Одношаровий персептрон Розенблатта

Методи прогнозування часових рядів

Одношаровий персептрон Розенблатта

Біологічна нейронна мережа

Біологічна нейронна мережа

Персептрон

Типи елементів

- S
 - о сенсори
 - о стани— збудження та спокою
- A
 - о асоціативний
- R
 - результативний
 - о один
- Wi
 - ваги.
 - стани {-1, 0, 1}

Алгоритм персептрона

Алгоритм

- S
- активація— в збудженому стані
- сигнал {0, +1}
- A
 - активація якщо сума сигналів перевищує поріг
 - сигнал {0, +1}
- R
 - сумує асоціативні сигнали помножені на ваги
 - активація якщо сума сигналів перевищує поріг
 - сигнал {-1, 0, +1}

$$f(x) = sign(\sum_{i=1}^n w_i x_i - heta)$$

Функції активації

Name	Plot	Equation	Derivative
Identity		f(x)=x	f'(x)=1
Relu		$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$
Sigmoid		$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
Binary Step		$f(x) = \left\{ egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Tanh		$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$	$f'(x) = 1 - f(x)^2$

Правило навчання — це алгоритм, який змінює стан перцептрона так щоб вхідні аргументи давали необхідний результат

Відбуваються зміни

- ваг
- 🔹 функції активації 🚓

Метод корекції помилки

Спрощена модель

Пряме поширення

1. Отримати на вхід аргументи

Input 1: x2 = 4

2. Зважуємо вхідні аргументи

Weight 1: -1

$$Sum = 6 + -4 = 2$$

4. Генеруємо результат

Output =
$$sign(sum) \Rightarrow sign(2) \Rightarrow +1$$

Input 0 * Weight 0 ⇒ 12 * 0.5 = 6

Input 1 * Weight 1 \Rightarrow 4 * -1 = -4

Приклад класифікації

Архітектури нейронних мереж

Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Методи прогнозування часових рядів

Часовий ряд — це ряд даних, в хронологічному порядку.

1, 2, 3, 4, 5, ??

Часовий ряд — це ряд даних, в хронологічному порядку.

1, 2, 3, 4, 5, **23**

Приклади методів прогнозування

- Авторегресійні моделі
- ARMA, ARIMA, Seasonal ARIMA ...
 - Нейромережеві моделі
 - Регресія
 - Адаптивна селекція моделі
 - Адаптивна композиція моделі

• ...

Компоненти часових рядів

Тренд — плавна довгострокова зміна ряду.

Сезонність — циклічні зміни ряду із постійним періодом.

Компоненти часових рядів

Помилка — непрогнозована випадкова компонента ряду.

Регресійний аналіз

Регресія — форма зв'язку між випадковими величинами, коли ми припускаємо, що величини залежать одна від одної.

Лінійна

Поліноміальна

Наївний сезонний аналіз

Метод середньої оцінки інтервалу

Метод згладження

Екстраполяція

$$\hat{y}_{T+h|T} = y_T + rac{h}{T-1} \sum_{t=2}^T (y_t - y_{t-1}) = y_T + h\left(rac{y_T - y_1}{T-1}
ight)$$

Метод помилки

Рекурентна нейронна мережа

ARIMA

ARIMA — AR + I + MA

- AR— autoregressive (авторегресія)
- I integrated (∂иференціювання)
- MA moving average (метод ковзного середнього)

Модифікації

- ARMA
- ARIMA,
- Seasonal ARIMA
- Seasonal ARIMAX
- ...

Диференціювання

Стаціонарний ряд — ряд в якого протягом часу зберігаються його основні статистичні значення. **Немає** тренду чи сезонності.

Ряд перетворюють в стаціонарний за допомогою диференціювання

Диференціювання — побудова нового ряду, який складається з різниць сусідніх елементів данного ряду

$$y_t' = y_t - y_{t-1}$$

Авторегресія

$$x_t = \alpha_1 x_{t-1} + \dots + \alpha_p x_{t-p} + \omega_t = \sum_{i=1}^{p} \alpha_i x_{t-i} + \omega_t$$

Метод ковзного середнього

$$x_t = \omega_t + \beta_1 \omega_{t-1} + \ldots + \beta_p \omega_{t-p} = \omega_t + \sum_{i=1}^{p} \beta_i \omega_{t-i}$$

Визначення середнього значення

Багатовимірні часові ряди

Прогнозування багатовимірних часових рядів

Дякую за увагу