MET CS555 B1

Data Analysis and Visualization

Final Exam Preparation

Kia Teymourian

Key Concepts – Normal Distribution

- Properties of the Normal Distribution
 - Symmetric
 - Area sums to calculate the probabilities

Key Concepts – Central Limit Theorem

- Central Limit Theorem
 - If you have a sample that is sufficiently large, then the distribution of the sample mean will be approximately normally distributed with
 - A mean of μ mu (equal to the population mean)
 - Standard deviation of $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

(equal to the population standard deviation divided by the square root of the sample size n)

As the sample size increase, the variability decreases

Key Calculations – Z-score

How we calculated the z-score

$$z = \frac{\overline{x} - \mu}{\sigma}$$
 or $z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}}$

- Null and alternative hypotheses for each type of analysis
- Null value of each statistic (correlation coefficient, beta coefficient, OR, risk difference, risk ration)
- When to use which analysis
 - One-sample test for means
 - Two-sample test for means
 - Correlation/Simple Linear Regression
 - Multiple Linear Regression
 - ANOVA
 - Logistic Regression

Interpretation of confidence intervals

- We are 95% confident that the underlying ...
- Relationship with testing (across different types of analysis)
 - A level α alpha significance test rejects the null hypothesis H_0 : $\mu = \mu_0$ when value of μ_0 is not included in the 1- α confidence interval for μ
 - A level α alpha significance test fails to reject the null hypothesis H_0 : $\mu = \mu_0$ when value of μ_0 is included in the 1- α confidence interval for μ
 - The conclusion of a two-sided significance test (whether or not the null hypothesis is rejected is rejected) at the α alpha significance can be determined by checking if the "null" value as specified by the null hypothesis is contained within the 1-α confidence interval

Key Calculations

- Z-Score
- Prediction using regression equation
 - Linear Regression

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

- Logistic Regression

$$\hat{p} = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k}}$$

Residuals

$$\hat{y} - y$$

Linear Regression

- Relationship between beta estimate and correlation coefficient
 - Positive Association (r>0, $\beta > 0$)
 - As one variable goes up, the other goes up
 - As one variable goes down, the other goes down
 - Negative Association (r< 0, β < 0)
 - As one variable goes up, the other goes down
 - As one variable goes down, the other goes up

Linear Regression

- Interpretation of beta estimates (in SLR vs. MLR)
- Calculation of Confidence Intervals
- Purpose of diagnostic plots
 - Residual Plots:
 - Residual Plot: Asses regression assumptions
 (Linearity, Constant Variance) and to identify outliers
 - Histogram of the Residuals: Asses regression assumptions (normality) and to identify observations with large residuals

Calculate p-value

- One-sided vs. Two-sided
- Using tables, based on the z, t or F distributions

ANOVA table dependencies

How df is calculated for each type of analysis (regression, ANOVA)

	SS (Sum of Squares)	df (degrees of freedom)	MS (Mean Square)	F-statistic	p-value
Regression	Reg SS	Reg df $= oldsymbol{k}$	Reg MS = Reg SS/Reg df	F=Reg MS/Res MS	$P(F_{\mathrm{Reg\ df},\mathrm{Res\ df},lpha}>F)$
Residual	Res SS	Res df= $n-k-1$	Res MS = Res SS/Res df		
Total	Total SS = Reg SS + Res SS				

Multiple comparison procedures

- When we do lots of comparison, we increase our risk of a Type I error
- To avoid this. We need to make it harder to reject. This can be accomplished in different ways (all equivalent):
 - Increase the p-value
 - Decrease the significance level used for each test
 - Increase the critical value used for the decision rule
- Various methods for doing this, most simple is Bonferroni
- The Bonferroni methodology suggests that individual tests should be performed at the $\alpha * = \alpha/c$ level of significance,

```
like \alpha * = \alpha/c = 0.05/3 \approx 0.0167
```

Logistic Regression

Odds ratio for 1-unit or x-unit increase in explanatory variable

$$\widehat{OR}_{x_a \text{ versus } x_b} = e^{\hat{\beta}_1 x_a - \hat{\beta}_1 x_b} = e^{\hat{\beta}_1 (x_a - x_b)}$$

Odds Ratio Confidence Interval:

$$\widehat{OR}_{x_a \text{versus } x_b} = e^{(\hat{\beta}_1 \pm z_{\frac{\alpha}{2}} * SE_{\hat{\beta}_1})(x_a - x_b)}$$