Bem vindos

Otimizar é essencialmente melhorar a solução de problemas (em negócios, na indústria e em processos operacionais), o que pode trazer:

- **■eficiência** e rentabilidade
- ■redução de despesas, gastos e perdas
- **-aumento** dos **lucros**.

Muitos desses problemas de otimização são:

- •complexos
- com grandes espaços de busca
- de difícil modelagem

Para tal, este curso visa, além de introduzir os conceitos fundamentais de otimização, apresentar teoria e prática da técnica de otimização evolucionária, conhecida como Algoritmos Genéticos.

- ✔ Algoritmos Genéticos e suas aplicações
- ✔ Representação, decodificação e avaliação de soluções
- ✔ Reprodução genética: seleção, cruzamento e mutação
- ✔ Tratamento de restrições
- ✔ Avaliação e otimização com múltiplos objetivos

Avaliação

Para quem gosta de acompanhar a teoria, podemos listar algumas referências bibliográficas

- Algoritmos Genéticos: Uma importante ferramenta da Inteligência Computacional Ricardo Linden, 2006
- ☐ Genetic Algorithms + Data Structures = Evolution Programs Michalewicz, Z., 1996
- ☐ Genetic Algorithms in search, optimization and machine Learning David E. Goldberg, 1989

Para quem prefere aprender a teoria junto com a prática, vamos em frente com o material de aula do curso.

Aula 01

Prof Ana Carolina Abreu Prof Felipe Borges

prof.carolina@ica.ele.puc-rio.br

prof.felipe@ica.ele.puc-rio.br

O que veremos na aula de hoje?

- Entender como uma otimização é feita
- Como a Inteligência Artificial pode apoiar a otimização
- O que são os Algoritmos Genéticos
- Conceitos básicos do ciclo de otimização por AG
- Algumas aplicações dos AG

Atividades da aula

- Breakout Room (Aplicações)
- Quiz #1

Otimização

O que é?

Objetivo da otimização: **Buscar** a solução ótima ou **melhorar** a solução que se possui.

Otimização

Para que serve?

Otimizar é essencial para:

- aumentar o desempenho e a eficácia de qualquer processo em qualquer negócio;
- 2. Aumentar a competitividade nos negócios, implicando na melhoria de determinados processos em relação à concorrência;

Otimização

Como otimizar utilizando Algoritmos Genéticos?

É o que aprenderemos durante o curso...

Quais as entidades da otimização?

- 1. O problema: suas características, restrições e variáveis.
- 2. As variáveis do problema cujos valores afetam a qualidade da solução.
- 3. A função objetivo que mede (calcula) o quão boa é uma solução.
- 4. Um método, algoritmo ou heurística para buscar soluções.
- 5. O espaço de busca: o número total de soluções de um problema, que é determinado pelo número de variáveis e seus domínios.
- 6. Os recursos "computacionais" para processamento do método, avaliação das soluções, tratamento das características do problema e escolha da melhor solução.

Quais as entidades da otimização?

- 1. Problema: Cabra Cega
- 2. Método: Aleatório + Intelectual (SE ISSO ENTÃO AQUILO)
- 3. Variáveis: x e y (minha posição numa área qualquer)
- 4. Função objetivo: tá quente, tá morno, tá frio (minha distância Euclidiana ao tesouro!)
- 5. Espaço de busca:
 - Uma área (sala, varanda, pátio etc)
 - Número de soluções: $A = (domínio_x . domínio_y) m^2$
- 6. Recursos computacionais: meu cérebro

Quais os métodos mais comuns de otimização?

- Busca aleatória (exaustiva, quando há tempo!).
- Busca aleatória + heurísticas + bom senso.
- Métodos e algoritmos científicos.

Inteligência Artificial

O que é Inteligência Artificial?

- Também conhecida como Inteligência Computacional
- "Técnicas, modelos e sistemas computacionais imitam aspectos humanos e naturais que incorporam inteligência: percepção, raciocínio, aprendizado, evolução e adaptação".
 - Sistemas Especialistas
 - Lógica Fuzzy
 - Redes Neurais
 - Algoritmos Genéticos
 - Sistemas Híbridos

- inferência humana
- processamento linguístico
- neurônios biológicos
- evolução biológica
- aspectos combinados

Sistemas Computacionais

- Suporte à Decisão
- Reconhecimento de Padrões
- Previsão

Otimização

- Controle
- Modelagem
- Planejamento

Algoritmos Genéticos

Fácil de:

- aplicar,
- alterar,
- incluir regras,
- implementar, etc.
- Detecção de Fraude Gestão do Conhecimento
- Descoberta de Conhecimento (Data Mining)

Algoritmos Genéticos

Conceitos básicos

Os Algoritmos Genéticos são algoritmos baseados nos mecanismos de seleção natural e genética.

São inspirados no Princípio da Evolução das Espécies proposto por Darwin:

"quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar descendentes."

Analogia com a natureza

Evolução Natural

Alg. Genéticos

- •Indivíduo
- Cromossoma
- Reprodução Sexual
- Mutação
- População
- Gerações
- Meio Ambiente

- Solução
- Representação
- Operador Cruzamento
- Operador Mutação
- Conjunto de Soluções
- Ciclos
- Problema

Qual a finalidade do Algoritmo Genético?

Algoritmos Genéticos empregam um processo adaptativo e paralelo de busca de soluções em problemas complexos.

Qual a finalidade do Algoritmo Genético?

Adaptativo

•informação corrente influencia a busca futura

Paralelo

várias soluções consideradas a cada momento

Problema Complexo

• de difícil formulação matemática ou com grande espaço de busca (grande número de soluções)

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L}-1)$ para f(x)=máx

$\mathbf{2^{L}}$	Número de Pontos	
	no Espaço	10 ⁹ inst/seg

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = m ax

$\mathbf{2^{L}}$	Número de Pontos no Espaço	Tempo de Busca 10 ⁹ inst/seg
L=3	8	< 1 seg

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = max

2^{L}	Número de Pontos no Espaço	Tempo de Busca 10 ⁹ inst/seg
L=3	8	< 1 seg
L=10	1024	< 1 seg

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = max

${\bf 2^L}$	Número de Pontos no Espaço	Tempo de Busca 10 ⁹ inst/seg
L=3	8	< 1 seg
L=10	1024	< 1 seg
L=30	1 bilhão	1 seg

Exemplo:

Maximizar $f(x) = x^2$: encontrar $x \in (0 \dots 2^{L} - 1)$ para f(x) = m ax

$\mathbf{2^{L}}$	Número de Pontos no Espaço	Tempo de Busca 10 ⁹ inst/seg
L=3	8	< 1 seg
L=10	1024	< 1 seg
L=30	1 bilhão	1 seg
L=90	10^{-27}	15 bilhões de
		anos

Conceitos básicos

 Nos Algoritmos Genéticos cada indivíduo representa uma possível solução para um problema;

•Uma população de indivíduos é criada e submetidas a **seleção, cruzamento** e **mutação**. A qualidade de cada indivíduo é determinada por sua **avaliação**;

•É gerado um processo de **evolução natural** desses indivíduos, que eventualmente deverá gerar um indivíduo que caracterizará uma boa solução (talvez até a melhor) para o problema.

Conceitos básicos

Os Algoritmos Genéticos são flexíveis e permitem a fácil inclusão de instruções específicas para o problema de interesse;

A qualidade dos resultados depende diretamente da qualidade da modelagem do problema:

- ■representação cromossômica e decodificação;
- função de avaliação;
- •operadores genéticos.

Representação

- Consiste em uma maneira de traduzir a informação do problema em uma maneira viável de ser tratada pelo computador;
- Quanto mais ela for adequada ao problema, maior a qualidade dos resultados obtidos.

Representação

Representação

Exemplo – Cabra Cega

• Seleção: privilegia os indivíduos mais aptos

- Seleção: privilegia os indivíduos mais aptos
- Reprodução: indivíduos (ex: palavras binárias)
 são reproduzidos com base na aptidão

- Seleção: privilegia os indivíduos mais aptos
- Reprodução: indivíduos (ex: palavras binárias)
 são reproduzidos com base na aptidão
- *Cruzamento*: troca de genes (pedaços de palavras)

- Seleção: privilegia os indivíduos mais aptos
- Reprodução: indivíduos (ex: palavras binárias) são reproduzidos com base na aptidão
- *Cruzamento*: troca de genes (pedaços de palavras)
- Mutação: troca aleatória de um gene (bit da palavra)

Exemplo

Problema:

Achar o valor máximo para $f(x) = x^2$, x no limite de 0 a 63.

Exemplo

Problema:

Achar o valor máximo para $f(x) = x^2$, x no limite de 0 a 63.

Representação da Solução:

- ☐ Palavras binárias representando sucessivas potências de 2.
- 011100 => Representa 28
- 110101 => Representa 53 (uma solução mais apta)

Seleção

População

Cromossoma	Palavra	X	Aptidão (x²)
A	100100	36	1296
В	010010	18	324
С	010110	22	484
D	000001	1	1

Seleção

População

Cromossoma	Palavra	X	Aptidão (x²)
A	100100	36	1296
В	010010	18	324
С	010110	22	484
D	000001	1	1

Probabilidade de Seleção

~

Aptidão do Cromossoma

 Os operadores genéticos tem a função de modificar os indivíduos e consequentemente gerar novos indivíduos;

- ■Para isso são utilizados dois tipos de operadores distintos:
 - cruzamento
 - mutação

- Cruzamento
 - consiste em recombinar o material genético de dois indivíduos a fim de criar dois novos indivíduos;
 - ■esse operador tem a função de extrair genes de diferentes indivíduos, e recombiná-los para formar novos indivíduos.

Cruzamento – 1 ponto de corte

 Existem outros operadores de cruzamento, como por exemplo, de 2 pontos de cortes, uniforme, baseado em maioria, etc.

- Mutação
 - ■introduz diversidade em uma população, ou seja, é responsável pela variação dos indivíduos;

 consiste em aplicar modificações aleatórias em uma ou mais características de um indivíduo para criar um novo.

Mutação

Utilizando os operadores genéticos de cruzamento e de mutação, os Algoritmos Genéticos conseguem um equilíbrio entre:

- a capacidade de exploração do espaço de soluções; e
- o aproveitamento das melhores soluções ao longo da evolução;

Com isso, se mostram interessantes para a resolução de problemas complexos de otimização.

				_
′	Cromossoma	Palavra	Aptidão	
	Α	100100	1296	
	В	010010	324	
	С	010110	484	
	D	000001	1	

Cromossoma	Palavra	Aptidão	
Α	100100	1296	
В	010010	324	
С	010110	484	
D	000001	1	

Pais

Cromossoma	Palavra Aptidão	Pais
A	100100 1296	
В	010010 324	
С	010110 484	
D	000001 1	
Cre		
)
M	Reprodução	
		Noprodugao

Evolução 🗆

Aplicado em problemas complexos de otimização — de difícil modelagem matemática, com variedade de regras e condições, ou com grande número de soluções a considerar.

Algoritmos Genéticos

- Técnica de busca global (evita mínimos locais)
- Otimização de problemas complexos e mal estruturados
- Dispensa formulação
 matemática precisa do problema

- Precisão na representação do cromossoma
- Evolução demorada em alguns problemas
- Modelagem depende do habilidade do especialista em GA

Áreas de aplicação

Energia

Finanças

Engenharia e Telecomunicações

Medicina

Meio-Ambiente

Comércio

Indústria

Áreas de aplicação

Quais aplicações você conhece?

Otimização por Algoritmos Genéticos

Ana Carolina Abreu Felipe Borges

prof.carolina@ica.ele.puc-rio.br

prof.felipe@ica.ele.puc-rio.br