

EGZAMIN MATURALNY W ROKU SZKOLNYM 2016/2017

FORMUŁA OD 2015 ("NOWA MATURA")

MATEMATYKAPOZIOM PODSTAWOWY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

MAJ 2017

Zadania zamknięte

Punkt przyznaje się za wskazanie poprawnej odpowiedzi.

Zadanie 1. (0-1)

Wymagania ogólne	Wymagania szczegółowe	Poprawna odp. (1 p.)	
II. Wykorzystanie i interpretowanie	1. Liczby rzeczywiste. Zdający oblicza potęgi o wykładnikach wymiernych i stosuje prawa	Wersja I	Wersja II
reprezentacji.	działań na potęgach o wykładnikach wymiernych (1.4).	A	В

Zadanie 2. (0-1)

II. Wykorzystanie i interpretowanie	Liczby rzeczywiste. Zdający posługuje się w obliczeniach pierwiastkami dowolnego stopnia i stosuje prawa działań na	Wersja I	Wersja II
reprezentacji.	pierwiastkach (1.3).	C	D

Zadanie 3. (0-1)

II. Wykorzystanie	1. Liczby rzeczywiste. Zdający wykorzystuje definicję logarytmu i stosuje w obliczeniach	Wersja I	Wersja II
i interpretowanie reprezentacji.	wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (1.6).	A	D

Zadanie 4. (0-1)

III. Modelowanie	Liczby rzeczywiste. Zdający wykonuje obliczenia procentowe, oblicza podatki, zysk	Wersja I	Wersja II
matematyczne.	z lokat (1.9).	A	В

Zadanie 5. (0-1)

II. Wykorzystanie i interpretowanie	3. Równania i nierówności. Zdający rozwiązuje równania kwadratowe z jedną	Wersja I	Wersja II
reprezentacji.	niewiadomą (3.4).	C	D

Zadanie 6. (0-1)

I. Wykorzystanie i tworzenie informacji.	3. Równania i nierówności. Zdający sprawdza, czy dana liczba rzeczywista jest rozwiązaniem	Wersja I	Wersja II
i tworzenie informacji.	równania lub nierówności (3.1).	D	C

Zadanie 7. (0-1)

I. Wykorzystanie i tworzenie informacji	3. Równania i nierówności. Zdający rozwiązuje nierówności pierwszego stopnia	Wersja I	Wersja II
i tworzeme informacji	z jedną niewiadomą (3.3).	D	A

Zadanie 8. (0-1)

I. Wykorzystanie	3. Równania i nierówności. Zdający korzysta z własności iloczynu przy rozwiązywaniu	Wersja I	Wersja II
i tworzenie informacji.	równań typu $x(x + 1)(x - 7) = 0$ (3.7).	C	A

Zadanie 9. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje się poznanymi metodami rozwiązywania równań	Wersja I	Wersja II
reprezentacji.	do obliczenia, dla jakiego argumentu funkcja przyjmuje daną wartość (4.2).	C	D

Zadanie 10. (0-1)

I. Wykorzystanie	4. Funkcje. Zdający interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci kanonicznej, w postaci	Wersja I	Wersja II
i tworzenie informacji	ogólnej i w postaci iloczynowej (o ile istnieje) (4.10).	C	A

Zadanie 11. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający szkicuje wykresy funkcji	Wersja I	Wersja II
reprezentacji.	wykładniczych dla różnych podstaw (4.14).	D	В

Zadanie 12. (0-1)

III. Modelowanie	5. Ciągi. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i> początkowych wyrazów ciągu	Wersja I	Wersja II
matematyczne.	arytmetycznego (5.3).	В	C

Zadanie 13. (0-1)

III. Modelowanie	5. Ciągi. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i> początkowych wyrazów ciągu	Wersja I	Wersja II
matematyczne.	geometrycznego (5.4).	A	В

Zadanie 14. (0-1)

II. Wykorzystanie	6. Trygonometria. Zdający stosuje proste zależności między funkcjami trygonometrycznymi: $\sin^2 \alpha + \cos^2 \alpha = 1$,	Wersja I	Wersja II
i interpretowanie reprezentacji.	$tg \alpha = \frac{\sin \alpha}{\cos \alpha} \text{ oraz } \sin(90^\circ - \alpha) = \cos \alpha \text{ (6.4)}.$	В	C

Zadanie 15. (0-1)

IV. Użycie i tworzenie	7. Planimetria. Zdający stosuje zależności	Wersja	Wersja
	między kątem środkowym i kątem wpisanym	I	II
strategii.	(7.1).	C	D

Zadanie 16. (0-1)

I. Wykorzystanie	7. Planimetria. Zdający rozpoznaje trójkąty podobne i wykorzystuje cechy podobieństwa	Wersja I	Wersja II
i tworzenie informacji.	trójkątów (7.3).	В	A

Zadanie 17. (0-1)

III. Modelowanie matematyczne.	7. Planimetria. Zdający korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych, w tym ze	Wersja I	Wersja II
	wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi (7.4).	C	D

Zadanie 18. (0-1)

II. Wykorzystanie i interpretowanie	6. Trygonometria. Zdający wykorzystuje definicje i wyznacza wartości funkcji sinus,	Wersja I	Wersja II
reprezentacji.	cosinus i tangens kątów o miarach od 0° do 180° (6.1).	В	C

Zadanie 19. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający bada równoległość i prostopadłość	I	II
reprezentacji.	prostych na podstawie ich równań kierunkowych (8.2).	D	A

Zadanie 20. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający oblicza odległość dwóch punktów	I	II
reprezentacji.	(8.6).	A	C

Zadanie 21. (0-1)

II. Wykorzystanie	G11. Bryły. Zdający oblicza pole powierzchni i objętość graniastosłupa prostego (G11.2).	Wersja I	Wersja II
i interpretowanie reprezentacji.	3. Równania i nierówności. Zdający rozwiązuje równania kwadratowe z jedną niewiadomą (3.4).	A	В

Zadanie 22. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający rozpoznaje w walcach i w stożkach kąt między odcinkami	Wersja I	Wersja II
reprezentacji.	oraz kąt między odcinkami i płaszczyznami (9.3).	В	C

Zadanie 23. (0-1)

II. Wykorzystanie i interpretowanie	G11. Bryły. Zdający oblicza pole powierzchni i objętość stożka (G11.2).	Wersja I	Wersja II
reprezentacji.	1 objętość stożka (G11.2).	D	A

Zadanie 24. (0-1)

II. Wykorzystanie i interpretowanie	G9. Statystyka opisowa i wprowadzenie do rachunku prawdopodobieństwa. Zdający	Wersja I	Wersja II
reprezentacji.	wyznacza średnią arytmetyczną i medianę zestawu danych (G9.4).	D	В

Zadanie 25. (0-1)

III. Modelowanie matematyczne.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka.	Wersja I	Wersja II
	Zdający oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa (10.3).	В	C

Ogólne zasady oceniania zadań otwartych

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 26. (0-2)

Przykładowe rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap rozwiązania polega na wyznaczeniu pierwiastków trójmianu kwadratowego $8x^2 - 72x$

Znajdujemy pierwiastki trójmianu kwadratowego $8x^2 - 72x$:

• podajemy je bezpośrednio, np. zapisując $x_1 = 0$, $x_2 = 9$ lub zaznaczając pierwiastki trójmianu na wykresie

albo

• obliczamy wyróżnik tego trójmianu, a następnie stosujemy wzory na pierwiastki:

$$\Delta = 72^2$$
, $x_1 = \frac{72 - 72}{16} = 0$, $x_2 = \frac{72 + 72}{16} = 9$.

Drugi etap rozwiązania polega na wyznaczeniu zbioru rozwiązań nierówności $8x^2 - 72x \le 0$. Podajemy zbiór rozwiązań nierówności: $0 \le x \le 9$ lub $\langle 0,9 \rangle$ lub $x \in \langle 0,9 \rangle$ np. odczytując go ze szkicu wykresu funkcji $f(x) = 8x^2 - 72x$.

Schemat punktowania

- zrealizuje pierwszy etap rozwiązania i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = 0$ i $x_2 = 9$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności,
 - o zaznaczy na wykresie miejsca zerowe funkcji $f(x) = 8x^2 72x$ i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności

albo

• realizując pierwszy etap błędnie wyznaczy pierwiastki (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np. popełni błąd

rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność.

- poda zbiór rozwiązań nierówności: $0 \le x \le 9$ lub $\langle 0,9 \rangle$ lub $x \in \langle 0,9 \rangle$ albo
 - poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów

Uwagi

- 1. Jeżeli zdający dzieli obie strony nierówności przez x, bez podania stosownych założeń, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji 1. etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Jeśli zdający wyznacza ujemną deltę trójmianu kwadratowego, to otrzymuje **0 punktów** za całe rozwiązanie.

Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Akceptujemy sytuację, gdy zdający poprawnie obliczy lub poda pierwiastki trójmianu $x_1 = 0$ i $x_2 = 9$ i zapisze, np. $x \in \langle -9, 0 \rangle$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in \langle 9, 0 \rangle$, to przyznajemy **2 punkty**.

Zadanie 27. (0-2)

Przykładowe rozwiązanie

Wyłączamy wspólny czynnik przed nawias $4^{2017} (1+4+4^2+4^3)$. Doprowadzamy liczbę do postaci $4^{2017} \cdot 5 \cdot 17$. Wnioskujemy, że dana liczba jest podzielna przez 17.

Schemat punktowania

Zdający otrzymuje 1 p.
gdy zapisze liczbę $4^{2017} + 4^{2018} + 4^{2019} + 4^{2020}$ w postaci iloczynu, w którym jeden z czynników
jest potęgą 4^k , gdzie $1985 \le k \le 2017$, np. $4^{2017} \left(1+4+4^2+4^3\right)$ i na tym poprzestanie lub
dalej popełnia błędy.
Zdający otrzymuje2 p.
gdy przeprowadzi poprawny dowód.

Zadanie 28. (0-2)

V. Rozumowanie i argumentacja.	G10. Figury płaskie. Zdający korzysta z faktu, że styczna do
	okręgu jest prostopadła do promienia poprowadzonego do
	punktu styczności (G10.3).
	SP9. Wielokąty, koła, okręgi. Zdający stosuje twierdzenie
	o sumie katów trójkąta (SP9.3).

Przykładowe rozwiązania

I sposób

Przyjmijmy oznaczenia jak na rysunku.

Prosta AB jest styczna w punkcie B do okręgu o środku R, więc $| \not < ABR | = 90^{\circ}$. Stąd

$$\delta = | \langle CBR | = 90^{\circ} - \beta$$
.

Trójkat BRC jest równoramienny, więc

$$| \angle BCR | = \delta = 90^{\circ} - \beta$$
.

Zatem

$$| \angle BRC | = \gamma = 180^{\circ} - 2(90^{\circ} - \beta) = 2\beta$$
.

Suma miar kątów czworokąta ABRP jest równa 360° , $| <\!\!<\!\!PAB| = 90^{\circ}$, więc

$$| \angle PAB | + | \angle ABR | + | \angle BRP | + | \angle RPA | = 360^{\circ},$$

czyli

$$90^{\circ}+90^{\circ}+2\beta+\alpha=360^{\circ},$$

 $\alpha+2\beta=180^{\circ},$
 $\alpha=180^{\circ}-2\beta.$

To kończy dowód.

II sposób

Z twierdzenia o kącie między styczną a cięciwą wynika, że $| \ll BRC | = \gamma = 2\beta$.

Ponieważ $| \not < ABR | = 90^\circ$ i $| \not < PAB | = 90^\circ$, więc czworokąt ABRP jest trapezem o podstawach AP i BR. Suma miar kątów przy ramieniu trapezu jest równa 180° , więc

$$\alpha+\gamma=180^{\circ}$$
,
 $\alpha+2\beta=180^{\circ}$.

Stąd α =180°-2 β . To kończy dowód.

III sposób

Prosta AB jest styczna w punkcie B do okręgu o środku R, więc $| \not < ABR | = 90^\circ$. Stąd $\delta = 90^\circ - \beta$.

Trójkąt BRC jest równoramienny, więc

$$| \angle BCR | = \delta = 90^{\circ} - \beta$$
.

Kąty BCR i PCB są przyległe, więc

$$\eta = 180^{\circ} - | < BCR | = 180^{\circ} - (90^{\circ} - \beta) = 90^{\circ} + \beta$$
.

Suma miar kątów czworokąta ABCP jest równa 360° , $| \ll PAB | = 90^{\circ}$, więc

$$| \not\sim PAB | + | \not\sim ABR | + | \not\sim BCP | + | \not\sim CPA | = 360^{\circ}$$
,

czyli

$$90^{\circ} + \beta + \eta + \alpha = 360^{\circ}$$
,
 $90^{\circ} + \beta + (90^{\circ} + \beta) + \alpha = 360^{\circ}$,
 $\alpha = 180^{\circ} - 2\beta$.

To kończy dowód.

IV sposób

Prosta AB jest styczna w punkcie B do okręgu o środku R, więc $| < ABR | = 90^{\circ}$.

Stad $\delta = 90^{\circ} - \beta$.

Trójkat BRC jest równoramienny, więc

$$| \angle BCR | = \delta = 90^{\circ} - \beta$$
.

Trójkat PAC jest równoramienny, więc

$$| \angle PAC | = | \angle PCA | = \varphi = \frac{180^{\circ} - \alpha}{2} = 90^{\circ} - \frac{\alpha}{2}.$$

Prosta AB jest styczna w punkcie A do okręgu o środku P, więc $| \not \sim PAB | = 90^\circ$. Stąd

$$| \ll CAB | = \psi = 90^{\circ} - \varphi = 90^{\circ} - \left(90^{\circ} - \frac{\alpha}{2} \right) = \frac{\alpha}{2}$$
.

Miara kąta ACB w trójkącie ABC jest równa

$$|\angle ACB| = 180^{\circ} - \beta - \psi = 180^{\circ} - \beta - \frac{\alpha}{2}$$

Suma miar kątów PCA, ACB i BCR jest równa 180°, więc

$$\begin{split} |\not\sim PCA| + |\not\sim ACB| + |\not\sim BCR| = 180^{\circ}, \\ \varphi + \left(180^{\circ} - \beta - \frac{\alpha}{2}\right) + \delta = 180^{\circ}, \\ 90^{\circ} - \frac{\alpha}{2} + \left(180^{\circ} - \beta - \frac{\alpha}{2}\right) + 90^{\circ} - \beta = 180^{\circ}, \\ \alpha = 180^{\circ} - 2\beta. \end{split}$$

To kończy dowód.

V sposób

Poprowadźmy przez punkt C wspólną styczną do obu okręgów. Niech S oznacza punkt jej przecięcia z prostą AB.

Z twierdzenia o kącie między styczną a cięciwą wynika, że

$$\psi = \frac{\alpha}{2}$$
.

Z twierdzenia o odcinkach stycznych wynika, że |AS| = |CS| = |BS|. Stąd wynika, że S jest środkiem okręgu opisanego na trójkącie ABC. Odcinek AB jest średnicą tego okręgu, więc trójkąt ABC jest prostokątny. Suma miar jego kątów ostrych jest równa 90° , czyli

$$\beta + \psi = 90^{\circ}.$$

$$\beta + \frac{\alpha}{2} = 90^{\circ},$$

$$\alpha = 180^{\circ} - 2\beta.$$

To kończy dowód.

Schemat punktowania

Zdający otrzymuje 1 p.

gdy zapisze układ warunków wystarczający do udowodnienia równości $\alpha = 180^{\circ} - 2\beta$, np.:

•
$$\delta = 90^{\circ} - \beta \ i \ 2\delta + \gamma = 180^{\circ} \ i \ \alpha + \gamma + 90^{\circ} + 90^{\circ} = 360^{\circ}$$

lub

•
$$\gamma = 2\beta i \alpha + \gamma = 180^{\circ}$$
,

lub

•
$$\delta = 90^{\circ} - \beta \text{ i } \eta = 180^{\circ} - \delta \text{ i } 90^{\circ} + \beta + \eta + \alpha = 360^{\circ},$$

lub

•
$$\delta = 90^{\circ} - \beta \text{ i } \varphi = 90^{\circ} - \frac{\alpha}{2} \text{ i } \psi = 90^{\circ} - \varphi \text{ i } 180^{\circ} - (\beta + \psi) = 180^{\circ} - (\varphi + \delta),$$

lub

•
$$\beta + \psi = 90^{\circ} \text{ i } \psi = \frac{\alpha}{2}$$

i na tym zakończy lub dalej popełnia błędy.

Zadanie 29. (0-4)

IV. Użycie i tworzenie strategii.

4. Funkcje. Zdający wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie (4.9).

Przykładowe rozwiązania

I sposób

Ponieważ $f(-6) = f(0) = \frac{3}{2}$, stąd wartość $p = \frac{-6+0}{2} = -3$.

Zatem $f(x) = a(x-p)^2 + q$ dla p = -3 i q = 6.

Obliczamy współczynnik a. Wiemy, że $f(0) = \frac{3}{2}$, zatem

$$a(0+3)^{2} + 6 = \frac{3}{2},$$

 $9a = -\frac{9}{2},$
 $a = -\frac{1}{2}.$

Odpowiedź: $a = -\frac{1}{2}$.

II sposób

Z treści zadania wynika, że $f(-6) = f(0) = \frac{3}{2}$:

$$\begin{cases} a(-6)^2 + b(-6) + c = \frac{3}{2} \\ a \cdot 0 - b \cdot 0 + c = \frac{3}{2} \end{cases}, \begin{cases} 36a - 6b + c = \frac{3}{2} \\ c = \frac{3}{2} \end{cases}, \begin{cases} b = 6a \\ c = \frac{3}{2} \end{cases}.$$

Obliczamy pierwszą współrzędną wierzchołka:

$$p = -\frac{b}{2a} = -\frac{6a}{2a} = -3.$$

Stąd wynika, że f(-3) = 6 i $f(x) = ax^2 + 6ax + \frac{3}{2}$. Obliczamy współczynnik a

$$a(-3)^{2} + 6a \cdot (-3) + \frac{3}{2} = 6,$$

$$-9a = \frac{9}{2},$$

$$a = -\frac{1}{2}.$$

Schemat punktowania

albo

• obliczy pierwszą współrzędną wierzchołka: np. $p = \frac{-6+0}{2} = -3$

• zapisze układ dwóch równań, np.:
$$\begin{cases} a(-6)^2 + b(-6) + c = \frac{3}{2} \\ a \cdot 0 - b \cdot 0 + c = \frac{3}{2}, \end{cases}$$

albo

- zapisze wzór funkcji f w postaci kanonicznej $f(x) = a(x-p)^2 + q$ oraz zapisze q = 6, albo
 - zapisze równanie $-\frac{\Delta}{4a} = 6$

i na tym poprzestanie lub dalej popełnia błędy.

- zapisze wzór funkcji f w postaci: $f(x) = a(x+3)^2 + 6$ albo
 - zapisze układ trzech równań z niewiadomymi a, b, c, np.:

$$\begin{cases} a(-6)^2 + b(-6) + c = \frac{3}{2} \\ a \cdot 0 - b \cdot 0 + c = \frac{3}{2} \\ -\frac{b^2 - 4ac}{4a} = 6 \end{cases}$$
 lub
$$\begin{cases} a(-6)^2 + b(-6) + c = \frac{3}{2} \\ a \cdot 0 - b \cdot 0 + c = \frac{3}{2} \\ a(-3)^2 + b(-3) + c = 6 \end{cases}$$

i na tym poprzestanie lub dalej popełnia błędy.

zapisze równanie z jedną niewiadomą a,

np.:
$$a(0+3)^2 + 6 = \frac{3}{2}$$
 lub $a(-3)^2 + 6a \cdot (-3) + \frac{3}{2} = 6$, lub $36a^2 + 18a = 0$

albo

• obliczy wartości *b* i *c*: b = -3, $c = \frac{3}{2}$

i na tym poprzestanie lub dalej popełnia błędy.

- 1. Jeżeli zdający w przedstawionym rozwiązaniu traktuje liczby -6 i 0 jako miejsca zerowe rozważanej przez siebie funkcji i przyjmuje, że druga współrzędna wierzchołka paraboli jest równa $4\frac{1}{2}$, to może otrzymać **4 punkty**, o ile w rozwiązaniu nie występują błędy.
- **2.** Jeżeli zdający w przedstawionym rozwiązaniu traktuje liczby –6 i 0 jako miejsca zerowe rozważanej przez siebie funkcji i przyjmuje, że druga współrzędna wierzchołka paraboli jest równa 6, to może otrzymać **1 punkt**, o ile poprawnie wyznaczy pierwszą współrzędną wierzchołka paraboli.

Zadanie 30. (0-2)

	G10. Figury płaskie. Zdający stosuje twierdzenie Pitagorasa
III. Modelowanie	(G10.7).
matematyczne.	3. Równania i nierówności. Zdający rozwiązuje równania
	kwadratowe z jedną niewiadomą (3.4).

Przykładowe rozwiązanie

Oznaczmy długość krótszej przyprostokątnej przez x. Wtedy dłuższa przyprostokątna ma długość x+14. Z twierdzenia Pitagorasa otrzymujemy

$$x^{2} + (x+14)^{2} = 26^{2}$$
,
 $x^{2} + x^{2} + 28x + 196 = 676$,
 $x^{2} + 14x - 240 = 0$

Stad

$$x = 10$$
 lub $x = -24$.

Drugie z rozwiązań odrzucamy, zatem długości boków trójkąta są równe: 10, 24, i 26, więc obwód jest równy 60 cm.

Schemat punktowania

• zapisze równanie kwadratowe z jedną niewiadomą, np.: $x^2 + (x+14)^2 = 26^2$, gdzie x jest długością krótszej przyprostokątnej albo

• zapisze układ równań, np.: $a^2 + b^2 = 26^2$ i b = a + 14, gdzie a jest długością krótszej oraz b długością dłuższej przyprostokątnej

i na tym poprzestanie lub dalej popełnia błędy.

- 1. Jeżeli zdający jedynie poda długości boków trójkąta: 10, 24, 26 i jego obwód: 60, to otrzymuje **1 punkt**.
- 2. Jeżeli zdający poda długości boków trójkąta: 10, 24, 26 i jego obwód: 60 oraz uzasadni, że rozważany trójkąt jest prostokątny, to otrzymuje **2 punkty**.
- 3. Jeśli zdający podaje w rozwiązaniu tylko liczby 10, 24, 26, to otrzymuje **0 punktów**.

Zadanie 31. (0-2)

III. Modelowanie	5. Ciągi. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i>
matematyczne.	początkowych wyrazów ciągu arytmetycznego (5.3).

Przykładowe rozwiązanie

Wyznaczamy różnicę r ciągu arytmetycznego.

W tym celu stosujemy wzory na sumę częściową $S_3 = 3a_1 + 3r = 33$ i $a_1 = 8$ lub zapisujemy równanie $a_1 + a_1 + r + a_1 + 2r = 33$.

Obliczamy r: r = 3.

Następnie obliczamy różnicę $a_{16}-a_{13}$, jako 3r lub po wyznaczeniu a_{16} i a_{13} , czyli $a_{16}=8+15\cdot 3=53$, $a_{13}=8+12\cdot 3=44$.

Zatem $a_{16} - a_{13} = 3r = 9$.

Schemat punktowania

- 1. Jeśli zdający przyjmuje n = 33 lub $a_3 = 33$ i nie przedstawia poprawnej metody obliczenia różnicy $a_{16} a_{13}$, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający poda wartość r = 3 i zapisze $a_{16} a_{13} = 3r = 9$, to otrzymuje 1 punkt.
- 3. Jeżeli zdający zamiast ciągu arytmetycznego rozważa ciąg geometryczny, to otrzymuje **0 punktów** za całe rozwiązanie.

Zadanie 32. (0-5)

IV. Użycie i tworzenie strategii.

8. Geometria na płaszczyźnie kartezjańskiej. Zdający wyznacza równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej) (8.1). Zdający oblicza współrzędne punktu przecięcia dwóch prostych (8.4).

Przykładowe rozwiązania

I sposób

Prosta AM przechodzi przez punkty A = (-4,0) i M = (2,9), więc jej równanie ma postać

$$y = \frac{9}{2+4}(x+4)$$
, czyli $y = \frac{3}{2}x+6$.

Prosta k o równaniu y = -2x + 10 przecina oś Ox w punkcie B, więc B = (5,0).

Zatem
$$|AB| = |5 - (-4)| = 9$$
.

Współrzędne punktu C obliczymy, rozwiązując układ równań:

$$y = \frac{3}{2}x + 6$$
 i $y = -2x + 10$.

Stad

$$\frac{3}{2}x + 6 = -2x + 10,$$

$$\frac{7}{2}x = 4,$$

$$x = \frac{8}{7}, \text{ a } y = \frac{3}{2} \cdot \frac{8}{7} + 6 = \frac{12}{7} + 6 = \frac{54}{7}$$

Zatem $C = \left(\frac{8}{7}, \frac{54}{7}\right)$. Wynika stąd, że wysokość h trójkąta ABC opuszczona z wierzchołka C

na podstawę AB jest równa $h = y_C = \frac{54}{7}$.

Zatem pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot |AB| \cdot h = \frac{1}{2} \cdot 9 \cdot \frac{54}{7} = \frac{243}{7} = 34\frac{5}{7}$$

II sposób

Wyznaczamy równanie prostej l równoległej do prostej k i przechodzącej przez punkt M = (2,9):

$$y = -2(x-2)+9$$
,
 $y = -2x+13$.

Niech N będzie punktem przecięcia prostej l z osią Ox, więc $N = \left(\frac{13}{2}, 0\right)$. Zatem

$$|AN| = \left|\frac{13}{2} - (-4)\right| = \frac{21}{2}$$
.

Prosta k o równaniu y = -2x + 10 przecina oś Ox w punkcie B, więc B = (5,0).

Zatem
$$|AB| = |5 - (-4)| = 9$$
.

Z równoległości prostych k i l wynika, że trójkąt ABC jest podobny do trójkąta ANM, a skala tego podobieństwa jest równa

$$s = \frac{|AB|}{|AN|} = \frac{9}{\frac{21}{2}} = \frac{18}{21} = \frac{6}{7}$$
.

Pole trójkata ANM jest równe

$$P_{ANM} = \frac{1}{2} |AN| \cdot 9 = \frac{1}{2} \cdot \frac{21}{2} \cdot 9 = \frac{21 \cdot 9}{4}$$

więc pole trójkąta ABC jest równe

$$P_{ABC} = s^2 \cdot P_{ANM} = \left(\frac{6}{7}\right)^2 \cdot \frac{21 \cdot 9}{4} = \frac{243}{7} = 34\frac{5}{7}.$$

Uwaga

Mając obliczone współrzędne wierzchołków trójkąta, możemy obliczyć jego pole, korzystając ze wzoru $P_{ABC} = \frac{1}{2} \cdot \left| (x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A) \right|$:

$$P_{ABC} = \frac{1}{2} \cdot \left| (5+4) \left(\frac{54}{7} - 0 \right) - 0 \cdot \left(\frac{8}{7} + 4 \right) \right| = \frac{1}{2} \cdot \left| 9 \cdot \frac{54}{7} \right| = \frac{243}{7} = 34 \frac{5}{7}.$$

III sposób

Prosta k o równaniu y = -2x + 10 przecina oś Ox w punkcie B, więc B = (5,0).

Zatem |AB| = |5 - (-4)| = 9.

Niech h = |CD|. Ponieważ współczynnik kierunkowy prostej k jest równy -2, więc

$$\left| DA \right| = \frac{1}{2}h.$$

Zatem $|AD| = 9 - \frac{1}{2}h$.

Współczynnik kierunkowy prostej AM jest równy $a_{AM} = \frac{9-0}{2-(-4)} = \frac{3}{2}$, ale $a_{AM} = \frac{|CD|}{|AD|}$, więc

$$\frac{|CD|}{|AD|} = \frac{3}{2},$$

$$\frac{h}{9 - \frac{1}{2}h} = \frac{3}{2},$$

$$2h = 27 - \frac{3}{2}h,$$

$$\frac{7}{2}h = 27,$$

$$h = \frac{54}{7}.$$

Pole trójkąta ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot |AB| \cdot h = \frac{1}{2} \cdot 9 \cdot \frac{54}{7} = \frac{243}{7} = 34\frac{5}{7}$$
.

Schemat punktowania

• wyznaczy współczynnik kierunkowy prostej AM: $a = \frac{3}{2}$

albo

• wyznaczy współrzędne punktu *B*: B = (5,0)

i na tym poprzestanie lub dalej popełnia błędy.

• zapisze równanie prostej AM: $y = \frac{3}{2}x + 6$

albo

• wyznaczy równanie prostej MN: y = -2x + 13 i zapisze, że trójkąty ABC i ANM są podobne,

albo

• zapisze zależność między długościami odcinków *CD* i *DA*: $\frac{|CD|}{|AD|} = \frac{3}{2}$

i na tym poprzestanie lub dalej popełnia błędy.

- obliczy długość podstawy AB trójkąta: |AB|=9 oraz zapisze równanie, z którego można wyznaczyć jedną ze współrzędnych punktu C albo
- obliczy współrzędne wierzchołka C: $C = \left(\frac{8}{7}, \frac{54}{7}\right)$ (lub drugą współrzędną tego punktu) i nie zapisze współrzędnych punktu B, albo

• obliczy skalę podobieństwa trójkąta *ABC* do trójkąta *ANM*: $s = \frac{6}{7}$ (lub skalę podobieństwa trójkąta *ANM* do trójkąta *ABC* : $s_1 = \frac{7}{6}$),

albo

• obliczy pole trójkąta *ANM*: $P_{ANM} = \frac{1}{2} \cdot \frac{21}{2} \cdot 9$ i zapisze, że $P_{ABC} = s^2 \cdot P_{ANM}$, gdzie *s* oznacza skalę podobieństwa trójkąta *ABC* do trójkąta *ANM*,

albo

• zapisze równanie z jedną niewiadomą, z którego można obliczyć wysokość trójkąta ABC, np.: $\frac{h}{9-\frac{1}{2}h} = \frac{3}{2}$

i na tym poprzestanie lub dalej popełnia błędy.

Rozwiązanie prawie pełne 4 p. Zdający

• obliczy drugą współrzędną wierzchołka C oraz długość podstawy AB trójkąta ABC: $y_C = \frac{54}{7}$, |AB| = 9

albo

• obliczy współrzędne wierzchołków *B* i *C*: B = (5,0), $C = \left(\frac{8}{7}, \frac{54}{7}\right)$,

albo

• obliczy skalę podobieństwa trójkąta ABC do trójkąta ANM: $s=\frac{6}{7}$ (lub skalę podobieństwa trójkąta ANM do trójkąta ABC: $s_1=\frac{7}{6}$) oraz pole trójkąta ANM: $P_{ANM}=\frac{1}{2}\cdot\frac{21}{2}\cdot 9$ i zapisze, że $P_{ABC}=s^2\cdot P_{ANM}$,

albo

• obliczy wysokość *CD* trójkąta *ABC*: $h = \frac{54}{7}$

i na tym poprzestanie lub dalej popełnia błędy.

Uwaga

Akceptujemy, jeżeli zdający poda pole trójkąta w przybliżeniu, np. 34,714.

Zadanie 33. (0-2)

	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa
III. Modelowanie	i kombinatoryka. Zdający oblicza prawdopodobieństwa
matematyczne.	w prostych sytuacjach, stosując klasyczną definicję
	prawdopodobieństwa (10.3).

Przykładowe rozwiązanie

Jest to model klasyczny i liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 90$.

Zbiór wszystkich zdarzeń elementarnych to zbiór wszystkich liczb naturalnych dwucyfrowych.

Niech A oznacza zdarzenie polegające na tym, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Zdarzeniu A sprzyjają następujące zdarzenia elementarne

$$A = \{12,15,18,21,24,27,30,33,36,39\}.$$

Stad |A| = 10.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{|A|}{|\Omega|} = \frac{10}{90} = \frac{1}{9}.$$

Odpowiedź: Prawdopodobieństwo zdarzenia, polegającego na tym, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3, jest równe $\frac{1}{9}$.

Schemat punktowania

• zapisze, że $|\Omega| = 90$

albo

- - wypisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu *A*: 12,15,18,21,24,27,30,33,36,39

i na tym poprzestanie lub dalej popełni błędy.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{10}{90} = \frac{1}{9}.$$

Uwaga

- 1. Jeżeli zdający błędnie zapisze wynik P(A) jako liczbę większą od 1 lub mniejszą od 0, to otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeżeli w przedstawionym rozwiązaniu zdający interpretuje zdarzenie elementarne jako rezultat wylosowania więcej niż jednej liczby, to za całe rozwiązanie otrzymuje **0 punktów**.
- 3. Jeżeli zdający w rozwiązaniu zapisze tylko $\frac{1}{9}$, to otrzymuje **0 punktów**.

Zadanie 34. (0-4)

IV. Użycie i tworzenie strategii.	9. Stereometria. Zdający rozpoznaje w graniastosłupach i ostrosłupach kąty między odcinkami (np. krawędziami, krawędziami i przekątnymi. (9.1) Zdający rozpoznaje w graniastosłupach i ostrosłupach kąt między odcinkami i płaszczyznami (między krawędziami i ścianami, przekątnymi i ścianami (9.2) Zdający rozpoznaje w graniastosłupach i ostrosłupach kąty między ścianami (9.4) Zdający stosuje trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości (9.6).
-----------------------------------	---

Przykładowe rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Wykorzystujemy wzór na pole powierzchni bocznej ostrosłupa i zapisujemy równanie

$$\frac{15\sqrt{3}}{4} = 3 \cdot \frac{1}{2} a \cdot \frac{5\sqrt{3}}{4}$$
, skąd otrzymujemy $a = 2$.

Z twierdzenia Pitagorasa dla trójkąta DOS otrzymujemy

$$H^2 = h^2 - \left| DO \right|^2.$$

Ponieważ $|DO| = \frac{1}{3}a \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{3}$, więc

$$H^2 = \left(\frac{5\sqrt{3}}{4}\right)^2 - \left(\frac{\sqrt{3}}{3}\right)^2.$$

Stad
$$H = \frac{\sqrt{209}}{4\sqrt{3}}$$
.

Zatem objętość ostrosłupa jest równa

$$V = \frac{1}{3} P_p \cdot H = \frac{1}{3} \cdot \frac{4\sqrt{3}}{4} \cdot \frac{\sqrt{209}}{4\sqrt{3}} = \frac{\sqrt{209}}{12} .$$

Schemat punktowania

• zapisze równanie
$$\frac{15\sqrt{3}}{4} = 3 \cdot \frac{1}{2} a \cdot \frac{5\sqrt{3}}{4}$$

albo

• zapisze, że
$$|DO| = \frac{1}{3}a \cdot \frac{\sqrt{3}}{2}$$
 lub $|AO| = \frac{2}{3}a \cdot \frac{\sqrt{3}}{2}$

i na tym zakończy lub dalej popełnia błędy.

• obliczy długość krawędzi a podstawy ostrosłupa: a=2 i zapisze równanie z niewiadomą H, np.: $H^2 = \left(\frac{5\sqrt{3}}{4}\right)^2 - \left(\frac{a\sqrt{3}}{6}\right)^2$

albo

i na tym zakończy lub dalej popełnia błędy.

- 1. Jeżeli zdający rozważa inna bryłę niż podana w treści zadania, to otrzymuje **0 punktów**.
- 2. Akceptujemy poprawne przybliżenia liczb rzeczywistych.
- 3. Jeżeli zdający poda długość krawędzi podstawy a=2 bez obliczeń i rozwiąże zadanie do końca, to otrzymuje co najwyżej **3 punkty**.
- 4. Jeżeli zdający błędnie przepisze liczbę $\frac{5\sqrt{3}}{4}$ lub liczbę $\frac{15\sqrt{3}}{4}$ i z tym błędem rozwiąże zadanie konsekwentnie do końca, to otrzymuje co najwyżej **3 punkty**.
- 5. Jeśli zdający nie obliczy *a* i przyjmuje, że ściany boczne są trójkątami równobocznymi, to otrzymuje **0 punktów**.