

CLAIMS

The following set of claims replaces all the previous set of claims.

1. (Original) A compound of Formula (I):

wherein,

R₁ is:

- (i) hydrogen; or
- (ii) -SO₂R₁₀,
- (iii) wherein R₁₀ is:

halo; hydroxy; OR₁₁; OR₁₂; amino; NHR₁₁; N(R₁₁)₂; NHR₁₂; N(R₁₂)₂; aralkylamino; or

C₁-C₁₂ alkyl optionally substituted with halo, hydroxy, oxo, nitro, OR₁₁, OR₁₂, acyloxy, amino, NHR₁₁; N(R₁₁)₂; NHR₁₂; N(R₁₂)₂, aralkylamino, mercapto, thioalkoxy, S(O)R₁₁, S(O)R₁₂, SO₂R₁₁, SO₂R₁₂, NHSO₂R₁₁, NHSO₂R₁₂, sulfate, phosphate, cyano, carboxyl, C(O)R₁₁, C(O)R₁₂, C(O)OR₁₁, C(O)NH₂, C(O)NHR₁₁, C(O)N(R₁₁)₂, C₃-C₁₀ cycloalkyl containing 0-3 R₁₃, C₃-C₁₀ heterocyclyl containing 0-3 R₁₃, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₅-C₁₀ cycloalkenyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₂₀ aryl containing 0-3 R₁₄, or heteroaryl containing 0-3 R₁₄; or

C_3 - C_{10} cycloalkyl, C_3 - C_{10} heterocyclyl, C_5 - C_{10} cycloalkenyl, or C_5 - C_{10} heterocycloalkenyl optionally substituted with one or more halo, hydroxy, oxo, OR_{11} , OR_{12} , acyloxy, nitro, amino, NHR_{11} , $N(R_{11})_2$, NHR_{12} , $N(R_{12})_2$, aralkylamino, mercapto, thioalkoxy, $S(O)R_{11}$, $S(O)R_{12}$, SO_2R_{11} , SO_2R_{12} , $NHSO_2R_{11}$, $NHSO_2R_{12}$, sulfate, phosphate, cyano, carboxyl, $C(O)R_{11}$, $C(O)R_{12}$, $C(O)OR_{11}$, $C(O)NH_2$, $C(O)NHR_{11}$, $C(O)N(R_{11})_2$, alkyl, haloalkyl, C_3 - C_{10} cycloalkyl containing 0-3 R_{13} , C_3 - C_{10} heterocyclyl containing 0-3 R_{13} , C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_5 - C_{10} cycloalkenyl, C_5 - C_{10} heterocycloalkenyl, C_6 - C_{20} aryl heteroaryl containing 0-3 R_{14} , or C_6 - C_{20} heteroaryl containing 0-3 R_{14} ; or

C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, aryl, or heteroaryl optionally substituted with one or more halo, hydroxy, OR_{11} , OR_{12} , acyloxy, nitro, amino, NHR_{11} , $N(R_{11})_2$, NHR_{12} , $N(R_{12})_2$, aralkylamino, mercapto, thioalkoxy, $S(O)R_{11}$, $S(O)R_{12}$, SO_2R_{11} , SO_2R_{12} , $NHSO_2R_{11}$, $NHSO_2R_{12}$, sulfate, phosphate, cyano, carboxyl, $C(O)R_{11}$, $C(O)R_{12}$, $C(O)OR_{11}$, $C(O)NH_2$, $C(O)NHR_{11}$, $C(O)N(R_{11})_2$, alkyl, haloalkyl, C_3 - C_{10} cycloalkyl containing 0-3 R_{13} , C_3 - C_{10} heterocyclyl containing 0-3 R_{13} , C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_5 - C_{10} cycloalkenyl, C_5 - C_{10} heterocycloalkenyl, C_6 - C_{20} aryl containing 0-3 R_{14} , or C_6 - C_{20} heteroaryl containing 0-3 R_{14} ; or

(iii) $-C(O)R_{10}$, wherein R_{10} is defined as above; or

(iv) $-C(R_{10})_2(R_{15})$, wherein R_{10} is defined as above; R_{15} is hydrogen, R_{10} , or R_{15} and R_2 taken together forms a double bond between the carbon and nitrogen atoms to which they are attached; or

(v) R_1 and R_2 taken together forms a heterocyclyl of 3-10 ring atoms optionally substituted with R_{10} ;

R_2 is hydrogen, or R_2 and R_{15} taken together forms a double bond between the carbon and nitrogen atoms to which they are attached, or R_2 and R_1 taken together forms a heterocyclyl of 3-10 ring atoms optionally substituted with R_{10} ;

R_3 , R_4 , R_5 , R_6 and R_7 are each independently hydrogen, C_1 - C_6 alkyl, C_6 - C_{12} aralkyl, or C_1 - C_6 acyl;

R_8 is $-(CH_2)_xCH_3$;

R_9 is a linear or branched C_3 - C_{100} alkyl;

R_{11} is C_1 - C_{20} alkyl optionally substituted with halo, hydroxy, alkoxy, amino, alkylamino, dialkylamino, sulfate, or phosphate;

R_{12} is aryl optionally substituted with halo, haloalkyl, hydroxy, alkoxy, nitro, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R_{13} is independently halo, halo alkyl, hydroxy, alkoxy, oxo, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R_{14} is independently halo, halo alkyl, hydroxy, alkoxy, nitro, amino, alkyl amino, dialkylamino, sulfate, or phosphate; and

x is 1-100.

2. (Original) The compound of claim 1 wherein x is 24 and R_9 is n -tetradecyl.
3. (Original) The compound of claim 2 wherein R_1 is SO_2R_{10} .
4. (Original) The compound of claim 3 wherein R_{10} is aryl substituted with $N(R_{11})_2$;
5. (Original) The compound of claim 4 wherein R_{10} is:

6. (Original) The compound of claim 2 wherein R_1 is $C(O)R_{10}$.

7. (Amended) The compound of claim 6 wherein R₁₀ is C₁-C₆ alkyl substituted with halo, hydroxy, oxo, nitro, OR₁₁, OR₁₂, acyloxy, amino, NHR₁₁, N(R₁₁)₂, NHR₁₂, N(R₁₂)₂, aralkylamino, mercapto, thioalkoxy, S(O)R₁₁, S(O)R₁₂, SO₂R₁₁, SO₂R₁₂, NSO₂R₁₁, NSO₂R₁₂, sulfate, phosphate, cyano, carboxyl, C(O)R₁₁, C(O)R₁₂, C(O)OR₁₁, C(O)NH₂, C(O)NHR₁₁, C(O)N(R₁₁)₂, C₃-C₁₀ cycloalkyl containing 0-3 R₁₃, C₃-C₁₀ heterocyclyl containing 0-3 R₁₃, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₅-C₁₀ cycloalkenyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₂₀ aryl containing 0-3 R₁₄, or C₆-C₂₀ heteroaryl containing 0-3 R₁₄[;].
8. (Original) The compound of claim 7 wherein R₁₀ is C₁-C₆ alkyl substituted with NSO₂R₁₂.
9. (Original) The compound of claim 8 wherein R₁₂ is:

10. (Original) The compound of claim 7, wherein R₁₀ is alkyl substituted with C(O)R₁₂.
11. (Original) The compound of claim 10 wherein R₁₂ is:

12. (Original) The compound of claim 7 wherein R_{10} is alkyl is substituted with $\text{C}_5\text{-C}_{10}$ heterocyclyl containing 0-3 R_{13} .

13. (Original) The compound of claim 12 wherein the heterocyclyl is:

14. (Cancelled).

15. (Cancelled).

16. (Cancelled).

17. (Cancelled).

18. (Original) A method of stimulating NKT cells comprising contacting an NKT cell with a compound of Formula (I) and a CD1 protein.

19. (Original) The method of claim 18 wherein the protein is CD1d.

20. (Cancelled).

21. (Cancelled).
22. (Cancelled).
23. (Cancelled).
24. (Original) A method of making a compound of Formula (I) comprising: (i) converting a compound of Formula (III) to a compound of Formula (IV):

and (ii) contacting a compound of Formula (IV) with $\text{R}_1\text{-LG}$ to afford a compound of Formula (I), wherein:

R_1 is:

(i) $-\text{SO}_2\text{R}_{10}$,

wherein R₁₀ is:

halo; hydroxy; OR₁₁; OR₁₂; amino; NHR₁₁; N(R₁₁)₂; NHR₁₂; N(R₁₂)₂; aralkylamino; or

C₁-C₁₂ alkyl optionally substituted with halo, hydroxy, oxo, nitro, OR₁₁, OR₁₂, acyloxy, amino, NHR₁₁, N(R₁₁)₂, NHR₁₂, N(R₁₂)₂, aralkylamino, mercapto, thioalkoxy, S(O)R₁₁, S(O)R₁₂, SO₂R₁₁, SO₂R₁₂, NHSO₂R₁₁, NHSO₂R₁₂, sulfate, phosphate, cyano, carboxyl, C(O)R₁₁, C(O)R₁₂, C(O)OR₁₁, C(O)NH₂, C(O)NHR₁₁, C(O)N(R₁₁)₂, C₃-C₁₀ cycloalkyl containing 0-3 R₁₃, C₃-C₁₀ heterocyclyl containing 0-3 R₁₃, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₅-C₁₀ cycloalkenyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₂₀ aryl containing 0-3 R₁₄, or C₆-C₂₀ heteroaryl containing 0-3 R₁₄; or

C₃-C₁₀ cycloalkyl, C₃-C₁₀ heterocyclyl, C₅-C₁₀ cycloalkenyl, or C₅-C₁₀ heterocycloalkenyl optionally substituted with one or more halo, hydroxy, oxo, OR₁₁, OR₁₂, acyloxy, nitro, amino, NHR₁₁, N(R₁₁)₂, NHR₁₂, N(R₁₂)₂, aralkylamino, mercapto, thioalkoxy, S(O)R₁₁, S(O)R₁₂, SO₂R₁₁, SO₂R₁₂, NHSO₂R₁₁, NHSO₂R₁₂, sulfate, phosphate, cyano, carboxyl, C(O)R₁₁, C(O)R₁₂, C(O)OR₁₁, C(O)NH₂, C(O)NHR₁₁, C(O)N(R₁₁)₂, alkyl, halo alkyl, C₃-C₁₀ cycloalkyl containing 0-3 R₁₃, C₃-C₁₀ heterocyclyl containing 0-3 R₁₃, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₅-C₁₀ cycloalkenyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₂₀ aryl containing 0-3 R₁₄, or C₆-C₂₀ heteroaryl containing 0-3 R₁₄; or

C₂-C₆ alkenyl, C₂-C₆ alkynyl, aryl, or heteroaryl optionally substituted with one or more halo, hydroxy, OR₁₁, OR₁₂, acyloxy, nitro, amino, NHR₁₁, N(R₁₁)₂, NHR₁₂, N(R₁₂)₂, aralkylamino, mercapto, thioalkoxy, S(O)R₁₁, S(O)R₁₂, SO₂R₁₁, SO₂R₁₂, NHSOR₁₁, NHSO₂R₁₂, sulfate, phosphate, cyano, carboxyl, C(O)R₁₁, C(O)R₁₂, C(O)OR₁₁, C(O)NH₂, C(O)NHR₁₁, C(O)N(R₁₁)₂, alkyl, halo alkyl, C₃-C₁₀ cycloalkyl containing 0-3 R₁₃, C₃-C₁₀ heterocyclyl containing 0-3 R₁₃, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₅-C₁₀ cycloalkenyl, C₅-C₁₀ heterocycloalkenyl, C₆-C₂₀ aryl containing 0-3 R₁₄, or C₆-C₂₀ heteroaryl containing 0-3 R₁₄; or

(ii) -C(O)R₁₀, wherein R₁₀ is defined as above; or

(iii) $-C(R_{10})_2(R_{15})$, wherein R_{10} is defined as above; R_{15} is hydrogen, R_{10} , or R_{15} and R_2 taken together forms a double bond between the carbon and nitrogen atoms to which they are attached; or

R_3 , R_4 , R_5 , R_6 , and R_7 are each independently hydrogen, C_1-C_6 alkyl, C_6-C_{12} aralkyl, or C_1-C_6 acyl;

R_8 is $-(CH_2)_xCH_3$;

R_9 is a linear or branched C_3-C_{100} alkyl;

R_{11} is C_1-C_{20} alkyl optionally substituted with halo, hydroxy, alkoxy, amino, alkylamino, dialkylamino, sulfate, or phosphate;

R_{12} is aryl optionally substituted with halo, halo alkyl, hydroxy, alkoxy, nitro, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R_{13} is independently halo, halo alkyl, hydroxy, alkoxy, oxo, amino, alkylamino, dialkylamino, sulfate, or phosphate;

Each R_{14} is independently halo, halo alkyl, hydroxy, alkoxy, nitro, amino, alkylamino, dialkylamino, sulfate, or phosphate;

x is 1-100;

LG is halo, $-OSO_2R_{16}$, $B(OH)_2$, or

R_{16} is alkyl, halo alkyl or aryl optionally substituted with alkyl, halo or nitro.

25. (Original) A pharmaceutical composition comprising a compound of Formula (I) and a pharmaceutically acceptable carrier.