

subqueries

<u>subqueries</u>

<u>subqueries</u>

subqueries = inner queries

<u>subqueries</u> = <u>inner queries</u> = <u>nested queries</u>

<u>subqueries</u> = <u>inner queries</u> = <u>nested queries</u>

queries embedded in a query

- they are part of another query, called an outer query

<u>subqueries</u> = <u>inner queries</u> = <u>nested queries</u> = <u>inner select</u>

queries embedded in a query

- they are part of another query, called an outer query

<u>subqueries</u> = <u>inner queries</u> = <u>nested queries</u> = <u>inner select</u>

queries embedded in a query

- they are part of another query, called an <u>outer query</u>

= outer select

<u>subqueries</u>

subqueries

- a subquery should *always* be placed within parentheses

1) the SQL engine starts by running the inner query

- 1) the SQL engine starts by running the inner query
- 2) then it uses its returned output, which is intermediate, to execute the outer query

<u>a subquery</u> may return a single value (a scalar), a single row, a single column, or an entire table

<u>a subquery</u> may return a single value (a scalar), a single row, a single column, or an entire table

- <u>a subquery</u> may return a single value (a scalar), a single row, a single column, or an entire table
- you can have a lot more than one subquery in your outer query

- <u>a subquery</u> may return a single value (a scalar), a single row, a single column, or an entire table
- you can have a lot more than one subquery in your outer query
- it is possible to nest inner queries within other inner queries

- <u>a subquery</u> may return a single value (a scalar), a single row, a single column, or an entire table
- you can have a lot more than one subquery in your outer query
- it is possible to nest inner queries within other inner queries

in that case, the SQL engine would execute the *innermost query* first

- <u>a subquery</u> may return a single value (a scalar), a single row, a single column, or an entire table
- you can have a lot more than one subquery in your outer query
- it is possible to nest inner queries within other inner queries

in that case, the SQL engine would execute the innermost query first, and then each subsequent query

- <u>a subquery</u> may return a single value (a scalar), a single row, a single column, or an entire table
- you can have a lot more than one subquery in your outer query
- it is possible to nest inner queries within other inner queries

in that case, the SQL engine would execute the innermost query first, and then each subsequent query, until it runs the outermost query last

EXISTS

EXISTS

checks whether certain row values are found within a subquery

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

if a row value of a subquery **exists**

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

if a row value of a subquery **exists TRUE**

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

if a row value of a subquery **exists TRUE the corresponding record of the outer query is extracted**

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

if a row value of a subquery **exists** \longrightarrow **TRUE** \longrightarrow the corresponding record of the outer query is extracted

if a row value of a subquery doesn't exist

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

if a row value of a subquery **exists** \longrightarrow **TRUE** \longrightarrow the corresponding record of the outer query is extracted

if a row value of a subquery doesn't exist

EXISTS

checks whether certain row values are found within a subquery

- this check is conducted row by row
- it returns a Boolean value

if a row value of a subquery **exists** \longrightarrow **TRUE** \longrightarrow the corresponding record of the outer query is extracted

if a row value of a subquery doesn't exist

EXISTS	IN

EXISTS	IN
<u>tests</u> row values for existence	

EXISTS	IN
<u>tests</u> row values for existence	<u>searches</u> among values

EXISTS	IN
<u>tests</u> row values for existence	<u>searches</u> among values
quicker in retrieving <u>large amounts</u> of data	

EXISTS	IN
<u>tests</u> row values for existence	<u>searches</u> among values
quicker in retrieving large amounts of data	faster with smaller datasets

ORDER BY (nested queries)

ORDER BY (nested queries)

it is more professional to apply **ORDER BY** in the outer query

ORDER BY (nested queries)

it is more professional to apply **ORDER BY** in the outer query

- it is more acceptable logically to sort the *final* version of your dataset

some, though not all, nested queries can be rewritten using joins, which are more efficient in general

- some, though not all, nested queries can be rewritten using joins, which are more efficient in general
- this is true particularly for inner queries using the WHERE clause

subqueries:

- allow for better *structuring* of the outer query

- allow for better *structuring* of the outer query
 - thus, each inner query can be thought of in isolation

- allow for better <u>structuring</u> of the outer query
 - thus, each inner query can be thought of in isolation
 - hence the name of SQL <u>Structured</u> Query Language!

- allow for better *structuring* of the outer query
 - thus, each inner query can be thought of in isolation
 - hence the name of SQL Structured Query Language!
- in some situations, the use of subqueries is much *more intuitive* compared to the use of complex joins and unions

- allow for better *structuring* of the outer query
 - thus, each inner query can be thought of in isolation
 - hence the name of SQL Structured Query Language!
- in some situations, the use of subqueries is much *more intuitive* compared to the use of complex joins and unions
- many users prefer subqueries simply because they offer enhanced code readability

You have advanced with SQL a lot at this point!

You have advanced with SQL a lot at this point!

In this lecture:

In this lecture:

challenging
task

In this lecture:

In this lecture:

