Halbgruppen

- Menge X zusammen mit binärer Operation * (X,*)
 - X≠∅
 - heißt Halbgruppe, wenn assoziativ $<==>(x*y)*z=x*(y*z) \ \forall x,y,z\in X$

- Halbgruppe kommutativ, wenn $x * y = y * x \ \forall x, y \in X$
- neutrales Element e bzgl. *, wenn

$$* x * e = e * x = x \ \forall x \in X$$

- $x^0 = e$
- * Halbgruppe mit neutralem Element heißt Monoid
- Monoid (X,*) mit neutralem Element e
 - y ist inverses Element zu x, wenn

$$* x * y = y * x = e$$

Gruppen

- (X,*) heißt Gruppe, wenn
 - * assoziativ
 - \exists ! neutrales Element
 - $\forall x \in X$ besitzt inverses Element $x^{-1} \in X$

Untergruppen

- $H \subseteq G$
 - H≠∅
 - (H,*) ist Untergruppe von G(,*)
 - $\ast\,$ Binäroperation muss abgeschlossen sein
 - ähnlich wie [[Untervektorräume]]
 - * inverses Element muss existieren
 - neutrales Element impliziert durch Abgeschlossenheit und Inverses

- $\bullet \ < x > := x^k : k \in \mathbb{Z}$
- Ordnung von $x \in G$
 - $-\ O_G(x):=\min\{n\in\mathbb{N}: x^n=e\}$

 $[[{\bf Diskrete\ Mathematik}]]$