RandomForest

June 19, 2025

```
[1]: import warnings
     import os
     import sys
     import time
     import joblib
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import shap
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import f1_score, precision_score, recall_score
     from sklearn.preprocessing import MinMaxScaler
     warnings.filterwarnings('ignore')
     try:
         from data_processing import DataProcessor
         from model_evaluation import evaluate_model
     except ImportError:
         if '__file__' in globals():
             script_dir = os.path.dirname(os.path.abspath(__file__))
             if os.path.basename(script_dir) == 'src':
                 project_root = os.path.dirname(script_dir)
             else:
                 project_root = script_dir
         else:
             current_dir = os.getcwd()
             project_root = os.path.dirname(current_dir) if current_dir.
      →endswith('notebooks') else current_dir
         src_dir = os.path.join(project_root, 'src')
         if src_dir not in sys.path:
             sys.path.append(src_dir)
         from data_processing import DataProcessor
```

```
from model_evaluation import evaluate_model
if '__file__' in globals():
    script_dir = os.path.dirname(os.path.abspath(__file__))
    if os.path.basename(script_dir) == 'src':
        project_root = os.path.dirname(script_dir)
    else:
        project_root = script_dir
else:
    current_dir = os.getcwd()
    project root = os.path.dirname(current dir) if current dir.
 ⇔endswith('notebooks') else current_dir
data_dir = os.path.join(project_root, 'data')
cic_pkl_file name = os.path.join(data_dir, "cic_dataframe.pkl")
cic_file_paths = [
    os.path.join(data_dir, f"CIC/nfstream/{day}-WorkingHours.

¬pcap_nfstream_labeled.csv")
    for day in ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
]
tcpdump_pkl_file_name = os.path.join(data_dir, "tcpdump_dataframe.pkl")
tcpdump_file_paths = [
    os.path.join(data_dir, f"tcpdump/nfstream/{filename}_labeled.csv")
    for filename in [
        "normal 01",
        "normal 02",
        "normal_and_attack_01",
        "normal_and_attack_02",
        "normal_and_attack_03",
        "normal and attack 04",
        "normal_and_attack_05",
    ]
]
# Constants
NORMAL LABEL = 1
ANOMALY_LABEL = -1
# Configuration
test_size = 0.2
random_state = 42
scaled = False
encode_categorical = True
shap_enabled = True
dev_mode = False
```

```
corr_threshold = 0.95
```

```
[2]: # 1. Load and prepare the data
     print("\nStep 1: Load and prepare the data")
     if os.path.exists(cic_pkl_file_name):
         print(f"Loading dataframe from {os.path.basename(cic_pkl_file_name)}")
         dataframe = pd.read_pickle(cic_pkl_file_name)
     else:
         print(f"Creating dataframe from pcap files and saving to {os.path.
      ⇒basename(cic_pkl_file_name)}")
         dataframe = DataProcessor.get_dataframe(file_paths=cic_file_paths)
         dataframe.to_pickle(cic_pkl_file_name)
     # Add new featueres:
     print("Adding new features to the dataframe")
     dataframe = DataProcessor.add_new_features(dataframe)
     # Drop object columns and handle categorical data
     print("Dropping object columns except for some categorical columns")
     df_without_object, available_categorical = DataProcessor.drop_object_columns(
                 dataframe, encode_categorical=encode_categorical
             )
     # Split into features and labels
     print("Splitting data into features (X) and labels (y)")
     X, y = DataProcessor.split_to_X_y(df_without_object)
     # Clean the data
     print("Cleaning data")
     DataProcessor.clean_data(X)
     print(f"X.shape: {X.shape}")
     print(f"y.shape: {y.shape}")
     # Split the data into training and test sets
     print(f"Splitting data into train and test sets with test_size={test_size}")
     X_train, X_test, y_train, y_test = train_test_split(
         X, y, test_size=test_size, random_state=random_state, stratify=y
     # Handle categorical encoding
     print("Handling categorical encoding")
     X_train, X_test, categorical_encoder = (
         DataProcessor.one_hot_encode_categorical(
             X_train, X_test, available_categorical, None
         )
     )
```

```
print(f"X_train.shape: {X_train.shape}")
print(f"X_test.shape: {X_test.shape}")
# Scaling the data
if scaled:
   print("Scaling the data")
   scaler = MinMaxScaler()
   print("New MinMaxScaler instance created")
   X_train = pd.DataFrame(
        scaler.fit transform(X train),
        columns=X_train.columns,
       index=X train.index,
   X_test = pd.DataFrame(
        scaler.transform(X_test),
        columns=X_test.columns,
        index=X_test.index,
   )
else:
   scaler = None
# Label conversion
print("Converting labels: benign to 1 and anomalous to -1")
y_train = y_train.map(lambda x: 1 if x == "benign" else -1)
y test = y test.map(lambda x: 1 if x == "benign" else -1)
# Feature selection
features_to_drop = DataProcessor.get_features_to_drop()
print(f"Always drop id, src, timestamp...: {features_to_drop}")
X_train = X_train.drop(columns=features_to_drop)
X_test = X_test.drop(columns=features_to_drop)
print(f"Droped {len(features_to_drop)} features")
# Remove highly correlated features
print(f"Dropping highly correlated features with threshold={corr_threshold}")
X_train, dropped_corr = DataProcessor.
 Gremove_highly_correlated_features(X_train, threshold=corr_threshold)
X test = X test.drop(columns=dropped corr)
print(f"Droped {len(dropped_corr)} features: {dropped_corr}")
print(f"X_train.shape: {X_train.shape}")
print(f"y_train.shape: {y_train.shape}")
print(f"X_test.shape: {X_test.shape}")
print(f"y_test.shape: {y_test.shape}")
# reset index to ensure consistent indexing
```

```
X_train = X_train.reset_index(drop=True)
y_train = y_train.reset_index(drop=True)
X_test = X_test.reset_index(drop=True)
y_test = y_test.reset_index(drop=True)
```

```
Step 1: Load and prepare the data
Loading dataframe from cic_dataframe.pkl
Adding new features to the dataframe
flow rate (bytes/sec and packets/sec)
packet rate (bytes/sec and packets/sec)
Down/Up Ratio
Dropping object columns except for some categorical columns
Retaining categorical features for encoding: ['application_name',
'application_category_name']
Number of columns before dropping object columns: 92
Dropped object columns (11): ['src_ip', 'src_mac', 'src_oui', 'dst_ip',
'dst_mac', 'dst_oui', 'requested_server_name', 'client_fingerprint',
'server_fingerprint', 'user_agent', 'content_type']
Number of columns after dropping object columns: 81
Splitting data into features (X) and labels (y)
Cleaning data
X.shape: (2916222, 80)
y.shape: (2916222,)
Splitting data into train and test sets with test_size=0.2
Handling categorical encoding
Processing categorical features: ['application_name',
'application_category_name']
Creating new OneHotEncoder
Added 261 one-hot encoded features
X_train.shape: (2332977, 339)
X_test.shape: (583245, 339)
Converting labels: benign to 1 and anomalous to -1
Always drop id, src, timestamp...: ['id', 'src_port',
'bidirectional_first_seen_ms', 'bidirectional_last_seen_ms',
'src2dst_first_seen_ms', 'src2dst_last_seen_ms', 'dst2src_first_seen_ms',
'dst2src_last_seen_ms']
Droped 8 features
Dropping highly correlated features with threshold=0.95
Droped 24 features: ['bidirectional_bytes', 'src2dst duration ms',
'src2dst_packets', 'dst2src_duration_ms', 'dst2src_packets',
'bidirectional_max_ps', 'src2dst_max_ps', 'dst2src_mean_ps',
'dst2src_stddev_ps', 'dst2src_max_ps', 'src2dst_max_piat_ms',
'bidirectional_ack_packets', 'src2dst_syn_packets', 'src2dst_cwr_packets',
'src2dst_ece_packets', 'src2dst_ack_packets', 'dst2src_ece_packets',
'dst2src_ack_packets', 'application_category_name_Download',
'application_category_name_Game', 'application_category_name_Mining',
'application_category_name_RPC', 'application_category_name_Shopping',
```

```
'application_category_name_Unspecified']
    X_train.shape: (2332977, 307)
    y_train.shape: (2332977,)
    X_test.shape: (583245, 307)
    y test.shape: (583245,)
[3]: # 2. Feature Selection
     print("\nStep 2: Feature Selection using Random Forest Classifier")
     rfc_selector = RandomForestClassifier(
         n estimators=100,
         max_depth=10,
         min samples split=5,
         min_samples_leaf=2,
         max_features='sqrt',
         random_state=random_state,
         n_{jobs=-1}
     )
     rfc_selector.fit(X_train, y_train)
     # Feature Importance Extraction
     feature_importance = rfc_selector.feature_importances_
     feature_names = X_train.columns
     # sort features by importance
     importance df = pd.DataFrame({
         'feature': feature names,
         'importance': feature_importance
     }).sort_values('importance', ascending=False)
     print(f"Total features: {len(feature_names)}")
     print(f"Random Forest with {rfc_selector.n_estimators} trees trained")
     print("\nTop 20 most important features:")
     print(importance_df.head(20))
     # visualize feature importance
     plt.figure(figsize=(10, 6))
     top_features = importance_df.head(20)
     plt.barh(range(len(top_features)), top_features['importance'])
     plt.yticks(range(len(top_features)), top_features['feature'])
     plt.xlabel('Feature Importance')
     plt.title('Top 20 Feature Importance from Random Forest')
     plt.gca().invert_yaxis()
     plt.tight_layout()
     plt.show(block=False)
```

Step 2: Feature Selection using Random Forest Classifier

Total features: 307

Random Forest with 100 trees trained

Top 20 most important features:

	feature	importance
12	bidirectional_stddev_ps	0.084748
33	bidirectional_rst_packets	0.083522
9	dst2src_bytes	0.071479
11	bidirectional_mean_ps	0.050756
1	dst_port	0.050579
43	dst2src_rst_packets	0.038378
46	application_confidence	0.032124
8	src2dst_bytes	0.031562
7	bidirectional_packets	0.030574
47	flow_bytes_per_sec	0.029129
281	${\tt application_name_Unknown}$	0.027939
32	bidirectional_psh_packets	0.027555
37	src2dst_rst_packets	0.027199
137	${ t application_name_HTTP}$	0.027083
217	${\tt application_name_TLS}$	0.026072
28	bidirectional_syn_packets	0.025665
49	<pre>src2dst_packets_per_sec</pre>	0.021941
16	dst2src_min_ps	0.020947
2	protocol	0.019319
15	src2dst_stddev_ps	0.017827


```
[4]: | # 3. Performance validation with different feature counts
     print("\nStep 3: Performance evaluation with different feature counts")
     if dev_mode:
         target_features_list = [5, 10]
     else:
         target_features_list = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, __
     →70, 75, 80, 85, 90, 95, 100]
     results_comparison = []
     for n_features in target_features_list:
         print(f"\nValidating with {n_features} features")
         # select top n features based on F-scores
         top_features = importance_df.head(n_features)['feature'].tolist()
         X_train_split, X_val_split, y_train_split, y_val_split = train_test_split(
             X train, y train,
             test_size=test_size,
             random_state=random_state,
             stratify=y_train
         )
         X_train_split_selected = X_train_split[top_features]
         X_val_split_selected = X_val_split[top_features]
         # Validate model for selected features
         try:
             test_rf = RandomForestClassifier(
                 n_estimators=20,
                 max_depth=5,
                 min_samples_split=5,
                 min samples leaf=2,
                 max_features='sqrt',
                 random_state=random_state,
             )
             test_rf.fit(X_train_split_selected, y_train_split)
             y_pred_val = test_rf.predict(X_val_split_selected)
             y_true_binary = (y_val_split != NORMAL_LABEL).astype(int) # normal: 0,u
      ⇔anomaly: 1
             y_pred_binary = (y_pred_val != NORMAL_LABEL).astype(int) # normal: 0,u
      ⇒anomaly: 1
             precision = precision_score(y_true_binary, y_pred_binary,__
      ⇒zero_division=0)
```

```
recall = recall_score(y_true_binary, y_pred_binary, zero_division=0)
      f1 = f1_score(y_true_binary, y_pred_binary, zero_division=0)
      # Normal and anomaly detection rates
      normal_total = np.sum(y_true_binary == 0)
      anomaly_total = np.sum(y_true_binary == 1)
      if normal_total > 0:
          normal_detection_rate = np.sum((y_true_binary == 0) &_
else:
          normal_detection_rate = 0.0
      if anomaly_total > 0:
          anomaly_detection_rate = np.sum((y_true_binary == 1) &__
else:
          anomaly_detection_rate = 0.0
      # outlier fraction
      outlier_fraction = np.sum(y_pred_val == -1) / len(y_pred_val)
      results_comparison.append({
          'n_features': n_features,
          'precision': precision,
          'recall': recall,
          'f1 score': f1,
          'normal_detection_rate': normal_detection_rate,
          'anomaly_detection_rate': anomaly_detection_rate,
          'outlier_fraction': outlier_fraction
      })
      print(f" F1: {f1:.4f}, Normal Det.: {normal_detection_rate:.4f}, "
          f"Anomaly Det.: {anomaly detection rate: .4f}, Outlier: ...
⇔{outlier_fraction:.4f}")
  except Exception as e:
      print(f" Error: {e}")
      results_comparison.append({
          'n_features': n_features,
          'precision': 0.0,
          'recall': 0.0,
          'f1_score': 0.0,
          'normal detection rate': 0.0,
          'anomaly_detection_rate': 0.0,
          'outlier_fraction': 0.0, 'training_samples': 0
      })
```

```
print(f"\nCompleted evaluation for {len(results_comparison)} feature_
 ⇔configurations.")
# isualization and analysis
print("Results visualization")
results_df = pd.DataFrame(results_comparison)
print("\nResults Summary:")
print(results_df.round(4))
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(16, 12))
# F1-Score
ax1.plot(results_df['n_features'], results_df['f1_score'], 'bo-', linewidth=2,__
 →markersize=8)
ax1.set xlabel('Number of Features')
ax1.set_ylabel('F1 Score')
ax1.set_title('OneClass SVM: F1 Score vs Number of Features')
ax1.grid(True, alpha=0.3)
ax1.set_ylim(0, 1)
# Detection Rates
ax2.plot(results_df['n_features'], results_df['normal_detection_rate'], 'go-',
         label='Normal Detection Rate', linewidth=2, markersize=8)
ax2.plot(results_df['n_features'], results_df['anomaly_detection_rate'], 'ro-',
         label='Anomaly Detection Rate', linewidth=2, markersize=8)
ax2.set xlabel('Number of Features')
ax2.set_ylabel('Detection Rate')
ax2.set_title('OneClass SVM: Detection Rates vs Number of Features')
ax2.legend()
ax2.grid(True, alpha=0.3)
ax2.set_ylim(0, 1)
# Precision vs Recall
ax3.plot(results_df['n_features'], results_df['precision'], 'mo-',
         label='Precision', linewidth=2, markersize=8)
ax3.plot(results_df['n_features'], results_df['recall'], 'co-',
         label='Recall', linewidth=2, markersize=8)
ax3.set_xlabel('Number of Features')
ax3.set_ylabel('Score')
ax3.set_title('OneClass SVM: Precision/Recall vs Number of Features')
ax3.legend()
ax3.grid(True, alpha=0.3)
ax3.set_ylim(0, 1)
# Outlier Fraction
```

```
ax4.plot(results_df['n_features'], results_df['outlier_fraction'], 'ko-',
         linewidth=2, markersize=8)
ax4.set xlabel('Number of Features')
ax4.set_ylabel('Outlier Fraction')
ax4.set_title('OneClass SVM: Outlier Fraction vs Number of Features')
ax4.grid(True, alpha=0.3)
plt.tight_layout()
plt.show(block=False)
print("Optimal feature selection")
# Calculate balanced score
results_df['balanced_score'] = (
   results_df['f1_score'] +
   results_df['normal_detection_rate'] +
   results_df['anomaly_detection_rate']
) / 3
# NaN values handling
valid_results = results_df[results_df['balanced_score'] > 0]
if len(valid_results) > 0:
   best idx = valid results['balanced score'].idxmax()
   best_result = valid_results.loc[best_idx]
   optimal_n_features = int(best_result['n_features'])
    optimal_features_list = importance_df.head(optimal_n_features)['feature'].
 →tolist()
   print(f"Optimal number of features: {optimal_n_features}")
   print(f"F1 Score: {best result['f1 score']:.4f}")
   print(f"Normal Detection Rate: {best_result['normal_detection_rate']:.4f}")
   print(f"Anomaly Detection Rate: {best_result['anomaly_detection_rate']:.

4f}")
   print(f"Balanced Score: {best_result['balanced_score']:.4f}")
   print(f"Outlier Fraction: {best_result['outlier_fraction']:.4f}")
   print("\nSelected features for OneClass SVM:")
   for i, (_, row) in enumerate(importance_df.head(optimal_n_features).
 →iterrows(), 1):
        print(f"{i:2d}. {row['feature']:<35} {row['importance']:.4f}")</pre>
X_train_optimal = X_train[optimal_features_list]
X_test_optimal = X_test[optimal_features_list]
print(f"\nX_train_optimal.shape: {X_train_optimal.shape}")
```

Validating with 75 features

F1: 0.9660, Normal Det.: 0.9952, Anomaly Det.: 0.9577, Outlier: 0.1575

Validating with 80 features

F1: 0.9645, Normal Det.: 0.9954, Anomaly Det.: 0.9537, Outlier: 0.1566

Validating with 85 features

F1: 0.9719, Normal Det.: 0.9962, Anomaly Det.: 0.9643, Outlier: 0.1577

Validating with 90 features

F1: 0.9668, Normal Det.: 0.9966, Anomaly Det.: 0.9524, Outlier: 0.1554

Validating with 95 features

F1: 0.9682, Normal Det.: 0.9965, Anomaly Det.: 0.9555, Outlier: 0.1560

Validating with 100 features

F1: 0.9707, Normal Det.: 0.9957, Anomaly Det.: 0.9644, Outlier: 0.1582

Completed evaluation for 20 feature configurations.

Results visualization

Results Summary:

	n_features	precision	recall	f1_score	normal_detection_rate	\
0	5	0.9815	0.9546	0.9678	0.9966	
1	10	0.9763	0.9464	0.9611	0.9956	
2	15	0.9823	0.9413	0.9613	0.9968	
3	20	0.9819	0.9495	0.9654	0.9967	
4	25	0.9821	0.9603	0.9711	0.9967	
5	30	0.9814	0.9664	0.9738	0.9965	
6	35	0.9822	0.9645	0.9733	0.9967	
7	40	0.9803	0.9575	0.9688	0.9963	
8	45	0.9844	0.9678	0.9760	0.9971	
9	50	0.9777	0.9556	0.9665	0.9959	
10	55	0.9835	0.9567	0.9699	0.9969	
11	60	0.9740	0.9656	0.9698	0.9951	
12	65	0.9742	0.9603	0.9672	0.9951	
13	70	0.9742	0.9428	0.9582	0.9952	
14	75	0.9745	0.9577	0.9660	0.9952	
15	80	0.9756	0.9537	0.9645	0.9954	
16	85	0.9797	0.9643	0.9719	0.9962	
17	90	0.9818	0.9524	0.9668	0.9966	
18	95	0.9814	0.9555	0.9682	0.9965	
19	100	0.9771	0.9644	0.9707	0.9957	

anomaly_detection_rate outlier_fraction

0	0.9546	0.1558
O	0.5540	0.1000
1	0.9464	0.1553
2	0.9413	0.1535
3	0.9495	0.1549

4	0.9603	0.1567
5	0.9664	0.1578
6	0.9645	0.1573
7	0.9575	0.1565
8	0.9678	0.1575
9	0.9556	0.1566
10	0.9567	0.1559
11	0.9656	0.1588
12	0.9603	0.1579
13	0.9428	0.1551
14	0.9577	0.1575
15	0.9537	0.1566
16	0.9643	0.1577
17	0.9524	0.1554
18	0.9555	0.1560
19	0.9644	0.1582

Optimal feature selection
Optimal number of features: 45

F1 Score: 0.9760

Normal Detection Rate: 0.9971

Anomaly Detection Rate: 0.9678

Balanced Score: 0.9803 Outlier Fraction: 0.1575

Selected features for OneClass SVM:

Sel	ected features for OneClass SVM:	
1.	bidirectional_stddev_ps	0.0847
2.	bidirectional_rst_packets	0.0835
3.	dst2src_bytes	0.0715
4.	bidirectional_mean_ps	0.0508
5.	dst_port	0.0506
6.	dst2src_rst_packets	0.0384
7.	application_confidence	0.0321
8.	src2dst_bytes	0.0316
9.	bidirectional_packets	0.0306
10.	flow_bytes_per_sec	0.0291
11.	application_name_Unknown	0.0279
12.	bidirectional_psh_packets	0.0276
13.	src2dst_rst_packets	0.0272
14.	application_name_HTTP	0.0271
15.	application_name_TLS	0.0261
16.	bidirectional_syn_packets	0.0257
17.	src2dst_packets_per_sec	0.0219
18.	dst2src_min_ps	0.0209
19.	protocol	0.0193
20.	src2dst_stddev_ps	0.0178
21.	src2dst_mean_ps	0.0169
22.	flow_packets_per_sec	0.0165
23.	bidirectional_fin_packets	0.0163
24.	dst2src_packets_per_sec	0.0162
25.	src2dst_psh_packets	0.0152
26.	dst2src_psh_packets	0.0133
27.	dst2src_fin_packets	0.0131
	bidirectional_max_piat_ms	0.0117
29.	dst2src_mean_piat_ms	0.0113
	dst2src_max_piat_ms	0.0105
	bidirectional_min_piat_ms	0.0103
	down_up_ratio	0.0101
33.	bidirectional_min_ps	0.0096
34.	bidirectional_duration_ms	0.0087
35.	src2dst_min_ps	0.0079
36.		0.0074
37.	src2dst_stddev_piat_ms	0.0071
38.		0.0062
39.	- 0 -1	0.0058
	<pre>src2dst_fin_packets</pre>	0.0056
41.		0.0054
42.		0.0049
43.	application_name_DNS	0.0043

```
0.0042
    45. src2dst_min_piat_ms
    X_train_optimal.shape: (2332977, 45)
    X_test_optimal.shape: (583245, 45)
[5]: # 4. Hyperparameter tuning
     print("\nStep 4: Hyperparameter Tuning using Grid Search")
     def tune_hyperparameters(X_train, y_train, dev_mode=False):
         if dev mode:
             param_grid = {
                 'n estimators': [100],
                 'max_depth': [10],
                 'min_samples_split': [5],
                 'min_samples_leaf': [2],
                 'max_features': ['sqrt'],
                 'random_state': [random_state]
             }
             cv = 2
         else:
             param_grid = {
                 'n_estimators': [50, 100],
                 'max_depth': [5, 7, 10],
                 'min_samples_split': [2, 5],
                 'min samples leaf': [1, 2],
                 'max_features': ['sqrt', 'log2'],
                 'random_state': [random_state]
             }
             cv = 3
         rf_tuner = RandomForestClassifier()
         grid_search = GridSearchCV(
             rf_tuner,
             param_grid,
             scoring='f1_weighted',
             cv=cv,
             verbose=2,
             n_{jobs}=-1
         )
         total_combinations = 1
         for param_values in param_grid.values():
             total_combinations *= len(param_values)
         print(f"Testing {total_combinations} parameter combinations...")
         start_time = time.time()
```

0.0043

44. dst2src_stddev_piat_ms

Step 4: Hyperparameter Tuning using Grid Search Testing 48 parameter combinations... Fitting 3 folds for each of 48 candidates, totalling 144 fits [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=50, random_state=42; total time= 50.7s [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=50, random_state=42; total time= 51.7s [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=50, random_state=42; total time= 51.9s [CV] END max depth=5, max features=sqrt, min samples leaf=1, min_samples_split=2, n_estimators=50, random_state=42; total time= 1.1min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=50, random_state=42; total time= 1.1min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=50, random_state=42; total time= 1.1min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=50, random_state=42; total time= 1.1min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min samples split=5, n estimators=50, random state=42; total time= 1.2min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=100, random_state=42; total time= 1.7min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=2, n_estimators=50, random_state=42; total time= 51.1s [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=100, random_state=42; total time= 1.8min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples split=5, n_estimators=100, random_state=42; total time= 1.8min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min samples split=2, n estimators=100, random state=42; total time= 1.9min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=100, random_state=42; total time= 2.1min [CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=5, n_estimators=50, random_state=42; total time= 1.0min

```
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=100, random_state=42; total time= 2.3min
[CV] END max depth=5, max features=sqrt, min samples leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max depth=5, max features=sqrt, min samples leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 1.7min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time=
                                                                    45.3s
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min samples split=2, n estimators=50, random state=42; total time=
                                                                   50.0s
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time=
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2,
min_samples split=2, n_estimators=100, random_state=42; total time= 1.7min
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2,
min_samples split=2, n_estimators=100, random_state=42; total time= 2.0min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=50, random state=42; total time= 47.5s
[CV] END max depth=5, max features=log2, min samples leaf=1,
min samples split=5, n estimators=50, random state=42; total time=
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time=
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.2min
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 1.8min
[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 1.8min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time=
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time=
[CV] END max depth=5, max features=log2, min samples leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 1.5min
[CV] END max depth=5, max features=log2, min samples leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 1.6min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 43.5s
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=100, random state=42; total time= 1.5min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=100, random state=42; total time= 1.4min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time=
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min_samples split=2, n_estimators=100, random_state=42; total time= 1.9min
```

```
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 42.9s
[CV] END max_depth=5, max_features=log2, min_samples_leaf=1,
min_samples_split=5, n_estimators=100, random_state=42; total time= 1.7min
[CV] END max depth=5, max features=log2, min samples leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max depth=5, max features=log2, min samples leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 1.4min
[CV] END max depth=7, max features=sqrt, min samples leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 1.5min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min_samples split=2, n_estimators=100, random_state=42; total time= 2.0min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min_samples split=2, n_estimators=100, random_state=42; total time= 1.8min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 1.5min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min samples split=2, n estimators=50, random state=42; total time= 1.3min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max_depth=5, max_features=log2, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 1.8min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.3min
[CV] END max depth=7, max features=sqrt, min samples leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.3min
[CV] END max depth=7, max features=sqrt, min samples leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.3min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.6min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.6min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min samples split=5, n estimators=100, random state=42; total time= 2.3min
```

```
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=100, random_state=42; total time= 2.3min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max depth=7, max features=sqrt, min samples leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.2min
[CV] END max depth=7, max features=sqrt, min samples leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.2min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.4min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=1,
min_samples split=5, n_estimators=100, random_state=42; total time= 2.8min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 57.3s
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.5min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=50, random state=42; total time= 58.5s
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=50, random state=42; total time= 58.6s
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=100, random_state=42; total time= 2.3min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.3min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min samples split=2, n estimators=100, random state=42; total time= 1.9min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.3min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 59.6s
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 1.9min
[CV] END max depth=7, max features=log2, min samples leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 59.6s
[CV] END max depth=7, max features=log2, min samples leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 1.9min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=100, random state=42; total time= 1.9min
[CV] END max_depth=7, max_features=sqrt, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 3.3min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min_samples split=5, n_estimators=100, random_state=42; total time= 2.0min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=1,
min_samples split=5, n_estimators=100, random_state=42; total time= 2.0min
```

```
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.0min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max depth=7, max features=log2, min samples leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.0min
[CV] END max depth=7, max features=log2, min samples leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.0min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.0min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min_samples split=2, n_estimators=100, random_state=42; total time= 2.0min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min_samples split=5, n_estimators=100, random_state=42; total time= 2.0min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min samples split=2, n estimators=50, random state=42; total time= 1.5min
[CV] END max depth=7, max features=log2, min samples leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.0min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=7, max_features=log2, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.7min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max depth=10, max features=sqrt, min samples leaf=2,
min samples split=2, n estimators=50, random state=42; total time= 1.4min
[CV] END max depth=10, max features=sqrt, min samples leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 3.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples split=2, n_estimators=100, random_state=42; total time= 3.4min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min samples split=5, n estimators=100, random state=42; total time= 2.8min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples split=2, n_estimators=100, random_state=42; total time= 3.6min
```

```
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=100, random_state=42; total time= 2.9min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1,
min_samples_split=5, n_estimators=100, random_state=42; total time= 2.9min
[CV] END max depth=10, max features=sqrt, min samples leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.6min
[CV] END max depth=10, max features=sqrt, min samples leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.9min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.9min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min_samples split=2, n_estimators=100, random_state=42; total time= 3.4min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.5min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.6min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=50, random state=42; total time= 1.2min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.9min
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2,
min_samples_split=5, n_estimators=100, random_state=42; total time= 2.9min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.7min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples split=2, n_estimators=100, random_state=42; total time= 2.4min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.4min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.2min
[CV] END max depth=10, max features=log2, min samples leaf=1,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.5min
[CV] END max depth=10, max features=sqrt, min samples leaf=2,
min_samples_split=5, n_estimators=100, random_state=42; total time= 2.9min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.3min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=50, random_state=42; total time= 1.3min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min_samples split=5, n_estimators=100, random_state=42; total time= 2.4min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.1min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.1min
```

```
[CV] END max_depth=10, max_features=log2, min_samples_leaf=1,
min samples split=5, n estimators=100, random state=42; total time= 2.4min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min_samples_split=5, n_estimators=50, random_state=42; total time= 1.5min
[CV] END max depth=10, max features=log2, min samples leaf=1,
min samples split=5, n estimators=100, random state=42; total time= 2.9min
[CV] END max depth=10, max features=log2, min samples leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.1min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min_samples_split=2, n_estimators=100, random_state=42; total time= 2.2min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min samples split=2, n estimators=100, random state=42; total time= 2.1min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.0min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.0min
[CV] END max_depth=10, max_features=log2, min_samples_leaf=2,
min samples split=5, n estimators=100, random state=42; total time= 2.1min
Grid search completed in 1185.86 seconds
Best parameters: {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf':
1, 'min_samples_split': 2, 'n_estimators': 50, 'random_state': 42}
Best CV score: 0.9968
```

```
[6]: # 5. Final Random Forest Classifier model training and evaluation
     print("\nStep 5: Final Random Forest Classifier model training and evaluation")
     max depth = best rf model.get params()['max depth']
     max features = best rf model.get params()['max features']
     min_samples_leaf = best_rf_model.get_params()['min_samples_leaf']
     min_samples_split = best_rf_model.get_params()['min_samples_split']
     n_estimators = best_rf_model.get_params()['n_estimators']
     random_state = best_rf_model.get_params()['random_state']
     print(f"Best Random Forest model with parameters: n estimators={n estimators}, "
           f"max_depth={max_depth}, min_samples_split={min_samples_split}, "
           f"min_samples_leaf={min_samples_leaf}, max_features={max_features}, "
           f"random_state={random_state}")
     rf = RandomForestClassifier(
         n_estimators=n_estimators,
         max depth=max depth,
         min_samples_split=min_samples_split,
         min samples leaf=min samples leaf,
         max features=max features,
         random_state=random_state
     )
     # Train the model
     print("Training the Random Forest model with optimal features...")
     rf.fit(X_train_optimal, y_train)
```

```
print("Model trained successfully.")
evaluate_model(rf, X_test_optimal, y_test)
```

Step 5: Final Random Forest Classifier model training and evaluation
Best Random Forest model with parameters: n_estimators=50, max_depth=10,
min_samples_split=2, min_samples_leaf=1, max_features=sqrt, random_state=42
Training the Random Forest model with optimal features...
Model trained successfully.
using predict_proba for prediction scores

Test Data - BENIGN Count: 489792, Ratio: 83.98% Test Data - ANOMALOUS Count: 93453, Ratio: 16.02%

Test result:

	precision	recall	f1-score	support
BENIGN	1.00	1.00	1.00	489792
ANOMALOUS	0.99	0.99	0.99	93453
accuracy			1.00	583245
macro avg	0.99	0.99	0.99	583245
weighted avg	1.00	1.00	1.00	583245

[[488572 1220] [833 92620]] Precision: 0.987 Recall: 0.991

False Positive Rate: 0.002 False Negative Rate: 0.009

F1-Score: 0.989

Area under the curve: 1.000


```
[7]: # 6. Evaluate with tcpdump data
     print("\nStep 6: Evaluate with tcpdump data")
     if os.path.exists(tcpdump_pkl_file_name):
         print(f"Loading dataframe from {os.path.basename(tcpdump_pkl_file_name)}")
         tcpdump_dataframe = pd.read_pickle(tcpdump_pkl_file_name)
     else:
         print(f"Creating dataframe from pcap files and saving to {os.path.
      ⇒basename(tcpdump_pkl_file_name)}")
         tcpdump dataframe = DataProcessor.
      →get_dataframe(file_paths=tcpdump_file_paths)
         tcpdump_dataframe.to_pickle(tcpdump_pkl_file_name)
     # Add new featueres:
     print("Adding new features to the dataframe...")
     tcpdump_dataframe = DataProcessor.add_new_features(tcpdump_dataframe)
     # Drop object columns and handle categorical data
     print("Dropping object columns and handle encoding categorical data...")
     tcpdump_df_without_object, available_categorical = DataProcessor.
      →drop_object_columns(
                 tcpdump_dataframe, encode_categorical=encode_categorical
     # Split into features and labels
     print("Splitting data into features (X) and labels (y)...")
     X_tcpdump, y_tcpdump = DataProcessor.split_to_X_y(tcpdump_df_without_object)
     print("Cleaning data...")
     DataProcessor.clean_data(X_tcpdump)
```

```
print(f"X_tcpdump.shape: {X_tcpdump.shape}")
print(f"y_tcpdump.shape: {y_tcpdump.shape}")
print("Handling categorical encoding...")
print(f"Available categorical features: {available_categorical}")
print(f"Use categorical_encoder: {categorical_encoder}")
X_tcpdump, _, categorical_encoder = (
   DataProcessor.one hot encode categorical(
       X_tcpdump, None, available_categorical, categorical_encoder
   )
print(f"X_tcpdump.shape: {X_tcpdump.shape}")
if scaled and scaler is not None:
   print(f"Use MinMaxScaler instance: {scaler}")
   X_tcpdump = pd.DataFrame(
        scaler.transform(X_tcpdump),
        columns=X_tcpdump.columns,
        index=X_tcpdump.index,
   )
y_tcpdump = y_tcpdump.map(lambda x: 1 if x == "benign" else -1)
# Feature selection
print("Feature selection:")
X_tcpdump_optimal = X_tcpdump[optimal_features_list]
print(f"X_tcpdump_optimal.shape: {X_tcpdump_optimal.shape}")
print(f"y_tcpdump.shape: {y_tcpdump.shape}")
evaluate_model(rf, X_tcpdump_optimal, y_tcpdump, with_numpy=True)
```

```
Step 6: Evaluate with tcpdump data

Loading dataframe from tcpdump_dataframe.pkl

Adding new features to the dataframe...

flow rate (bytes/sec and packets/sec)

packet rate (bytes/sec and packets/sec)

Down/Up Ratio

Dropping object columns and handle encoding categorical data...

Retaining categorical features for encoding: ['application_name',
    'application_category_name']

Number of columns before dropping object columns: 92

Dropped object columns (11): ['src_ip', 'src_mac', 'src_oui', 'dst_ip',
    'dst_mac', 'dst_oui', 'requested_server_name', 'client_fingerprint',
    'server_fingerprint', 'user_agent', 'content_type']

Number of columns after dropping object columns: 81
```

Splitting data into features (X) and labels (y)...

Cleaning data...

X_tcpdump.shape: (73180, 80)
y_tcpdump.shape: (73180,)
Handling categorical encoding...

Available categorical features: ['application_name',

'application_category_name']

Use categorical_encoder: OneHotEncoder(drop='first', handle_unknown='ignore',

sparse_output=False)

Processing categorical features: ['application_name',

'application_category_name']
Using existing OneHotEncoder

Added 261 one-hot encoded features

X_tcpdump.shape: (73180, 339)

Feature selection:

X_tcpdump_optimal.shape: (73180, 45)

y_tcpdump.shape: (73180,)

using predict_proba for prediction scores

Test Data - BENIGN Count: 46070, Ratio: 62.95% Test Data - ANOMALOUS Count: 27110, Ratio: 37.05%

Test result:

	precision	recall	f1-score	support
BENIGN	0.67	0.17	0.27	46070
ANOMALOUS	0.38	0.85	0.52	27110
accuracy			0.42	73180
macro avg	0.52	0.51	0.40	73180
weighted avg	0.56	0.42	0.37	73180

[[7882 38188]

[3943 23167]]

Precision: 0.378 Recall: 0.855

False Positive Rate: 0.829 False Negative Rate: 0.145

F1-Score: 0.524

Area under the curve: 0.769


```
[8]: # 7. Interpretation with SHAP
    shap_enabled = True
    if shap_enabled:
        print("\nStep 7: Interpretation with SHAP")
        explainer = shap.TreeExplainer(rf)
        X_test_optimal_sampled = X_test_optimal.sample(n=10000,__
      →random_state=random_state)
        shap_values = explainer.shap_values(X_test_optimal_sampled)
        plt.figure(figsize=(14, 8))
        if len(shap_values.shape) == 3:
            main_effects = shap_values[:, :, :-1].sum(axis=2)
            shap.summary_plot(main_effects, X_test_optimal_sampled,__
      else:
            shap.summary_plot(shap_values, X_test_optimal_sampled,__

→feature_names=optimal_features_list, show=False)
        plt.tight_layout()
        plt.subplots_adjust(left=0.15, right=0.85, top=0.95, bottom=0.1)
        plt.xlabel('SHAP interaction value', fontsize=12)
        plt.show()
```

Step 7: Interpretation with SHAP


```
[9]: # 8. Feature Importance
print("\nStep 8: Feature Importance")
with pd.option_context('display.max_rows', None):
    print(importance_df.head(len(optimal_features_list)))
```

Step 8: Feature Importance

	feature	importance
12	bidirectional_stddev_ps	0.084748
33	bidirectional_rst_packets	0.083522
9	dst2src_bytes	0.071479
11	bidirectional mean ps	0.050756

```
43
                    dst2src_rst_packets
                                            0.038378
    46
                 application_confidence
                                            0.032124
    8
                          src2dst_bytes
                                            0.031562
    7
                  bidirectional packets
                                            0.030574
    47
                     flow bytes per sec
                                            0.029129
    281
               application name Unknown
                                            0.027939
             bidirectional_psh_packets
    32
                                            0.027555
    37
                    src2dst_rst_packets
                                            0.027199
    137
                  application_name_HTTP
                                            0.027083
    217
                   application_name_TLS
                                            0.026072
    28
             bidirectional_syn_packets
                                            0.025665
                src2dst_packets_per_sec
                                            0.021941
    49
                         dst2src_min_ps
    16
                                            0.020947
    2
                               protocol
                                            0.019319
    15
                      src2dst_stddev_ps
                                            0.017827
    14
                        src2dst_mean_ps
                                            0.016880
    48
                   flow_packets_per_sec
                                            0.016514
    34
             bidirectional_fin_packets
                                            0.016263
    50
                dst2src packets per sec
                                            0.016198
    36
                    src2dst_psh_packets
                                            0.015190
    42
                    dst2src psh packets
                                            0.013289
    44
                    dst2src_fin_packets
                                            0.013115
    20
             bidirectional_max_piat_ms
                                            0.011659
    25
                   dst2src_mean_piat_ms
                                            0.011323
    27
                    dst2src_max_piat_ms
                                            0.010478
    17
             bidirectional_min_piat_ms
                                            0.010314
    51
                          down_up_ratio
                                            0.010100
    10
                   bidirectional_min_ps
                                            0.009580
    6
             bidirectional_duration_ms
                                            0.008717
    13
                         src2dst_min_ps
                                            0.007865
    18
            bidirectional_mean_piat_ms
                                            0.007418
    23
                 src2dst_stddev_piat_ms
                                            0.007120
    19
          bidirectional_stddev_piat_ms
                                            0.006235
    39
                    dst2src syn packets
                                            0.005799
    38
                    src2dst fin packets
                                            0.005566
    45
                 application is guessed
                                            0.005392
    306
         application_category_name_Web
                                            0.004912
    61
                   application_name_DNS
                                            0.004312
    26
                 dst2src_stddev_piat_ms
                                            0.004255
    21
                    src2dst_min_piat_ms
                                            0.004207
[]: model_dir = os.path.join(project_root, 'models', 'rf')
     if not os.path.exists(model_dir):
         os.makedirs(model_dir)
         print("Created model directory: models/rf")
```

dst_port

0.050579

1

```
# save the model
model file name = os.path.join(model dir, "model.pkl")
print(f"Saving the model to {os.path.basename(model_file_name)}")
joblib.dump(rf, model_file_name)
print("Model saved successfully.")
# save the encoder
encoder_file_name = os.path.join(model_dir, "encoder.pkl")
print(f"Saving the encoder to {os.path.basename(encoder file name)}")
joblib.dump(categorical_encoder, encoder_file_name)
print("Encoder saved successfully.")
# save the importance_df
importance_file_name = os.path.join(model_dir, "importance_df.pkl")
print(f"Saving the importance DataFrame to {os.path.
 ⇒basename(importance_file_name)}")
importance df to pickle(importance file name)
print("Importance DataFrame saved successfully.")
# save the optimal_features_list
optimal_features_file_name = os.path.join(model_dir, "optimal_features_list.
 ⇔pkl")
print(f"Saving the optimal features list to {os.path.
 →basename(optimal_features_file_name)}")
joblib.dump(optimal features list, optimal features file name)
print("Optimal features list saved successfully.")
```

```
Created model directory: models/rf
Saving the model to model.pkl
Model saved successfully.
Saving the encoder to encoder.pkl
Encoder saved successfully.
Saving the importance DataFrame to importance_df.pkl
Importance DataFrame saved successfully.
Saving the optimal features list to optimal_features_list.pkl
Optimal features list saved successfully.
```