Symmetric Projectile Trajectory

A symmetric trajectory is a special case of projectile motion where an object is launched at an angle of θ (between 0° and 90°) above the horizontal¹ with an initial speed \mathbf{v}_0 , and then lands at the same height, as shown below in Fig. 1. Examples may include hitting a golf ball towards the hole, or shooting a bullet towards a horizontal target². The equations for symmetric trajectory is *not* included in the AP Exams equation sheet; if you need these equations during the exams, you will need to derive them during the exam. Thankfully, the derivation is not difficult. To derive the equations, we use the x-axis for the horizontal direction and y-axis for the vertical.

Figure 1: Symmetric project trajectory

The initial velocity \mathbf{v}_0 can be resolved into its $\hat{\imath}$ and $\hat{\jmath}$ components, also shown in Figure 1:

$$\mathbf{v}_0 = v_x \hat{\mathbf{i}} + v_{y0} \hat{\mathbf{j}} = v_0 \cos \theta \hat{\mathbf{i}} + v_0 \sin \theta \hat{\mathbf{j}}$$
 (1)

 \mathbf{v}_x remains constant during the motion, as there are no forces acting in the x direction (if we can ignore air resistance), and therefore no acceleration. In the y direction, there is an acceleration due to gravity $a_y = -g$.

Maximum height H: Apply the kinematic equation in the y-direction. Recognizing that at maximum height $H = y - y_0$, the vertical component of velocity is zero $v_y = 0$:

$$v_y^2 = v_{y0}^2 + 2a_y(y - y_0)$$
$$0 = (v_0 \sin \theta)^2 - 2gH$$

Solving for H, we get the maximum height equation:

$$H = \frac{v_0^2 \sin^2 \theta}{2g} \tag{2}$$

¹This may be obvious, but any angles below the horizontal will never have a symmetric trajectory.

²Shooting a bullet towards a horizontal target always require an upward angle because of gravity.

Total time of flight t_{max} : We apply the kinematic equation in the y direction. When the object lands at the same height, the final velocity is the same in magnitude and opposite in direction as the initial velocity, i.e. $v_{y2} = -v_{y1} = -v_0 \sin \theta$:

$$v_y = v_{y0} + a_y t$$
$$-v_0 \sin \theta = v_0 \sin \theta - g t_{\text{max}}$$

Solving for t_{max} we have:

$$t_{\text{max}} = \frac{2v_0 \sin \theta}{g} \tag{3}$$

Range R: We substitute the expression for t_{max} from Eq. 3 into the t term, then apply the kinematic equation in the x-direction to compute $R = x - x_0$ for any given launch angle and initial speed:

$$x = x_0 + v_x t$$
$$R = v_0 \cos \theta \left(\frac{2v_0 \sin \theta}{g}\right)$$

Using the trigonometric identity $\sin(2\theta) = 2\sin\theta\cos\theta$, we simplify the equation to:

$$R = \frac{v_0^2 \sin(2\theta)}{g} \tag{4}$$

It is obvious that for any given initial speed v_0 , the maximum range R_{max} occurs at an angle where $\sin(2\theta) = 1$ (i.e. $\theta = \pi/4$), with a value of

$$R_{\text{max}} = \frac{v_0^2}{g} \tag{5}$$

Also, for a known initial speed v_0 and range R we can compute the launch angle θ :

$$\theta_1 = \frac{1}{2} \sin^{-1} \left(\frac{gR}{v_0^2} \right)$$

This angle is labelled θ_1 because it is *not* the only angle that can reach this range. Recall that for any angle $0 < \phi < \pi/2$, there is also another angle where the sin are equal:

$$\sin \phi = \sin(\pi - \phi)$$

Which means that for any θ_1 , there is also another angle θ_2 where $2\theta_2 = \pi - 2\theta_1$, or quite simply:

$$\theta_2 = \frac{\pi}{2} - \theta_1$$