#### 11.2 周末作业

#### 一、填空题

1、已知集合  $A = \{1, 2, 3, 4\}$  ,  $B = \{x, x^2\}$  ,  $B \subseteq A$  , 则 x =\_\_\_\_\_.

## 答案: 2

2、不等式  $\frac{x-2}{x-1} \le 0$  的解集是\_\_\_\_\_\_.

### 答案: (1,2]

3、已知正数 a,b 满足 a+2b=1,则 ab 的最大值是

## 答案: 🖠

4、已知  $f(x) = \frac{x^2}{1+x^2}$ ,  $g(x) = \sqrt{x}$ ,则 f[g(x)] =\_\_\_\_\_.

# 答案: $\frac{x}{1+x}$ ( $x \ge 0$ )

5、已知  $-1 \le a + b \le 1$ ,  $1 \le a - b \le 3$ ,则 3a - b 的取值范围是\_\_\_\_\_.

#### 答案: [1,7]

6、已知  $f(x) = ax^{9999} + bx^{123} - x - 8$ ,且 f(-2) = 10,则 f(2) =\_\_\_\_\_\_.

#### 答案: -26

7、不等式 $x|x-4| \ge 3$ 的解集是\_\_\_\_\_.

## 答案: $[1,3] \cup [2+\sqrt{7},+\infty)$

8、已知正数 a,b 满足 a + 2b = 1,则  $\frac{1}{a} + \frac{1}{b}$  取到最小值时, a =\_\_\_\_\_\_.

## 答案: $\sqrt{2}-1$

9、若方程 $x^2 + (m-3)x + m = 0$ 的两个实根均在(0,2)上,则实数m的取值范围是\_\_\_\_\_.

## 答案: $(\frac{2}{3}, 1]$

10、不等式 
$$\frac{x^{2023}(x-2)^{2025}}{(x+1)^{2026}}\sqrt{x^2-4x+3} \ge 0$$
 的解集是\_\_\_\_\_\_.

### 答案: $(-\infty, -1) \cup (-1,0] \cup \{1\} \cup [3, +\infty)$

11、已知函数  $f(x) = |x^2 - 4x + 3|$ ,若方程 $[f(x)]^2 + af(x) + 2 = 0$ 恰好有 5 个不同的解,



12、定义一种集合运算 nand b: A nand B =  $\{x \mid x \notin A$ 或 $x \notin B\}$ 。设全集为U,给定集合 A与B,则仅使用 nand 运算和 A,B,U,可以表示下列集合中的\_\_\_\_\_ (填序号)

 $\bigcirc A \cup B$ 

 $\bigcirc A \cap B$   $\bigcirc A$ 

答案: ①②③

## 二、选择题

13、已知a,b,c ∈ R,且a > b,则下列不等式正确的是 ( )

A. ac > bc B.  $a^2 > b^2$  C.  $a^3 > b^3$  D.  $\frac{1}{a} < \frac{1}{b}$ 

#### 答案: C

14、设 $a_1$ 、 $b_1$ 、 $c_1$ 、 $a_2$ 、 $b_2$ 、 $c_2$ 均为非零实数,不等式 $a_1x^2+b_1x+c_1<0$ 解集为M,不

等式  $a_2x^2 + b_2x + c_2 < 0$  解集为 N ,则 "  $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$  " 是 " M = N " 的 ( )

A. 充要条件

B. 既非充分也非必要条件

C. 充分非必要条件

D. 必要非充分条件

#### 答案: B

15、已知非空集合 A, B 满足以下两个条件:

(1)  $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$ ,  $A \cap B = \emptyset$ 

② A 的元素个数不是 A 中的元素, B 的元素个数不是 B 中的元素.

则有序集合对(A,B)的个数为(

A. 16

B. 22

C. 26

D. 32

#### 答案: D

16、已知不等式  $\left| x^2 + \frac{1}{x} \right| + \left| x^2 - \frac{1}{x} \right| + ax \ge 2x - 8$  恒成立,则实数 a 不可能是( )

A. 3

B. 6

C. 9

D. 12

答案: D

已知 y = f(x) 是定义在  $[0, +\infty)$  上的函数,根据下列条件,可以断定 y = f(x) 为严格增函数的是 ( )

- (A) 对任意x > 0, 都有f(x) > f(0)
- (B) 对任意 $x \ge 0$ ,都有f(x+1) > f(x)
- (C) 对任意 $x_1, x_2 \in [0, +\infty)$ , 且 $x_1 \ge x_2$ , 都有 $f(x_1) \ge f(x_2)$
- (D) 对任意  $x_1, x_2 \in [0, +\infty)$ ,且  $x_1 \neq x_2$ ,都有  $\frac{f(x_1) f(x_2)}{x_1 x_2} > 0$

答案: D

## 三、解答题

求函数  $f(x) = 2x + \frac{8}{x}$  在下列区间上的最大值和最小值:

①  $\mathbf{R}$ ; ② (0,1]; ③ [3,+∞); ④ [1,3]; ⑤ [-3,-1]  $\cup$  (2,4].

(1) 无; (2)  $f(x)_{\min} = 10$ , 无最大值; (3)  $f(x)_{\min} = \frac{26}{3}$ , 无最大值; (4)  $f(x)_{\min} = f(2) = 8$ ,  $f(x)_{\max} = f(1) = 10$ ; (5)  $f(x)_{\min} = f(-1) = -10$ ,  $f(x)_{\max} = f(4) = 10$ .

17、求实数
$$m$$
,使不等式 $\frac{x^2-8x+20}{mx^2+2(m+1)x+9m+4}$ <0的解集是 $R$ 。

答案:  $\left(-\infty, -\frac{1}{2}\right)$ 

18、已知集合 
$$A = \{x \mid x^2 - 3x + 2 = 0\}$$
,  $B = \{x \mid x^2 + 2(1-a)x + a^2 - 5 = 0\}$ .

- (2) 若 $\overline{A} \cap B = \emptyset$ , 求实数 a 的取值范围.

答案: (1) a = 1或3

(2) 即 $A \supseteq B$ , 要讨论B是否是空集。 $a \in [3, +\infty)$ 

- 19、如图,现要将矩形花坛 ABCD 扩建为更大的矩形花坛 AMPN,使得点 C 在对角线 MN 上。已知 AB 长 3 米, AD 长 2 米。
  - (1) 设 $DN \in x$ 米, 试用x表示矩形AMPN的面积S;
  - (2) 求矩形 AMPN 的面积 S 的最小值,并指出取到最小值时 DN 的长度。



答案: (1) 
$$AN = 2 + x$$
,  $AM = 3 + \frac{6}{x}$ ,  $S = 12 + 3x + \frac{12}{x}$ 

- (2)  $S \ge 24$ , 取等时DN = 2
- 20、已知函数  $f(x) = x^2 + ax$ , 其中 a 是实数.
  - (1) f(x) 在区间[-1,2]上的最大值记为M(a), 求M(a)的表达式;
  - (2) f(x) 在区间 [-1,2] 上的最小值记为 m(a),求 m(a) 的表达式;
  - (3) 若M(a)-m(a)=3, 求实数a的值.

答案: (1)  $M(a) = \{ \begin{cases} 1-a, a \in (-\infty, -1] \\ 4+2a, a \in (-1, +\infty) \end{cases}$ 

$$4+2a, a \in (-\infty, -4]$$

(2) 
$$m(a) = \{ -\frac{a^2}{4}, a \in (-4,2] \}$$
  
 $1-a, a \in (2, +\infty)$ 

(3) 需分四类讨论:

①
$$a \in (-\infty, -4]$$
,  $(1-a) - (4+2a) = 3 得 a = -2$ , 含

②
$$a \in (-4, -1]$$
,  $(1-a) - (-\frac{a^2}{4}) = 3$  得 $a = 2 \pm 2\sqrt{3}$ , 含去  $2 + 2\sqrt{3}$ 

③
$$a \in (-1,2], (4+2a) - (-\frac{a^2}{4}) = 3$$
 得 $a = -4 \pm 2\sqrt{3},$  舍去 $-4 - 2\sqrt{3}$ 

$$(4)a \in (2, +\infty), (4+2a) - (1-a) = 3 得 a = 0, 含$$

综上, 
$$a = 2 - 2\sqrt{3}$$
或 $-4 + 2\sqrt{3}$ 

已知a > 0, 函数 $f(x) = ax - bx^2$ ,

- (1) 当b>0时,若对任意 $x \in \mathbf{R}$ 都有 $f(x) \leq 1$ ,证明:  $a \leq 2\sqrt{b}$ .
- (2) 当b > 1 时, 证明: 对任意 $x \in [0, 1]$ ,  $|f(x)| \le 1$ 的充要条件是:  $b 1 \le a \le 2\sqrt{b}$ .
- (3) 当 $0 < b \le 1$ 时, 讨论: 对任意 $x \in [0, 1]$ ,  $|f(x)| \le 1$ 的充要条件.

解: (1) 依题设,对任意 $x \in \mathbb{R}$ ,都有 $f(x) \leq 1$ .

$$\therefore f(x) = -b\left(x - \frac{a}{2b}\right)^2 + \frac{a^2}{4b}, \quad \therefore f\left(\frac{a}{2b}\right) = \frac{a^2}{4b} \le 1,$$

 $\therefore$  a > 0, b > 0,  $\therefore$   $a \le 2\sqrt{b}$ .

(2) (必要性), 对任意 $x \in [0, 1]$ ,  $|f(x)| \le 1 \Rightarrow -1 \le f(x)$ 据此可推出 $-1 \le f(1)$ 

即 $a-b \ge -1$ ,  $a \ge b-1$ . 对任意 $x \in [0, 1]$ ,  $|f(x)| \le 1$ ,

因为b>1,可推出 $f\left(\frac{1}{\sqrt{b}}\right) \le 1$ .即 $a \cdot \frac{1}{\sqrt{b}} - 1 \le 1$ ,∴  $a \le 2\sqrt{b}$ ,所以 $b-1 \le a \le 2\sqrt{b}$ .

(充分性): 因b>1,  $a \ge b-1$ , 对任意 $x \in [0, 1]$ , 可以推出:

$$ax-bx^2 \geqslant b(x-x^2)-x \geqslant -x \geqslant -1$$
,  $\mathbb{H}$ :  $ax-bx^2 \geqslant -1$ ;

因为b>1,  $a \leq 2\sqrt{b}$ , 对任意 $x \in [0, 1]$ ,

$$f\left(x\right) = -b\left(x - \frac{a}{2b}\right)^2 + \frac{a^2}{4b}, \quad \therefore \quad f\left(\frac{a}{2b}\right) = \frac{a^2}{4b} \leqslant 1, \quad \exists \exists \ ax - bx^2 \leqslant 1, \quad \therefore \quad -1 \leqslant f\left(x\right) \leqslant 1.$$

综上, 当b>1时, 对任意 $x\in[0,1]$ ,  $|f(x)|\leq 1$ 的充要条件是:  $b-1\leq a\leq 2\sqrt{b}$ .

(3) 因为a > 1,  $0 < b \le 1$ 时, 对任意 $x \in [0, 1]$ .

$$f(x) = ax - bx^2 \ge -b \ge -1$$
,  $\exists F(x) \ge -1$ ;

$$f(x) \le 1 \Rightarrow f(1) \le 1 \Rightarrow a - b \le 1$$
,  $\mathbb{P} a \le b + 1$ ;

$$a \le b+1$$
 H <sup>$\dagger$</sup> ,  $f(x) \le (b+1)x-bx^2$ ,

$$\overrightarrow{\text{m}} bx^2 - (b+1)x + 1 = (bx-1)(x-1) \ge 0$$

故
$$(b+1)x-bx^2 \le 1$$
, 即 $f(x) \le 1$ .

所以, 当a > 1,  $0 < b \le 1$ 时, 对任意 $x \in [0, 1]$ ,  $|f(x)| \le 1$ 的充要条件是:  $a \le b + 1$ .

21、对于定义域为 R 的函数 f(x) 以及非空集合 S: 若对任意  $x_1, x_2 \in R$ , 当  $x_1 - x_2 \in S$  时,都有  $f(x_1) - f(x_2) \in S$ ,则称 f(x)是 S 关联的.

(1)若f(x) = 2 x + 1,则f(x)是否是 $[0, + \infty)$ 关联的,f(x)是否是 [0, 1]关联的; (2)设f(x)是 (3)关联的,当 $x \in [0, 3]$ , $f(x) = x^2 - 2x$ ,解不等式: $2 \le f(x) \le 3$ ; (3)证明:f(x)既是  $\{1\}$ 关联的,又是 $\{0, + \infty\}$ 关联的,当且仅 $\{x\}$ 是  $\{1, 2\}$ 关联的.

解: (1)一方面,  $x_1 - x_2 \in [0, +\infty)$ 而 $f(x_1) - f(x_2) = 2(x_1 - x_2) \in [0, +\infty)$ , 则 $f(x_1) - f(x_2) \in [0, +\infty)$ ,

另一方面,  $x_1 - x_2 \in [0, 1]$ ,

 $f(x_1) - f(x_2) = 2(x_1 - x_2) \in [0,2],$ 

存在 $f(x_1) - f(x_2) \notin [0,1]$ ,

故f(x) = 2x + 1是[0, + ∞)关联的, [0, 1]不关联;

(2) f(x)是(3)关联的,则 $(x_1 - x_2) = 3$ , $(x_1) - f(x_2) = 3$ ,

故f(x + 3) = f(x) + 3,

则当 $x \in [3,6]$ ,  $f(x) = f(x-3) + 3 = (x-3)^2 - 2(x-3) + 3 = x^2 - 8x + 18$ , 结合图像可知,  $2 \le f(x) \le 3$ 分别在[0,3], [3,6]有解,



① $x \in [0,3], 2 \le x^2 - 2x \le 3, \text{ } 1 + \sqrt{3} \le x \le 3,$ 

 $②x ∈ [3,6], 2 ≤ x^2 - 8x + 18 ≤ 3, 则 3 ≤ x ≤ 5,$ 

综上可知: 不等式  $2 \le f(x) \le 3$ 的解集为  $[1 + \sqrt{3}, 5]$ .

(3)一方面, 若f(x)是 {1}关联的, 且是[0, +∞)关联的,

则f(x + 1) = f(x) + 1,

并且f(x)为递增函数,

所以对于  $x_1 - x_2 \in [1,2]$ ,  $1 = f(x_2 + 1) - f(x_2) \le f(x_1) - f(x_2) \le f(x_2 + 2) - f(x_2) = 2$ ,

即f(x)是[1,2]关联的,

另一方面, 若f(x)是[1,2]关联的,

则 $x_1 - x_2 \in [1,2]$ ,  $1 \le f(x_1) - f(x_2) \le 2$ ,

则 $f(x + 1) - f(x) \ge 1$ ,  $f(x + 2) - f(x + 1) \ge 1$ ,

故 $f(x + 2) - f(x) \ge 2$ , 并且 $f(x + 2) - f(x) \le 2$ ,

即f(x + 2) - f(x) = 2,

可得f(x + 1) = f(x) + 1,

故f(x)是 {1}关联的,

再证f(x)是 $[0, + \infty)$ 关联的,

① $\pm x_1 < x_2 \le x_1 + 1$ ,

则 $x_2 + 1 - x_1 \in [1,2]$ ,

此时 $X_2 - X_1 \in [0, +\infty)$ ,

 $f(x_2) - f(x_1) = f(x_2 + 1) - f(x_1) - 1 \in [0, 1] \Rightarrow f(x_2) - f(x_1) \in [0, +\infty),$ 

② $\exists x_1 < x_2, x_1 + n < x_2 \le x_1 + n + 1, n \in N^*,$ 

则有 $x_1 < x_2 - n \le x_1 + 1$ ,

 $f(x_2) - f(x_1) = f(x_2 - n) + n - f(x_1) \ge n$ ,

则 $f(x_2) - f(x_1) \in [0, +\infty)$ .

综合①和②可知, f(x)是[0, +  $\infty$ )关联的.

| 11. 1 f(x)每图像如图所示,由图像得f(x)=K的解的情况为:                             |
|-----------------------------------------------------------------|
| K <o ;="" k="O" o<k<="" td="" x="1,3" 两解="" 四解;<="" 无解;=""></o> |
|                                                                 |
| 设 y²+ay+2=0的根当 y, y, 则存 fw=y, 和fx)=y, 在fx)=y, 其存5个解             |
| 八只可能为三解和两解的组合                                                   |
| 八 y=1是 y2+ay+2=0的-1根                                            |
| 代人解得 a=-3                                                       |
| 检验:[f(x)]2*-3f(x)+2=0的解满足f(x)=1就2,恰有5个不同的x                      |
| 小所有满起条件的《的集合是 {-3}                                              |
|                                                                 |

12. Anand  $B = \overline{A} \cup \overline{B} = \overline{A} \cap \overline{B}$ And  $U = \overline{A} \cap \overline{B} = A \cap \overline{B} \vee \overline{B}$ Anand  $U = \overline{A} \vee \overline{B}$ Anand  $\overline{B} = \overline{A} \vee \overline{B} = A \vee \overline{B}$ Anand  $\overline{B} = \overline{A} \vee \overline{B} = A \vee \overline{B}$ Anand  $\overline{B} = \overline{A} \vee \overline{B} = A \vee \overline{B}$ 

15、已知非空集合 A,B 满足以下两个条件:

(1) 
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$$
,  $A \cap B = \emptyset$ 

② A 的元素个数不是 A 中的元素, B 的元素个数不是 B 中的元素.

则有序集合对(A,B)的个数为(

A. 16 B. 22 C. 26 D. 32

| 集合名称 | 元素个数     | 集分(A          | (A,B)对数 |  |
|------|----------|---------------|---------|--|
| \$ A | ı        | { <b>6</b> }  |         |  |
| lB   | 6        | {1,2,3,4,5,73 | •       |  |
| ŞΑ   | 2        | {6,□?         | C' =5   |  |
| l B  | 5        | {2,0,0,0,03   | U5 -3   |  |
| S A  | 3        | {5,0,0        | Cz=10   |  |
| B    | 4        | {3,0,0,0}     | Cy=10   |  |
| { A  | 4        | {3,0,0,0}     | CE = 10 |  |
| B    | 3        | {4,0,03       | C5 = 10 |  |
| {A   | 5        | {2,0,0.0.03   | C4 = 5  |  |
| B    | 2        | { 5 , 1] }    | 65 -3   |  |
| SA   | Ь        | {1,2,3,4,5,73 | 1       |  |
| B    | 1        | { <b>6</b> 3  | 1       |  |
| • •  | <u>,</u> | , ,           |         |  |

绊上, 英有 32种