

The equation for the overall reaction is:

$$2 \; H_2O(I) + 2 \; CI^-(aq) \; \rightarrow H_2\left(g\right) + CI_2(g) \; + 2 \; OH^-(aq)$$

- i. Give the half-equation for oxidation and specify at which electrode $({\bf A}\ {\rm or}\ {\bf B})$ it takes place.
- ii. Is the formation of hydrogen, H₂(g), and chlorine, Cl₂(g), expected according to the standard redox potentials? Explain your answer.

2 marks

iii. Calculate the time required for the production of $1.00 \times 10^4 \, dm^3$ of chlorine, $Cl_2(g)$, if the current is $1.50 \times 10^4 \, A$.

Given: Standard redox potentials:

Redox couple	<i>E</i> ⁸ / V
Cl ₂ (g) / Cl ⁻ (aq)	+1.36
O ₂ (g) / H ₂ O(l)	+1.23
H ₂ O(I) / H ₂ (g)	-0.83
Na ⁺ (aq) / Na(s)	-2.71

Molar volume of chlorine gas:

 $V_{\rm m}$ = 24.5 dm³ mol⁻¹ under the experimental conditions.

1 Faraday = $9.65 \times 10^4 \text{ C mol}^{-1}$