Linear Regression

Example

Measurements of degredation of heme with different concentrations of hydrogen peroxide (H_2O_2) , for different species of heme.

Linear regression

Linear regression

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $(x_1,y_1),\ldots,(x_n,y_n)$ from X and Y. The simple linear regression model is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad \epsilon_i \sim \text{iid N}(0, \sigma^2).$$

 \longrightarrow How do we estimate β_0 , β_1 , σ^2 ?

Fitted values and residuals

We can write

$$\epsilon_i = y_i - \beta_0 - \beta_1 x_i$$

For a pair of estimates $(\hat{\beta}_0, \hat{\beta}_1)$ for the pair of parameters (β_0, β_1) we define the fitted values as

$$\hat{\mathbf{y}}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{x}_{i}$$

The residuals are

$$\hat{\epsilon}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

Residuals

Residual sum of squares

For every pair of values for β_0 and β_1 we get a different value for the residual sum of squares.

RSS(
$$\beta_0, \beta_1$$
)= $\sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$

We can look at RSS as a function of β_0 and β_1 . We try to minimize this function, i. e. we try to find

$$(\hat{\beta}_0, \hat{\beta}_1) = \min_{\beta_0, \beta_1} \mathsf{RSS}(\beta_0, \beta_1)$$

Hardly surprising, this method is called least squares estimation.

Residual sum of squares

Residual sum of squares

Notation

Assume we have n observations: $(x_1, y_1), \dots, (x_n, y_n)$.

$$\begin{split} \bar{x} &= \frac{\sum_{i} x_{i}}{n} \\ \bar{y} &= \frac{\sum_{i} y_{i}}{n} \\ SXX &= \sum_{i} (x_{i} - \bar{x})^{2} = \sum_{i} x_{i}^{2} - n(\bar{x})^{2} \\ SYY &= \sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} y_{i}^{2} - n(\bar{y})^{2} \\ SXY &= \sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y}) = \sum_{i} x_{i}y_{i} - n\bar{x}\bar{y} \\ RSS &= \sum_{i} (y_{i} - \hat{y}_{i})^{2} = \sum_{i} \hat{\epsilon}_{i}^{2} \end{split}$$

The function

RSS(
$$\beta_0, \beta_1$$
)= $\sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2$

is minimized by

$$\hat{\beta}_1 = \frac{SXY}{SXX}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Useful to know

Using the parameter estimates, our best guess for any y given x is

$$y=\hat{\beta}_0+\hat{\beta}_1x$$

Hence

$$\hat{\beta}_0 + \hat{\beta}_1 \bar{\mathbf{x}} = \bar{\mathbf{y}} - \hat{\beta}_1 \bar{\mathbf{x}} + \hat{\beta}_1 \bar{\mathbf{x}} = \bar{\mathbf{y}}$$

That means every regression line goes through the point (\bar{x}, \bar{y}) .

Variance estimates

As variance estimate we use

$$\hat{\sigma}^2 = \frac{RSS}{n-2}$$

This quantity is called the residual mean square. It has the following property:

$$(n-2) imes rac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-2}$$

In particular, this implies

$$E(\hat{\sigma}^2) = \sigma^2$$

Example

H	H_2O_2 concentration						
0	10	25	50				
0.3399	0.3168	0.2460	0.1535				
0.3563	0.3054	0.2618	0.1613				
0.3538	0.3174	0.2848	0.1525				

We get

$$\bar{x} {=} 21.25, \quad \bar{y} {=} 0.27, \quad SXX {=} 4256.25, \quad SXY {=} {-} \ 16.48, \quad RSS {=} 0.0013.$$

Therefore

$$\hat{\beta}_1 = \frac{-16.48}{4256.25} = -0.0039, \quad \hat{\beta}_0 = 0.27 - (-0.0039) \times 21.25 = 0.353,$$

$$\hat{\sigma} = \sqrt{\frac{0.0013}{12 - 2}} = 0.0115.$$

Example

Interpretation

At zero concentration we expect the optical density to be 0.353.

Comparing two experiments that differ by one unit concentration, we expect the optical density to be 0.0039 lower in the experiment with the larger concentration.

Comparing models

We want to test whether $\beta_1 = 0$:

$$H_0: y_i = \beta_0 + \epsilon_i$$
 versus $H_a: y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Sum of squares

Under Ha:

$$\text{RSS=} \sum_{i} (y_i - \hat{y}_i)^2 = \text{SYY} - \frac{(\text{SXY})^2}{\text{SXX}} = \text{SYY} - \hat{\beta}_1^2 \times \text{SXX}$$

Under H_0 :

$$\sum_{i} (y_{i} - \hat{\beta}_{0})^{2} = \sum_{i} (y_{i} - \bar{y})^{2} = SYY$$

Hence

$$SS_{reg} = SYY - RSS = \frac{(SXY)^2}{SXX}$$

ANOVA

Source	df	SS	MS	F
regression on X	1	SS _{reg}	$MS_{reg} = \frac{SS_{reg}}{1}$	$\frac{\text{MS}_{\text{reg}}}{\text{MSE}}$
residuals for full model	n – 2	RSS	$MSE = \frac{RSS}{n-2}$	
total	n – 1	SYY		

David Sullivan's pf3d7 data

Source	df	SS	MS	F
regression on X	1	0.06378	0.06378	484.1
residuals for full model	10	0.00131	0.00013	
total	11	0.06509		

David Sullivan's pf3d7 data

Remember: The R function lm() does the calculations for you!

pf3d7

Model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ where $\epsilon_i \sim iid \ Normal(0, \sigma^2)$

Estimates: $\hat{\beta}_1 = \sum_i (x_i - \bar{x}) \; (y_i - \bar{y}) / \sum_i (x_i - \bar{x})^2$

 $\hat{eta}_0 = \bar{y} - \hat{eta}_1 \, \bar{x}$ $\hat{\sigma} = \sqrt{\sum_i (y_i - \hat{y}_i)^2/(n-2)}$

Parameter estimates

We already know that

$$(\mathsf{n-2})\times\frac{\hat{\sigma}^2}{\sigma^2}\sim\chi^2_{\mathsf{n-2}}$$

and in particular

$$E(\hat{\sigma}^2) = \sigma^2$$

 \longrightarrow What about $\hat{\beta}_0$ and $\hat{\beta}_1$?

One can show that

$$\mathsf{E}(\hat{\beta}_0) = \beta_0$$

$$\mathsf{E}(\hat{\beta}_1) = \beta_1$$

$$Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{SXX} \right) \qquad Var(\hat{\beta}_1) = \frac{\sigma^2}{SXX}$$

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{SXX}$$

$$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \frac{\bar{X}}{SXX}$$

$$\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \frac{\bar{x}}{\mathsf{SXX}} \qquad \operatorname{Cor}(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\bar{x}}{\sqrt{\bar{x}^2 + \mathsf{SXX}/n}}$$

→ Note: We're thinking of the x's as fixed.

Experimental design

Standard error ratios for the slope:

1.65 : 1.41 : 1.00

One can even show that the distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ is a bivariate normal distribution!

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} \sim \mathsf{N}(\beta, \Sigma)$$

where

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \quad \text{and} \quad \Sigma = \sigma^2 \begin{pmatrix} \frac{1}{n} + \frac{\bar{x}^2}{SXX} & \frac{-\bar{x}}{SXX} \\ \frac{-\bar{x}}{SXX} & \frac{1}{SXX} \end{pmatrix}$$

Possible outcomes

Simulation: coefficients

Confidence intervals

We know that

$$\hat{eta}_0 \sim N \left(eta_0, \ \sigma^2 \left(rac{1}{n} + rac{ar{x}^2}{SXX}
ight)
ight)$$

$$\hat{\beta}_1 \sim N\left(\beta_1, \ \frac{\sigma^2}{SXX}\right)$$

ightarrow We can use those distributions for hypothesis testing and to construct confidence intervals!

Statistical inference

We want to test: $H_0: \beta_1 = \beta_1^*$ versus $H_a: \beta_1 \neq \beta_1^*$

(generally, β_1^* is 0.)

We use

$$t = \frac{\hat{\beta}_1 - \beta_1^*}{se(\hat{\beta}_1)} \sim t_{n-2} \qquad \text{where} \qquad se(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{SXX}}$$

Also,

$$\left[\hat{\beta}_1 - t_{(1-\frac{\alpha}{2}),n-2} \times se(\hat{\beta}_1) , \hat{\beta}_1 + t_{(1-\frac{\alpha}{2}),n-2} \times se(\hat{\beta}_1)\right]$$

is a $(1 - \alpha) \times 100\%$ confidence interval for β_1 .

Results

The calculations in the test $H_0: \beta_0=\beta_0^*$ versus $H_a: \beta_0 \neq \beta_0^*$ are analogous, except that we have to use

$$se(\hat{\beta}_0) = \sqrt{\hat{\sigma}^2 \times \left(\frac{1}{n} + \frac{\bar{x}^2}{SXX}\right)}$$

For the pf3d7 data we get the 95% confidence intervals

 $(0.342 \,,\, 0.364)$ for the intercept $(-\,0.0043 \,,\, -\, 0.0035)$ for the slope

Testing whether the intercept (slope) is equal to zero, we obtain 70.7 (-22.0) as test statistic. This corresponds to a p-value of 7.8×10^{-15} (8.4×10^{-10}).

Now how about that

Testing for the slope being equal to zero, we use

$$t = \frac{\hat{\beta}_1}{\text{se}(\hat{\beta}_1)}$$

For the squared test statistic we get

$$t^2 = \left(\frac{\hat{\beta}_1}{\text{se}(\hat{\beta}_1)}\right)^2 = \frac{\hat{\beta}_1^2}{\hat{\sigma}^2/\text{SXX}} = \frac{\hat{\beta}_1^2 \times \text{SXX}}{\hat{\sigma}^2} = \frac{(\text{SYY} - \text{RSS})/1}{\text{RSS/n} - 2} = \frac{\text{MS}_{\text{reg}}}{\text{MSE}} = \text{F}$$

→ The squared t statistic is the same as the F statistic from the ANOVA!

Joint confidence region

A 95% joint confidence region for the two parameters is the set of all values (β_0, β_1) that fulfill

$$\frac{\begin{pmatrix} \Delta\beta_0 \\ \Delta\beta_1 \end{pmatrix}^\mathsf{T} \begin{pmatrix} \mathsf{n} & \sum_i \mathsf{x}_i \\ \sum_i \mathsf{x}_i & \sum_i \mathsf{x}_i^2 \end{pmatrix} \begin{pmatrix} \Delta\beta_0 \\ \Delta\beta_1 \end{pmatrix}}{2\hat{\sigma}^2} \quad \leq \quad \mathsf{F}_{(0.95),2,\mathsf{n-2}}$$

where $\Delta \beta_0 = \beta_0 - \hat{\beta}_0$ and $\Delta \beta_1 = \beta_1 - \hat{\beta}_1$.

Joint confidence region

Notation

Assume we have n observations: $(x_1, y_1), \dots, (x_n, y_n)$.

We previously defined

$$\begin{split} SXX &= \sum_{i} (x_{i} - \bar{x})^{2} = \sum_{i} x_{i}^{2} - n(\bar{x})^{2} \\ SYY &= \sum_{i} (y_{i} - \bar{y})^{2} = \sum_{i} y_{i}^{2} - n(\bar{y})^{2} \\ SXY &= \sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y}) = \sum_{i} x_{i}y_{i} - n\bar{x}\bar{y} \end{split}$$

We also define

$$r_{XY} = \frac{SXY}{\sqrt{SXX}\sqrt{SYY}}$$
 (called the sample correlation)

Coefficient of determination

We previously wrote

$$SS_{reg} = SYY - RSS = \frac{(SXY)^2}{SXX}$$

Define

$$R^2 = \frac{SS_{reg}}{SYY} = 1 - \frac{RSS}{SYY}$$

R² is often called the coefficient of determination. Notice that

$$R^2 = \frac{SS_{reg}}{SYY} = \frac{(SXY)^2}{SXX \times SYY} = r_{XY}^2$$

The Anscombe Data

