impor	rt numpy as np
impor	rt matplotlib.pyplot as plt
impor	rt seaborn as sns
from	sklearn.pipeline import Pipeline
from	sklearn.compose import ColumnTransformer
from	sklearn.preprocessing import StandardScaler,OneHotEncoder
from	sklearn.linear_model import LogisticRegression
from	sklearn.ensemble import RandomForestClassifier
from	sklearn.pipeline import make_pipeline
from	sklearn.model_selection import train_test_split
from	sklearn.tree import DecisionTreeClassifier
from	sklearn.metrics import accuracy_score,confusion_matrix,classification_report,roc_auc_score,roc_curve

df=pd.read_csv("HR-Employee-Attrition.csv")

5 rows × 35 columns

import pandas as pd

hea	ad()						
		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education
	0	41	Yes	Travel_Rarely	1102	Sales	1	2
	1	49	No	Travel_Frequently	279	Research & Development	8	1
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2
	3	33	No	Travel_Frequently	1392	Research &	3	4

Development

Research & 27 Travel_Rarely 2 No 591 Development

```
from sklearn import set_config
set_config(display = "diagram")
from google.colab import drive
drive.mount("/content/drive")
     Mounted at /content/drive
pd.set_option("display.max_columns", None)
df.shape
     (1470, 35)
df.isnull().sum()
     Age
                                  0
     Attrition
                                  0
     BusinessTravel
                                  0
     DailyRate
     Department
                                  0
     DistanceFromHome
                                  0
     Education
                                  0
     EducationField
                                  0
     EmployeeCount
                                  0
     EmployeeNumber
     EnvironmentSatisfaction
                                  0
     Gender
                                  0
     HourlyRate
     JobInvolvement
                                  0
     JobLevel
     JobRole
     JobSatisfaction
                                  0
     MaritalStatus
                                  0
     MonthlyIncome
                                  0
```

MonthlyRate NumCompaniesWorked 0 Over18 OverTime 0 PercentSalaryHike 0 PerformanceRating 0 RelationshipSatisfaction 0 StandardHours 0 StockOptionLevel 0 0 TotalWorkingYears 0 TrainingTimesLastYear 0 WorkLifeBalance 0 YearsAtCompany YearsInCurrentRole 0 YearsSinceLastPromotion YearsWithCurrManager dtype: int64

2. 200

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
44			

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

```
numeric_feature = df.select_dtypes(exclude='object').columns
catagorical_feature = df.select_dtypes(include='object').columns
              36 023810 R02 485714
                                              0 102517
                                                          2 012025
                                                                              1 0
                                                                                      1024 86
uni_cat = []
no_cat = []
null_vals = []
for cat_feature in catagorical_feature:
 uni_cat.append(df[cat_feature].unique())
  no_cat.append(df[cat_feature].nunique())
 null_vals.append(df[cat_feature].isnull().sum())
df_info = pd.DataFrame({
                       "FEATURE NAME" : catagorical_feature,
                       "NO UNI CAT" : no_cat,
                       "NULL VALS" : null_vals,
                       "UNIQUE CAT": uni_cat,
                        })
```

df_info

	FEATURE NAME	NO UNI CAT	NULL VALS	UNIQUE CAT	
0	Attrition	2	0	[Yes, No]	ıl.
1	BusinessTravel	3	0	[Travel_Rarely, Travel_Frequently, Non-Travel]	
2	Department	3	0	[Sales, Research & Development, Human Resources]	
3	EducationField	6	0	[Life Sciences, Other, Medical, Marketing, Tec	
4	Gender	2	0	[Female, Male]	
5	JobRole	9	0	[Sales Executive, Research Scientist, Laborato	
6	MaritalStatus	3	0	[Single, Married, Divorced]	
7	Over18	1	0	M	

```
df = df.drop(['EmployeeNumber',"EmployeeCount","Over18","Attrition","DistanceFromHome"],axis=1)
```

df.head()

	Age	BusinessTravel	DailyRate	Department	Education	EducationField	EnvironmentSatisfaction	G
0	41	Travel_Rarely	1102	Sales	2	Life Sciences	2	F
1	49	Travel_Frequently	279	Research & Development	1	Life Sciences	3	
2	37	Travel_Rarely	1373	Research & Development	2	Other	4	
3	33	Travel_Frequently	1392	Research & Development	4	Life Sciences	4	F
4	27	Travel_Rarely	591	Research & Development	1	Medical	1	

```
hue = "Department")
plt.subplot(333)
sns.histplot(data = df,
            x = "MonthlyIncome",
            bins = 30,
            kde = True,
            hue = "Gender")
plt.subplot(334)
sns.histplot(data = df,
            x = "MonthlyIncome",
            bins = 30,
            kde = True,
            hue = "MaritalStatus")
plt.subplot(335)
sns.histplot(data = df,
            x = 'MonthlyIncome',
            bins = 30,
            kde = True,
            hue = 'JobRole')
plt.subplot(336)
sns.histplot(data = df,
                 = "MonthlyIncome",
            bins = 30,
            kde = True,
            hue = "BusinessTravel")
plt.subplot(337)
sns.histplot(data = df,
            x = "MonthlyIncome",
            bins = 30,
            kde = True,
            hue = "OverTime")
```


Assignment-4.ipynb - Colaboratory

9/28/23, 5:18 PM

Assignment-4,ipynb - Colaboratory

```
<ipython-input-18-062427f61837>:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
        sns.heatmap(df.corr(),annot=True,fmt=".2f",vmin=-1,vmax=1,cmap=plt.cm.Blues_r)
                                                                                                                                                        - 1.00
                        Age - 1.00 0.01 0.21 0.01 0.02 0.03 0.51 -0.00 0.50 0.03 0.30 0.00 0.00 0.05
                                                                                                      0.04 0.68 -0.02 -0.02 0.31 0.21 0.22 0.20
                             0.01 1.00 -0.02 0.02 0.02 0.05 0.00 0.03 0.01 -0.03 0.04 0.02 0.00 0.01
                                                                                                     0.04 0.01 0.00 -0.04 -0.03 0.01 -0.03 -0.0
                   Education - 0.21 -0.02 1.00 -0.03 0.02 0.04 0.10 -0.01 0.09 -0.03 0.13 -0.01 -0.02 -0.01
                                                                                                     0.02 0.15 -0.03 0.01 0.07 0.06 0.05 0.07
                                                                                                                                                        - 0.75
       EnvironmentSatisfaction - 0.01 0.02 -0.03 1.00 -0.05 -0.01 0.00 -0.01 -0.01 0.04 0.01 -0.03 -0.03 0.01
                                                                                                      0.00 -0.00 -0.02 0.03 0.00 0.02 0.02 -0.00
                  HourlyRate - 0.02 0.02 0.02 -0.05 1.00 0.04 -0.03 -0.07 -0.02 -0.02 0.02 -0.01 -0.00 0.00
                                                                                                     0.05 -0.00 -0.01 -0.00 -0.02 -0.02 -0.03 -0.02
              jobinvolvement - 0.03 0.05 0.04 -0.01 0.04 1.00 -0.01 -0.02 -0.02 -0.02 0.02 -0.02 -0.03 0.03
                                                                                                                                                        - 0.50
                    jobLevel - 0.51 0.00 0.10 0.00 -0.03 -0.01 1.00 -0.00 0.95 0.04 0.14 -0.03 -0.02 0.02
                                                                                                      0.01 0.78 -0.02 0.04 0.53 0.39 0.35 0.38
               JobSatisfaction - -0.00 0.03 -0.01 -0.01 -0.07 -0.02 -0.00 1.00 -0.01 0.00 -0.06 0.02 0.00 -0.01
               MonthlyIncome - 0.50 0.01 0.09 -0.01 -0.02 -0.02 0.95 -0.01 1.00 0.03 0.15 -0.03 -0.02 0.03
                                                                                                      0.01 0.77 -0.02 0.03 0.51 0.36 0.34 0.34
                                                                                                                                                        0.25
                 MonthlyRate - 0.03 -0.03 -0.03 0.04 -0.02 -0.02 0.04 0.00 0.03 1.00 0.02 -0.01 -0.01 -0.00
                                                                                                     -0.03 0.03 0.00 0.01 -0.02 -0.01 0.00 -0.04
        NumCompaniesWorked - 0.30 0.04 0.13 0.01 0.02 0.02 0.14 -0.06 0.15 0.02 1.00 -0.01 -0.01 0.05
                                                                                                      0.03 0.24 -0.07 -0.01 -0.12 -0.09 -0.04 -0.11
            PercentSalaryHike - 0.00 0.02 -0.01 -0.03 -0.01 -0.02 -0.03 0.02 -0.03 -0.01 -0.01 1.00 0.77
                                                                                                                                                         0.00
def correlation(dataset,threshold):
  col_corr = set()
  corr_matrix = dataset.corr()
  for i in range(len(corr matrix.columns)):
    for j in range(i):
      # if abs(corr_matrix.iloc[i,j]) > threshold: # this will remove the highly correlated feature including +ve and -ve
      if abs(corr_matrix.iloc[i,j]) > threshold:
                                                         # this will only remove the highly +ve correlated features
         colname = corr_matrix.column[i] # gets the column name
         col_corr.add(colname)
    return col_corr
corr_features = correlation(df,0.85)
corr_features
     <ipython-input-19-ec6c49401ebd>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
        corr_matrix = dataset.corr()
     set()
                                  a
                                            ×
                                                                                                                                        ğ
set()
     set()
                                             'n
                                                                                            .0
                                                                                                                                        S
DECISION TREE
y = df.iloc[:,11]
# the independant features will not include the 14th column
x = df.iloc[:,list(range(11)) + list(range(12,len(df.columns)))]
CREATING A COMPLETE PIPELINE FOR DECISION TREE
catagorical_processor = Pipeline(
    steps = [("one hot",OneHotEncoder(handle_unknown="ignore"))]
numeric processor = Pipeline(
    steps = [("scaler",StandardScaler())]
preprocessing = ColumnTransformer(
    transformers=[
         ("numeric", numeric processor, x.select dtypes(exclude='object').columns),
         ("categorical", catagorical_processor, x.select_dtypes(include='object').columns)
    ]
)
pipe = make_pipeline(preprocessing,DecisionTreeClassifier())
```

https://colab.research.google.com/drive/1XAZBxMhJPBjnqL0R4eC42c6bv4eQT0xU?authuser=0#scrollTo=lySmYKHUnHh8&printMode=true

6/11

9/28/23, 5:18 PM

Pipeline

> columntransformer: ColumnTransformer

- categorical

Assignment-4.ipynb - Colaboratory

```
Pipeline
      - columntransformer: ColumnTransformer
             numeric

    categorical

         ► StandardScaler → OneHotEncoder
           .....

    DecisionTreeClassifier

              x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 20,random_state=42)
pipe.fit(x_train,y_train)
                     Pipeline
       columntransformer: ColumnTransformer

    categorical

              numeric
         ▶ StandardScaler → OneHotEncoder
         -----

    DecisionTreeClassifier

           .....
pred = pipe.predict(x_test)
temp = pd.DataFrame({"actual_values":y_test,
                     "predicted_values":pred
temp
                                                        \blacksquare
                   actual_values
                                      predicted_values
     1041
                   Sales Executive
                                         Sales Executive
                                                        ıl.
      184
              Manufacturing Director Healthcare Representative
     1222
                 Human Resources
                                       Human Resources
      67
                 Research Scientist
                                    Manufacturing Director
```

```
220
           Laboratory Technician
                                         Research Scientist
494
           Sales Representative
                                       Sales Representative
430
           Laboratory Technician
                                      Laboratory Technician
240
           Laboratory Technician
                                      Laboratory Technician
218
                Sales Executive
                                            Sales Executive
 49
           Laboratory Technician
                                         Research Scientist
665
           Sales Representative
                                       Sales Representative
926
                Sales Executive
                                            Sales Executive
617
      Healthcare Representative Healthcare Representative
361
           Laboratory Technician
                                         Research Scientist
                                         Research Scientist
1423
              Research Scientist
1244
              Research Scientist
                                         Research Scientist
1250 Healthcare Representative
                                      Laboratory Technician
752
           Laboratory Technician
                                         Research Scientist
271
                       Manager
                                                   Manager
1055
              Research Director
                                          Research Director
```

 ${\tt confusion_matrix}({\tt y_test,pred})$

```
array([[1, 0, 1, 0, 0, 0, 0, 0, 0],
         [0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 2, 0, 0, 0, 4, 0, 0],
         [1, 0, 0, 0, 0, 0, 0, 0, 0],
```

https://colab.research.google.com/drive/1XAZBxMhJPBjnqL0R4eC42c6bv4eQT0xU?authuser=0#scrolITo=IySmYKHUnHh8&printMode=true

7/11

```
9/28/23, 5:18 PM
                                                                      Assignment-4.ipynb - Colaboratory
                [0, 0, 0, 0, 0, 1, 0, 0, 0],
                [0, 0, 0, 0, 1, 0, 2, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 3, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 2]])
    print(classification_report(y_test,pred))
                                    precision
                                                 recall f1-score support
```



```
{\tt confusion\_matrix}(y\_{\tt test,pred})
```

```
array([[1, 0, 1, 0, 0, 0, 0, 0, 0],
               [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0],
```

https://colab.research.google.com/drive/1XAZBxMhJPBjnqL0R4eC42c6bv4eQT0xU?authuser=0#scrollTo=lySmYKHUnHh8&printMode=true

7/11

9/28/23, 5:18 PM

Assignment-4.ipynb - Colaboratory

```
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 3, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 2]])
```

print(classification_report(y_test,pred))

	precision	recall	f1-score	support
Healthcare Representative	0.50	0.50	0.50	2
Human Resources	1.00	1.00	1.00	1
Laboratory Technician	0.67	0.33	0.44	6
Manager	1.00	1.00	1.00	1
Manufacturing Director	0.00	0.00	0.00	1
Research Director	1.00	1.00	1.00	1
Research Scientist	0.33	0.67	0.44	3
Sales Executive	1.00	1.00	1.00	3
Sales Representative	1.00	1.00	1.00	2
accuracy			0.65	20
macro avg	0.72	0.72	0.71	20
weighted avg	0.70	0.65	0.65	20

RANDOM FOREST

CREATING A COMPLETE PIPELIINE FOR RANDOMFOREST

pipe2 = make_pipeline(preprocessing,RandomForestClassifier(n_estimators=20)) pipe2

pipe2.fit(x_train,y_train)


```
pred = pipe2.predict(x_test)
temp = pd.DataFrame({"actual_values":y_test,
                      "predicted_values":pred
                     })
temp
```

田

predicted_values

9/28/23, 5:18 PM

actual_values

Assignment-4.ipynb - Colaboratory

```
1041
                     Sales Executive
                                              Sales Executive
                                                                ıl.
      184
                Manufacturing Director
                                        Manufacturing Director
      1222
                   Human Resources
                                            Human Resources
       67
                   Research Scientist Healthcare Representative
      220
                Laboratory Technician Healthcare Representative
      494
                 Sales Representative
                                          Sales Representative
      430
                Laboratory Technician
                                            Research Scientist
                                            Research Scientist
      240
                Laboratory Technician
      218
                     Sales Executive
                                              Sales Executive
       49
                Laboratory Technician
                                            Research Scientist
      665
                 Sales Representative
                                          Sales Representative
      926
                     Sales Executive
                                              Sales Executive
confusion_matrix(y_test,pred)
     array([[0, 0, 0, 0, 2, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 0],
             [1, 0, 1, 0, 0, 0,
             [0, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 0, 1, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 0, 0, 0],
             [1, 0, 0, 0, 0, 0, 2, 0, 0],
             [0, 0, 0, 0, 0, 0, 0,
             [0, 0, 0, 0, 0, 0, 0, 0, 2]])
print(classification_report(y_test,pred))
                                 precision
                                               recall f1-score
                                                                   support
     Healthcare Representative
                                       0.00
                                                  0.00
                                                            0.00
               Human Resources
                                       1.00
                                                  1.00
                                                            1.00
         Laboratory Technician
                                       1.00
                                                  0.17
                                                            0.29
                        Manager
                                       0.00
                                                  0.00
                                                            0.00
                                                                          1
        Manufacturing Director
                                       0.33
                                                  1.00
            Research Director
Research Scientist
                                       0.00
                                                  0.00
                                                            0.00
                                       0.33
                                                  0.67
                                                            0.44
               Sales Executive
          Sales Representative
                                       1.00
                                                  1.00
                                                            1.00
                                                                          2
                                                                         20
                       accuracy
                      macro avg
                                       0.52
                                                  0.54
                                                            0.47
                                                                         20
                   weighted avg
                                       0.67
                                                  0.50
                                                            0.48
                                                                         20
LOGISTIC REGRESSION
y1 = df.iloc[:,7]
x1 = df.iloc[:,list(range(7)) + list(range(8,len(df.columns)))]
x1_train,x1_test,y1_train,y1_test = train_test_split(x1,y1,test_size = 20,random_state=42)
CREATING A COMPLETE PIPE LINE FOR LOGISTIC REGRESSION
preprocessing = ColumnTransformer(
    transformers=[
        ("numeric", numeric_processor, x1.select_dtypes(exclude='object').columns),
        ("categorical", catagorical_processor, x1.select_dtypes(include='object').columns)
)
pipe1 = make_pipeline(preprocessing,LogisticRegression())
pipe1
```

https://colab.research.google.com/drive/1XAZBxMhJPBjnqL0R4eC42c6bv4eQT0xU?authuser=0#scrollTo=IySmYKHUnHh8&printMode=true

9/28/23, 5:18 PM

pipe1.fit(x1_train,y1_train)

Pipeline

columntransformer: ColumnTransformer

numeric categorical

StandardScaler OneHotEncoder

Assignment-4.ipynb - Colaboratory

9/11

10/11

9/28/23, 5:18 PM

Assignment-4.ipynb - Colaboratory

```
Pipeline

columntransformer: ColumnTransformer

numeric categorical

StandardScaler OneHotEncoder
```

pipe1.fit(x1_train,y1_train)

```
Pipeline

columntransformer: ColumnTransformer

numeric categorical

StandardScaler OneHotEncoder

LogisticRegression
```

	actual_values	<pre>predicted_values</pre>	##
1041	Male	Male	ıl.
184	Female	Male	
1222	Male	Male	
67	Male	Male	
220	Male	Male	
494	Female	Male	
430	Male	Male	
240	Female	Male	
218	Female	Male	
49	Male	Male	
665	Female	Male	
926	Female	Male	
617	Male	Male	
361	Female	Male	
1423	Male	Male	
1244	Female	Male	
1250	Male	Female	
752	Female	Male	
271	Male	Male	
1055	Male	Male	

print(classification_report(y_test,pred))

	precision	recall	f1-score	support
Female	0.00	0.00	0.00	0.0
Healthcare Representative	0.00	0.00	0.00	2.0
Human Resources	0.00	0.00	0.00	1.0
Laboratory Technician	0.00	0.00	0.00	6.0
Male	0.00	0.00	0.00	0.0
Manager	0.00	0.00	0.00	1.0
Manufacturing Director	0.00	0.00	0.00	1.0
Research Director	0.00	0.00	0.00	1.0
Research Scientist	0.00	0.00	0.00	3.0

https://colab.research.google.com/drive/1XAZBxMhJPBjnqL0R4eC42c6bv4eQT0xU?authuser=0#scrollTo=lySmYKHUnHh8&printMode=true

9/28/23, 5:18 PM

Assignment-4.ipynb - Colaboratory

Sales Executive	0.00	0.00	0.00	3.0	
Sales Representative	0.00	0.00	0.00	2.0	
accuracy			0.00	20.0	
macro avg	0.00	0.00	0.00	20.0	
weighted avg	0.00	0.00	0.00	20.0	

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c_warn_prf(average, modifier, msg_start, len(result))
//usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defi warn prf(average. modifier. msg_start. len(result))

1200	IVICIIC	1 Gillar
752	Female	Mal
271	Male	Mal
1055	Male	Mal

print(classification_report(y_test,pred))

	precision	recall	f1-score	support
Female	0.00	0.00	0.00	0.0
Healthcare Representative	0.00	0.00	0.00	2.0
Human Resources	0.00	0.00	0.00	1.0
Laboratory Technician	0.00	0.00	0.00	6.0
Male	0.00	0.00	0.00	0.0
Manager	0.00	0.00	0.00	1.0
Manufacturing Director	0.00	0.00	0.00	1.0
Research Director	0.00	0.00	0.00	1.0
Research Scientist	0.00	0.00	0.00	3.0

10 https://colab.research.google.com/drive/1XAZBxMhJPBjnqL0R4eC42c6bv4eQT0xU?authuser=0#scrollTo=lySmYKHUnHh8&printMode=true

10/11

9/28/23,	5:18	PM
----------	------	----

Assignment-4.ipynb - Colaboratory

Sales Executive	0.00	0.00	0.00	3.0
Sales Representative	0.00	0.00	0.00	2.0
accuracy			0.00	20.0
macro avg	0.00	0.00	0.00	20.0
weighted avg	0.00	0.00	0.00	20.0

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defi

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c
_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defi _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defi _warn_prf(average, modifier, msg_start, len(result))