#### 1.2.1 Endliche Automaten

Ein deterministischer endlicher Automat (DEA, englisch DFA) ist ein 5-Tupel  $M = (Z, \Sigma, \delta, z_0, E)$ . Dabei ist

- Z eine endliche Menge Die Menge der Zustände
- $\Sigma$  eine endliche Menge mit  $Z \cap \Sigma = \emptyset$  Das Alphabet
- $z_0 \in Z$  Der Startzustand
- ullet  $E \subseteq Z$  Die Menge der akzeptierenden Endzustände
- ullet  $\delta: Z imes \Sigma o Z$  Die Überführungsfunktion

Die Überführungsfunktion wollen wir so interpretieren, dass  $\delta(z,\sigma)=z'$  bedeutet: Wenn M im Zustand z ein  $\sigma$  liest, geht M in den Zustand z' über.



## Beispiel

Als Beispiel betrachten wir den Automat M:

$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_0\}).$$

$$\delta(z_0, a) = z_1 \quad \delta(z_0, b) = z_2$$

$$\delta(z_1, a) = z_2$$
  $\delta(z_1, b) = z_0$ 

$$\delta(z_2, a) = z_2$$
  $\delta(z_2, b) = z_0$ 

Welche Sprache *erkennt* dieser Automat?

Graphische Darstellung von *M*:



### Die Funktion $\hat{\delta}$

Ähnlich wie wir jeder Grammatik G eine Sprache L(G) zuordnen konnten, wollen wir jetzt mit jedem DEA M eine Sprache T(M) assoziieren.

Dazu benötigen wir zuerst eine verallgemeinerte Form der Überführungsfunktion  $\delta$ . Wir suchen eine Funktion, die beschreibt, in welchen Zustand man gelangt, wenn man im Zustand z beginnt und das  $Wort\ w\in \Sigma^*$  liest.

Definiere  $\hat{\delta}: Z \times \Sigma^* \to Z$  wie folgt:

$$\hat{\delta}(z,\varepsilon)=z$$
 für alle  $z\in Z$   $\hat{\delta}(z,ax)=\hat{\delta}(\delta(z,a),x)$  für alle  $z\in Z$ ,  $a\in \Sigma$ ,  $x\in \Sigma^*$ 

Damit ist  $\hat{\delta}$  auf  $Z \times \Sigma^*$  eindeutig definiert.

## Ein nützliches Resultat über $\hat{\delta}$

Für alle  $z \in Z$  und alle  $x, w \in \Sigma^*$  gilt:

$$\hat{\delta}(z, wx) = \hat{\delta}(\hat{\delta}(z, w), x)$$

Den Beweis führen wir induktiv über die Länge von w.

Für  $w = \varepsilon$  müssen wir zeigen:  $\hat{\delta}(z, x) = \hat{\delta}(\hat{\delta}(z, \varepsilon), x)$ .

Aber das ist klar, da  $\hat{\delta}(z,\varepsilon) = z$  nach Definition von  $\hat{\delta}$  gilt.

Für den Induktionsschritt sei w = ay mit  $a \in \Sigma$  und  $y \in \Sigma^*$ .

Nach Ind.vor. gilt für alle  $q \in Z$ :  $\hat{\delta}(q, yx) = \hat{\delta}(\hat{\delta}(q, y), x)$ 

Nun setzen wir  $q = \delta(z, a)$  und erhalten:

$$\hat{\delta}(z, wx) = \hat{\delta}(z, ayx) = \hat{\delta}(q, yx) = \hat{\delta}(\hat{\delta}(q, y), x) = 
\hat{\delta}(\hat{\delta}(\delta(z, a), y), x) = \hat{\delta}(\hat{\delta}(z, ay), x) = 
\hat{\delta}(\hat{\delta}(z, ay), x) = \hat{\delta}(\hat{\delta}(z, ay), x) =$$

q.e.d.

# Die Sprache T(M)

Mit der Funktion  $\hat{\delta}$  können wir nun die Sprache T(M), die zum endlichen Automat M gehört, kurz und prägnant definieren:

Definition: Die vom Automat  $M = (Z, \Sigma, \delta, z_0, E)$  akzeptierte Sprache T(M) ist gegeben durch

$$T(M) = \{ w \in \Sigma^* \mid \hat{\delta}(z_0, w) \in E \}$$

In unserem Beispielautomat von Folie 8.3 galt offensichtlich  $\hat{\delta}(z_0, ab) = z_0$ , und daher auch  $\hat{\delta}(z_0, (ab)^n) = z_0$ .

Folglich liegen in diesem Fall alle Wörter  $(ab)^n$  in T(M). Es gibt aber noch viele andere Wörter in T(M).

(Aber keine, die auf a enden – warum nicht?)

#### DEA und Typ-3

Wir wollen nun nachweisen, dass jede von einem deterministischen endlichen Automat M akzeptierte Sprache eine Typ-3 Sprache ist. Dazu genügt es, eine Typ-3 Grammatik G anzugeben, die die Gleichung T(M) = L(G) erfüllt.

Der Automat sei  $M = (Z, \Sigma, \delta, z_0, E)$ .

Wir benutzen Z als Variablenmenge unserer Grammatik.

Startvariable ist dann sinnvollerweise  $z_0$ , die Menge P der Produktionen, also die Übergangsregeln, werden wir gleich definieren. Wir erhalten die Grammatik

$$G = (Z, \Sigma, P, z_0)$$