Appendix

A Proofs

Proposition 1. A correlation plan x is the team's strategy in a TME if and only if it is a solution of the following linear program:

$$\begin{aligned} & \max_{x} v(\mathcal{I}_{n}(\phi)) \\ & v(\mathcal{I}_{n}(\sigma_{n})) - \sum_{I_{n} \in \mathcal{I}_{n} : \operatorname{seq}_{n}(I_{n}) = \sigma_{n}} v(I_{n}) \\ & \leq \sum_{z \in Z, \operatorname{seq}_{n}(z) = \sigma_{n}} U_{T}(\operatorname{seq}_{N}(z)) x(\operatorname{seq}_{T}(z)) \quad \forall \sigma_{n} \in \Sigma_{n} \\ & x \in \mathcal{X}. \end{aligned}$$

Proof. By Eqs.(3) and (4), we know that \mathcal{R}_T is equivalent to \mathcal{X} , i.e., for each joint realization plan, there is an equivalent correlation plan and vice versa. Then the team's strategy in a TME can be computed by:

$$\max_{x \in \mathcal{X}} \min_{r_n \in \mathcal{R}} \sum_{z \in Z} \!\! U_T(\operatorname{seq}_N(z)\!) x(\operatorname{seq}_T(z)\!) r_n\!(\operatorname{seq}_n(z)\!).$$

After expanding the constraint $r_n \in \mathcal{R}_n$ by using the constraints for the realization plan r_n in Eqs.(1a)-(1c), we obtain the following inner minimization problem:

$$\begin{split} & \min_{r_n \in \mathcal{R}} \sum_{z \in Z} U_T(\text{seq}_N(z)) x(\text{seq}_T(z)) r_n(\text{seq}_n(z)) \\ & r_n(\phi) = 1 \\ & \sum_{a_n \in \psi_n(I_n)} r_n(\text{seq}_n(I_n) a_n) = r_n(\text{seq}_n(I_n)) \ \forall I_n \in \mathcal{I}_n \\ & r_n(\sigma_n) > 0 \quad \forall \sigma_n \in \Sigma_n. \end{split}$$

Introducing the free dual variable $v(\phi)$ (i.e., $v(\mathcal{I}_n(\phi))$) for the first constraint of r_n and $v(I_n)$ for the constraint of each $I_n \in \mathcal{I}_n$, similar to the variables in Program (2), we obtain the following dual linear program:

$$\begin{aligned} & \max v(\mathcal{I}_n(\phi)) \\ & v(\mathcal{I}_n(\sigma_n)) - \sum_{I_n \in \mathcal{I}_n : \operatorname{seq}_n(I_n) = \sigma_n} v(I_n) \\ & \leq \sum_{z \in Z, \operatorname{seq}_n(z) = \sigma_n} U_T(\operatorname{seq}_N(z)) x(\operatorname{seq}_T(z)) \ \, \forall \sigma_n \in \Sigma_n. \end{aligned}$$

Therefore, x is the team's strategy in a TME if and only if it is a solution of Program (5).

Proposition 2. $\mathcal{X} \subseteq \mathcal{Y}$ in any EFG.

Proof. Given any σ_T , obviously, if $y(\sigma_T) = x(\sigma_T) = \prod_{i \in T} r_i(\sigma_T(i))$, then constraints in Eq.(6) will hold. Specifically, Constraint (6c) holds due to that: $r_{T \setminus \{i\}}(\sigma_{T \setminus \{i\}}) \sum_{a_i \in \psi_i(I_i)} r_i(\operatorname{seq}_i(I_i)a_i) = r_{T \setminus \{i\}}(\sigma_{T \setminus \{i\}})r_i(\operatorname{seq}_i(I_i))$ by Eq.(1c). Therefore, $\mathcal Y$ includes $\mathcal X$.

Proposition 3. In any EFG satisfying the non-unique-path property, \mathcal{X} is a strict subset of \mathcal{Y} , i.e., $\mathcal{X} \subset \mathcal{Y}$.

Proof. By Proposition 2, we have $\mathcal{X} \subseteq \mathcal{Y}$. Now we show that $\mathcal{X} \neq \mathcal{Y}$. Suppose there is an information set I_i of team member i with σ_T and $\sigma_T' \in \Sigma_T(I_i)$ and $|\psi_i(I_i)| \geq 2$. By Eq.(6c), we have:

$$\begin{split} \sum_{a_i \in \psi_i(I_i)} y(\sigma_{T \backslash \{i\}}, \text{seq}_i(I_i) a_i) &= y(\sigma_T), \\ \sum_{a_i \in \psi_i(I_i)} y(\sigma'_{T \backslash \{i\}}, \text{seq}_i(I_i) a_i) &= y(\sigma'_T). \end{split}$$

Suppose $a_i, a_i' \in \psi_i(I_i)$ and there is a solution with $y(\sigma_T) > 0$ and $y(\sigma_T') > 0$, satisfying that $y(\sigma_{T\setminus\{i\}}, \operatorname{seq}_i(I_i)a_i) = y(\sigma_T)$ and $y(\sigma_{T\setminus\{i\}}', \operatorname{seq}_i(I_i)a_i') = y(\sigma_T')$. Note that $\operatorname{seq}_i(I_i) = \sigma_T(i) = \sigma_T'(i)$. By Eq.(4), we have $r_i(\operatorname{seq}_i(I_i)a_i) = r_i(\operatorname{seq}_i(I_i)) > 0$ and $r_i((\operatorname{seq}_i(I_i)a_i')) = r_i(\operatorname{seq}_i(I_i)) > 0$, which will violate the definition of r_i because $r_i(\operatorname{seq}_i(I_i)) \geq r_i(\operatorname{seq}_i(I_i)a_i) + r_i(\operatorname{seq}_i(I_i)a_i') = 2r_i(\operatorname{seq}_i(I_i)) > 0$. Then, $\mathcal{X} \neq \mathcal{Y}$ because R_T is equivalent to \mathcal{X} . Therefore, $\mathcal{X} \subset \mathcal{Y}$.

Proposition 4. In any EFG satisfying the unique-path property, X = Y.

Proof. By Proposition 2, we have $\mathcal{X} \subseteq \mathcal{Y}$. Now we show that $\mathcal{Y} \subseteq \mathcal{X}$. For each information set $I_i \in \mathcal{I}_i$ of player $i \in T$ in EFG satisfying the unique-path property, if $|\Sigma_T(I_i)| = 1$ with that $\sigma_T \in \Sigma_T(I_i)$, by Eq.(6c), we have:

$$\sum_{a_i \in \psi_i(I_i)} y(\sigma_{T \backslash \{i\}}, \operatorname{seq}_i(I_i)a_i) = y(\sigma_T).$$

Then, similarly as in Eq.(4), we define the behavioral strategy (equivalent to a realization plan r_i) in I_i with $\sigma'_T = (\sigma_{T \setminus \{i\}}, \text{seq}_i(I_i)a_i)$:

$$\beta_i(I_i, a_i) = \begin{cases} \frac{y(\sigma_T')}{y(\sigma_T)} = \frac{r_i(\operatorname{seq}_i(I_i)a_i)}{r_i(\operatorname{seq}_i(I_i))} & \text{if } y(\sigma_T) > 0, \\ \frac{1}{|\psi_i(I_i)|} & \text{if } y(\sigma_T) = 0. \end{cases}$$

If $|\psi_i(I_i)| = 1$ with that $a_i \in \psi_i(I_i)$, by Eq.(6c), we have:

$$y(\sigma_{T\setminus\{i\}}, \operatorname{seq}_i(I_i)a_i) = y(\sigma_T), \quad \forall \sigma_T \in \Sigma_T(I_i).$$

Then, similarly as in Eq.(4), we have a behavioral strategy (equivalent to a realization plan) in I_i such that $\beta_i(I_i, a_i) = 1$. Then, in each information set I_i , β_i (equivalent to a realization plan r_i) is well-defined based on y. It means that for any $y \in \mathcal{Y}$, there is an equivalent $r_T \in \mathcal{R}_T$, i.e., there is an equivalent $x \in \mathcal{X}$. Thus, $\mathcal{Y} \subseteq \mathcal{X}$. Therefore, $\mathcal{X} = \mathcal{Y}$.

Theorem 1. *In any EFG satisfying the unique-path property, a TME can be computed in polynomial time.*

Proof. By Proposition 4, $\mathcal{X} = \mathcal{Y}$. Then, we can use the polynomial-sized Constraint (6) to represent \mathcal{X} in Program (5) of Proposition 1, which has a polynomial number of variables. Therefore, there is a polynomial-time algorithm for computing a TME in these EFGs.

Proposition 5. $\mathcal{X} \subset \mathcal{M}$ in any *EFG*.

Proof. In an EFG with |T|=2, given any σ_T , obviously, if $m(\sigma_T)=x(\sigma_T)=r_1(\sigma_T(1))r_2(\sigma_T(2))$, then constraints in Eq.(7) will hold. Specifically, Constraint (7b) holds due to that $(1-r_1(\sigma_T(1)))(1-r_2(\sigma_2))\geq 0$. Therefore, $\mathcal M$ includes $\mathcal X$. However, let $m(\sigma_T)=\min\{r_1(\sigma_T(1)),r_2(\sigma_T(2))\}$ for any $\sigma_T\in\Sigma_T^{\bowtie}$, which satisfies constraints in Eq.(7), but $m(\sigma_T)\neq x(\sigma_T)=r_1(\sigma_T(1))r_2(\sigma_T(2))$ when $0< r_1(\sigma_T(1))< r_2(\sigma_T(2))<1$. That is, $\mathcal X\neq \mathcal M$. Therefore, $\mathcal X\subset\mathcal M$. Because the case with $r_1(\sigma_T(1))< r_2(\sigma_T(2))<1$ can happen in any EFG, therefore, $\mathcal X\subset\mathcal M$ in any EFG with |T|=2. This result also holds in any EFG with |T|>2 by just using a variable $m'(\sigma_{T\setminus\{1\}})\in[0,1]$ to replace $r_2(\sigma_2)$.

Proposition 6. *In any EFG satisfying the non-unique-path property,* $\mathcal{X} \subset (\mathcal{M} \cap \mathcal{Y}) \subset \mathcal{M}$.

Proof. Suppose there is an information set I_1 with $a,b \in \psi_1(I_1)$ in a game with |T| = 2. Given $\sigma_T \in \Sigma_T(I_1)$, set

```
\begin{split} & m(\sigma_T) = \min\{r_1(\sigma_T(1)), r_2(\sigma_T(2))\} \\ & m(\sigma_T(1)a, \sigma_T(2)) = \min\{r_1(\sigma_T(1)a), r_2(\sigma_T(2))\} \\ & m(\sigma_T(1)b, \sigma_T(2)) = \min\{r_1(\sigma_T(1)b), r_2(\sigma_T(2))\}. \end{split}
```

As a consequence, $m(\sigma_T) \neq m(\sigma_T(1)a, \sigma_T(2)) + m(\sigma_T(1)b, \sigma_T(2))$ when $0 < r_2(\sigma_T(2)) < \min\{r_1(\sigma_T(1)), r_1(\sigma_T(1)a), r_1(\sigma_T(1))b\} < 1$. Therefore, $\mathcal{M} \not\subseteq \mathcal{Y}$, which means that $(\mathcal{M} \cap \mathcal{Y}) \subset \mathcal{M}$.

Now consider $m(\sigma_T) = m(\sigma_T(1)a, \sigma_T(2)) + m(\sigma_T(1)b, \sigma_T(2)) > 0$ and $m(\sigma_T(1)a, \sigma_T(2)) > m(\sigma_T(1)b, \sigma_T(2))$, which implies $r_1(\sigma_T(1)a) > r_1(\sigma_T(1)b)$ by Eq.(4). Consider another $\sigma_T' \in \Sigma_T(I_1)$ with $m(\sigma_T') = m(\sigma_T'(1)a, \sigma_T'(2)) + m(\sigma_T'(1)b, \sigma_T'(2)) > 0$ and $m(\sigma_T'(1)a, \sigma_T'(2)) < m(\sigma_T'(1)b, \sigma_T'(2))$, which implies $r_1(\sigma_T(1)a) = r_1(\sigma_T'(1)a) < r_1(\sigma_T'(1)b) = r_1(\sigma_T(1)b)$ by Eq.(4). This contradiction implies that $\mathcal{X} \subset (\mathcal{M} \cap \mathcal{Y}) \subset \mathcal{M}$. This result also holds in EFGs with |T| > 2 by using a variable $m'(\sigma_{T\setminus\{1\}}) \in [0,1]$ to replace $r_2(\sigma_T(2))$.