Principal series representations of Iwahori-Hecke algebras of Kac-Moody groups over local fields

Auguste Hébert

Université de Lorraine

March 23, 2021

Introduction •0000	Kac-Moody groups	Iwahori-Hecke algebra of <i>G</i>	Principal series representations

Introduction

Representations and Iwahori-Hecke algebras

- ▶ G a split reductive group over a (non-Archimedean) local field \mathcal{F} , (e.g $G = \operatorname{SL}_2(\mathcal{F})$).
- lacksquare \mathscr{I} its Iwahori subgroup (e.g $\mathscr{I}=\begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \mathfrak{m} & \mathcal{O} \end{pmatrix}\cap \mathrm{SL}_2(\mathcal{F})$),
- H its Iwahori-Hecke algebra:

$$\mathcal{H} = \{f: G \to \mathbb{C}, \ \mathscr{I} \ \text{bi-invariant, with compact support}\}\ = \{f: \mathscr{I} \setminus G/\mathscr{I} \to \mathbb{C}, \text{with finite support}\},$$

- ▶ V smooth representation of G, then $V^{\mathscr{I}}$ is a representation of \mathcal{H} .
- ▶ $V \mapsto V^{\mathscr{I}}$ induces a bijection between {irreducible representations V of G s.t $V^{\mathscr{I}} \neq 0$ } and {irreducible representations of \mathcal{H} }.

Principal series representations

- $T \subset G$ maximal split torus, Y cocharacter lattice of G, B Borel subgroup of G (e.g $T = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$, $B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$),
- $T_{\mathbb{C}} = \operatorname{Hom}_{\operatorname{Gr}}(Y, \mathbb{C}^*) = \operatorname{Hom}_{\operatorname{alg}}(\mathbb{C}[Y], \mathbb{C}) \setminus \{0\},$
- ▶ $\tau \in T_{\mathbb{C}} \leadsto \tau : B \to \mathbb{C}^*$, $I(\tau) = \operatorname{Ind}_B^G(\tau)$: principal series representation of G,
- $I_{\tau} = I(\tau)^{\mathscr{I}}$: principal series representation of \mathcal{H} ,
- every irreducible representation of \mathcal{H} is a quotient of some I_{τ} and embeds in some $I_{\tau'}$, for $\tau, \tau' \in T_{\mathbb{C}}$,
- Matsumoto and Kato gave irreducibility criteria for I_{τ} ('77 and '82).

Kac-Moody groups

- Kac-Moody groups (à la Tits): infinite dimensional (if not reductive) generalizations of reductive groups,
- "integrate" Kac-Moody Lie algebras,
- ▶ introduced in the 1970's,
- example: if \mathbb{G}_0 is a reductive group defined over \mathcal{F} , then $\widetilde{\mathbb{G}}_0(\mathcal{F}) :=$ (double central extension of) $\mathbb{G}_0(\mathcal{F}[u,u^{-1}])$ is an **affine** Kac-Moody group over \mathcal{F} ,
- many other groups (indefinite) defined by generators and relations.

Kac-Moody groups over local fields

- ► Garland ('95): study of affine Kac-Moody groups when F is a non-Archimedean local field,
- ▶ Gaussent, Rousseau (2008): G acts on a "masure" (a.k.a hovel) \mathcal{I} : generalize Bruhat-Tits construction.
- ▶ Braverman, Kazhdan (2008, affine case), Gaussent, Rousseau (2012, general case): definition of the spherical Hecke algebra of G,
- ▶ Braverman, Kazhdan, Patnaik (2014, affine case), Bardy-Panse, Gaussent, Rousseau (2014, general case): definition of the Iwahori-Hecke algebra H of G,
- ▶ Bardy-Panse, Gaussent and Rousseau used masures.

Towards representations of G

- \triangleright G is infinite dimensional \rightsquigarrow topological issues on G,
- ▶ there exists no topological group structure on G for which \mathscr{I} is open and compact (Abdellatif, H. 2017),
- ▶ what does smooth mean for a representation of G?
- ightharpoonup We can already study the representations of \mathcal{H} .

Kac-Moody datum

- $ightharpoonup A = (a_{i,i})_{i,j \in I} \in \mathcal{M}_I(\mathbb{Z})$ be a Kac-Moody matrix: 1: finite set, $a_{i,i} = 2$, $a_{i,i} \le 0$ and $a_{i,i} = 0$ iff $a_{i,i} = 0$ for $i \neq i \in I$,
- generalizes Cartan matrices.
- \blacktriangleright X, Y dual \mathbb{Z} -lattices, $X \leftrightarrow$ characters, $Y \leftrightarrow$ cocharacters,
- $(\alpha_i)_{i\in I}\in X^I$, $(\alpha_i^\vee)\in Y^I$ free families s.t $\alpha_i(\alpha_i^\vee)=a_{i,j}$ for $i, j \in I$: simple roots, coroots,
- $ightharpoonup A = Y \otimes \mathbb{R}$: "standard apartment".

Weyl group and (real) root systems

- $i \in I: r_i: \overset{\mathbb{A}}{\underset{x \mapsto x \alpha_i(x)\alpha_i^{\vee}}{\mathbb{A}}} : \text{simple reflection},$
- ▶ $W = \langle r_i, i \in I \rangle$: **Weyl group**, Coxeter group,
- ▶ $\Phi = W.\{\alpha_i | i \in I\}$, $\Phi^{\vee} = W.\{\alpha_i^{\vee} | i \in I\}$: root and coroot systems,
- \blacktriangleright Φ , Φ^{\vee} and W are infinite (unless A is Cartan),

Kac-Moody groups

- ▶ \mathbb{G} : split Kac-Moody group associated with (A, X, Y), \mathbb{G} : {fields} \rightarrow {groups}.
- $G = \mathbb{G}(\mathcal{F})$ (\mathcal{F} : non-Archimedean local field),
- example: A = (2), $G = \mathrm{SL}_2(\mathcal{F})$, $\mathbb{A} = \mathbb{R}$, $\alpha = \mathrm{Id}_{\mathbb{R}}$, $\Phi = \{-\alpha, \alpha\}$,

Affine SL_2 : $\widetilde{SL_2}$

- ► $G = (\text{double central extension of}) \text{SL}_2(\mathcal{F}[u, u^{-1}]), A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$.
- $ightharpoonup \mathbb{A} = \mathbb{R}\alpha^{\vee} \oplus \mathbb{R}c \oplus \mathbb{R}d, \ \alpha^{\vee}, c, d$: symbols,
- ▶ $\Phi = \{\pm \alpha + k\delta | k \in \mathbb{Z}\}$, $W = D_{\infty}$: infinite dihedral group.

- \triangleright \mathscr{I} : Iwahori subgroup of G, fixator of some chamber in the masure \mathcal{I} of G.
- if $G = SL_2 = SL_2(\mathcal{F}[u, u^{-1}])$, then $\mathscr{I} = \begin{pmatrix} \mathcal{O}[u] + \mathfrak{m}[u, u^{-1}] & \mathcal{O}[u] + \mathfrak{m}[u, u^{-1}] \\ u \mathcal{O}[u] + \mathfrak{m}[u, u^{-1}] & \mathcal{O}[u] + \mathfrak{m}[u, u^{-1}] \end{pmatrix} \cap G,$
- ▶ G^+ : sub-semi-group of G, $G^+ \subseteq G$, unless G reductive,
- Iwahori-Hecke algebra of G: $\mathcal{H}^+ = \{ \phi : \mathscr{I} \setminus G^+ / \mathscr{I} \to \mathbb{C} \mid \operatorname{supp}(\phi) \text{ is finite} \}.$
- lacksquare if $\phi, \phi' \in \mathcal{H}^+$, $h \in G^+$, $\phi * \phi'(h) = \sum_{g \in G^+ / \mathscr{A}} \phi(g) \phi'(g^{-1}h)$.

Bernstein-Lusztig presentation of \mathcal{H}^+

 \triangleright \mathcal{H}^+ embeds in the Bernstein-Luzstig Hecke algebra $\mathcal{H} = \bigoplus_{\lambda \in Y, w \in W} \mathbb{C}Z^{\lambda} * T_w$, where Z^{λ}, T_w are symbols, $q = |\mathcal{O}/\mathfrak{m}|$ and for $\lambda, \mu \in Y$, $w \in W$ and $i \in I$:

1
$$T_i := T_{r_i}, \ T_i * T_w = \begin{cases} T_{r_i w} \ \text{if} & r_i w > w \\ (q-1)T_w + qT_{r_i w} \ \text{if} & r_i w < w \end{cases}$$

- $7 Z^{\lambda} * Z^{\mu} = Z^{\lambda+\mu}$
- 3 $Z^{\lambda} * T_i = T_i * Z^{r_i \cdot \lambda} + (q-1) \frac{Z^{\lambda} Z^{r_i \cdot \lambda}}{1 Z^{-\alpha \vee}}$

Bernstein-Lusztig presentation of \mathcal{H}^+

- $\rightarrow \mathcal{H}^+ \hookrightarrow \mathcal{H} := \bigoplus_{\lambda \in Y} \mathbb{C}Z^{\lambda} * T_w$, where Z^{λ}, T_w are symbols, $q = |\mathcal{O}/\mathfrak{m}|$ and for $\lambda, \mu \in Y$, $w \in W$ and $i \in I$:
- 1. $T_i := T_{r_i}$ $T_{i} * T_{w} = \begin{cases} T_{r_{i}w} & \text{if } r_{i}w > w \\ (q-1)T_{w} + qT_{r_{i}w} & \text{if } r_{i}w < w \end{cases}$ $2. \ Z^{\lambda} * Z^{\mu} = Z^{\lambda+\mu},$ $3. \ Z^{\lambda} * T_{i} = T_{i} * Z^{r_{i}.\lambda} + (q-1)\frac{Z^{\lambda} - Z^{r_{i}.\lambda}}{1 - Z^{-\alpha_{i}^{\lambda}}}.$

Principal series representations of ${\cal H}$

- $I_{\tau} = \operatorname{Ind}_{\mathbb{C}[Y]}^{\mathcal{H}}(\tau),$

Irreducibility criteria

Weights and intertwining operators

- \blacktriangleright M an \mathcal{H} -module, $\tau' \in T_{\mathbb{C}}$,
- $M(\tau') = \{ x \in M | \theta.x = \tau'(\theta).x \ \forall \theta \in \mathbb{C}[Y] \},$
- ▶ Wt(M) = { $\tau' \in T_{\mathbb{C}} | M(\tau') \neq \{0\}$ },

Irreducibility criterion

- ► Theorem (H. '19):
 - Let $\tau \in T_{\mathbb{C}}$. Then I_{τ} is irreducible iff:
 - 1. $\tau(\alpha^{\vee}) \neq q$ for every $\alpha^{\vee} \in \Phi^{\vee}$,
 - 2. $\operatorname{End}_{\mathcal{H}}(I_{\tau}) = \mathbb{C}\operatorname{Id}$ (or equivalently $I_{\tau}(\tau) = \mathbb{C}\mathsf{v}_{\tau}$).

Irreducible quotients of regular principal series representations

► Theorem: (Rodier, Rogawski '80: *G* reductive, H'20: Kac-Moody case):

Let $\tau \in T_{\mathbb{C}}$ be regular $(W_{\tau} = \{1\})$. Then:

- (1) If M is a submodule or a quotient of I_{τ} , then $M = \bigoplus_{\tau' \in \operatorname{Wt}(M)} M(\tau')$, dim $M(\tau') = 1$ for every $\tau' \in \operatorname{Wt}(M)$ and $\operatorname{Wt}(M) \subset W.\tau$,
- (2) If $w \in W$, there exists a unique irreducible \mathcal{H} -module $M_{w,\tau}$ such that $M_{w,\tau}(w,\tau) \neq \{0\}$. Then dim $M_{w,\tau} = |\operatorname{Wt}(M)| = |\{w' \in W^v | I_{w,\tau} \simeq I_{w',\tau}\}|$.

Irreducible quotients of regular principal series representations

- (2) If $w \in W$, there exists a unique irreducible \mathcal{H} -module $M_{w,\tau}$ such that $M_{w,\tau}(w,\tau) \neq \{0\}$. Then dim $M_{w,\tau} = |\operatorname{Wt}(M)| = |\{w' \in W | I_{w',\tau} \simeq I_{w,\tau}\}|$,
 - lacksquare example: $G=\mathrm{SL}_3(\mathcal{F})$, $W=\langle s,t
 angle$, $au(lpha_s^ee)= au(lpha_t^ee)=q^{\pm 1}$,

Irreducible quotients of regular principal series representations

- (2) If $w \in W$, there exists a unique irreducible \mathcal{H} -module $M_{w,\tau}$ such that $M_{w,\tau}(w,\tau) \neq \{0\}$. Then
 - $\dim M_{w,\tau} = |Wt(M)| = |\{w' \in W | I_{w',\tau} \simeq I_{w,\tau}\}|,$ • example: $A = \begin{pmatrix} 2 & * & * \\ * & 2 & * \\ * & * & * \end{pmatrix}$, with $* \le -2$,
 - $W = \langle s, t, u \rangle = \langle s, t, u | s^2 = t^2 = u^2 = 1 \rangle$ $\tau(\alpha_s^{\vee}) = \tau(\alpha_s^{\vee}) = \tau(\alpha_s^{\vee}) = q^{\pm 1}$.

$$\tau(\alpha_s^{\vee}) = \tau(\alpha_t^{\vee}) = \tau(\alpha_u^{\vee}) = q^{\pm 1},$$

Irreducible quotients of regular principal series representations

- (2) If $w \in W$, there exists a unique irreducible \mathcal{H} -module such that $M_{w,\tau}(w,\tau) \neq \{0\}$. Then dim $M_{w,\tau} = |\mathrm{Wt}(M)| = |\{w' \in W | I_{w',\tau} \simeq I_{w,\tau}\}|$,
- example: $G = \widetilde{\operatorname{SL}}_2(\mathcal{F})$, $W = \langle s, t \rangle \simeq D_{\infty}$, there exists $\tau \in T_{\mathbb{C}}$ regular such that:

Case where $\tau(\alpha^{\vee}) \neq q$ for all $\alpha^{\vee} \in \Phi^{\vee}$

- Let $\tau \in T_{\mathbb{C}}$ such that $\tau(\alpha^{\vee}) \neq q$ for all $\alpha^{\vee} \in \Phi^{\vee}$. Then $I_{\tau} \simeq I_{w,\tau}$, for every $w \in W$,
- ▶ If $J \subset \operatorname{End}_{\mathcal{H}-\operatorname{mod}}(I_{\tau})$, $J(I_{\tau}) = \sum_{\phi \in J} \phi(I_{\tau})$.
- Theorem (H. '20, A size 2 Kac-Moody matrix, not Cartan) $J \mapsto J(I_{\tau})$ is a bijection between {right ideals of $\operatorname{End}(I_{\tau})$ } and {submodules of I_{τ} },
- $ightharpoonup \operatorname{End}(I_{\tau}) \simeq \mathbb{C}[R_{\tau}]$, where $R_{\tau} = W_{\tau}/W_{(\tau)}$,
- ▶ $M \mapsto I_{\tau}/M$ is a surjection from {maximal submodules of I_{τ} } to {irreducible \mathcal{H} modules M s.t $\tau \in \mathrm{Wt}(M)$ }. It is a bijection iff every maximal ideal of $\mathrm{End}(I_{\tau})$ is two-sided. In this case, these representations have dimension $|W_{(\tau)}||W^{v}/W_{\tau}|$.

Link with representations of *G*?

- Suppose G is reductive.
- ▶ $I(\tau)$ set of locally constant $f:G\to \mathbb{C}$ such that

$$f(bg) = \tau \delta^{1/2}(b) f(g), \ \forall g \in G, b \in B,$$

▶ $\delta^{1/2}: B \to \mathbb{C}^*$: modulus character, $G \curvearrowright I(\tau)$ by right translation,

$$orall (\phi, f) \in \mathcal{H} imes I(au)^{\mathscr{I}}, \phi.f = \int_{\mathcal{G}} \phi(g)g.f d\mu(g)$$

$$= \mu(\mathscr{I}) \sum_{g \in \mathcal{G}/\mathscr{I}} \phi(g)g.f.$$

Link with representations of *G*?

- Suppose G Kac-Moody,
- $\widehat{I(\tau)} = \{ f : G \to \mathbb{C} | f(bg) = \tau \delta^{1/2}(b) f(g), \ \forall b \in B, g \in G \},$
- \triangleright no regularity assumption on f (for the moment?),
- $I_{\tau,G}$: set of functions in $\widehat{I(\tau)}^{\mathscr{I}}$ satisfying some finiteness support condition,
- ▶ Proposition (H. '21): $\mathcal{H} \cap I_{\tau,G}$:

$$orall (\phi,f) \in \mathcal{H}_{\mathbb{C}} imes I_{ au,G}, \phi.f := \sum_{oldsymbol{g} \in G/\mathscr{I}} \phi(oldsymbol{g}) oldsymbol{g}.f$$

is well defined (finiteness issues) and $I_{\tau,G} \simeq I_{\tau}$ as an \mathcal{H} -module.