Herhalingsopdracht	Wiskunde
Naam:	Klas: 5
Datum:	Leerkracht: C. Landtmeters
Volgnr:	

REKENEN MET MACHTEN

Geef alle tussenstappen en berekeningen, GRM dient als controle.

- 1. Vul de definities en eigenschappen aan:
 - a) $\forall a \in IR, \forall n \in IN_0 : a^{-n} = \dots$
 - b) $\forall a \in IR, \forall n, m \in IN_0 : a^{\frac{n}{m}} = \dots$
 - c) $\forall a \in IR_0^+, \forall p, q \in \mathbb{Q}_0 : a^p \cdot a^q = \dots$
 - d) $\forall a,b \in IR_0^+, \forall p \in \mathbb{Q}_0 : (ab)^p = \dots$
 - e) $\forall a,b \in IR_0^+, \forall p,q \in \mathbb{Q}_0 : (a^p)^q = \dots$
 - f) $\forall a,b \in IR_0^+, \forall p \in \mathbb{Q}_0 : \left(\frac{a}{b}\right)^{-p} = \dots$
- 2. Schrijf als macht met 2 als grondtal, gebruik negatieve en rationale exponenten:
 - a) $2\sqrt{2}$

- b) 64^{-1} c) $\sqrt[3]{128}$ d) $\frac{1}{8\sqrt{2}}$
- e) 1
- 3. Veréénvoudig: $\sqrt[n]{2^n a^{n+1} b^{n+2}}$ als $a,b,c \in IR_0^+$ en $n \in IN_0 \setminus \{1\}$
- 4. Vereenvoudig en schrijf je antwoord zonder negatieve exponenten, $a,b,c \in \mathbb{R}^+_0$

$$\frac{(a^2 \cdot b^{-3} \cdot c^4)^5}{(a^{-1} \cdot c^{-2})^{-3}}$$

- 5. De uitdrukking $\frac{3^{\frac{2}{3}} \cdot 2^{-\frac{1}{2}} \cdot 9^{0} \cdot 3^{\frac{1}{3}}}{2^{\frac{1}{2}} \cdot 3^{-1}}$ is gelijk aan:
 - <A> 81/2 1
- <C> 0
- < D > 9/2

- 6. Toon aan $\left(\sqrt[6]{8} \sqrt[6]{27}\right)^2 = 5 2\sqrt{6}$
- 7. Los op in *IR*: $4 \cdot x^{-0.75} = 108$