Model architecture & Selecting the best model

0

Lets discuss about Deep Learnin

What is deep learning?

supervised learning

unsupervised learning

Different types of networks

Model & Architecture

Dense layer

Dense layer

Activation function (ReLU)

How a activation function helps the neural network?

Some famous activation functions

Activation functions	Uses
Relu	Most commonly used in hidden layers
Sigmoid	Binary classification
Softmax	Categorical classification
Tanh	They seem to provide some good results while using in some situations with LSTM based models

Convolution layer

7	2	3	3	8							
4	5	3	8	4		1	0	-1		6	
3	3	2	8	4	*	1	0	-1	=		
2	8	7	2	7		1	0	-1			
5	4	4	5	4		2x0-	-5x0-	+3x1+ +3x0+ 1+2x-1			

Kernel

Output

Image

4	6	1	1
1	3	1	3
4	0	0	8
8	5	4	0

Input

Output

Just like a Lego

You can think of the layers as a Lego block that is used to build a bigger structure(DL model)

Feature visualization

Input

Top layers

Deeper layers

Task	Architecture		
Classification	Alexnet		
Classification	VGG16		
Object detection	YOLO		
Object detection	RCNN		
Segmentation	U-NET		
Segmentation	Masked RCNN		

Types of NLP tasks & Suitable archs

Task	Architecture		
Tokenization and Text Classification	CNN/RNN based models		
Generating Captions for Images	Google NIC		
Machine Translation	RNN based networks		
Question Answering	RNN based networks		
Document Summarization	Encoder Decoder arch using RNN		
Speech Recognition	CNN/RNN based models		

Transfer learning

0

Architecture suitable for our project

Alex Net

Architecture suitable for our project

VGG 16

Selecting a architecture

Ways to approach the problem

14 15
16 17
0
5
4 8 11 7
9 12
10 13

Dense optical flow

Pose prediction

Absdiff

Absdiff based

Things we need to check

- >Size of the dataset we are going to use.
- >Total number of parameters in the model.
- >Where are we going to deploy the model.
- ➤ Overall file size.
- ➤ Compatibility for the lib we use.
- ➤ Pre-processing required for the dataset based on the arch.
- ➤Inference speed(Compute time).
- ➤ Training time.
- ➤ Hardware requirement.

Our choice

The architecture that we are going to choose is

FAQ

Do we need to implement all this math to build a dl model?

- Generally there is no need to use math to build a DL model.
- There are many libraries present now that we can build a model without help of any math. But a understanding of the basics will always help.

Can we implement our own architecture instead using already existing one?

- Definitely you can, There are many ways you can build a model its totally up to you to decide what layers to use and how to use them.
- ➤ You can even publish the network you created as paper and name it as you like.

0

- Colab provides you with GPU runtime which you can use to train your models faster.
- ➤ You can also attach your google drive to colab and use the dataset from there.
- There are multiple ways to build a model in keras the sequential api allows you to build a model sequentially in colab. You can use the functional api to build a model as collection of functions which gives more flexibility. Finally if you need even more customizability you can even create your own layers using objects.

References

Basic concepts of DL & ML

- https://www.youtube.com/playlist?list=PLQY2H8rRoyvwWuPiWnuTDBHe7I0fMSsfOhttps://docs.opencv.org/4.x/d9/df8/tutorial_root.html
- https://www.youtube.com/playlist?list=PLQY2H8rRoyvwWuPiWnuTDBHe7I0fMSsfO

Tensorflow & Keras

https://www.tensorflow.org/api_docs/python/tf/keras

VGG 16

https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918

Alex-net

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-the-architecture-of-alexnet

Advanced architectures

https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/