Toxic Comment Classification

•••

NaN-Prediction Pending

Aneri Dalwadi AU1940153 Mananshi Vyas AU1940289 Nandini Bhatt AU1940283 Kairavi Shah AU1940177

•••

Introduction

The data contains 1.5 million comments from Wikipedia's talk page and has to be classifies into multiclassclassification - toxic, obscene, identity hate, severe, etc. And here we try to classify toxicity and calculate its severity using and comparing various Machine Learning algorithms.

Problem Statement

Social media sites are one of the most popular websites on the internet today flooding with comments. It is vital to manage the user-generated offensive content on many of these sites that can make a user's online experience unpleasant.

000

the free encyclopedia that anyone can edit.

3,638,513 articles in English

Today's featured article

The CSI effect is any of several ways in which t as CSI: Crime Scene Investigation influences its jurors have come to demand more forensic evide prosecutors. Although this belief is widely held a that crime shows are unlikely to cause such an Greater public awareness of forensic science ha investigations, which in turn has significantly inc popularity of forensic science degree programs a

GANTT CHART

Tasks	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9
Choosing a Problem Statement									
Visualizing and Pre-processing data									
Looking at various approaches		_							
Model Selection									
Model Training and Result Analysis									
MId-Sem Presentation and Feedback									
Hyper-parameter fine tuning, new models train, test and result analysis									
Documentation and Presentation									

Existing Body Of Work

WORK 1

Toxic Comment Classification on SocialMedia Using SVM and ChiSquare Feature Selection

In this paper, authors have used SVM with TF-IDF as the feature extraction and Chi Square as the feature selection. The best performance obtained using the SVM model with a linear kernel, without implementing Chi Square, and using stemming and stopwords removal with the F 1 - Score equal to 76.57%.

WORK 2

Detecting Offensive Tweets via Topical Feature Discovery over a Large Scale Twitter Corpus

In this paper, authors have used a semi-supervised approach to detect profanity-related offensive content on Twitter. They achieved a 75.1% TP rate with Logistic Regression and a 69.7 % TP rate with popular keyword matching baseline. The false-positive rate was identical for both at about 3.77%.

Our Approach

Final Results

- Applied 3 gradient bosting models amogst which LGBM outperforms with 13 eigen values with accuracy of 0.72 compared to XGBoost but underperforms in terms of training time.
- AUC Score drops on varying character shingles & n-gram for LGBM.
- Hyperparameter tuned are depth of tree, no. of leaves.

Final Results

- Increasing valuee of eigrn values showed non-linear trend with AUC score around 0.5.
- Learning rate was fixed.

Final Results

- LGBM perform best with 13 eigen vectors with less computation time of 6.5 hours & give AUC under ROC score of 0.72.
- Two character shingles works best for classification for our data.
- Threshold value for AUC curve is 0.7.

Conclusions

Number of eigen values

Model Used (Time Taken in sec & hrs)	3	5	10	13	
LGBM (AUC)	0.58	0.66	0.69	0.72	
	(12600s [3.5 hrs])	(16200s [4.5 hrs])	(21600s [6 hrs])	(23400s [6.5 hrs])	
XGBoost	0.52	0.67	0.67	0.70	
	(18000s [5 hrs])	(21600s [6 hrs])	(28800s [8 hrs])	(34200s [9.5 hrs])	
CatBoost (No. of bins): 3	0.52	0.53	0.52	0.54	
	(10800s [3 hrs])	(16200s [4.5 hrs])	(25200s [7 hrs])	(28800s [8 hrs])	
CatBoost (No. of bins): 5	0.54	0.54	0.57	0.56	
	(12600s [3.5 hrs])	(16200s [4.5 hrs])	(26280s [7.3 hrs])	(28080s [7.8 hrs])	
CatBoost (No. of bins): 7	0.54	0.55	0.52	0.57	
	(10800s [3 hrs])	(14400s [4 hrs])	(25200s [7 hrs])	(27000s [7.5 hrs])	

ROLE

ANERI

Implemented codes in R and ggplot for various inferences. Implementation and interpretation of base and gradient boosting models. Feature selection and hyper-parameter tuning.

MANANSHI

Implemented codes in Apache Spark for data cleaning and pre-processing. Understanding and interpreting models. Finding appropriate approach to solve the problem and formulating eigen value matrix.

NANDINI

Helped in implementing pre-processing with use of regex and apache spark. Interpretation of use of eigen values and fine tuning hyperparameters for model implementation.

KAIRAVI

Helped with implementation of models and conversion to csv files and reducing the data size. Interpretation of different eigen values and fine tuning hyperparameters for model implementation.