B1B02FY2 a B3B02FY2, varianta 254

Otázka 1 (2 body)

Napište vztah pro obecné řešení vlnové rovnice pro netlumené kulové vlny šířící se z počátku v homogenním izotropním nedisperzním prostředí. Vysvětlete všechny použité symboly.

Otázka 2 (1 bod)

Slovně definujte periodu kmitů vlny.

Otázka 3 (1 bod)

Napište vlnovou rovnici pro vektor elektrické intenzity elektromagnetické vlny ve vakuu. Vysvětlete všechny použité symboly.

Otázka 4 (2 body)

Napište definiční vztah pro Poyntigův vektor. Vysvětlete všechny použité symboly. Jaký je rozměr tohoto vektoru?

Otázka 5 (2 body)

Určete disperzní vztah pro Korteweg-de Vriesovu rovnici $\frac{1}{c}\frac{\partial y}{\partial t} + \alpha y \frac{\partial y}{\partial x} + \delta \frac{\partial^3 y}{\partial x^3} = 0$

Otázka 6 (2 body)

Sinusová vlna je dána vztahem $y = 6\sin(\pi x - 2\pi t)$. Určete její vlnovou délku.

Otázka 7 (2 body)

Stojatá vlna je popsána rovnicí $y = 6\sin(\pi x)\cos(2\pi t)$. Určete vzdálenost kmiten.

Otázka 8 (2 body)

Disperzní vztah je $\omega = cayk - \delta k^3$. Určete fázovou rychlost v_f a grupovou rychlost v_g

Otázka 9 (2 body)

Efektivní hodnota akustického tlaku je $p_{ef}=0,02$ Pa. Určete hladinu akustického tlaku L_p

Příklad 1 (4 body)

Fázová rychlost mořských vln $v_f = (g\lambda/2\pi)^{1/2}$, kde g je tíhové zrychlení a λ je délka vlny. Vypočtěte grupovou rychlost vln pro $\lambda = 5$ m, tíhové zrychlení je rovno g = 9,81 m·s⁻².

celkem bodů: 20