MATH 8510, Abstract Algebra I Fall 2016 Exercises 5-2 Due date Thu 22 Sep 4:00PM

Exercise 1 (3.4.4). Let G be a finite abelian group, and let n be a divisor of |G|. Use Cauchy's Theorem to show that G has a subgroup of order n.

Proof. (1) If |G| = 1, then $G = \{e_G\}$ and only 1 is a divisor of |G|. So G with order 1 is a subgroup of G.

(2) Consider $1 < |G| < \infty$.

We will show it by induction.

Since $|G| \geq 1, |G| \in \mathbb{Z}, |G|$ can be written as $p_1 p_2 ... p_{k_p}$, where $p_1, p_2, ... p_{k_p}$ are

- (a) If |G| = p is a prime, then the divisor n can only be 1 or p. So when n=1, just let $H=\{e_G\} \leq G$; when n=p, we let $H=G \leq G$. Namely, it holds for the basic case.
- (b) Suppose every group G with $|G| = p_1, p_2, ...p_m$ has the property that if n is a divisor of |G|, then there exists a subgroup $H \leq G$ with |H| = n.
- (c) Let G be a group such that $|G| = p_1, p_2, ... p_{k_p} p_{m+1}$. If n = 1, just let $H = e_G \leq G$.

If n > 1, then withour loss of generality, we assume $p_1|n$.

By Cauchy's theorem, there exists $x \in G$ with $|x| = p_1$.

Since G is abelian, we have $\langle x \rangle$ is normal.

Then $\langle x \rangle \subseteq G$ since $x \in G$.

Then $|G/\langle x\rangle| = \frac{|G|}{|\langle x\rangle|} = \frac{p_1, p_2, \dots p_m}{p_1} = p_2, \dots p_{m+1}$. Since n is a divisor of $|G| = p_1, p_2, \dots p_{k_p} p_{m+1}$ and $p_1|d$, then $\frac{n}{p_1}$ is a divisor of $p_2, p_3, ... p_{m+1}$.

Thus, by assumption, there exists a subgroup $H/\langle x \rangle$ of $G/\langle x \rangle$ with order $|H/\langle x\rangle| = \frac{n}{p_1}.$

Besides, by the fourth isomorphism theorem, we have $H \leq G$.

As last, by Lagrange's theorem, we have $|H| = |H/\langle x \rangle| |\langle x \rangle| = \frac{n}{p_1} p_1 = n$.

Therefore, our assumption also holds for $|G| = p_1, p_2, ..., p_{k_n} p_{m+1}$.

Hence, the claim holds.

Exercise 2. Let G be a finite abelian group, written additively. Prove that there is a chain of subgroups $0 = N_0 \leq N_1 \leq \cdots \leq N_k = G$ such that each quotient N_i/N_{i-1} is cyclic of prime order.

Proof. Since G is a finite group, then by Jordan-Hölder theorem, G has a compo-

Namely, there is a chain of subgroups $0 = N_0 \leq N_1 \leq ... \leq N_k = G$.

Then we show N_n/N_{n-1} , n=1,2,..k are abelian.

Let $gN_{n-1}, hN_{n-1} \in N_n/N_{n-1}$, where $g, h \in N_n$.

Since $N_{n-1} \subseteq N_n \subseteq G$ for n = 1, 2, ...k and G is abelian,

$$gN_{n-1}hN_{n-1} = ghN_{n-1}$$

= hgN_{n-1}
= $hN_{n-1}gN_{n-1}$

So N_n/N_{n-1} , n = 1, 2, ..k are abelian.

Assume there exsit $n \in \mathbb{Z}$ and $1 \le n \le k$ such that N_n/N_{n-1} is of prime order.

Then $|N_n/N_{n-1}| = p_1p_2..p_m$, where $p_1, p_2, ..., p_m$ are pimes and $1 < m < \infty, m \in \mathbb{Z}$.

By Exercise 1, we know there exists $H \leq N_n/N_{n-1}$ with order $|H| = p_1$.

Since $|\{e_{N_n/N_{n-1}}\}|1 < p_1 < m = |N_n/N_{n-1}|$. Thus, $e_{e_{N_n/N_{n-1}}} \le H \le N_n/N_{n-1}$. So we have N_n/N_{n-1} is not simple, which is contradicted by the chain $0 = N_0 \le 1$. $N_1 \unlhd \cdots \unlhd N_k = G$ is a composition series.

Therefore, each quotient N_i/N_{i-1} for i = 1, 2, ..., n is of prime order.

We have shown in Exercise 1(b) of homework 5-1, that G is cyclic if the order of pis a prime.

As a result, each quotient N_i/N_{i-1} for i = 1, 2, ..., n is of prime order