

Switching Regulator IC Series

Resistor Value Table to set Output Voltage of Buck Converter IC

No.12027EBY03

In a typical Buck (step-down) switching regulator IC, the external resistors are set to obtain a desired output voltage.

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Configuration of a typical Buck Converter IC

The resistor value table described in this application note is suitable for buck switching regulator IC designed by basic configuration as shown in Figure 1.

The error amplifier in the IC controls the output voltage Vo by detecting changes in the load and feedback that information to bias circuit of switching regulator. Output Voltage Vo is input to the inverse-side of error amplifier, after being divided by external feedback resistors R₁ and R₂. Error amplifier compares voltage input and internal reference-voltage VREF, and outputs the error signal to the next stage of the circuit. PWM converter drives the switching element of the output stage, responding to error signal, and the output-voltage shifts to prescribed voltage value. Depending on type of power supply circuit, several function blocks exists between the error amplifier output and the switching element of output stage.

Figure 1. Configuration of typical Buck Converter circuit

Computation of Output Voltage Vo

Output voltage, Vo can be set by external resistors R₁ and R₂ as in Figure 1. Output voltage Vo can be shown by following method.

$$V_{O} = \frac{R_{1} + R_{2}}{R_{2}} \times V_{REF} \quad (V)$$

$$V_{REF: Internal reference-voltage of IC (V)}$$
(1)

Also, resistor ratio of R1 and R2 can be shown by following method.

$$\frac{R_1}{R_2} = \frac{V_O}{V_{REF}} - 1 \tag{2}$$

• Resistor value setting table when internal reference-voltage of IC, VREF is 0.7V, 0.75V, 0.8V, 0.9V, and 1.0V are shown in the following pages:

Table1: Resistor Values (R1 and R2) when VREF=0.7V

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
0.7	-	0	-	0.7	0
0.75	0.071	13	180	0.7506	+0.074
0.75	0.071	5.1	68+3.3	0.7501	+0.009
0.8	0.143	4.3	30	0.8003	+0.042
0.85	0.214	12	56	0.85	0
0.9	0.286	16	56	0.9	0
0.95	0.357	20	56	0.95	0
1	0.429	24	56	1.	0
1.05	0.5	15	30	1.05	0
	0.571	39	68	1.1015	+0.134
1.1	0.571	16	18+10	1.1	0
1.15	0.643	36	56	1.15	0
	0.714	13	18	1.2056	+0.463
1.2	0.714	12	10+6.8	1.2	0
	0.786	12	15	1.26	+0.8
1.25	0.786	22	18+10	1.25	0
	0.760	11	13	1.2923	-0.592
1.3	0.857	24	18+10	1.2923	-0.592
			13		
1.35	0.929	12	27+15	1.346	-0.285
1.4	0.929	39		1.35	0
1.4	1.	22	22	1.4	0
1.45	1.071	16	15	1.447	-0.230
	1.071	12	10+1.2	1.45	0
1.5	1.143	15	13	1.5077	+0.513
	1.143	33+4.7	33	1.4997	-0.02
1.55	1.214	68	56	1.55	0
1.6	1.286	13	10	1.61	+0.625
1.0	1.286	36	18+10	1.6	0
1.65	1.357	15	11	1.6545	+0.275
	1.357	68+1.2	51	1.6498	-0.012
1.7	1.429	13	9.1	1.7	0
1.75	1.5	15	10	1.75	0
1.8	1.571	47	30	1.7967	-0.185
1.0	1.571	33+4.7	24	1.7996	-0.023
1.85	1.643	15	9.1	1.8538	+0.208
1.00	1.643	82+10	56	1.85	0
1.9	1.714	62	36	1.9056	+0.292
1.9	1.714	10+5.6	9.1	1.9	0
1.95	1.786	100	56	1.95	0
2	1.857	56	30	2.0067	+0.333
	1.857	47	22+3.3	2.0004	+0.02
2.05	1.929	33+5.6	20	2.051	+0.049
2.1	2.	20	10	2.1	0
2.2	2.143	12	5.6	2.2	0
	2.286	62	27	2.3074	+0.322
2.3	2.286	47+3.3	22	2.3005	+0.02
0.4	2.429	39	16	2.4063	+0.26
2.4	2.429	68	18+10	2.4	0
0.5	2.571	100	39	2.4949	-0.205
2.5	2.571	33+5.6	15	2.5013	+0.053
0.0	2.714	30	11	2.6091	+0.35
2.6	2.714	22+2.7	9.1	2.6	0
2.65	2.786	10+5.6	5.6	2.65	0
2.7	2.857	16	5.6	2.7	0
2.75	2.929	82	18+10	2.75	0
2.8	3.	30	10	2.8	0
	3.071	120	39	2.8538	+0.135
2.85	3.071	15+2.2	5.6	2.85	0
	3.143	160	5.0	2.8961	-0.135
2.9		33+4.7	12		
	3.143	JJ 14.1	12	2.8992	-0.029

		_	_		_
Vo	R1/R2	R1	R2	Vo'	Error
(V)		(kΩ)	(kΩ)	(V)	(%)
3	3.286	27	8.2	3.0049	+0.163
	3.286	47+5.6	16	3.0013	+0.042
3.1	3.429	82	24	3.0917	-0.269
2.45	3.429	33+4.7	11	3.0991	-0.029
3.15	3.5	56	16	3.15	0
3.2	3.571	20	5.6	3.2	0
3.25	3.643	43 82	10+1.8 22	3.2508	+0.026
3.3	3.714 3.714	68	15+3.3	3.3091 3.3011	+0.275 +0.033
	3.857	150	39	3.3923	-0.226
3.4	3.857	33+5.6	10	3.402	+0.059
3.5	4.	30	7.5	3.5	0
	4.143	91	22	3.5955	-0.126
3.6	4.143	33+4.7	9.1	3.6	0
3.7	4.286	39	9.1	3.7	0
	4.429	120	27	3.8111	+0.292
3.8	4.429	33+3.3	8.2	3.7988	-0.032
0.0	4.571	82	18	3.8889	-0.285
3.9	4.571	47+3.3	11	3.9009	+0.023
_	4.714	47	10	3.99	-0.25
4	4.714	68+2.7	15	3.9993	-0.017
4.1	4.857	33	6.8	4.0971	-0.072
4.2	5.	75	15	4.2	0
4.3	5.143	82	16	4.2875	-0.291
4.3	5.143	22+6.8	5.6	4.3	0
4.4	5.286	36	6.8	4.4059	+0.134
7.7	5.286	91	15+2.2	4.4035	+0.079
4.5	5.429	130	24	4.4917	-0.185
7.5	5.429	33+3.9	6.8	4.4985	-0.033
4.6	5.571	100	18	4.5889	-0.242
	5.571	68	10+2.2	4.6016	+0.036
4.7	5.714	47	8.2	4.7122	+0.259
	5.714	22+10	5.6	4.7	0
4.8	5.857	30	5.1	4.8176	+0.368
4.0	5.857	68+8.2	13	4.8031	+0.064
4.9	6.	120	20	4.9	0
5	6.143	<u>56</u>	9.1	5.0077	+0.154
	6.143	75 110	10+2.2	5.0033	+0.066
5.5	6.857 6.857	150+1	16 22	5.5125 5.5045	+0.227 +0.083
	7.571	47	6.2	6.0065	+0.083
6	7.571	33+5.6	5.1	5.998	-0.033
7	9.	180	20	7.	0
7.7	10.	100	10	7.7	0
	10.429	160	15	8.1667	+2.083
8	10.429	120	10+1.5	8.0043	+0.054
	11.857	130	11	8.9727	-0.303
9	11.857	56+33	7.5	9.0067	+0.074
40	13.286	100	7.5	10.0333	+0.333
10	13.286	100+33	10	10.01	+0.1
12	16.143	100	6.2	11.9903	-0.081
14.4	19.571	82+10	4.7	14.4021	+0.015
15	20.429	150	7.5	14.7	-2
15	20.429	100+39	6.8	15.0088	+0.059
18	24.714	150	6.2	17.6355	-2.025
10	24.714	150+3.3	6.2	18.0081	+0.045
20	27.571	130	4.7	20.0617	+0.309
	27.571	150+4.7	5.6	20.0375	+0.187
24	33.286	160	4.7	24.5298	+2.207
4 7	33.286	150+6.8	4.7	24.0532	+0.222

Table2: Resistor Values (R1 and R2) when VREF=0.75V

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
0.75	-	0	-	0.75	0
0.8	0.0666	2	30	0.8	0
0.85	0.1333	6.8	51	0.85	0
0.9	0.2	3	15	0.9	0
0.95	0.2666	20	75	0.95	0
1	0.3333	13	39	1.	0
1.05	0.4	12	30	1.05	0
1.1	0.4666	5.6	12	1.1	0
1.15	0.5333	16	30	1.15	0
1.2	0.6	12	20	1.2	0
1.25	0.6666	10	15	1.25	0
1.3	0.7333	11	15	1.3	0
1.35	0.8	12	15	1.35	0
1.4	0.8666	13	15	1.4	0
1.45	0.9333	15	16	1.4531	+0.216
1.45	0.9333	10+1.2	12	1.45	0
1.5	1	10	10	1.5	0
1.55	1.0666	16	15	1.55	0
1.6	1.1333	18	16	1.5938	-0.391
1.6	1.1333	33+1	30	1.6	0
1.65	1.2	12	10	1.65	0
4.7	1.2666	15	12	1.6875	-0.735
1.7	1.2666	33+1.2	27	1.7	0
1.75	1.3333	16	12	1.75	0
4.0	1.4	18	13	1.7885	-0.641
1.8	1.4	10+6.8	12	1.8	0
1.85	1.4666	22	15	1.85	0
4.0	1.5333	20	13	1.9038	+0.202
1.9	1.5333	22+1	15	1.9	0
1.95	1.6	16	10	1.95	0
2	1.6666	20	12	2.	0
2.05	1.7333	13	7.5	2.05	0
2.1	1.8	18	10	2.1	0
	1.9333	12	6.2	2.2016	+0.073
2.2	1.9333	15+8.2	12	2.2	0
2.3	2.0666	62	30	2.3	0
2.4	2.2	22	10	2.4	0
2.5	2.3333	56	24	2.5	0
	2.4666	27	11	2.5909	-0.35
2.6	2.4666	22+15	15	2.6	0
0.05	2.5333	33	13	2.6538	+0.145
2.65	2.5333	18+1	7.5	2.65	0
2.7	2.6	39	15	2.7	0
2.75	2.6666	20	7.5	2.75	0
2.8	2.7333	82	30	2.8	0
2.85	2.8	56	20	2.85	0
2.9	2.8666	43	15	2.9	0
3	3	36	12	3.	0
3.1	3.1333	47	15	3.1	0
3.15	3.2	24	7.5	3.15	0
	3.2666	36	11	3.2045	+0.142
3.2	3.2666	39+10	15	3.2	0
		•			

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
3.25	3.3333	100	30	3.25	0
3.3	3.4	51	15	3.3	0
3.4	3.5333	24	6.8	3.3971	-0.087
	3.5333	47	12+1.3	3.4004	+0.011
3.5	3.6666	110	30	3.5	0
3.6	3.8	91	24	3.5938	-0.174
0.0	3.8	47+10	15	3.6	0
3.7	3.9333	22	5.6	3.6964	-0.097
0.7	3.9333	47+12	15	3.7	0
3.8	4.0666	110	27	3.8056	+0.146
0.0	4.0666	47+1.8	12	3.8	0
3.9	4.2	75	18	3.875	-0.641
	4.2	27+15	10	3.9	0
4	4.3333	130	30	4.	0
4.1	4.4666	120	27	4.0833	-0.407
	4.4666	15+10	5.6	4.0982	-0.044
4.2	4.6	110	24	4.1875	-0.298
	4.6	47+8.2	12	4.2	0
4.3	4.7333	43	9.1	4.294	-0.141
	4.7333	56+15	15	4.3	0
4.4	4.8666	33	6.8	4.3897	-0.234
	4.8666	56	10+1.5	4.4022	+0.049
4.5	5	75	15	4.5	0
4.6	5.1333	82	16	4.5938	-0.136
	5.1333	100+2.7	20	4.6013	+0.027
4.7	5.2666	43	8.2	4.6829	-0.363
	5.2666	33+15	9.1	4.706	+0.129
4.8	5.4	130	24	4.8125	+0.26
	5.4	39+15	10	4.8	0
4.9	5.5333	100	18	4.9167	+0.34
_	5.5333	68+15	15	4.9	0
5	5.6666	68	12	5.	0
5.5	6.3333	43	6.8	5.4926	-0.134
	6.3333	68+27	15	5.5	0
6	7	91	13	6.	0
7	8.3333	100	12	7.	0
7.7	9.2666	120	13	7.6731	-0.35
	9.2666	68+1.5	7.5 10	7.7	0 ±2.125
8	9.6666 9.6666	100 33+27	6.2	8.25 8.0081	+3.125 +0.1
9	9.0000	110	10	9.	0
9	12.3333	160	13	9.9808	-0.192
10	12.3333	100+1.2	8.2	10.0061	+0.061
12	15	150	10	12.	0
14	18.2	150	8.2	14.4695	+0.483
14.4	18.2	68+56	6.8	14.4265	+0.483
	19	130	6.8	15.0882	+0.184
15	19	82+15	5.1	15.0002	+0.098
	23	130	5.6	18.1607	+0.098
18	23	100+8.2	4.7	18.016	+0.089
20	25.6666	110	4.7	19.936	-0.32
20	31	160	5.1	24.2794	+1.164
24	31	150+8.2		24.2794	+0.061
	JI	150+6.2	5.1	24.0147	+0.001

Table3: Resistor Values (R1 and R2) when VREF=0.8V

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
0.8	-	0	-	0.8	0
0.85	0.063	7.5	120	0.85	0
0.9	0.125	3	24	0.9	0
0.95	0.188	30	160	0.95	0
1	0.25	7.5	30	1.	0
1.05	0.313	7.5	24	1.05	0
1.1	0.375	7.5	20	1.1	0
	0.438	33	75	1.152	+0.174
1.15	0.438	10+1.8	27	1.1496	-0.032
1.2	0.5	12	24	1.2	0
1.25	0.563	6.2	11	1.2509	+0.073
1.3	0.625	7.5	12	1.3	0
1.35	0.688	11	16	1.35	0
1.4	0.75	12	16	1.4	0
1.45	0.813	13	16	1.45	0
	0.875	13	15	1.4933	-0.444
1.5	0.875	39+10	56	1.5	0
1.55	0.938	15	16	1.55	0
1.6	1.	22	22	1.6	0
	1.063	16	15	1.6533	+0.202
1.65	1.063	51	33+15	1.65	0
1.7	1.125	18	16	1.7	0
1.75	1.188	51	43	1.7489	-0.066
1.8	1.25	15	12	1.8	0
1.85	1.313	100	68+8.2	1.8499	-0.007
1.9	1.375	22	16	1.9	0
	1.438	56	39	1.9487	-0.066
1.95	1.438	22+1	16	1.95	0
2	1.5	27	18	2.	0
2.05	1.563	15+10	16	2.05	0
2.1	1.625	39	24	2.1	0
	1.75	68	39	2.1949	-0.233
2.2	1.75	18+10	16	2.2	0
2.3	1.875	30	16	2.3	0
2.4	2.	24	12	2.4	0
2.5	2.125	51	24	2.5	0
2.6	2.25	27	12	2.6	0
2.65	2.313	22+15	16	2.65	0
0.7	2.375	43	18	2.7111	+0.412
2.7	2.375	47+10	24	2.7	0
2.75	2.438	39	16	2.75	0
2.8	2.5	30	12	2.8	0
2.85	2.563	82	32	2.85	0
2.0	2.625	47	18	2.8889	-0.383
2.9	2.625	27+15	16	2.9	0
3	2.75	33	12	3.	0
2.4	2.875	43	15	3.0933	-0.215
3.1					
0.1	2.875	33+1.5	12	3.1	0

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
3.2	3.	30	10	3.2	0
3.25	3.063	39+10	16	3.25	0
3.3	3.125	75	24	3.3	0
3.4	3.25	39	12	3.4	0
0.5	3.375	91	27	3.4963	-0.106
3.5	3.375	39+15	16	3.5	0
3.6	3.5	56	16	3.6	0
0.7	3.625	33	9.1	3.7011	+0.03
3.7	3.625	100+1.5	18+10	3.7	0
3.8	3.75	75	20	3.8	0
3.9	3.875	62	16	3.9	0
4	4.	120	30	4.	0
4.4	4.125	62	15	4.1067	+0.163
4.1	4.125	33+33	16	4.1	0
4.2	4.25	51	12	4.2	0
4.0	4.375	36	8.2	4.3122	+0.284
4.3	4.375	39+10	10+1.2	4.3	0
4.4	4.5	68	15	4.4267	+0.606
4.4	4.5	39+15	12	4.4	0
4.5	4.625	51	11	4.5091	+0.202
4.5	4.625	47+27	16	4.5	0
4.6	4.75	39	8.2	4.6049	+0.106
4.0	4.75	47+10	12	4.6	0
4.7	4.875	160	33	4.6788	-0.451
4.7	4.875	68+10	16	4.7	0
4.8	5.	75	15	4.8	0
4.9	5.125	82	16	4.9	0
5	5.25	43	8.2	4.9951	-0.098
<u> </u>	5.25	150+39	36	5.	0
5.5	5.875	130	22	5.5273	+0.496
0.0	5.875	47+47	16	5.5	0
6	6.5	130	20	6.	0
7	7.75	100	13	6.9538	-0.659
	7.75	68+56	16	7.	0
7.7	8.625	22+22	5.1	7.702	+0.025
8	9.	180	20	8.	0
9	10.25	100	10	8.8	-2.222
	10.25	160	10+5.6	9.0051	+0.057
10	11.5	150	13	10.0308	+0.308
	11.5	68+47	10	10.	0
12	14.	180	13	11.8769	-1.026
	14.	120+20	10	12.	0
14.4	17.	150+4.7	9.1	14.4	0
15	17.75	110	6.2	14.9935	-0.043
18	21.5	110	5.1	18.0549	+0.305
	21.5	68+33	4.7	17.9915	-0.047
20	24.	180	7.5	20.	0
24	29.	180	6.2	24.0258	+0.108

Table4: Resistor Values (R1 and R2) when VREF=0.9V

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
0.9	-	0	ı	0.9	0
0.95	0.0555	10	180	0.95	0
1	0.1111	6.2	56	0.9996	-0.036
1.05	0.1666	2	12	1.05	0
1.1	0.2222	15	68	1.0985	-0.134
1.1	0.2222	10	33+12	1.1	0
1.15	0.2777	10	36	1.15	0
1.2	0.3333	10	30	1.2	0
1.25	0.3888	6.2	16	1.2488	-0.1
1.3	0.4444	12	27	1.3	0
1.35	0.5	12	24	1.35	0
1.4	0.5555	15	27	1.4	0
1.45	0.6111	11	18	1.45	0
1.5	0.6666	18	27	1.5	0
1.55	0.7222	13	18	1.55	0
16	0.7777	10	13	1.5923	-0.481
1.6	0.7777	16	15+5.6	1.599	-0.061
1.65	0.8333	10	12	1.65	0
1.7	0.8888	16	18	1.7	0
1.75	0.9444	15	16	1.7438	-0.357
1.75	0.9444	33+1	36	1.75	0
1.8	1	22	22	1.8	0
1.85	1.05555	15+8.2	22	1.8491	-0.049
1.9	1.1111	20	18	1.9	0
1.95	1.1666	18+10	24	1.95	0
2	1.2222	22	18	2.	0
2.05	1.27777	22+1	18	2.05	0
2.1	1.3333	24	18	2.1	0
2.2	1.4444	39	27	2.2	0
2.3	1.5555	56	36	2.3	0
2.4	1.6666	20	12	2.4	0
2.5	1.7777	39	22	2.4955	-0.182
2.5	1.7777	22+10	18	2.5	0
2.6	1.8888	51	27	2.6	0
2.65	1.9444	56	22+6.8	2.65	0
2.7	2	30	15	2.7	0
2.75	2.0555	22+15	18	2.75	0
2.8	2.1111	91	43	2.8047	+0.166
2.0	2.1111	47+10	27	2.8	0
2.85	2.16666	39	18	2.85	0
2.9	2.2222	33	15	2.88	-0.69
2.9	2.2222	47+33	36	2.9	0
3	2.3333	56	24	3.	0
3.1	2.4444	39	16	3.0938	+0.202
J. I	2.4444	22+22	18	3.1	0
3.15	2.5	30	12	3.15	0

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
3.2	2.5555	110	43	3.2023	+0.073
3.25	2.6111	47	18	3.25	0
3.3	2.6666	20	7.5	3.3	0
3.4	2.7777	75	27	3.4	0
2.5	2.8888	18	6.2	3.5129	+0.369
3.5	2.8888	68+10	27	3.5	0
3.6	3	36	12	3.6	0
3.7	3.1111	56	18	3.7	0
3.8	3.2222	20	6.2	3.8032	+0.085
3.9	3.333	100	30	3.9	0
4	3.4444	62	18	4.	0
4.1	3.5555	22	6.2	4.0935	-0.157
	3.5555	160	33+12	4.1	0
4.2	3.666	110	30	4.2	0
4.3	3.7777	68	18	4.3	0
4.4	3.8888	39	10	4.41	+0.227
7.7	3.8888	15+6.8	5.6	4.4036	+0.081
4.5	4	30	7.5	4.5	0
4.6	4.1111	23	5.6	4.5964	-0.078
4.7	4.2222	68	16	4.725	+0.532
7.7	4.2222	62	10+4.7	4.6959	-0.087
4.8	4.3333	130	30	4.8	0
4.9	4.4444	120	27	4.9	0
5	4.5555	82	18	5.	0
5.5	5.1111	51	10	5.49	-0.182
	5.1111	68	10+3.3	5.5015	+0.027
6	5.6666	68	12	6.	0
7	6.7777	68	10	7.02	+0.286
	6.7777	27+15	6.2	6.9968	-0.046
7.7	7.5555	68+68	18	7.7	0
8	7.8888	120	15	8.1	+1.25
	7.8888	120+22	18	8.	0
9	9	180	20	9.	0
10	10.1111	100	90	9.9	-1
	10.1111	100+82	18	10.	0
12	12.3333	160	13	11.9769	-0.192
44.4	12.3333	100+1.2	8.2	12.0073	+0.061
14.4	15	180	12	14.4	0
15	15.6666	130	8.2	15.1683	+1.122
	15.6666	150+6.8	10	15.012	+0.08
18	6.8	180+10	130	18.1059	+0.588
	19	180+10	10	18.	0
20	21.2222	160	7.5	20.1	+0.5
	21.2222	100+8.2	5.1	19.9941	-0.029
24	25.6666	160	6.2	24.1258	+0.524
	25.6666	160	6.2+0.033	24.0028	+0.012

Table5: Resistor Values (R1 and R2) when V_{REF} =1.0V

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
1	-	0	-	1.	0
1.05	0.05	0.75	15	1.05	0
1.1	0.1	2	20	1.1	0
1.15	0.15	15	100	1.15	0
1.2	0.2	3	15	1.2	0
1.25	0.25	7.5	30	1.25	0
1.3	0.3	30	100	1.3	0
1.3	0.3	7.5	15+10	1.3	0
1.35	0.35	5.6	16	1.35	0
1.4	0.4	12	30	1.4	0
1 15	0.45	6.8	15	1.4533	+0.230
1.45	0.45	15+1.2	36	1.45	0
1.5	0.5	10	20	1.5	0
1.55	0.55	11	20	1.55	0
1.6	0.6	12	20	1.6	0
1.65	0.65	13	20	1.65	0
1.7	0.7	9.1	13	1.7	0
1.75	0.75	12	16	1.75	0
1.8	0.8	12	15	1.8	0
4.05	0.85	11	13	1.8462	-0.208
1.85	0.85	51	33+27	1.85	0
1.9	0.9	18	20	1.9	0
1.05	0.95	15	16	1.9375	-0.641
1.95	0.95	33+1.2	36	1.95	0
2	1	22	22	2.	0
2.05	1.05	16	15	2.0667	+0.813
2.05	1.05	10+6.8	16	2.05	0
2.1	1.1	22	20	2.1	0
2.2	1.2	24	20	2.2	0
2.3	1.3	39	30	2.3	0
0.4	1.4	18	13	2.3846	-0.641
2.4	1.4	27+15	30	2.4	0
2.5	1.5	33	22	2.5	0
2.6	1.6	24	15	2.6	0
2.65	1.65	33	20	2.65	0
2.7	1.7	51	30	2.7	0
2.75	1.75	18+10	16	2.75	0
2.8	1.8	27	15	2.8	0
2.05	1.85	24	13	2.8462	-0.135
2.85	1.85	37	20	2.85	0
2.0	1.9	82	43	2.907	+0.241
2.9	1.9	18+1	10	2.9	0
3	2	36	18	3.	0

Vo (V)	R1/R2	R1 (kΩ)	R2 (kΩ)	Vo' (V)	Error (%)
	2.1	82	39	3.1026	+0.083
3.1	2.1	27+15	20	3.1	0
3.15	2.15	43	20	3.15	0
3.2	2.2	22	10	3.2	0
3.25	2.25	27	12	3.25	0
3.3	2.3	62	27	3.2963	-0.112
3.3	2.3	22+1	10	3.3	0
3.4	2.4	24	10	3.4	0
3.5	2.5	30	12	3.5	0
3.6	2.6	39	15	3.6	0
3.7	2.7	27	10	3.7	0
3.8	2.8	56	20	3.8	0
2.0	2.9	18	6.2	3.9032	+0.083
3.9	2.9	33+1.8	12	3.9	0
4	3	36	12	4.	0
4.1	3.1	62	20	4.1	0
4.2	3.2	24	7.5	4.2	0
4.3	3.3	33	10	4.3	0
4.4	3.4	51	15	4.4	0
4.5	3.5	56	16	4.5	0
4.6	3.6	36	10	4.6	0
4.7	3.7	100	27	4.7037	+0.079
4.7	3.7	22+15	10	4.7	0
4.0	3.8	91	24	4.7917	-0.174
4.8	3.8	47+10	15	4.8	0
4.9	3.9	39	10	4.9	0
5	4	120	30	5.	0
<i></i>	4.5	68	15	5.5333	+0.606
5.5	4.5	68+22	20	5.5	0
6	5	75	15	6.	0
7	6	120	20	7.	0
7.7	6.7	39+22	9.1	7.7033	+0.043
8	7	91	13	8.	0
9	8	120	15	9.	0
10	9	180	20	10.	0
12	11	110	10	12.	0
14.4	13.4	100+22	9.1	14.4066	+0.046
15	14	180	13	14.8462	-1.026
15	14	100+68	12	15.	0
18	17	130	7.5	18.3333	+1.852
10	17	150+4.7	9.1	18.	0
20	19	130	6.8	20.1176	+0.588
20	19	180+10	10	20.	0
24	23	150+39	8.2	24.0488	+0.203

About Resistance Values

The values of the feedback-resistance can be divided mainly into 2 kinds, with the type of IC used.

Firstly, the type of IC designed for high-current output and non-power saving function, use the resistance of 'tens of K-ohms'. And if the resistance used is more than 'hundreds of K-ohms', then IC operation might become unstable due to rise in impedance of the feedback-circuit and the malfunction due to noise may occur. Moreover, if the resistance of 'several K-ohms' or less is used, then the reactive-current of the feedback circuit increases and thereby the efficiency is deteriorated.

On the other hand, for the type of IC designed for the power-saving function, it is designed to use resistance of 'hundreds of K-ohms'. The purpose of this is to decrease reactive-current that pass to the feedback-resistance, and hence improve the efficiency. This type of IC is designed for stable operation with feedback-resistance of 'hundreds of K-ohms'.

As mentioned above, it is recommended to select a value not greatly different from the resistance value mentioned in datasheet of the IC used.

Figure 2. Consideration for feedback resistor

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/