M 361K Homework 2

Ishan Shah

October 10, 2022

3.3

5. Let $y_1 := \sqrt{p}$, where p > 0, and $y_{n+1} := \sqrt{p + y_n} \ \forall \ n \in \mathbb{N}$. Show that (y_n) converges and find the limit.

Proof. We want to show that (y_n) is both monotonically increasing and bounded. First, we show that (y_n) is monotonically increasing. We have that $y_1 = \sqrt{p}$ and $y_2 = \sqrt{p+y_1} = \sqrt{p} + \sqrt{p}$. Thus, $y_2^2 - y_1^2 = p + \sqrt{p} - p = \sqrt{p} > 0$. Thus, $y_2 > y_1$. We can continue this argument to show that $(y_{n+1}) > (y_n)$ as $(y_{n+1}) - (y_n) = (y_n) + (y_{n-1}) > 0$. Thus, (y_n) is monotonically increasing.

Now, we show that (y_n) is bounded. We have that $y_1 = \sqrt{p} < 1 + 2\sqrt{p}$. Next, we have that $(y_n) < 1 + 2\sqrt{p}$. From here, $(y_{n+1}^2) . Thus, since <math>(y_n) < 1 + 2\sqrt{p}$, (y_n) is bounded, so (y_n) converges to some value c.

Now, we want to find this value c. We have that $\lim_{n\to\infty}(y_n) = \lim_{n\to\infty}\sqrt{p+y_{n-1}} = \sqrt{p+\lim_{n\to\infty}(y_{n-1})}$. Then, $c=\sqrt{p+c}$. Thus, $c^2=p+c \implies c=\frac{1}{2}(1+\sqrt{1+4p})$.

8. Let (a_n) be an increasing sequence, (b_n) be a decreasing sequence, and assume that $a_n \leq b_n \ \forall \ n \in \mathbb{N}$. Show that $\lim(a_n) \leq \lim(b_n)$.

Proof. Since (b_n) is decreasing, b_1 is the upper bound of (b_n) and also the upper bound of (a_n) since $a_n \leq b_n \, \forall \, n \in \mathbb{N}$. Thus, (a_n) is bounded below by a_1 and above by b_1 , and (a_n) is monotonic, so it must converge to some limit. Similarly, (b_n) is bounded below by a_1 and above by b_1 , and (b_n) is monotonic, so it must converge to some limit.

Now, we can use Theorem 3.2.5 which states that for two convergent sequences (a_n) and (b_n) , if $a_n \leq b_n \ \forall \ n \in \mathbb{N}$, then $\lim(a_n) \leq \lim(b_n)$. Thus, $\lim(a_n) \leq \lim(b_n)$.

12. Establish the convergence and find the limits of the following sequences.

(a)
$$((1+1/n)^{n+1})$$

$$\lim_{n\to\infty} (1+1/n)^{n+1} = \lim_{n\to\infty} (1+1/n)^n \cdot (1+1/n)$$

$$= \lim_{n\to\infty} (1+1/n)^n \cdot \lim_{n\to\infty} (1+1/n)$$

$$= e \cdot 1$$

$$= e$$

(b)
$$((1+1/n)^{2n})$$

$$\lim_{n \to \infty} (1 + 1/n)^{n+1} = \lim_{n \to \infty} (1 + 1/n)^n \cdot (1 + 1/n)^n$$

$$= \lim_{n \to \infty} (1 + 1/n)^n \cdot \lim_{n \to \infty} (1 + 1/n)^n$$

$$= e \cdot e$$

$$= e^2$$

3.4

1. Give an example of an unbounded sequence that has a convergent subsequence.

Proof. Let there be some sequence (x_n) where $(x_n) = 1$ if n is even and $(x_n) = n$ if n is odd. Then, (x_n) is an unbounded sequence, yet the susbequence (x_{2n}) is convergent as it is bounded and monotonic. Thus, (x_n) has a convergent subsequence.

4b. Show that the sequence $(\sin n\pi/4)$ is divergent.

Proof. Let $(x_n) = \sin n\pi/4$. We want to show that (x_n) has two convergent subsequences whose limits are not equal. Let $(y_n) = (x_{4n})$ and $(z_n) = (x_{8n+1})$ be subsequences of (x_n) .

Then, $(y_n) = \sin(4n\pi/4) = \sin(n\pi) = 0$ and $(z_n) = \sin((8n+1)\pi/4) = \sin(2n\pi + \pi/4) = \sin(\pi/4) = \sqrt{2}/2$. Thus, (y_n) and (z_n) are both convergent subsequences of (x_n) , yet their limits are not equal. Therefore, (x_n) is divergent.

10. Let (x_n) be a bounded subsequence and for each $n \in \mathbb{N}$, let $s_n := \sup\{x_k : k \ge n\}$ and $S := \inf\{s_n\}$. Show that there exists a subsequence of (x_n) that converges to S.

Proof. For $\epsilon > 0$, there exists some $n \in \mathbb{N}$ such that $s_n < S + \epsilon$. We can choose $\epsilon = 1$ and m_1 such that $s_{m_1} - 1 < S + 1$ and $k_1 \ge m_1$ such that $s_{m_1} - 1 < x_{k_1} < s_{m_1}$ since $s_{m_1} = \sup\{x_n : k \ge m_1\}$.

Then, we can choose some $m_n > m_{n-1}$ such that $S \leq s_{m_n} < S + \frac{1}{n}$ and $k_n \geq m_n$ and $k_n > k_{n-1}$ such that $s_{m_n} - \frac{1}{n} < x_{k_n} < s_{m_n}$. Now, we have a subsequence (x_{k_n}) of (x_n) where $|x_{k_n} - S| \leq \frac{1}{n}$. Finally, we know that $\lim_{n \to \infty} \frac{1}{n} = 0$. Thus, $\lim_{n \to \infty} x_{k_n} = S$.

12. Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $\lim_{k\to\infty}(1/x_{n_k})=0$.

Proof. Let (x_n) be unbounded. Then, there exists some $n_1 \in \mathbb{N}$ such that $|x_{n_1}| \geq 1$. There also exists some $n_2 > n_1 \in \mathbb{N}$ such that $|x_{n_2}| \geq 2$. We can continue this with some arbitrary sequence $n_i \in \mathbb{N}$ such that $|x_{n_k}| \geq k$ for all $k \in \mathbb{N}$ because this sequence is unbounded. Then,

$$0 \le \frac{1}{|x_{n_k}|} \le \frac{1}{k}$$

We know that $\lim_{k\to\infty}\frac{1}{k}=0$, so $\lim_{k\to\infty}\frac{1}{x_{n_k}}=0$ by Theorem 3.2.7 (Squeeze Theorem).

3.5

- 2. Show directly from the definition that the following are Cauchy sequences.
 - (a) $\left(\frac{n+1}{n}\right)$

We want to show that $\exists N \in \mathbb{N}$ such that m, n > N and $|S_m - S_n| < \epsilon$. Let there be some arbitrary N such that $\frac{1}{N} = \frac{\epsilon}{2}$ and some $m > n \ge N$. Then,

$$\left| \frac{m+1}{m} - \frac{n+1}{n} \right| = \left| \frac{1}{m} - \frac{1}{n} \right|$$

$$\leq \frac{1}{m} + \frac{1}{n}$$

$$\leq \frac{2}{n}$$

$$\leq \frac{2}{N}$$

$$\leq \epsilon$$

Thus, $\left(\frac{n+1}{n}\right)$ is a Cauchy sequence.

(b) $(1 + \frac{1}{2!} + \cdots + \frac{1}{n!})$ We want to show that $\exists N \in \mathbb{N}$ such that m, n > N and $|S_m - S_n| < \epsilon$. Let there be some arbitrary N such that $\frac{1}{2^N} < \epsilon$ and some $m > n \ge N$. Then,

$$\left| \left(1 + \frac{1}{2!} + \dots + \frac{1}{m!} \right) - \left(1 + \frac{1}{2!} + \dots + \frac{1}{n!} \right) \right| = \frac{1}{(n+1)!} + \dots + \frac{1}{m!}$$

$$\leq \frac{1}{2^{n+1}} + \dots + \frac{1}{2^m}$$

$$= \frac{1}{2^n} \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{m-n}} \right)$$

$$\leq \frac{1}{2^n} \left(\frac{1}{2} + \frac{1}{4} + \dots \right)$$

$$= \frac{1}{2^n} * 1$$

$$\leq \frac{1}{2^N}$$

$$\leq \epsilon$$

Thus, $\left(1 + \frac{1}{2!} + \cdots + \frac{1}{n!}\right)$ is a Cauchy sequence.

7. Let (x_n) be a Cauchy sequence such that x_n is an integer for every $n \in \mathbb{N}$. Show that (x_n) is ultimately constant.

Proof. Let $\epsilon = 1$. Then, there must exist some N such that m, n > N and $|x_m - x_n| < \epsilon$. However, since x_m and x_n are integers, $x_m = x_n$ in order to satisfy the Cauchy condition. Thus, (x_n) is ultimately constant.

8. Show directly that a bounded, monotone increasing sequence is a Cauchy sequence.

Proof. Let there be some bounded, monotone increasing sequence (x_n) that has some supremum M. We know that there exists some n_0 and $\epsilon > 0$ such that $M - \epsilon < x_{n_0} < M$. Since (x_n) is increasing, we also know that there exists some n_1 and n_2 such that $x_{n_0} \le x_{n_1} \le x_{n_2}$. We can combine these inequalities to get that $M - \epsilon < x_{n_0} \le x_{n_1} \le x_{n_2} < M$.

Now, we want to show that $|x_{n_1} - x_{n_2}| < \epsilon$ to satisfy the definition of a Cauchy sequence. Since we know that $M - \epsilon < x_{n_1} < M$ and $M - \epsilon < x_{n_2} < M$, we know that $-M < -x_{n_2} < \epsilon - M$. Then, we can combine our equations like so:

$$M - \epsilon - M < x_{n_1} - x_{n_2} < M + \epsilon - M$$

$$\implies \epsilon < x_{n_1} - x_{n_2} < \epsilon$$

$$\implies |x_{n_1} - x_{n_2}| < \epsilon$$

Thus, (x_n) is a Cauchy sequence.

4.1

2. Determine a condition on |x-4| to assure the following inequalities.

We can break down our original equation to yield a more useful form assuming that $x \geq 0$:

$$x - 4 = (\sqrt{x} + 2)(\sqrt{x} - 2)$$
$$|\sqrt{x} - 2| = \frac{|x - 4|}{\sqrt{x} + 2}$$
$$|\sqrt{x} - 2| \le \frac{|x - 4|}{2}$$

We can use this new form to easily solve these inequalities.

(a)
$$|\sqrt{x} - 2| < \frac{1}{2}$$

Proof. Let
$$|x-4| < 1$$
. Then, $|\sqrt{x}-2| < \frac{1}{2}$.

(b)
$$|\sqrt{x} - 2| < 10^{-2}$$

Proof. Let
$$|x-4| < 2 \cdot 10^{-2}$$
. Then, $|\sqrt{x}-2| < 10^{-2}$.

6. Let I be an interval in \mathbb{R} , let $f: I \to \mathbb{R}$, and let $c \in I$. Suppose that there exists constants K and L such that $|f(x) - L| \le K|x - c|$ for $x \in I$. Show that $\lim_{x \to c} f(x) = L$.

Proof. We want to show that $\epsilon > 0$ as we can find some $\delta > 0$ such that if $|x - c| < \delta$, then $|f(x) - L| < \epsilon$. Because $|f(x) - L| \le K|x - c|$, we have $\delta = \frac{\epsilon}{K}$. If $|x - c| < \frac{\epsilon}{K}$, then $|f(x) - L| \le K|x - c| < \epsilon$. Thus, $|f(x) - L| < \epsilon$, so $\lim_{x \to c} f(x) = L$.

9a. Use either the $\epsilon - \delta$ definition of a limit or the Sequential Criterion for limits to establish that $\lim_{x\to 2} \frac{1}{1-x} = -1$.

Proof. We assume we have some $(s_n) \to 2$. Then,

$$\lim_{n \to \infty} \frac{1}{1 - x} = \frac{1}{1 - 2} = -1$$

Then, by the Sequential Criterion for limits, we have that $\lim_{x\to 2} \frac{1}{1-x} = -1$.

10a. Use the definition of the limit to show that $\lim_{x\to 2}(x^2+4x)=12$.

Proof. Let $\delta = \min\{1, \frac{epsilon}{9}\}$ and $\epsilon > 0$. We also have x such that $|x - 2| < \delta$. We want to show that the difference at any two arbitrary points is less than ϵ . Then,

$$|x^{2} + 4x - 12| = |(x - 2)(x + 6)|$$

$$\leq |x - 2||x + 6|$$

$$\leq \delta|x + 6|$$

$$= \delta|x - 2 + 8|$$

$$\leq \delta|\delta + 8|$$

$$\leq \delta(1 + 8)$$

$$= \delta(9)$$

$$\leq \epsilon$$

Thus, $\lim_{x\to 2} (x^2 + 4x) = 12$.

15. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by setting f(x) := x if x is rational, and f(x) = 0 if x is irrational.

(a) Show that f has a limit at x = 0.

Proof. For some $\epsilon > 0$, choose $\delta = \epsilon$ such that $|x - 0| = |x| < \delta$. Then, $|f(x) - 0| = |f(x)| \le |x| \le \delta = \epsilon$. Thus, f(x) has a limit at x = 0.

(b) Use a sequential argument to show that if $c \neq 0$, then f does not have a limit at c.

Proof. Let there be some $(x_n) \in \mathbb{Q}$ and $(y_n) \in \mathbb{R} \setminus \mathbb{Q}$ such that they both converge to c where $c \neq 0$. We know that $f(x_n) = x_n$ and $f(y_n) = 0$ from the definition of the function. Thus, we have two convergent subsequences that do not converge to the same limit. Therefore, f does not have a limit at c.

4.2

1. Apply Theorem 4.2.4 to determine the following limits:

(a) $\lim_{x\to 1} (x+1)(2x+3)$ where $(x\in\mathbb{R})$

Proof.

$$\lim_{x \to 1} (x+1)(2x+3) = \lim_{x \to 1} (x+1) \cdot \lim_{x \to 1} (2x+3)$$
$$= 2 \cdot 5$$
$$= 10$$

Thus, $\lim_{x\to 1} (x+1)(2x+3) = 10$.

(b) $\lim_{x\to 1} \frac{x^2+2}{x^2-2}$ where (x>0)

Proof.

$$\lim_{x \to 1} \frac{x^2 + 2}{x^2 - 2} = \frac{\lim_{x \to 1} (x^2 + 2)}{\lim_{x \to 1} (x^2 - 2)}$$
$$= \frac{3}{-1}$$
$$= -3$$

Thus, $\lim_{x\to 1} \frac{x^2+2}{x^2-2} = -3$.

(c) $\lim_{x\to 2} (\frac{1}{x+1} - \frac{1}{2x})$ where (x>0)

Proof.

$$\lim_{x \to 2} \left(\frac{1}{x+1} - \frac{1}{2x} \right) = \lim_{x \to 2} \left(\frac{1}{x+1} \right) - \lim_{x \to 2} \left(\frac{1}{2x} \right)$$
$$= \frac{1}{3} - \frac{1}{4}$$
$$= \frac{1}{12}$$

Thus, $\lim_{x\to 2} \left(\frac{1}{x+1} - \frac{1}{2x}\right) = \frac{1}{12}$.

(d) $\lim_{x\to 0} \frac{x+1}{x^2+2}$ where $(x\in\mathbb{R})$

Proof.

$$\lim_{x \to 0} \frac{x+1}{x^2+2} = \frac{\lim_{x \to 0} (x+1)}{\lim_{x \to 0} (x^2+2)}$$
$$= \frac{1}{2}$$

Thus, $\lim_{x\to 0} \frac{x+1}{x^2+2} = \frac{1}{2}$.

4. Prove that $\lim_{x\to 0}\cos(1/x)$ does not exist but that $\lim_{x\to 0}x\cos(1/x)=0$.

Proof. First, we will show that $\lim_{x\to 0} \cos(1/x)$ does not exist. Let $(x_n) = \frac{1}{n+\pi/2}$ and $(y_n) = \frac{1}{n+2\pi}$. Then, $\lim_{n\to\infty}(x_n) = 0$ and $\lim_{n\to\infty}(y_n) = 0$. $\forall n\in\mathbb{N}$, $\cos(1/x_n) = \cos(n+\pi/2) = 0$ and $\cos(1/y_n) = \cos(n+2\pi) = 1$. Thus, we have two convergent subsequences that do not converge to the same limit, so $\lim_{x\to 0} \cos(1/x)$ does not exist.

Now, we will show that $\lim_{x\to 0} x \cos(1/x) = 0$. Let $\epsilon > 0$. We know $\exists \delta = \epsilon$ such that $|x-0| = |x| < \delta$. Then,

$$|x\cos(1/x) - 0| = |x\cos(1/x)|$$

$$\leq |x|$$

$$\leq \delta$$

$$= \epsilon$$

Thus, $\lim_{x\to 0} x \cos(1/x) = 0$.

6. Use the definition of the limit to prove that if $\lim_{x\to c} f = L$ and $\lim_{x\to c} g = M$, then $\lim_{x\to c} (f+g) = L+M$.

Proof. Let $\epsilon > 0$. Then, we know there exists some $\delta_f, \delta_g > 0$ such that $|x - c| < \delta_f$ and $|x - c| < \delta_g \implies |f(x) - L| < \frac{\epsilon}{2}$ and $|g(x) - M| < \frac{\epsilon}{2}$.

We choose $\delta = \max\{\delta_f, \delta + g\}$. Then, for $|x - c| < \delta$, we have

$$|f(x) + g(x) - (L+M)| = |(f(x) - L) + (g(x) - M)|$$

$$\leq |f(x) - L| + |g(x) - M|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Thus, $\lim_{x\to c} (f+g) = L+M$.

10. Give examples of functions f and g such that f and g do not have limits at a point c, but such that both f + g and fg have limits at c.

Proof. Let $f(x) = \operatorname{sgn}(x)$ and $g(x) = -\operatorname{sgn}(x)$ and c = 0. Then, f and g do not have limits at c, but f + g = 0 and fg = -1. Thus, f + g and fg have limits at c.

- 11. Determine whether the following limits exist at \mathbb{R} .
 - (a) $\lim_{x\to 0} \sin(1/x^2)$ where $(x \neq 0)$.

Proof. Let $(x_n) = \frac{1}{\sqrt{n\pi}}$ and $(y_n) = \frac{1}{\sqrt{2\pi n + \pi/2}}$. Then, $\lim_{n \to \infty} (x_n) = 0$ and $\lim_{n \to \infty} (y_n) = 0$. $\forall n \in \mathbb{N}$, $\sin(1/x_n^2) = \sin(n\pi) = 0$ and $\sin(1/y_n^2) = \sin(2\pi n + \pi/2) = 1$. Thus, we have two convergent subsequences that do not converge to the same limit, so $\lim_{x \to 0} \sin(1/x^2)$ does not exist.

(b) $\lim_{x\to 0} x \sin(1/x^2)$ where $(x \neq 0)$.

Proof. We have some $\epsilon > 0$ and $\delta = \epsilon$ such that $|x - 0| = \delta$. Then,

$$|x\sin(1/x^2) - 0| = |x\sin(1/x^2)|$$

$$\leq |x|$$

$$\leq \delta$$

$$= \epsilon$$

Thus, $\lim_{x\to 0} x \sin(1/x^2) = 0$.

(c) $\lim_{x\to 0} \operatorname{sgn} \sin(1/x)$ where $(x \neq 0)$.

Proof. Let $(x_n) = \frac{1}{n\pi}$ and $(y_n) = \frac{1}{2\pi n + \pi/2}$. Then, $\lim_{n \to \infty} (x_n) = 0$ and $\lim_{n \to \infty} (y_n) = 0$. $\forall n \in \mathbb{N}$, $\operatorname{sgn} \sin(1/x_n) = \operatorname{sgn} \sin(n\pi) = 0$ and $\operatorname{sgn} \sin(1/y_n) = \operatorname{sgn} \sin(2\pi n + \pi/2) = 1$. Thus, we have two convergent subsequences that do not converge to the same limit, so $\lim_{x\to 0} \operatorname{sgn} \sin(1/x)$ does not exist.

(d) $\lim_{x\to 0} \sqrt{x} \sin(1/x^2)$ where (x>0).

Proof. We have some $\epsilon > 0$ and $\delta = \epsilon$ such that $|\sqrt{x} - 0| = \delta$. Then,

$$|\sqrt{x}\sin(1/x^2) - 0| = |\sqrt{x}\sin(1/x^2)|$$

$$\leq |\sqrt{x}|$$

$$\leq \delta$$

$$= \epsilon$$

Thus, $\lim_{x\to 0} \sqrt{x} \sin(1/x^2) = 0$.