# SMBD Y ST: FUNCIONES Y ARQUITECTURA

José Abásolo Diana Benavides

#### **SMBD**

• **Definición:** Software para crear y manejar grandes volúmenes de datos de forma eficiente, permitiendo su persistencia segura a lo largo del tiempo.

#### Funciones

- Soporte para mínimo un modelo de datos
- Soporte a lenguajes de alto nivel (DDL, DML)
- Manejo de transacciones: accesos concurrentes eficientes y seguros
- Control de acceso : autorización de usuarios
- Habilidad de recuperación ante fallas
- Soporte a grandes volúmenes de datos: seguridad y eficiencia.

### Arquitectura de un SMBD

De acuerdo con las funciones vistas, ¿qué componentes identifican en una arquitectura de un sistema manejador de bases de datos?

### Arquitectura de alto nivel de un SMBD



## Arquitectura detallada de un SMBD



Figure 1.1: Database management system components

### SISTEMA TRANSACCIONAL (ST)

 Definición: Sistema que incluye una o más bases de datos que almacena el estado de una empresa, el software para manejar transacciones que manipulan el estado y las transacciones en sí (código de la aplicación).

#### Funciones

- Soporte a las operaciones diarias de una organización:
  - Ejecución de cierto tipo de transacciones predeterminadas de forma repetitiva
  - Reflejo del mundo real en datos persistentes
  - Soporte de consultas y actualizaciones de los datos persistentes

# Arquitectura de alto nivel de un ST



**FIGURE 1.1** The structure of a transaction processing system.

### "Sabores" de Arquitectura de un ST

#### 1. Arquitectura centralizada

- 1.1 Arquitectura monousuario centralizada
- 1.2 Arquitectura multiusuario centralizada

#### 2. Arquitectura distribuida

- 2.1 Arquitectura multiusuario distribuida en dos niveles
- 2.2 Arquitectura multiusuario distribuida en dos niveles, cuando una transacción accede múltiples servidores de bases de datos
- 2.3 Arquitectura multiusuario distribuida en tres niveles
- 2.4 Arquitectura multiusuario distribuida en tres niveles, con servidores de presentación, aplicación y transacciones

# Arquitectura de un ST monousuario centralizado



Fig. 5 Sistema Transaccional monousuario centralizado

# Arquitectura de un ST multiusuario centralizado



Fig.6.Sistema transaccional multiusuario centralizado

# Arquitectura de un ST multiusuario distribuido en dos niveles



Fig. 7. Sistema transaccional multiusuario distribuido en dos niveles

# Arquitectura de un ST multiusuario distribuido en dos niveles, cuando una transacción accede múltiples servidores de bases de datos



FIGURE 23.10 Two-tiered multidatabase transaction processing system in which a transaction can access several database servers.

# Arquitectura de un ST multiusuario distribuido en tres niveles



Fig.8.Sistema transaccional multiusuario distribuido en tres niveles

# Arquitectura de un ST multiusuario distribuido en tres niveles, con tareas que se ejecutan en un servidor de transacciones



FIGURE 23.5 Three-tiered distributed transaction processing system with tasks executed in a transaction server.

# Arquitectura de un ST multiusuario distribuido en tres niveles, con servidores de presentación, aplicación y transacciones



FIGURE 23.6 Interconnection of presentation, application, and transaction servers in a three-tiered architecture.

# Procesamiento de transacciones con colas



FIGURE 23.8 Queued transaction processing involves two queues and three transactions.

## Trabajo en grupo

 Plantear arquitectura de Turismo de los Alpes, encuadrándola en alguno de los "sabores" de arquitectura vistos

- Resolver las siguientes preguntas
  - 1. ¿Cuáles son los componentes de esta arquitectura y por qué?
  - 2. En esta arquitectura, ¿cómo se trataría el ejemplo del caso de uso "Reservar Vuelo"?

## Diseño Turismo de los Alpes: Arquitectura



#### RF: Reservar Vuelo



# FIN DE LA PRESENTACIÓN