Package 'lqtool'

May 1, 2017

```
Type Package
Title Factor Backtesting and Charting Functions
Version 0.1.0
Author Luos Quant
Description Package provides basic functions to perform simple backtesting
      and data checking. Univariate backtest charts R code to produce graphs for
      LBacktester More sample codes can be found in package gcookbook Main reference
      book: R Graphics Cookbook, by Winston Chang
Depends R (>= 3.3.0),
      parallel(>= 3.3.0),
      MASS (>= 7.3-45),
      nlme,
      ggplot2,
      reshape2,
      scales,
      RColorBrewer,
      corpcor,
      tseries,
      quadprog,
      FRAPO,
      Rglpk,
      grid,
      openxlsx,
      wquantR,
      aws.s3,
      hashids,
      BBmisc,
      stringr,
      randomForest
\textbf{BugReports} \ \text{https://wolferesearch.atlassian.net/projects/WQUAN/issues}
License Proprietary
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
```

R topics documented:

ADL	5
ADX	5
AO	5
appendForwardReturn	6
ATR	6
awss3.def.s3.bucket.hadoop	7
awss3.def.s3.bucket.rdata	7
awss3.def.s3.delim	7
awss3.files	8
awss3.getdf	8
awss3.getobject	9
awss3.ismeta	9
	10
	10
	10
	11
	11
	11
	12
backtest.getCAGR	12
backtest.getCoverage	13
backtest.getDailyReturns	13
backtest.getHitRate	14
backtest.getICDecay	14
backtest.getIR	15
backtest.getMaxDD	15
backtest.getRankIC	15
backtest.getReturns	16
backtest.getSC	17
backtest.getStats	17
backtest.getTurnover	17
backtest.getVol	18
backtest.getWealth	18
backtest.rtnFromWealth	18
backtest.turnoverFromHolding	19
	19
basic.calculateBeta	19
basic.frequencyConvert	20
basic.getFreq	20
basic.neutralizeFactor	21
basic.quantileMatrix	21
basic.quantileMatrixZero	22
basic.regressFactors	22
basic.regressFactorsFast	23
basic.removeOutliers	23
	24
BollingerBands	24
· ·	24
	25
	25

CCI
CloseLocation
CMF
CO
concentration ratio
cvarOpt
diversification_ratio
DPO
EMA
EMV
EventStudyPlots
FI
forwardReturn
lqtool.leap.run
lqtool.output.identifiers
lqtool.process.corefiles
lqtool.process.countriesDone
lqtool.process.createRegionFactorData
1 1
lqtool.process.download.fn
lqtool.process.excludefactors
lqtool.process.filename
lqtool.process.filterfactors
lqtool.process.hour
lqtool.process.loadCountryFactors
lqtool.process.mask
lqtool.process.merge
lqtool.process.monthsBack
lqtool.process.neutralizeRegionData
lqtool.process.regionDone
lqtool.process.regionLoadAndNormalize
lqtool.process.regionNormalize
lqtool.process.zscore
lqtool.writeRegionFactor
ltool.addFootNote
ltool.allnull
ltool.as.data.frame
ltool.codahale.profile.read
ltool.codahale.profile.trimlabel
ltool.codahale.profiler.plot
ltool.codahale.profiler.summ
ltool.codahale.summary
ltool.createReport
ltool.datacheck.createReport
ltool.datacheck.detplot
ltool.datacheck.overview
ltool.datacheck.report
ltool.datacheck.summplot
ltool.diffmat
ltool.firstNonNullIndex
ltool.footNoteGP
ltool.heatmap

tool.id.charToInt	. 47
tool.id.decrypt	. 47
tool.id.encrypt	. 48
tool.id.hasher	. 48
tool.id.intToChar	. 48
tool.plotbar	. 49
tool.plotfactors	. 49
tool.plotgrid	. 50
tool.plotgridpage	. 50
tool.plotmargin	. 51
tool.printSummary	. 51
tool.randomforest.getScoreRF	. 51
tool.randomforest.learnRF	. 52
tool.regression.getScoreLinear	. 52
tool.regression.linearCoeffs	. 53
tool.sendEmail	. 53
tool.titleGP	. 54
tool.to.df	. 54
tool.trim	
MACD	
MFI	
MI	
nultiplot	
NVI	
OBV	
PER	
PGMV	
plot.backtest.bar	
plot.backtest.barline	
plot.backtest.barsimple	
plot.backtest.Basic	
plot.backtest.density	
plot.backtest.density 3D	
blot.backtest.distribution	
plot.backtest.seasonality	61
plot.backtest.wealth	. 62
PMD	
	. 62
PMTD	. 63
port_CoVar	. 63
PPO	. 64
PVO	. 64
RSI	. 64
80	. 65
StochRSI	. 65
TRIX	. 65
ΓSI	. 66
UO	
VI	
VPT	
WillimsR	
vinsorize	67

ADL 5

```
      wLag
      68

      wRank
      68

      write.summary.stats.temp
      69

      write.summary.statsALL
      69

      Index
      70
```

ADL

Accumulation Distribution Line

Description

Accumulation Distribution Line

Usage

```
ADL(closeprice, highprice, lowprice, cashvol, clv, n = 20)
```

Arguments

cashvol cash volume
clv Close Location Value, if not provided will compute from price

ADX

n

Average Directional Index

Description

Average Directional Index

Usage

```
ADX(closeprice, lowprice, highprice, n = 14)
```

Arguments

n

A0

Aroon Oscillator

Description

Aroon Oscillator

Usage

```
AO(highprice, lowprice, n = 25)
```

Arguments

n

6 ATR

appendForwardReturn

Computes forward returns and appends to the list of data matrices

Description

Computes forward returns and appends to the list of data matrices

Usage

```
appendForwardReturn(data, name, period)
```

Arguments

data List of matrices

name Name of the forward return

period period over which forward return is to be computed

Examples

ATR

Average True Range

Description

Average True Range

Usage

```
ATR(closeprice, lowprice, highprice, n = 14)
```

Arguments

n

```
awss3.def.s3.bucket.hadoop
```

Returns the name of defaul hadoop bucket

Description

Returns the name of defaul hadoop bucket

Usage

```
awss3.def.s3.bucket.hadoop()
```

Value

Name of default hadoop bucket

```
awss3.def.s3.bucket.rdata
```

Returns the name of the default Rdata bucket

Description

Returns the name of the default Rdata bucket

Usage

```
awss3.def.s3.bucket.rdata()
```

Value

Name of default rdata bucket

awss3.def.s3.delim

Delimiter used in Hadoop Data Output

Description

Delimiter used in Hadoop Data Output

Usage

```
awss3.def.s3.delim()
```

8 awss3.getdf

awss3.files

Lists files in a bucket and folder

Description

Lists files in a bucket and folder

Usage

```
awss3.files(bucket, folder)
```

Arguments

bucket top level bucket name

folder sub folder

Examples

```
awss3.files('lquant-hadoop-out','edgar-2004')
```

awss3.getdf

Gets data frame from hadoop folder

Description

Gets data frame from hadoop folder

Usage

```
awss3.getdf(file, folder)
```

Arguments

folder

Examples

```
txtdata<-awss3.getdf('edgar-2004/part-r-00013', 'edgar-2004')</pre>
```

awss3.getobject 9

awss3.getobject

Deserializes object to data frame

Description

Deserializes object to data frame

Usage

```
awss3.getobject(obj)
```

Arguments

obj

S3 Object

Value

Data Frame

awss3.ismeta

Check if the file in the hadoop directory is a meta file

Description

Check if the file in the hadoop directory is a meta file

Usage

```
awss3.ismeta(obj)
```

Arguments

obj

Value

TRUE if file is a meta file

10 awss3.makedf

awss3.loadobject

Loads object from S3 sub folder into a data frame

Description

Loads object from S3 sub folder into a data frame

Usage

```
awss3.loadobject(folder)
```

Arguments

folder

Name of the folder to read data from

Examples

```
txtdata<-awss3.loadobject('edgar-2004')</pre>
```

awss3.1s

Lists down file in the hadoop bucket folder

Description

Lists down file in the hadoop bucket folder

Usage

```
awss3.ls(folder)
```

Arguments

folder

Name of the folder

Examples

```
txtdata<-awss3.ls('edgar-2002')</pre>
```

 ${\tt awss3.makedf}$

Makes data frame from byte array [Internal Use Only]

Description

Makes data frame from byte array [Internal Use Only]

Usage

```
awss3.makedf(x)
```

Arguments

х

byte array

awss3.rdata.list

awss3.rdata.list

Lists r data files in the RData bucket

Description

Lists r data files in the RData bucket

Usage

```
awss3.rdata.list()
```

awss3.rdata.load

Loads object from RData file

Description

Loads object from RData file

Usage

```
awss3.rdata.load(name)
```

Arguments

name

Name of the file

awss3.rdata.save

Saves a file onto to S3 RData bucket

Description

Saves a file onto to S3 RData bucket

Usage

```
awss3.rdata.save(..., name)
```

Arguments

name name of the file data object to store

12 backtest.getCAGR

Description

Performs basic backtesting for a factor

Usage

```
backtest.Basic(factor, frtn, qnum = 5, classMatrix = NULL, tCost = 0,
  rebalanceFreq = "M", outputFreq = NULL, periodEnd = TRUE, skip = 0,
  startThresh = 0.6)
```

Arguments

factor Factor Matrix

frtn Next period return, can be different frequency as the factor

qnum Number of Bins for Long/Short basket

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor

tCost Transaction cost for the long/short quantile backtest

rebalanceFreq default is Monthly

output Freq Output frequency, can be 'A', 'Q', 'M', 'W', 'D' stands for annual, quarterly,

monthly, weekly and daily. If outputFreq = NULL output same frequency as

factor and rebalance frequency is the factor frequency

periodEnd Boolean Flag, if to start at period end (week end, month end, quarter end, year

end), if periodEnd =FALSE, means start at the first period of the factor

skip Number of periods to skip after the period specified by the periodEnd

startThresh Start backtest when the coverage is greater than this threshold

backtest.getCAGR getCAGR

Description

Computes Wealth Curve

Usage

```
backtest.getCAGR(rtn)
```

Arguments

rtn Input the return time serious or the matrix each row is a return time series, can

be different frequency

backtest.getCoverage 13

```
backtest.getCoverage getCoverage
```

Description

Get Coverage of the factor

Usage

```
backtest.getCoverage(factor)
```

Arguments

factor Factor Matrix usually returned by LQuant

Description

Gets Daily Returns of a portfolio with weighting

Usage

```
backtest.getDailyReturns(weightList, identifier, dailyPrice, dailyCumDiv,
  endDate = NULL)
```

Arguments

weightList	A list of portfolio weights, each element in the list is the vector of the weights, the names of the vector is the identifier, and the names of the weightList is the rebalance dates
identifier	Matrix of the identifiers, colnames is the dates, can be any frequency
dailyCumDiv	daily cumulative dividend matrix, same dimension as dailyPrice
endDate	End date for the daily return backtesting
dailyPrices	daily PRCCD matrix, same number of rows as identifier

14 backtest.getICDecay

backtest.getHitRate getHitRate

Description

Computes Hit Rate for a factor

Usage

```
backtest.getHitRate(factor, frtn, cumulative = TRUE, period = 12)
```

Arguments

factor Factor Matrix

frtn Next period return, can be different frequency as the factor

cumulative Boolean flag, if backtest for the cumulative hit rate
period The number of period of hit rate the function output

backtest.getICDecay getICDecay

Description

Get Information Coefficient Decay function

Usage

backtest.getICDecay(factor, frtn, cumulative = TRUE, period = 12)

Arguments

factor Factor Matrix

frtn Next period return, can be different frequency as the factor

cumulative Boolean flag, if backtest for the cumulative IC Decay

period The number of period of IC decay the function output

backtest.getIR 15

backtest.getIR

getIR

Description

Computes Information Ratio of monthly return series

Usage

```
backtest.getIR(rtn)
```

Arguments

rtn

Input the return time serious or the matrix each row is a return time series, can be different frequency

backtest.getMaxDD

getMaxDD

Description

Computes Maximum Drawdown

Usage

```
backtest.getMaxDD(rtn)
```

Arguments

rtn

Input the return time serious or the matrix each row is a return time series

backtest.getRankIC

Get Rank IC Computes Rank Information Coefficient

Description

Get Rank IC Computes Rank Information Coefficient

Usage

```
backtest.getRankIC(factor, frtn, classMatrix = NULL, method = "z_normal",
    ICType = "Spearman")
```

16 backtest.getReturns

Arguments

factor Factor matrix as returned by LQuant Data Broker

frtn Forward Return matrix, can be different frequency as the factor

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor

method neutralize method, by default is the z normal

ICType By default use Spearman IC

Examples

factor <-wq. getdata(wq.newRequest() \$runFor('i:006066.01') \$from('2014-01-21') \$to('2015-08-21') \$a('Cifrtn <-wq. getdata(wq.newRequest() \$runFor('i:006066.01') \$from('2014-01-21') \$to('2015-08-21') \$a('Im') \$a('RTN rankIC <-backtest. getRankIC(factor, lag(frtn, -1));

backtest.getReturns getReturns

Description

Computes Returns for a factor

Usage

```
backtest.getReturns(factor, frtn, qnum = 5, classMatrix = NULL,
  outputFreq = NULL, periodEnd = TRUE, skip = 0, cap = NULL)
```

Arguments

factor Factor Matrix usually returned by LQuant

frtn Next period return, can be different frequency as the factor

qnum Number of Baskets (default 5)

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor

outputFreq Output frequency, can be 'A', 'Q', 'M', 'W', 'D' stands for annual, quarterly,

monthly, weekly and daily. If outputFreq = NULL output same frequency as

factor and rebalance frequency is the factor frequency

periodEnd If to start at period end (week end, month end, quarter end, year end), if perio-

dEnd =FALSE, means start at the first period of the factor

skip Number of periods to skip after the period specified by the periodEnd

cap Market cap weight, if cap = NULL, is equally weighted long/short quantile

backtest.getSC 17

backtest.getSC getSC

Description

Computes Serial Correlation of the Factor

Usage

```
backtest.getSC(factor)
```

Arguments

factor Factor Matrix, usually returned by LQuant

backtest.getStats getStats

Description

Computes timeseries statistics

Usage

backtest.getStats(series)

Arguments

series Input the time series to calculate the stats

backtest.getTurnover getTurnover

Description

Computes turnover of a factor based on the number of bins

Usage

```
backtest.getTurnover(factor, qnum = 5, classMatrix = NULL)
```

Arguments

factor Factor Matrix

qnum Number of Bins for Long/Short basket

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor

18 backtest.rtnFromWealth

backtest.getVol

getVol

Description

Computes volatility of a return time series

Usage

```
backtest.getVol(rtn)
```

Arguments

rtn

Input the return time serious or the matrix each row is a return time series, can be different frequency

backtest.getWealth

getWealth

Description

Computes wealth curve from monthly return timeseries

Usage

```
backtest.getWealth(rtn)
```

Arguments

rtn

Input the return time serious or the matrix each row is a return time series

backtest.rtnFromWealth

rtnFromWealth

Description

Computes monthly returns from Wealth Curve

Usage

```
backtest.rtnFromWealth(wealth)
```

Arguments

wealth

Time series of wealth curve or the matrix each row is a wealth time series

 $backtest.turnover From Holding \\ \textit{turnover}$

Description

Computes turnover from Holdings

Usage

backtest.turnover From Holding (holdings)

Arguments

holidings Input holdings, in matrix format

 $basic.backFill \qquad backFill$

Description

Performs backfill on the factor matrix.

Usage

basic.backFill(x)

Arguments

x Factor Matrix

basic.calculateBeta CalculateBeta

Description

Calculates Beta of a return series

Usage

```
basic.calculateBeta(returns, idx, mkt = NULL, classMatrix = NULL,
  outputFreq = "M", windowSize = 12, k = 5, universe = TRUE)
```

20 basic.getFreq

Arguments

returns returns time series

idx T/F matrix same size as returns, indicating if it's in the universe mkt market return, if =NULL use average return of the universe

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor, if NULL means for the entire universe

outputFreq output frequency

windowSize window size to calculate beta

k how many standard devation to remove for the outliersuniverse Boolean Flag, calculate beta for only the universe

basic.frequencyConvert

frequencyConvert

Description

Convert the dates to the specified output frequency

Usage

```
basic.frequencyConvert(factorDates, outputFreq = "M", periodEnd = TRUE,
    skip = 0)
```

Arguments

factorDates dates vector, 'yyyy-mm-dd' format

outputFreq can be 'A' annual, 'Q' quarterly, 'M' monthly, 'W' weekly and 'D' daily

periodEnd If to start at period end (week end, month end, quarter end, year end), if perio-

dEnd =FALSE, means start at the first period of the factor

skip Number of periods to skip after the period specified by the periodEnd

basic.getFreq getFreq

Description

Estimates Frequency of the time series data based on the dates. Output list of two elements: period, how many period per year for this frequency; freq, frequency of: 'A' annual, 'Q' quarterly, 'M' monthly, 'W' weekly and 'D' daily

Usage

basic.getFreq(inputDates)

Arguments

inputDate date array, 'yyyy-mm-dd' format

basic.neutralizeFactor 21

basic.neutralizeFactor

Neutralize Factor

Description

Neutralizes factor matrix

Usage

```
basic.neutralizeFactor(factor, method = c("mean", "median", "z_score",
   "z_normal", "percentile", "ranking"), classMatrix = NULL,
   winsorizeRatio = NULL)
```

Arguments

factor Factor matrix to winsorize

method Neutralize method

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor, if NULL means for the entire universe

basic.quantileMatrix quantileMatrix

Description

Computes quantile matrix, return same size matrix as factor, with integers 1 to quum indicating the quantile cross-sectionally each period

Usage

```
basic.quantileMatrix(factor, qnum = 5, classMatrix = NULL)
```

Arguments

factor Factor Matrix

qnum Number of Bins default 5

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor, if NULL means for the entire universe

22 basic.regressFactors

```
basic.quantileMatrixZero
```

quantileMatrixZero

Description

Computes Quantile Matrix, return same size matrix as factor, with integers 1 to quum indicating the quantile cross-sectionally each period, all the 0 value will be the first quantile

Usage

```
basic.quantileMatrixZero(factor, qnum = 5, classMatrix = NULL)
```

Arguments

factor Factor Matrix

qnum Number of Bins default 5

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor, if NULL means for the entire universe

basic.regressFactors Regress Factors

Description

Performs multi-variate regression on Y vectors vs xList feature matrix, return the list of the residuals, coeffcients, and tstats when regress y against the factors in xList, for each point in time cross-sectionally

Usage

```
basic.regressFactors(y, xList, method = NULL, classMatrix = NULL,
   stepwise = FALSE, regMethod = "ols")
```

Arguments

у	Dependent variable	e observations, store	d as matrix
---	--------------------	-----------------------	-------------

xList Independent Variable observations, stored as the list of matrices

method Neutralization method

classMatrix Neutralize by categorical factor such as sector/country with the same size matrix

as factor, if NULL means for the entire universe

stepwise Boolean Flag, if to use stepwise regression

regMethod regMethod can be 'ols', 'gls', 'rlm' or 'lad', by default use 'ols'

basic.regressFactorsFast

basic.regressFactorsFast

regressFactorsFact

Description

Fast regression

Usage

```
basic.regressFactorsFast(y, x, method = NULL, classMatrix = NULL)
```

Arguments

y dependent variable observations

x matrix of independent variables observations

classMatrix

Value

Regression coefficients

```
basic.removeOutliers removeOutliers
```

Description

Removes outlier for a data frame

Usage

```
basic.removeOutliers(inputData, k = 3, setNA = TRUE, logScale = FALSE)
```

Arguments

inputData vector or matrix

k how many standard devation to remove

setNA Boolean Flag, set NA for the outliers if TRUE, otherwise set the value at bound-

ary

logScale Boolean Flag, log scale the factor (such as market cap)

24 calculateGrowthRate

```
basic.timeSeriesNorm timeSeriesNorm
```

Description

Computes time series norm

Usage

```
basic.timeSeriesNorm(series, windowSize = 12, expending = TRUE)
```

Arguments

series time series to normalize windowSize normalize window size

BollingerBands

Bollinger Bands

Description

Bollinger Bands

Usage

```
BollingerBands(pricedata, n = 14)
```

Arguments

pricedata typically input closeprice

n window for the Bollinger Bands

Examples

```
BollingerBands(pricedata,28);
```

 ${\tt calculateGrowthRate} \qquad \textit{Growth Rate}$

Description

Growth Rate

Usage

calculateGrowthRate(factorList)

Arguments

factorList

calculateMA 25

calculateMA

Calculate Moving Average

Description

Calculate Moving Average

Usage

```
calculateMA(factor_mat, windowSize = 60, minSize = windowSize * 0.75,
numCores = 8)
```

Arguments

 ${\tt numCores}$

calculateTrend

Calculate Trend

Description

Calculate Trend

Usage

```
calculateTrend(factor_mat, windowSize = 12)
```

Arguments

windowSize

CCI

Commodity Channel Index

Description

Commodity Channel Index

Usage

```
CCI(closeprice, lowprice, highprice, n = 20)
```

Arguments

n

26 CO

CloseLocation Close Location Value

Description

Close Location Value

Usage

CloseLocation(closeprice, highprice, lowprice)

Arguments

lowprice

CMF

Chaikin Money Flow

Description

Chaikin Money Flow

Usage

```
CMF(closeprice, highprice, lowprice, cashvol, clv, n = 20)
```

Arguments

cashvol cash volume
clv Close Location Value, if not provided will compute from price
n

СО

Chaikin Oscillator

Description

Chaikin Oscillator

Usage

```
CO(closeprice, highprice, lowprice, cashvol, clv, n = 20, n2 = 10, n3 = 3)
```

Arguments

cashvol	cash volume
clv	Close Location Value, if not provided will compute from price
n	long window
n2	short window
n3	average window

concentration_ratio 27

concentration_ratio

Concentration Ratio

Description

Concentration Ratio

Usage

```
concentration_ratio(Port_Weights, Covariance_list)
```

Arguments

Covariance_list

cvar0pt

Title

Description

Title

Usage

```
cvarOpt(rmat, alpha = 0.05, rmin = 0, wmin = 0, wmax = 1,
  weight.sum = 1)
```

Arguments

weight.sum

 ${\tt diversification_ratio} \ \ {\it Diversification} \ {\it Ratio}$

Description

Diversification Ratio

Usage

```
diversification_ratio(Port_Weights, Covariance_list)
```

Arguments

Covariance_list

28 EMV

DP0

Detrended Price Oscillator

Description

Detrended Price Oscillator

Usage

```
DPO(pricedata, n = 20)
```

Arguments

n

EMA

EMA

Description

EMA

Usage

```
EMA(values, n = 3, wilder = F)
```

Arguments

wilder

 EMV

Ease of Movement

Description

Ease of Movement

Usage

```
EMV(highprice, lowprice, cashvol, n = 14)
```

Arguments

cashvol

cash volume

n

EventStudyPlots 29

EventStudyPlots EventStudyPlots

Description

EventStudyPlots

Usage

```
EventStudyPlots(eventDts, returns, benchmark_index = NULL,
  benchmark_weights = NULL, period = 21, plot_title = "Event study",
  begingAtT0 = FALSE, method = "mean")
```

Arguments

method

FI Force Index

Description

Force Index

Usage

```
FI(closeprice, cashvol, n = 14)
```

Arguments

cashvol

cash volume

n

forwardReturn

Computes Forward Return using the price and dividend time series

Description

Computes Forward Return using the price and dividend time series

Usage

```
forwardReturn(price, div, period)
```

Arguments

price	Matrix of adjusted price series
div	Cumulative adjusted dividend series

period Period over which forward return is desired

Examples

```
\label{eq:price-matrix} $$ price=matrix(c(100,101,50,51),nrow=2,byrow = TRUE) $$ div=matrix(c(10,11,3,3),nrow=2,byrow = TRUE) $$ forwardReturn(price,div,1) $$
```

lqtool.leap.run

Runs Leap Model

Description

Runs Leap Model

Usage

```
lqtool.leap.run(directory, region, modeldir, lag_I, endDate, outdir,
  outdir2 = NA)
```

Arguments

directory Source director of the factor data

region Region (e.g., AXJ, JP)

modeldir LEAP Model Parameters are stored

lag_I Lag (e.g., 1)

endDate Date for which to run LEAP model
outdir Output directory where to store leap

lqtool.output.identifiers

List of identifiers that should be appended to the output file

Description

List of identifiers that should be appended to the output file

Usage

```
lqtool.output.identifiers(includeCusip)
```

Arguments

includeCusip

lqtool.process.corefiles 31

```
lqtool.process.corefiles
```

Returns list of core file prefixes

Description

Returns list of core file prefixes

Usage

```
lqtool.process.corefiles()
```

```
lqtool.process.countriesDone
```

Check if all countries are done for a date

Description

Check if all countries are done for a date

Usage

```
lqtool.process.countriesDone(directory, countries, endDate)
```

Arguments

endDate

```
{\it lqtool.process.createRegionFactorData} \\ {\it Combines\ country\ level\ data\ and}
```

Description

Combines country level data and

Usage

```
lqtool.process.createRegionFactorData(directory, region, endDate)
```

Arguments

endDate

lqtool.process.download

Downloads Standard Factor Data

Description

Downloads Standard Factor Data

Usage

```
lqtool.process.download(directory, country, batchSize = 5, threads = 10)
```

Arguments

directory where to download country which country

batchSize Batch size for download default 5

threads Number of thread

Examples

```
lqtool.process.download('/mnt/ebs1/data/d1','India',5,10)
```

lqtool.process.download.fn

Download Function

Description

Download Function

Usage

```
lqtool.process.download.fn(startDate1, endDate, freq, batchSize = 5,
    threads = 10, useNew = T)
```

Arguments

useNew

lqtool.process.excludefactors

List of factors to be excluded

Description

List of factors to be excluded

Usage

```
lqtool.process.excludefactors()
```

Iqtool.process.filename 33

```
lqtool.process.filename
```

Returns file name for the argument File names are standardized

Description

Returns file name for the argument File names are standardized

Usage

```
lqtool.process.filename(directory, prefix, country, endDate)
```

Arguments

directory Base Directory prefix File Prefix

country Country or Region

endDate Date

lqtool.process.filterfactors

Filters out the list of factors

Description

Filters out the list of factors

Usage

```
lqtool.process.filterfactors(data, exclude)
```

Arguments

data LQuant Data Matrix

exclude List of factors to be excluded

lqtool.process.hour Return current hour based on the time zone

Description

Return current hour based on the time zone

Usage

```
lqtool.process.hour(tz)
```

Arguments

tz Time zone (e.g., America/New_York)

34 lqtool.process.merge

```
{\tt lqtool.process.loadCountryFactors} \\ {\tt \it Loads}
```

Description

Loads

Usage

lqtool.process.loadCountryFactors(directory, country, endDate)

Arguments

endDate

lqtool.process.mask

Masks the data based on the binary flag

Description

Masks the data based on the binary flag

Usage

lqtool.process.mask(data, mask)

Arguments

data

LQuant Data Matrix

mask

Mask (i.e., Boolean variable)

lqtool.process.merge Merge a list of matrices into a single matrix

Description

Merge a list of matrices into a single matrix

Usage

lqtool.process.merge(listData)

Arguments

listData

```
lqtool.process.monthsBack
```

Returns months back

Description

Returns months back

Usage

```
lqtool.process.monthsBack(date, n)
```

Arguments

n

```
lqtool.process.neutralizeRegionData
```

Neutralizes Regional Factor Data

Description

Neutralizes Regional Factor Data

Usage

```
lqtool.process.neutralizeRegionData(directory, region, endDate)
```

Arguments

endDate

```
lqtool.process.regionDone
```

Checks if the region download is complete

Description

Checks if the region download is complete

Usage

```
lqtool.process.regionDone(directory, region, endDate)
```

Arguments

endDate

 ${\tt lqtool.process.regionLoadAndNormalize}$

Loads the regional data and writes the normalized z score to CSV Only last record of the file is outputted to CSV

Description

Loads the regional data and writes the normalized z score to CSV Only last record of the file is outputted to CSV

Usage

lqtool.process.regionLoadAndNormalize(source, dest, region, date)

Arguments

source Where raw factors are store

dest Location where they should be written

region Name of the region date Date of the file

lqtool.process.regionNormalize

Normalize and stores the data in output location

Description

Normalize and stores the data in output location

Usage

lqtool.process.regionNormalize(factor_data, basic_factor, dest, region)

Arguments

dest Location where normalized score to store

region Region name

lqtool.process.zscore 37

lqtool.process.zscore Computes normalized z score based on the partition matrix

Description

Computes normalized z score based on the partition matrix

Usage

```
lqtool.process.zscore(data, partitionMatrix)
```

Arguments

```
data LQuant matrix partitionMatrix Partition matrix
```

lqtool.writeRegionFactor

Generates and writes file to the output location

Description

Generates and writes file to the output location

Usage

```
lqtool.writeRegionFactor(dest, c_date, region, IN, factor_data, basic_factor, includeCusip)
```

Arguments

 $\begin{array}{lll} \text{dest} & \text{Destination directory} \\ \text{c_date} & \text{Date of the factor} \\ \text{region} & \text{Region Name} \\ \text{IN} & \text{Masking Flag} \end{array}$

includeCusip Flag indicating whether cusip should be included in the file

38 Itool.allnull

ltool.addFootNote

Adds Foot Note to View Port

Description

Adds Foot Note to View Port

Usage

ltool.addFootNote()

ltool.allnull

Checks if All values in a row is null

Description

Checks if All values in a row is null

Usage

```
ltool.allnull(data, row)
```

Arguments

data data matrix

row row to perform check on

Value

TRUE if all values in the row is null

```
ltool.allnull(matrix(c(NA,NA,1,NA),nrow = 2),2)
```

Itool.as.data.frame

Description

Converts list of factors to data frame

Usage

```
ltool.as.data.frame(data)
```

Arguments

data

Examples

```
m<-matrix(c(1,2,3,4),nrow=2)
rownames(m)<-c('006066.01','001234.01')
colnames(m)<-c('2017-01-31','2017-02-28')
m2<-matrix(c(1,2,3,4),nrow=2)
rownames(m2)<-c('006066.01','001234.01')
colnames(m2)<-c('2017-01-31','2017-02-28')
ltool.as.data.frame(list(SCORE1=m,SCORE2=m2))</pre>
```

```
{\tt ltool.codahale.profile.read}
```

Reads files from Codahale Directory

Description

Reads files from Codahale Directory

Usage

```
ltool.codahale.profile.read(path, pattern)
```

Arguments

path Path to Codahale director
pattern Pattern of file to read

Value

Profile Matrix

ltool.codahale.profile.trimlabel

Gets label from Codahale Generated File

Description

Gets label from Codahale Generated File

Usage

```
ltool.codahale.profile.trimlabel(1)
```

Arguments

Name of the file

ltool.codahale.profiler.plot

Plots the profiler matrix

Description

Plots the profiler matrix

Usage

Arguments

path Codahale directory

pattern Types of file

metric Metric to plot [AVG,TOTAL,COUNT]

[Starting Index, default 1]

12 [Starting Index, default length(list)]

Value

GGPlot object

ltool.codahale.profiler.summ

Summarized Codahale profile matrix

Description

Summarized Codahale profile matrix

Usage

```
ltool.codahale.profiler.summ(path, pattern, metric)
```

Arguments

path Path to Codahale Directory

pattern Pattern

metric One of these [AVG,TOTAL,COUNT]

Value

Codahale profile matrix

ltool.codahale.summary

Metric Summary from CSV

Description

Metric Summary from CSV

Usage

```
ltool.codahale.summary(d, metric)
```

Arguments

metric

ltool.createReport Creates a multi page report based on the title and data queries

THE FUNCTION RELIES ON conn OBJECT to be defined in the ses-

sion </*b*>

Description

Creates a multi page report based on the title and data queries THE FUNCTION RELIES ON conn OBJECT to be defined in the session

Usage

```
ltool.createReport(title, f_query, qsum, q, cols, maxRowsPerPage)
```

Arguments

title Text title of the report (Will be printed on each page)

f_query Query Executor Function

qsum SQL Query for getting the summary data q SQL Query for getting the char data

cols Number of Horizontally stacked charts on a page

maxRowsPerPage Number of Vertical charts on a page

Value

Prints to the current active device

ltool.datacheck.createReport

Creates a PDF file from 2 Factor data file

Description

Creates a PDF file from 2 Factor data file

Usage

```
ltool.datacheck.createReport(file1, file2, pdfile)
```

Arguments

pdfile

ltool.datacheck.detplot

Makes the multi page detailed plot of the difference matrix

Description

Makes the multi page detailed plot of the difference matrix

Usage

```
ltool.datacheck.detplot(title, diffmatrix, rowRange)
```

Arguments

title Title to be printed on each page

diffmatrix Difference Matrix

rowRange Range of the matrix

Value

Prints on the open printing device

ltool.datacheck.overview

Draw overview chart

Description

Draw overview chart

Usage

ltool.datacheck.overview(diff)

Arguments

diff Diff list

ltool.datacheck.report

Create data check reports

Description

Create data check reports

Usage

```
ltool.datacheck.report(diffmatrix)
```

Arguments

diffmatrix difference matrix

ltool.datacheck.summplot

Creates multi page summary plot

Description

Creates multi page summary plot

Usage

```
ltool.datacheck.summplot(title, diffmatrix, name, rowwise)
```

Arguments

title Title to be printed on each page

diffmatrix Difference Matrix

name Name of the row or column

rowwise Boolean Flag, when set to TRUE

```
m1<-matrix(c(0.1,0.2,0.3,0.4),nrow = 2)
colnames(m1)<-c('A','B')
rownames(m1)<-c('X','Y')
ltool.datacheck.summplot('Test',m1,'T1',TRUE)</pre>
```

Itool.diffmat 45

ltool.diffmat

Computes Difference Matrix between 2 LQuant Matrices

Description

Computes Difference Matrix between 2 LQuant Matrices

Usage

```
ltool.diffmat(dat1, dat2, epsilon)
```

Arguments

dat1 List of matrices from source 1 (IxNxM)
dat2 List of matrices from source 2 (IxNxM)

epsilon Epsilon

Value

Returns matrix of (IXM)

Examples

```
ltool.diffmat(dat1,dat2,1e-5)
```

ltool.firstNonNullIndex

First Non Null Index Return the first row for which the data matrix has at least one non null value

Description

First Non Null Index Return the first row for which the data matrix has at least one non null value

Usage

```
ltool.firstNonNullIndex(data)
```

Arguments

data

data matrix

Value

Row Index when the first non null value is encountered. If all values are null, -1 is returned

```
ltool.firstNonNullIndex(t(matrix(c(NA,NA,1,NA),nrow = 2)))
```

46 Itool.heatmap

ltool.footNoteGP

Foot Note Graphic Parameter Hard Coded Font and Color that should be used in Reports Foot Note

Description

Foot Note Graphic Parameter Hard Coded Font and Color that should be used in Reports Foot Note

Usage

```
ltool.footNoteGP()
```

Value

Returns GP object

Examples

ltool.footNoteGP()

ltool.heatmap

Creates heat map from a matrix

Description

Creates heat map from a matrix

Usage

```
ltool.heatmap(diffmatrix, rowRange = NULL, colRange = NULL)
```

Arguments

diffmatrix Numeric Matrix

rowRange Row Range to be subsetted colRange Col Range to be subsetted

Value

GGPlot object

```
m<-matrix(c(0.0,0.1,0.2,0.3),nrow=2)
rownames(m)<-c('A','B')
colnames(m)<-c('A','B')
ltool.heatmap(m)</pre>
```

Itool.id.charToInt 47

ltool.id.charToInt

Convert character string id to integer

Description

Convert character string id to integer

Usage

```
ltool.id.charToInt(x)
```

Arguments

Х

QES interal ID

Examples

```
ltool.id.charToInt('006066.01C')
```

ltool.id.decrypt

Decrpts and previously encrypted id.

Description

Decrpts and previously encrypted id.

Usage

```
ltool.id.decrypt(ids)
```

Arguments

ids

```
ltool.id.decrypt(c("04MGLED3K4" "5400NQ2G0Z"))
```

48 ltool.id.intToChar

ltool.id.encrypt

Encrypts an id string

Description

Encrypts an id string

Usage

```
ltool.id.encrypt(ids)
```

Arguments

ids

list/vector of ids

ltool.id.hasher

Returns id hasher

Description

Returns id hasher

Usage

ltool.id.hasher()

Examples

ltool.id.hasher()

ltool.id.intToChar

Convert int Id back to String id

Description

Convert int Id back to String id

Usage

```
ltool.id.intToChar(x)
```

Arguments

Χ

integer id

Examples

ltool.id.intToChar(60660122)

ltool.plotbar 49

ltool.plotbar

Plots a bar chart from a named vector or list

Description

Plots a bar chart from a named vector or list

Usage

```
ltool.plotbar(data, x, y, title)
```

Arguments

data	vector or	lict
data	vector or	HSL

x Name of the Data Itemy Name of the Data Valuetitle Title to Add to Chart

ltool.plotfactors

Plot Factors and return GGPlot object

Description

Plot Factors and return GGPlot object

Usage

ltool.plotfactors(req)

Arguments

req

LQuant request object

Value

GGPlot object

50 Itool.plotgridpage

ltool.plotgrid Pl	ots a data frame to a n	nulti-page grid
-------------------	-------------------------	-----------------

Description

Plots a data frame to a multi-page grid

Usage

```
ltool.plotgrid(title, n, plotfn, cols, maxRowsPerPage)
```

Arguments

title Title text to be used. Will be printed on each report

cols Number of horizontally stacked charts

maxRowsPerPage Maximum number of vertically stacked charts

summdata Data Frame, First row is considered to be the x-axis for all charts

Examples

```
d<-data.frame(x=c(1,2,3,4),y1=c(1,2,3,4),y2=c(1,4,9,16),y3=c(1,8,27,64)) ltool.plotgrid('This is a test',d,2,1)
```

ltool.plotgridpage

Creates charts from data frame. The charts are plotted on a multi-page report. Number of charts on a page can be controlled by paramters cols

Description

Creates charts from data frame. The charts are plotted on a multi-page report. Number of charts on a page can be controlled by paramters cols

Usage

```
ltool.plotgridpage(title, n, plotfn, cols, offset, rows, margin)
```

Arguments

title	Text title to be printed on each page
cols	Number of horizontally stacked charts in a page

offset First column to plot rows Number of rows margin Margin matrix

summdata Data Frame whose column to be plotted

```
d<-data.frame(x=c(1,2,3,4),y1=c(1,2,3,4),y2=c(1,4,9,16),y3=c(1,8,27,64)) ltool.plotgridpage('This is a test',d,2,0,2,c(0.02,0.02,0.1,0.02))
```

Itool.plotmargin 51

ltool.plotmargin Return default plot margin

Description

Return default plot margin

Usage

ltool.plotmargin()

ltool.printSummary

Prints the Summary page of report

Description

Prints the Summary page of report

Usage

ltool.printSummary(title, data)

Arguments

title Text title to be printed on top

data Data to be printed

Examples

```
ltool.printSummary('This is a test',data.frame(Item=c('A','B','C'),Value=c(1,10,100)))
```

ltool.randomforest.getScoreRF

Compute Random Forest Prediction

Description

Compute Random Forest Prediction

Usage

```
ltool.randomforest.getScoreRF(factor_data, current_Date, classifier)
```

Arguments

factor_data List of matrices containing features current_Date Date for which prediction to be done

classifier Classified object returned by ltool.randomForest.learRF

Examples

```
trainingPeriod<-c('2014-12-31','2015-12-31')
model_RF<-ltool.randomforest.learnRF(FMRTN1M,factor_data,trainingPeriod)
testDate<-"2016-12-31"
score_RF<-ltool.randomforest.getScoreRF(factor_data,testDate,model_RF)</pre>
```

ltool.randomforest.learnRF

Runs Random Forest Algorithm

Description

Runs Random Forest Algorithm

Usage

```
ltool.randomforest.learnRF(FMRTN1M, factor_data, trainingPeriod, thresh = 0.5,
    m_nodes = 10, binary = FALSE, minCoverage = 0.6)
```

Arguments

FMRTN1M Forward Return as Label
factor_data List of Data Matrices containing the features
trainingPeriod Training Window Period as Dates

minCoverage

Examples

```
trainingPeriod<-c('2014-12-31','2015-12-31')
model_RF<-ltool.randomforest.learnRF(FMRTN1M,factor_data,trainingPeriod)</pre>
```

ltool.regression.getScoreLinear

Forecasts dependent variable (see ltool.regression.getScoreLinear)

Description

Forecasts dependent variable (see ltool.regression.getScoreLinear)

Usage

```
ltool.regression.getScoreLinear(factor_data, current_Date, coeffs)
```

Arguments

factor_data List of matrices containing features current_Date Date for which forecast to be made

coeffs Coefficient object returned by call to ltool.regression.linearCoeffs

Examples

```
trainingPeriod<-c('2014-12-31','2015-12-31')
coeffs<-ltool.regression.linearCoeffs(FMRTN1M,factor_data,trainingPeriod)
testDate<-"2016-12-31"
score_Linear<-ltool.regression.getScoreLinear(factor_data,testDate,coeffs)</pre>
```

ltool.regression.linearCoeffs

Runs regression on the matrices

Description

Runs regression on the matrices

Usage

```
ltool.regression.linearCoeffs(FMRTN1M, factor_data, trainingPeriod,
    minCoverage = 0.6, regMethod = "ols", stepwise = TRUE)
```

Arguments

FMRTN1M Forward return as the dependent variable factor_data List of matrices containing features trainingPeriod training period as list of 2 dates stepwise

Examples

```
trainingPeriod<-c('2014-12-31','2015-12-31')
coeffs<-ltool.regression.linearCoeffs(FMRTN1M,factor_data,trainingPeriod)</pre>
```

ltool.sendEmail

Sends emails

Description

Sends emails

Usage

```
ltool.sendEmail(subject, message)
```

Arguments

message

54 Itool.trim

ltool.titleGP	Title Graphic Parameter Hard Coded Font and Color for title of re-
	ports

Description

Title Graphic Parameter Hard Coded Font and Color for title of reports

Usage

```
ltool.titleGP()
```

ltool.to.df

Converts matrix to data frame

Description

Converts matrix to data frame

Usage

```
ltool.to.df(mat, factor)
```

Arguments

mat Matrix containing securities and date

factor Name of the factor

Examples

```
m<-matrix(c(1,2,3,4),nrow=2)
rownames(m)<-c('006066.01','001234.01')
colnames(m)<-c('2017-01-31','2017-02-28')
ltool.to.df(m,'SCORE')</pre>
```

ltool.trim

Trim Matrix The function returns a trimmed matrix. All preceeding null values are truncated.

Description

Trim Matrix The function returns a trimmed matrix. All preceeding null values are truncated.

Usage

```
ltool.trim(data)
```

MACD 55

Arguments

data

data matrix to be trimmed

Value

trimmed matrix

Examples

```
ltool.trim(t(matrix(c(NA,NA,1,NA),nrow = 2)))
```

MACD

Moving Averages Convering Diverging

Description

Moving Averages Convering Diverging

Usage

```
MACD(price, long = 26, short = 12, M = 9)
```

Arguments

long long window short short window

M moving average window

MFI

Money Flow Index

Description

Money Flow Index

Usage

```
MFI(closeprice, highprice, lowprice, cashvol, n = 14)
```

Arguments

n

56 NVI

ΜI

Mass Index

Description

Mass Index

Usage

```
MI(highprice, lowprice, long = 25, short = 9)
```

Arguments

short

multiplot

Multiple plot function

Description

If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in the upper left, 2 will go in the upper right, and 3 will go all the way across the bottom.

Usage

```
multiplot(..., plotlist = NULL, file, cols = 1, layout = NULL)
```

Arguments

... ggplot objectsplotlist list of ggplot objectsfile name of the file to draw the plot

cols Number of columns in layout

layout A matrix specifying the layout. If present, 'cols' is ignored.

NVI

Negative Volume Index

Description

Negative Volume Index

Usage

```
NVI(closeprice, cashvol, n = 14)
```

Arguments

cashvol cash volume

n

OBV 57

OBV On Balance Volume

Description

On Balance Volume

Usage

```
OBV(closeprice, cashvol, n = 14)
```

Arguments

cashvol cash volume

n

PER Alpha Risk Parity

Description

Alpha Risk Parity

Usage

```
PER(Sigma, maxwgt = 1, par = NULL, alpha = NULL, percentage = TRUE, ...)
```

Arguments

Sigma covariance matrix

maxwgt maximum weight

par initial portfolio weight

alpha input alpha score

percentage output percentage

...

Value

portfolio weight for the alpha risk parity

58 plot.backtest.barline

PGMV

mean variance

Description

mean variance

Usage

```
PGMV(Returns = NULL, Sigma = NULL, maxwgt = 1, minwgt = 0,
    alpha = NULL, lambda = 1, percentage = TRUE, ...)
```

Arguments

. . .

plot.backtest.bar

Bar chart input from LBacktester: CAGR, Vol, IR

Description

Bar chart input from LBacktester: CAGR, Vol, IR

Usage

```
plot.backtest.bar(vector_quantile, yLabel, isPercent = TRUE, title = "")
```

Arguments

title

Examples

```
plot.backtest.bar(outBacktest$CAGR,"Average Annual Return (%)",isPercent=TRUE)
```

```
plot.backtest.barline 3. Bar charts with line overlay input from LBacktester: ICs, Coverage, SCs, turnover
```

Description

3. Bar charts with line overlay input from LBacktester: ICs, Coverage, SCs, turnover

Usage

```
plot.backtest.barline(vector_ts, yLabel, isPercent = TRUE, stats = TRUE,
    period = 12, title = "", summaryReturns = NULL)
```

plot.backtest.barsimple 59

Arguments

```
summaryReturns
```

Examples

```
plot.backtest.barline(outBacktest$ICs,"Rank IC (%)",isPercent = TRUE,stats=TRUE)
```

```
plot.backtest.barsimple
```

1.b Simple bar chart input from LBacktester: ICDecay, hitRate

Description

1.b Simple bar chart input from LBacktester: ICDecay, hitRate

Usage

```
plot.backtest.barsimple(vector_monthly, yLabel, isPercent = TRUE,
    title = "")
```

Arguments

title

```
plot.backtest.Basic Basic Backtest
```

Description

Basic Backtest

Usage

```
plot.backtest.Basic(list_BacktestBasic, mat_factor, universeName,
  factorName = "", baskets, factorCode = "")
```

Arguments

factorCode

plot.backtest.density 5.a Plot raw factor score density input from LBacktester: Factor score matrix

Description

5.a Plot raw factor score density input from LBacktester: Factor score matrix

Usage

```
plot.backtest.density(matrix_ts, yLabel, title = "")
```

Arguments

title

Examples

```
plot.backtest.density(1/rawData$pe,"Factor score")
```

```
plot.backtest.density3D
```

5.a Plot raw factor score density input from LBacktester: Factor score matrix

Description

5.a Plot raw factor score density input from LBacktester: Factor score matrix

Usage

```
plot.backtest.density3D(matrix_ts, yLabel, title = "Factor density", round_decimal = 1, expand1 = 0.3, theta1 = 140, phi1 = 40, trim_outliers = c(0.1, 0.9))
```

Arguments

```
trim_outliers
```

```
plot.backtest.density(1/rawData$pe,"Factor score")
```

plot.backtest.distribution

```
plot.backtest.distribution
```

5.a Plot raw factor score density input from LBacktester: Factor score matrix

Description

5.a Plot raw factor score density input from LBacktester: Factor score matrix

Usage

```
plot.backtest.distribution(matrix_ts, yLabel, title = "", baskets)
```

Arguments

baskets

Examples

```
plot.backtest.density(1/rawData$pe,"Factor score")
```

```
plot.backtest.seasonality
```

4. Seasonality chart (only if backtesting frequency=monthly) input from LBacktester: ICs, LSreturns

Description

4. Seasonality chart (only if backtesting frequency=monthly) input from LBacktester: ICs, LSreturns

Usage

```
plot.backtest.seasonality(vector_ts, yLabel, isPercent = TRUE, title = "")
```

Arguments

title

```
plot.backtest.seasonality(outBacktest$ICs,"Rank IC (%)",isPercent = TRUE)
```

62 PMO

```
plot.backtest.wealth 2.a Line charts input from LBacktester: wealth
```

Description

2.a Line charts input from LBacktester: wealth

Usage

```
plot.backtest.wealth(matrix_quantile_wealth, yLabel, title = "")
```

Arguments

title

Examples

```
plot.backtest.wealth(outBacktest$wealth,"Cumulative Performance")
```

PMD

max diversification

Description

max diversificaiton

Usage

```
PMD(Returns = NULL, Sigma = NULL, maxwgt = 1, minwgt = 0,
    percentage = TRUE, ...)
```

Arguments

. . .

PMO

DecisionPoint Price Momentum Oscillator

Description

DecisionPoint Price Momentum Oscillator

Usage

```
PMO(pricedata, slow = 26, fast = 12, M = 9)
```

Arguments

slow slow window (long)
fast fast window (short)
M moving average window

PMTD 63

	PMTD	Tail dependence	
--	------	-----------------	--

Description

Tail dependence

Usage

```
PMTD(Returns, Sigma = NULL, maxwgt = 1, alpha = NULL, method = "EmpTC", k = NULL, percentage = TRUE, ...)
```

Arguments

Returns	return matrix
Sigma	covariance matrix (optional)
maxwgt	maximum weight
alpha	input alpha score
method	default will use 'EmpTC'

port_CoVar Portfolio Covariance Computes covariance matrix when provided with the time series of returns of securities

Description

Portfolio Covariance Computes covariance matrix when provided with the time series of returns of securities

Usage

```
port_CoVar(mat_returns, isrolling = TRUE, window_size = 12)
```

Arguments

```
mat_returns Return matrix (N: Securities, M: Dates)
window_size Size of the window to compute the covariance statistics
```

64 RSI

PP0

percentage price oscillator

Description

percentage price oscillator

Usage

```
PPO(price, fast = 12, slow = 26, M = 9)
```

Arguments

fast fast window (short)
slow slow window (long)
M moving average window

PV0

Percentage Volume Oscillator

Description

Percentage Volume Oscillator

Usage

```
PVO(vol, fast = 12, slow = 26, M = 9)
```

Arguments

vol volume

fast fast window (short)
slow slow window (long)
M moving average window

RSI

Relative Strength Index

Description

Relative Strength Index

Usage

```
RSI(pricedata, n = 14)
```

Arguments

pricedata typically input closeprice

n window for the Bollinger Bands

SO 65

S0

Stochastic Oscillator

Description

Stochastic Oscillator

Usage

```
SO(closeprice, lowprice, highprice, n = 39)
```

Arguments

n

StochRSI

Stochastic RSI

Description

Stochastic RSI

Usage

```
StochRSI(closeprice, highprice, lowprice, n = 14)
```

Arguments

n

TRIX

TRIX

Description

TRIX

Usage

```
TRIX(price, n = 15)
```

Arguments

n

66 VI

TSI

True Strength Index

Description

True Strength Index

Usage

```
TSI(pricedata, slow = 25, fast = 13)
```

Arguments

slow slow window (long) fast fast window (short)

U0

Ultimate Oscillator

Description

Ultimate Oscillator

Usage

```
UO(closeprice, lowprice, highprice, n1 = 28, n2 = 14, n3 = 7)
```

Arguments

n1 long windown2 short window

n3 moving average window

۷I

Vortex Indicator

Description

Vortex Indicator

Usage

```
VI(closeprice, lowprice, highprice, n = 20)
```

Arguments

n

VPT 67

VPT

Volume Price Trend

Description

Volume Price Trend

Usage

```
VPT(closeprice, cashvol, n = 14)
```

Arguments

n

WillimsR

Williams percentage R

Description

Williams percentage R

Usage

```
WillimsR(closeprice, highprice, lowprice, n = 14)
```

Arguments

closeprice

n

winsorize

Winsorize

Description

Windorizes a factor matrix

Usage

```
winsorize(factor, winsorizeRatio = 0.01)
```

Arguments

factor Factor matrix to winsorize winsorizeRatio Threshold for winsorization default 0.01

68 wRank

wLag wLag

Description

Computes Lag for the factor Lag Function

Usage

```
wLag(x, k = 1)
wLag(x, k = 1)
```

Arguments

x can be a vector or a matrix, with dates as names or colnamesk Number of periods to lag it by, default = 1, if k<0, indicating future data

k

wRank wRank

Description

Computes Rank of a numerical array

Rank Function for unsorted array

Usage

```
wRank(x, ties.method = "average", na.last = "keep")
wRank(x, ties.method = "average", na.last = "keep")
```

Arguments

x vector of number including NAs
 ties.method A character string specifying how ties are treated, see 'Details'; can be abbreviated
 na.last

```
write.summary.stats.temp
```

Summary Stats

Description

Summary Stats

Usage

```
write.summary.stats.temp(list_BacktestBasic, universeName, factorName, baskets)
```

Arguments

baskets

```
write.summary.statsALL
```

Summary

Description

Summary

Usage

```
write.summary.statsALL(list_BacktestBasic, universeName, factorNames, baskets)
```

Arguments

baskets

Index

*Topic coeffiencient	basic.calculateBeta, 19
backtest.getRankIC, 15	basic.frequencyConvert, 20
*Topic information	
•	basic.getFreq, 20
backtest.getRankIC, 15	basic.neutralizeFactor, 21
*Topic rankic	basic.quantileMatrix,21
backtest.getRankIC, 15	basic.quantileMatrixZero, 22
ADI 5	basic.regressFactors, 22
ADL, 5 ADX, 5	basic.regressFactorsFast, 23
•	basic.removeOutliers, 23
AO, 5	basic.timeSeriesNorm, 24
appendForwardReturn, 6	BollingerBands, 24
ATR, 6	calculateGrowthRate, 24
awss3.def.s3.bucket.hadoop,7	
awss3.def.s3.bucket.rdata,7	calculateMA, 25
awss3.def.s3.delim,7	calculateTrend, 25
awss3.files,8	CCI, 25
awss3.getdf,8	CloseLocation, 26
awss3.getobject, 9	CMF, 26
awss3.ismeta, 9	co, 26
awss3.loadobject, 10	concentration_ratio, 27
awss3.1s, 10	cvar0pt, 27
awss3.makedf, 10	diversification ratio 27
awss3.rdata.list, 11	diversification_ratio, 27
awss3.rdata.load, 11	DPO, 28
awss3.rdata.save, 11	EMA, 28
	EMV, 28
backtest.Basic, 12	EventStudyPlots, 29
backtest.getCAGR, 12	Evented tady: 10 to, 27
backtest.getCoverage, 13	FI, 29
backtest.getDailyReturns, 13	forwardReturn, 29
backtest.getHitRate, 14	
backtest.getICDecay, 14	lqtool.leap.run, 30
backtest.getIR, 15	lqtool.output.identifiers, 30
backtest.getMaxDD, 15	lqtool.process.corefiles, 31
backtest.getRankIC, 15	<pre>lqtool.process.countriesDone, 31</pre>
backtest.getReturns, 16	<pre>lqtool.process.createRegionFactorData,</pre>
backtest.getSC, 17	31
backtest.getStats, 17	lqtool.process.download,32
backtest.getTurnover, 17	<pre>lqtool.process.download.fn, 32</pre>
backtest.getVol, 18	lqtool.process.excludefactors, 32
backtest.getWealth, 18	lqtool.process.filename, 33
backtest.rtnFromWealth, 18	lqtool.process.filterfactors, 33
backtest.turnoverFromHolding, 19	lqtool.process.hour, 33
basic.backFill, 19	lqtool.process.loadCountryFactors, 34

INDEX 71

lqtool.process.mask, 34	NVI, 56
lqtool.process.merge, 34	
lqtool.process.monthsBack, 35	OBV, 57
<pre>lqtool.process.neutralizeRegionData,</pre>	
35	PER, 57
lqtool.process.regionDone, 35	PGMV, 58
lqtool.process.regionLoadAndNormalize,	plot.backtest.bar,58
36	plot.backtest.barline,58
lqtool.process.regionNormalize, 36	plot.backtest.barsimple,59
lqtool.process.zscore, 37	plot.backtest.Basic, 59
lqtool.writeRegionFactor, 37	plot.backtest.density, 60
	plot.backtest.density3D,60
ltool.addFootNote, 38	plot.backtest.distribution, 61
ltool.allnull, 38	plot.backtest.seasonality, 61
ltool.as.data.frame, 39	plot.backtest.wealth, 62
ltool.codahale.profile.read, 39	PMD, 62
ltool.codahale.profile.trimlabel, 40	PMO, 62
ltool.codahale.profiler.plot, 40	PMTD, 63
ltool.codahale.profiler.summ, 41	port_CoVar, 63
ltool.codahale.summary,41	PPO, 64
ltool.createReport, 42	
ltool.datacheck.createReport,42	PV0, 64
ltool.datacheck.detplot,43	RSI, 64
ltool.datacheck.overview, 43	131, 04
ltool.datacheck.report,44	S0, 65
ltool.datacheck.summplot,44	StochRSI, 65
ltool.diffmat, 45	3 to clin(31, 03
ltool.firstNonNullIndex,45	TRIX, 65
ltool.footNoteGP, 46	TSI, 66
ltool.heatmap, 46	131, 30
ltool.id.charToInt, 47	U0, 66
ltool.id.decrypt, 47	22, 00
ltool.id.encrypt, 48	VI, 66
ltool.id.hasher, 48	VPT, 67
ltool.id.intToChar, 48	,
ltool.plotbar, 49	WillimsR, 67
ltool.plotfactors, 49	winsorize, 67
•	wLag, 68
ltool.plotgrid, 50	wRank, 68
ltool.plotgridpage, 50	write.summary.stats.temp, 69
ltool.plotmargin, 51	write.summary.statsALL, 69
ltool.printSummary, 51	, , , , , , , , , , , , , , , , , , , ,
ltool.randomforest.getScoreRF, 51	
ltool.randomforest.learnRF, 52	
ltool.regression.getScoreLinear, 52	
ltool.regression.linearCoeffs, 53	
ltool.sendEmail,53	
ltool.titleGP, 54	
ltool.to.df, 54	
ltool.trim,54	
MACD, 55	
MFI, 55	
MI, 56	
multiplot, 56	