

SISTEMA MÍNIMO

Es el circuito eléctrico/electrónico mínimo necesario para poder hacer que un microcontrolador (o microprocesador) pueda ejecutar un programa. En general bastan un circuito oscilador, un circuito de reset y la alimentación de CD del sistema.

RADIOGRAFIA DE UN MICROCONTROLADOR

Un microcontrolador contiene en su interior al CPU (core) además de periféricos dentro del mismo encapsulado. Todos se comunican a través de canales de comunicaciones llamados buses. Estos buses en todos los sistemas basados en microcontrolador/microprocesador son llamados bus de datos (qué se envía), bus de direcciones (a dónde se envía) y bus de control (a qué hora se envía). A su vez, todos los periféricos e incluso el CPU se configuran a través de registros (registros de control) que son posiciones de memoria RAM con los que se controla la operación de ellos.

Circuito de reloj para el PIC18F46K22

El reloj es una de las partes mas importantes de los sistemas secuenciales. Sin este circuito un microcontrolador (es un sistema secuencial) no podría sincronizar todos los eventos internos para la ejecución de un programa.

Note 1: A series resistor (Rs) may be required for quartz crystals with low drive level.

2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω to 10 M Ω).

Osc Type	Crystal Freq		acitor Values sted:	
	rieq	C1	C2	
XT	4 MHz	27 pF	27 pF	
HS	4 MHz	27 pF	27 pF	
	8 MHz	22 pF	22 pF	
	20 MHz	15 pF	15 pF	

Circuito de Reset para el PIC18F46K22

El circuito de Reset genera un pulso hacia el microcontrolador para que éste regrese a la dirección 0x0000H de la memoria de programa y además se restablezcan todos los registros y periféricos internos a sus valores por defecto.

CIRCUITO TÍPICO

CIRCUITO PARA FUENTES DE ALIMENTACIÓN "LENTAS"

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 \ge 1 \text{ k}\Omega$ will limit any current flowing into $\overline{\text{MCLR}}$ from external capacitor C, in the event of $\overline{\text{MCLR}}/\text{VPP}$ pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

Sistema mínimo propuesto (reloj de 12MHz)

Sistemas de desarrollo

Son tarjetas desarrolladas por terceros, que incorportan algunos periféricos para poder trabajar con un microcontrolador. Estos periféricos externos son distintos de los periféricos que pueda tener internamente el microcontrolador. Estos pueden ser dip switch, push button, displays de 7 segmentos, LCD, leds, etc. Todo con el fin de no tener que armar en un Protoboard los elementos básicos para, en muchas ocasione, aprender a programar un microcontrolador.

Pasos generales para hacer un programa

- 1. Generar el proyecto en el IDE (MPLAB)
- 2. Agregar el archivo principal con extensión .C (main.c)
- 3. Ajustar los bits de configuración según los requerimientos del programa
- 4. Escribir el programa
- 5. Compilar el programa
- 6. Cargar el archivo .hex a la herramienta programadora del microcontrolador (PICKIT2, PICKIT3, PICKIT4, etc.)
- 7. Programar el microcontrolador (PIC, AVR, etc)

Dependiendo del dispositivo seleccionado y las características habilitadas, hay hasta cinco puertos disponibles. Algunos pines de los puertos de E/S están multiplexados con funciones alternas de los periféricos internos del PIC.

En general, cuando un periférico interno del PIC está habilitado, ese pin puede no ser utilizado como un pin de E/S de uso general.

Dependiendo del dispositivo seleccionado y las características habilitadas, hay hasta cinco puertos disponibles. Algunos pines de los puertos de E/S están multiplexados con funciones alternas de los periféricos internos del PIC.

En general, cuando un periférico interno del PIC está habilitado, ese pin puede no ser utilizado como un pin de E/S de uso general.

Legend:

- 1 Lanyard Connection
- 2 USB Port Connection
- 3 Pin 1 Marker
- 4 Programming Connector
- 5 Status LEDs
- 6 Push Button

Pin Number	Pin Name	Description			
1	MCLR/Vpp	Connected to Master clear external reset pin of PIC to reset the MCU before programming			
2	VDD (Target)	Target voltage of PIC, 5V or 3.3V			
3	Ground	Ground pin of the system			
4	PGD/ICSPDAT	Program Data(PDG) is connected to the In Circuit Serial Programming (ICSP) data pin			
5	PGC/ICSPCLK	Program Clock (PGC) is connected to In Circuit Serial Programming (ICSP) clock pin			
6	No connection	This pin is reserved for future use			

Pin Number	Pin Name	Description			
1	MCLR/Vpp	Connected to Master clear external reset pin of PIC to reset the MCU before programming			
2	VDD (Target)	Target voltage of PIC, 5V or 3.3V			
3	Ground	Ground pin of the system			
4	PGD/ICSPDAT	Program Data(PDG) is connected to the In Circuit Serial Programming (ICSP) data pin			
5	PGC/ICSPCLK	Program Clock (PGC) is connected to In Circuit Serial Programming (ICSP) clock pin			
6	No connection	This pin is reserved for future use			

Prevención de espacios

Organización de pines

Organización de pines

PUERTO A \rightarrow 8 BITS PUERTO B \rightarrow 8 BITS PUERTO C \rightarrow 8 BITS PUERTO D \rightarrow 8 BITS PUERTO E \rightarrow 4 BITS

PIC18F46K22

Para su operación básica, cada puerto tiene cuatro registros para su funcionamiento:

- REGISTRO TRISx: Se utiliza para indicar si el puerto (o pin) se utilizará como entrada o salida.
- **REGISTRO PORTx**: Se utiliza para leer un puerto (o bit).
- REGISTRO LATx: Se utiliza para escribir en el puerto (o bit).
- REGISTRO ANSELx: Se utiliza para definir si el puerto (o bit) se utilizará como entrada analógica o como entrada/salida digital.

FIGURE 10-1: GENERIC I/O PORT OPERATION

Existen algunos otros registros asociados a cada puerto. Esto se debe a que un puerto no solo se utiliza como puerto de E/S de propósito general sino también puede ser utilizado por algún periférico interno del PIC (como sucede con el ADC). Aquí un ejemplo:

TABLE 10-6: REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	150
ECCP2AS	CCP2ASE	(CCP2AS<2:0>	>	PSS2AC<	1:0>	PSS2B	D<1:0>	202
CCP2CON	P2M	<1:0>	DC2B	<1:0>		CCP2M<3	:0>		198
ECCP3AS	CCP3ASE	(CCP3AS<2:0>	•	PSS3AC<	1:0>	PSS3B	BD<1:0>	202
CCP3CON	P3M	<1:0>	DC3B	<1:0>		CCP3M<3	:0>		198
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	109
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	110
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	111
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_	153
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	152
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	148
SLRCON	_	_	_	SLRE ⁽¹⁾	SLRD ⁽¹⁾	SLRC	SLRB	SLRA	153
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	167
T3CON	TMR30	S<1:0>	T3CKP	S<1:0>	T3SOSCEN	T3SYNC	T3RD16	TMR30N	166
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/DONE	T5GVAL	T5GS	S<1:0>	167
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	151
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	152

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for PORTB.

Note 1: Available on PIC18(L)F4XK22 devices.

El registro TRISx se utiliza para indicar si el pin o puerto que se desea configurar será una entrada o una salida.

REGISTER 10-8: TRISx: PORTx TRI-STATE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TRISx7	TRISx6	TRISx5	TRISx4	TRISx3	TRISx2	TRISx1	TRISx0
bit 7 bit 0							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR (1) = Bit is set (0) = Bit is cleared (0) = Bit is cleared (0) = Bit is unknown

bit 7-0 TRISx<7:0>: PORTx Tri-State Control bit

1 = PORTx pin configured as an input (tri-stated)

0 = PORTx pin configured as an output

Note 1: Register description for TRISA, TRISB, TRISC and TRISD.

El registro PORTx se utiliza para leer datos desde los puertos

10.9 Register Definitions – Port Control

REGISTER 10-1: PORTX⁽¹⁾: PORTx REGISTER

R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x	R/W-u/x
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
bit 7 bit 0							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set 0' = Bit is cleared 0' = Bit is unknown

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0 Rx<7:0>: PORTx I/O bit values⁽²⁾

Note 1: Register Description for PORTA, PORTB, PORTC and PORTD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

El registro LATx se utiliza para escribir datos a los puertos

REGISTER 10-10: LATX: PORTX OUTPUT LATCH REGISTER⁽¹⁾

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATx7	LATx6	LATx5	LATx4	LATx3	LATx2	LATx1	LATx0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 LATx<7:0>: PORTx Output Latch bit value⁽²⁾

Note 1: Register Description for LATA, LATB, LATC and LATD.

2: Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O pin values.

El registro ANSELx se utiliza para definir si el puerto (o bit) se utilizará como entrada analógica o como entrada/salida digital.

REGISTER 10-4: ANSELB – PORTB ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ANSB<5:0>: RB<5:0> Analog Select bit

1 = Digital input buffer disabled0 = Digital input buffer enabled

NOTA: En general, los bits que deben configurarse de forma explicita para ser de tipo análogo o digital son todos aquellos pines que están asociados al convertidor ADC del microcontrolador.