Probabilités avancées

Martingales à temps

discret

Question 1/29

Une famille de variables aléatoires dans L^1 (X_i) est uniformément intégrable

Réponse 1/29

Pour tout
$$\varepsilon > 0$$
, il existe $M \ge 0$ tel que, pour tout $i \in I$, $\mathbb{E}(X_i \mathbb{1}_{\{|X_i| \ge M\}}) \le \varepsilon$

Question 2/29

Intégrale stochastique (discrète)

Réponse 2/29

Soit (X_n) un processus adapté à \mathcal{F}_n et (H_n) un processus prévisible, l'intégrale stochastique de (H_n) par rapport à (X_n) est

$$(H \cdot X)_n = \sum_{k=1}^{n} H_k(X_k - X_{k-1})$$

Question 3/29

Théorème de convergence L^p de martingales

Réponse 3/29

Si (X_n) est une martingale bornée dans L^p alors (X_n) converge presque-sûrement vers X_∞ dans L^p

$$\mathbb{E}(|X_{\infty}|^p)^{\frac{1}{p}} \leqslant \frac{p}{p-1} \sup_{n \in \mathbb{N}} \left(\mathbb{E}(|X_n|^p)^{\frac{1}{p}} \right)$$

De plus, $\mathbb{E}((X_{\infty}^*)^p)^{\frac{1}{p}} \leqslant \frac{p}{p-1} \mathbb{E}(|X_{\infty}|^p)^{\frac{1}{p}}$

Question 4/29

Processus arrêté pour le jeu aléatoire (X_n) adapté à la filtration (\mathcal{F}_n) et le temps d'arrêt T

Réponse 4/29

$$X_n^T = X_{n \wedge T}$$

Question 5/29

Martingale

Réponse 5/29

$$(X_n)$$
 est une martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) = X_n$

Question 6/29

Théorème d'arrêt de Doob

Réponse 6/29

Si $S \leq T$ sont deux temps d'arrêt bornés et (X_n) est une sous/sur/ \emptyset -martingale alors $\mathbb{E}(X_T \mid \mathcal{F}_S) = X_S$ et en particulier, $\mathbb{E}(X_T) = \mathbb{E}(X_S) = \mathbb{E}(X_0) \text{ (resp. } \geqslant / \leqslant)$ Si T est borné, ou T est intégrable et $|X_{n+1}-X_n| \leq M$ p.s. ou T est p.s. fini et

$$|X_{n \wedge T}| \leqslant M$$
 alors X_T est intégrable et $\mathbb{E}(X_T) = \mathbb{E}(X_0)$ (resp. \geqslant/\leqslant)

Question 7/29

Théorème de la martingale arrêtée

Réponse 7/29

Si (X_n) est une sous/sur/ \emptyset -martingale alors $(X_{n \wedge T})$ aussi

Question 8/29

Théorème de convergence de martingales L^2

Réponse 8/29

Si (X_n) est une martingale L^2 alors elle converge presque-sûrement sur $\{\langle X \rangle_{\infty} < +\infty\}$

Question 9/29

Processus adapté à une filtration (\mathcal{F}_n)

Réponse 9/29

 (X_n) une suite de variables aléatoires avec X_n qui est \mathcal{F}_n -mesurable

Question 10/29

Combinaisons possibles sur les temps d'arrêt

Réponse 10/29

Si S et T sont deux temps d'arrêt, $T \wedge S$, $T \vee S$, T + S sont des temps d'arrêt

Question 11/29

Intégrales stochastiques de sous/sur/Ø-martingales

Réponse 11/29

Si (X_n) est une martingale et (H_n) est un processus prévisible de L^{∞} alors $((H \cdot X)_n)$ est une martingale Si (X_n) est une sous/sur-martingale et (H_n) est un processus prévisible positif de L^{∞} alors $((H \cdot X)_n)$ est une sous/sur-martingale Si (X_n) est dans L^2 alors on peut avoir (H_n) dans L^2

Question 12/29

Filtration

Réponse 12/29

$$(\mathcal{F}_n)$$
 une suite croissante de sous-tribus de \mathcal{F}

Question 13/29

Martingale rétrograde

Réponse 13/29

 (\mathcal{F}_n) est une suite de tribus décroissante et (X_n) est telle que $\mathbb{E}(X_n \mid \mathcal{F}_{n-1}) = X_{n-1}$ Il existe toujours X_{∞} tel que (X_n) converge presque-sûrement et dans L^1 vers X_{∞}

Question 14/29

Inégalité maximale de Komogorov

Réponse 14/29

Soit (X_n) une martingale de carré sommable, alors pour tout $\lambda > 0$ et tout $n \in \mathbb{N}$, $\mathbb{P}\left(\max_{k \in \llbracket 0,n \rrbracket} (X_k) \geqslant \lambda\right) \leqslant \frac{\mathbb{E}(X_n^2)}{\lambda^2}$

Question 15/29

Processus prévisible

Réponse 15/29

 $(H_n)_{n\in\mathbb{N}^*}$ est un processus prévisible par rapport à $(X_n)_{n\in\mathbb{N}}$ adapté à \mathcal{F}_n si H_n est \mathcal{F}_{n-1} -mesurable

Question 16/29

 (X_n) est une martingale fermée pour (X_n) une martingale dans L^1

Réponse 16/29

Il existe Z une variable aléatoire intégrable telle que $X_n = \mathbb{E}(Z \mid \mathcal{F}_n)$

Question 17/29

Décomposition de Doob

Réponse 17/29

Soit (\mathcal{F}_n) une filtration et (X_n) un processus adapté, il existe une martigale (M_n) avec $M_0 = 0$ et un processus prévisible (A_n) tel que $X_n = X_0 + M_n + A_n$ et cette décomposition est unique

 (X_n) est une sous-martingale si et seulement si (A_n) est presque-sûrement croissante

Question 18/29

Lien entre tribus de temps d'arrêt

Réponse 18/29

Si
$$S \leqslant T$$
 alors $\mathcal{F}_S \subseteq \mathcal{F}_T$

Question 19/29

Stabilités des sous/sur/Ø-martingales

Réponse 19/29

Si (X_n) et (Y_n) sont deux sous/sur/ \emptyset -martingales alors $(X_n + Y_n)$ aussi Si (X_n) et (Y_n) sont des sous-martingales (resp. sur-martingale) alors $(\max(X_n, Y_n))$ (resp. $(\min(X_n, Y_n))$ aussi Si (X_n) est une martingale et φ est convexe telle que $\mathbb{E}(|\varphi(X_n)|) < +\infty$ alors $(\varphi(X_n))$ est une sous-martingale

Question 20/29

Propriété des incréments d'une martingale L^2

Réponse 20/29

Si (X_n) est une martingale L^2 et

En particulier,

 $\mathbb{E}(X_n^2) = \mathbb{E}(X_0^2) + \sum \mathbb{E}((X_{k+1} - X_k)^2) \text{ et}$

une martigale converge dans L^2 si et seulement

 $\sum \mathbb{F}\left((Y_1, \dots, Y_n)^2\right) < 1\infty$

m < n < p < q alors

 $\mathbb{E}((X_n - x_m)(X_p - X_q)) = 0$

Question 21/29

Théorème de la martingale arrêtée de Doob

Réponse 21/29

Soit (X_n) une sous-martingale avec $(X_n) \in L^p$,

alors pour tout
$$\lambda > 0$$
 et tout $n \in \mathbb{N}$,
$$\mathbb{P}\left(\max_{k \in [0,n]} (X_k) \geqslant \lambda\right) \leqslant \frac{1}{\lambda} \mathbb{E}\left(X_n \mathbb{1}_{\{\max_{k \in [0,n]} (X_k) \geqslant \lambda\}}\right) \leqslant \mathbb{E}(X_n^+)$$

Question 22/29

Théorème de convergence de martingales L^1

Réponse 22/29

Si (X_n) est une martingale L^1 alors les conditions suivantes sont équivalentes (X_n) converge dans L^1 (X_n) est uniformément intégrable (X_n) est une martingale fermée

Question 23/29

Sur-martingale

Réponse 23/29

$$(X_n)$$
 est une sur-martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) \leqslant X_n$

Question 24/29

Temps d'arrêt pour le jeu aléatoire (X_n) adapté à la filtration (\mathcal{F}_n)

Réponse 24/29

Variable aléatoire $T: \Omega \to \mathbb{N} \cup \{+\infty\}$ telle que $\{T = n\}$ (ou de manière équivalente $\{T \leqslant n\}$) est \mathcal{F}_n -mesurable

Question 25/29

Inégalité L^p de Doob

Réponse 25/29

Soient (X_n) une martingale, $X_n^* = \max_{k \in [0,n]} (|X_k|)$,

$$p \in]1, +\infty[$$
 et $q = \frac{p}{p-1}$, alors pour tout $n \in \mathbb{N}, \mathbb{E}((X_n^*)^p)^{\frac{1}{p}} \leqslant q \mathbb{E}(|X_n|^p)^{\frac{1}{p}}$

Question 26/29

Sous-martingale

Réponse 26/29

$$(X_n)$$
 est une sous-martingale par rapport à (\mathcal{F}_n) si (X_n) est adaptée à (\mathcal{F}_n) et $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) \geqslant X_n$

Question 27/29

Tribu engendrée par un temps d'arrêt

Réponse 27/29

$$\mathcal{F}_T = \{ A \in \mathcal{F}_{\infty}, \forall n \in \mathbb{N}, A \cap \{T = n\} \in \mathcal{F}_n \}$$

Question 28/29

Processus croissant adapté à la martingale (X_n) dans L^2

Réponse 28/29

$$(\langle X \rangle_n)$$
 telle que $X_n = X_0 + M_n + \langle X \rangle_n$ avec (M_n) une martingale

L'existence est donnée par le théorème de décomposition de Doob

Question 29/29

Théorème de convergence presque-sûre de martingales

Réponse 29/29

Si (X_n) est une sous/sur-martingale et $\sup \left(\mathbb{E}\left(X_n^{-/+}\right)\right) < +\infty$ alors il existe une variable aléatoire X_{∞} intégrable telle que $X_n \to X_\infty$ presque-sûrement Si (X_n) est une sous/sur/ \emptyset -martingale et $\sup(|X_n|) < +\infty$ alors il existe une variable aléatoire X_{∞} intégrable telle que $X_n \to X_{\infty}$ presque-sûrement