Teoria dos Grafos

Matheus Souza D'Andrea Alves

2018.2

Sumário

Introdução 2	2
Conceitos básicos	2
Vizinhança	2
	2
	3
	3
	3
	4
	4
	5
	5
Primeiro módulo	5
Árvores	5
	5
Conectividade	ŝ
Segundo módulo	3
	3
Grafos eurelianos	3
	3
	9
1	9
Terceiro módulo	9
Coloração de vértices	9
-	9
	9

Introdução

site do protti

Conceitos básicos

Um grafo simples G é denotado por um conjunto de vértices V(G) e um conjunto de arestas E(G).

Cada aresta é um par não ordenado $(u,v) \mid (\{u,v\} \subseteq V(G))$. Dois vértices u e v são vizinhos/adjacentes se existe uma aresta $(u,v) \in E(G)$.

A ordem de um grafo $\acute{\rm e}$ o numero de vértices de G

$$n = |V(G)| \& m = |E(G)|$$

Um grafo é trivial se possuí apenas um vértice e nulo se não possuí vértice. Um multigrafo são grafos simples extendidos com:

- Arestas paralelas: Arestas que conectam os mesmos dois vértices.
- Laços: arestas em que ambos os extremos são o mesmo vértice.

Vizinhança

A vizinhança aberta de um vértice v é denominada N(v); Tal conjunto possuí todo vértice que seja um extremo de arestas que tenham v como outro extremo.

A vizinhança fechada de um vértice é denominada N[v] onde N[v] = N(v) + v.

Grau

O grau de um vértice, denominado d(v) é igual ao número de vezes em que v aparece como algum terminal em qualquer $e \in E(G)$.

Um grafo é dito regular quando todos seus vértices tem o mesmo grau, e k-regular se todos os vértices tem d(v) = k.

O grau máximo de G é definido como:

$$\Delta(G) = \max\{d(v)|v \in V(G)\}$$

Dado um grafo G, sua sequência de graus é a sequencia formada pelos graus de seus vértices ordenados de forma não decrescente.

Se um vértice possui grau zero, então ele não possui vizinhos e é chamado de vértice *isolado*. Em contrapartida se um vértice é vizinho de todos os outros vértices em um grafo ele é chamado de vértice *universal*.

Estruturas relacionadas

O complemento de G é chamado de $G\hat{e}$ barra e denominado por \overline{G} .

Um grafo H é um subgrafo de G se $V(H) \subseteq V(G)$ e $E(H) \subseteq E(G)$, e o grafo "faça sentido", isso é seja possível criar um grafo com todos os vértices e arestas de tais subconjuntos.

Um subgrafo gerador de G é um subgrafo H de G onde $V(H) \subseteq V(G)$

H é um subgrafo induzido por um conjunto de vértices $X \subseteq G$ se toda aresta nesse conjunto existente em G, também existe em H, sua notação é: H = G[X]. Um subgrafo H é o subgrafo formado por um conjunto de arestas $E' [\in E(G)$ com seus respectivos extremos, sua notação é H = G[E'].

Seja $S \subset V(G)$:

$$G - S = G[V(G) \backslash S]$$

Isso é, O Grafo G sem os vértices em S é o subgrafo induzido pelo conjunto de todos os vértices de G tirando os vértices de S

Um passeio é uma sequencia de vértices v_1, v_1, v_1, v_1 ligadas sequencialmente por arestas.

Uma trilha é um passeio onde arestas não se repete; Um caminho é uma trilha onde nenhum vértice se repete. É chamado de comprimento do caminho o número de arestas no mesmo, um caminho é chamado fechado se . . .

Um ciclo é um passeio onde nenhum vértice exceto o inicial se repete, e apenas repetindo o inicial no final do passeio, seu número de vértices é igual ao seu número de arestas.

Uma corda é uma aresta que liga dois vértices não consecutivos do ciclo

Propagação de propriedades.

Dado um grafo G uma propriedade é hereditária por subgrafos, e quando ela vale para G ela também vale para seus subgrafos.

Se uma propriedade é hereditária para subgrafos, ela é para subgrafos induzidos.

Operações

A união de dois grafos é a união de seus vértices e suas arestas, a operação de interseção é semelhante.

teorema do aperto de mão:

$$2m = \sum_{v \in V(G)} d(v)$$

Dois grafos são isomorfos se existe uma bijeção f dos vértices de G para vértices de um G_{iso} tal que $\forall (u, v) \in E(G) \implies (f(u), f(v)) \in E(G_{iso})$

Características

Um grafo é dito completo, se quaisquer dois vértices de G são vizinhos. O número de arestar de um grafo completo é n(n-1)/2.

Um grafo é conexo se para todo par de vértices dado, existe um caminho entre os dois vértices. Uma componente conexa de G é um subgrafo conexo maximal de G. $\omega(G)$ é o númeor de componentes conexas de G.

A distância entre dois vértices é o comprimento do menor caminho entre eles.

A excentricidade de um vértice $v \in V(G)$ é definida como:

$$exc(v) = max\{dist(v, x)|x \in V(G)\}$$

O diâmetro de um grafo G é definido como:

$$diam(G) = max\{exc(x)|x \in V(G)\}$$

O centro $C \subseteq V(G)$ é o subconjunto de vértices com excentricidade mínima, em contrapartida a periferia de um grafo G é o subconjunto de vértices com excentricidade máxima.

Partições

Uma clique K em um grafo G é um conjunto de vértices $K \subseteq V(G)$ tal que G[K] é completo. Por outro lado se o conjunto de vértices $S \subseteq V(G)$ induz um grafo sem arestas, então S é um conjunto independente.

Notação: K_n grafo completo com n vértices, S_n conjunto independente com n vértices.

Um grafo é bipartido quando é possível particionar seu conjunto de vértices em dois conjuntos S_1 e S_2 tal que $S_1 \cup S_2 = V(G)$ e $S_1 \cap S_2 = \emptyset$ onde ambos S_1 e S_2 são conjuntos independentes.

Teorema 1: Um grafo G é bipartido, se e somente se, G não contém ciclos ímpares.

Demonstração.

Suponha por absurdo que G seja bipartido e contenha um ciclo ímpar $C=v_1,v_2,\ldots,v_{2k+1},v_1$ seja $S_1\cup S_2$ seja uma bipartição de V(G, suponha portanto sem perda de generalidade que $v_1\in S_1$, dessa forma, $v_2\in S_2,v_3\in S_1,\ldots,v_{2k}\in S_2,v_{2k+1}\in S_1$. Porém dessa existe a aresta ()

Maximalidade e minimalidade

Um conjunto S é maximal em relação a uma propriedade P, se:

- S satisfaz P
- $\nexists S' \supset S \text{ tq } S' \text{ satisfaz } P.$

Um conjunto S é minimal em relação a uma propriedade P se:

- S satisfaz P
- $\sharp S' \subset S$ tq S' satisfaz P.

Representações.

Representação gráfica.

fig

Matriz de adjacências

Primeiro módulo

Árvores

Conceito

Dizemos que um grafo é uma árvore se não possui ciclos e é conexo, uma floresta é um grafo cuja cada componente conexa é uma árvore.

O centro de uma árvore são um ou dois vértices:

Algoritmo

```
def center(t Tree)
  m = t
  while m.vertices.size >= 3 do
   leafs = m.leafs
   m = m[m.vertices - leafs]
  end
  return m
end
```

Conectividade

Articulações são vértices cuja a remoção aumenta o número de componentes conexas do grafo.

Teorema: v é articulação $\iff \exists x, y \text{ tal que todo caminho entre } x \text{ e } y \text{ contém } v$

Demonstração: Como v é articulação, após sua remoção a componente conexa que continha v não mais existe. São criadas duas componentes conexas C_1 e C_2 . Tome $x \in V(C_1)$ e $y \in V(C_2)$ seja P um caminho de x a y em G. Em G - v, o caminho P não existe. Logo, $v \in V(P)$.

Em G-v não pode haver nenhum caminho entre x e y, pois de acordo com a premissa, a remoção de v remove todos os possíveis caminhos entre os mesmos, isso significa que a remoção de v aumentou o número de componentes conexas, logo v é uma articulação.

Teorema 2: Em uma árvore T não trivial, v é articulação se e somente se v não é folha.

Demonstração.

Suponha por absurdo que v é uma folha, como visto anteriormente existe então dois vértices x e y cujo o caminho entre eles passa por v, tal afirmação é contraditória pois v é uma folha e tem d(v)=1, sendo impossível fazer parte de um caminho não sendo extremidade.

Seja u um vértice não folha, portanto existe um caminho entre dois vértices x e y que contém v, suponha por absurdo que a remoção de tal vértice não aumente o número de componentes conexas, tal afirmação é absurda, pois isso implicaria em um caminho entre x e y que não contém v, o que implica em um ciclo e T é uma árvore.

Corolario 1: Todo grafo G conexo não trivial possui pelo menos 2 vértices que não são articulações

Demonstração.

Seja T a árvore geradora de G e x e y folhas de T. Usando o teorema anterior, x e y não são articulações em T.

Portanto, como T-x é árvore geradora de G-x, sem perda de generalidade x e y não são articulações em G. \Box

Teorema 3: Seja G um grafo com pelo menos 3 vértices. G é biconexo se e somente se para cada par de vértices em V(G) existem dois caminhos disjuntos entre eles.

Demonstração.

Seja $\kappa(G)$ o menor número de vértices tal que sua remoção desconecta G $\omega(G-\kappa(G))>\omega(G).$

G é p-conexo quando $p \leq \kappa(G)$.

Portanto observe que se G é biconexo e existe um par de vértices u e v tal que só existe um caminho em G, por definição algum vértice de tal caminho é articulação e sua remoção desconecta G e portanto $\kappa(G)=1 \implies 2 \le 1$ que é absurdo. Assumindo portanto que para todo par de vértices em G existem dois caminhos, é impossível tornar o grafo desconexo removendo apenas um vértice, logo $\kappa(G) \ge 2$ e G é biconexo.

Teorema 4: Seja G um grafo com k+1 vértices. G é k-conexo se e somente se para quaisquer dois vértices de G existem k caminhos internamente disjuntos entre eles.

Demonstração.

Segundo módulo

Grafos eurelianos e hamiltonianos

Grafos eurelianos

Definição 1: Passeio Eureliano

Um passeio ou trilha é dito eureliano(a) se é uma trilha fechada onde cada aresta aparece apenas uma vez.

Figura 1: Grafo eureliano

Teorema 5: Um multigrafo G conexo é eureliano se e somente se todo vértice possui grau par.

Demonstração.

Grafos hamiltonianos

Teorema 6: Se G é um grafo Hamiltoniano, então todo subconjunto $S\subseteq V(G)$ próprio e não vazio satisfaz $\omega(G-S)\leq |S|$

Demonstração.

Emparelhamento

Coloração de Arestas

Terceiro módulo

Coloração de vértices

Planaridade

Grafos direcionados