Hydraulique 1

Fiches de révision

David Consuegra | Timur Gökok

Sommaire

- Ecoulements & géométrie
- Nombre de Reynolds
- Nombre de Froude
- Ecoulement uniforme
- Energie spécifique

Travaux pratiques

- TP Seuil Epais
- TP Contraction
- TP Ressaut
- TP Vanne
- TP Siphon
- TP Orifice
- <u>TP Déversoir rectangulaire</u>

Ecoulements & géométrie

1 - Géométries des sections

Ecoulements & géométrie

Nombre de Reynolds

Re > 4'000 : régime turbulant

2'000 < Re < 4'000 : zone de transition

Re < 2'000 : régime laminaire

Re =	4VR	Re: sans unité V : vitesse [m/s]
ке —	\overline{v}	R: ravon hvdrau

R: rayon hydraulique [m]

v: viscosité cinématique [m²/s]

Temperature - t -	Kinematic Viscosity - v -
(°C)	(m²/s) x 10 ⁻⁶
0	1.787
5	1.519
10	1.307
20	1.004
30	0.801
40	0.658
50	0.553
60	0.475
70	0.413
80	0.365
90	0.326
100	0.29

Nombre de Froude – caractériser l'écoulement

Formule générique

$$Fr = \frac{U}{\sqrt{gD_h}}$$

Formule « Canal à ciel ouvert » :

$$Fr^2 = \frac{Q^2B}{gS^3}$$

Formule « Conduite

circulaire »:

$$Fr = \frac{Q}{\sqrt{gDh^4}}$$

Fr < 1 : fluvial (supercritical)

Fr = 1 : critique

Fr > 1 : torrentiel (subcritical)

U: vitesse [m/s]

 D_h : prof. hydraulique [m]

g: gravité [m/s²]

 $Q: débit [m^3/s]$

B: largeur miroir [m]

S: section [m²]

Fr: Sans unité

Ecoulement uniforme

➤ Le mouvement est uniforme si les paramètres caractérisant l'écoulement restent invariables dans les diverses sections du canal. La ligne de la pente du fond est donc parallèle à la ligne de la surface libre.

Ecoulement uniforme

$$Q = \frac{1}{n} A R^{2/3} S^{1/2}$$

n=1/K: rugosité de Manning [-]

K : rugosité de Strickler [-]

A : surface mouillée [m²]

 $R = \frac{A}{P}$: rayon hydraulique [m]

P : périmètre mouillé [m]

S: pente [m/m]

 $Q: débit [m^3/s]$

Surface d'écoulement	K
Fossés naturels en très mauvais état et pente faible	10
Fossés en très mauvais état, pente > 3 %	20
Caniveaux rugueux (galets, herbes)	30
Caniveaux en sol argileux	40
Caniveau en grosse maçonnerie	50
Caniveau enrobé	60
Caniveau en béton	70
Collecteur en béton avec de nombreux embranchements	70
Collecteur en béton lissé, amiante-ciment	80
Collecteur gros diamètre	90
Collecteur fonte, métal, PVC, PE	100-110
Conduite de refoulement fonte, métal, PE	110

Tableau 9-1: Coefficients de rugosité K de Strickler

On constate:

que le débit obtenu avec la formule de Manning correspond à un taux de remplissage de 0.83.

Qfull = Qc est le débit obtenu avec la formule de Manning pour la conduite pleine: h=D

Energie spécifique

$$E = y + \frac{Q^2}{2gA^2}$$

E. potentielle

E. cinétique

E : énergie spécifique [J]

y : hauteur d'eau [m]

g: gravité [m/s²]

 $Q: débit [m^3/s]$

A : section mouillée [m²]

$$V = Q/A$$

Quelques exemples anticipant l'utilité de ces courbes. Les manipuler correctement c'est être bon en hydraulique. A gauche, en haut, on voit que pour une même énergie, une augmentation de débit s'accompagne d'une augmentation de la profondeur. En régime fluvial, pour une même énergie, au contraire, la profondeur diminue avec une augmentation du débit. Une perte d'énergie en régime torrentiel augmente la profondeur alors qu'en régime fluviale, cette même

profondeur diminue.

Energie spécifique

Pour une énergie de 1m et un débit de 1m3/s, trouver les deux profondeurs torrentielle et fluviale pour ce débit et ce niveau d'énergie. Pour ce canal trouver la profondeur critique et l'énergie minimum

base m 2 Donnée	canal			
0 m ² /s 1	base m	2	Donnée	
Q III3/5 I	Q m3/s	1 4	Donnee	
Energie m 1	nergie m	1		

Travaux Pratiques

TP Seuil Epais

Comment obtenir le débit qui traverse ce déversoir à paroi épaisse

En simplifiant dans la mesure du possible avec V1 très petit.

$$Q_a = C * b * (H_1)^{3/2}$$

1.4 < C< 2.1 en général C=1.6

$$Q_a = b\sqrt{g} \left[\frac{2}{3} \left(\frac{V_1^2}{2g} + H_1 \right) \right]^{3/2}$$

TP Contraction

$$E = y1 + (\frac{1}{2g})(Q/B1y1)^2 = y2 + (\frac{1}{2g})(Q/B2y2)^2$$

TP Contraction

TP Ressaut

TP Vanne

TP Siphon

Dans le cas de cette expérience, nous traiterons le cas du siphon inversé.

L'eau s'écoule d'un bac vers un autre au travers d'un ou de plusieurs tuyaux. Tout au long de l'écoulement, la charge *H* peut être définie de la façon suivante

$$H = z + h + \frac{V^2}{2g}$$

où z est la position de la ligne de courant considérée, h la hauteur d'eau et V la vitesse.

Entre le bac amont et le bac aval se produisent des pertes de charge ΔH

$$H_{amont} = H_{aval} + \Delta H$$

Ces pertes se répartissent entre les pertes de charge **locales** ΔH_L (entrée, coudes et sortie) et les pertes de charge **réparties** ΔH_R (rugosité des tuyaux et viscosité du fluide).

$$\Delta H = \Delta H_L + \Delta H_R$$

Les pertes de charges locales sont exprimées avec la relation suivante

$$\Delta H_L = \xi \cdot \frac{V^2}{2g}$$

où le coefficient de perte de charge ξ peut être déterminé selon l'élément responsable de la perte de charge.

Les pertes de charges réparties peuvent être calculées avec l'équation de Darcy-Weisbach

$$\Delta H_R = \frac{V^2}{2g} \cdot \frac{f}{D} \cdot \Delta L$$

où ΔL est la longueur de la conduite, D son diamètre et f le coefficient de frottement.

La détermination du coefficient de frottement peut se faire grâce au digramme de Moody, une fois que la rugosité relative $\varepsilon=k_S/D$ (ou e/D dans le diagramme de Moody) et que le nombre de Reynolds R=VD/v ont été déterminés. k_S étant la rugosité équivalente de sable et v la viscosité cinématique du fluide.

TP Orifice

Figure 5.4 (a) An orifice in the side of a tank discharging freely to the atmosphere, and (b) the vena contracta caused by the contraction of the streamlines as they pass through the plane of the orifice. Note that point 2 is located at the centre of the vena contracta where it is assumed that atmospheric pressure exists, not in the plane of the orifice

En appliquant l'équation d'énergie, bien entendu

$$y + \frac{V_1^2}{2g} = y_2 + \frac{V_2^2}{2g}$$

$$H_{eau} + \frac{V_1^{2}}{2g} = \frac{V_2^{2}}{2g}$$

$$H_{eau} = \frac{V_2^2}{2g}$$

$$V_1 = \sqrt{2gH_{eau}}$$

 $A_o = surface orifice$ Continuité

$$A_0 V_2 = Q$$

$V_2 = \sqrt{2gHeau}$

En appliquant l'équation d'énergie

 $si\ Ac = surface\ VENA\ CONTRACTA$ alors Ao $C_c = A_c$ et Cc = coefficient de contraction

$$Q = C_c A_o \sqrt{2gHeau} \quad 0.60 < Cc < 0.97$$

En appliquant l'équation d'énergie

on pose
$$CvC_c = C_d$$

$$Q = C_d A_o \sqrt{2gHeau}$$

Comment déterminer le coefficient Cv

TP Orifice

Comment calculer le débit dans un grand orifice ?

Pour un orifice rectangulaire

Area of the strip, $\delta A = b\delta h$

Velocity of flow through the strip = $(2gh)^{1/2}$

Discharge through the strip, $\delta Q = \text{area} \times \text{velocity}$

$$\delta Q = b\delta h (2gh)^{1/2}$$

Rearranging gives:

$$\delta Q = b(2gh)^{1/2} \delta h$$

$$Q_{\rm T} = b(2g)^{1/2} \int_{H_1}^{H_2} h^{1/2} dh$$

$$Q_{\rm A} = \frac{2}{3} C_{\rm D} b (2g)^{1/2} \left[H_2^{3/2} - H_1^{3/2} \right] \qquad C_d = \frac{C_c}{\sqrt{1 + C_c w/h_{amont}}}$$

$$C_d = \frac{C_c}{\sqrt{1 + C_c w/h_{amont}}}$$

Vena contracta

Figure 5.6 Trajectory of a jet leaving an orifice

Temps t pour parcourir x t = x/v

$$y = \frac{1}{2} gt^2$$

$$y = \frac{1}{2} g(x/v)$$

$$v = x(g/2y)^{1/2}$$

Comment déterminer le coefficient Cv

 $C_v = V_r / \sqrt{2gHeau}$

$$Cv = \frac{x}{2 * (yH)^{1/2}}$$

Figure 5.6 Trajectory of a jet leaving an orifice

TP Déversoir rectangulaire

Figure 5.11 Free discharge condition in longitudinal section (a) and end view (b). (c) A clinging nappe in longitudinal section. There is no air under the nappe and the water clings to the weir plate

Figure 5.13 (a) End view showing the limiting or standard proportions of the weir used by Francis. (b) Plan view showing the end contractions (0.1H) and effective length of the weir, $L_{\rm E}$

 $L_{\rm E} = (b - 0.1 \, nH)$

Figure 5.12 (a) Longitudinal section through a simplified weir and nappe. The energy equation is applied to points 1 and 2 on the streamline. (b) End view of the weir

Calcul du débit qui traverse le déversoir

Attention: H mesurée depuis le fond de l'échancrure du déversoir. Puisque nous avons fait l'hypothèse d'une vitesse nulle en amont, cette charge correspond à la hauteur d'eau par-dessus le fond de la dite

Maxime Fourquaux - Confidentiel

Appliquée au schéma ci-dessous

Equation d'énergie

$$z_1 + h_1 + \frac{{V_1}^2}{2g} = z_2 + \frac{{V_2}^2}{2g}$$

$$z_1 + h_1 = z_1 + h_1 - h + \frac{{V_2}^2}{2g} \qquad h = \frac{{V_2}^2}{2g}$$

Coefficient Cd

$$C_d = 0.611 + 0.08 \frac{H}{W}$$

$$\frac{H}{W} < 5$$

$$C_d = 0.603 \left(1 + \frac{0.135H}{W}\right) \left(1 + \frac{0.0011}{H}\right)^{1.5}$$

$$C_d = 1.06 \left(1 + \frac{W}{H} \right)^{3/2} \quad \text{si } w \ll \ll H$$
Pour un seuil