automi

- Teoria della computazione
 - Teoria della calcolabilita
 - $-\,$ Teoria della complessita
 - Teoria degli automi e dei linguaggi formali
- Alfabeti e stringhe
- Automi
 - Automa a stati finiti deterministico (DFA)
 - Rappresentazioni
 - Automi a stati finiti non-deterministici (NFA)
 - Equivalenze DFA e NFA

Teoria della computazione

- teoria della calcolabilita
- teoria degli automi e dei linguaggi formali
- teoria della complessita

Teoria della calcolabilita

nata dal **problema di decisione** \Rightarrow esiste un algoritmo che, presi in input un insieme di assiomi e una proposizione matematica, e in grado di decidere se la proposizione e vera in ogni struttura che soddisfa gli assiomi? risposta negativa

 $questione\ centrale \Rightarrow$

- problemi solvable
- ullet problemi **unsolvable**

Teoria della complessita

 $solvable \Rightarrow problema per il quale esiste un algoritmo che permette di calcolare la soluzione del problema per ogni input.$

- tempo di esecuzione
- memoria

 \mathbf{hard} $\mathbf{problem} \Rightarrow \mathbf{non}$ esiste un *algoritmo* per risolverlo con una quantita ragionevole di risorse.

 $Questione~centrale \Rightarrow$ classificazione dei problemi in base alla quantita di risorse necessarie per risolverli.

Teoria degli automi e dei linguaggi formali

automi

- automi a stati finiti
- automi a pila
- macchine di turing

 $Questione~centrale \Rightarrow$ individuazione della classe di problemi (linguaggi riconoscibili) dai vari modelli e loro proprieta.

Alfabeti e stringhe

Un alfabeto Σ e un insieme finito e non vuoto di simboli.

Una stringa su Σ e una qualunque sequenza finita di simboli di Σ .

Dicendo che una stringa su Σ e una qualunque sequenza di simboli di Σ ammettiamo anche la sequenza vuota composta da zero simboli.

Chiamiamo tale sequenza stringa vuota, e la indichiamo con ϵ .

Automi

Automa a stati finiti deterministico (DFA)

 $\mathbf{def} \Rightarrow \mathbf{e} \text{ una 5-upla } A = \langle Q, \Sigma, \delta, q_0, F \rangle \text{ in cui:}$

- $Q \Rightarrow$ e l'insieme finito non vuoto degli stati.
- $\Sigma \Rightarrow$ e l alfabeto (input).
- $\delta: Q \times \Sigma \Rightarrow Q \Rightarrow$ e la funzione di transizione.
- $q_0 \in Q \Rightarrow$ e lo stato iniziale.
- $F\subseteq Q\Rightarrow$ e l'insieme degli stati finali.

 $\mathbf{def} \Rightarrow$ il linguaggio L(A) accettato da un DFA e l'insieme di tutte le stringhe accettatte dall'automa A (la computazione deve finire in un doppio cerchio, uno stato finale).

$$L(A) = \{ w \in \Sigma^* | A \text{ accetta } w \}$$

$$L(A) = \{ w \in \Sigma^* | \hat{\delta}(q_0, w) \in F \}$$

Note

- Si osservi che in un DFA, dati uno stato q e un simbolo di input a:
 - la mossa dell'automa e sempre definita (δ associa un valore ad ogni coppia $(q,a)\in Q\times \Sigma$);
 - il risultato della mossa e univocamente determinato (e il valore della funzione $\delta(q,a)$).
- ne segue che dati uno stato $r_0 \in Q$ e una stringa $w = a_1...a_n \in \Sigma^*$, esiste una sola possibile sequenza di mosse dell'automa A su w.
- se lo stato iniziale e anche uno stato finale, l automa accetta la stringa vuota.

Rappresentazioni

Se nella rappresentazione tabellare evidenziamo lo stato iniziale (\rightarrow) e gli stati finali (*), l'automa è completamente descritto dalla tabella di transizione.

δ	0	1
$\rightarrow q_0$	q_0	q_1
$*q_1$	q_2	q_1
q_2	q_1	q_1

Figure 1: varie rappresentazioni automi

Alla fine della computazione l'automa deve trovarsi in uno stato accettante (doppio cerchio).

Automi a stati finiti non-deterministici (NFA)

 $\mathbf{def} \Rightarrow$ e una 5-upla $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ in cui:

- $Q \Rightarrow$ e l'insieme finito non vuoto degli *stati*.
- $\Sigma \Rightarrow$ e l'alfabeto (input). $\delta: Q \times \Sigma \Rightarrow 2^Q \Rightarrow$ e la funzione di transizione. $2^Q = \{S | S \subseteq Q\}$ $q_0 \in Q \Rightarrow$ e lo stato iniziale.
- $F \subseteq Q \Rightarrow$ e l'insieme degli stati finali.

l unica differenza tra un DFA e NFA e la funzione di transizione δ . invece che associare ad una coppia stato simblo uno stato, associa ad una coppia stato simbolo un sottoinsieme di stati. 2^Q = insieme delle parti

Note

- A accetta w se $\delta(q_0, w) \cap F$ /
- Linguaggio riconosciuto da A. $L(A) = \{w \in \Sigma^* | A \text{ accetta } w\}$

Equivalenze DFA e NFA

DFA e NFA riconosocono la stessa classe di linguaggi:

$$- \forall D \exists N_D | L(N_D) = L(D) - \forall N \exists D_N | L(D_N) = L(N)$$

Equivalenza da DFA a NFA (DFA \Rightarrow NFA) i DFA sono casi particolari di NFA. ogni DFA e un NFA. un DFA e equivalente ad un NFA se essi riconoscono lo stesso linguaggio.

Lemma Dato un DFA $D = \langle Q, \Sigma, \delta, q_0, F \rangle, \forall w \in \Sigma^* : \hat{\delta}_N(q_0, w) = \{\hat{\delta}(q_0, w)\}$

Teorema $\ \ Dato\ un\ DFA\ D=\langle Q, \Sigma, \delta, q_0, F \rangle, \ L(N_D)=L(D)$