Graf (Lanjutan)

DWI SULISTYA KUSUMANINGRUM

TEKNIK INFORMATIKA UBP KARAWANG

6. Lintasan (Path)

Lintasan yang panjangnya n dari simpul awal v_0 ke simpul tujuan v_n di dalam graf G ialah barisan berselang-seling simpul-simpul dan sisi-sisi yang berbentuk v_0 , e_1 , v_1 , e_2 , v_2 ,..., v_{n-1} , e_n , v_n sedemikian sehingga $e_1 = (v_0, v_1)$, $e_2 = (v_1, v_2)$, ..., $e_n = (v_{n-1}, v_n)$ adalah sisi-sisi dari graf G.

Tinjau graf G_1 : lintasan 1, 2, 4, 3 adalah lintasan dengan barisan sisi (1,2), (2,4), (4,3).

Panjang lintasan adalah jumlah sisi dalam lintasan tersebut. Lintasan 1, 2, 4, 3 pada G_1 memiliki panjang 3.

7. Terhubung (Connected)

Dua buah simpul v_1 dan simpul v_2 disebut **terhubung** jika terdapat lintasan dari v_1 ke v_2 .

G disebut **graf terhubung** (connected graph) jika untuk setiap pasang simpul v_i dan v_j dalam himpunan V terdapat lintasan dari v_i ke v_j .

Jika tidak, maka G disebut **graf tak-terhubung** (disconnected graph).

Contoh graf tak-terhubung:

- Graf berarah G dikatakan terhubung jika graf tidak berarahnya terhubung (graf tidak berarah dari G diperoleh dengan menghilangkan arahnya).
- Dua simpul, u dan v, pada graf berarah G disebut terhubung kuat (strongly connected) jika terdapat lintasan berarah dari u ke v dan juga lintasan berarah dari v ke u.
- Jika u dan v tidak terhubung kuat tetapi terhubung pada graf tidak berarahnya, maka u dan v dikatakan terhubung lemah (weakly coonected).

• Graf berarah G disebut **graf terhubung kuat** (strongly connected graph) apabila untuk setiap pasang simpul sembarang u dan v di G, terhubung kuat. Kalau tidak, G disebut **graf terhubung lemah**.

graf berarah terhubung lemah

graf berarah terhubung kuat

8. Cut Set

Cut-set dari graf terhubung G adalah himpunan sisi yang bila dibuang dari G menyebabkan G tidak terhubung. Jadi, cut-set selalu menghasilkan dua buah komponen.

Pada graf di bawah, {(1,2), (1,5), (3,5), (3,4)} adalah *cut-set*. Terdapat banyak *cut-set* pada sebuah graf terhubung.

Himpunan $\{(1,2), (2,5)\}$ juga adalah *cut-set*, $\{(1,3), (1,5), (1,2)\}$ adalah *cut-set*, $\{(2,6)\}$ juga *cut-set*,

tetapi $\{(1,2), (2,5), (4,5)\}$ bukan *cut-set* sebab himpunan bagiannya, $\{(1,2), (2,5)\}$ adalah *cut-set*.

Beberapa Graf Khusus

a. Graf Lengkap (Complete Graph)

Graf lengkap ialah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan K_n . Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah n(n-1)/2.

b. Graf Lingkaran

Graf lingkaran adalah graf sederhana yang setiap simpulnya berderajat dua. Graf lingkaran dengan n simpul dilambangkan dengan C_n .

c. Graf Teratur (Regular Graphs)

Graf yang setiap simpulnya mempunyai derajat yang sama disebut **graf teratur**. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r. Jumlah sisi (e) pada graf teratur adalah nr/2.

e=jumlah sisi n=jumlah simpul r=derajat

Representasi Graf

1. Matriks Ketetanggaan (adjacency matrix)

$$A = [a_{ij}],$$

$$1, \text{ jika simpul } i \text{ dan } j \text{ bertetangga}$$

$$a_{ij} = \{$$

$$0, \text{ jika simpul } i \text{ dan } j \text{ tidak bertetangga}$$

Derajat tiap simpul i:

(a) Untuk graf tak-berarah

$$d(v_i) = \sum_{j=1}^n a_{ij}$$

(b) Untuk graf berarah,

$$d_{in}(v_j) = \text{jumlah nilai pada kolom } j = \sum_{i=1}^{n} a_{ij}$$

$$d_{out}(v_i) = \text{jumlah nilai pada baris } i = \sum_{j=1}^{n} a_{ij}$$

• Matrik berbobot adalah menyatakan bobot setiap sisi

$$a \quad b \quad c \quad d \quad e$$
 $a \begin{bmatrix} \infty & 12 & \infty & \infty & 10 \end{bmatrix}$
 $b \quad 12 \quad \infty \quad 9 \quad 11 \quad 8$
 $c \quad \infty \quad 9 \quad \infty \quad 14 \quad \infty$
 $d \quad \infty \quad 11 \quad 14 \quad \infty \quad 15$
 $e \quad 10 \quad 8 \quad \infty \quad 15 \quad \infty$

2. matriks Bersisian (incidency matrix)

$$A=[a_{ij}],$$

1, jika simpul *i* bersisian dengan sisi *j*

$$a_{ij} = \{$$

0, jika simpul i tidak bersisian dengan sisi j

3. Daftar Ketetanggaan (adjacency list)

Simpul	Simpul Tetangga
1	2, 3
2	1, 3, 4
3	1, 2, 4
4	2, 3

Simpul Tetangga
2, 3
1, 3
1, 2, 4
3

Simpul	Simpul Terminal
1	2
2	1, 3, 4
3	1
4	2, 3

(a)

(c)

Graf Isomorfik

Diketahui matriks ketetanggaan (*adjacency matrices*) dari sebuah graf tidak berarah. Gambarkan dua buah graf yang yang bersesuaian dengan matriks tersebut.

```
      0
      1
      0
      0
      1

      1
      0
      1
      1
      1

      0
      1
      1
      1
      0

      0
      1
      1
      0
      1

      1
      1
      0
      1
      0
```

Jawaban:

Dua buah graf yang sama (hanya penggambaran secara geometri berbeda)

→ isomorfik!

Graf Isomorfik

 Dua buah graf yang sama tetapi secara geometri berbeda disebut graf yang saling isomorfik.

 Dua buah graf, G₁ dan G₂ dikatakan isomorfik jika terdapat korespondensi satu-satu antara simpul-simpul keduanya dan antara sisisisi keduaya sedemikian sehingga hubungan kebersisian tetap terjaga.

- Dengan kata lain, misalkan sisi e bersisian dengan simpul u dan v di G₁, maka sisi e' yang berkoresponden di G₂ harus bersisian dengan simpul u' dan v' yang di G₂.
- Dua buah graf yang isomorfik adalah graf yang sama, kecuali penamaan simpul dan sisinya saja yang berbeda. Ini benar karena sebuah graf dapat digambarkan dalam banyak cara.

 G_1 isomorfik dengan G_2 , tetapi G_1 tidak isomorfik dengan G_3

Graf (a) dan graf (b) isomorfik

Dari definisi graf isomorfik dapat dikemukakan bahwa dua buah graf isomorfik memenuhi ketiga syarat berikut

- 1. Mempunyai jumlah simpul yang sama.
- 2. Mempunyai jumlah sisi yang sama
- 3. Mempunyai jumlah simpul yang sama berderajat tertentu

Namun, ketiga syarat ini ternyata belum cukup menjamin. Pemeriksaan secara visual perlu dilakukan.

Dua buah graf isomorfik

Dua buah graf tidak isomorfik

TERIMAKASIH