Lecture 2

Molecular Mechanics Force Field

How can one build an empirical potential for a complex system like protein?

Molecular Mechanics based Force Fields

Empirical ways to define the potential energy function to describe the properties of a molecular system

Potential energy is driven by the complex electronic structural changes

Bonding Interactions: to describe bonds

H₂ molecule

$$U(\mathbf{R}^N) = ?$$

Our model should be based on some experimental/ theoretical knowledge about the system

$$U(\mathbf{R}_1, \mathbf{R}_2) = \frac{1}{2} k_{\rm r} (R - R_0)^2$$

$$U(\mathbf{R}_1, \mathbf{R}_2) = \frac{1}{2} k_{\rm r} (R - R_0)^2$$

$$R = |\mathbf{R}_1 - \mathbf{R}_2|$$

parameters

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

reproduce experiments/theory

$$k = 4\pi^2 \mu \nu^2 = 4\pi^2 \mu c^2 \overline{v}^2$$

Expt/theory

IMPORTANT: No dissociation of bonds if described by harmonic potential

For a polyatomic molecule, potential energy depends not just on bond terms

many body terms!

Fortunately, we can systematically build these many-body interaction terms!

H₂O molecule

- OH bonds can be treated by harmonic bonds
- H-H as harmonic

OR

H-O-H angle as harmonic

DOF=3x3
$$U(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}) = \frac{1}{2} k_{\text{OH}} (R_{\text{OH1}} - R_{\text{OH}}^{0})^{2} + \frac{1}{2} k_{\text{OH}} (R_{\text{OH2}} - R_{\text{OH}}^{0})^{2} + \frac{1}{2} k_{\text{HOH}} (\theta_{\text{H1-O-H2}} - \theta_{\text{HOH}}^{0})^{2}$$

H₂O₂ molecule

- 3 distances [2 types]
- 2 angles [I type]
- I torsion [I type]

Potential for Torsions: Two kinds

Margin Ma

$$U(\theta) = \frac{1}{2} k_{\theta, I} \theta^2$$

 OR

$$U(\theta) = \frac{1}{2} k_{r,I} h^2$$

these describe out-of-plane motion

(Proper) Torsion

$$U(\phi) = \sum_{n=0}^{N} \frac{V_n}{2} \left[1 + \cos(n\phi - \gamma) \right]$$

What values of N and gamma, and V_n are suitable to mimic ethane potential energy surface?

$$U(\mathbf{R}_{1},\mathbf{R}_{2},\mathbf{R}_{3},\mathbf{R}_{4}) = \frac{1}{2}k_{\mathrm{OH}}\left(R_{\mathrm{O1H1}} - R_{\mathrm{OH}}^{0}\right)^{2} + \frac{1}{2}k_{\mathrm{OH}}\left(R_{\mathrm{O2H2}} - R_{\mathrm{OH}}^{0}\right)^{2} + \frac{1}{2}k_{\mathrm{OO}}\left(R_{\mathrm{O1O2}} - R_{\mathrm{OO}}^{0}\right)^{2} + \frac{1}{2}k_{\mathrm{HOO}}\left(\theta_{\mathrm{H1-O1-O2}} - \theta_{\mathrm{HOO}}^{0}\right)^{2} + \frac{1}{2}k_{\mathrm{HOO}}\left(\theta_{\mathrm{H2-O2-O1}} - \theta_{\mathrm{HOO}}^{0}\right)^{2}$$

$$\sum_{0}^{N'} \frac{V_{\text{HOOH}}}{2} \left[1 + \cos(n\phi_{\text{H1-O1-O2-H2}} - \gamma_{\text{H1-O1-O2-H2}}) \right]$$

D(H1/O2/O3/H4)

Some Other Examples:

Bond Potentials

Bond	R ₀ (Å)	k _r (kcal mol ⁻¹ Å ⁻²)
Csp ³ -Csp ³	1.523	317
Csp ³ -Csp ²	1.497	317
Csp ² =Csp ²	1.337	690
Csp ² =O	1.208	777
Csp ³ -Nsp ³	1.438	367
C-N (amide)	1.345	719

Angle

Angle	θ_0 (deg)	k _θ (kcal mol ⁻¹ deg ⁻²)
Csp ³ -Csp ³ -Csp ³	109.47	0.0099
Csp ³ -Csp ³ -H	109.47	0.0079
H-Csp ³ -H	109.47	0.007
Csp ³ -Csp ² -Csp ³	117.2	0.0099

- pwd
- mkdir nnair
- cd nnair
- mkdir H2PlusPES
- cd H2PlusPES
- kwrite h2plus_d2.0.in

H2+ PE Surface

```
%chk=h2plus_6311Pg

# HF/6-311++G

H2+ 6-311++G

1 2

H 0.0 0.0 0.0

H 0.0 0.0 2.0
```

g09 h2plus_d2.0.in h2plus_d2.0.out

repeat the same for distances 1.8, 1.6, 1.4,
 1.2, 1.0, 0.8, 0.6, 0.4

grep "SCF Done:" h2plus_d*.out

kwrite h2plus_energy.dat

```
0.6 -0.601152743767
0.8 -0.623869030902
[...]
```

gnuplot

$$f(x) = k*(x-x0)**2 + c$$

$$x0=0.7$$

$$c = -6.1$$

fit f(x) 'h2plus_energy.dat' using 1:2 via k, x0, c

Home Work: what is the value of k in kcal mol-1 A-2?