

**WEST**

Generate Collection

Print

L12: Entry 2 of 17

File: USPT

Jun 26, 2001

US-PAT-NO: 6252405

DOCUMENT-IDENTIFIER: US 6252405 B1

TITLE: Temperature compensated NMR magnet and method of operation therefor

DATE-ISSUED: June 26, 2001

## INVENTOR-INFORMATION:

| NAME                     | CITY          | STATE | ZIP CODE | COUNTRY |
|--------------------------|---------------|-------|----------|---------|
| Watkins; Ronald Dean     | Niskayuna     | NY    |          |         |
| Barber; William Daniel   | Ballston Lake | NY    |          |         |
| Frischmann; Peter George | Ballston Spa  | NY    |          |         |

## ASSIGNEE-INFORMATION:

| NAME                     | CITY        | STATE | ZIP CODE | COUNTRY | TYPE CODE |
|--------------------------|-------------|-------|----------|---------|-----------|
| General Electric Company | Schenectady | NY    |          |         | 02        |

APPL-NO: 09/ 440813 [PALM]

DATE FILED: November 15, 1999

INT-CL: [07] G01 V 3/00

US-CL-ISSUED: 324/319; 324/320, 324/315

US-CL-CURRENT: 324/319; 324/315, 324/320

FIELD-OF-SEARCH: 324/319, 324/320, 324/321, 324/318, 324/300, 324/314, 324/307, 324/309, 324/315

## PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

## Record Display Form

| PAT-NO                                  | ISSUE-DATE     | PATENTEE-NAME     | US-CL     |
|-----------------------------------------|----------------|-------------------|-----------|
| <input type="checkbox"/> <u>3714553</u> | January 1973   | Keller            | 324/318   |
| <input type="checkbox"/> <u>4870380</u> | September 1989 | McGinley          | 335/296   |
| <input type="checkbox"/> <u>4943774</u> | July 1990      | Breneman et al.   | 324/318   |
| <input type="checkbox"/> <u>4952877</u> | August 1990    | Stormont et al.   | 324/312   |
| <input type="checkbox"/> <u>4992736</u> | February 1991  | Stormont et al.   | 324/309   |
| <input type="checkbox"/> <u>5214383</u> | May 1993       | Perlmutter et al. | 324/313   |
| <input type="checkbox"/> <u>5252924</u> | October 1993   | Sakurai et al.    | 324/320   |
| <input type="checkbox"/> <u>5334937</u> | August 1994    | Peck et al.       | 324/318   |
| <input type="checkbox"/> <u>5382905</u> | January 1995   | Miyata et al.     | 324/319   |
| <input type="checkbox"/> <u>5431165</u> | July 1995      | Sellers           | 128/653.5 |
| <input type="checkbox"/> <u>5592090</u> | January 1997   | Pissanetzky       | 324/319   |
| <input type="checkbox"/> <u>5680086</u> | October 1997   | Allis et al.      | 335/296   |
| <input type="checkbox"/> <u>5731704</u> | March 1998     | Schnur et al.     | 324/320   |
| <input type="checkbox"/> <u>5774034</u> | June 1998      | Yoneda et al.     | 335/301   |
| <input type="checkbox"/> <u>6037775</u> | March 2000     | Shenoy et al.     | 324/320   |

ART-UNIT: 282

PRIMARY-EXAMINER: Arana; Louis

## ABSTRACT:

An MRI system includes a magnet which produces the main polarizing magnetic field. Variations in strength of this field are corrected by a temperature compensation system that calculates a compensating flux needed to maintain the field at constant strength. The compensating flux is calculated from changes in sensed magnet temperature and a magnet temperature coefficient. One or more correction coils are wound around the magnet and driven with the current necessary to produce the compensating flux.

14 Claims, 4 Drawing figures