

CURSO DE DATA SCIENCE PROYECTO FINAL

Objetivo : Predecir la contribución de las fuentes de energías renovables a la satisfacción de la demanda eléctrica del país

Integrantes : Eugenia Aciar, Eileen Corbalán, Dolores Corva, Julia Panei, Evelin Paez

¿ POR QUÉ ELEGIMOS ESTE TEMA?

✓ Uno de los Objetivos de Desarrollo Sostenible planteados en la Agenda 2030 de Naciones Unidas para Argentina es "tener una mayor inversión en fuentes de energías renovables que contribuyan al sistema eléctrico así como innovar en soluciones energéticas del futuro". Este objetivo está en consonancia con la estrategia de sustentabilidad de YPF

ACERCA DEL DATASET...

- Fue obtenido de la página de CAMMESA (Compañía Administradora del Mercado Mayorista Eléctrico Sociedad Anónima)
- ✓ Contiene la información de la energía generada por cada energía renovable(Hidro < 50 MW; Eólico, Solar, Biomasa, Biodiesel), por región y por provincia, la central que las genera y es de tipo mensual con registros desde 2011 hasta junio de 2023

ANÁLISIS EXPLORATORIO DE DATOS I

¿Cuántos datos tenemos por año?

¿Cuánta energía eléctrica (Gwh) es producida por fuentes de energías renovables?

ANÁLISIS EXPLORATORIO DE DATOS I

¿Cuánta energía generó cada fuente por año?

ANÁLISIS EXPLORATORIO DE DATOS I

¿Cuánta energía proveniente de energías renovables generó cada provincia para cada año?

ANÁLISIS EXPLORATORIO DE DATOS II

Data set Inicial

	AÑO	CENTRAL	CENTRAL DESCRIPCIÓN	MAQUINA	FUENTE DE ENERGÍA	REGIÓN	PROVINCIA	MES	ENERGÍA GENERADA [GWh]	Nueva Generación
0	2011	AESP	AES PARANA	AESPCC01	BIODIESEL	LITORAL	BUENOS AIRES	ene-11		Resto
1	2011	AESP	AES PARANA	AESPCC02	BIODIESEL	LITORAL	BUENOS AIRES	ene-11		Resto
2	2011	AMEGHI	F. AMEGHINO	AMEGHI	HIDRO <=50MW	PATAGONIA	CHUBUT	ene-11	13.8	Resto
3	2011	ARAUEO	ARAUCO EOLICO	ARAUEO	EOLICO	NOROESTE	LA RIOJA	ene-11	0.1	Resto
4	2011	CACVHI	C.H.CACHEUTA VI	CACVHI	HIDRO <=50MW	CUYO	MENDOZA	ene-11		Resto
5	2011	CADIHI	CADILLAL	CADIHI	HIDRO <=50MW	NOROESTE	TUCUMAN	ene-11	0.6	Resto
6	2011	CALEHI	LA CALERA	CALEHI	HIDRO <=50MW	CENTRO	CORDOBA	ene-11	0.9	Resto
7	2011	CARRHI	CH CARRIZAL	CARRHI	HIDRO <=50MW	CUYO	MENDOZA	ene-11	5.4	Resto
8	2011	CASSHI	CASSAFOUSTH	CASSHI	HIDRO <=50MW	CENTRO	CORDOBA	ene-11	4.1	Resto
9	2011	CEJEHI	CRUZ DEL EJE	CEJEHI	HIDRO <=50MW	CENTRO	CORDOBA	ene-11		Resto

Sacamos
columnas,dejamos
un dataset por
energía y aplicamos
Label Encoder

¿Cuánta energía eléctrica se generará a partir de cada fuente de energía renovable?

Como la variable que queremos predecir, es una variable numérica continua decidimos probar con distintos MODELOS DE REGRESIÓN. Para esto, en primer lugar se crearon distintos datasets correspondientes a cada fuente de energía y luego se convirtieron todas las variables categóricas a variables numéricas.

¿Cuánta energía eléctrica se generará a partir de la energía solar?

Probamos con 3 modelos que usan la regresión como base sobre los datos **ESCALADOS** (MinMax) y **NORMALIZADOS** (StandardScaler)

LINEAR REGRESSION

RANDOM FOREST

SUPPORT VECTOR MACHINE

Evaluación de los modelos a partir de las métricas

Para evaluar el desempeño de los modelos elegimos calcular los errores y el coeficiente de determinación para cada uno de los modelos y compararlos

ERROR MEDIO ABSOLUTO(MAE)

mae_linear_regression_y_min_max_scaler: 0.11542078316432124
mae_linear_regression_y_standar_scaler: 0.5684455961955582
mae_random_forest_y_min_max_scaler: 0.06815434187314041
mae_random_forest_y_standar_scaler: 0.33509516315711857
mae_svr_y_min_max_scaler: 0.1786426704347987

mae_svr_y_min_max_scaler: 0.1786426704347987 mae_svr_y_standar_scaler: 0.5235273108160509

ERROR MEDIO CUADRADO(MSE)

mse_linear_regression_y_min_max_scaler: 0.027293162500233822
mse_linear_regression_y_standar_scaler: 0.6620086132207417
mse_random_forest_y_min_max_scaler: 0.018279365076248145
mse_random_forest_y_standar_scaler: 0.4428835352797319
mse_svr_y_min_max_scale: 0.042481787510920896
mse_svr_y_standar_scaler: 0.915913267132385

COEFICIENTE DE DETERMINACIÓN (r2)

r2_linear_regression_y_min_max_scaler: 0.20339455323864963
r2_linear_regression_y_standar_scaler: 0.20339455323864908
r2_random_forest_y_standar_scaler: 0.4670712292271675
r2_random_forest_y_min_max_scaler: 0.4670712292271675
r2_svr_y_min_max_scale: -0.23991579645883743
r2_svr_y_standar_scaler: -0.10213293722714067

Interpretación de las métricas

ERROR MEDIO ABSOLUTO(MAE)

mae_linear_regression_y_min_max_scaler: 0.11542078316432124
mae_linear_regression_y_standar_scaler: 0.5684455961955582
mae_random_forest_y_min_max_scaler: 0.06815434187314041
mae_random_forest_y_standar_scaler: 0.33509516315711857

mae_svr_y_min_max_scaler: 0.1786426704347987 mae_svr_y_standar_scaler: 0.5235273108160509

ERROR MEDIO CUADRADO(MSE)

mse_linear_regression_y_min_max_scaler: 0.027293162500233822
mse_linear_regression_y_standar_scaler: 0.6620086132207417
mse_random_forest_y_min_max_scaler: 0.018279365076248145
mse_random_forest_y_standar_scaler: 0.4428835352797319
mse_svr_v_min_max_scaler: 0.44288787510020806

mse_svr_y_min_max_scale: 0.042481787510920896 mse_svr_y_standar_scaler: 0.915913267132385

COEFICIENTE DE DETERMINACIÓN (r2)

r2_linear_regression_y_min_max_scaler: 0.20339455323864963
r2_linear_regression_y_standar_scaler: 0.20339455323864908
r2_random_forest_y_standar_scaler: 0.4670712292271675
r2_random_forest_y_min_max_scaler: 0.4670712292271675
r2_svr_y_min_max_scale: -0.23991579645883743
r2_svr_y_standar_scaler: -0.10213293722714067

Aprobado por GridSearch CV Al considerar las 3 métricas , se busca un equilibrio entre la PRECISIÓN EN LA PREDICCIÓN y la CAPACIDAD EXPLICATIVA del modelo. En este caso, un buen rendimiento sería un modelo con un MAE bajo, un MSE bajo y un r2 alto. Es por esto que para el caso de la energía solar, el mejor modelo es RANDOM FOREST con los valores escalados con el método MinMax.

Importancia de las features

Aplicamos la métrica de **Feature Importance** para evaluar la contribución relativa de cada feature en nuestro modelo de Random Forest.

En este caso se observa que la **provincia** sería la que genera mayor impacto en la capacidad predictiva del modelo.

CONCLUSIONES

Retomando nuestra pregunta inicial : ¿Cuánta energía eléctrica se generará a partir de cada fuente de energía?

- Con el dataset elegido, con el EDA y con los modelos elegidos pudimos correr un modelo completo para una de las energías (SOLAR) y podría considerarse que los resultados no fueron malos y SI responden a nuestra pregunta inicial.
- Sin embargo nos llevaron a reveer las decisiones que fuimos tomando durante todo el proceso y que cambiaríamos para mejorarlo :
 - -Dejar más features en los datasets de cada energía
 - -Evaluar la distribución y normalidad de cada energía
 - -No correr modelos como SVM que consumen mucha capacidad de cómputo
 - -Dejar de lado el escalado cuando trabajamos con una sola energía

CONCLUSIONES GENERALES

- El dataset de CAMMESA es gran calidad y permitiría predecir la contribución de las energías renovables al sistema eléctrico en los próximos años.
- Poseemos los datos históricos de la demanda eléctrica, por cual también se podría modelar y relacionar con los objetivos de desarrollo sostenible
- Los modelos sobre las energías renovables podrían mostrar posibilidades de inversión y desarrollo a nivel provincial.

GRACIAS POR SU ATENCIÓN CHICAS!!

