Theta Séries em Reticulados Unimodulares Pares

Giselle Ribeiro de Azeredo Silva Strey

05 de Dezembro de 2014

1 Resultados e Conceitos Preliminares

Denotamos o produto escalar Euclidiano (produto interno canônico) de dois vetores $x, y \in \mathbb{R}^n$ por x.y. Assim,

$$x.y = \sum_{i=1}^{n} x_i y_i.$$

Definição 1.1. Dizemos que um reticulado L é integral se $x,y \in \mathbb{Z}$, para quaisquer $x,y \in L$.

Definição 1.2. Dizemos que um reticulado L é par se $x.x \in 2\mathbb{Z}$, para todo $x \in L$.

Definição 1.3. Dizemos que um reticulado L é unimodular se L é integral e det(L) = 1.

Definição 1.4. Seja $L \in \mathbb{R}^n$ um reticulado. Definimos o reticulado dual de L por

$$L^* = \{ x \in \mathbb{R}; x.L \subseteq \mathbb{Z} \}.$$

Proposição 1.5. Um reticulado L é integral se, e somente se, $L \subset L^*$.

Demonstração. Seja $x \in L$. Como, por hipótese L é integral, temos que $x.y \in \mathbb{Z}$, para todo $y \in L$. Logo, segue que $x \in L^*$ e daí tem-se que $L \subset L^*$. Reciprocamente, se $x,y \in L$, então $x.y \in \mathbb{Z}$, já que $x \in L^*$.

Proposição 1.6. Um reticulado L é unimodular se, e somente se, $L = L^*$.

Demonstração. Ver [2]. \Box

2 Theta Séries

Definição 2.1. Para uma função $f: \mathbb{R}^n \to \mathbb{C}$, definimos a transformada de Fourier de f como sendo a função $\hat{f}: \mathbb{R}^n \to \mathbb{C}$ dada por

$$\hat{f}(y) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i x \cdot y} dx$$

Teorema 2.2. (Fórmula da Soma de Poisson). Seja $L \subset \mathbb{R}^n$ um reticulado arbitrário, e seja $f : \mathbb{R}^n \to \mathbb{C}$ uma função que satisfaz as seguintes condições:

- (V1) $\int_{\mathbb{R}^n} |f(x)| dx < \infty$;
- (V2) A série $\sum_{x \in L} |f(x+u)|$ converge uniformemente para $u \in K \subseteq \mathbb{R}^n$ compacto;
- $(V3) \sum_{y \in L^*} |\hat{f}(y)| < \infty$.

Então vale,

$$\sum_{x\in L} f(x) = \det(L)^{-1/2} \sum_{y\in L^*} \hat{f}(y)$$

Demonstração. Ver [1].

Definição 2.3. Seja L um reticulado par em \mathbb{R}^n . Definimos a theta série de L por

$$\Theta_L(z) = \sum_{x \in L} q^{x \cdot x/2}$$

onde $q = e^{2\pi i z}$ e $z \in \mathbb{H} = \{z \in \mathbb{C}; Im(z) > 0\}.$

Se L é um reticulado integral então os números do tipo x.x, para $x \in L$ são inteiros não-negativos. O coeficiente de $q^{\tilde{r}/2}$ é igual ao número de $x \in L$, com $\tilde{r} = x.x$.

Agora, seja L um reticulado integral par. Então,

$$\Theta_L(z) = \sum_{r=0}^{\infty} a_r q^r$$

onde $a_r = |\{x \in L/x.x = 2r\}|$. Assim, $\Theta_L(z)$ fornece o número de elementos de L que pertencem à fronteira de $B[0, \sqrt{2r}]$.

Exemplo 2.4. A figura abaixo ilustra como são dados os coeficientes da Theta Série $\Theta_L(z)$ para $L = \sqrt{2}\mathbb{Z}^2$, representados pelo número de pontos de L nos círculos. Com isso, tem-se que

$$\Theta_L(z) = \sum_{k=0}^{+\infty} a_k q^k = 1 + 4q + 4q^2 + 4q^4 + \dots$$

Teorema 2.5. Seja $L \subset \mathbb{R}^n$ um reticulado, então $\Theta_L(z) = \sum_{x \in L} e^{\pi i z x \cdot x}$ converge uniformemente e absolutamente para todo $z \in \mathbb{C}$, com $Im(z) \geq v_0 > 0$.

Demonstração. Seja $L = M\mathbb{Z}^n$, onde $M \in GL_n(\mathbb{R})$ é a matriz geradora L e seja $\epsilon = \inf\{Mu.Mu/u \in \mathbb{R}^n \text{ e } ||u|| = 1\}$. Então, $\epsilon > 0$ e $MxMx \ge \epsilon x.x$. Deste modo, como $Im(z) \ge v_0$, segue que,

$$\sum_{x \in L} |e^{\pi i z x.x}| = \sum_{x \in \mathbb{Z}^n} |e^{\pi i z M x.Mx}|$$

$$= \sum_{x \in \mathbb{Z}^n} e^{-\pi I m(z) M x.Mx}$$

$$\leq \sum_{x \in \mathbb{Z}^n} e^{-\pi v_0 M x.Mx}$$

$$\leq \sum_{x \in \mathbb{Z}^n} e^{-\epsilon \pi v_0 x.x}$$

$$= \left(\sum_{r = -\infty}^{\infty} e^{-\pi v_0 \epsilon r^2}\right)^n < \infty.$$

Lema 2.6. A transformada de Fourier da função $f(x) = e^{-\pi \frac{1}{t}(x+p)^2}$, onde $x, t, p \in \mathbb{R}$, com t > 0 é:

$$\hat{f}(y) = \sqrt{t}e^{2\pi ipy}e^{-\pi ty^2}.$$

Demonstração. Tem-se que

$$\hat{f}(y) = \int_{\mathbb{R}} e^{-\pi \frac{1}{t}(x+p)^2} e^{-2\pi i x y} dx.$$

Utilizando a mudança de coordenadas $u = \frac{x+p}{\sqrt{t}}$, ou seja, com $x = \sqrt{t}u - p$, segue que

$$\hat{f}(y) = \int_{\mathbb{R}} e^{-\pi u^2} e^{-2\pi i [u(\sqrt{t}y) - py]} \sqrt{t} du = \sqrt{t} e^{2\pi i py} \int_{\mathbb{R}} e^{-\pi u^2} e^{-2\pi i u(\sqrt{t}y)} du.$$

Como $\hat{h}(y) = e^{-\pi y^2}$, para $h(x) = e^{-\pi x^2}$, segue da equação anterior que

$$\hat{f}(y) = \sqrt{t}e^{2\pi ipy}e^{-\pi(\sqrt{t}y)^2} = \sqrt{t}e^{2\pi ipy}e^{-\pi ty^2},$$

o que prova o lema.

Lema 2.7. Seja L um reticulado par em \mathbb{R}^n . Então,

$$\Theta_{L^*}(z) = \det(L)^{1/2} (i/z)^{n/2} \Theta_L(-1/z).$$

Demonstração. Como ambos os lados da equação acima são funções holomorfas em $\mathbb H$ é suficiente provar esta identidade para z=it, onde $t\in\mathbb R$, com t>0. Considerando a função $g(x)=e^{-\pi\frac{1}{t}x.x}$ segue $\hat g$ é obtida através do cálculo da transformada de Fourier da função $e^{-\pi\frac{1}{t}x^2}$ para $x\in\mathbb R$. Podemos restringir ao caso n=1 e, portanto, ao cálculo de $\hat f$ para $f(x)=e^{-\pi\frac{1}{t}x^2}$, onde $x\in\mathbb R$. Assim, pelo lema anterior, segue que $\hat f(y)=\sqrt{t}e^{-\pi ty^2}$, de onde segue que $\hat g(y)=t^{n/2}e^{-\pi ty.y}$. Assim, pela Fórmula da Soma de Poisson tem-se que:

$$\Theta_{L}(-\frac{1}{it}) = \sum_{x \in L} e^{\pi i(-\frac{1}{it}x.x)}
= \sum_{x \in L} e^{-\pi(\frac{1}{t}x.x)}
= det(L)^{-1/2} \sum_{x \in L*} t^{n/2} e^{-\pi ty.y}
= t^{n/2} det(L)^{-1/2} \sum_{x \in L*} e^{-\pi ty.y}
= t^{n/2} det(L)^{-1/2} \sum_{x \in L*} e^{\pi i(ti)y.y}
= t^{n/2} det(L)^{-1/2} \Theta_{L*}(it).$$

3 Theta Séries como Formas Modulares

Consideremos o semiplano superior \mathbb{H} e L o subgrupo linear

$$SL_2(\mathbb{Z}) = \{ \lambda \in GL_2(\mathbb{Z}); det(\lambda) = 1 \}$$

de $GL_2(\mathbb{Z})$, o qual chamamos de grupo modular completo. Consideremos ainda, para cada $\lambda=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in L$, a transformação linear dada por

$$\lambda \longmapsto \lambda z = \frac{az+b}{cz+d},$$

para todo $z \in \mathbb{H}$. Assim, temos que se $z \in \mathbb{H}$, então $\lambda z \in \mathbb{H}$, pois

$$Im(\lambda z) = Im\left(\frac{(az+b) + (c\overline{z}+d)}{|cz+d|^2}\right) = \frac{Im(adz+bc\overline{z})}{|cz+d|^2}.$$

Deste modo, como $Im(adz + bc\overline{z}) = det(\lambda)Im(z) = Im(z)$, segue que

$$Im(\lambda z) = \frac{Im(z)}{|cz+d|^2} > 0.$$

Temos portanto definido uma ação de L em \mathbb{H} . Como $\{\pm I\} \subset SL_2(\mathbb{Z})$ age trivialmente em \mathbb{H} , ou seja, $\pm Iz = z$, segue que podemos considerar

$$G = SL_2(\mathbb{Z})/\{\pm I\},\,$$

que chamamos grupo modular e cujos os elementos serão denotados sem as barras. Desta forma, os elementos

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) e \ T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

de G, agem em \mathbb{H} , respectivamente, por

$$z \stackrel{S}{\longmapsto} -\frac{1}{z} e z \stackrel{T}{\longmapsto} z + 1.$$

Teorema 3.1. O grupo modular G é gerado por S e T.

Demonstração. Ver [1].

Definição 3.2. Seja $k \in \mathbb{N}$. Dizemos que uma função holomorfa $f : \mathbb{H} \to \mathbb{C}$ é uma forma modular de peso k para L e denotamos $f \in M_k(L)$, se satisfaz:

(i)
$$f(\lambda z) = (cz + d)^k f(z)$$
, para todo $\lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in L$;

(ii) f é escrita como série de potência em $q = e^{2\pi i z}$.

Note que se k é impar, então toda forma modular de peso k para L é nula, visto que para $-I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in L$, tem-se que $f(z) = (-1)^k f(z)$ e, portanto, f(z) = 0 para todo $z \in \mathbb{H}$. Portanto, podemos supor, sem perda de generalidade, que k é par.

Proposição 3.3. Se $f: \mathbb{H} \to \mathbb{C}$ é uma função holomorfa, então $f \in M_k(L)$ se, e somente se, satisfaz f(z+1) = f(z), $f(-1/z) = z^k f(z)$ para todo $z \in \mathbb{H}$ e f possui uma expansão em série de potências em $q = e^{2\pi i z}$.

Demonstração. Se $f \in M_k(L)$, então o resultado segue da definição e do teorema anterior. Reciprocamente, como

$$\frac{d(\lambda z)}{dz} = \frac{d}{dz} \left(\frac{az+b}{cz+d} \right) = \frac{a(cz+d) - c(az+b)}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} = \frac{1}{(cz+d)^2},$$

segue que podemos escrever

$$f(\lambda z) = (cz+d)^k f(z) \tag{1}$$

como

$$f(\lambda z) \left(\frac{d(\lambda z)}{dz}\right)^{k/2} = f(z)$$

e daí segue que $f(\lambda z)d(\lambda z)^{k/2}=f(z)dz^{k/2}$. Assim, tem-se $f(z)dz^{k/2}$ invariante para multiplicação por λ , o que mostra que (1) é satisfeita para $\lambda_1, \lambda_2 \in L$, então é valida também para $\lambda_1\lambda_2$. Desta forma, é suficiente analisá-la para T e S, uma vez que G é gerado por tais elementos. Como

$$f(Tz)=f(z+1)=f(z)$$
 e $f(Sz)=f(-1/z)=z^kf(z)$, para todo $z\in\mathbb{H}$, tem-se provada a proposição.

Teorema 3.4. Seja L um reticulado unimodular par em \mathbb{R}^n . Então:

- (i) $n \equiv 0 \pmod{8}$;
- (ii) $\Theta_L(z)$ é uma forma unimodular de peso k = n/2.

Demonstração. (i) Vamos supor que $8 \nmid n$. Assim, sem perda de generalidade, podemos tomar $n \equiv 4 \pmod 8$, já que caso contrário é possível substituir o reticulado L por $L \oplus L$ ou $L \oplus L \oplus L \oplus L$ que ambos são unimodulares e pares de modo que o posto obtido seja côngruo a 4 módulo 8 e a aplicar a argumentação que segue. Como L é unimodular, segue que $L = L^*$ e det(L) = 1. Deste modo, pelo Lema 2.7, tem-se que, para todo $z \in \mathbb{H}$,

$$\Theta_L(Sz) = \Theta_L(-1/z) = -z^{n/2}\Theta_L(z),$$

pois $n/2 \equiv 2 \pmod{4}$ e, com isso, $i^{n/2} = -1$. Ainda, do fato de L ser par, segue que, para todo $z \in \mathbb{H}$,

$$\Theta_L(Tz) = \Theta_L(z+1) = \sum_{x \in L} e^{\pi i z x.x} e^{\pi i x.x} = \sum_{x \in L} e^{\pi i z x.x} = \Theta_L(z).$$

Assim, tem-se que $\Theta_L((TS)z) = -z^{n/2}\Theta_L(z)$, para todo $z \in L$. Agora, notemos que $(TS)^3 = 1$, pois

$$z \xrightarrow{S} -\frac{1}{z} \xrightarrow{T} \xrightarrow{z-1} \xrightarrow{S} -\frac{z}{z-1} \xrightarrow{T} -\frac{1}{z-1} \xrightarrow{S} z - 1 \xrightarrow{T} z. \tag{2}$$

Assim,

$$\Theta_{L}(z) = \Theta_{L}((TS)^{3}z)
= (-1)((TS)^{2}z)^{n/2}\Theta_{L}((TS)^{2}z)
= (-1)((TS)^{2}z)^{n/2}(-1)((TS)z)^{n/2}\Theta_{L}((TS)z)
= (-1)((TS)^{2}z)^{n/2}(-1)((TS)z)^{n/2}(-1)z^{n/2}\Theta_{L}(z)
= (-1)((TS)^{2}z)^{n/2}((TS)z)^{n/2}z^{n/2}\Theta_{L}(z).$$
(3)

Pelas relações em (2), segue que

$$((TS)^2 z)^{n/2} ((TS)z)^{n/2} z^{n/2} = \left(\frac{-1}{z-1} \frac{z-1}{z} z\right)^{n/2} = (-1)^{n/2}.$$

De (3) segue que

$$\Theta_L(z) = (-1)(-1)^{n/2}\Theta_L(z) = -\Theta_L(z),$$

Implicando que $\Theta_L(z) = 0$ e, portanto, $L = \emptyset$, o que nos leva ao absurdo.

(ii) De acordo com a Proposição 3.3, é suficiente mostrar que

$$\Theta_L(z+1) = \Theta_L(z) \in \Theta_L(-1/z) = z^{n/2}\Theta_L(z),$$

uma vez que de equação $\Theta_L(q) = \sum_{r=0}^{\infty} a_r q^r$, onde $a_r = |\{x \in L/x.x = 2r\}|$, segue que Θ_L pode ser escrita como uma série de potências em $q = 2\pi iz$. A primeira igualdade decorre do fato de L ser par. Já a segunda, como $L = L^*$ e det(L) = 1, segue, pelo Lema 2.7, que

$$\Theta_L(-1/z) = \det(L)^{-1/2} (z/i)^{n/2} \Theta_{L^*}(z) = z^{n/2} \Theta_L(z),$$

já que $n \equiv 0 \pmod 8$ implica que $n/2 \equiv 0 \pmod 4$ e, com isso, $i^{n/2} = 1$. Portanto, tem-se que $\Theta_L(z)$ é uma forma modular de peso n/2.

Referências

- [1] Wolfgang Ebeling, Lattices and Codes. 2013.
- [2] Wanderson Tenório, Reticulados modulares em espaços euclidianos. 2013.