Introduction to Intelligent Vehicles [0. Course Introduction]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Enrollment

- ☐ If you have not enrolled this course...
 - ➤ Visit the NTU enrollment system

Introduction to Myself

- ☐ B.S. Student
 - > 2001.09--2005.06, CSIE Department, NTU
- ☐ M.S. Student
 - > 2005.09--2007.06, GIEE (EDA Group), NTU
- ☐ Ph.D. Student
 - > 2009.08--2015.08, EECS Department, UC Berkeley
- Researcher
 - ➤ 2015.09--2018.07, Systems and Software Division, Toyota InfoTechnology Center (Mountain View, CA)
- Assistant Professor
 - > 2018.08--2021.07, CSIE Department, NTU
- ☐ Associate Professor
 - > 2021.08--, CSIE Department, NTU

Intelligent Vehicles

☐ Connected and Autonomous Vehicles (CAV)

> A good application may need both of "connectivity" and "autonomy"

- What if the intersection management does not have connectivity?
- ➤ What if the intersection management does not have autonomy?

Learning Goals (1/2)

- ☐ Skills in
 - ➤ Modeling
 - We will work (design and analyze) upon models rather than real vehicles
 - Design
 - We will optimize some objectives (performance, robustness, security, etc.)
 - > Analysis
 - How good are the designs?
- ☐ Philosophy behind technology (which may expire soon)
 - > Example
 - The Controller Area Network (CAN) is old and slow (~500kbps)
 - Why is it still the most popular in-vehicular network protocol?

Learning Goals (2/2)

- NOT covered in this course
 - > The mechanics of vehicles
 - > The physics of vehicles
 - > The chemistry of vehicles
 - > Electric vehicles
- Covered a little in this course
 - ➤ Machine learning

https://www.thehenryford.org/

https://www.formula1.com

Calendar (Tentative)

W1	Feb 20	[0] Course Introduction [1] System Architecture	
W2	Feb 27	[2] Timing Analysis I	HW1 Posted
W3	Mar 5	[3] Timing Analysis II	
W4	Mar 12	[4] System Design	
W5	Mar 19	[5] Advanced Driver-Assistance Systems [6] Intersection Management	HW1 Due HW2 Posted
W6	Mar 26	[6] Intersection Management	
W7	Apr 2	[7] Connectivity	HW2 Due
W8	Apr 9	Midterm	
W9	Apr 16	[8] Sensing and Perception [9] Planning and Control	
W10	Apr 23	[10] Verification	
W11	Apr 30	[11] Security	
W12	May 7	[12] Edge Computing[13] Certification[14] Summary	
W13	May 14	Quiz / Project Presentation	
W14	May 21	Project Presentation	
W15	May 28	Project Presentation	
W16	Jun 4	Project Presentation	Project Report Due
W16	Jun 4	Project Presentation	Project Report Due

Lecture Plan

- ☐ Four parts in sequence
 - > [Part 1] Preliminary
 - > [Part 2] Applications
 - ➤ [Part 3] Intelligent Technology
 - ➤ [Part 4] Advanced Topics
- ☐ However, please expect that topics will be "discrete"

Grading

- Homework 1: 5% [Week 5]
- ☐ Homework 2: 5% [Week 7]
- ☐ Midterm: 30% [Week 8]
- ☐ Quiz: 15% [Week 13]
- ☐ Project presentation: 10% [Weeks 13, 14, 15, 16]
 - > Earlier? (you do not need to complete your work to present)
- ☐ Project report: 35% [Week 16]
- ☐ Grading philosophy
 - > Academic dishonesty leads to failing by default
 - > There are difficult questions in exams
 - Final letter grades will be adjusted but not negotiable

Websites and TAs

- ☐ Basic information, slides, homework assignments, homework solutions, announcement, and discussion
 - > NTU COOL: https://cool.ntu.edu.tw/courses/33221
 - > You are mandatory to check the announcement there
- ☐ Homework submission and grading
 - > Gradescope: we will register you later
- ☐ TAs
 - Kuang-Liang Tseng
 - > Chien-Yi Chien

Homework

- ☐ Homework is due at **noon**
 - **№** No late homework is accepted
 - Though the submission site will be open until 1pm
 - Exception: you email Chung-Wei and get the approval before the deadline (noon)
- ☐ You will need to do some programming
 - > Example: read numbers from files and compute something
- ☐ You are encouraged to work on homework in study groups, but you must write up the solutions on your own

Midterm and Quiz

- Dates
 - > April 9
 - ➤ May 14
- ☐ You can ask (= challenge) for regrading (based on problems) before a deadline, and then we will regrade them
 - > For each problem
 - If your score becomes higher, you win the challenge
 - Otherwise, you lose the challenge
 - Starting from the 3rd failed challenge, you get additional deduction

Project

- ☐ A team can have 1 up to 4 members
 - More members, higher expectation
 - > The contribution of each member needs to be specified clearly in the report
- ☐ A project can be survey, implementation, or research
 - > You can propose your own topic
 - Of course, it must be related to intelligent vehicles
- ☐ It is highly encouraged to combine your project with your current research, your thesis, or another course project (if the instructor agrees)
 - > This must be specified clearly in the report
 - > Anything you have completed before the semester is not counted

Selection of Project Topics

- ☐ Survey
 - ➤ If you want to have the safest choice
- Implementation
 - ➤ If you are a programming enthusiast
- ☐ Research
 - > If you are a graduate student or thinking to pursue Ph.D. abroad

Examples of Project Topics (1/3)

■ Machine learning

- Behavior prediction
- Image recognition, traffic sign recognition
- Pedestrian recognition, objective detection
- Play around some data (check https://www.its.dot.gov/data/)

Applications

- Advanced Driver-Assistance Systems (ADAS)
- Cooperative Adaptive Cruise Control (CACC)
- > Intersection management
- > Realization of Pui Pui Molcar

Examples of Project Topics (2/3)

- Networking
 - Performance evaluation
 - Comparison between different communication protocols
- Security
 - > Adversary classification
 - > Intrusion detection
 - > Applications of blockchain
- ☐ Human-computer interaction
 - > Augmented reality and virtual reality
 - > "Safe" interface
 - Language understanding

Examples of Project Topics (3/3)

- ☐ Software architecture and engineering
 - Edge computing
 - Architecture (https://local.iteris.com/arc-it/)
 - > Open source software
- ☐ Theory
 - Scheduling
 - > Timing analysis
 - ➤ Game theory analysis
- ☐ Design methodology and tools
 - Simulation environment (e.g., Simulink, Unity)
 - > Data collection and creation
 - ➤ Modeling, optimization, formal verification

Q&A