Multivariate statistics

Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.

email: wnarifin@usm.my

December 1, 2018

- Multivariate
- 2 Screening of data for accuracy
- 3 Normality, linearity and homoscedasticity
- Data transformation

Multivariate

Introduction

Multivariate?

Strictly speaking:

- variate = outcome/dependent variable (DV)
- univariate = one DV
- bivariate = two DVs
- multivariate = > two DVs
- \rightarrow regardless of the number of independent variables (IVs)/predictors

In general, analysis involving > 2 variables = multivariate analysis.

(USM) Multivariate statistics December 1, 2018 4 / 28

Introduction

Why bother?

- most studies and research involve many variables.
- consider many predictors and many outcomes at the same time.
- computer!
 - availability of software
 - processing power

(USM) Multivariate statistics December 1, 2018 5 / 28

Screening of data for accuracy

Multivariate statistics

Methods

- proofreading compare data collection form with dataset.
- exploratory data analysis:
 - descriptive statistics.
 - graphical exploration.

Descriptive statistics

- numerical variables
 - ▶ mean, median
 - ► SD, IQR, MAD
 - ▶ minimum, maximum
- categorical variables
 - ▶ n, %

multivariate.R

(USM) Multivariate statistics December 1, 2018 9 / 28

Graphical exploration

- numerical variables
 - histogram, box-and-whisker plot, Q-Q plot.
 - more details in normality.
- categorical variables
 - bar charts, pie charts etc.
 - descriptive statistics are more informative.

multivariate.R

(USM) Multivariate statistics December 1, 2018 11 / 28

12 / 28

Normality, linearity and homoscedasticity

• All are concerned with numerical variables

Normality

Normal distribution of data of DV and IV.

- graphical
 - Univariate: histogram, box-and-whisker plot
 - Bivariate: scatter plot
 - Multivariate:
 - Q-Q plot (multivariate) Mahalanobis distance¹ vs expected normal distribution values.
 - * χ^2 vs Mahalanobis distance plot (Arifin, 2015).

(USM) Multivariate statistics December 1, 2018 14 / 28

¹The distance of a case from the centroid, where centroid is the intersection of the means of all variables (Tabachnick & Fidell, 2007).

multivariate.R

(USM) Multivariate statistics December 1, 2018 15 / 28

Normality

- statistical
 - skewness symmetry
 - \star < 2-3 times of its SE:

$$SE = \sqrt{\frac{6}{N}}$$

- kurtosis peakness/flatness
 - \star < 2-3 times of its SE:

$$SE = \sqrt{\frac{24}{N}}$$

- statistical tests Shapiro-Wilk test.
- ▶ Multivariate Mardia's skewness and kurtosis.

multivariate.R

(USM) Multivariate statistics December 1, 2018 17 / 28

Linearity

Linear relationship between two variables.

- graphical
 - Bivariate: scatter plot.
- statistical
 - Linear regression, correlations.

multivariate.R

(USM) Multivariate statistics December 1, 2018 19 / 28

Homoscedasticity

Equality/homogeneity of variances:

- across groups (categorical IV).
- for each levels of IV (numerical IV).
- graphical
 - ▶ Univariate per group: Compare histograms and box-and-whisker plots.
 - ▶ Bivariate: scatter plot.
- statistical
 - Tests of equality of variance.

multivariate.R

(USM) Multivariate statistics December 1, 2018 21 / 28

Data transformation

Data transformation

- whenever numerical data are not normally distributed.
- to turn these data into normally distributed data.

(USM) Multivariate statistics December 1, 2018 23 / 28

Common data transformation

- square root \sqrt{X}
- natural log InX
- $\log 10 \log_{10} X$
- reciprocal $-\frac{1}{X}$
- power of $k X^k$, e.g. X^2, X^3

Suitable data transformation

Depending on the tail of the skewness, we may try suitable transformations²:

Table 1: Skewness tail and suitable transformations.

Tail	Transformation (R format)	Purpose
Right Left	$sqrt(x)$, $log(x)$, $log10(x)$, $1/x$ x^k	Make larger values smaller Make smaller values larger

 $^{^2\}text{More}$ details can be referred to Kutner, Nachtsheim, Neter, & Li (2005), Hair, Black, Babin, & Anderson (2010) and Tabachnick & Fidell (2007), i.e. transformation of Y/X/both to handle normality, heteroscedasticity and normality.

multivariate.R

(USM) Multivariate statistics December 1, 2018 26 / 28

Other issues³ for self-study:

- Missing data
- Multivariate outliers
- Multicollinearity and singularity

³Not covered in your syllabus.

References

Arifin, W. N. (2015). The graphical assessment of multivariate normality using SPSS. *Education in Medicine Journal*, 7(2), e71–e75.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). *Multivariate data analysis*. New Jersey: Prentice Hall.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). *Applied linear statistical model (5th ed.)*. Singapore: McGraw-Hill Education (Asia).

Tabachnick, B., & Fidell, L. (2007). *Using multivariate statistics (5th ed.)*. USA: Pearson.