Exercice 1. /10

PARTIE A

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = \ln x - 2 + x.$$

- 1. Calculer les limites de la fonction f en 0 et en $+\infty$.
- 2. Étudier le sens de variation de la fonction f puis dresser son tableau de variations.
- 3. Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle]0; $+\infty[$. Donner un encadrement du nombre α à 10^{-2} près.

PARTIE B

Le plan est muni d'un repère orthonormal.

On considère sur le graphique ci-dessous, la courbe représentative \mathcal{C} de la fonction ln, ainsi que la droite \mathcal{D} d'équation y=2-x. On note E le point d'intersection de la courbe \mathcal{C} et de la droite \mathcal{D} .

On considère l'aire en unités d'aire, notée \mathcal{A} , de la partie du plan située au dessus de l'axe des abscisses et au dessous de la courbe \mathcal{C} et de la droite \mathcal{D} .

- 1. Déterminer les coordonnées du point E.
- 2. Soit $I = \int_{1}^{\alpha} \ln x \, dx$.
 - (a) Donner une interprétation géométrique de I.
 - (b) À l'aide d'une intégration par parties, montrer que I peut aussi s'écrire $I=-\alpha^2+\alpha+1$ sachant que $f(\alpha)=0$.
- 3. Calculer l'aire \mathcal{A} en fonction de α .

On considère les fonctions f et g définies sur l'intervalle $[0\,;\,16]$ par

$$f(x) = \ln(x+1)$$
 et $g(x) = \ln(x+1) + 1 - \cos(x)$.

Dans un repère du plan , on note C_f et C_g les courbes représentatives des fonctions f et g. Ces courbes sont données ci-dessous.

Comparer les aires des deux surfaces hachurées sur ce graphique.

