TECHNION - ISRAEL INST OF TECH HAIFA DEPT OF MATERIA--ETC F/6 11/6
THE EFFECT OF HIGH PRESSURE ON PHASE RELATIONSHIPS AND SOME PRO--ETC(U) AD-A100 828 MAY B1 A RABINKIN, E GUTMANAS DA-ERO-78-6-112 UNCLASSIFIED 1 of 1 100858 4D 7 ₩. END PATE 7-381 DTIC

AD A 100828

LEVELO

DENGTHEERING OF MATERIALS SHEEPING

81 6 29 251

Grant DAERO-78-G-112 14 25 15

THE EFFECT OF HIGH PRESSURE ON PHASE RELATIONSHIPS AND SOME PROPERTES OF TI AND ITS ALLOYS

By A. Rabinkin and E. Gutmanas

May 1981 Final Technical Report prepared for EUROPEAN RESEARCH OFFICE, UNITED STATES ARMY 223 Old Marylebone Road London NW1 5TH, England

-		READ INSTRUCTIONS BEFORE
j	REPORT DOCUMENTATION PAGE	COMPLETING FORM
1	Report Number 2. Govt Acess- Final Technical Report AD-A10082	3. Recipient's Catalog Number
4	Title (and Subtitle)	5. Type of Report & Period
4	The Effect of High Pressure on Phase Relation- ships and some Properties of Ti and its alloys.	Final Technical Report Sept 78 - January 81
7		6. Performing Org. Report No.
7	Author(s) Principal Investigator: Prof. A /Rabinkin Investigator : Prof. E. Gutmanas	8 Contract or Grant Number DAERO-78-G-112
9.	Performing Organization Name and Address Department of Materials Engineering Technion-Israel Institute of Technology	10. Program Element, Project, Task Area & Work Unit. Nos
111	Controlling Office Name and Address European Research Office, US Army	12. Report Date May \$\mathbb{M}81
	223 Old Marylebone Road London NWl, 5th, England	13. Number of Pages 82
14	US Army Procurement Agency Europe, ATTN:AEUPC-PCA 163 Eschersheimer Landstrasse 6000 Frankfurt Main. W. Germany	15. Unclassified
16	. & i7. Distribution Statement	
. H	Approved for public release; distribu	ution unlimited
18	Supplementary Notes: The work presented in this of four published papers and an additional paper additional papers related to this research (Appe	r is in preparation. Two
19	Key Words	
	Ti alloys, high pressure, phase trans	sformations
20	Abstract	
	This report summarizes a research on phase transapplication of high pressure in Ti, Ti-Mo and Trof microstructure, studied by TEM and quantitativith mechanical properties and superconductive parties of alloying and pressurizing on phase changes in basic physical properties of phases.	i-V alloys. The relationship live X-ray diffraction analysis properties was found.
-	•	i i

Contents

		Page
	Abstract	3
1.	Introduction	4
2	Calculation of the metastable diffusionless equilibria in Ti-V and Ti-Mo systems under high pressure conditions	6
3.	Phase transformations in metastable Ti-V and Ti-No alloys induced by high pressure treatment.	
	3.1 Experimental procedure	15
	3:2 Experimental results	17
	3.3 Discussion	25
	3.3.1 The sequence of diffusionless transformations in Ti-Mo and Ti-V alloys	25
	3.3.2 On changes in ω phase morphology in Ti-V alloys after high pressure application	29
	3.3.4 The correlation between the phase stability and basic physical properties of the Ti-V and Ti-Mo alloys	31
	3.3.5 Mechanical properties of Ti-Mo alloys	3 5
4	Conclusions	39
	Appendix 1. The structural stability and superconductivity of Ti-Mo alloys under pressure	40
	Appendix 2. The and polymorphouse phase transformation in pure 2r at atmospheric pressure	47
	References	53

Abstract

Changes in crystal structure induced by the application of high pressure up to 9.2 GPa (92 kbar) at 300 K were studied in metastable Ti-Mo and Ti-V alloys in wide concentration range by transmission electron microscopy and were correlated with the results of quantitative X-ray diffraction analysis. The high pressure treatment causes formation of new various structures. The amount of ω phase that remains after the pressure is released is significantly larger than that which is obtained after quenching. As a result of that substantial changes in mechanical properties of the alloys takes place.

Anomalous increasing of the critical temperature to superconductivity T_{C} was observed in Ti-Mo alloys under pressure. An attempt is made to correlate the effects of alloying and pressurizing on phase stability with changes in basic physical properties of phases.

1. Introduction

It is well known that the structure and properties of solids can be controlled by changing their composition and by thermodynamic parameters such as temperature, pressure (volume) and electromagnetic fields. At present, much data is available on the influences of composition and of temperature on the structure and properties of materials: but due to the many technical difficulties involved, a pressure parameter has not yet been adopted widely for the purpose of influencing structure and properties.

Among many metallic materials Ti and Ti alloys have an increasing tadustrial significance as constructional and superconductive materials. These to the classical terms of the following crystal structures: β -(b.c.c.), α -h.c.p. martensite and ω -hexagonal. It has been reported that under high static [1-6] and shock pressure [7-10] $\alpha + \omega$ and $\beta + \omega$ transformations The presence of the ω phase results in a substantial increase of Today's modulus, tensile strength and hardness [11-13] but it is also accompanied by considerable brittleness. When Ti-alloys are used as superconductors, the appearance of the sphase during heat treatment results in a remarkable entile, ement of the current capacity [14-19] that provides wide possibilities of application in modern technology. The mechanisms of β+ω and especially α+ω transformations are not completely understood. The effect of high pressure on phase equilibria and properties of T1(Zr) and its alloys is still not sufficiently investigated. For many years only two papers on high pressure induced phase transformation in Ti-alloys are known: one is concerning the Ti-Nt-alloys [20] and the other concerning the Ti-Mo-alloys behaviour after shock loading [9].

The appearance of ω phase in certain Ti alloys is possible since in these materials the thermodynamic characteristics of α , α ', β and ω are very similar. Under favourable conditions the existence of the ω phase, at

atmospheric pressure, may be energetically more advantageous that either the $\alpha(\alpha')$ or β phases. Such conditions may be created by changing the concentration, pressure (stress field) and temperature. The structures of Ti-alloys are highly sensitive to any changes in the above parameters, which affect strongly their properties.

It is a well accepted idea that there is a certain analogy between the influence of the basic properties of the alloying elements (atomic radii and charge, position in Periodic Chart, etc.) and that of high pressure.

This study tried to solve a few mutually related problems. First, to establish the kind of structural changes induced by the high pressure soaking in β (bcc) isomorphous Ti-based alloys with different initial crystal structures. Second, to compare the influence of both high pressure and alloying on the stability of various metastable phases and mechanical properties of alloys in various structural states. Third, to try to explain the observed regularity between the applied pressure and alloying using the detailed data of the physical properties: Debye temperature, $\theta_{\rm D}$, Fermi density of states $n(E_{\rm F})$, elastic constants etc. The Ti-V and Ti-Mo systems were chosen for the following reasons:

a) In both systems a sequence of metastable phases easily appears upon quenching from the $\beta(bcc)$ field, and the appearance of any particular structure depends on the Mo or V content. The β isomorphous metastable phase diagram can be subdivided into three regions according to the different phases which can occur. In the first region $\beta(bcc)$ can transform to a martensitic (α' -hcp or α'' -orthorhombic). In the second region β can partially decompose to the omega phase with an hexagonal structure. The β is retained on cooling to room temperature in a region with a higher solute content (Mo>15 at.% and V>20 at.%). At the boundary between the first and the second region, in a narrow range of solute (V and Mo) concentration, a sequence of all these metastable phases α' (or α'') + ω (hexagonal) can appear.

- b) Vanadium and molybdenum represent opposite examples of solute elements. In the Periodic Table of elements vanadium is next to titanium: therefore the "rigid band" model of electronic structure can be successfully applied in Ti-V alloys. Molybdenum is located far away from Ti in the Periodic Table and the "rigid band" model is not applicable in this case.
- c) The atomic radii of the solute elements (Mo and V) are smaller, therefore their valency electron concentrations are bigger than that of Ti. Alloying of Ti with Mo or V could be regarded analogous to the application of high pressure, since both of them will diminish the mean atomic volume and increase the valence electron concentration n_e . However, there is an important difference in the atomic radius (r_{at}) , the number of valency electrons (n_e) and atomic weight (A) of those elements:

 n_e^{No} =6 but n_e^{V} =5 (n_e^{Ti} =4), r_{at}^{Mo} =1.39 Å but r_{at}^{V} =1.34 Å (r_{at}^{Ti} =1.47), A^{V} =50.92, A^{Mo} =95.94 (A^{Ti} =47.90). Thus the response of Ti-Mo and Ti-V systems to high pressure should be different.

In the Appendix, the data on anomalous behaviour of critical temperature to superconductivity under pressure in Ti-Mo alloys will be reported. This data is very rough and only qualitative analysis will be done taking into account the results on structural changes obtained in previous parts of the present work.

2. Calculations of the metastable diffusionless equilibria in Ti-Mo and Ti-V systems under high pressure conditions [21].

This section presents the results on the construction of the metastable diffusionless equilibria diagrams in the Ti-Mo and Ti-V systems. The regular solution using a thermodynamic approach developed by L. Kaufman will be used [22,23]. For regular solutions the equations for calculating the driving force take the form:

$$\Delta F_{\text{Ti-Me}}^{\text{i-j}}[\text{T,P,x}] = \Delta F_{\text{Ti-Me}}^{\text{i+j}}[\text{T,x}] + 23.9P \Delta V^{\text{i+j}}[\text{T,P,x}]$$
 (1)

where $\Delta F^{i \to j}[P,T,x]$ in (cal/g-atom) is the difference in free energy between phase i and j and $\Delta F^{i \to j}[T,x]$ is given by:

$$\Delta F_{\text{Ti-Me}}^{i,j}[T,x] = (1-x) \Delta F_{\text{Ti}}^{i+j}[T] + x \Delta F_{\text{Me}}^{i+j}[T] + \Delta F_{\text{E}}^{i+j}$$
 (2)

where the II concentration in the solid solution is (1-x), the solute (Me) concentration is x and $\Delta F_E^{i \to j} = F_E^j - F_E^i$ is the difference in the free energy of mixing between the i and j phases. The designation i \to j can represent transitions between all the metastable phases (α , β , and ω) which occur in Ti-V and Ti-Mo systems.

to compute the diffusionless metastable phase diagrams for these systems under isobaric/isothermal conditions, the free energies of all the metastable process which exist in both systems must be defined.

on the regular solution model the excess free energy of mixing of the different phases is given by (23):

$$Y_F^{(x)} = \pi (C - x) (A_0 + Y_1 x + A_2 x^2 + --)$$
 (3)

$$F_{\mathbf{r}}^{(6)} = S(1-\mathbf{x}) \cdot (B_{0} + B_{1}\mathbf{x} + B_{2}\mathbf{x}^{2} + --) \tag{4}$$

$$F_0^{-1} = x(.-x) (W_0 + W_1 x + W_2 x^2 + --)$$
 (5)

In the case at hand an approximation is made by setting:

$$\lim_{n \to \infty} a = x(1-x)A \tag{6}$$

$$F_{\pi}^{\frac{1}{2}} = \kappa(1-\kappa)B \tag{7}$$

$$V_{\mathbf{F}}^{\omega} = \times (1-\mathbf{x})\mathbf{W} \tag{8}$$

where the interaction parameters A, B and W are all temperature independent.

The interaction parameters in the ß and w phases were estimated by Kaufman [22] for Ti-Mo and Ti-V systems using the enthalpies of vaporization, the molar volume and the group numbers of the components. The values of the interaction parameters A and B for the two systems are:

	A (cal/mole)	B (cal/mole)
Ti-Mo	3671	1241
Ti-V	2659	2659

Unfortunately, the value of the interaction parameter W for the ω phase is not known.

By equilibration of partial free energies $\{23\}$ the interaction parameters A and B can be calculated using the relations

aali

$$\Delta F_{MO}^{\alpha + \beta} + RT \ln \frac{x_{\beta}}{x_{\alpha}})^2 A = (1 - x_{\beta})^2 B$$
 (10)

where \mathbf{x}_{α} and \mathbf{x}_{β} are the atomic fractions of solute Me at the boundaries at a given temperature. To define the dependence of A and B as a function of temperature it is necessary to know the dependence of \mathbf{x}_{α} and \mathbf{x}_{β} as a function of temperature. In the case of fi-Mo and Ti-V system the value of \mathbf{x}_{α} and \mathbf{x}_{β} are not known very accurately below the 873°C. Moreover the coefficient of A in eq.(9) is small for both systems and this can lead to a large error in solving the equations for thos parameters

The free energy changes accompanying the $\alpha*\beta$, $\beta*\omega$ and $\alpha*\omega$ transformations in the pure elements [Ti,V,Mo] are given as [22]:

$$e^{i\Gamma_{T_1}^{(C+1)}} = 1050 - 0.91 \text{ r}$$
 (11)

$$TF_{T} = 690 - 0.99 T \tag{12}$$

$$AB_{p_1}^{M+3} = -360 - 0.08 \text{ T}$$
 (13)

$$\mathcal{A}_{MO}^{\alpha+\beta} = -2000 \text{ cal/mole} \tag{14}$$

$$\Delta F_V^{AS+O} = 1500 + 0.8 \text{ T} \tag{15}$$

The value of ΔF_{Mo} or ΔF_{Mo} and ΔF_{V} or ΔF_{V} have not been estimated experimentally or calculated to date. By using equations (1) and (2) in combination with the known value of the differences in the free energy for the pure elements between phases of interest it is possible to compute the P_{O} -x and T_{O} -x diagrams under isothermal and isobaric conditions.

Analysis of the m.d.e. diagrams (metastable diffusionless equilibria diagrams) can be performed by noting that the T_0 -x and P_0 -x lines do not show the actual value of the temperature or pressure at which the given alloy undergoes transformations. These curves correspond to $\Delta F^{i \to j} = 0$. As an approximation T_0 and/or is taken to be the average between the forward and reverse transformations.

$$T_0 = 1/2 [M_S^{i+j} + A_S^{j+i}] \text{ and } P_0 = 1/2 [P_S^{i+j} + P_S^{j+i}]$$

In the Ti-Mo system the free energy equations have the form:

$$\Sigma^{1.3+\alpha} = (1-x) (-1050+0.91f) + 2000 x + x(1-x) [A-B] + 23.9f \Delta V^{3+\alpha}$$
 (16)

$$z^{1.9\%} = (1-x) (-690+0.991) + x\Delta \Gamma_{Mo}^{3+\omega} + x(1-x) [W-B] + 23.9P \Delta V^{3+\omega}$$
 (17)

$$11^{-4.70} = (1-x) (360+0.08T) + x\Delta F_{Mo}^{0.70} + x(1-x)[W-A] + 23.9P \Delta V^{0.70}$$
 (18)

Substitution of the interaction parameters A and B estimated by Kautman into 10^{-16} at $10^{6+\alpha}=300$ K yields a value of x=0.16 for the atomic fraction of Mo where $\Delta F=0$. Alternatively one can use eqs. 9 and 10 to recalculate A and B taking into account that for the Ti-Mo system x_{α} and x_{β} are well known [24] at T=9/3 K ($x_{\alpha}=0.003$ and $x_{\beta}=0.31$). This yields the interaction parameter values A=7500 cal/g, atom and B=3100 cal/g, atom which are more positive than those previously estimated [22]. Substitution of these values in eq. 16 at $T_{0}=300$ K yields x=0.11 which is a more acceptable value for the $x^{2}F$ T_{0} vs. x curve and in better accordance with M_{d} experimental data [25]. These parameters fix the form of $\Delta F^{B+\alpha}[T,x]$ at atmospheric pressure as,

$$\Delta F^{\beta \to \alpha}[T,x] = (1-x)[-1050+0.91T] + 2000x + x(1-x)[7500-3100]$$
 (19)

or for low concentration i.e. where $x(1-x)\rightarrow x$

At atmospheric pressure the free energy difference equations for the $\beta \tau \omega$ transition is given by:

$$\Box F^{\beta + \omega}[T, x] = (1-x)(-690+0.99T) + x \Delta F_{Mo}^{\beta + \omega} + [W-B] x (1-x)$$

at low solute levels $x(1-x)\rightarrow x$ yielding:

$$\Delta F^{P,\tau_0}[T,x] = (1-x)(-690+0.99T) + x[\Delta F^{P,\tau_0}_{Mo}+W-B]$$
 (21)

Since the one atmosphere, $T_0 = 300 K$, upper limit for 8- ω transition occurs at x=16-17 at% No (13,14) then setting the driving force $\Delta F^{\beta \to \omega}[T,x] = 0$ under these conditions yields

$$2\Gamma_{M_0}^{B_{m_0}} + [W-B] = 2000 \text{ cal/g.atom}$$
 (22)

With this assumption

$$\Delta F^{3+\pi}[T,x] = (1-x)[-690+0.99T] + 2000x \text{ cal/g.atom}$$
 (23)

The driving force for into transition can be directly obtained by subtracting eq. (2) from (23) yielding

$$\Delta t^{(1+\omega)}[1,x] = (1-x)(360+0.08T) - 4400X cal/g.atem$$
 (24)

Equations (20), (23) and (24) which describe the one atmosphere relative stability of α , β and ω phases for diffusionless transformations can be used to compute the Γ_0 -x diagram at atmospheric pressure. This Γ_0 -x diagram for the Ti-No system is shown in Fig.1. The dashed region in this diagram represents the region of the metastable ω phase.

In order to calculate the P_0 -x metastable diagram T_0 = 300K the values of $\Delta V^{i+j}(P,x)$ the difference in the molar volume between α , β or α phase pairs as a function of pressure and solute concentration must be known. The dependence of V^{α} , V^{P} , V^{ω} as a function of the applied pressure was not measured experimentally

$$\Delta F^{\beta + \alpha}[T, x] = (1-x)[-1050+0.91T] + 2000x + x(1-x)[7500-3100]$$
 (19)

or for low concentration i.e. where $x(1-x)\rightarrow x$

$$\Box F^{\beta \to \alpha}[T, x] = (1-x)(-1050+0.91T) + 6400x \text{ cal/g.atom}$$
 (20)

At atmospheric pressure the free energy difference equations for the $\beta \not\sim$ transition is given by:

$$\Delta F^{\beta \to \omega}[T,x] = (1-x)(-690+0.99T) + x \Delta F^{\beta \to \omega}_{Mo} + [W-B] x (1-x)$$

at low solute levels $x(1-x)\rightarrow x$ yielding:

$$c_{x}^{\beta - \omega}[T,x] = (1-x)(-690+0.99T) + x[\Delta F_{Mo}^{\beta - \omega} + W - B]$$
 (21)

Since the one atmosphere, $T_0 = 300K$, upper limit for $\beta \rightarrow \omega$ transition occurs at x=16-17 at% Mo (13,14) then setting the driving force $\Delta F^{\beta \rightarrow \omega}[T,x] = 0$ under these conditions yields

$$\Delta F_{MO}^{S,m_{L}} + [W-B] = 2000 \text{ cal/g.atom}$$
 (22)

With this assumption

$$\Delta F^{3+\omega}[T,x] = (1-x)[-690+0.99T] + 2000x \text{ cal/g.atom}$$
 (23)

The driving force for $\alpha + \omega$ transition can be directly obtained by subtracting eq. (2) from (23) yielding

$$\Delta F^{\alpha + \omega}[T, x] = (1-x)(360+0.08T) - 4400X \text{ cal/g.atom}$$
 (24)

Equations (20), (23) and (24) which describe the one atmosphere relative stability of α , β and ω phases for diffusionless transformations can be used to compute the Γ_0 -x diagram at atmospheric pressure. This Γ_0 -x diagram for the Ti-Mo system is shown in Fig.1. The dashed region in this diagram represents the region of the metastable ω phase.

In order to calculate the P_0 -x metastable diagram T_0 = 300K the values of $\Delta V^{1\to j}(P,x)$ the difference in the molar volume between α,β or ω phase pairs as a function of pressure and solute concentration must be known. The dependence of V^{α} , V^{β} , V^{ω} as a function of the applied pressure was not measured experimentally

but can be estimated using the elastic moduli data for Ti-Mo and Ti-V alloys provided by Fedotov [14,26,27]. The elastic modulus of "pure" ω phase was estimated by Bowen from strain-deformation relationship measurements [27]. The dependence of volume of pure α -Ti on applied pressure was given by Fisher et al. [28] with use of the Murnagham's equation for α -Ti which is as follows:

$$\frac{v^{\alpha}[P]}{v^{\alpha}(0)} = [1+0.0040923 P]^{-0.22978}$$
 (25)

which can also be expressed in P power series as:

$$v^{\alpha}[P] = V^{\alpha}[0] [1-0.93 \ 10^{-3}P + 2.51 \ 10^{-6}P^{2}]$$
 (26)

where $V^{\alpha}[0]$ is the volume of hcp Ti at 300K and one atmosphere. The compressibility obtained from eq. (26) is equal to 0.93 x 10^{-3} . This compares well with the compressibility of 1.03 x 10^{-3} calculated from the relations between bulk modulus, the elastic modulus and the Poisson ratio.

The dependence of V^{ω} on pressure is estimated to be:

$$v^{*}(r) = v^{0}(0)[1-0.69 \ 10^{-3}r + 6.52 \ 10^{-7}r^{2}]$$
 (27)

where $V^{\alpha}[0]$ is the volume of the pure ω titanium at 300K and one atmosphere. This equation was developed by using experimental data [29] for ω zirconium. The celebrated and experimental pressure dependences of V^{α} , V^{β} and V^{ω} are shown in Eq.(2).

Since $\Delta V^{X+\omega}$ for titanium is a moderate function of pressure the main charge in $\Delta V^{X+\omega}$ on alloying is due to concentration. The experimental values of the molar volume of the different phases α , β , or ω which exist in the Ti-V and Ti-No systems taken from different sources including present research data is given in Fig. 3.

For the Ti-Mo system:

$$v^{\omega}[x] = v^{\omega}[0] (1-0.152x) \text{ cm}^{3}/\text{g.at.}$$
 (28)

$$V^{\beta}[x] = V^{\beta}[0] (1-0.180x)$$
 (29)

$$V^{\alpha}[x] = V^{\alpha}[0] (1-0.302x)$$
 (30)

For the Ti-V system:

$$v^{\omega}(x) = v^{\omega}(0) (1-0.141x); v^{\omega}(0) = 10.47$$
 (31)

$$V^{\beta}[x] = V^{\beta}[0] (1-0.157x); V^{\beta}[0] = 10.60$$
 (32)

$$v^{\alpha}[x] = v^{\alpha}[0] (1-0.214x); v^{\alpha}[0] = 10.66$$
 (33)

Under these conditions the dependence of ΔV^{1+j} for α,β and ω phases can be calculated as a function of the solute content. Finally, the relative stability of the metastable α , β and ω phases in Ti-Mo system at T = 300K is given by equations (34-36).

$$\Delta F^{\beta + \alpha}[1=300K, P, x] = (1-x)(-777) + 6400x + 23.9P \Delta V^{\beta + \alpha}[x, P]$$
 (34)

$$\Delta F^{S \to \chi} [T=300K, \nu, x] = (1-x)(-393) + 2000x + 23.9P \Delta V^{S \to \omega} [x, P]$$
 (35)

$$\Delta F^{(x,t)}[T=300K,P,x] = (1-x)(-384) - 4400x + 23.9P \Delta V^{(x,t)}[x,P]$$
 (36)

which are derived by substitution of equations 20, 23, 24 and 28-33 into equation 1. The computed F_0 -x metastable diffusionless phase diagram based on equations (34) and *36) is presented in Fig.4 together with the experimental data on different phases observed under pressure in Ti-No system.

The same regular solution approach can be used to calculate ΔF^{i+j} equations for Ti-V allows.

The free energy difference for $\beta+\alpha$ transition is given generally in Ti-V system at atmospheric pressure by:

$$\Delta F^{\beta + \alpha} [T, \mathbf{x}] = (1 - \mathbf{x}) \Delta F_{T_i}^{\beta + \alpha} + \mathbf{x} \Delta F_V^{\beta + \alpha} + \mathbf{x} (1 - \mathbf{x}) (A - B) \text{ cal/g. atom.}$$
 (37)

or introducing the value of $\Delta F_{T\,i}^{\beta\to\alpha}$ and $\Delta F_{V}^{\beta\to\alpha}$:

$$\Delta F^{\beta \to \alpha} [T, x] = (1-x) (-1050 + 0.91T) + x (1500 + 0.8T) + (1+x) (A-B) cal/g. atm. (38)$$

Using the Kaufman calculated mixing energy parameters A and B for Ti-V in equation (38) one obtains $\Delta F^{\beta \to \alpha}$ [T,x] = 0 at x = 31 at.% V at 300K. But, as follows from the experimental data in [30], unfortunately these parameters cannot describe properly the low temperature region of T-x phase diagrams in Ti-V systems. Namely, the use of Kaufman mixing energy parameters A and B, independent of temperature, do not agree with experimental data in the concentration region where ω phase exists upon quenching. (For the Ti-Mo system the simplification in A and B temperature independence has no substantial meaning since $T_0^{\beta+\alpha}$ in that system has strong concentration dependence. Therefore a possible mistake in location of $T_0^{\beta + \alpha}$ is a small one). For proper description and good fitting with the experimental data obtained, it is necessary to have a temperature dependence of the mixing energy parameters A and B. As in the case of Ti-Mo system, it is not possible to evaluate the temperature dependence of A and B separately because of lack of exact data needed for use of eq. (9) and (10) over the temperature range. In these conditions, to calculate the temperature dependence of (A-B), the widely accepted approximation (31,23,32) was invoked, that the difference between $M_S^{\alpha' + \beta}$ and $T_0^{\alpha' + \beta}$ is not large i.e. that the corresponding chemical driving force for the martensitic transformation $\alpha' \neq \beta$ in the Ti- β stabilizer alloys, $\Delta F^{\beta \neq \alpha}|_{M_{s}}$ is about - (50-60) cal/mole. In the same way, because the strain energy associated with the diffusionless $\beta + \omega$ transformation is even smaller than at $\beta + \omega$, the $T_0^{\beta + \omega}$ can be taken from corrected data on $M_s^{\beta h_W}$ [32]. Therefore by use of Duwez's data on temperature dependence of $M_S^{\alpha^{1} \to \beta}$ in Ti-V alloys [32] with the above mentioned correction for $\Delta F^{\beta - \alpha}$, the expression for (A-B) can be obtained finally from eq. (38) as follows:

(A-B) = 5180 - 505T for Ti-V

Now, with the knowledge of temperature dependence of (A-B), it is now possible

to calculate full concentration dependence of $T_0^{\beta\to\alpha}$. By substituting the temperature dependence of (A-B) eq. 38 becomes:

$$\Delta F^{\beta \to \alpha}[T,x] = (1-x)(-1050+0.91T) + x(1500+0.8T) + x(1-x) (5190-5.5T) \text{ cal/g.atom}$$
 (39)

For $\beta \rightarrow \omega$ transformation the free energy difference is given by:

$$\Delta F^{\beta \to \omega} [T, x] = (1-x) (-690+0.99T) + x \Delta F_V^{\beta \to \omega} + x[W-B] (1-x) cal/g.atom$$
 (40)

in the limit where $x(1-x)\rightarrow x$

$$\Delta F^{\beta \to \omega}[T, \mathbf{x}] = (1-\mathbf{x}) (-690+0.99T) + \mathbf{x} [\Delta F_{\mathbf{V}}^{\beta \to \omega} + W-B]$$
 (41)

The highest vanadium concentration observed for $\beta + \omega$ diffusionless transformation at 300K is 25 at.% V [30,34], i.e. $M_S^{\beta + \omega} = 300$ K. From $\Delta F^{\beta + \omega}$ [T,x] = 0 in eq. (41) it yields that at 300K and x = 0.25

$$1180 = \Delta F_V^{\beta \to \omega} + W - B \tag{42}$$

$$\Delta F^{\beta \to \omega} [T, x] = (1-x) (-690+0.99T) + 118-x$$
 (43)

Subtraction of eq. 39 from eq. 43 yields:

$$\Delta F^{\alpha \sim (1-x)} = (1-x)(360+0.08T) - x(320+0.8T) - x(1-x)(5180-5.5T)$$
 (44)

The combination of equations (39), (43) and (44) describe the T_0 -x diagrams for the stable and metastable α,β and ω phases which occur in the Ti-V system at atmospheric pressure, when no diffusion occurs under these conditions. This expression does not change practically Kaufman's description of T-x phase diagrams of Ti-base alloys at higher temperature. In the same time there is much better accordance now between calculated data and experimental results on the phases present upon quench and successive phase transformation under pressure. The boundaries are established by the use of conditions $\Delta F^{1\to j}$ [T,x] = 0. The calculated T_0 , x diagram for Ti-V system is presented in Fig.5 where the hatched area is the range of ω stability in this system.

To calculate the P_0 -x diagram, the extended free energy equations are employed which include the dependence of $\Delta F^{i \to j}$ on temperature, pressure and concentration.

The free energy equations at the isothermal condition (T=300K) are given by:

$$\Delta F^{\beta \to \alpha}$$
 [T,P,x] = (1-x)(-1050+0.91T) + x(1500+0.8T) + x(1-x)(5180-5.5T) + 23.9P $\Delta V^{\beta \to \alpha}$ [P,x] cal/g. atom (45)

$$\Delta F^{\beta+\omega}[T,P,x] = (1-x)(-63C+0.99T) + 1180x + 23.9P \Delta F_{Ti-V}^{\beta+\omega}[P,x]$$
 (46)

$$\Delta F^{\alpha + \omega} [T, P, x] = (1-x) (360+0.08T) - x(320+0.8T) - x(1-x) (5180-5.5T) + 23.9P $\Delta V^{\alpha + \omega} [P, x] \text{ cal/g. atom}$ (47)$$

Since the pressure dependence of $\Delta V^{\alpha \to \omega}$ for pure T1 is small we assume that ΔV^{1+j} for the T1-V system is a function of solute concentration only. The experimental data on V^{1} ($\mathbf{i}=\alpha,\beta,\omega$) as a function of solute concentration x in T1-V alloys is given by equations (31,33). Substitution into equations (45-47) results in equations which describe the diffusionless P_0 -x diagram at T = 300K. The pressure dependence P_0 on x is given by the condition ΔF^{1+j} [T=300K,P,x] = 9. The computed P_0 -x diagram at T = 300K for the T1-V system is shown in Fig. 6 together with the experimental results on the stability of different phases which occur in this system under high pressure (see next section).

3. Phase transformations in metastable Fi-V and Ti-Mo alloys induced by high pressure treatment

This section presents the experimental results on structural changes in Ti-V and Ti-Mo. Only the metastable structures created by quenching were pressurized and high pressure was applied at room temperature. Therefore, all observed phase transformations were regarded as completely diffusionless. It should be noted that in most of the previous publications, for example, [35-37], the phase transformations in metastable Ti-alloys were diffusion-controlled.

The choice of the alloys' concentration was done in such a way that all the main as-quenched structures in Ti alloys, i.e. α' , $\alpha'+\omega+\beta$, $\beta+\omega$ and β could be investigated.

3.1. Experimental procedure

a) Sample preparation

The alloys were arc melted from titanium (>99.9 wt.% analytical purity) with V or Mo (both spectroscopical purity) on water-cooled cold hearth and remelted 5 times to insure homogeneity. A protective atmosphere of purified argon and a titanium getter was used. The weight changes, after melting, were small ($\leq 0.1\%$) and the composition of the alloys was calculated from the weight of components. The resultant ingots were cut into plates which were cold rolled to foils of 100-120 μ m thickness. The specimens for structural studies were annealed 3h at 1100°C in a furnace with a dynamic vacuum, better than 2.10^{-6} torr and then quenched under vacuum into DC 704 diffusion pump fluid. The composition of the samples of the alloys is shown in Tables 1 and 2 together with the lattice parameters and the phase content.*

b) High pressure treatment

The high pressure treatment was carried out on a single stage apparatus with a solid-medium cell providing the minimal deviation (1-2%) from uniformity. The pressure mediums were graphite and AgCl. The pressure inside a pyrophilite cell was calibrated by tracing the phase transitions of Bil-Bill (2.54 GPa), Bal-Ball (5.5 GPa), Billl-BiV (7.60 GPa) and Snl-Snll (9.2 GPa). The samples, in the shape of disks, were placed inside a cell. Pressure was increased at a rate less than 1 MPa/min up to a specified value. This pressure was maintained for 2 to 24 hours with subsequent releasing of pressure for 1 hour. After such a procedure all samples were subjected to structural analysis.

^{*} The Mo and V concentiation will be given in atomic percent throughout.

c) X-ray and electron microscopy analysis

X-ray diffraction patterns were taken using a Phillips diffractometer with CuK α radiation equipped with a bent single crystal graphite monochromator. The volume percent of ω -phase was determined from the relative integrated intensities of α, β and ω -reflections. The structure factors, Lorentz polarization factors and unit cell size of the ω, β and α phases were taken from [38-40]. It was assumed that the temperature factor for β, α and ω phases was of a similar magnitude. The error in the volume fraction calculation was approximately \pm 3 vol. pct.

The electron microscope samples were electropolished at -40°C under conditions proposed by Blackburn and Williams [41]. The structures were examined using both JEOL 100B and JEOL 200B electron microscopes at 100 kv and 150 kv respectively.

3.2. Experimental results

a) Ti-Mo system

Ti.3% Mo

In the as-quenched state, X-ray analysis reveals the existence of two martensitic phases: α' with an hop structure and α'' with an orthorhombic structure described previously [42-44]. (X-ray analysis data for all alloys is presented in Table 1). The micrograph in fig. 7a illustrates the complex martensitic structure of the as-quenched Ti-3 Mo alloy. α' fine plates are seen in region A (see Fig.7a) big plates of α' martensite (B) divide the bulk of what seems to be α'' martensite. Retained β phase was not detected after quenching.

After hps at 4.5 GPa for 3 h no significant changes in the quenched structure could be seen by TEM examination and on X-ray diffractograms.

After hps at 7.5 GPa for 3 h very small particles of the second phase were observed with a highly densed dislocation network in the α' martensite plates (see fig. 7b). The experiment on measurement of sample resistivity under

high pressure showed a moderate but definite change in the resistivity of the sample at P=7.0 GPa. This can certainly be attributed to the onset of ω phase formation.

After hps at 9.2 GPa the volume fraction of ω phase approached 23% as judged by λ -ray analysis. The structure of the soaked alloy is shown in figs. 7c,d. The contrast of the ω particles appeared only under certain diffraction conditions. The morphology of the induced particles imaged in the dark-field (fig. 7) was difficult to distinguish.

Ti-5% No

showed that the structure consisted of the following three phases: α -martensite in the shape of small needles, and a β -matrix in which very small α particles are embedded. The electron diffraction pattern (see fig. 9a) confirms the presence of α phase. X-ray diffraction obtained from bulk sample showed that the type of martensite (α ") in this alloy has an orthorhombic structure as it was identified by the pair of high angle lines (200) α " and (130) α ". An insufficient small separation between the low angle lines (110) α " and (1020) α " and (021) α " and (111) α " makes the differentiation between a hexagonal and and orthorhombic product more difficult in this case. Furthermore, electron microscopy examination of thin folia prepared from the same sample used for X-ray diffraction shows evidence of a distorted hexagonal martensite.

After hps at 7.0 GPa and especially 9 0 GPa the quantity of α and ω phases increased as determined by X-ray data (fig. 8a). The structure of this alloy subjected to hps 7.0 GPa is shown in fig. 9b. It can be observed that pressure-induced α -martensite plates grow at the expense of the 8-matrix.

An increase of hps up to 9.0 GPa gave rise to the enlargement of α' -martensite plates (see fig. 9c). The large α' -plates contain a mixture of $\alpha + \beta$ (possibly as a result of partial transformation of α' to $\omega + \beta$), as well

as "secondary" α ' plate+like regions. Superimposed reciprocal lattice sections of ω, β and α ' phases are seen in the diffraction pattern and in the corresponding indexing scheme (see figs. 9d,e). This complex structure may be the result of the similarity of the thermodynamic properties of all three phases in this particular alloy. Therefore, the application of high pressure causes successive stages in phase transformation development. This development could also proceed in a reverse direction during the unloading of the sample.

Ti-li.5% Mo

In the as-quenched state the X-ray diffractograms (fig. 8b) showed no traces of ω phase. On the other hand, the TEM micrograph exhibited a mottled contrast, which can be attributed to a finely dispersed phase. This dispersive phase or, more correctly, the small zones which may serve as precursors for ω phase are probably responsible for the small degree of diffuse streaking observed on the corresponding diffraction pattern.

After hps at 9.2 GPa the quantity of ω induced phase was evaluated by X-ray diffraction analysis (see fig. 8b) as 9.15 vol.%. Application of pressure gave rise to dislocation network and growth of the second phase particles. The election diffraction pattern shows clear reflections of ω particles and circular diffuse streaks. Diffraction of distinct ω particles results in appearance of clear ω reflections. While the increasing amount of the ω phase precursors are responsible for the marked diffuse streaking. The dislocation network observed after hps is due to the increasing transformation strains, and compression strains created by pressurization of samples with a structure containing a mixture of anisotropic phases.

Ti-15% Mo

In the as-quenched state the "athermal" ω phase was easily imaged in the extinction contours (see fig. 10a). This can be explained by the dynamic diffraction conditions inside the extinction contours providing the best

contrast for very small coherent particles. The extinction countours themselves could be local distortions in the β -matrix caused by the transformation strains. The electron diffraction pattern shows a complex network of diffuse intensity (see fig. 10b). The paired positions of ω spots reflect the symmetrical arrangement of the ω precipitates to each other relative to $\{110\}$ plane.

After hps at 9 0 GPa the quantity of the ω phase increased. The grown ω phase particles appear together with a dislocation network as is shown in tig. 10c.

Ii with 18 to 35% Mo

In the as-quenched state the X-ray analysis of all these alloys revealed the existence of only one phase (identified as the ß-plase). Diffuse stattering was observed on the electron diffraction pattern of the as-quenched Ti-18% Mo alloy (see fig. 11a) and paired Kikuchi lines appeared on the electron diffraction pattern of the Ti-20% Mo alloy (see fig. 11b). It is interesting to note that the composition of these alloys corresponds to the maximum of the miscibility gap of the Ti-Mo phase diagram [47]. The effect of diffuse scattering and paired Kikuchi lines is usually assigned to the first stages of spinodal decomposition. But it is difficult to suggest that such decomposition could occur during the quick quench of these alloys. It is more likely that the formation of short stage ordered zones due to the static displacements of short at minimum stage ordered zones due to the static displacements of short at minimum short resulted in the observed effects [45]. No peculiar details were observed for as-quenched Ti-25% Mo alloy in the TEM minimum pains.

After hps at 4.5 GPa the TEM examination revealed particles of a second phase in alloys containing 18 to 25% Mo (see figs. 11c,d). These particles have an ellipsoidal shape characteristic of the a phase. However, analysis of the diffraction pattern did not allow these particles to be idensified as phase. Probably the structure of the pressure induced phase is distorted and its crystallographic structure is different from the "classical", phase

This distortion of ω phase can be caused by its elastic interaction with a β -matrix, possessing significantly more rigidity in comparison with alloys containing less Mo. The alternative reason might be the decrease of the ω phase symmetry due to the increase of a pair interaction between Mo atoms in these alloys with a large amount of molybdenum.

X-ray analysis in all samples showed no trace of ω phase lines, and the quantity of ω phase may be evaluated as less than 2 to 3%.

After hps at 9.0 GPa, no change was obtained in the X-ray diffractograms which showed only lines characteristic of the β phase.

The results of phase content analysis and lattice parameter determination are summarized in Table I. Fig.3 shows the variation of molar volumes for α , β and ω phases as a function of composition. The data of X-ray analysis are in accordance with TEM observation. It shows that the ω phase remains in substantial quantity after a high pressure release.

From the data presented in Table I, it follows that the specific volume V^{α} for α phase depends on the molybdenum content more than the specific volume V^{β} does for β phase (see fig. 3). Therefore for alloys with Mo $^{\gamma}$ 5% specific volume increment $\Delta V^{\beta+\alpha}$ becomes negative ($\Delta V^{\beta+\alpha} < 0$). That means that the high pressure will provide a driving force $\Delta V \times \Delta P$ for both $\beta+\alpha$ transformation ($\Delta V^{\beta+\alpha} < 0$) for all concentration range) when Mo $^{\gamma}$ 5%

b) Ii-V system

Ti-2% V, Ti-6% V alloys

 χ -ray analysis of the quenched Ti-2% V and Ti-6% V alloys indicated that only hexagonal α' martensitic phase was present and it was confirmed by electron microscopy (see Table II).

When pressurizing the samples at 6.5 GPa and 9.2 GPa the electrical resistivity was measured. No step-like changes in the electrical resistivity

Table 1: The phase content and lattice parameters of Ti-Mo alloys after quenching and high pressure soaking at room temperature

Sample Content (at.%)	Phases present	Volume frastion	Experimental lattice parameters (Å) (+ 0.006)	Specific volume (cm ³ /mol)	Phases present	Volume Fraction	Experimental lattice parameters (Å) (* 0.006)	Specific volume+ or phase (cm ³ /mol)
		À	Aiter quenching		<u> </u>	After high p	high pressure soaking up to 9.0 GPa	9.0 GPa
Ti ₉₇ No ₃	ა' (hcp)	0.35	a = 2.954	10.57	**************************************	0.28		
	a" (ortho)	0.65	a = 3.007 $a = 5.021$ $c = 4.650$	10.54	ε ς .	0.49 0.23	a _ω = 4.612 ເພ = 2.821	10.42
Ti ₉₅ No ₅	α" (ortho) β (bcc) ω (hex)	0.21 0.58 0.21	$a_{\beta} = 3.280$	10.62	ខ្មែក ៖	9.36 9.23 0.41	$a_{\omega} = 4.602$ $c_{\omega} = 2.820$	10.37
Ti Mo _{11.5}	β (bcc) *	0.15-1**	$a_{\beta} = 3.251$	10.35	h. 🐯	0.84 0.16		10.31
Ti ₈₅ Mo ₁₅	E ဃ € *	0.9-1**	$a_{\beta} = 3.247$	10.30	F V + +	9.9-1	$a_{\omega} = 4.587$	10.23
T182 ^{Mo} 18	ರು	L L	$a\rho = 3.243$	10.27	* + +	0.9-1	c _ω = 2.800	
T ¹ 75 ^{Mo} 25	ω	-	$a_3 = 3.229$	10.14	€ 70 * ‡	0.9-1		

Phase detected by electron microscope analysis.

^{* *} *

^{**} X-ray analysis doesn't reveal the existence of a phase + According to expression $V_2 := \sqrt{3} \cdot \frac{12}{2} \cdot \frac{10^{23}}{2^3} \cdot \frac{10^{23}$

Table 2: The phase content and lattice parameters of Ti-V alloys after quenching and high pressure soaking at room temperature

Sample content (%)	Phases present	Volume fraction (%)	Experimental lattice parameters (Å)	Specific volume (cm3/mole)	Phases present	Volume fraction (2)	Experimental lattice of ω phase (λ) (± 0.006)	Specific vol. of w phase (cm ³ /mole)	c/a value of w phase
		After q	quenching		Afte	After high p	pressure soaking	ing up to 9.0	0 GPa
Ti-2V	a'(hcp)	Va,=100	a = 2.949 c = 4.686	V ₃ ,=10.63	ر ع	100		i	w-Ti (0.610*)
ri-6v	a'(hcp)	v,≈100	a = 2.942 c = 4.678	V_{α} ,=10.56	2 3	$V_{\alpha} = 64$ $V_{\omega} = 36$	$a_0 = 4.604$ $c_0 = 2.819$	$V_{x} = 10.38$	0,6112
Ti-10V	α'(hcp) 含(bcc) (hex)	$\begin{vmatrix} V_{\alpha} & =44 \\ V_{\beta} & =34 \\ V_{\text{CM}} & =22 \end{vmatrix}$	$a_{ci} = 2.936$ $c_{ci} = 4.667$ $a_{i} = 3.261$	$V_{A_1} = 10.48$ $V_{B_1} = 10.44$	್ರ ೮ 3	$V_{cl} = 31$ $V_{cl} = 26$ $V_{cc} = 43$	$a_{\omega} = 4.594$	V _ω =10.32	0.6123
Ti-14V	β (bcc) ω (hex)	$V_{B} = 68$ $V_{D} = 32$	ag≈ 3,254	$V_{3} = 10.38$	യ 3 ്മ	VB = 38 VE = 57 VQ > 5	$a_{u}=4.586$ $c_{u}=2.810$	V _s ≈10,28	0.6127
Ti-20V	$\left \begin{array}{ccc} \mathbb{E} & (\mathrm{bcc}) & \mathbb{V}^{\mathbb{S}} \end{array} \right $	-06= g{s	a _{\beta} =3,238	ν ₃ =10.26	ფ 3	$\begin{array}{c} V_{R} = 7.4 \\ V_{W} = 26 \end{array}$	$a_{w}=4.573$ $c_{w}=2.804$	V=10.19	0.6132
Ti-30V	β (bcc)	$V_{3} = 100$	a = 3,227	ν _ξ =10.11	a' (tra	(traces) $V_{\vec{b}} = 100$	1	1	
Ti-35V	£ (bcc)	V _€ =100	$a_{\beta} = 3.217$	$V_{6} = 10.02$	ପ	V _B =100	1	ì	
Ti-40	ß (bcc)	v ₃ =100	$a_3 = 3.210$	ν _β =9.96	್ತು	ν _β =100	1	ł	
+ acordi	ing to exp	acording to expression V_{α} .	ı	/3 a ² c/4 x 6.02.10 ²³ cm ³ /mole	/mole ;	V = 13 a	V _v = √3 a ² c/6·6,02·10 ²³ 3/mole	n /mole	
		ک ک	il G	3/2.6.02.10 ²³ cm ³ /mole.					

* according to Jamieson data for pure w-Ti [16].

were found in the case of Ti-2% V, but distinct change in the slope of the resistivity-pressure curve for Ti-6 %V was observed. This fact was regarded as the evidence of the ω phase formation in Ti-6% alloy under high pressure. On the other hand the extensive examination by electron transmission microscopy (TEM) failed to reveal the presence of the ω phase in Ti-6% V specimens after a high pressure run.

It is possible that the pressure formed ω -phase was destroyed and transformed back to α' martensite after releasing the pressure. Only martensitic plates of titanium α' - martensite with acicular morphology were observed (iig.12).

Ti-10% V alloy

a' - martensite, β -phase and athermal ω -phase were found in quenched specimens by means of an X-ray technique. Electron micrography taken from these specimens show α' martensitic plates in β matrix and very fine thin ω plates inside an α' martensitic plate. Fig. 13a represents the morphology of these thin ω plates in the dark field taken from the ω -reflection. Corresponding electron diffraction pattern and its schematic representation are given in fig. 13c and fig. 13d. The analysis of this electron diffraction pattern shows that the orientation relations of α' and ω plates to the β phase are consistent with those usually observed for β - α and β - ω transformation [46]. Small ellipsoidal ω particles were also observed in β matrix and the well known ω/β orientation relationships [46], were confirmed. It should be pointed out that it is not clear whether the ω particles observed in α' martensitic plate are the result of direct α - ω transition or whether both β - α' and β - ω transformations have taken place simultaneously.

After high pressure soaking at 9.2 GPa the amount of the ω -phase increased as it was found by X-ray technique.

The TEM analysis showed that high pressure treatment results in the change of the ω morphology together with the additional growth of the individual ω - particles. In fig. 13b the dark field electron micrograph shows the ω particles in α plate after pressurizing the specimen. Thin plates of the ω particles, which were observed before pressurizing (fig.13a) were round to have grown after high pressure treatment. The ω particles also became more rounded and elliptical in shape (fig.13b) in comparison with their original plate form.

Ti 14% V alloy

Fig. 14a shows the morphology of as-quenched Ti-14% V alloy. Very fine ω needles in the β -matrix (marked by arrows) appear in the bright field. The inset in fig.14a shows the dark field image of the ω particles in asquenched specimen.

Fig. 14b represents the morphology of the sample which was subjected to 9 2 GPa pressure; two effects, which follow as a result of high pressure treatment, can be pointed out:

- z) The growth of α' needles (see α' needles in fig.14 a marked by arrows and compare them to α' martensitic plates in fig.14b).
- b) The growth of ω particles (see inset in fig.14b which represents the dark field image of the ω particles after pressurizing the specimen.

The magnification for inset 14a and 14 b is the same).

An increase in the amount of the ω phase in pressurized specimen was also detected by X-ray analysis (Table II).

ri 18% V and Ti-20% V alloy

The retained β phase and the ω phase were observed in the as-quenched specimens. The formation of α' phase was suppressed. Dark field TEM micrograph taken from the ω -reflection shows the elongated ellipsoidal shape of ω particles (see inset "a" in fig.(15).

The high pressure treatment at P=7.5 GPa increases the amount of the ω phase and also effects its morphology. The ellipsoidal shape of the asquenched ω is changed and tends to be cuboidal after pressurizing. Inset "b" in fig.15 represents the dark field image of pressurized specimen. Some of the ω particles which have approximately cuboidal shape are marked by arrows. High pressure treatment also results in the appearance of ω ' martensite which is induced in the β metastable matrix. Bright field image of the pressure induced ω ' martensitic plates is presented in fig.15. Habit plane of pressure induced ω ' martensite was found to be $\Omega(334)$ type (actually $\{9,7,141\}$) which is compatible with the results of Wood $\{251$ for the habit plane $\{9,7,12\}$ for deformation induced ω ' martensite in Ti-Mo alloy.

Ti-30 and Ti-35% V

Figs. 16a and 16b show a selected area diffraction pattern with zone axis [310] obtained from a Ti-30% V quenched alloy and a Ti-30% V pressurized alloy respectively. In fig.16a the diffuse scattering is faint whilst fig.16b exhibits intensive diffuse streaking which could be ascribed to a welike formation caused by high-pressure treatment. (Similar diffuse intensity patterns for as-quenched Ti and Zr-based alloys were observed by Williams et al. [48] and by Sass [49].

X-cay Analysis

alloys that were initially quenched and then pressurized. The results of phase centent analysis and lattice parameters determination are summarized in Table II. Fig.3b shows the variation of molar volumes for alpha, beta and omega as a function of composition. The data of X-ray analysis are in accordance with TEM observation for II with 6-20% V alloys and indicate that the cophase remains in substantial quantity after high pressure release. In our experiments pressure was not so high as to cause 100% omega transition. Besides, the reverse

transformation to the parent phase could partially take place during the pressure release. Thus the maximum amount of ω of about \simeq 57 vol.% was obtained (for Ti-14% V alloy).

From the data presented in Table II, it follows that the specific volume V^{α} for α phase depends on vanadium content more than the specific volume V^{β} does for β -phase (see fig.3). The axial ratio $C_0^{(\alpha)}/a_0^{(\alpha)}$ for the ω phase increases with the increase of vanadium content but does not remain constant as it was reported in [37]. (It should be pointed out that our results were obtained for the case when the ω phase was formed by high pressure diffusionless treatment. It was, the composition of the ω phase depends only on composition of the original alloy and is not influenced by the diffusion process).

The increase of $C_0^{-\omega}/a_0^{-\omega}$ with the increased vanadium content can indicate the weakening of atomic bonds in the ω phase when vanadium concentration in the ω phase increases. This result is an indirect evidence of the decrease of those parameters which characterize the ω lattice strength such as Debye temperature, Young modulus etc., with the increase of vanadium content.

Another important result is that specific volume increment $\Delta V^{\beta + \alpha}$ is degative ($\Delta V^{\beta + \alpha}$, 0) when vanadium content is more than 15%. Therefore high pressure will provide driving force $\Delta V \cdot \Delta P$ for both $\beta + \alpha$ and $\beta + \alpha$ transformations ($\Delta V^{\beta + \alpha} = 0$) for all concentration range).

ک. <u>Discussion</u>

3.3.1 The sequence of diffusionless transformation in li-Mo and Ti-V alloys.

The experimental results can be readily explained when we consider the calculated diagrams T-X and P-X (see figs. 1,4,5,6). When the alloy content is 0-3% Mo or 0.8% V the lines of the free energy equilibrium $T_0^{-\beta+\alpha}$ and $T_0^{-\beta+\alpha}$ on T-X diagrams are far from each other. Therefore, during quenching from β region the alloy first undergoes transformation $\beta+\alpha'$ at the temperature

greater than $T_0^{\beta+\omega}$. The β phase is completely transformed to α ' phase before the line $T_0^{\beta+\omega}$ is reached during cooling. Thus only the α ' phase is observed in 0-3% Mo or 0-8% V regions upon quenching.

Applying high pressure at 300°K to the as-quenched structure (a' martensite) induces the $\alpha' \not\rightarrow \omega$ transformation and after the pressure release $\alpha' \not\rightarrow \omega$ mixture persists by virtue of $\alpha' \not\rightarrow \omega$ transformation hysteresis. During our experiments we could not observe in situ how far the process $\alpha' \not\rightarrow \omega$ develops and neither could we estimate which fraction of the high pressure induced ω remains at P=1 atm.

The sequence of transformations in metastable Ti-0-3% Mo or Ti-0-8% V alloy is as follows:

$$\beta \xrightarrow{\text{Quench}} \alpha'(\beta) \xrightarrow{\text{Pressure}} \alpha'(\beta) + \omega(\alpha')$$

The symbols in brackets indicate phases from which the obtained structures originate.

In the alloys with \sim 4-10% No and 8-14% V the curves $T_0^{\beta\neq\alpha}$, $T_0^{\beta\neq\alpha}$ and $T_0^{\lambda\neq\alpha}$ (and the corresponding martensite start temperature lines $M_S^{i\to j}$) are in near vicinity from one another. (The small distance between $T_0^{i\to j}$ and $M_S^{i\to j}$ lines is the consequence of a moderate value of the activation energy for $\beta\neq\alpha'$ and $\alpha'\neq\omega$ transformation in Ti-V and Ti-Mo systems. Therefore for 4-10% Mo (6-14% V) concentrations, the quenched β phase is not transformed to α' phase alone, since the $\alpha'\neq\omega$ and $\beta\neq\omega$ transformations are also expected to occur. Thus the as-quenched structure consists of β matrix with ω particles and α' needles which contain fine and regularly arranged ω plates. It is not clear as yet whether the ω plates observed in α' needles in Ti-V alloy (see fig.13a) are

When high pressure is applied, the α' and ω phase grow at the expense of β phase. In Ti-V alloys the ω phase morphology changes after pressurizing and ω particles become more rounded.

The diffusionless reactions for 4-10% Mo (8-14% V) concentration range can be described as follows:

? Quench
$$\alpha'(\beta) + \omega(\alpha') + \omega(\beta) + \beta_{retained}$$
 Pressure $\beta + \alpha'(\beta) + \omega(\alpha') + \omega(\beta)$

As it follows from calculations of free energy changes for these transformations (Sec 2) the pressure of about 20-30 GPa is necessary in order to complete $\beta+\alpha'$ and/or $\beta+\omega$ transformation in this concentration range. Besides, the higher the molybdenum (vanadium) content the greater must be the pressure $P_0^{\beta+\omega}$ and $P_0^{\beta+\alpha}$ (see Fig.4,6). On the other hand the phase hysteresis does not considerably depend on the value $P_0^{\beta+\alpha}$. Therefore, it should be expected that upon releasing the pressure reverse transformation in alloys with higher vanadium content will start at higher pressures Consequently, a smaller amount of the pressure induced phase will remain after unleading. It was this tact that was experimentally observed.

For alloys with molybdenum content less than 15% (V < 25%) but more than 110 6% transformation is observed upon quenching. It is in agreement with the diagrams in Fig.1,5, where only $T_0^{-(2\pi)}$ curve will be crossed during cooling from that the formation of the x-phase will be enhanced by high pressure as follows from (P-X) part of Fig. 4,6. The sequence of diffusionless transformations can be described as follows:

: Quench
$$\beta + \alpha(\beta)$$
 Pressure $\beta + \alpha(\beta)$

When the molybdenum content is more than -15% (25% for V) the sophase is well stabilized and it remains after quenching. As it follows from Figs. 4,6 pressure that is high enough can promote 1% transformation. According to 1. Williams et al. [48,31] the B% transformation proceeds as an ordering process of linear displacive defects in $[111]_{\beta}$ atomic rows. Initially the short range correlated displacements appear and result in the characteristic diffuse streaking. When driving forces for B% phase transformation increase turther due to cooling of to the increase of pressure, the long range correlated displacements.

appear, the final ω phase is created and the diffuse effects get transformed into well-resolved ω diffraction patterns. This was shown during cooling for Ti-Fe and Ti-Mo alloys in (39). After high pressure application this effect is observed by us in alloy fi-15 Mo. (In more detail the diffuse scattering will be discussed in Sec. 5.3.2).

3.3.2 On changes in ω phase morphology in Tu-V alloys after high pressure application

As we have already pointed out the high pressure treatment of the Ti-V olloys substantially influences the morphology of the withase. In all investigated alloys the w particles become more rounded after applying high pressure. The images of the a particles in our electron micrographs are not sharp, and it may be considered as an evidence of coherency strains associated with the or/matrix interface [52]. This implies that the cophase morphology may be determined by minimisation of the total of the surface and strain energy. Williams and sta kburn [54, 55, 36] have—suggested that the w particle morphology can be related to the misfit between the particle and matrix lattice. In those systems where the mistir is high or 1 0 path 'li-V, Ti Fe, Ti-Cr) the particle shape is determined by the minimisation of the quastic strains in the matrix. In low mistir grams (Ti-Mo, Ti-No) the particle shape is governed by the minimisation of the carface energy. In the present study the changes in the a morphology cannot re associated with the mistit changes. The compressional ananges of the lattice parameters and volumes of both the a phase and li-matrix are approximately the same, therefore the changes in misfat values due to the lattice parameter shift nicduced by pressurtzing are practically negligibe. Basides, the pressure induced growth of the a particles is not accompanied by composition changes. Thus in high pressure experiments the misfit cannot be incluenced by the composition variation. On the other hand, we may assume that the surface energy term associated with the coherent of matrix interface is rather small

in comparison with the strain energy term. Since the degree of coherency is not changed after high pressure application, the strain energy term remains predominant.

The only reasonable cause which influences the elastic energy of the particles in our compression studies is the change in the rigidity of the matrix. The rigidity of the matrix increases after applying high pressure. Thus the strain energy associated with the w/matrix interface will increase. It follows that the particle which grows during pressurizing will tend to reduce its interface area. Thus more rounded shapes of the w particle will be favourable after pressurizing.

3 3.3. Diffuse scattering effects

At the present moment the diffuse scattering effect is ascribed to a short range order displacement of short atomic rows [45,56,55]. As a result of such a displacement a short range ordered state [45] or zone is created. These zones serve as the places where a phase eventually arises in its final shape when the change from short to long-range ordered displacement takes place under an increasing driving force. In the same sequence the diffuse streaking is changed to sharp a reflections

The following picture can be seen by summarizing the above experimental data:

- a) Diffuse scattering was not observed for alloys containing α' -phase in the as-quenched state (3 to 5 at.% Mo).
- b) Diffuse scattering occurs in as-quenched ? phase alloys with higher Mo concentration (11 to 18 at %). An intense diffuse network was observed in the Ti-15% Mo alloy (fig.10b), bordering on the region where ω is still observed (fig.1).
- c) After hps of the Ti alloys with 18 to 25% Mo a weak diffuse scattering is observed together with secondary a-like reflections.

Since the appearance of diffuse scattering relates with concentration we may use the results of the phase diagram calculation. The calculation predicts that at 300K the alloy with 15% Mo has to be out of all the alloys under study, nearest to the $\beta \not\leftarrow \omega$ phase equilibria line. Consequently, this alloy in the as-quenched state must display maximum instability of the β -matrix. In alloys with less No the instability of the β phase "discharges" in the advent of the ω phase in the course of fast cooling during quenching. Therefore these alloys might have minimal or not at all diffuse scattering.

In alloys with Mo > 15% one has to observe diffuse scattering decreasing with the the amount of Mo.

The application of high pressure to these alloys instantaneously increases the amount of ω phase due to an increase in the driving force for 3+, transformation. Simultaneously, instability of regions of 0 matrix not yet transformed, grows, giving rise to an ordered displacement of atomic rows and appearance of diffuse scattering as a precursor of its complete transition to the equilibrium form of the ω phase.

In the case of Ti with V $\leq 30\%$ V according to the malculations the assuments transformation should be expected to start at fairly high critical pressure. Well resolved a diffraction pattern should be expected; however, destruction of the apprase begins during unloading, and only short-range correlated displacements remain at 1 atm. giving rise to very intensive diffuse streaking. The diffuse streaking for pressurized specimen is more intensive than that for the specimen in an as-quenched condition. Thus we can conclude that in addition to 111% displacements caused by quenching the high pressure treatment results in appearance of new short range correlated displacements in the lattice. These displacements are certainly static in nature be asset they are due to the pressurizing and cannot be related to changes in temperature.

3.3.4. The correlation between the phase stability and basic physical properties of the Ti-V and Ti-Mo alloys

Comparison of experimental and calculated phase diagrams, in the Ti-V and Ti-Mo systems disclose the same features in phase stability and succession of phases due to alloying and application of high pressure. Pressure induces these changes more efficiently in the Fi-Mo system. This seems natural since both elements have atomic radii which are smaller $(r_v=1.34)$ and $r_{Mo}=1.39$ Å) than that of Ti $(r_{Ti} = 1.47 \ \text{Å})$ while both of their valency electron concentrations are larger. Alloying Ti with V and Mo could be considered as analogous to coplying high pressure, since both diminish the mean atomic volume and increase the valence electron concentration, $\hat{n_e}$. This point of view has been presented many times (recently in [57] in an attempt to explain phase transformations as stemming from changes in electron-to-atomic ratio or d-band occupancy (LN_d^c) [57], electronegativity, etc. These physical models are qualitative since they ranget take into account changes in lattice vibration parameters and electronpen or interaction caused by changes in composition and pressure. Thus, it is impossible to change ΔN_{d} of transition metal by allowing by an amount which is contivalent to that induced by pressurization without altering the average weight If the atoms in the lattice and, as a consequence, substantially change lattice properties and electron-phonon interactions. In the present case one has to add twice as much V to titanium than Mo to obtain the same increase in the number of declectrons. However due to the great difference in atomic weights (V=50.94, Mc= (5.04) this immediately creates a strong difference in Ti-V and Ti-Mc fattice dynamics. For these reasons it is difficult to predict quantitatively the behavior of transition metals allows from first principles, while the thermodynamic approach can be applied successfully. On the other hand, establishment of correlations between phase stability and basic physical properties (Debye temperature θ_n , electronic specific heat coefficient τ_{el} ,

critical superconducting temperature, $l_{\rm c}$, et.) can help rationalize the source of phase stability under some conditions

A complete set of physical data for Ti-Min (58) and II-V (59) systems obtained by Collings et al. is now available as nown in Tizare 8 of is instructive to examine the trends observed when Ti is allowed with Mo of T and compare the results with pressurization of those offices in a metastacle state.

The two phase diagram regions with 0-37 Me or 0-87, of its stabilized upon quenthing and the z-phase injects under pressurfaction. As one No V concentration informates the $\Gamma_g^{(1)}$ decreases. The depose in the mest studie phase in the mest since. This larger vibrational entraps relative to $(1 + \epsilon_{11}^2 + \epsilon_{11}^3)$ in spite of the destabilizing inflicence of z' phase's nighter election density. $\Gamma_{e1}^{(2)} = \Gamma_{e1}^{(3)} = \Gamma_{e1}^{(3)} = \Gamma_{e2}^{(3)} = \Gamma_{e1}^{(3)} = \Gamma_{e2}^{(3)} = \Gamma_{e2$

2. In the intermediate regions with a Mora (5) or 10 or 2 a, tweel all three phases are found to assist again question, closely research, the approach while the amount of the contract of the stage the

It is considered that the signations, entropy of the particles place, s_{V1} , is smaller, as its v_0 , the cibrational characteristic temperature, is inches [60]. The internal energy (t_{e1}) component to proportional to $n(F_0)$ or [60] where $n(F_1)$ is density it states at the Termi level.

concentration of Mo/V is still insultritient to stabilize the d phase completely. The following relationships are observed:

$$\begin{array}{lll} n(E_{\mathfrak{p}})^{\omega_{0},0} n(E_{\mathfrak{p}})^{\mathfrak{T}} & n(E_{\mathfrak{p}})^{\mathfrak{S}} & , & \forall_{1} \leq \frac{3^{\mathfrak{T}}}{9} - \frac{3^{\mathfrak{S}}}{9} + 2^{\mathfrak{S}}, & \\ \\ E_{\mathbf{e}1}^{\mathfrak{T}} & E_{\mathbf{e}1}^{\mathfrak{T}} & E_{\mathbf{e}1}^{\mathfrak{S}} & & S_{V_{1}}^{\mathfrak{T}} & S_{V_{2}}^{\mathfrak{T}} & ; & S_{V_{1}}^{\mathfrak{T}} + S_{V_{2}}^{\mathfrak{T}} & , & \text{where} \end{array}$$

 $S_{\chi 1}^{1}$ is the vibrational entropy component. The contiguostion amplicate the entropy, $S_{\chi 100}$, is the same for all three phases in question to a diffusioniese transformation. As MoVV concentration in reases, $S_{\chi 1}$ and $I_{\chi 2}$ decrease state. The marked increases of $I_{\chi 10}$ to 11-26 is a second collaborate, and allowing, and allowing the unitaries the infrared collaborate and the collaborate transformation. The collaborate exhibit different behavior. Thus $S_{\chi 1}^{(1)}$ and $I_{\chi 1}^{(2)}$, increase with MoV addition. Takes pressure, destabilization of 3 relative to all notions due to the rapid on rease in $F_{\chi 10}^{(2)}$. The latter stems from an increase in factors due to the rapid on rease in $F_{\chi 10}^{(2)}$. The latter stems from an increase in factor as specific term continuous because $I_{\chi 10}^{(2)}$ increases under pressure constants and substitute the specific term continuous discussions are transfer in the content of th

The sharp indicese in the critical pressure of the relations under pressure at 300K, $P_{\rm A}^{(2)n_1}$, with in reason of Mo M coreprises like two commutations of $W^{(2)n_1}$. Figure 3 shares that there are small and the radiose of $V^{(2)n_2}$ in already where σ^* can be indiced by pressure at the expect of the high result in tiranium allows with more than S^2 more addition in the angle of S^2 which more than S^2 more addition.

When the Moleoncentration exceeds 15% and the variation encountralin exceeds 25% the K phase is retained upon quenching. Here the phase is formed under pressure at 300K with A higher $F_{\overline{b}}^{\frac{1}{2}+6}$ at larger Mo.5. encontration. The physical relationships that toillow $(n(F_{\overline{b}})^{\frac{1}{2}}+n(F_{\overline{b}})^{\frac{1}{2}}+n(F_{\overline{b}})^{\frac{1}{2}})$ true fig. 6 suggest that

 $S_{V\,i}^{\alpha}$ must be less than $S_{V\,i}^{i}$. From a phenomenological point of view this situation is quite understandable. There is an energetic parrier to the order transition which the Mo/V concentration increases. Since IV 180 in a) () number of ion ranges, larger pressures are required to everyment has our norms the alloy content increases. Nevertheless the relation-hips between physical properties of 2 and 2 phases in these concentration ranges differ from that in intermediate ranges dissequently pressure application should there are the diplote stability relative to ., since pressure increases \mathbb{Q}_p , decreases \mathbb{Q}_p , decreases $m\mathbb{F}_p)^{\frac{1}{p}}$ and probably in serious $\mathfrak{n}(L_p)^\omega$, according to reg. (3). The quartico team arises as to bis doc tions ornation occurs under measure. The first of all is likely that your additions, peak in $n(t_{i_1})^{2^{i_2}}$, in outration/pressure dependences argue exist which are not reveiled an [50]. This is on hable in the la-Mo sestem where. a) Spinela) decomposition passened with a missibility gap is atom as \$25% Me, instead of being located at The control Theoretics, some additions, peak in Flori function may be created by consigurational Continuition to entropy and permit arrives in the internal energy as a new riou of present or concentration no. The increase of superconductive temperature for such pressure classics for allows with Mo. (45) [0], also indicate that the expression is be probligarities in its electron structure

The final possibility is that the present estimate () $\frac{1}{12}$ and $\frac{1}{12}$ of the final algorithm is an expected at $\frac{1}{12}$ of this were recover, applicational pressure the again some energetically expensive perais of the cle to the cle to the again some energetically expensive perais of these upsing the cle to the control of $\frac{1}{12}$ and $\frac{1}{12}$ under one energy which control of $\frac{1}{12}$ and $\frac{1}{12}$ under one energy approximation of the control of $\frac{1}{12}$ and $\frac{1}{12}$ under one energy the approximation of the phase. This qualifative resonant advector as some of the introduce of all time and approximation on the sequence in phase stability in Ti-Mo V allows. Nevertheress, the control of thermodynamic analysis provides a method of predicting the correct sequence of phase stability with concentration, temperature and presente

3.3.5 Mechanical Properties of Li-Mo alloys

In [61] the mechanical properties of Ti-11 wt 2 Mo (1 5 at 1) was reported and in [62] the mechanical properties of several Ti-Mo alleys (up to 25 wt.% Mo. or up to 11 at.% Mo) were investigated [{olj deals with the effect of thermal history and the obtained microstructure on C-: Luives or dequenched Ti-Mo alloys. Low yield stress, of was obtained for as-quenched samples for pure Ti, $^\circ$ 3.5, $^\circ$ 5 and $^\circ$ 7 at $^\circ$ 7 Mo. Low o, for quenched 3.5 - 7 at $^\circ$ 7 Mo. was explained by the possibility of strain induced transformation of retained (phase, Fro! Mechanical proporties of Fi - 7.2 at 2 Mb were investigated in [13]. Embrittlement was found in the quenched samples after againg at \$50 C. icr 15 hours and was explained by the interaction of dislocation pile-ups with contactively large wephase particles formed during agoing (in (ob) plants determation and thermally activated dislocating kinctics were investigated in To b 5 at. % Mo (w+8) and Ti - 15.2 at. & Mo & alloys The results were explained in the frames of thermally activated overcoming of oxygen interstitials by moving dislocations. The effect of composition and heat treatments in meribadi al properties of various fi alloys including Ti-Mo alloys was studied in [13,41,64]. It was shown that a dislocation may bepase the Lephace particles and in the amount of dephase a 25 as 1 % as the very little early to be -trangely and ductility. In [65] the determination behavior of E.-De access with a, a and wenhases was investigated and from the ADM data in the established that the density of a-particles deriouses within the stockeds, and teat in x-c alloys of phase serves is a stable arresport. In [55) the thermal a treates adjormation of predipitation hardened (40V 180) these single ristals is reported and [67] reports the affects of a second phase disjonstrias to the deformation behavior of Law The Anthony of various hear treatments on microstructure, C-8 curves and fracture tongoness in a motostape .- L. Jac - Mc

was studied in [68]. It was found that precipitation occurs on a particles resulting in a very fine distribution of the a phase with increased strength and good tracture toughness accompanied by limited ductility.

This resear bestudied the influence of composition and phase composition, obtained is a result of high pressure treatment and of heat treatment of previously quenched samples on the mechanical properties of Ti-Mo alloys. The costs were conducted in compression on an Inscron testing michine (model 1.95) he right stress, $\tau_{\rm V}$, was defined by a deflection of $\Delta c = 0$ in the clastical. The dimensions of the samples used in the experiments were 0 mm length 1.00 nm dia providing high pressure transment up to 9.0 GPa in the expering pressure well, described in 3.1. The cross head speads used were 5.4 Automin and 5.4 50 pm/min providing strain rates of $c = 10^{-5}/s$ and 10^{-7} is correspondingly.

In Fig. 18 the yield stress, σ_v , obtained at $\epsilon = 10^{-5}/s$ is shown in dependence on composition for Ti-Mo allows after various treatments: as-quenched, quenched + high pressure treatment. 9 0 GPa, 2 hours and quenched + impealed for 2 hours at 350-380 C. All these the alments were essit also for microstructure investigation using (EM and X-ray analysis as reported in previous se tions. As it may be seen from Fig 1δ the lowest q_{ij} in as quon b d samples is observed for In-8Mo, alloy. And for the same allow the highest J is observed ofter high pressure treatment and after concerning. This is presents Te stress-strain cutves for Ti-8Mo, alloys after very us treatments. It may be seen that for as quenthed sample: the strain hardening is used appreciably nwer than for high pressure on heat treated samples of obtained at $10^{-4}/s$ was by 2:8% higher than that obtained an $(10^{-3})s$. For the compositions after various preatments quite high plastic determition, exceeding 15% was obtained, the main limitation being elostion instability of plastically deformed samples. According to the result of X-ray and electron microscope analysis of phase content, presented in Table 1, allows with an amount of

Mc $\approx 15\%$ are stable β alloys with some additions of ∞ phase after high pressure soaking or after ageing. It can be seen from Fig. 19 that these additions don't effect σ_o in alloys with content of Mo 3/18% . Table 1 doesn't present the data of phase content for Ti-6% Mo. At ording to the analysis for Ti-8% Mo as quenched samples contain 80% of 3 phase and 20% of a phase, high pressure treated samples contain 55% of 8 phase, 32% of ω phase and λ 13% of α phase, after ageing the samples contain $^{2}1\%$ of β phase, 49% of ω phase and traces of lpha phase. It seems that there is only a quantifive difference between as quenched and aged samples the ratio of σ_i ? being higher for aged samples. At the same time σ_i of aged samples is 3.5 times higher than that of as quenched samples. The difference in phase content is negligible if we will compare as quenched samples of Tr - 8% Mo alloy with samples of Ti - 11.5% Mo arter bigh pressure spaking (see Table 1) but the ϕ_{j} of the last ones is almost twise as $h, {
m gh}$ as that of the first ones. The difference was found in the dimensions of wophase particles, that were observed as large disks with 150-600 A u.a in aged samples, 50 - 300 A in for high pressure tredied samples and very small pre ipitates in as quenched samples

It may be expected that the instability of α it holds out of them is a reason for a very low γ_{γ} and low strain bardening id as geen bed samples of TC-8 Me alloys. Such instabilities may cease who and which he is a remaindratively low shour streets. In order to the second of the possibilities the as quenched simples of TC-8 M allow which of timed plastically to $\gamma = 5\%$ and an X-ray analysis of phase content was conducted. From this analysis follows that there is an increase of a phase content from trives to 12% as a result of 2m phase transformation. In high prossure treated and aged samples relatively large precipitates of α phase work apparently as barriers for γ phase growth. If the nucleation of γ phase starts

on ω particles as in [68] the conditions for such nucleation may not be the same for very small precipitates in as quenched samples and for relatively large particles of a phase in pressure and heat treated samples Additional information on dislocation mobility and on partiers for dislocation motion may be obtained from thermally activition inalysis of plastic deformation. That may provide data on entalpy of a tivitien and the area allows after various heat treatments. Using new methods, stress jump and temperature jump during plastic deformation the influence of changes of dislocation structure may be eliminated [69]. Preliminary results on activation area Na openized in Ti-8Mc alloys using sitess lump method show that in as quenched samples ha is appreciably higher than that obtained in high pressure created or aged samples. Detailed thermal activities analysis using temperature jumps and barrier profile analysis [69] may provid, data for more comprehensive discussion of dislocation mobility and mechanisms of plastic deformation in various Ti-Mo alloys with different phase content and phase morphology.

It may be noted that from the point of view of the influence of agoing 350 C on methatical properties in 11-8Mc alloy one near of agoing gives almost the same $\frac{1}{2}$ as againg in 72 hours, used for mitrosic, true investigation. More than 500 of this $\frac{1}{2}$ (after 72 hours agoing) is citathed after 15 ham of agoing at the same temperature. It is of convest to investigate the changes in phase content and phase morphology after such tresument.

i Conclusions

- The metastable T-C and f-P phase diagrams of Fi-Mo and Ti-V alloys were calculated using Kaufman's regular solution approach and the experimental data obtained in the present work. The calculated phase diagrams are in satisfactory agreement with the structural data obtained. These give also useful directory for prediction of phases appearance/disappearance under changing temperature and pressure conditions
- In metastable Ti-Mo and Ti-V alloys considerable amounts of the ω phase and be formed at elevated pressures and remain at atmospheric pressure. The two and 300 high pressure transitions were observed first in Ti-based alloys. The new crystal structures, which have not been obtained after conventional treatment, were produced by high pressure application at 300%. The substantial changes in a phase morphology occur in Fi-V alloys being subjected to high pressure.
- 3) The effect of high pressure was compared with the influence of alloy contentration on metastable diffusionless equilibria in li-Ne and Ti-V systems As the content of Mo/V increases, the pressurizing and allowing effects start a ting in opposite directions; pressurizing, in contrast to alloying, reduces the pressurizing and for transformation.

As was triedgements

The authors wish to express their deep gratitude to Dic 1 Ducidson, Dr.) Kendall, C. Heman and J. Frenkel of Bennet Weapon 195 of Watervliet Aisenal for their encouragement, support and worm hospitality during the project.

To Dr. R. Weiss, who helped us to establish personal contaits with the European Office of the USA Army; and to Dr. R. Quattrone of the Arms. Research Office in Europe for his support and warm reception in London.

Appendix 1

THE STRUCTURAL STABILITY AND SUPERCONDUCTIVITY OF II-Mo ALLOYS UNDER PRESSURE*

The influence of hydrostatic pressure on the transition temperature to superconductivity $T_{\rm C}$ was studied on Ti-Mo alloys with 3-35 at% Mo up to about 9.5 GPa. The pressure effect on $T_{\rm C}$ is positive, i.e. $T_{\rm C}$ increases under pressure. The effect becomes smaller with increasing Mo concentration and vanishes for ${\rm Ti}_{65}{\rm Mo}_{35}$. The results can be understood by the increasing instability of the metastable alloys under pressure.

I Introduction

in the past the high pressure behaviour of $T_{\rm C}$, the transition temperature to superconductivity, has been studied for several transition metal alloys. All the investigated alloys (li-V, V-Cr, Zr-Nb, Nb-Mo, Hf-Ta, Ta-W)[72,73,74] were continuous solid solutions between neighbouring elements in the box-structure (3-phase structure).

Considering the change of T_c due to alloying or to applying high pressure, a correlation was found between changes in T_c and changes of the electron de. The of states at the Fermi-level $n(E_p)$. For these systems application of pressure was always at least qualitatively equivilent to adding electrons to the conduction hand by alloying. Using this correlation it was possible to predict the sign of the pressure effect dT_c/dp knowing the data for $n(E_p)$ and T_c as functions of the valence electron number n_c in each particular system. In all alloys mentioned above the pressure effect is positive $(dT_c/dp + 0)$ if the density of states $n(E_p)$ increases with increasing n_p and vice versa.

This part was done in Physical Institute of the University Karlsruhe, W. Germany. A. Rabinkin took participance in this part together with H. Scherev, D. Köhnlein and W. Buckel. The samples studied in Sewere used.

In this paper the high pressure experiments are extended to Ti-Mo allows. To and Mo are not neighboring and not even situated in the same row of the Periodic Table. This system was chosen since a series of careful studies on Ti-Mo alloys already exists [75,76] and since the samples used for the pressure experiments have been extensively characterized with regard to their structure in Sec. 3.

If and Mo have very different atomic radii $(r_{1})^{3+} = 0.76$ A; $r_{\text{Mo}}^{6+} = 0.62$ A) $r_{\text{Mo}}^{6+} = 0.62$ A). Therefore in a rough approximation, one could expect that intrying Mo acts as pressure, i.e. decreasing the lattice constant. Also the valence electron number n_{ϕ} is increased by adding M. to Tr. As a result of the earlier experiments we know that increasing n_{ϕ} also corresponds to the application of pressure. Since the electron density of states $n(E_{\parallel})$ for the bod alloys structure of ti-Vo has been found by Ho and Collings [75] to decrease monetonically with increasing Mi-content a negative pressure affect $(dT_{\phi}/dp = 0)$ could be expected from the earlies experiments for alloys with Mo $\geq 16\%$.

It was the aim of the present work to measure the T_(p)-dependence of it-No-alroys and to check whether the correlation (cand to aclove of neighboring transition elements also holds for such a more complex system. This is apparently not the case:

II. Samples and their structure

The details of sample preparation and the description of their structure in the as quenched state and after pressure freatment in discussed in Sec. 3.

Here only a reviewalts should be quite briefly mentioned. At sutficiently high temperatures all li-Mo-alloys are single phase bec(a-phase). On quenching alloys from the F-freld to room temperature a sequence of non-equilibrium structures appears. From a structural point of view, all samples should be classified into three groups:

- a) 0-4.5 at% Mo: Two martensitic phases α' and α'' exist.
- Ly 5-15 at% Mor. The sample consists of a mixture of β -phase stabilized as the quenching and rather rinely dispersed se-phase.
- c) 18 or Mer. Only the Perhase can be detected.

 Venerally, high pressure favours the formation of the wephase.

With regard to superconductivity, the concentration dependences of $n(\mathbb{S}_p)$ and \mathbb{S}_p determined by Collings et al. [76] are casential (see Sec.), the (8). For the 8-phase a mono-onic decrease of $n(\mathbb{E}_p)$ has been tound. In the concentration range c_{M_0} (18 at% ML, where only the 2-phase exists in a maxtur with the w-phase, the density of states $n(\mathbb{E}_p)$ has been calculated for 2-victorial L-phase.

The transition temperatures measured by No and Collings are given an true A by the A' and A' region a stock increase of T_{ij} with an isosing the observed. Thus inherenment of T_{ij} is attributed to extrace little distortion resulting from the observed of the A'-plast and in resisting the electron-photon coupling

The limitation maximum of f_{ij} for $f_{jkl} = 5$, as been eighther on the one of approximation for concentration, below around the industrial assing to be a fixedly disputated approximation of the finance of a small extension. The entire is a phase of the otherwise where in about the concentration of the entire f_{ij} and f_{ij}

Fig. Exp. rimental lengths

the T_-measurements at Fig. messure were correspond to the epidement described earlier [77,78]. Social-state cells with steatific as pressure insultting medium were upod. In Postrip as an internal measure that are visible the charge energy cell together with the nully sample on the pressure inside the cell was determined using the T_(n)-dependence of PS as alimited by Eichter and Without [79] as

^{*} Pur emitbration has to be suitted so spewhat I were present a consequence to be the source of the second of the

Of course, some pressure variation from the center to the periphery of the cell always exists within solid state cells. However, since the transition curves under pressure have almost the same sharpness as those at normal pressure (see fig. 22a) one may conclude that this pressure variation does not very much influence the result.

The electrical resistances of the alloys sample and the Pb-manometer were measured by the four probe method. It has to be mentioned that this technique is especially sensitive to areas with high $T_{\rm C}$ since a single super enducting path can short-circuit the whole sample.

 Λ calibrated Allen-Bradlev carbon resistor was used for measuring the temperature.

All step-by-step loadings of samples were done only at room temperature. This was necessary since one knows from earlier experiments that lattice defects can strongly influence $\Gamma_{\rm c}$ when they are induced by deformations at low temperatures. However, these defects disappear almost completely by annealing processes at room temperature [80].

IV Results and discussion

Fig. 21 gives the transition temperatures of our samples measured at normal pressure (x). T_c is defined as the value for $R(T)/R_c = 0.5$ (R_c = residual resistance). For comparison, the T_c -values of No and Collings [75] are also plotted versus the Mo-concentration. For $c_{MO} = 7\%$ all samples exhibit somewhat higher T_c -values than those of [75] determined in calculation. This can be easily explained by the fact that resistance measurements with a four probe technique over-estimates—the high T_c areas within the sample. A rather low T_c has been observed for the Ti + 3% Mo sample. However, in this concentration range T_c strongly depends on the crystal structure and especially on the volume fractions of α' and α'' .

Therefore, somewhat different quenching conditions could be responsible for the lower $T_{\rm c}$ of our Ti + 3% sample. The transition curve of this sample exhibits a distinct step. A small part of the sample already becomes superconducting at 1.9 K (marked by the bar in fig. 21).

In fig. 22a the normalized resistance $R(T)/R_{\rm m}$ of a Ti + 11.5% Mo-sample at different pressures is plotted versus the temperature. The transition temperature is increased by pressure. With the exception of the transition at 1.4 GPa* the width of the transition curves is not very much changed by pressure proving the sufficient homogeneity of the pressure within the cell. Fig. 22b shows the transition temperature of this sample as a function of pressure. The increase of $T_{\rm c}$ with pressure is almost linear within the used pressure range. This linearity was observed for all samples.

In fig. 23 the pressure effect $dlnT_{c}/dp$ for the various alloys 1° plotted versus the Mo-concentration. Also the valence electron to atom ratio is given on top of the drawing.

The pressure effect dlnf /dp is rather large for the 30 Momallow. This alloy consists of a mixture of x'- and x''-prase

It seems reasonable to compare this value with the pressure effect of pure Ti in the α -phase. Brandt and Ginsburg [81] reported values or $\dim_{\mathbb{R}}/\mathrm{dp}$ for Ti as high as $= 20 \cdot 10^{-11}/\mathrm{Pa}$. Our value of $12 \cdot 10^{-11}/\mathrm{Pa}$ for Ti $\approx 3^\circ$ Mofilts satisfactorily to this result. To understand the rather high pressure effect one could argue that the formation of the α -phase under pressure demonstrates an increasing tendency of the α' - α'' -smixture to become unstable under pressure and that this increasing instablished causes an online ement of T.

For all other allows we can assume that the transition temperature at normal pressure and at elevated pressures lelongs to the \hat{n} -phase. The pressure

At low pressure it is somewhat questionable whether purely hydrostatic conditions could be achieved.

effect expressed by $d\ln T_{\rm c}/dp$ exhibits only small variation and is positive over the whole concentration range up to 35 at.% Mo ($n_{\rm v}$ = 4.7). The relevant date are collected in Table 3. This result does not agree with the correlation between pressure and alloying found for alloys consisting of neighboring elements [73,74]. According to this correlation one expects a negative pressure effect for concentration ranges where $n(E_{\rm F})$ and $T_{\rm c}$ decreases with increasing valence electron number $n_{\rm v}$. The Ti-Mo alloys apparently behave differently and show a positive pressure effect.

An obvious possible explanation of the positive pressure effect is based on the stability of β -phase. In fact, the β -phase becomes less stable under pressure. As a result the β -phase is transformed to the ω -phase which can be detected by electron microscope analysis, at least for $c_{Mo} \in \mathbb{N}$ at \mathbb{N} . An increasing tendency to become unstable under high pressure enhances the electron-phonon interaction and this may also enhance T_{μ} . This effect perhaps can outweigh the influence of the change in the electron systems. As was discussed in Sec.3.3.4 the stability of the 6-phase increases with Mo concontration. Therefore the pressure effect decreases and at 35 % Mo it is almost zero. At this concentration and at pressure up to 10 CPa the allow is tur liway from the critical pressure for which the $\beta + z$ transformation starts (see fig. 4 in sec. 2). It is not unlikely that an additional peak in the $n(F_{\rm p})$ curve can exist in this concentration range and can also effect on \dim^{T} , dp despite the fact that according to No and Cellings there is only monotonic decrease in $n(E_{\rm p})$. Up to now they have measured it on allows with rather large differences in concentration.

The tendency of the lattice to become unstable at high pressure may also influence the pressure effect of the sample consisting of c'- and c''-phase. Here the stability of the α' -(α'')-phases decreases under pressure. Simultaneously the steep increase in $n(F_p)$ very likely takes place as a result of a decrease in interatomic distances.

sample	e/9	() () ()	(PA - V - 10 - 10 - 10 - 10 - 10 - 10 - 10	olut (3p (10 Hz))	Struct
T1-3 at 2 Mo	4.06	; ; ; ; ;		2	+
Ti-7 at? Mu	71 - 5	7	0	# # # # # # # # # # # # # # # # # # #	· · · · · · · · · · · · · · · · · · ·
[1-1].5 ar? Mo	1.23	<i>x</i> 0	0.5%		
T1-15 3.8 Mo	£.3	4,73	\$1	57	- 12 - 12 - 12 - 12
Ti-18 at% No	4.36	∞ -†	1.24	\$ 0	10.2
In 25 at 1 Mo	r, 5	νή 	CV.	6.	162
Ti-35 at ? Mo	ا	3.1	=	5	C.

The pressure effect seems to pass a flat minimum at about 12 at.% Mo. Since the samples consist of ω - and β -phase in this concentration range the low pressure effect in the sample with 11.5 at.% Mo could be due to a special structure of the sample accidentally achieved. However, the quantity of ω -phase is not substantial enough to decrease T_c so strongly. Looking to fig. 4 of Sec. 2, one notices that the sample with 11.5 at.% Mo lies just between the critical pressures $P_0^{\alpha\to\omega}$ and $P_0^{\beta\to\omega}$. At present one can only point to this fact without giving any further explanation.

Appendix 2

THE 16-8 POLYMORPHOUS PHASE TRANSFORMATION IN PURE TO AT ATMOSPHERIC PRESSURE

Introduction

Since Jamieson's discovery of the appliance in an adoptived to high pressure [1] much work has been published specifying details on the proyum place and phase transformation. Resistivity measurements and X-ray unasysts have been used as the main experimental method.

There was a great discrepancy in data concerning varies of equilibrium pressure $P_{C}^{\lambda, \tau_{0}}$, and critical start pressure, $P_{S}^{\lambda, \tau_{0}}$, for the anti-transformation specially at temperatures close to 300F. The minimal values of $P_{G}^{\lambda, \tau_{0}}$ (300), = 2.2 to 0.3 cPa and $P_{S}^{0, \tau_{0}}$ (300K) is 3.0 GPa were reported by Zil bershtevn at all of the lasts of measurements of resistance to shear under conditions of the lasts of publication of high pressure and shear stresses.

Meanwhile the collect determination of the passers dependent of $\frac{1}{2}$ is the content importance whose if then becomes positive to calculate the major $\frac{1}{2}$ of the incorbed to obtain all basis thermodynamic perimeters of the physical critical probabilities, whase parts spaces in Zr and $\frac{1}{2}$ is the

In our tipers work [a3] the appearance of the appearance of the appearance of the process of the other of appearance of the process of the appearance of the

$$\frac{(500)}{(5010)} = \frac{(5210)}{(5000)} = \frac{(5000)}{(5000)} = \frac{(500)}{(5000)} = \frac{(500)}{(5000)} = \frac{(5000)}{(5000)} = \frac{(500)$$

There results enabled as to index cases the implementation difficulty to the patterns containing 3 to master to refer to us section, the as to determine the

presence of a small amount of the w phase in an a matrix. Furthermore, from our experiments we found that, in comparison with electrical resistivity measurements or X-ray analysis, high resolution dark-froid electron microscopy was the most sensitive method available to identify the splase during the very early stages of the analysis remains and

In the present work we constructed more accordingly the region of the T-P page diagram of Zr below room temperature and specified more exacts a pressure at which the coplane appears at room temperature

Experimental Procedure

The toll samples (100 m. thromass were propared by cold relains second of spectra-pure standardizer in clotal metal importates. The part of produced by Donnoon Matthew. After relains, the puris were enhanced at 100 cold for 2 fours in a vacuum of 2.75° Pa and were then either quan new rader vacuum into 00 704 diffusion pump fluid or slowly colled. The specimens were then produled by electropolishing at 210K under the landitions of [45] and afterwards were usuan abneoled at 450 % in high values on their lasting and traces of the wiphase which mount in we seem discated during the size of the wiphase which mount in we seem discated during the size of the process.

Some in the annealed ramples were then coled with the life. Tund 4-2 M for 1 hour and other samples were presented at 900% for 2 mouse at 0.5: 0.0: 2.0: 6.0 and 10 tars

Pressocization up to 0 or 200 me, was performed in consequence and comparatus with a testion cell cribed by a regular scalar was in processor performed bedre static loading consett as a Pressocization on to 1000, was performed in a solid-medium cell. Some first in the assignmentable of the work subjected to cold rolling with a thickness reduction of 200 and then without also quent annualing method and ized in the resett in an inserup.

3.2. Experimental Results

The characteristic electron diffraction pattern, which consists of ω phase reflections imposed on reflections of the ω matrix, appears in annealed pure Zi which has either cooled down to 200K at 1 atm or pressurized at 1.0 GPa. All other samples which were subjected to higher pressures or were cooled to lower temperatures also demonstrated the presence of the ω phase. The lower the temperature or the higher the pressure the larger was the amount of ω observed [841.

The a phase was also revealed in cold rolled specimens

The increase in volume fraction of the α phase with increasing driving torce is associated with an increase in both the particle size and number of particles. It has to be pointed out that the characteristic α rines on α -ray diffractograms appear only when applied pressure exceeds α 4.5 GPa. Resides, when pressurizing α -Zr the slope of resistivity curve changes substantially only in the vicinity of 4.0 GPs that is in agreement with data of $\{6,29\}$

3.3. Discussion

On the basis of the shove mentioned results the introded (for low temperature) I-P-equilibrium phase diagram of zir onlow was constructed taking into account dath from left [6,3,85] (fig.24). The positions of the line $T_S^{a,b,a}$, which is where the and phase transformation starts, and is the line $T_S^{a,b,a}$, which is where the reverse of a transformation starts, were determined more correctly. On the other hand the positions of lines $T_S^{a,b,a}$ and $T_S^{a,b,a}$, where the phase transformations are completed, were more difficult to determine and some uncertainty remains concerning their precise positions. This uncertainty arises since after pressurizing at P = 10 GPa and are phase transition was still not completed and the remaining a phase could be clearly observed in the electron microscope even though in this case X-ray analysis tailed to detect the presence of the a phase.

The main conclusion which can be drawn from the corrected T-P phase diagrams constructed in this work is that the ω phase in pure Zr is a stable phase at ambient pressure at temperatures less than $\sim 200 K$. The corrected value of $dT_0^{\alpha \to \omega}/dp$ is equal to 116 K/CPa. Since $\Delta V_{Zr}^{\alpha \to \omega} = -0.180 \text{ cm}^3/\text{mol}$ the entropy difference $\Delta S_{Zr}^{\alpha \to \omega} = -1.67 J/\text{mol} \cdot K$. From the positions of the lines $T_0^{\alpha \to \omega}$ and taking into account the value of $\Delta S_0^{\alpha \to \omega}$ it is easy now to evaluate the activation energy $\Delta F_{act}^{\alpha \to \omega}$ necessary to initiate the $\omega \to \omega$ transformation. Thus for a temperature of 300K we obtain:

$$\Delta F_{act}^{\alpha\rightarrow\omega}\Big|_{300K} = \Delta V^{\alpha\rightarrow\omega} \times (P_s^{\alpha\rightarrow\omega} - P_0^{\alpha\not=\omega}) = 225 \text{ J/mol and the activation energy at}$$

$$i \text{ atm. } \Delta F_{act}^{\alpha\rightarrow\omega}\Big|_{1 \text{ atm}} = 217 \text{ J/mol}$$

It can be seen that these values are practically equal and rather small. The small value of $\Delta F^{\alpha, +\omega}_{act}$ confirms our suggestion that the $\alpha+\omega$ lattice reconstruction proceeds as an ordered displacement of close-packed <1210> atomic rows over a short distance requiring a rather low activation energy. Such an ordering process, by analogy with the $\beta+\omega$ transformation, might occur through two successive stages - first, creation of linear ± 1210 defects and, then, their periodical ordering. Both stages must proceed through individual fluctuation processes which therefore would be reflected in the detailed isothermal or isobaric kinetics. Indeed, an increase in the amount of ω phase with time was observed near room temperature at constant presure [6]. We also observed an increase in the amount of the ω phase in an ω matrix when specimens were exposed at a temperature of 77K at 1 atm.

Analysis of the data of Fisher et al [27] on elastic moduli behaviour for single crystal Zr at various temperature shows that a slight positive deviation from linear dependence of moduli C_{44} takes place below 300K. On the basis of our ϵ — tall data we may suppose that the formation of the a phase is responsible for such abnormal behaviour of the moduli C_{44} .

Analysis of the data of Fisher et al [27] on elastic moduli behaviour for single crystal Zr at various temperatures shows that a slight positive deviation from linear dependence of moduli C_{24} takes place below 300K. On the basis of our experimental data we may suppose that the fermation of the ω phase is responsible for such abnormal behaviour of the moduli $\mathbb{C}_{4,4}$.

The appearance of the ω phase in α -Zr after cold rolling can also be interpreted in terms of ω stability at room temperature. In those materials where denser phases appear under uniform high pressure, both cold rolling and compression induce the same phases. The calculations show that the driving force developed by deformation is of the same order as driving force developed by high pressure. Therefore cold rolling is sufficient to initiate the amo mansition.

It follows from our experimental results that the transformation enthalpy $\Delta H_{2r}^{4.77}$ is equal to -553 J/mol*, which is rather small. Thus, the increase in the driving force for cooling at 4K is also small. Therefore, in spite of the tact that the activation energy is also small ($\Delta F_{act}^{A+\omega} = 220$ J/mol), the $\alpha+\omega$ transformation process should not be completed even after such marked cooling. Hence the phase, while thermodynamically stable at $P=10^5$ Pa and T less than $200 \rm K$, is present only in small amounts even after drastic cooling.

At the present time the only phonomenon which we cannot yet explain is that even when the pressure is very high and the driving force is - 21 5 times greater than the activation barrier the transformations do not come to completion However, it is clear that the elastic energy barrier is not sufficient to prevent the transformation process, because the volume changes which occur in the course of the transformation are small.

We have to mention in this point that we failed to observe in IEM the in pure Ti either cooled to 4.2K or pressurized up to 5.0 - 5.0 CPa Therefore

^{*} The enthalpy value $\Delta H_{Zr}^{(X^*),j}$ can be calculated by use of the condition that

 $[\]Delta F_{2s}^{(M)}$ at equilibrium line is zero and taking into account the new value of

 $[\]Delta S_{7r}^{(k/m_s)} = -1.67 \text{ J/mol K}.$

 $P_S^{\alpha \leftarrow \omega}$ in α -Ti is substantially higher than that for Zr in accordance with numerous literature data. Also, the titanium sponge which was used by us was not of spectroscopical purity as Zr and might be more contaminated by minor impurities and that has affected the $\alpha \sim \omega$ transformation kinetic.

References

- 1. J.C. Jamieson, Science, 140, 72 (1963).
- 2. F. Bandy, G.E. Research Lab. Rept. N63-RL-3481C, Oct. 1963.
- 3. V.A. Zylbershteyn, G.I. Nosova and E.I. Estrin, Fiz. Metallor. i Metallovedenie 35, 584 (1973).
- 4. M.P. Usikov, V.A. Zylbershteyn, Phys. Stat. Sol. (a) 53 (1973).
- 5. G.A. Sargent, H. Conrad, Mat. Sci. Eng. 7, 220 (1971).
- 6. V.A. Zylbershteyn, N.P. Chistotina, A.A. Zharov. N.S. Grishina and E.I. Estrin, Fiz. metallov. metalloved. 39, 445 (1975).
- 7. L.V. Altshuler, A.A. Bakanova. Sov. Phys. Uspeki 11, 678 (1969).
- 8. A.I. Voropinov, G.M. Gandelman, G.M. Podvalui, Sov. Phys. Uspeki, 13, 56 (1970).
- 9. M.K. Koul, J.F. Breedis in "The Science, Technology and Application of Titanium". Ed. R.I. Yaffe, N.Y. p 817 (1970).
- A.R. Kutzar, V.N. German, G.I. Nesova, Dokladi Acad. Sci. U.S.S.K. 213, 81 (1975).
- 11. D D Fontaine, R. Kikuchi, Acta Met. 22, N9, 1139, (1974).
- 12. J.G. Williams, B.S. Hickman, H.L. Markus, Met. Trans., 2, 1913 (1971).
- 13. A.W. Bouren. Scripta Met , 5, 709 (1971).
- 14. S.G. Fedotov in "Titanium Science and Technology" Plenum Press, V.2, p.871 (1973).
- 15. A.H. King, J.L. O'Brien, J.A. Roberts, P.R. Roberts, "Cryogenics" <u>5</u>, 230 (1965).

- 16. V. Zwicker, R. Lohberg, W. Heller, Z. Metallkunder, 61, 836 (1970).
- 17. T.S. Luhman, R. Taggart, D.H. Polonis, Scripta Metall. 3, 777 (1969).
- 18. D. Kramer, G. Rodes, Trans. Met. Soc. AIME, 239, 1612 (1967).
- 19. T.H. Courtney, J. Wulft, Mat. Sci. Eng., 4, 93 (1969).
- 20. N.S. Affonikooa, V.F. Degtiarova, V.A. Litvin, A.G. Rabinkin, Y.A. Skakov, Sov. Phys. Sol. State, 15, 875 (1973).
- 21. Ch. Leibovitch and A. Rabinkin, CALPHAD 4, 13 (1980).
- 22. L. Kaufman and H. Bernstein, Computer Calculations of Phase Diagrams, Academic Press, N.Y. and London, 1970.
- 23. L. Kaufman, Acta Met. 7, 575 (1959).
- 24. A. Gysler, W. Bunk and V. Gerold, Z. Metalkunde 65, 411 (1976).
- 25. R.M. Wood, Acta Met. 11, 907 (1963).
- 26. E.S. Fisher and D. Dever, Acta Met. 18, 265 (1970).
- 27 E.S. Fisher and C.J. Renken, Physical Review 135, N21 (1964)
- 28. E.S. Fisher and M.H. Maughnani, J. Phys. Chem 32, 657 (1971).
- 29. B. Olinger and J.C. Jamieson, High Temp., High Pressures, 5, 423 (1973).
- 30. Ch. Leibovitch, A. Rabinkir and M. Fallanker, Met. Trans (in press)
- 31. D. de Fontaine, N. Paton and J. Williams, Acta Met. 19, 1153 (1971).
- 32. N.A. Vanderpuye, A.P. Miolounik "The Science Technology and Application of Titanium", ed. R.I. Yaffe and N.E. Promisel, Pergamon Press, p. 719, 1969.

- 33. P. Duwes, Trans ASM 45, 934 (1953).
- 34. K.K. McCabe and S.L. Sass, Phil. Mag. 23, 957 (1971).
- 35. E.K. Morchanova "Phase Diagrams of Fitanium Alloys" ed. S.G. Glazunov, "Interpress, Jerusalem, 1965.
- 36. B.S. Hickman, J. Mater. Sci. 4, 554 (1960).
- 37. B.S. Hickman, J. Inst. Met. 96, 330 (1968).
- 38. &.G. Baggerly, Metallography, 8, 361 (1975).
- 39. B.S. Hickman, Trans. TME AIME, 245, 1329 (1969).
- 40. B.D. Cullity: Elements of X-ray Diffraction Ist. ed. pp. 388-401, Addison-Wesley, Reading, Mass. 1956.
- 41. M.J. Blackburn and J.C. Williams, Trans. TMS-AIME, 239, 287 (1967).
- 42. Y.A. Bagaryatski, G.I. Nosova and T.V. Tagunova, DAH USSk, 122, 593 (1958)
- 43. G. Nosova, "Phasovie Previasheniva v titanovykh splavakh", Metallurgia, Moskva, 1969.
- 44 1.6 Williams and B.S. Rickman, Met. Trans. 1, 2648 (1970).
- 45 H J. Brackburn and J.C. Williams, Frans. TM: AIME 239, 124 (1967).
- 46. J.M. Silcock, Acta Met. $\underline{6}$, 481 (1958).
- 47. S. Terauchi, H. Matsumoto, T. Sigimoto and K. Kame (In Japanese). Preprint Faculty of Eng. Osaka Industrial University, Daito.
- 48. J.S. Williams, D. de Fontaine and N.E. Paton, Met. Trans. 4, 2701 (1973).
- 49. S.L. Sass, J. Less Common, Met. 22, 127 (1972).

- 50. L. Kaufman, Acta Met. 7, 575 (1959).
- 51. E. Estrin. Fiz Metal. Metaloved, 37, 1279 (1974).
- 52. J.O. Stiegler, J.T. Houston and M.L. Picklesimer, J. Nucl. Matls. $\underline{11}$, 32 (1964).
- 53. J.C. Williams and M.Y. Blackburn, Trans. TMS, AIME, 245. 2352 (1969).
- 54. M.J. Blackburn and J.C. Williams, Trans TMS, AIME, 242, 2461 (1968)
- 55. I.V. Lyasotsky and V.D. Tyapkin, Fis Metal. Metallov, 36, 1260 (1973).
- 56. N.N. Aparov, U.V. Lyasotskyi and V.D. Tyapkin, Fis Metalow, a metal reveal 40, 1107 (1975).
- 57. Y.K. Vohra, Acta Met. 27, 1671 (1979).
- 58. E.W. Collings, J.C. He, Phys. Rev. B.1, 4289 (1970).
- 59. E.W. Collings, H.I. Gegel, "Physics of Solid Solution Strengthoning", on F.M. Collings, H.I. Gegel, Plenum Press, N.Y. p 147
- 60. J.D. Fast, "Entropy". Phisips Technical Library, 1962.
- 61 S. Weinig and E. S. Machlin. AIMF Graus, 200, 1280 (1954)
- 62. F.C. Hoiden, H.R. Ogden and R.L. Taftme. Trans. AIME, 206, 1388 (1956)
- 63. R.R. Zegfang and H. Conrad, Z. Metallkunde, 66, 422 (1975)
- 64. D.N. Williams, R.A. Wood and E.S. Bartlett, Metall. Trans. 3, 1529 (1972).
- 65 E. Levine, S. Hayden and H. Margolia, Acta Met. 22, 1443 (1974).
- 66. S.M. Tuominen and D.A. Koss. Mat, Sci Eng., 21, 71 (1975).

- 67. K.K. Sankaran, S.M.L. Sastry and P.S. Pao, Metall. Trans. 11a, 196 (1980).
- 68. A.W. Bowen, J. Mat. Sci. 12, 1355 (1977).
- 69. E.Y. Gutmanas, Scr. Met. 14, 269 (1980).
- 70. H. Scherer, D. Kohnlein, A. Rabinkin, W. Buckel (in publication).
- 71. Ch. Leibovitch, E. Gartstein and A. Rahinkin, Z. Metalkunde 71, 438 (1980).
- 72. F. Monkehaus, Diplomarheiut am Phys. Institut Universität Karlsruhe.
- 73. W. Gey and D. Köhnlein, Phys. Letters 29A, 450 (1969).
- 74. W. Gey and D. Kohnlein, Z. Physik 255, 358 (1972).
- 75. J.C. He and E.W. Collings, Physics of Ti-alloys I in Titanium Science and Technology. Edited by R.I. Jaifee and H.M. Burte, p. 815. Plenum Press, N.Y. 1973.
- 76. E.W. Collings, J.C. Ho and R.I. Jaffee "Physics of Ti-alloys II" in "Titanium Science and Technology" (Edited by R.I. Jaftee and H.M. Burte) p. 831, Plenum Press, N.Y. 1973.
- 77. A. Eichler and W. Gey. Editions du CRNS, Granoble, 1969.
- 78. P. Hohnberg, Diplomarbeit am Phys. Institut, Universitat, Katlsruhe
- 79. A. Eichler and J. Witting, Z. Angew. Physik, 25, 319 (1968).
- 80. W. Krah and D. Kohnlein, Z. Physik B.28, 19 (1977).
- 81. N.B. Brandt, N.I. Ginzburg, Sov. Phys. Uspakhi 8, 202 (1965).
- 82. A. Eichler and W. Gey, Z. Physik 251, 321 (1972).

- 83. A. Rabinkin, M. Talianker, O. Botstein, Acta Met. 29, 691 (1981).
- 84. O. Botstein, A. Rabinkin and M. Talianker, Scripta Met. 15, 15! (1981).
- 85. Itinosai, Proc. of II symposium on high pressures 24-26 Dec., 1969, Sendai, Japan.

Fig. . Computed To-x Diagram for Ti-Mo Alloys at One Atmosphere based on Equations (20),(23) and (24).

Fig.2. The volume of hep and omega Titanium and the volume difference alpha minus omega for Titanium as a function of pressure at 300°K .

Fig.3. The molar volume of bcc(%) and omega (a) structures in the Titanium-Malybdenum and Titanium-Vanadiam Systems at one atmosphere and 300% after various authors.

Fig. 4. Summary of Experimental Data on Phase Stability of Ti-Mo Alloys (3,4) as a Function of Pressure at 300K Compared with Results Computed from Equations (50)-(36).

Fig.5. Computed T_{-x} (m.d.e-metastable diffusionless equilibria) Diagram for Titanium-Vanadium Alloys Based on Equations (39) and (43,44).

Fig. 5. Computed 300K High Pressure m.d.e. Diagram for Ti-V alloys based on Equations (45)-(47) and Experimental Results on Phase Stability (33).

Fig.7: The structure of Ti-3% Mo Alloy.

- a) TEM bright field micrograph, showing the complex martensitic structure in the as-quenched state. x' fine plates are seen in region (A) big plates of x' martensite (B) divide the bulk of what seems to be ϵ'' martensite.
- b) TEM dark field micrograph showing the small ω phase particles and dense dislocation network inside α' plates after hps 7.5 GPa. c) TEM bright field micrograph witer 9.2 GPa.
- d) Pressure induced w particles in the dark field of (c).

Fig. 8. X-ray diffractograms of Ti-Mo in the as-quenched state and after hps $^{6}.0$ Gra.

Fig. 9 The structure of Ti-5% Mo alloy. a) TEM micrograph of the asquenched state, z.a. [221] $_{\beta}$. Fine ω particles and small α' martensite plates (A) are present in the β matrix. b) The TEM bright-field micrograph after hps 7.0GPa. The pressure-induced α' martensite plates grow at the expense of the β matrix. c) TEM dark-field micrograph after hps 9.0GPa. The large α' martensite plates contain $\omega+\beta$ mixture and "secondary" α' plate-like regions (A). d) Electron diffraction pattern of the region in Fig. 4c and e) the indexed scheme of the pattern in Fig. 4d.

The structure of Ti-15 at.% Mo alloy.

a) Dark field image and b) the corresponding electron diffraction pattern of the as-quenched state showing a complex network of diffuse intensity. Z.A.: \(\cappa[100]\rho\) c) TEM dark field micrograph and electron diffraction pattern after hps 9.0 GPa. Z.A.: \([012]\rho\). d) TEM bright field of the sample after hps 20 GPa. The pressure-induced \(\alpha\) martensite plates are clearly shown.

a) Diffuse scattering observed in the electron diffraction pate term of the as-quenched Ti-18% Mo alloy. b) Paired Kikuchi lines observed in the electron diffraction pattern of the as-quenched Ti-20% Mo alloy. TEM dark field micrographs of the c; Ti-48% Mo and d) Ti-25% Mo showing the particles of solike phase in the matrix after hps 4.50Pa. Z.A. [100], for Ti-18% Mo and z.a. [111] for Ti-25% Mo.

... The structure of the late of an extensive form of the scheme for the scheme for the scheme for the scheme form of the scheme for the scheme f

Fig. The structure of Ti-14 at.% V. alloy.

(a) B.!. micrograph of the as-quenched state. Very fine tenewides shown by arrows. b) B.F. of the same sample after 1.2 GPa. Substantial growth of tenewides is electly seen. c) bark field of the as-quenched sample taken in % reflex. (Inset: SADP with M.A.:(110)g).

(d) D.F. of the same sample after 9.2 GPa. (Inset: SADE with M.A.:(113)a).

Fig. The structure of Ti-18 at.% V alloy. a) Dark-field micrograph taken from as-quenched state. b) Corresponding electron diffraction pattern. c) Dark-field micrograph taken after hps 9.2 GPa. d) Corresponding electron diffraction pattern.

a

b

Fig. The structure of Ti-20 at.% V alloy after 7.5 GPa. a) Dark field micrograph (Inset: Magnified circled place (x4). ω phase particles in β -matrix and needles of pressure-induced α phase are clearly seen. b) SADP of the samele Z.A.: [012]g. 4- ω variants present: 2-with [2116] ω Z.A. and 2 with [2312 ω Z.A. which coincide with β reflections.

That is a least of any activity and a contract of the contract

Fig. 17. X-ray diffractograms of as-quenched (Q) Ti-V alloys and alloys that were initially quenched and then peressurized (Q+P). Diffr. patterns were taken at atmospheric pressure.

Fig.18. Debve temperature and electronic specific heat coefficient of Ti-C and Ti-Mo alloys [%,59].

Fig.19. Yield Stress, N. as a function of composition in li-Mo alloys allor various treatments: 0-quenched, → -quenched + hps 9.0 GPa and ▼-quenched + thermal treatment (350°-380°C, 72h).

Fig. 20 Stress-strain mayor for the FT Mo after various treatments: as-quenched, prenance + hps 9.0 GPa and quenched + annealed $(350^{\circ}\text{C}, 71.5)$.

Fig.21. Transition temperature of Ti-Mo-alloys

x present work
0, . A: 0, Pand a" - phases
0, Paphase, Paphase, J.C. Ho and E.W. Collings

Fig. 22a. Transition curves of Ti + 11.5 at% Mo under pressure.

Fig. 22b. Transition temperature of Ti + 11.5 at% Mo as a function of pressure.

Fig.2). Reduced pressure effect. In $\tau_{\rm g}/$ p of Ti-Mo-alloys as a functin of Mc-concentration.

Fig. 24. T-P diagram for Zirconium.

END

DATE FILMED

DTIC