14 noiembrie 2020 Lect. dr. Mihai Iancu

Inducție

Notații:

- $\mathbb{N} = \{0, 1, \ldots\}$ reprezintă mulțimea numerelor naturale.
- $\mathbb{N}^* = \{1, 2, \ldots\}$ reprezintă mulțimea numerelor naturale nenule.

Inducție matematică (în două versiuni):

Fie P(n) o propoziție care depinde de $n \in \mathbb{N}$, $n \geq m$, unde $m \in \mathbb{N}$ este fixat. Demonstrăm că P(n) e adevărată pentru orice $n \in \mathbb{N}$, $n \geq m$, prin inducție matematică, verificând următorii pași:

Versiunea I:

- 1) P(m) e adevărată;
- 2) $\forall k \in \mathbb{N}, k \geq m : P(k)$ e adevărată $\implies P(k+1)$ e adevărată.

Versiunea a II-a:

- 1) $P(m), \ldots, P(m+l-1)$ sunt adevărate, unde $l \in \mathbb{N}^*$ este fixat;
- 2) $\forall k \in \mathbb{N}, k \geq m : P(k)$ e adevărată $\implies P(k+l)$ e adevărată.

Probleme

1. Fie
$$(F_n)_{n\in\mathbb{N}}$$
 şirul lui Fibonacci: $F_0=0,\,F_1=1,\,F_{n+1}=F_n+F_{n-1},\,n\in\mathbb{N}^*.$ Demonstrați că $\forall n\in\mathbb{N}^*:\begin{pmatrix}F_{n+1}&F_n\\F_n&F_{n-1}\end{pmatrix}=\begin{pmatrix}1&1\\1&0\end{pmatrix}^n.$ Deduceți identitatea: $F_{n+1}F_{n-1}-F_n^2=(-1)^n,\,n\in\mathbb{N}^*.$

- **2.** Fie α un număr real. Demonstrați că $\forall n \in \mathbb{N}^*$: $|\sin(n\alpha)| \leq n |\sin(\alpha)|$.
- 3. Demonstrați că următoarea propoziție este adevărată $\forall n \in \mathbb{N}, n \geq 14$: P(n): n se poate scrie ca o sumă de termeni egali doar cu 3 sau 8.
- 4. Demonstrați că următoarea propoziție este adevărată $\forall n \in \mathbb{N}, n \geq 6$: P(n): orice pătrat se poate împărți în n pătrate mai mici.
- **5.** Fie $(x_n)_{n\in\mathbb{N}^*}$ un şir de numere din intervalul $[-1,\infty)$ care au acelaşi semn.

Demonstraţi că
$$\forall n \in \mathbb{N}^*$$
: $\prod_{i=1}^n (1+x_i) \ge 1 + \sum_{i=1}^n x_i$.

Deduceți inegalitea: $(1+x)^n \ge 1 + nx, x \ge -1, n \in \mathbb{N}^*.$

- 6. Demonstrați că $\forall n \in \mathbb{N}^*$: $2^{2^n} + 3^{2^n} + 5^{2^n} \equiv 0 \pmod{19}$.
- 7. Demonstrați că $\forall n \in \mathbb{N}^*$: oricare ar fi $x \geq 0$, avem $\sqrt{x+1+\sqrt{x+2+\ldots+\sqrt{x+n}}} < x+2$. Deduceți inegalitatea: $\sqrt{1+\sqrt{2+\ldots+\sqrt{n}}} < 2, n \in \mathbb{N}^*$.

Bibliografie

- [1] T. Andreescu, V. Crisan: Mathematical Induction: A Powerful and Elegant Method of Proof, XYZ Press, 2017.
- [2] D.S. Gunderson: Handbook of mathematical induction: theory and applications, CRC Press, 2011.
- [3] L. Panaitopol et al.: *Inducția matematică*, Editura Gil, 2002.