Pattern Recognition

Hausdroff's Distance Example

Subin Sahayam M

Department of Computer Engineering Indian Institute of Information Technology Design and Manufacturing Kancheepuram

21th January 2019

21th January 2019

From the above figure, let the triangle be polygon A and the quadrilateral be polygon B. The vertex coordinates of polygon A are a=(1,1), b=(2,1) and c=(2,3) and B are d=(3,1), e=(5,1), f=(5,4) and g=(3,3)

Bidirectional Hausdroffs distance $H(A,B) = \max(\hat{H}(A,B), \hat{H}(B,A))$ $\hat{H}(A,B) = \max(\min(d(a,b)))$ d(a,b) = Eucledian Distance betweenall points a ϵ A and b ϵ B $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

$$\hat{H}(A,B)$$
 Calculation $\hat{H}(A,B) = \max(\min(d(a,b)))$ $a=(1,1)$ and $d=(3,1)$ $d(a,d) = \sqrt{(1-3)^2 + (1-1)^2} = \mathbf{2}$

$$\hat{H}(A,B)$$
 Calculation $\hat{H}(A,B) = \max(\min(d(a,b)))$ $a=(1,1)$ and $e=(5,1)$ $d(a,e) = \sqrt{(1-5)^2 + (1-1)^2} = 4$

$$\hat{H}(A,B)$$
 Calculation $\hat{H}(A,B) = \max(\min(d(a,b)))$ $a=(1,1)$ and $f=(5,4)$ $d(a,f) = \sqrt{(1-5)^2 + (1-4)^2} = \mathbf{5}$

$$\hat{H}(A,B)$$
 Calculation
 $\hat{H}(A,B) = \max(\min(d(a,b)))$
 $a=(1,1)$ and $g=(3,3)$
 $d(a,g) = \sqrt{(1-3)^2 + (1-3)^2} = 2.83$

$$d(a,d) = 2$$

 $d(a,e) = 4$
 $d(a,f) = 5$

$$d(a,g) = 2.83$$

Minimum distance among the 4 is

$$d(a,d)=2$$

$$\hat{H}(A,B)$$
 Calculation
 $\hat{H}(A,B) = \max(\min(d(a,b)))$
 $b = (2,1)$ and $d = (3,1)$
 $d(b,d) = \sqrt{(2-3)^2 + (1-1)^2} = 1$

$$\hat{H}(A,B)$$
 Calculation
 $\hat{H}(A,B) = \max(\min(d(a,b)))$
 $b=(2,1)$ and $e=(5,1)$
 $d(b,e) = \sqrt{(2-5)^2 + (1-1)^2} = 3$

$$\hat{H}(A,B)$$
 Calculation $\hat{H}(A,B) = \max(\min(d(a,b)))$ $b=(2,1)$ and $f=(5,4)$ $d(b,f) = \sqrt{(2-5)^2 + (1-4)^2} = \textbf{4.24}$

$$\hat{H}(A,B)$$
 Calculation
 $\hat{H}(A,B) = \max(\min(d(a,b)))$
 $b = (2,1)$ and $g = (3,3)$
 $d(b,f) = \sqrt{(2-3)^2 + (1-3)^2} = 2.24$

$$d(b,d) = 1$$

$$d(b,e) = 3$$

$$d(b,f) = 4.24$$

$$d(b,g) = 2.24$$

Minimum distance among the 4 is

$$\hat{H}(A,B)$$
 Calculation
 $\hat{H}(A,B) = \max(\min(d(a,b)))$
 $c=(2,3)$ and $d=(3,1)$
 $d(c,d) = \sqrt{(2-3)^2 + (3-1)^2} = 2.24$

$$\hat{H}(A,B)$$
 Calculation
 $\hat{H}(A,B) = \max(\min(d(a,b)))$
 $c=(2,3)$ and $e=(5,1)$
 $d(c,e) = \sqrt{(2-5)^2 + (3-1)^2} = 3.61$

$$\hat{H}(A,B)$$
 Calculation $\hat{H}(A,B) = \max(\min(d(a,b)))$ $c=(2,3)$ and $f=(5,4)$ $d(c,f) = \sqrt{(2-5)^2 + (3-4)^2} = 3.16$

$$\hat{H}(A,B)$$
 Calculation $\hat{H}(A,B) = \max(\min(d(a,b)))$ $c=(2,3)$ and $g=(3,3)$ $d(c,g) = \sqrt{(2-3)^2 + (3-3)^2} = 1$

$$d(c,d) = 2.24$$

$$d(c,e) = 3.61$$

$$d(c,f) = 3.16$$

$$d(c,g) = 1$$

Minimum distance among the 4 is

The minimum distance values from each point of polygon A are, $\mathbf{d}(\mathbf{a},\mathbf{d})=2$, $\mathbf{d}(\mathbf{b},\mathbf{d})=1$ and $\mathbf{d}(\mathbf{c},\mathbf{g})=1$ $\hat{H}(\mathbf{A},\mathbf{B})=\max(\mathbf{d}(\mathbf{a},\mathbf{d}),\,\mathbf{d}(\mathbf{b},\mathbf{d}),\,\mathbf{d}(\mathbf{c},\mathbf{g}))$ $\hat{H}(\mathbf{A},\mathbf{B})=\max(2,\,1,\,1\,)$ $\hat{H}(\mathbf{A},\mathbf{B})=2$ (Shown in Green)

21th January 2019

 $\hat{H}(B,A) = \max(\min(d(a,b)))$ Euclidean distance is symmetric, so distance from point d to points in poligon A are,

$$d(d,a) = 2$$
$$d(d,b) = 1$$

$$d(d,c) = 1$$

 $d(d,c) = 2.24$

21th January 2019

$$\hat{H}(B,A) = \max(\min(d(a,b)))$$

 $d(d,a) = 2$
 $d(d,b) = 1$
 $d(d,c) = 2.24$

Minimum distance among the 3 is d(d,b)=1

 $\hat{H}(B,A) = \max(\min(d(a,b)))$ Euclidean distance is symmetric, so distance from point e to points in poligon A are,

$$d(e,a) = 4$$

 $d(e,b) = 3$
 $d(e,c) = 3.61$

$$\hat{H}(B,A) = \max(\min(d(a,b)))$$

 $d(e,a) = 4$
 $d(e,b) = 3$
 $d(e,c) = 3.61$

Minimum distance among the 3 is d(e,b)=3

 $\hat{H}(B,A) = \max(\min(d(a,b)))$ Euclidean distance is symmetric, so distance from point f to points in poligon A are,

$$d(f,a) = 5$$

 $d(f,b) = 4.24$
 $d(f,c) = 3.16$

$$\hat{H}(B,A) = \max(\min(d(a,b)))$$

$$d(f,a) = 5$$

$$d(f,b) = 4.24$$

d(f,c) = 3.16

Minimum distance among the 3 is

 $\hat{H}(B,A) = \max(\min(d(a,b)))$ Euclidean distance is symmetric, so distance from point f to points in poligon A are,

$$d(g,a) = 2.83$$

$$d(g,b) = 2.24$$

$$d(g,c) = 1$$

26/30

$$\hat{H}(B,A) = \max(\min(d(a,b)))$$

 $d(g,a) = 2.83$
 $d(g,b) = 2.24$

$$d(g,c) = 1$$

Minimum distance among the 3 is d(g,c)=1

The minimum distance values from each point of polygon B are, $\mathbf{d}(\mathbf{d},\mathbf{b})=1$, $\mathbf{d}(\mathbf{e},\mathbf{b})=3$, $\mathbf{d}(\mathbf{f},\mathbf{c})=3.16$ and $\mathbf{d}(\mathbf{g},\mathbf{c})=1$ $\hat{H}(B,A)=\max(\mathbf{d}(\mathbf{d},b),\mathbf{d}(\mathbf{e},b),\mathbf{d}(\mathbf{f},c),\mathbf{d}(\mathbf{g},c))$ $\hat{H}(B,A)=\max(1,3,3.16,1)$ $\hat{H}(\mathbf{B},\mathbf{A})=3.16$ (Shown in Green)

The bidirectional Hausdroffs distance $H(A,B)=\max(\hat{H}(A,B),\hat{H}(B,A))$

$$H(A,D)=\max(H(A,D),H(D,A)$$

 $H(A,D)=\max(H(A,D),H(D,A)$

$$H(A,B)=max(d(a,d),d(f,c))$$

$$H(A,B) = max(2, 3.16)$$

H(A,B)=3.16 (Shown in Green)

Distance Measure Summary

