Grunnatriði og Ad hoc

Bergur Snorrason

22. janúar 2021

▶ Í grunninn snýst forritun um gögn.

- ▶ Í grunninn snýst forritun um gögn.
- ▶ Þegar við forritum flokkum við gögnin okkar með *tögum*.

- Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- ▶ Dæmi um tög í C/C++ eru int og double.

- Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- ▶ Dæmi um tög í C/C++ eru int og double.
- ► Helstu tögin í C/C++ eru (yfirleitt):

- Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- Dæmi um tög í C/C++ eru int og double.
- ► Helstu tögin í C/C++ eru (yfirleitt):

Heiti	Lýsing	Skorður
int	Heiltala	Á bilinu $[-2^{31}, 2^{31} - 1]$
unsigned int	Heiltala	Á bilinu $[0, 2^{32} - 1]$
long long	Heiltala	Á bilinu $[-2^{63}, 2^{63} - 1]$
unsigned long long	Heiltala	Á bilinu $[0, 2^{64} - 1]$
double	Fleytitala	Takmörkuð nákvæmni
char	Heiltala	$ ilde{A} \; bilinu \; [-128, 127]$

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
from math import factorial print (factorial (100))
```

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
from math import factorial print (factorial (100))
```

93326215443944152681699238856266700490715968264381621 46859296389521759999322991560894146397615651828625369 792082722375825118521091686400000000000000000000000

from math import factorial

► Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
print(factorial(100))

93326215443944152681699238856266700490715968264381621
46859296389521759999322991560894146397615651828625369
792082722375825118521091686400000000000000000000000
```

Það er einnig hægt að nota fractions pakkann í Python til að vinna með fleytitölur án þess að tapa nákvæmni.

 Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).

- ➤ Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).
- Petta tag býður upp á að nota tölur á bilinu $[-2^{127}, 2^{127} 1]$.

- Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).
- Petta tag býður upp á að nota tölur á bilinu $[-2^{127}, 2^{127} 1]$.
- Þetta þarf ekki að nota oft.

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

Forritunarmál	Röðun
C	qsort()
C++	sort()
Python	this.sort() eða sorted()

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

Forritunarmál	Röðun
С	qsort()
C++	sort()
Python	this.sort() eða sorted()

► Skoðum nú hvert forritunarmál til að sjá nánar hvernig föllin eru notuð.

▶ Í grunninn tekur sort(...) við tveimur gildum.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- ▶ Við getum raðað flest öllum ílátum með sort.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raðað flest öllum ílátum með sort.
- ► Ef við erum með eitthva ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raðað flest öllum ílátum með sort.
- ► Ef við erum með eitthva ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).
- Við getum líka bætt við okkar eigin samanburðarfalli sem þriðja inntak.

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raðað flest öllum ílátum með sort.
- Ef við erum með eitthva ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).
- Við getum líka bætt við okkar eigin samanburðarfalli sem þriðja inntak.
- ► Það kemur þá í stað "minna eða samasem" samanburðarins sem er sjálfgefinn.

► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- ► Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- ► Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).
- Nota má inntakið key til að raða eftir öðrum samanburðum.

- ► Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).
- Nota má inntakið key til að raða eftir öðrum samanburðum.
- ▶ Pað er einnig inntak sem heitir reverse sem er Boole gildi sem leyfir auðveldlega að raða öfugt.

▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Petta er fjöldi staka í fylkinu sem a svarar til.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Petta er stærð hvers staks í fylkinu okkar (í bætum).

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - ▶ void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Petta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Þetta er stærð hvers staks í fylkinu okkar (í bætum).
 - int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Petta er stærð hvers staks í fylkinu okkar (í bætum).
 - ▶ int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.
- Síðasta inntakið er kannski flókið við fyrstu sýn en er einfalt fyrir okkur að nota.

- ▶ Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ▶ Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void* a. Þetta er fylkið sem við viljum raða.
 - size_t n. Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s. Petta er stærð hvers staks í fylkinu okkar (í bætum).
 - int (*cmp)(const void *, const void*). Þetta er samanburðarfallið okkar.
- Síðasta inntakið er kannski flókið við fyrstu sýn en er einfalt fyrir okkur að nota.
- Þetta er fallabendir (e. function pointer) ef þið viljið kynna ykkur það frekar.

```
#include <stdio.h>
#include <stdlib.h>
int cmp(const void* p1, const void* p2)
{
    return *(int*)p1 - *(int*)p2:
int rcmp(const void* p1, const void* p2)
    return *(int*)p2 - *(int*)p1;
int main()
    int n. i:
    scanf("%d", &n);
    int a[n];
    for (i = 0; i < n; i++) scanf("%d", &a[i]);
    qsort(a, n, sizeof(a[0]), cmp);
    for (i = 0; i < n; i++) printf("%d ", a[i]);
    printf("\n"):
    qsort(a, n, sizeof(a[0]), rcmp);
    for (i = 0; i < n; i++) printf("%d ", a[i]);
    printf("\n");
    return 0;
```

Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.
 - Dæmið.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - ► Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.
- Fyrstu tveir punktarnir geta verið blandaðir saman.

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.
- Fyrstu tveir punktarnir geta verið blandaðir saman.
- Þeir eru líka lengsti hluti dæmisins.

A Different Problem

Write a program that computes the difference between non-negative integers.

Input

Each line of the input consists of a pair of integers. Each integer is between 0 and 10^{15} (inclusive). The input is terminated by end of file.

Output

For each pair of integers in the input, output one line, containing the absolute value of their difference.

Sample Input 1

Sample Output 1

10 12	4
71293781758123 72784	
1 12345677654321	

Röng lausn. Hver er villan?

```
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int a, b;
    while (cin >> a >> b)
    {
        cout << abs(a - b) << endl;
    }
}</pre>
```

Rétt lausn

```
#include <bits/stdc++.h>
using namespace std;

int main()
{
    long long a, b;
    while (cin >> a >> b)
    {
        cout << abs(a - b) << endl;
    }
}</pre>
```

▶ Þurfum við þó alltaf að skrifa long long?

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.
- Við notum einfaldlega typedef <gamla> <nýja>;.

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.
- Við notum einfaldlega typedef <gamla> <nýja>;.
- ▶ Venjan í keppnisforritun er að nota typedef long long ll;.

- Þurfum við þó alltaf að skrifa long long?
- ► Nei!
- Við getum notað typedef.
- Við notum einfaldlega typedef <gamla> <nýja>;.
- ▶ Venjan í keppnisforritun er að nota typedef long long ll;.
- Við munum nota typedef aftur.

Rétt lausn með typedef

```
#include <bits/stdc++.h>
using namespace std;
typedef long long II;
int main()
{
    Il a, b;
    while (cin >> a >> b)
    {
        cout << abs(a - b) << endl;
    }
}</pre>
```

► Hvernig vitum að lausnin okkar sé of hæg?

- ► Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.

- Hvernig vitum að lausnin okkar sé of hæg?
- ► Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).

- Hvernig vitum að lausnin okkar sé of hæg?
- ► Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.
- Sum ykkar þekka tímaflækjur en önnur ekki.

- Hvernig vitum að lausnin okkar sé of hæg?
- Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Það myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.
- Sum ykkar þekka tímaflækjur en önnur ekki.
- Skoðum fyrst hvað tímaflækjur eru í grófum dráttum.

Keyrslutími forrits er háður stærðinni á inntakinu.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast með inntakinu (í versta falli).

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast með inntakinu (í versta falli).
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins of f þegar n vex.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast með inntakinu (í versta falli).
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins of f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju $\mathcal{O}(n)$ þá tvöfaldast keyrslutími þegar inntakið tvöfaldast.

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins skalast með inntakinu (í versta falli).
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins of f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju $\mathcal{O}(n)$ þá tvöfaldast keyrslutími þegar inntakið tvöfaldast.
- ightharpoonup Hér gerum við ráð fyrir að grunnaðgerðirnar okkar taki fastann tíma, eða séu með tímaflækju $\mathcal{O}(1)$.

▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- ► Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n) + \mathcal{O}(n) = \mathcal{O}(n)$

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n) + \mathcal{O}(n) = \mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ▶ Hún segir okkur til dæmis að tvöföld for-lykkja, þar sem hver for-lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for-lykkjur, báðar af lenged n, þá er forritið $\mathcal{O}(n) + \mathcal{O}(n) = \mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.
- ► Til dæmis er $\mathcal{O}(n+n+n+n+n^2) = \mathcal{O}(n^2)$.

Stærðfræði

Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

Stærðfræði

Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

Petta þýðir í raun að fallið |g(x)| verður á endanum minna en $k \cdot f(x)$.

Stærðfræði

Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

- Petta þýðir í raun að fallið |g(x)| verður á endanum minna en $k \cdot f(x)$.
- Pessi lýsing undirstrikar betur að f(x) er efra mat á g(x), og er því að segja að g(x) hagi sér ekki verr en f(x).

Þekktar tímaflækjur

► Tímaflækjur algrengra aðgerða eru:

Þekktar tímaflækjur

► Tímaflækjur algrengra aðgerða eru:

Aðgerð	Lýsing	Tímaflækja
Línulega leit	Almenn leit í fylki	$\mathcal{O}(n)$
Helmingunarleit	Leit í röðuðu fylki	$\mathcal{O}(\log n)$ $\mathcal{O}(n \log n)$
Röðun á heiltölum	Röðun á heiltalna fylki	$\mathcal{O}(n \log n)$
Strengjasamanburður	Bera saman tvo strengi af lengd <i>n</i>	$\mathcal{O}(n)$
Almenn röðun	Röðun með $\mathcal{O}(T(m))$ samanburð	$\mathcal{O}(T(m) \cdot n \log n)$

Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- ▶ Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - ► Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 108 aðgerðir á sekúndu".

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 108 aðgerðir á sekúndu".
- ► Þessi regla er gróf nálgun, en virkar mjög vel því þetta er það sem dæmahöfundar hafa í huga þegar þeir semja dæmi.

- Þegar við ræðum tímaflækjur er "tími" er ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 108 aðgerðir á sekúndu".
- Pessi regla er gróf nálgun, en virkar mjög vel því þetta er það sem dæmahöfundar hafa í huga þegar þeir semja dæmi.
- Með þetta í huga fáum við eftirfarandi töflu.

Stærð n	Versta tímaflækja	Dæmi
<u>≤ 10</u>	$\mathcal{O}(n!)$	TSP með tæmandi leit
≤ 15	$\mathcal{O}(n^2 2^n)$	TSP með kvikri bestun
≤ 20	$\mathcal{O}(n2^n)$	Kvik bestun yfir hlutmengi
≤ 100	$\mathcal{O}(n^4)$	Almenn spyrðing
≤ 400	$\mathcal{O}(n^3)$	Floyd-Warshall
$\leq 10^4$	$\mathcal{O}(n^2)$	Lengsti sameiginlegi hlutstrengur
$\leq 10^5$	$\mathcal{O}(n\sqrt{n})$	Reiknirit sem byggja á rótarþáttun
$\leq 10^6$	$\mathcal{O}(n \log n)$	Of mikið til að þora að taka dæmi
$\leq 10^7$	$\mathcal{O}(n)$	Næsta tala sem er stærri (NGE)
$\leq 2^{10^7}$	$\mathcal{O}(\log n)$	Helmingunarleit
$> 2^{10^7}$	$\mathcal{O}(1)$	Ad hoc

Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þetta stafar af því að til að lesa eða skrifa þarf forritið að tala við stýrikerfið.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þetta stafar af því að til að lesa eða skrifa þarf forritið að tala við stýrikerfið.
- ➤ Til að leysa þetta skrifa sum forrit í *biðminni* (e. *buffer*) og prenta bara þegar það fyllist.

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þetta stafar af því að til að lesa eða skrifa þarf forritið að tala við stýrikerfið.
- ► Til að leysa þetta skrifa sum forrit í biðminni (e. buffer) og prenta bara þegar það fyllist.
- Svona er þetta gert í C.

▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.
- Það borgar sig einnig að setja ios::sync_with_stdio(false) fremst í main().

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.
- Það borgar sig einnig að setja ios::sync_with_stdio(false) fremst í main().
- ► Ef þið eruð í Java mæli ég með Kattio.

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ▶ Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.
- Það borgar sig einnig að setja ios::sync_with_stdio(false) fremst í main().
- ► Ef þið eruð í Java mæli ég með Kattio.
- Það má finna á GitHub.

► Grunnur C++ býr yfir mörgum sterkum gagnagrindum.

- ► Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.

- Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.
- ▶ Við munum bara fjalla um gagnagrindurnar í grófum dráttum.

- Grunnur C++ býr yfir mörgum sterkum gagnagrindum.
- Skoðum helstu slíku gagnagrindur og tímaflækjur mikilvægust aðgerða þeirra.
- Við munum bara fjalla um gagnagrindurnar í grófum dráttum.
- Það er hægt að finna ítarlegra efni og dæmi um notkun á netinu.

Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.
- ▶ Þetta leyfir manni að vísa í fylkið í $\mathcal{O}(1)$.

Fylki

- Lýkt og í mörgum öðrum forritunarmálum eru fylki í C++.
- Fylki geyma gögn og eru af fastri stærð.
- Par sem þau eru af fastri stærð má gefa þeim tileinkað, aðliggjandi svæði í minni.
- ▶ Þetta leyfir manni að vísa í fylkið í $\mathcal{O}(1)$.

Aðgerð	Tímaflækja
Lesa eða skrifa ótiltekið stak	$\mathcal{O}(1)$
Bæta staki aftast	$\mathcal{O}(n)$ $\mathcal{O}(n)$
Skeyta saman tveimur	$\mathcal{O}(n)$

► Gagnagrindin vector er að mestu leiti eins og fylki.

- ► Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.

- ► Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.
- Margir nota bara vector og aldrei fylki sem slík.

- ► Gagnagrindin vector er að mestu leiti eins og fylki.
- ightharpoonup Það má þó bæta stökum aftan á vector í $\mathcal{O}(1)$.
- Margir nota bara vector og aldrei fylki sem slík.

Aðgerð	Tímaflækja
Lesa eða skrifa ótiltekið stak	$\mathcal{O}(1)$
Bæta staki aftast	$\mathcal{O}(1)$ $\mathcal{O}(n)$
Skeyta saman tveimur	$\mathcal{O}(n)$

► Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.
- Aftur á móti er hægt að gera smávægilegar breytingar á list sem er ekki hægt að gera á fylkjum.

- Gagnagrindin list geymir gögn líkt og fylki gera, en stökin eru ekki aðliggjandi í minni.
- Því er uppfletting ekki hröð.
- Aftur á móti er hægt að gera smávægilegar breytingar á list sem er ekki hægt að gera á fylkjum.

Aðgerð	Tímaflækja
Finna stak	$\mathcal{O}(n)$
Bæta staki aftast	$\mathcal{O}(1)$
Bæta staki fremst	$\mathcal{O}(1)$
Bæta staki fyrir aftan tiltekið stak	$\mathcal{O}(1)$
Bæta staki fyrir framan tiltekið stak	$\mathcal{O}(1)$
Skeyta saman tveimur	$\mathcal{O}(1)$

stack

 Gagnagrindin stack geymir gögn og leyfir aðgang að síðasta staki sem var bætt við.

stack

 Gagnagrindin stack geymir gögn og leyfir aðgang að síðasta staki sem var bætt við.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(1)$
Lesa nýjasta stakið	$\mathcal{O}(1)$
Bæta við staki Lesa nýjasta stakið Fjarlægja nýjasta stakið	$\mathcal{O}(1)$

queue

► Gagnagrindin queue geymir gögn og leyfir aðgang að fyrsta stakinu sem var bætt við.

queue

► Gagnagrindin queue geymir gögn og leyfir aðgang að fyrsta stakinu sem var bætt við.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(1)$
Lesa elsta stakið	$\mathcal{O}(1)$ $\mathcal{O}(1)$
Fjarlægja elsta stakið	$\mathcal{O}(1)$

set

Gagnagrindin set geymir gögn án endurtekninga og leyfir hraða uppflettingu.

set

 Gagnagrindin set geymir gögn án endurtekninga og leyfir hraða uppflettingu.

Aðgerð	Tímaflækja
Bæta við staki	$\mathcal{O}(\log n)$
Fjarlægja stak	$ \mathcal{O}(\log n) $ $ \mathcal{O}(\log n) $
Gá hvort staki hafi verið bætt við	$\mathcal{O}(\log n)$

Lausnir okkar má flokka í fimm flokka:

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - ► Tæmandi leit.

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - Tæmandi leit.
 - ► Gráðugar lausnir.

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - ► Tæmandi leit.
 - Gráðugar lausnir.
 - Deila og drottna (D&C).

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - ▶ Tæmandi leit.
 - Gráðugar lausnir.
 - ▶ Deila og drottna (D&C).
 - Kvik bestun (DP).

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - ▶ Tæmandi leit.
 - Gráðugar lausnir.
 - Deila og drottna (D&C).
 - Kvik bestun (DP).
- Pessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - Tæmandi leit.
 - Gráðugar lausnir.
 - Deila og drottna (D&C).
 - Kvik bestun (DP).
- Þessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.
- Til dæmis má færa rök fyrir því að gráðugar lausnir og D&C séu sértilfelli af kvikri bestun.

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - Tæmandi leit.
 - Gráðugar lausnir.
 - Deila og drottna (D&C).
 - Kvik bestun (DP).
- Þessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.
- Til dæmis má færa rök fyrir því að gráðugar lausnir og D&C séu sértilfelli af kvikri bestun.
- Við munum byrja á því að fjalla almennt um þessar aðferðir og fara svo í sértækara efni.

- Lausnir okkar má flokka í fimm flokka:
 - Ad hoc.
 - ▶ Tæmandi leit.
 - Gráðugar lausnir.
 - Deila og drottna (D&C).
 - Kvik bestun (DP).
- Þessi skipting er ekki fullkomin, en það er þó gott að hafa hana í huga.
- Til dæmis má færa rök fyrir því að gráðugar lausnir og D&C séu sértilfelli af kvikri bestun.
- Við munum byrja á því að fjalla almennt um þessar aðferðir og fara svo í sértækara efni.
- Þá er oft gott að hafa í huga hvernig flokka megi reikniritin.

► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Pessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Pessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.

- ► Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem *Ad hoc*.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.

- Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem Ad hoc.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.
- Ad hoc dæmi flokkast oft til léttari dæma í keppnum.

- Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem Ad hoc.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.
- Ad hoc dæmi flokkast oft til léttari dæma í keppnum.
- Áðurnefnt NCPC dæmi er þó aftur undanteking, því engin keppandi náði að leysa það dæmi.

- Ef lausn dæmisins byggir ekki á sérþekkingu flokkast dæmið sem Ad hoc.
- Þessi dæmi eru stundum flokkuð undir "implementation", eða sem útfærsludæmi.
- Petta er gert því flest Ad hoc dæmi snúast um að fylgja beint leiðbeiningum.
- Það eru þó undantekningar.
- Í NCPC 2020 var Ad hoc dæmi sem mætti ekki flokkast sem útfærsludæmi.
- Ad hoc dæmi flokkast oft til léttari dæma í keppnum.
- Áðurnefnt NCPC dæmi er þó aftur undanteking, því engin keppandi náði að leysa það dæmi.
- Samkvæmt skilgreiningu getum við ekki rætt Ad hoc dæmi ítarlega. Tökum því nokkur dæmi.

Blandað brot

Þú átt að breyta almennu broti í blandað brot.

Blandað brot

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið a b/c tákna sömu töluna ef p/q = a + b/c.

Blandað brot

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið a b/c tákna sömu töluna ef p/q = a + b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið a b/c tákna sömu töluna ef p/q = a + b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið a b/c tákna sömu töluna ef p/q = a + b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.
- Inntakið inniheldur tvær heiltölur $1 \le p, q \le 10^9$.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið a b/c tákna sömu töluna ef p/q = a + b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.
- Inntakið inniheldur tvær heiltölur $1 \le p, q \le 10^9$.
- ightharpoonup Úttakið skal innihalda blandaða brotið sem svarar til p/q.

- Þú átt að breyta almennu broti í blandað brot.
- Munið að almenna brotið p/q, og blandaða brotið a b/c tákna sömu töluna ef p/q = a + b/c.
- Munið einnig að ef $a \ b/c$ er almennt brot þá gildir b < c.
- Blandaða brotið ykkar á að hafa sama nefnara og upprunarlega brotið.
- Inntakið inniheldur tvær heiltölur $1 \le p, q \le 10^9$.
- ightharpoonup Úttakið skal innihalda blandaða brotið sem svarar til p/q.

	Inntak	Uttak
Sýnidæmi 1		2 3 / 12
Sýnidæmi 2	2460000 98400	25 0 / 98400
Sýnidæmi 3	3 4000	0 3 / 4000

Lausn á blandað brot

► Hér nægir okkur að reikna.

Lausn á blandað brot

- ► Hér nægir okkur að reikna.
- Við getum aðeins stytt okkur leið með því að nota heiltöludeilingu.

Lausn á blandað brot

- Hér nægir okkur að reikna.
- Við getum aðeins stytt okkur leið með því að nota heiltöludeilingu.
- Við fáum þá að a er heiltalan sem fæst með deilingunni p/q og b er afgangurinn.

```
#include <stdio.h>
int main()
    int p, q, a, b, c;
    scanf("%d%d", &p, &q);
    a = p/q;
    b = p\%q;
    c = q;
    printf("%d %d / %d\n", a, b, c);
    return 0;
/* */
#include <stdio.h>
int main()
    int p, q;
    scanf("%d%d", &p, &q);
    printf("%d %d / %d\n", p/q, p%q, q);
    return 0:
```

▶ Þið eruð að reyna að kenna barni að telja.

- Þið eruð að reyna að kenna barni að telja.
- ▶ Það er þó ekki alltaf hægt að heyra hvað barnið segir.

- Þið eruð að reyna að kenna barni að telja.
- Það er þó ekki alltaf hægt að heyra hvað barnið segir.
- Þið viljið ákvarða hvort það sem barnið er að segja gæti mögulega verið rétt.

- Þið eruð að reyna að kenna barni að telja.
- ▶ Það er þó ekki alltaf hægt að heyra hvað barnið segir.
- Þið viljið ákvarða hvort það sem barnið er að segja gæti mögulega verið rétt.
- Fyrsta lína inntaksins inniheldur heiltölu $1 \le n \le 10^3$.

- Þið eruð að reyna að kenna barni að telja.
- Það er þó ekki alltaf hægt að heyra hvað barnið segir.
- Þið viljið ákvarða hvort það sem barnið er að segja gæti mögulega verið rétt.
- Fyrsta lína inntaksins inniheldur heiltölu $1 \le n \le 10^3$.
- ightharpoonup Síðan fylgir ein lína með n strengjum.

- Þið eruð að reyna að kenna barni að telja.
- Það er þó ekki alltaf hægt að heyra hvað barnið segir.
- Þið viljið ákvarða hvort það sem barnið er að segja gæti mögulega verið rétt.
- Fyrsta lína inntaksins inniheldur heiltölu $1 \le n \le 10^3$.
- Síðan fylgir ein lína með n strengjum.
- ► Hver strengur er annaðhvort heiltala á bilinu [0, 10⁴] eða strengurinn "mumble".

- Þið eruð að reyna að kenna barni að telja.
- Það er þó ekki alltaf hægt að heyra hvað barnið segir.
- Þið viljið ákvarða hvort það sem barnið er að segja gæti mögulega verið rétt.
- Fyrsta lína inntaksins inniheldur heiltölu $1 \le n \le 10^3$.
- Síðan fylgir ein lína með n strengjum.
- ► Hver strengur er annaðhvort heiltala á bilinu [0, 10⁴] eða strengurinn "mumble".
- Ef það er hægt að skipta út öllum "mumble" fyrir tölu þannig að talningin sé rétt skal prenta "jebb".

- Þið eruð að reyna að kenna barni að telja.
- Það er þó ekki alltaf hægt að heyra hvað barnið segir.
- Þið viljið ákvarða hvort það sem barnið er að segja gæti mögulega verið rétt.
- Fyrsta lína inntaksins inniheldur heiltölu $1 \le n \le 10^3$.
- Síðan fylgir ein lína með n strengjum.
- Hver strengur er annaðhvort heiltala á bilinu $[0, 10^4]$ eða strengurinn "mumble".
- Ef það er hægt að skipta út öllum "mumble" fyrir tölu þannig að talningin sé rétt skal prenta "jebb".
- Annars skal prenta "neibb".

Lausn á Barnahjal

► Ef *i*-ti strengurinn inniheldur strenginn sem svarar til tölurnnar *i* eða "mumble", fyrir öll *i*, þá er barnið kannski að telja rétt.

Lausn á Barnahjal

- ► Ef *i*-ti strengurinn inniheldur strenginn sem svarar til tölurnnar *i* eða "mumble", fyrir öll *i*, þá er barnið kannski að telja rétt.
- Annars er barnið að telja rangt.

```
n = int(input())
l = input().split()
f = True
for i in range(n):
    if |[i] != 'mumble' and |[i] != str(i + 1):
        f = False
        break
if f: print('jebb')
else: print('neibb')
```