Uvod v geometrijsko topologijo

4.7.2011

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna	
P oziroma napačna N.	
R	Prostor $\{z\in\mathbb{C}\mid z \geq 1\}$ je absolutni ekstenzor za razred normalnih prostorov.
R	Če je ($C(X, Y)$, TKT) povezan, je Y povezan.
R	Za vsako ploskev X velja $\chi(X\#\mathbb{R}P^2)=\chi(X)-1.$
R	Kvocientna preslikava $S^2 \to \mathbb{R}P^2$ je zaprta.
R	Množica $\{f \in C([0,1],\mathbb{R}) \mid f([0,1]) \subset [0,\infty)\}$ je zaprta v $(C([0,1],\mathbb{R}),TEK)$.
R	Množica $(0,1) \times [0,1]$ je retrakt ravnine \mathbb{R}^2 .
R	Vsaka zvezna preslikava $f \colon \mathbb{R} \to \mathbb{R}$ ima negibno točko.
R	Kompaktna ploskev, ki jo predstavlja beseda $abca^{-1}d^{-1}c^{-1}$, je neorientabilna.
R	Zlepek $S^2 \cup_{id_{S^2_+}} S^2$, kjer je S^2_+ zaprta zgornja hemisfera, je kompaktna ploskev.
R	Zvezna injektivna preslikava $f \colon \mathbb{R}^2 \to S^2$ je odprta preslikava.

1. PROBLEM (20 točk)

Naj bo $X = Y = [0, \infty) \times \mathbb{R}$, $A = \{0\} \times ((-\infty, -1] \cup [1, \infty))$ in naj bo $i: A \to Y$ podana s predpisom i(x) = x. Poišči podprostor evklidskega prostora, ki je homeomorfen zlepku $Y \cup_i Y$. Odgovor utemelji!

2. PROBLEM (20 točk)

Za $a \in \mathbb{R}$ definiramo $X_a = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z \le 1\} \cup (B^2 \times \{a\}).$

- (1) Poišči potreben in zadosten pogoj (na a), da bo X_a absolutni ekstenzor za razred normalnih prostorov.
- (2) Poišči potreben in zadosten pogoj (na a), da bo X_a mnogoterost.

Odgovora utemelji!

3. PROBLEM (20 točk)

Klasificiraj ploskev:

