Linear Regression

Prediction: $h_{\theta}(x) = \theta^T x$

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost:

for
$$j=0$$
 to n { $tempj:=\theta_j-\frac{2\alpha}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}$ } for $j=0$ to n { $\theta_j:=tempj$ }

Gradient Descent:

Fitting nonlinear curves: $h_{\theta}(z) = \theta_0 + \theta_1 z$ where z is a feature vector = x^2

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + R(\theta)$$

Regularisation:

where R is a penalty function

Quadratic/L2 penalty:
$$R(\theta) = \theta^T \theta = \sum_{j=1}^n \theta_j^2$$

L1 Penalty:
$$R(\theta) = \sum_{j=1}^{n} |\theta_j|$$

Logistic Regression

Prediction: $h_{\theta}(x) = sign(\theta^T x)$

$$\frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)}\theta^{T}x^{(i)}}) / \log(2)$$

Cost:

Gradient Descent:

Start with some θ

Repeat:

for
$$j=0$$
 to $n \{tempj := \theta_j + \frac{\alpha}{m} \sum_{i=1}^m y^{(i)} x_j^{(i)} \frac{e^{-y^{(i)}\theta^T x^{(i)}}}{1 + e^{-y^{(i)}\theta^T x^{(i)}}} \}$ for $j=0$ to $n \{\theta_j := tempj\}$

 $J(\theta)$ is convex, has a single minimum. Iteration moves downhill until it reaches the minimum

Fitting multiple classes:

Make it into a binary problem

- Train a classifier $h_{\theta}^{(i)}(x)$ for each class i
- Predicts the probability that y = i
- Training data: re-label data as y = -1 when $y \neq i$ and y = 1 when y = i

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \theta^{T}_{X}(i)}) + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$

Regularisation:

Support Vector Machines

Prediction: same as Log Reg: $h_{\theta}(x) = sign(\theta^{T}x)$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \theta^{T} x^{(i)}) + \lambda \theta^{T} \theta$$

Cost:

Maximising the margin: maximising $\frac{y^{(i)}\theta^Tx^{(i)}}{\theta^T\theta}$ is the same as minimising

$$-\frac{y^{(i)}\theta^T x^{(i)}}{\theta^T \theta}$$

Gradient Descent: the cost function of SVM is non-continuous, so use sub-gradient

For $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)}\theta^T x^{(i)}) + \lambda \theta^T \theta$, subgradient with respect to θ_j is:

• $2\lambda\theta_j - \frac{1}{m}\sum_{i=1}^m y^{(i)}x_j^{(i)}\mathbbm{1}(y^{(i)}\theta^Tx^{(i)} \leq 1)$ where $\mathbbm{1}(y^{(i)}\theta^Tx^{(i)} \leq 1) = 1$ when $y^{(i)}\theta^Tx^{(i)} \leq 1$ and zero otherwise.

So subgradient descent algorithm for SVMs is:

- Start with some θ
- · Repeat:

for
$$j=0$$
 to n { $tempj := \theta_j - \alpha(2\lambda\theta_j - \frac{1}{m}\sum_{i=1}^m y^{(i)}x_j^{(i)}\mathbb{1}(y^{(i)}\theta^Tx^{(i)} \leq 1))$ for $j=0$ to n { $\theta_j := tempj$ }

 $J(\theta)$ is convex, has a single minimum. Iteration moves downhill until it reaches the minimum

Nonlinear decision boundary: add extra (polynomial features)

Regularisation:
$$\theta^T \theta = \sum_{j=1}^n \theta_j^2$$