Data Mining (CSE542)

Homework 07

Task-1

Given the dataset in Figure 14.5, show the dendrogram resulting from the single-link hierarchical agglomerative clustering approach using the L_1 -norm as the distance between points

$$\|\mathbf{x} - \mathbf{y}\|_1 = \sum_{d=1}^{2} |x_{id} - y_{id}|$$

K=4

Figure 14.5. Dataset

a(5,8), b(6,7), c(6,5), d(2,4), e(3,4), f(5,4), g(7,4), h(9,4), i(3,3), j(8,2), k(7,5)

	а	b	С	D	E	F	g	h	i	j	k
а	0	2	4	7	6	4	6	8	7	9	5
b	2	0	2	7	6	4	4	6	7	7	3
С	4	2	0	5	4	2	2	4	5	5	1
d	7	7	5	0	1	3	5	7	2	8	6
е	6	6	4	1	0	2	4	6	1	7	5
f	5	4	2	3	2	0	2	4	3	5	3
g	6	4	2	5	4	2	0	2	5	3	1
h	8	6	4	7	6	4	2	0	7	3	3
i	7	7	5	2	1	3	5	7	0	6	6
j	9	7	5	8	7	5	3	3	6	0	4
k	5	3	1	6	5	3	1	3	6	4	0

Figure 14.5. Dataset

	а	b	c,g,k	d,e,i	f	h	j
а	0	2	4	6	4	8	9
b	2	0	2	6	4	6	7
c,g,k	4	2	0	2	4	2	2
c,g,k d,e,i	6	6	2	0	2	6	6
f	4	4	4	2	0	4	5
h	8	6	2	6	4	0	3
j	9	7	2	6	5	3	0

	a,b,c,f,g,k	d,e,i	h	j
a,b,c,f,g,k	0	2	2	3
d,e,i	2	0	6	6
h	2	6	0	3
j	3	6	3	0

The dendrogram is that>

Task-2

Consider Figure 15.12 and answer the following questions, assuming that we use the Euclidean distance between points, and that $\epsilon = 2$ and minpts = 3

- (a) List all the core points.
- **(b)** Is a directly density reachable from d?
- (c) Is *o* density reachable from *i*? Show the intermediate points on the chain or the point where the chain breaks.
- (d) Is density reachable a symmetric relationship, that is, if x is density reachable from y, does it imply that y is density reachable from x? Why or why not?
- **(e)** Is *l* density connected to *x*? Show the intermediate points that make them density connected or violate the property, respectively.
- **(f)** Is density connected a symmetric relationship?
- **(g)** Show the density-based clusters and the noise points.

(a) List all the points

(b) Is 'a' directly density reachable from 'd'?

: Yes => d is a core object and a belongs to N2(d)

(c) Is 'o' density reachable from 'i'? Show the intermediate points on the chain or the point where the chain breaks.

- (d) Is density reachable a symmetric relationship, that is, if 'x' is density reachable from y, does it imply that 'y' is density reachable from 'x'? Why or why not?
 - : Density reachable is not a symmetric relationship, since a non-coreobject may be reachable from a core object, but the reverse is not necessarilytrue. For example uis density reachable from nbut nis not density reachablefrom u.
- (e) Is 'l' density connected to 'x'? Show the intermediate points that make them density connected or violate the property, respectively.

: Yes => Yes, for example, via t, since I is density-reachable from t and x is also density-reachable from t.

(f) Is density connected a symmetric relationship?

: Yes => by definition. In other words for any two points, there exists acore point that reaches both of them.

(g) Show the density-based clusters and the noise points.

:
$$C_1 => \{a, d, h, k, p, q, r, s, t, l, v, w, x\}$$

$$C_2 = \{ b, c, e, f, g, I, j, n, m, o, u \}$$