Solution manual of 'Introduction to Commutative algebra, Atiyah-Macdonald'

Contents

1	Rings and Ideals	3
2	Modules	3
3	Rings and Modules of Fractions	3
4	Primary Decomposition	3
5	Integral Dependence and Valuation	3
6	Chain Condition	3
7	Noetherian Rings	3
8	Artin Rings	3
9	Discrete Valuation rings and Dedekind Domain	3
10	Completions	3
11	Dimension Theory	3

1 Rings and Ideals

2 Modules

3 Rings and Modules of Fractions

- 1. Let A be a ring, M an A-module. The support of M is defined to be the set Supp (M) of prime ideals p of A such that $M_p \neq 0$. Prove the following results:
 - (a) $M \neq 0 \Leftrightarrow \text{Supp } (M) \neq \emptyset$.
 - (b) V(a) = Supp (A/a).
 - (c) If $0 \to M' \to M \to M'' \to 0$ is an exact sequence, then Supp $(M) = \text{Supp } (M') \cup \text{Supp } (M'')$.
 - (d) If $M = \sum M_i$, then Supp $(M) = \bigcup$ Supp (M_i) .
 - (e) If M is finitely generated, then Supp $(M) = V(\operatorname{Ann}_A(M))$ (and is therefore a closed subset of spec A).
 - (f) If M and N are finitely generated then Supp $(M \otimes_A N) = \text{Supp } (M) \cap \text{Supp } (N)$. [Use Chapter 2, Exercise 3.]
 - (g) If M is finitely generated and a is an ideal of M then Supp $(M/aM) = V(a + \operatorname{Ann}_A(M))$.
 - (h) If $f: A \to B$ is a ring homomorphism and M is a finitely generated A-module, then Supp $(B \otimes_A M) = f^{*-1}(\operatorname{Supp}(M))$.

Answer.

(a) dfd

- 4 Primary Decomposition
- 5 Integral Dependence and Valuation
- 6 Chain Condition
- 7 Noetherian Rings
- 8 Artin Rings
- 9 Discrete Valuation rings and Dedekind Domain
- 10 Completions
- 11 Dimension Theory