MATH 2301

- * Welcome back! Announcements:
 - PDF notes updated
 - Exam results on Gradescope.
- * Before the break: posets & Möbius inversion.

 (See Worksheet 6)
- * Today: Regular expressions & finite automata
 - An alphabet Z = a finite set of Symbols or "letters" usually, we'll take $Z = \{0, 1\}$
 - Strings or words: A string/word on Σ is a finite ordered list of letters, written $W = a_1 a_2 a_3 \cdots a_k$, each $a_i \in \Sigma$, or w can be empty. We write Σ for the empty string. (We assume that Σ is not a symbol in Σ .)
 - A language on Σ is a set of words on Σ We say $\Sigma^* := \text{set of all words on }\Sigma$ In other words, any subset $L \subseteq \Sigma^*$ is called a language:

Note: 2th is typically infinite

If $\Sigma = \emptyset$, then $\Sigma'^* = \Sigma \Sigma$ is the only situation in which Σ'^* is finite.

* Examples

 $\Sigma = \{0, 1\}$

Some strings: 10,000, ϵ , 110,11111, etc. Some languages: ϕ , Σ^{*} , ϵ 03, ϵ 23, ϵ 13, ϵ 2,003, ϵ 2,011,1100,1113.

L= set of strings without 0s

L= set of strings that begin with a zero

* a language need not fit neatty into any rule.

But, we'll use regular expressions to identify languages that do follow some patterns. * Operations on strings/languages

Fix a 2.

- Concatenation (strings) If v and w are strings, $V = a_1 a_2 \cdots a_k$ & $w = b_1 b_2 \cdots b_k$ with a_i , $b_j \in \Sigma$ then $vw = concatenation = a_1 a_2 \cdots a_k b_1 \cdots b_k$. Note: Ew = wE = w for any w.

- Concatenation (languages)

Let L_1 , $L_2 \subseteq \Sigma^*$ be languages.

Then their concatenation is $L_1 \circ L_2 = \frac{\pi}{2} \nabla \omega \mid \nabla \in L$, and $\omega \in L_2$

- Union (languages)

Let $L_1, L_2 \subseteq \Sigma^*$. Their union is $L_1 \cup L_2 = \{ N \mid N \in L_1 \text{ or } N \in L_2 \}$ = Set union of $L_1 \notin L_2$.

- Star (of a language)

Let $L \subseteq \Sigma^{*}$. Then

the Star of $L = L^{*} = any number of$ concatenations of (possibly different) elements of $L^{*} = \sum_{i=1}^{n} w_{i} w_{2} ... w_{k} \mid w_{i} \in L$ for each $i : \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} = \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} = \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} v_{i} = \sum_{i=1}^{n} w_{i} = \sum_{i=1}$

$$\Sigma = [0, 13]$$

$$L_1 = \emptyset$$
, $L_2 = \{ \epsilon, 0 \}$, $L_3 = \{ 1, 1 \}$

$$- L_2 \circ L_3 = \{1, 11, 01, 01, 01, 1\}$$

$$-1_3 \cdot 1_2 = \{1, 11, 10, 110\}.$$

$$-L_1UL_2=\{\epsilon,0\}$$

-
$$L_2 U L_3 = {\{\xi, 0, 1, 11\}}$$
 sumion is commutative

$$-L_{2}^{*}=\{\Sigma,0,00,000,...\}$$

t strings that don't contain any 1s. Note: t = t = t

$$-L_3 = \{ \Sigma, 1, 11, 111, \dots, 3 \}$$
 smings that don't contain Os-

Note: L* is infinite unless: $-L = \emptyset \quad \text{no} \quad L = \{ E \}$

$$-L=\phi$$
 no $L=\{\epsilon\}$

* Lexicographic (dictionary) order.

Fix Σ' and a total order on Σ' . Now we can order the elements of Σ'^* , as follows. Let N, $W \in \Sigma'^*$

- i) If length(N) \mp length(ω), then the shorter one comes first
- 2) If length (N) = length(W), then compare letter by letter.

 $|f| N = a_1 \dots a_n$ $W = b_1 \dots b_n$

If v≠w, then find the first i where ai ≠bi If ai < bi then v<w, otherwise w<v.

Note: We use the same system of ordering on any language L $\leq \Sigma'^{\star}$.

* Regular expression syntax.

Informal def: A regular expression is a pattern that corresponds to zero or more words in Σ'' , specified according to certain rules