PS 1

Elmer S. Poliquit

2024-01-31

Problem Set 1

1. Prove that $\lim_{x\to -1} 2x + 1 = -1$.

Note: For any given $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(x_0)| < \epsilon$ whenever $|x - x_0| < \delta$. Draft:

$$\begin{aligned} |2x+1-(-1)| &< \epsilon \\ |2x+2| &< \epsilon \\ |2||x-(-1)| &< \epsilon \\ |x-(-1)| &< \frac{\epsilon}{|2|} \\ \delta &\leq \frac{\epsilon}{2} \end{aligned}$$

- 2. Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the following function and graph using R with the point/s identified. $f(x) = x^3 4x^2 2x 5$ on [-10, 10].
- 3. Find the point c that satisfies the mean value theorem for integrals on the interval [-1,1]. The function is $f(x) = 2e^x$.
- 4. Consider the function $f(x) = \cos(x/2)$. a Find the fourth Taylor polynomial for f at $x = \pi$. b Use the fourth Taylor polynomial to approximate $\cos(\pi/2)$. c Use the fourth Taylor polynomial to bound the error.
- 5. If fl(x) is the machine approximated number of a real number x and ϵ is the corresponding relative error, then show that $fl(x) = (1 \epsilon)x$.
- 6. For the following numbers x and their corresponding approximations x_A , find the number of significant digits in x_A with respect to x and find the relative error.

a.
$$x=451.01, x_A=451.023$$

b. $x=-0.04518, x_A=-0.045113$
c. $x=23.4604, x_A=23.4213$

Note:

Relative error

$$E(x_A) = x - x_A E_r(x_A) = \frac{E(x_A)}{x}$$

Significant Digits

$$|x - x_A| \le \frac{1}{2}\beta^{s-r+1}$$

Draft:

a.
$$x = 451.01, x_A = 451.023$$

Relative Error:

$$E(x_a) = 451.01 - 451.023 = -0.013$$

$$E_r(x_a) = \frac{-0.013}{451.01} = -0.00002882419$$

Significant Digits:

$$|x-x_A|=0.013<0.5=\frac{1}{2}\times 10^0.$$
 But $10^2<451.01.$ Therefore $s=2$ and $r=6$ $0.013\leq \frac{1}{2}\beta^{2-6+1}=\frac{1}{2}\times 10^{-3}=0.0005$

b.
$$x = -0.04518, x_A = -0.045113$$

Relative Error:

$$E(x_a) = -0.04518 - (-0.045113) = -0.000067$$

$$E_r(x_a) = \frac{-0.000067}{-0.04518} = 0.00148295706$$

Significant Digits:

$$|x - x_A| = 0.000067 < 0.0005 = \frac{1}{2} \times 10^{-3}$$
. But $10^{-2} < 0.04518$. Therefore $s = -2$ and $r = 5$ $0.000067 \le \frac{1}{2}\beta^{-2-5+1} = \frac{1}{2} \times 10^{-6} = 0.0000005$

c.
$$x = 23.4604, x_A = 23.4213$$

Relative Error:

$$E(x_a) = 23.4604 - 23.4213 = 0.0391$$

$$E_r(x_a) = \frac{0.0391}{23.4604} = 0.00166663824$$

Significant Digits:

$$|x - x_A| = 0.0391 < 0.5 = \frac{1}{2} \times 10^0$$
. But $10^1 < 23.4213$. Therefore $s = 1$ and $r = 6$ $0.0391 \le \frac{1}{2}\beta^{1-6+1} = \frac{1}{2} \times 10^{-4} = 0.00005$

7. Find the condition number for the following functions

a.
$$f(x) = 2x^2$$

b.
$$f(x) = 2\pi^x$$

c.
$$f(x) = 2b^x$$

8. Determine if the following series converges or diverges. If it converges determine its sum.

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

2