NMMB331 - HW4 Jan Oupický

1

- 1. \sim_{EA} is reflexive since we can take A = id = B (identities) and C = 0 (null map).
- 2. If A, B are affine permutations and C is an affine map s.t. $G(x) = A \circ F \circ B(x) + C(x) \iff F \sim_{EA} G$ then we can write $A^{-1} \circ G \circ B^{-1}(x) + A^{-1} \circ C \circ B^{-1}(x) = F(x) \iff G \sim_{EA} F$. Since A, B are affine permutations then their inverses are also affine permutations and also $A^{-1} \circ C \circ B^{-1}$ is affine since C is affine and A^{-1}, B^{-1} are affine permutations. This proves symmetry.
- 3. Assume $F \sim_{EA} G$, $G \sim_{EA} H$ and we want to show $F \sim_{EA} H$. By definition we have $G(x) = A_1 \circ F \circ B_1(x) + C_1(x)$ and $H(x) = A_2 \circ G \circ B_2(x) + C_2(x)$. $A_2(x) = M(x) + y$ for some M linear permutation and y vector.

$$H(x) = A_2 \circ G \circ B_2(x) + C_2(x) = A_2(A_1 \circ F \circ B_1(B_2(x)) + C_1(B_2(x))) + C_2(x) =$$

$$M(A_1 \circ F \circ B_1(B_2(x)) + C_1(B_2(x))) + y + C_2(x) =$$

$$M(A_1 \circ F \circ B_1(B_2(x))) + M(C_1(B_2(x))) + y + C_2(x) =$$

$$(M \circ A_1) \circ F \circ (B_1 \circ B_2)(x) + (M \circ C_1 \circ B_2(x) + y + C_2(x))$$

 $M \circ A_1$ is an affine permutation since M is linear permutation and A_1 is affine permutation. $B_1 \circ B_2$ is affine permutation since both are affine permutations. $M \circ C_1 \circ B_2$ is affine map since M, B_2 are affine permutations and C_1 affine map, $C_2(x)+y$ is an affine map. Sum of affine maps is affine map. This proves transitivity.