Problemi sul secondo principio della termodinamica (1)

1. Una macchina termica lavora utilizzando n=2 moli di un gas perfetto monoatomico. Il ciclo compiuto dal gas è costituito dalle seguenti trasformazioni:

AB: espansione isoterma reversibile alla temperature $T_A = 300 \text{ K}$;

BC: espansione adiabatica reversibile fino alla temperatura $T_C = 250 \text{ K}$;

CD: compressione isobara in contatto termico con un serbatoio alla temperatura $T_D=100~{\rm K};$

DA: riscaldamento isocoro in contatto termico con un serbatoio alla temperatura T_A . Determinare:

- a) la variazione di entropia del gas nelle trasformazioni non adiabatiche: ΔS_{CD} , ΔS_{DA} e ΔS_{AB} ;
- b) il rendimento η del ciclo;
- c) la variazione di entropia dell'universo nel ciclo $\Delta S_{U,ciclo}$.
- 2. Una certa quantità di gas ideale monoatomico è in equilibrio alla temperatura $T_1=290~\rm K$ dentro un contenitore cilindrico di volume $V_1=0.02~\rm m^3$ e sezione $S=0.1~\rm m^2$. La base superiore è mobile priva di attrito e su di essa è posata una massa $m=500~\rm kg$ (la massa della base superiore è trascurabile rispetto a m); l'ambiente esterno si trova alla pressione $p_0=10^5~\rm Pa$. Il contenitore cilindrico viene spostato e posto in contatto termico con un serbatoio alla temperatura $T_2=410~\rm K$, e il gas si porta all'equilibrio occupando un volume V_2 . Determinare:
 - a) il lavoro W compito dal gas;
 - b) la variazione di entropia dell'universo ΔS_U .