Statistical Machine Translation LING-462/COSC-482 Week 10: Refinements and Alternative Architectures

Achim Ruopp achim.ruopp@Georgetown.edu

Agenda

- Language in ten minutes: Logan Peng
- NMT using a sequence-to-sequence RNNs with attention model
 - Refinements/Practical Considerations
 - Adding linguistic information
 - Multiple language pairs/Zero-shot translation
 - Ensemble Decoding
- Break -
- NMT using convolutional networks with attention
- Transformer NMT model/Attention is all you need
- HW4 questions

NMT Toolkits

- Number of toolkits still increasing
- List maintained by Jon Dehdari
 - https://github.com/jonsafari/nmt-list
- Latest updates presented this Monday at the AMTA 2018 conference
 - http://www.conference.amtaweb.org/#program

Neural Machine Translation

large vocabularies

Zipf's Law: Many Rare Words

frequency \times rank = constant

Many Problems

- Sparse data
 - words that occur once or twice have unreliable statistics
- Computation cost
 - input word embedding matrix: $|V| \times 1000$
 - outout word prediction matrix: $1000 \times |V|$

Some Causes for Large Vocabularies

Morphology

tweet, tweets, tweeted, tweeting, retweet, ...

- → morphological analysis?
- Compounding

homework, website, ...

- → compound splitting?
- Names

Netanyahu, Jones, Macron, Hoboken, ...

- \rightarrow transliteration?
- ⇒ Breaking up words into **subwords** may be a good idea

Byte Pair Encoding

• Start by breaking up words into characters

```
the _ fat _ cat _ is _ in _ the _ thin _ bag
```

Merge frequent pairs

```
t h\rightarrowth th e _ f a t _ c a t _ i s _ i n _ th e _ th i n _ b a g a t\rightarrowat th e _ f at _ c at _ i s _ i n _ th e _ th i n _ b a g i n\rightarrowin th e _ f at _ c at _ i s _ in _ th e _ th in _ b a g th e\rightarrowthe the _ f at _ c at _ i s _ in _ the _ th in _ b a g
```

- Each merge operation increases the vocabulary size
 - starting with the size of the character set (maybe 100 for Latin script)
 - stopping at, say, 50,000

Example: 49,500 BPE Operations

Obama receives Net@@ any@@ ahu

the relationship between Obama and Net@@ any@@ ahu is not exactly friendly. the two wanted to talk about the implementation of the international agreement and about Teheran 's destabil@@ ising activities in the Middle East . the meeting was also planned to cover the conflict with the Palestinians and the disputed two state solution . relations between Obama and Net@@ any@@ ahu have been stra@@ ined for years . Washington critic@@ ises the continuous building of settlements in Israel and acc@@ uses Net@@ any@@ ahu of a lack of initiative in the peace process. the relationship between the two has further deteriorated because of the deal that Obama negotiated on Iran 's atomic programme . in March , at the invitation of the Republic@@ ans , Net@@ any@@ ahu made a controversial speech to the US Congress , which was partly seen as an aff@@ ront to Obama . the speech had not been agreed with Obama, who had rejected a meeting with reference to the election that was at that time im@@ pending in Israel .

using monolingual data

Traditional View

• Two core objectives for translation

Adequacy	Fluency
meaning of source and target match	target is well-formed
translation model	language model
parallel data	monolingual data

- Language model is key to good performance in statistical models
- But: current neural translation models only trained on parallel data

Integrating a Language Model

- Integrating a language model into neural architecture
 - word prediction informed by translation model and language model
 - gated unit that decides balance
- Use of language model in decoding
 - train language model in isolation
 - add language model score during inference (similar to ensembling)
- Proper balance between models (amount of training data, weights) unclear

Backtranslation

- No changes to model architecture
- Create synthetic parallel data
 - train a system in reverse direction
 - translate target-side monolingual data into source language
 - add as additional parallel data
- Simple, yet effective

deeper models

Deeper Models

- Encoder and decoder are recurrent neural networks
- We can add additional layers for each step
- Recall shallow and deep language models

• Adding residual connections (short-cuts through deep layers) help

Deep Decoder

- Two ways of adding layers
 - deep transitions: several layers on path to output
 - deeply stacking recurrent neural networks
- Why not both?

Deep Encoder

- Previously proposed encoder already has 2 layers
 - left-to-right recurrent network, to encode left context
 - right-to-left recurrent network, to encode right context
- \Rightarrow Third way of adding layers

Reality Check: Edinburgh WMT 2017

Table 2: BLEU scores for translating news *into* English (WMT 2016 and 2017 test sets – WMT 2017 set is used where there was no 2016 test)

	CS-	→EN	DE-	→EN	LV	EN	RU-	→EN	TR-	→EN	$ZH \rightarrow$	EN
system	2016	2017	2016	2017	2017d	2017	2016	2017	2016	2017	2017d	2017
WMT-16 single system	30.1	25.9	36.2	31.1			26.9	29.6				
baseline	31.7	27.5	38.0	32.0	23.5	16.4	27.8	31.3	20.2	19.7	19.9	21.7
+layer normalization	32.6	28.2	38.6	32.1	24.4	17.0	28.8	32.3	19.5	18.8	20.8	22.5
+deep model	33.2	28.9	39.6	33.5	24.4	16.6	29.0	32.7	20.6	20.6	22.1	22.9
+checkpoint ensemble	33.8	29.4	39.7	33.8	25.7	17.7	29.5	33.3	20.6	21.0	22.5	23.6
+independent ensemble	34.6	30.3	40.7	34.4	27.5	18.5	29.8	33.6	22.1	21.6	23.4	25.1
+right-to-left reranking	35.6	31.1	41.0	35.1	28.0	19.0	30.5	34.6	22.9	22.3	24.0	25.7
WMT-17 submission ^a		30.9		35.1	_	19.0	_	30.8	_	20.1	_	25.7

^a In some cases training did not converge until after the submission deadline. The contrastive/ablative results shown were obtained with the converged systems; this line reports the BLEU score for the system output submitted by the submission deadline.

Table 3: BLEU scores for translating news *out of* English (WMT 2016 and 2017 test sets – WMT 2017 dev set is used where there was no 2016 test)

	EN-	→CS	EN-	→DE	EN-	≻LV	EN-	→RU	EN-	→TR	$EN \rightarrow$	ZH
system	2016	2017	2016	2017	2017d	2017	2016	2017	2016	2017	2017d	2017
WMT16 single system	23.7	19.7	31.6	24.9	_	_	24.3	26.7	_		_	
baseline	23.5	20.5	32.2	26.1	20.8	14.6	25.2	28.0	13.8	15.6	30.5	31.3
+layer normalization	23.3	20.5	32.5	26.1	21.6	14.9	25.8	28.7	14.0	15.7	31.6	32.3
+deep model	24.1	21.1	33.9	26.6	22.3	15.1	26.5	29.9	14.4	16.2	32.6	33.4
+checkpoint ensemble	24.7	22.0	33.9	27.5	23.4	16.1	27.3	31.0	15.0	16.7	32.8	33.5
+independent ensemble	26.4	22.8	35.1	28.3	24.7	16.7	28.2	31.6	15.5	17.6	35.4	35.8
+right-to-left reranking	26.7	22.8	36.2	28.3	25.0	16.9	_	_	16.1	18.1	35.7	36.3
WMT-17 submission ^a	_	22.8	_	28.3	_	16.9	_	29.8	_	16.5	_	36.3

^a In some cases training did not converge until after the submission deadline. The contrastive/ablative results shown were obtained with the converged systems; this line reports the BLEU score for the system output submitted by the submission deadline.

alignment and coverage

Alignment

- Attention model fulfills role of alignment
- Traditional methods for word alignment
 - based on co-occurence, word position, etc.
 - expectation maximization (EM) algorithm
 - popular: IBM models, fast-align

Attention vs. Alignment

Guided Alignment

- Guided alignment training for neural networks
 - traditional objective function: match output words
 - now: also match given word alignments
- Add as cost to objective function
 - given alignment matrix A, with $\sum_{j} A_{ij} = 1$ (from IBM Models)
 - computed attention α_{ij} (also $\sum_{i} \alpha_{ij} = 1$ due to softmax)
 - added training objective (cross-entropy)

$$cost_{CE} = -\frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} A_{ij} \log \alpha_{ij}$$

Coverage

Tracking Coverage

- Neural machine translation may drop or duplicate content
- Track coverage during decoding

$$\operatorname{coverage}(j) = \sum_i \alpha_{i,j}$$

$$\operatorname{over-generation} = \max \Big(0, \sum_j \operatorname{coverage}(j) - 1\Big)$$

$$\operatorname{under-generation} = \min \Big(1, \sum_j \operatorname{coverage}(j)\Big)$$

Add as cost to hypotheses

Coverage Models

• Use as information for state progression

$$a(s_{i-1}, h_j) = W^a s_{i-1} + U^a h_j + V^a \text{coverage}(j) + b^a$$

Add to objective function

$$\log \sum_{i} P(y_i|x) + \lambda \sum_{j} (1 - \text{coverage}(j))^2$$

- May also model fertility
 - some words are typically dropped
 - some words produce multiple output words

linguistic annotation

Example

Words	the	girl	watched	attentively	the	beautiful	fireflies
Part of speech	DET	NN	VFIN	ADV	DET	JJ	NNS
Lemma	the	girl	watch	attentive	the	beautiful	firefly
Morphology	-	SING.	PAST	-	-	-	PLURAL
Noun phrase	BEGIN	CONT	OTHER	OTHER	BEGIN	CONT	CONT
Verb phrase	OTHER	OTHER	BEGIN	CONT	CONT	CONT	CONT
Synt. dependency	girl	watched	-	watched	fireflies	fireflies	watched
Depend. relation	DET	SUBJ	-	ADV	DET	ADJ	OBJ
Semantic role	-	ACTOR	-	MANNER	-	MOD	PATIENT
Semantic type	-	HUMAN	VIEW	-	-	-	ANIMATE

Input Annotation

- Input words are encoded in one-hot vectors
- Additional linguistic annotation
 - part-of-speech tag
 - morphological features
 - etc.
- Encode each annotation in its own one-hot vector space
- Concatenate one-hot vecors
- Essentially:
 - each annotation maps to embedding
 - embeddings are added

Output Annotation

- Same can be done for output
- Additional output annotation is latent feature
 - ultimately, we do not care if right part-of-speech tag is predicted
 - only right output words matter
- Optimizing for correct output annotation → better prediction of output words

Linearized Output Syntax

Sentence	the girl watched attentively	the beautiful fire	flies		
Syntax tree	S				
	NP	VP			
	DET NN				
	the girl				
	VFIN	ADVP		NP	
	watched	ADV			
			DET	JJ	NNS
		attentively			
			the	beautiful	fireflies
Linearized	(S (NP (DET the) (NN girl)) (VP (VFIN watc	hed) (A	DVP (ADV at	tentively
))(NP(DET the)(JJ beaut	iful) (NNS fireflie	s $)$ $)$ $)$		-

multiple language pairs

One Model, Multiple Language Pairs

- One language pair \rightarrow train one model
- Multiple language pairs → train one model for each
- Multiple language pair → train one model for all

Multiple Input Languages

- Given
 - French–English corpus
 - German-English corpus
- Train one model on concatenated corpora
- Benefit: sharing monolingual target language data

Multiple Output Languages

- Multiple output languages
 - French–English corpus
 - French-Spanish corpus
- Need to mark desired output language with special token

```
[ENGLISH] N'y a-t-il pas ici deux poids, deux mesures?
```

 \Rightarrow Is this not a case of double standards?

[SPANISH] N'y a-t-il pas ici deux poids, deux mesures?

⇒ No puede verse con toda claridad que estamos utilizando un doble rasero?

Zero Shot

• Can the model translate German to Spanish?

[SPANISH] Messen wir hier nicht mit zweierlei Maß? \Rightarrow No puede verse con toda claridad que estamos utilizando un doble rasero?

Zero Shot: Vision

- Direct translation only requires bilingual mapping
- Zero shot requires interlingual representation

Algorithms

Google's Al just created its own universal 'language'

The technology used in Google Translate can identify hidden material between languages to create what's known as interlingua

By MATT BURGESS

23 Nov 2016

Zero Shot: Reality

Table 5: Portuguese -> Spanish BLEU scores using various models.

	Model	Zero-shot	BLEU
$\overline{\rm (a)}$	PBMT bridged	no	28.99
(b)	NMT bridged	no	30.91
(c)	$NMT Pt \rightarrow Es$	no	31.50
(d)	Model 1 (Pt \rightarrow En, En \rightarrow Es)	yes	21.62
(e)	Model 2 (En \leftrightarrow {Es, Pt})	yes	24.75
(f)	Model 2 + incremental training	no	31.77

ensembling

Ensembling

- Train multiple models
- Say, by different random initializations

• Or, by using model dumps from earlier iterations

(most recent, or interim models with highest validation score)

Decoding with Single Model

Combine Predictions

Ensembling

- Surprisingly reliable method in machine learning
- Long history, many variants:
 bagging, ensemble, model averaging, system combination, ...
- Works because errors are random, but correct decisions unique

Right-to-Left Inference

Neural machine translation generates words right to left (L2R)

the
$$\rightarrow$$
 cat \rightarrow is \rightarrow in \rightarrow the \rightarrow bag \rightarrow .

• But it could also generate them right to left (R2L)

the
$$\leftarrow$$
 cat \leftarrow is \leftarrow in \leftarrow the \leftarrow bag \leftarrow .

Obligatory notice: Some languages (Arabic, Hebrew, ...) have writing systems that are right-to-left, so the use of "right-to-left" is not precise here.

Right-to-Left Reranking

- Train both L2R and R2L model
- Score sentences with both
 - ⇒ use both left and right context during translation
- Only possible once full sentence produced → re-ranking
 - 1. generate n-best list with L2R model
 - 2. score candidates in n-best list with R2L model
 - 3. chose translation with best average score

ALTERNATIVE ARCHITECTURES FOR NEURAL MACHINE TRANSLATION

Beyond Recurrent Neural Networks

- We presented the currently dominant model
 - recurrent neural networks for encoder and decoder
 - attention
- Convolutional neural networks
- Self attention

convolutional neural networks

Convolutional Neural Networks

- Build sentence representation bottom-up
 - merge any n neighboring nodes
 - *n* may be 2, 3, ...

Generation

Generation

- Encode with convolutional neural network
- Decode with convolutional neural network
- Also include a linear recurrent neural network

- Important: predict length of output sentence
- Does it work? used successfully in re-ranking (Cho et al., 2014)

Convolutional Network with Attention

(Facebook, 2017)

Convolutional Encoder

- Similar idea as deep recurrent neural networks
- Good: more parallelizable
- Bad: less context when refining representation of a word

Convolutional Decoder

Decoder Convolution 2

Decoder
Convolution 1

Output Word Embedding

> Selected Word

- Convolutions over output words
- Only previously produced output words (still left-to-right decoding)

Convolutional Decoder

- Inclusion of Input context
- Context result of attention mechanism (similar to previous)

Convolutional Decoder

- Predict output word distribution
- Select output word

self-attention

Attention

• Compute association between last hidden state and encoder states

Attention Math

- Input word representation h_k
- Decoder state s_j
- Computations

$$a_{jk} = \frac{1}{|h|} s_j h_k^T \qquad \text{raw association}$$

$$\alpha_{jk} = \frac{\exp(a_{jk})}{\sum_{\kappa} \exp(a_{j\kappa})} \qquad \text{normalized association (softmax)}$$
 self-attention $(h_j) = \sum_{k} \alpha_{j\kappa} h_k \qquad \qquad \text{weighted sum}$

Self-Attention

• Attention

$$a_{jk} = \frac{1}{|h|} s_j h_k^T$$

• Self-attention

$$a_{jk} = \frac{1}{|h|} h_j h_k^T$$

Why?

- Refine representation of word with related words making ... more difficult refines making
- Good: more parallelizable than recurrent neural network
- Good: wide context when refining representation of a word

Stacked Attention in Decoder

Where Are We Now?

- Recurrent neural network with attention currently dominant model
- Still many challenges
- New proposals in Spring 2017
 - convolutions (Facebook)
 - self-attention (Google)
- Too early to tell if either becomes the new paradigm
- Open source implementations are available

questions?