Description

TS64MRMMC4 ~ TS1GRMMC4 is a 64MB ~ 1GB MMCmobile memory card. It's a fastest, low-power, highly integration memory card. TS64MRMMC4 ~ TS1GRMMC4 is designed to provide an inexpensive, mechanically robust storage medium in card form for multimedia consumer applications and mobile devices (handheld PCs, digital cameras, MP3 players, etc.) to store, copy, and move data at high-speed transfer rate.

Placement

Back

Front

Pin Definition

5: N		MMC M	lode		SPI Mo	ode
Pin No.	Name	Туре	Description	Name	Туре	Description
1	DAT3	I/O/PP	Data	CS	1	Chip select
2	CMD	I/O/PP/OD	Command/Response	DI	I/PP	Data in
3	VSS1	S	Ground	VSS	S	Ground
4	VDD	S	Power supply	VDD	S	Power supply
5	CLK	I	Clock	SCLK	I	Clock
6	VSS2	S	Ground	VSS2	S	Ground
7	DAT0	I/O/PP	Data	DO	O/PP	Data out
8	DAT1	I/O/PP	Data	Not used		
9	DAT2	I/O/PP	Data	Not used		
10	DAT4	I/O/PP	Data	Not used		
11	DAT5	I/O/PP	Data	Not used		
12	DAT6	I/O/PP	Data	Not used		
13	DAT7	I/O/PP	Data	Not used		

S: Power Supply; I:Input; O:Output; PP:Push-Pull; OD:Open-Drain; NC:Not Connected

Features

- Storage Capacity: 64MB ~ 1GB
- Support Dual Operating Voltage: 2.7~3.6V/1.65~1.95V
- Support clock frequencies: 0~52MHz
- Support different Bus width: x1, x4, x8
- Operating Temperature: -25°C ~ 85°C
- Data access mode: Byte mode
- Fully compatible with MultiMediaCard system specification version 4.0 and backwards compatibility with previous specification
- Form Factor: 18mm x 24mm x 1.4mm

MultiMediaCard Architecture

Temperature Characteristics

Parameter Min.		Max.	Unit	
Operating temperature	-25	85	$^{\circ}$	

Electrical Characteristics

• Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V _{CC}	-0.6~+4.6	V
Input Voltage	V _{IN}	-0.6~+4.6	V
Input/Output Voltage	V _{I/O}	-0.6~+4.6	V

• Recommended Operation Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage (High Voltage Range)	V_{DDH}	2.7	3.3	3.6	V
Power Supply Voltage (Low Voltage Range)	V_{DDL}	1.65	1.8	1.95	V

DC Characteristics

• High Voltage Power Supply

(Ta=-25°C to 85°C, V_{DDH}=2.7V to 3.6V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Output Low Voltage (OD)	V _{ODOL}			0.3	٧	I _{OL} =2mA
Output High Voltage (PP)	V _{OH}	0.75* V _{DDH}			>	I _{OH} =-100uA
Output Low Voltage (PP)	V _{OL}			0.125* V _{DDH}	>	I _{OL} =100uA
Input High Voltage	V _{IH}	0.625* V _{DDH}		V _{DDH} +0.3	>	
Input Low Voltage	V _{IL}	-0.3		0.25* V _{DDH}	>	
Operating Current	I _{CC}			20(TBD)	mA	I _{VCCF} =0mA
Stand-by Current	I _{SB}			400(TBD)	uA	
Input Leakage Current	ILI			-10/+10	uA	$V_{IN} = 0$ to V_{DDH}
Output Leakage Current	I _{LO}			-10/+10	uA	$V_{OUT} = 0$ to V_{DDH}
Pin Capacitance	C _P			7	рF	
Power Output Voltage	V _F	1.50	1.8	1.95	>	$I_F < = 240 mA$

• Low Voltage Power Supply

(Ta=-25°C to 85°C, V_{DDL}=1.65V to 1.95V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Output High Voltage	V_{OH}	V _{DDL} -0.2			V	I _{OH} =-100uA
Output Low Voltage	V_{OL}			0.2	V	I _{OL} =100uA
Input High Voltage	V _{IH}	0.7* V _{DDL}		V _{DDL} +0.3	V	
Input Low Voltage	V _{IL}	-0.3		0.3* V _{DDL}	V	
Operating Current	I _{cc}			20(TBD)	mA	I _{VCCF} =0mA
Stand-by Current	I _{SB}			400(TBD)	uA	
Input Leakage Current	ILI			-10/+10	uA	V _{IN} =0 to V _{DDL}
Output Leakage Current	I _{LO}			-10/+10	uA	$V_{OUT} = 0$ to V_{DDL}
Pin Capacitance	C _P			7	pF	

AC Characteristics

• High Speed Card Interface Timing

(Ta=-25 $^{\circ}$ C to 85 $^{\circ}$ C,V_{DDH}=2.7V to3.6V)

Parameter	Symbol	Min.	Max.	Unit	Notes
Clock Frequency (Data Transfer Mode)	fpp	26	52	MHz	
Clock Frequency (Identification Mode)	f _{OD}	0	400	KHz	
Clock Low Time	t _{WL}	6.5		ns	
Clock Rise Time	t _{TLH}		3	ns	
Clock Fall Time	t _{THL}		3	ns	
Input Set-up Time	t _{ISU}	3		ns	
Input Hold Time	t _{IH}	3		ns	
Output Delay Time	t _{DLY}	5	14	ns	$C_L < = 30 pF$
Signal Rise Time	t _{rise}		3	ns	$C_L < = 30 pF$
Signal Fall Time	t _{fall}		3	ns	$C_L < = 30 pF$

• Backwards Compatible Card Interface Timing

(Ta=-25°C to 85°C, V_{DDH}=2.7V to 3.6V)

Parameter	Symbol	Min.	Max.	Unit	Notes
Clock Frequency (Data Transfer Mode)	fpp	0	20	MHz	
Clock Frequency (Identification Mode)	f _{OD}	0	400	KHz	
Clock Low Time	t _{WL}	10		ns	
Clock Rise Time	t _{TLH}		10	ns	
Clock Fall Time	t _{THL}		10	ns	
Input Set-up Time	t _{ISU}	3		ns	
Input Hold Time	t _{IH}	3		ns	
Output Delay Time	t _{DLY}	9.7	35	ns	$C_L < = 30 pF$

• Command Latch Cycle

Parameter	Symbol	Min.	Unit	Notes
CLE Setup Time	t _{CLS1}	30	ns	$C_L <= 80pF$
CLE Hold Time	t _{CLH1}	15	ns	$C_L <= 80pF$
CE Setup Time	t_{CS1}	40	ns	$C_L <= 80pF$
CE Hold Time	t_{CH1}	90	ns	$C_L <= 80pF$
ALE Setup Time	t _{ALS1}	90	ns	$C_L <= 80pF$
ALE Hold Time	t _{ALH1}	75	ns	$C_L <= 80pF$
WE Pulse Width	t_{WP1}	45	ns	$C_L <= 80pF$
Data Setup Time	$t_{ m DS1}$	90	ns	$C_L <= 80 pF$
Data Hold Time	t _{DH1}	30	ns	$C_L <= 80 pF$

Address Latch Cycle

Parameter	Symbol	Min.	Unit	Remark
CLE Setup Time	t_{CLS2}	90	ns	$C_L <= 80 pF$
CE Setup Time	t_{CS2}	195	ns	$C_L <= 80 pF$
ALE Setup Time	t _{ALS2}	30	ns	$C_L <= 80 pF$
ALE Hold Time	t _{ALH2}	15	ns	$C_L <= 80 pF$
Write Cycle Time	t_{WC2}	150	ns	$C_L <= 80 pF$
WE Pulse Width	t_{WP2}	45	ns	$C_L <= 80 pF$
WE High Hold Time	$t_{ m WH2}$	105	ns	$C_L <= 80 pF$
Data Setup Time	t_{DS2}	90	ns	$C_L <= 80 pF$
Data Hold Time	t _{DH2}	30	ns	$C_L <= 80 pF$

Input Data Latch Cycle

Parameter	Symbol	Min.	Unit	Remark
CLE Hold Time	t _{CLH3}	285	ns	$C_L <= 80 pF$
CE Hold Time	t_{CH3}	195	ns	$C_L <= 80 pF$
ALE Setup Time	t _{ALS3}	90	ns	$C_L <= 80 pF$
Write Cycle Time	t _{WC3}	60	ns	$C_L <= 80 pF$
WE Pulse Width	t_{WP3}	45	ns	$C_L <= 80 pF$
WE High Hold Time	$t_{ m WH3}$	15	ns	$C_L <= 80 pF$
Data Setup Time	$t_{ m DS3}$	30	ns	$C_L <= 80 pF$
Data Hold Time	t _{DH3}	30	ns	$C_L <= 80 pF$

• Serial Access Cycle after Read

Parameter	Symbol	Min.	Unit	Remark
CE Access Time	t_{CEA4}	285	ns	$C_L <= 80 pF$
Read Cycle Time	t _{RC4}	60	ns	$C_L <= 80 pF$
RE Pulse Width	t _{RP4}	45	ns	$C_L <= 80 pF$
RE High Hold Time	t _{REH4}	15	ns	$C_L <= 80 pF$
Data Setup Time	$t_{ m DS4}$	5(TBD)	ns	$C_L <= 80 pF$
Data Hold Time	$t_{ m DH4}$	5(TBD)	ns	$C_L <= 80 pF$
Ready to RE Low	t _{RR4}	285	ns	$C_L <= 80 pF$

Reliability and Durability

Temperature	Operation: -25°C / 85°C
	Storage: -40°C (168h) / 85°C (500h)
	Junction temperature: max. 95°C
Moisture and corrosion	Operation: 25°C / 95% rel. humidity
	Stress: 40°C / 93% rel. hum./500h
	Salt Water Spray: 3% NaCl/35C; 24h acc. MIL STD Method 1009
ESD protection	Contact Pads:
	+/-4kV, Human body model according to ANSI EOS/ESD-S5.1-1998
	Non Contact Pads area:
	+/-8kV(coupling plane discharge)
	+/-15kV(air discharge)
	Human body model according to IEC61000-4-2
Durability	10.000 mating cycles; test procedure: t.b.d.
Bending	t.b.d.
Torque	t.b.d.
Drop test	1.5m free fall
UV light exposure	UV: 200nm, 15Ws/cm ² according to ISO 7816-1
Visual inspection	No warp page; no mold skin; complete form; no cavities surface smoothness sigma
Shape and form	-0.1 mm/cm² within contour; no cracks; no pollution (fat, oil dust, etc.)

Above technical information is based on MMC4.0 standard specification and tested to be reliable. However, Transcend makes no warranty, either expressed or implied, as to its accuracy and assumes no liability in connection with the use of this product. Transcend reserves the right to make changes in specifications at any time without prior notice.