1.

a)

V	R ₁	R_2	V ₁	V_2
10 V	1 kΩ	1 kΩ	5	5
10 V	1 kΩ	2 kΩ	3.33	6.67
10 V	1 kΩ	4 kΩ	2	8

b) Se observa una mayor diferencia de potencial en R₂. Esto es debido a la propia aplicación de la ley de Ohm, donde

$$\Delta V = I \cdot R$$

La intensidad se mantiene constante, por lo que a mayor resistencia, mayor diferencia de potencial

c)

V	R ₁	R ₂	V ₁	V ₂	$\frac{V_2}{V_1}$	I_{1}	I_{2}
1 V	2.2 kΩ	4.7 kΩ	0.319	0.681	2.14	$1.45 \cdot 10^{-4}$	$1.45 \cdot 10^{-4}$
5 V	2.2 kΩ	4.7 kΩ	1.59	3.41	2.14	$7.25 \cdot 10^{-4}$	$7.25 \cdot 10^{-4}$
10 V	2.2 kΩ	4.7 kΩ	3.19	6.81	2.14	$1.45 \cdot 10^{-3}$	$1.45 \cdot 10^{-3}$

d)
$$\frac{R_2}{R_1} = \frac{4.7}{2.2} = 2.14$$
 Observamos que es el mismo resultado que $\frac{V_2}{V_1}$

Esto ocurre debido a que al ser un circuito en serie la intensidad se mantendrá constante, por lo que al aplicar la ley de Ohm $\rightarrow I = \frac{V}{R}$

$$I_1 = I_2 \Rightarrow \frac{V_1}{R_1} = \frac{V_2}{R_2} \Rightarrow \frac{R_2}{R_1} = \frac{V_2}{V_1}$$

2.

a)

I	R ₁	R_2	Ι ₁	I ₂
1 mA	1 kΩ	1 kΩ	$5\cdot 10^{-4}$	$5\cdot 10^{-4}$
1 mA	1 kΩ	2 kΩ	6. 67 · 10 ⁻⁴	$3.33 \cdot 10^{-4}$
1 mA	1 kΩ	4 kΩ	$8\cdot 10^{-4}$	$2\cdot 10^{-4}$

b) Circula una mayor intensidad de corriente por la resistencia 1. Esto es debido a la propia aplicación de la ley de Ohm, donde siendo ΔV constante:

$$V_{_1} \; = \; V_{_2} \; \Rightarrow \; I_{_1} \cdot R_{_1} \; = \; I_{_2} \cdot R_{_2} \qquad \quad \text{Por lo que si } R_{_1} < \; R_{_2} \; \Rightarrow \; I_{_1} \; > \; I_{_2}$$

2)

I	R ₁	R_2	V ₁	V_2	I 1	I ₂	$\frac{I_2}{I_1}$
1 mA	2.2 kΩ	4.7 kΩ	1.5	1.5	6.81 · 10 ⁻⁴	$3.19 \cdot 10^{-4}$	0.468
5 mA	2.2 kΩ	4.7 kΩ	7.49	7.49	$3.41 \cdot 10^{-3}$	$1.59 \cdot 10^{-3}$	0.468
10 mA	2.2 kΩ	4.7 kΩ	15	15	$6.81 \cdot 10^{-3}$	$3.19 \cdot 10^{-3}$	0.468

d)
$$\frac{R_2}{R_1} = \frac{4.7}{2.2} = 2.14$$

Observamos que

$$\frac{1}{\frac{R_2}{R_1}} = \frac{I_2}{I_1} \Rightarrow \frac{R_1}{R_2} = \frac{I_2}{I_1} \Rightarrow \frac{1}{2.14} = 0.468$$

Esta relación se da debido a que al ser el voltaje constante, si aplicamos la ley de Ohm:

$$V_1 = V_2 \Rightarrow I_1 \cdot R_1 = I_2 \cdot R_2 \Rightarrow \frac{R_1}{R_2} = \frac{I_2}{I_1}$$

3.

Elemento	Intensidad	Diferencia de potencial	
Fuente de corriente	$1\cdot 10^{-3}$	4.64	
Resistencia 1	$1 \cdot 10^{-3}$	1	
Resistencia 2	$4 \cdot 10^{-4}$	0.8	
Resistencia 3	$1.4 \cdot 10^{-3}$	4.2	
Resistencia 4	$1.11 \cdot 10^{-3}$	4.44	
Resistencia 5	$1.11 \cdot 10^{-4}$	0.556	
Fuente de tensión	$1.51 \cdot 10^{-3}$	5	