Advanced Projects in Exoplanets The RM Effect

Dina Sofia Mortensen & Jesper Dam Knudgaard

Stellar Astrophysics Centre, Aarhus University

June 20, 2019

Transiting Exoplanets

Figure: Credit ESO

Rossiter-McLaughlin Effect

Figure:

https://wasp-planets.net/tag/rossiter-mclaughlin-effect/

Our Model - Linear

Planet moves in straight line in front of the star
This path is determined by:

- Projected obliquity
- Impact parameter

This model is not physical

Keplers Equations

Our Model - Physical version

Planet orbits the star. Keplers equation is solved for input parameters.

The path is determined by: $a, e, i, \omega, M_{\star}, M_{p}, t_{p}, \lambda, R_{p}/R_{\star}$

and $v \sin(i)$.

Much more resource heavy, but also correct

Figure: Credit: Wikipedia user Lassuncty

Our Model - Outputs

[Video here]

Our Model - Outputs

S her tnker jeg at vi har selve RM-kurven. S vi snakker noget om hvor fucked Gauss fittet er

Data

Data - The stellar line

Data - The Transit

Data - The 'Planet Line'

Data - The RM-effect

Data - Fit to CCF

Data - RM curve

Data - RM curve

Data - RM curve

The Fit - System Parameters

Fitting with curvefit

Linear fit