

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY JANUARY/FEBRUARY 2013 EXAMINATION

CODE:MTH 301 TIME: 3 HOURS TITLE: METRIC SPACES TOTAL: 70%

CREDIT UNIT: 3

INSTRUCTION: COMPLETE ANSWERS TO ANY FIVE(5) QUESTIONS BEAR FULL MARKS

- 1(a) If $X \in R^n$. Prove that the set $B(\varepsilon x, x + \varepsilon)$ is open. 6marks
- 1(b) Let X be a complete metric space and $\{A_n\}$ is countable collection of dense open subset of X. Show that $\stackrel{i}{\iota}$ A_n is not empty.
- 2(a) Define a metric space? Give one example of a metric space.
 -4marks
- 2(b) What is meant by a topological space? Give an example of a topological space.

 4marks
- 2(c) Define the length or norm of a vector $x \in \mathbb{R}^3$ -6marks
- Let (S, d) and (T, d) be metric spaces and f a mapping of S into T. Let T_1 and T_2 be the topologies determined by d and d1 respectively. Then $f(S, \tau)$ \rightarrow (T, τ) is continuous if and only if $S_n \rightarrow S \rightarrow f(S_n, \tau) \rightarrow f(s)$; that is if $s_1, s_2, \ldots, s_n, \ldots$, is a sequence of points in (S, d) converging to x, show that the sequence of points $f(s_1), f(s_2), \ldots, f(s_n), \ldots$ in (T, d) converges to x.

Let $M = \{ A, d \}$ be a metric space. Given any four points x, y, z, t ε A. Prove that

$$d(x, z) + d(y, t) \ge |d(x, y) - d(z, t)|$$

-14marks

5 Let f and g be real-valued functions with Domain f = Range(g) = $D \subset R^n$.

Limf(x)

Let x_0 be a point of accumulation on D. If the $= \ell$ and

$$Limg(x)$$

$$\sum_{x \to x_0} x = n.$$

Lim

- If for α , $\beta \epsilon \mathbf{R}$, show that $(\beta g + \alpha f)(x) = \alpha \ell + \beta m$ i) 6marks
- $m\pm 0$. ii) If $g(x) \pm 0$; for $X \in D$ and

Show that
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x)$$

-8marks

- Show that the mapping $f \mathbf{R} \rightarrow \mathbf{R}^+$ defined by $f(x) = e^x$ is a 6 homeomorphism from **R** onto R⁺. -14marks.
- 7(a) Prove that for any s, te \Re , max(s,v) = $\frac{1}{2}[t+v+|t-v|]$, min(t,v) $= \frac{1}{2}[t+v-|t-v|].$

-6marks

1302021022

- 7(b) Let f,g: $^{\Re}$ \to $^{\Re}$ be continuous at a ϵ $^{\Re}$. Show that h,k: $^{\Re}$ \to $^{\Re}$ defined through
 - $h(\mathbf{x}) = \max_{\mathbf{x} \in \Re} \quad |f(\mathbf{x}), g(\mathbf{x})| \quad \text{,k(x)} = \min_{\mathbf{x} \in \Re} \quad |f(\mathbf{x}), g(\mathbf{x})| \quad \text{are continuous at a. -8marks}$