

M2102 Architecture des réseaux

Mars 2015

Isabelle DUTOUR – S2A

isabelle.dutour@u-bordeaux.fr

Claire PENNARUN – S2B et S2D

claire.pennarun@u-bordeaux.fr

Patrick FELIX – S2C

patrick.felix@u-bordeaux.fr

Département INFO – IUT de Bordeaux

Planning prévisionnel

Planning 2014-15

Semaine du 30 mars Semaine du 6 avril (Pâques)	C1 (lundi 30 mars) 1-Modèle en couches 2-Couche Physique Pas cours	TD1.1 Débits - Signaux – Modems Pas o	TD1.2 (machine) Notion de protocole : le cas FTP et POP3 de TD	
Semaine du 13 avril	C2 (lundi 13 avril) 3-Réseaux Locaux	TD2.1 CSMA/CD -Ethernet	TD2.2 (mi-machine ?) Analyse de trace Principe d'encapsulation	
Vacances Semaine du 4 mai	C3 (Lundi 4 mai) 4-Routage+IP	Pas de TD		
Semaine du 11 mai (Ascension)	Pas cours	TD3.1 Configuration de tables de routage IP	TD3.2 (machine) Configuration d'interfaces et exploration d'un réseau	
Semaine du 18 mai	C4 (lundi18 mai) 5-Transport + TCP&UDP 6-Socket	TD4.1 TCP et UDP	TD4.2 (machine) Programmation des sockets TCP	
Semaine du 25 mai (Pentecôte)	Pas cours	Pas de TD		
Semaine du 1er juin	C5 (lundi 1er juin) 7-Applications TCP/IP	TD5.1 (machine) Ecoute de traffic réseau et interception d'information	TD5.2 (machine) Protocole application FTP	DS : vendredi 5 ju durée : 1h30

Evaluation

- 1 note de TD comprenant (coeff 1)
 - La participation en TD
 - La présence
 - La remise d'exercices à faire
 - Une note d'interro (éventuellement)
 - Etc
- 1 DS de 1h30 (coeff 1,8)
 - Après la fin du module

Bibliographie

Réseaux - 4^{ème} édition

Editeur : Pearson Education

• Auteur : A. Tanenbaum

Remarque : une 5^{ème} édition existe...

1. Introduction - Modèle en couches - OSI TCP/IP

1.1 Introduction

1.2 Modèle en couches

1.3 Le modèle OSI

1.4 L'architecture TCP/IP

1.1 Introduction

Réseau - Télécom - Téléinformatique ?

Réseau:

 Ensemble d'ordinateurs interconnectés par des supports de transmission (filaires ou non filaires)

Télécom - Téléinformatique

- Ensemble de techniques permettant la transmission des données entre une source de données et un puits ou collecteur de données.
- C'est l'art de réaliser une transmission de données qui soit la plus parfaite possible, avec des supports qui eux, ne le sont pas.
- C'est permettre l'utilisation d'un réseau comme une machine unique virtuelle.
- Ensemble de techniques mettant en œuvre des aspects de télécommunication au service de l'informatique.

Exemples d'applications téléinformatiques

- Un transfert de fichiers entre 2 ordinateurs.
- Une application web.
- Une base de données répartie.
- Le partage des ressources dans un réseau d'ordinateurs.
- Internet.
- Intranet.
- Etc.

Plus généralement :

Un traitement coopératif entre 2 activités.

Différentes catégories de réseaux

- •(W)PAN: (Wireless) Personal Area Network -> Réseaux personnels
- •(W)LAN: (Wireless) Local Area Network -> Réseaux locaux
- •(W)MAN: (Wireless) Metropolitan Area Network -> Réseaux métropolitains
- •(W)WAN: (Wireless) Wide Area Network Area Network -> Réseaux étendus

Organisations structurelle & fonctionnelle

Organisation structurelle (topologie):

- précise comment sont interconnectés les différents réseaux/ordinateurs/boîtiers
 - => Réseau en bus, étoile, anneau, etc.

Organisation fonctionnelle (architecture réseau)

- Précise comment les différentes activités sont organisées entre elles
 - => Modèle en couches

1.2 Modèle en couches

Introduction au modèle en couches

Le modèle en couche précise comment les différentes activités sont organisées entre elles

Objectifs:

- Réduire la complexité de conception
- Faciliter l'implémentation
- Organiser les interactions entre les différentes activités

Deux modèles se sont imposés dans nos réseaux :

- OSI
- TCP/IP

Exemples d'activités dans un réseau

- Transmission physique (filaire et non filaire)
- Choix du chemin pris dans un réseau
- Détection d'erreurs
- Gestion d'une situation d'erreur
- Dialogue entre processus distants
- Etc.

Principes d'un modèle en couches

Couche:

- 1 fonctionnalité = 1 couche.
- La gestion interne d'une couche est indépendante des autres.
- Chaque couche :
 - s'appuie sur les fonctionnalités de la couche inférieure
 - offre des services à la couche supérieure

Protocole:

règles et conventions utilisées pour la conversation entre 2 couches de même niveau.

Interface:

opérations élémentaires et services qu'une couche inférieure offre à une couche supérieure

Couches, protocoles et interfaces

Figure 1.14 • L'architecture philosophe-traducteur-secrétaire.

1.3 Le modèle OSI

Le modèle OSI

- Open Systems Interconnection
- Modèle en couches
- Norme de l'ISO (International Standard Organization)
 - => Raccorder des machines/systèmes hétérogènes (systèmes ouverts)
 - => Fournir des spécifications (Facilité d'implémentation)
- 7 couches

Les 7 couches du modèle OSI

La couche Physique (1)

- Détails électroniques, électriques et mécaniques d'une liaison physique
- Transmission « brute » des bits sur un canal de communication (support physique)
- Représentation « électrique » des bits 1 et 0

La couche Liaison de données (2)

- Transformer transmission « brute » en transmission « sans erreurs »
- Trames de données (marqueurs début et fin)
- Acquittements
- Codes correcteurs d'erreurs
- Contrôle de flux

La couche Réseau (3)

- Routage et acheminement des paquets à travers un ou plusieurs réseaux /sous-réseaux
- Paquets acheminés d'une source vers une destination
- Gestion engorgement et congestion

Couches de communication (1, 2, 3):

transmission effective dans le réseau, de machines voisines en machines voisines

Couches 'charnières' (4)

Couches de traitement (5, 6, 7):

chaque couche estime parler directement à son homologue

La couche Transport (4)

- Contrôle bout en bout du transport de l'information entre 2 systèmes distants
- Transport fiable

La couche Session (5)

Synchronisation, gestion de sessions

La couche Présentation (6)

- Syntaxe et sémantique de l'information
- Codage, cryptage, compression

La couche Application (7)

Les applications des utilisateurs

1.4 L'architecture TCP/IP

TCP/IP

- Transmission Control Protocol / Interconnection Protocol
- Modèle en couches
- Fournir des spécifications : RFC (Request For Comments)
- 5 couches (ou 4 si on fusionne les couches 1 & 2)
- Actuellement : incontournable !

Internet, intranet sont basés sur l'architecture TCP/IP

TCP/IP et OSI : des similitudes et des différences...

Application	Application
Présentation	
Session	
Transport	TCP
Réseau	IP
Liaison	2
Physique	1
Support d'interco	onnexion matériel

La couche Physique (1)

Idem au modèle OSI

La couche Liaison (2)

Idem au modèle OSI

La couche Réseau (3)

IP (Interconnection Protocol) ~ couche 3 du modèle OSI

SAUF

- remise non fiable
- mode non connecté

La couche Transport (4)

TCP (Transmission Control Protocol) ~ couche 4 du modèle OSI

- protocole de transfert fiable en mode connecté (comme la couche transport ISO)
- => utile car IP est un protocole de remise non fiable

La couche Application (5)

Idem au modèle OSI

Applications TCP/IP

Modèle Client / Serveur

Plusieurs catégories d'applications :

- Echange d'informations entre utilisateurs (mail, news, chat...)
- Diffusion d'informations (ftp, (archie/gopher/wais) www...)
- Administration (dnssnmp, host, ping, traceroute, tcpdump...)
- Autres applications : Architecture Multi-Niveaux (n tier)

Modèle Peer-to-Peer

Exemple : Napster... et ses « héritiers »...

Technologie	Ressources	Recherche de ressources	Recherche de pairs	Multi-source
Architecture client-serveur	centralisé	centralisé	centralisé	non
Napster (1999)	décentralisé	centralisé	centralisé	non
Direct Connect (1999)	décentralisé	décentralisé	centralisé	non
eDonkey (2003)	décentralisé	semi-centralisé	semi-centralisé	oui
Kademlia (2002)	décentralisé	décentralisé	décentralisé	oui

Src: Wikipedia

Exemple de dialogue client/serveur

2. Couche physique (Couche 1 OSI et TCP/IP)

2.1 Introduction

2.2 Signal

2.3 Support de transmission

2.4 Adaptation du signal aux supports de transmission

2.5 Accès WAN

2.1 Introduction

Introduction

Rôle de cette couche :

 Transmettre un flot de bits d'information d'une machine à une autre machine adjacente.

La transmission utilise un **signal** basé sur le principe de **propagation d'ondes** : ondes *électriques* (câbles, fils, ...), ondes *radio* (faisceau hertzien, satellite), ondes *lumineuses* (fibres optiques).

L'étude de la transmission de l'information nécessite la connaissance :

- des principes du signal
- des supports de transmission et de leurs caractéristiques,
- des méthodes utilisées pour transmettre l'information sur ces supports (adaptation du signal au support de transmission) : opération réalisée par un ETCD (adaptateur de ligne)

2.2 Signal

Notion de signal

- Signal: variation de tension, impulsion lumineuse, modulation d'une onde électromagnétique, etc.
- → véhicule de l'information entre deux machines
- Signal Périodique : se reproduit de façon identique dans le temps.
 - Durée d'une période : T (en secondes).
 - Fréquence : 1/T (en hertz)

 (nombre de périodes par seconde)

Types de signaux

 Analogique : variation continue, niveaux de valeurs continus, proportionnels à la valeur de l'information (son, image)

 Numérique : variation discontinue, faible nombre de niveaux de valeurs fixées

Caractéristiques d'un signal numérique

Moment élémentaire T (en secondes)

Durée pendant laquelle le signal n'est pas modifié.

Valence V

Nombre d'états discernables utilisés par le signal.

Bivalent (V=2). Multivalent ($V=2^k$).

Rapidité de modulation R (en bauds)

R = 1/T Nombre de moments élémentaires par seconde.

Débit binaire D (en bits par seconde : bps)

$$D = R log_2 V$$

2.3 Support de transmission

Supports de transmission

Permet de transporter des données sous forme de signaux

2 types de support :

- Supports avec un guide physique :
 - Paire téléphonique / torsadée

- Supports sans guide physique :
 - Wi-Fi, WiMAX, Mobile
 - Faisceau hertzien
 - Liaison satellite

Les différentes technologies cohabitent...

Source: http://christian.caleca.free.fr/reseaux/hardware.htm

Caractéristiques des supports de transmission

- Un support n'est jamais parfait!
- Un signal sur un support peut être :

Bande passante d'un support : bande de fréquences dans laquelle les signaux sont « convenablement » transmis.

2.4 Adaptation du signal aux supports de transmission

Adaptation du signal aux supports de transmission

Que doit-on assurer ?

Une technique de transmission doit faire en sorte que les fréquences utilisées par un signal (spectre du signal) se situent dans la bande passante du support de transmission

Quelle solution à apporter ?

Mettre en œuvre des techniques d'adaptation du signal au support de communication

- 1. transmission en bande de base
- 2. transmission en large bande

• Comment les mettre en œuvre ?

Utiliser des équipements spéciaux : les ETCDs

ETCD : Equipement de Terminaison de Circuit de Données

 Les ETCD (Equipement de Terminaison de Circuit de Données) adaptent le signal pour permettre une transmission de données entre 2 ETTD (Equipement Terminal de Traitement de Données).

Types de liaison

Rappel : liaison point-à-point

De façon simplifiée, une liaison point-à-point ressemble à :

• Autres types de liaison : multipoint, anneau

Techniques d'adaptation du signal

Technique 1 : transmission en bande de base

- [Rappel : Tout signal est somme de composantes sinusoïdales]
- Ici : composantes du signal dans la bande passante
- Donc : transformation simple du signal
- ETCD=Codeur/Décodeur ou 'adaptateur bande de base'
- Plutôt pour débits rapides et distances courtes
- Plusieurs codages utilisés :

Techniques d'adaptation du signal

Technique 2 : transmission en large bande

- [Rappel : Tout signal est somme de composantes sinusoïdales]
- lci : composantes du signal hors bande passante
- Donc : déplacement du spectre du signal dans un domaine de fréquences adaptées au support
- ETCD=Modulateur/Démodulateur (Modem)
- Transformation du signal numérique en un signal analogique sinusoïdal ($A \sin(2\pi f t + \phi)$) par modulation d'onde porteuse
- Plusieurs types de modulation :

Fréquence f: f1 et f2

Amplitude A: A1 et A2

Phase ϕ : $\phi_1 = 0$ et $\phi_2 = \pi$

Transmission en large bande : variantes

But : Augmenter le débit binaire

Une technique de modulation se décline en plusieurs variantes.
 Exemples :

Modulation de phase avec 4 phases (quadri-phase), etc.

Modulation d'amplitude avec 4 niveaux d'amplitude, etc.

 Les techniques de modulations se combinent pour donner une modulation 'mixte'. Exemple :

Modulation de phase + modulation d'amplitude

 Une technique de modulation est représentée par un diagramme de constellation.

2 phases

8 phases

2 amplitudes et 4 phases

Exemple de modems normalisés

La plupart des modems a une rapidité de modulation de 2400 bauds

- QPSK (Quadrature Phase Shift Keying)
 - 4 points dans le diagramme → 2 bits par modulation
- QAM (Quadrature Amplitude Modulation)
 - QAM-16 (4 bits), QAM-64 (6 bits)
- V.32 à 9 600 bps et V.32bis à 14 400 bps (modem fax)
 - 32 points \rightarrow 4 bits +1 et 128 points (QAM-128) \rightarrow 6 bits +1
- V.34 à 28 800 bps et V.34bis à 33 600 bps (compression)
- V.90 à 56 kbps descendant et 33,6 kbps montant
- V.92 à 48 kbps montant si possible sur la ligne

2.5 Accès WAN...

Accès WAN

But : accès à internet

Réseaux utilisés:

- RNIS : Numéris (Réseau Numérique à Intégration de Service)
- RTC: Réseau Téléphonique Commuté
- xDSL : Digital Subscriber Line (Ligne numérique d'abonné)
 - Technologies permettant un transport numérique rapide sur une paire métallique sans interférence avec le service téléphonique analogique traditionnel (*POTS*: *Plain Old Telephone Service*).
 - 2 techniques : Transmission symétrique / asymétrique.
- Câble
- Accès sans fil : GPRS, 3G, etc.

RTC / Câble

ADSL / Câble

- Épine dorsale : fibre optique
- Abonné : paires torsadées
- Raccord seul au CL
- Qualité service constante

- Possibilité d'accès au service :
 - tout le monde a une ligne téléphonique
 - mais pb de distance au CL

- Épine dorsale : fibre optique
- Abonné : coaxial
- Plusieurs sur un même câble
- Qualité de service dépend du contexte (nbre d'abonnés connectés sur le câble)

- Possibilité d'accès au service :
 - tout le monde n'est pas relié au câble
 - pas de pb de distance au centre de distribution

Liaison Habitation ⇔ FAI

Туре	Liaison	Débit descendant	Contraintes	Année
Modem	RJ 11	< 56 Kb/s	. Bloque la ligne téléphonique	1990
ADSL	RJ 11	< 25 Mb/s	 Débit asymétrique, Débit dépend de la distance avec l'opérateur 	1999
VDSL	RJ 11	< 100 Mb/s	. Même que pour l'ADSL mais en pire	2002
SDSL	RJ 11	< 20 Mb/s	. ADSL avec débit symétrique	2001
Fibre FTTH	Fibre	< 2Gb/s	. Coûteux	2006
Fibre FTTLA	Fibre Coaxial	< 200 Mb/s	. Moins chère mais moins fiable et moins rapide	2006
Satellite	Onde	< 50 Mb/s	. Couverture . Délais . Coûteux	2010
Réseau mobile	Onde	< 150 Mb/s	. Même que pour les satellites	2004
WiMAX	Onde	< 240 Mb/s	. Même que pour les satellites	2006

Tableau établi par Vincent Autefage – Mars 2015

Sans Fil - Réseaux mobiles

Il existe **plusieurs normes réseaux** utilisées par les <u>opérateurs de téléphonie</u> <u>mobile</u>. Une norme est <u>utilisable</u> si le téléphone de l'utilisateur possède une <u>antenne compatible</u> et si le <u>forfait</u> téléphonique souscrit autorise son utilisation.

Norme	Nom	Débit	Utilisation
2 G	GSM	< 9 Kb/s	Voix
2.5 G	GRPS	< 170 Kb/s	Voix ou données
2.75 G	EDGE	< 384 Kb/s	Voix ou données
3 G	UMTS	< 1,9 Mb/s	Voix et données
3.5 G / 3G+ / H	HSPA	< 14 Mb/s	Données
3.75 G / 3G++ / H+	HSPA+	< 21 Mb/s	Données
H+ Dual Carrier	DC-HSPA+	< 42 Mb/s	Données
4 G	LTE	< 150 Mb/s	Données
4 G+	LTE-Advanced	< 1 Gb/s	Données

Tableau établi par Vincent Autefage – Mars 2015