UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS

FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

Listado 1 MATEMÁTICA I (529103)

- 1. En los siguientes casos escriba en forma simbólica las siguientes proposiciones:
 - a) José es zapatero o Pedro es garzón.
 - b) El domingo es un día feriado y Luis está enfermo.
 - c) Si 2 + 2 = 4 entonces 3 + 3 = 8.
 - d) Antonio es el hijo de Luis si y sólo Luis es el padre de Antonio.
- 2. Sean las proposiciones:

p: 7 es menor que 9.

q: El sol es un astro frío.

r: La temperatura está debajo de cero grados celcius.

Escriba las siguientes proposiciones compuestas:

a) $p \vee q$

c) $(r \wedge p) \rightarrow q$

e) $\sim q \leftrightarrow r$

b) $\sim p \rightarrow q$

d) $(p \wedge q) \leftrightarrow r$

f) $[(p \lor q) \land (q \land r)] \longrightarrow r$

- 3. Diga cual es el valor de verdad de las siguientes proposiciones :
 - a) Todos los días lunes del año son feriado o la tierra es redonda.
 - b) El último mundial de fútbol fue en Brasil y el próximo será en Rusia.
 - c) Los cuadrados tienen cuatros lados y los triángulos tienen cinco lados.
 - d) La tierra es plana entonces Julio César fue un emperador de Roma.
 - e) El domingo no es un día feriado si y sólo si la fiesta patria en Chile es en el mes de Septiembre.
 - f) Si 2 + 2 = 4 si y sólo si 4 + 4 = 8.
 - g) Si n es un número par entonces n es un múltiplo de 5.
- 4. Construir la tabla de verdad de las siguientes proposiciones:

a) $\sim p \wedge q$

b) $(p \to q) \to [(p \lor \sim q) \to (p \land q)]$ c) $[(p \lor q) \land r] \to (p \land \sim q)$

5. Considerar la proposición:

$$(\sim p \land q) \lor (p \lor r)] \to [(p \lor \sim q) \lor (p \lor \sim r)]$$

y diga cual es el valor de verdad de la proposición para cada uno de los casos dados.

- a) p es falso, q es falso y r falso.
- b) p es verdadero, q es falso y r verdadero.
- c) p es verdadero, q es verdadero y r falso.
- 6. Dadas las proposiciones p, q y r, verificar las siguientes propiedades:
 - a) $(p \land q) \iff (p \land q)$

- c) $p \land (q \lor r) \iff (p \land q) \lor (q \land r)$
- b) $(p \lor q) \lor r \iff p \lor (q \lor r)$
- d) $\sim (p \lor q) \iff (\sim p \land \sim q)$
- 7. Verificar las siguientes implicacioness lógicas:
 - a) $[(p \to q) \land \sim q] \Longrightarrow \sim p$
 - b) $p \Longrightarrow [q \to (p \land q)]$
 - c) $(p \to q) \land (q \to r) \Longrightarrow (p \to r)$
- 8. Encontrar el conjunto de validez de p(x) en el universo U, donde:
 - a) $p(x): x^2 = 4, U = \mathbb{N}$

d) $p(x) : x < 10 \land x > 5$, $U = \mathbb{N}$

- b) $p(x): x^2 = 16, \quad U = \mathbb{Z}$
- c) $p(x): x + 1 \ge 2$, $U = \mathbb{N}$
- e) $p(x) : x \ge 4 \lor x < -2, \quad U = \mathbb{Z}$
- 9. Escriba simbólicamente cada una de las siguientes proposiciones y su negación:
 - a) Algunos números racionales son enteros.
 - b) Todos los políticos honestos son rubios
 - c) Si x es un número entero positivo, entonces \sqrt{x} es un número real.
 - d) Todo número entero es positivo.
 - e) Si x es un número irracional entonces, x^2 es un número irracional.
 - f) Si x es un elemento del conjunto A, entonces x está en $\mathcal{P}(A)$.
 - g) Todos los chilenos saben leer, pero no todos entienden lo que leen.
- 10. Utilizando los métodos por comprensión y extensión, describir los siguientes conjuntos
 - a) Los dedos de las manos.
 - b) Los números enteros positivos menores que 10 y divisibles por 3.
 - c) Las fracciones de numerador 1 y cuyo denominador es un entero positvo menor que -2.
 - d Los números impares entre el 2 y el 8.
- 11. Escribir las siguientes afirmaciones utilizando la notación de conjuntos:
 - a) n es un elemento del conjunto \mathbb{N} .
 - b) El conjunto D contiene a todos los elementos del conjunto W.

- c) En el conjunto V no está la letra a.
- d) Todos los elementos de A estan también en B, pero hay elementos de B que no estan en A.
- 12. Sean los siguientes conjuntos:

 $A = \{x/x \text{ es chileno}\}$

 $B = \{x/x \text{ es persona chilena que habla inglés}\}$

 $C = \{x/x$ es persona chilena que habla inlgés y francés $\}$

Decir que conjuntos son subconjuntos propios del otro.

13. Dado el conjunto $A=\left\{-2,\ 0,-1,\{a,b,c\},\ 1,\ 2,\{2,3,4\},\ 5,\ 6,\ 7,\{x,y\}\right\}$, ¿cuál o cuáles de las siguientes afirmaciones es correcta?

a) $5, 6 \in A$ d) $\{a, b, c\} \in A$ g) $\{a, b, c, x, y\} \subset A$ b) $\{\{x, y\}, \{2, 3, 4\}\} \subset A$ e) $\{1\} \in A$ h) $\{2, 6, 7\} \subset A$ c) $\{a, b, c, -2, 0, 1\} \in A$ f) $\{-2, 0, 1\} \in A$ i) $\{\{a\}\} \subset A$

- 14. Dado $A = \{x \in \mathbb{N}/x \text{ es un número primo menor que 14}\}$, ¿cuántos subconjuntos de A tiene su conjunto potencia y cuáles son?.
- 15. Dado $B = \{1, \{a, b\}, \{p, q, r\}\}\$, ¿cuántos subconjuntos de B, tiene su conjunto potencia, cuáles son?
- 16. Dado el conjunto universal $U = \{n \in \mathbb{N}: 2 \le n \le 10\}$ y los conjuntos

 $P = \{n \in U : \text{ n es par }\}, \qquad \qquad I = \{n \in U : \text{ n es impar }\},$ $C = \{n \in U : \text{ n es multiplo de 5 }\}, \qquad \qquad D = \{1, \ 2, \ 3\},$

 $E = \{8, 5, 9\},\$

 $F = \{3, 5, 7, 9\},\$

obtener:

a) $P \cup I$ d) I^c g) $F \cap (D \cup I)$ j) $(P \cap C) - F$ b) $I \cap C$ e) $E^c \cap F^c$ h) $(D \cup F)^c$ c) E^c f) $(E \cup F)^c$ i) I - D k) $(I - E)^c$

17. Suponga que $a \in A$ y $b \in B$. ¿Cuál o cuáles de las siguientes afirmaciones no es necesariamente verdadera?

a) $\{a,b\} \in (A \cap B^c)^c$ c) $\{a,b\} \subseteq (A \cup B)$ e) $a \land b \in (A \cap B)$

b) $\{a, b\} \in (A \cup B)$ d) $\{\{a\}, \{b\}\} \subseteq (A \cup B)$ f) $\{a\} \in \mathcal{P}(A \cap B)$

- 18. Considerando $U = \{x : x \text{ es alumno de la Facultad de Farmacia } \}$ y los conjuntos: $A = \{x \in U : x \text{ cursa Matemática I}\}, B = \{x \in U : x \text{ cursa Climatología}\},$ $C = \{x \in U : x \text{ cursa Cálculo IV }\} \text{ y } D = \{x \in U : x \text{ cursa Mecánica y Calor}\}.$ Usando las operaciones \cap (Intersección), \cup (Unión), - (Diferencia), c (complemento), describa los siguientes conjuntos en función de A, B, C y D.
 - a) $R = \{x \in U : x \text{ no cursa Climatología } \}$
 - b) $S = \{x \in U : x \text{ cursa Matemática I o también Mecánica y Calor}\}$
 - c) $T = \{x \in U : x \text{ cursa Climatología y Cálculo IV } \}$
 - d) $V = \{x \in U : x \text{ no cursa Climatología y no cursa Cálculo IV } \}$
 - e) $W = \{x \in U : x \text{ cursa Matemática I, pero no Cálculo IV}\}$
 - f) $X = \{x \in U : x$ cursa Climatología y Cálculo IV, pero no Mecánica y Calor $\}$

Describa los siguientes conjuntos por comprensión:

- a) A-C
- c) $A \cap D^c$ e) $(A^c \cap D) \cup (B \cap C)$ g) $(B \cup C)^c A$
- b) $A \cup B$
- d) $(A \cup B)^c \cap C$ f) $(A \cap D) B$
- 19. En ratas de un laboratorio se descubrió una nueva enfermedad, tal enfermedad se presenta con tres síntomas distintos: A, B y C. Después de complejos exámenes de laboratorio, se determin'o que 55 ratas tienen el síntoma A, 35 ratas tienen el síntoma A y el B, 65 ratas tienen el síntoma B, 25 ratas tien los síntomas A y C, 50 tienen el síntoma C y 15 ratas tienen los síntomas A, B y C. Si las ratas sólo con síntoma C son 5 y si 20 ratas no presentan síntoma alguno.
 - a) ¿Cuántas ratas tienen síntomas B y C?
 - b) ¿Cuántas ratas tienen síntomas $(A \cup B^c)^c$?
 - c) ¿Cuántas ratas tienen solo el síntoma B?
 - d) ¿Cuántas ratas participaron en el estudio?
- 20. En un vivero con 1.000 matitas de Albahaca se aplican los fertilizantes $F_1, F_2 y F_3$. Se sabe que a 215 matas se aplica F_1 , a 220 se aplica F_2 , a 205 se aplica F_3 , a 45 se aplican F_1 y F_2 , a 30 F_1 y F_3 , a 35 se aplica F_2 y F_3 , y a 10 se aplican F_1 , F_2 y F_3 .
 - a) ¿Cuántas plantas no fueron fertilizadas?
 - b) ¿A cuántas se aplicó sólo F_1 ?
 - c) ¿A cuántas se aplicó F_1 y F_2 , pero no F_3 ?