

Agente Educacional Sérgio M. Dias

Agenda

Classificando as principais técnicas aplicadas em ciência de dados Criando bons modelos de dados Dados para treinamento, teste e validação (Holdout e Validação cruzada) Medidas de avaliação (Matriz de confusão, Acurácia e Curva ROC)

Técnicas para Ciência de Dados

As principais técnicas para Ciência de Dados podem ser analisadas a partir da sua capacidade de realizar um conjunto de tarefas

Descrição

Os dados utilizados em uma análise podem descrever um comportamento ou tendência

Técnicas para Ciência de Dados

Classificação

A tarefa de classificação consiste em determinar a classe de um registro. Nessa tarefa, os algoritmos utilizados produzem modelos que descrevem as características de cada classe

Regressão

De forma similar ao processo de classificação, a regressão procura predizer o valor de um registro a partir de um modelo gerado através de dados conhecidos

Predição

Similar ao processo de classificação e regressão, a tarefa de predição visa estimar o valor futuro de uma variável

Técnicas para Ciência de Dados

Agrupamento

Na tarefa de agrupamento, registros similares são identificados. Cada grupo (*cluster*) é formado por um conjunto de registros similares entre si; entretanto, diferentes dos registros pertencentes aos demais grupos.

Associação

A tarefa de associação consiste em identificar atributos relacionados. Em geral, a associação é expressa através de regras do tipo Se X então Y; em que X e Y são conjuntos de atributos categóricos.

Técnicas essenciais e qualidade dos modelos

Técnicas para Ciência de Dados

Técnicas para Ciência de Dados

As principais técnicas para Ciência de Dados também podem ser classificadas a partir da perspectiva de aprendizagem de máquina

Aprendizado supervisionado

- Neste tipo de aprendizagem existe um "professor" que avalia a resposta
- Algoritmos para classificação, regressão

Aprendizado não supervisionado

- Nesta forma de aprendizagem não existe "professor"
- Algoritmos para agrupamento

Aprendizagem por reforço

- Aprendizagem dando recompensas ocasionais

- Não é suficiente se preocupar apenas com a execução do algoritmo que implementa técnicas e gera um (qualquer) modelo
- É necessário se preocupar também com o processo de construção dos modelos, o qual deve ser baseado em estratégias que possibilitem a geração de bons modelos

- Independentemente da medida de avaliação a ser usada para atestar a qualidade de um modelo, não é adequado avaliá-lo por seu desempenho em relação aos exemplares apresentados no processo de treinamento (indução)
- É sempre necessário saber como o modelo se comporta quando aplicado a exemplares que ainda não conhece
- O motivo para essa ressalva é que modelos preditivos, a depender de como são gerados, podem levar à manifestação de um fenômeno bastante conhecido, o sobreajuste (do inglês overfitting).

- A função linear de grau 1 não é suficiente para um bom treinamento resultando em um *underfittin*
- A função de grau 4 tem uma boa aproximação
- Funções de maior grau resultam em um overfitting
 Perda da capacidade de generalizar
 Modelo aprende até os erros e se torna muito específico

Técnicas essenciais e qualidade dos modelos

Metodologia de construção e avaliação de modelos

- Precisamos de dados para:

Treinamento

Criar o modelo

Teste

Avaliar o modelo

Validação

Avaliar a generalização do modelo

Metodologia de construção e avaliação de modelos

- A seguir, são apresentas duas estratégias para a geração e avaliação de modelos: Holdout e Validação cruzada

Holdout

- Na sua forma mais simples, a estratégia holdout pressupõe a criação de dois subconjuntos de dados disjuntos, a partir do conjunto de dados disponível para uso na indução do modelo.
- Um dos subconjuntos será usado para treinamento (indução) do modelo preditivo, e o segundo, para teste após o término do treinamento e, consequentemente, para aplicação das medidas de avaliação do modelo.

- Tradicionalmente, os dois subconjuntos são gerados de forma que 70% dos exemplares do conjunto de dados sejam alocados para o subconjunto de treinamento
- Os 30% restantes são alocados no subconjunto de teste
- Alternativamente, as porcentagens 60% e 40% podem ser usadas
- Os exemplares a serem alocados em cada um dos subconjuntos devem ser escolhidos aleatoriamente.

Metodologia de construção e avaliação de modelos

Validação cruzada

- Na estratégia de validação cruzada, todos os exemplares farão parte, em algum momento, do conjunto de dados usado no teste do modelo preditivo
- Para implementar essa situação, o conjunto de dados será dividido em K subconjuntos disjuntos, com alocação aleatória de exemplares para cada subconjunto (podendo ser aplicado aqui um controle referente à distribuição de classes, como já explicado)
- Assim, o conjunto de dados D será dividido nos subconjuntos D1 ... Dk ... DK

- Mantendo constante o conjunto de parâmetros livres da técnica de indução de modelo adotada, a geração de K modelos preditivos será realizada da seguinte forma:
 - Um dos subconjuntos será reservado para ser usado como conjunto de teste, e os K-1 restantes vão compor o conjunto de treinamento
 - Esse procedimento será repetido K vezes, alterando o subconjunto reservado para teste do modelo

Técnicas essenciais e qualidade dos modelos

Técnicas essenciais e qualidade dos modelos

Metodologia de construção e avaliação de modelos

Medidas de avaliação

Quando desenvolvemos sistemas, métodos ou testes que envolvem a detecção, diagnósticos ou previsão de resultados, é importante validar seus resultados de forma a quantificar seu poder discriminativo e identificar um procedimento ou método como bom ou não para determinada análise.

Metodologia de construção e avaliação de modelos

Matriz de confusão

Seu funcionamento é simples

- consideramos valores positivos que o sistema julgou positivos como verdadeiros positivos (acerto)
- valores positivos que o sistema julgou negativos como falsos negativos (erro)
- valores negativos que o sistema julgou como negativos como verdadeiros negativos (acerto), e
- valores negativos que o sistema julgou positivos como falsos positivos (erro)

Técnicas essenciais e qualidade dos modelos

Metodologia de construção e avaliação de modelos Matriz de confusão

	Valor Verdadeiro (confirmado por análise)				
		positivos	negativos		
Valor Previsto (predito pelo teste)	positivos	VP Verdadeiro Positivo	FP Falso Positivo		
	negativos	FN Falso Negativo	VN Verdadeiro Negativo		

Técnicas essenciais e qualidade dos modelos

Metodologia de construção e avaliação de modelos

Acurácia

A proporção de predições corretas, sem levar em consideração o que é positivo e o que é negativo

$$ACC = (VP + VN) / (P + N)$$
(ACC = TOTAL DE ACERTOS / TOTAL DE DADOS NO CONJUNTO)

	Valor Verdadeiro (confirmado por análise)				
		positivos	negativos		
Valor Previsto (predito pelo teste)	positivos	VP Verdadeiro Positivo	FP Falso Positivo		
	negativos	FN Falso Negativo	VN Verdadeiro Negativo		

Metodologia de construção e avaliação de modelos

A Curva de Receiver Operating Characteristic (ou curva ROC)

Tipo de gráfico que permite análise da qualidade de um modelo

Técnicas essenciais e qualidade dos modelos

Metodologia de construção e avaliação de modelos A Curva de *Receiver Operating Characteristic* (ou curva ROC)

- Um classificador perfeito corresponderia a uma linha horizontal no topo do gráfico
- Na prática, curvas consideradas boas estarão entre a linha diagonal e a linha perfeita, onde quanto maior a distância da linha diagonal, melhor o sistema
- A linha diagonal indica uma classificação aleatória

[Algumas funcionalidades do KNIME]

Obrigado!

Agente Educacional

Sérgio M. Dias

sergio.dias@serpro.gov.br | #31 6539

Demais agentes educacionais sobre o assunto

Marcelo Pita | marcelo.pita@serpro.gov.br | #81 8794

Gustavo Torres | gustavo.gamatorres@serpro.gov.br | #31 6950