

WEST Search History

DATE: Monday, October 16, 2006

Hide? Set Name Query Hit Count

DB=PGPB, USPT; PLUR=YES; OP=OR

<input type="checkbox"/>	L5	L4 and intron	37
<input type="checkbox"/>	L4	L3 and fad2	42
<input type="checkbox"/>	L3	L1 and L2	1039
<input type="checkbox"/>	L2	soybean adj plant	3060
<input type="checkbox"/>	L1	soybean and oleic and linoleic and linolenic	6450

END OF SEARCH HISTORY

RESULT 6
 GMA271842
 LOCUS GMA271842 420 bp DNA linear PLN 04-OCT-2000
 DEFINITION Glycine max max FAD2 gene for microsomal omega-6 desaturase, intron 1.
 ACCESSION AJ271842
 VERSION AJ271842.1 GI:10638951
 KEYWORDS fad2 gene; microsomal omega-6 desaturase.
 SOURCE Glycine max (soybean)
 ORGANISM Glycine max
 Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
 Spermatophyta; Magnoliophyta; eudicots; core eudicots;
 rosids; eurosids I; Fabales; Fabaceae; Papilioideae; Phaseoleae;
 Glycine.
 REFERENCE 1
 AUTHORS Liu,Q.
 JOURNAL Thesis (1998) University of Sydney, AUSTRALIA
 REFERENCE 2 (bases 1 to 420)
 AUTHORS Liu,Q.
 TITLE Direct Submission
 JOURNAL Submitted (28-FEB-2000) Liu Q., Division of Plant Industry, CSIRO
 Australia, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601,
 AUSTRALIA
 FEATURES Location/Qualifiers
 source 1..420
 /organism="Glycine max"
 /mol_type="genomic DNA"
 /cultivar="Williams"
 /db_xref="taxon:3847"
 gene 1..420
 /gene="FAD2"
 intron <1..>420
 /gene="FAD2"
 /number=1
 ORIGIN
 Query Match 98.9%; Score 415.2; DB 4; Length 420;
 Best Local Similarity 99.3%; Pred. No. 7.5e-126;
 Matches 417; Conservative 0; Mismatches 3; Indels 0; Gaps 0;
 Qy 1 GTAAATTAAATTGTGCCTGCACCTCGGGATATTCATGTGGGGTCATCATATTGTTGA 60
 Db 1 GTAAATTAAATTGTGCCTGCACCTCGGGATATTCATGTGGGGTCATCATATTGTTGA 60
 Qy 61 GGAAAAGAAA CCCC GAAATTGAATTATGCATT TATATATCCTTTCA TTCTAGATT 120
 Db 61 GGAAAAGAAA CCCC GAAATTGAATTATGCATT TATATATCCTTTCA TTCTAGATT 120
 Qy 121 CCTGAAGGCTTAGGTGTAAGGCACCTAGCTAGTAGCTACAATATCAGCACTTCTCTATT 180
 Db 121 CCTGAAGGCTTAGGTGTAAGGCACCTAGCTAGTAGCTACAATATCAGCACTTCTCTATT 180
 Qy 181 GATAAACAA ATTGGCTGTAATGCCGCAGTAGAGGACGATCACAACATTCGTGCTGGTTAC 240
 Db 181 GATAAACAA ATTGGCTGTAATGCCGCAGTAGAGGACGATCACAACATTCGTGCTGGTTAC 240
 Qy 241 TTTTGTTTATGGTCATGATTCACTCTCTCAATCTCTCCATTCA TTTGTAGTTGTC 300
 Db 241 TTTTGTTTATGGTCATGATTCACTCTCTCAATCTCTCCATTCA TTTGTAGTTGTC 300
 Qy 301 ATTATCTTAGATTTCACTACCTGGTTAAAATTGAAGGGATTGAGTTCTGTGGTAC 360
 Db 301 ATTATCTTAGATTTCACTACCTGGTTAAAATTGAAGGGATTGAGTTCTGTGGTAC 360
 Qy 361 ATATTACACATT CAGCAAACAACTGAAACTCAACTGAACTTGTATAC TTTGACACAG 420
 Db 361 ATATTACACATT CAGCAAACAACTGAAACTCAACTAAACTTGTATAC TTTGACACAG 420

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: September 24, 2006, 12:55:25 ; Search time 3047 Seconds
 (without alignments)
 8814.544 Million cell updates/sec

Title: US-10-606-772-2
 Perfect score: 420
 Sequence: 1 gtaaaattaaattgtgcctgc.....ttgtttatacttgacacag 420

Scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0

Searched: 6366136 seqs, 31973710525 residues

Total number of hits satisfying chosen parameters: 12732272

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : GenEmbl:
 1: gb_env:
 2: gb_pat:
 3: gb_ph:
 4: gb_pl:
 5: gb_pr:
 6: gb_ro:
 7: gb_sts:
 8: gb_sy:
 9: gb_un:
 10: gb_vi:
 11: gb_ov:
 12: gb_htg:
 13: gb_in:
 14: gb_om:
 15: gb_ba:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result	No.	Score	Query	Match	Length	DB	ID	Description
	1	420	100.0	420	2	AX088030		AX088030 Sequence
	2	420	100.0	778	2	AX088055		AX088055 Sequence
	3	420	100.0	4497	2	AX088029		AX088029 Sequence
	4	420	100.0	144984	12	AC160454		AC160454 Glycine m
	5	418.4	99.6	1852	4	AY954300		AY954300 Glycine m
	6	415.2	98.9	420	4	GMA271842		AJ271842 Glycine m
	7	211.8	50.4	2662	4	AB188251		AB188251 Glycine m
	8	199.8	47.6	405	2	AX088052		AX088052 Sequence
	9	50.2	12.0	110000	15	BX571856_26		Continuation (27 o)
c	10	49.6	11.8	192929	12	AC005505		AC005505 Plasmodiu
	11	48.6	11.6	110000	15	AJ938182_24		Continuation (25 o)
	12	48.6	11.6	110000	15	BA000017_25		Continuation (26 o)
	13	48.6	11.6	110000	15	BA000017_26		Continuation (27 o)
	14	48.6	11.6	110000	15	BA000018_25		Continuation (26 o)
	15	48.6	11.6	110000	15	BA000033_25		Continuation (26 o)
	16	48.6	11.6	110000	15	BX571857_25		Continuation (26 o)
c	17	48	11.4	250713	13	AE014850		AE014850 Plasmodiu
c	18	47	11.2	813	2	AX620512		AX620512 Sequence
c	19	47	11.2	6435	15	AF076683		AF076683 Staphyloc
c	20	47	11.2	18355	2	AR353949		AR353949 Sequence
c	21	47	11.2	18355	2	AR535505		AR535505 Sequence
	22	47	11.2	110000	15	CP000255_25		Continuation (26 o)

23	47	11.2	110000	15	CP000046_25	Continuation (26 o
c 24	47	11.2	169794	12	AC004688	AC004688 Plasmodiu
25	47	11.2	234081	13	PFMAL4P2	AL035475 Plasmodiu
26	47	11.2	252650	13	AE014847	AE014847 Plasmodiu
c 27	46.4	11.0	188920	6	AL954353	AL954353 Mouse DNA
28	44.8	10.7	168473	11	BX649544	BX649544 Zebrafish
29	44.2	10.5	249995	13	AE014840	AE014840 Plasmodiu
c 30	44	10.5	105682	13	AC116957_3	Continuation (4 of
c 31	44	10.5	110000	12	PFMAL8P1_09	Continuation (10 o
32	43.8	10.4	124686	12	AC087111	AC087111 Homo sapi
c 33	43.8	10.4	137502	12	AP000598	AP000598 Homo sapi
c 34	43.8	10.4	152514	12	AC021329	AC021329 Homo sapi
35	43.8	10.4	164036	5	AP000642	AP000642 Homo sapi
c 36	43.8	10.4	167035	12	AC027116	AC027116 Homo sapi
37	43.8	10.4	186562	12	AC011768	AC011768 Homo sapi
38	43.6	10.4	90448	12	AC167829	AC167829 Bos tauru
39	43.4	10.3	70373	12	AC148469	AC148469 Medicago
c 40	43.2	10.3	135090	5	HS287G14	AL033377 Human DNA
41	43.2	10.3	135494	12	AC181945	AC181945 Strongylo
c 42	43.2	10.3	199551	12	AC006281	AC006281 Plasmodiu
43	43.2	10.3	202803	12	AC178503	AC178503 Strongylo
c 44	43	10.2	92280	6	AL845506	AL845506 Mouse DNA
45	43	10.2	190535	6	AC110041	AC110041 Mus muscu

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: September 24, 2006, 13:01:18 ; Search time 153 Seconds
 (without alignments)
 5136.377 Million cell updates/sec

Title: US-10-606-772-2
 Perfect score: 420
 Sequence: 1 gtaaaattaaattgtgcctgc.....ttgtttatactttgacacag 420

Scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0

Searched: 1403666 seqs, 935554401 residues

Total number of hits satisfying chosen parameters: 2807332

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : Issued_Patents_NA:
 1: /EMC_Celerra_SIDS3/ptodata/2/ina/1_COMB.seq:*
 2: /EMC_Celerra_SIDS3/ptodata/2/ina/5_COMB.seq:*
 3: /EMC_Celerra_SIDS3/ptodata/2/ina/6A_COMB.seq:*
 4: /EMC_Celerra_SIDS3/ptodata/2/ina/6B_COMB.seq:*
 5: /EMC_Celerra_SIDS3/ptodata/2/ina/7_COMB.seq:*
 6: /EMC_Celerra_SIDS3/ptodata/2/ina/H_COMB.seq:*
 7: /EMC_Celerra_SIDS3/ptodata/2/ina/PCTUS_COMB.seq:*
 8: /EMC_Celerra_SIDS3/ptodata/2/ina/PP_COMB.seq:*
 9: /EMC_Celerra_SIDS3/ptodata/2/ina/RE_COMB.seq:*
 10: /EMC_Celerra_SIDS3/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	No.	Score	Query	Match	Length	DB	ID	Description
c	1	47	11.2	18355	3	US-08-956-171E-67		Sequence 67, Appl
c	2	47	11.2	18355	3	US-08-781-986A-67		Sequence 67, Appl
	3	41.8	10.0	346112	3	US-09-949-016-13165		Sequence 13165, A
	4	41.2	9.8	76269	3	US-09-949-016-14603		Sequence 14603, A
c	5	40	9.5	538	3	US-09-270-767-4382		Sequence 4382, Ap
c	6	40	9.5	538	3	US-09-270-767-19664		Sequence 19664, A
	7	40	9.5	601	3	US-09-949-016-190322		Sequence 190322,
	8	39.4	9.4	60417	3	US-09-949-016-13312		Sequence 13312, A
c	9	38.8	9.2	7963	3	US-08-956-171E-168		Sequence 168, App
c	10	38.8	9.2	7963	3	US-08-781-986A-168		Sequence 168, App
	11	38.8	9.2	255679	3	US-09-949-016-17189		Sequence 17189, A
	12	38.2	9.1	285478	3	US-09-949-016-13362		Sequence 13362, A
	13	38	9.0	48316	3	US-09-949-016-12853		Sequence 12853, A
	14	38	9.0	48316	3	US-09-949-016-13405		Sequence 13405, A
	15	37.8	9.0	7218	2	US-08-232-463-14		Sequence 14, Appl
c	16	37.8	9.0	93493	3	US-09-949-016-12063		Sequence 12063, A
c	17	37.8	9.0	95020	3	US-09-949-016-13272		Sequence 13272, A
	18	37.4	8.9	601	3	US-09-949-016-36240		Sequence 36240, A
	19	37.4	8.9	601	3	US-09-949-016-51936		Sequence 51936, A
	20	37.4	8.9	58162	3	US-09-949-016-16289		Sequence 16289, A
	21	37.4	8.9	147382	3	US-09-949-016-14624		Sequence 14624, A
	22	37.4	8.9	151256	3	US-09-949-016-12674		Sequence 12674, A
	23	37.4	8.9	151261	3	US-09-949-016-13242		Sequence 13242, A
	24	37.4	8.9	784019	3	US-09-949-016-14033		Sequence 14033, A
	25	37.4	8.9	828152	3	US-09-949-016-12777		Sequence 12777, A
c	26	37.2	8.9	832	3	US-09-621-976-2813		Sequence 2813, Ap
	27	37	8.8	1141	3	US-09-806-708B-22		Sequence 22, Appl

28	36.8	8.8	601	3	US-09-949-016-78304	Sequence 78304, A
29	36.8	8.8	601	3	US-09-949-016-171511	Sequence 171511,
30	36.8	8.8	601	3	US-09-949-016-206449	Sequence 206449,
31	36.8	8.8	6768	2	US-08-107-755A-1	Sequence 1, Appli
32	36.8	8.8	8457	2	US-07-991-867B-1	Sequence 1, Appli
33	36.8	8.8	8457	2	US-08-544-332-1	Sequence 1, Appli
34	36.8	8.8	8457	3	US-09-370-861A-1	Sequence 1, Appli
35	36.8	8.8	50000	3	US-09-662-254B-26	Sequence 26, Appl
36	36.8	8.8	62776	3	US-09-949-016-17576	Sequence 17576, A
c 37	36.6	8.7	441	3	US-09-601-537-10	Sequence 10, Appl
c 38	36.6	8.7	1406	3	US-10-000-489-81	Sequence 81, Appl
c 39	36.6	8.7	1406	4	US-09-992-095B-81	Sequence 81, Appl
c 40	36.6	8.7	1406	5	US-10-000-986A-81	Sequence 81, Appl
c 41	36.6	8.7	4121	3	US-09-601-537-9	Sequence 9, Appli
42	36.6	8.7	99797	3	US-09-949-016-15255	Sequence 15255, A
c 43	36.4	8.7	212139	3	US-09-949-016-16065	Sequence 16065, A
44	36.4	8.7	260286	3	US-09-949-016-17037	Sequence 17037, A
45	36.4	8.7	260293	3	US-09-949-016-12106	Sequence 12106, A

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: September 24, 2006, 13:08:22 ; Search time 1010 Seconds
 (without alignments)
 5109.710 Million cell updates/sec

Title: US-10-606-772-2
 Perfect score: 420

Sequence: 1 gtaaaatcaaattgtgctgc.....ttgtttatactttgacacag 420

Scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0

Searched: 18892170 seqs, 6143817638 residues

Total number of hits satisfying chosen parameters: 37784340

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : Published_Applications_NA_Main:
 1: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US07_PUBCOMB.seq:*
 2: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US08_PUBCOMB.seq:*
 3: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09A_PUBCOMB.seq:*
 4: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09B_PUBCOMB.seq:*
 5: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09C_PUBCOMB.seq:*
 6: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10A_PUBCOMB.seq:*
 7: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10B_PUBCOMB.seq:*
 8: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10C_PUBCOMB.seq:*
 9: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10D_PUBCOMB.seq:*
 10: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10E_PUBCOMB.seq:*
 11: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10F_PUBCOMB.seq:*
 12: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10G_PUBCOMB.seq:*
 13: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11A_PUBCOMB.seq:*
 14: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11B_PUBCOMB.seq:*
 15: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11C_PUBCOMB.seq:*
 16: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11D_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
1	420	100.0	420	6	US-10-268-797-2	Sequence 2, Appli
2	420	100.0	420	6	US-10-268-754-2	Sequence 2, Appli
3	420	100.0	420	7	US-10-176-149-1	Sequence 1, Appli
4	420	100.0	420	8	US-10-465-800-1	Sequence 1, Appli
5	420	100.0	420	8	US-10-381-250-1	Sequence 1, Appli
6	420	100.0	420	8	US-10-606-772-2	Sequence 2, Appli
7	420	100.0	420	8	US-10-669-888A-1	Sequence 1, Appli
8	420	100.0	420	9	US-10-393-347-1	Sequence 1, Appli
9	420	100.0	420	10	US-10-518-753-1	Sequence 1, Appli
10	420	100.0	420	12	US-10-508-401A-1	Sequence 1, Appli
11	420	100.0	778	6	US-10-268-797-27	Sequence 27, Appli
12	420	100.0	778	6	US-10-268-754-27	Sequence 27, Appli
13	420	100.0	778	7	US-10-176-149-18	Sequence 18, Appli
14	420	100.0	778	8	US-10-465-800-18	Sequence 18, Appli
15	420	100.0	778	8	US-10-606-772-27	Sequence 27, Appli
16	420	100.0	778	10	US-10-518-753-18	Sequence 18, Appli
17	420	100.0	4497	6	US-10-268-797-1	Sequence 1, Appli
18	420	100.0	4497	6	US-10-268-754-1	Sequence 1, Appli
19	420	100.0	4497	7	US-10-176-149-15	Sequence 15, Appli
20	420	100.0	4497	8	US-10-465-800-15	Sequence 15, Appli
21	420	100.0	4497	8	US-10-381-250-4	Sequence 4, Appli

22	420	100.0	4497	8	US-10-606-772-1	Sequence 1, Appli
23	420	100.0	4497	8	US-10-669-888A-4	Sequence 4, Appli
24	420	100.0	4497	9	US-10-393-347-4	Sequence 4, Appli
25	420	100.0	4497	10	US-10-518-753-15	Sequence 15, Appli
26	420	100.0	4497	12	US-10-508-401A-4	Sequence 4, Appli
27	254	60.5	1699	8	US-10-424-599-2655	Sequence 2655, Ap
28	199.8	47.6	405	6	US-10-268-797-24	Sequence 24, Appli
29	199.8	47.6	405	6	US-10-268-754-24	Sequence 24, Appli
30	199.8	47.6	405	7	US-10-176-149-2	Sequence 2, Appli
31	199.8	47.6	405	8	US-10-465-800-2	Sequence 2, Appli
32	199.8	47.6	405	8	US-10-381-250-2	Sequence 2, Appli
33	199.8	47.6	405	8	US-10-606-772-24	Sequence 24, Appli
34	199.8	47.6	405	8	US-10-669-888A-2	Sequence 2, Appli
35	199.8	47.6	405	9	US-10-393-347-2	Sequence 2, Appli
36	199.8	47.6	405	10	US-10-518-753-2	Sequence 2, Appli
37	199.8	47.6	405	12	US-10-508-401A-2	Sequence 2, Appli
38	199.8	47.6	2463	7	US-10-176-149-19	Sequence 19, Appli
39	199.8	47.6	2463	8	US-10-465-800-19	Sequence 19, Appli
40	199.8	47.6	2463	10	US-10-518-753-19	Sequence 19, Appli
41	198.8	47.3	480	8	US-10-424-599-120356	Sequence 120356,
42	56.6	13.5	1751	8	US-10-424-599-2654	Sequence 2654, Ap
c 43	48.6	11.6	816	8	US-10-282-122A-8193	Sequence 8193, Ap
c 44	47	11.2	813	3	US-09-815-242-4796	Sequence 4796, Ap
c 45	47	11.2	816	3	US-09-815-242-8829	Sequence 8829, Ap

GenCore version 5.1.9
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: September 24, 2006, 13:12:20 ; Search time 205 Seconds
 (without alignments)
 3621.893 Million cell updates/sec

Title: US-10-606-772-2
 Perfect score: 420
 Sequence: 1 gtaaaattaaattgtgcctgc.....ttgtttatacttgacacag 420

Scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0

Searched: 2335898 seqs, 883914439 residues

Total number of hits satisfying chosen parameters: 4671796

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : Published_Applications_NA_New:
 1: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09_NEW_PUB.seq:*
 2: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US06_NEW_PUB.seq:*
 3: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US07_NEW_PUB.seq:*
 4: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US08_NEW_PUB.seq:*
 5: /EMC_Celerra_SIDS3/ptodata/2/pubpna/PCT_NEW_PUB.seq:*
 6: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10_NEW_PUB.seq:*
 7: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11_NEW_PUB.seq:*
 8: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11_NEW_PUB.seq1:*
 9: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11_NEW_PUB.seq2:*
 10: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US60_NEW_PUB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	No.	Score	Query	Match	Length	DB	ID	Description
	1	420	100.0	420	7	US-11-369-993-1		Sequence 1, Appli
	2	420	100.0	420	7	US-11-376-328-1		Sequence 1, Appli
	3	420	100.0	778	7	US-11-369-993-18		Sequence 18, Appli
	4	420	100.0	4497	7	US-11-369-993-15		Sequence 15, Appli
	5	420	100.0	4497	7	US-11-376-328-4		Sequence 4, Appli
	6	199.8	47.6	405	7	US-11-369-993-2		Sequence 2, Appli
	7	199.8	47.6	405	7	US-11-376-328-2		Sequence 2, Appli
	8	199.8	47.6	2463	7	US-11-369-993-19		Sequence 19, Appli
c	9	47	11.2	813	6	US-10-471-571A-3475		Sequence 3475, Ap
c	10	43.2	10.3	135090	6	US-10-505-928-607		Sequence 607, App
	11	41.4	9.9	520	7	US-11-292-078-7699		Sequence 7699, Ap
c	12	40	9.5	1000	8	US-11-266-748A-211842		Sequence 211842,
c	13	40	9.5	1150	8	US-11-266-748A-54023		Sequence 54023, A
c	14	39.8	9.5	520	7	US-11-292-078-7699		Sequence 7699, Ap
	15	39.2	9.3	2500	6	US-10-641-321-125		Sequence 125, App
	16	39	9.3	487	7	US-11-292-078-2841		Sequence 2841, Ap
	17	39	9.3	727	8	US-11-266-748A-42816		Sequence 42816, A
c	18	39	9.3	919	6	US-10-374-780A-1356		Sequence 1356, Ap
	19	39	9.3	1000	8	US-11-266-748A-118780		Sequence 118780,
c	20	39	9.3	1000	8	US-11-266-748A-160944		Sequence 160944,
	21	39	9.3	1000	8	US-11-266-748A-293159		Sequence 293159,
c	22	39	9.3	1000	8	US-11-266-748A-344588		Sequence 344588,
	23	39	9.3	1000	8	US-11-266-748A-405069		Sequence 405069,
c	24	39	9.3	1000	8	US-11-266-748A-476115		Sequence 476115,
	25	39	9.3	1068	8	US-11-266-748A-70141		Sequence 70141, A
c	26	39	9.3	1068	8	US-11-266-748A-122952		Sequence 122952,
c	27	39	9.3	1390	8	US-11-266-748A-256869		Sequence 256869,

28	39	9.3	1390	8	US-11-266-748A-317386	Sequence 317386,
29	39	9.3	2026	8	US-11-266-748A-184717	Sequence 184717,
c 30	39	9.3	2321	8	US-11-266-748A-27870	Sequence 27870, A
31	39	9.3	4098	8	US-11-266-748A-31428	Sequence 31428, A
32	38.8	9.2	396	7	US-11-292-078-17801	Sequence 17801, A
c 33	38.8	9.2	859	8	US-11-266-748A-48163	Sequence 48163, A
34	38.8	9.2	90537	6	US-10-669-920-1425	Sequence 1425, Ap
c 35	38.6	9.2	2434	8	US-11-266-748A-23037	Sequence 23037, A
c 36	38.4	9.1	368	7	US-11-292-078-5024	Sequence 5024, Ap
c 37	38.4	9.1	499	7	US-11-292-078-10189	Sequence 10189, A
38	38.2	9.1	783	8	US-11-266-748A-349617	Sequence 349617,
c 39	38.2	9.1	783	8	US-11-266-748A-432996	Sequence 432996,
c 40	38.2	9.1	2578	6	US-10-700-439-70	Sequence 70, Appl
c 41	38.2	9.1	2578	8	US-11-266-748A-30590	Sequence 30590, A
42	38.2	9.1	301477	6	US-10-539-228-456	Sequence 456, App
c 43	38	9.0	516	7	US-11-292-078-16996	Sequence 16996, A
c 44	38	9.0	537	7	US-11-292-078-8120	Sequence 8120, Ap
c 45	38	9.0	1828	8	US-11-216-545-8656	Sequence 8656, Ap

FILE 'HOME' ENTERED AT 13:03:46 ON 16 OCT 2006

=> FILE BIOSIS, AGRICOLA
COST IN U.S. DOLLARS
FULL ESTIMATED COST

	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.21	0.21

FILE 'BIOSIS' ENTERED AT 13:04:00 ON 16 OCT 2006
Copyright (c) 2006 The Thomson Corporation

FILE 'AGRICOLA' ENTERED AT 13:04:00 ON 16 OCT 2006

=> S INTRON AND PLANT AND REVIEW
L1 8 INTRON AND PLANT AND REVIEW

=> D L1 1-8

L1 ANSWER 1 OF 8 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
AN 2005:4221 BIOSIS
DN PREV200500010147
TI The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective.
AU Knoop, Volker [Reprint Author]
CS IZMB, Univ Bonn, Kirschallee 1, D-53115, Bonn, Germany
volker.knoop@uni-bonn.de
SO Current Genetics, (September 2004) Vol. 46, No. 3, pp. 123-139. print.
ISSN: 0172-8083 (ISSN print).
DT Article
General Review; (Literature Review)
LA English
ED Entered STN: 16 Dec 2004
Last Updated on STN: 16 Dec 2004

L1 ANSWER 2 OF 8 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
AN 2004:272364 BIOSIS
DN PREV200400273299
TI Phylogenetic analysis of mealybugs (Hemiptera: Coccoidea: Pseudococcidae) based on DNA sequences from three nuclear genes, and a review of the higher classification.
AU Downie, D. A. [Reprint Author]; Gullan, P. J.
CS Dept Zool & Entomol, Rhodes Univ, ZA-6140, Grahamstown, South Africa
d.downie@ru.ac.za
SO Systematic Entomology, (April 2004) Vol. 29, No. 2, pp. 238-259. print.
ISSN: 0307-6970 (ISSN print).
DT Article
LA English
ED Entered STN: 2 Jun 2004
Last Updated on STN: 2 Jun 2004

L1 ANSWER 3 OF 8 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
AN 2000:36730 BIOSIS
DN PREV200000036730
TI Molecular systematic studies of the Palmae.
AU Hahn, William J. [Reprint author]
CS CERC, Columbia University, 1200 Amsterdam Ave., 1004 Schermerhorn Ext., MC
5557, New York, NY, 10027, USA
SO Memoirs of the New York Botanical Garden, (1999) Vol. 83, No. 0, pp.
47-60. print.
CODEN: MYBGAJ. ISSN: 0077-8931.
DT Article
General Review; (Taxonomic Review)
LA English
ED Entered STN: 19 Jan 2000
Last Updated on STN: 31 Dec 2001

L1 ANSWER 4 OF 8 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
AN 1997:65786 BIOSIS
DN PREV199799364989
TI Splicing of precursors to mRNA in higher plants: Mechanism, regulation and
sub-nuclear organisation of the spliceosomal machinery.
AU Simpson, G. G. [Reprint author]; Filipowicz, W.
CS John Innes Centre, Colney, Norwich NR4 7UH, UK
SO Plant Molecular Biology, (1996) Vol. 32, No. 1-2, pp. 1-41.
CODEN: PMBIDB. ISSN: 0167-4412.
DT Article
General Review; (Literature Review)
LA English
ED Entered STN: 11 Feb 1997
Last Updated on STN: 11 Feb 1997

L1 ANSWER 5 OF 8 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
AN 1988:428241 BIOSIS
DN PREV198835080371; BR35:80371
TI VIROIDS MOLECULAR INFECTIOUS AGENTS.
AU SMARDA J [Reprint author]
CS DEP BIOLOGY, MED FAC, JE PURKYNE UNIV, 662 44 BRUNO CZECHOSLOVAKIA
SO Acta Virologica, (1987) Vol. 31, No. 6, pp. 506-524.
CODEN: AVIRA2. ISSN: 0001-723X.
DT Article
FS BR
LA ENGLISH
ED Entered STN: 24 Sep 1988
Last Updated on STN: 24 Sep 1988

L1 ANSWER 6 OF 8 AGRICOLA Compiled and distributed by the National
Agricultural Library of the Department of Agriculture of the United States
of America. It contains copyrighted materials. All rights reserved.
(2006) on STN
AN 97:33170 AGRICOLA
DN IND20564068
TI Splicing of precursors to mRNA in higher plants: mechanism, regulation and
sub-nuclear organisation of the spliceosomal machinery.
AU Simpson, G.G.; Filipowicz, W.
CS John Innes Centre, Norwich, UK.
AV DNAL (QK710.P62)
SO Plant molecular biology, Oct 1996. Vol. 32, No. 1/2. p. 1-41
Publisher: Dordrecht : Kluwer Academic Publishers.
CODEN: PMBIDB; ISSN: 0167-4412
NTE In the special issue: Post-transcriptional control of gene expression in
plants/edited by W. Filipowicz and T. Hohn.
Includes references
CY Netherlands
DT Article; Law
FS Non-U.S. Imprint other than FAO
LA English

L1 ANSWER 7 OF 8 AGRICOLA Compiled and distributed by the National
Agricultural Library of the Department of Agriculture of the United States
of America. It contains copyrighted materials. All rights reserved.
(2006) on STN
AN 93:65481 AGRICOLA
DN IND93041703
TI RNA editing gives a new meaning to the genetic information in mitochondria
and chloroplasts.
AU Pring, D.; Brennicke, A.; Schuster, W.
CS USDA, ARS, University of Florida, Gainesville, FL
AV DNAL (QK710.P62)
SO Plant molecular biology : an international journal on molecular biology,

biochemistry and genetic engineering, Mar 1993. Vol. 21, No. 6. p.
1163-1170
Publisher: Dordrecht : Kluwer Academic Publishers.
ISSN: 0167-4412

NTE Literature review.
Includes references.

DT Article; (SURVEY OF LITURATURE)

FS Non-U.S. Imprint other than FAO

LA English

L1 ANSWER 8 OF 8 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

AN 92:102049 AGRICOLA

DN IND92060218

TI Regenerating good sense: RNA editing and trans splicing in plant mitochondria.

AU Wissinger, B.; Brennicke, A.; Schuster, W.

CS Institut fur Genbiologische Forschung, Berlin, FRG

AV DNAL (QH426.T74)

SO Trends in genetics, Sept 1992. Vol. 8, No. 9. p. 322-328
Publisher: New York, N.Y. : Elsevier Science Publishers.
ISSN: 0168-9479

NTE Literature review.
Includes references.

DT Article; (SURVEY OF LITURATURE)

FS U.S. Imprints not USDA, Experiment or Extension

LA English

=> S INTRON AND PLANT

L2 1947 INTRON AND PLANT

=> S L2 AND ANTISENSE

L3 35 L2 AND ANTISENSE

=> D L3 1-35 TI

L3 ANSWER 1 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Features of Arabidopsis genes and genome discovered using full-length cDNAs.

L3 ANSWER 2 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium.

L3 ANSWER 3 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Molecular analysis of Arabidopsis endosperm and embryo promoter trap lines: reporter-gene expression can result from T-DNA insertions in antisense orientation, in introns and in intergenic regions, in addition to sense insertion at the 5' end of genes.

L3 ANSWER 4 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Antisense and RNAi expression for a chloroplastic superoxide dismutase gene in transgenic plants.

L3 ANSWER 5 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Analysis of RNA-mediated gene silencing using a new vector (pKNOCKOUT) and an in planta Agrobacterium transient expression system.

L3 ANSWER 6 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays.

L3 ANSWER 7 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Expression of cold-tolerant pyruvate, orthophosphate dikinase cDNA, and heterotetramer formation in transgenic maize plants.

L3 ANSWER 8 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Loss of decreased-rubisco phenotype between generations of wheat transformed with antisense and sense rbcS.

L3 ANSWER 9 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Improvement of forage quality by downregulation of maize O-methyltransferase.

L3 ANSWER 10 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Diversity of *Arabidopsis* genes encoding precursors for phytosulfokine, a peptide growth factor.

L3 ANSWER 11 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Mitochondrial sequence migrated downstream to a nuclear V-ATPase B gene is transcribed but non-functional.

L3 ANSWER 12 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Nodule-specific regulation of phosphatidylinositol transfer protein expression in *Lotus japonicus*.

L3 ANSWER 13 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Inhibition of gene expression.

L3 ANSWER 14 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Inverted-repeat DNA: A new gene-silencing tool for seed lipid modification.

L3 ANSWER 15 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Metazoan cellulase genes from termites: Intron/exon structures and sites of expression.

L3 ANSWER 16 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast.

L3 ANSWER 17 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Natural antisense transcripts of the S locus receptor kinase gene and related sequences in *Brassica oleracea*.

L3 ANSWER 18 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Impaired wound induction of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase and altered stem development in transgenic potato plants expressing a DAHP synthase antisense construct.

L3 ANSWER 19 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Genetic engineering of potato starch composition: Inhibition of amylose biosynthesis in tubers from transgenic potato lines by the expression of antisense sequences of the gene for granule-bound starch synthase.

L3 ANSWER 20 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize.

L3 ANSWER 21 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Plant pre-mRNA splicing and splicing components.

L3 ANSWER 22 OF 35 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
TI Efficient splicing of an AU-rich antisense intron sequence.

L3 ANSWER 23 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN
TI Expression patterns of TEL genes in Poaceae suggest a conserved association with cell differentiation.

L3 ANSWER 24 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN
TI Transgene-triggered, epigenetically regulated ectopic expression of a flower homeotic gene pMADS3 in Petunia.

L3 ANSWER 25 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN
TI Molecular analysis of Arabidopsis endosperm and embryo promoter trap lines: reporter-gene expression can result from T-DNA insertions in antisense orientation, in introns and in intergenic regions, in addition to sense insertion at the 5' end of genes.

L3 ANSWER 26 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN
TI Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays.

L3 ANSWER 27 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN
TI Developmental and cell-specific expression of ZWICHEL is regulated by the intron and exon sequences of its upstream protein-coding gene.

L3 ANSWER 28 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN
TI hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing.

L3 ANSWER 29 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN
TI Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor.

L3 ANSWER 30 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

TI Construct design for efficient, effective and high-throughput gene silencing in plants.

L3 ANSWER 31 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

TI Nodule-specific regulation of phosphatidylinositol transfer protein expression in *Lotus japonicus*.

L3 ANSWER 32 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

TI A prolonged cold treatment-induced cytochrome P450 gene from *Arabidopsis thaliana*.

L3 ANSWER 33 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

TI De novo purine synthesis in *Arabidopsis thaliana*. II. The PUR7 gene encoding 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole synthetase is expressed in rapidly dividing tissues.

L3 ANSWER 34 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

TI Impaired wound induction of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase and altered stem development in transgenic potato plants expressing a DAHP synthase antisense construct.

L3 ANSWER 35 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

TI Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize.

=> D L3 28,30 FULL

'FULL' IS NOT A VALID FORMAT

In a multifile environment, a format can only be used if it is valid in at least one of the files. Refer to file specific help messages or the STNGUIDE file for information on formats available in individual files.

REENTER DISPLAY FORMAT FOR ALL FILES (FILEDEFAULT):FILEDEFAULT

L3 ANSWER 28 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2006) on STN

AN 2003:34634 AGRICOLA

DN IND23324111

TI hpRNA-mediated targeting of the *Arabidopsis* FAD2 gene gives highly efficient and stable silencing.

AU Stoutjesdijk, P.A.; Singh, S.P.; Liu, Q.; Hurlstone, C.J.; Waterhouse, P.A.; Green, A.G.

AV DNAL (450 P692)
SO Plant physiology, Aug 2002. Vol. 129, No. 4. p. 1723-1731
CODEN: PLPHAY; ISSN: 0032-0889
NTE Includes references
CY Maryland; United States
DT Article; Conference
FS Other US
LA English

L3 ANSWER 30 OF 35 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved.
(2006) on STN

AN 2002:26817 AGRICOLA
DN IND23262705
TI Construct design for efficient, effective and high-throughput gene silencing in plants.
AU Wesley, S.V.; Helliwell, C.A.; Smith, N.A.; Wang, M.; Rouse, D.T.; Liu, Q.; Gooding, P.S.; Singh, S.P.; Abbott, D.; Stoutjesdijk, P.A.; Robinson, S.P.; Gleave, A.P.; Green, A.G.; Waterhouse, P.M.
AV DNAL (QK710.P68)
SO The Plant journal : for cell and molecular biology, Sept 2001. Vol. 27, No. 6. p. 581-590
Publisher: Oxford : Blackwell Sciences Ltd.
ISSN: 0960-7412
NTE Includes references
CY England; United Kingdom
DT Article
FS Non-U.S. Imprint other than FAO
LA English

=> FIL STNGUIDE
COST IN U.S. DOLLARS

FULL ESTIMATED COST

FILE 'STNGUIDE' ENTERED AT 13:10:31 ON 16 OCT 2006
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE
AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Oct 13, 2006 (20061013/UP).

=>