

Integrations techniken: Partielle Integration f(x) · g(x) - [f'(x) · g(x) ax Beachte LIATE! L: Logs In(x) wird in dieset 1 : Invose Triq : sm Reihen folge immer A: Algebra 5x+3 f(x) scin! T: Trig. : cos(x) E: Exponent: 10x Verwanden wenn ein Produkt zweier Funktionen vorliegt welche nicht In Relation stchen. Beispiel: J x3. Ln(x) dx Log: f(x) = in(x) g(x)=x $f'(x) = \frac{1}{x} \qquad g(x) = \frac{x^4}{4}$ $\ln(x) \cdot \frac{x}{4} - \left(\frac{1}{x} + \frac{x}{4}\right) ax$ = 4 x 0x $= \ln(x) \cdot \frac{x}{4} - \frac{1}{4} \int \frac{3}{x} dx$ = (n(x), x4 - 1 . x Mantelfläche: Rotation der Bogenlänge

= $\ln(x) \cdot \frac{x}{4} - \frac{x^4}{16}$ $2\pi \int f(x) \cdot \sqrt{1 + \left(\frac{1}{2}(x)\right)^2} dx$

<u>Substitution</u>: Wenn ein Produkt zweier Funktionen urd eines ist die Ableitung des Anderch u=x +7 $\int \frac{4x^3}{x^4+7} dx$ du = 4 x 3 Je nach Situation ist Umstellung nach du oder et wanschenswert $= \int \frac{4x^3}{4x^3} \cdot \frac{1}{4x^3} \cdot \frac{1}{4x^3$ Integrationsgrenzen zen neu 1 = 1 du berechnon $u(x) = x^{4+7}$ u(0) = 7 u(1) = 8! Keine x ador dx durfen übrig blaben! 1 = (n(u) = ln(8)- ln(7)

Extremmente mit Integral (siehe auch Volumentestimmung Beispiel. Finde Mak. mit Querschnittsfläche Flache bei 7 Meter breiten Straifenn 1. Analyse Houpebeelingung

(Hin/Mat etc.) a atz × 2 Analyse Neben bedingung
(im Radius ron r/ 7 meter Breitebe) 3. Funktion der Debenbedingung so Umstellen dass ein Einsetzen in die Hamptbedingung möglich isch $\int f(x) dx = \left[F(x)\right] = F(a+2) - F(a)$ Bei Max: 1 Ableitung, gleich O Stellen und losen. att whatpringen ob Hin/Mox mit f 1 (x) dx

Polenzrzihen:	Form: Potenzreine unendlichen Grades:	
	$P(x) = \sum_{n=1}^{\infty} a_n \cdot x^n$	
Quotientankriterium	n2	
lim anti = Q	Form: Potenzreine mit Zentrum:	
n-201 an 1	$P(x) = \sum_{n=1}^{\infty} b_n (x - x_n)$ $x_n = b_n a_n = \text{Koelfizienten}$	
Q<1 Konvergiert	NED	
Q71 Divigions	Monvergenz radius + Quotientenkriterium für Potenzreinen	
Q=1 Keine Aussage möglich	Con	
	To Cim Con To IXI Konvergiert	
lay lorkoeffizient	Tally 1 Va Callin A	
$a_n = \frac{n}{f(n)}(\kappa_0)$	LCIDALTE KTI CTEVI	
00	1. Monoton Fallend an+1 < an wenn beide wahr	
to(x)= \(\frac{f(x)}{n!} \cdot (x-	X) CONVINCIONE	
	n-pa n sonst divigled e	
Allgemeines Vorgeher	Konvergenzbestimmung Vergehen für Bestimmung der	
Gegeben: $P(x) = \sum_{n=1}^{\infty}$	a. : (x-x) Summanten an x= z	
1. Konvergenzradius	T bostimmen 2. f(n)(z) für jede Ableitung berochnen	
2. Randpank Ediskus	(n)	
(~ × = × - T		
Resultat; a) + 5	V / F	
b) -r &	[[] + []	
c) -r <	X < T Packin Class do 2 as las visit	ł
d) -r (Reduzibel: (x+3)3 = P x+3 + B C (x+3)2 + (x+3)3	
Polynomaivision:		
2x - 14x + 14x + 30:	x-4=2x-14+ zz x-26 The Weichungen Anzahl der	
(CX - 8 X)	Vorgekommenen x mit Ar, Br etc.	
-14 x2+22y+30 -(14x2 +56)	Glarchsetzen und losen	
22× -26	Alternicionde O- Folge:	
	(-1) + 7 Alternierendes Vorzeichen: Z -(1)	
	2n +l	
	Taylor Poly für Sin: x (2x+1)!	

Differentialgleichungen

Homogene Form: y1 + f(x) · y=0 Inhomogene Form: & + f(x) · y = g(x) f(x): Faktor vor y, g(x): Storfaktor

Separieren

1. aleichung nach y und y stellen

2. y' durch dy esetzen

3. dy und y ron dx und x separieren.

4. Integrieren und nach y umstellen.

5. Loenn spezially y(n) =a for Klösen

Substitution:

Form: 5' = f(ax + by +c)

Substitution: u = ax + by + c Form: $y' = f(\frac{y}{x})$

Substitution: $u = \frac{y}{x}$

Vorgehen: 1. Substitution wählen (Form muss nicht 100% identisch sein)

2 Substitution nach y umstellen und y' berechnen

3. y' einsetzen, Lösen und zurückschstituieren

Beispiel: x · y' - y - x = 0 \tx, +y,:x $y = \frac{y}{x} + 1$ $u = \frac{y}{x}$

x + u = u + 1 x + u = u + 1 $y = u \cdot x$ $y' = u' \cdot x + u \text{ (Rantielle integration)}$ ux + u = u +10-

du = x

 $\int du = \frac{1}{x} dx$

u= un(x)+c

x = (x)+c

y=x(in(x)+c)

Beispiel:

$$\frac{y'x}{2} - 1 = y + 1 : x$$

 $\frac{y'}{2} = \frac{y+1}{x} \left[: (y+1) \cdot 2 \right]$

y' = 2 y durch dy ersetzen

(y+1)ax = x Separieren

gt = \[\frac{2ax}{x} integrieren

ch(y+1) = 2 cn (x) +c | noch y stellen ein(y+1) = zincx) c e z e c.

ength = en(x) Ka e wird zu K

4+1 = x - K wern speziell dann K für 4(x)= x2 · K -1 | y(n)=a Losen

Variation der Konstante

Lösungsform: y(x)= y (x)+ yp (x)

yn(x)= K.e f(x) dk

your=Kun. e flood

 $K(x) = \int \frac{g(x)}{g_n(x) [K=1]} dx$

Uneigentliche Integrale 2. Art

Betrachten wir nun die Fläche unter dem Graphen von f(x) = 1 in den Grenzen von 0 bis 1. An der linken Grenze ist die Funktion nicht definiert, es liegt ein Pol (Unendlichkeitsstelle) vor.

Um den Inhalt dieser Fläche zu ermitteln, integrieren wir die Funktion zunächst in den Grenzen von u bis 1:

$$\int_{u}^{1} f(x) \, dx = \begin{bmatrix} 2 \cdot \sqrt{x} \end{bmatrix}_{u}^{1} = 2 - 2 \cdot \sqrt{u} \quad \text{ beachte: } \quad \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$$

Lassen wir die linke Grenze u gegen 0 streben, so strebt der Integralwert offenbar gegen 2.

Allgemein legen wir fest:

$$\int_a^b f(x)\,dx = \lim_{u\to a} \int_u^b f(x)\,dx \qquad \text{, falls } x=a \text{ nicht zum }$$
 Definitions
bereich gehört.

Uneigentliche Integrale 1. Art

Betrachten wir eine Fläche unter dem Graphen von $f(x) = \frac{1}{x^2}$. Die linke Grenze sei x = 1, nach rechts sei die Fläche unbegrenzt, das Flächenstück erstreckt sich ins Unendliche.

Um den Inhalt dieser Fläche zu ermitteln, integrieren wir die Funktion zunächst in den Grenzen von 1 bis u:

$$\int_{1}^{u} f(x) dx = \left[-\frac{1}{x} \right]_{1}^{u} = -\frac{1}{u} + 1$$

Lassen wir die obere Grenze u gegen ∞ streben, so strebt der Integralwert offenbar gegen 1.

Allgemein legen wir fest:

$$\int_{a}^{\infty} f(x) dx = \lim_{u \to \infty} \int_{a}^{u} f(x) dx$$

Der Grenzwert muss natürlich nicht existieren, dann existiert das uneigentliche Integral nicht.

Basic Forms

$$\int x^n dx = \frac{1}{n+1} x^{n+1} \tag{1}$$

$$\int \frac{1}{x} dx = \ln|x| \tag{2}$$

$$\int udv = uv - \int vdu \tag{3}$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| \tag{4}$$

Integrals of Rational Functions

$$\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$$
 (5)

$$\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n \neq -1$$
 (6)

$$\int x(x+a)^n dx = \frac{(x+a)^{n+1}((n+1)x-a)}{(n+1)(n+2)}$$
 (7)

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x \tag{8}$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \tag{9}$$

$$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln|a^2 + x^2| \tag{10}$$

$$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a} \tag{11}$$

$$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2}x^2 - \frac{1}{2}a^2 \ln|a^2 + x^2| \tag{12}$$

$$\int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
 (13)

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, \ a \neq b$$
 (14)

$$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln|a+x| \tag{15}$$

$$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln|ax^2 + bx + c| - \frac{b}{a\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
 (16)

Integrals with Roots

$$\int \sqrt{x-a} dx = \frac{2}{3} (x-a)^{3/2} \tag{17}$$

$$\int \frac{1}{\sqrt{x \pm a}} dx = 2\sqrt{x \pm a} \tag{18}$$

$$\int \frac{1}{\sqrt{a-x}} dx = -2\sqrt{a-x} \tag{19}$$

$$\int x\sqrt{x-a}dx = \frac{2}{3}a(x-a)^{3/2} + \frac{2}{5}(x-a)^{5/2}$$
 (20)

$$\int \sqrt{ax+b}dx = \left(\frac{2b}{3a} + \frac{2x}{3}\right)\sqrt{ax+b}$$

$$\int (ax+b)^{3/2} dx = \frac{2}{5a} (ax+b)^{5/2}$$
 (22)

$$\int \frac{x}{\sqrt{x \pm a}} dx = \frac{2}{3} (x \mp 2a) \sqrt{x \pm a}$$
 (23)

$$\int \sqrt{\frac{x}{a-x}} dx = -\sqrt{x(a-x)} - a \tan^{-1} \frac{\sqrt{x(a-x)}}{x-a}$$
 (24)

$$\int \sqrt{\frac{x}{a+x}} dx = \sqrt{x(a+x)} - a \ln \left[\sqrt{x} + \sqrt{x+a} \right]$$
 (25)

$$\int x\sqrt{ax+b}dx = \frac{2}{15a^2}(-2b^2 + abx + 3a^2x^2)\sqrt{ax+b}$$
 (26)

$$\int \sqrt{x(ax+b)}dx = \frac{1}{4a^{3/2}} \left[(2ax+b)\sqrt{ax(ax+b)} \right]$$

$$-b^{2} \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right| \right] \tag{27}$$

$$\int \sqrt{x^3(ax+b)}dx = \left[\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3}\right] \sqrt{x^3(ax+b)} + \frac{b^3}{8a^{5/2}} \ln\left|a\sqrt{x} + \sqrt{a(ax+b)}\right|$$
(28)

$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$
(29)

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
(30)

$$\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3} \left(x^2 \pm a^2\right)^{3/2} \tag{31}$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$
 (32)

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} \tag{33}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2} \tag{34}$$

$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} \tag{35}$$

$$\int \frac{x^2}{\sqrt{x^2 \pm a^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \mp \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$
(36)

$$\int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$
(37)

$$\int x\sqrt{ax^2 + bx + c} = \frac{1}{48a^{5/2}} \left(2\sqrt{a}\sqrt{ax^2 + bx + c}\right)$$

$$\times \left(-3b^2 + 2abx + 8a(c + ax^2) \right)$$

$$+3(b^3 - 4abc) \ln \left| b + 2ax + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|$$
 (38)

$$\int \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$

$$\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$
(40)

$$\int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 + x^2}} \tag{41}$$

Integrals with Logarithms

$$\int \ln ax dx = x \ln ax - x \tag{42}$$

$$\int \frac{\ln ax}{x} dx = \frac{1}{2} \left(\ln ax \right)^2 \tag{43}$$

$$\int \ln(ax+b)dx = \left(x+\frac{b}{a}\right)\ln(ax+b) - x, a \neq 0 \quad (44)$$

$$\int \ln(x^2 + a^2) \, dx = x \ln(x^2 + a^2) + 2a \tan^{-1} \frac{x}{a} - 2x \quad (45)$$

$$\int \ln(x^2 - a^2) \, dx = x \ln(x^2 - a^2) + a \ln \frac{x+a}{x-a} - 2x \quad (46)$$

$$\int \ln (ax^{2} + bx + c) dx = \frac{1}{a} \sqrt{4ac - b^{2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^{2}}}$$
$$-2x + \left(\frac{b}{2a} + x\right) \ln (ax^{2} + bx + c) \tag{47}$$

$$\int x \ln(ax+b) dx = \frac{bx}{2a} - \frac{1}{4}x^2 + \frac{1}{2}\left(x^2 - \frac{b^2}{a^2}\right) \ln(ax+b)$$
 (48)

$$\int x \ln \left(a^2 - b^2 x^2\right) dx = -\frac{1}{2}x^2 + \frac{1}{2} \left(x^2 - \frac{a^2}{b^2}\right) \ln \left(a^2 - b^2 x^2\right)$$
(49)

Integrals with Exponentials

$$\int e^{ax} dx = \frac{1}{a} e^{ax} \tag{50}$$

$$\int \sqrt{x}e^{ax}dx = \frac{1}{a}\sqrt{x}e^{ax} + \frac{i\sqrt{\pi}}{2a^{3/2}}\operatorname{erf}\left(i\sqrt{ax}\right),$$
where $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt$ (51)

$$\int xe^x dx = (x-1)e^x \tag{52}$$

$$\int xe^{ax}dx = \left(\frac{x}{a} - \frac{1}{a^2}\right)e^{ax} \tag{53}$$

$$\int x^2 e^x dx = (x^2 - 2x + 2) e^x$$
 (54)

$$\int x^2 e^{ax} dx = \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right) e^{ax} \tag{55}$$

$$\int x^3 e^x dx = (x^3 - 3x^2 + 6x - 6) e^x$$
 (56)

$$\int x^n e^{ax} \, dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} \, dx \tag{57}$$

$$\int x^n e^{ax} dx = \frac{(-1)^n}{a^{n+1}} \Gamma[1+n, -ax],$$
where $\Gamma(a, x) = \int_0^\infty t^{a-1} e^{-t} dt$ (58)

$$\int e^{ax^2} dx = -\frac{i\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}\left(ix\sqrt{a}\right) \tag{59}$$

$$\int e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}\left(x\sqrt{a}\right) \tag{60}$$

$$\int xe^{-ax^2} \, \mathrm{dx} = -\frac{1}{2a}e^{-ax^2} \tag{61}$$

$$\int x^2 e^{-ax^2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^3}} \operatorname{erf}(x\sqrt{a}) - \frac{x}{2a} e^{-ax^2}$$
 (62)

^{* 2014.} From http://integral-table.com, last revised June 14, 2014. This material is provided as is without warranty or representation about the accuracy, correctness or suitability of the material for any purpose, and is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Integrals with Trigonometric Functions

$$\int \sin ax dx = -\frac{1}{a} \cos ax \tag{63}$$

$$\int \sin^2 ax dx = \frac{x}{2} - \frac{\sin 2ax}{4a} \tag{64}$$

$$\int \sin^n ax dx = -\frac{1}{a} \cos ax \, _2F_1 \left[\frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^2 ax \right]$$
 (65)

$$\int \sin^3 ax dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a} \tag{66}$$

$$\int \cos ax dx = -\frac{1}{a} \sin ax \tag{67}$$

$$\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a} \tag{68}$$

$$\int \cos^{p} ax dx = -\frac{1}{a(1+p)} \cos^{1+p} ax \times {}_{2}F_{1} \left[\frac{1+p}{2}, \frac{1}{2}, \frac{3+p}{2}, \cos^{2} ax \right]$$
 (69)

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a} \tag{70}$$

$$\int \cos ax \sin bx dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, a \neq b$$
(71)

$$\int \sin^2 ax \cos bx dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$$
(72)

$$\int \sin^2 x \cos x dx = \frac{1}{3} \sin^3 x \tag{73}$$

$$\int \cos^2 ax \sin bx dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a+b)x]}{4(2a+b)}$$
(74)

$$\int \cos^2 ax \sin ax dx = -\frac{1}{3a} \cos^3 ax \tag{75}$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)}$$
(76)

$$\int \sin^2 ax \cos^2 ax dx = \frac{x}{8} - \frac{\sin 4ax}{32a} \tag{77}$$

$$\int \tan ax dx = -\frac{1}{a} \ln \cos ax \tag{78}$$

$$\int \tan^2 ax dx = -x + \frac{1}{a} \tan ax \tag{79}$$

$$\int \tan^{n} ax dx = \frac{\tan^{n+1} ax}{a(1+n)} \times {}_{2}F_{1}\left(\frac{n+1}{2}, 1, \frac{n+3}{2}, -\tan^{2} ax\right)$$
(80)

$$\int \tan^3 ax dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a} \sec^2 ax$$
 (81)

$$\int \sec x dx = \ln|\sec x + \tan x| = 2\tanh^{-1}\left(\tan\frac{x}{2}\right) \quad (82)$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax \tag{83}$$

$$\int \sec^3 x \, dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x| \quad (84)$$

$$\int \sec x \tan x dx = \sec x \tag{85}$$

$$\int \sec^2 x \tan x dx = \frac{1}{2} \sec^2 x \tag{86}$$

$$\int \sec^n x \tan x dx = \frac{1}{n} \sec^n x, n \neq 0$$
 (87)

$$\int \csc x dx = \ln\left|\tan\frac{x}{2}\right| = \ln\left|\csc x - \cot x\right| + C \qquad (88)$$

$$\int \csc^2 ax dx = -\frac{1}{a} \cot ax \tag{89}$$

$$\int \csc^3 x dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln|\csc x - \cot x| \quad (90)$$

$$\int \csc^n x \cot x dx = -\frac{1}{n} \csc^n x, n \neq 0$$
 (91)

$$\int \sec x \csc x dx = \ln|\tan x| \tag{92}$$

$\begin{array}{c} \textbf{Products of Trigonometric Functions and} \\ \textbf{Monomials} \end{array}$

$$\int x \cos x dx = \cos x + x \sin x \tag{93}$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax \tag{94}$$

$$\int x^2 \cos x dx = 2x \cos x + \left(x^2 - 2\right) \sin x \tag{95}$$

$$\int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$
 (96)

$$\int x^{n} \cos x dx = -\frac{1}{2} (i)^{n+1} \left[\Gamma(n+1, -ix) + (-1)^{n} \Gamma(n+1, ix) \right]$$
(97)

$$\int x^{n} cosax dx = \frac{1}{2} (ia)^{1-n} [(-1)^{n} \Gamma(n+1, -iax) - \Gamma(n+1, ixa)]$$
(98)

$$\int x \sin x dx = -x \cos x + \sin x \tag{99}$$

$$\int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$$
 (100)

$$\int x^2 \sin x dx = (2 - x^2) \cos x + 2x \sin x \tag{101}$$

$$\int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$$
 (102)

$$\int x^{n} \sin x dx = -\frac{1}{2} (i)^{n} \left[\Gamma(n+1, -ix) - (-1)^{n} \Gamma(n+1, -ix) \right]$$
(103)

Products of Trigonometric Functions and Exponentials

$$\int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) \tag{104}$$

$$\int e^{bx} \sin ax dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - a \cos ax) \quad (105)$$

$$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) \tag{106}$$

$$\int e^{bx} \cos ax dx = \frac{1}{a^2 + b^2} e^{bx} (a \sin ax + b \cos ax) \quad (107)$$

$$\int xe^x \sin x dx = \frac{1}{2}e^x (\cos x - x\cos x + x\sin x) \qquad (108)$$

$$\int xe^x \cos x dx = \frac{1}{2}e^x (x \cos x - \sin x + x \sin x) \qquad (109)$$

Integrals of Hyperbolic Functions

$$\int \cosh ax dx = -\frac{1}{a} \sinh ax \tag{110}$$

$$\int e^{ax} \cosh bx dx =$$

$$\begin{cases} \frac{e^{ax}}{a^2 - b^2} [a \cosh bx - b \sinh bx] & a \neq b \\ \frac{e^{2ax}}{4a} + \frac{x}{2} & a = b \end{cases}$$
 (111)

$$\int \sinh ax dx = -\frac{1}{a} \cosh ax \tag{112}$$

$$\int e^{ax} \sinh bx dx =$$

$$\begin{cases} \frac{e^{ax}}{a^2 - b^2} [-b \cosh bx + a \sinh bx] & a \neq b \\ \frac{e^{2ax}}{4a} - \frac{x}{2} & a = b \end{cases}$$
 (113)

$$\int e^{ax} \tanh bx dx =$$

$$\begin{cases} \frac{e^{(a+2b)x}}{(a+2b)^2} {}_2F_1 \left[1 + \frac{a}{2b}, 1, 2 + \frac{a}{2b}, -e^{2bx} \right] \\ -\frac{1}{a} e^{ax} {}_2F_1 \left[\frac{a}{2b}, 1, 1E, -e^{2bx} \right] & a \neq b \end{cases}$$
(114)
$$\frac{e^{ax} - 2 \tan^{-1} [e^{ax}]}{a} \qquad a = b$$

$$\int \tanh ax \, dx = \frac{1}{a} \ln \cosh ax \tag{115}$$

$$\int \cos ax \cosh bx dx = \frac{1}{a^2 + b^2} \left[a \sin ax \cosh bx + b \cos ax \sinh bx \right]$$
(116)

$$\int \cos ax \sinh bx dx = \frac{1}{a^2 + b^2} \left[b \cos ax \cosh bx + a \sin ax \sinh bx \right]$$
(117)

$$\int \sin ax \cosh bx dx = \frac{1}{a^2 + b^2} \left[-a \cos ax \cosh bx + b \sin ax \sinh bx \right]$$
 (118)

$$\int \sin ax \sinh bx dx = \frac{1}{a^2 + b^2} \left[b \cosh bx \sin ax - a \cos ax \sinh bx \right]$$
 (119)

$$\int \sinh ax \cosh ax dx = \frac{1}{4a} \left[-2ax + \sinh 2ax \right] \tag{120}$$

$$\int \sinh ax \cosh bx dx = \frac{1}{b^2 - a^2} \left[b \cosh bx \sinh ax -a \cosh ax \sinh bx \right]$$
(121)

Kehrwert

 $\frac{1}{a}$ heißt Kehrwert der Zahla. $\frac{b}{a}$ heißt Kehrwert des Bruches $\frac{a}{b}.$ Es gilt:

$$\frac{a}{b} \cdot \frac{b}{a} = 1 \qquad \frac{1}{\frac{a}{b}} = \frac{b}{a} \qquad \frac{1}{\frac{1}{a}} = a \tag{4}$$

Erweitern und Kürzen

Beim *Erweitern* werden Zähler **und** Nenner mit der gleichen Zahl (ungleich Null) multipliziert:

$$\frac{a}{b} = \frac{a \cdot c}{b \cdot c} \tag{5}$$

Beim Kürzen werden Zähler und Nenner durch die gleiche Zahl (ungleich Null) dividiert:

$$\frac{a}{b} = \frac{a : c}{b : c} \tag{6}$$

Kürzen bei Produkten:

$$\frac{a \cdot b}{a \cdot c} = \frac{b}{c} \tag{7}$$

Kürzen bei Summen und Differenzen:

$$\frac{ab+ac}{ad} = \frac{a(b+c)}{ad} = \frac{b+c}{d} \qquad \frac{ab-ac}{ad} = \frac{a(b-c)}{ad} = \frac{b-c}{d}$$
 (8)

$$\frac{ad}{ab+ac} = \frac{ad}{a(b+c)} = \frac{d}{b+c} \qquad \frac{ad}{ab-ac} = \frac{ad}{a(b-c)} = \frac{d}{b-c}$$

$$(9)$$

Zähler und Nenner müssen als Produkt vorliegen.

Merkregel: "Differenzen und Summen kürzen nur die Dummen!"

Multiplikation

mit einer Zahl:

$$a \cdot \frac{b}{d} = \frac{ab}{d} \tag{10}$$

mit einem Bruch:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \tag{11}$$

bei Potenzierung:

Achtung: Es gilt weiterhin "Punkt- vor Strichrechnung!". Potenzen zählen zur Punktrechnung. Beispiel:

$$(-2)^2 \neq -2^2$$

$$(+x)^2 = x^2 (-x)^2 = x^2 (22)$$

$$(+x)^3 = x^3 \qquad (-x)^3 = -x^3 \tag{23}$$

$$(-x)^n = \begin{cases} x^n & \text{für } n \text{ gerade.} \\ -x^n & \text{für } n \text{ ungerade.} \end{cases}$$
 (24)

bei Summen und Differenzen:

$$-a - b = -(a + b) -a + b = -(a - b) = b - a (25)$$

4 Termumformungen

Kommutativgesetze

$$a + b = b + a \qquad a \cdot b = b \cdot a \tag{27}$$

Assoziativgesetze

$$a + (b+c) = (a+b) + c \qquad a \cdot (b \cdot c) = (a \cdot b) \cdot c \tag{28}$$

Distributivgesetz

$$a \cdot (b+c) = ab + ac \tag{29}$$

Produkte von Summen

$$(a+b)\cdot(c+d) = ac + ad + bc + bd \tag{30}$$

Binomische Formeln

$$(a+b)^2 = a^2 + 2ab + b^2 (31)$$

$$(a-b)^2 = a^2 - 2ab + b^2 (32)$$

$$(a+b) \cdot (a-b) = a^2 - b^2 \tag{33}$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 (34)$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
(35)

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$
(36)

Wurzelgleichungen

Separation der Wurzeln – Quadrieren, bis keine Wurzel mehr vorhanden ist –

Definitionsmenge beachten – Probe machen

7 Potenzen

$$a^n = \underbrace{a \cdot a \cdot a \cdot a}_{n \text{ Faktoren } a} \quad \text{mit } a \in \mathbb{R}; \ n \in \mathbb{N}$$

heißt Potenz. a heißt Basis und n Exponent.

Nicht-positive Exponenten werden wie folgt definiert:

$$a^{0} = 1$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$$

Potenzgesetze

Gleiche Basen:

$$a^m \cdot a^n = a^{m+n}$$
$$\frac{a^m}{a^n} = a^{m-n}$$

Gleiche Exponenten:

$$a^{n} \cdot b^{n} = (ab)^{n}$$
$$\frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n}$$

Potenzierung von Potenzen:

$$(a^m)^n = a^{mn} = (a^n)^m$$

Gebrochene Exponenten

Potenzen mit gebrochenen Exponenten werden als Wurzeln definiert. Für alle $m,n\in\mathbb{N},n\geq 2$ und $a\in\mathbb{R}$ mit a>0 gilt:

$$a^{\frac{1}{n}} = \sqrt[n]{a} \qquad a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

8 Wurzeln

Die n-te Wurzel aus $a \ge 0$ wird wie folgt definiert:

$$\sqrt[n]{a} = b \iff b^n = a \text{ und } b \ge 0 \text{ und } n \in \mathbb{N} \text{ mit } n \ge 2.$$

a heißt Radikand und n Wurzelexponent.

6

Logarithmengesetze

$$\log_b(x \cdot y) = \log_b x + \log_b y$$
$$\log_b \frac{x}{y} = \log_b x - \log_b y$$
$$\log_b x^r = r \cdot \log_b x$$
$$\log_b x = \frac{\log_c x}{\log_b b} = \frac{\ln x}{\ln b} = \frac{\lg x}{\lg b}$$

Jede Exponentialfunktion mit der Basis b lässt sich als Funktion mit der Basis e (Eulersche Zahl) schreiben:

$$b^x = \left(e^{\ln b}\right)^x = e^{x \cdot \ln b}$$

Wurzelgesetze

Wurzelgesetze sind Potenzgesetze mit gebrochenen Exponenten. Gleiche Radikanden:

$$\sqrt[m]{a} \cdot \sqrt[n]{a} = a^{\frac{1}{m}} \cdot a^{\frac{1}{n}} = a^{\frac{1}{m} + \frac{1}{n}} = a^{\frac{n+m}{mn}} = \sqrt[mn]{a^{m+n}}$$

$$\frac{\sqrt[m]{a}}{\sqrt[n]{a}} = \frac{a^{\frac{1}{m}}}{a^{\frac{1}{n}}} = a^{\frac{1}{m} - \frac{1}{n}} = a^{\frac{n-m}{mn}} = \sqrt[mn]{a^{n-m}}$$

Gleiche Wurzelexponenten:

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Wurzeln von Wurzeln:

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[mn]{a} = \sqrt[m]{\sqrt[n]{a}}$$

9 Logarithmen

$$\log_b x = h \iff b^h = x$$
, wobei $b, x \in \mathbb{R}; b \neq 1$

b heißt Basis, x Numerus und h Logarithmus.

Merke: Logarithmus bedeutet Hochzahl bzw. Exponent!

Spezielle Logarithmen

$$\log_{10} x = \lg x$$

$$\log_e x = \ln x$$

Logarithmieren

Die Logarithmusfunktion ist die Umkehrung der Exponentialfunktion.

Logarithmieren und

Potenzieren "heben sich gegenseitig auf".

$$b^{\log_b x} = x \qquad \log_b(b^x) = x$$

Speziell

$$10^{\lg x} = x \qquad \lg(10^x) = x$$

$$e^{\ln x} = x \qquad \ln(e^x) = x$$