扫地才子的随笔

——泛函分析

扫地才子

2023年3月15日

前言

开坑时间:2021.8.30, 兜兜转转还是回来学数学了

扫地才子 2023 年 3 月 15 日

目录

第一章	距离线性空间	1
1.1	选择公理, 良序定理, Zorn 引理	1
1.2	线性空间,Hamel 基	2
1.3	距离空间	8
1.4	可分空间	9
1.5	完备空间	9
1.6	赋范线性空间	10
1.7	压缩映像原理	12
第二章	Hilbert 空间	13
2.1	内积空间	13
2.2	标准正交基	14
2.3	射影定理	15
2.4	Hilbert 共轭算子	15
第三章	Banach 空间	18
3.1	有界线性算子	18
3.2	Hahn-Banach 定理	19
3.3	Bare 纲定理	20
3.4	二次对偶	22

目录		II
3.5	Banach 共轭算子	22
3.6	算子的值域与零空间, 商空间	23
3.7	弱拓扑与弱*拓扑	24
第四章	有界线性算子的谱理论	25
4.1	谱的概念及性质	25
4.2	紧算子和有限秩算子	26
	於 另 → 阳 円 № 100 另 → · · · · · · · · · · · · · · · · · ·	

第一章 距离线性空间

1.1 选择公理, 良序定理, Zorn 引理

选择公理: 设 $\mathcal{N}=\{N\}$ 是一个非空集合构成的族, 则必然存在定义在 \mathcal{N} 上的函数 f, 使得对一切 $N\in\mathcal{N}$ 都有 $f(N)\in\mathcal{N}$

换成白话记为, 对于一族集合, 都有一定的法则 f, 使得能够在每一个集合中挑出一个元素

该公理在大多数时候是显然的,比如无穷多双鞋子构成的集合,可以依照法则"挑出左脚的鞋子",从每个集合中挑出一个元素.

但也有部分情况是不显然的,比如将上例中的无穷多双鞋子换成无穷多双袜子,袜子部分左右脚,此时按照上例的法则挑元素就并不显然.

但这并不妨碍我承认该公理.

定义 1.1.1. X 为非空集合, \prec 为 X 上的一个二元关系且满足以下条件 (关系的定义在抽象代数中说明),

- $\forall a \in \mathcal{X}$, 都有 $a \prec a$, 也就是 $(a, a) \in \prec$
- $\forall a, b \in \mathcal{X}$, 如果 $a \prec b$ 且 $b \prec a$, 则 a = b
- $\forall a, b, c \in \mathcal{X}$, 如果 $a \prec b$ 且 $b \prec c$, 则 $a \prec c$

则称 (\mathcal{X}, \prec) 为一个偏序集 (部分有序集), \prec 为偏序集的一个序

M 1.1.2. E 为非空集合 \mathcal{X} 表示 E 的某些子集构成的集族 \prec 表示 \subseteq , 即对 $\forall A, B \in \mathcal{X}, A \prec B \iff A \subseteq B$ 此时 (\mathcal{X}, \prec) 为一个偏序集.

依次验证

第一条, $A \subset A$, 这是显然的

第二条, 如果 $A \subseteq B, B \subseteq A$ 那么 A = B

第三条, 如果 $A \subset B$, $B \subset C$ 那么 $A \subset C$

验证完毕, 这是一个偏序集, 也就是部分有序的, 因为有些集合并没有包含关系, 但有部分集合却有包含关系

设 (ス,≺) 为一个偏序集

定义 1.1.3. 上界 如果 $A \subset \mathcal{X}, m \in \mathcal{X}$ 满足 $\forall a \in A$, 都有 $a \prec m$ 称 m 为 A 的一个上界

定义 1.1.4. 全序子集 $A \in \mathcal{X}$, 满足 $\forall a,b \in \mathcal{A}$, $a \prec b$ 或者 $b \prec a$ 二者之一总 会成立此时称 A 为 \mathcal{X} 的全序子集

定义 1.1.5. 极大元 $S \in \mathcal{X}$, 如果对 $\forall a \in \mathcal{A}$, 满足 $S \prec a$, 则必有 S = a, 称 $S \to \mathcal{X}$ 的一个极大元

Zorn 引理: (\mathcal{X}, \prec) 为偏序集, 如果 (\mathcal{X}, \prec) 中的任何全序子集都有上界,则 (\mathcal{X}, \prec) 必有极大元

如果你不承认 Zorn 引理, 就别往下看了

1.2 线性空间, Hamel 基

定义 1.2.1. 线性空间 X 为非空集合, \mathbb{K} 为数域 (\mathbb{R},\mathbb{C}) , 如果在 X 上定义加 法和数乘

 $+: X \times X \to X, \cdot: \mathbb{K} \times X \to X$

且满足以下八条:

- $x + y = y + x, \forall x, y \in X$
- $(x+y) + z = x + (y+z), \forall x, y, z \in X$
- $\exists \theta \in X, \forall x \in X \text{ and } x + \theta = \theta + x = x$
- $\forall x \in X, \exists y \in X, s.t.x + y = y + x = \theta$
- $\forall \alpha \in \mathbb{K}, x, y \in X \text{ and } \alpha(x+y) = \alpha x + \alpha y$
- $\forall \alpha, \beta \in \mathbb{K}, x \in X \text{ and } (\alpha + \beta)x = \alpha x + \beta x$
- $\forall \alpha, \beta \in \mathbb{K}, x \in X \text{ år } \alpha(\beta x) = (\alpha \beta)x = (\beta \alpha)x = \beta(\alpha x)$
- 1 · x = x, ∀x ∈ X
 称 (X, +, ·) 为一个线性空间
- 例 1.2.2. $0 \cdot x = \theta, \forall x \in X$

任取 $y \in X$,

根据加法逆元的性质有 $y + 0 \cdot x = y + 0 \cdot x + x + (-x)$

由结合律有 $y + (0 \cdot x + 1 \cdot x) + (-x)$

由左分配律有 $y + (0+1) \cdot x + (-x) = y + 1 \cdot x + (-x)$

由结合律有 $y + (1 \cdot x + (-x)) = y$

例 1.2.3. $(-1) \cdot x = -x$

$$(-1 \cdot x) + x = \theta = (-1 \cdot x) + 1 \cdot x$$

由左结合律有 $(-1+1)x = 0 \cdot x = \theta$

例 1.2.4. $\alpha\theta = \theta$

 $\forall x \in X$

此前证明的 $0x = \theta$, 有 $\alpha\theta = \alpha(0x) + x$

由乘法的结合率有 $\alpha(0x) + x = (\alpha 0)x + x = 0x + x$

由左分配率得到 0x + x = (0+1)x = x

4

例 1.2.5. 如果 x + y = x + z 则 y = z

两边同时加上 x 的逆元

$$(-x) + x + y = (-x) + x + z$$

由加法的结合律有

y = z

例 1.2.6. 如果有 $\lambda x = \theta$ 则 $\lambda = 0$ 或者 $x = \theta$ 至少之一成立

若 $\lambda \neq 0$

证明: $\forall y \in X, \lambda x + y = y$

$$\lambda(x + \frac{1}{\lambda}y) = \lambda x + y = y$$

$$x + \frac{1}{\lambda}y = \frac{1}{\lambda}y$$

$$x + \frac{1}{\lambda}y + (-\frac{1}{\lambda}y) = (\frac{1}{\lambda} - \frac{1}{\lambda}y)x = \theta$$

定义 1.2.7. X 为线性空间, $M \subset X$, 如果 M 关于 X 中的加法和数乘封闭,则称 M 为 X 的一个线性流形

 $x, y \in M, x + y \in M$

 $\forall \lambda \in \mathbb{K}, x \in M, \lambda x \in M$

易知 X 有两个平凡的线性流形 $\{\theta\}, \{X\}$

若 M 是 X 的一个线性流形, 且 $M \subsetneq X$, 称 M 为真的线性流形

定义 1.2.8. 线性组合 如果 $\{x_1, \dots, x_n\} \subset X, \lambda_1, \dots, \lambda_n \in \mathbb{K}$ 称 $\lambda_1 + \dots + \lambda_n x_n$ 为 $\{x_1, \dots, x_n\}$ 的一个线性组合

有以下推论成立:

- Span(S) 为所有包含 S 的线性流形的交
- Span(S) 为最小的包含 S 的线性流形, 即 $\forall M$ 为线性流形, $M \supset S$, 则 必有 $M \supset Span(S)$

定义 1.2.10. 线性相关, 线性无关 X 为线性空间, $\{x_1, \dots, x_n\}$ 如果存在不含零的 $\lambda_1, \dots, \lambda_n$ 使得 $\lambda_1 x_1 + \dots + \lambda_n x_n = \theta$, 则称 $\{x_1, \dots, x_n\}$ 为线性相关. 否则, 对 $\lambda_1 x_1 + \dots + \lambda_n x_n = \theta$, 都有 $\lambda_1 = \dots = \lambda_n = 0$, 称 $\{x_1, \dots, x_n\}$ 线性无关, $S \subset X$ 如果对于 S 中任意有限个元素都是线性无关的, 称 S 为线性无关的.

定义 1.2.11. 维数 X 为线性空间, 如果 X 中存在 n 个线性无关的元素, 且任何 n+1 个元素线性相关, 则称 X 为 n 维的 $\dim X = n$

如果 X 中存在无穷多个元素构成的无关集合, 称 X 为无穷维的, $\dim X = \infty$

定义 1.2.12. 基 有限维线性空间 $X,\dim X = n$, 存在 n 个线性无关的元素, x_1,\dots,x_n , X 中任何一个元素必表示为 $\lambda_1x_1+\dots+\lambda_nx_n$ 形式, $X\subset Span(\{x_1,\dots,x_n\})$, x_1,\dots,x_n 为 X 的一组基

定义 1.2.13. X 为 (无穷维) 的线性空间 $,S \subset X$ 线性无关且 Span(S) = X 则称 S 为 X 的一个 Hamel 基.

定义 1.2.14. 直和 X 线性空间,M,N 为 X 的两个线性子流形, 记 $M+N=\{m+n: m\in M, n\in N\}$, 如果 $M\cap N=\{\theta\}$, $M+N\triangleq M\oplus N$, 称为 M 和 N 的直和

如果 $M \oplus N = X$ 称为 M 与 N 线性互补.

定理 1.2.15. M,N 为线性空间 X 中的线性流形, 则 $M \oplus N$ 为直和当且仅 当对 $\forall x \in X$, 存在唯一的 $m \in M, n \in N$ 使得, x = m + n

证明: 必要性, 若为直和, 则只有一种表示方式.

若有两种表示方式, 那么 $\exists m, m' \in M, n, n' \in N$ 使得 x = m + n = m' + n', 则 m - m' = n' - n 而由于线性流形对加法和数乘的封闭性可知, $m - m' \in M, n' - n \in N$ 那么则有 $m - m', n - n' \in M \cap N$ 而因为是直和, 所以 $M \cap N = \{\theta\}$, 因此 $m - m' = \theta, n - n' = \theta$ 于是有 m = m', n = n' 充分性, 若只有一种表示方式, 则为直和.

 $M \cap N = \{\theta\}$, 否则 $M \cap N$ 中不仅仅有 θ , $\exists x \neq \theta$, 使 $x \in M \cap N$ $x = x + \theta = \theta + x$ 这就是两种表示了, 与题目矛盾

定理 1.2.16. $X = M \oplus N$ 则 $\dim X = \dim M + \dim N$

无穷维的时候是显然的

只考虑有限维

设 dim M = m, dim N = n, m, $n < +\infty$

M 中取出 m 个 x_1, \dots, x_m 线性无关

N 中取出 n 个 y_1, \dots, y_n 线性无关

下证明 $x_1, \dots, x_m, y_1, \dots, y_n$ 线性无关

$$\alpha_1 x_1 + \dots + \alpha_m x_m + \beta_1 y_1 + \dots + \beta_n y_n = \theta$$

$$-(\alpha_1 x_1 + \dots + \alpha_m x_m) = \beta_1 y_1 + \dots + \beta_n y_n$$

由于线性流形加法数乘的封闭性,因此上式两端分别属于 M,N,而由于是直和,所以

定理 1.2.17. X 为线性空间, $\dim = \infty$,S 为 X 的一组线性无关的子集,则存在 X 的一个 Hamel 基 H 使得 $S \subset H$

令 S 表示 X 中线性无关的包含 S 的子集构成的集族

(S, ⊂) 构成一组偏序集

下证明:(S, \subset) 中的任何全序子集有上界

任取 S 中的一个全序子集 $A, \forall A, B \in A$ 都有 $A \subset B$ 或者 $B \subset A$

下证 \mathcal{A} 存在上界, 令 $M = \bigcup_{A \in \mathcal{A}} A \subset X, S \subset M$

下证 M 线性无关,

任取 $x_1, \dots, x_k \in M, \alpha_1 x_1 + \dots + \alpha_k x_k = \theta \Rightarrow \alpha_1, \dots, \alpha_k = 0$

 $x_1 \in \bigcup_{A \in \mathcal{A}} A \Rightarrow A_1 \in \mathcal{A} \notin \mathcal{A} x_1 \in A_1$

:

 $x_k \in \bigcup_{A \in A} A \Rightarrow A_k \in \mathcal{A} \notin \mathcal{A}_k \in A_k$

所以不妨设 $A_1 \subset A_2 \subset \cdots \subset A_k$

由 Zorn 引理, (S, \subset) 必有一个极大元 H

H 为包含 S 的线性无关的 X 的子集

可以证明 H 为 X 的一个 Hamel 基, 下证明 Span(H) = X, 否则 $Span(H) \subsetneq X$

 $\exists x \in X - (Span(H))$

 $H \cup \{x\} \in \mathcal{S}, H \subset H \cup \{x\}$

由 H 是极大元, $H \cup \{x\} = H, \{x\} \in H$ 矛盾于 $x \in X - (Span(H))$

定理 1.2.18. X 为线性空间,M 为 X 的一个线性流形, 则存在 X 的线性流形使得 $X=M\oplus N$

证明:M 的 Hamel 基为 H_1

存在 X 的 Hamel 基为 $H_0, H_0 \supset H_1$

 $\Rightarrow H_2 = H_0 - H_1, N = Span(H_2)$

<math> <math>

先证明
$$X = M + N$$

 $\forall x \in X, \exists \alpha_1, \dots, \alpha_k \in \mathbb{K},$ 以及有限个 $z_1, \dots, z_k \in H_0$ 使得 $x = \alpha_1 z_1 + \dots + \alpha_k z_k$

$$z_1, \dots, z_k$$
 分为 H_1, H_2 中两类 $w_1, \dots, w_l \in H_1, w_{l+1}, \dots, w_k \in H_2$ $\forall x \in M \cap N, x \in M, x = \alpha_1 z_1 + \dots + \alpha_n z_n, z_1 \dots z_n \in H_1$ $x \in N, x = \beta_1 w_1 + \dots + \beta_k w_k, w_1, \dots, w_k \in H_2$ $\alpha_1 z_1 + \dots + \alpha_n z_n = \beta_1 w_1 + \dots + \beta_k w_k$ 移项得到: $\alpha_1 z_1 + \dots + \alpha_n z_n - (\beta_1 w_1 + \dots + \beta_k w_k) = \theta$ 线性无关得到, $\alpha_1 = \dots = \alpha_n = \beta_1 = \dots = \beta_k = 0$

1.3 距离空间

定义 1.3.1. X 为非空集合. $d: X \times X \to \mathbb{R}$ 满足

- d(x,y) > 0 并且 $d(x,y) = 0 \Leftrightarrow x = y, \forall x, y \in X$
- $d(x,y) \ge 0, \forall x,y \in X$

故 $M \cap N = \{\theta\}$

• $d(x,y) \le d(x,z) + d(y,z) \forall x, y, z \in X$

称 d 为 X 上的距离, 称 (X,d) 为距离空间

定义 1.3.2. 设 (X,d) 为距离空间, $\{x_n\}\subset X, x\in X,$ 如果 $\lim_{n\to\infty}d(x_n,x)=0$ 称 $\{x_n\}$ 按 d 收敛于 x, 记为 $x_n\stackrel{d}{\longrightarrow}x$

定义 1.3.3. X 为线性空间且 d 为 X 上的一个距离, 如果 X 中的加法数乘接 d 的意义下是连续的, 则称 (X,d) 为距离线性空间

•
$$x_n \xrightarrow{d} x, y_n \xrightarrow{d} y \Rightarrow d(x_n + y_n, x + y) \to 0$$

•
$$x_n \xrightarrow{d} x, \alpha_n \xrightarrow{d} \alpha \in \mathbb{K} \Rightarrow d(\alpha_n x_n, \alpha x) \to 0$$

例 1.3.4. 例子之后再写吧

两个常用的不等式:

Holder 不等式:
$$|\sum_{n=1}^{\infty} a_n b_n| \leq (\sum_{n=1}^{\infty} |a_n|^p)^{\frac{1}{p}} (\sum_{n=1}^{\infty} |b_n|^q)^{\frac{1}{q}}$$
 young 不等式: $\frac{A^p}{p} + \frac{B^q}{q} \geq AB, A, B \geq 0p \geq 1$ 证明之后再写

1.4 可分空间

省略乱七八糟的定义, 那些东西在点集拓扑学中都有阐述

定义 1.4.1. (X,d) 为距离空间, 如果 $A \subset X, \bar{A} = X$ 称 A 在 X 中为稠密的, 如果 X 存在一个可数的稠密子集, 称 X 是可分的

1.5 完备空间

定义 1.5.1. (X,d) 中一个点列 $\{x_n\}$ 称之为 Cauthy 的,如果 $\forall \epsilon > 0, \exists N \in Z^+, n, m > N$ 时,总有 $d(x_n, x_m) < \epsilon$

如果一个数列有极限,那么该数列为 Cauthy 列,反之不成立

定义 1.5.2. 如果 (X,d) 中的任何 Cauthy 列都收敛,则称 (X,d) 为完备的定理 1.5.3. 任何距离空间都可以完备化

定义 1.5.4. (X,d) 为距离空间, $M \subset X$ 称为是列紧的,如果对于 M 中的任何点列,都可以找到收敛子列,如果收敛子列都收敛于集合自身中的点,称 M 为自列紧的

定义 1.5.5. (X,d) 为距离空间, $M \subset X$, 如果对 $\forall \epsilon > 0$, 总存在有限的 ϵ - 网. 则称 M 为完全有界的

定义 1.5.6. ϵ — 网: $M, N \subset X$,如果对于 $x \in M, \exists y \in N$,使 $d(x,y) < \epsilon$,则 称 N 为 M 的 ϵ — 网

如果 M 为完全有界的, 则 M 为有界.

 $M \subset (X,d)$ 称为有界集 $\Leftrightarrow \exists K > 0, s.t.M \subset B(0,K)$

定理 **1.5.7.** (X,d), M 如果是列紧的,则 M 是完全有界的,如果 (X,d) 为完备的,则如果 M 为完全有界的,则 M 为列紧的

定义 1.5.8. 等度连续 $(X,d), (Y,\rho)$ 距离空间, \mathcal{F} 为一族从 (X,d) 到 (Y,ρ) 的映射,则 $\forall \epsilon > 0, \exists \delta > 0$ 使得只要 $d(x,x') < \delta$ 则对 $\forall f \in \mathcal{F}$ 都有 $\rho(f(x),f'(x)) < \epsilon$ 称 \mathcal{F} 为从 (X,d) 到 (Y,ρ) 为等度连续的.

定理 1.5.9. Arzela - Ascoli 定理:C([0,1]) 中的集合 $\rightarrow A$ 为列紧的充要条件是 A 为一个等度连续且一致有界的函数族.

1.6 赋范线性空间

定义 1.6.1. X 线性空间, $||\cdot||, X \to \mathbb{R}$, 如果满足:

- $||x|| \ge 0, \forall x \in X \perp ||x|| = 0 \Leftrightarrow 0$
- $\|\alpha x\| = |\alpha| \|x\|, \forall x \in X, \alpha \in \mathbb{K}$
- $||x + y|| \le ||x|| + ||y||, \forall x, y \in X$

称 ||⋅|| 为 X 上的一个范数, 称 (X, ||⋅||) 为赋范线性空间

完备的赋范线性空间为 Banach 空间

定义 1.6.2. X 为线性空间, $T: X \to X$ 映射, 如果满足 $\forall x_1, x_2 \in X, \alpha_1, \alpha_2 \in \mathbb{K}$ 都有 $T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T x_1 + \alpha_2 T x_2$ 称 T 为线性映射.

命题 1.6.3. $(X, ||\cdot||)$ 为赋范线性空间,则 $||\cdot||: X \to \mathbb{R}$ 为连续,即 $x \to x_0, \Rightarrow ||x|| \to ||x_0||$

定义 1.6.4. X 为线性空间, $T: X \to X$, 如果满足 $\forall x_1, x_2 \in X$, $\alpha_1, \alpha_2 \in \mathbb{K}$ 都有 $T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T x_1 + \alpha_2 T x_2$ 称 T 为线性映射.

如果 $(X, ||\cdot||_1), (Y, ||\cdot||_2)$ 为赋范线性空间,如果存在 K>0 使得 $\forall x \in X$ 都有 $||Tx||_2 \leq K||x||_1$ 称 T 为有界线性算子,称满足上式的 K 的下确界为 T 的算子范数.

$$||T||_{x\to y}=\inf\{K>0: \forall x\in X, ||Tx||_Y\leq K||x||_X\}=\sup_{x\in X, x\neq \theta}\frac{||Tx||_Y}{||x||_X}=\sup_{||x||=1}||Tx||_Y=\sup_{||x||\leq 1}||Tx||_Y$$

定理 1.6.5. $T:(X,||\cdot||_X) \to (Y,||\cdot||_Y)$ 为线性算子:

- Τ 在 θ 处时连续的
- T在 X 上是连续的
- T有界

定义 1.6.6. $T:(X,||\cdot||_X)\to (Y,||\cdot||_Y)$ 为双射,T 为有界线性算子,如果 T 有界, T^{-1} 有界称 T 为有界可逆的, 称从赋范线性空间到 $\mathbb C$ 的有界线性算子为有界线性泛函

命题 1.6.7. X $n.l.s., x_1, x_2, \cdots, x_n \in X$ 为有限个线性无关的元素,则存在 $\mu > 0, s.t. |\lambda_1| + \cdots + |\lambda_n| \le \mu ||\lambda_1 x_1 + \cdots + \lambda_n x_n||$ 对 $\forall \lambda_1, \cdots, \lambda_n \in \mathbb{K}$ 成立

命题 1.6.8. X 为 n 维赋范线性空间, 则 X 中的收敛为按坐标收敛.

定理 1.6.9. 任何的实有限维 n.l.s 与 \mathbb{R}^n 线性同构和同胚.

命题 1.6.10. X 为有限维实的赋范线性空间, Weierstress 聚点定理成立, $M \subset X$ 有界集. $TM \subset R^n$ 有界

定理 1.6.11. Riesz 引理 X, n.l.s., M 为 X的一个闭的线性流形, $M \neq X, \forall \epsilon \in (0,1), \exists x_{\epsilon}, ||x_{\epsilon}|| = 1$ 使得 $dist(x_{\epsilon}, M) > \epsilon$

X 为无穷维 n.l.s,X 中的单位闭球不是列紧的.

1.7 压缩映像原理

定义 1.7.1. $T:(X,d)\to (Y,\rho)$, 如果存在 q>0 使 $\forall x,x'\in X$ 时总有 $\rho(Tx,Tx')< qd(x,x')$, 称 T 为从 (X,d) 到 (Y,ρ) 的 Lipschitz 条件,q 称为 T 的 Lipschitz 常数, 如果 q<1, 称 T 为压缩映射.

定理 1.7.2. 压缩映像原理 (X,d) 为完备距离空间, $T:(X,d)\to (X,d)$ 压缩映射, 则存在唯一的 $\bar{x}\in X, s.t.T\bar{x}=\bar{x}$

第二章 Hilbert 空间

2.1 内积空间

定义 2.1.1. X 为线性空间, $(\cdot,\cdot): X\times X\to\mathbb{C}$ 为一个二元函数如果满足:

- $\forall x \in X \ \text{fi} \ (x,x) \to 0 \ \text{L} \ (x,x) = 0 \Leftrightarrow x = \theta$
- $\forall x, y, z \in X, (x + y, z) = (x, z) + (y, z)$
- $\forall \alpha \in \mathbb{C}, x, y \in X, (\alpha x, y) = \alpha(x, y)$
- $\forall x, y \in X \ \text{fi} \ (x, y) = \overline{(y, x)}$

则称 (\cdot,\cdot) 为 X 上的一个内积, 称 $(X,(\cdot))$ 为内积空间

定义 2.1.2. $(X,(\cdot))$ 为内积空间, 如果 $x,y\in X$ 满足 (x,y)=0, 称 x 与 y 是正交的, 记为 $x\perp y$

定义 2.1.3. 标准正交集 设 $\{x_1, \cdots .x_n\} \subset X$ 如果对 $\forall x_j, x_k, j, k = 1, \cdots, n$, 满足

$$(x_j,x_k)=\delta_{jk}= \left\{egin{array}{ll} 1 & i=k \ 0 & i
eq k \end{array}
ight.$$
 称 $\{x_1,\cdots,x_n\}$ 为 X 中的一个标准正交集 $(\{x_lpha\}$ 可以不可数)

内积天然引出范数, $||x|| \triangleq \sqrt{(x,x)}$

定理 2.1.4. 勾股定理 $\{x_1, \dots, x_n\} \subset X$ 为标准正交集, 则 $\forall x \in X$ 有 $||x||^2 = \sum_{j=1}^n |(x_j, x_j)^2| + ||x - \sum_{j=1}^n (x_j, x_j) x_j||^2$

定理 2.1.5. Bessel 不等式 $\forall x \in X$, 有 $||x||^2 \ge \sum_{j=1}^n (x, x_j)^2$

定理 2.1.6. Schwarz 不等式

$$\forall x, y \in X, |(x,y)| \le ||x|| ||y||$$

推论 2.1.7. $(X,(\cdot))$ 按 $||x||=\sqrt{(x,x)}$ 生成拓扑,则 $(\cdot):X\times X\to\mathbb{C}$ 为连续的

命题 **2.1.8.** $(X, (\cdot)), M \subset X$ 稠密, $x_0 \in X$ 且 $x_0 \perp M$, 则 $x_0 = \theta$

定理 2.1.9. 极化恒等式 $(X,(\cdot)),||x||=\sqrt{(\cdot)},$ 则 $\forall x,y\in X,(x,y)=\frac{1}{4}(||x+y||^2-||x-y||^2+i||x+iy||^2-i||x-iy||^2)$

特别的还有一个平行四边形公式: $||x+y||^2+||x-y||^2=2||x||^2+2||y||^2$ Hilbert 空间: 完备的内积空间

 $(X,(\cdot))$ 不是完备的,可以完备化为 Hilbert 空间.

2.2 标准正交基

定义 2.2.1. H 为 Hilbert 空间, $S \subset H$ 为一个标准正交集, 如果任何包含 S 的标准正交集都是 S 本身, 称 S 为 H 的一个标准正交基.

命题 2.2.2. $S \subset H$ 为标准正交基的充分必要条件是, 对任何的 $x \in H$, 如果 $x \perp S$, 则必有 $x = \theta$

定理 2.2.3. 如果 H 是可分的, 则 H 中存在可数的标准正交基.

定理 2.2.4. 任何一个 Hilbert 空间存在标准正交基.

定理 2.2.5. 已知 $\{S_{\alpha}\}$ 为 H 中的一个标准正交基, 则对 $\forall x \in H$, 都有一定的法则 $x = \sum_{\alpha} (x, x_{\alpha}) x_{\alpha}$ 且 $\|x\|^{2} = \sum_{\alpha} |(x, x_{\alpha})|^{2}$, 其中求和表示至多可数个非零数的求和

定理 2.2.6. 任何的可分的 Hilbert 空间与 l^2 是同构的

定理 2.2.7. M 为 Hilbert 空间 H 中的一个线性流形, 定义 $M^{\perp} \triangleq \{y \in M: y \in M\}$, 可以证明 M^{\perp} 为子空间

2.3 射影定理

定理 2.3.1. 投影定理 H 为 Hilbert 空间,M 为 H 的一个子空间,则对 $\forall x \in H$,存在唯一的 $y \in M, z \in M^{\perp}$,使得 x = y + z

定理 2.3.2. M 为 Hilbert 空间 H 的一个线性流形, $\bar{M}=(M^{\perp})^{\perp}$

定理 2.3.3. H 为 Hilbert 空间, 定义 H 上全体有界线性泛函称为 H 的对偶 空间 $H^*,(H^*,\|\cdot\|),f:H\to C,\|f\|=\sup_{x\in H,x\neq 0}\frac{|f(x)|}{\|x\|}$ 构成 Banach 空间

定理 2.3.4. Riesz 表示定理 对于 $\forall f \in H^*, \exists$ 唯一的 $z_f \in H$, 使得 $\forall x \in H, f(x) = (x, z_f)$ 且 $||z_f|| = ||f||_{H^*}$

 $\tau: H^* \to H, \tau: f \mapsto \tau(f) = z_f, \|\tau f\|_H = \|f\|_{H^*}$

τ 为等距共轭线性同构

2.4 Hilbert 共轭算子

定义 2.4.1. 在 H^* 中定义内积: $f,g \in H^*, (f,g) \in H^*, (f,g)_{H^*} \triangleq \overline{(z_f,z_g)_H}$

定义 2.4.2. 共轭双线性泛函 H 为 Hilbert 空间, $\varphi: H \times H \to C$, 满足

1. $\forall x, y, z \in H, \alpha, \beta \in C \ \pi \ \varphi(\alpha x + \beta y, z) = \alpha \varphi(x, z) + \beta \varphi(y, z)$

2. $\forall x, y, z \in H, \alpha, \beta \in C$ 有 $\varphi(z, \alpha x + \beta y) = \bar{\alpha}\varphi(z, x) + \bar{\beta}\varphi(z, y)$

 ϕ 为 H 上的共轭双线性泛函

如果 $\exists C>0, s.t. \forall x,y\in H$ 时, 总有 $|\varphi(x,y)|\leq C\|x\|\|y\|$, 称 φ 是有界的

定理 2.4.3. H 为 Hilbert 空间, φ 为 H 上的有界共轭双线性泛函,则存在有界线性算子, $A: H \to H, s.t. \forall x, y \in H$ 有 $\varphi(x,y) = (Ax,y)$

定理 2.4.4. H_1, H_2 为两个 Hilbert 空间, $T: H_1 \to H_2$ 有界线性算子, 对任意固定的 $y \in H_2, \forall x \in H_1, f_y(x) \triangleq (Tx, y)_{H_2} \in C$, f_y 为 H_1 上的有界线性泛函

定理 2.4.5. 用 L(H) 表示所有 H 上的有界线性算子

1.
$$(T+S)^* = T^* + S^*$$

2.
$$(\alpha T)^* = \bar{\alpha} T^*$$

3.
$$(ST)^* = T^*S^*$$

4.
$$(T^*)^* = T$$

5.
$$||T^*|| = ||T||$$

6. 如果 T 为有界可逆, 则 T* 有界可逆的

定义 2.4.6. 零空间 $A: H \to H$ 有界线性算子, $ker A \triangleq \{x \in H: Ax = \theta\}$

定义 2.4.7. 值域 $ranA \triangleq \{Ax : x \in H\}$

定理 2.4.8. $A: H \to H$ 有界线性算子, $A^*: H \to H$ 有界线性算子, 那么有:

1.
$$kerA = (ranA^*)^{\perp}$$

2.
$$ker A^* = (ran A^*)^{\perp}$$

3.
$$\overline{ranA^*} = (kerA)^{\perp}$$

4.
$$\overline{ranA} = (kerA^*)^{\perp}$$

定理 2.4.9. Lax-Milgram B(f,g) 为 Hilbert 空间 H 上有界共轭双线性泛函,且 $|B(f,f)| \geq r\|f\|^2$,则称 $\forall l \in H^*, \exists g_0 \in H$,使得 $l(f) = B(f,g_0)$ 且 $\|g_0\| = \frac{1}{r}\|l\|$

第三章 Banach 空间

3.1 有界线性算子

命题 **3.1.1.** X, Y 为赋范线性空间,L(X, Y) 表示 X 到 Y 的全体有界线性算 $\mathcal{F}, T, S \in L(X, Y)$, 定义:

1.
$$(T+S)x = \triangleq Tx + Sx$$

2.
$$\alpha \in \mathbb{K}, (\alpha T)(x) \triangleq \alpha T x$$

则 $T + S \in L(X,Y)$ 且 $||T + S|| \le ||T|| + ||S||, ||T|| = 0 \Leftrightarrow T = 0$

命题 3.1.2. X 为赋范线性空间,Y 为 Banach 空间, 则 L(X,Y) 为 Banach 空间

命题 3.1.3. $L(X) \triangleq L(X,X), \forall T,S \in L(X)$

 $(TS)(x) \triangleq T(Sx)$

则 $TS \in L(X)$ 且 $||TS|| \le ||T|| ||S||$

定义 3.1.4. X 为线性空间, $\|\cdot\|_1$, $\|\cdot\|_2$ 为 X 上的范数, 如果 $x_n \xrightarrow{\|\cdot\|_1} 0$ 能推出 $x_n \xrightarrow{\|\cdot\|_2} 0$, 则称 $\|\cdot\|_1$ 比 $\|\cdot\|_2$ 更强

命题 3.1.5. X 为线性空间, $\|\cdot\|_1$, $\|\cdot\|_2$ 为 X 上的范数, $\|\cdot\|_1$ 比 $\|\cdot\|_2$ 强, $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 强,等价于存在常数 $C_1, C_2 > 0, s.t. \forall x \in X, C_1 \|x\|_2 \le \|x\|_1 \le C_2 \|x\|_2$

定义 3.1.6. 有界可逆 $T \in L(X,Y)$ 如果 T 为双射, 且 $T^{-1}: Y \to X$ 有界, 则称 T 为有界可逆的

命题 3.1.7. X,Y 为赋范线性空间, $A:X\to Y$ 为线性算子,则 A 是单射且 $A^{-1}:ranA\to X$ 上连续,线性算子的充分必要条件是 $\exists C>0, \forall x\in X$,有 $\|Ax\|\geq C\|x\|$

定理 3.1.8. X 为 Banach 空间, $T \in L(X)$ 且 $||T|| \le 1$,则 I - T 为有界可逆的且 $(I - T)^{-1} = \sum_{n=0}^{\infty} T^n$, $||(I - T)^{-1}|| \le \frac{1}{1 - ||T||}$

定理 3.1.9. $\lim_{n\to\infty} ||T^n||^{\frac{1}{n}} = \inf_n ||T^n||^{\frac{1}{n}}$

命题 **3.1.10.** X 为 Banach 空间,L(X) 表示 X 上的全体有界线性算子,则求逆预算 $(\cdot)^{-1}:IL(X)\to L(X)$ 为连续的

3.2 Hahn-Banach 定理

定理 3.2.1. 实的线性空间上的实泛函保持控制延拓

X 为实线性空间, X_0 为 X 的线性流形, $P: X_0 \to R$ 为线性泛函,满足:

- 1. $\rho(x+y) \le \rho(x) + \rho(y)$
- 2. $\rho(tx) \le t\rho(x), \forall x \in X, t \ge 0$
- $3. \forall x \in X_0 \ f(x) < P(x)$

则存在 $F:X\to R$ 线性泛函, 使得 $F|_{x_0}=f$ 且 $F(x)\leq P(x), \forall x\in X, \forall x\in X_0$ 有 F(x)=f(x)

复的线性空间上的复的线性泛函保持控制条件延拓

- 1. $\rho(x+y) \le \rho(x) + \rho(y)$
- 2. $\rho(\alpha x) \leq \alpha \rho(x), \forall x \in X, \alpha \in C$

 $3. \ \forall x \in X_0 \ f(x) \leq P(x)$

则存在 $F:X\to C$ 线性泛函,使得 $F|_{x_0}=f$ 且 $|F(x)|\le P(x), \forall x\in X, \forall x\in X_0$ 有 F(x)=f(x)

定理 3.2.2. Hahn-Banach 定理 X 为赋范线性空间, X_0 为 X 的线性流形,f 为 X_0 上的有界线性泛函,则存在 $F \in X^*$ 使得 $F|_{x_0} = f$ 且 $||F|||_X = ||f||_{X_0}$

命题 3.2.3. X 为赋范线性空间, $x_0 \in X$ 则存在 $f \in X^*$ 使得 $f(x_0) = ||x_0||$ 且 ||f|| = 1

推论 3.2.4. X 为赋范线性空间, $x_0 \in X$, $||x_0|| = \sup_{||f|| < 1} |f(x_0)|$

命题 3.2.5. X 为赋范线性空间,E 为 X 上的子空间, $x_0 \in X \setminus E$,则存在 $f \in X^*$,使得 $f(x_0) = 1$, $f|_E = 0$ 且 $||f|| = \frac{1}{\alpha}$,其中 $d = dist(x_0, E) = inf\{||x_0 - x|| : x \in E\}$

命题 3.2.6. X 为赋范线性空间, X_0 为 X 的线性流形,则 $x_0 \in \overline{X_0} \Leftrightarrow$ 对 $\forall f \in X^*$ 如果有 $f|_{X_0} = 0$,则必有 $f(x_0) = 0$

命题 3.2.7. X 为 Banach 空间,M 为 X 有限维线性流形,则存在子空间 N, 使得 X = M + N 且 $M \cap N = \{0\}$

定理 3.2.8. Hahn-Banach 几何形式 X 为赋范线性空间, $g \subset X$ 的线性簇,K 为 X 中的一个开球, 如果 $g \cap K = \emptyset$, 则存在超平面 H 使得 $H \supset g$ 且 $G \cap K = \emptyset$

3.3 Bare 纲定理

命题 3.3.1. X, Y 为赋范线性空间, $T: X \to Y$ 线性算子,T 有界 $\Leftrightarrow T^{-1}\{y \in Y, ||y|| \le 1\}$ 中有内点

定义 3.3.2. (X,d) 为距离线性空间, $A \subset X$ 如果 \bar{A} 中没有内点, 称 A 为无处稠密集 (疏朗集 $),X_0 \subset X$

- 1. 如果 X_0 可以表示成可数个无处稠密集的并, 则称 X 为第一纲的
- 2. 否则, 不能表示成可数个无处稠密集的并, 则称 X 为第二纲的

命题 3.3.3. $A \subset X$ 无处稠密 \Leftrightarrow 对任何 X 中的开球 O 存在开球 $B \subset O$ 使得 $B \cap O$ 使得 $B \cap A = \emptyset$

定理 3.3.4. Bare 纲定理 (X,d) 完备,则 (X,d) 为第二纲的

定理 3.3.5. 共鸣定理,一致有界原理,Banach-Steinhauss X 为 Banach 空间,Y 为赋范线性空间, $\{T_{\lambda}\}_{\lambda\in\Lambda}\subset B(X,Y)$,如果对 $\forall x\in X,\sup_{\lambda}\|T_{\lambda}x\|<+\infty$,则有 $\sup_{\lambda}\|T_{\lambda}\|<+\infty$

定理 3.3.6. X, Y 为 Banach 空间, $T \in L(X,Y), ranT$ 为第二纲的,则 T 把 X 中的开集映为 Y 中的开集

定理 3.3.7.~X,Y 为 Banach 空间,T 为有界线性算子,T 为双射,则 T 有界可逆.

定理 3.3.8. 范数等价定理 X 按 $\|\cdot\|$, $\|\cdot\|_1$ 形成 Banach 空间, 且 $\|\cdot\|_1$ 比 $\|\cdot\|_{\mathfrak{A}}$, 则二者等价.

定义 3.3.9. 闭算子 X,Y 为赋范线性空间,T 为从 X 的某个线性流形到 Y 的线性算子,M=domT 为 T 的定义域. 记 $G(T)=\{(x,Tx):x\in domT\}\subset X\times Y$ 为 T 的图像. 如果 G(T) 在 $X\times Y$ 上为闭集, 则称 T 为闭算子

定理 3.3.10. 闭图像定理 X, Y 为 Banach 空间, $T: X \to Y$ 为闭算子,则 T 为有界线性算子.

命题 3.3.11. Hellinger-Toeplitz H 为 Hilbert 空间, $A: H \to H$ 为处处有定义的线性算子, 且 $(Ax,y)=(x,Ay), \forall x,y\in H$ 成立, 则 A 有界

定理 3.3.12. X 为 Banach 空间, 如果 X^* 是可分的, 则 X 可分

3.4 二次对偶

定义 3.4.1. 二次对偶 X 为 Banach 空间, X^* , $X^{**} = (X^*)^*$

定义 3.4.2. 典型映射 $\tau: X \to X^{**}, F_x: X^* \to C, \tau: x \mapsto F_x, F_x: X^* \to C$ 其中 $F_x(f) = f(x)$

命题 3.4.3. X 为 Banach 空间, $\{x_{\alpha}\}_{\alpha \in \Lambda} \subset X$, 如果 $\forall f \in X^*$ 有 $\sup_{\alpha} |f(x_{\alpha})| < M_f$, 则有 $\sup_{\alpha} \|x_{\alpha}\| < M$

例 3.4.4. 有限维空间为自反的

例 3.4.5. $l^p(1 自反的$

例 3.4.6. Hilbert 空间都是自反的

3.5 Banach 共轭算子

定义 3.5.1. Banach 共轭算子 $T'=Y^*\to X^*$ 如下: $T'f=f\circ T, \forall f\in Y^*$ 为 T 的 Banach 共轭算子

定理 3.5.2. $X, Y \to Banach$ 空间. $T, S \in L(X, Y)$, 则

- 1. ||T'|| = ||T||
- 2. $(\alpha T)' = \alpha T'$
- 3. (T+S)' = T' + S'

定理 3.5.3. X 为 Banach 空间, $S,T \in L(X)$

- 1. (TS)' = S'T'
- 2. T 有界可逆 $\Rightarrow T'$ 有界可逆

定理 3.5.4. $T''|_X = T, X^{**} \to Y^{**}, \tau : X \to X^{**}, \tau(x)(f) = f(x)$

定理 3.5.5. $T: H_1 \to H_2$ 为 Hilbert 空间, $T^*: H_2 \to H_1$ 则 $T': H_2^* \to H_1^*$

3.6 算子的值域与零空间,商空间

定义 3.6.1. 商空间 $\sim \subset A \times A$ 为 A 上的一个二元关系, 称其为等价类指的是以下三条成立.

- 1. $\forall a \in A, (a, a) \in {\sim}, a {\sim} a$
- 2. 如果 $a \in A, (a,a) \in \sim$ 则有 $(b,a) \in \sim$
- 3. 如果 $(a,b) \in \sim, (b,c) \in \sim$ 则 $(a,c) \in \sim$

$$A/\sim = \{[x] : x \in A\}, [x] = \{y \in A : y \sim x\}$$

定义 3.6.2. X 为线性空间 M 为 X 的一个线性流形

 $x \sim y \Leftrightarrow x - y \in M, \sim 为 X$ 上的等价关系: $X/\sim = X/M$

X/M 按等价类的加法勾构成一个线性空间, 称之为商空间, 商范数为 $\|[x]\| = \inf\{\|y\| : y \in [x] = \inf\{\|y - z\| : z \in M, y \in [x]\}$

X/M 按 ||[x]|| 构成赋范线性空间

定理 3.6.3. X 为 Banach 空间, X/M 为 Banach 空间

定义 3.6.4. 零化子 X 为赋范线性空间, X^* 为对偶空间,M 为 X 中的线性流形,N 为 X^* 的线性流形

 $M^{\circ} \triangleq \{f \in X^* : \forall x \in M, \, ff(x) = 0\}$ 称为 M 的零化子 ${}^{\circ}N \triangleq \{x \in X : \forall f \in N, \, ff(x) = 0\}$ 称为 N 的零化子

定理 3.6.5. X 为 Banach 空间,M 为 X 的一个线性流形

- 1. $\circ (M)^{\circ} = M$
- 2. X 为自反的,G 为 X^* 中的子空间,有 $({}^{\circ}G){}^{\circ}=G$

定理 3.6.6. X 为 Banach 空间, M 为 X 的子空间

- 1. M* 与 X*/M° 保范同构
- 2. (X/M)* 与 M° 保范同构

3.7 弱拓扑与弱*拓扑

定义 3.7.1. 弱拓扑与弱* 拓扑 X 为赋范线性空间

 $\{x_n\} \subset X$ 称为弱收敛的, 指的是 $\forall f \in X^*$ 有 $f(x_n) \to f(x)$

 X^* 为对偶空间, $\{f_n\}\subset X$ 称为弱 * 收敛的, 指的是 $\forall x\in X, f_n(x)\to f(x)$

第四章 有界线性算子的谱理论

4.1 谱的概念及性质

定义 4.1.1. X 为 Banach 空间, $X \neq \{\theta\}$, $I: X \to X$ 恒等算子,I 不是零算子. $0: x \mapsto 0$, $I: x \mapsto x$, $T \in L(X)$, $\lambda \in C$ 如果 $\lambda I - T$ 在 X 上是有界可逆的,则称 λ 为 T 的一个正则点, $\lambda \in \rho(T)$, 正则点集记为 $\rho(T)$, 记 $\sigma(T) = C \setminus \rho(T)$,,称为 T 的谱点集, $\lambda \in \sigma(T)$ 称为 T 的一个谱点.

- 1. 如果 $\lambda I T : X \to X$ 不是单射, 称 λ 为 T 的一个特征值 (点谱), 记作 $\lambda \in \sigma_p(T)$
- 2. 如果 $\lambda I T: X \to X$ 为单射, 但不是满射,
- 3. 如果 $\lambda I T : X \to X$ 是单射, $\overline{ran(\lambda I T)} = X$, 但 $ran(\lambda I T) \neq X$, 称 λ 为 T 的一个连续谱点,记作 $\lambda \in \sigma_c(T)$
- 4. $\lambda I T$ 为双射

$$C = \rho(T) \cup \sigma_p(T) \cup \sigma_r(T) \cup \sigma_c(T)$$

定理 4.1.2. $T \in L(X)$, 则 $\rho(T)$ 为开集, $\lambda_0 \in \rho(T)$, 记 $r_{\lambda_0} = \lim_{n \to \infty} \|(\lambda_0 I - T)^{-n}\|^{\frac{1}{n}}$, $T^{-n} = (T^{-1})\cdots(T^{-1})$, 当 $|\lambda - \lambda_0| < \frac{1}{r_{\lambda_0}}$, 有 $\lambda \in \rho(T)$

推论 4.1.3. $\sigma(T)$ 为闭集, $\sigma(T) \subset \{\Lambda : |\Lambda| \leq \lim_{n \to \infty} \|T^n\|^{\frac{1}{n}}\}$

定义 4.1.4. 谱半径 令 $r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$ 称为 T 的谱半径

引理 **4.1.5.** $T \in L(X), f \in (L(X))^*$ 则 $f((\lambda I - T)^{-1})$ 为 $\lambda \in \rho(T)$ 上的解析函数

定理 4.1.6. 设 $T \in L(X)$, 则有谱半径公式 $r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} = r$

定理 4.1.7. $T \in L(X)$, 则 $\sigma(T) \neq \emptyset$

4.2 紧算子和有限秩算子

定义 4.2.1. 有限秩算子 X,Y 为线性空间, $T:X\to Y$ 为线性算子, 如果 $dim(ranT)<+\infty$, 则称 T 为有限秩算子

定义 4.2.2. 紧算子 X, Y 为赋范线性空间, $A: X \to Y$ 为线性算子, 如果对于每个 X 中的有界集 M, 都有 AM 为 Y 中的列紧集, 则称 A 为紧算子.

- 1. $C(X,Y) \subset L(X,Y)$
- $2. A \in C(X,Y) \Rightarrow ranA$ 可分
- $3. \ T \in C(X,Y) \Leftrightarrow$ 对每个有界 M,\overline{TM} 为 Y 中的紧集 \Leftrightarrow 对任何有界点 列 $x_n \subset X, \{Tx_n\}$ 一定有收敛子列
- 4. T为有界的有限秩算子,则 T为紧的

定理 4.2.3. X,Y 为赋范线性空间,则 C(X,Y) 为 L(X,Y) 中的线性流形,如果 Y 为 Banach 空间,则 C(X,Y) 为 Banach 空间

定理 4.2.4. X, Y, Z 为赋范线性空间, $T \in L(X, Y), S \in L(Y, Z)$, 如果 S, T 之一为紧算子, 则 $ST \in C(X, Y)$

定理 **4.2.5.** X, Y 为赋范线性空间, $T \in C(X, Y)$, 则 T 将 X 中弱收敛的点列映为依范数收敛的点列.

定理 4.2.6. X.Y 为赋范线性空间

- 1. 如果 $T \in C(X,Y)$, 则 $T' \in C(Y^*,X^*)$
- 2. 如果 Y 是 Banach 的, 且 $T' \in C(Y^*, X^*)$ 则称 $T \in C(X, Y)$

定理 4.2.7. 设 X 为 Banach 空间, 且 X 有一个 Schander 基 $\{e_n\}_{n=1}^{\infty}, A \in C(X)$, 则称 A 可以表示成为一列有限秩算子的极限

定理 4.2.8. X 为复 Banach 算子, $A \in C(X)$, $\lambda \neq 0$, 则 $ran(\lambda I - A)$ 为闭子空间.

定理 **4.2.9.** 紧算子的 Riesz-Schander 理论 X 为复 Banach 空间,A 是 X 上 的紧算子,则:

- 1. 如果 $dimX = \infty$, 则 $0 \in \sigma(A)$
- 2. $\sigma(A)\setminus\{0\}\subset\sigma_p(A)$
- $3. \ \forall \lambda \neq 0 \ fi \ dimker(\lambda I A) < +\infty$
- $4. \sigma(A)$ 至少只有一个聚点 0

定理 **4.2.10**. 设 X 为复 Banach 空间, $A \in C(X)$, $\lambda \neq 0$ 则

- 1. $ran(\lambda I A) = ker^{\circ}(\lambda I A')$
- 2. $ran(\lambda I A') = ker(\lambda I A)$

定义 4.2.11. X 为赋范线性空间,M,N 为 X 的闭子空间, $M \cap N = \{0\}$, M + N = X 称 M 与 N 拓扑互补, $X = M \oplus N$

定义 4.2.12. 投影算子 X 为赋范线性空间,M 为 X 的子空间 $P \in L(X)$ 且 $P: X \to M, P^2 = P$ 称 P 为 X 到 M 的投影算子

命题 **4.2.13.** X 为 Banach 空间,M 为 X 中的有限维子空间, 则 $X = M \oplus N$, $\exists P: X \to M$ 为投影算子,X/M 与 (I-P)X 拓扑同构

引理 4.2.14. X 为复 Banach 空间, $A \in C(X)$, T = I - A, 则 $codim(ranT) \le dimkerT$

定理 4.2.15. X 为复 Banach 空间, $A \in C(X)$, $\lambda \neq 0$ 则:

- 1. $dimker(\lambda I A) = dimker(\lambda I A')$
- 2. $codimran(\lambda I A) = dimker(\lambda I A)$

4.3 Fredholm 算子

定义 4.3.1. 设 X,Y 为 Banach 空间, $T \in L(X,Y)$, 如果

- 1. ranT 闭
- 2. $dim(kerT) < +\infty$
- 3. $codim(ranT) < +\infty$

则称 $T \to X \to Y$ 的 Fredholm 算子

定理 4.3.2. 设 X, Y 为 Banach 空间, $T \in L(X, Y)$

- 1. 如果 $T \in F(X,Y)$,则存在 $S \in L(Y,X)$ 以及 $A_1 \in C(X), A_2 \in C(Y), s.t. TS = T_y A_2, ST = I_x A_1$
- 2. 如果存在 $S_2, S_1 \in L(Y, X), A_1 \in C(X), A_2 \in C(Y)$,使得 $TS_2 = I_y A_2, S_1T = I_x A_1$,则 $T \in F(X, Y)$