Last time defn of a metric
$$d: X \times X$$
 to $[0, \infty)$

what are the balls $B_{\eta}(x, \delta)$? [X, and {x} for all x]

so this metric generates the discrete topology

so we call it the discrete metric

square metric:

for all x, y, z in X:

1)
$$d(x, y) = 0$$
 if and only if $x = y$

2)
$$d(x, y) = d(y, x)$$

3)
$$d(x, y) + d(y, z) \ge d(x, z)$$

Ex [draw B_e(0, 1), B_
$$\rho$$
(0, 1), B_e(0, $\sqrt{2}$)]

Warmup do the following define a metric? $\eta(x, x) = 0$, and $\eta(x, y) = 1$ for $x \neq y$

euclidean metric:

$$e(x, y) = sqrt((x_1 - y_1)^2 + ... + (x_n - y_n)^2)$$

1) and 2) easy

if
$$x = z$$
: $\eta(x, y) + \eta(y, z) \ge 0 = \eta(x, z)$

if
$$x \neq z$$
: either $y \neq x$ or $y \neq z$
so $\eta(x, y) + \eta(y, z) \ge 1 = \eta(x, z)$

$$\rho(x, y) = \max\{|x_1 - y_1|, ..., |x_n - y_n|\}$$

 $B_e(0, 1)$ sub $B_\rho(0, 1)$ sub $B_e(0, \sqrt{2})$

<u>Lem</u> for all x and δ ,

- 1) $B_e(x, \delta)$ sub $B_\rho(x, \delta)$
- 2) $B_\rho(x, \delta)$ sub $B_e(x, \sqrt{n \cdot \delta})$

Pf of 2) want: $\rho(x, y) < \delta$ implies $e(x, y) < \sqrt{n} \cdot \delta$ enough: $e(x, y) \le \sqrt{n} \cdot \rho(x, y)$ [note: reversed positions of e and ρ]

 $e(x, y) \le \sqrt{(n \max_i \{(x_i - y_i)^2\})} = \sqrt{n \cdot \rho(x, y)}$

Lem let d, resp. d', be a metric on X, generating a topology T, resp. T'

suppose that for all x in X and $\delta > 0$, we have $\delta' > 0$ s.t. B_{d'}(x, δ') sub B_d(x, δ) then T' is finer than T

Pf pick U in T

want U in T', i.e., for all x in U, some δ' s.t. B_{d'}(x, δ') sub U since U in T, have some δ s.t. B_d(x, δ) sub U thus some δ' s.t. B_{d'}(x, δ') sub B_d(x, δ)

Thm Euclidean and square metrics induce the same topology on R^n [the analytic topology]

Rem d, d' are called equivalent iff there are fixed A, B > 0 s.t. for all x, y, $d(x, y) \le A d'(x, y)$, $d'(x, y) \le B d(x, y)$ [uniformly]

if two metrics are equivalent, then they generate the same topology

converse is false: see PS2, #9-10

Q what about infinite-dim'l space?

 $R^{\omega} = \{(x_1, x_2, ...) \mid x_i \text{ in } R \text{ for all } i\}$

 $R^{\infty} = \{(x_1, x_2, ...) \mid x_i \neq 0 \text{ for only fin. many } i\}$

Euclidean and square metrics don't work on R^ω

Q do they still work on R^∞? [yes]

Q are there other metrics on R^ω? [yes] see PS2, #11

(Munkres §15, 19) given {X_i}_{i in I},

prod_{i in I} X_i
:= {sequences (x_i)_{i in I} | x_i in X_i for all i}

Q what if $X_i = \emptyset$ for some i? [then prod_i $X_i = \emptyset$]

Q is R^n of this form? R^ω? R^∞? [yes, yes, no]

Q if each X_i has a topology, do we get a natural topology on prod_{i in I} X_i?

<u>Df</u>	the <u>box topology</u> on prod_{i in I} X_i: generated by the basis	basis contains the collection of square balls
	{prod_i U_i U_i is open in X_i for all i}	$(a, b) \times (a, b) \times \times (a, b)$
<u>Df</u>	the product topology on prod_{i in I} X_i:	so finer than analytic top
	generated by the basis {prod_i U_i U_i is open in X_i for all i,	conversely, prod's of anlytc opens are anlytc open
	U_i ≠ X_i for fin many i}	Q take $I = Z_+$ and $X_i = R$ for all i
		then prod_i $X_i = R^{\omega}$
<u>Rem</u>	if the indexing set I is finite then box = product	do we have box = product here?
		$(-1, 1) \times (-1, 1) \times$ is box-open,
Q	take $I = \{1, 2,, n\}$ and $X_i = R$ for all i then prod_i $X_i = R^n$	but not product-open
	what is the box/product topology here?	the box top can be finer than the product top