Schema.org Extensions for IoT (iotschema)

Darko Anicic, Michael Koster

Data Models and Semantic Interoperability

IoT Week, Aarhus, Denmark - 20.06.2019

Data models for IoT

Web of Things
 Thing Description
 W3C Candidate Recommendation

 Few other IoT ecosystems revolve around similar thing data models.

WebThings moz://a

W3C

The AWS IoT Things Graph
Data Model (TDM)

The Alibaba Thing
Specification Language (TSL)

Web Thing Description

Common semantic layer

iotschema.org

Semantic interoperability for connected things

Web of Things
Thing Description

The AWS IoT Things
Graph Data Model (TDM)

The Alibaba Thing Specification Language (TSL)

Web Thing Description

What is iotschema?

- An open, publicly available, repository of semantic definitions for connected things
- An extension of schema.org to enable descriptions of things in the physical world and their data
- A common set of tools and patterns, and a community process for contribution and publication of standardized definitions
- A way for domain experts to easily create semantic definitions that are relevant to their application domain

What is iotschema (2)?

- A layer to bridge between device ecosystems and Semantic Web technology
- Property and relation types to enable reuse of existing ontologies and definitions
 - SSN, SOSA, SAREF, QUDT
 - Property types for e.g. Feature of Interest
- Annotation vocabulary for WoT Thing Description
 - Common definitions for application-specific Events, Actions, and Properties

Who is iotschema for?

- IoT platform providers will use iotschema to make it easy for third party applications to use the platform
- Device vendors and SDOs will use iotschema to publish protocol-neutral definitions of their devices to enable web scale adoption
- Domain experts will use iotschema to create domain-specific languages for connected things and their applications
- Application providers will use iotschema to make their applications portable across platforms

iotschema: Semantic categories

- iotschema semantic definitions consist of three categories, or classes, that describe a measurement or actuation, of some physical property or item
 - A Capability describes the smallest practical composeable unit of functionality (measurement an/or actuation),e.g the temperature of something, or the brightness of a light bulb. A Capability has some related Interactions.
 - An Interaction (Event, Action, or Property) describes an affordance to the capability, which may be to read or write a value, or perform a complex action.
 - Data Item descriptions contain data types, units, minimum and maximum values, and other information about the data model, for example a shape or schema

iotschema: Capability pattern

iotschema: Example

iotschema: Feature Of Interest pattern

iotschema: Conceptual integration with other ontologies

- Feature of Interest concepts and property types to describe location, equipment, or other classifiers
- For example, BrickSchema definitions from Haystack
- Quantity and Units constraints can use QUDT concepts and appropriate identifiers
- SSN, SOSA, SAREF concepts can extend a definition
- W3C Linked Data Working Group

Connect things to the real world

How to contribute to iotschema?

https://github.com/iot-schema-collab/iotschema/tree/master/incoming

Status

- Monthly Teleconferences since mid-2017
- Examples of Definitions in a Github repository
- Fol annotation examples are also in the repo
- Prototypes tested at W3C Web of Things Plugfests and WISHI/IETF Hackathons from mid 2017
- Contributors are ready to begin submitting definitions
- Next steps are to build out tools and processes
- W3C Community Group

Current members W3C CG: Schema.org Extensions for IoT

iotschema: Resources

- W3C Community Group:
 The Schema Extensions For IoT
- https://www.w3.org/community/iotschema/
- GitHub repository:
- https://github.com/iot-schema-collab/iotschema
 Teleconferences:
- https://github.com/iot-schema-collab/teleconferences
 Contributions:
- https://github.com/iot-schema-collab/iotschema
 Charter:
- https://github.com/iot-schema-collab/ws-charter

- Web site:
 Current location
- http://iotschema.org/docs/full.html

Future location

- http://iot.schema.org
- Tools: iotschema for Node-RED
- https://github.com/iot-schema-collab/iotschema-node-red

iotschema for Node-RED

Recipe-based applications

iotschema for Node-RED

Recipe-based applications

- iotschema embedded in Node-RED tool
 - Enables an easy configuration of things using iotschema definitions
- Easies the use of semantics for IoT developers
 - No need for a developer to know RDF(S), JSON-LD, RDF Shapes ...
- Simplify creation of applications with W3C WoT
 - Avoids translations of serializations formats, data types, units ...
- Demonstrates semantic discovery and processing
 - Integrates WoT Thing Directory

Example: Controlling Carbon Dioxide

Node-RED Application with W3C WoT Things

Example: Controlling Carbon Dioxide

Node-RED Application with W3C WoT Things

iotschema: Semantic Mark-Up for W3C WoT Thing Description

Semantic Recipe

Reusable Flow Template

MatchMaker:

- finds Things that can implement the Recipe
- based on TD with iot.schema.org mark-ups

Semantic Discovery of Recipe Ingredients

Ingredients are Node-RED Nodes

Example: Controlling Carbon Dioxide

Node-RED Application with W3C WoT Things

Back-Up

Narrow Waist in System Design

Diverse Devices and Applications, Common Protocols and Semantics

How is **iotschema** used?

- Annotation of Thing Descriptions (W3C Web of Things)
- Thing Descriptions have Action, Event, and Property Interaction definitions that can be annotated with iotschema Interaction class terms
- Thing Descriptions have DataSchema elements that can be annotated with iotschema Data Item class terms and constraints, such as data type, units
- Thing Description enables applications to interact with connected things independent of protocol and SDO profile

iotschema Definitions

- Semantic definitions that follow the design patterns and interaction affordances of connected thongs
- Interoperable due to a set of static and dynamic semantic constraints
- Define a "Capability" that represents typically the smallest practical compose-able unit of functionality
- For example, a temperature sensor, or a door lock

Capability Model

iot.schema.org

Feature of Interest Integration

- Features Of Interest (FoI) describe the real-world targets of sensing and actuation
- Definitions may be developed in iotschema, or more likely will come from domain experts
 - GENIVI/VSS is a Specification for Automotive Features of Interest, called Branches, and actuation/measurement points, called Attributes and Signals
 - BrickSchema is an adaptation of Haystack that defines Features of Interest of buildings and actuation or measurement points
- iotschema defines relationships between Capabilities and Features of Interest to describe connected physical systems