

A Level · OCR · Physics

Multiple Choice Questions

Circular Motion

Radians / Time period & Frequency / Angular Velocity / Centripetal Force / Linear Speed / Centripetal Acceleration / Investigating Circular Motion

Scan here to return to the course

or visit savemyexams.com

Total Marks /4 1 A toy car is travelling in a circular path. The toy car completes 18 revolutions in 3 s.

Which of the following gives the angular velocity, in rad s^{-1} , of the toy car?

- A. $\frac{3 \times \pi}{18}$
- **B.** $\frac{3 \times 2 \,\pi}{18}$
- c. $\frac{18 \times \pi}{3}$
- $\mathbf{D.} \; \frac{18 \times 2\pi}{3}$

(1 mark)

2 A scientist states: "The radius of the orbit of the Earth around the Sun is decreasing by a small amount each year, however, the time period of the orbit remains constant."

Which row of the table is correct if the statement is true?

	Angular velocity of Earth	Speed of Earth
A	decreasing	decreasing
В	decreasing	constant
С	constant	constant
D	constant	decreasing

(1 mark)

3 A metal ball of mass 0.55 kg is swung round on the end of a string so that the ball moves in a horizontal circle of radius 1.5 m.

The ball travels at a constant speed of 6.2 m s⁻¹

What is the time taken (seconds) for the string to turn through an angle of 200°?

- **A.** 0.24 s
- **B.** 0.44 s
- **C.** 0.64 s
- **D.** 0.84 s

(1 mark)

4 Saturn and its moon may be considered to be isolated in space with their masses concentrated at their centres. The orbit of the moon around Saturn is circular with a radius of 4.84×10^5 km. The period of the orbit is 29.3 days.

What is the angular velocity of the Moon in its orbit around Saturn?

- **A.** $2.48 \times 10^{-6} \text{ rad s}^{-1}$
- **B.** $3.48 \times 10^{-6} \text{ rad s}^{-1}$
- **C.** $4.48 \times 10^{-6} \text{ rad s}^{-1}$
- **D.** $5.48 \times 10^{-6} \text{ rad s}^{-1}$

(1 mark)