Tab 2. Methods of identifying the risk of disapproval used in each job selected in the mapping.

	NAME	RELEV.	CONTEXT	>75%
1	[YANG et al., 2022]	100%	AN ATTENTIVE PRUNING METHOD FOR EDGE COMPUTING	X
2	[ZHANG et al., 2019 – 1]	0%	EDGE DETECTION METHOD OF IMAGE - CG	
3	[BHATTACJARYA et al.,	0%	ESTRUTURA DE DADOS - ONLINE EDGE COLORING	
	2021]		ALGORITHMS VIA THE NIBBLE METHOD*	
4	[GUO et al., 2018]	5%	VEÍCULO AUTONOMO	
5	[DONG et al., 2020]	0%	ANÁLISE DA DOENÇA miRNA	
6	[LU et al., 2018]	90%	AIRBORNE EQUIPMENT HEALTH STATUS DATA –	X
			MONITORAMENTO AÉREO E COMPENSAÇÃO	
7	[NA et al., 2020]	0%	CG – RESUMO - A COLOR IMAGE EDGE DETECTION	
8	[MENG et al., 2021]	100%	EDGE COMPUTING TASK OFFLOADING METHOD	X
9	[LIU et al., 2021]	0%	ANÁLISE DE IMAGEM E BORDA	
10	[CHEN et al., 2019 – 1]	20%	CONSUMO DE ENERGIA EM DATACENTER	
11	[YAN et al., 2018]	90%	A RAPID PUSH METHOD OF CUTTING-EDGE	X
			TECHNOLOGICAL KNOWLEDGE BASED ON COSINE	
			DISTANCE	
12	[XU et al., 2021]	90%	INTERNET OF MULTIMEDIA THINGS (IOMT) COM	X
			HASHONGTABLE	
13	[ZHANG et al., 2019 – 2]	0%	NANOPARTICULAS	
14	[MATSUDA et al., 2020]	80%	DETECÇÃO DE IMAGEM DE VAGAS DE ESTACIONAMENTO	X
15	[TIAN et al., 2018]	0%	ANALISE DE BORDA DE IMAGEM - CG	
16	[LIU et al., 2022]	0%	ANALISE DE IMAGEM COM ULTRASOM	
17	[HUANG et al., 2021]	100%	RESEARCH ON CLOUD-EDGE COLLABORATIVE PROCESSING METHOD	X
18	[CHEN et al., 2019 – 2]	0%	PROCESSAMENTO DE IMAGENS EM RODOVIAS	
19	[MEDKOVA et al., 2020]	5%	GEOSOCIAL NETWORKING	
20	[TAHMAN et al., 2022]	20%	MONITORAMENTO DE APNEIA DO SONO	
21	[GUO et al., 2020]	0%	CITOXIDADE CELULAR	
22	[KRZYWINSKA et al., 2020]	0%	METHOD FOR CREATING MIXED REALITY GAMES	
23	[DUBARA et al., 2021]	80%	POSTER: SMART ENERGY METER CALIBRATION: AN EDGE	X
	, ,		COMPUTATION METHOD	
24	[MEKALA et al., 2021 – 1]	90%	INDUSTRIAL INTERNET OF THINGS (IIOT) SENSOR RANKING	X
25	[TRAN et al., 2018]	70%	INTERNET OF THINGS SEARCH ENGINES (IOTS)	
26	[VERMA et al., 2021]	95%	INDUSTRIAL INTERNET OF THINGS (IIOT) SENSOR RANKING	X
27	[MEKALA et al., 2022]	0%	SOCIAL INTERNET OF THINGS COM DEEPLEARNING	
28	[COCCIA et al., 2022]	95%	SENSORES	X
29	[YAO et al., 2022]	0%	5G E BLOCKCHAIN	
30	[MEKALA et al., 2021 – 2]	0%	CARRO AUTÔNOMO	
31	[COSTA et al., 2022]	100%	RANQUEAMENTO DE SENSORES	X
32	[MEKALA et al., 2021 – 3]	0%	CARRO AUTÔNOMO COM DEEPLEARNING	
33	[SOUZA et al., 2020]	90%	IOT	X
34	[BERALDO et al., 2020]	50%	REDES / NEBLINA NUVEM "FOG CLOUD"	
35	[GARCIA et al., 2019]	0%	REDES	