Modifying MED for Model Selection

Kristyn Pantoja

1/23/2020

MED Overview

Sequential Modified MED

Case 1: Quadratic true model

Case 2: Cubic

Gaussian Process Application

Appendix

MED Overview

Minimum Energy Design

Design $\mathbf{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ is a MED if it minimizes the total potential energy, given by:

$$\sum_{i\neq j}\frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

Theorem: If $q = \frac{1}{f^{1/2p}}$, the **limiting** distribution¹ of the design points is target distribution, f.

Figure 1: Sampling the "Banana" function

¹"Sequential Exploration of Complex Surfaces Using Minimum Energy Designs," Joseph et. al. 2015, Result 1

MED for Model Selection

Goals

A design $\mathbf{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ to gather data that will

- 1. help distinguish these two slopes
- 2. allow adequate estimation of β

Define q in terms of $f_D(x)$, a normalized Wasserstein distance between $y|H_0, X$ and $y|H_1, X$, assuming a bounded design space.

Modified Objective

$$q = \frac{1}{f_D^{1/2p}}$$

where $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$,

- Here, the regions that are important for distinguishing the two models have high density.
- A tuning parameter α adjusts the space-filling aspect: $q_{\alpha}=1/f_{D}^{\alpha/2p}$

Original Motivating Example

Limiting Distribution

Cautionary Example

Suppose we want to consider a linear model and quadratic model:

$$H_0: \beta \sim N((0,0)^T, \nu^2 I_2)$$

$$H_1: \beta \sim N((0,0,0)^T, \nu^2 I_3)$$

Consider the case where the true model is quadratic:

$$\beta_T = (-0.2, -0.4, 0.4)$$

D-Optimal and Space-filling Designs

Posterior Probabilities

Points for Estimation

Points in the middle do not show large difference between the two models, but are importaint for constraining the models to be $distinguished^2$

²"Designing Test Information and Test Information in Design", Jones & Meng

Sequential Modified MED

Sequential Design

If an experiment setting allows for data to be gathered sequentially, the modified MED (M-MED) can be adjusted to take into account data from previous experiments.

Currently, we have
$$q_{\alpha}=1/f_{D}^{\alpha/2p}$$
, where $f_{D}(\mathbf{x})=$ Wasserstein $(\phi_{0,\mathbf{x}},\phi_{1,\mathbf{x}})$

▶ M-MED: $\phi_{\ell,\mathbf{x}}$ is the marginal distribution of $y|H_{\ell},X$

Taking data into account

Sequential M-MED: $\phi_{\ell,\mathbf{x}}$ is the posterior predictive distribution³ of $y|H_{\ell},X$.

³See appendix

Case 1: Quadratic true model

Hypothesized and True Models

Consider the cautionary example again.

$$H_0: \beta \sim N((0,0)^T, \nu^2 I_2)$$

 $H_1: \beta \sim N((0,0,0)^T, \nu^2 I_3)$

Consider the case where the true model is quadratic:

$$\beta_T = (-0.2, -0.4, 0.4)$$

Sequential M-MED (using data)

A sequence of 10 steps, generating 10 points in each step, resulting in 100 points:

Sequential M-MED (with data)

Linear and Quadratic Fits

High Density Areas

Hypothesis Testing

Parameter Estimation: MSE(Bn)

Prediction: MSE(y-hat)

Case 2: Cubic

f0, f1, true f

Suppose we want to consider a linear model and quadratic model:

$$H_0: \beta \sim N((0,0)^T, V_0)$$

 $H_1: \beta \sim N((0,0,0)^T, V_0)$

and suppose $\beta_T = (0, -0.75, 0, 1)$

Sequential M-MED With Data

A sequence of 10 steps, generating 10 points in each step, resulting in 100 points:

Sequential M-MED (with data)

Linear, Quadratic, Cubic Fits

Hypothesis Testing

Prediction: MSE(y-hat)

Gaussian Process Application

Applying MED to Gaussian Process Model Selection

- ► Several covariance function options for Gaussian Process⁴. How to choose between two good options?
 - ▶ Squared Exponential: infinitely differentiable, standard choice
 - ► Matern: more reasonable smoothness assumptions
 - non-stationary options to capture structure in data

Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of ν , with $\ell=1$. The sample functions on the right were obtained using a discretization of the x-axis of 2000 equally-spaced points.

⁵ "Gaussian Processes for Machine Learning" Rasmussen et. al. 2005

Applying M-MED to Gaussian Process Model Selection

- ► Goal: Choose a design that will distinguish the two gaussian process models.
- Distinguishing functions vs. distributions over functions:
 - For regression models, we use $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$. What is the distance function now? What are $\phi_{0,\mathbf{x}}, \phi_{0,\mathbf{x}}$?
 - Key Question: Do we need to consider the predictive distribution for each GP model?
 - **Doing so would give us an option for** $\phi_{0,x}, \phi_{0,x}$.
 - We would need to have at least some data in order to model each Gaussian Process (training set) and use M-MED to select points for comparing them.

Simulations Set-Up

- I consider two cases:
 - ► Gaussian vs. Matern kernels, where the true function is generated from the Matern kernel
 - Matern vs. Periodic kernels, where the true function is generated from the Periodic kernel
- ➤ To evaluate MED for each case, I draw uniformly selected input points for my training set, and then apply MED to the data.
- ► I consider two measures for comparing MED to a space-filling design:
 - ratio of RSS for each hypothesized kernel:

$$\frac{\sum_{i \in \mathbf{D}} (y_i^{\mathsf{pred}_0} - y_i^{\mathsf{new}})^2}{\sum_{i \in \mathbf{D}} (y_i^{\mathsf{pred}_1} - y_i^{\mathsf{new}})^2}$$

likelihood ratio:

$$\frac{L(y^{\text{new}}|\boldsymbol{\xi},y^{\text{obs}},\mathbf{X}^{\text{obs}},\boldsymbol{\Theta}=0)}{L(y^{\text{new}}|\boldsymbol{\xi},y^{\text{obs}},\mathbf{X}^{\text{obs}},\boldsymbol{\Theta}=1)}$$

Gaussian vs. Matern (simulation)

Gaussian vs. Matern: log(RSS0/RSS1)

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-0.62	0.053	0.25	0.54	0.62	5.5

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-0.42	0.042	0.14	0.42	0.39	4.8

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 0.68

Gaussian vs. Matern: log ratio of predictive densities

(after removing NAs caused from non-invertible matrix)

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-Inf	-2.9e+08	-4.8e+07	-Inf	-9.9e+05	-1.3e+05

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-2.7e+10	-1.2e+06	-3.7e+05	-1.1e+09	-9.6e+04	-1.8e+04

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 0.875

Matern vs. Periodic (simulation)

Matern vs. Periodic: log(RSS0/RSS1)

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.56	1.3	1.8	2	2.2	3.6

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-0.094	0.72	1	1.1	1.4	3

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 1

Matern vs. Periodic: log ratio of predictive densities

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-280	-160	-130	-140	-110	-65

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-Inf	-99	-85	-Inf	-60	-38

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 0.92

Will a sequential design improve results?

For the sequential designs, I:

- 1. Start with 6 input data
- 2. Use SMMED to sequentially gather 15 new data points in 3 steps, with 5 new points
- 3. To compare SMMED to a space-filling design, I use the previous evaluations on the 15 new points (pretending that data was not gathered for them yet)

Gaussian vs. Matern (sequentially)

Gaussian vs. Matern: log(RSS0/RSS1)

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-0.49	-0.082	0.27	0.48	0.64	2.8

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-0.53	-0.21	0.24	0.45	0.57	2.5

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 0.64

Gaussian vs. Matern: log likelihood ratio (predictive)

(after removing NAs caused from non-invertible matrix)

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-8.7e+05	-1.2e+05	-5.5e+04	-1.3e+05	-3.1e+04	-5.8e+03

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-9.6e+08	-1.0e+07	-2.8e+06	-6.6e+07	-3.6e+05	-2.9e+04

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 0

Matern vs. Periodic (sequentially)

Matern vs. Periodic: log(RSS0/RSS1)

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.26	1.2	1.5	1.6	2	4.7

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.35	0.9	1.3	1.3	1.7	2.5

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 0.56

Matern vs. Periodic: log likelihood ratio (predictive)

(after removing NAs caused from non-invertible matrix)

M-MED

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-4.9e+02	-2.5e+02	-1.6e+02	-2.1e+02	-1.3e+02	-8.9e+01

Space-filling

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-1.5e+02	-9.6e+01	-7.5e+01	-7.7e+01	-5.5e+01	-3.2e+01

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

[1] 1

Appendix

Posterior Predictive Distribution of y

 $[\tilde{y}|\tilde{x},X,y,\sigma_{\varepsilon}^{2},H_{i},V_{i}]$ for brevity, call it $\tilde{y}|y$

$$f(\tilde{y}|y) = \int f(\tilde{y}|\beta; \tilde{x}, \sigma_{\varepsilon}^{2}) f(\beta|y, X, V_{i}, \sigma_{\varepsilon}^{2}) d\beta$$

where $f(\tilde{y}|\beta; \tilde{x}, \sigma_{\varepsilon}^2)$ is the pdf of $N(\tilde{x}^T\beta, \sigma_{\varepsilon}^2)$ and $f(\beta|y, X, V_i, \sigma_{\varepsilon}^2)$ is the posterior distribution of β ; we denote the posterior mean and variance β_n and Σ_n , respectively.

Integrating out β leads to a normal distribution with mean

$$E[\tilde{y}|y] = E[E[\tilde{y}|\beta, y]] = E[\tilde{x}^T\beta|y] = \tilde{x}^T\beta_n$$

and with variance

$$Var[\tilde{y}|y] = E[Var[\tilde{y}|\beta, y]] + Var[E[\tilde{y}|\beta, y]]$$
$$= \sigma_{\varepsilon}^{2} + Var[\tilde{x}^{T}\beta|y] = \sigma_{\varepsilon}^{2} + \tilde{x}^{T}\Sigma_{n}\tilde{x}$$

One-at-a-Time Algorithm (2015)

Steps to obtain MED using One-at-a-Time algorithm:

- 1. Obtain numCandidates candidate points, \mathbf{x} , in [0,1].
- 2. Initialize \mathbf{D}_N by choosing \mathbf{x}_1 to be the candidate \mathbf{x} which optimizes f, where $f(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$ and

$$\phi_{0,\mathbf{x}} = N(\mu_0 \mathbf{x}, \sigma_0^2 + \mathbf{x}^2 \nu_0^2),$$

$$\phi_{1,\mathbf{x}} = N(\mu_1 \mathbf{x}, \sigma_1^2 + \mathbf{x}^2 \nu_1^2)$$

3. For j = 1, ..., N, choose the next point \mathbf{x}_{j+1} by:

$$\mathbf{x}_{j+1} = \operatorname*{arg\,min}_{\mathbf{x}} \sum_{i=1}^{j} \left(rac{q(\mathbf{x}_i) q(\mathbf{x})}{d(\mathbf{x}_i, \mathbf{x})}
ight)^k$$

where $q = 1/f^{(1/2p)}$, d(x, y) is Euclidean distance and k = 4p.

▶ This is a greedy algorithm for choosing points one at a time

Fast Algorithm (2018)

In each of S stages, create a new design to iteratively minimize

$$\max_{i\neq j} \frac{q(\mathbf{x}_i)q(\mathbf{x}_j)}{d(\mathbf{x}_i,\mathbf{x}_j)}$$

- 1. Initialize space-filling design $\mathbf{D}_1 = \{\mathbf{x}_1^{(1)} \dots \mathbf{x}_N^{(1)}\}$
- 2. For $s=1,\ldots,S-1$ stages, obtain each design point $\mathbf{x}_{j}^{(s+1)} \in \mathbf{D}_{s+1}$ by:

$$\mathbf{x}_{j}^{s+1} = \underset{\mathbf{x} \in \mathbf{C}_{j}^{s+1}}{\min} \max_{i=1:(j-1)} \frac{1}{f^{\gamma_{s}}(\mathbf{x}_{i})f^{\gamma_{s}}(\mathbf{x})d^{(2p)}(\mathbf{x}_{i},\mathbf{x})}$$

$$= \underset{\mathbf{x} \in \mathbf{C}_{i}^{s+1}}{\min} \max_{i=1:(j-1)} \frac{q^{\gamma_{s}}(\mathbf{x}_{i})q^{\gamma_{s}}(\mathbf{x})}{d(\mathbf{x}_{i},\mathbf{x})}$$

where $\gamma_s = s/(S-1)$ and \mathbf{C}_i^{s+1} is the candidate set for $\mathbf{x}_i^{(s+1)}$

Points migrate to more optimal locations in each stage

Posterior Probabilities of Hypotheses

▶ Posterior Probability of model $H_{\ell}, \ell \in 1, ..., M$:

$$P(H_{\ell}|y,X) = \frac{\pi_{\ell}f(y|H_{\ell},X)}{\sum_{m=1}^{M} \pi_{m}f(y|H_{m},X)}$$

where π_m is the prior on H_m (typically $\pi_m = \frac{1}{M}$), and $f(y|H_m,X)$ is the model evidence, i.e. density of $N_N(X\mu_\ell,\sigma_\varepsilon^2I+XV_\ell X^T)$ evaluated at a given y and design D with N design points.

- ▶ $P(H_{\ell}|y,X)$ tells which hypothesis is more likely to give the correct model.
- ► $E[P(H_{\ell}|y,X)|H_r,X]$ may be estimated using MC approximation from simulated responses y.
- ► $E[P(H_{\ell}|y, \mathbf{D})|H_r, \mathbf{D}]$ can be used to evaluate a design \mathbf{D} 's ability to distinguish hypotheses

Estimate Expected Posterior Probability of a Hypothesis

Estimate the expected posterior probability of hypothesis H_{ℓ} for J simulations of Y under H_r , given design $\mathbf{D} = \{x_1, ..., x_N\}$:

- 1. For j = 1, ..., J:
 - 1.1 Draw $y_i^{(j)}|\mathbf{x}_i \sim N(\mathbf{x}_i^T \beta_T, \sigma_{\varepsilon}^2), \ \forall \mathbf{x}_i \in \mathbf{D}, \ \text{so} \ y^{(j)} \in R^N$.
 - 1.2 $\forall m = \{0,1\}$, calculate model evidences $f(y|H_m, \mathbf{D})$
 - 1.3 Calculate the posterior probability of H_{ℓ} , $P(H_{\ell}|y^{(j)}, \mathbf{D})$, from simulation j

$$P(H_{\ell}|y^{(j)},\mathbf{D}) = \frac{f(y^{(j)}|H_{\ell},X)}{f(y^{(j)}|H_{0},X) + f(y^{(j)}|H_{1},X)}$$

2. Average the estimated posterior probabilities of H_{ℓ} over $\forall j$ to obtain MC estimate of $E[P(H_{\ell}|y,\mathbf{D})|H_r,\mathbf{D}]$

Note that $y^{(j)}$ are generated from $N_N(X\beta_T, \sigma_\varepsilon^2 I)$ and are independent, while the model evidence for H_m marginalizes out β and evaluates $y^{(j)}$ using $f(y|H_m, \mathbf{D})$, the density of $N_N(X\mu_m, \sigma_\varepsilon^2 I + XV_m X^T)$, in which they are no longer assumed to be independent.

Closed Form MSE of Posterior Mean

For notation, call $E[\beta|Y] = \beta_n$.

$$MSE(\beta_n) = Var[\beta_n] + (E[\beta_n] - \beta_T)^2$$
$$= Var[\beta_n] + (E[\beta_n])^2 - 2\beta_T E[\beta_n] + \beta_T^2$$

where

$$Var[\beta_n] = Var\left[\frac{1}{\sigma^2}\Sigma_B(X^Ty + \sigma^2V^{-1}\mu)\right] = Var\left[\frac{1}{\sigma^2}\Sigma_BX^Ty\right]$$

$$= (\frac{1}{\sigma^2})^2\Sigma_BX^TVar[y]X\Sigma_B = (\frac{1}{\sigma^2})^2\Sigma_BX^T(\sigma^2I)X\Sigma_B$$

$$= \frac{1}{\sigma^2}\Sigma_BX^TX\Sigma_B$$

$$E[\beta_n] = E\left[\frac{1}{\sigma^2}\Sigma_B(X^Ty + \sigma^2V^{-1}\mu)\right] = \frac{1}{\sigma^2}\Sigma_B(X^TE[y] + \sigma^2V^{-1}\mu)$$

$$= \frac{1}{\sigma^2}\Sigma_B(X^TX\beta_T + \sigma^2V^{-1}\mu) = \frac{1}{\sigma^2}\Sigma_BX^TX\beta_T + \Sigma_BV^{-1}\mu$$

where $\Sigma_B = Var[\beta|y] = \sigma^2(X^TX + \sigma^2V^{-1})^{-1}$ and $y \sim N(X\beta_T, \sigma^2I)$

Closed Form MSE of y-hat

For an unseen point \mathbf{x}_* , its predicted response $\hat{y} = \mathbf{x}_*^T \beta_n$, where β_n is the posterior mean of β .

$$MSE(\hat{y}) = Var[\hat{y}] + Bias^{2}(\hat{y})$$

$$= Var[\mathbf{x}_{*}^{T}\beta_{n}] + E[\hat{y} - y_{T}]^{2}$$

$$= \mathbf{x}_{*}^{T} Var[\beta_{n}]\mathbf{x}_{*} + E[\mathbf{x}_{*}^{T}\beta_{n}] - \mathbf{x}_{*}^{T}\beta_{T}$$

$$= \mathbf{x}_{*}^{T} Var[\beta_{n}]\mathbf{x}_{*} + \mathbf{x}_{*}^{T} E[\beta_{n}] - \mathbf{x}_{*}^{T}\beta_{T}$$

where $E[\beta_n]$ and $Var[\beta_n]$ were calculated in the previous slide.

T-Optimal Designs

Comparing linear model with fixed parameters against the quadratic model parameters allowed to vary

points	weights
-1	0.25
0	0.50
1	0.25

E[P(Hi|Y,D)] with T-Optimal Designs

