WHAT IS CLAIMED IS:

1	1. A method for measuring the mass of a substance, the method		
2	comprising:		
3	applying energy to a substance;		
4	measuring a response resulting from the application of energy; and		
5	determining the mass of the substance based on the measured response.		
1	2. A method as in claim 1, further comprising volumetrically		
2	metering the substance prior to applying the energy.		
1	3. A method as in claim 2, wherein the substance comprises a		
2	powder, and wherein the metering step comprises depositing the powder within a		
3	metering chamber.		
1	4. A method as in claim 1, wherein the energy applying step		
2	comprises directing electromagnetic radiation onto the substance.		
1	5. A method as in claim 1, wherein the energy applying step		
2	comprises directing light onto the substance.		
1	A method as in claim 5, wherein the measuring step comprises		
2	measuring light transmitted through the substance, and wherein the determining step		
3	comprises correlating the measured light with an associated mass.		
1	7. A method as in claim 5, wherein the measuring step comprises		
2	measuring light emitted from the substance, and wherein the determining step comprises		
3	correlating the measured light with an associated mass.		
1	8. A method as in claim 5, wherein the measuring step comprises		
2	measuring an interference pattern caused by transmitted or emitted light from the		
3	substance interfering with the light directed onto the substance, and wherein the		
4	determining step comprises correlating the interference pattern with an associated mass.		
1	9. A method as in claim 1, wherein the energy applying step		
2	comprises applying current or voltage to the substance, wherein the measuring step		
3	comprises measuring the impedance of the substance, and wherein the determining step		
4	comprises correlating the impedance with an associated mass.		

1	10. A method as in claim 1, wherein the energy applying step
2	comprises applying vibrational energy to the substance, and wherein the measuring step
3	comprises measuring the energy dissipation caused by the substance.
1	11. A method as in claim 10, wherein the step of applying vibrational
2	energy comprises vibrating a piezoelectric element to subject the substance to pressure
3	changes, wherein the measuring step comprises measuring the vibrational frequency of
4	the piezoelectric element after energy has been dissipated by the substance, and wherein
5	the determining step comprises comparing the measured vibrational frequency with a
6	natural oscillating frequency of the piezoelectric element, and correlating the change in
7	frequency with an associated mass.
1	12. A method as in claim 1, further comprising comparing the
2	determined mass with a range of masses that defines an acceptable unit mass range to
3	determine whether the measured substance is within the acceptable range.
1	13. A method as in claim 1, further comprising processing the response
2	using tomography.
1	134. A method for determining whether a metered volume of a
2	substance contains a unit mass, the method comprising;
3	filling a metering chamber defining a certain volume with a substance;
4	applying energy to the substance while within the metering chamber;
5	measuring a response resulting from the application of energy; and
6	determining the mass of the substance based at least in part on the
7	measured response.
1	145. A method as in claim 14, further comprising comparing the
2	determined mass with a range of masses that defines an acceptable unit mass range to
3	determine whether the determined mass falls within the acceptable range.
1	15. A method as in claim 14, further comprising ejecting the substance
2	from the metering chamber, and applying the energy and measuring the response while

the ejected powder is traveling away from the metering chamber.

1	16. A method for measuring the mass of a substance, the method			
2	comprising:			
3	directing a beam of radiation onto a substance;			
4	measuring the transmittance or emittance of radiation from the substance			
5	or an interference pattern caused by transmitted or emitted radiation from the substance			
6	interfering with the beam; and			
7	determining the mass of the substance based at least in part on the			
8	measured transmittance or emittance of radiation, or the interference pattern.			
1	17. A method as in claim 17, further comprising depositing the			
2	substance within a metering chamber and passing the beam through the metering			
3	chamber.			
1	18. A method as in claim 18, wherein the substance comprises a			
2	powder, and wherein the depositing step comprising drawing the powder into the			
3	metering chamber with a vacuum.			
1	19. A method as in claim 17, further comprising comparing the			
2	determined mass with a range of masses that defines an acceptable unit mass range to			
3	determine whether the measured substance is within the acceptable range.			
1	20. A method for determining whether a unit mass of a substance has			
2	been metered, the method comprising:			
3	passing a calibrating beam of radiation at a certain intensity through a			
4	metering chamber that defines a certain volume;			
5	measuring the intensity of the calibrating beam after passing through the			
6	chamber;			
7	filling the chamber with a substance;			
8	passing a measuring beam of radiation at the certain intensity through th			
9	substance;			
10	measuring the intensity of the measuring beam after passing through the			
11	substance;			
12	determining the transmittance of the measuring beam through the			
13	substance; and			

3

4

acceptable range of masses.

14	determining the mass of the substance based at least in part on the		
15	transmittance of the measuring beam.		
1			
1	21. A method as in claim 21, wherein the transmittance is determined		
2	by subtracting the measured intensity of the measuring beam from the measured intensity		
3	of the calibrating beam.		
1	22. A method as in claim 21, wherein the substance comprises a		
2	powder, and wherein the depositing step further comprises drawing a vacuum within the		
3	metering chamber to assist in capturing falling powder into the chamber.		
1			
1	23. A method as in claim 23, wherein the metering chamber includes a		
2	filter upon which the substance rests, and further comprising passing the calibrating beam		
3	and the measuring beam through the filter.		
1	24. A method as in claim 23, wherein the metering chamber is included		
2	within a rotatable drum, and further comprising rotating the drum between multiple		
3	positions where the intensity of the calibrating beam is measured, where the powder is		
4	deposited in the chamber, and where the intensity of the measuring beam is measured.		
1	25. A method as in claim 25, further comprising rotating the drum to		
2	another position and ejecting the powder from the chamber and into a receptacle.		
1	26. A method as in claim 26, further comprising repeating the step of		
2	rotating the drum between the multiple positions to deposit another mass of powder into		
3	another receptacle.		
1	27. A method as in claim 21, further comprising comparing the		
2	determined mass with a range of masses that defines an acceptable unit mass range to		
3	determine whether the measured substance is within the acceptable range.		
1	28. A method as in claim 28, further comprising varying the amount of		
2	vacuum and/or the rate at which the powder is permitted to fall in a subsequent filling of		
2	raceant and of the rate at which the powder is permitted to fair in a subsequent fiffing of		

the metering chamber based on the value of the measured mass in comparison to the

i		29.	A system for measuring the mass of a substance, the system
2	comprising:		
3		a mete	ering chamber that defines a certain volume and that is adapted to
4	receive a subst	ance;	
5		an ene	ergy source disposed to supply energy to the substance;
6		at leas	t one sensor to measure a response from the substance due to the
7	application of	energy	from the energy source; and
8		a proc	essor coupled to the sensor to determine a mass of the substance
9	held within the	e meter	ing chamber based at least in part on the measured response.
1		30.	A system as in claim 30, wherein the energy source comprises a
2	source of elect	romag	netic radiation disposed to direct electromagnetic radiation onto the
3	substance.		
1		31.	A system as in claim 31, wherein the sensor is selected from a
2	group of senso	rs con	sisting of a radiometer and a reflectometer.
1		32.	A system as in claim 31, wherein the processor is configured to
2	determine the	mass o	f the substance by correlating transmitted or emitted light measured
3	by the sensor v	with an	associated mass.
1		33.	A system as in claim 31, wherein the processor is configured to
2	determine the	mass o	of the substance by correlating a measured interference pattern
3	measured by the	he sens	sor with an associated mass.
1		34.	A system as in claim 30, wherein the energy source comprises an
2	electrode that i	is adap	ted to pass electrical current through the substance, wherein the
3	sensor compris	ses a se	ensing electrode and circuitry to measure the capacitance of the
4	substance.		
1		35.	A system as in claim 30, wherein the energy source comprises a
2	vibratable elen	nent th	at is adapted to apply vibrational energy to the substance, and
3	wherein the se	nsor is	s configured to measure an amount of energy dissipation caused by
4	the substance.		

1	36. A system as in claim 36, wherein the vibratable element comprises
2	a piezoelectric element that is adapted to supply pressurize air pulses to the substance,
3	wherein the sensor further comprises circuitry to determine the vibrational frequency of
4	the piezoelectric element after energy has been dissipated by the substance, and wherein
5	the processor is configured to compare the measured vibrational frequency with a natural
6	oscillating frequency of the piezoelectric element, and to correlate the change in
7	frequency with an associated mass.
1	37. A system as in claim 36, wherein the processor is further
2	configured to compare the determined mass with a range of masses that defines an
3	acceptable unit mass range to determine whether the measured substance is within the
4	acceptable range.
1	38. A system for measuring the mass of a substance, the system
2	comprising:
3	a metering chamber that defines a certain volume and that is adapted to
4	receive a substance;
5	a radiation source disposed to pass a beam of radiation through the
6	metering chamber;
7	at least one sensor to detect radiation transmitted or emitted from the
8	substance; and
9	a processor coupled to the sensor to determine a mass of the substance
10	held within the metering chamber based at least in part on the detected radiation.
1	39. A system as in claim 39, wherein the processor is further
2	configured to determine the mass of the substance by associating the loss of transmitted
3	light, an interference pattern, or the stimulation of fluorescence with a stored mass value.
1	40. A system as in claim 40, wherein the processor is configured to
2	determine the loss of transmitted light by comparing an intensity value of the beam after
3	passing through the substance with an intensity value of a beam from the radiation source
4	passing through the chamber in the absence of the substance.
1	41. A system as in claim 39, wherein the metering chamber includes a
2	filter at a bottom end upon which the substance is adapted to rest, and wherein the

3	radiation source is disposed to pass a beam through the filter and then through the	
4	chamber.	
1	42. A system as in claim 42, further comprising a vacuum source in	
2	communication with the chamber to assist in drawing the substance into the chamber.	
1	43. A system as in claim 43, further comprising a rotatable drum in	
2	which the chamber is disposed, and wherein the radiation source is included within the	
3	drum.	
1	44. A system as in claim 44, further comprising a powder fluidization	
2	apparatus disposed above the drum that is adapted to supply fluidized powder to the	
3	chamber.	
1	45. A system as in claim 45, further comprising a pair of sensors, and	
2	wherein the processor is configured to rotate the chamber past one of the sensors when	
3	the chamber is empty of powder, to rotate the chamber into alignment with the powder	
	fluidization device to permit the chamber to be filled with powder, and to rotate the	
4 5	chamber past the other sensor when the chamber is filled with powder.	
J	Chamber past the other sensor when the chamber is three wax powers	
1	46. A system as in claim 46, further comprising code used by the	
2	processor to compare the determined mass of the powder with a range of acceptable mass	
3	values, and wherein the processor is configured to alter the amount of vacuum and/or	
4	operation of the fluidization apparatus depending on the outcome of the comparison.	
1	47. A system as in claim 39, further comprising code used by the	
2	processor that includes a relationship between the amount of transmitted light, an	
3	interference pattern, or the amount of fluorescence and the associated mass of the	
4	substance when the substance fills the chamber.	
1	48. A system as in claim 39, wherein the radiation source comprises a	
2	laser and wherein the sensor comprises a lens and a radiometer.	