$\boldsymbol{\mathsf{F.}}$ Construct a regular grammar for the language of all strings over

$$\Sigma = \{a, b\}$$
 that start with 'a' and end with 'b'

$$A \rightarrow aA | bB$$

$$B o aA |b| \epsilon$$

G. Construct a regular grammar for the language of all binary strings over the alphabet $\{0,1\}$ that have an even number of 1's.

$$S
ightarrow 0S | 1A | \epsilon$$

$$A \rightarrow 0A \mid 1S$$

I. Construct a regular grammar for the language of all strings over $\Sigma = \{a, b\}$ that have at most one a.

$$S \rightarrow bS$$
 aA b ϵ

$$A \rightarrow bA \mid \epsilon$$

 ${f J.}$ Construct a regular grammar for the language of all strings over

 $\Sigma = \{a, b\}$ where the substring abb appears.

$$S \rightarrow AabbB$$

$$A \rightarrow \epsilon \mid aA \mid bA$$

$$B \rightarrow \epsilon \mid aB \mid bB$$

K. Construct a regular grammar for the language of all strings over $\Sigma = \{a, b\}$ that are palindromes.

Cannot generate using regular grammar.

A regular grammar cannot adequately track the middle of the string and then compare the second half to the first half, which is necessary for checking palindromes.

L. Construct a regular grammar for the language of all strings over $\Sigma = \{a, b\}$ that do not contain the substring aa.

 $S o aB \mid bA \mid b$

 $A
ightarrow bA|~aB~|\epsilon$

 $B o bB \mid \epsilon$

2/2