Q1.a)

First, we argue that f^* is well-defined. Let $f: X \to Y$ be a holomorphic map, and let $\phi \in \mathcal{O}(Y)$, such that $\phi: Y \xrightarrow[\text{hol}]{} \mathbb{C}$. Hence,

$$f^*(\phi) = \phi \circ f$$

$$\Rightarrow f^*(\phi) : X \xrightarrow{\text{hol}} Y \xrightarrow{\text{hol}} \mathbb{C}$$

$$\Rightarrow f^*(\phi) \in \mathcal{O}(X)$$

Since f, ϕ are well-defined holomorphic maps, so is their composition. It remains to show f^* is a ring homomorphism. Let $\phi, \psi \in \mathcal{O}(Y)$, so we get distribution over addition:

$$f^*(\phi + \psi) = (\phi + \psi) \circ f$$
$$= \phi \circ f + \psi \circ f$$
$$= f^*(\phi) + f^*(\psi)$$

and multiplication:

$$f^*(\phi\psi) = (\phi\psi) \circ f$$
$$= (\phi \circ f)(\psi \circ f)$$
$$= f^*(\phi)f^*(\psi)$$

Also, f^* preserves the identity:

$$f^*(1_Y) = 1_Y \circ f$$
$$= 1_X$$

Hence, f^* is a ring homomorphism. Suppose f is non-constant (so that f(X) is open), and that $f^*(\phi) = \phi \circ f = f^*(\psi) = \psi \circ f$. Hence, $f^*(\phi - \psi) = f^*(\phi) - f^*(\psi) = 0$, but since f is non-constant and holomorphic, if $\phi - \psi$ is nonconstant then $f^*(\phi - \psi)$ is an open mapping. However, since this is not true, $\phi - \psi = 0 \Rightarrow \phi = \psi$, thus f is an injective homomorphism. We have shown that f^* is a monomorphism when f is non-constant.

Q1.b)

Let X, Y be connected Riemann surfaces, with $f: X \to Y$ a holomorphic map. Suppose f is non-constant and proper, and A the set of all branch points of f. We argue that B := f(A) is closed and discrete. Let S be a closed and discrete set.

Q1.b.i) Firstly, f is closed

Since X, Y are Riemann surfaces, they are locally compact and Hausdorff.

Let $C\subseteq X$ be closed, and consider $y\in Y\setminus f(C)$. Then, y admits an open neighborhood U with compact closure, so $f^{-1}\left(\overline{U}\right)$ is compact. Then, $C\cap f^{-1}\left(\overline{U}\right)$ is compact, hence $f\left(C\cap f^{-1}\left(\overline{U}\right)\right)$ is also compact (therefore closed). Then, we have an open neighborhood $U\setminus f\left(C\cap f^{-1}\left(\overline{U}\right)\right)$ of y disjoint from $f\left(C\right)$, so $Y\setminus f\left(C\right)$ is open. Therefore, $f\left(C\right)$ is closed. Hence f is closed.

Q1.b.ii) Also, f preserves discreteness

Let K be a compact set in Y. If we can show $f(S) \cap K$ is always finite, then we have that f(S) is discrete. Note that:

$$f(S)\cap K=f\left(S\cap f^{-1}(K)\right)$$

Since f is proper, $f^{-1}(K)$ is compact. Since S is discrete, we have that $S \cap f^{-1}(K)$ is finite. Hence, the image $f(S) \cap K$ is finite. Therefore, f(S) is discrete.

Q1.b.iii) Hence, B is a closed, discrete subset of X

Since the set of branch points is closed and discrete, B is discrete. \blacksquare

Q2.a)

Recall from PMATH 352 that:

$$\tan(z) = \frac{\sin(z)}{\cos(z)} = \frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})} = \frac{e^{2iz} - 1}{i(e^{2iz} + 1)}$$

Now, observe that $tan(z) = \mu \circ \psi \circ \phi(z)$, where:

$$\phi(z) = 2iz$$
 $\psi(z) = e^z$ $\mu(z) = \frac{z-1}{i(z+1)}$

Firstly, ϕ is a linear function, hence trivially a local homeomorphism. Next, $\psi(z)=e^z\Rightarrow \psi'(z)=e^z$, so by the inverse function theorem, ψ is a local homeomorphism. Finally, because μ is a Möbius map, $\det\begin{pmatrix} 1 & -1 \\ i & i \end{pmatrix}=2i$ implies μ is bijective, hence a local homeomorphism.

We have shown that tan(z) is the composition of local homeomorphisms, so tan(z) must be a local homeomorphism.

Q2.b)

Again, consider $\tan(z) = \mu \circ \psi \circ \phi(z)$. First note that ϕ is a linear map, and hence is a covering map of \mathbb{C} .

Next, we wish to show that ψ is a covering map of $\mathbb{P}^1 \setminus \{0, \infty\} \cong \mathbb{C} \setminus \{0\}$. Let $z \in \mathbb{C}$ such that $z \neq 0$. Thus, we have that $\psi^{-1}(z) = \{\log(|z|) + \arg(z) + 2\pi i k \mid k \in \mathbb{Z}\}$. Thus, we can easily take disjoint open neighborhoods around each point in $\psi^{-1}(z)$ (e.g. balls of radius π). Furthermore, we have already shown that ψ is a local homeomorphism. Hence, ψ is a covering map of $\mathbb{C} \setminus \{0\} \cong \mathbb{P}^1 \setminus \{0, \infty\}$.

Finally, we know that μ is an automorphism of \mathbb{C} . Using PMATH 352, we have that $\mu(\{0,\infty\})=\{\pm i\}$.

Therefore,

$$\tan(z):\mathbb{C} \underset{\phi}{\rightarrow} \mathbb{C} \underset{\psi}{\rightarrow} \mathbb{P}^1 \setminus \{0,\infty\} \underset{\mu}{\rightarrow} \mathbb{P}^1 \setminus \{\pm i\}$$

is a composition of covering maps.

Q2.c)

In the previous parts of this question, we expressed $\tan(z)$ as a composition of three functions, μ, ψ , and ϕ . We argued that ϕ is a linear map, hence bijective, and ϕ is a Möbius map induced from an invertible matrix, hence bijective as well. Furthermore, these functions are holomorphic.

However, to deal with $\psi(z)=e^z$, we remark that this function is unique on the strip $S_k\coloneqq\{z\in\mathbb{C}\mid \mathrm{Im}(z)\in(-k\pi,k\pi),k\in\mathbb{Z}\}$, which is the image of the set $S_k'\coloneqq\left\{z\in\mathbb{C}\mid \mathrm{Re}(z)\in\left(-\frac{k\pi}{2},\frac{k\pi}{2}\right)\right\}$ under ϕ . However, note that $\mathrm{tan}(S_k')=X$, so ψ is effectively bijective.

Therefore, $\tan has$ a unique holomorphic inverse ${\rm arctan}_k:X\to\mathbb{C}$ such that $\tan \circ {\rm arctan}_k={\rm id}_X.$

Note that $\tan^{-1}(0) = k\pi, k \in \mathbb{Z}$. Thus, since $\tan(z)$ is a covering map of $\mathbb{P}^1 \setminus \{\pm i\}$, we have that $\tan(z)$ is a local homeomorphism sending $k\pi$ to 0 with the curve lifting property. Therefore, for $\tan \circ \arctan_k = \mathrm{id}_X$, we have that $\arctan(0) = k\pi$.

Q3.a)

We will show that \mathcal{B} , defined as follows, is a basis for a topology on R:

$$\begin{split} \mathcal{S} &\coloneqq \{D((z_0,k),r) \mid z_0 \in \mathbb{C}^* \setminus \mathbb{R}^+, r < d(z,\mathbb{R}^+)\} \\ \mathcal{T} &\coloneqq \{A((z_0,k),r) \mid z_0 \in \mathbb{R}^+\} \\ \mathcal{B} &\coloneqq \mathcal{S} \cup \mathcal{T} \end{split}$$

Let $x\coloneqq (z,k)\in R$. Suppose $z\notin \mathbb{R}^+$. Then, since \mathbb{C}^* is Hausdorff, we have that $r\coloneqq d(x,\mathbb{R}^+)>0$, so there is a disc $D\left(x,\frac{r}{2}\right)$ containing x. Next, if $z\in \mathbb{R}^+$, then we have that $A\left(x,\frac{z}{2}\right)$ contains x. Therefore, each point in R is contained in an element of \mathcal{B} .

Next, we will show that for $B, B' \in \mathcal{B}$ where $B \cap B' \neq \emptyset$, there exists a $B'' \subseteq B \cap B'$.

Case 1: Suppose $B, B' \in \mathcal{S}$. Since $B \cap B' \neq \emptyset$, they must be at the same "k", so $B = D((z_0, k), r)$ and $B' = D((z'_0, k), r')$. Let $p \in B \cap B'$ and let $r'' < \min(r - |p - z_0|, r' - |p - z'_0|)$, so that $D(p, r'') \subseteq B \cap B'$.

Case 2: Suppose $B, B' \in \mathcal{T}$. Again, since $B \cap B' \neq \emptyset$, they must be at the same "k", so $B = A((z_0, k), r)$ and $B' = A((z'_0, k), r')$. We use the same trick as before to obtain r'' such that $D(p, r'') \subseteq B \cap B'$.

Case 3: Suppose $B \in \mathcal{S}, B' \in \mathcal{T}$. This splits into two more cases, where if $B = A((z_0, k), r)$, then B' can either be of the form $D((z'_0, k), r')$ or $D((z'_0, k - 1), r')$. In either case, let $p \in B \cap B'$, and let $r'' = \min(r - |p - z_0|, r' - |p - z'_0|)$ such that $D(p, r'') \subseteq B \cap B'$.

Therefore, we have shown that \mathcal{B} is a basis for the topology τ .

Q3.b)

We proceed by showing R is Hausdorff and locally homeomorphic to $\mathbb C$ with a holomorphic atlas.

(Hausdorff) Suppose $x,y\in\mathbb{C}$ such that $x\neq y$. In our first case, we have $x,y\in\mathcal{S}$, such that $x,y\neq\mathbb{R}^+$. Therefore, if we let r<|x-y|, then we have open sets $D\left((x,k_1),\frac{r}{2}\right)$ and $D\left((y,k_2),\frac{r}{2}\right)$ such that $D\left((x,k_1),\frac{r}{2}\right)\cap D((y,k_2),\frac{r}{s})=\emptyset$. Alternatively, if $x,y\in\mathbb{R}^+$, then if we let r<|x-y|, we again have open neighbourhoods $A\left((x,k_1),\frac{r}{2}\right)$ and $A\left((y,k_2),\frac{r}{2}\right)$ of x and y, respectively, such that $A\left((x,k_1),\frac{r}{2}\right)\cap A((y,k_2),\frac{r}{s})=\emptyset$. Finally, if $x\in\mathbb{C}\setminus R^+$ and $y\in\mathbb{R}^+$, then again we may have $r<\min(|x-y|,y)$ such that $D\left((x,k_1),\frac{r}{2}\right)\cap A\left((y,k_2),\frac{r}{2}\right)=\emptyset$. Hence, in every case, we may find disjoint open neighbourhoods of x,y, so R is Hausdorff with respect to τ .

(Locally Homeomorphic to $\mathbb C$) Now, we claim that R is locally homeomorphic to $\mathbb C$ by finding homeomorphisms from $\mathcal B$ to $\mathbb C$. Let $B\in \mathcal F$, so B is of the form $D((z_0,k),r)$. Then, the map $\phi:D((z_0,k),r)\to D(z_0,r),(z,k)\mapsto z$ is a continuous projection map. Likewise, for $B\in \mathcal F$, where B is of the form $A((z_0,k),r)$, we have the map $\psi:A((z_0,k),r)\to D(z_0,r)$ where if $\Im(z)\geq 0$, then $\psi((z,k))=z$ and if $\Im(z)<0$, then $\psi((z,k-1))=z$. This is clearly continuous. Hence, we have homeomorphisms sending $\mathcal B$ to the topology of $\mathbb C$, so R is locally homeomorphic to $\mathbb C$ since $\mathcal B$ is a basis for R.

It remains to check that the atlas is holomorphic. Consider the atlas $(\mathcal{B}, \{\phi, \psi\})$, defined previously. Then, for $B, B' \in \mathcal{B}$, such that $B \cap B' \neq \emptyset$, we can split it up into cases.

If $B,B'\in\mathcal{S}$, then we have that $B=D((z_0,k),r), B'=D((z'_0,k),r')$, and so $\phi\circ\phi^{-1}=\mathrm{id}$. Likewise, if $B,B'\in\mathcal{T}$, then $B=A((z_0,k),r), B'=A((z'_0,k),r')$, and $\psi\circ\psi^{-1}=\mathrm{id}$. There are two cases for if $B\in\mathcal{S}, B'\in\mathcal{T}$: B can either be of the form $D((z_0,k),r)$ or $D((z_0,k-1),r)$ if B' is of the form $A((z'_0,k),r')$. In the first case, $\psi\circ\phi^{-1}(z)=\psi(z,k)=z$, and in the second, $\psi\circ\phi^{-1}(z)=\psi(z,k)=z$

1) = z, so $\psi \circ \phi^{-1} = \mathrm{id}$. Therefore, we have verified that the atlas is holomorphic.

Q3.c)

To show that \hat{f} is single-valued, we first note that \hat{f} is clearly single-valued for some fixed k, since it's just one branch of the complex logarithm function. Then, since varying k shifts the image by $2\pi i$, there is no overlap between $\hat{f}(R,k_1)$ and $\hat{f}(R,k_2)$ if $k_1 \neq k_2$. Hence, \hat{f} is single-valued.

Next, we claim that \hat{f} is holomorphic. We verify that each of the charts of the form $\hat{f} \circ \phi^{-1} : \phi(B) \to \mathbb{C}$ and $\hat{f} \circ \psi^{-1} : \psi(B') \to \mathbb{C}$ are holomorphic, for $B \in \mathcal{F}$ and $B' \in \mathcal{T}$. (Recall that $\mathcal{B} = \mathcal{F} \cup \mathcal{T}$ is the basis for the topology τ .)

If $z \notin \mathbb{R}^+$, then $z \in D((z,k),r) \in \mathcal{S}$, so $\hat{f} \circ \phi^{-1}(z) = \hat{f}(z,k) = \ln |z| + i(\arg_0 z + 2\pi k)$, which is holomorphic as it coincides with the complex logarithm function shifted by $2\pi ik$. Furthermore, notice that $\arg_0(z) \in [0,2\pi)$, so it follows that $i(\arg_0 z + 2\pi k) \in [2\pi ik, 2\pi i(k+1))$, hence:

$$\begin{split} \hat{f} \circ \phi^{-1}(z) &= \ln \lvert z \rvert + i (\arg_0 z + 2\pi k) \\ &= \ln \lvert z \rvert + i (\arg_{2\pi k} z) \\ &= L_{2\pi k}(z) \end{split}$$

In the other case, $z \in A((z,k),r)$, so

$$\begin{split} \hat{f} \circ \psi^{-1}(z) &= \begin{cases} \hat{f}(z,k) & \text{if } \mathrm{Im}(z) \geq 0 \\ \hat{f}(z,k-1) & \text{if } \mathrm{Im}(z) < 0 \end{cases} \\ &= \begin{cases} L_{2\pi k}(z) & \text{if } \mathrm{Im}(z) \geq 0 \\ L_{2\pi (k-1)}(z) & \text{if } \mathrm{Im}(z) < 0 \end{cases} \\ &= \begin{cases} \ln|z| + i (\arg_{2\pi k} z) & \text{if } \mathrm{Im}(z) \geq 0 \\ \ln|z| + i (\arg_{2\pi (k-1)} z) & \text{if } \mathrm{Im}(z) < 0 \end{cases} \end{split}$$

We remark that this function is continuous along \mathbb{R}^+ . (As soon as you cross the positive real line, $\arg_0 z$ gets sent to 2π , but out function now

adds $2\pi(k-1)$ instead of $2\pi k$, so it balances out.) Hence, $\hat{f} \circ \psi^{-1}(z)$ is holomorphic, and we have shown that \hat{f} is holomorphic with respect to an atlas of R and equal to $L_{2\pi k}(z)$ for $z \in [2\pi k, 2\pi(k+1))$.

Let $\Gamma = \{m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z}\}$ be a lattice in \mathbb{C} and let f be a non-constant, elliptic function relative to Γ .

First, we will show that f must have a pole. Suppose for contradiction f has no poles in \mathbb{C}/Γ , hence f is holomorphic over \mathbb{C}/Γ . This implies that over \mathbb{C}/Γ , |f| is bounded by a constant B. However, by periodicity, this implies |f| is bounded over \mathbb{C} , and by Liouville's theorem, f is therefore constant. Contradiction — f must have a pole!

Now, we will show that f must have at least two poles, counting multiplicity. Let C be the contour along the perimeter of a translated fundamental parallelogram, along the path $[k,k+\omega_1,k+\omega_1+\omega_2,k+\omega_2]$. (If the poles of f lie in Γ , we may choose k without loss of generality such that this is no longer the case.) Hence, we compute the integral along C:

$$\begin{split} \int_C f(z)dz &= \left(\int_k^{k+\omega_1} + \int_{k+\omega_1}^{k+\omega_1+\omega_2} + \int_{k+\omega_1+\omega_2}^{k+\omega_2} + \int_{k+\omega_2}^k \right) \!\! f(z)dz \\ &= \int_k^{k+\omega_1} f(z) - f(z+\omega_2)dz - \int_k^{k+\omega_2} f(z) - f(z+\omega_1)dz \\ &= 0, \text{because } f(z) = f(z+\omega_1) = f(z+\omega_2) \end{split}$$

Thus, by the residue theorem, the sum of the residues of f equals 0. If f has a simple pole at z_0 , then $f = \frac{c}{z-z_0} + \sum_{i=0}^{\infty} c_i (z-z_0)^i$. However, notice that if $\operatorname{Res}(f,z_0) = 0$, then c = 0, so the simple pole isn't a pole at all. Hence, the order of f must be at least two.

Q5)

Q5.a)

Let X be a constant Riemann surface, and let f be a non-constant meromorphic function on X. Hence, $f: X \to \mathbb{C} \cup \{\infty\} \cong \mathbb{P}^1$. We argue that f is proper.

Let $z_1, z_2, ..., z_n$ be poles of f (there are finitely many since \mathbb{P}^1 is compact). Then, since f is holomorphic on $X \setminus \{z_1, z_2, ..., z_n\}$, we have that $f^{-1}(K)$ is compact, for compact $K \subset \mathbb{C}$. Then, for any compact $K \subseteq \mathbb{C} \cup \{\infty\}$ containing ∞ , we have that $f^{-1}(K) = \{\text{some compact set}\} \cup \{z_1, z_2, ..., z_n\}$, which is compact. Since f is meromorphic, it can be thought of as a holomorphic mapping onto \mathbb{P}^1 . Therefore, f is proper.

Since f is a proper non-constant holomorphic map from X to \mathbb{P}^1 , we know that $\exists n \in \mathbb{N}$ such that for $p \in \mathbb{P}^1$, $|f^{-1}(p)| = n$, counting multiplicity. Hence, $|f^{-1}(\infty)| = |f^{-1}(0)|$, as desired.

Q5.b)

 (\Rightarrow) Let f be a meromorphic function on X with a pole of multiplicity one.

First, we will show f is injective. Let $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2) = c$. However, if we let g(z) = f(z) - c, g would be a meromorphic function on X with one pole and two zeroes, contradicting (a). Hence, f must be injective.

Next, we show that f is surjective. Using (a), we get that f has a single zero (of multiplicity one) at some $x_0 \in X$. Hence, we see that $|f^{-1}(0)| = 1$, so f is an unbranched map. In (a), we established that f is a proper map from X to \mathbb{P}^1 , so f is an unbranched proper nonconstant holomorphic mapping. Hence, via a theorem proved in class, f is a covering map of \mathbb{P}^1 , implying f is surjective.

Therefore, $f:X\to \mathbb{P}^1$ is a bijective holomorphism, so the two surfaces are isomorphic.

(\Leftarrow) Now, suppose X is isomorphic to \mathbb{P}^1 . Hence, there exists a biholomorphism $f:X\to\mathbb{P}^1\cong\mathbb{C}\cup\{\infty\}$. Since f is injective, $\left|f^{-1}(\infty)\right|=1$, i.e. there is one point in X which maps to ∞ . Also, f is unbranched. Therefore, f has a biholomorphism from X to $\mathbb{C}\cup\{\infty\}$, where there is only one $x\in X$ such that $f(x)=\infty$. It follows that f is a meromorphic function with a single simple pole.

Q5.c)

Let f be a meromorphic function on \mathbb{C}/Γ . Hence, f is elliptic with respect to Γ . In a previous question, we showed that f must either be constant or admit at least two poles (counting multiplicity). Hence, \mathbb{C}/Γ cannot admit a meromorphic function with a simple pole, so $\mathbb{C}/\Gamma \ncong \mathbb{P}^1$.