000

Draft

Chapter 1

Multilayer Feedforward Networks

Definition 1. (Essentially bounded). A function u defined almost everywhere with respect to Lebesgue measure v on a measurable set $\Omega \in \mathbb{R}^n$ is said to be **essentially bounded** on Ω if |u(x)| is bounded almost everywhere on Ω . We denote $u \in L^{\infty}(\Omega)$ with the norm $||u||_{L^{\infty}(\Omega)} = \inf\{\lambda | \{x : |u(x)| \ge \lambda\} = 0\} = \operatorname{ess\,sup}_{x \in \Omega} |u(x)|$

We have that $L^{\infty}(\mathbb{R})$ is the space of essentially bounded functions.

Examples and counterexamples of functions essentially bounded.

• $f: \Omega \rightarrow$

Definition 2. (Locally essentially bounded). A function u defined almost everywhere with respect to Lebesgue measure on a domain Ω (a domain is an open set in \mathbb{R}^n) is said to be locally essentially bounded on Ω if for every compact set $K \subset \Omega$, $u \in L^{\infty}(K)$. We denote $u \in L^{\infty}_{loc}(K)$

Definition 3. We say that a set of functions $F \subset L^{\infty}_{loc}(\mathbb{R})$ is dense in $C(\mathbb{R}^n)$ if for every function $g \in C(\mathbb{R}^n)$ and for every compact $K \subset \mathbb{R}^n$, there exist a sequence of functions $f_j \in F$ such that $\lim_{j \to \infty} \|g - f_j\|_{L^{\infty}(K)}$

Definition 4. Let M denote the set of functions which are in $L^{\infty}_{loc}(\mathbb{R})$ and have the following property. The closure of the set of points of discontinuity of any function in M is of zero Lebesgue measure.

Proposition 1. This implies that for any $\sigma \in M$, interval [a,b]. and $\delta > 0$, there exists a finite number of open intervals, the union of which we denote by U, of measure δ , such that σ is uniformly continuous on [a,b]/U.

Definition 5. suport

Definition 6. (Multilayer feedforward networks) The general architecture of a multilayer feedforward network, MFN, consist of:

- input layer: n-input units, x
- one/more hidden layers: intermediate processing units
- output layer: m output-units f(x)

function that a MFN compute is:

$$f(x) = \sum_{j=1}^{k} \beta_j \cdot \sigma(w_j \cdot x - \theta_j)$$

- $x = (x_1, ..., x_n)$ input-vector
- k: # of processing-units in the hidden layer
- $w = (w_1, ..., w_n)$: weights vector
- $\sigma: \mathbb{R} \to \mathbb{R}$ activation function
- θ treshold value: ???
- β

We take $C(\mathbb{R}^n)$ to be the family of real world functions that one may wish to approximate with feedforward network architectures

Definition 7. C_0^{∞} functions C^{∞} with compact support.

Definition 8. Convergència uniforme)

Definition 9. $\varphi: I \to \mathbb{R}$ is uniformly continuous on I if $\forall \epsilon > 0 \exists \ \delta > 0$ such that $|\varphi(x) - \varphi(y)| < \epsilon$ whenever $|x - y| < \delta$

Theorem 1. Let $\sigma \in M$. Set

$$\sum_{n} = span\{\sigma(w \cdot x + \theta) : w \in \mathbb{R}^{n}, \theta \in \mathbb{R}\}\$$

Then \sum_n is dense in $\mathcal{C}(\mathbb{R}^n)$ if and only if σ is not an algebraic polynomial.