Differentiable Dynamic Programming for Time Series Alignment

9 июня 2018

Постановка задачи

Рассматривается задача выравнивания временных рядов.

Дана нотная запись музыкальной композиции и аудиозапись этой композиции. Требуется каждому моменту времени в аудиозаписи сопоставить ноту, играемую в этот момент.

Описание датасета

В работе был использован датасет Bach 10, состоящий из 10 аудиозаписей фрагментов хоралов Баха, продолжительность фрагментов — от 25 до 40 секунд.

Каждая запись состоит из четырех дорожек, соответствующих четырем инструментам — скрипка, кларнет, саксофон и фагот. Есть как записи отдельных дорожек, так и сводная запись всех инструментов.

Для каждой дорожки дана ее идеальная нотная запись, однако фактическая игра от нее немного отклоняется. Также для всех дорожек дано правильное выравнивание аудио и нотной записи. Для инструментов в выборке представлено от 15 до 25 различных нот.

Выравнивание

Для аудиозаписи выделим с равными интервалами ключевые точки, для которых будем искать выравнивание.

Выравнивание можно представить в виде бинарной матрицы Y размера количество нот \times количество фрагментов в разбиении. Единица в позиции (i,j) означает, что в j-й момент времени проигрывалась i-я нота.

Выравнивание

Предположим, что последовательность нот при игре не изменилась и ни одна из нот не была пропущена. Тогда выравнивание можно представить в виде пути в матрице Y из левой верхней клетки правую-нижнюю, при этом разрешены перемещения только вправо, вниз и вправо-вниз. Пример выравнивания — на рисунке ниже.

Метрика качества

Выбирая мелкие интервалы разбиения аудиозаписи, можно добиться, чтобы в каждый момент времени играла только одна нота. Тогда целью задачи является предсказать для каждого момента разбиения какая нота играет.

Для матрицы это ограничение означает, что в каждом столбце может быть не больше одной единицы. Для пути в графе это ограничение равносильно запрету переходов вниз.

Метрика качества — $mean\ absolute\ deviation$ — суммарное (по моментам времени) отклонение индекса предсказанной ноты от истинного индекса.

Аудио признаки

В статье предложено использовать следующие признаки для аудиодорожки:

- МГСС признаки первые 5 коэффициентов.
- Root Mean Square Energy энергия фрейма.
- Spectral Centroid средняя частота спектра во фрейме.
- Spectral Bandwidth разброс частот спектра во фрейме.

Были использованы реализации этих признаков из библиотеки librosa.

Простое решение

Разбиваем датасет на две части. На первой части обучаем классификатор по числу различных нот — предсказываем вероятность того, что в момент времени t играет нота i.

Для второй части датасета построим матрицу $\theta \in \mathbb{R}^{N_A imes N_B}.$

 θ_{ij} соответствует отрицательному логарифму вероятности того, что в момент времени j играет нота номер i, то есть штрафу за предсказание ноты i для момента времени j. Этот штраф можно получить из классификатора.

Теперь требуется найти в матрице путь из клетки (1,1) в клетку (N_A,N_B) с наименьшим суммарным штрафом. Эту задачу можно решить за $N_A \times N_B$ операций при помощи динамического программирования.

Поиск минимального пути

Дана матрица $N_A \times N_B$ штрафов. Нужно найти путь из клетки (1,1) в клетку (N_A,N_B) с наименьшим суммарным штрафом. На пути из клетки можно перемещаться в ее соседа справа или справа-снизу.

Заведем матрицу D размера $N_A \times N_B.$ D_{ij} равно минимальному штрафу, за который можно проложить путь из (1,1) в (i,j). Будем заполнять эту матрицу по столбцам.

База динамики

$$D_{11} = \theta_{11}, \ D_{1j} = +\infty$$

Шаг динамики

$$D_{ij} = \min(D_{i-1,j}, D_{i-1,j-1}) + \theta_{ij}$$

Рассмотрим $x \in \mathbb{R}^d$

$$\min(\boldsymbol{x}) = \min_{i=1,\dots,d} x_i$$

Пусть $\Omega(\cdot): \mathbb{R}^d o \mathbb{R} \ -$ сильно выпуклая функция

$$\min_{\Omega}(\boldsymbol{x}) = \min_{\boldsymbol{q} \in \Delta^d} \langle \boldsymbol{q}, \boldsymbol{x} \rangle + \Omega(\boldsymbol{q}).$$

Тогда $\min_{\Omega}(x)$ — гладкая функция:

$$\nabla_{\boldsymbol{x}} \min_{\Omega}(\boldsymbol{x}) = \operatorname*{arg\,min}_{\boldsymbol{q} \in \Delta^d} \langle \boldsymbol{q}, \boldsymbol{x} \rangle + \Omega(\boldsymbol{q})$$

Например:

$$\Omega(\mathbf{q}) = \gamma \sum_{i=1}^{d} q_i \log q_i, \quad \gamma > 0$$

$$\min_{\Omega}(\boldsymbol{x}) = \min_{\boldsymbol{q} \in \Delta^d} \sum_{i=1}^d q_i x_i + \gamma \sum_{i=1}^d q_i \log q_i$$

$$\hat{q}_i \propto \exp\left\{-\frac{x_i}{\gamma}\right\}, \quad \hat{q} = \operatorname{softmax}\left(-\frac{x}{\gamma}\right) = \operatorname{softmin}\left(\frac{x}{\gamma}\right)$$

Пусть $\theta \in \mathbb{R}^{N_A \times N_B}$.

- Алгоритм DTW:
 - $\mathrm{DTW}(\theta)$ величина минимального пути;
 - $Y(\theta) \in \{0,1\}^{N_A \times N_B}$ матрица выранивания;
- Алгоритм DTW_{Ω} :
 - $\mathrm{DTW}_{\Omega}(\theta)$ приближенная величина минимального пути;
 - ullet $Y_{\Omega}(heta) =
 abla_{ heta} \mathrm{DTW}_{\Omega}(heta)$ сглаженная матрица выранивания;

Оптимизируемый функционал:

$$MAD(\hat{Y}, Y) = ||L(Y - \hat{Y})^T||_F^2,$$

где $L \in \mathbb{R}^{N_B \times N_B}$ — нижнетреугольная матрица, заполненная 1.

Compute $DTW_{\Omega}(\boldsymbol{\theta})$ and $\nabla DTW_{\Omega}(\boldsymbol{\theta})$ Input: Distance matrix $\boldsymbol{\theta} \in \mathbb{R}^{N_A \times N_B}$ > Forward pass $v_{0,0} = 0$; $v_{i,0} = v_{0,i} = \infty$, $i \in [N_A]$, $j \in [N_B]$ for $i \in [1, ..., N_A], i \in [1, ..., N_B]$ do $v_{i,j} = d_{i,j} + \min_{\Omega}(v_{i,j-1}, v_{i-1,j-1}, v_{i-1,j})$ $q_{i,j} = \nabla \min_{\Omega}(v_{i,j-1}, v_{i-1,j-1}, v_{i-1,j}) \in \mathbb{R}^3$ ⇒ Backward pass $q_{i,N_R+1} = q_{N_A+1,i} = 0_3, i \in [N_A], j \in [N_R]$ $e_{i,N_B+1} = e_{N_A+1,i} = 0, i \in [N_A], j \in [N_B]$ $q_{N_A+1,N_B+1} = (0,1,0); e_{N_A+1,N_B+1} = 1$ for $j \in [N_B, ..., 1], i \in [N_A, ..., 1]$ do $e_{i,j} = q_{i,j+1,1} e_{i,j+1} + q_{i+1,j+1,2} e_{i+1,j+1} +$ $q_{i+1,i,3} e_{i+1,i}$ Return: $DTW_{\Omega}(\boldsymbol{\theta}) = v_{N_A,N_B}$ $\nabla \mathrm{DTW}_{\Omega}(\boldsymbol{\theta}) = (e)_{i,i=1}^{N_A,N_B}$

Результаты экспериментов

Выборка была разбита на тренировочную и валидационную, по пять записей в каждой из частей.

Были рассмотрены две модели:

- 1. Простая модель с логистической регрессией в качестве базового классификатора.
- **2.** End-to-end модель на основе DTW_{Ω} .

Инструмент	Pretrained	End-to-end
Скрипка	0.7804	0.4761
Кларнет	0.4527	0.2353
Саксофон	0.4930	0.4677
Фагот	0.6001	0.5650

Результаты экспериментов

Результаты экспериментов

Вклад участников

Тимур Гарипов

Реализация метода End-to-end на основе алгоритма DTW_{Ω} . (PyTorch)

Татьяна Шолохова

Подготовка данных и извлечение признаков для классификатора.

(midi parsing + librosa)

Павел Коваленко

Реализация простой модели с логистической регрессией в качестве базового классификатора. (Numpy + scikit-learn)

Александр

Проведение экспериментов. Рефакторинг и документация кода.

Состав команды:

Тимур Гарипов, 517 группа Татьяна Шолохова, 517 группа Павел Коваленко, 517 группа Саня Щербаков, 522 группа

Ссылки

Arthur Mensch, Mathieu Blondel. Differentiable Dynamic Programming for Structured Prediction and Attention. ICML 2018. https://arxiv.org/abs/1802.03676v2