Principal Component Analysis

Quiz, 5 questions

Principal Compoint Analysis

Quiz, 5 questions

1.

Consider the following 2D dataset:

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

Principal Component Analysis

Quiz, 5 questions

2

Which of the following is a reasonable way to select the number of principal components k?

(Recall that n is the dimensionality of the input data and m is the number of input examples.)

Choose k to be the smallest value so that at least 99% of the variance is retained.

- Use the elbow method.
- Choose k to be 99% of m (i.e., k=0.99*m, rounded to the nearest integer).
- Choose k to be the largest value so that at least 99% of the variance is retained

1 point

3.

Suppose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an equivalent statement to this?

$$\frac{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}-x_{\text{approx}}^{(i)}||^2}{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}||^2} \ge 0.95$$

$$\frac{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}-x_{\text{approx}}^{(i)}||^2}{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}||^2} \le 0.05$$

$$\frac{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}-x_{\text{approx}}^{(i)}||^2}{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}||^2} \le 0.95$$

$$\frac{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}-x_{\text{approx}}^{(i)}||^2}{\frac{1}{m}\sum_{i=1}^{m}||x^{(i)}||^2} \ge 0.05$$

Principal Component Analysis

Quiz, 5 questions

4

Which of the following statements are true? Check all that apply.

If the input features are on very different scales, it is a good idea to perform feature scaling before applying PCA.

Given an input $x \in \mathbb{R}^n$, PCA compresses it to a lower-dimensional vector $z \in \mathbb{R}^k$.

Feature scaling is not useful for PCA, since the eigenvector
calculation (such as using Octave's svd (Sigma) routine)
takes care of this automatically.

PCA can be used only to reduce the dimensionality of data by 1
(such as 3D to 2D, or 2D to 1D).

1 point

5.

Which of the following are recommended applications of PCA? Select all that apply.

Preventing overfitting: Reduce the number of features (in a
supervised learning problem), so that there are fewer
parameters to learn.

Data compression: Reduce the dimension of your data, so that it takes up less memory / disk space.

To get more features to feed into a learning algorithm
To get infore readures to reed into a rearring algorithm

I, **Saprem Mukesh Shah**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code

Submit Quiz

Principal Component Analysis

Quiz, 5 questions

