

Fakultät für Elektrotechnik, Prof. Dr. Götzmann, Prof. Dr. Hübner

Klausur im Fach SYT

Semester/ Prüfer a	3 UB, 3 UBE/GÖT
Semester/ Prüfer b	3 EB, 3 EBE, 3 ELB/ HBN
Datum	7.2.2017
Zeit	10:45 – 12:45 Uhr

Name							
Vorname							
Matrikelnummer							
Studiengang (bitte ankreuzen)	ЕВ	UB	EBE	UBE	ELB	Sonstiges	

Allgemeines:

- 1. Bitte unbedingt nur <u>dokumentenechtes Schreibzeug</u> (Kugelschreiber, Füllfederhalter) benutzen. Bitte verwenden Sie keine <u>rote Farbe</u>.
- 2. Auf einer Seite jeweils <u>nur eine Aufgabe</u> bearbeiten.
- 3. <u>Zusatzblätter</u> mit Matrikelnummer oder Namen und der laufenden Seitenzahl (Vorder- und Rückseite nummerieren!) versehen.
- 4. Handys müssen ausgeschaltet offen sichtbar auf dem Tisch abgelegt werden.
- 5. Bei Teilaufgaben, die ein Rechenergebnis verlangen, genügt nicht die Angabe dieses Rechenergebnisses. Es muss darüber hinaus klar erkennbar sein, aus welchen Überlegungen und/oder Rechenschritten das angegebene Ergebnis resultiert.

Es sind keine Hilfsmittel erlaubt mit Ausnahme von:

- 1. Zeichenmaterial (Lineal, Geodreieck, Zirkel), Taschenrechner ohne Textspeicherfunktion
- 2. Mathematische Formelsammlung
- 3. Selbstgeschriebene Formelsammlung ohne Übungsbeispiele auf max. 1 DIN-A4-Seite
- 4. Formelsammlung incl. der Korrespondenztabellen wird mit der Klausur verteilt

Die Benutzung <u>nicht erlaubter Hilfsmittel</u> führt zum <u>sofortigen</u>

<u>Ausschluss</u> aus der Prüfung und hat automatisch das <u>Nichtbestehen</u>

zur Folge!

Matrikelnummer: Seite: 2 / 13

1. Aufg.:	Gegeben ist die nebenstehende Zeitfunktion $f(t)$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	13
a)	Bestimmen Sie $f(t)$!	3
b)	Bestimmen Sie die Laplace-Transformierte $F(s) = L\{f(t)\}!$	3
c)	Durch periodische Fortsetzung von $f(t)$ in $t=6$ entsteht die Funktion $f_p(t)$. Bestimmen Sie die Laplace-Transformierte $F_p(s) = L\{f_p(t)\}!$	3
d)	Existiert die Fouriertransformierte zu $f(t)$ (Begründung erforderlich!)?	2
e)	$f(t)$ wird nun auch für negative Zeiten in $t=6$ periodisch fortgesetzt, daraus entsteht die Funktion $f_{2p}(t)$. Bei welchen Kreisfrequenzen hat die Fouriertransformierte $F_{2p}(\omega) = F\{f_{2p}(t)\}$ von Null verschiedene Werte?	2

Matrikelnummer: Seite: 3 / 13

Matrikelnummer: Seite: 4 / 13

2. Aufg.:	Gegeben ist die nebenstehende Schaltung: $u_{e}(t) \downarrow 0$	10
a)	Bestimmen Sie die Übertragungsfunktion $G(s) = \frac{U_2(s)}{U_e(s)}!$	4
b)	Die Anfangswerte $i_L(-0) = i_{L0}$ und $u_C(-0) = u_{C0}$ sind nun von Null verschieden sind! Soll weiter die Operatorenmethode angewendet werden, muss die Schaltung erweitert werden. Zeichnen sie die erweiterte Schaltung!	2
Gegeben i	st die Übertragungsfunktion $G(s) = \frac{10}{s^2 + 2s + 10}$	
c)	Ist das System stabil (Begründung erforderlich)!	2
d)	Berechnen Sie den Endwert von $h(t)$!	1
e)	Mit welchem zeitlichen Übergangsverhalten müssen sie rechnen?	1

Matrikelnummer: Seite: 5 / 13

Matrikelnummer: Seite: 6 / 13

3. Aufg.	Die Differentialgleichung eines Systems lautet:	
CVILLE	$y'''(t) + y''(t) - 2y'(t) = e^{-t}$	8
	mit den Anfangswerten $y(-0) = 1$, $y'(-0) = -2$ und $y''(-0) = 3$	
a)	Berechnen sie $y(t)$ mit Hilfe der Laplace-Transformation	8

Matrikelnummer: Seite: 7 / 13

4. Aufg.:

Gegeben ist die folgende Zeitfunktion: $f(t) = \frac{t^2}{T^2}$ im Intervall 0 bis T.

Die Funktion wird periodisch fortgesetzt.

a) Bestimmen Sie den komplexen Fourierkoeffizienten $\underline{c_0}$ der zugehörigen
Fourierreihe!

b) Bestimmen Sie für diese Reihe den allgemeinen komplexen Fourierkoeffizienten $\underline{c_k}$ für $k \neq 0$ und stellen ihn so einfach wie möglich dar.

Seite: 8 / 13

Matrikelnummer: Seite: 9 / 13

Matrikelnummer: Seite: 10 / 13

5. Aufg.:	Gegeben ist die Z-Übertragungsfunktion eines Systems: $G(z) = \frac{0,5z^2-0,5z+1}{z^2}$					
a)	Bestimmen und skizzieren Sie die Impulsanwort g[k].	2				
b)	Bestimmen und skizzieren Sie die Sprungantwort h[k] im Bereich von k=-2 bis k=4.	2				
	Gegeben ist: $G(z) = \frac{z+1}{z^2-2,5z+1}$					
c)	Bestimmen Sie g[k].	6				
d)	Ist das System stabil? Begründen Sie Ihre Antwort.	1				

Matrikelnummer: Seite: 11 / 13

Matrikelnummer: Seite: 12 / 13

6. Aufg.:	Gegeben ist die Übertragungsfunktion einer elektrischen Schaltung: $G(s) = \frac{s}{s^2+2s+1}$ (Die Bauelementwerte wurden normiert).	9
a)	Bestimmen Sie das Ausgangssignal (normierter Strom i(t)) für das folgende Eingangssignal (normierte Spannung u(t)): u(t) 0 1 t	4
b)	Bestimmen Sie i(t) für t gegen unendlich.	1
c)	Zeichnen Sie eine elektrische Schaltung, die die obige Übertragungsfunktion erfüllt und geben Sie die normierten Bauelementwerte an.	4

Matrikelnummer: Seite: 13 / 13