

Nicholas Nadeau, P.Eng., AVS

PyCon Canada 2017

The Robots Are Coming!

What's the difference?

Introduction to Robotics: Mechanics and Control, 3rd Edition John J. Craig

Rogue Research Inc.

ETS

Why Calibrate?

Offline Programming

Kinematic Parameters

Kinematic Parameters

i	α	а	θ	d
0	0	0	0	118
1	π/2	0	π	0
2	0	612.7	0	0
3	0	571.6	0	163.9
4	-π/2	0	0	115.7
5	π/2	0	π	92.2

Joint-Space Motion

Cartesian Motion

Recap

- Robot theory = math
- Robot simulation
 - Model robot motions and operations
 - Save time
 - Save \$\$\$
 - Improve performance
- Accuracy is very important when trying to do medical procedures
 - Else, "You're Going to Have a Bad Time"

pybotics

Motivation #1

Motivation #2

Calibration Overview

Measure Poses Optimize Model Validate Model

Optimization Cycle

Optimization Vector

Robot

World Frame Kinematic Chain Tool Frame

Optimization Mask

Model Optimization True False True Mask Optimization Vector

FARO ION

UR10 Measurements

Calibration Demo

Jupyter Notebook!

Recap

- Scientific Python Ecosystem are fundamental building blocks for the community
 - Bridge the gap between science, engineering, and software development
- Robots are not very accurate out-of-the-box
 - But we can fix that!

I ♥ Robots Now What?

- Hardware continuous integration!
 - Continuous calibration
 - Robot performance forecasting and machine learning
- Contribute!
 - Robots & devices
 - Wrappers, server-client interfaces, drivers
 - Frameworks and toolboxes
- Graduate degree!
 - Control and Robotics Laboratory (CoRo) @ ÉTS

Third-Party Media

- KUKA Aktiengesellschaft
 - https://www.kuka.com/en-ca/press/media-library
- Courtesy of Rethink Robotics, Inc
 - http://www.rethinkrobotics.com/press/
- uArm Swift Pro
 - https://www.sparkfun.com/products/14342
- Introduction to Robotics: Mechanics and Control, 3rd Edition
 - https://www.pearson.com/us/higher-education/program/Craig-Introduction-to-Robotics-Mechanics-and-Control-3rd-Edition/PGM11887.html
- Precision and accuracy
 - http://www.antarcticglaciers.org/glacial-geology/dating-glacial-sediments-2/precision-and-accuracy-glacial-geology/
- da Vinci Xi
 - https://www.intuitivesurgical.com/company/media/images/da-vinci-xi/
- Universal Robots
 - https://www.universal-robots.com/media/
- KUKA LBR Joints
 - $\bullet \quad \text{https://www.kuka.com/-/media/kuka-downloads/imported/48ec812b1b2947898ac2598aff70abc0/spez_lbr_iiwa_en.pdf}$
- Right-hand Rule
 - https://en.wikipedia.org/wiki/Right-hand_rule
- DH Parameters
 - https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg parameters