Asset Management HW2

Ze Yang

November 7, 2018

1 Problem 1.

1.1 (a)

By the definition of benchmark portfolio, clearly we have $\mathbb{E}[r_B] = 0$. To compute α and tracking error, we define $\mathbf{r} = (r_1, r_2, ..., r_N)^{\top}$, $\tilde{\mathbf{r}} = (\mathbb{1}_{\{u_{11}=1\%\}}r_1, \mathbb{1}_{\{u_{21}=1\%\}}r_2, ..., \mathbb{1}_{\{u_{N1}=1\%\}}r_N)^{\top}$; $\mathbb{1}_{\{u_{i1}=1\%\}}$ is the indicator function that equals 1 if $u_{i1} = 1\%$, otherwise 0.

Since $\{u_{ij}\}$ are i.i.d., we have $\mathbb{E}\left[\mathbb{1}_{\{u_{ij}=1\%\}}r_i\right] = \mathbb{E}\left[\mathbb{1}_{\{u_{ij}=1\%\}}\left(1\% + \sum_{j=2}^M u_{ij}\right)\right] = 1\%/2$. $\mathbb{E}\left[r_i\right] = 0$. Besides, the independence of u suggests r_i are also i.i.d. across difference stock label i's. Hence \mathbb{V} ar $[r] = 0.01^2 M I$

$$\alpha = \mathbb{E}\left[\frac{2}{N}\mathbf{1}^{\top}\tilde{\boldsymbol{r}} - \frac{1}{N}\mathbf{1}^{\top}\boldsymbol{r}\right] = \frac{2}{N}\mathbf{1}^{\top}\mathbb{E}\left[\tilde{\boldsymbol{r}}\right] - \frac{1}{N}\mathbf{1}^{\top}\mathbf{0}$$

$$= \frac{2}{N}\sum_{i=1}^{N}\frac{1\%}{2} + 0 = 1\%$$
(1)

For the variance, we first compute the covariance matrix of \tilde{r} . By the independence across stocks, it's also a diagonal matrix. The second moment is

$$\mathbb{E}\left[\left(\mathbb{1}_{\{u_{ij}=1\%\}}r_{i}\right)^{2}\right] = \mathbb{E}\left[\mathbb{1}_{\{u_{ij}=1\%\}}^{2}\left(\sum_{j=1}^{M}u_{ij}\right)^{2}\right]$$

$$= \mathbb{E}\left[\mathbb{1}_{\{u_{ij}=1\%\}}^{2}\left(1\%^{2} + \sum_{j=2}^{M}u_{ij}^{2}\right)\right]$$

$$= \left(\frac{1}{2} + \frac{M-1}{2}\right)1\%^{2} = \frac{M}{2}1\%^{2}$$
(2)

Therefore, $\operatorname{Var}\left[\tilde{\boldsymbol{r}}\right] = \mathbb{E}\left[\left(\mathbb{1}_{\{u_{ij}=1\%\}}r_i\right)^2\right] - \mathbb{E}\left[\mathbb{1}_{\{u_{ij}=1\%\}}r_i\right]^2 = \frac{0.01^2(2M-1)}{4}\boldsymbol{I}.$ Moreover, $\mathbb{E}\left[\mathbb{1}_{\{u_{ij}=1\%\}}r_i^2\right] = \frac{M}{2}\cdot 1\%^2; \text{ so } \operatorname{Cov}\left[\tilde{\boldsymbol{r}},\boldsymbol{r}\right] = \frac{0.01^2M}{2}\boldsymbol{I}$

$$\operatorname{Var}\left[r - r_{B}\right] = \operatorname{Var}\left[\frac{2}{N}\mathbf{1}^{\top}\tilde{\boldsymbol{r}} - \frac{1}{N}\mathbf{1}^{\top}\boldsymbol{r}\right]$$

$$= \frac{4}{N^{2}}\mathbf{1}^{\top}\operatorname{Var}\left[\tilde{\boldsymbol{r}}\right]\mathbf{1} - 2 \times \frac{2}{N^{2}}\mathbf{1}^{\top}\operatorname{Cov}\left[\tilde{\boldsymbol{r}}, \boldsymbol{r}\right]\mathbf{1} + \frac{1}{N^{2}}\mathbf{1}^{\top}\operatorname{Var}\left[\boldsymbol{r}\right]\mathbf{1}$$

$$= \frac{4}{N}\frac{2M - 1}{4}0.01^{2} - \frac{4}{N}\frac{M}{2}0.01^{2} + \frac{1}{N}M0.01^{2}$$

$$= \frac{M - 1}{N}0.01^{2}$$
(3)

Hence $\sigma(r-r_B) = 0.01\sqrt{\frac{M-1}{N}}$. The information ratio, by definition, is

$$IR = \frac{\alpha}{\sigma(r - r_B)} = \sqrt{\frac{N}{M - 1}} \tag{4}$$

1.2 (b)

$$IC = \frac{\mathbb{C}\text{ov}\left[u_{i1}, r_i\right]}{\sigma(u_{i1})\sigma(r_i)} = \frac{0.01^2}{0.01\sqrt{0.01^2M}} = \frac{1}{\sqrt{M}}$$
 (5)

The information ratio implied by fundamental law of AM is therefore $\sqrt{N/M}$, which does not equal to IR in (a) exactly.

There are a few things that can be said about this observation.

1. The fundamental law of AM is a rule of thumb. In Grinold and Kahn's derivation, many assumptions are made to prove the law, for example, the active holdings solve the mean-variance problem; the conditional expectation of residual returns (which they call refined forecast) can be estiamted by

$$\widehat{\mathbb{E}}\left[r|g\right] = \mathbb{E}\left[r\right] + \mathbb{C}\mathrm{ov}\left[r,g\right] \cdot \mathbb{V}\mathrm{ar}^{-1}\left[g\right] \cdot \left(g - \mathbb{E}\left[g\right]\right)$$

for some signal q. These assumptions does not hold exactly for our case.

2. The information ratio derived in (1) becomes close to $\sqrt{N/M}$ when both M and N are $\gg 1$.

2 Problem 2

2.1 (a)

```
In [80]: N, M, runs = 100, 200, 20000
    sample = np.zeros((runs, 2))
    bar = ProgressBar()
    for i in bar(range(runs)):
        uu = .01*np.random.choice([-1,1],(M, N))
        u1 = uu[0,:]
        r = (2/N)*(u1>0)*(uu.sum(0))
        rb = (1/N)*(uu.sum(0))
        sample[i, :] = np.array([r.sum(), rb.sum()])

100% (20000 of 20000) |############################# Elapsed Time: 0:00:05 Time: 0:00:05

In [81]: r_active = sample[:, 0] - sample[:, 1]
        print(f'Simulated mean = {r_active.mean():.6f}, std = {r_active.std():.6f}')
        print(f'Theoretical mean = {0.01:.6f}, std = {0.01*np.sqrt((M-1)/N):.6f}')

Simulated mean = 0.009956, std = 0.014129
Theoretical mean = 0.010000, std = 0.014107
```

The simulated mean and standard deviation of $r - r_B$ are very close to the theoretical values, which comfirms the results from problem 1.

2.2 (b)

```
In [105]: N, M, runs = 100, 200, 100000
    sample = np.zeros((runs, 2))
    bar = ProgressBar()
    for i in bar(range(runs)):
        uu = .01*np.random.choice([-1,1],(M, N))
        u1 = uu[0,:]
        L = (u1>0).sum()
        weight_scale = 1/L if L>0 else 0
        r = weight_scale*(u1>0)*(uu.sum(0))
        rb = (1/N)*(uu.sum(0))
        sample[i, :] = np.array([r.sum(), rb.sum()])

100% (100000 of 100000) |############################## Elapsed Time: 0:00:29 Time: 0:00:29

In [106]: r_active = sample[:, 0] - sample[:, 1]
        print(f'Simulated mean = {r_active.mean():.6f}, std = {r_active.std():.6f}')

Simulated mean = 0.009940, std = 0.014216
```

3 Problem 3.

3.1 (a)

Let $g(\mathbf{f})$ be the objective function.

$$g(\mathbf{f}) = (\mathbf{r} - \mathbf{B}\mathbf{f})^{\top} \mathbf{\Delta}^{-1} (\mathbf{r} - \mathbf{B}\mathbf{f})$$

$$= \mathbf{r}^{\top} \mathbf{\Delta}^{-1} \mathbf{r} - 2\mathbf{f}^{\top} \mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{r} + \mathbf{f}^{\top} \mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{B}\mathbf{f}$$

$$\Rightarrow \nabla_{\mathbf{f}} g = -2\mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{r} + 2\mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{B}\mathbf{f}$$
(6)

3.2 (b)

The first order condition yields:

$$-2\mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{r} + 2\mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{B} \mathbf{f} = 0$$

$$\Rightarrow \mathbf{f} = (\mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{B})^{-1} \mathbf{B}^{\top} \mathbf{\Delta}^{-1} \mathbf{r}$$
(7)

3.3 (c)

In this case, both $\boldsymbol{b}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{b}$ and $\boldsymbol{b}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{r}$ are scalars. So does $f = \boldsymbol{b}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{r} / \boldsymbol{b}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{b}$. The return of characteristic portfolio is

$$r_p = \boldsymbol{r}^{\top} \boldsymbol{x} = \frac{1}{\boldsymbol{b}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{b}} \boldsymbol{r}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{b} = f^{\top} = f$$
 (8)

3.4 (d)

By assumption, let $\Delta = \text{diag}\{\delta_i\}$, in this case

$$\boldsymbol{x} = \frac{1}{\boldsymbol{b}^{\top} \boldsymbol{\Delta}^{-1} \boldsymbol{b}} \boldsymbol{\Delta}^{-1} \boldsymbol{b} = \frac{1}{\sum_{i=1}^{n} \delta_{i}^{-1}} \begin{pmatrix} \delta_{1}^{-1} b_{1} \\ \vdots \\ \delta_{n}^{-1} b_{n} \end{pmatrix}$$
(9)

So the result holdings are just $+\delta_i^{-1}/\sum \delta_i^{-1}$ for stocks in long list $(b_i = 1)$, and $-\delta_i^{-1}/\sum \delta_i^{-1}$ for stocks in short list $(b_i = -1)$. If $\Delta = \delta \mathbf{I}$, the holdings become $\operatorname{sgn}(b_i)\frac{1}{n}$, i.e. $\mathbf{x} = \frac{1}{n}\mathbf{b}$, which is just the signs of \mathbf{b} times a constant scaler 1/n.