Rechnernetze und Telekommunikation

Routing

Übersicht

- Definition und Prinzipien des Routings
- Statisches und dynamisches Routen
- Distance Vector Routing
- Link State Routing
- Routing Protokolle und Software
- Network Address Translation

Routing Martin Gergeleit

Wo findet überall Routing statt?

Zwischen AS

- zwischen Carriern

Innerhalb eines AS

- zwischen verschiedenen Standorten
- zur Bildung von Subnetzten

Innerhalb eines Subnetzes

- zur Trennung von Netz-Segmenten
- z.B. LAN-Segmente, VLANs
- z.B. zur Anbindung von privaten Netzen (z.B. Home-Router mit NAT)

Innerhalb eines Rechners

- z.B. bei mehreren Netzwerk-Interfaces
- Z.B. bei mehreren Virtual Machines auf einem Rechner

Wiederholung: "Struktur" des Internet

- Besteht aus zusammengefügten Netzen unterschiedlicher Organisationen
 - **♦** Sog. "Autonomen Systeme" (AS)
- IP, das "Internet Protocol" hält alles zusammen

Begriff Autonome Systeme (AS)

- AS = Administrativ "abgeschlossene" Einheiten in einem Internet
 - d.h. abgeschlossen im Sinne der Verteilung von interner IP-Routinginformationen
 - typische AS: IP Provider Netzwerke
 - AS sind durch eine 16-bittige Nr. gekennzeichnet (ASN)
 - öffentliche ASN, die im Internet benutzt werden dürfen:1 64511, z.B.:
 - AS3320 DTAG Deutsche Telekom
 - AS24639 InfraServ GmbH & Co.Hoechst KG
 - private ASN, nur innerhalb einer Organisation: 64512 65535
 - Routen innerhalb eines AS werden nicht an andere AS propagiert
 - es gibt keine Default-Routen zwischen AS

Prinzip des Routings

- Ein Router empfängt IP-Pakete von einem Netz und überträgt sie auf ein anderes
- Alle für das Routing erforderlichen Informationen sind in jedem IP-Paket enthalten.
- Der Router muss wissen:
 - welche Netze angeschlossen sind (Netznummer, Netzmaske)
 - welche anderen Netze über welche "Gateways" (nächster Router, der direkt erreichbar ist) erreichbar sind
 - wohin Pakete zu senden sind, für die kein direktes Routing möglich ist

Prinzip des Routings Algorithmus

Routing Martin Gergeleit

Prinzip des Routings Routingtabelle

- IP-Routing Tabelle enthält "Next-Hop" Information, d.h.
- grundsätzlich Zeilen der Art (N, R) wobei:
 - N: IP Adresse eines Zielnetzwerkes oder einer Zielstation
 - R: IP Adresse des "nächsten" Routers entlang des Pfades zum Ziel der über ein direkt angeschlossenes Schicht 2 Netzwerk erreicht werden kann

Beispiel für eine Routingtabelle

Netznummer	Netzmaske	Ziel
193.174.12.0	255.255.255.240	eth0
194.121.202.160	255.255.255.248	sI0
194.174.11.176	255.255.255.240	gw 193.174.12.10
default		gw 193.174.12.1

Routing Martin Gergeleit

Statisches Routing

Festlegungen:

- IP Routing Tabelle wird manuell oder höchstens teilautomatisiert (ICMP-Redirect, SNMP) auf jedem System getrennt verwaltet
- Verwaltungsaufwand steigt mit Größe des Netzwerks, Zahl der Routen, Geschwindigkeit des Wachstums
- keine automatische Rekonfiguration, d.h. keine alternative Pfadwahl z.B. in Ausfallsituationen

Vorteile:

- in kleinen, sich seltenen ändernden Netzwerken ohne redundante Router etc. leicht wartbar
- keine Sicherheitsprobleme durch Routingprotokolle

Dynamisches Routing

 IP Routing Tabellen werden mit Hilfe von Routing Protokollen automatisch zwischen den beteiligten Systemen aktualisiert

Ziele:

- Routing Tabellen in allen beteiligten Systemen möglichst zu jedem Zeitpunkt aktuell halten
- Änderungen im Netzwerk (bei Ausfall, Wartungsarbeiten etc.) so schnell wie möglich an alle beteiligten Systeme verbreiten
- d.h. Erhöhung der Zuverlässigkeit und Ausfallsicherheit, Verringerung des Wartungsaufwands
- Lastverteilung (Diensttypen etc.)

Routing Martin Gergeleit

Routingprotokolle

Unterteilung der Routingprotokolle nach:

- Einsatzgebiet (im administrativen Sinne)
 - Interior Gateway Protokolle (IGP's)
 - für dynamisches Routing innerhalb eines AS
 - Exterior Gateway Protokolle (EGP's)
 - für dynamisches Routing zwischen verschiedenen AS
- verwendeten Protokollalgorithmen
 - Distance Vector (Bellman-Ford)
 - Path Vector
 - Link State (Shortest Path First; SPF)
- Multicast oder Unicast Routing Protokoll

Distance Vector Routing (1) Grundlagen

- Typischer verteilter Algorithmus
 - Kein zentrales Wissen oder eine globale Sicht des Netzes
- Idee Distance-Vector Routing (DVA)
 - Jeder Router unterhält eine Tabelle mit "Richtungen" und "Distanzen" für alle möglichen anderen Ziele
 - Alle bekannten Ziele/Distanzen werden zeitlich periodisch benachbarten Routern "angezeigt"
 - per broad-, multi- oder unicast Nachrichten
 - Aus den regelmäßig empfangenen Paketen konstruiert bzw. aktualisiert der DVA. die Einträge für die Routing Tabelle
 - d.h. sucht die Richtung mit der kleinsten Distanz zu dem jeweiligen Ziel

Distance Vector Routing (2) Details

- Routing Updates werden nur an benachbarte Router an direkt angeschlossenen Segmenten ("direkte Links") versendet
- jeder Router kennt immer nur den "Next Hop" für jedes mögliche Ziel
- verwendete Distanzen in DVAs: "Metriken"
 - z.B. Zahl der "Hops" zum Ziel, oder administrativ festgesetzte oder protokollspezifische Werte
- "beste" Distanz (Metrik 0)
 - normalerweise direkte Links
- bei Änderungen werden sofort Updates gesendet
 - z.B. wenn ein Interface ausfällt
- Routen, für die eine bestimmte Zeitlang kein Update empfangen wurde, werden entfernt; optional abschaltbar

Routing Martin Gergeleit

Distance Vector Routing (3) Beispiel

Für Router J:

Distance Vector Routing (4) Bewertung

Vorteile:

- Wartung tyischerweise relativ leicht
- weit verbreitet, auf vielen Plattformen verfügbar (d.h. insbesondere RIP)

Nachteile:

- skalieren sich schlecht für große Netzwerke
- Updates pflanzen sich nur langsam fort
- es können daher Routing-Schleifen auftreten
- Routing-Update-Pakete können bei vielen Zielen sehr groß werden

Routing Martin Gergeleit

RIP (1)

Routing Information Protocol

- RIP nutzt DVA
- IGP (Verwendung innerhalb von AS)
- war erstes verfügbares IGP
- ursprünglich sehr weit verbreitet durch Distribution mit BSD Unix (routed Software)
- entwickelt f
 ür relativ kleine Netzwerke
- immer noch sehr weit verbreitet, nahezu auf jeder Plattform implementiert
- Aktuell: RIP Version 2 (RFC 2453)

Routing Martin Gergeleit

RIP (2) Parameter

- als Distanz (Metrik):die Zahl der "Hops" zum Ziel
 - Maximum: 15 "Hops"
 - Metrik 16 = "unendlich", d.h. RIP ist nicht geeignet für Netzwerke mit mehr 15 Routern in einem Pfad
- RIP sendet standardmäßig alle 30 Sek. einen Update
- Wenn nach 180 Sekunden kein Update empfangen wurde
 - RIP sendet dann selber einen Request und fragt nach der Route
 - nach 270 Sekunden ohne Antwort wird die Route entfernt
- Wenn RIP lernt, dass eine Topologie-Änderung aufgetreten ist,
 - wartet es nicht bis zum n\u00e4chsten periodischen Route-Updating-Zeitpunkt
 - sondern sendet sofort (Triggered Update)

Routing Martin Gergeleit

Probleme des DVA (1)

- Count-to-Infinity bei Ausfall einzelner Verbindungen:
 - Beispiel: Entfernung zu A
 - a) Im Normalfall (jeder Hop zählt 1)
 - b) Link A-B ist ausgefallen

Α	В	С	D	Ε		Α	В	С	D	Ε	
•	•	•	•	•		•	•	•	•	•	
	00	00	00	00	Initially		1	2	3	4	Initially
	1	00	00	∞	After 1 exchange		3	2	3	4	After 1 exchange
	1	2	∞	00	After 2 exchanges		3	4	3	4	After 2 exchanges
	1	2	3	00	After 3 exchanges		5	4	5	4	After 3 exchanges
	1	2	3	4	After 4 exchanges		5	6	5	6	After 4 exchanges
							7	6	7	6	After 5 exchanges
			(a)				7	8	7	8	After 6 exchanges
								:			
Problem: Schlechte Nachrichten							∞	∞	∞	∞	

 Problem: Schlechte Nachrichten verbreiten sich langsam

(b)

Probleme des DVA (2)

Pfadschleifen

- Ein Paket wird im Kreis geroutet
- Kann im stabilen Zustand eigentlich nicht auftreten
- Können aber durch langsame Verbreitung temporär entstehen
- Da im DVA kein Knoten eine globale Sicht hat, wird dies nicht bemerkt
 - Kein Router schaut über den Horizont des nächsten Hops hinaus uns weiß, wie der Pfad weiter geht

Routing Martin Gergeleit

Path Vector Routing Grundlagen

- Funktionsweise ähnelt sehr stark dem DVA
- Routingschleifen wird vorgebeugt
 - Router teilt dem Nachbarn nicht nur mit, dass er ein bestimmtes Netz zu bestimmten Kosten erreichen kann,
 - sondern auch den kompletten Pfad, den er nutzen würde
- Ein Router
 - kann so verschiedene Pfade zu einem Ziel kennen und unterscheiden
- Merkt ein Router nun, dass er bereits in diesem Pfad vorhanden ist, verwirft er das Update und vermeidet so, dass eine Routingschleife entsteht

Routing Martin Gergeleit

BGP

Border Gateway Protocol

- Nutzt Path Vector Routing
- Aktuelle Version 4 definiert in RFC 4271
- DAS EGP Protokoll zum Routing zwischen AS
- Nutzt für die Verbindungen zwischen den Routern TCP

Routing Martin Gergeleit

Link-State Routing (1) Grundlagen

- Lokaler Algorithmus
- Jeder Router wird über alle verfügbaren Links (Link-State) informiert
 - mittels broad-, multi-, oder unicast Nachrichten
- Jeder Router unterhält eine komplette Topologieinformation über das Netzwerk
 - d.h. jeder Router kennt jeden anderen Router und die an diesen angeschlossenen Netzwerke (Link-Graph)
 - Auch "Full Topology Routing " genannt

Link-State Routing (2) Algorithmus

- Ermittlung aller direkten Nachbar-Router
- Jeder Router testet aktiv und zeitlich periodisch den Status aller benachbarten Router (d.h. direkte Links)
- Die gesamte Link-Status Information werden zeitlich periodisch allen anderen beteiligten Routern im Netzwerk mitgeteilt
- Router aktualisiert seine eigene Topologie Datenbasis, indem Links als "up" bzw. "down" markiert werden
- Werden Änderungen bei Links festgestellt, werden die betroffenen Routen neu berechnet und die eigene IP Routingtabelle aktualisiert
 - Berechnung mittels Shortest Path Algorithmus nach Dijkstra

Routing Martin Gergeleit

Link-State Routing (3) Beispiel

Netz im stabilen Zustand

Link-State Routing (4) Beispiel

Links bc und ad sind ausgefallen

Routing Martin Gergeleit

Link-State Routing (5) Beispiel

Nach einer Nachrichtenrunde

Routing Martin Gergeleit

Shortest Path: Algorithmus nach Dijkstra – Das Problem

Shortest Path: Algorithmus

Shortest Path: Beispiel

S	d(1)	d(2)	d(3)	d(t)
{s}	10	∞	30	100
{s,1}	10	60	30	100
{s,1,3}	10	50	30	90
{s,1,3,2}	10	50	30	60
{s,1,3,2,t}	10	50	30	60

Link-State Routing (6) Bewertung

Vorteile:

- jeder Router berechnet seine Routingtabelle unabhängig von anderen, mit der originalen Link-Status-Info des "anzeigenden" Routers
- d.h. keine Abhängigkeit von den Berechnungen von "Zwischen"-Routern
- Probleme leichter zu finden
- Größe der Pakete hängt nicht von der Zahl der gerouteten Netzwerke ab (d.h. L.S.A.'s skalieren sich besser)
- Link-Status kann zusätzliche Information, wie Qualität des Links ("cost") enthalten, dadurch optimale Pfadwahl möglich

Nachteile:

- meist aufwendiger zu warten
- meist höhere Rechnerleistung auf dem Router erforderlich bei großen "Gebieten"

Routing Martin Gergeleit

OSPF (1)

Open Shortest Path First

- Link-State-Routing-Protokoll
- Ist im RFC 2328 definiert
- IGP (Verwendung innerhalb von AS), auch EGP möglich
 - Unterteilt das Netz in separate *Areas*
 - Area 0 ist der Backbone
- Standard definiert nicht wie die Kosten zu berechnen sind
 - Cisco nutzt z.B. die Bandbreite des Links als Kosten

Routing Martin Gergeleit

OSPF (2) Weitere Features

Route Aggregation

- Zusammenfassung von Routen mit gleichem Präfix (classless)
- kann Größe der Routing Tabelle und Protokoll Traffic erheblich minimieren

Type of Service Routing

 mehrfache Routen zum gleichen Ziel installierbar, für verschiedene Servicetypen (Pfadwahl dann durch Felder IP-Header)

Load Balancing

 bei mehrfachen Routen zum gleichen Ziel mit gleicher "Cost" kann OSPF Traffic über diese Pfade gleich verteilen

Authentication

Routing Pakete können mit verschiedenen Verfahren authentifiziert werden

Routing Martin Gergeleit

Übersicht Routingprotokolle

Internet Routingprotokolle

RIP, RIP2: IGP, Distance Vector

IGRP: IGP, Distance Vector

OSPF: IGP/EGP, Link State

EIGRP: IGP/EGP, Hybrid Distance Vector/Link State

BGP EGP, Path Vector

Routing Martin Gergeleit

Routingsoftware (1)

- Router können als dedizierte Geräte oder als Software auf Standard-Betriebssystemen laufen (typ. Linux)
- Moderne Routingsoftware gestattet üblicherweise sehr weitgehende administrative Eingriffe
 - z.B. das Erlauben oder Verbieten bestimmter Routen
 - das Festlegen von administrativen "Weights", d.h. z.B. Bevorzugung bestimmter Routen
 - das Akzeptieren von Updates nur von bestimmten Nachbar Routern
 - peer-to-peer Betrieb (d.h. z.B. kein RIP-Broadcast) passiv (nur "Lernen", kein aktives Anzeigen)
 - konfigurierbaren Routenaustausch zwischen allen auf dem gleichen System laufenden Routing Protokollen

Routing Martin Gergeleit

Routingsoftware (2)

- unterschiedlichste Routingsoftware für verschiedenste Plattformen am Markt, sehr weit verbreitet sind u.a.:
 - Cisco IOS
 - Betriebssystem nahezu der gesamten Cisco Router und Switch Produktpalette, große Zahl von unterstützten Routingprotokollen
 - gated Software
 - auf nahezu allen Unix'en vorhanden, unterstützt alle wichtigen Routingprotokolle, einschließlich RIP, OSPF und BGP
 - Quagga
 - unter der GPL lizenziertes Softwarepaket für unix-artige Betriebssysteme, unterstützt OSPF, RIP und BGP
- Unterscheiden sich in Features, Performance, Skalierbarkeit

NAT (Network Address Translation)

- Kann auf Routern zusätzlich stattfinden
- Sammelbegriff für Verfahren, die
 - automatisiert Adressinformationen in Datenpaketen durch andere ersetzen
 - um verschiedene Netze zu verbinden
- Kann zu Problemen führen, wenn IP-Adressen auch in den Nutzdaten der Nachrichten verwendet werden
 - Adressen in den Paketen passen dann nicht mehr zu den im Protokoll sichtbaren Adressen
 - Problem bei (sog. "active") FTP und VoIP (SIP)

Routing Martin Gergeleit

Basic NAT (Static NAT)

- Jede interne IP wird durch eine andere externe IP ersetzt
- Sinn: Zusammenführung von Netzen (z.B. bei Firmenfusionen)
- Sicherheit: keine direkten Verbindungen möglich

Routing Martin Gergeleit

PAT (Port Address Translation)

- Auch Hiding NAT oder NAPT (Network Address Port Translation)
- Socket-Paar (IP-Addresse und Port-Nummer) wird umkodiert
- Sinn: ganze Netzwerke werden hinter einer IP-Adresse verborgen
 - Typisch für DSL-Router zu Hause
 - Mittel gegen Adress-Knappheit in IPv4!

Zusammenfassung

- Routing entscheidet, welchen Weg ein Paket auf dem Weg zum Ziel nimmt
- Statisches Routing nur machbar für kleine Netze, große Netze bestimmen Routen dynamisch mit Routing Protokollen
- Es gibt verschiedene Verfahren und Protokolle zum dyn. Routen:
 - Distance Vector Routing (z.B. RIP)
 - Path Vector Routing (z.B. BGP)
 - Link State Routing (z.B. OSPF)
- NAT ist ein Verfahren, um IP-Adressen beim Routing umzuschreiben

Routing Martin Gergeleit