Enunciat - A

1.1 Aproximacions asimptòtiques.

Avaluar l'exactitud de l'aproximació de Stirling:

n!
$$n^n e^{-n} \sqrt{2\pi n}$$
, n $n \cdot N$.

Es demana:

1. Cerca documentació sobre l'aproximació de Stirling i sobre les aproximacions asimptòtiques en general. Escriu un breu resum del que has entès (màxim 1/2full). Dóna les teves fonts bibliogràfiques.

L'objectiu principal de les aproximacions asimptòtiques és obtenir una aproximació a una funció d'expressió analítica complicada en termes de funcions senzilles vàlida en un cert límit i en un sentit asimptòtic.

L'aproximació de Stirling, nom en honor al matemàtic escocès del segle XVIII James Stirling, és una aproximació asimptòtica per factorials grans.

Ens diu:
$$n! \approx n^n \cdot e^{-n} \cdot \sqrt{2 \cdot \pi \cdot n}$$

O el que és el mateix:
$$\lim_{n\to\infty} \frac{n!}{n^n\cdot e^{-n}\cdot \sqrt{2\cdot \pi\cdot n}}=1$$

És a dir, n! és equivalent a l'expressió $n^n \cdot e^{-n} \cdot \sqrt{2 \cdot \pi \cdot n}$. Això vol dir que per calcular un límit en el qual n! és un factor del numerador o del denominador d'una successió podem substituir-lo per ella. Aquesta substitució sol ser molt útil en els casos en què la presència de n! com a factor ens dificulta operar dins de la successió.

Aquesta fórmula és més "equivalent" quan major és n. En el cas de n = 4 es produeix un error relatiu del 2%. L'error relatiu comença a ser inferior al 1% quan n és major que 9. I un error relatiu menor que el 0.1% es produeix a partir de quan n és major que 84.

http://hyperphysics.phy-astr.gsu.edu/hbasees/Math/stirling.html https://es.wikipedia.org/wiki/F%C3%B3rmula_de_Stirling http://gaussianos.com/una-mejora-par-ramanujan-de-la-formula-de-stirling/

2. Escriure una funció en Matlab (STIRLING) per calcular el valor de

$$n^n e^{-n} \sqrt{2\pi n}$$
, n 2 N.

Feu un joc de proves per a valors de n, per exemple n = 5,10,50,100,150,... Comenta els resultats obtinguts.

Aquesta funció, en quant més gran és la n, menor és l'error relatiu que s'obté en funció de n!. Però no serveix per a qualsevol valor de n. Com s'observa a la taula.

n	n!	Stirling(n)
5	120	1.180191679575900e+02
10	3628800	3.598695618741032e+06
50	3.0414e+64	3.036344593938140e+64
100	9.3326e+157	9.324847625269240e+157
150	5.7134e+262	Inf

STIRLING.m

3. Escriure una funció en Matlab (APROX) per calcular el valor de

$$\frac{n!}{n^n e^{-n}\sqrt{2\pi n}} \mathbf{n} \ \mathbf{N}.$$

Feu un joc de proves per a valors de n, n=5,10,50,100,150,... . Comenta els resultats obtinguts.

Com major és el valor de n més s'acosta la funció a 1. Però, al igual que amb la funció STIRLING, APROX no serveix per a qualsevol valor de n.

n	Aprox(n)
5	1.016783985827809
10	1.008365359132401
50	1.001668034070741
100	1.000833677872023
150	0

4. Avaluar l'exactitud de l'aproximació de Stirling, es a dir comproveu fent ús de Matlab que

$$\lim_{n\to +\infty} \frac{n!}{n^n e^{-n}\sqrt{2\pi n}} = 1.$$

Es compleix que en l'aproximació de Stirling quan n tendeix a infinit és igual a 1.

Aquest límit es pot comprovar amb la funció APROX ja que retorna el quocient entre el factorial de n i l'aproximació de Stirling de n.

Com s'observa a la taula anterior, com major és el valor de n més s'acosta la funció a 1.

Tanmateix, a l'apartat següent es pot observar més clarament la taula de la funció APROX millorada. Aquesta, inclou valors de n més grans i veiem que cada vegada el valor retornat d'APROX s'acosta més a 1.

5. Quin és el màxim n pel qual Matlab pot calcular STIRLING? Quin és el màxim n pel qual Matlab pot calcular APROX? Millora el codi de APROX per incrementar n fins a 1500. Explica que has de fer i per què. Raona totes les teves respostes.

Tant amb la funció STIRLING com amb la funció APROX, el màxim n pel qual Matlab pot calcular APROX és 143. És lògic ja que APROX depèn de la funció STIRLING.

Per millorar el codi d'APROX, s'ha utilitzat l'expressió següent:

$$\frac{n!}{n^n e^{-n}} = \frac{ne*n!}{n^n} = \frac{e}{n} * \frac{2e}{n} * ... * \frac{ne}{n}$$

Així s'ha millorat el codi perquè matlab pugui calcular fins a n=2000.

n	APROX	APROX (millorat)
5	1.016783985827809	1.016783985827809
10	1.008365359132401	1.008365359132402
50	1.001668034070741	1.001668034070741
100	1.000833677872023	1.000833677872023
150	0	1.000555709081649
1500	-	1.000055557098134
2000	-	1.000041322813259

maxSTIRLING.m

maxAPROX.m

APROX2.m

1.2 Solucions d'equacions no lineals

Calcular valors aproximats de l'arrel positiva de l'equació $x^3 - x^2 - x - 1 = 0$.

Es demana:

1. Quantes arrels diferents té el polinomi $x^3 - x^2 - x - 1 = 0$? Doneu intervals que separin les arrels. Justifica les teves respostes.

El polinomi $x^3 - x^2 - x - 1 = 0$ té una única arrel. Segons el teorema de Bolzano, si $f(x) = x^3 - x^2 - x - 1$ contínua en [1, 2] i f(1) = -2 < 0 i f(2) = 1 > 0, per tant, existeix x_0 pertanyent a (1, 2) tal que $f(x_0) = 0$.

- 2. Calculeu la arrel positiva propera a x = 2 (mínim 6 decimals correctes) per cadascun dels següents mètodes:
 - (a) Mètode de la bisecció. Presenteu els resultats en una taula.

taula_resultats = $f(x_n)$ $\frac{(a_n-b_n)}{}$ n a_n x_n $\frac{2}{1.5000}$ -1.3750 1.0000 1.0000 0 0 2.0000 1.0000 2.0000 -1.0000 0 3.0000 1.5000 2.0000 1.7500 -0.4531 0.5000 4.0000 2.0000 1.0000 -2.0000 2.0000 0 5.0000 1.7500 2.0000 1.8750 0.2012 0.2500 6.0000 1.0000 2.0000 1.5000 -1.3750 1.0000 7.0000 1.0000 1.8750 1.4375 -1.5334 0.8750 8.0000 1.5000 1.8750 1.6875 -0.7297 0.3750 9.0000 1.4375 1.8750 1.6563 -0.8560 0.4375 10.0000 1.6875 1.8750 1.7813 -0.3025 0.1875 11.0000 1.6563 1.8750 1.7656 -0.3788 0.2188 12.0000 1.7813 1.8750 1.8281 -0.0605 0.0938 13.0000 1.7656 1.8750 1.8203 -0.1022 0.1094 14.0000 1.8281 1.8750 1.8516 0.0678 0.0469

```
15.0000 1.8203 1.8750 1.8477 0.0461 0.0547
16.0000 1.8203 1.8516 1.8359 -0.0183 0.0313
17.0000 1.8203 1.8477 1.8340 -0.0289 0.0273
18.0000 1.8359 1.8477 1.8418 0.0138 0.0117
19.0000 1.8340 1.8477
                      1.8408 0.0084 0.0137
20.0000 1.8340
               1.8418
                       1.8379 -0.0076 0.0078
21.0000 1.8340 1.8408 1.8374 -0.0103 0.0068
22.0000 1.8379 1.8408 1.8394 0.0004 0.0029
23.0000 1.8374 1.8408 1.8391 -0.0010 0.0034
24.0000 1.8374 1.8394 1.8384 -0.0050 0.0020
25.0000 1.8391 1.8394 1.8392 -0.0003 0.0002
26.0000 1.8384 1.8394 1.8389 -0.0023 0.0010
27.0000 1.8392
               1.8394 1.8393 0.0000 0.0001
28.0000 1.8389
               1.8394
                       1.8391 -0.0010 0.0005
29.0000 1.8389
               1.8393 1.8391 -0.0011
                                     0.0004
30.0000 1.8391 1.8393 1.8392 -0.0005 0.0002
31.0000 1.8391 1.8393 1.8392 -0.0005 0.0002
32.0000 1.8392 1.8393 1.8392 -0.0002 0.0001
33.0000 1.8392 1.8393 1.8392 -0.0003 0.0001
34.0000 1.8392 1.8393 1.8393 -0.0001 0.0000
35.0000 1.8392 1.8393 1.8393 -0.0001 0.0001
36.0000 1.8393
               1.8393
                      1.8393 -0.0000
                                     0.0000
37.0000 1.8393
               1.8393
                       1.8393 -0.0000 0.0000
38.0000 1.8393
               1.8393
                       1.8393
                              0.0000 \quad 0.0000
39.0000 1.8393
                      1.8393
               1.8393
                              0.0000 0.0000
40.0000 1.8393 1.8393 1.8393 -0.0000 0.0000
41.0000 1.8393 1.8393 1.8393 -0.0000 0.0000
42.0000 1.8393 1.8393 1.8393 -0.0000 0.0000
43.0000 1.8393 1.8393 1.8393 -0.0000 0.0000
44.0000 1.8393 1.8393 1.8393 0.0000 0.0000
45.0000 1.8393
               1.8393
                       1.8393
                              0.0000 0.0000
46.0000 1.8393 1.8393 1.8393 -0.0000 0.0000
47.0000 1.8393 1.8393 1.8393 -0.0000 0.0000
48.0000 1.8393 1.8393 1.8393 -0.0000 0.0000
```

L'arrel positiva propera a x=2 és aproximadament 1.8393. L'interval inicial és [1, 2] i el criteri d'aturada η =0.5*10⁻⁶.

biseccio.m

(b) Mètode de Newton. Presenteu els resultats en una taula. Per cada mètode, doneu els punts inicials i el criteri d'aturada.

L'arrel positiva propera a x=2 és aproximadament 1.8393. El punt inicial és 2 i el criteri d'aturada $\eta=0.5*10-6$.

newton.m

3. Considereu el mètode iteratiu següent:

$$x_{n+1} = x_n - \lambda(x_n^3 - x_n^2 - x_n - 1), \lambda > 0.$$

(a) Per a $1.5 \le x_0 \le 2$, estudieu la convergència del mètode a l'arrel real de $x^3-x-x-1=0$ sense calcular les iteracions en Matlab a partir del teorema de convergència.

$$\begin{split} f(x) &= x - \lambda(x^3 - x^2 - x - 1) \\ f'(x) &= 1 - \lambda(3x^2 - 2x - 1) \\ f'(1.5) &= 1 - \lambda(3(1.5)^2 - 2(1.5) - 1) = 1 - 2.75 \lambda \\ f'(2) &= 1 - \lambda(3(2)^2 - 2(2) - 1) = 1 - 7 \lambda \end{split}$$

El mètode serà convergent si |f'(1.5)| < 1 i |f'(2)| < 1:

(b) Per a $1.5 \le x0 \le 2$ donat, doneu un l'interval per a λ que asseguri la convergència del mètode.

El mètode serà convergent si
$$|f'(1.5)| < 1$$
 i $|f'(2)| < 1$:
-1 < 1 - 2.75 λ < 1 => 0 < λ < 0.72
-1 < 1 - 7 λ < 1 => 0 < λ < 0.2857143

Per tant, el mètode convergirà si $0 < \lambda < 0.2857143 = 2/7$.

(c) Preneu $\lambda = 1/9$. Obteniu el punt fix amb la mateixa tolerància que els apartats anteriors. Doneu el punt inicial i el criteri d'aturada (fins a 6 decimals correctes). Presenteu els resultats en una taula.

taula_resultats =

n	x_n	$f(x_n)$	$x_n - x_n - 1$
1	1.5	1.347222222222	0
2	1.347222222222	1.15644319892166	-0.15277777777778
3	1.15644319892166	0.940085178261508	-0.15277777777778
4	0.940085178261508	0.718636788300151	-0.190779023300564
5	0.718636788300151	0.511531935284621	-0.216358020660151
6	0.511531935284621	0.329382280533562	-0.221448389961356
7	0.329382280533562	0.173589014012798	-0.20710485301553
8	0.173589014012798	0.0404233054869479	-0.182149654751059
9	0.0404233054869479	-0.0753535051429128	-0.155793266520764
10	-0.0753535051429128	-0.178770451160157	-0.13316570852585
11	-0.178770451160157	-0.274203976205555	-0.115776810629861
12	-0.274203976205555	-0.365492936619229	-0.103416946017244
13	-0.365492936619229	-0.456261442811742	-0.0954335250453983
14	-0.456261442811742	-0.550360894036886	-0.0912889604136739
15	-0.550360894036886	-0.652498554696564	-0.0907685061925128
16	-0.652498554696564	-0.769282989837978	-0.0940994512251438
17	-0.769282989837978	-0.911257675377036	-0.102137660659679
18	-0.911257675377036	-1.09746130189429	-0.116784435141413

19	-1.09746130189429	-1.36732416692054	-0.141974685539058
20	-1.36732416692054	-1.81827603425215	-0.186203626517255
21	-1.81827603425215	-2.76264320451509	-0.269862865026251
22	-2.76264320451509	-5.75759795585031	-0.45095186733161
23	-5.75759795585031	-30.1194123751816	-0.944367170262941
24	-30.1194123751816	-3163.648083882	-2.99495475133522
25	-3163.648083882	-3519326790.21134	-24.3618144193313
26	-3519326790.21134	-4.84324319803299e+27	-3133.52867150682
27	-4.84324319803299e+27	-1.26231087044266e+82	-3519323626.56326
28	-1.26231087044266e+82	-2.2348915686073e+245	-4.84324319803299e+27
29	-2.2348915686073e+245	-Inf	-1.26231087044266e+82
30	-Inf	NaN	-2.2348915686073e+245

El punt inicial és x_0 = 1.5 i el criteri d'aturada és quan $|x_{n+1}-x_n|$ < 0.5*10-6 i fins que f (x_{n+1}) < 0.5*10-6.

puntfixC.m

(d) Preneu $\lambda = 2/7$. Obteniu el punt fix amb la mateixa tolerància prèvia. Doneu el punt inicial i el criteri d'aturada (fins a 6 decimals correctes). Presenteu els resultats en una taula.

taula_resultats =			
n	x_n	$f(x_n)$	$x_n - x_n - 1$
1	1.5	1.10714285714286	0
2	1.10714285714286	0.542625468554769	-0.392857142857143
3	0.542625468554769	0.0633980620142411	-0.392857142857143
4	0.0633980620142411	-0.241505526427541	-0.564517388588088
5	-0.241505526427541	-0.478907007343454	-0.479227406540528
6	-0.478907007343454	-0.72470219499509	-0.304903588441782
7	0.72470219499509	-1.06215927872026	-0.237401480915913
8	-1.06215927872026	-1.70911138961458	-0.245795187651635
9	-1.70911138961458	-3.76750288838711	-0.337457083725169
10	-3.76750288838711	-22.311161471637	-0.646952110894325
11	-22.311161471637	-3331.65503722068	-2.05839149877252
12	-3331.65503722068	-10569208643.0736	-18.5436585832499
13	-10569208643.0736	-3.37333420042594e+02	9 -3309.34387574904
14	-3.37333420042594e+029	-1.09675611346574e+08	8 -10569205311.4186
15	-1.09675611346574e+088	-3.76931252281537e+26	3 -3.37333420042e+029
16	-3.76931252281537e+263	Inf	-1.09675611346574e+088
17	-Inf	NaN -3	3.76931252281537e+263

El punt inicial és x_0 = 1.5 i el criteri d'aturada és quan $|x_{n+1}-x_n|$ < 0.5*10-6 i fins que f (x_{n+1}) < 0.5*10-6.

puntfixD.m

4. Representeu en un gràfic els logaritmes dels valors absoluts dels errors relatius aproximats: $r^{n+1} = \frac{x^{n+1} - x^n}{x^{n+1}}$. Cada mètode un color diferent.

grafic.fig

5. A partir de les gràfiques realitzades, quin seria el millor procediment per obtenir la arrel propera a x = 2 de $x^3 - x^2 - x - 1 = 0$. Raona les teves respostes.

El millor mètode és el de Newton (blau) ja que és el que disminueix més ràpid i necessita menys iteracions per tenir 6 decimals correctes. Per tant, és el que convergeix més ràpidament.