SuperLearner

Eric C. Polley Biometric Research Branch National Cancer Institute Mark J. van der Laan
Division of Biostatistics
University of California, Berkeley

Abstract

An R package for the Super Learner van der Laan, Polley, and Hubbard (2007) is presented.

Keywords: prediction models, cross-validation, R.

1. Introduction

This vignette explains how to use the **SuperLearner** R package. The **SuperLearner** package provides a syntax and structure to implement the super learner algorithm van der Laan et al. (2007). A characteristic of the super learner algorithm is the ability to combine many different prediction algorithms together and let the data decide on the optimal ensemble. R is the perfect language for such an algorithm because of the wealth of available prediction algorithms already available in the community. One problem is that prediction algorithms do not have a common syntax, so one of the goals of the **SuperLearner** package is to translate these prediction algorithms into a common syntax to allow for easy programming of the super learner.

2. The Super Learner Algorithm

Table 1: Details of prediction algorithm wrappers

Function	Package	Tuning Parameters	Description
bagging	ipred	nbagg minsplit cp maxdepth	Bagging CART trees

(Continued on next page)

Table 1: Details of prediction algorithm wrappers

Function	Package	Tuning Parameters	Description
bart	BayesTree	ntree	Bayesian Regression Trees
		sigdf	
		${ t sigquant}$	
		k	
		power	
		base	
		ndpost	
		nskip	
bayesglm	arm	prior.mean	Bayesian glm
		prior.scale	
		prior.df	
cforest	party	ntree	Conditional Tree Forest
		mtry	
		mincriterion	
		teststat	
		testtype	
		replace	
		fraction	
cv.spls	\mathbf{spls}	K	Sparse partial least squares
		eta	
DSA	\mathbf{DSA}	maxsize	Deletion\Substitution\Addition
		maxorderint	
		${\tt maxsumofpow}$	
		Dmove	
		Smove	
		vfold	
earth	\mathbf{earth}	degree	Adaptive Regression Splines
		penalty	
		nk	
		thresh	
		minspan	
		newvar.penalty	
		fast.k	
		fast.beta	
		nfold	
		pmethod	
gam	\mathbf{gam}	deg.gam	Generalized additive model

(Continued on next page)

Table 1: Details of prediction algorithm wrappers

Function	Package	Tuning Parameters	Description
gbm	${f gbm}$	gbm.trees interaction.depth cv.folds shrinkage n.minobsinnode bag.fraction train.fraction	Gradient boosting
glm	stats	_	Generalized linear model
glmnet	glmnet	alpha lambda nlambda lambda.min dfmax type	Elastic Net
knn	class	k	k-Nearest neighbors
		use.all	
loess	stats	span family	Local polynomial regression
logreg	$\mathbf{LogicReg}$	degree ntrees nleaves	Logic regression
mars	mda	select penalty kfold control degree nk penalty thresh prune	Adaptive Regression Splines
		forward.step	Normal materials
nnet	nnet	size decay rang	Neural network
polymars	polspline	maxsize gcv additive knots	Adaptive polynomial splines
polyclass	polspline	know.space maxdim cv additive	Polychotomous regression

(Continued on next page)

Table 1: Details of prediction algorithm wrappers

Function	Package	Tuning Parameters	Description
randomForest	randomForest	ntree mtry nodesizes sampsize	Random Forest
		replace maxnodes	
Ridge	MASS	lambda	Ridge regression
rpart	rpart	cp minsplit xval maxdepth minbucket	Regression tree
step	stats	scope scale direction steps k	Stepwise regression
step.plr	stepPlr	type lambda cp max.terms	Stepwise penalized logistic
SVM	e1071	type kernel nu degree gamma coef0 cost cachesize tolerance epsilon	Support vector machine

3. Using the SuperLearner Package

> library(SuperLearner)

3.1. Creating prediction wrappers

A full list of the built-in prediction wrappers can be found with the function:

```
> listWrappers(what = 'SL')
 [1] "SL.DSA"
                            "SL.bart"
 [3] "SL.bayesglm"
                            "SL.caret"
 [5] "SL.caret.rpart"
                            "SL.cforest"
 [7] "SL.earth"
                            "SL.gam"
 [9] "SL.gbm"
                            "SL.glm"
[11] "SL.glm.interaction"
                            "SL.glmnet"
                            "SL.knn"
[13] "SL.ipredbagg"
[15] "SL.loess"
                            "SL.logreg"
[17] "SL.mean"
                            "SL.nnet"
[19] "SL.polymars"
                            "SL.randomForest"
[21] "SL.ridge"
                            "SL.rpart"
[23] "SL.step"
                            "SL.step.forward"
[25] "SL.step.interaction" "SL.stepAIC"
[27] "SL.svm"
                            "SL.template"
And the included template creator:
> write.SL.template(file = '')
SL.template <- function(Y, X, newX, family, obsWeights, id, ...) {
  # load required packages
  # require('pkg')
  if(family$family == 'gaussian') {
  if(family$family == 'binomial') {
  # pred is the predicted responses for newX (on the scale of the outcome)
  pred <- numeric()</pre>
  # fit returns all objects needed for predict.SL.template
  fit <- list(object = )</pre>
  # declare class of fit for predict.SL.template
  class(fit) <- 'SL.template'</pre>
  # return a list with pred and fit
  out <- list(pred = pred, fit = fit)</pre>
  return(out)
}
```

3.2. Creating screening wrappers

A full list of the built-in screening wrappers can be found with the function:

```
> listWrappers(what = 'screen')
```

```
[1] "All"
[1] "screen.SIS"
                             "screen.corP"
[3] "screen.corRank"
                            "screen.glmnet"
[5] "screen.randomForest" "screen.template"
[7] "screen.ttest"
                             "write.screen.template"
And the included template creator:
> write.screen.template(file = '')
screen.template <- function(Y, X, family, obsWeights, id, ...) {</pre>
  # load required packages
  # require('pkg')
  if (family$family == 'gaussian') {
  if (family$family == 'binomial') {
  }
  # whichVariable is a logical vector,
  # TRUE indicates variable will be used
  whichVariable <- rep(TRUE, ncol(X))</pre>
  return(whichVariable)
}
3.3. Creating methods wrappers
The included template creator:
> write.method.template(file = '')
method.template <- function() {</pre>
  out <- list(</pre>
    # require allows you to pass a character vector with required packages
    # use NULL if no required packages
    require = NULL,
    # computeCoef is a function that returns a list with two elements:
    # 1) coef: the weights (coefficients) for each algorithm
    # 2) cvRisk: the V-fold CV risk for each algorithm
    computeCoef = function(Z, Y, libraryNames, obsWeights, control, verbose, ...) {
      cvRisk <- numeric()</pre>
      coef <- numeric()</pre>
      out <- list(cvRisk = cvRisk, coef = coef)</pre>
      return(out)
    },
```

```
# computePred is a function that takes the weights and the predicted values
# from each algorithm in the library and combines them based on the model to
# output the super learner predicted values
computePred = function(predY, coef, control, ...) {
   out <- crossprod(t(predY), coef)
   return(out)
}
invisible(out)</pre>
```

References

van der Laan MJ, Polley EC, Hubbard AE (2007). "Super Learner." Statistical Applications in Genetics and Molecular Biology, 6(25).

4. Computing Environment

- R version 2.13.0 Patched (2011-04-21 r55579), x86_64-apple-darwin9.8.0
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: SuperLearner 2.0-4, nnls 1.3, quadprog 1.5-4
- Loaded via a namespace (and not attached): tools 2.13.0

Affiliation:

Eric Polley

```
Biometric Research Branch
National Cancer Institute
E-mail: eric.polley@nih.gov
URL: http://linus.nci.nih.gov/

Mark van der Laan
Division of Biostatistics
University of California, Berkeley
E-mail: laan@berkeley.edu
URL: http://www.stat.berkeley.edu/~laan/
```