# Scientific Computing for Biologists

Lecture 7
Testing for Group Effects and Contrasting Groups:
ANOVA and Discriminant Analysis

Instructor: Paul M. Magwene

09 October 2012

## Outline of Lecture

- ANOVA as multiple regression
- Fisher's Discriminant Function
- Canonical Variates Analysis (CVA)
  - Geometric and Algebraic View
  - Similarities and differences between CVA and PCA
  - Interpretting CVA

# Testing the Regression Effects



Figure: Geometry of multiple regression.

$$|\vec{y}|^2 = SS_{\text{total}}$$
  
 $|\vec{\hat{y}}|^2 = SS_{\text{regression}} = R^2SS_{\text{total}}$   
 $|\vec{d}|^2 = SS_{\text{resiudal}} = (1 - R^2)SS_{\text{total}}$ 

Is my regression significant?  $\Rightarrow$  Is  $|\vec{\hat{y}}|^2$  large relative to  $|\vec{e}|^2$ ?

# Geometry of the Population Regression Model



Figure: Left: null hypothesis of no regression effects is true; Right: null model is false.

Null Hypothesis:  $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$ 

# Dimensionality of Regression Subspaces



$$\dim(\mathcal{V}_{\mathsf{total}}) = N$$
 (total)  
 $\dim(\mathcal{V}_1) = 1$  (mean effect)  
 $\dim(\mathcal{V}_x) = p$  (effect space)  
 $\dim(\mathcal{V}_e) = N - p - 1$  (error space)

# Comparing the Effect Space and the Error Space

To compare the squared length of  $|\vec{\hat{y}}|^2$  and  $|\vec{e}|^2$  we divide them by the dimension of the subspaces in which they lie.

$$M(\vec{y}) = \frac{|\vec{y}|^2}{\dim(\mathcal{V}_X)}$$
$$M(\vec{e}) = \frac{|\vec{e}|^2}{\dim(\mathcal{V}_e)}$$

We compare these by defining a statistic, F:

$$F = \frac{M(\tilde{y})}{M(\vec{e})} = \frac{\dim(\mathcal{V}_e)|\tilde{y}|^2}{\dim(\mathcal{V}_x)|\vec{e}|^2}$$
$$= \frac{(N - p - 1)R^2}{p(1 - R^2)}$$

When null hypothesis is true,  $F \approx 1$ ; when it is false,  $F \gg 1$ .

# Two-group ANOVA as Regression

We can also use a geometric perspective to test whether the mean of a variable differs between two groups of subjects.

Setup a 'dummy variable' as the predictor  $X_g$ . We assign all subjects in group 1 the value 1 and all subjects in group 2 the value -1 on the dummy variable. We then regress the variable of interest, Y, on  $X_g$ .

$$y = X_g b + e$$

| *************************************** | Raw   |               | Centered |                                 |  |
|-----------------------------------------|-------|---------------|----------|---------------------------------|--|
| Group                                   | $Y_i$ | $X_i$         | $y_i$    | $x_i$                           |  |
| 1                                       | 2     | -1            | -3       | $-\frac{4}{3}$                  |  |
|                                         | 3     | -1            | -1       | $-\frac{4}{3}$                  |  |
| 2                                       | 5     | 1             | 0        | $\frac{2}{3}$                   |  |
|                                         | 6     | 1             | 1        | $\frac{2}{3}$                   |  |
|                                         | 6     | 1             | 1        | $\frac{2}{3}$                   |  |
|                                         | 7     | 1             | 2        | 2 3<br>2 3<br>2 3<br>2 3<br>2 3 |  |
| Mean                                    | 5     | $\frac{1}{3}$ | 0        | 0                               |  |

# Two-group ANOVA as Regression, cont

- When the means are different in the two groups,  $X_g$  will be a good predictor of the variable of interest, hence  $\vec{y}$  and  $\vec{x_g}$  will have a small angle between them.
- When the means in the two groups are similar, the dummy variable will not be a good predictor. Hence the angle between  $\vec{y}$  and  $\vec{x_g}$  will be large.



# Multi-way ANOVA as Regression

- Exactly the same idea applies to g groups, except now instead of one grouping variable, we define g-1 grouping variables,  $\dim(X_g)=g-1$ .
- Then we calculate the multiple regression as we did before:

$$y = Xb + e$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}; X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1g} \\ 1 & x_{21} & x_{22} & \cdots & x_{2g} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{ng} \end{bmatrix};$$

Estimate b as:

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

# How Do We Construct the Grouping Matrix, $X_g$ ?

Two common methods are:

1 Dummy coding - define a set of g grouping variables, where values take either 0 or 1, depending on group membership, but use only the first g-1 columns:

$$U_j = \begin{cases} 1, & ext{for every subject in group } j, \\ 0, & ext{for all other subjects.} \end{cases}$$

and

$$X_g = [U_1, U_2, \cdots, U_{g-1}]$$

**2** Effect coding – define the  $U_j$  as above, and set:

$$X_g = [U_1 - U_g, U_2 - U_g, \cdots, U_{g-1} - U_g]$$

In general, effect coding is more similar to standard ANOVA contrasts.

# ANOVA: Example Data Set

|          | $g_1$ | $g_2$ | $g_3$ | $g_4$ |   |      |
|----------|-------|-------|-------|-------|---|------|
|          | 20    | 21    | 17    | 8     |   |      |
|          | 17    | 16    | 16    | 11    |   |      |
|          | 17    | 14    | 15    | 8     |   |      |
| $M_{g.}$ | 18    | 17    | 16    | 9     | M | = 15 |
|          | 207   |       | Гэ    | _     | 0 | ٥٦   |

# ANOVA: Example Data Set, cont

Solving for b we find:

$$b = \begin{bmatrix} 15 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \quad |\hat{y}|^2 = 150, \ |e|^2 = 40$$

Since,  $\dim(\mathcal{V}_x) = 3$ , and  $\dim(\mathcal{V}_e) = 8$ , we get:

$$F = \frac{\dim(\mathcal{V}_e)|\vec{\hat{y}}|^2}{\dim(\mathcal{V}_x)|\vec{e}|^2} = 10$$

Here's the more conventional ANOVA table for the same data:

| Source                | df     | SS        | MS      | F  | Pr(F) |
|-----------------------|--------|-----------|---------|----|-------|
| Experimental<br>Error | 3<br>8 | 150<br>40 | 50<br>5 | 10 | .0044 |
| Total                 | 11     | 190       |         |    |       |

# Overview of Discriminant Analysis

#### Discrimination

Given an  $n \times p$  data matrix, X, and a grouping of the n specimens into g groups, find the linear combination of the variables, a'x that best discriminates between the groups (using ' to indicate transpose).

#### Classification

Given g groups, define a function that assigns an object with unknown assignment to the 'best' group.

## Fisher's Discriminant Function

- Applies to the two-group case.
- Solution: find a that maximizes the ratio of the squared group mean difference to within-group variance:

$$F = \frac{(a'\bar{x}_1 - a'\bar{x}_2)^2}{a'Wa}$$

where

$$\bar{\mathbf{x}}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} \mathbf{x}_{1i}$$

$$\bar{\mathbf{x}}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} \mathbf{x}_{2i}$$

- W =  $\frac{1}{n_1 + n_2 2} \sum_{i=1}^{2} \sum_{j=1}^{n_i} (\mathbf{x}_{ij} \bar{\mathbf{x}}_i) (\mathbf{x}_{ij} \bar{\mathbf{x}}_i)'$  (w/in-group pooled covariance matrix)
- $n_i$  indicates the number of observations in the *i*th group and the  $x_{i1}, ..., x_{in_i}$  represent the specific observations (as vectors).

# Geometry of the Two-Group Discriminant Function



FIG. 4.—Representation of the discriminant function for two groups and two variables, showing the group means and associated 95% concentration ellipses. The vector  $\mathbf{c}$  is the discriminant vector. The points  $\hat{\mathbf{y}}_1$ and  $\hat{\mathbf{y}}_1$  represent the discriminant means for the two groups.

The discriminant vector can be constructed by drawing the tangent **n** to the concentration ellipse at the point of intersection with the line **d** joining the group means; the discriminant vector is orthogonal to the tangent **n**.

## Fisher's LDF

$$F = \frac{(a'\bar{x}_1 - a'\bar{x}_2)^2}{a'Wa}$$

Maximizing *F* gives:

$$a = cW^{-1}(\bar{x}_1 - \bar{x}_2)$$

where c is an arbitrary constant (usually taken to be 1).

## Fisher's LDF as Classification

Fisher's solution can also be setup as a classification solution using regression.

- setup a dummy variable, y that takes the values:
  - $y_1 = n_2/(n_1 + n_2)$  for observations in group 1
  - $y_2 = -n_1/(n_1 + n_2)$  for observations in group 2
- Solve the standard multivariate regression, y = Xb + e
- Allocate unknown individual to group 1 if it's predicted y is closer to  $y_1$  than to  $y_2$ , otherwise assign to group 2.

# What if there are more than two groups?

The multi-group equivalent of Fisher's LDF is called 'Canonical Variate Analysis' (CVA).

- straight forward extension of Fisher's solution
- Find a that maximizes the ratio of between-group to within-group variance:

$$F = \frac{a'Ba}{a'Wa}$$

- W is within-group matrix (as defined previously)
- B is the between-group covariance matrix
  - $B_w = \frac{1}{g-1} \sum_{i=1}^g n_i (x_i \bar{x}) (x_i \bar{x})'$  where  $n_i$  is the sample size in group i (weighted version)
  - $B_u = \frac{1}{g-1} \sum_{i=1}^g (x_i \bar{x})(x_i \bar{x})'$  (unweighted version)

# Geometry of CVA



FIG. 2—Representation of the canonical vectors for three groups and two variables. The group means (I, II and III) and 95% concentration ellipses are shown. The vectors CVI and CVIII are the two canonical vectors. In the text, CVI = e. The points  $y_{im}$  and  $y_{im}$  represent the canonical variate scores corresponding to the first canonical vector for the observations  $y_{im}$  and  $y_{im}$ .

## **CVA Solution**

Maximizing F leads to the following:

$$(B - lW)a = 0$$

- $\blacksquare$  *l* is an eigenvalue of W<sup>-1</sup>B
- a is an eigenvector of W<sup>-1</sup>B

There will be  $s = \min(p, g - 1)$  non-zero eigenvalues.

Organize the eigenvectors,  $a_i$ , as columns of a  $p \times s$  matrix A.

- The *canonical variates* are given by y = A'x
- The mean of the *i*-th group in the canonical variates space is given by  $\bar{y}_i = A'\bar{x}_i$

## CVA as a two-stage rotation I



Figure 2. Stage 1 CVA implicit rotation. A. Scatterplot of first two Iris variables for example dataset. B. Orientation of the two pooled-sample principal components of the within-groups SSQCP matrix (W).

# CVA as a two-stage rotation II



Figure 3. Intermediate scaling operation of a CVA. A. Scatterplot of *Iris* PC scores for the Stage 1 rotation (see Fig. 2). B. Result of scaling the two within-groups principal components by the square roots of their associated eigenvalues. Note difference in separation of the group centroids (black squares) after scaling.

# CVA as a two-stage rotation III



Figure 4. Stage 2 CVA implicit rotation. A. *Iris* group centroids plotted in the within-groups orthogonal-orthonormal space (see Fig. 3B) with between groups PC (= CVA) axes. B. Reduced *Iris* dataset plotted in the space defined by the CVA axes.

## CVA as a two-stage rotation IV



Figure 5. Back-calculation of final CVA axis orientation through the intermediate stages of the canonical rotations and scalings. A. Orientation of final CVA axes in the space of the scaled within-groups principal components (compare to Fig. 3A). B. Orientation of final CVA axes in the space of the raw within-groups principal components (compare to Fig. 3B). C. Orientation of final CVA axes in the space of the original variables (compare to Fig. 2).

## Similarities and Differences between CVA and PCA

#### PCA:

- Uncorrelated over the whole sample
- orthogonal transformation from the original variates, x, to the new variates y. PC axes at right angles to each other in the space of the original variables.

#### CVA:

- Canonical variates are uncorrelated both within and between groups
- Canonical variates have equal variance within groups, but in decreasing order between groups
- non-orthogonal transformation, CV axes not at right angle to each other in the original frame of reference.

# PCA vs CVA: A Motivating Example



What is the direction of PC1? What is the direction of CVI?

# PCA vs. CVA: Anderson's Iris Data





# Are any of the groups significantly different in the canonical variate space?

#### To test:

- $\blacksquare H_0: \mu_1 = \mu_2 = \ldots = \mu_3$
- $H_1$ : at least one  $\mu_i$  differs from the rest

### A couple of approaches:

- Compare the largest eigenvalue,  $l_1$ , of W<sup>-1</sup>B to critical values in a F-table.  $H_0$  is rejected for large values (> 1).
- Likelihood approach:
  - Wilks' lambda,  $\Lambda = |W|/|B + W| = \prod_{i=1}^{p} (1 + l_i)^{-1}$
  - there is an approximation that has a  $\chi^2$  distribution.

Both boil down to a consideration of eigenvalues of  $W^{-1}B$ .

# Which groups are different? Where does an unassigned observation belong?

Within groups the canonical variates are:

- uncorrelated
- have unit variance

If we assume multivariate normality of the data then we can exploit this to draw confidence intervals around the group means in the canonical variate space.

A  $100(1-\alpha)$  percent confidence region for the true mean  $v_i$  is given by:

- **•** hypersphere centered at  $\bar{y}_i$
- with radius  $(\chi^2_{\alpha,r}/n_i)^{1/2}$  where r is the number of canonical variate dimensions considered

# Illustration of group means and tolerance regions



# Which variables are most important in CVA?

#### Question

Which variables are most 'important' in distinguishing between the groups?

### Consider the coefficients ai

- large coefficients may be due to either large between-group variability or small within-group variability of the corresponding variable
- of or interpretation it's better to consider modified coefficient,  $a_i^* = (a_{i1}^*, \dots, a_{ip}^*)$  where the  $a_{ij}^*$  are given by  $a_{ij}^* = a_{ij} \sqrt{w_{jj}}$  [ $w_{jj}$ ] are the diagonal elements of W].