Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Направление подготовки "01.03.02. Прикладная математика и информатика"

Дисциплина "Численные методы"

Отчет по лабораторной работе №2 "Приближение табличных функций. Интерполирование сплайнами"

> Работу выполнил: Иванова А.С. Группа: 5030102/00002 Преподаватель: Павлова Л.В.

 ${
m Cahkt-}\Pi{
m erep}{
m fypr}$ 2022

Содержание

1.	Формулировка задачи	3
2.	Алгоритм метода и условия его применимости 2.1. Равномерная сетка 2.2. Алгоритм метода 2.3. Условия применимости метода	3 3 5
3.	Предварительный анализ задачи	5
4.	Проверка условий применимости метода	5
5.	Тестовый пример с детальными расчетами для задачи малой размерности	5
6.	Перечень контрольных тестов для иллюстрации метода	6
7.	Модульная структура программы	7
8.	Численный анализ решения задачи 8.1. $[-1.5; 1.5]$	10 10 11 13
9.	Краткие выводы	14

1. Формулировка задачи

Дана функция $y = \sqrt{\sin x^2}$

Требуется построить естественный кубический сплайн на некотором отрезке с использованием равномерной сетки. Исследовать сходимость интерполяционного процесса при разном количестве узлов в сетке, расположении и гладкости функции. Сравнить результаты с интерполяционным полиномом Лагранжа.

2. Алгоритм метода и условия его применимости

2.1. Равномерная сетка

Дан отрезок [a,b], n - количество разбиений. Равномерная сетка $\{x_i\}_{i=0}^n$ задается как: $x_i = x_0 + \frac{(b-a)*i}{n}; i=0,...,n$

2.2. Алгоритм метода

Даны некоторая сетка на отрезке [a,b] $\{x_i\}_{i=0}^n$ и сеточная функция $\{y_i\}_{i=0}^n$.

Кубическим сплайном дефекта 1 (разность между степенью и гладкостью сплайна) называется функция S(x), которая на каждом отрезке является многочленом степени не выше третьей, имеет непрерывные первую и вторую производные на всём отрезке [a,b], в точках x_i выполняется равенство $S(x_i) = f(x_i)$

Естественный сплайн имеет граничные условия вида:

$$S''(a) = S''(b) = 0$$

Построение сплайна осуществляется следующим образом:

На каждом отрезке $[x_{i-1};x_i]$, i=1,...,n функция S(x) есть полином третьей степени $S_i(x)$, коэффициенты которого надо определить. Заишем для удобства $S_i(x)$ в виде:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
 тогда $S_i(x_i) = a_i, S_i^{'}(x_i) = b_i, S_i^{''}(x_i) = 2c_i, S_i^{'''}(x_i) = 6d_i, i = 1, ..., n$ Обозначим $g(x) := S_3^1(x)$ $g_i(x) := S_3^1(x)|_{[x_{i-1};x_i]}$

Условия непрерывности всех производных до второго порядка включительно записываются в виде

$$g_{i}(x_{i-1}) = g_{i-1}(x_{i-1})$$

$$g'_{i}(x_{i-1}) = g'_{i-1}(x_{i-1})$$

$$g''_{i}(x_{i-1}) = g''_{i-1}(x_{i-1})$$

где і меняется от 1 до n, a условия интерполяции в виде

$$g_i(x_i) = f(x_i)$$

Обозначим

$$h_i = x_i - x_{i-1}, i = 1, ..., n$$

 $M_i = g''(x_i)$

$$g_{i}^{''}(x_{i})=M_{i}$$
 $g_{i-1}^{''}(x_{i-1})=M_{i-1}$ $g_{i}^{''}(x)=M_{i-1}\frac{x_{i}-x}{h_{i}}+M_{i}\frac{x-x_{i-1}}{h_{i}},x\in[x_{i-1};x_{i}]$ Если проинтегрировать дважды данное уравнение:

$$\begin{split} g_i(x) &= M_{i-1} \frac{(x_i - x)^3}{6h_i} + M_i * \frac{(x - x_{i-1})^3}{6h_i} + C_i(x - x_{i-1}) + \tilde{C}_i \\ g_i(x_{i-1}) &= y_{i-1} = M_{i-1} \frac{h_i^2}{6} + \tilde{C}_i \\ g_i(x_i) &= y_i = M_i \frac{h_i^2}{6} + C_i h_i + \tilde{C}_i \\ \tilde{C}_i &= y_{i-1} - M_{i-1} \frac{h_i^2}{6} \\ C_i &= \frac{y_i - y_{i-1}}{h_i} - \frac{h_i}{6} (M_i - M_{i-1}) \\ M_i \frac{h_i}{2} + \frac{y_i - y_{i-1}}{h_i} - \frac{h_i}{6} (M_i - M_{i-1}) = -M_i \frac{h_{i+1}}{2} + \frac{y_{i+1} - y_i}{h_{i+1}} - \frac{h_i}{6} (M_{i+1} - M_i) \\ \Piолучаем следующую систему уравнений: \end{split}$$

$$\frac{h_i}{h_i+h_{i+1}}M_{i-1}+2M_i+\frac{h_{i+1}}{h_i+h_{i+1}}M_{i+1}=\frac{6}{h_i+h_{i+1}}(\frac{y_{i+1}-y_i}{h_{i+1}}-\frac{y_i-y_{i-1}}{h_i}),i=0,1,...,n-1$$
,где $M_0=0$

$$M_0 = 0$$

$$M_n = 0$$

Данная система является трехдиагональной, решается методом прогонки для трехдиагональных матриц

Т.к
$$S_i(x_i) = a_i, S_i^{'}(x_i) = b_i, S_i^{''}(x_i) = 2c_i, S_i^{'''}(x_i) = 6d_i, i = 1, ..., n$$
 Получаем: $2c_i = M_i$

На основе полученных результатов получаем формулы для вычисления коэффициентов естественного кубического сплайна:

$$a_i = f(x_i)$$
 $d_i = \frac{c_i - c_{i-1}}{3h_i}$
 $b_i = \frac{y_i - y_{i-1}}{h_i} - \frac{2*c_i + c_{i-1}}{3} * h_i$
где
 $c_n = S''(x_n) = 0$
 $S''(x_0) = 0$

Вычисления с можно проводить с помощью метода прогонки для трехдиагональной матрицы

2.3. Условия применимости метода

Все узлы сетки попарно различны.

Предварительный анализ задачи 3.

При выборе отрезка ненулевой длины для интерполирования получившаяся равномерная сетка может считаться упорядоченной, а значит все узлы сетки попарно различны. Значит существует интерполяционный кубический слпайн, и он единственный.

Проверка условий применимости метода 4.

При выборе отрезка ненулевой длины для интерполирования получившаяся равномерная сетка может считаться упорядоченной, а значит все узлы сетки попарно различны. Значит существует интерполяционный кубический слпайн, и он единственный.

5. Тестовый пример с детальными расчетами для задачи малой размерности

Функция
$$y = \sqrt{\sin x^2}$$
 Сетка : $\{-\sqrt{\frac{\pi}{2}}; 0; \sqrt{\frac{\pi}{2}}\}$ Сеточная функция: $\{1; 0; 1\}$ Общий вид кубического сплайна: $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$ Вычисление коэффициентов:

$$a_1 = 0$$
; $a_2 = 1$; $c_2 = 0$

$$h_1 = x_1 - x_0 = \sqrt{\frac{\pi}{2}};$$

$$h_2 = x_2 - x_1 = \sqrt{\frac{\pi}{2}}$$

Необходимо решить следующую систему уравнений:

$$h_i = x_i - x_{i-1}, i = 1, ..., 2$$

 $M_i = g''(x_i)$

$$M_0 = 0$$
$$M_2 = 0$$

$$\frac{h_1}{h_1+h_2}M_0 + 2M_1 + \frac{h_2}{h_1+h_2}M_2 = \frac{6}{h_2+h_2}(\frac{y_2-y_1}{h_2} - \frac{y_1-y_0}{h_2})$$

 $\frac{h_1}{h_1+h_2}M_0+2M_1+\frac{h_2}{h_1+h_2}M_2=\frac{6}{h_1+h_2}(\frac{y_2-y_1}{h_2}-\frac{y_1-y_0}{h_1})$ В данном случае получается уравнение, однозначно разрешимое относительно M_1 , поскольку две другие переменные равны 0, исходя из условия естественного кубического сплайна

Решение данного уравнения и нахождение коэффициентов сплайна:

$$\alpha_0 = \beta_0 = 0$$

$$\begin{split} M_1 &= \frac{3}{h_1 + h_2} \left(\frac{y_2 - y_1}{h_2} + \frac{y_1 - y_0}{h_1} \right) = \frac{3}{\pi} \\ d_1 &= \frac{c_1 - c_0}{3 * h_1} = \frac{\sqrt{2}}{\pi \sqrt{\pi}} \\ b_1 &= \frac{y_1 - y_0}{h_1} - \frac{2 * c_1 + c_0}{3} * h_1 = 0 \\ c_2 &= 0 \\ d_2 &= \frac{c_2 - c_1}{3 * h_2} = -\frac{\sqrt{2}}{\pi \sqrt{\pi}} \\ a_2 &= 1 \\ b_2 &= \frac{y_2 - y_1}{h_2} - \frac{2 * c_2 + c_1}{3} * h_2 = \frac{1}{\sqrt{2\pi}} \end{split}$$

Итого:

$$\begin{split} S_1(x) &= \frac{3}{\pi} x^2 + \frac{\sqrt{2}}{\pi \sqrt{\pi}} x^3 \\ S_2(x) &= 1 + \frac{1}{\sqrt{2\pi}} (x - \sqrt{\frac{\pi}{2}}) - \frac{6\sqrt{2}}{\pi \sqrt{\pi}} (x - \sqrt{\frac{\pi}{2}})^3 \end{split}$$

6. Перечень контрольных тестов для иллюстрации метода

Дана функция $y = \sqrt{\sin x^2}$

На разных отрезках строился естественный кубический сплайн. Число узлов менялось в цикле от 3 до 100. Исследуется сходимость интерполяционного процесса (максимальное отклонение сплайна от функции от n) на разных участках при разных разбиениях и гладкости функции. Результаты сравнивались с результатами интерполяции полиномами Лагранжа на аналогичных участках с равномерной и чебышевской сеткой.

Данная функция имеет в основном периодическую область определения, разрывов производной на области определения нет, производная не существует на тех участках, где не существует действительных знаечний исходной функции.

Существует единственный разрыв производной в области опеределения - это точка [0,0] Рассматривались участки, принадлежащие области определния функции:

- 1) [-1.5;1.5], на данном участке присутсвует разрыв производной.
- 2) $[\sqrt{300*\pi}; \sqrt{301*\pi}]$

2)
$$[\sqrt{700*\pi}; \sqrt{701*\pi}]$$

7. Модульная структура программы

 $def my_func(x)$:

 $def \ func_values(func, \ xlist):$

def spline(x, y, n):

def interpolate(splines, x):

8. Численный анализ решения задачи

8.1. [-1.5; 1.5]

На данных графиках изображены кубические сплайны при двух различных количествах узлов. Из графиков видно, что при увеличении числа узлов погрешность уменьшается. Погрешность остается большой в области разрыва производной.

На данном графике изображена сходимость интерполяционного процесса для полинома Лагранжа с равномерной и чебышевской сеткой и естественного кубического сплайна. Сплайн и полином с сеткой Чебышева дают примерно одинаковый результат.

8.2. $[\sqrt{300*\pi}; \sqrt{301*\pi}]$

На данных графиках изображены кубические сплайны при двух различных количествах узлов. Из графиков видно, что при увеличении числа узлов погрешность уменьшается.

На данном графике изображена сходимость интерполяционного процесса для полинома Лагранжа с равномерной и чебышевской сеткой и естественного кубического сплайна. Сплайны дают результат чуть лучше, чем полиномы с сеткой Чебышева. Погрешность для кубического сплайна уменьшается быстрее на участке функций без разрыва производной.

8.3. $[\sqrt{700*\pi}; \sqrt{701*\pi}]$

Да данных графиках сохраняются все ранее полученные результаты для второго интервала, за исключением того, что кубический сплайн показывает результаты чуть хуже, чем полином Лагранжа с сеткой Чебышёва.

9. Краткие выводы

На основе полученных результатов можно сделать вывод, что при увеличении числа узлов для естественного кубического сплайна с равномерной сеткой погрешность постепенно уменьшается. Результаты интерполяции кубическим сплайном с равномерной сеткой похожи на результаты интерполяции полиномом Лагранжа с сеткой Чебышева.

Гладкость функции также влияет на сходимость интерполяционного процесса. Максимальное отклонение достигает наибольших значений близко к точке разрыва производной.