Analyse Formelle de Concepts

Module Ingénierie des Connaissances

Université De Montpellier - Faculté Des Sciences

5 mars 2015

1 / 41

Sommaire

Fondements

2 Données complexes

2 / 41

Analyse formelle de concepts (AFC)

- Méthode d'analyse de données
- Application de la théorie des treillis
- Extraction de concepts Unité de base de la pensée humaine
- Contextes restreints (monde clos)

3 / 41

Analyse formelle de concepts (AFC)

Applications

- Construction de classifications
- Recherche d'informations (indexation)
- Fouille de données (règles)
- Apprentissage
- Aide à la construction d'ontologies : alignement, explicitation et classification des concepts, etc.

GMIN309 5 mars 2015 4 / 41

Les planètes du système solaire

		Taille		Dist so	Sate	ellite	
	petite	moyenne	grande	proche	che loin		non
Mercure	Х			Х			Х
Vénus	Х			Х			Х
Terre	Х			Х		Х	
Mars	Х			Х		X	
Jupiter			Х		Х	Х	
Saturne			Х		Х	Х	
Uranus		Х			Х	Х	
Neptune		Х			Х	Х	
Pluton	Х				Х	Х	

GMIN309 5 mars 2015 5 / 41

Contexte binaire et ses applications caractéristiques

Contexte (O, A, R)

- deux ensembles finis O et A
- une relation binaire $R \subseteq 0 \times A$.

Définition (applications caractéristiques d'une relation binaire)

Attributs communs à un ensemble d'objets

$$f: \mathcal{P}(O) \to \mathcal{P}(A)$$

$$X \longmapsto f(X) = \{ y \in A \mid \forall x \in X, (x, y) \in \mathcal{R} \} = X'$$

Objets partageant un ensemble d'attributs

$$g: \mathcal{P}(A) \to \mathcal{P}(O)$$

$$Y \longmapsto g(Y) = \{x \in O \mid \forall y \in Y, (x, y) \in \mathcal{R}\} = Y'$$

Autre notation '

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 へ で 。

6 / 41

Contexte binaire et ses applications caractéristiques

```
f(\{\textit{Mercure}, \textit{Terre}\}) = \{\textit{Taille} : \textit{petite}, \textit{Soleil} : \textit{proche}\} g(\{\textit{Taille} : \textit{petite}, \textit{Soleil} : \textit{proche}\}) = \{\textit{Mercure}, \textit{Venus}, \textit{Terre}, \textit{Mars}\}
```

7 / 41

Concept

Un concept formel C est un couple (E, I) tel que f(E) = I (ou de manière équivalente) E = g(I)

 $E = \{ e \in O \mid \forall i \in I, (e, i) \in R \}$ est *l'extension* (objets couverts),

 $I = \{ i \in A \mid \forall e \in E, (e, i) \in R \}$ est *l'intension* (caractéristiques partagées).

GMIN309 5 mars 2015 8 / 41

Concept

		Taille		Dist so	Satellite		
	petite	moyenne	grande	proche	loin	oui	non
Mercure	x			×			×
Vénus	×			×			×
Terre	х			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturne			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluton	x				×	×	

Exemple

Le concept (E, I) des petites planètes proches du soleil $E = \{Mercure, Venus, Terre, Mars\},\ I = \{Taille : petite, Soleil : proche\}$

Un concept est un ensemble maximal d'objets possédant un ensemble maximal d'attributs

4 D > 4 P > 4 E > 4 E > E 9 Q C

GMIN309 5 mars 2015 9 / 41

Concept

		Taille		Dist so	oleil	Sat	ellite
	petite	moyenne grande		proche	loin	oui	non
Mercure	x			×			×
Vénus	x			×			×
Terre	×			×		×	
Mars	x			×		×	
Jupiter			×		×	×	
Saturne			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluton	×				×	×	

Contre-exemple

$$(E = \{Mercure, Terre\}, I = \{Taille : petite, Soleil : proche\})$$

 $E \neq g(I) = \{Mercure, Venus, Terre, Mars\}$

Un concept est un ensemble maximal d'objets possédant un ensemble maximal d'attributs

4日 → 4団 → 4 三 → 4 三 → 9 Q ○

GMIN309 5 mars 2015 10 / 41

Spécialisation entre concepts

L'ensemble de tous les concepts $\mathcal C$ forme un treillis $\mathcal L$ lorsqu'il est muni de l'ordre suivant :

$$(E_1, I_1) \leq_{\mathcal{L}} (E_2, I_2) \Leftrightarrow E_1 \subseteq E_2$$
 (or de manière équivalente $I_2 \subseteq I_1$).

Le concept des petites planètes proches du soleil $E_1 = \{Mercure, Venus, Terre, Mars\}, \\ I_1 = \{Taille : petite, Soleil : proche\} \\ \mathbf{sp\'ecialise} \\ \text{Le concept des petites planètes} \\ E_2 = \{Mercure, Venus, Terre, Mars, Pluton\}, \\ I_2 = \{Taille : petite\}$

→ロト ←団ト ← 恵ト ← 恵 ト ・ 恵 ・ りへで

GMIN309 5 mars 2015 11 / 41

Classification des planètes - Treillis

Galicia: http://www.iro.umontreal.ca/~ galicia/

GMIN309 5 mars 2015 12 / 41

Simplification des étiquettes dans le treillis

La simplification est basée sur l'ordre :

$$(E_1, I_1) \leq_{\mathcal{L}} (E_2, I_2) \Leftrightarrow E_1 \subseteq E_2$$
 (ou de manière équivalente $I_2 \subseteq I_1$).

Dans I_1 les attributs de I_2 sont hérités (en descendant), donc peuvent être retirés

Dans E_2 les objets sont hérités (en montant), donc peuvent être retirés

GMIN309 5 mars 2015 13 / 41

Simplification des étiquettes dans le treillis

Dans I_1 les attributs de I_2 hérités (en descendant) sont retirés Dans E_2 les objets hérités (en montant) sont retirés

Intension simplifiée du concept des *petites* planètes *proches* du soleil : $I_1 = \{Soleil : proche\}$

car l'attribut Taille : petite est hérité (concept 2)

Extension simplifiée du concept des planètes proches du soleil :

$$E_2 = \emptyset$$

car les objets sont hérités de concepts plus spécialisés (concepts 8, 9 et 10)

4 D > 4 D > 4 E > 4 E > E 990

GMIN309 5 mars 2015 14 / 41

Simplification des étiquettes dans le treillis

Le concept 5 *déclare* ou *introduit* l'attribut *Soleil* : *proche*C'est un *concept-attribut*

Le concept 8 *déclare* ou *introduit* l'objet *Pluton* C'est un *concept-objet*

Le concept 7 est un *concept-attribut* et un *concept-objet* Il introduit *Taille* : *moyenne* et *Neptune*

GMIN309 5 mars 2015 15 / 41

Classification des planètes - Treillis, étiquettes simplifiées

Conexp: http://conexp.sourceforge.net/index.html

GMIN309 5 mars 2015 16 / 41

Sous-hiérarchie de Galois / AOC-poset : Simplification du treillis

Retrait des concepts qui ne sont :

- ni concept-attribut
- ni concept-objet

La structure obtenue n'est plus un treillis, mais un ordre partiel quelconque

GMIN309 5 mars 2015 17 / 41

Classification des planètes - AOC-poset

Galicia: http://www.iro.umontreal.ca/~ galicia/

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ からぐ

GMIN309 5 mars 2015 18 / 41

Classification des planètes - AOC-poset

AOC-poset builder : http://www.lirmm.fr/AOC-poset-Builder/ $_{\tiny{\tiny{\tiny{1}}}}$

GMIN309 5 mars 2015 19 / 41

Sous-hiérarchie de Galois / AOC-poset : Simplification du treillis

La structure obtenue n'est plus un treillis, mais un ordre partiel quelconque

Les concepts 31 et 33 ont deux plus petits majorants incomparables

concepts 29 et 28

Règles d'implication d'un contexte formel

$$A_1$$
 et A_2 deux ensembles d'attributs $A_1 \Rightarrow A_2$ ssi $A_1' \subseteq A_2'$ (ou encore $f(A_1) \subseteq f(A_2)$)

une planète sans satellite est de petite taille et proche du soleil {Satellite : non} ⇒ {Soleil : proche, Taille : petite}

```
f(\{Satellite : non\}) = \{Mercure, Venus\}

\subseteq

Poche. Taille : petite\}) = \{Mars. Mercure, Terre, Venue}
```

 $f(\{Soleil : proche, Taille : petite\}) = \{Mars, Mercure, Terre, Venus\}$

GMIN309 5 mars 2015 21 / 41

Règles d'implication d'un contexte formel

$$A_1 \Rightarrow A_2$$
 se ramène à : $A_1 \Rightarrow a, \forall a \in A_2$

une planète sans satellite est de petite taille et proche du soleil $\{Satellite : non\} \Rightarrow \{Soleil : proche, Taille : petite\}$ se ramène à

```
{Satellite : non} \Rightarrow {Taille : petite}
et
{Satellite : non} \Rightarrow {Soleil : proche}
```


GMIN309 5 mars 2015 22 / 41

Règles d'implication d'un contexte formel

```
Certains ensembles de règles sont redondants \{Satellite : non\} \Rightarrow \{Soleil : proche, Taille : petite\} \{Satellite : non\} \Rightarrow \{Taille : petite\} \{Satellite : non\} \Rightarrow \{Soleil : proche\} \{Soleil : proche\} \Rightarrow \{Taille : petite\}
```

On peut déduire de la réduction transitive du treillis l'ensemble minimal non redondant des implications du contexte qui ont un support non nul (il existe des objets vérifiant l'implication).

GMIN309 5 mars 2015 23 / 41

Règles d'implications sur les planètes

→ロト ◆個 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ からで

24 / 41

Règles d'implications sur les planètes


```
\{Satellite : non\} \Rightarrow \{Soleil : proche\}
\{Soleil : proche\} \Rightarrow \{Taille : petite\}
\{Taille : grande\} \Rightarrow \{Soleil : loin\}
\{Taille : moyenne\} \Rightarrow \{Soleil : loin\}
\{Soleil : loin\} \Rightarrow \{Satellite : oui\}
```

◆ロト ◆昼 ト ◆ 豆 ト ◆ 豆 ・ か Q (^*)

GMIN309 5 mars 2015 25 / 41

Sommaire

1 Fondements

2 Données complexes

GMIN309

Modélisation de données complexes

Sans prétendre à l'exhaustivité :

- Attributs valués (entier, réels, termes, structures, objets symboliques, etc.) (Ganter et Wille, Polaillon, ...)
- Description floue (Yahia et al., Belohlavek, ...)
- Hiérarchisation des valeurs (Godin et al., Carpineto et Romano, ...)
- Relations entre objets (Priss, Rouane et al., ...)
- Description logique (Chaudron et al., Ferré et al., ...)
- Graphes (Liquière, Prediger et Wille, ...)
- Pattern Structures (Kuznetsov)
-

GMIN309

Contextes multi-valués

Définition

Un contexte multi-valué est un quadruplet K = (O, A, V, J) où O et A sont les ensembles d'objets et d'attributs respectivement et $J \subseteq O \times A \times V$ représente la valuation des attributs. $(o, a, v) \in J$ signifie que l'objet o a la valeur v pour l'attribut a.

	Taille	Dist soleil	Satellite
	(km)	(10 ⁶ km)	(nombre)
Mercure	4 878	58	0
Vénus	12 400	108	0
Terre	12 756	150	1
Mars	6 800	228	2
Jupiter	142 800	778	16
Saturne	120 800	1 427	19
Uranus	47 600	2 870	5
Neptune	44 600	4 500	8
Pluton	2 320	9 950	1

GMIN309 5 mars 2015 28 / 41

Echelonnage (échantillonage) conceptuel

Transformation du contexte K en contexte binaire K^d

- transformer chaque attribut multivalué en plusieurs attributs binaires
- la partie du contexte correspondante est un contexte d'échelle (noté K_a), qui donne naissance à un treillis (\mathcal{L}_a)
- ullet réassembler les contextes d'échelle et leurs treillis pour former K^d

GMIN309 5 mars 2015 29 / 41

Echelle conceptuelle

Les échelles représentent des descriptions séparées des attributs

Définition (interprétation d'un contexte d'échelle)

Soit un contexte multi-valué K = (O, A, V, J) et $a \in A$. Le contexte d'échelle de a, noté $K_a = (V_a, P_a, J_a)$, s'interprète :

- $V_a \subseteq V$ est l'ensemble des valeurs de a
- Pa contient un ensemble de propriétés des valeurs de a
- $J_a \subseteq V_a \times P_a \times V_a$ associe à une valeur ses propriétés

GMIN309 5 mars 2015 30 / 41

Echelle conceptuelle de l'attribut distance au soleil

	$ds \ge 10$	$ds \ge 100$	$ds \ge 500$	$ds \ge 1000$
58	x			
108	x	x		
150	x	х		
228	x	х		
778	x	X	X	
1 427	x	х	x	x
2 870	x	x	x	x
4 500	x	x	x	x
9 950	x	х	x	х

Echelle conceptuelle de l'attribut diamètre

	$d \leq 10$	$10 < d \le 20$	$20 < d \le 50$	$d \ge 50$
4 878	х			
12 400		x		
12 756		x		
6 800	х			
142 800				x
120 800				x
47 600			x	
44 600			x	
2.320	x			

Echelle conceptuelle de l'attribut Satellite

	$s \le 5$	$5 < s \le 10$	$s \ge 10$
0	x		
0	x		
1	x		
2	x		
16			x
19			x
5	x		
8		x	
1	x		

Calcul de K^d

Définition

Le scaling du contexte K produit le contexte binaire K^d tel que :

- $O^d = O$
- $A^d = \bigcup_{a \in A} \{ \text{concepts du treillis } \mathcal{L}_a \}$
- $J^d = \{(o, a_s) | (o, a, v) \in J \text{ et } v \in extent(a_s)\}$

Nota : on pourrait utiliser directement les descriptions des valeurs mais dans certains cas, de nouveaux concepts apparaissent

GMIN309 5 mars 2015 34 / 41

Contexte après échantillonage

	<u>D</u> iamètre (km)			Dis	\underline{D} istance au \underline{S} oleil (10 ⁶ km)				<u>S</u> atellite		
	$d \le 10$	$10 < d \le 20$	$20 < d \le 50$	$d \ge 50$	$ds \ge 10$	$ds \ge 100$	$ds \ge 500$	$ds \ge 1000$	$s \leq 5$	$5 < s \le 10$	$s \ge 10$
Mercure	x				x				x		
Venus		x			x	x			x		
Terre		x			x	x			x		
Mars	x				x	x			x		
Jupiter				х	x	x	x				x
Saturne				х	x	x	x	x			x
Uranus			х		x	х	х	x	x		
Neptune			х		x	х	x	x		х	
Pluton	х				x	х	х	x	x		

Treillis après échantillonage

Exemple de données complexes : Contexte avec taxonomies sur les attributs

	Artificial Intelligence (AI)	Expert Systems (ES)	Information Retrieval (IR)	Cataloguing (Cg)	Indexing (Ig)	Information Science (IS)	Information Retrieval Systems (IRS)	Knowledge-based Systems (KS)
1	x	x	x					
2	x	x		x				
3	х	х			х			
4	х	х				х		
5	x	x		x			x	
6	x		x					х

Documents décrits par des domaines de l'informatique

4 D > 4 D > 4 E > 4 E > E *) Q (*

GMIN309 5 mars 2015 37 / 41

Contexte avec taxonomies sur les attributs

Connaissances taxonomiques sur les domaines de l'informatique

GMIN309 5 mars 2015 38 / 41

Enrichissement du contexte avec la taxonomie

	Artificia	Expert S	Informat	Catalog	Indexing	Informat	Informat	Knowled	Comput	Informat	
1	х	х	х			х		x	х		
2	х	х		х				х	x	x	
3	х	х			х			x	x	x	
4	х	х				х		x	х		
5	х	х		х		х	x	х	х	x	
6	x		x			x		х	x		

Enrichissement du contexte avec la taxonomie

1 (resp. 5) est maintenant dans une sous-catégorie de la catégorie de 4 (car IR sous-catégorie de IS, resp. IRS sous-catégorie de IS)

2, 3, 5 sont regroupés dans la catégorie IAn

→ロト → □ → → □ → □ → ○ ○ ○

GMIN309 5 mars 2015 40 / 41

Matériel utilisé

- Formal Concept Analysis, Ganter et Wille, Springer, 1999
- Analyse de concepts formels guidée par des connaissances du domaine : Application à la découverte de ressources génomiques sur le Web, Nizar Messai, thèse de doctorat, Université H. Poincaré-Nancy 1, mars 2009

GMIN309 5 mars 2015 41 / 41