Scuttle robot Wiring Guide (rev 2019.09.10)

Important Info:

To match the beaglebone pins to the pin numbers on the diagram: The tiny white circle on the silkscreen at each connector indicates "pin1"

All Sensors & Actuators

Motor Driver Signal Cables

in1 on DuPont connector goes to in1 on driver

Right Motor drives CW on positive command

Power Supply

Left Motor drives CCW on positive command

The hardware design convention is pin 1 gets the square solder pad.

Motor Driver Power Cables (18awg)

Ultrasonic Distance Sensor (GPIO)

Beaglebone to I2C bus cable

Compass CMPS or CMPS2 (I2C)

Encoder AS5048 (I2C)

Left Hand Encoder A1 is pulled **down** to GND I2C address is 0x40

Right Hand Encoder A1 is pulled **up** to 3.3v I2C address is 0x41

I2C Bus Board

The board is made from a breadboard and soldered manually. The board can be cut between rows J & K

Screw Hole

Left	Left	Right
A1	0	1
A2	0	0
Addres s	0x40	0x41

On the Left Hand Encoder PCB, bridge the pins A1 and A2 using solder.

Encoder Cables

Encoder ends

Bus Board Ends (matching)

NC 20cm from tip to tip 3.3v Gnd SCK SDA 3.3v Left Hand SDA SCK A1 GND 3.3v Gnd NC 3.3v NC SCK Right Hand SDA **A2** Α1 GND

Left	Left	Right
A1	0	1
A2	0	0
Addres s	0x40	0x41

On the Left Hand Encoder PCB, bridge the pins A1 and A2 using solder.

Battery

Connects to

LIDAR

GamePad


```
Button Behavior:

not pressed: 0

Pressed: 1

Axis behavior:

Right returns positive values

down returns positive values
```

```
# Get Button States
x_button = joystick.get_button( 3 )
l_button = joystick.get_button( 6 )
r_button = joystick.get_button( 7 )

l_joy_x = joystick.get_axis( 0 )
l_joy_y = joystick.get_axis( 1 )
```