MAT02035 - Modelos para dados correlacionados

Estimação e inferência estatística

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2019

Introdução

Introdução

- Até agora, nossa discussão de modelos para dados longitudinais tem sido muito geral, sem menção de métodos para estimar os coeficientes de regressão ou a covariância entre as medidas repetidas.
- Relembrando: o modelo de regressão linear geral para o vetor de resposta média

$$\mathsf{E}\left(Y_{i}|X_{i}\right)=X_{i}\beta.$$

Assumimos que o vetor de respostas, Y_i, tem uma distribuição condicional que é normal multivariada com matriz de covariância

$$Cov(Y_i|X_i) = \Sigma_i = \Sigma_i(\theta).$$

Note que θ é um vetor $q \times 1$ de parâmetros de covariância.

Introdução

- ▶ Dados balanceados $(n_i = n)$, em que covariância "não-estruturada" é assumida, temos n variâncias e $\frac{n(n-1)}{2}$ covariâncias como elementos do vetor θ .
- Se a covariância é assumida ter um padrão de "simetria composta", então q=2 e θ tem dois elementos.
- Nesta aula, consideramos uma estrutura para estimativa dos parâmetros desconhecidos, β e θ (ou equivalentemente, Σ_i).

Estimação: máxima verossimilhança

Estimação: máxima verossimilhança

Estimação: máxima verossimilhança

- Dado que foram feitas suposições completas sobre a distribuição do vetor de respostas, Y_i, uma abordagem muito geral de estimativa é o método da máxima verossimilhança (MV).
 - A ideia fundamental por trás da estimativa de MV é realmente bastante simples e é transmitida por seu nome: use como estimativas de β e θ os valores que são mais prováveis (ou mais "verossímeis") para os dados que foram realmente observados.
 - As estimativas de verossimilhança máxima de β e θ são aqueles valores de β e θ que maximizam a probabilidade conjunta das variáveis resposta avaliadas em seus valores observados.

Estimação: máxima verossimilhança

- ▶ A probabilidade das variáveis de resposta avaliadas no conjunto fixo de valores observados e consideradas como funções de β e $\Sigma_i(\theta)$ é conhecida como **função de verossimilhança**.
 - Assim, a estimativa de β e θ prossegue **maximizando** a função de verossimilhança.
- ▶ Os valores de β e θ que maximizam a função de verossimilhança são chamados de **estimativas de máxima verossimilhança** de β e θ , e geralmente são indicados $\hat{\beta}$ e $\hat{\theta}$ (ou $\hat{\Sigma}_i$, $\Sigma_i(\hat{\theta})$).

- ► Suponha que os dados surjam de uma série de estudos transversais que são repetidos em *n* ocasiões diferentes.
- Em cada ocasião, os dados são obtidos em uma amostra de N indivíduos.
 - Aqui é razoável supor que as observações sejam independentes umas das outras, uma vez que cada indivíduo é medido em apenas uma ocasião.
- ▶ Além disso, para facilitar a exposição, assumimos que a variância é constante, digamos a σ^2 .
- A resposta média está relacionada às covariáveis através do seguinte modelo de regressão linear:

$$\mathsf{E}(Y_{ij}|X_{ij})=X'_{ij}\beta.$$

- Para obter estimativas de máxima verossimilhança de β , devemos encontrar os valores dos parâmetros de regressão que maximizem a função de densidade de probabilidade normal conjunta de todas as observações, avaliados nos valores observados da resposta e considerados como uma função de β (e σ^2).
- **Lembrando** que a função de densidade de probabilidade normal (ou gaussiana) univariada para Y_{ij} , dado X_{ij} , pode ser expressa como

$$f(y_{ij}) = (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2}(y_{ij} - \mu_{ij})^2/\sigma^2\right\}, \ -\infty < y_{ij} < \infty.$$

 Quando todas as respostas são independentes umas das outras, a função de verossimilhança é simplesmente o produto das funções individuais de densidade de probabilidade normal univariada para Y_{ij} dado X_{ij},

$$\prod_{i=1}^{N}\prod_{j=1}^{n}f(y_{ij}).$$

- É mais comum trabalhar com a função log-verossimilhança, que envolverá somas, em vez de produtos, das funções individuais de densidade de probabilidade normal univariada para Y_{ij}.
 - ▶ Observe que maximizar a verossimilhança é equivalente a maximizar o logaritmo da verossimilhança; o último é indicado por *l*.
- Portanto, o objetivo é maximizar

$$I = \log \left\{ \prod_{i=1}^{N} \prod_{j=1}^{n} f(y_{ij}) \right\} = -\frac{K}{2} \log(2\pi\sigma^{2}) - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} (y_{ij} - X'_{ij}\beta)^{2} / \sigma^{2},$$

avaliado nos valores numéricos observados dos dados, em relação aos parâmetros de regressão, β . - Aqui $K=n\times N$, o **número total de observações**.

- \blacktriangleright Observe que β não aparece no primeiro termo da log-verossimilhança.
 - ▶ Como resultado, esse termo pode ser ignorado ao maximizar a log-verossimilhança em relação a β .
- ▶ Além disso, como o segundo termo tem um sinal negativo, maximizar a log-verossimilhança em relação a β é equivalente a minimizar a seguinte função:

$$\sum_{i=1}^{N} \sum_{j=1}^{n} (y_{ij} - X'_{ij}\beta)^{2}.$$

- Maximizar ou minimizar uma função é um problema matemático comum que pode ser resolvido usando o cálculo.
- Especificamente, a estimativa de máxima verossimilhança de β pode ser obtida igualando a derivada da log-verossimilhança, frequentemente chamada de função escore, a zero e encontrando a solução para a equação resultante.
- No entanto, no exemplo considerado aqui, não há necessidade real de recorrer ao cálculo.
- ▶ A obtenção da estimativa de máxima verossimilhança de β é equivalente a encontrar a estimativa de **mínimos quadrados ordinários** (MQO) de β , ou seja, o valor de β que minimiza a soma dos quadrados dos resíduos.

 Usando a notação vetorial, a solução dos mínimos quadrados pode ser escrita como

$$\hat{\beta} = \left\{ \sum_{i=1}^{N} \sum_{j=1}^{n} (X_{ij} X'_{ij}) \right\}^{-1} \sum_{i=1}^{N} \sum_{j=1}^{n} (X_{ij} y_{ij}).$$

- ► Essa estimativa de mínimos quadrados é o valor produzido por qualquer *software* estatístico padrão para regressão linear (por exemplo, PROC GLM ou PROC REG no SAS, a função 1m no R e o comando regress no Stata).
 - **Exercício:** considere o modelo dos dados de nível de chumbo no sangue; compare as estimativas através de uma implementação sua de $\hat{\beta}$ com a função 1m.
- ▶ Além disso, note que até agora apenas focamos na estimativa de β , ignorando a estimativa de σ^2 ; a seguir, também consideramos a estimativa da matriz de covariância.

- Quando há ni medidas repetidas no mesmo indivíduo, não se pode assumir que essas medidas repetidas são independentes.
 - Como resultado, precisamos considerar a função de densidade de probabilidade conjunta para o vetor de medidas repetidas.
- Observe, no entanto, que os vetores de medidas repetidas são assumidos como independentes uns dos outros.
 - Assim, a função log-verossimilhança, I, pode ser expressa como uma soma das funções multivariadas individuais da densidade de probabilidade normal para Y_i dado X_i.

- Primeiro assumimos que Σ_i (ou θ) é conhecido (e, portanto, não precisa ser estimado); depois, relaxaremos essa suposição muito irrealista.
- ▶ Dado que $Y_i = (Y_{i1}, Y_{i2}, ..., Y_{in_i})'$ é assumido como tendo uma distribuição condicional que é normal multivariada, devemos maximizar a seguinte função de log-verossimilhança:

$$I = -\frac{K}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{N}\log|\Sigma_{i}| - \frac{1}{2}\left\{\sum_{i=1}^{N}(y_{i} - X_{i}\beta)'\Sigma_{i}^{-1}(y_{i} - X_{i}\beta)\right\},\,$$

▶ $K = \sum_{i=1}^{N} n_i$ é o número total de observações.

- Note que β não aparece nos dois primeiros termos na log-verossimilhança.
 - Esses dois termos podem ser ignorados ao maximizar a log-verossimilhança em relação a β.
- ightharpoonup Além disso, como o terceiro termo tem um sinal negativo, maximizar a log-verossimilhança em relação a eta é equivalente a minimizar

$$\sum_{i=1}^{N} (y_i - X_i \beta)' \Sigma_i^{-1} (y_i - X_i \beta).$$

▶ O estimador de β que minimiza essa expressão é conhecido como estimador de **mínimos quadrados generalizados** (MQG) de β e pode ser expresso como

$$\hat{\beta} = \left\{ \sum_{i=1}^{N} (X_i' \Sigma_i^{-1} X_i) \right\}^{-1} \sum_{i=1}^{N} (X_i' \Sigma_i^{-1} y_i).$$

Veja a função gls do pacote nlme do R.

Propriedades do estimador MQG (Σ_i conhecida)

A primeira propriedade muito notável é que, para **qualquer escolha** de Σ_i , a estimativa MQG de β é **não viesada**. Ou seja,

$$\mathsf{E}\left[\hat{\beta}\right] = \beta.$$

▶ Além disso, **em amostras grandes** (ou assintoticamente), pode se mostrar que a distribuição amostral de $\hat{\beta}$ é uma distribuição normal multivariada com média β e covariância

$$\operatorname{\mathsf{Cov}}(\hat{eta}) = \left\{ \sum_{i=1}^{N} \left(X_i' \Sigma_i^{-1} X_i \right) \right\}^{-1}.$$

Propriedades do estimador MQG (Σ_i conhecida)

- ▶ Isso é verdade exatamente quando Y_i tem uma distribuição condicional que é multivariada normal e verdadeira em **amostras grandes**, mesmo quando a distribuição condicional de Y_i não é normal multivariada.
 - ▶ Por "grandes amostras", entendemos que o tamanho da amostra, *N*, aumenta quando o número de medidas repetidas e parâmetros do modelo permanece fixo.
- ▶ Observe também que se Σ_i for assumido como uma matriz diagonal, com variância constante σ^2 ao longo da diagonal, o estimador MQG reduz para o estimador de mínimos quadrados ordinários considerado mais cedo.
 - Exercício: demonstre este resultado.
- Finalmente, embora o estimador MQG de β seja não viesado para qualquer escolha de Σ_i , pode ser mostrado que o estimador MQG mais eficiente de β (ou seja, o estimador com menor variância ou maior precisão) é aquele que usa o valor verdadeiro de Σ_i .
 - Pergunta: o que isto quer dizer?

MQG (Σ_i desconhecida)

- ▶ Vamos abordar o caso que geralmente ocorre na prática: não conhecemos Σ_i (ou θ).
 - Neste caso precisamos estimar Σ_i (θ) a partir dos dados disponíveis.
- A estimativa da máxima verossimilhança de θ prossegue da mesma maneira que a estimativa de β , maximizando a log-verossimilhança em relação a θ .
- Especificamente, a estimativa de máxima verossimilhança de θ pode ser obtida igualando a derivada da log-verossimilhança em relação a θ (função escore) a zero e encontrando a solução para a equação resultante.
- Entretanto, em geral, essa **equação é não linear** e não é possível escrever expressões simples e de forma fechada para o estimador de MV de θ .
 - A estimativa de MV deve ser encontrada resolvendo-se essa equação usando uma técnica iterativa.

MQG (Σ_i desconhecida)

- Felizmente, algoritmos de computador foram desenvolvidos para encontrar a solução.
 Uma vez obtida a estimativa de MV de θ simplesmente substituímos
- Uma vez obtida a estimativa de MV de θ , simplesmente substituímos a estimativa de $\Sigma_i(\theta)$, digamos $\widehat{\Sigma}_i = \Sigma_i(\widehat{\theta})$, no estimador de mínimos quadrados generalizados de β para obter a estimativa de MV de β :

$$\hat{\beta} = \left\{ \sum_{i=1}^{N} (X_i' \widehat{\Sigma}_i^{-1} X_i) \right\}^{-1} \sum_{i=1}^{N} (X_i' \widehat{\Sigma}_i^{-1} y_i).$$

Propriedades do estimador MQG (Σ_i conhecida)

- ▶ Curiosamente, **em amostras grandes** (ou assintoticamente), o estimador resultante de β que substitui a estimativa de MV de Σ_i tem todas as **mesmas propriedades** de quando Σ_i é realmente conhecido.
- Assim, em termos de propriedades da distribuição amostral de $\hat{\beta}$, não há penalidade por realmente ter que estimar Σ_i a partir dos dados longitudinais em questão.
- No entanto, por mais reconfortante que esse resultado possa parecer, deve-se ter em mente que esta é uma propriedade de grande amostra (ou seja, quando N se aproxima do infinito) de $\hat{\beta}$.
 - \blacktriangleright Com tamanhos de amostra da magnitude frequentemente encontrados em muitas áreas de aplicação, pode-se esperar que as propriedades da distribuição amostral de $\hat{\beta}$ sejam adversamente influenciadas pela estimativa de um número muito grande de parâmetros de covariância.

Questões de dados ausentes

Questões de dados ausentes

Questões de dados ausentes

Embora a maioria dos estudos longitudinais seja projetada para coletar dados de cada indivíduo da amostra a cada momento do acompanhamento, muitos estudos têm algumas observações ausentes.

Dados ausentes têm três implicações importantes para a análise longitudinal:

- O conjunto de dados é necessariamente desbalanceado ao longo do tempo, pois nem todos os indivíduos têm o mesmo número de medições repetidas em um conjunto comum de ocasiões.
 - Como resultado, os métodos de análise precisam ser capazes de lidar com os dados desequilibrados sem precisar descartar dados de indivíduos com dados ausentes.

Questões de dados ausentes

- 2. Haverá perda de informações e redução na precisão com que mudanças na resposta média ao longo do tempo pode ser estimado.
 - Essa redução na precisão está diretamente relacionada à quantidade de dados ausentes e também será influenciada em certa medida pela maneira como a análise lida com os dados ausentes.
 - ▶ Por exemplo, usar apenas os casos completos (ou seja, aqueles indivíduos sem dados ausentes) geralmente será o método menos eficiente.
- 3. A validade de qualquer método de análise exigirá que certas suposições sobre os motivos de qualquer falta, geralmente chamadas de mecanismo de perda de dados, sejam sustentáveis.
 - Consequentemente, quando faltam dados, devemos considerar cuidadosamente os motivos da falta.

Mecanismo de perda de dados

- O mecanismo de perda de dados pode ser pensado como um modelo que descreve a probabilidade de uma resposta ser observada ou ausente em qualquer ocasião.
- ► Fazemos uma distinção importante entre mecanismos de dados ausentes que são referidos como **ausentes completamente ao acaso** (*missing completely at random* MCAR) e **ausentes ao acaso** (*missing at random* MAR).
- A distinção entre esses dois mecanismos determina a adequação da estimativa de máxima verossimilhança sob o pressuposto de uma distribuição normal multivariada para as respostas e o MQG sem exigir suposições sobre o formato da distribuição.

MCAR

- Diz-se que os dados são MCAR quando a probabilidade de perda de respostas não está relacionada aos valores específicos que, em princípio, deveriam ter sido obtidos (as respostas ausentes) ou ao conjunto de respostas observadas.
- Ou seja, dados longitudinais são MCAR quando a falta em Y_i é simplesmente o resultado de um mecanismo de chance que não depende de componentes observados ou não observados de Y_i.
- ► A característica essencial do MCAR é que os dados observados podem ser considerados uma amostra aleatória dos dados completos.
 - Como resultado, os momentos (por exemplo, médias, variâncias e covariâncias) e, de fato, a distribuição dos dados observados não diferem dos momentos correspondentes ou da distribuição dos dados completos.

MCAR

- Qualquer método de análise que produza inferências válidas na ausência de dados ausentes também produzirá inferências válidas quando os dados ausentes forem MCAR e a análise for baseada em todos os dados disponíveis, ou mesmo quando estiver restrito aos "completadores" (ou seja, aqueles sem dados ausentes).
- ▶ Dado que estimativas válidas das médias, variâncias e covariâncias podem ser obtidas, o MQG fornece estimativas válidas de β sem exigir nenhuma premissa de distribuição para Y_i .
- O estimador MQG de β é válido, desde que o modelo para a resposta média tenha sido especificado corretamente; não requer nenhuma suposição sobre a distribuição conjunta das respostas longitudinais.

MCAR

- ▶ O estimador de MV de β , pressupondo que as respostas tenham uma distribuição normal multivariada, também é o estimador MQG (com a estimativa MV de $\Sigma_i(\theta)$, por exemplo, $\widehat{\Sigma}_i = \Sigma_i(\widehat{\theta})$, substituída).
- Assim, nessa configuração, os estimadores MV e MQG têm exatamente as mesmas propriedades, independentemente da verdadeira distribuição de Y_i.

MAR

- Ao contrário do MCAR, diz-se que os dados são MAR quando a probabilidade de perda de respostas depende do conjunto de respostas observadas, mas não está relacionada aos valores ausentes específicos que, em princípio, deveriam ter sido obtidos.
- Em outras palavras, se os indivíduos são estratificados com base em valores semelhantes para as respostas observadas, a falta é simplesmente o resultado de um mecanismo de chance que não depende dos valores das respostas não observadas.
- No entanto, como o mecanismo de falta agora depende das respostas observadas, a distribuição de Y_i em cada um dos estratos distintos definidos pelos padrões de falta não é o mesmo que a distribuição de Y_i na população alvo.
- Isso tem consequências importantes para a análise.

MAR

- ▶ Uma é que uma análise restrita aos "completadores" não é válida.
 - ► Em outras palavras, os "completadores" são uma amostra tendenciosa da população-alvo.
- Além disso, a distribuição dos componentes observados de Yi, em cada um dos estratos distintos definidos pelos padrões de falta, não coincide com a distribuição dos mesmos componentes de Yi na população alvo.
 - Portanto, as médias amostrais, variâncias e covariâncias com base nos "completadores" ou nos dados disponíveis são estimativas tendenciosas dos parâmetros correspondentes na população-alvo.

MAR

- ightharpoonup Como resultado, o MQG não fornece mais estimativas válidas de eta sem fazer suposições corretas sobre a distribuição conjunta das respostas longitudinais.
- Por outro lado, a estimativa de MV de β é válida quando os dados são MAR, desde que a distribuição normal multivariada foi especificada corretamente.
 - Isso requer a especificação correta não apenas do modelo para a resposta média, mas também do modelo para a covariância entre as respostas.
- Em certo sentido, a estimativa de MV permite que os valores ausentes sejam validamente "previstos" ou "imputados" usando os dados observados e um modelo correto para a distribuição conjunta das respostas.

Inferência estatística

Inferência estatística

Para construir intervalos de confiança e testes de hipóteses sobre β , podemos fazer uso direto das estimativas de MV $\hat{\beta}$ e da sua matriz de covariância estimada

$$\widehat{\mathsf{Cov}}(\hat{eta}) = \left\{ \sum_{i=1}^N (X_i' \widehat{\Sigma}_i^{-1} X_i) \right\}^{-1}.$$

Inferência estatística

- ▶ Para um único componente de β , digamos β_k , um método natural de construção de **limites de confiança** de 95% é tomar o $\hat{\beta}_k$ mais ou menos 1,96 vezes o erro padrão de $\hat{\beta}_k$.
 - ▶ Diferentes limites de confiança podem ser obtidos escolhendo os quantis apropriados da distribuição normal padrão.
- ▶ O erro padrão de $\hat{\beta}_k$ é simplesmente a raiz quadrada do elemento da diagonal principal de $\widehat{\text{Cov}}(\hat{\beta})$ correspondente a $\hat{\beta}_k$,

$$\sqrt{\widehat{\mathsf{Var}}(\hat{\beta}_k)}$$
.

▶ De maneira similar, um **teste da hipótese** nula, $H_0: \beta_k = 0$ versus $H_A: \beta_k \neq 0$, pode ser baseado na seguinte estatística de Wald:

$$Z = \frac{\hat{\beta}_k}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_k)}},$$

em que $\widehat{\text{Var}}(\hat{\beta}_k)$ denota o elemento da diagonal principal de $\widehat{\text{Cov}}(\hat{\beta})$ correspondente a $\hat{\beta}_k$.

Esta estatística de teste pode ser comparada com uma distribuição normal padrão.

- De maneira mais geral, pode ser de interesse construir intervalos de confiança e testes de hipóteses com respeito a certas combinações lineares dos componentes de β.
- ▶ Seja L um vetor ou uma matriz de pesos **conhecidos** e suponha que é de interesse testar H_0 : $L\beta = 0$.
- A combinação linear dos componentes de β , $L\beta$, representa um **contraste** de interesse científico.
 - Exemplo: suponha que $\beta=(\beta_1,\beta_2,\beta_3)'$ e L=(0,0,1), então $H_0:L\beta=0$ é equivalente a $H_0:\beta_3=0$.
 - Agora, se considerarmos L=(0,1,-1), então $H_0: L\beta=0$ é equivalente a $H_0: \beta_2-\beta_3=0$ ou $H_0: \beta_2=\beta_3$.

- ▶ Uma estimativa natural de $L\beta$ é $L\hat{\beta}$, e pode ser mostrado que $L\hat{\beta}$ tem distribuição normal multivariada com média $L\beta$ e matriz de covariância $L\text{Cov}\,(\hat{\beta})L'$.
- Nos dois exemplos anteriores, L é um único vetor linha 1×3 , L = (0, 0, 1) ou L = (0, 1, -1).
- Se L é um único vetor linha, então $L\text{Cov}(\hat{\beta})L'$ é um único valor (escalar) e a sua raiz quadrada fornece uma estimativa do erro padrão para $L\hat{\beta}$.
- Assim um intervalo de confiança de aproximadamente 95% para $L\beta$ é dado por

$$L\hat{\beta} \pm 1,96\sqrt{L\widehat{\mathsf{Cov}}(\hat{\beta})L'}.$$

▶ De forma similar, para testar $H_0: L\beta = 0$ versus $H_A: L\beta \neq 0$, podemos usar a estatística de Wald

$$Z = \frac{L\beta}{\sqrt{L\widehat{\mathsf{Cov}}(\hat{\beta})L'}},$$

e comparar esta estatística de teste com a distribuição normal padrão.

▶ Um teste idêntico para $H_0: L\beta = 0$ versus $H_A: L\beta \neq 0$ usa a estatística

$$W^2 = (L\hat{\beta})\{L\widehat{\mathsf{Cov}}(\hat{\beta})L'\}^{-1}(L\hat{\beta}),$$

e comparar W^2 com a distribuição χ^2 com 1 grau de liberdade (por que?).

- ► Esta última observação nos ajuda a motivar como o teste de Wald prontamente generaliza quando *L* tem mais que uma linha, permitindo o teste simultâneo de uma hipótese multivariada.
- ▶ Por exemplo, suponha que $\beta = (\beta_1, \beta_2, \beta_3)'$ e é de interesse testar a igualdade dos três parâmetros de regressão.
 - A hipótese nula pode ser expressa como H_0 : $\beta_1 = \beta_2 = \beta_3$. Fazendo

$$L = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 0 & -1 \end{array}\right).$$

▶ $H_0: \beta_1 = \beta_2 = \beta_3$ pode ser expressa como $H_0: L\beta = 0$, pois se

$$L\beta = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$
$$= \begin{pmatrix} \beta_1 - \beta_2 \\ \beta_1 - \beta_3 \end{pmatrix} = 0,$$

e então

$$\left(\begin{array}{c}\beta_1\\\beta_1\end{array}\right) = \left(\begin{array}{c}\beta_2\\\beta_3\end{array}\right).$$

► Em geral, suponha que L tem r linhas (representando r contrastes de interesse científico), então um teste simultâneo de $H_0: L\beta = 0$ versus $H_A: L\beta \neq 0$ é dado por

$$W^2 = (L\hat{\beta})'\{L\widehat{\mathsf{Cov}}(\hat{\beta})L'\}^{-1}(L\hat{\beta}),$$

que tem uma distribuição χ^2 com r gl.

Este é o teste de Wald multivariado.

- Uma alternativa para o teste de Wald é o teste da razão de verossimilhanças.
- ▶ O teste da razão de verossimilhanças de H_0 : $L\beta=0$ versus H_A : $L\beta \neq 0$ é obtido comparando as log-verossimilhanças maximizada para dois modelos:
 - um modelo incorpora a restrição que $L\beta=0$ (por exemplo, $\beta_3=0$ ou $\beta_2=\beta_3$); este será chamado de **modelo reduzido**;
 - e outro modelo sem restrição; este será chamado de modelo completo.

Uma estatística de teste é obtida por

$$G^2 = 2(\hat{l}_{comp} - \hat{l}_{red}),$$

e comparamos esta estatística com uma distribuição qui-quadrado com graus de liberdade igual a diferença entre o número de parâmetros nos modelos completo e reduzido.

Observação: o teste da razão de verossimilhança só pode ser usado quando o número de observações para os modelos completo e reduzido for o mesmo; atenção com dados ausentes nas covariáveis.

- ▶ O uso da verossimilhança também pode fornecer limites de confiança para β ou $L\beta$.
- Para um único componente de β , digamos β_k , podemos definir uma função **log-verossimilhança perfilada**, $I_p(\beta_k)$, obtida maximizando a log-verossimilhança sobre os parâmetros restantes, mantendo β_k em algum valor fixo.

- ▶ Um intervalo de confiança baseado na verossimilhança para β_k é obtido considerando-se valores de β_k que são razoavelmente consistentes com os dados.
 - Especificamente, um intervalo de confiança aproximado de 95% baseado na verossimilhança é dado pelo conjunto de todos os valores de β_k que satisfazem

$$2 \times \{I_p(\hat{\beta}_k) - I_p(\beta_k)\} \le 3,84,$$

em que o valor crítico 3,84 é obtido da distribuição qui-quadrado com 1 grau de liberdade.

▶ De maneira mais geral, os intervalos de confiança para $L\beta$ podem ser obtidos invertendo o teste correspondente de $H_0: L\beta = 0$ de maneira semelhante.

Comentários

- Embora a construção de testes de razão de verossimilhança e intervalos de confiança com base em verossimilhança seja mais enredada (por exemplo, exigindo um ajuste adicional do modelo sob a hipótese nula) do que os correspondentes testes e intervalos de confiança com base na estatística de Wald, os testes e intervalos de confiança baseados em verossimilhança geralmente têm propriedades superiores.
- ▶ Este é especialmente o caso quando a variável de resposta é discreta.
 - ▶ Por exemplo, na regressão logística com dados binários, os testes de razão de verossimilhança têm melhores propriedades que os testes de Wald correspondentes.
- ▶ Portanto, em caso de dúvida, recomenda-se o uso de testes e intervalos de confiança baseados em verossimilhança.

Comentários

- Notamos que testes de razão de verossimilhança também podem ser usados para hipóteses sobre os parâmetros de covariância.
- No entanto, existem alguns problemas em potencial com o uso padrão do teste da razão de verossimilhança para comparar modelos aninhados para a covariância; retornaremos a este tópico quando discutirmos a modelagem da estrutura de covariância.
- ► Em geral, não é recomendado testar hipóteses sobre os parâmetros de covariância usando testes de Wald.
 - ► Em particular, a distribuição amostral da estatística do teste Wald para um parâmetro de variância não possui uma distribuição normal aproximada quando o tamanho da amostra é relativamente pequeno e a variância populacional é próxima de zero.
 - Como a variância tem um limite inferior igual a zero, são necessárias amostras muito grandes para justificar a aproximação normal para a distribuição amostral da estatística do teste de Wald quando a variância está próxima de zero.

Exercícios

Exercícios

- 1. (Re)fazer as provas dos resultados discutidos na aula de hoje.
- 2. Utilize os dados do estudo dos níveis de chumbo no sangue (TLC).
 - Proponha um modelo de regressão linear para a média com base nas questões de pesquisa.
 - Encontre as estimativas para os coeficientes de regressão do modelo proposto (use a função gls do pacote nlme do R; explore diferentes especificações da covariância - veja a documentação de corClasses).
 - ▶ Com base nas estimativas, faça a exposição das suas conclusões.

Avisos

- ▶ **Próxima semana:** lista de exercícios nº 1.
 - O momento da aula será utilizado para a resolução dos exercícios da lista.
- Para casa: ler o Capítulo 4 do livro "Applied Longitudinal Analysis".
 - Fazer um resumo da Seção 4.5.
 - Caso ainda não tenha lido, leia também os Caps. 1, 2 e 3.
 - Ver também as referências com respeito à derivadas de vetores, matrizes, etc.
- Próxima aula (1º/10): Modelando a média através da análise de perfis de respostas.

Bons estudos!

