Markov Chain Monte Carlo in Practice

Edited by

W.R. Gilks

Medical Research Council Biostatistics Unit Cambridge UK

S. Richardson

French National Institute for Health and Medical Research Vilejuif
France

and

D.J. Spiegelhalter

Medical Research Council Biostatistics Unit Cambridge UK

Contents

C	Contributors			xv
1	Int	roduci	ng Markov chain Monte Carlo	1
			ilks, S. Richardson and D. J. Spiegelhalter	
	1.1		luction	1
	1.2	The p	problem	2
			Bayesian inference	2
		1.2.2	Calculating expectations	3
	1.3	Marko	ov chain Monte Carlo	4
		1.3.1	Monte Carlo integration	4
		1.3.2	Markov chains	5
		1.3.3	The Metropolis-Hastings algorithm	5
	1.4	Imple	mentation	8
		1.4.1	Canonical forms of proposal distribution	8
		1.4.2	Blocking	12
		1.4.3	Updating order	12
		1.4.4	Number of chains	13
		1.4.5	Starting values	13
		1.4.6	Determining burn-in	14
		1.4.7	Determining stopping time	15
		1.4.8	Output analysis	15
	1.5	Discu	ssion	16
2	Her	oatitis	B: a case study in MCMC methods	21
	D.	J. Spi	egelhalter, N. G. Best, W. R. Gilks and H. Inskip	
	2.1	Intro	duction	21
	2.2	Hepat	titis B immunization	22
		2.2.1	Background	22
		2.2.2	Preliminary analysis	22
	2.3	Mode	lling	25
		2.3.1	Structural modelling	25
		2.3.2	Probability modelling	27
		2.3.3	Prior distributions	27

vi CONTENTS

	2.4	Fitting a model using Gibbs sampling	28
		2.4.1 Initialization	29
		2.4.2 Sampling from full conditional distributions	29
		2.4.3 Monitoring the output	31
		2.4.4 Inference from the output	34
		2.4.5 Assessing goodness-of-fit	34
	2.5	Model elaboration	36
		2.5.1 Heavy-tailed distributions	36
		2.5.2 Introducing a covariate	37
	2.6	Conclusion	40
	App	endix: BUGS	42
3	Ma	rkov chain concepts related to sampling algorithms	45
	G.	O. Roberts	
	3.1	Introduction	45
		Markov chains	45
	3.3	Rates of convergence	48
	3.4	Estimation	49
		3.4.1 Batch means	50
		3.4.2 Window estimators	50
	3.5	The Gibbs sampler and Metropolis-Hastings algorithm	51
		3.5.1 The Gibbs sampler	51
		3.5.2 The Metropolis-Hastings algorithm	54
4		roduction to general state-space Markov chain theory	59
		Tierney	
	4.1	Introduction	59
	4.2	Notation and definitions	60
	4.3	Irreducibility, recurrence and convergence	62
		4.3.1 Irreducibility	62
		4.3.2 Recurrence	63
		4.3.3 Convergence	64
	4.4	Harris recurrence	65
	4.5	Mixing rates and central limit theorems	67
	4.6	Regeneration	70
	4.7	Discussion	71
5		conditional distributions	75
		. R. Gilks	77
	5.1		75
	5.2	Deriving full conditional distributions	75
		5.2.1 A simple example	75
	5 9	5.2.2 Graphical models Sampling from full conditional distributions	77

CONTENTS	vii
CONTENTS	¥1.

		5.3.1 Rejection sampling	79
		5.3.2 Ratio-of-uniforms method	80
		5.3.3 Adaptive rejection sampling	82
		5.3.4 Metropolis-Hastings algorithm	84
		5.3.5 Hybrid adaptive rejection and Metropolis-Hastings	85
	5.4	Discussion	86
_	~.		
6		ategies for improving MCMC	89
	6.1	. R. Gilks and G. O. Roberts Introduction	89
	6.2		90
	0.2	Reparameterization 6.2.1 Correlations and transformations	90
			90
		6.2.2 Linear regression models	93
		6.2.3 Random-effects models	
		6.2.4 Nonlinear models 6.2.5 General comments on reparameterization	96 97
	6.3		98
	0.5	Random and adaptive direction sampling	98
		6.3.1 The hit-and-run algorithm 6.3.2 Adaptive direction sampling (ADS)	99
	6 1	1 0 (-)	101
	6.4	Modifying the stationary distribution	101
		6.4.1 Importance sampling	
		6.4.2 Metropolis-coupled MCMC	103
		6.4.3 Simulated tempering	104
	e E	6.4.4 Auxiliary variables	105
	6.5		108
	6.6	Discussion	110
7	Imp	plementing MCMC	115
	A.	E. Raftery and S. M. Lewis	
	7.1	Introduction	115
	7.2	Determining the number of iterations	116
	7.3	Software and implementation	118
	7.4	Output analysis	119
		7.4.1 An example	120
	7.5	Generic Metropolis algorithms	121
		7.5.1 An example	124
	7.6	Discussion	127
	Salar		
8		erence and monitoring convergence	131
-	ž.	Gelman	
1	8.1	Difficulties in inference from Markov chain simulation	131
	8.2	The risk of undiagnosed slow convergence	132
	8.3	Multiple sequences and overdispersed starting points	135
	8.4	Monitoring convergence using simulation output	136

viii CONTENTS

	8.5	Output analysis for inference	139
	8.6	Output analysis for improving efficiency	140
9		del determination using sampling-based methods	145
		E. Gelfand	
	9.1	Introduction	145
	9.2	Classical approaches	146
	9.3	The Bayesian perspective and the Bayes factor	148
	9.4	Alternative predictive distributions	149
		9.4.1 Cross-validation predictive densities	150
		9.4.2 Posterior predictive densities	151
		9.4.3 Other predictive densities	151
	9.5	How to use predictive distributions	151
	9.6	Computational issues	154
		9.6.1 Estimating predictive densities	154
		9.6.2 Computing expectations over predictive densities	155
		9.6.3 Sampling from predictive densities	156
	9.7	An example	157
	9.8	Discussion	158
10	Нур	oothesis testing and model selection	163
	A.	E. Raftery	
	10.1	Introduction	163
	10.2	Uses of Bayes factors	165
	10.3	Marginal likelihood estimation by importance sampling	167
	10.4	Marginal likelihood estimation using maximum likelihood	170
		10.4.1 The Laplace-Metropolis estimator	170
		10.4.2 Candidate's estimator	172
		10.4.3 The data-augmentation estimator	173
	10.5	Application: how many components in a mixture?	176
		10.5.1 Gibbs sampling for Gaussian mixtures	176
		10.5.2 A simulated example	177
		10.5.3 How many disks in the Galaxy?	180
	10.6	Discussion	181
	App	endix: S-PLUS code for the Laplace-Metropolis estimator	186
11	Mo	del checking and model improvement	189
	A.	Gelman and XL. Meng	
	11.1	Introduction	189
		Model checking using posterior predictive simulation	189
		Model improvement via expansion	192
		Example: hierarchical mixture modelling of reaction times	193
		11.4.1 The data and the basic model	193
		11.4.2 Model checking using posterior predictive simulation	196

CONTENTS ix

		11.4.3 Expanding the model	196
		11.4.4 Checking the new model	198
12	Stoc	chastic search variable selection	203
		I. George and R. E. McCulloch	
		Introduction	203
		A hierarchical Bayesian model for variable selection	204
		Searching the posterior by Gibbs sampling	207
		Extensions	209
		12.4.1 SSVS for generalized linear models	209
		12.4.2 SSVS across exchangeable regressions	210
	12.5	Constructing stock portfolios with SSVS	211
		Discussion	213
13	Bay	esian model comparison via jump diffusions	215
	D.	B. Phillips and A. F. M. Smith	
	13.1	Introduction	215
	13.2	Model choice	216
		13.2.1 Example 1: mixture deconvolution	216
		13.2.2 Example 2: object recognition	218
		13.2.3 Example 3: variable selection in regression	219
		13.2.4 Example 4: change-point identification	220
	13.3	Jump-diffusion sampling	221
		13.3.1 The jump component	222
		13.3.2 Moving between jumps	226
	13.4	Mixture deconvolution	226
		13.4.1 Dataset 1: galaxy velocities	228
		13.4.2 Dataset 2: length of porgies	228
	13.5	Object recognition	233
		13.5.1 Results	233
	13.6	Variable selection	235
	13.7	Change-point identification	235
		13.7.1 Dataset 1: Nile discharge	236
		13.7.2 Dataset 2: facial image	236
	13.8	Conclusions	238
14		mation and optimization of functions	241
		J. Geyer	
		Non-Bayesian applications of MCMC	241
		Monte Carlo optimization	241
		Monte Carlo likelihood analysis	244
		Normalizing-constant families	245
	14.5	Missing data	249
	14.6	Decision theory	251

	CONTENTS

x

	14.7 Which sampling distribution?	25 1
	14.8 Importance sampling	253
	14.9 Discussion	255
15	Stochastic EM: method and application J. Diebolt and E. H. S. Ip	259
	15.1 Introduction	259
	15.2 The EM algorithm	260
	15.3 The stochastic EM algorithm	26
	15.3.1 Stochastic imputation	263
	15.3.2 Looking at the plausible region	262
	15.3.3 Point estimation	263
	15.3.4 Variance of the estimates	26^{2}
	15.4 Examples	264
	15.4.1 Type-I censored data	264
	15.4.2 Empirical Bayes probit regression for cognitive	0.00
	diagnosis	268
16	Generalized linear mixed models	275
	D. G. Clayton	
	16.1 Introduction	27
	16.2 Generalized linear models (GLMs)	270
	16.3 Bayesian estimation of GLMs	27
	16.4 Gibbs sampling for GLMs	278
	16.5 Generalized linear mixed models (GLMMs)	279
	16.5.1 Frequentist GLMMs	279
	16.5.2 Bayesian GLMMs	280
	16.6 Specification of random-effect distributions	283
	16.6.1 Prior precision	283
	16.6.2 Prior means 16.6.3 Intrinsic aliasing and contrasts	283 283
	16.6.4 Autocorrelated random effects	286
	16.6.5 The first-difference prior	28'
	16.6.6 The second-difference prior	288
	16.6.7 General Markov random field priors	289
	16.6.8 Interactions	289
	16.7 Hyperpriors and the estimation of hyperparameters	29:
	16.8 Some examples	293
	16.8.1 Longitudinal studies	293
	16.8.2 Time trends for disease incidence and mortality	29
	16.8.3 Disease maps and ecological analysis	294
	16.8.4 Simultaneous variation in space and time	290
	16.8.5 Frailty models in survival analysis	296
	16.0 Discussion	200

CONTENTS xi

17	Hier	carchical longitudinal modelling	303
	B.	P. Carlin	
	17.1	Introduction	303
	17.2	Clinical background	305
	17.3	Model detail and MCMC implementation	306
	17.4	Results	309
	17.5	Summary and discussion	315
18		lical monitoring	321
		Berzuini	201
		Introduction	321
	18.2	Modelling medical monitoring	322
		18.2.1 Nomenclature and data	322
		18.2.2 Linear growth model	323
		18.2.3 Marker growth as a stochastic process	324
	18.3	Computing posterior distributions	327
		18.3.1 Recursive updating	327
		Forecasting	329
		Model criticism	330
	18.6	Illustrative application	330
		18.6.1 The clinical problem	330
		18.6.2 The model	332
		18.6.3 Parameter estimates	332
		18.6.4 Predicting deterioration	333
	18.7	Discussion	335
19		MC for nonlinear hierarchical models	339
		E. Bennett, A. Racine-Poon and J. C. Wakefield	
		Introduction	339
	19.2	Implementing MCMC	341
		19.2.1 Method 1: Rejection Gibbs	342
		19.2.2 Method 2: Ratio Gibbs	343
		19.2.3 Method 3: Random-walk Metropolis	343
		19.2.4 Method 4: Independence Metropolis-Hastings	344
		19.2.5 Method 5: MLE/prior Metropolis-Hastings	344
	19.3	Comparison of strategies	344
		19.3.1 Guinea pigs data	345
		A case study from pharmacokinetics-pharmacodynamics	348
	19.5	Extensions and discussion	350
20	-	esian mapping of disease	359
		Mollié	
		Introduction	359
	20.2	Hypotheses and notation	360

xii CONTENTS

		Maximum likelihood estimation of relative risks	360
	20.4	Hierarchical Bayesian model of relative risks	363
		20.4.1 Bayesian inference for relative risks	363
		20.4.2 Specification of the prior distribution	364
		20.4.3 Graphical representation of the model	366
	20.5	Empirical Bayes estimation of relative risks	369
		20.5.1 The conjugate gamma prior	369
		20.5.2 Non-conjugate priors	370
		20.5.3 Disadvantages of EB estimation	37
	20.6	Fully Bayesian estimation of relative risks	37
		20.6.1 Choices for hyperpriors	37
		20.6.2 Full conditional distributions for Gibbs sampling	372
		20.6.3 Example: gall-bladder and bile-duct cancer mortality	378
	20.7	Discussion	376
21	MC	MC in image analysis	381
		J. Green	
	21.1	Introduction	38.
	21.2	The relevance of MCMC to image analysis	382
	21.3	Image models at different levels	383
		21.3.1 Pixel-level models	383
		21.3.2 Pixel-based modelling in SPECT	38!
		21.3.3 Template models	389
		21.3.4 An example of template modelling	39
		21.3.5 Stochastic geometry models	392
		21.3.6 Hierarchical modelling	39;
	21.4	Methodological innovations in MCMC stimulated by imaging	394
	21.5	Discussion	39
22	Mea	surement error	40 1
	S.	Richardson	
		Introduction	4 0.
	22.2	Conditional-independence modelling	403
		22.2.1 Designs with individual-level surrogates	403
		22.2.2 Designs using ancillary risk-factor information	406
		22.2.3 Estimation	407
	22.3	Illustrative examples	408
		22.3.1 Two measuring instruments with no validation group	408
		22.3.2 Influence of the exposure model	41
		22.3.3 Ancillary risk-factor information and expert coding	412
	22.4	Discussion	414
23	Gib	bs sampling methods in genetics	419
	D.	C. Thomas and W. J. Gauderman	

xiii

	23.1	Introduction	419
		Standard methods in genetics	419
	20.2	23.2.1 Genetic terminology	419
		23.2.2 Genetic models	421
		23.2.3 Genetic likelihoods	423
	23.3	Gibbs sampling approaches	424
	_0.0	23.3.1 Gibbs sampling of genotypes	425
		23.3.2 Gibbs sampling of parameters	429
		23.3.3 Initialization, convergence, and fine tuning	431
	23.4	MCMC maximum likelihood	432
		Application to a family study of breast cancer	434
		Conclusions	437
24	Mix	tures of distributions: inference and estimation	441
	C.	P. Robert	
	24.1	Introduction	441
		24.1.1 Modelling via mixtures	441
		24.1.2 A first example: character recognition	442
		24.1.3 Estimation methods	443
		24.1.4 Bayesian estimation	445
	24.2	The missing data structure	446
	24.3	Gibbs sampling implementation	448
		24.3.1 General algorithm	448
		24.3.2 Extra-binomial variation	449
		24.3.3 Normal mixtures: star clustering	449
		24.3.4 Reparameterization issues	452
		24.3.5 Extra-binomial variation: continued	455
	24.4	Convergence of the algorithm	455
	24.5	Testing for mixtures	456
		24.5.1 Extra-binomial variation: continued	458
	24.6	Infinite mixtures and other extensions	459
		24.6.1 Dirichlet process priors and nonparametric models	459
		24.6.2 Hidden Markov models	461
25	An	archaeological example: radiocarbon dating	465
		Litton and C. Buck	
		Introduction	465
		Background to radiocarbon dating	466
		Archaeological problems and questions	469
	25.4	Illustrative examples	470
		25.4.1 Example 1: dating settlements	470
		25.4.2 Example 2: dating archaeological phases	473
		25.4.3 Example 3: accommodating outliers	476
		25.4.4 Practical considerations	477

25.5 Discussion

xəpuI

184

87£

CONLENTS

vix