I1

23 abril 2021

Inicio: 10.00 am

Entrega: hasta las 9.59 pm

0)	Responde esta pregunta de manera manuscrita.
	a) Nombre completo y número de alumno:
	b) Me comprometo a no preguntar ni responder dudas

1) Representación complemento de 2 para números con signo.

de esta prueba, ya sea directa o indirectamente, a nadie que no sea parte del equipo docente del curso. Firma: ___

- a) En clases dijimos que la representación *complemento de 2* fue elegida porque hace más simple al hardware. Explica de manera clara y precisa algunas de las ventajas en cuanto a hardware de *complemento de 2* frente a *signo y magnitud*; considera específicamente cada uno de los tres problemas que mencionamos en clases para esta última representación.
- b) Demuestra que en la representación complemento de 2, pasar de números de n bits a números de m bits, en que m > n, se puede hacer simplemente por la vía de agregar los m − n nuevos bits a la izquierda de los n bits originales, y ponerlos todos en cero, en el caso de números positivos, o todos en uno, en el caso de números negativos: esta conversión mantiene el valor del número original.

I1

23 abril 2021

- 2) Considera la siguiente versión del computador básico y su correspondiente set de instrucciones (página 3). Queremos agregar un tercer registro, C, al computador básico, y las correspondientes instrucciones ADD A,C y MOV C,B.
 - a) Dibuja y explica de manera clara y precisa los cambios necesarios en el circuito del computador básico: destaca claramente componentes, cables, buses de datos nuevos/modificados y cualquier otro cambio que hagas. La ALU no cambia en cuanto a que sigue teniendo dos inputs, A y B, y un output, Result, y que todos son de 8 bits.
 - b) Especifica las nuevas instrucciones en cuanto a opcodes, señales de control, y operación, similarmente a las otras instrucciones en el set y de manera coherente con tu dibujo en a).

I1

23 abril 2021

Instrucción	Operandos	Opcode	La	$_{ m Lb}$	Sa0	Sb0	Sb1	Sop2	Sop1	Sop0	Operación
MOV	A,B	000000	1	0	1	0	0	0	0	0	A=B
	$_{\mathrm{B,A}}$	000001	0	1	0	1	1	0	0	0	B=A
	$_{ m A,Lit}$	000010	1	0	0	0	1	0	0	0	A=Lit
	$_{ m B,Lit}$	000011	0	1	0	0	1	0	0	0	B=Lit
ADD	A,B	000100	1	0	0	0	0	0	0	0	A=A+B
	$_{\mathrm{B,A}}$	000101	0	1	0	0	0	0	0	0	B=A+B
	$_{ m A,Lit}$	000110	1	0	0	0	1	0	0	0	A=A+Lit
SUB	$_{\mathrm{A,B}}$	000111	1	0	0	0	0	0	0	1	A=A-B
	$_{\mathrm{B,A}}$	001000	0	1	0	0	0	0	0	1	B=A-B
	A,Lit	001001	1	0	0	0	1	0	0	1	A=A-Lit
AND	$_{\mathrm{A,B}}$	001010	1	0	0	0	0	0	1	0	A=A and B
	$_{\mathrm{B,A}}$	001011	0	1	0	0	0	0	1	0	B=A and B
	A,Lit	001100	1	0	0	0	1	0	1	0	A=A and Lit
OR	$_{\mathrm{A,B}}$	001101	1	0	0	0	0	0	1	1	A=A or B
	$_{\mathrm{B,A}}$	001110	0	1	0	0	0	0	1	1	B=A or B
	A,Lit	001111	1	0	0	0	1	0	1	1	A=A or Lit
NOT	$_{A,A}$	010000	1	0	0	0	0	1	0	0	A=notA
	$_{\mathrm{B,A}}$	010001	0	1	0	0	0	1	0	0	B=notA
	A,Lit	010010	1	0	0	0	1	1	0	0	A=notLit
XOR	A,A	010011	1	0	0	0	0	1	0	1	A=A xor B
	$_{\mathrm{B,A}}$	010100	0	1	0	0	0	1	0	1	B=A xor B
	A,Lit	010101	1	0	0	0	1	1	0	1	A=A xor Lit
SHL	A,A	010110	1	0	0	0	0	1	1	0	A=shift left A
	$_{\mathrm{B,A}}$	010111	0	1	0	0	0	1	1	0	B=shift left A
	A,Lit	011000	1	0	0	0	1	1	1	0	A=shift left Lit
$_{ m SHR}$	$_{A,A}$	011001	1	0	0	0	0	1	1	1	A=shift right A
	$_{\mathrm{B,A}}$	011010	0	1	0	0	0	1	1	1	B=shift right A
	A.Lit	011011	1	0	0	0	1	1	1	1	A=shift right Lit

I1

23 abril 2021

- 3) Considera la siguiente versión del computador básico. El registro Status tiene dos bits, Z y N, que se obtienen a partir del resultado de la operación de la ALU; este resultado tiene 8 bits, tal como se indica en la figura.
 - a) Dibuja el circuito digital que a partir de los 8 bits del resultado de la ALU genera los valores correctos para los bits Z y N (cuyos significados forman parte de lo que tú tienes que saber).
 - b) Queremos agregar un tercer bit, P, al registro Status, tal que P=1 si el resultado de la ALU es un número par o cero; de lo contrario, P=0. Modifica tu circuito de a) para que además genere correctamente el valor del bit P.
 - c) Queremos agregar un cuarto bit, T, a Status: T=1 si el resultado de la ALU es una potencia exacta de 2, positiva; de lo contrario, T=0. Modifica tu circuito de b) para que además genere correctamente el valor de T.
 - d) Finalmente, queremos agregar un quinto bit, E: E =1 si la cantidad de 0s del resultado es par; de lo contrario, E = 0. Modifica tu circuito de c) para que además genere correctamente el valor de E.

I1

23 abril 2021

4) En esta pregunta vas a usar tu número de alumno como input. Específicamente, considerando que tu número es (por ejemplo) xxx9742x, entonces el estado inicial de la memoria de datos va a ser el siguiente. Considera una memoria con $2^8 = 256$ celdas, con direcciones 000000002 a 111111112; entonces, las direcciones 000010102, 000010112 y 000011002 contienen inicialmente los valores tomados de tu número de alumno, como se indica.

	DATA:	
dirección	label	$valor\ o \ contenido$
11111111		
00001101	tmp	
00001100	t	97
00001011	s	4
00001010	r	2
00001001		
		•••
00000000		

Ejecuta el siguiente programa en el mismo computador básico de la pregunta 3. Al terminar la ejecución de cada instrucción, indica el contenido de los registros A y B, y el contenido de cualquier celda de la memoria de datos que haya cambiado como consecuencia de la ejecución de la instrucción.

MOV A, (r) MOV B, (s) ADD **A**, B SHR В, А MOV A, (t) Loop: SHR A, A CMP A, 0 End JEQ MOV (B), A MOV (tmp), A MOV A, B SUB A, 1 CMP A, 0 JLT End MOV В, А MOV A, (tmp) JMP Loop

CODE:

End: