Data Science for Actuaries (ACT6100)

Arthur Charpentier

Rappels # 1 (Vectors, Norms & Inner Product)

automne 2020

https://github.com/freakonometrics/ACT6100/

Norm

A norm $\|\cdot\|$, in \mathbb{R}^n , satisfies

- ▶ homogeneity, $\|\vec{a}\vec{u}\| = |a| \cdot \|\vec{u}\|$
- lacktriangle triangle inequality, $\|ec{m{u}} + ec{m{v}}\| \leq \|ec{m{u}}\| + \|ec{m{v}}\|$
- positivity, $\|\vec{\boldsymbol{u}}\| \geq 0$
- definiteness, $\|\vec{\boldsymbol{u}}\| = 0 \iff \vec{\boldsymbol{u}} = \vec{\boldsymbol{0}}$

 $\ell_1 \text{ norm: } \|\mathbf{x}\|_{\ell_1} = |x_1| + \cdots + |x_n|,$

see taxicab geometry

 ℓ_p norm: with $p \geq 1$,

$$\|\mathbf{x}\|_{\ell_p} = (|x_1|^p + \cdots + |x_n|^p)^{1/p}$$

e.g. $\|\boldsymbol{x}\|_{\ell_{\infty}} = \max\{x_i\}$

Unit balls ($\| {m x} \| \leq 1$) are convex sets

Hilbert Space and Inner Products

An inner product $\langle \cdot, \cdot \rangle$, in \mathbb{R}^n , satisfies

- ightharpoonup symmetry, $\langle \vec{\pmb{u}}, \vec{\pmb{v}} \rangle = \langle \vec{\pmb{v}}, \vec{\pmb{u}} \rangle$
- linearity, $\langle a\vec{\boldsymbol{u}} + b\vec{\boldsymbol{v}}, \vec{\boldsymbol{w}} \rangle = a\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{w}} \rangle + b\langle \vec{\boldsymbol{v}}, \vec{\boldsymbol{w}} \rangle$
- ightharpoonup positivity, $\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{u}} \rangle > 0$
- definiteness, $\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{u}} \rangle = 0 \iff \vec{\boldsymbol{u}} = \hat{\boldsymbol{0}}$

Example: On the set of \mathbb{R}^n vectors, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\top \mathbf{y}$ **Furthermore**

- $\|x\| = \sqrt{\langle x, x \rangle}$ defines a norm
- d(x, y) = ||x y|| defines a distance

Example: On the set of $m \times n$ matrices, $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{trace}(\mathbf{A}\mathbf{B}^{\top})$ **Example**: On the set of ranfom variables, $\langle X, Y \rangle = \mathbb{E}(XY)$

Distance

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$
 defines a distance.

$$d(\boldsymbol{a},\boldsymbol{b})+d(\boldsymbol{b},\boldsymbol{c})\geq d(\boldsymbol{a},\boldsymbol{c})$$

Example Let y, x_1, \dots, x_n . The nearest neighbor of y, among the x_i 's is

$$\mathbf{x}_{i^*} = \underset{\mathbf{x} \in \{\mathbf{x}_1, \dots, \mathbf{x}_n\}}{\operatorname{argmin}} \{d(\mathbf{x}, \mathbf{y})\}$$

Cauchy-Schwarz Inequality

 $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$ with equality only when $\mathbf{x} = \lambda \mathbf{y}$

Application: $x_i \leftarrow x_i - \overline{x}$ and $y_i \leftarrow y_i - \overline{y}$,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$$

$$\|\mathbf{x}\| \cdot \|\mathbf{y}\| = \sqrt{\mathbf{x}^{\top}\mathbf{x}} \cdot \sqrt{\mathbf{y}^{\top}\mathbf{y}} = \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i}$$

$$\operatorname{corr}(\boldsymbol{x},\boldsymbol{y}) = \frac{\sum\limits_{i=1}^{n} x_{i}y_{i}}{\sum\limits_{i=1}^{n} x_{i}^{2} \cdot \sum\limits_{i=1}^{n} y_{i}^{2}} = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \cdot \|\boldsymbol{y}\|} \in [-1, +1]$$

and $corr(\mathbf{x}, \mathbf{y}) = \pm 1$ only when $\mathbf{x} = \lambda \mathbf{y}$.

Angles

Since $|\langle x, y \rangle| \le ||x|| \cdot ||y||$, define θ as the unique number in [0, 1]that satisfies

$$\langle \pmb{x}, \pmb{y} \rangle = \|\pmb{x}\| \cdot \|\pmb{y}\| \cos(\theta), \text{ or } \theta = \arccos \frac{\langle \pmb{x}, \pmb{y} \rangle}{\|\pmb{x}\| \cdot \|\pmb{y}\|}$$

Mahalanobis distance

A $n \times n$ symmetric matrix **M** is positive definite if $\mathbf{x}^{\top} \mathbf{M} \mathbf{x} > 0$ for any $\mathbf{x} \in \mathbb{R}^n$.

Proposition: If **M** is a positive definite (symmetric) matrix, then $\langle x, y \rangle = x^{\top} M y$ defines an inner product.

(furthermore, conversely, if $\langle x, y \rangle = x^{\top} M y$ defines an inner product, then **M** is definite positive)

- $\langle x, y \rangle_M = x^\top M y$ defines an inner product,
- $\|x\|_M = \sqrt{\langle x, x \rangle_M}$ defines a norm
- $d_M(x, y) = ||x y||_M$ defines a distance

Given Σ some $n \times n$ definite positive matrix, define

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y})}$$

Given $\mu \in \mathbb{R}^n$, define the Mahalanobis "norm" as

$$\|\mathbf{x}\| = d(\mathbf{x}, \boldsymbol{\mu}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

If Σ is diagonal, it is also called standardized Euclidean distance. See on the generalised distance in statistics, 1936.

Linear Independence

A collection of k vectors $\{\vec{x}_1, \dots, \vec{x}_k\}$ (in \mathbb{R}^n) are linearly dependent if there are $\alpha_1, \dots, \alpha_k$ such that

$$\alpha_1 \vec{\mathbf{x}}_1 + \alpha_2 \vec{\mathbf{x}}_2 + \dots + \alpha_k \vec{\mathbf{x}}_k = \vec{\mathbf{0}}$$

They are linearly independent if they are not linearly dependent, i.e.

$$\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k = \vec{0} \implies \alpha_1 = \dots = \alpha_k = 0$$

Proposition A collection of linearly independent vectors in \mathbb{R}^n can have, at most, n elements.

(n+1) vectors in \mathbb{R}^n are linearly dependent

Orthonormlization (Gram-Schmidt)

If vectors $\{\vec{x}_1, \dots, \vec{x}_k\}$ are linearly independent, the Gram-Schmidt algorithm produces an orthonormal collection of vectors $\{\vec{\boldsymbol{u}}_1, \cdots, \vec{\boldsymbol{u}}_k\}$ with the following properties

- every \vec{x}_i is a linear combination of $\{\vec{u}_1, \dots, \vec{u}_k\}$
- every \vec{u}_i is a linear combination of $\{\vec{x}_1, \dots, \vec{x}_k\}$

Algorithm 1: Gram-Schmidt

- 1 initialization : $\{\vec{x}_1, \dots, \vec{x}_n\}$;
- 2 for t=1,2,...,k do

3
$$\vec{\boldsymbol{u}}_{t} = \vec{\boldsymbol{x}}_{t} - \left[\langle \vec{\boldsymbol{u}}_{1}, \vec{\boldsymbol{x}}_{t} \rangle \vec{\boldsymbol{u}}_{1} + \dots + \langle \vec{\boldsymbol{u}}_{t-1}, \vec{\boldsymbol{x}}_{t} \rangle \vec{\boldsymbol{u}}_{t-1} \right];$$
$$\vec{\boldsymbol{u}}_{t} = \vec{\boldsymbol{u}}_{t} / \|\vec{\boldsymbol{u}}_{t}\|$$

