WEATHER PREDICTION

from datetime import datetime, timedelta

from collections import namedtuple

import matplotlib.pyplot as plt

PEDDU.SAI HARIKA

AM.EN.U4AIE19047

In [1]:

In []:

import time

import pandas as pd
import requests

Collecting Data From Weather Underground

```
In [2]:
API KEY = 'Insert API Key Here'
BASE\_URL = "http://api.wunderground.com/api/{}/history_{{}}/q/26.9124,75.7873.json" \#latitu
de and longitude of jaipur
In [3]:
target date = datetime(2018, 3, 12)
features = ["date", "meantempm", "meandewptm", "meanpressurem", "maxhumidity", "minhumid
ity", "maxtempm",
            "mintempm", "maxdewptm", "mindewptm", "maxpressurem", "minpressurem", "preci
["mg
DailySummary = namedtuple("DailySummary", features) # date to be change after the getting
the exact 500 dataset to increase further
In [4]:
def extract weather data(url, api key, target date, days):
    records = []
    for in range(days):
        request = BASE URL.format(API KEY, target date.strftime('%Y%m%d'))
        response = requests.get(request)
        if response.status code == 200:
            data = response.json()['history']['dailysummary'][0]
            records.append(DailySummary(
                date=target date,
                meantempm=data['meantempm'],
                meandewptm=data['meandewptm'],
                meanpressurem=data['meanpressurem'],
                maxhumidity=data['maxhumidity'],
                minhumidity=data['minhumidity'],
                maxtempm=data['maxtempm'],
                mintempm=data['mintempm'],
                maxdewptm=data['maxdewptm'],
                mindewptm=data['mindewptm'],
                maxpressurem=data['maxpressurem'],
                minpressurem=data['minpressurem'],
                precipm=data['precipm']))
        time.sleep(6)
        target date += timedelta(days=1)
    return records
```

records = extract weather data(BASE URL, API KEY, target date, 10)

```
In [ ]:
records += extract weather data(BASE URL, API KEY, target date, 30)
In [12]:
df = pd.DataFrame(records, columns=features).set index('date')
In [13]:
tmp = df[['meantempm', 'meandewptm']].tail(10)
Out[13]:
           meantempm meandewptm
     date
2018-03-12
                   27
                                3
2018-03-13
                   28
2018-03-14
                                2
                   27
2018-03-15
                                5
                   26
2018-03-16
                   26
                                4
2018-03-17
                   24
                                2
2018-03-18
                   25
                                1
2018-03-19
                                3
                   26
2018-03-20
                   27
                                7
2018-03-21
                                2
                   26
In [14]:
tmp = df[['meantempm', 'meandewptm']].head(10)
\operatorname{tmp}
Out[14]:
          meantempm meandewptm
     date
2018-03-12
                   27
                                3
2018-03-13
                   28
                                1
2018-03-14
                   27
                                2
2018-03-15
                   26
                                5
2018-03-16
                   26
                                4
2018-03-17
                                2
                   24
2018-03-18
                   25
                                1
2018-03-19
                   26
                                3
2018-03-20
                   27
                                7
2018-03-21
                                2
                   26
In [ ]:
df.to csv('JaipurRawData3.csv')
In [17]:
df = pd.read csv('JaipurRawData3.csv').set index('date')
```

```
In [21]:

tmp = df[['meantempm', 'meandewptm']].head(10)
tmp
```

Out[21]:

meantempm meandewptm

date		
2016-05-01	34	-1
2016-05-02	36	4
2016-05-03	35	6
2016-05-04	34	7
2016-05-05	31	11
2016-05-06	28	13
2016-05-07	30	10
2016-05-08	34	8
2016-05-09	34	11
2016-05-10	34	16

In [19]:

```
tmp = df[['meantempm', 'meandewptm']].tail(10)
tmp
```

Out[19]:

meantempm meandewptm

date		
2018-03-02	26	6
2018-03-03	26	4
2018-03-04	25	8
2018-03-05	23	7
2018-03-06	22	4
2018-03-07	24	2
2018-03-08	24	1
2018-03-09	26	3
2018-03-10	26	4
2018-03-11	26	3

In [22]:

```
# 1 day prior
N = 1

# target measurement of mean temperature
feature = 'meantempm'

# total number of rows
rows = tmp.shape[0]

# a list representing Nth prior measurements of feature
# notice that the front of the list needs to be padded with N
# None values to maintain the constistent rows length for each N
nth_prior_measurements = [None]*N + [tmp[feature][i-N] for i in range(N, rows)]

# make a new column name of feature_N and add to DataFrame
```

```
col_name = "{}_{}".format(feature, N)
tmp[col_name] = nth_prior_measurements
tmp
```

Out[22]:

meantempm meandewptm meantempm_1

date

2016-05-01	34	-1	NaN
2016-05-02	36	4	34.0
2016-05-03	35	6	36.0
2016-05-04	34	7	35.0
2016-05-05	31	11	34.0
2016-05-06	28	13	31.0
2016-05-07	30	10	28.0
2016-05-08	34	8	30.0
2016-05-09	34	11	34.0
2016-05-10	34	16	34.0

In [23]:

```
def derive_nth_day_feature(df, feature, N):
    rows = df.shape[0]
    nth_prior_meassurements = [None]*N + [df[feature][i-N] for i in range(N, rows)]
    col_name = "{}_{{}}".format(feature, N)
    df[col_name] = nth_prior_meassurements
```

In [24]:

In [25]:

df.columns

Out[25]:

In [26]:

```
df = df[to keep]
df.columns
Out[26]:
Index(['meantempm', 'maxtempm', 'mintempm', 'meantempm 1', 'meantempm 2',
          'meantempm 3', 'meandewptm 1', 'meandewptm 2', 'meandewptm 3',
         'meanpressurem_1', 'meanpressurem_2', 'meanpressurem_3',
         'maxhumidity_1', 'maxhumidity_2', 'maxhumidity_3', 'minhumidity_1',
         'minhumidity 2', 'minhumidity 3', 'maxtempm 1', 'maxtempm 2',
         'maxtempm_3', 'mintempm_1', 'mintempm_2', 'mintempm_3', 'maxdewptm_1',
         'maxdewptm_2', 'maxdewptm_3', 'mindewptm_1', 'mindewptm_2',
         'mindewptm 3', 'maxpressurem_1', 'maxpressurem_2', 'maxpressurem_3',
         'minpressurem_1', 'minpressurem_2', 'minpressurem_3', 'precipm_1',
         'precipm 2', 'precipm 3'],
        dtype='object')
In [27]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 679 entries, 2016-05-01 to 2018-03-11
Data columns (total 39 columns):
meantempm 679 non-null int64
                       679 non-null int64
maxtempm
                      679 non-null int64
mintempm
meantempm 1
                      678 non-null float64
meantempm 2
                      677 non-null float64
meantempm 3
                      676 non-null float64
meandewptm 1
                      678 non-null float64
meandewptm_2 677 non-null float64
meandewptm_3 676 non-null float64
meanpressurem_1 678 non-null float64
meanpressurem_2 677 non-null float64
meanpressurem_3 676 non-null float64
maxhumidity_1 678 non-null float64
maxhumidity_2 677 non-null float64
maxhumidity_1 678 non-null float64
minhumidity_1 678 non-null float64
minhumidity_2 677 non-null float64
minhumidity_2 677 non-null float64
minhumidity_3 676 non-null float64
minhumidity_3 676 non-null float64
meandewptm 2
                       677 non-null float64
minhumidity_3
                      676 non-null float64
maxtempm_1 maxtempm_2
                      678 non-null float64
                      677 non-null float64
maxtempm_3
                      676 non-null float64
mintempm_1
mintempm_2
mintempm_3
                      678 non-null float64
                      677 non-null float64
                      676 non-null float64
maxdewptm 1
                      678 non-null float64
maxdewptm 2
                      677 non-null float64
maxdewptm 3
                      676 non-null float64
                      678 non-null float64
mindewptm 1
                       677 non-null float64
mindewptm 2
mindewptm 3
                       676 non-null float64
maxpressurem 1
                       678 non-null float64
maxpressurem_1 678 non-null float64
maxpressurem_2 677 non-null float64
maxpressurem_3 676 non-null float64
minpressurem_1 678 non-null float64 minpressurem_2 677 non-null float64
minpressurem 3
                      676 non-null float64
                       678 non-null float64
precipm 1
                        677 non-null float64
precipm 2
precipm 3
                        676 non-null float64
dtypes: float64(36), int64(3)
memory usage: 232.2+ KB
In [28]:
df = df.apply(pd.to numeric, errors='coerce')
df.info()
```

select only the columns in to_keep and assign to df

<alage !nandae core frame DataFrame!>

```
meantempm 679 non-null int64
maxtempm
mintempm
                                  679 non-null int64
                                 679 non-null int64
mintempm meantempm_1
                               678 non-null float64
meantempm_2
meantempm_3
                                 677 non-null float64
                                 676 non-null float64
meandewptm_1 678 non-null float64 meandewptm_2 677 non-null float64 meandewptm_3 676 non-null float64
meanpressurem_1 678 non-null float64 meanpressurem_2 677 non-null float64
meanpressurem_2 677 non-null float64
meanpressurem_3 676 non-null float64
maxhumidity_1 678 non-null float64
maxhumidity_3 676 non-null float64
minhumidity_1 678 non-null float64
minhumidity_2 677 non-null float64
minhumidity_3 676 non-null float64
minhumidity_3 676 non-null float64
maxtempm_1 678 non-null float64
maxtempm_1 678 non-null float64
maxtempm_1 678 non-null float64
maxtempm_1
maxtempm_2
                                 677 non-null float64
maxtempm_3 676 non-null float64
mintempm_1 678 non-null float64
mintempm_2 677 non-null float64
mintempm_3 676 non-null float64
maxdewptm_1 678 non-null float64
maxdewptm_2 677 non-null float64
maxdewptm_3 676 non-null float64
mindewptm_1 678 non-null float64
mindewptm_2 677 non-null float64
mindewptm_3 676 non-null float64
mindewptm_3 676 non-null float64
maxpressurem_1 678 non-null float64
maxpressurem_2 677 non-null float64
maxpressurem_3 676 non-null float64
minpressurem_1 678 non-null float64
minpressurem_2 677 non-null float64
minpressurem_2 677 non-null float64
minpressurem_3 676 non-null float64
minpressurem_3 676 non-null float64
minpressurem_3 676 non-null float64
precipm_1 678 non-null float64
maxtempm_3
                                 676 non-null float64
precipm_1
                                  678 non-null float64
dtypes: float64(36), int64(3)
memory usage: 232.2+ KB
 In [29]:
 # Call describe on df and transpose it due to the large number of columns
 spread = df.describe().T
 # precalculate interquartile range for ease of use in next calculation
 IQR = spread['75%'] - spread['25%']
 # create an outliers column which is either 3 IQRs below the first quartile or
 # 3 IQRs above the third quartile
 spread['outliers'] = (spread['min']<(spread['25%']-(3*IQR)))|(spread['max'] > (spread['7
 5%']+3*IQR))
 # just display the features containing extreme outliers
 spread.ix[spread.outliers,]
 C:\python\envs\tensorflow\lib\site-packages\ipykernel launcher.py:12: DeprecationWarning:
 .ix is deprecated. Please use
 .loc for label based indexing or
 .iloc for positional indexing
```

http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated

Data columns (total 39 columns):

See the documentation here:

if sys.path[0] == '':

Out[29]:

Index: 679 entries, 2016-05-01 to 2018-03-11

	count	mean	std	min	25%	50%	75%	max	outliers
mindewptm_1	678.0	7.454277	11.696310	-94.0	0.0	6.0	18.0	25.0	True
mindewptm_2	677.0	7.465288	11.701441	-94.0	0.0	6.0	18.0	25.0	True
mindewptm_3	676.0	7.477811	11.705565	-94.0	0.0	6.0	18.0	25.0	True
precipm_1	678.0	1.246903	5.428048	0.0	0.0	0.0	0.0	57.0	True
precipm_2	677.0	1.248744	5.431849	0.0	0.0	0.0	0.0	57.0	True
precipm_3	676.0	1.250592	5.435659	0.0	0.0	0.0	0.0	57.0	True

In [30]:

```
%matplotlib inline
plt.rcParams['figure.figsize'] = [14, 8]
df.maxhumidity_1.hist()
plt.title('Distribution of maxhumidity_1')
plt.xlabel('maxhumidity_1')
plt.show()
```


In [31]:

```
df.minpressurem_1.hist()
plt.title('Distribution of minpressurem_1')
plt.xlabel('minpressurem_1')
plt.show()
```


In [32]:

```
# iterate over the precip columns
for precip_col in ['precipm_1', 'precipm_2', 'precipm_3']:
    # create a boolean array of values representing nans
    missing_vals = pd.isnull(df[precip_col])
    df[precip_col][missing_vals] = 0

C:\python\envs\tensorflow\lib\site-packages\ipykernel_launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
"""
```

In [33]:

```
df = df.dropna()
```

In [34]:

```
df.info()
```

```
Index: 676 entries, 2016-05-04 to 2018-03-11
Data columns (total 39 columns):
                   676 non-null int64
meantempm
maxtempm
                    676 non-null int64
mintempm
                    676 non-null int64
meantempm_1
                    676 non-null float64
meantempm_2
                    676 non-null float64
meantempm_3
                   676 non-null float64
meandewptm_1
                    676 non-null float64
meandewptm 2
                    676 non-null float64
                    676 non-null float64
meandewptm 3
                    676 non-null float64
meanpressurem 1
meanpressurem 2
                    676 non-null float64
meanpressurem 3
                    676 non-null float64
                    676 non-null float64
maxhumidity 1
{\tt maxhumidity\_2}
                    676 non-null float64
maxhumidity 3
                    676 non-null float64
                    676 non-null float64
minhumidity 1
{\tt minhumidity\_2}
                    676 non-null float64
                    676 non-null float64
minhumidity_3
                    676 non-null float64
maxtempm 1
                    676 non-null float64
maxtempm 2
maxtempm 3
                    676 non-null float64
                    676 non-null float64
mintempm 1
mintempm_2
                    676 non-null float64
mintempm_3
                    676 non-null float64
                   676 non-null float64
maxdewptm 1
                    676 non-null float64
maxdewptm_2
                    676 non-null float64
maxdewptm 3
                    676 non-null float64
mindewptm 1
mindewptm 2
                    676 non-null float64
                    676 non-null float64
mindewptm 3
```

<class 'pandas.core.frame.DataFrame'>

```
maxpressurem_1 6/6 non-null float64
maxpressurem_2 676 non-null float64
maxpressurem_3 676 non-null float64
minpressurem_1 676 non-null float64
minpressurem_2 676 non-null float64
minpressurem_3 676 non-null float64
precipm_1 676 non-null float64
precipm_2 676 non-null float64
precipm_3 676 non-null float64
dtypes: float64(36), int64(3)
memory usage: 211.2+ KB
In [35]:

df.to_csv('Weather.csv')
```

LINEAR REGRESSION MODEL

```
In [1]:
```

```
import pandas as pd
df = pd.read_csv(r'C:\Users\New\Desktop\Python Project\Weather.csv').set_index('date')
```

In [2]:

```
df.corr()[['meantempm']].sort_values('meantempm')
```

Out[2]:

	meantempm
minpressurem_1	-0.830438
minpressurem_2	-0.809432
minpressurem_3	-0.795442
meanpressurem_1	-0.794987
meanpressurem_2	-0.776774
maxpressurem_1	-0.764999
meanpressurem_3	-0.764715
maxpressurem_2	-0.745532
maxpressurem_3	-0.732154
maxhumidity_1	-0.254148
maxhumidity_2	-0.232007
maxhumidity_3	-0.214156
precipm_1	0.032026
precipm_2	0.048588
precipm_3	0.077058
minhumidity_1	0.085576
minhumidity_2	0.092412
minhumidity_3	0.094188
mindewptm_3	0.382905
mindewptm_2	0.400483
mindewptm_1	0.412313
meandewptm_3	0.469458
meandewptm_2	0.479336
meandewptm_1	0.492208

maxaewptm_3	v.572555 meantempm
maxdewptm_2	0.575732
maxdewptm_1	0.588225
mintempm_3	0.887204
maxtempm_3	0.892415
mintempm_2	0.903810
maxtempm_2	0.912651
meantempm_3	0.921327
mintempm_1	0.930626
meantempm_2	0.939371
maxtempm_1	0.940667
maxtempm	0.959088
meantempm_1	0.966986
mintempm	0.968887
meantempm	1.000000

In [3]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 676 entries, 2016-05-04 to 2018-03-11
Data columns (total 39 columns):
                     Non-Null Count
 # Column
                                    Dtype
0
    meantempm
                     676 non-null
                                     int64
1
    maxtempm
                     676 non-null
                                    int64
    mintempm
                     676 non-null
                                     int64
 3
   meantempm 1
                     676 non-null
                                     float64
                     676 non-null
   meantempm 2
                                     float64
 5
    meantempm 3
                     676 non-null
                                     float64
 6
   meandewptm 1
                     676 non-null
                                     float64
 7
    meandewptm_2
                     676 non-null
                                     float64
 8
    meandewptm 3
                     676 non-null
                                     float64
    meanpressurem 1 676 non-null
 9
                                     float64
10 meanpressurem 2 676 non-null
                                     float64
   meanpressurem 3 676 non-null
11
                                     float64
12
    maxhumidity_1
                      676 non-null
                                     float64
13
                     676 non-null
                                     float64
    maxhumidity_2
    maxhumidity_3
                     676 non-null
14
                                     float64
15 minhumidity_1
                     676 non-null
                                     float64
16 minhumidity_2
                     676 non-null
                                     float64
                     676 non-null
17
    minhumidity_3
                                     float64
                     676 non-null
                                     float64
18 maxtempm 1
19 maxtempm 2
                     676 non-null
                                     float64
20 maxtempm_3
                    676 non-null
                                     float64
21
    mintempm 1
                    676 non-null
                                     float64
22 mintempm 2
                    676 non-null
                                     float64
23 mintempm 3
                    676 non-null
                                     float64
24 maxdewptm 1
                     676 non-null
                                     float64
25 maxdewptm_2
                     676 non-null
                                     float64
26 maxdewptm 3
                     676 non-null
                                     float64
27
    mindewptm 1
                     676 non-null
                                     float64
28 mindewptm 2
                     676 non-null
                                     float64
 29
    mindewptm 3
                      676 non-null
                                     float64
 30 maxpressurem 1
                      676 non-null
                                     float64
 31
    maxpressurem 2
                      676 non-null
                                     float64
 32 maxpressurem 3
                      676 non-null
                                     float64
 33 minpressurem_1
                      676 non-null
                                     float64
 34 minpressurem 2
                      676 non-null
                                     float64
 35 minpressurem 3
                      676 non-null
                                     float64
 36
                      676 non-null
                                     float64
    precipm 1
 37
    precipm 2
                      676 non-null
                                     float64
 38
                      676 non-null
    precipm 3
                                     float64
```

```
dtypes: float64(36), int64(3)
memory usage: 211.2+ KB
In [4]:
df.shape
Out[4]:
(676, 39)
In [5]:
df.size
Out[5]:
26364
In [6]:
list(df.columns)
Out[6]:
['meantempm',
 'maxtempm',
 'mintempm',
 'meantempm 1',
 'meantempm 2',
 'meantempm_3',
 'meandewptm_1',
 'meandewptm 2',
 'meandewptm_3',
 'meanpressurem 1',
 'meanpressurem 2',
 'meanpressurem 3',
 'maxhumidity 1',
 'maxhumidity_2',
 'maxhumidity 3',
 'minhumidity_1',
 'minhumidity_2',
 'minhumidity 3',
 'maxtempm_1',
 'maxtempm 2'
 'maxtempm 3',
 'mintempm 1',
 'mintempm 2',
 'mintempm 3',
 'maxdewptm_1',
 'maxdewptm_2',
 'maxdewptm_3',
 'mindewptm_1',
 'mindewptm 2',
 'mindewptm 3',
 'maxpressurem 1',
 'maxpressurem 2',
 'maxpressurem 3',
 'minpressurem_1',
 'minpressurem_2',
 'minpressurem 3',
 'precipm_1',
 'precipm 2',
 'precipm 3']
In [7]:
df.describe(include='all')
Out[7]:
```

count	mezeitetooto	GASTEST DOOO	67 81 58000 00	meante.mmm01	meagyte.gygygg@	meagyte.gygyggog	meandwygotooot	meandwynotro@
mean	26.053254	32.523669	19.630178	26.066568	26.081361	26.093195	11.995562	11.995562
std	6.208964	5.987966	6.825827	6.218491	6.230216	6.237655	8.731127	8.731127
min	10.000000	18.000000	3.000000	10.000000	10.000000	10.000000	-10.000000	-10.000000
25%	20.000000	28.000000	13.000000	20.000000	20.000000	20.000000	5.000000	5.000000
50%	28.000000	33.000000	22.000000	28.000000	28.000000	28.000000	10.000000	10.000000
75%	30.000000	37.000000	25.000000	30.000000	30.000000	30.000000	21.000000	21.000000
max	38.000000	46.000000	32.000000	38.000000	38.000000	38.000000	26.000000	26.000000

```
8 rows x 39 columns
In [8]:
predictors = ['meantempm 1',
                               'meantempm 2',
                                                'meantempm 3',
                                                'mintempm 3',
              'mintempm 1',
                               'mintempm 2',
               'meandewptm_1', 'meandewptm_2', 'meandewptm_3',
               'maxdewptm_1', 'maxdewptm_2',
                                                'maxdewptm_3',
                                                'mindewptm_3',
               'mindewptm_1',
                              'mindewptm_2',
               'maxtempm 1',
                               'maxtempm \overline{2}',
                                                'maxtempm 3']
df2 = df[['meantempm'] + predictors]
```

Visualizing the Relationships

```
In [9]:
```

```
#plotting the correlation
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize = (10,10))
sns.heatmap(df2.corr(),annot=True)
plt.show()
```

```
- 1.0
  meantempm - 1 0.97 0.94 0.92 0.93 0.9 0.89 0.49 0.48 0.47 0.59 0.58 0.57 0.41 0.4 0.38 0.94 0.91 0.89
 meantempm 1 -0.97 1 0.97 0.94 0.97 0.93 0.9 0.5 0.49 0.48 0.6 0.59 0.57 0.42 0.41 0.4 0.96 0.94 0.91
 meantempm 2 -0.94 0.97 1 0.97 0.95 0.97 0.93 0.52 0.5 0.48 0.62 0.6 0.58 0.43 0.42 0.41 0.92 0.96 0.94
                                                                                                                   - 0.9
 meantempm 3 -0.92 0.94 0.97 1 0.93 0.95 0.97 0.52 0.51 0.5 0.62 0.61 0.6 0.44 0.43 0.42 0.89 0.92 0.96
  mintempm 1 -0.93 0.97 0.95 0.93 1 0.96 0.93 0.64 0.62 0.61 0.72 0.7 0.68 0.55 0.54 0.52 0.87 0.87 0.86
                                                                                                                   - 0.8
  mintempm 2 - 0.9 0.93 0.97 0.95 0.96 1 0.96 0.64 0.63 0.62 0.72 0.72 0.7 0.55 0.55 0.53 0.84 0.87 0.87
  mintempm 3 -0.89 0.9 0.93 0.97 0.93 0.96 1 0.64 0.64 0.63 0.72 0.72 0.71 0.54 0.55 0.54 0.81 0.84 0.87
meandewptm 1 -0.49 0.5 0.52 0.52 0.64 0.64 0.64 1 0.97 0.93 0.96 0.94 0.91 0.9 0.86 0.82 0.31 0.33 0.35
                                                                                                                   - 0.7
meandewptm 2 -0.48 0.49 0.5 0.51 0.62 0.63 0.64 0.97 1 0.97 0.95 0.96 0.94 0.86 0.9 0.86 0.3 0.31 0.33
meandewptm 3 -0.47 0.48 0.48 0.5 0.61 0.62 0.63 0.93 0.97 1 0.91 0.95 0.96 0.82 0.86 0.9 0.29 0.29 0.3
                                                                                                                   - 0.6
 maxdewptm 1 -0.59 0.6 0.62 0.62 0.72 0.72 0.72 0.96 0.95 0.91 1 0.94 0.91 0.84 0.84 0.8 0.43 0.44 0.46
 maxdewptm 2 -0.58 0.59 0.6 0.61 0.7 0.72 0.72 0.94 0.96 0.95 0.94 1 0.94 0.82 0.84 0.84 0.41 0.42 0.44
                                                                                                                   - 0.5
 maxdewptm 3 -0.57 0.57 0.58 0.6 0.68 0.7 0.71 0.91 0.94 0.96 0.91 0.94 1 0.78 0.82 0.84 0.4 0.41 0.42
 mindewptm 1 -0.41 0.42 0.43 0.44 0.55 0.55 0.54 0.9 0.86 0.82 0.84 0.82 0.78 1 0.77 0.73 0.25 0.27 0.28
 mindewptm 2 - 0.4 0.41 0.42 0.43 0.54 0.55 0.55 0.86 0.9 0.86 0.84 0.84 0.82 0.77 1 0.77 0.23 0.25 0.27
                                                                                                                   - 0.4
 mindewptm 3 -0.38 0.4 0.41 0.42 0.52 0.53 0.54 0.82 0.86 0.9 0.8 0.84 0.84 0.73 0.77 1 0.23 0.23 0.24
  maxtempm 1 -0.94 0.96 0.92 0.89 0.87 0.84 0.81 0.31 0.3 0.29 0.43 0.41 0.4 0.25 0.23 0.23 1 0.95 0.91
                                                                                                                   - 0.3
  maxtempm 2 -0.91 0.94 0.96 0.92 0.87 0.87 0.84 0.33 0.31 0.29 0.44 0.42 0.41 0.27 0.25 0.23 0.95 1 0.95
```

```
maxtempm_3 -0.89 0.91 0.94 0.96 0.86 0.87 0.8
                                                                                                                                                                    meandewptm 3
                                                                                                                                                                                             maxdewptm_2
                                                                                                                                                                                                          maxdewptm_3
                                                                                                                                                                                                                                    mindewptm 2
                                                                                                                                                                                                                                                 mindewptm_3
                                                                                                                                                                                                                                                                                          maxtempm 3
                                                                                                                                                                                                                                                              maxtempm_1
                                                                                                                                                                                                                                                                             maxtempm 2
                                             meantempm
                                                                                    meantempm 3
                                                                                                              mintempm 2
                                                                                                                            mintempm 3
                                                                                                                                                      meandewptm 2
                                                                                                                                                                                maxdewptm 1
                                                                                                                                                                                                                       mindewptm 1
                                                          meantempm 1
                                                                      meantempm 2
                                                                                                 mintempm 1
                                                                                                                                          meandewptm_1
```

In [10]:

```
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
```

In [11]:

```
%matplotlib inline
# manually set the parameters of the figure to and appropriate size
plt.rcParams['figure.figsize'] = [16, 22]
# call subplots specifying the grid structure we desire and that
# the y axes should be shared
fig, axes = plt.subplots(nrows=6, ncols=3, sharey=True)
# Since it would be nice to loop through the features in to build this plot
# let us rearrange our data into a 2D array of 6 rows and 3 columns
arr = np.array(predictors).reshape(6, 3)
# using enumerate to loop over the arr 2D array of rows and columns
# and create scatter plots of each meantempm vs each feature
for row, col arr in enumerate(arr):
    for col, feature in enumerate(col arr):
        axes[row, col].scatter(df2[feature], df2['meantempm'])
        if col == 0:
            axes[row, col].set(xlabel=feature, ylabel='meantempm')
        else:
            axes[row, col].set(xlabel=feature)
plt.show()
```


In [12]:

```
# import the relevant module
import statsmodels.api as sm

# separating our my predictor variables (X) from my outcome variable y
X = df2[predictors]
y = df2['meantempm']

# Adding a constant to the predictor variable set to represent the Bo intercept
X = sm.add_constant(X)
```

In [13]:

```
# (1) selecting a significance value
alpha = 0.05

# (2) Fitting the model
model = sm.OLS(y, X).fit()

# (3) evaluating the coefficients' p-values
model.summary()
```

Out[13]:

OLS Regression Results

Dep. Variable:	meantempm	R-squared:	0.945
Model:	OLS	Adj. R-squared:	0.943
Method:	Least Squares	F-statistic:	626.4
Date:	Fri, 04 Dec 2020	Prob (F-statistic):	0.00
Time:	22:38:05	Log-Likelihood:	-1213.1
No. Observations:	676	AIC:	2464.
Df Residuals:	657	BIC:	2550.
Df Model:	18		
Covariance Type:	nonrobust		

	coef	std err	t	P>ItI	[0.025	0.975]
const	-1.2438	0.553	-2.247	0.025	-2.331	-0.157
meantempm_1	0.0882	0.163	0.542	0.588	-0.231	0.408
meantempm_2	0.2695	0.163	1.656	0.098	-0.050	0.589
meantempm_3	0.1839	0.163	1.125	0.261	-0.137	0.505
mintempm_1	0.2278	0.089	2.573	0.010	0.054	0.402
mintempm_2	-0.1240	0.090	-1.372	0.170	-0.301	0.053
mintempm_3	-0.0101	0.088	-0.116	0.908	-0.182	0.162
meandewptm_1	0.0769	0.040	1.931	0.054	-0.001	0.155
meandewptm_2	-0.0397	0.050	-0.793	0.428	-0.138	0.059
meandewptm_3	-0.0190	0.044	-0.434	0.665	-0.105	0.067
maxdewptm_1	-0.0470	0.037	-1.256	0.210	-0.121	0.027
maxdewptm_2	0.0018	0.038	0.047	0.962	-0.073	0.077
maxdewptm_3	0.1017	0.037	2.761	0.006	0.029	0.174
mindewptm_1	-0.0055	0.011	-0.488	0.626	-0.028	0.017
mindewptm_2	0.0034	0.011	0.298	0.766	-0.019	0.025
mindewptm_3	-0.0148	0.011	-1.316	0.189	-0.037	0.007
maxtempm_1	0.6232	0.089	7.016	0.000	0.449	0.798
maxtempm_2	-0.2539	0.093	-2.729	0.007	-0.437	-0.071
maxtempm_3	-0.0518	0.090	-0.574	0.566	-0.229	0.125
Omnibus:	89.268	Durbin	-Watsoı	n: 2	2.040	
Prob(Omnibus):	0.000	Jarque-l	Bera (JB): 267	7.497	
Skew:	-0.639		Prob(JB): 8.20	e-59	
Kurtosis:	5.805	C	Cond. No).	890.	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [14]:

```
# (4) - Using pandas drop function to remove this column from X
X = X.drop('meandewptm_3', axis=1)
# (5) Fitting the model
model = sm.OLS(y, X).fit()
model.summary()
```

Out[14]:

OLS Regression Results

Dep. Variable:	meantempm	R-squared:	0.945
Model:	OLS	Adj. R-squared:	0.944
Method:	Least Squares	F-statistic:	664.1
Date:	Fri, 04 Dec 2020	Prob (F-statistic):	0.00
Time:	22:38:22	Log-Likelihood:	-1213.2
No. Observations:	676	AIC:	2462.
Df Residuals:	658	BIC:	2544.
Df Model:	17		

Covariance Type	e:	nonrobus	st			
	coef	std err	t	P>ltl	[0.025	0.975]
const	-1.2578	0.552	-2.278	0.023	-2.342	-0.174
meantempm_1	0.0874	0.163	0.537	0.591	-0.232	0.407
meantempm_2	0.2706	0.163	1.664	0.097	-0.049	0.590
meantempm_3	0.1820	0.163	1.114	0.266	-0.139	0.503
mintempm_1	0.2291	0.088	2.591	0.010	0.055	0.403
mintempm_2	-0.1261	0.090	-1.399	0.162	-0.303	0.051
mintempm_3	-0.0095	0.087	-0.109	0.913	-0.181	0.162
meandewptm_1	0.0777	0.040	1.954	0.051	-0.000	0.156
meandewptm_2	-0.0481	0.046	-1.043	0.297	-0.139	0.042
maxdewptm_1	-0.0469	0.037	-1.253	0.211	-0.120	0.027
maxdewptm_2	0.0019	0.038	0.051	0.959	-0.073	0.077
maxdewptm_3	0.0907	0.027	3.405	0.001	0.038	0.143
mindewptm_1	-0.0056	0.011	-0.494	0.621	-0.028	0.017
mindewptm_2	0.0035	0.011	0.309	0.758	-0.019	0.026
mindewptm_3	-0.0170	0.010	-1.696	0.090	-0.037	0.003
maxtempm_1	0.6232	0.089	7.021	0.000	0.449	0.798
maxtempm_2	-0.2549	0.093	-2.742	0.006	-0.437	-0.072
maxtempm_3	-0.0472	0.090	-0.527	0.598	-0.223	0.129
Omnibus:	90.365	Durbin	-Watsoı	n: 2	2.042	
Prob(Omnibus):	0.000	Jarque-E	Bera (JB): 274	1.440	
Skew:	-0.642	-	Prob(JB	-	ie-60	
Kurtosis:	5.845	(Cond. No).	879.	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [15]:

```
model = sm.OLS(y, X).fit()
model.summary()
```

Out[15]:

OLS Regression Results

Dep. Variable:	meantempm	R-squ	uared:	0.945
Model:	OLS	Adj. R-squ	ared:	0.944
Method:	Least Squares	F-sta	tistic:	664.1
Date:	Fri, 04 Dec 2020	Prob (F-stat	tistic):	0.00
Time:	22:38:36	Log-Likeli	hood:	-1213.2
No. Observations:	676	i	AIC:	2462.
Df Residuals:	658	1	BIC:	2544.
Df Model:	17	•		
Covariance Type:	nonrobust	:		
	coef std err	t P>ltl	[0.025	0.975]
const -	1.2578 0.552	-2.278 0.023	-2.342	-0.174

meantempm_1	0.0874	0.163	0.537	0.591	-0.232	0.407
meantempm_2	0.2706	0.163	1.664	0.097	-0.049	0.590
meantempm_3	0.1820	0.163	1.114	0.266	-0.139	0.503
mintempm_1	0.2291	0.088	2.591	0.010	0.055	0.403
mintempm_2	-0.1261	0.090	-1.399	0.162	-0.303	0.051
mintempm_3	-0.0095	0.087	-0.109	0.913	-0.181	0.162
meandewptm_1	0.0777	0.040	1.954	0.051	-0.000	0.156
meandewptm_2	-0.0481	0.046	-1.043	0.297	-0.139	0.042
maxdewptm_1	-0.0469	0.037	-1.253	0.211	-0.120	0.027
maxdewptm_2	0.0019	0.038	0.051	0.959	-0.073	0.077
maxdewptm_3	0.0907	0.027	3.405	0.001	0.038	0.143
mindewptm_1	-0.0056	0.011	-0.494	0.621	-0.028	0.017
mindewptm_2	0.0035	0.011	0.309	0.758	-0.019	0.026
mindewptm_3	-0.0170	0.010	-1.696	0.090	-0.037	0.003
maxtempm_1	0.6232	0.089	7.021	0.000	0.449	0.798
maxtempm_2	-0.2549	0.093	-2.742	0.006	-0.437	-0.072
maxtempm_3	-0.0472	0.090	-0.527	0.598	-0.223	0.129
Omnibus:	90.365	Durbin	-Watsor	n: 2	2.042	
Prob(Omnibus):	0.000	Jarque-E	Bera (JB): 274	1.440	
Skew:	-0.642	ĺ	Prob(JB): 2.55	ie-60	
Kurtosis:	5.845	c	ond. No).	879.	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Using SciKit-Learn's LinearRegression Module to Predict the Weather

We are splitting the data into two parts i.e. 80% of the data is gonna be in the training model and the 20% of the data is going to be in the testing model and will predict the Apparent Temperature.

```
In [16]:
    from sklearn.model_selection import train_test_split

In [17]:

# firstly removing the const column because unlike statsmodels, SciKit-Learn will add that t in for us
X = X.drop('const', axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=12)
```

Showing the Actual Apparent Temperature and the predicted Apparent Temperature

```
In [19]:
```

```
from sklearn.linear_model import LinearRegression
```

```
In [20]:
```

```
# instantiating the regressor class
regressor = LinearRegression()

# fit the build the model by fitting the regressor to the training data
regressor.fit(X_train, y_train)

# making a prediction set using the test set
prediction = regressor.predict(X_test)

dt = pd.DataFrame({'Actual':y_test, 'Predicted': prediction})

dt
```

Out[20]:

Actual Predicted

date		
2016-05-15	36	34.597629
2017-06-29	28	28.671393
2016-08-13	28	26.986263
2017-01-14	12	13.160377
2017-02-27	22	22.175811
2017-05-30	31	28.871915
2018-02-13	19	17.985989
2016-07-26	30	30.269302
2017-02-09	17	17.739589
2017-02-05	21	20.416324

136 rows × 2 columns

Calculating the error in prediction

The Median Absolute Error: 0.91 degrees celsius

In [21]:

```
# Evaluating the prediction accuracy of the model
from sklearn.metrics import mean_absolute_error, median_absolute_error
print("The Explained Variance: %.2f" % regressor.score(X_test, y_test))
print("The Mean Absolute Error: %.2f degrees celsius" % mean_absolute_error(y_test, prediction))
print("The Median Absolute Error: %.2f degrees celsius" % median_absolute_error(y_test, prediction))
The Explained Variance: 0.95
The Mean Absolute Error: 1.11 degrees celsius
```