The Nature of HCI

HCI

Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. [ACM SIGCHI definition, 1996]

HCI Research

- Research precedes products
- Consider...
 - Two-finger gestures (Apple iPhone, 2007)
 - Acceleration-sensing (Nintendo Wiimote, 2005)
 - Wheel mouse (Microsoft Intellimouse, 1996)
 - Single-stroke text input (Palm's Graffiti, 1995)
- Were these ideas born out of engineering or design brilliance? Not really...

HCI Research

Two-finger gestures:

2007?

1978 ¹

Acceleration-sensing:

2005?

1998²

Wheel mouse:

1996?

1993³

• Single-stroke text input:

¹ Herot, C. F., & Weinzapfel, G. (1978). One-point touch input of vector information for computer displays. *Proc SIGGRAPH '78*, 210-216, New York: ACM.

² Harrison, B., Fishkin, K. P., Gujar, A., Mochon, C., & Want, R. (1998). Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. *Proc CHI* '98, 17-24, New York: ACM.

³ Venolia, D. (1993). Facile 3D manipulation. Proc CHI '93, 31-36, New York: ACM.

I.S. MacKenzie ©2013

Inherent conflicts in HCI

- HCI is complex
- There often is not one optimal solution
- There are trade-offs and multiple stakeholders with conflicting goals
 - Users prefer consistency over change
 - Often, there is a trade-off between usability and security (the highest ease of use would be with no security, which isn't possible)
 - HCI research can be hard to cost-justify

Basic Design principles

- Generalizable abstractions for thinking about different aspects of design
- The do's and don'ts of interaction design
- What to provide and what not to provide at the interface
- Derived from a mix of theory-based knowledge, experience and common-sense

Visibility

- This is a control panel for an elevator
- How does it work?
- Push a button for the floor you want?

- Nothing happens. Push any other button? Still nothing. What do you need to do?
- It is not visible as to what to do!

Visibility

 ...you need to insert your room card in the slot by the buttons to get the elevator to work!

How would you make this action more visible?

- Make the card reader more obvious
- Provide an auditory message, that says what to do (which language?)
- Provide a big label next to the card reader that flashes when someone enters
- Make relevant parts visible
- Make what has to be done obvious

Feedback

- Sending information back to the user about what has been done
- Includes sound, highlighting, animation and combinations of these
 - E.g. when screen button clicked on provides sound or red highlight feedback:

Constraints

- Restricting the possible actions that can be performed
- Helps prevent user from selecting incorrect options
- Physical objects can be designed to constrain things
 - E.g. only one way you can insert a key into a lock

Constraints

- Where do you plug the mouse?
- Where do you plug the keyboard?
- Top or bottom connector?
- Do the colour coded icons help?

Constraints

 Provides direct adjacent mapping between icon and connector

 Provides colour coding to associate the connectors with the labels

Consistency

- Design interfaces to have similar operations and use similar elements for similar tasks
- For example:
 - Always use ctrl key plus first initial of the command for an operation – ctrl+C, ctrl+S, ctrl+O
- Main benefit is consistent interfaces are easier to learn and use

Consistency

- Internal consistency refers to designing operations to behave the same within an application
 - Difficult to achieve with complex interfaces

- External consistency refers to designing operations, interfaces, etc., to be the same across applications and devices
 - Very rarely the case, based on different designer's preference

Consistency

A case of external inconsistency

(a) phones, remote controls

1	2	3
4	5	6
7	8	9
	0	

(b) calculators, computer keypad

7	8	9
4	5	6
1	2	3
0		

Affordances

Affordances

- Refers to an attribute of an object that allows people to know how to use it (give a clue)
 - E.g. a mouse button invites pushing, a door handle affords pulling

©2015

- Norman (1988) used the term to discuss the design of everyday objects
- Since has been much popularized in interaction design to discuss how to design interface objects
 - E.g. scrollbars to afford moving up and down,
 icons to afford clicking on

User-Centered Design

- User-centered approach is based on:
 - Early focus on users and tasks: directly studying cognitive, behavioural, anthropomorphic & attitudinal characteristics
 - Empirical measurement: users' reactions and performance to scenarios, manuals, simulations & prototypes are observed, recorded and analysed
 - Iterative design: when problems are found in user testing,
 fix them and carry out more tests

Four basic activities

- There are four basic activities in Interaction Design:
 - Identifying needs and establishing requirements
 - Developing alternative designs
 - Building interactive versions of the designs
 - Evaluating designs

Interaction design model

Exemplifies a user-centered design approach

Project Components

- 1. Background research
- 2. Conceptual model
- 3. Users needs & requirements
- 4. Design alternatives
- 5. Final working prototype
- 6. Evaluation/usability
- 7. Results and recommendations