

Introduction to Embedded Systems - WS 2022/23

Sample Solution to Exercise 8: Architecture Synthesis II

Task 1: Scheduling with Pipeline Resources

Pipeline-resources process data in time intervals that are smaller than the actual execution time w. As soon as after the start of a task v_1 the so-called *pipeline-interval* PI has elapsed, the next task v_2 can be started on the same resource (see Figure 1). Non-pipeline-resources are a special case of pipeline-resources with PI = w.

Figure 1: Tasks on pipeline-resource

Figure 2: Sequence graph for Pipelining

- a) Modify the LIST algorithm given in the lecture notes so that pipeline-resources are considered. Which step has to be reformulated and how? (Explain your answer!)
- b) Perform the scheduling for the sequence graph given in Figure 2 using the modified algorithm. You can use Table 1. The multiplication (r_2) lasts 4 time units and the length of the pipeline-interval is 2 time

units. The addition (r_1) lasts 2 time units and cannot be executed as pipeline-operation. 1 adder and 1 multiplier are available. Use the number of successor nodes as priority criterion. What is the resulting latency?

Solution to Task 1:

a) $[\dots]$ Determine candidates $U_{t,k}$ to be scheduled; $Determine \ set \ of \ occupied \ resources \ O_{t,k};$ Choose subset $S_t \subseteq U_{t,k}$ with maximal priority and $|S_{t,k}| + |O_{t,k}| \le \alpha(v_k)$ $[\dots]$

 $O_{t,k}$ is the set of resources of type k that are occupied in the time slot t and are not yet available for the following operation. On each of these resources exactly one operation is executed in a pipeline-interval.

b) The resulting schedule is shown in Table 1. The resulting latency is 12.

t	k	$U_{t,k}$	$O_{t,k}$	$S_{t,k}$
0	r_1	v_3		v_3
	r_2	v_{1}, v_{2}		v_1
1	r_1	_	v_3	_
	r_2	v_2	v_1	_
2	r_1	_	_	_
	r_2	v_2, v_5	_	v_2
3	r_1	_	_	_
	r_2	v_5	v_2	<u> </u>
4	r_1	_	_	_
	r_2	v_5	_	v_5
5	r_1	_	_	<u> </u>
	r_2	_	v_5	<u> </u>
6	r_1	v_4	_	v_4
	r_2	<u> </u>	_	<u> </u>
7	r_1	_	v_4	_
	r_2	_	_	<u> </u>
8	r_1	_	_	_
	r_2	v_6	_	v_6
9	r_1	_		_
	r_2	_	v_6	_
10	r_1	_	_	_
	r_2	_	_	<u> </u>
11	r_1	_	_	<u> </u>
	r_2	_	_	
12	r_1	-	_	-
	r_2	<u> </u>	_	_

Table 1: Schedule for Task 1

Task 2: Integer Linear Programming

Given the sequence graph $G_S = (V_S, E_S)$ in Fig. 3.

Figure 3: Sequence graph.

For the execution times of the operations assume: A multiplication operation (MULT) takes 2 time units and all other (ALU) operations take 1 time unit each. Two units of the resource type r_1 (multiplier) and two units of the resource type r_2 (ALU) are allocated.

- (a) Apply the ASAP and ALAP algorithms to compute the earliest (l_i) and the latest (h_i) starting time of all operations $v_i \in V_s, i \in \{1, \dots, 11\}$. For ALAP, assume the maximum latency $\overline{L} = 7$. Fill in the starting times in Table 2.
- (b) Formulate the problem of latency minimization with restricted resources as an integer linear program (ILP). For this, you should introduce the binary variables $x_{i,t} \in \{0,1\} \ \forall v_i \in V_S$ and $\forall t \in \{t \in \mathbb{Z} \mid l_i \leq t \leq h_i\}$. $\tau(v_i)$ is used to denote the starting time of operation $v_i \in V_S$ and $\alpha(r_i)$ with $r_i \in V_R = \{\text{MULT}, \text{ALU}\}$ denotes the number of allocated resource instances. Given the above notations, write down the following equations/inequations without using the Σ symbol.
 - (i) Express the objective function of the ILP
 - (ii) Define $\tau(v_i) \ \forall i \in \{1, \dots, 11\}$ as a function of $x_{i,t}$, where $l_1 \leq t \leq h_1$
 - (iii) Express all data dependencies
 - (iv) Express all resource limitations
- (c) In an analogous manner try to formulate an ILP that solves the problem of cost minimization with latency limitation. Hint: We assume that the cost of a realization is the sum of the costs c of the multipliers with $c(r_1)=2$ per allocated unit, and of the ALUs with $c(r_2)=1$ per allocated unit. For the latency bound, we choose $\bar{L}=6$.

Solution to Task 2:

(a) The starting times are listed in Table 2. The corresponding ASAP/ALAP schedules are depicted in Figure 4.

	l_i (ASAP)	$h_i(ALAP)$
v_1	1	2
v_2	1	2
v_3	3	4
v_4	5	6
v_5	6	7
v_6	1	3
v_7	3	5
v_8	1	5
v_9	3	7
v_{10}	1	6
v_{11}	2	7

Table 2: Earliest and latest starting times (Task 2a)

Figure 4: Schedule with ASAP and ALAP

(b) (i) Objective function:

$$\min. \quad L = \tau(v_n) - \tau(v_0)$$

(ii) Introduction of binary variables:

$$x_{1,1} + x_{1,2} = 1 \qquad 1 \cdot x_{1,1} + 2 \cdot x_{1,2} = \tau(v_1)$$

$$x_{2,1} + x_{2,2} = 1 \qquad 1 \cdot x_{2,1} + 2 \cdot x_{2,2} = \tau(v_2)$$

$$x_{3,3} + x_{3,4} = 1 \qquad 3 \cdot x_{3,3} + 4 \cdot x_{3,4} = \tau(v_3)$$

$$x_{4,5} + x_{4,6} = 1 \qquad 5 \cdot x_{4,5} + 6 \cdot x_{4,6} = \tau(v_4)$$

$$x_{5,6} + x_{5,7} = 1 \qquad 6 \cdot x_{5,6} + 7 \cdot x_{5,7} = \tau(v_5)$$

$$x_{6,1} + x_{6,2} + x_{6,3} = 1 \qquad 1 \cdot x_{6,1} + 2 \cdot x_{6,2} + 3 \cdot x_{6,3} = \tau(v_6)$$

$$x_{7,3} + x_{7,4} + x_{7,5} = 1 \qquad 3 \cdot x_{7,3} + 4 \cdot x_{7,4} + 5 \cdot x_{7,5} = \tau(v_7)$$

$$x_{8,1} + \dots + x_{8,5} = 1 \qquad 1 \cdot x_{8,1} + \dots + 5 \cdot x_{8,5} = \tau(v_8)$$

$$x_{9,3} + \dots + x_{9,7} = 1 \qquad 3 \cdot x_{9,3} + \dots + 7 \cdot x_{9,7} = \tau(v_9)$$

$$x_{10,1} + \dots + x_{10,6} = 1 \qquad 1 \cdot x_{10,1} + \dots + 6 \cdot x_{10,6} = \tau(v_{10})$$

$$x_{11,2} + \dots + x_{11,7} = 1 \qquad 2 \cdot x_{11,2} + \dots + 7 \cdot x_{11,7} = \tau(v_{11})$$

(iii) Data dependencies:

$$\tau(v_3) - \tau(v_1) \ge 2 \qquad \tau(v_3) - \tau(v_2) \ge 2$$

$$\tau(v_4) - \tau(v_3) \ge 2 \qquad \tau(v_5) - \tau(v_4) \ge 1$$

$$\tau(v_7) - \tau(v_6) \ge 2 \qquad \tau(v_5) - \tau(v_7) \ge 2$$

$$\tau(v_9) - \tau(v_8) \ge 2 \qquad \tau(v_{11}) - \tau(v_{10}) \ge 1$$

$$\tau(v_n) - \tau(v_5) \ge 1 \qquad \tau(v_n) - \tau(v_9) \ge 1$$

$$\tau(v_n) - \tau(v_{11}) \ge 1$$

$$\tau(v_1), \tau(v_2), \tau(v_6), \tau(v_8), \tau(v_{10}) \ge \tau(v_0) \ge 1$$

(iv) Resource limitations:

t = 1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$

 $x_{10,1} \le 2$

t = 2:

$$x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{6,1} + x_{6,2} + x_{8,1} + x_{8,2} \le 2$$

$$x_{10,2} + x_{11,2} \le 2$$

t = 3:

$$x_{1,2} + x_{2,2} + x_{6,2} + x_{6,3} + x_{8,2} + x_{8,3} + x_{3,3} + x_{7,3} \le 2$$

 $x_{10,3} + x_{11,3} + x_{9,3} \le 2$

t = 4:

$$x_{6,3} + x_{8,3} + x_{8,4} + x_{3,3} + x_{3,4} + x_{7,3} + x_{7,4} \le 2$$

$$x_{10,4} + x_{11,4} + x_{9,4} \le 2$$

t = 5:

$$x_{8,4} + x_{8,5} + x_{3,4} + x_{7,4} + x_{7,5} \le 2$$

 $x_{10.5} + x_{11.5} + x_{9.5} + x_{4.5} \le 2$

t = 6:

$$x_{8,5} + x_{7,5} \le 2$$

$$x_{10,6} + x_{11,6} + x_{9,6} + x_{4,6} + x_{5,6} \le 2$$

t = 7:

$$(0 \le 2)$$

$$x_{11,7} + x_{9,7} + x_{5,7} \le 2$$

(c) Restating the resource limitations, and introducing additional variables:

t = 1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} - \alpha(r_1) \le 0$$
$$x_{10,1} - \alpha(r_2) \le 0$$

[...]

Latency limitations:

$$L = \tau(v_n) - \tau(v_0) \le \bar{L} = 6$$

New objective function:

min.
$$C = \alpha(r_1) \cdot c(r_1) + \alpha(r_2) \cdot c(r_2) = 2 \cdot \alpha(r_1) + \alpha(r_2)$$

Task 3: Iterative Algorithms

Please answer the following questions considering the given video codec application specified as a marked graph in Figure 5.

Figure 5: Video codec marked graph representation

Table 3: Execution time of each function

(a) Formulate all existing dependencies in Figure 5 from ν_i to ν_j in the form of

$$\tau(\nu_j) - \tau(\nu_i) \ge w(\nu_i) - d_{ij} \cdot P,$$

where P is the minimum iteration interval. The execution time of each function is listed in Table 3.

(b) Assuming unlimited resources and only one token on the edge between ν_5 and ν_1 , determine the minimum iteration interval P and the latency L. To justify your answer, draw the scheduling on the timeline given in Figure 6 with the dependency from ν_5 to ν_1 highlighted.

Figure 6: Scheduling result of the video codec

(c) The motion estimation function (ν_1) uses the result of the previous frame (See the dependency between ν_1 and ν_5). Let us now suppose that any arbitrary number of tokens can be inserted to reduce P using functional pipelining. Then, determine the minimum number of tokens that should be added on the edge $\nu_5 \to \nu_1$ to achieve P=10? To justify your answer, draw the pipelined scheduling on the timeline given in Figure 7 with the dependency from ν_5 to ν_1 highlighted and calculate the latency L of the schedule.

Solution to Task 3:

(a) Dependencies:

$$\tau(\nu_2) - \tau(\nu_1) \ge 10$$

$$\tau(\nu_3) - \tau(\nu_2) \ge 10$$

$$\tau(\nu_4) - \tau(\nu_2) \ge 10$$

Figure 7: Pipelined scheduling result of the video codec

$$\tau(\nu_5) - \tau(\nu_4) \ge 5$$

$$\tau(\nu_1) - \tau(\nu_5) \ge 5 - 1 \cdot P$$

(b) We solve the system of inequalities of 3a) for P.

$$\Rightarrow P_{min} = 30$$

$$L = 30$$

Figure 8: Scheduling result of the video codec

(c) Now the iteration interval P is given (P=10) and we are looking for the number of tokens n. Therefore, we replace the last inequation in 3a) by $\tau(\nu_1) - \tau(\nu_5) \geq 5 - n \cdot 10$ and solve the new set of inequations for n.

$$\Rightarrow n_{min} = 3$$

We have to add at least 2 tokens on the edge between ν_5 and ν_1 .

$$L = 30$$

Figure 9: Pipelined scheduling result of the video codec