Chameleon: Adaptive Code Optimization for Expedited Deep Neural Network Compilation

Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, Hadi Esmaeilzadeh

ICLR 2020

University of California, San Diego, Google Research

The general life-cycle of deep learning models

designing &training model

The inference speed

2nd

deploy to target

Compilation Workflow For Deep Neural Network

Loop Tiling

Loop Unrolling

Figure 1: Overview of our model compilation workflow, and highlighted is the scope of this work.

5/2/20 JaehunRyu

Compilation Workflow For Deep Neural

Integer division

L3 read

C function indirect call

C++ virtual function call

Network

Not all CPU operations are created equal

15-40

20-50

30-60 30-70

Loop Unrol

Programmer

Figure 1: Overview

Main RAM read 100-150 NUMA: different-socket atomics/CAS 100-300 (guesstimate) NUMA: different-socket L3 read 100-300 Allocation+deallocation pair (small objects) 200-500 NUMA: different-socket main RAM read 300-500 Kernel call 1000-1500 Thread context switch (direct costs) 2000 C++ Exception thrown+caught 5000-10000 Thread context switch (total costs, including cache invalidation)

> Distance which light travels while the operation is performed

104

of this work.

Optimizing Complier For Deep Neural Networks

```
\Theta^* = \operatorname*{argmax}_{\Theta} f(\tau(\Theta)), \qquad \text{for } \Theta \in \mathcal{D}_{\Theta}. \qquad \text{knobs } \theta \quad \Theta = (\theta_1, \theta_2, ..., \theta_n)
```

```
s_1 loop tiling
       e compute expression
A = t.placeholder((1024, 1024))
                                        yo, xo, yi, xi = s[C].title(y, x, ty, tx)
B = t.placeholder((1024, 1024))
                                        s[C].reorder(yo, xo, k, yi, xi)
k = t.reduce_axis((0, 1024))
C = t.compute((1024, 1024),
   lambda y, x:
   t.sum(A[k, y] * B[k, x], axis=k))
                                        for yo in range(1024 / ty):
                                          for xo in range(1024 / tx):
        x_0 default code
                                            C[yo*ty:yo*ty+ty][xo*tx:xo*tx+tx] = 0
for y in range(1024):
                                            for k in range(1024):
  for x in range(1024):
                                              for yi in range(ty):
    C[y][x] = 0
                                                for xi in range(tx):
    for k in range(1024):
                                                  C[yo*ty+yi][xo*tx+xi] +=
      C[y][x] += A[k][y] * B[k][x]
                                                     A[k][yo*ty+yi] * B[k][xo*tx+xi]
```

- An optimizing compiler input τ(task e.g. conv2d,dense..) for each layer
- Use and learn of a search algorithm f
- Knob Θ is such thing like compile option(e.g. tiling factor..)
- Target is the best configuration $\Theta^* \in D\Theta$ in real hardware

Optimizing Complier For Deep Neural Networks

```
\Theta^* = \operatorname*{argmax}_{\Theta} f(\tau(\Theta)), \qquad \text{for } \Theta \in \mathcal{D}_{\Theta}. \qquad \text{knobs } \theta \quad \Theta = (\theta_1, \theta_2, ..., \theta_n)
```

```
s_1 loop tiling
       e compute expression
A = t.placeholder((1024, 1024))
                                        yo, xo, yi, xi = s[C].title(y, x, ty, tx)
B = t.placeholder((1024, 1024))
                                        s[C].reorder(yo, xo, k, yi, xi)
k = t.reduce_axis((0, 1024))
C = t.compute((1024, 1024),
                                                    x_1 = g(e, s_1)
   lambda y, x:
   t.sum(A[k, y] * B[k, x], axis=k))
                                        for yo in range(1024 / ty):
                                          for xo in range(1024 / tx):
        x_0 default code
                                            C[yo*ty:yo*ty+ty][xo*tx:xo*tx+tx] = 0
for y in range(1024):
                                            for k in range(1024):
                                              for yi in range(ty):
  for x in range(1024):
    C[y][x] = 0
                                                for xi in range(tx):
                                                  C[yo*ty+yi][xo*tx+xi] +=
    for k in range(1024):
      C[y][x] += A[k][y] * B[k][x]
                                                     A[k][yo*ty+yi] * B[k][xo*tx+xi]
```

- For the effectiveness of the optimizing compiler
 - A large and diverse enough design space => variety of transformations opportunity
 - An effective search algorithm => adequately navigate this space
 - A mechanism to cut down the number of hardware measurements => reduce hardware measure overhead

Optimizing Complier For Deep Neural Networks

- The knobs optimize various aspects of the execution
 - maximizes data reuse
 - uses the shared memory wisely
 - minimizes bank conflicts
- This work has a design space with 10^10 possibilities.

Knobs	DEFINITION
tile_f, tile_y, tile_x	Factors for tiling and binding # of filters height, and width of feature maps.
tile_rc, tile_ry, tile_rx	Factors for tiling reduction axis such as # of channels, height, and width of filters.
auto_unroll_max_step	Threshold of number of steps in the loop to be automatically unrolled.
unroll_explicit	Explicitly unroll loop, this may let code generator to generate pragma unroll hint.

Table 1: Knobs in the design space to optimize convolution.

Introduction

- The enormous computational intensity of DNNs
- Hand-optimized kernels, such as NVIDIA cuDNN or Intel MKL that serve as backend for a of programming environment such as TensorFlow and PyTorch.

Previous works

- TensorComprehensions are based on random or genetic algorithms to search the space of optimized code for neural networks.
- Each new candidate is bred through three parent uniform cross-over and also undergoes mutation with a low probability

Previous works

 AutoTVM builds on top of TVM and leverage boosted trees as part of the search cost model.

Figure 2: Framework for learning to optimize tensor programs.

Previous works

Figure 11: End-to-end performance across back-ends. ²AutoTVM outperforms the baseline methods.

Problems

- Time can be around 10 hours for ResNet-18,
- Long compilation time hinders innovation.
- The current approaches are oblivious to the patterns in the design space of schedules that are available for exploitation, and causes inefficient search.
- The current solutions that rely on greedy sampling lead to significant fractions of the candidate configurations being redundant over iterations, compiler are prone to invalid configurations

Contributions

1. Devising an **Adaptive Exploration** module that utilizes reinforcement learning to adapt to unseen design space of new networks to reduce search time yet achieve better performance.

2. Proposing an **Adaptive Sampling algorithm** that utilizes *clustering to adaptively reduce the number* of costly hardware measurements, and devising a domain-knowledge inspired **Sample Synthesis** to find configurations that would potentially yield better performance.

Overall design and compilation overview

Figure 3: Overall design and compilation overview of the **Chameleon**.

Overall design and compilation overview

Figure 2: Framework for learning to optimize tensor programs.

Autotvm

Figure 3: Overall design and compilation overview of the CHAMELEON.

Chameleon

Adaption Exploration

 The current approach requires numerous iterations of exploration to converge to a reasonable solution.

 Adaptive Exploration by leveraging Reinforcement Learning (RL), which is concerned with learning to maximize reward given an environment by making good exploration and exploitation tradeoffs

Reinforcement learning formulation

- Adaptive Exploration module uses an actor-critic style RL(PPO), where policy network learns to emit a set of directions (vector of increment/decrement/stay) for each knob in the design space.
- These networks not only learn the dependencies among the different knobs of the design space but also lean the potential gains of the modifications to the configurations

Figure 4: Adaptive Exploration Module of Chameleon in action.

Adaptive Sampling

- The candidate configurations are clustered in subregions of the design space and these clusters are non-uniformly distributed
- A large fraction of configurations within each cluster achieve similar runtime

Figure 5: Clusters of candidate configurations.

Figure 6: Cumulative Distribution Function (CDF) of the difference in runtime among the configurations in the cluster.

Sample Synthesis

- The configurations are discarded due to the greedy sampling which entirely depends on the cost model for its selections of the configurations.
- The proposed method analyzes the candidate samples to determine the most probable (most frequent = mode function) non-invalid choice for each knob to come up with a new configuration.
- This statistical combination of the most frequent knob settings yield configurations that combine the strengths of different knobs to converge to a better overall solution.

Adaptive Sampling & Sample Synthesis

Algorithm 1 Adaptive Sampling and Sample Synthesis

10:

11:

end for

12: end procedure

return new candidates

$\triangleright s_{\Theta}$: candidate configs, v_{Θ} : visited configs 1: **procedure** ADAPTIVESAMPLING (s_{Θ}, v_{Θ}) new_candidates $\leftarrow \emptyset$, previous_loss $\leftarrow \infty$ for k in range(8, 64) do 3: new_candidates, clusters, L2_loss \leftarrow K-means.run(s_{Θ}, k) 4: if Threshold \times L2_loss \geq previous_loss then break 5: ▶ Exit loop at *knee* of loss curve previous $loss \leftarrow L2 loss$ 6: end for 7: 8: for candidate in new_candidates do ▶ Replace visited config with new config if candidate in v_{Θ} then new_candidates.replace(candidate, mode(s_{Θ})) 9:

▶ Feed to *Code Generator* to make measurements on hardware

Experiment setup

Table 4: Details of the DNN models used in evaluating **CHAMELEON**.

NETWORK	DATASET	Number of Tasks
AlexNet	ImageNet	5
VGG-16	ImageNet	9
ResNet-18	ImageNet	12

Table 5: Details of the layers used in evaluating **Chameleon**.

NAME	MODEL	LAYER TYPE	TASK INDEX
L1	AlexNet	convolution	1
L2	AlexNet	convolution	4
L3	VGG-16	convolution	1
L4	VGG-16	convolution	2
L5	VGG-16	convolution	4
L6	ResNet-18	convolution	6
L7	ResNet-18	convolution	9
L8	ResNet-18	convolution	11

Table 6: Details of the hardware used for evaluation of **CHAMELEON**.

SPECIFICATIONS	DETAILS
GPU	Titan Xp
Host CPU	3.4G Hz Intel Core i7
Main Memory	32GB 2400 MHz DDR3

Table 7: Hyper-parameters uses in **CHAMELEON**.

Hyperparameter	VALUE	DESCRIPTION
$iteration_{opt}$	16	number of iterations for optimization process (equivalent to 1000 hardware measurements)
$mode_{GBT}$	xgb-reg	type of loss used for cost model
b_{GBT}	64	maximum batch size of planning in GBT (Chen & Guestrin, 2016) cost model per iteration of optimization process
$episode_{rl}$	128	number of episodes for reinforcement learning
$step_{rl}$	500	maximum steps of one reinforcement learning episode
$threshold_{meta}$	2.5	threshold used for meta-search in sampling

Table 8: Hyper-parameters uses in AutoTVM (Chen et al., 2018b).

HYPERPARAMETER	VALUE	DESCRIPTION
$\Sigma(b_{GBT})$	1000	total number of hardware measurements
$mode_{GBT}$	xgb-reg	type of loss used for cost model
b_{GBT}	64	batch size of planning in GBT (Chen & Guestrin, 2016)
n_{sa}	128	number of Markov chains in parallel simulated annealing
$step_{sa}$	500	maximum steps of one simulated annealing run

Table 9: Hyper-parameters used in CHAMELEON's PPO (Schulman et al., 2017) search agent.

Hyperparameter	VALUE
Adam Step Size	1×10^{-3}
Discount Factor	0.9
GAE Parameter	0.99
Number of Epochs	3
Clipping Parameter	0.3
Value Coefficient	1.0
Entropy Coefficient	0.1

Evaluation

of steps for convergence.

ware measurements.

Figure 7: Component evaluation of **CHAMELEON**.

The Adaptive Sampling algorithm reduces the number of measurements by 1.98×when used with simulated annealing and 2.33×with reinforcement learning

Hardware

Measurements

CHAMELEON reduces the optimization time.

x Iterations

x Iterations

Evaluation

Figure 8: Comparison to AutoTVM's diversity exploration.

Figure 9: Layer evaluation of output performance for ResNet-18's 11th layer.

End-to-end evaluation

Optimization Time

1.15x

Output Performance

(a) Layer evaluation.

(b) End-to-end evaluation.

End-to-end evaluation

Network	SA (AutoTVM)	AE	SA + AS	AE + AS (CHAMELEON)
AlexNet	4.31 Hours	4.06 Hours	1.25 Hours	1.20 Hours
VGG-16	11.18 Hours	8.82 Hours	2.57 Hours	1.95 Hours
ResNet-18	9.13 Hours	7.39 Hours	2.14 Hours	2.13 Hours

Table 2: End-to-end evaluation of the optimization time for deep networks.

Network	SA (AutoTVM)	AE	SA + AS	AE + AS (CHAMELEON)
AlexNet	1.0277 ms	1.0207 ms	0.9762 ms	0.9673 ms
VGG-16	3.9829 ms	3.9710 ms	3.8733 ms	3.8458 ms
ResNet-18	1.0258 ms	0.9897 ms	0.9897 ms	0.9831 ms

Table 3: End-to-end evaluation of the output performance for deep networks.

26