신호 최적화 코드 설명 (multiagent-TF2 중심으로)

2022.07.11.

내용

- 환경 설정
- ●코드 구성
- 신호 최적화 실행
- 정책 : Sappo
- ●행동 : gr, offset, gro, kc
- 다중 에이전트(학습/추론) 제어
- ●분산 처리 지원

환경 설정

●단일

- 시뮬레이터 설치
- SALT_HOME 설정
- Miniforge3 다운로드 & 설치
 - 콘다 환경 생성 : ex, uniq.opt
 - ✓ Python 3.8
 - ✓ Tensorflow 2.3.0, keras 2.4.3, pandas, gym, matplotlib, deprecated, ...
- 교통 시뮬레이션 데이터 준비

●분산

- 패스워드없이 명령어 수행 가능 환경 구축
- 참여 노드에 단일 노드 환경 구축
 - 동일한 경로에 최적화 프로그램 설치(복사): (todo)스크립트화(?)

코드 구성: 디렉토리

• https://github.com/etri-city-traffic-brain/traffic-signal-optimization

코드 구성: 다중 에이전트 강화학습

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/atsc-rl/multiagent_tf2

코드 구성: 다중 에이전트 강화학습, 도커화

• https://github.com/etri-city-traffic-brain/traffic-signal-optimization/atsc-rl/multiagent_tf2

코드 구성 : 분산 처리

https://github.com/etri-city-traffic-brain/traffic-signal-optimization/atsc-rl/multiagent_tf2

신호 최적화 실행 : simulate, train, test

- python run.py --mode simulate --map 'doan' --target-TL 'SA 101, SA 104'
 - ./output/simulate/ 경로에 결과 파일 생성
 - _PeriodicOutput.csv ft_phase_reward_output.txt progress.txt
- python run.py --mode train --map 'doan' --target-TL 'SA 101, SA 104' --method sappo
 - ./output/train/ 경로에 결과 파일 생성
 - _PeriodicOutput.csv progress.txt train_epoch_tl_reward.txt train_epoch_total_reward.txt
 - ./model/{method}/ 훈련된 모델 저장
- python run.py --mode test --map 'doan' --target-TL 'SA 101, SA 104' --model-num 123 --result-comp true
 - ./output/test/ 경로에 결과 파일 생성
 - _PeriodicOutput.csv rl_phase_reward_output.txt progress.txt {fn_result-comp}.csv

신호 최적화 실행 : 명령행 인자

```
usage: run.py [-h] [--mode {train,test,simulate}] [--scenario-file-path SCENARIO FILE PATH]
              [--map {dj_all,doan,sa_1_6_17}] [--target-TL TARGET_TL] [--start-time START_TIME]
              [--end-time END_TIME] [--method {sappo}] [--action {kc,offset,gr,gro}] [--state {v,d,vd,vdd}]
              [--reward-func {pn,wt,wt max,wq,wq median,wq min,wq max,tt,cwq}]
              [--cumulative-training CUMULATIVE_TRAINING] [--model-num MODEL_NUM]
              [--infer-model-num INFER MODEL NUM] [--result-comp RESULT COMP] [--io-home IO HOME]
              [--epoch EPOCH] [--warmup-time WARMUP_TIME] [--model-save-period MODEL_SAVE_PERIOD]
              [--print-out PRINT OUT] [--action-t ACTION T]
              [--reward-info-collection-cycle REWARD_INFO_COLLECTION_CYCLE]
              [--reward-gather-unit {sa,tl,env}] [--gamma GAMMA] [--epsilon EPSILON]
              [--epsilon-min EPSILON_MIN] [--epsilon-decay EPSILON_DECAY]
              [--epoch-exploration-decay EPOCH EXPLORATION DECAY] [--ppo-epoch PPO EPOCH]
              [--ppo-eps PPO_EPS] [--_lambda _LAMBDA] [--a-lr A_LR] [--c-lr C_LR]
              [--network-size NETWORK_SIZE] [--optimizer OPTIMIZER] [--actionp ACTIONP] [--mem-len MEM_LEN]
              [--mem-fr MEM_FR] [--offset-range OFFSET_RANGE] [--control-cycle CONTROL_CYCLE]
              [--add-time ADD_TIME] [--infer-TL INFER_TL] [--infer-model-path INFER_MODEL_PATH]
              [--num-of-optimal-model-candidate NUM OF OPTIMAL MODEL CANDIDATE]
```

신호 최적화 실행: 명령행 인자 상세(1/2)

```
optional arguments:
 -h, --help
                        show this help message and exit
 --mode {train, test, simulate}
                       train - RL model training, test - trained model testing, simulate - fixed-time simulation before test
 --scenario-file-path SCENARIO_FILE_PATH
                       home directory of scenario; relative path
 --map {dj_all,doan,sa_1_6_17}
                       name of map
 -- target-TL TARGET TL
                        target signal groups; multiple groups can be separated by comma(ex. --target-TL 'SA 101,SA 104')
 --start-time START_TIME
                        start time of traffic simulation; seconds
 --end-time END TIME end time of traffic simulation; seconds
 --method {sappo}
                       optimizing method
 --action {kc,offset,gr,gro}
                       kc - keep or change(limit phase sequence), offset - offset, gr - green ratio, gro - green ratio+offset
 --state {v,d,vd,vdd} v - volume, d - density, vd - volume + density, vdd - volume / density
 --reward-func {pn,wt,wt max,wq,wq median,wq min,wq max,tt,cwq}
                       pn - passed num, wt - wating time, wg - waiting g length, tt - travel time, cwg - cumulative waiting g
                       length
 --cumulative-training CUMULATIVE_TRAINING
                        whether do cumulative training based on a previously trained model parameter or not
 --model-num MODEL NUM
                        trained model number
 --infer-model-num INFER_MODEL_NUM
                        trained model number for inference; this value is valid only when infer-TL is exist
 --result-comp RESULT COMP
                       whether compare simulation result or not
 --io-home IO HOME
                       home directory of io; relative path
 --epoch EPOCH
                       training epoch
 --warmup-time WARMUP_TIME
                       warming-up time of simulation
 --model-save-period MODEL SAVE PERIOD
                       how often to save the trained model
 --print-out PRINT_OUT
                        print result each step
```

신호 최적화 실행 : 명령행 인자 상세(2/2)

```
--action-t ACTION T the unit time of green phase allowance
--reward-info-collection-cycle REWARD_INFO_COLLECTION_CYCLE
                      Information collection cycle for reward calculation
--reward-gather-unit {sa,tl,env}
                      sa: sub-area, tl : traffic light, env : traffic environment
--gamma GAMMA
                      gamma
--epsilon EPSILON
                      epsilon for exploration
--epsilon-min EPSILON_MIN
                      minimum of epsilon for exploration
--epsilon-decay EPSILON DECAY
                      epsilon decay for exploration
--epoch-exploration-decay EPOCH_EXPLORATION_DECAY
                      epsilon decay for an epoch; has meaning when we do cumulative training
--ppo-epoch PPO EPOCH
                      model fit epoch
--ppo-eps PPO_EPS
--_lambda _LAMBDA
--a-lr A_LR
                     learning rate of actor
--c-lr C_LR
                     learning rate of critic
--network-size NETWORK SIZE
                      size of network in ML model; string of comma separated integer values are expected
--optimizer OPTIMIZER
                      optimizer for ML model
                      [in KC] action 0 or 1 prob.(-1~1): Higher value_collection select more zeros
--actionp ACTIONP
--mem-len MEM LEN
                      memory length
--mem-fr MEM_FR
                      memory forget ratio
-- offset-range OFFSET_RANGE
                      offset side range
--control-cycle CONTROL_CYCLE
                      how open change the traffic signal table by ML agent
--add-time ADD_TIME
                     unit of duration change when we do green-ratio adjustment
--infer-TL INFER TL
                     signal groups to do inference with pre-trained model; multiple groups can be
                      separated by comma(ex. --infer TL 'SA 101, SA 104')
--infer-model-path INFER_MODEL_PATH
                      directory path which will be use to find the inference model
--num-of-optimal-model-candidate NUM_OF_OPTIMAL_MODEL_CANDIDATE
```

number of candidate to compare reward to find optimal model

Policy: SAPPO

SAPPO

- 교차로 그룹(SA)에 속하는 교차로들을 하나의 모델의 출력으로 제어
- 모델의 출력 수가 교차로 그룹에 속하는 교차로 수에 비례
 - 예, SA 101의 경우 속하는 교차로가 10개
 - ✓ action=[0.0843686 -0.36210205 -0.5634587 0.10146301 -0.17175334 -0.18904327 0.03833684 0.57406149 0.10136297 -0.51851053]
- PPO 모델 이용
 - mgpi 자료 참고

Action: gr, offset, gro, kc

- gr : green ratio, 녹색 시간 조정
 - 모델 출력을 미리 정의된 녹색시간 조정 테이블에 매핑
 - 녹색시간 조정 테이블
 - ✓ 최소/최대 녹색 제약 조건을 만족시키는 범위에서 조정
 - ✔ 주신호를 중심으로 일정 시간 가감 : 예, 현시 1과 현시 4에 각각 6초 축소 후 현시 2에 12초 증가

예, 미리 정의된 녹색시간 조정 테이블

Action: gr, offset, gro, kc

- gr : green ratio, 녹색 시간 조정
- Offset, 오프셋 조정
 - 모델 출력을 오프셋 값으로 변환
 - -(cycle_length/2) ~ (cycle_length/2) 사이 값
 - 고정 신호에서 해당 값 만큼 이동

- gro : gr + offset, 녹색 신호 조정과 오프셋 조정을 동시에 진행
 - 출력을 분할하여 활용
 - 예, 출력 { (offset, gr), (offset, gr),..., (offset, gr) }
- kc : keep or change
 - 신호 변경 여부 결정

학습 흐름

https://github.com/InSpaceAI/RL-Zoo/blob/master/PPO.py

PPO example – cartpole

```
if __name__ == "__main__":
  env = gym.make(env_name)
   agent = PPOAgent()
                        // gym 환경 및 agent 준비
   episode = 0
   score = 0
  state = env.reset()
  while episode < episode_num:
      for t in range(n step):
         #env.render()
         action, v_t, logp_t = agent.get_action([state])
                                                    // 현재 state를 agent에 입력으로 넣어서 action을 가져옴
         action, v_t, logp_t = action[0], v_t[0], logp_t[0]
                                                    // continuous value를 discrete action으로 변경(cartpole은 action이 0, 1)
         discrete action = 0 if action < 0 else 1
        next_state, reward, done, info = env.step(discrete_action) // discrete action을 env.step에 전달하여 다음 상태, 보상 등 정보를 가져옴
         states = np.r_[states, [state]] if t else [state]
         actions = np.r_[actions, [action]] if t else [action]
                                                      // 학습을 위해 각 변수들을 memory처럼 모아둠
         // if t else [xxx] 부분은, 에피소드가 새로 시작할 때 마다 memory를 초기화하기 위함임
         logp_ts = np.r_[logp_ts, logp_t] if t else [logp_t]
                                                      // ppo같은 on-policy 알고리즘은 dqn과 같은 off-policy 알고리즘과 다르게 경험을 재활용하지 않고 해당 에피소드에서만
         dones = np.r_[dones, done]     if t else [done]
         rewards = np.r [rewards, reward] if t else [reward]
         state = next_state // next state가 현재 state가 됨
                                                                                                              Generalized Advantage Estimation (GAE)
         score += 1
                                                                                                               def get gaes(rewards, dones, values, next_values, gamma, _lambda, normalize):
                                                                                                                 deltas = [r + gamma * (1 - d) * nv - v for r, d, nv, v in zip(rewards, dones, next values, values)]
            print(f"{episode + 1} Episode / Score:{score}")
                                                                                                                 deltas = np.stack(deltas)
                                                                                                                 gaes = copy.deepcopy(deltas)
            score = 0
                                                     // done이면(pole이 넘어지면) 환경 리셋
                                                                                                                 for t in reversed(range(len(deltas) - 1)):
            state = env.reset()
                                                                                                                   gaes[t] = gaes[t] + (1 - dones[t]) * gamma * _lambda * gaes[t + 1]
            episode += 1
                                                                                                                 target = gaes + values
                                                                                                                 if normalize:
      v_t = agent.get_action([state])[1][0]
                                                                                                                   gaes = (gaes - gaes.mean()) / (gaes.std() + 1e-8)
                                                                                                                 return gaes, target
      values = np.r_[values, v_t]
      next values = np.copy(values[1:])
                                                                          // 한 에피소드가 끝나면 그동안 모은 경험으로 agent 업데이트
      values = values[:-1]
      adv, target = get_gaes(rewards, dones, values, next_values, gamma, _lambda, True)
      agent.update(states, actions, target, adv, logp_ts)
   env.close()
```

환경 & 에이전트 준비

상태 정보 수집

상태를 에이전트 입력으로 행동 추론

행동 적용 보상 획득

에이전트 업데이트

From mgpi's slide : 신호최적화_3차 코드리뷰_0405.pptx

다중 에이전트 (학습/추론) 제어

- Time_To_Act 테이블 이용하여 다중 에이전트 학습/추론 제어
 - agent 별로 다음 추론해야 하는 시간을 기억
 - 가장 가까운 추론 시간까지 step 증가 후 해당 에이전트 추론
 - 추론한 에이전트의 다음 추론 시간 증가

● 예

• 가정

✓ A는 400초, B는 500초, C는 600초 주기로 추론을 한다

- ✓ 현재 시간 0초
- 다음 추론 시간
 - ✓ { A:400, B:500, C:600}
- 가장 가까운 추론 시간인 400초까지 시뮬레이션 스텝 증가 후 A 추론
- A의 다음 추론 시간 증가 ✓ 다음 추론 시간 : { A:800, B:500, C:600 }
- 가장 가까운 추론 시간인 500초까지 스텝 증가.. B 추론 반복

Sim.	time_to_act TBL 변화			
step	400	500	600	
400	800	500	600	
500	800	1000	600	
600	800	1000	1200	
800	1200	1000	1200	
1000				
1200	1200	1500	1200	
1500	1600	1500	1800	

time_to_act 인 step에서 추론/학습

분산 처리 지원 : 구조, 흐름

분산처리 지원 : 흐름 예

가정 : 4개의 SA(SA₁₀₁, SA₁₀₄, SA₁₀₇, SA₁₁₁)를 2개의 노드(Compute₀₅, Compute₀₆)를 이용하여 분산 학습

Round	Ctrl Daemon(Compute ₀₅)	Exec Daemon(Compute ₀₅)	Exec Daemon(Compute ₀₆)
	그룹 분할 할당 & 학습 요청 SA ₁₀₁ , SA ₁₀₇ : Comp ₀₅ SA ₁₀₄ , SA ₁₁₁ : Comp ₀₆		
0		SA ₁₀₁ , SA ₁₀₇ : 훈련 & 최적 모델 저장 SA ₁₀₄ , SA ₁₁₁ : 고정 신호	SA ₁₀₄ , SA ₁₁₁ : 훈련 & 최적 모델 저장 SA ₁₀₁ , SA ₁₀₇ : 고정 신호
	성능 목표 달성 검증 : 미달 SA ₁₀₁ , SA ₁₀₄ , SA ₁₀₇ , SA ₁₁₁ 추론		
	재학습 요청		
		SA ₁₀₁ , SA ₁₀₇ : 훈련 & 최적 모델 저장 SA ₁₀₄ , SA ₁₁₁ : 모델 추론	SA ₁₀₄ , SA ₁₁₁ : 훈련 & 최적 모델 저장 SA ₁₀₁ , SA ₁₀₇ : 모델 추론
1	성능 목표 달성 검증 : 미달 SA ₁₀₁ , SA ₁₀₄ , SA ₁₀₇ , SA ₁₁₁ 추론		
	재학습 요청		
2		SA ₁₀₁ , SA ₁₀₇ : 훈련 & 최적 모델 저장 SA ₁₀₄ , SA ₁₁₁ : 모델 추론	SA ₁₀₄ , SA ₁₁₁ : 훈련 & 최적 모델 저장 SA ₁₀₁ , SA ₁₀₇ : 모델 추론
	성능 목표 달성 검증 : 달성 SA ₁₀₁ , SA ₁₀₄ , SA ₁₀₇ , SA ₁₁₁ 추론		

분산처리 지원 : 제어 데몬 명령행 실행 인자

```
usage: DistCtrlDaemon.py [-h] [--port PORT] [--validation-criteria VALIDATION_CRITERIA]
                         [--num-of-learning-daemon NUM_OF_LEARNING_DAEMON]
                         [--model-store-root-path MODEL_STORE_ROOT_PATH]
                         [--copy-simulation-output COPY_SIMULATION_OUTPUT]
                         [--mode {train,test,simulate}] [--scenario-file-path SCENARIO FILE PATH]
                         [--map {dj_all,doan,sa_1_6_17}] [--target-TL TARGET_TL]
                          [--start-time START_TIME] [--end-time END_TIME] [--method {sappo}]
                         [--action {kc,offset,gr,gro}] [--state {v,d,vd,vdd}]
                         [--reward-func {pn,wt,wt_max,wq,wq_median,wq_min,wq_max,tt,cwq}]
                          [--cumulative-training CUMULATIVE TRAINING] [--model-num MODEL NUM]
                         [--infer-model-num INFER_MODEL_NUM] [--result-comp RESULT_COMP]
                          [--io-home IO_HOME] [--epoch EPOCH] [--warmup-time WARMUP_TIME]
                         [--model-save-period MODEL SAVE PERIOD] [--print-out PRINT OUT]
                          [--action-t ACTION T]
                          [--reward-info-collection-cycle REWARD_INFO_COLLECTION_CYCLE]
                         [--reward-gather-unit {sa,tl,env}] [--gamma GAMMA] [--epsilon EPSILON]
                         [--epsilon-min EPSILON_MIN] [--epsilon-decay EPSILON_DECAY]
                         [--epoch-exploration-decay EPOCH EXPLORATION DECAY] [--ppo-epoch PPO EPOCH]
                         [--ppo-eps PPO_EPS] [--_lambda _LAMBDA] [--a-lr A_LR] [--c-lr C_LR]
                         [--network-size NETWORK_SIZE] [--optimizer OPTIMIZER] [--actionp ACTIONP]
                          [--mem-len MEM_LEN] [--mem-fr MEM_FR] [--offset-range OFFSET_RANGE]
                         [--control-cycle CONTROL_CYCLE] [--add-time ADD_TIME] [--infer-TL INFER_TL]
                          [--infer-model-path INFER MODEL PATH]
                          [--num-of-optimal-model-candidate NUM_OF_OPTIMAL_MODEL_CANDIDATE]
```

optional arguments:

run.py 명령행 인자

```
-h, --help
                     show this help message and exit
--port PORT
                                              ← target_improvement_rate
--validation-criteria VALIDATION CRITERIA
--num-of-learning-daemon NUM_OF_LEARNING_DAEMON
--model-store-root-path MODEL_STORE_ROOT_PATH
--copy-simulation-output COPY_SIMULATION_OUTPUT
                     whether do copy simulation output(PeriodicOutput.csv) to keep test history
                     or not
```

분산처리 지원 : 학습 수행 데몬 명령행 실행 인자

```
usage: DistExecDaemon.py [-h] [--port PORT] [--ip-addr IP_ADDR]

optional arguments:
-h, --help show this help message and exit
--port PORT
--ip-addr IP_ADDR

<-- 제어 데몬에 접속
```

분산 처리 지원 : 최적 모델 선정

- ●보상 정보에 기반하여 최적 모델 선정
 - 전체 episode에 대해 보상 값 평균이 높은 구간 선정
 - 구간 : num-of-optimal-model-candidate * model-save-period
 - 선정된 구간 내에서 저장된 모델 중 보상 값이 가장 높은 모델 선정

가정: num-of-optimal-model-candidate=5, model-save-period=3

분산처리 지원: 최적 모델 전달, 결과 저장

● 공유 FS 이용

```
예,
   가정 : 4개의 SA(SA<sub>101</sub>, SA<sub>104</sub>, SA<sub>107</sub>, SA<sub>111</sub>)를
        2개의 노드(Compute<sub>05</sub>, Compute<sub>06</sub>)를 이용하여 분산 학습
(p3.8) tsoexp@compute06:~/z.uniq/0613/multiagent_tf2.cwq$ ls
                                                                               Compute06
DebugConfiguration.py TSOUtil.py
                                            dockerize output
DistCtrlDaemon.pv
                       Troubleshooting.md env
                                                       policy
DistExe(p3.8) tsoexp@compute05:~/z.unig/0613/multiagent_tf2.cwg$ ls
                                                                                      Compute05
README DebugConfiguration.py __pycache__
                                                   out.ctrl
README DistCtrlDaemon.pv
                              config.py
                                                   out.exec
Result(DistExecDaemon.py
                              data
                                                   out.tb
TSOCons README.md
                              dist.run.single.sh
                                                   output
                              dist learning.sh
(p3.8) README DIST.md
                                                   policy
> head ResultCompare.py
                              dockerize
                                                   run.py
./modelTSOConstants.pv
                                                   sshKeyGenAndCopy.sh
                              env
                                                   zz.optimal_model_info.SA_101
.005_mlTSOUtil.py
                              logs
      Troubleshooting.md
                                                   zzToDoDone.md
-185
                              model
./model(p3.8) tsoexp@compute05:~/z.uniq/0613/multiagent_tf2.cwq$ \
.005 ml > head -n 2 zz.optimal_model_info.SA_101
-155
       ./model/sappo/SAPPO- state vdd action gro reward cwg gamma 0.99 lambda 0.95 alr 0.005 clr 0
(p3.8) .005 mLen 1000 mFR 0.9 netSz (1024, 512, 256, 128, 64) offset range 2 control cycle 5-trial
       -175
       ./model/sappo/SAPPO-_state_vdd_action_gro_reward_cwq_gamma_0.99_lambda_0.95_alr_0.005_clr_0
       .005 mLen 1000 mFR 0.9 netSz (1024, 512, 256, 128, 64) offset range 2 control cycle 5-trial
       -25
       (p3.8) tsoexp@compute05:~/z.uniq/0613/multiagent_tf2.cwq$
```

분산처리 지원 : 최적 모델 전달, 결과 저장

● 공유 FS 이용

분산처리 지원 : 분산 훈련 관련 파일

다음 번에는....

- 코드 살펴보고 질문
 - 주석 확인
 - todo 로 언급된 것들이 확인
 - 반영 여부
 - 해결/개선 방안