Segunda Avaliação de Circuitos Elétricos II/Circuitos Elétricos Aplicados – $1^{\underline{0}}\!/2015$

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

lome:	Turma:
latrícula:/	
ata:/	
uestão 1 – Determine $H(j\omega)$ e a frequência de	corte para o circuito a seguir.
C (—O +
\mathbf{v}_1 R	\mathbf{V}_{o} $R = I\Omega$ $C = I/2F$
olução:	
a) Resposta de frequência H(jω)	b) Frequência de corte ω ₀ (rad./s):

Questão 2 – Por inspeção, a partir da função de transferência H(s) de um dados circuito linear, desenhe a aproximação de sua resposta em frequência por meio do diagrama de Bode.

$$H(s) = 10000 \frac{(s+0,1)^2}{(s+1)^2(s+10)^2}$$

Questão 3 – A seguir é mostrado um diagrama de Bode de um determinado circuito. Determine a função de transferência do respectivo circuito.

Resposta:			

Questão 4 – Determine o ganho de tensão $A_v = V_0(t)/V_s(t)$ para o circuito a seguir: $R_1 = 4\Omega$; $R_2 = 2\Omega$; $R_3 = 3\Omega$; $R = 3\Omega$;

Vs(t) +			
-	<u>.</u>	<u></u>	
Solução:			
Resposta:			

Questão 5 – Determine a função de transferência do circuito $H(s) = V_0(s)/V_s(s)$ e desenhe a sua resposta aproximada em frequência por meio do diagrama de Bode de amplitude. Considere os AO's ideais.

Calva	=
Solução:	
Resposta:	

Questão 6 — Considerando amplificador operacional como ideal, calcule a resposta em frequência do circuito $(H(j\omega) = V_0(j\omega)/V_s(j\omega))$ e determine a frequência de corte do circuito

C = 1/2F $R = 1\Omega$ $R_f = 2\Omega$

- olução:	
a) Resposta de frequência <i>H</i> (<i>j</i> ω)	b) Frequência de corte ω ₀ (rad./s):
, 1	

Questão 7 – Determine o ganho de tensão $A_v = V_0(t)/V_I(t)$ para o circuito a seguir:

 $R_1 = 1\Omega$ $R_2 = 2\Omega$ $R_3 = 3\Omega$ $R_4 = 2\Omega$

	ŢŢ	
Solução:		
Resposta:		

Questão 8 — Para o circuito ativo a seguir considere os amplificadores operacionais como ideais. Dado Vs, calcule a tensão Vo.

olução:	•		
esposta Vo:	_	_	
			_