

## **Foundations of Certified Programming Language and Compiler Design**

Dr.-Ing. Sebastian Ertel

Composable Operating Systems Group, Barkhausen Institute

### Outline



| ecture | Logic Propositional and first-order logic | Formalisms           | PL                          |
|--------|-------------------------------------------|----------------------|-----------------------------|
| 2      | Tropositional and mot order logic         |                      | Functional programming      |
| 3      |                                           | Syntax and Semantics |                             |
| 4      |                                           |                      | The untyped lambda calculus |
| 5      |                                           | Types                |                             |
| 6      |                                           |                      | The typed lambda calculus   |
| 7      |                                           |                      | Polymorphism                |
| 8      |                                           | Curry-Howard         |                             |
| 9      |                                           |                      | Higher-order types          |
| 10     |                                           |                      | Dependent types             |

#### Goals



Let's understand the foundation of programming languages

- as a mathematical system
- that allows for proving theorems.

## History



1920s/30s - Alonzo Church The (untyped) lambda calculus =

- A formal system in which all operations are reduced to
- function definition and
- function application.

1960s - Peter Landin A complex language =

- a tiny core calculus (that captures the language essentials) with
- a collection of derived forms (that can be translated into this core).
   The core language of Landin was the lambda calculus.

1970s - John McCarthy Lisp is based on the lambda calculus.

The lambda calculus is both

- a simple programming language in which computations can be described and
- a mathematical object about which rigorous statements can be proved.

### The Essence of Programming



## Abstraction

- Consider this expression: (5\*4\*3\*2\*1) + (7\*6\*5\*4\*3\*2\*1) + (3\*2\*1)
- A programmer would write: factorial 5 + factorial 6 + factorial 3
- and define: factorial n = if n=0 then 1 else n \* factorial (n-1)
- where factorial =  $\lambda$  n. if n=0 then 1 else n \* factorial (n-1)
- is a function/abstraction that yields . . . for each n.

#### **Application**

- When stating factorial 0, we apply
- the function  $\lambda$  n. if n=0 then 1 else n \* factorial (n-1)
- to the argument 0, i.e.,
- variable n is replaced by 0 such that
- if 0=0 then 1 else 0 \* factorial (0-1)
- to compute the result 1.

# The Untyped Lambda Calculus Syntax



The lambda calculus captures exactly this essence of programming in its purest form:

| t | ::= |               | terms:      |
|---|-----|---------------|-------------|
|   | ļ   | x             | variable    |
|   |     | $\lambda x.t$ | abstraction |
|   |     | t $t$         | application |

Scope of variables: A variable x is said to be

bound if it occurs inside the body t of an abstraction  $\lambda x.t.$  ( $\lambda x$  is a *binder* whose scope is t.)

free if it occurs in a position where it is not bound by an abstraction.

• A term with no free variables is called a *closed term* or *combinator*.

$$id = \lambda x.x$$

## The Untyped Lambda Calculus Operational Semantics



#### In its pure form, the lambda calculus

- contains **no** built-in constants or primitives
- captures the sole means of computation: application of functions to arguments.

#### Each step in the computation

- · rewrites an application with an abstaction on the left-hand side by
- substituting the term on the right-hand side for the variable in the abstraction's body:

$$(\lambda x.t_{12}) t_2 \longrightarrow [x \mapsto t_2]t_{12}$$

• where  $[x \mapsto t_2]t_{12}$  means the term obtained by "replacing all free occurences of x in  $t_{12}$  by  $t_2$ ."

#### **Beta Reduction**



According to Church:

redex ("reducible expression") is a term of the form  $(\lambda x.t_{12})$   $t_2$  beta reduction is the operation of *rewriting* a redex according to the substitution rule.

Consider this term with 3 redexes:

$$(\lambda x.x) \; ((\lambda x.x) \; (\lambda z.(\lambda x.x) \; z)) \equiv \operatorname{id} \; (\operatorname{\underline{id}} \; (\lambda z.\operatorname{\underline{id}} \; \underline{z}))$$

Several evaluation strategies exist:
 full beta reduction where any redex may be reduced
 normal order where the leftmost, outermost redex is reduced
 call by name where reductions inside abstractions are not allowed
 call by value where only outermost redexes are reduced and a redex is reduced only when its
 right-hand side is a value

$$id (id (\lambda z.id z)) \longrightarrow id (\lambda z.id z) \longrightarrow \lambda z.id z \not\longrightarrow$$

#### **Beta Reduction**



According to Church:

redex ("reducible expression") is a term of the form  $(\lambda x.t_{12})$   $t_2$  beta reduction is the operation of *rewriting* a redex according to the substitution rule.

• Consider this term with 3 redexes:

$$(\lambda x.x) \; ((\lambda x.x) \; (\lambda z.(\lambda x.x) \; z)) \equiv \operatorname{id} \; (\operatorname{\underline{id}} \; (\lambda z.\operatorname{\underline{id}} \; \underline{z}))$$

Several evaluation strategies exist:
 full beta reduction where any redex may be reduced
 normal order where the leftmost, outermost redex is reduced
 call by name where reductions inside abstractions are not allowed
 call by value where only outermost redexes are reduced and a redex is reduced only when its
 right-hand side is a value

 Evaluation strategies can be classified as strict where all arguments are evaluated lazy where only used arguments are evaluated

• The strategy is mostly irrelevant for the typed lambda calculus. (Let's stick with call by value.)

## **Operational Semantics**



#### Syntax

#### **Evaluation Rules**

$$\begin{array}{c} \boxed{t \longrightarrow t'} \\ \\ \frac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \ \longrightarrow \ t_1' \ t_2} \ \text{E-App1} & \frac{t_2 \longrightarrow t_2'}{v_1 \ t_2 \ \longrightarrow \ v_1 \ t_2'} \ \text{E-App2} & \overline{(\lambda x. t_{12}) \ v_2 \ \longrightarrow \ [x \mapsto v_2] t_{12}} \ \text{E-AppAbs} \end{array}$$



- Let's define a function  $[x \mapsto s]$  inductively over terms t.
- A naive solution:

$$\begin{array}{lcl} [x \mapsto s]x & = & s \\ [x \mapsto s]y & = & y \\ [x \mapsto s](\lambda y.t_1) & = & \lambda y.[x \mapsto s]t_1 \\ [x \mapsto s](t_1 t_2) & = & ([x \mapsto s]t_1) \ ([x \mapsto s]t_2) \end{array}$$

• But what about  $[x \mapsto y](\lambda x.x) = \lambda x.y$  ?!



- Let's define a function  $[x \mapsto s]$  inductively over terms t.
- Distinguish between the free and bound occurences of variables in a term.

$$\begin{array}{lll} [x\mapsto s]x & = & s \\ [x\mapsto s]y & = & y & \text{if } y\neq x \\ [x\mapsto s](\lambda y.t_1) & = & \begin{cases} \lambda y.t_1 & \text{if } y=x \\ \lambda y.[x\mapsto s]t_1 & \text{if } y\neq x \end{cases} \\ [x\mapsto s](t_1\,t_2) & = & ([x\mapsto s]t_1)\left([x\mapsto s]t_2\right) \end{array}$$

- But what about  $[x \mapsto z](\lambda z.x) = \lambda z.z$  ?!
- This problem is called variable capture.



- Let's define a function  $[x \mapsto s]$  inductively over terms t.
- Capture-avoiding substitution:

$$\begin{array}{lll} [x\mapsto s]x & = & s \\ [x\mapsto s]y & = & y & \text{if } y\neq x \\ [x\mapsto s](\lambda y.t_1) & = & \begin{cases} \lambda y.t_1 & \text{if } y=x \\ \lambda y.[x\mapsto s]t_1 & \text{if } y\neq x \text{ and } y\not\in FV(s) \end{cases} \\ [x\mapsto s](t_1\,t_2) & = & ([x\mapsto s]t_1)\,([x\mapsto s]t_2) \end{array}$$

• This function is only partial! Consider  $[x \mapsto y \ z](\lambda y.x \ y)$ 



- Let's define a function  $[x \mapsto s]$  inductively over terms t.
- · Common fix: working with terms up to renaming of bound variables (Church: alpha conversion).

#### Convention

Terms that differ only in the names of bound variables are interchangable in all contexts.

• Example:  $[x \mapsto y \ z](\lambda y.x \ y) \xrightarrow{\alpha} [x \mapsto y \ z](\lambda w.x \ w) = \lambda w.y \ z \ w$ 

#### Definition (Substitution)

$$\begin{array}{lcl} [x\mapsto s]x & = & s \\ [x\mapsto s]y & = & y & \text{if } y\neq x \\ [x\mapsto s](\lambda y.t_1) & = & \lambda y.[x\mapsto s]t_1 & \text{if } y\neq x \text{ and } y\not\in FV(s) \\ [x\mapsto s](t_1\ t_2) & = & ([x\mapsto s]t_1)\left([x\mapsto s]t_2\right) \end{array}$$

## **Encoding Computation**



- Functions with multiple arguments via higher-order functions:  $\lambda x. \lambda y. t$ 
  - Currying (named in honor to Haskell Curry) is a transformation from multi-argument functions such as  $\lambda(x, y).t$  to higher-order functions  $\lambda x.\lambda y.t$
- Booleans, Conditionals and Logical Connectives

```
Church booleans are defined as \mathtt{tru} = \lambda t.\lambda f.t and \mathtt{fls} = \lambda t.\lambda f.f Conditional test can be encoded as \mathtt{test} = \lambda l.\lambda m.\lambda n.l\ m\ n Logical and follows as
```

- and =  $\lambda b.\lambda c.$ test b (test c tru fls) fls
- or shorter and =  $\lambda b. \lambda c. b c$  fls
- Pairs based on booleans: pair =  $\lambda f.\lambda s.\lambda b.b$  f s where fst =  $\lambda p.p$  tru and snd =  $\lambda p.p$  fls

#### Recursion



- Not all terms reduce to a normal form!
- Consider this combinator: omega =  $(\lambda x.x \ x) \ (\lambda x.x \ x)$
- Its generalization gives rise to the fix-point combinator<sup>1</sup>:

$$\mathtt{fix} = \lambda f.(\lambda x. f (\lambda y. x \ x \ y)) (\lambda x. f (\lambda y. x \ x \ y))$$

- fix embodies recursion.
- Consider our factorial example (with Church numerals) again:

```
\begin{array}{ll} \text{if realeq}\,n\,\,c_0\,\,\text{then}\,\,c_1\\ \text{else times}\,n\,\,(\\ \text{if realeq}\,(\text{prd}\,n)\,\,c_0\,\,\text{then}\,\,c_1\\ \text{else times}\,(\text{prd}\,n)\,\,(\\ \text{if realeq}\,(\text{prd}\,(\text{prd}\,n))\,\,c_0\,\,\text{then}\,\,c_1\\ \text{else times}\,(\text{prd}\,(\text{prd}\,n))\,\,(\\ \dots))) \end{array} \qquad \begin{array}{ll} \text{g} = \lambda fct.\lambda n. \text{if realeq}\,n\,\,c_0\,\,\text{then}\,\,c_1\\ \text{else times}\,n\,\,(fct\,\,(\text{prd}\,n))\\ \text{factorial} = \text{fix}\,\,g\\ \\ \dots))) \end{array}
```

<sup>&</sup>lt;sup>1</sup>Also known as the call by value Y-combinator. The call by name version is simpler:  $fix = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$ 

#### **Encoding data**



```
Scott
                   Coa
                                                                            Church
                                                                           \lambda s. \lambda z. z
                                                                c_0 =
                                                                          \lambda s. \lambda z. s. z
                                                                          \lambda s. \lambda z. s (s z)
                                                                c_2 =
                                                                          \lambda s. \lambda z. s (s (s z))
                                                                c_3 =
                                                                 etc
                                                                                                                                          \lambda z s. z
                                                                                                                            zero =
    Inductive N
                                                                            182 2
                                                              zero =
                                                                                                                                          \lambda n f q. q n
                                                                                                                            succ =
                         I S \cdot \mathbb{N} \rightarrow \mathbb{N}
                                                                            \lambda n s z. s (n s z)
                                                              succ =
Inductive List a :=
                                                                                                                                         \lambda c x \cdot x
                                                                                                                            nil =
   | nil: List a
                                                             nil =
                                                                         \lambda c x x
                                                                                                                           cons =
                                                                                                                                         \lambda h t c. ch t
                                                                         \lambda h t c n. c h (t c n)
   | cons: a -> List a -> List a
                                                           cons =
        head: list a -> a
                                                          head =
                                                                        \lambda l. l (\lambda x xs. x) undef
                                                                                                                    head =
                                                                                                                                  \lambda l. l (\lambda x xs. x) undef
```

<sup>&</sup>lt;sup>0</sup>Pieter Koopman, Rinus Plasmeijer, and Jan Martin Jansen. "Church encoding of data types considered harmful for implementations". In: 26th Symposium on Implementation and Application of Functional Languages (IFL). 2014