Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

NAT'L. AGRIC. LIBRARY

1995 JUL -7 P 12: 17

CURRENT SERIAL RECORDS
ACO. / SERIALS BRANCH

UNITED STATES DEPARTMENT OF AGRICULTURE

Science and Education Administration

Agricultural Research

Western Region and the Agricultural

Experiment Stations of the Western States

Quality Characteristics of Varieties and New Selections of Wheats Bred and Grown in the Western States $\underline{1}/$

Thirty-Third Annual Report

of the

Western Wheat Quality Laboratory

1980 Crop 2/

WRU No. 5802-20050-002

G. L. Rubenthaler, H. C. Jeffers, J. S. Kitterman, P. L. Finney, A. D. Bettge, P. D. Anderson, M. L. Baldridge and P. A. Allen

January 1982

- 1/ In cooperation with the Arizona, California, Idaho, Montana, Oregon, Utah and Washington Agricultural Experiment Stations who developed and grew the experimental wheat selections studied.
- This is a Progress Report of cooperative investigations of the milling and baking characteristics of current commercial varieties and new selections of wheat grown in the Western states. Interpretation of the data may be changed with further experimentation; therefore, data in this report are not for publication, display, or distribution without prior written approval of the Science and Education Administration, Agricultural Research, USDA and the cooperating agencies concerned.

Thirty-Third Annual Report

of the

Western Wheat Quality Laboratory

1980 Crop

<u>Pa</u>	g
ABLE OF CONTENTS	1
UMMARY OF ACCOMPLISHMENTS	1:
NDEX OF NURSERIES	V
BBREVIATION DESCRIPTION	i
NTERPRETATION OF DATA	i
NTRODUCTION	
ETHODS	4
UBLICATIONS AND REPORTS (CY 81)	13
NVITED TECHNICAL PRESENTATIONS	13
VISITORS	1.
SUMMARY LIST OF EARLY GENERATION NURSERIES EVALUATED	1

Western Wheat Quality Laboratory 1980 Crop

SUMMARY OF ACCOMPLISHMENTS

- Evaluation for end-use milling and baking quality of 1542 experimental wheat 1. crosses grown and harvested as the 1980 crop were made. The selections were submitted from the wheat breeding programs in the Western States. Analysis and evaluation were completed on about 500 selections from the 1981 crop. Test criteria used to determine acceptability were flour yield, protein, ash and color; cookie diameter; loaf volume and crumb score; dough mixing requirements and water absorption; Japanese sponge cake volume and texture; Udon noodle yield, texture, color and score; and some developed test for Middle-Eastern style flat breads. Many of these experimental selections were judged as having acceptable end-use quality fitting their market classes. This work is an integral part of the wheat improvement programs to assure release of good agronomic and high quality wheat varieties. Results of the analysis can be found in the tables of data in Nursery Codes #1 through #64 and #1 Special. See the Index of Nurseries (page vi) for nursery titles, locations, and breeders.
- 2. In addition, the evaluation of milling and baking properties were made on 4,087 early generation selections from the wheat breeding programs that were grown in 1980. Studies included materials from snowmold, foot rot, dwarf smut, yield trial, and various crop management studies. Fourteen hundred seventy six (36%) of the experimental crosses were rated as having promise in overall quality characteristics. This material represents a new generation of experimental selections that are candidates for advancing and further testing to determine their desirability as possible commercial varieties. About 600 HRS and 1200 HRW and other crosses that were made to high protein sources were analyzed for protein and lysine. See Summary List of Early Generation Nurseries Evaluated on page 16. No data is included.
- 3. Alpha amylase analysis was made on 355 crosses selected for sprout resistance at Abredeen, ID. There was a wide variation in the amount of alpha amylase found within the material (.1 1.4 DU/g). Frequency distribution plots showed most of the material to be somewhere intermediate in enzyme activity, but sufficient samples on the low side promise encouragement for selecting for sprout resistance. No data is included in this report.
- 4. In co-operation with the PNW Grain and Quality Committee and U.S. Wheat Associates milling and baking evaluation were made on 18 commercial composites representing the wheat crop (1980) of WA, OR, ID, and MT. The data was used in their marketing brochures. See Nursery Code number 005 and 016.

- 5. Extensive studies were made to determine the effects of valcanic ash on end-use qualities of wheat. Results from treated and field samples revealed a significant loss in test weight occurred with only trace amounts of ash, most of the volcanic ash (90% or more) could be removed with conventional seed cleaning equipment, and no detremental effects to baking properties occurred even at high levels. Results are partially included in Nursery Code 011 and 012.
- 6. A study of the effects of the fungicides Bayleton and Indar as a seed treatment using 12 spring varieties showed small improvements in test weight, flour yield, and milling score over untreated seed. The baking tests did not find any difference between the treated and untreated material. Studies were in co-operation with Pathologists crop loss investigations. See Nursery Codes 032, 040, 042, and 053.
- 7. Investigations relating the integrity of end-use quality factors through seven generations of seed production were followed using three varieties grown in triplicate at three locations. Analysis of variance showed no significant differences in milling and baking properties from the foundation generation through seven succeeding generations. Work was done in cooperation with WSU, Extension Agronomist, Dr. K. Morrison. See Nursery Code 064.
- 8. In co-operation with the Montana Wheat Quality Council we assisted in the pilot milling and baking evaluation of 23 hard red winter and spring samples. The samples were advanced selections from the Montana wheat breeding program, which were candidates for commercial variety release following industry evaluation. See Nursery Code 014 for results. Similarly we collaborated with the Hard Red Winter Wheat Quality Council by baking evaluation of 13 hard red winter wheats. For these results see Nursery Code 015.
- 9. As in past years the Laboratory conducted the Pacific Northwest Crop Improvement Association Collaborative Test, which is an industry wide effort to evaluate promising varietal selections for acceptable end-use quality. The project is partially funded by the Pacific Northwest Crop Improvement Association (dissolved and renamed Pacific Northwest Grain Council, June/81 Board of Directors Meeting). Eighteen samples were pilot milled and flour distributed to 12 collaborators of the domestic and foreign milling and baking industry. Results were summarized and distributed as the 10th Annual Report in October/81. See Nursery Codes 054 and 002 Special.
- 10. We Co-operated with U.S. Wheat Associates, USDA, Foreign Agricultural Service, General Sales Managers Office, and the Michigan Wheat industry by jointly with other ARS, Wheat Quality Laboratories (Wooster, OH and Manhattan, KS) to determine the usefulness of several million bushels of sprouted Michigan soft white wheat. Samples varied from 10-80% sprout damaged. End-use tests included cookies and 4 Middle-Eastern flat breads. Samples containing more than 10% sprout did not make satisfactory flat breads. See Nursery Code 055.

11. Eighty two spring wheat selections (along with the check variety Wampum) that were made to high protein sources at the Volcani Institute, Bet Dagan, Israel, were screened with a micro baking test for baking properties. The flour protein of the material ranged from 11 to 17%. Several of the group had soft endosperm, but like their sister selections were very promising in overall quality. Baking properties seemed unrelated to kernel texture. See Nursery Code 001 Special.

OTHER ACCOMPLISHMENTS (No data included in this report)

- 1. Studies begun in 1980 were completed in early 1981 which showed that both germinated and ungerminated whole garbanzo (Cicer arietinum) flour is equal to or superior to all previously studied legume supplements for replaceing 5-20% wheat flour in sugar and sugar-free straight dough, U.S. type breads.
- 2. Designed and constructed a 4-drum automatic rinsing germination chamber to produce enough sprouted grains to accomplish both chemical and feeding studies.
- 3. Refined and standardized a procedure to assay for phytic acid phytate using the difference in phosphorous before and after precipitation with feric chloride. Used that procedure to evaluate the effects of time and degree of germination of 12 wheat variety composites with respect to phytate and unbound phosphorous.
- 4. Also assayed same 12 wheat variety composites and germinated wheats for neutral detergent fiber (NDF) and alpha amylase (Matheson-Pomeranz method with D & S Instrument), and summarized previous data on some 12 wheats and malts which was presented at the 1981 AACC annual meeting Oct. 25-29, Denver, CO.
- An eighty volume 2 x 2 slide set illustrating the simplicity of the ingredients, dough preparation, and methods of baking 5 popular Middle-Eastern flat breads was made at the request of the PNW Wheat Commissions. The Commissions have made duplicates and will have the slide sets available to schools, classes and homemakers interested in trying these breads from locally grown wheat.
- 6. Laboratory scale methods were developed to evaluate soft wheats for several flat breads. The work was led by Dr. Hamed Faridi, a Visiting Scientist from Iran and supported by the three PNW Wheat Commissions. Significant improvements were made to standardize the tests to give reproducible resutls e.g. designing a molder and modifying a ceramics kiln for a high temperature bake oven. See the publications list on page 12 for some of these results.

PBAR	668000000000000000000000000000000000000	N - -	
NOCO	000-000-000-0	PROTEIN	0 1
CACO	000-0000-000-0	MEAN	0 1
0000		NURSERY	0 1
RCO (-00		
SDATE BRCO COCO CACO NOCO PBAR	81008 81020 80020 81051 81054 81059 81091 81092 81092 81096 81096 81173	PBAR =	Mar/81
BLABNO	801082 801106 8011106 8011175 8011229 801229 801242 801328 801335 801353	ES RECEIVED	1 42
NOSAM E	24 124 127 133 133 133 133 133 133	E SAMPLES	83
BREED	R. LINE C.F. KONZAK R. LINE C.O. QUALSET C.O. QUALSET R.E. ALLAN C.F. KONZAK W. POPE W. POPE W. POPE	SDATE = DATE (NOCO = NOODLE	C.F. Konzak
LOCATION	SPILLMAN, PULLMAN, WA L, RS, D, PY, &WW, WA OBS HILL, PULLMAN, WA PULLMAN & LIND, WA MICH COMM. LOTS UCD, KINGS&SUTTER CO. PULLMAN, WA PULLMAN, WA PULLMAN, WA PULLMAN, WA FULLMAN, WA FULLMAN, WA FULLMAN, WA FULLMAN, WA PULLMAN, WA PULLMAN, WA FULRESPON, WA FAR EAST FAR EAST	BEGINNING LAB NUMBER CACO = CAKE CODE	Bet Dagan, Israel WA and ID
NURSERY NAME	CROP LOSS (BAYLETON + INDAR) SPRING WHT WA 6753 AND ID 185 COMPARISONS CROP LOSS (BAYLETON) WINTER WHEAT PNWCIA COLLABRATIVE TESTS MICHIGAN SPROUT STUDY CALIFORNIA REGIONAL CEREAL TESTS BREAD TYPE WHITE WHEATS PURE SEED NURSERY (BURT DERIVATIVES) DRILL STRIPS WESTERN FACULTATIVE INCREASES (1979) OF ADVANCED SELECTIONS SIEVING STUDY AUSTRALIAN SAMPLE SEED GENERATION TRIALS	DSAM = NUMBER OF SAMPLES BLABNO = BREAD CODE COCO = COOKIE CODE	Israeli High Protein Selections 10th Annual Report Pacific Northwest Grain Council Collaborators Tests
NURS NURS CODE ID	051 052 052 055 055 065 065 065 065 065	KEY : NG BRCO = SPECIAL	000

ABBREVIATION DESCRIPTION

We have implemented a computer program to store, calculate, and retrieve our milling and baking data. The following is a list of abbreviations used as column headings in the following tables of data.

NURSCO - Nursery Code Number (located upper left corner of table).

LABNUM - Laboratory Number (first two digits crop year).

VAR - Variety or selection name.

IDNO - CI or Selection Identification Number.

TWT - Test weight in lbs/bu.

FASH - Flour ash percent at 14% moisture basis.

FYELD - Percent of flour obtained.

MSCOR - Milling score.

FPROT - Flour protein percent at 14% moisture basis.

FABSC - Farinograph water absorption corrected to 14% moisture basis.

FPEAK - Farinograph mixing peak time in minutes.

FSTAB - Farinograph stability in minutes.

BABS - Bake water absorption at 14% moisture basis.

BABSC - Bake absorption corrected to mean protein of nursery.

MTIME - Optimum mixing time in minutes.

LVOL - Bread loaf volume observed in cc's.

LVOLC - Bread loaf volume (cc) corrected for protein to the mean protein of the nursery. (See table 1 or 2, page ix)

BCRGR - Bread crumb grain rating code. (See table 3, page x)

CODE	MEANING	
1	Excellent	(S*)
2	Satisfactory	(S)
3		(Ø−S)
4	Questionable-Satisfactory	(Q-S)
5		(Q-\$)
6	Questionable	(Q)
7		(Q-V)
8	Questionable-Unsatisfactory	(Q-U)
9	Unsafisfactory	(U)

CODI - Cookie diameter in cm's.

CODIC - Cookie diameter (cm) corrected for protein to the mean protein of the nursery. (See table 1 or 2, page ix)

VISC - Brookfield viscosity (observed)

VISCC - Brookfield viscosity corrected for protein to the mean protein of the nursery.

CAVOL - Japanese Sponge Cake Volume in cc's.

SCSCOR - Sponge cake score (scale 1-100)

WTIN - Noodle weight increase (percent).

NYELD - Noodle yield.

NOSCORE- Noodle score (1-100)

MABS - Mixograph absorption at 14% moisture (%).

MABSC - Mixograph absorption corrected for protein (%).

MTYPE - Mixograph Type - From Mixograph Reference Chart.

RATE - Overall Rating when used see table 3. RMKS - Remarks.

Western Wheat Quality Laboratory 1979 Crop

INTERPRETATION OF DATA

As in the past reports, decisions were based on the results of the tests after adjustment to an average protein content of the nursery using correction factors derived from several years of data on particular varieties and/or classes of wheat. These correction factors and scale for ranking codes can be found in the following tables 1-3.

CORRECTION FACTORS - TABLE 1

VTN	VARIETY	(VC) LOAF VOLUME	(CC) COOKIE
1		(1	0
1	Anza	61	0
2	Burt	51	.078
3	Coulee	76	.070
4	Fortuna	64	0
5	Gaines	38	.136
6	Hyslop	0	.137
7	Inia 66	68	0
8	Itana	60	0
9	Kharkof	`57	0
10	Luke	0	.085
11	Marfed	61	.098
12	McCall	52	0
13	McDermid	0	.106
14	Moro	0	.094
15	Nugaines	62	.118
16	Omar	0	.083
17	Paha	0	.037
18	Sprague	0	.062
19	Springfield	0	.042
20	Twin	0	.149
21	Yamhill	0	.124
22	Wanser	69	0
23	Wared	62	0

Variety name (VAR) not found or where the value is zero in Table 1, use correction factor for class of sample in Table 2.

VTN = Computer system variety number

CORRECTION FACTORS - TABLE 2

CLASS	(VC) LOAF VOLUME	(CC) COOKIE
- 02/100	HOTH VOLUME	COOKIE
SWW	60	.110
SWS	60	.110
CLUB	55	.071
HRW	62	.080
HRS	62	.080
HWW	62	.080
HWS	62	.080

RANKING AND RATING CODES - TABLE 3

CODE BREAD CRUMB GRAIN	MEANING	
1	Excellent	(S*)
2	Satisfactory	(S)
3	Questionable-Satisfactory	(Ø−S) (Q−S)
5	questionable-satisfactory	(Q-\$)
6	Questionable	(Q)
7 . 8	Ougationable-Ungatiofoctory	(Q−Ø) (Q−U)
9	Questionable-Unsatisfactory Unsatisfactory	(U)

Thirty-Third Annual Report of the Western Wheat Quality Laboratory

1980 Crop

G. L. Rubenthaler, H. C. Jeffers, J. S. Kitterman, P. L. Finney, A. D. Bettge, P. D. Anderson M. L. Baldridge and P. A. Allen 1/,2/

INTRODUCTION

This is the Thirty-Third Annual Report of the Western Wheat Quality Laboratory of cooperative investigations with breeder, geneticists, and pathologists in the seven Western States to evaluate the milling and baking quality characteristics of experimental wheat selections grown and harvested as the 1980 crop. These investigations included several market classes and sub-classes of wheat which are commercially grown in the Pacific Northwest and the Western Region and relates to their quality for commercial production and consumer acceptance. These studies deal with the physical-chemical flour properties associated with a wheat's suitability for commercial pastry and bread products.

The nurseries have been arranged in nurseries (Nursery Index in Table of Contents) and the varieties and selections are listed in the tables in order of their assigned Laboratory Number. Mixograms were run on all samples evaluated, but none were reproduced for inclusion in this report. Alternately, each mixogram was characterized by type as described in the Methods Section.

- 1/ Research Food Technologist, Research Food Technologist, Research Food Technologist, Research Food Technologist, Physical Science Technician, Physical Science Technician, Biological Technician and Clerk-Typist, respectively, U.S. Department of Agriculture, Science and Education Administration, Agricultural Research, Western Region, assigned to the Western Wheat Quality Laboratory, Wheat Breeding and Production Unit, Pullman, Washington.
- 2/ Credit is due Garrison King, Washington State University Laboratory Technician II for the flour milling and physical-chemical determinations made on early generation material. This work was supported by grant funds from the Washington Wheat Commission.

Credit is due Hamed A. Faridi, Visiting Scientist for leadership, assistance and knowledge shared on Middle-Eastern and North African flat bread requirements and methods for testing. His work was supported by a grant from the Washington, Oregon and Idaho Wheat Commissions.

METHODS USED BY USDA, WESTERN WHEAT QUALITY LABORATORY

All wheat samples were fumigated when received with 800 cc of methyl bromide/50 gal. drum overnight and then aerated, cleaned, scoured, test weight (1, Method 84-10) determined, sub-sampled for approximate analysis, and placed in the storeroom until experimentally milled by the following methods:

Buhler Milling: All of the 1979 samples of Advanced and Regional Nurseries were milled on a Buhler, pneumatic, laboratory mill. The samples were tempered to a predetermined moisture content ranging from 14.0% to 16.0%, depending on the hardness and the known flour-bolting properties. The harder wheats require the most water. Thus, the grain was conditioned so that the most rapid and most complete separation of endosperm could be made. The temper water contained a wetting agent (.1% Aerosol OT) to hasten moisture pentration and the tempered wheat was allowed to rest for 16-24 hours before milling to permit uniform distribution of the moisture. An aditional 0.5% water was added 15-20 minutes prior to milling. The Buhler experimental mill schematic flow is shown in Figure 1.

All six flour streams were combined to make a straight-grade flour. The first and second break and first and second reduction streams were combined for a patent flour. All straight-grade flour was rebolted on a 120 stainless steel wire screen and blended thoroughly.

Flour Yield: The percent of the total products recovered as straight-grade white flour.

Milling Time: The minutes required to mill a 2000-gram sample with the Buhler experimental mill and obtain a normal separation of bran, shorts, and flour. Time is determined by visual observations and adjustments by an experienced miller.

Milling Score: Calculated as follows:

```
100 - [(80 - flour yield) + 50 (Flour ash - .30) + .48 (Milling time - 15) + .5 (65 - % long patent) + .5 (16 - 1st tempering moisture)]
```

Modified Quadurmat Milling Method: The preliminary nurseries were experimentally milled on Modified Quadurmat system (500g). The procedure was discribed in the 27th Annual Report, Oct. 1976 (pages 1-14). Conversion of the data to give a predicted Buhler flour yield and milling score was done with the following linear equations:

Flour Yield Milling Score

Soft wheat
$$(y = 14.0671 + .83474X)$$
 Soft wheat $(y = -21.60185 + 1.27367X)$ Hard wheat $(y = 13.4166 + .83298X)$ Hard wheat $(y = -3.43818 + 1.0448X)$

The Modified Procedure is schematically shown in Figure 2. Modifications include those described by Jeffers and Rubenthaler (11).

BUHLER EXPERIMENTAL MILI

Figure 1. Schematic flow of the Buhler experimental mill showing a range of the average feed rates, flour yields, and flour ash of the various classes of wheat. Roll settings are varied for optimum clean-up and reduction of the stock, and feed rates according to the bolting and reduction properties.

** BASIS TOTAL PRODUCTS RECOVERED FROM MILL.

BOLTING SURFACE - 288 SQUARE INCHES

MODIFIED QUADRUMAT SR. MILLING PROCEDURE

BREAK UNIT
BRABENDER QUADRUMAT JR. WITH
QUADRUMAT SR BREAK ROLLS

REDUCTION UNIT
BRABENDER QUADRUMAT SR.
REDUCTION HEAD

ROLLS:

DIAMETERS: 2.8 INCHES

SPEED:

FAST ROLLS: 1200 RPM SLOW ROLLS: 560 RPM

DIFFERENTIAL: 2.14 TO I

TEMPER-

TO 15% FOR 24 HOURS WITH WETTING AGENT

SIFTERS: 8 INCH TYLER TESTING SIEVES ON ZELENY SEDIMENTATION SIEVE SHAKERS

SIFTING SCHEDULE

BREAK STOCK:

BRAN: REMOVED AFTER I MIN.
MIDDLINGS: REMOVED AFTER AN
ADDITIONAL 2 MIN. (3 MIN. TOTAL)

REDUCTION STOCK: 3 MIN.

SAMPLE SIZE: 100-250 GRAMS TEMPERED WHEAT (HELD CONSTANT WITHIN EACH COMPARISON GROUP)

OUTPUT: 5-7 SAMPLES PER HOUR

Figure 2. Semi micro experimental mill flow with the roll corrugations per inch. The break rolls have corrugation spirals of 1.25, 1.75, 1.88, and 1.25 inch/ft. in progressive order, and the middling reduction roll spirals are 1.25, 1.25, and frosted smooth. Roll spacings for first, second and third break are 0.035, 0.0035, and 0.002 inch respectively. The middling rolls are set at 0.0015, 0.0020 and 0.0015 inch respectively.

Semi Micro Flour Quality:* Wheats milled on the semi-micro mill which gave satisfactory flour yields were evaluated by the following tests and all others with unsafisfactory milling properties were discarded: NIR protein, mixograph (3, 9), and AWRC test (14,17) to distinguish whether they fit the sub-class of club or soft common and/or hard wheats.

Micro Milling of Single Plant Selections:* The 5-10 gm samples of grain were accurately weighed, placed in vials, and water added to bring them to 14% moisture. The tempered grain was milled on the micro mill which consists of two pairs of corrugated rolls and double sifters with 38- and 135-mesh stainless steel screens. The bran over the 38-mesh sifters was evaluated for milling properties by visual examination for the degree of bran clean-up. The throughs of the 135-mesh stainless steel screen, of those samples considered to be good milling types, were examined for flour quality by means of the Modified Micro Sedimentation Method (12). Protein and lysine are determined on these materials by NIR analysis (16). A schematic flow diagram of the micro mill is shown in Figure 3 (2, 13).

Moisture Content of Wheat & Flour: These values have not been given in these reports, but the methods are as follows: The reference test is two grams of ground wheat in an aluminum moisture dish are heated in a forced draft oven for 40 minutes at 140° C., allowed to cool in a desiccator and weighed. Flour Moisture is determined in the same manner except that it is heated only 20 minutes. The NIR (Technicon 400) is routinely used as calibrated to the above method.

Ash of Wheat and of Flour: The ash from a 4-gram sample of wheat meal or flour heated for 15 hours at 550° C. in a muffle furnace. (1, Method 08-01).

Protein of Wheat and Flour: The protein content of the samples was determined by the NIR method, and checked (about 10% of the material) by the Kjeldahl method (1, Method 46-12).

Alkaline Water Retention Capacity (AWRC): The percent increase in weight of 7.5 g flour due to absorption of water from 35 ml of .1 normal NaHCO $_3$ solution (17).

<u>Viscosity</u>: Dial reading x 7.5 of a RVT Brookfield Synchro-Lectric Viscometer fitted with a No. 2 spindle at 50 R.P.M. using a suspension of 20 grams of flour in 100 ml of water and 7 ml of 1 N lactic acid (15).

Mixogram: Used to characterized new selections as to market class and estimate baking properties. The recently developed 10 gm instruments were used and the testing procedure and interpretation of K.F. Finney(9) was followed. To reduce the time and expense involved in reproducing the mixograms a reference chart was developed to characterize each curve as to type ranging from very weak to expectionally long and strong types. The chart and instructions for its use are found on pages 7 and 8.

*Supported by special grant of funds from the Washington Department of Agriculture and the Washington Wheat Commission to permit extensive early generation (F_3-F_4) testing.

MICRO-MILL FLOW

ROLL SPACING 18 .012 INCH 28 .0025 "

Four samples are milled and sifted simultaneously and feed rate is held constant by a vibratory feeder. Schematic and flow of the micro experimental mill. Figure 3.

USE OF MIXOGRAM REFERENCE CHART

In addition to determining mixing time for optimum dough development by observation during baking test, mixing time and mixing tolerance, two important baking properties of wheat flour, can be determined independently from a mixogram. A mixogram is determined with 10g of flour and appropriate amount of water to give optimum absorption. It is really nothing more than a recording mixer reflecting the resistance the dough has to be mixed over a period of time. Most mixograms are run either 7 or 8 minutes which is sufficient time for most flours to give a full picture of their mixing time and to show what happens when mixing continues beyond this point (mixing peak) as reflected in the tail of the curve and commonly referred to as tolerance.

Final evaluation must be made with consideration given to the protein content of the flour, because of the effect protein content has on the mixing characteristics within the same variety. As protein increases, mixing time will decrease with an apparent increase of tolerance. To illustrate this, compare #1 high(H) with #2 medium (M) and #3 low (L) which are typical mixograms of the club wheat Paha at 12, 9, and 6% protein respectively. Similarly, 2H, 3M, and 4L are typical for Nugaines at these protein levels. Little change can be observed on any wheat above 13.0 or below 7.5% protein.

This chart will be used to identify the curve characteristics which most closely fit the sample and will be reported as numbers 1L, 1M, 1H, etc. through 8H.

Cookie Baking: 40 g of flour, micro method, using 25% absorption, 60% sugar, 30% emulsified shortening, 3% dry skim milk, 1% NH₄HCO₃, 1% NaCL, 1% NaHCO₃, was employed (8).

Cookie Diameter is the average diameter, in centimeters, of cookies baked on two separate days.

Farinograph: The Farinograph was equipped with a 50-g bowl and the Constant Flour Weight Procedure was employed (1, Method 54-21A).

Farinograph Absorption is the amount of water required to center the highest portion of the Farinograph curve on the 500 unit line.

Peak or Farinograph Mixing Time is the time interval, in minutes, from the first addition of water until the tip of the curve reaches its maximum height.

Stability of Period of Resistance is the number of minutes the top of curve remains above the 500 unit line when the highest portion (peak) is centered on the 500 unit line.

Bread Baking: An optimum absorption, optimum mixing, optimum bromate, 100 g flour and straight dough method using 7.2% yeast, $1\ 1/2\%$ salt, 6% sugar, 1/4% malt extract, 4% dry milk solids, 65 ppm ascorbic acid, and 3% hydrogenated shortening was employed (5,6,7,10).

Baking Absorption: The amount of water required to make a dough of proper consistency for bread baking when mixed to optimum conditions as judged by an experienced baker using the baking method described above (4).

Mixing Time: Time in minutes required to mix the flour and the other bread dough constituents to the optimum condition as judged by an experienced baker (5).

Optimum Bromate: The amount of potassuim bromate required to produce the optimum break, shred, crust, and grain characteristics of the loaf of bread (5).

Flour Color: The slurry method using 20 g of flour, 25 ml of water, stirred for 2 minutes with a glass stirring rod fitted with a llmm policeman, and allowed to stand for 5 minutes. Reading is taken on an Agtron (F_2) calibrated with standard color discs #63 = 0 and #85 = 100.

REFERENCES

- 1. American Association of Cereal Chemists Cereal Laboratory Methods (7th ed.) The Association: St. Paul, Minn. (1962).
- 2. Everson, E. H. and Seeborg, E. F. The heritability of milling quality as measured by the separation of the bran and endosperm.

 Agron. Jour. 50: 511-513 (1958).
- 3. Finney, K. F. Evaluation of Wheat quality. Proceedings A.A.A.S. Section O Symposium on Food Quality as Affected by Production Practices and Processing. Dec. 27, 1962, Also Finney, et al., Quality Characteristics of Hard Winter Wheat Varieties Grown in the Southern, Central, and Northern Great Plains of the United States, 1963 Crop. Hard Winter Wheat Quality Laboratory, Manhattan, Kans. CR-77-64, Dec. (1964).
- 4. Finney, K.F. Methods of estimating and the effect of variety and protein level on the baking absorption of flour. Cereal Chem. 22: 149-158 (1945).
- 5. Finney, K.F. and Barmore, M.A. Optimum vs. fixed mixing time at various potassium bromate levels in experimental bread baking.

 Cereal Chem. 22: 244-254 (1945).
- 6. Finney, K.F. and Barmore, M.A. Varietal responses to certain baking ingredients essential in evaluating the protein quality of hard winter wheats. <u>Cereal Chem</u> 22: 225-243 (1945).
- 7. Finney K.F. and Barmore, M.A. Yeast variability in wheat variety test baking. Cereal Chem. 20: 194-200 (1943).
- 8. Finney, K.F., Morris, V.H. and Yamazaki, W.T. Micro versus macro cookie baking procedures for evaluation the cookie quality of wheat varieties. Cereal Chem. 27: 42-49 (1950).
- 9. Finney, K.F. and Shogren, M.D. A Ten-Gram Mixograph for Determining and Predicting Functional Properties of Wheat Flours. Baker's Digest.
- 10. Finney, P.L., Magoffin, C.D. Hoseney, R.C. and Finney, K.F. Short-Time Baking Systems. I. Interdependence of yeast concentration, fermentation time and oxidation requirement. Cereal Chem. 53: 126-134 (1976).
- 11. Jeffers, H.C. and Rubenthaler, G.L. Effect of Roll Temperature on Flour Yield with the Brabender Quadrumat Experimental Mills. Cereal Chem. 54(5): 1018-1025 (1979)
- 12. Kitterman, J.S., and Barmore, M. A. A modified micro sedimentation test for screening early-generation wheat selections. Cereal Chem. 46: 273-280 (1969).
- 13. Kitterman, J.S., Seeborg, E.F. and Barmore, M.A. A note on the modification of the five-gram milling quality test and the five-gram micro-mill. Cereal Chem. 37: 762-764 (1960).

REFERENCES -- Continued

- 14. Kitterman, J.S. and Rubenthaler, G.L. Assessing the quality of early generation wheat selections with the micro ARWC test. Cereal Science Today 16: 313-328 (1971).
- 15. Kitterman, J.S. and Rubenthaler, G.L. Application of the Brookfield Viscometer for measuring the apparent viscosity of acidulated flourwater suspensions. Cereal Science Today 16: 275-276 (1971).
- 16. Rubenthaler, G.L. and Bruinsma, B.L. Lysine Estimation in Cereals by Near Infrared Reflectance. Crop Science 18: 1039-1042 (1978).
- 17. Yamazaki, W.T. An alkaline water retention capacity test for evaluation of cookie baking potentialities of soft winter wheat flours.

 Cereal Chem 30: 242-246 (1953).

PUBLICATIONS (Jan. 1 - Dec. 31/81)

Rubenthaler, G.L. and Faridi, H.A. 1981 Note on a Laboratory Dough Molder for Flat-Breads. Cereal Chemistry 58:6.

Faridi, H.A., Finney, P.L. and Rubenthaler, G.L. 1981 Micro Baking Evaluation of Some U.S. Wheat Classes for Suitability in Iranian Breads. Cereal Chemistry 58(5):428-432.

Ranhotra, G.S., Gelroth, J.A., Torrence, F.A., Bock, M.A., Winterringer, G.L., Faridi, H.A. and Finney, P.L. 1981 Iranian Flat Breads: Relative Bioavailability of Iron. Cereal Chemistry 58(5):471-474.

Faridi, H.A., Finney, P.L. and Rubenthaler, G.L. 1981 Microbaking Evaluation of Some U.S. Classes for Suitability in North African Breads. Cereal Foods World 26(9):496 (ABSTRACT).

Faridi, H.A., Ranhotra, G.S., Finney, P.L., Hubbard, J.D. and Rubenthaler, G.L. 1981 Functional (Breadmaking), Compositional, and Protein Quality Characteristics of Iranian Breads. Institute of Food Technologist (Meeting.) (ABSTRACT June 81).

Finney, P.L., Mason, W.R., Jeffers, H.C., El-Samahy, S.K. and Vigue, G.T. 1981 Effects of Germination on Some Physical, Chemical, and Breadmaking Properties of 12 U.S. Wheat Variety Composites. Cereal Food World 26(9):512 (ABSTRACT).

Rubenthaler, G.L. and Faridi, H.A. 1981 Breads Produced from Pacific Northwest Soft White Wheats. I. Five International Breads. Bakers Digest 55:6.

Hsu, D.L., Leung, H.K., Morad, M.M., Finney, P.L. and Leung, C.T. 1981 Effect of Germination on Electrophoretic, Functional and Breadmaking Properties of Yellow Pea, Lentil and Faba Bean Protein Isolates. Cereal Foods World 26(9):503 (ABSTRACT).

Bates, L.S. and Finney, P.L. 1981 Effects of Germination Time and Degree on Dry Weight Loss, Water Inibition and Complete Amino Acid Transformation of 12 Highly Divergent U.S. Wheat Variety Composites. Cereal Foods World 26(9):511 (ABSTRACT).

Faridi, H.A. 1981 Health Advantages of a High Bread Diet and Approaches to U.S.-Type Flat Bread Production. Bakers Digest 55(4).

REPORTS

Rubenthaler, G.L., Jeffers, H.C., Kitterman, J.S., Anderson, P.D., Bettge, A.D., Finney, P.L., Baldridge, M.L. and Allen, P.A. Quality Characteristics of Varieties and new selections of wheat bred and grown in the Western states, for the crop year 1979. USDA-SEA Mimeographed Publication WRU 5802-20050-002, RPA 405, January 1981.

Faridi, H.A., Rubenthaler, G.L. and Finney, P.L. Quality Evaluation of Pacific Northwest Soft White Wheats for Suitability as Middle Eastern and North African Breads. WSU Field Days, June 1981.

INVITED TECHNICAL PRESENTATIONS

Rubenthaler, G.L., 1981

Lectured (2 hrs.) to Laboratory Analysis Class, Dept. of Animal Science, WSU, on "Protein analysis of grain". January 22.

Gave a short course (4 hrs.) on "Milling and uses of soft white wheat", to foreign millers, International Grains Program, Kansas State University, Manhattan, KS. February 11.

Presented a talk "An overview of research relevant to the baking industry" at the American Bakers Association Technical Liaison Committee with the USDA, at the WRRC, Albany, CA. February 19.

Lectured (1 hr.) to Biometrics class, College of Agriculture, WSU on "Application of Statistics in Laboratory Analysis". April 3.

Lectured (3 hrs.) to Cereal Processing class, Food Science and Technology Dept., WSU on "Wheat flour milling". April 15, 20, and 22.

Lectured (1 hr.) to Food Processing class, Food Science and Technology Dept., WSU, on "Physical and chemical testing of wheat flour". May 5.

Presented a talk on "Effects of volcanic ash on milling and baking quality", Milling and Baking Division of American Association of Cereal Chemists Meeting, Salt Lake, UT. May 15.

Presented a talk on "Varietal changes and end-use quality" at Pacific Northwest Crop Improvement Association Annual meeting, Pendleton, OR. June 23.

Presented talk on "Discussions on Wheat Quality" at the Western Wheat Workers Meeting, Corvallis, OR. July 16.

Gave Seminar "Function of the Western Wheat Quality Laboratory in Variety Development" to the Korean Milling Team, Pullman, WA. July 28.

INVITED TECHNICAL PRESENTATIONS (con't)

Gave Seminar "Function of the Western Wheat Quality Laboratory in Variety Development" to the Japanese Food Agency Team, Pullman, WA. Aug. 17.

Gave Seminar "Function of the Western Wheat Quality Laboratory in Variety Development" to the Taiwan Milling Team, Pullman, WA. Sept. 18.

Presented short course (4 hrs.) on "Milling and End-use Quality of Soft White Wheat" to the Foreign Millers, International Grains Program, Kansas State University, Manhattan, KS. Sept. 29.

Jeffers, H.C., 1981

"Role of the Western Wheat Quality Laboratory", South American Milling Team, Pullman, WA. July 17.

Finney, P.L., 1981

Presented lectures to Dept. of Home Economics, WSU, "Wheat-Legume Interactions". Oct. 7.

Presented 10 2 hour seminar-lectures at the University of Sonora, Hermosillo, Mexico, Oct. 12-16, entitled: 1) "Quality control techniques on wheat used at the ARS, USDA, Wheat Quality Laboratories", (1 lecture). 2) "Biochemical, chemical, and physico-chemical changes that take place during the processing of cereals and legumes", (2 lectures). 3) "Discussions on Rheology", (2 lectures). 4) "Cereal and legume world wide food combinations", (3 lectures). 5) "Chemical, biochemical and physiochemical changes that occur to cereal (especially wheat) and legumes during germination", (2 lectures).

Western Wheat Quality Laboratory 1980 Crop

VISITORS

The Western Wheat Quality Laboratory Staff was pleased to have had the opportunity to meet, discuss, and give tours of our facilities with some 106 visitors this past year. Several of these people were wheat breeders, grain buyers, flour millers, students and various government officials with an interest in wheat quality. The following is a list, not all inclusive, to those who visited our facilities and signed our guest book:

W.S.U. Animal Science Department Laboratory Analysis Class	20
W.S.U. College of Agriculture Biometrics Class	23
W.S.U. Food Science & Technology Dept. Food Processing Class	14
U.S. Wheat Workers	14
Foreign:	
Egypt	3
Israel	1
Chile Chile	2
Peru	1
Colombia	2
France	2
Korea	7
Japan	9
Taiwan	6
New Zealand	1
Australia	1

EARLY GENERATION NURSERIES 1980 Crop

NURSERY	LOCATION	BREEDER	CLASS	NUMBER TESTED	NUMBER PROMISING
Snow Mold	Harrington	Brueh1	SWW	53	30
Snow Mold	Lind	Bruehl	SWW	43	18
Snow Mold	Beard Farm	Bruehl	SWW	55	40
Soft White Winter	Ritzville	Peterson	SWW	252	177
Regional HRW	Pullman	Peterson	HRW	31	9
International Winter	Pullman	Peterson	HRW	29	13
HRS Single Plot	Pullman	Konzak	HRS	436	279
Advanced Clubs	Pullman	Allan	Club	357	202
Quality Samples	Pullman	Brueh1	SWW	66	47
Pullman Late Spray Trial Rep. III	Pullman	Allan	SWW	253	0*
Pullman Late Rep. II	Pullman	Allan	SWW	252	0*
Soft White Preliminary	Pullman	Konzak	SWS	444	331
Pullman Late: Composite Rep. I & III	Pullman	Allan	SWW	206	55
1980 Winter Wheat	Pendleton	Rohde	SWW	144	118
Colton No-Till (Pea Stubble)	Colton	Peterson	SWW	150	0*
Colton No-Till (Wheat Stubble)	Colton	Peterson	SWW	148	0*
No-Till(Barley Stubble)	Pullman	Peterson	SWW	153	0*
Barley Mgt. Trials	Pullman	Allan	SWW	199	0*
Wheat Stubble - Rep. I & II	Colton	Allan	SWW	197	0*
Moro Types Rep. I & II Composite	Pullman	Allan	SWW	105	84

NURSERY	LOCATION	BREEDER	CLASS	NUMBER TESTED	NUMBER PROMISING
White Seeded Selections	Pullman	Allan	SWW	90	58
Pea Stubble - Rep. I & II Nontreated and treated	Colton	Allan	SWW	198	0*
Pea Stubble - Rep. I & II Nontreated and treated	Colton	Allan	SWW	197	0*
Hard Red Single Plots	Pullman	Konzak	HRS	28	15
			Totals:	4087	1476

^{*} Complete Analysis were not made.

Barrier Bu

the control of the second

Washing 1 - 334 Mr. Ababilikas

1411 - 14

ないでと、「日、ア、明、思、いはなるの

that the Noble Country

Miles and the state of the party of

1 - 3 9

ADVANCED SNOWMOLD

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 1			LIND, WN	M					S	G.W. BRUEHL	
LABNUM	VARIETY	ONG	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE	BABS
800001 SPRAGUE 800002 HATTON	00	C1015376 C1017772	SWW F HRW	63.2	70.6		84.9	800	56.9	E W W	6.49
800003 800004	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7713 77-99-1 77-9902	5/HRW 6/HRW	63.2 63.4 63.2	70.6 71.4 72.2	0.40	88.7.7	0.00	63.4 62.9	W W T	66.1
800006 800007 800008 800009 800010	77777	77-261 77-287 77-294 FR-120 77-367	5/CLUB 5/SWW 5/SWW 6/HRW	641.2 64.0 63.2 62.8	73.8 71.0 70.9 70.4 71.2	0.40 0.38 0.39 0.40 0.36	90.2 87.9 87.2 84.8	7.88.7.7.09.09.3	57.2 57.7 58.9 58.9 63.1	22M 432M 432M	64.5
1/ Observed Value 3/ Absorption at	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 9% Protein	e Basis 9% Protu	ein.	12/9	Partic Promis	Particularly Promising Ove	Particularly Promising Overall Quality Promising Overall Quality Characteristi	Promising Overall Quality rall Quality	all Qua. haractei	lity Cha	Characteristics cs.

Observed Values Corrected to 9% Protein. 141

	AB.
	QUALITY LAB.
SEA AR	WESTERN WHEAT
USDA, S	PUL I MAN

ADVANCED SNOWMOLD

CONTD. PAGE

00000			LIND, WN	Z					9	G.W. BRUEHL
LABNUM	VARIETY	IDNO	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	1000	CODIC 4/
800001 SPRAGUE 800002 HATTON 800003 800004		C1015376 C1017772 7713 77-99-1	SWW HRW SWW HRW	64.3	2.7	910	873	~ ~	9.12	9.09
800005		77-9902	HRW	64.3	2.8	965	853	10		
800006 800007 800008 800008		77-261 77-287 77-294	CLUB SWW SWW						9.24	9.29
800010		FR-120 77-367	SWW	64.5	2.9	950	950	2		8.86

1/ Observed Values Corrected to 14% Moisture Basis.
3/ Absorption at 14% Moisture Corrected to 9% Protein.
4/ Observed Values Corrected to 9% Protein.

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.

properties as judged by cookie diameter. Statistically it is not different than Sprague so further testing wou As a group these selections have good overall quality characteristics for their particular classes of wheat. Selection FR-120 is equal to Sprague in milling quality but appeared slightly poorer in pastry baking be warranted if it has strong agronomic promise. COMMENTS:

NURSCO 2		MORO,	OR							C.R. R	ROHDE	
LABNUM	ONG	CLASS	TWT	FYELD FASH	FASH	MSCOR		FPROT MABSC	copi	CODIC MIYPE	VISC	
800011 NUGAINES 800012 HYSLOP 800013 DAWS 800014 STEPHENS 800015 FARO	C1013968 C1014564 C1017419 C1017569	SWW SWW SWW SWW SWW	63.0 60.6 59.5 58.2 61.3	70.4 69.4 68.7 69.3 72.5	0.41 0.44 0.43 0.45 0.45	84.6 81.5 81.2 80.7	00000	59.4 57.6 57.6 57.4 56.3	9.26 9.00 9.07 8.86	99.09 99.09 99.09 99.08 99.08 99.08	881 881 104 76	94 79 76 116 84
800016 TYEE 800017 JACMAR 800018 800019 800020	C1017773 0R795 0R797 0R7142	CLUB CLUB SWW 5/ SWW	59.6 61.2 58.6 60.0	72.3 70.6 68.5 72.8 71.4	0.45 0.44 0.44 0.44	84.5 880.3 885.3 83.3	9.4	56.3 56.2 56.1 55.4	9.39	9.34 3M 9.26 2M 9.29 3M 9.27 2M 9.13 2M	71 50 76	80 55
800021 800022 800023 800024 800025	OR7786 OR7792 OR7794 OR7921	5/ SWW SWW SWW 15/ SWW HRW	59.7 62.4 61.0 62.7 59.9	70.6 73.2 69.8 72.3 70.6	0.43 0.42 0.42 0.43 0.39	83.5 87.5 85.0 85.0	7.00 1.00 1.00 1.00 1.00	55.8 560.0 61.6	9.09 9.32 8.95 8.88	9.06 3M 8.88 3M 8.94 2M 8.44 6M		
800026 800027 800028 HYS/YAYLA/WA4993/WA4993/ID71043	0R67237 0R680073 SEL 11-7	5/ SWW	60.1 59.5 62.6	69.5 72.3 72.9	0.45	83.2 83.2 88.4	10.1	57.0 57.6 59.6	8.87 9.03 8.76	8.86 4M 9.04 2M 8.77 6M		
1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein	Moisture Basi sted to 10% Pr	s. otein.	12/2	Particularly Promising Ove	ularl ing O	(1)	Promising Ove rall Quality	Ove	ill Qu	rall Quality Chara Characteristics.	Characteristics cs.	tics.

OR795 had low test weight and this may be reflected in low flour yield. OR67327 and SEL. 11-7 are marginal in cookie diameter. Flour yields for the nursery are below normal, while cookie spread appears above normal. NOTE: OR7925 is a HRW. COMMENTS:

Observed Values Corrected to 10% Protein.

PENDLETON, OR

NURSCO

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	1000	CODIC MTYPE V	VISC	4
800029 NUGAINES 800030 HYSLOP 800031 DAWS 800032 STEPHENS 800033 FARO		C1013968 C1014564 C1017419 C1017569 C1017590	SWW SWW SWW SWW CLUB	64.4 62.9 62.2 61.3	70.4 71.8 72.5 72.8 73.1	0.42 0.42 0.42 0.40	81.6 83.7 84.5 87.3	70500	55555 55555 55555 55555	8.94 8.58 8.58 9.11	8.91 2L 8.60 2L 8.53 2L 9.08 2L	36 36 30 30	51 39 30 50 50
800034 TYEE 800035 JACMAR 800036 800037 800038		C1017773 OR744 OR793 OR795	CLUB CLUB 6/SWW 6/SWW 6/SWW	60.7 61.7 62.0 61.8 60.4	73.3 70.9 72.5 71.3	0.37 0.40 0.40 0.40	89.5 83.7 84.4 83.1	2000 2000 2000	55.0 55.0 55.0 55.0	9.11 8.94 8.91 8.89	9.06 2L 8.92 2L 8.90 2L 8.89 2L 9.16 2L	30	36
800039 800040 800041 800042 800043		0R7771 0R7716 0R7717 0R7717	6/SWW SWW SWW SWW	61.8 62.8 62.3 63.6	72.6 71.8 70.8 70.7	0.40 0.41 0.43 0.42	85.0 84.4 81.2 81.1	0.000 0.000 0.000	55555	88.91 8.91 8.57 8.54	8.90 2L 8.89 2L 8.59 2L 8.59 2L 8.59 2L	89 89	47
800045 800045 800046		0R7794 0R67237 0R680073	6/sww 5/sww 5/sww	63.9 62.3 61.9	73.6	0.40	87.5	20.00	55.8 55.3 55.4	8.54	8.51 2L 8.94 2L 8.75 2L		

Particularly Promising Overall Quality Characteristics. Stephens, but it does have excellent pastry baking properties. OR7716 and OR7717 are questionable in OR795 is marginal in milling quality - it is better than Nugaines but not as good as Hyslop, Daws, or Promising Overall Quality Characteristics. 1612 Absorption at 14% Moisture Corrected to 6% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 6% Protein. COMMENTS:

overall quality.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

Particle	NURSCO 4		RO	ROYAL SLOF	PE, WN						O	.F. KONZAK	ZAK
Colorable Colo	LABNUM	VARIETY	ONOI	S	TWT	FYELD	4 71	MSCOR	FPROT	MABSC 3/	C0D1	COD11C	MTYPE
6 KY63314-25 SW8 60.4 72.2 0.44 84.4 8.0 97.3 9.29 9.16 9.17 9.16 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.17 9.18 8.16 9.17 9.17 9.16 9.17 9.17 9.16 9.17 9.16 9.17 9.17 9.17 9.17 9.17 <t< td=""><td></td><td></td><td>C1017413 / K76344-9 K7634401 / K76344-2 / K76344-2</td><td>SWS SWS SWS SWS</td><td>2.001</td><td>m000m</td><td>4444</td><td>1629¢</td><td></td><td>00070</td><td>2.3333</td><td>7222</td><td>ZZZZZ 2015</td></t<>			C1017413 / K76344-9 K7634401 / K76344-2 / K76344-2	SWS SWS SWS SWS	2.001	m000m	4444	1629¢		00070	2.3333	7222	ZZZZZ 2015
6/K763444-40 SWS 61.2 72.5 0.44 86.1 7.7 57.4 9.54 9.48 5/K63344-40 SWS 62.0 73.1 0.14 86.8 7.7 56.4 9.49 9.30 5/K63344-40 SWS 60.0 73.1 0.41 86.8 7.7 56.4 9.34 9.30 5/K63344-40 SWS 60.0 73.7 0.43 87.5 8.0 57.0 9.41 9.29 6/K76344-40 SWS 60.0 70.3 0.46 82.0 8.6 57.0 9.49 9.49 6/K76344-40 SWS 60.0 71.2 0.43 85.1 8.0 56.8 9.36 9.36 6/K76344-54 SWS 60.0 71.2 0.43 85.1 8.1 57.0 9.41 9.49 6/K76344-54 SWS 60.0 71.2 0.43 85.0 8.1 56.6 9.37 9.36 7/K3344-73 SWS 60.0 <th< td=""><td>800052 800053 800054 800055 800056</td><td></td><td>K76344-2 K76344-2 K76344-3 K76344-3 K76344-3</td><td>SWS SWS SWS SWS SWS</td><td>00000</td><td>213.15</td><td>44444</td><td>6 W 6 F 5</td><td></td><td>78787</td><td>0</td><td>3-0-2</td><td>XXXXX</td></th<>	800052 800053 800054 800055 800056		K76344-2 K76344-2 K76344-3 K76344-3 K76344-3	SWS SWS SWS SWS SWS	00000	213.15	44444	6 W 6 F 5		78787	0	3-0-2	XXX XX
KY63444-97 SWS 60.8 70.3 0.46 82.0 8.6 56.8 9.00 9.07 KY63444-53 SWS 60.4 71.8 0.44 85.1 8.0 56.2 9.36 9.36 KY6344-54 SWS 60.0 71.2 0.43 85.0 8.1 57.0 9.46 9.47 KY6344-71 SWS 60.0 71.2 0.43 85.0 8.1 57.0 9.46 9.47 KY6344-71 SWS 60.0 71.7 0.43 85.0 8.7 56.4 9.09 KY6344-72 SWS 60.0 71.7 0.49 82.7 8.3 57.1 9.6 9.49 KY6344-74 SWS 60.0 71.7 0.49 82.0 8.7 56.4 9.09 KY6344-94 SWS 60.0 71.9 0.49 82.0 8.7 56.4 9.09 KY6344-94 SWS 60.0 71.9 0.45 82.8 8.1 57.6 9.45 KY6344-94 SWS 60.0 71.9 0.45 82.8 8.1 57.6 9.22 KY6344-94 SWS 60.0 71.9 0.45 82.0 8.7 57.1 9.29 9.27 KY6344-94 SWS 60.0 71.9 0.45 82.0 8.2 57.1 9.29 9.27 KY6344-94 SWS 60.0 71.3 0.44 82.5 58.0 9.21 9.28 KY6344-101 SWS 92.0 69.8 0.45 86.9 7.9 56.9 9.18 KY6344-103 SWS 92.0 72.2 0.42 86.9 7.9 56.9 9.10 KY63441-103 SWS 92.0 77.0 0.42 86.9 7.9 56.9 9.10	800057 800058 800059 800060		K76344-4 K76344-4 K76344-4 K76344-4	SWS SWS SWS SWS	-2-0-	00000	さささささ	77866		11011	ひというか	ひている。	22M 12M 23M
6/K76344-67 HWS 57.2 72.0 0.56 77.7 9.6 59.5 8.75 8.88 6/K76344-71 SWS 60.0 71.7 0.44 85.0 8.0 57.1 9.27 9.27 6/K76344-72 SWS 60.0 71.7 0.44 85.0 8.7 56.4 9.02 9.16 K76344-74 SWS 60.0 70.3 0.45 82.0 87.7 56.6 9.27 9.27 K76344-74 SWS 60.0 71.3 0.44 84.5 7.6 56.6 9.22 9.18 K76344-79 SWS 60.0 71.3 0.44 84.5 7.7 57.1 9.29 9.27 K76344-79 SWS 60.0 71.3 0.44 82.6 8.1 57.4 9.29 9.27 K76344-93 SWS 50.0 59.8 0.45 82.6 8.1 58.1 9.29 9.27 K76344-90 SWS 58.4 69.8 0.45 82.0 8.1 58.1 9.21 9.19 9.18	800062 800063 800064 800065 800066		K76344-4 K76344-4 K76344-5 K76344-5	SWS SWS SWS SWS SWS	00000	00	42444	SINDING		70000	0,07,07	0004004	22 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
$\frac{\text{k763444-76}}{\text{k763444-78}} \text{SWS} \begin{array}{c} 59.2 \\ \text{CO} \\ \text{NG3444-78} \end{array} \text{SWS} \begin{array}{c} 60.0 \\ \text{GO}. \\ \text{O}. $	800068 800068 800069 800070 800071		K76344-6 K76344-7 K76344-7 K76344-7 K76344-7	HWS SWS SWS SWS SWS	00000	01.940	22222	20000		67.07.0	~0000	80-8-	3 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
6/K76344-94 SWS 58.4 69.8 0.45 82.0 8.3 57.4 9.15 9.18 5/K76344-98 SWS 60.8 71.5 0.43 85.4 8.2 58.0 9.21 9.23 5/K76344-101 SWS 62.0 72.2 0.42 86.9 7.9 56.9 9.19 9.18 K76344-102 SWS 59.2 69.5 0.44 82.2 7.4 56.3 9.16 9.10 8.10 K76344-103 SWS 59.6 71.0 0.42 85.4 7.7 56.6 9.47 9.44	800072 800073 800074 800075 800075		K76344-7 K76344-7 K76344-7 K76344-8 K76344-9	SWS SWS SWS SWS SWS	00000	00-	4444	いいされい		~~~~	22000	ntnns	ZZZZZ %55555
	800077 800078 800079 800080 800081		K76344-98 K76344-98 K76344-10 K76344-10 K76344-10	SWS SWS SWS SWS SWS	800066	9-29-	44444	Sinosin		66687	トペートコ	t 21 - 12 - 1	22M 2M 2M 2M 2M 2M

Absorption at 14% Moisture Corrected to 8% Protein. Observed Values Corrected to 8% Protein. 18/41

Promising Overall Quality Characteristics. 101

NURSCO 4		RO	ROYAL SLO	PE, WN						O	.F. KON	KONZAK
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	CODI	COD1C	MTYPE
800082 800083 800084 800085 800086		K76344-107 K76344-108 K76344-111 6/K76344-112 7/K76344-115	SMS SMS SMS SMS	60.0 61.2 61.2 61.6	71.0 70.6 69.2 71.9	0.42 0.42 0.42 0.43	85.4 82.9 86.6 86.6	77.77	56.6 56.7 57.0 57.5	9.36 9.45 9.29 9.24	9.29 9.42 9.24 9.06	WWW WW
800087 800088 800089 800090 800091		K76344-116 K76344-118 K76344-123 K76344-124 K76344-126	SWS SWS SWS SWS	62.0 62.4 61.2 62.0	70.6 71.5 70.9 69.8	0.42 0.43 0.42 0.41	84.9 85.4 84.5 84.5	7.7.8	588.3 588.13	9.02	9.36 8.96 9.53 9.20	ZZZZZ
800092 800093 800094 800095 800095		6/ K76344-140 K76344-145 K76344-146 K76344-147 K76344-143	SWS SWS SWS	60.4 60.8 61.2 58.8 60.4	71.4 70.9 71.4 68.6 71.8	0.42	85.9 84.6 84.0 81.1	88.7.2.6	58.2 58.0 58.0 57.0	9.42 9.47 9.25 9.25	9.40 9.49 9.14 9.47	ZZZZZ
8000998 800099 800099 800100		K76344-157 K76344-167 K76344-167 K76344-169 K76344-169	SWS SWS SWS SWS	60.09 56.0 60.09 60.09	70.1 68.4 70.7 70.8 71.0	0.43	83.6 78.9 82.4 83.8	87.2	58.1 56.7 57.2 57.2	9.49 9.25 9.20 9.35	9.24	ZZZZZ 0000-00
800102 800103 800104 800105 800106		K76344-175 K76344-175 K76344-176 K76344-179 K76344-180	SWS SWS SWS SWS	58.4 59.2 58.4 58.4	70.1 70.5 70.3 70.3	0.45	882.9 82.8 83.2 82.6 79.1	2.77.9 8.79.9 8.8	556.8 577.3 56.9	9.34 9.30 9.11	9.40 9.33 9.29 9.11	######################################
800108 800109 800109 800110 800111		K76344-191 K76344-192 K76344-193 K76344-194 K76344-223	SWS SWS SWS SWS	59.6 58.8 57.6 60.4	70.2 69.7 69.5 70.6	00.445	82.4 82.4 81.6 83.6 84.2	000000 000000	557.7 556.9 56.9 56.9	9.39 9.04 9.42 9.42	9.41 9.07 9.25 9.46 9.43	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
800112 800113 800114 800115		K76344-229 K76344-229 K76344-230 K76344-231 6/K76344-231	SWS SWS SWS SWS	58.0 58.0 641.2 62.0	69.7 68.1 70.2 71.7 71.8	0.44	82.4 77.8 82.4 85.7 86.4	8.77	56.1 57.1 56.8 57.2	9.36 9.07 9.26 9.47	9.38 9.04 9.26 9.45	3 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
1/ Observed Values 3/ Absorption at 1	Corrected to 14%	sture Basis.	in	5/ Part	rticula	rly F	romising	Overal itu Cha	1 Qua	ity	aract	eristics

^{3/} Absorption at 14% Moisture Corrected to 8% Protein. 4/ Observed Values Corrected to 8% Protein.

^{6/} Promising Overall Quality Characteristics.

i i i		

NURSCO 4		ROY	ROYAL SLOPE,	E, WN						O	C.F. KONZAK	ZAK
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	1000	COD1C	MTYPE
800117 800118 800119 800120		K76344-233 K76344-234 K76344-235 K76344-235 K76344-236	SMS SMS SMS SMS	59.2 60.4 58.8 60.0	68.9 70.6 69.9 70.5	0.45 0.43 0.43 0.43	80.8 84.2 83.1 84.1	77.78	57.1 57.2 57.2 57.4	9.32	9.04 9.34 9.39	X X X X X
800122 800123 800124 800125 800126		K76344-238 K76344-239 K76344-240 K76344-241	SWS SWS SWS SWS	58.8 57.2 57.2 57.6	70.3 69.1 70.2 68.9 70.6	0.45	883.2 881.1 882.4 82.9	$\begin{array}{c} \infty \otimes \otimes \otimes \otimes \\ \sqrt{\sqrt{1-1}} \sqrt{1-1} \\ \sqrt{1-1} \end{array}$	57.5 58.2 58.2 57.9	9.60 9.21 9.12 9.00	9.62 9.27 9.14 9.05	XXXX
800127 800128 800129 800130	1910	K76396-6 K76396-13 K76396-35 K76396-51 K76396-56	SRW SWS SWS SRW SWS	58.0 50.8 50.8 0.8	69.8 72.8 69.2 74.8 68.1	0.43 0.47 0.47 0.46 0.46	83.2 84.5 79.9 87.7	0.88	57.7 58.8 57.3 59.1	9.29 9.05 9.32 8.71	9.41 9.16 9.42 8.87 9.33	33M 33M 33M
800132 800133 800134		K76396-95 K76396-101 K76396-103	SWS SWS SWS	59.6 56.0 61.2	69.3 67.9 68.2	0.45 0.46 0.44	81.3 78.9 80.6	10.2	59.0	9.14	9.38	Z Z Z 3 3 3 3
1/ Observed Value 3/ Absorption at 4/ Observed Value	Observed Values Corrected to 14% Moisture Basis Absorption at 14% Moisture Corrected to 8% Protobserved Values Corrected to 8% Protein.	ure Basis. 10 8% Protein	in.	5/ Pc 6/ P1	Particularly Promising Ove	rly Ove	. H	Ove ty	l a	Quality (cteristic	Charact	Characteristics.

PNW GRAIN STD'S & QUALITY

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 5

ID, OR, MT, AND WA

IDNO CLASS FYELD FASH MSCOR FPROT FABS FPE	SWW 71.7 0.42 83.4 7.3 53.7 1 SWW 71.9 0.42 82.8 7.7 54.5 1 SWW 72.9 0.42 84.4 7.3 51.9 1 SWW 70.8 0.38 82.2 6.6 52.2 0 CLUB 72.1 0.39 85.5 6.3 50.8	SWW 71.4 0.43 81.6 7.4 53.5 0 SWW 71.8 0.44 81.6 7.6 54.9 1 SWW 71.6 0.40 82.7 8.7 53.7 0 SWW 70.4 0.43 79.6 8.7 55.4 0	HRW 68.9 0.40 85.5 11.1 63.6 6 HRW 68.9 0.42 80.9 10.3 62.1 5 HRS 64.1 0.39 74.4 13.2 67.0 12 HRW 67.2 0.42 77.5 9.4 61.8 3 HRS 71.1 0.45 82.2 11.6 62.1 6	HRW 69.0 0.40 81.6 10.1 64.3 5 HRW 67.6 0.41 79.4 8.1 59.4 2
LABNUM	800135 SW SOUTHERN IDAHO 800136 SW NORTHERN IDAHO 800137 SW EASTERN OREGON, PENDLETON AREA 800138 SW EASTERN OREGON, RIVER COUNTRY 800139 CLUB EASTERN OREGON, RIVER COUNTRY	800140 SW WESTERN OREGON, WILLAMETTE V. 800141 SW EASTERN WASHINGTON, PALOUSE 800142 SW EASTERN WASHINGTON, S & E OF SNAKE I 800143 SW EASTERN WASHINGTON, BIG BEND AREA 800144 CLUB EASTERN WASHINGTON, BIG BEND AREA	800145 HRW EASTERN WASHINGTON, BIG BEND AREA 800146 HRW SOUTHERN IDAHO 800147 HRS - WHITEWATER, MT PHILLIPS CO. 800148 HRW - TETON COUNTY, MT 800149 HRS - TETON COUNTY, MT	800150 HRW - TETON COUNTY, MT 800151 HRW - CASCADE COUNTY, MT

PNW GRAIN STD'S & QUALITY

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

	CODIC	8.78 8.51 8.74 8.69	88.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	8.08 8.10	
	COD 1	88.93 88.93 8.93	8.71 8.64 8.62 8.66 8.90	7.96	
	BCRGR			0000	0 5
	LVOLC			953 929 1089 873 951	941
	TOOT			1003 935 1275 823 1038	935
	MTIME			37333	3.9
	BABSC			62.8 64.9 64.9 64.0 62.8	9.49
ND WA	BABS			66.2 66.7 69.4 65.0 65.8	65.4
ID, OR, MT, AND WA	CLASS	SWW SWW SWW SWW CLUB	SWW SWW SWW CLUB	HRW HRW HRW HRS	HRW
	ONG				
5	VARIETY	SW SOUTHERN IDAHO SW NORTHERN IDAHO SW EASTERN OREGON, PENDLETON AREA SW EASTERN OREGON, RIVER COUNTRY CLUB EASTERN OREGON, RIVER COUNTRY	SW WESTERN OREGON, WILLAMETTE V. SW EASTERN WASHINGTON, PALOUSE SW EASTERN WASHINGTON, S & E OF SNAKE R SW EASTERN WASHINGTON, BIG BEND AREA CLUB EASTERN WASHINGTON, BIG BEND AREA	800145 HRW EASTERN WASHINGTON, BIG BEND AREA 800146 HRW SOUTHERN IDAHO 800147 HRS - WHITEWATER, MT PHILLIPS CO. 800148 HRW - TETON COUNTY, MT	800150 HRW - TETON COUNTY, MT 800151 HRW - CASCADE COUNTY, MT
NURSCO	LABNUM	800135 S 800136 S 800137 S 800138 S 800139 C	800140 S 800141 S 800142 S 800142 S 800144 C	800145 H 800146 H 800147 H 800148 H 800149 H	800150 H 800151 H

D.G. GILCHRIST

NURSCO

LABNUM VARIETY	I DNO	CLASS TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	1000	CODIC
800153 INIA 66R		64.			82.5				
800154 ANZA		65.		0.38	85.4	9.7			
CLEO X INIA 66R	\	63.			87.5	10.0			
CLEO X I	1	63.			85.5	0			8.83
66R	960/20069	HRS 63.	3 69.3		82.4	0.0	9.09	8.44	8.48
CLEO X		63.	0		84.2	9.6	63.3	8.54	00
800159 CLEO X INIA 66R F8		63.	0)		82,5	10.0	0.99		
CLEO X		62.	9		84.0	0.0	63.1	8.65	8.72
800161 TADORNA X INIA 66R F7		63.	C)	- 6	83.6	10.4	5	8.67	00
800162 (CLEO X INIA) ANZA F4	960/20192 5/ H	HRS 65.	3 69.8	0.36	84.2	10.6	68,2		
800163 (CLEO X INIA) ANZA FU 800164 (GIFO X INIA) ANZA FU	960/20458 H	503	5 70.1	0.37	80 0.00 0.00 0.00	0.0	61.7		

Selection 960/20025 has soft endosperm with low water absorption and short dough mixing requirement typical have good cookie diameter. 20103 has dual baking properties with mixing time being border line (questionperformed quite well in bread baking and cookie diameter and looks promising as a dual purpose type wheat. The selection appears to have good pastry properties (cookie diameter) and also produced 20069 and 20075 do not Selection 960/20096 had poor loaf volume and crumb texture. While 980/13 had soft endosperm it Selections 960/20069, 20075, 20103 and 980/13 also were soft in endosperm texture, but all appeared to make satifactory bread. a good loaf of bread indicating dual purpose properties. 960/20458 was low in flour yield. of soft wheat. COMMENTS:

/ Observed Values Corrected to 14% Woisture Basis. / Absorption at 14% Woisture Corrected to 10% Protein. / Observed Values Corrected to 10% Protein.

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.

PENDLETON, OR

	LAB.	
	QUALITY	
SEA AR	WHEAT	NA
USDA, SE	WESTERN	PILL MAN

NURSCO

LABNUM	VARIETY	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	CODI	CODIC 44/	MTYPE
800165 DAWS 800166 STEPHENS 800167 HYSLOP/YA 800168 HYSLOP/YA 800169 63-112-66	DAWS STEPHENS HYSLOP/YAYLA/WA4995/ID5012 W1066 HYSLOP/YAYLA/WA4995/ID5012 W1071 63-112-66-4/YAYLA/63-112-66-4/ID7104	C1017419 C1017596 0R7910 0R7911	SWW SWW SRW 6/SWW	61.2 60.0 60.8 60.4 60.4	76.9 73.0 74.4 72.7	0.50 0.52 0.51 0.52 0.49	887.2 880.3 782.6 82.9	9.6 10.8 11.4 10.3	7227 7227 7227 80 80 80 80	9.16 9.00 9.00 9.69	9.12 9.09 9.09 8.84 9.13	323 323 323 323 323 323 323 323 323 323
800170 63-112-66 800171 63-112-66 800172 63-112-66 800173 63-112-66	63-112-66-4/YAYLA/63-112-66-4/107104 63-112-66-4/YAYLA/63-112-66-4/107104 63-112-66-4/YAYLA/63-112-66-4/107104 63-112-66-4/YAYLA/63-112-66-4/107104 63-112-66-4/YAYLA/63-112-66-4/107104	0R7914 0R7915 0R7917 0R7918 0R7923	Sww WWW Sww WWW Sww WWW Sww WWW Sww WW Sww Sww	62.4 62.8 61.2 62.0	74.8 73.9 74.4 71.5	0.50 0.50 0.49 0.46	84.5 83.3 85.6 85.9	11.0 10.9 10.9 10.0	558 508 508 508 508 508 508 508 508 508	8.91 8.91 8.70 8.74 9.10	8.87 8.98 8.80 8.74 9.14	<u> </u>
800175 LUKE/OR69 800176 LUKE/OR69 800177 LUKE/MCDE 800178 VAKKA/VH7 800179 P111C 62/	LUKE/OR69118 W1175 LUKE/OR69118 W1185 LUKE/MCDERMID W1199 VAKKA/VH70774 W1329 PITIC 62/CP137 W1388	0R7924 0R7927 0R7928 0R7935	5/SWW 15/SWW 15/SWW 15/SWW	61.6 63.2 63.6 63.6	73.1 73.7 74.7 72.3	0.51 0.51 0.48 0.43	81.1 82.4 85.0 85.7 86.4	10.00	57.9 58.1 58.7 58.2 55.2	8.91 8.92 8.29 9.02	8.73 8.91 9.38 9.18	2222 1110 1110
800180 YAYLA/YMH 800181 YAYLA/YMH 800182 YAYLA/YMH 800183 YAYLA/YMH	YAYLA/YMH//RIED/YMH/3/REW YAYLA/YMH//RIED/YMH/3/REW YAYLA/YMH//RIED/YMH/3/REW YAYLA/YMH//RIED/YMH/3/REW CERCO/SPRAGUE W1546	087942 087942 087944 087946 087949	5 SWW SWW TSWW HWW	63.6 61.2 63.2 62.0 61.6	74.6 74.1 75.9 75.1	0.49 0.50 0.47 0.47	84.2 82.9 87.8 86.8 84.9	10.1 9.8 9.6 10.1	50 50 50 50 50 50 50 50 50 50 50 50 50 5	8.89 9.15 9.32 8.32	89.90	ZZZZZ H
800185 OR69136/PAHA W1 800186 CERCO/REW W1839 800187 CERCO/REW W1888	OR69136/PAHA W1812 CERCO/REW W1839 CERCO/REW W1888	0R7951 0R7952 0R7953	5/SWW HRW HWW	63.2 62.8 63.2	72.5	0.46	88.7 85.9 88.1	10.1	54.3 60.1 61.7	9.22	9.24 8.29 8.30	N T N
1/ Observed Va 3/ Absorption 4/ Observed Va	Observed Values Corrected to 14% Moisture Bass Absorption at 14% Moistrue Corrected to 10% P Observed Values Corrected to 10% Protein.		is. rotein.	5/ P	Particula Promising	larly P	romisi all Qu	ng Ove	rall Qua	ality	Chara cs.	cteristic

COMMENTS: OR7911 appeared mixed with mostly red seed coat. OR7918, OR7949 and OR7953 were judged as hard texture OR7935 and OR7952 are HRW's with typical hard red properties. white wheats.

PENDLETON,

NURSCO

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT $\frac{1}{2}$	MABSC 3/	000	24/ 4/	MTYPE
800188 DAWS 800189 STEPHENS 800190 SEL 100 800191 6720/63-112-66-2 800192 CROSS UNKNOWN SM174-95	1174-95	C1017419 C1017596 0R762 0R772	MMS /9	54.7 57.2 58.1 58.8	67.2 71.4 70.0 70.7	0.50	69.3 77.1 74.4 76.0	9.9 9.9 4.01 9.3	55.00 55.00 56.83 56.83	88.57	88888 30088 30088 30088	2222 2222 2222 2222 2222 2222 2222 2222 2222
800193 HYSLOP/OR6739 SEL 744 800194 OWW69-169-1W5 800195 CAPPELLE DESPREZ/OR69122, 800196 LUKE/OR696 82-6 800197 63-112-66-4/YAYLA//63-112	HYSLOP/OR6739 SEL 744 OWW69-169-1W5 CAPPELLE DESPREZ/OR69122, SEL391 LUKE/OR696 82-6 63-112-66-4/YAYLA//63-112-66-4/3/1D7104	0R774 0R776 0R793 0R795 0R801	MMS /9	57.0 56.8 54.5	68.1 67.1 67.3 70.7	0.48 0.49 0.51 0.50	73.4 71.9 72.9 71.0	8.0.01 8.0.00 1.0.00	57.6 57.2 57.3 57.7	8.32 8.39 8.56 8.72	88888 8.577 9.50 9.50	ZEZZZ 800 100 100 100 100 100 100 100 100 100
800198 DAWS*2/SEL M72-330 800199 DAWS*2/SEL M72-330 800200 DAWS*2/SEL M72-330 800201 SEL M72-330/2*DAWS 800202 HYSLOP/CERCO	330 330 34WS A381	0R803 0R804 0R805 0R806 0R7713	MMS MMS MMS MMS	56.0 57.4 57.4 58.9	668.3 688.3 69.1 689.5	0.50	68.9 73.1 72.9 73.6	10.22 9.60 10.01	57.2 58.1 57.6 57.0 59.0	8.27 8.27 8.28 8.41	88.29 88.24 88.34 8.44	M M M M M M M M M M M M M M M M M M M
800203 CERCO/SPRAGUE 800204 CERCO/SPRAGUE 800205 HYSLOP/YAYLA//63-112-66-4/3/ 800206 HYSLOP/YAYLA//63-112-66-4/3/ 800207 HYSLOP/YAYLA//63-112-66-4/3/	3-112-66-4/3/ 3-112-66-4/3/ 3-112-66-4/3/	0R7715 0R7716 0R7724 0R7726 0R7729	MMS/9 MMS/9 MMS/9	59.4 58.1 57.5 56.9	69.3 69.6 67.7 70.3	0.48 0.47 0.49 0.48	76.2 76.7 71.6 77.0	80.00	58.6 57.8 57.2	8.28 8.44 8.44 8.57	88.27 88.27 88.54 8.54	EEEEE
800208 63-112-66-4/YAYL 800209 HYSLOP/YAYLA//W/ 800210 A586 800211 A598 800212 A606	63-112-66-4/YAYLA//63-112-66-4/3/ HYSLOP/YAYLA//WA4995/3/ID71043 SEL11-7 A586 A598 A606	OR7769 OR7942 OWWF51 OWWF161	5/SWW 5/SRW 6/SRW SWW	57.3 62.1 57.8 59.2	71.17 72.7 71.11 69.6	0.45	78.2 81.9 77.4 77.1	9.001 10.01 10.02 2.03	59.4 57.9 57.9 57.3	8.36 8.36 8.55 8.51	88.67 88.55 8.55	78887 2327 2327 2427 2427 2427 2427 2427 242
800213 A616 800214 A613 800215 A616 800215 A816		OWWF318 OWWF319 OWWF332 FW73830CF	SRW SRW 6/SRW PO 6 SWW	56.5 57.4 56.2 58.8	69.69 4.69 70.02 69.9	0.50 0.46 0.46 0.43	74.8 74.7 76.4 78.5	10.7 10.4 10.2 10.0	57.8 58.1 58.6 58.1	8.35 8.66 8.63 6.01	8.43 8.70 8.70 8.61	ZZZZ 0000

Promising Overall Quality Characteristics. 1616 Absorption at 14% Moisture Corrected to 10% Protein. Observed Values Corrected to 10% Protein.

This nursery had low test weights with most samples showing shriveled/pinched kernels. The shriveling was reflected in low flour yields. The check variety Daws was very shriveled and therefore most emphasis was Selections which were below Stephens in Selections OR7942, OWWF318, OWWF161, OWWF319 and OWWF332 were distinctly red in color and were classified as soft This color may have been accentuated by the growing conditions, but should be noted. flour yield and milling score were considered questionable and not footnoted as promising. placed on Stephens when comparing the experimental selections. COMMENTS:

		5000			
à					
					500000
			1-20		
	A				

NURSCO

LABNUM	ONG	CLASS	3	FYELD	HASH	MSCOR	F PRO1	MABSC	CODI	CODIC	MIYPE
					1/		1/	3/		4/	
800217 DAWS 800218 FARO 800219 STEPHENS 800220 HYSLOP/YAYLA//63-112-66-4/REW A19 800221 63-112-66-4/YAYLA//63-112-66-4/	C1017419 C1017590 C1017596 9 OR807 OR809	SWW CLUB SWW 5/SWW SWW	61.2 62.0 59.2 60.0	69.9 73.1 69.8 72.7 66.2	0.46 0.46 0.40 0.40	81.5 84.9 82.0 88.2 76.7	880.00 62.27.	55.00 55.00 55.00 55.00	8.71 9.26 9.31 8.99 9.14	8.67 9.23 9.37 9.04 9.26	34 234 234 234
800222 63-112-66-4/YAYLA//63-112-66-4/ 800223 HYSLOP/YAYLA//63-112-66-4/ 800224 HYSLOP/YAYLA//63-112-66-4/ 800225 LUKE/C1014565 A156 800226 DAWS*2/SEL M72-330(PW77-42)	0R8012 0R8014 0R8014 0R8019	WWS / 9	62.0 62.4 60.0 59.6	73.0 66.4 69.7 67.6	0.44 0.38 0.44 0.44 0.41	886.1.8 80.1.8 80.1.8	∞ ω	56.5 56.4 56.4 56.4	9.32 9.01 9.00 9.10	9.31 8.98 9.04 8.62	23 4 5 5 7
800227 DAWS*2/SEL M72-330(PW77-42) 800228 DAWS*2/SEL M72-330(PW77-42) 800229 DAWS*2/SEL M72-330(PW77-42) 800230 DAWS*2/SEL M72-330(PW77-42) 800231 DAWS*2/SFL M72-330(PW77-42)	0R8024 0R8025 0R8026 0R8027 0R8030	MMS/90 MM	62.4 67.2 62.0 62.0	70.5 70.4 70.2 70.6 69.2	0.40 0.41 0.41 0.41	85.4 84.6 84.4 84.9	888888 87479	56.6 57.2 57.2 57.0	88.94	88.522	2525
800232 DAWS*2/SEL M72-330(PW77-43) 800233 SEL M72-330/2*DAWS(PW77-46) 800234 SEL M72-330/2*DAWS(PW77-49) 800235 SEL M72-330/2*DAWS(PW77-49) 800236 SEL M72-330/2*DAWS(PW77-49)	0R8031 0R8036 0R8039 0R8040 0R8042	MMS/9	62.0 60.4 60.4 60.4 58.8	70.3 69.8 69.5 67.3	0.45	85.8 81.3 82.2 80.4 78.7	86.00 70.00	56.0 56.0 56.3 56.6	8.65 8.82 8.56 8.72	8.62 8.82 8.53 8.72	433 433 433 433 433 433 433 433 433 433
800237 SEL M72-330/2*DAWS(PW77-49) 800238 SEL M72-330/2*DAWS(PW77-49) 800239 P101/ANZA SWD 71340-1H-1H-1P-0H 800240 69-153/YMH//67-237-69-24 0WW73210 800241	0R8043 0R8044 6THSNY173 0 HWPYT 87 0WWF 35	6/SWW 8/SWW 6/SWW	61.2 60.0 64.0 61.6	68.4 70.0 64.4 69.1	0.42 0.47 0.33 0.40	81.1 78.2 85.4 77.6 82.9	00000	565.93 55.93 55.93 55.93	8.69 8.72 9.30 8.57	8.78 9.29 8.64 9.10	3 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

191 Absorption at 14% Moisture Corrected to 9% Protein. Observed Values Corrected to 9% Protein.

COMMENTS:

Selection numbers OR809, OR8013, OR8018, OR8019, OR8040, OR8042, OR8044 and HWPYT87 were lower to varying degree been noted as promising overall quality, are questionable in cookie diameter when compared to the check variet Selections OR8025, OR8030 and OR8039, which have Promising Overall Quality Characteristics. in overall milling properties than Daws or Stephens. This may not be serious but should be noted.

H. JACQUOT

NURSCO 10

HOOPER. WA

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC	CODI	CODIC MTYPE	PE VISC	
						1/		1/		3/			4
800242 OMAR 800243 GAINES		C1013072 C1013448	CLUB					7.4			.95	39	33
800244 PAHA 800245 BARBEE		C1014485 C1017417	CLUB	62.0	73.7	0.39	88.7	7.2	51.4	9.14	9.14 2M 9.21 1M	36	33
		01017590	all IS			•		· ~	, , ,		90	. 09	200
800248 STEPHENS 800249 TYFF		C1017596	SWW					7.6	54.7		376	513	272
		19	CLUB CLUB	60.5	73.4	0.40	86.9	7.2	52.3	9.14	9.15 2M 9.34 2M	38	35
800252 800253 800254 800255 800255		SN 267-75 SN 339-79 SN 350-78 SN 354-78 SN 414-79	6/CLUB 5/CLUB 6/CLUB 6/CLUB	60.7 60.0 61.2 61.7 60.3	72.8 74.2 74.5 72.4	0.41 0.42 0.42 0.41 0.41	885.0 888.3 885.3 84.6	7.7.7	552.4 533.2 53.7	9.19 9.03 9.29 9.14 9.34	9.22 3L 9.04 6L 9.32 3L 9.19 2M 9.36 3L	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 33 33 33 33 33 33 33 33 33 33 33 33

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristies, 10/2 Absorption at 14% Moisture Corrected to 7 % Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 7% Protein.

have marginal flour yields to meet traditional club wheat milling performance, but in view of their outstandin The Winter hardy strain does appear however to have higher viscosity than Jacmar. SN 267-75, SN 345-78 and SN 414-79 JACMAR WH = "Winter Hardy Strain" that is similiar to Jacmar in overall quality characteristics. agronomic performance (see page 2) further testing is warranted. COMMENTS:

9			

RANCH IN 1980 CROP YEAR FOR SAMPLES SUBMITTED FOR MILLING AND BAKING ANALYSIS BY THE WHEAT QUALITY LAB AT WSU. AGRONOMIC AND YIELD DATA FOR WINTER WHEAT VARIETIES AND SELECTIONS GROWN ON THE MCGREGOR TABLE 1.

	Variable plant height	rot	20% Y.D.v.(2) 10% Lodging Relatively early leaf rust infection	r rance	
Remarks	ing ads (1), Variable	W.D.(1), 10% Foot rot W.D.(1)	v.(2) ing ly early leaf	eaf rust resistance	" " " " " " " " " " " " " " " " " " "
	Los lodging Small heads 20% W.D.(1), v	30% W.D. 80% W.D.	20% Y.D.V.(2) 10% Lodging Relatively ear	Better leaf	" " " " 20% lodging(5)
Per Cent	73 84 89	98	99	221	116
Grain Yield Bushel/Acre	56.1 64.4 68.6	69.8 75.6 76.3	76.12 76.8 81.3	84.08 84.2 85.5	89.0 85.4 92.6
Bu. Wt. Pounds	2000 1-87.	62.5 59.8 61.2	62.5 61.3 59.5	59.7	61.0
ristics	None Yes None	Yes None Yes	None	= = =	r = Xes
Pl. Ht. Head Characteristics Inches Color Type Awns	Club "	Com.	club	= = =	Control
Head C	Red	White "	E & =	===	E E E
Pl. Ht	32 E	32	35	36 32	37
Stand	252	100	100 80 85	95 75	900
Variety or Selection	Omar Earbee	Gaines 17ee Stephens	Daws Paha Jacmar	Jacmar WH(6) SN-267-75 SN-350-78	SN-354-78 SN-114-79 SN-335-79

Faro has variable (Ŧ) plant height; (5) Has prospect of high potential grain yield; (6) Winter hardy strain. (3) Better leaf rust resistance than Jacmar; (2) Yellow Dwarf Virus; (1) Winter damage;

Sixty pounds of nitrogen was applied in stubble mulch surmer fallow in early June and plots were sown on 9/5/79 at the rate of 36 pounds of seed per acre by split-packer grain drill of 16-inch row spacing.

in early spring to keep it under reasonable control. Never-the-less, enough infestation occurred within the plaated Cheatgrass infestation was moderate in the varietal testing plots which required cultivation between rows twice rows to reduce the yield potential about 10 per cent.

The unusual volcanic ash helped to prevent excessive soil moisture loss by evaporation and the cool weather during late growing season were conducive to exceptionally high yield grain production. The precipitation for 1980 crop year was 17.2 inches as compared to the 38-year average of 14.6 inches at the McGregor Ranch.

The average yield of Jacmar grown on the McGregor Ranch of nearly 400 acres was 77.0 bushels per acre while the Gaines grown on the remaining portion of the Ranch averaged 52.5 bushels. Cheatgrass infestation plus foot rot infection and winter damage caused significant reduction of grain yield particularly for the Gaines variety.

USDA, SEA-ARS
WESTERN WHEAT QUALITY LAB.
PULLMAN, WA.
NURSCO 011

PNW CROP QUALITY SURVEY (Lab. No's. 81352-365, respectively)

MONOCO DIT																			
PNW RECION	No.	CLASS	T.WT.	No. CLASS T.WT. Wheat 1/ 1b/bu Prot. (%)	Flr. F Yld. A (2)		Milling	Flr. 1/ Prot.	Flr. 2/ Color	Farinograph 1/Abs. Peak Sta (%) Min. Mir.	stab. Min.	Visc. Deg.	Visc. 3/ (corr.)	Cookie Dia.	Chokie ³ / Dia. (Corr.) (cm).	Sponge* Cake (Vol) (cc)	Sponge Cake Score (cc)	Noodle Yield (%)	Noodle
North Idaho	-	SWW	60.7	8.1	73.0.44	44	83.6	6.9	0.62	54.2 1.4	2.0	42	77	8.84	8.83	1305	86.0	341	70
South Idaho	2	MMS	61.4	7.6	72.7.42	42	84.4	7.9	81.3	55.3 1.0	1.6	77	31	9.16	9.26	1290	84.5	344	69
Palouse	6	SWW	61.1	8.1	72.7.42	42	84.5	6.7	85.5	54.2 1.0	1.0	42	67	8.87	8.84	1225	0.62	340	78
Big Bend	4	MMS	61.4	8.9	73.2.41	41	85.9	7.3	86.0	54.2 1.0	3.5	56	64	8.77	8.81	1260	82.0	344	79
Big Bend	4	C1 ub	60.5	80.00	73.8.38	38	88.6	7.4	88.0	51.9 1.0	2.5	45	38	60.6	9.12	1255	79.5	351	79
Walla Walla	2	SWW	61.3	8.7	72.4.40	40	85.3	7.0	85.3	54.1 1.0	1.6	52	52	8.80	8.80	1215	80.0	333	75
North Pendleton	9	SWW	61.4	80.80	74.1.39	39	88.4	7.2	88.0	54.0 1.0	1.0	41	38	8.70	8.72	1220	80.0	334	72
Columbia River	7	SWW	61.3	8.2	72.1.38	38	86.1	8.9	91.0	53.4 1.0	1.0	36	07	8.91	8.89	1225	78.5	343	73
Columbia River	7	Club	60.2	7.2	73.0.36	36	88.7	6.1	93.3	51.3 1.0	1.0	33	58	8.95	8.89	1270	80.0	340	74
Willamette Valley	00	SWW	58.2	0.6	68.9.40	70	6.62	7.4	84.0	52.2 1.2	1.0	40	34	8.89	8.93	1205	0.92	331	73
Waterville	6	SWW	61.9	7.9	69.8.37	.37	83.1	6.7	89.3	53.5 1.2	2.8	41	48	9.16	9.13	1290	84.0	336	72
Waterville	6	Club	60.3	.1	72.7.38	.38	87.1	6.9	88.0	51.0 1.0	1.0	33	34	9.16	9.16	1315	86.5	355	74
Horse Heaven	10	SWW	58.8	10.7	70.6.46	97.	78.7	8.7	80.0	55.8 1.0	2.7	78	43	8.39	8.57	1175	71.0	347	72
Blue Mountain	11	MMS	61.8	7.8	70.5.42	42	81.1	6.9	85.3	54.1 1.0	2.0	43	45	8.64	8.63	1225	76.5	353	74
							The state of the s										I		

1/ 14% Moisture Basis

2/ Agtron Units

3/ Observed Values Corrected to 7% Protein.

* Japanese Sponge Cake and Udon Noodle.

Samples are composites made from country elevator samplings during harvest representing 11 regions of Washington, Oregon, and Idaho soft white wheat production of 1981 crop. Overall quality for milling, cookie and sponge cake baking, and noodle making was good for most regions. The flour yield from region 8 (Willamette Valley) and 9 (Waterville) were below normal. Some shriveled kernels were observed COMMENTS: These milling and baking tests were done in co-operation with the PNW Grain Standards and Quality Committee and U.S. Wheat Associates. from these locations.

CONTRACT TORREST

The second secon

外面等 一個 教教教育的人 有是有不

YPE

MORO-SCHOESSLER- MORO-SCHOESSLER- DAWS-MANKE-C DAWS-MANKE-H MORO-HEINEMAN-C MORO-HEINEMAN-C MORO-HEINEMAN-C DAWS-LANGENHEDER DAWS-LANGENHEDER DAWS-UNDEBERG-C DAWS-UNDEBERG-C MORO-SACKMAN-C	WESTERN WHEAT QUALITY LAB. PULLMAN, WA. NURSCO 11 ABO0257 MORO-SCHOESSLER-C B00259 DAWS-MANKE-C B00260 DAWS-MANKE-H B00262 MORO-HEINEMAN-C B00262 MORO-HEINEMAN-H B00264 DAWS-LANGENHEDER-C B00265 DAWS-LANGENHEDER-H B00265 DAWS-LANGENHEDER-H B00266 DAWS-LANGENHEDER-H B00266 DAWS-UNDEBERG-C B00266 DAWS-UNDEBERG-C B00267 MORO-SACKMAN-C B00268 MORO-SACKMAN-C	80A2022 80A2030 80A2031 80A2031 80A2032 80A2035 80A2035 80A2025 80A2035 80A2025 80A2025	FARM CITES CLUB CLUB CLUB SWW SWW SWW SWW SWW SWW SWW S	W T T T T T T T T T T T T T T T T T T T	FYE 71.0.77.0.77.0.77.0.77.0.77.0.77.0.77.0	A	17 20 80 tto 80 tto 150 170 170 170 170 170 170 170 170 170 17			00 000000000000000000000000000000000000	00 000000000000000000000000000000000000	MT7
800273 UNKNOWN-FELLER-C 800273 UNKNOWN-KNODEL-C 800273 UNKNOWN-FELLER-C 800273 UNKNOWN-FELLER-C 800274 UNKNOWN-FELLER-C	FARM-H	80A2040 80A2041 80A2042 80A2043 80A2044 80A2044	MMS MMS MMS MMS	58.5 59.7 60.9 62.7 61.5 61.5	72.0 74.1 75.5 75.5	0.42 0.42 0.42 0.47 0.47	881.2 884.1 855.3 865.2 865.2	7.7 7.9 4.9 11.6 8.9 7.8	776 0087 7760 0087 77760 0087	8.55 8.66 8.84 8.71 8.67	88.52 88.65 8.99 11.90 1.00 1.00 1.00 1.00 1.00 1.00	M M M M M M M M M M M M M M M M M M M

200

ある場所で あるない たったい ではない ではな ではない ではない ではない ではない ではな ではない ではない ではない ではない ではない ではない ではない ではない ではない ではない

on or

- · · ·

5-05-08 5-05-08

STATE OF THE PARTY OF THE PARTY

Charles of the Charle

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA. NURSCO 12	VOLCANI	VOLCANIC ASH STUDY - CONT'D FARM CITES-WA	JDY - CC	ONT D							PAGE 1
LABNUM	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC	CODI	CODIC	MTYPE
800276 UNKNOWN-FODE-H 800277 WANSER-HUDLOW-C 800278 WANSER-HUDLOW-H 800279 WANSER-SMICK-C 800280 WANSER-SMICK-H 800281 UNKNOWN-PNW G&F-C	80A2047 80A2028 80A2036 80A2029 80A2037	SWW HRW HRW HRW SWW	60.5 64.2 64.5 63.7 63.4 56.6	74.9 73.1 73.8 73.6 74.0	0.45 0.43 0.40 0.36 0.36	85.8 86.3 88.4 88.4 90.4	2.01 2.00 2.00 2.00 8.00 9.00	57.7 62.7 63.6 65.9 65.0	8.65 8.04 7.89 7.76 7.86	8.67 8.09 7.87 7.80 7.93	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

ROHDE

NURSCO

OR

PENDLETON.

Characteristics. 4/ 224 48 27 35 333 VISC CODIC MIYPE Characteristics 2112 252 7777 アレアアア 2777 Quality 9.06 9.02 9.32 9.16 9.36 9.36 9.95 9.14 9.20 8.84 8.47 9.36 9.31 9.16 4 9.15 9.21 9.24 9.24 9.20 9.21 8.79 8.45 9.22 9.30 9.04 CODI 9.21 Overall MABSC 54.7 552.2 554.5 53.3 553.7 55.0 53.7 57.5 00004 9/0 55.00 54.6 Quality Particularly Promising FPROT 5.57 6.687 - 80.00 - 80.00 - 80.00 6.5.9 00000 00000 4 MSCOR Overall 89.1 89.7 90.0 86.7 84.6 89.0 89.6 88.7 86.8 86.1 89.3 88.0 84.6 87.5 86.8 86.2 100 th 200 84. 88. 0.38 0.41 0.37 0.36 0.39 0.36 0.39 38 0.39 11.42 0.43 0.38 FASH Promising ال FYELD 72.9 73.9 73.1 71.5 70.3 72.5 71.8 72.6 73.1 70.6 72.6 71.6 72.1 70.3 72.7 71.77 61.2 63.2 62.4 62.0 61.6 63.6 62.0 61.2 63.2 62.0 62.4 62.0 64.4 62.4 60.4 61.6 66.0 65.2 62.0 63.2 62.4 64.4 TWI 10/2 SWW SWW 6/SWW CLASS 6/SRW 5/SWW 5/SWW MMS/9 MMS/9 MMS/9 MMS/9 MMH MMS MMS/9 HRW MMS HWM MMS 6% Protein Basis. C1017569 C1017590 OR7954 OR7955 OR7956 OR7992 OR7996 OR7998 IDNO OR7958 OR7959 OR7961 OR7962 OR7963 OR7965 OR7973 OR7974 0R7976 OR7982 OR 7983 OR7970 OR7987 OR7957 **OR7988** to 14% Moisture Absorption at 14% Moisture Corrected to INIAGER/SAMBO/HNVII.SWD.71220-01H-1H-0H. BEZ/NAD//KTZ.SWD71437A01H-1H-0P.R-162 6720/WA4995//6720/HYS.OWW69169-1W5.R-244 NORTENOM-67/YMH//6720-69-13.OWW71448-3-1 INT/DIBO//DIBO/KKK. SWD70448-01W-1P-1H-0H OR7065/HYSLOP.W4239 HYSLOP/YAYLA/63-112-66-41/OR69118.W4315 63-120-66-2 HYS/YAYLA/63-112-66-41//OR7056.W3716 HYS/YAYLA/63-112-66-41/3/CERCO W-3442 7C/MORO.OWW 68100-1M5.R 240 6720/PAHA.OWW 69068-1W5-0B.R-243 DRC/68-23.OWW 68109-1M6.R241 CD/SEL.101//55-1744/DC.K106 HYS/YAYLA/WA4995/3/CERCO.W-1980 RIEBESEL/REW.W-2147 CROSS UNKNOWN.SMT74-30.R-268 SPRAGUE/WA5836.W-4000 Observed Values Corrected VARIETY OR69136/WA5829.W-4086 LUKE/0R696.W-3220 STEPHENS $\frac{1}{3}$ Observ $\frac{3}{4}$ Observ COMMENTS: FARO 800292 800293 800294 800295 800295 800297 800298 800299 800300 800301 800302 800303 800304 800287 800288 800289 800290 800291 800283 800284 800285 800285 LABNUM

ash) Selection numbers OR7955, OR7963, OR7983, OR7987 and OR7996 were sufficiently below Stephens in flour yield a hard red winter flour and low hard whites and OR7958 is yields flour (high good properties. properties are milling OR7974 red seeded soft wheat with overall and normal Note that OR7957 particular nursery has above Protein questionable. Observed Values Corrected to 6% B Also, note OR7959 is considered As a group this to be

Wist.

H. MC NEAL

MONTANA WHEAT QUALITY COUNCIL

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO

	HRS 15.0 72.7 HRS 14.8 73.2 HRS 11.9 67.8 HRS 11.9 67.8 HRS 10.7 65.6 HRS 10.7 65.6 HRW 11.4 65.6 HRW 10.1 64.2 HRW 13.9 71.3 HRW 13.9 71.3 HRW 13.9 71.3
HRS 15.0 HRS 14.8 HRS 14.8 HRS 11.9 HRS 11.9 HRS 11.9 HRS 11.9 HRS 11.9 HRS 10.7 HRW 11.6 HRW 10.0 HRW 13.9 HRW 13.9	SD801 HRS 15.0 SD802 HRS 15.0 SD803 HRS 14.8 SD804 HRS 11.9 HV810 HRS 11.9 HV811 HRS 11.9 HV812 HRS 11.1 MC814 HRS 11.1 MC815 HRS 11.1 MC815 HRS 11.1 MC816 HRW 11.6 BZ901 HRW 11.6 BZ902 HRW 11.6 BZ903 HRW 10.1 HV906 HRW 11.9 MC910 HRW 11.9
	ARIETY IDNO SD801 SD802 SD803 SD804 HV809 HV810 HV811 HV812 MC814 MC815 MC815 MC816 SZ901 BZ902 BZ904 HV905 HV905 HV905 HV906 HV907 MC910 MC910
SD801 SD802 SD802 SD803 SD803 SD804 HV810 HV811 HV811 HV811 MC814 MC814 MC815 MC815 MC815 HV905 HV905 HV907 MC910 MC910 MC910	ARIETY SECTOR SECTOR
	VARIETY ORTUNA (CI013596) ORTUNA (CI013596) VINALTA (CI013670) VINALTA (CI013670)

COMMENTS: Evaluated in co-operation with the Montana Wheat Quality Council. 5D, HV, MC, 65 are Signey, Mavie, Mocassin and Bozeman, MT. SD804 - Extremely SD803 - Equal or better than Fortuna; SD802 - Very long and strong mixing - poorer than Fortuna; long mixing - much poorer than Fortuna.

HV812 - Extremely HV810 - Extremely long mixing - poorer than Fortuna; HV811 - Equal or better overall than Fortuna;

MC814 - Long mixing and low loaf volume - poorer than Fortuna; MC815 - Slightly poorer overall in baking than Fortuna; long mixing - poorer overall than Fortuna.

MC816 - Slightly poorer overall in baking than Fortuna.

B2904 - Short mixing and poorer Similar and equal to Winolta; BZ903 - Slightly poorer overall than Winolta; than Winolta. BZ902 overall

MC910 - Similar overall to Winolta; MC911 - Similar overall to Winolta; MC912 - Short mixing and poorer than Winolta. HV907 - Low loaf volume and poorer than Winolta. HV906 - Slightly low in loaf volume and poorer than Winolta;

15

NURSCO

KS MANHATTAN,

LVOLC BCRGR	1112 2 1227 2 1196 2 1236 2	1109 1 1234 1 1234 2 1138 2	1100 2 1113 2 1094 2	racteristics.
TAOL	1168 1270 1233 11100	1215 1215 1215 1150 1230	1137 11200 11100 1	ty Cha stics.
SC MTIME	4.50 4.50 6.33 6.33 7.33 7.33 7.33 7.33 7.33 7.33	1.77 4.88	43.0	l Quali racteri
s BABSC	64.5 62.9 65.3 63.9	66.66 1 62.44 8 65.14 68.0	68.9	Overall ty Char
MTYPE BAB	65.4 63.6 65.9 61.1 63.3	67.1 67.1 64.8 65.4 68.9	69.5	sing Quali
MABSC 3/	63.1 4H 61.5 6H 63.9 5H 60.9 8M 62.5 6M	65.2 5H 63.2 7H 62.8 7H 64.6 7H	67.5 4H 66.2 3H 65.7 5H	arly Promi
FPROT	12.9	12.5	12.6	ticular
FASH 1/	0.49 0.74 0.74 0.74 0.74 0.74	0.44 0.48 0.50 0.50	0.40	/ Parti
CLASS	H H H H K K K K K K K K K K K K K K K K	HRW HRW HRW	HRW HRW	s. otein. 6
ONGI	80-716 80-717 80-718 80-719 80-720	80-721 80-722 80-723 80-724 80-725	80 = 726 80 = 727 80 = 728	Moisture Basisted to 12% Pro
VARIETY	800328 KANSAS (CONTROL) 800329 800330 800331 SCHRAEDER (CONTROL)	COLORADO (CONTROL)	800338 SOUTH DAKOTA (CONTROL) 800339 800340	1/ Observed Values Corrected to 14% Moisture Basis 3/ Absorption at 14% Moisture Corrected to 12% Pro
LABNUM	800328 KANS 800329 800330 800331 SCHR	800334 800334 800335 800335 800337	800338 SOUT 800339 800340	1/ Observe 3/ Absorpt

No milling The flour samples were baked in co-operation with the Hard Winter Wheat Quality Council test. The identification of all samples were coded. data is available to report. COMMENTS:

GRADE TO MANATERIAL TO CARDELL LIVE AGENCY LAND ON THE PARTY OF THE PA

		8	

MAY APP PLONE

CONID. PAGE 1		FPEAK FSTAB	8.0 13.0 7.5 7.5 1.5 7.5
		FABSC	58.0 59.0 61.0
		FABS	58.8 59.0
		BCRGR	000
Q		LVOLC	1050 1060 901
- CONT		TAOL	1100 1060 796
NALITY		MTIME	4.4
STD'S & QUALITY - CONT'D	MT	CLASS	HRW HRW HRW
PNW GRAIN		ONO	
QUALITY LAB.		VARIETY	800341 HRW - TETON COUNTY 800342 HRW - CHOUTEAU COUNTY 800343 HRS - BLAIN COUNTY
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 16	LABNUM	800341 HRW - TETON COUNTY 800342 HRW - CHOUTEAU COUN 800343 HRS - BLAIN COUNTY

E. DONALDSON

NURSCO 17

Z	ı	
Ŀ	x	
1	×	
ä	•	
P	=	
ä	-	
e	s	
4	-	
4	4	
è	3	
	_	
٤		
Ē		
ь	*	
t	ì	
h	•	
1		
b	╡	
Ć	Y	

LABNUM	VARIETY					1/		17/	13/	
		C1017772	HRW	0.49	70.5	0.41	81.9	7.6		H†
		N /800201 WA6818	HRW 6/	62.2	68.0	0.38	82.3	10.3		H †
800347 N7200192/CARDON 800348 N7200192/CARDON		N78-205 N78-207	HRW 6/ HRW	62.6	69.7	0.41	81.4	10.5 10.5	64.3	H++
		WA6817	HRW	61.3	70.8	0.42	82.2	9.4	4.49	7M
800350 WA5840/CERCO 800351 105012/WA5866		N78-1004 WA6816	HRW 6/	63.0	69.2	0.41	80.6	0,0	64.3	8 M
		N78-1601	•	62.5	68.7	0.42	78.6	11.3	62.1	2H
800353 WA5840/KAVKAZ		N78-1603	HRW	62.6	9.89	0.45	78.5	10.9	1.99	3H
800354 286011/CARDON		N78-2201	HRW 5/	62.4	73.0		86.1	10.3	0.99	3H
		N78-2401	HRW 6/	62.7	6.69	0.44	79.6	10.3	64.5	3H
800356 K7105030/WA5938		N78-2901		62.1	73.0		86.9	9.5	62.3	M [†]
800357 N72-27/N67-42		WA-6815	HRW 6/	61.9	71.0		83.4	11.1	65.3	3H

Several of the selections (N7800201, N78-207, N78-1601 and N78-1603) were low in flour yield. Selections WA6817, N78-1004 and N78-2901 are low in loaf volume and/or poor crumb grain. COMMENTS:

Observed Values Corrected to 10% Protein.

535-878 (735-85% (5285020), 878-267 878-367		
535-878 (735-85% (5285020), 878-267 878-367		
SEF-ENE (TOS-85% LOSGOSTS) and rowins with lo		
SECTION OF STRUCK AND STRUCKS AND STRUCKS AND TO I		
SEF-ENE (TOS-85% LOSGOSTS) and rowins with lo		

LAB. STATE HARD RED WINTER	LIND, WA	VARIETY IDNO CLASS BABS BABSC MTIME LVOL LVOLC BCRGR $\frac{3}{4}$	C1017772 HRW 64.0 64.3 2.9 955 974 4 N7800201 HRW 66.4 65.8 3.5 980 943 2 MA6818 HRW 66.5 66.2 3.2 965 946 2 N78-205 HRW 66.2 65.7 3.2 1000 969 2 N78-207 HRW 67.2 66.7 3.3 1020 989	WA6817 HRW 66.2 66.8 4.3 825 862 5 N78-1004 HRW 67.6 67.7 4.8 925 931 2 WA6816 HRW 64.2 65.3 2.7 880 948 2 N78-1601 HRW 64.8 63.5 1.8 955 874 2 N78-1603 HRW 68.4 67.5 2.7 1000 944 2	N78-2201 HRW 67.7 67.4 2.5 1010 991 2 N78-2401 HRW 66.2 65.9 2.8 1005 986 2 N78-2901 HRW 63.2 63.7 2.5 905 936 4
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 17	LABNUM VARIETY	800344 HATTON 800345 N7200192/CARDON 800346 N7200192/CARDON 800347 N7200192/CARDON 800348 N7200192/CARDON	800349 WA5840/CERCO 800350 WA5840/CERCO 800351 1D5012/WA5866 800352 WA5840/KAVKAZ 800353 WA5840/KAVKAZ	800354 286011/CARDON 800355 CERCO/17271 800356 K7105030/WA5938

M

DONALDSON	MTYPE
E. DONA	MABSC 3/
	F PROT
	MSCOR
	FASH 1/
	FYELD
MA	TWT
LIND, W	CLASS
	IDNO
	VARIETY
JRSCO 18	NBNUM

800358 HATTON	C1017772	HRW		73.1			9.5		HΉ	
800359 N7000132/C117271	N79-1603	HWM	0.49	70.7	0.43	81.8	10.0	8.49	5H	
	N79-3404	HRW		70.3			10.5		3H	
	N79-3405			70.6		0	10.4		3H	
	N79-3501	HRW 5/	63.6	71.1	0.38		10.3		5H	
SOUSES MANUAT SEI	N70-3601		9 69	0 89			10 5		3.11	
SOUSS KAVKAZ JEE:	N79-3901	HRW 6/	62.3	72.7		87.2	000	63.6	- T	
	N79-4301		62.5	67.5		0 0	0,3		3 H	
	N79-4302		63.0	73.7			8.6		3.	
	N79-4503	HRW	62.5	9.89	0.39		6.6		3H	
							(
800368 KAVKAZ/ID5011	N79-4702	HRW	3			86.5	φ.		0 W	
800369 KAVKAZ/1D5011	N79-4703	HRW	3			86.2	10.0		6M	
	4074-97N	HRW	3			84.0	10.6		2H	
	N79-5001	HRW	3			82.1	10.3		5H	
	N79-5202	HWM	63.6	69.3	0,40	81.1	9.8	8.49	5H	
800373 N7107028/C0696317	N79-5901	T.	63.8	69.2	0.41	80.6	0.6	65.1	SH.	

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 12/9 Absorption at 14% Moisture Corrected to 10% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 10% Protein.

Selections N79-1603, N79-3404, N79-3405, N79-3601, N79-4301, N79-4503, N79-5001, N79-5202 and N79-5901 are significantly poorer in milling quality than Hatton. Selections N79-4702, N79-4703 and N79-4704 are very poor in baking properties. COMMENTS:

		0
		5-1

8		

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	ADVANCED	ADVANCED HARD RED WINTER	WINTER	_				CONTD. PAGE 1
NURSCO 18		LIND, WA	A					E. DONALDSON
LABNUM VARIETY	1 DNO	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR
800358 HATTON 800359 N7000132/C117271 800360 N7000149/N7000163 800361 N7000149/N7000163 800362 K73046/N7200026	C1017772 N79-1603 N79-3404 N79-3405 N79-3501	HRW HRW HRW	66.1 67.2 66.1 65.9 67.5	66.6 67.2 65.6 65.5 67.2	7.4 7.3 7.4 7.4 7.4 7.4 7.4	940 1040 955 955 960	971 1040 924 930 941	いたたのり
800364 KAVKAZ SEL. 800364 KAVKAZ/WA5836 800365 K7100239/K7100920 800366 K7100239/K7100920 800367 K73046/N7200026	N79-3601 N79-3901 N79-4301 N79-4302 N79-4503	HRW HRW HRW	66.6 66.1 66.0 64.7 65.1	66.1 66.3 66.7 64.9 65.2	33.65	930 970 1000 1020 985	899 982 1043 1032 991	たいないの
800368 KAVKAZ/1D5011 800369 KAVKAZ/1D5011 800370 KAVKAZ/1D5011 800371 K73044/N73046 800372 N73101/N7106074	N79-4702 N79-4703 N79-4704 N79-5001 N79-5202	HRW HRW HWW	65.4 64.8 65.5 69.7 67.5	65.6 64.8 64.9 69.4 67.7	000000	905 855 840 965 998	917 855 803 946 1010	EN800
800373 N7107028/C0696317	N79-5901	HMM	6.99	67.5	4.2	066	1052	33

n nomina more

1 ACTO 1000 2 1000 200 200 2 1000 200 200

* 86835 (53

E. DONALDSON

_	_
NTCD	MICH
1.1	5
000	トトレ
COVI	コニアニ
CHUNANON	プレスとこうしつ
-	

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO

LIND, WA

LABNUM	VARIETY	ONO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
800374 HATTON 800375 K7100255/K7101537 800376 K7100255/K7101537 800377 K7100255/K7101537 800378 KAVKAZ/C117271		C1017772 N79-201 N79-202 N79-203	HRW HRW HRW HRW	64.5 61.8 62.6 62.6 61.7	74.2 71.1 72.0 69.7	0.40 0.42 0.38 0.38	888 82.2 83.9 4.1	9.2 10.3 10.3	63.1 63.9 63.2 64.9	WWWWH 1000000000000000000000000000000000
800379 KAVKAZ/CI17271 800380 PI181268/GAINES//VH072618 800381 CARDON/N7106043 800382 K7100239/K7100859 800383 KAVKAZ/K7100796		N79-403 N79-601 N79-702 N79-901 N79-1001	HRW HRW HRW HRW	61.6 62.7 62.2 62.3 61.3	71.0 71.9 70.5 70.8	0.40 0.40 0.42 0.43 0.39	83.2 84.5 81.6 85.8	12.0 10.0 9.7 10.2	64.7 65.0 63.5 63.8 64.7	66M 44H 44H
800384 WA5836/KAVKAZ 800385 N7000132/C11727 800386 K73082/N7200021 800387 K73055/N7200026 800388 K73055/N7200026		N79-1101 N79-1601 N79-1701 N79-1801	HRW HRW HRW HRW	61.8 61.5 62.3 62.3	70.5	0.41 0.40 0.41 0.41	82.2 82.3 82.3 83.0	10.4	62.2 63.2 62.9 62.9	W W W W T T T T T T T T T T T T T T T T
800389 N73101/CARDON 800390 K7100255/K7101744 800391 K73061/N7200021 800392 VH067467/1D000044 800393 K7100239/K7100743		N79-2101 N79-2101 N79-2301 N79-2501	HRW HRW HRW HRW	622.5 622.5 622.5 622.5 622.5	70.7 72.2 69.5 71.9	0.41 0.40 0.40 0.40	82.1 83.6 80.5 84.8	10.00 2.00 2.00 5.00 7.	63.4 63.4 64.3 62.0	8 L M M M M M M M M M M M M M M M M M M
800394 K7100239/K7100743 800395 WA5836/CERCO 800396 WA5836/CERCO 800397 UT646001/K7100255		N79-2902 N79-3301 N79-3302 N79-6301	HRW HRW HRW	62.3 62.3 61.3 62.7	68.8 69.8 68.8	0.40 0.44 0.41 0.40	79.7 80.6 81.6 79.9	10.6	63.8 63.7 64.2	5H 7M 3H

None of the selections were equal to Hatton in overall quality (both milling and baking). They were either the best in milling quality: N79-202, N79-601, N79-1001, N79-2101, and N79-2501. All others had neither Hatton in baking performance: N79-702, N79-901, N79-2501, and N79-3301. The following selections were low in flour yield (and milling score) or low in loaf volume. The following selections were equal to acceptable milling or baking. The KAVKAZ selections were significantly higher in protein content. COMMENTS:

Particularly Promising Overall Quality Characteristics.

Promising Overall Quality Characteristics.

10/2

Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 10% Protein.

Observed Values Corrected to 10% Protein.

	20 00 00 00 20 00 00 00 20 00 00 00		20000000000000000000000000000000000000	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TO TO		12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~ 0,00 W
	10 00 00 00 00 00 00 00 00 00 00 00 00 0			00 00 00 00 00 00 00 00 00 00 00 00 00
		00000 00000 00000 00000		
		270mm-1	809-A	
	40 00 00 40 00 00 41 00 00 00	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
			2000 2000 2000 2000 2000 2000 2000 200	M120-1001 M13-1001 M1
	01/K1+00SS-5			

WESTERN WHEAT QU PULLMAN, WA.	QUALITY LAB.	ADVANC	NCED HARD RI	RED WINTER	_				
NURSCO 19			LIND, V	WA					E. DONALDSON
LABNUM	VARIETY	ONGI	CLASS	BABS	BABSC 3/	MTIME	TOOT	LVOLC	BCRGR
800374 HATTON 800375 K7100255/K7101537 800376 K7100255/K7101537 800377 K7100255/K7101537 800378 KAVKAZ/C117271	K7101537 K7101537 K7101537 17271	C1017772 N79-201 N79-202 N79-203 N79-401	HRW HRW HRW	66.5 68.4 67.6 67.7	67.3 68.1 67.3 67.4	8.33.33 6.33.33 7.33.33	925 945 909 911	975 926 890 892 853	00000
800379 KAVKAZ/CI17271 800380 PI181268/GAINES// 800381 CARDON/N7106043 800382 K7100239/K7100859 800383 KAVKAZ/K7100796	KAVKAZ/CI17271 PI181268/GAINES//VH072618 CARDON/N7106043 K7100239/K7100859 KAVKAZ/K7100796	N79-403 N79-601 N79-702 N79-901 N79-1001	HRW HRW HRW	70.9 69.2 67.4 68.2 70.2	68.9 67.7 68.0 68.9	22000 00000	1030 901 942 1025 993	906 901 1013 912	~~~~
800384 WA5836/KAVKAZ 800385 N7000132/C117271 800386 K73082/N7200021 800387 K73055/N7200026	VC117271 1200021 1200026 1200026	N79-1101 N79-1601 N79-1701 N79-1801	HRW HRW HRW HRW	67.0 66.8 67.8 67.4 67.3	666.4 667.7 667.1 66.9	200000 20000	955 925 938 910 858	918 900 932 891	せいのいせ
800399 N73101/CARDON 800390 K7100255/K7101744 800391 K73061/N7200021 800392 VH067467/1D000044 800393 K7100239/K7100743	1RDON 1R7101744 1200021 1D000044 1R7100743	N79-1902 N79-2101 N79-2301 N79-2501	HRW HRW HRW HRW	68.2 66.4 67.5 69.1 65.9	67.6 667.6 67.6 68.5 66.2	0.33.40	950 879 890 987 906	913 867 896 950 925	のころなな
800394 K7100239/K7100743 800395 WA5836/CERCO 800396 WA5836/CERCO 800397 UT646001/K7100255	/K7100743 ERC0 ERC0 /K7100255	N79-2902 N79-3301 N79-3302 N79-6301	HRW HRW HRW	68.6 68.7 68.2 69.4	68.0 67.7 67.9 68.4	3330	955 1010 390 924	918 948 871 862	<i>~~~</i>

וא נא נא נא	co 3,0 /21 % %	性いかり性	ט וע ע ען מע מע	un un un un un
	13 (C) C) C) (C) (C) (C) (C) (C) (C) (C) (
			000000 000000	0-000 0-000 0-000
~ 0.00 ~ 0.00	on to o		64 64 64 65 64 37 64 60 67 60	
2070 3000	00000 00000 00000	13 17 - 1 12 12 0/-7 - 1 0/0 0/0/0/0/0	00000 00000 00000	- 12 CM - CM
	10 A			1227
				MAN - 503 MAN -

į	4
(-
2	ì

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	MORO	MORO HARD REC	RED WINTER						PAGE 1
NURSCO 21		MORO, C	OR					F.A. CH	CHOLICK
LABNUM	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	F PROT	MABSC 3/	MTYPE
800409 WANSSER C1013844 (KASHR) 800410 SWO 730902 F-1H-1P-0P (MORO) 800411 SWCM 5092-7D-1P-1H-1P-0P (MORO) 800412 SWD 71452A-03H-2H-0P (MORO) 800413 SWO 730902F-1H-1P-0P (MORO)	HRAYT 59 HRAYT 59 HRAYT 5 HRAYT 12 HRAYT 17	HRW HRW HRW	64.0 64.8 64.8 62.8	70.4 66.4 72.2 71.0 68.8	0.39 0.39 0.39 0.39	86.3 81.3 87.4 86.1	8.0 7.09 7.10	58.9 60.4 59.5 59.5	88 L 86 L 87 L
800414 SWH 72319-1H-2P-1H-H (MORO) 800415 SWH 72319-1H-2P-2H-H (MORO) 800416 SWD 71164-03H-1P-3HP (MORO) 800417 SWD 71220-01H-1H-OH (MORO) 800418 SWM 730865*-6H-2P-2H-OP (MORO)	HRAYT 22 HRAYT 24 HRAYT 24 5/ ABYTA 29 6/ HRAYT 79 6/	HRW HRW HRW HRW	64.0 64.4 64.4 64.4 62.4	71.6	0.41 0.38 0.40 0.40	85.6 86.5 86.5 85.2	88870	56.7 56.9 59.0 59.0	4t 4d 8d 8d 8d 8d 8d 8d 8d 8d 8d 8d 8d 8d 8d
800419 0WW 73210C-04H-2H-2H-0P (MORO)	HRAYT 87	SWW	0.49	71.3	0.36	88.8	10.0	53.1	5L
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	MORO	HARD RED) WINTER					CONTD	PAGE 1
NURSCO 21		MORO, C	OR					F.A. CH	СНОГІСК
LABNUM	ONG I	CLASS	BABS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR	
800409 WANSSER C1013844 (KASHR) 800410 SWO 730902 F-1H-1P-0P (MORO) 800411 SWCM 5092-7D-1P-1H-1P-0P (MORO) 800412 SWD 71452A-03H-2H-0P (MORO) 800413 SWO 730902F-1H-1P-0P (MORO)	HRAYT 1 HRAYT 59 HRAYT 5 HRAYT 12 HRAYT 17	H H K K K K K K K K K K K K K K K K K K	62.3 61.0 61.7 60.9	62.2 63.2 61.9 59.4	7447	805 435 660 525 590	805 571 666 687 609	n 000	
800414 SWH 72319-1H-2P-1H-H (MORO) 800415 SWH 72319-1H-2P-2H-H (MORO) 800416 SWD 71164-03H-1P-3HP (MORO) 800417 SWD 71220-01H-1H-0H (MORO) 800418 SWM 730865*-6H-2P-2H-0P (MORO)	HRAYT 22 HRAYT 23 HRAYT 24 ABYTA 29 HRAYT 79	HRW HRW HRW HRW	59.6 63.2 61.9 65.7	5000 600.3 600.3 600.3 600.3	7 t N N T N N T N N T N N T N N T N N N N	680 8005 923 913	649 793 824 671	∞~~∞~	
800419 OWW 73210C-04H-2H-2H-0P (MORO)	HRAYT 87	MMS	56.5	54.5	3.6	785	699	77	
1/ Observed Values Corrected to 14% Mo	Moisture Basis.		5/ Pa	rticularl	y Promis	ing Overa	all Ouali	70 0	haractorist

Particularly Promising Overall Quality Characteristics. The baking quality of all selections except HRAYT-24 and HRAYT-79 were very poor. Breads were low in volume and heavy crumb grain. Milling quality of many however were equal to or better than Wanser. Promising Overall Quality Characteristics. protein level was extremely low for good meaningful results. 101 Absorption at 14% Moisture Corrected to 8% Protein. Observed Values Corrected to 8% Protein. 1/ Observe 3/ Absorpt 4/ Observe COMMENTS:

NURSCO 22		COR	CORVALLIS,	OR					W.E. KROI	KRONSTAD
LABNUM	ONOI		CLASS	TWT	FYELD	FASH	MSCOR	FPROT 1/	MABSC 3/	1000
800420 DAWS (C1017419) 800421 STEPHENS (C1017596) 800422 SWD 69282-02D-1H-1H-0H 800423 OWW 71214-2-11E4 800424 OWW 71224-2-3CB-02W5	ABYTA-13 ABYTA-3 ABYTA-22 ABYTA-44	12/6	SWW SWW HRW SWW SWW	54.8 57.6 58.0 58.0	69.4 71.9 70.2 71.1	0.47 0.43 0.45 0.46 0.46	80.2 883.0 862.9 86.9	888888 80000	54.7 53.6 59.4 57.4	88.72 88.52 9.01
800425 OWW 71412-2-4W4-01W4 800426 OWW 71427-3-05W4 800427 OWW 71427-3-16W4 800428 OWW 71730-2-01W4 800429 OWW 71903-07W4	ABYTA-53 ABYTA-55 ABYTA-56 ABYTA-64 ABYTA-65	विभेर्व	MMS MMS MMS MMS	556.0	65.2 67.2 70.0 70.6 68.0	0.47 0.41 0.42 0.38	79.8 80.3 83.7 86.9	0.887.0	5585 5685 5665 5665 5665 5665 5665 5665	8.60 9.27 9.32 8.92
800430 SWO 730899A-3H-1H-0P 800431 OWW 73190D-03H-2H-P 800432 OWW 72399-2-01-2S-P 800433 OWW 72409-3-09-1S-P 800434 SWD 71340-08H-07H-1P-0P	ABYTA-73 ABYTA-90 ABYTA-99 ABYTA-102 ABYTA-102	19	MMS MMS MMS	57.6 51.6 56.8 54.4 60.0	64.9 61.9 65.8 63.7 69.5	0.39 0.46 0.44 0.42 0.38	79.8 76.6 75.7 85.3	000000	558.1 578.1 576.4 576.4	88.933 88.933 88.997
$\frac{1}{3}/\ \text{Observed Values Corrected to 14\% Moisture Basis.} \\ \frac{3}{4}/\ \text{Absorption at 14\% Moisture Corrected to 9\% Protein.} \\ \\ \frac{4}{4}/\ \text{Observed Values Corrected to 9\% Protein.} \\ \\$	d to 14% Moisture E ire Corrected to 9% d to 9% Protein.	asis. Protei	6	5/ Par 6/ Pro	Particularly Promising Ov	Promi erall	Ove	rall Quality Characteristi		Characteristics.

Test weights of the whole group were low, which may have influenced the poor performance in milling. Two of the selections were hard endosperm wheat (ABYTA-22 and ABYTA-73). Neither however made satisfactory bread. COMMENTS:

PAGE 1	KRONSTAD	BCRGR	ω ∞		∞
CONTD. PAGE	W.E. KRO	LVOLC	0 706 841 0	00000	789
		TAOF	700		795
		MTIME	2.9		2.7
		BABSC 3/	61.8		65.5
۵		MTYPE	31 22 88 31 21	33M 31 22 4M	2 L 3 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5
OP SOFT WHITE ADVANCED	OR	CODIC 4/4	8.64 8.84 8.51 8.97 9.16	8.60 9.26 9.08 9.17 8.94	8.41 8.67 8.88 8.94 8.78
SOFT WHIT	CORVALLIS, OR	CLASS	SWW SWW HRW SWW SWW	SWW SWW SWW SWW SWW	HWW SWW SWW SWW
HYSLOP	Ö	IDNO	ABYTA-13 ABYTA-3 ABYTA-22 ABYTA-43 ABYTA-44	ABYTA-53 ABYTA-55 ABYTA-56 ABYTA-64 ABYTA-65	ABYTA-73 ABYTA-90 ABYTA-99 ABYTA-102 ABYTA-120
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 22	LABNUM	800420 DAWS (C1017419) 800421 STEPHENS (C1017596) 800422 SWD 69282-02D-1H-1H-0H 800423 OWW 71214-2-11E4 800424 OWW 71224-2-3CB-02W5	800425 0WW 71412-2-4W4-01W4 800426 0WW 71427-3-05W4 800427 0WW 71427-3-16W4 800428 0WW 71730-2-01W4 800429 0WW 71903-07W4	800430 SWO 730899A-3H-1H-0P 800431 OWW 73190D-03H-2H-P 800432 OWW 72399-2-01-2S-P 800433 OWW 72409-3-09-1S-P 800434 SWD 71340-08H-07H-1P-0P

NURSCO 23		O	CORVALLIS,	S, OR						X	W.E. KRON	KRONSTAD
LABNUM	VARIETY	i DNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	CODI	COD1C	MTYPE
800435 HYSLOP (C1014564) 800436 STEPHENS (C1017569) 800437 OWM 68007-1M6 800438 3WM 68007-2M6 800439 OWM 71213-4-02E4	4) 569) 4	ELITE 1 ELITE 4 ELITE 116/ ELITE 125/ ELITE 16	MMS MMS MMS	55.2 57.2 58.8 54.0	68.0 69.7 68.3 71.7	74.0 0.48 0.49 0.40 0.40	77.3 81.9 77.1 83.1	888888 8-8-0	56.4 57.6 56.2 56.2	8.84 9.07 8.74 8.87 8.94	8.93 9.09 8.77 8.89	WWWW NOON
800440 OWW 71439-1-2W4-02W4 800441 OWW 72339-2-01-1-0S 800442 OWW 72341-2-01-2H-0P 800443 OWW 72342-2-04-1-0S 800444 OWW 71214-2-12W4	-02W4 1-0S 2H-0P 1-0S	ELITE 205/ ELITE 225/ ELITE 24/ ABYTA 246/	MMS MMS MMS	58.0 56.0 56.0 56.0	669.2 669.2 669.9 669.9	0.40	83.7 76.8 82.8 78.9	88788	56.3 56.3 57.2 57.2	9.04 8.53 9.03 8.51 8.76	9.08 8.63 9.02 8.57 8.78	31 33 52 61
800445 C588-5E-04W5 800446 OWW 71310-1-12E4 800447 OWW 70094-2-07W5 800448 OWW 71903-08W4 800449 OWW 72338-1-01-3H-0P	14 15 3H-0P	ABYTA 316/ ELLITE 335/ ABYTA 355/ ABYTA 665/ ABYTA 675/	MMS MMS MMS	55.6 54.4 56.4 59.6	67.6 67.7 72.1 72.7 72.5	0.37 0.44 0.47 0.47 0.47	83.4 79.6 82.7 83.7	8.7.7 9.2 8.3	56.9 56.0 56.0 56.0 56.0	8.82 8.94 9.16 8.71	8.86 9.16 9.84 8.84	2M 4L 2L 4M 3M
800450 SWO 731034C-2H-1H-S 800451 SWH 72053-5H-2H-P 800452 SWO 731112C-1P-2P-0P	1H-S -2H-P -2P-0P	ABYTA 745/ ABYTA 786/ ABYTA 116	SWW SWW 5 SWW	62.8 56.4 62.0	68.6 71.6 71.3	0.37	84.6 82.8 82.9	9.7	57.6 56.5 56.3	8.80 8.71 8.94	8.99	XXX NN3
1/ Observed Values 3/ Absorption at 14/ Observed Values	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 8% Protein Observed Values Corrected to 8% Protein.	ure Basis. o 8% Prote	in.	5/ F	Particularly Promising Ov	rly ove	ly Promising Overall Qual	Ove	Overall Quality Ch ty Characteristics	Quality cteristi	Charac cs.	Characteristics

Test weights of the entire nursery were low with the exception of ABYTA 74 and 116. This influenced the flour Ratings were made relative to the checks. yield and milling score as reflected in Hyslop and Stephens. COMMENTS:

F.A. CHOLICK

NURSCO 24

لما
\vdash
_
F
ED
8
h-d
0
~
AR
~
0
0
_
S
\
T

CORVALLIS, OR

LABNUM	DNO				1/		1/	3/	
800453 SWD 71452A-03H-2H-0P	HRAYT 12	HRW		70.9		84.1	8.0		79
	HRAYT 17	HRW	63.6	70.5	0.41	84.7	9.5		2 M
800455 SWH 72319-1H-2P-1H-H	HRAYT 22	HRW		72.4		87.0	11.4		T I
800456 SWH 72319-1H-2P-2H-H	HRAYT 23	HRW		71.9		86.6	11.2		3.M
800457 SWD 71164-03H-1P-3HP	HRAYT 24	HRW	8.49	72.1	0.41	86.1	11.5	62.2	38
800458 SWD 71220-01H-1H-0H	ABYTA 29	HRW		70.0		7		61.4	W ₁
800459 CH2672-2C-3C-1C-1D	ELITE 46	HRW		66.3		5		62.0	141
800460 SWD 730902F-1H-2H-OP	ELITE 47	HRW		69.7		5		61.1	2 M
800461 SWO 730902F-1H-1P-1H-0P	HRAYT 59	HRW		70.6		9		4.09	Σ
800462 SWM 730865*-6H-2P-2H-0P	HRAYT 79	HRW	4.49	71.5	0.32	4.06	10.8	63.4	₩ 9
800463 OWW 73210C-04H-2H-2H-0P	HRAYT 87	SRW	63.6	70.8	0.41	85.4	10.5	56.8	31

4/ Observed Values Corrected to 10% Protein. COMMENTS: The nursery was submitted without a check variety for a reference, however, only three selections stand These are footnoted. All others are out as promising in bread baking performance by normal standards.

deficient in loaf volume and/or grain.

HYSLOP HARD RED ELITE	CORVALLIS, OR F.A. CHOLICK	CLASS BABS BABSC MTIME LVOL LVOLC BCRGR $\frac{4}{3}$	HRW 63.3 65.3 3.5 750 874 4 HRW 63.3 63.8 1.9 730 761 5 HRW 63.4 62.0 3.2 870 783 3 HRW 63.6 62.4 2.7 850 776 3 HRW 65.1 63.6 1.6 1000 907 2	HRW 61.9 62.8 2.4 815 871 4 HRW 62.8 63.4 3.4 875 912 2 HRW 61.5 62.5 1.6 705 767 8 HRW 61.4 61.8 1.5 755 780 7 HRW 65.6 64.8 3.5 985 935 2	SRW 59.0 58.5 2.5 890 860 3
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 24	LABNUM VARIETY IDNO	800453 SWD 71452A-03H-2H-0P 800454 SWO 730902F-1H-1P-0P 800455 SWH 72319-1H-2P-1H-H 800456 SWH 72319-1H-2P-2H-H 800457 SWD 71164-03H-1P-3HP	800462 SWD 71220-01H-1H-0H 800459 CH2672-2C-3C-1C-1D 800460 SWD 730902F-1H-2H-0P 800461 SWO 730902F-1H-1P-1H-0P 800462 SWM 730865*-6H-2P-2H-0P	800463 OWW 73210C-04H-2H-2H-0P

W.E. KRONSTAD

	MORO SOFT WHITE	
A, SEA AR	TERN WHEAT QUALITY LAB.	PULLMAN, WA.

NURSCO 25

ELITE

MORO, OR

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC 3/	CODI	COD1C	MTYPE
800464 NUGAINES (CI013968 800465 STEPHENS (CI017569 800466 FARO (CI017590) 800467 JACMAR 800468 OWW 68007-1M6	C1013968) C1017569) 7590)	ELITE 7 ELITE 4 ELITE 8 ELITE 9 ELITE 11	SWW CLUB CLUB SWW	64.8 60.4 60.8 60.4 62.4	70.0 70.4 72.1 71.8	0.36 0.37 0.41 0.41	87.6 87.3 86.7 86.2 84.5	7.6 8.3 1.8 7.9	57.7 54.2 54.9 55.7	8.86 9.01 9.05 9.28	8.82 9.05 9.29 9.01	4M 3M 3L 6L
800469 3WW 68007-2M6 800470 0WW 71213-4-02E4 800471 0WW 72339-2-01-1 800472 0WW 71214-2-12W4 800473 0WW 72393-4-03-0	68007-2M6 71213-4-02E4 72339-2-01-1-0S 71214-2-12W4 72393-4-03-0S	ELITE 12 5/ ELITE 22 ABYTA 24 5/ ELITE 25 5/	SWW SWW 5/SWW 5/SWW	62.0 59.2 59.2 63.6	72.5 69.7 68.1 73.5	0.38 0.39 0.40 0.38	89.0 85.1 82.0 90.5	8.8 7.2 7.2 1.8	55.6 54.5 54.5 54.9	9.04 9.02 8.85 9.14	9.11 9.04 9.06 9.10	SC M
800474 C588-5E-04W5 800475 OWW 70094-2-07W5 800476 OWW 71445-1-2W4 800477 OWW 71623-7-02E4 800478 OWW 71427-3-16W4	-5E-04W5 70094-2-07W5 71445-1-2W4 71623-7-02E4 71427-3-16W4-03W4	ABYTA 31 5/ABYTA 35 5/ELITE 42 6/ELITE 43 6/ABYTA 60 6/ABYTA 6/ABYTA 60 6/ABYTA	SWW	62.0 62.4 61.6 62.4 61.2	70.3 73.4 72.1 71.7	0.37 0.36 0.41 0.36 0.40	87.2 91.9 87.0 89.2 86.1	8.2 7.0 7.0 6.3	55.83.7	9.05 9.38 8.36 8.91	9.07 9.27 8.25 8.73 8.94	4 L L L
800479 OWW 71903-08W4 800480 SWO 731034C-2H 800481 SWH 72053-5H-2 800482 OWW 72341-2-01	71903-08W4 731034C-2H-1H-S 72053-5H-2H-2H-P 72341-2-01-2H-0P	ABYTA 66 5 ABYTA 74 74 5 ABYTA 78 5 ELITE 24 5	NMS /2 SWM 20/ SWM 20/ SWM	63.6 64.0 63.6 60.0	73.1 70.7 73.4 70.2	0.37 0.41 0.39 0.38	90.7 85.2 89.4 86.6	7.7 8.2 6.0 5.7	55.4 54.9 55.6 54.0	9.09 8.92 9.04 9.47	9.05	66L 22L 22L 22L
$\frac{1}{3}$ Observed Va $\frac{3}{4}$ Absorption $\frac{4}{4}$ Observed Va	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 8% Protein Observed Values Corrected to 8% Protein.	ure Basis. o 8% Prote n.	in.	5/ P. 6/ P.	Particularly Promising Ov	(D)	.4	Ove ity	ū	ty sti		Characteristics cs.

COMMENTS: Many of these selections are outstanding in overall quality. Elite 11 and 16 appear questionable in milling while Elite 42 is very poor in cookie diameter.

F.A. CHOLICK

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

26

NURSCO

MORO HARD RED ADVANCED

OR

MORO.

Particularly Promising Overall Quality Characteristics. MTYPE 7 5 7 7 Z MARA MARA $\Sigma \Sigma \Sigma \Sigma$ MABSC 61.6 58.1 61.0 59.3 58.7 59.6 59.5 59.3 60.1 62.2 62.5 3 FPROT 877.69 7.000.0 7 0.000 MSCOR 866.4 885.0 888.3 85.6 87.7 888.0 86.7 91.4 88.5 FASH 0.36 0.38 0.38 0.36 0.33 0.37 0.36 0.36 17 0.38 0.40 0.40 0.39 FYELD 69.8 67.4 68.5 71.3 69.6 71.9 69.9 73.5 72.8 72.3 68.2 70.4 63.6 62.4 64.0 62.8 63.6 63.6 62.8 63.6 62.0 62.4 64.8 62.0 63.2 TWI CLASS HRW HRW HRW HRW HRY HRY HRY HRY HRY HRY HRE HRE HRE HRE 6 16 19 19 42 67 69 73 5/ 78 80 524 ONG HRAYT 730984A-1P-5P-3S-0S 730902F-1H-1H-7H-0P 730902F-1H-1P-1P-0P 731151A-2H-1H-2H-0P 731151A-2H-1S-3S-0P 70250-01W-1P-1H-1HOS 731151C-3H-3P-2P-0P 730453*-4H-1H-1S-0S 73863*-3H-2P-1S-0P VARIETY 730865*-6H-1S-1S-0S 742234*-09P-1P-P 731445*-1H-2H-H 73087B-1H-1+-0S 74272H-1H-0H SWO SWO SWO SWM SWM SWM SWIT SWD SWM MMO 800483 800484 800485 800486 800488 800489 800490 800491 800491 800493 800494 800495 800496 LABNUM

Promising Overall Quality Characteristics 10/10 9% Protein. Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to

to 9% Protein

Observed Values Corrected

The following quality: HRAYT28, HRAYT42, and HRAYT73. Like Nursery 21, this the reliability of the data. for the data of the check variety (Wanser, Lab No. 800409). some uncertainty selections however do stand out from the others in overall group also was very low in protein and make for Please see NURSCO 21 three COMMENTS:

THE PARTY OF THE P	

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 27		MORO,	OR						X	.E. KRO	KRONSTAD
LABNUM	ONO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	1000	(4/ 4/	MTYPE
800497 YAMHILL (CI 14563) 800498 YAMHILL (CI 14563) 800499 LUKE (CI 14581) 800500 DAWS (CI17419) 800501 STEPHENS (CI 17569)	ABYTA 7 ABYTA 8 ABYTA 14 ABYTA 13 ABYTA 1	MMS MMS MMS	62.0 60.8 64.0 62.4	75.0 74.2 74.0	0.42 0.41 0.37 0.39	90.1 90.4 91.7 90.4 88.8	8.0 7.0 6.0 7.8	523.52	8.97 9.10 9.32 8.97 9.05	9.08 9.10 9.21 8.88 9.14	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
800502 STEPHENS (CI 17569) 800503 SWD69282-02D-1H-1H-0H 800504 OWW70015-1-01W4 800505 OWW71224-2-3CB-02W5 800506 OWW71412-2-4W4-01W4	ABYTA 3 ABYTA 22 ABYTA 33 ABYTA 44 ABYTA 53	SWW SRW 5/SWW 6/SWW	63.6 63.6 60.8 62.4 59.2	73.3 72.1 72.8 74.9	0.40	888.9 86.9 89.9 85.4	7.6	52.7 53.7 55.0 51.9	9.28 9.24 8.87 9.02 9.01	9.35 9.30 8.78 9.11	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
800507 0WW71427-3-05W4 800508 0WW71427-3-16W4 800509 0WW71439-1-2W4-05W4 800510 0WW71903-07W4 800511 SW0730888E-2H-1H-S	ABYTA 55 ABYTA 56 ABYTA 63 ABYTA 65 ABYTA 72	5/ SWW HWW 55/ SWW	62.0 63.6 63.7 63.7 63.7 63.7	74.9 75.1 73.5 72.2	0.40 0.47 0.38 0.39	90.9 86.9 90.3 87.8	7.4.66.8	53.5 53.5 53.5 53.5	9.02 8.31 9.41 9.12	9.06 8.25 9.38 9.27	2 3 3 3 3 4 6 6 7 3 3 3 6 7 6 7 6 7 7 7 7 7 7 7 7 7
800512 OWW72339-2-4-1S-0P 800513 OWW72339-2-4-1S-0P 800514 OWW72345-1-04-1H-1P-P 800515 OWW72435-3-03-3H-1P-H 800516 OWW72341-2-01-2H-0P	ABYTA 90 ABYTA 95 ABYTA 103 ABYTA 1107 ABYTA 122	SWW 35/SWW 26/SWW 26/SWW	59.2 62.0 62.0 60.4 61.6	70.4 72.7 74.0 71.9	0.41 0.40 0.43 0.41	84.9 88.5 88.1 86.4	7.8888	553.00	8.80 9.10 9.00 8.98 9.34	8.95 9.22 9.21 9.21	65 65 65 65 65 65 65 65 65 65 65 65 65 6
800517 SWH72434-3H-1H-1H-P	KASSW 39	MMS /9	8.09	71.6	0.37	88.6	7.4	54.0	9.02	60.6	2M
1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 7% Protein 4/ Observed Values Corrected to 7% Protein.	ito 14% Moisture Basi ce Corrected to 7% Pro ito 7% Protein.	s. tein.	5/ Pa 6/ Pr	Particularly Promising Ove	1 (1)	. H	overall lity Char	11 Qua	sing Overall Quality Ch Quality Characteristics	Tharact	Characteristics.

It appears many of these are excellent quality wheats. It should be noted that ABYTA 22 was judged a red wheat and ABYTA is distinctly a hard white selection. ABYTA 90 was low in flour yield. ABYTA 63 is outstanding. COMMENTS:

		5 27		

HYSLOP HARD RED WINTER

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO	28		CORVALLIS,	s, or					F.A. CHC	CHOLICK
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE
800518 800519 800520 800521 800522	PROFIT 75 SWD70250-01W-1P1H-1H0S SWD71424B-11H-2H-1H-0P SW07308879B-1H-1+-0S SWM731445*-1H-2H-H	HRAYT 3 HRAYT 6 6/ HRAYT 8 HRAYT 16 HRAYT 19	HRW HRW HRW HRW	63.6 64.0 64.4 64.0	72.2 71.7 72.6 67.0 70.2	0.44 0.39 0.42 0.37	85.0 87.0 86.2 83.1 84.5	10.01 10.01 10.09	61.7 64.9 64.6 62.0 64.4	53222 53222
800523 800524 800525 800526 800527	SWD71217-32H-01H-1H-2HH SWD71244B-11H-2H-3H-1HH SWD71424B-11H-2H-3H-3HH OWW74272H-1H-0H	HRAYT 25 HRAYT 26 HRAYT 27 HRAYT 28 HRAYT 38	HRW HRW HRW HRW	61.2 64.0 63.6 58.4 62.4	68.0 72.3 72.0 70.6	0.44 0.43 0.39 0.40	80.2 85.2 87.1 85.4 89.3	7.01 9.0 2.9 2.01	64, 4 63.5 63.2 63.2	3 ST WWW 3 ST WWW 3 ST WWW ST WW ST WWW ST WW ST WW ST WW ST WWW ST WW ST WW ST WWW ST WW WW ST
800528 800529 800530 800531 800532	SWM741926*-01P-1H-0H SWM742234*-09P-1P-0P SW0730864D-1P-2P-4S-0P SW0730894A-1P-5P-3S-0S SW0730902F-1H-1H-7H-0P	HRAYT 41 HRAYT 42 HRAYT 51 HRAYT 54 HRAYT 54	HRW HRW HRW HRW	63.6 64.0 62.4 60.0 62.8	73.7 70.5 70.5 68.5	0.39 0.35 0.39 0.42	883.55 833.55 955	8.8 7.01 8.9 8.9	62.2 62.8 64.6 62.2	23 - 22 23 - 22
800533 800534 800535 800535 800536	SW0730902F-1H-1P-1P-0P SW0731151A-2H-1H-2H-0P SW0731151A-2H-1S-2S-0P SW0731151A-2H-1S-3S-0P SW0731151C-3H-3P-2P-0P	HRAYT 60 HRAYT 63 HRAYT 65 HRAYT 66 HRAYT 66	HRW HRW 6/ HRW HRW HRW	622.4 622.4 623.4 623.4 623.4	70.8 72.6 73.4 73.4	0.39 0.39 0.36 0.35	86.0 88.0 90.0 91.1	0.01	622.7 662.6 62.3 662.3 662.3	S S S S S S S S S S S S S S S S S S S
800538 800539	SWM73086S*-6H-1S-1S-0S SW0730902F-1H-2P-0H	HRAYT 80 (ABYTA 115	6/ HRW 5 HRW	64.0	70.8	0.40	85.5	10.6	63.2	2M 2M

NURSCO 28		CORVALLIS,	s, or					F.A. CHOLICK	×
LABNUM VARIETY	IDNO	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	
800518 PROFIT 75 800519 SWD70250-01W-1P1H-1H0S 800520 SWD71424B-11H-2H-1H-0P 800521 SW07308879B-1H-1+-0S 800522 SWM731445*-1H-2H-H	HRAYT 3 HRAYT 6 HRAYT 8 HRAYT 16 HRAYT 19	HRW HRW HRW HRW	658.0 668.9 66.9 67.9	65.9 68.8 66.2 68.6	7.00 2.00 4.00 4.00	750 922 883 945 867	806 965 877 920 910	oamar	
800524 SWD71217-32H-01H-1H-2HH 800525 SWD71244B-11H-2H-3H-1HH 800526 OWW74272H-1H-0H 800527 OWW71266-2-11EH	HH HRAYT 26 HH HRAYT 27 HH HRAYT 28 HRAYT 38	HRW HRW HRW HRW	69.3 66.7 65.0 65.0	68.7 68.4 655.8 65.9	0.0.00 0.00 0.00	990 800 867 870 930	947 862 917 920 911	てひめでは	
800528 SWM741926*-01P-1H-0H 800529 SWM742234*-09P-1P-0P 800530 SW0730864D-1P-2P-4S-0P 800531 SW0730894A-1P-5P-3S-0S 800532 SW0730902F-1H-1H-7H-0P	HRAYT 41 HRAYT 42 HRAYT 51 HRAYT 54 HRAYT 54	HRW HRW HHRW HRW	665.2 666.5 70.6 63.4	66.4 665.0 685.8 63.6	0.40.6.0	847 955 890 1050 865	921 924 847 938	0 N N N T C 00	
800533 SW0730902F-1H-1P-1P-0P 800534 SW0731151A-2H-1H-2H-0P 800535 SW0731151A-2H-1S-2S-0P 800536 SW0731151A-2H-1S-3S-0P 800537 SW0731151C-3H-3P-2P-0P	P HRAYT 63 HRAYT 63 HRAYT 65 HRAYT 66 P HRAYT 66	HRW HRW HRW HRW	66.9 66.6 65.4 66.1	66.9 65.8 67.0 67.0	28.87-0	890 930 912 945 952	890 880 893 908	ひひないり	
800539 SWM73086S*-6H-1S-1S-0 800539 SWO730902F-1H-2P-0H	S HRAYT ABYTA	80 HRW 115 HRW	68.0	68.8	3.9	910	1040	NN	
1/ Observed Values Corre 3/ Absorption at 14% Moi	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 10% Protein	is. rotein.	5/ Pa. 6/ Pro	Particularly Promising Ove	Promi erall	ing Overall	sing Overall Quality Ch Quality Characteristics	ity Characteristics istics.	eristics.

were too short and crumb grains of poor quality. Those that had good milling were poor in baking performance loaf volumn, and too poor in crumb grain to be Profit 75. Therefore all others were judged only on their The baking properties of Profit 75 are atypical of the variety. It is too short in mixing time, low in own merit since no other variety of known quality was submitted for a check. As a group the mix times or vise-versa. HRAYT 80 is the best overall quality. COMMENTS:

Observed Values Corrected to 10% Protein.

	T.		
(S)			
(_)			
(_)			
1 0 0 12 po			
1 0 0 12 po			
TO BUT BUT			
TO BUT BUT			
TO BUT BUT			
LAME AND THE OF			
1 0 0 12 po			
CLAMB GUSTRE OF			
CLAMB GUSTRE OF			
LAME AND THE OF			
THE CLAME GESTING OF			
CLAMB GUSTRE OF			

		gas file last til der e f	
	2 4 4 4 4 5 5 5 5 5 5		

WESTERN REGIONAL HARD RED WINTER

29 NURSCO

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

PENDLIN, MORO, &LIND

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	FABSC	FPEAK	FSTAB
800540 800541 800541 800542 800543	KHARKOF WANSER MANNING UTAH SEL.890152 WESTON	C1001442 C1013844 C1017846 UT 890152 C1017727	HRW HRW HRW HRW	61.9 63.2 61.2 62.4	67.5 71.4 70.4 68.5	0.45 0.40 0.40 0.40	77.4 84.0 83.4 80.6 79.4	01 00 00 00 00 00 00 00 00 00 00 00 00 0	64.2 61.3 65.7 65.7 66.8	0.0880	200000 200000
800545 800546 800547 800548 800548	BAN/KO/178383/3/11-60-156/14107 C1 14106/MC/3/WRR//KO/178383 HEGLAR/1D 5006 SUWON 92/6*BURT//FALCO/2*BURT 178383/1TANA//DM/3/WN/4/BURT/178383//BGR	1D 0154 1D 0157 1D 0158 WA 6582 UT 927124	6/HRW HRW HRW HRW 6/HRW	61.6 62.3 64.0 61.8	70.5 68.6 67.7 69.4 70.4	0.43 0.42 0.41 0.45 0.45	81.8 79.5 78.8 78.7 81.0	10.99.7.7.00 10.00	63.7 65.5 62.9 66.9	2.77 2.00 0.00	7.7 7.5 7.0 3.8 14.0
800550 800551 800552 800553 800553	DM/178383//CLM/3/SCT/4/BURT/178383//BGR BEZOSTAJA//BURT/178383/3/ARK BEZOSTAJA//BURT/178383/3/ARK 1D 5011/WA 4765//1D 5011 BEZOSTAJA//BURT/178383/1D 5011/1D 5006	UT 930082 ID 51021 ID 51022 ID 51032 ID 51031	HRW SRW SRW HRW	62.3 63.0 62.6 61.1	68.9 67.7 64.1 65.1	0.40 0.42 0.38 0.43 0.43	80.8 78.2 72.5 70.8 73.6	12.7.3	66.0 73.6 63.5 63.5	0.7.0	07.82.0 07.820
800555 800556 800557 800558 800558	SON 64/11-60-155//HEG/3/WRR//KO/178383 A 667 W-46/RANGER TRIUMP/LANCER, SEL.126 K6901513//WA5436/WA4564 WA5836/KN700007	1D 0178 1D 0179 OR 792 WA 6584 WA 6695	HRW SRW HRW HRW	61.2 63.7 62.6 63.0 62.6	63.6 69.3 68.6 67.8	0.40 0.40 0.40 0.45 0.45	71.6 81.2 79.7 78.3 79.2	000000000000000000000000000000000000000	64.7 64.3 57.8 64.1	127-1-1	14391138 0.1.0.0
800560 800561 800562 800563 800563	RGR/3/11-60-156/1407//1T A667W-46/3/11-60-156/14107//1T FRD/BEZ C 61-9/WLT//CRT C 61-9/WLT//CRT	10 0207 10 0208 MT 77002 MT 77066	6/HRW HWW HRW HRW HRW	61.4 60.4 63.3 62.1	70.9 69.2 69.5 68.4	0.42 0.42 0.41 0.41	82.7 80.0 81.3 78.1	10.1 10.0 10.0 10.0 0.0	62.2 60.1 63.5 65.0	33.765	87.000
800565 800566 800567	BEZOSTAJA/SPRAGUE, SEL.18-24 CLARIFEN/WA5836, SEL.27-26 BEZOOSTAJA/REW, SEL.42-31	OR 7921 OR 7925 OR 7930	HRW HRW SRW	63.2	66.2	0.39	76.7	10.6	62.6 63.4 58.6	7.2	200
1/ 0 3/ A	Observed Values Corrected to 14% Moisture Basi Absorption at 14% Moisture Corrected to 10% Pr	ure Basis to 10% Pro	tein.	5/ Pa 6/ Pr	rticula	rly Proposeral	mising 0 1 Qualit	Overall ty Chara	Quality	Charactics.	eristics

Observed Values Corrected to 10% Protein. 1

Samples studied were made by compositing seed in equal parts from seed grown at Pendleton and Moro, OR and were 1-2% lower in mean protein than the selected locations which in themselves were border line for mean-Other nurseries received Lind, WA. These sites were selected because of their higher protein contents. ingful differentiation of baking quality. COMMENTS:

In spite of good test wt. (fully filled kernels) the flour yield on the entire group is lower than expected Flour milling evaluation was made by using the mean flour yield and milling score for Wanser and Manning. ID 0154, UT927124, ID 0179(HWW), ID 0207 and The only selections with acceptable milling quality are: MT 77002.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 29

PENDLIN, MORO, &LIND

C1001444 C1017844 C1017846 UT 890152 C1017727
1D 0154 1D 0157 1D 0158 WA 6582 UT 927124
UT 930082 1D 51021 1D 51022 1D 51032 1D 51031
1D 0178 1D 0179 0R 792 WA 6584 WA 6695
MAMPO
OR 7921 OR 7925 OR 7930

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 12/9 Absorption at 14% Moisture Corrected to 10% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 10% Protein. 1/ Observed 3/ Absorp 4/ Observed COMMENTS:

OR 792, WA 6695 and ID 0208 (HWW).

It should also be noted that four of the selections entered have soft endosperm characteristics and would Of the five selections with promising milling properties three also have acceptable bread baking be classified as SRW. These are ID 51021, ID 51032, OR 792 and OR 7930.

Those selections that are equal to or better than Western in overall quality are: UT 930082, ID 51021, properties. ID 0179 and MT 77002 both had low baf volume and questionable crumb grain.

NURSCO 30

PENDLN, KALISL, &POMY

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VISC	VISCC	CODI	COD1C	MABSC MTYPE	PE
800568 KARKOF 800569 ELGIN 800570 MORO 800571 NUGAINES 800572 STEPENS		C1001442 C1011755 C1013740 C1013968	HRW CLUB CLUB SWW SWW	60.7 58.8 60.8 59.7	65.8 72.4 71.4 68.9 70.9	0.44 0.42 0.40 0.40	73.7 84.3 83.2 78.8 81.8	7.59	136 38 40 45 37	63 33 38 47 31	8.16 9.01 9.21 8.82 8.97	8.35 9.22 9.22 9.03	58.7 3M 52.5 2L 52.8 2L 54.0 2L	
800573 FARO 800574 SUWON 92/3*OMAR//MORO, 800575 YAMHILL/HYSLOP 800576 LUKE/WA 5829 800577 WA 4765//BURT/PI 178383	//MORO, 142 1 178383	C1017590 0R7142 0R68007 5/ WA 6363 5/ ID 745318 6/	CLUB CLUB SWW SWW SWW	58.3 59.5 60.3 61.2	71.4 69.2 72.3 71.2 69.8	0.42 0.41 0.39 0.40	82.5 79.9 84.6 81.1 77.9	7.1	339	38	8.88 8.87 8.93 9.14	8.89 8.88 9.00 9.12 8.83	52.5 2L 51.8 2L 54.1 3L 54.1 3L	
800578 WA 4765//BURT/PI 178383 800579 LUKE/NORCO, VH 74333 800580 CI 15923//NORD DESPREZ/2*101 800581 SEMIDWARF MULTILINE CLUB 800582 YAMHILL/HYSLOP	178383 74333 DESPREZ/2*101 LINE CLUB	C1017730 6/ WA 6470 5/ WA 6471 5/ WA 6472 5/ OR 680073 5	SWW SWW SWW SWW 56LUB	59.7 60.0 60.0 59.3	70.6 72.7 70.6 71.7 72.1	0.46 0.38 0.41 0.39	77.1 85.0 80.4 84.8	7.17.7.26.99	33	35	8.85 9.21 8.65 9.07	8.86 9.26 8.67 9.06 9.08	54.0 3L 54.4 4L 55.2 4L 57.0 2L 52.6 3L	
800583 TYEE 800584 CI 14484/K 691533, VH 07 800585 VD 67217/VB 67297, VD 07 800586 REW/LUKE, SEL.305 800587 CI 14482/MORO, SEL.E 109	33, VH 075847 97, VD 075211 05 SEL.E 109	C1017773 WA 6580 WA 6581 OR 7794 OR 797	CLUB SWW CLUB SWW SWW	58.4 60.5 62.1 59.8	69.6 69.2 72.4 70.6	0.39 0.40 0.39 0.39	81.2 78.8 80.3 83.5 81.4	7.086.7	38 33	43	9.06 9.00 9.07 88.88 8.95	9.02 8.98 9.10 8.86 8.95	52.5 2L 54.2 4L 53.1 2L 54.9 3L 54.8 2L	
800588 DAWS/WA5829, VH078141 800589 HYSLOP/BRUEHL70-254-6 800590 SU92/6*0/3/T.SPELTA/C	DAWS/WA5829, VH078141 HYSLOP/BRUEHL70-254-6, VH078632 SU92/6*0/3/T.SPELTA/CTL//3*0,SEL.A7815	WA 6696 WA 6697 WA 6698 5/	SWW SWW CLUB	61.4 58.1 61.3	69.5 67.8 71.5	0.41	78.7 74.9 84.2	6.8	31	33	8.63 8.86 9.04	8.61 8.87 9.04	54.2 5L 55.4 5L 50.4 2L	
1/ Observed Values	1/ Observed Values Corrected to 14% Moisture Basis.	ture Basis		5/ Pa	rticularlu		Promising		Overall	Ouali	tu	harac	Characteristics.	_

Promising Overall Quality Characteristics. 1010 Absorption at 14% Moisture Corrected to 7% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 7% Protein.

the milling and baking quality tests. OR 7142 was about 2% lower in flour yield than Moro or Faro, which A three location composite of equal parts from Pendleton, OR, Kalispell, MT and Pomeroy, WA was made for yield). WA 6696 is low in flour yield, milling score and marginal in cookie diameter. WA 6697 is poor is significant. WA 6581 is more similiar to Tyee in overall quality than to Moro or Faro (lower flour in all milling characteristics. COMMENTS:

3.1 NURSCO

KALISL, R. S., &TWIN

LABNUM	VARIETY	ONG	CLASS	- M	FYELD	FASH 1/	MSCOR	FPROT	FABSC	FPEAK	FSTAB	BABS
800591 800592 800593 800594 800594	BORAH (HARD RED SPRING'S) ROQUE 66/FREMONT K6901495/MN206268 MRN/TBR66/3/TZPP/AN3//B61-136 BORAH/3/11-60-//TZPP/SN64	C1017267 UT 25910 WA 6510 ID 0167	HRS HRS HRS HRS	61.08 62.12 59.14	722.72	00000 00000 00000	83.7 80.7 80.4 33.4	L1001 2001 87748	65.07 68.99 7.007	たりいい たっぴっぴ	たっちののコ	655 685 72 72 72 72 72 72 72 72 72 72 72 72 72
800596 800597 800598 800599 800600	BANNOCK/FREMONT BANNOCK/FREMONT K6901496/ERA K71051/WA5949	UT 88123 UT 88129 WA 6748 WA 6749	2 5/HRS 2 6/HRS 6/HRS 6/HRS	62.6 61.2 60.3 60.3	771.17	00.448	882.7	000	61.6 64.8 61.4 62.8 64.6	らららい	0,0000 muoovo	667-2 669-2 665-2 67-5 67-5
800601 800602 800603 800604 800604	BANNOCK/FREMONT BANNOCK/FREMONT BANNOCK/738~274~1 BANNOCK/738~274~1	UT 88139 UT 54177 UT 54177 UT 54177	HRS HRS HRS 7 HRS HRS	000000	683773	0.44 0.44 0.37 0.37	75.0 77.9 82.2 80.4	-000 -000 -000 -000 -000	66.99	4 t t t t t t t t t t t t t t t t t t t	NN N N N N N N N N N N N N N N N N N N	667.55
800606 800607 800608 800609 800610	BORAH/3//11-60-101//TZPP/SN64 BORAH/1D0033 SN64/WN/4/LEE//NO 58/TC/3/TZPP/SN64 1D0042/A6546S-2-2 BLUEBIRD SIB/ANZA	10 0134 10 0162 10 0165 10 0166 00 353	H H H H H H S S S S S S S S S S S S S S	60.00	7.699	0000.0000000000000000000000000000000000	87 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		665.77	N + 5 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6	-NEOV	71.0 67.6 66.5 60.9
800611 800612 800613 800614 800615	C113232/RAMONA//ANZA FEDERATION (SOFT WHITE SPRING'S) FIELDWIN A71365-5-2-3 ID0053/A6596S-A-21-1	UC 355 C1004734 C1017425 ID 0144 ID 0183	HRS SWS SWS O/SWS	60000 60000 60000	67 .8 69 .7 70 .4 70 .1	00.38	77.7 78.0 82.1 81.9	000000	65.9	7.	S	63.6
800616 800617 800618 800619 800620	A6543S-14-1-3/A6596S-A-21-1 A7250S-A-8-1 A7243S-A-3-1 A7244S-B-2-1 C114482/K6202578R21	10 0184 10 0185 10 0187 WA 6402	SWS SWS SWS SWS Id/SWS	000000000000000000000000000000000000000	70.2 70.0 68.4 73.5	+ a a e a a a a a a a a a a a a a a a a	82.0 78.7 79.7 84.3	000000				
800621 800622 800623 800624 800624	VC070954/FIELDER VC070954/FIELDER K7105153/1055 1049/WA5947 K7105152/1053	WA 6615 WA 6616 WA 6619 WA 6751	SWS 5/SWS 6/SWS 6/SWS	63.2 63.2 59.7 59.9	73.4 70.4 70.3 70.3	0.36 0.37 0.37 0.42	86.3 83.2 81.6 77.9	800008 6000w				

^{6/} Promising Overall Quality Characteristics. Absorption at 14% Moisture Corrected to 10% Protein. Observed Values Corrected to 10% Protein. 12/41

S
NG
Z
PR
SF
i
NAL
0
-
0
REG
Z
FR
لنا
S
WES
-

NURSCO 31

-			
Y			
ъ,			
~			
~			
z.	`		
z.	`		
AN.			
AN.			
MAN.			
MAN.			
MAN.			
LMAN.	`		
LMAN.			
LLMAN.			
JLLMAN.			
ULLMAN.			
ULLMAN.			
PULLMAN.			
PULLMAN.			

USDA, SEA AR WESTERN WHEAT QUALITY LAB.

KALISL, R.S., &TWIN F

LABNUM	IDNO	CLASS	BABSC 3/	W W	TOAT	LVOLC	BCRGR	CODI	COD1C	MABSC 3/	MTYPE
800591 BORAH (HARD RED SPRING'S) 800592 ROQUE 66/FREMONT 800593 K6901495/MN206268 800594 MRN/TBR66/3/TZPP/AN3//B61-136 800595 BORAH/3/II-60-//TZPP/SN64	C1017267 UT 25910 WA 6510 ID 0167	HRS HRS HRS HRS	64.6 64.0 67.3 70.3	00mm0 -01.00	0220000	1009 1030 1065 1065	00000			655.0 655.0 655.0 655.0	422 424 424 424 424 424 424 424 424 424
800596 BANNOCK/FREMONT 800597 BANNOCK/FREMONT 800598 K6901496/ERA 800599 K71051/WA5949 800600 K71051/WA5949	UT 881235 UT 881292 WA 6748 WA 6749	HRS HRS HRS HRS	66.6 67.7 65.3 67.1 67.5	wwwww wwww	12200	1103 1105 1005 1065	0-000			65.2 66.3 64.7 664.7	7 7 7 7 7 7 7 7
800602 BANNOCK/FREMONT 800602 BANNOCK/FREMONT 800603 BANNOCK/738-274-1 800604 BANNOCK/738-274-1 800605 BANNOCK/738-274-1	UT 881389 UT 5417711 UT 5417774 UT 5417774	H H H H H H H N S S S S S S S S	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	# W W O W W	11000 0000 0000 0000 0000 0000 0000	1206 1077 969 1100 1030	~~~~~			665.8 65.2 65.2 65.0	M M M H H T T T T T T T T T T T T T T T
800606 BORAH/3//!1-60-101//TZPP/SN64 800607 BORAH/!DD033 800608 SN64/WN/4/LEE//NO 58/TC/3/TZPP/SN64 800609 !D0042/A6546S-2-2 800610 BLUEBIRD SIB/ANZA	1D 0134 1D 0162 1D 0165 1D 0166 UC 353	H H H K S R S R K	6663.0	455000	10125	1010 1063 989 1109	N N M			67.9 63.7 66.8 62.8	3 3 3 3 3 3 3 3 3 3
800611 C113232/RAMONA//ANZA 800612 FEDERATION (SOFT WHITE SPRING'S) 800613 FIELDWIN 800614 A71365-5-2-3 800615 ID0053/A6596S-A-21-1	UC 355 C1004734 C1017425 ID 0144 ID 0183	HRS SWS SWS SWS SWS	62.8		1088	1038	α	8.92 8.99 7.90 9.16	98.83	55.8 55.8 55.8	ALZZI
800616 A6543S-14-1-3/A6596S-A-21-1 800617 A7250S-A-8-1 800618 A7243S-A-3-1 800619 A7244S-B-2-1 800620 CI14482/K6202578R21	10 0184 10 0185 10 0187 10 0188 WA 6402	SWS SWS SWS SWS						99.23	8	2525 2525 2525 2525 253 253 253 253 253	ME LINE
800621 VG070954/FIELDER 800622 VG070954/FIELDER 800623 K7105153/1055 800624 ID49/WA5947 800625 K7105152/1053	WA 6615 WA 6619 WA 6619 WA 6751	SWS SWS SWS SWS SWS						90.34 90.03 9.09	9.16	55.0 55.0 55.0 55.0	22L 22M 22L 22L

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	LAB.	WESTER	WESTERN REGIONAL SPRING'S	AL SPRIN	16°5							PAGE 2
NURSCO 31		KAL	KALISL, R. S., &TWIN F	&TWIN F								
LABNUM	VARIETY	ONGI	CLASS TWT	TWT	FYELD	FYELD FASH	MSCOR	MSCOR FPROT	FABSC	FABSC FPEAK FSTAB BABS	FSTAB	BABS
800626 N7000315/1D65 800627 HYSLOP/FIELDER		WA 6753 ID 0172	SWS	61.6	70.8 0.45	000	79.0	4.6				

CONTD. PAGE 2

NURSCO 31

KALISL, R. S., &TWIN F

(HRS) A composite of equal parts was made from seed grown at Kalispell, MT, Royal Slope, Wa, and Twin Falls, MTYPE MABSC 55.7 CODIC 4/ 8.60 8.67 CODI BCRGR LVOLC 4/ LVOL MTIME BABSC CLASS SMS WA 6753 10 0172 ONG VARIETY 800626 N7000315/1D65 800627 HYSLOP/FIELDER COMMENTS: LABNUM

and low milling score are ID 153, UT 881292, UT 881397, UT 541771, ID 134 and UC 355. UC 353 was acceptable questionable are ID 167, UT 881389, UT 541777, ID 162, ID 165, ID 166; those which had poor flour yield Several of the HRS selections appear questionable to pool in milling. Those selections that are ID 187 and WA 6725 were poor in milling properties. WA 6753 had a low milling score because of high (SWS) In the soft white selections most appear equal to or better than Fieldwin in overall quality. in milling but was too short in dough mixing properties and slightly heavy crumb grain. flour ash and had a small cookie spread,

	۱B.	
	LITY LA	
AR	EAT QUAL	۵.
SEA AR	ERN WHEAT	JAN, MI
SDA,	ESTERN	ULLMAR

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	FL		STUDY							PAGE 1
NURSCO 32		PULLMAN,	MA					R	LINE	
LABNUM	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	CODI	CODIC 4/
800628 LEMH! 800629 LEMH! TREATED 800631 MARFED 800631 MARFED TREATED 800632 TWIN	C1011415 C1011415 C1011919 C1011919	SWS SWS SWS SWS SWS	60.4 61.6 59.6 58.0	73.9 73.7 70.4 71.1	0.47 0.47 0.48 0.47 0.54	85.0 84.8 80.3 81.4 78.5	9.4 10.4 11.3 10.1	51.9 51.6 57.7 54.7	9.20 9.35 9.04 8.89	9.13 9.39 9.16 9.06
800633 TWIN TREATED 800634 SPRINGFIELD 800635 SPRINGFIELD TREATED 800636 WARED 800637 WARED TREATED	C1014588 C1014589 C1014589 C1015926 C1015926	SWS SWS SWS HRS	60.0 59.2 60.0 61.6	73.5 74.3 75.0 75.5	0.54 0.49 0.49 0.41	80.3 84.7 85.6 89.1	10.05	54.3 51.2 59.5 58.9	9.24 9.20 8.74 8.66	9.17 9.22 9.20 8.84 8.77
800638 BORAH 800639 BORAH TREATED 800640 FIELDER 800641 FIELDER TREATED 800642 FIELDWIN	C1017267 C1017267 C1017268 C1017268	HRS HRS SWS SWS SWS	62.4 62.8 60.8 61.6	75.8 73.3 73.7 73.8	0.36 0.34 0.45 0.45 0.46	92.7 93.1 85.9 87.2 85.5	12.1 9.0 9.7 9.8	58.2 58.5 50.5 51.0	8.61 9.15 9.14 8.89	8.78 8.66 9.004 9.10
800643 FIELDWIN TREATED 800644 WAMPUM 800645 WAMPUM TREATED 800646 DIRKWIN 800647 DIRKWIN TREATED	C1017425 C1017691 C1017691 C1017745	SWS HRS HRS SWS	62.0 61.2 61.2 58.4 58.4	74.2 74.2 74.8 73.6	0.43 0.43 0.54 0.50	86.8 87.4 88.1 80.1	4.0000000000000000000000000000000000000	50.9 60.2 60.1 50.1 50.0	8.92 8.73 8.98 9.05 8.95	8.86 8.83 9.08 9.04 8.95
800648 WALLADAY 800649 WALLADAY TREATED 800650 LEMH! LB-1 800651 LEMH! LC-7 800652 LEMH! LC-7	C1017759 C1017759 C1011415 C1011415	SWS SWS SWS SWS SWS	57.2 59.2 60.4 61.2 60.8	69.4 70.5 73.0 73.2	0.50 0.49 0.45 0.45	77.9 79.8 85.0 85.9	9.00 0.00 0.00 4.00	53.6 53.6 51.0 50.4	8.95 9.04 9.16 9.05	8.94 9.04 9.15 9.20
800653 LEMHI LC-13 800654 LEMHI LC-1 800655 LEMHI LB-7 800656 LEMHI LB-11 800657 LEMHI LB-13	C1011415 C1011415 C1011415 C1011415	SWS SWS SWS SWS SWS	61.6 60.0 60.8 60.8	74.2 72.5 73.8 73.7	0.48 0.49 0.50 0.50	84.8 82.4 84.0 82.9 83.9	11.0	50.5 51.6 50.8 50.3	9.05 9.05 9.24 9.09	9.16 9.34 9.31 9.20
800658 WALLADAY WC-1 800659 WALLADAY WC-7 800660 WALLADAY WC-11 800661 WALLADAY WC-13 800662 WALLADAY WB-1	C1017759 C1017759 C1017759 C1017759	SWS SWS SWS SWS SWS	58.4 59.6 58.8 55.6	71.4 72.0 71.1 73.3 69.8	00.50	80.8 80.8 79.8 81.9 76.2	10.2 10.0 10.4 9.9	53.7 55.5 53.2 53.4	9.00 8.86 8.80 9.20	88.88 8.98 9.98

rd. PAGE 1	Z.E.	BCRGR		~ ~	~ ~	Ν Ν			
CONTD	R. LIN	LVOLC BCF		1019	978 976	1033			
		LVOL		1100	1100	11107			
		MTIME		2.6	 	8. F.			
		BABSC 3/		62.7	61.4	63.9			
		BABS		64.0 62.5	63.5	65.1			
STUDY	WA	MTYPE	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	33112 33113 3313 3313 3313 3313 3313 33	Z Z Z Z H H	Δ 2 3 3 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10133 MMMMM MMMMM	H H H H H H H H H H H H H H H H H H H	XXXXX
FUNGICIDE STUDY	PULLMAN,	CLASS	SWS SWS SWS SWS	SWS SWS SWS HRS HRS	HRS HRS SWS SWS SWS	SWS HRS HRS SWS SWS	SWS SWS SWS SWS	SWS SWS SWS SWS	SWS SWS SWS SWS
U.F.		ONO	C1011415 C1011415 C1011919 C1011919 C1011588	C1014588 C1014589 C1014589 C1015926 C1015926	C1017267 C1017267 C1017268 C1017268 C1017425	C1017425 C1017691 C1017691 C1017745	C1017759 C1017759 C1011415 C1011415	C1011415 C1011415 C1011415 C1011415	C1017759 C1017759 C1017759 C1017759
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 32	LABNUM	800628 LEMHI 800629 LEMHI TREATED 800630 MARFED 800631 MARFED TREATED 800632 TWIN	800633 TWIN TREATED 800634 SPRINGFIELD 800635 SPRINGFIELD TREATED 800636 WARED 800637 WARED TREATED	800638 BORAH TREATED 800639 BORAH TREATED 800640 FIELDER 800641 FIELDER TREATED 800642 FIELDWIN	800643 FIELDWIN TREATED 800644 WAMPUM 800645 WAMPUM TREATED 800646 DIRKWIN 800647 DIRKWIN TREATED	800648 WALLADAY 800649 WALLADAY TREATED 800650 LEMH! LB-1 800651 LEMH! LC-7 800652 LEMH! LC-7	800653 LEMH! LC-13 800654 LEMH! LC-1 800655 LEMH! LB-7 800656 LEMH! LB-11 800657 LEMH! LB-13	800658 WALLADAY WC-1 800659 WALLADAY WC-7 800660 WALLADAY WC-11 800661 WALLADAY WC-13 800662 WALLADAY WB-1

My. Um take

1 m 10 m 10 m

LAB.	
QUALITY	
WHEAT	WA
	PULLMAN.
	QUALITY

FUNGICIDE STUDY

N

CONTD. PAGE

URSCO 32			PULLMAN, WA	WA					æ.	LINE
ABNUM	VARIETY	IDNO	CLASS	MTYPE	BABS	BABSC	MTIME	LVOL	LVOLC	BCRGR
						3/			4/	
00663 WALLADAY WB-7 00664 WALLADAY WB-11 00665 WALLADAY WB-13		C1017759 C1017759 C1017759	SWS SWS SWS	ZZZ 888						

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 10/2 Absorption at 14% Moisture Corrected to 10% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 10% Protein.

800

ABBREVIATIONS: WC = Walladay Check (Non treated seed)

WB = "Treated (Bayleton treated IC = Lembi Check (Non treated social)

seed)

LC = Lemhi Check (Non treated seed) LB = Treated (Bayleton treated seed)

1 = Check (Unsprayed, but heat treated seed)

7 = Sprayed with Bayleton

11 = Sprayed with BAS-421
13 = Sprayed with CGA-65250

Small improvements in test weight, flour yield, and milling score generally was reflected with the Bayleton performance than the other treated methods. We believe a mistake of identity may have occurred with Borah. Both the LC-1 and WB-1 treatments were poorer in milling The dough mixing properties were not typical for Borah. Baking results were not different. COMMENTS:

The second second second second

CASCY (Mail Process Casty)

UK TAMBET MORE TON TON TONETHOUSE

Mandan News Ass.

CANAGE TO COMPANY CONTRACTOR CONTRACTOR OF THE STATE OF T

THE PARTY OF THE P

Manual	NURSCO	33	hada.	PULLMAN,	MA						O	. F. KONZ	ZAK
UNDUIE NURSERY 31 NURSERY 32 NURSERY 32 NURSERY 33 NURSERY 34 NURSERY 35 NURSERY 35 NURSERY 35 NURSERY 35 NURSERY 35 NURSERY 37	ABNUM		10110	LAS	TWT	YEL	AMI	sco	a	88	CODI	00	МТУР
NURSERY 32 NURSERY 32 NURSERY 32 NURSERY 33 NURSERY 33 NURSERY 33 NURSERY 34 NURSERY 34 NURSERY 34 NURSERY 35 NURSERY 35 NURSERY 35 NURSERY 34 NURSERY 35 NURSERY 36 NURSERY 36 NURSERY 37 NURSER	800666 800667 800668 800669	URQUIE NURSERY	25057	SWS SWS SWS SWS	00000	00-0-	70007	4000m		00070	42707	-0-02	7222 7222 72222
NURSERY 34 NURSERY 34 NURSERY 34 NURSERY 35 NURSERY 35 NURSERY 37 NURSER	800671 800672 800673 800674 800675	NURSERY 32 URQUIE NURSERY 3	5549 5208 5209 5202 17413	SWS SWS SWS SWS	63-1-9	00000	mmmm.	00000		いたいなた	2-02	2000	
NURSERY 34 NURSERY 35 NURSERY 35 NURSERY 36 NURSERY 37 NURSER	800676 800677 800678 800679		5652 5652 5658 5613	SWS SWS SWS SWS SWS	m0000	-0-0-	27.000	000000	~0000 0000	7000pt	-00000	00040	
URQUIE NURSERY 35 K79-5560 6/SWS 60.8 70.9 0.36 88.3 10.1 57.8 9.10 9.22 6 K79-5569 SWS 58.8 70.0 0.42 83.3 9.9 57.8 9.41 9.51 28 K79-5599 SWS 60.0 77.1 0.40 86.3 8.0 57.0 9.23 9.28 22 22 K79-5599 SWS 60.0 77.1 0.40 86.3 8.0 57.0 9.23 9.26 9.23 21 K79-5599 SWS 60.0 77.1 0.40 86.3 8.0 57.0 9.23 9.26 9.23 21 K79-5504 SWS 60.4 72.1 0.41 86.6 8.7 56.3 9.26 9.23 21 K79-5094 SWS 60.4 77.6 0.34 90.7 8.7 57.3 8.90 8.87 61 K79-5094 SWS 60.4 77.6 0.34 90.7 8.7 57.3 8.90 8.87 61 K79-5094 SWS 60.4 77.0 0.36 88.8 9.1 57.9 8.92 8.94 77 K79-5094 SWS 60.4 77.0 0.35 88.8 9.1 57.9 8.92 8.94 77 K79-5094 SWS 60.4 77.0 0.35 88.8 9.1 57.9 8.92 8.94 77 K79-5094 SWS 60.4 77.0 0.35 88.8 9.1 57.9 8.92 8.94 77 K79-5094 SWS 60.4 77.0 0.39 8.0 55.1 9.29 9.35 44 K79-5094 SWS 60.4 77.0 0.39 8.0 56.1 9.11 8.99 21 Served Values Corrected to 14% Moisture Basis. 5/8 Particularly Promising Overall Quality Characteriss Sorption at 14% Moisture Corrected to 9% Protein. 6/8 Protein. 6/8 Promising Overall Quality Characteristics.	800681 800682 800683 800684 800684	NURSERY	566193	SWS SWS SWS SWS	00000	-01-00	200	67779	0,0000	70000		N-w-0	
NURSERY 36 NURSERY 37 NURSERY 36 NURSERY 37 NURSERY 38 NURSERY 37 NURSERY 38 NURSERY 37 NURSERY 38 NURSER	800686 800687 800688 800689	URQUIE NURSERY 3	50 13 79 89		00000	0001-0	r + c + c + c + c + c + c + c + c + c +	, i o o o o o	00000	6.15.17	いいのサー	2525	22L 22L 22L
URQUIE NURSERY 37 Served Values Corrected to 14% Moisture Basis. Served Values Corrected to 9% Protein.	800693 800693 800693 800694	NURSERY	2004	SWS SWS SWS SWS SWS	00000	-000-	27700	00000		70002	2000	2001-80	
served Values Corrected to 14% Moisture Basis. 5/ Particularly Promising Overall Quality Characteris sorption at 14% Moisture Corrected to 9% Protein. 6/ Promising Overall Quality Characteristics.	800697 800697 800698 800699	URQUIE NURSERY 3	190 190 1986 113 113	SWS SWS SWS SWS	00700	-0m	200004	80708		2007	2000-0	0,50,00	444 441 21 21
しかいしょくしょ なけない こうせきこう こうこうこう	1/ OP 3/ AP	served Values Corrected to 14% sorption at 14% Moisture Correcserved Values Corrected to 9% P	re Basis. 9% Prote	n.	Part	cular	Pro	sing Quali	eral	Quali	y Cha tics.	acter	N

Promising Overall Quality Characteristics. ग्रेग Absorption at 14% Moisture Corrected to 9% Protein. Observed Values Corrected to 9% Protein. upserved values corrected to 14%

	LAB.	
	QUALITY	
SEA AR	WHEAT	WA.
SDA, SE	ESTERN	ULLMAN,

PULLMAN, WA	IDNO CLASS TWI FYELD FASH	K79-5460 6/ SWS 58.0 71.2 0.39 K79-5593 6/ SWS 59.2 71.2 0.41 K79-5400 SWS 59.6 68.0 0.43 K79-5567 SWS 59.2 72.0 0.45 K79-5574 SWS 58.0 69.7 0.44	K79-5578 6/ SWS 60.0 72.5 0.43 K79-5602 6/ SWS 59.4 69.5 0.42 K79-5560 6/ SWS 59.6 70.9 0.38 K79-5650 6/ SWS 60.4 69.6 0.34 K79-5147 SWS 61.6 69.2 0.38	K79-5590 SWS 58.8 71.1 0.43 C1017413 SWS 61.6 72.7 0.39 K79-5097 $\frac{6}{2}$ / SWS 61.6 71.2 0.34 K79-5097 $\frac{6}{2}$ / SWS 60.8 72.8 0.38 K79-5096 $\frac{5}{2}$ / SWS 61.6 73.1 0.37	K79-5092 6/ SWS 62.0 73.6 0.38 K79-5089 6/ SWS 62.0 72.3 0.38 K79-5310 6/ SWS 63.2 73.0 0.39 K79-5095 6/ SWS 62.0 72.7 0.37 K79-5337 5/ SWS 64.0 75.2 0.40	K79-5134 6/ SWS 62.8 72.6 0.40 K79-5134 6/ SWS 63.2 72.8 0.41 K79-5170 6/ SWS 62.8 72.8 0.40 K79-5130 SWS 63.2 72.5 0.43 K79-5563 SWS 59.6 72.5 0.45	K79-5659 SWS 60.4 72.9 0.42 K79-5135 SWS 62.4 71.1 0.45 K79-5288 6/5 SWS 60.8 73.0 0.43 C1017413 SWS 60.4 73.5 0.43 K79-5557 SWS 62.0 72.4 0.44	K79-5592 SWS 59.2 72.1 0.45 K79-5559 5/ SWS 61.2 74.4 0.40 K79-5561 SWS 57.6 71.5 0.42 K79-5316 5/ SWS 63.2 72.9 0.37 K79-5326 5/ SWS 62.4 72.7 0.39
33	LABNUM	800701 800702 800703 800704 800704	800706 NURSERY 38 800707 800708 800709 800710	800711 800712 URQUIE NURSERY 39 800713 800714 800715	800716 800717 800718 800719 800720	800721 800722 800723 800724 NURSERY 40 800725	800726 800727 800729 800729 URQUIE NURSERY 41 800730	800731 800732 800733 NURSERY 42 800734 800735

NURSCO 33			PULLMAN, WA	MA						C.	C.F. KONZAK	ZAK
LABNUM	VARIETY	IDNO	CLASS TWT	TWI	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	1000	COD1C	CODIC MTYPE
800736 800737 800738		K79-5496 K79-5332 K79-5280	sms /9	60.8 62.4 61.6	71.1772.7773.4	0.39	88.4 888.4 888.6	886	52.9 52.7 53.2	9.24 9.29 9.20	9.17	31

outstanding in milling quality. Others not footnoted are questionable in milling quality. NURSERY #41-#42: quality. NURSERY # 33-#34: Selections K79-5652, 5613, 5599, and 5656 were 1-2% lower in flour yield and not noted with footnotes, were questionable in milling quality. NURSERY #39-#40: Selection K79-5337 is down in overall milling quality compared to Urquie. NURSERY #35-#38: Several selections in this group, NURSERY #31-#32: Most of the selections from these two nurseries were superior to Urquie in overall There are several particularly promising selections in this group.

COMMENTS:

NURSCO 34		PULLMAN,	, WA						O	C. F. KONZAK	ZAK
LABNUM	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FFROT 1/	MABSC 3/	C0D1	COD1C	MTYPE
800739 URQUIE Nursery #30 800740 800741 800742 800743	C1017413 K7905234 K7905236 K7905237 K7905239		63.2 59.6 59.8 59.8	74.6 74.8 74.9 74.3	0.40 0.38 0.37 0.38	90.8 92.0 92.9 91.7	0,00000 0,00000 0,0000	55.2 54.3 54.1 54.2	9.27 9.37 9.29 9.29	9.36 9.30 9.48 9.27 9.49	274 321 331
800744 800746 800747 800747	K7905241 K7905241 K7905243 K7905245	545 545 545 545 545 545 545 545 545 545	59.6 58.0 60.0 59.2 61.2	74.2 73.2 75.2 73.9	0.40 0.41 0.38 0.38	90.0 88.5 92.4 90.7 87.1	0.0888	53.4 54.0 54.0	9.26 9.24 9.37 9.22 9.25	9.26 9.26 9.26 9.18	31 41 31 2M
800749 800750 800751 800752	K7905252 K7905317 K7905328 K7905333	sws /9	60.8 62.8 60.0 63.2	74.0 72.7 73.7 73.5	0.43 0.38 0.45 0.36	87.7 89.2 86.1 91.6	9.5	53.8 55.0 54.5 54.8	9.44 9.61 9.20 9.37	9.35	2L 234 33M
1/ Observed Values Corrected to 14% Moisture Basis. $3/$ Absorption at 14% Moisture Corrected to 9% Protein. $4/$ Observed Values Corrected to 9% Protein.	4% Moisture Basistrected to 9% Pro:	s. tein.	5/ Pa 6/ Pr	Particularly Promising Ove	·1y ove	· H	Ove	a	· 1-1	Characi ics.	Characteristics. cs.

This group of soft white spring selections have exceptional overall quality. Urquie, the check variety, too was unusually good. Judgement was made compared to Urquie. Selection K7905328 was sufficiently low in flour yield and high in flour ash to be questionable. COMMENTS:

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE	1000
800753 URQUIE 800754 WAMPUM 800756 800757 800758		C1017413 C1017691 K7806155 K7806271	SWS HRS SWS 6/ SWS SWS SWS	59.5 61.5 57.9 60.1	73.1 72.6 73.1 75.2	0.40 0.42 0.41 0.42 0.38	83.9 85.2 88.7 86.7	7.1 9.0 7.9 7.8	52.0 55.7 52.3 52.3	2L 4M 3L 3L	9.19 8.54 8.89 8.89
800759 800760 800761 800762 800763		K7806294 K7806306 K7806310 K7806315	SMS 19 SMS 19 SMS 8MS	59.2 59.9 57.4 58.3	73.4 72.6 72.4 70.1	0.38 0.39 0.39 0.37	86.6 85.4 84.8 81.7	88.7 7.7 7.9	53.5 54.1 52.6 53.2 51.7	66 44 44 57	8.62 8.80 8.99 9.37 8.87
800764 800765 800766 800767 800768		K7806333 K7806337 K7806340 K7806427 K7806427	SWS SWS SWS SWS SWS	58.3 60.0 60.1 58.3	71.2 73.5 74.0 71.0	0.39 0.41 0.41 0.39 0.39	81.8 85.2 86.9 82.7	7.4 8.0 8.1 8.0 7.8	53.9 53.4 53.4 53.1	3L 5L 3L 3L	8.95 8.92 8.84 8.84 9.04
800769 800770 800771 800772 800773		K7806623 K7806789 K7806806 K7806821 K7806835	SMS SMS SMS SMS SMS	59.3 59.3 59.3	68.5 72.1 71.8 68.6 69.5	0.40 0.45 0.42 0.42 0.45	78.2 80.1 80.2 77.5 78.2	7.8	503.9 503.9 503.9	32L 4L 31L	9.12 9.15 9.15 9.21
800774 800775		K7400297 K7806647	SWS	60.8	73.1	0.43	83.6	9.1	54.4	6L 2M	8.40

identified with footnotes. The deficiencies of the other selections for dual properties are noted under Remarks column. Selections K7806623 and K7806821 have good baking characteristics but were judged too The selections with promising overall dual purpose properties (both good bread and pastry baking) are poor in milling quality. COMMENTS:

Observed Values Corrected to 8% Protein.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	AB.	DUAL PURPOSE LINES	LINES EXP		#20 (DRY EARLY)					CONTD. PAGE	AGE 1	
NURSCO. 35			PULLMAN,	WA					S	C.F. KONZAK	X	
LABNUM	VARIETY	IDNO	CLASS	COD1C	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	REMARKS	S
800753 URQUIE 800754 WAMPUM 800756 800757 800758		C1017413 C1017691 K7806155 K7806271 K7806293	SWS SWS SWS SWS	9.09 8.62 9.13 8.87	53.3 55.3 56.0	54.2 59.9 55.9 55.5	0.000.00	785 950 876 835 890	839 888 882 847 866	8 2 3 10w 4 10w	LVOL	& BCRGI
800759 800760 800761 800762 800763		K7806294 K7806306 K7806310 K7806315 K7806315	SMS SMS SMS	8.65 8.84 9.04 9.36	56.4 58.7 57.3 54.1	56.2 58.3 54.2 54.9	32.7.10	860 905 900 849 861	848 881 870 855 897	2 10W 2 2 4 10W 4 10W	W CODI W FYELD W FYELD	CODI BCRGI FYELD, LVOL, FYELD, BCRGR
800764 800765 800766 800767 800768		K7806333 K7806337 K7806340 K7806427 K7806508	SMS SMS SMS	8.88 8.92 8.85 9.02	57.5 55.8 56.7 57.3	58.1 55.8 57.3 58.1	33.45° 20000	802 805 823 852 885	838 805 817 852 897	6 10w 4 10w 4 10w 2 10w	W EYELD W LVOL W EYELD	FYELD, LVOL, LVOL, BCRGR LVOL, BCRGR FYELD
800769 800770 800771 800772 800773		K7806623 K7806789 K7806806 K7806821 K7806835	SMS SMS SMS SMS	9.10 9.11 9.10 8.86	52.0 54.3 56.4 56.2 52.0	52.2 54.7 56.6 56.0	0.8.8.0 20.0.8.1	885 865 915 944	897 889 927 932	3 low I 5 POOR 2 low I 4 low E	Dr.	FYELD BCRGR FYELD BCRGR, FYELD
800774 800775		K7400297 K7806647	SMS	8.42	58.8	58.6	4.9	848	836	2 700	poor CODI low LVOL, CODI	copr

BORGE	The house of the h	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Company mayor mayo		1		Ę		
from 1 th to 1 th to 100 th	0/ ~ 1// 00 / 0 0/ ~ 1// 00 / 0 0/ ~ 1// 00 / 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Onkano Onkano			70 1 2 3 2 00 00 10 3	SMS SMS HBS PMS	2600000 14500000 14500000 14500000 14500000 14500000 14500000 145000000 1450000000000	
d jon elem process of jon elem best scales	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000 20000 20000	\$ 10 to 00 to		7-170	0 10 10 10 10 10 10 10 10 10 10 10 10 10	0000000 WWW.XXX 000000	KASO2312 KASO2312 KASO2312 KASO2312 KASO2300	
S TOW LARID F TOW TAOF BCKES F TOW TAO! BCKES O TOW LARIT TAOF	00000000000000000000000000000000000000	0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0	m n a m m		AND THE MERCHANIST OF THE SECOND SECO	0 00 00 00 00 0 00 00 00 00	8000000 WE W W W W W W W W W W W W W W W W W W	K1800220 K1800340 K1800341 K1800333	
# jow BCECK'EAET S jow EAETD S boom BCECK 3 jow AAETD	0/ V2 ~ 1 / 10 ~ ~ V2 & V2 & V2 & V2 V2 / 10 / 10 & 00 &	N # 12 13 14 0 70 00 00	no mana ne mana	10円 5 円 : 1 10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ODE S	18010	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17806835 17806835 17806688 17806688 17806888 1780688 1780688 1780688 1780688 1780688 1780688 17806888 1780688 1780688 1780688 1780688 1780688 1780688 178068	
S JOM TAOF GODI	(0 0) (0 0) (0 0) (0 0)	00 00 00	200	200	01.03 01.00 Un 00	0/E	WWW.	K1802271	

THINIA -

And the second s

AR THREE LOWER BRANCH GRAND

KONZAK	CODI	88888 7.5.5.2 7.6.5.2 7.6.5.2	8.67 8.60 8.80 9.22 69.67	8.74 8.61 8.60 8.67 8.49	8.41 8.81 8.91 8.64 8.79	8.16	eristics.
L.	MTYPE	33773 34773 34773	₩₩₩₩ ₩₩₩₩ ₩₩₩₩	3 W W W W 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	MWWW 304 304 304 304 304 304 304 304 304 304	Z M	Charact cs.
Ċ	MABSC 3	56.9 61.6 57.6 58.9	58.5 57.1 56.2 56.2	56.5 57.9 57.7 56.9	55.50 56.70 56.90 56.90	57.0	ty
	FPROT	201	10.100	9.01	11.0	10.3	Chara
	MSCOR	80.3 82.7 76.7 76.0 80.1	81.0 80.7 80.0 81.5	78.4 78.0 78.9 76.6	73.4 74.1 75.5 74.9	80.0	sing
	FASH	0.51 0.48 0.50 0.48	00.45	0.50 0.50 0.40 0.40	0.48 0.51 0.47 0.49	0.49	y Promi
	FYELD	74.6 73.7 71.3 71.1	72.3 72.2 72.2	72.5 72.8 73.2 71.4	70.0 70.9 70.4 70.3	73.7	cular
WA	TWT	61.0 61.2 57.3 57.1	59.5 59.8 59.8	58.3 59.3 57.3 61.0	61.4 60.0 59.3 60.2 59.0	59.8	5/ Parti 6/ Promi
LIND,	CLASS	SWS HRS SWS SWS SWS	SMS SMS SMS SMS	SWS SWS SWS SWS	SMS SMS SMS SMS	SWS	
	IDNO	C1017413 C1017691 K7806155 K7806271 K7806293 <u>6</u> /	K7806294 6/ K7806306 5/ K7806310 5/ K7806315 5/ K7806316 5/	K7806333 6/ K7806337 6/ K7806340 6/ K7806427 6/ K7806508	K7806623 K7806789 K7806806 K7806821 K7806835	K7400297 K7806647	sture Basis to 10% Protein
	VARIETY						Observed Values Corrected to 14% Moisture B. Absorption at 14% Moisture Corrected to 10% Observed Values Corrected to 10% Protein.
NURSCO 36	LABNUM	800776 URQUIE 800777 WAMPUM 800779 800780 800781	800782 800783 800784 800785 800786	800787 800788 800789 800790	800792 800793 800794 800795 800796	800797 800798	<pre>1/ Observed Values 3/ Absorption at 14 4/ Observed Values</pre>

The entire nursery is high in flour ash which has lowered milling scores. Selection K7806806 is excellent in dual purpose baking properties but is very questionable in milling. COMMENTS:

	· Max Salam .
	- MAN SACON
The grast of	
70	
	~ ** ** ***
	and the same

LIND, WA

NURSCO 36

C.F. KONZAK

LABNUM	VARIETY	ONG	CLASS	2/4/	BABS	BABSC 3/	W. J. W.	LVOL	LVOLC 4/	BCRGR	Kemarks
800776 URQUIE 800777 WAMPUM 800779 800780 800781		C1017413 C1017691 K7806155 K7806271 K7806271	SWS HRS SWS SWS	8.73 8.34 8.70 8.63 8.63	564.9 57.9 59.8 60.5	55.88 55.88 59.68	22.1	910 1041 1030 1006	940 973 964 994 959	100 100 100	OW MSCOR, BCRGR
800782 800783 800784 800785 800786		K7806294 K7806306 K7806310 K7806315 K7806316	SMS SMS SMS	8.78 8.72 8.84 9.18	61.6 61.6 60.7 57.5 58.5	60.5 60.5 57.9 58.9	40400 00500	988 991 1031 951	928 925 1007 975	~~~~	
800787 800788 800789 800790 800791		K7806333 K7806337 K7806340 K7806427 K7806427	SMS SMS SMS	8.72 8.73 8.72 8.72	57.5 61.2 60.6 60.0	59.0 59.0 59.0 59.0	03550 00750 00750	1015 1015 1023 1023	969 949 927 987	2 10%	low MSCOR, BCRGR Quest. milling low CODI, BCRGR
800792 800793 800794 800795 800796		K7806623 K7806789 K7806806 K7806821 K7806821	SMS SMS SMS	88882	61.1 57.9 59.8 56.7	60.1 560.1 586.5 58.9	ころきしの	1040 961 1055 1017	980 943 1073 948	100K	ow FYELD, CODI ow FYELD ow FYELD ow FYELD ow FYELD
800797 800798		K7400297 K7806647	SWS	8.38	61.5	61.2	3.5	1005	987	200	poor CODI low CODI, LVOL

NURSCO 38			PULLMAN,	MA					S	C.F. KONZAK	ZAK
LABNUM	VARIETY	ONG	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	CODI	C0D1C
800822 FIELDER 800823 URQUIE 800824 800825 800826		C1017268 C1017413 6/ K7801348 6/ K7805055 K78050141	SWS SWS HWS HWS	59.2 61.9 59.9	70.1 71.8 74.0 72.6 70.6	0.40 0.39 0.37 0.43	79.7 82.6 89.5 84.9	08877.0	58.0 58.0 58.0 59.0	9.24 8.82 8.30 8.30	9.02 8.78 8.28 35.35
800827		K7805193 <u>6</u> /	HMS	62.9	71.7	0.38	86.2	9.6	61.0	8.29	8.34
USDA, SEA AR WESTERN WHEAT QUAL! PULLMAN, WA.	QUALITY LAB.	ADVANCED SO	SOFT WHITE	SPRING	EXP 71					CONTD.	PAGE 1
NURSCO 38			PULLMAN,	MA.					ပံ	F. KONZAK	ΑK
LABNUM	VARIETY	IDNO	CLASS	MTYPE	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	
800822 FIELDER 800823 URQUIE 800824 800825 800826		C1017268 C1017413 K7801348 K7805055 K7805055	SWS SWS HWS HWS	1L 2L 6L 8M	58.9 61.2 63.7	59.4 61.5 63.1	7.77	965 955 893	0 0 996 974 856	Nmm	
800827		K7805193	HWS	₩ ∞	0.99	4.69	8.3	966	958	2	
1/ Observed Valu 3/ Absorption at 4/ Observed Valu	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 9% Protein Observed Values Corrected to 9% Protein.	Moisture Basis. cted to 9% Prote Protein.	in.	5/ Par 6/ Pro	Particular Promising	ly ove	Promising Over	1 (1)	rall Quality Ch Characteristics	Charact cs.	Characteristics. cs.

interesting by its dual purpose properties. The other three selections were distinctly bread types, and all made good bread for their protein levels. K7805193 appears promising as a hard white spring wheat. All four selections in the nursery were determined to be of hard endosperm. Selection K7801348 is COMMENTS:

NURSCO . 39			PULLMAN,	MA						O	C.F. KONZAK	ZAK
LABNUM	VARIETY	IDNO	CLASS	TWT	FYELD	FA.SH	MSCOR	FPROT 1/	MABSC 3/	1000	CODIC 4/	MTYPE
800828 FIELDER 800829 URQUIE 800830 WS-1 800831 DIRKWIN 800832 WALLADAY		C1017268 C1017413 C1017347 C1017745	SWS SWS SWS SWS	58.0 57.8 57.8	71.5 73.1 68.4 70.3 67.1	0.44 0.45 0.38 0.46	80.5 81.3 79.4 77.7 74.5	78888	54.0 54.0 55.3	9.00 9.03 9.24 8.87	8.92 9.19 8.79 8.82	33 M 66 L 5 L
800834 800834 800835 800835		WA 6402 WA 6616 * 1 WA 6618 6/ WA 6753 5/ 1D 185	SWS HRS SWS SWS SWS SWS	58.9 60.0 60.0 60.0	71.1	0.40 0.41 0.41 0.42 0.38	82.3 80.7 79.1 83.3 81.7	88888 7.0.88	56.4 60.9 57.6 55.1 54.8	8.87 9.02 9.83 9.32	8.84 8.43 8.99 8.77	22L 22L 22L 22L
800838 800839 800840 800841 800842		K7805555 6/ K7805580 K7805586 K7805753 6/ K7806552 2	SWS SWS SWS SWS	58.3 56.7 57.8	71.7 69.5 69.2 70.8	0.42	82.6 77.5 75.3 81.0	10.09 10.05 10.05 14.08	54.8 55.1 54.0 54.6	8.85 9.04 8.99 9.04	8.86 9.09 9.13 8.82 8.97	3L 2M 3M 3L 3L
800843 800844 800845 800845		K7806653 6/ K7806654 5/ K7806656 5/ K7807010 5/	SWS SWS SWS SWS	59.8 60.1 61.3 60.0	70.8 71.6 71.4 70.0	0.37	82.6 83.7 82.2 82.2	7.000	55.6	8.97 8.92 9.10 9.01	8.003 8.22 8.92 99	7033 1323

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 12/ Absorption at 14% Moisture Corrected to 9% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 9% Protein. 1/ Observ 3/ Absorp 4/ Observ COMMENTS:

Walladay was abnormally poor in milling quality. All experimental selections were evaluated relative to K7805580 and K7805586 were low in flour yield. All other selections appear promising with K7806656 the outstanding sample. Urquie. WA6618 was judged as a HRS. WA6618 is marginal in milling quality.

*WA6166, a HRS selection, was tested for bread baking quality and gave the following results: BABSC 63.9; MTIME 4.0; LVOL 1055; and BCRGR 3

SOILS FARM PULLMAN.W

NURSCO 40

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT $\frac{1}{2}$	MABSC 3/	1000	CODIC 4/
800847 LEMHI (TREATED) 800848 LEMHI (TREATED) 800849 MARFED 800850 MARFED (TREATED) 800851 TWIN		C1011415 C1011415 C1011919 C1011919	SMS SMS SMS SMS	60.8 62.4 62.8 63.2 61.2	75.4 75.0 73.6 71.9	0.48 0.48 0.45 0.45 0.44	86.6 86.1 86.1 84.3 84.5	80,888	52.4 52.4 57.0 56.9	9.26 9.19 9.14 9.14	9.24 9.26 9.40 9.12
800852 TWIN (TREATED) 800853 SPRINGFIELD 800854 SPRINGFIELD (TREATED) 800855 WARED 800856 WARED (TREATED)	FED)	C1014588 C1014589 C1014589 C1015926 C1015926	SWS SWS SWS HRS	61.2 61.6 62.0 63.2 65.6	73.7 74.8 74.7 73.1	0.47 0.43 0.43 0.43	84.8 88.9 86.9 90.0	88.9 8.6 10.6 11.6	53.6 52.9 58.7 60.4	9.56 9.29 8.55 8.55	9.25 9.38 9.22 8.68
800857 BORAH 800858 BORAH (TREATED) 800859 FIELDER 800860 FIELDER (TREATED) 800861 URQUIE		C1017267 C1017267 C1017268 C1017268 C1017268	HRS HRS SWS SWS SWS	64.0 63.6 59.6 64.0	72.8 72.6 71.4 73.7	0.36 0.37 0.42 0.41	888.8 885.3 87.6	9.7	60.4 52.3 52.6 53.0	8.71 8.47 9.12 9.19 9.46	8.87 8.64 9.17 9.19
800862 URQUIE (TREATED) 800863 FIELDWIN 800864 FIELDWIN (TREATED) 800865 WAMPUM 800866 WAMPUM		C1017413 C1017425 C1017425 C1017269	SWS SWS SWS HRS	64.4 60.4 65.6 62.4 62.8	75.1 71.3 74.0 72.3	0.45 0.46 0.39 0.41	88.3 82.4 90.5 86.6	10.5 10.5 10.0 7.9	53.5 54.4 57.1 58.9	9.31 9.13 9.05 8.86	9.21 9.03 9.12 9.13
800867 DIRKWIN (TREATED) 800868 DIRKWIN (TREATED) 800869 WALLADAY 800870 WALLADAY (TREATED)		C1017745 C1017745 C1017759 C1017759	SWS SWS SWS	60.8 61.6 62.4 63.2	73.2 73.6 70.9 71.1	0.48 0.49 0.45 0.45	88833.00 83.00 93.00	9.7	49.3 49.7 56.7 56.0	9.05 9.04 9.21	9.06 9.02 9.08 8.95
1/ Observed Values Co 3/ Absorption at 14% 4/ Observed Values Co	Observed Values Corrected to 14% Moisture Basis Absorption at 14% Moisture Corrected to 9% Protobserved Values Corrected to 9% Protein.	ure Basis o 9% Proten	ein.	5/ Pa 6/ Pr	Particularl Promising O	y Pro	sing Quali	erall Chara	Quality cteristi	Characteri cs.	ceristics

the treated samples is generally observed and some varieties followed with improved flour yield and milling score. Five of the varieties gave slightly improved cookie diameters with the treatment while seven did as pronounced as in the 12 winter varieties (See Nursery Code 042). A small increase in test weight of The influence of treatment with Bayleton and Indar on these 12 spring wheat varieties was not clearly not. The bread baking results of the 3 HRS varieties were not significantly different. COMMENTS:

		to the

				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	gal.				
					- 25
				1	

PAGE						
CONTD. PAGE	BCRGR		20	00	NN	
<u>«</u>	LVOLC 4/		976	939	978	
	ТОЛТ		1075	1050	1040	
	MTIME		3.9	8 7 8 7	3.3	
<u> </u>	BABSC 3/		64.6	64.6	63.1	
PRING WH	BABS		0.49	9.99	62.7	
(BAYLETON + INDAR) SPRING WHT SOILS FARM PULLMAN, W	MTYPE	2M 3L 3L 2M	## 55 S S S S S S S S S S S S S S S S S	3M 11M 21M 21M 21M 21M	22 W W W W th	2M 6L 6L
CLETON +	CLASS	SMS SMS SMS SMS	SWS SWS SWS HRS	HRS HRS SWS SWS SWS	SWS SWS SWS HRS	SWS SWS SWS
CROP LOSS (BAYLE	IDNO	C1011415 C1011415 C1011919 C1011919 C1014588	C1014588 C1014589 C1014589 C1015926 C1015926	C1017267 C1017267 C1017268 C1017268 C1017413	C1017413 C1017425 C1017425 C1017269	C1017745 C1017745 C1017759 C1017759
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	LABNUM	800847 LEMHI (TREATED) 800849 MARFED 800850 MARFED (TREATED) 800851 TWIN	800852 TWIN (TREATED) 800853 SPRINGFIELD 800854 SPRINGFIELD (TREATED) 800855 WARED 800856 WARED (TREATED)	800857 BORAH 800858 BORAH (TREATED) 800859 FIELDER 800860 FIELDER (TREATED) 800861 URQUIE	800862 URQUIE (TREATED) 800863 FIELDWIN 800864 FIELDWIN (TREATED) 800865 WAMPUM 800866 WAMPUM (TREATED)	800867 DIRKWIN 800868 DIRKWIN (TREATED) 800869 WALLADAY 800870 WALLADAY (TREATED)

NURSCO 42	SOILS	FARM	PULLMAN, W	X .					~	R.F. LINE	Ē
LABNUM	ONO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT $\frac{1}{2}$	MABSC 3/	CODI	CODIC	
800898 GAINES 800899 GAINES (TREATED) 800900 NUGAINES 800901 NUGAINES (TREATED) 800902 HYSLOP	C1013448 C1013448 C1013968 C1013968 C1014564	MMS MMS MMS	56.0 61.6 57.2 61.2	70.5 73.7 71.0 74.0	0.57 0.49 0.49 0.46	74.6 83.8 80.3 86.1 80.5	00000	57.4 56.6 57.0 57.5 56.5	8.75 9.02 8.87 8.89	8.78 9.02 8.93 8.89 8.84	
800903 HYSLOP (TREATED) 800904 MCDERMID 800905 MCDERMID (TREATED) 800906 LUKE 800907 LUKE (TREATED)	C1014564 C1014565 C1014565 C1014586	MMS MMS MMS	60.4 58.0 60.8 57.2 60.0	74.7 73.0 74.1 73.6 74.9	0.51 0.52 0.47 0.49	84.0 80.9 85.2 83.4	98888 40000	56.6 56.1 56.1 56.7 57.4	8.84 8.77 9.07 9.01	8.88 8.76 9.06 9.25	3 N N N N N N N N N N N N N N N N N N N
800908 BARBEE (TREATED) 800910 DAWS 800911 DAWS (TREATED) 800912 STEPHENS	C1017417 C1017417 C1017419 C1017419	CLUB CLUB SWW SWW SWW	53.2 60.0 56.8 61.6 58.0	71.8 73.8 70.6 73.8 74.0	0.52 0.48 0.53 0.48	79.7 84.5 77.4 84.7 82.5	10.1 10.3 9.3	52.2 52.2 55.3 55.0	9.01 9.20 8.54 8.70 9.02	9.09 9.21 8.68 8.73 9.07	NAMA NAMA NAMA NAMA NAMA NAMA NAMA NAMA
800913 STEPHENS (TREATED) 800914 FARO 800915 FARO (TREATED) 800916 WALLADAY 800917 WALLADAY (TREATED)	C1017569 C1017590 C1017590 C1017759	SWW CLUB SWS SWS	60.4 53.6 59.2 54.8 61.6	75.6 72.6 75.3 68.1	0.48 0.53 0.47 0.51 0.51	86.5 79.6 87.2 75.3 85.2	00000	56.3 52.7 53.3 57.2 56.0	8.90 8.90 8.70 9.06	8:77 9.14 8.91 8.66 9.15	TANNO S
800918 TYEE (TREATED) 800919 TYEE (TREATED) 800920 JACMAR (TREATED)	C1017773 C1017773	CLUB CLUB CLUB CLUB	57.2 60.4 57.6 55.2	73.6 74.6 74.1 70.1	0.46 0.42 0.47 0.48	85.7 89.6 85.6 80.0	4050	52.7 52.7 53.1 54.4	9.12 9.12 9.43 9.11	9.15 9.17 9.47 9.12	W W W W
	AVERAGES: NO TREATMENT TREATED	TENT	56.4	72.2		80.5	4.6		8.92		

Treatment of these 12 winter varieties with Bayleton and Indar significantly improved all of the milling lower protein. The pair of Jacmar samples appear to be switched as it is the only variety that did not and baking factors tested. Most strikingly was the improvement in milling score which is influenced by the test weight, flour yield, and flour ash. The improvement in cookie spread is partially due to the follow this trend. COMMENTS:

Particularly Promising Overall Quality Characteristics.

Promising Overall Quality Characteristics.

12/9

Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 9% Protein.

Observed Values Corrected to 9% Protein.

63.7

ENSUZ ENSUZ

53.4 65.5 53.3 60.7

9.88.80

81.7 85.5 83.8 82.8

0.43 0.47 0.46 0.46 0.49

72.3 74.3 73.2 74.0

57.4 63.2 63.4 61.1

SWS HRS HRS SWS HRS

C1017268 C1017348 C1017408 C1017413 C1017424

FIELDER PROFIT 75

800927

PROSPUR SAWTELL URQUIE

800929 800930 800931

62.1

62.6

54.4 61.5 54.3 53.2 60.6

8000 8 8 8 8 8 8

82.3 82.6 79.7 78.7

0.44 0.48 0.45 0.47

72.3 73.0 72.5 70.9 69.7

57.9 61.4 57.8 58.1

SWS HRS SWS SWS HRS

C1017425 C1017691 C1017745 C1017759 C1017761

62.1

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	ALITY LAB.	AC	DVANCED SPRING	PRING							PAGE 1
NURSCO 43		blo	PENDLETON, OR	, OR					S	C.R. ROHDE	LLJ.
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC 3/	MTYPE	BABS
800922 FEDERATION	7	C1004734	SMS	58.6	72.6	0.45	82.2	7.8	52.8	2L	
800923 TWIN		C1014588	SMS	58.8	71.3	0.47	79.0	8.3	53.5	2	
800924 ANZA		C1015284	HRS	62.8	72.9	0.44	83.9	8.6	62.0	2M	63.0
800925 WARED		C1015926	HRS	62.6	72.9	0.48	82.5	9.1	61.9	W9	63.4
800926 BORAH		C1017267	HRS	63.0	72.3	0.43	83.6	10.0	62.8	μħ	65.2

Observed Values Corrected to 14% Moisture Basis. 5/ Particularly Promising Overall Quality Characteristics	Absorption at 14% Moisture Corrected to 9% Protein. 6/ Promising Overall Quality Characteristics.	Observed Values Corrected to 9% Protein.
alues Correc	on at 14% Mois	Values Correc
served v	sorpti	served

S

62.9

53.1 62.1 54.0

888888

78.8 80.5 78.1 79.7

0.46 0.47 0.47 0.45

71.3 71.5 70.6 73.3

58.3 57.1 61.7 62.2 59.2

SWS SWS HRS HRS SWS

105 144 153 167 00000

A 71365-5-2-3 BORAH/3/11-60-101//TZPP/SN64 MRN/TBR66/3/TZPP/AN3//B61-136AB SEL1 HYSLOP/FIELDER

800937 800938 800939 800940 800941

TWIN #3//227196/A63166S

DIRKWIN WALLADAY POWELL

800932 800933 800934 800935 800935

FIELDWIN

19

They are lower in flour yield than the long list of current varieties with which they were grown. ID153 is also very poor in breadmaking. ID105, ID144, ID153 and ID172 are questionable in milling performance. The other selections were satisfactory in baking characteristics COMMENTS:

läx

LABNUM VARIETY IDI	PI	PENDLETON, OR	OR					3	C.R. ROHDE	
	ONGI	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	CODIC	
800922 FEDERATION 800923 TWIN 800924 ANZA 800925 WARED 800926 BORAH	C1004734 C1014588 C1015284 C1015926 C1017267	SWS SWS HRS HRS	63.4 63.3 64.2	2.9	810 1040 990	0 0 834 1034 928	∞ N N	8.69 9.12 8.19 8.01 7.96	8.56 9.01 8.16 8.02 8.04	
800928 PROFIT 75 800928 PROFIT 75 800929 PROSPUR 800930 URQUIE 800931 SAWTELL	C1017268 C1017348 C1017408 C1017413 C1017424	SWS HRS HRS SWS HRS	63.9 67.1 62.1	3.2	935 840	947 883 0	ひ たり	8.99 8.26 7.74 8.99	8.95 7.68 8.84 8.06	
800932 FIELDWIN 800933 WAMPUM 800934 DIRKWIN 800935 WALLADAY 800936 POWELL	C1017425 C1017691 C1017745 C1017759	SWS HRS SWS SWS HRS	62.9	4.6	1015	1034 0 0 980	0 9	8.92 8.40 8.64 9.10 7.84	8.86 8.38 8.55 7.81	
800937 TWIN *3//227196/A63166S 800938 A 7136S-5-2-3 800939 BORAH/3/II-60-101//TZPP/SN64 800940 MRN/TBR66/3/TZPP/AN3//B61-136AB SEL1 ID 1 800941 HYSLOP/FIELDER		SWS SWS HRS HRS SWS	63.5	4.0	805	0 842 999 0	∞ <i>α</i>	9.18 8.71 7.96 8.15 9.12	9.08 8.66 7.91 8.19 9.06	

	LAB.	
	QUALITY	
EA AR	RN WHEAT	1.10
ISDA, SE	VESTERN	DILL I MANI

NURSCO 44			MORO, 0	OR					0	C.R. ROHDE	
LABNUM	VARIETY	ONG	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT $\frac{1}{2}$	MABSC 3/	MTYPE	BABS
800942 FEDERATION 800943 FORTUNA 800944 IWIN 800945 ANZA 800946 WARED		C1004734 C1043596 C1014588 C1015284 C1015926	SWS HRS SWS HRS	57.4 59.4 57.7 62.1 60.3	69.2 70.6 68.4 71.0	0.44 0.44 0.45 0.44 0.50	75.4 80.0 74.3 81.6 79.5	9.601	55.0 64.1 54.8 62.5	3M 4H 4M 4M 4M	66.6 63.3 62.2
800947 BORAH 800948 FIELDER 800949 PROFIT 75 800950 PROSPUR 800951 URQUIE		C1017267 C1017268 C1017348 C1017408 C1017413	HRS SWS HRS SWS	61.6 58.7 60.7 60.8 59.5	71.1 68.8 73.3 71.7 69.6	0.42 0.38 0.46 0.43 0.43	82.6 76.9 84.4 82.7 75.9	000000	64.1 56.2 62.4 65.5 58.0	4H 6M 5H 3M	66.3 64.1 67.7
800952 SAWTELL 800953 FIELDWIN 800954 SHASTA 800955 WAMPUM 800956 DIRKWIN		C1017424 C1017425 C1017651 C1017691	HRS SWS HRS SWS	59.6 58.1 61.4 59.4 57.5	70.7 70.2 72.4 69.6 72.1	0.44 0.46 0.46 0.46 0.48	81.0 79.1 82.1 77.9 78.8	9.00 0.00 0.00 0.00	63.5 58.0 63.8 64.3	06H 14H 25H 27H	64.8 66.1 65.8
800957 WALLADAY 800958 POWELL 800959 TWIN *3//227196/A63166S 800960 A7136S-5-2-3 800961 BORAH/3/11-60-101//TZPP	WALLADAY POWELL TWIN *3//227196/A63166S A7136S-5-2-3 BORAH/3/II-60-101//TZPP/SN64	C101759 C1017761 1D 105 1D 144 1D 153	SWS HRS SWS 6/ SWS 6/ HRS 6/	57.6 57.0 57.6 59.4 59.8	69.5 67.1 70.8 71.6 70.9	0.47 0.44 0.46 0.46	75.1 77.7 80.1 79.8	10.8 9.6 9.6 10.4	56.4 62.1 54.2 56.7 65.7	06M 14M 5H	64.3

COMMENTS: The three Idaho selections (ID105, ID144 and ID153) all appear promising in overall quality.

Particularly Promising Overall Quality Characteristics.

Promising Overall Quality Characteristics.

10/12

Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 10% Protein.

Observed Values Corrected to 10% Protein.

PAGE 1	ш					
CONTD. PAGE	C.R. ROHDE	/ 4 /	8.61 7.85 8.96 7.94 8.08	7.98 8.88 8.24 8.06	7.97 8.82 7.98 8.41 8.54	8.73 8.08 9.07 8.79 7.81
	0	CODI	8.69 7.76 9.02 7.99 8.07	7.91 8.94 8.21 7.99 8.99	7.97 8.86 7.91 8.40	8.76 8.01 9.11 8.87 7.78
		BCRGR	N 70	0 00	74 2	2 -
PRING		LVOLC 4/	0 990 0 982 1089	1035 0 1041 985 0	1036 0 1034 1104	1070 0 0 0 980
	OR	TAOL	1060 945 1095	1085	1030	1120
		MTIME	3.7	3.3	7.5	7.4
		BABSC 3/	65.5 63.9 62.1	65.5 63.8 66.9	64.9	63.5
ADVANCED SPRING	MORO,	CLASS	SWS HRS SWS HRS	HRS SWS HRS HRS SWS	HRS SWS HRS HRS SWS	SWS HRS SWS SWS HRS
AE		ONGI	C1004734 C1043596 C1014588 C1015284 C1015926	C1017267 C1017268 C1017348 C1017408 C1017413	C1017424 C1017425 C1017651 C1017691	C101759 C1017761 1D 105 1D 144 1D 153
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	†† O	M VARIETY	Z FEDERATION 3 FORTUNA 4 TWIN 5 ANZA 6 WARED	7 BORAH 8 FIELDER 9 PROFIT 75 0 PROSPUR 1 URQUIE	2 SAWTELL 3 FIELDWIN 4 SHASTA 5 WAMPUM 6 DIRKWIN	7 WALLADAY 8 POWELL 9 TWIN *3//227196/A63166S 0 A7136S-5-2-3 1 BORAH/3/II-60-101//TZPP/SN64
USDA, WESTE PULLM	NURSCO	LABNUM	800942 800943 800944 800945 800945	800947 800948 800949 800950 800951	800952 800953 800954 800955 800955	800957 800958 800959 800960 800961

NURSCO 45

N N N N N N N N N N N N N N N N N N N	VARIETY	CNO	CLASS	TWT	EVELD	FACH	MSCOR	FPROT	MARC	MTVDE	RARS
						17/		1/	3/		COMO
800962 FEDERATION 800963 TWIN		C1004734 C1014588	SWS	57.4	70.5	0.45	77.0	9.4	55.4	S S W	
		C1015284 C1015926	HRS	59.2	70.0	0.48	77.6	10.8	63.2	3M 4H	64.4
800967 BORAH 800968 FIFIDER		C1017267	HRS	- ~	72.0				90%	SH SM	67.4
		C1017348 C1017408 C1017413	HRS HRS SWS	59.5	71.7	0.50	79.6	10.0	63.9 66.3 59.2	2 H H H Z	64.9
800972 FIELDWIN		C1017425	SMS	<u>~</u> α	69.3	0.53	72.9	10.9	58.9	2M	
		C1017691 C1017745 C1017759	HRS SWS SWS	53.6	70.4 70.7 67.3	0.50	77.0	11.7	65.9 58.2 58.7	t H t M t M	67.0
800977 POWELL 800978 TWIN *3//227196/A63166S 800979 FIELDER/A6514SA-102-1	16/A63166S 5A-102-1	C1017761 1D 105 1D 138	HRS SWS SWS 6/	53.7	67.6 69.8 71.5	0.49	73.7 70.1 78.3	11.5	63.3 56.4 58.3	14 W W W	65.2
	01//TZPP/SN64					نتن				3H	69.7
800982 MRN/TBR66/3/TZPP/AN 800983 MINN/TBR66/3/TZPP/A 800984 HYSLOP/FIELDER 800985 1D0053/A6596S-A-21- 800986 A7240S-38-2	MRN/TBR66/3/TZPP/AN3//B61-136AB. SEL 1 MINN/TBR66/3/TZPP/AN3//B61-136AB. SEL 1 HYSLOP/FIELDER 1D0053/A6596S-A-21-1 A7240S-38-2	10 167 10 170 10 172 10 183 10 186	HRS 6/ HRS 5/ SWS 6/ SWS 5/ SWS 5/	60.8 62.1 58.3 60.1 54.3	72.3 73.7 71.4 72.1 67.9	0.49 0.47 0.52 0.51 0.55	81.1 84.6 76.2 77.4 70.0	11.6	62.3 64.9 57.9 58.0 59.4	2M 2M 2M 2M	67.0

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 10/2 Absorption at 14% Moisture Corrected to 11% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 11% Protein.

Selections ID105 and ID186 are questionable in milling quality, but it may be a reflection of the low test weight, which generally was characteristic for the nursery. Selections ID153 and ID170 (HRS's) gave a bread crumb grain that was coarse and undesirable. COMMENTS:

		- I			
	A VO 101 101 0 V P				
			7.00		
				and the special lighter	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
32: 13					

-							
CONTD. PAGE	C.R. ROHDE	COD1C	8.64 8.60 8.01	7.96 8.56 8.19 7.95 8.59	8.65 8.14 8.35 8.40	7.81 8.58 8.72 7.58	8.07 8.66 8.65 8.53
	0	CODI	8.81 8.66 8.02 8.01	7.91 8.66 8.14 7.87 8.67	8.66 8.39 8.47	8.60 8.79 8.57 7.51	8.05 8.01 8.77 8.61
		BCRGR	mN	2 2-	N	e 4	t 7
		LVOLC 4/	0 0 1087 1132	1098 0 1033 1083	0 1117 0	1144 0 0 0 0 965	1093 1057 0 0
		TAOL	1075	1135	1160	1175	1130
S		MTIME	3.3	33.8	3.5	3.3	3.74
ED SPRING	OR	BABSC 3/	64.6 65.0	66.8 64.3 67.7	66.3	64.7	66.3
ADVANCED IRRIGATED	PENDLETON,	CLASS	SWS SWS HWS HRS	HRS SWS HRS HRS SWS	SWS SWS HRS SWS SWS	HRS SWS SWS SWS HRS	HRS SWS SWS SWS SWS
ADVANCE	bdo	i DNO	C1004734 C1014588 C1015070 C1015284 C1015926	C1017267 C1017268 C1017348 C1017408	C1017425 C1017438 C1017691 C1017745 C1017745	C1017761 10 105 10 138 10 144 10 153	1D 167 1D 170 1D 172 1D 183 1D 186
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 45	LABNUM VARIETY	800962 FEDERATION 800963 TWIN 800964 WANDELL 800965 ANZA 800966 WARED	800967 BORAH 800968 FIELDER 800969 PROFIT 75 800970 PROSPUR 800971 URQUIE	800972 FIELDWIN 800973 CONDO 800974 WAMPUM 800975 DIRKWIN 800976 WALLADAY	800977 POWELL 800978 TWIN *3//227196/A63166S 800979 FIELDER/A6514SA-102-1 800980 A7136S-5-2-3 800981 BORAH/3/II60-101//TZPP/SN64	800982 MRN/TBR66/3/TZPP/AN3//B61-136AB. SEL 1 800983 MINN/TBR66/3/TZPP/AN3//B61-136AB. SEL 1 800984 HYSLOP/FIELDER 800985 100053/A6596S-A-21-1 800986 A7240S-38-2

200 - 5 7 - 120 - 200 - 70 - 100 - 1

100 10 9 10

4 2 3 7248 3

A Company of the Comp

C.F. KONZAK

ROYAL SLOPE.

NURSCO 46

(ADIO)	IDNO CLASS	1 M 1	FYELD	FASH 1/	MSCOR	FPROT $\frac{1}{2}$	MABSC 3/	MTYPE
800987 WARED NURSERY #17 800988 BORAH 800989 WAMPUM	C1015926 HRS C1017267 HRS C1017691 CHRS	63.6 63.6 63.7	72.3	0.48	81.2 76.9 82.5	10.1	64.3 65.8 66.5	6M 4H 3H
800990 800991	//	300				12.2	ω ω	3H 4H
800992	K74127339 6/HRS K74127422 5/HRS	64.0	75.0	0.46	86.2	10.9	68.9	6M 4M
800995 800995 800996 NURSERY #18	101	63.8			±07			23. 2. 2. 3. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
800997		200			3.7			2H 4H
800999 801000 801001	K74102084 6/HRS K74102118 6/HRS K74102134 6/HRS	63.0	74.1	0.43	86.3 83.9 86.2	12.2	69.3 68.4 68.6	4H 4H 7H 7H

in crumb grain structure. Several of the selections were 1-2% higher in protein than the check varieties. all were good with the exception of K74102023 and K74102056, which were short in milling and questionable This group of hard red spring selections were generally significantly better in milling quality than the check varieties. Borah's milling score was below normal due to high flour ash. Baking properties of Promising Overall Quality Characteristics. K74102084 was highest at 13.5%, but the loaf volume did not respond accordingly. 19 Absorption at 14% Moisture Corrected to 12% Protein. 3/ Absorption at 14% morected to 12% Protein.
4/ Observed Values Corrected to 12% Protein.
COMMENTS: This group of hard red spring sele

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	нісн	HIGH PROTEIN #1	#17 % 18					CONTD. PAGE 1 C.F. KONZAK
	ONG			BABSC 3/	MTIME	TOAT	LVOLC 4/	BCRGR
800987 WARED NURSERY #17 800988 BORAH 800989 WAMPUM 800990	C1015926 C1017267 C1017691 K74102022 K74127337	H H H K S S H H K S S K H H K S S K H K S S K H K S S K H K S K S	63.8 66.9 67.3 69.8 70.8	65.7 68.2 67.9 69.6	0.2.0.0 0.0.0.0 0.0.0.0	1000 1020 1050 1050	1118 1101 1087 1038 1022	00000
800992 800994 800995 800996 NURSERY #18	K74127339 K74127422 K74127429 K74127474 K74102023	H H K S S S S S S S S S S S S S S S S S	72.2 66.4 69.8 69.4	72.3 67.5 69.2 68.9	12.03.3	1023 1050 1110 1088	1029 1118 1073 1057	~~~~
800997 800998 800999 801000	K74102056 K741020718 K74102084 K74102118 K74102134	HRS HRS HRS HRS	65.9 67.4 70.2 69.0	65.77 688.77 688.8 69.0	ころいろいい	1030 1063 1115 1070	1018 1119 1022 1058	~~~~~

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	1 PRO 1	$\frac{3}{\sqrt{3}}$	MTYPE
801002 WAMPUM		C1017691 K7900108	HRS HRS	61.7			84.3	12.4	65.8	₩ 3 H 3 H
801004 801005 801006		K7900297 K7900313 K7900318	HRS HRS 5/ HRS	62.0 61.4 60.9	71.0	0.40	83.0	20.0	67.5	37H 37H
801007 801008 801009 801010		K7900381 K7900392 K7900395 K7900534 K7900643	HRS HRS 6/ HRS HRS HRS	58.4 600.5 600.7	69.1 72.9 71.0 69.7	0.47 0.42 0.41 0.45 0.45	76.8 85.7 85.0 81.0	12.21	68 64.3 65.0 65.3	3H 3H 3H 3H
801012 801013 801014 801015 801016		K7900686 K7900713 K7900717 K7900727	HRS HRS HRS HRS	58.0 59.7 60.6 59.8	68.9 68.9 71.4 70.0	0.46 0.40 0.41 0.47 0.47	77.2 80.7 84.0 78.1	12.03.03.03.03.03.03.03.03.03.03.03.03.03.	67.2 65.8 66.2 67.1	24 44 44 44 44 44 44 44 44 44 44 44 44 4
801017		K7900733	HRS	61.6	70.8	0.40	83.4	11.7	67.5	2H

reservation as to its milling quality (the flour yield was low, but also was its ash content indicating possibility for a higher extraction). Also noteworthy is the higher protein levels of the experimental The following selections were judged as questionable or unsatisfactory in milling quality: K7900108, 381, 643, 686, 727, and 729. Others not identified as promising because of poor flour baking characteristic were: k7900313, 395, 727, and 733. Selection K7900713 was judged with some selections over Wampum. Comments:

Observed Values Corrected to 12% Protein.

a

PAGE 1	×					
CONTD. P	C.F. KONZAK	BCRGR	00-0-	~~~~~	000m0	2
		LVOLC 4/	1230 1085 1130 1094	1169 1105 1052 1143	1153 1130 1116 11190	1074
		TAOF	1050 1110 1180 1200	1175 1055 990 1155 1070	1110 1130 1060 1060	1055
		MTIME	3.4 2.0 1.3 3.1	2.7 2.9 4.3 4.3	33.58	1.9
		BABSC 3/	67.2 69.1 69.4 67.9	69.5 65.7 66.2 66.4	66.6 68.7 68.6 70.0 69.5	6.79
#80 & 90	MA	BABS	64.3 69.5 70.2 68.0 70.9	69.6 64.9 65.2 66.6	65.9 68.7 67.9 69.1	9.19
PROTEIN	LIND, Y	CLASS	H H H H H K S S S S S S S S S S S S S S	HRS HRS HRS HRS S	HRS HRS HRS NA	HRS
нісн		IDNO	C1017691 K7900108 K7900297 K7900313 K7900318	K7900381 K7900392 K7900395 K7900534 K7900643	K7900686 K7900713 K7900717 K7900727	K7900733
JALITY LAB.		VARIETY				
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 47	LABNUM	801002 WAMPUM 801003 801004 801005 801006	801007 801008 801009 801010 801011	801012 801013 801014 801015 801016	801017

7 08 25 4 S. S.

Harris D. C.

3 2 2 W

C. F KONZAK

ROYAL SLOPE, WA

NURSCO 48

						water and the same of the same				
LABNUM	VARIETY	ONDI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE
801018 WARED 801019 BORAH 801020 WAMPUM 801021		C1015926 C1017267 C1017691 K75-206/	HRS S RH	64.0 64.1 63.6 62.8	75.0 74.5 74.7 74.7	0.43 0.39 0.46 0.44 0.44	888.0 885.4 87.5	10.3 9.8 7.9 10.3	63.7 64.8 63.1 64.2	8 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
801023 801024 801025 801026		K77-6 K77-13 K77-15 K77-16 K77-106	HRS S RH HRS R	63.2 63.2 63.2 63.2	73.2 72.7 75.9 75.1	0.47 0.48 0.47 0.45	84.3 83.2 87.2 87.1	10.5	64.7 65.5 64.6 64.8 63.4	6M 6M 3M
801028 801029 801030 801031		K77-108 6/ K77-376 K77-603 6/ K77-613 K77-623	HRSS S S HRS	64.4 64.0 63.6 64.4 63.6	74.7 73.1 74.8 73.8	0.39 0.39 0.44 0.42	88889 9.90 6.00 7.00 7.00	10.00	64 65.8 63.0 63.5	3M 4M 6M 6L
801034 801034 801035 801036		K77-700 K77-708 WA 65106/ WA 67486/ WA 6749	H H H H K S S S S S S S S S S S S S S S	65.2 64.8 63.2 62.8	71.8 72.3 75.2 75.4	0.38 0.43 0.42 0.42 0.42	87.5 885.7 889.0 84.4	12.6 11.9 10.3	64.2 67.1 64.1 65.6 63.5	4 7 3 2 H
801038 801039		WA 6750 6/ 1D 167 5/	HRS	62.8	74.0	0.40	88.6	9.2	63.5	7 M 7

Particularly Promising Overall Quality Characteristies. Promising Overall Quality Characteristics. 10/2 Absorption at 14% Moisture Corrected to 10% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 10% Protein.

Proteins were lower than desirable for most meaningful differentiation of baking properties. The Following worthy of further testing as it is outstanding in baking quality and down only slightly in milling quality. properties: K75-40, K77-16, K77-106, K77-376, K77-613, K77-623 and K77-700. Selection K77-108 may be WA6749. Similarly, the following selections had poor baking (mixing, loaf volume, and/or crumb grain) selections were judged poor than the check varieties in milling quality: K77-6, K77-13, K77-108 and COMMENTS:

NURSCO 48		RO	ROYAL SLOPE,	, WA					C.F KONZAK	
LABNUM	VARIETY	IDNO	CLASS	BABS	BABSC 3/	MTIME	TOOT	LVOLC 4/	BCRGR	
801018 WARED 801019 BORAH 801020 WAMPUM 801021		C1015926 C1017267 C1017691 K75-20 K75-40	HRS HRS HRS HRS	64.4 66.1 63.3 64.6 68.9	64.1 65.2 63.5 64.9 68.6	3.23 2.05 1.05 1.05	1100 1105 1065 995 995	1081 1049 1077 1014 976	~~~~	
801023 801024 801025 801026 801027		K77-6 K77-13 K77-15 K77-16	HRS HRS HRS HRS	66.2 67.4 65.8 63.6 61.9	66.1 66.9 65.0 63.2 61.8	33.6	1040 1090 1115 1045	1034 1059 1065 1020 994	00 - 0 m	
801028 801029 801030 801031 801032		K77-108 K77-376 K77-603 K77-613 K77-623	HRS HRS HRS HRS	64.7 69.5 62.8 67.4	63.7 70.2 63.4 67.9 64.9	0.8.8.8. 0.7.0.7.	1065 973 1020 895 925	1003 1016 1057 926 968	のみひない	
801033 801034 801035 801036 801037		K77-700 K77-708 WA 6510 WA 6748 WA 6749	H H R S R R R R R R R R R R R R R R R R	66.7 70.4 65.8 66.1 63.6	64.1 68.5 66.5 63.9	1.9 4.0 7.2 8.3 8.3	1065 1235 990 1025 1055	904 1117 1033 1019	00000	
801038 801039		WA 6750 10 167	HRS	64.1	64.9	4.5	1015	1065	~ ~	

N
SPR
RED :
HARD
NCED
ADVA
Q

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 49		ROYAL	AL SLOPE,	, WA					C.F. KON	KONZAK
LABNUM	VARIETY	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
801040 WAMPUM 801041 801042 801043 801044		C1017691 K78-247 K78-358 K78-359 K78-359	HRSS HRSS HRSS	63.2 58.4 62.0 62.8	73.7 68.1 72.6 72.0	0.46 0.47 0.13 0.44 0.44	85.1 79.0 85.9 84.2	10.3 9.7 9.6 9.9	64.4 61.6 65.3 67.7 64.1	4H 33M 6H 6A
801045 801046 801047 801048 801049		K78-422 K78-454 K78-477 K78-6006/	HRSS HRSS HRSS	65.2 62.0 63.6 64.0 65.2	74.4 72.7 72.8 72.2	0.46 0.46 0.46 0.46	87.3 84.1 84.6 84.7 86.1	00000	63.6 64.2 64.2 64.2 65.2	77M 66M 8M
801050 801051 801052 801053 801054		K78-616 K78-649 K78-741 K78-1011	HRS HRS HRS HRS	63.6 62.0 64.0 62.0 62.1	773.6	0.42 0.42 0.40 0.48 0.48	87.8 85.4 88.0 81.4	9.5 8.7 10.4 10.6	62.5 62.5 65.8 65.8	88M 67M 57H 57H
801055 801056 801057 801058 801059		K78-1298 5/ K78-1349 5/ K78-1431 K78-1431	HRS HRS HRS HRS	63.6 64.8 62.4 61.2 62.0	73.7 72.5 71.6 72.3	0.39 0.40 0.45 0.43	88.9 93.0 87.3 83.8	8.0.00 8.0.00 8.0.00 8.000	61.7 64.2 63.5 62.1 61.2	ММ М Ф ф ф ф ф
801060 801061 801062 801063 801064		K78-1807 K78-1919 6/ K78-2004 K78-2072 K78-2292	HRS HRS HRS HRS	62.4 63.6 61.6 62.8 65.2	72.4 73.6 73.6 73.6	0.43 0.43 0.42 0.44 0.45	86.4 87.0 85.8 86.5 84.0	9.6 9.7 8.1 10.4	65.8 61.8 62.7 63.1 64.8	64 44 66 61 61
801065 801066 801067 801068 801069		K78-2401 K78-2408 K78-2984 K78-2998 K78-2998 <u>5</u> /	H H R S H H R S H H R S H R S	48 648 648 644	73.8 76.7 76.7	0.42	88.9 87.1 90.1	0.01	65.9 64.1 63.8 63.4	555733 557733
801070 801071 801072 801073 801074		K78-3019 5/ K78-3019 5/ K78-3023 5/ K78-3031 K78-3159	H H H H K S S S S S S S S S S S S S S S	64.0 64.8 65.2 64.8 63.2	75.9 76.2 75.8 73.2	0.39 0.42 0.42 0.42	91.1 89.7 86.9 9.6	7.01 0.01 0.01 7.01	63.5 63.4 63.4 64.3	MOOUN MOOUN
	P			1	7					

Absorption at 14% Moisture corrected to 10% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 10% Protein. 411/11/41

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 12/9

		2-08	
	a 1		

C. F. KONZAK

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

ADVANCED HARD RED SPRING

X

BCRGR できるける 800 t 80 BBBBBB NANNA 22222 22222 LVOLC 852 872 872 978 994 962 958 958 011 951 976 900 918 982 1072 1020 1026 983 955 971 934 958 960 930 975 988 989 025 987 1030 1016 985 952 833 835 835 1015 988 950 950 915 980 940 920 895 925 955 1025 030 030 010 985 983 1060 1020 995 1020 905 1045 990 915 840 985 LVOL 930 925 925 995 025 MTIME 35.05.0 4433.9 24.88.97 32223 32223 32323 23.44.0 23.45.0 BABSC 64.8 67.7 69.1 63.0 64.0 65.6 65.4 67.6 66.6 63.9 64.5 68.2 3/ 63.1 64.6 64.9 63.5 67.2 62.2 61.1 63.5 30000 99877 64.65 664 64 64 64 in 65.1 67.1 69.7 62.9 63.2 65.4 64.7 65.1 66.1 62.6 64.9 68.8 62.9 64.6 64.4 64.1 68.3 63.7 66.1 64.3 40000 96272 BABS 68. 61. 60. ROYAL SLOPE, CLASS HRS K78-1298 K78-1349 K78-1395 K78-1431 K78-1543 K78-1807 K78-1919 K78-2004 K78-2072 K78-2292 K78-2401 K78-2408 K78-2984 K78-2993 K78-2998 K78-3006 K78-3019 K78-3023 K78-3031 K78-3159 K78-616 K78-649 K78-741 K78-1011 K78-1044 C1017691 K78-247 K78-358 K78-359 K78-376 K78-422 K78-454 K78-477 K78-600 K78-613 DNO VARIETY WAMPUM 49 COMMENTS: 801040 801041 801042 801043 801043 801065 801066 801067 801068 801069 801070 801071 801072 801073 801074 801060 801061 801062 801063 801064 801055 801056 801057 801058 801059 NURSCO 801045 801046 801047 801048 801049 801050 801051 801052 801053 801053 LABNUM

overall quality were either poor in flour poor loaf volumes. promising had as by footnotes as promising Most that were not judged The selections not identified yield or low in loaf volume.

ING #87	WA C.F. KONZAK
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 50 LIND, WA

LABNUM	VARIETY	NO CLASS	00	TAL .		77		17/	3/	
801075 WAMPUM 801076 801077 801078 801079	C101 K78- K78- K78-	C1017691 HRS K78-1485 HRS K78-1982 HRS K78-2723 HRS K78-2734 HRS	2000	64.8 62.0 60.4 62.8 63.2	75.8 73.3 72.5 73.5	0.39 0.41 0.44 0.46 0.46	91.0 87.4 85.3 85.2	5.01 10.2 10.5	66.6 61.9 64.2 61.7	2 H H H W H
801080 801081	K78- K78-	K78-2747 HRS K78-2776 HRS	\$ 6/ \$ 6/	62.4	73.0	0.43	86.3	10.8	62.1	2H 4M

lines, which must be considered acceptable on their own merit. K78-2734 and K78-2747 baked good bread Wampum was unusually good in milling quality shadowing the respectable performance of the experimental but are questionable in dough mixing properties. COMMENTS:

NURSCO 50			LIND, 1	WA					C.F. KONZAK
LABNUM	VARIETY	ONG	CLASS	BABS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR
801075 WAMPUM 801076 801077 801078		C1017691 K78-1485 K78-1982 K78-2723 K78-2734	HRS HRS HRS HRS	67.7 62.8 65.2 63.2 61.6	688.0 63.1 61.1	3.8 3.0 5.0 1.0 1.0	1055 995 975 1095	1074 1026 1031 1083 994	~~~~~
801080		K78-2747 K78-2776	HRS	62.8	62.0	2.2	1035	985	ω κ

S	
œ	
	1
	Ì
	Ì
X	
Z	
M	
PU	
-	
IA	-
SP	
	-
	1
51	
00	
SC	
UR	
-	

LABNUM	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE	BABS	
801082 LEMH! (TREATED) 801083 LEMH! 801084 MARFED (TREATED) 801085 MARFED 801086 TWIN (TREATED)	C1011415 C1011415 C1011919 C1011919 C1011919	SMS SMS SMS	59.6 61.6 60.4 59.4	73.6 72.0 72.3 73.7	0.48 0.48 0.48 0.53	85.0 84.5 84.4 83.4	0.0000	55733 56733 15618	NWWW N		
801087 TWIN 801088 SPRINGFIELD (TREATED) 801089 SPRINGFIELD 801090 WARED (TREATED)	C1014588 C1014589 C1014589 C1015926 C1015926	SWS SWS SWS HRS	57.6 50.0 58.4 62.8	73.8 76.8 76.2 75.9	00.00.00.00.00.00.00.00.00.00.00.00.00.	81.0 87.7 86.6 87.8	2.7 2.7 2.01 2.01 2.01	555353 59535.7	# # # # # # # # # # # # # # # # # # #	63.6	
801092 BORAH (TREATED) 801093 BORAH 801094 FIELDER (TREATED) 801095 FIELDER 801096 URQUIE (TREATED)	C1017267 C1017267 C1017268 C1017268	HRS HRS SWS SWS SWS	62.0 62.4 61.6 60.8	74.2 73.4 74.4 73.7	0.34 0.46 0.44 0.44	92.0 86.5 86.7 87.7	10.01	61.2 52.7 53.4 52.7	WWWW 00000	65.5	
801097 URQUIE 801098 FIELDWIN (TREATED) 801099 FIELDWIN 801100 WAMPUM (TREATED) 801101 WAMPUM	C1017413 C1017425 C1017425 C1017269	SWS SWS SWS HRS	60.4 62.4 62.0 61.0	74.6 74.4 74.2 75.1	0.42 0.42 0.41 0.41	8899.0 899.0 899.0 899.0	7.07.08 7.00.00	554.3	ZZZZ Q 45555	62.1	
801102 DIRKWIN (TREATED) 801103 DIRKWIN 801104 WALLADAY (TREATED) 801105 WALLADAY	C1017745 C1017745 C1017759 C1017759	SMS SMS SMS	58.4 57.6 61.6 60.4	73.7 72.6 72.1 72.0	0.49	883.7 883.4 823.6	7.8	54.6 54.3 57.5	######################################		3/
12 samples Average - Treated Untreated			61.2	74.5	0.45	86.6	0 00	55.6	(3))63.7	(3)62.3

ive spind varieties were treated with Bayleton and Indar. Across the varieties treatment improved test weight, flour yield, milling score, and loaf volume. Little influence on cookie spread is noted across (avg.) the varieties, but some varietal difference to treatment look significant.

					10 10 10 10 10 10 10 10 10 10 10 10 10 1	
				OHIBE		
	4			50000		
					U . S.	
					66000	
	生					
	2					

SPRING WHT
+ INDAR)
(BAYLETON +
SSOT
CROP
QUALITY LAB.
USDA, SEA AR WESTERN WHEAT OF PULLMAN, WA.

SPILLMAN, PULLMAN, WA

NURSCO 51

CONTD. PAGE 1

R. LINE

LABNUM VARIETY	ONGI	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	CODIC 4/	
801082 LEMH! (TREATED) 801083 LEMH! 801084 MARFED (TREATED) 801085 MARFED 801086 TWIN (TREATED)	C1011415 C1011415 C1011919 C1011919	SMS SMS SMS SMS						9.39 8.95 9.26	9.48 9.07 9.00 9.13	
801087 TWIN 801088 SPRINGFIELD (TREATED) 801089 SPRINGFIELD 801090 WARED (TREATED) 801091 WARED	C1014588 C1014589 C1014589 C1015926 C1015926	SWS SWS SWS HRS	62.1	w w rv &	1000	907	NN	9.34 9.34 9.48 8.74	000088 	
801092 BORAH (TREATED) 801093 BORAH 801094 FIELDER (TREATED) 801095 FIELDER 801096 URQUIE (TREATED)	C1017267 C1017267 C1017268 C1017268 C1017413	HRS SWS SWS SWS	63.4	0. w 70.	1008	878 864	00	8.75 8.62 9.06 9.26	99.00	
801097 URQUIE 801098 FIELDWIN (TREATED) 801099 FIELDWIN 801100 WAMPUM (TREATED) 801101 WAMPUM	C1017413 C1017425 C1017425 C1017269 C1017269	SWS SWS SWS HRS	61.5	. e. . o.	955	918	00	9.19 9.02 9.42 8.81	98.30	
801102 DIRKWIN (TREATED) 801103 DIRKWIN 801104 WALLADAY (TREATED) 801105 WALLADAY	C1017745 C1017745 C1017759 C1017759	SWS SWS SWS SWS						9.02 9.21 9.05	860 80 00 00 00 00 00	
12 samples Average - Treated Untreated 1/ Observed Values Corrected to 14% Moisture E 3/ Absorption at 14% Moisture Corrected to 9% 4/ Observed Values Corrected to 9% Protein	Corrected to 9% Protein	in.	5/ Par 6/ Pro	(3)3.1 (3)988 ((3)3.6 (3)957 (Particularly Prom Promising Overall	3)988 (3)957 (1y Prom Overall	3)901 3)913 ising Quali	2 (1 2 (1 0verall Q ty Charac	2)9.07 2)9.14 uality teristi	9.09 9.07 Characteristics	stics.

C.F. KONZAK

L, RS, D, PY, &WW, WA

NURSCO 52

LABNUM	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	CODI	COD1C	MTYPE	PE
801106 WA6753 LIND DRY 801107 WA6753 LIND IRRIG 801108 WA6753 ROYAL SLOPE 801109 WA6753 DAYTON 801110 WA6753 POMEROY	WA6753 WA6753 WA6753 WA6753 WA6753	SMS SMS SMS SMS	61.2 63.2 62.4 63.2 62.4	73.9 74.6 74.5 74.5	0.49 0.51 0.56 0.42 0.49	84.0 83.9 80.4 89.4	00000 00000 00000 00000 00000	56.5 55.3 55.3	9.08 9.09 8.86 9.03	9.14 9.11 9.95 9.16	2 L M M M M M M M M M M M M M M M M M M	
801111 WA6753 WALLA WALLA 801112 1D185 LIND DRY 801113 1D185 LIND IRRIG 801114 1D185 ROYAL SLOPE 801115 1D185 DAYTON	WA6753 10185 10185 10185 10185	SMS SMS SMS SMS	62.4 62.8 64.0 64.0	75.0 70.1 71.6 72.4 72.4	0.48 0.42 0.48 0.44 0.36	86.2 83.8 81.7 85.0 90.6	99889 90508	53.2 56.5 55.6 55.7	9.17 9.06 9.40 9.41 9.24	9.20 9.13 9.34 9.36	NAMAM NAMAM NAMAM	
801116 #D185 POMEROY 801117 #D185 WALLA WALLA	10185 10185	SMS	64.8 63.6	71.7	0.39	87.4	9.6	55.3	9.12	9.05	2L 2M	
1/ Observed Values Corrected to 14% Moisture Basis 3/ Absorption at 14% Moisture Corrected to 9% Protested Values Corrected to 9% Protein.	to 14% Moisture Basis. Corrected to 9% Protein to 9% Protein.	ein.	5/ P. 6/ P.	Particularly Prom Promising Overall	arly F	.1	Ove	Overall Quality ty Characteristi	Quality cteristi	Characteristi cs.	teris	tic

Both of these selections have good overall quality. Location did not appear to have an effect, although characteristics - WA6753 has higher flour yield but also higher ash while ID185 has lower flour yield flour yield was lowest for both selections at the Lind dry nursery. The two do differ in milling and ash which are offsetting in milling score. COMMENTS:

CS.

NURSCO 53	088	HILL, PUL	PULLMAN, W	MA					æ.	LINE	
LABNUM	ONO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	CODI	CODIC 4/	MTYPE
801118 GAINES (TREATED) 801119 GAINES 801120 NUGAINES (TREATED) 801121 NUGAINES 801122 HYSLOP (TREATED)	C1013448 C1013448 C1013968 C1013968 C1014564	MAS MAS MAS	63.6 58.0 64.4 63.2	73.9 71.4 75.2 73.0	0.44 0.52 0.43 0.43	87.0 78.9 7.09 86.6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	55555 35555 86722	9.96 9.96 9.96 9.06	99.08	3 L S S S S S S S S S S S S S S S S S S
801123 HYSLOP 801124 MCDERMID (TREATED) 801125 MCDERMID 801126 LUKE (TREATED) 801127 LUKE	C1014564 C1014565 C1014565 C1014568 C1014568	AMS MMS MMS MMS	63.2 63.2 60.08 60.4	73.7 74.0 72.9 75.0	00.45	866.2 888.8 87.4 92.0	20001	53.0 55.0 53.0	9.629	9.000	28. 4. 4. 4. 4. 4.
801128 BARBEE (TREATED) 801129 BARBEE 801130 DAWS (TREATED) 801131 DAWS 801132 STEPHENS (TREATED)	C1017417 C1017417 C1017419 C1017419	CLUB SWW SWW SWW	623.0 623.0 623.0 623.0 623.0	73.8 73.0 74.4 76.1	00.41	89.0 87.8 89.5 89.1	87.88 7.67.0	52.00	9.46 9.40 8.81 9.27	9.50 9.35 8.37 9.38	11 33 23 23
801133 STEPHENS 801134 FARO (TREATED) 801135 FARO 801136 WALLADAY (TREATED) 801137 WALLADAY	C1017569 C1017590 C1017590 C1017759	SWW CLUB CLUB SWS SWS	623.6 62.0 62.0 60.0 60.0	75.3 76.4 73.2 72.6	0.42 0.39 0.41 0.42	90.2 93.8 92.2 87.7 85.4	007.00	55.55 55.00 55.00 55.00	9.20	9.27 9.12 9.16 9.20	642233 642333
801138 TYEE (TREATED) 801139 TYEE 801140 JACMAR (TREATED) 801141 JACMAR	C1017773 C1017773	CLUB CLUB CLUB CLUB	62.0 60.4 61.2 60.4	76.6 75.9 76.7	0.43	91.4 90.4 91.5	7.8	53.3	9.32	9.31	22L 22L 22L 22L
AVERAGE TREATED UNTREATED			62.8	75.0	0.42	90.0	7.9	53.6	9.22	9.28	
1/ Observed Values Corrected to 14% Mois 3/ Absorption at 14% Moisture Corrected	sture Corrected to 8% Protein	5/ 2/ 2/ 6/	Parti	cular	ly Promi Overall	sing Quali	Overall ty Char	l Quali racteri	ty Cha stics.	racter	istics.

The trend was also there in cookie baking quality, but most of 7.9%). Across the 12 varieties in the Bayleton trials the treated samples were significantly better in test the larger cookie spread among the treated pairs was accountable to the lower protein (8.5% vs. weight, flour yield, and milling score. COMMENTS:

Observed Values Corrected to 8% Protein.

PULLMAN & LIND, WA

PNWCIA COLLABRATIVE TESTS

NUGAINES NUGAINES NUGAINES NUGAINES NUGAINES NUM	LABNUM	VARIETY	ONO	CLASS	FASH 1/	FYELD	MSCOR	FPROT	MABSC 3/	FABS	FABSC	FPEAK	FSTAB
JACMAR WA6585 CLUB 0.444 79.9 87.4 WA6402 FIELDER WA6402 FIELDER WA6402 FORMS 0.446 77.4 86.3 89.9 FORMS 0.446 77.4 86.3 89.9 FORMS 0.446 77.4 86.3 88.2 FORMS 0.446 77.4 86.3 88.2 FORMS 0.446 77.2 87.4 88.2 FORMS 0.45 FORMS 0.47 FO			C1013968 C1014485	SWW SWW SWW SWW SWW	00.45	77.3	84.7 86.6 84.0 87.1	8.7.00.8	55.3 55.3 55.3 55.3	57.6 58.7 58.8 53.5 54.6	58.8 59.0 56.3 56.3	- 44 4	0.5040
BORAH 10167 HRS 0.38 76.4 91.5 HRS 0.40 76.5 90.3 WA65510 WA65510 WA65510 HRS 0.45 78.3 87.9 HRS 0.45 78.8 87.9 HRS 0.41 78.6 89.8 T7-99 HRW 0.43 77.0 88.9 DIRKWIN	801147 JACMAR 801148 WA6472 801149 FIELDER 801150 WA6402 801151 10185			CLUB SWS SWS SWS SWS	0.39 0.44 0.44 0.44	79.9 79.2 77.4 77.2	87.4 89.9 86.3 887.4	8.9 8.4 9.7 10.7	50000 50000 50000 50000	54.3 54.3 57.4 54.3	55.6 55.9 54.2	0.40.0.0	2000
IN C1017745 SWS 0.47 76.7			C1017267 C1013844	HRS HRS HRS HRS	0.38 0.40 0.45 0.45 0.43	76.4 76.5 78.3 78.6	91.5 887.9 88.88	13.2	63.1 62.0 62.8 64.0	65.2 63.0 61.5 62.2 60.6	62.1 59.8 60.0 61.0 59.9	30000 00000	E + 1.8 1.9
WA6753 SWS 0.49 77.7	801157 77-99 801158 DIRKWIN 801159 WA6753		C1017745	HRW SWS SWS	0.43	7.07	88.9 85.8 84.7	11.6	63.5 57.4 57.8	61.7 57.7 58.3	60.1 58.2 58.0	7.1.	1.03

Northwest Crop Improvement Association. The soft white winters, soft white springs, and clubs at Pullman These selections were increased in nurseries at Pullman and Lind, WA, in co-operation with the Pacific and the hard red springs and winters at Lind. COMMENTS:

Observed Values Corrected to 10% Protein.

	BREAD	
N	UNDON NOODLE	GOOD GOOD-EXCELLENT
SUMMARY OF OVERALL EVALUATION	SPONGE CAKE	GOOD-FAIR POOR GOOD
SUMMARY OF O	COOKIE	GOOD-FAIR GOOD-EXCELLENT
	MILLING	CK) GOOD GOOD GOOD-EXCELLENT
		NUGAINES (CHECK, 77-294 ID 5318 WA 6363 G

NURSCO 54

PNWCIA COLLABRATIVE TESTS

PULLMAN & LIND, WA

LABNUM	VARIETY	ONG	CLASS	VISC	VISCC	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	CODIC
801142 NUGAINES 801143 77-294 801144 1D5318 801145 WA6363 801146 PAHA		C1013968 C1014485	SWW SWW SWW CLUB	75 78 39 34	100 100 29 85 85						888 89.09 9.01 173 00.00	8.39 8.37 8.37 8.93
801147 JACMAR 801148 WA6472 801149 FIELDER 801150 WA6402 801151 ID185		WA6585 C1017268	CLUB CLUB SWS SWS SWS SWS	54 49 121 109	68 71 90 107 107						9.09.88 8.9013 8.86 8.86	888888
801152 BORAH 801153 1D167 801154 WA6510 801155 WA6750 801156 WANSER		C1017267 C1013844	HRS HRS HRS HRW	321 259 151 195	159	67.3 64.1 65.7 68.0 66.7	3 t 3 t 8 t 8 t 8 t 8 t 8 t 8 t 8 t 8 t	1113 1194 1020 1016 977	921 927 942 929	0-000		
801157 77-99 801158 DIRKWIN 801159 WA6753		C1017745	HRW SWS SWS	212 63 87	161 70 82	66.2	3.4	986	887	8	8.76	8.70
		SUMMARY	OF OVERALL		EVALUATION	ON (CONTD)	(D)					
	MILLING	COOKIE	SP	SPONGE C	CAKE	UDON	NOODLE	. 1	BREAD	0.1		
PAHA JACMAR WA 6472	(CHECK) GOOD GOOD	GOOD-EXCELLENT GOOD		GOOD-EXCELLENT	LENT	M 0	FAIR					
FIELDER WA6402 ID 185	(CHECK) GOOD GOOD	<i>aoo5</i>		#0005	* *	0 0	*doop					
22	(CHECK) GOOD							Š	GOOD COORTER TRANSPORT	T. C. C.		
WA 6750	0005							3	GOOD	T AIGHT		

PNWCIA COLLABRATIVE TESTS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO

PER I MAN

PULLMAN & LIND, WA

LABNUM	VARIETY	ONGI	CLASS	CAVOL	EXFAC	CCRGR	TEXTC	SCSOR	WIIM	RNCOL
801142 NUGAINES 801143 77-294 801144 105318 801145 WA6363		C1013968	SWW SWW SWW SWW	1154 1117 1099 11143	32.0 28.0 27.0 31.0	23.00 23.00 23.50 23.50	24.0 21.2 16.0 24.0	79.5 73.2 66.0 78.5	3337 3352 3356 355 355	<u> </u>
801147 JACMAR 801148 WA6472 801149 FIELDER 801150 WA6402 801151 ID185		WA6585 C1017268	CLUB CLUB SWS SWS SWS	1125 1132 1077 1061	29.0 25.0 23.0 27.0	23.5 22.0 22.0 22.0	23.6 19.1 18.5	76.1 78.8 66.6 65.6 67.5	328 338 323 337	<u>∓</u> ₹2∞27
801152 BORAH 801153 1D167 801154 WA6510 801155 WA6750 801156 WANSER		C1017267 C1013844	HRS HRS HRW							
801157 77-99 801158 DIRKWIN 801159 WA6753		C1017745	HRW SWS SWS	1052	22.0	21.0	24.8	67.8	328	52
		SUMMARY	OF OVER	OF OVERALL EVALUATION (CONTD)	ATION (C	ONTD)				

Breeders should seriously consider the consequences of releasing varieties that when marketed either alone or blended with the winter wheat crop will jeopordize the long standing Oriental Part of the produced in spring wheats, so management for protein content may also be an aid to providing * "GOOD" indicates only that they were equal to the check variety. None of the SWS wheats poor performance of SWS wheats in these products is the usual 1-2% higher protein generally were acceptable in sponge cake and noodle quality when compared to either the SWW or clubs. markets. Considerable screening of SWS wheats for sponge cake and noodle making appears BREAD necessary. Not one of the current varieties are acceptable for these products. UDON NOODLE GOOD* SPONGE CAKE \$000D COOKIE G005 MILLING (CHECK) G005 DIRKWIN

Results from the foreign and domestic mill laboratories and bakeries will be distributed in the PNWCIA Collaborative Tests report in the near future. better end use quality.

	RMKS				
	MTYPE	3 L 3 L 3 L 3 L 3 L 3 L 3 L 3 L 3 L 3 L	2 - 2 M M M M M M M M M M M M M M M M M	3344	2H 2H
	NOSCO	75 74 74 79 74	68 68 68 68		99
	NYELD	2022	サプラック		44
	TEXTN	88888 88888 88888	24 30 30 30 30 30 30 30 30 30 30 30 30 30		30
ND, WA	CNCOL	¥2555	250 m		11 11
LMAN & LI	CLASS	SWW SWW SWW	CLUB CLUB SWS SWS SWS SWS	HRS HRS HRW	HRW SWS SWS
PUL	ONGI	C1013968	WA6585 C1017268	C1017267 C1013844	C1017745
5CO 54	IUM VARIETY			152 BORAH 153 1D167 154 WA6510 155 WA6750	801157 77-99 801158 DIRKWIN 801159 WA6753
	NURSCO 54	PULLMAN & LIND, WA VARIETY IDNO CLASS CNCOL TEXTN NYELD NOSCO MTYPE	NUGAINES CIOTI4485 CLUB 16 26 177 74 1M	PULLMAN & LIND, WA WA WA WA WA WA WA WA	PULLMAN & LIND, WA

Michigan Sprouted Wheat Study

USDA, SEA-AR
Western Wheat Quality Lab.
Pullman, Washington

Sample Preparation The samples were received from the USDA, Soft Wheat Quality Laboratory, Wooster, OH as 50% patent, 10% cut-off, clears, red dog, head shorts, tail shorts, and bran with the weights of each obtained during milling on a Miag Multomat. Three flours were constructed from these mill stream parts. The 50% patent, 10% cut-off and clears were blended to make a straight grade flour, the red dog and shorts were ground (and reground if needed) and sifted over a 94ss to prepare a 77% extraction and similiarly the bran was lightly ground and the flour sifted away to prepare an 82% extraction flour.

Analysis The fifteen flours were analyzed for moisture, protein, ash and water absorption. Values reported in Table 1 are on 14% moisture basis and the methods used are accepted AACC Methods. The straight grade flours were tested for their performance in cookie baking, White Arabic (flat-pocket type) bread, and Tunisian (Terablesi) which is a yeast raised bread. The 77% extraction flours were evaluated for use in an Iranian (Barbari) bread that is semi-raised. The 82% extraction flour was evaluated for use in a popular Middle-Eastern bread called Lavash (flat cracker type). The formula and proceedures followed are given in Table 2.

Results and Conclusions Cookie - No significant differences in cookie diameter or top grain could be noted. All the wheats from sound to 80% sprouted appeared acceptable in cookie baking. No taste evaluations were made.

Flat Preads - The flat breads were evaluated for crust color, crumb color, texture, flavor, and an overall performance. The results are in Table 3. Lavash, Arabic White, and Barbari breads could possible tolerate up to the 10% sprout level. The most serious fault was an off-flavor that could be detected at even this lower level of sprouting. The flavor was a hint of mustiness and/or malty taste and was very evident at levels of sprouting above 10%. The Tunisian (raised bread) Terablese was very poor at all levels of sprouting. The loaf appearance was dull in color and crumb was wet, gummy and very sticky. Additions of 50 ppm ascorbic acid improved the loaf volumes slightly, but did not improve the undesirable color or texture character of the breads.

"TE SALLIN BUTHOUSE?

Commence of the Commence of th

The factor of the control of the con

to bottlern of an entity results of an entity of the content of th

The control of the co

Western Wheat Justity Lab.

TABLE 1 MICHIGAN SPROUT STUDY

ICHIGAN SPROUT STUDY

1/ TED			
COOKIE 1	9.33 9.41 9.45 9.17		
COOKIE	9.34 9.51 9.54 9.31		
BAKE	55.0 54.6 53.1 52.8	56.4 55.5 54.3 54.3	55.6
FALLING NUMBER FL/WHT	412/438 238/215 64/60 61/60 60/60		
FLOUR MOISTURE (%)	13.9 13.4 13.6 13.8	13.6 13.1 13.2 13.4	13.1 12.9 13.2 13.1
FLOUR	8 8 .9 .7 .7 .8 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	888.9	90000
FLOUR	0.39 0.37 0.31 0.32	0.49 0.52 0.50 0.54	0.74 0.64 0.75 0.79
WAEAT* HARDNESS INDEX	36 10 14 17 24		*
LYSINE Mg/g. Prot.	2.83 3.06 3.04 3.04		
WHEAL PROTEIN (AS IS)	10.4 9.6 9.3 9.2 8.9		
IDNO	ST. GRADE ST. GRADE ST. GRADE ST. GRADE ST. GRADE	77% EXT. 77% EXT. 77% EXT. 77% EXT. 77% EXT.	82% EXT. 82% EXT. 82% EXT. 82% EXT.
WWQL LABNUM	801160 CONTROL 801161 10% SPROUTED 801162 32% SPROUTED 801163 39% SPROUTED 801164 80% SPROUTED	801165 CONTROL 801166 10% SPROUTED 801167 32% SPROUTED 801169 80% SPROUTED	801170 CONTROL 801171 10% SPROUTED 801172 32% SPROUTED 801173 39% SPROUTED 801174 80% SPROUTED

Corrected to 9.0% Protein.

Kernel texture measured by NIR Reflectance. The smaller the number the softer the flour texture.

NURSCO 055 USDA, SEA-ARS Western Wheat Quality Lab. Pullman, Washington

PAGE 3

TABLE 2
BREADS FORMULAE AND PROCEDURES

FLOUR	LAVASH 100(82% ext.)	ARABIC WHITE 100 (St. Grd.)	BARBARI 100(77% ext.)	TUNISIAN 100(St. Grd)
WATER*	VARIABLE	VARIABLE	VARIABLE	VARIABLE
YEAST**	0.5	1	1	1
SALT**	1.5	1.5	2	1.5
FERMENTATION (MIN)	90	30	120	30
1st PROOF	-	-	. 20	-
SHEET THICKNESS				
(mm)	1	3	6	25
FINAL PROOF	-	45	15	45
BAKING TIME (MIN)	1.30	1	13	35
BAKING TEMP. (F)	630	850	500	420

^{*} Water absorption was determined for each individual flour. Water absorption levels of Arabic white, Barbari and Tunisian were adjusted to 800, 400 and 450 lines of Farinograph, respectively. Water absorption level for lavash was determined by dough feel because of excessive dryness (43-45% water absorption).

^{**} Based on 100 part flour.

BETTING AND DICK STREET STREETS

ONLY THE TOTAL STREETS

AND STREETS

0.5

63.0

A. Corsan mes demorated for each individual liter. The Col At will and established while the standard of the collection were adjusted as all all all and all a descriptions of the collection of

3389 OC "

TABLE 3
Results of Sprouted Wheat Flour testing

CONT	rrol	LAVASH	ARABIC WHITE	BARBARI	TUNISIAN *
CON	CRUST COLOR CRUMB COLOR TEXTURE	S S	S S S	S E E	Q-S S S
	FLAVOR OVERALL PERFORMANCE	S S	S S	S S	S Q-S
10%	Sprout				
	CRUST COLOR CRUMB COLOR TEXTURE FLAVOR OVERALL PERFORM.	S Q-S S Q-U Q-S	S Q-S S Q-S Q-S	E S S Q-U Q-S	U U Q-U Q-U
32%	Sprout CRUST COLOR CRUMB COLOR TEXTURE FLAVOR OVERALL PERFORMANCE	S Q-S S U	S Q-S S U U	S S S U U	บ บ บ บ
39%	Sprout CRUST COLOR CRUMB COLOR TEXTURE FLAVOR OVERALL PERFORMANCE	S Q-S S U	S Q-S Q-S U U	S S S U	บ บ บ บ
80%	Sprout CRUST COLOR CRUMB COLOR TEXTURE FLAVOR OVERALL PERFORMANCE	S Q-S S U	S Q-S U U U	บ บ บ บ	U U U U

E = Excellent S = Satisfactory Q-S = Questionable-Satisfactory U = Unsatisfactory

^{*} Addition of 50 ppm ascorbic acid did not improve characteristics of Tunisian Breads.

A PERMIA

TANATA SESSES STATE BUSINESS

The sale recommended in the second second second in the second se

l m

WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	CALIFORNIA	A REGIONAL	CEREAL	TESTS					PAGE
NURSCO 56	ncp	KINGS&SUT	TER CO.					C.O. QUAL	LSET
LABNUM VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE
801175 SHASTA UC DAVIS 801176 INIA 66R 801177 ANZA 801178 TANORI 71 801179 YECORA ROJO	C103976 C1014195 C1015284	HRW HRW HRW HRW	64.8 64.0 65.2 65.2 65.2	74.7 73.1 75.4 74.0	0.42 0.38 0.35 0.35	88 88.3 91.0 91.2	0.01 0.02 0.03 1.00 1.00	61.7 63.8 60.7 61.7	THWHH THWHH
801180 GERMAIN'S W444 801181 PAYON F76 801182 NAPB 183-74 "OSLO" 801183 NK PROBRAND 611 801184 NK 77S 1817		HRW 6/ HRW 6/ HRW 6/ HRW 6/	64.8 64.4 62.8 62.8	74.3 73.3 75.8 74.5	0.37 0.40 0.37 0.35	90.4 88.0 92.2 91.9	7.01	64.1 63.1 63.8 61.6 62.9	5H 4H 5H 6H
801185 D7316 801186 D7901 801187 CA70276-27D-1S-1D-1TL-1D 801188 CA70293-17D-1S-3D-0TL 801189 CA70293-19D-1S-0D-4SL-2D-1TL		HWW HWW HRW HRW 6/	62.2 65.2 66.2 4	72.3	0.42 0.40 0.39 0.38	86.0 85.0 91.7 90.8	7.01 10.3 10.7 7.11	62.3 62.3 62.3 62.3	4H 4H 4H 2H
801190 CA70296-231D-1D-3D-4D-1D 801191 CA70297-74D-6D-2TL-1D-0D 801192 SHASTA KINGS COUNTY 801193 INIA 66R 801194 ANZA	C103976 C1014195 C1015284	HHREW HREW HREW	66.0 64.4 64.8 64.0	72.3 73.1 73.4 73.6	0.39 0.35 0.47 0.36	87.7 90.4 84.7 89.6 89.6	10.1	61.8 62.7 60.1 62.4 60.0	2M 2H 2H 2M
801195 TANOR! 71 801196 YECORA ROJO 801197 GERMAIN'S W444 801198 PAVON F76 801199 NAPB 183-74 "OSLO"		HRW HRW HRW 6/	64.4 64.0 64.0 63.6 64.0	73.0 72.1 72.8 71.5	0.36 0.39 0.39 0.44 0.37	89.7 87.5 88.3 84.1	11.9	61.9 61.8 64.8 62.9 64.1	## 22H ## ## ## ## ## ## ## ## ## ## ## ## ##
801200 NK PROBRAND 611 801201 NK 77S 1817 801202 D7316 801203 D7901 801204 CA70276-27D-1S-1D-1TL-1D		HRW 6/ HWW 0/ HWW HWW HRW	61.2 65.2 63.2 63.2	72.8 74.7 70.7 68.7	0.36 0.38 0.39 0.39	89.6 90.5 86.1 89.1	11.00	61.0 63.0 62.3	344 344 344 344 344 344 344 344 344 344
801205 CA70293-17D-1S-3D-OTL 801206 CA70293-19D-1S-0D-4SL-2D-1TL 801207 CA70296-231D-1D-3D-4D-1D 801208 CA70297-74D-6D-2TL-1D-0D 801209 SHASTA SUTTER COUNTY	C103976	HRW HRW HWW HRW HRW	64.8 65.2 63.6 67.2 67.2	72.9	0.39 0.43 0.42 0.40	8888 8855 8855 8855 8855 8855 8855 885	10.01 9.99 7.01 7.01	60.9 60.5 60.5 60.3 60.3	2224 2224 224 224

The state of the s

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	CALIFORNIA	A REGIONAL	CEREAL	TESTS				CONTD.	PAGE 1
NURSCO 56	ncp	UCD, KINGS&SUT	UTTER CO.					C.O. QUALS	SET
LABNUM	ONOI	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	RMKS
801175 SHASTA UC DAVIS 801176 INIA 66R 801177 ANZA 801178 TANORI 71 801179 YECORA ROJO	C103976 C1014195 C1015284	HRW HRW HRW	66.8 70.5 64.2 67.7	65.9 65.9 66.6	5.00 d d d d d d d d d d d d d d d d d d	1003 1217 870 1145	947 1062 1021 1060	N N & N N	7
801180 GERMAIN'S W444 801181 PAVON F76 801182 NAPB 183-74 "OSLO" 801183 NK PROBRAND 611 801184 NK 77S 1817		HRW HRW HRW	69.0 67.9 68.9 66.5	67.3 67.8 67.0 65.8	0.44.00 0.00000	1040 956 1049 1022 1068	935 950 931 979	22 S1	. low LVOL
801185 D7316 801186 D7901 801187 CA70276-27D-15-1D-1TL-1D 801188 CA70293-17D-15-3D-0TL 801189 CA70293-19D-15-0D-4SL-2D-1TL		HWW HRW HRW HRW	666.4 683.6 67.4 683.0	66.7 68.3 64.5 66.7	>ww−wv v∞v≠v	875 833 898 992 990	894 814 966 949 897	3 10w 6 10w 4 poor 2 10w	V FYELD, LVOL V FYELD, LVOL NTIME, BCRGR V LVOL
801190 CA70296-231D-1D-3D-4D-1D 801191 CA70297-74D-6D-2TL-1D-0D 801192 SHASTA KINGS COUNTY 801193 INIA 66R 801194 ANZA	C103976 C1014195 C1015284	HHREW HREW HREW	65.7 67.4 68.0 68.0	65.3 66.9 66.6 63.2	- NNW- 4NW00	872 1000 877 1043 780	847 969 834 829	6 poor 4 poor 2 8	or MTIME, BCRGR
801195 TANOR! 71 801196 YECORA ROJO 801197 GERMAIN'S W444 801198 PAYON F76 801199 NAPB 183-74 "OSLO"		HRW HRW HRW HRW	67.5 67.9 69.1 67.1 67.3	66.0 66.0 69.0 67.1	2007 2005 2005	1022 1055 1000 1032	935 937 1000 970	0000m	
801200 NK PROBRAND 611 801201 NK 77S 1817 801202 D7316 801203 D7901 801204 CA70276-27D-1S-1D-1TL-1D		HRW HWW HWW HRW	666.3 666.7 666.3 68.1	65.2 67.2 68.1 64.5	2000cc 0000c0	1025 1100 930 825 942	1007 1007 986 825 992	2 4 poor 8 poor 2 v. sl	r FYELD, BCRGR r FYELD, BCRGR short MIINE
801205 CA70293-17D-1S-3D-0TL 801206 CA70293-19D-1S-0D-4SL-2D-1TL 801207 CA70296-231D-1D-3D-4D-1D 801208 CA70297-74D-6D-2TL-1D-0D 801209 SHASTA SUTTER COUNTY	C103976	HRW HWW HRW	64.2 65.1 62.4 65.0 64.9	64.1 64.2 62.5 64.5 64.5	20110 20110	8966 8930 893	890 853 899 868	2 poor 8 poor 6 poor 6	r BCRGR r LVOL,BCRGR r LVOL,BCRGR
									Agreement vary community and the state of th

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	CALIFORNIA		REGIONAL CEREAL TESTS	rests					PAGE 2
NURSCO 56	nco	UCD, KINGS&SUTTER	TTER CO.					C. O. QUA	QUALSET
LABNUM	ONO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
801210 INIA 66R 801211 ANZA 801212 GERMAIN'S W444 801213 PAVON F76 801214 NAPB 183-74 "OSLO"	C1014195 C1015284	HRW HRW HWW	65.2 65.8 67.2 67.2	72.0 74.2 73.7 73.7	0.35 0.40 0.41 0.42 0.38	89.2 88.5 87.5	9.001	63.5 63.5 63.5 63.6	th th th th
801215 NK PROBRAND 611 801216 D7316 801217 D7901 801218 CA70276-27D-1S-1D-1TL-1D 801219 CA70293-17D-1S-3D-OTL		H HWW H HWW H H HWW	66.0 66.0 66.0 66.0	73.9 71.2 75.8 73.9	0.38 0.39 0.40 0.40 0.40	889.9 885.6 90.9 7.88	9.60	60.5 64.4 61.4 61.9	88W 8W 6W 7W 6W
801220 CA70293-19D-1S-0D-4SL-2D-1TL 801221 CA70296-231D-1D-3D-4D-1D 801222 CA70297-74D-6D-2TL-1D-0D		HRW HWW HRW	67.2 65.2 66.4	73.5 72.3 72.6	0.39 0.41 0.37	88.9 86.0 88.7	11.6	61.7 59.0 61.5	3 3 X X X X X X X X X X X X X X X X X X

NURSCO 56

UCD, KINGS&SUTTER CO.

2 CONTD. PAGE

C.O. QUALSET

LABNUM VARIETY IDNO CLASS BABS BABSC MTIME LVOL LVOLC BCRGR RMKS											
C1014195 HRW 69.6 67.7 3.8 1022 904 2 C1015284 HRW 63.5 64.1 2.4 775 812 HWW 67.6 67.8 4.2 893 943 2 HRW 64.5 64.7 4.4 982 994 2 HRW 68.5 69.3 3.3 882 932 4 HWW 67.6 68.1 66.1 66.1 3.5 950 950 950 950 950 950 950 950 950 95	LABNUM	VARIETY	ONO	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	RMKS
HRW 64.5 64.7 4.4 982 994 2 HWM 68.5 69.3 3.3 882 932 4 HWM 67.6 68.6 1.7 845 926 6 HRW 66.1 66.1 3.5 950 950 2 HRW 67.5 65.9 2.3 975 876 4 HWW 60.7 61.2 1.1 807 838 9 HRW 66.0 65.7 1.8 965 946 2	801211 ANZA 801211 ANZA 801212 GERMAIN'S 801213 PAVON F76 801214 NAPB 183-7	74 "0SLO"	C1014195 C1015284	HREW HREW HREW HREW	69.6 63.5 67.6 67.0	67.7 64.1 67.4 67.8 68.1	3 t 3 C 3 S 3 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S	1022 775 1000 893	904 812 988 943	N N → N N	
-1TL HRW 67.5 65.9 2.3 975 876 4 HWW 60.7 61.2 1.1 807 838 9 HRW 66.0 65.7 1.8 965 946 2	801215 NK PROBRAM 801216 D7316 801217 D7901 801218 CA70276-27 801219 CA70293-17	ND 611 7D-1S-1D-1TL-1D 7D-1S-3D-0TL		HRW HWW HRW	64.5 68.5 67.6 62.3 66.1	64.7 69.3 68.6 63.6	3 1 3 3 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	982 882 755 845	994 932 817 926 950	4 Pooc 6 Pooc 8 Pooc	T BCRGR T LVOL, BCRGR T MTIME, BCRGR
	801220 CA70293-1 801221 CA70296-2 801222 CA70297-71	9D-1S-0D-4SL-2D-1TL 31D-1D-3D-4D-1D 4D-6D-2TL-1D-0D		HRW HRW	67.5 60.7 66.0	65.9 61.2 65.7	2.3	975 807 965	876 838 946		poor LVOL, BCRGR poor MTIME, BCRGR Questionable MTIM

Absorption at 14% Moisture Corrected to 10% Protein.

Promising Overall Quality Characteristics. ोर्ल

COMMENTS:

Observed Values Corrected to 10% Protein.

Note the three locations of U.C. Davis, Kings County, and Sutter County, each nursery beginning with Lab. number 801175, 801192, and 801209, respectively. Footnotes following the class denote those that have promising overall quality. See remarks column for deficiencies of the other selections.

		Fig. con the good fig.	
	49 gij 7		
		2000	
			200 NO
3			

W
Į
LL
-
¥
PE
>
EAD
BR

ATS PULLMAN, WA USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA. 57 NURSCO

										יייני ארנאוֹא	
LABNUM	VARIETY	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	F PROT	MABSC 3/	MTYPE	BABS
801223 BURT 801224 BURT 801225 C113253/7 801226 SUWON92/6 801227 SUWON92/6	801223 BURT 801224 BURT 801225 C113253/7*BURT/IBIS//2*BURT 801226 SUWON92/6*BURT/FALCO//2*BURT 801227 SUWON92/6*BURT/IBIS//2*BURT	C1012696 012696 REPS & I REPS & I	HWW HWW SWW HRW HRW	62.8 62.8 60.4 61.2	73.2 74.4 74.9 72.0	0.48 0.42 0.44 0.47	88883 63.52 7.22 86.33 8	88.1 4.88.1 7.7	56.4 53.2 53.9 53.3	6M 6L 2L 2L	59.7 53.6 55.0 55.9
801228 C113253/7	801228 C113253/7*BURT/CLEO//2*BURT	REPS 1 & 1	SWW	8.09	75.8	0.44	89.7	6.7	51.7	2L	51.6
1/ Observed V 3/ Absorption 4/ Observed V	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 7% Protei 4/ Observed Values Corrected to 7% Protein.	ure Basis. O 7% Prote	n.	5/ Part 6/ Prom	icularl	y Promi	Particularly Promising Overall Quality Characteristics	rall Qu	ality C eristic	Particularly Promising Overall Quality Characteristics Promising Overall Quality Characteristics.	istics.

The first Burt gave a high flour ash which lowered the milling score and it also had a heavy crumb grain. These two soft selections were outstanding in cookie baking. The protein was too low to give meaningful The selections from the Burt crosses all milled good, particularly the two that were soft endosperm. bread evaluation. Mixing times of the two soft selections are too short for bread flours. COMMENTS:

CONTD. PAGE 1	R.E. ALLAN	CODIC 4/	9.56	0 341
	æ	1000	9.65	9.37
		BCRGR	00000	00
		LVOLC	736 766 683 658 705	688
		LVOL	792 837 635 730	670
		MTIME	20000 2000 2000 2000 2000 2000 2000 20	2.1
E WHEATS	WA	BABSC 3/	58.6 58.3 56.1 55.5	51.9
READ TYPE WHITE WHEATS	PULLMAN, WA	CLASS	HWW HWW SWW HRW HRW	NMS
BREAD 1	<u>a</u>	ONGI	C1012696 012696 REPS & REPS &	REPS 1 & 1
JALITY LAB.		VARIETY	801224 BURT 801225 C113253/7*BURT/IBIS//2*BURT 801226 SUWON92/6*BURT/FALCO//2*BURT 801227 SUWON92/6*BURT/FALCO//2*BURT	801228 C113253/7*BURT/CLEO//2*BURT
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 57	LABNUM	801223 BURT 801224 BURT 801225 C113253/7 801226 SUWON92/6 801227 SUWON92/6	801228 CI13253/7

	LAB	
	T	
	QUAL	
AR	WHEAT	AA
SEA AR	3	
0)	VESTERN	MAR
SDA	ST	=
5	A	d

SWW 60.0 73.9 0. SWW 60.0 73.9 0. SWW 60.8 74.7 0. HWW 61.2 76.1 0. SWW 60.8 74.7 0. HRW 61.2 74.7 0. HRW 61.2 74.7 0. HWW 60.8 77.5 0. HWW 61.2 74.6 0. SWW 60.8 77.5 0.	200000		LOLLINGIA,								
79PS23 5/73.9 0.			CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC 3/	MTYPE	BABS
79PS28 5/ 79PS29 5/ 79PS30 5/ 79PS31 6/ 79PS32 COULEE 79PS33 NUGAINES 79PS33 NUGAINES 79PS33 NUGAINES 79PS33 NUGAINES	79PS23 79PS24 79PS25 79PS26		WWW. HWW. HWW.				88898 90.06 90.06 90.06	0,00000 0,00000	50000 50000 50000	EMMEN BUNGE	5.
79PS33 NUGAINES CI013968 SWW 61.2 74.6 0.	79PS28 79PS29 79PS30 79PS31		HRW SWW HWW				98800.0	80 80 80 80 80 80 80	556.22 57.7.2 59.7.1	NESER NEGORO	6 900.3 600.3 600.3 800.3
79PS35 DAWS C1017419 SWW 60.8 73.9 0.	79PS33 79PS34 79PS35	C1013968 C1014586 C1017419	MAS SWM SWM	601.2	74.6	0.41	86.13	000 	55.1 52.9	E E E	

Selection 79PS25 has excellent flour yield and appears hard yielding a low cookie diameter. Others of the Promising Overall Quality Characteristics. selections are outstanding in milling and baking quality for their class (See footnotes). 191 Observed Values Corrected to 9% Protein. COMMENTS:

Absorption at 14% Moisture Corrected to 9% Protein.

j

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	PURE SEED N	JRSERY (B	SEED NURSERY (BURT DERIVATIVES)	/ATIVES)					CONTD. PAGE 1	
NURSCO 58		PULLMAN, WA	MA					<u></u>	R.E. ALLAN	
LABNUM	ONGI	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	CODIC REMARKS	1 - 1
801229 79PS23 801230 79PS24 801231 79PS25 801232 79PS26 801233 79PS27		MAM S MAM H MAM S	61.2	2.0	857	8 38	8	8.56 9.15 8.60 9.39	8.65 low CODI 9.13 8.59 9.28 LVOI	LOW
801234 79PS28 801235 79PS29 801236 79PS30 801237 79PS31 801238 79PS32 COULEE		HRW HWW HWW	59.4 59.4 59.3	4 .2 .2 .4 .8 .4 .8	911 981 910	917 913 879 900	000 N	6.49	9.59	
801239 79PS33 NUGAINES 801240 79PS34 LUKE 801241 79PS35 DAWS	C1013968 C1014586 C1017419	MMS MMS MMS						9.04	9.07 9.65 8.80	

S
۵
-
\propto
-
S
_
0
-

DRILL

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

0 4 V . 23 . "			
			10 - 0 - 11 13 15 16 16 16

-	
PAGE	f four
0	0
CONT	2

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 59		PUL	PULLMAN & LI	LIND, WA						
LABNUM	VARIETY	IDNO	CLASS	MABSC 3/	MTYPE	FABS	FPEAK	FSTAB	VISC	VISCC
801242 MORO PULLMAN WINTER 801243 PAHA 801244 MCDERMID 801245 LUKE 801246 BARBEE		C1013740 C1014485 C1014565 C1014586 C1017417	CLUB CLUB SWW SWW	53.4 53.1 53.1 50.5	12 13 13 13 13 14				34 36 37 39	73 43 73 45
801247 DAWS 801248 STEPHENS 801249 FARO 801250 GREER 801251 HATTON		C1017419 C1017569 C1017590 C1017725 C1017772	SWW SWW CLUB SWW HRW	52.9 53.1 53.3 54.6 60.0	35 22 44 4M	59.7	4.2	ى ق	59 41 33 52	103 58 78 115
801252 TYEE 801253 JACMAR 801254 CREW 801255 OR7142 801256 OR68007		C1017773	CLUB CLUB CLUB CLUB SWW	52.2 52.3 51.7 52.0	3M 1M 2M 2M				98 94 97 98	75 73 49 91 66
801257 77-99 801258 77-294 801259 BAART PULLMAN 801260 TWIN 801261 PEAK 72	SPRING	C1001697 C1014588 C1015319	HRW SWW SWS HRS	59.7 53.0 52.6 54.6 62.9	44 23 33 84 84	61.0	4.5	5.0	76 88 88	99 88 88
801262 WARED 801263 BORAH 801264 URQUIE 801265 SAWTELL 801266 WAMPUM		C1015926 C1017267 C1017413 C1017424 C1017691	HRS SWS HRS HRS	62.1 60.3 55.1 59.3	WWW. 6033HH 6033HH	60.9 61.0 57.1 58.2	12.7 6.1 6.3	3.8 7.0	85	100
801267 WALLADAY 801268 WAVERLY (WA6402 801269 OWEN (ID 185) 801270 ID 195 801271 CHEYENNE LIND W) INTER	C1017759 C1017911 C1017904 C1008885	SWS SWS SWS SWS HRW	56.5 56.4 55.4 54.1	23 3 3 3 3 3 4 4 6 4 4 6 4 4 6 4 4 6 4 6	61.7	0.6	8.	83 116 88	121
801272 MORO 801273 MCCALL 801274 WANSER 801275 NUGAINES 801276 LUKE		C1013740 C1013842 C1013844 C1013968 C1014586	CLUB HRW HRW SWW SWW	53.5 62.1 55.9 54.6	23 H H H H H H H H H H H H H H H H H H H	64.2	8.50	11.4	102	96 133 96

_	
PAGE	four
	¥
td	0
cont	3

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

	1000	90.47 90.04 90.04 90.04	8.64 9.14 9.25 8.84 8.35	9.21 9.39 8.75 8.75	8.09 8.76 8.92 7.94	8.01 8.40 8.22 8.32	8.65 8.96 7.87	8.96 7.89 7.91 8.49
	BCRGR	\$\pi\$\pi\$	20078	01080	りたののり		מתוחבת	ω ω ν ν ω
	LVOLC 4/	904 595 824 849 739	862 851 765 868 976	794 883 732 803 815	886 802 818 890 844	1013 971 933 937	954 893 972 993 862	845 875 906 899 864
	LVOL	750 545 710 825 700	730 755 600 700 908	645 855 715 720 785	948 730 800 890 925	1100 1045 885 925 1010	900 905 960 915 955	795 880 975 825 810
	MTIME	2.1.8	23.2.0	21-1-0	2.3 2.3 12.3 1.1	45.004	7.5.0 7.0 7.0 7.0	22.3.38
	BABSC 3/	54.6 50.8 55.3 51.7	57.1 54.3 55.5 57.8	52.5 53.2 53.2 53.3	61.4 57.2 51.8 55.8 64.6	64.8 63.5 56.3 62.0	58.7 57.6 55.6 55.3 65.7	54.7 66.8 65.8 58.1 56.8
LIND, WA	BABS	51.8 553.4 555.4 51.0	54.9 52.7 52.5 55.0 60.6	51.7 52.0 51.6 51.7 52.8	52.4 56.0 51.5 55.8 65.9	66.2 64.7 55.5 61.8 63.6	57.8 57.8 55.4 54.0 67.2	53.8 66.9 56.8 55.9
PULLMAN &	CLASS	CLUB SWW SWW CLUB	SWW SWW CLUB SWW HRW	CLUB CLUB CLUB CLUB SWW	HRW SWW SWS SWS HRS	HRS SWS SWS HRS HRS	SWS SWS SWS SWS HRW	CLUB HRW HRW S SWW
d.	I DNO	C1013740 C1014485 C1014565 C1014586	C1017419 C1017569 C1017590 C1017725 C1017772	C1017773 WA6472	C1001697 C1014588 C1015319	C1015926 C1017267 C1017413 C1017424	C1017759 C1017911 C1017904 C1008885	C1013740 C1013842 C1013844 C1013968 C1014586
NURSCO 59	LABNUM	801242 MORO PULLMAN WINTER 801243 PAHA 801244 MCDERMID 801245 LUKE 801246 BARBEE	801247 DAWS 801248 STEPHENS 801249 FARO 801250 GREER 801251 HATTON	801252 TYEE 801253 JACMAR 801254 CREW 801255 0R7142 801256 0R68007	801257 77-99 801258 77-294 801259 BAART PULLMAN SPRING 801260 TWIN 801261 PEAK 72	801262 WARED 801263 BORAH 801264 URQUIE 801265 SAWTELL 801266 WAMPUM	801267 WALLADAY 801268 WAVERLY (WA6402) 801269 OWEN (1D 185) 801270 ID 195 801271 CHEYENNE LIND WINTER	801272 MORO 801273 MCCALL 801274 WANSER 801275 LUKE

ga wasse seems tease

or as the man the second some a second

ARTER TO MAIN PRODUCT BREAK STREET

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 59	VARIETY	PUL	PULLMAN & LI	LIND, WA	CAVOL	SCSOR	NITA	NOSCO	RMKS	
				4						
801242 MORO PULLMAN WINTER 801243 PAHA 801244 MCDERMID 801245 LUKE 801246 BARBEE	&	C1013740 C1014485 C1014565 C1014586 C1014586	CLUB SWW SWW CLUB	9.28 9.37 9.12 9.00	1265 1270 1190 1175	85.5 86.0 77.5 77.5	362 346 349 360 360	73 78 81 72		
801247 DAWS 801248 STEPHENS 801249 FARO 801250 GREER 801251 HATTON		C1017419 C1017569 C1017590 C1017725	SWW SWW CLUB SWW HRW	8.40 8.96 9.04 8.53	1200 1270 1215 1145	78.7 83.5 80.0 73.5	359 359 336	82 78 76 74		
801252 TYEE 801253 JACMAR 801254 CREW 801255 OR7142 801256 OR68007		C1017773	CLUB CLUB CLUB CLUB SWW	9.02 9.35 9.03 8.64 8.57	1185 1190 1200 1240	75.5 76.0 78.0 83.5 76.0	373 357 368 359	76 79 79 75		
801257 77-99 801258 77-294 801259 BAART PULLMAN SPRING 801260 TWIN 801261 PEAK 72	D.C.	C1001697 C1014588 C1015319	HRW SWW SWS HRS	8.17 8.63 8.89 8.80 8.04	1185 1245 1170	77.0 83.5 73.5	344 374 346	883		
801262 WARED 801263 BORAH 801264 URQUIE 801265 SAWTELL 801266 WAMPUM		C1017267 C1017267 C1017413 C1017424 C1017691	H K S S S S S S S S S S S S S S S S S S	88.50 8.62 8.21 8.38	1265	82.0	351	82		
801267 WALLADAY 801268 WAVERLY (WA6402) 801269 OWEN (ID 185) 801270 ID 195 801271 CHEYENNE LIND WINTER	TER	C1017759 C1017911 C1017904 C1008885	SWS SWS SWS SWS HRW	8.90 8.89 7.99	1205 1270 1225 1215	76.5 77.5 78.0 78.0	340 349 358 358	778		
801272 MORO 801273 MCCALL 801274 WANSER 801275 NUGAINES		C1013740 C1013842 C1013844 C1013968 C1014586	CLUB HRW HRW SWW SWW	8.88 7.90 7.99 8.35	1145	73.5	348 357 361	79 80 81		

PULLMAN, WA.

NURSCO

PULLMAN & LIND, WA

LABNUM	VARIETY	I DNO	CLASS	WPROT	FYELD	FASH 1/	MSCOR	FMIST	FPROT	AGTRO
801277 SPRAGUE 801278 BARBEE 801279 DAWS 801280 FARO 801281 HATTON	00000	C1015376 C1017417 C1017419 C1017590 C1017772	SWW CLUB SWW CLUB HRW	0.00 0.00 0.00 0.00	71.5 72.1 72.3 73.9	0.38 0.38 0.38 0.39	84.1 85.2 88.3 84.6	12.8 13.1 12.7 12.8	0,0000 0,0000	85.0 71.5 79.8 80.5
801282 TYEE 801283 CREW 801284 MARFED LIND SPRING 801285 TWIN 801286 PEAK 72		C1017773 WA6472 C1011919 C1014588	CLUB CLUB SWS SWS HRS	9.6	73.6 74.2 70.4 71.0	0.36 0.36 0.36 0.40 0.39	89.4 90.7 80.6 80.2 83.1	12.9 12.9 13.8 13.8	88.0 10.08.0 13.02.0 13.02.0	80.0 75.0 75.0 70.0
801287 WARED 801288 FIELDER 801289 URQUIE 801290 SAWTELL 801291 FIELDWIN	00000	C1015926 C1017268 C1017413 C1017424 C1017425	N N N N N N N N N N N N N N N N N N N	12.05	72.4 68.7 72.3 71.1	0.40 0.38 0.37 0.40 0.35	85.9 79.0 83.8 84.3 85.1	13.2	9.7. 8.00 1.11 7.00	78.0 74.5 80.0 71.3
801292 WAMPUM 801293 WA6510		C1017691	HRS6/ HRS6/	12.6	71.0	74.0 74.0	81.8	13.7	11.4	71.0
$\frac{1}{3}$ Observed Values $\frac{3}{4}$ Observed Values	1/ Observed Values Corrected to 14% Moisture Basi. 3/ Absorption at 14% Moisture Corrected to 10% Pr. 4/ Observed Values Corrected to 10% Protein.	Basis.	s. 5/ otein. 6/	Partic Promis	Particularly Prom Promising Overall	Promising Overall Quality	Ove	rall Quality Cha Characteristics.	Characte	Characteristics.

WA6402(Waverly), ID185(Owens), and ID195 had good cookie spread, excellent sponge cake values and fair cake selection 77-99 was also low in flour yield but had good bread baking properties. Three new SWS selections The two new club selections WA6472 (Crew) and OR7142 appear to be typical clubs with good cookie diameters, sponge cake scores, and noodle scores. The viscosity value of OR7142 is higher and similar to Moro while WA6472 is low like older PNW clubs. The two SWW selections OR68007 and 77-294(WA) Washington State University to provide research material for the Laboratory. They were grown at both scores, and good noodle scores. ID185 was suprisingly good in bread making indicating a dual purpose These commercial varieties and a few advanced selections were grown by the Agronomy and Soils Dept., A new HRW also gave good overall performances except for the flour yield of 77-294, which was low. Pullman and Lind, WA. COMMENTS:

characteristic. A HRS selection WA6510 in the Lind nursery, milled better than Wampum but poorer than

Wared and was poorer than both in bread making loaf volume.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		DRILL STRIPS	RIPS					CONTD.	CONTD. PAGE 2 2 of four
NURSCO 59	PU	PULLMAN & LIND,	IND, WA						
LABNUM	ONGI	CLASS	MABSC 3/	MTYPE	FABS	FPEAK	FSTAB	VISC	VISCC
801277 SPRAGUE 801278 BARBEE 801279 DAWS 801280 FARO 801281 HATTON	C1015376 C1017417 C1017419 C1017590 C1017772	SWW CLUB SWW CLUB HRW	53.0 48.9 54.5 52.2 58.8	TWWWW TWWW	61.1	5.7	5.0	98 39 113 79	106 46 141 103
801282 TYEE 801283 CREW 801284 MARFED LIND SPRING 801285 TWIN 801286 PEAK 72	C1017773 WA6472 C1011919 C1014588 C1015319	CLUB CLUB SWS SWS HRS	53.5 51.1 54.4 63.5	WWWH B	68.3	29.6	4.8	76 50 151 89	117 68 145 86
801287 WARED 801288 FIELDER 801289 URQUIE 801290 SAWTELL 801291 FIELDWIN	C1015926 C1017268 C1017413 C1017424	HRS SWS SWS HRS	50.5 54.4 58.8 58.8	MIRZH SZSSF	63.2	7.2	8 5.	120	128 121 142
801292 WAMPUM 801293 WA6510	C1017691	HRS	60.3	H H	59.3	9.5	2.5		

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 59	PUL	PULLMAN & LIND, WA	IND, WA						
LABNUM	ONGI	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	1000
801277 SPRAGUE 801278 BARBEE 801279 DAWS 801280 FARO 801281 HATTON	C1015376 C1017417 C1017419 C1017590 C1017772	SWW CLUB SWW CLUB HRW	54.8 56.7 54.2 54.2	55.2 51.6 57.7 55.4 61.0	22.3336	720 585 820 700 843	744 635 880 766 855	0048C	8.69 8.92 8.46 8.05 8.09
801283 CREW 801284 MARFED LIND SPRING 801285 TWIN 801286 PEAK 72	C1017773 WA6472 C1011919 C1014588 C1015319	CLUB CLUB SWS SWS HRS	53.9 49.9 57.4 72.0	55.7 51.3 57.2 53.6 68.7	2.0	757 670 1037 865 1055	856 747 1025 853 850	\$00000	9.06 9.04 8.87 9.20 7.75
801287 WARED 801288 FIELDER 801289 URQUIE 801290 SAWTELL 801291 FIELDWIN	C1015926 C1017268 C1017413 C1017424 C1017425	HRS SWS SWS HRS SWS	55.0 56.8 56.8 55.2	63.2 54.6 57.0 61.5 55.5	20045	1053 910 950 1049 875	941 928 962 981 893	N-7J-8	8.04 8.85 8.95 8.90
801292 WAMPUM 801293 WA6510	C1017691	HRS	63.9	62.5	3.5	1076	989	00	8.26

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 59	PUL	PULLMAN & LIND, WA	IND, WA						
LABNUM	ONGI	CLASS	C0D1C	CAVOL	SCSOR	WIIM	NOSCO	RMKS	
801277 SPRAGUE 801278 BARBEE 801279 DAWS 801280 FARO 801281 HATTON	C1015376 C1017417 C1017419 C1017590 C1017772	SWW CLUB SWW CLUB HRW	8.86 8.35 8.35 8.07	1095 1150 1055 1165	72.0 72.5 75.5 75.5	358 358 344	77 81 97 97 97 97 97 97 97 97 97 97 97 97 97		
801282 TYEE 801283 CREW 801284 MARFED LIND SPRING 801285 TWIN 801286 PEAK 72	C1017773 WA6472 C1011919 C1014588 C1015319	CLUB CLUB SWS SWS HRS	8.94 8.94 9.23 8.01	1135	76.5 72.5 71.0 72.0	369 363 349 355	81 79 80 80		
801287 WARED 801288 FIELDER 801289 URQUIE 801290 SAWTELL 801291 FIELDWIN	C1015926 C1017268 C1017413 C1017424	HRS SWS SWS HRS SWS	8.08 8.83 8.14 8.87	1095 1180 1175	69.5 78.0 77.0	369 362 360	68 81 69		
801292 WAMPUM 801293 WA6510	C1017691	HRS	8.37						

	ě	-	ä
	-	ĸ.	ä
	0	2	ă
			ä
	ŀ	-	ë
	М	2	ä
	9	4	ı
	ŀ		ă
	U		
			ä
	F		ā
	-	=	2
			š
	•	Ξ	á
	4	9	ĭ
	ú	h	ň
	L	٤	į
	В	7	ĕ
	6	÷	ä
	6	x	ă
	Ň	2	ä
	L	4	ä
	ь		ä
	и		ä
	ĸ	ſ	
	,	ſ	2
	L	5	2
	CL	1	7
	CLI	1 43	7
	CL	3	7
	CLO	5 43	7
	CL	1 43	
	CL	1 43	
	CL	1 43	
	CLO	1 43	
	CL	1 43	

Monaco 60		_	LIND, WA (I	(TRKIG)					C. F. RUNZAR	ZAK
LABNUM	VARIETY	DNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE
801294 WAMPUM (SPRING)	010	C1017691	HRS	62.0	4.47	64.0	4.48	11.7	61.0	2H
801296 WA6704			HRS	62.4	74.5	0.50	83.8	8.6		3M
801297 WA6705			HRS	63.2	74.4	0.50	_	6.6		3M
801298 WA6706			HRS	62.4	74.8	0.48	85.4	9.6	58.0	3M
801299 WA6707			HRS	62.0	73.2	0.47	_	8.6	57.4	3M
801300 WA6708			HRS	63.2	74.2	0.47	85.2	9.7	58.1	THW TH
801301 WA6709			HRS		74.8	0.51		10.5	56.1	3M

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 10/2 Absorption at 14% Moisture Corrected to 10% Protein. Observed Values Corrected to 14% Moisture Basis.

Observed Values Corrected to 10% Protein.

COMMENTS: All of the selections in this nursery are unacceptable in baking quality. All gave low loaf volume and coarse, heavy crumb grains.

NURSCO 61		F	FRANKLIN CO	01					3	. POPE	
LABNUM	VARIETY	ONG	CLASS	TWT	FYELD	FASH 11/	MSCOR	FPROT 1/	MABSC 3/	MTYPE	BABS
801302 ITANA 801303 ARK 801304 5191 801305 5192 801306 5193		C1012933	HRW HRW SRW SRW	58.0 60.4 58.8 62.0	72.6 73.0 73.4 70.9	0.45 0.42 0.43 0.46	88888653 88653 821-553	12.9	589.1 589.2 589.2 589.2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61.2 64.9 69.3
801307 5194 801308 5195 801309 5196 801310 5197 801311 5198			SRW 6/ HRW SRW HRW 6/ SRW 6/	62.0 62.0 56.8 59.2	72.1 69.2 72.4 70.8	000000000000000000000000000000000000000	84.3 87.3 80.5 84.4	13.5	58.4 64.6 53.9 57.6	3M 3	69.6
801312 5199 801313 5200 801314 5201 801315 5202 801316 5203			HRW 6/ SRW 5/ SRW 5/ HRW 5/	560.8 60.8 61.2 61.2	72.3 72.8 72.8 72.0	0.43 0.42 0.42 0.42 0.39	85.3 87.6 87.0 85.9	13.7	62.6 62.4 59.0 60.1	54 54 54 54 54 54	66.0
801317 5204 801318 5205 801319 5206 801320 5207 801321 5208			SRW 6/ HRW 5/ HRW 5/	60.4 59.6 57.6 60.4 60.8	71.7 72.0 69.5 72.6	000.38	88.2 87.7 81.1 84.7 90.3	13.13.13.13.13.13.13.13.13.13.13.13.13.1	59.2 61.8 60.4 63.2 62.7	25H 4H 4H	665.4 68.6 565.4
801322 5209 801323 5210 801324 5211 801325 5212 801326 5213			HRW 6/ HRW 6/ HRW 5/ HRW 5/	59.2 59.6 59.6 60.0	75.0 71.2 74.1 75.2	0.46	90.9 82.6 87.5 90.9	14.79	62.1 62.1 63.3 63.3	77.467	66.7 66.5 66.9
801327 5214 801328 5216 801329 5217 801330 5218			HRW HRW SRW HRW 6/ SRW	59.2 62.0 62.0 60.8 60.8	76.3 73.5 70.0 70.9	0.47 0.40 0.39 0.36	87.6 88.2 85.4 83.4	733.687	60.1 60.1 59.9 60.3	23 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2	62.5
801332 22-4 801333 148-5-12 801334 141-5-38		C1009342 1055/19	SWW HRW SRW 6/	59.2	70.5	0.47	880.9	12.1	60.3 57.4 58.5	TH IH	
1/ Observed Values 3/ Absorption at 1/4/ Observed Values	Corrected to 14% Moisture Corrected Corrected to 13% Prot	3% Ba	sis. 5/ Protein. 6/	Partic	Particularly Pr Promising Overa	omi 11	g Ove lity	rall Quali Characteri	ty Ch stics	racteri	stics.

			等 电电影 [2]	
	NAMES A			

TOTAL MANAGEMENT OF BUILDINGS

The second of th

1 200

NURSCO 61

FRANKLIN CO., ID

W. POPE

				200000000000000000000000000000000000000	and the same of th						
LABNUM	VARIETY	IDNO	CLASS	BABSC 3/	MTIME	LVOL	LYOLC 4/	BCRGR	CODI	CODIC 4/	RMKS
801302 ITANA 801303 ARK 801304 5191 801305 5192 801306 5193		C1012933 C1015286	HRW HRW SRW SRW	61.3 66.3 67.4	1.9	1040 985 1086	1046 1072 968	000	88.55 88.55 710.88	8.54 8.41 8.33 S.M 9.04 POO 8.74 POO	S.MTIME, L. LVOL POOR FYELD POOR FYELD
801307 5194 801308 5195 801309 5196 801310 5197 801311 5198			SRW HRW SRW HRW	67.8	1.9	1064	952	N W	8.70 8.85 8.70 8.85	8.31 S.M 8.30 POO 8.69 POO 8.69 POO	S.MTIME, L.LVOL POOR FYELD POOR LVOL
801312 5199 801313 5200 801314 5201 801315 5202 801316 5203			HRW HRW SRW HRW	65.8 65.6 66.8	2.3 3.4 4.7	1040	935 981 1034	ON N	88.322	8.46 POOR 9.34 9.18 8.98 8.52	R LVOL
801317 5204 801318 5205 801319 5206 801320 5207 801321 5208			SRW HRW HRW HRW	65.0 67.9 65.9	303.9	1081 980 1010	1013 961 1051	0000	8.37 8.35 8.07 8.55	8.82 8.43 8.37 POOR 8.13 LOW 1 8.60	R FYELD, L. LVO LVOL
801322 5209 801323 5210 801324 5211 801325 5212 801326 5213			SRW HRW HRW	65.3 67.5 66.3	4.2 3.7 4.8	1070 1055 1070	998 996 999 1033	N N N N	88.47 88.49 8.35 8.37	8.59 8.64 LOW 8.58 8.42 8.42	MSCOR
801327 5214 801328 5216 801329 5217 801330 5218 801331 14-1			HRW HRW SRW HRW	62.8 64.9 62.6	2.0	937 1070 1025	956 958 1006	m ∪ N	8.52 8.52 8.57 8.62 8.80	8.41 L.LV 8.37 L.LV 8.65 8.65 POOR	C.LVOL, S.MTIME C.LVOL, S.MTIME OOR FYELD
801332 22-4 801333 148-5-12 801334 141-5-38		C1009342 1055/19	SWW HRW SRW						8.62 8.50 9.07	8.64 POOR 1 8.43 SHORT 9.03	R FYELD RT MIXING

COMMENTS: Many of these red wheats have soft endosperm and were detected by near infra-red analysis and was generally confirmed by cookie baking data. See the REMARKS column for deficiencies of selections not footnoted as promising. The soft red wheats should be converted to white seed coat.

					40 DB (\$7)		
			7.467				

-	
	_
ξ	\supseteq
	\supset
ŀ	_
ż	n
•	"
(9
-	2
	_
ı	u
	_
	n
•	"

NURSCO 62			MOSCOW,	10						X	POPE	
LABNUM	VARIETY	ONG	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	1000	COD 1 C	MTYPE
801335 NUGAINES B-11-2/5.5 801336 B-11-3/6.5 801337 B-11-4/7 801338 B-11-5/7.5 801339 B-11-6/8	:/5.5	C1013968 C1013968 C1013968 C1013968	MMS MMS MMS	48.0 54.0 57.6 57.6	68.4 70.6 72.2	0.55 0.55 0.51 0.49	68.7 76.1 78.4 81.7	00000 - 60000		8888.70 88.00 77.00 89.00 90.00	88888 860 1089 1088 1088	
801340 PECK W171-180/5.5 801341 W171-180/5.5 BURN 801342 W171-180/6.5 BURN 801343 W171-180/6.5 BURN 801344 W171-180/7 NON-BURN	80/5.5 NON-BURN 5 BURN 5 NON-BURN 5 BURN NON-BURN	C1014587 C1014587 C1014587 C1014587 C1014587	AMA RAMA RAMA RAMA RAMA RAMA RAMA RAMA	44 42.8 51.6 549.6 76.7	59.8 67.6 65.4 7.17	00000	61.0 59.6 72.0 68.7 78.4	10.7 7.01 10.7 9.01		888888 2000 2000 2000	88888 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 5000	
801345 W171-180/7 BURN 801346 W171-180/7.5 NOI 801347 W171-180/7.5 BUI 801348 ARK B-91-4/6.5 801349 B-91-5/7	JRN NON-BURN BURN 5	C1014587 C1014587 C1014587 C1015286 C1015286	SWW SWW SWW HRW	5775	7.17.5	00.025	72.78.4 78.9 85.9	07.00 07.00 07.00 07.00		88888	8888377 868837 8694	
801350 B-91-6/7.5 801351 B-91-7/8 801352 B-91-8/8.5	•	C1015286 C1015286 C1015286	HRW	8.09 80.09 90.4	72.4	0.42	866.1 866.1	9.7		88.39	88.36	
PECK AVERAGE NON-BURN BURN	ZN ZN			52.6	67.9	0.55	72.5	10.6		8.67	8.73	
1/ Observed Values 3/ Absorption at 14	Observed Values Corrected to 14% Moisture B. Absorption at 14% Moisture Corrected to 10%	ure Basis. o 10% Protein	ein. 6		Particular Promising	ly Promi	sing Qual	Ove	l Qual racter	ty C stic	haracter. S.	istics.

Protein appeared constant within seed sizes for Nugaines and Peck, but generally increased with size the Seeds of Nugaines, Peck, and Ark were stratified by passing over screens of a 2B clipper at 1/2 of 64th sizes. As seed size increased test weight, flour yield, milling score and cookie diameter increased. Ark sample. Within the Peck varieties a burning treatment was studied. Burning lowered all of the quality factors. COMMENTS:

Observed Values Corrected to 10% Protein.

					47 1/2 1/5		
			1				

AUSTRALIAN SAMPLE

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 63

FAR EAST

LABNUM	IDNO	CLASS	WPROT %	FYELD %	L/ FASH %	MSCOR	FM1ST	1/ FPROT %	AGTRO
801353 AUSTRALIAN FAIR AVG QUAL		SMS		71.0	0.43	79.9	12.5	4.6	75.0
PNW Average Soft White Winter (1980 Crop) PNW Average Club (1980 Crop)		SWW		71.8	0.43	81.7		8 8	79.6
LABNUM	IDNO	CLASS	3/ MABSC	MTYPE	BABS %	MT IME	LVOL	BCRGR	
801353 AUSTRALIAN FAIR AVG QUAL		SMS	54.4	Μħ	58.0	3.2	840	7	
PNW Average Soft White Winter (1980 Crop)		SWW	53.7		55.0	2.6	765	7	
PNW Average Club (1980 Crop)		CLUB	51.9		51.9	1.8	695	0	
LABNUM	ONO	CLASS	COD	CODI	CAVOL	SCSOR	J.R.	₹ - %	NOSCO
801353 AUSTRALIAN FAIR AVG QUAL		SMS	8	8.40	1080	61.0		346	18
PNW Average Soft White Winter (1980 Crop)		SWW	00	8.82	1159	75.3		354	79
PNW Average Club (1980 Crop)		CLUB	60.6	60	1190	78.2		359	78

poor. In noodle making properties the ASW was similar in noodle yield (WTIN = % weight increase) and slightly Similarly cookie diameter the same (.43). Bread baking showed the flour to be considerable stronger (higher water absorption, longer and significantly poorer than PNW club. Flour color was darker (lower Agtron reading) while flour ash was The evaluation of an Australian ASW wheat sample was done in co-operation with U.S. Wheat Associates, who of analysis from the 1980 crop. The sample was slightly poorer in milling than the PNW soft white winter was significantly lower (8.40 cm to 8.82 or 9.09 cm). Sponge cake volume and score for the ASW was very A comparison is made with averaged weighted data mixing requirement, and significantly larger loaf volume and better crumb grain). submitted the sample taken from a cargo in Indonesia. better in overall noodle score. COMMENTS:

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

The color of the	NURSCO 64		PL,	WW, &	POM, WA						×	. MORRISON	SON
Second Reserved Fig. Second Fig. Second Reserved Fig. Second Reserved Fig. Second Fig.	LABNUM			S	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	CODI	COD1C	MTYPE
Second Head According	01354 PAHA FNO* 01355 PAHA REG 01357 PAHA CRT 01358 PAHA 2C	55555	1448 1448 1448 1448 1448	CLUB CLUB CLUB CLUB CLUB	20000	40000	22440	47777	88889 40-87	50.7	9.64	9.67 9.42 9.34 9.59	2 2 2 2 2 2 2
365 NUGAINES 1C 365 NUGAINES 1C 365 NUGAINES 2C 365 NUGAINES 2C 366 NUGAINES 3C 366 LUKE FND 367 NUCAINES 3C 368 LUKE FND 368 SWM 57.6 69.2 0.47 79.36 369 LUKE FND 370 LUKE CRT 371 LUKE CRT 371 LUKE CRT 372 LUKE CRT 373 LUKE CRT 373 LUKE CRT 374 LUKE 4C 375 PAHA FND 375 PAHA FND 376 PAHA REG 377 PAHA CRT 378 PAHA CRT 379 PAHA CRT 379 PAHA CRT 370 LUKE SCRT 370 LUKE SCRT 370 LUKE CRT 370 LUKE CRT 370 LUKE CRT 371 LUKE CRT 371 LUKE CRT 372 LUKE CRT 373 LUKE CRT 373 LUKE CRT 374 LUKE CRT 375 PAHA FND 376 PAHA FND 377 PAHA CRT 378 PAHA CRT 378 PAHA CRT 379 PAHA CRT 370 LUKE CRT 371 LUKE CRT 371 LUKE CRT 372 LUKE CRT 373 LUKE CRT 374 LUKE CRT 375 PAHA FND 376 PAHA SCRT 377 PAHA CRT 378 PAHA CRT 379 PAHA CRT 370 LUKE SCRT 370 LUKE CRT 370 LUKE CRT 370 LUKE CRT 370 LUKE CRT 371 LUKE CRT 371 LUKE CRT 372 PAHA FND 373 LUKE CRT 374 LUKE CRT 375 PAHA FND 376 PAHA SCRT 377 PAHA CRT 378 PAHA CRT 379 PAHA CRT 370 LUKE SCRT 371 LUKE CRT 371 LUKE CRT 372 PAHA CRT 373 LUKE CRT 374 LUKE CRT 375 PAHA FND 376 PAHA SCRT 377 PAHA CRT 378 PAHA CRT 379 PAHA CRT 370 LUKE SCRT 371 LUKE CRT 371 LUKE CRT 371 LUKE CRT 372 LUKE CRT 373 LUKE CRT 374 LUKE CRT 375 PAHA FND 377 LUKE CRT 377 LUKE CRT 378 PAHA TO 379 PAHA SCRT 370 LUKE SCRT	01359 PAHA 3C 01360 PAHA 4C 01361 NUGAINES FN 01362 NUGAINES RE 01363 NUGAINES CR		1448 1448 1396 1396	CLUB CLUB SWW SWW SWW	88775	000000	44444	99069	88.8 2.00 0.00 0.00	50.7 53.3 53.8 54.3	9.52 9.40 9.12 9.12	9.54 9.142 9.27	33333333333333333333333333333333333333
01379 LUKE REG 01370 LUKE CRT 01371 LUKE CRT 01372 LUKE CRT 01373 LUKE 2C 0114586 SWW 57.6 72.9 0.49 83. 01372 LUKE 2C 0114586 SWW 57.6 72.9 0.49 83. 01373 LUKE 2C 0114586 SWW 57.2 72.8 0.49 83. 01374 LUKE 4C 01375 PAHA REG 01377 PAHA REG 01377 PAHA REG 01378 PAHA 1C 01380 PAHA 2C 01381 PAHA 4C 01381 PAHA 4C 01381 PAHA 4C 01382 NUGAINES FND 01384 NUGAINES CRT 01385 SWW 56.9 69.2 0.50 83. 01376 PAHA 3C 01386 SWW 57.2 75.5 0.49 83. 0147 86. 014485 CLUB 58.0 77.8 0.49 84. 01381 PAHA 4C 01382 PAHA 3C 01014485 CLUB 58.0 77.8 0.49 84. 01382 NUGAINES CRT 01384 NUGAINES CRT 01385 SWW 56.0 69.1 0.55 77.	364 NUGAINES 1 365 NUGAINES 2 366 NUGAINES 4 367 NUGAINES 4		1396 1396 1396 1458	MMS MMS MMS MMS	11.81.8	99999	コココのコ	990.09	98888	53.7 53.7 53.7 52.7 8	8.92 8.90 8.90 9.30 30	9.06 9.10 8.97 9.03	3M 3M 3M 3L
01374 LUKE 4C 01375 PAHA REG 01375 PAHA REG 01376 PAHA REG 01377 PAHA CRT 01379 PAHA CRT 01379 PAHA CRT 01380 PAHA 4C 01381 NUGAINES FRO 01383 NUGAINES CRT 01386 NUGAINES CRT 01386 NUGAINES 2C 01387 PAHA 4C 01387 PAHA 4C 01388 NUGAINES CRT 01388 NUGAINES CRT 01388 NUGAINES CRT 01388 NUGAINES 2C 01386 SWW 0551 77.0 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	01359 LUKE CR 01370 LUKE CR 01371 LUKE 1C 01372 LUKE 2C		1458 1458 1458 1458	MMS MMS MMS MMS	80118	mmaiai	04444	annin.	8.67.78.7.79.70	52.7 52.6 52.5 52.9	9.25 9.56 9.54 9.45	9.32	321
01379 PAHA 2C 01380 PAHA 3C 01381 PAHA 4C 01381 PAHA 4C 01382 NUGAINES FND 01382 NUGAINES CRT 01384 NUGAINES CRT 01385 NUGAINES CRT 01386 NUGAINES CRT 01387 NUGAINES CRT 01387 NUGAINES CRT 01387 NUGAINES CRT 01388 NUGAINES	01374 LUKE 4C 01375 PAHA FND REP 01377 PAHA REG 01377 PAHA CRT		1458 1448 1448 1448 1448	SWW CLUB CLUB CLUB CLUB	10001	ひれらいい	44400	£30m5	89898	52.3 49.3 50.4 50.0	9.35 9.36 9.49 9.52	90.44	XXXX NNNNN NNNNN
01384 NUGAINES CRT CL013968 SWW 56.8 69.2 0.50 77. 01385 NUGAINES 1C CL013968 SWW 56.0 69.1 0.53 75. 01386 NUGAINES 2C CL013968 SWW 56.4 71.0 0.55 76.	01379 PAHA 2C 01380 PAHA 3C 01381 PAHA 4C 01382 NUGAINES F		1448 1448 1448 1396	CLUB CLUB CLUB SWW SWW	00000	-00th	ಬ್ವಸ್ಥುತ	10040	88888 840.08	500.5 50.5 50.4 550.4	9.26 9.26 9.67 9.21	9.52 9.36 9.28 9.07	3 3 3 L Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
01387 NUGAINES 3C CI013968 SWW 57.2 68.9 0.53 75. 01388 NUGAINES 4C CI013968 SWW 59.2 69.7 0.50 78.	801384 NUGAINES CRT 801385 NUGAINES 1C 801386 NUGAINES 2C 801387 NUGAINES 3C 801388 NUGAINES 4C		013968 013968 013968 013968	MMS MMS MMS MMS MMS	56.8 56.0 57.2 59.2	69.2 69.1 71.0 68.9 69.7	00.00	77.4 75.4 76.3 75.3	00000	55.7 55.0 56.0 56.7	8.84 8.71 8.90 8.89	8.97 8.91 9.06 9.04	EZZZZ mmmmm

FND = Foundation, REG = Registered, 1C through 4C = first certified through fourth generation certified.

NURSCO 64	14	PL, WW, & PC	POM, WA						×	. MORRI	NOSI	
LABNUM	ONO	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC 3/	CODI	CODIC	MTY	PE
801389 LUKE FND 801390 LUKE REG 801391 LUKE CRT 801392 LUKE 1C 801393 LUKE 2C	C1014586 C1014586 C1014586 C1014586	MMS MMS MMS	59.6 57.6 58.8 56.4	72.9 71.7 72.3 70.9	0.52 0.46 0.46 0.46	88 88 80 83.00 9.00 9.00	897.08	533.753.8	9.24 9.40 9.72 9.21	9.30 9.52 9.39 9.44	3 T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
801394 LUKE 3C 801395 LUKE 4C 801396 PAHA FND REP 3 801397 PAHA REG 801398 PAHA CRT	C1014586 C1014485 C1014485 C1014485	SWW CLUB CLUB CLUB CLUB	58.0 58.0 58.0 58.8	71.8 71.5 73.9 74.4	0.45	88833. 865.3.18	8.9 1.0 8.9 1.0 1.0	533.55 50.95 50.05 50.05 50.05	9.32	9.34 9.77 9.46 9.39	NA WAL	
801400 PAHA 1C 801400 PAHA 2C 801401 PAHA 3C 801402 PAHA 4C 801403 NUGAINES FND	C1014485 C1014485 C1014485 C1014485 C1013968	CLUB CLUB CLUB CLUB SWW	58.0 58.0 58.0 57.4	73.7 73.5 73.4 74.2 68.1	0.46 0.47 0.43 0.49 0.50	85.5 85.0 87.2 84.1 75.9	999989 677706	50.0 50.6 51.8 55.5	9.50	9.54	ZZZZZ MNNNN	
801404 NUGAINES REG 801405 NUGAINES CRT 801406 NUGAINES 1C 801407 NUGAINES 2C 801408 NUGAINES 3C	C1013968 C1013968 C1013968 C1013968	MMS MMS MMS	58.4 58.0 57.6 57.2 58.0	69.1 68.6 67.6 67.0	0.48 0.48 0.49 0.45	78.5 77.7 76.1 76.9	88088 48000	55.9 55.3 57.1 54.2	9.27 9.24 8.96 8.84 8.96	9.32 9.33 9.07 9.09	33333 34333 34333 34333 3433 3433 3433	
801409 NUGAINES 4C 801410 LUKE FND 801411 LUKE REG 801412 LUKE CRT 801413 LUKE 1C	C1013968 C1014586 C1014586 C1014586	MMS MMS MMS	57.6 58.0 58.0 57.6	68.3 72.0 72.8 74.0 73.6	0.48 0.48 0.50 0.50	77.3 82.3 83.4 82.4	88878	558.7 53.7 54.3 53.9	8.96 9.49 9.29 9.26	99999	32 33 33 33 33 33 33 33 33 33 33 33 33 3	
801414 LUKE 2C 801415 LUKE 3C 801416 LUKE 4C 801417 PAHA FND WALLA 801418 PAHA REG	C1014586 C1014586 C1014485 C1014485	SWW SWW CLUB CLUB	58 57 57 57 57 57 57 57 57	73.4 73.4 77.2 77.2	0.51 0.50 0.50 0.46 0.45	822 827 829 899	987.2	533.7 533.1 490.3	9.49 9.34 9.54 9.29	9.25	3 1 1 3 1 3 1 3 1	
801419 PAHA CRT 801420 PAHA 1C 801421 PAHA 2C 801422 PAHA 3C 801423 PAHA 4C	C1014485 C1014485 C1014485 C1014485 C1014485	CLUB CLUB CLUB CLUB CLUB	64.8 64.8 64.8 65.6 64.0	77.4	0.46 0.45 0.45 0.45 0.47	90.1	\$ \$ \$ \$ \$ \$ \$	49.7 49.6 50.0 50.0 49.6	99.40	99.29	ΣΣΣΣΣ	

The second second

The second reason reason before a solidate

Sing Asker read sons

ELL 57.72 7.13.52

3

	TYPE							
SON	Σ	WWWWW WWWW	N W W W W	WWWWW N	ZZZZZ NNNNN	ZZZZZ NNNNN	WWWWW WWWWW	
MORRISON.	COD1C	9.35 9.09 8.94 9.10	9.10 9.12 9.41 9.54 9.68	9.35 9.35 9.70 9.36	9.50 9.34 9.31 9.33	9.51 9.30 8.98 9.02 9.27	9.28	9.54
×	CODI	9.30 9.00 9.02 9.02	9.04 9.10 9.36 9.46 9.59	99.26	9.44 9.25 9.25 9.35	9.44 9.22 8.92 8.96 9.20	9.20 9.37 9.52 9.19	9.31
	MABSC 3/	54.7 53.3 53.2 53.0	52.09	52.6 52.8 52.8 49.6	49.7 49.8 49.7 50.0 49.0	53.5 53.4 54.4 53.4	53.5 52.7 52.9 52.6	52.9 52.7 52.4 53.0 51.2
	FPROT 1/	$\infty \infty \infty \infty \infty \infty \infty$ $\sim \infty \sim \sim$	888888	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	888888 97.80.0	0.0000000000000000000000000000000000000	88888 7. 2. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	000000
	MSCOR	87.2 89.4 89.99	90.9 89.8 91.1 91.6	92.4 91.5 91.8 92.0	93.5 92.5 92.0 91.8	889.0 889.0 89.0 89.0	90.4 90.2 90.7 90.5	89.3 89.3 889.3 90.4
	FASH 1/	0.44 0.40 0.38 0.39	0.38 0.39 0.40 0.39	0.38 0.40 0.39 0.39	0.42	0.40	0.40	0.42
	FYELD	74.0 73.6 73.4 73.6 74.0	73.7 73.3 75.0 75.0	74.9 75.1 75.4 77.0	77.1 77.2 76.8 76.6	76.6 74.0 73.3 73.8	74.6 74.5 75.5 75.5	74.8 75.0 75.0 74.8 76.6
POM, WA	TWT	64.8 655.2 655.6 655.6	65.6 65.6 64.0 64.0	65.2 64.8 64.4 64.4	4. 49 4. 49 4. 49 8. 49 9. 49 9. 49	8.49 8.49 8.49 8.49 64.8	64.4 64.8 65.6 64.0 64.0	64.4 64.0 64.0 63.6
L, WW, & PC	CLASS	MMS MMS MMS	MMS MMS MMS MMS	SWW SWW SWW CLUB	CLUB CLUB CLUB CLUB CLUB	CLUB SWW SWW SWW SWW	SWW SWW SWW SWW SWW	SWW SWW SWW SWW
PL,	ONOI	C1013968 C1013968 C1013968 C1013968 C1013968	C1013968 C1014586 C1014586 C1014586	C1014586 C1014586 C1014586 C1014586 WALLA WALL	WALLA WALL WALLA WALL WALLA WALL WALLA WALL	WALLA WALL WALLA WALL WALLA WALL WALLA WALL	WALLA WALL WALLA WALL WALLA WALL WALLA WALL	MALLA WALL WALLA WALL WALLA WALL WALLA WALL WALLA WALL
	VARIETY	AINES FND AINES REG AINES CRT AINES 1C	AINES 3C AINES 4C E FND E REG	E 1C E 2C E 3C E 4C A FND REP 2	A REG A CERT A 1C A 2C A 3C	A 4C AND ALNES FND ALNES REG ALNES CERT	SAINES 2C SAINES 3C SAINES 4C KE FND	(E CERT (E 10 (E 20 (E 30 (E 40
NURSCO 64	LABNUM	801424 NUGA 801425 NUGA 801426 NUGA 801427 NUGA 801428 NUGA	801429 NUGA 801430 NUGA 801431 LUKE 801432 LUKE 801433 LUKE	801434 LUKE 801435 LUKE 801436 LUKE 801437 LUKE 801438 PAHA	801440 PAHA 801441 PAHA 801441 PAHA 801442 PAHA	801444 PAHA 801445 NUGA 801446 NUGA 801447 NUGA	801449 NUGA 801450 NUGA 801451 NUGA 801452 LUKE 801453 LUKE	801454 LUK 801455 LUK 801456 LUK 801457 LUK 801458 LUK

NURSCO 64	LABNUM	801494 LUKE FND 801495 LUKE REG 801496 LUKE CERT 801497 LUKE 1C 801498 LUKE 2C	801499 LUKE 3C 801500 LUKE 4C 801501 PAHA FND REP 2 801502 PAHA REG 801503 PAHA CERT	801504 PAHA 1C 801505 PAHA 2C 801506 PAHA 3C 801507 PAHA 4C 801508 NUGAINES FND	801509 NUGAINES REG 801510 NUGAINES CERT 801511 NUGAINES 1C 801512 NUGAINES 2C 801513 NUGAINES 3C	801514 NUGAINES 4C 801515 LUKE FND 801516 LUKE REC 801517 LUKE CERT 801518 LUKE 1C	801519 LUKE 2C 801520 LUKE 3C 801521 LUKE 4C 801522 PAHA FND REP 3	801524 PAHA CERT 801525 PAHA 1C 801526 PAHA 2C 801527 PAHA 3C 801528 PAHA 4C
a .	ONGI	POMEROY POMEROY POMEROY POMEROY	POMEROY POMEROY POMEROY POMEROY	POMEROY POMEROY POMEROY POMEROY	POMEROY POMEROY POMEROY POMEROY	POMEROY POMEROY POMEROY POMEROY	POMEROY POMEROY POMEROY POMEROY	POMEROY POMEROY POMEROY POMEROY
PL, WW, & POM	CLASS	MMS MMS MMS	SWW CLUB CLUB CLUB	CLUB CLUB CLUB CLUB SWW	MMS MMS MMS	MMS MMS MMS	SWW SWW CLUB CLUB	CLUB CLUB CLUB CLUB
M, WA	TWT	0.49 0.49 0.49 0.49	63.6 64.8 64.0 64.0	64.0 64.4 63.6 653.6	8. 49 0. 49 0. 49 1. 49	64.8 63.6 63.2 62.4 63.6	63.2 64.0 62.4 64.4 63.6	63.5 63.6 64.0 64.0
	FYELD	73.0 73.5 73.5 73.6	73.5 73.2 76.1 75.4 74.8	75.0 75.7 75.1 75.1	72.2 71.2 72.8 72.9	72.5 73.6 72.9 74.1	73.8 73.2 75.9	74.5
	FASH	0.45 0.46 0.46 0.48	0.43	0.46	0.42 0.41 0.43 0.43	0.43 0.44 0.44 0.44	0.44	0.47 0.47 0.48 0.50 0.50
	MSCOR	85.2 85.2 86.3 86.3	87.5 86.8 89.2 87.9	87.4 887.5 88.9 88.5 86.5	86.2 85.4 86.3 86.4	85.7 86.8 85.8 87.9	87.1 87.1 85.8 87.1	86.2 87.1 86.1 85.3 86.4
	FPROT	777.7	27.18	4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	6.6 7.7 7.0 7.1	7.4 6.1 8.0 7.5	7.77.4.6.8	7817
ø	MABSC 3/	53333	54.1 50.0 50.0 50.0	50.7 50.6 51.4 55.3	54.4 54.4 54.7	54.9 553.0 53.3	54.1 54.1 50.2 50.6	50.8 51.1 49.9 49.8
×	CODI	9.29 9.30 9.24 9.47	99.33	9.66	9.29 9.00 9.06 9.37	9.35 9.50 9.50	9.269	9.37
. MORRISON	COD 1 C	9.22 9.26 9.17 9.46	9.22 99.40 99.49 99.49	99.49	9.03	8 91 14 9 50 9 50 9 50 9 50 9 50 9 50 9 50 9 5	9.622	9.34
SON	MTYPE	337	74447	7111		33335 11111	11111111111	7727

NURSCO 64		d.	PL, WW, & PC	POM, WA					,	¥	. MORRISON	NO
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	CODI	CODIC	MTYPE
801529 NUGAINES FND 801530 NUGAINES REG 801531 NUGAINES CERT 801532 NUGAINES 1C 801533 NUGAINES 2C		POMEROY POMEROY POMEROY POMEROY	MMS SMM	7.79 7.79 7.79 7.79	72.5	0.43 0.43 0.43	84.8 86.4 87.2 85.8	0.1.1.0	54.0 54.3 57.0 57.0	9.05	99.03	33. 22. 22. 22.
801534 NUGAINES 3C 801535 NUGAINES 4C 801536 LUKE FND 801537 LUKE REG 801538 LUKE CERT		POMEROY POMEROY POMEROY POMEROY	MMS MMS MMS MMS		t3t-10				Natten i		22,000	37030 1 371 1
801539 LUKE 1C 801540 LUKE 2C 801541 LUKE 3C 801542 LUKE 4C		POMEROY POMEROY POMEROY	MMS MMS MMS	64.0 64.0 63.2	74.1 72.9 73.2 74.1	0.45	86.9 85.1 85.6 86.1	7.5.5	52.9	9.54	9.50	32L 32L
1/ Observed Values 3/ Absorption at 14 4/ Observed Values	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 8% Protein. Observed Values Corrected to 8% Protein.	ture Basis to 8% Proti in.	ein.	5/ P	Particular Promising	rly Ove	Promising rall Qual	ove	a	Quality	Characteri	eristics

through seven generations. Plots were grown of Paha, Nugaines, and Luke in triplicate at three locations (Pullman, Pomeroy, and Walla Walla). All end-use factors tested showed a high degree of stability from This study was conducted to test the integrity of agronomic and quality characteristics of a variety the first generation through the seventh. Analysis of variance showed no significant changes within COMMENTS:

the varieties. See the Summary Table on page 7, which is the means of 9 plots (3 Reps X 3 locations)

for each generation of seed.

USDA, SEA AR SUMMARY WESTERN WHEAT QUAL. LAB. SEED GENI PULLMAN, WA

K. MORRISON

PULLMAN, WA
NURSCO 64

*
SUMMARY OF AVERAGES
SEED GENERATION TRIALS
PL, WW, & POM, WA

RIETY	VARIETY AND GENERATION	TEST	FLOUR	FLOUR	MILL SCORE	FLOUR PROT.	MABSC	COOKIE ABS.	COOKIE CORR.
LUKE 1	1 Generation	7.	73.6	.448	86.4	8.0	0		3
2	Generation	-	73.6			8.32	53.1	3	9.38
n	Generation	5	3	.441	9	8.0	2	4.	4.
4	Generation	67.9	73.7	4	86.5	8.45	2		9.43
5	Generation	7	3	.445	9	8.17	S	3	3
9	Generation	S	3	SH			3	4.	4.
7	Generation	6.19		.447	86.5	8.14	5		21
NUGAINES	S								
I	1 Generation		7	. 444		50	4.	7.	5
2	Generation	2	7.		5	7.	4	0	7.
3	3 Generation	62.3		.430	84.4	8.51	4.	0.	7.
4	Generation	0			4.	5	4.	0.	0.
5	Generation	62.0				3	4.	0.	T.
9	6 Generation			.435		8.26	54.1	9.02	90.6
7	Generation	65.9	71.7	.444	84.2	8.31	4.	0.	0.
DAHA 1	Caparation	1 63	K	160	Q				-
	Generation	2		0		0		9.40	9.42
3	Generation	5	5	9	1		50.5	ري	3
4	Generation	62.2	5.	.463	∞	CA			4.
5	Generation	2		.466	7	3		3	3
9	Generation	2	5.	.456		8.51		D.	4.
7	Generation	62.3	7	467	0.88	80.8		4	7

n = 9 (3 Replicates X 3 Locations) for each data point.

A. GRAMA & C.F. KONZAK

ISRAELI HIGH PROTEIN SELECTIONS

VOLCANI INSTITUTE, BET DAGAN, ISRAEL

NURSCO 001 SPECIAL

USDA, SEA AR WESTERN WHEAT QUALITY LAB.

PULLMAN, WA 99164

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE NO.	SELECTION NO.	WHEAT	FYELD	FPROT	MABSC	MTYPE	BABS	BAKE M.T.	LVOL	CRUMB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-11-J1-B3-J4	S	00			W7	0		91	2
V761-12-J4-B2-J2 H 72.7 12.8 65.0 $2H \times$ 60.0 1.8 V762-2-J1-B1-J2 H 71.8 12.4 64.0 3M 60.5 2.3 V762-2-J1-B2-J1 H 69.9 12.9 65.5 $2H \times$ 60.5 2.0 V762-2-J1-B2-J2 S 67.5 11.8 62.0 $2H \times$ 60.5 2.0 V762-2-J1-B4-J2 S 67.5 12.0 62.5 $5H \times$ 60.5 2.9 V762-16-J2-B2-J3 S 69.0 11.8 62.0 $3H \times$ 60.5 2.9 V763-2-J1-BJ-J4 H 66.9 × 12.8 63.0 $4M \times$ 61.0 3.5 V763-2-J1-BJ-J3 H 66.9 × 12.8 64.5 $2H \times$ 60.0 1.6 V763-2-J1-BJ-J4 H 66.9 × 12.8 64.5 $2H \times$ 60.0 1.6 V763-2-J1-BJ-J4 H 60.9 × 12.4 64.5 $2H \times$ 60.0 1.6 <td>2</td> <td>-J2-B1-J3</td> <td>Н</td> <td></td> <td></td> <td></td> <td>3M</td> <td>0</td> <td>•</td> <td>06</td> <td>2 2</td>	2	-J2-B1-J3	Н				3M	0	•	06	2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3		н	•		•			•	80	· C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-2-J1-B1-J2	щ	i	12.4		3M		•	91	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-2-J1-B2-J1	Н		12.9					102	2
V762-2-J1-B4-J2 $6/$ S 67.5 11.8 63.0 $4M$ 60.5 2.9 V762-16-J2-B1-J3 $6/$ S 67.5 12.0 62.5 5H 58.0 3.5 V762-16-J2-B1-J3 $6/$ S 67.5 12.0 62.5 5H 58.0 3.5 V763-2-J1-B1-J4 H 66.9 x 12.8 64.5 2H 61.0 2.5 V763-2-J1-B3-J1 H 66.9 x 12.8 64.5 2H 61.0 2.5 V763-2-J1-B3-J3 H 66.9 x 12.8 64.5 2H 61.0 1.6 V763-2-J1-B3-J3 H 66.9 x 12.8 64.5 2H 61.0 1.6 V763-2-J1-B3-J4 H 69.4 12.4 64.0 5H 62.0 4.3 V764-14-J2-B2-J3 H 60.5 x 12.4 64.0 5H 65.0 4.5 V764-14-J3-B2-J3 H 68.8 12.1 67.5	9	2	Н		12.7					94	
V762-16-J2-B1-J3 $\overline{e}/$ S 67.5 12.0 62.5 5H 58.0 3.5 V762-16-J2-B2-J3 $\overline{e}/$ S 69.0 11.8 62.0 3H 57.0 3.5 V762-2-J1-B1-J4 H 66.9 x 12.8 63.0 $4M$ 61.0 2.5 V763-2-J1-B3-J1 H 66.9 x 12.8 64.5 $2H$ x 60.0 1.6 V763-2-J1-B3-J3 H 69.5 13.4 66.5 $2H$ x 60.0 1.6 V763-2-J1-B3-J3 H 69.5 12.4 64.0 $5H$ 66.0 4.3 V763-2-J1-B3-J4 H 60.5 12.4 64.0 $5H$ 66.0 4.3 V763-16-J4-B1-J4 H 60.5 12.4 64.0 $5H$ 66.0 4.5 V764-17-B2-B2-J3 H 70.1 14.5 67.5 $7H$ 68.5 61.5 $7H$ 68.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	7	-2-J1-B4-J2	S		11.8		4M			95	2
V762-16-J2-B2-J3 $\overline{e}/$ S 69.0 11.8 62.0 3H 57.0 3.5 V763-2-J1-B1-J4 H 66.9 x 12.8 63.0 4M 61.0 2.5 V763-2-J1-B3-J3 H 69.5 13.4 66.5 2H 60.0 1.6 V763-2-J1-B3-J3 H 69.4 12.8 67.0 5H 60.0 1.6 V763-2-J1-B3-J4 H 69.4 12.8 67.0 5H 60.0 1.6 V763-2-J1-B2-J4 H 60.5 x 12.4 64.0 5H 65.0 4.3 V764-14-J2-B2-J3 $\overline{e}/$ H 60.5 x 12.8 66.5 7H 68.5 6.2 <td< td=""><td>∞</td><td></td><td>S</td><td>•</td><td>12.0</td><td></td><td>5H</td><td></td><td></td><td>66</td><td>2</td></td<>	∞		S	•	12.0		5H			66	2
V763-2-J1-B1-J4 H 66.9 x 12.8 63.0 $4M$ 61.0 2.5 V763-2-J1-B3-J1 H 63.0 x 12.8 64.5 $2H$ x 60.0 1.6 V763-2-J1-B3-J3 H 69.4 12.8 67.0 $5H$ x 60.0 2.3 V763-2-J1-B2-J4 $6/$ H 69.4 12.8 67.0 $5H$ x 60.0 4.3 V763-16-J4-B1-J4 H 60.5 x 12.4 64.0 $5H$ x 65.0 4.5 V764-1-J3-B2-J3 $6/$ H 68.8 12.5 67.5 $3H$ x 63.0 2.5 V764-1-J3-B2-J3 $6/$ H 68.8 12.5 65.5 $6H$ x 6.5 7 6.5 7 6.5 7 6.5 7 6.5 7 6.5 6 6.5 6 6.5 6 6.5 6 6.5 6 6.5 6 6.5 6 6.5 6 6.5 6 6.5 6 6.5 7 6.5 7 6.5 7 6.5 7 6.5 7 6.5 7 6.5 7 6.5 7 6.5 7 6.5 7 6.5	6		ß	9.	11.8		3Н		•	95	2
V763-2-J1-B3-J1 H 63.0 \times 12.8 64.5 $2H$ \times 60.0 1.6 V763-2-J1-B3-J3 H 69.5 13.4 66.5 $2H$ \times 60.0 2.3 V763-2-J1-B2-J4 H 69.4 12.8 67.0 $5H$ 66.0 4.3 V763-3-J1-B2-J4 H 60.5 x 12.4 64.0 $5H$ 66.0 4.3 V764-1-J3-B2-J3 H 70.1 14.5 67.5 $3H$ 65.0 4.5 V764-1-J3-B2-J2 H 68.8 12.5 65.5 $6H$ 61.5 5.9 V764-25-J5-B1-J3 H 66.7 x 12.8 66.5 $7H$ 68.5 5.9 V764-25-J5-B1-J3 H 68.6 12.1 67.0 $7H$ 68.5 5.9 V876-25-J5-B1-J3 H 61.5 x 12.6 65.5 $7H$ 67.0 5.8 V879-B1-B2-J3 H 61.5 x 11.4 67.0 11.4 67.0 11.4 V879-B2-B1-	10	V763-2-J1-B1-J4	Н		12.8	63.0	W7	61.0		85	7
V763-2-J1-B3-J3 H 69.5 13.4 66.5 $2H$ \times 62.0 2.3 V763-3-J1-B2-J4 $6/$ H 69.4 12.8 67.0 $5H$ \times 66.0 4.3 V763-16-J4-B1-J4 H 60.5 x 12.4 64.0 $5H$ \times 66.0 4.3 V764-16-J3-B2-J3 $5/$ H 60.5 X 12.5 65.5 6H 61.5 5.9 V764-12-B2-J2 $6/$ H 66.7 x 12.8 66.5 7H 68.5 6.2 6.2 5.9 V764-25-J5-B2-J3 $6/$ H 66.7 x 12.1 67.0 7H 68.5 6.2 <td>11</td> <td>2-</td> <td>Н</td> <td>63.0 x</td> <td>12.8</td> <td>64.5</td> <td></td> <td>0.09</td> <td></td> <td>82</td> <td>9</td>	11	2-	Н	63.0 x	12.8	64.5		0.09		82	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	2-	H	69.5	13.4	66.5		62.0		83	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	3-J1-B2-J4	Н	4.	12.8	67.0	5H	0.99	•	95	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	63-16-J4-B1-J4	н	• 5	12.4	0.49	5H	65.0	•	86	2
V764-14-J2-B2-J2 $6/$ H68.812.565.56H61.55.9V764-25-J5-B1-J3H66.7x12.866.57H68.56.2V764-25-J5-B2-J3 $6/$ H68.612.167.07H67.05.8V878-C3-1-B1-J5-B3-J2H61.5x12.665.5 $2H$ x62.52.1V879-B1-B2-J3S65.4x13.566.5 $1H$ x60.01.2V879-B2-B2-J2S69.513.067.0 $1H$ x62.01.3V879-B2-B1-J2H73.314.467.5 $3H$ x63.52.5V879-B3-B1-J2S64.7x13.165.0 $2H$ x60.51.6	15		Н	\vdash	14.5		3Н			90	2
V764-25-J5-B1-J3H66.7 x12.866.57H68.56.2V764-25-J5-B2-J3H68.612.167.07H68.55.8V764-25-J5-B2-J3H61.5 x12.665.5 $2H \times$ 67.05.8V879-B1-B2-J3S65.4 x13.566.5 $1H \times$ 60.01.2V879-B2-B2-J2S69.513.067.0 $1H \times$ 62.01.3V879-B3-B1-J2H73.314.467.5 $3H$ 63.52.5V879-B4-B2-J2S64.7 x13.165.0 $2H \times$ 65.01.6	16		H	68.8	12.5		Н9			88	2
V764-25-J5-B2-J3 6/ H 68.6 12.1 67.0 7H 67.0 5.8 V878-C3-1-B1-J5-B3-J2 H 61.5 x 12.6 65.5 2H x 62.5 2.1 V879-B1-B2-J3 S 65.4 x 13.5 66.5 1H x 60.0 1.2 V879-B2-B2-J2 S 69.5 13.0 67.0 1H x 62.0 1.3 V879-B2-B12-J2 5/ H 73.3 14.4 67.5 3H 63.5 2.5 V879-B3-B1-J2 S 64.7 x 13.1 65.0 2H x 60.5 1.6	17	V764-25-J5-B1-J3	Н	x 2.99	12.8		7H			76	2
V878-C3-1-B1-J5-B3-J2 H 61.5 x 12.6 65.5 2H x 62.5 2.1 V879-B1-B2-J3 S 65.4 x 13.5 66.5 1H x 60.0 1.2 V879-B2-B2-J2 S 69.5 13.0 67.0 1H x 62.0 1.3 V879-B2-B12-J2 J H 73.3 14.4 67.5 3H 63.5 2.5 V879-B3-B1-J2 H 71.8 15.3 69.0 2H x 65.0 1.6 V879-B4-B2-J2 S 64.7 x 13.1 65.0 2H x 60.5 1.6	18		щ	9.89	12.1		7H			98	2
V879-B1-B2-J3 S 65.4 x 13.5 66.5 1H x 60.0 1.2 V879-B2-B2-J2 S 69.5 13.0 67.0 1H x 62.0 1.3 V879-B2-B12-J2 J H 73.3 14.4 67.5 3H 63.5 2.5 V879-B3-B1-J2 H 71.8 15.3 69.0 2H x 65.0 1.6 V879-B4-B2-J2 S 64.7 x 13.1 65.0 2H x 60.5 1.6	19	V878-C3-1-B1-J5-B3-J2	н	• 5		5.		2.	•	97	7
V879-B2-B2-J2 S 69.5 13.0 67.0 1H x 62.0 1.3 V879-B2-B12-J2 4 73.3 14.4 67.5 3H 63.5 2.5 V879-B3-B1-J2 H 71.8 15.3 69.0 2H x 65.0 1.6 V879-B4-B2-J2 S 64.7 x 13.1 65.0 2H x 60.5 1.6	20	V879-B1-B2-J3	S	7.	3					78	6
V879-B2-B12-J2 5/ H 73.3 14.4 67.5 3H 63.5 2.5 V879-B3-B1-J2 H 71.8 15.3 69.0 2H x 65.0 1.6 V879-B4-B2-J2 S 64.7 x 13.1 65.0 2H x 60.5 1.6	21	V879-B2-B2-J2	S	5.	3					90	2
V879-B3-B1-J2 H 71.8 15.3 69.0 2H x 65.0 1.6 V879-B4-B2-J2 S 64.7 x 13.1 65.0 2H x 60.5 1.6	22	9-B2-B12-J2	H		4		3Н			97	2
V879-B4-B2-J2 S 64.7 x 13.1 65.0 2H x 60.5 1.6	23	9-B3-B1-	H		2				•	97	2
	24	79-B4-B2-	S	4.7	3				•	80	9

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 10/12

WESTERN WHEAT QUALITY LAB. PULLMAN, WA 99164 USDA, SEA AR

NURSCO 001 SPECIAL

A. GRAMA C.F. KONZAK

SAMPLE NO.	SELECTION NO.	WHEAT	FYELD	FPROT	MABSC	MTYPE	BABS	BAKE M.T.	TAOL	CRUMB
25	V880-D251-B2-B1-J1	S	62.2 x		5	2H x	61.0	1.2	78	5
26	V880-D265-B2-B1-J3	Н	67.9	•	67.5	1H x			80	r.
27	V880-D268-B1-B6-B1-J3	H	69.2	12.5	9	2H x	61.0	1.5	71	7
28	V880-D268-B1-B6-B1	H	x 5.99		64.5	2M x		•	75	2
29	V881-E1-B2-B-J5-J3	H		3	0.99	1H x	0.99	2.0	88	2
30	V881-E12-B2-J1-B2-J2	H	72.4	3	6.	1H x			76	7
31	V881-E12-B2-J1-B2-J7	S		2.	4.	1H x			85	9
32	V881-E21-B3-J1-B1-J2	S		3,	4.	1H x		•	80	7
33	-E2	S	68.4	14.1	0.99	1H x	0.09	1.1	85	5
34	V881-E24-B1-B2-B1-J3	လ	70.3	3.	6.	1H x			81	4
35	81-E24-	S			5.	1H x			85	7
36	V881-E24-B2-J3	S	70.7		5	1H x			85	7
37	-E51-B3-B1-	S			4.	1H x			85	00
38	81-E5	လ	70.1		5.	1H x	. 0		95	2 open
39	-E57-B2-B3-B3-	S			5.	1H x			86	3
07	81-	H	6		1				84	2
41	V881-E66-B4-J2	Щ	•		7	2H x	62.0		89	2
42	V882-F17-B1-B1-B2-J2	Н	70.7	2.		2H x			84	2
43	-F2	H				H 7		•	97	2
77	2-F22-B2-B3-B3-J1	Н		3.		3H			98	2
45	-F22-B2-B4-B1-J1	Н		4.		3H			91	2
97	V882-F22-B2-B4-B2-J2 5/	H		4.		H7			101	3 open
47	-F36-B1-B1-B2-J2	H	71.4			H5			93	
48	-F37-B1-B2-B2-J3	S		3		W4			96	2
67	V882-F72-B2-B3-J2 6/	S	3.	12.2	0.99	W4	0.99	3.0	87	2
50	2-F73-B4-B3-B5-J2	H	70.7	•		H7			85	2
51	V882-F75-B1-B2-B3-,12	S	56.4 x	•		2H X		- 4	7.7	0

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics.

WESTERN WHEAT QUALITY LAB. PULLMAN, WA 99164 USDA, SEA AR

ISRAELI HIGH PROTEIN SELECTIONS

VOLCANI INSTITUTE, BET DAGAN, ISRAEL

A. GRAMA & C.F. KONZAK

CONTD. PAGE

NURSCO 001 SPECIAL

SAMPLE NO.	SELECTION NO.	WHEAT	FYELD	FPROT	MABSC	MTYPE	BABS	BAKE M.T.	LVOL	CRUMB
52	V883-G51-B2-B1-B2-J7 5/	H	72.5	14.1	68.5	Н7	0.69		93	2
53		S	63.9 x		67.0	3M	68.0	_	100	4 open
54	V883-G53-B2-B1-B3-J2	S	63.5 x	13.5	66.5	3M	65.5	_	97	
55	V883-G53-B2-B2-B1-J4	S	58.3 x	13.6	66.5	3Н	64.5	2.5	102	·
95	V883-G62-B3-B1-B5-J3 6/	Н	9.89	12.4	58.0	3Н	0.99		06	2
57	Standard Cultivar Lachish	Н	71.4	11.0	0.99	3M	63.0	2.3	75	9
58	New Release Cultivar V393-676 6/	田	70.5	12.0	67.0	5н	0.99	3.5	100	2
59	V762-10-J1-B1 5/	н	73.3	16.0	70.0	2H x	0.99	3.8	105	2 open
09	V764-12-J1 6/	S	9.89	12.9	0.89	Н7	0.99	3.0	103	2
61	V761-9-J1-B2 5/	Н	7.69	15.0	0.69	5Н	69.5	4.5	108	2 open
62	V883-G62-B3-B1-B5 5/	H	70.1	13.8	68.5	3Н	0.99	2.9	91	2
63	$V761-9-J4-B2 \frac{5}{2}/V761-9-J1-B1 \frac{5}{2}/V$	шш	68.0	17.1	72.5	3H 6H	68.0	3.5	107	2 open 2 open
65	V882-F73-B4-B3-B5 5/	S	68.4	13.3	67.5	4H	64.5	2.9	96	2
99		H	71.4	12.1		H7		3.5	87	2
. 79	V882-F73-B4-B1-B2 5/	Н	67.9	13.8	69.5	H5	65.0		91	2
89	V882-F72-B2-B4 6/	S	65.0	13.4	0.79	3Н	63.5	2.5	76	2
69	V763-14-J1-B4 5/	S	67.5	12.9	0.99	2H x	59.0	2.5	95	~
70	V882-F72-B2-B1	S	63.7 x	14.0	0.99	2H x	61.0	2.0	100	2
7.1	V764-37-J2	S	58.1 x	14.3	71.0	Н7	0.89	3.7	104	2

Particularly Promising Overall Quality Characteristics.

Promising Overall Quality Characteristics. 10/12

	LAB.	
	WHEAT QUALITY	79160
SEA AR	WHEAT	LI O
USDA, SE	WESTERN	DITT I MAN

ISRAELI HIGH PROTEIN SELECTIONS

VOLCANI INSTITUTE, BET DAGAN, ISRAEL

001 SPECIAL NURSCO

A. GRAMA & C.F. KONZAK

CONTD. PAGE

SAMPLE NO.	SAMPLE NO. SELECTION NO.	WHEAT	FYELD	FPROT	MABSC	MTYPE	BABS	BAKE M.T.	LVOL	CRUMB
72	V766-7-J1-B2 5/	Н	70.7	16.5	71.5	Н9	70.0	4.8	108	2 open
73	V763-16-J4	н	x L.49	17.0	75.0	ЭН	0.99	4.0	105	2 open
74	V883-G53-B2-B1-B1	S	65.0	12.2	64.5	2H x	59.5	1.5	92	9
75	V882-F73-B4-B3-B3 5/	Н	73.7	15.6	71.0	Н5	67.0	3.3	95	2
92	V761-9-J2-B1 6/	н	71.2	12.2	67.5	Н9	65.0	0.9	06	2
77	V763-2-J2-B1	Н	0.69	15.4	71.5	1H x	0.99	1.3	85	5
78	V882-F73-B4-B3-B2 6/ V882-F73-B2-B1-B1 6/	H &	67.5	14.8	70.0	H7	64.0	3.0	86	7 7
80	V761-9-J3-B1 5/	щ	70.3	13.3	67.5	Н9	65.0	4.5	93	Н
81	V766-7-32 5/	ш	71.8	15.5	70.5	Н9	0.89	5.0	110	2 open
82	V761-28-J4-B2 5/	н	4.89	16.8	73.5	5H	0.69	0.4	114	
83	Wampum	Ħ	75.2	11.1	65.5	3M	0.09	3.0	87	2

Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics. 10/2

assumed to be hard type wheats and were conditioned accordingly for milling, so those selections which were of the other selections are noted by "x" in the table of data. It should be noted that all selections were All values are reported on an as is moisture basis (flours were 13.0-13.5% moisture). Wheat type (H= Hard and S= Soft) refer to endosperm texture as measured by NIR reflectance method. Loaf volumes are those for Deficiencies soft were over tempered by 1.5-2.0% which significantly effects flour yield; therefore, the milling data 10g micro bakes. The selections identified with footnotes have promising overall quality. for those selections are not meaningful. COMMENTS:

TENTH ANNUAL REPORT - 1980 CROP

PACIFIC NORTHWEST GRAIN COUNCIL COLLABORATIVE TEST

October 1981

Distributive Report 1/

1/ Prepared by USDA, SEA Western Wheat Quality Laboratory, Pullman, Washington.

(These are the results of preliminary tests which are not to be used for for publication in any form without the consent of the Collaborative Committee.)

INDEX

OBJECTIVES AND INTRODUCTION	Page 1
ACKNOWLEDGEMENTS	1
PNWCIA COLLABORATORS	2
1980 VARIETIES AND SELECTIONS	3
BREEDERS REPORT	5
MILLING PROCEDURES	15
FLOWSHEET WWQL MIAG MULTOMAT	17
CUMMULATIVE ASH CURVES	18
SUMMARY MILLING DATA	23
COLLABORATOR SCORING INSTRUCTIONS AND REPORTING SHEETS	24
INDIVIDUAL COLLABORATORS' RATINGS	27
HARD AND SOFT WHEAT SUMMARY	32
BRIEF COMMENTS RECEIVED	34

OBJECTIVES AND INTRODUCTION

These collaborative flour tests are supported by the Pacific Northwest Crop Improvement Association in cooperation with the USDA, SEA, Western Wheat Quality Laboratory. The purpose is to maintain and improve the milling and baking quality of wheat in the Western Region. It is an attempt to keep current with the needs of wheat processors, both domestic and abroad. The information gained from the data of the domestic and foreign collaborators is of significant value to the wheat breeding programs of the region. The project hopefully provides each collaborator an opportunity to express his opinion as to whether or not the tested selections would satisfy the end-use demands of his industry.

The data and comments included in the individual reports provide the USDA, SEA, Western Wheat Quality Laboratory and plant breeders guidelines for use in the development of future wheat varieties that will best satisfy the needs of the industry.

ACKNOWLEDGMENTS

We would like to thank each of the Collaborators (listed on Page 2) for their participation in this annual project and also the U. S. Wheat Associates, U.S.A., Inc., for their assistance in arrangements with our valued foreign customers.

PNWCIA COLLABORATORS

Japanese Milling Association Committee $\frac{1}{2}$

Dae Han Flour Mills Co., Ltd.

Cheil Sugar Co., Ltd.

Centennial Mills

Fisher Flouring Mills

General Mills, Inc.

Mother's Cake & Cookie Co.

Nabisco, Co.

Cereal Quality Laboratory

Idaho Wheat Quality Laboratory

Kerr Pacific Milling Corp.

Continental Mills, Inc.

Western Wheat Quality Laboratory

Tokyo, Japan

Inchon, Korea

Seoul, Korea

Portland, Oregon

Seattle, Washington

Vallejo, California

Oakland, California

Fairlawn, N.J.

Bozeman, Montana

Aberdeen, Idaho

Pendleton, Oregon

Seattle, Washington

Pullman, Washington

Cooperative work by technical members from 4 major flour milling companies in Japan (Nisshin Flour Milling Co., Nippon Flour Mills Co., Showa Sangyo Co., and Nitto Flour Milling Co.) and Japanese Wheat Flour Institute.

VARIETIES & SELECTIONS

Flour 1/	00.00	8.7	9.1	7.2	8.1	8.9	8.4	9.7	10.7	10.1	13.1	13.2	11.5	11.2
Class	SWW	SWW	SWW	SWW	Club	Club	Club	SMS	SMS	SMS	HRS	HRS	HRS	HRS
Location	1 1	Pullman, WA	Pullman, WA	Pullman, WA	1	Lind, WA	Lind, WA	1	Pullman, WA	Pullman, WA	1	Lind, WA	Lind, WA	Lind, WA
Breeder	Check	G.W. Bruehl	W.K. Pope	C.J. Peterson	Check	R.E. Allan	R.E. Allan	Check	C.F. Konzak	D.W. Sunderman	Check	D.W. Sunderman	C.F. Konzak	C.F. Konzak
Selection	Nugaines CI013968	77 - 294	ID 5318	WA 6363	Paha CI014485	Jacmar WA 06585	WA 6472	Fielder CI017268	WA 6402	ID 185	Borah CI017267	ID 167	WA 6510	WA 6750
Sample No.	42	43	77	45	95	47	48	67	50	51	52	53	54	55

1980

VARIETIES & SELECTIONS (CONTD)

Flour 1/Protein1/	10.7	11.6	و. د.	10.3
Class	HRW	HRW	SMS	SMS
Location	-	Pullman, WA	1	Royal Slope, WA Lind, WA
Breeder	Check	G.W. Bruehl	Check	C.F. Konzak
Selection	Wanser CI013844	77 – 99	Dirkwin CI017745	WA 6753
Sample No.	56	57	58	59

1/ 14% Moisture Basis.

77-294

- 1. Wheat Type: Common soft white
- 2. Background:
 - A. Origin WSU, USDA
 - B. Derivation Unknown club/Sprague
 - C. Contribution Snow mold resistance
 - D. Years in Tests Four (4)
- 3. Agronomic Comparisions:
 - A. Yield Similar to Sprague
 - B. Test Weight Tends to be low
 - C. Maturity Medium
 - D. Lodging Severe under high fertility, better than Sprague under intermediate conditions.
 - E. Awn Type Awned
- 4. Disease and Insect Rating:
 - A. Stem Rust Susceptible
 - B. Leaf Rust Susceptible
 - C. Stripe Rust Moderately susceptible
 - D. Dwarf Bunt Susceptible
 - E. Common Bunt Moderately susceptible
 - F. Flage Smut Susceptible
 - G. Foot Rot Susceptible

- 1. Wheat Type: Soft White Winter
- 2. Background:
 - A. Origin USDA, WSU
 - B. Derivation Luke/WA 5829 (WA 5829 = Sup. Helvia/Suwon 92/CI136215).
 - C. Contribution High Yield, disears resistant, good quality.
 - D. Years in Tests Five (5)
- 3. Agronomic Comparisions:
 - A. Yield 7% better than Luke and the same as Daws in 85 tests in the PNW.
 - B. Test Weight Same as Luke (60.0 lb.) under high fertility.
 - C. Maturity 4-7 days later than Nugaines.
 - D. Lodging Slightly better than Luke but weaker than Nugaines.
 - E. Awn Type Awned, white chaff.
- 4. Disease and Insect Rating:
 - A. Stem Rust -
 - B. Leaf Rust Similar to Luke moderately susceptible.
 - C. Stripe Rust Similar to Luke moderately susceptible.
 - D. Dwarf Bunt Resistant
 - E. Common Bunt Resistant
 - F. Flat Smut Susceptible
 - G. Foot Rot Similar to Luke moderately susceptible.

- 1. Wheat Type: Club, soft white winter, semidwarf
- 2. Background:
 - A. Origin A blend of ten stripe rust resistant components
 - B. Derivation Components developed by backcrossing
 - C. Contribution Foliar disease resistance, yield increase, higher test weight
 - D. Years in Tests 4 years
- 3. Agronomic Comparisons:
 - A. Yield Equal to Faro, Barbee, Nugaines, < Tyee, Daws
 - B. Test Weight > Barbee, Tyee, Faro
 - C. Maturity like Paha
 - D. Lodging < Paha
 - E. Awn Type awmletted
- 4. Disease and Insect Rating:
 - A. Stem Rust VS
 - B. Leaf Rust Heterogeneous, R/m/s
 - C. Stripe Rust MS
 - D. Dwarf Bunt MS
 - E. Common Bunt MR resistance from Bt_1 and Bt_4
 - F. Flag Smut S
 - G. Foot Rot MS

- 1. Wheat Type: Soft White Spring
- 2. Background:
 - A. Origin Washington State University
 - B. Derivation CI 14482/K6202578R21
 - C. Contribution Best combination of disease resistance, processing quality and yield performance available.
 - D. Years in Tests 4
- 3. Agronomic Comparisions:
 - A. Yield Equal to Dirkwin, possibly superior to Urquie equal to Owens.
 - B. Test Weight Superior to Dirkwin, slightly lower (1/2 lb.) than Fielder or Urquie.
 - C. Maturity Approximately same as Fielder, earlier than Urquie.
 - D. Lodging Good Res.
 - E. Awn Type Awned
- 4. Disease and Insect Rating:
 - A. Stem Rust ?
 - B. Leaf Rust Adult resistance to local races
 - C. Stripe Rust Adult resistance to local races
 - D. Dwarf Bunt -
 - E. Common Bunt -
 - F. Flag Smut -
 - G. Foot Rot -

ID 185

1. Wheat Type: Soft White Spring

2. Background:

- A. Origin IDOO45/6/2*A6514S-A-102-1/5/2*A6535S-443-101/3/A63166S-A-4-27-1-2// PI 227196/A63166S-A-2-8/4/Gns/Lmh 53
- B. Derivation Derived from bulk of F4 line
- C. Contribution Stripe rust resistant; moderately resistant to leaf rust
- D. Years in Tests 4 years in Idaho, 2 years in Regional

3. Agronomic Comparisions:

- A. Yield 3 bu better than Fieldwin in 3 years-2 station irrigated avg in Idaho
- B. Test Weight 1 pound lower than Fieldwin
- C. Maturity 2 days earlier than Fieldwin
- D. Lodging Slightly weaker straw than Fieldwin, equal to Twin
- E. Awn Type Awned, white glumed

4. Disease and Insect Rating:

- A. Stem Rust S
- B. Leaf Rust MR to western races
- C. Stripe Rust R to 1980 races; MS to S to 1979 Mt. Vernon races
- D. Dwarf Bunt S
- E. Common Bunt S
- F. Flag Smut ?
- G. Foot Rot ?

ID 167

- 1. Wheat Type: Hard Red Spring
- 2. Background:
 - A. Origin Moran/Tobari 66/3/Tzpp/AN3//B61-136 Ab. Sel. 1
 - B. Derivation Derived from bulk of F3 line
 - C. Contribution High yield; good protein quality; rust resistance
 - D. Years in Tests 4 in Idaho; 2 in regional
- 3. Agronomic Comparisions:
 - A. Yield Average 3 years, 2 irrigated stations; yield-Borah 78.8; McKay 86.9
 - B. Test Weight Borah 59.2; McKay 59.2
 - C. Maturity 3 days later than Borah
 - D. Lodging Better than Borah
 - E. Awn Type Awned, white glumed
- 4. Disease and Insect Rating:
 - A. Stem Rust MR
 - B. Leaf Rust MR to western races
 - C. Stripe Rust R to races in 1980, MS to S to Mt. Vernon races in 1979.
 - D. Dwarf Bunt S
 - E. Common Bunt S
 - F. Flag Smut ?
 - G. Foot Rot ?

- 1. Wheat Type: Hard Red Spring
- 2. Background:
 - A. Origin Washington State University
 - B. Derivation K6901495/MN26268
 - C. Contribution Different disease resistance base, good processing quality competitive yield to Wampum, shorter straw than Wampum
 - D. Years in Tests 3 years Western Regional 4-5 years WA State Nursery
- 3. Agronomic Comparisions:
 - A. Yield Approximately equal to Wampum
 - B. Test Weight Approximately equal to Wampum
 - C. Maturity Midseason
 - D. Lodging Good resistence
 - E. Awn Type Awned
- 4. Disease and Insect Rating:
 - A. Stem Rust S
 - B. Leaf Rust Resistent to local races
 - C. Stripe Rust Resistent to local races
 - D. Dwarf Bunt -
 - E. Common Bunt -
 - F. Flag Smut -
 - G. Foot Rot -

1. Wheat Type:	Hard R	ed Spring
----------------	--------	-----------

- 2. Background:
 - A. Origin Washington State University
 - B. Derivation K71051/WA5949
 - C. Contribution Different genetic base of disease resistance, good processing qualities
 - D. Years in Tests 2 years Western Regional Nursery
- 3. Agronomic Comparisions:

 3 years Washington State Nurseries
 - A. Yield Similar to Wampum
 - B. Test Weight Similar to Wampum
 - C. Maturity Midseason
 - D. Lodging Good resistance
 - E. Awn Type Awned
- 4. Disease and Insect Rating:
 - A. Stem Rust ? Probably S
 - B. Leaf Rust Resistance to local races
 - C. Stripe Rust Resistance to local races
 - D. Dwarf Bunt Not important
 - E. Common Bunt "
 - F. Flag Smut " "
 - G. Foot Rot " "
 - H. Hessian fly Probably S.

77-99

- 1. Wheat Type: Hard red winter
- 2. Background:
 - A. Origin WSU, USDA
 - B. Derivation 127/236//236-7/Sturdy
 - C. Contribution Snow mold resistance
 - D. Years in Tests Three (3)
- 3. Agronomic Comparisions:
 - A. Yield Comparable to McCall
 - B. Test Weight Satisfactory
 - C. Maturity Early
 - D. Lodging Strong Straw
 - E. Awn Type Awned
- 4. Disease and Insect Rating:
 - A. Stem Rust ?
 - B. Leaf Rust Susceptible
 - C. Stripe Rust Moderately susceptible
 - D. Dwarf Bunt Moderately resistant
 - E. Common Bunt Resistant
 - F. Flag Smut Resistant
 - G. Foot Rot Susceptible

- 1. Wheat Type: Soft White Spring
- 2. Background:
 - A. Origin Washington State University
 - B. Derivation N7000315/ID 65
 - C. Contribution Disease resistance, yield equal to best SWS.
 - D. Years in Tests 3 years Western Regional Nursery
- 3. Agronomic Comparisions:
 - A. Yield Yield equal to slightly superior to Fielder, Urquie in absence of rusts.
 - B. Test Weight Equal to Fielder and Urquie, superior to WA6402 and Dirkwin.
 - C. Maturity Between Fielder and Urquie, Day sensitive.
 - D. Lodging Resistance similar to Fielder
 - E. Awn Type Awned
- 4. Disease and Insect Rating:
 - A. Stem Rust Stem rust unknown
 - B. Leaf Rust Adult plant resistent to local races.
 - C. Stripe Rust Adult plant resistent to local races.
 - D. Dwarf Bunt ?
 - E. Common Bunt -
 - F. Flag Smut -
 - G. Foot Rot -
 - H. Hessian Fly Susceptible

Wheat Cleaning and Milling Procedure for the Miag Multomat Mill

When wheat arrives, it is stored in 5-bu. steel bins as cleaned. The cleaning process consists of using a Clipper cleaner followed by a Carter Disc Separator and a Forester Grain Scourer.

To condition the wheat for milling, the proper temper or moisture level is attained by the addition of water. A mixer having a 3-bu. capacity is used for this operation. The first temper (13.5 - 14.5% moisture for soft wheat and 15.5 - 16.5% moisture for hard wheat) is added 18 to 24 hours before the milling process. Fifteen to twenty minutes prior to milling, the wheat is given a second temper by the addition of 0.5% water based on wheat weight.

Approximately 120-pound sub-samples of each variety are tempered for milling. The feed rate is adjusted to give the proper load to the mill.

Soft common wheats are milled at a rate of 800-900 gms/min., white club wheats at 900-1000 gms/min., and hard wheats at a rate of 850-950 gms/min.

Adjustment of the break rolls is done by setting the rolls to give a uniform break release from sample to sample. The 1st break roll is adjusted so that about 43% of the stream passes through a No. 24 Tyler (707 micron) wire screen in one minute of sifting. The 2nd break roll is adjusted so that about 64% of the screen passes through the No. 24 Tyler wire screen in one minute. The 3rd break roll is adjusted to clean the bran as completely as possible without excessive shattering. The adjustment for reduction rolls is done by observation of stock with the objective of grinding and making as much flour possible at each pass but not to the point of overgrinding and flaking the stock.

Each of the flour streams are sampled, weighed, and analyzed for moisture and ash. Cumulative ash curves are plotted for each sample milled. The ten flour streams are blended together using a horizontal ribbon blender to give a straight grade flour which is used for baking, analytical and physical-dough testing.

The schematic flow sheet of the mill, showing rolls and flour screens used is on Page 6. Stream samples were collected and flour ash determined to develope ash curves shown on Pages 7, 8, and 9.

FLOW SHEET WWQL MIAG MULTOMAT

.54

.52

CUMULATIVE ASH CURVES MIAG MULTOMAT MILL STREAMS

- 54 -

FLOUR MILLING SUMMARY

	Selection No.	FLO	UR ASH AND E	XTRACTION
Sample No.	or Variety	50%	90% Patent	St. Grade
42	Nugaines	.362	.394(69.5)	.521(77.2)
43	77 - 294	.350	.388(68.7)	.480(76.4)
44	ID 5318	.369	.418(69.3)	.536(77.0)
45	WA 6363	. 346	.378(71.5)	.476(79.4)
46	Paha	. 343	.366(73.3)	.464(81.4)
47	Jacmar	.347	.364(71.8)	.457(79.8)
48	WA 6472	.343	.363(74.8)	.474(83.2)
40	WA 04/2	• 545	.303(74.0)	.4/4(03.2)
49	Fielder	.400	.442(69.6)	.850(77.3)
50	WA 6402	.343	.395(69.4)	.495(77.1)
51	ID 185	.340	.356(67.5)	.710(75.0)
52	Borah	.316	.355(67.6)	.418(75.1)
53	ID 167	.325	.350(68.3)	.442(75.9)
54	WA 6510	.357	.398(70.6)	.482(78.5)
55	WA 6750	.335	.368(70.7)	.475(78.6)
56	Wanser	.356	.388(68.2)	.458(75.8)
57	77-99	.342	.395(69.2)	.456(76.9)
58	Dirkwin	.377	.425(68.2)	.524(75.7)
59	WA 6753	.431	.458(69.8)	.571 (77.5)

Collaborator	No.

PACIFIC NORTHWEST CROP IMPROVEMENT ASSOCIATION BREAD BAKING METHOD AND MIXING TOLERANCE COLLABORATIVE REPORT

Baking Method	
Straight Dough	
Sponge Dough	
Grain Research Laboratory	
Other Method (Describe very briefly)	
Mixing Tolerance Based on:	
Estimates	
Series of Bakes	
Mixing Curves	
Farinograph Curves	

COLLABORATIVE	NO.

PACIFIC NORTHWEST CROP IMPROVEMENT ASSOCIATION SOFT WHEAT FLOUR QUALITY COLLABORATIVE REPORT

Sample code # or vari	lety	Date sample Received		
Market Class		Tested		
Flour Characteristics	Rating $\frac{2}{}$	Flour Characteristics	Rating 2/	
Ash Moisture Farinograph or Mixograph Absorption Peak Stability Area under	% 1/ % 1/ % raph % 1/ % min. % min. % cm ²	Viscosity Sedimentation Cookie Diameter Spread Factor Falling Number Max. amyl. vis. 3/		

^{1/} Corrected to 14% Moisture Basis.

^{2/} Rating by the number system outlined in instructions.

^{3/} Maximum amylograph viscosity.

Date sample:

PACIFIC NORTHWEST CROP IMPROVEMENT ASSOCIATION

HARD WHEAT FLOUR QUALITY COLLABORATIVE REPORT

Sample code # or variety

Market Class		Received	d
Flour Characteristic	cs Rating	g <u>2</u> / Flour Characteristic	Rating 2/
Protein	% 1/	Bread baking	
Ash	% 1/	Absorption	<u>%</u> 1/
Moisture	%	Mixing time	min 3/
Farinograph or Mixog	graph	Fixed	-
Absorption	% 1/	Optimum	
Peak	min	Under mixed	
Stability	min	Mixing Tolerance	
Valorimeter	B.U.	Dough Handling	
		Bread quality	
		Oxidation requirem	entmg
		Proof time 4/	min
		Volume	c.c.
		Bromate response	a
		Crumb color	-
		Grain & Texture	
Add any comment	s regarding this	is sample using the rating <u>2</u> /sample that are pertinent.	system.
1/ Corrected to 14%	moisture basis.		

Rating by the number system outlined in instructions.

Indicate if the mixing time used was fixed or optimum.

If fixed time was used indicate if the dough was over or under mixed.

If proofing was to constant height rate proof time by the number system.

2/

3/

4/

INDIVIDUAL COLLABORATORS' RATING (SWW)

Sample No.	No.	Prot.	Ash	Moist.	Abs.	. Peak Stab.	stab.	Val. V	Visc. Dia		Factor	Pancake	Noodle	Cake	Rating	Baking
#42 Nugaines		1	ı	ı	ı	1		СНЕСК	SAMP		1	1			1	Rating-
#43 77 -294	П	5	7	5	5	5	5		3	5	5	1	5	5	5	
	2	1	1	ı	1	ŧ	1	1	1	1	i	1	ı	1	ı	
	m ·	2	7	7	1	-	1	ı	1	1	1	ı	ı	1	1	
	4	ı	1	1	ı	ı	1	1	1	1	1	1	1	1	ı	
	2	2	9	9	9	4	5	1	5	1	1	1	i	1	1	
	9	5	9	2	1	ı	1	ı	1	5	ı	ı	1	ı	1	
	7	5	9	2	9	5	7	1	2	7	7	ı	1	ı	ı	
	00	2	9	7	· t	1	. 1	1)	- LC	r I				1 1	
	6	, L/	ی ر	ı, ıç	r.	r	Ľ	7	3	٦ ١	l Li		ı	1	ŀ	
	10	ן נר	٦ ر) L) 11	١ ٧) LI) L) L	٦ ،	ı		ı	I	
	11	۱ ۱	•))	0	1	ŀ	n (Ur	n -	ı	i	. :	ı	
	13		1	ı	ı	ı	ŧ		7	^	4	1 (ı	*	ı	
	77	j L	1	Į t	1	1 1	1	1	1	L	i	m	ı	t	ı	
	113	0	6.5		2	۲	1	ı	4	2	ı	c	2	3.5	4	
	Mean(x)				(5.33)			(4.	00) (4.	.87)		(3.00)	(5.00)	(4.16)		(4.39)
#44 ID 5318	1	5	5	5	5	2	2	1	1	5	5	1	9	7	2	
	2	ı	1	ı	1	1	1	1	1	ŀ	ı	t	ı	1	ł	
	3	3	5	2	ı	1	ı	1	1	ı	1	1	1	1	ı	
	7	1	1	ı	ı	1	ł	1	1	1	ı	1	t	1	1	
	5	5	2	9	9	4	7	ı	5	1	1	ł	1	ı	ı	
	9	5	5	2	ı	1	1	1	i	4	ı	1	1	ı	ı	
	7	4	2	5	9	4	3	1	5	7	7	1	ı	ı	ı	
	∞	5	2	7	1	1	1	1	1	3	1	1	1	1	1	
	6	5	2	5	5	5	7	7 7	7	5	5	1	1	ı	1	
	10	7	2	5	9	7	9		7	4	· m	ı	ı	1	ı	
	11	1	1	ı	1	1	1	1	3	5	· co	1	- 1	*7	1	
	12	1	ı	1	I	1	1	1	1	1	ŧ	3	1	ı	ı	
	13	4.8	2		5 5	4.3	1		;	5	1	2	5	e	4	
	Mean(x)				0			(4.	10) (4.	3/)		(2.50) (3.66)		(4.28)
#45 WA 6363	1	3	7	5	3	2	5	1	1	7	7	ł	2	5	9	
	2	1	1	1	1	1	1	ı		1	ı	ı	1	1	ı	
	3	6	7	2	1	1	1	1	1	1	ı	1	1	1	ı	
	4	1	1	ı	1	1	ł	ı	1		ŀ	1	1	1	1	
	5	9	9	7	7	5	5	1	4	1	1	ł	ı	ı	1	
	9	9	9	2	1	1	1	-	1	9	ı	1	ı	ı	ı	
	7	00	7	5	3	2	2	1	00	5	5	1	ı	ı	ı	
	00	9	9	3	-	ı	1	1		6	1	ı	ı	1	ı	
	6	2	9	5	4	5	2	5 4	7	7	9	1	ł	1	ı	
	10	7	7	4	c	m	2		9	00	00	ı	ı	1	ı	
	11	1	1	1	ı	ı	ı	1		9	9	1	1	*	ı	
	12	1	1	ı	ı	1	1	1		1	ı	9	ı) I	ł	
	13	٦.	9	Ľ	7.	r	ı		r.	ı	i) (9	Ц	L	
	24	0.0	>)	0	7				1.		>	0			

1/ Average Water Absorption, Viscosity, Cookie Diameter, Pancake, Udon Noodle, and Sponge Cake.

INDIVIDUAL COLLABORATORS' RATING (CLUB)

ge Overall	rating r	5.00	L V	4.0	1	1	ı	ı		ı	1	ı	ı	1	ı	1 (8.4	(4./1)	5	1	1		•	ı	1	ı		ı	1	ŧ	ļ	2
00	1		u	7	I	1	ı	ı		1 1	i	ł	1	1 4	K C	1	(5, 7)	(0) (0)	2	1	1	ı	1 1	1	ı	ŧ	ı		1 0	0	l L	7.7
Udon Noodles	1		L	7	1	ı	1	I	1			1	1	ı	ŧ	۱ -	(7. 50)	• 1	2	ŧ	ŀ	1	ı	-			l 1	1 1	1	1 1	14	1
Pancake	1		ł		ı	ı	1	1	ı	ı		1	1 1	. 1	l '	4.U	(5,00)	(00:0)	ı	1	1	ı	1	1	ı)	ŧ	1	~	י ע	0.0
Spread			9	> ~	7	ł	t	ı	1	٦.	۱ ۱	u) r) נר)	1	ı		2	9	i	1	ŀ	,	r)	. LC	7	۰ (۲) 1	1	
Cookie Dia.	PLE		7.	1	7	ı	ı	1	2	. 2	ı i	9	0 4	٠ ٠)	2	(5,00)		٠ ,	9	1	1	ŧ	5	۷.	1	7.	7	7	. 1	ľ	01
Mac.	CHECK SAMPLE		!		1 .	J	i	- 4	1	4 -	1	7 5	1 4	- 4	. 1	7	(4.08)		1	1	1	1	3	1	- 5	1	7				4.5	(1)
	8		5	(. 4	>	ı	4	1	5	1	2		1		,		U			5	i	5	1	5	,	5 5		!	1	1	
Farinograph Peak Stab.	1		5	ı	ı		1 1	۲	ı	2	ŀ	2	. 5	ı	ŧ	2		ı	1	ı	1	1	5	1	5	ı	5	5	1	1	5	
Abs.	1		2	1	~)	1 1	Ç	ŀ	5	J	5	5	1	ı	2	(4.71)	Ľ	۱ ۱	١ -	7	ı	2	1	2	1	5	5	1	1	5	057
Fir. Moist	1		5	1	2) [) L	2	2	5	1	2	5	1	1	5)	ď	۱ ۱	7	4	1	Ŋ	2	2	1	5	2	J	ı	5	(1)
Ash	1		5	i	4	ŧ	L	n 1	7	2	ı	2	4	ı	1	2		9) I	C	7	1	9	9	9	i	9	7	ı	ı	2	
Prot.	1		9	ı	7	ł	7	j -	7	m	1	4	3	ı	1	4		ιC	1	9	0	1 1	2	2	5	1	5	2	ı	ŧ	2	
No.	- Mean(x)			2	3	7	· W	٠ ١	0 1	/	00	6	10		12	13	Mean(x)	1	2		7 ~	t i	5	9	7	00	6	10	11	12	13	Mean (x)
Sample No.	#46 Paha	#47 Jacmar	WA 06585															#48 WA 6472														

2/ Average Water Absorption, Viscosity, Cookie Diameter, and Japanese Sponge Cake. * High Ratio White Laver High Ratio White Layer

INDIVIDUAL COLLABORATORS' RATING (SWS)

Code and	Collab.	Flr.	Flr.	Flr.			graph	Mac.	Cookie	Spread				Overal1	Overal1
Sample No.	No.	Prot.	Ash	Moist.	Abs.	Peak S	Stab. V	Val. Visc.			Pancake	Noodle	Cake		Baking,
#49 Fielder															Rating-1/
CI017268	Mean(x)	•	1	1	ı	1	1	CHECK SAMPLE	MPLE	1	1	1	1	ı	2.00
#50 WA 6402	1	7	5	5	9	5	9		5	5	,	3	5	7	
	2	1	ı	1	Į.	1	,	1	1	ı	ı	1	1	1	
	3	7	9	9	7	ł	7	1	1	ı	ı	ı	t	ı	
	4	ı	1	1	ı	ŧ	1	i	1	ı	1	ı	1	ı	
	5	4	5	9	5	4	4	- 4	1	ì	1	ı	1	1	
	9	က	5	5	ı	ŀ	1	1	4	1	ı	ı	1	ı	
	7	7	5	5	9	3	2	- 2	5	5	1	1	ı	1	
	œ	7	9	4	1	1	1	1	5	ı	ı	1	ı	ı	
	6	4	5	5	4	2	5	7 7	7	7	1	1	1	ı	
	10	3	9	2	7	9	7	- 3	5	5	1	ı	ŀ	ı	
	11	1,	t	1	1	ı	i	- 3	5	2	1	1	î	ı	
	12	ı	1	ı	1	ŧ	ı	1	i	1	2	1	1	ı	
	13 _	4	2	2		5	ı	- 4.5	5	ı	4	9	5	5	
	Mean(x)				(5.71)			(3.41)	(4.75)		(3.00)	(4.50)	(2.00)		(4.39)
#51 ID 185	-	9	9	5	5	5	5	ı	5	5	1	5	5	5.5	
	2	ı	ı	1	1	ł	1	1	ı	1	1	1	1	1	
	3	9	7	7	4	ı	. 9	1	1	1	1	i	1	ı	
	7	ı	ı	1	1	1	1	1	ı	ı	ŧ	ı	1	ı	
	5	7	9	9	5	4	. 4	- 5	ı	1	1	ı	1	1	
	9	7	9	5	1	ı	1	1	5	1	ı	1	1	ı	
	7	7	9	5	4	5	5	- 4	5	5	1	1	ι	1	
	00	4	9	7	1	1	1	1	2	ı	1	ŀ	ı	ı	
	6	4	9	5	5	5	5	7 7	5	9	ı	1	1	1	
	10	7	œ	2	3	9	7	-	5	2	ı	ı	ı	ŧ	
	11	1	ı	1	1	1	1	- 5	5	2	ı	t	*6	ı	
	12	ŀ	ı	1	1	1	į	1	ı	1	2	1	1	ı	
	13	2	9	5	5	5	1	4 -	5	1	5.5	9	5	5.5	
	Mean(x)			_	(4.42)			(4.16)	(2.00)		(3,75)	(5.50)	(6,33)		(48.4)

1/ Average Water Absorption, Viscosity, Cookie Diameter, Pancake, Udon Noodle, and Sponge Cake. * High Ratio White Layer

	No.	Prot	ot. Ash	h Moist.		Abs. Pe	S XE	U de	10	Atho Trimo	TO TO TO				3 2 4			_
#52 Borah				1								red	. Vol.	L. Kesp.	p. Color	r & Txtr	r. Rating	Baking1
C101/26/	Mean(x)		ł	1			1	1	CHECK	SAMPLE	1	1	'	1	1	1	ı	
#53 ID 167	-	Ľ	ı							the second								5.00
	7	ו ר) 1	n 1	∩ I		7	9	9	5 4	7	1	5	1	4	5	9	
	ന	5	7	9			ı		1	1 0	1 -	1	1	1	1	1	ğ	
	7	·	1)					1		7	i	-	1		Н	ı	
	. 10	1		ľ	1		t		ı	1	1	F	1	1	1	ı	1	
	2	u	L	1 1			1				ı	1	•	1	1	1	ł	
	1 0	Λ ι	٠ ·	5			7	5	9		9	5	70	1	9	9	ı	
	,	2	7	2			2		1		ľ	ľ	, 4		2		L 	
	∞	9	9	5					1	5	י רכ	2	2 ~		0	1 0	7.0	
	6	ŀ	1	1		,			1		۱ ()			0	,	9	
	10	2	5	5	3		00	7	,	~	ı	(1 ~		1 1	1 1	ı	
	11	1	1	ł							1		`		_	0	ŧ	
	12	1	1	1	1		1		,		ı		1		1	1	ı	
	13	2	5	-1		5		-		9 7	Ľ	l n	'	L	1 1	1 4	1 -	
	Mean(x)				(4.6	(9				(5.	(5	n	(5, 35)		(5 00	6 (2 17.)	9	r
WA 6510	\vdash	3	n	5	5	J	5	9		L L	7				•			(CT.C)
	2	1	1	- 1	1	, ,					0	ı		l	4	2	m	
	m	m	-	7				1		1 1	1 1	1	t	1.	ł	1	ı	
	7		1	٠ ا		•	'	1		2	_	1	7	1	5	5	1	
		7	77	Ľ		, 0		1 \		1	ı	ŧ	1	1	ı	1	ı	
	2	0	1 0) "	0 '	, ,					1	ı	1	1	1	1	1	
	2 1	7 0	n c	Ω Γ	4 (ζ,	2 1				9	1	7	1	5	9	***	
	~ C	n (η,	Λ ·	. O	9		1	2		70	5	5	7	2	ľ	75 7	
	0 0	η	4	9	7	7		1	~	1	7	9	-		. 7.	7) • (*	
	V C	1 0	1 (1	1 (1		1	1	1	1	1	ı	1	1	- 1)	
	TO 1	7	7	9	n	2		1	m		1	1	3	ı	2	2	ı	
	17	١.	I	ł	1	1	1	1	ı	1	t	1	-1	1	1	1	l	
	77	1 ~	1 -	} 1	1			1	1		ı	1	1	1	1	ı	ı	
	CT (T)		4	<u>م</u>	4	2	. 5.	ł	7	9	5	2	1	2	2	7.	L°	
	Mean (x,				(3./8)	3				(5.57)(5.50)		(3,33	_	(4.85)	(4.57))	(1, 60)
WA 6750	-1	n	7	7	5	5	9	7	5	5	9	ł	~		7			•
	7	ı	I	1	ı	1	1	1	1	1		1)	-	>	n	2	
	m ·	 -	က	6	ı	1	ı	1	4	4	2	- 1	~	1	۷	ľ	ı	
	7	1	ı	F	1	1	1	1	1	ŧ	1	1) 1	-	> 1	n	ı	
	2	4	5	4	4	5	9	9	1	1	ł	1	1			ı	ł	
	9	3	4	2	4	S	5	9	9	7.	ır	Ľ	٦ ،			1	ı	
	7	3	4	5	3	5	7	1	3) 10) וכ	ר ת	2 0	l u	0 1	0	1	
	∞	-	7	9	7	7	9	1	7	7	۷ د	, 4	0 0	7	- '	٥ ،	5.2	
	6	1	i	1	1	. 1	1	1	. 1	. 1) I	۱ د	ו ר	t i	٥	7	m	
	10	2	7	2	3	9	7	- 1	3	7	1	! !	1 0	1	1 \	1 4	ı	
	11	ı	1	ı	1	ŧ	- 1	1) [- 1	1		0	1	٥	^	ı	
	12	1	1	1	ŧ	1	1	1	1	i			ı	ı	1	1	8	
	13	3.5	5	2	5	5.5	1	ł	r.	9	ן ער	l r.	1 4	į L	į L	1 4	1	
	1																	

1/ Average Mixing Time and Tolerance, Water Absorption, Loaf Volume, Crumb Color, and Grain Texture.

INDIVIDUAL COLLABORATORS' RATING (HRW)

Overall	Rating1/	5.00														(5.20)
Overall Overall	-		9	ı	,	ı	ı		5.3) (1)) 1	1	ı	1	4.5	
Crumb Grain	1		7	ı	r.) I	1	9	2	· ~	1	5	ı	ı	7.	4.71)
1			9	ł	9) I	ı	2	. 2	9	t	5	-1	ı	150	(5.42) (4.7
KBr03	1		1	1	ı	1	ı	ı	2	ī	1	ı	ı	ı	2	
Loaf	1		5	ı	7		1	2	7	. 2	1	5	ı	ı	7	(5.42)
			1	1	ı	ı	ł	5	5	- 50	ı	1	ŧ	ı	5	
Mix			4	1	9	1	1	9	5	7	1	1	1	1	2	(2.50)
e Mix	MPLE		5	1	9	1	1	5	1	5	ł	5	ı	1	5	(5.16) (5.50)
Bake Val. Abs.			5	ş	9	1	1	9	5	9	i	5	1	ı	5	
1.51	1		5	1	1	-1	4	5	1	1	1	ŀ	-1	1	ì	
Farinograph Peak Stab.	1		5	ı	1	ŧ	4	5	5	7	ł	3	ı	1	1	
Fari	1		5	1	ł	1	4	5	5	5	1	7	1	1	4	
Abs.	-		5	ŧ	ı	ı	5	4	5	9	1	5	1	1	5	(2.00)
Flr. Moist.			5	1	9	1	5	5	5	2	1	5	1	1	5	
Flr. Ash	1		2	ł	2	ı	2	5	2	2	ı	5	1	1	5	
Flr. Prot.	ı		9	ŧ	6	ı	2	9	7	7	1	00	ī	ı	9	
Collab.	1 ;	Mean(x)	-	2	3	7	5	9	7	œ	6	10	11	12	13	Mean(x)
Code and Sample No.	#56 Wanser		#57 77-99													

1/ Average Mixing Time and Tolerance, Water Absorption, Loaf Volume, Crumb Color, and Grain Texture.

INDIVIDUAL COLLABORATORS' RATING (SWS)

Lab. Flr. Flr. Flr. a(x) 6 5 5 7 4 5 7 4 5 8 4 5 9 5 1 7 6 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1
lab. Flr. Flr. Flr. Farinograph Prot. Ash Moist. Abs. Peak Stab. Val. n(x) CHEC 7 4 5 5 5 CHEC 4 4 5 6 CHEC 4 4 5 5 5 CHEC 4 4 5 5 5 CHEC 4 4 5 5 5 CHEC 4 4 5 6 CHEC CHEC 4 4 5 6 - CHEC CHEC 4 4 5 5 5 - CHEC 5 5 5 5 - CHEC 6 5 5 5 - CHEC 7 4 5 5 5 - CHEC 8 4 5 5 5 - CHEC 9 5 5 5 5 - CHEC 9 6 7 6 7 - CHEC 9 7 7 7
Tab. Fir. Fir. Fir. Farinograph n(x) - <td< td=""></td<>
1ab. Flr. Flr. Flr. n(x) 6 5 5 5 7 4 4 5 5 4 4 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 7 4 5 5 5 7 5 6 6 7 6 7 6 5 5 5 5 7 7 4 5 5 5 7 8 4 5 5 5 7 9 6 6 6 7 6 6 6 1 4 5 5 5 5 7 7 6 7 7 7 7 7 7 7
lab. Flr. Flr. n(x) 6 5 7 4 4 4 4 4 4 4 4 5 4 4 4 5 4 5
lab. Fir. n(x) 6 4 4 4 4 - - - - - - - - -
1ab. n(x)
Collab. No. Mean(x) 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1

1/ Average Water Absorption, Viscosity, Cookie Diameter, Pancake, Udon Noodle, and Sponge Cake.

MEAN OF COLLABORATORS' RATING SOFT WHEATS

Average_/ Overall Rating	5.00 4.39 5.41	5.00 4.71	5.00 4.39 4.86	5.00
Sponge	X Range	5.00 5-5	5.00 5-5 6.33 5-9	4.50 4-5
n	X Range - 5.00 5-5 5.50 5-6 5.50 5-6	4.50 4-5 5.00 5-5	4.50 3-6 5.50 5-6	4.50 3-6 4
Pancake	Range	4.5-5.5	2-4	E - 5.75 4.5-7
	Range X CHECK SAMPLE 3.00 4-5 3.00 3-5 2.50 5-9 6.00	CHECK SAMPLE 4-6 5.00 4-6 4.25	- CHECK SAMPLE .75 4-5 3.00	SAMPL
Coo		5.00	- CHECK 4.75 4-5 5.00 5-5	- CHECK 5.00 5-5
Viscosity	A Kange 4.00 3-5 4.16 3-5 5.50 4-8	4.08 4-4.5	3.41 2-4 4.16 3-5	4.30 3-6
Absorption	5.33 5-6 5.50 5-6 3.75 3-5	4.71 3-5 4.85 4-5	5.71 4-7 4.42 3-5	5.42 5-7
Variety or Selection	Nugaines 77-294 ID 5318 WA 6363	Paha Jacmar WA 6472	Fielder WA 6402 ID 185	Dirkwin WA 6753
Sample No.	42 43 44 45	CLUB 46 47 48	SWS 49 50 51	59

1/ Average of all factors, with equal weight of importance to each.

MEAN OF COLLABORATORS' RATING HARD WHEATS

														Average_
Sample	Variety or			Mi	Mixing		gu	Lo	Loaf	0	Crumb		Grain &	Overal1
No.	Selection		Absorption	Ti	Time	Tole	Tolerance	Vo	Volume		Color	1	xture	Rating
HRS		ı×	Range	ı×	X Range	ı×	Range	ı×	Range	i×	Range	ı×	Range	
52	Borah	1	1	1	ı	i	CHECK	SAMPI	н	1	1	1	1	5.00
53		99.4	4.66 3-5	5.42		5.33	4-7	5.35	1-7	5.00	1-7	5.14 1-7	1-7	5.15
54		3.78		5.57		5.50	4-7	3.33	1-5	4.85	4-5	4.57	2-6	4.60
55		4.00		5.57	5.57 4-7	5.33	5.33 5-6 3.78 3-6 6.00	3.78	3-6	00.9	2-7	4.85	3-6	4.92
HRW														
MATT														
99	Wanser	1		ı	1	ı	CHECK	SAMPL	时	1	CHECK SAMPLE	ı	1	5.00
57	77-99	5.00	5.00 4-6	5.16	9-9	5.50	4.7	5.42	4-7	5.42	2-6	4.71	3-6	5.20

BRIEF COMMENTS RECEIVED

- #42 Nugaines (Check)
 - Abnormal amount of thin and shrivelled kernels.
 - Flat extensogram.
 - Gave good noodle with somewhat weak masticating feeling.
 - Cake and cookie baking quality was normal.
- #43 77-294
 - Medium sized kernels.
 - Good flour color.
 - Noodle quality was slightly inferior to #42.
 - More or less unsatisfactory cracks in the top of cookies.
- #44 ID 5318
 - Large plump kernels.
 - Good flour color in spite of high flour ash.
 - Well balanced extensograph.
 - Good noodle making quality.
 - Relatively poor cake and cookie baking quality.
- #45 WA 6363
 - Relatively large kernels.
 - Good milling quality.
 - Very low protein and ash and good flour color.
 - Cake and cookie baking quality was very good.
 - Gave noodle with poor masticatory feeling in spite of good color.
 - Very low water absorption.

SWW Wheat Ranking: 44 > 45 > 42 > 43 for noodle.

45 > 42 > 43 > 44 for cake and cookie.

46 > 42 > 43 > 44 pancake quality.

- #46 Paha (Check)
 - Plump kernel with good luster.
 - Very good milling quality.
 - Low flour ash and good flour color.
 - Very flat and low extensogram.Very good cake baking quality.
 - Relatively good cracks on the top of cookie.
- #47 Jacmar
 - Plump kernels with good luster.
 - Good milling quality.
 - Good flour color.
 - Flat extensogram (not as flat as #46)
 - Cake baking quality was slightly inferior to #46.
 - Large cookie spread but poor top grain.
 - Flour character was a little stronger than #46.

- #48 WA 6472
 - Very low wheat and flour ash.
 - Very good flour color.
 - Good cake and cookie baking quality.
 - Weaker than #47 and similar to #46 in flour weakness.

White Club Wheat Ranking: 46 > 48 > 47

Sample perference: Sample #48 would be preferred over #46 for our cookie production. Sample #47 would be less desirable than #46.

Control #46 did not perform well as cake baking standard.

46 > 47 > 48 for pancake making

#49 - Fielder (Check)

- Small kernel and dull luster.
- Good milling quality.
- High amylograph viscosity.
- Gave excellent noodle but noodle color was unsatisfactory.
- Cake and cookie baking quality was poor.

#50 - WA 6402

- Semi-glossy and long kernels.
- Relatively high in protein.
- Good flour color.
- Cake baking quality was good but cookie baking was poor.
- Noodle had very poor masticatory feel.

#51 - ID 185

- Long kernel with dull luster.
- Good noodle making quality.
- Relatively good for cake and very good for cookie.

#58 - Dirkwin (Check for #59)

- High flour ash.
- Flat extensogram.
- Good for noodle.
- Unsuitable for cake and cookie.

#59 - WA 6753

- Very high flour ash.
- High protein.
- Noodle making quality was inferior to #58 in flavor and eating quality.

SWS Wheat Ranking: 51 > 49 > 50 58 > 59.

Control #49 not a good cake baking control.

#50 and #51 are inferior flours for pancake making.

#59 is excellent for pancake making.

- #52 Borah (Check)
 - Large kernel with dim luster.
 - Very high protein wheat.
 - Low grain ash and flour ash (for spring wheat).
 - Good milling quality.
 - Flour color was not good.
 - Gave most acceptable bread among HRS wheats, namely, large loaf volume and good eating quality.

#53 - ID 167

- Dark brown colored large grain with dim luster.
- Very high protein with normal ash.
- Good milling quality but flour color was dark.
- Long peak time and good stability in farinograph.
- Long mixing time.
- Bread dough slacked in proofing stage.
- Grayish crumb color.
- Baking quality was slightly inferior to #52.

#54 - WA 6510

- Yellowish brown medium-sized kernel with poor luster.
- Good milling quality.
- Gave poor bread; small oven spring, poor crumb grain and texture, inferior flavor and eating quality.

#55 - WA 6750

- Yellowish brown large size kernels.
- Low ash and relatively low protein.
- Good milling quality.
- Gave rather good bread in spite of low protein.

HRS Wheat Ranking: 52 > 53 > 55 > 54 53 > 52 #54 and #55 less desirable than #52.

#56 - Wanser (Check)

- Dark flour color.
- Gave poor bread.

#57 - 77-99

- Light brown color and long thin kernels with dull luster.
- High ash flour and dark color flour.
- Low mixing tolerance.
- Inferior dough handling characteristics.
- Gave nice bread with good eating quality.
- Large oven spring.
- Baking quality better than #56.

HRW Wheat Ranking: 57 > 56

#57 less desirable than #56.

