

al

PATENT APPLICATION

110274

3/ KAL

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Tatsuya IMURA, Seiji TERADA

Application No.: U.S. National Stage of PCT/JP99/03528

Filed: August 3, 2001 Docket No.:

For: PROCESSES FOR PRODUCING ANATASE TITANIUM OXIDE AND TITANIUM

OXIDE COATING MATERIAL

PRELIMINARY AMENDMENT

Director of the U.S. Patent and Trademark Office

Washington, D. C. 20231

Sir:

Prior to initial examination, please amend the above-identified application as follows:

IN THE CLAIMS:

Please replace claims 3-7, 10-14 and 17-19 as follows:

- 3. (Amended) The process for producing anatase titanium oxide according to claim 1, wherein the titania sol solution, the titania gel, or the titania sol-gel mixture is heat treated in the temperature range of 80 to 250°C in the closed vessel.
- 4. (Amended) The process for producing anatase titanium oxide according to claim 1, wherein the titania sol solution, the titania gel, or the titania sol-gel mixture is heat treated in the closed vessel under a pressure of 1.5 to 350 atmA.
- 5. (Amended) The process for producing anatase titanium oxide according to claim 1, wherein the contents of the closed vessel are heated to evaporate the solvent contained in the titania sol solution, the titania gel, or the titania sol-gel mixture, whereby the