1 Combinatory terms, combinatory calculus, theorem about completeness of SKI basis

Определение

Напомним, что **комбинатор** - это λ -терм без констант и свободных переменных.

SKI - комбинаторный базис

Следующие три комбинатора называются комбинаторным базисом:

- $I = \lambda x.x$
- $K = \lambda xy.x$
- $S = \lambda xyz.(xz)(yz)$

Комбинаторный терм определяется по индукции:

- комбинатор из комбинаторного базиса I, K, S является комбинаторным термом.
- если a, b два комбинаторных терма, то (ab) также является комбинаторным термом.

Таким образом, в **комбинаторном исчислении** используется только один оператор: аппликация, без оператора абстракции и каких-либо переменных.

Теорема (полнота комбинаторного исчисления)

Для любого комбинатора c существует такой комбинаторный терм T что

$$c \equiv T$$

Эта теорема означает, что комбинаторного базиса I, K, S достаточно для получения всех комбинаторов, выражаемых в λ -исчислении, используя только оператор аппликации.

Замечание

На самом деле достаточно рассматривать только K и S в качестве комбинаторного базиса, потому что можно выразить I как комбинаторный терм от K и S:

$$I \equiv (SKK)$$

Доказательство

Дан комбинатор s, построим соответствующий комбинаторный терм C(s) по индукции:

- C(x) = x, если s = x переменная,
- C((st)) = (C(s)C(t)), аппликация
- $C(\lambda x.x) = I$ для любой переменной x
- $C(\lambda x.y) = Ky$, если $x \neq y$
- $C(\lambda x.\lambda ys) = C(\lambda x.C(\lambda y.s))$
- $C(\lambda x.(st)) = SC(\lambda x.s)C(\lambda x.t)$

Этот алгоритм называется исключением абстракции. Теперь, индукцией по строению λ -терма докажем, что $C(s) \equiv s$. Случаи C((st)) = (C(s)C(t)) и $C(\lambda x.\lambda ys) = C(\lambda x.C(\lambda y.s))$ доказываются непосредственно по предположению индукции. Пусть $s \equiv C(s)$ и $t \equiv C(t)$, т.е. $C(s), s \Rightarrow p$ и $C(t), t \Rightarrow q$ для некоторых p и q. Тогда

$$C(st) = C(s)C(t) \Rightarrow pC(t) \Rightarrow (pq)$$

. Рассмотрим случай $C(\lambda x.y) = Ky$, когда $x \neq y$. Действительно:

$$Ky = (\lambda a.(\lambda b.a))y \Rightarrow_{\beta} \lambda b.y \Rightarrow_{\alpha} \lambda x.y$$

. Последний случай, если $C(s), s \Rightarrow p$ и $C(t), t \Rightarrow q$ для некоторых p и q:

$$SC(\lambda x.s)C(\lambda x.t) = (\lambda xyz.xz(yz))\lambda x.p\lambda x.q \Rightarrow$$

$$\Rightarrow \lambda z.((\lambda x.p)z)((\lambda x.q)z) \Rightarrow$$

$$\Rightarrow \lambda z.(p[x=z]q[x=z]) \Rightarrow_{\alpha} \lambda x.(pq) \Leftarrow \lambda x.(st)$$

.

2 Propositional logic: propositional formulas, tautological, satisfiable and unsatisfiable formulas

Определение

Пусть \mathcal{A} - произвольное множество. Тогда мы можем рассмотреть множество \mathcal{A} алфавит, и любой кортеж $(a_1, \ldots, a_n) \in \mathcal{A}^n$ - слово алфавита \mathcal{A} .

Обозначение

Если $(a_1, \ldots, a_n) \in \mathcal{A}^n$ является словом алфавита \mathcal{A} , то будем писать его без скобок и запятых:

$$a_1 \dots a_n \rightleftharpoons (a_1, \dots, a_n)$$

Определение

Пусть \mathcal{A} - алфавит. Тогда множество всех слов алфавита \mathcal{A} обозначается следующим образом

$$\mathcal{A}^* \rightleftharpoons \bigcup_{n \in \omega} \mathcal{A}^n$$

Определение

Алфавит логики высказываний: $\mathcal{A}_{prop} = \{(,), \wedge, \vee, \to, \neg, \top, \bot\} \cup V$ где $V = \{v_i | i \in \omega\}$ - бесконечное множество **пропозициональных переменных**.

Определение

формула логики высказываний - это слово алфавита \mathcal{A}_{prop} , определяемое по индукции:

- 1. \top, \bot и v_i для всех $i \in \omega$ являются **атомарными** формулами
- 2. если ϕ , ψ являются формулами, то следующие слова также являются формулами:
 - $(\phi \wedge \psi)$

- $(\phi \lor \psi)$
- $(\phi \to \psi)$
- ¬φ

Определение

Формула ϕ называется

- тождественно истинной, тогда и только тогда, когда для любого означивания γ : $\gamma(\phi)=1$
- выполнимой, тогда и только тогда, когда для некоторого означивания γ : $\gamma(\phi)=1$
- **невыполнимой**, тогда и только тогда, когда для любого означивания γ : $\gamma(\phi)=0$

Если $\gamma(\phi)=1$, то будем говорить, что эта формула **истинна** при означивании γ , если $\gamma(\phi)=0$ будем говорить, что формула **ложна** при означивании γ .

пример

- $v_i \wedge \neg v_i$ является невыполнимой
- $v_i \lor \neg v_i$ является тождественно истинной
- ullet $v_i
 ightarrow
 eg v_i$ является невыполнимой
- ullet $(v_i
 ightarrow (v_i
 ightarrow v_i)$ является тождественно истинной
- $(v_i \to (v_j \land v_i))$ не является тождественно истинной, но является выполнимой.

3 Prenex normal forms, theorem about conversion to PNF

Определение

Формула логики предикатов ϕ находится в **дизъюнктивной нормальной форме** (ДНФ), тогда и только тогда, когда ϕ получена из пропози-

циональной формулы ψ , находящейся в ДНФ, заменой всех пропозициональных переменных атомарными формулами логики предикатов.

Определение

Формула логики предикатов ϕ находится в **пренексной нормальной** форме (ПНФ), тогда и только тогда, когда $\phi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi$, где $Q_i \in \{\forall, \exists\}$ - кванторы, x_1, \dots, x_n - предметные переменные, ψ - бескванторная формула в ДНФ.

пример

 $\forall x \exists y \forall z ((p(x,y) \land \neg q(y)) \lor (p(y,z) \land q(x)))$ - находится в ПНФ.

Теорема (приведение к ПНФ)

Для любой формулы ϕ сигнатуры σ существует такая формула ϕ' , находящаяся в ПНФ, что $\phi \equiv \phi'$.

Доказательство

По эквивалентности $\phi_1 \to \phi_2 \equiv \neg \phi_1 \lor \phi_2$ и теореме о замене существует такая формула $\phi' \equiv \phi$, что ϕ' не содержит символов \rightarrow . Индукцией по длине ϕ' докажем, что существует такая формула $\phi'' \equiv \phi'$, что $\phi''=Q_1x_1\dots Q_nx_n\psi$, где $Q_i\in\{orall,\exists\}$ и ψ не содержит кванторов. Основание индукции. Если ϕ' является атомарной формулой, то ϕ' не содержит кванторов, поэтому можно рассматривать ϕ' в качестве ϕ'' . Шаг индукции. Пусть $\phi' = Q_0 x_0 \phi_1$. Тогда $l(\phi_1) < l(\phi')$, следовательно, существует такая формула $Q_1x_1\dots Q_kx_k\psi_1$, что $\phi_1\equiv Q_1x_1\dots Q_kx_k\psi_1$ и ψ_1 не содержит кванторов. По теореме о замене $\phi \equiv Q_0 x_0 Q_1 x_1 \dots Q_k x_k \psi_1$. Пусть $\phi' = \neg \phi_1$. Тогда $l(\phi_1) < l(\phi')$, следовательно, существует такая формула $Q_1x_1\dots Q_kx_k\psi_1$ что $\phi_1\equiv Q_1x_1\dots Q_kx_k\psi_1$ и ψ_1 не содержит кванторов. Для кванторов будем использовать соглашение: $\bar{\forall} = \exists$ и $\bar{\exists} = \forall$. k раз применяя индукцию, по теореме о замене и эквивалентности $\neg Qx\phi \equiv Q\neg \phi$, получим $\phi \equiv \bar{Q}_1 x_1 \dots \bar{Q}_k x_k \neg \psi_1$. Пусть $\phi' = \phi_1 \bullet \phi_2$, где $\bullet \in \{\land, \lor\}$. Тогда $l(\phi_1), l(\phi_2) < l(\phi')$. Если обе формулы ϕ_1 и ϕ_2 не содержат кванторов, то утверждение доказано. Предположим, что ϕ_1 содержит кванторы. По предположению индукции $\phi_1 \equiv Qx\psi_1$ для некоторой ψ_1 . Пусть y - некоторая новая переменная, вхождений которой нет в ϕ' . Тогда $Qx\psi_1\equiv Q_y[\psi_1]_y^x$, и по теореме о замене

$$\phi' \equiv \phi_1 \bullet \phi_2 \equiv Qy[\psi_1]_y^x \bullet \phi_2 \equiv Qy([\psi_1]_y^x \bullet \phi_2)$$

Поскольку $l([\psi_1]_y^x ullet \phi_2) < l(\phi')$, предположение индукции верно. Таким образом, мы получаем некую формулу $\phi'' \equiv \phi'$, такую, что $\phi'' = Q_1 x_1 \dots Q_n x_n \psi$, где $Q_i \in \{\forall, \exists\}$ и ψ не содержит кванторов. Затем необходимо привести ψ к ДНФ. Для этого сначала преобразуем ψ в формулу с тесными отрицаниями (т.е. отрицание может находиться только перед атомарными формулами), после чего, используя дистрибутивность, приведём её к ДНФ. Оба действия могут быть выполнены, так как для логики предикатов существуют те же эквивалентности, что и для логики высказываний:

$$\neg \neg \phi \equiv \phi$$

$$\neg (\phi_1 \lor \phi_2) \equiv \neg \phi_1 \land \neg \phi_2$$

$$\neg (\phi_1 \land \phi_2) \equiv \neg \phi_1 \lor \neg \phi_2$$

$$\psi \lor (\phi_1 \land \phi_2) \equiv (\psi \lor \phi_1) \land (\psi \lor \phi_2)$$

$$\psi \land (\phi_1 \lor \phi_2) \equiv (\psi \land \phi_1) \lor (\psi \land \phi_2)$$