Case Study Article on

HOSPITAL DATABASE SYSTEM

WE CARE EVERYONE

Written by Sashidhar Kodamagundla Professor Dr. Junaid Qazi

| LinkedIn: Sashidhar Kodamagundla |

Table of Contents

- 1. About the Organization
- 2. Mission
- 3. Objectives
- 4. Database Design
 - 4.1 Importance of Database
 - 4.2 What Makes a Database Well-Designed?
 - 4.3 Database Tables
 - 4.4 Relationships
 - 4.5 ER Diagram
- 5. Database Development
 - 5.1 Create Database
 - 5.2 SQL Queries
 - 5.3 Create Table and Insert Query
 - 5.4 Inner Join Query
 - 5.5 View
- 6. Conclusion

1. About the Organization

We Care Everyone is a hospital management system designed to make healthcare operations more efficient and organized. It helps hospitals streamline patient care, manage staff schedules, handle billing, and track inventory with ease. With a user-friendly interface and powerful database system, We Care Everyone ensures smooth day-to-day operations, allowing healthcare professionals to focus on what matters most—providing quality patient care.

2. Mission

Our goal is to build a simple and effective hospital database system that helps manage patient care, schedule appointments, and support staff. It will keep track of medical records, billing, inventory, and emergencies while providing useful reports to improve hospital operations.

3. Objectives

The hospital database system for We Care Everyone Hospital aims to achieve several key objectives that enhance patient care, streamline operations, and improve overall efficiency. Let's explore each objective in detail:

 Efficient Patient Management – Quick access to patient history for better treatment decisions.

Example: Imagine Sarah, a patient with a complex medical history, visiting We Care Everyone Hospital. With the new database system, her entire medical journey is at the fingertips of her healthcare providers. From her first visit years ago to her most recent lab results, everything is organized and easily accessible. This comprehensive view allows doctors to make informed decisions quickly, ensuring Sarah receives the best possible care tailored to her specific needs.

 Streamlined Employee Management – Organized staff schedules and roles for smooth hospital operations.

Example: Meet Dr. James, a cardiologist who recently joined the hospital. The database system seamlessly integrates his information, including his specialization, work schedule, and assigned patients. This organization extends to all staff members, from nurses to administrative personnel. It ensures that the right people are in the right place at the right time, creating a well-coordinated team ready to provide top-notch care.

3. <u>Efficient Appointment Scheduling</u> – Patients book appointments conveniently with the right specialists.

Example: Consider Emma, a busy mom trying to schedule a pediatric appointment for her child. The database system allows her to easily find available slots that fit her hectic schedule. It also ensures that she's matched with the appropriate specialist for her child's needs. This efficiency reduces waiting times and improves patient satisfaction, making healthcare more accessible for families like Emma's.

 Effective Inventory Control – Tracks medical supplies to prevent shortages and delays.

Example: Picture a critical surgery scheduled for tomorrow morning. Thanks to the database system, the hospital staff can quickly check and confirm that all necessary equipment and supplies are in stock. This proactive approach prevents last-minute scrambles and ensures that life-saving resources are always available when needed.

 Accurate & Transparent Billing – Simple, itemized bills help patients understand medical expenses easily.

Example: Think of John, who's recovering from a procedure and worried about the costs. The database system provides a clear, itemized bill that breaks down each service and its associated cost. This transparency helps John understand his charges and makes it easier for him to work with his insurance company, reducing stress during his recovery period.

6. Optimized Department Management – Instant information sharing improves patient care across departments.

Example: Imagine a patient being transferred from the Emergency Department to Cardiology. The database system ensures that all relevant information - from initial assessments to test results - is instantly available to the receiving department. This seamless flow of information enhances continuity of care, reduces errors, and allows for more efficient treatment planning across different hospital units.

Conclusion: By achieving these objectives, We Care Everyone Hospital's database system not only improves operational efficiency but also enhances the quality of patient care, creating a more positive experience for both patients and healthcare providers.

4. Database Design

This hospital database is a relational database system, designed to efficiently manage and organize data for We Care Everyone Hospital. It uses tables with defined relationships to store and link different types of information.

4.1 Importance of Database:

A database organizes and manages hospital data for easy access and updates. At **We Care Everyone Hospital**, it stores vital information on patients, staff, appointments, services, inventory, and billing.

Aspect	Description	
Organized Storage	Easily stores and retrieves patient data.	
Accuracy & Consistency	Ensures reliable medical records.	
Secure Access	Protects patient confidentiality.	
Fast Retrieval	Quick access to critical information.	
Scalable	Grows with hospital needs.	

4.2 What makes a database well-designed?

Key Feature	Description	
Structured Tables	Organizes data into well-defined categories.	
Clear Relationships	Links tables using primary and foreign keys.	
Minimal Redundancy	Avoid duplicating data for efficiency.	
Data Accuracy	Use constraints to ensure valid information.	
Scalability	Supports future growth and new data types.	
Optimized Performance	Uses views for fast data retrieval.	
Strong Security	Protects data with access controls.	

4.3 Database tables

1.Department_Info:

Field Name	Data Type	Description
DepartmentID	INT (PK)	Unique ID for each
		department.
Department_Name	VARCHAR(100)	Name of the
		department.

2.Employee_Details

Field Name	Data Type	Description
StaffID	INT (PK)	Unique ID for each staff member.
FirstName	VARCHAR(50)	First name of the staff member.
LastName	VARCHAR(50)	Last name of the staff member.
Role	VARCHAR(50)	Job role (Doctor, Nurse, etc.).
DepartmentID	INT (FK)	Linked to Department table.

3. Patient_Details

Field Name	Data Type	Description
PatientID	INT (PK)	Unique ID for each patient.
FirstName	VARCHAR(50)	First name of the patient.
LastName	VARCHAR(50)	Last name of the patient.
DOB	DATE	Date of birth of the patient.
Gender	VARCHAR(50)	Gender of the patient.
ContactInfo	VARCHAR(50)	Contact details.
Address	VARCHAR(100)	Residential address of the patient.

4. Patient_Appointments

Field Name	Data Type	Description
AppointmentID	INT (PK)	Unique ID for each appointment.
Reason	TEXT	Reason for the check- up or appointment.
ReasonID	INT	Different ID for each reason.
PatientID	INT (FK)	Unique identity for each patient.
StaffID	INT (FK)	Unique identity for each staff member.
AppointmentDate	DATETIME	Date and time of the appointment.

5. Service_Table

Field Name	Data Type	Description
ServiceID	INT (PK)	Unique ID for each service.
ServiceName	VARCHAR(100)	Name of the service provided.
PatientID	INT (FK)	Unique identity for each patient.
AppointmentID	INT (FK)	Unique ID for each appointment.
ReasonID	INT (FK)	Different ID for each reason.
StaffID	INT (FK)	Unique identity for each staff member.

6. Stock_Details

Field Name	Data Type	Description
StockID	INT (PK)	Unique ID for each stock item.
ItemName	VARCHAR(50)	Name of the item or equipment.
Category	VARCHAR(50)	Category of the item.
Quantity	INT	Total quantity of items available.

7. Invoice_Details

Field Name	Data Type	Description
BillingID	INT (PK)	Unique ID for each bill.
PatientID	INT (FK)	Unique identity for each patient.
DepartmentID	INT (FK)	Unique identifier for each department.
StockID	INT (FK)	Unique ID of the stock item.
Amount	DECIMAL(10,2)	Total amount of services provided.
BillingDate	DATE	Date of payment.

4.4 Relationships

A relational database links data across multiple tables using keys:

- Primary Key (PK): A unique ID for each record in a table.
- Foreign Key (FK): A reference to a primary key in another table, creating relationships.

Hospital Database Relationships:

Relationship Type	Explanation	Example
∥ One-to-One	One record links to only one other record.	Each appointment (AppointmentID) connects to a single service (ReasonID).
∥ ()ne-to-Many	One record connects to multiple records	A department (DepartmentID) has many employees. A patient (PatientID) has multiple appointments.
Many-to-Many	Multiple records in one table link to multiple in another.	Doctors can treat many patients, and patients can see multiple doctors.

4.5 ER Diagram

5. Database Development

In the development phase, SQL queries were written to create the database, define the tables, and insert data into the system.

5.1 Create SQL DATABASE

5.2 SQL queries

Select * from department_Information;

Select * from patient_appointments;

Kodamagundla |

5.3 Create Tables and Insert Query

```
-- Create Table: Invoice_Details
CREATE TABLE Invoice Details (
    BillingID INT PRIMARY KEY,
    PatientID INT,
    DepartmentID INT,
    StockID INT,
    Amount DECIMAL(10,2) NOT NULL CHECK (Amount > 0),
    BillingDate DATE,
    FOREIGN KEY (PatientID) REFERENCES Patient Details(PatientID),
    FOREIGN KEY (DepartmentID) REFERENCES Department Info(DepartmentID),
    FOREIGN KEY (StockID) REFERENCES Stock Details(StockID)
);
-- Insert Data into Department Info
INSERT INTO Department Info (DepartmentID, Department Name) VALUES
(101, 'Cardiology'),
(102, 'Neurology'),
(103, 'Pediatrics'),
(104, 'Radiology'),
(105, 'Emergency');
```

5.4 InnerJoin Query

SELECT pa.AppointmentID, pd.FirstName, pd.LastName, ed.FirstName, ed.LastName, pa.Reason, pa.AppointmentDate

FROM Patient_Appointments pa

INNER JOIN Patient_Details pd ON pa.PatientID = pd.PatientID

INNER JOIN Employee_Details ed ON pa.StaffID = ed.StaffID;

5.5 Views

Kodamagundla |

This view allows easy tracking of patient appointments, assigned doctors, and visit details.

CREATE VIEW Patient_Appointment_View AS

SELECT

```
pa.AppointmentID,

pd.FirstName AS Patient_FirstName,

pd.LastName AS Patient_LastName,

ed.FirstName AS Staff_FirstName,

ed.LastName AS Staff_LastName,

pa.Reason,

pa.AppointmentDate

FROM Patient_Appointments pa

JOIN Patient_Details pd ON pa.PatientID = pd.PatientID

JOIN Employee_Details ed ON pa.StaffID = ed.StaffID;
```

This query helps generate detailed reports of patient service history and related billing.

Kodamagundla |

CREATE VIEW Patient_Service_History_View AS SELECT

st.ServiceID,

st.ServiceName,

st.Amount AS Service_Cost,

pd.FirstName AS Patient_FirstName,

pd.LastName AS Patient LastName,

ed.FirstName AS Staff_FirstName,

ed.LastName AS Staff LastName,

pa.AppointmentDate

FROM Service_Table st

JOIN Patient_Details pd ON st.PatientID = pd.PatientID

JOIN Employee_Details ed ON st.StaffID = ed.StaffID

JOIN Patient_Appointments pa ON st.AppointmentID = pa.AppointmentID;

6.Conclusion

Kodamagundla |

The WE CARE EVERYONE hospital database improves efficiency, security, and patient management. Future upgrades may include Al-driven automation and cloud integration for better hospital operations.