ď	ധ വ ഷ	
ജവ	รหัสนักศึกษา	
טט		

Lab 1: Introduction to Wolfram Mathematica for Logic and Proofs

Task 1: How to display text and value

```
In[o]:= Print["Hello CPE111"]
In[o]:= "Hello CPE111"
```

Task 2: Variable and Datatype

```
In[*]:= a = 10

In[*]:= b := 10

In[*]:= c = 10;

string

In[*]:= "Hello World"

In[*]:= a = "Hello World"
```

Task 3: Operations

```
In[o]:= a = 5;
b = 2;
a + b

In[o]:= a * b

In[o]:= a / b

In[o]:= N[%]

In[o]:= a ^ b
```

```
myValue = {10, 20, 30};
       myValue + 10
In[ • ]:=
```

Todo: List the first 10 terms of the sequence " $2(-3)^n+5^n$ "

```
(*write your code here*)
       y = 2x + 5
In[ • ]:=
```

Task 4: Propositional Logic

```
In[ • ]:=
        prop
        prop = True
In[ • ]:=
In[ • ]:=
        prop
       To remove the assigned value
        Clear[prop]
In[ • ]:=
        prop =.
In[ • ]:=
```

Logical Connectives

name	function	without alias	alias	symbol
negation	Not	İ	ESC not ESC	٦
conjunction	And	&&	ESC and ESC	٨
exclusive or	Xor		ESC XOT ESC	V
disjunction	Or	II	ESC or ESC	V
biconditional	Equivalent		ESCequivesc	\Leftrightarrow
implication	Implies		ESC = > ESC	\Rightarrow

```
Or[True, False]
In[ • ]:=
        Implies[True,And[False,True]]
In[ • ]:=
        Xor[True,True]
In[ • ]:=
In[ • ]:=
        !True
        (True||False)&&True
In[ • ]:=
```

```
True ∧ False
In[ • ]:=
        False ⇒ False
In[ • ]:=
```

Evaluating Expressions

```
In[ • ]:=
        prop = !p
        p = True
In[ • ]:=
In[ • ]:=
        prop
        prop /.p→True
In[ • ]:=
        p&&(!q)/.{p→True,q→False}
In[ • ]:=
```

Todo: Find the truth value of $(p \land (\neg q)) \rightarrow (r \Leftrightarrow q)$ when p = True, q = False and r = q**False**

```
(*write your code here*)
```

Truth Tables

```
Clear[p, q]
In[ • ]:=
In[ • ]:=
       BooleanTable[p&&(!q),{p,q}]
       BooleanTable[{p, q, p&&(!q)},{p,q}]
In[ • ]:=
       BooleanTable[{p, q, p&&(!q)},{p,q}] // TableForm
In[ • ]:=
```

Todo: Construct the truth table of the compound proposition

```
(p \lor \neg q) \Rightarrow (p \lor q)
  (*write you code here*)
(q \rightarrow \neg p) \leftrightarrow (p \leftrightarrow q)
  (*write you code here*)
(p \rightarrow q) \land (\neg p \rightarrow r)
  (*write you code here*)
```

Task 5: Propositional Equivalence

```
TautologyQ[Equivalent[!(p&&q), !p||!q], {p, q}]
```

Todo: Show that the following statements are logically equivalent.

```
\neg (p \oplus q) and p \leftrightarrow q
```

```
(*write you code here*)
```

$$(p \rightarrow r) \wedge (q \rightarrow r)$$
 and $(p \vee q) \rightarrow r$

(*write you code here*)

Task 6: Predicates and Quantifiers

```
In[ • ]:=
         gt0[x_] := x > 0
        gt0[5]
In[ • ]:=
        gt0[-3]
In[ • ]:=
```

Representation of Quantifiers

```
ForAll[x, P[x]]
In[ • ]:=
       Exists[x, -x < 0]
       ForAll[x, x > 0, -x < 0]
In[ • ]:=
In[ • ]:=
       Exists[x, Element[x, Reals], x^2 < 0]</pre>
```

Truth Value of Quantified Statements

```
Resolve[Exists[x, -x < 0]]</pre>
In[ • ]:=
       Resolve[ForAll[x, x > 0, -x < 0]]
In[ • ]:=
```

Plot[-x, {x, 0, 10}, AxesLabel→{"X", "Y"}]

Out[•]=

In[•]:=

In[•]:= Resolve[Exists[x, Element[x, Reals], x^2 < 0]]</pre>

Plot[x^2 , {x, -10, 10}, AxesLabel \rightarrow {"X", "Y"}] In[•]:=

Out[•]=

Resolve[Exists[x, x^2 < 0], Reals]</pre> In[•]:=

Resolve[Exists[x, x^2 < 0],Complexes]</pre> In[•]:=

Resolve[Exists[x, $x^3 = 8$]] In[•]:=

Todo: Determine the truth value and plot the graph of each of these statements if the domain for all variables consists of all **real** numbers

$$\exists x(x^3=-1)$$

(*write your code here*)

```
(*write your code here*)
\exists x(x^4 < x^2)
 (*write your code here*)
 (*write your code here*)
\forall x((-x) \land 2) = x^2
 (*write your code here*)
 (*write your code here*)
\forall x(2x>x)
 (*write your code here*)
 (*write your code here*)
```

Task 7: Rule of Inference

```
TautologyQ[Implies[(!q&&Implies[p, q]), !p]]
```

For example, state which rule of inference is used in the argument:

If it snows today 💸, then we will go skiing 🦫

It is snowing today

Therefore, we will go skiing 🦫.

```
In[*]:= premise = \{\{ \Rightarrow \}, \};
      conclusion = 🎉;
       conjPremise = Apply[And, premise]
       TautologyQ[Implies[conjPremise,conclusion]]
```

Todo: Show that these premises lead to the conclusion, and state which rules of inference are applied.

If I finish my project , then I will submit it online .

If I submit it online (iii), then I will get feedback 📩.

I finished my project 🥟.

Therefore, I will get feedback 📩.

write your steps here

```
(*write your code here*)
```

If I study hard III, then I will pass the exam . If I pass the exam 🎓, then I will graduate 🎉. If I do not graduate ¬, then I will not get a job ¬. I studied hard 📖.

write your steps here

(*write your code here*)