- 1. Welche Entwicklungsphasen umfassen den Prozess des Protocol Engineering? Welche Ergebnisse liegen am Ende jeder Phase vor?
- Anforderungsanalyse Was soll das Protokoll leisten?
 Entwurf/Design Wie soll es das tun?
 Verfikation Kann es leisten was es soll?
 Implementierung Fertiges lauffähiges Protokoll (Kode)
 Test Entspricht Implmentierung Design/Entwurf und Anforderungsanalyse
 Integration/Installation Einrichten und Inbetriebnahme
- 2. Was ist der Zweck der Dienstspezifikation?
- 3. Was beinhaltet die Dienstspezifikation?
 - Auflistung von (Teil-) Diensten und Dienstprimitiven
 - Aumseung von (1en-) Diensten und Diens
 Abhängigkeiten zwischen Dienstprimitiven
 lokales / globales Verhalten
 interne Ereignisse
 Nichtdeterminismen

 - Nichtdeterminismen
 Parameter und Abhängigkeiten zwischen Ihnen
- 4. Was ist Nichtdeterminismus? Wie und warum wird er in Dienst- und Protokollspezifikationen genutzt?
 - Nicht hundertprozentige Sicherheit dass, das Protokoll in jeder Situation berechenbar
 - Wird in kauf genommen, um die Komplexität zu reduzieren und die Flexibilität zu

 - Tritt auf bei:
 - Nebenläufigkeit

 - interne Ergeignisse
 Verhaltensalternativen
- 5. Was ist der Unterschied zwischen lokalem und globalem Verhalten in der Dienstspezifikation?

- 6. Warum wird zusätzlich zur Dienstspezifikation eine Protokollspezifikation benötigt?
 - Die Protokollspezifikation beschreibt wie der Service im Detail erbracht wird
 Sie definiert die Schnittstellen und beschreibt das interne Verhalten.
 - Genauer Ablauf durch Betriebssystem und Ablaufumgebung
- 7. Was muss alles in der Protokollspezifikation beschrieben
 - Zustandsautomaten mit Transitionen bei Ergeignissen

 - Datenformate
 Nichtdeterminismen
 interne Ergeinisse
 lokale Aktionen
- Protokolle können verhaltens- und ablauforientiert beschrieben werden. Erläutern Sie die Vor- und Nachteile beider Beschreibungsweisen!
 - verhaltensorientiert
 - Wie soll das Protokoll reagieren wenn ein bestimmtes Ereigniss eintritt (Unbestimmte Reihenfolge)
 - Vorteile:
 - * Verhalten bei verschiedenen Eingaben klar ersichtlich (Unterschiedlich Transitio-

 - nen) * Leichter zu Implementieren * Einfach Darstellung * Natürliche Beschreibung eines Systems
 - Nachteile:
 - * ggf sehr groß und unübersichtlich
 - ablauforientiert
 - Wie läuft eine typische Protokollsitzung ab (Wie folgen die Aktionen aufeinander(Reihenfolge))
 - Vorteile-
 - * Leichter zu definieren * Gut für Dienstspezifikation

 - Nachteile:
 - * Beschränkte Sicht auf das System

- 9. Welche formalen Beschreibungsmethoden kennen Sie, mit denen das Protokollverhalten verhaltens- bzw. ablauforientiert beschrieben werden kann?
 - SDL beides
 MSC ablauf
 - UML2 beides (mit MSC und Zustandsautomat)
- 10. Erläutern Sie, wie man ein Protokoll mit Hilfe von Endlichen Zustandsautomaten (Finite State Machines) beschreibt! Was sind die Vorteile und Nachteile dieser Beschreibungsmethode?
 - Zustand/State wird defniert Knoter
 - Transitionen werden über Kanten abgebile
 - Transition auslösendes Ergeigniss und Ausgabe auf Ergeignis wird an Kante beschrieben
 - Automat defniert feste Endpunkte oder ist zyklisch ausgeführt.
 - Vorteile:
 - Verhalten bei verschiedenen Eingaben klar ersichtlich (Unterschiedlich Transitionen)
 Leichter zu Implementieren
 Einfach Darstellung
 Natürliche Beschreibung eines Systems
 - - ggf sehr groß und unübersichtlich
- 11. Welchen Nutzen hat es, ein Protokoll mit der Specification and Description Language (SDL) zu beschreiben?

3

- Vorteile:
 - Fest defnierte Beschreibungss

 - Fest defnierte Beschreibungssprache
 Objektorientierter Ansatz
 Sowohl graphisch als auch textuell
 Es kann Kode aus der Beschreibung generiert werden
 Kann Nebenläufigkeit
 Beschreibt interne Zustände der Agenten
 Beschreibt Kommunikation der Agenten untereinander

- 12. Bei welcher Art von Protokoll ist es Sinnvoll eine Beschreibungstechnik wie die Specification and Description Language (SDL) zu verwenden? Erläutern Sie! (Hinweis: vergleichen Sie folgende Protokolle und treffen Sie dann jeweils eine Entscheidung: UDP, TCP, DHCP, HTTP, RADIUS, Diameter, EAP, TLS)
 - \bullet UDP, TCP, EAP, TLS, HTTP nicht sdl
 - DHCP, RADIUS, Diam
 - Bei Aktionen nach außen besser SDL
 - Bei Protokollen, die viele interne Zustände und optionale Wege erlauben SDL
- 13. Welche Vorteile bietet ASN.1 bei Design, Implementation und Betrieb von Kommunikationsprotokollen?

 - Nah an der Implementierung
 Gute textuelle Beschreibung im Design Datenformate
 Datenformate gut beschrieben und gut umzusetzten
- $14. \ {\it Was sind Sicherheits-} \ {\it und Lebendigkeitseigenschaften?}$
 - Lebendigkeitseigenschaften: Tritt ein Zustand mindestens einmal ein?
 Sicherheitseigenschaften: Ist sichergestellt das fehlerhaftes Ereignis nie eintritt
- 15. Was ist das Ziel der Protokollverifikation? Worin besteht der Unterschied zum Protokolltest?
 - Entspricht das Design dem Dienstentwurf und der Anforderungsanalyse
 Unterschied: Testet nicht die Funktionalität einer Implementation
 Verfikation: Rein theoretisch
- 16. Warum benötigt man eine Implementierungsspezifika-
 - Geht auf besonderheiten der Speziellen Umgebung ein
 - Wie werden Prozesse gehändelt?
 - Methoden/Klassen werden verwendet
 - Sprachen

17. Was sind die Bestandteile der Implementierungsspezifikation?

- Dokumentation
 Beschreibung der expliziten Ausführung der Implementation auf einem System
 Programm Dokumentation

18. Was ist das Ziel der Erreichbarkeitsanalyse? Welche Protokolleigenschaften können mit der Erreichbarkeitsanalyse nachgewiesen werden?

- \bullet Prüfen ob alle Zustände im Zustandsautomaten erreicht werden \bullet Sicherstellen, dass keine Deadlocks auftreten

19. Was ist ein Test? Welche Aussagen kann ein Test treffen?

- $\bullet\,$ Test: Spezieller Ablauf einer Protokollinstanz mit vorgegeben Werten werden erwartete Anforderungen erfüllt
 - Nicht vollständig!
- Gegenstück zur Protokollverifikation
 Soll Fehler finden NEIN, DOCH, OHH!

20. Welche Testurteile gibt es? Wie kommen diese zustande?

- passed OK
 failed kaputt
 inonc nicht ausreichend spezifizierter Test
 Error Unerwartetes Ereignis Softwarefehler Absturz bei aufruf

21. Wie wird das Resultat einer Testsuite ermittelt?

- Durchvorgabewerte für passed OK Aufruf einer Funktion und prüfen des Ergebnisses auf den erwarteten Wert

22. Es gibt vier Arten des Protokolltests. Nennen und Erläutern Sie diese!

• Entwicklungsbegleitende Tests

- Debugging
- Konformitätstest
 - Übereinstimmung mit Spezifikation
- Interoperabilitätstest
 - Zusammenarbeitsfähigkeit von Implementierungen

- Leistungsverhalten der Implementierung
- Robustheitstest
 - Verhalten der Implementierungen bei falschen Eingaben

$23.\,$ Erläutern Sie die Begriffe Testbarkeit und Design for Testability!

- Funktionen müssen bereits bei Implementierung auf das Testen ausgelegt sein.
 Es muss ein Testframework existieren, dass die Funktionen entsprechen aufruft und prüft

24. Welche Fehlertypen kann ein Endlicher Automat (Finite State Machine) enthalten?

- festehängen in einem Zustand
- Livelock
 - Nicht gewünschte Schleifen
- spontane Transition

25. Was sagt die Fehlererkennungsmächtigkeit über einen Test aus?

- $\bullet\,$ Gibt an wie gut Test sich zur Erkennung von Fehlern eignet
 - vollständige Aufdeckung aller Fehler möglich, oder bleibt eine Unsicherheit nach Test?
- 26. Welche Komponenten enthält die Testarchitektur nach TTCN? Welche Aufgaben haben die einzelnen Komponenten?