

Aber Fitness Project

Final Report for SEM5640 Developing Advanced Internet Based Applications

Authors: Adam Lancaster [arl4], Andrew Edwards [ane18], Charlie Lathbury [ckl2], Daniel Monaghan [dkm2], David Fairbrother [daf5], Jack Thomson [jat36], James Britton [jhb15], Robert Mouncer [rdm10]

December 8, 2018 Version: 0.1 (Draft)

Department of Computer Science Aberystwyth University Aberystwyth Ceredigion SY23 3DB Wales, UK

Declaration of originality

We confirm that:

- This submission is our own work, except where clearly indicated.
- We understand that there are severe penalties for Unacceptable Academic Practice, which can lead to loss of marks or even the withholding of a degree.
- We have read the regulations on Unacceptable Academic Practice from the University's Academic Registry and the relevant sections of the current Student Handbook of the Department of Computer Science.
- In submitting this work we understand and agree to abide by the University's regulations governing these issues.

Name	User ID
Britton, James	jhb15
Edwards, Andrew	ane18
Fairbrother, David	daf5
Lancaster, Adam	arl4
Lathbury, Charlie	ckl2
Monaghan, Daniel	dkm2
Mouncer, Robert	rdm10
Thomson, Jack	jat36

Date: December 2018

CONTENTS

1	Overview	1
2	Requirements	2
3	Development Methodolgy	3
	3.1 Initial Project Plan	3
	3.2 Supporting Tools	5
	3.2.1 GitHub & TravisCI	5
	3.2.2 Swagger	8
	3.2.3 Portainer	9
	3.2.4 Docker Hub	9
	3.2.5 Slack & Deployment	9
4	Design	12
		12
5	Implementation	14
6	Testing	15
7	Status	16
8	Evaluation	17
Αį	ppendices	18

LIST OF FIGURES

3.1	An initial design diagram which was used to break the project down into smaller microservices and	
	their interactions with each other	4
3.2	Initial plan for microservices priorities and allocation to developers	5
3.3	A screenshot showing a pull request on the <i>GLaDOS</i> repository being peer reviewed. The continuous	
	integration checks run on TravisCI have completed allowing the branch to merge into an upstream	
	branch	6
3.4	A screenshot from <i>TravisCI</i> demonstrating a pull request being merged into the <i>development</i> branch.	
	This runs the unit tests and then building the <i>Docker</i> image	7
3.5	The Swagger interface for the <i>Booking Facilities</i> microservice	8
3.6	The Portainer interface for our staging / development Docker host, docker2-m56.dcs.aber.ac.uk	9
3.7	A screenshot of the <i>Slack</i> channel #dev-booking-facilities demonstrating the integrations	
	between Slack, GitHub and TravisCI	10
3.8	An example situation where the execution of docker-compose pull caused a large amount of	
	confusion amongst Aber Fitness developers	10
3.9	A demonstration of the /deploy command being used to re-deploy Aber Fitness onto the staging host	11

Chapter 1 Overview

Chapter 1

Overview

Aber Fitness is a web application developed using Microsoft's .NET Core and Oracle's Java Enterprise Edition (henceforth referred to as Java EE). The project aims to provide a service to encourage fitness and promote engagement with sporting activities amongst the users of the application, offering functionality such as graphing fitness data gathered by owners of Fitbit devices, the ability to challenge other users to competitions and a sport ladder system with tight integration into a bespoke facility booking system. Aber Fitness aims to offer everything that would be needed by a sporty and active person in order to bring their sporting activities into a digital platform and also to enhance their use of devices they already own, such as Fitbit devices or smart watches such as the Apple Watch.

At launch the system will ingest activity data automatically from *Fitbit*, with the capability of easily implementing other health data provider services at a later date due to the modular nature of the data ingest system. Once normalised this activity data will be used throughout the various subsystems of *Aber Fitness*, providing users with functionality such as a dashboard overview of their activity over the last hour, day, week, etc. as well as integrating tightly into the challenges system to add a competitive aspect to the system in to keep users engaged with both the platform itself and keeping fit in general.

TODO: Possibly add more here? GDPR, Docker, Microservices, Auditing

Chapter 2 Requirements

Chapter 2

Requirements

Chapter 3

Development Methodolgy

TODO: Possibly restructure this, it's a start for now. Not 100% sure what Neil's looking for here.

3.1 Initial Project Plan

At the start of the project the group met and decided on a standard style of development which would be most suitable for the project. After some discussion, we agreed to adopt the *Scrumban* [1] methodology.

As this project has a relatively short deadline with a team consisting of only eight developers we adopted Scrumban, which focuses on flexibility and adaptability for both the project's plan and sprints. The team had no prior development experience with the application stacks we were required to use, Java EE and .NET Core. *Scrumban* is tailored for the difficulties around estimating each sprint or the current velocity.

The application's requirements were initially broken down into nine distinct microservices. The group then discussed which language to use for each service. **TODO: Link to figure below**

Figure 3.1: An initial design diagram which was used to break the project down into smaller microservices and their interactions with each other

We proceeded to allocate each microservice to two developer teams, then assigned each service a priority ranking between 1 and 3. Core services were marked with a priority of 1, as many other parts of the *AberFitness* infrastructure heavily relied on their APIs in order to function correctly. One examples is the *Health Data Repository* which centrally stores users' activity data. **TODO: Link to figure below**

Figure 3.2: Initial plan for microservices priorities and allocation to developers

3.2 Supporting Tools

3.2.1 GitHub & TravisCI

The source control for *Aber Fitness* is hosted on *GitHub*¹. *GitHub* provides multiple features that were incredibly useful during the development phase. This included native integration with *Slack* for notifications straight to the respective development channels. The git flow was complemented with *TravisCI* to automatically trigger unit tests and *Docker* image builds. We also developed a development pattern of requiring all code to be peer reviewed through the use of pull requests and branch protection.

Branch protection is a collection of conditions which must be met before a pull request can be merged into *development* or *master* branches. We configured branch protection in order to ensure that only tested, peer reviewed code would be committed. This reduced the likelihood of new bugs being introduced and ensured code quality was maintained.

¹https://github.com/sem5640-2018

Figure 3.3: A screenshot showing a pull request on the *GLaDOS* repository being peer reviewed. The continuous integration checks run on *TravisCI* have completed allowing the branch to merge into an upstream branch.

Once a pull request had been approved and merged, *TravisCI* would then build and push the *Docker* image to *Docker Hub*.

Figure 3.4: A screenshot from *TravisCI* demonstrating a pull request being merged into the *development* branch. This runs the unit tests and then building the *Docker* image

3.2.2 Swagger

Figure 3.5: The Swagger interface for the Booking Facilities microservice

Swagger is a web based application for documenting API specifications. Each microservice within Aber Fitness has a file located in docs/swagger.json which defines its API endpoints and any associated data models. Swagger was a crucial part of the development process as it allowed us to draft API specifications. Other members of the group could give feedback and identify issues before commencing development.

3.2.3 Portainer

Figure 3.6: The Portainer interface for our staging / development Docker host, docker2-m56.dcs.aber.ac.uk

Portainer provides a dashboard for managing *Docker* volumes, networks, images and containers. Whilst completing the initial configuration of the *Docker* images, *Portainer* proved invaluable, it provided rapid visual feedback allowing developers to quickly and easily understand what the host was running. **TODO:** More here probably.

3.2.4 Docker Hub

Docker Hub is an online platform provided by Docker which allows Docker container images to be uploaded and hosted. The image full system stack is defined in the docker-compose file, which can be updated and re-deployed. As part of our build process (**TODO: reference build pipline diagram here**), images are built by TravisCI and then pushed to Docker Hub before being pulled down onto the Docker hosts.

3.2.5 Slack & Deployment

Slack is a hosted chat service designed for offices and teams, and particularly suits itself to the development of software. The group used *Slack* extensively throughout the development of *Aber Fitness* not only to communicate and discuss progress, ideas and troubleshoot problems, but also made extensive use of *Slack*'s integrations with services such as *TravisCI* and *GitHub*.

Figure 3.7: A screenshot of the *Slack* channel #dev-booking-facilities demonstrating the integrations between *Slack*, *GitHub* and *TravisCI*

Slack also played a major role in our deployment strategy when rolling out updated *Docker* images to our staging host. On multiple occasions we ran into permission issues whilst trying to deploy on the two *Docker* hosts we had been provided by the Computer Science department. Each member of the team had their own individual login to the hosts, so permissions errors would occur after performing commands like git pull.

Another issue we ran into was developers forgetting the specific command sequence to update the application images. This would lead to confusion when the upstream changes were not deployed, wasting valuable development time resolving bugs. **TODO: figure no.**

Figure 3.8: An example situation where the execution of docker-compose pull caused a large amount of confusion amongst *Aber Fitness* developers

Slack ended up providing us with an elegant solution to this, users could call a custom webhook by entering a specific command in a chat channel. A *Slack* application was put together to automatically pull the latest docker-compose.yml file from GitHub, as well as updating all the *Docker Hub* images, then re-deploy the stack.

This could all be done from within *Slack* itself through the /deploy command. **TODO: Figure no.**


```
Already up-to-date.

Stopping deployment_nginx_1 ...

Stopping deployment_fitbit-ingest-service_1 ...

Stopping deployment_glados_1 ...

Stopping deployment_health-data-repository_1 ...

Stopping deployment_gatekeeper_1 ...

Stopping deployment_booking-facilities_1 ...

Stopping deployment_health-dashboard_1 ...

Stopping deployment_mariadb_1 ...

Stopping deployment_comms_1 ...
```

Figure 3.9: A demonstration of the /deploy command being used to re-deploy Aber Fitness onto the staging host

Chapter 4 Design

Chapter 4

Design

4.1 System Overview

The *Aber Fitness* system is broken down into a number of microservices in order to aid portability, scalability and promotes a more maintainable codebase. After reviewing the initial project specification, the following microservices were created:

- **Booking & Facilities** The *Aber Fitness* offers functionality for users to be able to schedule bookings at sports venues, such as swimming pools and squash courts. This microservice is called used by the *Ladders* service to create bookings for competitions.
- Challenges The system offers the ability to give users activity challenges, for example completing a number of steps in a specific timeframe. These challenges can also be 'group' challenges, where a number of users can compete against each another to achieve goals such as furthest distance walked in a week, etc.
- Communications This microservice provides an API for other services to send email notifications to users. It does not present any form of web UI, and users do not directly interact with it. This system could also be easily expanded to send out text messages, push alerts, etc. depending on future requirements.
- **Fitbit Ingest Service** At launch, the *Aber Fitness* platform allows a user to link their *Fitbit* accounts to the system in order to import their activity data. The service periodically polls the Fitbit API for new data on the users' behalf, then stores this into the *Health Data Repository*.
 - With the possibility of adding future platform support the "ingest service" concept was created. This would allow us to support services such as Apple's *HealthKit* and other fitness tech providers. This architectural design means that activity data can be normalised by a number of "ingest services" before being passed through to the *Health Data Repository* service for storage.
- **Gatekeeper** *Gatekeeper* is *Aber Fitness*'s OpenID Provider, and handles all authentication within the system. User credentials and account metadata is stored within *Gatekeeper Gatekeeper* uses the OAuth 2.0 flow and is responsible for providing a single sign-on service for all of the various microservices. Microservices also contact *Gatekeeper* to obtain and verify tokens when calling internal APIs.
- **GLaDOS** *GLaDOS* is the centralised auditing mechanism for *Aber Fitness*. It presents a REST API which is used to store audit data; such as when a user's data was accessed, modified, or deleted. *GLaDOS* is provides a Status page which displays the availability of all the other microservices.

Chapter 4 Design

• **Health Dashboard** - *Health Dashboard* is the first interface users will encounter after logging in, or navigating to *Aber Fitness*. It provides the user with an overview of their recent activity as well as providing updates on any challenges or ladder competitions the user may be involved in.

- **Health Data Repository** The *Health Data Repository* service is responsible for providing an API for accessing and storing activity data. It receives normalised activity data from the Ingest Services, and provides multiple API endpoints for other microservices to access user activity data.
- Ladders Ladders is responsible for organising and managing ladder style competitions among users of the system. Users can compete in sporting championships for a variety of competitive sports such as tennis, running or cycling etc. The Ladders also automatically books venues for upcoming competitive events, which is managed by the Booking Facilities microservice.
- **User Groups** *Challenges* can also be turned into a competition amongst users of a group. For example, a group may consist of a few friends or an entire office department. Users within a group compete to complete goals, such as who can achieve the most steps in a single day. The *User Groups* service is responsible for managing users into groups, and allowing users to leave and join other groups.

Chapter 5 Implementation

Chapter 5

Implementation

Chapter 6 Testing

Chapter 6

Testing

Chapter 7 Status

Chapter 7

Status

Chapter 8 Evaluation

Chapter 8

Evaluation

Appendices

Bibliography

Appendix BIBLIOGRAPHY

[1] "What is Scrumban?" Available at: https://leankit.com/learn/agile/what-is-scrumban/. [Accessed: 08- Dec-2018]