Цель работы: Получение навыков проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа.

Исследование проводится с помощью программы, созданной в лабораторной работе №4.

Исходные данные

1. Задана математическая модель. Уравнение для функции T(x)

$$\frac{d}{dx}(k(x)\frac{dT}{dx}) - \frac{2}{R}\alpha(x)T + \frac{2T_0}{R}\alpha(x) = c(T)\frac{dT}{dt}$$

2. Краевые условия

$$\begin{cases} t = 0, T(x, 0) = T_0 \\ x = 0, -k(0) \frac{dT}{dx} = F_0, \\ x = l, -k(T(l)) \frac{dT}{dx} = \alpha_N(T(l) - T_0) \end{cases}$$

3. Функции $k(T), \alpha(x), p(x), f(x)$ заданы своими константами

$$k(T) = a_1(b_1 + c_1 \cdot T^{m_1})$$
$$\alpha(x) = \frac{c}{x - d}$$
$$p(x) = \frac{2}{R} \cdot \alpha(x)$$
$$f(x) = \frac{2T_0}{R} \cdot \alpha(x)$$

4. Значения параметров (все размерности согласованы)

$$c(T) = a_2 + b_2 T^{m_2} - \frac{c_2}{T^2},$$

$$\alpha_1 = 0.0134, \ b_1 = 1, \ c_1 = 4.35 \cdot 10^{-4}, \ m_1 = 1$$

$$\alpha_2 = 2.049, \ b_2 = 0.563 \cdot 10^{-3}, \ c_2 = 0.528 \cdot 10^5, \ m_2 = 1$$

$$\alpha_0 = 0.05$$

$$\alpha_N = 0.01$$

$$l = 10$$

$$T_0 = 300$$

$$R = 0.5$$

5. Поток тепла F(t) при x=0

$$F(t) = \frac{F_{max}}{t_{max}} t e^{-(t/t_{max} - 1)},$$

где F_{max} – амплитуда импульса потока, t_{max} – время достижения амплитуды.

Результаты работы

1. Провести исследование по выбору оптимальных шагов по времени и пространству. Шаги должны быть максимально большими при сохранении устойчивости разностной схемы и заданной точности расчета.

Рассмотреть влияние на получаемые результаты амплитуды импульса F_{max} и времени t_{max} определяют крутизну фронтов и длительность импульса).

Примем $F_{max} = 50$ и $t_{max} = 10$.

Для выбора оптимального шага по времени (τ) будем уменьшать шаги и анализировать сходимость, как это было сделано в лабораторной работе №1.

1	1	0.1	1	0.01	١	0.001	1
672.3977	ı	425.7617	ī	421.8308	ı	423.7732	ı
620.8252		393.5921		389.2378		390.7338	
577.2762		369.8432		365.5170		366.6812	
540.2724		352.1433		348.0722		348.9831	
508.6609		338.8774		335.1692		335.8830	-
481.5307		328.9090	1	325.6067	1	326.1650	
458.1537		321.4171		318.5271	1	318.9619	-
437.9420		315.7958		313.3043		313.6407	
420.4164		311.5914		309.4725		309.7307	
405.1828		308.4599		306.6814		306.8777	
391.9144		306.1393		304.6657		304.8134	
380.3385		304.4294		303.2239		303.3337	
370.2256	1	303.1768	1	302.2034	1	302.2840	1
361.3814		302.2651	1	301.4890	1	301.5475	

Рис. 1: Шаг по времени

Оптимальный шаг $\tau = 0.01$.

Аналогичным образом найдем оптимальный шаг по пространству (h):

0.03		0.025	I	0.02	I	0.015	I	0.01		0.005	I
300.0000	ı	300.0000	ı	300.0000	1	300.0000	ı	300.0000	1	300.0000	
300.0680	-	300.0789	-	300.0933	1	300.1119		300.1345	-	300.1545	
300.1985	-	300.2282	-	300.2656	1	300.3109		300.3591	-	300.3930	
300.3865	-	300.4405	-	300.5057	1	300.5798		300.6501	-	300.6922	
300.6277	-	300.7095	-	300.8047	1	300.9065		300.9944	-	301.0411	
300.9180	-	301.0298	-	301.1554	1	301.2824		301.3837	-	301.4335	
301.2540	-	301.3968	-	301.5520	1	301.7013		301.8128	-	301.8648	
301.6324	-	301.8066	-	301.9898	1	302.1585		302.2780	-	302.3317	
302.0505		302.2556	-	302.4652	1	302.6506	-	302.7763	-	302.8316	
302.5056		302.7409		302.9749	1	303.1747		303.3058	-	303.3625	
302.9955	-	303.2601	-	303.5165	1	303.7288		303.8644	-	303.9226	
303.5182	-	303.8108	-	304.0879	1	304.3111	-	304.4508	-	304.5104	
304.0718		304.3912		304.6872	1	304.9202	I	305.0637		305.1248	

Рис. 2: Шаг по пространству

Оптимальный шаг h = 0.01.

В дальнейшем в ходе работы будут использованы шаги $\tau = 0.01$ и h = 0.01.

Рассмотрим влияние на получаемые результаты амплитуды импульса и времени достижения амплитуды.

На рисунке 3 представлен график при значениях $F_{max}=50$ и $t_{max}=1$

Рис. 3: $F_{max} = 50, t_{max} = 1$

На рисунке 4 представлен график при значениях $F_{max}=50$ и $t_{max}=10.$

При изменении t_{max} меняется время импульса и чем больше t_{max} , тем дольше стержень получает тепло и тем сильнее нагревается.

Рис. 4: $F_{max} = 50, t_{max} = 10$

На рисунке 5 представлен график при значениях $F_{max}=100$ и $t_{max}=1.$

При увеличении F_{max} увеличивается максимальная температура, на которую может нагреться стержень.

Рис. 5: $F_{max} = 100, t_{max} = 1$

2. График зависимости температуры T(0,t) при 3-4 значениях параметров a_2 и/или b_2 теплоемкости.

Cnpaвка. С ростом теплоемкости темп нарастания температуры снижается (так как стержню необходимо больше тепла, чтобы нагреться до той же температуры, что и при меньшей теплоемкости).

На рисунке 6 представлен график, полученный при значениях $F_{max}=40$ и $t_{max}=1.$

Рис. 6: График зависимости T(0,t) при различных значениях a_2 и b_2

3. График зависимости температуры T(0, t) (т.е. при x = 0) в частотном режиме теплового нагружения. Импульсы следуют один за другим с заданной частотой ν (частота определяется количеством импульсов в 1 секунду).

Показать, что при большом количестве импульсов температурное поле начинает в точности воспроизводиться от импульса к импульсу.

Продемонстрировать, как по мере роста частоты импульсов размах колебаний температуры уменьшается (вплоть до нуля), т.е. реализуется квазистационарный режим, при котором в торец поступает постоянный поток $F_c = \nu \int_0^{t_u} F(t) dt$. Здесь t_u — длительность импульса, определяемая как момент времени, когда $\frac{F(t_u)}{F_{max}} \approx 0.05$. Если взять прямоугольные импульсы длительностью t_u , т.е. $F(t) = comst = F_0$, то $F_c = \nu F_0 t_u$.

Справка. Полученное температурное поле должно совпасть с результатом расчета T(x) по программе лаб. работы №3 при $F_0 = F_c$, разумеется, при всех одинаковых параметрах модели, в частности, вместо k(T) надо использовать k(x) из лаб. работы №3.

Примем $F_{max} = 50, t_{max} = 1$ и будем постепенно увеличивать частоту $\nu.$

Рис. 7: $\nu = 0.05$

Рис. 8: $\nu = 0.1$

Рис. 9: $\nu=0.2$

Рис. 10: $\nu = 1$

Рис. 11: $\nu = 50$

На рисунках 7-11 можно наблюдать, что по мере увеличения числа импульсов размах колебаний уменьшается вплоть до нуля.

Рассмотрим график, полученный при параметрах модели как в лабораторной работе N_3 , в частности, при замене k(T) на k(x).

Рис. 12: Температурное поле

Полученное температурное поле совпадает с результатом расчетов в лабораторной работе N=3.

Вывод

В ходе лабораторной работы были получены навыки проведения исследований компьютерной математической модели, построенной на квазилинейном уравнении параболического типа.