Secure Communications

Lecture 2: Perfect Secrecy, One Time Pad

Melek Önen

Fall 2022

Review

Security Services

 Authentication, Access Control, Confidentiality, Nonrepudiation, Integrity, Privacy

Cryptography

Historical ciphers and their Cryptanalysis

Outline

- Principles of Modern Cryptography
 - Formal Definitions, Precise Assumptions, Security Proofs
- Discrete Probability
 - Definitions, Probability Distributions, Conditional Probability
- Perfect secrecy
 - Perfect secrecy, One-time Pad

Outline

- Principles of Modern Cryptography
 - ▶ Formal Definitions, Precise Assumptions, Security Proofs
- Discrete Probability
 - Definitions, Probability Distributions, Conditional Probability
- Perfect secrecy
 - Perfect secrecy, One-time Pad

Principles of Modern Cryptography

- Principle 1
 - Precise and formal definition of security
- Principle 2
 - Clearly stated and unambiguous assumptions
- Principle 3
 - Rigorous proof of security

Principle 1- Security Definition

- "If you do not understand what you want to achieve how can you possibly know when you have achieved it?" (J. Katz)
 - Easier knowledge transfer
 - Easier comparative study
 - Easier to evaluate

Methodology

- Define threat model
 - What actions can the attacker carry out?
- Define security guarantee
 - What to prevent the attacker from doing it?

Principle 2 - Precise Assumptions

- Cryptography requires explicit computational assumptions
 - Easier to validate
 - Easier to compare schemes based on the same assumption
 - Easier to react when assumptions turn out to be wrong
 - Easier to prove

Principle 3 – Proofs of Security

- Rigorous proof that a construction satisfies the given definition under the specified assumptions.
- Provably secure schemes can be broken!
 - If reality is different than definition
 - If assumption is invalid.

Secure Encryption

- (Private-key) Encryption scheme defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$
 - ▶ Key generation: KeyGen(κ) $\rightarrow k$
 - ▶ Encryption: Enc(k, m) \rightarrow c
 - ▶ Decryption: Dec(k,c) = m

- Security Guarantees
 - Correctness: Dec(k,Enc(k,m)) = m

Principle 1 - Security Definition

- "If you do not understand what you want to achieve how can you possibly know when you have achieved it?" (J. Katz)
 - Easier knowledge transfer
 - Easier comparative study
 - Easier to evaluate
- Methodology
 - Define threat model
 - What actions can the attacker carry out?
 - Define security guarantee
 - What to prevent the attacker from doing it?

Principle 1 – Threat Models for Encryption

Brute force attack

- Most simple attack: simply try every key
- Success rate = inversely proportional to the key size

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/µs	Time required at 10 ⁶ encryptions/ <i>µ</i> s
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu \mathrm{s} = 1142 \mathrm{years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu \text{s} = 5.4 \times 10^{24} \text{years}$	$5.4 \times 10^{18} \text{ years}$
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu \text{s} = 5.9 \times 10^{36} \text{years}$	$5.9 \times 10^{30} \text{ years}$
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{s} = 6.4 \times 10^{12} \mathrm{years}$	6.4×10^6 years

Principle 1 – Threat Models for Encryption

Ciphertext-only attack

- Attacker knows ciphertext C
- one or many ciphertexts.

Known plaintext attack

- Attacker knows ciphertext C of plaintext M
- Attacker knows (M_i, C_i)

Chosen plaintext attack

- Attacker can get ciphertext C for a chosen plaintext M
- Attacker can adaptively choose M

Chosen ciphertext attack

- Attacker can get plaintext M for a chosen ciphertext C
- Attacker can adaptively choose C

Reminder Kerckhoff's principle

Kerckhoff's principle:

"The cipher method must not be required to be secret and it must be able to fall into the hands of the enemy without inconvenience"

Only the key should remain secret

- The key must be chosen at random
- The key must be kept secret

Consequences

- Short information to keep secret (key instead of algorithm)
- Easy to update if problem (key instead of algorithm)

Principle 1 – Security Guarantee for Encryption

What is considered as break?

- Example Secure encryption
 - Key recovery?
 - The aim of encryption is to protect the message
 - The key is a means for achieving this but not sufficient
 - Entire plaintext recovery?
 - What if the attacker learns % of the message?

Principle 1 – Security Guarantee for Encryption

Right notion!

Regardless of any <u>prior</u> information the attacker has about the plaintext, the ciphertext should leak no <u>additional</u> information about the plaintext.

Outline

- Principle of Modern Cryptography
 - ▶ Formal Definitions, Precise Assumptions, Security Proofs
- Discrete Probability
 - Definitions, Probability Distributions, Conditional Probability
- Perfect secrecy
 - Perfect secrecy, One-time Pad

Definitions - Sample Space

Random experiment

Process for which the outcome cannot be predicted with certainty

Ex: c=Encryption of 2-bit message m, (|c|=2)

Sample space

Set of all possible outcomes- All possible occurrences in some experiment

▶ S={00, 01, 10, 11}

Event

Subset of the sample space – Particular occurrence in some experiment

- ▶ "c=10"
- "c=0*"

Probabilities and Set Operations

Probability:

measures the likelihood that some event will occur

- \triangleright P(A) denotes the probability that event A occurs
- Axioms of Probability
 - Axiom 1: $0 \le P(A) \le 1$
 - Axiom 2: P(S) = 1
 - Axiom 3: If $\{A_1, A_2, ...\}$ is a set of disjoint events then $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$

Consequences

- $P(\bar{A}) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- \Rightarrow Union bound: $P(A \cup B) \leq P(A) + P(B)$

Random Variable - Definition

Discrete Random Variable

Variable that takes on values in a finite set within an experiment with some probabilities

- Ex: X=Encryption of 2 bits ab
- Probability Distribution

Probabilities with which the variable takes on each possible value

- Ex: P[00]=1/2, P[01]=1/8, p[10]=1/4, p[11]=1/8
- $\sum_{x \in U} p(X) = 1$
- Distribution vector
 - Ex: (P[00],P[01],P[10],P[11])

Probability Distributions - Example

Point Distribution at x_0

$$P[x_0] = 1, \forall x \neq x_0 P[x] = 0$$

Uniform Distribution

For all
$$x \in U$$
: $P[X] = \frac{1}{|U|}$

- **Ex:** $U = \{0, 1\}^2$ P[00]=P[01]=P[10]=P[11]=1/4
- **Ex:** A={ $all \ x \ in \{0,1\}^2, such \ that \ lsb(x) = 1}$ P[01]+P[11] = 1/2

Conditional probability

▶ P(A|B) : Probability of A given B

Probability that A occurs assuming that some other event B occurred

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \text{ with } P(B) \neq 0$$

A and B are independent if

$$P(A \cap B) = P(A)P(B)$$
$$P(A|B) = P(A)$$

Law of total probability

Let $B_1, B_2, ..., B_n$, a set of disjoint events where $\bigcup_{i=1}^n B_i = S$

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Bayes formula

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

$$P[M = m | C = c] = \frac{P[C = c | M = m].P[M = m]}{P[C = c]}$$

Ex:Shift cipher with P[m='hi']=0.3, P[m='no']=0.2, P[m='in']=0.5

$$P[M='hi'|C='xy']=?$$

$$=\frac{P[C='xy'|M='hi'].P[M='hi']}{P[C='xy']}$$

Outline

- Principle of Modern Cryptography
 - ▶ Formal Definitions, Precise Assumptions, Security Proofs
- Discrete Probability
 - ▶ Definitions, Probability Distributions, Conditional Probability
- Perfect secrecy
 - Perfect secrecy, One-time Pad

Private Key Encryption – Security Evaluation

- Let $(\mathcal{K}, \mathcal{M}, \mathcal{C})$ be the key space, message space and ciphertext space
 - Key generation: KeyGen(κ)=k
 - Encryption: Enc(k, m) = c
 - ▶ Decryption: Dec(k,c) = m

- Security Guarantees
 - Correctness: Dec(k,Enc(k,m)) = m

Probability distributions

- Fix some encryption scheme (KeyGen, Enc, Dec) and some distribution for M
- Consider the following randomized experiment
 - Choose a message m, according to the given distribution
 - Generate a key k using KeyGen
 - ightharpoonup Compute c = Enc(k,m)
- This defines a distribution on the ciphertext
 - C is the r.v. on the ciphertext in this experiment

Perfect secrecy

- Regardless of any <u>prior</u> information the attacker has about the plaintext, the ciphertext should leak no <u>additional</u> information about the plaintext.
- Attacker's information about plaintext after= Attacker's information about plaintext before
- An Encryption scheme (KeyGen, Enc,Dec) with message space \mathcal{M} is **perfectly secure** if for every probability distribution over \mathcal{M} , every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $\Pr[C=c]>0$:

$$P[M=m|C=c]=P[M=m]$$

Example (Katz, Lindell, Modern Cryptography)

Consider the shift cipher and the distribution

$$P[M = one] = \frac{1}{2}, P[M = ten] = \frac{1}{2}$$

Take m='ten' and c='rqh'

⇒The shift cipher is not perfectly secret!

Example (Katz, Lindell, Modern Cryptography)

Consider the shift cipher and the distribution

$$P[M =' hi'] = 0.3, P[M =' no'] = 0.2 P[M =' in'] = 0.5$$

▶
$$P[M =' hi' | C =' xy'] = ?$$

$$P[C =' xy' | M =' hi'] = \frac{1}{26}$$

$$P[C =' xy']$$

$$= P[C =' xy' | M =' hi']. P[M =' hi]$$

$$+ P[C =' xy' | M =' no']. P[M =' no']$$

$$+ P[C =' xy' | M =' in']. P[M =' in']$$

$$= \frac{1}{26.} * 0.3 + \frac{1}{26} * 0.2 + 0 = 1/52$$

$$P[M =' hi' | C =' xy'] = \frac{1}{26} * 0.3 * \frac{52}{1} = 0.6$$

 $\neq P[M =' hi']$

⇒The shift cipher is not perfectly secret!

One-time pad

- Let $\mathcal{M} = \{0,1\}^n$
- ▶ KeyGen: Choose a uniform key $k \in \{0,1\}^n$
- ▶ Enc(k,m): $c = k \oplus m$ (bit-wise XOR)
- ▶ Dec(k,c): $m = k \oplus c$

Correctness

$$Dec(k,Enc(k,m)) = k \oplus (k \oplus m) = m$$

One-time pad

Vernam Cipher

Perfect secrecy of one-time pad (Shannon)

►
$$P[M = m | C = c] = ?$$

 $= \frac{P[C = c | M = m] * P[M = m]}{P[C = c]}$
 $P[C = c] = \sum_{m'} P[C = c | M = m'] * P[M = m']$
 $= \sum_{m'} P[K = m' \oplus c] * P[M = m']$
 $= \sum_{m'} (1/2)^n * P[M = m']$
 $= 2^{-n}$
 $P[M = m | C = c] = ?$
 $= \frac{2^{-n} * P[M = m]}{2^{-n}}$
 $P[M = m | C = c] = P[M = m] \Rightarrow Perfect secrecy$

More visual proof with message size=1

K: key

	P[M=m]	p	1-p
P[K=k]	\[\sum_{\times} \]	1	0
1/2	1	0	1
1/2	0	1	0

P[M=m|C=c] = P[C=c|M=m]*P[M=m]/P[C=c]=P[M=m]

 \Rightarrow Perfect secrecy

Distribution of K: Uniform

$$P[K=k]=1/2$$

$$P[C=0|M=0] = P[K=0]=1/2$$

$$P[C=0|M=1] = P[K=1]=1/2$$

$$P[C=1|M=0] = P[K=0]=1/2$$

$$P[C=1|M=1] = P[K=0]=1/2$$

$$\Rightarrow$$
 P[C=c|M=m]=1/2

$$P[C=0] = \frac{1}{2}.p+\frac{1}{2}(1-p)=\frac{1}{2}$$

 $P[C=1] = \frac{1}{2}(1-p)+\frac{1}{2}(p)=\frac{1}{2}$
 $\Rightarrow p[C=c] = \frac{1}{2}$

One-Time Pad – Usage

Achieves perfect secrecy

Red phone between DC and Moscow

One-Time Pad - Limitations

- Key size = Message size
 - Parties need to share keys as long as the message
- Each key is used to encrypt a single message
 - Key needs to be re-generated for each new message

What happens if the same key is used twice?

- ▶ Let $c_1 = k \oplus m_1$ and $c_2 = k \oplus m_2$
- Attacker can compute $c_1 \oplus c_2 = m_1 \oplus m_2$
- \Rightarrow Leakage on m_1, m_2
- Real-world examples
 - Project Venona ('40s), MS-PPTP (windows NT)

One-time Pad

Advantages

Perfect secrecy

Drawbacks

- Key as long as the message
- Only secure if each key is used to encrypt once
- Valid for all perfectly secret schemes (Shannon)

Optimality of the one-time pad

▶ Theorem If (KeyGen, Enc, Dec) with message space \mathcal{M} is perfectly secret then $|\mathcal{K}| \ge |\mathcal{M}|$

Proof

- Assume $|\mathcal{K}| < |\mathcal{M}|$
- Take any ciphertext c
- ▶ Define M(c)={Dec(k,c)} with $k \in \mathcal{K}$

$$\Rightarrow |\mathsf{M}(\mathsf{c})| \leq |\mathcal{K}| < |\mathcal{M}|$$

which means that there exists m that is not M(c)

P[M=m|C=c]=0 ⇒ no perfect secrecy

Secure Communications

Lecture 2: Perfect Secrecy, One-time Pad

Melek Önen

Fall 2022

