Risk-averse Distributional Reinforcement Learning A CVaR optimization approach

Silvestr Stanko¹

¹Department of Computer Science Czech Technical University

Tuesday 5th June, 2018

Reinforcement Learning

Reinforcement Learning goals

$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(x_t, \pi(x_t))\right]$$

Risk-averse Reinforcement Learning: Motivation

Figure: Simulation vs Real world

Figure: Critical Applications

Figure: Al safety

Risk

Value-at-Risk, Conditional Value-at-Risk

Reinforcement Learning with CVaR

For a given α , our goal is to find a globally optimal policy π^*

$$\pi^* = \arg\max_{\pi} \mathsf{CVaR}_{\alpha}(\mathit{Z}^{\pi}(\mathit{x}_0))$$

CVaR Value Iteration

 $C(x,\alpha)$ represents $CVaR_{\alpha}$ when following the optimal CVaR policy

CVaR Value Iteration

$$TC(x,\alpha) = \max_{a} \left[R(x,a) + \gamma \min_{\xi} \sum_{x'} p(x'|x,a) \xi(x') C(x',\alpha \xi(x')) \right]$$

Bonus: CVaR computation via quantile representation

Linear-time Computation

Theorem

Solution to minimization problem

$$\min_{\xi \in \mathcal{U}_{CVaR}(\alpha, p(\cdot|x, a))} \sum_{x'} p(x'|x, a) \xi(x') \mathit{CVaR}_{\xi(x')\alpha} \left(\mathit{Z}^{\pi}(x') \right)$$

can be computed by setting

$$\xi(x') = \frac{F_{Z(x')}(F_{Z(x,a)}^{-1}(\alpha))}{\alpha}$$

The computational complexity is $O(n \cdot m)$ where n is the number of transition states and m is the number of atoms.

CVaR Value Iteration - Experiments

CVaR Q-learning

Pseudocode

- **1** Sample a transition x, a, x', r
- Create a target distribution d
- Update current estimates of VaR and CVaR proportionally to the target distribution

Recursive CVaR Estimation

$$\begin{aligned} V_{t+1} &= V_t + \beta_t \left[1 - \frac{1}{\alpha} \mathbb{1}_{(V_t \ge r)} \right] \\ C_{t+1} &= (1 - \beta_t) C_t + \beta_t \left[V_t + \frac{1}{\alpha} (r - V_t)^- \right] \end{aligned}$$

VaR-based Policy Improvement

Theorem

Let π be a fixed policy, $\alpha \in (0,1]$. By following policy π' from the following algorithm, we will improve $CVaR_{\alpha}(Z)$ in expectation:

$$CVaR_{lpha}(Z^{\pi}) \leq CVaR_{lpha}(Z^{\pi'})$$

VaR-based Policy Improvement

$$a = \operatorname{arg\,max}_a \operatorname{CVaR}_{\alpha}(Z(x_0, a))$$

$$s = \mathsf{VaR}_{\alpha}(Z(x_0, a))$$

Take action a, observe x, r

while x is not terminal **do**

$$s = \frac{s-r}{\gamma}$$

$$a = \arg\max_{a} \mathbb{E}\left[\left(Z(x, a) - s\right)^{-}\right]$$

Take action a, observe x, r

end while

CVaR Q-learning - Experiments

Approximate Q-learning

Problem

Q-learning is intractable for large state spaces.

Solution

Use approximate Q-learning:

- Formulate CVaR Q-learning update as a minimizing argument
- 2 Use methods of convex optimization to find the optimal point

TD update \rightarrow loss function

VaR loss

$$\mathcal{L}_{\mathsf{VaR}} = \sum_{i=1}^{N} \mathop{\mathbb{E}}\limits_{j} \left[(r + \gamma d_{j} - V_{i}(x, a))(y_{j} - \mathbb{1}_{(V_{i}(x, a) \geq r + \gamma d_{j})}) \right]$$

CVaR loss

$$\mathcal{L}_{\mathsf{CVaR}} = \sum_{i=1}^{N} \mathbb{E} \left[\left(V_i(x, a) + \frac{1}{y_i} \left(r + \gamma d_j - V_i(x, a) \right)^{-} - C_i(x, a) \right)^2 \right]$$

$$\mathcal{L} = \mathbb{E}\left[\mathcal{L}_{\mathsf{VaR}} + \mathcal{L}_{\mathsf{CVaR}}\right]$$

Deep CVaR Q-learning - Experiments

- Model: Convolutional Neural Network
- Environment: Ice Lake

• Video: $\alpha = 1$

2 Video: $\alpha = 0.3$

Summary

Faster CVaR Value Iteration

- Polynomial \rightarrow linear time.
- Formally proved for increasing, unbounded distributions.
- Experimentally verified for general distributions.

CVaR Q-learning

- Sampling version of CVaR Value Iteration.
- Based on the distributional approach.
- Experimentally verified.

Oistributional Policy improvement

- Proved monotonic improvement for distributional RL.
- Used as a heuristic for extracting π^* from CVaR Q-learning.

Open CVaR Q-learning

- TD update → loss function.
- Experimentally verified in a deep learning context.