NLP

Bo Coleman

Note: Yes, the notebook from the video is not provided, I leave it to you to make your own:) it's your final assignment for the semester. Enjoy!

```
In [17]:
          #!pip install spacy
 In [4]:
          import spacy
In [36]:
          #!python -m spacy download en core web sm
          # !python -m spacy download en_core_web_lg
In [37]:
          # nlp = spacy.load("en core web sm")
          nlp = spacy.load('en_core_web_lg')
In [38]:
          text = 'What is up my dudes, my name is Bo. I live in NYC. I like turtles. I am orig
In [39]:
          processed_text = nlp(text)
          processed text
         What is up my dudes, my name is Bo. I live in NYC. I like turtles. I am originally fr
Out[39]:
         om Arlington, Virginia
         Sentences
In [40]:
          for sentence in processed text.sents:
              print(n, sentence)
              n+=1
         0 What is up my dudes, my name is Bo.
         1 I live in NYC.
         2 I like turtles.
            I am originally from Arlington, Virginia
```

Words and Punctuation - Along with POS tagging

```
In [41]:
    n = 0
    for sentence in processed_text.sents:
        for token in sentence:
            print(n, token, token.pos_, token.lemma_)
            n+= 1

0 What PRON what
```

1 is AUX be

```
2 up ADP up
3 my PRON my
4 dudes NOUN dude
5 , PUNCT ,
6 my PRON my
7 name NOUN name
8 is AUX be
9 Bo PROPN Bo
10 . PUNCT .
     SPACE
12 I PRON I
13 live VERB live
14 in ADP in
15 NYC PROPN NYC
16 . PUNCT .
17
     SPACE
18 I PRON I
19 like VERB like
20 turtles NOUN turtle
21 . PUNCT .
22
     SPACE
23 I PRON I
24 am AUX be
25 originally ADV originally
26 from ADP from
27 Arlington PROPN Arlington
28 , PUNCT ,
29 Virginia PROPN Virginia
```

Entities

```
for entity in processed_text.ents:
    print(entity, entity.label_)

NYC LOC
Arlington GPE
```

Noun Chunks

Virginia GPE

Syntactic Depensy Parsing

```
def pr tree(word, level):
In [45]:
            if word.is punct:
               return
            for child in word.lefts:
               pr tree(child, level+1)
            print('\t'* level + word.text + ' - ' + word.dep_)
            for child in word.rights:
               pr_tree(child, level+1)
In [46]:
        for sentence in processed text.sents:
            pr_tree(sentence.root, 0)
            print('----')
                     What - nsubj
               is - advcl
                     up - prep
                                   my - poss
                            dudes - pobj
                     my - poss
              name - nsubj
        is - ROOT
              Bo - attr
        -----
                - dep
              I - nsubj
        live - ROOT
              in - prep
                    NYC - pobj
          - dep
                     I - nsubj
              like - prep
                    turtles - pobj
        _____
                - dep
              I - nsubj
        am - ROOT
              originally - advmod
              from - prep
                     Arlington - pobj
                           Virginia - appos
```

Word Vectorization

Only print the first 2 to save space in html output:

```
-2.4884e-01 1.4060e-01 3.3099e-01 -1.8061e-02 1.5244e-01 -2.6943e-01
-2.7833e-01 -5.2123e-02 -4.8149e-01 -5.1839e-01 8.6262e-02 3.0818e-02
-2.1253e-01 -1.1378e-01 -2.2384e-01 1.8262e-01 -3.4541e-01 8.2611e-02
 1.0024e-01 -7.9550e-02 -8.1721e-01 6.5621e-03 8.0134e-02 -3.9976e-01
 -6.3131e-02 3.2260e-01 -3.1625e-02 4.3056e-01 -2.7270e-01 -7.6020e-02
 1.0293e-01 -8.8653e-02 -2.9087e-01 -4.7214e-02 4.6036e-02 -1.7788e-02
 6.4990e-02 8.8451e-02 -3.1574e-01 -5.8522e-01 2.2295e-01 -5.2785e-02
 -5.5981e-01 -3.9580e-01 -7.9849e-02 -1.0933e-02 -4.1722e-02 -5.5576e-01
 8.8707e-02 1.3710e-01 -2.9873e-03 -2.6256e-02 7.7330e-02 3.9199e-01
 3.4507e-01 -8.0130e-02 3.3451e-01 2.7063e-01 -2.4544e-02 7.2576e-02
 -1.8120e-01 2.3693e-01 3.9977e-01 4.5012e-01 2.7179e-02 2.7400e-01
 1.4791e-01 -5.8324e-03 9.5910e-01 -1.0129e+00 2.0699e-01 1.8237e-01
 -2.5234e-01 -2.6261e-01 -3.4799e-01 -2.4051e-02 4.4470e-01 5.9226e-02
 4.5561e-01 1.9700e-01 -4.8327e-01 8.9523e-02 -2.2373e-01 -1.5654e-01
 2.1578e-01 1.1673e-01 8.2006e-02 -8.0735e-01 2.3903e-01 -5.1304e-01
 -3.3888e-01 -3.1499e-01 -1.7272e-01 -6.7020e-01 2.7096e-01 -4.3241e-01
 4.3103e-02 2.1233e-02 1.3350e-02 -6.3938e-02 -2.4957e-01 -2.4938e-01
 3.4812e-01 -7.1321e-02 2.3375e-01 -9.5384e-02 5.2488e-01 6.8175e-01
 -1.0214e-01 -1.4914e-01 -7.5697e-02 1.7248e-01 2.5440e-01 1.5760e-01
-5.9125e-01 2.4300e-01 6.3962e-01 -9.3280e-02 -2.7914e-01 -6.6262e-02
-6.7170e-02 -4.0929e-01 -3.0300e+00 1.8250e-01 2.0113e-01 6.0628e-02
 -2.4769e-01 5.5324e-02 -4.9106e-01 3.1544e-01 -3.4231e-01 -6.3766e-01
-3.6129e-01 -5.9029e-02 1.5510e-01 4.4577e-02 2.3572e-01 -1.7095e-01
-2.2749e-01 -2.3184e-02 2.3868e-01 2.8170e-02 4.2965e-01 -1.2458e-01
 -3.6972e-02 2.0061e-01 -3.1405e-01 -8.5287e-02 -3.3496e-01 -9.7047e-02
-1.4388e-01 1.1147e-01 -4.5232e-01 -2.4217e-01 -1.8245e-01 -6.7292e-01
 2.1933e-02 -5.4816e-02 -4.6508e-01 4.7767e-01 -2.4752e-01 -1.5790e-01
 1.1817e-01 5.6851e-02 -4.9151e-01 1.5496e-01 1.6425e-02 4.1650e-02
 -3.4990e-01 -1.5979e-01 3.9705e-01 2.2963e-01 2.4688e-01 1.9567e-02
 -2.8802e-01 -6.9983e-01 3.2744e-01 1.0833e-01 2.4945e-01 -7.8653e-01
 -6.1379e-02 -3.7359e-01 -1.1603e-01 -2.4950e-01 1.0161e-01 3.3994e-02
 1.5650e-01 2.1344e-01 -1.1094e-01 -5.7687e-03 1.7869e-01 -1.0127e-01
 -1.6891e-02 3.0001e-01 -3.4116e-01 -3.2390e-02 4.2514e-02 1.1850e-01
-1.8337e-01 -6.2865e-01 -2.8021e-01 4.2351e-01 1.1277e-01 1.2121e-03
 1.5710e-01 -3.6321e-01 -4.9251e-01 1.1653e-01 2.4024e-01 1.7712e-01
 6.8700e-02 -4.4137e-01 -2.9877e-01 -1.2071e-02 2.8325e-01 1.0668e-01
 -1.8859e-01 -4.1345e-01 -3.4090e-01 4.7236e-02 -3.8309e-01 4.3572e-01
 2.4505e-01 2.7337e-01 -7.3038e-02 4.2514e-01 -3.2455e-02 -3.5211e-01
 4.5691e-01 1.9433e-01 -1.5230e-01 4.2675e-01 2.8795e-01 -5.5969e-01
-1.3031e-01 8.9844e-02 4.2605e-01 -1.9632e-01 -7.1989e-02 -8.0189e-02
-3.0425e-01 -4.6190e-01 2.8178e-01 -9.9872e-02 3.5097e-01 1.6123e-01
-3.6548e-02 -3.6739e-01 -1.9819e-02 3.2130e-01 1.7479e-01 2.5175e-01
-7.6439e-03 -9.3786e-02 -3.7852e-01 4.3725e-01 2.1288e-01 2.5096e-01
-1.9613e-01 -2.8865e-01 -5.6726e-03 4.2795e-01 2.0625e-01 -3.7701e-02
-1.2200e-01 -7.9253e-02 -1.0290e-01 1.0558e-02 4.9880e-01 2.5382e-01
 1.5526e-01 1.7951e-03 1.1633e-01 7.9300e-02 -3.9142e-01 -3.2483e-01
 6.3451e-01 -1.8910e-01 5.4050e-02 1.6495e-01 1.8757e-01 5.3874e-01]
think [-2.1788e-01 4.4128e-01 -4.3204e-01 -1.9803e-01 -2.7968e-03 2.8803e-01
 8.0648e-02 -1.4643e-01 2.2300e-02 2.5941e+00 -2.5959e-01 -8.4183e-02
 4.2613e-01 8.7662e-03 -3.3843e-01 -1.7814e-01 -4.2161e-01 3.3757e-01
 -3.9092e-01 -6.0522e-02 2.9517e-01 1.4590e-01 3.2846e-01 -5.8106e-02
-1.9982e-01 1.1735e-01 -3.0825e-01 -2.2648e-01 4.7433e-01 -2.4415e-01
-3.0177e-01 6.7390e-01 6.5974e-02 4.5855e-02 -3.6646e-02 9.9892e-02
 1.3664e-01 1.6360e-01 -1.7109e-01 -2.4558e-01 -1.2538e-01 2.1834e-01
-1.5026e-01 1.3336e-01 3.3971e-01 9.4071e-02 -5.1316e-01 -1.5819e-01
 2.7468e-02 -3.4402e-02 -5.5910e-02 6.9633e-02 -1.2256e-02 -5.1804e-02
 2.7225e-01 -1.8355e-01 -2.4559e-01 -3.1370e-01 1.5620e-01 6.3014e-02
-3.2111e-01 -5.1905e-01 -1.1712e-01 3.6818e-01 4.0482e-02 -4.3880e-01
 -8.3865e-02 9.5061e-02 3.1995e-01 5.2088e-02 2.3889e-01 -1.6807e-03
 3.1965e-01 -6.8731e-02 1.3477e-01 3.2888e-01 2.7228e-02 -1.9567e-01
```

```
-1.0522e-01 4.3544e-01 1.8869e-02 -2.4586e-02 9.5041e-02 -1.0182e-01
 2.2237e-01 -3.9997e-01 7.7279e-02 -8.7118e-01 3.3649e-01 -2.3464e-01
-1.7064e-01 -1.6163e-01 -2.1596e-01 4.3201e-01 2.2237e-01 5.4215e-02
 2.4430e-01 8.3594e-02 9.7403e-03 1.6315e-01 -1.7864e-01 -7.8538e-02
 -3.2577e-02 -1.3266e-01 4.1890e-01 -7.7905e-01 -2.1269e-01 -2.8179e-01
 -3.6263e-01 2.7969e-01 5.1118e-02 -4.3791e-01 -6.6222e-02 -2.9007e-01
 9.8879e-02 6.8701e-02 -1.7953e-01 -2.4516e-01 6.2370e-02 -1.8344e-01
 2.3848e-01 -3.8926e-01 1.4563e-02 -1.5011e-01 4.1463e-01 2.3519e-01
 1.5768e-01 -4.2338e-01 -5.9981e-02 -8.5539e-02 -1.9645e-01 1.6238e-01
 1.3915e-02 3.5895e-02 1.5087e-01 -1.2057e-01 2.5404e-03 -3.2900e-01
 1.1253e-01 -1.1478e-01 -2.2095e+00 2.1364e-01 1.4400e-02 3.3077e-01
 -7.3231e-02 -3.3165e-01 -3.4116e-01 1.9457e-01 -2.5111e-01 -2.9986e-01
-2.3206e-02 -4.6035e-02 -8.0109e-02 8.9126e-02 5.2734e-02 -9.5490e-02
 2.0326e-02 -3.4696e-01 -1.3078e-01 4.9967e-02 -3.3681e-01 2.7430e-01
 -4.5855e-01 -5.0902e-02 -2.4579e-01 -9.9564e-02 2.7532e-01 -2.2780e-01
 1.1668e-01 -9.2933e-02 -1.3185e-01 -2.0557e-01 6.7947e-02 -4.6485e-01
 8.9792e-02 -1.6480e-02 -1.4847e-01 1.8379e-01 1.9782e-01 -8.6026e-02
 9.0624e-02 -8.4892e-02 -3.7597e-01 -1.9855e-01 -1.2090e-02 1.2820e-02
 7.7705e-02 -1.2059e-01 1.1353e-01 2.9137e-01 1.0847e-01 1.3505e-01
 -2.9519e-01 -3.0900e-01 1.1161e-01 -4.1132e-02 -7.6808e-02 -2.6873e-01
 9.1791e-02 3.3636e-01 1.9916e-01 -1.8500e-01 -1.0462e-01 -3.0590e-01
 1.5874e-01 9.2589e-02 2.1171e-02 -1.8780e-01 2.0077e-01 2.4509e-01
 -2.2700e-01 -2.1141e-01 1.9871e-02 -4.0445e-01 2.5579e-01 2.2388e-01
-2.2641e-01 -7.4679e-02 -2.8030e-01 -1.1511e-01 1.2736e-01 1.9723e-01
 3.1854e-02 3.5542e-02 1.6587e-01 1.0235e-01 2.4897e-01 1.0350e-01
 -4.2974e-02 -8.1860e-02 -4.3416e-01 1.0390e-01 -1.6777e-02 1.6120e-01
 7.4300e-02 -9.9311e-02 1.8984e-01 -1.2747e-01 -6.0094e-02 4.9008e-01
 1.0554e-01 -6.0390e-02 2.0226e-02 5.3835e-01 -7.1150e-02 -1.4458e-01
 8.6395e-02 -5.1988e-02 -3.2138e-01 4.9567e-01 2.9081e-01 -2.8324e-01
 -1.6194e-01 1.0306e-02 -3.6499e-01 -4.5294e-02 -1.7151e-01 -5.6910e-02
 1.6989e-01 1.8708e-01 4.0052e-01 2.4493e-01 1.2178e-01 3.4254e-01
 1.5890e-01 8.0175e-02 -1.1652e-01 3.3864e-01 4.5713e-01 5.0961e-01
 -1.7444e-01 -1.1862e-02 -9.4227e-02 -4.2007e-01 -2.2938e-01 8.4131e-02
 1.8915e-01 -3.5540e-01 -1.7737e-01 3.4414e-01 -1.9804e-01 -2.3456e-01
 2.3658e-02 -4.2666e-02 7.3081e-02 -2.1149e-02 3.0316e-01 -2.9115e-01
 8.3060e-02 3.4784e-02 -1.5084e-01 2.7544e-02 -2.7939e-01 3.8548e-02
 2.2003e-01 1.8208e-01 -5.0746e-01 -1.6472e-01 3.2255e-01 3.0579e-01]
green [-7.2368e-02 2.3320e-01 1.3726e-01 -1.5663e-01 2.4844e-01 3.4987e-01
 -2.4170e-01 -9.1426e-02 -5.3015e-01 1.3413e+00 -8.6785e-01 -1.3183e-01
-5.9679e-01 -3.4415e-01 -1.6121e-01 -9.2512e-04 5.3267e-01 2.1329e+00
 2.1933e-02 -5.1933e-01 3.6557e-01 -1.2978e-02 -2.7154e-01 4.8964e-03
-1.1849e-01 -3.8338e-01 -4.8944e-01 4.9147e-01 1.3664e-01 -9.6163e-02
-2.8429e-02 3.9630e-03 1.5542e-01 -2.9680e-01 -1.4895e-01 -5.5311e-02
 3.0003e-01 1.6376e-01 -1.6941e-01 -1.0166e-01 5.2141e-01 8.5416e-02
 1.6017e-02 -7.9741e-02 1.5934e-01 8.6290e-02 -2.1192e-01 -8.0312e-03
 2.0699e-01 -2.0541e-01 -1.3612e-01 2.4044e-02 -1.7975e-02 -2.7537e-01
 5.5046e-01 -7.4320e-01 -1.0718e-01 8.3590e-01 4.5894e-02 -8.3839e-03
 -3.7027e-01 -3.8694e-01 1.4741e-01 -6.2706e-02 5.5882e-01 -3.5788e-02
-3.7742e-01 -2.5088e-01 -3.2712e-01 -2.1363e-02 -1.1778e-01 1.0936e-02
-4.0838e-02 1.9662e-01 -2.0128e-01 -4.7566e-02 1.1487e-01 -9.0004e-02
 1.0354e-01 -5.2373e-01 -1.1288e-01 2.3075e-01 4.3984e-01 5.4876e-01
 1.9629e-01 -2.9718e-01 7.1773e-01 1.3269e+00 6.2276e-02 -8.8419e-02
 3.5253e-01 6.1762e-01 6.2818e-01 2.1847e-02 1.1744e-01 1.4717e-01
 2.4852e-02 3.1065e-01 -3.0706e-02 -4.8994e-01 1.9092e-01 -5.1000e-02
-1.9395e-01 -4.9768e-01 -3.4417e-01 -8.2097e-01 -4.9253e-01 3.0066e-01
-1.1905e-01 3.5405e-01 -5.9503e-01 -5.9864e-01 -9.2760e-02 -1.4563e-01
 6.8754e-01 1.8893e-01 -4.6852e-02 1.0246e-01 -8.7789e-02 -3.2801e-01
 3.1215e-01 -1.7373e-01 -3.4827e-01 -1.9547e-01 1.1008e-01 2.2747e-01
 4.4502e-01 8.1171e-02 -3.8463e-03 -1.9223e-01 -1.6651e-01 3.9317e-02
 2.3909e-01 -3.0472e-01 -2.9583e-01 -6.2451e-01 1.0243e-01 -2.3324e-01
```

```
5.0008e-01 8.9740e-02 -2.1251e+00 2.4246e-01 2.7600e-01 1.1749e-01
           7.1881e-02 1.7860e-01 -4.4795e-03 1.5575e-01 -2.7073e-01 -8.8036e-02
          -1.1564e-02 -1.4186e-02 4.9359e-01 1.6096e-01 -4.4652e-01 -2.0159e-01
          -3.1921e-01 4.0095e-03 -3.9027e-01 2.6482e-01 -8.7063e-02 3.9982e-01
          -3.0174e-01 3.6335e-01 6.5750e-02 -4.8644e-01 -1.8118e-01 -7.6974e-01
           1.7686e-01 3.7618e-01 1.1485e-01 9.7655e-03 -3.1654e-01 7.6573e-02
          -2.9506e-01 -2.2645e-01 6.8611e-01 6.6346e-02 2.2698e-01 -2.0357e-01
          -1.1136e-01 -3.9789e-02 -3.1132e-01 -3.9395e-01 -2.6340e-01 4.1417e-02
          -2.2766e-01 -1.5583e-01 -3.9518e-01 -1.7292e-01 3.4403e-01 4.0990e-01
          -9.3649e-02 -1.2536e-01 2.1836e-01 2.7454e-01 2.3929e-01 5.4202e-01
          -1.8898e-01 6.1104e-02 -9.9625e-02 6.9587e-02 -1.7275e-01 3.9217e-01
           9.1343e-02 2.5958e-01 5.0131e-01 1.0328e-01 2.8023e-01 -4.2147e-01
          -2.3985e-01 5.0814e-01 4.0660e-01 -3.2745e-03 1.3557e-02 2.6442e-01
           1.8914e-02 -1.9332e-02 2.0762e-01 -3.9842e-01 -5.6105e-01 -2.6695e-01
          -7.6739e-03 2.8867e-01 3.1247e-01 -4.4065e-03 3.4002e-01 -5.1330e-02
          -4.3934e-01 6.1596e-02 1.4591e-01 3.7920e-01 4.3088e-01 3.6122e-01
          -2.0847e-01 5.6458e-01 -5.6009e-02 -4.6236e-01 8.1828e-01 8.1877e-01
          -1.5978e-01 -3.0881e-01 -5.5235e-01 4.7371e-02 -3.8537e-02 3.7726e-01
           6.0784e-02 -4.3161e-01 -3.3027e-01 -1.8559e-01 1.1674e-01 -1.3420e-01
          -2.0262e-01 8.2621e-02 3.2163e-01 2.5451e-01 1.3104e-01 5.2760e-01
          -4.7345e-03 1.9238e-01 -6.3701e-02 2.6855e-01 1.2537e-01 6.0333e-01
           3.4068e-01 -3.6425e-01 -3.5315e-01 -4.3298e-01 -4.2086e-01 1.5704e-01
          -2.5552e-01 1.6895e-01 7.9552e-02 -3.1513e-01 8.5769e-02 -7.9049e-02
           4.9882e-04 4.1551e-01 1.3062e-01 2.1869e-01 1.7056e-01 -2.3690e-01
          -3.9074e-01 5.9123e-02 -8.0229e-02 1.1957e-01 3.7294e-01 3.8980e-01
           4.2767e-01 -1.1234e-01 -4.0517e-01 2.4357e-01 4.3730e-01 -4.6152e-01
          -3.5271e-01 3.3625e-01 6.9899e-02 -1.1155e-01 5.3293e-01 7.1268e-01]
In [55]:
          proc fruits = nlp('''I think green apples are delicious. While pears have a strange tex
          apples, pears, bowls = proc fruits.sents
In [58]:
          dude = processed_text.vocab['dudes']
          print(apples.similarity(dude))
          print(pears.similarity(dude))
          print(bowls.similarity(dude))
         0.4225541055202484
         0.3517932891845703
         0.433989018201828
```

Assignment

Find your favorite news source and grab the article text.

- 1. Show the most common words in the article.
- 2. Show the most common words under a part of speech. (i.e. NOUN: {'Bob':12, 'Alice':4,})
- 3. Find a subject/object relationship through the dependency parser in any sentence.
- 4. Show the most common Entities and their types.
- 5. Find Entites and their dependency (hint: entity.root.head)
- 6. Find the most similar noun (chunks) in the article

I am using the NYTimes as my news source. The article can be found here:

https://www.nytimes.com/2022/04/23/health/mental-health-crisis-teens.html

```
import docx2txt
In [83]:
In [84]:
           NYT_text = docx2txt.process('NYTimes_article.docx')
In [330...
           NYT = nlp(NYT text)
           1. Show the most common words in the article.
 In [ ]:
           from collections import Counter
In [98]:
           tokens = [token.text for token in NYT if not token.is_stop and not token.is_punct]
           token freqs = Counter(tokens)
           token freqs.most common(10)
          [('M', 83),
Out[98]:
           ('\n\n', 72),
           ('\xa0', 40),
           ('said', 30),
           ('Linda', 27),
           ('school', 15),
           ('parents', 13),
           ('percent', 13),
           ('health', 11),
           ('Elaniv', 11)]
         Further cleaning is required to remove the newline characters and other unwanted text.
           1. Show the most common words under a part of speech. (i.e. NOUN: {'Bob':12, 'Alice':4,})
In [104...
           import pandas as pd
In [120...
           token_pos = [token.pos_ for token in NYT if not token.is_stop and not token.is_punct]
           NYT_df = pd.DataFrame({'token':tokens, 'type':token_pos})
           NYT df = NYT df.groupby(['type', 'token']).size().reset index(name='counts')
           most_common = NYT_df.sort_values(['type', 'counts'], ascending=False).groupby('type').h
           most_common
Out[120...
                            token counts
                  type
           953
                  VERB
                              said
                                       30
           841
                  VERB
                              felt
                                        5
           851
                  VERB
                            found
                                        5
           934
                  VERB
                           recalled
                                        5
          1025
                  VERB
                             went
                                        5
           753
                  SYM
           750
                 SPACE
                              n\n
                                       72
```

	type	token	counts
752	SPACE		40
751	SPACE	\n\n\n	1
749	SCONJ	like	2
709	PROPN	М	82
707	PROPN	Linda	27
692	PROPN	Elaniv	11
690	PROPN	Dr.	6
738	PROPN	Tony	6
655	NUM	2019	5
634	NUM	10	3
639	NUM	15	3
642	NUM	1990	3
637	NUM	13	2
540	NOUN	school	15
485	NOUN	parents	13
492	NOUN	percent	13
401	NOUN	health	11
235	NOUN	adolescents	10
217	INTJ	Hey	2
219	INTJ	Oh	2
220	INTJ	like	2
218	INTJ	Huh	1
216	CCONJ	plus	1
215	AUX	having	2
214	AUX	felt	1
191	ADV	later	4
206	ADV	sharply	4
187	ADV	home	3
208	ADV	socially	3
172	ADV	ago	2
167	ADP	like	4
86	ADJ	mental	9
64	ADJ	high	6

	type	token	counts
135	ADJ	social	6
1	ADJ	Black	4
10	ADJ	adolescent	4

1. Find a subject/object relationship through the dependency parser in any sentence.

Here are three sentences:

```
In [128...
         n = 0
         for sentence in NYT.sents:
             if n > 1 and n < 5:
                 pr_tree(sentence.root, 0)
                 print('----')
             n += 1
                        Moments - npadvmod
                earlier - advmod
                               the - det
                        girl - poss
                               's - case
                mother - nsubj
                        Linda - appos
                had - aux
         stolen - ROOT
                        a - det
                look - dobj
                        at - prep
                                               her - poss
                                       daughter - poss
                                               's - case
                                smartphone - pobj
                        The - det
                teenager - nsubj
                incensed - advcl
                        by - agent
                                       the - det
                                intrusion - pobj
                had - aux
         grabbed - ROOT
                        the - det
                phone - dobj
                and - cc
                fled - conj
                        The - det
                adolescent - nsubjpass
                is - aux
                being - auxpass
         identified - ROOT
                by - agent
                                an - det
                        initial - pobj
                               M - appos
```

0

1. Show the most common Entities and their types.

privacy - dobj

's - case

ut[165		ent	ent_type	counts
	63	Linda	PERSON	26
	87	Tony	PERSON	6
	100	first	ORDINAL	5
	117	the United States	GPE	4
	66	М	ORG	3
	48	Elaniv	PERSON	3
	106	one	CARDINAL	3
	47	Elaniv	ORG	3
	11	1990	DATE	3
	49	Elaniv Burnett	PERSON	2

1. Find Entites and their dependency (hint: entity.root.head)

Print the first 30 to save space in html doc:

Entity | Dependency

```
One evening | sprang
last April | evening
13-year-old | girl
Minneapolis | in
Linda | mother
first | name
Linda | alarmed
Genocide Jack | were
the preceding two years | In
Linda | watched
American | adolescence
Three decades ago | came
the United States
2019 | In
13 percent | reported
60 percent | increase
2007
2000 to 2007 | from
nearly 60 percent | leaped
2018 | by
the Centers for Disease Control and Prevention | to
December | In
U.S. | surgeon
Candice Odgers | said
the University of California | at
Irvine | University
Linda |
        realized
        talked
Linda
Linda
         iolted
Linda
         said
```

1. Find the most similar noun (chunks) in the article

Due to runtime, I only compared the first 50 noun chunks

```
In [203...
          import numpy as np
In [318...
          def do_comparison(chunk1, chunk2):
              t1 = nlp(str(chunk1) +' . This to make similarity work.')
              t2 = nlp(str(chunk2) +' . This to make similarity work.')
              s1, s1p = t1.sents
              s2, s2p = t2.sents
              similarity = s1.similarity(s2)
              return similarity
In [327...
          noun chunks = [noun chunk for noun chunk in NYT.noun chunks][:50]
          nc = pd.DataFrame({'noun chunk':noun chunks})
          nc['noun_chunk'] = nc.apply(lambda x: str(x['noun_chunk']), axis = 1)
          nc = nc.drop_duplicates()
          nc = nc.merge(nc, how = 'cross', suffixes=[' 1', ' 2'])
          nc = nc[nc['noun chunk 1'] != nc['noun chunk 2']]
          nc['similarity'] = nc.apply(lambda x: do_comparison(x['noun_chunk_1'], x['noun_chunk_2']
```

Get rid of consecutive rows where the same two noun chunks are being compared:

In [329... | nc.sort_values('similarity', ascending=False).loc[[True, False]*int(nc.shape[0]/2)].hea

\circ	4	г	\neg	\neg	\cap	
U	uτ	П	5	7	y	
		-				

	noun_chunk_1	noun_chunk_2	similarity
1130	intentional self-harm	self-harm	0.945473
257	the backyard	the patio	0.885707
993	Some	Others	0.874791
130	the living room	the house	0.872049
347	the girl's mother	her daughter's smartphone	0.871296
512	The teenager	the girl's mother	0.870744
1166	Others	who	0.864880
642	The adolescent	The teenager	0.863191
768	the parents	The teenager	0.861646
1703	me	Some	0.852058