## Sustitución

### Sustitución simple

- 1. Identifica si u y du aparecen en la misma expresión (salvo una diferencia de constantes).
- 2. Sustituye lo más complejo. Después integrar y derivar sus exponentes será más fácil.
- 3. Identifica identidad qué trigonométrica usarás.

### Sustitución por partes

- 1. Se usa cuando las funciones implicadas no tienen relación en términios de sus derivadas (no hay u y du)
- 2. Ten claro el acrónimo ALPES antes de seleccionar u y dv.
- 3. Como aquí toca derivar, no olvides regla de la cadena.
- 4. Aquí se tienen en cuenta las potencias al reemplazar.



# Trigonometría

### Integrales fundamentales

$$\int \cos(mx)dx = \frac{1}{m}\sin(mx)$$
$$\int \sin(mx)dx = -\frac{1}{m}\cos(mx)$$

### Identidad fundamental (poten- Sustitución trigonométrica cias impares)

$$\sin^2(x) + \cos^2(x) = 1$$

Consistirá en expresar una expresión trigonometrica impar en términos de una par. Luego, se reemplazará una función trigonometrica al cuadrado por su identidad.

Luego, de sustituir,  $u \vee du$ , se resolverá un binomio cuadrado.

### Ángulo Medio (potencias pares)

Tener cuidado con los signos.

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

El coeficiente de x se duplica.

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$

### Variación

$$2\cos^2(x) = 1 + \cos(2x)$$

Es lo mismo, solamente pasa el dos al otro lado. Como es el proceso inverso, el coeficiente de x se divide y crece la potencia.

### Eliminación de raíces

Con ángulo medio

$$\int \sqrt{\frac{1 - \cos(2x)}{2}} dx = \int \sqrt{\sin^2(x)} dx$$

Con variación

$$\int \sqrt{1 - \cos(2x)} dx = \int \sqrt{2\cos^2(x)} dx$$

### Integrales capciosas

| Integral          | Expresión          |
|-------------------|--------------------|
| $\int \ln(x) dx$  | $\frac{1}{x}$      |
| $\int e^{cx} dx$  | $\frac{x}{e^{cx}}$ |
| $\int \tan(x) dx$ | $\sec^2(x)$        |
| $\int \sec(x) dx$ | $\sec(x)tan(x)$    |

| Caso                       | Expresión           |
|----------------------------|---------------------|
| $\int \sqrt{a^2 - x^2} dx$ | $x = a\sin\theta$   |
| $\int \sqrt{a^2 + x^2} dx$ | $x = a \tan \theta$ |
| $\int \sqrt{x^2 - a^2} dx$ | $x = a \sec \theta$ |

### Identidades específicas

| $\sin(2\theta)$ | $2\sin\theta\cos\theta$         |
|-----------------|---------------------------------|
| $\cos(2\theta)$ | $\cos^2 \theta - \sin^2 \theta$ |

### Tablas trignométricas

| $\theta$ | radianes                        | $\sin \theta$        | $\cos \theta$        | $\tan \theta$        |
|----------|---------------------------------|----------------------|----------------------|----------------------|
| 0        | 0                               | 0                    | 1                    | 0                    |
| 30       | $\frac{\pi}{6}$                 | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{3}}{3}$ |
| 45       | $\frac{\pi}{4}$                 | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    |
| 60<br>90 | $\frac{\pi}{3}$                 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           |
| 90       | $\frac{\pi}{3}$ $\frac{\pi}{2}$ | 1                    | 0                    | _                    |

### Fracciones Parciales

| Caso                   | Fórmula                   |
|------------------------|---------------------------|
| lineal irrepetible     | $\frac{A}{(ax+b)}$        |
| lineal repetible       | $A_n$                     |
| cuadrática irrepetible | $\frac{(ax+b)^n}{(ax+b)}$ |
| cuadrática repetible   | $\frac{Ax+B}{(ax+b)^n}$   |

### Siempre simplifica el denominador

### Teorema Fundamental

$$\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

### Promedio

$$\frac{1}{b-a}\int_a bf(x)dx$$

## Volúmenes

| Caso        | Fórmula                                                                                         |
|-------------|-------------------------------------------------------------------------------------------------|
| S. trans.   | $\int_{a}^{b} Base \times Alturadx$                                                             |
| Cilindros   | $\int_{a}^{b} \pi R^{2} dx$                                                                     |
| Arandelas   | $\int_a^b \pi (R^2 - r^2) dx$                                                                   |
| C. cilíndr. | $\int_{a}^{b} \pi R^{2} dx$ $\int_{a}^{b} \pi (R^{2} - r^{2}) dx$ $\int_{a}^{b} 2\pi x f(x) dx$ |

Aplicaciones

# Tablas

| L. arco        | $\int_a^b \sqrt{1 + \frac{dy^2}{dx}}  \mathrm{dx}$             | Derivadas                   |                  |
|----------------|----------------------------------------------------------------|-----------------------------|------------------|
| A. s. rev.     | $\int_a^b 2\pi f(x) \sqrt{1 + \frac{dy^2}{dx^2}}  \mathrm{d}x$ | $\sin x$                    | $\cos x$         |
|                | $\int_a 2\pi J(x) \sqrt{1+dx} dx$                              | $\cos x$                    | $-\sin x$        |
| Hooke          | $W = \int_a^b F(x)dx, F(x) = 0$                                | $k x_{\operatorname{an} x}$ | $\sec^2 x$       |
| $Momento(M_0)$ | $\int_{a}^{b} x \delta(x) dx$                                  | $\cot x$                    | $-\csc^2 x$      |
| Masa(M)        | $\int_a^b \delta(x) dx$                                        | $\sec x$                    | $x \tan x$       |
| C. masa        | $\int_{a}^{b} \delta(x) dx$ $\frac{M_0}{M}$                    | $\csc x$                    | $-\csc x \cot x$ |

| Integrales |  |
|------------|--|
| •          |  |

| $\sin x$ | $-\cos x + x$              |
|----------|----------------------------|
| $\cos x$ | $\sin x + c$               |
| $\tan x$ | $-\ln(\cos x) + c$         |
| $\cot x$ | $\ln(\sin x) + c$          |
| $\sec x$ | $\ln(\sec x + \tan x) + c$ |
| $\csc x$ | $\ln(\csc x - \cot x) + c$ |
|          |                            |

Casos notables 
$$\int \tan^2 \theta d\theta \qquad \int \sec^2 \theta - 1 d\theta$$