Trigonometry Basics

Trigonometry Basic Formulas

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$\tan \alpha = \frac{\sin \alpha}{\cot \alpha}$$

$$\sec \alpha = \frac{1}{\cos \alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\sec \alpha = \frac{1}{\cos \alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\csc \alpha = \frac{1}{\sin \alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\cot \alpha = \frac{1}{\sin \alpha}$$

Popular Angles

- oparar					
	0	$\frac{\pi}{6}(30^{o})$	$\frac{\pi}{4}(45^{o})$	$\frac{\pi}{3}(60^{o})$	$\frac{\pi}{2}(90^{o})$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$
\cot	$+\infty$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0
sec	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	$\pm \infty$
\csc	$+\infty$	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1

Double-Angle

$$\sin \alpha = \frac{AB}{OA}, \quad \cos \alpha = \frac{OB}{OA}, \quad \cos 2\alpha = 2 \sin \alpha \cos \alpha \qquad \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\cos 2\alpha = 1 - 2 \sin^2 \alpha \qquad \cos 2\alpha = 2 \cos^2 \alpha - 1$$

$$\tan \alpha = \frac{AB}{OB}, \quad \cot \alpha = \frac{OB}{AB}, \quad \tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \qquad \cot 2\alpha = \frac{\cot^2 \alpha - 1}{2 \cot \alpha}$$

$$\sec \alpha = \frac{OA}{OB}, \quad \csc \alpha = \frac{OA}{AB} \qquad \sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha} \qquad \cos 2\alpha = \frac{1 - \tan^2 \alpha}{2 \cot \alpha}$$

$$\tan \alpha + \cot \alpha = \frac{2}{\sin 2\alpha} \qquad \cot \alpha - \tan \alpha = \frac{2}{\tan 2\alpha}$$

$$\tan \alpha + \cot \alpha = \frac{2}{\sin 2\alpha} \qquad \cot \alpha - \tan \alpha = \frac{2}{\tan 2\alpha}$$

$$\cot \alpha - \cot \alpha = \frac{\cos 2\alpha}{\sin^2 \alpha} \qquad \cot \alpha - \cot \alpha = \frac{\cos 2\alpha}{\sin^2 \alpha}$$

$$\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha \qquad \cos 3\alpha = 4 \cos^3 \alpha - 3 \cos \alpha$$

Half-Angle

$$\sin \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{2}} \qquad \cos \frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} \qquad \cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \qquad \tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

$$\cot \frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$$

$$\tan \alpha \tan \frac{\alpha}{2} = \sec \alpha - 1 = \frac{1 - \cos \alpha}{\cos \alpha}$$

$$1 + \sin \alpha = 2 \cos^2(\frac{\pi}{4} - \frac{\alpha}{2}) \qquad 1 + \cos \alpha = 2 \cos^2 \frac{\alpha}{2}$$

$$1 - \sin \alpha = 2 \sin^2(\frac{\pi}{4} - \frac{\alpha}{2}) \qquad 1 - \cos \alpha = 2 \sin^2 \frac{\alpha}{2}$$

$$1 + \tan \alpha = \sqrt{2} \frac{\sin(\frac{\pi}{4} + \alpha)}{\cos \alpha}$$

$$1 - \tan \alpha = \sqrt{2} \frac{\sin(\frac{\pi}{4} - \alpha)}{\cos \alpha}$$

Sums of Angles

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \alpha \pm \cot \beta}$$

$$\sin(\alpha + \beta)\sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta$$

$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta$$

Phase	Shift									
	$-\alpha$	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\pi - \alpha$	$\pi + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$		
\sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin\alpha$		
\cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin\alpha$	$\sin \alpha$	$\cos \alpha$		
\tan	$-\tan \alpha$	$\cot \alpha$	$-\cot\alpha$	$-\tan\alpha$	$\tan \alpha$	$\cot \alpha$	$-\cot\alpha$	$-\tan\alpha$		
cot	$-\cot \alpha$	$\tan \alpha$	$-\tan \alpha$	$-\cot \alpha$	$\cot \alpha$	$\tan \alpha$	$-\tan \alpha$	$-\cot \alpha$		
	$\cos(\alpha + \pi n) = (-1)^n \cos \alpha$									
	$\begin{vmatrix} \cos(\alpha + \pi n) = (-1)^n \cos \alpha \\ \sin(\alpha + \pi n) = (-1)^n \sin \alpha \end{vmatrix}$									
tan	$-\tan\alpha \\ -\cot\alpha$	$\cot \alpha$ $\tan \alpha$	$-\cot\alpha$ $-\tan\alpha$	$-\tan\alpha$ $-\cot\alpha$	$\tan \alpha$	$\cot \alpha$	$-\cot \alpha$	$-\tan \alpha$		

Sine/Cosine Theorem

$$\frac{BC}{\sin \widehat{BAC}} = \frac{AC}{\sin \widehat{ABC}} = \frac{AB}{\sin \widehat{ACB}} = 2R$$

$$\sin \frac{\widehat{BAC}}{2} = \sqrt{\frac{(P-AC)(P-AB)}{AB \ AC}}, \quad P = \frac{AB+AC+BC}{2}$$

$$\cos \frac{\widehat{BAC}}{2} = \sqrt{\frac{P(P-BC)}{AB \ AC}}$$

$$BC^2 = AC^2 + AB^2 - 2 \ AC \ AB \cos \widehat{BAC}$$

$$\begin{split} S_{ABC} &= \frac{1}{2}BC\ AC\sin\widehat{ACB} = 2R^2\sin\widehat{BAC}\ \sin\widehat{ABC}\ \sin\widehat{ACB} = \\ &= \sqrt{P(P-BC)(P-AC)(P-AB)} = \frac{AC\ AB\ BC}{4R} = Pr \\ m_{BC} &= \sqrt{\frac{BC^2}{4} + AB^2 - BC\ AB\cos\widehat{ABC}} = \frac{1}{2}\sqrt{2AB^2 + 2AC^2 - BC^2} \\ \beta_{BC} &= \frac{\sin\widehat{ABC}}{\sin\frac{\widehat{BAC}}{2}} \frac{AB\ BC}{AC + AB} = \sqrt{AC\ AB - DB\ DC} \end{split}$$