Homework 1 Solutions

Chapter 2, Exercise 12

We prove that if s_n converges to s, then $\frac{1}{n}\sum_1^n s_k$ also converges to s. So suppose $s_n \to s$. Then for any $\epsilon > 0$, we can choose $N = N(\epsilon)$ so that $|s_n - s| < \epsilon$ if $n \ge N$. Then we define $C := \sum_1^N |s_k - s|$. Then for n > N we may write

Assignment Project Exam Help $\frac{1}{n}\sum_{k=1}^{n}|s_{n}-s|$ https://powcoder.com $\frac{1}{n}\sum_{k=1}^{n}|s_{n}-s|$ Add We charpowcoder $\frac{C}{n} + \epsilon.$

Letting $N \to \infty$ on both sides, we have

$$\limsup_{N \to \infty} \left| \frac{1}{n} \sum_{k=1}^{n} s_k - s \right| \le \epsilon,$$

which proves the claim since ϵ is arbitrary.

Chapter 2, Exercise 13

Part a: It suffices to prove the claim when s=0, because otherwise one may define a new sequence by $\tilde{c}_0=c_0-s$, and $\tilde{c}_n=c_n$ for n>0. Then $\sum c_n r^n - \sum_n \tilde{c}_n r^n = s$ for all r, and it is clear that $\sum \tilde{c}_n = 0$.

Now by telescoping, one has the identity

$$(1-r)\sum_{n=0}^{N} s_n r^n + s_N r^{N+1} = \sum_{n=0}^{N} s_n r^n - \sum_{n=0}^{N} s_n r^{n+1} + s_N r^{N+1}$$
$$= \sum_{n=0}^{N} (s_n - s_{n-1}) r^n - s_N r^{N+1} + s_N r^{N+1}$$
$$= \sum_{n=0}^{N} c_n r^n.$$

Assignment Project Exam Help

whenever |r| < 1. Now assuming s = 0, we fix an $\epsilon > 0$, and we choose some M so that $n \ge M$ implies $|s_n| < \epsilon$. Then we can write

$$Add_{c_n r^n = (1-r)} \underbrace{\sum_{s_n r^n + p - r} \underbrace{\sum_{s_n r^n - p - r$$

The first term on the right side clearly approaches 0 as $r \to 1$, and for the second one, we have

$$\left| (1-r) \sum_{n>M} s_n r^n \right| \le (1-r) \sum_{n>M} \epsilon r^n = \epsilon r^{M+1}.$$

From the last expression, it is clear that

$$\limsup_{r \to 1^{-}} \left| \sum c_n r^n \right| \le \epsilon,$$

which proves the claim since ϵ was arbitrary.

Part b: If $c_n = (-1)^n$, then s_n alternates between 0 and 1 depending on whether n is even or odd. So clearly s_n does not converge. However $\sum (-1)^n r^n = \frac{1}{1+r}$, which clearly approaches 1/2 as $r \to 1$ from the left.

Part c: As before, we may assume that $\sigma = 0$. Replacing c_n with s_n in equation (1) it holds that

$$\sum_{n=0}^{\infty} s_n r^n = (1-r) \sum_{n=0}^{\infty} n \sigma_n r^n,$$

for all |r| < 1. Hence

$$\sum_{n=0}^{\infty} c_n r^n = (1-r) \sum_{n=0}^{\infty} s_n r^n = (1-r)^2 \sum_{n=0}^{\infty} n \sigma_n r^n.$$

Now we fix $\epsilon > 0$, and choose M so that $n \geq M$ implies $|\sigma_n| < \epsilon$. Then

$$\sum_{n=0}^{\infty} c_n r^n = (1-r)^2 \sum_{n \le M} n \sigma_n r^n + (1-r)^2 \sum_{n > M} n \sigma_n r^n.$$

The first term on the right side clearly approaches 0 as $r \to 1$, and for the second one, we have

Assignment Project Exam Help $||(1-r)|^2 \sum_{n\sigma_n r^n} | \leq (1-r)^2 \sum_{n\epsilon r^n} ||\epsilon r^n|| \leq \epsilon r$,

where we left $ps.n/n/pow^n code r$. Ferroberst expression, it is clear that

$$\limsup_{r \to 1^{-}} \left| \sum c_n r^n \right| \le \epsilon$$

$\limsup_{r\to 1^-}\left|\sum c_n r^n\right|\leq \epsilon,$ which prove the Gain we can easily powered.

Part d: We first show that if c_n is Cesaro summable to σ , then $c_n/n \to 0$. Indeed, let $\sigma_n = \frac{1}{n} \sum_{1}^{n} s_k$. Then $\sigma_n \to \sigma$, hence $\frac{c_n}{n} = \sigma_n - \frac{(n-1)}{n} \sigma_{n-1} \to \sigma - 1 \cdot \sigma = 0$, as desired. Therefore if $c_n = n(-1)^n$ then it cannot be Cesaro summable, since $c_n/n = (-1)^n$. However

$$\sum_{n=0}^{\infty} n(-1)^n r^n = r \frac{d}{dr} \left[\frac{1}{1+r} \right] = -\frac{r}{(1+r)^2},$$

which clearly approaches -1/4 as $r \to 1$ from the left.

Chapter 2, Exercise 15

Letting $\omega = e^{ix}$ and summing the geometric series, we have

$$NF_{N}(x) = \sum_{n=0}^{N-1} \frac{\omega^{-n} - \omega^{n+1}}{1 - \omega}$$

$$= \frac{1}{1 - \omega} \left[\sum_{n=0}^{N-1} \omega^{-n} - \sum_{k=0}^{N-1} \omega^{n+1} \right]$$

$$= \frac{1}{1 - \omega} \left[\frac{1 - \omega^{-N}}{1 - \omega^{-1}} - \frac{\omega(1 - \omega^{N})}{1 - \omega} \right]$$

$$= \frac{1}{1 - \omega} \left[\frac{(1 - \omega^{-N})(1 - \omega) - \omega(1 - \omega^{N})(1 - \omega^{-1})}{(1 - \omega^{-1})(1 - \omega)} \right]$$

$$= \frac{1}{1 - \omega} \left[\underbrace{\frac{\omega^{1-N} + \omega^{N+1} - 2\omega + 2 - \omega^{-N} - \omega^{N}}{2 - \omega - \omega^{-1}}}_{-\omega^{N}} \right] + \mathbf{Help}$$

$$\mathbf{http} = \underbrace{\frac{2 - \omega^{N} - \omega^{-N}}{2 - \omega^{-N/2} - \omega^{-N/2}}}_{= \frac{-(\omega^{N/2} - \omega^{-N/2})^{2}}{-(\omega^{1/2} - \omega^{-1/2})^{2}},$$

which computes the provage (noting that provage ($i = 2i \sin(kx/2)$).

Chapter 3, Exercise 19

Note that

$$\int_0^x D_N(t)dt = \int_0^x \sin((N+1/2)t) \left[\frac{1}{\sin(t/2)} - \frac{2}{t} \right] dt + \int_0^x \frac{\sin((N+1/2)t)}{t/2} dt.$$

Let's call the terms on the right side as A and B, respectively. Then

$$A \le \int_0^x |\sin((N+1/2)t)| \left| \frac{1}{\sin(t/2)} - \frac{2}{t} \right| dt$$
$$\le \int_0^\pi 1 \cdot \left| \frac{1}{\sin(t/2)} - \frac{2}{t} \right| dt,$$

which proves the desired bound on A. Here we are using the fact that $|\sin((N+1/2)t)| \le 1$, that $x \le \pi$, and that the function $\frac{1}{\sin(t/2)} - \frac{2}{t}$ extends continuously

Assignment Project Exam Help Now for B, we have by substitution u = (N+1/2)t:

https://p\bar{\bar{p}} \bar{\bar{w}} \bar{\text{vode}}^x \frac{\sin((N+1/2)t)}{\text{wcode}} dt.com
$$= 2 \int_0^{(N+1/2)x} \frac{\sin u}{u} du$$

which is of eucs uniform and on the same chapter. Which is finite by the result of Exercise 12 of the same chapter.

Chapter 3, Exercise 20

Recall that there was a typo in the problem: there should be a " $+O(N^{-1})$ as $N \to \infty$ " on the right-hand side of the last expression.

Setting $x = \pi/N$ and using the same chain of equalities as in the previous exercise, we have

$$\int_0^{\pi/N} D_N(t)dt = \int_0^{\pi/N} \sin((N+1/2)t) \left[\frac{1}{\sin(t/2)} - \frac{2}{t} \right] dt + 2 \int_0^{\pi(1+\frac{1}{2N})} \frac{\sin u}{u} du.$$

Since $|\sin((N+1/2)t)| \le 1$ and since $\frac{1}{\sin(t/2)} - \frac{2}{t}$ is bounded on $[0, \pi]$, the first term on the RHS is bounded by $C\pi/N = O(N^{-1})$. Similarly

thus giving a lower bound for the desired maximum. To prove an upper bound, one may replace π/N with any sequence (x_n) such that $x_n \in [0, \pi/n]$, then go through this same chain of equalities and note that it is still bounded above by $\int_0^\pi \frac{\sin u}{u} du$ **Records**. **We Chat powcoder**