Reading Summary: Appendix C, D

Evan Hughes

January 2023

Appendix C Well Ordering and Induction

Well Ordering

The subset of nonnegative integers will be denoted by N. Thus

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$$

Well Ordering Axiom Every nonempty set of \mathbb{N} contains a smallest a smallest element This axiom might not hold if \mathbb{N} is replaced with some other set of numbers. Well Ordering Axiom also creates the proof method known as **Induction**. Induction can be used to prove statements like

A set of n elements has 2^n subsets.

Denote this statement by the symbol P(n) and see that there are infinitely many statements, one for each possible value of n:

P(0): a set of 0 elements has $2^0 = 1$ subsets

P(1): a set of 1 elements has $2^1 = 2$ subsets

P(2): a set of 1 elements has $2^4 = 4$ subsets

P(3): a set of 1 elements has $2^3 = 8$ subsets

Then you can prove

P(n) is a true statement for $n \in \mathbb{N}$

Theorem C.1 The principle of Mathematical Induction

Assume that for each nonnegative Integer n, a statement P(n) is given. If

- 1. P(0) is a true statement; and
- 2. Whenever P(k) is true, then P(k+1) is also true

then P(n) is a true statement for every $n \in \mathbb{N}$.

To use Induction you must make sure that your set satisfies both cases. Without satisfing both Induction does not work

Example: Proof that $\frac{n(n+1)}{2}$ is the sum of the first n nonnegative integers First you need to prove the base case P(0)

$$P(0) = \frac{0(0+1)}{2} = 0 \tag{1}$$

this holds true, the sum of the first 0 nonnegative integers is 0.

Next the inductive step, you need to prove that when P(k) is true then P(k+1) is also true

$$P(k) = \frac{k(k+1)}{2} \tag{2}$$

$$P(k+1) = \frac{(k+1)((k+1)+1)}{2} = \frac{(k+1)(k+2)}{2}$$
 (3)

then you need to prove that that is equal to P(k) + (k+1)

$$\frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2} = P(k+1) \tag{4}$$

this completes the induction because you have proven the when P(k) is true then P(k+1) is true.

Theorem C.2 The principle of Complete Induction

- 1. P(0) is a true statement; and
- 2. Whenever P(j) is true for all j such that $0 \le j < t$, then P(t) is also true

then P(n) is a true statement for every $n \in \mathbb{N}$.

Example: (from the book) Proof of Theorem C.2

For each $n \in \mathbb{N}$, let Q(n) be the statement

P(J) is true for all j such that $0 \le j \le n$.

We will use Theorem C.1 to prove that Q(n) is true for every $n \in \mathbb{N}$. Now Q(O) is the statement

$$P(J)$$
 is true for all j such that $0 \le j \le 0$.

This says, Q(O) is just the statement "P(O) is true". Assume that Q(k) is true, that is,

$$P(J)$$
 is true for all j such that $O \leq j \leq k$.

By hypothesis (2) (with t = k + 1), we conclude the P(k + 1) is also true. Therefore, P(J) is true for all j such that $O \le j \le k + 1$, that is, Q(k + 1) is a true statement. Thus we have shown that whenever Q(k) is true, then Q(k + 1) is also true. By the Principle of Mathematical Induction, Q(n) is true for every $n \in \mathbb{N}$, and the proof is complete.

Theorem C.3

Let r be a positive integer and assume that for each $n \ge r$ a statement P(n) 1s given. If (i) P(r) is a true statement; and either (ii) Whenever $k \ge r$ and P(k) is true, then P(k+1) is true; or (ii') Whenever P(j) is true for all j such that $r \le j < t$, then P(t) is true, then P(n) is true for every $n \ge r$.

Theorem C.4

The following are equivalent

- 1. The Well Ordering Axiom
- 2. The principle of Mathematical Induction
- 3. The principle of Complete Induction

Appendix D Equivalence Relations

If A is a set, then any subset of A * A is called a relation on A. A relation T on A is called an **equivalence relation** provided that the subset T is

- (i) **Reflexive**: $a \ a \in T$ for every $a \in A$.
- (ii) **Symmetric**: If $a \ b \in T$, then $b \ a$.
- (iii) **Transitive**: If $a \ b \in T$ and $b \ c \in T$, then $a \ c$.