

vv255SU2020_Assignment 2

Due to June 5, 2020

Problem 1

Consider the points $A_1(3, 1, 4)$, $A_2(-1, 6, 1)$, $A_3(-1, 1, 6)$, $A_4(0, 4, -1)$.

A. Find the equations of the following objects:

- **a.** the plane $A_1A_2A_3$, **b.** the line A_1A_2 , **c.** the line A_4M perpendicular to the plane $A_1A_2A_3$,
- **d.** the line A_3N parallel to the line A_1A_2 , **e.** the plane $\wp: A_4 \in \wp$, $\wp \perp (line \ A_1A_2)$.

B. Calculate:

- **a.** $\sin \theta$, where θ is the angle between the line A_1A_4 and the plane $A_1A_2A_3$,
- **b.** $\cos \varphi$, where φ is the angle between the coordinate plane z=0 and the plane $A_1A_2A_3$.

Problem 2

A. Find the equation of the plane that passes through the lines

$$\frac{x-3}{2} = \frac{y}{1} = \frac{z-1}{2}, \qquad \frac{x+1}{2} = \frac{y-1}{1} = \frac{z}{2}.$$

B. Find the equation of the plane that passes through the origin and is perpendicular to the planes

$$2x - 3y + z - 1 = 0$$
, $x - y + 5z + 3 = 0$.

C. Find the symmetric point of M(4, 3, 10) about the line

$$\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{5}$$

Problem 3

- **1.** Find the vector function $\bar{r}(t)$ if $\bar{r}'(t) = t\bar{\iota} + e^t\bar{\jmath} + te^t\bar{k}$ and $\bar{r}(0) = \bar{\iota} + \bar{\jmath} + \bar{k}$.
- **2.** The curve \bar{t} is defined by a vector function $\bar{r}(t) = t^2 \bar{t} + (t^3 t) \bar{j}$.
- **A.** Find the point P at which the curve C intersects itself.
- **B.** Does the curve C have more than one tangent line at *P*? If yes, find the angle between tangent lines.

Problem 4

- **1.** A particle of unit mass moves under a constant force \bar{F} . If a particle was initially at the point \bar{r}_0 and passed through the point \bar{r}_1 after 2 units of time, find the initial velocity of the particle. What was the velocity of the particle when it passed through \bar{r}_1 ?
- **2.** Consider the curve $\bar{r}(t) = \cos t \, \bar{\iota} + \sin t \, \bar{\jmath} + \frac{2}{3} t^{\frac{3}{2}} \bar{k}$ and find
 - **A.** the length of the curve from t = 0 to $t = 2\pi$.
 - **B.** the equation of the tangent line at the point t = 0.
 - **C.** the speed of the point moving along the curve at the point $t = 2\pi$.

Problem 5

Find an equation for the osculating and normal planes for the curve $\bar{r}(t) = (\ln t, 2t, t^2)$ at the point P_0 of its intersection with the plane y - z = 1. A plane is normal to a curve at a point if the tangent to the curve at that point is normal to the plane.

Problem 6

A particle travels along a helix of radius R that rises h units of length per turn. Let the z axis be the symmetry axis of the helix. If a particle travels the distance $4\pi R$ from the point (R,0,0), find the position vector of the particle.

Dr. Olga Danilkina

中国 上海闵行区东川路 800 号

邮编 200240