Academic year 2020 2024 (Even Sem) DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

	COM	PUII	TUD		1		V				=0		
	Date		In	ine 202	4 T	1		m Mark	S		50		
	Course Code	791	C	S241A	1			ation	77. 40		90 M		
1000				Test-1		St	aff: HK	K/ASP/S	SMS	SC	K/M	NV	
	Sem-IV DISCRETE M	ATHE	MATIC	CAL ST	RUCT	URES.	AND C	OMBIN	ATO	JK	ICS		
			(Comi	mon to (CSE, ISE	& AIM	(L)		Mark		BT	co	1
				2) 10	Name of the last o			10	5		4	2	1
la.	Determine if the	expansio	on of (x^2)	$-\frac{2}{r}$) 18 \	will conta	in a term	n containi	ng x'°.	5	0	-	2	1
lb.	If a person places 6 letters into 6 addressed envelopes, what is the probab that exactly two of them are placed correctly.									5	3	2	
2a.	Find the number	of non n	egative it	nteger so	lutions o	f ·			6		3	2	
	A. x ₁ +x ₂ +	$X_3 + X_4 +$	$x_s = 40$	iceB									1
	ii. $x_1 + x_2 +$												
	iii. $x_1 + x_2 +$			with $x_1 \ge 1$	$, x_2 \ge 2,$	$x_3 \ge 3, x_4$	$\geq 4, x_5 \geq 5$		21				
1000	$ (iv) x_1 + x_2 +$								3-4				
26.									4	U	3	1	
20.	Simplify using the $\neg [\neg \{(p \lor q) \land r\}]$	ne laws o	of logic:							4			
3a.	Write the recur	rence rel	ation to	colve th	e Tower	of Hand	oi proble	m. Also	6	2	4	4	
	solve that recurr						o, process			5			
3b.	Draw the circuit						nt:		4		2	3	
	$\int [p v (p^q) v (p$	^ q ^ ¬r)	1^[p^]	r ^ t) v t	1				1	5	3	4	-
4a.	If a person inves	ts ₹ 25,0	00 at at 9	9% annu	ial interes	t, find th	ne amoun	it he will	1	3)	1	
	get at the end of	250								1			18
	• interest c	177		0.00						6	1		
F. F.	• interest co											1	
0	Write the recurre	nce relat	ion and s	solve.		· · · · · · · · · · · · · · · · · · ·	(a V +)	ic folce		4	2 2	,	1
(46.)	Determine the tru	ith value	s of p, q,	, r, s, t w	hen [p ^	$(q \wedge r)$	\rightarrow (S \times 1)	is laise.	-	6	Acres .	3	3
5a.	Show the validity		rgument							U	1	1	1
	$(\neg p \land \neg q) \rightarrow (r \land q)$	s)								3			111111
	$r \rightarrow t$									-		1	
BA I	$\neg t$												
1													
	∴ p		. 1:1	-	la A D (7 D am	ATT arm		1	4		1	1
	Find the number (o peop	ie A, B, C	, D, an	u m cam	be seated	1	4		1	1
1 2	at a round table, s	uch that								+			17713
	• C and D al	ways si	t togethe	er						0	1		1
											1		197719
	C and D no	ever sit	logether									Bill I	
								Variable S				1/2	
		200	Dlaame	Taxono	my, CO-	Course C	lutcomes	M Mor	Ico				
NE SE		BI			CO4				KS	1		-	
	Particulars	CO1	CO2	CO3	C04	CO5	L1	L2	L3		L4		L5
Marks			10	10	12		. 4	8	07				-
ribution	n Max Marks	. 12	16	10			2	0	27		11		-
								THE STATE OF					

Academic year 2023-2024 (Even Sem) DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

COM	DUTER SCIENCE	Maximum Marks	60
COM	July 2024	Maximum Marks	00
Date	July 202.	Duration	120 Min
Course Code	CS241AT		INIV
Sem-IV	Test-II	Staff: HKK/ASP/SMS/SGR/N	
Sciii-1 V		NICHTINES AND COMBINATO	ORICS

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS (Common to CSE, ISE & AIML)

		(Common to CSE, ISE & AINIL)	Marks	BT	To	00
	The same	PART-A		1	+	2
	1.1	Let A={1, 2, 3, 4}. How many relations on A which are antisymmetric? How many relations on A which are neither reflexive nor irreflexive?	2		1	1
	1.2	Let R be the relation on the set $A=\{1, 2, 3, 4, 5\}$ containing the ordered pairs $R=\{(1, 3), (2, 4), (3, 1), (3, 5), (4, 3), (5, 1), (5, 2), (5, 4)\}$. Find R^4 .	2	2		
	1.3	For the POSET (A,) where A={2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72} find the upper bounds, lower bounds, LUB and GLB of {2, 6, 9, 18}.	2	1	2	2
1	1.4	How many ways can one distribute 4 distinct objects among 3 identical containers?	1		1	
1	.5	If $A=\{1, 2, 3, 4, 5\}$ and there are 6720 injective functions f: $A\rightarrow B$, what is $ B $?	1	1	1	1
1.	6	Let $P(x, y)$ denote the sentence: x divides y. What are the truth values of $\forall x \exists y P(x, y), \forall x \forall y P(x, y)$, where the domain of x, y is the set $\{1, 2, 4, 6, 12\}$?		1	1	
1.7	7	Express the negation of the below statement so that all negation symbols immediately precede predicates. $\forall x \exists y (P(x,y) \to Q(x,y))$		1	1	
		PART-B			1	200
2a	1.	For the following statement state the converse, inverse, and contrapositive. A determine the truth value for the given statement, as well as the truth value for its converse, inverse, and contrapositive. "For all real numbers x, if x²+4x-21 then x>3 or x<-7.	r	05		3

		05	4	
2b.	Test the validity of the following argument: Some rational numbers are powers of 7. All integers are rational numbers.			
	Some integers are power of 7.			+
3a.	Let $A=\{1, 2, 3, 4\}$ and $R=\{(1, 2), (2, 3), (3, 4), (2, 1)\}$. Write the matrix for R. Find the R^{∞} by computing matrices for R^2, R^3, \dots	04	2	-
3b.	Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A. Prove the following. i. If aRb, then [a]=[b]. ii. [a]=[b] or [a] \(\begin{align*} (b) = \begin{align*} (c) =	06	4	
4a.	Define POSET. Show that the set A={1, 2, 3, 6, 12, 15, 24, 36, 48} under the divisibility () operation forms a POSET. Draw the Hasse diagram for (A,)	05	2	
4b.	Let U={1, 2, 3, 4, 5, 6, 7}, with A=P(U) (power set of U), and R be the subset relation on A. For B={{1}, {2}, {2, 3}}CA, determine each of the following. a) The number of upper bounds of B that contains 4 elements. b) The number of upper bounds that exists for B. c) The lub of B d) The number of lower bounds that exists for B. e) The glb of B.	05	3	
5a.	 i. Let f(x)=x³ and g(x)=x-1 for all real numbers x. Find g o f and f o g. Verify whether g o f equals f o g. ii. Let f, g: R→R, where g(x)=1-x+x² and f(x)=ax+b. If (g o f)(x)=9x²-9x+3, determine a and b. 	04		3
5b.	If f: A \rightarrow B and g: B \rightarrow C are invertible functions, then g o f: A \rightarrow C is an invertible function and (g o f) ⁻¹ =f ⁻¹ o g ⁻¹ . Prove this.	06		4
ба.	Let f: A→B, g: B→C and h: C→D. Prove the following. i. If f and g are one-to-one, then g o f is one-to-one. ii. If f and g are onto, then g o f is onto. iii. (h o g) o f=h o (g o f).	06		4
	Let $A=\{1, 2, 3, 4, 5\}$ and $B=\{6, 7, 8, 9, 10, 11, 12\}$. i. How many functions f: $A\rightarrow B$ are there? ii. How many functions are one-to-one? iii. How many functions f: $A\rightarrow B$ are such that $f^{1}(\{6, 7, 8\})=\{1, 2\}$?	04	1	

Marks Distribution Particulars CO1 CO2 CO3 CO4 CO5 L1 L2 L3 L4

Course Code	CS241AT	Duration	120 Min
Sem-IV	Improvement Test	Staff: HKK/ASP/SMS/SGR/N	INV

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS (Common to CSE, ISE & AIML)

	(Common to CSE, ISE & AIML)	el be				
	PART-A	Marks	ВТ	С		
1.1	Let G be the set of real numbers not containing -1 and * be the binary operation defined by $a*b=a+b+ab$. What is the inverse of any number $a \in G$.	1	1	1		
1,2'	If the binary operation * is associative, then complete the following table. * a b c d a a b c d b b a c d c c d c d d c c d c d	1	1	1		
13	Let $G = (Z_{12}, +)$ and $H = \{[0], [4], [8]\}$. What is the partition of G induced by the subgroup H.	1	3	2		
1,4	A binary symmetric channel has probability p=0.05. What is the probability of sending the code word 110101101 and making at most 2 errors in the transmission?	1	2	1		
¥.5	Let E: $Z_2^3 \rightarrow Z_2^9$ be the encoding function for (9, 3) triple repetition code and D: $Z_2^9 \rightarrow Z_2^3$ is the corresponding decoding function. Find three different received words r for which D(r) =000.					
1.6	Let G be the Peterson graph. Find $\chi(G)$.					
1.7	What is the value of $\chi'(G)$ where G is $K_{3,2}$?	1	1	2		
1.8	If 5 colors are available, how many proper colorings are possible to color the graph K _{3,3} .	1		3		
1.9	Find the centroid of the tree shown below.	1		2		
1.10	Find the center of the graph shown below.		1	2		

	PART-B			
Za.	In a group $(G, *)$, prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a, b \in G$.	05	3	2
26.	Show that (Z ₁₂ , +) is a cyclic group and find all its generators.	05	4	3
Xa.	Let G be a group and let a be any fixed element of G. Show that the function f: $G \rightarrow G$ defined by $f(x) = axa^{-1}$, for $x \in G$, is an isomorphism.	05	. 3	2
3b.	Let E: WIIC be an encoding function with the set of messages $W \subseteq Z_2^m$ and the set of code words $E(W)=C \subseteq Z_2^n$, where $m < n$. For $k \in Z^+$, we can detect transmission errors of weight $\le k$ iff the minimum distance between code words is at least $k+1$. Prove this.	05	2	3
4a.	Define the encoding function E: $\mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ by means of the parity check matrix $ \begin{array}{c} 101100 \\ H=110010 \\ 101001 \end{array} $ Determine all code words. ii. What is the error detection and correction capability? Decode the received words 000011, 111100.	06	2	2
4b.	i. If $x \in Z_2^{10}$, determine $ S(x, 1) $, $ S(x, 2) $, $ S(x, 3) $. ii. For $n, k \in Z^+$ with $1 \le k \le n$, if $x \in Z_2^n$, what is $ S(x, k) $?	04	3	2
5a.	Find $P(G, \lambda)$ for the graph shown below.	06	\	3 / 4
5b. 0	Give an example of a connected graph that has i. Neither an Euler circuit nor a Hamilton cycle. ii. An Euler circuit but no Hamilton cycle. iii. No Euler circuit but has Hamilton cycle. iv. Both Euler circuit and a Hamilton cycle.		04	1
a. P	Prove that in every tree $ V = E +1$.		05	2
b. E	By applying the decomposition theorem, find the number of spanning trees for the hown below. OAATT WSC-111	graph	05	3

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

		BT-Blo	oms Tax	conomy,	CO-Co	Trse Out			L3	L4	L5	Le
Marks	Particulars	CO1	CO2	CO3	CO4	CO5	L1	L2	Lo			1
Distribution					-	-	6	22	27	5	-	1
	Max Marks	7	26	16	11	-	0				1	1

IV Semester B. E. Regular Examinations SEP/OCT - 2024

Computer Science and Engineering

DISCRETE MATHEMATICAL STRUCTURES AND COMBINATORICS

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory.

Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

3. Use of statistical tables and formula handbook permitted.

		PART-A	M	BT	co
1	1.1	Fins the number of ways that the alphabets A, B, C, D, E, F, G are			
		arranged such that A is not first position, B is not in second position, G is not in seventh position.	02	2	2
	1.2	Solve the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2}, n \ge 2$ subject to			
	1.2	the initial conditions $a_1 = 1, a_2 = 3$.	02	2	2
	1.3	Simply using law of logic:	02	1	1
	1.4		02	1	1
	1.4	proposition.			
		"A person is successful in life if he puts sincere efforts"	02	2	2
	1.5	Let $f: z \to z$ and $g: z \to z$, given by $f(x) = x - 1$ $g(x) = 2x$ find $f \circ g$	02	2	2
	1.6	and $g \circ f$. If $R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (3,3), (4,4)\}$ is defined on the	02	2	2
	1.0	set $A = \{1,2,3,4\}$ determine the partition induced.	02	2	2
	4.7	Let $G = \{q \in \theta \mid q \neq -1\}$. Identify the identify element of $\{G, 0\}$ where	02	2	2
	1.8	$xoy = x + y + xy$ for all $x, y \in G$. What is the hamming distance between the codes '11001011' and	02	2	2
	1.0	'10000111'.	02	1	1
	4.9	Let G be a simple graph of order n . If the size of G is 56 and size of			
		\bar{G} is 80, what is n ?	02	2	2
	1.10	Given $V = \{(1,2,3,4,5,6)\}$ and $E = \{12,13,23,35,61,66\}$ draw undirected and directed graph $G = (V, E)$. Also write down the			
		order and size of G .	02	2	2

PART-B

	7: 1:1 1 6 1: 1: 620000		- 1	
2 a	Find the number of proper divisors of 38808.	04	2	2
b	A person inverse some amount at the rate of 11% annual compound interest. Determine the period for principal amount to			
	get doubled.	04	2	3
C	Find a generating function for the recurrence relation			
	$a_{n+2} - 6a_{n+1} + 9a_n = 0$ for $n \ge 0$, $a_0 = 5$, $a_1 = 12$.	04	2	2
d	In how many ways can 10 identical dimes be distributed among 5			
	children if			
	i) There are no restrictions		1	1
	ii) Each child gets at least one dime.	04		

3	a	Let p, q and r be the propositions $P: I$ Study; $q: I$ will fail in the examination				
	b*	Express each of these proposition as an English sentence $(i) n \to nq (ii) q \to r (iii) (p \to \sim r) \cup (q \to \sim r) (iv) \to p \to (q \cup r)$	04	1 2	2	
	С	Write the following proposition	06	3	2	
		OR				
		depresse inverse and				
4	a b	For the following statement, state the converse inverse and contrapositive. The universe consist of all integers "If m divides n and n divides p , then m divides p " Prove the validity of the following argument	04	2	2	
		$p \to (q \land g)$				
		$r \rightarrow s$	06	2		
		$\frac{\sim (g \land s)}{\sim n}$	20180	2	2	
		~p Define open statement and find whether the following variable is				
1 - 1		valid No engineering Stillettls of 130 of 222				
		Anil is an engineering student who studies are	06	5 3	3	
		: Anil is not in second semester.				
5 a		If $f: A \to B$, $g: B \to C$, $h: C \to D$ then show that $(h \circ g)$ of $= h \circ (g \circ f)$.	04	4 2	2	
b	3	If $A = \{1,2,2,4\}$ and $B \in Are$ relations on				
		$R = \{(1,2)(1,3)(2,4)(4,4)\} \ S = \{(1,1)(1,2)(1,3)(1,4)(2,3)(2,1)\}$		5 2	2	
		D. C. C. D. D. Cand C4	33.00		4	
C		Draw the Hasse diagram for all positive integer divisors of 72. Also	0	7 3	3	
		write R. OR				
6 a	{	Find the lower and upper bounds of the subsets $\{a,b,c\}$; $\{i,h\}$ and $\{a,c,d,f\}$ in the poset with Hasse diagram shown in Fig 6a. Also find the glb and lub of $\{b,d,g\}$.	d o			
		. 8 \ >t				
		d le				
		a le				
		6				
		6 / C				
		× ×				
		Fig 6a		00		_
b		(3x-5 if r > 0		08	3	2
	Let	$f: R \to R$ be define by $f(x) = \begin{cases} 3x - 5 & \text{if } x > 0 \\ -3x + 1 & \text{if } x \le 0 \end{cases}$ Find $f^{-1}(1)$ a	nd			
	$\int f^{-1}$	(3).				
С	If R	R is a relation on $A = \{1,2,3,4\}$ define by xRy if x divides y . Proof $(4,R)$ is a possible $(4,R)$ in a possible $(4,R)$ is a possible $(4,R)$ in a possible $(4,R)$ in a possible $(4,R)$ is a possible $(4,R)$ in a possible $(4,R)$ in a possible $(4,R)$ is a possible $(4,R)$ in a possible $(4,R)$ in a possible $(4,R)$ is a possible $(4,R)$ in a possible $(4,R)$ in a possible $(4,R)$ is a possible $(4,R)$ in a possible $(4,R)$ is a possible $(4,R)$ in		04	3	3
	tha	(1,2,3,1) define by xxy if x divides y . Pro	ove			1
		(-),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		04	2	2
a	Ifo	is an operation on 7 defect				
	15 2	is an operation on Z define by $x \circ y = x + y + 1$. Prove that (6) a Abelian group.	G.0)			
b		ve that		05	3	3
	i)					
	ii)	Identity element in a group is unique				
	11)	Inverse of each element in a group is unique		04	0	0
		- Character of the Control of the Co		04	4	4

c	The encoding function $E = Z_2^2 \rightarrow Z_2^5$ is given by the generator matrix $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$ i) Find associated parity check matrix H ii) Determine all code words iii) Find decoded word for received msq $\begin{bmatrix} 1 & 1 & 1 & 0 & 1 \end{bmatrix}$ iv) What is error detection and correction capability.	07	4	4	
	OR				
a b	If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix}$ Find α . β and α^{-1} . Define the encoding function $E: Z_2^3 \to Z_2^6$ by means of the parity – check matrix	04	2	2	
С	$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ Determine all code words. State and prove Lagrange's theorem. Find the right cosets of $H = \{1, -1\}$ in multiplicative group of fourth root of unity.	05	3	3	
a	Define Isomorphic and show that G_1 is isomorphic to G_2 .				
b	Explain the Konigsberg – Bridge problem.	08		3 4	3 4
	OR				
a b	If a tree has four vertices of degree 2, one vertex of degree 3, two of degree 4 and one of degree 5, how many pendant vertices does it have? Prove the following for the graph $G = (V, E)$	o s o	8	2	2
	i) $\sum_{vtV} \deg(V) = 2 E $ ii) The number of vertices of odd degree must be even.	0	8	2	2