.01
NCP	0.72	0.70	0.94	0.63	0.46	0.47	0.35	0.21	0.54	0.46
NCP/t	0.05	0.04	0.07	0.00	0.02	0.00	0.02	0.04	0.06	0.01
t	0.08	0.43	0.31	0.31	0.35	0.52	0.24	0.28	0.30	0.46

Table 2. P-values of features on single slicings in *ptrace*

Г					Single	slicing				
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.116	0.193	0.117	0.137	0.270	0.262	0.165	0.025	0.253	0.045
L_{Ty}	0.051	0.255	0.359	0.605	0.732	0.393	0.974	0.273	0.560	0.165
L_{Te}	0.054	0.344	0.049	0.901	0.098	0.514	0.219	0.304	0.327	0.117
L_{Tx}/t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001
L_{Ty}/t	0.001	0.003	0.000	0.002	0.001	0.006	0.000	0.002	0.001	0.000
L_{Te}/t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
V_{Tx}	0.918	0.002	0.191	0.000	0.172	0.278	0.112	0.283	0.547	0.885
V_{Ty}	0.514	0.545	0.709	0.917	0.686	0.424	0.946	0.198	0.840	0.347
V_{Te}	0.724	0.002	0.429	0.003	0.414	0.261	0.153	0.904	0.822	0.684
V_{Tx}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001
V_{Ty}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
V_{Te}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
A_{Tx}	0.125	0.087	0.991	0.432	0.609	0.878	0.755	0.623	0.412	0.155
A_{Ty}	0.099	0.741	0.322	0.160	0.102	0.155	0.477	0.088	0.849	0.107
A_{Te}	0.142	0.058	0.929	0.874	0.438	0.950	0.687	0.433	0.651	0.198
A_{Tx}/t	0.002	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.001	0.003
A_{Ty}/t	0.001	0.000	0.000	0.002	0.001	0.000	0.001	0.001	0.001	0.003
A_{Te}/t	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.002
J_{Tx}	0.954	0.012	0.138	0.007	0.339	0.108	0.045	0.186	0.755	0.747
J_{Ty}	0.840	0.084	0.695	0.707	0.940	0.646	0.164	0.568	0.539	0.954
J_{Te}	0.908	0.004	0.145	0.018	0.412	0.074	0.020	0.335	0.821	0.860
J_{Tx}/t	0.003	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.001	0.004
J_{Ty}/t	0.002	0.000	0.001	0.002	0.002	0.000	0.001	0.001	0.001	0.003
J_{Te}/t	0.002	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.001	0.002
D_T	0.000	0.000	0.000	0.002	0.005	0.002	0.005	0.006	0.000	0.002
D_T/t	0.085	0.004	0.053	0.003	0.036	0.001	0.033	0.022	0.020	0.004
P_T	0.009	0.012	0.001	0.022	0.011	0.006	0.010	0.008	0.018	0.003
P_T/t	0.506	0.480	0.977	0.553	0.995	0.596	0.762	0.580	0.987	0.639
NCP	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.016	0.000	0.001
NCP/t	0.251	0.358	0.210	0.986	0.459	0.964	0.472	0.325	0.246	0.704
t	0.118	0.001	0.005	0.005	0.003	0.001	0.011	0.007	0.005	0.001

Table 3. Fisher's scores of features on accumulated slicings in *ptrace*

Feature				A	ccumula	ated slic	eing			
reature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.08	0.13	0.18	0.11	0.11	0.13	0.12	0.15	0.12	0.13
L_{Ty}	0.13	0.14	0.23	0.12	0.14	0.10	0.11	0.09	0.10	0.10
L_{Te}	0.13	0.12	0.21	0.10	0.12	0.09	0.09	0.08	0.10	0.10
L_{Tx}/t	0.92	1.02	1.18	1.20	1.24	1.24	1.24	1.26	1.18	1.12
L_{Ty}/t	0.76	0.98	1.00	1.12	1.20	1.29	1.28	1.34	1.32	1.35
L_{Te}/t	0.91	1.15	1.23	1.34	1.37	1.46	1.44	1.51	1.43	1.40
V_{Tx}	0.00	0.14	0.13	0.23	0.21	0.19	0.19	0.18	0.05	0.04
V_{Ty}	0.02	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
V_{Te}	0.00	0.05	0.05	0.10	0.09	0.09	0.10	0.08	0.04	0.02
V_{Tx}/t	0.88	1.14	1.31	1.29	1.34	1.33	1.33	1.39	1.34	1.29
V_{Ty}/t	0.82	1.01	1.10	1.09	1.14	1.19	1.20	1.23	1.24	1.21
V_{Te}/t	0.90	1.15	1.29	1.28	1.32	1.35	1.36	1.41	1.38	1.34
A_{Tx}	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
A_{Ty}	0.11	0.06	0.07	0.08	0.10	0.10	0.09	0.11	0.09	0.10
A_{Te}	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
A_{Tx}/t	0.68	0.96	1.09	1.07	1.13	1.12	1.12	1.18	1.14	1.09
A_{Ty}/t	0.72	0.94	1.03	0.97	0.99	1.03	1.04	1.07	1.07	1.05
A_{Te}/t	0.77	1.04	1.14	1.11	1.15	1.17	1.18	1.23	1.21	1.16
J_{Tx}	0.00	0.12	0.12	0.18	0.16	0.17	0.19	0.18	0.11	0.08
J_{Ty}	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01
J_{Te}	0.00	0.10	0.12	0.16	0.14	0.15	0.18	0.17	0.13	0.10
J_{Tx}/t	0.65	0.93	1.03	1.06	1.12	1.09	1.09	1.16	1.13	1.07
J_{Ty}/t	0.71	1.00	1.04	1.00	1.00	1.06	1.08	1.11	1.12	1.08
J_{Te}/t	0.74	1.05	1.12	1.13	1.15	1.16	1.17	1.23	1.21	1.16
D_T	0.89	0.95	1.05	0.86	0.71	0.66	0.60	0.55	0.60	0.58
D_T/t	0.10	0.17	0.15	0.20	0.20	0.23	0.23	0.24	0.25	0.27
P_T	0.27	0.29	0.40	0.36	0.39	0.39	0.37	0.39	0.38	0.39
P_T/t	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
NCP	0.72	0.77	0.87	0.83	0.76	0.72	0.65	0.56	0.58	0.57
NCP/t	0.05	0.08	0.12	0.09	0.10	0.08	0.08	0.09	0.09	0.08
t	0.08	0.12	0.19	0.22	0.27	0.31	0.33	0.36	0.38	0.40

Table 4. P-values of features on accumulated slicings in *ptrace*

Б				A	ccumula	ted slici	ng			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.116	0.063	0.029	0.090	0.077	0.062	0.066	0.047	0.065	0.053
L_{Ty}	0.051	0.066	0.022	0.101	0.079	0.138	0.116	0.145	0.133	0.133
L_{Te}	0.054	0.078	0.025	0.123	0.094	0.145	0.134	0.155	0.125	0.119
L_{Tx}/t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
L_{Ty}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
L_{Te}/t	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V_{Tx}	0.918	0.075	0.080	0.025	0.030	0.034	0.035	0.039	0.226	0.269
V_{Ty}	0.514	0.802	0.725	0.751	0.721	0.657	0.697	0.530	0.620	0.545
V_{Te}	0.724	0.272	0.264	0.132	0.148	0.137	0.127	0.164	0.319	0.410
V_{Tx}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V_{Ty}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
V_{Te}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A_{Tx}	0.125	0.958	0.968	0.813	0.947	0.966	0.898	0.975	0.780	0.653
A_{Ty}	0.099	0.223	0.188	0.169	0.132	0.122	0.141	0.103	0.132	0.112
A_{Te}	0.142	0.813	0.840	0.911	0.793	0.821	0.927	0.824	0.751	0.629
A_{Tx}/t	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A_{Ty}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A_{Te}/t	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
J_{Tx}	0.954	0.135	0.118	0.059	0.069	0.064	0.051	0.054	0.118	0.167
J_{Ty}	0.840	0.604	0.585	0.600	0.667	0.652	0.526	0.634	0.590	0.658
J_{Te}	0.908	0.158	0.130	0.082	0.099	0.084	0.059	0.067	0.098	0.136
J_{Tx}/t	0.003	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
J_{Ty}/t	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
J_{Te}/t	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D_T	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D_T/t	0.085	0.029	0.038	0.020	0.020	0.012	0.012	0.010	0.010	0.007
P_T	0.009	0.007	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002
P_T/t	0.506	0.450	0.607	0.573	0.653	0.631	0.635	0.632	0.659	0.647
NCP	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NCP/t	0.251	0.143	0.087	0.130	0.125	0.158	0.162	0.153	0.146	0.171
t	0.118	0.063	0.022	0.015	0.007	0.005	0.004	0.003	0.002	0.002

Appendix 8 - Pltrace feature scores

Table 1. Fisher's scores of features on single slicings in *pltrace*

					Single	slicing	<u> </u>			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.03	0.20	0.19	0.09	0.14	0.09	0.19	0.07	0.09	0.00
L_{Ty}	0.06	0.00	0.00	0.00	0.03	0.00	0.01	0.02	0.00	0.00
L_{Te}	0.06	0.03	0.13	0.06	0.13	0.05	0.21	0.06	0.12	0.01
L_{Tx}/t	0.54	0.72	0.64	0.83	1.04	0.89	0.79	0.78	1.04	0.96
L_{Ty}/t	0.60	0.97	0.69	0.94	0.91	0.90	0.72	0.91	1.03	1.20
L_{Te}/t	0.63	0.89	0.65	0.87	1.01	0.90	0.78	0.83	1.02	1.01
V_{Tx}	0.06	0.01	0.05	0.00	0.01	0.18	0.02	0.00	0.00	0.12
V_{Ty}	0.29	0.04	0.00	0.00	0.01	0.18	0.08	0.01	0.01	0.15
V_{Te}	0.25	0.01	0.04	0.00	0.01	0.21	0.04	0.02	0.00	0.22
V_{Tx}/t	0.67	0.68	0.63	0.71	0.85	0.92	0.75	0.73	0.99	0.99
V_{Ty}/t	0.79	0.80	0.62	0.81	0.83	0.91	0.86	0.72	0.83	0.87
V_{Te}/t	0.80	0.76	0.66	0.78	0.87	0.93	0.82	0.75	0.88	0.94
A_{Tx}	0.02	0.02	0.00	0.14	0.08	0.03	0.01	0.04	0.03	0.00
A_{Ty}	0.04	0.00	0.01	0.04	0.05	0.06	0.01	0.05	0.01	0.00
A_{Te}	0.07	0.01	0.00	0.07	0.04	0.06	0.00	0.06	0.02	0.01
A_{Tx}/t	0.63	0.60	0.59	0.62	0.77	0.82	0.68	0.62	0.87	0.84
A_{Ty}/t	0.78	0.70	0.63	0.70	0.75	0.85	0.81	0.70	0.72	0.75
A_{Te}/t	0.78	0.67	0.64	0.69	0.79	0.85	0.77	0.69	0.76	0.81
J_{Tx}	0.12	0.01	0.22	0.00	0.00	0.20	0.16	0.03	0.03	0.16
J_{Ty}	0.26	0.10	0.17	0.03	0.01	0.27	0.30	0.01	0.10	0.27
J_{Te}	0.26	0.06	0.31	0.01	0.01	0.29	0.27	0.03	0.06	0.37
J_{Tx}/t	0.61	0.52	0.67	0.61	0.76	0.81	0.72	0.62	0.94	0.86
J_{Ty}/t	0.74	0.68	0.70	0.67	0.69	0.89	0.86	0.72	0.75	0.74
J_{Te}/t	0.73	0.64	0.73	0.66	0.74	0.89	0.82	0.72	0.80	0.83
D_T	0.30	0.38	0.46	0.50	0.23	0.38	0.55	0.28	0.35	0.47
D_T/t	0.14	0.38	0.38	0.29	0.07	0.22	0.15	0.70	0.19	0.51
P_T	0.12	0.22	0.34	0.25	0.27	0.27	0.23	0.24	0.37	0.44
P_T/t	0.10	0.02	0.00	0.00	0.03	0.01	0.02	0.02	0.01	0.03
NCP	0.48	0.43	0.38	0.65	0.38	0.34	0.45	0.46	0.60	0.55
NCP/t	0.00	0.01	0.01	0.01	0.10	0.04	0.01	0.00	0.03	0.01
t	0.11	0.46	0.26	0.35	0.23	0.46	0.25	0.36	0.44	0.58

Table 2. P-values of features on single slicings in *pltrace*

F4					Single	slicing				
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.354	0.024	0.020	0.099	0.045	0.102	0.022	0.145	0.109	0.774
L_{Ty}	0.176	0.816	0.920	0.735	0.299	0.980	0.637	0.488	0.965	0.947
L_{Te}	0.174	0.391	0.052	0.189	0.047	0.236	0.015	0.184	0.070	0.707
L_{Tx}/t	0.005	0.002	0.003	0.001	0.000	0.001	0.001	0.001	0.000	0.001
L_{Ty}/t	0.003	0.001	0.002	0.001	0.000	0.000	0.001	0.000	0.000	0.000
L_{Te}/t	0.003	0.001	0.003	0.001	0.000	0.001	0.001	0.001	0.000	0.001
V_{Tx}	0.221	0.660	0.270	0.846	0.486	0.033	0.497	0.931	0.991	0.113
V_{Ty}	0.018	0.277	0.815	0.847	0.500	0.041	0.149	0.504	0.570	0.065
V_{Te}	0.023	0.610	0.307	0.724	0.531	0.024	0.277	0.447	0.888	0.035
V_{Tx}/t	0.003	0.002	0.003	0.002	0.001	0.001	0.001	0.002	0.001	0.001
V_{Ty}/t	0.001	0.002	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001
V_{Te}/t	0.001	0.002	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.001
A_{Tx}	0.511	0.450	0.770	0.053	0.113	0.382	0.680	0.296	0.382	0.760
A_{Ty}	0.347	0.940	0.533	0.300	0.240	0.247	0.664	0.203	0.646	0.758
A_{Te}	0.225	0.679	0.966	0.159	0.253	0.240	0.782	0.196	0.413	0.670
A_{Tx}/t	0.003	0.004	0.004	0.004	0.001	0.001	0.002	0.003	0.001	0.001
A_{Ty}/t	0.001	0.003	0.003	0.002	0.002	0.001	0.001	0.002	0.003	0.002
A_{Te}/t	0.002	0.003	0.003	0.003	0.001	0.001	0.002	0.002	0.002	0.002
J_{Tx}	0.114	0.678	0.023	0.974	0.977	0.047	0.054	0.379	0.371	0.083
J_{Ty}	0.029	0.125	0.042	0.392	0.605	0.026	0.015	0.540	0.124	0.021
J_{Te}	0.029	0.240	0.007	0.588	0.580	0.021	0.020	0.380	0.231	0.011
J_{Tx}/t	0.004	0.007	0.003	0.004	0.002	0.002	0.002	0.004	0.001	0.001
J_{Ty}/t	0.002	0.003	0.002	0.003	0.003	0.001	0.001	0.002	0.002	0.002
J_{Te}/t	0.002	0.004	0.002	0.003	0.002	0.001	0.002	0.002	0.002	0.002
D_T	0.005	0.002	0.001	0.001	0.012	0.002	0.000	0.007	0.003	0.001
D_T/t	0.048	0.002	0.002	0.007	0.141	0.014	0.041	0.000	0.027	0.001
P_T	0.067	0.016	0.003	0.009	0.008	0.010	0.012	0.011	0.003	0.001
P_T/t	0.146	0.453	0.967	0.905	0.370	0.625	0.490	0.474	0.610	0.440
NCP	0.001	0.001	0.002	0.000	0.002	0.003	0.001	0.001	0.000	0.000
NCP/t	0.806	0.665	0.586	0.660	0.126	0.329	0.682	0.754	0.399	0.653
t	0.074	0.001	0.008	0.007	0.013	0.001	0.011	0.003	0.001	0.000

Table 3. Fisher's scores of features on accumulated slicings in *pltrace*

ъ .				A	ccumula	ated slic	cing			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.03	0.10	0.20	0.22	0.22	0.23	0.27	0.26	0.24	0.23
L_{Ty}	0.06	0.03	0.06	0.06	0.11	0.10	0.12	0.11	0.11	0.09
L_{Te}	0.06	0.06	0.11	0.11	0.16	0.15	0.18	0.17	0.18	0.15
L_{Tx}/t	0.54	0.61	0.59	0.62	0.67	0.70	0.69	0.72	0.75	0.80
L_{Ty}/t	0.60	0.79	0.73	0.77	0.80	0.82	0.81	0.85	0.87	0.94
L_{Te}/t	0.63	0.76	0.71	0.74	0.78	0.80	0.80	0.83	0.85	0.91
V_{Tx}	0.06	0.04	0.05	0.02	0.00	0.02	0.02	0.02	0.01	0.03
V_{Ty}	0.29	0.17	0.12	0.08	0.02	0.05	0.05	0.03	0.03	0.05
V_{Te}	0.25	0.11	0.11	0.05	0.01	0.03	0.04	0.02	0.02	0.03
V_{Tx}/t	0.67	0.69	0.68	0.69	0.75	0.78	0.81	0.82	0.85	0.88
V_{Ty}/t	0.79	0.81	0.76	0.79	0.83	0.85	0.89	0.89	0.90	0.92
V_{Te}/t	0.80	0.80	0.75	0.77	0.82	0.84	0.87	0.87	0.89	0.91
A_{Tx}	0.02	0.00	0.00	0.01	0.03	0.02	0.02	0.02	0.03	0.02
A_{Ty}	0.04	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.01
A_{Te}	0.07	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00
A_{Tx}/t	0.63	0.63	0.63	0.63	0.68	0.71	0.74	0.74	0.76	0.79
A_{Ty}/t	0.78	0.76	0.73	0.74	0.78	0.80	0.84	0.84	0.84	0.85
A_{Te}/t	0.78	0.74	0.71	0.72	0.76	0.78	0.81	0.81	0.82	0.84
J_{Tx}	0.12	0.07	0.11	0.07	0.05	0.08	0.09	0.09	0.10	0.12
J_{Ty}	0.26	0.20	0.25	0.20	0.15	0.20	0.23	0.20	0.22	0.25
J_{Te}	0.26	0.18	0.24	0.18	0.14	0.18	0.21	0.19	0.20	0.24
J_{Tx}/t	0.61	0.59	0.63	0.64	0.69	0.72	0.75	0.75	0.77	0.80
J_{Ty}/t	0.74	0.72	0.73	0.75	0.78	0.81	0.85	0.85	0.85	0.86
J_{Te}/t	0.73	0.70	0.72	0.73	0.77	0.80	0.83	0.83	0.84	0.85
D_T	0.30	0.35	0.39	0.44	0.39	0.40	0.42	0.40	0.40	0.41
D_T/t	0.14	0.25	0.32	0.34	0.28	0.30	0.29	0.35	0.33	0.37
P_T	0.12	0.19	0.24	0.28	0.32	0.33	0.32	0.33	0.34	0.36
P_T/t	0.10	0.07	0.04	0.02	0.03	0.03	0.03	0.03	0.03	0.03
NCP	0.48	0.49	0.50	0.55	0.53	0.51	0.51	0.51	0.52	0.53
NCP/t	0.00	0.01	0.00	0.00	0.04	0.05	0.05	0.05	0.05	0.04
t	0.11	0.17	0.20	0.25	0.34	0.37	0.36	0.38	0.40	0.42

Table 4. P-values of features on accumulated slicings in *pltrace*

F 4				A	ccumula	ted slici	ng			
Feature	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
L_{Tx}	0.032	0.198	0.195	0.095	0.137	0.092	0.188	0.068	0.088	0.003
L_{Ty}	0.063	0.002	0.000	0.005	0.034	0.000	0.007	0.016	0.000	0.000
L_{Te}	0.065	0.030	0.129	0.064	0.134	0.052	0.214	0.060	0.116	0.005
L_{Tx}/t	0.537	0.722	0.635	0.826	1.035	0.887	0.790	0.780	1.040	0.962
L_{Ty}/t	0.603	0.967	0.694	0.940	0.910	0.896	0.718	0.912	1.033	1.203
L_{Te}/t	0.630	0.887	0.646	0.874	1.008	0.900	0.778	0.834	1.024	1.007
V_{Tx}	0.062	0.007	0.046	0.001	0.015	0.176	0.015	0.000	0.000	0.121
V_{Ty}	0.289	0.039	0.002	0.001	0.014	0.178	0.075	0.014	0.012	0.147
V_{Te}	0.247	0.009	0.036	0.004	0.012	0.205	0.042	0.018	0.001	0.216
V_{Tx}/t	0.671	0.684	0.632	0.709	0.851	0.925	0.746	0.728	0.992	0.992
V_{Ty}/t	0.790	0.799	0.623	0.811	0.832	0.914	0.864	0.723	0.835	0.871
V_{Te}/t	0.800	0.759	0.656	0.775	0.872	0.934	0.824	0.752	0.882	0.938
A_{Tx}	0.018	0.020	0.003	0.139	0.083	0.028	0.006	0.039	0.026	0.004
A_{Ty}	0.039	0.000	0.013	0.041	0.046	0.056	0.007	0.053	0.008	0.004
A_{Te}	0.066	0.006	0.000	0.073	0.043	0.055	0.003	0.056	0.024	0.008
A_{Tx}/t	0.633	0.600	0.587	0.622	0.770	0.823	0.676	0.624	0.870	0.841
A_{Ty}/t	0.785	0.705	0.629	0.705	0.745	0.847	0.812	0.704	0.719	0.752
A_{Te}/t	0.781	0.672	0.642	0.685	0.786	0.851	0.771	0.688	0.758	0.813
J_{Tx}	0.119	0.007	0.222	0.000	0.000	0.197	0.158	0.032	0.028	0.159
J_{Ty}	0.256	0.098	0.171	0.032	0.010	0.265	0.297	0.013	0.103	0.266
J_{Te}	0.258	0.057	0.311	0.012	0.011	0.286	0.268	0.029	0.055	0.373
J_{Tx}/t	0.609	0.522	0.667	0.608	0.756	0.814	0.725	0.622	0.936	0.861
J_{Ty}/t	0.735	0.681	0.705	0.665	0.690	0.886	0.857	0.720	0.745	0.742
J_{Te}/t	0.730	0.641	0.728	0.664	0.736	0.892	0.817	0.716	0.800	0.830
D_T	0.303	0.376	0.464	0.501	0.233	0.378	0.552	0.277	0.348	0.468
D_T/t	0.138	0.383	0.385	0.289	0.073	0.223	0.153	0.696	0.188	0.505
P_T	0.125	0.218	0.343	0.252	0.270	0.272	0.234	0.239	0.367	0.436
P_T/t	0.103	0.023	0.000	0.001	0.033	0.009	0.020	0.020	0.011	0.027
NCP	0.484	0.428	0.382	0.654	0.375	0.339	0.454	0.460	0.601	0.555
NCP/t	0.002	0.007	0.012	0.008	0.096	0.039	0.007	0.004	0.031	0.008
t	0.105	0.464	0.262	0.354	0.226	0.458	0.245	0.356	0.445	0.579

Appendix 9 - Classifier scores

Table 1. Accuracy scores of classifiers trained on featureset optimised for 60% and 100% slices on single slicings in *pcontinue*

Classifier					Single	slicing				
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.679	0.607	0.679	0.607	0.821	0.786	0.571	0.643	0.714	0.643
CART	0.714	0.393	0.679	0.750	0.821	0.714	0.571	0.500	0.750	0.750
KNN	0.714	0.357	0.536	0.750	0.786	0.714	0.571	0.607	0.750	0.643
LR	0.679	0.464	0.750	0.679	0.750	0.679	0.643	0.714	0.607	0.607

Table 2. Accuracy scores of classifiers trained on featureset optimised for 60% slice on accumulated slicings in *pcontinue*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.429	0.500	0.607	0.643	0.643	0.571	0.607	0.679	0.714	0.786
CART	0.607	0.571	0.536	0.464	0.643	0.607	0.714	0.607	0.714	0.786
KNN	0.500	0.679	0.500	0.536	0.571	0.571	0.536	0.607	0.679	0.607
LR	0.571	0.643	0.643	0.571	0.500	0.571	0.643	0.607	0.536	0.607

Table 3. Accuracy scores of classifiers trained on featureset optimised for 100% slice on accumulated slicings in *pcontinue*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.429	0.500	0.607	0.643	0.643	0.571	0.679	0.679	0.714	0.750
CART	0.607	0.571	0.536	0.464	0.643	0.607	0.714	0.607	0.714	0.786
KNN	0.500	0.679	0.500	0.536	0.571	0.571	0.536	0.607	0.679	0.607
LR	0.571	0.571	0.500	0.607	0.571	0.464	0.679	0.714	0.714	0.607

Table 4. Accuracy scores of classifiers trained on featureset optimised for 20% and 80% slices on single slicings in *plcontinue*

Classifier					Single	slicing				
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.720	0.845	0.917	0.720	0.488	0.768	0.655	0.690	0.857	0.726
CART	0.649	0.804	0.917	0.679	0.524	0.762	0.762	0.690	0.929	0.726
KNN	0.756	0.887	0.917	0.637	0.446	0.762	0.613	0.577	0.768	0.720
LR	0.494	0.768	0.845	0.720	0.583	0.679	0.571	0.726	0.929	0.804

Table 5. Accuracy scores of classifiers trained on featureset optimised for 50% slice on accumulated slicings in *plcontinue*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.655	0.619	0.619	0.619	0.619	0.619	0.732	0.661	0.661	0.619
CART	0.619	0.619	0.619	0.619	0.619	0.619	0.619	0.619	0.619	0.619
KNN	0.738	0.494	0.458	0.423	0.613	0.613	0.542	0.685	0.625	0.619
LR	0.655	0.536	0.583	0.506	0.536	0.506	0.500	0.417	0.542	0.542

Table 6. Accuracy scores of classifiers trained on featureset optimised for 100% slice on accumulated slicings in *plcontinue*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.887	0.607	0.810	0.851	0.893	0.774	0.815	0.851	0.810	0.887
CART	0.845	0.685	0.839	0.810	0.810	0.774	0.893	0.893	0.726	0.726
KNN	0.845	0.726	0.726	0.774	0.768	0.810	0.851	0.851	0.810	0.768
LR	0.732	0.685	0.548	0.762	0.762	0.720	0.762	0.685	0.720	0.804

Table 7. Accuracy scores of classifiers trained on featureset optimised for 20% slice on single slicings in pcopy

Classifier					Single	slicing				
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.690	0.696	0.810	0.720	0.571	0.810	0.655	0.810	0.810	0.607
CART	0.768	0.732	0.726	0.720	0.619	0.845	0.542	0.774	0.851	0.655
KNN	0.726	0.851	0.804	0.577	0.577	0.619	0.542	0.655	0.458	0.583
LR	0.726	0.810	0.726	0.756	0.619	0.732	0.542	0.655	0.774	0.655

Table 8. Accuracy scores of classifiers trained on featureset optimised for 60% slice on single slicings in pcopy

Classifier					Single	slicing				
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.774	0.583	0.589	0.542	0.583	0.339	0.506	0.655	0.458	0.506
CART	0.738	0.577	0.631	0.536	0.548	0.464	0.417	0.774	0.536	0.464
KNN	0.631	0.619	0.631	0.577	0.542	0.375	0.464	0.732	0.542	0.542
LR	0.810	0.577	0.625	0.500	0.625	0.423	0.458	0.685	0.500	0.548

Table 9. Accuracy scores of classifiers trained on featureset optimised for 20% and 60% slices on accumulated slicings in pcopy

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.524	0.720	0.500	0.619	0.625	0.536	0.536	0.500	0.661	0.738
CART	0.661	0.762	0.571	0.464	0.607	0.500	0.577	0.470	0.685	0.619
KNN	0.536	0.845	0.655	0.577	0.768	0.452	0.613	0.464	0.661	0.851
LR	0.613	0.720	0.542	0.619	0.500	0.655	0.577	0.500	0.500	0.464

Table 10. Accuracy scores of classifiers trained on featureset optimised for 20% slice on single slicings in *plcopy*

Classifier					Single	slicing				
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.714	0.600	0.821	0.686	0.593	0.700	0.686	0.671	0.721	0.821
CART	0.750	0.600	0.786	0.636	0.600	0.700	0.686	0.600	0.771	0.821
KNN	0.821	0.600	0.650	0.600	0.493	0.700	0.529	0.564	0.736	0.686
LR	0.736	0.600	0.786	0.600	0.564	0.614	0.671	0.671	0.650	0.821

Table 11. Accuracy scores of classifiers trained on featureset optimised for 50% slice on single slicings in *plcopy*

Classifier					Single	slicing				
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.614	0.650	0.757	0.686	0.843	0.471	0.650	0.964	0.636	0.671
CART	0.650	0.700	0.757	0.821	0.843	0.507	0.614	0.964	0.686	0.636
KNN	0.650	0.614	0.721	0.786	0.807	0.507	0.614	0.964	0.650	0.636
LR	0.686	0.807	0.757	0.650	0.736	0.614	0.600	0.857	0.543	0.650

Table 12. Accuracy scores of classifiers trained on featureset optimised for 20% slice on accumulated slicings in *plcopy*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.714	0.750	0.664	0.771	0.736	0.736	0.736	0.650	0.636	0.736
CART	0.750	0.750	0.664	0.736	0.771	0.700	0.671	0.600	0.671	0.757
KNN	0.821	0.750	0.664	0.771	0.736	0.736	0.736	0.636	0.736	0.686
LR	0.593	0.493	0.771	0.736	0.664	0.736	0.736	0.564	0.636	0.821

Table 13. Accuracy scores of classifiers trained on featureset optimised for 60% slice on accumulated slicings in *plcopy*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.614	0.700	0.721	0.793	0.771	0.686	0.736	0.757	0.721	0.721
CART	0.650	0.700	0.757	0.843	0.721	0.721	0.771	0.757	0.721	0.686
KNN	0.650	0.629	0.686	0.771	0.786	0.686	0.771	0.757	0.771	0.757
LR	0.543	0.700	0.686	0.529	0.807	0.686	0.757	0.686	0.793	0.650

Table 14. Accuracy scores of classifiers trained on featureset optimised for 20% slice on single slicings in ptrace

Classifier					Single	slicing				
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.571	0.571	0.571	0.536	0.536	0.571	0.500	0.571	0.571	0.536
CART	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571
KNN	0.679	0.286	0.357	0.571	0.500	0.500	0.429	0.500	0.607	0.500
LR	0.536	0.536	0.500	0.429	0.500	0.536	0.500	0.464	0.464	0.500

Table 15. Accuracy scores of classifiers trained on featureset optimised for 80% slice on single slicings in ptrace

Classifier		Single slicing									
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
SVC	0.857	0.643	0.750	0.750	0.679	0.607	0.571	0.607	0.536	0.714	
CART	0.857	0.536	0.714	0.679	0.679	0.536	0.571	0.679	0.500	0.679	
KNN	0.857	0.607	0.679	0.679	0.714	0.571	0.536	0.679	0.607	0.750	
LR	0.750	0.643	0.750	0.679	0.750	0.500	0.500	0.536	0.571	0.714	

Table 16. Accuracy scores of classifiers trained on featureset optimised for 30% slice on accumulated slicings in *ptrace*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.821	0.821	0.893	0.929	0.929	0.929	0.929	0.929	0.929	0.929
CART	0.750	0.929	0.893	0.893	0.893	0.893	0.893	0.893	0.893	0.893
KNN	0.821	0.893	0.964	0.929	0.893	0.929	0.929	0.929	0.929	0.929
LR	0.893	0.786	0.929	0.929	0.857	0.893	0.893	0.893	0.929	0.929

Table 17. Accuracy scores of classifiers trained on featureset optimised for 80% slice on accumulated slicings in *ptrace*

Classifier				A	ccumula	ted slici	ng			
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.607	0.571	0.607	0.607	0.571	0.643	0.643	0.679	0.643	0.643
CART	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571
KNN	0.571	0.679	0.714	0.714	0.607	0.571	0.679	0.714	0.571	0.750
LR	0.536	0.536	0.571	0.571	0.536	0.571	0.571	0.571	0.571	0.571

Table 18. Accuracy scores of classifiers trained on featureset optimised for 60% slice on single slicings in *pltrace*

Classifier		Single slicing									
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
SVC	0.571	0.536	0.714	0.571	0.536	0.643	0.643	0.607	0.607	0.643	
CART	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.571	
KNN	0.571	0.500	0.750	0.536	0.643	0.750	0.750	0.714	0.464	0.679	
LR	0.464	0.500	0.679	0.571	0.571	0.571	0.536	0.571	0.607	0.607	

Table 19. Accuracy scores of classifiers trained on featureset optimised for 90% slice on single slicings in *pltrace*

Classifier		Single slicing										
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%		
SVC	0.750	0.786	0.857	0.679	0.714	0.750	0.786	0.750	0.821	0.786		
CART	0.750	0.643	0.929	0.821	0.750	0.750	0.679	0.786	0.929	0.821		
KNN	0.714	0.643	0.857	0.821	0.750	0.679	0.679	0.750	0.750	0.714		
LR	0.679	0.714	0.786	0.857	0.714	0.643	0.821	0.786	0.786	0.821		

Table 20. Accuracy scores of classifiers trained on featureset optimised for 10% and 70% slices on accumulated slicings in *pltrace*

Classifier	Accumulated slicing									
model	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
SVC	0.536	0.714	0.536	0.714	0.643	0.643	0.500	0.607	0.571	0.786
CART	0.464	0.786	0.643	0.679	0.536	0.607	0.679	0.750	0.750	0.714
KNN	0.571	0.714	0.571	0.643	0.500	0.643	0.679	0.643	0.750	0.786
LR	0.607	0.571	0.607	0.536	0.643	0.714	0.643	0.571	0.714	0.679