Self-supervised methods for low-level vision Image recognition and computer vision

Victor Letzelter

January 17, 2022

Outline

- Introduction
- 2 Overview of the methods
- 3 Experiments
- Conclusion
- **5** Annex: Details of the results
- 6 Bibliography

The denoising problem

What is a noisy image? (Additive noise model)

Decomposition in the form: x = s + n where :

- s is the signal, whose *closed* components are **not** statistically independent: $p(s_i | s_j) \neq p(s_i)$
- n is the noise, conditionally pixel-wise independent given the signal s: $p(n \mid s) = \prod_i p(n_i \mid s_i)$, with $\mathbb{E}[n_i] = 0$.

The denoising problem

What is a noisy image? (Additive noise model)

Decomposition in the form: x = s + n where :

- s is the signal, whose *closed* components are **not** statistically independent: $p(s_i | s_j) \neq p(s_i)$
- n is the noise, conditionally pixel-wise independent given the signal s: $p(n \mid s) = \prod_i p(n_i \mid s_i)$, with $\mathbb{E}[n_i] = 0$.

Denoising performance: PSNR, in dB (The higher the best)

$$PSNR = 10\log_{10}\left(\frac{MAX_I^2}{MSE}\right)$$

Where $MSE = \frac{1}{3mn}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}\|I(i,j)-K(i,j)\|^2$ with I,K the clean and noisy images

 MAX_I : maximum pixel value.

[Leh+18] Jaakko Lehtinen et al. "Noise2noise" (2018).

Framework

Data at disposal: (s + n, s + n')

Mapping: Impossible task for the network

The training will still converge to the correct solution (as $\mathbb{E}(\boldsymbol{n})=0$)

[Leh+18] Jaakko Lehtinen et al. "Noise2noise" (2018).

Framework

Data at disposal: (s + n, s + n')

Mapping: Impossible task for the network

The training will still converge to the correct solution (as $\mathbb{E}(\boldsymbol{n})=0$)

Remarks

Requires independent realizations of the corruption for each training image (only possible for static scenes)

[KBJ19] Alexander Krull et al. "Noise2void" (2019).

Strategy

Using the CNN $f: (\boldsymbol{x}_{RF(i)}; \boldsymbol{\theta}) \mapsto \hat{\boldsymbol{s}}_i$, minimize loss function

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \sum_{i,j} L\left(f\left(\boldsymbol{x}_{\mathrm{RF}(i)}^{j};\boldsymbol{\theta}\right) = \hat{\boldsymbol{s}}_{i}^{j}, \boldsymbol{s}_{i}^{j}\right)$$

Blind spot networks

[Lai+19] Samuli Laine et al. (2019).

New blind-spot network architecture

Bayesian Approach :
$$\underbrace{p(\boldsymbol{y} \mid \Omega_y)}_{\text{Training data}} = \int \underbrace{p(\boldsymbol{y} \mid \boldsymbol{x})}_{\text{Noise model}} \underbrace{p(\boldsymbol{x} \mid \Omega_y)}_{\text{Unobserved}} d\boldsymbol{x}$$

Approach

- Train a NN to map $\Omega_y \mapsto (\mu_x, \Sigma_x)$, a Gaussian approximation to the prior $p(\boldsymbol{x}|\Omega_y)$.
- ② At test time, first feed context Ω_y to neural network to yield μ_x and Σ_x ; then compute posterior mean $\mathbb{E}_{\boldsymbol{x}}\left[p\left(\boldsymbol{x}\mid\boldsymbol{y},\Omega_y\right)\right]$ by closed-form analytic integration.

Technical configuration

• Training dataset: 44328 images from ImageNet. Between 256x256 and 512x512 pixels in size (6.81 Go).

Technical configuration

- Training dataset: 44328 images from ImageNet. Between 256x256 and 512x512 pixels in size (6.81 Go).
- Pretrained networks from [Lai+19] used.

Technical configuration

- Training dataset: 44328 images from ImageNet. Between 256x256 and 512x512 pixels in size (6.81 Go).
- Pretrained networks from [Lai+19] used.
- Technical configuration: Code executed on Google Colab Pro with GPU T4.

Experiments: With Gaussian Noise, $\boldsymbol{n} \sim \mathcal{N}(0, \sigma^2 = 25^2)$

Noisy input: 20.37 dB

N2N: 35.20 dB

N2C: 35.242 dB

N2V (σ known): 35.237 dB

Experiments: With Poisson Noise, $\boldsymbol{x} \sim \frac{\mathcal{P}(\lambda s)}{\lambda} \; (\lambda = 30)$

Noisy input: 19.81 dB

N2N: 30.34 dB

N2C: 30.36 dB

N2V: 30.27 dB

With Impulse Noise: $\forall i, x[i] \sim \mathcal{U}[0,1]^3$ w.p $\alpha = 0.5$

Noisy input: 11.85 dB

N2N: 37.55 dB

N2C: 37.87 dB

N2V: 37.90 dB

Experiments: With Gaussian Noise, $\boldsymbol{n} \sim \mathcal{N}(0, \sigma^2)$

Performances on Kodak Dataset ($\simeq 2 \min per point$)

January 17, 2022

Experiments: With Poisson Noise, $\boldsymbol{x} \sim \frac{\mathcal{P}(\lambda \boldsymbol{s})}{\lambda}$

Performances on Kodak Dataset

With Impulse color Noise $x[i] \sim \mathcal{U}[0,1]^3$ w.p α

Performances on Kodak Dataset

• N2C produces the best results on average.

- N2C produces the best results on average.
- Similar quality in the self-supervised way but N2V more sensible to parameters variation.

- N2C produces the best results on average.
- Similar quality in the self-supervised way but N2V more sensible to parameters variation.
- N2V outperforms N2C with small training sets (See Annex).

- N2C produces the best results on average.
- Similar quality in the self-supervised way but N2V more sensible to parameters variation.
- N2V outperforms N2C with small training sets (See Annex).

Thanks for your attention!

Experiments: With Gaussian Noise, $\boldsymbol{n} \sim \mathcal{N}(0, \sigma^2)$

$$\sigma = 25$$
 (8-bits unit)

Means of the PSNR				
Method	σ known?	Kodak	BSD300	Set14
N2C	Yes	32.466	31.08	31.259
N2N	Yes	32.448	31.074	31.231
N2V	Yes	32.451	31.027	31.247

$$\sigma = 50$$
 (8-bits unit)

Means of the PSNR				
Method	σ known?	Kodak	BSD300	Set14
N2C	Yes	32.581	31.250	31.251
N2N	Yes	32.572	31.246	31.241
N2V	Yes	32.474	31.156	30.541

Experiments: With Poisson Noise, $\boldsymbol{x} \sim \frac{\mathcal{P}(\lambda s)}{\lambda}$

$$\lambda = 30$$

Means of the PSNR					
Method	σ known?	Kodak	BSD300	Set14	
N2C	Yes	31.806	30.401	30.451	
N2N	Yes	31.795	30.392	30.442	
N2V	Yes	31.653	30.249	30.290	

$$5 \le \lambda \le 50$$

Means of the PSNR					
Method	σ known?	Kodak	BSD300	Set14	
N2C	Yes	31.322	29.897	29.966	
N2N	Yes	31.312	29.891	29.966	
N2V	Yes	31.152	29.742	29.824	

With Impulse color Noise $x[i] \sim \mathcal{U}[0,1]^3$ w.p α

$$\alpha = 0.5$$

Means of the PSNR					
Method	σ known?	Kodak	BSD300	Set14	
N2C	Yes	33.318	31.194	31.447	
N2N	Yes	32.877	30.847	30.961	
N2V	Yes	32.978	30.772	31.070	

$$0 \le \alpha \le 1$$

Means of the PSNR					
Method	σ known?	Kodak	BSD300	Set14	
N2C	Yes	31.725	30.388	29.645	
N2N	Yes	31.566	30.262	29.368	
N2V	Yes	31.431	30.156	29.335	

On small training datasets: with $\boldsymbol{n} \sim \mathcal{N}(0, \sigma^2 = 25^2)$

Avg. PSNR against # of training images (from [Lai+19])

Bilbiography

- [Leh+18]Jaakko Lehtinen et al. "Noise2noise: Learning image restoration without clean data". In: arXiv preprint arXiv:1803.04189 (2018).
- [KBJ19] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. "Noise2void-learning denoising from single noisy images". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 2129–2137.
- [Lai+19] Samuli Laine et al. "High-quality self-supervised deep image denoising". In: Advances in Neural Information Processing Systems 32 (2019), pp. 6970–6980.

January 17, 2022