χ^2 testy

B02907 Informační a komunikační technologie

Lubomír Štěpánek, Ústav biofyziky a informatiky 1. LF UK

Upozornění!

- dole v poznámkách jsou u většiny snímků rozšiřující a vysvětlující komentáře
- u některých statistických metod budete odkazováni na statistické tabulky, které jsou volně přístupné online na adrese http://new.euromise.org/czech/tajne/ucebnice/html/html/node15.html
- (obvykle bude ještě na příslušném snímku odkaz zopakován; autor vynaložil značné úsilí, aby se symbolika v prezentacích shodovala se symbolikou v tabulkách, proto by neměla být orientace v tabulkách problémem)
- z předložených prezentací se můžete učit, můžete je kopírovat či jinak měnit, ale bez dovolení autora/autorů je nesmíte použít do svých publikací ☺
- předložené prezentace nejsou bezchybnou statistickou kuchařkou, proto ne zcela doporučuji se na ně ve svých pracích odkazovat, nebo je dokonce citovat
- pokud se budu sám odkazovat na vhodnou literaturu, myslím tím nejspíše následující dvě knihy:
 - Zvára: Biostatistika. Karolinum, Praha 1988
 - Zvárová et al.: Biomedicínská statistika I. Základy statistiky pro biomedicínské obory
- dotazy a konzultace možné a vlastně i doporučeny

(Lubomír Štěpánek, stepanek.lub@seznam.cz)

χ^2 testy

(především pro nominální data, dále pro ordinální, diskrétní metrická a spojitá metrická kategorizovaná data)

Chí kvadrát test dobré shody

- pro jeden výběr s nominálními, příp. ordinálními, diskrétními nebo kategorizovanými spojitými metrickými daty
- H0: zkoumaná veličina má stejné pravděpodobnostní rozdělení jako předpokládaný model, H1: zkoumaná veličina má jiné rozdělení než předpokládaný model
- lze užít k ověření normálnosti dat, potvrzení Poissonova rozdělení, binomického, ale i zcela jiného nespojitého rozdělení
- např. H0: "tělesná výška člověka má na vybraném souboru normální rozdělení"
- zkoumané rozdělení je nespojité, má k hodnot četností, předpokládaná četnost i-té hodnoty je π_i , pozorovaná četnost i-té hodnoty je n_i , testová statistika χ^2 je:

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(\text{pozorovaná četnost - očekávaná četnost}\right)^{2}}{\text{očekávaná četnost}} = \sum_{i=1}^{k} \frac{\left(n_{i} - n\pi_{i}\right)^{2}}{n\pi_{i}}$$

- pokud je $\chi^2 \ge \chi_{1-\alpha}(df)^2$, zamítáme nulovou hypotézu H0; df = k-1 je počet stupňů volnosti
- kritické hodnoty viz tabulky

- též kontingenční tabulka 2x2
- pro dva výběry s nominálními, příp. ordinálními, diskrétními nebo kategorizovanými spojitými metrickými daty
- obecně H0: oba výběry mají stejné nebo podobné pravděpodobnostní rozdělení (jsou tedy ze stejné populace, je mezi nimi vztah), H1: výběry mají různá rozdělení
- rozeznáváme tři typy běžně testovaných hypotéz:
 - hypotéza o shodnosti struktur
 - hypotéza o symetrii

- první výběr má a prvků první hodnoty znaku, b prvků druhé hodnoty, celkem $n_1=a+b$, druhý výběr má c prvků první hodnoty, d prvků druhé hodnoty, celkem $n_2=c+d$, $n=n_1+n_2$
- pro čtyřpolní tabulku je df=1 a tedy $\chi_{0,95}(1)^2=3,84$, lze dokázat, že χ^2 statistika je rovna:

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(\text{pozorovaná četnost - očekávaná četnost}\right)^{2}}{\text{očekávaná četnost}} = \frac{\left(ad - bc\right)^{2}}{\left(a + b\right)\left(a + c\right)\left(c + d\right)\left(b + d\right)}$$

	1. hodnota	2. hodnota	
první výběr	а	b	$n_1 = a + b$
druhý výběr	С	d	$n_2 = c + d$
	a+c	b+d	n=a+b+c+d

 očekávaná četnost = součet v řádku X součet ve sloupci / celkový součet

	1. hodnota	2. hodnota	
první výběr	а	b	$n_1 = a + b$
druhý výběr	С	d	$n_2 = c + d$
	a+c	b+d	n=a+b+c+d

- hypotéza o shodnosti struktur
 - H0: např. "pacienti očkovaní a pacienti neočkovaní trpí na danou infekci se stejnou četností", H1: " pacienti očkovaní a pacienti neočkovaní trpí na danou infekci s různou četností"

	infekce ano	infekce ne	
očkovaní	а	b	$n_1 = a + b$
neočkovaní	С	d	$n_2 = c + d$
	a+c	b+d	n=a+b+c+d

- hypotéza o symetrii (McNemarův test)
 - H0: např. "úspěšnost obou léků je stejná", H1: "úspěšnost obou léků je různá"
 - pokud použijeme soubor stejných pacientů, kterým dáme nejdřív lék A a pak B, jedná se o závislé soubory

	efekt ano	efekt ne	
lék A	а	b	$n_1 = a + b$
lék B	С	d	$n_2 = c + d$
	a+c	b+d	n=a+b+c+d

Poměr šancí, relativní riziko

- poměr šancí (odds ratio, OR)
 - užívá se u studií případů a kontrol (casecontrol study)
 - poměr šancí následku v exponované a neexponované skupině
- relativní riziko (relative risk, RR)
 - užívá se u kohortových a intervenčních studií
 - poměr incidencí následku v exponované a neexponované skupině

$$OR = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$

$$RR = \frac{\frac{a}{a+b}}{\frac{c}{c+d}} = \frac{a(c+d)}{c(a+b)}$$

	efekt ano	efekt ne	
expozice ano	a	b	a+b
expozice ne	С	d	c+d
	a+c	b+d	a+b+c+d

Poměr šancí, relativní riziko

- je-li OR nebo RR:
- =1 => expozice nemá na výskyt efektu žádný vliv (pouze náhodný)
- >1 => expozice zvyšuje pravděpodobnost efektu; např. expozice tabákovému kouři zvyšuje riziko/incidenci karcinomu plic
 - typické pro rizikové expozice
- <1 (ale >0) => expozice snižuje pravděpodobnost efektu, např. expozice slunečnímu záření snižuje riziko/incidenci křivice
 - typické pro protektivní expozice (faktory)

Hodnocen 1 faktor v různých situacích nebo 2 faktory (závislost)

Nezávislé – různé výběry Závislé (př. tíž pacienti v různých situacích) Srovnání s populací, dva nebo více výběrů

Proměnné	1 faktor			2 faktory		2 faktory	
Výběry	NEZAVISLE			ZAVISLE			
Data	1 výběr	2 výběry	k výběrů	2 výběry	k výběrů		
Metrická	Interval spolehlivosti, u-test	t-test	ANOVA při jednoduchém třídění	Párový t-test	Analýza rozptylu s opakování	Pearsonův	Poloha
	Interval spolehlivosti	F-test	Bartlett	Fergusonův		korelační koeficient	Variabilita
	Kvantilový test	Wilcoxon 2√ýběro√ý Mann-Whitney	Kruskal-Wallis (-H test)	Wilcoxon 2výběrový pro závislé	Friedman	Spearmanův korelační	Poloha
	Siegel - Tukey		Shorac		koeficient	Variabilita	
Alternativní	Test dobré shody	χ-kvadrát 2*2, Fisher	χ-kvadrát, k*m tabulka	MC Nemar	Q-test	Kontingenční korelační koeficient	Cetnosti výskytu

Data metrická (měřitelná) symetrická ordinální (pořadí) nebo asymetrická alternativní (ano-ne)

 \bigwedge

Srovnáváme I střední hodnoty nebo variability

Jak správně zvolit test hypotézy?

- vyžaduje zkušenost a know-how
- nejlépe s pomocí statistika
- dobrá zpráva: většina uvedených testů
 hypotéz existuje v user-friendly online podobě
 např. na adrese (anglicky)
 http://vassarstats.net/
- oproti Statistice či R nám ale nenakreslí graf atd.

Spolupráce se statistikem ©

- Těžko dostupná konzultace
- Obtížně se s ním domluvím
- Někdy ještě zpochybní mé výsledky

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz