The University of Melbourne — School of Mathematics and Statistics MAST30012 Discrete Mathematics — Semester 2, 2021

Practice Class 1: Direct Enumeration – Solutions

Q1: Partition the problem on squared distance from origin:

$$S_i = \{ (x, y) | x, y \in \mathbb{Z}, x^2 + y^2 = i \}$$

So there are six easy to check cases:

$$S_{0} = \{ (0,0) \}$$
 $|S_{0}| = 1$

$$S_{1} = \{ (1,0), (-1,0), (0,1), (0,-1) \}$$
 $|S_{1}| = 4$

$$S_{2} = \{ (1,1), (-1,1), (1,-1), (-1,-1) \}$$
 $|S_{2}| = 4$

$$S_{3} = \emptyset$$
 $|S_{3}| = 0$

$$S_{4} = \{ (2,0), (-2,0), (0,2), (0,-2) \}$$
 $|S_{4}| = 4$

$$S_{5} = \{ (1,2), (2,1), \dots \}$$
 $|S_{5}| = 8$

Assignment Project Exam Help Since $S_i \cap S_j = \emptyset$ $\forall i \neq j \text{ and } S = S_1 \cup S_2 \cup \cdots \cup S_6$

$$\Rightarrow |S| = h^{\frac{5}{2}} tps: 24/poweoder:eom$$

Q2: Partition S according to the value of $a \in \{1, 2, ..., 100\}$.

For a given value A cle number character A we consider A then A is A then A is A and A is A and A is A and A is A in A i

$$\Rightarrow |S| = |A_1|^2 + |A_2|^2 + \dots + |A_{99}|^2 = 99^2 + 98^2 + \dots + 1^2$$

Now use that $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$ (Can be proved using induction)

$$\Rightarrow |S| = \frac{1}{6}99 \cdot 100 \cdot 199.$$

We used the addition and multiplication principles.

- Q3: The sum is even if both dice roll even or both roll odd. The are 3 even faces so the number of (even, even)-rolls is $3^2 = 9$. Similarly for (odd, odd)-rolls. So there are 18 possible rolls of two dice with an even sum. Hence the probability is 1/2.
- Q4: We use the complement principle. There are 36⁸ possible passwords and 26⁸ of these contain only letters. So there are $36^8 - 26^8$ passwords containing at least one digit.

4

Q5: Let
$$A = \{a, b, c, d, e, f, g\}, |A| = 7$$

(a)
$$w \in A^5 \implies \# \text{words} = 7^5$$
.

(b)
$$w$$
 is a 5-permutation of $A \Rightarrow \#words = (7)_5 = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3$.

- (c) $7 \cdot 6^4$ since 7 choices for first letter then 6 choices for subsequent letters (next letter can't equal previous letter).
- (d) This is more difficult. So lets start by doing smaller words:

	Starting Letter							
w	a	b	c	d	e	f	g	Total
1	1	1	1	1	1	1	1	7
2	7	6	5	4	3	2	1	28
3	28	21	15	10	6	3	1	84
4	84	56	35	20	10	4	1	210
5	210	126	70	35	15	5	1	462

The first two lines |w| = 1, 2 should be obvious. So lets look at |w| = 3. If we start with a then the next two letters can by any sequence of letters of length 2 so the sum of all entries in the row |w| = 2. If we start with b then we can take any sequence from the row above starting with a letter b or latter (c, d) etc. This observation generalise. If |w| = k then the number or words starting with α is the sum of the number of words of length k-1 starting with α or a letter following α alphabetically. So the value of any entry $C_{|w|,k}$ in the table is

Assignment Project Exam Help

with initial **entities** C_1 / **power depotes** $(M_{|w|}^{|-1})$ a result which we shall be able to prove by a simple argument later in the course. You may also note nice relations between the entries such as $C_{|w|,k} = C_{|w|,k-1} - C_{|w|-1,k-1}$. Indeed we have $C_{|w|,k} = A_{|w|-1}^{|w|-k}$ We Chat powcoder

Q6: Let n be the number of digits in the bit sting. There are two cases:

n even: There are $2^{n/2}$ palindromes. The digits in the first half (n/2) of these can be either 0 or 1 and then the digits in the second half are fixed by the palindrome constraint that the digit in position n+1-k must equal that in position $k=1,\ldots,n/2$.

n odd: There are $2^{(n+1)/2}$ palindromes. Similar arguments to previous case.

Q7: Let r indicate a red card and b a blue car. The restriction no red cars next to one another means we are looking for words of the form

$$w = b_0 r b_1 r b_1 r b_1 r b_0$$

where b_0 indicates possible blue cars and b_1 at least one blue car. So we use up 3 blue cars in the b_1 positions. The remaining 2 blue cars can then be placed in any of the five b positions.

There are two cases:

The two cars go into the same position in $\binom{5}{1} = 5$ possible ways.

The two cars go into two different positions in $\binom{5}{2} = 10$ possible ways.

So all in all there are 15 possible ways of parking the 9 cars.