Cancer Drug Synergy Prediction using Graph Convolutional Neural Networks

Group 2

Nitanshu Joshi Dhanusha Duraiyan Supriya Bidanta Farzaneh Behzadnia Paveethran Swaminathan

Introduction

Drug A → Specific response for A on cell line

Drug B → Specific response for B on cell line

Synergy of A and B \rightarrow

Combined response of

A and B on cell line.

Synergy could be additive or inhibitive.

Methods to predict synergy-scores

Naive method: based on clinical experiences - trial and error method

High-throughput Screening (HTS)

- Machine learning approach

Primary Research Paper

Finding synergistic drug pairs for a particular cancer type is important for improving efficacy of anticancer treatment.

Each sample:

two compounds + a cell line

[Kristina Preuer, Richard P I Lewis, Sepp Hochreiter, Andreas Bender, Krishna C Bulusu, Günter Klambauer, DeepSynergy: predicting anti-cancer drug synergy with Deep Learning, *Bioinformatics*, Volume 34, Issue 9, 01 May 2018, Pages 1538–1546, https://doi.org/10.1093/bioinformatics/btx806]

Data: Main Drug Data with Synergy Scores

Drug details: http://www.bioinf.jku.at/software/DeepSynergy/

Unnamed: 0 drug a name drug b name cell line

CS(=O)(=O)CCNCc1ccc(-c2ccc3ncnc(Nc4ccc(OCc5ccc...

COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)CC(O)(C(=...

CS(=O)(=O)CCNCc1ccc(-c2ccc3ncnc(Nc4ccc(OCc5ccc...

COC12C(COC(N)=O)C3=C(C(=O)C(C)=C(N)C3=O)N1CC1NC12

0	5-FU_ABT-888_A2058	5-FU	ABT-888	A2058	7.693530	2 O=c1[nH]cc(F)c(=O)[nH]1 CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1
1	5-FU_ABT-888_A2780	5-FU	ABT-888	A2780	7.778053	2 O=c1[nH]cc(F)c(=O)[nH]1 CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1
2	5-FU_ABT-888_A375	5-FU	ABT-888	A375	-1.198505	2 O=c1[nH]cc(F)c(=O)[nH]1 CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1

synergy fold

drug a structure

COC1CC2CCC(C)C(O)(O2)C(=O)C(=O)N2CCCCC2C(=O)OC...

CCN(CC)CCNC(=O)c1c(C)[nH]c(C=C2C(=O)Nc3ccc(F)c...

O=C(O)C1(Cc2cccc(Nc3nccs3)n2)CCC(Oc2cccc(Cl)c2...

NC(=O)c1cccc2cn(-c3ccc(C4CCCNC4)cc3)nc12

drug b structure

VCAP

LOVO

RPMI7951

14.617611

-13 653373

-5.641747

28.431355

2	5-FU_ABT-888_A375	5-FU	ABT-888	A375 -1.198505	2 O=c1[nH]cc(F)c(=O)[nH]1	CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1
3	5-FU_ABT-888_A427	5-FU	ABT-888	A427 2.595684	2 O=c1[nH]cc(F)c(=O)[nH]1	CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1

2	5-FU_ABT-888_A375	5-FU	ABT-888	A375	-1.198505	2	O=c1[nH]cc(F)c(=O)[nH]1	CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1
3	5-FU_ABT-888_A427	5-FU	ABT-888	A427	2.595684	2	O=c1[nH]cc(F)c(=O)[nH]1	CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1
	5 511 1 BT 000 01010	·	4.D.T. 0.00	0.1.01.10	E 400074	_	0 41 10 45 4 04 104	004/00 0 /0/00 00 00 1000000004

2	5-FU_ABT-888_A375	5-FU	ABT-888	A375 -1.198505	2 O=c1[nH]cc(F)c(=O)[nH]1 CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1
3	5-FU_ABT-888_A427	5-FU	ABT-888	A427 2.595684	2 O = c1[nH]cc(F)c(=O)[nH]1 CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1
4	E ELL ART 999 CAOVS	E EII	ADT 000	CAOV2 E 120071	2

J	5-FU_AD1-000_A421	5-FU	AD 1-000	A421	2.595004	2	0-c1[nh]cc(r)c(-0)[nh]1	CCT(czncsc(C(N)=O)ccccs[nn]z)CCCNT
4	5-FU_ABT-888_CAOV3	5-FU	ABT-888	CAOV3	-5.139971	2	O=c1[nH]cc(F)c(=O)[nH]1	CC1(c2nc3c(C(N)=O)cccc3[nH]2)CCCN1

0
drug_a_structure drug_b_structure cell_line s
4 5-FU_ABT-888_CAOV3 5-FU ABT-888 CAOV3 -5.139971 2 O=c1[nH]cc(F)c(=O)[nH]1 CC1(c2nc3c(C(N)=O)cccc3[nH]2)

_	_		 						• •
		drug_a_structure		drug_b_	structu	re o	ell_li	ne	synergy

Cc1nc(Nc2ncc(C(=O)Nc3c(C)cccc3CI)s2)cc(N2CCN(C...Cn1c(=O)n(-c2ccc(C(C)(C)C#N)cc2)c2c3cc(-c4cnc5...21.548383

Data: Cancer Cell Line

Cell line: https://sites.broadinstitute.org/ccle/

	#	#.1	CellLine	CHL1	HMCB	HS852T	HS695T	A101D	HS294T	SNU466	• • • •	HEL9217	HEL	UT7	SET2
0	#	#	Tissue	skin	skin	skin	skin	skin	skin	central nervous system		haematopoietic and lymphoid tissue	haematopoietic and lymphoid tissue	haematopoietic and lymphoid tissue	haematopoietic and lymphoid tissue
1	GeneSym	NaN	GeneID/NA	na	na	na	na	na	na	na		na	na	na	na
2	LBH	na	81606	-0.0	-0.0	0.0	-0.0	-0.0	0.0	0.0		0.0	0.0	0.0	0.0
3	GLI2	na	2736	0.0	1.0	0.0	0.0	0.0	0.0	0.0		-0.0	0.0	-0.0	-0.0
4	PAPPA	na	5069	0.0	-0.0	0.0	-0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0

5 rows × 1040 columns

Data: Protein-Protein Interactions

PPI: https://snap.stanford.edu/biodata/datasets/10000/10000-PP-Pathways.html

	Protein1	Protein2
0	1394	2778
1	122704	54460
2	2597	2911
3	4790	79155
4	109	27115
5	324	10982
6	26268	6500
7	3609	3954
8	152485	57504
9	1537	55967
10	8452	7278

Performance Metrics

Mean Squared Error (MSE):

R2 Score:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \mu)^2}.$$

MSE = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

$$R=sign\left(R^{2}
ight)\sqrt{\left|R^{2}
ight|},$$

(Image Source: https://emilia-orellana44.medium.com/not-nice-square-error-2d18c248391c)

Model Architecture

- 1) Graph Neural Network Message Passing Neural Network
- 2) Molecular Graph Convolutional Neural Network

And a feed forward neural network that takes input from these two embeddings and predicts a synergy score.

Flow of Modelling

Model: Activation Functions

ReLU: (rectified linear activation unit)

$$f(x) = \max(0, x)$$

https://machinelearningmastery.com/wp-content/uploads/2018/10/Line-Plot-of-Rectified-Linear-Activation-for-Negative-and-Positive-Inputs.png

TanH

https://www.researchgate.net/figure/Commonly-used-activation-functions-a-Sigmoid-b-Tanh-c-ReLU-and-d-LReLU_fig3_335845675

Results: Training Curve

Results: Predictions

Training (MSE) = 318.786

Testing (MSE) = 160.579

Testing R-Squared Value = 0.354

Conclusion:

- 1. We have developed a novel graph based deep learning method to predict synergy scores.
- 1. Since it requires more number of epochs, this method showed difficulty in generalizing on novel drugs-cell line combination when trained on lower parameters. Also, need to look at other activation functions and also decay weights in some epochs.
- 1. We've demonstrated that this method can also perform decent enough on external unseen test dataset
- 1. Overall, with more improvement, this could be a valuable tool for selecting drug-combinations for cancer cell-lines.

Limitations

- Need large number of epochs (at-least 500) to get a good convergence.
- Due to the complexity of the model, it requires too much computational time for training.
- Since the dataset has only a limited number of different drugs and cell lines all methods show difficulties to generalize well across novel drugs and cell lines.
- Evaluating performance of ML models on individual cancer-cell types.
- Since the models are extremely complex, their interpretability is difficult.

References:

- https://doi.org/10.1093/bib/bbac075
- https://doi.org/10.1158/1535-7163.MCT-15-0843
- https://doi.org/10.3389/fchem.2019.00509
- https://doi.org/10.1093/bioinformatics/btx806
- https://www.nature.com/articles/s41598-021-90923-y
- https://github.com/KristinaPreuer/DeepSynergy
- https://keras.io/examples/graph/mpnn-molecular-graphs/
- https://github.com/tkipf/pygcn
- http://snap.stanford.edu/deepnetbioismb/ipynb/Graph+Convolutional+Prediction+of+Protein+Interactions+in+Yeast.html
- https://jhoonline.biomedcentral.com/articles/10.1186/s13045-020-00850-0

Q&A