Лабораторная работа 3.2.5

Спектры электрических сигналов (компьютер)

4 декабря 2021 г.

Старченко Иван Александрович

Цель работы: изучить спектральный состав периодических электрических сигналов.

В работе используются: анализатор спектра (ПК), генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью промышленного анализатора спектра и сравниваются с рассчитанными теоретически.

1 Теоретические сведения

Сколь угодно сложный электрический сигнал V (t) может быть разложен на более простые сигналы. В радиотехнике широко используется разложение сигнала V (t) на совокупность гармонических сигналов различных частот ω . Функция $F(\omega)$, описывающая зависимость амплитуд отдельных гармоник от частоты, называется амплитудной спектральной характеристикой сигнала V(t). Представление сложного периодического сигнала в виде суммы дискретных гармонических сигналов в математике называется разложением в ряд Фурье.

Зная спектральный состав $F(\omega)$ периодической последовательности некоторого импульса V(t), мы можем осуществить обратное преобразование Фурье: сложив отдельные гармоники со своими амплитудами и фазами, получить необходимую последовательность импульсов. Степень совпадения полученного сигнала с V(t) определяется количеством синтезированных гармоник: чем их больше, тем лучше совпадение. Рассмотрим конкретные примеры периодических функции, которые будут предметом исследования в нашей работе.

Рассмотрим конкретные примеры периодических функций, которые будут предметом исследования в нашей работе.

1.1 Спектральный анализ электрических сигналов

Рис. П.1. График периодической функции с периодом повторения T

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1=2\pi/T$, где T- период повторения (рис. П.1). Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$

или

$$f(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$

Здесь $a_0/2 = A_0/2$ — постоянная составляющая (среднее значение) функции f(t); a_n и b_n — амплитуды косинусных и синусных членов разложения. Они определяются выражениями

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$

Точку начала интегрирования t_1 можно выбрать произвольно. В тех случаях, когда сигнал четен относительно $\mathbf{t}=0$, в тригонометрическои записи остаются только косинусные члены, т.к. все коэффициенты b_n обращаются в нуль. Для нечетнои относительно $\mathbf{t}=0$ функции, наоборот, ряд состоит только из синусных членов.

Амплитуда A_n и фаза $\psi_n n$ -й гармоники выражаются через a_n и b_n следующим образом:

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \operatorname{arctg} \frac{b_n}{a_n}$$

Как мы видим, спектр любой периодической функции состоит из набора гармонических колебаний с дискретными частотами: $\Omega_1, 2\Omega_1, 3\Omega_1 \dots$ и постоянной составляющей, которую можно рассматривать как колебание с нулевой частотой $(0 \cdot \Omega_1)$.

Представим выражение в комплексной форме. Для этого заменим косинусы экспонентами в соответствии с формулой

$$\cos\alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

Подстановка даёт

$$f(t) = \frac{1}{2} \left(A_0 + \sum_{n=1}^{\infty} A_n e^{-i\psi_n} e^{in\Omega_1 t} + \sum_{n=1}^{\infty} A_n e^{i\psi_n} e^{-in\Omega_1 t} \right)$$

Введём комплексные амплитуды \tilde{A}_n и \tilde{A}_{-n}

$$\tilde{A}_n = A_n e^{-i\psi_n}; \quad \tilde{A}_{-n} = A_n e^{i\psi_n}; \quad \tilde{A}_0 = A_0$$

Разложение f(t) приобретает вид

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \tilde{A}_n e^{in\Omega_1 t}$$

Как мы видим, введение отрицательных частот (типа $n\Omega_1$) позволяет записать разложение Фурье особенно поостым образом.

Для расчёта комплексных амплитуд A_n умножим левую и правую части на $e^{-ik\Omega_1 t}$ и проинтегрируем полученное равенство по времени на отрезке, равном одному периоду, например, от $t_1 = 0$ до $t_2 = 2\pi/\Omega_1$. В правой части обратятся в нуль все члены, кроме одного, соответствующего n = k. Этот член даёт $A_k T/2$. Имеем поэтому

$$A_k = \frac{2}{T} \int_0^T f(t)e^{-ik\Omega_1 t} dt$$

Рассмотрим периодические функции, которые исследуются в нашей работе.

1.2 Периодическая последовательность прямоугольных импульсов

С амплитудой V_0 , длительностью τ , частотой повторения $f_{\text{повт}} = 1/T$, где T— период повторения импульсов.

Среднее значение

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} V_0 dt = V_0 \frac{\tau}{T}$$
 Амплитуды косинусных составляющих равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$

Поскольку наша функция чётная, все амплитуды синусоидальных гармоник $b_n=0$. Спектр $F(\nu)$ последовательности прямоугольных импульсов представлен на рис. П.З. Амплитуды гармоник A_n меняются по Закону $(\sin x)/x$ На рис. П.З изображён спектр для случая, когда T кратно τ . Назовём шириной спектра $\Delta \omega$ (или $\Delta \nu$) расстояние от главного максимума ($\nu=0$) до первого нуля, возникающего, как нетрудно убедиться, при $\Omega_1=2\pi/\tau$ При этом

$$\Delta\omega\tau\simeq 2\pi$$
 или $\Delta\nu\Delta t\simeq 1$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике. Несовместимость острой локализации волнового процесса во времени с узким спектром частот - явление широко известное в радиотехнике. Ширина селективной настройки $\Delta \nu$ радиоприёмника ограничивает приём радиосигналов Длительностью $t < 1/\Delta \nu$

1.3 Периодическая последовательность цугов

Гармонического колебания $V_0 \cos{(\omega_0 t)}$ с длительностью цуга τ и периодом повторения T (рис. $\Pi.4$)

Функция f(t) снова является чётной относительно t=0. Амплитуда n -й гармоники равна

$$A_{n} = a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{o}t) \cdot \cos(n\Omega_{1}t) dt =$$

$$= V_{0} \frac{\tau}{T} \left(\frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$

Такое спектральное распределение $F(\omega)$ для случая, когда $\frac{T}{\tau}$ равно целому числу, представлено на рис. П.5. Сравнивая спектр последовательности прямоугольных импульсов и спектр цугов (см. рис. П.3 и П.5),

мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Амплитудно-модулированные колебания.

ния, модулированные по амплиту-

Рис. П.7. Спектр колебаний, модулированных по амплитуде

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \, (\Omega \ll \omega_0)$ (рис. П.6):

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega t)$$

Коэффициент m называют глубиной модуляции. При m < 1 амплитуда колебаний меняется от минимальной $A_{\min} = A_0(1-m)$ до максимальной $A_{\max} = A_0(1+m)$. Глубина модулящии может быть представлена в виде

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудномодулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega) t$$

τ , MKC	40	60	80	100	120	140	160	180	200
$\Delta \nu$, к Γ ц									
$\frac{1}{ au}$, к Γ ц	25	16,66	12,5	10	8,33	7,14	6,25	5,56	5

Таблица 1: Зависимость ширины спектра от времени длительности импульса

Спектр $F(\omega)$ таких колебаний содержит три составляющих (рис. П. 7) Основная компонента представляет собой исходное немодулированное колебание с иесущей частотой ω_0 и амплитудой $A_{\rm oc}=A_0-$ первое слагаемое в правой части; боковые компоненты спектра соответствуют гармоническим колебаниям с частотами ($\omega_0 + \Omega$) и ($\omega_0 - \Omega$) — Второе и третье слагаемые. Амплитуды этих двух колебаний одинаковы и составляют m/2 от амплитуды немодулированного колебания: $A_{\rm 6ok}=A_0m/2$

2 Обработка данных

2.1 Периодические прямоугольные импульсы

Рис. 1: Спектр при $f_{\text{повт}} = 1 \text{ к} \Gamma$ ц, $\tau = 100 \text{ мкс}$

При фиксированной частоте $f_{\text{повт}} = 1$ к Γ ц будем менять τ , при этом будет меняться ширина спектра. Зафиксируем наблюдения в таблице. Построим график зависимости $\Delta \nu(\frac{1}{\tau})$:

Рис. 2: Спектр при $f_{\text{повт}}=1$ к
Гц, $\tau=200$ мкс

Рис. 3: Спектр при $f_{\text{повт}}=2$ к
Гц, $\tau=100$ мкс

Из графика следует выоплнение соотношения неопределённости для прямяугольных импульсов: $\Delta \nu \cdot \tau = \approx 1$.

Рис. 4: Спектр при $f_{\text{повт}} = 1 \text{ к}\Gamma$ ц, $\tau = 50 \text{ мкс}$

δu , к Γ ц	0,5	1	2	4	5
$f_{\text{повт}}$, к Γ ц	0,5	1	2	4	5

Таблица 2: Зависимость расстояния между компонентами спектра от частоты повторения цугов

2.2 Периодическая последовательность цугов

Установим несущую частоту цугов $\nu_0=25~{\rm k}\Gamma$ ц, частота запуска цугов $f_{\rm nobt}=1~{\rm k}\Gamma$ ц с длительностью импульса $\tau=100~{\rm mkc}$.

Проанализируем, как меняется спектр при изменении длительности импульса цуга.

Теперь проанализируем, как меняется спектр при изменении несущей частоты.

Установим несущую частоту $\nu_0 = 30$ к Γ ц при $\tau = 100$ Γ ц, варируя частоту запуска цугов. Снимем зависиимость расстояния между соседними спектральными компонентами от частоты повтоения цугов:

Данные по расстоянию между компонентами спектра получены по более, чем 80 точек данных, и с точностью до погрешности генератора совпадают со значениями частоты повторения цугов $f_{\text{повт}}$.

Получается, что $\delta \nu = k f_{\text{повт}}$, где $k \approx 1$. Из теории следует, что значения двух величин совпадают, значит экспериментальная зависимость верна.

И для прямугольных импульсов, и для цугов при повышении частоты

Рис. 5: Зависимость $\Delta \nu(\frac{1}{\tau})$

повторения импульсов увеличивается расстояние между компонентами спектра, а при повышении длительности импульса уменьшается ширина спектра. Разница между графиками спектров прямугольного импульса и цуга в том, что спектр цугаа смещён на значение несущей частоты в сторону поовышения частоты. То есть при устрмлении несущей частоты к нулю графики наложатся друг на друга.

2.3 Амплитудно-модулированные колебания

Установим синусоидальный сигнал частоты $\nu_0=25$ к Γ ц, амплитуды 0,5 В. Подключим модуляцию к этому сигналу амплитуды 0,1 В и частоты $\nu=1$ к Γ ц.

Рис. 6: Спектр при $\nu_0=25$ к
Гц, $\tau=100$ мкс

Рис. 7: Спектр при $\nu_0=25$ к
Гц, $\tau=200$ мкс

Рис. 8: Спектр при $\nu_0=10$ к
Гц, $\tau=100$ мкс

Рис. 9: Спектр при $\nu_0=25$ к
Гц, $\tau=100$ мкс

Меняя глубину модуляции до 1, измерим следующие значения: Построим график зависимости.

Получилось значение $k=0,511\pm0,021,$ согласно же теории это значение должно равняться 0,5. То есть получилось верное соотношение

Рис. 10: Спектр при $\nu_0=40$ к
Гц, $\tau=100$ мкс

A_{min} , MB	450	375	300	225	150	75	0
A_{max} , MB	550	625	700	775	850	925	1000
m	0,1	0,25	0,4	0,55	0,7	0,85	1
$A_{бок}, MB$	17	43	68	94	120	147	174
$A_{\text{осн}}$, мВ	343	341	342	342	340	342	341
$\frac{A_{\text{бок}}}{A_{\text{осн}}}$	0,496	0,126	0,199	0,275	0,353	0,430	0,510

Таблица 3: Зависимость $\frac{A_{6 \text{ok}}}{A_{\text{och}}}$ от m

амплитуд при различных модуляциях.

При увеличении частоты модуляции две боковые гармоники отдаляются от основной по величине на спектре.

Рис. 11: График зависимости $\frac{A_{6\text{ок}}}{A_{\text{осн}}}$ от m

3 Заключение

В ходе выполнения работы теоретическое описание спектров исследуемых сигналов подтвердилось на основе их изучения с помощью генератора и осциллографа.

4 Литература

- Никулин М.Г. Лабораторный практикум по общей физике. Электричество и магнетизм
- Описание лабораторных работ на кафедре общей физики МФТИ
- П.В. Попов, А.А. Нозик. Обработка результатов учебного эксперимента