

Wearable Computing: Accelerometers' Data Classification of Body Postures and Movements

Wallace Ugulino¹ (wugulino@inf.puc-rio.br)

Débora Cardador¹

Katia Vega¹

Eduardo Velloso²

Ruy Milidiú¹

Hugo Fuks¹ (hugo@inf.puc-rio.br)

http://groupware.les.inf.puc-rio.br

¹ Informatics Department – Pontifical Catholic University (PUC-Rio)

² School of Computing and Communication – Lancaster University

Wearable Computing: Accelerometers' Data Classification of Body Postures and Movements

UGULINO

DÉBORA

KATIA

EDUARDO

HUGO FUKS

2 PhD Theses in HAR

Research Area: on-body sensors and hybrid sensors approaches (Wearable sensors from the Arduino Toolkit)

UGULINO

Research Area: ambient sensors approaches (mainly based on Microsoft Kinect, and Interactive systems)

SBIA

- Rise of Life Expectancy and ageing of population
 - UbiComp technologies have the potential to support elderly independent living.
 - Monitoring of Daily Living Activities.
 - Monitoring of Exercises (Weigth Lifting, for example).
 - Qualitative Acitivity Recognition.
 - Life log to improve patient's chart.

- A new world, awash of sensors' data
 - How to interpret the raw data?

Relevance of on-body sensors' approach

On-body sensing

- Outdoor activities (bicycle, jogging, walking)
- A log for the whole day
- Personal technology
 - Wearable devices are able to carry many information of a patient

Ambient Sensing

- More context information
- Not so many informations from the patient (heart beating?)
- Often restricted to indoor environments
- Privacy issues

- Systematic approach (Reliability and construct validity)
- Research Question: What are the research projects conducted in recognition of human activities and body postures using accelerometers?
- Search string: (((("Body Posture") OR "Activity Recognition")) AND (accelerometer OR acceleration)). Refined by: publication year: 2006 – 2012;
- Results in IEEE database: 144 articles;
- Exclusion criteria
 - Smartphones, image processing, not human, composite activities, games, gesture input recognition, energy consumption
 - We used the most recent publication of same research
- Result: 69 articles

IEEE publications of HAR based on wearable accelerometers

- Technique for activity recognition
 - Machine Learning (70%)
 - Supervised Learning (62%)
 - Unsupervised Learning (7%)
 - Semi-supervised Learning (1%)
 - Treshold-based algorithms (27%)
 - Others (3%)
 - Fuzzy finite state machines, ontology reasoning, etc.
- Subject Independent analysis
 - Only 3 out of 69 papers (4.3%)

Literature Review (recent publications)

Research	# of sensors	Technique	# of users	Learning mode	Correct (%)
Liu et al., 2012	1	SVM	50	Supervised	88.1
Yuting et al., 2011	3	Threshold-based	10		98.6
Sazonov et al., 2011	1	SVM	9	Supervised	98.1
Reiss & Stricker, 2011	3	Boosted Decision Tree	8	Supervised	90.7
Min et al., (2011)	9	Threshold-based	3		96.6
Maekawa & Watanabe, 2011	4	НММ	40	Unsupervised	98.4
Martin et al., 2011	2	Threshold-based	5		89.4
Lei et al., 2011	4	Naive Bayes	8	Supervised	97.7
Alvarez et al., 2011	1	Genetic fuzzy finite state machine	1	Supervised	98.9
Jun-ki & Sung-Bae, 2011	5	Naive Bayes and SVM	3	Supervised	99.4
Ioana-Iuliana & Rodica- Elena, 2011	2	Neural Networks	4	Supervised	99.6
Gjoreski et al., 2011	4	Naïve Bayes, SVM, C4.5, Random Forest	11	Supervised	90
Feng, Meiling, and Nan, 2011	1	Threshold-based	20		94.1
Czabke, Marsch, and Lueth, 2011	1	Threshold-based	10		90
Chernbumroong, et al., 2011	1	C4.5 and Neural Networks	7	Supervised	94.1
Bayati et al., 2011		Expectation Maximization		Unsupervised	86.9
Atallah et al., 2011	7	Feature Selection algorithms*	11	Supervised	
Andreu et al., 2011	1	fuzzy rule-based		Online learning	71.4

Ugulino

9/25

Wearable Computing: Accelerometers' Data Classification of Body Postures and Movements

- A few datasets (publicly) available
 - Lianwen Jin (South China University)
 - No timestamp
 - Unsynchronized readings (you must choose one sensor to use)
 - 1278 samples
 - Available (you must send him a signed license agreement)

Building the wearable device

Arduino LilyPad board

LilyPad Accelerometer (tri-axial, ± 3.6g)

ADXL335 Frequency: 10hz

Building the wearable device

Positioning

User wearing the device

Experimental Setup

Task

- Classifying task (multiclass)
- Output: sitting, standing, standing up, sitting down, walking
- Input:

- 8h of activities
- 4 subjects (nearly 2 hours per participant)
- Participants' profiles

Participant	Sex	Age	Height	Weight	Instances
A	Female	46 y.o.	1.62m	67kg	51,577
В	Female	28 y.o.	1.58m	53kg	49,797
C	Male	31 y.o.	1.71m	83kg	51,098
D	Male	75 y.o.*	1.67m	67kg	13,161*

^{*} A smaller number of observed instances because of the participant's age

Frequency of classes between collected data

Data Pre-processing

- We defined a time window of 1 second, 120ms overlapping
 - After several experimental tests, we found 1 second more suitable to our list of activities

 Readings inside each window were statistically summarized according the instructions of Maziewski et al.
 [2009]

Feature Selection

- Mark Hall's algorithm (BestFirst greedy strategy)
- 11 features were selected
 - Accelerometer #1 (waist)
 - Discretization of M1 (module of acceleration vector)
 - R1 (roll)
 - P1 (pitch)
 - Accelerometer # 2 (left thigh)
 - M2 (module of acceleration vector)
 - discretization of P2 (pitch)
 - Variance of P2 (pitch)
 - Accelerometer # 3 (right ankle)
 - Variance of P3 (pitch)
 - Variance of R3 (roll)
 - Accelerometer # 4 (right upper arm)
 - M4 (module of acceleration vector)
 - All sensors (combined)
 - Mean and standard deviation of (M1+M2+M3+M4)

Classifier of Body Postures and Movements

- We tried: SVM, Voted Perceptron, MultiLayer Perceptron (Back Propagation), and C4.5
 - 67 tests!
- Better results: C4.5 and Neural Networks
- Top result
 - Adaboost + 10 C4.5 decision trees (0.15 confidence factor)
- Structured Perceptron + Induction Features method (Eraldo Fernandes, Cícero Santos & Ruy Milidiú)
 - Seems promising as it provides equivalent results of C4.5, but with better generalization (leave-one-person-out results)
 - We tried StrucPerc AFTER writing the paper

Classifier of Body Postures and Movements

Predicted class								
Sitting	Sitting down	Standing	Standing Up	Walking				
50,601	9	0	20	1	Sitting	Ac		
10	11,484	29	297	7	Sitting down	Actual		
0	4	47,342	11	13	Standing	class		
14	351	24	11,940	85	Standing up	SS		
0	8	27	60	43,295	Walking			

Confusion Matrix

The contributions are

- From the literature review
 - The state-of-the-art of recent research on On-body sensing based HAR
- From the experimental research
 - A dataset for benchmarking (available soon on our website)
 - A classifier (available soon on our website)

Future / Ongoing work

New wearable (HARwear version 2)

Data collection with 20 (or more) users

- Profile: 18-21 years old
- Body Mass Index ranging from 22-26
- Male and female subjects
- Activities comprising weight lifting exercises (for QAR)

Qualitative Activity Recognition (QAR)

- Recognize "how well" instead of "what" activity
- We already collected data with 7 users (similar profile)
- The task is harder, lower accuracy rate, but still promising

Future / Ongoing work (QAR)

Lateral Dumbbell Raise

Back Feet Elbow Range of motion Speed

OK OK Bend your elbows a little more Your range is too short

OK

Reps

Future / Ongoing work (QAR)

Wearable devices

- Pipeline of tasks?
 - From easier tasks to hard tasks
 - Inspired on the NLL community experience
- Organize tasks (and classes) in a graph?
 - Using ontology to describe and relate tasks
 - Ontology reasoning to select a branch of the graph to apply statistical reasoning on the selected branch
- Investigation of hybrid approaches
 - Ambient Sensing + On-body sensing ⇒ to recognize composite activities and social activities
- Structuring of raw data, adding semantics, sensor identifying, etc,

Wearable Computing: Accelerometers' Data Classification of Body Postures and Movements

Wallace Ugulino¹ (wugulino@inf.puc-rio.br)

Débora Cardador¹

Katia Vega¹

Eduardo Velloso²

Ruy Milidiú¹

Hugo Fuks¹ (hugo@inf.puc-rio.br)

http://groupware.les.inf.puc-rio.br

¹ Informatics Department – Pontifical Catholic University (PUC-Rio)

² School of Computing and Communication – Lancaster University