ABSTRACT

VOLTAGE BOOSTER CONVERTER

Voltage booster converter comprising:

- a pair of input terminals A and B for connecting a DC input voltage Vin between these two terminals;
- a pair P_0 of switches SB, SH in series connected by the switch SB to the input terminal B, the input terminal A being connected across an input inductor Lin to the connection point between the two switches SB and SH in series, each switch SB, SH comprising a control input so as to be placed simultaneously, one in an on state the other in an isolated state;
- a pair of output terminals C and D, for powering, by an output voltage Vout, a load Rout, the output terminal D being connected to the input terminal B;
- K other additional pairs P_1 , P_2 ,.... P_i ,.... P_{K-1} , P_K of switches in series between the output terminal C and the free side of the switch SH with i=1, 2,...K-1, K, the two switches of one and the same additional pair P_i being connected across an energy recovery inductor Lr_1 ;
- K input groups, Gin_1 , Gin_2 ,... Gin_i ,... Gin_{K-1} , Gin_K , of Ni capacitors C of like value each in series, with i= 1, 2,...K-1, K and Ni = i;
- K output groups, $Gout_1$, $Gout_2$,... $Gout_i$,... $Gout_{K-1}$, $Gout_K$, of Mi capacitors C of like value each in series, with i= 1, 2,...K and Mi=(K+1)–i.

The switches of these other K additional pairs are controlled simultaneously by the first and second complementary control signals.

Applications: compact voltage booster converters of high efficiency.

Figure: 2