Curves

Definition

A curve in \mathbb{R}^n is a vector valued function

$$\mathbf{c}:I \to \mathbb{R}^n$$

where I is an interval on \mathbb{R} .

Often we think of the image of *I* under **c** as the curve, but this is not the definition.

The function **c** is also called a parameterisation.

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

Semester 1, 2014

3 / 29

Curves

Example: A curve (or parameterisation) $\mathbf{r}: [-1,3] \to \mathbb{R}^2$ is given by

$$\mathbf{r}(t) = \left(1 + t, \frac{4}{3}t^2\right).$$

The image of [-1,3] is

$$\{(x,y): x=1+t, y=\frac{4}{3}t^2, -1 \le t \le 3\}.$$

Plot and label the points $\mathbf{r}(-1)$, $\mathbf{r}(0)$, $\mathbf{r}(1)$, $\mathbf{r}(2)$ and $\mathbf{r}(3)$. Find a Cartesian equation for the image of [-1,3] and sketch the curve. Indicate the direction of increasing parameter.

A Cartesian equation can be obtained by eliminating the parameter.

$$x = 1 + t, y = \frac{4}{3}t^2$$
 \Rightarrow $y = \frac{4}{3}(x - 1)^2$.

Curves

Examples: Sketch the following curves.

$$\mathbf{r}:[0,\pi]\to\mathbb{R}^2$$
 given by

$$\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j}.$$

$$\mathbf{r}:[0,6\pi]\to\mathbb{R}^3$$
 given by

$$\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}.$$

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

Semester 1, 2014

5 / 29

Curves

Example

Find two different curves with the image drawn below. For each curve, describe the direction of increasing parameter.

Give a parameterisation that traverses from B to A and another that traverses from A to B and then back to A again.

Each value of x corresponds to only one point in the image. So we can use x as a parameter.

$$\mathbf{r_1}:[1,4]\to\mathbb{R}^2,$$

$$\mathbf{r_1}(t)=(t,\sqrt{t}).$$

The parameter increases from A to B.

We could also use y as a parameter.

$$\mathbf{r_2}:[1,2]\to\mathbb{R}^2,$$

$$\mathbf{r}_2(t) = (t^2, t).$$

The parameter increases from \boldsymbol{A} to \boldsymbol{B} .

Curves

Example: Sketch
$$\mathbf{r}:[0,20]\to\mathbb{R}^2$$
 given by $\mathbf{r}(t)=\left(\cos t+\frac{1}{3}t\right)\mathbf{i}+\sin t\mathbf{j}$.

Curves

Definition

- A multiple point is a point through which the curve passes more than once.
- For a curve $\mathbf{c}:[a,b] \to \mathbb{R}^n$, $\mathbf{c}(a)$ and $\mathbf{c}(b)$ are called end points.
- A curve is closed if its end points are the same point.

Which of the following are the image of a closed curve? How many multiple points (other than end points) does each curve have?

A and B are closed. B and D have one multiple point each.

What assumption has been made in the above answers?

7 / 29

Surfaces

You have seen surfaces in \mathbb{R}^3 described in 3 ways.

Graph of a function

Eg,
$$z = f(x, y)$$

Implicitly

Eg, a sphere given by
$$x^2 + y^2 + z^2 = 1$$
.

Parametrically

Eg, a plane given by
$$\mathbf{x} = \mathbf{x_0} + \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2$$
.

JM Kress (UNSW Maths & Stats)

MATH2111 Curve

Semester 1, 2014

15 / 29

Parameterisation defined surface

For $D \subset \mathbb{R}^2$, the image of D under $\mathbf{r}: D \to \mathbb{R}^3$ is a surface in \mathbb{R}^3 . Note that unlike for curves, a surface is the image of the parameterisation.

Eg,
$$\mathbf{r}:D \to \mathbb{R}^3$$
 where $D=\{(x,y): x^2+y^2 \leq 1\}$ and

$$\mathbf{r}(s,t) = (s,t,\sqrt{1-s^2-t^2})$$

is a parameterisation of the upper unit hemisphere.

Implicitly defined surface

We can define a surface in \mathbb{R}^3 as the set of points satisfying an equation. Eg, a sphere given by $x^2 + y^2 + z^2 = 1$.

Later in the course we will study a theorem that tells you when parts of this surface are the graph of a function of some of the variables — the Implicit Function Theorem.

Some other implicitly defined surfaces will be discussed in tutorial 1.

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

Semester 1, 2014

17 / 29

Graphs of functions of one variable

The graph of

$$f: \mathbb{R} \to \mathbb{R}$$

is the set of points

$$\{(x,y)\in\mathbb{R}^2:y=f(x)\}.$$

On the graph of f, input values are represented by distance across the page and output values by distance up the page.

Graphs of functions of two variables

The graph of

$$f: D \to \mathbb{R}$$

is the set of points

$$\{(x, y, z) : z = f(x, y)\}$$

for all
$$(x, y) \in D$$
}.

In this example the domain is the subset of \mathbb{R}^2 shaded pink in the diagram.

In other examples, it could be all of \mathbb{R}^2 or any other subset of \mathbb{R}^2 .

Note the orientation of the axes. If you sat on top of z-axis and looked down, you would see the usual orientation for the x and y axes.

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

Semester 1, 2014

19 / 29

Graphs of functions of two variables

Given a function of two variables, how can we visualise it? For example, what does the graph of

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = x^2 + y^2$$

look like. That is, we want to sketch the set of points in \mathbb{R}^3 satisfying z = f(x, y).

Let's start by looking at some vertical slices with constant x.

Next put these together.

Graphs of functions of two variables

We could also take slices of constant y. Try plotting these yourself.

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

21 / 29

Horizontal slices

We could also take horizontal slices, that is, slices of constant z.

= -1 : no solution

z=0 : (x,y)=(0,0) a single point z=1 : $x^2+y^2=1$ a circle of radius 1 z=2 : $x^2+y^2=2$ a circle of radius $\sqrt{2}$

Horizontal slices

If we plot the horizontal slices in the xy-plane, we have a contour map.

We have plotted some level curves or contours of f.

Contours or other slices are a good way of visualising a surface.

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

Semester 1, 2014

23 / 29

Level curves - examples

Contours on topographical maps are used to describe a surface. Maps Downunder have some sample maps on their website.

http://www.mapsdownunder.com.au/cgi-bin/mapshop/ABC-MTPKT.html

Level curves - examples

```
> f1 := 1-sin((x^2+y^2)/40)^2:
> with(plots):
  plot3d(f1,x=-10..10,y=-10..10,
  axes=normal,transparency=0.5,
  labels=[x,y,z],grid=[30,30]);
```

> contourplot(f1,x=-10..10,y=-10..10,
 grid=[50,50],view=[-10..10,-10..10],
 contours=[0,0.1,0.2,0.3,0.4,0.5,0.6,
 0.7,0.8,0.9,1],coloring=[blue,red]);

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

Semester 1, 2014

25 / 29

Level curves - examples

Level curves - example

Let f be a function of two variables. The $f(x,y)=0.5,\ 1.0,\ 1.5,\ 2.0,\ 2.5,\ 3.0,\ 3.5,\ 4.0$ level curves are draw on the left.

Which of the surfaces below could be the graph z = f(x, y)? Give reasons for your choice

Surfaces - an example

Sketch the level curves of

$$f(x,y) = 4 - \sqrt{x^2 + y^2}$$

and describe the surface z = f(x, y).

27 / 29

Surfaces - an example

Sketch the level curves of

$$f(x,y) = \sqrt{1 - x^2 - 3y^2}$$

and describe the surface z = f(x, y).

JM Kress (UNSW Maths & Stats)

MATH2111 Curves

Semester 1, 2014

29 / 29