

Getting Started with EPICS Applications / Special Topics

Scans

Tim Mooney 3/15/2005

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

The synApps SSCAN module

- Where is it?
 - http://www.aps.anl.gov/aod/bcda/synApps/sscan.html
- What's in it?
 - Code
 - the sscan record
 - the busy record
 - the recDynLink library
 - the saveData data-storage client
 - the scanparm record
 - EPICS databases
 - scan databases
 - scanParms and alignParms databases
 - MEDM displays
 - scan*.adl
 - scan*_help.adl

Simple scans

A one-dimensional scan:

- Do NPTS times:
 - Set conditions
 - Trigger detectors
 - Acquire data
- Write data to disk

e.g., move motors; wait for completion e.g., start scaler; wait for completion read detector signals; store in arrays

Multidimensional scan:

- Outer-loop scan's detector trigger executes inner-loop scan.
- saveData monitors a set of sscan records, determines scan dimension when scan starts, and writes data as it is acquired.
- No limit to the number of scan dimensions.

Scan features

- 0-4 positioners, 0-4 detector triggers, 0-70 detector signals
 - Positioner and readback values are of type double
 - Detector values are of type float
- Acquisition from scalar and/or array PV's
 - Array PV's acquire .NPTS elements
- Number of data points limited only by IOC memory
 - Standard max. is 2000 (x_i,y_i) points per scan dimension
 - Can increase to ~ EPICS_CA_MAX_ARRAY_BYTES / 8
- Detector/client wait, data-storage wait
 - Can wait for multiple data-acquisition clients
 - Only one data-storage client
- Pause/resume, abort
 - Data from aborted scans are written to disk
- Double buffered: writes 1D acquired data after the scan is finished
 - Can write during next 1D scan

...Scan features

- saveData writes XDR-format (".mda") files to disk.
 - Files can be read on any type of computer
- A positioner can have private scan parameters (scanparm record).
 - Load preset scan parameters with one mouse click
 - Useful for alignment
- After-scan actions include move to peak, valley, +/-edge.
 - Can, e.g., track a moving peak through a series of scans
- scanparm record + after-scan action = automated 1-D alignment.

Scan implementation

- The sscan record is a channel-access client
 - scanned PV's can be hosted by any ioc
 - uses recDynLink library to manage connections with PV's
 - uses ca_put_callback() to set conditions, trigger detectors, and await completion
 - uses ca_get_callback() before acquiring data
- saveData is a channel-access client
 - in principle, saveData can monitor sscan records hosted by a different ioc
 - in practice, don't do this if you can avoid it
- Scan acquisition/storage can run on vxWorks, Linux, or Solaris.
 - New in synApps 5.1 (EPICS 3.14)
- The sscan record can be driven by any channel-access client.
 - manual operation, via MEDM, is one option
 - can simplify user-written scan-control software

- Can write a constant value to any numeric or menu PV before the scan starts and/or after the scan ends.
- Can wait or not wait for completion of processing started by the write.
- If this sscan record is part of a multidimensional scan, links function on each iteration.
- Outer-loop sscan record can write to these links, and to the values they write.
- These links cannot write to their own sscan record's START, etc. fields

MEDM user interface

- SCAN MODE (.PnSM per positioner)
 - Determines how and to where positioner moves
- Absolute/Relative (.PnAR per positioner)
 - Determines how positioner locations are written
- Positioner delay (.PDLY affects all positioners)
 - Delay while positioners are settling, after completing their moves
- After-scan motion (.PASM affects all positioners)
 - Determines what, if anything, is done with positioners when scan is finished

- SCAN MODE (.PnSM per positioner)
 - LINEAR Evenly spaced positions are calculated algorithmically
 - You specify positioner locations by setting any three of

START	CENTER	END	WIDTH	STEP SIZE	# POINTS
.P <i>n</i> SP	.P <i>n</i> CP	.P <i>n</i> EP	.P <i>n</i> WD	.P <i>n</i> SI	.NPTS

The sscan record reconciles unset parameters

- TABLE Positioner locations are contained in the .PnPA array
 - The array must contain at least .NPTS values
 - You must arrange for the array to contain the desired positions before starting the scan.
 - The .PnPA array is never overwritten by the sscan record

...Positioner options

- ...SCAN MODE (.PnSM per positioner)
 - FLY data will be acquired while positioner moves
 - You specify positions at which data are acquired by setting *START*, *END*, positioner speed, and detector acquisition time.
 - The following algorithm is executed:
 - Positioner sent to START; reports completion
 - Detector triggered; reports completion
 - First data point acquired
 - Positioner sent to END
 - NPTS-1 iterations of
 - Detector triggered; reports completion
 - Data point acquired
 - The timing of data points is controlled by the detector's acquisition time.
 - Fly-mode positioners do not report completion. (The positioner may still be moving after the scan ends.)

- ...SCAN MODE (.PnSM per positioner)
 - OK to mix scan modes:

- Don't be limited by existing positioner modes
 - A positioner is anything you can write to
 - Can specify positions algorithmically, using calcout or transform
 - E.g., sample-wheel
 - Can write to positioner through interpolation table
 - Use a spare positioner readback to get actual positions into the data file

...Positioner options

- Absolute/Relative (.PnAR per positioner)
 - If .PnAR == "ABSOLUTE" (0), positions are sent exactly as given.
 - If .PnAR == "RELATIVE" (1), positions are added to pre-scan position before being sent to positioner.
- Settling time (.PDLY affects all positioners)
 - If any positioner PV is specified, then after all positioners report completion, the sscan record waits for .PDLY seconds before moving to next phase of sscan.
 - Useful for positioners that "ring" after move is completed
 - Useful work-around for positioners that cannot report completion
 - If no positioners, then settling time is ignored.
 - Settling time is adjusted to nearest multiple of system-clock period (typically 1/60Hz).

- After-scan motion (.PASM affects all positioners)
 - STAY positioners are simply left where they ended up
 - START POS positioners are sent to their START positions
 - PRIOR POS positioners are sent to their pre-scan positions
 - PEAK POS data from the reference detector (number given by the .REFD field, in range [1..70]) is examined. If a peak is found, positioners are sent to where it was acquired.
 - VALLEY POS similar, but valley instead of peak
 - +EDGE POS peak of derivative of reference data
 - -EDGE POS valley of derivative of reference data

- 0-4 detector triggers (.TnPV), intended to start data-acquisition
- Similar to positioners, but value sent (.TnCD) is constant
- Triggers execute after all positioners have completed, and after any positioner settling time has elapsed.
- Detector settling time begins after all detector triggers have reported completion.
- If no triggers, then settling time is ignored.

Detectors

0.000

U.000

0.000

0.000

DIMENSION ACQ MODE SCOLOR NORMAL

Detectors

03

04

PLOTS

01 xxx:userCalc1.VAL

- PV's to be acquired during scan
- 0-70 detectors (.D01PV .D70PV)
- Detector options
 - Acquisition type (.ACQT)
 - SCALAR
 - scalar PV's acquired at each positioner location
 - Array PV's (.NPTS elements) acquired at end of scan
 - 1D ARRAY
 - use this mode only if ALL detectors are array valued
 - Positioners are only sent to their START positions.
 - In the future, array-valued positioners may be supported.
 - Acquisition mode (.ACQM)
 - NORMAL store values as acquired
 - ACCUMULATE add detector values, starting with next scan
 - ADD TO PREV same, but starting with previous scan

Scan controls

SCAN

- Writing '1' starts this sscan record
- Writing '0' stops this sscan record. (But with the supplied database, always use the 'ABORT' button to stop.)

GO/PAUSE

Pause is immediate, Go occurs after delay

ABORT

- Writes '1' to 'xxx:allstop.VAL', which should stop motors
- Sends "stop" message to all sscan records in the supplied database
 - First 'Abort' attempt ends scan after outstanding completion callbacks have come in, and data-storage client has released the previous scan's data arrays.
 - Second 'Abort' attempt waits only for data-storage client.
 - Third successive 'Abort' attempt kills scan with no regard for consequences.

Scan user documentation

- The scanparm record executes preprogrammed linear scans
 - Holds scan parameters for a positioner
 - Writes parameters to a particular sscan record
 - Optionally executes the sscan record
 - Useful for alignment

Data storage

- saveData monitors sscan records and writes their data to numbered files.
- Handshake permits pipelined operation.
- saveData's boot-time init can specify list of PV's to write with every scan's data
- saveData writes "MDA" files
 - MultiDimensional Archive
 - Binary, cross-platform (XDR) format
 - Format is optimized for run-time access.
 - Format permits file to be closed after each set of writes.
- Automatic file numbering
 - e.g., 'xxx_0123.mda', 'xxx_0124.mda'
 - overlap is handled: 'xxx_0123.mda_01'

scan_full.adl

ACTIVE POSITIONERS

xxx:scan2

DATA STATE: POSTED

BeforeScan

SAVE DATA Active

Wait

Scan saved: xxx_0046.mda 01

SCAN DIM:

CHECK LIMITS

PP.

...Data storage

- Location of data files
 - 'File system' + 'subdirectory'
 - vxWorks:
 - File system is NFS-mount point
 - '//<hostname>' is required
 - Linux, Solaris:
 - saveData doesn't mount the file system (system administrator does this)
 - '//<hostname>', if present, is ignored
- Cannot write to 'File system' or 'subdirectory' while a scan is in progress. (See 'LOCK' PV.)
- Don't delete or rename the directory saveData is writing to.
- Comment PV's saved only if they are named in saveData.req

saveData.req init file

```
Section head
[prefix] ←
$(P)
[status]
$(P)saveData status
                                         List of sscan records to
[scanRecord] 
$(P)scanH
                                         monitor:
$(P)scan1
$(P)scan2
$(P)scan3
$(P)scan4
                                         List of PV's to be saved with
[extraPV]
#<PV name> <description>
                                         every scan (Normally, this is
$(P)scaler1.TP "scaler preset (s)"
$(P)scaler1.NM1 "scaler chan 1 desc"
                                         the only section you modify.)
```


MDA file format

...MDA file format

...MDA file format

...MDA file format

Other data-acquisition-related software

Data-visualization tools for use with synApps

- Run-time look at scan data
- Offline tools for data-file manipulation
- Supports 1-3 dimensional data
- Distributed independently of ioc software
- See lecture "Data Visualization."

CCD data-acquisition tools

- 1) CCD module (see lecture "Detectors and Feedback")
- 2) Portable CA Server based CCD support, and related software
 - http://www.aps.anl.gov/aod/bcda/dataAcg/index.php
- Both of these solutions allow an EPICS CA client to drive data acquisition.
- Both support ca_put_callback(), as needed by the sscan record.

- Simple prescription for databases contained within a single ioc:
 - Use only PP links and forward links in execution chain.
- Database operations spanning more than one ioc:
 - Use records with put_callback links to span iocs:
 - calcout with asynchronous device support
 - sscan, swait (i.e., a synApps "userCalc")
 - sseq or sCalcout (with .WAIT* = "Wait")
- Cases in which a CA client performs part of the operation:
 - 1) Database sets a **busy** record via PP or put_callback link.
 - 2) CA client clears the **busy** record when operation is done.
- Cases in which part of the operation is driven by a CP link:
 - Not different from above; a CP link is a CA client

Use only PP links and forward links in execution chain.

Same as before, but with an asynchronous record

Premature "DONE" report, because CA-link execution is not traced

Premature-DONE problem fixed with a PUT_CALLBACK link

Premature "DONE" because CA-client processing is not traced

Premature "DONE" problem fixed with a 'BUSY' record

