Python


```
199
200
          alpha = 40
201
          m = load_npz('sparse_user_item.npz')
                                                                                          variable unpacking
202
          n_users, n_movies = m.shape
203
                                                                                          list comprehension
           ratings = [alpha for i in range(len(user_ratings))]
204
205
206
          m.data = np.hstack((m.data, ratings))
207
          m.indices = np.hstack((m.indices, user_ratings))
           m.indptr = np.hstack((m.indptr, len(m.data)))
208
          m._shape = (n_users+1, n_movies)
209
210
211
          # recommend N items to new user
212
          with open('model.sav', 'rb') as pickle_in:
213
               model = pickle.load(pickle_in)
           recommended, _ = zip(*model.recommend(n_users, m, recalculate_user=True))
214
```


Lenguaje de programación

Potente

Fácil de aprender

Estructuras de datos de alto nivel eficientes

Programación orientada a objetos

Sintaxis elegante

Naturaleza interpretada

Extensa colección de bibliotecas gratuitas

Desarrollo rápido de aplicaciones

Mayoría de las plataformas.

Empresas que usan Python

Google

Facebook

Instagram

Spotify

Quora

Netflix

Dropbox

Reddit

Plataformas

https://www.zepl.com/product/

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html

https://observablehq.com

https://deepnote.com

https://www.ibm.com/cloud/watson-studio

https://codeocean.com

https://www.kaggle.com/code

https://visualstudio.microsoft.com/es/

https://cloud.google.com/datalab/docs/how-to/working-with-notebooks/

https://mybinder.org

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-managed-notebooks.html

https://colab.research.google.com

https://gradient.paperspace.com

https://databricks.com/product/collaborative-notebooks

Plataformas Cursos

Kaggle Learn Courses

Cloud certification programs (AWS, Azure, Google CP)

Fast.ai

Datacamp

Udacity

LinkedIn

edX

Coursera

University Courses

Udemy

IDE

PyScripter

PyCharm

Spyder

Pydev

Idle

Wing

Sublime Text

Visual Studio Code

Anaconda

Python vs Jupyter Notebook

Python está contenido en un archivo .pyt solo contiene código para ser ejecutado.

Jupyter Notebook es una aplicación web de código abierto que puede usar para crear y compartir documentos que contienen código en vivo, ecuaciones, visualizaciones y texto.

Python vs Jupyter Notebook

WARNING

To run the code below:

Click on the cell to se

import numpy as np import matplotlib

Creación de cuenta en Colab

Ingresar a https://colab.research.google.com/ Autenticarse con su cuenta de Gmail.

Creación de cuenta en Colab

Crear un **notebook** nuevo

Entorno

Asignar nombre al notebook

- + Texto -> Permite crear una celda de texto
- + Código -> Permite crear una celda de código

Variables

Crear una celda de código y crear las variables a y b, asignarles un valor numérico y sumar ambas variables asignando el resultado en la variable c, usar la función **print()** para mostrar el resultado

```
Ejercicio1.ipynb Archivo Editar Ver Insertar Entorno de ejecución Herramientas Ayuda Se guardaron todos los cambios

+ Código + Texto

Funciones básicas de Python

Variables

a = 3
b = 2
c = a + b
print[c]
```


Librerías

Crear una celda de código importe la librería numpy, cree dos arreglos b y c y multiplíquelos y muestre el resultad.

```
[5] import numpy as np
    a = np.arange(15) #Return evenly spaced values within a given interval
    print(a)
                    5 6 7 8 9 10 11 12 13 14]
[7] c = a.argmax()
    print(c)
    14
b = np.array([3, 4, 5])
    c = np.array([2, 2, 2])
    print(b*c)
    [6 8 10]
```


Cargue el archivo wine.csv dentro de su entorno de Colab. Importe la librería pandas usando el alias pd, y usando el método **read_csv**, lea el archivo wine.csv

Muestre los primeros 5 registros del dataset y los últimos 5. Use los métodos head() y tail()

Use el método info() para mostrar el número de registros, número de variables y tipo de dato de cada variable

Use el método describe() para mostrar la descripción estadística de cada variable (columna)

										↑ ↓	ලු 📮 🌣	
dataset.describe()												
	V1	V2	V3	V4	V5	V6	V 7	v8	V9	V10	V 11	V12
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000
mean	1.938202	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.957449
std	0.775035	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.228572
min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.480000
25%	1.000000	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.782500
50%	2.000000	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.965000
75%	3.000000	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.120000
max	3.000000	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.710000

Use el método hist() para mostrar la distribución de cada variable.

Python

- Dentro de Colab
 - https://colab.research.google.com

```
require File.expand_path
 # Prevent database traces
  abort("The Rails environment to
  require 'spec_helper'
   require 'rspec/rails'
   require 'capybara/rssec
   require 'capybara/reils'
    Capybara.javascript
11
    Category.delete_all; Company
    Shoulda::Matchers.com
      config.integrate (a)
        with.test_from
         with.library :rolls
       # Add additional reserve
        # Requires support
        # spec/support/ and is
         # run as spec files by
         # in _spec.rb will ===
         # run twice. It is
          # end with -spec. 13
           A ANTANA AN AM
       No results found for 'mongoid'
```

Recursos

Bibliográficos

- https://www.python.org/doc/
- https://realpython.com/world-class-companies-using-python/
- https://www.anaconda.com
- https://jupyter.org
- https://numpy.org
- https://pandas.pydata.org