

Neural networks and state estimation

Xuelei Chen

Agenda

- Introduction to neural network
- Recurrent neural networks for electric grid analysis
 - Problem statement
 - Method description
 - Experimental result
 - Conclusion
- Neural networks for robust spectra reconstruction
 - Problem statement
 - Method description
 - Experimental result
- Conclusion

Introduction to neural network

---- : act(w*x+b)

Activation Functions

Sigmoid

1

tanh(x)

ReLU $\max(0, x)$

Leaky ReLU max(0.1x, x)

nax(o.ra, a)

Maxout $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU $x \ge 0$ $\alpha(e^x - 1)$ $x \le 0$

Introduction to neural network

RNNs for electric grid analysis Problem Statement

Goal:

- Online state estimation with incomplete measurement.
 - Power Value

RNNs for electric grid analysis Method Description

Case 1: one-layer NN

$$x(k+1) = w_k * \sigma(x(k)) + g(k)$$

Case 2: two-layer NN

State equation: $x(k+1) = w_{2,k} * \sigma [w_{1,k} * \sigma (x(k))] + g(k)$

$$oldsymbol{x}_k = f(oldsymbol{x}_{k-1}, oldsymbol{u}_{k-1}, oldsymbol{w}_{k-1})$$

Measurement equation:

$$\boldsymbol{z}_k = h(\boldsymbol{x}_k, \boldsymbol{v}_k)$$

RNNs for electric grid analysis Method Description

Learning Method:

- Joint Estimation: EKF for weight parameter + EKF for state (power)
- Kalman Filter: Using Extended Kalman Filter to update w[^] and x[^] alternatively

Algorithm (Pseudocodes):

□ Initialize w0,x0
□ For k in timepoints:
□ A priori forecast: wf(k) = w(k-1)
□ For i in itersteps:
□ KF updating w^(k)
□ When updating converges, break
□ A priori forecast: xf(k) = RNN(w^(k), x(k-1))
□ For j in itersteps:
□ KF updating x^(k)
□ When updating converges, break
□ S^(k) = Sm(k) + x^(k)

ite	er	200	400	500	600	800	1000
Joint	RNN-1	0.2724	0.2694	0.2693	0.2704	0.2764	0.2849
	RNN-2	0.2705	0.2659	0.2645	0.2647	0.2732	0.3008

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Table 1: Mean Squared Error (10^-2) of estimation results using 1-layer RNN and 2-layer RNN

iter		400	500	550	600	
RNN-	Adaptive AR[1]	4.2785				
	Only State	0.4245				
2	Only Weight	0.2664	0.2650	0.2648	0.2650	
	Joint	0.2659	0.2645	0.2644	0.2647	

Table 3: Mean Squared Error (10^-2) of estimation results using only-state method, only-weight method and Joint method

	Time/s	
RNN-1	0.6223	
RNN-2	0.8041	

Table 2: Computation time for one time points' estimation

Physikalisch-Technische Bundesanstalt 3raunschweig und Berlin

Power measured at: [1, 5, 8] Voltage measured at: [2, 3, 9, 11]

Power to be estimated: [2, 3, 4, 6, 7, 9, 10,11]

Power measured at: [1, 5, 8] Voltage measured at: [2, 3, 9, 11]

Power to be estimated: [2, 3, 4, 6, 7, 9, 10,11]

Fig 1: Updating process of weights in the 1st layer.

8 nodes' active and reactive powers need to be estimated.

2 layer RNNs.

Parameter numbers: 8*2*2=32

Two edge cases:

Power measured at:

[1]

Voltage measured at:

[2,3,4,5,6,7,8,9,10,11]

Power to be estimated:

[2,3,4,5,6,7,8,9,10,11]

Power measured at:

[1, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Voltage measured at:

[2]

Power to be estimated:

[2]

Power measured at: [1] Voltage measured at: [2,3,4,5,6,7,8,9,10,11]

Power to be estimated: [2,3,4,5,6,7,8,9,10,11]

Power measured at: [1, 3, 4, 5, 6, 7, 8, 9, 10, 11] Voltage measured at: [2]

Power to be estimated: [2]

RNNs for electric grid analysis Conclusion

- RNN-bases estimation method can achieve great improvement with respect to the state-of-the-art.
- 2-layer RNN is slightly better than 1-layer RNN on this estimation task.
- RNN-based joint estimation is slightly better than RNN-based single estimation on this task.

NNs for robust spectra reconstruction Problem statement

Reflectance spectra: 380~730nm Camera response: 12 channel

split

Dataset description:

240 samples

sp: (240,351)

cr: (240,12)

180 samples for training

sp_train: (180,351) cr train: (180,12)

60 samples for testing:

sp_train: (60,351) cr_test: (60,12)

NNs for robust spectra reconstruction Method description

sp: (180,351) cr: (180,12)

tr: (12,351)

tr = pinv(cr) * sp

Linear kernel

Gaussian kernel

Logarithmic kernel

Pseudo-inverse Kernel Regression

Simple Neural Networks

Autoencoder

CNNs

NN-based methods

NNs for robust spectra reconstruction Experimental Results

Noise: $N(\mu, \sigma^2)$

Noise	σ=50		
pseudo-inverse	3.47E-06		
linear kernel	3.47E-06		
gaussian kernel	0.004006324995		
logarithmic kernel	3.51E-05		
NN	3.38E-06		
Autoencoder	5.86E-06		

Table 3: Average RMSE of reconstructions using different estimation method

NNs for robust spectra reconstruction Experimental Results

Conclusion:

 Neural Network method can achieve the best results on spectra reconstruction, especially when the noise exists in the camera system. NN is a robust method.

Final Conclusion

- Neural Network method can learn the model from the data itself.
- NN is useful when the model is unknown or the model is complicated.

Thank you!

