Almost disjoint subspaces

Mad families of vector spaces

Clement Yung

21 Mar 2025

Let \mathbb{F} be a countable field (possibly finite). Let E be a \mathbb{F} -vector space with a Hamel basis $(e_n)_{n < \omega}$.

Definition

Let $V, W \subseteq E$ be two infinite-dimensional subspaces. We say that V, W are almost disjoint if $V \cap W$ is a finite-dimensional subspace of E.

Definition

Let $\mathcal A$ be a family of infinite-dimensional subspaces of E. We say that $\mathcal A$ is almost disjoint if all subspaces in $\mathcal A$ are pairwise almost disjoint. We say that $\mathcal A$ is maximal almost disjoint (or just mad) if $\mathcal A$ is not strictly contained in another almost disjoint family of infinite-dimensional subspaces.

Definition

Let A be a family of infinite-dimensional subspaces of E. We say that A is almost disjoint if all subspaces in A are pairwise almost disjoint. We say that A is maximal almost disjoint (or just mad) if \mathcal{A} is not strictly contained in another almost disjoint family of infinite-dimensional subspaces.

Definition

We define the cardinal invariant:

 $\mathfrak{a}_{\text{vec},\mathbb{F}} := \min\{|\mathcal{A}| : \mathcal{A} \text{ is a mad family of block subspaces}\}.$

Almost disjoint subspaces

000000

It's natural to ask if some properties that hold for mad families of $[\omega]^\omega$ also hold for mad families of vector spaces.

Property	$[\omega]^{\omega}$	Subspaces
Every mad family		
is uncountable		
No analytic		
mad family		
Relationship between		
${\mathfrak a}$ and ${\mathfrak a}_{{ m vec},{\mathbb F}}$		

Consistency of $\mathfrak{a} < \mathfrak{a}_{\mathrm{vec},F}$

Property	$[\omega]^{\omega}$	Subspaces
Every mad family	True	
is uncountable	(Easy diagonalisation)	
No analytic	True	
mad family	(Mathias, 1977)	
Relationship between		
${\mathfrak a}$ and ${\mathfrak a}_{{ m vec},{\mathbb F}}$		

Property	$[\omega]^{\omega}$	Subspaces
Every mad family	True	True
is uncountable	(Easy diagonalisation)	(Smythe, 2019)
No analytic	True	
mad family	(Mathias, 1977)	
Relationship between		
${\mathfrak a}$ and ${\mathfrak a}_{{ m vec},{\mathbb F}}$		

Property	$[\omega]^{\omega}$	Subspaces
Every mad family	True	True
is uncountable	(Easy diagonalisation)	(Smythe, 2019)
No analytic	True	Mostly open,
mad family	(Mathias, 1977)	partial results
Relationship between		
${\mathfrak a}$ and ${\mathfrak a}_{{ m vec},{\mathbb F}}$		

000000

Property	$[\omega]^{\omega}$	Subspaces
Every mad family	True	True
is uncountable	(Easy diagonalisation)	(Smythe, 2019)
No analytic	True	Mostly open,
mad family	(Mathias, 1977)	partial results
Relationship between	$\mathfrak{a} < \mathfrak{a}_{\mathrm{vec},\mathbb{F}}$ is consistent (Smythe et al., 2019)	
${\mathfrak a}$ and ${\mathfrak a}_{{ m vec},{\mathbb F}}$	$\mathfrak{a} > \mathfrak{a}_{\mathrm{vec},\mathbb{F}}$ is open	

Block subspaces

Recall that E has a fixed Hamel basis $(e_n)_{n<\omega}$. Given a vector $x\in E$, we may write

$$x = \sum_{n < \omega} \lambda_n(x) e_n,$$

where only finitely many λ_n 's are non-zero.

Block subspaces

Recall that E has a fixed Hamel basis $(e_n)_{n<\omega}$. Given a vector $x\in E$, we may write

$$x = \sum_{n < \omega} \lambda_n(x) e_n,$$

where only finitely many λ_n 's are non-zero. We may then write:

$$supp(x) := \{ n < \omega : \lambda_n(x) \neq 0 \}.$$

Block subspaces

Recall that E has a fixed Hamel basis $(e_n)_{n<\omega}$. Given a vector $x\in E$, we may write

$$x = \sum_{n < \omega} \lambda_n(x) e_n,$$

where only finitely many λ_n 's are non-zero. We may then write:

$$supp(x) := \{n < \omega : \lambda_n(x) \neq 0\}.$$

Example

If
$$x = 2e_3 - 6e_{17} + 5e_{58}$$
, then supp $(x) = \{3, 17, 58\}$.

Almost disjoint subspaces

0000000

Given two vectors x, y we write:

$$x < y \iff \max(\sup(x)) < \min(\sup(y)).$$

Example

If:

1.
$$x = 2e_3 - 6e_{17} + 5e_{58}$$

2.
$$y = 5e_{67} + 990e_{133} - 155e_{236}$$
,

3.
$$z = -32e_{43} + 5e_{665}$$
,

then x < y but $x \not< z$.

Almost disjoint subspaces

0000000

An infinite-dimensional subspace $V \subseteq W$ is a block subspace if it has a (unique) block basis. That is, V is spanned by the basis $(x_n)_{n<\omega}$, where:

$$x_0 < x_1 < x_2 < \cdots$$
.

Every infinite-dimensional subspace of E contains an infinite-dimensional block subspace.

Consequently, if $\mathcal A$ is an almost disjoint family such that there is no block subspace that is almost disjoint with every element of $\mathcal A$, then $\mathcal A$ is mad.

000000

Almost disjoint subspaces

Every infinite-dimensional subspace of E contains an infinite-dimensional block subspace.

Consequently, if A is an almost disjoint family such that there is no block subspace that is almost disjoint with every element of A, then A is mad.

Notation

Let $E^{[\infty]}$ denote the set of block sequences (i.e. block bases) of E. That is, the set of sequences $(x_n)_{n<\omega}$ such that $x_0 < x_1 < x_2 < \cdots$. If $A = (x_n)_{n < \omega} \in E^{[\infty]}$, we write:

$$\langle A \rangle = \langle x_n : n < \omega \rangle := \operatorname{span}\{x_n : n < \omega\}.$$

Uncountability of mad families

Proposition (Smythe, 2019)

Every mad family $A \subseteq E^{[\infty]}$ is uncountable.

Uncountability of mad families

Proposition (Smythe, 2019)

Every mad family $A \subseteq E^{[\infty]}$ is uncountable.

The key lemma is the following:

Lemma

Let $A \in E^{[\infty]}$, and let x_0, \ldots, x_n be non-zero vectors. Then there exists some M such that for any $x \notin \langle A \rangle$ such that whenever x > M (i.e. min(supp(x)) > M),

$$\langle x_0, \ldots, x_n, x \rangle \cap \langle A \rangle = \langle x_0, \ldots, x_n \rangle \cap \langle A \rangle.$$

Almost disjoint subspaces

Proof for the $[\omega]^{\omega}$ case. Suppose that $A = \{A_n : n < \omega\} \subseteq [\omega]^{\omega}$ is almost disjoint.

No analytic mad families

Proof for the $[\omega]^{\omega}$ case. Suppose that $A = \{A_n : n < \omega\} \subseteq [\omega]^{\omega}$ is almost disjoint.

Step 1. Choose any $x_0 \in A_0$, so that:

$$\{x_0\}\cap A_0\subseteq \{x_0\}.$$

Proof for the $[\omega]^{\omega}$ case. Suppose that $\mathcal{A} = \{A_n : n < \omega\} \subseteq [\omega]^{\omega}$ is almost disjoint.

Step 1. Choose any $x_0 \in A_0$, so that:

$$\{x_0\} \cap A_0 \subseteq \{x_0\}.$$

Step 2. Choose $x_1 \in A_1$ large enough, so that:

$$\{x_0, x_1\} \cap A_0 \subseteq \{x_0\},\$$

 $\{x_0, x_1\} \cap A_1 \subseteq \{x_0, x_1\}.$

Proof for the $[\omega]^{\omega}$ case. Suppose that $\mathcal{A} = \{A_n : n < \omega\} \subseteq [\omega]^{\omega}$ is almost disjoint.

Step 1. Choose any $x_0 \in A_0$, so that:

$$\{x_0\}\cap A_0\subseteq \{x_0\}.$$

Step 2. Choose $x_1 \in A_1$ large enough, so that:

$$\{x_0, x_1\} \cap A_0 \subseteq \{x_0\},\$$

 $\{x_0, x_1\} \cap A_1 \subseteq \{x_0, x_1\}.$

Step 3. Choose $x_2 \in A_2$ large enough, so that:

$$\{x_0, x_1, x_2\} \cap A_0 \subseteq \{x_0\}, \{x_0, x_1, x_2\} \cap A_1 \subseteq \{x_0, x_1\}, \{x_0, x_1, x_2\} \cap A_2 \subseteq \{x_0, x_1, x_2\}.$$

and so on. Then $\{x_n:n<\omega\}$ is almost disjoint from $\mathcal{A}_{\underline{a}}$.

Proof for the $E^{[\infty]}$ case. Suppose that $A = \{A_n : n < \omega\} \subseteq E^{[\infty]}$ is almost disjoint.

Step 1. Choose any $x_0 \in \langle A_0 \rangle$, so that:

$$\langle x_0 \rangle \cap \langle A_0 \rangle \subseteq \langle x_0 \rangle$$
.

Step 2. Choose $x_1 \in \langle A_1 \rangle$ large enough, so that:

$$\langle x_0, x_1 \rangle \cap \langle A_0 \rangle \subseteq \langle x_0 \rangle, \langle x_0, x_1 \rangle \cap \langle A_1 \rangle \subseteq \langle x_0, x_1 \rangle.$$

Step 3. Choose $x_2 \in \langle A_2 \rangle$ large enough, so that:

$$\langle x_0, x_1, x_2 \rangle \cap \langle A_0 \rangle \subseteq \langle x_0 \rangle,$$

$$\langle x_0, x_1, x_2 \rangle \cap \langle A_1 \rangle \subseteq \langle x_0, x_1 \rangle,$$

$$\langle x_0, x_1, x_2 \rangle \cap \langle A_2 \rangle \subseteq \langle x_0, x_1, x_2 \rangle.$$

and so on. Then $(x_n)_{n<\omega}$ is almost disjoint from $A_{\mathbb{R}}$ \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}

Analytic mad families

Consider equipping E with the discrete topology, and $E^{\mathbb{N}}$ with the product topology. Since E is countable, $E^{\mathbb{N}}$ is Polish. Then $E^{[\infty]} \subseteq E^{\mathbb{N}}$ is a closed subspace, so the subspace topology of $E^{[\infty]}$ is also Polish.

Analytic mad families

Consider equipping E with the discrete topology, and $E^{\mathbb{N}}$ with the product topology. Since E is countable, $E^{\mathbb{N}}$ is Polish. Then $E^{[\infty]} \subseteq E^{\mathbb{N}}$ is a closed subspace, so the subspace topology of $E^{[\infty]}$ is also Polish.

Problem (Smythe, 2019)

Is there no analytic mad family $A \subseteq E^{[\infty]}$ of block subspaces?

Analytic mad families

Consider equipping E with the discrete topology, and $E^{\mathbb{N}}$ with the product topology. Since E is countable, $E^{\mathbb{N}}$ is Polish. Then $E^{[\infty]} \subseteq E^{\mathbb{N}}$ is a closed subspace, so the subspace topology of $E^{[\infty]}$ is also Polish.

Problem (Smythe, 2019)

Is there no analytic mad family $\mathcal{A}\subseteq E^{[\infty]}$ of block subspaces?

Current status. This is open, but Smythe has a partial positive answer.

Almost disjoint subspaces

1. Given $\mathcal{X}\subseteq [\omega]^\omega$, and $\mathcal{H}\subseteq [\omega]^\omega$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".

No analytic mad families 00000000

Proof for $[\omega]^{\omega}$ case.

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then ${\mathcal X}$ is \mathcal{H} -Ramsey.

No analytic mad families 00000000

Proof for $[\omega]^{\omega}$ case.

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then \mathcal{X} is \mathcal{H} -Ramsey.
- 3. Given \mathcal{A} almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Show that $\mathcal{H}(\mathcal{A})$ is selective coideal.

No analytic mad families 00000000

Proof for $[\omega]^{\omega}$ case.

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then \mathcal{X} is \mathcal{H} -Ramsey.
- 3. Given \mathcal{A} almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Show that $\mathcal{H}(\mathcal{A})$ is selective coideal.
- 4. Show that if \overline{A} is $\mathcal{H}(\mathcal{A})$ -Ramsey, \mathcal{A} is not maximal.

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then \mathcal{X} is \mathcal{H} -Ramsey.
- 3. Given \mathcal{A} almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Show that $\mathcal{H}(\mathcal{A})$ is selective coideal.
- 4. Show that if $\overline{\mathcal{A}}$ is $\mathcal{H}(\mathcal{A})$ -Ramsey, \mathcal{A} is not maximal.

Proof for $E^{[\infty]}$ case.

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then \mathcal{X} is \mathcal{H} -Ramsey.
- 3. Given A almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Show that $\mathcal{H}(\mathcal{A})$ is selective coideal.
- 4. Show that if \overline{A} is $\mathcal{H}(\mathcal{A})$ -Ramsey, \mathcal{A} is not maximal.

Proof for $F^{[\infty]}$ case.

1. Given $\mathcal{X} \subseteq E^{[\infty]}$, and $\mathcal{H} \subseteq E^{[\infty]}$ "coideal", define " \mathcal{X} is \mathcal{H} -strategically Ramsey".

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then \mathcal{X} is \mathcal{H} -Ramsey.
- 3. Given A almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Show that $\mathcal{H}(\mathcal{A})$ is selective coideal.
- 4. Show that if \overline{A} is $\mathcal{H}(\mathcal{A})$ -Ramsey, \mathcal{A} is not maximal.

Proof for $E^{[\infty]}$ case.

No analytic mad families 00000000

- 1. Given $\mathcal{X} \subseteq E^{[\infty]}$, and $\mathcal{H} \subseteq E^{[\infty]}$ "coideal", define " \mathcal{X} is \mathcal{H} -strategically Ramsey".
- 2. Show that if $\mathcal{X} \subseteq E^{[\infty]}$ analytic, and $\mathcal{H} \subseteq E^{[\infty]}$ "selective coideal" . then ${\mathcal X}$ is \mathcal{H} -strategically Ramsey.

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then \mathcal{X} is \mathcal{H} -Ramsey.
- 3. Given A almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Show that $\mathcal{H}(\mathcal{A})$ is selective coideal.
- 4. Show that if \overline{A} is $\mathcal{H}(\mathcal{A})$ -Ramsey, \mathcal{A} is not maximal.

Proof for $E^{[\infty]}$ case.

- 1. Given $\mathcal{X} \subseteq E^{[\infty]}$, and $\mathcal{H} \subseteq E^{[\infty]}$ "coideal", define " \mathcal{X} is \mathcal{H} -strategically Ramsey".
- 2. Show that if $\mathcal{X} \subseteq E^{[\infty]}$ analytic, and $\mathcal{H} \subseteq E^{[\infty]}$ "selective coideal" . then ${\mathcal X}$ is \mathcal{H} -strategically Ramsey.
- 3. Given A almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Assume that $\mathcal{H}(\mathcal{A})$ is a "selective coideal".

Proof for $[\omega]^{\omega}$ case.

- 1. Given $\mathcal{X} \subseteq [\omega]^{\omega}$, and $\mathcal{H} \subseteq [\omega]^{\omega}$ coideal, define " \mathcal{X} is \mathcal{H} -Ramsey".
- 2. Show that if $\mathcal{X} \subseteq [\omega]^{\omega}$ analytic, and $\mathcal{H} \subseteq [\omega]^{\omega}$ selective coideal, then \mathcal{X} is \mathcal{H} -Ramsey.
- 3. Given A almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Show that $\mathcal{H}(\mathcal{A})$ is selective coideal.
- 4. Show that if \overline{A} is $\mathcal{H}(\mathcal{A})$ -Ramsey, \mathcal{A} is not maximal.

Proof for $E^{[\infty]}$ case.

- 1. Given $\mathcal{X} \subseteq E^{[\infty]}$, and $\mathcal{H} \subseteq E^{[\infty]}$ "coideal", define " \mathcal{X} is \mathcal{H} -strategically Ramsey".
- 2. Show that if $\mathcal{X} \subseteq E^{[\infty]}$ analytic, and $\mathcal{H} \subseteq E^{[\infty]}$ "selective coideal" . then ${\mathcal X}$ is \mathcal{H} -strategically Ramsey.
- 3. Given A almost disjoint, we define $\mathcal{H}(\mathcal{A})$. Assume that $\mathcal{H}(\mathcal{A})$ is a "selective coideal".
- 4. Show that if \overline{A} is $\mathcal{H}(\mathcal{A})$ -strategically Ramsey, \mathcal{A} is not maximal.

small letters $a, b, c, \dots \in E^{[<\infty]}$ denote finite block sequences.

Definition (Gowers game)

The *Gowers game* played below [a, A], denoted as G[a, A], is the following game:

The outcome of this game is the sequence $a^{\widehat{}}(x_k)_{k<\omega}\in E^{[\infty]}$.

If
$$A = (x_0, x_1,...)$$
 is a block sequence, we let $A/n := (x_n, x_{n+1},...)$.

Definition (Asymptotic game)

The asymptotic game played below [a, A], denoted as F[a, A], is the following game:

No analytic mad families

The outcome of this game is the sequence $a^{-}(x_k)_{k<\omega}\in E^{[\infty]}$.

A subset $\mathcal{H}\subseteq E^{[\infty]}$ is a *semicoideal* if it satisfies the following properties:

- 1. (Cofinite) If $A \in \mathcal{H}$, then $A/n \in \mathcal{H}$ for all n.
- 2. (Upward-closed) If $A \in \mathcal{H}$ and $A \leq B$, then $B \in \mathcal{H}$.

Definition

A subset $\mathcal{H}\subseteq E^{[\infty]}$ is a *semicoideal* if it satisfies the following properties:

- 1. (Cofinite) If $A \in \mathcal{H}$, then $A/n \in \mathcal{H}$ for all n.
- 2. (Upward-closed) If $A \in \mathcal{H}$ and $A \leq B$, then $B \in \mathcal{H}$.

Definition

A subset $\mathcal{X} \subseteq E^{[\infty]}$ is \mathcal{H} -strategically Ramsey if for all $A \in \mathcal{H}$ and $a \in E^{[<\infty]}$, there exists some $B \leq A$ where $B \in \mathcal{H}$ such that one of the following holds:

- 1. I has a strategy in F[a, B] to reach \mathcal{X}^c .
- 2. II has a strategy in G[a, B] to reach \mathcal{X} .

Step 2 - Analytic sets are \mathcal{H} -strategically Ramsey.

Theorem (Smythe, 2018)

If $\mathcal{X} \subset E^{[\infty]}$ is analytic, and $\mathcal{H} \subset E^{[\infty]}$ is a full "selective" semicoideal, then X is H-strategically Ramsey.

Step 3 - **Define** $\mathcal{H}(A)$. Let $A \subseteq E^{[\infty]}$ be an almost disjoint family. We define:

$$\mathcal{H}(\mathcal{A}) := \left\{ B \in E^{[\infty]} : \exists^{\infty} A \in \mathcal{A} \text{ s.t. } \dim(\langle A \rangle \cap \langle B \rangle) = \infty \right\}.$$

Step 3 - **Define** $\mathcal{H}(\mathcal{A})$. Let $\mathcal{A} \subseteq E^{[\infty]}$ be an almost disjoint family. We define:

$$\mathcal{H}(\mathcal{A}) := \left\{ B \in E^{[\infty]} : \exists^{\infty} A \in \mathcal{A} \text{ s.t. } \dim(\langle A \rangle \cap \langle B \rangle) = \infty \right\}.$$

Fact

 $\mathcal{H}(\mathcal{A})$ is a "selective" semicoideal.

What about fullness? Is $\mathcal{H}(A)$ a full semicoideal?

Almost disjoint subspaces

A mad family $A \subseteq E^{[\infty]}$ is *full* if $\mathcal{H}(A)$ is full.

No analytic mad families

Definition

A mad family $A \subseteq E^{[\infty]}$ is *full* if $\mathcal{H}(A)$ is full.

Theorem (Smythe, 2019)

If $\mathfrak{a}_{\mathrm{vec},\mathbb{F}}=\mathfrak{c}$, then there exists a full mad family.

Definition

A mad family $A \subseteq E^{[\infty]}$ is *full* if $\mathcal{H}(A)$ is full.

Theorem (Smythe, 2019)

If $\mathfrak{a}_{\mathrm{vec},\mathbb{F}}=\mathfrak{c}$, then there exists a full mad family.

Problem (Smythe, 2019)

- 1. (ZFC) Is there a full mad family?
- 2. (ZFC) Is every mad family full?

Step 4 - Show that if \mathcal{A} is maximal, then $\overline{\mathcal{A}}$ is not $\mathcal{H}(\mathcal{A})$ -strategically Ramsey. If \mathcal{A} is an almost disjoint family, we define:

$$\overline{\mathcal{A}} := \{ B \in E^{[\infty]} : B \le A \text{ for some } A \in \mathcal{A} \}.$$

Note that:

- $A \subseteq \overline{A}$.
- $\mathcal{H}(\mathcal{A}) \cap \overline{\mathcal{A}} = \emptyset$.
- If A is analytic, so is \overline{A} .

Step 4 - Show that if A is maximal, then A is not $\mathcal{H}(\mathcal{A})$ -strategically Ramsey. If \mathcal{A} is an almost disjoint family, we define:

$$\overline{\mathcal{A}} := \{ B \in E^{[\infty]} : B \le A \text{ for some } A \in \mathcal{A} \}.$$

Note that:

- $\mathcal{A} \subseteq \overline{\mathcal{A}}$.
- $\mathcal{H}(\mathcal{A}) \cap \overline{\mathcal{A}} = \emptyset$.
- If \mathcal{A} is analytic, so is $\overline{\mathcal{A}}$.

Proposition

Let $A \subset E^{[\infty]}$ be a mad family. Then for any $B \in \mathcal{H}(A)$,

- 1. II has a strategy in F[B] to reach \overline{A} , and
- 2. I has a strategy in G[B] to reach $\mathcal{H}(A)$ (and hence \overline{A}^c).

General approach

The key proposition to proving the consistency of $\mathfrak{a} < \mathfrak{a}_{\text{vec},\mathbb{F}}$ is the following:

Theorem (Smythe, 2019 + Brendle-García Ávila, 2017)

 $non(\mathcal{M}) \leq \mathfrak{a}_{\text{vec},\mathbb{F}}$.

The key proposition to proving the consistency of $\mathfrak{a} < \mathfrak{a}_{\text{vec},\mathbb{F}}$ is the following:

Theorem (Smythe, 2019 + Brendle-García Ávila, 2017)

 $non(\mathcal{M}) \leq \mathfrak{a}_{vec.\mathbb{F}}$.

Since $\mathfrak{a} < \mathsf{non}(\mathcal{M})$ in the random model, $\mathfrak{a} < \mathfrak{a}_{\mathrm{vec},\mathbb{F}}$ is consistent.

Theorem (Brendle-García Ávila, 2017)

 $non(\mathcal{M}) \leq \mathfrak{a}_{vec,\mathbb{F}_2}$, where \mathbb{F}_2 is the field of two elements.

The following theorem is the main stepping stone.

Theorem (Brendle-García Ávila, 2017)

 $non(\mathcal{M}) \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}_2}$, where \mathbb{F}_2 is the field of two elements.

Smythe showed that this is enough to show that $non(\mathcal{M}) \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}}$.

Define the map $s: E(\mathbb{F}) \to E(\mathbb{F}_2)$ by:

$$s(\lambda_{n_0}e_{n_0}+\cdots+\lambda_{n_k}e_{n_k}):=e_{n_0}+\cdots+e_{n_k},$$

i.e. s replaces all non-zero coefficients of e_n with 1.

Define the map $s: E(\mathbb{F}) \to E(\mathbb{F}_2)$ by:

$$s(\lambda_{n_0}e_{n_0}+\cdots+\lambda_{n_k}e_{n_k}):=e_{n_0}+\cdots+e_{n_k},$$

i.e. s replaces all non-zero coefficients of e_n with 1. Let $\mathcal{A}\subseteq E^{[\infty]}(\mathbb{F})$ be an almost disjoint family of size less than $\operatorname{non}(\mathcal{M})$.

A characterisation $non(\mathcal{M})$

We present a characterisation of the cardinal $non(\mathcal{M})$ used in the proof of Brendle-García Ávila.

A characterisation $non(\mathcal{M})$

We present a characterisation of the cardinal $non(\mathcal{M})$ used in the proof of Brendle-García Ávila.

Definition

Let $h: \omega \to \omega$ be a function such that $\lim_{n \to \infty} h(n) = \infty$. The cardinal $\mathfrak{b}_h(p \neq^*)$ is defined by:

$$\mathfrak{b}_h(p\neq^*) := \min \left\{ \begin{aligned} \mathcal{F} \subseteq \omega^\omega & \text{ and } \forall \text{partial } g: \omega \to \omega \text{ s.t.} \\ |\operatorname{dom}(g)| = \infty & \text{ and } g \leq h, \\ |\operatorname{there is some } f \in \mathcal{F} \text{ s.t.} \\ \exists^\infty n \in \operatorname{dom}(g) \ f(n) = g(n) \end{aligned} \right\}.$$

For any
$$h, h' : \omega \to \omega$$
 with $\lim_{n \to \infty} h(n) = \lim_{n \to \infty} h'(n) = \infty$, $\mathfrak{b}_h(p \neq^*) = \mathfrak{b}_{h'}(p \neq^*)$.

Thus, we may let $\mathfrak{b}(pbd \neq^*)$ be the cardinal $\mathfrak{b}_h(p \neq^*)$ for any such h.

For any
$$h, h' : \omega \to \omega$$
 with $\lim_{n \to \infty} h(n) = \lim_{n \to \infty} h'(n) = \infty$, $\mathfrak{b}_h(p \neq^*) = \mathfrak{b}_{h'}(p \neq^*)$.

Thus, we may let $\mathfrak{b}(pbd \neq^*)$ be the cardinal $\mathfrak{b}_h(p \neq^*)$ for any such h.

Proposition

$$\mathsf{non}(\mathcal{M}) = \mathsf{max}\{\mathfrak{b}, \mathfrak{b}(pbd \neq^*)\}.$$

Recall that we proved the following "diagonalisation" lemma for block subspaces.

Lemma

Let $A \in E^{[\infty]}$, and let x_0, \ldots, x_n be non-zero vectors. Then there exists some M such that for any $x \notin \langle A \rangle$ such that whenever x > M (i.e. $\min(\sup (x)) > M$),

$$\langle x_0,\ldots,x_n,x\rangle\cap\langle A\rangle=\langle x_0,\ldots,x_n\rangle\cap\langle A\rangle$$
.

Using this lemma, and by mimicking the proof of $\mathfrak{b} \leq \mathfrak{a},$ Smythe proved that:

Proposition (Smythe, 2019)

$$\mathfrak{b} \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}}$$
.

We're only left with showing that $\mathfrak{b}(pbd \neq^*) \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}_2}$. We may fix some arbitrary $h \in \omega^{\omega}$ such that $\lim_{n \to \infty} h(n) = \infty$, and show that $\mathfrak{b}_{h+1}(p \neq^*) \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}_2}$.

No analytic mad families

Let $A \subseteq E^{[\infty]}$ be an almost disjoint family such that $|\mathcal{A}| < \mathfrak{b}_{h+1}(p \neq^*)$. The proof outline is as follows:

Let $\mathcal{A} \subseteq E^{[\infty]}$ be an almost disjoint family such that $|\mathcal{A}| < \mathfrak{b}_{h+1}(p \neq^*)$. The proof outline is as follows:

1. Given a partial function g from ω to ω , define a block sequence B^g .

- 1. Given a partial function g from ω to ω , define a block sequence B^g .
- 2. Conversely, for any block sequence $A \in \mathcal{A}$, define a (total) function $f_A : \omega \to \omega$.

- 1. Given a partial function g from ω to ω , define a block sequence B^g .
- 2. Conversely, for any block sequence $A \in \mathcal{A}$, define a (total) function $f_A:\omega\to\omega$.
- 3. Since $\{f_A : A \in A\}$ is of size $< \mathfrak{b}_{h+1}(p \neq^*)$, there is a partial function g, with $|\operatorname{dom}(g)| = \infty$ and $g \le h + 1$, such that for all $A \in \mathcal{A}$, $g(n) \neq f_A(n)$ for all but finitely many $n \in \text{dom}(g)$.

- 1. Given a partial function g from ω to ω , define a block sequence B^g .
- 2. Conversely, for any block sequence $A \in \mathcal{A}$, define a (total) function $f_A:\omega\to\omega$.
- 3. Since $\{f_A: A \in \mathcal{A}\}$ is of size $< \mathfrak{b}_{h+1}(p \neq^*)$, there is a partial function g, with $|\operatorname{dom}(g)| = \infty$ and $g \le h + 1$, such that for all $A \in \mathcal{A}$, $g(n) \neq f_A(n)$ for all but finitely many $n \in \text{dom}(g)$.
- 4. Show that if $g(n) \neq f_A(n)$ for all but finitely many $n \in dom(g)$, then B^g and A are almost disjoint.

Step 1 - Define a block sequence B^g given a partial function $g:\omega\to\omega$. Fix some $A_0\in\mathcal{A}$, and fix any block sequence A_1 so that $\langle A_0 \rangle \cap \langle A_1 \rangle = \{0\}$. We choose vectors c_n^i, d_n^i so that:

Step 1 - Define a block sequence B^g given a partial function $g:\omega\to\omega$. Fix some $A_0\in\mathcal{A}$, and fix any block sequence A_1 so that $\langle A_0 \rangle \cap \langle A_1 \rangle = \{0\}$. We choose vectors c_n^i, d_n^i so that:

1. c_n^i, d_n^i are defined for $i \leq h(n)$.

Step 1 - Define a block sequence B^g given a partial function $g:\omega\to\omega$. Fix some $A_0\in\mathcal{A}$, and fix any block sequence A_1 so that $\langle A_0\rangle\cap\langle A_1\rangle=\{0\}$. We choose vectors c_n^i,d_n^i so that:

- 1. c_n^i, d_n^i are defined for $i \leq h(n)$.
- 2. $c_n^i \in \langle A_0 \rangle$ for all n, i.
- 3. $d_n^i \in \langle A_1 \rangle$ for all n, i.

- 1. c_n^i, d_n^i are defined for $i \leq h(n)$.
- 2. $c_n^i \in \langle A_0 \rangle$ for all n, i.
- 3. $d_n^i \in \langle A_1 \rangle$ for all n, i.
- 4. $c_n^i < c_n^{i+1}$.
- 5. $d_n^i < d_n^{i+1}$.
- 6. $d_{n-1}^{h(n-1)+1} < c_n^i < d_n^i < c_{n+1}^0$ for $i \le h(n) + 1$,

No analytic mad families

We also define:

Almost disjoint subspaces

We also define:

- 1. $c_n := \sum_{i \leq h(n)} c_n^i$.
- 2. $d_n := \sum_{i \le h(n)} d_n^i$.

We also define:

- 1. $c_n := \sum_{i \le h(n)} c_n^i$.
- 2. $d_n := \sum_{i \leq h(n)} d_n^i$.
- 3. $b_n^k := c_n + d_n c_n^k d_n^k$.

- 1. $c_n := \sum_{i < h(n)} c'_n$.
- 2. $d_n := \sum_{i \le h(n)} d_n^i$.
- 3. $b_n^k := c_n + d_n c_n^k d_n^k$.

If $g:\omega\to\omega$ is a partial function with $|\operatorname{dom}(g)|=\infty$ and $g \le h + 1$, we define:

$$B^g := (b_n^{g(n)-1})_{n \in \mathsf{dom}(g) \land g(n) > 0}.$$

No analytic mad families

• Given two vectors x, y, we say that x is interval inside y if y = z + x + w for some vectors z, w such that z < x < w.

- Given two vectors x, y, we say that x is interval inside y if y = z + x + w for some vectors z, w such that z < x < w.
- If A is a block sequence, we say that x is compatible with A if x is interval inside some $y \in \langle A \rangle$.

- Given two vectors x, y, we say that x is interval inside y if y = z + x + w for some vectors z, w such that z < x < w.
- If A is a block sequence, we say that x is compatible with A if x is interval inside some $y \in \langle A \rangle$.

Claim

If $k \neq k'$ and $b_n^k, b_n^{k'}$ are both compatible with A, then $c_n^k, c_n^{k'}, d_n^k, d_n^{k'} \in \langle A \rangle$.

For any $A \in \mathcal{A}$ and almost all n, there are at most one k such that b_n^k is compatible with A.

For any $A \in \mathcal{A}$ and almost all n, there are at most one k such that b_n^k is compatible with A.

Thus, given $A \in \mathcal{A}$ we shall define:

$$f_A(n) := egin{cases} k+1, & ext{if only } b_n^k ext{ is compatible with } A, \ 0, & ext{if none of the } b_n^k ext{'s are compatible with } A. \end{cases}$$

Claim

 B^g is almost disjoint from every $A \in \mathcal{A}$.

Therefore, A is not mad, completing the proof.

Summary

- 1. Is every mad family of block subspaces uncountable?
 - Yes using a special diagonalisation lemma proved by studying the supports of vectors.
- 2. Are there no analytic mad families of block subspaces?
 - Still open. There are no analytic full mad families of block subspaces - proved using the theory of H-strategically Ramsey sets.
- 3. Relationship between \mathfrak{a} and $\mathfrak{a}_{\mathrm{vec},\mathbb{F}}$?
 - $\mathfrak{a}<\mathfrak{a}_{\mathrm{vec},\mathbb{F}}$ is consistent. $\mathfrak{a}>\mathfrak{a}_{\mathrm{vec},\mathbb{F}}$ is open.
 - It follows from the ZFC inequality $non(\mathcal{M}) \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}}$, and that $\mathfrak{a} < non(\mathcal{M})$ in the random model.