Group Number		Name	Type
List Number		Surname	A
Student ID		Signature	$\mid \Delta \mid$
e-mail			

ATTENTION: There is normally only one correct answer for each question and each correct answer is equal to 1 point. Only the answers on your answer sheet form will be evaluated. Please be sure that you have marked all of your answers on the answer sheet form by using a pencil (not pen).

- 1. Which force is responsible for holding a car in the track, in an unbanked curve?
 - (a) The car's weight
 - (b) The car's engine force
 - (c) The kinetic friction force
 - (d) The static friction force
 - (e) The normal force
- 2. Which statement is always true for an object having constant $|\vec{v}|$?
- (b) $|a_{\tan}| \ge |a_{rad}|$ (c) $|a_{\tan}| > |a_{rad}|$ (d) $|\vec{a}| = 0$ (e) $a_{\tan} = 0$

- 3. Bodies A and B are thrown from the same position with the same initial speeds at angles α_A and α_B . Both bodies hit to the same point on the ground. Which of the following is always correct?
 - (a) $\alpha_A + \alpha_B = \pi/2$
 - (b) $\alpha_A + \alpha_B = \pi$

 - $\begin{array}{l} (c) \ \alpha_{\rm A} \alpha_{\rm B} = \pi/2 \\ (d) \ \sqrt{\alpha_{\rm A}^2 + \alpha_{\rm B}^2} = \pi/2 \end{array}$
 - (e) $\alpha_A + \alpha_B = \pi/4$
- 4. If the weight of an object of mass 10 kg is 50 N, then what is the maximum range of the object thrown with an initial speed of 50 m/s? (Assume that there is no air resistance.)

- (a) 5 m (b) 500 m (c) 250 m (d) 10 m
- (e) 1000 m

Questions 5-6

One of the forces acting on a particle with a mass of 1 kg is given as $\vec{F}(t) = 3t\,\hat{\imath} - 2\,\hat{\jmath}$ [Newton] and its position is given as $\vec{r}(t) = t/2 \hat{\imath} - t^3 \hat{\jmath}$ [meter

- **5.** What is the average velocity in m/s between t = 1 and t = 3 sec?

- (a) $1/2\hat{i} 3\hat{j}$ (b) $2\hat{i} 12\hat{j}$ (c) $2\hat{i} + 14\hat{j}$ (d) $1/2\hat{i} 14\hat{j}$ (e) $1/2\hat{i} 13\hat{j}$
- **6.** What is the instantaneous power acting on this particle by the forces other than \vec{F} at t=2 sec?
 - (a) -123 W
- (b) 117 W (c) -120 W (d) 123 W (e) 67 W

Questions 7-9

The velocity of a particle moving in a straight line is given as $v(t) = (-t^2/2 + 3t + 3/2)$ where t is in seconds and v is in m/s.

- 7. Calculate the particle's acceleration at t=2 s.
- (a) 3 m/s^2 (b) 5 m/s^2 (c) $11/2 \text{ m/s}^2$ (d) 1 m/s^2 (e) 4 m/s^2
- 8. Compute the time when the force acting on the particle changes its direction.
 - (a) 19/2 s

- (b) $3/2 \, s$ (c) $0 \, s$ (d) $1 \, s$ (e) $3 \, s$
- **9.** Calculate the position r of the particle when the force acting on the particle changes its direction. Take r(t=0)=0.
 - (a) 27/2 m (b) 0 (c) 23/3 m (d) 17/6 m (e) 27/5 m

Questions 10-14

Position vector of an object A with mass $m_{\rm A}$ relative to the Earth (E) is given as $\vec{r}_{\rm A/E} = (3t^2 + 104)\hat{\imath} + 2t\hat{\jmath} + \hat{k}$, that of object B with mass $m_{\rm B} = {\rm relative}$ to the object A is given as $\vec{r}_{\rm B/A} = (-t^2 + 2t - 100)\hat{\imath} + (-2t + 5)\hat{\jmath} - \hat{k}$. $(m_{\rm A} = 10 \text{ kg}, m_{\rm B} = 5 \text{ kg})$

- 10. Find the position vector of B relative to the Earth, $\vec{r}_{B/E}$.
 - (a) $(4t^2 2t + 204)\hat{\imath} + (4t 5)\hat{\jmath} + 2\hat{k}$
 - (b) $(-2t^2 2t 4)\hat{\imath} 5\hat{\imath}$
 - (c) $(2t^2 + 2t + 4)\hat{\imath} + 5\hat{\jmath} + 2\hat{k}$
 - (d) $(-4t^2 + 2t 204)\hat{\imath} + (-4t + 5)\hat{\jmath} + 2\hat{k}$
 - (e) $(2t^2 + 2t + 4)\hat{\imath} + 5\hat{\jmath}$
- 11. Find the velocity of B relative to the Earth, $\vec{v}_{\rm B/E}$.
 - (a) $(8t-2)\hat{i} + 4\hat{j}$ (b) $(-4t-2)\hat{j}$ (c) $(4t+2)\hat{i}$

- (d) $(-8t+2)\hat{i} 4\hat{j}$ (e) $(-4t-2)\hat{i}$
- 12. Find the magnitude of the total external force exerted on B.
- (b) (20t + 10) N (c) 40 N (d) 0 N

- **13.** Find the speed of A relative to B at t = 0.

- (a) 2 m/s (b) $2\sqrt{2}$ m/s (c) 4 m/s (d) $2\sqrt{5}$ m/s
- 14. When do A and B meet each other? (Assume they are point particles)
 - (a) $t = \sqrt{11} \text{ s}$
- (b) t = 101 s (c) t = 5/2 s (d) Never (e) t = 5/4 s

Questions 15-17

A luggage handler pulls a 20 kg suitcase up a ramp inclined θ above the horizontal by a force of magnitude 210 N, parallel to the ramp. The coefficient of kinetic friction between the ramp and the incline is $\mu_k = 3/8$.

 $(\sin(\theta) = 3/5, \cos(\theta) = 4/5, g = 10 \text{ m/s}^2)$

If the suitcase takes 3 m distance along the ramp;

- 15. Calculate the work done on the suitcase by the gravitational force
- (b) 0 (c) 360 J
- (d) -360 J
- (e) -135 J
- **16.** Calculate the total work done on the suitcase.
 - (a) 90 J
- (b) 480 J
- (c) 0 (d) 360 J
- 17. If the speed of the suitcase is zero at the bottom of the ramp, what is the speed when it takes 3m along the ramp? (a) $4\sqrt{2} \text{ m/s}$ (b) 3 m/s (c) 0 (d) $2\sqrt{6} \text{ m/s}$ (e) $\sqrt{6} \text{ m/s}$

Questions 18-20

A block of mass m_1 rests on top of another block of mass m_2 , which rests on a frictionless horizontal surface. The coefficient of static and kinetic friction between the two blocks are $\mu_s = 1/2$ and $\mu_k = 1/4$, respectively. A force F is applied to m_2 as shown in figure. $(m_1 = 1 \text{ kg}, m_2 = 2 \text{ kg}, \sin(\theta) = 4/5, \cos(\theta) = 3/5, \vec{q} = -10 \text{ m/s}^2 \hat{\jmath})$

- 18. Which magnitude of \vec{F} below ensures that the blocks accelerate together without m_1 sliding on m_2 ?
 - (a) 32 N
- (b) 29 N
- (c) 22 N
- (d) 26 N
- **19.** Find the acceleration of each block for F = 15 N.

- (a) $7/2 \text{ m/s}^2$ (b) 5 m/s^2 (c) 3 m/s^2 (d) 2 m/s^2 (e) $9/2 \text{ m/s}^2$
- **20.** Find the acceleration of each block for F = 35 N, where a_1 is the acceleration of m_1 and a_2 is the acceleration of m_2 , relative to the horizontal surface.
 - (a) $a_1 = 5 \text{ m/s}^2$, $a_2 = 8 \text{ m/s}^2$
 - (b) $a_1 = 5/2 \text{ m/s}^2$, $a_2 = 21 \text{ m/s}^2$
 - (c) $a_1 = 5/2 \text{ m/s}^2$, $a_2 = 37/4 \text{ m/s}^2$
 - (d) $a_1 = 2 \text{ m/s}^2$, $a_2 = 51/4 \text{ m/s}^2$
 - (e) $a_1 = 1/2 \text{ m/s}^2$, $a_2 = 21 \text{ m/s}^2$