Homework 1

Prabhjot Singh Rai

September 30, 2018

1 Optimization and probability

Solution 1a: In order to check whether the minima exists for the function, $f(\theta)$, we calculate $f''(\theta)$.

$$\frac{df(\theta)}{d\theta} = \sum_{i=1}^{n} w_i(\theta - x_i)$$
$$g(\theta) = \sum_{i=1}^{n} w_i \theta - \sum_{i=1}^{n} w_i x_i$$

Differentiating $g(\theta)$, we get

$$\frac{dg(\theta)}{d\theta} = \sum_{i=1}^{n} w_i \tag{1}$$

Since it is given that $w_i, ..., w_n$ are positive real numbers, therefore $f''(\theta) > 0$, which shows that the graph of this quadratic function is concave up and minima exists at value of θ when $f'(\theta) = 0$.

$$\frac{df(\theta)}{d\theta} = \sum_{i=1}^{n} w_i (\theta - x_i)$$
$$0 = \sum_{i=1}^{n} w_i \theta - \sum_{i=1}^{n} w_i x_i$$
$$\theta = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Therefore, the value of θ which minimizes $f(\theta)$ is $\frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$. If some of the w_i 's are negative, then from equation (1), it's not necessary that $f''(\theta)$ is

always positive. If $f''(\theta) < 0$, the function may not have any defined minima, since it will be concave downwards. And if a point of inflection exists $(f''(\theta) = 0)$, then again, there would be local minima and maxima but no defined global minima for the function.

Solution 1b. Let n vectors out of x_i, x_d be negative where n <= d. Let sum of negative vectors be $-\beta$ and sum of positive vectors be α , where α and β are both positive numbers. Evaluating f(x),

$$f(x) = \sum_{i=1}^{d} \max_{s \in \{1,-1\}} sx_i$$
$$= \max_{s \in \{1,-1\}} s(\alpha) + \max_{s \in \{1,-1\}} s(-\beta)$$
$$= \alpha + \beta$$

Evaluating g(x),