STUDENT: SHUAKBAEV.O.D

Task 1. Will the conversion to BCNF be dependency preserving in any case? Proof your statement and give a reasoning for choosing BCNF design.

Answer: Yes , it will be be dependency. Other column will depend on PK. For Example

ID	Name
23984406	Olzhas
49585935	Kuanish

Name will depend to ID. If it won't we do not find the info.

Task 2. Given table in 1NF, convert to 3NF if PK is UnitID:

TASK TABLE

UnitID	Studentl D	Date	Tuto rID	Topi c	Roo m	Grade	Book	TutEmail
U1	St1	23.02.0 3	Tut1	GMT	629	4.7	Deumlich	tut1@fhbb. ch
U2	St1	18.11.0 2	Tut3	GIn	631	5.1	Zehnder	tut3@fhbb. ch
U1	St4	23.02.0 3	Tut1	GMT	629	4.3	Deumlich	tut1@fhbb. ch
U5	St2	05.05.0 3	Tut3	PhF	632	4.9	Dümmlers	tut3@fhbb. ch
U4	St2	04.07.0 3	Tut5	AVQ	621	5.0	SwissTopo	tut5@fhbb. ch

SOLUTION TABLES:

<u>UnitID</u>	Studentl D	Date	Topic	Room	Grade	Book
U1	St1	23.02.03	GMT	629	4.7	Deumlich
U2	St1	18.11.02	GIn	631	5.1	Zehnder
U1	St4	23.02.03	GMT	629	4.3	Deumlich
U5	St2	05.05.03	PhF	632	4.9	Dümmlers
U4	St2	04.07.03	AVQ	621	5.0	SwissTopo

TutorID	TutEmail
Tut1	tut1@fhbb.ch
Tut3	tut3@fhbb.ch
Tut1	tut1@fhbb.ch
Tut3	tut3@fhbb.ch
Tut5	tut5@fhbb.ch

Task 3. Given table in 1NF, convert to 2NF if PK is {ProjectName, ProjectManager}, use decomposition:

TASK:

ProjectName	ProjectManag er	Position	Budget	TeamSize
Project1	Manager1	СТО	1 kk \$	15
Project2	Manager2	CTO2	1.5 kk \$	12

ANSWER: PROJECT_NAME:

ProjectName	ProjectManag er	Position	Budget
Project1	Manager1	СТО	1 kk \$
Project2	Manager2	CTO2	1.5 kk \$

PROJECT_MANAGER:

ProjectManag er	TeamSize
Manager1	15
Manager2	12

Task 4. Given table, convert to 3NF if PK is Group, use decomposition:

Faculties have a number of specialities, each speciality consists of a set of particular groups.

Faculty-> speciality Speciality -> group

Group	Faculty	Speciality
g1	f1	s1
g2	f2	s2

SPEC_PODRAZDEL

Speciality	Group
s1	g1
s2	g2

FAC_SPEC

Faculty	Speciality
f1	s1
f2	s2

Task 5. Given table, convert to BCNF if PK is {ProjectID, Department}, usedecomposition:

Curator depends on projectID and related departments, teamSize directly relates to project and related departments, ProjectGroupsNumber depends on TeamSize.

projectID->curator Teamsz->ProjGroNumb

TASK

ProjectID	<u>Departmen</u>	Curator	TeamSize	ProjectGroupsNu mber
p1	d1	e1	100	5
p2	d2	e2	120	6

PROJECT

<u>ProjectID</u>	<u>Departmen</u> <u>t</u>	Curator
p1	d1	e1
p2	d2	e2

TEAM

Curator	TeamSize	ProjectGroupsNu mber
e1	100	5
e2	120	6

Task 6. List the three design goals for relational databases, and explain why each is desirable. Give an example of both desirable and undesirable types of decompositions.

- 1. to generate a set of schemas that allow us to Store information without unnecessary redundancy.
- 2. Retrieve information easily and accurately
- 3. to provide an environment that is both convenient and efficient to use in retrieving and storing data base information.

This example of Bad decomposition(below), it also named LOSSY DECOMPOSITION, it will provide redundancy.

ID	name	street	city	salary
: 57766 57766 98776 98776 :	Kim Kim Kim Kim	Main North Main North	Perryridge Hampton Perryridge Hampton	75000 67000 75000 67000

This is Good decomposition(below), it also named LOSSLESS DECOMPOSITION:

