2022-23 First Semester MATH1063 Linear Algebra II (1003)

Assignment 2 Suggested Solutions

1. (a) L(1) = 1, L(x) = -1 + 2x and $L(x^2) = (2x - 1)^2 = 1 - 4x + 4x^2$. Thus

$$[L]_{\alpha} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix}.$$

(b) L(1) = 1, L(x) = (2x - 1) - 1 = 2(x - 1) and $L(x^2) = (2x - 1 - 1)^2 = 4(x - 1)^2$.

$$[L]_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

(c) The transition matrix S from β to α is

$$S = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow S^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

The matrix representing L^k with respect to the basis α is

$$([L]_{\alpha})^{k} = S ([L]_{\beta})^{k} S^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 4^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 - 2^{k} & (1 - 2^{k})^{2} \\ 0 & 2^{k} & 2^{k+1}(1 - 2^{k}) \\ 0 & 0 & 2^{2k} \end{bmatrix} . \quad k \in \mathbb{Z}^{+}$$

Verification:
$$[L]_{\alpha}^2 = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix}^2 = \begin{bmatrix} 1 & -3 & 9 \\ 0 & 4 & -24 \\ 0 & 0 & 16 \end{bmatrix}.$$

- 2. **Proof**: Let S be a nonsingular matrix so that $B = S^{-1}AS$.
 - (a) Then $A \lambda I$ and $B \lambda I$ are similar since $S^{-1}(A \lambda I)S = S^{-1}AS \lambda S^{-1}IS = B \lambda I$.
 - (b) Based on part (a), we know similar matrices have the same determinant.
- 3. **Proof**:

- (a) $\forall \mathbf{x} \in \ker(B), B\mathbf{x} = \mathbf{0}$. Then $AB\mathbf{x} = A\mathbf{0} = \mathbf{0}$. $\rightarrow \ker(B) \subseteq \ker(AB)$. Hence, $\ker(B)$ is always contained in $\ker(AB)$. Conversely, it depends. Only when $n \geq k$ and $N(A) = \{\mathbf{0}\}$, $\ker(AB) = \ker(B)$.
- (b) $\forall \mathbf{y} \in \operatorname{Col}(AB)$, namely $\mathbf{y} = AB\mathbf{x}$ for some \mathbf{x} , then $A(B\mathbf{x}) = \mathbf{y}$ suggests that \mathbf{y} is also in the image of A. $\to \operatorname{Col}(AB) \subseteq \operatorname{Col}(A)$. Hence, $\operatorname{Col}(AB)$ is always contained in $\operatorname{Col}(A)$. Only when k < m and $\operatorname{Col}(B) = \mathbb{R}^k$, then $\operatorname{Col}(A) = \operatorname{Col}(AB)$.
- 4. Proof: $c_1 A \mathbf{x}_1 + c_2 A \mathbf{x}_2 + \dots + c_k A \mathbf{x}_k = \mathbf{0} \quad \Leftrightarrow \quad A(c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_k \mathbf{x}_k) = \mathbf{0}$.
 - (a) Since A is nonsingular, it follows that $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \cdots + c_k\mathbf{x}_k = A^{-1}\mathbf{0} = \mathbf{0}$. Since $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly independent it follows that $c_1 = c_2 = \cdots = c_k = 0$. Therefore $A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_k$ are linearly independent.
 - (b) Since m > n and $\operatorname{rank}(A) = n$, then $\operatorname{Col}(A) = \mathbb{R}^n$ and $\operatorname{N}(A) = \{\mathbf{0}\}$. It follows that $A \sum_{i=1}^k c_i \mathbf{x}_i = \mathbf{0}$ iff $\sum_{i=1}^k c_i \mathbf{x}_i = \mathbf{0}$. $A\mathbf{v}_1, \dots, A\mathbf{v}_k$ are linearly independent iff $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent.
 - (c) The linear mapping L can be represented by an $m \times n$ matrix A corresponding to certain bases. Based on the discussion in part(a) and (b), we should impose the condition $\ker(L) = \{\mathbf{0}_V\}$, that is, L is one-to-one mapping from V to W. When m = n, the matrix A is nonsingular as in part (a); when m > n, A is an $m \times n$ matrix of rank n as in part (b).
- 5. The angle $\theta = \arccos \frac{\mathbf{v}^T \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \arccos \frac{1}{\sqrt{n}}$. Then $\lim_{n \to \infty} \theta = \arccos 0 = \pi/2$.
- 6. The vector projection of \mathbf{y} onto \mathbf{x} is $\mathbf{p} = \frac{\mathbf{y}^T \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \mathbf{x}$. (a). $\mathbf{p} = \frac{14}{17} \begin{bmatrix} 4 \\ 1 \end{bmatrix}$; (b). $\mathbf{p} = \frac{8}{14} \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$.