Изучение статистических закономерностей на примере изучения фона космического излучения

Солодилов Михаил Б01-307

19.09.2023

Содержание

1	Аннотация	2
2	Теоретические сведения	2
	2.1 Излучение	2
	2.2 Статистические понятия	
	2.3 Гистограммы и вероятности	4
3	Методика измерений	5
	3.1 Ход работы	5
4	Результаты измерений и обработка данных	5
	4.1 Данные	5
	4.2 Вывод	

Аннотация

Цель работы: познакомиться с основными понятиями статистики, на примере статистики регистрации фоновых космических частиц изучить статистические закономерности однородного во времени случайного процесса; проверить возможность описания исследуемого процесса статистическими законами Пуассона и Гаусса; измерить среднее число регистрируемых космических лучей в секунду и определить погрешность результата.

В работе используются: счётчик Гейгера-Мюллера, компьютер с интерфейсом для связи со счётчиком.

Теоретические сведения

Излучение

В любой физической лаборатории всегда присутствует радиоактивное излучение. Источниками излучения являются космос и радиоактивные вещества, в малых количествах содержащиеся всюду. Это излучение называется радиоактивным фоном, а основную его часть всё-таки составляют космические лучи.

В данной работе для регистрации излучения используется счётчик Гейгера-Мюллера, который представляет собой наполненный газом цилиндр с двумя электродами. Одним из электродов является сам корпус. Вторым является тонкая нить, натянутая вдоль оси корпуса. Необходимое напряжение подаётся на электроды встроенным блоком питания. Частицы, попадая в счётчик, ионизуют газ, получившиеся электроны лавиной ионизуют ещё больше молекул газа, в следствие чего можно зафиксировать импульс тока, что означает попадание частицы.

Число зарегистрированных частиц зависит от времени измерения, размеров счётчика, давления и состава газа, материалов, из которых изготовлен счётчик.

Статистические понятия

При любом физическом измерении полученные результат отличается от некоторого истинного значения. Погрешности измерений складываются из многих факторов, связанных с методикой измерения, неточностями используемого оборудования и случайными погрешностями, которые меняют свою величину и знак от опыта к опыту. Частным случаем случайных ошибок являются статистические ошибки, вызываемые флуктуациями самой измеряемой величины. В нашем эксперименте как раз есть такая флуктуирующая величина - интенсивность космического излучения, причём флуктуации настолько велики, что все остальные погрешности можно считать несущественными.

Пусть при некотором измерении за время $\tau=10$ с зарегистрировано n космических частиц. Это совсем не значит, что за следующие 10 с тоже зарегистрируется n частиц. Поэтому для нас имеет значение среднее количество зарегистрированных частиц. Если $n_1, n_2, n_3...$ - результаты измерений, всего их N, то

$$\langle n \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} n_i.$$

Если продолжать проводить измерения, можно ожидать, что среднее будет стремиться к некоторому конечному числу, которое можно назвать "истинным" средним значением числа регистрируемых частиц. В математике такое число называется "математическим ожиданием".

$$\bar{n} = \lim_{n \to \infty} \langle n \rangle$$

Но число измерений всегда конечно, поэтому и среднее значение мы можем измерить только с некоторой погрешностью.

Кроме среднего значения важно знать, насколько сильно флуктуируют значения n_i от опыта к опыту. Количественную меру флуктуаций принято измерять среднеквадратичным отклонением (дисперсией) σ_n . По определению:

$$\sigma_n^2 \equiv \frac{1}{N} \sum_{i=1}^{N} (n_i - \langle n \rangle)^2$$

Аналогично при $N \to \infty$ дисперсия стремится к некоторому предельному "ucmuhhomy" значению:

$$\sigma^2 = \lim_{N \to \infty} \sigma_n^2$$

Из теории погрешностей известно, что дисперсия связана с погрешностью среднего значения при независимых измерениях следующей формулой:

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{n}}.$$

Гистограммы и вероятности

Общее

Среднее и дисперсия — это очень важные характеристики, но не дающие полной информации о флуктуирующей величине. Более детальную информацию о ней можно получить, если собрать статистику того, как часто те или иные значения n встречаются среди многочисленных результатов опыта. Построим график, откладывая по оси абсцисс число частиц, зарегистрированных при измерениях, а по оси ординат — долю случаев (по отношению к общему числу измерений), в которых было зафиксировано данное количество частиц. Например, если некоторое значение n встретилось в серии из N измерений N_n раз, то по вертикали отложим отрезок высотой $w_n = \frac{N_n}{N}$. Построенный график содержит дискретно расположенные точки, которые для наглядности обычно соединяются между собой, изображая их в виде совокупности вертикальных прямоугольников.

В пределе $N \to \infty$ столбчатая гистограмма будет стремиться к некоторому предельному состоянию. Предельные значения частот w_n называют вероятноствями соответствующих событий. Для вероятностей можно строить различные теоретические модели, которые можно проверять на опыте, сравнивая практические гистограммы со значениями, предсказанными теорией вероятностей.

При малых N гистограмма может довольно сильно отличаться от теоретической. По мере роста числа измерений N пик гистограммы будет приближаться к предельному среднему значению \bar{n} . Ширина гистограммы по порядку величины совпадает со среднеквадратичным отклонением σ_n . Если величина n близка к \bar{n} , её вероятность будет максимальна. А при удалении от \bar{n} на расстояния, превышающие в несколько раз σ_n , вероятность, как правило, быстро падает.

Пуассоновский процесс

Если случайные события однородны во времени, а каждое последующее событие никак не зависит от предыдущего, то последовательность

таких событий принято называть пуассоновским процессом.

Для пуассоновского процесса может быть получено теоретическое распределение вероятностей - pacnpedenenue Пуассона. Вероятности w_n того, что в эксперименте будет обнаружено n частиц, для распределения Пуассона имеют вид

$$w_n = \frac{\bar{n}^n}{n!} e^{-\bar{n}}.$$

Одним из наиболее характерных свойств этого распределения является связь между его дисперсией и средним значением.

$$\sigma_n \approx \sqrt{\bar{n}}$$

Методика измерений

Измерений проводились с помощью счётчика Гейгера-Мюллера, подключённого по USB к ноутбуку с необходимым программным обеспечением.

Ход работы

- 1. Включить счётчик, запустить программу эксперимента.
- 2. Через 4000 с эксперимента сохранить данные, выданные программой.

Результаты измерений и обработка данных

Данные

Программа выдала несколько графиков, а также текстовый файл, содержащий количество зарегистрированных частиц за секунду.

Обработаем полученные данные, разбив их на промежутки длины τ .

Для $\tau = 10, 20, 30$ секунд рассчитаем следующие значения:

- $\langle n \rangle$ среднее количество частиц. $\langle n \rangle = \frac{\sum_{i=1}^{N} n_i}{N}$
- σ_n среднеквадратичное отклонение. $\sigma_n = \sqrt{\frac{1}{N}\sum_{i=1}^N (n_i \langle n \rangle)^2}$
- \bullet $i \cdot \sigma_n$ попадание в $i\sigma_n$
- $\sigma_{\langle n \rangle}$ погрешность $\langle n \rangle$. $\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{n}}$
- j средняя интенсивность. $j = \frac{\langle n \rangle}{\tau}$
- σ_j погрешность средней интенсивности. $\sigma_j = \frac{\sigma_{\langle n \rangle}}{\tau}$

	$\tau = 10s$	$ au = 20 \mathrm{s}$	$\tau = 30 \mathrm{s}$
$\langle n \rangle$	19.1	38.2	57.4
σ_n	44.6	84.7	128.8
$1 \cdot \sigma_n$	0.98	0.98	0.98
$2 \cdot \sigma_n$	0.98	0.98	0.98
$3 \cdot \sigma_n$	0.98	0.98	0.98
$\sigma_{\langle n \rangle}$	2.2	6.0	11.2
j, c^{-1}	1.91	1.91	1.91
σ_j, c^-1	0.22	0.30	0.37

Можно сделать следующие выводы:

- ullet $\langle n \rangle$ прямо пропорционально au, что очевидно.
- σ_n пропорционально τ .
- $i \cdot \sigma_n$ правило трёх сигм не соблюдается.
- $\sigma_{\langle n \rangle}$ пропорционально τ .
- j не зависит от au.
- σ_j пропорционально τ .

Распределение Пуассона строилось для $\tau=20$ с, однако, как мы видим, оно вообще не ложится под настоящие данные. При этом видно, что свойство распределения Пуассона $\sigma_n \approx \sqrt{\langle n \rangle}$ здесь не работает.

При этом доли случаев, $|n-\langle n\rangle| < \sigma_n, 2\sigma_n, 3\sigma_n$ больше 0.97. Это вызвано огромным среднеквадратичным отклонением. На это повлияли крайне сильные флуктуации, которые можно было наблюдать на графиках в программе счётчика в начале эксперимента. Можно предположить,

что в некоторый момент эксперимента рядом с счётчиком находился источник радиации.

В связи с этим я решил исключить данные, сильно выделяющиеся из массы. Были получены следующие данные:

	$\tau = 10 \mathrm{s}$	$ au = 20 \mathrm{s}$	$ au = 30 \mathrm{s}$
$\langle n \rangle$	12.7	25.4	38.1
σ_n	3.5	5.4	6.4
$1 \cdot \sigma_n$	0.68	0.65	0.70
$2 \cdot \sigma_n$	0.95	0.97	0.95
$3 \cdot \sigma_n$	0.99	0.99	0.99
$\sigma_{\langle n \rangle}$	0.18	0.39	0.56
j, c^{-1}	1.27	1.27	1.27
σ_j, c^-1	0.02	0.02	0.02

По этим данным можно сказать:

- $\langle n \rangle$ прямо пропорционально τ , что очевидно.
- $\sigma_n \approx \langle n \rangle$.

	$\tau = 10 \text{ c}$	$\tau = 20 \text{ c}$	$\tau = 30 \text{ c}$
\sqrt{n}	3.56	5.04	6.17
σ_n	3.5	5.4	6.4
ε_{σ_n} , %	1.71	6.67	3.59

- $i \cdot \sigma_n$ правило трёх сигм соблюдается.
- ullet $\sigma_{\langle n \rangle}$ пропорционально au.
- j не зависит от au.
- σ_j не зависит от au.

Вывод

График построен для $\tau=20~{\rm c}$, и он хорошо ложится на гистограмму. В целом данные достаточно хорошо совпадают с теоретическими данными (в пределах 7%, говоря о σ_n), что говорит о случайном и независимом характере космического излучения.