Math 207: Statistics

Dr. Ralph Wojtowicz Mathematics Department

- Introduction
 - Descriptive Statistics
 - Reading a Histogram
- Drawing a Histogram
 - Drawing a Histogram from a Distribution Table
 - Generating a Histogram from Data
- The Density Scale
 - The Density Scale
- 4 Variables
 - Variables

Introduction

- Graphical tools (e.g., histograms and pie charts) can be used for summarizing and presenting data.
- These show the manner in which the data values are distributed.
- Numerical tools (mean, standard deviation, median and percentiles) are also used for describing data.

Reading a Histogram

- A histogram is a graph used to summarize data.
- The total area under the curve is 1 (that is, 100%).
- The horizontal axis is divided into class intervals.
- The area of a rectangle is proportional to the percentage of data values in the class interval.

Income Level	Percent
\$0-\$1,000	1
\$1,000-\$2,000	2
\$2,000-\$3,000	3
\$3,000-\$4,000	4
\$4,000-\$5,000	5
\$5,000-\$6,000	5
\$6,000-\$7,000	5
\$7,000-\$10,000	15
\$10,000-\$15,000	26
\$15,000-\$25,000	26
\$25,000-\$50,000	8
\$50,000 and over	1

Math 207: Statistics

Drawing a Histogram from a Distribution Table

- A distribution table shows the percentage of data in each class interval.
- Choose an **endpoint convention** (e.g., put left endpoints in class intervals).
- Use the class intervals to draw horizontal axis.
- To figure out the height of a block over a class interval, divide the percentage by the length of the interval.

Income Level	Percent
\$0-\$1,000	1
\$1,000-\$2,000	2
\$2,000-\$3,000	3
\$3,000-\$4,000	4
\$4,000-\$5,000	5
\$5,000-\$6,000	5
\$6,000-\$7,000	5
\$7,000-\$10,000	15
\$10,000-\$15,000	26
\$15,000-\$25,000	26
\$25,000-\$50,000	8
\$50,000 and over	1

Introduction

Math 207: Statistics

Generating a Histogram from Data

- Toss a fair coin n = 4 times and count the number of heads.
- Repeat this experiment N = 10 times.
- Example: 3, 1, 3, 2, 0, 2, 1, 4, 2, 0 heads in the 10 trials gives the histogram below left.
- If we repeat the experiment N = 1000 times, we get a histogram such as the one shown below right.

The Density Scale

Introduction

- The histogram below shows years of school completed by persons age 25 and older in the U.S. in 1991.
- Endpoint convention: years of school completed (e.g., people who dropped out part way through ninth grade are in the 8–9 block)
- Units on the vertical axis are percent (of people) per year (of schooling).

Variables

7/7

Variables

- A (random) variable is a measurement that depends on the outcome of a (random) event.
- Quantitative variables have numeric values.
 - Continuous variables can assume a continuum of values: Examples include income, temperature, pressure, mass, and speed.
 - A discrete variable can assume only finitely (or countably) many values.
 Examples include: family size, and number of engine cylinders.
- Qualitative variables are non-numeric.
 - They can be Ordered: good, better, best; or sometimes, always, never
 - or they can be Unordered such as eye color, marital status or automobile transmission type

Math 207: Statistics The Histogram