MUSTERPRÜFUNG E		Blatt Nr.:	1 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

Tragen Sie hier bitte Ihren Namen ein:

Vorname:	Nachname:	
Lösungsvorschlag	(ohne Gewähr)	

Aufgabe 1: Verständnisfragen (20 Punkte)

1.1 Erläutern Sie kurz die drei CPU-Sicherheitsmechanismen zur Unterstützung von Betriebssystemen, die ein moderner PC-Prozessor zur Verfügung stellt.

Lösung zu Aufgabe 1.1:
 Privilegstufen (Kernel Mode, User Mode) Privilegierte Befehle (z.B. Sperren von Interrupts) Speicherverwaltung und Zugriffsschutz (s. 5.7)

1.2 Was unterscheidet eine Load-Store-Architektur von der Architektur des Mikrocontrollers MC9S12DP256 von Freescale?

Lösung zu Aufgabe 1.2:
Operanden von Befehlen außer Load/Store können beim HCS12 auch Speicherzellen sein, während sie sich bei einer reinen Load/Store-Architektur auf Register beschränken.

MUSTERPRÜFUNG E		Blatt Nr.:	2 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

1.3 Erläutern Sie die Funktion des folgenden Befehls für einen Mikrocontroller mit ARM-Architektur: ADDNE R4, R6, #21.

Lösung zu Aufgabe 1.3:

R4 = R6 + 21, aber nur, wenn die vorhergehende Operation das Flag für NE gesetzt hat (oder Zero-Flag ist zurück gesetzt)

1.4 Erläutern Sie die Funktion des folgenden Befehls für einen Mikrocontroller mit ARM-Architektur: STR R4,[SP, #-4]!

Lösung zu Aufgabe 1.4:

SP <- SP - 4 (Register Write Back)
R4 -> Stack

1.5 Wo wird bei einem Mikrocontroller mit ARM-Architektur die Rückkehradresse bei einem Unterprogrammaufruf gespeichert?

Lösung zu Aufgabe 1.5:

In R14 = LR

MUSTERPRÜFUNG E		Blatt Nr.:	3 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

1.6 Das Auf- bzw. Entladen eines Kondensators über einen Widerstand lässt sich über die Gleichung

$$u(t) = (U_E - U_A) \cdot (1 - e^{-t/RC}) + U_A$$

beschreiben, wobei U_E die Endspannung für t gegen Unendlich und U_A die Ausgangsspannung ist (siehe Vorlesungen Elektronik und Elektrotechnik).

Der Pulsweitenmodulatorausgang des Mikrocontrollers sei nun mit einem RC-Glied als Tiefpassfilter verbunden, die Ausgangsspannung wird am Kondensator gemessen. Bei welchem Tastverhältnis des pulsweitenmodulierten Signals tritt am Kondensator die maximale Welligkeit auf, d.h. Differenz zwischen minimaler und maximaler Ausgangsspannung im eingeschwungenen Zustand? Bitte begründen.

Lösung zu Aufgabe 1.6:

Differenz maximal, wenn Aufladezeit T_{H} = Entladezeit T_{L} , d.h. Duty Cycle = 50%

1.7 Berechnen Sie n\u00e4herungsweise die maximale Welligkeit der Ausgangsspannung gem\u00e4\u00df Aufgabe 1.6 in Abh\u00e4ngigkeit von der Zeitkonstanten RC sowie der Periodendauer T_P des pulsweitenmodulierten Signals. Nehmen Sie dabei an, dass die Welligkeit klein gegen- \u00fcber der maximalen Ausgangsspannung ist. Wie viel mal gr\u00f6\u00dfer als T_P muss RC sein, damit die Welligkeit 1% der maximalen Ausgangsspannung nicht \u00fcberschreitet?

Lösung zu Aufgabe 1.7:

Wenn RC >> T_{P} ist, lässt sich die obige Exponentialfunktion durch eine Gerade annähern. Der Spannungsanstieg bzw. Spannungsabfall während $T_{\text{H}}=T_{\text{L}}=T_{\text{P}}/2$ ist dann bei einer mittleren Ausgangsspannung $U_{\text{A}} \approx U_{\text{H}}/2$

 $\Delta u = (U_H - U_H/2) T_P/2 / RC.$

Damit $\Delta u \leq 0.01 \ U_H \ wird$, muss gelten $T_P/(4 \ RC) \leq 1/100$

 \rightarrow RC \geq 25 T_P

MUSTERPRÜFUNG E		Blatt Nr.:	4 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

Aufgabe 2: Programmanalyse (30 Punkte)

Das folgende Assemblerlisting stellt eine Funktion dar, die von einem C-Programm aufgerufen werden kann. Das Programm wurde für den Codewarrior-Compiler/Assembler geschrieben. Die C-Prototyp-Definitionen sehen so aus:

int fl(unsigned char array[], unsigned char size);

```
Listing zu Aufgabe 2:
1
          STAB
                 3,-SP
                           ; int temp
                                         and
                                                 char sizeL = size
2
          TSTB
                           ; if size > 0 \rightarrow goto L1
3
          BHI
                 L1
4
          LDD
                 #-1
                           ; else return -1
5
          BRA
                 Ende
6
    L1:
          CMPB
                 #10
                           ; if size \leq 10 \rightarrow goto L2
7
          BLS
                 L2
8
                 #-2
          LDD
                           ; else return -2
9
          BRA
                 Ende
11
    L2:
           CLRB
                           ; B = 0 (used as index in for() loop)
12
          CLRA
13
          STD
                 1,SP
                           ; temp = 0
                                           temp is at 1,SP
          BRA
14
                 LoopStart
15 LoopBody:
                           ; loop body of for() loop
16
          CLRA
                           ; convert array index in B -> D to 16bit
17
          PSHB
18
                           ; D = &array[0] + D
          ADDD
                 6,SP
19
          TFR
                 D,X
                           ; (used as index for array[])
20
                 0,X
                           ; temp = temp + array[D]
          LDAB
21
          CLRA
22
                 2,SP
          ADDD
23
           STD
                 2,SP
24
          PULB
                           ; increment array index in B
25
          INCB
26 LoopStart:
27
          CMPB
                 0,SP
                           ; for() loop condition
28
          BCS
                 LoopBody ; → loop till B > sizeL
29
          LDD
                 1,SP
                           ; prepare to return temp
          LEAS
                 3,SP
                           ; remove local variables temp, sizeL
30 Ende:
31
          RTS
```

MUSTERPRÜFUNG E		Blatt Nr.:	5 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

2.1 Zeichnen Sie den Stack mit Stackzeiger und Werten nachdem die erste Zeile der Funktion ausgeführt wurde. Markieren Sie die Position des Stackzeigers mit einem X in der Adressenspalte:

Adresse	Wert	Bedeutung
\$2FF4		
\$2FF5		
\$2FF6	B (saved)	Schleifenindex
\$2FF7 X	Size	
\$2FF8	Summe MSB	
\$2FF9	Summe LSB	
\$2FFA	Return-Adress MSB	Rücksprungadresse MSB
\$2FFB	Return-Adress LSB	Rücksprungadresse LSB
\$2FFC	<pre>Zeiger auf array[0], MSB</pre>	
\$2FFD	Zeiger auf array[0], LSB	
\$2FFE		
\$2FFF		
\$3000		

2.2 Welche Bedeutung hat der erste Befehl in Zeile 1?

Lösung zu Aufg	abe 2.2:			
	Platz für da: dem Stack.	s Ergebnis u	nd speichert	den zweiten Pa-

MUSTERPRÜFUNG E		Blatt Nr.:	6 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

2.3 Beim Aufruf der Funktion wird ein Zeiger auf ein Array übergeben. Das Array ist in der aufrufenden Funktion so definiert:

unsigned char array[10] = $\{1,2,3,4,5,6,7,8,9,10\}$

Die Funktion wird so aufgerufen: retWert = f1(array,10);

Wird in diesem Fall die Zeile 8 ausgeführt? Bitte begründen.

Lösung zu Aufgabe 2.3:

Nein, nur falls der zweite Parameter > 10

2.4 Welche Funktion(en) übernimmt das B-Register zwischen Zeile 14 und Zeile 28?

Lösung zu Aufgabe 2.4:

Schleifenzähler und Summand

2.5 Schreiben Sie in der Programmiersprache C in Form einer einzigen Befehlszeile auf, was der Maschinencode zwischen Zeile 18 und Zeile 23 macht.

Werte und Lösung zu Aufgabe 2.5:

result = result + array[i]

MUSTERPRÜFUNG E		Blatt Nr.:	7 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

retWert = f1(array,-8);

Was steht im D-Register vor Ausführen von Zeile 31?

Lösung zu Aufgabe 2.6:

-2

Note: Branch instructions BHI and BLS assume unsigned values, thus -8 = 0xF8 will be interpreted as a large positive value by the CPU!

2.7 Die Funktion wird nun so aufgerufen:

retWert = f1(array,12);

Was steht im D-Register vor Ausführen von Zeile 31?

Lösung zu Aufgabe 2.7:

-2

2.8 Die Funktion wird nun so aufgerufen (array ist wie in Aufgabe 2.3 definiert):

retWert = f1(array, sizeof(array)/sizeof(char));

Was steht im D-Register vor Ausführen von Zeile 31?

Lösung zu Aufgabe 2.8:

55

MUSTERPRÜFUNG E		Blatt Nr.:	8 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

Aufgabe 3: Adressierungsarten und Stack (25 Punkte):

3.1 In einem HCS12-Assemblerprogramm sind folgende globalen Variablen definiert:

.data SECTION

ORG \$1000

var1 : DS.W 3 .const: SECTION

ORG \$D000

const1: DC.B \$02, \$01, \$00, \$03

tabelle1: DC.W \$D004, \$D006

tabelle2: DC.B \$D0, \$02, \$33, \$44, \$55, \$66, \$77, \$88

Geben Sie den Inhalt der CPU-Register D, X und Y nach jedem Assemblerbefehl an, wenn das folgende Programm ausgeführt wird. Es reicht aus, wenn Sie bei jedem Befehl diejenigen Registerwerte eintragen, die sich jeweils ändern.

Assemblerbefehle	D	Х	Y
	\$AA55	\$0000	\$0000
LDD #tabelle2	\$D008		
LDX #var1		\$1000	
LDY tabelle1			\$D004
MOVW 2,Y+,2,X+		\$1002	\$D006
MOVW 2,Y+,2,-X		\$1000	\$D008
LDD var1	\$D006		
LDX const1+2		\$0003	
DEX		\$0002	
ADDD const1,X	\$D009		
LDD tabelle1	\$D004		
LDY const1,X			\$0003
INY			\$0004
LDD [D, Y]	\$0003		

MUSTERPRÜFUNG E		Blatt Nr.:	9 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

3.2

In einem C-Programm seien die folgenden globalen Variablen definiert:

```
int n, max, m;
```

Diese Variablen werden im folgenden Ausschnitt des C-Programms verwendet, das Sie "von Hand" in die entsprechenden HCS12-Assemblerbefehle übersetzen sollen. Die Definition der globalen Variablen muss nicht übersetzt werden. Assemblerdirektiven wie XDEF, XREF, INCLUDE, SECTION usw. dürfen weggelassen werden.

a) Geben Sie den Assembler-Programmcode an:

```
Lösung zu Aufgabe 3.2 a:
C-Programm
                                      HCS12-Assembler-Programm
//**** Hauptprogramm *****
void main(void)
                                        LDD #2
{
    . . .
                                        STD n
    n = 2;
                                                 ;Param 1 auf Stack
                                        PSHD
                                       LDD #5
    max = 5;
                                                 ;Param 2 in Reg. D
    m = fac(n, max);
                                        STD max
                                        JSR fac
    . . .
}
                                        STD m
                                                ;Ergebnis abspeichern
                                        LEAS 2,SP;Stack abräumen
                                        RTS
//**** Unterprogramm ****
int fac(int n, int max)
                                       LDX 2,SP ;Parameter n \rightarrow X
{
                                        CPX #1
    if (n > 1) {
                                        BLE N1
                                                 ;if n<=1: return 1
        return n * fac(n-1, max);
                                       LEAY -1,X; (Subtraktion Y = n-1)
    else {
                                                ; n-1 auf Stack
                                        PSHY
       return 1;
                                        BSR fac ; Rekursion!
    };
                                        PULY
}
                                        LDY 2,SP; D * X \rightarrow (Y,D)
                                        EMUL
                                        RTS
                                                ; return D
                                     N1:
                                        LDD #1
                                        RTS
                                                 ; return 1
                                      Parameter max wird zwar übergeben,
                                      aber in fac gar nicht verwendet.
```

MUSTERPRÜFUNG E		Blatt Nr.:	10 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

b) Tragen Sie in die folgende Tabelle den Zustand des Stacks direkt vor der Rückkehr ins Hauptprogramm ein. Zeigen Sie alle durch die Funktionsaufrufe von fac auf den Stack gelegten Daten. Geben Sie an, auf welche Speicherzelle der Stack Pointer zu diesem Zeitpunkt zeigt.

Lösung zu Aufgabe 3.2b:				
	MSB	Rücksprung-		2. Aufruf von fac
		adresse	LSB	
		n-1 = 0		
		1		
SP vor Rückkehr →	MSB	Rücksprung-		1. Aufruf von fac
ins Hauptprogramm		adresse	LSB	
		n = 0		
		2		
Ende des Stacks		Belegt		
	←	1 Byte	\rightarrow	

MUSTERPRÜFUNG E		Blatt Nr.:	11 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

Aufgabe 4: HCS12-Peripheriebausteine (25 Punkte):

4.1 Schreiben Sie ein Assemblerprogramm "beep", das auf dem im Labor verwendeten Board mit 24 MHz Busfrequenz den Beeper zum Klingen bringt. Der Beeper soll permanent abwechselnd für jeweils eine Sekunde einen Ton mit 440 Hz und 660 Hz erzeugen. Sie dürfen nur genau einen Timer verwenden, die Sekunde soll genau eingehalten werden.

Schreiben Sie in HCS12-Assemblersprache eine Routine initBeep(), die die Hardware so initialisiert, dass der erste Ton mit 440 Hz erzeugt wird.

```
Lösung zu Frage 4.1:
F440: EQU (24000000/128/880); = 213 siehe unten
F660: EQU (24000000/128/1320); = 142
.data SECTION
Delay: ds.w
OneSec: ds.w
.init SECTION
initBeep:
  BSET TSCR1, #80
   MOVB #$07, TSCR2
   BSET TIOS, #$20
   MOVB #$04,TCTL1
   LDD TCNT
   LDX #F440
   STX Delay
   LDX #880
   STX OneSec
   ADDD Delay
   STD TC5
   BSET TIE, #20
   RET
Formel für F440: Event-Frequenz f_p = 1/T_p = 2 * 440 \text{ Hz} = 880 \text{ Hz}
                   f_{TCNT} = 1/T_{CNT} = 24 \text{ MHz} / 2^7
      F440 = T_P/T_{CNT} = 24 \text{ MHz} / (2^7 * 880 \text{ Hz}) = 213
Für F660 analog.
```

MUSTERPRÜFUNG E		Blatt Nr.:	12 von 12
Studiengang:	Kommunikationstechnik	Semester:	SWB4, TIB4, KTB4
	Softwaretechnik		
	Technische Informatik		
Prüfungsfach:	Computerarchitektur 3	Fachnummer:	4021
Hilfsmittel:	Vorlesungs- und Labormanuskript,	Dauer:	90 min
	Fachliteratur, Taschenrechner		

4.2 Schreiben Sie in HCS12-Assemblersprache eine Interruptservice-Routine "isrBeep()" für die oben initialisierte Hardware, die die unter 4.1 beschriebene Funktion realisiert.

```
Lösung zu Frage 4.2:
isrBeep:
  LDD TC5
                    ; Zeitpunkt für nächstes Timer-Event
  ADDD Delay
  STD TC5
  BSET TFLG1, #20 ; Reset Interrupt-Flag
  LDX OneSec
  DBNE X, retisr ; Softwarezähler für 1 sec
switchFreq:
   CPD #F440
  BEQ Set660
Set440:
  LDD #F440
                   ; Umschalten auf 440 Hz
  STD Delay
  LDD #880
  STD OneSec
  BRA retisr
Set660:
  LDD #F660
                  ; Umschalten auf 660 Hz
  STD Delay
  LDD #1320
  STD OneSec
retisr:
  RTI
```

4.3 Schreiben Sie das Hauptprogramm, dass mit Hilfe der obigen Routinen die Hardware initialisiert und die Erzeugung des Signals startet. Tragen Sie die Adresse der Interruptservice-Routine mit Hilfe von Pseudo-Assemblerbefehlen in die Interruptvektortabelle ein.

```
Lösung zu Frage 4.3:

.vect: SECTION

ORG $FFE4

int13: dc.w isrBeep

.init SECTION; steht schon weiter oben, hier nur wiederholt

JSR initBeep;

loop: BRA loop
```