Алгебра

1 Введение

В древние времена люди решали уравнения вида:

$$ax + b = 0$$

Далее научились решать квадратные уравнения и системы следующего вида:

$$ax^{2} + bx + c = 0 \qquad \begin{cases} a_{11}x + a_{12}y = 0\\ a_{21}x + a_{22}y = 0 \end{cases}$$

Дальше в Европе развитии алгебры затихло. Следующим достижением было решение кубического уравнения:

$$ax^3 + bx^2 + cx + d = 0$$

При его решении понадобилось введение комплексных чисел.

2 Кольца и арифметика коммутативных колец

Пусть X - непустое множество.

Определение. Внутренней бинарной алгебраической операцией называется

$$f: X \times X \longrightarrow X$$

Определение. Нульнарная операция:

$$\{*\} \longrightarrow X$$

Определение. Унарная операция:

$$X \longrightarrow X$$

Чаще всего используются записи:

- 1. Аддитивная +
- 2. Мультипликативная ·

Определение. *Нейтральным* элементом из (X,*) называется $e \in X$, такой что $\forall x \in X \ x * e = x$

Определение. Симметричным элементом называется такой $x' \in X$, что x * x' = e = x' * x

Определение. Операция * называется **ассоциативной**, если $\forall x, y, z \in X$

$$(x*y)*z = x*(y*z)$$

Определение. Операция * называется коммутативной, если $\forall x,y \in X$

$$x * y = y * x$$

Примеры неассоциативных операций:

- 1. Вычитание $(x y) z \neq x (y z)$
- 2. Деление
- 3. Возведение в степень: $\mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \quad (m,n) \longrightarrow m^n$

Интересным примером является операция:

$$\mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

и называется она векторным произведением. Для нёё справедливо тождество Якоби:

$$(u \times v) \times w + (u \times w) \times v + (v \times w) \times u = 0$$

3 Простейшие алгебраические структуры

3.1 Моноиды

Определение. Тройка (X, *, e) называется **моноидом**, если:

- 1. * accouuamuвна
- 2. Существует нейтральный элемент $e \in X$

Примеры:

- 1. $(\mathbb{N}, \cdot, 1)$
- 2. $(\mathbb{N}_0, +, 0)$
- 3. $(\mathbb{R}^+, \cdot, 1)$
- 4. С операцией: $lcm : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$

Определение. Элемент $x \in X$ называется **регулярным слева**, если $\forall y, z \in X$ из соотношения x * y = x * z следует y = z и **регулярным справа**, если $y * x = z * z \implies y = z$

Лемма. Элемент $x \in X$ обратимый слева/справа регулярен слева/справа

3.2 Группы

Определение. (G, mult, inv, 1), где опредлена операция $mult: G \times G \longrightarrow G$, то есть $(x,y) \longrightarrow x \cdot y$, а также операция $inv: G \longrightarrow G$, которая $x \longrightarrow x^{-1}$ и задана единица $1 \in G$. А также выполняются свойства:

- 1. Ассоциативнось mult
- 2. Нейтральный элемент $1 \cdot x = x = x \cdot 1$
- 3. Обратный элемент $\forall x \in G \; \exists \, x^{-1}, \; makoй \; что \; x \cdot x^{-1} = 1 = x^{-1} \cdot x$

Элементарные свойства групп:

- 1. Сокращение $\forall x, y, z \in G$ из $xy = xz \implies y = z$, а также из $yx = zx \implies y = z$
- 2. Деление $\forall h, g \in G \exists ! x \ hx = g \ (x = h^{-1}g), xh = g \ (x = hg^{-1})$

Примеры:

- 1. $(\mathbb{Z}, +)$ бесконечная циклическая группа
- 2. C_n циклическая группа порядка п
- 3. D_n диэдральная группа порядка п
- 4. S_n симметрическая группа порядка п $S_x = B_{ij}(X,X)$ множество биекций X на себя относительно композиции

Определение. Группа G называется **абелевой**, если умножение в ней коммутативно, $m.e \ \forall x,y \in G \ xy = yx$

Определение. Пусть H, G - группы, отображение $\varphi: H \longrightarrow G$ называется **гомо-морфизмом**, если:

$$\varphi(xy) = \varphi(x)\varphi(y)$$

Примеры гомоморфизмов:

1. Экспонента $\exp : \mathbb{R} \longrightarrow \mathbb{R}^+$, которая $x \longrightarrow e^x$

$$e^{x+y} = e^x \cdot e^y$$

2. Логарифм $\log : \mathbb{R}^+ \longrightarrow \mathbb{R}$, который $x \longrightarrow \log(x)$

$$\log(xy) = \log(x) + \log(y)$$

Лемма. Биективные гомоморфизмы называются **изоморфизмами**. Две группы называются **изоморфными**, если между ними существует изоморфизм и обозначаются:

$$H \cong G$$

Определение. Гомоморфизм в себя называется эндоморфизмом

Определение. Изоморфизм в себя называется автоморфизмом

4 Кольца. Первые примеры

Определение. Непустое множество R называется кольцом, если на нём заданы операции сложения $R \times R \longrightarrow R, (x,y) \longrightarrow x+y$ и умножения $R \times R \longrightarrow R, (x,y) \longrightarrow x\cdot y$

Свойства:

По + образует абелеву группу

- 1. Ассоциативна
- 2. Имеет нейтральный элемент
- 3. Имеет противоположный элемент

А также:

- $1. \ x(y+z) = xy + xz$
- 2. (x+y)z = xz + yz
- 3. (xy)z = x(yz)
- $4. \exists 1 \in R, \forall x \in R, 1 \cdot x = x = x \cdot 1$

Определение. Ассоциативное кольцо с 1 называется **коммутативным**, если выполняется:

$$\forall x,y \in R \ xy = yx$$

Определение. Ассоциативное кольцо с 1 называется телом, если выполняется:

$$\forall x \in R \; \exists x^{-1} \; x \cdot x^{-1} = 1$$

Определение. Тело R называется **полем**, если оно коммутативно по умножению.

Примеры:

- 1. Кольцо целых чисел ℤ
- 2. Кольцо двоичных дробей $\mathbb{Z}\left[\frac{1}{2}\right]$
- 3. Кольцо десятичных дробей $\mathbb{Z}\left[\frac{1}{2},\frac{1}{5}\right]$
- 4. Кольцо 60-ричных дробей $\mathbb{Z}\left[\frac{1}{2},\frac{1}{5},\frac{1}{3}\right]$

$$\mathbb{Z}\left[\frac{1}{2}\right], \mathbb{Z}\left[\frac{1}{2}, \frac{1}{5}\right] \subseteq \mathbb{Q}$$

- $5. \mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 6. Кольцо вычетов по модулю $n \, \mathbb{Z}/_n \mathbb{Z}$ также простейший пример фактор-кольца

7. Кольцо с нулевым умножением А - абелева группа по сложению, определим умножение

$$\cdot: A \times A \longrightarrow A, \forall x, y \longrightarrow 0$$

8. Булево кольцо множеств X - множество, $R=2^X$ - булеан (множество всех подмножеств X. Операция сложения:

$$Y, Z \subseteq X : Y + Z = Y\Delta Z = (Y \setminus Z) \cup (Z \setminus Y)$$

Вообще говоря,

$$\mathbb{Z}/_2\mathbb{Z} \cong \mathbb{F}_2$$

 $\mathbb{Z}/_3\mathbb{Z} \cong \mathbb{F}_3$

Ho $\mathbb{Z}/_4\mathbb{Z}$ не изоморфно F_4 Рассмотрим таблицы Кэли для $\mathbb{Z}/_4\mathbb{Z}$

+	0	1	2	3		0	1	2	3
0	0	1	2	3	0	0 0	0	0	0
1	1	2	3	0	1	0	1	2	3
	2				2	0	2	0	2
3	3	0	1	2	3	0 0	3	2	1

Определение. *Нильпотентом* называется $x \in R$: $\exists k \in \mathbb{N}$: $x^k = 0$

 \triangleright В данном примере нильпотентом является 2. Так как $2^2=0$

Определение. *Идемпотентом* называется $x \in R$: $x^2 = x$

- ightharpoonup Например в теории множеств пересечение является умножением, $X \cap X = X$. Любой элемент является идемпотентом.
- Ассоциативное, коммутативное кольцо с 1 то место, где выполняются все основные правила школьной алгебры.

Посмотрим на формулу:

$$(x+y)(x-y) = x^2 - xy + yx - y^2$$

Определение. *Коммутатором* над элементами ассоциативного кольца называется:

$$[a, b] = ab - ba$$

Если коммутатор тождественно равен нулю в кольце, значит элементы коммутируют. Умножение в кольце, соответственно, коммутативно. Тогда:

$$(x+y)(x-y) = x^2 - y^2$$

4.1 Простейшие конструкции

1. R - коммутативное, ассоциативное кольцо с единицей. R[t] - кольцо многочленов от одной переменной с коэффициентами из R.

$$f = \sum_{k=0}^{n} a_n t^n, \ a_k \in R$$

2. Кольцо матриц R - ассоциативное кольцо с единицей. $Mat_{[n\times n]}(R)$ - кольцо квадратных матриц степени n над R.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$$

Стандартные матричные единицы:

$$e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$e_{ij}e_{hk} = \delta_{ij}e_{ik}$$

Где:

$$\delta_{ij} = egin{cases} 1 & \text{для } i=j \ 0 & \text{для } i
eq j \end{pmatrix} - \mathbf{cимвол} \ \mathbf{K}\mathbf{pohekepa}$$

- 3. Непример кольца: $(R[t], +, \cdot)$, где \cdot композиция многочленов. Композиция ассоциативна. t единичные элемент.
- 4. R, S кольца. Прямая сумма:

$$R \oplus S = \{(x,y) | x \in R, y \in S\}$$
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2)$$

5. Противоположное кольцо R^o . R - кольцо. Как множество $R=R^o$, с тем же сложением, но умножение определяется как $x\cdot y=yx$.