

SubstituteSequenceListing_05-06-2010
SEQUENCE LISTING

<110> CHOE, Mu-Hyeon
CHOI, Seong-Hyeok
LEE, Yong-Chan
KWON, Hye-Won
WON, Jae-Seon
YU, Mi-Hyun
SONG, Jeong-Hwa
KIM, Yong-Jae

<120> THE DIMER OF CHIMERIC RECOMBINANT BINDING DOMAIN-FUNCTIONAL GROUP FUSION FORMED VIA DISULFIDE-BOND-BRIDGE AND THE PROCESSES FOR PRODUCING THE SAME

<130> 428.1060

<140> US 10/562,627
<141> 2005-12-22

<150> PCT/KR2004/001595
<151> 2004-06-30

<150> KR 10-2003-0043599
<151> 2003-06-30

<160> 59

<170> PatentIn version 3.5

<210> 1
<211> 1749
<212> DNA
<213> Artificial Sequence

<220>
<223> pMC74 plasmid coding sequence

<400> 1	
atggatgtga agctgggtgga atctggagga ggcttagtgc agcctggagg gtccctgaaa	60
ctctcctgtg caacctctgg attcaacttc agtgactatt acatgtatttgg gtttcggccag	120
actccagaga agaggctgga gtgggtcgca tacattagta atgatgatag ttccggccgct	180
tattcagaca ctgtaaaggg ccgggttcacc atctccagag acaatgccag gaacaccctc	240
tacctgcaaa tgagccgtct gaagtctgag gacacagcca tatattcctg tgcaagagga	300
ctggcctggg gagcctgggt tgcttactgg ggccaaggga ctctggtcac tgtctctgca	360
gccaaaacga cacccccattc tgtctatcca ctggcccttg gatctgctgc ccaaactaac	420
tccatgggtga ccctgggatg cctggtcaag ggctatttcc ctgagccagt gacagtgacc	480
tggaactctg gatccctgtc cagcgggtgtg cacaccttcc cagctgtcct gcagtcgtac	540
ctctacactc tgagcagctc agtgaactgtc ccctccagca cctggcccaag cgagaccgtc	600

SubstituteSequenceListing_05-06-2010

acctgcaacg ttgcccaccc ggccagcagc accaaggatgg acaagaaaat tggcccagg	660
gattgtggta gtaagcctag cataagtaca aaagcttccg gaggtcccga gggcggcagc	720
ctggccgcgc tgaccgcga ccaggcttgc cacctgccgc tggagacttt caccctgtcat	780
cgccagccgc gcggctggga acaactggag cagtgcggct atccggtgca gcggctggtc	840
gccctctacc tggcggcgcg gctgtcgtgg aaccaggtcg accaggtgat ccgcaacgccc	900
ctggccagcc ccggcagcgg cggcggacccg ggcgaagcga tccgcgagca gccggagcag	960
gcccgtctgg ccctgaccct ggccgcgcgagc gcttcgtccg gcagggcacc	1020
ggcaacgacg aggccggcgc ggccaacggc ccggcggaca gcggcggacgc cctgctggag	1080
cgcaactatc ccactggcgc ggagttcctc ggacggcggc ggcacgtcag cttcagcacc	1140
cgcggcacgc agaactggac ggtggagcgg ctgctccagg cgacccgcca actggaggag	1200
cgcggctatg ttttcgtcgg ctaccacggc accttcctcg aagcggcga aagcatcgcc	1260
ttcggcgggg tgcgcgcgcg cagccaggac ctcgacgcga tctggcgcgg tttctatatc	1320
gccggcgatc cggcgctggc ctacggctac gcccaggacc aggaacccga cgacacgcgc	1380
cggatccgca acgggtccct gctgcgggtc tatgtgccgc gctcgagcct gccgggcttc	1440
taccgcacca gcctgaccct ggccgcgcg gaggcggcgg gcgagggtcga acggctgatc	1500
ggccatccgc tgccgctgcg cctggacgc acaccggcc ccgaggagga aggccggcgc	1560
ctggagacca ttctcggtcg gcccgtggcc gagcgcaccg tggtgattcc ctcggcgatc	1620
cccaccgacc cgcgcaacgt cggcggcgc acaccgtt ccacatccc cgacaaggaa	1680
caggcgatca gcgcctgccc ggactacgccc agccagcccc gcaaaccgcgc gcgcgaggac	1740
ctgaagtaa	1749

<210> 2

<211> 1764

<212> DNA

<213> Artificial Sequence

<220>

<223> pMH21 plasmid coding sequence

<400> 2

atggaggtga agctgggtgga atctggagga ggcttagtgc agcctggagg gtccctgaaa	60
ctctcctgtg caacctctgg attcaacttc agtgactatt acatgtattt ggttcggccag	120
actccagaga agaggctgga gtgggtcgca tacatttagta atgtatgtatgg ttccgcgcgt	180
tattcagaca ctgtaaaggcccggttccacc atctccagag acaatgccag gaacaccctc	240
tacctgcaaa tgagccgtct gaagtctgag gacacagcca tatattcctg tgcaagagga	300

SubstituteSequenceListing_05-06-2010

ctggcctggg gaggcctgggtt tgcttactgg ggccaaggga ctctggcac tgtctctgca	360
gccaaaacga caccggccatc tgtctatcca ctggccctg gatctgctgc ccaaactaac	420
tccatggtga ccctggatg cctggtaag ggctattcc ctgagccagt gacagtgacc	480
tggaaactctg gatccctgtc cagcgggtgtg cacaccttcc cagctgtcct gcagtctgac	540
ctctacactc tgagcagctc agtgactgtc ccctccagca cctggccag cgagaccgtc	600
acctgcaacg ttgcccaccc ggccagcagc accaagggtgg acaagaaaat tgtgcccagg	660
gattgtggta gtaaggccttg cataagtaca aaagcttctg gtggtggcgg atctggaggt	720
cccgagggcg gcagcctggc cgcgctgacc gcgcaccagg cttgccacct gccgctggag	780
actttcaccc gtcatcgcca gccgcgcggc tggaaacaac tggagcagtg cgctatccg	840
gtgcagcggc tggcgcctt ctacctggcg gcgcggctgt cgtgaacca ggtcgaccag	900
gtgatccgca acgcccctggc cagccccggc agcggcggcg acctggcgaa agcgatccgc	960
gagcagccgg agcaggcccg tctggccctg accctggccg ccggcagagag cgagcgttcc	1020
gtccggcagg gcaccggcaa cgacgaggcc ggcgcggcca acggcccgcc ggacagcggc	1080
gacgcctgc tggagcgc aaatccact ggcgccggagt tcctcggcga cggcggcgac	1140
gtcagcttca gcacccgcgg cacgcagaac tggacggtgg agcggctgtt ccaggcgcac	1200
cgcaccaactgg aggagcgcgg ctatgttttc gtcggctacc acggcacctt cctcgaagcg	1260
gacgcaccaac tcgtcttcgg cgggggtgcgc gcgcgcagcc aggacctcga cgcgatctgg	1320
cgcggtttct atatcgccgg cgatccggcg ctggcctacg gctacgccc ggaccaggaa	1380
cccgacgcac gcggccggat ccgcaacggt gccctgctgc gggtctatgt gccgcgtcg	1440
agcctggccgg gcttctaccg caccggctg accctggccg cgccggaggg ggcggggcgag	1500
gtcgaacggc tgatcggcca tccgctggcg ctgcgcctgg acggccatcac cggccccgag	1560
gaggaaggcg ggcgcctgga gaccattctc ggctggccgc tggccgagcg caccgtggtg	1620
attccctcgg cgatccccac cgacccgcgc aacgtcggcg gcgcaccccgac cccgtccagc	1680
atccccgaca aggaacaggc gatcagcgc ctgcccggact acggccagcca gcccggcaaa	1740
ccgcccgcgcg aggacctgaa gtaa	1764

<210> 3
<211> 1749
<212> DNA
<213> Artificial Sequence

<220>
<223> pCE2 plasmid coding sequence

SubstituteSequenceListing_05-06-2010

<400> 3	
atggatgtga agctggtgga atctggagga ggcttagtgc agcctggagg gtccctgaaa	60
ctctcctgtg caacctctgg attcaacttc agtacttattt acatgtattt ggttcggcag	120
actccagaga agaggctgga gtgggtcgca tacatttagta atgatgatag ttccgcccgt	180
tattcagaca ctgtaaaggg ccgggttcacc atctccagag acaatgccag gaacaccctc	240
tacctgcaaa tgagccgtct gaagtctgag gacacagcca tatattcctg tgcaagagga	300
ctggcctggg gagcctgggtt tgcttactgg ggccaaggga ctctggcac tgcgtctgca	360
gccaaaacga caccggccatc tgtctatcca ctggccctg gatctgctgc ccaaactaac	420
tccatggtga ccctgggatg cctggtcaag ggctatttcc ctgagccagt gacagtgacc	480
tggaactctg gatccctgtc cagcgggtgtg cacaccttcc cagctgtctt gcagtctgac	540
ctctacactc tgagcagctc agtactgtc ccctccagca cctggcccg accgtccgtc	600
acctgcaacg ttgcccaccc ggccagcagc accaagggtgg acaagaaaat tgcgtccagg	660
gattgtggta gtaagccttg cataagtaca aaagcttccg gaggtcccgaa gggcggcagc	720
ctggccgcgc tgaccgcgc ccaggcttc cacctgcccgc tggagacttt caccgtcat	780
cggccgcgc gcggctggga acaactggag cagtgcggct atccggtgca gcggctggc	840
gccctctacc tggcggcgcg gctgtcgtgg aaccaggtcg accaggtgat ccgcaacgcc	900
ctggccagcc ccggcagcgg cggcggactt ggcgaagcga tccgcgagca gccggagcag	960
gcccgtctgg ccctgaccct ggccgcgcgcc gagagcggc gcttcgtccg gcagggcacc	1020
ggcaacgcgc agggccggcgc ggccaaacggc cccggcggaca gcggcgcgc cctgctggag	1080
cgcaactatc ccactggcgc ggagttccctc ggcgcacggcgc ggcacgtcag cttcagcacc	1140
cgccgcacgc agaactggac ggtggagcgg ctgctccagg cgcacccgcca actggaggag	1200
cgcggctatg ttttcgtcgg ctaccacggc accttcctcg aagcggcgc aagcatcg	1260
ttcggcgggg tgccgcgcg cagccaggac ctcgacgcga tctggcgcgg tttctatata	1320
ggccggcgtatc cggcgcgtgc ctacggctac gcccaggacc aggaacccga cgcacgcggc	1380
cggatccgc acgggtccct gctggggc tatgtgcgc gctcgagcct gccgggcttc	1440
taccgcacca gcctgaccct ggccgcgcg gaggcggcgg gcgaggtcg aacggctgatc	1500
ggccatccgc tgccgcgtcg cctggacgc atcaccggcc ccgaggagga aggcggcgc	1560
ctggagacca ttctcggctg gccgcgtggc gagcgcacccg tggtgattcc ctcggcgtatc	1620
cccaccgacc cgcgcacgt cggcggcgc ac ctcgacccgt ccagcatccc cgacaaggaa	1680
caggcgtatc cgcgcgtgc ggactacgac agccagcccg gcaaaaccgc gcgcgaggac	1740

SubstituteSequenceListing_05-06-2010

ctgaagtaa 1749

<210> 4
<211> 672
<212> DNA
<213> Artificial Sequence

<220>
<223> pMC75 plasmid coding sequence

<400> 4
atggatgtgc tcatgaccca gtctccattt agtttacctt tcagtcttgg agatcaagcc 60
tccatctctt gcagatcttag tcagatcatt gtacatagta atgaaacac ctattttagaa 120
tggtaacctgc agaaaccagg ccagtctcca aagctcctga tctacaaagt ttccaaaccga 180
ttttctgggg tcccagacag gttcagtggc agtggatcag ggacagattt cacactcaag 240
atcagcagag tggaggctga ggatctggga gtttattact gctttcaagg ttcacatgtt 300
ccattcacgt tcggctcggg gacaaagttt gaaataaaac gggctgatgc tgcaccaact 360
gtatccatct tcccaccatc cagtgagcag ttaacatctt gaggtgcctc agtcgtgtgc 420
ttcttgaaca acttctaccc caaagacatc aatgtcaagt ggaagattga tggcagtgaa 480
cgacaaaatg gcgtcctgaa cagttggact gatcaggaca gcaaagacag cacctacagc 540
atgagcagca ccctcacgtt gaccaaggac gagtatgaac gacataacag ctatacctgt 600
gaggccactc acaagacatc aacttcaccc attgtcaaga gcttcaacag gaatgagtgt 660
ggtaaaagctt aa 672

<210> 5
<211> 2454
<212> DNA
<213> Artificial Sequence

<220>
<223> pLSC52 plasmid coding sequence

<400> 5
atggatgtga agctggtgga atctggagga ggcttagtgc agcctggagg gtccctgaaa 60
ctctcctgtt caacctctgg attcaacttc agtgaactt acatgtattt ggttcggccag 120
actccagaga agaggctgga gtgggtcgca tacattagta atgatgatag ttccgcccgt 180
tattcagaca ctgtaaaggg ccgggttcacc atctccagag acaatgccag gaacaccctc 240
tacctgcaaa tgagccgtct gaagtctgag gacacagcca tatattcctt tgcaagagga 300
ctggcctggg gagcctgggtt tgcttactgg ggccaaggaa ctctggcac tgtctctgca 360

SubstituteSequenceListing_05-06-2010

ccccaaaacga caccggccatc tgtcttatcca ctggccccctg gatctgctgc ccaaactaac 420
tccatggta ccctggatg cctggtaag ggctatttcc ctgagccagt gacagtgacc 480
tggaaactctg gatccctgtc cagcgggtgtc cacaccttcc cagctgtcct gcagtctgac 540
ctctacactc tgagcagctc agtgactgtc ccctccagca cctggcccag cgagaccgtc 600
acctgcaacg ttgcccaccc ggccagcagc accaagggtgg acaagaaaat tgtgcccagg 660
gattgtggta agcccaaatac ttgtgacaaa actcacacat gcccaccgtg cccagcacct 720
gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg 780
atctcccgga cccctgaggt cacatgcgtg gtggggacg tgagccacga agaccctgag 840
gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg 900
gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac 960
tggctgaatg gcaaggagta caagtgcacgg gtctccaaca aagccctccc agcccccattc 1020
gagaaaacca tctccaaagc caaaggccag ccccgagaac cacaggtgtc caccctgccc 1080
ccatcccggt atgagctgac caagaaccag gtcagcctga cctgcctggta caaaggcttc 1140
tatcccagcg acatgcgcgt ggagtggag agcaatggc agccggagaa caactacaag 1200
accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa gtcaccgtg 1260
gacaagagca ggtggcagca gggaaacgtc ttctcatgtc ccgtgatgca tgaggctctg 1320
cacaaccact acacgcagaa gagcctctcc ctgtctccgg gtaaaggcgg aggcggatcc 1380
ggtgggtggcg gttctaaagc ttccggaggt cccgagggcg gcagcctggc cgcgctgacc 1440
gcmcaccagg cttgccaccc gccgctggag actttcaccc gtcatgcca gccgcgcggc 1500
tgggaacaac tggagcagtg cggctatccg gtgcagcggc tggcgcctt ctacctggcg 1560
gcmcggctgt cgtggAACCA ggtcgaccag gtatccgca acgcctggc cagccccggc 1620
agcggcggcg acctgggcga agcgatccgc gagcagccgg agcaggcccg tctggccctg 1680
accctggccg cgcggagag cgagcgcttc gtccggcagg gcacggcaa cgacgaggcc 1740
ggcgcggcca acggccggc ggacagcggc gacgcctgc tggagcgcac ctatcccact 1800
ggcgcggaggt tcctcgccga cggcggcgac gtcagcttc gcacccggc cacgcagaac 1860
tggacgggtgg agcggctgtc ccaggcgcac cgccaaactgg aggagcgcgg ctatgtttc 1920
gtcggctacc acggcacctt cctcgaagcg ggcggaaacgc tcgtcttcgg cgggggtgcgc 1980
gcmcgcagcc aggacctcga cgcgatctgg cgcggtttct atatgcggc cgatccggcg 2040
ctggcctacg gctacgccccca ggaccaggaa cccgacgcac gcccggat ccgcaacgg 2100
gcgcctgctgc gggcttatgt gccgcgcgtc agcctggccgg gcttctaccg caccagcctg 2160

SubstituteSequenceListing_05-06-2010

accctggccg cgccggaggc ggcgggcgag gtcgaacggc tgcggccca tccgctgccg	2220
ctgcgcctgg acgccatcac cggccccgag gaggaaggcg ggcgcctgga gaccattctc	2280
ggctggccgc tggccgagcg caccgtggtg attccctcg cgatccccac cgacccgcgc	2340
aacgtcggcg ggcacctcga cccgtccagc atccccgaca aggaacaggc gatcagcgcc	2400
ctgcccggact acgccagcca gcccggcaaa ccgcccgcgc aggacctgaa gtaa	2454

<210> 6
<211> 1233
<212> DNA
<213> Artificial Sequence

<220>
<223> pKL4 plasmid coding sequence

<400> 6 atgcatcacc atcaccatca cgatgtgaag ctgggtggaaat ctggaggagg cttagtgcag	60
cctggagggt ccctgaaaact ctcctgtgca acctctggat tcactttcag tgactattac	120
atgtattggg ttcgccagac tccagagaag aggctggagt gggtcgcata cattagtaat	180
gatgatagtt cgcgcgttta ttcagacact gtaaagggcc gttcaccat ctccagagac	240
aatgccagga acaccctcta cctgcaaatg agccgtctga agtctgagga cacagccata	300
tattcctgtg caagaggact ggcctgggaa gcctggtttg cttaactgggg ccaaggact	360
ctggtcactg tctctgcagc caaaacgaca ccccatctg tctatccact ggcccttgaa	420
tctgctgccc aaactaactc catggtgacc ctggatgcc tggtaaggg ctatccct	480
gagccagtga cagtgacctg gaactctgga tccctgtcca gcggtgtgca cacccccc	540
gctgtcctgc agtctgaccc ctacactctg agcagctcag tgactgtccc ctccagacc	600
tggcccaagcg agaccgtcac ctgcaacgtt gcccacccgg ccagcagcac caaggtggac	660
aagaaaattg tgcccaggga ttgtggtgct aagcattgca tagctacaca agcttccggt	720
ggtggcggat ctggaggtgg cggaagcgga ggtcccgagg tgacaggggg aatggcaagc	780
aagtgggatc agaagggtat ggacattgcc tatgaggagg cggccttagg ttacaagag	840
ggtgggttgc ctattggcgg atgtcttatac aataacaaag acggaagtgt tctcggtcgt	900
ggtcacaaca ttagattca aaagggatcc gccacactac atggtgatgat ctccacttg	960
gaaaactgtg ggagattaga gggcaaagtg tacaaagata ccacttgttacgacgctg	1020
tctccatgca acatgtgtac aggtgccatc atcatgtatg gtattccacg ctgtgttgca	1080
ggtgagaacg ttaattcaa aagtaaggc gagaaatatt tacaaactag aggtcacgag	1140

SubstituteSequenceListing_05-06-2010

gttgttgg	ttgacgatga	gaggtgtaaa	aagatcatga	aacaatttat	cgatgaaaga	1200
cctcaggatt	ggttgaaga	tattggtag	tag			1233
<210> 7						
<211> 4871						
<212> DNA						
<213> Artificial Sequence						
<220>						
<223> pMC74 plasmid full sequence						
<400> 7						
taatacgact	cactataggg	agaccacaac	ggtttccctc	tagaaataat	tttgttaac	60
tttaagaagg	agatatacat	atggatgtga	agctggtag	atctggagga	ggcttagtgc	120
agcctggagg	gtccctgaaa	ctctcctgtg	caacctctgg	attcactttc	agtgactatt	180
acatgtattt	gtttcgccag	actccagaga	agaggctgga	gtgggtcgca	tacatttagta	240
atgatgatag	ttccgcccgt	tattcagaca	ctgtaaaggg	ccggttcacc	atctccagag	300
acaatgccag	gaacaccctc	tacctgcaaa	tgagccgtct	gaagtctgag	gacacagcca	360
tatattcctg	tgcaagagga	ctggcctggg	gagcctgggt	tgcttactgg	ggccaaggga	420
ctctggtcac	tgtctctgca	gccaaaacga	caccccccattc	tgtctatcca	ctggccctcg	480
gatctgctgc	ccaaactaac	tccatggta	ccctggatg	cctggtaag	ggctatttcc	540
ctgagccagt	gacagtgacc	tggaactctg	gatccctgtc	cagcgggtgt	cacaccttcc	600
cagctgtcct	gcagtctgac	ctctacactc	tgagcagctc	agtgactgtc	ccctccagca	660
cctggccca	cgagaccgtc	acctgcaacg	ttgcccaccc	ggccagcagc	accaagggtgg	720
acaagaaaat	tgtgcccagg	gattgtggta	gtaagcctag	cataagtaca	aaagcttccg	780
gagggtcccg	gggcggcagc	ctggccgcgc	tgaccgcgc	ccaggcttgc	cacctgccgc	840
tggagacttt	cacccgtcat	cgccagccgc	gcggctggga	acaactggag	cagtgcggct	900
atccggtgca	gcggctggtc	gccctctacc	tggcggcgcgc	gctgtcgtgg	aaccaggctcg	960
accaggtat	ccgcaacgccc	ctggccagcc	ccggcagcgg	cggcgacctg	ggcgaagcga	1020
tccgcgcgca	gccggagcag	gcccgtctgg	ccctgaccct	ggccgcgcgc	gagagcgcgc	1080
gcttcgtccg	gcagggcacc	ggcaacgcgc	aggccggcgc	ggccaacggc	ccggcggaca	1140
gcggcgacgc	cctgctggag	cgcaactatc	ccactggcgc	ggagttccctc	ggcgacggcg	1200
gcgacgtcag	ttcagcacc	cgcggcacgc	agaactggac	ggtggagcgg	ctgctccagg	1260
cgcaccgcca	actggaggag	cgcggctatg	tgttcgtcgg	ctaccacggc	actttcctcg	1320
aagcggcgca	aagcatcg	ttcggcgggg	tgcgcgccgc	cagccaggac	ctcgacgcga	1380

SubstituteSequenceListing_05-06-2010

tctggcgccg	tttctata	tc gccggcgatc	cggcgctggc	ctacggctac	gcccaggacc	1440												
aggaaacccga	cgcacgcg	gc	cgatccgca	acggtgc	ccct gctgcgggtc	tatgtgccgc	1500											
gctcgagc	cct	gccgggcttc	tac	ccgacca	gcctgacc	cc	ggccgcgccc	gaggcggcgg	1560									
gcgaggtcga	acgg	ctgatc	g	ccatccgc	tgccgctg	cg	cctggacg	cc	atcaccggcc	1620								
ccgaggagga	aggc	gggcgc	ct	ggagacca	tt	ctcggt	g	ccgctgg	cc	gagcgcacc	1680							
tggtgattcc	ctc	ggcgatc	cc	accg	gacc	cg	cgcaac	gt	cggcgc	ac	ctcgacc	1740						
ccagcatccc	cg	acaaggaa	cagg	cgatca	gc	gccc	tg	cc	ggactac	g	cc	agccag	cc	cg	1800			
gcaaaccg	cc	g	cg	cgaggac	ct	gaagta	ac	tg	ccg	g	acc	ct	cc	ttcc	cg	agg	1860	
gccggc	cttc	tc	gggg	cc	ct	g	ccat	ac	atc	tt	gtt	cc	ct	gtt	ct	cc	1920	
tgaattcggc	tg	cta	ac	aaa	g	cc	gaa	agg	a	ag	ct	g	at	g	tt	cc	gg	1980
aataactagc	at	a	ac	cc	ct	tt	gg	c	t	ct	aa	cc	tt	gg	tt	tt	tt	2040
aggaactata	tcc	ggat	cg	g	a	t	ca	at	t	cc	g	at	gg	cc	ac	cc	gt	2100
cgc	cc	tt	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2160
ttaagcgc	cg	gg	gt	gt	gg	gt	tt	ac	tg	cc	ac	tc	cc	ct	cc	cc	cc	2220
gc	g	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2280
caagctctaa	at	cgggg	g	cc	tt	aa	gg	tt	gg	tt	tt	ac	tt	cc	cc	cc	cc	2340
cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2400
tttc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2460
acaacactca	ac	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	2520
gc	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	2580
ttaacgttta	ca	at	ttc	agg	tgg	c	actt	ttt	cc	gg	aa	at	tg	cc	cc	cc	cc	2640
ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	2700
cttcaata	at	tg	aaaa	aa	gg	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	2760
cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2820
aaagatg	ctg	a	agat	ca	gtt	gg	gt	gg	tt	ac	tt	tt	tt	tt	tt	tt	tt	2880
ggtaa	at	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	2940
gttctg	ct	tg	gg	gg	ttt	cc	tt	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3000
cg	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3060
acggatgg	ca	tt	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	3120

SubstituteSequenceListing_05-06-2010

gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc ttttttcac	3180
aacatggggg atcatgtaac tcgccttgcgat cggtggaaac cgtagctgaa tgaagccata	3240
ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt gcgcaaacta	3300
ttaactggcg aactacttac tctagcttcc cggtcaacaat taatagactg gatggaggcg	3360
gataaaagttg caggaccact tctgcgctcg gcccttcgg ctggctggtt tattgctgat	3420
aaatctggag ccgtgagcg tgggtctcgc ggtatcattt cagcactggg gccagatgg	3480
aagccctccc gtatcgtagt tatctacacg acgggcagtc aggtcaactat ggatgaacga	3540
aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact gtcagaccaa	3600
gtttactcat atatacttta gattgattta aaacttcatt tttttttaa aaggatctag	3660
gtgaagatcc ttttgataa tctcatgacc aaaatccctt aacgtgagtt ttgcgttccac	3720
tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatcctt ttttctgcgc	3780
gtaatctgct gcttgcaaac aaaaaaacca ccgttaccag cggtggtttgg tttgccggat	3840
caagagctac caactcttt tccgaaggta actggcttca gcagagcgc gataccaaat	3900
actgtcccttc tagttagcc gtagtttagc caccacttca agaactctgt agcaccgcct	3960
acatacctcg ctctgctaattt cctgttacca gtggctgctg ccagtggcga taagtcgtgt	4020
cttaccgggt tggactcaag acgatagttt ccggataagg cgccggcggc gggctgaacg	4080
gggggttcgt gcacacagcc cagcttggag cgaacgaccc acaccgaact gagataccta	4140
cagcgtgagc attgagaaag cgccacgctt cccgaaggaa gaaaggcggc caggtatccg	4200
gtaagcggca gggtcggaaac aggagagcgc acgaggaggc ttccagggggg gaacgcctgg	4260
tatctttata gtcctgtcggtt gtttcgcac ctctgacttgc agcgtcgatt tttgtgatgc	4320
tcgtcaggggg ggccgagcct atggaaaaac gccagcaacg cggctttttt acggttcctg	4380
gccttttgc ggcctttgc tcacatgttc tttcctgcgt tatccccgtt ttctgtggat	4440
aaccgttata ccgccttgcgtt gttttttttt acggttcctg acggttcctg	4500
agcgagtcag tgagcgagga agcggaaagag cgcctgtatgc ggtatccctt ctttacgc	4560
ctgtcggta ttccacaccg catatatggt gcactctcgat tacaatctgc tctgtatgc	4620
catagttaaag ccgtataca ctccgctatc gctacgtgac tgcaaggaga tggcgcccaa	4680
cagtcccccg gccacggggc ctgcccacccat acccacggc aaacaaggcgc tcatgagccc	4740
gaagtggcga gcccgtatcc ccccatcggt gatgtcgccg atataggcgc cagcaaccgc	4800
acctgtggcg ccgtgatgc cggccacgtatgc gctacgtgac tgcaaggaga tggcgcccaa	4860
atccgcgaaa t	4871

SubstituteSequenceListing_05-06-2010

<210> 8
<211> 4886
<212> DNA
<213> Artificial Sequence

<220>
<223> pMH21 plasmid full sequence

<400> 8
taatacgact cactataggg agaccacaac ggtttccctc tagaaataat tttgttaac 60
tttaagaagg agatatacat atggaggtga agctgggtgga atctggagga ggcttagtgc
agcctggagg gtccctgaaa ctctcctgtg caacctctgg attcactttc agtgaattt 120
acatgtattt gtttcgcccag actccagaga agaggctgga gtgggtcgca tacatttagta 180
atgatgatag ttccgcccgt tattcagaca ctgtaaaggg ccggttcacc atctccagag 240
acaatgccag gaacaccctc tacctgcaaa tgagccgtct gaagtctgag gacacagcca 300
tatattcctg tgcaagagga ctggcctggg gaggctggtt tgcttactgg ggccaaggaa 360
ctctggtcac tgtctctgca gccaaaacga caccatccatc tgtctatcca ctggccctg 420
gatctgctgc ccaaactaac tccatggta ccctggatg cctggtaag ggctatttcc 480
ctgagccagt gacagtgacc tggaactctg gatccctgtc cagcggtgtg cacacattcc 540
cagctgtcct gcagtctgac ctctacactc tgagcagtc agtgaactgtc ccctccagca 600
cctggcccaag cgagaccgtc acctgcaacg ttgcccaccc ggccagcagc accaagggtgg 660
acaagaaaat tgtgcccagg gattgtggta gtaagccttg cataagtaca aaagcttctg 720
gtgggtggcg atctggaggt cccgagggcg gcagcctggc cgcgctgacc ggcgcaccagg 780
cttgccacct gccgctggag actttcaccc gtcatcgcca gccgcgcggc tggaaacaac 840
tggagcagtg cggctatccg gtgcagcggc tggcgccct ctacctggcg ggcggctgt 900
cgtggAACCA ggtcgaccag gtgatccgca acgcccgtgc cagccccggc agcggcggcg 960
acctggcgca agcgatccgc gagcagccgg agcaggcccg tctggccctg accctggccg 1020
ccgcccggag cgagcgcttc gtccggcagg gcaccggcaa cgacgaggcc ggccgcggcca 1080
acggccccggc ggacagcggc gacgcccgtc tggagcgcgg cttatcccact ggccgcggag 1140
tcctcggcgaa cggcgccgac gtcagcttca gcacccggcgg caccgagaac tggacgggtgg 1200
agcggctgtc ccaggcgcac cgccaaactgg aggagcgcgg ctatgtgttc gtccggctacc 1260
acggcacctt cctcgaagcg ggcgcggca tgcgtttcgg cgggggtgcgc ggcgcggcagcc 1320
aggacacctgaa cgcgatctgg cgcggtttct atatcgccgg cgatccggcg ctggccatcg 1380
1440

SubstituteSequenceListing_05-06-2010

gctacgcccc	ggaccaggaa	cccgacgcac	gcggccggat	ccgcaacggt	gccctgtgc	1500
gggtctatgt	gccgcgctcg	agcctgccgg	gcttctaccg	caccagcctg	accctggccg	1560
cgccggaggc	ggcgggchgag	gtcgaacggc	tgatcgcca	tccgctgccc	ctgcgcctgg	1620
acgccatcac	cggccccgag	gaggaaggcg	ggcgccctgga	gaccattctc	ggctggccgc	1680
tggccgagcg	caccgtggtg	attccctcg	cgatccccac	cgaccggcgc	aacgtcgccg	1740
gcgacctcga	cccggtccagc	atccccgaca	aggaacaggc	gatcagcgcc	ctgcccggact	1800
acgccagcca	gccccggcaaa	ccgccgcgcg	aggacctgaa	gtaactgccc	cgaccggccg	1860
gctcccttcg	caggagccgg	ccttctcg	gcctggccat	acatcagggtt	ttcctgtatgc	1920
cagcccaatc	gaatatgaat	tcggctgcta	acaaagccc	aaaggaagct	gagttggctg	1980
ctgccaccgc	tgagcaataa	ctagcataac	cccttggcc	tctaaacggg	tcttgagggg	2040
tttttgctg	aaaggaggaa	ctatatccgg	atcggagatc	aattctggcg	taatagcgaa	2100
gaggcccgca	ccgatcgccc	ttcccaacag	ttgcgtagcc	tgaatggcga	atgggacgcg	2160
ccctgtagcg	gcgcattaaag	cgcgccgggt	gtgggtgtta	cgcgacgt	gaccgctaca	2220
cttgccagcg	ccctagcgcc	cgctcccttc	gctttcttcc	cttcctttct	cgccacgttc	2280
gccggctttc	cccgtaaagc	tctaaatcgg	gggctccctt	tagggttccg	atttatgtct	2340
ttacggcacc	tcgaccccaa	aaaacttgat	tagggtgatg	gttcacgtag	tgggcatcg	2400
ccctgataga	cggttttcg	cccttgacg	ttggagtcca	cgttctttaa	tagtggactc	2460
ttgttccaaa	ctggaacaac	actcaaccct	atctcggtct	attctttga	tttataaggg	2520
attttgcga	tttcggccta	ttggtaaaaa	aatgagctga	ttaacaaaaa	atthaacgcg	2580
aattttaaca	aaatattaac	gtttacaatt	tcaggtggca	ctttcgggg	aatgtgcgc	2640
ggaaccccta	tttggattt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	2700
taaccctgat	aatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	2760
cgtgtcgccc	ttattccctt	tttgccggca	ttttgccttc	ctgttttgc	tcacccagaa	2820
acgctggtga	aagtaaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	2880
ctggatctca	acagcggtaa	gatccttgag	agtttcgcc	ccgaagaacg	ttttccaatg	2940
atgagcactt	ttaaagtct	gctatgtggc	gcggatttat	cccgtattga	cgccgggcaa	3000
gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tgggtgagta	ctcaccagtc	3060
acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataagc	3120
atgagtgata	acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	3180
accgcttttt	ttcacaacat	gggggatcat	gtaactcgcc	ttgatcggt	ggaaccggag	3240

SubstituteSequenceListing_05-06-2010

ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtac aatggcaaca	3300
acgttgcgca aactattaac tggcgaacta cttactctag cttccggca acaattaata	3360
gactggatgg aggcggataa agttgcagga ccacttctgc gctggccct tccggctggc	3420
tggtttattt ctgataaatac tggagccggt gagcgtgggt ctcgcgtat cattgcagca	3480
ctggggccag atggtaagcc ctcccgatc gtagttatct acacgacggg cagtcaggca	3540
actatggatg aacgaaatag acagatcgct gagataggtg cctcactgtat taagcattgg	3600
taactgtcag accaagtttta ctcatatata ctttagattt attaaaaact tcattttaa	3660
tttaaaaagga tctaggtgaa gatcctttt gataatctca tgacaaaaat cccttaacgt	3720
gagtttcgt tccactgagc gtcagacccc gtagaaaaaga tcaaaggatc ttcttgagat	3780
ccttttttc tgcgctaat ctgcgttgc caaacaaaaa aaccaccgct accagcggtg	3840
gtttgttgc cggatcaaga gctaccaact cttttccga aggttaactgg cttcagcaga	3900
gcgcagatac caaataactgt ctttctagtg tagccgtatg taggccacca cttcaagaac	3960
tctgtacac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt	4020
ggcgataagt cgtgtttac cgggttggac tcaagacgat agttaccggta aaggcgcag	4080
cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc	4140
gaactgagat acctacagcg tgagcattga gaaagcgcca cgcttccga agggagaaag	4200
gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag ggagcttcca	4260
ggggggaaacg cctggatct ttatagtcct gtcgggttgc gccacctctg acttgagcgt	4320
cgattttgt gatgctcgac agggggggcg agcctatggaa aaaacgcccag caacgcggcc	4380
tttttacggt tcctggccct ttgctggcct tttgctcaca tggctttcc tgcgttatcc	4440
cctgattctg tggataaccg tattaccgcc tttgagtggat ctgataaccgc tcgcccgcagc	4500
cgaacgaccg agcgcagcga gtcagtggc gaggaagcgg aagagcgcct gatgcgtat	4560
tttctccctta cgcattgtc cggtattca caccgcataat atgggtcact ctcagtacaa	4620
tctgctctga tgccgcatacg ttaagccagt atacactccg cttatcgatc gtgactgcaa	4680
ggagatggcg cccaaacagtc ccccgccac ggggcctgcc accataccca cgccgaaaca	4740
agcgctcatg agccccgaaat ggcgagcccg atcttccca tcgggtatgt cggcgatata	4800
ggcgccagca accgcacccgt tggcgccggc gatgccggcc acgatgcgtc cggcgtagag	4860
gatcttgaga tctcgatccg cgaaat	4886

SubstituteSequenceListing_05-06-2010

gcgaggtcga acggctgatc ggccatccgc tgccgctgcg cctggacgcc atcaccggcc	1620
ccgaggagga aggcgggcgc ctggagacca ttctcggtg gccgtggcc gagcgacaccg	1680
tgggtattcc ctcggcgatc cccaccgacc cgcgcaacgt cggcgccgac ctcgaccgt	1740
ccagcatccc cgacaaggaa caggcgatca ggcgcctgcc ggactacgcc agccagcccg	1800
gcaaaccgcc ggcgaggac ctgaagtaac tgccgcgacc ggccggctcc cttcgcagga	1860
gccggccttc tcggggcctg gccatacatc aggtttcct gatgccagcc caatcgaata	1920
tgaattcggc tgctaacaaa gcccggaaagg aagctgagtt ggctgctgcc accgctgagc	1980
aataactagc ataacccctt gggcctctaa acgggtcttg agggggttt tgctgaaagg	2040
aggaactata tccggatcgg agatcaattc tggcgtaata gcgaagaggc ccgcaccgat	2100
cgccttccc aacagttgcg tagcctgaat ggcgaatggg acgcgcctg tagcggcgca	2160
ttaagcgcgg cgggtgtggt ggttacgcgc acgcgtgaccg ctacacttgc cagcgcctca	2220
gcgcgcgtc cttcgcctt ctcccttcc tttctcgcca cgttcgccgg ctttccccgt	2280
caagctctaa atcgggggct cccttaggg ttccgattta gtgccttacg gcacctcgac	2340
cccaaaaaac ttgatttaggg ttaggttca cgtagtggc catgcgcctg atagacgggt	2400
tttcgcctt tgacgttgga gtccacgttc tttaatagtg gactctgtt ccaaactgga	2460
acaacactca accctatctc ggtctattct tttgatttat aagggatttt gccgatttcg	2520
gcctattggtaaaaaatga gctgatttaa caaaaattta acgcgaattt taacaaaata	2580
ttaacgttta caatttcagg tggcactttt cggggaaatg tgcgcggaaac ccctattgt	2640
ttattttct aaatacattc aaatatgtat ccgctcatga gacaataacc ctgataaatg	2700
cttcaataat attaaaaaaag gaagagtatg agtattcaac attccgtgt cgcccttatt	2760
cccttttttgcggcattttgccttcgtt tttgctcacc cagaaacgct ggtgaaagta	2820
aaagatgctg aagatcagg ggggcacga gtgggttaca tcgaactgga tctcaacagc	2880
ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc caatgtatgag cactttaaa	2940
gttctgctat gtggcgccgt attatccgt attgacgccc ggcaagagca actcggtcgc	3000
cgcatacact attctcagaa tgacttgggtt gagtactcac cagtcacaga aaagcatctt	3060
acggatggca tgacagtaag agaattatgc agtgctgcc taagcatgag tgataacact	3120
gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc ttttttcac	3180
aacatggggg atcatgtaac tcgccttgcgtt cgttggaaac cggagctgaa tgaagccata	3240
ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacggtt ggcgaaacta	3300

SubstituteSequenceListing_05-06-2010

ttaactggcg aactactaac tctagcttcc	cgccaacaat taatagactg	gatggaggcg	3360		
gataaaagttg caggaccact tctgcgctcg	gcccttcgg	ctggctggtt	tattgctgat	3420	
aaatctggag ccggtagcg	tggtctcgc	ggtatcattg	cagcactggg	gccagatgg	3480
aagccctccc gtatcgtagt	tatctacacg	acgggcagtc	aggcaactat	ggatgaacga	3540
aatagacaga tcgctgagat	aggtgcctca	ctgattaagc	attggtaact	gtcagaccaa	3600
gtttactcat atatactta	gattgattta	aaacttcatt	tttaatttaa	aaggatctag	3660
gtgaagatcc ttttgataa	tctcatgacc	aaaatccctt	aacgtgagtt	ttcggtccac	3720
tgagcgtcag accccgtaga	aaagatcaaa	ggatcttctt	gagatccttt	tttctgcgc	3780
gtaatctgct gcttgcaaac	aaaaaaacca	ccgctaccag	cggtggttt	tttgcggat	3840
caagagctac caactcttt	tccgaaggta	actggctca	gcagagcgca	gataccaaat	3900
actgtcccttc tagttagcc	gtagtttagc	caccactca	agaactctgt	agcaccgcct	3960
acataacctcg ctctgcta	at cctgttacca	gtggctgctg	ccagtggcga	taagtcgtgt	4020
cttaccgggt tggactcaag	acgatagtt	ccggataagg	cgcagcggc	gggctgaacg	4080
gggggttcgt gcacacagcc	cagctggag	cgaacgacct	acaccgaact	gagataccta	4140
cagcgtgagc attgagaaag	cgccacgctt	cccgaaggga	gaaaggcgg	caggtatccg	4200
gtaagcggca ggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	gaacgcctgg	4260
tatctttata	gtcctgtcgg	gtttcgccac	ctctgactt	agcgtcgatt	4320
tcgtcagggg	ggccgagcct	atggaaaaac	gccagcaacg	cgccctttt	4380
gcctttgt	ggcctttgc	tcacatgttc	tttcctgcgt	tatcccctga	4440
aaccgtatta	ccgccttga	gtgagctgat	accgctcgcc	gcagccgaac	4500
agcgagtcag	tgagcgagga	agcggaaagag	cgcctgatgc	ggtatttct	4560
ctgtgcggta	tttcacacccg	catatatggt	gcactctcag	tacaatctgc	4620
catatgttaag	ccagtataca	ctccgctatc	gctacgtgac	tgcaaggaga	4680
cagtcccccg	gccacggggc	ctgcccaccat	acccacgccc	aaacaagcgc	4740
gaagtggcga	gcccgcattt	ccccatcggt	gatgtcgccg	atataggcgc	4800
acctgtggcg	ccggtgatgc	cggccacgat	gcgtccggcg	tagaggatct	4860
atccgcgaaa t					4871

<210> 10
<211> 3703
<212> DNA
<213> Artificial Sequence

SubstituteSequenceListing_05-06-2010

<220>
<223> pMC75 plasmid full sequence

<400> 10
taatacgact cactataggg agaccacaac ggtttccctc tagaaataat tttgttaac 60
tttaagaagg agatatacat atggatgtgc tcatgaccca gtctccattt agtttacctg 120
tcagtcgg agatcaagcc tccatctctt gcagatctag tcagatcatt gtacatagta 180
atggaaacac ctattnaa tggcacctgc agaaaccagg ccagtctcca aagctcctga 240
tctacaaagt ttccaaccga ttttctgggg tcccagacag gttcagtggc agtggatcag 300
ggacagattt cacactcaag atcagcagag tggaggctga ggatctggga gtttattact 360
gtttcaagg ttcacatgtt ccattcacgt tcggctcggg gacaaagttt gaaataaaac 420
gggctgatgc tgcaccaact gtatccatct tcccaccatc cagtgagcag ttaacatctg 480
gaggtgcctc agtcgtgtgc ttcttgaaca acttctaccc caaagacatc aatgtcaagt 540
ggaagattga tggcagtgaa cgacaaaatg gcgtcctgaa cagttggact gatcaggaca 600
gcaaaagacag cacctacagc atgagcagca ccctcacgtt gaccaaggac gaggatgaac 660
gacataacag ctatacctgt gaggccactc acaagacatc aacttcaccc attgtcaaga 720
gcttcaacag gaatgagtgt ggtttttttt aatgaattcg gctgctaaca aagccccaaa 780
ggaagctgag ttggctgctg ccaccgctga gcaataacta gcataacccc ttggccctct 840
aaacgggtct tgaggggttt tttgctgaaa ggaggaacta tatccggatc ggagatcaat 900
tctggcgtaa tagcgaagag gcccgcaccc atcgcccttc ccaacagttt cgtagcctga 960
atggcgaatg ggacgcgcgc tgtagcggcg catataagcgc ggccgggtgtg gtggttacgc 1020
gcagcgtgac cgctacactt gccagcgcgc tagcgcgcgc tccttcgct ttcttcctt 1080
cctttctcgcc cacgttcgccc ggcttcccc gtcaagctt aaatcggggg ctccctttag 1140
ggttccgatt tagtgcttta cggcacctcg accccaaaaa acttgattag ggtgatggtt 1200
cacgttagtgg gccatcgccc tgatagacgg ttttcgcgc tttgacgttg gagtccacgt 1260
tcttaatag tggactcttg ttccaaactg gaacaacact caaccctatc tcggcttatt 1320
cttttgattt ataaggatt ttgccgattt cggccttattt gttaaaaaat gagctgattt 1380
aacaaaaatt taacgcgaat tttaacaaaa tattaaacgtt tacaatttca ggtggcactt 1440
ttcggggaaa tgtgcgcgga accccattt gtttattttt ctaaatacat tcaaataatgt 1500
atccgctcat gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta 1560
tgagtattca acatttccgt gtcgcctta ttccctttt tgccgcattt tgccttcctg 1620

SubstituteSequenceListing_05-06-2010

tttttgctca cccagaaaacg ctggtaaaag taaaagatgc tgaagatcg ttgggtgcac	1680
gagtgggtta catcgaaactg gatctcaaca gcggtaagat ccttgagagt ttgcgcgg	1740
aagaacgttt tccaatgtatg agcactttt aagttctgct atgtggcgcg gtattatccc	1800
gtattgacgc cgggcaagag caactcggtc gccgcataca ctattctcag aatgacttgg	1860
tttagtactc accagtcaca gaaaagcatc ttacggatgg catgacagta agagaattat	1920
gcagtgctgc cataaggatcg agtgataaca ctgcggccaa cttaacttctg acaacgatcg	1980
gaggaccgaa ggagctaacc gcttttttc acaacatggg ggatcatgta actgccttg	2040
atcggtggaa accggagctg aatgaagcca taccacacgta cgagcgtgac accacgatgc	2100
ctgttagcaat ggcaacaacg ttgcgcaaac tattaactgg cgaactactt actctagctt	2160
cccgcaaca attaatagac tggatggagg cgatggaaatg tgcaggacca cttctgcgc	2220
cggcccttcc ggctggctgg tttattgctg ataaatctgg agccggtagg cgtgggtctc	2280
gcggtatcat tgcagcactg gggccagatg gtaagccctc ccgtatcgta gttatctaca	2340
cgacgggcag tcaggcaact atggatgaaac gaaatagaca gatcgctgag ataggtgcct	2400
cactgattaa gcattggtaa ctgtcagacc aagtttactc atatatactt tagattgatt	2460
taaaacttca ttttaattt aaaaggatct aggtgaagat ccttttgcgat aatctcatga	2520
ccaaaatccc ttaacgtgag ttttcgttcc actgagcgctc agaccccgta gaaaagatca	2580
aaggatcttc ttgagatcct tttttctgc gcgtaatctg ctgcttgcgaa acaaaaaaac	2640
caccgctacc agcgggtggg tggggccgg atcaagagct accaactctt tttccgaagg	2700
taactggctt cagcagagcg cagataccaa atactgtcct tctagtgttag ccgtagttag	2760
gccaccactt caagaactct gtgcaccgc ctacatactt cgctctgcta atcctgttac	2820
cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt	2880
taccggataa ggcgcagcgg tcgggctgaa cgggggggttc gtgcacacag cccagcttgg	2940
agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gcattgagaa agcgccacgc	3000
ttcccgagg gagaaggcg gacaggtatc cggttaagcgg cagggtcgga acaggagagc	3060
gcacgaggaa gcttccagg gggaaacgcct ggtatctta tagtcgtgc gggttcgcc	3120
acctctgact tgagcgtcga tttttgtat gctcgtaagg gggggccgagc ctatggaaaa	3180
acgcccggaa cgcggccctt ttacgggttcc tggcctttt ctggccttt gctcacatgt	3240
tctttcctgc gttatccctt gattctgtgg ataaccgtat taccgcctt gagtgagctg	3300
ataccgctcg cgcggccga acgaccgagc gcagcgtgac agtgagcggag gaagcggaaag	3360
agcgcctgat gcggattttt ctccttacgc atctgtgcgg tatttcacac cgcatatatg	3420

SubstituteSequenceListing_05-06-2010

gtgcactctc agtacaatct gctctgatgc cgcatagttt a gccagtata cactccgcta	3480
tcgctacgtg actgcaagga gatggcgccc aacagtcccc cggccacggg gcctgccacc	3540
atacccacgc cgaaacaaggc gctcatgagc ccgaagtggc gagcccgatc ttccccatcg	3600
gtgatgtcgg cgatataggc gccagcaacc gcacctgtgg cgccggtgat gccggccacg	3660
atgcgtccgg cgttagaggat cttgagatct cgatccgca aat	3703

<210> 11
<211> 5576
<212> DNA
<213> Artificial Sequence

<220>
<223> pLSC52 plasmid full sequence

<400> 11	
taatacgaact cactataggg agaccacaac ggtttccctc tagaaataat tttgttaac	60
tttaagaagg agatatacat atggatgtga agctggtgga atctggagga ggcttagtgc	120
agcctggagg gtccctgaaa ctctcctgtg caacctctgg attcactttc agtgaattt	180
acatgtattt gtttcgccag actccagaga agaggctgga gtgggtcgca tacatttagt	240
atgatgatag ttccgcccct tattcagaca ctgtaaaggg ccggttcacc atctccagag	300
acaatgccag gaacaccctc tacctgcaaa tgagccgtct gaagtctgag gacacagcca	360
tatattcctg tgcaagagga ctggcctggg gagcctgggt tgcttactgg ggccaaggga	420
ctctggtcac tgtctctgca gccaaaacga caccatccatc tgtctatcca ctggccctg	480
gatctgctgc ccaaactaac tccatggta ccctggatg cctggtaag ggctatttcc	540
ctgagccagt gacagtgacc tggaactctg gatccctgtc cagcgggtgt cacaccttc	600
cagctgtcct gcagtctgac ctctacactc tgagcagctc agtgaactgtc ccctccagca	660
cctggccctg cgagaccgtc acctgcaacg ttgcccaccc ggccagcagc accaagggtgg	720
acaagaaaat tgtgcccagg gattgtggtg agcccaaattc ttgtgacaaa actcacacat	780
gcccaccgtg cccagcacct gaactcctgg ggggaccgtc agtcttcctc ttcccccaaa	840
aacccaagga caccctcatg atctcccgaa cccctgaggt cacatgcgtg gtggtgacg	900
tgagccacga agaccctgag gtcaagttca actggtaacgt ggacggcgtg gaggtgcata	960
atgccaagac aaagccgcgg gaggagcagt acaacacgcac gtaccgtgtg gtcagcgtcc	1020
tcaccgtcct gcaccaggac tggctgaatg gcaaggagta caagtgcac gtctccaaca	1080
aagccctccc agccccatc gagaaaacca tctccaaaggc caaaggccag ccccgagaac	1140

SubstituteSequenceListing_05-06-2010

cacagggtgta	caccctgccc	ccatcccggg	atgagctgac	caagaaccag	gtcagcctga	1200
cctgcctggt	caaaggcttc	tatcccagcg	acatgcgcgt	ggagtgggag	agcaatggc	1260
agccggagaa	caactacaag	accacgcctc	ccgtgctgga	ctccgacggc	tccttcttcc	1320
tctacagcaa	gctcaccgtg	gacaagagca	ggtggcagca	gggaaacgtc	ttctcatgct	1380
ccgtgatgca	tgaggctctg	cacaaccact	acacgcagaa	gaggctctcc	ctgtctccgg	1440
gtaaaggcgg	aggcggatcc	ggtggtggcg	gttctaaagc	ttccggaggt	cccgaggcg	1500
gcagcctggc	cgcgctgacc	gcgcaccagg	cttgcaccc	gccgctggag	actttcaccc	1560
gtcatcgcca	gccgcgcggc	tggaaacaac	tggagcagtg	cggctatccg	gtgcagcggc	1620
tggtcgcct	ctacctggcg	gchgctgt	cgtggAACCA	ggtcgaccag	gtgatccgca	1680
acgcccctggc	cagccccggc	agcggcggcg	acctggcg	agcgatccgc	gagcagccgg	1740
agcaggcccc	tctggccctg	accctggccg	ccgcccggag	cgagcgttc	gtccggcagg	1800
gcaccggcaa	cgacgaggcc	ggcgccggca	acggcccg	ggacagcggc	gacgcccctgc	1860
tggagcgcaa	ctatcccact	ggcgccggagt	tcctcgccga	cggcgccgac	gtcagcttca	1920
gcaccccgccg	cacgcagaac	tggacggtgg	agcggctgt	ccaggcgcac	cggcaactgg	1980
aggagcgccg	ctatgtgttc	gtcgcttacc	acggcacctt	cctcgaagcg	gcgcaaagca	2040
tcgtcttcgg	cgggggtgcgc	gchgctgagcc	aggacctcga	cgcgatctgg	cgcggtttct	2100
atatcgccgg	cgatccggcg	ctggcctacg	gctacgccc	ggaccaggaa	cccgacgcac	2160
gcggccggat	ccgcaacgg	gccctgctgc	gggtctatgt	gccgcgctcg	agcctggcgg	2220
gcttctaccg	caccagcctg	accctggccg	cgccggaggg	ggcgccggcag	gtcgaacggc	2280
tgatcgccca	tccgctgccc	ctgcgcctgg	acgccatcac	cggcccccgg	gaggaaggcg	2340
ggcgccctgga	gaccattctc	ggctggccgc	tggccgagcg	caccgtggtg	attccctcgg	2400
cgatccccac	cgacccgcgc	aacgtcggcg	gcgacctcga	cccgtccagc	atccccgaca	2460
aggaacagggc	gatcagcgcc	ctgcccggact	acgccagcc	gccccggcaaa	ccgcccgcgc	2520
aggacctgaa	gtaactgccc	cgaccggccg	gctcccttcg	caggagccgg	ccttctcggg	2580
gcctggccat	acatcaggtt	ttcctgtatgc	cagcccaatc	gaatatgaat	tcggctgcta	2640
acaaagcccc	aaaggaagct	gagttggctg	ctgccaccgc	tgagcaataa	ctagcataac	2700
cccttgggcc	tctaaacggg	tcttgggggg	tttttgctg	aaaggaggaa	ctatatccgg	2760
atcggagatc	aattctggcg	taatagcgaa	gaggccccca	ccgatcgccc	ttcccaacag	2820
ttgcgttagcc	tgaatggcga	atgggacgcg	ccctgttagcg	gcgcatataag	cgcggccgggt	2880
gtgggtgtta	cgcgcagcgt	gaccgctaca	cttgcaccc	ccctagcggcc	cgctcccttc	2940

SubstituteSequenceListing_05-06-2010

gctttcttcc	cttcctttct	cggcacgttc	gccggcttc	cccgtcaagc	tctaaatcg	3000
gggctccctt	tagggttccg	atttagtgt	ttacggcacc	tcgaccccaa	aaaacttgat	3060
tagggtgatg	gttcacgtag	tggccatcg	ccctgataga	cggttttcg	ccctttgacg	3120
ttggagtcca	cgttcttaa	tagtgactc	ttgttccaaa	ctgaaacaac	actcaaccct	3180
atctcggtct	attctttga	tttataaggg	attttgccga	tttcggccta	ttggttaaaa	3240
aatgagctga	tttaacaaaa	atthaacgcg	aattttaaca	aaatattaac	gtttacaatt	3300
tcaggtggca	ctttcgggg	aaatgtgcgc	ggaaccccta	tttgcatttatt	tttctaaata	3360
cattcaaata	tgtatccgct	catgagacaa	taaccctgat	aatgcttca	ataatattga	3420
aaaaggaaga	gtatgagttat	tcaacatttc	cgtgtcgccc	ttattccctt	tttgccgca	3480
ttttgccttc	ctgttttgc	tcacccagaa	acgctggta	aagtaaaaga	tgctgaagat	3540
cagttgggtg	cacgagtggg	ttacatcgaa	ctggatctca	acagcggtaa	gatccttgag	3600
agtttgcgc	ccgaagaacg	ttttccaatg	atgagcactt	ttaaagttct	gctatgtggc	3660
gcggatttat	cccgatttga	cgccggcaa	gagcaactcg	gtcgccgcat	acactattct	3720
cagaatgact	tggtttagta	ctcaccagtc	acagaaaagc	atcttacgga	tggcatgaca	3780
gtaagagaat	tatgcagtgc	tgccataagc	atgagtgata	acactgcggc	caacttactt	3840
ctgacaacga	tcggaggacc	gaaggagcta	accgctttt	ttcacaacat	gggggatcat	3900
gtaactcgcc	ttgatcgttg	ggaaccggag	ctgaatgaag	ccataccaaa	cgacgagcgt	3960
gacaccacga	tgcctgtagc	aatggcaaca	acgttgcgc	aactattaac	tggcgaacta	4020
cttactctag	cttccggca	acaattaata	gactggatgg	aggcggataa	agttgcagga	4080
ccacttctgc	gctcgccct	tccggctggc	tggtttattt	ctgataaattc	tggagccggt	4140
gagcgtgggt	ctcgccgtat	cattgcagca	ctggggccag	atggtaagcc	ctcccgtatc	4200
gtagttatct	acacgacggg	cagtcaggca	actatggatg	aacgaaatag	acagatcgct	4260
gagataggtg	cctcactgat	taagcattgg	taactgtcag	accaagttt	ctcatatata	4320
cttagatttgc	atttaaaact	tcattttaa	tttaaaagga	tctaggtgaa	gatcctttt	4380
gataatctca	tgacccaaat	cccttaacgt	gagtttcgt	tccactgagc	gtcagacccc	4440
gtagaaaaga	tcaaaggatc	ttcttgagat	ccttttttc	tgccgcgtaat	ctgctgcttg	4500
caaacaaaaa	aaccaccgct	accagcggtg	gtttgtttgc	cggatcaaga	gctaccaact	4560
cttttccgaa	aggtaactgg	cttcagcaga	gcccagatac	caaatactgt	ccttctagtg	4620
tagccgtat	taggccacca	cttcaagaac	tctgtacac	cgcctacata	cctcgctctg	4680

SubstituteSequenceListing_05-06-2010

ctaattcctgt	taccagtggc	tgctgccagt	ggcgataagt	cgtgtttac	cggttggac	4740
tcaagacgt	agttaccgga	taaggcgcag	cggtcggct	gaacgggggg	ttcgtgcaca	4800
cagccagct	tggagcgaac	gacctacacc	gaactgagat	acctacagcg	tgagcattga	4860
gaaagcgcca	cgcttcccga	agggagaaag	gcggacaggt	atccgtaag	cggcagggtc	4920
ggaacaggag	agcgcacgag	ggagcttcca	ggggggaaacg	cctggtatct	ttatagtcct	4980
gtcgggttcc	gccacctctg	acttgagcgt	cgattttgt	gatgctcgtc	aggggggccg	5040
agcctatgga	aaaacgccaag	caacgcggcc	tttttacggt	tcctggcctt	ttgctggcct	5100
tttgctcaca	tgttctttcc	tgcgttatcc	cctgattctg	tggataaccg	tattaccgcc	5160
tttgagtgag	ctgataaccgc	tcgccgcagc	cgaacgaccg	agcgcagcga	gtcagtgagc	5220
gaggaagcgg	aagagcgcct	gatgcgttat	tttctcctta	cgcattctgt	cggtatttca	5280
caccgcata	atggtgca	ctcagtaaa	tctgctctga	tgccgcata	ttaagccagt	5340
atacactccg	ctatcgctac	gtgactgcaa	ggagatggcg	cccaacagtc	ccccggccac	5400
ggggcctgccc	accataccca	cgccgaaaca	agcgctcatg	agcccgaagt	ggcgagcccg	5460
atcttccccca	tcggtgatgt	cggcgatata	ggcgccagca	accgcacctg	tggcgccggt	5520
gatgccggcc	acgatgcgtc	cggcgtagag	gatcttgaga	tctcgatccg	cgaaat	5576

<210> 12
 <211> 4263
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> pKL4 plasmid full sequence

<400> 12						
taatacgtact	cactataggg	agaccacaac	ggtttccctc	tagaaataat	tttgttaac	60
tttaagaagg	agatatacat	atgcattacc	atcaccatca	cgatgtgaag	ctgggtggat	120
ctggaggagg	cttagtgcag	cctggagggt	ccctgaaact	ctcctgtgca	acctctggat	180
tcactttcag	tgactattac	atgtattggg	ttcgccagac	tccagagaag	aggctggagt	240
gggtcgcata	cattagtaat	gatgatagtt	ccgcccgtta	ttcagacact	gtaaagggcc	300
ggttcaccat	ctccagagac	aatgccagga	acaccctcta	cctgcaaatg	agccgtctga	360
agtctgagga	cacagccata	tattcctgtg	caagaggact	ggcctgggga	gcctggtttgc	420
cttactgggg	ccaaggggact	ctggtcactg	tctctgcagc	aaaaacgaca	cccccatctg	480
tctatccact	ggcccctgga	tctgctgccc	aaactaactc	catggtgacc	ctgggatgcc	540
tggtcaaggg	ctatccct	gagccagtga	cagtgcac	gaactctgga	tccctgtcca	600

SubstituteSequenceListing_05-06-2010

gcggtgtgca cacttccca gctgtcctgc agtctgacct ctacactctg agcagctcag	660
tgactgtccc ctccagcacc tggcccagcg agaccgtcac ctgcaacgtt gcccacccgg	720
ccagcagcac caaggtggac aagaaaattg tgcccagggta ttgtggtgct aagccttgca	780
tagctacaca agcttccggt ggtggcggat ctggaggtgg cggaagcgg agtcccggagg	840
tgacaggggg aatggcaagc aagtgggatc agaagggtat ggacattgcc tatgaggagg	900
cggccttagg ttacaaagag ggtgggttc ctattggcg atgtcttatac aataacaaag	960
acggaagtgt tctcggtcgt ggtcacaaca tgagattca aaagggatcc gccacactac	1020
atggtgagat ctccacttg gaaaactgtg ggagattaga gggcaaagtg tacaaagata	1080
ccactttgtt tacgacgctg tctccatgctg acatgtgtac aggtgccatc atcatgtatg	1140
gtattccacg ctgtgttgc ggtgagaacg ttaattcaa aagtaaggc gagaaatatt	1200
tacaaactag aggtcacgag gttgttggta ttgacgatga gaggtgtaaa aagatcatga	1260
aacaatttat cgatgaaaga cctcaggatt ggttgaaga tattggtag taggaattcg	1320
gctgctaaca aagccccaaa ggaagctgag ttggctgctg ccaccgctga gcaataacta	1380
gcataacccc ttggccctct aaacgggtct tgaggggtt tttgctgaaa ggaggaacta	1440
tatccggatc ggagatcaat tctggcgtaa tagcgaagag gcccgcaccc atcgcccttc	1500
ccaacagttg ctagcctga atggcgaatg ggacgcgccc ttagcggcgcg cattaagcgc	1560
ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgcgg tagcgcccgc	1620
tccttcgct ttcttccctt cctttctcgcc cacgttcgcc ggcttcccc gtcaagctct	1680
aaatcggggg ctcccttag ggttccgatt tagtgcattt cggcacctcg accccaaaaaa	1740
acttgattag ggtgatggtt cacgtatgg gccatcgccc tgatagacgg ttttcgcggc	1800
tttgacggtt gagtccacgt tcttaatag tggactcttgc ttccaaactg gaacaacact	1860
caaccctatc tcggtctatt ctttgattt ataaggatt ttggccgatt cggcctatttgc	1920
gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa tattaacgtt	1980
tacaatttca ggtggcactt ttggggaaa tggcgccgg acccctattt gtttattttt	2040
ctaaatacat tcaaataatgt atccgctcat gagacaataa ccctgataaa tgcttcaata	2100
atattgaaaa aggaagagta tgagtattca acatttccgt gtggccctta ttccctttt	2160
tgcggcattt tgccttcctg ttttgctca cccagaaacg ctggtaaaag taaaagatgc	2220
tgaagatcag ttgggtgcac gagtgggtta catcgaactg gatctcaaca gcggtaagat	2280
ccttgagagt ttgcggcccg aagaacgttt tccaatgatg agcactttt aagttctgct	2340

SubstituteSequenceListing_05-06-2010

atgtggcgcg gtattatccc gtattgacgc cgggcaagag caactcggtc gccgcataca	2400
ctattctcag aatgacttgg tttagtactc accagtaca gaaaagcatc ttacggatgg	2460
catgacagta agagaattat gcagtgcgc cataagcatg agtgataaca ctgcggccaa	2520
cttacttctg acaacgatcg gaggaccgaa ggagctaacc gcttttttc acaacatggg	2580
ggatcatgta actcgccctg atcgttggga accggagctg aatgaagcca taccaaacga	2640
cgagcgtgac accacgatgc ctgttagcaat ggcaacaacg ttgcgcaaac tattaactgg	2700
cgaactactt actctagctt cccggcaaca attaatagac tggatggagg cgatcaaagt	2760
tgcaggacca cttctgcgcg cggcccttcc ggctggctgg tttattgctg ataaatctgg	2820
agccggtgag cgtgggtctc gcggtatcat tgcagcactg gggccagatg gtaagccctc	2880
ccgtatcgta gttatctaca cgacgggcag tcaggcaact atggatgaac gaaatagaca	2940
gatcgctgag ataggtgcct cactgattaa gcattggtaa ctgtcagacc aagtttactc	3000
atataactt tagattgatt taaaacttca ttttaattt aaaaggatct aggtgaagat	3060
cctttttagt aatctcatga cccaaatccc ttaacgtgag tttcgttcc actgagcgtc	3120
agaccccgta gaaaagatca aaggatcttcc ttgagatcct tttttctgc gcgtaatctg	3180
ctgcttgcaa acaaaaaaaac caccgctacc agcggtggtt tgttgcccgg atcaagagct	3240
accaactctt ttccgaaagg taactggctt cagcagagcg cagataccaa atactgtcct	3300
tctagtgtag ccgtagttag gccaccactt caagaactct gtgcaccgc ctacatacc	3360
cgctctgcta atcctgttac cagtggctgc tgccagtgcc gataagtcgt gtcttaccgg	3420
gttggactca agacgatagt taccggataa ggccgcagcg tcgggctgaa cgggggggttc	3480
gtgcacacag cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga	3540
gcattgagaa agcgccacgc ttccgaaagg gagaaaggcg gacaggtatc cggtaagcgg	3600
cagggtcggc acaggagagc gcacgaggaa gcttccaggg gggAACGCT ggtatctta	3660
tagtcgtc gggttcggcc acctctgact tgagcgtcga tttttgtat gctcgtcagg	3720
ggggccgagc ctatggaaaa acgcccggaa cgccggcttt ttacgggttcc tggccttttgc	3780
ctggcccttt gctcacatgt tcttcctgc gttatccctt gattctgtgg ataaccgtat	3840
taccgccttt gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgtgatc	3900
agtgagcggag gaagcgaaag agcgccctgat gcggtatccc ctccttacgc atctgtgcgg	3960
tatttcacac cgcatatatg gtgcactctc agtacaatct gctctgatgc cgcatagtt	4020
agccagtata cactccgcta tcgctacgtg actgcaagga gatggcgccc aacagtcccc	4080
cggccacggg gcctgccacc ataccacgc cgaaacaacg gctcatgagc ccgaagtggc	4140

SubstituteSequenceListing_05-06-2010

gagcccgatc ttccccatcg gtgatgtcgg cgatataggc gccagcaacc gcacctgtgg 4200
cgcgggtgat gccggccacg atgcgtccgg cgtagaggat cttgagatct cgatccgcga 4260
aat 4263

<210> 13
<211> 54
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 1

<220>
<221> VARIANT
<222> (1)..(1)
<223> X is S or A

<220>
<221> VARIANT
<222> (6)..(6)
<223> X is S or A

<220>
<221> VARIANT
<222> (8)..(8)
<223> X is K or Q

<220>
<221> VARIANT
<222> (11)..(50)
<223> GGGGS is present or absent

<400> 13

Xaa Lys Pro Ser Ile Xaa Thr Xaa Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
35 40 45

Gly Ser Gly Gly Pro Glu
50

<210> 14
<211> 5
<212> PRT
<213> Artificial Sequence

SubstituteSequenceListing_05-06-2010

<220>
<223> affinity domain

<400> 14

Leu Ala Asp Phe Ala
1 5

<210> 15
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 2

<220>
<221> VARIANT
<222> (1)..(1)
<223> X is S or A

<220>
<221> VARIANT
<222> (6)..(6)
<223> X is S or A

<220>
<221> VARIANT
<222> (8)..(8)
<223> X is K or Q

<220>
<221> REPEAT
<222> (11)..(15)

<400> 15

Xaa Lys Pro Cys Ile Xaa Thr Xaa Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Pro Glu

<210> 16
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 3

<400> 16

Cys Lys Pro Ser Ile Ser Thr Lys Ala Ser Gly Gly Pro Glu
Page 26

1 5 10

<210> 17
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 4

<400> 17

Gly Gly Gly Gly Ser
1 5

<210> 18
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 5

<400> 18

Gly Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10

<210> 19
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 6

<400> 19

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 20
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 7

<220>
<221> VARIANT
<222> (2)..(2)
<223> X is S or A

SubstituteSequenceListing_05-06-2010

<220>
<221> VARIANT
<222> (4)..(4)
<223> X is S or A

<220>
<221> REPEAT
<222> (7)..(11)

<400> 20

Ile Xaa Thr Xaa Ala Ser Gly Gly Gly Ser Gly Gly Pro Glu
1 5 10 15

<210> 21
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 8

<400> 21

Gly Ala Ser Gln Glu Asn Asp
1 5

<210> 22
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 9

<400> 22

Ala Lys Pro Cys Ile Ala Thr Gln Ala Ser
1 5 10

<210> 23
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer MH-1

<400> 23
taatacgact cactataggg aga

23

<210> 24
<211> 36
<212> DNA
<213> Artificial Sequence

SubstituteSequenceListing_05-06-2010

<220>
<223> Primer MH-2

<400> 24
agatccggcca ccaccagaag cttttgtact tatgct 36

<210> 25
<211> 62
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer MH-3

<400> 25
ccagatccgc caccaccact tccccctccc ccggaagctt ttgtacttat gctaggctta 60
ct 62

<210> 26
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer MH-4

<400> 26
tgctgggtggc ggatctggag gtcccgaggg cggcaagc 38

<210> 27
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer MH-5

<400> 27
tggtgggtggc ggatctggag gtggcggaag cggaggtccc gagggcggca gc 52

<210> 28
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer MH-6

<400> 28
gccgcgggtg ctgaagctga cgtcgccgccc gtc 33

<210> 29

SubstituteSequenceListing_05-06-2010

<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer MH-7

<400> 29
gggaattcat taagcttgc tagctatgca aggcttagca ccaca

45

<210> 30
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 10

<400> 30

Lys Ala Ser Gly Gly Pro Glu
1 5

<210> 31
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 11

<400> 31

Ser Lys Pro Cys Gly
1 5

<210> 32
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 12

<400> 32

Ser Lys Pro Cys Lys Ala Ser Pro Glu
1 5

<210> 33
<211> 8
<212> PRT
<213> Artificial Sequence

<220>

SubstituteSequenceListing_05-06-2010

<223> Extension peptide 13

<400> 33

Ala Lys Pro Cys Ile Ala Thr Gln
1 5

<210> 34

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Extension peptide 14

<400> 34

Ser Lys Pro Cys Ile Ser Thr Lys
1 5

<210> 35

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Extension peptide 15

<400> 35

Gly Gly Gly Gly Cys Gly Gly Gly Ser Gly Gly Gly Gly Ser
1 5 10 15

<210> 36

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Extension peptide 16

<400> 36

Ser Lys Pro Ser Ile Ser Thr Lys Ala Ser Gly Gly Gly Cys Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Pro Glu
20 25

<210> 37

<211> 43

<212> DNA

<213> Artificial Sequence

SubstituteSequenceListing_05-06-2010

<220>

<223> Primer 1

<400> 37

ggcccatatg catcaccatc accatcacgt gacaggggga atg

43

<210> 38

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer 2

<400> 38

ttggtttcaa gatattggtg agtaggaatt cggcc

35

<210> 39

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer 3

<400> 39

ggcccccggag gtgacagggg gaatg

25

<210> 40

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer 4

<400> 40

gaagatattg gtgagcatca ccatcaccat cactaggaat tcggcc

46

<210> 41

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer 5

<400> 41

ggcccatatg catcaccatc accatcacgt tgtgaagctg gtggagtct

49

<210> 42

<211> 14

<212> PRT

<213> Artificial Sequence

SubstituteSequenceListing_05-06-2010

<220>

<223> Extension peptide 17

<400> 42

Ser Lys Pro Ser Ile Ser Thr Lys Ala Ser Gly Gly Pro Glu
1 5 10

<210> 43

<211> 44

<212> PRT

<213> Artificial Sequence

<220>

<223> Extension peptide 18

<400> 43

Ser Lys Pro Ser Ile Ser Thr Lys Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Cys Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser Gly Gly Gly Ser Gly Gly Pro Glu
35 40

<210> 44

<211> 54

<212> PRT

<213> Artificial Sequence

<220>

<223> Extension peptide 19

<400> 44

Ser Lys Pro Ser Ile Ser Thr Lys Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Cys Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
35 40 45

Gly Ser Gly Gly Pro Glu
50

<210> 45

SubstituteSequenceListing_05-06-2010

<211> 64
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 20

<400> 45

Ser Lys Pro Ser Ile Ser Thr Lys Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser Gly Gly Ser Gly Gly Gly Cys Gly Gly Gly
35 40 45

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Pro Glu
50 55 60

<210> 46
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 21

<400> 46

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Pro Glu
1 5 10

<210> 47
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 22

<400> 47

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Pro Glu

<210> 48
<211> 24

SubstituteSequenceListing_05-06-2010

<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 23

<400> 48

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Pro Glu
20

<210> 49
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 24

<400> 49

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Pro Glu
20 25

<210> 50
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 25

<400> 50

Ala Lys Pro Cys Ile Ala Thr Gln Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Pro Glu
20

<210> 51
<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 26

SubstituteSequenceListing_05-06-2010

<400> 51

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
20 25 30

Pro Glu

<210> 52

<211> 39

<212> PRT

<213> Artificial Sequence

<220>

<223> Extension peptide 27

<400> 52

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser Gly Gly Pro Glu
35

<210> 53

<211> 44

<212> PRT

<213> Artificial Sequence

<220>

<223> Extension peptide 28

<400> 53

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser Gly Gly Ser Gly Gly Pro Glu
35 40

SubstituteSequenceListing_05-06-2010

<210> 54
<211> 49
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 29

<400> 54

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Pro
35 40 45

Glu

<210> 55
<211> 54
<212> PRT
<213> Artificial Sequence

<220>
<223> Extension peptide 30

<400> 55

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
35 40 45

Gly Ser Gly Gly Pro Glu
50

<210> 56
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> PE38REDLK

SubstituteSequenceListing_05-06-2010

<400> 56

Arg Glu Asp Leu Lys
1 5

<210> 57
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> pKL2

<400> 57

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Pro Glu
20

<210> 58
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> pKL3

<400> 58

Ser Lys Pro Cys Ile Ser Thr Lys Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Pro Glu
20

<210> 59
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> pKL4

<400> 59

Ala Lys Pro Cys Ile Ala Thr Gln Ala Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Pro Glu
20

