IN THE CLAIMS

Please amend the claims as indicated:

1	1.	(currently amended) An apparatus for use in a borehole for electrical imaging
2		during rotary drilling comprising:
3		(a) a resistivity sensor having a specified an offset from a wall of the
4		borehole that is greater then a specified minimum value;
5		(b) an orientation sensor making a measurement of a toolface angle of said
6		apparatus during continued rotation thereof; and
7		(c) a device for maintaining which maintains said resistivity sensor at said
8		specified offset.
9		
1	2.	(original) The apparatus of claim 1 wherein said resistivity sensor comprises a
2		galvanic sensor.
3		
1	3.	(currently amended) The apparatus of claim 1 wherein said resistivity sensor is
2		mounted on a pad.
3		
1	4.	(currently amended) The apparatus of claim 1 wherein said resistivity sensor is
2		mounted on a rib.
3		
1	5.	(currently amended) The apparatus of claim 1 wherein said resistivity sensor is

2		mounted on a stabilizer.
3		
1	6.	(currently amendedl) The apparatus of claim 1 wherein said resistivity sensor
2		further comprises
3		(i) a current electrode for conveying which conveys a measure current into
4		said formation through a conducting fluid, and
5		(ii) at least one guard electrode proximate to said current electrode for
6		maintaining focusing of said measure current.
7		
1	7.	(original) The apparatus of claim 6 wherein said at least one guard electrode
2		focuses said measure current in a direction substantially normal to said borehole
3		wall.
4		
1	8.	(original) The apparatus of claim 7 wherein said at least one guard electrode
2		surrounds said measure electrode and maintains a focusing of said measure
3		current in a flushed zone of said formation.
4		
1	9.	(original) The apparatus of claim 7 wherein the at least one guard electrode
2		comprises a plurality of guard electrodes for altering a depth of investigation of
3		said resistivity sensor.
4		
1	10.	(original) The apparatus of claim 6 wherein said at least one guard electrode
		3
		→

414-34391

2		comprises a plurality of guard electrodes that create substantially spherical
3		equipotential surfaces
4		
1	11.	(currently amended) The apparatus of claim 1 wherein said resistivity sensor
2		further comprises:
3		(i) a current electrode for conveying which conveys a measure current into
4		said formation, and
5		(ii) a measure electrode spaced apart from said current electrode,
6		the apparatus further comprising a processor for determining which determines
7		from a voltage of said measure electrode and said measure current an indication
8		of a resistivity of said earth formation.
9		
1	12.	(original) The apparatus of claim 8 further comprising monitor electrodes to
2		support the focusing in the presence of non negligible contact impedances.
3		
1	13.	(original) he apparatus of claim 9 further comprising monitor electrodes to
2		support the focusing in the presence of non negligible contact impedances.
3		
1	14.	(original) The apparatus of claim 8 wherein further comprising a pad that
2		substantially circumscribes said apparatus, said pad carrying said sensor thereon

4

(original) The apparatus of claim 14 further comprising monitor electrodes to

15.

3

Fax:7132668510

2		support the focusing in the presence of non negligible contact impedances.
3		
1	16.	(currently amended) The apparatus of claim 8 further comprising a controller for
2		maintaining which maintains a substantially constant power consumption by said
3		electrodes.
4		
1	17.	(currently amended) The apparatus of claim 12 further comprising a controller for
2		maintaining which maintains a substantially constant power consumption by said
3		electrodes.
4		
1	18.	(currently amended) The apparatus of claim 14 further comprising a controller
2		for maintaining which maintains a substantially constant power consumption by
3		said electrodes.
4		
1	19.	(currently amended) The apparatus of claim 14 further comprising a controller for
2		maintaining which maintains a substantially constant power consumption by said
3		electrodes.
4		
1	20.	(original) The apparatus of claim 1 wherein said orientation sensor comprises a
2		magnetometer.
3		
1	21.	(original) The apparatus of claim 1 wherein said orientation sensor comprises an

2		accelerometer.
3		
1	22.	(original) The apparatus of claim 1 wherein said device comprises a stabilizer.
2		
1	23.	(original) The apparatus of claim 1 wherein said device comprises a steerable rib.
2		
1	24.	(original) The apparatus of claim 1 wherein said borehole is filled with a
2		substantially nonconducting fluid and wherein said resistivity sensor is
3		capacitively coupled to said earth formation.
4		
1	25.	(original) The apparatus of claim 24 wherein said resistivity sensor makes
2		measurements at a plurality of different frequencies.
3		
1	26.	(original) The apparatus of claim 1 wherein said borehole includes a substantially
2		non-conducting fluid therein.
3		
1	27.	(currently amended)The apparatus of claim 2 wherein said borehole includes a
2		substantially non-conducting fluid therein and wherein said resistivity sensor
3		eeneys conveys a measure current into said formation using capacitive coupling.
4		
1	28.	(original) The apparatus of claim 1 wherein said resistivity sensor further
2		comprises a shielded dipole.

Apr 22 '05 10:17

3		
1	29.	(original) The apparatus of claim 26 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	30.	(original) The apparatus of claim 26 wherein said resistivity sensor further
2		comprises a directionally sensitive induction logging tool.
3		
1	31.	(original) The apparatus of claim 30 wherein said directionally sensitive induction
2		logging tool comprises a quadrupole transmitter.
3		
1	32.	(original) The apparatus of claim 26 wherein said resistivity sensor further
2		comprises a radio frequency microwave transmitter
3		
1	33.	(original) The apparatus of claim 26 wherein said resistivity sensor comprises an
2		induction coil.
3		
1	34	(currently amended) A system for use in a borehole for determining a resistivity
2		parameter during drilling of a borehole in an earth formation comprising:
3		(a) a bottom hole assembly (BHA) including
4		(i) a resistivity subassembly having a resistivity sensor with a
5		specified an offset from a wall of the borehole that is greater than a
6		specified minimum value during rotation of the BHA:

7			(11)	an orientation sensor on said subassembly for making which make
8				a measurement of a toolface angle of said subassembly during
9				continued rotation thereof; and
10			(ii)	a device for maintaining which maintains said resistivity sensor at
11				said specified offset.
12		(b)	a pro	cessor for determining which determines said resistivity parameter
13			from	measurements made by said resistivity sensor;
14		(c)	a dev	ice for drilling which drills said borehole; and
15		(d)	conve	eyance device for conveying which conveys said BHA into said
16			boreh	ole.
17				
1	35 .	(origi	nal) Th	e system of claim 34 wherein said device for drilling said borehole
2		comp	rises a c	drill bit.
3				
1	36.	(origi	nal) Th	e system of claim 34 wherein said conveyance device comprises a
2		drill s	tring.	
3				
1	37.	(origi	nal) Th	e system of claim 34 wherein said processor is part of said BHA.
2				
1	38.	(curre	ntly an	nended)The system of claim 34 wherein said processor includes a
2		memo	ry dev	ice for storing at least a subset of measurements made by said
3		resisti	ivity se	nsor.

Apr 22 '05 10:17

9

1	45.	(original) The system of claim 34 wherein said device comprises a steerable rib.
2		
1	46.	(original) The system of claim 34 wherein said borehole is filled with a
2		substantially nonconducting fluid and wherein said resistivity sensor is
3		capacitively coupled to said earth formation.
4		
1	47.	(original) The system of claim 46 wherein said resistivity sensor makes
2		measurements at a plurality of different frequencies.
3		
1	48.	(original) The system of claim 34 wherein said borehole includes a substantially
2		non-conducting fluid therein and wherein said resistivity sensor conveys a
3		measure current into said formation using capacitive coupling.
4		
1	49.	(original) The system of claim 34 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	5 0.	(original) The system of claim 34 wherein said resistivity sensor further
2		comprises a directionally sensitive induction logging tool.
3		
1	51.	(original) The system of claim 50 wherein said directionally sensitive induction
2		logging tool comprises a quadrupole transmitter.

Apr 22 '05 10:18

2 3

1

2

11

1

56. (original) The method of claim 54 further comprising mounting said resistivity sensor on a pad.

11

(original) The method of claim 54 wherein said resistivity sensor comprises a

55.

galvanic sensor.

3		
1	57.	(original) The method of claim 54 further comprising mounting said resistivity
2		sensor on a rib of said BHA.
3		
1	58	(original) The method of claim 54 further comprising mounting said resistivity
2		sensor on a stabilizer of said BHA.
3		
1	59 .	(original) The method of claim 54 further comprising
2		(i) using a current electrode of said resistivity sensor for conveying a measure
3		current into said formation through a conducting fluid, and
4		(ii) using at least one guard electrode proximate to said current electrode for
5		maintaining focusing of said measure current.
6		
1	60.	(original) The method of claim 59 further comprising using said at least one guard
2		electrode for focusing said measure current in a direction substantially normal to a
3		borehole wall.
4		
1	61.	(original) The method of claim 60 wherein said at least one guard electrode
2		surrounds said measure electrode and maintains a focusing of said measure
3		current in a flushed zone of said formation.
4		
l	62.	(original) The method of claim 59 further comprising using said at least one guard

	electrode for creating substantially spherical equipotential surfaces
63 .	(original) The method of claim 54 further comprising:
	(i) using a current electrode of said resistivity sensor for conveying a measure
	current into said formation,
	(ii) measuring a voltage of a measure electrode spaced apart from said current
	electrode; and
	(iii) using said processor for determining from a voltage of said measure
	electrode and said measure current said resistivity parameter.
64.	(original) The method of claim 60 further comprising using monitor electrodes to
	support the focusing in the presence of non negligible contact impedances.
65.	(original) The method of claim 61 further comprising using monitor electrodes to
	support the focusing in the presence of non negligible contact impedances.
66.	(currently amended) The method of claim 60 further comprising a carrying
	carrying said sensor on a pad that substantially circumscribes said apparatus.
67.	(original) The method of claim 66 further comprising using monitor electrodes to
	support the focusing in the presence of non negligible contact impedances.
	64. 65.

-	00.	(drightar) The mound of elactic comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	69.	(original) The method of claim 64 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	70.	(original) The method of claim 66 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	71.	(original) The method of claim 67 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	72.	(original) The method of claim 54 wherein said orientation sensor comprises a
2		magnetometer.
3		
1	73.	(original) The method of claim 54 wherein said orientation sensor comprises an
2		accelerometer.
3		
1	74.	(original) The method of claim 54 further comprising using a stabilizer for
2		maintaining said specified offset.
3		
1	75.	(original) The method of claim 54 further comprising using a steerable rib for

2		maintaining said specified offset.
3		
1	76.	(original) The method of claim 54 further comprising:
2		(i) using said BHA in a borehole is filled with a substantially nonconducting
3		fluid, and
4		(ii) capacitively coupling said resistivity sensor to said earth formation.
5		
1	77.	(original) The method of claim 76 further comprising using said resistivity senso
2		for making measurements at a plurality of different frequencies.
3		
1	78.	(original) The method of claim 76 further comprising using said resistivity sensor
2		for making measurements at two frequencies.
3		
1	79.	(original) The method of claim 77 further comprising using said processor for
2		performing a multi-frequency focusing of said measurements.
3		
1	80.	(original) The method of claim 54 wherein said borehole includes a substantially
2		non-conducting fluid therein.
3		
1	81.	(original) The method of claim 55 further comprising:
2		(i) using said BHA in a borehole is filled with a substantially nonconducting
3		fluid, and

4		(ii) capacitively coupling said resistivity sensor to said earth formation
5		
1	82.	(original) The method of claim 54 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	83.	(original) The method of claim 80 wherein said resistivity sensor further
2 .		comprises a shielded dipole.
3		
1	84.	(original) The method of claim 80 wherein said resistivity sensor further
2		comprises a directionally sensitive induction logging tool.
3		
1	85 .	(original) The method of claim 84 wherein said directionally sensitive induction
2		logging tool comprises a quadrupole transmitter.
3		
1	86.	(original) The method of claim 80 wherein said resistivity sensor further
2		comprises a radio frequency microwave transmitter.
3		
1	87.	(original) The method of claim 54 further comprising using an induction coil as
2		said resistivity sensor.
3		
1	88.	(original) The method of claim 87 further comprising using said processor for
2		determining an inductance of said induction coil.

1 89. (original) The method of claim 86 further comprising using said processor for
2 determining an extent of a fluid invasion of the earth formation.
3
1 90. (original) The method of claim 54 wherein said orientation sensor comprises a
2 magnetometer