E:	$x: a_n = a_{n-1} + a_{n-2}, n \ge 2; a_0 = 1, a_1 = 1$
)
n	an Fibonacci
0	1 9
~ 1	1 20
2	2 2 8 8 8
3	3
4	5 1 2 20 28 38
5	8
6	13
-	1 of xif a 1
2	$\int_{0}^{\infty} a_{n} x^{n} = \sum_{n=1}^{\infty} a_{n-1} x^{n} + \sum_{n=1}^{\infty} a_{n-2} x^{n}$
h =	2
Goal:	(use algebra to get Eanx" = f
	use algebra to get Eanx" = f
	(also some recognizable Moclaurin series)
Method	s: 1) add+subtract, to a sum
	,
	$\sum_{n=0}^{\infty} q_n x^n - a_1 x - a_0 = \sum_{n=2}^{\infty} a_{n-1} x^n + \sum_{n=2}^{\infty} a_{n-2} x^n$
	h=0
	2) Multiply & divide by poners of x, to a sum
	$\sum_{n=0}^{\infty} a_n x^n - 1x - 1 = x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + x^2 \sum_{n=2}^{\infty} a_{n-2} x^{n-2}$
	h=2 h=2
	3) Reindex
	Ø Ø
	$f - x - 1 = x \sum_{n=1}^{\infty} a_n x^n + x^2 \sum_{n=0}^{\infty} a_n x^n$

More! Za,x" - a,x° + x2 f f-x-1 $= \chi(f-1) + \chi^2 f$ Solve for f: $f - x - 1 - xf - x^2 f = -x$ f - xf -x2f = f (1-x-x2) = 1+x+2x2+3x3+5x4+8x5+13x6...