Paradoxes of Probabilistic Programming (POPL'21) and deleted scenes (VeriProP'21)

Jules Jacobs

Radboud University Nijmegen julesjacobs@gmail.com

These slides: julesjacobs.com/slides/veriprop2021.pdf

Probabilistic programming

Example:

- ▶ A scientist randomly selects a man and a woman and measures their height
- ▶ The woman's height $h \sim Normal(1.7, 0.5)$ meters
- ▶ The man's height $h' \sim Normal(1.8, 0.5)$ meters

Question: What's the expectation of h conditioned on h' = h?

Probabilistic programming

Example:

- A scientist randomly selects a man and a woman and measures their height
- ▶ The woman's height $h \sim Normal(1.7, 0.5)$ meters
- ▶ The man's height $h' \sim Normal(1.8, 0.5)$ meters

Question: What's the expectation of h conditioned on h' = h?

```
function meters(){
  h = rand(Normal(1.7, 0.5))
  observe(Normal(1.8, 0.5), h)
  return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

Answer: ≈ 1.75

Probabilistic programming

Example:

Answer: ≈ 1.75

- A scientist randomly selects a man and a woman and measures their height
- ▶ The woman's height $h \sim Normal(1.7, 0.5)$ meters
- ▶ The man's height $h' \sim Normal(1.8, 0.5)$ meters

Question: What's the expectation of h conditioned on h' = h?

```
function meters(){
  h = rand(Normal(1.7, 0.5))
  observe(Normal(1.8, 0.5), h)
  return h
}
samples = run(meters, 1000)
estimate = average(samples)

function centimeters(){
  h = rand(Normal(170, 50))
  observe(Normal(180, 50), h)
  return h
}
samples = run(centimeters, 1000)
estimate = average(samples)
```

Answer: ≈ 175

Paradox

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}else{
  observe(Normal(70, 10), w)
}
return h
Answer: ≈ 1.75
```

Paradox

```
h = rand(Normal(170, 50))
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
                                    w = rand(Normal(60, 10))
if(flip(0.5)){
                                    if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
                                      observe(Normal(180, 50), h)
}else{
                                    }else{
  observe(Normal(70, 10), w)
                                      observe(Normal(70, 10), w)
return h
                                    return h
Answer: \approx 1.75
                                    Answer: \approx 170
```

Paradox

```
h = rand(Normal(170, 50))
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
                                    w = rand(Normal(60, 10))
if(flip(0.5)){
                                    if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
                                       observe(Normal(180, 50), h)
}else{
                                    }else{
  observe(Normal(70, 10), w)
                                       observe(Normal(70, 10), w)
return h
                                    return h
Answer: \approx 1.75
                                    Answer: \approx 170
```

- ▶ The output depends on whether we use meters or centimeters
- ▶ Happens in implementations as well as in formal operational semantics
- ► Similar behaviour in programs without conditionals too (Borel-Komolgorov paradox)

Problem:

- ▶ Probabilistic programs are not invariant under parameter transformations
- ▶ It's not clear what observe really means

Problem:

- Probabilistic programs are not invariant under parameter transformations
- ▶ It's not clear what observe really means

Key ideas:

- 1. Determine what observe should mean by looking at positive measure conditioning
- 2. Change the language: observe conditions on *intervals* instead of points: observe(Normal(1.8, 0.5), Interval(h, 0.1))
- 3. Parameterize the program by eps:
 function foo(eps){
 ... observe(Normal(1.8, 0.5), Interval(h, eps)) ...
 }
- 4. Take the limit $eps \rightarrow 0$.
- 5. Use symbolic infinitesimal arithmetic to compute the limit.

► Probabilistic programs are not invariant under parameter transformations

- It's not also what absence weally meaning
- ► It's not clear what observe really means

Key ideas:

Problem:

- 1. Determine what observe *should* mean by looking at positive measure conditioning
- 2. Change the language: observe conditions on *intervals* instead of points: observe(Normal(1.8, 0.5), Interval(h, 0.1))
- 3. Parameterize the program by eps:
 function foo(eps){
 ... observe(Normal(1.8, 0.5), Interval(h, eps)) ...
 }
- 4. Take the limit eps → 0.
 5. Use symbolic infinitesimal arithmetic to compute the limit.

Result:

- ► New language is invariant under arbitrary parameter transformations
- ► Programs have clear probabilistic meaning via *rejection sampling*
- ► Implemented as a DSL in Julia

Paradox revisited

```
A = 2.3 // \text{meters} B = 42.6 // \text{kilograms}
function foo(eps){
  h = rand(Normal(1.7, 0.5)) // meters
  w = rand(Normal(60, 10)) // kilograms
  if(flip(0.5)){
    observe(Normal(1.8, 0.5), Interval(h, A*eps))
  }else{
    observe(Normal(70, 10), Interval(w, B*eps))
  return h
```

Paradox revisited

```
A = 2.3 // meters B = 42.6 // kilograms
function foo(eps){
  h = rand(Normal(1.7, 0.5)) // meters
  w = rand(Normal(60, 10)) // kilograms
  if(flip(0.5)){
     observe(Normal(1.8, 0.5), Interval(h, A*eps))
  }else{
     observe(Normal(70, 10), Interval(w, B*eps))
  return h
 ► Assume rejection sampling as "gold standard" semantics (works because width > 0)
   observe(D, Interval(x, w)) \triangleq reject if random(D) \notin [x - w, x + w]

ightharpoonup Try foo(0.1); foo(0.01); foo(0.001) for different values of A and B
```

ightharpoonup The relative size of A and B matters, even as eps ightharpoonup 0

► Change of units of h and w requires corresponding change in interval width A and B

Non-linear parameter transformations

- ▶ The problem is more general than units and conditionals
- ▶ The general issue is invariance under parameter transformations
- Changes of units = linear parameter transformations
 produces paradoxes in combination with conditionals
- ► General case: non-linear parameter transformations (e.g. log-transform) ⇒ produces paradoxes even without conditionals (e.g. Borel-Komolgorov paradox)
- See paper "Paradoxes of probabilistic programming" for details (https://julesjacobs.com/pdf/paradoxes.pdf)

Implementation

- Semantics: rejection sampling
 observe(D,I) ≜ reject if random(D) ∉ I
- ▶ Implementation: likelihood weighting observe(D,I) \triangleq { weight *= P(D,I) } where P(D,I) \triangleq P(random(D) \in I).
- The interval I can depend on eps \implies to compute \limsup \longrightarrow 0 exactly, do arithmetic with $\mathbb{R}_{\epsilon} \triangleq \{a\epsilon^n \mid a \in \mathbb{R}, n \in \mathbb{Z}\}$
- ▶ Similar to automatic differentiation with dual numbers
- ▶ Dual numbers: $a + b\epsilon$ where $\epsilon^2 = 0$
- ▶ Infinitesimal probabilities: $a\epsilon^n$ where $1 + \epsilon = 1$

Implementation

- ▶ Implementation: likelihood weighting observe(D,I) \triangleq { weight *= P(D,I) } where P(D,I) \triangleq P(random(D) \in I).
- The interval I can depend on eps \implies to compute \limsup \longrightarrow 0 exactly, do arithmetic with $\mathbb{R}_{\epsilon} \triangleq \{a\epsilon^n \mid a \in \mathbb{R}, n \in \mathbb{Z}\}$
- ▶ Similar to automatic differentiation with dual numbers
- ▶ Dual numbers: $a + b\epsilon$ where $\epsilon^2 = 0$
- Infinitesimal probabilities: ae^n where 1 + e = 1

Result:

- This observe is invariant under arbitrary parameter transformations: observe(f(D), f(I)) ≡ observe(D, I)
- Programs have clear probabilistic meaning via rejection sampling
- ► Can still condition on measure zero events
- Implemented as a DSL in Julia

Originally in the paper: Beyond intervals

We can let I in observe(D,I) be an arbitrary set as long as we can compute $P(D,I) \triangleq \mathbb{P}(\text{random}(D) \in I)$ e.g.

Originally in the paper: Beyond intervals

```
We can let I in observe(D,I) be an arbitrary set as long as we can compute P(D,I) \triangleq \mathbb{P}(random(D) \in I) e.g.
```

- Union of intervals
- ► Finite set (if D is discrete)
- ► Regular language (if D is a Markov chain)
- ▶ General $I \subseteq \mathbb{R}^n$ for which we can approximate P(D, I) (if D multivariate)
 - e.g. ellipsoid $I_{\epsilon} \triangleq \{|A\vec{x} + b| \le \epsilon \mid \vec{x} \in \mathbb{R}^n\}$
 - We can compute $P(D, I_{\epsilon})$ for infinitesimal ϵ in terms of the PDF of D
 - For finite $\epsilon > 0$ we may need numerical integration

Originally in the paper: Soft observations

Generalize further: use soft indicator function $f:\Omega\to[0,1]$ instead of hard sets

- ▶ $f(x) \triangleq$ probability of accepting x
- ▶ Semantics: observe(D,f) \triangleq reject if flip(f(random(D))) == false

Originally in the paper: Soft observations

Generalize further: use soft indicator function $f:\Omega\to[0,1]$ instead of hard sets

- ▶ $f(x) \triangleq$ probability of accepting x
- ▶ Semantics: observe(D,f) \triangleq reject if flip(f(random(D))) == false
- ▶ Implementation: observe(D,f) \triangleq { weight *= W(D,f) } where W(D,f) $\triangleq \int f(x)d\mathbb{P}(D)$
- \triangleright e.g if f is piecewise constant, and we have a CDF for D, then we can compute W(D, f)
 - ▶ Such *f* specifies the rejection probability for each piecewise constant region

Originally in the paper: Soft observations

Generalize further: use soft indicator function $f:\Omega\to[0,1]$ instead of hard sets

- ▶ $f(x) \triangleq$ probability of accepting x
- ▶ Semantics: observe(D,f) \triangleq reject if flip(f(random(D))) == false
- ▶ Implementation: observe(D,f) \triangleq { weight *= W(D,f) } where W(D,f) $\triangleq \int f(x)d\mathbb{P}(D)$
- ightharpoonup e.g if f is piecewise constant, and we have a CDF for D, then we can compute W(D, f)
 - Such f specifies the rejection probability for each piecewise constant region
- ▶ Note: *f* is *not* a probability density function.
 - ▶ Probability density functions *integrate* to 1
 - ► Soft observation functions return a *probability* (possibly infinitesimal)
 - ▶ The PDF of the normal distribution is not a soft indicator function, but $sin(x)^2$ is

Originally in the paper: Events

Generalize further: use observe(D) where D = Bernoulli(p)

- ▶ Semantics: observe(Bernoulli(p)) \triangleq reject if flip(p) == false
- \triangleright We view Bernoulli(p) as a "random boolean" and we observe that the boolean is true
- ▶ Probability *p* is allowed to be infinitesimal

Originally in the paper: Events

```
Generalize further: use observe(D) where D = Bernoulli(p)
```

- ▶ Semantics: observe(Bernoulli(p)) \triangleq reject if flip(p) == false
- \triangleright We view Bernoulli(p) as a "random boolean" and we observe that the boolean is true
- Probability p is allowed to be infinitesimal
- ▶ Define within(D,I) \triangleq Bernoulli($\mathbb{P}(\text{random}(D) \in I)$)
 - Recovers observe(D,I) as observe(within(D,I))

Originally in the paper: Events

Generalize further: use observe(D) where D = Bernoulli(p)

- ▶ Semantics: observe(Bernoulli(p)) \triangleq reject if flip(p) == false
- \blacktriangleright We view Bernoulli(p) as a "random boolean" and we observe that the boolean is true
- Probability p is allowed to be infinitesimal
- ▶ Define within(D,I) \triangleq Bernoulli($\mathbb{P}(\text{random}(D) \in I)$)
 - Recovers observe(D,I) as observe(within(D,I))
- ▶ Boolean operations on Bernoulli's:

```
E1 = within(D1,I1)

E2 = within(D2,I2)

observe(or(E1,not(E2)))
```

► Rejection sampling semantics:

```
if(!(random(D1) in I1 || random(D2) notin I2)){ reject(); }
```

Comments or questions?

julesjacobs@gmail.com

These slides: julesjacobs.com/slides/veriprop2021.pdf

Acknowledgements I thank Sriram Sankaranarayanan and the anonymous POPL reviewers for their outstanding feedback. I'm grateful to Ike Mulder, Arjen Rouvoet, Paolo Giarrusso, Dongho Lee, Ahmad Salim Al-Sibahi, Sam Staton, Christian Weilbach, Johannes Borgström, Alex Lew, and Robbert Krebbers for help, inspiration, and discussions.