Homework 5

2023-11-29

```
library(tidyverse)
library(dplyr)
library(stringr)
library(forcats)
library(ggplot2)
library(ggthemes)
library(broom)
library(purrr)
library(tidyr)
library(scales)
library(sf)
library(tigris)
```

#Choice A

```
#Loading data and creating object
homicides <- read.csv("homicide-data.csv")</pre>
homicides <- homicides %>%
  mutate(city_name = str_c(city, state, sep = ", ")) %>%
  select(city_name, everything()) %>%
  filter( city_name == "Baltimore, MD")
city_boundaries <- tigris::block_groups(state = "MD",county = "Baltimore</pre>
city")
##
                                                                                0%
                                                                                1%
                                                                                1%
 =
                                                                                2%
l =
                                                                                2%
|==
                                                                                3%
|==
                                                                               4%
|===
                                                                                5%
 ===
```

====		5%
====		6%
====		7%
====		8%
		8%
=====		9%
======		9%
======		10%
======		11%
		11%
		12%
		12%
		13%
=======		14%
=======		15%
=======		15%
=======		16%
========		17%
========		18%
		18%
=======================================		19%
=======================================		20%
=======================================		21%
		21%
		22%

	I	22%
	1	23%
	1	24%
	- 1	25%
	I	25%
	I	26%
	I	26%
	1	27%
	1	28%
	1	28%
	1	29%
 ===================================	1	29%
	1	30%
 ===================================	1	31%
	1	31%
	1	32%
	1	32%
	1	33%
	1	34%
	1	34%
	1	35%
	I	35%
 ===================================	1	36%
 ===================================	I	37%
 ===================================	I	38%

	1	38%
	1	39%
	1	39%
	1	40%
	1	41%
	I	41%
	1	42%
	I	42%
	I	43%
	I	44%
	I	44%
	I	45%
	1	45%
	1	46%
	I	47%
	1	48%
	1	48%
	I	49%
	1	49%
	1	50%
	I	51%
		51%
		52%
		52%
		53%

 	l	54%
 ===================================	I	54%
 ===================================	I	55%
 ===================================	1	55%
 ===================================		56%
 ===================================	I	56%
 ===================================	I	57%
 ===================================	I	58%
 		58%
 ======== 	I	59%
 ======== 	I	59%
 ======== 	I	60%
 		61%
 		61%
 ======== 	I	62%
 		62%
 		63%
 ========= 	I	64%
 		65%
 		65%
 		66%
 		66%
 ========= 		67%
 		68%
 		68%

=====================================	I	69%
 ===================================	I	69%
 ===================================	l	70%
 ===================================	l	71%
 ===================================	l	71%
 ===================================	I	72%
 ===================================	1	72%
 ===================================	1	73%
 ===================================		74%
 ===================================	1	75%
 ===================================	I	75%
 ===================================	I	76%
 ===================================		76%
 ===================================		77%
 ===================================		78%
 ===================================		78%
 ===================================		79%
 ===================================	1	79%
 ===================================		80%
 		81%
 	l	81%
 	l	82%
 ===================================		82%
 	I	83%
 	I	84%

		84%
		85%
	I	85%
	I	86%
	I	87%
	I	88%
	I	88%
	I	89%
	I	89%
	I	90%
	I	91%
	I	91%
	I	92%
	I	92%
	I	93%
	I	94%
	I	95%
	I	95%
		96%
	I	96%
	I	97%
	I	98%
		98%
		99%
	=	99%

```
==========| 100%
homicides_sf <- st_as_sf(homicides, coords = c("lon", "lat"), crs = 4326)</pre>
# Create a simplified dataframe for plotting
plot_data <- homicides_sf %>%
  mutate(
   race_group = fct_lump(victim_race, n = 3),
    solved unsolved = ifelse(disposition %in% c("Closed without arrest",
"Open/No arrest"), "Unsolved", "Solved")
# Create the plot
ggplot() +
  geom_sf(data = city_boundaries) +
  geom sf(data = plot data, aes(color = race group), size = 2) +
 facet_grid(solved_unsolved ~ .) +
  labs(title = "Homicides in Your City", subtitle = "Solved vs. Unsolved, by
Race") +
theme_minimal()
```

Homicides in Your City

Solved vs. Unsolved, by Race

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this: