Hardware Controller Node

Ali Mahdavifar

Background

Autonomous Cleaning Robot

Functionalities:

- Cleaning various surface types
- Disinfecting
- Vacuuming

Locations:

- Warehouses
- Airports
- Shopping malls
- Office areas

About ROS

- Robot Operating System
- An open-source framework for robot software development
- Modular software architecture
- Inter-process communications

Task

• Create a new ROS node to control robot's cleaning hardware elements

Task

• Create a new ROS node to control robot's cleaning hardware elements

DSX Mode:

- States:
 - ON: 1
 - OFF: 0
- V_cmd = dsx_speed

Task

• Create a new ROS node to control robot's cleaning hardware elements

DSX Mode:

- States:
 - ON: 1
 - OFF: 0
- V_cmd = dsx_speed

Scrub Mode for CH:

- States:
 - Lowered: 1
 - Lowering: -1
 - Raised: 0
 - Raising: -2
- V_cmd = slow_speed

• Obsolete dependencies on local controller parameters

- Obsolete dependencies on local controller parameters
- LC runs at a higher frequency than LP (30-50 Hz vs. 10-20 HZ)

- Obsolete dependencies on local controller parameters
- LC runs at a higher frequency than LP (30-50 Hz vs. 10-20 HZ)
- Code extensibility issues

Requirements

• Ensuring the main motion planning functionalities are intact

Requirements

- Ensuring the main motion planning functionalities are intact
- Demonstrating reduced computational effort
 - Minimum of 5% reduction in total cleaning time

Requirements

- Ensuring the main motion planning functionalities are intact
- Demonstrating reduced computational effort
 - Minimum of 5% reduction in total cleaning time
- Addressing edge cases

Constraints

Computational Resources	Operate within available RAM and CPU limits
Safety	Ensure a safe operation around users and passersby
Scalability	To be functional on all robot hardware versions

My Implementation: ROS Service-Client

My Implementation: ROS Service-Client

A Closer Look at HC Node

Cleaning Plan Layout

Map not to scale!

Cleaning Plan Layout

Dynamic Mode Array

Mode: normal speed

Mode End Index: 3

• DSX Spray State: 0

• CH State: 1

Mode: slow down

Mode End Index: 5

• DSX Spray State: 0

• CH State: 1

Dynamic Mode Array

Mode: Disinfection

Mode End Index: 9

• DSX Spray State: 1

• CH State: 1

Mode: stop

• Mode End Index: 13

• DSX Spray State: 0

• CH State: -2

Dynamic Mode Array

Mode: no scrub

• Mode End Index: 16

• DSX Spray State: 0

• CH State: 0

Mode: stop

• Mode End Index: 18

• DSX Spray State: 0

• CH State: -1

Scenario: Momentary Stop

Scenario: Momentary Stop

Scenario: Momentary Stop

~ 5% improvement in accuracy of average cleaned area

Distance Clearance for Disinfection

Scenario: Obstacle Obstruction

Lessons I Learned

- Comprehensive simulation testing
- In-depth knowledge of Local Planner and Local Controller
- ROS Services

Conclusion

- New node to keep the same functionalities for Local Planner and Local Controller and most of Hardware Controller
- New implementation allows for:
 - New, efficient behaviour in Hardware Controller
 - Design for usability of code for new hardware elements
 - Easier debugging of robot behaviour

Thanks for Watching!

Q&A