Armazenamento e Indexação

Banco de Dados: Teoria e Prática

André Santanchè Instituto de Computação – UNICAMP Setembro de 2019

Recomendações de Leitura

- (Silberschatz, 2006, cap. 11)
- (Ramakrishnan, 2003, cap. 8)
- ■(Elmasri, 2011, cap. 11 e 12)

Onde Armazenamos Dados?

Onde Armazenamos Dados?

- Memória RAM
- Disco

 - CD / DVD
- ■Fita magnética
- Solid State Drive (SSD)
 - □ usa circuitos integrados como a memória sem partes mecânicas
 - retém os dados sem a necessidade de energia
 - □ Interface equivalente a de um disco

Questão 1

- ■Para cada item abaixo, liste suas vantagens e desvantagens como opção de tecnologia para armazenamento de dados num SGBD. Dê exemplos de dados que se adequariam à tecnologia.
 - a) Memória RAM
 - b) Disco Magnético
 - c) Fita Magnética

Questão 1 Resposta

- a) Memória RAM: rápida/cara. Pequena quantidade de dados, índices, dados temporários etc.
- b) Disco Magnético: relativamente barato/relativamente lento. Grande quantidade de dados, dados institucionais, logs, etc.
- c) Fita Magnética: baixo custo/lenta. Dados de backup, dados históricos, logs, etc.

Hierarquia de Armazenamento

- Armazenamento Primário
 - □ Operado diretamente pela CPU
 - □ Exemplos: memória RAM, cache
- Armazenamento Secundário
 - □ Usualmente mais barato e mais lento
 - □ Não operado diretamente pela CPU
 - Exigem intermediação de armazenamento primário
 - □ Exemplos: disco, fita magnética

(Elmasri, 2011)

Estrutura do Disco

By Surachit [http://en.wikipedia.org/w/index.php?title=File:Hard_drive-en.svg]

Estrutura do Disco Trilha

- Círculos magnéticos sobre a superfície
- Local onde são armazenados os dados

Estrutura do Disco Setor

- Unidades de divisão da trilha
- Menor unidade de leitura/gravação

Bloco de Disco ou Página

- Organização feita pelo SO sobre o disco
- ■Unidade de trabalho para o SO

Armazenamento Secundário intermediado pelo Primário

Operação de Leitura Como Abstraímos

■ler(X)

Operação de Leitura Como Acontece

- ■ler(X)
 - encontra bloco X no
 disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia o item X dobuffer para a variávelX da memóriaprincipal

(Flmasri 2010)

Operação de Gravação Como Abstraímos

■gravar(X)

Operação de Gravação Como Acontece

- ■gravar(X)
 - disco
 - □ copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia variável X da memória principal para o buffer
 - □atualiza o buffer no disco

Arquivos e Registros

■Um arquivo de registros - abstração para SGBD

(Ramakrishnan, 2003)

- Arquivo: abstração criada pelo SO para os blocos de disco
- Registro: abstração de subdivisão do arquivo criada pela aplicação ou SGBD para o arquivo

Ordem?

		Id	Is a	Origin Place
		FMNH PR2081	Tyrannosaurus rex	Hell Creek
		MNHN 1912.20	Triceratops calicornis	Lance Creek
Į		MNHN 1912.20b	Triceratops horridus	Lance Creek
		MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis
		SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
		STC223	Plesiosaurus gurgitis	St. Croix

Ordem?

Origin Place Id Is a **FMNH PR2081** Hell Creek Tyrannosaurus rex MNHN 1912.20 Triceratops calicornis Lance Creek MNHN 1912.20b Lance Creek Triceratops horridus MNHN A. C. 8592 Plesiosaurus dolichodeirus Lyme Regis SIPB R 90 Plesiosaurus dolichodeirus Lyme Regis **STC223** Plesiosaurus gurgitis St. Croix

ordem?

Sequencial

Gravação em ordem sequencial de acordo com a chave de busca (Silberschatz, 2006)

	Id	Is a	Origin Place	
	FMNH PR2081	Tyrannosaurus rex	Hell Creek	
	MNHN 1912.20	Triceratops calicornis	Lance Creek	
	MNHN 1912.20b	Triceratops horridus	Lance Creek	
5	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
5	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
5	STC223	Plesiosaurus gurgitis	St. Croix	

sequencial

Ordem?

ordem?

Id	Is a	Origin Place	
MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
STC223	Plesiosaurus gurgitis	St. Croix	
MNHN 1912.20	Triceratops calicornis	Lance Creek	
MNHN 1912.20b	Triceratops horridus	Lance Creek	
FMNH PR2081	Tyrannosaurus rex	Hell Creek	

Sequencial

Gravação em ordem sequencial de acordo com a chave de busca (Silberschatz, 2006)

	Id	Is a	Origin Place	
	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
	STC223	Plesiosaurus gurgitis	St. Croix	
6	MNHN 1912.20	Triceratops calicornis	Lance Creek	
6	MNHN 1912.20b	Triceratops horridus	Lance Creek	
	FMNH PR2081	Tyrannosaurus rex	Hell Creek	

sequencial

Ordem?

	Id	Is a	Origin Place	
3	STC223	Plesiosaurus gurgitis	St. Croix	
	MNHN 1912.20b	Triceratops horridus	Lance Creek	
3	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
	FMNH PR2081	Tyrannosaurus rex	Hell Creek	
	MNHN 1912.20	Triceratops calicornis	Lance Creek	
	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	

ordem?

Heap

■Sem ordenação; gravação em qualquer posição (Silberschatz, 2006)

	Id	Is a	Origin Place
	STC223	Plesiosaurus gurgitis	St. Croix
	MNHN 1912.20b	Triceratops horridus	Lance Creek
heap <	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
Tieap \	FMNH PR2081	Tyrannosaurus rex	Hell Creek
	MNHN 1912.20	Triceratops calicornis	Lance Creek
	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis

Ordem?

Id	Is a	Origin Place
FMNH PR2081	Tyrannosaurus rex	Hell Creek
MNHN 1912.20b	Triceratops horridus	Lance Creek
MNHN 1912.20	Triceratops calicornis	Lance Creek
MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis
STC223	Plesiosaurus gurgitis	St. Croix
SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis

ordem?

Hash

■Cálculo de função de hash sobre atributo para definir posição (Silberschatz, 2006)

	Id	Is a	Origin Place	
	FMNH PR2081	Tyrannosaurus rex	Hell Creek	
	MNHN 1912.20b Triceratops horridus		Lance Creek	
	MNHN 1912.20	Triceratops calicornis	Lance Creek	
3	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
3	STC223	Plesiosaurus gurgitis	St. Croix	
	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	

Exercício 1

Dado o arquivo a seguir, proponha uma função hash para posicionar os registros conforme k.

Id	Is a	Origin Place
STC223	Plesiosaurus gurgitis	St. Croix
MNHN 1912.20b	Triceratops horridus	Lance Creek
SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
FMNH PR2081	Tyrannosaurus rex	Hell Creek
MNHN 1912.20	Triceratops calicornis	Lance Creek
MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis

Exercí	ício 1	k	parte num.	soma díg.	soma díg. (pos.)		
		STC223	223	7	7		
	ld	MNHN 1912.20b	1912	13	4	jin Place	
		SIPB R 90	90	9	9	\longrightarrow	1
	FMNH PR2081	FMNH PR2081	2081	11	2	Creek	2
		MNHN 1912.20	1912	13	4		3
	MNHN 1912.20k	MNHN A.	8592	24	6	ce Creek	4
	MNHN 1912.20	C. 8592				ce Creek	5
	MNHN A. C. 859	Plesiosa	urus dol	ichodeirı	us Lym	ne Regis	6
	STC223	Plesiosa	urus gur	gitis	St.	Croix	7
							8
	SIPB R 90	Plesiosa	urus dol	ichodeirı	us Lym	ne Regis	9

Organização de Arquivos

- ■Heap
 - □ sem ordenação
 - gravação em qualquer posição
- Sequencial
 - gravação em ordem sequencial de acordo com a chave de busca
- Hash
 - cálculo de função de hash sobre atributo para definir posição

(Silberschatz, 2006)

Índice

Processamento de Consulta

- Dada a consulta:
 SELECT nome FROM Pessoa
 WHERE id=146
- Se os dados estão espalhados em disco, precisaríamos acessar todos os blocos do arquivo da tabela Pessoa
- Índices de BDs ajudam neste processo
- Índices de de BDs funcionam como índices de livros, apontando para a localização do conteúdo

Índice

- ■Estrutura de dados
- Organiza registros
- ■Otimiza certas operações de recuperação (Ramakrishnan, 2003)

Entrada de Índice

- ■Entrada de índice (data entry) → registros armazenados em um índice
- Alternativas para a entrada de índice
 - (1) k* registro completo com chave k
 - (2) $(k, rid) \rightarrow rid = id do registro de chave k$
 - (3)(k, rid-list)→ rid-list = lista de registros de chave k

(Ramakrishnan, 2003)

Entrada de Índice (1)

k*: registro (incluindo chave)

k: chave

	Id	Is a	Origin Place	
	FMNH PR2081	Tyrannosaurus rex	Hell Creek	
	MNHN 1912.20	Triceratops calicornis	Lance Creek	
	MNHN 1912.20b	Triceratops horridus	Lance Creek	
	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
3	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
	STC223	Plesiosaurus gurgitis	St. Croix	

Entrada de Índice (2)

Entrada de Índice

- Alternativas para a entrada de índice
 - (1) k* registro completo com chave k
 - (2) $(k, rid) \rightarrow rid = id do registro de chave k$
 - (3)(k, rid-list)→ rid-list = lista de registros de chave k

(Ramakrishnan, 2003)

- Vantagens das alternativas (2) e (3):
 - mais de um índice para o mesmo arquivo
 - menor: pode-se carregar mais ou inteiro na memória
 - □ suporta estruturas mais complexas

Exercício 2

- ■Nas aulas anteriores, discutimos sobre redundância de informação e seus potenciais problemas. Índices são estruturas que introduzem redundância no banco de dados. Descreva o impacto da introdução deste tipo de redundância em termos de:
 - a) Consistência dos dados
 - b) Velocidade de leitura
 - c) Velocidade de gravação

Índices Primários e Secundários

- ■Índice primário ou de agrupamento
 - arquivo ordenado sequencialmente
 - □ chave de busca define ordem do arquivo
- Indice secundário
 - □ índice de não agrupamento
 - □ índice não necessariamente único

Índice Primário

■Entrada do índice (1): k* - registro completo com chave k

		Id	Is a	Origin Place		
sequencial		FMNH PR2081	Tyrannosaurus rex	Hell Creek		
		MNHN 1912.20	Triceratops calicornis	Lance Creek		
		MNHN 1912.20b	Triceratops horridus	Lance Creek		
		MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis		
		SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis		
	3	STC223	Plesiosaurus gurgitis	St. Croix		

Índice Primário

Entrada do índice (2): (k, rid)→ rid = id do registro de chave k

k	rid		K	
		Id	Is a	
Plesiosaurus dolichodeirus		MNHN A. C. 8592	Plesiosaurus dolichodeirus	
Plesiosaurus gurgitis		SIPB R 90	Plesiosaurus dolichodeirus	
Triceratops horridus	*	STC223	Plesiosaurus gurgitis	
Tyrannosaurus rex		MNHN 1912.20	Triceratops horridus	
		MNHN 1912.20b	Triceratops horridus	
		FMNH PR2081	Tyrannosaurus rex	

Índice Secundário

■ Entrada do índice (2): $(k \text{ rid}) \rightarrow \text{rid} = \text{id}$

do registro de chave k k rid					
			Id	Is a	
FMNH PR2081	\		STC223	Plesiosaurus gurgitis	
MNHN 1912.20			MNHN 1912.20b	Triceratops horridus	
MNHN 1912.20b			SIPB R 90	Plesiosaurus dolichodeirus	
MNHN A. C. 8592			FMNH PR2081	Tyrannosaurus rex	
SIPB R 90			MNHN 1912.20	Triceratops calicornis	
STC223			MNHN A. C. 8592	Plesiosaurus dolichodeirus	

Índices Densos e Esparsos

- Denso
 - uma entrada de índice para cada valor de chave
- Esparso
 - uma entrada índice para mais de um valor de chave

Índice Denso

Uma entrada de índice para cada valor de chave

Índice Denso

Uma entrada de índice para cada valor de chave

Índice Esparso

Uma entrada índice para mais de um valor de chave

Exercício 3

■Em uma relação com 5 atributos, qual o número máximo possível de índices primários e secundários ao mesmo tempo? Justifique.

Estruturas de Índice

Hashing

Índice de Hash

Hashing Extensível

Índices Multiníveis

Hashing Dinâmico

buckets

buckets

buckets

Perfect Hashing
to this slot a hash function from family H

(Demaine, 2003)

Árvores B

Árvores B

- Árvores *n*-árias: mais de um registro por nodo.
- Em uma árvore B de ordem m:
 - página raiz: 1 e 2m registros.
 - demais páginas: no mínimo m registros e m+1 descendentes e no máximo 2m registros e 2m+1 descendentes.
 - páginas folhas: aparecem todas no mesmo nível.
- Registros em ordem crescente da esquerda para a direita.
- Extensão natural da árvore binária de pesquisa.
- Árvore B de ordem m=2 com três níveis:

Exemplo de árvore B de ordem 5

Neste caso, cada nó tem no mínimo dois e no máximo cinco registros de informação.

30

2	15	57

15, 2, 57, 30, 40, 22, 25, 28, 29

15, 2, 57, 30, 40, 22, 25, 28, 29

15 30

29

2 22 25 28 40 57

Questão

■Como ficará a árvore com a introdução destes três números?

15, 2, 57, 30, 40, 22, 25, 28, 29, 45, 63, 70

15, 2, 57, 30, 40, 22, 25, 28, 29, 45, 63, 70

Números mínimos e máximos de registros

Árvore B de ordem 255:

		mínimo	máximo			
nível	nós	registros	nós	registros		
1	1	1	1	1×255		
2	2	2×127	256^{1}	$256^{1} \times 255$		
3	2×128^{1}	$2 \times 128^1 \times 127$	256^{2}	$256^{2} \times 255$		
4	2×128^2	$2 \times 128^2 \times 127$	256^{3}	$256^{3} \times 255$		
5	2×128^3	$2\times128^3\times127$	256^{4}	$256^4 \times 255$		
Total	4.227.331	536.870.911	4.311.810.305	1.099.511.627.775		

Variantes de árvores B

- Árvores B*: o número de registros ocupados de um nó é no mínimo $\frac{2}{3}$ da sua capacidade.
- ► Árvores B⁺:
 - nós internos com chaves apenas para orientar o percurso
 - pares (chave, valor) apenas nas folhas
 - regra de descida:
 - subárvore esquerda: menor
 - subárvore direita: maior ou igual
 - apontadores em lugar de valores tornando mais eficiente a movimentação dos registros durante inserções e remoções
 - ligações facilitando percurso em ordem de chaves

Variantes de árvores B (cont.)

Exemplo de árvore B⁺ de ordem 3:

Setas tracejadas indicam apontadores para os valores da informação. A lista ligada das folhas permite percurso simples e eficiente em ordem de chaves.

Árvore B

Árvore B+

Árvore B+

Árvore B+

Índice Mapa de Bits quando o foco é a análise

OLTP x OLAP

- - Online Transaction Processing
 - □ Bancos de dados "tradicionais"
 - Operações de inserção, atualização e exclusão em pequenas partes do banco
- **■**OLAP
 - Online Analytical Processing
 - □ Operações de extração, recuperação e análise de dados

Data Warehouse

Comparada aos Bancos de Dados Tradicionais

- Igual
 - □ Coleção de dados relacionados
 - □ Suportado por um sistema de gerenciamento
- Diferente
 - □ Orientada a aplicações de suporte a decisão
 - Otimizada para recuperação de dados não OLTP

Índice Mapa de Bits

- Facilita consultas sobre chaves múltiplas
- ■Cada índice baseado em uma chave
- Mapa de bits sobre atributo A e relação r
 - mapa de bits = array de bits
 - □ tamanho do array = número registros de r
 - um mapa de bits (array) para cada valor de A

(Silberschatz et al., 2006)

Mapa de Bits

S				
_	S#	SNAME	STATUS	CITY
	S1 S2 S3 S4 S5	SMITH JONES BLAKE CLARK ADAMS	20 10 30 20 30	London Paris Paris London Athens

P#	PNAME	COLOR	WEIGHT	CITY
P1	NUT	RED	12	London
P2	BOLT	GREEN	17	Paris
P3	SCREW	BLUE	17	Rome
P4	SCREW	RED	14	London
P5	CAM	BLUE	12	Paris
P6	COG	RED	19	London

SF	>		
	S#	P#	QTY
	র রাজনার নাম সময় কর্ম কর্ম কর্ম কর্ম কর্ম কর্ম কর্ম কর্ম	T PREPERENTED	300 200 400 200 100 100 300 400 200 200 300 400

Sh	;	STAT	rus							
S _b	10	20	30	40 '	London	London Paris Athens				
S1	0	1	0	0		0	0	0		
S2	1	0	000		0	1	0	0		
S3	0	0	_	0	0	ı	0	0		
S4	0	1	0	0	1	0	0	0		
S5	0	0		0	0	0	0	0		

P _b		COLO	OR .		WEIGHT									
	RED	GREEN	BLACK	BLUE	10	12	14	17	18	19	London	Paris	Athens	Rome
P1	_	0	0	0	0	_	0	0	0	0	1	0	0	0
P2	0	1	0	0	0	0	0	1	0	0	0	Ι	0	0
P3	0	0	0	_	0	0	0	1	0	0	0	0	0	1
P4		0	0	0	0	0	_	0	0	0	1	0	0	0
P5	0	0	0	1	0	1	0	0	0	0	0	I	0	0
P6	I	0	0	0	0	0	0	0	0		1	0	0	0

Fig. 1. (a,b) Binary representation of supplier—part data. (a) Supplier part data base (Date, 1982). (b) Binary representation.*

(Spiegler & Maayan, 1985)

^{*} Supplier and part names and SP relation are not shown to simplify the exposition.

Índice Mapa de Bits Otimizações

- Codificação
 - exemplo: codificação binária de possíveis valores
- Compressão
 - □ exigem descompressão para operações
 - participam de operações sem descompressão

Compressão de Mapa de Bits

(Koudas, 2000)

Exercício para Casa 1

- Considere a relação Aluno(ra, curso, idade) que armazene estes dados para todos os alunos da Unicamp. Para cada uma das questões a seguir, defina qual o tipo de índice mais indicado.
 - a) select * from Aluno where ra=5.
 - b) select * from Aluno where idade<70.
 - c) select * from Aluno where idade>27 and B<30.
 - d) select avg(idade) from Aluno.
 - e) select idade, count(*) from aluno where curso="Computação" group by idade

Referências

- Almeida, Charles Ornelas, Guerra, Israel; Ziviani, Nivio (2010) **Projeto de Algoritmos** (transparências aula).
- Demaine, Erik. 6.897: Advanced Data Structures Lecture 2 (notas de aula). Fevereiro, 2003.
- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.

Referências

- Ramakrishnan, Raghu; Gehrke, Johannes (2003) **Database Management Systems.** McGraw-Hill, 3rd edition.
- Sedgewick, Robert; Wayne, Kevin (2008) Princeton University: **Algorithms**. Maio, 2008.
- Silberschatz, Abraham; Korth, Henry F.; Sudarshan, S. (2006) **Sistema de Banco de Dados**. Elsevier, Tradução da 5a edição.

Referências

- N. Koudas (2000). "Space efficient bitmap indexing". Proceedings of the ninth international conference on Information and knowledge management (CIKM '00). New York, NY, USA: ACM. pp. 194–201. doi:10.1145/354756.354819
- Spiegler I; Maayan R (1985). "Storage and retrieval considerations of binary data bases". Information Processing and Management: an International Journal 21 (3): 233–54. doi:10.1016/0306-4573(85)90108-6

Agradecimentos

■ Luiz Celso Gomes Jr (professor desta disciplina em 2014) pela contribuição na disciplina e nos slides. Página do Celso:

http://dainf.ct.utfpr.edu.br/~gomesjr/

- Patrícia Cavoto (professora desta disciplina em 2015) pela contribuição na disciplina e nos slides.
- Luana Loubet Borges pelos exercícios.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link: http://creativecommons.org/licenses/by-nc-sa/3.0/

■ Fotografia da capa e fundo por http://www.flickr.com/photos/fdecomite/ Ver licença específica em http://www.flickr.com/photos/fdecomite/1457493536/ Setor Divisão por Ângulo Fixo

Setor Divisão por Densidade Constante setor