MA 423 – Matrix Computations

Lab - 9

Name - Vishisht Priyadarshi

Roll No - 180123053

1 QUESTION - 2:

The output is as follows:

******* Sub-part 1 ********

Theoretical rate of convergence = 2.556817793836644e-01

Experimental rate of convergence = 2.556806914714703e-01

******* Sub-part 2 ********

Theoretical rate of convergence = 2.904339802659631e-01

Experimental rate of convergence = 4.392569437642739e-01

******* Sub-part 3 ********

Theoretical rate of convergence = 1

Experimental rate of convergence = 1.602716382132408e+00

Observations:

The table contains the eigen values of all the matrices such that $|\lambda_1| >= |\lambda_2| >= |\lambda_3|$.

	Matrix	λ_1	λ_2	λ ₃
	(i)	8.58443	2.19488	1.22069
	(ii)	8.45587	1.77206 + 1.70032 i	1.77206 - 1.70032 i
Ī	(iii)	2.38007 + 2.53641 i	2.38007 - 2.53641 i	1.23987

- In case (i), we can observe that it is a strict inequality. Hence, the convergence happens in this case and experimental rate is same as the theoretical rate.
- In case (ii), we have a dominant eigen value, but $|\lambda_2| = |\lambda_3|$. Hence the convergence happens but the experimental rate is slower than the theoretical rate.
- In case (iii), we do not have a dominant eigen value. Hence the Power method fails to converge in this case and we observe such a behaviour while calculating the rate of convergence.