CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: DECISION MAKING UNDER UNCERTAINTY

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

UNCERTAINTY

- The agent needs reason in an uncertain world
- Uncertainty can be due to
 - Noisy sensors (e.g., temperature, GPS, camera, etc.)
 - Imperfect data (e.g., low resolution image)
 - Missing data (e.g., lab tests)
 - Imperfect knowledge (e.g., medical diagnosis)
 - Exceptions (e.g., all birds fly except ostriches, penguins, birds with injured wings, dead birds, ...)
 - Changing data (e.g., flu seasons, traffic conditions during rush hour, etc.)
 - •
- The agent still must act (e.g., step on the breaks, diagnose a patient, order a lab test, ...)

A FEW EXAMPLES

- Spam filtering
- Medical diagnosis
- Loan approval
- Automated driving

o ...

RATIONAL AGENT

- Given world states, a utility function, actions, transitions, evidence, and probabilities,
- A rational agent chooses the action that maximizes expected utility

$$action = \underset{a}{\operatorname{argmax}} EU(a|e)$$

4

UTILITY THEORY

- Lottery: *n* possible outcomes with probabilities
 - $[p_1, S_1; p_2, S_2; \dots p_n, S_n]$
 - Each S_i can be an atomic state or another lottery
- Expected utility of a lottery
 - $EU([p_1, S_1; p_2, S_2; ... pn, Sn]) = \sum_{i=1}^{n} p_i U(S_i)$

UTILITY ≠ MONEY

- Most agents prefer more money to less money,
 - But this does not mean money behaves as a utility function
- For example, which lottery would you prefer
 - L₁: [1, \$1 Million]
 - L₂: [0.5, \$0; 0.5, \$2.5 Million]
- If money served as a utility function, then you'd prefer L_2 no matter what, but the answer *often* depends on how much money you currently have
 - The utility of money depends on what you <u>prefer</u>
 - If you are short on cash, a little more certain money can help
 - If you are already billionaire, you might take the risk
 - o Or if you are swimming in debt, you might like to gamble

UTILITY ≠ MONEY

- \bullet Let's say you currently have k and let S_k represent the state of having k
- $\bullet \ \mathrm{EU}(\mathrm{L}_1) = \mathrm{U}(\mathrm{S}_{\mathrm{k+1M}})$
- \bullet EU(L₂) = 0.5*U(S_k) + 0.5*U(S_{k+2.5M})
- \bullet The rational choice depends on your preferences for $S_k,$ $S_{k+1M},$ and $\,S_{k+2.5M}$
 - i.e, it depends on the values of $U(S_k)$, $U(S_{k+1M})$, and $U(S_{k+2.5M})$
- U(S_i) does not have to be a linear function of i, and for people it often is not

INFLUENCE DIAGRAMS

Influence Diagrams / Decision Networks

- Builds on Bayesian networks
- In addition to the chance nodes (ovals), decision networks have
 - Decision nodes square
 - Represents actions
 - Utility nodes diamond
 - Represents utilities for possible states and actions

SPAM FILTERING

U(inbox, spam) = 0 $U(inbox, \sim spam) = 100$ U(junkfolder, spam) = 200 $U(junkfolder, \sim spam) = -500$

A COMMON PATTERN

DECISION NETWORKS - APPLICATIONS

Used for

- What action to take
- What information to gather
- How much to pay for a piece of information

• For example:

- Medical diagnosis: which test to perform, which treatment to prescribe, ...
- Marketing: which project to invest in, how much to spend on marketing, how much to spend on user surveys, ...

EVALUATING DECISION NETWORKS

- Set evidence nodes E to their values e
- For each choice **a** of action **A**
 - Set **A**=**a**
 - Compute the posterior probability of the <u>parent chance</u> nodes of the <u>utility node</u>; i.e., compute P(Pa(Utility) | e,
 a)
 - Compute expected utility using the utility node and the probability distribution P(Pa(Utility) | **e**, **a**)
- Choose action **a** with the maximum expected utility

EXAMPLES

• See OneNote

VALUE OF INFORMATION

- If I am allowed to observe the value of a chance node, how much valuable is that information to me?
- Value of information
 - Expected utility after the information is acquired
 Minus
 - Expected utility before the information is acquired
- There is one catch: we do not know the content of the information before we acquire it
 - Solution: take an expectation over the possible outcomes

MARKOV DECISION PROCESSES

PROBLEM SETTING

- An agent in a stochastic environment, looking for a sequence of actions that will maximize its expected utility
- Reading: Chapter 17 of the AI book by Stuart and Russel

RUNNING EXAMPLE

Figure 17.1 (a) A simple, stochastic 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the "intended" outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. Transitions into the two terminal states have reward +1 and -1, respectively, and all other transitions have a reward of -0.04.

NOTATION

- o P(s'|s,a) Probability of arriving at state s' given we are at state s and take action a
- o R(s, a, s') The reward the agent receives when it transitions from state s to state s' via action a
- \circ $\pi(s)$ The action recommended by policy π at state s
- \circ π^* Optimal policy
- $U^{\pi}(s)$ The expected utility obtained via executing policy π starting at state s
- o $U^{\pi^*}(s)$ is abbreviated as U(s)
- \circ Q(s,a) The expected utility of taking action a at state s
- o γ Discount factor

Markov Decision Process

"A sequential decision problem for a fullyobservable stochastic environment with a Markov
transition model and additive rewards is called a
Markov Decision Process (MDP)" – AI
textbook by Russel and Norvig

SOLUTION?

- A fixed action sequence is not the answer due to stochasticity
 - For example, [Up, Up, Right, Right, Right] is not a solution
 - It would be a solution if the environment was deterministic
- A solution must specify the agent should do in any state that the agent might reach
 - This is called a **policy**
- Policy notation: π
 - $\pi(s)$ specifies what action the agent should take at state s
- An **optimal policy** is the one that maximizes the expected utility
 - π*

RUNNING EXAMPLE

Figure 17.2 (a) The optimal policies for the stochastic environment with r = -0.04 for transitions between nonterminal states. There are two policies because in state (3,1) both Left and Up are optimal. (b) Optimal policies for four different ranges of r.

UTILITY OF STATES

- The agent receives a reward at each state
- Utility of a state s given a policy π is the expected reward that the agent will get starting from state s and taking actions according to policy π
- Let S_t denote the state that the agent reaches at time t
- $U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t}, \pi(S_{t}), S_{t+1})\right]$
- The expectation is with respect to the transition probabilities

THE OPTIMAL POLICY

- The optimal policy is the one that maximizes the expected utility
 - $\pi_s^* = \operatorname*{argmax}_{\pi} U^{\pi}(s)$
- Remember that π_s^* is a policy; that is, it recommends an action for each state, regardless of whether it is the starting state or not
- It is optimal when the starting state is *s*
- When the rewards are discounted, the optimal policy is independent of the start state
 - The optimality of the policy does not depend on the starting state but of course the action sequence depends on the starting state
- True utility of each state is defined as $U^{\pi^*}(s)$ -- the expected rewards the agent will receive if it executes the optimal policy starting at s

U(s) vs R(s, A, s')

- R(s, a, s') is the short-term immediate reward the agent receives when it transitions from state s to state s' via action a
- \circ U(s) is the long-term cumulative reward from s onward
- $U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t}, \pi(S_{t}), S_{t+1})]$

BELLMAN EQUATION

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

ACTION-UTILITY FUNCTION Q(s, a)

- Q(s, a) The expected utility of taking action a at state s
- $Q(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$
- $U(s) = \max_{a \in A(s)} Q(s, a)$
- $Q(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a' \in A(s')} Q(s',a')]$
 - Bellman equation for the Q function

RUNNING EXAMPLE

Figure 17.3 The utilities of the states in the 4×3 world with $\gamma = 1$ and r = -0.04 for transitions to nonterminal states.

EXERCISE

• Confirm that the utilities given in the previous slide satisfy the Bellman equations

How to Find π^*

- However, we are not given U(s)
- Two algorithms for finding optimal policies
- 1. Value iteration
- 2. Policy iteration

VALUE ITERATION

- $U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$
- *n* possible states, *n* Bellman equations, one for each state
- However, these are non-linear equations, due to the max operator
- One approach: iterative
 - Start with an initial guess (could be random)
 - Iterate until convergence

POLICY ITERATION

- Start with an initial policy π_0
- Alternate between
- 1. Policy evaluation: given policy π_i , calculate U^{π_i}
- 2. Policy improvement: Calculate a new MEU policy π_{i+1} , using the utilities calculated in the previous step
- Stop when utilities no longer change

Multi-armed Bandit

SETUP

- K slot machines
 - Each one is a one-armed bandit
- Unknown reward functions
 - The distribution of rewards for each machine are unknown
- Limited resources
 - Have a limited number of tries (or alternatively, future rewards are discounted)
- Can gather information
 - Each try gives a (potentially) zero reward, but also is useful for information gathering purposes
- Main objective
 - Maximize rewards
- Exploration vs exploitation trade-off
 - How should you balance exploitation (sticking with a machine that looks good) versus exploration (trying new machines)?

SOME STRATEGIES

- Fully random (explore only)
- Epsilon-greedy: With ϵ probability, choose a random lever; otherwise, choose the best lever so far
- 3. Epsilon-first: Explore at random the first $\epsilon \times M$ tries; exploit the best after that
- 4. Upper-confidence bound (UCB): next slide
- Evaluation: regret (ρ) : the difference to the optimal strategy at time T
 - $\bullet \quad \rho = T \times \mu^* \sum_{t=1}^T r_t$
- A zero-regret strategy: a strategy where ρ/T goes to zero in the limit

UCB1

- Assume K machines; each with a binary reward of 0 or 1; the probability of reward 1 is p_i
 - Remember that the user does not know p_i
- \circ If you knew p_i , what is the mean reward for machine i?
- The upper-confidence bound (UCB) method calculates the upper bound on the mean for each slot and chooses the machine with max value
 - $\overline{r_i} + \sqrt{\frac{2\ln(n)}{n_i}}$, where $\overline{r_i}$ is the average reward for the i^{th} machine, n is the total number of tries so far, and n_i is the number of times the machine i is tried so far
- The upper confidence grows with n, shrinks with n_i ; in essence, UCB balances between exploration and exploitation
- The upper confidence is derived using the Chernoff-Hoeffding bound

VARIATIONS

- The reward distributions can be more complicated than simple random distributions
- Contextual bandit
 - The state and the rewards depend on the context
- Adversarial bandit
 - At each iteration, the agent chooses an arm while at the same time an adversary chooses the reward functions

NEXT

- Reinforcement learning
 - In fact, we already covered many of the fundamentals of RL
 - Value iteration, policy iteration, exploration vs exploitation trade-off
 - We are now ready to make the leap from MDPs to RL
 - RL can be considered as solving an MDP where the transition and reward dynamics are unknown