Escher's Tessellations with Sketchpad

Indiana MAA
GOSHEN COLLEGE
October 18,2003

Larry Hautzinger, May Lee, Nicole Nigh

Topics in Euclidean Geometry

IUN, Fall 2002

Dr. Vesna Kilibarda

What is a Tessellation?

- Geometric patterns on a surface that can be filled with contiguous figures without any gaps or overlap
- Comes from the Greek word *tesseres*, which means four (in reference to the squares used in the first tessellations)

What Can Be Tessellated?

- Made by repeated use of one polygon (regular tessellation)
- Formed by using more than one polygon – must be regular polygons (semi-regular tessellation)
- Constructed from curved figures

Vertex Figures

Polygons	Figures
$n_1 = 6$ $n_2 = 6$	
$n_3 = 6$	
$n_1 = 3$ $n_2 = 4$ $n_3 = 5$	
$n_1 = 4$ $n_2 = 6$ $n_3 = 12$	

Tessellation with 3 Polygons (PROOF)

$$180\left(1-\frac{2}{n_1}\right)+180\left(1-\frac{2}{n_2}\right)+180\left(1-\frac{2}{n_3}\right)=360$$

$$\left(1-\frac{2}{n_1}\right)+\left(1-\frac{2}{n_2}\right)+\left(1-\frac{2}{n_3}\right)=2$$

$$3 - \left(\frac{2}{n_1} + \frac{2}{n_2} + \frac{2}{n_3}\right) = 2 \qquad \left(\frac{2}{n_1} + \frac{2}{n_2} + \frac{2}{n_3}\right) = 1$$

$$\left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}\right) = \frac{1}{2}$$

Tessellation with Polygons

Number of Polygons Surrounding Vertex	Simplified Equation
3	$\left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}\right) = \frac{1}{2}$
4	$\left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4}\right) = 1$
5	$\left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4} + \frac{1}{n_5}\right) = \frac{3}{2}$
6	$\left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4} + \frac{1}{n_5} + \frac{1}{n_6}\right) = 2$

What is Symmetry?

A figure is symmetrical if you can rotate it, flip it or move it in such a way that it is identical to the original figure.

Types of Symmetry

Translation

Reflection

Rotation

Escher's Tessellations

Very Brief History

- Mesopotamian Valley Sumerians in 400 BCE decorated homes and temples with geometric patterns, using tiles made of burnt clay
- M.C. Escher was born in 1898 and dropped out of high school to study graphic arts
- Trip in 1922 to see Moorish mosaics in Alhambra, Spain started Escher on tessellations

Tessellating With Sketchpad

References

- Escher, M.C. The Graphic Work Of M.C. Escher. Ballantine Books: New York, 1975.
- Grunbaum, Branko and Shepard. Tilings and Patterns: An Introduction. W.H. Freeman and Company. New York, 1989.
- O'Daffer, Phares and Clemens. Geometry: An Investigative Approach. Addison-Wesley: Reading, Massachusetts, 1976.
- Weyl, Hermann. Symmetry. Princeton University Press: Princeton, New Jersey, 1952.
- http://library.thinkquest.org/16661/
- http://members.rogers.com/29194174476/Puzzleeightheads1.htm
- http://www.facstaff.bucknell.edu/udaepp/090/w2/Lenzi.htm
- http://www.mcescher.com/hb