COMP3234 Computer and Communication Networks / ELEC3443 Computer Networks Written Assignment 1

- **Q1.** Suppose users share a 10 Mbps link. Also suppose each user requires 200 kbps when transmitting, but each user transmits only 10 percent of the time.
- a. When circuit switching is used, how many users can be supported?
- b. For the remainder of this problem, suppose packet switching is used. Find the probability that a given user is transmitting.
- c. Suppose there are 120 users. Find the probability that at any given time, exactly *n* users are transmitting simultaneously. (*Hint*: Use the binomial distribution.)
- d. Find the probability that there are 51 or more users transmitting simultaneously.
- **Q2.** Suppose two hosts, A and B, are separated by 20,000 kilometers and are connected by a direct link of R = 5 Mbps. Suppose the propagation speed over the link is $2.5 \cdot 10^8$ meters/sec.
- a. Calculate the bandwidth-delay product, $R \cdot d_{\text{prop}}$.
- b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose the file is sent continuously as one large message. What is the maximum number of bits that will be in the link at any given time?
- c. Provide an interpretation of the bandwidth-delay product.
- d. What is the width (in meters) of a bit in the link? Is it longer than a football field?
- e. Derive a general expression for the width of a bit in terms of the propagation speed s, the transmission rate R, and the length of the link m.

- **Q3.** Suppose you can access the caches in the local DNS servers of your department. Can you propose a way to roughly determine the Web servers (outside your department) that are most popular among the users in your department? Explain.
- **Q4.** Consider distributing a file of F bits to N peers using a client-server architecture. Assume a fluid model where the server can simultaneously transmit to multiple peers, transmitting to each peer at different rates, as long as the combined rate does not exceed u_s .
- a. Suppose that $u_s/N \le d_{min}$. Specify a distribution scheme that has a distribution time of NF/ u_s .
- b. Suppose that $u_s/N \ge d_{\min}$. Specify a distribution scheme that has a distribution time of F/d_{\min} .
- c. Conclude that the minimum distribution time is in general given by $\max\{NF/u_s, F/d_{\min}\}$.
- **Q5.** UDP and TCP use 1s complement for their checksums. Suppose you have the following three 8-bit bytes: 01010011, 01100110, 01110100. What is the 1s complement of the sum of these 8-bit bytes? (Note that although UDP and TCP use 16-bit words in computing the checksum, for this problem you are being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes the 1s complement of the sum; that is, why not just use the sum? With the 1s complement scheme, how does the receiver detect errors? Is it possible that a 1-bit error will go undetected? How about a 2-bit error?
- **Q6.** Compare GBN, SR, and TCP (no delayed ACK). Assume that the timeout values for all three protocols are sufficiently long such that five consecutive data segments and their corresponding ACKs can be received (if not lost in the channel) by the receiving host (Host B) and the sending host (Host A) respectively. Suppose Host A sends five data segments to Host B, and the

second segment (sent from A) is lost. In the end, all five data segments have been correctly received by Host B.

- a. How many segments has Host A sent in total and how many ACKs has Host B sent in total? What are their sequence numbers? Answer this question for all three protocols.
- b. If the timeout values for all three protocol are much longer than 5 RTT, then which protocol successfully delivers all five data segments in shortest time interval?