भारतीय मानक Indian Standard IS 3370 (Part 4/Sec 3): 2021

# जलीय तरल पदार्थों को प्रतिधारित करने के लिए कंक्रीट संरचनाएँ — रीति संहिता

भाग 4 डिजाइन तालिकाएँ अनुभाग 3 वृत्ताकार टैंक

( पहला पुनरीक्षण )

# Concrete Structures for Retaining Aqueous Liquids — Code of Practice

Part 4 Design Tables
Section 3 Circular tanks

(First Revision)

ICS 23.020.01; 91.080.40

© BIS 2021



भारतीय मानक ब्यूरो
BUREAU OF INDIAN STANDARDS
मानक भवन, 9 बहादुरशाह ज़फर मार्ग, नई दिल्ली – 110002
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI-110002

www.bis.gov.in www.standardsbis.in

Cement and Concrete Sectional Committee, CED 02

#### **FOREWORD**

This Indian Standard (Part 4/Sec 3) (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Cement and Concrete Sectional Committee had been approved by the Civil Engineering Division Council.

The design and construction methods in reinforced concrete and prestressed concrete structures for retaining aqueous liquids are influenced by the prevailing construction practices, the physical properties of the materials and the climatic condition. To lay down uniform requirements of structures for the retaining liquids giving due consideration to the above mentioned factors, this indian standard has been published in four parts. The other parts in the series are:

- Part 1 General requirements
- Part 2 Plain and reinforced concrete
- Part 3 Prestressed concrete

This standard (Part 4) was first published in 1967. The present revision has been brought out with a view to keeping abreast with the rapid development in the field of structural analysis and the results available from finite element analyses of rectangular plates and tanks, and circular tanks (without prestressing), and also to bring further modifications in the light of experience gained while applying the earlier version of this standard. In this revision, the title of the standard has been modified from 'Concrete structures for storage of liquids — Code of practice: Part 4 Design tables' to 'Concrete structures for retaining aqueous liquids — Code of practice: Part 4 Design tables' for better representation of the contents of the revised standard. Furthermore, this standard (Part 4) has been trifurcated into 3 sections for giving due emphasis to each topic covered and convenience of use and handling as:

- Sec 1 Plates
- Sec 2 Rectangular tanks
- Sec 3 Circular tanks

This Standard (Part 4/Sec 3) deals with design tables for circular tanks. The object of the design tables covered in this part is mainly to present data for ready reference to designers and as an aid to speedy design calculations. The designer has the option to adopt any established method of analysis, such as classical elastic plate analysis, finite element analysis or use of deign tables given in this standard as long as the design complies with the requirements of IS 3370 (Parts 1 to 3), and the structural adequacy and safety are ensured.

Tables relating to design of rectangular as well as cylindrical tanks have been given and by proper combination of various tables it may be possible to design different types of tanks involving many sets of conditions for rectangular and cylindrical containers built in or on ground.

In this standard it has been assumed that the design of liquid retaining structures, whether of plain, reinforced or prestressed concrete is entrusted to a qualified engineer and that the execution of the work is carried out under the direction of a qualified and experienced engineer.

The requirements of IS 456: 2000 'Plain and reinforced concrete — Code of practice (*fourth revision*)' and IS 1343: 2012 'Prestressed concrete — Code of practice (*second revision*)', in so far as they apply, shall be deemed to form part of this standard except where otherwise laid down in this standard.

Following are the significant modifications incorporated in this revision:

- a) Title of the standard has been modified from 'Concrete structures for storage of liquids Code of practice: Part 4 Design tables' to 'Concrete structures for retaining aqueous liquids Code of practice: Part 4 Design tables, Section 3 Circular tanks'.
- b) Coefficients of ring tension and moments have been revised and enlarged to cover wider range of loading configurations and end-restraint conditions.
- c) Coefficients of shear, load and stiffness have been included for use as an aid in the design of circular reinforced concrete structures for retaining liquids.

(Continued on third cover)

# Indian Standard

# CONCRETE STRUCTURES FOR RETAINING AQUEOUS LIQUIDS — CODE OF PRACTICE

#### **PART 4 DESIGN TABLES**

Section 3 Circular tanks

(First Revision)

# 1 SCOPE

- **1.1** This standard (Part 4/Sec 3) gives design tables of ring tension, shear, moment, load and stiffness coefficients for use as an aid in the design of circular reinforced concrete structures for retaining liquids.
- 1.2 This standard does not apply to circular concrete tanks with prestressing. Specialist literature may be referred to in cases, such as the liquid retaining structures having tapered/stepped walls or resting on varying soil strata or subjected to temperature forces.

#### 2 REFERENCE

The following standard contain provision, which through reference in this text constitute provisions of this standard. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below:

IS No. Title

456: 2000 Plain and reinforced concrete — Code of practice (*fourth revision*)

#### **3 CIRCULAR TANKS**

#### 3.1 Circular Tank Analysis Results

The coefficients of ring tension  $(F_{tc})$ , shear  $(V_c)$ , moment  $(M_c)$ , load  $(P_c)$  and stiffness  $(K_c)$  for use as an aid in the design of circular tanks with different loading configurations and end-restraint conditions (see 3.1.6) obtained from finite element analyses have been tabulated in Tables 3 to 20.

## **3.1.1** *Tension*

Tension in circular ring per unit height,  $F_{\rm t}$  (in N/m) is given by the following equation:

 $F_t = F_{tc} wHD/2$ , in case of triangular loading;

=  $F_{tc} pD/2$ , in case of rectangular loading;

- =  $F_{tc} V_a D/2H$ , in case shear,  $V_a$  (in N/m) is applied at top; and
- =  $F_{\text{tc}} M_a D/2H^2$ , in case moment,  $M_a$  (in N-m/m) is applied at base.

#### where

 $F_{tc}$  = tension coefficient (see col 3 of Table 1);

 $w = \text{unit weight of liquid, N/m}^3$ ;

H = height of loaded area of the tank, m;

 $p = \text{uniform rectangular loading, N/m}^2$ ; and

D = inside diameter of the tank (in m), if impermeable lining is used, else inside diameter + wall thickness (in m).

#### **3.1.2** *Shear*

Shear at the base of cylindrical wall per unit height, V (in N/m) is given by the following equation:

 $V = V_c wH^2$ , in case of triangular loading;

=  $V_{c}pH$ , in case of rectangular loading; and

=  $V_c M_a/H$ , in case moment,  $M_a$  (in N-m/m) is applied at base.

#### where

 $V_c$  = shear coefficient (see Table 18).

## **3.1.3** *Moment*

a) Moment in cylindrical wall per unit height, M (in N-m/m) is given by the following equation:

 $M = M_c wH^3$ , in case of triangular loading;

- =  $M_c pH^2$ , in case of rectangular loading;
- =  $M_c V_a H$ , in case shear,  $V_a$  (in N/m) is applied at top; and
- =  $M_c$   $M_a$ , in case moment,  $M_a$  (in N-m/m) is applied at base.

#### where

 $M_c$  = moment coefficient (see col 4 of Table 1).

b) Moment in circular slab per unit height, M (in N-m/m), is given by the following equation:

 $M = M_c pD^2/4$ , in case of rectangular loading; and

=  $M_{\rm c}~M_{\rm a}$ , in case moment,  $M_{\rm a}$  (in N-m/m) is applied at edge.

where

 $M_{\bullet}$  = moment coefficient (see col 3 of Table 2).

#### **3.1.4** *Load*

Load, *P* (in N), on centre support for a circular slab is given by the following equations:

- $P = P_c pD^2/4$ , in case of hinged and fixed support; and
  - =  $P_c M_a$ , in case moment,  $M_a$  (N-m/m) is applied at edge.

where

 $P_{\rm c}$  = load coefficient (see Table 19).

#### **3.1.5** *Stiffness*

a) Stiffness, *K* (in N), of a circular plate is given by the following equation:

$$K = K_c 2E_c t^3/D$$

where

 $K_c$  = stiffness coefficient (see Table 20);

 $E_c$  = Modulus of elasticity of concrete, MPa (see IS 456); and

t = thickness of plate, mm.

b) Stiffness of cylindrical wall is given by the following equations:

Moment stiffness per unit rotation =  $2 \eta Z$ ;

Thrust (radial) stiffness per unit rotation =  $2 \eta^2 Z$ ;

Moment stiffness per unit radial displacement =  $2 \eta^2 Z$ ; and

Thrust (radial) stiffness per unit radial displacement  $= 4 \eta^3 Z$ .

where

$$\eta^4 = 12 / (D^2 t^2)$$
; and  $Z = E_c t^3 / 12$ .

# **3.1.6** Loading Configurations and End-restraint Conditions

The various loading configurations and end-restraint conditions of circular tanks for which design coefficients of tension in circular rings ( $F_{\rm tc}$ ) and moment ( $M_{\rm c}$ ) have been tabulated in Tables 3 to 13 are given in Table 1, and those of circular slabs for which design coefficients of moment ( $M_{\rm c}$ ) have been tabulated in Tables 14 to 17 are given in Table 2.

Additionally, the shear design coefficients ( $V_c$ ) have been given for the shear at the base of the cylindrical wall in Table 18, load design coefficients ( $P_c$ ) for load

on centre support for circular slab in Table 19 and stiffness design coefficients ( $K_c$ ) for cylindrical plates in Table 20.

#### 3.2 General Assumptions in Design

#### 3.2.1 Top Edge of Wall

For estimating hoop tension and vertical bending moments in circular wall, the top of wall can be assumed to be free that is, without any radial or rotational restraint. This assumption is conservative and makes very little difference, except in top portion of wall where hoop tension, shear and moment are already very small.

For design of roof slab connected to wall, continuity analysis shall be done for wall and slab joint, allowing for rotation of wall top due to liquid pressure on wall in membrane case. In absence of such an analysis at the junction, the slab can be assumed to be hinged to wall and nominal reinforcement to limit cracks may be provided in slab to resist negative moment at wall junction.

## 3.2.2 Base of Wall

If wall base is monolithic with a slab, it acts as a diapharm and prevents the radial displacement to a negligible value. Thus, wall base can be assumed to be restrained from radial displacement. In many cases, the slab at base of wall provides rotational restrain in radial direction.

For ground supported tanks, bottom edge of wall panel may be assumed as per the following:

- a) If foundation strata is rock or hard soil (corrected standard penetration 'N' value > 30 or refusal), the rotation of wall base will be very small, and may be assumed to be fixed at bottom.
- b) For soft soils in foundation (*N* < 15), moments and shear may be taken as the algebraic sum of the one third of difference (between fixed and hinged condition) and hinged case. Moment and shear at bottom edge may be taken as average of fixed and hinged end-restraint case.
- c) In cases other than covered in (a) and (b), the base provides partial restrain against rotation, and wall base may be assumed to be partially fixed that is, condition in between fixed and hinged. Design moments and shear in wall (except bottom edge) may be taken as average of fixed base and hinged base end-restraint. However, design moment and shear at bottom edge should be reduced by one third of the difference of fixed and hinged end-restraint cases from fixed end-restraint case.

Table 1 Loading Configurations and End-restraint Conditions for Cylindrical Walls

( Clauses 3.1.1, 3.1.3 and 3.1.6 )



a) Fixed base, free top, subjected to triangular loading



b) Fixed base, free top, subjected to uniformly distributed loading



c) Hinged base, free top, subjected to triangular loading

Table 1 (Concluded)



**Table 2 Loading Configurations and End-Restraint Conditions for Circular Slabs** ( *Clauses* 3.1.3 *and* 3.1.6 )



a) Fixed base, without centre support, subjected to uniformly distributed loading



b) Fixed base, with centre support, subjected to uniformly distributed loading





# **Table 3 Ring Tension Coefficients for Case 1 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| TT2/D4             |        |              | C            | oefficients at | Point (see   | Notes 1 and  | 2 at the end | of Table 3A | )      |        |
|--------------------|--------|--------------|--------------|----------------|--------------|--------------|--------------|-------------|--------|--------|
| H <sup>2</sup> /Dt | 0.0H   | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i>   | 0.4 <i>H</i> | 0.5 <i>H</i> | 0.6H         | 0.7H        | 0.8H   | 0.9H   |
| 0.4                | +0.149 | +0.134       | +0.120       | +0.101         | +0.082       | +0.066       | +0.049       | +0.029      | +0.014 | +0.004 |
| 0.8                | +0.263 | +0.239       | +0.215       | +0.190         | +0.160       | +0.130       | +0.096       | +0.063      | +0.034 | +0.010 |
| 1.2                | +0.283 | +0.271       | +0.254       | +0.234         | +0.209       | +0.180       | +0.142       | +0.099      | +0.054 | +0.016 |
| 1.6                | +0.265 | +0.268       | +0.268       | +0.266         | +0.250       | +0.226       | +0.185       | +0.134      | +0.075 | +0.023 |
| 2.0                | +0.234 | +0.251       | +0.273       | +0.285         | +0.285       | +0.274       | +0.232       | +0.172      | +0.104 | +0.031 |
| 3.0                | +0.134 | +0.203       | +0.267       | +0.322         | +0.357       | +0.362       | +0.330       | +0.262      | +0.157 | +0.052 |
| 4.0                | +0.067 | +0.164       | +0.256       | +0.339         | +0.403       | +0.429       | +0.409       | +0.334      | +0.210 | +0.073 |
| 5.0                | +0.025 | +0.137       | +0.245       | +0.346         | +0.428       | +0.477       | +0.469       | +0.398      | +0.259 | +0.092 |
| 6.0                | +0.018 | +0.119       | +0.234       | +0.344         | +0.441       | +0.504       | +0.514       | +0.447      | +0.301 | +0.112 |
| 8.0                | -0.011 | +0.104       | +0.218       | +0.335         | +0.443       | +0.534       | +0.575       | +0.530      | +0.381 | +0.151 |
| 10.0               | -0.011 | +0.098       | +0.208       | +0.323         | +0.437       | +0.542       | +0.608       | +0.589      | +0.440 | +0.179 |
| 12.0               | -0.005 | +0.097       | +0.202       | +0.312         | +0.429       | +0.543       | +0.628       | +0.633      | +0.494 | +0.211 |
| 14.0               | -0.002 | +0.098       | +0.200       | +0.306         | +0.420       | +0.539       | +0.639       | +0.666      | +0.541 | +0.241 |
| 16.0               | 0.000  | +0.099       | +0.199       | +0.304         | +0.412       | +0.531       | +0.641       | +0.687      | +0.582 | +0.265 |

Table 3A Supplementary Ring Tension Coefficients for Case 1 Arrangement

( Tables 1 and 3, Clauses 3.1 and 3.1.6)

| H²/Dt | Coefficients at Point ( see Notes 1 and 2 ) |        |        |        |               |  |  |  |  |  |
|-------|---------------------------------------------|--------|--------|--------|---------------|--|--|--|--|--|
| H-7Dt | 0.75H                                       | 0.80H  | 0.85H  | 0.90H  | 0.95 <i>H</i> |  |  |  |  |  |
| 20    | +0.716                                      | +0.654 | +0.520 | +0.325 | +0.115        |  |  |  |  |  |
| 24    | +0.746                                      | +0.702 | +0.577 | +0.372 | +0.137        |  |  |  |  |  |
| 32    | +0.782                                      | +0.768 | +0.663 | +0.459 | +0.182        |  |  |  |  |  |
| 40    | +0.800                                      | +0.805 | +0.731 | +0.530 | +0.217        |  |  |  |  |  |
| 48    | +0.791                                      | +0.828 | +0.785 | +0.593 | +0.254        |  |  |  |  |  |
| 56    | +0.763                                      | +0.838 | +0.824 | +0.636 | +0.285        |  |  |  |  |  |

<sup>1</sup> Positive sign indicates tension.

<sup>2</sup> The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank.

# **Table 4 Moment Coefficients for Case 1 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| H <sup>2</sup> /Dt |              |              | Coeffici     | ents at Poin | t (see Notes | 1 and 2 at t | he end of Ta | ble 4A)      |         |              |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|
|                    | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4 <i>H</i> | 0.5H         | 0.6H         | 0.7H         | 0.8 <i>H</i> | 0.9H    | 1.0 <i>H</i> |
| 0.4                | +.000 5      | +.001 4      | +.002 1      | +.000 7      | 004 2        | 015 0        | 030 2        | 052 9        | 081 6   | 120 5        |
| 0.8                | +.001 1      | +.003 7      | +.006 3      | +.008 0      | +.007 0      | +.002 3      | 006 8        | 022 4        | -0.46 5 | 079 5        |
| 1.2                | +.001 2      | +.004 2      | +.007 7      | +.010 3      | +.011 2      | +.009 0      | +.002 2      | 010 8        | 031 1   | 060 2        |
| 1.6                | +.001 1      | +.004 1      | +.007 5      | +.010 7      | +.012 1      | +.011 1      | +.005 8      | 005 1        | 023 2   | 050 5        |
| 2.0                | +.001 0      | +.003 5      | +.006 8      | +.009 9      | +.012 0      | +.011 5      | +.007 5      | 002 1        | 018 5   | 043 6        |
| 3.0                | +.000 6      | +.002 4      | +.004 7      | +.007 1      | +.009 0      | +.009 7      | +.007 7      | +.001 2      | 011 9   | 033 3        |
| 4.0                | +.000 3      | +.001 5      | +.002 8      | +.004 7      | +.006 6      | +.007 7      | +.006 9      | +.002 3      | 008 0   | 026 8        |
| 5.0                | +.000 2      | +.000 8      | +.001 6      | +.002 8      | +.004 6      | +.005 9      | +.005 9      | +.002 8      | 005 8   | 022 2        |
| 6.0                | +.000 1      | +.000 3      | +.000 8      | +.001 9      | +.003 2      | +.004 6      | +.005 1      | +.002 9      | 004 1   | 018 7        |
| 8.0                | .000 0       | +.000 1      | +.000 2      | +.000 8      | +.001 6      | +.002 8      | +.003 8      | +.002 9      | 002 2   | 014 6        |
| 10.0               | .000 0       | .000 0       | +.000 1      | +.000 4      | +.000 7      | +.001 9      | +.002 9      | +.002 8      | 001 2   | 012 2        |
| 12.0               | .000 0       | 000 0        | +.000 1      | +.000 2      | +.000 3      | +.001 3      | +.002 3      | +.002 6      | 000 5   | 010 4        |
| 14.0               | .000 0       | .000 0       | .000 0       | .000 0       | +.000 1      | +.000 8      | +.001 9      | +.002 3      | 000 1   | 009 0        |
| 16.0               | .000 0       | .000 0       | 000 1        | 000 2        | 000 1        | +.000 4      | +.001 3      | +.001 9      | +.000 1 | 007 9        |

# **Table 4A Supplementary Moment Coefficients for Case 1 Arrangement**

( Tables 1 and 4, Clauses 3.1 and 3.1.6)

| H <sup>2</sup> /Dt |               | Coefficie     | nts at Point ( see Notes | 1 and 2) |               |
|--------------------|---------------|---------------|--------------------------|----------|---------------|
|                    | 0.80 <i>H</i> | 0.85 <i>H</i> | 0.90 <i>H</i>            | 0.95H    | 1.00 <i>H</i> |
| 20                 | +.001 5       | +.001 4       | +.000 5                  | 001 8    | 006 3         |
| 24                 | +.001 2       | +.001 2       | +.000 7                  | 001 3    | 005 3         |
| 32                 | +.000 7       | +.000 9       | +.000 7                  | 000 8    | 004 0         |
| 40                 | +.000 2       | +.000 5       | +.000 6                  | 000 5    | 003 2         |
| 48                 | .000 0        | +.000 1       | +.000 6                  | 000 3    | 002 6         |
| 56                 | .000 0        | .000 0        | +.000 4                  | 000 1    | 002 3         |

<sup>1</sup> Positive sign indicates tension in the outside.

<sup>2</sup> The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank.

# **Table 5 Ring Tension Coefficients for Case 2 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| 112/104            |              |              | Coeffici     | ents at Point | ( see Notes  | 1 and 2 at t | he end of Tal | ble 5A) |              |              |
|--------------------|--------------|--------------|--------------|---------------|--------------|--------------|---------------|---------|--------------|--------------|
| H <sup>2</sup> /Dt | 0.0 <i>H</i> | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i>  | 0.4 <i>H</i> | 0.5H         | 0.6H          | 0.7H    | 0.8 <i>H</i> | 0.9 <i>H</i> |
| 0.4                | +0.582       | +0.505       | +0.431       | +0.353        | +0.277       | +0.206       | +0.145        | +0.092  | +0.046       | +0.013       |
| 0.8                | +1.052       | +0.921       | +0.796       | +0.669        | +0.542       | +0.415       | +0.289        | +0.179  | +0.089       | +0.024       |
| 1.2                | +1.218       | +1.078       | +0.946       | +0.808        | +0.665       | +0.519       | +0.378        | +0.246  | +0.127       | +0.034       |
| 1.6                | +1.257       | +1.141       | +1.009       | +0.881        | +0.742       | +0.600       | +0.449        | +0.294  | +0.153       | +0.045       |
| 2.0                | +1.253       | +1.144       | +1.041       | +0.929        | +0.806       | +0.667       | +0.514        | +0.345  | +0.186       | +0.055       |
| 3.0                | +1.160       | +1.112       | +1.061       | +0.998        | +0.912       | +0.796       | +0.646        | +0.459  | +0.258       | +0.081       |
| 4.0                | +1.085       | +1.073       | +1.057       | +1.029        | +0.977       | +0.887       | +0.746        | +0.553  | +0.322       | +0.105       |
| 5.0                | +1.037       | +1.044       | +1.047       | +1.042        | +1.015       | +0.949       | +0.825        | +0.629  | +0.379       | +0.128       |
| 6.0                | +1.010       | +1.024       | +1.038       | +1.045        | +1.034       | +0.986       | +0.879        | +0.694  | +0.430       | +0.149       |
| 8.0                | +0.989       | +1.005       | +1.022       | +1.036        | +1.044       | +1.026       | +0.953        | +0.788  | +0.519       | +0.189       |
| 10.0               | +0.989       | +0.998       | +1.010       | +1.023        | +1.039       | +1.040       | +0.996        | +0.859  | +0.591       | +0.226       |
| 12.0               | +0.994       | +0.997       | +1.003       | +1.014        | +1.031       | +1.043       | +1.022        | +0.911  | +0.652       | +0.262       |
| 14.0               | +0.997       | 0.998        | +1.000       | +1.007        | +1.022       | +1.040       | +1.035        | +0.949  | +0.705       | +0.294       |
| 16.0               | +1.000       | 0.999        | +0.999       | +1.003        | +1.015       | +1.032       | +1.040        | +0.975  | +0.750       | +0.321       |

# Table 5A Supplementary Ring Tension Coefficients for Case 2 Arrangement

( Tables 1 and 5, Clauses 3.1 and 3.1.6 )

| H²/Dt | Coefficients at Point ( see Notes 1 and 2 ) |        |        |               |               |  |  |  |  |  |
|-------|---------------------------------------------|--------|--------|---------------|---------------|--|--|--|--|--|
| H-7Dt | 0.75H                                       | 0.80H  | 0.85H  | 0.90 <i>H</i> | 0.95 <i>H</i> |  |  |  |  |  |
| 20    | +0.949                                      | +0.825 | +0.629 | +0.379        | +0.128        |  |  |  |  |  |
| 24    | +0.986                                      | +0.879 | +0.694 | +0.430        | +0.149        |  |  |  |  |  |
| 32    | +1.026                                      | +0.953 | +0.788 | +0.519        | +0.189        |  |  |  |  |  |
| 40    | +1.040                                      | +0.996 | +0.859 | +0.591        | +0.226        |  |  |  |  |  |
| 48    | +1.043                                      | +1.022 | +0.911 | +0.652        | +0.262        |  |  |  |  |  |
| 56    | +1.040                                      | +1.035 | +0.949 | +0.705        | +0.294        |  |  |  |  |  |

<sup>1</sup> Positive sign indicates tension.

<sup>2</sup> The point, 0.0 H denotes the top of the tank and the point, 1.0 H denotes the base of the tank.

# **Table 6 Moment Coefficients for Case 2 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| 112/104            |              |              | Coeffici     | ents at Poin | t (see Notes | 1 and 2 at t | he end of Ta | ble 6A) |       |              |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|-------|--------------|
| H <sup>2</sup> /Dt | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4H         | 0.5H         | 0.6H         | 0.7H         | 0.8H    | 0.9H  | 1.0 <i>H</i> |
| 0.4                | 002 3        | 009 3        | 022 7        | 043 9        | 071 0        | 101 8        | 145 5        | 200 0   | 259 3 | 331 0        |
| 0.8                | .000 0       | 000 6        | 002 5        | 008 3        | 018 5        | 036 2        | 059 4        | 091 7   | 132 5 | 183 5        |
| 1.2                | +.000 8      | +.002 6      | +.003 7      | +.002 9      | 000 9        | 008 9        | 022 7        | 046 8   | 081 5 | 117 8        |
| 1.6                | +.001 1      | +.003 6      | +.006 2      | +.007 7      | +.006 8      | +.001 1      | 009 3        | 026 7   | 052 9 | 087 6        |
| 2.0                | +.001 0      | +.003 6      | .006 6       | +.008 8      | +.008 9      | +.005 9      | 001 9        | 016 7   | 038 9 | 071 9        |
| 3.0                | +.000 7      | +.002 6      | +.005 1      | +.007 4      | +.009 1      | +.008 3      | 004 2        | -005 3  | 022 3 | 048 3        |
| 4.0                | +.000 4      | +.001 5      | +.003 3      | +.005 2      | +.006 8      | +.007 5      | 005 3        | 001 3   | 014 5 | 036 5        |
| 5.0                | +.000 2      | +.000 8      | +.001 9      | +.003 5      | +.005 1      | +.006 1      | 005 2        | +.000 7 | 010 1 | 029 3        |
| 6.0                | +.000 1      | +.000 4      | +.001 1      | +.002 2      | +.003 6      | +.004 9      | 004 8        | +.001 7 | 007 3 | 024 2        |
| 8.0                | .000 0       | +.000 1      | +.000 3      | +.000 8      | +.001 8      | +.003 1      | 003 8        | +.002 4 | 004 0 | 018 4        |
| 10.0               | .000 0       | 000 1        | .000 0       | +.000 2      | +.000 9      | +.002 1      | +.003 0      | +.002 6 | 002 2 | 014 7        |
| 12.0               | .000 0       | .000 0       | 000 1        | .000 0       | +.000 4      | +.001 4      | +.002 4      | +.002 2 | 001 2 | 012 3        |
| 14.0               | .000 0       | .000 0       | .000 0       | .000 0       | +.000 2      | +.001 0      | +.001 8      | +.002 1 | 000 7 | 010 5        |
| 16.0               | .000 0       | .000 0       | .000 0       | 000 1        | +.000 1      | +.000 6      | +.001 2      | +.002 0 | 000 5 | 009 1        |

# **Table 6A Supplementary Moment Coefficients for Case 2 Arrangement**

( Tables 1 and 6, Clauses 3.1 and 3.1.6 )

| H²/Dt | Coefficients at Point ( see Notes 1 and 2 ) |         |         |       |       |  |  |  |  |  |
|-------|---------------------------------------------|---------|---------|-------|-------|--|--|--|--|--|
| H-7Dt | 0.80 <i>H</i>                               | 0.85H   | 0.90H   | 0.95H | 1.00H |  |  |  |  |  |
| 20    | +.001 5                                     | +.001 3 | +.000 2 | 002 4 | 007 3 |  |  |  |  |  |
| 24    | +.001 2                                     | +.001 2 | +.000 4 | 001 8 | 006 1 |  |  |  |  |  |
| 32    | +.000 8                                     | +.000 9 | +.000 6 | 001 0 | 004 6 |  |  |  |  |  |
| 40    | +.000 5                                     | +.000 7 | +.000 7 | 000 5 | 003 7 |  |  |  |  |  |
| 48    | +.000 4                                     | +.000 6 | +.000 6 | 000 3 | 003 1 |  |  |  |  |  |
| 56    | +.000 2                                     | +.000 4 | +.000 5 | 000 1 | 002 6 |  |  |  |  |  |

<sup>1</sup> Positive sign indicates tension in the outside.

**<sup>2</sup>** The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank.

# **Table 7 Ring Tension Coefficients for Case 3 Arrangement**

(Table 1, Clauses 3.1 and 3.1.6)

| TT2/ID4            |              | -            | Coeffici     | ents at Poin | t (see Notes | 1 and 2 at t | he end of Ta | ble 7A) |        |        |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------|--------|
| H <sup>2</sup> /Dt | 0.0 <i>H</i> | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4 <i>H</i> | 0.5H         | 0.6H         | 0.7H    | 0.8H   | 0.9H   |
| 0.4                | +0.474       | +0.440       | +0.395       | +0.352       | +0.308       | +0.264       | +0.215       | +0.165  | +0.111 | +0.057 |
| 0.8                | +0.423       | +0.402       | +0.381       | +0.358       | +0.330       | +0.297       | +0.249       | +0.202  | +0.145 | +0.076 |
| 1.2                | +.0350       | +0.355       | +0.361       | +0.362       | +0.358       | +0.343       | +0.309       | +0.256  | +0.186 | +0.098 |
| 1.6                | +0.271       | +0.303       | +0.341       | +0.369       | +0.385       | +0.385       | +0.362       | +0.314  | +0.233 | +0.124 |
| 2.0                | +0.205       | +0.260       | +0.321       | +0.373       | +0.411       | +0.434       | +0.419       | +0.369  | +0.280 | +0.151 |
| 3.0                | +0.074       | +0.179       | +0.281       | +0.375       | +0.449       | +0.506       | +0.519       | +0.479  | +0.375 | +0.210 |
| 4.0                | +0.017       | +0.137       | +0.253       | +0.367       | +0.469       | +0.545       | +0.579       | +0.553  | +0.447 | +0.256 |
| 5.0                | -0.008       | +0.114       | +0.235       | +0.356       | +0.469       | +0.563       | +0.617       | +0.606  | +0.503 | +0.294 |
| 6.0                | -0.011       | +0.103       | +0.223       | +0.343       | +0.463       | +0.566       | +0.639       | +0.643  | +0.547 | +0.327 |
| 8.0                | -0.015       | +.0.96       | +0.208       | +0.324       | +0.443       | +0.564       | +0.661       | +0.697  | +0.621 | +0.386 |
| 10.0               | -0.008       | +0.095       | +0.200       | +0.311       | +0.428       | +0.552       | +0.666       | +0.730  | +0.678 | +0.433 |
| 12.0               | -0.002       | +0.097       | +0.197       | +0.302       | +0.417       | +0.541       | +0.664       | +0.750  | +0.720 | +0.477 |
| 14.0               | 0.000        | +0.096       | +0.197       | +0.299       | +0.408       | +0.531       | +0.659       | +0.761  | +0.752 | +0.513 |
| 16.0               | +0.002       | +0.100       | +0.198       | +0.299       | +0.403       | +0.521       | +0.650       | +0.764  | +0.776 | +0.536 |

# Table 7A Supplementary Ring Tension Coefficients for Case 3 Arrangement

( Tables 1 and 7, Clauses 3.1 and 3.1.6)

| H <sup>2</sup> /Dt | Coefficients at Point ( see Notes 1 and 2 ) |               |        |               |        |  |  |  |  |  |
|--------------------|---------------------------------------------|---------------|--------|---------------|--------|--|--|--|--|--|
| H-/Dt              | 0.75H                                       | 0.80 <i>H</i> | 0.85H  | 0.90 <i>H</i> | 0.95H  |  |  |  |  |  |
| 20                 | +0.812                                      | +0.817        | +0.756 | +0.603        | +0.344 |  |  |  |  |  |
| 24                 | +0.816                                      | +0.839        | +0.793 | +0.647        | +0.377 |  |  |  |  |  |
| 32                 | +0.814                                      | +0.861        | +0.847 | +0.721        | +0.436 |  |  |  |  |  |
| 40                 | +0.802                                      | +0.866        | +0.880 | +0.778        | +0.483 |  |  |  |  |  |
| 48                 | +0.791                                      | +0.864        | +0.900 | +0.820        | +0.527 |  |  |  |  |  |
| 56                 | +0.781                                      | +0.859        | +0.911 | +0.852        | +0.563 |  |  |  |  |  |

<sup>1</sup> Positive sign indicates tension.

<sup>2</sup> The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank.

# **Table 8 Ring Tension Coefficients for Case 4 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| 112/104            |        |              | Coeffici     | ents at Poin | t (see Notes | 1 and 2 at t | he end of Ta | ble 8A)      |        |        |
|--------------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|--------|
| H <sup>2</sup> /Dt | 0.0H   | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4H         | 0.5H         | 0.6H         | 0.7 <i>H</i> | 0.8H   | 0.9H   |
| 0.4                | +1.474 | +1.340       | +1.195       | +1.052       | +0.908       | +0.764       | +0.615       | 0.465        | +0.311 | +0.154 |
| 0.8                | +1.423 | +1.302       | +1.181       | +1.058       | +0.930       | +0.797       | +0.649       | +0.502       | +0.345 | +0.166 |
| 1.2                | +1.350 | +1.255       | +1.161       | +1.062       | +0.958       | +0.843       | +0.709       | +0.556       | +0.385 | +0.198 |
| 1.6                | +1.271 | +1.203       | +1.141       | +1.069       | +0.985       | +0.885       | +0.756       | +0.614       | +0.433 | +0.224 |
| 2.0                | +1.205 | +1.160       | +1.121       | +1.073       | +0.011       | +0.934       | +0.819       | +0.669       | +0.480 | +0.251 |
| 3.0                | +1.074 | +1.079       | +1.081       | +1.075       | +1.049       | +1.006       | +0.919       | +0.779       | +0.575 | +0.310 |
| 4.0                | +1.017 | +1.037       | +1.053       | +1.067       | +1.069       | +1.045       | +0.979       | +0.853       | +0.647 | +0.356 |
| 5.0                | +0.992 | +1.014       | +1.035       | +1.056       | +1.069       | +1.062       | +1.017       | +0.906       | +0.703 | +0.394 |
| 6.0                | +0.989 | +1.003       | +1.023       | +1.043       | +1.063       | +1.066       | +1.039       | +0.943       | +0.747 | +0.427 |
| 8.0                | +0.985 | +0.996       | +1.008       | +1.024       | +1.043       | +1.064       | +1.061       | +0.997       | +0.821 | +1.486 |
| 10.0               | +0.992 | +0.995       | +1.000       | +1.011       | +1.028       | +1.052       | +1.066       | +1.030       | +0.878 | +0.533 |
| 12.0               | +0.998 | +0.997       | +0.997       | +1.002       | +1.017       | +1.041       | +1.064       | +1.050       | +0.920 | +0.577 |
| 14.0               | +1.000 | +0.998       | +0.997       | +0.999       | +1.008       | +1.031       | +1.059       | +1.060       | +0.952 | +0.613 |
| 16.0               | +1.002 | +1.000       | +0.998       | +0.999       | +1.003       | +1.021       | +1.050       | +1.064       | +0.976 | +0.636 |

# Table 8A Supplementary Ring Tension Coefficients for Case 4 Arrangement

( Tables 1 and 8, Clauses 3.1 and 3.1.6 )

| H <sup>2</sup> /Dt | Coefficients at Point (see Notes 1 and 2) |               |        |               |               |  |  |  |  |  |  |
|--------------------|-------------------------------------------|---------------|--------|---------------|---------------|--|--|--|--|--|--|
| II /Dt             | 0.75H                                     | 0.80 <i>H</i> | 0.85H  | 0.90 <i>H</i> | 0.95 <i>H</i> |  |  |  |  |  |  |
| 20                 | +1.062                                    | +1.017        | +0.906 | +0.703        | +0.394        |  |  |  |  |  |  |
| 24                 | +1.066                                    | +1.039        | +0.943 | +0.747        | +0.427        |  |  |  |  |  |  |
| 32                 | +0.064                                    | +1.061        | +0.997 | +0.821        | +0.486        |  |  |  |  |  |  |
| 40                 | +1.052                                    | +1.066        | +1.030 | +0.878        | +0.533        |  |  |  |  |  |  |
| 48                 | +1.041                                    | +1.064        | +1.050 | +0.920        | +0.577        |  |  |  |  |  |  |
| 56                 | +1.021                                    | +1.059        | +1.061 | +0.613        | +0.613        |  |  |  |  |  |  |

<sup>1</sup> Positive sign indicates tension.

**<sup>2</sup>** The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank.

# **Table 9 Moment Coefficients for Case 5 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| 112/D4             |              |              | Coeffici     | ents at Poin | t (see Notes | 1 and 2 at t | he end of Ta | ble 9A)      |         |              |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|
| H <sup>2</sup> /Dt | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4 <i>H</i> | 0.5H         | 0.6H         | 0.7H         | 0.8 <i>H</i> | 0.9H    | 1.0 <i>H</i> |
| 0.4                | +.002 0      | +.007 2      | +.015 1      | +.023 0      | +.030 1      | +.034 8      | +.035 7      | +.031 2      | +.019 7 | 0            |
| 0.8                | +.001 9      | +.006 4      | +.013 3      | +.020 7      | +.027 1      | +.031 9      | +.032 9      | +.028 2      | +.018 7 | 0            |
| 1.2                | +.001 6      | +.005 8      | +.011 1      | +.017 7      | +.023 7      | +.028 0      | +.029 6      | +.026 3      | +.017 1 | 0            |
| 1.6                | +.001 2      | +.004 4      | +.009 1      | +.014 5      | +.019 5      | +.023 6      | +.025 5      | +.023 2      | +.015 5 | 0            |
| 2.0                | +.000 9      | +.003 3      | +.007 3      | +.011 4      | +.015 8      | +.019 9      | +.021 9      | +.020 5      | +.014 5 | 0            |
| 3.0                | +.000 4      | +.001 8      | +.004 0      | +.006 3      | +.009 2      | +.012 7      | +.015 2      | +.15 3       | +.011 1 | 0            |
| 4.0                | +.000 1      | +.000 7      | +.001 6      | +.003 3      | +.005 7      | +.008 3      | +.010 9      | +.011 8      | +.009 2 | 0            |
| 5.0                | .000 0       | +.000 1      | +.000 6      | +.001 6      | +.003 4      | +.005 7      | +.008 0      | +.009 4      | +.007 8 | 0            |
| 6.0                | .000 0       | .000 0       | +.000 2      | +.000 8      | +.001 9      | +.003 9      | +.006 2      | +.007 8      | +.006 8 | 0            |
| 8.0                | .000 0       | .000 0       | 000 2        | .000 0       | +.000 7      | +.002 0      | +.003 8      | +.005 7      | +.005 4 | 0            |
| 10.0               | .000 0       | .000 0       | 000 2        | 000 1        | +.000 2      | +.001 1      | +.002 5      | +.004 3      | +.004 5 | 0            |
| 12.0               | .000 0       | .000 0       | 000 1        | 000 2        | .000 0       | +.000 5      | +.001 7      | +.003 2      | +.003 9 | 0            |
| 14.0               | .000 0       | .000 0       | 000 1        | 000 1        | 000 1        | .000 0       | +.001 2      | +.002 6      | +.003 3 | 0            |
| 16.0               | .000 0       | .000 0       | .000 0       | 000 1        | .000 2       | 000 4        | +.000 8      | +.002 2      | +.002 9 | 0            |

# **Table 9A Supplementary Moment Coefficients for Case 5 Arrangement**

( Tables 1 and 9, Clauses 3.1 and 3.1.6)

| 112/104            |         | Coefficie | ents at Point (see Notes | 1 and 2)      |         |
|--------------------|---------|-----------|--------------------------|---------------|---------|
| H <sup>2</sup> /Dt | 0.75H   | 0.80H     | 0.85H                    | 0.90 <i>H</i> | 0.95H   |
| 20                 | +.000 8 | +.001 4   | +.002 0                  | +.002 4       | +.002 0 |
| 24                 | +.000 5 | +.001 0   | +.001 5                  | +.002 0       | +.001 7 |
| 32                 | .000 0  | +.000 5   | +.000 9                  | +.001 4       | +.001 3 |
| 40                 | .000 0  | +.000 3   | +.000 6                  | +.001 1       | +.001 1 |
| 48                 | .000 0  | +.000 1   | +.000 4                  | +.000 8       | +.001 0 |
| 56                 | .000 0  | .000 0    | +.000 3                  | +.000 7       | +.000 8 |

<sup>1</sup> Positive sign indicates tension in the outside.

<sup>2</sup> The point, 0.0 H denotes the top of the tank and the point, 1.0 H denotes the base of the tank.

# Table 10 Ring Tension Coefficients for Case 6 Arrangement

( Table 1, Clauses 3.1 and 3.1.6 )

| 112/104            |        |              | Coefficie    | nts at Point | ( see Notes 1 | , 2 and 3 at | the end of T | able 10A) |       |              |
|--------------------|--------|--------------|--------------|--------------|---------------|--------------|--------------|-----------|-------|--------------|
| H <sup>2</sup> /Dt | 0.0H   | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4 <i>H</i>  | 0.5H         | 0.6H         | 0.7H      | 0.8H  | 0.9 <i>H</i> |
| 0.4                | -1.57  | -1.32        | -1.08        | -0.86        | -0.65         | -0.47        | -0.31        | -0.18     | -0.08 | -0.02        |
| 0.8                | -3.09  | -2.55        | -2.04        | -1.57        | -1.15         | -0.80        | -0.51        | -0.28     | -0.13 | -0.03        |
| 1.2                | -3.95  | -3.17        | -2.44        | -1.79        | -1.25         | -0.81        | -0.48        | -0.25     | -0.10 | -0.02        |
| 1.6                | -4.57  | -3.54        | -2.60        | -1.80        | -1.17         | -0.69        | -0.36        | -0.16     | -0.05 | -0.01        |
| 2.0                | -5.12  | -3.83        | -2.68        | -1.74        | -1.02         | -0.52        | -0.21        | -0.05     | +0.01 | +0.01        |
| 3.0                | -6.32  | -4.37        | -2.70        | -1.43        | -0.58         | -0.02        | +0.15        | +0.19     | +0.13 | +0.04        |
| 4.0                | -7.34  | -4.73        | -2.60        | -1.10        | -0.19         | +0.26        | +0.38        | +0.33     | +0.19 | +0.06        |
| 5.0                | -8.22  | -4.99        | -2.45        | -0.79        | +0.11         | +0.47        | +0.50        | +0.37     | +0.20 | +0.06        |
| 6.0                | -9.02  | -5.17        | -2.27        | -0.50        | +0.34         | +0.59        | +0.53        | +0.35     | +0.17 | +0.01        |
| 8.0                | -10.42 | -5.36        | -1.85        | -0.02        | +0.63         | +0.66        | +0.46        | +0.24     | +0.09 | +0.01        |
| 10.0               | -11.67 | -5.43        | -1.43        | +0.38        | +0.78         | +0.62        | +0.33        | +0.12     | +0.02 | 0.00         |
| 12.0               | -12.76 | -5.41        | -1.03        | +0.63        | +0.83         | +0.52        | +0.21        | +0.04     | -0.02 | 0.00         |
| 14.0               | -13.77 | -5.34        | -0.68        | +0.80        | +0.81         | +0.42        | +0.13        | 0.00      | -0.03 | -0.01        |
| 16.0               | -14.74 | -5.22        | -0.33        | +0.96        | +0.76         | +0.32        | +0.05        | -0.04     | -0.05 | -0.02        |

# Table 10A Supplementary Ring Tension Coefficients for Case 6 Arrangement

( Tables 1 and 10, Clauses 3.1 and 3.1.6 )

| H <sup>2</sup> /Dt |        | Coefficien | ats at Point (see Notes 1 | 1, 2 and 3) |       |
|--------------------|--------|------------|---------------------------|-------------|-------|
| H-/Dt              | 0.00H  | 0.05H      | 0.10H                     | 0.15H       | 0.20H |
| 20                 | -16.44 | -9.98      | -4.90                     | -1.59       | +0.22 |
| 24                 | -18.04 | -10.34     | -4.54                     | -1.00       | +0.68 |
| 32                 | -20.84 | -10.72     | -3.70                     | -0.04       | +1.26 |
| 40                 | -23.34 | 10.86      | -2.86                     | +0.72       | +1.56 |
| 48                 | -25.52 | -10.82     | -2.06                     | +1.26       | +1.66 |
| 56                 | -27.54 | -10.68     | -1.36                     | +1.60       | +1.62 |

<sup>1</sup> Positive sign indicates tension.

<sup>2</sup> The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank, when shear is applied at the top and vice-versa, when shear is applied at the base with fixed top.

<sup>3</sup> Shear applied inward is positive and outward is negative.

# **Table 11 Moment Coefficients for Case 6 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| 112/D4             |              |              | Coefficie    | nts at Point ( | see Notes 1 | , 2 and 3 at 1 | the end of Ta | able 11A)    |        |              |
|--------------------|--------------|--------------|--------------|----------------|-------------|----------------|---------------|--------------|--------|--------------|
| H <sup>2</sup> /Dt | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4 <i>H</i>   | 0.5H        | 0.6H           | 0.7H          | 0.8 <i>H</i> | 0.9H   | 1.0 <i>H</i> |
| 0.4                | +0.093       | +0.172       | +0.240       | +0.300         | +0.354      | +0.402         | +0.448        | +0.492       | +0.535 | +0.578       |
| 0.8                | +0.085       | +0.145       | +0.185       | +0.208         | +0.220      | +0.224         | +0.223        | +0.219       | +0.214 | +0.208       |
| 1.2                | +0.082       | +0.132       | +0.157       | +0.164         | +0.159      | +0.145         | +0.127        | +0.106       | +0.084 | +0.062       |
| 1.6                | +0.079       | +0.122       | +0.139       | +0.138         | +0.125      | +0.105         | +0.081        | +0.056       | +0.030 | +0.004       |
| 2.0                | +0.077       | +0.115       | +0.126       | +0.119         | +0.103      | +0.080         | +0.056        | +0.031       | +0.006 | -0.019       |
| 3.0                | +0.072       | +0.100       | +0.100       | +0.086         | +0.066      | +0.044         | +0.025        | +0.006       | -0.010 | -0.024       |
| 4.0                | +0.068       | +0.088       | +0.081       | +0.063         | +0.043      | +0.025         | +0.010        | -0.001       | -0.010 | -0.019       |
| 5.0                | +0.064       | +0.078       | +0.067       | +0.047         | +0.028      | +0.013         | +0.003        | -0.003       | -0.007 | -0.011       |
| 6.0                | +0.062       | +0.070       | +0.056       | +0.036         | +0.018      | +0.006         | 0.000         | -0.003       | -0.005 | -0.006       |
| 8.0                | +0.057       | +0.058       | +0.041       | +0.021         | +0.007      | 0.000          | -0.002        | -0.003       | -0.002 | -0.001       |
| 10.0               | +0.053       | +0.049       | +0.029       | +0.012         | +0.002      | -0.002         | -0.002        | -0.002       | -0.001 | 0.000        |
| 12.0               | +0.049       | +0.042       | +0.022       | +0.007         | +0.000      | -0.002         | -0.002        | -0.001       | 0.000  | 0.000        |
| 14.0               | +0.046       | +0.036       | +0.017       | +0.004         | -0.001      | -0.002         | -0.001        | -0.001       | 0.000  | 0.000        |
| 16.0               | +0.044       | +0.031       | +0.012       | +0.001         | -0.002      | -0.002         | -0.001        | 0.000        | 0.000  | 0.000        |

# Table 11A Supplementary Moment Coefficients for Case 6 Arrangement

( Tables 1 and 11, Clauses 3.1 and 3.1.6 )

| H <sup>2</sup> /Dt |        | Coefficien    | ts at Point (see Notes | 1, 2 and 3)   |        |
|--------------------|--------|---------------|------------------------|---------------|--------|
| H-/Dt              | 0.05H  | 0.10 <i>H</i> | 0.15H                  | 0.20 <i>H</i> | 0.25H  |
| 20                 | +0.032 | +0.039        | +0.033                 | +0.023        | +0.014 |
| 24                 | +0.031 | +0.035        | +0.028                 | +0.018        | +0.009 |
| 32                 | +0.028 | +0.029        | +0.020                 | +0.011        | +0.004 |
| 40                 | +0.026 | +0.025        | +0.015                 | +0.006        | +0.001 |
| 48                 | +0.024 | +0.021        | +0.011                 | +0.003        | 0.000  |
| 56                 | +0.023 | +0.018        | +0.008                 | +0.002        | 0.000  |

- 1 Positive sign indicates tension.
- 2 The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank, when shear is applied at the top and vice-versa, when shear is applied at the base with fixed top.
- 3 Shear applied inward is positive and outward is negative.

# **Table 12 Ring Tension Coefficients for Case 7 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| 112/D4             |       |              | Coefficie    | nts at Point | see Notes 1  | , 2 and 3 at 1 | the end of Ta | able 12A) |        |              |
|--------------------|-------|--------------|--------------|--------------|--------------|----------------|---------------|-----------|--------|--------------|
| H <sup>2</sup> /Dt | 0.0H  | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4 <i>H</i> | 0.5H           | 0.6H          | 0.7H      | 0.8H   | 0.9 <i>H</i> |
| 0.4                | +2.70 | +2.50        | +2.30        | +2.12        | +1.91        | +1.69          | +1.41         | +1.13     | +0.80  | +0.44        |
| 0.8                | +2.02 | +2.06        | +2.10        | +2.14        | +2.10        | +2.02          | +1.95         | +1.75     | +1.39  | +0.80        |
| 1.2                | +1.06 | +1.42        | +1.79        | +2.03        | +2.46        | +2.65          | +2.80         | +2.60     | +2.22  | +1.37        |
| 1.6                | +0.12 | +0.79        | +1.43        | +2.04        | +2.72        | +3.25          | +3.56         | +3.59     | +3.13  | +2.01        |
| 2.0                | -0.68 | +0.22        | +1.10        | +2.02        | +2.90        | +3.69          | +4.30         | +4.54     | +4.08  | +2.75        |
| 3.0                | -1.78 | -0.71        | +0.43        | +1.60        | +2.95        | +4.29          | +5.66         | +6.58     | +6.55  | +4.73        |
| 4.0                | -1.87 | -1.00        | -0.08        | +1.04        | +2.47        | +4.31          | +6.34         | +8.19     | +8.82  | +6.81        |
| 5.0                | -1.54 | -1.03        | -0.42        | +0.45        | +1.86        | +3.93          | +6.60         | +9.41     | +11.03 | +9.02        |
| 6.0                | -1.04 | -0.86        | -0.59        | -0.05        | +1.21        | +3.34          | +6.54         | +10.28    | +13.08 | +11.41       |
| 8.0                | -0.24 | -0.53        | -0.73        | -0.67        | -0.02        | +2.05          | +5.87         | +11.32    | +16.52 | +16.06       |
| 10.0               | +0.21 | -0.23        | -0.64        | -0.94        | -0.73        | +0.82          | +4.79         | +11.63    | +19.48 | +20.87       |
| 12.0               | +0.32 | -0.05        | -0.46        | -0.96        | -1.15        | -0.18          | +3.52         | +11.27    | +21.80 | +25.73       |
| 14.0               | +0.26 | +0.04        | -0.28        | -0.76        | -1.29        | -0.87          | +2.29         | +10.55    | +23.50 | +30.34       |
| 16.0               | +0.22 | +0.07        | -0.08        | -0.64        | -1.28        | -1.30          | +1.12         | +9.67     | +24.53 | +34.65       |

# Table 12A Supplementary Ring Tension Coefficients for Case 7 Arrangement

( Tables 1 and 12, Clauses 3.1 and 3.1.6 )

| H <sup>2</sup> /Dt |        | Coefficien    | ts at Point (see Notes | 1, 2 and 3)   |               |
|--------------------|--------|---------------|------------------------|---------------|---------------|
| 11750              | 0.75H  | 0.80 <i>H</i> | 0.85H                  | 0.90 <i>H</i> | 0.95 <i>H</i> |
| 20                 | +15.30 | +25.9         | +36.9                  | +43.3         | +35.3         |
| 24                 | +13.20 | +25.9         | +40.7                  | +51.8         | +45.          |
| 32                 | +8.10  | +23.2         | +45.9                  | +65.4         | +63.6         |
| 40                 | +3.28  | +19.2         | +46.5                  | +77.9         | +83.5         |
| 48                 | -0.70  | +14.1         | +45.1                  | +87.2         | +103.0        |
| 56                 | -3.40  | +9.2          | +42.2                  | +94.0         | +121.0        |

<sup>1</sup> Positive sign indicates tension.

<sup>2</sup> The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank, when moment is applied at the base and vice-versa, when moment is applied at the top with hinged top.

<sup>3</sup> Moment applied at an edge is positive when it causes outward rotation at that edge.

# **Table 13 Moment Coefficients for Case 7 Arrangement**

( Table 1, Clauses 3.1 and 3.1.6 )

| H2/D4              |              |              | Coefficie    | nts at Point | see Notes 1 | , 2 and 3 at 1 | the end of Ta | ible 13A)    |        |              |
|--------------------|--------------|--------------|--------------|--------------|-------------|----------------|---------------|--------------|--------|--------------|
| H <sup>2</sup> /Dt | 0.1 <i>H</i> | 0.2 <i>H</i> | 0.3 <i>H</i> | 0.4H         | 0.5H        | 0.6H           | 0.7H          | 0.8 <i>H</i> | 0.9H   | 1.0 <i>H</i> |
| 0.4                | +0.013       | +0.051       | +0.109       | +0.196       | +0.296      | +0.414         | +0.547        | +0.692       | +0.843 | +1.000       |
| 0.8                | +0.009       | +0.040       | +0.090       | +0.164       | +0.253      | +0.375         | +0.503        | +0.659       | +0.824 | +1.000       |
| 1.2                | +0.006       | +0.027       | +0.063       | +0.125       | +0.206      | +0.316         | +0.454        | +0.616       | +0.802 | +1.000       |
| 1.6                | +0.003       | +0.011       | +0.035       | +0.078       | +0.152      | +0.253         | +0.393        | +0.570       | +0.775 | +1.000       |
| 2.0                | -0.002       | -0.002       | +0.012       | +0.034       | 0.096       | +0.193         | +0.340        | +0.519       | +0.748 | +1.000       |
| 3.0                | -0.007       | -0.022       | -0.030       | -0.029       | +0.010      | +0.087         | +0.227        | +0.426       | +0.692 | +1.000       |
| 4.0                | -0.008       | -0.026       | -0.044       | -0.051       | -0.034      | +0.023         | +0.150        | +0.354       | +0.645 | +1.000       |
| 5.0                | -0.007       | -0.024       | -0.045       | -0.061       | -0.057      | -0.015         | +0.095        | +0.296       | +0.606 | +1.000       |
| 6.0                | -0.005       | -0.018       | -0.040       | -0.058       | -0.065      | -0.037         | +0.057        | +0.252       | +0.572 | +1.000       |
| 8.0                | -0.001       | -0.009       | -0.022       | -0.044       | -0.068      | -0.062         | +0.002        | +0.178       | +0515  | +1.000       |
| 10.0               | 0.000        | -0.002       | -0.009       | -0.028       | -0.053      | -0.067         | -0.031        | +0.123       | +0.467 | +1.000       |
| 12.0               | 0.000        | 0.000        | -0.003       | -0.016       | -0.040      | -0.064         | -0.049        | +0.081       | +0.424 | +1.000       |
| 14.0               | 0.000        | 0.000        | 0.000        | -0.008       | -0.029      | -0.059         | -0.060        | +0.048       | +0.387 | +1.000       |
| 16.0               | 0.000        | 0.000        | +0.002       | -0.003       | -0.021      | -0.051         | -0.066        | +0.025       | +0.354 | +1.000       |

# **Table 13A Moment Coefficients for Case 7 Arrangement**

( Tables 1 and 13, Clauses 3.1 and 3.1.6 )

| H <sup>2</sup> /Dt |               | Coefficien | ts at Point (see Notes | 1, 2 and 3) |               |
|--------------------|---------------|------------|------------------------|-------------|---------------|
| H-/Dt              | 0.80 <i>H</i> | 0.85H      | 0.90 <i>H</i>          | 0.95H       | 1.00 <i>H</i> |
| 20                 | -0.015        | +0.095     | +0.296                 | +0.606      | +1.000        |
| 24                 | -0.037        | +0.057     | +0.250                 | +0.572      | +1.000        |
| 32                 | -0.062        | +0.002     | +0.178                 | +0.515      | +1.000        |
| 40                 | -0.067        | -0.031     | +0.123                 | +0.467      | +1.000        |
| 48                 | -0.064        | -0.049     | +0.081                 | +0.424      | +1.000        |
| 56                 | -0.059        | -0.060     | +0.048                 | +0.387      | +1.000        |

<sup>1</sup> Positive sign indicates tension.

<sup>2</sup> The point,  $0.0\,H$  denotes the top of the tank and the point,  $1.0\,H$  denotes the base of the tank, when moment is applied at the base and vice-versa, when moment is applied at the top with hinged top.

<sup>3</sup> Moment applied at an edge is positive when it causes outward rotation at that edge.

Table 14 Moment Coefficients for Circular Slabs for Case 8 Arrangement

( Table 2, Clauses 3.1 and 3.1.6 )

|                                    | 0R    |                                  | -0.1250 |                                    |         |
|------------------------------------|-------|----------------------------------|---------|------------------------------------|---------|
|                                    | 1.00R |                                  | -0.1    |                                    | 0       |
|                                    | 0.90R |                                  | -0.0894 |                                    | -0.0119 |
|                                    | 0.80R |                                  | -0.0575 |                                    | +0.0225 |
|                                    | 0.70R |                                  | -0.0294 |                                    | +0.0319 |
| Note)                              | 0.60R | ي _ ا                            | -0.0050 | $M_{\mathfrak{t}}$                 | +0.0400 |
| Coefficients at Point ( see Note ) | 0.50R | Radial Moments, $M_{\mathbf{r}}$ | +0.0156 | Tangential Moments, M <sub>t</sub> | +0.0469 |
| Coeffici                           | 0.40R | R                                | +0.0325 | Тап                                | +0.0525 |
|                                    | 0.30R |                                  | +0.0456 |                                    | +0.0569 |
|                                    | 0.20R |                                  | +0.0550 |                                    | +0.0600 |
|                                    | 0.10R |                                  | +0.0606 |                                    | +0.0619 |
|                                    | 0.00R |                                  | +0.0625 |                                    | +0.0625 |

Table 15 Moment Coefficients for Circular Slabs for Case 9 Arrangement

NOTE — Positive sign indicates compression in surface loaded

( Table 2, Clauses 3.1 and 3.1.6 )

|      |         |         |         |         | C       | efficients at I | Coefficients at Point (see Note          | ( a     |         |         |         |         |         |
|------|---------|---------|---------|---------|---------|-----------------|------------------------------------------|---------|---------|---------|---------|---------|---------|
| c/D  | 0.05R   | 0.10R   | 0.15R   | 0.20R   | 0.25R   | 0.30R           | 0.40R                                    | 0.50R   | 0.60R   | 0.70R   | 0.80R   | 0.90R   | 1.00R   |
|      |         |         |         |         |         | Radial Mo       | Radial Moments, $M_{_{ m r}}$            |         |         |         |         |         |         |
| 0.05 | -0.2100 | -0.0729 | -0.0275 | -0.0026 | +0.0133 | +0.0238         | +0.0342                                  | +0.0347 | +0.0277 | +0.0142 | -0.0049 | -0.0294 | -0.0589 |
| 0.10 |         | -0.1433 | -0.0624 | -0.0239 | -0.0011 | +0.0136         | +0.0290                                  | +0.0326 | +0.0276 | +0.0158 | -0.0021 | -0.0255 | -0.0541 |
| ).15 |         |         | -0.1089 | -0.0521 | -0.0200 | +0.0002         | +0.0220                                  | +0.0293 | +0.0269 | +0.0169 | +0.0006 | -0.0216 | -0.0490 |
| 0.20 |         |         |         | -0.0862 | -0.0429 | -0.0161         | +0.0133                                  | +0.0249 | +0.0254 | +0.0176 | +0.0029 | -0.0178 | -0.0441 |
| 0.25 |         |         |         |         | 8690.0- | -0.0351         | +0.0029                                  | +0.0194 | +0.0231 | +0.0177 | +0.0049 | -0.0143 | -0.0393 |
|      |         |         |         |         |         | Tangential !    | $oxed{ }$ Tangential Moments, $M_{ m t}$ |         |         |         |         |         |         |
| 0.05 | -0.0417 | -0.0700 | -0.0541 | -0.0381 | -0.0251 | -0.0145         | +0.0002                                  | +0.0085 | +0.0118 | +0.0109 | +0.0065 | -0.0003 | -0.0119 |
| 0.10 |         | -0.0287 | -0.0421 | -0.0354 | -0.0258 | -0.0168         | -0.0027                                  | +0.0059 | +0.0099 | +0.0098 | +0.0061 | 6000.0- | -0.0108 |
| 0.15 |         |         | -0.0218 | -0.0284 | -0.0243 | -0.0177         | -0.0051                                  | +0.0031 | +0.0080 | +0.0086 | +0.0057 | -0.0006 | -0.0098 |
| 0.20 |         |         |         | -0.0172 | -0.0203 | -0.0171         | -0.0070                                  | +0.0013 | +0.0063 | +0.0075 | +0.0052 | -0.0003 | -0.0088 |
| .25  |         |         |         |         | -0.0140 | -0.0150         | -0.0083                                  | -0.0005 | +0.0046 | +0.0064 | +0.0048 | 0.0000  | -0.0078 |

Table 16 Moment Coefficients for Circular Slabs for Case 10 Arrangement

( Table 2, Clauses 3.1 and 3.1.6 )

|                                  | 1.0R  |                            | 0       | 0       | 0       | 0       | 0       |                               | +0.0168 | +0.0145 | +0.0123 | +0.0103 | +0.0085 |
|----------------------------------|-------|----------------------------|---------|---------|---------|---------|---------|-------------------------------|---------|---------|---------|---------|---------|
|                                  | 0.90R |                            | +0.0247 | +0.0237 | +0.0226 | +0.0215 | +0.0200 |                               | +0.0228 | +0.0199 | +0.0172 | +0.0148 | +0.0122 |
|                                  | 0.80R |                            | +0.0437 | +0.0416 | +0.0393 | +0.0368 | +0.0340 |                               | +0.0251 | +0.0218 | +0.0186 | +0.0158 | +0.0132 |
|                                  | 0.70R |                            | +0.0566 | +0.0532 | +0.0494 | +0.0451 | +0.0404 |                               | +0.0234 | +0.0197 | +0.0163 | +0.0132 | +0.0103 |
|                                  | 0.60R |                            | +0.0629 | +0.0578 | +0.0518 | +0.0452 | +0.0381 |                               | +0.0175 | +0.0134 | +0.0097 | +0.0065 | +0.0038 |
| (;                               | 0.50R |                            | +0.0614 | +0.0539 | +0.0451 | +0.0352 | +0.0245 |                               | +0.0061 | +0.0020 | -0.0014 | -0.0042 | -0.0062 |
| Coefficients at Point ( see Note | 0.40R | ments, $M_{_{ m r}}$       | +0.0501 | +0.0391 | +0.0258 | +0.0109 | +0.0055 | ${\bf 1oments}, M_{_{\rm t}}$ | -0.0121 | -0.0153 | -0.0175 | -0.0184 | -0.0184 |
| oefficients at P                 | 0.30R | Radial Moments, $M_{ m i}$ | +0.0255 | +0.0081 | -0.0135 | -0.0381 | -0.0645 | Tangential Moments, M         | -0.0391 | -0.0394 | -0.0375 | -0.0333 | -0.0263 |
| C                                | 0.25R |                            | +0.0058 | -0.0176 | -0.0467 | -0.0800 | -0.1172 |                               | -0.0569 | -0.0539 | -0.0470 | -0.0367 | -0.0234 |
|                                  | 0.20R |                            | -0.0221 | -0.0557 | -0.0977 | -0.1465 |         |                               | -0.0786 | -0.0684 | -0.0516 | -0.0293 |         |
|                                  | 0.15R |                            | -0.0640 | -0.1180 | -0.1869 |         |         |                               | -0.1040 | -0.0768 | -0.0374 |         |         |
|                                  | 0.10R |                            | -0.1388 | -0.2487 |         |         |         |                               | -0.1277 | -0.0498 |         |         |         |
|                                  | 0.05R |                            | -0.3658 |         |         |         |         |                               | -0.0731 |         |         |         |         |
|                                  | c/D   |                            | 0.05    | 0.10    | 0.15    | 0.20    | 0.25    |                               | 0.05    | 0.10    | 0.15    | 0.20    | 0.25    |

Table 17 Moment Coefficients for Circular Slabs for Case 11 Arrangement (  $Table\ 2$  ,  $Clauses\ 3.1$  and 3.1.6 )

|                                    | 1.00R |                      | +1.000                                                             | +1.000 | +1.000 | +1.000 | +1.000 |                        | +0.486 | +0.469 | +0.451 | +0.433 | +0.414 |                                                              |
|------------------------------------|-------|----------------------|--------------------------------------------------------------------|--------|--------|--------|--------|------------------------|--------|--------|--------|--------|--------|--------------------------------------------------------------|
|                                    | 0.90R |                      | +0.917<br>+0.909<br>+0.900<br>+0.891<br>+0.880<br>+0.384<br>+0.384 | 000.0  | +0.340 | +0.320 | -      |                        |        |        |        |        |        |                                                              |
|                                    | 0.80R |                      | +0.824                                                             | +0.808 | +0.790 | +0.768 | +0.740 |                        | +0.314 | +0.290 | +0.263 | +0.240 | +0.214 |                                                              |
|                                    | 0.70R |                      | +0.718                                                             | +0.692 | +0.663 | +0.624 | +0.577 |                        | +0.212 | +0.185 | +0.157 | +0.129 | +0.099 |                                                              |
|                                    | 0.60R |                      | +0.596                                                             | +0.558 | +0.510 | +0.451 | +0.392 |                        | +0.095 | +0.066 | +0.035 | +0.007 | -0.020 |                                                              |
|                                    | 0.50R |                      | +0.450                                                             | +0.394 | +0.323 | +0.236 | +0.130 |                        | -0.042 | -0.072 | -0.100 | -0.123 | -0.145 |                                                              |
| Coefficients at Point ( see Note ) | 0.40R | ments, $M_{_{ m r}}$ | +0.268                                                             | +0.187 | +0.078 | -0.057 | -0.216 | loments, $M_{_{ m t}}$ | -0.211 | -0.233 | -0.251 | -0.261 | -0.259 |                                                              |
| efficients at Po                   | 0.30R | Radial Moments, M.   | +0.029                                                             | -0.103 | -0.280 | -0.499 | -0.765 | Tangential Moments, M  | -0.418 | -0.419 | -0.404 | -0.368 | -0.305 |                                                              |
| Coe                                | 0.25R |                      | -0.129                                                             | -0.305 | -0.545 | -0.842 | -1.204 |                        | -0.544 | -0.518 | -0.463 | -0.372 | -0.239 |                                                              |
|                                    | 0.20R |                      | -0.333                                                             | -0.584 | -0.930 | -1.366 |        |                        | -0.688 | -0.608 | -0.472 | -0.272 |        | face loaded.                                                 |
|                                    | 0.15R |                      | -0.622                                                             | -1.026 | -1.594 |        |        |                        | -0.847 | -0.641 | -0.319 |        |        | pression in sur                                              |
|                                    | 0.10R |                      | -1.121                                                             | -1.950 |        |        |        |                        | -0.980 | -0.388 |        |        |        | n indicates com                                              |
|                                    | 0.05R |                      | -2.650                                                             |        |        |        |        |                        | -0.530 |        |        |        |        | NOTE — Positive sign indicates compression in surface loaded |
|                                    | c/D   |                      | 0.05                                                               | 0.10   | 0.15   | 0.20   | 0.25   |                        | 0.05   | 0.10   | 0.15   | 0.20   | 0.25   | NOTE -                                                       |

Table 18 Shear Coefficients at the Base of Cylindrical Wall

( Table 2, Clauses 3.1 and 3.1.6 )

|       |                                | Point (see Note )               |                                                |                |  |
|-------|--------------------------------|---------------------------------|------------------------------------------------|----------------|--|
| H²/Dt | Triangular Load,<br>Fixed Base | Rectangular Load,<br>Fixed Base | Triangular or Rectangular<br>Load, Hinged Base | Moment at Edge |  |
| 0.4   | +0.436                         | +0.755                          | +0.245                                         | -1.58          |  |
| 0.8   | +0.374                         | +0.552                          | +0.234                                         | -1.75          |  |
| 1.2   | +0.339                         | +0.460                          | +0.220                                         | -2.00          |  |
| 1.6   | +0.317                         | +0.407                          | +0.204                                         | -2.28          |  |
| 2.0   | +0.299                         | +0.370                          | +0.189                                         | -2.57          |  |
| 3.0   | +0.262                         | +0.310                          | +0.158                                         | -3.18          |  |
| 4.0   | +0.236                         | +0.271                          | +0.137                                         | -3.68          |  |
| 5.0   | +0.213                         | +0.243                          | +0.121                                         | -4.10          |  |
| 6.0   | +0.197                         | +0.222                          | +0.110                                         | -4.49          |  |
| 8.0   | +0.174                         | +0.193                          | +0.096                                         | -5.18          |  |
| 10.0  | +0.158                         | +0.172                          | +0.087                                         | -5.81          |  |
| 12.0  | +0.145                         | +0.158                          | +0.079                                         | -6.38          |  |
| 14.0  | +0.135                         | +0.147                          | +0.073                                         | -6.88          |  |
| 16.0  | +0.0127                        | +0.137                          | +0.068                                         | -7.38          |  |
| 20.0  | +0.114                         | +0.122                          | +0.062                                         | -8.20          |  |
| 24.0  | +0.102                         | +0.111                          | +0.055                                         | -8.94          |  |
| 32.0  | +0.089                         | +0.096                          | +0.048                                         | -10.36         |  |
| 40.0  | +0.080                         | +0.086                          | +0.043                                         | -10.62         |  |
| 48.0  | +0.072                         | +0.079                          | +0.039                                         | -12.76         |  |
| 56.0  | +0.067                         | +0.074                          | +0.036                                         | -13.76         |  |

NOTE — Positive sign indicates shear acting inward.

Table 19 Load Coefficients for Load on Centre Support for Circular Slab

( Clauses 3.1.4 and 3.1.6 )

| c/D            | 0.005 | 0.10  | 0.15  | 0.20  | 0.25  |
|----------------|-------|-------|-------|-------|-------|
| Hinged         | 1.320 | 1.387 | 1.463 | 1.542 | 1.625 |
| Fixed          | 0.839 | 0.919 | 1.007 | 1.101 | 1.200 |
| Moment at edge | 8.16  | 8.66  | 9.29  | 9.99  | 10.81 |

# **Table 20 Stiffness Coefficients for Stiffness of Circular Plates**

( Clauses 3.1.5 and 3.1.6 )

| c/D                    | 0.05  | 0.10  | 0.15   | 0.20  | 0.25  |
|------------------------|-------|-------|--------|-------|-------|
| With centre support    | 0.290 | 0.309 | 0.3332 | 0.358 | 0.387 |
| Without centre support | 0.104 | 0.104 | 0.104  | 0.104 | 0.104 |

# **ANNEX A**

(Foreword)

# **COMMITTEE COMPOSITION**

Cement and Concrete Sectional Committee, CED 02

|                                                                                     | ,                                                                   |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Organization                                                                        | Representative(s)                                                   |
| In Personal Capacity ( <i>Grace Villa, Kadamankulam P.O., Thiruvalla 689 583</i> )  | Shri Jose Kurian ( <i>Chairman</i> )                                |
| ACC Ltd, Mumbai                                                                     | Shri Rajesh J. Modi<br>Dr Manish V. Karandikar ( <i>Alternate</i> ) |
| Ambuja Cements Limited, Ahmedabad                                                   | Shri Umesh P. Soni<br>Shri Sukuru Ramarao ( <i>Alternate</i> )      |
| Atomic Energy Regulatory Board, Mumbai                                              | Shri L. R. Bishnoi<br>Shri Sourav Acharya ( <i>Alternate</i> )      |
| Builders' Association of India, Mumbai                                              | Shri Sushanta Kumar Basu<br>Shri D. R. Sekor ( <i>Alternate</i> )   |
| Building Materials & Technology Promotion Council,<br>New Delhi                     | Shri C. N. Jha                                                      |
| Cement Manufacturers' Association, Noida                                            | Dr V. Ramachandra<br>Ms Shashwati Ghosh ( <i>Alternate</i> )        |
| Central Public Works Department, New Delhi                                          | Shri D. K. Garg<br>Shri Naveen Kumar Bansal ( <i>Alternate</i> )    |
| Central Soil and Materials Research Station,<br>New Delhi                           | Director<br>Shri U. S. Vidyarthi ( <i>Alternate</i> )               |
| Central Water Commission, New Delhi                                                 | DIRECTOR (CMDD) (N&W) DEPUTY DIRECTOR (CMDD) (NW&S) (Alternate)     |
| Conmat Technolgies Pvt Ltd, Kolkata                                                 | Dr A. K. Chatterjee<br>Dr Subrato Chowdhury ( <i>Alternate</i> )    |
| Construction Chemical Manufacturers' Association,<br>Mumbai                         | Shri Samir Surlaker<br>Shri Nilotpol Kar ( <i>Alternate</i> )       |
| CSIR – Central Building Research Institute, Roorkee                                 | Shri S. K. Singh<br>Shri Subhash Gurram ( <i>Alternate</i> )        |
| CSIR – Central Road Research Institute, New Delhi                                   | Dr Rakesh Kumar<br>Dr V. V. L. Kanta Rao ( <i>Alternate</i> )       |
| CSIR – Structural Engineering Research Centre,<br>Chennai                           | Dr K. Ramanjaneyulu<br>Dr P. Srinivasan ( <i>Alternate</i> )        |
| Delhi Development Authority, New Delhi                                              | Shri Laxman Singh<br>Shri Vijay Shankar ( <i>Alternate</i> )        |
| Department of Science and Technology, Ministry of Science and Technology, New Delhi | Shri S. S. Kohli                                                    |
| Engineers India Limited, New Delhi                                                  | Shri Rajanji Srivastava<br>Shri Anurag Sinha ( <i>Alternate</i> )   |
| Gammon India Limited, Mumbai                                                        | SHRI SHRIRAM B. KULKARNI                                            |

Shri Rahul Biradar (Alternate)

| Organization                                                                                                            | Representative(s)                                                     |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Hindustan Construction Company Limited, Mumbai                                                                          | Shri Satish Kumar Sharma<br>Shri Mukesh Valecha ( <i>Alternate</i> )  |
| Housing and Urban Development Corporation<br>Limited, New Delhi                                                         | Representative                                                        |
| Indian Association of Structural Engineers,<br>New Delhi                                                                | Shri Mahesh Tandon<br>Shri Ganesh Juneja ( <i>Alternate</i> )         |
| Indian Concrete Institute, Chennai                                                                                      | Shri Vivek Naik<br>Secretary General ( <i>Alternate</i> )             |
| Indian Institute of Technology Delhi, New Delhi                                                                         | Dr Shashank Bishnoi<br>Dr Dipti Ranjan Sahoo ( <i>Alternate</i> )     |
| Indian Institute of Technology Madras, Chennai                                                                          | Dr Devdas Menon<br>Dr Manu Santhanam ( <i>Alternate</i> )             |
| Indian Institute of Technology Roorkee, Roorkee                                                                         | Dr V. K. Gupta<br>Dr Bhupinder Singh ( <i>Alternate</i> )             |
| Indian Roads Congress, New Delhi                                                                                        | SHRI S. K. NIRMAL<br>SHRI R. V. PATIL ( <i>Alternate</i> )            |
| Military Engineer Services, Engineer-in-Chief's<br>Branch, Army HQ, New Delhi                                           | Maj Gen S. K. Srivastav<br>Shri Man Singh ( <i>Alternate</i> )        |
| Ministry of Road Transport and Highways,<br>New Delhi                                                                   | Shri Y. Balakrishna<br>Shri Sanjeev Kumar ( <i>Alternate</i> )        |
| National Council for Cement and Building Materials,<br>Ballabgarh                                                       | Shri V. V. Arora<br>Dr S. K. Chaturvedi ( <i>Alternate</i> )          |
| National Test House, Kolkata                                                                                            | SHRI D. V. S. PRASAD<br>DR SOMIT NEOGI ( <i>Alternate</i> )           |
| Nuclear Power Corporation of India Ltd, Mumbai                                                                          | Shri Arvind Shrivastava<br>Shri Raghupati Roy ( <i>Alternate</i> )    |
| Nuvoco Vistas Corporation Limited, Mumbai                                                                               | Shri Pranav Desai<br>Shri Ravindra Khamparia ( <i>Alternate</i> )     |
| Public Works Department, Govt of Tamil Nadu,<br>Chennai                                                                 | Superintending Engineer<br>Executive Engineer ( <i>Alternate</i> )    |
| The India Cements Limited, Chennai                                                                                      | Representative                                                        |
| The Indian Hume Pipe Company Limited, Mumbai                                                                            | Shri P. R. Bhat<br>Shri S. J. Shah ( <i>Alternate</i> )               |
| The Institution of Engineers (India), Kolkata                                                                           | Dr H. C. Visvesvaraya<br>Shri S. H. Jain ( <i>Alternate</i> )         |
| The Ramco Cements Limited, Chennai                                                                                      | Shri Balaji K. Moorthy<br>Shri Anil Kumar Pillai ( <i>Alternate</i> ) |
| Ultra Tech Cement Ltd, Mumbai                                                                                           | Shri Surya Valluri<br>Dr M. R. Kalgal ( <i>Alternate</i> )            |
| Voluntary Organization in Interest of Consumer<br>Education, New Delhi                                                  | SHRI M. A. U. KHAN SHRI B. MUKHOPADHYAY ( <i>Alternate</i> )          |
| In personal capacity [ <i>B-803</i> , <i>Oberoi Exquisite</i> ,<br><i>Oberoi Garden City, Goregaon (East), Mumbai</i> ] | Shri A. K. Jain                                                       |

Organization

Representative(s)

In personal capacity (36, Old Sneh Nagar, Wardha

Road, Nagpur)

SHRI L. K. JAIN

In personal capacity (EA-92, Maya Enclave, Hari

Nagar, New Delhi)

SHRI R. C. WASON

BIS Directorate General SHRI SANJAY PANT, SCIENTIST 'F' AND HEAD (CIVIL ENGINEERING)

[ Representing Director General ( Ex-officio ) ]

Member Secretaries

SHRI S. ARUN KUMAR

SCIENTIST 'E' (CIVIL ENGINEERING), BIS

and

SHRI MILIND GUPTA

SCIENTIST 'C' (CIVIL ENGINEERING), BIS

#### Concrete Subcommittee, CED 2:2

Organization Representative(s)

In Personal Capacity (Grace Villa, Kadamankulam P.O.,

*Thiruvalla 689 583*)

ACC Limited, Mumbai Shri Prahlad Mujumdar

Shri Anil Kulkarni (Alternate)

Ambuja Cements Limited, Ahmedabad SHRI UMESH P. SONI

Shri Sukru Ramarao (Alternate)

AFCONS Infrastructure Limited, Mumbai SHRI MANISH MOKAL

Association of Consulting Civil Engineers (India), SHRI AVINASH D. SHIRODE

Bengaluru

SHRI K. K. MEGHASHYAM (Alternate)

Atomic Energy Regulatory Board, Mumbai Shri L. R. Bishnoi

Shri Sourav Acharya (Alternate)

Building Materials and Technology Promotion Council, New Delhi

Bureau of Design for Hydel and Irrigation Project, Bhopal

SHRI S. K. KHARE

Bureau Veritas India Ltd, Mumbai REPRESENTATIVE

Central Public Works Department, New Delhi SHRI D. K. GARG

Central Soil & Materials Research Station, New Delhi Shri Rajeev Kumar

SHRI RAJ KUMAR (Alternate)

Creative Design Consultants & Engineers Pvt Ltd, SHRI AMAN DEEP GARG

Ghaziabad

CSIR - Central Building Research Institute, Roorkee

CSIR - Central Road Research Institute, New Delhi

Shri Rajesh Khare (Alternate)

Shri Jose Kurian (Convener)

Shri Manik Chatterjee (Alternate)

Shri Bhagwati Prasad Gupta (Alternate)

Dr Rajesh Deolia

SHRI PANKAJ GUPTA

SHRI H. C. ARORA (Alternate)

SHRI J. B. SENGUPTA

SHRI SATISH PANDEY (Alternate)

| 22 50 70 (2 41.0 41.0 50 50) 7 2022                                                                |                                                                                    |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Organization                                                                                       | Representative(s)                                                                  |
| CSIR – Structural Engineering Research Centre, Chennai                                             | Dr B. H. Bharathkumar<br>Dr P. Srinivasan ( <i>Alternate</i> )                     |
| Department of Science and Technology, Ministry of Science and Technology, New Delhi                | Shri S. S. Kohli                                                                   |
| Elkem South Asia Pvt Ltd, Navi Mumbai                                                              | Shri Brajesh Malviya<br>Shri Surendra Sharma ( <i>Alternate</i> )                  |
| Engineers India Limited, New Delhi                                                                 | Shri Rajanji Srivastava<br>Shri Anurag Sinha ( <i>Alternate</i> )                  |
| Gammon India Limited, Mumbai                                                                       | Shri Sudeesh Rajendran                                                             |
| Hindustan Construction Company Ltd, Mumbai                                                         | Shri Satish Kumar Sharma<br>Shri Khatarbatcha Jimmetain ( <i>Alternate</i> )       |
| Indian Concrete Institute, Chennai                                                                 | Shri K. C. Tayade<br>Secretary General ( <i>Alternate</i> )                        |
| Indian Institute of Technology Delhi, New Delhi                                                    | Dr B. Bhattacharjee<br>Dr Shashank Bishnoi ( <i>Alternate</i> )                    |
| Indian Institute of Technology Kanpur, Kanpur                                                      | Dr Sudhir Mishra                                                                   |
| Indian Institute of Technology Madras, Chennai                                                     | Dr Manu Santhanam<br>Dr Radhakrishna G. Pillai ( <i>Alternate</i> )                |
| Indian Institute of Technology Roorkee, Roorkee                                                    | Representative                                                                     |
| Indian Society of Structural Engineers, Mumbai                                                     | Shri Umesh Joshi<br>Shri Hemant Vadalkar ( <i>Alternate</i> )                      |
| Irrigation and Power Research Institute, Amritsar                                                  | Chief Engineer (Research) Research Officer ( <i>Alternate</i> )                    |
| Larsen and Toubro Limited, ECC Division, Chennai                                                   | Dr B. Sivarama Sarma<br>Shri S. Manohar ( <i>Alternate</i> )                       |
| Military Engineer Services, Engineer-in- Chief's Branch,<br>Integrated HQ of MoD (Army), New Delhi | Maj Gen S. K. Srivastav<br>Shri Man Singh ( <i>Alternate</i> )                     |
| Ministry of Road Transport and Highways, New Delhi                                                 | Shri A. P. Pathak<br>Shri A. K. Pandey ( <i>Alternate</i> )                        |
| NBCC (India) Limited, New Delhi                                                                    | Shri H. S. Yadav<br>Shri Arun Kumar Sharma ( <i>Alternate</i> )                    |
| National Council for Cement and Building Materials,<br>Ballabgarh                                  | Shri V. V. Arora<br>Shri P. N. Ojha ( <i>Alternate</i> )                           |
| National Institute of Technology Warangal, Warangal                                                | Dr C. B. Kameswara Rao<br>Dr D. Rama Seshu ( <i>Alternate</i> )                    |
| Nuclear Power Corporation of India Limited, Mumbai                                                 | Shri Arvind Shrivastava<br>Shri N. M. Rao ( <i>Alternate</i> )                     |
| Pidilite Industries Limited, Mumbai                                                                | Dr Suguna Naik                                                                     |
| Ready Mixed Concrete Manufacturers' Association,<br>Mumbai                                         | Shri Vijaykumar R. Kulkarni<br>Shri Srirang Sondur ( <i>Alternate</i> )            |
| Research, Designs & Standards Organisation (Ministry of Railways), Lucknow                         | Jt Director Stdrs (B&S)/CB-I<br>Jt Director Stdrs (B&S)/CB-II ( <i>Alternate</i> ) |
| RDC Concrete (India) Pvt Ltd, Thane                                                                | Representative                                                                     |
| Shapoorji Pallonji and Company Private Limited,<br>Mumbai                                          | Shri Girish Bonde<br>Shri D. N. Vishwanath ( <i>Alternate</i> )                    |

 $Shri\ Mahesh\ Tandon$ 

Shri Vinay Gupta (Alternate)

Tandon Consultants Pvt Limited, New Delhi

Organization

Tata Consulting Engineers Limited, Mumbai

Shri S. N. Diwakar

SHRI MANOS KUMAR DE (Alternate) Dr V. Ramachandra

Ultra Tech Cement Ltd, Mumbai

DR A. K. SINGH (Alternate)

Representative(s)

Water Resource Department, Govt. of Madhya Pradesh, Mumbai

SHRI S. K. KHARE

In personal capacity (452 Sector 14, Sonipat, Haryana)

SHRI B. P. GUPTA (Alternate)

In personal capacity (36, Old Sneh Nagar, Wardha Road, Nagpur)

SHRI R. K. JAIN SHRI L. K. JAIN

In personal capacity [B-803, Oberoi Exquisite, Oberoi

Garden City, Goregaon (East), Mumbai]

SHRI A. K. JAIN

In personal capacity (EA-92, Maya Enclave, Hari Nagar, New Delhi)

SHRI R. C. WASON

In personal capacity (M1 F1 VGN Minerva Apartments,

Dr C. Rajkumar

Guruswamy Road, Nolambur, Chennai)

#### Panel for Review/Revision of IS 3370, CED 2:2/P1

Organization

Representative(s)

In Personal Capacity (36, Old Sneh Nagar, Wardha Road, Nagpur 440 015)

SHRI L. K. JAIN (Convener)

Creative Design Consultant & Engineers Pvt Ltd,

Shri Aman Deep Garg

Ghaziabad

Shri Manik Chatterjee (Alternate)

CSIR-Central Road Research Institute, New Delhi

DIRECTOR

CSIR-Structural Engineering Research Centre, Chennai

DR B. H. BHARATHKUMAR DR P. SRINIVASAN (Alternate)

Gammon Engineers & Contractors Pvt Ltd, Mumbai

SHRI S. W. DESHPANDE SHRI MUKUND C. BUTALA (Alternate)

Government College of Engineering, Pune

Dr Namdeo A. Hedaoo

Hindustan Construction Company Ltd, Mumbai

Shri Satish Kumar Sharma Shri Mukesh Valecha (Alternate)

Indian Concrete Institite, Chennai

REPRESENTATIVE

Indian Institute of Technology Delhi, New Delhi

DR DIPTI RANJAN SAHOO Dr Shashank Bishnoi (Alternate)

Indian Institute of Technology Roorkee, Roorkee Dr Ashok K. Jain

Military Engineer Services, Engineer-in-Chief's Branch,

Shri J. B. Sharma

Integrated HQ of MoD (Army), New Delhi

SHRI YOGESH K. SINGHAL (Alternate)

National Council for Cement & Building Materials, Ballabgarh

Shri V. V. Arora

SHRI T. V. G. REDDY (Alternate)

Tata Consulting Engineers Limited, Mumbai

SHRI S. KRISHNA (Alternate)

In personal capacity (Grace Villa, Kadamankulam P.O.,

SHRI JOSE KURIAN

Shri S. M. Palekar

Thiruvalla 689 583)

Organization Representative(s) In personal capacity (A2B/37A, Ekta Apartment, Paschim Shri Arvind Kumar Vihar, New Delhi 110 063) In personal capacity (Flat No. 220, Ankur Apartments, Dr V. Thiruvengadam Mother Dairy Road, Patparganj, Delhi 110 092) In personal capacity (K-L/2, Kavi Nagar, DR A. K. MITTAL Ghaziabad 201 002) In personal capacity (House No. 2103 Sector 7D, Shri Harish Kumar Julka Faridabad 121 006) In personal capacity (EA-92, Maya Enclave, Hari Nagar, Shri R. C. Wason New Delhi)

Free Standard provided by BIS via BSB Edge Private Limited to Guru Nanak Dev Engineering College, Ludhiana - Ludhiana (deepanshurathore634@gmail.com) 49.156.94.229.

(Continued from second cover)

The Sectional Committee responsible for the formulation of this standard has taken into consideration the views of engineers and technologists and has related the standard to the practices followed in the country in this field. Due weightage has also been given to the need for international coordination among the standards prevailing in different countries of the world. These considerations led the Sectional Committee to derive assistance from published materials of British Standards Institution and Portland Cement Association, Illinois, USA. Tables have been reproduced from the following publication of Portland Cement Association, Illinois, USA, namely 'Circular Concrete Tanks without Prestressing' and the same is thankfully acknowledged.

The composition of the Committee responsible for the formulation of this standard is given in Annex A.

For the purpose of deciding whether a particular requirement of this standard is complied with the final value, observed or calculated, expressing the result of a test or analysis shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values ( revised )'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard

#### **Bureau of Indian Standards**

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 2016 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

#### Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

#### **Review of Indian Standards**

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc No.: CED 02 (13705).

#### **Amendments Issued Since Publication**

| Amend No. | Date of Issue | Text Affected |  |
|-----------|---------------|---------------|--|
|           |               |               |  |
|           |               |               |  |
|           |               |               |  |

#### **BUREAU OF INDIAN STANDARDS**

#### **Headquarters:**

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Telephones: 2323 0131, 2323 3375, 2323 9402 Website: www.bis.gov.in

|                                                                                                                                        | ,, e a a                                     |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Regional Offices:                                                                                                                      | Telephones                                   |
| Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg<br>NEW DELHI 110002                                                                  | { 2323 7617<br>2323 3841                     |
| Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi KOLKATA 700054                                                            | 2337 8499, 2337 8561<br>2337 8626, 2337 9120 |
| Northern: Plot No. 4-A, Sector 27-B, Madhya Marg<br>CHANDIGARH 160019                                                                  | 265 0206<br>265 0290                         |
| Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600113                                                                                 | 2254 1216, 2254 1442<br>2254 2519, 2254 2315 |
| Western : Manakalaya, E9 MIDC, Marol, Andheri (East)<br>MUMBAI 400093                                                                  | 2832 9295, 2832 7858<br>2832 7891, 2832 7892 |
| Branches : AHMEDABAD. BENGALURU. BHOPAL. DEHRADUN. DURGAPUR. FARIDABAI HYDERABAD. JAIPUR. JAMMU. JAM NAGPUR. PARWANOO. PATNA. PUNE. RA | SHEDPUR. KOCHI. LUCKNOW.                     |

Published by BIS, New Delhi