1 矩阵

目录

1

3

2	。 - 的运算					
	2.1	矩阵的加法, 减法				
	2.2	加法的性质				
	2.3					
	2.4	数乘的性质				
	2.5	矩阵的乘法				
		2.5.1 (1) AB=0, 是推不出 A=0 或 B=0 的. (2) AB=AC, 且 A =≠ 0, 是推				
		不出 B=C 的				
		2.5.2 一个矩阵,与"零矩阵"相乘,结果就是一个"新形状"的零矩阵				
		2.5.3 一个矩阵 X, 与 "单位阵 E" 相乘 (无论左乘还是右乘), 结果还是矩阵 X				
		本身. 即: AE=A, EB=B				
	2.6	矩阵乘法的运算规律				
	2.0	2.6.1 结合律: (AB)C = A(BC)				
		2.6.2 分配律: (1) (A+B)C = AC+BC, (2) C(A+B) = CA+CB				
		2.6.3 $k(AB) = (kA)B = A(kB) \dots \dots$				
		2.6.4 矩阵乘法的例题				
	2.7	矩阵, 幂的运算				
	2.1	$2.7.1$ $A^k = A \cdot A \cdotA \leftarrow$ 等号右边共 $k \land A$				
		$2.7.2 A^0 = E \dots \dots \dots \dots \dots \dots \dots \dots \dots $				
		$2.7.3 A^{k_1}A^{k_1} = A^{k_1+k_2} \dots \dots \dots \dots \dots \dots \dots \dots \dots $				
		$2.7.4 (A^{k_1})^{k_2} = A^{k_1 k_2} \dots \dots$				
		2.7.5 一般, $(AB)^k \neq A^k B^k$				
		2.7.6 矩阵的幂运算例题				
		2.1.0 尼州明帝赵昇列赵				
3	矩阵	的转置				
	3.1	性质: $(A^T)^T = A$				
	3.2	性质: $(A+B)^T = A^T + B^T$				
	3.3	性质: $(kA)^T = kA^T$				
	3.4	★ 性质: $(AB)^T = B^T A^T \leftarrow$ 注意 AB 顺序要颠倒				
	3.5	性质: $(A_1 A_2 A_3 A_4)^T = A_4^T A_3^T A_2^T A_1^T \leftarrow 顺序颠倒$				
4	特殊	导殊矩阵 (都是方阵)				
	4.1	数量矩阵				
	4.2	对角型矩阵				
		4.2.1 diag × B: 对角阵元素在哪一行上, 就乘到 B 的相同行上去				
		4.2.2 B × diag: 对角阵元素在哪一列上, 就乘到 B 的相同列上去				
	4.3	上三角形矩阵				
	4.4	下三角形矩阵				
	4.5	对称矩阵: 有 $A^T = A$ ← 即对自己做转置, 依然等于自己				
		4.5.1 性质: $(A+B)^T = A^T + B^T = A + B$				
		4.5.2 性质: $(A - B)^T = A^T - B^T = A - B$				
		4.5.3 性质: $(kA)^T = k \cdot A^T = kA$				
		4.5.4 性质: $(AB)^T = B^T A^T = BA \neq AB$				
		4.5.5 定理: 两个对称矩阵 A,B 相乘后, 新矩阵 AB 一般就不再是对称的了.				
		\$\text{\$\pi_{\frac{1}{2}}\$} \text{\$\pi_{\frac{1}{2}}\$} \text{\$\pi_{\frac{1}}\$} \text{\$\pi_{\frac{1}{2}}\$} \text{\$\pi_{\frac{1}{2				
	4.6	反对称矩阵: 有 $A^T = -A$				
	4.0					

目录 2

5	方阵的行列式 15						
	5.1	'方阵的行列式"的性质	12				
		$5.1.1$ 性质: $ A^T = A $	12				
		$5.1.2$ ★ 性质: $ kA =k^n A $	12				
		5.1.3 性质: $ AB = A \cdot B \leftarrow A,B$ 是同阶方阵	12				
6	伴随矩阵 A^st 12						
	6.1 伴随矩阵的性质						
		3.1.1 性质: 对"任意"方阵 A, 有: $A*A^* = A^**A = A E$	14				
		$3.1.2$ 性质: $ A \cdot A^* = A ^n \cdot E $	15				
		$6.1.3$ 性质: $ A^* = A ^{n-1}$	15				
		$6.1.4$ 性质: $(kA^*) = k^{n-1}A^*$	15				
		$6.1.5$ 性质: $(A^T)^* = (A^*)^T$	15				
		$6.1.6$ 性质: $(AB)^* = B^*A^*$	15				
7							
	7.1	可逆矩阵: AB = BA = 単位阵 E	15				
		7.1.1 如何判断一个矩阵是否可逆? A 可逆的充要条件是: $ A \neq 0$. 并且 A 的					
		逆矩阵就是: $A^{-1} = \frac{1}{ A }A^*$	16				
		7.1.2 推论: A,B 是 n 阶方阵, 只要我们知道一个条件: AB=E, 或 BA=E, 我					
		们就能得出结论: A 可逆, 并且 $A^{-1} = B$	16				
	7.2	求"逆矩阵"的方法	17				
		7.2.1 用"伴随矩阵法"(不推荐用), 来求逆矩阵: 利用 A 的逆矩阵公式, 来求					
		A 的逆矩阵. 即: $A^{-1} = \frac{1}{ A }A^*$	17				
		7.2.2 用"初等变换法", 来求逆矩阵	17				
	7.3	逆矩阵的性质					
		7.3.1 若 A 可逆, 则 A^{-1} 也可逆, 并且有 $(A^{-1})^{-1} = A$					
		7.3.2 若 A,B 均可逆, 则有: AB 也可逆, 并且有: $(AB)^{-1} = B^{-1}A^{-1} \dots$					
		7.3.3 若 A 可逆, 则 A^T 也可逆. 并且有: $\left(A^T\right)^{-1} = \left(A^{-1}\right)^T \leftarrow$ 转置的逆 =					
		逆的转置					
		7.3.4 $k \neq 0$, $\emptyset(kA)^{-1} = \frac{1}{k}A^{-1}$					
		7.3.5 性质: $ A^{-1} = A ^{-1}$					
		7.3.6 性质: 若 A 可逆, 则 A^* (即伴随矩阵) 也可逆. 并且 $(A^*)^{-1} = \frac{1}{ A }A$					
		7.3.7 性质: $(A^{-1})^* = (A^*)^{-1}$	18				
8	矩阵	阵方阵 18					
9 分块矩阵			18				
	9.1	际准形					
	9.2	分块矩阵的"加法"					
	9.3	分块矩阵的"数乘"					
	9.4	分块矩阵的 "乘法" · · · · · · · · · · · · · · · · · · ·					
	9.5	· · · · · · · · · · · · · · · · · · ·					
	9.6	分块矩阵的"转置"					
	9.7	7 分块矩阵的"逆矩阵"2					
10	初等变换 22						
		初等变换, 有三种					
		等价					
	10.3	初等方阵	24				

矩阵及其运算

1 矩阵

矩阵一般用大写字母来表示. 比如 A, B, C, E. (D 留给了行列式.)

【矩阵和行列式的区别】:

▼ VEIFT 4#11 201 * (#11 © 701 · · · · · · · · · · · · · · · · · · ·						
	行列式 D	矩阵 Matrix				
	本质是个"数"	是张"数表"				
	符号, 用竖线包围表示, 即	用 [] 或 () 包围. 几乎不用大括号.				
	必定是方形的, 即行数 = 列数	行列数无要求.				

【元素都是 0 的矩阵, 叫零矩阵, 记作 0】:

【负矩阵】: 所有元素, 都取其负数的矩阵, 叫负矩阵. 记为 -A.

【单位阵】: 即"主对角线"上元素都是 1, 其他都是 0 的矩阵. 记作 E 或 I. 记忆方法:

- 主对角线, 是下坡\
- 次对角线, 是上坡 /

注意: 只有"方阵", 才有"主对角线"的概念. 不是方阵, 就没有主对角线.

$$E$$
或 $I =$

$$\begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 \end{bmatrix}$$
 $\frac{1}{4}$

【只有一个元素的矩阵,书写它时可以不带矩阵括号】:

如: [5]=5

【同型矩阵】:

即两个矩阵 A,B, 若 A 的行数 =B 的行数, A 的列数也 =B 的列数, 则它们就叫"同型矩阵". 如: $A_{3\times 5}$ 和 $B_{3\times 5}$, 就是同型矩阵. 它们的形状是一样的.

若同型矩阵中,对应元素都相等,则这两个矩阵相等.换言之,**两个矩阵相等的前提,是它们必须是"同型矩阵".**

所以, 两个零矩阵, 不一定相等. 因为它们不一定是同型的. 如: $0_{2\times2}\neq0_{2\times3}$

4

2 矩阵的运算

2.1 矩阵的加法,减法

矩阵的加法, 只要把两个矩阵, 对应位置的元素直接相加就行了. 即:

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} + \begin{bmatrix} g & h & i \\ j & k & l \end{bmatrix} = \begin{bmatrix} a+g & b+h & c+i \\ d+j & e+k & f+l \end{bmatrix}$$

注意:只有"同型矩阵"才能做相加减.

减法也是这个规律: 对应元素相减即可.

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} - \begin{bmatrix} g & h & i \\ j & k & l \end{bmatrix} = \begin{bmatrix} a-g & b-h & c-i \\ d-j & e-k & f-l \end{bmatrix}$$

2.2 加法的性质

- -A+B = B+A
- -(A+B) + C = A + (B+C)
- A + 0 = A ← 注意, 零矩阵与 A, 应该是 "同型"的才能相加. (同时, 两个零矩阵, 也未必是同型的. 如 $0_{3\times5} \neq 0_{4\times7}$
- -A + (-A) = 0
- $A + B = C \iff A = C B$

2.3 矩阵的数乘

$$k \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1k & 2k & 3k \\ 4k & 5k & 6k \\ 7k & 8k & 9k \end{bmatrix}$$

就是把数字 k, 乘给矩阵中每一个元素身上.

反过来说, 就是: **若矩阵中的所有元素**, 都有同一个公因子, 则该公因子提到矩阵外, 只需提"一次".

(注意: 行列式中的公因子, 是"每行提一次"的.)

2.4 数乘的性质

- -k(A+B) = kA + kB
- -(k+l)A = kA + lA
- $k(lA) = (k \cdot l)A$ ← 两个数 K 和 L, 可以先结合, 再去乘以矩阵 A

2.5 矩阵的乘法

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \left[\begin{array}{c|c} e & f \\ g & h \end{array} \right] = \left[\begin{array}{cc} ae + bg & A \ddot{\uppi} 1 * B \ddot{\uppi} 2 \\ A \ddot{\uppi} 2 * B \ddot{\uppi} 1 & A \ddot{\uppi} 2 * B \ddot{\uppi} 2 \end{array} \right]$$

注意: 两个矩阵能相乘的前提是: 前面矩阵的列数 = 后面矩阵的行数.

死阵段和来的前搜索评是,前到数二后行数

所以:

- 两个矩阵相乘的顺序不同的话, 结果就不同. 即: $AB \neq BA$
- AB 这个顺序能相乘, 不一定 BA 这个顺序也能相乘. 比如, $A_{5\times 2}B_{2\times 3}$ 是可以相乘的 (它们内侧两个数字相同, 都是 2), 能得到一个 5 行 3 列的矩阵. 而顺序倒过来 $B_{2\times 3}A_{5\times 2}$ 就不能相乘了, 因为它们的内侧两个数字 (前为 3, 后为 5) 不相同.

所以, 我们要区分一下相乘的顺序:

- AB: 叫 "A 左乘 B", 或 "B 右乘 A"

单位阵 E, 就相当于 1 的作用. 所以 AE = EA = A. 但是注意, 这里前后的两个单位阵 E, 不是同一个 E! 比如:

 $A_{2\times3}E_{3\times3} = E_{2\times2}A_{2\times3}$

前面的 E, 只能是 3 阶方阵. 后面的 E, 只能是 2 阶方阵. 所以这两个 E 不是同一个单位阵.

2.5.1 (1) AB=0 ,是推不出 A=0 或 B=0 的. (2) AB=AC,且 $A=\neq 0$,是推不出 B=C 的.

6

有
$$A = \begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 \\ 2 & 4 \end{bmatrix}$
则: $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $AC = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

从上面的结果, 我们可以得出这两个结论:

- AB=0, 是推不出 A=0 或 B=0 的.
- AB=AC, 且 $A \neq 0$, 是推不出 B=C 的.
- 2.5.2 一个矩阵, 与"零矩阵"相乘, 结果就是一个"新形状"的零矩阵

如: $A_{4\times 3}O_{3\times 2}=O_{4\times 2}$

2.5.3 一个矩阵 X, 与"单位阵 E"相乘 (无论左乘还是右乘), 结果还是矩阵 X 本身.即: AE=A, EB=B

AE=A, EB=B

- 2.6 矩阵乘法的运算规律
- 2.6.1 结合律: (AB)C = A(BC)

ABC 的顺序, 在等号两边, 不变.

- 2.6.2 分配律: (1) (A+B)C = AC+BC, (2) C(A+B) = CA+CB
- C 在右边时, 分配进去, C 还是在右边.
- C 在左边时, 分配进去, C 还是在左边.
- 2.6.3 k(AB) = (kA)B = A(kB)

即 k 乘以 AB, 可以先和 A 结合来算, 也可以先和 B 结合来算. 并且无论 k 在哪, AB 的左右顺序, 永远是 AB.

2.6.4 矩阵乘法的例题

例

求出与
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 可交换的所有矩阵.

设其可交换的矩阵 $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

B 要能与 A 可交换, 它就必须满足: $A_nB_n = B_nA_n$, 即 A 和 B 是同阶的方阵.

$$AB = BA \leftarrow A, B$$
为同阶方阵
$$\mathbb{P}\left[\frac{1}{1} \frac{0}{1}\right] \begin{bmatrix} a \mid b \\ c \mid d \end{bmatrix} = \begin{bmatrix} a \quad b \\ c \quad d \end{bmatrix} \begin{bmatrix} 1 \mid 0 \\ 1 \mid 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \cdot a + 0 \cdot c & 1 \cdot b + 0 \cdot d \\ 1 \cdot a + 1 \cdot c & 1 \cdot b + 1 \cdot d \end{bmatrix} = \begin{bmatrix} a \cdot 1 + b \cdot 1 & a \cdot 0 + b \cdot 1 \\ c \cdot 1 + d \cdot 1 & c \cdot 0 + d \cdot 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ a + c & b + d \end{bmatrix} = \begin{bmatrix} a + b & b \\ c + d & d \end{bmatrix}$$

$$\begin{bmatrix} a = a + b, & \mathbb{P} \rightarrow b = 0 \\ b = b \\ a + c = c + d, & \mathbb{P} \rightarrow a = d \\ b + d = d \end{bmatrix}$$
 所以,
$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & 0 \\ c & a \end{bmatrix}$$

$$\left\{ \begin{array}{ll} x_1 = y_1 - y_2 \\ x_2 = y_1 + y_2 \end{array} \right. \quad \text{可以写成:} \quad \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \underbrace{\left[\begin{array}{c} 1 & -1 \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} y_1 \\ y_2 \end{array} \right]}_{\text{这两块, 就是两个矩阵相乘}}$$

2.7 矩阵,幂的运算

2.7.1 $A^k = A \cdot A \cdot ...A \leftarrow$ 等号右边共 $k \land A$

$$A^k = \underbrace{A \cdot A \cdot \dots A}_{k \uparrow A}$$

2.7.2
$$A^0 = E$$

2.7.3
$$A^{k_1}A^{k_1} = A^{k_1+k_2}$$

2.7.4
$$(A^{k_1})^{k_2} = A^{k_1 k_2}$$

2.7.5 一般,
$$(AB)^k \neq A^k B^k$$

比如, $(AB)^2 \neq A^2B^2$

因为: 等号左边 $(AB)^2 = ABAB$, 等号右边 $A^2B^2 = AABB$, 而一般 $ABAB \neq AABB$. 因为虽然它们最左边都是 A, 最右边都是 B, 但是中间的两个矩阵相乘, BA 一般就不等于 AB了. 除非它们是可交换矩阵.

3 矩阵的转置 8

其他的:

$$(A+B)^2 \neq A^2 + 2AB + B^2 \leftarrow$$
这个,一般也不相等
 $(A-B)^2 \neq A^2 - 2AB + B^2 \leftarrow$ 这个,一般也不相等

例

问 $(A+E)^2$ 是否等于 $A^2+2AE+E^2$?

$$(A + E)^{2} = (A + E) (A + E)$$

$$= A (A + E) + E (A + E)$$

$$= A^{2} + \underbrace{AE}_{=A} + \underbrace{EA}_{=A} + \underbrace{E^{2}}_{=E}$$

$$= A^{2} + \underbrace{2A}_{=2AE} + E$$

所以这个是对的. 相等.

同样,
$$(A-E)^2 = A^2 - 2AE + E^2$$

2.7.6 矩阵的幂运算例题

例

$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \text{ DI } (AB)^{10} = ?$$

$$\rightarrow 我们先算下: A_{3\times 1}B_{1\times 3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

$$\rightarrow \mathbb{A}$$

$$\rightarrow \mathbb{A}$$

$$\rightarrow \mathbb{A}$$

$$\rightarrow (AB)^{10} = \underbrace{AB \cdot AB \cdot AB \cdot AB \cdot ... \cdot AB}_{\equiv 6}$$

$$= A \cdot 6^{9} \cdot B = 6^{9} \underbrace{AB}_{\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}}_{\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}}$$

$$= A \cdot 6^{9} \cdot B = 6^{9} \underbrace{AB}_{\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}}_{\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}}$$

3 矩阵的转置

 $A_{m\times n}$, 转置后, 就是 $(A^T)_{n\times m}$

3.1 性质: $(A^T)^T = A$

3.2 性质: $(A+B)^T = A^T + B^T$

3.3 性质: $(kA)^T = kA^T$

3.4 ★ 性质: $(AB)^T = B^T A^T \leftarrow$ 注意 AB 顺序要颠倒

3.5 性质: $(A_1A_2A_3A_4)^T = A_4^TA_3^TA_2^TA_1^T \leftarrow$ 顺序颠倒

4 特殊矩阵 (都是方阵)

4.1 数量矩阵

数量矩阵 (或叫"纯量阵") scalar matrix: 就是"主对角线上"元素都是同一个数值,其余元素都是零.

$$\begin{bmatrix} a & & & \\ & a & & \\ & & \ddots & \\ & & & a \end{bmatrix} = aE$$

所以, 零矩阵, 和单位阵 E, 都是特殊的"数量矩阵".

有性质:

$$(aE)B = B(aE) = aB$$

4.2 对角型矩阵

对角矩阵 diagonal matrix: 主对角线元素无要求 (可以不相等), 但之外的所有元素都为 0.

即:

$$A = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \tag{1}$$

可记为: $A = diag(\lambda_1, \lambda_2, ..., \lambda_n)$

所以,"数量矩阵"(主对角线上的元素都相等),只不过是一种特殊的"对角矩阵"罢了.

4.2.1 diag \times B: 对角阵元素在哪一行上, 就乘到 B 的相同行上去

$$\begin{bmatrix}
k_1 & & \\
& k_2 & \\
& & k_3
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
2 & 2 & 2 \\
8 & 8 & 8
\end{bmatrix} = \begin{bmatrix}
1k_1 & 2k_1 & 3k_1 \\
2k_2 & 2k_2 & 2k_2 \\
8k_3 & 8k_3 & 8k_3
\end{bmatrix}$$
(2)

即: diag 在前, 就乘到后者的"行"上去. (前行, 后列)

即: 左乘, 对应后面的行.

4.2.2 B \times diag: 对角阵元素在哪一列上, 就乘到 B 的相同列上去

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 8 & 8 & 8 \end{bmatrix} \begin{bmatrix} k_1 & k_2 & k_3 \\ k_3 & k_3 \end{bmatrix} = \begin{bmatrix} 1k_1 & 2k_2 & 3k_3 \\ 2k_1 & 2k_2 & 2k_3 \\ 8k_1 & 8k_2 & 8k_3 \end{bmatrix}$$
(3)

即: diag 在后, 就乘到前者的"列"上去. (前行, 后列)

即: 右乘, 对应后面的列.

4.3 上三角形矩阵

upper triangular matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ & a_{22} & a_{23} & a_{24} \\ & & \ddots & a_{34} \\ & & & a_{44} \end{bmatrix}$$

性质:

- 上三角矩阵, 乘以系数后, 也是上三角矩阵
- 上三角矩阵间的"加减法"和"乘法"运算的结果, 仍是上三角矩阵
- 上三角矩阵的"逆矩阵", 也仍然是上三角矩阵
- 上三角矩阵的行列式, 为"主对角线"元素相乘

4.4 下三角形矩阵

$$\begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ a_{31} & a_{32} & \ddots & \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

4.5 对称矩阵: 有 $A^T = A$ ← 即对自己做转置, 依然等于自己.

对称矩阵 Symmetric Matrices: 是以主对角线为对称轴, 上下元素对应相等. 即: $a_{ij} = a_{ji}$

如:

对称矩阵, 有性质: $A^T = A$

例

注意: 下面例题中的字打错了, 不是"互为", 而是"都是".

有普通矩阵 $A_{m \times n}$, 证明: $(A \cdot A^T)$ 和 $(A^T \cdot A)$ 互为对称矩阵.

思考: 若一个矩阵是对称的,则必有 $[...]^T = [...]$ 那么我们就来看看 $(A \cdot A^T)$ 是否真的等于 $(A^T \cdot A)$,反之也是.

$$\rightarrow (A \cdot A^T)^T = (A^T)^T \cdot A^T = A \cdot A^T \leftarrow \text{if }$$

$$\rightarrow (A^T \cdot A)^T = A^T \cdot (A^T)^T = A^T \cdot A \leftarrow$$
 证毕

例

已知A是对称的,证明 $B^{T}AB$ 也是对称的.

思考: 对称矩阵具有性质 $[...]^T = [...]$

那么就来看看:
$$(B^T A B)^T = B^T$$
 A^T $(B^T)^T = B^T A B \leftarrow$ 证毕 题目已经说 \widetilde{A} 是对称的了,

A,B 是同阶的"对称矩阵",则有性质:

4.5.1 性质:
$$(A+B)^T = A^T + B^T = A + B$$

$$(A+B)^{T} = \underbrace{A^{T}}_{A^{T}=A} + \underbrace{B^{T}}_{B^{T}=B} = A+B$$

4.5.2 性质:
$$(A - B)^T = A^T - B^T = A - B$$

4.5.3 性质:
$$(kA)^T = k \cdot A^T = kA$$

$$(kA)^T = k \cdot \underbrace{A^T}_{A^T = A} = kA$$

4.5.4 性质:
$$(AB)^T = B^T A^T = BA \neq AB$$

$$(AB)^T = \underbrace{B^T}_{B^T - B} \underbrace{A^T}_{A^T - A} = BA \neq AB$$

4.5.5 定理: 两个对称矩阵 A,B 相乘后, 新矩阵 AB 一般就不再是对称的了. 除非 A,B 是可交换矩阵, 型矩阵 AB 才是对称的.

即: 对称矩阵 A, B, 只有在它们是"可交换矩阵"的前提下, 它们的乘积 $A \times B$, 才也是"对称矩阵".

4.6 反对称矩阵: 有 $A^{T} = -A$

反对称矩阵 Skew-symmetric matrix : 主对角线上的元素全为零,主对角线两侧对称的元素,反号 (即互为相反数). 即 $a_{ij} = -a_{ij}$

如:

为什么它主对角线上的元素都是 0 呢? 因为根据"反对称矩阵"的性质: $a_{ii} = -a_{ii}$,则就 $2a_{ii} = 0$,所以就有 $a_{ii} = 0$ 了.

5 方阵的行列式 12

反对称矩阵, 有性质: $A^T = -A$.

5 方阵的行列式

只需把矩阵的中括号, 改成行列式的两条竖线, 就得到了"方阵的行列式".

如: 矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$
, 其行列式就是: $|A| = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$

行列式和矩阵有什么关系? 其实, 行列式只是矩阵的一个"属性"而已. 矩阵有很多属性, 包括: 特征值, 特征向量, 行列式, 等等.

5.1 "方阵的行列式"的性质

5.1.1 性质: $|A^T| = |A|$

5.1.2 ★ 性质: $|kA| = k^n |A|$

5.1.3 性质: $|AB| = |A| \cdot |B|$ ← **A,B** 是同阶方阵

因此, $|ABC| = |A| \cdot |B| \cdot |C|$

例

A 是 5 阶方阵, 且 |A|=3. 求:

$$|-A| = |-1 \cdot A| = -1^5 |A| = -3$$

$$\begin{vmatrix} & & & & \\ |A| & A & & & \\ & |A| & A & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

第①层: |A|=3

第②层: $|3A| = 3^5|A| = 3^5 \cdot 3 = 3^6$

第③层: $|3^6A| = (3^6)^5|A| = 3^{30} \cdot 3 = 3^{31}$

6 伴随矩阵 A*

只有方阵,才有伴随矩阵 Adjugate matrix. 并且任何方阵,都有伴随矩阵.

6 伴随矩阵 A* 13

如:
$$A = egin{bmatrix} 1 & 1 & 1 \\ \hline 2 & 1 & 3 \\ \hline 1 & 1 & 4 \end{bmatrix}$$
,它的伴随矩阵 A^* 是什么?

第 1 步: 先求出每个元素的 "代数余子式":

$$A_{ij} = \begin{bmatrix} A_{11} = 1 & A_{12} = -5 & A_{13} = 1 \\ A_{21} = -3 & A_{22} = 3 & A_{23} = 0 \\ A_{31} = 2 & A_{32} = -1 & A_{33} = -1 \end{bmatrix}$$

第 2 步: 把 A_{ij} 做转置, 就能得到 A 的伴随矩阵 A^* :

$$A^* = \begin{bmatrix} 1 & -3 & 2 \\ -5 & 3 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

即:按"行"求的"代数余子式",按"列"放.

【已知 A, 如何求得它的伴随矩阵 A^* ?】:

因为
$$A$$
的逆阵, 有这个性质: $A^{-1} = \frac{1}{|A|}A^*$ 所以, 把分母拿到等号左边, 就有: $|A|A^{-1} = A^*$

即, 只要把 A 的行列式, 和 A 的逆阵, 相乘, 就能得到 A 的伴随矩阵. 即:

$$\boxed{|A|A^{-1} = A^*}$$

6 伴随矩阵 A* 14

6.1 伴随矩阵的性质

6.1.1 性质:对"任意"方阵 A,有: $A*A^* = A^**A = |A|E$

7 逆矩阵 15

6.1.2 性质: $|A \cdot A^*| = |A|^n \cdot |E|$

6.1.3 性质: $|A^*| = |A|^{n-1}$

证明过程如下:

既然 $A \cdot A^* = |A|E$

6.1.4 性质: $(kA^*) = k^{n-1}A^*$

6.1.5 性质: $(A^T)^* = (A^*)^T$

6.1.6 性质: $(AB)^* = B^*A^*$

7 逆矩阵

要记住一句话:线性代数中,矩阵不能放在分母上!

7.1 可逆矩阵: AB = BA = 单位阵 E

【可逆矩阵】invertible matrix: A,B 为 n 阶方阵,若 AB = BA = 单位阵 E,则称 A 为 "可逆矩阵""(或 "非奇异矩阵"),B 为 A 的 "逆矩阵",记为 $A^{-1} = B$. \leftarrow 意思即: A 的逆矩阵,是 B.

注意:

1. 并非所有方阵均可逆.

比如零矩阵, OA = AO = O, 它就不满足 "可逆矩阵" 的要求 AB = BA = E 了. 所以零矩阵不可逆.

2. 若 A 为"可逆矩阵",则 A 的"逆矩阵"是唯一的.

7 逆矩阵 16

例

已知 A+B = AB, 验证: A-E 是可逆的.

既然
$$A + B = AB$$

则 $AB - A - B = O$ 零矩阵
$$AB - A - B + E = O + E \leftarrow$$
两边同时加上单位阵 E
$$\underbrace{AB - B}_{=(A-E)B} - A + E = E$$

$$\underbrace{(A - E)B - (A - E)}_{\text{这个}, 就是(A-E)的逆矩阵了} = E$$

$$\underbrace{(B - E)}_{\text{这个}, 就是(A-E))$$
 = E
$$\underbrace{(B - E)}_{\text{这个}, 就是(A-E))$$
 = E
$$\underbrace{(B - E)}_{\text{DE}} = E$$

$$\underbrace{(B - E)}_{\text{DE}} = E$$

$$\underbrace{(B - E)}_{\text{DE}} = E$$

$$\underbrace{(A - E)^{-1}}_{\text{DE}} = B - E$$

7.1.1 如何判断一个矩阵是否可逆? A 可逆的充要条件是: $|A| \neq 0$. 并且 A 的逆矩阵就是: $A^{-1} = \frac{1}{|A|}A^*$

【如何判断一个矩阵是否可逆?】:

判断方法就是: 只要它的行列式 |A| 不等于 0, 它就是可逆的.

【逆矩阵的公式】:

如果一个矩阵是可逆的, 它的逆矩阵是什么呢? 公式就是:

$$A^{-1} = \frac{1}{|A|}A^*$$

例

"A 的逆矩阵"公式, 其证明过程是:

因为对任何方阵,都有: $AA^* = A^*A = |A|E$

我们有 $|A| \neq 0$ 这个前提条件, 那么就把上式两边同时除以 |A|

即:
$$A \frac{1}{|A|} A^* = A^* \frac{1}{|A|} A = |A| \frac{1}{|A|} E$$

$$A \underbrace{\left(\frac{1}{|A|} A^*\right)}_{\text{把这块看成}B} = \underbrace{\left(A^* \frac{1}{|A|}\right)}_{\text{把这块看成}B} A = E \leftarrow \text{这不就是满足} AB = BA = E, 这个可逆矩阵的定义吗?}$$
 所以, A 的逆矩阵, 就是 $\frac{1}{|A|} A^*$

7.1.2 推论: **A**,**B** 是 **n** 阶方阵, 只要我们知道一个条件: **AB**=**E**, 或 **BA**=**E**, 我们就能得出结论: **A** 可逆, 并且 $A^{-1} = B$

7 逆矩阵 17

7.2 求"逆矩阵"的方法

7.2.1 用 "伴随矩阵法"(不推荐用), 来求逆矩阵: 利用 $\bf A$ 的逆矩阵公式, 来求 $\bf A$ 的逆矩阵. 即: $A^{-1} = \frac{1}{|A|}A^*$

$$A^* = |A|A^{-1}$$

$$A^* = A^{-1}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

不过, 实际中, 该求逆方法很少用, 因为要先求 A^* , 计算量太大.

7.2.2 用"初等变换法",来求逆矩阵

7.3 逆矩阵的性质

7.3.1 若 A 可逆,则 A^{-1} 也可逆,并且有 $(A^{-1})^{-1} = A$

证明过程:

因为根据 逆矩阵 的定义: 只要AB=E,则 $A^{-1}=B$ 那么我们就反过来看看, $A^{-1}A$ 是否 =E,如果等于, 则就证明了 $A^{-1}=A$ 了. $A^{-1}A$ 肯定 =E了.

7.3.2 若 A,B 均可逆,则有: AB 也可逆,并且有: $(AB)^{-1} = B^{-1}A^{-1}$

所以同样: $(ABCD)^{-1} = D^{-1}C^{-1}B^{-1}A^{-1} \leftarrow$ 注意等号右边, 顺序是倒过来的. 这个和转置公式 $((AB)^T = B^TA^T)$ 很像.

7.3.3 若 A 可逆,则 A^T 也可逆.并且有: $\left(A^T\right)^{-1} = \left(A^{-1}\right)^T \leftarrow$ 转置的逆 = 逆的转置 7.3.4 $k \neq 0$,则 $\left(kA\right)^{-1} = \frac{1}{k}A^{-1}$

证明过程:

只要来看看
$$kA \cdot \frac{1}{k}A^{-1}$$
 是否 $= E$ 就行了,它们就互为逆矩阵.
$$kA \cdot \frac{1}{k}A^{-1} = k\frac{1}{k} \cdot AA^{-1} = 1 \cdot E = E \leftarrow$$
的确等于 E .

7.3.5 性质: $|A^{-1}| = |A|^{-1}$

7.3.6 性质: 若 A 可逆,则 A^* (即伴随矩阵) 也可逆. 并且 $(A^*)^{-1} = \frac{1}{|A|}A$ 证明过程:

$$A^*$$
有这个性质 $AA^* = |A|E$ 那么两边同时除以 $|A|$,即: $\frac{1}{|A|}AA^* = \frac{1}{|A|}|A|E$ 即 $\left(\frac{1}{|A|}A\right)A^* = E \leftarrow$ 所以一看就知道, A^* 的逆矩阵, 就是 $\frac{1}{|A|}A$

8 矩阵方阵 18

7.3.7 性质: $(A^{-1})^* = (A^*)^{-1}$

A 可逆时, A* 也可逆.

8 矩阵方阵

例

已知
$$A=\begin{bmatrix}4&2&3\\1&1&0\\-1&2&3\end{bmatrix}$$
,且 $A\cdot\overset{X$ 也是矩阵}{\widehat{X}}=A+2X,求 X

既然: AX = A + 2X

 $AX - 2X = A \leftarrow$ 注意,这个式子,不能继续写成(A - 2)X,

因为A是一个矩阵,不能和一个数相加减。

所以,只能把这个数(即 $^2)$ 变成矩阵才行,

怎么做呢? 就是让2先乘上单位阵E.

$$AX - 2EX = A$$

$$(A-2E)X=A \leftarrow$$
 注意: 这一步时,不能写成 $X=\frac{A}{A-2E}$,

因为矩阵永远不能写在分母上!

所以为了消除掉A-2E,

我们只能给它乘上它的"逆矩阵"(相当于 ctrl+z 操作)才行.

但注意: 首先,我们要判断A-2E是否可逆,

即判断 |A-2E| 是否满足 $\neq 0$ 才行. 满足这个条件,它才有逆阵存在.

$$\underbrace{(A - 2E)^{-1}(A - 2E)}_{=E}X = (A - 2E)^{-1}A$$

$$EX = (A - 2E)^{-1}A$$

$$X = (A - 2E)^{-1}A$$

9 分块矩阵

9.1 标准形

标准形, 形如:

即: 从左上角开始的一串 1, 不能断. 其余的地方全是 0.

注意: 标准形, 不一定是方阵.

如:

9 分块矩阵 19

对"标准形", 我们可以对它做分块.

$$\begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & & \\ & & & 0 & & \end{bmatrix} = \begin{bmatrix} E_r & O_{r \cdot (n-r)} \\ O_{(m-r) \cdot r} & O_{(m-r) \cdot (n-r)} \end{bmatrix}$$

9.2 分块矩阵的"加法"

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} + \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} A_1 + B_1 & A_2 + B_2 \\ A_3 + B_3 & A_4 + B_4 \end{bmatrix}$$

能"相加"的前提是: 必须保证"对应子块"的行列数, 都相同.

9.3 分块矩阵的"数乘"

$$k \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} = \begin{bmatrix} kA_1 & kA_2 \\ kA_3 & kA_4 \end{bmatrix}$$

9.4 分块矩阵的"乘法"

$$\begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix}
\begin{bmatrix}
B_1 & B_2 \\
B_3 & B_4
\end{bmatrix} = \begin{bmatrix}
A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \\
A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4
\end{bmatrix}$$

即:

注意: 能相乘的前提是: 必须保证"对应子块"能相乘.

9 分块矩阵 20

例

有 $A_{m\times n}$, $B_{n\times s}$, 把 B 分块成 $B = (B_1, B_2, ..., B_t)$ (每块的列数, 不需要相同) 则: $AB = A \cdot (B_1 \mid B_2 \mid ... \mid B_t) = AB_1 \mid AB_2 \mid ... \mid AB_t \leftarrow$ 注意: 这个不是分配率!

则: $AB = A \cdot (B_1, |B_2, |..., |B_t) = AB_1, AB_2, ..., AB_t \leftarrow$ 注意: 这个不是分配率! 要把它们理解成两个矩阵相乘. 即正确的理解是这样的: 用矩阵 A, 去乘上分块 B 的第一列 (即 B1); 再用矩阵 A, 去乘上分块 B 的第二列 (即 B2), ...

9.5 "对角形分块矩阵"的加减和乘法

有
$$A = \begin{bmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_n \end{bmatrix}, \ B = \begin{bmatrix} B_1 & & & \\ & B_2 & & \\ & & \ddots & \\ & & & B_n \end{bmatrix} \leftarrow$$
 这是"对角形分块矩阵",即对角

线上有块.

则:

$$AB = \begin{bmatrix} A_1B_1 & & & \\ & A_2B_2 & & \\ & & \ddots & \\ & & & A_nB_n \end{bmatrix}$$

$$A + B = \begin{bmatrix} A_1 + B_1 & & & & \\ & A_2 + B_2 & & & \\ & & \ddots & & \\ & & & A_n + B_n \end{bmatrix}$$

9.6 分块矩阵的"转置"

有分块矩阵 $A = \begin{bmatrix} A_1 & A_2 & A_3 \\ A_4 & A_5 & A_6 \end{bmatrix}$, 它的转置 A^T 怎么求?

第 1 步: 先把子块, 视做 "元素", 做 A 整体的转置, 即变成 \rightarrow $\begin{bmatrix} A_1 & A_4 \\ A_2 & A_5 \\ A_3 & A_6 \end{bmatrix}$

第 2 步: 再分别把每个子块, 做转置. 即变成 $\rightarrow \left[\begin{array}{c|c} A_1^T & A_4^T \\ A_2^T & A_5^T \\ A_3^T & A_6^T \end{array} \right]$

9.7 分块矩阵的"逆矩阵"

公式是:

$$\begin{bmatrix} A \\ B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} \\ B^{-1} \end{bmatrix}$$

$$\begin{bmatrix} A_1 \\ \end{bmatrix}^{-1} \begin{bmatrix} A_1^{-1} \\ \end{bmatrix}$$

$$\begin{bmatrix} A_1 & & & & & \\ & A_2 & & & & \\ & & \ddots & & & \\ & & & A_n \end{bmatrix}^{-1} = \begin{bmatrix} A_1^{-1} & & & & & \\ & A_2^{-1} & & & & \\ & & & \ddots & & \\ & & & & A_n^{-1} \end{bmatrix}$$

9 分块矩阵 21

例

$$H = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$$
, A 是 m 阶, B 是 n 阶的可逆矩阵,

问:H可逆吗?若行,求其逆.

\rightarrow H 是否有逆?

只有当 $|H| \neq 0$ 时,即它的面积没有压缩成零维时,它才能 ctrl + z 做恢复。即才有"逆"有 所以,我们就来检查一下它的行列式,即 |H|=?

$$egin{array}{c|c} A & C \\ O & B \\ \end{array} = |A||B| \neq 0, ~$$
 说明 H 可逆.

\rightarrow 求H的逆

设其逆阵
$$H^{-1} = \underbrace{\begin{bmatrix} X_1 & X_3 \\ X_4 & X_2 \end{bmatrix}}_{\text{分块矩阵}} \leftarrow$$
这里设成 $\begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}$ 也行.

$$MH^{-1} = E$$

于是

$$\operatorname{EP}\!\left[\frac{A \quad C}{O \quad B}\right]\!\left[\begin{matrix} X_{\scriptscriptstyle I} \mid X_{\scriptscriptstyle \mathcal{S}} \\ X_{\scriptscriptstyle \mathcal{A}} \mid X_{\scriptscriptstyle \mathcal{Z}} \end{matrix}\right] = E$$

$$\begin{bmatrix} AX_1 + CX_4 & AX_3 + CX_2 \\ OX_1 + BX_4 & OX_3 + BX_2 \end{bmatrix} = \underbrace{E}_{=\begin{bmatrix} E & O \\ O & E \end{bmatrix}}$$

$$\mathbb{P}\begin{bmatrix} AX_1 + CX_4 & AX_3 + CX_2 \\ O + BX_4 & O + BX_2 \end{bmatrix} = \begin{bmatrix} E & O \\ O & E \end{bmatrix}$$

$$(AX_1 + CX_4 = E \quad \textcircled{1}$$

$$AX_3 + CX_2 = O$$
 2

$$AX_3 + CX_2 = O$$
 ② $O + BX_4 = O$ ③ \rightarrow 得到 $BX_4 = O$ \leftarrow 对它两边同时乘上 B 逆 $B^{-1} \cdot B X_4 = B^{-1} \cdot O$

所以
$$X_4 = O$$
,代入 \mathcal{D}

就得到:
$$AX_1 + CO = E$$

即
$$X_1 = A^{-1}$$
 $O + BX_2 = E$ ④ ← 这说明 B 和 X_2 互逆.即 $X_2 = B^{-1}$. ←代入② $AX_3 + CB^{-1} = O$ $AX^3 = -CB^{-1}$ ← 然后两边同时左乘 A^{-1}

$$AX_{\circ} + CB^{-1} = O$$

$$AX^{\scriptscriptstyle 3}$$
 $=$ \neg $CB^{\scriptscriptstyle -1}$ \leftarrow 然后两边同时左乘 $A^{\scriptscriptstyle -1}$

$$\underbrace{A^{-1} \cdot A}_{=E} X^{3} = A^{-1} \cdot - CB^{-1}$$

所以
$$X^3 = A^{-1} \cdot (-CB^{-1})$$

因此,
$$H^{-1} = \begin{bmatrix} X_1 & X_3 \\ X_4 & X_2 \end{bmatrix} = \begin{bmatrix} A^{-1} & A^{-1} \cdot (-CB^{-1}) \\ O & B^{-1} \end{bmatrix}$$

10.1 初等变换, 有三种

矩阵的初等变换 Elementary transformation, 有三种:

比如
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 4 & 4 & 4 \end{bmatrix} \xrightarrow{\text{交换第 } 1,2 \text{ } \uparrow \uparrow} \begin{bmatrix} 2 & 2 & 2 \\ 1 & 1 & 1 \\ 4 & 4 & 4 \end{bmatrix}$$

2. 用 $\mathbf{k}(k \neq 0)$ 乘以某一行.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 4 & 4 & 4 \end{bmatrix} \xrightarrow{line1 \times 6} \begin{bmatrix} 6 & 6 & 6 \\ 2 & 2 & 2 \\ 4 & 4 & 4 \end{bmatrix}$$

3. 把某一行的 k 倍 (k 可为 0), 加到另一行上去.

$$\begin{bmatrix} 1 \\ 2 & \cdots \\ 4 & \end{bmatrix} \underbrace{newLine3 = -4(line1) + (line3)}_{} \begin{bmatrix} 1 \\ 2 & \cdots \\ 0 & \end{bmatrix}$$

注意: 矩阵的"初等变换", 与行列式的初等变换, 没有任何关系. 虽然它们的三条变换规则相

例
$$\begin{bmatrix} \frac{1}{-1} & \frac{2}{-1} & 1 \\ \frac{1}{0} & \frac{1}{0} & 1 \\ 1 & 3 & 2 \end{bmatrix}$$
先搞定第 1 列,做初等行变换
$$newLine2 = (line1) \times 1 + line2$$

$$newLine4 = (line1) \times (-1) + line4$$

$$= \begin{bmatrix} \frac{1}{0} & \frac{2}{1} & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
再搞定第 2 列,做初等行变换
$$newLine3 = (line2) \times (-2) + line1$$

$$newLine3 = (line2) \times (-1) + line4$$

$$= \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

10.2 等价

等价: A 经过初等变换得到 B, 则 A 与 B 等价. 记为 $A \cong B$.

等价的性质有:

- 1. 反身性: $A \cong A \leftarrow$ 自己等价于自己.
- 2. 对称性: $A \cong B$, 则 $B \cong A$. \leftarrow 重重就是说: A 经过 "初等变换" 得到 B, B 也能再经过 "初等变换" 得回 A.
- 3. 传递性: 若 $A \cong B$, $B \cong C$, 则 $A \cong C$. \leftarrow 就相当于: $A \rightarrow C$ 的一步, 分成了两步来做. B 只是中间状态而已.

如: $A_{4\times4}$ 可以化成这5种标准形:

10.3 初等方阵

初等方阵 Elementary matrix: 对单位阵 E 做一次"初等变换"得到的矩阵, 就是"初等方阵".

既然是做"初等变换", 就是3种了:

(1) 交换两行:

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} \xrightarrow{\text{$\not$$} 2 \text{\not} + 1,3 \text{ \not} \top} \begin{bmatrix} & & 1 & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

记为: E(i,j), 即交换"第 i 行"和"第 j 行"后, 所得到的矩阵.

(2) 用 k 乘上某一行/列

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} \xrightarrow{newLine3} = 5*line3 \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 5 & \\ & & & 1 \end{bmatrix}$$

记为: E(i(k)), 即把第 i 行, 变为 k 倍. $k \neq 0$.

(3) 某行的 k 倍, 加到另一行上去

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} newLine1 = \underbrace{(5*line3)+line1}_{} \begin{bmatrix} 1 & & 5 & \\ & 1 & & \\ & & & 1 & \\ & & & & 1 \end{bmatrix}$$

记为: E(i,j(k)), 即把 "j 行的 k 倍", 加到 "第 i 行" 上去.

可以看出:三种不同的变换方式,所得到的"初等方阵",其"行列式值",是不同的.

$$ightarrow$$
 第 (1) 种:
$$\begin{bmatrix} 1 & & \\ 1 & & \\ 1 & & \\ & & 1 \end{bmatrix} = -1 \leftarrow 即: \boxed{|E(i,j)| = -1}$$
 其逆阵是:
$$\boxed{E^{-1}(i,j) = E(i,j)}$$

$$ightarrow$$
 第 (2) 种:
$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 5 & \\ & & & 1 \end{bmatrix} = 5 \leftarrow \mathbb{D}: \left[|E(i(k))| = k, (k \neq 0) \right]$$
 其逆阵是:
$$E^{-1}(i(k)) = E(i(\frac{1}{k}))$$

上面三种初等变换得到的矩阵, 做出来的行列式值, 都不等于 0. 说明: (1) 它们 (即初等方阵)都可逆. (2) 它们的逆矩阵, 也是"初等方阵"(3) 并且, 初等方阵的转置, 也是"初等方阵"

注意区别:

- 初等变换: (v.) 是动词, 是对矩阵做"变换"的一种过程.
- 初等方阵: (n.) 是名词. 它就是一个方阵.

这两个单位阵 E, 做了一次"初等变换"后, 就已经是"初等方阵"了. 那么用"初等方阵"左乘"一个普通矩阵, 和"右乘"一个普通矩阵, 顺序不同, 运算规则也是不一样的:

(1) 用初等方阵 "左乘" A 矩阵 (即初等方阵在 A 左边)

E 在左边, 即: 用第 **i** 种初等方阵 "左乘"A, 效果就相当于对 A 实施了同种的 (即也是第 **i** 种的)"初等行变换". (左行, 右列)

比如本例, 对 E 做了"对第 2 行, 乘上 3 倍"的操作, 就相当于对 A 做了"对第 2 行, 乘上 3 倍"的操作.

(2) 用初等方阵 "右乘" A 矩阵 (即初等方阵在 A 右边)

E 在右边, 即: 用第 **i** 种初等方阵 "右乘"A, 效果就相当于对 A 实施了同种的 (即也是第 **i** 种的)"初等列变换". (左行, 右列)

这就好像是古代的扎小人巫术, 对初等方阵 E(人偶) 做扎针, 就相当于对 A(真人对 象) 做同等扎针.