PREPARED BY: DATE:		SPEC. No. SA-88049D
M. Mitsui March 28, 1996	SHARP	ISSUE March 25, 1996
		PAGE 15 Pages
APPROVED BY: DATE:	ELECTRONIC COMPONENTS GROUP SHARP CORPORATION	REPRESENTATIVE DIVISION
Typoshikawa Min 1.22 1996	SPECIFICATION	OPTO-ELECTRONIC DEVICES DIV
	HOTOCOUPLER	lealing name
	PC900V	PC900VY
Please do not reproduce or caWhen using this product, ple in these specification sheets, for any damage resulting from	clude materials protected under copyright of ause anyone to reproduce them without Shares observe the absolute maximum ratings a as well as the precautions mentioned below muse of the product which does not comply d in these specification sheets, and the precautions are the precautions are the precautions.	rp's consent. and the instructions for use outlined . Sharp assumes no responsibility with the absolute maximum ratings
• OA equipment • Telecommunicat • Tooling machine If the use of the pr	igned for use in the following application are Audio visual equipment • Home appliantion equipment (Terminal) • Measuring eques Computers Coduct in the above application areas is for each sure to observe the precautions given in the	ces lipment quipment listed in paragraphs
the safety design of and safety when this safety in function ar · Transportation c	res, such as fail-safe design and redundant of the overall system and equipment, should be so product is used for equipment which demand precision, such as; control and safety equipment (aircraft, train, Gas leakage sensor breakers Rescue ar ipment	e taken to ensure reliability ands high reliability and automobile etc.)
and safety in function	his product for equipment which require ext on and precision, such as; t Telecommunication equipment (for trun ontrol equipment Medical equipment	_
j.	consult with a Sharp sales representative if tition of the above three paragraphs.	there are any questions
3. Please contact and consult wi	th a Sharp sales representative for any ques	stions about this product.
CUSTOMER'S APPROVAL	DATE PRESENTI BY	ED J.M
DATE	Depar ——— Engin	tsumura, rtment General Manager of neering Dept.,II
BY	ELEC	Electronic Devices Div. OM Group P CORPORATION

SA-88049D	March 2	5, 1996
MODEL No.		PAGE
PC90	OV	1/9

1. Application

This specification applies to the outline and characteristics of photocopier Model No. PC900V.

2. Outline

Refer to the attached drawing No. CY5440K02.

3. Ratings and characteristics

Refer to the attached sheet, page 3 to 5.

4. Reliability

Refer to the attached sheet, page 8.

5. Incoming inspection

Refer to the attached sheet, page 9.

6. Supplement

- 6.1 Isolation voltage shall be measured in the following method.
- (1) Short among pins 1 to 3 on the primary side and among pins 4 to 6 on the secondary side.
- (2) The dielectric withstand tester with zero-cross circuit shall be used.
- (3) The wave form of applied voltage shall be a sine wave.
 (It is recommended that the isolation voltage be measured in insulation oil.)

6.2 Business dealing name

(" \bigcirc " mark indicates business dealing name of ordered product)

Product	Business dealing name	Remarks
0	PC900V	
	PC900VY	Applied to products as a option (Attached sheets -2-1 to 2-4.)

SA-88049D	March 2	5, 1996
MODEL No.		PAGE
PC900V		2/9

6.3 This Model is approved by UL.

Approved Model No.: PC900V

UL file No.: E64380

6.4 Theory of operation

- (1) When the forward current of above the " $H \rightarrow L$ " threshold input current (I_{FHL}) is applied to the input side, the output will go "Low level".
- (2) When the forward current on the input side goes below the " $L \rightarrow H$ " threshold input current (I_{FLH}) the output will go "High level".
- 6.5 This product is not designed against irradiation.

This product is assembled with electrical input and output.

This product incorporates non-coherent light emitting diode.

7. Notes

Refer to the attached sheet-1-1, 2.

	SA-88049D	March 2	5, 1996
	MODEL No.		PAGE
i	PC90	OV	3/9

- *1) 2-digit number shall be marked according to DIN standard.
- *2) Factory identification mark shall be or shall not be marked.

UNIT: 1/1 mm		
Name	PC900V Outline Dimensions (Business dealing name : PC900V)	
Drawing No.	CY5440K02	

SA-88	049D	March 2	5, 1996
MODEL	No.		PAGE
	PC900V		4/9

3. Ratings and characteristics

3.1 Absolute maximum ratings

Ta=25℃

	Parameter	Symbol	Rating	Unit
	*1 Forward current	I _F	50	mA
	*2 Peak forward current	I _{FM}	1	Α
Input	Reverse voltage	V_R	6	V
į	Power dissipation	P	70	mW
	Supply voltage	Vcc	16	V
0	High level output voltage	V_{OH}	16	v
Output	Low level output current	I _{OL}	50	mA
*1 Power dissipation	Po	150	mW	
	*1 Total power dissipation	Ptot	170	mW
	*3 Isolation voltage	Viso	5.0	kVrms
	Operating temperature	Topr	-25 to +85	င
	*4 Storage temperature	Tstg	-40 to 125	င
	*4 Soldering temperature	Tsol	260	Ç

^{*1} The derating factors of absolute maximum ratings due to ambient temperature are shown in Fig. 1, 2, 3.

^{*2} Pulse width $\leq 100 \mu s$, Dutyratio: 0.001

^{*3} AC for 1 min, 40 to 60%RH

^{*4} For 10 s

 SA-88049D
 March 25, 1996

 MODEL No.
 PAGE

 PC900V
 5/9

3.2 Electro-optical characteristics

(Unspecified : Ta=0 to 70℃)

	(Onspeciment, rate to 70 0)							
		Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Conditions
	,	Forward voltage	V	-	1.1	1.4	v	I _F =4mA
	L	orward voltage	$V_{\mathbf{F}}$	0.7	1.0	-	V	I _F =0.3mA
Input	F	Reverse current	I _R	-	-	10	μΑ	Ta=25℃, V _R =3V
	7	Cerminal capacitance	Ct	-	30	250	pF	Ta=25°C, V=0 f=1kHz
		Operating supply voltage ange	Vec	3	-	15	V	
n t	L	ow level output voltage	V _{OL}	-	0.2	0.4	V	I _{OL} =16mA, Vcc=5V I _F =4mA
Output	ŀ	ligh level output voltage	I _{OH}	-	-	100	μA	Vcc=Vo=15V I _F =0mA
	L	ow level supply current	I _{CCL}	-	2.5	5.0	mA	Vcc=5V, I _F =4mA
	I	ligh level supply current	I _{CCH}	-	1.0	5.0	mA	Vcc=5V, I _F =0mA
	"H→L" threshold input	I _{FHL}	-	1.1	2.0	mA	Ta=25℃, Vcc=5V R _L =280 Ω	
		urrent *1		-	-	4.0	•	Vcc=5V, R _L =280 Ω
ics	Γ'	.→H" threshold input	I_{FLH}	0.4	0.8	•	mA	Ta=25℃,Vcc=5V R _L =280 Ω
terist	c	urrent *2		0.3	-	-		Vcc=5V, R_L =280 Ω
characteristics	Η	lysteresis *3	I _{FLH} /I _{FHL}	0.5	0.7	0.9		Vcc=5V, R_L =280 Ω
Transfer ch	Is	solation resistance	Riso	5×10 ¹⁰	1011	-	Ω	Ta=25℃, DC500V 40 to 60%RH
Traı	me	"H→L" propagation time	t _{PHL}	-	1	3		Ta=25℃
	ise tii	"L→H" propagation time	t _{PLH}	-	2	6	μs	Vcc=5V, I _F =4mA
	Response time	Fall time	tf	-	0.05	0.5	μισ	$R_L=280 \Omega$
	Re	Rise time	tr	-	0.1	0.5		N200 11

SA-88049D	March 25, 1996	
MODEL No.	PAGE	
PC900	0V 6/9	9

- *1 I_{FHL} represents forward current when output goes from "H" to "L".
- *2 I_{FLH} represents forward current when output goes from "L" to "H".
- *3 Hysteresis : I_{FLH}/I_{FHL}
- *4 Test circuit for response time shall be shown below.

Timing chart

SA-88049D	March 25	5, 1996
MODEL No.		PAGE
PC900V		7/9

(Fig. 1) Forward current vs. ambient temperature

(Fig. 2) Output power dissipation vs. ambient temperature

(Fig. 3) Total power dissipation

SA-88049D	March 25, 1996
MODEL No.	PAGE
PC900	OV 8/9

4. Reliability

The reliability of products shall be satisfied with items listed below.

Confidence level: 90% LTPD: 10%/20%

Test Items	Test Conditions	Failure Judgement Criteria	Samples (n) Defective(C)
Solderability *2	230℃, 5 s		n=11, C=0
Soldering heat	260℃, 10 s	$V_F>U\times1.2$	n=11, C=0
Terminal strength (Tension)	Weight : 5N 5 s/each terminal	I _R >U×2	n=11, C=0
Terminal strength (Bending) *3	Weight: 2.5N 2 times/each terminal	$V_{OL} > U \times 1.2$ $I_{OH} > U \times 1.2$	n=11, C=0
Mechanical shock	15000m/s^2 , 0.5ms 3 times/ $\pm X$, $\pm Y$, $\pm Z$ direction	I _{CCL} >U×1.2	n=11, C=0
Variable frequency vibration	100 to 2000 to 100Hz/4min 200m/s ² 4 times/ X, Y, Z direction	$I_{CCH} > U \times 1.2$ $I_{FHL} > U \times 1.3$	n=11, C=0
Temperature cycling	1 cycle -40°C to +125°C (30min) (30min) 20 cycles test	$I_{FLH} < L \times 0.8$ $I_{FLH} / I_{FHL} \neq L \times 0.8$ $\sim U \times 1.2$	n=22,C=0
High temp. and high humidity storage	+60℃, 90%RH, 1000h	U : Upper	n=22,C=0
High temp. storage	+125°C, 1000h	specification limit	n=22,C=0
Low temp. storage	-40°C, 1000h	L : Lower specification	n=22,C=0
Operation life	I _F =10mA, Vcc=15V I _{OL} =16mA, Ta=25°C, 1000h	limit	n=22,C=0

- *1 Test method, conforms to JIS C 7021.
- *2 Solder shall adhere at the area of 95% or more of immersed portion of lead and pin hole or other holes shall not be concentrated on one portion.
- *3 Terminal bending direction is shown below.

H2	AR	Pr	'NB	PN	RA	TI	ON
"					,,,,,		U I 1

SA-88049D	March 25, 1996		
MODEL No.		PAGE	
PC900V		9/9	

- 5. Incoming inspection
 - 5.1 Inspection items
 - (1) Electrical characteristics

$$\mathbf{V_{F}},\,\mathbf{I_{R}},\,\mathbf{V_{OL}},\,\mathbf{I_{OH}},\,\mathbf{I_{CCL}},\,\mathbf{I_{CCH}},\,\mathbf{I_{FHL}},\,\mathbf{I_{FLH}},\,\mathbf{Riso},\,\mathbf{Viso}$$

- (2) Appearance
- 5.2 Sampling method and Inspection level

A single sampling plan, normal inspection level II based on ISO 2859 is applied. The AQL according to the inspection items are shown below.

Defect	Inspection item	AQL (%)
Major defect	Electrical characteristics Unreadable marking	0.1
Minor defect	Appearance defect except the above mentioned.	0.4

SA-88049D March 25, 1996

MODEL No. PAGE
PC900V Attach sheet-1-1

Precautions for Photocouplers

1. For cleaning

(1) Solvent cleaning: Solvent temperature 45°C or less Immersion for 3 min or less

(2) Ultrasonic cleaning: The affect to device by ultrasonic cleaning is different

by cleaning bath size, ultrasonic power

output, cleaning time, PWB size or device mounting condition etc. Please test it in actual using condition and confirm that doesn't occur any defect before starting

the ultrasonic cleaning.

(3) Applicable solvent: Ethyl alcohol, Methyl alcohol

Freon TE · TF, Diflon-solvent S3-E

Please refrain form using Chloro Fluoro Carbon type solvent to clean devise as much as possible since it is internationally restricted to protect the ozonosphere. Before you use alternative solvent you are requested to confirm that it does not attack package resin.

- 2. Please use the same as normal integration circuit about static electricity in order that this device is OPIC photocopier.
- 3. In order to stabilize power supply line, we recommend to connect a by-pass capacitor of 0.01 μ F or more between Vcc and GND near the device.
- 4. The LED used in the Photocoupler generally decreases the light emission power by operation. In case of long operation time, please design the circuit with considering the decreases of the light emission power of the LED. (50%/5years) Please decide the input current which become 2 times of MAX. I_{FHL}.

SA-88049D	March 25	, 1996
MODEL No.		PAGE
PC900V		Attach sheet-1-2

5. Precautions for Soldering Photocouplers

(2) If solder reflow:

It is recommended that only one soldering be done at the temperature and the time within the temperature profile as shown in the figure.

(3) Other precautions

An infrared lamp used to heat up for soldering may cause a localized temperature rise in the resin. So keep the package temperature within that specified in Item (2). Also avoid immersing the resin part in the solder.

SA-88049D	March 25, 1996
MODEL No.	PAGE
PC900VY (C	ption) Attach sheets-2-1

1. This specification shall be applied to photocopier, Model No. PC900V as an option.

2. Applicable Models (Business dealing name)

PC900VY

3. The relevant models are the models Approved by TÜV Rheinland Japan according to DIN VDE0884/08.87.

Approved Model No.: PC900V

TÜV approved No.: R9151577

(According to the specification DIN VDE0884/08.87)

Operating isolation voltage U_{IORM}: 710V (Peak)

• Transient voltage U_{TR} : 6000V (Peak)

• Pollution: 2 (According to VDE0110/01.89)

• Clearances distance (Between input and output): 6mm (MIN.)

• Creepage distance (Between input and output): 6mm (MIN.)

• Isolation thickness between input and output: 0.15mm (MIN.)

• Tracking-proof: CTI 225 (Material group IIIa: VDE0110/01.89)

Safety limit values

Current (Isi): 120mA (Diode side)

Power (Psi): 240mW (Phototransistor side)

Temperature (Tsi): 150℃

In order to keep safety electric isolation of photocopier, please set the protective circuit to keep within safety limit values when the actual application equipment troubled.

• Indication of TÜV approval prints " 0884" on sleeve package.

4. Outline

Refer to the attached drawing No. CY5164K02.

SA-88049D March 25, 1996

MODEL No. PAGE
PC900VY (Option) Attach sheets-2-2

5. Isolation specification according to VDE 0884

	F	Parameter	Symbol	Conditions	Rating	Unit	Remark
Cl		vironmental	<u>.</u>	DIN IEC68	25/85/21	-	
Po	ollution		-	DIN VDE0110	2	-	
Maximum operating isolation voltage		U _{IORM}	-	710	V _{PEAK}		
Partial discharge test voltage (Between input and output)						Refer to the Dia- gram 1, 2	
		Diagram 1	Upr	tp=60 s, qc<5pC	852	V_{PEAK}	gram 1, 2
		Diagram 2		tp=1 s, qc<5pC	1136	V_{PEAK}	
Maximum over-voltage		U _{INITIAL}	t _{INI} =10 s	6000	$V_{ m peak}$		
Safety maximum ratings							
	1) Case temperature		· Tsi	I _F =0, Pc=0	150	Ĉ	Refer to
	2) Input current		Isi	Pc=0	120	mA	the Fig.
	(Out	tric power tput or Total power sipation)	Psi	-	240	mW	6, 7
Iso	Isolation resistance			Ta=Tsi	MIN. 10 ⁹		
(Test voltage between input and output; DC500V)		R _{ISO}	Ta=Topr (MAX.) Ta=25℃	MIN. 10 ¹¹	Ω		

6. Precautions in performing isolation test

- 6.1 Partial discharge test methods shall be the ones according to the specifications of VDE 0884/08.87
- 6.2 Please don't carry out isolation test (Viso) over $U_{INITIAL}$. This product deteriorates isolation characteristics by partial discharge due to applying high voltage (ex. $U_{INITIAL}$). And there is possibility that this product occurs partial discharge in operating isolation voltage. (U_{IORM}).

SA-88049D	March 25, 1996
MODEL No.	PAGE
PC900VY (Option) Attach sheets-2-3

- *1) 2-digit number shall be marked according to DIN standard.
- *2) Factory identification mark shall be or shall not be marked.

UNIT: 1/1 mm		
Name	PC900V Outline Dimensions (Business dealing name : PC900VY)	
Drawing No.	CY5164K02	

I	SA-88049D March 25, 199		
	MODEL No.	-	PAGE
	PC900VY (Option)		Attach sheets-2-4

Method of Diagram 1: Breakdown test (Apply to type test and sampling test)

 $\begin{array}{lll} t_1,\,t_2 & = 1 \text{ to } 10 \text{ s} \\ t_3,\,t_4 & = 1 \text{ s} \\ t_p \text{ (Partial discharge measuring time)} & = 60 \text{ s} \\ t_b & = 62 \text{ s} \\ t_{\text{INI}} & = 10 \text{ s} \\ \end{array}$

Method of Diagram 2: Non breakdown test (Apply to all device test)

 $\begin{array}{lll} t_3,\,t_4 & = 0.1 \text{ s} \\ t_p \text{ (Partial discharge } & = 1 \text{ s} \\ & \text{measuring time)} \\ t_b & = 1.2 \text{ s} \end{array}$

Fig. 6 Safety maximum power dissipation vs. ambient temperature (When failed)

Fig. 7 Safety maximum forward current vs. ambient temperature (When failed)

