第4章 支持向量机

Exercise 4.1

已知正例点 $x_1 = (1,2)^T$, $x_2 = (2,3)^T$, $x_3 = (3,3)^T$,负例点 $x_4 = (2,1)^T$, $x_5 = (3,2)^T$,试求最大间隔分离超平面和分类决策函数,并在图上画出分离超平面、间隔边界及支持向量。

Exercise 4.2

假设你训练SVM后,得到一个线性决策边界,你认为该模型欠拟合,在下次迭代训练模型时,应该考虑:

- A、增加训练数据
- B、减少训练数据
- C、计算更多变量
- D、减少特征

Exercise 4.3

假定你用一个线性SVM分类器求解二类分类问题,如下图所示,这些用红色圆圈起来的点表示支持向量,据此回答问题1和2:

- 1.如果移除这些圈起来的数据,决策边界 (即分离超平面) 是否会发生改变?
- A. Yes B. No
- 2.如果将数据中除圈起来的三个点以外的其他数据全部移除,那么决策边界是否会改变?
- A. True B. False

Exercise 4.4

Consider two examples (v, +1) and (-v, -1) where $\mathbf{v} \in \mathbf{R}^2$. Which of the following hyperplane is the largest-margin separating one for the two examples?

A.
$$x_1 = 0$$
 B. $x_2 = 0$ C. $v_1 x_1 + v_2 x_2 = 0$ D. $v_2 x_1 + v_1 x_2 = 0$

Exercise 4.5

Consider three examples (x1; +1), (x2; +1), (x3; -1), where $x_1 = (3, 0)$, $x_2 = (0, 4)$, $x_3 = (0; 0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

A. the hyperplane is a separating one for the three examples

B. the distance from the hyperplane to x_1 is 2

C. the distance from the hyperplane to x_3 is $\frac{1}{\sqrt{2}}$

D. the example that is closest to the hyperplane is x_3

Exercise 4.6

Consider two examples $(z_1;+1)$ and $(z_2;-1)$ with $z_1=z$ and $z_2=-z$. What is the Lagrange function $L(b;w;\lambda)$ of hard-margin SVM?

A
$$rac{1}{2}w^Tw + \lambda_1(1+w^Tz+b) + \lambda_2(1+w^Tz+b)$$

B
$$rac{1}{2}w^Tw + \lambda_1(1-w^Tz-b) + \lambda_2(1-w^Tz+b)$$

$$extstyle \in rac{1}{2} w^T w + \lambda_1 (1 + w^T z + b) + \lambda_2 (1 + w^T z - b)$$

D
$$rac{1}{2}w^Tw + \lambda_1(1-w^Tz-b) + \lambda_2(1-w^Tz-b)$$

Exercise 4.7

For a single variable w, consider minimizing $\frac{1}{2}w^2$ subject to two linear constraints $w\geq 1$ and $w\leq 3$. We know that the Lagrange function $L(w,\alpha)=\frac{1}{2}w^2+\lambda_1(1-w)+\lambda_2(w-3)$. Which of the following equations that contain λ are among the KKT conditions of the optimization problem?

A
$$\lambda_1 \geq 0$$
 and $\lambda_2 \geq 0$

B
$$w=\lambda_1-\lambda_2$$

C
$$\alpha_1(1-w)=0$$
 and $\alpha_2(w-3)=0$

D all of the above

Exercise 4.8

Consider two examples $(z_1;+1)$ and $(z_2;-1)$ with $z_1=z$ and $z_2=-z$. After solving the dual problem of hard-margin SVM, assume that the optimal λ_1 and λ_2 are both strictly positive. What is the optimal b?

A -1

В 0

C 1

D not certain with the descriptions above

Exercise 4.9

Consider applying dual hard-margin SVM on N = 5566 examples and getting 1126 SVs. Which of the following can be the number of examples that are on the fat boundary—that is, SV candidates?

Α0

B 1024

C 1234

D 9999