Policy Interactions, Local Impacts, & Distributional Equity

Recorded Session #5

Robert N. Stavins

A.J. Meyer Professor of Energy & Economic Development

Climate Change Policy: Economics and Politics

Harvard Kennedy School Executive Education Cambridge, Massachusetts, USA October 16 - 20, 2024

Interactions among Climate-Change Policies

- Carbon pricing may be necessary, but it will *not* be sufficient, due in part to other market failures
 - Principal-agent problem (renter-occupied properties) → Building Codes
 - R&D spillovers → Government funding for R&D
- So, specific non-pricing policies can be complementary
- However, frequent motivation for "complementary policies" is apparently "insufficient" action from some sectors ...

Motivation for Asking if Carbon-Pricing is Sufficient: Cost-Effective Carbon Pricing Achieves Different Reduction Levels in Different Sectors

Percent Reduction in CO₂ Emissions by Sector in 2030 Under an Economy-Wide Emissions Cap Yielding a \$35/ton Allowance Price in 2030 (EIA)

Interaction of Complementary Policies with Cap-and-Trade Can Be Particularly Problematic

- Some "complementary policies" can *conflict* rather than complement Important Issue in Europe, USA, and many other parts of the world (Example: LCFS in CA)
 - *Consequences* of policy for sources *under the cap* of a cap-and-trade system
 - Achieves no incremental CO₂ emission reductions relocates emissions, i.e., 100% leakage (unless allowance price floor or ceiling is binding; acts as carbon tax)
 - > Drives up abatement costs (marginal costs not equated)
 - > Suppresses allowance price (by reducing overall demand for allowances)
 - So, some "complementary policies" can have perverse effects
- Motivation may also be policy makers wanting to keep allowance price low by having other policies do "heavy lifting"
- Policy interactions can also arise in case of sub-national policies ...

Why Think about Sub-National Climate Policies?

• Reminder: climate change is a global commons problem

- For virtually any jurisdiction, the benefits it reaps from its actions will be *less* than the costs it incurs.
- Also, leakage generally greater for smaller jurisdictions.

So, why think about sub-national policies?

- National government does not take action, or pursues insufficient action
- States as "policy laboratories" for policy design
- State policy can generate innovation and policy spillovers to other states and/or national government?

Sub-National Emissions can be Meaningful

Energy-related carbon dioxide emissions by state (top ten. 2016) million metric tons of carbon dioxide

# 1=	Country 11	CO2 Emissions (tons, 2016)	1 Year Change 🎵	Population (2016)	Per capita ↓↑	Share of world \$1
1	<u>China</u>	10,432,751,400	-0.28%	1,414,049,351	7.38	29.18%
2	United States	5,011,686,600	-2.01%	323,015,995	15.52	14.02%
3	<u>India</u>	2,533,638,100	4.71%	1,324,517,249	1.91	7.09%
4	Russia	1,661,899,300	-2.13%	145,275,383	11.44	4.65%
5	<u>Japan</u>	1,239,592,060	-1.21%	127,763,265	9.70	3.47%
6	<u>Germany</u>	775,752,190	1.28%	82,193,768	9.44	2.17%
7	<u>Canada</u>	675,918,610	-1.00%	36,382,944	18.58	1.89%
8	<u>Iran</u>	642,560,030	2.22%	79,563,989	8.08	1.80%
9	South Korea	604,043,830	0.45%	50,983,457	11.85	1.69%
10	<u>Indonesia</u>	530,035,650	6.41%	261,556,381	2.03	1.48%
11	Saudi Arabia	517,079,407	0.92%	32,443,447	15.94	1.45%
12	<u>Brazil</u>	462,994,920	-6.08%	206,163,053	2.25	1.29%
13	Mexico	441,412,750	-2.13%	123,333,376	3.58	1.23%
14	<u>Australia</u>	414,988,700	-0.98%	24,262,712	17.10	1.16%
15	South Africa	390,557,850	-0.49%	56,207,646	6.95	1.09%
16	<u>Turkey</u>	368,122,740	5.25%	79,827,871	4.61	1.03%
17	<u>United</u> <u>Kingdom</u>	367,860,350	-6.38%	66,297,944	5.55	1.03%
18	<u>Italy</u>	358,139,550	0.84%	60,663,060	5.90	1.00%
19	<u>France</u>	331,533,320	2.11%	64,667,596	5.13	0.93%
20	Poland	296,659,670	2.67%	37,989,220	7.81	0.83%

Example in U.S. – State-Level "Clean Energy" Policies

- With U.S. federal policy lacking, sub-national policies have grown
- State climate policies have been strengthened, particularly in "progressive states"
 - Renewable mandates
 - Zero Emission Vehicle (ZEV) requirements
 - Appliance efficiency standards
 - Building codes
 - Zoning laws
 - Subsidies
 - Carbon-pricing initiatives

Interactions when a Jurisdiction within a Cap-and-Trade System Takes Additional Actions

• Examples:

- EU ETS member country puts in place a more ambitious CO₂ policy
- Province/state in country with a national cap-and-trade system puts in place a more ambitious
 CO₂ policy

Can yield same perverse outcome as with "complementary policies"

- *Achieves no incremental CO₂ emission reductions* relocates emissions to other jurisdictions
- Drives up abatement costs
- Suppresses allowance price

• But, will these perverse outcomes necessarily arise?

Answer: interactions can be problematic, benign, or positive...

Problematic Interactions

- If national policy limits emissions quantities or uses nationwide averaging of performance, ...
- Then, emission reductions accomplished by "green" state/province (more stringent policy than national) reduce pressure on other states,
 - thereby freeriding indeed, *encouraging* (such as through lower allowance price) emission *increases* in other states
- Result: 100% leakage, and loss of cost-effectiveness nationally
- Potential examples
 - State limits on GHGs/mile and Federal CAFE standards
 - State renewable fuels standard *and* Federal RFS; or state renewable portfolio standard *and* Federal RPS
 - British CO₂ policies if under umbrella of EU ETS
- Partial solution: carve-out from broader policy (eliminates 100% leakage, but still not cost-effective!)

Benign Interactions

• Example #1: Regional Greenhouse Gas Initiative (RGGI)

- RGGI (state) policies are less stringent than future Federal policy
- Result: state policies become non-binding and largely irrelevant

• Example #2: Federal policy sets price (not quantity)

- A carbon tax, or a binding safety-valve/price collar in cap-and-trade
- More stringent actions in green states *do not lead* to offsetting emissions in other states induced by a changing carbon price.
- *However*, there will be *different* marginal abatement costs across states, and so aggregate reductions are *not* achieved *cost-effectively*.

Positive Interactions

- States can address market failures not addressed by a Federal "carbon-pricing" policy
 - Example: principal-agent problem re. energy-efficiency investments in renter-occupied properties \rightarrow state or local building codes
- States can be "laboratories" for policy design
 - Can provide useful information for development of national policy
 - But will state authorities allow their "laboratory" to be closed after the experiment has been completed and the information delivered?
- States can create *pressure* for more stringent Federal policy
 - Example: CA standards and subsequent change in Federal CAFE
 - Desirable if previous national policy is insufficient, but an empirical question
- Cities can also be engaged (Brookings survey, 2020)
 - 45 of 100 largest U.S. cities have made serious climate pledges, but most are aspirational, not realistic
 - 30 of the 45 cities with pledges are *behind* their targeted emission cuts
 - The 45 city pledges *if executed* would reduce U.S. total annual emissions by 6%

Localized Climate Change & Policy Impacts

• Importance of Local Air Pollutants Correlated with CO₂ Emissions

• Distribution of Benefits and Costs of Climate Policy: Environmental Justice and Just Transition

The Importance of Correlated Pollutants: Example: The Clean Power Plan (2014)

- Rule for existing power plants proposed June 2, 2014: 30% reduction of CO₂ emissions below 2005 level by 2030
 - Rule facilitated (through flexibility) but did not guarantee cost effectiveness
 - ➤ Intended to facilitate cap-and-trade
- EPA assigned states CO₂ standards, based on existing mix of generating units in the state
- Let's look at Obama administration's economic analysis of this proposal ...

Economic Analysis of "Clean Power Plan" Rule

- Fundamental economic arithmetic of a global commons problem
 - Benefits spread globally, cost incurred locally (and damages worse in other parts of the world)
 - It would be surprising to say the least if EPA were to find that the expected benefits of the proposed rule would exceed its expected costs
 - But this is what EPA found.
 - Its central estimate is positive net benefits (benefits minus costs) ...
 - > of \$67 billion annually in the year 2030!
 - > How can this be?

Estimated Benefits and Costs of Proposed Clean Power Plan in 2030

EPA's Regulatory Impact Analysis, Mid-Point Estimates, Billions of Dollars

94% of estimated domestic benefits are health impacts of	Climate Change Impacts			
correlated local air pollutants	Domestic	Global		
Benefits				
Climate Change	\$3	\$ 31		
		Y		
Total Benefits	\$3	\$ 31		
Total Compliance Costs	\$9	\$ 9		
Net Benefits (Benefits – Costs)	- \$6	\$ 22		

Non-Uniformly Mixed Pollution & "Hot Spots"

- Market-based instruments reduce costs by allowing low (abatement) cost polluters to reduce emissions by more than high-cost polluters
 - Generates **differences** in emissions reductions across firms
 - This is fine when **benefits** of pollution reduction are the same everywhere
 - But when benefits (pollution damages) vary (e.g., due to differences in population exposed), this can create pollution "hot spots"
 - So, when high-damage sources have high abatement costs, with *increasing marginal damages*, efficiency is reduced
- If pollution is non-uniformly mixed (local pollutants), benefits (avoided damages) will not be the same everywhere
- Key Issue: Some local pollutants (PM 2.5) are produced along with global pollutants (CO₂)

Distribution of Local Benefits and Costs of Climate Policy: Environmental Justice (EJ) and Just Transition

- Damages of climate change (and correlated pollutants)— and therefore benefits of climate policy are not equally distributed within jurisdictions (or globally)
- Distribution of climate-change (and correlated pollutant) damages (policy benefits) within jurisdictions vary in terms of:
 - Economic sector (extreme case, for example: agriculture vs high tech)
 - Job category (for example, top management vs unskilled labor)
 - Geographic location (for example, highlands vs lowlands)
 - Income groups
 - Racial and ethnic groups
- Distribution of costs of climate-change policies likewise vary –both for abatement (mitigation) costs ("Just Transition") and adaptation costs

Why worry about distributional equity in design of (efficient or cost-effective) policy?

- Definition of Efficient Policy: Maximize Net Benefits, i.e., difference between benefits & costs
- But all policies create winners and losers
 - Tax on gasoline reduces air pollution, but makes it more costly to get to work
 - Closing down coal mines
- Some efficient/cost-effective policies are regressive
 - Improving Los Angeles visibility by increasing electricity rates
 - Low-income households pay higher share, but rich living up in the hills get the benefits.
- Other policies are progressive
 - Superfund cleaned up abandoned hazardous waste sites
 - > Rich pay more in taxes and don't live near these sites

An Example that Caused Concern

- In 1978, Ward Transformer Company illegally dumped 31,000 gallons of PCBs (carcinogenic & other health effects)
- North Carolina identified two potential sites to dispose of the soil:
 - 1. Warren County: 60% black & 25% of population below poverty line
 - > Shallow water table, *not* well suited for a landfill.
 - **2. Chatham County**: 27% black & 6% of population below poverty
 - Suitable private site available
- **Result: Warren was selected.** In 1993, the disposal site was found to be leaking PCBs
- This incident has been credited with starting the Environmental Justice Movement in the USA

Source: <u>The History of Environmental Justice in Five Minutes (nrdc.org)</u>

Correlation between Race/Income & Pollution

- Studies have found spatial correlation between pollution levels and race and/or income.
- Potential mechanisms:
 - Pollution levels depress real estate values \rightarrow cheaper homes, lower rents \rightarrow low income and minority populations move into area
 - Lax enforcement of environmental regulations in poorer neighborhoods
 - Imperfect information regarding environmental harms

Exposure to PM 2.5 in the United States (2003-2015)

- Exposure (solid lines) & Contributions (dashed lines)
- Black & Hispanic have higher exposure, and lower contributions
- All are trending down over time
- "Pollution inequity" (measured as Exp/Cont − 1) trending slowly downward?

Do Market-Based Environmental Policies Increase EJ Impacts?

- **Question**: Has California's Cap & Trade program *widened* pollution concentration gaps?
- **Hypothesis**: California's 2013 CO_2 cap-and-trade program could alter local air pollution disparities by changing which sources are emitting
- Evidence from recent study: Hernandez-Cortes & Meng. *Journal of Political Economy* (2023), "Do environmental markets cause environmental injustice? Evidence from California's carbon market"
- Environmental justice gap = difference in pollution experienced in disadvantaged communities relative to other communities
 - Disadvantaged communities formally defined by the State with a scoring system based on multiple socioeconomic indicators:
 - Poverty levels, educational attainment, unemployment rate, are correlated with racial and/or ethnic composition

Do Market-Based Environmental Policies Increase EJ Impacts? (continued)

Findings:

- In 2008, significant EJ gaps existed and grew through 2012
- Since 2013 (start of C&T program), the EJ gaps have fallen
- **But** while EJ gaps have narrowed, they have **not** been **eliminated**

Fig. 4. Environmental justice gap effect of the cap-and-trade program. Notes: Panels show the estimated average pollution concentration gap (in $\mu g/m^3$ /day) between disadvantaged and other zip codes (i.e., "EJ gap") during 2008–2017 for (a) PM_{2.5}, (b) PM₁₀, (c) NO_x, and (d) SO_x, respectively. Dots show year-specific EJ gap with 95% confidence interval. Solid lines show linear fits from Eq. (2). Associated text indicates point estimates and p-values (in brackets) for the pre-C&T linear trend (β_1^p), post-C&T trend break (β_2^p), and post-C&T linear trend ($\beta_1^p + \beta_2^p$), as reported in Table 2. Estimates centered at the 2008 EJ gap shown in Table S6. Confidence intervals and p-values

Key Take-Aways

- 1. Even if carbon-pricing is necessary, it will *not* be sufficient
- 2. Complementary policies can interact with cap-and-trade in perverse ways:
 - No incremental emissions reduction
 - Increased costs
 - Suppressed allowance price
- 3. Sub-national policies can interact with a national policy in ways that are problematic, benign, or positive
- 4. Correlated localized air pollutants can be important
- 5. *Impacts* of climate change *and adaptation* are highly *specific to localities*
- 6. Unequal distribution of climate-change (& correlated pollutant) damages (& policy benefits) by sector, profession, geography, income, race, and ethnicity
- 7. Distribution of mitigation and adaptation costs likewise not uniform