Comp From Palent

= US 4098758

PATENT SPECIFICATION

1509283 (11)

(21) Application No. 13663/75 (22) Filed 3 April 1975

(31) Convention Application No. 460 331

(32) Filed 12 April 1974

4(31) Convention Application No. 556 879

(32) Filed 10 March 1975 in

(33) United States of America (US)

(44) Complete Specification published 4 May 1978

(51) INT CL2 C07C 51/52; B01F 17/00//C08K 9/00

(52) Index at acceptance

C2C 1300 200 20Y 215 220 227 22Y 246 247 253 25Y 292 29Y 30Y 321 32Y 360 362 366 367 368 36Y 37X 567 568 569 620 623 628 658 65X 65Y 660 668 67Y 797 79Y BA BP CM CP CQ LR LS LU YK

CIA HIIB HIIC HIID HIIG HIIH HIIL HI2X HI3

C3B 1C12 1C13M 1C21 1C22 1C6A1 1C6X 1L2CX 1L2X

C3K 111 121 124 125 244 GA

C3Q C12X C8B C8C D1A T2A

14C 22C C12 C13M C21 C22 C6A1 C6X L2CX L4B

(54) INORGANIC-ORGANIC COMPOSITES AND METHODS OF REACTING THE SAME WITH ORGANO-TITANIUM COMPOUNDS

(71) We, KENRICH PETROCHEMICALS, INC., a corporation of the State of Delaware, one of the United States of America, East 22nd Street, Bayonne, New Jersey, United States of America, do hereby declare the invention. for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-Inorganic materials have long been used as fillers, pigments, reinforcements

and chemical reactants in polymers. They are essentially hydrophilic, i.e., easily wetted by water or able to adsorb water. However, their compatibility with polymers is limited. Therefore, poor utilization is obtained of the potential reinforcement, of color or opacity, or chemical reactivity of inorganic materials.

For example, zinc oxide is a commonly used component in rubber compounds. When comminuted zinc oxide is added to a rubber compound as a dry powder, it is difficult to disperse it completely in the rubber. On the other hand, predispersion of the zinc oxide in an organic medium which is a plasticizer for the rubber forms a stiff paste which is not dusty, is easy to weigh, and aids in the dispersion in the rubber.

Likewise, other comminuted inorganic solids such as magnesium oxide. calcium oxide, other metal oxides, and fillers such as clay, calcium carbonate, colloidal silica and carbon black may be predispersed in an organic plasticizer or polymer prior to addition to a rubber or plastic compound.

Organo-titanium compounds are well known. A wide variety may be prepared from tetraalkyl ortho titanates by reaction with organic acids, as for example in U.S. Patent 2,621,193.

Organo-titanates having di- or tri- alkyl hydrolyzanle groups and with. therefore, only one or two organic groups which are non-hydrolyzable have been used to treat the surfaces of inorganic materials in order to render them hydrophilic, as for example in U.S. Patent 3,660,134. Such di- or tri- alkyl hydrolyzable titanates form a multi-molecular layer or envelope around the inorganic particles, resulting in less efficient use of the organic-titanate, as well as a weaker bond between the inorganic particle surface and the organic continuous phase.

The reaction is accomplished by adding the organo-titanste to a suspension of the inorganic material in an inert solvent such as naphtha, trichloroethylene, toluene or hexane. After the reaction is completed, the solvent is removed and the treated, dried inorganic material is subsequently incorporated in an organic

5

10

15

20

25

30

35

35

10

15

20

25

	2	
_		
5		

1,509,283

	1,507,283	2	
٠	polymer system. U.S. Patent 3,697,475, for example, incorporates such treated inorganic fillers in thermoplastic polymer films.		
	According to the present invention there is provided a mixture of organo-		
5	titanates represented by the formula $Ti(OR)_{4-n}(OCOR')_n$ wherein the or each OR is a hydrolyzable group as hereinafter defined, the or each OCOR' is a non-	¢	_
	hydrolyzable group as hereinafter defined at least one OCOR' group having from 6	5	5
	to 24 carbon atoms, and n is more than 3 but not greater than 3.5, the mixture		
	including at least some of one or more of the compounds represented by the		
••	formula $\Pi(OR)_{4-m}(QCOR')_m$ where m is an integer of from 1 to 3.		
10	By "hydrolyzable" is meant a group which will cleave in an aqueous solution	10	10
	having a pH of about 7 at a temperature of less than 100°C. Hydrolysis may be		
	determined by analysing for liberated acids and alcohols. By "non-hydrolyzable"		
	is meant a group which will not cleave under the aforesaid conditions.		
15	Preferably the value of n in the above formula is between 3.1 and 3.25.		
	The present invention also provides a composition comprising a comminuted inorganic material and an organo-titanate mixture as defined above or a titanate of	15	15
	the formula Ti(OR)(OCOR'); where OR and OCOR' are as defined above, the		
	surface of the inorganic material having been reacted with the titanate mixture or		
	titanate. The present invention further provides a process for producing a		
20	dispersion of a comminuted inorganic material in a polymeric medium which	20	20
	comprises admixing an inorganic material, a mixture of organo-titanates as defined		20
	above or a titanate of the formula Ti(OR)(OCOR'), where OR and OCOR' are as		
	defined above and a polymeric medium, to form a dispersion of the inorganic		
25	material, the surface of which has been reacted with said organo-titanate, in the		
	polymeric medium. The amount of the organo-titanate mixture required is preferably at least 0.1 part, more preferably 0.5 to 10 parts, per 100 of the inorganic	25	25
	solid. The reaction takes place on the surface of the inorganic solid, whereby the		
	hydrolyzable group is removed and a bond is established, thus forming an organic,		
	hydrophobic surface layer on the inorganic solid. The inorganic solid, prior to		
0	surface modification, is difficult to disperse in an organic medium because of its	30	30
	hydrophilic surface. However, when the organo-titanium compound is		50
	incorporated into an organic medium (low molecular weight liquids or higher		
	molecular weight polymeric solids), preferably a rubber medium, the surface of		
15	the inorganic solid is wet-out, agglomerates are readily broken into individual particles, and a dispersion having improved properties is formed. Alternatively,	25	
	the organo-titanate may be first reacted with the organic solid in the absence of an	35	35
	organic medium and thereafter admixed with the latter.		
	The method of the present invention converts the surfaces of inorganic		•
0	materials from a hydrophilic to a hydrophobic state preferably by reaction in an		
U	organic medium. This preferred procedure eliminates the prior art intermediate	40	40
	steps of dispersing the inorganic material in a solvent, reacting, filtering and drying		
	the inorganic solid before dispersing it in a polymer. By means of the present invention, the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of income is a single of income in the dispersion of		
	By means of the present invention, the dispersion of inorganic materials in organic polymer media is improved in order to obtain: (1) lower viscosity or higher		
5	loading of the dispersate in the organic medium; (2) higher degrees of	AC	,4 E
	reinforcement by the use of fillers, thereby resulting in improved physical	45	45
	properties in the filled polymer; (3) more complete utilization of chemical		
	reactivity, thereby reducing the quantity of inorganic reactive solids required: (4)		
0	more efficient use of pigments and opacifiers; (5) higher inorganic-to-organic		
,	ratios in a dispersion, and (6) shorter mixing times to achieve dispersion.	50	50
	Also, according to the invention herein, the reaction with the single		
	hydrolyzable group of the organo-titanate may be carried out neat or in an organic medium to form a liquid, solid, or paste-like solid dispersion which can be used in		
_	the compounding of the final polymeric system. Such dispersions are very stable,		•
5	i.e., having no tendency to settle, separate, or harden on storage to a non-	55	55
	dispersible state.	33	ف ن
	Moreover, the invention simplifies the making of inorganic dispersions in		
	organic media by providing a means to eliminate the solvent, to reduce the cost of	-	
)	processing equipment, and to reduce the time and energy required to disperse an		
	inorganic solid material in a liquid or polymeric organic solid.	60 ·	60
	The present invention results in the formation of a reinforced polymer which has a lower melt viscosity improved abusing properties, and butter nigmenting		
	has a lower melt viscosity, improved physical properties, and better pigmenting characteristics than are displayed in prior art materials.		
	The practice of the present invention achieves a product comprising natural		
5	or synthetic polymers which contain particulate or fiorous inorganic materials	65	65
	•	03	,,,,

		3
	which reinforce, pigment, or chemically react with the polymer to produce a product having superior physical properties, better processing characteristics, and more efficient utilization of pigments.	
5.	present invention is the dispensing with the use of volatile and flammable solvents as required in the prior art. Thus, it is not necessary to dry the filler or to recover solvents. Furthermore, there is no possibility of some to dry the filler or to recover	5
10	the practice of the present invention results in a non-oxidizing dispersion. The preparation of illustrative organo-titanium compounds is described in U.K. Patent Specification No. 733,224 While many of the compounds of the basic starting material Ti(OR), may be used in preparation and the compounds of the basic	10
15	Referring to the above formula, R, which forms part of the hydrolyzable group, is preferably a straight chain, branched or cyclic alkyl group having from 1 to 5 carbon atoms per molecule. The groups include methyl, ethyl, n- and isopropyl, n-, sec-, and t-butyl, pentyl and cyclopeatyl	15
20	formed from organic acids having I to 50 carbon atoms, and at least one has from 6 to 24 carbon atoms, such as stearic, isostearic, oleic, linoleic, palmitic, lauric and tall oil acids. Isostearic acid is particularly advantageous because it forms a triester that is a liquid at room temperature, which is a second to the compensation of the comp	20
25	lyzable groups. The sum of the carbon atoms in the three R' groups for the component of the mixture Ti(OR)(OCOR'), is preferably at least 15. Furthermore, as indicated above at least one R' group must have a long chain by which is meant a group having from 5 to 23 carbon atoms in order to give the necessary viscosity reduction to the reaction product of the organic titue.	25
30	Materials which can be readily liquefied or dissolved at conventional mixing temperatures are most desirable. Equivalent polytitanates may also be used. Preferably, the R' groups are alkyl groups by the results of t	30
35	having up to 23 carbon atoms. Additionally, the aforesaid groups may be substituted with halo, nitro, amino, carboxyl, epcay, or hydroxyl ether or ester groups. Generally from 1 to 6 of such substitutions may occur. Still further, the R' group may contain intermediate hetero-atoms such as oxygen, sulfur as not the substitutions.	35
40	All of the R' groups in the organo-titanate compound need not be the same. They may be mixtures of two or more groups, the preparation of which shall be readily understood by those skilled in the art. For example, the Ti(OR), starting	40
45	particular application. The optimum groups depend on the filler and the monomeric or polymeric organic material, and the desired properties of the filled material. One skilled in the art may determine suitable organo-titanates for specific applications by limited experimental work in light and the	45
50	branched chain and cyclic alkyl groups such as hexyl, heptyl, octyl, decyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, octadecyl, nonadecyl, eicosyl, docosyl, tetracosyl, cyclohexyl, cycloheptyl and cyclooctyl. Alkenyl groups include hexenyl, octenyl and dodecenyl	50
55	Groups derived from saturated and unsaturated fatty acids are also useful. In these cases the OCOR' group may be caproyl, caprylyl, capryl, lauryl, myristyl, palmityl, stearyl, arachidyl, behenyl, lignoceryl, dodecylenyl, palmitoleyl, oleyl, ricinoleyl, linoleyl, linolenyl, and gadoleyl	55
60	Halo-substituted groups include bromohexyl, chlorooctadecyl, iodotetradecyl and chlorooctahexenyl. One or more halogen atoms may be present, as for example in difluorohexyl or tetrabromooctyl. Ester-substituted aryl and alkyl groups include 4-carboxyethylcapryl and 3-carboxymethyltoluyl. Aminosubstituted groups include aminocaproyl, aminostearyl, aminohexyl, aminolauryl and diaminooctyl.	60
65	In addition to the foregoing aliphatic groups, groups containing hetero-atoms, such as oxygen, sulfur or nitrogen, in the chain may also be used. Examples of these radicals are ethers of the alkoxyalkyl type, including methoxyhexyl and	65

1,509,283

4	1,509,283	4
;	ethoxydecyl. Alkylthioalkyl groups include methylthiododecyl groups. Primary, secondary and tertiary amines may also serve as the terminal portion of the hydrophobic group. These include diisopropylamino, methylaminohexyl, and aminodecyl.	
5	The aryl groups include the phenyl and naphthyl groups and substituted derivatives. Substituted alkyl derivatives include toluyl, xylyl, pseudocumyl, mesityl, isoduremyl, durenyl, pentamethylphenyl, ethylphenyl, n-propylphenyl, cumyl, 1.3,5-triemylphenyl, styryl, allylphenyl, diphenylmethyl, triphenylmethyl,	5
10	tetraphenylmethyl, 1,3.5-triphenylphenyl. Nitro- and halo-substituted may be exemplified by chloronitrophenyl, chlorodinitrophenyl, dinitrotoluol, and trinitroxylyl.	10
15	Amine-substituted components include methylaminotoluyl, trimethylaminophenyl, diethylaminophenyl, aminomethylphenyl, diaminophenyl, ethoxyaminophenyl, chloroaminophenyl, bromoaminophenyl and phenylaminophenyl. Halo-substituted aryi groups include fluoro-, chloro-, bromo-, iodophenyl, chlorotoluyl, bromotoluyl, methoxybromophenyl, dimethylaminobromophenyl, trichlorophenyl, bromochlorophenyl, and bromoiodophenyl.	15
20	Groups derived from aromatic carboxylic acids are also useful. These include methylcarboxylphenyl, dimethylaminocarboxyltoluyl, laurylcarboxyltoluyl, nitrocarboxyltoluyl, and aminocarboxylphenyl. Groups derived from substituted alkyl esters and amides of benzoic acid may also be used. These include aminocarboxylphenyl and methoxycarboxyphenyl.	20
25	Titanates wherein R' is an epoxy group include tall oil epoxides (a mixture of 6 to 22 carbon alkyl groups) containing an average of one epoxy group per molecule and glycidol ethers of lauryl or stearyl alcohol. Substituted naphthyl groups include nitronaphthyl, chloronaphthyl, aminonaphthyl and carboxynaphthyl groups. Specific compounds which have been prepared and found operative in the practice of the instant invention include:	25
30	$(CH_1)_2CHOTi[OCO(CH_2)_{14}CH(CH_3)_2OCOC(CH_3)=CH_2;$	30
	$(CH_3)_2CHOTi[OCO(CH_2)_{14}CH(CH_3)_2][OCOC(CH_3)=CH_2]_2;$	
	(CH3)2 CHOT. [OCO CO2 (CH2)7 CH3]3 ,	
	where n is greater than 8 and less than 15;	
25	[(CH ₃) ₂ CHOTi[OCO(CH ₂) ₁₄ CH(CH ₃) ₂] ₂ OCOC ₃₄ H ₇₈ ;	
35	(CH ₃) ₂ CHOTi[OCO(CH ₂) ₁₆ CH ₃] ₃ ;	35
-	(CH3)2 CHOTI [OCO -NH2]3	
	(CH ₃) ₂ CHOTi[OCO(CH ₂) ₅ NH ₂] ₃ ; and	
	(CH ₃) ₂ CHOTi[OCO(CH ₂) _p CH-CH(CH ₂) _q CH ₃]	
	where the sum of p + q is more than 6 and less than 18.	
49	The inorganic materials may be particulate or fibrous and of any shape or particle size, the surfaces of which are reactive with the hydrolyzable group of the organo-titanium compound by means of hydroxyl groups, or adsorbed water, or both. Examples of inorganic reinforcing materials include metals, metal oxides,	40
45	clay, carbon black, calcium carbonate, barium sulfate, silica, mica, glass and asbestos. Reactive inorganic material examples include the metal oxides of zinc, magnesium, lead, and calcium and aluminum, iron filings and turnings, and sulfur. Examples of inorganic pigments include titanium dioxide, iron oxides including vellow iron oxide, zinc chromate, ultramarine blue. As a practical matter, the	45

	:		
- 4			
		1,509,283	5
5	5	particle size of the inorganic material should not be greater than 1 mm, preferably from 1 micron to 500 micron. It is imperative that the organic titanate be properly admixed with the inorganic material so as to permit the surface of the latter to react sufficiently. The optimum amount of the titanate to be used in dependent on the effect to be achieved, the available surface area of and the bonded water in the inorganic	5
10	10	Reaction is facilitated by admixing under the proper conditions. Optimum results depend on the properties of the titanate, namely, whether it is a liquid or particles, the specific gravity, the chemical composition, among other things, must admixed with the polymeric medium. The appropriate mixing conditions depend on the type of polymer, whether it is thermoplastic and the conditions depend	10
15	15	on the type of polymer, whether it is thermoplastic or thermosetting, its chemical structure, etc., as will be readily understood by those skilled in the art. Where the inorganic material is pretreated with the organic titanate, it may be admixed in any convenient type of interest.	15
20	20	(Trade Mark) mixer or a Waring blender. Even hand mixing may be employed. The optimum time and temperature is determined so as to obtain substantial performed under conditions at which the organic titanate. Mixing may be temperatures below the decomposition to	20
25	25	the materials are later admixed with a polymer, since substantial completion of the reaction may take place in this latter mixing step.	25
30	30	desirably at a temperature where the polymer will have a low melt viscosity. For to 450°F; high density polyethylene is best processed at a temperature range of 350° 500°F; and polypropylene from 450° to 450°F.	30
	35	to existing literature. A variety of mixing equipment may be used, e.g., two-roll mills, Banbury mixers, double concentric screws, counter or corotating twin when the organic titanate and Pfaudler and P uses mixers.	35
	40	thorough mixing and/or reaction is not readily achieved and the reaction may be substantially completed when the treated filler is admixed with the polymer. In this more of the R' groups is reactive with the polymer. To illustrate further the invention, attention is directed to the following examples:	40
5	45	Example A: Preparation of Organo-Titanate Esters. One mole of tetraisopropyl titanate is admitted to a vessel equipped with an agitator, an internal heating and cooling means, a vapor condenser, a distillate trap and liquid-solid feed input means. Agitation is commenced with the tetraisopropyl titanate at room temperature. Liquid isostearic acid is metered into the vessel at a until 3.19 moles of the acid are added. The maintained below about 350°F 171	45
Andreas designation	50	reaction product by distillation at 150°C at 50 mm Hg to remove potentially	50
	55	The organic titanate thus produced has an average of 3.19 moles of isostearate per molecule. This material is hereinafter referred to as the "isostearate 3.19 ester." The ester structure is determined by ascertaining the isopropanol liberated from the reaction and the residual isostearic acid. It is found that about from 3.1 to 3.3 moles of isopropanol are recovered in the typical run. Substantially no unreacted isostearic acid is detected. The physical properties of the ester are:	55
bio debase		Specific Gravity at 74°F 0.944	
feller sander	60	Flash Point (COC), °F 315	
# # A A A A A A A A A A A A A A A A A A		Viscosity, LV, at 74°F, cps. 120	60

10

6

5

10

Pour Point, °F

Below -5

Decomposition Point, °F

Above 400

Gardner Color

15 Max

Appearance

Reddish Oily Liquid

The above run is repeated, except that instead of adding 3.19 moles of the isostearic acid, 1.0, 2.0 and 3.0 moles are added. This results in the formation of mixtures of isopropyl sostearate titanates having an average number of isostearate groups per molecule of 1, 2 and 3 moles, respectively.

Example B.

This example demonstrates the effect of admixing the isostearate 3.19 ester with various fillers dispersed in naphthenic oil. The fillers employed include calcium carbonate, calcined clay, high surface area silica, carbon black, and chemically oxidized carbon black. The effect of varying percentages of the titanate ester on the viscosity of the end product is also shown in the data below:

	ł		**	Action 1.5		ار المار المار المار المار ال	···.				1
	· ∞		_			20	4,100	3 80	3,500	. 25 75 3	7,700
Oil)	7					15 85 1	4,700	15 85 3	3,000	3 80	3,300
laphthenic	9	75 25 0.5	12,600	•	•	0001	520	90	345	88	1,125
ieral Oil (N	\$	70 30 0.5	2,320		•.	5 95 1	114	3 25.	98	3,000	350
Fillers Dispersed in Mineral Oil (Naphthenic Oil)	4	50 0.5	280	335.6	22,000	50 80 1	7,000	20 80 2	3,800	25	16,800
llers Disper	ო	\$000	32,500	50	1,280	15 85	5,750	15 85 2	4,200	808	5,000
运		35	1,600	30 70.	215	981	619	10 90 2	465	85	1,612
	-	85	. 83	30	30,000	. 95 	120	200	92	28 I	462
•		CaCO,, parts by wt. Mineral Oil, ", Titanate Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	Calcined Clay, parts by wt. Mineral Oil, ", Titanale Ester, % on Filler	Brooklield Viscosity at 25°C, cps.	Hi Surface area silica, parts by weight Mineral Oil, ", Titanate Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	Hi Surface area silica, parts by weight Mineral Oil, ", on Filler	Brookfield Viscosity at 25°C, cps.	Commercially Oxidized Carbon Black, pts. by wt. Mineral Oil, ", "Titanate Ester, % on Filler	Brookfield Viscosity at 25°C, cps.

1 C

A regular grade of carbon black was chemically oxidized in situ	to convert
carboxyl groups to hydroxyl groups. The results are shown below:	

Type of Treatment	Brookfield Viscosity at 77°F, cps. of Dispersion	
Carbon Black (untreated) Carbon Black (5% chemically	9,200	;
oxidized) Carbon Black (5% chemically	15,800	
oxidized and treated with 3% titanate ester)	2,700	10
The aforesaid data clearly show that mester make dispersions having substant Marked reductions in viscosity are shown pealcined clay, and carbon black. This redu of mixing these fillers with the organic-t dispersion at lower energy requirements for the shown in the control of	particularly with the calcium carbonate, ced viscosity greatly enhances the ease type materials and results in improved	1
Example This example, using the procedures of organic titanate compounds on the viscos mineral oil dispersions. The compositions to 50 parts of precipitated calcium carbonal citanace esters. The results are shown below the composition of the	f Example B, shows the effect of other ity of calcium carbonate in naphthenic tested contain 50 parts by weight of oil, te and 0.5% (based on CaCO ₃) of the	. 20
Titanate Ester	Brookfield Viscosity at 72°F ± 3%	
None	32,500	2
Monoisopropyl diisostearyl, acryl	188	
Monoisopropyl trimonococo, phth	aloyl 152	•
Monoisopropyl diisostearyl, metha	cryl 175	
Monoisopropyl dimethacryl, isoste	aryl 175	
Monoisopropyl tri-2-aminoacetyl	34,600	. 3
Monoisopropyl tripropionyl	30,000	
the invention. The last two examples fall or hydrolyzable groups are short chain radio CaCO, filled oil is substantially unaffected	als. In such cases, the viscosity of the d. anates on the dispersion and chemical	3
Example 1: Effect of Isostearate Esters of Organic Medium.	on the Dispersion of Zinc Oxide in an	
Formulation	Parts by Weight	. 4
Zinc oxide (-325 mesh, S.A. 5.3	3 m²/gm.) 90	•
Hydrocarbon oil (Naphthenic p	process oil) 7	
	3	

PENETRATION (ASTM TEST No. D1231) at 74°F

 Davs	·	Iso	stearate Es	ters			
after Mixing	mol.	2.0 mols.	3.0 mols.	3.19 mols.*	3.70 mols.		
0	(Could	160	170	165	615		
2	not make disper-	125	140	150			
 4	sion)	89	105	118		· :	
6	**	85	105				
 7	.19 ester"	80	90	112		_	

The greater the degree of penetration, the more fluid is the mix. After aging, the isostearate 3.19 ester gives the most desirable penetration characteristics. It can be seen by the data that, desirably, the most stable fluid mix is obtained with three or slightly more mols of isostearate in the titanate ester.

The dispersion made with the isostearate 3.19 ester was compared with the same zinc oxide in the untreated powder form in a natural rubber compound except that 10% less zinc oxide was used when making the rubber compound with the treated zinc oxide dispersion described in Example 1. The formulation and test

the treated zinc oxide dispersion described in Example 1. The formulation and test results are shown in Example 2, as follows:

Example 2: Effect of Treated Zinc Oxide Dispersion in a Natural Rubber

FORMULATION

Natural Rubber	Zinc Oxide Powder (pts. Dispersion by weight) (Example 1)
Peptizer—REOGENT (Trade Mark)	100 100
Stearic Acid	2
Zinc Oxide Powder	3.5
90% Zinc Oxide Dispersion (isostearate 3.19 ester)	
HAF Black (high abrasive furnace black) (N330)	3.5
Sulfur	45 45
Ultra-Accelerator e.g. thiuram sulfide or a dithiocarbonate (AMAX (Trade Mark) No. 1)	2.5

..lE

PHYSICAL PROPERTIES

Stress PSI at 300% Elongation (S), Tensile Strength PSI (T), % Elongation (E), Hardness, Shore A (H).

Press Cures								
at 290°F	S	Т	Ε	Н	S	T	E	Н
15 min.	1120	2850	500	55	1380	3810	550	57
45 min.	1380	2890	460	59	1640	3780	520	59
60 min.	1460	2900	460	59	1520	3610	500	60

RATE AND STATE OF CURE

10	Rheometer at 290°F, 60 Sec. Preheat,	

60 Min. Motor, 100 Range, 3° Arc

	Zinc Oxide Powder (pts. by weight)	90% Zinc Oxide Dispersion (Example 1)	
Max. Torque	56.2 in /lbs.	77 in /lbs.	15
Min. Torque	15 "	22.5 ,,	
T90 (% degree of cure)	19.5 minutes	17.5 minutes	
T95 "	24 "	22 ,,	•
T2 ,,	2.2 ,,	2.7 ,,	

•	PROCESS TIME	

Mooney Scorch at 250°F.

			•
Time Scorch Begins	Minutes 5	M	inutes 5
Time to 5 Point Rise	3		3
Total Time	8		8
Rise Last Minute	. 3		3.5
Plasticity	16		35

The table in Example 2 shows the great improvement in physical properties of a natural rubber compound achieved by the use of the isostearate 3.19 ester treatment of the zinc oxide surface even when 10% less zinc oxide is used. Tensile strength is increased by 30%, elongation by 10%, stress at 300% elongation by 10%. It is significant that hardness is not affected. The Mooney plasticity is more than doubled at 250°F, while the rheometer data at 290°F shows that the treated zinc oxide provides a tighter cure.

The following Example 3 shows the improvement in properties obtained when using the zinc oxide dispersion made with the isostearate 3.19 ester of Example 1 in an oil-black extended SBR (styrene-butadiene rubber) compound:

35

	; ; ;									
10_	11				1.5	09,283				
		Example 3 Rubbe	: Effect o	f Treate			Dispersi	on in a	Styrene-	Butadiene
•					FORM	ULAT	HON			
5	5	Compound SBR, Oil-B Extended	lack				Zir Pov	nc Oxide vder (pts. weight)	Dis	Zinc Oxide persion ample !)
		PP 1849 (Ph	illips Petro	oleum SB	R)		2	45	24	
		Zinc Oxide		٠				3		
	10	90% Zinc O 3.19 ester	xide Dispe)	rsion (isc	stearate					3
		Anti-Oxidar	it (Flexzon	ie 3C)				1		1
10		Accelerator						1.3		1.3
		Sulfur			-			2.1		2.1
		Accelerator-	-ТМТМ				•	0.55		0.55
•	15	Ultra-Accele	rator (Vul	tac #5)				1.2		1.2
15		Resin Modif	ier Nebony	y 100				0	10	
		Stearic Acid.						1]	
		A						· 		
	20	Stress PSI at Hardness, Sh	300% Eld	ongation	SICAL (S), Ten			SI (T), %	Elonga	tion (E),
20				Zinc Powd	Oxide er (pts. eight)			90% Zin Dispe (Exam	c Oxide	
	25	Press Cures at 307°F	S	Т	Е	Н	S	T	E	Н
		30 min.	1175	2775	600	59	1325	2929	580	59
		Press Cures at 280°F								
25		40 min.	1240	2800	580	60	1350	2700	530	61
										
	. 30		i	RATE A	ND STA	ATE O	F CURE			
		•	Rheome	eter at 2	80°F, 60	Sec. I	Preheat,			
10		•	60 Min.	. Motor,	50 Rang	ge, 1° /	Arc			•
			Max. To	orque	25.75 in.	Лbs.	25.75 in	.∕lbs.		
5			Min. To	rque	5.75	,,	5.65	,,		
- T	35		TS—2		9.5 mi	nutes	8.25 m	inutes		
ة ا										

TC--90

22.5

21.75

. . . .

1	_

7	.509	.283
1	-207	.20.3

RATE AND STATE OF CURE Continued	· .
Rheometer at 340°F, 60 Sec. Preheat,	• • • • • • • • • • • • • • • • • • • •
12 Min. Motor, 50 Range, 1° Arc	
Max. Torque 21.1 in./lbs. 22.8 in./lbs.	

Fini. Torque	J.4 ,,	. 3.1	The second secon	
TS2	2.15 minutes	1.9 minut	es	
TS-90	3.9 ,,	3.7		· , ·.

PROCESS TIME

Mooney Data at 212°F		in the state of the first	es e a j	
Initial	50.5	51.5 _{1.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.}	•	10
1.5 minutes	40.5	41.5	And the second	
4.0 minutes	36.5	37.5	** .	

The data in Example 3 show an equal or improved condition of physical properties with the use of 10% less of zinc oxide. In actual processing, it has been observed that the isostearate 3.19 ester treated zinc oxide dispersion of Example 1 is incorporated into the rubber compound in about one-fourth to one-fifth of the time otherwise required for untreated zinc oxide powder. Additionally, the treated zinc oxide powder was non-dusty.

The above data also show that the compound which contains the treated zinc oxide dispersion has a higher degree of reactivity as well as a tighter final cure, as evidenced by the increase in torque, as compared to the untreated zinc oxide.

The following Examples 4, 5 and 6 illustrate the effectiveness of isostearate

The following Examples 4, 5 and 6 illustrate the effectiveness of isostearate 3.19 ester in reducing the viscosity of dispersions of various inorganic solids in a hydrocarbon oil.

The dispersion of zinc oxide in a hydrocarbon oil results in a greatly reduced viscosity when it is reacted with isostearate 3.19 ester, as can be seen in the following Example 4:

Example 4.

		Parts by	y Weight	÷	25
30	Zinc Oxide	50	50	30	
	Naphthenic Process Oil	50	47.5		
	Isostearate 3.19 ester	. 0	2.5		
	Brookfield Viscosity at 74°F cps (centipoises)	460,000	80,000		
					30

The reduction in viscosity of the zinc oxide dispersion in a hydrocarbon oil by the in situ reaction with the isostearate 3.19 ester was 83%.

The viscosity of a dispersion of titanium oxide is similarly reduced by the isostearate 3.19 ester, as shown in the following Example 5:

i		1,509,283		
ļ		Example 5.	•	
į	٠.		Parts	by Weight
-		Titanium Dioxide	5	0 50
-	5	Naphthenic Process Oil	. 5	0 47.5
Ì	J	Isostearate 3.19 Ester	(0 2.5
		Brookfield Viscosity at 74°F cps.	110,000	900
A de de de des de la companya de la	10	The reduction in viscosity of the titanium diox oil by the <i>in situ</i> reaction with the isostearate 3.1 The viscosity of a dispersion of carbon black i reduced by the same ester, as shown in the follow. Example 6.	a ester was	99%.
			Parts	oy Weight
		Carbon Black FEF N550	30	
		Naphthenic Process Oil	. 70	20
1	15	Isostearate 3.19 Ester	. 0	3
i i		Brookfield Viscosity at 79°F, cps.	104,000	46,000
aran erigila (spranska), garan erigila (spranska), garan erigila (spranska), garan erigila (spranska), garan e	20	The reduction in viscosity of the carbon black of the in situ reaction with the isostearate 3.19 est. The viscosity of a dispersion of calcium carbon reduced when the isostearate 3.19 ester is added Example 7:	.ci was 30%.	a hydrocarbon oil
		Example 7.	-	
	-		Parts by	Weight
	25	Calcium carbonate (low oil absorption type)	50	50
		Liquid epoxy resin (epoxide equivalent -185)	50	45
		Isostearate 3.19 Ester	0	5.
1		Brookfield Viscosity at 74°F, cps.	550,000	110,000

	1,509,283					14	_15
	Example 8.						
		Parts	by W	eight 'eigh			
-	Colloidal silica (Neosil A)	50		50	**		
	Liquid polysulfide rubber (Thiokol (Trade Mark) TP-90B)	50)	45	•	5	
	Isostearate 3.19 ester	0)	5			5
	Brookfield Viscosity at 74°F, cps.	8,000)	2,250			
	The penetration of a paste dispersion of c (Thiokol) polysulfide rubber was increased when added. Alternatively, when the amount of calcium c increased 50%, the penetration remained the samincreased amount of the isostearate 3.19 ester. T following Example 9:	the isostea carbonate in ie. through	rate in the inthe a	3.19 est dispersi addition	er was on was of an	10	10
	Example 9.		• .		-		
	·	Parts	by We	ight		15	-
-	Calcium carbonate (Purecal SC)	200	200	300		-	
	Polysulfide liquid rubber (Thiokol LP-32)	100	100	. 100		•	
	Isostearate 3.19 ester	0	4	15			15
	Penetration (ASTM Test No. D—1321)	45	82	46			
	The dispersions of Examples 4 through 9 were isostearate 3.19 ester by preblending the pigment medium using a Pony mixer. This preblend was the make the final dispersion. Viscosity or penetration	or filler wit n ground o	h the n a th	organi ree-rol	e liquid mill to	20	20
	ontrol comparison. The effect of the titanate ester was then evaluate which the titanate ester was added to the organic lice made as described before. Viscosity measurements	iuid mediui nts made o	mand on the	the dis e new demon	persion batches strating	25	
	disclosed very considerable and significant reduction	HOH HI VISC					
	that the isostearate esters of the invention are effect materials and in different liquid organic media indicates that inorganic materials treated by the pro- be used in higher loadings. (2) become more com- medium, and in the end product, and (3) crea-	ctive with a i. This recocesses discoletely disp te viscosity	varie luctio closed ersed leve	ty of in n in v herein in the Is which	organic iscosity can(l) organic ch lend	30	25
	that the isostearate esters of the invention are effect materials and in different liquid organic media indicates that inorganic materials treated by the pro- be used in higher loadings. (2) become more com- medium and in the end product, and (3) creat themselves to improved manufacturing processes as mixing or for pumping of such dispersions. These examples demonstrate that the inorgan pretreated and the surface modification can be ac-	tive with a L. This reconcesses disconletely disple viscosity arch as redu- tic material	varie luctio closed ersed leve ced er ls do	ty of in n in v herein the ls which here here here here here here here he	organic iscosity can (1) organic ch lend vels for to be cause of	30 35	30
	that the isostearate esters of the invention are effect materials and in different liquid organic media indicates that inorganic materials treated by the pro- be used in higher loadings. (2) become more com- medium and in the end product, and (3) creat themselves to improved manufacturing processes standard or for pumping of such dispersions.	tive with a t. This reconcesses disconcesses discontinuity and as reduction material complished ective in reconcessory of organ ness of isoncessory in a dispenses and to obtain to	varie luctio closed ersed leve ced er ls do in sit ducing anic n steara ersion add t he ma	ty of in visit herein in the ls which heregy le mot have yiscostilled at 3.19 of mag he mag aximum	organic iscosity can (1) organic ch lend vels for to be to use of sity of a ester in the sium degree		

				Example 10				
		· · · · ·		of the the second themselves		Parts by V	Veight	
		Magnesium	o Oxide			55	55	
5		Naphthenic	Process Oil			45	42	
	5	Isostearate	3.19 ester		•	0	. 3	5
				•				3
			Increment Addition No.	Weight	Time i	n Minutes		
10	i e		1	16.67	0	0		
10			2	8.33	0.5	0.5		
	10		3	8.33	1.0	1.0		10
	-		4	8.33	2.0	2.0		
15			5	5.00	4.0	2.5		
			6	4.17	4.5	3.0		
•			7	4.17	5.0	3.5		
	15		٠	55.00				15
		Tir	ne to Complete D	ispersion	6.5	4.5		
20	ter mades organis de	Per 1	netration (ASTM No. D—1321)	Test	160	230		·
	20	The resultan	t dispersion was t	herefore mad	de 30% so	ofter while	requiring 31%	
25		less mixing time.	•				1	20
		The effect o	I reacting the iso	Example 11. stearate 3.19	ester wi	th calcium	carbonate (a	
	25	0.918) is shown in	the table below	<i>i siiu</i> in iow (This table co	iensity po	dyethylene	(LDPE, sp.g.	
30	25	melt index of 7, v	raion of calcilling	.aroonate in	IOW Gener	tu noivathi	lam - Land	25
		In these expe	riments, 2.85% of	the isosteara	12 3 10 pct	er (based a	m +la = = 1 = 1	
25	30	mixer. The mixing	was carried out a	ing the mixi	ng ma B	rabender h	nigh intensity	20
35		measuring the tor	que applied to the	ram, while th	ie melt vi Tam mete	scosity was	observed by	30
		when two other dis	iments were mad	e when the is	sostearate	ester was	I	
40	35	mono-oleate, wer CaCO ₃). The resu	c uscu at the sa	ME CONCENTE	ation no		% (based on	35
	•	•			tau	· • · •		

16		1,509	9,283					16
		Torque	e Reading	s (gms	meter²)			
	Additives	Time (seconds) 60	90	120	150	190	
	Isostearate 3.19 Ester	1250	900	900	900	750	750	
5	No Additive	2000	2000	1900	1750	1750	1750	. 5
	Aluminum Tristearate	1900	1400	1300	1250	1250	1250	
	Polyglycerol 400 Mono-Oleate	2150	1400	1150	1000	1000	1000	
10 15 20	When no additive was emp 2,000 gmsq. meter, and after When the isostearate 3.19 esq. meter in 30 seconds, and was melt viscosity in a very short ti When the aluminum tristea gmsq. meter after 30 seconds, it than the titanage ester. The potorque of 2,150 gmsq. meter after 190 seconds of mixing. The effectiveness of the isodemonstrated by an additional to with additional LDPE polymer blown-film extrusion. The resultinumber of remaining agglomera additive was employed, there was the square additive was employed, there was employed.	190 seco ster was a 750 at 19 ime. arate was and to 1, ilyglycerc fiter 30 s estearate est in whi in the rai ing film wated particere 312 a	nds was 1 used, the to 20 seconds of 400 moleconds of 3.19 ester ich the 70 vas then excles per so agglomera	750. orque his, showir e torque 190 seco ono-olea f mixing as a dis % CaCC 9, and quare fo	ad dropping the grade had dronds, appite addition, and a spersion of the many visually of the square for the sq	opped to 12 corporate to reciably ive productorque of agent was de into 1 to meas:	50 gm ction in o 1,900 higher uced a f 1,000 ras also mixed film by ure the	10 15 20
25	titanate ester was employed, the foot.	number	of agglom	erates d	ropped t	o 16 per	square	25
30	This example is similar in Titanium dioxide (rutile) was us LDPE as used in Example 11. 2.67% dispersion additive (based The following table shows t Brabender mixer after 30 second had dropped to 1,100. When the	ted as the The disp don the hat with dispense 2,2 isosteara	ure to the inorganiersion was TiO ₂), and dispersion gmso tte 3.19 es	ic disper is made d 23 pa sion add q. meter ter was:	rsed pha at 75 pa rts of L litive the	se in the arts TiO, DPE, torque	e same using on the	30

30 seconds was reduced to 1,250 gm.-sq. meter, and after 180 seconds was 750.

30

2.

35

4(

		•							
16		7	1,	509,283				•	
				ue Readi	ngs (gins	-Dicter2)			17
	- Carrier of the carr	Additive		(seconds		120	 -		
5	5	Control No Additive	2250	e e sudere conductor	. 67 464 40		1:50	180	
		Isostearate 3.19 ester	1250			1250	1150	1100	5
	i	Polyglycerol 400 Mono-Oleate		, , ,	,,,,	900	750	750	
		Aluminum Tristearate	1000		1250	1000	1000	1000	
0	10	When the TiO ₂ dispersion made, the number of agglomer with the isostearate ester the foot. There was also a very not lt can also be seen from polyglycerol 400 mono-oleate superior to the titanate ester a	was reductates per agglomer officeable the table	sed in cos square fo ate coun increase that in	t was rec	duced to	150 pe	r square	10
	20	This example is similar in dispersed phase was yellow iron additive (based on the iron oxishows the results.	Examprocedur oxide an ide), and	ole 13. e to Exa	mples 11 swere u of LDP	and 12. sed with a E. The f	.		20
		Additive	Time (se		90		·		
	25	Control No Additive	2500	1750	1000	120	150	180	
		Isostearate 3.19 ester	2500	1400	850	1000	1000	1000	25
		Aluminum Tristearate	2000	1250	850	750	750	750	
i e		Polygiycerol 400 Mono-Oleate	2000	1100	1000	800	800	800	
delin kerija kelanga perta kelangangan pak kelangan beranan berangan berangan berangan berangan berangan beran	35	When no dispersion additive 2,500 gmsq. meter after 30 sec isostearate 3.19 ester was added, t meter, but after 180 seconds the When the yellow oxide dispersion additive was employed agglomerate court depend agglomerate court depend to the second secon	was emploonds, and torque has torque has torque has lomerate. When the	loyed, the d 1,000 after 30 ad dropp reduced count wa e isostea	e torque after 180 seconds bed to 75 to a con as 685 per rate 3.19	was also : 50. centratic square f	s. When 2,500 gn on of 5% oot whe	n the nsq.	30
وانستريه واستحاده	40	stearate or polyglycerol 400 mono	hat the tip o-oleate i	anate es n reducir	ter was s	uperior t elt visco	o alumi sity.	num	35
eickleise folgen bet, der den der der der der der der der der	45	tensile and melt index properties (HDPE) with mineral fillers at a least a least a least a least a concentration of 5° Cumberland grinder amole	ester was of inject oading ra d to mas . The re	s used to ion-grade inge of 3 terbatch sultant c	0—60%. the organ	nic titana	olyethyl ite with	the	40
Service Control of the Control of th		Henschel-type mixer with the fille ratio. The dry blend was mixed with using the Banbury in 3 minutes c	r to give	the desir	red filler	-in-crear	rended i	in a	45

temperature of 200° F. The finished compounds were ground and injection-molded into plaques having dimensions of 0.105 × 0.500 × 2.375 inches for testing. The molding took place at 400° F; at an injection pressure of 1,000 psi; ram forward, 10 seconds; and mold close time of 15 seconds.

S The re-	sults obtained	The results obtained are shown in the following table:	the follow	ing table:		Ś		
Formulation	Filler	Titanate Ester percent, based on filler	EVA, percent	Melt index, 8./10 min.	Tensile Strength, p.s.i.	Tensile Modulus 10 ³ p.s.i.	Impact Strength ft,-lb./in. of notch	
Control (HDPE only)	0	0		19.7	2,050	0.86	0.93	
BaSO,	30 30 50 60 60	Ömmmm		20.8 22.0 22.3 22.3 22.0	2,430 2,460 2,220 2,060 1,770	81.7 49.0 59.4 63.3 70.0	0.58 0.60 0.64 0.76 0.91	
Aluminum Silicate	30 30 50 60 60	Ommmm		14.0 12.9 8.4 1.5	2,510 3,020 2,790 2,490 2,350	99.8 133.2 140.1 145.3 150.9	0.40 0.60 0.53 0.45	
Calcium Metasilicate, CaSiO,	30 30 50 60 80	Ommmm		16.5 16.5 16.5 14.9	2,330 2,230 2,020 1,800 1,610	72.2 87.2 106.0 121.3	0.56 0.77 0.81 0.88 0.93	
CaCO,	30 30 80 60 60	Ommmm		16.3 18.8 18.4 17.7	1,960 2,330 1,730 1,770 1,800	217.9 180.6 163.4 150.9 130.8	0.53 0.57 0.97 0.97	
Ethylene-Vinyl Acetate Polymer with Calcined Clay Filler	0440 0440	๓๓๓๓	5.8 10.8 15.8 20.8	2.7 2.9 5.7 7.5	2,900 2,710 2,470 2,180	112.1 109.3 106.0 102.2	0.82 1.52 2.39 4.54	
•								

19		1,	509,283				10
. •	system with the org	the titanate ester	better imp	uct strengt	the 30% f	iller/HDPE equivalent	19
10	impact strength wa Additionally, the st HDPE is significant decreases with inc significantly, the tenshigh as 60%.	s equal to or b iffness or tensile tly reduced by 3 reased loading. sile strength is ma	etter than modulus of % of the of Even tho intained re-	the high soft the calcorganic tital to the calcorganic tital to the literature of th	barium s density po ium carbo inate. Surp modulus i istant with	ulfate, the lyethylene. nate filled orisingly, it is reduced loadings as	5
	HDPE remains re characteristics simila	It index of the beasonably constant to the 100% H	INT AT M	Do din	cium carbo g, they l	nate-filled nave flow	
20	In this example polyethylene is described carbonate is tested elongation and tear scarbonate after having 3.19 ester of the invital following table:	the application the thick the second the sec	d polyetny	iene admixi	ed with 40	% calcium	15 20
	Properties	Unfilled Polyethylene	4(0% Calcium	ı Carbonatı		
25	Percent Isostearate 3.19 Ester		0%	!%	2%	3%	. 25
-	V.R., 50°C, ohm-cm × 10 ¹⁴	60+	60+	60÷	60+	60+	
30	Tensile Strength, psi	1638	1464	1245	1222	1124	30
	300% Modulus, psi	1204	· • •		· <u> </u>	964	
,	Elongation	530	40	80	150	420	
35	Tear Strength, Die C: Pounds per inch	500	228	262	276	284	3 5
	Relative energy to tear	1100	100	230	280	450	
40	It will be noted t elongation and the tea However, it should be the unfilled polyethyle	noted that these r					40
45	This example show calcium carbonate on experiments, the heat-a polypropylene, polyproand polypropylene fille	ged and unaged in	e isostearat ngth of fil npact streng	gths are con	opylene. I npared for	n these unfilled	45
50	and polypropylene fille been previously dry-ble on CaCO ₃) as shown in of the long term aging e with a high intensity Her least 30 sec. at 3600 rp	nded with the am the table below. If ffects at ambient to aschel type mixer	ounts of the	alcium carl e isostearate et 150°C is a	onate whi 3.19 ester in accelera	ch had (based ted test	50

100.0

2,180

20.8

₹

The following table shows the impact strength of the unaged and heat-aged samples:

5			In	nnotched Izod npact Strength t. lb./in. width	
	Composition		Unaged	Heat Aged at 150°C for 48 hours.	
	Unfilled Polypropylene		8.3	Not tested	
)	Polypropylene containing 40% calcium carbonate		6.3	0.57	1
	Polypropylenecontaining 40% calcium carbonate dry-blended with 0.5% isostearate 3.19 ester		5.9	6.0	
i	Polypropylene containing 40% calcium carbonate dry-blended with 0.75% isostearate 3.19 ester		7.0	6.2	
	Polypropylene containing 40% calcium carbonate dry-blended with 1% isostearate 3.19 ester		3.5	7.2	
	Polypropylene containing 40% calcium carbonate and 3% isostearate 3.19 ester		12.2	Not tested	2
	The above data clearly shows that the invention substantially maintar polypropylene in spite of the heat aging the filled polypropylene loses its impa	ins the i , whereas v	mpact straithout the	ength of the filled isostearate 3.19 ester.	2:
	degree. The data also show that the igreatly improved by the use of 3% of	imnaci sir	enath of to	lied solves and	
	greatly improved by the use of 3% of Exam In this example, the effect of the is filled polypropylene is evaluated. Two effect of the mixing procedures on the the first method, the calcium carbonal	the isoster rple 17. ostearate of methods physical p	3.19 ester of are employeroperties of are employeroperties of a constant of the constant of th	n calcium carbonate- yed to ascertain the fithe end product. In	į
	greatly improved by the use of 3% of Exam In this example, the effect of the is filled polypropylene is evaluated. Two	the isoster nple 17. ostearate of methods physical ple and the 00 rpm for the admit the admit the admit the admit the admit npection real mires.	3.19 ester of are emplor organic titr one minustrure increases are formolding at a second control of the contro	n calcium carbonate- yed to ascertain the f the end product. In anate compound are te. The mixing takes eases in temperature med by dry-blending 450°F. In the second	: 30 35

٠,	2	n	

45

21

1,509,283

2·1 Flexural Falling Notched Unnotched Tensile Modulus, Dart Impact, Izod Izoa Strength, psi 10³, psi ft.-lbs./in. ft.-lbs./in. ft.-lbs./in. Method 1 5 5 No filler 5,000 240 1.0 0.7 Not tested 40% CaCO₃ No titanate ester 6,460 950 0.6 0.4 2.6 40% CaCO₃ 0.3% titanate ester* 10 5.715 635 1.0 0.6 3.3 10 40% CaCO₃ 0.6% titanate ester* 10 5,125 590 1.4 1.1 6.0 Method 2 40% CaCO, 0.6% titanate ester* 15 15 Extruded (high shear 15 mixing) 4,740 460 2.5 2.0 7.4 * based on CaCo, 20 The above table clearly shows that the polypropylene containing the treated calcium carbonate has substantially improved properties, as compared to the untreated filled material. Where 0.6% of the organic titanate is used, the impact 20 strength is markedly improved. Similarly, the use of the double concentric screw 20 used in Method 2 results in a further improvement of properties. It is hypothesized that this additional high shear mixing provides a more thorough reaction between the organic titanate and the inorganic material. 25 Example 18. The application of the invention to polystyrene is shown in this example. The 25 table below shows a comparison of the specific gravity and melt index of polystyrene, polystyrene admixed 50/50 with calcium carbonate, and polystyrene admixed 50/50 with calcium carbonate which has been pretreated with 0.5 part of 30 the isostearate 3.19 ester. The titanate ester and the calcium carbonate were dryblended in a high shear dry blender initially at ambient conditions. The filler was 30 admixed with the polystyrene in a two-roll mixer at a temperature of 307°F until mixing was complete. The sheets were comminuted and the specific gravity and melt index determined: 35 Melt Index at 190°C, 35 Method E (ASTM) Material Specific By Weight Formulation By Relative Gravity in gms. Vol. in mls. Unfilled Polystyrene 1.04 0.90 0.86 40 Polystyrene 50% CaCO, 1.50 0:36 40 0.24Polystyrene 50% pretreated CaCO, .5% isostearate 3.19 ester 1.49 1.17 0.79

> The aforesaid table shows that the treated filled polystmene is more readily moldable. The untreated filled polystyrene has a melt index which indicates that it cannot be as readily molded on conventional equipment.

.5

		1,509,283				22
	This example shows the using the improvement of properties of A composition containing of clay, and 0.2 weight percent by blending the day, the titanat 600°F for one minute. After molded and the physical propisobutyl tri(6-ammocaproyl) tit	50% clay-filled hyl 50 weight percent of a titanate ester, ee ester and the nyl the blending is c perties determined	on 66. of nylon 66. hereinafter on 66 in a to omplete, s. The titan	, 49.8 weig r defined, i win-screw	tht percent s prepared extruder at	5 ·
	{(C₂H₅)(CH	,)CHO]₄,Ti[OCO	(CH ₂),NH ₂]	l _a .		10
	where n is 2.8, 3.4 and 3.7. The following table shows	the properties of	these 50%	clay-filled	nylons:	
	Property	No Titanate	n=2.8	n=3.4	n=3.7	
	Flexural Strength * 106 psi	13.6	14.6	17.1	14.2	
	Flexural Modulus x 10 ^s psi	10.4	10.8	10.7	10.8	15
•	Tensile Strength × 10° psi	7.9	8.0	9.4	7.8	
	Tensile Modulus x 10° psi	13.6	13.4	13.5	13.2	
			n ibe date	a aiso shou	v that the	
	strength of the 50% clay-filled isobutyl tri(6-aminocaproyl) tit caproyl group is effective in in WHAT WE CLAIM IS: 1. A mixture of orga Ti(OR)4-n(OCOR')8 wherein the defined, the or each OCOR' is a one OCOR' group having from greater 3.5, the mixture including represented by the formula Ti(O3.	no-titanates rependence or each OR is a non-hydrolyzable to 24 carbon atoms at least some of	oresented the horizontal properties of the ho	by the ble group crein define more than	formula as herein ed, at least a out not	20
	WHAT WE CLAIM IS: 1. A mixture of orga Ti(OR) _{4-n} (OCOR') _n wherein the defined, the or each OCOR' is a one OCOR' group having from a greater 3.5, the mixture including represented by the formula Ti(O 3. 2. A mixture according to 3. A mixture according to having from 1 to 5 carbon ator 4. A mixture according to OCOR' group is a stearic or is	no-titanates rependence or each OR is a non-hydrolyzable to 24 carbon atomig at least some of OR) _{4-m} (OCOR') _m which is a least or claim to relaim the claim of the preceditions of the preceditions.	oresented hydrolyzagroup as he or more or more or more is between 2 wherein ng claims was and not claim wa	by the ble group rein define more than re of the continue of t	formula as herein d, at least sout not empounds from I to 3.25. kyl group least one	
	what we claim in what we caproyl group is effective in in what we claim is: 1. A mixture of orga Ti(OR), wherein the defined, the or each OCOR' is a one OCOR' group having from a greater 3.5, the mixture including represented by the formula Ti(O3. 2. A mixture according to a mixture according to having from 1 to 5 carbon ator 4. A mixture according to OCOR' group is a stearic or is 5. A mixture according to isopropyl group. 6. A composition comprising as claimed in any of the property o	no-titanates repersion of the strength of the preceding of the preceding of the preceding claims of the strength of the streng	oresented to hydrolyza group as he ms, and n is one or more here m is an a lis between 2 wherein mg claims we ding claim organic man a titana fined in claim.	by the ble group rein define more than re of the continue of the continue and the same attential and the of the simple the simple the same	formula as herein ed, at least of mounds from I to 3.25. kyl group least one R is an a mixture formula curface of	25
	what we claim in what we caproyl group is effective in in what we claim is: 1. A mixture of orga Ti(OR), an ore ocord, wherein the defined, the or each OCOR' is a one OCOR' group having from greater 3.5, the mixture including represented by the formula Ti(O3. 2. A mixture according to 3. A mixture according to 4. A mixture according to 6. A mixture according to 6. A mixture according to 6. A composition comprising as claimed in any of the profice of the inorganic material having be 7. A composition according metal, a metal oxide, carbon bi 8. A composition according metal, a metal oxide, carbon bi 8. A composition according to 6.	no-titanates rependence or each OR is a non-hydrolyzable to 24 carbon atong at least some of OR).—m(OCOR') which we claim I wherein not claim I or claim ostearic group. Or any of the preceding claims of OCOR' are as decen reacted with the group to claim 6 where ack, sulfur. calciution claim 7 wherein to claim 7 wherein	oresented hydrolyzagroup as he mere m is an is between 2 wherein organic margined in claim of a titanate in the inoun carbonal of the mere!	by the ble group rein define more than re of the con integer of n 3.1 and a wherein at the control of the simulation of	formula as herein ed, at least of the street of the street of titanate. Serial is a relay.	25
	WHAT WE CLAIM IS:— 1. A mixture of orga Ti(OR),4-n(OCOR'), wherein the defined, the or each OCOR' is a one OCOR' group having from a greater 3.5, the mixture includir represented by the formula Ti(O 3. 2. A mixture according to 3. A mixture according to having from 1 to 5 carbon ator 4. A mixture according to OCOR' group is a stearic or ise 5. A mixture according to isopropyl group. 6. A composition comprisin as claimed in any of the pr Ti(OR)(OCOR'), where OR and the inorganic material having be 7. A composition according metal, a metal oxide, carbon bi 8. A composition according magnesium oxide, titanium oxide 9. A composition according material and the titanate mixture medium to form a hydrophobic of to render the latter highly dispet 10. A composition according	no-titanates repersisted and the strength of t	oresented a hydrolyza group as he ms, and n is one or more here m is an is between 2 wherein ng claims we ding claims or a titana fined in claim carbonal in the metal e, calcium of 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen is well as the medium is 6 to 8 wheen is well as the medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheen reacted face on the mic medium is 6 to 8 wheel mic	by the ble group rein define more than re of the continue of the continue of the continue of the same attended to	formula as herein ed, at least of mula as herein ed, at least of mpounds from I to mpounds from I to more as a mixture formula formula formula formula formula is a relay. In coxide, and oxide, morganic material	25 30 35
	what we claim in what we caproyl group is effective in in what we claim is: 1. A mixture of orga Ti(OR), and or each OCOR' is a one OCOR' group having from greater 3.5, the mixture including represented by the formula Ti(O3. 2. A mixture according to 3. A mixture according to having from 1 to 5 carbon ator 4. A mixture according to OCOR' group is a stearic or is 5. A mixture according to isopropyl group. 6. A composition comprising as claimed in any of the properties of the inorganic material having be 7. A composition according metal, a metal oxide, carbon bit 8. A composition according magnesium oxide, itanium oxide 9. A composition according magnesium oxide, itanium oxide material and the titanate mixture medium to form a hydrophobic of the organic material and the titanate mixture medium to form a hydrophobic of the organic material and the titanate mixture medium to form a hydrophobic organic material and the titanate mixture medium to form a hydrophobic organic material and the titanate mixture medium to form a hydrophobic organic material and the titanate mixture medium to form a hydrophobic organic material and the titanate mixture medium to form a hydrophobic organic material and the titanate mixture medium to form a hydrophobic organic mixture medi	no-titanates repersion of the strength of the	oresented hydrolyzagroup as he ms, and n is one or more here m is an is between 2 wherein ng claims we ding claims or a titanate ein the inoun carbonalm the metalles, calcium of 6 to 8 wherein reacted on the nic medium of 6 to 8 wherein the more mic medium of 6 to 8 wherein the metalles, calcium of 6 to 8 wherein the medium of 6 to 8 wherein the medium of 6 to 8 wherein the medium of 6 to 8 wherein the polytonic medium of 6 to 8 wherein the first medium of 6 to 8 wherein the 6 to 8 wherein th	by the ble group rein define more than re of the con integer of m. 3.1 and f. R is an all wherein at the continuation of the simulation of the simulation oxide is zivoxide or least erin the in a rubbe in in a rubbe in in a rubbe in in a rubbe in continuation.	formula as herein ed, at least of the standard of titanate. Serial is a relay. In coxide, and oxide, and oxide, and oxide. In organic material is a relay.	25 30 35

15

20

:5

)

		23
5 .	13. A process for producing a dispersion of a comminuted inorganic material in a polymeric medium which comprises admixing an inorganic material, a mixture of organic-titanates as claimed in any of claims 1 to 6 or a titanate of the formula Ti(OR)(OCOR'), where OR and OCOR' are as defined in claim 1, and a polymeric medium, to form a dispersion of the inorganic material, the surface of which has been reacted with said organic-titanate, in the polymeric medium. 14. A process according to claim 13 wherein the mixture of organic-titanates or titanate is reacted with the surface of said inorganic material.	 5
10	with said polymeric medium. 15. A process according to claim 13 wherein the mixture of organo-titanates or titanate reacts with the surface of said arms.	10
15	material in situ during the mixing of said three components. 16. A composition according to claim 6 and substantially as described in 17. A composition according to claim 6 and substantially as described in of Examples 1 to 19. 18. A process according to claim 13 and substantially as described in any of Examples 1 to 19.	15
20	19. A dispersion whenever produced by a process as claimed in any of claims 13 to 15 and 18. URQUHART-DYKES AND LORD	20

URQUHART-DYKES AND LORD,
Chartered Patent Agents,
Agents for the Applicants,
11th Floor, Tower House,
Merrion Way, Leeds, LS2 8PB
— and —
11th Floor, St. Martin's House,
140, Tottenham Court Road,
London, W1P OJN.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потигр

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)