TESSERACT: Tensorised Actors for Multi-agent Reinforcement Learning

Anuj Mahajan, Mikayel Samvelyan, Lei Mao, Viktor Makoviychuk, Animesh Garg, Jean Kossaifi, Shimon Whiteson, Yuke Zhu, Animashree Anandkumar

Tesseract motivation

- Cooperative Multi Agent Reinforcement Learning (MARL) suffers from action space blow-up.
- For value-based methods: Poses challenges in accurately representing the optimal value function, thus inducing suboptimality.
- For policy gradient methods: Renders critic ineffective and exacerbates the problem of the *lagging* critic.
- Similar challenges for model-based methods.

Tesseract idea

- Main idea: A framework to exploit tensor structure in MARL problems for sample efficient learning.
- Q-function seen as a tensor where the modes correspond to action spaces of different agents.
- Applicable to any factorizable action-space

Background Multi Agent Reinforcement Learning (MARL)

Notation:

- S is the set of states
- U the set of available actions per agent
- ▶ agents $i \in A \equiv \{1, ..., n\}$
- ▶ joint action $\mathbf{u} \in \mathbf{U} \equiv U^n$
- ▶ $P(s'|s, \mathbf{u}) : S \times \mathbf{U} \times S \rightarrow [0, 1]$ is the state transition function
- $r(s, \mathbf{u}): S \times \mathbf{U} \to \mathbb{R}$ is the reward function
- ▶ observations $z \in Z$ according to observation distribution $O(s) : S \times A \rightarrow \mathcal{P}(Z)$.
- $ightharpoonup \gamma$ is discount factor
- ▶ action-observation history for an agent *i* is $\tau^i \in T \equiv (Z \times U)^*$

MARL problem continued

$$Q^{\pi}(z_t, \mathbf{u}_t) = \mathbb{E}_{z_{t+1:\infty}, \mathbf{u}_{t+1:\infty}} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} | z_t, \mathbf{u}_t \right]$$

The goal of the problem is to find the optimal action value function Q^* and the corresponding policy π^* .

Figure 1: Example MARL scenario

Settings in Multi Agent Reinforcement Learning

Figure 2: MARL settings w.r.t observability

- ▶ MMDP : $\langle S, U, P, r, n, \gamma \rangle$ Bijective map $O : S \rightarrow Z$
- ▶ M-ROMDP : $\langle S, U, P, r, Z, O, n, \gamma \rangle$, where we require that the joint observation space is partitioned w.r.t. S ie. $\forall s_1, s_2 \in S \land z \in Z, P(z|s_1) > 0 \land s_1 \neq s_2 \implies P(z|s_2) = 0.$
- ► M-POMDP : $\langle S, U, P, r, Z, O, n, \gamma \rangle$
- Note that for latter two we assume |Z| >> |S|.

Tensors intro

- Tensors are high dimensional analogues of matrices
- Tensor decomposition, in particular, generalize the concept of low-rank matrix factorization
- Notation î to represent tensors
- ▶ An order n tensor \hat{T} has n index sets I_j , $\forall j \in \{1..n\}$ and has elements T(e), $\forall e \in \times_{\mathcal{I}} I_j$

Figure 3: Left: Tensor diagram for an order 3 tensor \hat{T} . Right: Contraction between \hat{T}^1, \hat{T}^2 on common index sets l_2, l_3 .

Tensors intro

- ▶ Tensor contraction: For any two tensors \hat{T}^1 and \hat{T}^2 with $\mathcal{I}_{\cap} = \mathcal{I}^1 \cap \mathcal{I}^2$ we define the contraction operation as $\hat{T}^1 \odot \hat{T}^2(e_1, e_2) = \sum_{e \in \times_{\mathcal{I}_{\cap}} I_j} \hat{T}^1(e_1, e) \cdot \hat{T}^2(e_2, e), e_i \in \times_{\mathcal{I}^i \setminus \mathcal{I}_{\cap}} I_j$.
- A tensor T̂ can be factorized using a (rank-k) CP decomposition into a sum of k vector outer products (denoted by ⊗), as,

$$\hat{T} = \sum_{r=1}^{K} w_r \otimes^n u_r^i, i \in \{1..n\}, ||u_r^i||_2 = 1.$$
 (1)

Tensorising the Q-function

- ▶ Given a multi-agent problem G, let $Q \triangleq \{Q : S \times U^n \to \mathbb{R}\}$ be the set of real-valued functions on the state-action space
- ▶ Focus on the *Curried* form $Q: S \to U^n \to \mathbb{R}, Q \in \mathcal{Q}$ so that Q(s) is an order n tensor
- Algorithms in Tesseract operate directly on the curried form and preserve the structure implicit in the Q tensor.

Tensorised Bellman Equation

- Components of the underlying MARL problem can be seen as tensors given a state (denoted with ²).
- Modes correspond to action spaces of different agents

Figure 4: Tensor Bellman Equation for n agents. There is an edge for each agent $i \in \mathcal{A}$ in the corresponding nodes \hat{Q}^{π} , \hat{U}^{π} , \hat{R} , \hat{P} with the index set U^{i} .

Algorithm 1 Model based Tesseract

Return π , Q

Initialise rank k, $\pi = (\pi^i)_1^n$ and \hat{Q} : Theorem 1 Initialise model parameters \hat{P} , \hat{R} Learning rate $\leftarrow \alpha, \mathcal{D} \leftarrow \{\}$ for each episodic iteration i do Do episode rollout $\tau_i = \{(s_t, \mathbf{u}_t, r_t, s_{t+1})_0^L\}$ using π $\mathcal{D} \leftarrow \mathcal{D} \cup \{\tau_i\}$ Update \hat{P} , \hat{R} using CP-Decomposition on moments from \mathcal{D} . for each internal iteration j do $\hat{Q} \leftarrow \Pi_{k} \mathcal{T}^{\pi} \hat{Q}$ end for Improve π using \hat{Q} end for

Theorems for MMDP

Theorem (Bounding rank of \hat{Q})

For a finite MMDP under mild assumptions, the action-value tensor satisfies $rank(\hat{Q}^{\pi}(s)) \leq k_1 + k_2|S|, \forall s \in S, \forall \pi$.

Corollary

For all $k \ge k_1 + k_2 |S|$, the procedure $Q_{t+1} \leftarrow \Pi_k \mathcal{T}^{\pi} Q_t$ converges to Q^{π} for all Q_0, π .

Theorems for MMDP

▶ Rank sufficient approximation $k \ge k_1, k_2$

Theorem (Model based estimation of \hat{R}, \hat{P} error bounds)

Given any $\epsilon > 0, 1 > \delta > 0$, for a policy π with the policy tensor satisfying $\pi(\mathbf{u}|\mathbf{s}) \geq \Delta$, where

$$\Delta = \max_{\mathcal{S}} \frac{C_1 \mu_{\mathcal{S}}^6 k^5 (w_{\mathcal{S}}^{max})^4 \log(|\mathcal{U}|)^4 \log(3k||R(\mathcal{S})||_F/\epsilon)}{|\mathcal{U}|^{n/2} (w_{\mathcal{S}}^{min})^4}$$

and C_1 is a problem dependent positive constant. There exists N_0 which is $O(|U|^{\frac{n}{2}})$ and polynomial in $\frac{1}{\delta}, \frac{1}{\epsilon}$, k and relevant spectral properties of the underlying MDP dynamics such that for samples $\geq N_0$, we can compute the estimates $\bar{R}(s), \bar{P}(s,s')$ such that w.p. $\geq 1 - \delta$, $||\bar{R}(s) - \hat{R}(s)||_F < \epsilon, ||\bar{P}(s,s') - \hat{P}(s,s')||_F < \epsilon, \forall s,s' \in S$.

Theorems for MMDP

Theorem (Error bound on policy evaluation)

Given a behaviour policy π_b satisfying the conditions in the theorem above and executed for steps $\geq N_0$, for any policy π the model based policy evaluation $Q_{P,R}^{\pi}$ satisfies:

$$|Q_{P,R}^{\pi}(s,a) - Q_{P,R}^{\pi}(s,a)| \le (|1-f|+f|S|\epsilon) \frac{\gamma}{2(1-\gamma)^2} + \frac{\epsilon}{1-\gamma}, \forall (s,a) \in S \times U^n$$

where
$$\frac{1}{1+\epsilon|S|} \leq f \leq \frac{1}{1-\epsilon|S|}$$
.

Comments

- Similar results can be obtained for M-POMDPs and M-ROMDPs with some conditions on the observation distribution (no information loss).
- O(kn|U||S|²) parameters for the model based approach, for large/continuous state-action spaces the tensor structure can be embedded in a model free manner (next)

Model free Tesseract

Figure 5: Tesseract architecture

► The joint action-value estimate of the tensor $\hat{Q}(s)$ by the central critic is:

$$\hat{Q}^{\pi}(s) \approx \sum_{r=1}^{k} w_r^i \otimes^n g_{\phi,r}(s^i), i \in \{1..n\}$$
 (2)

Algorithm 2 Model free Tesseract

Initialise parameter vectors θ, ϕ, η Learning rate $\leftarrow \alpha, \mathcal{D} \leftarrow \{\}$

for each episodic iteration i do

Do episode rollout $\tau_i = \{(s_t, \mathbf{u}_t, r_t, s_{t+1})_0^L\}$ using π_{θ}

Sample batch $\mathcal{B} \subseteq \mathcal{D}$.

 $\mathcal{D} \leftarrow \mathcal{D} \cup \{\tau_i\}$

Compute empirical estimates for \mathcal{L}_{TD} , \mathcal{J}_{θ}

$$\phi \leftarrow \phi - \alpha \nabla_{\phi} \mathcal{L}_{TD}$$
 (Rank *k* projection step)
 $\eta \leftarrow \eta - \alpha \nabla_{n} \mathcal{L}_{TD}$ (Action representation update)

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{J}_{\theta}$$
 (Policy update) end for

Return
$$\pi$$
, \hat{Q}

StarCraft II: SMAC Experiments

Figure 6: Performance of different algorithms on **Easy** and **Hard** SMAC scenarios: TAC, QMIX, VDN, FQL, IQL.

StarCraft II: SMAC Experiments

Figure 7: Performance of different algorithms on **Super Hard** SMAC scenarios: TAC, QMIX, VDN, FQL, IQL.

Questions?

Thanks!