Question 39.2023

Anupama Kulshreshtha EE22BTECH11009

Let X_1, X_2, \ldots, X_n be a random sample of size n from a population having probability density function

$$f(x;\mu) = \begin{cases} e^{-(x-\mu)}, & \text{if } \mu \le x < \infty \\ 0, & \text{otherwise,} \end{cases}$$
 (1)

where $\mu \in \mathbb{R}$ is an unknown parameter. If \hat{M} is the maximum likelihood estimator of the median of X_1 , then which one of the following statements is true?

A)
$$P(\hat{M} \le 2) = 1 - e^{-n(1 - \log_e 2)}$$
 if $\mu = 1$

B)
$$P(\hat{M} \le 1) = 1 - e^{-n \log_e 2}$$
 if $\mu = 1$

C)
$$P(\hat{M} \le 3) = 1 - e^{-n(1 - \log_e 2)}$$
 if $\mu = 1$

D)
$$P(\hat{M} < 4) = 1 - e^{-n(2\log_e 2 - 1)}$$
 if $\mu = 1$

Solution: Let $\hat{M} = \text{Maximum}$ likelihood estimator of median of $X_1 = \text{m}$ By definition, The median of a distribution is the value such that half of the probability mass of the distribution is below that value. Thus, for a function $f(x; \mu)$,

$$\int_{\mu}^{m} f(x;\mu) \, dx = \frac{1}{2} \tag{2}$$

$$\implies \int_{\mu}^{m} e^{-(x-\mu)} dx = \frac{1}{2} \tag{3}$$

$$\implies -e^{-(m-\mu)} + 1 = \frac{1}{2} \tag{4}$$

$$\implies e^{-(m-\mu)} = \frac{1}{2} \tag{5}$$

$$\implies m = \mu + \log_e 2$$
 (6)

Now,

$$P(\hat{M} \le y) = P(\mu < y - \log_e 2) \tag{7}$$

$$= F(y - \log_e 2) \tag{8}$$

Using cdf, $F(X_1) = 1 - e^{-n(x-\mu)}$

$$\implies P(\hat{M} \le y) = F(y - \log_e 2)$$
 (9)

$$= 1 - e^{-n(y - \log_e 2 - \mu)} \tag{10}$$

When y = 2 and $\mu = 1$,

$$P(\hat{M} \le 2) = 1 - e^{-n(1 - \log_e 2)} \tag{11}$$

Therefore, option (A) is correct.