• npn Cascode:

- \succ *CE*, followed by *CB*
- > Known as *Wideband* **Amplifier**, due to its superior frequency response characteristic

ac Schematic

- \triangleright Generally, both Q_1 and Q_2 are biased with the same I_C
- \triangleright Assuming Q_1 - Q_2 have same β :

$$r_{E1} = r_{E2} = r_{E}$$
 and $r_{\pi 1} = r_{\pi 2} = r_{\pi}$

- > $R_0 = R_L ||R_{01}||$
- $ightharpoonup If r_0$ is neglected, then $R_{01} \to \infty$
- $ightharpoonup If r_0$ is included, then $R_{01} = \beta r_{02}$ (very high)
- \succ However, it comes in parallel with R_L
 - \Rightarrow Overall R_0 is still $\sim R_L$
- > Summary:
 - Moderate voltage gain
 - Moderate input resistance
 - Potential of having very large output resistance
 - Extremely large bandwidth
 - Preferred over a simple CE stage

• NMOS Cascode:

ac Schematic

ac Midand Equivalent

- > CS, followed by CG
- \triangleright Generally, both M_1 and M_2 are biased with the same I_D
- $\rightarrow M_1$ does not have body effect, but M_2 has

- **By inspection**, $R_i \rightarrow \infty$ and $R_0 = R_L ||R_{01}||$
- With r_{02} present, the analysis becomes a little complicated \Rightarrow neglect $r_{02} \Rightarrow R_0 = R_L$
- \triangleright *Neglecting* r_{02} :

$$\begin{aligned} v_0 &= (g_{m2} + g_{mb2}) v_2 R_L \\ v_2 &= -g_{m1} v_1 / (g_{m2} + g_{mb2} + g_{01}) \ (g_{01} = 1 / r_{01}) \\ &\approx -g_{m1} v_1 / (g_{m2} + g_{mb2}) \\ &[\text{since, in general, } g_{01} << (g_{m2} + g_{mb2})] \\ &\Rightarrow A_v &= v_0 / v_i = -g_{m1} R_L \ (\text{since } v_1 = v_i) \end{aligned}$$

This is same as the CS stage, however, here broad-banding is happening!