Lecture 22: Clustering, LLoyd's algorithm (k-means), spectral clustering

Nisha Chandramoorthy

November 14, 2023

Last time: Johnson-Lindenstrauss lemma

▶ Let $X \in \mathbb{R}^{m \times d}$ be a matrix of m points in \mathbb{R}^d .

Last time: Johnson-Lindenstrauss lemma

- ▶ Let $X \in \mathbb{R}^{m \times d}$ be a matrix of m points in \mathbb{R}^d .
- Let $0 < \epsilon < 1/2$, m > 4. Then, there exists a linear map $A : \mathbb{R}^d \to \mathbb{R}^n$ with $n = O(\epsilon^{-2} \log m)$ such that for all $x_i, x_j \in X$, $i, j \in [m], (1 \epsilon) \|x_i x_j\|^2 \leqslant \|Ax_i Ax_j\|^2 \leqslant (1 + \epsilon) \|x_i x_j\|^2$.

Last time: Johnson-Lindenstrauss lemma

- ▶ Let $X \in \mathbb{R}^{m \times d}$ be a matrix of m points in \mathbb{R}^d .
- Let $0 < \epsilon < 1/2$, m > 4. Then, there exists a linear map $A : \mathbb{R}^d \to \mathbb{R}^n$ with $n = O(\epsilon^{-2} \log m)$ such that for all $x_i, x_j \in X$, $i, j \in [m], (1 \epsilon) ||x_i x_j||^2 \le ||Ax_i Ax_j||^2 \le (1 + \epsilon) ||x_i x_j||^2$.
- ▶ Informal: any set of points in high-dimensional space can be mapped to a lower-dimensional space while approximately preserving the distances between the points.

Proof

▶ Distortion by Gaussian random matrices: for any $x \in \mathbb{R}^d$, when the entries A_{ii} are iid standard Gaussian,

$$\mathbb{P}(n(1-\epsilon)\|x\|^2 \leqslant \|Ax\|^2 \leqslant n(1+\epsilon)\|x\|^2)$$

$$\geqslant 1 - 2\exp(-(\epsilon^2 - \epsilon^3)n/4).$$

Proof

▶ Distortion by Gaussian random matrices: for any $x \in \mathbb{R}^d$, when the entries A_{ij} are iid standard Gaussian,

$$\mathbb{P}(n(1-\epsilon)\|x\|^2 \leqslant \|Ax\|^2 \leqslant n(1+\epsilon)\|x\|^2)$$

$$\geqslant 1 - 2\exp(-(\epsilon^2 - \epsilon^3)n/4).$$

► Then, deterministic statement of J-L lemma follows from union bound over all m² pairs of points.

Let *A* be a $n \times d$ matrix with iid standard Gaussian entries. Then, $E[(Ax)_j] = 0$ and $Var((Ax)_j) = ||x||^2$, for all $j \le n$.

- Let A be a $n \times d$ matrix with iid standard Gaussian entries. Then, $E[(Ax)_j] = 0$ and $Var((Ax)_j) = ||x||^2$, for all $j \le n$.
- ► Thus, $1/\|x\|^2 \|Ax\|^2$ is a χ^2 random variable with n degrees of freedom.

- Let A be a $n \times d$ matrix with iid standard Gaussian entries. Then, $E[(Ax)_j] = 0$ and $Var((Ax)_j) = ||x||^2$, for all $j \le n$.
- ► Thus, $1/\|x\|^2 \|Ax\|^2$ is a χ^2 random variable with n degrees of freedom.
- Chi-squared distribution: $\rho(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}, x \geqslant 0.$

- Let A be a $n \times d$ matrix with iid standard Gaussian entries. Then, $E[(Ax)_j] = 0$ and $Var((Ax)_j) = ||x||^2$, for all $j \le n$.
- ► Thus, $1/\|x\|^2 \|Ax\|^2$ is a χ^2 random variable with n degrees of freedom.
- Chi-squared distribution: $\rho(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}, x \geqslant 0.$
- Models sum of squares of n independent standard normal random variables.

Random projections surprisingly preserve Euclidean distances between points.

- Random projections surprisingly preserve Euclidean distances between points.
- Can be used for dimensionality reduction.

- Random projections surprisingly preserve Euclidean distances between points.
- Can be used for dimensionality reduction.
- Can also be used for speeding up nearest neighbor search (e.g. within Laplacian eigenmaps).

- Random projections surprisingly preserve Euclidean distances between points.
- Can be used for dimensionality reduction.
- Can also be used for speeding up nearest neighbor search (e.g. within Laplacian eigenmaps).

Compressed sensing revisited

Let $A \in \mathbb{R}^{n \times d}$ be a random matrix with iid standard Gaussian entries. This is an example of a matrix that satisfies the RIP (restricted isometry property).

Compressed sensing revisited

- Let $A \in \mathbb{R}^{n \times d}$ be a random matrix with iid standard Gaussian entries. This is an example of a matrix that satisfies the RIP (restricted isometry property).
- ▶ *s*-RIP: for all subsets $S \subset [d]$ with $|S| \leq s$, there exists an $\epsilon_s > 0$ such that

$$(1 - \epsilon) \|x\|^2 \le \|Ax\|^2 \le (1 + \epsilon) \|x\|^2.$$
 (1)

Compressed sensing revisited

- Let $A \in \mathbb{R}^{n \times d}$ be a random matrix with iid standard Gaussian entries. This is an example of a matrix that satisfies the RIP (restricted isometry property).
- ▶ *s*-RIP: for all subsets $S \subset [d]$ with $|S| \leq s$, there exists an $\epsilon_s > 0$ such that

$$(1 - \epsilon) \|x\|^2 \le \|Ax\|^2 \le (1 + \epsilon) \|x\|^2.$$
 (1)

► (Candes,Romberg, Tao 2005) If *x* is *s*-sparse, then,

$$x = \operatorname{argmin}_{z \in \mathbb{R}^d} ||z||_1 \quad \text{s.t.} \quad Ax = Az.$$
 (2)

Convolutional Neural Networks (source: cs231n.stanford.edu)

- Suitable for image recognition. Won the 2012 ImageNet competition and subsequent ones.
- Three types of layers: convolutional, FC, pooling
- Convolutional layer: accepts a volume of size $W_1 \times H_1 \times D_1$ and outputs a volume of size $W_2 \times H_2 \times D_2$ where $W_2 = (W_1 F + 2P)/S + 1$ and $H_2 = (H_1 F + 2P)/S + 1$ and $D_2 = K$.
- K is number of filters, F is filter size, S is stride, P is padding.
- Pooling layer: downsamples along width and height, and optionally along depth.
- ► FC layer: computes class scores, resulting in volume of size 1 × 1 × K.

▶ Given a set of points, $\{x_i\}_{i \in [m]}$, $x_i \in \mathbb{R}^d$, partition them into k clusters.

- ▶ Given a set of points, $\{x_i\}_{i \in [m]}$, $x_i \in \mathbb{R}^d$, partition them into k clusters.
- Closely related to dimensionality reduction.

- ▶ Given a set of points, $\{x_i\}_{i \in [m]}$, $x_i \in \mathbb{R}^d$, partition them into k clusters.
- Closely related to dimensionality reduction.
- Definition of clustering depends on the definition of distance between points.

- ▶ Given a set of points, $\{x_i\}_{i \in [m]}$, $x_i \in \mathbb{R}^d$, partition them into k clusters.
- Closely related to dimensionality reduction.
- Definition of clustering depends on the definition of distance between points.
- ► Center-based clustering: k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.

Lloyd's algorithm

▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.

Lloyd's algorithm

- ▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- ▶ Given centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$, assign each point x_i to the closest center. That is,

$$C_j = \{x_i : j \in \operatorname{argmin}_I \|x_i - \mu_I\|\}.$$

Lloyd's algorithm

- ▶ Randomly choose k centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$.
- ▶ Given centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$, assign each point x_i to the closest center. That is,

$$C_j = \{x_i : j \in \operatorname{argmin}_I ||x_i - \mu_I||\}.$$

▶ Given clusters C_1, \ldots, C_k , update centers $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ as

$$\mu_j = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i.$$

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - \mu(C_j)\|^2.$$

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \|x_i - \mu(C_j)\|^2.$$

here, $\mu(C_j) = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i = \operatorname{argmin}_{\mu \in \mathbb{R}^d} \sum_{x_i \in C_j} \|x_i - \mu\|^2$ is the mean of the points in cluster C_j .

k-means algorithm (Lloyd's algorithm)

Lloyd's algorithm is an approximate method to solve the ERM problem:

$$\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} ||x_i - \mu(C_j)||^2.$$

- here, $\mu(C_j) = \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i = \operatorname{argmin}_{\mu \in \mathbb{R}^d} \sum_{x_i \in C_j} \|x_i \mu\|^2$ is the mean of the points in cluster C_j .
- Lloyd's algorithm is a heuristic. It is not guaranteed to converge to the global optimum or even a local minimum.

Lloyd's algorithm decreases the ERM objective at each iteration.

- Lloyd's algorithm decreases the ERM objective at each iteration.
- ▶ Proof: Let $C_1^{(t)}, \ldots, C_k^{(t)}$ be the clusters at iteration t.

- Lloyd's algorithm decreases the ERM objective at each iteration.
- ▶ Proof: Let $C_1^{(t)}, \ldots, C_k^{(t)}$ be the clusters at iteration t.
- $C_j^{(t)} = \{x_i : j \in \operatorname{argmin}_I || x_i \mu_I^{(t-1)} || \}.$

- Lloyd's algorithm decreases the ERM objective at each iteration.
- Proof: Let $C_1^{(t)}, \ldots, C_k^{(t)}$ be the clusters at iteration t.
- Since $\mu_j^{(t)} = \frac{1}{|C_j^{(t)}|} \sum_{x_i \in C_j^{(t)}} x_i = \operatorname{argmin}_{\mu \in \mathbb{R}^d} \sum_{x_i \in C_j^{(t)}} ||x_i \mu||^2$,

$$\sum_{x_i \in \mathcal{C}_j^{(t)}} \|x_i - \mu_j^{(t)}\|^2 \leqslant \sum_{x_i \in \mathcal{C}_j^{(t)}} \|x_i - \mu_j^{(t-1)}\|^2, \quad \forall j \in [k].$$

▶ Proof (contd.): by definition of $C_j^{(t)}$,

$$\sum_{x_i \in C_i^{(t)}} \|x_i - \mu_j^{(t)}\|^2 \leqslant \sum_{x_i \in C_i^{(t-1)}} \|x_i - \mu_j^{(t-1)}\|^2, \quad \forall j \in [k].$$

▶ Proof (contd.): by definition of $C_j^{(t)}$,

$$\sum_{x_i \in C_j^{(t)}} \|x_i - \mu_j^{(t)}\|^2 \leqslant \sum_{x_i \in C_j^{(t-1)}} \|x_i - \mu_j^{(t-1)}\|^2, \quad \forall j \in [k].$$

▶ Summing over $j \in [k]$,

$$\sum_{j=1}^k \sum_{x_i \in C_i^{(t)}} \|x_i - \mu_j^{(t)}\|^2 \leqslant \sum_{j=1}^k \sum_{x_i \in C_i^{(t-1)}} \|x_i - \mu_j^{(t-1)}\|^2.$$

▶ Proof (contd.): by definition of $C_j^{(t)}$,

$$\sum_{x_i \in C_j^{(t)}} \|x_i - \mu_j^{(t)}\|^2 \leqslant \sum_{x_i \in C_j^{(t-1)}} \|x_i - \mu_j^{(t-1)}\|^2, \quad \forall j \in [k].$$

▶ Summing over $j \in [k]$,

$$\sum_{j=1}^k \sum_{x_i \in C_i^{(t)}} \|x_i - \mu_j^{(t)}\|^2 \leqslant \sum_{j=1}^k \sum_{x_i \in C_i^{(t-1)}} \|x_i - \mu_j^{(t-1)}\|^2.$$

Thus, the ERM objective decreases at each iteration.

k-means algorithm is sensitive to initialization of the centers.

Lloyd's algorithm properties

- k-means algorithm is sensitive to initialization of the centers.
- Complexity: O(mdk) per iteration, where m is the number of points, d is the dimension, and k is the number of clusters.

k-means failure modes

Source: sklearn's toy examples

k-means failure modes contd

Source: sklearn's toy examples

▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.
- W is a weighted adjacency matrix of a graph.

- ▶ Given distance d or similarity matrix, $W \in \mathbb{R}^{m \times m}$, partition the points into k clusters.
- W is symmetric and non-negative.
- W is a weighted adjacency matrix of a graph.
- ► ERM problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \sum_{x_i \in C_j} \sum_{x_l \notin C_j} w_{il}$. Graph min-cut problem.

RatioCut problem: spectral clustering solution

▶ RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_j \notin C_j} w_{ij}}{|C_i|}$.

RatioCut problem: spectral clustering solution

- ► RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_i|}$.
- Normalization by $|C_i|$ penalizes small clusters.

RatioCut problem: spectral clustering solution

- ► RatioCut problem: $\min_{C_1,...,C_k} \sum_{j=1}^k \frac{\sum_{x_j \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_i|}$.
- Normalization by $|C_i|$ penalizes small clusters.

▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = $Tr(H^{T}LH)$

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ▶ L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.
- \blacktriangleright h_i (ith column of H) is nonzero at row j if x_j is in cluster i.

- ▶ Lemma 22.3 (Ben-David and Shalev Shwartz) RatioCut objective = Tr(H^TLH)
- ► L = D W is the graph Laplacian, where D is the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► $H \in \mathbb{R}^{m \times k}$ is the indicator matrix of the clusters. $H_{ij} = 1/\sqrt{|C_j|}$ if $x_i \in C_j$ and 0 otherwise.
- \blacktriangleright h_i (*i*th column of H) is nonzero at row j if x_j is in cluster i.
- H has orthonormal columns.

► Choose weighting, such as, $w_{ij} = \exp(-\|x_i - x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► Graph laplacian: L = D W.

- ► Choose weighting, such as, $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$. As $\sigma \to 0$, $w_{ij} \to \mathbb{1}_{i=j}$. The $m \times m$ matrix W is the adjacency matrix of a graph.
- ▶ Let *D* be the diagonal matrix with $D_{ii} = \sum_{j=1}^{m} w_{ij}$.
- ► Graph laplacian: L = D W.
- Detects local structure / clusters in data.

Lemma proof: RatioCut objective and graph laplacian connection

▶ RatioCut objective(C_1, \dots, C_k)

$$:= \sum_{j=1}^k \frac{\sum_{x_i \in C_j} \sum_{x_l \notin C_j} \mathbf{w}_{il}}{|C_j|}.$$

Lemma proof: RatioCut objective and graph laplacian connection

▶ RatioCut objective(C_1, \dots, C_k)

$$:= \sum_{j=1}^k \frac{\sum_{x_i \in C_j} \sum_{x_l \notin C_j} w_{il}}{|C_j|}.$$

▶ Need to show equal to $Tr(H^T L H)$.

▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i - y_j||^2$.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$ where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.

- ▶ Want to solve: $\min_{y_1, \dots, y_m} \sum_{i=1}^m \sum_{j=1}^m w_{ij} ||y_i y_j||^2$.
- ▶ optimal embeddings: $y_i = E(x_i) = U[i, -n]$: where U is the matrix of eigenvectors of L.
- ► For any vector v, $v^{\top}Lv = (1/2) \sum_{i,j=1}^{m} w_{ij}(v_i v_j)^2$.
- L is positive semi-definite.

Bottom *n* eigenvectors

Rayleigh quotient optimality

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.

Bottom *n* eigenvectors

- Rayleigh quotient optimality
- Another interpretation: top n eigenvectors of L^{\dagger} . L_{ij}^{\dagger} represents expected time for random walk $i \rightarrow j \rightarrow i$.
- ► Kernel PCA with $K = L^{\dagger}$ is equivalent to Laplacian eigenmaps.

Final project delivanables -> Proposal 10.1. (2nd Nov) -> Presentation 25-1.
= 1 per team 5-6 minutes 3-4 minutes 3 sersions 1 ourflow sersion $\int_{4-8}^{8} Z_{00} m$ Finalize presentation schedules by 14th NOV Rules for attendance (.). of paints

Seports: 7th Dec questions)

(65.1.)

k=2

Distance b/w two points

$$\omega_{ij} = e^{-\|x_i - x_i\|^2}$$

$$L = D - W$$

$$v^{T}Lv = \frac{1}{2} \sum_{i,j \in lm} w_{ij}(v_{i} - v_{i})^{2}$$

$$L \in \mathbb{R}^{m \times m} \quad v \in \mathbb{R}^{m}$$

$$laplacian$$

$$eigen maps$$

$$objective$$

$$Rayleigh quotiento$$

$$min \quad v^{T}Lv = Amin (L)$$

$$||o||=1$$

$$min \quad v^{T}Lv = min \quad \sum_{i,j} v_{i}, v_{k}$$

$$||v_{i}||=1$$

$$v_{i} \cdot v_{i} = 0$$

$$v_{i} \cdot i^{k} \quad column \quad g \in V$$

 v_i : i^k column of Vargmin $\underset{i=1}{\overset{k}{\geq}} v_i^T L v_i = \underset{k \text{ eigenvector}}{\underbrace{500\text{ fbm}}}$ k eigenvector