Apunte Único: Álgebra Lineal Computacional - Práctica 5

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 05/06/25 @ 11:39

Choose your destiny:

(click click 🕈 en el ejercicio para saltar)

- Notas teóricas
- © Ejercicios de la guía:

1.	4.	7.	10.	13.	16.	19.	22 .
2.	5.	8.	11.	14.	17.	20.	??.
3	6.	9.	12 .	15.	18.	21 .	

© Ejercicios de Parciales

Esta Guía 5 que tenés se actualizó por última vez: 05/06/25 @ 11:39

Escaneá el QR para bajarte (quizás) una versión más nueva:

Guía 5

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

18

Ejercicios de la guía:

Ejercicio 1. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram extstyle 2, o mejor aún si querés subirlo en IAT $_{ extstyle E}$ Xo una pull request al extstyle 2

Ejercicio 2. Probar que si $A \in K^{n \times n}$ es hermitiana, entonces los elementos de la diagonal $a_{ii} \in \mathbb{R}$.

Si A es hermitiana, entonces:

$$A \cdot A^* = A^* \cdot A$$

Para probar que los elementos diagonales pertenecen a $\mathbb R$ se puede usar la definición:

$$A\cdot A^*\in K^{n\times n}$$

la matriz transpuesta y conjugada va a tener la misma diagonal:

$$a_{ii} \xrightarrow{\text{trasponer y}} \overline{(a_{ii})^t} = \overline{a_{ii}} \stackrel{!}{=} a_{ii}$$

Por lo tanto si a_{ii} es igual a su conjugado debe ser un número real.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 3. Dada $A \in K^{n \times n}$ hermitiana, probar que existen matrices $B, C \in \mathbb{R}^{n \times n}$ con B simétrica y C antisimétrica ($C^t = -C$) tales que A = B + iC.

 \overline{A} apartir de una matriz hermitiana me puedo construir las matrices B y C como:

$$B = \frac{A + A^*}{2}$$
 y $C = \frac{A - A^*}{2}$,

Donde las matrices B y $C \in \mathbb{R}$ y además son simétrica y antisimétrica respectivamente.

Ahora quiero ver la cuenta:

$$B + iC = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + A^*}{2} + i\frac{A - A^*}{2} = \frac{A + iA}{2} + \frac{A^* - iA^*}{2}$$

$$\stackrel{!}{=} \frac{A + iA}{2} + \frac{A - iA}{2}$$

$$\stackrel{!}{=} A$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 4. Dada $A \in K^{n \times n}$ hermitiana y $S \subset K^n$ un subespacio invariante por A, es decir $Av \in S$ para todo $v \in S$. Probar que S^{\perp} es invariante por A.

Si tomo un $v \in S$ y un $w \in S^{\perp}$:

$$w^* \cdot \overset{\in S}{\overset{\downarrow}{v}} = 0$$

Ahora que sé que S es un subespacio invariante por A:

$$Av = \lambda v \stackrel{\times A^*}{\Longleftrightarrow} A^* A v \stackrel{!}{=} A^2 \lambda A v = \lambda^2 v \stackrel{\stackrel{\bullet}{=}}{\rightleftharpoons} k v \in S$$

Con esos ingredientes:

$$(Aw)^* \cdot \overset{\in S}{Av} = w^*A^* \cdot Av \stackrel{\bigstar^1}{=} k(w^* \cdot v) = 0$$

Por lo tanto $Aw \in S^{\perp} \ \forall w \in S^{\perp}$.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 5. Probar que $A \in K^{n \times n}$ es hermitiana y definida positiva si y solo si A es unitariamente semejante a una matriz diagonal real con elementos de la diagonal positivos.

Hay que probar una doble implicación:

 (\Rightarrow)

$$Av = \lambda v \overset{\times v^*}{\Longrightarrow} v^* Av = \lambda v * v \Leftrightarrow v^* Av \overset{\bigstar^*}{=} \lambda ||v||_2^2$$

$$Av = \lambda v \overset{*}{\Longleftrightarrow} v^* A^* = \overline{\lambda} v^* \overset{\times v}{\Longleftrightarrow} v^* A^* v = \overline{\lambda} v^* v \Leftrightarrow v^* A^* v \overset{\bigstar^2}{=} \overline{\lambda} ||v||_2^2$$

Como $A=A^*$ el miembro izquierdo en \bigstar^1 y \bigstar^2 es igual. Por lo tanto $\lambda=\overline{\lambda} \implies \lambda \in \mathbb{R}$.

Ahora si A es una matriz definida positiva:

$$Av = \lambda v \underset{\rightarrow}{\overset{\times v}{\Longrightarrow}} \underbrace{v^* A v}_{>0 \text{ si } v \neq 0} = \lambda v^* v = \lambda \cdot \|v\|_2^2 > 0 \ \forall v \neq 0 \implies \lambda > 0$$

Hasta acá, con las hipótesis tengo autovalores reales y positivos, ahora voy a ver que los autovectores tienen que ser ortogonales. Dado 2 autovectores v_1 y v_2 asociados a distintos autovalores:

$$Av_{1} = \lambda_{1}v_{1} \quad \text{y} \quad Av_{2} = \lambda_{2}v_{2} \Leftrightarrow \begin{cases} v_{2}^{*}Av_{1} \stackrel{!}{=} (Av_{2})^{*}v_{1} = \lambda_{2}v_{2}^{*} \cdot v_{1} \stackrel{\bigstar}{=} \lambda_{1}v_{2}^{*} \cdot v_{1} \\ v_{1}^{*}Av_{2} = \lambda_{2}v_{1}^{*} \cdot v_{2} \stackrel{\bigstar}{=} \lambda_{2}v_{1}^{*} \cdot v_{2} \end{cases}$$

Restando ★³ y ★⁴:

$$0 \stackrel{!!}{=} \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} (v_1^* \cdot v_2) \Leftrightarrow v_1 \perp v_2$$

Medio que con eso alcanzaría, porque en el caso de tener

(⇐) CONSULTAR, probar por absurdo?

Ejercicio 6. Sea
$$A = \begin{pmatrix} 4 & \alpha + 2 & 2 \\ \alpha^2 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

- (a) Hallar los valores de $\alpha \in \mathbb{R}$ para que A sea simétrica y $\lambda = 0$ sea autovalor de A.
- (b) Para el valor de α hallado en (a), diagonalizar ortonormalmente la matriz A.
- (a) Quiero que A sea simétrica:

$$A = A^{\iota} \Leftrightarrow \alpha \in \{-1, 2\}$$

$$A_{\alpha=2} = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \qquad y \qquad A_{\alpha=-1} = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

Noto que si $\alpha=2$ la matriz que da con filas linealmente dependientes, por lo tanto cuando $\alpha=2$ tengo autovalor $\lambda=0$. Podría triangular la matriz con $\alpha=-1$, para ver si hay alguna fila linealmente dependiente, pero no hay ganas. (b) Dado que A es una matriz simétrica, es ortonormalmente diagonalizable. Hay que diagonalizar asegurando que la base de autovectores sea una BON. El procedimientos puede hacerse como cualquier diagonalización, pero acá voy a explotar **©** el hecho de que la base de autovectores va a ser ortogonal.

Busco autovectores de $\lambda = 0$, que equivale a buscar elementos del núcleo de la matriz A a ojo:

$$\begin{array}{c} (A-\lambda I)v_{(\lambda=0)}=0 \Leftrightarrow v_{(\lambda=0)} \in \{(1,-1,0),(0,1,-2)\} \\ \xrightarrow{\text{normalizando}} v_{(\lambda=0)} \in E_{(\lambda=0)} = \left\{(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0),(0,\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}})\right\} \end{array}$$

Como estoy en \mathbb{R}^3 no hay muchas opciones para el vector restante, tiene que ser ortogonal a esos dos. Si no ves a ojo que por ejemplo el vector (2,2,1) funciona podés plantear:

$$\left\{ \begin{array}{lcl} (1,-1,0)\cdot(x,y,z) & = & 0 \\ (0,1,-2)\cdot(x,y,z) & = & 0 \end{array} \right.$$

Resolvelo y obtenés así un vector ortogonal.

Ahora quiero ver a que autovalor corresponde:

$$Av = \begin{pmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 18 \\ 18 \\ 9 \end{pmatrix} = 9 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Tengo así la siguiente base ortonormal para diagonalizar la matriz:

BON =
$$\left\{ \underbrace{\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \left(0, \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)}_{E_{(\lambda=9)}}, \underbrace{\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)}_{E_{(\lambda=9)}} \right\}$$

Y ahora queda fácil, porque la inversa de la matriz de autovectores C es C^t , dado que es una matriz ortogonal o matriz unitaria:

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{2}{3} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{5}} & \frac{2}{3} \\ 0 & -\frac{2}{\sqrt{5}} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🖸

Ejercicio 7. Considerar la matriz:

$$A = \left(\begin{array}{cc} 4 & 0 \\ 3 & 5 \end{array}\right)$$

- (a) Calcular una descomposición en valores singulares de A.
- (b) Dibujar el círculo unitario en \mathbb{R}^2 y la elipse $\{Ax : x \in \mathbb{R}^2, \|x\|_2 = 1\}$, señalando los valores singulares y los vectores singulares a izquierda y a derecha.
- (c) Calcular $||A||_2$ y cond₂(A).
- (d) Calcular A^{-1} usando la descomposición hallada.
- (a) Quieron encontrar la descomposición en valores singulares:

$$A = U\Sigma V^*$$

Voy a calcular $A^* \cdot A$ para calcular sus *jugosos autovalores*. Como la matriz <u>es cuadrada</u>, no me preocupo por pensar si es mejor hacer $A \cdot A^*$ o al revés, porque van a tener el mismo tamaño:

$$H = A^* \cdot A = \begin{pmatrix} 4 & 3 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 25 & 15 \\ 15 & 25 \end{pmatrix} \xrightarrow{\text{calculo}} \det(H - \lambda I) = 0 \Leftrightarrow \lambda \in \{10, 40\}$$

Ahora puedo decir que los valores singulares son:

$$\sigma_i = \sqrt{\lambda_i} \xrightarrow{\text{de mayor}} \{\sigma_1, \sigma_2\} = \left\{2\sqrt{10}, \sqrt{10}\right\} \xrightarrow{\text{matriz}} \Sigma = \sqrt{10} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Calculo autovectores de H y los normalizo para obtener una base ortonormal una BON:

$$Hv_{\lambda} = \lambda v_{\lambda} \Leftrightarrow \left\{ \begin{array}{ll} E_{\lambda=40} & = & \left\{ \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right) \right\} \\ & \text{y} & \Longrightarrow \text{ BON} = \left\{ \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \right\} \\ E_{\lambda=10} & = & \left\{ \left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \right\} \end{array} \right.$$

Siempre en una matriz unitaria como H los autovectores asociados a autovalores de distinto valor son perpendiculares.

Estoy en condiciones de armar la matriz V, matriz que tiene a los v_i autovectores de H normalizados como columnas, es decir la BON recién calculada:

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Falta menos. Ahora voy a buscar la U, que tiene como columnas a los:

$$u_i = \frac{Av_i}{\sigma i}$$
 con $\sigma_i \neq 0 \xrightarrow{\text{armo}} \{u_1, u_2\} = \left\{\frac{Av_1}{\sigma_1}, \frac{Av_2}{\sigma_2}\right\} \stackrel{!}{=} \left\{\frac{1}{\sqrt{5}}(1, 2), \frac{1}{\sqrt{5}}(2, -1)\right\}$

Entonces tengo:

$$U = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$$

Finalmente:

$$A = U\Sigma V^* = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \sqrt{10} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \stackrel{\checkmark}{=} \begin{pmatrix} 4 & 0 \\ 3 & 5 \end{pmatrix}$$

(b)

Scatter para 200 $\boldsymbol{x}/\|\boldsymbol{x}\|_2 = 1$ y para 200 $\boldsymbol{A}\boldsymbol{x}$

$$\left| \cdot \left\{ x : x \in \mathbb{R}^2, \|x\|_2 = 1 \right\} \cdot \left\{ Ax : x \in \mathbb{R}^2, \|x\|_2 = 1 \right\} \right|$$

(c) La definición de norma subordinada:

$$||A||_2 = \max_{||x||_2=1} \left(\frac{||Ax||_2}{||x||_2}\right)$$

Y viendo el gráfico:

$$||A||_2 = ||\sigma_1 u_1||_2 = |\sigma_1| \cdot \underbrace{||u_1||_2}_{=1} = \sigma_1 \quad \bigstar^1$$

Por otro lado la definición de condición:

$$\operatorname{cond}_2(A) = ||A||_2 \cdot ||A^{-1}||_2$$

Ya tengo $||A||_2$, ahora quiero encontrar $||A^{-1}||$:

$$A = U\Sigma V^* \xleftarrow{\text{invierto}} A^{-1} = (V^*)^{-1}\Sigma^{-1}U^{-1} \stackrel{!}{=} V\Sigma^{-1}U^* = V \begin{pmatrix} \frac{1}{\sigma_1} & 0\\ 0 & \frac{1}{\sigma_2} \end{pmatrix} U^*$$

Por lo tanto

$$||A^{-1}|| = \frac{1}{\sigma_2} \quad \star^2 \xrightarrow{\text{finalmente}} \text{cond}_2(A) = ||A||_2 \cdot ||A^{-1}||_2 = \frac{\sigma_1}{\sigma_2} = 2$$

(d) Usando el cálculo del ítem (c):

$$A^{-1} \stackrel{!}{=} V \Sigma^{-1} U^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{10}} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \stackrel{\checkmark}{=} \frac{1}{20} \begin{pmatrix} 5 & 0 \\ -3 & 4 \end{pmatrix}$$

A

Si bien esto es una descompsición de A^{-1} ¡No es una descomposición en valores sigulares!

Se puede sacar info de esa expresión, pero ya que la diagonal de Σ no esté ordenada en orden decreciente es suficiente para justificar que no es una SVD. A

Pero moviendo las columnas se encuentra la descomposición en valores singulares, mirá:

$$A^{-1} \stackrel{!}{=} V\Sigma^{-1}U^* \stackrel{!!!}{=} \frac{1}{\sqrt{2}} \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{\sqrt{10}} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{\sqrt{5}} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}}_{\sqrt{5}} \underbrace{\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}}_{\sqrt{10}} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \underbrace{\begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}}_{\sqrt{5}} \underbrace{\begin{pmatrix} 5 & 0 \\ -3 & 4 \end{pmatrix}}_{\sqrt{5}}$$

Notar que esa matriz $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es involutiva, es su propia inversa. Es así que la descomposición en valores singulares de A^{-1} que nadie pidió pero todos queremos:

$$A^{-1} \stackrel{!}{=} \tilde{U}\tilde{\Sigma}\tilde{V}^* = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$$

Acá te hago el gráfico del ítem (b) pero para A^{-1} :

Scatter para 200 $x/||x||_2 = 1$ y para 200 $A^{-1}x$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc 0.

Ejercicio 9. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc

Ejercicio 10. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 11. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 12. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en IAT $_{
m EX}$ o una pull request al o.

Ejercicio 13. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT_EX \rightarrow una pull request al \bigcirc .

Ejercicio 14. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 15. S... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 16. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{ extstyle d}{ extstyle d}$, o mejor aún si querés subirlo en IAT $_{ extstyle EX}$ o una pull request al $rac{ extstyle Q}{ extstyle d}$

Ejercicio 17. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en IATEXo una pull request al $rac{1}{2}$.

Ejercicio 18. S... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🥑, o mejor aún si querés subirlo en IAT_EX→ una pull request al 😯.

Ejercicio 19. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 22. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ligercicios de parciales:

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .