

MNIST Training for BNN

Jack Diep, Florian Köhler, Yannick Naumann

September 6, 2021

Design Your Own CPU - Design of Embedded Systems

Content

1. Neural Networks

- What is a neural network?
- Training
- Our Goal

2. BNN Design

- The Network
- Layers
- Binarization of Input data

3. BNN Training Analysis

- Layer Analysis
- Parameter Analysis

■ The heart of deep learning

- The heart of deep learning
- Classify given data e.g. speech or image recognition

- The heart of deep learning
- Classify given data e.g. speech or image recognition
- Rely on training data

Neuron

lacksquare Holds a single value $v \in V_L$

Neuron

- Holds a single value $v \in V_L$
- Semantics depend on class of layer

Layer

Layer of neurons

Layer

- Layer of neurons
- Three types:
 - Input layer: Network input neurons
 - Hidden layer: Feature neurons
 - Output layer: Network output neurons

Layer

Connects all neurons between subsequent layers

- Connects all neurons between subsequent layers
- Weighted

- Connects all neurons between subsequent layers
- Weighted
- Semantics: Higher weight
 - $\rightarrow \ \text{higher feature significance}$

- Connects all neurons between subsequent layers
- Weighted
- Semantics: Higher weight
 - ightarrow higher feature significance
- Training: Optimize weights!

Training

1. Input data

- 1. Input data
- 2. Run the network

- 1. Input data
- 2. Run the network
- 3. Compare output with expected values
 - \rightarrow Calculate error (|v expected|)

- 1. Input data
- 2. Run the network
- 3. Compare output with expected values
 - \rightarrow Calculate error (|v expected|)
- 4. Run error back through network, adjust weights

- Input data √
- 2. Run the network
- 3. Compare output with expected values
 - \rightarrow Calculate error (|v expected|)
- 4. Run error back through network, adjust weights

- Input data √
- 2. Run the network?
- 3. Compare output with expected values
 - \rightarrow Calculate error (|v expected|)
- 4. Run error back through network, adjust weights

Run the network

- Input data √
- 2. Run the network ✓
- 3. Compare output with expected values
 - \rightarrow Calculate error (|v expected|)
- 4. Run error back through network, adjust weights

- Input data √
- 2. Run the network ✓
- 3. Compare output with expected values
 - \rightarrow Calculate error (|v expected|) \checkmark
- 4. Run error back through network, adjust weights

Training (Cycle)

- Input data √
- 2. Run the network ✓
- 3. Compare output with expected values
 - \rightarrow Calculate error (|v expected|) \checkmark
- 4. Run error back through network, adjust weights?

Adjusting weights

Backpropagation

Calculate change of error when adjusting some weight

 \rightarrow *Slope*

Adjusting weights

Backpropagation

Calculate change of error when adjusting some weight \rightarrow *Slope*

Chain rule

$$\frac{\delta \mathsf{error}}{\delta w} = \frac{\delta a}{\delta w} \cdot \frac{\delta b}{\delta a} \cdot \frac{\delta c}{\delta b} \cdot \dots \cdot \frac{\delta z}{\delta y} \cdot \frac{\delta \mathsf{error}}{\delta z}$$

Our Goal

- Create a BNN in PyTorch
- Image recognition on MNIST-Dataset
- \rightarrow Keep an accuracy of at least 90%
 - Export trained BNN

1. Neural Networks

- What is a neural network?
- Training
- Our Goa

2. BNN Design

- The Network
- Layers
- Binarization of Input data

3. BNN Training Analysis

- Layer Analysis
- Parameter Analysis

The Network

Binarisation of Linear Layer

- binarisation of weights
- binarisation of input data for hidden layers
- calculation through nn.linear

Batch Norm (BN)

- In NN
 - normalize batches
 - mean 0
 - standard derivation 1
- In BNN
 - prevent expolding gradient

Х

Activation

Evaluation of last layer

- normalisation of activation
- decision of the network

$$LogSoftmax(x_i) = log(\frac{e^{x_i}}{\sum_{i} e^{x_j}})$$

Binarization of Input data

Binarization of Input data

- Mapping 255 values to 0,1
- minimize accuracy losses
- 2 approaches
 - Threshold
 - Probability

Threshold-Binarization

- define static threshold
- filter pixel-array via: pixel > threshold

Probability-Binarization

- each pixelvalue dictates its prob for being 1
- binarize same trainingset multiple times
 - Run each epoche with all trainingsets

Comparison Threshold, Prob

- Threshold
 - Using integrated tensor-functions
 - 150ms per iteration
 - Convergence after approx.100 epochs

- Probability
 - Iterate through tensor manually
 - 250ms per iteration
 - Convergence after approx.20*30 iterations

Evaluating Accuracy-Loss

Run	Non-Binarized	threshold	prob
1	91.99%	89.24%	92.52%
2	91.99%	89.24%	91.82%
3	91.99%	89.24%	92.56%
4	91.99%	89.24%	91.02%
avg	91.99%	89.24%	91.98%

- 600 epochs for threshold, default
- 20 epochs, 30 trainingsets for prob

1. Neural Networks

- What is a neural network?
- Training
- Our Goa

2. BNN Design

- The Network
- Layers
- Binarization of Input data

3. BNN Training Analysis

- Layer Analysis
- Parameter Analysis

Consequences of linear layer binarisation

Run	binary	normal
1	88.29%	97.43%
2	87.32%	96.98%
3	87.19%	97.2%

- training for 50 epochs
- mean loss of 9,6%
- loss in granularity

Effect of Batch Norm

- 7.4% improved peak performance
- Less jitter with BN
- Reduced expolding gradient

Parameter Analysis

Batch size

- frequency of error calculation
- normalisation though Batch Norm
- rate of parallelization

Batchsize	Time (s)
10	30,68
50	11,33
100	8,76
150	7,95
200	7,63
500	6,66
1000	6,39

Evaluation of Batch size

Diep, Köhler, Naumann — September 6, 2021

BNN Training Analysis: Parameter Analysis

Learning rate

- lacktriangle higher value ightarrow more weights are updated
- balance between vanishing- and exploding gradient

Evaluation learning rate

