Estadística - Fórmulas. Profesor: Marcelo Monferrato

Regla de Sturges	c = 1 + 3,322 log N	c cantidad de clases (se redondea al entero más cercano)
Frecuencia acumulada	Suma parcial de las frecuencias absolutas hasta la medida en cuestión	El total da el número de observaciones
Frecuencia relativa	frecuencia absoluta total de mediciones	
Frecuencia relativa acumulada	Suma parcial de las frecuencias relativas hasta la medida en cuestión	La última da 1
Frecuencia porcentual	Frecuencia relativa por 100, seguido de símbolo %	Es la frecuencia relativa pasada a porcentaje
Frecuencia porcentual acumulada	Suma parcial de las frecuencias relativas porcentuales, hasta la medida en cuestión	La última da 100%
Media aritmética de la población	$\mu = \frac{\Sigma x_i}{N}$	Σx suma de los valores de todas las observaciones N número de elementos de la población
Media aritmética de la muestra	$\bar{x} = \frac{\Sigma x_i}{n}$	Σx suma de los valores de todas las observaciones de la muestra n número de elementos de la muestra
Media aritmética de una muestra con datos agrupados	$\bar{x} = \frac{\Sigma(f_i \times \mathbf{x}_i)}{\mathbf{n}}$	 x̄ media de la muestra f frecuencia de cada observación n número de observaciones en la muestra
Media aritmética (intervalos usando códigos)	$\bar{x} = x_o + a \times \frac{\sum (u_i \times f_i)}{n}$	$m{x_o}$ valor del punto medio al que se asignó el código 0 $m{a}$ ancho numérico del intervalo de clase $m{u}$ código asignado a cada punto medio de clase
Media ponderada	$\bar{x}_w = \frac{\sum(w_i \times x_i)}{\sum w_i}$	\overline{x}_w símbolo para la media ponderada w peso asignado a cada observación $\sum (w_i \times x_i)$ suma de los productos de la ponderación de cada elemento por el elemento correspondiente $\sum w_i$ suma de todas las ponderaciones
Media Geométrica	$M.G. = \sqrt[n]{x_1.x_2.x_3x_n}$	Se utiliza cuando los valores cambian con el tiempo. nacantidad de mediciones
Mediana (ubicación)	$\frac{n+1}{2}$	<i>n</i> número de elementos de la muestra
Mediana de la muestra para datos agrupados (en intervalos por clases)	$Me = \tilde{x} = L_{me} + a \times \frac{\frac{n}{2} - (F_{i-1})}{f_i}$	Lme límite inferior del intervalo de clase de la mediana a ancho de intervalo de clase Fi-1 frecuencia acumulada inmediatamente anterior a la clase de la mediana fi frecuencia de la clase de la mediana
Moda (en intervalos de clase)	$Mo = \hat{x} = L_i + a \times \frac{F_i - F_{i-1}}{(F_i - F_{i-1}) + (F_i - F_{i+1})}$	L _i límite inferior de la clase modal F _i – F _{i-1} frecuencia de la clase modal menos la frecuencia de la clase que se encuentra inmediatamente menor que ella. F _i –F _{i+1} frecuencia de la clase modal menos la frecuencia de la clase que se encuentra inmediatamente mayor que ella a ancho del intervalo de la clase modal
Rango	Rango = (valor máximo) – (valor mínimo)	Es la diferencia entre el valor máximo y el valor mínimo de los observados.
Varianza de la población (parámetro)	$\sigma^{2} = \frac{\sum (x_{i} - \mu)^{2}}{N} = \frac{\sum x_{i}^{2}}{N} - \mu^{2}$	χ; elemento u observación μ media de la población N cantidad de elementos de la población
Varianza de la muestra (estadístico)	$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1} = \frac{\sum x_{i}^{2} - n\bar{x}^{2}}{n - 1}$	 x_i elemento u observación x̄ media de la muestra n cantidad de elementos de la población

Estadística - Fórmulas. Profesor: Marcelo Monferrato

Desviación estándar	$\sigma = \sqrt{\sigma^2}$	En todos los casos
Varianza para datos agrupados en intervalos	$\sigma = \sqrt{\sigma^2}$ $\sigma^2 = \frac{\sum [f_i \times (x_i - \mu)^2]}{N} = \frac{\sum x_i^2}{N} - \mu^2 \text{ (población)}$ $s^2 = \frac{\sum [f_i \times (x_i - \bar{x})^2]}{N} \text{ (muestra)}$	x;marca de clase f; frecuencia absoluta del intervalo μ media de la población
Cuartiles (ubicación)	$Q_1 = 0.25(n+1)$ $Q_3 = 0.75(n+1)$	n número de elementos de la muestra
Cuartiles para datos agrupados en intervalos	$Q_k = Li + a \times \left(\frac{\frac{k \cdot n}{4} - F_{i-1}}{f_i}\right)$	Q _k Cuartil que se quiere hallar (1, 2, 3) L _i Límite inferior de la clase donde se encuentra el cuartil. a amplitud del intervalo k posición del cuartil F _{i-1} frecuencia acumulada hasta el intervalo anterior f _i frecuencia del intervalo
Rango intercuartilítico (RI)	$RI = Q_3 - Q_1$	
Barreras INTERIORES diagrama de caja y bigotes	$inferior = Q_1 - 1,5RI$ $superior = Q_3 + 1,5RI$	Los datos que se encuentren fuera de las barreras interiores (a más de 1,5 veces el RI) se les llama datos atípicos simples y se representan con el símbolo "O"
Barreras EXTERIORES diagrama de caja y bigotes	$inferior = Q_1 - 3RI$ $superior = Q_3 + 3RI$	Los datos que se encuentren más allá de las barreras exteriores (a más de 3 veces el RI) se les llama datos atípicos extremos y se representan con el símbolo "*"
Quintiles (ubicación)	$K_k = \frac{k(n+1)}{5}$	
Quintiles para datos agrupados en intervalos	$K_k = Li + a \times \left(\frac{k \cdot n}{5} - F_{i-1}\right)$	
Deciles (ubicación)	$D_k = \frac{k(n+1)}{10}$	
Deciles para datos agrupados en intervalos	$D_k = Li + a \times \left(\frac{\frac{k \cdot n}{10} - F_{i-1}}{f_i}\right)$	
Percentiles (ubicación)	$P_k = \frac{k(n+1)}{100}$	
Percentiles para datos agrupados en intervalos	$K_{k} = \frac{k(n+1)}{5}$ $K_{k} = Li + a \times \left(\frac{\frac{k \cdot n}{5} - F_{i-1}}{f_{i}}\right)$ $D_{k} = \frac{k(n+1)}{10}$ $D_{k} = Li + a \times \left(\frac{\frac{k \cdot n}{10} - F_{i-1}}{f_{i}}\right)$ $P_{k} = \frac{k(n+1)}{100}$ $P_{k} = Li + a \times \left(\frac{\frac{k \cdot n}{100} - F_{i-1}}{f_{i}}\right)$ $CV = \frac{\sigma}{ \vec{x} }$	
Coeficiente de Variación	$CV = \frac{\sigma}{ \vec{x} }$	Se puede multiplicar por 100 y expresar en porcentaje.