Name:		Roll#:		Class:	Inter Part-II	
Subject:	Mathematics-12	Date:		Time:		
Test Type #	Type 15 - Full Test - Board Paper Pattern - Marks=100					
Test Syllabus:	Unit-1, Unit-2, Unit-3,					

1.	f(x) = x is a/an								
	(A) Even Function	(B)	Odd Function	(C)	Neither even nor oc	dd (D) Cubic Function		
2.	$tanh^{-1}x =$								
	(A) $\frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$	(B)	$\frac{1}{2}ln\left(\frac{x+1}{x}\right)$	(C)	$ln\left(\frac{1+\sqrt{1-x^2}}{2}\right)$	(D)	$ln\left(\frac{1+\sqrt{x^2+1}}{2}\right)$		
	$2 \qquad \begin{array}{c} 1-x \end{array}$		$2 \qquad \langle x-1 \rangle$				2		
3.	Parametric equations: $x = a \cos q$, $y = b \sin q$ represent the equation of:								
	(A) parabola	(B)	hyperbola	(C)	ellipse	(D)	circle		
4.	The notation used for de	erivativ	e of f(x) by Cauchy i	s:					
	(A) Df(x)	(B)	f'(x)	(C)	f(x)	(D)	$\underline{\mathrm{d}f}$		
5.	$\frac{d}{d}(cosec^{-1}x) =$			CL	SUIN MA		$\mathrm{d}x$		
٥.	$\frac{dx}{\Delta}$	— (B)	-1 1/8/	(C)	101	(D)	1		
	$rac{d}{dx}(cosec^{-1}x)=$ (A) $rac{1}{x\sqrt{x^{2}-1}}$	(D)	$\frac{1}{x\sqrt{x_2-1}}$	(0)	$x\sqrt{x_{2}+1}$	(0)	$\frac{1}{x\sqrt{1-x^2}}$		
6.	The derivative fo Cot x v	v.r.t x	equals:				0/_		
	(A) -Cosec ² x	(B)	Cosec ² x	(C)	-Sec ² x	(D)	Sec ² x		
7.	If $y=sin^{-1}rac{x}{a}$, then \sin	y=:	VI A				0		
	(A) cos y		cos x	(C)	<u>x</u>	(D)	\underline{y}		
8.	$\frac{\mathrm{d}}{\mathrm{d}x}(\cot hx)=:$				a		a		
		(B)	cosech ² x	(C)	tanh ² x	(D)	-coth x sech x		
Q	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^2}{6!} + \dots$			` ,					
٦.				(0)	. (-	(5)	14		
	` '		sin x		ln(1+x)	(D)	$\sqrt{1+x}$		
10.	$f'(x_1) > 0$ implies f is a					(D)			
	•		_		maxima	. ,	minima		
11.	If $f(c)$ $f(x)$ for all x				ALL	(D)			
1.0	(A) =	(B)		(C)		. ,			
12.	Let f be a differentiable function on the interval (a, b). Then f is a\an on (a, b) if f $\phi(x) > 0$ for each x \hat{I} (a, b).								
	(A) increasing	(B)	decreasing	(C)	Inavina SPK ((D)	minima		
12		(5)	decreasing	(0)	maxima	(5)	1 Hillinia		
13.	$\int \frac{-1}{x\sqrt{x^2-1}}dx =$:								
		(B)	$cosec^{-1}x+c$	(C)		(D)	$sin^{-1}x+c$		
14.	$\int (2x+3)^8 dx =$			` '	$sec^{-1}x+c$	(D)	•		
				()	$sec^{-1}x + c$	(D)	·		
15	(A) $(2x+3)9$	(B)	$(2x+3)^9$				None		
10.			,	(C)					
	$\int a imes f^{18}(x)dx=\ldots .$,	where a is any cons	(C) tant.	$18(2x+3)^9$	(D)	None		
	$\int a imes f(x)dx = \ldots$ (A) $\int f(x)dx$, (B)	where a is any cons f (x)	(C) tant. (C)	$18(2x+3)^{9}$ $a imes\int f(x)dx$	(D)	None		
	$\int a imes f(x)dx = \ldots$ (A) $\int f(x)dx$ To integrate $\int rac{dx}{x\sqrt{x^2+14}}$, (B) 	where a is any cons f (x) we will make substi	(C) tant. (C) tutior	$18(2x+3)^{9}$ $a imes\int f(x)dx$ n:	(D)	None $a+\int f(x)dx$		
16.	$\int a \times \overline{f(x)} dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$	(B) 4 dx (B)	where a is any cons f(x) we will make substi x = 144 tan q	(C) tant. (C) tutior	$18(2x+3)^{9}$ $a imes\int f(x)dx$ n:	(D)	None $a+\int f(x)dx$		
16.	$\int a \times \overline{f(x)} dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$	(B) 4 dx (B)	where a is any cons f(x) we will make substi x = 144 tan q	(C) tant. (C) tutior	$18(2x+3)^{9}$ $a imes\int f(x)dx$ n:	(D)	None $a+\int f(x)dx$		
16.	$\int a \times \overline{f(x)} dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$	(B) 4 dx (B)	where a is any cons f(x) we will make substi x = 144 tan q	(C) tant. (C) tution	$18(2x+3)^{9}$ $a imes\int f(x)dx$ n: $x=14\tan q$	(D) (D) (D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$		
16. 17.	$\int a \times f(x) dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$ $\int_0^{\frac{\pi}{2}} \sin^2 x dx = \underline{\qquad}$ (A) $\frac{\pi}{4}$	(B) 4 dx (B)	where a is any cons f(x) we will make substi x = 144 tan q	(C) tant. (C) tutior	$18(2x+3)^{9}$ $a imes\int f(x)dx$ n: $x=14\tan q$	(D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$		
16.17.18.	$\int a \times \overbrace{f(x)}^{18} dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$ $\int_0^{\frac{\pi}{2}} sin^2 x dx = \underline{\qquad}$ (A) $\frac{\pi}{4}$ $\int_0^1 (3-x) dx \text{ equals:}$	(B) (A) (B) (B) (B)	where a is any cons f (x) we will make substite $x = 144 an q$	(C) tant. (C) tution (C) (C)	$18(2x+3)^{9}$ $a imes\int f(x)dx$ n: $x=14 an q$	(D) (D) (D) (D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$ $\frac{\pi}{6}$		
16.17.18.	$\int a \times f(x) dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$ $\int_0^{\frac{\pi}{2}} sin^2 x dx = \underline{\qquad} :$ (A) $\frac{\pi}{4}$ $\int_0^1 (3-x) dx \text{ equals:}$ (A) $\frac{3}{4}$	(B) 4 dx (B)	where a is any cons f (x) we will make substite $x = 144 an q$	(C) tant. (C) tution	$18(2x+3)^{9}$ $a imes\int f(x)dx$ n: $x=14 an q$	(D) (D) (D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$ $\frac{\pi}{6}$		
16.17.18.19.	$\int a \times f(x) dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$ $\int_0^{\frac{\pi}{2}} sin^2 x dx = \underline{\qquad} :$ (A) $\frac{\pi}{4}$ $\int_0^1 (3-x) dx \text{ equals:}$ (A) $\frac{3}{2}$ $\int_{-1}^0 \frac{1}{1+x^2} dx = :$	(B) (A) (B) (B) (B)	where a is any cons f (x) we will make substite $x = 144 an q$ $\frac{\pi}{2}$	(C) tant. (C) tution (C) (C) (C)	$18(2x+3)^9$ $a imes \int f(x) dx$ n: $x = 14 an q$ $\frac{\pi}{3}$	(D) (D) (D) (D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$ $\frac{\pi}{6}$ $\frac{2}{5}$		
16.17.18.19.	$\int a \times f(x) dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$ $\int_0^{\frac{\pi}{2}} sin^2 x dx = \underline{\qquad} :$ (A) $\frac{\pi}{4}$ $\int_0^1 (3-x) dx \text{ equals:}$ (A) $\frac{3}{2}$ $\int_{-1}^0 \frac{1}{1+x^2} dx = :$	(B) (A) (B) (B) (B)	where a is any cons f (x) we will make substite $x = 144 an q$ $\frac{\pi}{2}$	(C) tant. (C) tution (C) (C) (C)	$18(2x+3)^9$ $a imes \int f(x) dx$ n: $x = 14 an q$ $\frac{\pi}{3}$	(D) (D) (D) (D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$ $\frac{\pi}{6}$		
16.17.18.19.	$\int a \times f(x) dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$ $\int_0^{\frac{\pi}{2}} sin^2 x dx = \underline{\qquad} :$ (A) $\frac{\pi}{4}$ $\int_0^1 (3-x) dx \text{ equals:}$ (A) $\frac{3}{2}$ $\int_{-1}^0 \frac{1}{1+x^2} dx = :$	(B) (A) (B) (B) (B)	where a is any cons f (x) we will make substite $x = 144 an q$ $\frac{\pi}{2}$	(C) tant. (C) tution (C) (C) (C)	$18(2x+3)^9$ $a imes \int f(x) dx$ n: $x = 14 an q$ $\frac{\pi}{3}$	(D) (D) (D) (D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$ $\frac{\pi}{6}$ $\frac{2}{5}$		
16.17.18.19.	$\int a \times f(x) dx = \dots$ (A) $\int f(x) dx$ To integrate $\int \frac{dx}{x\sqrt{x^2+14}}$ (A) $x = 14 \sin q$ $\int_0^{\frac{\pi}{2}} sin^2 x dx = \underline{\qquad} :$ (A) $\frac{\pi}{4}$ $\int_0^1 (3-x) dx \text{ equals:}$ (A) $\frac{3}{4}$	(B) (B) (B) (B) (B) know	where a is any cons f (x) we will make substite $x = 144 an q$ $\frac{\pi}{2}$	(C) tant. (C) tution (C) (C) (C) (C)	$18(2x+3)^9$ $a imes \int f(x) dx$ n: $x = 14 an q$ $\frac{\pi}{3}$	(D) (D) (D) (D) (D)	None $a + \int f(x) dx$ $\mathbf{x} = 12 \tan \mathbf{q}$ $\frac{\pi}{6}$ $\frac{2}{5}$		

Name:		Roll#:		Class:	Inter Part-II	
Subject:	Mathematics-12	Date:		Time:		
Test Type #:	Type 15 - Full Test - Board Paper Pattern - Marks=100					
Test Syllabus:	Unit-1, Unit-2, Unit-3,					

(SECTION-I)

Write short answers to any EIGHT (8) of the following questions. 2-

(8x2=16)

- Given that $f(x) = x^3 2x^2 + 4x 1$ find $f(\frac{1}{x})$.
- If $f(x) = 3x^4-2x^2$ and $g(x) = \frac{2}{\sqrt{x}}$, then find g(f(x)). ii.
- Evaluate each limit by using algebraic techniques: $\lim_{x \to 1} \frac{x^3 3x^2 + 3x 1}{x^3 x}$ iii.
- $f(x)=\left\{egin{array}{ll} 2x+5 & if \ x\leq 2 \ 4x+1 & if x>2 \end{array}
 ight.$ Find the derivative of x^3+2x+3 .
- \mathbf{v}
- Define implicit function also write one example. vi.
- Find f'(x) if $f(x) = ln(\sqrt{e^{2x} + e^{-2x}})$
- Evaluate $\int rac{1-x^2}{1+x^2} dx$.
- Evaluate $\int sin^2x \, dx$. ix.
- Evaluate $\int x^2 t a n^{-1} x \, dx$. х.
- Find area bounded by the curve $y = 4 x^2$ and x-axis. xi.
- Solve the differential equation $\frac{1}{x}\frac{dy}{dx} = \frac{1}{2}(1+y^2)$.

Write short answers to any EIGHT (8) of the following questions. 3-

(8x2=16)

- Define parameter and parametric function. i.
- Find the domain and range of the function g defined below and sketch of g: $g(x) = \frac{x^2-16}{x-4}, \, x
 eq 4$ 11.
- Define function.
- State the sandwich theorem.
- Evaluate the limit $\lim_{x \to +\infty} \left(1 + \frac{3}{n}\right)^{2n}$.
- Evaluate each limit by using algebraic techniques: Lim
- Divide 20 into two parts so that the sum of their squares will be maximum. vii.
- Evaluate $\int x^2 \ln x \, dx$. viii.
- Evaluate $\int e^x \left(rac{1}{x} + \ln x \right) dx$. Evaluate $\int rac{2x}{x^2 a^2} \, dx$.
- Solve the differential equation $\frac{dy}{dx} = -y$. Xi.
- Solve the differential equation x dy + y(x 1)dx = 0. xii.

Write short answers to any EIGHT (8) of the following questions. 4-

(8x2=16)

- Show that $x=at^2$, y=2at are parametric equations of parabola $y^2=4ax$. i.
- Show that $rac{dy}{dx}=rac{y}{x}$ if $rac{y}{x}=tan^{-1}rac{x}{y}$.
- Find $rac{dy}{dx}$ if $y=ln\sqrt{rac{x^2-1}{x^2+1}}$.
- Find $\frac{dy}{dx}$ then $y = (x+1)^x$.
- Find the extreme values for the following functions defined as: $f(x) = 5x^2 6x + 2$ v
- Evaluate $\int (a-2x)^{\frac{3}{2}} dx$. Evaluate $\int \frac{x}{\sqrt{4+x^2}} dx$ vi.
- viii. Find $\int tan^{-1}x \, dx$
- Evaluate $\int x^4 \ln x \, dx$
- Evaluate $\int rac{3-x}{1-x-6x^2} \, dx$.
- Evaluate the following integrals: $\int rac{1}{6x^2+5x-4} dx$ Find the area below the curve $y=3\sqrt{x}$ and above the x-axis between x=1 to x=4.
- Define first order differential equation.

(SECTION-II)

Attempt any THREE (3) questions.

(3x8=24)

- 5.(a) If $y=e^{ax}sin\,bx$ then show that $\,rac{d^2y}{dx^2}-2arac{dy}{dx}+(a^2+b^2)y=0.$
 - (b) Find f'(x) when $f(x)=(\ln x)^{\ln x}$.
- 6.(a) If $y=a\cos(\ln x)+b\sin(\ln x)$, prove that $x^2\frac{d^2y}{dx^2}+\frac{xdy}{dx}+y=0$.

Evaluate
$$\int \sqrt{x^2+4}\,dx$$

- Evaluate $\int \sqrt{x^2+4}\,dx$. 7.(a) Find the derivative of $\frac{x\sqrt{x^2+3}}{x^2+1}$ with respect to x. (b) Use differentials to approximate the value of $\cos 29^o$.
- 8.(a) Evaluate $\int sec^4x \, dx$.
- (b) Evaluate $\int \frac{dx}{(1+x^2)^{\frac{3}{2}}}$.

 9.(a) Evaluate the following integrals: $\int \frac{2x^2-x-7}{(x+2)^2(x^2+x+1)} dx$ (b) Evaluate the following integrals: $\int \frac{9x-7}{(x+3)(x^2+1)} dx$