A.U. 2022-2023

Exercice 1 -

Soit
$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end{pmatrix}$$

- 1. Diagonaliser $M = PDP^{-1}$ avec $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$ où $\lambda_1 \geq \lambda_2 \geq \lambda_3$
- 2. calculer P^{-1}

On se propose de résoudre l'équation différentielle (E₁) d'ordre 3

$$x^{(3)}(t) + 2x''(t) - x'(t) - 2x(t) = e^{t} (E_1)$$

3. On pose
$$X(t) = \begin{pmatrix} x(t) \\ x'(t) \\ x''(t) \end{pmatrix}$$

Montrer que X'(t) vérifie l'équation $(E_2): X'(t) = M \ X(t) + B(t)$ où $B(t) \in \mathbf{M}_{3,1}(\mathbb{R})$ est une matrice à déterminer.

4. On pose
$$Y(t) = P^{-1}X(t) = \begin{pmatrix} \alpha(t) \\ \beta(t) \\ \gamma(t) \end{pmatrix}$$

- (a) que devient l'équation (E_2) en fonction de Y(t)
- (b) En déduire que $\alpha(t), \beta(t)$ et $\gamma(t)$ sont des solutions d'équations différentielles d'ordre 1 qu'on résoudera
- 5. En déduire X(t)
- 6. Etant donnée la condition initiale x(0) = 0, x'(0) = 1 et x''(0) = 1 résoudre (E_1) [On rappelle que la solution de x'(t) + a(t)x(t) = b(t) est $x(t) = e^{A(t)}(c + \int_0^t b(u)e^{-A(u)}du)$ avec $A(t) = \int_0^t a(u)du$]

- Exercice 2 -

On considère f l'endomorphisme de \mathbb{R}^3 défini par sa matrice dans la base canonique:

$$A = \left(\begin{array}{ccc} 0 & 3 & 3 \\ -1 & 8 & 6 \\ 2 & -14 & -10 \end{array}\right)$$

- 1. (a) calculer le rang de A. En déduire que 0 est une valeur propre de A.
 - (b) Détemine \mathfrak{u}_1 le vecteur propre associé à 0
- 2. (a) Montrer que A admet une autre valeur propre $\lambda \neq 0$ et calculer son vecteur propre \mathfrak{u}_2 .

- (b) La matrice A est-elle pas diagonalisable.
- 3. Trouver un vecteur $u_3 = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$ tel que $f(u_3) = \begin{pmatrix} 3 \\ 5 \\ -8 \end{pmatrix}$
- 4. (a) Montrer que $\mathcal{B} = (\mathfrak{u}_1, \mathfrak{u}_3, \mathfrak{u}_2)$ forme une base de \mathbb{R}^3
 - (b) Donner T = Mat(f, B) et exprimer A en fonction de T.
- 5. (a) Ecrire T = D + N avec D une matrice diagonale et N une matrice à diagonale nulle.
 - (b) Montrer que $N^2 = 0$ et que ND = DN (Décomposition de Dunford)
 - (c) Pour tout $n \in \mathbb{N}^*$, calculer T^n et en déduire A^n

- Exercice 3 -

Soit E un \mathbb{R} -espace vectoriel de dimension finie \mathfrak{n} impaire et soit $\alpha \in \mathbb{R}^*$ Soient \mathfrak{g} deux endomorphismes de E vérifiant:

$$gof - fog = \alpha f$$

- 1. Montrer que g admet au moins une valeur propre réelle λ
- 2. Soit ν un vecteur propre de g associé à la valeur propre λ Montrer, par réccurrence, que pour tout $k \in \mathbb{N}^*$, on a:

$$(gof^k)(\nu) = (\lambda + \alpha \ k) f^k(\nu)$$

 $\mathrm{avec}\ f^k = fofof \cdots of(k\ \mathrm{fois})$

- 3. (a) Montrer, par l'absurde, qu'il existe $k_0 \in \{1,2,\cdots,n\}$ tel que $f^{k_0}(\nu) = 0$
 - (b) En déduire que f n'est pas injective
- 4. On suppose que g est diagonalisable dans $\mathbb R$ et soit (ν_1,\cdots,ν_n) une base de $\mathbb E$ formée de vecteurs propres de g
 - (a) Montrer que pour tout $1 \le i \le n$; $f^n(\nu_i) = 0$
 - (b) En déduire que l'application f^n est identiquement nulle
- 5. Soit $x \in E$ tel que $f^{n-1}(x) \neq 0$
 - (a) Montrer que $\mathfrak{B}=(f^{n-1}(x),f^{n-2}(x),\cdots,f(x),x)$ est une base de E
 - (b) Donner $N=\mathfrak{mat}(f,\mathfrak{B})$ la matrice de f dans cette base
 - (c) Montrer que $\mathfrak n$ est le plus petit entier tel que $N^\mathfrak n=0$
- 6. Soit la matrice

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 2 & 1 & 2 \\ -5 & -3 & -6 \end{pmatrix}$$

- (a) Montrer que A admet un unique valeur propre
- (b) En déduire que A n'est pas diagonalisable
- (c) Soit $M=A+I_3$. Calculer M^2 et M^3
- (d) Soit x=(1,0,0). Vérifier que $M^2.x\neq 0$
- (e) En déduire une base de \mathbb{R}^3 dans laquelle

$$M = PNP^{-1} \text{ avec } N = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right)$$

- (f) Préciser P, calculer son polynôme caractéristique et en déduire P^{-1} .
- (g) En déduire une triangulation de A