Math 336 Homework 6

a lipson

May 28, 2025

Definition 1. $f: U \to V$ is a local bijection on U for all $z \in U$ if there exists an open disk $D \subset U$ centered at z such that $f: D \to f(D)$ is a bijection.

Problem 1. Prove $f: U \to V$ is a holomorphic local bijection on U iff $\forall z \in U, f'(z) \neq 0$.

Proof. (\Longrightarrow) Since f is a local bijection on $D \to f(D)$, then f must be injective there as well. As seen in lecture¹, if $f: U \to V$ is holomorphic and injective, then $\forall z \in U, f'(z) \neq 0$.

Reconstructing the argument, suppose for a contradiction that $\exists z_0 \in U : f'(z_0) = 0$.

For z near z_0 , since f is analytic, we have

$$f(z) = f(z_0) + a(z - z_0)^k + G(z)$$

where $a \neq 0$, $k \geq 2$, and $G = o(z^{k+1})$ near z_0 .

For small w > 0,

$$f(z) - f(z_0) - w = \underbrace{a(z - z_0)^k - w}_{F(z)} + G(z).$$

Since $G = o(z^{k+1})$ near z_0 , then for small r, |G| < |F| on $\partial D_r(z_0)$.

So, by Rouché, F and G have the same number of zeros inside $D_r(z_0)$.

But, F has a k zeros, so $f(z) - f(z_0) - w$ must have k zeros in $D_r(z_0)$ as well, i.e., $f(z) = f(z_0) + w$ has multiple solutions there, contradicting the injectivity of f.

 (\Leftarrow) Since f is holomorphic at z_0 with $f'(z_0) \neq 0$, then its analytic expansion contains a linear term,

$$f(z) = f(z_0) + a(z - z_0) + o((z - z_0)^k)$$

for $a \neq 0$, $k \geq 1$.

We can factor the above as

$$f(z) - f(z_0) = (z - z_0)h(z)$$

where h is holomorphic with $h(z_0) = a$.

Because h is continuous and nonvanishing at z_0 , then we can find a small disk $D \subset U$ centered at z_0 where h is nonvanishing in U.

Hence, in D, $f(z) = f(z_0)$ only at z_0 , so f is injective there. By the Open Mapping Theorem, the image f(D) is open because f is nonconstant and holomorphic.

So $f: D \to f(D)$ is a bijection on open sets.

¹Proposition 8.1.1 in Stein & Shakarchi

Since z_0 was arbitrary, we can perform this procedure for each $z_0 \in U$ to see that f is a local bijection.

Problem 2. Is there a surjective map from $\mathbb{D} \to \mathbb{C}$?

Proof. Yes. We already have the bijective inverse Cayley map $G: \mathbb{D} \to \mathbb{H}$, so we will construct a surjective map $\mathbb{H} \to \mathbb{C}$.

Now, consider the map $H: \mathbb{H} \to \mathbb{C}$ defined by the squaring function $z \mapsto z^2$; where $z = re^{i\theta}$, we have $r^2e^{2i\theta}$.

For $z \in \mathbb{H}$, $\arg z \in (0, \pi)$. In order to cover the real axis, we shift the upper half-plane down to -i. Then, we have at least $\arg z \in [0, \pi]$.

So, for $w \in H(\mathbb{H})$, we have $\arg w \in [0, 2\pi]$, which covers the whole imaginary plane \mathbb{C} . Since r covers $\mathbb{R}_{>0}$, then the squaring map H will have r^2 covering $\mathbb{R}_{>0}$ as well.

So, the map H is surjective. Thus, the composition $H \circ G : \mathbb{D} \to \mathbb{C}$ is surjective.

Problem 3. Dirichlet problem in a strip. It suffices to compute solutions at points z = iy for $y \in (0,1)$.

(a) Show that if $re^{i\theta} = G(iy)$, then

$$re^{i\theta} = i \frac{\cos \pi y}{1 + \sin \pi y}.$$

leads to two cases: $y \in \left(0, \frac{1}{2}\right]$ and $\theta = \frac{\pi}{2}$, or $y \in \left[\frac{1}{2}, 1\right)$ and $\theta = -\frac{\pi}{2}$.

In either case, show

$$r^2 = \frac{1-\sin\pi y}{1+\sin\pi y} \quad \text{ and } \quad P_r(\theta-\varphi) = \frac{\sin\pi y}{1-\cos\pi y\sin\varphi}.$$

(b) With the change of variables $t=F\left(e^{i\varphi}\right)$ in $\frac{1}{2\pi}\int_0^\pi P_r(\theta-\varphi)\tilde{f}_0(\varphi)\,d\varphi$, show

$$e^{i\varphi} = \frac{i - e^{\pi t}}{i + e^{\pi t}}.$$

Take the imaginary part and differentiate to establish

$$\sin \varphi = \frac{1}{\cosh \pi t}$$
 and $\frac{d\varphi}{dt} = \frac{\pi}{\cosh \pi t}$.

Hence deduce

$$\begin{split} \frac{1}{2\pi} \int_0^\pi P_r(\theta - \varphi) \tilde{f}_0(\varphi) \, d\varphi &= \frac{1}{2\pi} \int_0^\pi \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi} \tilde{f}_0(\varphi) \, d\varphi \\ &= \frac{\sin \pi y}{2} \int\limits_{\mathbb{D}} \frac{f_0(t)}{\cos \pi t - \cos \pi y} \, dt. \end{split}$$

(c) Use a similar argument to prove the formula for the integral

$$\frac{1}{2\pi} \int_{-\pi}^{0} P_r(\theta - \varphi) \tilde{f}_1(\varphi) \ d\varphi.$$

Proof of (a). From the definition of G, we have

$$re^{i\theta} = \frac{i - e^{i\pi y}}{i + e^{i\pi y}}.$$

Multiplying by the conjugate of the denominator, $\cos \pi y - i(1 + \sin \pi y)$, we have the following:

For the numerator, $(i(1-\sin\pi y)-\cos\pi y)(\cos\pi y-i(1+\sin\pi y))=2i\cos\pi y$. For the denominator, $(i(1+\sin\pi y)+\cos\pi y)(\cos\pi y-i(1+\sin\pi y))=2(1+\sin\pi y)$.

So, we have

$$re^{i\theta} = i \frac{\cos \pi y}{1 + \sin \pi y},$$

as desired.

In the first case, with $y \in (0, \frac{1}{2}] \implies \pi y \in (0, \frac{\pi}{2}]$, we have $\cos \pi y \ge 0$ and $\sin \pi y > 0$. Therefore the above expression is purely imaginary with positive imaginary part, so

$$\theta = \frac{\pi}{2}$$
 and $r = \frac{\cos \pi y}{1 + \sin \pi y} \in [0, 1)$.

In the second case, with $y \in \left[\frac{1}{2}, 1\right)$, we have $\cos \pi y \leq 0$ and $\sin \pi y > 0$. Therefore

$$\theta = -\frac{\pi}{2} \text{ and } 0 < r = \frac{-\cos \pi y}{1 + \sin \pi y} \in [0, 1).$$

We can now verify the following:

$$r^{2} = \frac{\cos^{2} \pi y}{(1 + \sin \pi y)^{2}} = \frac{1 - \sin^{2} \pi y}{(1 + \sin \pi y)^{2}} = \frac{1 - \sin \pi y}{1 + \sin \pi y}.$$

For

$$P_r(\theta - \varphi) = \frac{1 - r^2}{1 - 2r\cos(\theta - \varphi) + r^2},$$

note that for $\theta = \frac{\pi}{2}, -\frac{\pi}{2}$, we have $\cos(\frac{\pi}{2} - \varphi) = \sin \varphi$ and $\cos(-\frac{\pi}{2} - \varphi) = -\sin \varphi$ respectively. But, in either case,

$$r\cos(\theta - \varphi) = \frac{\cos \pi y}{1 + \sin \pi y}\sin \varphi.$$

For the numerator, we have

$$1 - r^2 = \frac{2\sin \pi y}{1 + \sin \pi y}.$$

For the denominator,

$$1 - 2r\cos(\theta - \varphi) + r^2 = 1 - 2\frac{\cos\pi y}{1 + \sin\pi y}\sin\varphi + \frac{1 - \sin\pi y}{1 + \sin\pi y}$$
$$= \frac{2(1 - \cos\pi y\sin\varphi)}{1 + \sin\pi y}.$$

Therefore,

$$P_r(\theta - \varphi) = \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi}.$$

Proof of (b). Multiplying by the conjugate of the denominator, we have

$$e^{i\varphi} = \frac{1 + 2ie^{\pi t} - e^{2\pi t}}{1 + e^{2\pi t}},$$

which provides the following:

$$\cos\varphi = \frac{1 - e^{2\pi t}}{1 + e^{2\pi t}} = -\tanh\pi t = -\frac{\sinh\pi t}{\cosh\pi t}, \text{ and}$$

$$\sin\varphi = \frac{2e^{\pi t}}{1 + e^{2\pi t}} = \frac{1}{\cosh\pi t}.$$

Therefore,

So,

$$\frac{d}{dt}\sin\varphi = \frac{d}{dt}\frac{1}{\cosh\pi t}$$
$$\frac{d\varphi}{dt}\cos\varphi = \frac{-\pi\sinh\pi t}{\cosh^2\pi t}$$
$$\frac{d\varphi}{dt} = \frac{\pi}{\cosh\pi t}.$$

With the change of variables $t = F(e^{i\varphi})$ where $F : \mathbb{D} \to \mathbb{H}$ is the Cayley map, as φ traverses $(0,\pi)$, t will traverse the real axis. We have that $\tilde{f}_0(\varphi) = f_0(F(e^{i\varphi}))$.

$$\begin{split} \frac{1}{2\pi} \int_0^\pi P_r(\theta - \varphi) \tilde{f}_0(\varphi) \, d\varphi &= \frac{1}{2\pi} \int_0^\pi \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi} f_0(F(e^{i\varphi}) \, d\varphi \\ &= \frac{\sin \pi y}{2\pi} \int\limits_{t(0) \to \infty}^{t(\pi) \to \infty} \frac{1}{1 - \frac{\cos \pi y}{\cosh \pi t}} \frac{\pi}{\cosh \pi t} f_0(t) \, dt \\ &= \frac{\sin \pi y}{2\pi} \int\limits_{\mathbb{R}} \frac{f_0(t)}{\cosh \pi t - \cos \pi y} \, dt. \end{split}$$

Proof of (c). A similar argument follows for $\frac{1}{2\pi} \int_{-\pi}^{0} P_r(\theta - \varphi) \tilde{f}_1(\varphi) d\varphi$ using the case with $\theta = -\frac{\pi}{2}$ and $y \in \left[\frac{1}{2}, 1\right)$.

Thus,

$$u(0,y) = \frac{\sin \pi y}{2} \left(\int\limits_{\mathbb{R}} \frac{f_0(t)}{\cosh \pi t - \cos \pi y} \, dt + \int\limits_{\mathbb{R}} \frac{f_1(t)}{\cosh \pi t + \cos \pi y} \, dt \right)$$

Proof of bonus. Since "translation of the boundary condition by x results in a translation of the solution by x as well," then applying the same derivation to the boundary conditions $f_0(x+t)$ and $f_1(x+t)$ yields the same intermediate result,

$$u(x,y) = \frac{\sin \pi y}{2} \left(\int_{\mathbb{R}} \frac{f_0(x+t)}{\cosh \pi t - \cos \pi y} dt + \int_{\mathbb{R}} \frac{f_1(x+t)}{\cosh \pi t + \cos \pi y} dt \right).$$

Using the substitution $t \mapsto -t$ with the oddness of hyperbolic cosine and reversing the integration direction, we have

$$u(x,y) = \frac{\sin \pi y}{2} \Biggl(\int\limits_{\mathbb{R}} \frac{f_0(x-t)}{\cosh \pi t - \cos \pi y} \, dt + \int\limits_{\mathbb{R}} \frac{f_1(x-t)}{\cosh \pi t + \cos \pi y} \, dt \Biggr),$$

which is what we wanted to show.

Problem 4.

- (a) Prove if $f: \mathbb{D} \to \mathbb{D}$ is analytic with two fixed points, then f is the identity function.
- (b) Must every holomorphic map $f: \mathbb{D} \to \mathbb{D}$ have a fixed point?

Proof of (a). Consider the biholomorphic automorphism $\psi_{\alpha}: \mathbb{D} \to \mathbb{D}$, which maps $0 \mapsto \alpha$ and $\alpha \mapsto 0$.

Let z and ω be fixed points of f.

Consider the map $\varphi = \psi_z \circ f \circ \psi_z$, which fixes the origin because $0 \xrightarrow{\psi_z} z \xrightarrow{f} z \xrightarrow{\psi_z} 0$.

Let $\tilde{\omega}$ be the preimage of ω under ψ_z , that is $\psi_z(\tilde{\omega}) = \omega$. Since we have $\tilde{\omega} \stackrel{\psi_z}{\mapsto} \omega \stackrel{f}{\mapsto} \omega \stackrel{\psi_z}{\mapsto} \tilde{\omega}$, then $\tilde{\omega}$ is another fixed point of φ .

Note that $\tilde{\omega} \neq 0$, otherwise $\tilde{\omega}$ would map to z under ψ_z , which is a contradiction with the assumption that f had two distinct fixed points.

Since $\varphi(0) = 0$ and $\varphi(\tilde{\omega}) = \tilde{\omega} \Longrightarrow |\varphi(\tilde{\omega})| = |\tilde{\omega}|$, then by Schwarz, φ is a rotation. But, the second fixed point $\tilde{\omega}$ means that we must have a rotation by zero, otherwise there would only be one fixed point. Hence, φ must be the identity function.

But, ψ_z is an involution, so with left and right composition, we have that

$$\psi_z \circ \varphi \circ \psi_z = f = \psi_z \circ \mathrm{id} \circ \psi_z = \psi_z \circ \varphi_z = \mathrm{id},$$

which is what we wanted to show.

Proof of (b). Consider a translation map $H: \mathbb{H} \to \mathbb{H}$ which has no fixed points and the Cayley maps between \mathbb{D} and \mathbb{H} , $F: \mathbb{D} \to \mathbb{H}$ and $G: \mathbb{H} \to \mathbb{D}$.

Assume for a contradiction that $G \circ H \circ F : \mathbb{D} \to \mathbb{D}$ has a fixed point z.

Then, $H(z) = (F \circ G)(z) = z$, a contradiction with the fact that H has no fixed points.

 $^{^2 \}mathrm{Stein} \ \& \ \mathrm{Shakarchi} \ \mathrm{p.} \ 216$

Problem 5. Let $G: \mathbb{D} \to \mathbb{H}$ be the inverse Cayley map defined by $G(w) = i \frac{1-w}{1+w}$. Find the image of the following curves under G:

- (a) Circles centered at the origin, and
- (b) Straight line segments through the origin.

Sketch the original curves in \mathbb{D} on one diagram, and the image curves in \mathbb{H} on another.

Consider $z = re^{i\theta}$

(a) Here we fix the magnitude r and vary θ . We will obtain circles with the equation

$$x^{2} + \left(y - \frac{1+r^{2}}{1-r^{2}}\right)^{2} = \left(\frac{2r}{1-r^{2}}\right)^{2},$$

which start centered at (0,1) = i near r = 0, and expand to have infinite radius as $r \to 1$ and become tangent to the real axis at the origin.

(b) Here we fix the argument θ and vary r. We will obtain circles with the equation

$$\left(x - \frac{1}{2}\left(\tan\frac{\theta}{2} - \cot\frac{\theta}{2}\right)\right)^2 + y^2 = \left(\frac{1}{2}\left(\tan\frac{\theta}{2} + \cot\frac{\theta}{2}\right)\right)^2,$$

which intersect the points $(0, \pm 1) = \pm i$, and expand to infinite radius as $\theta \to 0, \pi$. At $\theta = \frac{\pi}{2}$, the circle is centered at the origin with radius 1.

Figure 1: Sketch of curves in \mathbb{D} and \mathbb{H} ; (a) is blue and (b) is green.