Módulo 5: Aprendizaje no supervisado Métodos de Muestreo, 1ra Parte

Diplomatura Cs. de Datos - FaCENA-UNNE

Docentes: Magdalena Lucini, Luis Duarte, Griselda Bóbeda

Generación números aleatorios

Supongamos se quiere generar números aleatorios (o pseudoaleatorios). En python, por ejemplo, se puede usar la librería random donde, entre otras, se tiene las siguientes funciones:

- randrange(a, b[, step]): devuelve un número aleatorio entre a y b con un salto de tamaño step
- randint(a, b): retorna un entero aleatorio z tal que $a \le z \le b$
- uniform(a, b): devuelve un número real entre a y b.

Generación de distribuciones

En numerosas aplicaciones, métodos y técnicas usadas en machine learning, ciencias de datos y estadística, necesitaremos generar realizaciones de variables aleatorias que siguen alguna distribución probabilística.

Por ejemplo:

- Generar realizaciones (muestras) x_i , $i=1,\ldots,n$ de una variable aleatoria X con distribución F_X para poder estimar el/los parámetros de esa distribución.
- Calcular (aproximar) la esperanza de una función f(z) con respecto a una distribución de probabilidades p(z) (discreta o continua). $E[f] = \int (f(z)p(z)dz, \hat{f} = \frac{1}{L}\sum_{i=1}^{L} f(z^{i}), E[\hat{f}] = E[f]$
- Generar muestras de una probabilidad a posteriori p(z/D) para luego calcular (aproximar) probabilidades marginales, esperanzas, etc.

Métodos de muestreo numérico

- Objetivo: generar eficientemente muestras de una distribución , aún en altas dimensiones. Esto es, generar números aleatorios que se distribuyan según una determinada densidad $p_o(z)$, denominada densidad objetivo.
- Basados en la idea de aproximaciones Monte Carlo
- Cada uno de los algoritmos asume disponible una fuente de números aleatorios con densidad t(z), denominada densidad propuesta y convierte muestras de t(z) a muestras de $p_o(z)$.
- Generando la cantidad de muestras suficientes se puede alcanzar el nivel de precisión deseado.

Diferentes técnicas de muestreo

Métodos directos

- Se generan muestras de números aleatorios cuya densidad es la densidad propuesta, y se usa una transformación adecuada para obtener muestras de la densidad objetivo.
- En general, son métodos rápidos y las muestras son independientes (tan independientes como las generadas por la distribución propuesta).
- Dificilmente aplicables en la práctica pues no es simple encontrar la transformación adecuada.

Diferentes técnicas de muestreo

Métodos de aceptación -rechazo

- Se generan muestras de números aleatorios cuya densidad es la densidad propuesta (disponible), y el algoritmo acepta o rechaza esas muestras mediante un test.
- Las muestras son independientes (tan independientes como las generadas por la distribución propuesta).
- Costo computacional alto si la tasa de aceptación es baja (probabilidad baja de aceptar la muestra)

Diferentes técnicas de muestreo

Importance sampling

- Se asignan pesos a las muestras generadas por la densidad propuesta para obtener una aproximación de la probabilidad representada por la densidad objetivo.
- La aproximación a la densidad objetivo lograda con este método , junto a los principios básicos de MCMC puede ser usada como generador de números aleatorios.

MCMC: Markov Chain Monte Carlo

- Técnicas basadas en la construcción de una cadena de Markov que converge a la densidad objetivo.
- En general, son ,métodos "universales", ya que se pueden aplicar en casi cualquier caso.
- Las muestras no necesariamente serán independientes

Métodos Directos

Consideremos una variable aleatoria X con función de densidad objetivo $p_o(\mathbf{x})$, con función de distribución acumulada $F_X(\mathbf{x})$.

Método de Inversión - distribuciones "simples"

Si $U \sim \mathcal{U}[0,1]$, entonces la variable aleatoria $Z = F_X^{-1}(U)$ tiene densidad $p_o(\mathbf{x})$

Algorithm 1 Método de inversión

generar $u_i \sim \mathcal{U}(0,1)$ devolver $z_i = F_X^{-1}(u_i)$

Si
$$X \sim \mathcal{E}(\lambda) \Rightarrow$$

$$F_X(x) = 1 - e^{-\lambda x}$$
, si $x \ge 0$

Como

$$1 - e^{-\lambda x} = u \Leftrightarrow x = -\frac{\ln(1 - u)}{\lambda}$$

Figure: 1000 muestras $\mathcal{U}(0,1)$

generar
$$u_i \sim \mathcal{U}(0,1)$$
 devolver $x_i = -\frac{\ln(1-\mathrm{u_i})}{\lambda}$

Figure: 1000 muestras exponencial, $\lambda=5$

No siempre es posible encontrar la expresión analítica de F_X^{-1}

Si
$$X \sim \mathcal{E}(\lambda) \Rightarrow$$

$$F_X(x) = 1 - e^{-\lambda x}$$
, si $x \ge 0$

Como

$$1 - e^{-\lambda x} = u \Leftrightarrow x = -\frac{\ln(1 - u)}{\lambda}$$

Figure: 1000 muestras $\mathcal{U}(0,1)$

generar
$$u_i \sim \mathcal{U}(0,1)$$
 devolver $x_i = -rac{\ln(1-\mathrm{u_i})}{\lambda}$

Figure: 1000 muestras exponencial, $\lambda=5$

No siempre es posible encontrar la expresión analítica de F_X^{-1}

Si
$$X \sim \mathcal{E}(\lambda) \Rightarrow$$

$$F_X(x) = 1 - e^{-\lambda x}$$
, si $x \ge 0$

Como

$$1 - e^{-\lambda x} = u \Leftrightarrow x = -\frac{\ln(1 - u)}{\lambda}$$

Figure: 1000 muestras $\mathcal{U}(0,1)$

generar
$$u_i \sim \mathcal{U}(0,1)$$

devolver $x_i = -rac{\ln(1-\mathrm{u_i})}{\lambda}$

Figure: 1000 muestras exponencial, $\lambda = 5$

No siempre es posible encontrar la expresión analítica de F_X^{-1}

Si
$$X \sim \mathcal{E}(\lambda) \Rightarrow$$

$$F_X(x) = 1 - e^{-\lambda x}$$
, si $x \ge 0$

Como

$$1 - e^{-\lambda x} = u \Leftrightarrow x = -\frac{\ln(1 - u)}{\lambda}$$

Figure: 1000 muestras $\mathcal{U}(0,1)$

generar
$$u_i \sim \mathcal{U}(0,1)$$

devolver $x_i = -rac{\ln(1-\mathrm{u_i})}{\lambda}$

Figure: 1000 muestras exponencial, $\lambda = 5$

No siempre es posible encontrar la expresión analítica de F_χ^{-1}

Método de Inversión

Nombre	Densidad	F(x)	$F^{-1}\left(U ight)$	Forma simplificada
$\exp(\lambda)$ ($\lambda > 0$)	$\lambda e^{-\lambda x}$, si $x\geq 0$	$1-e^{-\lambda x}$	$-\frac{\ln(1-U)}{\lambda}$	$-rac{\ln U}{\lambda}$
Cauchy	$\frac{1}{\pi\left(1+x^2\right)}$	$\frac{1}{2} + \frac{\arctan x}{\pi}$	$\tan\!\left(\pi\left(U-\frac{1}{2}\right)\right)$	$\tan \pi U$
Triangular en $(0,a)$	$\dfrac{2}{a}\Big(1-\dfrac{x}{a}\Big)$, si $0\leq x\leq a$	$\frac{2}{a} \left(x - \frac{x^2}{2a} \right)$	$a\left(1-\sqrt{1-U} ight)$	$a\left(1-\sqrt{\overline{U}} ight)$
Pareto ($a,b>0$)	$\dfrac{ab^a}{x^{a+1}}$, si $x\geq b$	$1-\left(\frac{b}{x}\right)^a$	$\frac{b}{(1-U)^{1/a}}$	$\frac{b}{U^{1/a}}$
Weibull ($\lambda, lpha > 0$)	$lpha \lambda^{lpha} x^{lpha - 1} e^{-(\lambda x)^{lpha}},$ si $x \geq 0$	$1 - e^{-(\lambda x)^{\alpha}}$	$\frac{(-\ln(1-U))^{1/\alpha}}{\lambda}$	$rac{\left(-\ln U ight)^{1/lpha}}{\lambda}$

Muestreo de aceptación - rechazo (rejection sampling) Von Neuman, 1951

- Método universal: en principio puede usarse para generar muestras de cualquier tipo de densidad objetivo $p_o(x)$.
- Se considera una función de densidad de probabilidad (fdp) propuesta t(x) fácil de muestrear.
- Se elige una constante C tal que la curva Ct(x) está siempre por encima de la curva de $p_o(x)$, i.e,

$$Ct(x) \ge p_o(x), \ \forall x \in \mathcal{S}$$

con S dominio de $p_o(x)$.

- Se genera una muestra $x' \sim t$, y se calcula $p_A(x') = \frac{p_O(x')}{Ct(x')}$ que es la probabilidad de aceptar esa muestra.
- Se genera $u' \sim \mathcal{U}(0,1)$. Si $u' \leq p_A(x') \Rightarrow$ se acepta x', caso contrario se la descarta.

Método de aceptación-rechazo

Algorithm 2 Método de aceptación-rechazo

```
generar u \sim \mathcal{U}(0,1)
generar x \sim t
if u \leq \frac{p_o(x)}{Ct(x)} then
aceptar x como muestra
else
rechazar x como muestra y volver al punto inicial
```

end if

$$p_o(x) = 30x(1-x)^4, \ 0 \le x \le 1$$

 $t(x) = 2.5 \ 0 \le x \le 1$ mayoriza a $p_o(x)$
NO es fdp

$$r(x) = t(x)/k : k = \int_{-\infty}^{\infty} t(x)dx$$

$$r(x) = 1, \ 0 \le x \le 1$$

$$F_r(x) = x, \ 0 \le x \le 1$$

Si es fdp

- Generar x al "azar". ¿ Cómo?
- $P(\text{aceptar } x) = \frac{p_o(x)}{t(x)}$
- **3** Generar $u_{\times} \sim \mathcal{U}(0,1)$
- Si $u_x \le P(\text{aceptar } x) \to \text{devolver } x$ Si $u_x > P(\text{aceptar } x) \to \text{ir a } 1$

$$p_o(x)=30x(1-x)^4,~0\leq x\leq 1$$
 $t(x)=2.5~0\leq x\leq 1$ mayoriza a $p_o(x)$ NO es fdp

$$r(x) = t(x)/k : k = \int_{-\infty}^{\infty} t(x)dx$$

 $r(x) = 1, 0 \le x \le 1$

$$F_r(x) = x, \ 0 \le x \le 1$$

Si es fdp

- Generar x al "azar". ¿ Cómo?
- $P(\text{aceptar } x) = \frac{p_o(x)}{t(x)}$
- **3** Generar $u_x \sim \mathcal{U}(0,1)$

$$p_o(x) = 30x(1-x)^4, \ 0 \le x \le 1$$

 $r(x) = \frac{t(x)}{k}$
 $F_r(x) = x, \ 0 \le x \le 1$

Transformada Inversa $x = F_r^{-1}(u_r)$, $0 < u_r < 1$

$$u_r \sim \mathcal{U}(0,1)$$

- $\textbf{ Generar } u_r \sim \mathcal{U}(0,1) \\ \text{ Generar } x \sim r(x) \text{ usando } u_r$
- **3** Generar $u_{\times} \sim \mathcal{U}(0,1)$
- Si $u_x \le P(\text{aceptar } x) \to \text{devolver } x$ Si $u_x > P(\text{aceptar } x) \to \text{ir a } 1$

Pasos

- Generar $u_r \sim \mathcal{U}(0,1)$ Generar $x \sim r(x)$ usando u_r
- $P(\text{aceptar } x) = \frac{p_o(x)}{t(x)}$
- **3** Generar $u_x \sim \mathcal{U}(0,1)$
- Si $u_x \le P(\text{aceptar } x) \rightarrow \text{devolver } x$ Si $u_x > P(\text{aceptar } x) \rightarrow \text{ir a } 1$

- $u_r = 0.5$ x = 0.5
- $P(\text{aceptar } x) = \frac{0.9375}{2.5} = 0.375$
- $u_{x}=0.6$
- orechaza x y vuelve al punto 1

Pasos

- Generar $u_r \sim \mathcal{U}(0,1)$ Generar $x \sim r(x)$ usando u_r
- $P(\text{aceptar } x) = \frac{p_o(x)}{t(x)}$
- **3** Generar $u_x \sim \mathcal{U}(0,1)$
- Si $u_x \le P(\text{aceptar } x) \rightarrow \text{devolver } x$ Si $u_x > P(\text{aceptar } x) \rightarrow \text{ir a } 1$

- $u_r = 0.5$ x = 0.5
- $P(aceptar x) = \frac{0.9375}{2.5} = 0.375$
- 3 $u_x = 0.6$
- rechaza x y vuelve al punto 1

Método de aceptación -rechazo

- Puede demostrarse que la P(Aceptar X)= 1/C y está relacionado con la elección de la función t(x)
- Lo ideal es elegir t(x) lo más parecida posible a $p_o(x)$

Muestreo por Importancia (importance sampling)

- Proveen de un marco estadístico para aproximar momentos (esperanzas, varianzas) bajo una distribución $p_o(x)$ cuando no es posible muestrearla directamente.
- ullet NO es un método para generar muestras de la fdp objetivo p_o .
- En el muestreo por importancia se asocian pesos a las muestras producidas por la densidad propuesta t(x)
- Estos pesos representan la importancia estadística de la muestra
- Los pesos son $w(x') = \frac{p_o(x')}{t(x')} \propto \frac{p(x')}{t(x')}$, donde $p(x) \propto p_o(x)$
- La importancia es:
 - directamente proporcional a p(x): mientras más alto el valor de $p_o(x')$, más mas de probabilidad estará concentrada alrededor de x' y por ende hay que darle más importancia a esa muestra.
 - inversamente proporcional a t(x): si t(x') es bajo, la probabilidad de proponer otra muestra x' es baja, por lo que hay que darle importancia a esa muestra.

Muestreo por importancia

Situaciones en muestreo por importancia

- p(x') alto, t(x') bajo: la importancia w(x') será grande (Fig a).
- $p(x') \approx t(x')$ la importancia $w(x') \approx 1$ (Fig b)
- p(x') bajo, t(x') alto: la importancia w(x') será pequeña. (Fig c)
- En general, los pesos miden cuán distintas son las fdp objetivo y propuesta.

Muestreo por Importancia

$$\mathbb{E}_{p}[f(X)] = \int_{-\infty}^{\infty} f(x)p_{o}(x) dx$$

$$= \int_{-\infty}^{\infty} f(x)\frac{p_{o}(x)}{t(x)}t(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\frac{f(x)p_{o}(x)}{t(x)}\right)t(x) dx$$

$$= \mathbb{E}_{t}\left[\frac{f(Y)p_{o}(Y)}{t(Y)}\right]$$

$$\hat{\mathbb{E}}_{p}[f(X)] = \hat{\mathbb{E}}_{t}\left[\frac{f(Y)p_{o}(Y)}{t(Y)}\right]$$

$$= \frac{1}{N}\sum_{i=1}^{N} \frac{f(x^{i})p_{o}(x^{i})}{t(x^{i})}$$

Puede ser necesario normalizar la fdp objetivo

Muestreo por importancia

Método más general (no se conocen constantes de normalización)

Algorithm 3 Muestreo por importancia

- 1. generar N muestras x^i , i = 1, ..., N de la fdp propuesta t(x)
- 2. asociar pesos a cada uno de los x^i haciendo

$$w_i = \frac{p(x^i)}{t(x^i)}$$

- , con $p(x) \propto p_o(x)$
- 3. normalizar los pesos $\tilde{w}_i = \frac{w_i}{\sum_{k=1}^N w_k}, \ i=1,\dots N$ 4. Se aproxima a $p_o(x)$ usando $\tilde{h}_N(x) = \sum_{i=1}^N \tilde{w}_i \delta(x-x^i)$

Cálculo de esperanzas usando Muestreo por Importancia

- $p_o(x)$ fdp $\mathcal{N}(30, 10) + \mathcal{N}(80, 20)$, t(x) fdp N(50, 30)
- X con fdp $p_o(x)$
- N =5000
- generar 5000 muestras de t(x)
- calcular pesos
- $\bullet \ \hat{\mathbb{E}}[X] = \sum_{i=1}^{N} \tilde{w}_i x^i = 50$

La elección de la densidad propuesta afecta al desempeño de este método

Cálculo de esperanzas usando Muestreo por Importancia

- $p_o(x)$ fdp $\mathcal{N}(30, 10) + \mathcal{N}(80, 20)$, t(x) fdp N(50, 30)
- X con fdp $p_o(x)$
- N =5000
- generar 5000 muestras de t(x)
- calcular pesos
- $\bullet \ \hat{\mathbb{E}}[X] = \sum_{i=1}^{N} \tilde{w}_i x^i = 50$

La elección de la densidad propuesta afecta al desempeño de este método

Sampling Importance Resampling (SIR)

- El éxito de los métodos de rechazo depende en parte de la elección de la constante *C*
- Para muchos pares de combinaciones de fdp objetivo y propuesta se dificulta encontrar una constante C que sea lo suficientemente grande para acotar la distribución objetivo y a la vez garantizar una alta tasa de aceptación.
- El método Sampling Importance Resampling (SIR) hace uso de la fdp propuesta t para generar muestras de la fdp objetivo p_o , pero evita el paso de determinar la constante C.
- Básicamente consiste de dos pasos: generación de muestras en el primer paso, mientras que en el segundo se calculan pesos como en el muestreo porimportancia y se genera (resampling) un segundo conjunto de muestras usando esos pesos.
- Las muestras resultantes se utilizan para aproximar p_o . La aproximación es buena para muestras grandes $(N \to \infty)$

Sampling Importance Resampling

Objetivo: generar muestras de la fdp objetivo p_o .

Algorithm 4 SIR

- 1. generar N muestras y^i , i = 1, ..., N de la fdp propuesta t
- 2. calcular los pesos

$$w_i = \frac{p_o(y^i)}{t(y^i)}$$

y normalizarlos $\tilde{w}_i = \frac{w_i}{\sum_{k=1}^{N} w_k}, i = 1, \dots N$

3. Para $i=1,\ldots,N$ se elige un nuevo conjunto de muestras (x^1,\ldots,x^N) (con reemplazo) usando los pesos como probabilidades:

$$x^i = \left\{ \begin{array}{ll} y^1 & \text{con probabilidad } \tilde{\mathbf{w}}_1 \\ \vdots & \vdots \\ y^N & \text{con probabilidad } \tilde{\mathbf{w}}_N \end{array} \right.$$

Aplicación SIR: Ejercicio

Objetivo: Generar muestras de una variable aleatoria con fdp objetivo p_o definida como la suma de gaussianas $\mathcal{N}(30,10) + \mathcal{N}(80,20)$

Usar como fdp propuesta:

- t1 fdp de una variable uniforme en $\mathcal{U}(0, 110)$
- ② $t2 \text{ fdp de } \mathcal{N}(50, 30).$