University of Toronto Department of Mathematics

MAT224H1F

Linear Algebra II

Midterm Examination

October 25, 2011

S. Uppal

Duration: 1 hour 50 minutes

Last Name:	
Given Name:	
Student Number:	
Tutorial Group:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY			
Question	Mark		
1	/10		
2	/10		
3	/10		
4	/10		
5	/10		
6	/10		
TOTAL	/60		

[10] 1. Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the linear transformation defined by

$$T(A) = \frac{A + A^T}{2}.$$

Find the matrix of T relative to the basis $\alpha = \{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \}$ for $M_{2\times 2}(\mathbb{R})$.

EXTRA PAGE FOR QUESTION 1 - do not remove.

[10] **2.** Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by

$$T(a + bx + cx^{2}) = (-2b + 11c) + (-2a + c)x + (3a - b + 4c)x^{2}.$$

Find bases for the kernel and image of T.

EXTRA PAGE FOR QUESTION 2 - do not remove.

[10] **3.** Let $V = P_4(\mathbb{R})$ and $W = \{p(x) \in P_5(\mathbb{R}) \mid p(1) = 0\}$. Show that V and W are isomorphic and find an isomorphism $T: V \to W$.

[10] 4. Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be the linear transformation whose matrix with respect to the standard basis of \mathbb{C}^2 is

$$\begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}.$$

Find a basis α for \mathbb{C}^2 consisting of eigenvectors of T and find $[T]_{\alpha\alpha}$.

EXTRA PAGE FOR QUESTION 4 - do not remove.

[10]5. Let $T: P_2(\mathbb{R}) \to P_1(\mathbb{R})$ be the linear transformation defined by

$$T(a + bx + cx^{2}) = (a - 3b + c) + (2a - 6b + 3c)x.$$

Find bases α' for $P_2(\mathbb{R})$, and β' for $P_1(\mathbb{R})$ such that $[T]_{\beta'\alpha'}$ is the reduced row echelon form of $[T]_{\beta\alpha}$ where α and β are the standard bases for $P_2(\mathbb{R})$ and $P_1(\mathbb{R})$ respectively.

EXTRA PAGE FOR QUESTION 5 - do not remove.

- **6.** Let V and W be vector spaces over a field F. Let $\alpha = \{v_1, v_2, \dots, v_n\}$ be a basis for V, and $\beta = \{w_1, w_2, \dots, w_m\}$ a basis for W. Let $T: V \to W$ be a linear transformation.
- [5](a) Prove that T is surjective if and only if the columns of $[T]_{\beta\alpha}$ span F^m .
- [5](b) Prove that T is injective if and only if the columns of $[T]_{\beta\alpha}$ are linearly independent in F^m .