Partial Derivatives

Let $w = f(x_1, ..., x_n)$ be a function of the *n* independent variables $x_1, ..., x_n$. The *n* (first) partial derivatives $(f_{x_i} \text{ for } i = 1, ..., n)^1$ of f are obtained by differentiating f with respect to one of its inputs, while treating all the other inputs as constants; The *n* partial derivatives are the derivatives of *n* single variable functions.

For example, the three (first) partial derivatives of the function $f(x, y, z) = 3x^2y - 2xy^3z^2 + y^2z^5$ are: $f_x = 6xy - 2y^3z^2$, $f_y = 3x^2 - 6xy^2z^2 + 2yz^5$, and $f_z = -4xy^3z + 5y^2z^4$.

We can gain a geometric understanding of the (first) partial derivatives of a function f(x, y) of two input variables as the slopes of tangent lines to the traces of the graph of f in the planes x = a and y = b, where a and b are constants.

Consider the graph of $z = f(x, y) = 4 - \frac{1}{4} \left(x^2 - \frac{1}{5}y^3\right)$ and its traces in the planes y = -3 and x = 1 below.

(a) Graph of f(x, y)

(b) Trace of f in the plane y = -3

(c) Trace of f in the plane x = 1

Problems

- 1. What is the equation of the trace depicted in figure (b)?
- 2. What is the equation of the trace depicted in figure (c)?
- 3. Use figures (b) and (c) to estimate the values of $z_x(1, -3)$ and $z_y(1, -3)$.
- 4. Use the derivative of the function from problem 1 to find the exact value of $z_x(1, -3)$. How does the exact value compare to the approximation you found in problem 3?
- 5. Use the derivative of the function from problem 2 to find the exact value of $z_y(1, -3)$. How does the exact value compare to the approximation you found in problem 3?

A Physical Example

Imagine a quantity of gas confined to a cylinder with a piston that can be used to compress or expand the gas². If the gas is an ideal gas, the relationship between its pressure P (in "kilo Pascals" kPa), volume V (in liters L) and temperature T (in Kelvin K) obey the ideal gas law

$$PV = nRT$$

¹Other notations for these (first) derivatives are w_{x_i} , $\partial f/\partial x_i$, $\partial w/\partial x_i$ and $D_{x_i}f$

²Similar to the cylinders and pistons in the engines of a gasoline powered car.

where n is the number of moles³ of gas, and R is the ideal gas constant. This equation relates the three parameters P, V and T. We can solve the equation for any one of the parameters in terms of the other two, giving us three different (but related) functions of two variables: P(T, V), V(T, P) and T(V, P).

Problems

Supposing that nR = 10 L kPa/K

- 1. Calculate $P_T(300, 2)$ and interpret its meaning.
- 2. Calculate $P_V(300, 2)$ and interpret its meaning.
- 3. Calculate $V_T(300, 5)$ and interpret its meaning.
- 4. Calculate $V_P(300, 5)$ and interpret its meaning.

³A measure of the number of molecules in the cylinder