Лабораторная работа № 4 «Численное интегрирование»

Задание 1

Вычислить интеграл $\int_a^b f(x)dx$ с точностью $\varepsilon = 10^{-7}$, используя составные квадратурные формулы (КФ), указанные в варианте задания, и правило Рунге оценки погрешности.

По результатам лабораторной работы оформляется отчет. *В содержание отчета должна быть* включена следующая информация:

- Применяемые составные квадратурные формулы.
- Правило Рунге оценки погрешности.
- Результаты вычислительного эксперимента, оформленные в виде таблицы 1.

Структура таблицы 1:

Квадратурная формула	Число разбиений	Шаг	Приближенное значение интеграла	Оценка погрешности
КФ 1	$N = 2$ $2N = 4$ \vdots	h = (b-a)/2 = h/2 = :	$egin{aligned} Q_h = \ Q_{h/2} = \ dots \end{aligned}$	$\begin{matrix} - \\ R_{h/2} = \\ \vdots \end{matrix}$
КФ 2	$N = 2$ $2N = 4$ \vdots	$h = (b-a)/2 = h/2 = $ \vdots	$egin{aligned} Q_h = \ Q_{h/2} = \ dots \end{aligned}$	$R_{h/2} = \vdots$

- Сравнение полученных численных результатов с точным значением интеграла I.
- Выводы.
- Листинг программы с комментариями.

Задание 2

Вычислить приближенное значение интеграла из задания 1, используя квадратурную формулу наивысшей алгебраической степени точности (HACT) с k узлами.

В содержание отчета должна быть включена следующая информация:

- КФ HACT с *k* узлами.
- Приближенное значение интеграла, вычисленное с помощью КФ НАСТ. Сравнение с точным значением I.
- Выводы.
- Листинг программы с комментариями.

Варианты заданий

Номер варианта	Определенный ин- теграл	Составные квадратурные формулы	k	Точное значение интеграла <i>I</i>
1	$\int_{0}^{1} \frac{\ln(1+x)}{1+x^2} dx$	КФ трапеций, КФ Симпсона.	4	$\frac{\pi}{8}\ln 2$
2	$\int_{0}^{\pi/2} e^{-x} \cos^5 x dx$	КФ средних прямоугольников, КФ Симпсона.	5	$\frac{9}{26} \left(1 + \frac{2}{3} e^{-\pi/2} \right)$
3	$\int_{0}^{\pi/2} \frac{x + \sin^2 x}{1 + \cos x} dx$	КФ средних прямоугольников, КФ Симпсона.	4	π -ln 2-1

4	$\int_{0}^{\pi/4} \frac{dx}{1+2\sin^2 x}$	КФ трапеций, КФ Симпсона.	5	$\frac{\pi}{3\sqrt{3}}$
5	$\int_{0}^{7} \frac{dx}{\sqrt[3]{x+1}+1}$	КФ трапеций, КФ Симпсона.	4	$\frac{3}{2} - 3\ln\frac{2}{3}$
6	$\int_0^1 \frac{\ln(1+x)}{\left(3x+2\right)^2} dx$	КФ средних прямоугольников, КФ Симпсона.	5	$\frac{1}{15}(5\ln 5 - 11\ln 2)$
7	$\int_{6}^{9} \sqrt{\frac{9-2x}{2x-21}} dx$	КФ средних прямоугольников, КФ Симпсона.	4	π
8	$\int_{0}^{2} \frac{(x-1)^{2}}{x^{2} + e^{x} + 1} dx$	КФ трапеций, КФ Симпсона.	5	$2 + \ln\left(\frac{2}{5 + e^2}\right)$
9	ů .	КФ трапеций, КФ Симпсона.	4	$ \ln \sqrt{2} - \frac{1}{2} $
10	$\int_{0}^{1} \frac{e^{\arctan x}}{(1+x^2)^{3/2}} dx$	КФ средних прямоугольников, КФ Симпсона.	5	$\frac{e^{\pi/4}}{\sqrt{2}} - \frac{1}{2}$
11	$\int_{-1}^{1} \frac{dx}{\left(e^x + 1\right)\left(x^2 + 1\right)}$	КФ средних прямоугольников, КФ Симпсона.	4	$\frac{\pi}{4}$
12	$\int\limits_0^1 2x^3 \ln(x^2+1) dx$	КФ трапеций, КФ Симпсона.	5	$\frac{1}{4}$