Problem 1: For the circuit below, find the value of i_d and v_{DS} . Assume that the MOSFET threshold voltage is 1V, and $\beta_n = \mu_n C_{ox} \frac{W}{L} = 1 \text{ mA/V}^2$. What region of operation is the NMOS operating in?

Problem 2: Consider a CMOS inverter with the following parameters: VDD=3V, V_{TN} = 0.6V V_{TP} = -0.82 V. $\mu_n C_{ox}$ =100 μ A/V², μ_n =2.2 μ_p .

- i. Determine the β -ratio (β_n/β_p) for a switching threshold of $V_M = 1.3V$.
- ii. Determine the PMOS device width and length if the NMOS device width is $1\mu m$ and length is 500nm.

Problem 3: Consider a CMOS inverter as follows, where VDD is 5V, and GND is 0. Assume that there is a sinusoidal voltage at the input, V_{IN} as below, where V_m =5V. Sketch the output voltage V_{OUT} assuming a switching threshold V_M of 2.5V. Clearly show the points where the output voltage transitions.

Problem 4: Sketch a 3-input NOR gate with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).