COMP4418, 2017 – Assignment 3

Due: Wednesday, 22 November, 23:59:59

Worth: 15%

1. [20 Marks] (Social Choice and Game Theory)

In the tourname ttps://eduassistpro.github.io/ downward are

- the uncov
- the top cycle;
- the set of Gopeland winters: Chat edu_assist_pro
- the set of Condorcet winners.
- (b) Compute all the Nash equilibria of the following two player game.

2. [30 Marks] (Decision Making)

- (a) For each of the following games, choose the best model among (A) Markov chain (Markov process); (B) Markov decision process (MDP); (C) Hidden Markov model (HMM); (D) Partially-observable Markov decision process (POMDP); and (E) None/Other.
 - Blackjack
 - Candy Crush
 - Chess
 - Minesweeper
 - Snakes and Ladders
 - Texas Hold 'em Poker

For the next questions, consider the Markov Decision Process depicted below. Edges are labelled "name of the action (reward associated), probability of the transition".

- (b) Using your inhittps://eduassistpro.github.io/
- (c) Using your intuition, give an optimal policy for situations where t low (for instance, 1000) Explain your case of 38515 DrO
- (d) Represent the values computed during the first three iteratio hm using the following format where L represents the action Leave and S represents the action Stay. Use a discounting factor of 0.6.

	$V_0(s)$	$V_0(s,S)$	$V_0(s,L)$	$V_1(s)$	$V_1(s,S)$	$V_1(s,L)$	$V_2(s)$	$V_2(s,S)$	$V_2(s,L)$	$V_3(s)$
s_1	0	1								
s_2	0									
s_3	0									

- (e) Let π be the following policy: $\pi(s_1) = L$, $\pi(s_2) = L$, $\pi(s_3) = S$. If π is assumed to hold, the MDP turns into a Markov Chain. Represent this Markov Chain / Markov Process.
- (f) Assuming the agent uses π , express the value associated to each state as a function of the discount factor δ . Provide the formal derivation of the result as part of your answer. Elaborate on whether the computations of this question support the intuition of questions 2b and 2c.

Submission

- Put your written solutions in a single PDF file assn3.pdf
- Submit using the command: give cs4418 assn3 assn3.pdf

Late Submissions

Due to the assignment due date being extended to the 22nd November there will be no late submissions allowed.

Academic Honesty and Plagiarism

All work submitted for assessment **must be your own work**. Assignments **must be completed individually**. We regard copying of assignments, in whole or part, as a very serious offence. Be warned that:

- the submission of work derived from another person, or jointly written with someone else will, at the very least, result in automatic failure for COMP4418 with a mark of zero;
- allowing Assistant months in the first of the second own assignment; and
- severe or second offen other academic distriction observed in ttps://eduassistpro.github.io/

Collaborative work in the form of "think tanking" is encouraged, but students are not allowed to derive solutions together as a group during such discussions. Students are also warne fragments of the assignments to dark there is all form (e.g. demail or listing) in a project ing/purchasing of solutions that is available on that the printer for others to take. Read the study guide carefully for the rules regarding plagiarism.