Komplexe Funktionen

Reziprokfunktion

Gerade:

Kilis.

Gerade durch Urspring -> Gerade dirch Urspring

Gerade nicht Urspring -> Kreis

Kreis MP: Vispring -> Kreis

Kreis MP: nicht Utspring -> Kreis 8 nicht Phriphasix

$$C = mm - r^2$$

Zo= 100

Kreis Visping Peripherie -> Gerade

Was ist Reziprokflet. ?

- Inversion am EHK

- Spageling an reeller Achse

WW-(5+i)w-(5-i)w+1-0

Möbis Transformationen	$W(z) = \frac{az+b}{cz+o}$
3 Teile: 1. Dienstrecke	
2. Reziprokfht	· Cz ta
3. Drehstreckin	g 6c-ad 2 + a c
Beispiel 1: W/PF 2-1	1. 2+1 -> 1 nach rechts
	2. Z+1 -> Invession & spiegeling as
	3.9^{-1-1} $_{2}$ + 1 -> $_{1}$ = $_{1}$ $_{2}$ $_{4}$
Herleitung 3. Teil :	b) I nach rights $K = a \qquad (q = arg(a))$
W(2) = aztb	
C ± +0	falls x negativ, dann + it
= (az+b) : (cz+d)	
$=\frac{a}{c}-\left(a_{\frac{2}{c}}+\frac{a_{\frac{1}{c}}}{c}\right)=\frac{b_{\frac{1}{c}}}{c}$	2-ad + a
Lineare Regression	
	Für was: Eine Gerade die die Daten
	beschreibt und Voraussigen mendher
	kann
——	Methode der kleinster Ocadrate:
	Quadratomme der vestikalen Abstände soll
	minimal sein
	Beispiel 1: Daten (x: 1 x:)
$\sum_{i+1}^{n} 2 \cdot (a + bx_i - y_i) \cdot 1 = 0$	Punkte (x; IV;) Gerade
$na+b\hat{\Sigma}_{x},-\hat{\Sigma}_{y}=0$	Quadratsumme: 2 (v:-y:)
$na+nb\bar{x}-n\bar{y}=0$ (:	0 V= a+bx;
$a + b\bar{x} - \bar{y} = 0$	$\sum_{i=1}^{n} (a+bx_i-y_i)^2$
$\alpha = \bar{y} - b\bar{x}$	partielle Ableitung: 1. nach a ableiten
2. (a+bx:-yi)·x:=0	2. nach bableiten
nax + 1 bx = 0 1:	
$a\bar{x} + b\bar{x}^2 - \bar{x}\bar{y} = 0$	Mittel west: $\hat{x} = \frac{1}{2} \sum_{i=1}^{n} x_i$ $\hat{y} = \frac{1}{2} \sum_{i=1}^{n} y_i$
b = - 0x + xy	Varianz: $Var(x) = \frac{1}{2} \hat{\Sigma}_1 (x, -\bar{x})^2 \Rightarrow \chi_r(x)$
	Standard -: $O_x = \sqrt{\frac{1}{2}} \hat{\Sigma}_x (x - \bar{x})^2$ => O_y
	EZCO