Contents

1	Vec	tor Spaces	3
	1.1	Linear Dependence and Linear Independence	3

Linear Algebra Exercises

Lance Remigio

November 24, 2023

Chapter 1

Vector Spaces

1.1 Linear Dependence and Linear Independence

Exercise 1.5.1

Label the following statements as true or false.

(a) If S is a linearly dependent set, then each vector in S is a linear combination of other vector in S.

Proof. True

(b) Any set containing the zero vector is linearly dependent.

Proof. True

(c) The empty set is linearly dependent.

Proof. False. It is linearly independent.

(d) Subsets of linearly dependent sets are linearly dependent. True by Theorem 6.

(e) Subsets of linearly independent sets are linearly independent.

Proof. True by corollary to Theorem 6.

(f) If $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ and x_1, x_2, \ldots, x_n are linearly independent, then all the scalars a_i

Proof. True this is by definition.

Exercise 1.5.4

In F^n , let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that $\{e_1, e_2, \ldots, e_n\}$ is linearly independent.

Proof. Choose a finite amount of scalars $a_1, a_2, \ldots, a_n \in F$ to create the following linear combination:

$$a_1e_1 + a_2e_2 + \dots + a_ne_n = (0, 0, \dots, 0).$$
 (1)

To show that the set $\{e_1, e_2, \ldots, e_n\}$ is linearly independent, we need to show that the scalars $a_1, a_2, \ldots, a_n \in F$ have the trivial representation; that is, $a_1 = a_2 = \cdots = a_n = 0$. Since the jth coordinate of e_j is 1 but 0 in all the other entries, we have that

$$a_1(1,0,\ldots,0) + a_2(0,1,\ldots,0) + \cdots + a_n(0,0,\ldots,1)$$

= $(a_1,0,\ldots,0) + (0,a_2,\ldots,0) + \cdots + (0,0,\ldots,a_n)$
= (a_1,a_2,\ldots,a_n) .

Hence, we have

$$(a_1, a_2, \dots, a_n) = (0, 0, \dots, 0).$$

Equating each entry of the left side of the equation above to 0, we find that $a_i = 0$ for all $1 \le j \le n$. Hence, the set $\{e_1, e_2, \dots, e_n\}$ is linearly independent.

Exercise 1.5.4

Show that the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent in $P_n(F)$.

Proof. Just like the prior exercise, we need to show that we can find scalars $a_0, a_1, \ldots, a_n \in F$ such that

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$

where $a_i = 0$ for all $0 \le i \le n$. Note that the 0 polynomial is just

$$0 + 0x + 0x^2 + \dots + 0x^n = 0.$$

Hence, equating coefficients we immediately get that $a_i = 0$ for all $0 \le i \le n$. Thus, the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent.

Exercise 1.5.6

In $M_{m\times n}(F)$, let E^{ij} denote the matrix whose only nonzero entry is 1 in the *i*th row and *j*th column. Prove that $\{E^{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$ is linearly independent.

Proof. First, we create a linear combination of a finite amount vectors in $E = \{E^{ij} : 1 \le i \le m, 1 \le j \le n\}$ with scalars δ_k for $1 \le k \le N$ with N = mn as the number of total entries in each matrix in $\{E^{ij} : 1 \le i \le m, 1 \le j \le n\}$. Note that after doing our scalar multiplication and summing up each term, we find that each $\delta_k E_{ij} = \delta_k$ in our linear combination can equated with a corresponding i and j entry in the zero matrix such that $\delta_k = 0$ for all $1 \le k \le N$. Hence, E is a linearly independent set.

Exercise 1.5.7

Recall from Example 3 in Section 1.3 that the set of diagonal matrices in $M_{2\times 2}(F)$ is a subspace. Find a linearly independent set that generates this subspace.

Proof. Define W as the linearly independent spanning set of the set of diagonal matrices in $M_{2\times 2}$ where

$$W = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

To see why W is a linearly independent set, choose scalars $\delta_1, \delta_2 \in F$ such that

$$\delta_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \delta_2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Performing scalar multiplication and vector addition gives us the following equation

$$\begin{pmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Since the zero matrix is a diagonal matrix, we know that equation entries where i = j yields $\delta_1 = \delta_2 = 0$. Hence, W is a linearly independent set that generates the set of diagonal matrices of $M_{2\times 2}(F)$.

Exercise 1.5.8

Let $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ be a subset of the vector space F^3 .

(a) Prove that if $F = \mathbb{R}$, then S is linearly independent.

Proof.

(b) Prove that if F has characteristic two, then S is linearly dependent.

Proof.

Exercise 1.5.9

Let u and v be distinct vectors in a vector space V. Show that $\{u, v\}$ is linearly dependent if and only if u or v is a multiple of the other. I have written two proofs for this:

Proof. Let u and v be distinct vectors in a vector space V.

 (\Rightarrow) Since $\{u,v\}$ is a linearly dependent set, we can find scalars $a_1,a_2\in F$ such that

$$a_1 u + a_2 v = 0 \tag{1}$$

Suppose v is not a multiple of u and choose $a_1 \neq 0$ since $\{u, v\}$ is linearly dependent. We need to show that u is a multiple of v. Solving for u, we get that

$$u = -\frac{a_2}{a_1}v.$$

Hence, u is a multiple of v.

(\Leftarrow) Suppose u or v is a scalar multiple of the other. Assume u is the scalar multiple of v. Then for some $c \neq 0 \in F$, we have u = cv. Hence, we have u - cv = 1u - cv = 0. This tells us that $\{u, v\}$ is linearly dependent.

Exercise 1.5.12

Prove Theorem 1.6 and its corollary.

Proof. See proof in notes.

Exercise 1.5.13

Let V be a vector space over a field of characteristic not equal to two.

(a) Let u and v be distinct vectors in V. Prove that $\{u,v\}$ is linearly independent if and only if $\{u+v,u-v\}$ is linearly independent.

Proof. Let u and v be distinct vectors in V.

For the forwards direction, assume $\{u, v\}$ is a linearly independent set. We need to show that $\{u+v, u-v\}$ is linearly independent. Hence, we need to find $a, b \in F$ such that

$$a(u+v) + b(u-v) = 0. (1)$$

5

Note that (1) leads to

$$a(u+v) + b(u-v) = au + av + bu - bv$$
$$= au - bv + av + bu.$$

Since $\{u, v\}$ is a linearly independent set, we have that

$$au - bv = 0$$

and

$$av + bu = 0$$

for a = b = 0. Hence,

$$a(u+v) + b(u-v) = 0$$

for a=b=0 and so $\{u-v,u+v\}$ is a linearly independent set.

For the backwards direction, suppose $\{u+v,u-v\}$ is linearly independent. We need to show that $\{u,v\}$ is linearly independent. Note that $a,b\in F$ such that

$$a(u+v) + b(u-v) = 0$$

that
$$\{u,v\}$$
 is linearly independent. Note that $a,b\in F$ such that
$$a(u+v)+b(u-v)=0$$
 for $a=b=0$ since $\{u-v,u+v\}$ is linearly independent. Note that
$$a(u+v)+b(u-v)=au+av+bu-bv\\ =au-bv+av+bu\\ =0+av+bu\\ =0.$$
 Thus, $av+bv=0$ where a,b both zero. Thus, the set $\{v,v\}$ is linearly

Thus, av + bu = 0 where a, b both zero. Thus, the set $\{u, v\}$ is linearly independent.