

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=7; day=18; hr=10; min=21; sec=55; ms=345;]

=====

Application No: 10581761 Version No: 2.0

Input Set:

Output Set:

Started: 2008-07-17 17:01:45.584
Finished: 2008-07-17 17:01:48.344
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 760 ms
Total Warnings: 30
Total Errors: 0
No. of SeqIDs Defined: 52
Actual SeqID Count: 52

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
W 402	Undefined organism found in <213> in SEQ ID (3)
W 402	Undefined organism found in <213> in SEQ ID (6)
W 402	Undefined organism found in <213> in SEQ ID (7)
W 402	Undefined organism found in <213> in SEQ ID (8)
W 402	Undefined organism found in <213> in SEQ ID (11)
W 402	Undefined organism found in <213> in SEQ ID (12)
W 402	Undefined organism found in <213> in SEQ ID (13)
W 402	Undefined organism found in <213> in SEQ ID (16)
W 402	Undefined organism found in <213> in SEQ ID (17)
W 402	Undefined organism found in <213> in SEQ ID (18)
W 402	Undefined organism found in <213> in SEQ ID (23)
W 402	Undefined organism found in <213> in SEQ ID (24)
W 402	Undefined organism found in <213> in SEQ ID (25)
W 402	Undefined organism found in <213> in SEQ ID (28)
W 402	Undefined organism found in <213> in SEQ ID (29)
W 402	Undefined organism found in <213> in SEQ ID (30)
W 402	Undefined organism found in <213> in SEQ ID (33)
W 402	Undefined organism found in <213> in SEQ ID (34)

Input Set:

Output Set:

Started: 2008-07-17 17:01:45.584
Finished: 2008-07-17 17:01:48.344
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 760 ms
Total Warnings: 30
Total Errors: 0
No. of SeqIDs Defined: 52
Actual SeqID Count: 52

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Hellstrom, Mats
Wallgard, Elisabeth
Kalen, Mattias

<120> ANGIOGENESIS AFFECTING POLYPEPTIDES,
PROTEINS, AND COMPOSITIONS, AND METHODS OF USE THEREOF

<130> 102959

<140> 10581761
<141> 2008-07-17

<150> PCT/SE2004/001814
<151> 2004-12-06

<150> 60/481, 741
<151> 2003-12-05

<150> SE 03032687
<151> 2003-12-05

<160> 52

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 736
<212> DNA
<213> Murinae

<400> 1
gtgatccagg atccgaagag gcccggagca ggagcatggc gtcgtcgaaa tcgggtgcaggc 60
agctgccccct ggtgctgctg atgttgcgtt tggcgagtgc ggcacggggcc agactctact 120
tccgctcgaa ccagacttgc taccatccca ttgcggggaa ccagctggct ctgctggggc 180
gcaggactta tcctcgcccg catgagtacc tgcgtccaggc ggatctcccc aagaattggg 240
actggagaaa tgtgaacggt gtcaactatg ccagcggtcac caggaaccag cacatcccac 300
agtactgtgg ttctctgtgg gcccacggca gcaccaggc catggcagac cgaatcaaca 360
tcaagaggaa aggtgcataa ccctccatcc tgctgtccgt acagaatgtc attgactgtg 420
gcaatgtgg ctcttgtgaa gggggcaatg accttccgggt gtgggagtat gcccacaaggc 480
atggcatccc cgatgagacc tgcaacaact accaggcaag gaccaagact gtgacaagtt 540
taaccagtgt gggacctgca ctgaattcaa agagtgtcac accatccaga attacaccct 600
ctggagagtg ggtgattacg gtccctgtcc gggaggggaga agatgtggc gagatctatg 660
ccaatggtcc catcagctgc gggataatgg gcaccagaga tgatgtctaa ctacactggg 720
ggcatctatg ctgagc 736

<210> 2
<211> 1404
<212> DNA
<213> Murinae

<400> 2
aaaggaccgg gcggggcggtc ccgagcggtt gggcctgcgg gtcgggtcaa gaggtcgaag 60

gtgctgcgcg tcatccagga tccgaattgg cccggaggcag gagcatggcg tcgtcggtt 120
 cggcgcagca gctgcccctg gtgctgctga tgttgctgtt ggcgagtgcg gcacgggcca 180
 gactctactt ccgctcgggc cagacttgct accatccat tcgcggggac cagctggctc 240
 tgctggggcg caggacttat cctcgccgc atgagttacct gtccccagcg gatctcccc 300
 agaattggga ctggagaaat gtgaacggtg tcaactatgc cagcgtcacc aggaaccagc 360
 acatccaca gtactgttgt tcctgctgg cccacggcag caccagtgcc atggcagacc 420
 gaatcaacat caagagggaa ggtgcattggc cctccatct gctgtccgta cagaatgtca 480
 ttgactgtgg caatgctggc tcttgtaag gggcaatga cttccgggtg tggaggtatg 540
 cccacaagca tggcatcccc gatgagacct gcaacaacta ccaggccaag gaccaagact 600
 gtgacaagtt taaccagtgt gggacctgca ctgaattcaa agagtgtcac accatccaga 660
 attacaccct ctggagagtg ggtgattacg gtcctgtc cgggagggag aagatgtgg 720
 ccgagatcta tgccaatggc cccatcagct gcgggataat ggcaacagag atgatgtcta 780
 actacactgg gggcatctat gctgagcacc aggaccaggc cgttatcaac cacatcatct 840
 ctgttagctgg ctggggtgtc agcaacgatg gcatcgagta ctggattgtc cgaaattcat 900
 gggcgaacc ctggggtgag aaaggctgga tgaggatgt gaccagcacc tacaagggag 960
 gcacaggtga cagctacaac cttgccatcg agagtgcctg cacattggg gacccattg 1020
 tttaggtaga tgtctctgga agcagcgctg tgaaccatga cagggagggg tgattaatta 1080
 ctgacactgg acatgtccag acagctataa acagtgcctg tggacatgag gaccagagt 1140
 tggactgcat cccgagagga gacggtaaag gatgaaacac aactgcactg ggaccctccg 1200
 ccgtaccctc caggcctgccc tcctccacca ctgagccctc caggcctgccc tcctcttcta 1260
 cagtgcctgc cttagccac ccggagaaga gagctatggt ttaggacagc tcaacttatac 1320
 accagatctg gagccctgga atccatggga ggggggaaca agtccagact gcttaagaaa 1380
 tgagtaaaat atctggcttc ccac 1404

<210> 3

<211> 306

<212> PRT

<213> Murinae

<400> 3

Met Ala Ser Ser Gly Ser Val Gln Gln Leu Pro Leu Val Leu Leu Met

1	5	10	15
---	---	----	----

Leu Leu Leu Ala Ser Ala Ala Arg Ala Arg Leu Tyr Phe Arg Ser Gly

20	25	30
----	----	----

Gln Thr Cys Tyr His Pro Ile Arg Gly Asp Gln Leu Ala Leu Leu Gly

35	40	45
----	----	----

Arg Arg Thr Tyr Pro Arg Pro His Glu Tyr Leu Ser Pro Ala Asp Leu

50	55	60
----	----	----

Pro Lys Asn Trp Asp Trp Arg Asn Val Asn Gly Val Asn Tyr Ala Ser

65	70	75	80
----	----	----	----

Val Thr Arg Asn Gln His Ile Pro Gln Tyr Cys Gly Ser Cys Trp Ala

85	90	95
----	----	----

His Gly Ser Thr Ser Ala Met Ala Asp Arg Ile Asn Ile Lys Arg Lys

100	105	110
-----	-----	-----

Gly Ala Trp Pro Ser Ile Leu Leu Ser Val Gln Asn Val Ile Asp Cys

115	120	125
-----	-----	-----

Gly Asn Ala Gly Ser Cys Glu Gly Gly Asn Asp Leu Pro Val Trp Glu

130	135	140
-----	-----	-----

Tyr Ala His Lys His Gly Ile Pro Asp Glu Thr Cys Asn Asn Tyr Gln

145	150	155	160
-----	-----	-----	-----

Ala Lys Asp Gln Asp Cys Asp Lys Phe Asn Gln Cys Gly Thr Cys Thr

165	170	175
-----	-----	-----

Glu Phe Lys Glu Cys His Thr Ile Gln Asn Tyr Thr Leu Trp Arg Val

180	185	190
-----	-----	-----

Gly Asp Tyr Gly Ser Leu Ser Gly Arg Glu Lys Met Met Ala Glu Ile

195	200	205
-----	-----	-----

Tyr Ala Asn Gly Pro Ile Ser Cys Gly Ile Met Ala Thr Glu Met Met

210	215	220
Ser Asn Tyr Thr Gly Gly Ile Tyr Ala Glu His Gln Asp Gln Ala Val		
225	230	235
Ile Asn His Ile Ile Ser Val Ala Gly Trp Gly Val Ser Asn Asp Gly		
245	250	255
Ile Glu Tyr Trp Ile Val Arg Asn Ser Trp Gly Glu Pro Trp Gly Glu		
260	265	270
Lys Gly Trp Met Arg Ile Val Thr Ser Thr Tyr Lys Gly Gly Thr Gly		
275	280	285
Asp Ser Tyr Asn Leu Ala Ile Glu Ser Ala Cys Thr Phe Gly Asp Pro		
290	295	300
Ile Val		
305		

<210> 4
<211> 1480
<212> DNA
<213> Homo sapiens

<400> 4

ctggggccgag gccgaggccc gggcggtttc cagaggcccc gcccggcgcc gatctgggac 60
tcggagcgcc atccggagcg ggaccaggaa gcccggcgcc ggccatggcg aggcgcgggc 120
cagggtggcg gcccgttctg ctgctcgtgc tgctggcgcc cgcggcgccag ggcggccctct 180
acttccgccc gggacacggcc tgctaccggc ctctgcgggg ggacgggctg gctccgctgg 240
ggcgccagcac ataccggcc cctcatgagt acctgtcccc agcggatctg cccaagagct 300
gggactggcg caatgtggat ggtgtcaact atgccagcat caccggaaac cagcacatcc 360
cccaatactg cggctcctgc tggggccacg ccagcaccag cgctatggcg gatcggatca 420
acatcaagag gaaggggagcg tggccctcca ccctcctgtc cgtgcagaac gtcatcgact 480
gcggtaacgc tggctcctgt gaagggggta atgacctgtc cgtgtggac tacgcccacc 540
agcacggcat ccctgacgag acctgcaaca actaccaggc caaggaccag gagtgtgaca 600
agtttaacca atgtgggaca tgcaatgaat tcaaagagtg ccacgcccattc cggaactaca 660
ccctctggag ggtgggagac tacggctccc tctctggag ggagaagatg atggcagaaa 720
tctatgcaaa tggtcccatc agctgtggaa taatggcaac agaaagactg gctaactaca 780
ccggaggcat ctatggccaa taccaggaca ccacatatat aaaccatgtc gtttctgtgg 840
ctgggtgggg catcagtgtat gggactgagt actggattgt ccggaattca tggggtaac 900
catggggcga gagaggctgg ctgaggatcg tgaccagcac ctataaggat gggaggcg 960
ccagatacaa cttggccatc gaggaggact gtacatttg ggacccatc gtttaaggcc 1020
atgtcactag aagcgcagtt taagaaaagg catggtgacc catgaccaga gggatccta 1080
tggttatgtg tgccaggctg gctggcagga actggggatgg ctatcaatat tggatggcga 1140
ggacagcgtg gcactggctg cgagtgttcc tgagagttga aagtggatg acttatgaca 1200
cttgcacagc atggctctgc ctcacaatga tgcagtcagc cacctggta agaagtgacc 1260
tgccgacacag gaaacgatgg gacctcagtc ttcttcagca gaggacttga tattttgtat 1320
ttggcaactg tggcaataa tatggcattt aagaggtgaa agagttcaga cttatcacca 1380
ttcttatgtc actttagaat caagggtggg ggaggaggagg agggagttgg cagtttcaaa 1440
tcgccccagt gatgaataaa gtatctggct ctgcacgaga 1480

<210> 5
<211> 303
<212> PRT
<213> Homo sapiens

<400> 5

Met Ala Arg Arg Gly Pro Gly Trp Arg Pro Leu Leu Leu Leu Val Leu			
1	5	10	15
Leu Ala Gly Ala Ala Gln Gly Gly Leu Tyr Phe Arg Arg Gly Gln Thr			
20	25	30	

Cys Tyr Arg Pro Leu Arg Gly Asp Gly Leu Ala Pro Leu Gly Arg Ser
 35 40 45
 Thr Tyr Pro Arg Pro His Glu Tyr Leu Ser Pro Ala Asp Leu Pro Lys
 50 55 60
 Ser Trp Asp Trp Arg Asn Val Asp Gly Val Asn Tyr Ala Ser Ile Thr
 65 70 75 80
 Arg Asn Gln His Ile Pro Gln Tyr Cys Gly Ser Cys Trp Ala His Ala
 85 90 95
 Ser Thr Ser Ala Met Ala Asp Arg Ile Asn Ile Lys Arg Lys Gly Ala
 100 105 110
 Trp Pro Ser Thr Leu Leu Ser Val Gln Asn Val Ile Asp Cys Gly Asn
 115 120 125
 Ala Gly Ser Cys Glu Gly Gly Asn Asp Leu Ser Val Trp Asp Tyr Ala
 130 135 140
 His Gln His Gly Ile Pro Asp Glu Thr Cys Asn Asn Tyr Gln Ala Lys
 145 150 155 160
 Asp Gln Glu Cys Asp Lys Phe Asn Gln Cys Gly Thr Cys Asn Glu Phe
 165 170 175
 Lys Glu Cys His Ala Ile Arg Asn Tyr Thr Leu Trp Arg Val Gly Asp
 180 185 190
 Tyr Gly Ser Leu Ser Gly Arg Glu Lys Met Met Ala Glu Ile Tyr Ala
 195 200 205
 Asn Gly Pro Ile Ser Cys Gly Ile Met Ala Thr Glu Arg Leu Ala Asn
 210 215 220
 Tyr Thr Gly Gly Ile Tyr Ala Glu Tyr Gln Asp Thr Thr Tyr Ile Asn
 225 230 235 240
 His Val Val Ser Val Ala Gly Trp Gly Ile Ser Asp Gly Thr Glu Tyr
 245 250 255
 Trp Ile Val Arg Asn Ser Trp Gly Glu Pro Trp Gly Glu Arg Gly Trp
 260 265 270
 Leu Arg Ile Val Thr Ser Thr Tyr Lys Asp Gly Lys Gly Ala Arg Tyr
 275 280 285
 Asn Leu Ala Ile Glu Glu His Cys Thr Phe Gly Asp Pro Ile Val
 290 295 300

<210> 6
 <211> 646
 <212> DNA
 <213> Murinae

<400> 6
 tcctttccta gtctgtcttc agatgaaacc tattctctgc ttgtacaaga accagtagcc 60
 gtcctcaagg ccaacagcgt tggggagcgt tacgagggtt agagacgttt agccagttag 120
 tttaccaaga ctcttcggg actttcacca tcaatgaatc cagtatagct gattctccaa 180
 gattccctca tagaggaatt ttaattgata catctagaca cttcctgcct gtgaagacaa 240
 ttttaaaaac tctggatgcc atggcttttataaataagttaa tgttcttcac tggcacatag 300
 tggacgacca gtctttccct tatcagagta ccactttcc tgagctaagc aataaggaa 360
 gctactctt gtctcatgtc tatacaccaa acgatgtccg gatggtgctg gagtacgccc 420
 ggctccgagg gattcgagtc ataccagaat ttgatacccc tggccataca cagtcttggg 480
 gcaaaggaca gaaaaacctt ctaactccat gttacaatca aaaaactaaa actcaagtgt 540
 ttgggcctgt agacccaact gtaaacacaa cgtatgcatt ctttaacaca ttttcaaag 600
 aaatcagcag tgtgtttcca gatcagttca tccacttggg aggaga 646

<210> 7
 <211> 1805
 <212> DNA

<213> Murinae

<400> 7

ggatgcttc ttcccagcga cccagactgg aagggttggc caaagactgc ctagccagac 60
tcgcggagca gtcatgccgc agtccccgcf tagcgcccc gggctgctgc tgctgcaggc 120
gctgggtgtcg cttagtgtcgc tggccctagt ggccccggcc cgactgcaac ctgcgctatg 180
gcccttcccg cgctcggtgc agatgttccc gcggctgttg tacatctccg cggaggactt 240
cagcatcgac cacagtccca attccacagc gggcccttcc tgctcgctgc tacaggaggc 300
gttcggcga tattacaact atgttttgg tttctacaag agacatcatg gccctgctag 360
atttcgagct gagccacagt tgcaagaagct cctggcttcc attaccctcg agtcagagtg 420
cgagtccctc cctagtctgt cttcagatga aacctattct ctgcttgtac aagaaccagt 480
agccgtcctc aaggccaaca gcgtttgggg agcgttacga ggttagaga cgttagcca 540
gttagttac caagactctt tcgggacttt caccatcaat gaatccagta tagctgattc 600
tccaagattc cctcatagag gaattttaat tgatacatct agacacttcc tgcctgtgaa 660
gacaattta aaaactctgg atgccccatggc ttttaataag ttaatgttc ttcactggca 720
catagtggac gaccagtctt tcccttatca gagtaccact tttcctgagc taagcaataa 780
ggaaagctac tcttgtctc atgtctatac accaaacgat gtccggatgg tgctggagta 840
cgcccggtc cgagggattc gagtcatacc agaatttgat acccctggcc atacacagtc 900
ttggggcaaa ggacagaaaa accttctaacc tccatgttac aatcaaaaaa ctaaaaactca 960
agtgtttggg cctgttagacc caactgtaaa cacaacgtat gcattctta acacatttt 1020
caaagaaatc agcagtgtgt ttccagatca gttcatccac ttgggaggag atgaagtaga 1080
atttcaatgt tggcatcaa atccaaacat ccaaggttc atgaagagaa agggctttgg 1140
cagcgatttt agaagactag aatccttttta tattaaaaag attttggaaa ttatttcatc 1200
cttaaagaag aactccatttgc tttggcaaga agttttgat gataagggtgg agcttcagcc 1260
ggcacagta gtcgaagtgt ggaagagtgat gcattattca tatgagctaa agcaagtcac 1320
aggctctggc ttccctgcca tcctttctgc tccttggtac ttagacctga tcagctatgg 1380
gcaagactgg aaaaactact acaaagttga gccccttaat tttgaaggct ctgagaagca 1440
gaaacaactt gttattggtg gagaagcttg cctgtggggaa gaatttggatgg atgcaactaa 1500
ccttactcca agattatggc ctcgagcaag cgctgttggc gagagactct ggagccctaa 1560
aactgtcact gacctagaaa atgcctacaa acgactggcc gtgcaccgct gcagaatgg 1620
cagccgtgga atagctgcac aacctctcta tactggatac tgtaactatg agaataaaat 1680
atagaagtga cagacgtcta cagcattcca gctatgatca tgttgattct gaaatcatgt 1740
aaattaagat ttgttaggct gttttttttaaataaacc atcttttat tgattgaatc 1800
tttct 1805

<210> 8

<211> 536

<212> PRT

<213> Murinae

<400> 8

Met	Pro	Gln	Ser	Pro	Arg	Ser	Ala	Pro	Gly	Leu	Leu	Leu	Leu	Gln	Ala	
1				5						10					15	
Leu	Val	Ser	Leu	Val	Ser	Leu	Ala	Leu	Val	Ala	Pro	Ala	Arg	Leu	Gln	
									20		25				30	
Pro	Ala	Leu	Trp	Pro	Phe	Pro	Arg	Ser	Val	Gln	Met	Phe	Pro	Arg	Leu	
								35		40				45		
Leu	Tyr	Ile	Ser	Ala	Glu	Asp	Phe	Ser	Ile	Asp	His	Ser	Pro	Asn	Ser	
								50		55				60		
Thr	Ala	Gly	Pro	Ser	Cys	Ser	Leu	Leu	Gln	Glu	Ala	Phe	Arg	Arg	Tyr	
								65		70				75		80
Tyr	Asn	Tyr	Val	Phe	Gly	Phe	Tyr	Lys	Arg	His	His	Gly	Pro	Ala	Arg	
								85		90				95		
Phe	Arg	Ala	Glu	Pro	Gln	Leu	Gln	Lys	Leu	Leu	Val	Ser	Ile	Thr	Leu	
									100		105				110	
Glu	Ser	Glu	Cys	Glu	Ser	Phe	Pro	Ser	Leu	Ser	Ser	Asp	Glu	Thr	Tyr	
									115		120				125	

Ser Leu Leu Val Gln Glu Pro Val Ala Val Leu Lys Ala Asn Ser Val
 130 135 140
 Trp Gly Ala Leu Arg Gly Leu Glu Thr Phe Ser Gln Leu Val Tyr Gln
 145 150 155 160
 Asp Ser Phe Gly Thr Phe Thr Ile Asn Glu Ser Ser Ile Ala Asp Ser
 165 170 175
 Pro Arg Phe Pro His Arg Gly Ile Leu Ile Asp Thr Ser Arg His Phe
 180 185 190
 Leu Pro Val Lys Thr Ile Leu Lys Thr Leu Asp Ala Met Ala Phe Asn
 195 200 205
 Lys Phe Asn Val Leu His Trp His Ile Val Asp Asp Gln Ser Phe Pro
 210 215 220
 Tyr Gln Ser Thr Thr Phe Pro Glu Leu Ser Asn Lys Gly Ser Tyr Ser
 225 230 235 240
 Leu Ser His Val Tyr Thr Pro Asn Asp Val Arg Met Val Leu Glu Tyr
 245 250 255
 Ala Arg Leu Arg Gly Ile Arg Val Ile Pro Glu Phe Asp Thr Pro Gly
 260 265 270
 His Thr Gln Ser Trp Gly Lys Gly Gln Lys Asn Leu Leu Thr Pro Cys
 275 280 285
 Tyr Asn Gln Lys Thr Lys Thr Gln Val Phe Gly Pro Val Asp Pro Thr
 290 295 300
 Val Asn Thr Thr Tyr Ala Phe Phe Asn Thr Phe Phe Lys Glu Ile Ser
 305 310 315 320
 Ser Val Phe Pro Asp Gln Phe Ile His Leu Gly Gly Asp Glu Val Glu
 325 330 335
 Phe Gln Cys Trp Ala Ser Asn Pro Asn Ile Gln Gly Phe Met Lys Arg
 340 345 350
 Lys Gly Phe Gly Ser Asp Phe Arg Arg Leu Glu Ser Phe Tyr Ile Lys
 355 360 365
 Lys Ile Leu Glu Ile Ile Ser Ser Leu Lys Lys Asn Ser Ile Val Trp
 370 375 380
 Gln Glu Val Phe Asp Asp Lys Val Glu Leu Gln Pro Gly Thr Val Val
 385 390 395 400
 Glu Val Trp Lys Ser Glu His Tyr Ser Tyr Glu Leu Lys Gln Val Thr
 405 410 415
 Gly Ser Gly Phe Pro Ala Ile Leu Ser Ala Pro Trp Tyr Leu Asp Leu
 420 425 430
 Ile Ser Tyr Gly Gln Asp Trp Lys Asn Tyr Tyr Lys Val Glu Pro Leu
 435 440 445
 Asn Phe Glu Gly Ser Glu Lys Gln Lys Gln Leu Val Ile Gly Gly Glu
 450 455 460
 Ala Cys Leu Trp Gly Glu Phe Val Asp Ala Thr Asn Leu Thr Pro Arg
 465 470 475 480
 Leu Trp Pro Arg Ala Ser Ala Val Gly Glu Arg Leu Trp Ser Pro Lys
 485 490 495
 Thr Val Thr Asp Leu Glu Asn Ala Tyr Lys Arg Leu Ala Val His Arg
 500 505 510
 Cys Arg Met Val Ser Arg Gly Ile Ala Ala Gln Pro Leu Tyr Thr Gly
 515 520 525
 Tyr Cys Asn Tyr Glu Asn Lys Ile
 530 535

<210> 9

<211> 1746

<212> DNA

<213> Homo sapiens

<400> 9

ctgatccggg ccgggcggga agtcgggtcc cgaggctccg gctcggcaga ccgggcgga