الأعداد العقدية

محتوى الدرس			
2	مجموعة الأعداد العقدية	1	
3	العمليات على الأعداد العقدية	2	
3	1.2 الجمع و الطرح		
4	2.2 الضرب		
4	3.2 القسمة		
5	4.2 المرافق		
5 6	5.2 المعيار		
7	0.2 العمدة	3	
8	1.3 المستوى العقدى		
8	2.3 التمثيلُ ألهندسي للقابل و مرافق عدد عقدي ٢٠٠٠٠٠٠٠٠٠٠٠٠٠٠		
9	3.3 التأويل الهندسي لمعيار و عمدة عدد عقدي		
9	4.3 لحق متَّجهة – تلحق مرجح نقط متزنة		
10	5.3 زاو بة محددة تمتجهتين		
10	6.3 التمثيل العقدي لبعض التحويلات الإعتيادية		
11	الشكل المثلثي لعدد عقدي	4	
12	الشكل الأسي لعدد عقدي	5	
13	المعادلات منّ الدرجة الثانية بمجهول واحد في ©	6	

1. مجموعة الأعداد العقدية

نشاط 1

 $\bullet(E): \ x^3 + 6x = 20$ الجزء الأول نعتبر المعادلة

- \mathbb{R} بين أن المعادلة (E) تقبل حلا في \mathbb{R} .
- $\bullet(E) \Leftrightarrow (u^3+v^3-20) + (3uv+6)(u+v) = 0$ بين أن x = u+v نضع \bullet
- $\bullet(S): \left\{ egin{array}{ll} u^3 + v^3 20 = 0 \\ 3uv + 6 = 0 \end{array} \right.$ عديد قيمة x الذي يحقق المعادلة (E) يكفي تحديد v عديد قيمة x الذي يحقق المعادلة x
 - $(E_0): X^2-20X+8=0$ بين أن العددين u^3 و v^3 هما حلا المعادلة (ا) بين أن العددين (E_0) السمى المعادلة المكافئة للمعادلة (E_0)
 - (v) حدد حلول المعادلة (E_0) و استنتج العددين v
 - $(-\sqrt{3})^3$ و $(1+\sqrt{3})^3$ احسب $(+\sqrt{3})^3$
 - v و u استنتج تبسيطا للعددين u
 - \mathbb{R} . استنتج من خلال ما سبق حلا للمعادلة (E) و حدد جميع حلولها في \mathbb{R}
 - $\bullet(E_2): x^3 = 36x + 91$ و $(E_1): x^3 + 3x = 36$ حل في $\mathbb R$ بنفس الطريقة المعادلات 36.
 - $(E'): x^3 = 15x + 4$ الجزء الثاني نعتبر المعادلة
 - ه. بين أن المعادلة (E') تقبل حلا في \mathbb{R} .
 - (E'_0) على المعادلة المكافئة للمعادلة (E')، هل المعادلة (E'_0) عقبل حلولا (E'_0)
 - $i^2 = -1$ بحيث نستمر في تطبيق طريقة الجزء الأول، نفترض وجود عدد "تخيلي" بحيث $i^2 = -1$.
 - • $(E'_0) \Leftrightarrow (X-2)^2 + 121 = 0$ بين أُن (۱)
 - $(X-2)^2+121$ مستعينا بالعدد (i) عمل التعبير (v)
 - (E'_0) حدد حلول المعادلة (F'_0)
 - $(2-i)^3$ و $(2+i)^3$
 - استنتج حلا للمعادلة (E') و حدد جميع حلولها في \mathbb{R} .
 - $\bullet(E_2): x^3 + 6 = 7x$ و $(E_1): x^3 + 4 = 6x$ على في $\mathbb R$ بنفس الطريقة المعادلات

تعاريف

- $oldsymbol{i} oldsymbol{i} oldsymbol{i} -i^2 = -1$ نقبل وجود عدد نرمز له بالرمز i
- بنفس خاصیات الضرب و الجمع فی $\mathbb R$ نقبل وجود العددین ib و a+ib و عنصرین من $\mathbb R$.
 - العدد ib يسمى عدد تخيليا صرفاً.
 - $i\mathbb{R}=\{ib/b\in\mathbb{R}\}$: نرمن لمجموعة الأعداد التخيلية الصرفة بالرمن $i\mathbb{R}$ ، أي:
 - العدد a+ib يسمى عدد عقديا.
 - $ullet \mathbb{C} = \{a+ib/(a;b) \in \mathbb{R}^2\}$: أي: $\{a+ib/(a;b) \in \mathbb{R}^2\}$
 - $oldsymbol{\cdot}$ کل عدد عقدي z یکتب بکیفیهٔ وحیدهٔ $z=a+iar{b}$ و عنصرین من z
 - الكتابة z=a+ib تسمى الشكل الجبري للعدد العقدي ع

- $\operatorname{Re}(z)$ العدد a يسمى الجزء الحقيقى للعدد z للعدد .
 - $\operatorname{Im}(z)$ العدد b يسمى الجزء التخيلي للعدد z يرمن له بالرمن b

أمثلة

 $\left(\operatorname{Re}(z)=\sqrt{5}\Rightarrow\operatorname{Im}(z)=4\right)\Rightarrow z=\bullet\bullet\bullet\bullet\bullet \qquad z=2-i\sqrt{3}\Rightarrow\left(\operatorname{Re}(z)=\bullet\bullet\bullet\bullet\bullet\right)$

نتائج

 $\operatorname{Re}(z) \in \cdots \longrightarrow \operatorname{Im}(z) \in \cdots \longrightarrow \operatorname{Re}(z) = 0 \Leftrightarrow z \in \cdots \longrightarrow$

 $z = \cdots + \cdots$ $Im(z) = 0 \Leftrightarrow z \in \cdots$

لكل عدد عقدي 2.

خاصية

يكون عددان عقديان متساويان إذا و فقط إذا كان لهما نفس الجزء الحقيقي و نفس الجزء التخيلي. $x+iy=x'+iy'\Leftrightarrow (x=x')$ و بتعبير آخر y=y' و بتعبير آخر $z=z'\Leftrightarrow (\operatorname{Re}(z)=\operatorname{Re}(z'))$

نتيجة

یکون عدد عقدي منعدما إذا وفقط إذا کان کل من جزئیه الحقیقي و التخیلي منعدمین. $x+iy=0\Leftrightarrow (x=0)$ و y=0 و بتعبیر آخر $z=0\Leftrightarrow (\mathrm{Re}(z)=0)$

ملاحظة

لا وجود لمفهوم الترتيب في المجموعة ℃.

2. العمليات على الأعداد العقدية

1.2. الجمع و الطرح

قاعدة 1

ليكن z=a+ib و z=a+ib عددين عقديين بحيث z=a+ib عددين عدين عدين عدين z=a+ib ليكن z=a+ib يادينا: z-z'=(a-a')+i(b-b')

أمثلة

 $(3+5i) + (2-3i) = \dots$ $(3-5i) + 6 = \dots$ $(-1-4i) - (2+3i) = \dots$ $7i - (4+5i) = \dots$

2.2 الضرب

قاعدة 3

ليكن z=a+ib و z=a'+ib' عددين عقديين بحيث z=a+ib عددين عقديين الدينا: z=a+ib' عددين عقديا: zz'=a'+ib'+i(ab'+ba')

أمثلة

```
3(2+4i) = \dots  (5-3i)i = \dots  (2-7i)(3+4i) = \dots  (2-7i)(2-3i) = \dots
```

ملاحظات

- $i^7=\dots$ و $i^6=\dots$ و بصفة عامة $i^6=\dots$ و $i^6=\dots$ و $i^6=\dots$ و $i^6=\dots$ و نام من $i^6=\dots$ و بصفة عامة $i^6=\dots$ و نام من $i^6=\dots$ و نام من $i^6=\dots$ و نام من الم
- $(\forall n \in \mathbb{N}^* \setminus \{1\})(\forall (z; z') \in \mathbb{C}^2) : z^n z'^n = (z z')(z^{n-1} + z^{n-2}z' + z^{n-3}z'^2 + \dots + z'^{n-1}) \bullet$
- $(orall n\in\mathbb{N}^*\smallsetminus\{1\})(orall z\in\mathbb{C}):\;z^n-1=(z-1)(z^{n-1}+z^{n-2}+\cdots+1)$ من أجل z'=1 لديناz'=1

3.2. القسمة

قاعدة 4

ليكن z=a+ib و z=a+ib عددين عقديين بحيث z=a+ib عددين عقديين بحيث z=a+ib ليكن z=a+ib ليكن z=a+ib و z=a+ib ينا: z=a+ib و z=a+ib و z=a+ib و z=a+ib

أمثلة

```
\frac{1}{2-3i} = \dots \\ \frac{1}{4+7i} = \dots \\ \frac{4+7i}{2+5i} = \dots \\ \frac{-3+2i}{3-4i} = \dots
```

تمرين 1

- $\cdot \frac{(1-i)^3}{(2+i)^2}$; $\frac{1}{3+i} \frac{1}{3-i}$; (1+i)(1-i)(2+i); (4+3i) + (2-5i) يلي: 1.
 - (3+2i)(1+ib) عدد العدد الحقيقي b بحيث يكون العدد العدد الحقيقي عبي .2
 - (۱) عددا حقیقیا. (ب) عددا تخیلیا صرفا

$$\frac{1}{z} + \frac{1}{2-i} = \frac{3}{1+i} \left((z+i)(1-i) = 2 + 3i \right) \qquad z(2+i) = 3 - 2i \left((1) \right)$$

4. حدد العددين الحقيقيين
$$a$$
 و d بحيث: $\frac{a}{2-i} + \frac{bi}{i+3} = \frac{2}{1+i}$ (ب) $\frac{a}{1+i} + \frac{b}{1-2i} = 1$ (۱)

4.2 المرافق

تعریف

مرافق عدد عقدي a-ib و نرمز له بالرمز z=a+ib و عددان حقيقيان هو العدد العقدي z=a+ib و نرمز له بالرمز $\overline{z}=\overline{a+ib}=a-ib$

أمثلة

$$\frac{\overline{-7-6i} = \cdots }{\overline{10} = \cdots } \frac{\overline{5-3i} = \cdots }{\overline{-11} = \cdots } \frac{\overline{-2+4i} = \cdots }{\overline{-2i} = \cdots } \frac{\overline{3+8i} = \cdots }{\overline{i} = \cdots }$$

نتائج

ليكن
$$z=a+ib$$
 عددا عقديا حيث $z=a+ib$ يكن $z=a+ib$ عددا عقديا حيث $z=a+ib$ و $z=z=2$ $z=2$ و $z=z=2$ و $z=z=z=2$ و $z=z=z=z=2$ و $z=z=z=z=2$ و $z=z=z=z=2$ و $z=z=z=z=2$ و $z=z=z=z=2$

خاصیات

عددان حقیقیان. لیکن z و z' عددین عقدیین و n عددا صحیحا نسبیا.

$$\frac{\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}} \quad \mathbf{g} \quad \overline{z^n} = \overline{z}^n \quad \mathbf{g} \quad \overline{\overline{z}} = z}{\overline{z} \times \overline{z'} = \overline{z} \times \overline{z'}} \quad \mathbf{g} \quad \overline{\overline{z}} = z$$

5.2. المعيار

تعريف

معيار عدد عقدي $\sqrt{a^2+b^2}$ و نرمن له بالرمن z=a+ib و عددان حقيقيان هو العدد الحقيقي $\sqrt{a^2+b^2}$ و نرمن له بالرمن $|z|=\sqrt{a^2+b^2}=\sqrt{z\overline{z}}$ لدينا:

أمثلة

$$|1-i| = \cdots$$
 $|1+i| = \cdots$ $|-2+3i| = \cdots$ $|-4-3i| = \cdots$ $|5i| = \cdots$

ملاحظات

إذا كان z عددا حقيقيا فإن معيار z هو قيمته المطلقة.

$|z| \in \mathbb{R}^+$ و $z\overline{z} = |z|^2$

خاصیات

ليكن z و z' عددين عقديين و n عددا صحيحا نسبيا. $|z^n|=|z|^n$ و $|z+z'|\leq |z|+|z'|$ و $|z|=|-z|=|\overline{z}|$ و $|z|=0\Leftrightarrow z=0$ و $|z'|=|z|\times |z'|=|z|\times |z'|$

6.2. العمدة

تعریف

عمدة عدد عقدي z=a+ib غير منعدم حيث a و a عددان حقيقيان غير منعدمان هو أحد قياسات الزاوية $\sin \theta = \frac{b}{\sqrt{a^2+b^2}}$ و $\cos \theta = \frac{a}{\sqrt{a^2+b^2}}$ (بالراديان) التي تحقق $\cos \theta = \frac{a}{\sqrt{a^2+b^2}}$ و $\cos \theta = \frac{a}{\sqrt{a^2+b^2}}$. $\sin(\arg(z)) = \frac{b}{\sqrt{a^2+b^2}} = \frac{\operatorname{Im}(z)}{\sqrt{z\overline{z}}}$ و $\cos(\arg(z)) = \frac{a}{\sqrt{a^2+b^2}} = \frac{\operatorname{Re}(z)}{\sqrt{z\overline{z}}}$

أمثلة

```
\begin{cases} \cos(\arg(2+2i)) = \cdots & \Rightarrow \arg(2+2i) \equiv \cdots \\ \sin(\arg(2+2i)) = \cdots & \Rightarrow \arg(2+2i) \equiv \cdots \\ \sin(\arg(2-2i)) = \cdots & \Rightarrow \arg(2-2i) \equiv \cdots \\ \sin(\arg(1-i\sqrt{3})) = \cdots & \Rightarrow \arg(1-i\sqrt{3}) \equiv \cdots \\ \sin(\arg(1-i\sqrt{3})) = \cdots & \Rightarrow \arg(1-i\sqrt{3}) \equiv \cdots \\ \sin(\arg(3+i\sqrt{3})) = \cdots & \Rightarrow \arg(3+2i) \equiv \cdots \\ \Rightarrow \arg(1-2i) \equiv \cdots & \Rightarrow \arg(1-2i) \equiv \cdots \\ \Rightarrow \arg(1-i\sqrt{3}) \equiv \cdots & \Rightarrow \arg(1-i\sqrt{3}) \equiv \cdots \\ \sin(\arg(3+i\sqrt{3})) = \cdots & \Rightarrow \arg(3+2i) \equiv \cdots \\ \Rightarrow \arg(3+2i) \equiv
```

ملاحظات

- z القياس $\theta+2k\pi$ هو كذلك عمدة z فإنه لكل k من z القياس $\theta+2k\pi$
 - أُلعدد 0 ليس له عمدة.

نتائج

 $arg(z)\equiv\pi[2\pi]\Leftrightarrow z\in\mathbb{R}^*_-$ و $arg(z)\equiv0[2\pi]\Leftrightarrow z\in\mathbb{R}^*_+$ $arg(z)\equiv0[\pi]\Leftrightarrow z\in\mathbb{R}^*_+$

$$\arg(z) \equiv 0[\pi] \Leftrightarrow z \in \mathbb{R}^* \quad \text{o}$$

$$\arg(z) \equiv -\frac{\pi}{2}[2\pi] \Leftrightarrow z \in i\mathbb{R}^*_- \quad \text{o} \quad \arg(z) \equiv \frac{\pi}{2}[2\pi] \Leftrightarrow z \in i\mathbb{R}^*_+$$

$$\mathrm{arg}(z) \equiv \frac{\pi}{2}[\pi] \Leftrightarrow z \in i\mathbb{R}^*$$
 9

خاصيات

 $arg\left(-\overline{z}
ight)\equiv\pi-arg(z)[2\pi]$ و z عددين عقديين و z عددا صحيحا نسبيا. $arg\left(-\overline{z}
ight)\equiv\pi-arg(z)[2\pi]$ و $arg\left(z^n\right)\equiv\pi-arg(z)[2\pi]$ و $arg\left(z^n\right)\equiv n\,arg(z)[2\pi]$ و $arg\left(z^n\right)\equiv arg(z)+arg(z)[2\pi]$ و $arg\left(\frac{z'}{z}\right)\equiv arg(z')-arg(z)[2\pi]$ و $arg\left(\frac{z'}{z}\right)\equiv arg(z')-arg(z)[2\pi]$ و $arg\left(\frac{z}{z}\right)\equiv arg(z')$

تمرین 2

- $z = |z|(\cos(\arg(z)) + i\sin(\arg(z)))$ د بین أنه لکل عدد عقدي z لدینا z
 - z حدد الشكل الجبرى للعدد z علما أن
- $(oldsymbol{\psi})$ معیاره هو $\sqrt{2}$ و عمدته هو
 - (۱) معیاره هو 2 و عمدته هو $\frac{\pi}{3}$
 - $z_1=1+i$ علما أن $z_1=1+i$ و $z_2=\sqrt{3}+i$ و $z_2=\sqrt{3}+i$ علما أن رابع المرابع $z_1=1+i$ علما أن
 - $|1+z|=1+|z|\Leftrightarrow z\in\mathbb{R}^+$ بين أنه لكل عدد عقدي z لدينا z
 - $\operatorname{arg}\left(\overline{z}
 ight)\equiv-arg(z)[2\pi]$ و $\left|\overline{z}
 ight|=\left|z
 ight|$.5
 - $(1-i)^n$ التي يكون من أجلها n
- (۱) عددًا حقيقيا موجبًا. (ب) عددا حقيقيا. (ج) عددا تخيليا صرفا.

3. التمثيل الهندسي لعدد عقدي

نشاط 2

المستوى منسوب إلى معلم متعامد ممنظم مباشر $(O; ec{u}, ec{v})$. نعتبر النقط A و B و D و D الممثلة أسفله.

 $z_M = x + iy$ نربط كل نقطة M(x;y) من المستوى بالعدد العقدي

- مدد الأعداد العقدية z_A و z_C و z_C المرتبطة بالنقط A و B و C و C .
- مثل النقطة Z_I الحرتبط بها، $\overrightarrow{OI} = \overrightarrow{OA} + \overrightarrow{OC}$ أمرتبط بها، z_I مثل النقطة z_I المرتبط بها،
 - ه. مثل النقطة Z_J التي تحقق $\overrightarrow{OJ}=2\overrightarrow{OA}$ ثم حدد العدد العقدي z_J المرتبط بها.
- $z_G=-3-i$ و $z_F=5+i$ و $z_E=-2i$ و المرتبطة بالأعداد العقدية التالية: $z_E=-2i$ و $z_F=5+i$ و $z_F=5+i$

- $\overrightarrow{ON} = \overrightarrow{AB}$ نقطة بحيث N نقطة محيث.
- (I) حدد زوج إحداثيات النقطة N
- N استنتج العدد العقدي z_N المرتبط بالنقطة N
 - $z_N = z_B z_A$:خقق من أن (ج)

1.3. المستوى العقدي

تعاريف

 $\bullet(O; \vec{u}, \vec{v})$ منسوب إلى معلم متعامد ممنظم (\mathcal{P}) منسوب

z = a + ib من المُستوى (\mathcal{P}) بالعدد العقدي M(a;b) من المُستوى زبط كل نقطة

هي صورة العدد العقدى z.

• المتجهة \overrightarrow{OM} هي الصورة المتجهية للعدد العقدي ء

نقول كذلك إن:

العدد ألعقدي z هو لحق النقطة M.

العدد العقدي z هو لحق المتجهة \overrightarrow{OM} •

 $\overrightarrow{OM}(z)$ أو M(z)

 $M(x;y) \Leftrightarrow \operatorname{aff}(M) = a + ib$: لدينا $M(x;y) \Leftrightarrow \operatorname{aff}(M)$ بالرمن $M(x;y) \Leftrightarrow \operatorname{aff}(M) = a + ib$ ، لدينا

المستوى (\mathcal{P}) منسوب إلى معلم متعامد ممنظم $(\mathcal{O}, \vec{u}, \vec{v})$ يسمى المستوى العقدي.

ملاحظات

• الأعداد الحقيقية هي ألحاق نقط محور الأفاصيل الذي يسمى كذلك المحور الحقيقي. الأعداد التخيلية هي ألحاق نقط محور الأراتيب الذي يسمى كذلك المحور التخيلي.

2.3. التمثيل الهندسي لمقابل و مرافق عدد عقدي

في المستوى العقدي: • النقطة $M_1(-z)$ هي مماثلة النقطة M(z) بالنسبة

.... هي مماثلة النقطة M(z) بالنسبة M(z) هي مماثلة النقطة M(z)

، النقطة $M_2(\overline{z})$ هي مماثلة النقطة M(z) بالنسبة $M_2(\overline{z})$.

M(z) النقطة $M_3(-\overline{z})$ هي مماثلة النقطة النقطة وM(z)

M(a;b)

3.3. التأويل الهندسي لمعيار و عمدة عدد عقدي

في المستوى العقدي: • معيار عدد عقدي z هو \ldots

z عمدة عدد عقدي z هو

4.3. لحق متجهة - لحق مرجح نقط متزنة

تعریف

المستوى ($\mathcal{O}; \vec{u}, \vec{v}$) منسوب إلى معلم متعامد ممنظم (\mathcal{P}). z=a+ib نربط كل متجهة ($\vec{w}(a;b)$ من المستوى ($\vec{w}(z)$) بالعدد العقدي $\vec{w}(z)$ هو لحق المتجهة \vec{w} و نكتب ($\vec{w}(z)$) نومز للحق المتجهة \vec{w} بالرمز (\vec{w}) aff (\vec{w}) بالرمز (\vec{w}) متعامد متعامد متعامد متعامد المتجهة \vec{w} بالرمز (\vec{w}) متعامد متعامد متعامد المتحهة \vec{w} بالرمز (\vec{w}) متعامد متعامد متعامد المتحهة \vec{w} بالرمز (\vec{w}) متعامد متعامد متعامد المتحدد المتعامد متعامد متعامد متعامد المتحدد المتعامد متعامد متعامد متعامد متعامد المتعامد متعامد متعامد متعامد متعامد المتحدد المتعامد متعامد متعامد

خاصيات

- تكون متجهتان متساويتان إذا وفقط إذا كان لحقاهما متساويان.
 - $\vec{w} + \vec{w'}(z+z')$ فإن $\vec{w'}(z')$ و $\vec{w}(z)$ فإن إذا كانت $\vec{w}(z)$
 - $k\vec{w}(kz)$ غير منعدم، وإذا كانت k فإنه لكل عدد حقيقي k غير منعدم، $k\vec{w}(kz)$
- ullet ا $ar{AB}ig\|=AB=|z_B-z_A|$ و $ar{AB}(z_B-z_A)$ فإن $B(z_B)$ و $A(z_A)$ و إذا كانت $A(z_A)$
- $G\left(\frac{\alpha z_A + \beta z_B}{\alpha + \beta}\right)$ فإن $B(z_B); \beta)$ و $A(z_A); \alpha$ فإن المتزنتين المتزنتين $A(z_A); \alpha$
- $G\left(\frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}\right)$ فإن $G\left(\frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}\right)$ و $G\left(\frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}\right)$ فإن $G\left(\frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}\right)$ فإن $G\left(\frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}\right)$ فإن $G\left(\frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}\right)$

نتائج

لتكن $A(z_A)$ و $B(z_C)$ و $B(z_B)$ و كتلفة من المستوى العقدي.

- و B و B و نقط مستقيمية إذا و فقط إذا كان $rac{z_B-z_A}{z_C-z_A}$ عددا حقيقيا.
- $\frac{z_A+z_B+z_C}{3}$ هو $\frac{z_A+z_B}{2}$ و لحق مركز ثقل المثلث ABC هو $\frac{z_A+z_B+z_C}{2}$

5.3. زاوية محددة بمتجهتين

خاصيات

لتكن $A(z_A)$ و $B(z_C)$ و $B(z_C)$ و $B(z_C)$ و لعقدي، لدينا:

 $\left(\overrightarrow{\vec{u}}; \overrightarrow{AB}\right) \equiv \arg(z_B - z_A)[2\pi]$ •

$$\left(\overrightarrow{\overrightarrow{AB}};\overrightarrow{\overrightarrow{CD}}\right) \equiv \arg\left(\frac{z_D - z_C}{z_B - z_A}\right) [2\pi] \ \boldsymbol{\varrho} \ \left(\overrightarrow{\overrightarrow{AB}};\overrightarrow{AC}\right) \equiv \arg\left(\frac{z_C - z_A}{z_B - z_A}\right) [2\pi] \ \boldsymbol{\bullet}$$

 $rg\left(rac{z_C-z_A}{z_B-z_A}
ight)\equiv 0$ و B و B و مستقيمية إذا و فقط إذا كان A •

 $\arg\left(rac{z_D-z_C}{z_B-z_A}
ight)\equiv 0$ و (CD) و (AB) مستقیمان متوازیان إذا و فقط إذا کان

 $\arg\left(\frac{z_D-z_C}{z_B-z_A}\right) \equiv \frac{\pi}{2}[\pi]$:فقط إذا كان إذا و فقط إذا كان مستقيمان متعامدان إذا و

تمرين 3

$$z_5=3-i$$
 و $z_4=1+2i$ و $z_3=-i$ و $z_2=3i$ و $z_1=2$ و النقط التي ألحاقها $z_1=2$ و المستوى العقدي النقط التي ألحاقها $z_1=2$

C و C و B و A الأعداد العقدية B و B و B و B هي على التوالي ألحاق النقط B و B و B .

را) حدد
$$z_3$$
 علما أن $OABC$ متوازي الأضلاع و أن $z_1=1+i$ و z_3

 $(oldsymbol{\psi})$ حدد z_2 و z_2 علما أن ABCD مربع و أن

$$z_3 = 6i$$
 و $z_1 = 6 - 2i$ و $z_3 = 6 + 7i$ و $z_3 = 6 + 7i$ و $z_1 = 2 + i$

3. حدد مجموعة النقط M ذات اللحق z الذي يحقق:

$$|z| = |z + 2 - 2i|$$
 (ح) $|z - 2| = |z - 4i|$ (ح) $|z - (1 - i)| = 2$ (1)

 $arg\left(\frac{z-1}{z+1}\right) \equiv \frac{\pi}{4}[2\pi] \left(\underline{\bullet} \right) arg(z-2+3i) \equiv -\frac{\pi}{4}[2\pi] \left(\underline{\bullet} \right)$ $|z-2| = 3|z-10| \left(\underline{\bullet} \right)$

6.3. التمثيل العقدي لبعض التحويلات الإعتيادية

خاصیات

	لتكن $M(z)$ و $M'(z')$ نقطتان من المستوى العقدي.
الإزاحة	التماثل المركزي
$\overline{w}(\omega)$ نعتبر w الإزاحة التي متجهتها	$I(z_I)$ نعتبر S_I التماثل المركزي الذي مركزه
$t_{\vec{w}}(M) = M' \Leftrightarrow \overrightarrow{MM'} = \vec{w}$	$S_I(M) = M' \Leftrightarrow \overrightarrow{IM'} = -\overrightarrow{IM}$
$\Leftrightarrow z' = z + \omega$	$\Leftrightarrow z' = 2z_I - z$
الدوران	التحاكي
نعتبر $r_{(\Omega;lpha)}$ الدوران الذي مركزه $\Omega(z_\Omega)$ و زاويته ، $lpha$	نعتبر $h_{(\Omega;k)}$ التحاكي الذي مركزه $\Omega(z_\Omega)$ و نسبته λ
$r_{(\Omega;\alpha)}(M) = M' \Leftrightarrow \begin{cases} \Omega M = \Omega M' \\ \left(\overrightarrow{\overline{\Omega M}}; \overrightarrow{\overline{\Omega M'}} \right) \equiv \alpha[2\pi] \\ \Leftrightarrow z' = (z - z_{\Omega})(\cos \alpha + i \sin \alpha) + z_{\Omega} \end{cases}$	$h_{(\Omega;k)}(M) = M' \Leftrightarrow \overrightarrow{\Omega} \overrightarrow{M}' = k \overrightarrow{\Omega} \overrightarrow{M}$ $\Leftrightarrow z' = k(z_{\Omega} - z) + z_{\Omega}$

تمرين 4

حدد التمثيل العقدي للتحويلات التالي:

1. التماثل المركزي الذي مركزه I(i+1).

د. التحاكي الذي مركزه $\Omega(i)$ و نسبته $\frac{2}{5}$.

 $\vec{u}(-2i)$ الإزاحة التي متجهتها 2

4. الدوران الذَّى مركزه $\Omega(i)$ و زاويته $\frac{\pi}{6}$.

السنة الدراسية: 2020 – 2021

4. الشكل المثلثي لعدد عقدي

تعریف

ليكن z عددا عقديا غير منعدم.

 $\theta \equiv \arg(z)[2\pi]$ و r=|z| حيث $z=r(\cos(\theta)+i\sin(\theta))$ نسمى الشكل المثلثي للعدد العقدي z الكتابة $z = [r; \theta]$ نکتب باختصار

ملاحظة

 $[r; heta] = [r'; heta'] \Leftrightarrow r = r'$ و بتعبير آخر $\theta \equiv \theta'[2\pi]$ و $z = z' \Leftrightarrow |z| = |z'|$ و $arg(z) \equiv arg(z')[2\pi]$

خاصيات

ليكن z=[r, heta] و z'=[r', heta'] عددين عقديين، $[r, heta]^n = [r^n, n heta]$ $e^{-\overline{[r, heta]}} = [r, \pi - heta]$ $e^{-\overline{[r, heta]}} = [r, \pi + heta]$ $\frac{[r',\theta']}{[r,\theta]} = [\frac{r'}{r},\theta'-\theta] \qquad \textbf{0} \qquad \frac{1}{[r,\theta]} = [\frac{1}{r},-\theta] \qquad \textbf{0} \qquad [r,\theta] \times [r',\theta'] = [rr',\theta+\theta'] \qquad \textbf{0}$

تمرين 5

- م أكتب على الشكل المثلثي الأعداد i-1 و i+1 و i-3-3 و i-3-3 .
- $[4,13\pi]$ و $[3\sqrt{2},-rac{3\pi}{4}]$ و $[5,rac{\pi}{2}]$ و $[4,rac{\pi}{3}]$ و $[4,13\pi]$
- 4. أكتب على الشكل المثلثي $z_1=1+i$ و $z_2=1-i\sqrt{3}$ و $z_1=1+i$ الشكل المثلثي $z_1=1+i$ $oldsymbol{\cdot}_{z_2^2}^2$ للأعداد z_1z_2 و z_2 و z_2 و z_2 و z_1z_2 للأعداد
 - را) بين أن حلول المعادلة $z^3 = 1$ هي على شكل 1 و j و و j^2 .
 - $1 + j + j^2 = 0$ بين أن (-1)
 - رج) استنتج قیم $(1+j)^7$ و $(1-j)(1-j^2)$ و رج

5. الشكل الأسي لعدد عقدي

كل عدد عقدي z غير منعدم معياره r و عمدته θ يمكن كتابته على الشكل $z=re^{i\theta}$ و تسمى هذا الشكل بالكتابة

 $z = [r; \theta]$ نكتب للاختصار

أمثلة

 $e^{i2\pi} = \dots$

خاصبات

 θ' عددين حقيقيين θ و

$$e^{i(\theta+\pi)}=-e^{i\theta}$$
 و $\frac{\arg(e^{i\theta})= heta}{e^{i heta}=e^{-i heta}}$ و $\frac{e^{i heta}=e^{i(\theta- heta')}}{e^{i heta'}=e^{i(\theta- heta')}}$ و $e^{i heta} imes e^{i heta} imes e^{i(\theta+ heta')}$ و $e^{i heta} imes e^{i heta} imes e^{i(\theta+ heta')}$ صيغة موافر: $(heta heta\in\mathbb{R}):$ $\cos heta=\frac{e^{i heta}+e^{-i heta}}{2}$ و $\sin heta=\frac{e^{i heta}-e^{-i heta}}{2i}$ صيغتا أولير:

ملاحظة

$$(\forall \theta \in \mathbb{R})(\forall n \in \mathbb{N}): \quad \cos(n\theta) = \frac{e^{in\theta} + e^{-in\theta}}{2} \quad \textbf{\textit{g}} \quad \sin(n\theta) = \frac{e^{in\theta} - e^{-in\theta}}{2i}$$

تمرين 6

- - - $\sin^3 \theta$ و $\cos^3 \theta$ و $\cos^3 \theta$.

المعادلات من الدرجة الثانية بمجهول واحد في ©

خاصية

- $z^2 = a$ المعادلة •
- ليكن عددا حقيقيا غير منعدم.
- $z^2=a\Leftrightarrow z=\sqrt{a}$ أو $z=-\sqrt{a}$ فإن a>0 أو -
- $z^2=a\Leftrightarrow z=i\sqrt{-a}$ اُو $z=-i\sqrt{-a}$ فإن a<0 إذا كان $z=-i\sqrt{-a}$
 - $az^2 + bz + c = 0$
- $az^2+bz+c=0$ ليكن $a \in b$ مميز المعادلة $a \neq 0$ نعتبر $a \neq 0$ نعتبر $a \neq 0$
 - $-z_1=rac{-b+\sqrt{\Delta}}{2a}$ و $z_2=rac{-b-\sqrt{\Delta}}{2a}$ و $z_2=rac{-b-\sqrt{\Delta}}{2a}$ و $z_2=-b+\sqrt{\Delta}$
 - $-z=rac{-b}{2a}$ واذا كان $\Delta=0$ فإن المعادلة تقبل حلا وحيدا هو
- $z_1=rac{-b+i\sqrt{-\Delta}}{2a}$ و $z_2=rac{-b-i\sqrt{-\Delta}}{2a}$ هما $z_2=rac{-b-i\sqrt{-\Delta}}{2a}$ و مان $\Delta<0$ و المعادلة تقبل حلين عقديين

تمرين 7

1. حل في © المعادلات:

$$x^2 + 2x + 2 = 0$$
 (ج) $9x^2 + 5 = 0$ (ب) $x^2 + 9 = 0$ (ا) $-3x^2 + 5x - 3 = 0$ (و) $2x^2 + 3x + 2 = 0$ (ه) $x^2 + x + 1 = 0$ (د) $z_2 = \overline{z_1}$ و $z_1 = 2 + i\sqrt{3}$ الدرجة الثانية حليها $z_2 = \overline{z_1}$ و $z_1 = 2 + i\sqrt{3}$