Synthèse Physique appliqué

Premier Bloc Sécurité des systèmes Année académique 2019-2020

> Rédigé par Sénéchal Julien

1 Unités du système international (SI)

- Courant électrique \rightarrow A
- Température → K (Kelvin)
- Quantitée de matière \rightarrow mol (mole)
- Intensité lumineuse \rightarrow cd (Candela)
- Période (T)→ s
- Fréquence \rightarrow Hz (Hertz = $\frac{1}{s}$)
- − Vitesse (v) $\rightarrow \frac{m}{s}$
- Accelération (a) $\rightarrow \frac{m}{s^{-2}}$
- Force (F)→ N (newton = $masse(kg) \times acceleration$)
- Pression (P) \rightarrow Pascal $(\frac{N}{m^2})$
- $-\:$ Energie, travail, chaleur (E, W, Q) \to J (joule = $N\times m)$
- − Puissance (P) → W (watt = $\frac{joule}{s}$)
- $\;$ Charge electrique \rightarrow Q (Coulomb = $A \times s)$
- Tension (U) \rightarrow V (Volt = $\frac{J}{s \times A} = \frac{W}{A} = \frac{J}{C}$)
- − Résistance (R) → Ω (ohm = $\frac{V}{A}$)
- Puissance apparente (P) $\rightarrow V \times A$
- Champ electrique (E) $\rightarrow \frac{V}{m}$
- Champ magnetique (B) \rightarrow T (tesla = $\frac{V \times s}{m^2}$)
- $-\,$ Masse volumique $\rho \to \frac{kg}{m^3}$
- Valume massique $\rightarrow \frac{m^3}{kq}$

Heureusement qu'il n'y a que 26 lettres dans l'alphabet sinon on ne s'en serait pas sortit...

Facteur	Nom	Symbole	Facteur	Nom	Symbole
10 ¹	déca	da	10 ⁻¹	déci	d
10^{2}	hecto	h	10^{-2}	centi	c
10^{3}	kilo	k	10^{-3}	milli	m
10^{6}	méga	M	10^{-6}	micro	μ
10 ⁹	giga	G	10^{-9}	nano	n
10^{12}	téra	T	10^{-12}	pico	p
10^{15}	péta	P	10^{-15}	femto	f
10^{18}	exa	E	10^{-18}	atto	a
10^{21}	zetta	Z	10^{-21}	zepto	z
10^{24}	yotta	Y	10^{-24}	yocto	У

Figure 1 – Préfixes du système international

Quelques définitions :

- Energie
 - Ce qui permet d'agir (force en action). Capacité à produire un travail, modifier un état, etc...
- Puissance
 - Débit d'énergie
 - $Puissance = \frac{Energie}{temps}$
- Watt-heure
 - Le watt-heure est un débit de puissance (Energie)

2 Transfert Thermique

- Capacité thermique massique (c_p) :
 - $-\frac{J}{K \times kg}$
 - Ordre de grandeur :
 - Energie pour augmenter la t° de 1 degré pour 1 litre d'eau est de 4185 Joules
 - $-c_p$ eau = 4158 $\frac{J}{K \times ka}$
 - $-c_p \text{ air} = 1004 \frac{J}{K \times kg}$
 - $-c_p$ Aluminium = 897 $\frac{J}{K \times kg}$
 - Unitées :
 - Celsius
 - Farenheit
 - Kelvin
 - $0^{\circ}\text{C} = 32^{\circ}\text{F} = 273,15\text{K}$
 - Convertir Celsius en Farenheit : $(x^{\circ}C \times 9/5) + 32 = y^{\circ}F$
 - Convertir Farenheit en Celsius : $(y^{\circ}F-32) \times 5/9 = x^{\circ}C$
 - Convertir Celsius en Kelvin : x°C+273, 15 = y°K
- Conductivitée Thermique :
 - λ caractéristique a chaque matériaux
 - Insique la quantitée de chaleur qui se propage par conduction thermique
 - Unitées : $\frac{W}{m \times K}$
 - Capacitée thermique massique : $\frac{J}{K \times kg}$
- Conduction:
 - Transfert d'énergie sans déplacement de la matière
 - Phénomène de diffusion
- Convection:
 - Déplacement de molécules qui permettent le déplacement de l'energie thermique
 - Dans les fluides et sur les interfaces solides/fluides
- Rayonnement:
 - Rayonnement electromagnetique
 - Souvent associé au rayonnement infrarouge
 - Un corps émet un raonnement plus ou moins fort selon sa température
- Chauffe d'un processeur :
 - $-E = k \times f \times U^2$
 - f = fréquence du processeur (GHz)
 - -U = tension d'alimentation (V)
 - $-\ k$ = constante de proportionnalitée (J/V)

3 Electricitée

Beaucoup de matière est abordée en Electronique appliquée Q1, et ne sera donc pas revu ici

Utilisation domestique:

- Disjoncteur
 - Coupe le courant en cas de surcharge ou de court-circuit dans une installation
 - Protection de l'installation électrique
 - Sensibilitée de 10 à 25 A
 - Un Disjoncteur pour chaque appareil (prise, four, lampe, lave-linge, etc...)
- Differentiel
 - Coupe le courant en cas de détection d'une différence d'intensité du courant entre l'entrée et la sortie
 - Protection des personnes
 - Sensibilitée de 30 mA pour les salles d'eau et 300 mA pour les autres pièces
 - Un Differentiel pour chaque pièce
- Prise de terre :
 - Résistance max : 30 Ω
 - Protection contre les fuites de courant
- La masse :
 - C'est un conducteur auxquel on va relier le circuit et qui servira de tension de référence. (Si celle-ci est reliée a la terre, alors elle est égale à 0V)
 - Grâce a cette référence, nous pouvons être sûr que pour des signaux analogiques le 0 reste 0 et le 1 reste 1 et que la tension de passe donc pas dans des valeurs non permises.

Effet de joule :

- Echauffement lors du passage du courant
- Résulte de la résistance aux charges électriques
- Dissipation d'énergie electrique sous forme de chaleur

Charges électrostatiques :

- Accumulation de charges electriques à la surface d'un matériaux non conducteur
- Cause : Frottements de matériaux isolants (arrachement d'électrons)
- Conséquences : Dangereux pour le matériel électronique étant très sensible a ces charges (dégat de foudre)
- Protection contre ces charges : Mise à la terre

Electron volt :

- $-1eV = 1,602 \times 10^{-19}J$
- Une charge de 1 électron accélérée par une différence de potentiel de 1 volt
- 1 Volt = 1 joule / 1 coulomb

4 La puissance

- Dans un courant continu :

$$-P = U \times I$$

Dans un courant alternatif monophasé :

$$- P = U_{eff} \times I_{eff}$$

- Dans un courant continu :

$$-P = 3 \times U_{eff} \times I_{eff}$$

Différents types de puissances par induction :

- Puissance active P (kW)
 - Tous les appareils à induction qui fonctionnent sur les systèmes à courant alternatif convertissent l'énergie électrique fournie par l'alimentation en travail mécanique et/ou chaleur. Cette énergie est mesurée en kWh, et est appelée énergie "active". C'est la puissance réelle qui est transmise aux appareils.
- Puissance réactive Q (kvar)
 - Puissance nécessaire pour générer le champ magnétique (puissance perdue)
- Puissance apparente S (kVA)
 - Puissance apparente = Puissance active + puissance réactive
 - Puissance apparente = $V_{eff} \times I_{eff}$
 - La puissance apparente est la puissance totale pour qu'une installation fonctionne
 - Le facteur de puissance ϕ :
 - $-\,$ Rapport de puissance active P sur la puissance apparente S.
 - On appelle aussi le " $\cos \phi$ " : "facteur de puissance" ; il indique la qualité de la conception et de la gestion d'une installation électrique.*
 - La valeur est comprise entre 1 et 0

FIGURE 2 - Rapport des puissances

5 Electromagnetisme

Magnétisme :

- Ensemble de phénomènes physiques où les objets exercent des forces attractives/répulsives sur d'autres.

Champ magnétique créé par un courant électrique continu

- Tous les courants électriques créent des champs magnétiques H représenté en [A/m]
- $-H = \frac{I}{2 \times \pi \times r}$

Notion de champ magnétique :

- Le vecteur du champ créé par un courant se note H
- H = excitation magnétique = force magnétisante
- Théorème d'Ampère (théorème de la circulation) pour le bobinage :

$$H = \frac{N \times I}{L}$$

- − N = nombres de spires
- I = courant
- − L = longueur du bobinage

Notion d'induction magnétique :

- $-B = \mu \times H$
- $-\mu = \mu_0 \times \mu_r$
- $-\mu_0$ = perméabilitée du vide
- $-\mu_r$ = perméabilitée relative
- $-\mu$ = perméabilitée absolue
- Perméabilitée magnétique :
 - Un matériau non magnétique dans un champ magnétique ne pertube pas le champ
 - Un matériau magnétique dans un champ magnétique attire les lignes de forces vers lui plustôt que dans l'air
 - $-\,$ Avant l'introduction d'un noyau ferromagnétique dans le champ : Flux magnétique = ϕ
 - Après l'introduction d'un noyau ferromagnétique dans le champ : $\phi' = \mu \times \phi$ et $\mu > 1$

L'induction magnétique B exprimé en Tesla (= $\frac{weber}{m^2} = \frac{kg}{A \times s^2}$):

$$B = \frac{\phi}{S}$$

6 Hystérésis

Figure 3 – Hystérésis

- $-B_R:$
 - Induction rémanente
 - Induction qui subsiste dans l'échantillon après qu'on ait fait décroître H jusqu'à zéro.
- $-H_C:$
 - Champ coercitif
 - Champ magnétique nécessaire pour annuler B_R
- $-B_R$ et H_C sont spécifiques au matériau
- L'hystérésis est exprimée en $kg/m \times s^2$
- Son énergie : $kg \times m^2/s^2$

7 Force electromotrice

La loi de Lenz :

- La force électromotrice induite tend à produire un courant qui s'oppose à la cause qui l'a produite.
- Pour bien comprendre cette loi, voir les 2 vidéos : https://www.youtube.com/watch?v=xOXwk6XtabE https://www.youtube.com/watch?v=XYirH7CzJys

La force de cette loi :

$$e = \frac{-d \times \phi}{d \times t}$$

e = La variation du flux sur une variation de temps Ou lors d'un cas particulier :

$$e = -B \times L \times v$$

La force electromotrice s'exprime en Volt :

$$-V = Tesla \times m \times m/s$$

8 RFID

RFID = Identification par RadioFrequence

- Permet d'identifier a distance des objets à l'arrêt ou en mouvement
- Permert d'échanger des données

Constitution:

- Un lecteur/scanner (antenne)
 - Envoie une onde électromagnétique porteuse d'un signal vers les objets à identifier.
 - Au retour du signal, le lecteur reçoit les informations de l'objet
- Une étiquette
 - Fixé sur l'objet
 - Réagit à la reception du signal
 - Comporte un microprocesseur avec une mémoire et connecté a une antenne.
- Un ordinateur de stockage/traitement
 - Va traiter les informations reçues par le lecteur

2 modes d'interaction entre le lecteur et l'étiquette :

- Couplage de nature inductive ou magnétique
- Couplage de nature radiative ou électromagnétique

8.1 Couplage Magnétique

A une distance maximale de l'ordre de la longueur d'onde, une source émet un faisceau quasiment parallèle qui permet à la source d'entrer en résonance inductive avec un récepteur.

- Peu sensible aux perturbations
- Conception simple
- Peu coûteux
- Passif
- Portée limitée (max: 1,5m)

8.2 Couplage radiatif

En champ lointain, à une distance de la source approximativement supérieure à la longueur d'onde, le faisceau diverge pour donner naissance à une onde sphérique localement plane. L'étiquette se comporte alors comme un véritable émetteur-récepteur radio et nécessite en règle générale des solutions actives.

- Permet une portée plus importante
- Débit de données plus important
- Antennes plus petites
- Système plus complexe
- Propagation des ondes plus difficile a prévoir
- Interferences difficiles a traiter

8.3 Etiquette passive et active

Etiquette active :

Possède une batterie

Etiquette passive :

- Aucune autre source d'énergie que celle qu'elles reçoivent de la part du lecteur

9 NFC

NFC = Near Field Communication

- Permet la reconnaissance mutuelle à très courte distance (0 à 20cm)
- $-\;$ But : Mettre en relation 2 dispositifs électroniques qui pourront s'échanger des informations