Package 'OBL'

December 7, 2022

Type Package
Title Optimum Block Length
Version 0.2.1
Maintainer Daniel James <futathesis@gmail.com></futathesis@gmail.com>
Description Obtain optimum block from Non-overlapping Block Bootstrap method.
Depends R (>= 4.2.0)
Imports forecast, foreach, dplyr, forcats, ggplot2, utils, stats, tibble
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.1.2
LazyData true
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Daniel James [cre, aut], Ayinde Kayode [aut]
Repository CRAN
Date/Publication 2022-12-07 14:42:31 UTC
R topics documented:
blockboot
Index

2 blockboot

blockboot

OBL: Optimal Block Length Compute Optimal Block Length for Nonoverlapping, Overlapping, Circular Block, tapered moving, and tapered circular Block Bootstrap method

Description

OBL: Optimal Block Length

Compute Optimal Block Length for Non-overlapping, Overlapping, Circular Block, tapered moving, and tapered circular Block Bootstrap method

OBL: Optimal Block Length

Compute Optimal Block Length for Non-overlapping, Overlapping, Circular Block, tapered moving, and tapered circular Block Bootstrap method

Usage

```
blockboot(
   ts,
   R,
   seed,
   n_cores,
   methods = c("optnbb", "optmbb", "optcbb", "opttmbb", "opttcbb"))

lolliblock(
   ts,
   R,
   seed,
   n_cores,
   methods = c("optnbb", "optmbb", "optcbb", "opttmbb", "opttcbb")
)
```

Arguments

ts univariate time series
R number of resample

seed RNG seed

n_cores number of core(s) to be used on your operaterating system methods "optnbb", "optmbb", "optcbb", "opttmbb", "opttcbb"

Value

A data frame get printed to the console

A data frame get printed to the console

ts 3

Functions

- blockboot: package helps to obtain the optimal block length of a time series data
- lolliblock: package helps to obtain the optimal block length of a time series data

Examples

```
set.seed(289805)
ts <- arima.sim(n = 3, model = list(ar = 0.8, order = c(1, 0, 0)), sd = 1)
blockboot(ts = ts, R = 2, seed = 6, n_cores = 1)

set.seed(289805)
ts <- arima.sim(n = 3, model = list(ar = 0.8, order = c(1, 0, 0)), sd = 1)
lolliblock(ts, R = 2, seed = 6, n_cores = 1)</pre>
```

ts

Ten (10) simulated univaariate time series data.

Description

arima. sim returns the sum of all the values present in its arguments.

Usage

ts

Format

A time series data with 10 rows and 1 variables:

```
price price, in US dollars
carat weight of the diamond, in carats ...
```

Details

A dataset containing simulated univariate time series of 10 ts.

Value

It returns a univairate time series data It could be a vector

Source

```
Simulated data generated with the following code: set.seed(289805) ts <- stats::arima.sim(n = 10, model = list(ar = 0.8, order = c(1, 0, 0)), sd = 1)
```

Examples

```
set.seed(289805) ts <- stats::arima.sim(n = 10, model = list(ar = 0.8, order = c(1, 0, 0)), sd = 1)
```

Index