Quiz 8 (Sections 5.3, 9.4)

You will have 30 minutes to complete the quiz.

Name:

Student Number:

- Q1 Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ induced by the matrix $A = \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$.
 - (a) Sketch the unit square and the unit square under the transformation T. (1 Point)
 - (b) Using your sketch, determine two linearly independent eigenvectors of *A*. **INCLUDE THESE VECTORS IN YOUR SKETCH.** (2 Point)
 - (c) Knowing that $\lambda_1 = 2$, $\lambda_2 = 3$ are the eigenvalues of A, verify computationally that the eigenvectors from (b) are indeed eigenvectors for the transformation T. (2 Points)
- Q2 For the following, determine whether the matrix *B* is diagonalizable, not diagonalizable, or we cannot tell.
 - (a) The eigenvalues λ_i of *B* are given by $\lambda_k = 2\lambda_{k-1}$, where $\lambda_1 < 0$. (2 Points)
 - (b) There is some set of eigenvectors $\{\vec{v}_1,...,\vec{v}_n\}$ that forms a basis for \mathbb{R}^n . (2 Points)
- Q3 Let the sequence $c_0, c_1, c_2, ...$ be given by $c_k = \frac{1}{2}(c_{k-1} + c_{k-2})$ for $k \ge 2$. Here, we assume c_0, c_1 are some real numbers.
 - (a) Determine a matrix A that can be used for the following linear system: $A \begin{bmatrix} c_{k-1} \\ c_{k-2} \end{bmatrix} = \begin{bmatrix} c_k \\ c_{k-1} \end{bmatrix}$. (1 Point)
 - (b) Knowing that $A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$, $A\begin{bmatrix}-1\\2\end{bmatrix} = -\frac{1}{2}\begin{bmatrix}-1\\2\end{bmatrix}$, determine c_{100} . (3 Points)

Q1

Q3

MAT188 – Winter 2025 Page 2 of 2