Выборочная сортировка.

Доказательство инвариантности:

Инвариант — i - 1 первых элементов стоят на своих местах.

- 1. На входе 0 первых элементов на нужных местах.
- 2. После первой итерации минимальный элемент встает на 1 место.
- 3. По индукции, на N-1 итерации N-2 первых элементов на соответствующих местах.
- 4. После N-1 итерации N-1 элементов занимают нужные места, значит, и N элемент стоит на N месте, т.е. массив отсортирован.

Оценка сложности:

for (int i = 0; i < N - 1; i++)	C_1	n
{		
min = i;	C ₂	n-1
for (int j = i + 1; j < N; j++)	C ₃	$\sum_{i=0}^{n-1} t_i$
if (arr[j] < arr[min])	C ₄	$\sum_{i=0}^{n-1} (t_i - 1)$
min = j;	C ₅	$\sum_{i=0}^{n-1} (t_i - 1)$
if (arr[i] == arr[min])	C ₆	n-1
continue;	C ₇	n-1
swap(arr[i],arr[min]);	C ₈	n–1
}		

$$T_n = C_1 n + (C_2 + C_6 + C_7 + C_8)(n-1) + C_3 \sum_{i=0}^{n-1} t_i + (C_4 + C_5) \sum_{i=0}^{n-1} (t_i - 1)$$

В лучшем случае:

$$T_n = C_1 n + (C_2 + C_6 + C_7)(n-1) + C_3 \frac{n(n-1)}{2} + C_4 \left(\frac{n(n-1)}{2} - n\right)$$
 Сложность — O(n²)

В худшем случае:

$$T_n = C_1 n + (C_2 + C_6 + C_8)(n-1) + C_3 \frac{n(n-1)}{2} + (C_4 + C_5) \left(\frac{n(n-1)}{2} - n\right)$$
 Сложность — O(n²)