Cervical cancer and herpes

```
library(inlamisclass)
library(dplyr)
library(ggplot2)
library(INLA)
```

The data case_control_data consists of n = 2044 rows and three columns:

- y_1, \dots, y_n : The cervical cancer status of a patient.
- x_1, \dots, x_n : Exposure to HSV-2, measured with an accurate test, only 115 measurements available.
- w_1, \dots, w_n : Exposure to HSV-2, measured with an inaccurate test.

The response y and the less accurate test result w are available for all patients, while the more accurate test result x is only available for 115 of the patients. That means that we have a validation sample of 115 samples which can be used to estimate the misclassification probabilities.

```
validation <- filter(case_control_data, !is.na(x))
incomplete_data <- filter(case_control_data, is.na(x))</pre>
```

By looking at the data in aggregated form, it can be seen that the misclassification probabilities for the cases $(y_i = 1)$ and controls $(y_i = 0)$ are quite different. Therefore, we will consider two cases: Case 1, where we only consider the overall misclassification matrix, irrespective of the value of y_i , and Case 2, where we switch between the two matrices depending on the value of y_i in the modelling.

Case 1: Misclassification is considered independent of y_i

We estimate the overall misclassification matrix from the validation data:

```
# w = 1 given x = 0
pi10 <- sum((validation$w-validation$x) == 1)/sum(validation$x==0)

# w = 0, given x = 1
pi01 <- sum(validation$w-validation$x == -1)/sum(validation$x==1)

M <- matrix(c(1-pi10, pi10, pi01, 1-pi01), byrow = TRUE, nrow = 2)</pre>
```

For the exposure model describing x, we estimate the probability of exposure to HSV-2, $P(x_i = 1)$ from the validation data:

```
p <- sum(validation$x == 1)/nrow(validation)
alpha0 <- log(p/(1-p))</pre>
```

This means that for the modelling, we will use the misclassification matrix

```
## [,1] [,2]
## [1,] 0.7666667 0.2333333
## [2,] 0.3818182 0.6181818
```

М

and the exposure model logit $[E(x)] = \alpha_0 \mathbf{1}$, where α_0 is assumed to be -0.0870114.

For running the model, we will run importance sampling for the given number of iterations, and the results will be saved along with the running time:

```
niter <- 10000
start time <- Sys.time()</pre>
case_control_model1 <- inla_is(formula_moi = y ~ w,</pre>
                                formula_imp = w ~ 1,
                                alpha = alpha0,
                                MC_matrix = M,
                                data = incomplete_data,
                                niter = niter,
                                family = "binomial", Ntrials = 1)
end_time <- Sys.time()</pre>
case_control_results1 <- list(runtime = end_time - start_time,</pre>
                               model = case_control_model1,
                               summary = make_results_df(case_control_model1,
                                                           niter = niter))
saveRDS(list(case_control_model = case_control_results1,
              niter = niter, rundate = Sys.time()),
        file = "code/results/case control results1.rds")
case_control_results1 <- readRDS("code/results/case_control_results1.rds")</pre>
We fit a naive model that ignores the misclassification in \boldsymbol{w} for a comparison.
naive_cc <- INLA::inla(y ~ w, data = incomplete_data, family = "binomial",</pre>
                        Ntrials = 1)
plot_compare_inlamisclass(case_control_results1$case_control_model$model,
                            naive mod = naive cc, plot intercept = TRUE)
```


Case 2: Misclassification and exposure depend on y_i

We estimate the conditional misclassification matrices based on the value of y:

```
validation1 <- filter(validation, y == 1)</pre>
validation0 <- filter(validation, y == 0)</pre>
# w = 1 given x = 0, y = 1
pi10_y1 <- sum((validation1$w-validation1$x) == 1)/sum(validation1$x==0)
# w = 0, given x = 1, y = 1
pi01_y1 <- sum(validation1$w-validation1$x == -1)/sum(validation1$x==1)
# w = 1, x = 0, given y = 0
pi10_y0 <- sum((validation0$w-validation0$x) == 1)/sum(validation0$x==0)
# w = 0, x = 1, qiven y = 0
pi01_y0 <- sum(validation0$w-validation0$x == -1)/sum(validation0$x==1)
So the MC matrix for y_i = 1 would be
M1 \leftarrow matrix(c(1-pi10_y1, pi10_y1, pi01_y1, 1-pi01_y1), byrow = TRUE, nrow = 2)
M1
##
                        [,2]
              [,1]
## [1,] 0.8125000 0.1875000
## [2,] 0.2173913 0.7826087
and for y_i = 0:
MO <- matrix(c(1-pi10_y0, pi10_y0, pi01_y0, 1-pi01_y0), byrow = TRUE, nrow = 2)
МО
        [,1] [,2]
##
```

```
## [1,] 0.75 0.25
## [2,] 0.50 0.50
```

Similarly, we estimate the coefficients of the exposure model conditional on y_i :

```
p1 <- sum(validation1$x == 1)/nrow(validation1)
alpha0_1 <- log(p1/(1-p1))
p0 <- sum(validation0$x == 1)/nrow(validation0)
alpha0_0 <- log(p0/(1-p0))

c(alpha0_0 = alpha0_0, alpha0_1 = alpha0_1)

## alpha0_0 alpha0_1
## -0.3184537 0.3629055

But this is the same as regression model:
exp_glm <- glm(x~y, family = "binomial", data = validation)$coef
alphas <- exp_glm["(Intercept)"] + c(0, exp_glm["y"])
alphas
```

```
## y
## -0.3184537 0.3629055
```

So we use the exposure/imputation model logit[$E(\boldsymbol{x} \mid \boldsymbol{y})$] = $\alpha_0 \mathbf{1} + \alpha_y \boldsymbol{y}$, with fixed values for the coefficients, $\alpha_0 = -0.3185$ and $\alpha_y = 0.3629$.

```
start_time <- Sys.time()</pre>
case_control_model2 <- inla_is(formula_moi = y ~ w,</pre>
                                formula_imp = w ~ y,
                                alpha = alphas,
                                MC_{matrix} = list(MC_1 = M1, MC_0 = M0),
                                data = incomplete_data,
                                niter = niter,
                                conditional = "y",
                                family = "binomial", Ntrials = 1)
end_time <- Sys.time()</pre>
case_control_results2 <- list(</pre>
 runtime = end_time - start_time,
 model = case_control_model2,
  summary = make_results_df(case_control_model2, niter = niter))
saveRDS(list(case_control_model = case_control_results2,
             niter = niter, nburnin = 0, rundate = Sys.time()),
        file = "code/results/case_control_results2.rds")
```

```
case_control_results2 <- readRDS("code/results/case_control_results2.rds")</pre>
```

Again, we plot the results from this model together with the estimates from the model that does not account for misclassification.

Comparing the cases

We plot both cases together, along with the naive model, to compare.

```
plot_compare_inlamisclass(
   list(case_control_results1$case_control_model$model,
        case_control_results2$case_control_model$model),
   naive_mod = naive_cc, plot_intercept = TRUE,
   num_inlamisclass_models = 2, niter = case_control_results2$niter)
```


Figure for article

```
results_nondiff <- make_results_df(case_control_results1$case_control_model$model)$moi
results_diff <- make_results_df(case_control_results2$case_control_model$model)$moi
results naive <- naive cc$summary.fixed
results_naive$variable <- rownames(results_naive)</pre>
all_res <- dplyr::bind_rows(nondiff = results_nondiff, diff = results_diff, Naive = results_naive, .id =
all_res$labels <- paste0("beta", "[", c(0, "x"), "]")
all_res$Model <- factor(all_res$Model, levels = c("Naive", "nondiff", "diff"))</pre>
all_res$Model <- plyr::revalue(all_res$Model,
                               c("Naive" = "Model with no adjustment",
                                 "nondiff" = "Model assuming nondifferential MC",
                                 "diff" = "Model assuming differential MC"))
ggplot(all_res, aes(y = Model)) +
 geom_point(aes(x = mean)) +
  geom_errorbarh(aes(xmin = .data$"0.025quant", xmax = .data$"0.975quant"), height = .2) +
  scale_y_discrete(limits = rev) +
  facet_wrap(vars(labels), scales = "free_x", labeller = label_parsed) +
  theme_bw() +
  theme(axis.title = element_blank())
```

