Q= $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$ rectargle in R? component interval

width of Q: max (b,-a1, b2-a2,..., bn-an).

The product $(b_1-a_1)\cdots(b_n-a_n)=v(a)$ is called the volume of a,

Defo: [a, b] closed interval.

A partition of [a,b] is a finite collection P of points of [a,b] that includes a and b.

 $a = t_0 < t_1 < \cdots < t_k = b$.

[tin, ti] a subinterval determined by P.

More generally, a partition P of Q is an notuple (P1,..., Pn) where each P; is a partition of [aj, bj] for each j.

If, for each ?, I; is one of the subintervals determined by P; of Car. b; I, then the rectangle

R= I, x...x In

The maximum width of these subjectingles is called the mesh of P.

Defn: f: Q -> IR bounded.

for each subrectangle R determined by P, let $m_R(f) = \inf \{f(x) \mid x \in R\}$ $H_R(f) = \sup \{f(x) \mid x \in R\}$.

We define the lower sum and upper sums of f determined by P, to be

$$L(f,P) = \sum_{R} m_{R}(f) \cdot v(R)$$

$$u(f,p) = \sum_{R} M_{R}(f) \cdot v(R).$$

P= (P,,..., Pn)

If P'' is a partition of Q

obtained from P by adjoining additional

points to some or all of the partitions

P,..., Pn, then P'' is called a refinement of P.

Given two partitions P and $P' = (P_1', ..., P_n')$ of Q, the partition

$$P'' = (P, UP'_1, \ldots, P_n UP'_n)$$

is alled the common refinement of P

P" common refinement
of P and P!

Lemma. Let P be a partition of Q, f: Q -> IR bounded fn.

If p'' is a refinement of P, then $L(f, p) \in L(f, p'')$, $U(f, p'') \in U(f, p)$

Lemma: If P and P' are two partitions of Q, then $L(f, P) \leq U(f, P')$.

Pf) Take the common relihement p" of P and P!

 $L(f, P) \leq L(f, P'') \leq u(f, P'') \leq u(f, P')$

Duf'n: $\int_{\mathcal{Q}} f = \sup_{P} \{L(f, P)\}$ lower integral of force Q $\int_{\mathcal{Q}} f = \inf_{P} \{u(f, P)\}$ upper integral of f over Q.

In general, $\int_{\underline{a}} f \leq \int_{\underline{a}} f$.

If $\int_{\alpha} f = \int_{\alpha} f$, we say that f is

integrable over Q, and we define the integral of f over Q to be this common value.

We write $\int_{\alpha} f$.

Ex' I= [0,1].

f: $I \rightarrow \mathbb{R}$ $x \mapsto 0$ if x rational $x \mapsto 1$ if x invational.

Every lower sum is

each subrectagle
can tains rational and so f is
ifrational numbers not integrable over

Thm (Riemann condition) f is integrable \Leftrightarrow $\forall \varepsilon > 0$, \exists partition P of Q for which $U(f, P) - L(f, P) < \varepsilon$

Thm: Every constant function f(x) = c is integrable, and

$$\int_{\Omega} c = c \cdot v(\alpha).$$

cor: Let $3a_1,...,a_k3$ be a finite collection of rectangles that covers Q. Thun $v(Q) \leq \sum_{i=1}^k v(Q_i).$

Sets of Measure Zero

Defin: Let $A \subset \mathbb{R}^n$. We say A has measure zero if $Y \in PO$, A covering O_1, O_2, \ldots , of A by countably many actangles such that $Z_i^* \vee (O_i) < \varepsilon$.

A pottoned the

Thm:

- (a) If BCA and A has measure of then B has measure 0.
- (b) If A_1, A_2, \ldots is a countable adjection of sets of measure 0, thus so is VA_i .
- (c) A has measure 0 (-) Y (>0)

 I the covering of A by open
 rutugles Int Q1, Int Q2,...

 St. \(\) \(
- (d) If Q is a rectangle in 12ⁿ, then
 Bd Q has measure o in 12ⁿ but Q
 does not.

Bd Q has measure 0 in IR.

Bd Q has wearne O in 12².

a rectargle in 12", f: a -> 12 bounded

Thm: let D be the set of points of Q at which f fails to be continuous. Then

If exists

Q

If

D has measure seen in 12h

Thm: Suppose f: Q > R integrable.

(a) If f vanishes except on a set of Meurne 0, then f = 0.

(MIN A SIGNA

(b) If f > 0 and $\int_{\mathbb{R}} f = 0$, then f vanishes except on a set of masure 0.