

FCC Measurement/Technical Report on

TOBY-R202

According to: FCC Part 15, Subpart B

FCC ID: XPY1EHQ24NN IC: 8595A-1EHQ24NN

Test Report Reference: MDE_UBLOX_1612_FCCb

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Geschäftsführer/ Borsigstraße 11 Managing Directors: 40880 Ratingen, Germany Frank Spiller T +49 (0) 2102 749 0 Bernhard Retka

F +49 (0) 2102 749 350

Registergericht/registered: Düsseldorf HRB 75554

USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary / Signatures	5
2	Administrative Data	6
2.1	Testing Laboratory	6
2.2	Project Data	6
2.3	Applicant Data	6
2.4	Manufacturer Data	6
3	Test object Data	7
3.1	General EUT Description	7
3.2	EUT Main components	7
3.3	Ancillary Equipment	7
3.4	Auxiliary Equipment	8
3.5	EUT Setups	8
3.6	Operating Modes	9
3.7	Product labelling	9
4	Test Results	10
4.1	Conducted Emissions at AC mains	10
4.2	Radiated Emissions	12
5	Test Equipment	16
6	Antenna Factors, Cable Loss and Sample Calculations	19
6.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	19
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	20
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	21
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	22
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	23
6.6	Antenna EMCO 3160-10 (18 GHz – 26.5 GHz)	24
7	Setup Drawings	25
8	Measurement Uncertainties	26
9	Photo Report	26

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart B - Unintentional Radiators

§ 15.107 Conducted limits

§ 15.109 Radiated emission limits; general requirements

Note:

ANSI C63.4-2014 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Information Technology Equipment (ITE) from FCC and IC

Measurement	FCC reference	IC reference
Conducted Emissions (AC Power Line)	§15.107	ICES-003 Issue 6: 6.1
Radiated Spurious Emissions	§15.109	ICES-003 Issue 6: 6.2

Remarks:

- FCC Part 15 subpart B, ICES 003 and CISPR 22 contain different definitions of Class A and Class B limits, i.e. which class is applicable to which kind of EUT.
 ICES 003 and CISPR 22 distinguish between the location where the EUT is intended to operate whilst FCC refers to the method of commercial distribution (distributive trades).
- 2. The correct assignment of the appropriate class to the concrete EUT is not scope of this test report!
- 3. A radio apparatus that is specifically subject to an Industry Canada Radio Standard Specification (RSS) and which contains an ITE is not subject to ICES-003 provided the ITE is used only to enable operation of the radio apparatus and the ITE does not control additional functions or capabilities.
- 4. ISM (Industrial, Scientific or Medical) radio frequency generators, though they may contain ITE, are excluded from the definition of ITE and are not subject to ICES-003. They are instead subject to the Interference-Causing Equipment Standard ICES-001, which specifically addresses ISM radio frequency generators.

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart B	§ 15.107		
Conducted Emissions at AC mains			- 1
The measurement was performed according to ANSI	C63.4	Final Re	esult
OP-Mode	Setup	FCC	IC
AC mains connection, Test setup			
via connected computer device, computer peripheric	S01_AQ04	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart B	§ 15.109		
Radiated Emissions			
The measurement was performed according to ANSI	C63.4	Final Re	esult
OP-Mode	Catan	FCC	IC
	Setup	FCC	10
AC mains connection, Measurement range, Test setup	Setup	FCC	10
		Passed	Passed
AC mains connection, Measurement range, Test setup via connected computer device, 1 GHz - 10 GHz, computer	S01_AQ04	2	

(responsible for accreditation scope) Dipl. Bernhard Retka

(responsible for testing and report)
Patrick Lomax

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01

Responsible for accreditation scope: Dipl. Marco Kullik

Report Template Version: 2016-06-07

2.2 PROJECT DATA

Responsible for testing and report: Patrick Lomax

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2016-08-31

Testing Period: 2016-08-09 to 2016-08-12

2.3 APPLICANT DATA

Company Name: u-blox AG

Address: Zürcherstrasse 68

CH-8800 Thalwil Switzerland

Contact Person: Giulio Comar

2.4 MANUFACTURER DATA

Company Name: See applicant data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	UMTS/LTE Voice and Data module
Product name	TOBY-R202
Туре	TOBY-R202
Declared EUT data by	the supplier
Power Supply Type	DC
Comment	DC Power via AC/DC adapter
Test Voltage / Frequency	120v/60Hz AC
Highest internal frequency	Above 108 MHz
General Description	UMTS/LTE Voice and Data module
Ports	USB, RF

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
Standard Sample	AQ04 Standard sample		
Sample Parameter	Value		
HW Version	257CA0		
Serial No.	351778080012202		
SW Version	30.10		

 ${\tt NOTE:} The \ short \ description \ is \ used \ to \ simplify \ the \ identification \ of \ the \ EUT \ in \ this \ test \ report.$

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
AC/DC converter	UNIFIVE, UUX324-1215, DE1015037	120v/60Hz to 12v AC/DC converter

Device	Description		
Sample Name	Description		
AC/DC converter	AC/DC converter		
Evaluation test board	n test board u-blox, EVB-WL3, DE1015037 Evaluation test boa		
Sample Name	Description	·	
Evaluation test board	Evaluation test board		

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description		
L17MB-P	LG, -, -, 412WAPL0U560	TFT Display EMC TFT 5		
Lifebook Eseries E781	Fujitsu, -, -, DSCK013817	Laptop RE		
M-BT58	Logitech, -, -, HC60915A2XC	EMC MOUSE 1		
PJW1942NA	Fujitsu, -, -, 13300281B	AC Adapter 3 Laptop RE		
RS 6000 USB ON	CHERRY, -, -, G 0000273 2P28	EMC KEYBOARD 1		

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AQ04	Standard Sample, Evaluation test board, AC/DC converter, L17MB-P, PJW1942NA, Lifebook Eseries E781, M-BT58, RS 6000 USB ON,	Standard radiated setup used for connecting module to a laptop computer (Windows 7 Pro) via USB. Continuous communication is maintained over the USB interface by the use of AT command scripts.

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1TEST CHANNELS

Testing performed in UMTS FDD2, Channel 9400 (1880 MHz)

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 CONDUCTED EMISSIONS AT AC MAINS

Standard FCC Part 15 Subpart B

The test was performed according to:

ANSI C63.4

4.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.4 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & Average
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

4.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart B, §15.107

Class B:

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBμV)		
0.15 - 0.5	66 - 56	56 - 46		
0.5 - 5	56	46		
5 - 30	60	50		

Class A:

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBμV)		
0.15 - 0.5	79	66		
0.5 - 30	73	60		

4.1.3 TEST PROTOCOL

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.460500	44.60		56.68	12.09	1000.0	9.000	L1	FL	10.1
0.465000		35.35	46.60	11.26	1000.0	9.000	N	FL	10.1

Remark: Please see next sub-clause for the measurement plot.

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") AC mains connection = via connected computer device, Test setup = computer peripheral

4.1.5 TEST EQUIPMENT USED

Conducted Emissions FCC

4.2 RADIATED EMISSIONS

Standard FCC Part 15 Subpart B

The test was performed according to:

ANSI C63.4

4.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF – Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 45 $^{\circ}$ around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz - Measuring time: 1 s

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits

Class B:

Frequency (MHz)	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

Class A:

Frequency (MHz)	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	90@10m	3	39.1@10m
88 – 216	150@10m	3	43.5@10m

216 – 960	210@10m	3	46.4@10m
960 - 26000	300@10m	3	49.5@10m
26000 - 40000	300@10m	1	49.5@10m

The measured values for Class A and for Class B (> 26 GHz) measurements are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

 $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.2.3 TEST PROTOCOL

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/ m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Heigh t (cm)	Pol	Azim uth (deg)	Corr. (dB)
40.140000	38.29	40.00	1.71	1000.0	120.000	107.0	٧	1.0	13.6
48.480000	34.65	40.00	5.35	1000.0	120.000	102.0	٧	22.0	8.0
83.670000	32.53	40.00	7.47	1000.0	120.000	109.0	٧	16.0	10.4
86.370000	29.57	40.00	10.43	1000.0	120.000	137.0	٧	40.0	10.5
133.440000	34.13	43.50	9.37	1000.0	120.000	324.0	Н	-	10.5
194.760000	34.60	43.50	8.90	1000.0	120.000	100.0	٧	60.0	9.2
372.630000	36.60	46.00	9.40	1000.0	120.000	129.0	Н	-	15.8

Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

AC mains connection = via connected computer device, Measurement range = 1 GHz - 10 GHz, Test setup = computer peripheral

AC mains connection = via connected computer device, Measurement range = 30 MHz - 1 GHz, Test setup = computer peripheral

4.2.5TEST EQUIPMENT USED

Radiated Emissions FAR Radiated Emissions SAC

5 TEST EQUIPMENT

1 Radiated Emissions FAR Lab to perform radiated emission tests i a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.2	5HC3500/1800 0-1.2-KK	High Pass Filter	Trilithic	200035008		
1.3	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647- 001-PRB		
1.4	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.6	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
1.7	5HC2700/1275 0-1.5-KK	High Pass Filter	Trilithic	9942012		
1.8	4HC1600/1275 0-1.5-KK	High Pass Filter	Trilithic	9942011		
1.9	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.10	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.11	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.12	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12482	2015-03	2017-03
1.13	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.14	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2014-11	2016-11
1.15	SMR 20	Signal Generator	Rohde & Schwarz	846834/008	2014-06	2017-06
1.16	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.17	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.18	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

2 Conducted Emissions FCC Conducted Emissions power line for FCC standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	828304/029	2015-03	2017-03
2.2	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2014-11	2016-11
2.3	EP 1200/B, NA/B1	Amplifier with integrated variable Oscillator	Spitzenberger & Spieß	B6278	2015-07	2018-07
2.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
2.5	Shielded Room 02	Shielded Room for conducted testing, 12qm	Frankonia	-		
2.6	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
2.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7489	2015-02	2017-02
2.8	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	829996/002	2015-03	2017-03
2.9	Opus10 TPR (8253.00)	sure	Lufft Mess- und Regeltechnik GmbH	13936	2015-02	2017-02
2.10	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		

Radiated Emissions SAC Lab to perform radiated emission tests in semi anechoic configuration

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
_		10.58 x 6.38 x 6.00 m ³	Frankonia	none	2014-01	2017-01
3.2	Air compressor	none		none		
3.3	MCU	Controller Maturo	Maturo GmbH	961208		
	BB4312-C30- H3x	4.0	Siemens&Matsushit a	none		
3.5	CE-CAM/1	EMC camera	CE-SYS	none		

TEST REPORT REFERENCE: MDE_UBLOX_1612_FCCb

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.6		Innco 2000	Innco innovative constructions GmbH	CO2000/328/124 70406/L		
3.7		EMC camera Nr.2	Mitsubishi	0005033		
3.8	B84312-C110- E1	Filter ISDN	Siemens&Matsushit a	none		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Frequency	Corr.
MHz	dB
0,15	10,1
5	10,3
7	10,5
10	10,5
12	10,7
14	10,7
16	10,8
18	10,9
20	10,9
22	11,1
24	11,1
26	11,2
28	11,2
30	11,3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z 5	uator)
dB	dB
0,1	10,0
0,1	10,2
0,2	10,3
0,2	10,3
0,3	10,4
0,3	10,4
0,4	10,4
0,4	10,5
0,4	10,5
0,5	10,6
0,5	10,6
0,5	10,7
0,5	10,7
0,5	10,8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

O.Z AIVII	ININA KO	3 nrn2-	Z Z	(9 KHZ -
	AF			cable loss 1 (inside
Frequency	HFH-Z2)	Corr.		chamber)
MHz	dB (1/m)	dB		dB
0,009	20,50	-79,6		0,1
0,01	20,45	-79,6		0,1
0,015	20,37	-79,6		0,1
0,02	20,36	-79,6		0,1
0,025	20,38	-79,6		0,1
0,03	20,32	-79,6		0,1
0,05	20,35	-79,6		0,1
0,08	20,30	-79,6		0,1
0,1	20,20	-79,6		0,1
0,2	20,17	-79,6		0,1
0,3	20,14	-79,6		0,1
0,49	20,12	-79,6		0,1
0,490001	20,12	-39,6		0,1
0,5	20,11	-39,6		0,1
0,8	20,10	-39,6		0,1
1	20,09	-39,6		0,1
2	20,08	-39,6		0,1
3	20,06	-39,6		0,1
4	20,05	-39,5		0,2
5	20,05	-39,5		0,2
6	20,02	-39,5		0,2
8	19,95	-39,5		0,2
10	19,83	-39,4		0,2
12	19,71	-39,4		0,2
14	19,54	-39,4		0,2
16	19,53	-39,3		0,3
18	19,50	-39,3		0,3
20	19,57	-39,3		0,3
22	19,61	-39,3		0,3
24	19,61	-39,3		0,3
26	19,54	-39,3		0,3
28	19,46	-39,2		0,3
30	19,73	-39,1		0,4

`						
cable	cable	cable	cable	distance	d _{Limit}	dused
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,3	0,1	-40	30	3
0,4	0,1	0,3	0,1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

$d_{Limit} = 3 m)$		
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18,6	0,6
50	6,0	0,9
100	9,7	1,2
150	7,9	1,6
200	7,6	1,9
250	9,5	2,1
300	11,0	2,3
350	12,4	2,6
400	13,6	2,9
450	14,7	3,1
500	15,6	3,2
550	16,3	3,5
600	17,2	3,5
650	18,1	3,6
700	18,5	3,6
750	19,1	4,1
800	19,6	4,1
850	20,1	4,4
900	20,8	4,7
950	21,1	4,8
1000	21,6	4,9

cable	cable	cable	cable	distance	d_{Limit}	dused
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,29	0,04	0,23	0,02	0,0	3	3
0,39	0,09	0,32	0,08	0,0	3	3
0,56	0,14	0,47	0,08	0,0	3	3
0,73	0,20	0,59	0,12	0,0	3	3
0,84	0,21	0,70	0,11	0,0	3	3
0,98	0,24	0,80	0,13	0,0	3	3
1,04	0,26	0,89	0,15	0,0	3	3
1,18	0,31	0,96	0,13	0,0	3	3
1,28	0,35	1,03	0,19	0,0	3	3
1,39	0,38	1,11	0,22	0,0	3	3
1,44	0,39	1,20	0,19	0,0	3	3
1,55	0,46	1,24	0,23	0,0	3	3
1,59	0,43	1,29	0,23	0,0	3	3
1,67	0,34	1,35	0,22	0,0	3	3
1,67	0,42	1,41	0,15	0,0	3	3
1,87	0,54	1,46	0,25	0,0	3	3
1,90	0,46	1,51	0,25	0,0	3	3
1,99	0,60	1,56	0,27	0,0	3	3
2,14	0,60	1,63	0,29	0,0	3	3
2,22	0,60	1,66	0,33	0,0	3	3
2,23	0,61	1,71	0,30	0,0	3	3

 $(d_{limit} = 10 m)$

(a _{Limit} = 10 m	リ								
30	18,6	-9,9	0,29	0,04	0,23	0,02	-10,5	10	3
50	6,0	-9,6	0,39	0,09	0,32	0,08	-10,5	10	3
100	9,7	-9,2	0,56	0,14	0,47	0,08	-10,5	10	3
150	7,9	-8,8	0,73	0,20	0,59	0,12	-10,5	10	3
200	7,6	-8,6	0,84	0,21	0,70	0,11	-10,5	10	3
250	9,5	-8,3	0,98	0,24	0,80	0,13	-10,5	10	3
300	11,0	-8,1	1,04	0,26	0,89	0,15	-10,5	10	3
350	12,4	-7,9	1,18	0,31	0,96	0,13	-10,5	10	3
400	13,6	-7,6	1,28	0,35	1,03	0,19	-10,5	10	3
450	14,7	-7,4	1,39	0,38	1,11	0,22	-10,5	10	3
500	15,6	-7,2	1,44	0,39	1,20	0,19	-10,5	10	3
550	16,3	-7,0	1,55	0,46	1,24	0,23	-10,5	10	3
600	17,2	-6,9	1,59	0,43	1,29	0,23	-10,5	10	3
650	18,1	-6,9	1,67	0,34	1,35	0,22	-10,5	10	3
700	18,5	-6,8	1,67	0,42	1,41	0,15	-10,5	10	3
750	19,1	-6,3	1,87	0,54	1,46	0,25	-10,5	10	3
800	19,6	-6,3	1,90	0,46	1,51	0,25	-10,5	10	3
850	20,1	-6,0	1,99	0,60	1,56	0,27	-10,5	10	3
900	20,8	-5,8	2,14	0,60	1,63	0,29	-10,5	10	3
950	21,1	-5,6	2,22	0,60	1,66	0,33	-10,5	10	3
1000	21,6	-5,6	2,23	0,61	1,71	0,30	-10,5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24,4	-19,4
2000	28,5	-17,4
3000	31,0	-16,1
4000	33,1	-14,7
5000	34,4	-13,7
6000	34,7	-12,7
7000	35,6	-11,0

		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0,99	0,31	-21,51	0,79	
1,44	0,44	-20,63	1,38	
1,87	0,53	-19,85	1,33	
2,41	0,67	-19,13	1,31	
2,78	0,86	-18,71	1,40	
2,74	0,90	-17,83	1,47	
2,82	0,86	-16,19	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31,0	-23,4
4000	33,1	-23,3
5000	34,4	-21,7
6000	34,7	-21,2
7000	35,6	-19,8

			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0,47	1,87	0,53	-27,58	1,33	
0,56	2,41	0,67	-28,23	1,31	
0,61	2,78	0,86	-27,35	1,40	
0,58	2,74	0,90	-26,89	1,47	
0,66	2,82	0,86	-25,58	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35,6	-57,3
8000	36,3	-56,3
9000	37,1	-55,3
10000	37,5	-56,2
11000	37,5	-55,3
12000	37,6	-53,7
13000	38,2	-53,5
14000	39,9	-56,3
15000	40,9	-54,1
16000	41,3	-54,1
17000	42,8	-54,4
18000	44,2	-54,7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0,56	1,28	-62,72	2,66	0,94	1,46
0,69	0,71	-61,49	2,84	1,00	1,53
0,68	0,65	-60,80	3,06	1,09	1,60
0,70	0,54	-61,91	3,28	1,20	1,67
0,80	0,61	-61,40	3,43	1,27	1,70
0,84	0,42	-59,70	3,53	1,26	1,73
0,83	0,44	-59,81	3,75	1,32	1,83
0,91	0,53	-63,03	3,91	1,40	1,77
0,98	0,54	-61,05	4,02	1,44	1,83
1,23	0,49	-61,51	4,17	1,51	1,85
1,36	0,76	-62,36	4,34	1,53	2,00
1,70	0,53	-62,88	4,41	1,55	1,91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ – 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40,2	-23,5
18500	40,2	-23,2
19000	40,2	-22,0
19500	40,3	-21,3
20000	40,3	-20,3
20500	40,3	-19,9
21000	40,3	-19,1
21500	40,3	-19,1
22000	40,3	-18,7
22500	40,4	-19,0
23000	40,4	-19,5
23500	40,4	-19,3
24000	40,4	-19,8
24500	40,4	-19,5
25000	40,4	-19,3
25500	40,5	-20,4
26000	40,5	-21,3
26500	40,5	-21,1

1 - 1 -			
cable	cable	cable	cable
loss 2	loss 3	loss 4	loss 5
(pre-	(inside	(switch	(to
amp)	chamber)	unit)	receiver)
dB	dB	dB	dB
-35,85	6,20	2,81	2,65
-35,71	6,46	2,76	2,59
-35,44	6,69	3,15	2,79
-35,07	7,04	3,11	2,91
-34,49	7,30	3,07	3,05
-34,46	7,48	3,12	3,15
-34,07	7,61	3,20	3,33
-33,96	7,47	3,28	3,19
-33,57	7,34	3,35	3,28
-33,66	7,06	3,75	2,94
-33,75	6,92	3,77	2,70
-33,35	6,99	3,52	2,66
-33,99	6,88		2,58
			2,51
			2,14
			2,22
			2,28
			2,36
	loss 2 (pre- amp) dB -35,85 -35,71 -35,44 -35,07 -34,49 -34,07 -33,96 -33,57 -33,66	loss 2 (pre- amp) chamber) dB dB -35,85 6,20 -35,71 6,46 -35,44 6,69 -35,07 7,04 -34,49 7,30 -34,46 7,48 -34,07 7,61 -33,96 7,47 -33,57 7,34 -33,66 7,06 -33,75 6,92 -33,35 6,99 -33,99 6,88 -33,89 7,01 -33,00 6,72 -34,07 6,90 -35,11 7,02	loss 2 (pre-amp) loss 3 (inside chamber) loss 4 (switch unit) dB dB dB -35,85 6,20 2,81 -35,71 6,46 2,76 -35,44 6,69 3,15 -35,07 7,04 3,11 -34,49 7,30 3,07 -34,46 7,48 3,12 -34,07 7,61 3,20 -33,96 7,47 3,28 -33,57 7,34 3,35 -33,66 7,06 3,75 -33,75 6,92 3,77 -33,35 6,99 3,52 -33,99 6,88 3,88 -33,89 7,01 3,93 -33,00 6,72 3,96 -34,07 6,90 3,66 -35,11 7,02 3,69

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (18 GHZ – 26.5 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26,5	43,4	-11,2
27,0	43,4	-11,2
28,0	43,4	-11,1
29,0	43,5	-11,0
30,0	43,5	-10,9
31,0	43,5	-10,8
32,0	43,5	-10,7
33,0	43,6	-10,7
34,0	43,6	-10,6
35,0	43,6	-10,5
36,0	43,6	-10,4
37,0	43,7	-10,3
38,0	43,7	-10,2
39,0	43,7	-10,2
40,0	43,8	-10,1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4,4				-15,6	3	0,5
4,4				-15,6	3	0,5
4,5				-15,6	3	0,5
4,6				-15,6	3	0,5
4,7				-15,6	3	0,5
4,7				-15,6	3	0,5
4,8				-15,6	3	0,5
4,9				-15,6	3	0,5
5,0				-15,6	3	0,5
5,1				-15,6	3	0,5
5,1				-15,6	3	0,5
5,2				-15,6	3	0,5
5,3				-15,6	3	0,5
5,4				-15,6	3	0,5
5,5				-15,6	3	0,5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolarisation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

Setup in the shielded room for conducted measurements at AC mains port

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
Conducted Emissions at AC mains	Voltage	± 3.4 dB
Radiated Emissions	Field Strength	± 5.5 dB

9 PHOTO REPORT

Please see separate photo report.