

# Rescheduling the NBA regular season via Integer Programming

Juan José Miranda Bront and Nicolás García Aramouni

Universidad Torcuato Di Tella, Argentina

# Impact in sport leagues around the world



UEFA Champions League Final (2020)



**NBA Bubble** (2019 - 2020)

# Rescheduling matches pre and post COVID

#### Pre-COVID

## COVID

- Suspended matches are rare
- Suspensions are usually not related to each other

- Suspended matches are more common due to the health situation
- If multiple players become sick, consecutive games might be suspended

34%

Probability of a match being suspended in the NBA 2020-21 season, given than the previous match was suspended

# Rescheduling in sports



### The 2020 - 2021 NBA Season

The NBA applied the following contingency actions during the season:

#### Proactive scheduling strategy:

1. Schedule only the first half of the season (All-Star Game);

#### Q: Is there a way to see a breakdown of the schedule for 2020-21?

Yes, the 2020-21 regular season opponent matrix for each NBA team is available here. Full team-by-team schedules for the first half of 2020-21 are here.

- 1. Postpone games if a teams has insufficient players to the second half;
- 2. Generate a schedule for the second half + suspended games
- 3. Ad-hoc reschedule for games suspended during the second half.

**72**Games per team

31

Suspended games

3% Games suspended

# Our approach: a reactive strategy

#### **Definition**

Each game in the executed timetable that is played before or after its scheduled round is considered a **disruption**. In our setup, each suspended game will therefore translate into a disruption that needs to be rescheduled in the remaining of the season schedule

#### **Research Question**

Can we systematically generate an **adjusted fixture** by rescheduling postponed games within the planned schedule?

#### Approach: a reactive strategy

- Consider as input the planned schedule for the entire season.
- Insert the disrupted matches onto the existing schedule, maintaining the original scheduled dates for non-disrupted matches
- We build a linear optimization model to find the best possible date for each disruption and, if we
  can't, we reschedule it after the end of the schedule's original date

### **Notation and Definitions**

#### **General**

Set of teams:  $S = \{1, \dots, m\}$ 

Set of original rounds:  $T = \{1, ..., r\}$ 

Match between j and k: (j, k)

Scheduled game: Match between j

and k on round t:  $\alpha = <(j, k), t>$ 

#### Schedule Rules

Scheduled games of team  $i: R_i$ 

Disrupted games of team  $i: R_i^{dis}$ 

Total disrupted games:  $R^{dis} = \bigcup_{i \in S} R_i^{dis}$ 

Potential candidate variables dates for match  $\alpha = T_{\alpha}^{free}$ 

Maximum number of games that a team can play within every window of  $t_2 - t_1$  days:  $MG_{t_1,t_2}$ 

Number of non-disrupted games a team is playing between dates  $t_2$  and  $t_1$ :  $k_{t_1,t_2}^i$ 

#### **Decision variables**

 $x_{\alpha t} = 1$  iff disrupted game  $\alpha$  is rescheduled into round t

# Mathematical Model (MinD)



# **Preliminary experiments**

- Rescheduled dates for postponed games are not considered as part of the input schedule (except for some special configurations)
- We consider the following metrics:
  - Classical from scheduling: distance, breaks.
  - New: # of day added and # of games played after the end of the season in the planned schedule.
- Models and algorithms implemented in Python + CPLEX.

# Rescheduling Strategies

In order to get a better understanding of the performance of our solution we try to replicate
the rescheduling process for the suspended games of the 2020-21 NBA season

#### Rescheduling methodology

#### Post All-Star



#### Post All Star\*

Use the NBA's reschedules if they happened within the month of the original game

## **Main Results**

Number of additional days needed after the end of the season

|     | Metric        | NBA exec | Post All Star | Post All Star* |
|-----|---------------|----------|---------------|----------------|
|     | Distance      | -0.2%    | 0.4%          | 0.4%           |
|     | Breaks        | 0.6%     | 0.2%          | 0.7%           |
| 4 1 | # Dates Added | -        | 6             | 3              |
|     | Games After   | -        | 7             | 3              |
|     | Exec. Time    |          | 8.85 min      | 9.29 min       |

Number of games scheduled after the end of the season

В

#### **Key Takeouts**

All differences are small (around 1%)

The NBA's proactive approach has effects on the additional number of dates needed

## Further Disruption Scenarios

We consider instances stressing the the number and timing of the disruptions:

- 15 more games: ~50% increase in the problem size
- 25 more games: ~80% increase in the problem size
- 15 more March games: Similar to a second COVID wave

| Instance / Metric      | Distance | Breaks | # dates added | Games after | Exec. Time |
|------------------------|----------|--------|---------------|-------------|------------|
| 15 more games          | 3.8%     | -0.7%  | 13            | 21          | 10.41 min  |
| 25 more games          | 5.0%     | -0.3%  | 13            | 26          | 12.91 min  |
| 15 more games in March | 1.6%     | 0.2%   | 10            | 22          | 10.06 min  |



Difference against the planned NBA schedule, post All-Star strategy



# How can we improve the existing solution?

Given the current result, specially the effect on relevant KPIs of bigger instances, we might consider that a different approach is necessary:

#### Example



# How can we adapt the existing model?

#### Additional variables

- Non Disrupted Games of Team  $i: R_i^{ND}$
- Set of rounds post-tournament:  $TP = \{r + 1, ... r + 181\}$
- Maximum days of difference between match date and original date for non disruptions: d
- Original date for non disrupted match  $\bar{\alpha}$ :  $\tau_{\bar{\alpha}}$
- Potential candidate dates for non disrupted match  $\bar{\alpha}$ :  $T_{\overline{\alpha}}^{free} = \{\tau_{\overline{\alpha}} d, ... \tau_{\overline{\alpha}} + d\}$
- Tours of team  $i: TO_i = \{TO_{i,1}, TO_i\}$
- Tour n of team  $i: TO_{i1} = \{\overline{\alpha_{n1}, \alpha_{n2}, ...}\}$
- Maximum non disruptions whose date can be modified within a tour: td
- Variable that indicates that non disrupted match  $\bar{\alpha}$  is scheduled on round  $t: \bar{x}_{\alpha t}$

$$\min \sum_{\alpha \in R^{DIS}} \sum_{t \in T_{\alpha}^{free}} d_{\alpha t} * x_{\alpha t} + \sum_{\alpha \in R^{DIS}} \sum_{t \in TP} 100 * d_{\alpha t} * x_{\alpha t}$$
(5)

$$s. t \sum_{t \in T_n^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1 \qquad \forall \alpha \in R^{DIS}$$

$$(6)$$

$$\sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} = 1 \qquad \forall \, \overline{\alpha} \in R^{ND}$$
 (7)

$$\sum_{\alpha \in R_i^{DIS}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t_1 \le t \le t_2}} x_{\alpha t} + \sum_{\overline{\alpha} \in R_i^{ND}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t_1 \le t \le t_2}} \overline{x_{\alpha t}} \le MG_{d_{t_1 t_2}}$$
  $\forall t_1, t_2 \in T \cup TP, 1 \le t_2 - t_1 \le 7, i \in S$  (8)

$$\sum_{\overline{\alpha} \in TO_{in}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t \neq \tau_{\overline{\alpha}}}} \overline{x_{\alpha t}} \leq td \qquad \forall n \in TO_i, i \in S$$

$$(9)$$

$$x_{\alpha t}, \overline{x_{\alpha t}} \in \{0; 1\} \tag{10}$$

Minimize Day Difference Between Original and Final Date

$$\min \sum_{\alpha \in R^{DIS}} \sum_{t \in T_{\alpha}^{free}} d_{\alpha t} * x_{\alpha t} + \sum_{\alpha \in R^{DIS}} \sum_{t \in TP} 100 * d_{\alpha t} * x_{\alpha t}$$

$$(5)$$

$$s. t \sum_{t \in T_{\alpha}^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1$$

$$\forall \alpha \in R^{DIS}$$
(6)

$$\sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} = 1 \qquad \forall \, \bar{\alpha} \in R^{ND}$$
 (7)

$$\sum_{\alpha \in R_i^{DIS}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t_1 \le t \le t_2}} x_{\alpha t} + \sum_{\overline{\alpha} \in R_i^{ND}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t_1 \le t \le t_2}} \overline{x_{\alpha t}} \leq MG_{d_{t_1 t_2}} \qquad \forall t_1, t_2 \in T \cup TP, 1 \le t_2 - t_1 \le 7, i \in S$$

$$(8)$$

$$\sum_{\overline{\alpha} \in TO_{in}} \sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} \leq td \qquad \forall n \in TO_i, i \in S$$

$$(9)$$

$$x_{\alpha t}, \overline{x_{\alpha t}} \in \{0; 1\} \tag{10}$$

$$\min \sum_{\alpha \in R^{DIS}} \sum_{t \in T_{\alpha}^{free}} d_{\alpha t} * x_{\alpha t} + \sum_{\alpha \in R^{DIS}} \sum_{t \in TP} 100 * d . * r .$$
All disruptions should be scheduled in existing or extra dates

$$s. t \sum_{t \in T_{\alpha}^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1$$

$$\forall \alpha \in R^{DIS}$$
(6)

$$\sum_{t \in T_{\bar{\alpha}}^{free}} \overline{x_{\alpha t}} = 1 \qquad \forall \, \bar{\alpha} \in R^{ND}$$
 (7)

$$\sum_{\alpha \in R_i^{DIS}} \sum_{t \in T_{\overline{\alpha}}^{free}} x_{\alpha t} + \sum_{\overline{\alpha} \in R_i^{ND}} \sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} \leq MG_{d_{t_1 t_2}} \qquad \forall t_1, t_2 \in T \cup TP, 1 \leq t_2 - t_1 \leq 7, i \in S$$

$$(8)$$

$$\sum_{\overline{\alpha} \in TO_{in}} \sum_{t \in T_{\overline{\alpha}}} \overline{x_{\alpha t}} \leq td \qquad \forall n \in TO_i, i \in S$$

$$(9)$$

$$x_{\alpha t}, \overline{x_{\alpha t}} \in \{0; 1\} \tag{10}$$

$$\min \sum_{\alpha \in R^{DIS}} \sum_{t \in T_{\alpha}^{free}} d_{\alpha t} * x_{\alpha t} + \sum_{\alpha \in R^{DIS}} \sum_{t \in TP} 100 * d_{\alpha t} * x_{\alpha t}$$

$$(5)$$

$$s.t \sum_{t \in T_{\alpha}^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1$$

$$s. t \sum_{t \in T_{\alpha}^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1$$

$$\sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} = 1$$

$$\forall \alpha \in \mathbb{R}^{DIS}$$

$$\forall \overline{\alpha} \in \mathbb{R}^{ND}$$

$$(6)$$
All non disruptions should be scheduled in possible dates
$$\forall \overline{\alpha} \in \mathbb{R}^{ND}$$

$$\sum_{\alpha \in R_i^{DIS}} \sum_{t \in T_{\overline{\alpha}}^{free}} x_{\alpha t} + \sum_{\overline{\alpha} \in R_i^{ND}} \sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} \leq MG_{d_{t_1 t_2}} \qquad \forall t_1, t_2 \in T \cup TP, 1 \leq t_2 - t_1 \leq 7, i \in S$$
 (8)

$$\sum_{\overline{\alpha} \in TO_{in}} \sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} \leq td \qquad \forall n \in TO_i, i \in S$$

$$(9)$$

$$x_{\alpha t}, \overline{x_{\alpha t}} \in \{0; 1\} \tag{10}$$

$$\min \sum_{\alpha \in R^{DIS}} \sum_{t \in T_{\alpha}^{free}} d_{\alpha t} * x_{\alpha t} + \sum_{\alpha \in R^{DIS}} \sum_{t \in TP} 100 * d_{\alpha t} * x_{\alpha t}$$

$$(5)$$

$$s.t \sum_{t \in T_n^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1 \qquad \forall \alpha \in R^{DIS}$$

$$(6)$$

$$\sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} = 1$$

$$\forall \, \overline{\alpha} \in R^{ND}$$
Schedule rules must be follows

#### Schedule rules must be followed

$$\sum_{\substack{\alpha \in R_i^{DIS} \\ t_1 \le t \le t_2}} \sum_{t \in T_{\overline{\alpha}}^{free}} x_{\alpha t} + \sum_{\overline{\alpha} \in R_i^{ND}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t_1 \le t \le t_2}} \overline{x_{\alpha t}} \leq MG_{d_{t_1 t_2}} \qquad \forall t_1, t_2 \in T \cup TP, 1 \le t_2 - t_1 \le 7, i \in S$$

$$(8)$$

$$\sum_{\overline{\alpha} \in TO_{in}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t \neq \tau_{\overline{\alpha}}}} \overline{x_{\alpha t}} \leq td \qquad \forall n \in TO_i, i \in S$$

$$(9)$$

$$x_{\alpha t}, \overline{x_{\alpha t}} \in \{0; 1\} \tag{10}$$

$$\min \sum_{\alpha \in R^{DIS}} \sum_{t \in T_{\alpha}^{free}} d_{\alpha t} * x_{\alpha t} + \sum_{\alpha \in R^{DIS}} \sum_{t \in TP} 100 * d_{\alpha t} * x_{\alpha t}$$

$$(5)$$

$$s. t \sum_{t \in T_n^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1 \qquad \forall \alpha \in R^{DIS}$$
 (6)

$$\sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} = 1 \qquad \forall \, \bar{\alpha} \in R^{ND}$$
 (7)

$$\sum_{\alpha \in R_i^{DIS}} \sum_{t \in T_{\overline{\alpha}}^{free}} x_{\alpha t} + \sum_{\overline{\alpha} \in R_i^{ND}} \sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} \leq MG_{d_{t_1 t_2}} \qquad \forall t_1, t_2 \in T \cup TP, 1 \leq t_2 - t_1 \leq 7, i \in S$$

$$(8)$$

No more tan td non disruptions can be changed per tour

$$\sum_{\overline{\alpha} \in TO_{in}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t \neq \tau_{\overline{\alpha}}}} \overline{x_{\alpha t}} \leq td \qquad \forall n \in TO_i, i \in S$$

$$(9)$$

$$x_{\alpha t}, \overline{x_{\alpha t}} \in \{0; 1\} \tag{10}$$

$$\min \sum_{\alpha \in R^{DIS}} \sum_{t \in T_{\alpha}^{free}} d_{\alpha t} * x_{\alpha t} + \sum_{\alpha \in R^{DIS}} \sum_{t \in TP} 100 * d_{\alpha t} * x_{\alpha t}$$

$$\tag{5}$$

$$s.t \sum_{t \in T_n^{free}} x_{\alpha t} + \sum_{t \in TP} x_{\alpha t} = 1 \qquad \forall \alpha \in R^{DIS}$$

$$(6)$$

$$\sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} = 1 \qquad \forall \, \overline{\alpha} \in R^{ND}$$
 (7)

$$\sum_{\alpha \in R_i^{DIS}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t_1 \le t \le t_2}} x_{\alpha t} + \sum_{\overline{\alpha} \in R_i^{ND}} \sum_{\substack{t \in T_{\overline{\alpha}}^{free} \\ t_1 \le t \le t_2}} \overline{x_{\alpha t}} \leq MG_{d_{t_1 t_2}} \qquad \forall t_1, t_2 \in T \cup TP, 1 \le t_2 - t_1 \le 7, i \in S$$

$$(8)$$

$$\sum_{\overline{\alpha} \in TO_{in}} \sum_{t \in T_{\overline{\alpha}}^{free}} \overline{x_{\alpha t}} \leq td$$

$$\forall n \in TO_i, i \in S$$
Variable domain

$$x_{\alpha t}, \overline{x_{\alpha t}} \in \{0; 1\} \tag{10}$$

## Effects on relevant KPIs

To get an understanding on the effect of this possible changes, let's analyze the results with a Post All Star scheduling strategy with our biggest instance: original disruptions + 25 new ones:



<sup>\*</sup> Against original planned schedule

## Effects on relevant KPIs

To get an understanding on the effect of this possible changes, let's analyze the results with a Post All Star scheduling strategy with our biggest instance: original disruptions + 25 new ones:







As we are not limiting the number of total reschedules, this results in approximately 15% of total games being changed

<sup>\*</sup> Against original planned schedule

# A shortcoming of this approach

#### **Example: Original Schedule**



Our current approach might change the tour order, increasing the total distance travelled

# Summary

- We framed the problem of rescheduling in time-relaxed tournaments
- We evaluate different rescheduling strategies building on MIP models
- Initial results show we are obtaining similar results than the ones produced by the NBA
- More stressed disrupted scenarios have a considerable impact on relevant KPIs
- Schedule modifications may help reduce the impact of multiple disruptions on more stressed scenarios

#### Next steps

- Limit potential changes in order to find a good balance between additional dates needed to complete a schedule and total distance travelled
- Elaborate new model that enumerates potential tour changes and finds a schedule that generates the minimum distance.

# THANK YOU