Zadanie: NAW

Nawiasy

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 1. Dostępna pamięć: 128 MB.

07.10.2017

Masz dane n ciagów nawiasowych s_i . Policz ile uporządkowanych par ciągów tworzy po sklejeniu poprawne wyrażenie nawiasowe. Ściślej - policz ile jest par indeksów i, j takich, że $i \neq j$ oraz $s_i s_j$ jest poprawnym wyrażeniem nawiasowym.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita $n~(1 \le n \le 500\,000)$ oznaczająca liczbę ciagów nawiasowych.

W kolejnych n wierszach znajdują się ciągi złożone ze znaków "(" i ")". Sumaryczna długość wszystkich ciągów nie przekracza $5\cdot 10^6$.

Wyjście

Na wyjściu wypisz liczbę par ciągów które tworzą poprawne wyrażenie nawiasowe.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
4	3
()	
(())	
(
)	
Dla danych wejściowych:	poprawnym wynikiem jest:
5	3
(
((
(()	
))	
)	

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \leq 100, \#d \log \acute{\text{sc}} _ ciag \acute{\text{o}} w \leq$	15
	300	
2	$n \leq 5000, \#d \log \acute{\text{sc}} _ciag\acute{\text{o}} w \leq$	25
	10000	
2	brak dodatkowych założeń	60

