Α

1. Za cirkuliranje zraka u izoliranoj prostoriji koristi se ventilator snage 3,73 kW i efikasnosti 90%. Koliko se promijeni unutrašnja energija u prostoriji nakon 60 minuta rada? Motor ventilatora je smješten izvan prostorije.

 $\Delta U = 12,1 \text{ MJ},$

2. Pet stotina cm³ zraka na 800 °C i 6 MPa izotermno expandira do tlaka od 200 kPa. Koliko iznosi promjena entropije zraka?

 Δ S = 9,51 J/K

3. Rankineov kružni proces ima protok pare 136 kg/s, tlaka 6,89 MPa, temperature 516 °C, entalpije 3449,3 kJ/kg i brzine 30,48 m/s na ulazu u turbinu s početnom, a izlazi brzinom 91,44 m/s, tlakom 20,68 kPa i entalpijom 2262,54 kJ/kg. Entalpija na ulazu u kotao iznosi 261,4 kJ/kg. Koliko iznosi stupanj iskorištenja kružnog procesa i snaga turbine?

 $\eta_{KP} = 0.369$

 $P_t = 160,8 \text{ MW}$

4. Rijeka izvire na nadmorskoj visini 700 m s protokom 400 m³/s. Protok se nadalje povećava do nadmorske visine 100 m po zakonu H [m] = 1300 - Q_{sr} [m³/s] ·3/2. Kolika je snaga derivacijske hidroelektrane za srednji protok, sa zahvatom na 400 m n.v., pregradom visine 100 m i postrojenjem na 200 m n.v. uz biološki minimum od 50 m³/s.

PDHE bmin = 1619 MW

5. Dnevni dijagram opterećenja nekog elektroenergetskog sustava određuju sljedeći podaci: P_{dmax} = 10 MW, P_{dv} = 6 MW, T_{dv} = 15 h, α = β = 0,7. Potrebno je nacrtati dnevni dijagram trajanja opterećenja i odrediti faktor dnevnog opterećenja.

 $M_d = 0.663$

Rješenja:

Α

U (V)

- **6.** Ukupni moment tromosti rotora električnog motora i radnog stroja iznosi J=4,5 kgm². Koliko energije treba dovesti da rotor dostigne brzinu: a) 1500 r/min,
 - b) 25000 r/min.

Kolika bi bila disipacija topline u oblogama kočnice kojom bismo taj rotor zakočili od brzine 30000 r/min do brzine 1000 r/min?

- 7. Skicirajte:
 - a) karakteristiku praznog hoda sinkronog generatora,
 - b) kratkog spoja sinkronog generatora.

Označite sve relevantne veličine, te napišite kolika je korisnost generatora u navedenim režimima rada.

- **8.** Nazivni podaci trofaznog asinkronog motora su 55 kW, 400 V, 50 Hz, 97 A, 1475 r/min, $\cos\varphi$ =0,89, gubici trenja i ventilacije 1,9 kW. Izračunajte za nazivno opterećenje:
 - a) snagu okretnog magnetskog polja.
 - b) gubitke u namotu rotora,
 - c) ukupne statorske gubitke,
 - d) moment na osovini,
 - e) snagu koju motor uzima iz mreže i
 - f) korisnost.
- **9.** Sinkroni trofazni generator 25MVA, 10kV, 50 Hz, $\cos\varphi$ =0,8, x_d =120%, 3000 r/min radi na krutu mrežu opterećen nazivnom strujom, pri faktoru snage $\cos\varphi$ =0,7 induktivno.
 - a) Skicirajte fazorski-vektorski dijagram za zadano pogonsko stanje,
 - b) izračunajte inducirani napon E₀ za zadano pogonsko stanje i
 - c) izračunajte kut opterećenja.
- **10.** Skicirajte punovalni trofazni diodni ispravljački most sadrži 6 energetskih dioda 200A, 400V. Svakom diodom teče struja kojoj je srednja vrijednost 150A. Skicirajte U-I karakteristiku takve diode i izračunajte (približni iznos) disipaciju električne snage (u Watima) na svih 6 dioda.

Korisnost je nula.

Korisnost je nula.

$$P_{12} = 57864 W$$

 $P_{01} = 1947 W$

$$\eta = 0.92$$

