

PAY ATTENTION TO YOUR LOSS: UNDERSTANDING MISCONCEPTIONS ABOUT 1-LIPSCHITZ NEURAL NETWORKS

_louis.bethune@univ-toulouse.fr

thibaut.boissin@irt-saintexuperv.com corentin.friedrich@irt-saintexuperv.com alberto.gonzalez sanz@math.univ-toulouse.fr

franck.mamalet@irt-saintexuperv.com

mathieu.serrurier@irit.fr

Outline

- LipNet1 are expressive
- LipNet1 are provably robust
- LipNet1 have generalization guarantees

3

WHAT ARE 1-LIPSCHITZ NETWORKS?

Implemented in practice with:

- GroupSort (MinMAx) activation functions
- Differentiable projection of weights onto Stiefel manifold

Lipschitz constant L(f):

$$||f(x) - f(z)||_2 \le L(f)||x - z||_2$$

Conventional networks can be made 1-Lipschitz:

$$g^* = rg \min_{g \in C(\mathcal{X}, \mathbb{R}^K)} \mathbb{E}_{x,y} \mathcal{L}(g(x), y) \qquad f^* = rac{1}{L(g^*)} g^*$$

But $L(g^*)$ is often high, and finding it is NP-hard.

1-Lipschitz functions are approximated by constraining the weights of each layers. This is done in practice with **Deel-Lip** library:

$$f^* = rg \min_{f \in \mathsf{Lip}_{\mathbf{1}}(\mathcal{X}, \mathbb{R})} \mathbb{E}_{x,y} \mathcal{L}(f(x), y)$$

The choice of loss controls the tradeoff between accuracy, robustness and generalization.

Why 1-Lipschitz networks are perceived as not expressive?

© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI Confidential and proprietary document

EXPRESSIVENESS

Proposition 1 (**Lipschitz Binary classification**). For any binary classifier $c: \mathcal{X} \to \mathcal{Y}$ with closed pre-images $(c^{-1}(\{y\}))$ is a closed set) there exists a 1-Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}$ such that sign(f(x)) = c(x) on \mathcal{X} and such that $\|\nabla_x f\| = 1$ almost everywhere (w.r.t Lebesgue measure).

In our experiment, 1-Lipschitz Network reached 99.9% accuracy on Cifar-100 with random labels.

Fractal decision boundary in 2D with Von Koch snowflake.

EXPRESSIVENESS

Sigmoid Cross-entropy temperature tuning in 1D classification.

Default to 1. in most frameworks!

© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI. Confidential and proprietary document

Why 1-Lipschitz Networks are perceived as more robust?

Robustness certificates

$$||f(x) - f(x+\delta)|| \le L||x - (x+\delta)|| \quad \forall x, \delta$$

$$\iff ||\delta|| \ge \frac{||f(x) - f(x+\delta)||}{L}$$
(D.4)

MCR: mean certifiable robustness

$$\begin{aligned} \mathsf{MCR}_{XY}(f) &= \mathbb{E}_{x,y}[\mathbb{1}\{yf(x) > 0\}|f(x)|] \\ &+ \mathbb{E}_{x,y}[-\mathbb{1}\{yf(x) < 0\}|f(x)|] \\ &= \mathbb{E}_{x,y}yf(x) \end{aligned}$$

Positive even when x is misclassified

Negative when x is misclassified

ROBUSTNESS

Accuracy

Robustness

Highest accuracy and robustness certificates.
Corresponds to 1-nearest neighbor classification.

Classifiers with highest Mean Certifiable Robustness (MCR):

- Are WGAN discriminators,
- Have usually low accuracy,
- Correspond to low cross-entropy temperature.

© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI. Confidential and proprietary document

© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI. Confidential and proprietary document

CONTROL OF THE TRADEOFF

Moving along Accuracy-Robustness Pareto front on Cifar-10 by tuning hyper-parameters of the loss.

Do they **generalize** well?

24/11/2022

GENERALIZATION

Theorem: 1-Lipschitz networks are *consistent estimators*; adding more samples closes the train/test gap.

Conventional networks optimization leads to uncontrollable growth of their Lipschitz constant.

GENERALIZATION

Conclusions

Why should you care?

1) If you want networks with robustness certificates, generalization guarantee, fine grained control of accuracy/robustness tradeoff.

2) If you want to understand training dynamic and generalization of conventional networks.

EL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and AN Confidential and propriets, document

24/11/2022

THANK YOU!

