

Da ingestão do dado ao machine learning

Mini-curso 1: 29/04/2020

Diógenes Justo

DATA ANALYST

Ingestão de dados

ETL

Evolution of Data in Motion

Por que raios copiar dados de um sistema transacional e criar um ambiente analítico?

OLTP vs. OLAP

ONLINE TRANSACTION PROCESSING	ONLINE ANALYTICAL PROCESSING
Handles recent operational data	Handles all historical data
Size is smaller, typically ranging from 100 Mb to 10 Gb	Size is larger, typically ranging from 1 Tb to 100 Pb
Goal is to perform day-to-day operations	Goal is to make decisions from large data sources
Uses simple queries	Uses complex queries
Faster processing speeds	Slower processing speeds
Requires read/write operations	Requires only read operations

E na Dotz?

by Jonathas Mendes

Ecossistema Tecnológico **Data Lake**

DATA MINING, BIG DATA, DATA SCIENCE...

Data Mining ≈ Big Data ≈
Predictive Analytics ≈
Data Science

J. Leskovec, A.Rajaraman, J.Ullman: Mining of Massive Datasets http://www.mmds.org

DATA MINING, MACHINE LEARNING...

[DEAN, 14]

(Procure no Netflix) Máquinas que aprendem "per si" e "ensinam" humanos

https://thispersondoesnotexist.com/

Geração de dados "sintéticos" - imagens (sons, textos, etc)

GAN, Ian Goodfellow, 2014 paper

Traditional Programming

Program Data

Output

Machine Learning

Traditional Approach vs. Machine Learning Approach

Traditional Programming: you code the behavior of the program

Machine Learning: you leave a lot of that to the machine to learn from data

Metodologia Referencial

Dados já estão ingeridos? Features precisam ser preparadas?

Modelagem e avaliação de modelos

Fonte: CRISP-DM

Outras fontes que versam para frameworks muito parecidos

- KDD (escola Data Mining)
- Jeff Hammerbacher's (ex-facebook, fund. da Cloudera)
 - Steps on Data Analysis (John's Hopkin's University)

- · The arrows represent loss.
- The blue lines represent predictions.

Fonte: https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss

Mean square error (MSE) is the average squared loss per example over the whole dataset. To calculate MSE, sum up all the squared losses for individual examples and then divide by the number of examples:

$$MSE = rac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^2$$

where:

- (x, y) is an example in which
 - x is the set of features (for example, chirps/minute, age, gender) that the model uses to make predictions.
 - y is the example's label (for example, temperature).
- prediction(x) is a function of the weights and bias in combination with the set of features x.
- D is a data set containing many labeled examples, which are (x, y) pairs.
- N is the number of examples in D.

Although MSE is commonly-used in machine learning, it is neither the only practical loss function nor the best loss function for all circumstances.

Fonte: https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss

e daqui pra frente?

Data-Science

- Opção do passado
 - Bigguery → Servidor Local com Jupyter
- Agora, Data Proc for Spark and Python:
 - Dados do Bigquery (Acesso via client)
 - \circ GCS \rightarrow csv ou parquets
 - Desenvolvimento de datasets (spark jobs)
 - Al Platform

- Rundeck + Dataproc
- Evolução para Airflow
- Futuro: Kubeflow ou algo do gênero

Google Cloud Storage

Big Query

Muito obrigado!

https://github.com/diogenesjusto/dotz-mini-curso-ingestao-ml

