Lecture 3

Ethereum Hyperledger

Ethereum

1.Almost like Bitcoin2.Have Smart Contracts

Vitalik Buterin

Smart Contracts

- Written in Solidity.
- scripting language specially created for Ethereum

Smart Contracts

Live example...

https://remix.ethereum.org

Hyperledger

Blockchain Overview

Unit 01

DRAFT - May 15, 2018

DRAFT v1.0 May 2018

IBM Blockchain

IEM

Problem...

... inefficient, expensive, vulnerable

A shared, replicated, permissioned ledger ...

... with consensus, provenance, immutability, and finality

What is blockchain?

Blockchain is a **shared immutable ledger** for recording the history of transactions.

A business blockchain, such as IBM Blockchain and the Linux Foundation's Hyperledger Project, provides a permissioned network with known identities.

Blockchain for business requirements

Append-only distributed system of records shared across business networks

Business terms executed with transactions

Transactions are secure with appropriate visibility

Transactions are provably endorsed by relevant participants

IBM Blockchain

11

Shared ledger

- Shared between participants
- Participants have own copy through replication
- Permissioned, so participants see only appropriate transactions
- THE shared system of record
- Immutable due to an append-only data structure

Records all transactions across business networks

Smart contract

- · Verifiable, signed
- Business rules, written in programming languages, supported by the blockchain technology
- · Examples:
 - Defines contractual conditions under which a bond transfer occurs
 - Defines rules on which a vehicle can be transferred to a new owner

Business rules associated with the transaction

Privacy

- Participants require:
 - Appropriate privacy and confidentiality between subsets of participants
 - Identity not linked to a transaction
- Transactions need to be authenticated
- Cryptography is central to these processes

The ledger is shared, but participants require privacy and confidentiality

Accountability

- Participants endorse transactions
 - Consensus: Participants agree that a transaction is valid
 - Business network decides who will endorse transactions
 - Endorsed transactions are added to the ledger with appropriate confidentiality

The ledger is a provable source of information

Accountability (continued)

- Assets have a verifiable audit trail
 - Provenance: Participants know where the asset came from and how it's ownership has changed over time
 - Immutability: No participant can tamper with a transaction once it is agreed upon
 - Transactions can not be modified, inserted or deleted
 - Finality: Only one place to determine the ownership of an asset or completion of a transaction (the shared ledger).

IBM Blockchain

The ledger is a provable source of information

Bitcoin versus blockchain for business

- Bitcoin utilizes an un-permissioned public ledger:
 - Defines an unregulated shadow-currency
 - The first blockchain application
 - Resource-intensive
- Blockchains for business are generally permissioned and private, and prioritize:
 - Identity over anonymity
 - Selective endorsement over proof of work
 - Assets over cryptocurrency

Blockchain technology is the infrastructure, upon which blockchain applications are built

Hyperledger

Transaction Flow

Assumptions

Client A initiates a transaction

Endorsing peers verify signature execute the transaction

How we set Endorsing peers

For example:

- AND('Org1.member', 'Org2.member', 'Org3.member') requests 1 signature from each of the three principals
- OR('Org1.member', 'Org2.member') requests 1 signature from either one of the two principals
- OR('Org1.member', AND('Org2.member', 'Org3.member')) requests either one signature from a member of the Org1 MSP or 1 signature from a member of the Org2 MSP and 1 signature from a member of the Org3 MSP.

Proposal responses are inspected

SDK

Client assembles endorsements into a transaction

Transaction is validated and committed

Ledger updated

2 ORGANISATION

Hyperledger

Live example...