Contents

1	Introduction	2
2	Basic Definitions	2
3	System P	4
	3.1 Definitions	4
	3.2 Provability in System P is undecidable	5

1 Introduction

 $FV(\Gamma) = \bigcup \{FV(t) \mid (x:t) \in \Gamma\}$

The set of all $\lambda 2$ types $\Lambda_{\lambda 2}$ is the smallest set Λ satisfying the following conditions:

- $\mathcal{V}_T \subseteq \Lambda$,
- if $t_1, t_2 \in \Lambda$ then $t_1 \to t_2 \in \Lambda$, and
- if $t \in \Lambda$ and $\alpha \in \mathcal{V}_T$ then $\forall \alpha.t \in \Lambda$.

 $\lambda 2$ deduction Rules

$$\begin{array}{ll} \text{(Axiom)} & \Gamma, x: t \vdash x: t \\ \\ \text{(λ-Introduction)} & \frac{\Gamma, x: t_1 \vdash e: t_2}{\Gamma \vdash \lambda x. e: t_1 \to t_2} \\ \\ \text{(λ-Elimination)} & \frac{\Gamma \vdash e_1: t_1 \to t_2 \quad \Gamma \vdash e_2: t_1}{\Gamma \vdash e_1 e_2: t_2} \\ \\ \text{(\forall-Introduction)} & \frac{\Gamma \vdash e: t}{\Gamma \vdash \Lambda \alpha. e: \forall \alpha. t} \qquad \alpha \notin \text{FV}(\Gamma) \\ \\ \text{(\forall-Elimination)} & \frac{\Gamma \vdash e: \forall \alpha. t}{\Gamma \vdash et': t \left[\alpha:=t'\right]} \end{array}$$

2 Basic Definitions

We will denote the set $\{1, \ldots, n\}$ by [n].

Definition 1. A ranked set is a tuple (Σ, rk) , where Σ is a countable set and $rk : \Sigma \to \mathbb{N}$ is a function that maps every symbol from Σ to a natural number (its rank).

If the function rk is understood we will just write Σ instead of (Σ, rk) . The set of all elements with a certain rank k in Σ , denoted by $\Sigma^{(k)}$, is defined by $\Sigma^{(k)} := rk^{-1}(k)$. In the following we will write $\Sigma = \{P^{(0)}, Q^{(3)}\}$ to say that $\Sigma = \{P, Q\}, rk(P) = 0$, and rk(Q) = 3.

First-order logic

Definition 2. Let $\mathcal{V} = \{x_0, x_1, \dots\}$ be a countable set (of variables), $\mathcal{F} = \{\}$ a ranked set (of function symbols), and $\mathcal{P} = \{\}$ a ranked set (of predicate symbols). Then the set of <u>terms over</u> $(\mathcal{V}, \mathcal{F})$, denoted by $\mathcal{T}_{(\mathcal{V}, \mathcal{F})}$, is the smallest set \mathcal{T} satisfying the following conditions:

- $\mathcal{V} \subseteq \mathcal{T}$, and
- for every $k \in \mathbb{N}$ if $f \in \mathcal{F}^{(k)}$ and $t_1, t_2, \dots, t_k \in \mathcal{T}$ then $f(t_1, t_2, \dots, t_k) \in \mathcal{T}$.

The set of <u>first-order formulas over</u> $(\mathcal{V}, \mathcal{F}, \mathcal{P})$, denoted by $\mathcal{L}_{(\mathcal{V}, \mathcal{F}, \mathcal{P})}$, is the smallest set \mathcal{L} satisfying the following conditions:

- for every $k \in \mathbb{N}$ if $P \in \mathcal{P}^{(k)}$ and $t_1, t_2, \dots, t_k \in \mathcal{T}$ then $P(t_1, t_2, \dots, t_k) \in \mathcal{L}$.
- If $\varphi, \psi \in \mathcal{L}$ then $(\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \to \psi), \neg \varphi \in \mathcal{L}$, and
- if $x \in \mathcal{V}$ and $\varphi \in \mathcal{L}$ then $\exists x \varphi, \forall x \varphi \in \mathcal{L}$.

To define the free variables of a formula we first need to define variables of a term.

Definition 3. The variables of a term t, denoted by V(t), are defined by:

$$V(t) = \begin{cases} \{x\} & \text{if } t = x \\ V(t_1) \cup V(t_2) \cup \dots \cup V(t_k) & \text{if } t = f(t_1, t_2, \dots, t_k) \end{cases}$$

Definition 4. The <u>free variables of a formula φ , denoted by $FV(\varphi)$, are defined as follows:</u>

$$FV(\varphi) = \begin{cases} V(t_1) \cup V(t_2) \cup \dots \cup V(t_k) & \text{if } \varphi = P(t_1, t_2, \dots, t_k) \\ FV(\varphi_1) \cup FV(\varphi_2) & \text{if } \varphi = \varphi_1 \circ \varphi_2, \circ \in \{\land, \lor, \to\} \\ FV(\psi) \setminus \{x\} & \text{if } \varphi = Qx\psi, \ Q \in \{\lor, \exists\} \end{cases}$$

Now we come to the semantics of first-order formulas.

Definition 5. An interpretation I over $(\mathcal{V}, \mathcal{F}, \mathcal{P})$ is a triple $(\Delta, \cdot^I, \omega)$ where Δ is a set (which we call domain), is a function such that $f^I: \Delta^k \to \Delta$ is a function for every $k \in \mathbb{N}, \ f \in \mathcal{F}^{(k)}$ and $P^I \subseteq \Delta^k$ is a relation for every $k \in \mathbb{N}, \ f \in \mathcal{P}^{(k)}$ as a function from \mathcal{V} to Δ .

Let $I = (\Delta, \cdot^I, \omega)$ be an interpretation, $x \in \mathcal{V}$, and $d \in \Delta$ the interpretation $I[x \to d]$ is defined as $(\Delta, \cdot^I, \omega[x \to d])$ where

$$(\omega[x \to d])(y) = \begin{cases} d & \text{if } y = x \\ \omega(y) & \text{otherwise.} \end{cases}$$

Definition 6. Let $I = (\Delta, \cdot^I, \omega)$ be an interpretation and t a term the interpretation of t under I, denoted by t^I , is defined as follows:

$$t^{I} = \begin{cases} \omega(x) & \text{if } t = x\\ f^{I}(t_{1}^{I}, \dots, t_{k}^{I}) & \text{if } t = f(t_{1}, \dots, t_{k}) \end{cases}$$

Definition 7. Let $I = (\Delta, I, \omega)$ be an interpretation and φ a formula the interpretation of φ under I, denoted by φ^I , is defined recursively as follows:

$$\varphi^I = \begin{cases} \top & \text{if } \varphi = P(t_1, \dots, t_k) \text{ and } (t_1^I, \dots, t_k^I) \in P^I \\ \bot & \text{if } \varphi = P(t_1, \dots, t_k) \text{ and } (t_1^I, \dots, t_k^I) \notin P^I \\ \text{not } \psi^I & \text{if } \varphi = \neg \psi \\ \varphi_1^I \text{ and } \varphi_2^I & \text{if } \varphi = (\varphi_1 \wedge \varphi_2) \\ \varphi_1^I \text{ or } \varphi_2^I & \text{if } \varphi = (\varphi_1 \vee \varphi_2) \\ \text{exists } d \in \Delta \ \psi^{I[x \to d]} & \text{if } \varphi = \exists x \psi \\ \text{forall } d \in \Delta \ \psi^{I[x \to d]} & \text{if } \varphi = \forall x \psi \end{cases}$$

The interpretation I is a <u>model</u> of φ , denoted by $I \models \varphi$, if $\varphi^I = \top$.

3 System P

3.1 Definitions

Let $\mathcal{V}_P = \{\alpha, \beta, \ldots\}$ be a countably infinite set (of variables) and $\mathcal{P}_P = \{false^{(0)}, P^{(2)}, Q^{(2)}, \ldots\}$ a ranked set (of predicate symbols) such that $\mathcal{P}_P^{(0)} = \{false\}, \mathcal{P}_P^{(2)} = \{P, Q, \ldots\}$ is a countable infinite set, and $\mathcal{P}_P^{(k)} = \emptyset$ for all $k \in \mathbb{N} \setminus \{0, 2\}$. A first-order logic formula φ over $(\mathcal{V}_P, \emptyset, \mathcal{P}_P)$ is an

atomic formula if $\varphi = false$ or $\varphi = P(\alpha, \beta)$ for some $P \in \mathcal{P}_P$ and $\alpha, \beta \in \mathcal{V}_P$.

universal formula if $\varphi = \forall \overrightarrow{\alpha}(A_1 \to A_2 \to \cdots \to A_n)$ where A_i is an atomic formula for $i \in [n]$, $A_i \neq false$ for $i \in [n-1]$ and for each $\alpha \in FV(\varphi) \cap FV(A_n)$ there exists an $i \in [n-1]$ such that $\alpha \in FV(A_i)$.

existential formula if there exits $n \ge 0$, atomic formulas $A_i \ne false$ for $i \in [n]$ such that $\varphi = \forall \overrightarrow{\alpha}(A_1 \to A_2 \to \cdots \to A_{n-1} \to \forall \beta(A_n \to false) \to false)$.

The set of formulas of System **P** over $(\mathcal{V}_P, \mathcal{P}_P)$ is the set of all first-order formulas over $(\mathcal{V}_P, \emptyset, \mathcal{P}_P)$ that are either an atomic, universal or existential formula. $FV(\Gamma) = \bigcup \{FV(A) \mid A \in \Gamma\}$ Deduction Rules

$$\begin{array}{ll} (\operatorname{Axiom}) & \Gamma, A \vdash A \\ \\ (\to \operatorname{-Introduction}) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \\ \\ (\to \operatorname{-Elimination}) & \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \\ \\ (\forall \operatorname{-Introduction}) & \frac{\Gamma \vdash B}{\Gamma \vdash \forall \alpha B} & \alpha \notin \operatorname{FV}(\Gamma) \\ \\ (\forall \operatorname{-Elimination}) & \frac{\Gamma \vdash B}{\Gamma \vdash B \, [\alpha := b]} \end{array}$$

An Interpretation I of a P formula is a tuple $I = (\Delta, \cdot^I)$ where Δ is a set (called domain), $P^I \subseteq \Delta^k$ and $\alpha^I \in \Delta \dots$

If we interpret *false* with the logical constant false (\bot) (denoted by \vdash_f) we can add a new deduction rule.

$$(\exists \text{-Introduction}) \quad \frac{\Gamma, A [\alpha := a] \vdash_f B}{\Gamma, \forall \alpha (A \to false) \to false \vdash_f B} \quad a \notin FV(\Gamma, A, B)$$

 $\textit{Proof. Let } I = (\Delta, \cdot^I) \text{ be a model of } \Gamma, \forall \alpha(A \rightarrow \textit{false}) \rightarrow \textit{false} \text{ with } \textit{false}^I = \bot.$

$$\begin{split} I &\models \Gamma, \forall \alpha(A \to false) \to false \Rightarrow I \models \forall \alpha(A \to false) \to false \\ &\Rightarrow (\forall \alpha(A \to false))^I \to false^I \\ &\Rightarrow (\forall \alpha(A \to false))^I \to \bot \\ &\Rightarrow \neg (\forall \alpha(A \to false))^I \\ &\Rightarrow \neg (\forall d \in \Delta : (A \to false)^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : \neg (A^{I[\alpha \mapsto d]} \to false^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : \neg (A^{I[\alpha \mapsto d]} \to \bot) \\ &\Rightarrow \exists d \in \Delta : \neg (\neg A^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : A^{I[\alpha \mapsto d]} \end{split}$$

Together with $a \notin FV(\Gamma, A)$, it follows that $I[a \mapsto d]$ is a model of $\Gamma, A[\alpha := a]$. Which implies $I[a \mapsto d] \models B$. Since a is not free in B we conclude that I is also a model of B.

3.2 Provability in System P is undecidable

 Γ_C :

- Q(a)
- $R_1(a, a_0), P(a_{i-1}, a_i)$ for $i \in \{1, \dots, m\}$
- $R_2(a, b_0), P(b_{i-1}, b_i)$ for $i \in \{1, \dots, n\}$
- $D(a), D(a_i), D(b_j)$ for $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$
- $E(a_m), E(b_n)$

+(Q,1,Q'):

- $\forall \alpha \beta (Q(\alpha) \to S(\alpha, \beta) \to Q'(\beta))$ change of state
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to R_1(\beta, \delta) \to P(\delta, \gamma))$ increment register 1
- $\forall \alpha \beta \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\beta, \delta) \to D(\delta))$ prevent zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_2(\alpha, \gamma) \to R_2(\beta, \gamma))$ do not change register 2
- $-(Q, 1, Q_1, Q_2)$:
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to E(\gamma) \to Q_2(\beta))$ jump on zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to E(\gamma) \to R_1(\beta, \gamma))$ register 1 stays zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to D(\gamma) \to Q_1(\beta))$ change state if register 1 is greater zero
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to D(\gamma) \to P(\gamma, \delta) \to R_1(\beta, \delta))$ decrement register 1
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_2(\alpha, \gamma) \to R_2(\beta, \gamma))$ do not change register 2

Lemma 8.

M terminates on input (0,0) iff $\Gamma_M \vdash \text{false holds in system } P$.

Claim 9.

 $\Gamma_M \vdash \text{false holds in system } P \implies M \text{ terminates on input } (0,0)$

Proof. Assume M does not terminate then there is an infinite chain $C_1 \Rightarrow_M C_2 \Rightarrow_M C_3 \Rightarrow_M \dots$ $(C_i = \langle Q_i, m_i, n_i \rangle)$ Now we construct a model of Γ_M which interprets false with \bot this contradicts $\Gamma_M \vdash false$.

To illustrate the idea we will use a graphical notation for an interpretation I. By $d_1 \stackrel{R}{\longrightarrow} d_2$ we say that $(d_1, d_2) \in R^I$. And we use d to say that $d \in P^I$ for unary predicate symbols. Now the idea for our model of Γ_M looks like this:

We have $0 \in E^I$ and all other numbers are in D^I . Here is the more formal definition of our model $I = (\mathbb{N}, \cdot^I)$.

$$\begin{split} P^I &= \{(i+1,i) \mid i \in \mathbb{N}\} & R_1^I &= \{(i,m_i) \mid i \in \mathbb{N}\} & R_2^I &= \{(i,n_i) \mid i \in \mathbb{N}\} \\ Q^I &= \{i \in \mathbb{N} \setminus \{0\} \mid Q = Q_i\} & D^I &= \mathbb{N} \setminus \{0\} & E^I &= \{0\} \\ S^I &= \{(i,i+1) \mid i \in \mathbb{N}\} & \end{split}$$

$$a^{I} = 1$$
 $a_{0}^{I} = 0$ $b_{0}^{I} = 0$

Claim 10. If a final state is reachable from C then $\Gamma_C \cup \Gamma \vdash$ false.

Proof. By induction on the length of the computation. For the tableau proofs we will abbreviate false by f.

Induction Base trivial ...

Induction Step

 $C \Rightarrow_M^r D$

We need to make a case distinction on the rule r.

Case r = +(Q, 1, Q')

Basic idea:

$$\frac{IH}{\frac{\Gamma_C \cup \Gamma \cup \Gamma_D \vdash f}{\Gamma_C \cup \Gamma \vdash \Gamma}} \frac{\Gamma_C \cup \Gamma \vdash \Gamma_D}{\Gamma_C \cup \Gamma \vdash f}$$

Since $I \models \mathit{false}$ holds trivially if I interprets false with \top we only need to consider models (note that there are none if M terminates which is exactly what we want to proof) of $\Gamma_C \cup \Gamma$ that interpret false with \bot (so we can use

our new deduction rule).

We will just drop $\Gamma_C \cup \Gamma$ and only write new formulas on the left side. We first introduce the new variables needed for Γ_D (let $b, d \in \mathcal{V}_P \setminus \mathrm{FV}(\Gamma_C \cup \Gamma)$). Intuitively b will represent the successor state and d will be the anchor for register one.

$$\frac{\vdots}{S(a,b),D(b)\vdash_{f}f} = \frac{S(a,b)\vdash_{f}\forall\alpha\beta(S(\alpha,\beta)\to D(\beta))}{S(a,b)\vdash_{f}S(a,b)\to D(b)\quad S(a,b)\vdash_{f}S(a,b)}$$

$$\frac{S(a,b)\vdash_{f}f}{S(a,b)\vdash_{f}f} = \frac{S(a,b)\vdash_{f}f}{\forall\beta(S(a,\beta)\to f)\to f)\to f} = \frac{F_{f}\forall\alpha(\forall\beta(S(\alpha,\beta)\to f)\to f)}{\vdash_{f}\forall\beta(S(a,\beta)\to f)\to f}$$

$$\frac{F_{f}\forall\beta(S(a,\beta)\to f)\to f}{\vdash_{f}f} = \frac{F_{f}\forall\alpha(\forall\beta(S(a,\beta)\to f)\to f)}{\vdash_{f}f} = \frac{F_{f}\forall\beta(S(a,\beta)\to f)\to f}{\vdash_{f}f} = \frac{F_{f}\forall\beta(S(a,\beta)\to f})\to f}{\vdash_{f}f} = \frac{F_{f}\lor f}$$

The formula $R_1(b,d)$ can be acquired in a similar way. Again we will just drop S(a,b) and D(b) on the left side for comprehensibility.

$$\frac{\vdots}{R_{1}(b,d)\vdash_{f}f} \\
\frac{\forall \beta(R_{1}(b,\beta)\to f)\to f\vdash_{f}f}{\forall \beta(R_{1}(b,\beta)\to f)\to f)\to f} \\
\frac{\vdash_{f} (\forall \beta(R_{1}(b,\beta)\to f)\to f)}{\vdash_{f} f} \\
\frac{\vdash_{f} D(b)\to \forall \beta(R_{1}(b,\beta)\to f)\to f}{\vdash_{f} D(b)\to \forall \beta(R_{1}(b,\beta)\to f)\to f} \\
\vdash_{f} f$$

Now we have all the new free variables we need and we continue by ensuring that these variables fulfill all the formulas in Γ_D .

$$\frac{\vdots}{Q'(b)\vdash_{f}f} \frac{\vdash_{f} \forall \alpha \beta(Q(\alpha) \to S(\alpha,\beta) \to Q'(\beta))}{\vdash_{f} Q(a) \to S(a,b) \to Q'(b)} \vdash_{f} Q(a)}{\vdash_{f} Q'(b) \to f} \frac{\vdash_{f} S(a,b) \to Q'(b)}{\vdash_{f} S(a,b) \to Q'(b)} \vdash_{f} S(a,b)}{\vdash_{f} f}$$

Starting from $Q'(b) \vdash_f false$ we can connect d and a_0 .

$$\underbrace{\frac{\vdash_f \forall \alpha \beta \gamma \delta(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_1(\alpha,\gamma) \rightarrow R_1(\beta,\delta) \rightarrow P(\delta,\gamma))}{\vdash_f Q(a) \rightarrow S(a,b) \rightarrow R_1(a,a_0) \rightarrow R_1(b,d) \rightarrow Q'(b) \quad \vdash_f Q(a)}_{\vdash_f S(a,b) \rightarrow R_1(a,a_0) \rightarrow R_1(b,d) \rightarrow Q'(b) \quad \vdash_f S(a,b)} \underbrace{\frac{\vdash_f S(a,b) \rightarrow R_1(a,a_0) \rightarrow R_1(b,d) \rightarrow Q'(b) \quad \vdash_f R_1(a,a_0)}{\vdash_f R_1(a,a_0) \rightarrow R_1(b,d) \rightarrow Q'(b) \quad \vdash_f R_1(b,d)}_{\vdash_f P(d,a_0)}}_{\vdash_f f}$$

For register one we still need D(d).

$$\vdots \\ \frac{D(d) \vdash_f f}{\vdash_f D(d) \to f} \\ \frac{\vdash_f \forall \alpha \beta \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\beta, \delta) \to D(\delta))}{\vdash_f Q(a) \to S(a, b) \to R_1(b, d) \to D(d) \quad \vdash_f Q(a)} \\ \frac{\vdash_f S(a, b) \to R_1(b, d) \to D(d) \quad \vdash_f S(a, b)}{\vdash_f R_1(b, d) \to D(d)} \\ \vdash_f f$$

Since register two should not change we only need $R_2(b, b_0)$.

$$\underbrace{\frac{\vdash_{f} \forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_{2}(\alpha, \gamma) \to R_{2}(\beta, \gamma))}{\vdash_{f} Q(a) \to S(a, b) \to R_{2}(a, b_{0}) \to R_{2}(b, b_{0}) \quad \vdash_{f} Q(a)}_{\vdash_{f} R_{2}(b, b_{0}) \to f} \underbrace{\frac{\vdash_{f} Q(a) \to S(a, b) \to R_{2}(a, b_{0}) \to R_{2}(b, b_{0}) \quad \vdash_{f} S(a, b)}{\vdash_{f} R_{2}(a, b_{0}) \to R_{2}(b, b_{0}) \quad \vdash_{f} R_{2}(a, b_{0})}_{\vdash_{f} R_{2}(b, b_{0})}}_{\vdash_{f} R_{2}(b, b_{0})}$$

Now we have Γ_C (Since $P(a_{i-1}, a_i)$ is already in Γ_D) and can deduce false by induction hypothesis.

Case
$$r = -(Q, 1, Q_1, Q_2) \ r1 = 0$$

$$\frac{ \begin{array}{c} \vdash_f \forall \alpha \beta \gamma(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_1(\alpha,\gamma) \rightarrow E(\gamma) \rightarrow Q_2(\beta)) \\ \hline \vdash_f Q(a) \rightarrow S(a,b) \rightarrow R_1(a,a_0) \rightarrow E(a_0) \rightarrow Q_2(b) & \vdash_f Q(a) \\ \hline \vdots & \hline \\ P_f S(a,b) \rightarrow R_1(a,a_0) \rightarrow E(a_0) \rightarrow Q_2(b) & \vdash_f S(a,b) \\ \hline \hline P_f R_1(a,a_0) \rightarrow E(a_0) \rightarrow Q_2(b) & \vdash_f R_1(a,a_0) \\ \hline \\ P_f Q_2(b) \rightarrow f & \hline \\ \hline \\ \vdash_f Q_2(b) & \hline \\ \vdash_f f \end{array} }$$