Computed Values

This document computes and reports the quantities reported in the text of the .tex file.

"The Big Improvements from an Easy Solution"

```
# load packages
library(tidyverse)
library(kableExtra)
# load simulations
sim df <- read rds("simulations/simulations.rds") %>%
 glimpse()
## Observations: 342
## Variables: 14
## $ n
               <dbl> 30, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 5...
## $ k
               ## $ b0
               <dbl> -1.0, -1.0, -0.5, -0.5, 0.0, 0.0, -1.0, -1.0, -0....
## $ b1
               ## $ n_sims
               <dbl> 1e+05, 1e+05, 1e+05, 1e+05, 1e+05, 1e+05, 1e+05, ...
               ## $ true_coef
## $ method
               <fct> ML, PML, ML, PML, ML, PML, ML, PML, ML, PML, ML, ...
## $ ev
               <dbl> 0.7060483, 0.5159187, 0.6327240, 0.5128711, 0.634...
## $ mc error ev <dbl> 0.0027100703, 0.0019201452, 0.0016560016, 0.00123...
               <dbl> 0.206048268, 0.015918676, 0.132723967, 0.01287107...
## $ bias
## $ percent_bias <dbl> 41.2096537, 3.1837352, 26.5447934, 2.5742145, 26....
## $ var
               <dbl> 0.73444811, 0.36869574, 0.27423413, 0.15254398, 0...
## $ mse
               <dbl> 0.77689664, 0.36894546, 0.29184704, 0.15270812, 0...
               <dbl> 0.2832472, 0.2832472, 0.4015349, 0.4015349, 0.496...
## $ prop ones
```

Bias

```
# find largest bias scenario (will be for ML)
max bias df <- sim df %>%
 filter(percent_bias == max(percent_bias))
# make table for this scenario for ML and PML
sim_df %>%
  filter(n == max_bias_df$n & k == max_bias_df$k & b0 == max_bias_df$b0) %>%
  mutate(`Bias` = round(bias, 2),
         `% Bias` = scales::percent(percent_bias/100, accuracy = 1)) %>%
  select(`Sample Size` = n,
         `Number of Other Covariates` = k,
         `Intercept` = b0,
         `Method` = method,
         `Bias`,
         `% Bias`) %>%
  kable(format = "latex",
        caption = "Largest Bias.",
```

```
booktabs = TRUE) %>%
kable_styling(latex_options = c("striped", "hold_position"))
```

Table 1: Largest Bias.

Sample Size	Number of Other Covariates	Intercept	Method	Bias	% Bias
30	9	-0.5	ML	0.61	122%
30	9	-0.5	PML	0.06	12%

```
# smallest bias
sim df %>%
 filter(method == "ML") %>%
 top_n(-1, percent_bias) %>%
  mutate(`Bias` = round(bias, 2),
         "% Bias" = scales::percent(percent_bias/100, accuracy = 1)) %>%
  select(`Sample Size` = n,
         `Number of Other Covariates` = k,
         `Intercept` = b0,
         `Method` = method,
         `Bias`,
         `% Bias`) %>%
  kable(format = "latex",
        caption = "Smallest Bias",
        booktabs = TRUE) %>%
  kable_styling(latex_options = c("striped", "hold_position"))
```

Table 2: Smallest Bias

Sample Size	Number of Other Covariates	Intercept	Method	Bias	% Bias
210	3	-1	ML	0.01	3%

Variance

```
# largest bias
sim_df %>%
  select(n, k, b0, method, var) %>%
  spread(method, var) %>%
  mutate(var_infl = ML/PML - 1,
         var_infl_chr = scales::percent(var_infl, accuracy = 1)) %>%
  filter(n \frac{1}{n} c(30, 60, 210) & b0 == -1) \frac{1}{n}
  select(-var_infl) %>%
  select(`Sample Size` = n,
         `Number of Other Covariates` = k,
         `Intercept` = b0,
         `Variance Inflation` = var_infl_chr) %>%
  kable(format = "latex",
        caption = "The Variance Inflation in Several Scenarios",
        booktabs = TRUE,
        digits = 2) %>%
  kable_styling(latex_options = c("striped", "hold_position"))
```

Table 3: The Variance Inflation in Several Sce
--

Sample Size	Number of Other Covariates	Intercept	Variance Inflation
30	3	-1	99%
30	6	-1	178%
30	9	-1	436%
60	3	-1	27%
60	6	-1	58%
60	9	-1	117%
210	3	-1	6%
210	6	-1	10%
210	9	-1	14%

MSE

```
# largest bias
mse_df <- sim_df %>%
  select(n, k, b0, method, mse) %>%
  spread(method, mse) %>%
  mutate(mse_infl = ML/PML - 1,
         mse_infl_chr = scales::percent(mse_infl, accuracy = 1))
# largest mse inflation
top_n(mse_df, 1, mse_infl)
##
                              PML mse infl mse infl chr
          b0
                     ML
## 1 30 9 -0.5 1.998806 0.2435322 7.207563
# percent of mse infl larger than 100%
mse_df %>%
  summarize(`100%` = mean(mse_infl > 1),
            50\% = mean(mse_infl > 0.5),
            25\% = mean(mse_infl > 0.25)) %>%
  gather(`MSE Infl. Threshold`, `% Above`, `100%`:`25%`) %>%
  mutate(`% Above` = scales::percent(`% Above`, accuracy = 1)) %>%
  kable(format = "latex",
        caption = "Percent of MSE Infl. Larger than 100\\%, 50\\%, and 25\\%.",
        booktabs = TRUE) %>%
  kable_styling(latex_options = c("striped", "hold_position"))
```

Table 4: Percent of MSE Infl. Larger than 100%, 50%, and 25%.

MSE Infl. Threshold	% Above
100%	11%
50%	21%
25%	45%

```
# relative contribution of variance
rc_df_bias <- sim_df %>%
  select(n, k, b0, method, bias) %>%
  spread(method, bias) %>%
  rename(ml_bias = ML, pml_bias = PML)
```

```
rc_df_var <- sim_df %>%
  select(n, k, b0, method, var) %>%
  spread(method, var) %>%
  rename(ml var = ML, pml var = PML)
rc_df <- left_join(rc_df_bias, rc_df_var) %>%
  mutate(var_contrib = 100*ml_var/(pml_var + pml_bias^2),
         bias_contrib = 100*(ml_bias^2)/(pml_var + pml_bias^2),
         rel_contrib = var_contrib/bias_contrib)
## Joining, by = c("n", "k", "b0")
rc df %>%
  filter(n %in% c(30, 210)) %>%
  group_by(n) %>%
  summarize(min = round(min(rel_contrib), 0),
            max = round(max(rel_contrib), 0)) %>%
  mutate(n = paste0("N = ", n)) \%
  rename(N = n, `Minimum` = min, `Maximum` = max) %>%
  kable(format = "latex",
        caption = "Relative contribution of variance to MSE.",
        booktabs = TRUE) %>%
  kable_styling(latex_options = c("striped", "hold_position"))
```

Table 5: Relative contribution of variance to MSE.

N	Minimum	Maximum
N = 30	4	17
N = 210	27	166

"The Substantive Importance of the Big Improvements"

```
# load coefficient estimates
coef_df <- read_rds("ge-replication/coefficient-estimates.rds")</pre>
# create table of percent changes
coef_df %>%
  select(var_name_print, model_name, est) %>%
  spread(model_name, est) %>%
  mutate(percent_decrease = scales::percent(PML/ML - 1, accuracy = 1)) %>%
  rename(`Variable Name` = var_name_print, `ML Est.` = ML, `PML Est.` = PML, `% Decrease` = percent_dec
  kable(format = "latex",
        digits = 2,
        caption = "Percent Difference in ML and PML Estimates",
        booktabs = TRUE) %>%
 kable_styling(latex_options = c("striped", "hold_position"))
# load coefficient estimates
osf_df <- read_rds("ge-replication/out-of-sample-fit.rds")</pre>
# create table of percent changes
osf df %>%
```

Table 6: Percent Difference in ML and PML Estimates

Variable Name	ML Est.	PML Est.	% Decrease
Intercept	-26.18	-16.54	-37%
Death-Qualified Jury	2.47	1.82	-26%
Capital Punishment Proportional to Offense	5.62	3.67	-35%
Particularizing Circumstances	2.11	1.50	-29%
Aggravating Factors	2.17	1.40	-35%
State Psychiatric Examination	4.66	3.05	-35%
Conservative Political Environment	4.12	2.41	-41%
Court Change	1.10	0.56	-49%
State Appellant	2.70	1.88	-30%
Inexperienced Defense Counsel	2.27	1.52	-33%
Repeat Player State	3.60	2.37	-34%
Amicus Brief from Solicitor General	3.21	1.67	-48%

Table 7: Percent Decrease in ML and PML Out-of-Sample Fit

Score Type	ML	PML	% Decrease
Brier Score	0.17	0.16	-7%
Log Score	0.89	0.53	-41%

Table 8: Probability of Conservative Decision

State Type	ML	PML
Not a Repeat Player	0.06	0.17
Repeat Player	0.68	0.69

Table 9: Quantities of Interest

QI	ML	PML	% Decrease
First Difference	0.63	0.52	-17%
Risk Ratio	12.27	4.00	-67%