О.И.Ф

Группа

ВОПРОСЫ

Вопрос 1. Пусть регрессионная модель имеет вид $Y_t = \alpha + \varepsilon_t$. Тогда МНК-оценка неизвестного параметра α имеет вид

Вопрос 2. Пусть регрессионная модель имеет вид $Y_t = \beta x_t + \varepsilon_t$. Тогда МНК-оценка неизвестного параметра β имеет вид

Вопрос 3. Пусть регрессионная модель имеет вид $Y_t = \alpha + \beta x_t + \varepsilon_t$. Тогда МНК-оценка неизвестного параметра β имеет вид _______, а оценка неизвестного параметра α может быть найдена из уравнения

Вопрос 4. Пусть $Y_i = \alpha + \beta_1 x_{i1} + ... + \beta_k x_{ik} + \varepsilon_i$, i = 1, ..., n, — модель линейной регрессии. Оценки, которые являются решением задачи

$$\sum_{i=1}^{n} (Y_i - \alpha - \beta_1 x_{i1} - \dots - \beta_k x_{ik})^2 \to \min_{\alpha, \beta_1, \dots, \beta_k},$$

Вопрос 5. Пусть регрессионная модель имеет вид $Y_t = \alpha + \varepsilon_t$, $Y = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^T$.

Тогда $\hat{\alpha} =$ _____, TSS = _____, ESS = _____, RSS = _____, $R^2 =$ ____. **Вопрос 6.** Пусть регрессионная модель имеет вид $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$, i=1,...,n. Тогда основная гипотеза о значимости регрессии "в целом" имеет вид H_0 :

Вопрос 7. Пусть регрессионная модель имеет вид $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$, i = 1, ..., n. Тогда основная гипотеза о значимости свободного члена регрессии H_0 :

Вопрос 8. Пусть регрессионная модель имеет вид $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$, i=1,...,n . Тестируется гипотеза $H_0: eta_1=eta_2=eta_3$. Тогда модель "с ограничением" для тестирования указанной гипотезы имеет вид:

Вопрос 9. Пусть регрессионная модель имеет вид $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$, i=1,...,n. Тестируется гипотеза $H_0:\beta_2=\beta_3=1$. Какая модель из приведенных ниже может выступать в качестве модели "с ограничением" для тестирования указанной гипотезы?

A.
$$Y_i - (x_{i2} + x_{i3}) = \alpha + \beta_1 x_{i1} + \varepsilon_i$$
; **B.** $Y_i + (x_{i2} - x_{i3}) = \alpha + \beta_1 x_{i1} + \varepsilon_i$;

B.
$$Y_i + (x_{i2} - x_{i3}) = \alpha + \beta_1 x_{i1} + \varepsilon_i$$
;

$$\mathbf{C.} \ Y_i + x_{i2} + x_{i3} = \alpha + \beta_1 x_{i1} + \varepsilon_i;$$

C.
$$Y_i + x_{i2} + x_{i3} = \alpha + \beta_1 x_{i1} + \varepsilon_i$$
; **D.** $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 + \beta_3 + \varepsilon_i$.

Е. Другая:

Вопрос 10. Пусть регрессионная модель имеет вид $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$,

i=1,...,n . Тестируется гипотеза H_0 : $\begin{cases} \beta_1+\beta_2+\beta_3=1, \\ \beta_2+\beta_3=0. \end{cases}$ Какая модель из приведенных ниже

может выступать в качестве модели "с ограничением" для тестирования указанной гипотезы?

A.
$$Y_i - x_{i1} = \alpha + \beta_2 (x_{i2} - x_{i3}) + \varepsilon_i$$
; **B.** $Y_i - x_{i1} = \alpha + \beta_3 (x_{i3} - x_{i2}) + \varepsilon_i$;

B.
$$Y_i - x_{i1} = \alpha + \beta_3 (x_{i3} - x_{i2}) + \varepsilon_i$$

C.
$$Y_i + x_{i1} = \alpha + \beta_2 (x_{i2} + x_{i3}) + \varepsilon_i$$

C.
$$Y_i + x_{i1} = \alpha + \beta_2 (x_{i2} + x_{i3}) + \varepsilon_i$$
; D. $Y_i + x_{i1} = \alpha + \beta_2 (x_{i2} - x_{i3}) + \varepsilon_i$.

Е. Другая:

Вопрос 11. Пусть регрессионная модель имеет вид $Y_i = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$,

i=1,...,n . Тестируется гипотеза $H_0: \begin{cases} eta_1 - eta_2 = 0, \\ eta_2 + eta_3 = 0. \end{cases}$ Какая модель из приведенных ниже

может выступать в качестве модели "с ограничением" для тестирования указанной гипотезы?

A.
$$Y_i = \alpha + \beta_2 (x_{i2} - x_{i1} - x_{i3}) + \varepsilon_i;$$
 B. $Y_i - x_{i1} = \alpha + \beta_3 (x_{i3} - x_{i2}) + \varepsilon_i;$

B.
$$Y_i - x_{i1} = \alpha + \beta_3 (x_{i3} - x_{i2}) + \varepsilon_i$$

C.
$$Y_i = \alpha + \beta_2 (x_{i1} + x_{i2} + x_{i3}) + \varepsilon_i$$
; **D.** $Y_i = \alpha + \beta_2 (x_{i1} + x_{i2} - x_{i3}) + \varepsilon_i$.

D.
$$Y_i = \alpha + \beta_2 (x_{i1} + x_{i2} - x_{i3}) + \varepsilon_i$$

Е. Другая:

Вопрос 12. Ниже приведены результаты оценивания уравнения линейной регрессии. Перечислите, какие из переменных в регрессии являются значимыми на уровне значимости 5%. вывод итогов

Регрессионная статистика	
Множественный R	0,93
R-квадрат	0,87
Нормированный R-квадрат	0,83
Стандартная ошибка	1,22
Наблюдения	25

Лисперсионный анапиз

···	df	SS	MS	F	Значимость F
Регрессия	5	186,77	37,35	24,97	0,00
Остаток	19	28,42	1,50		
Итого	24	215,19			

	Коэффициенты	Стандартная ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Ү-пересечение	8,84	0,96	9,22	0,00	6,83	10,85
X1	0,41	0,12	3,39	0,00	0,16	0,66
X2	0,30	0,30	1,00	0,33	-0,33	0,93
X3	0,90	0,13	6,82	0,00	0,63	1,18
X4	-0,78	0,11	-6,82	0,00	-1,01	-0,54
X5	-0,29	0,39	-0,73	0,47	-1,11	0,54

Вопрос 13. Известно, что p-value для коэффициента регрессии равно 0.087, а уровень значимости 0.1. Является ли значимым данный коэффициент в регрессии?

Ответ:

Вопрос 14. Известно, что p-value для коэффициента регрессии равно 0.078, а уровень значимости 0.05. Является ли значимым данный коэффициент в регрессии? Ответ:

Вопрос 15. Известно, что p-value для коэффициента регрессии равно 0.09. На каком уровне значимости данный коэффициент в регрессии будет признан значимым? Ответ:

ЗАДАЧИ

Задача 1. Пусть регрессионная модель $Y_i = \alpha + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \varepsilon_i$, i = 1,...,n, задана в матричной форме при помощи уравнения $Y = X\beta + \varepsilon$, где $\beta = \begin{bmatrix} \alpha & \beta_1 & \beta_2 \end{bmatrix}^T$. Известно, что $\varepsilon \sim N\left(\mathbf{0}; \sigma^2 I\right)$ - n -мерный нормальный случайный вектор. Данные о наблюдениях переменных Y и X следующие:

$$Y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}; \qquad X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Для удобства расчетов ниже приведены матрицы

$$X^{T}X = \begin{bmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ if } \left(X^{T}X\right)^{-1} = \begin{bmatrix} 0.5 & -0.5 & 0.0 \\ -0.5 & 1.0 & -0.5 \\ 0.0 & -0.5 & 1.5 \end{bmatrix}.$$

- А. Укажите число наблюдений.
- В. Укажите число регрессоров в модели (с учетом свободного члена).
- C. Рассчитайте $TSS = \sum_{i=1}^{n} (Y_i \overline{Y})^2$.
- **D.** Рассчитайте при помощи метода наименьших квадратов оценку для вектора неизвестных коэффициентов.
- **Е.** Найдите $RSS = \sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$.
- **F.** Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
- **G.** Используя приведенные выше данные, рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- **H.** Укажите формулу для нахождения ковариационной матрицы вектора МНК-коэффициентов.
- **І.** Используя имеющиеся данные, рассчитайте несмещенную оценку для ковариационной матрицы вектора МНК-коэффициентов.
- **J.** Постройте 90%-ый доверительный интервал для неизвестного параметра α .
- **К.** Постройте 80%-ый доверительный интервал для неизвестного параметра σ .
- **L.** Постройте 90%-ый доверительный интервал для следующей функции от неизвестных параметров $\beta_1 + \beta_2 \alpha$.

Контрольная работа № 1 по эконометрике -2. [2012-2013]

Заполните следующую таблицу.

	пите еледующую таол	٠,٠	
Α.	n =		
В.	k+1=		
C.	TSS =		
D.	$\hat{lpha} =$	$\hat{eta}_1 =$	$\hat{\boldsymbol{\beta}}_{2} =$
Ε.	RSS =		
	$R^2 =$		
	Комментарий:		
F.			
	$\hat{\sigma}^2 =$		
G.			
	$V(\hat{\beta})=$		
н.			
	$\hat{V}(\hat{\beta})=$		
I.			
J.	Ниж. граница =		Верх. граница =
K.	Ниж. граница =		Верх. граница =
L.	Ниж. граница =		Верх. граница =
	1		

Контрольная работа № 1 по эконометрике – 2. [2012-2013]

Задача 2. Пусть регрессионная модель $Y_i = \alpha + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \varepsilon_i$, i = 1,...,n, задана в матричной форме при помощи уравнения $Y = X\beta + \varepsilon$, где $\beta = \begin{bmatrix} \alpha & \beta_1 & \beta_2 \end{bmatrix}^T$. Известно, что $\varepsilon \sim N \left(\mathbf{0}; \sigma^2 I \right)$ - n -мерный нормальный случайный вектор. Параметр $\sigma^2 = 2$.

Данные о наблюдениях переменных Y и X следующие:

$$Y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}; \qquad X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Для удобства расчетов ниже приведены матрицы

$$X^{T}X = \begin{bmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \mathbf{u} \left(X^{T}X \right)^{-1} = \begin{bmatrix} 0.5 & -0.5 & 0.0 \\ -0.5 & 1.0 & -0.5 \\ 0.0 & -0.5 & 1.5 \end{bmatrix}.$$

Найдите

	$D(\varepsilon_2)=$
Α.	
В.	$D(\beta_1 - \beta_2) =$
C. ¹	$\hat{\mathrm{D}}(\hat{lpha})$ =
D.	$D(\hat{eta}_2) =$
E.	$\operatorname{corr}\left(\hat{\beta}_{1},\hat{\beta}_{2}\right) =$
F.	$\mathbb{E}ig(\hat{m{\sigma}}^2ig) =$
G.	$\mathbb{E}ig(\hat{oldsymbol{eta}}_2^2ig)\!-oldsymbol{eta}_2^2=$

 $[\]hat{\mathbf{D}}(\hat{lpha})$ – несмещенная оценка для дисперсии МНК-коэффициента \hat{lpha} .

Задача 3. Рассмотрим регрессионную модель

 $Y_i = \alpha + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \beta_3 \cdot x_{i3} + \beta_4 \cdot x_{i4} + \varepsilon_i \ (i = \overline{1,n})$. Известно, что $\varepsilon_1,...,\varepsilon_n$ – независимые одинаково распределенные нормальные случайные величины с математическим ожиданием ноль и дисперсией σ^2 (параметр σ^2 неизвестен). Ниже приведены результаты оценки уравнения регрессии по имеющимся данным. вывод итогов

Регрессионная стати	стика
Множественный R	0,994656
R-квадрат Нормированный R-	0,98934
квадрат	0,975126
Стандартная ошибка	1,827516
Наблюдения	8

Дисперсионный анализ

	df	SS	MS	F	Значимость <i>F</i>
Регрессия	4	929,8556	232,4639	69,60384	0,002734
Остаток	3	10,01944	3,339814		
Итого	7	939,875			

	Коэффициенты	Стандартная ошибка	t- статистика	Р- Значение	Нижние 95%	Верхние 95%
Ү-пересечение	5,913512	4,621017	1,279699	0,290643	-8,79263	20,61965
X1	0,790264	0,157168	5,028146	0,015157	0,290085	1,290443
X2	2,183104	0,213342	10,23289	0,001989	1,504155	2,862052
X3	0,349258	0,415603	0,840366	0,4624	-0,97337	1,671891
X4	0,55156	0,188375	2,927992	0,0611	-0,04793	1,151052

- **1.** Сформулируйте основную и альтернативную гипотезу, которые соответствуют тесту на значимость уравнения регрессии "в целом".
- 2. Протестируйте на значимость регрессию "в целом" на уровне значимости 5%.
 - 2.1. Приведите формулу для тестовой статистики.
 - 2.2. Укажите распределение тестовой статистики.
 - 2.3. Вычислите наблюдаемое значение тестовой статистики.
 - 2.4. Укажите границы области, где основная гипотеза не отвергается.
 - 2.5. Сделайте статистический вывод о значимости уравнения регрессии "в целом".
- **3.** Проверьте гипотезу H_0 : $\alpha = 5$ против альтернативной гипотезы H_1 : $\alpha > 5$. Уровень значимости 5% .
 - 3.1. Приведите формулу для тестовой статистики.
 - 3.2. Укажите распределение тестовой статистики.
 - 3.3. Вычислите наблюдаемое значение тестовой статистики.
 - 3.4. Укажите границы области, где основная гипотеза не отвергается.
 - 3.5. Сделайте статистический вывод.

Контрольная работа № 1 по эконометрике -2. [2012-2013]

Заполните следующую таблицу.

Juiloni	ите следующую таслицу.
1	$oxed{H_0}$: $oxed{H_1}$:
2.1	Тестовая статистика:
2.2	Распределение тестовой статистики:
2.3	Наблюдаемое значение тестовой статистики:
2.4	Ниж. граница = Верх. граница =
2.5	Статистический вывод:
3.1	Тестовая статистика:
3.2	Распределение тестовой статистики:
3.3	Наблюдаемое значение тестовой статистики:
3.4	Ниж. граница = Верх. граница =
3.5	Статистический вывод: