Statistics from samples and Limit theorems

Andrew Thangaraj

IIT Madras

Subsection 1

Statistics from iid samples

Where have we seen *iid* samples?

- Benoulli trials
- Monte carlo simulations
- Computing histograms

Bernoulli trials

- Experiment and an event of interest A
 - Occurance of an Event A is considered success
 - ▶ What is p = P(A)?

Bernoulli trials

- Experiment and an event of interest A
 - Occurance of an Event A is considered success
 - ▶ What is p = P(A)?
- Bernoulli trails
 - ▶ Independent repetitions or trials of experiment, say, *n* times
 - $ightharpoonup X_i = 1$ if A occurs in the *i*-th trial, and $X_i = 0$ otherwise

iid Bernoulli samples: X_1, X_2, \dots, X_n

Bernoulli trials

- Experiment and an event of interest A
 - Occurance of an Event A is considered success
 - ▶ What is p = P(A)?
- Bernoulli trails
 - ▶ Independent repetitions or trials of experiment, say, *n* times
 - $ightharpoonup X_i = 1$ if A occurs in the *i*-th trial, and $X_i = 0$ otherwise

iid Bernoulli samples: X_1, X_2, \dots, X_n

Goal: Try to estimate $P(A) = P(X_i = 1)$

Useful in finding prevalence of a disease in a population etc.

Monte carlo simulations

- Experiment and event of interest A
 - ► Too complex for modeling and computation
 - Can be simulated on a computer

Monte carlo simulations

- Experiment and event of interest A
 - Too complex for modeling and computation
 - Can be simulated on a computer
- Repeat simulation n times independently
 - ▶ Record number of occurances of A as n_A

$$P(A) \approx \frac{n_A}{n}$$

▶ Why is the above true? What should be *n*?

Monte carlo simulations

- Experiment and event of interest A
 - Too complex for modeling and computation
 - Can be simulated on a computer
- Repeat simulation n times independently
 - ▶ Record number of occurances of A as n_A

$$P(A) \approx \frac{n_A}{n}$$

▶ Why is the above true? What should be *n*?

iid samples: X_1, X_2, \dots, X_n

- $X_i = 1$ if A occurs in the *i*-th trial, and $X_i = 0$ otherwise
- Estimate $P(A) = P(X_i = 1)$ (similar to Bernoulli trial)

Computing histograms

- *n* data points of some variable of interest
 - \triangleright X_1, X_2, \ldots, X_n
- Bin: [a, b]
 - ▶ n_b : number of x_i that fall inside [a, b]

Computing histograms

- *n* data points of some variable of interest
 - \triangleright X_1, X_2, \ldots, X_n
- Bin: [a, b]
 - ▶ n_b : number of x_i that fall inside [a, b]

Model

- X: continuous random variable with density $f_X(x)$
- Event A = (a < X < b)

Computing histograms

- n data points of some variable of interest
 - \triangleright x_1, x_2, \ldots, x_n
- Bin: [a, b]
 - ▶ n_b : number of x_i that fall inside [a, b]

Model

- X: continuous random variable with density $f_X(x)$
- Event A = (a < X < b)

Histogram count

- Data points: *iid* samples $X_1, X_2, \dots, X_n \sim f_X(x)$
- Estimate $P(a < X < b) \approx n_b/n$

iid samples hold information on distribution

- What is common to all 3 of the previous scenarios?
 - ► Given: iid samples
 - ▶ Goal: get some partial information about the distribution
 - ★ Procedures to gather the information needed

iid samples hold information on distribution

- What is common to all 3 of the previous scenarios?
 - ▶ Given: iid samples
 - ▶ Goal: get some partial information about the distribution
 - ★ Procedures to gather the information needed
- iid samples of an unknown or partially known distribution form the input for statistical procedures
 - ▶ Data: modelled as observations from *iid* repetitions of an experiment
 - ► Example: Iris data
 - Data from every iris is considered to be iid observations from the distribution of the 4 lengths

iid samples hold information on distribution

- What is common to all 3 of the previous scenarios?
 - ▶ Given: iid samples
 - ▶ Goal: get some partial information about the distribution
 - * Procedures to gather the information needed
- iid samples of an unknown or partially known distribution form the input for statistical procedures
 - ▶ Data: modelled as observations from *iid* repetitions of an experiment
 - Example: Iris data
 - Data from every iris is considered to be iid observations from the distribution of the 4 lengths

Analysis

- How to decide if the statistical procedure is "good"?
- How many samples are needed for a "goodness" guarantee?

- Goal
 - Find *p* from *iid* samples

- Goal
 - ► Find *p* from *iid* samples
- Sampling 1
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1
- Sampling 2
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1
- Sampling 3
 - ▶ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
- and so on....

- Goal
 - ► Find p from iid samples
- Sampling 1
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1
- Sampling 2
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1
- Sampling 3
 - ▶ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
- and so on....
- Important
 - p is the same for all samplings
 - ► However, samples do not remain the same
 - ▶ Each sample in each sampling is an observation of a random variable

- Goal
 - ► Find p from iid samples
- Sampling 1
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1
- Sampling 2
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1
- Sampling 3
 - ▶ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
- and so on....
- Important
 - p is the same for all samplings
 - ▶ However, samples do not remain the same
 - ▶ Each sample in each sampling is an observation of a random variable
- Requirement on statistical procedure
 - ▶ In spite of variations in samples, provide p with some guarantee

What is a typical statistical problem?

- Model for Samples: $X_1, X_2, \dots, X_n \sim \text{iid } X$ $X_i : Prf \not \mid_{X_i}(x)$ $X_i : Prf \not \mid_{X_i}(x)$ $X_i : Prf \not \mid_{X_i}(x)$
- **Given "data"**: x_1, x_2, \ldots, x_n from one sampling instance
- Distribution of X is partially known or unknown
 - What is partially known? Know distribution but parameters unknown
 - **Example:** Bernoulli(p) with p unknown, Normal(μ, σ^2) with μ and σ unknown
- **Goal**: Procedures to find information about the distribution of X

What is a typical statistical problem?

- Model for Samples: $X_1, X_2, \dots, X_n \sim \text{iid } X$
- **Given "data"**: x_1, x_2, \dots, x_n from one sampling instance
- Distribution of X is partially known or unknown
 - ▶ What is partially known? Know distribution but parameters unknown
 - Example: Bernoulli(p) with p unknown, Normal(μ, σ^2) with μ and σ unknown
- **Goal**: Procedures to find information about the distribution of X
- What information?
 - ▶ What is the mean of *X*? What is the variance of *X*?
 - ▶ What is P(X > t)? What is P(a < X < b)?
 - ▶ What is the distribution of X? What is the size of T_X ?

Subsection 2

Empirical distribution and descriptive statistics

Definition (Empirical distribution)

Let $X_1, X_2, \ldots, X_n \sim X$ be iid samples. Let $\#(X_i = t)$ denote the number of times t occurs in the samples. The empirical distribution is the discrete distribution with PMF

$$p(t) = \frac{\#(X_i = t)}{n}.$$

Definition (Empirical distribution)

Let $X_1, X_2, \ldots, X_n \sim X$ be iid samples. Let $\#(X_i = t)$ denote the number of times t occurs in the samples. The empirical distribution is the discrete distribution with PMF

$$p(t) = \frac{\#(X_i = t)}{n}.$$

Example: n = 20

• 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1

Definition (Empirical distribution)

Let $X_1, X_2, \ldots, X_n \sim X$ be iid samples. Let $\#(X_i = t)$ denote the number of times t occurs in the samples. The empirical distribution is the discrete distribution with PMF

$$p(t) = \frac{\#(X_i = t)}{n}.$$

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1
 - p(0) = 8/20, p(1) = 12/20

Definition (Empirical distribution)

Let $X_1, X_2, \ldots, X_n \sim X$ be iid samples. Let $\#(X_i = t)$ denote the number of times t occurs in the samples. The empirical distribution is the discrete distribution with PMF

$$p(t)=\frac{\#(X_i=t)}{n}.$$

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1 • p(0) = 8/20, p(1) = 12/20
- 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1

Definition (Empirical distribution)

Let $X_1, X_2, \ldots, X_n \sim X$ be iid samples. Let $\#(X_i = t)$ denote the number of times t occurs in the samples. The empirical distribution is the discrete distribution with PMF

$$p(t) = \frac{\#(X_i = t)}{n}.$$

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1
 - p(0) = 8/20, p(1) = 12/20• 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1

 Pixel Pixel (2) p(0) = 7/20, p(1) = 13/20

Definition (Empirical distribution)

Let $X_1, X_2, \ldots, X_n \sim X$ be iid samples. Let $\#(X_i = t)$ denote the number of times t occurs in the samples. The empirical distribution is the discrete distribution with PMF

$$p(t) = \frac{\#(X_i = t)}{n}.$$

Example: n = 20

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1 • p(0) = 8/20, p(1) = 12/20
- 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1 • p(0) = 7/20, p(1) = 13/20
- 1, 2, 0, 3, 0, 0, 1, 2, 0, 1, 3, 2, 1, 1, 0, 3, 0, 2, 2, 1

{0,1,2,3}

Definition (Empirical distribution)

Let $X_1, X_2, \ldots, X_n \sim X$ be iid samples. Let $\#(X_i = t)$ denote the number of times t occurs in the samples. The empirical distribution is the discrete distribution with PMF

$$p(t) = \frac{\#(X_i = t)}{n}.$$

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1 • p(0) = 8/20, p(1) = 12/20
- 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1 • p(0) = 7/20, p(1) = 13/20
- 1, 2, 0, 3, 0, 0, 1, 2, 0, 1, 3, 2, 1, 1, 0, 3, 0, 2, 2, 1 • p(0) = 6/20, p(1) = 6/20, p(2) = 5/20, p(3) = 3/20

• Is the empirical distribution random?

- Is the empirical distribution random?
 - ▶ Yes, it depends on the actual sample instances

- Is the empirical distribution random?
 - Yes, it depends on the actual sample instances
 - ightharpoonup t and p(t) may change from one sampling to another

- Is the empirical distribution random?
 - Yes, it depends on the actual sample instances
 - ightharpoonup t and p(t) may change from one sampling to another
 - ► Example: 20 Bernoulli(p) samples

- Is the empirical distribution random?
 - Yes, it depends on the actual sample instances
 - \blacktriangleright t and p(t) may change from one sampling to another
 - ► Example: 20 Bernoulli(p) samples
- **Descriptive statistics**: Properties of empirical distribution

- Is the empirical distribution random?
 - Yes, it depends on the actual sample instances
 - \blacktriangleright t and p(t) may change from one sampling to another
 - ► Example: 20 Bernoulli(p) samples
- Descriptive statistics: Properties of empirical distribution
 - Mean of the distribution

- Is the empirical distribution random?
 - Yes, it depends on the actual sample instances
 - \blacktriangleright t and p(t) may change from one sampling to another
 - ► Example: 20 Bernoulli(p) samples
- Descriptive statistics: Properties of empirical distribution
 - Mean of the distribution
 - Variance of the distribution

Observations about empirical distribution

- Is the empirical distribution random?
 - Yes, it depends on the actual sample instances
 - ightharpoonup t and p(t) may change from one sampling to another
 - ► Example: 20 Bernoulli(p) samples
- Descriptive statistics: Properties of empirical distribution
 - Mean of the distribution
 - Variance of the distribution
 - Probability of an event

Observations about empirical distribution

- Is the empirical distribution random?
 - Yes, it depends on the actual sample instances
 - ightharpoonup t and p(t) may change from one sampling to another
 - ► Example: 20 Bernoulli(p) samples
- Descriptive statistics: Properties of empirical distribution
 - Mean of the distribution
 - Variance of the distribution
 - Probability of an event
- As number of samples increases, the properties of empirical distribution should become close to that of the original distribution

Definition (Sample mean)

Let X_1, X_2, \ldots, X_n be iid samples. The sample mean, denoted \overline{X} , is defined to be the random variable

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

• Given a sampling x_1, \ldots, x_n , the value taken by the sample mean \overline{X} is $\overline{x} = (x_1 + \cdots + x_n)/n$. Often, \overline{X} and \overline{x} are both called sample mean.

Definition (Sample mean)

Let X_1, X_2, \ldots, X_n be iid samples. The sample mean, denoted \overline{X} , is defined to be the random variable

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

• Given a sampling x_1, \ldots, x_n , the value taken by the sample mean \overline{X} is $\overline{x} = (x_1 + \cdots + x_n)/n$. Often, \overline{X} and \overline{x} are both called sample mean.

Example: n = 20

• 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1

Definition (Sample mean)

Let X_1, X_2, \dots, X_n be iid samples. The sample mean, denoted \overline{X} , is defined to be the random variable

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

• Given a sampling x_1, \ldots, x_n , the value taken by the sample mean \overline{X} is $\overline{x} = (x_1 + \cdots + x_n)/n$. Often, \overline{X} and \overline{x} are both called sample mean.

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1
 - ▶ Value taken by \overline{X} : 12/20

Definition (Sample mean)

Let X_1, X_2, \dots, X_n be iid samples. The sample mean, denoted \overline{X} , is defined to be the random variable

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

• Given a sampling x_1, \ldots, x_n , the value taken by the sample mean \overline{X} is $\overline{x} = (x_1 + \cdots + x_n)/n$. Often, \overline{X} and \overline{x} are both called sample mean.

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1
 - ▶ Value taken by \overline{X} : 12/20
- 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1

Definition (Sample mean)

Let X_1, X_2, \dots, X_n be iid samples. The sample mean, denoted \overline{X} , is defined to be the random variable

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

• Given a sampling x_1, \ldots, x_n , the value taken by the sample mean \overline{X} is $\overline{x} = (x_1 + \cdots + x_n)/n$. Often, \overline{X} and \overline{x} are both called sample mean.

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1
 - ▶ Value taken by \overline{X} : 12/20
- 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1
 - ▶ Value taken by \overline{X} : 13/20

Definition (Sample mean)

Let X_1, X_2, \ldots, X_n be iid samples. The sample mean, denoted \overline{X} , is defined to be the random variable

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

• Given a sampling x_1, \ldots, x_n , the value taken by the sample mean \overline{X} is $\overline{x} = (x_1 + \cdots + x_n)/n$. Often, \overline{X} and \overline{x} are both called sample mean.

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1
 - ▶ Value taken by \overline{X} : 12/20
- 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1
 - ▶ Value taken by \overline{X} : 13/20
- 1, 2, 0, 3, 0, 0, 1, 2, 0, 1, 3, 2, 1, 1, 0, 3, 0, 2, 2, 1

Definition (Sample mean)

Let X_1, X_2, \ldots, X_n be iid samples. The sample mean, denoted \overline{X} , is defined to be the random variable

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

• Given a sampling x_1, \ldots, x_n , the value taken by the sample mean \overline{X} is $\overline{x} = (x_1 + \cdots + x_n)/n$. Often, \overline{X} and \overline{x} are both called sample mean.

- 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1
 - ▶ Value taken by \overline{X} : 12/20
- 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1
 - ▶ Value taken by \overline{X} : 13/20
- 1, 2, 0, 3, 0, 0, 1, 2, 0, 1, 3, 2, 1, 1, 0, 3, 0, 2, 2, 1
 - ► Sample mean: 25/20

$$X_1,\ldots,X_n \sim \text{ iid } \left\{ egin{matrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix}
ight\}$$

• n = 5

$$X_1, \dots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ► Samples: 0, 0, 1, 1, 1; Sample mean: 3/5

$$X_1, \ldots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ► Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5

$$X_1, \dots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ► Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ▶ Samples: 0, 1, 1, 1, 0; Sample mean: 3/5

$$X_1, \dots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ► Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ▶ Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20

$$X_1, \dots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ► Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ▶ Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1; 12/20

$$X_1, \ldots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ► Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ▶ Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1; 12/20
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1; 13/20

$$X_1, \ldots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ▶ Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ▶ Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1; 12/20
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1; 13/20
 - ▶ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 13/20

$$X_1, \dots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ► Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ▶ Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1; 12/20
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1; 13/20
 - ▶ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 13/20
- n = 200

$$X_1, \ldots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ▶ Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ► Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1; 12/20
 - ► 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1; 13/20
 - ▶ 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 13/20
- *n* = 200
 - ► Sampling 1: 95/200, Sampling 2: 102/200, Sampling 3: 98/200

$$X_1, \ldots, X_n \sim \text{ iid } \left\{ \begin{smallmatrix} 1/2 & 1/2 \\ 0 & , & 1 \end{smallmatrix} \right\}$$

- n = 5
 - ▶ Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ► Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1; 12/20
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1; 13/20
 - ▶ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 13/20
- n = 200
 - ► Sampling 1: 95/200, Sampling 2: 102/200, Sampling 3: 98/200
- n = 1000

$$X_1, \dots, X_n \sim \text{ iid } \left\{ \begin{array}{c} 1/2 & 1/2 \\ 0 & 1 \end{array} \right\}$$

$$\text{Distribution man} = \frac{1}{2}$$

- n = 5
 - ▶ Samples: 0, 0, 1, 1, 1; Sample mean: 3/5
 - ► Samples: 1, 1, 1, 0, 1; Sample mean: 4/5
 - ▶ Samples: 0, 1, 1, 1, 0; Sample mean: 3/5
- n = 20
 - ▶ 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1; 12/20
 - ▶ 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1; 13/20
 - ▶ 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 13/20
- n = 200
 - ► Sampling 1: 95/200, Sampling 2: 102/200, Sampling 3: 98/200
- n = 1000
 Sampling 1: 495/¶00, Sampling 2: 490/¶00, Sampling 3: 504/¶00
- Andrew Thangaraj (IIT Madras)

•
$$n = 5$$

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- n = 5
 - ▶ Samples: 2.17, 0.10, -0.75, -1.05 , -1.72; Sample mean: -0.25

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- *n* = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05, -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- n = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05 , -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17
 - ► Samples: -0.20, 0.37, 1.00, -0.41, -0.21; Sample mean: 0.11

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- n = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05, -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17
 - ► Samples: -0.20, 0.37, 1.00, -0.41, -0.21; Sample mean: 0.11
- n = 20

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- n = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05, -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17
 - ► Samples: -0.20, 0.37, 1.00, -0.41, -0.21; Sample mean: 0.11
- n = 20
 - Sampling 1: 0.08, Sampling 2: -0.24, Sampling 3: 0.41

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- n = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05, -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17
 - ► Samples: -0.20, 0.37, 1.00, -0.41, -0.21; Sample mean: 0.11
- n = 20
 - ► Sampling 1: 0.08, Sampling 2: -0.24, Sampling 3: 0.41
- n = 200

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- n = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05, -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17
 - ► Samples: -0.20, 0.37, 1.00, -0.41, -0.21; Sample mean: 0.11
- n = 20
 - ▶ Sampling 1: 0.08, Sampling 2: -0.24, Sampling 3: 0.41
- n = 200
 - ► Sampling 1: -0.01, Sampling 2: 0.11, Sampling 3: -0.12

$$X_1, \ldots, X_n \sim \text{ iid Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

- n = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05, -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17
 - ► Samples: -0.20, 0.37, 1.00, -0.41, -0.21; Sample mean: 0.11
- n = 20
 - Sampling 1: 0.08, Sampling 2: -0.24, Sampling 3: 0.41
- n = 200
 - ► Sampling 1: -0.01, Sampling 2: 0.11, Sampling 3: -0.12
- n = 1000

$$X_1,\ldots,X_n \sim ext{ iid Normal}(0,1)$$
 ها کرزنه $f_X(x) = rac{1}{\sqrt{2\pi}} \exp(-x^2/2)$

- n = 5
 - ► Samples: 2.17, 0.10, -0.75, -1.05 , -1.72; Sample mean: -0.25
 - ► Samples: -0.26, 0.12, -0.31, -0.07, 1.35; Sample mean: 0.17
 - ► Samples: -0.20, 0.37, 1.00, -0.41, -0.21; Sample mean: 0.11
- n = 20
 - ▶ Sampling 1: 0.08, Sampling 2: -0.24, Sampling 3: 0.41
- n = 200
 - ► Sampling 1: -0.01, Sampling 2: 0.11, Sampling 3: -0.12
- n = 1000
 - ► Sampling 1: 0.04, Sampling 2: -0.04, Sampling 3: -0.02

Expected value and variance of sample mean

Theorem

Let X_1, X_2, \ldots, X_n be iid samples whose distribution has a finite mean μ and variance σ^2 . The sample mean $\overline{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$ has expected value and variance given by

$$E[\overline{X}] = \mu, Var(\overline{X}) = \frac{\sigma^2}{n}.$$

$$E[\overline{X}] = \frac{E[x_1] + E[x_2] + \dots + E[x_n]}{n} = \frac{n\pi}{n} = \mu$$

$$E[\overline{X}] = \frac{E[x_1] + \dots + E[x_n] + 2E[x_1x_2] + \dots + 2E[x_nx_n]}{n^2}$$

$$= \frac{nE[x_1] + n(n-)\mu^2}{n^2} = \frac{n\sigma^2 + n\mu^2 + n^2\mu^2 - n\mu^2}{n^2}$$

$$Var(\overline{X}) = \frac{\sigma^2}{n} + \mu^2$$

Expected value and variance of sample mean

Theorem

Let X_1, X_2, \ldots, X_n be iid samples whose distribution has a finite mean μ and variance σ^2 . The sample mean $\overline{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$ has expected value and variance given by

$$E[\overline{X}] = \mu, Var(\overline{X}) = \frac{\sigma^2}{n}.$$

- Expected value of sample mean equals the expected value or mean of the distribution
 - Mean of distribution: constant real number and not random
 - Sample mean: random variable with mean equal to distribution mean
- Variance of sample mean decreases with n
 - As n increases...
 - ★ variance of sample mean tends to zero
 - ★ the spread of sample mean will decrease
 - ★ sample mean will take values close to the distribution mean

Sample variance

Definition (Sample variance)

Let $X_1, X_2, ..., X_n$ be iid samples. The sample variance, denoted S^2 , is defined to be the random variable

$$S^{2} = \frac{(X_{1} - \overline{X})^{2} + (X_{2} - \overline{X})^{2} + \dots + (X_{n} - \overline{X})^{2}}{n - 1}$$

where \overline{X} is the sample mean.

• Given a sampling x_1, \ldots, x_n , the value taken by the sample variance S^2 is $s^2 = ((x_1 - \overline{x})^2 + \cdots + (x_n - \overline{x})^2)/(n-1)$. Often, S^2 and s^2 are both called sample variance.

Sample variance

Definition (Sample variance)

Let X_1, X_2, \ldots, X_n be iid samples. The sample variance, denoted S^2 , is defined to be the random variable

$$S^2 = \frac{(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + \cdots + (X_n - \overline{X})^2}{n-1}$$

where \overline{X} is the sample mean.

- Given a sampling x_1, \ldots, x_n , the value taken by the sample variance S^2 is $s^2 = ((x_1 \overline{x})^2 + \cdots + (x_n \overline{x})^2)/(n-1)$. Often, S^2 and s^2 are both called sample variance.
- Why n-1 in the denominator instead of n?
 - Some books use n (this causes confusion)
 - Expected value of sample variance is simple in this case

Expected value of sample variance

Theorem

Let $X_1, X_2, ..., X_n$ be iid samples whose distribution has a finite variance σ^2 . The sample variance $S^2 = \frac{(X_1 - \overline{X})^2 + \cdots + (X_n - \overline{X})^2}{n}$ has expected value given by

$$E[S^2] = \sigma^2.$$

Expected value of sample variance

Theorem

Let X_1, X_2, \ldots, X_n be iid samples whose distribution has a finite variance σ^2 . The sample variance $S^2 = \frac{(X_1 - \overline{X})^2 + \cdots + (X_n - \overline{X})^2}{n}$ has expected value given by

$$E[S^2] = \sigma^2.$$

- Expected value of sample variance equals the variance of the distribution
 - Variance of distribution: constant real number and not random
 - Sample variance: random variable with mean equal to distribution variance
- Values of sample variance, on average, give the variance of distribution
 - Variance of sample variance will decrease with number of samples (in most cases)
 - ▶ As *n* increases, sample variance takes values close to distribution variance

Illustration

- Bernoulli(1/2), mean = 0.5, variance = 0.25
 - ► Sample variance values: *n* = 20 ★ 0.26, 0.26, 0.26, 0.25, 0.26
 - Sample variance values: n = 200
 - **★** 0.2500, 0.2487, 0.2496, 0.2456, 0.2476
 - ▶ Sample variance values: n = 1000
 - **★** 0.2498, 0.2490, 0.2499, 0.2501, 0.2502

Illustration

- Bernoulli(1/2), mean = 0.5, variance = 0.25
 - ► Sample variance values: n = 20★ 0.26, 0.26, 0.26, 0.25, 0.26
 - Sample variance values: n = 200
 - ***** 0.2500, 0.2487, 0.2496, 0.2456, 0.2476
 - ► Sample variance values: *n* = 1000
 - **★** 0.2498, 0.2490, 0.2499, 0.2501, 0.2502
- Normal(0,1), mean = 0, variance = 1
 - Sample variance values: n = 20
 - **★** 0.89, 0.57, 1.19, 1.01, 1.41
 - Sample variance values: n = 200
 - ***** 0.93, 1.07, 0.85, 0.83, 1.09
 - ▶ Sample variance values: n = 1000
 - **★** 1.0268, 0.9535, 0.9781, 0.9766, 0.9831

Sample proportion

$$X_1, X_2, \ldots, X_n \sim X$$

- iid samples from the distribution of X
- Let A be an event defined using X
 - Example: A = (X > t), A = (a < X < b) etc

Sample proportion

$$X_1, X_2, \ldots, X_n \sim X$$

- iid samples from the distribution of X
- Let A be an event defined using X
 - Example: A = (X > t), A = (a < X < b) etc

Definition (Sample proportion)

The sample proportion of A, denoted S(A), is defined as

$$S(A) = \frac{\#(X_i \text{ for which } A \text{ is true})}{n}.$$

Sample proportion

$$X_1, X_2, \ldots, X_n \sim X$$

- iid samples from the distribution of X
- Let A be an event defined using X
 - Example: A = (X > t), A = (a < X < b) etc

Definition (Sample proportion)

The sample proportion of A, denoted S(A), is defined as

$$S(A) = \frac{\#(X_i \text{ for which } A \text{ is true})}{n}.$$

- Samples: 0, 1, 1, 1, 0
 - S(X=1)=3/5
- Samples: -0.2, 1.1, 0.3, -1.2, 0.7
 - ► $S(X \le 0) = 2/5$, S(0 < X < 1) = 2/5, S(X > 1) = 1/5

Expected value and variance of sample proportion

Theorem

Let X_1, X_2, \ldots, X_n be iid samples from the distribution of X. Let A be an event defined using X and let P(A) be the probability of A. The sample proportion of A, denoted S(A), has expected value and variance given by

$$E[S(A)] = P(A), Var(S(A)) = \frac{P(A)(1 - P(A))}{n}.$$

Proof

There = P(A) P(A)(1-P(A))

- Convert samples into Bernoulli(P(A)) samples Y_1, \ldots, Y_n • $Y_i = 1$ if A is true for X_i , and $Y_i = 0$ otherwise
- (A) is the sample mean of $Y_1, \ldots, Y_n \sim (A)$

Expected value and variance of sample proportion

Theorem

Let X_1, X_2, \ldots, X_n be iid samples from the distribution of X. Let A be an event defined using X and let P(A) be the probability of A. The sample proportion of A, denoted S(A), has expected value and variance given by

$$E[S(A)] = P(A), Var(S(A)) = \frac{P(A)(1 - P(A))}{n}.$$

Proof

- Convert samples into Bernoulli(P(A)) samples Y_1, \ldots, Y_n
- $Y_i = 1$ if A is true for X_i , and $Y_i = 0$ otherwise (A) is the sample mean of Y_1, \ldots, Y_n
- As n increases, values of S(A) will be close to P(A)
 - Mean of S(A) equals P(A)
 - Variance of S(A) tends to 0

Illustration

$$X_1, \dots, X_n \sim \text{Normal}(0, 1)$$

• $P(X \le -1) = 0.159$ from distribution

• Sample proportion values: $n = 20$

• $0.15, 0.20, 0.15, 0.15, 0.15$ (\$ sample proportion values: $n = 200$

• $0.170, 0.140, 0.150, 0.155, 0.165$

• Sample proportion values: $n = 1000$

• $0.160, 0.180, 0.162, 0.135, 0.153$

• $P(-1 < X < 1) = 0.683$

• Sample proportion values: $n = 20$

• $0.75, 0.70, 0.55, 0.45, 0.70$

• Sample proportion values: $n = 200$

• $0.705, 0.690, 0.705, 0.670, 0.720$

• Sample proportion values: $n = 1000$

• $0.678, 0.678, 0.686, 0.679, 0.681$

Where have we seen *iid* samples?

- Benoulli trials: Sample mean tends to distribution mean
 - Bernoulli(p) samples
 - Distribution mean = p
 - ► Sample mean = fraction of successes
- Monte carlo simulations
 - Sample proportion tends to actual probability
- Computing histograms
 - Sample proportion tends to actual probability

Subsection 3

Illustrations with data

- 3 classes of irises: 0, 1, 2
 - ▶ 50 instances of data for each class
 - ► Each instance: [sepal length, sepal width, petal length, petal width] (cm)

- 3 classes of irises: 0, 1, 2
 - 50 instances of data for each class
 - ► Each instance: [sepal length, sepal width, petal length, petal width] (cm)
- Sepal length of Class 0
 - ▶ Model: iid samples according to some unknown distribution
 - ▶ Data: 5.1, 4.9, 4.7, ..., 5.3, 5
 - ▶ Sample mean: 5.006, Sample variance: $0.1242 = 0.3524^2$
 - ► S(Sepal length > 5) = 22/50, S(4.8 < Sepal length < 5.2) = 20/50

- 3 classes of irises: 0, 1, 2
 - 50 instances of data for each class
 - ► Each instance: [sepal length, sepal width, petal length, petal width] (cm)
- Sepal length of Class 0
 - Model: iid samples according to some unknown distribution
 - ▶ Data: 5.1, 4.9, 4.7, ..., 5.3, 5
 - ▶ Sample mean: 5.006, Sample variance: $0.1242 = 0.3524^2$
 - S(Sepal length > 5) = 22/50, S(4.8 < Sepal length < 5.2) = 20/50
- Petal width of Class 3
 - Model: iid samples according to some unknown distribution
 - ▶ Data: 2.5, 1.9, 2.1, ..., 2.3, 1.8
 - Sample mean: 2.026, Sample variance: $0.0754 = 0.2746^2$
 - S(Petal width > 2) = 23/50, S(1.8 < Petal length < 2.2) = 17/50

- 3 classes of irises: 0, 1, 2
 - ▶ 50 instances of data for each class
 - ► Each instance: [sepal length, sepal width, petal length, petal width] (cm)
- Sepal length of Class 0
 - Model: iid samples according to some unknown distribution
 - ▶ Data: 5.1, 4.9, 4.7, ..., 5.3, 5
 - ▶ Sample mean: 5.006, Sample variance: $0.1242 = 0.3524^2$
 - S(Sepal length > 5) = 22/50, S(4.8 < Sepal length < 5.2) = 20/50
- Petal width of Class 3
 - Model: iid samples according to some unknown distribution
 - ▶ Data: 2.5, 1.9, 2.1, ..., 2.3, 1.8
 - ▶ Sample mean: 2.026, Sample variance: $0.0754 = 0.2746^2$
 - ▶ S(Petal width > 2) = 23/50, S(1.8 < Petal length < 2.2) = 17/50
- Model: how good is the iid samples model?

Taj Mahal air quality

Date	SO2	NO2	PM2.5	PM10
12/4	4	60	77	185
13/4	4	53	65	196
11/4	4	57	72	223
10/4	4	45	68	200
8/4	5	33	52	250
7/4	4	27	67	266
6/4	4	12	60	219
5/4	7	27	70	207
4/4	4	58	100	282
3/4	4	17	55	158
1/4	4	31	37	465
Max	80	80	60	100

• 24-hour average of particles in air, units: micrograms/cubic metre

Taj Mahal air quality sample statistics

- Sample means
 - ► SO2: 4.36, NO2: 38.18, PM2.5: 65.72, PM10: 241
- Sample standard deviations
 - ► SO2: 0.9244², NO2: 17.1803², PM2.5: 15.9002², PM10: 82.6184²
- S(max exceeded)
 - ► SO2: 0, NO2: 0, PM2.5: 7/11, PM10: 11/11

Taj Mahal air quality sample statistics

- Sample means
 - ► SO2: 4.36, NO2: 38.18, PM2.5: 65.72, PM10: 241
- Sample standard deviations
 - ► SO2: 0.9244², NO2: 17.1803², PM2.5: 15.9002², PM10: 82.6184²
- S(max exceeded)
 - ► SO2: 0, NO2: 0, PM2.5: 7/11, PM10: 11/11
- Model
 - Do you like the iid samples model for this data?
 - Is the Taj in trouble or not? How do we answer such questions?
 - ► How confident are our conclusions when we have looked at just 11 data points?

IPL: Runs scored in Deliveries 0.1, 0.2, 0.3

- Data from 1598 innings
 - See shared spreadsheet
 - Download csv from cricsheet.org
- All calculations done using spreadsheets or other computing tools

IPL: Runs scored in Deliveries 0.1, 0.2, 0.3

- Data from 1598 innings
 - See shared spreadsheet
 - Download csv from cricsheet.org
- All calculations done using spreadsheets or other computing tools
- Sample means
 - ▶ 0.1: 0.7347, 0.2: 0.8686, 0.3: 0.9524
- Sample variances
 - ▶ 0.1: 1.4975, 0.2: 1.7961, 0.3: 2.0666
- Sample proportions
 - ► S(dot ball) 0.1: 0.5989, 0.2: 0.5551, 0.3: 0.5338
 - ► S(4 or 6) 0.1: 0.0914, 0.2: 0.1145, 0.3: 0.1302

IPL: Runs scored in Deliveries 0.1, 0.2, 0.3

- Data from 1598 innings
 - See shared spreadsheet
 - Download csv from cricsheet.org
- All calculations done using spreadsheets or other computing tools
- Sample means
 - ▶ 0.1: 0.7347, 0.2: 0.8686, 0.3: 0.9524
- Sample variances
 - ▶ 0.1: 1.4975, 0.2: 1.7961, 0.3: 2.0666
- Sample proportions
 - ► S(dot ball) 0.1: 0.5989, 0.2: 0.5551, 0.3: 0.5338
 - ► S(4 or 6) 0.1: 0.0914, 0.2: 0.1145, 0.3: 0.1302
- Clear trend from samples
 - Runs scored increases from 0.1 to 0.3
- Enough data points to be confident in the trend
 - Agrees with intuition
- Model: Do you like the iid samples model for each delivery?

Subsection 4

Sum of independent random variables

Expected value and variance

Theorem

Let X_1, X_2, \ldots, X_n be random variables. Let $S = X_1 + \cdots + X_n$ be their sum. Then,

$$E[S] = E[X_1] + \cdots + E[X_n].$$

If X_1, \ldots, X_n are pairwise uncorrelated, then

$$Var(S) = Var(X_1) + \cdots + Var(X_n).$$

• What is pairwise uncorrelated? $E[X_iX_j] = E[X_i]E[X_j]$ for all $i, j, i \neq j$

Expected value and variance

Theorem

Let $X_1, X_2, ..., X_n$ be random variables. Let $S = X_1 + \cdots + X_n$ be their sum. Then,

$$E[S] = E[X_1] + \cdots + E[X_n].$$

If X_1, \ldots, X_n are pairwise uncorrelated, then

$$Var(S) = Var(X_1) + \cdots + Var(X_n).$$

- What is pairwise uncorrelated? $E[X_iX_j] = E[X_i]E[X_j]$ for all $i, j, i \neq j$
- Mean of sum is sum of means
- If uncorrelated, variance of sum is sum of variances

Expected value and variance

Theorem

Let $X_1, X_2, ..., X_n$ be random variables. Let $S = X_1 + \cdots + X_n$ be their sum. Then,

$$E[S] = E[X_1] + \cdots + E[X_n].$$

If X_1, \ldots, X_n are pairwise uncorrelated, then

$$Var(S) = Var(X_1) + \cdots + Var(X_n).$$

- What is pairwise uncorrelated? $E[X_iX_j] = E[X_i]E[X_j]$ for all $i, j, i \neq j$
- Mean of sum is sum of means
- If uncorrelated, variance of sum is sum of variances
- If the X_i are independent, they are also uncorrelated
 - So, above result holds for independent random variables

Extensions of previous result

- Scaling and summing
 - ▶ Suppose $S = a_1 X_1 + \cdots + a_n X_n$, where a_i are constants
 - $E[S] = a_1 E[X_1] + \cdots + a_n E[X_n]$
 - $Var(S) = a_1^2 Var(X_1) + \dots + a_n^2 Var(X_n), \quad \text{if pairwise in correlated}$

Extensions of previous result

- Scaling and summing
 - ▶ Suppose $S = a_1 X_1 + \cdots + a_n X_n$, where a_i are constants
 - $E[S] = a_1 E[X_1] + \cdots + a_n E[X_n]$
 - Var(S) = $a_1^2 \text{Var}(X_1) + \cdots + a_n^2 \text{Var}(X_n)$, if uncorrelated
- *iid* samples: $X_1, \ldots, X_n \sim X$, iid
 - ▶ Suppose $S = a_1X_1 + \cdots + a_nX_n$, where a_i are constants
 - $E[S] = (a_1 + \cdots + a_n)E[X]$
 - $Var(S) = (a_1^2 + \cdots + a_n^2) Var(X)$

Extensions of previous result

- Scaling and summing
 - ▶ Suppose $S = a_1X_1 + \cdots + a_nX_n$, where a_i are constants
 - $E[S] = a_1 E[X_1] + \cdots + a_n E[X_n]$
 - ▶ $Var(S) = a_1^2 Var(X_1) + \cdots + a_n^2 Var(X_n)$, if unconcluded
- *iid* samples: $X_1, \ldots, X_n \sim X$, iid
 - ▶ Suppose $S = a_1X_1 + \cdots + a_nX_n$, where a_i are constants
 - $E[S] = (a_1 + \cdots + a_n)E[X]$
 - $Var(S) = (a_1^2 + \cdots + a_n^2) Var(X)$
- Sample mean: $X_1, \ldots, X_n \sim X$, iid
 - $\overline{X} = (X_1 + \cdots + X_n)/n$, $a_i = 1/n$
 - $\triangleright E[(\overline{X})] = E[X]$
 - $\operatorname{Var}(\overline{(X)}) = \operatorname{Var}(X)/n$

Sample mean versus distribution mean

$$X_1,\ldots,X_n \sim \text{ iid } X$$

• Let $\mu = E[X]$, $\sigma^2 = Var(X)$

Sample mean versus distribution mean

$$X_1,\ldots,X_n \sim \text{ iid } X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - Expected value: μ , Variance: σ^2/n
 - ▶ Variance (or spread) goes to 0 as *n* grows

Can we say something more precise about \overline{X} and μ ?

Sample mean versus distribution mean

$$X_1,\ldots,X_n \sim \text{ iid } X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - Expected value: μ , Variance: σ^2/n
 - ▶ Variance (or spread) goes to 0 as *n* grows

Can we say something more precise about \overline{X} and μ ?

- What is $P(\overline{X} > \mu + \delta)$?
- What is $P(\overline{X} < \mu \delta)$?
- What is $P(|\overline{X} \mu| > \delta)$?

$$X_1,\ldots,X_n \sim \text{ iid } X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - Expected value: μ , Variance: σ^2/n

$$X_1, \ldots, X_n \sim \text{ iid } X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - Expected value: μ , Variance: σ^2/n

Theorem (Weak law of large numbers)

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2} \to 0.$$

Claboration:
$$P((X-P)>S^2) \leq \frac{E[(X-P)^2]}{S^2} = \frac{\sigma^2}{7S^2} \xrightarrow{n \to \infty}_{fixed S}$$

$$X_1,\ldots,X_n \sim \text{ iid } X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - Expected value: μ , Variance: σ^2/n

Theorem (Weak law of large numbers)

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2} \to 0.$$

- With probability more than $1-rac{\sigma^2}{n\delta^2}$, sample mean lies in $[\mu-\delta,\mu+\delta]$
 - What is the meaning of this probability?

$$X_1,\ldots,X_n \sim \text{ iid } X$$

"in probability"

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - Expected value: μ , Variance: σ^2/n

Theorem (Weak law of large numbers)

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2} \to 0.$$

- With probability more than $1 \frac{\sigma^2}{n\delta^2}$, sample mean lies in $[\mu \delta, \mu + \delta]$
 - What is the meaning of this probability?
- Chebyshev is usually a very "weak" bound, and we will see sharper bounds soon

Examples: *n* iid samples

- Bernoulli(p) samples P = P, G = P
 - ▶ With probability more than $1 \frac{p(1-p)}{n\delta^2}$, sample mean lies in $[p-\delta, p+\delta]$
- Uniform $\{-M, \ldots, M\}$ samples $p = \frac{m(n+1)}{3}$
 - ▶ With probability more than $1 \frac{M(M+1)}{3n\delta^2}$, sample mean lies in $[-\delta, \delta]$
- Normal $(0, \sigma^2)$ samples
 - lacktriangle With probability more than $1-rac{\sigma^2}{n\delta^2}$, sample mean lies in $[-\delta,\delta]$
- Uniform[-A, A] samples Continuos 150, 6 = 13
 - ▶ With probability more than $1 \frac{A^2}{3n\delta^2}$, sample mean lies in $[-\delta, \delta]$

Examples: *n* iid samples

- Bernoulli(p) samples
 - ▶ With probability more than $1 \frac{p(1-p)}{n\delta^2}$, sample mean lies in $[p-\delta, p+\delta]$
- Uniform $\{-M, \ldots, M\}$ samples
 - ▶ With probability more than $1 \frac{M(M+1)}{3n\delta^2}$, sample mean lies in $[-\delta, \delta]$
- Normal $(0, \sigma^2)$ samples
 - lacktriangle With probability more than $1-rac{\sigma^2}{n\delta^2}$, sample mean lies in $[-\delta,\delta]$
- Uniform[-A, A] samples
 - lacktriangle With probability more than $1-\frac{A^2}{3n\delta^2}$, sample mean lies in $[-\delta,\delta]$
- When distribution is known, a precise statement is possible about "confidence" of finding sample mean within a certain precise interval
 - Improvement in bound will improve precision

- Iris data: Sepal length
 - ▶ n = 50, Sample mean: 5.006, Sample variance: 0.1242
 - ▶ With probability more than $1-\sigma^2/50\delta^2$, sample mean lies in $[\mu-\delta,\mu+\delta]$
 - ***** Works for $\delta > \sigma/\sqrt{50}$

- Iris data: Sepal length
 - \rightarrow n = 50, Sample mean: 5.006, Sample variance: 0.1242
 - With probability more than $1 \sigma^2/50\delta^2$, sample mean lies in $[\mu - \delta, \mu + \delta]$
- Taj Mahal air quality: PM2.5
 - ightharpoonup n = 11, Sample mean = 65.72, Sample variance = 15.9²
 - With probability more than $1 \sigma^2/11\delta^2$, sample mean lies in $[\mu - \delta, \mu + \delta]$

- Iris data: Sepal length
 - ▶ n = 50, Sample mean: 5.006, Sample variance: 0.1242
 - ▶ With probability more than $1-\sigma^2/50\delta^2$, sample mean lies in $[\mu-\delta,\mu+\delta]$
 - ***** Works for $\delta > \sigma/\sqrt{50}$
- Taj Mahal air quality: PM2.5
 - ightharpoonup n = 11, Sample mean = 65.72, Sample variance = 15.9^2
 - ▶ With probability more than $1-\sigma^2/11\delta^2$, sample mean lies in $[\mu-\delta,\mu+\delta]$
 - ***** Works for $\delta > \sigma/\sqrt{11}$
- IPL: Runs scored in Delivery 0.3
 - ightharpoonup n = 1598, Sample mean: 0.9524, Sample variance: 2.0666
 - ▶ With probability more than $1-\sigma^2/1598\delta^2$, sample mean lies in $[\mu-\delta,\mu+\delta]$
 - ***** Works for $\delta > \sigma/\sqrt{1598}$

- Iris data: Sepal length
 - ▶ n = 50, Sample mean: 5.006, Sample variance: 0.1242
 - ▶ With probability more than $1 \sigma^2/50\delta^2$, sample mean lies in $[\mu \delta, \mu + \delta]$ ★ Works for $\delta > \sigma/\sqrt{50}$
- Taj Mahal air quality: PM2.5
 - ightharpoonup n = 11, Sample mean = 65.72, Sample variance = 15.9^2
 - ▶ With probability more than $1 \sigma^2/11\delta^2$, sample mean lies in $[\mu \delta, \mu + \delta]$
 - ***** Works for $\delta > \sigma/\sqrt{11}$
- IPL: Runs scored in Delivery 0.3
 - ightharpoonup n = 1598, Sample mean: 0.9524, Sample variance: 2.0666
 - ▶ With probability more than $1-\sigma^2/1598\delta^2$, sample mean lies in $[\mu-\delta,\mu+\delta]$
 - ***** Works for $\delta > \sigma/\sqrt{1598}$
- What to do when distribution is unknown? Have to assume something

Subsection 5

Sum of independent random variables II

Subsection 6

Concentration phenomenon

Bounding $P(|\overline{X} - \mu| > t)$

$$X_1,\ldots,X_n\sim \operatorname{iid} X$$

• Sample mean $\overline{X} = (X_1 + \dots + X_n)/n$

Chebyshev bound

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2}$$

Bounding $P(|X - \mu| > t)$

$$X_1,\ldots,X_n\sim \mathsf{iid}\ X$$

- Sample mean $X = (X_1 + \cdots + X_n)/n$
- Chebyshev bound

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2}$$

How weak is Chebyshev?

ow weak is Chebyshev?
$$\chi_1 + \cdots + \chi_n \sim \mathbb{B}^{n} (\gamma_1 \chi_n)$$
• Let $X \sim \text{Bernoulli}(1/2), \ \mu = 0.5, \ \sigma^2 = 0.25$

► n = 10: $P(|\overline{X} - 0.5| > 0.3) = 0.0215 \le 0.278$ = $P(X_1 + X_2 - 78)$

$$n = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.210$$

$$n = 50: P(|X - 0.5| > 0.3) = 5.61 \times 10^{-6} \le 0.056$$

$$R = 50: P(|X - 0.5| > 0.3) = 5.61 \times 10^{-6} \le 0.056$$

$$R = 50: P(|X - 0.5| > 0.3) = 5.61 \times 10^{-6} \le 0.056$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213 \le 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3) = 0.0213$$

$$R = 50: P(|X - 0.5| > 0.3)$$

$$R = 50: P(|X - 0.5| > 0.3)$$

$$R = 50: P(|X - 0.5| > 0.3)$$

$$R$$

Bounding $P(|\overline{X} - \mu| > t)$

$$X_1,\ldots,X_n\sim \operatorname{iid} X$$

- Sample mean $\overline{X} = (X_1 + \cdots + X_n)/n$
- Chebyshev bound

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2}$$

How weak is Chebyshev?

- Let $X \sim \text{Bernoulli}(1/2)$, $\mu = 0.5$, $\sigma^2 = 0.25$
 - ► n = 10: $P(|\overline{X} 0.5| > 0.3) = 0.0215 \le 0.278$
 - ► n = 50: $P(|\overline{X} 0.5| > 0.3) = 5.61 \times 10^{-6} \le 0.056$
- Chebyshev falls as 1/n
- In many cases, we can have e^{-cn}
 - Exponential fall with n
 - ▶ Much much faster than 1/n

Markov, Chebyshev and Chernoff

Markov inequality: X takes positive values

$$P(X > t) \le \frac{E[X]}{t}$$

 Chebyshev inequality: X could take positive/negative values with finite variance

P(
$$|X - E[X]| > t$$
) = $P((X - E[X])^2 > t^2) \le \frac{Var(X)}{t^2}$

Markov, Chebyshev and Chernoff

• Markov inequality: X takes positive values

$$P(X > t) \le \frac{E[X]}{t}$$

ullet Chebyshev inequality: X could take positive/negative values with finite variance

$$P(|X - E[X]| > t) = P((X - E[X])^2 > t^2) \le \frac{\text{Var}(X)}{t^2}$$

• Chernoff inequality: X could take positive/negative values, E[X] = 0

$$P(X > t) = P(e^{\lambda X} > e^{\lambda t}) \le \underbrace{\frac{E[e^{\lambda X}]}{e^{\lambda t}}}, \underline{\lambda > 0}$$

Markov, Chebyshev and Chernoff

• Markov inequality: X takes positive values

$$P(X > t) \le \frac{E[X]}{t}$$

 Chebyshev inequality: X could take positive/negative values with finite variance

$$P(|X - E[X]| > t) = P((X - E[X])^2 > t^2) \le \frac{\text{Var}(X)}{t^2}$$

ullet Chernoff inequality: X could take positive/negative values, E[X]=0

$$P(X > t) = P(e^{\lambda X} > e^{\lambda t}) \le \frac{E[e^{\lambda X}]}{e^{\lambda t}}, \ \lambda > 0$$

- Moment generating function (MGF) of X: $E[e^{\lambda X}]$ (for E[X] = 0)
 - ightharpoonup Pick λ that provides best bound
 - ▶ MGF too unwieldy? Use upper bound on MGF

- What is centralising?
 - ➤ X: random variable with mean E[X]
 - ▶ Centralised version of X: X E[X]

- What is centralising?
 - ➤ X: random variable with mean E[X]
 - ▶ Centralised version of X: X E[X]
- Centralised Bernoulli(1/2)
 - ▶ Bernoulli(1/2): $\{ 0, 1 \}$, mean = 1/2
 - ▶ Centralised: $X \sim \{-1/2, 1/2\}$, mean = 0

- What is centralising?
 - ► X: random variable with mean E[X]
 - ▶ Centralised version of X: X E[X]
- Centralised Bernoulli(1/2)
 - ▶ Bernoulli(1/2): $\begin{cases} 1/2 & 1/2 \\ 0 & 1 \end{cases}$, mean = 1/2
 - ► Centralised: $X \sim \{-1/2, 1/2\}$, mean = 0

$$E[e^{\lambda X}] = P(X = -1/2)e^{-\lambda/2} + P(X = 1/2)e^{\lambda/2} = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}$$

- What is centralising?
 - ► X: random variable with mean E[X]
 - ▶ Centralised version of X: X E[X]
- Centralised Bernoulli(1/2)
 - ▶ Bernoulli(1/2): $\begin{cases} 1/2 & 1/2 \\ 0 & 1 \end{cases}$, mean = 1/2
 - ▶ Centralised: $X \sim \{-1/2, 1/2\}$, mean = 0

$$E[e^{\lambda X}] = P(X = -1/2)e^{-\lambda/2} + P(X = 1/2)e^{\lambda/2} = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}$$

Bound on MGF

$$E[e^{\lambda X}] = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2} \le e^{\lambda^2/4}$$

MGF and sum of *iid* random variables

$$X_1,\ldots,X_n\sim \operatorname{iid} X$$

- Let $S = X_1 + \cdots + X_n$. What is MGF of S?
- Why is this question important?
 - ▶ MGF gives bounds on P(S > t)
 - ▶ Sample mean $\overline{X} = S/n$

MGF and sum of *iid* random variables

$$X_1,\ldots,X_n\sim \mathsf{iid}\ X$$

- Let $S = X_1 + \cdots + X_n$. What is MGF of S?
- Why is this question important?
 - ▶ MGF gives bounds on P(S > t)
 - ▶ Sample mean $\overline{X} = S/n$

$$E[e^{\lambda S}] = E[e^{\lambda X_1} \cdots e^{\lambda X_n}] = E[e^{\lambda X_1}] \cdots E[e^{\lambda X_n}] = E[e^{\lambda X}]^n$$

 MGF of sum of independent random variables is product of the individual MGFs

Example: Sum of centralised Benoulli

ullet $X\sim {\sf Centralised Bernoulli}(1/2), i.e. <math>\{-1/2,1/2\}$

$$X_1, \ldots, X_n \sim \operatorname{iid} X$$

• $S = X_1 + \cdots + X_n$

$$E[e^{\lambda S}] = \left(\frac{e^{\lambda/2} + e^{-\lambda/2}}{2}\right)^n \le e^{n\lambda^2/4}$$

Upper bound is so much easier than MGF!

 $X_1, \ldots, X_n \sim \text{iid Centralised Bernoulli}(1/2)$

$$X_1, \ldots, X_n \sim \text{iid Centralised Bernoulli}(1/2)$$

•
$$S = X_1 + \cdots + X_n$$

$$P(S>t) \leq \frac{E[e^{\lambda S}]}{e^{\lambda t}} \leq e^{n\lambda^2/4 - \lambda t}$$
 fundament λ

$$X_1, \ldots, X_n \sim \text{iid Centralised Bernoulli}(1/2)$$

• $S = X_1 + \cdots + X_n$

$$P(S > t) \le \frac{E[e^{\lambda S}]}{e^{\lambda t}} \le e^{n\lambda^2/4 - \lambda t}$$

• Pick $\lambda = 2t/n$: $P(S > t) \le e^{-t^2/n}$

$$X_1, \ldots, X_n \sim \text{iid Centralised Bernoulli}(1/2)$$

•
$$S = X_1 + \cdots + X_n$$

$$P(S > t) \le \frac{E[e^{\lambda S}]}{e^{\lambda t}} \le e^{n\lambda^2/4 - \lambda t}$$

• Pick
$$\lambda = 2t/n : (P(S > t) \le e^{-t^2/n})$$

• Now, $Y_1 = X_1 + 1/2 \sim \text{Bernoulli}(1/2)$. So, $Y = Y_1 + \cdots + Y_n = S + n/2 \sim \text{Binomial}(n, 1/2)$

$$P(Y > n/2 + n\delta/2) = P(S > n\delta/2) \le e^{-n\delta^2/4}$$

$$\frac{Y}{n} - 1 > 1 > 5$$

$$X_1, \ldots, X_n \sim \text{iid Centralised Bernoulli}(1/2)$$

• $S = X_1 + \cdots + X_n$

$$P(S > t) \le \frac{E[e^{\lambda S}]}{e^{\lambda t}} \le e^{n\lambda^2/4 - \lambda t}$$

- Pick $\lambda = 2t/n$: $P(S > t) \le e^{-t^2/n}$
- Now, $Y_1 = X_1 + 1/2 \sim \text{Bernoulli}(1/2)$. So, $Y = Y_1 + \cdots + Y_n = S + n/2 \sim \text{Binomial}(n,1/2)$

$$P(Y > n/2 + n\delta/2) = P(S > n\delta/2) \le e^{-n\delta^2/4}$$

• Chebyshev: $P(Y > n/2 + n\delta/2) \le \frac{1}{n\delta^2}$

Chebyshev vs Chernoff: $Y \sim \text{Binomial}(n, 1/2)$

n	Event, $\delta=0.6$	Prob	$1/n\delta^2$	$e^{-n\delta^2/4}$
10	$Y - 5 > 5 \times 0.6$	0.0107	0.278	0.407
50	$Y - 25 > 25 \times 0.6$	2.81×10^{-6}	0.056	0.011
100	$Y - 50 > 50 \times 0.6$	1.35×10^{-10}	0.028	1.23×10^{-4}
200	$Y - 100 > 100 \times 0.6$	4.16×10^{-19}	0.014	$1.52 imes 10^{-8}$
400	$Y - 200 > 200 \times 0.6$	5.40×10^{-36}	0.007	2.32×10^{-16}

Chebyshev vs Chernoff: $Y \sim \text{Binomial}(n, 1/2)$

n	Event, $\delta=0.6$	Prob	$1/n\delta^2$	$e^{-n\delta^2/4}$
10	$Y - 5 > 5 \times 0.6$	0.0107	0.278	0.407
50	$Y - 25 > 25 \times 0.6$	2.81×10^{-6}	0.056	0.011
100	$Y - 50 > 50 \times 0.6$	1.35×10^{-10}	0.028	1.23×10^{-4}
200	$Y - 100 > 100 \times 0.6$	4.16×10^{-19}	0.014	1.52×10^{-8}
400	$Y - 200 > 200 \times 0.6$	5.40×10^{-36}	0.007	2.32×10^{-16}

- 1/n vs e^{-cn} : difference is clearly seen as n increases
 - ightharpoonup 1/n is giving a very wrong idea about the magnitude of the probability

$$X_1,\ldots,X_n\sim \operatorname{iid} X,\ Y=X_1+\cdots+X_n$$

Concentration phenomenon

$$X_1,\ldots,X_n\sim \operatorname{iid} X,\ Y=X_1+\cdots+X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff

$$X_1,\ldots,X_n \sim \operatorname{iid} X, Y = X_1 + \cdots + X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - ▶ We saw this when X is Bernoulli

$$X_1,\ldots,X_n \sim \operatorname{iid} X, Y = X_1 + \cdots + X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - ▶ We saw this when *X* is Bernoulli
- What about P(Y < E[Y] t)?

$$X_1,\ldots,X_n \sim \operatorname{iid} X, Y = X_1 + \cdots + X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - ▶ We saw this when *X* is Bernoulli
- What about P(Y < E[Y] t)?
 - ▶ Replace Y with -Y on P(Y > E[Y] + t)

$$X_1,\ldots,X_n \sim \operatorname{iid} X, Y = X_1 + \cdots + X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - ▶ We saw this when *X* is Bernoulli
- What about P(Y < E[Y] t)?
 - ▶ Replace Y with -Y on P(Y > E[Y] + t)
- What about other distributions? Several extensions exist

$$X_1,\ldots,X_n \sim \operatorname{iid} X, Y = X_1 + \cdots + X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - ▶ We saw this when X is Bernoulli
- What about P(Y < E[Y] t)?
 - ▶ Replace Y with -Y on P(Y > E[Y] + t)
- What about other distributions? Several extensions exist
 - ▶ Hoeffding's inequality: X is bounded within an interval [-M, M]

$$X_1,\ldots,X_n\sim \mathsf{iid}\ X,\ Y=X_1+\cdots+X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - ▶ We saw this when X is Bernoulli
- What about P(Y < E[Y] t)?
 - ▶ Replace Y with -Y on P(Y > E[Y] + t)
- What about other distributions? Several extensions exist
 - ▶ Hoeffding's inequality: X is bounded within an interval [-M, M]
 - lacktriangle Bennett's inequality: X is bounded in [-M,M] and has finite variance

$$X_1,\ldots,X_n\sim \mathsf{iid}\ X,\ Y=X_1+\cdots+X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - ▶ We saw this when X is Bernoulli
- What about P(Y < E[Y] t)?
 - ▶ Replace Y with -Y on P(Y > E[Y] + t)
- What about other distributions? Several extensions exist
 - ▶ Hoeffding's inequality: X is bounded within an interval [-M, M]
 - ▶ Bennett's inequality: X is bounded in [-M, M] and has finite variance
- Y is the sum of the iid samples. What about other functions $f(X_1, \ldots, X_n)$?

Remarks on concentration phenomenon

$$X_1,\ldots,X_n\sim \mathsf{iid}\ X,\ Y=X_1+\cdots+X_n$$

- Concentration phenomenon
 - Exponential bounds for P(Y > E[Y] + t) by bounding $E[e^{\lambda Y}]$ and using Chernoff
 - We saw this when X is Bernoulli
- What about P(Y < E[Y] t)?
 - ▶ Replace Y with -Y on P(Y > E[Y] + t)
- What about other distributions? Several extensions exist
 - ▶ Hoeffding's inequality: X is bounded within an interval [-M, M]
 - ▶ Bennett's inequality: X is bounded in [-M, M] and has finite variance
- Y is the sum of the iid samples. What about other functions $f(X_1, \ldots, X_n)$?
 - ▶ Many extensions: *f* should depend "equally" on all variables

Subsection 7

Central Limit Theorem

Moment generating function (MGF)

Definition (MGF)

Let X be a zero-mean random variable. The MGF of X, denoted $M_X(\lambda)$, is a function from \mathcal{R} to \mathcal{R} defined as

$$M_X(\lambda) = E[e^{\lambda X}].$$

Moment generating function (MGF)

Definition (MGF)

Let X be a zero-mean random variable. The MGF of X, denoted $M_X(\lambda)$, is a function from R to R defined as

$$M_X(\lambda) = E[e^{\lambda X}].$$

- X: Discrete with PMF f_X
 - \blacktriangleright X takes values $\{x_1, x_2, \ldots\}$

$$M_X(\lambda) = f_X(x_1)e^{\lambda x_1} + f_X(x_2)e^{\lambda x_2} + \cdots$$

Moment generating function (MGF)

Definition (MGF)

Let X be a zero-mean random variable. The MGF of X, denoted $M_X(\lambda)$, is a function from R to R defined as

$$M_X(\lambda) = E[e^{\lambda X}].$$

- X: Discrete with PMF f_X
 - \triangleright X takes values $\{x_1, x_2, \ldots\}$

$$M_X(\lambda) = f_X(x_1)e^{\lambda x_1} + f_X(x_2)e^{\lambda x_2} + \cdots$$

• X: continuous with PDF f_X and support T_X

• $X \sim \{ \stackrel{1}{0} \}$ (X is 0 with probability 1) • $M_X(\lambda) = 1 \times e^0 = 1$

- $X \sim \{0\}$ (X is 0 with probability 1) • $M_X(\lambda) = 1 \times e^0 = 1$
- $X \sim \{ \begin{matrix} 1-p \\ -p, 1-p \end{matrix} \}$ (extra lise f)
 $M_X(\lambda) = (1-p)e^{-p\lambda} + pe^{(1-p)\lambda}$

•
$$X \sim \{0\}$$
 (X is 0 with probability 1)
• $M_X(\lambda) = 1 \times e^0 = 1$

•
$$X \sim \{ \begin{matrix} 1-p & p \\ -p, 1-p \end{Bmatrix}$$

• $M_X(\lambda) = (1-p)e^{-p\lambda} + pe^{(1-p)\lambda}$

•
$$X \in \{-1, 0, 2\}$$

• $M_X(\lambda) = 0.5e^{-\lambda} + 0.25 + 0.25e^{2\lambda}$

- $X \sim \{0\}$ (X is 0 with probability 1) • $M_X(\lambda) = 1 \times e^0 = 1$
- $X \in \{-1, 0, 2\}$ • $M_X(\lambda) = 0.5e^{-\lambda} + 0.25 + 0.25e^{2\lambda}$
- $M_X(\lambda) = (1/3)e^{3\lambda/2} + (1/6)e^{-3\lambda} + (1/8)e^{-\lambda} + (1/8)e^{\lambda} + 1/8$ • $X \sim \{ -3, -1, 0, 1, 3/2 \}$

•
$$X \sim \{0\}$$
 (X is 0 with probability 1)
• $M_X(\lambda) = 1 \times e^0 = 1$

•
$$X \sim \{ \begin{array}{l} 1-p & p \\ -p, 1-p \} \\ \text{• } M_X(\lambda) = (1-p)e^{-p\lambda} + pe^{(1-p)\lambda} \end{array}$$

$$\bullet \ X \in \{ -1, \ 0 \ , \ 2 \ \}$$

$$M_X(\lambda) = 0.5e^{-\lambda} + 0.25 + 0.25e^{2\lambda}$$

•
$$M_X(\lambda) = \underbrace{(1/3)e^{3\lambda/2} + (1/6)e^{-3\lambda}}_{1/6 \ 1/8 \ 1/4 \ 1/8 \ 1/3} + (1/8)e^{-\lambda} + (1/8)e^{\lambda} + 1/4 e^{\lambda}$$
• $X \sim \{-3, -1, 0, 1, 3/2\}$

$$f^{**} \overset{**}{\circ} \overset{*}{X} \sim \text{Normal}(0, \sigma^2) \overset{**}{\circ} \overset{**}{\circ} \overset{*}{\circ}$$

$$M_X(\lambda) = e^{\lambda^2 \sigma^2/2}$$

Why Moment Generating Function?

$$E[e^{\lambda X}] = E[1 + \lambda X + \frac{\lambda^2}{2!}X^2 + \frac{\lambda^3}{3!}X^3 + \cdots]$$

$$= 1 + \lambda E[X] + \frac{\lambda^2}{2!}E[X^2] + \frac{\lambda^3}{3!}E[X^3] + \cdots$$

Why Moment Generating Function?

$$E[e^{\lambda X}] = E[1 + \lambda X + \frac{\lambda^2}{2!}X^2 + \frac{\lambda^3}{3!}X^3 + \cdots]$$

= 1 + \lambda E[X] + \frac{\lambda^2}{2!}E[X^2] + \frac{\lambda^3}{3!}E[X^3] + \cdots

• $X \sim \text{Normal}(0, \sigma^2), M_X(\lambda) = e^{\lambda^2 \sigma^2/2}$

$$1 + \lambda E[X] + \frac{\lambda^2}{2!} E[X^2] + \frac{\lambda^3}{3!} E[X^3] + \dots = 1 + \frac{\lambda^2}{2!} \sigma^2 + \frac{\lambda^4}{4!} (3\sigma^4) + \dots$$

• E[X] = 0, $E[X^2] = \sigma^2$, $E[X^3] = 0$, $E[X^4] = 3\sigma^4$ and so on

Examples: Sum of two independent random variables

Examples: Sum of two independent random variables

$$X_1, X_2 \sim \mathsf{iid}\ X, Y = X_1 + X_2$$

- $X \sim \text{iid Bernoulli}(p)$
 - $M_X(\lambda) = (1-p)e^{-p\lambda} + pe^{(1-p)\lambda}$
 - $M_Y(\lambda) = M_X(\lambda)^2 = (1-p)^2 e^{-2p\lambda} + 2p(1-p)e^{(1-2p)\lambda} + p^2 e^{2(1-p)\lambda}$
 - * $Y \sim \{ \frac{(1-p)^2}{-2p}, \frac{2p(1-p)}{1-2p}, 2(1-p) \}$
- $X \in \{ -1, 0, 2 \}$
 - $M_X(\lambda) = 0.5e^{-\lambda} + 0.25 + 0.25e^{2\lambda}$
 - $M_Y(\lambda) = 0.25e^{-2\lambda} + 0.25e^{-\lambda} + 0.0625 + 0.25e^{\lambda} + 0.125e^{2\lambda} + 0.0625e^{4\lambda}$

Examples: Sum of two independent random variables

$$X_1, X_2 \sim \mathsf{iid}\ X, Y = X_1 + X_2$$

- $X \sim \text{iid Bernoulli}(p)$
 - $M_X(\lambda) = (1-p)e^{-p\lambda} + pe^{(1-p)\lambda}$
 - $M_Y(\lambda) = M_X(\lambda)^2 = (1-p)^2 e^{-2p\lambda} + 2p(1-p)e^{(1-2p)\lambda} + p^2 e^{2(1-p)\lambda}$ $(1-p)^2 \frac{2p(1-p)}{p^2}$
 - * $Y \sim \{ (1-p)^2, (1-p), (1-p), (1-p) \}$
- $X \in \{ 1/2, 1/4, 1/4 \\ -1, 0, 2 \}$
 - $M_X(\lambda) = 0.5e^{-\lambda} + 0.25 + 0.25e^{2\lambda}$
 - $M_Y(\lambda) = 0.25e^{-2\lambda} + 0.25e^{-\lambda} + 0.0625 + 0.25e^{\lambda} + 0.125e^{2\lambda} + 0.0625e^{4\lambda}$
- $M_X(\lambda) = (1/3)e^{3\lambda/2} + (1/6)e^{-3\lambda} + (1/8)e^{-\lambda} + (1/8)e^{\lambda} + 1/4$
 - $M_{Y}(\lambda) = \frac{e^{-6t}}{36} + \frac{e^{-4t}}{24} + \frac{e^{-3t}}{12} + \frac{11e^{-2t}}{192} + \frac{1}{9}e^{-3t/2} + \frac{e^{-t}}{16} + \frac{3}{32} + \frac{e^{t/2}}{12} + \frac{e^{t}}{16} + \frac{1}{6}e^{3t/2} + \frac{e^{2t}}{64} + \frac{1}{12}e^{5t/2} + \frac{e^{3t}}{9}$

Example: MGF of sample mean

• Samples: $X_1, \ldots, X_n \sim \text{iid } X$, $M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}$ • Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$ • $M_{X/n}(\lambda) = \frac{e^{\lambda/2n} + e^{-\lambda/2n}}{2}$ • $M_{\overline{X}}(\lambda) = \left(\frac{e^{\frac{\lambda}{2n}} + e^{-\frac{\lambda}{2n}}}{2}\right)^n$

Example: MGF of sample mean

- Samples: $X_1, \ldots, X_n \sim \mathsf{iid}\ X$, $M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}$
 - Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - $M_{X/n}(\lambda) = \frac{e^{\lambda/2n} + e^{-\lambda/2n}}{2}$

$$M_{\overline{X}}(\lambda) = \left(\frac{e^{\frac{\lambda}{2n}} + e^{-\frac{\lambda}{2n}}}{2}\right)^n$$

MGF of sample mean for different n

$$M_{\overline{X}}(\lambda) o 1$$
 as n increases

Example: MGF of sample mean

- Samples: $X_1, \ldots, X_n \sim \text{iid } X$, $M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}$
 - ▶ Sample mean: $\overline{X} = (X_1 + \cdots + X_n)/n$
 - $M_{X/n}(\lambda) = \frac{e^{\lambda/2n} + e^{-\lambda/2n}}{2}$

$$M_{\overline{X}}(\lambda) = \left(\frac{e^{rac{\lambda}{2n}} + e^{-rac{\lambda}{2n}}}{2}
ight)^n$$

MGF of sample mean for different n

$$M_{\overline{X}}(\lambda) o 1$$
 as n increases

- WLLN: $\overline{X} \to E[X] = 0$
- ullet Constant 0 has MGF = 1

MGF convergence at $1/\sqrt{n}$ scaling

- Samples: $X_1, \ldots, X_n \sim \text{iid } X$, $M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}$
 - E[X] = 0, Var(X) = 1/4
 - Consider $Y = (X_1 + \cdots + X_n)/\sqrt{n}$
 - $M_{X/\sqrt{n}}(\lambda) = \frac{e^{\lambda/2\sqrt{n}} + e^{-\lambda/2\sqrt{n}}}{2}$

$$M_Y(\lambda) = \left(\frac{e^{\frac{\lambda}{2\sqrt{n}}} + e^{-\frac{\lambda}{2\sqrt{n}}}}{2}\right)^n$$

MGF convergence at $1/\sqrt{n}$ scaling

- Samples: $X_1, \ldots, X_n \sim \operatorname{iid} X$, $M_X(\lambda) = \frac{e^{\lambda/2} + e^{-\lambda/2}}{2}$
 - E[X] = 0, Var(X) = 1/4
 - Consider $Y = (X_1 + \cdots + X_n)/\sqrt{n}$
 - $M_{X/\sqrt{n}}(\lambda) = \frac{e^{\lambda/2\sqrt{n}} + e^{-\lambda/2\sqrt{n}}}{2}$

$$M_Y(\lambda) = \left(rac{e^{rac{\lambda}{2\sqrt{n}}} + e^{-rac{\lambda}{2\sqrt{n}}}}{2}
ight)^n$$

MGF of Y for different n

 $\begin{array}{c} \stackrel{-}{\underset{n=10}{-}} \stackrel{-}{\underset{n=20}{-}} \\ \stackrel{-}{\underset{n=20}{-}} \stackrel{-}{\underset{n=20}{-}} \end{array} \qquad M_{\overline{X}}(\lambda) \rightarrow \begin{array}{c} e^{\lambda^2 \sigma^2/2} \text{ as } n \text{ increases} \\ \begin{matrix} \downarrow \\ \begin{matrix} \downarrow \end{matrix} \end{matrix}$

Another example: MGF convergence at $1/\sqrt{n}$ scaling

- Samples: $X_1, \ldots, X_n \sim \text{iid } X$, $M_X(\lambda) = (1/3)e^{3\lambda/2} + (1/6)e^{-3\lambda} + (1/8)e^{-\lambda} + (1/8)e^{\lambda} + 1/4$ • E[X] = 0, Var(X) = 5/2
 - Consider $Y = (X_1 + \cdots + X_n)/\sqrt{n}$

$$M_Y(\lambda) = \left((1/3)e^{\frac{3\lambda}{2\sqrt{n}}} + (1/6)e^{-\frac{3\lambda}{\sqrt{n}}} + (1/8)e^{-\frac{\lambda}{\sqrt{n}}} + (1/8)e^{\frac{\lambda}{\sqrt{n}}} + 1/4 \right)^n$$

Central Limit Theorem (CLT)

Theorem (CLT)

Let
$$X_1, \ldots, X_n \sim iid \ X$$
 with $E[X] = 0$, $Var(X) = \sigma^2$. Let $Y = (X_1 + \cdots + X_n)/\sqrt{n}$. Then,

$$M_Y(\lambda) o e^{\lambda^2 \sigma^2/2}$$

- MGF of Normal(0, σ^2): $e^{\lambda^2 \sigma^2/2}$
- Y is said to converge in distribution to Normal $(0, \sigma^2)$

Central Limit Theorem (CLT)

Theorem (CLT)

Let
$$X_1, \ldots, X_n \sim iid \ X$$
 with $E[X] = 0$, $Var(X) = \sigma^2$. Let $Y = (X_1 + \cdots + X_n)/\sqrt{n}$. Then,

$$M_Y(\lambda) o e^{\lambda^2 \sigma^2/2}$$

- MGF of Normal(0, σ^2): $e^{\lambda^2 \sigma^2/2}$
- Y is said to converge in distribution to Normal $(0, \sigma^2)$

Observations

- Contrast with WLLN
 - ▶ $\overline{X} = (X_1 + \cdots + X_n)/n$ converges in distribution to E[X].
- Sum of iid random variables tends to be normal
 - Do I like above statement? Not entirely.
 - Scaling is important: 1/n constant, $1/\sqrt{n}$ normal

Using CLT to approximate probability

$$X_1,\ldots,X_n \sim X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- $Y = X_1 + \cdots + X_n$, Elys-nt
- What is $P(Y n\mu > \delta n\mu)$?

Using CLT to approximate probability

$$X_1,\ldots,X_n \sim X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- $Y = X_1 + \cdots + X_n$
- What is $P(Y n\mu > \delta n\mu)$?

Approximating using CLT

• $(Y - n\mu)/\sqrt{n}$: approximately Normal $(0, \sigma^2)$

$$\boxed{\frac{Y-n\mu}{\sqrt{n}\sigma}\approx \mathsf{Normal}(0,1)}$$

Using CLT to approximate probability

$$X_1,\ldots,X_n\sim X$$

- Let $\mu = E[X]$, $\sigma^2 = Var(X)$
- $Y = X_1 + \cdots + X_n$
- What is $P(Y n\mu > \delta n\mu)$?

Approximating using CLT

• $(Y - n\mu)/\sqrt{n}$: approximately Normal $(0, \sigma^2)$

$$rac{Y-n\mu}{\sqrt{n}\sigma}pprox \mathsf{Normal}(0,1)$$

- F(z): CDF of Normal(0,1) (F(z))
- $P(Y n\mu > \delta n\mu) = P(\frac{Y n\mu}{\sqrt{n\sigma}} > \frac{\delta \sqrt{n\mu}}{\sigma}) \approx 1 F(\frac{\delta \sqrt{n\mu}}{\sigma})$

Approximating Binomial (n, 1/2)

- $\mu = \sigma = 1/2$
- $P(Y n/2 > 0.6n/2) \approx 1 F(0.6\sqrt{n})$

n	Event, $\delta=0.6$	Prob	$1 - F(\sqrt{n}\delta)$
10	$Y - 5 > 5 \times 0.6$	0.0107	0.0289
50	$Y - 25 > 25 \times 0.6$	2.81×10^{-6}	$1.10 imes 10^{-5}$
100	$Y-50>50\times0.6$	1.35×10^{-10}	9.87×10^{-10}

- Approximation is really close!
- Normal approximation is quite good for Binomial

$$X_1,\ldots,X_n\sim \mathsf{iid}\ X,\,Y=X_1+\cdots+X_n$$

•
$$X \sim \begin{cases} 1/6 & 1/8 & 1/4 & 1/8 & 1/3 \\ -3, -1, & 0, & 1, & 3/2 \end{cases}$$

• $\mu = 0, \ \sigma^2 = 5/2$
• CLT: $\frac{Y}{\sqrt{5n/2}} \approx \text{Normal}(0, 1)$
• $P(Y > \delta n) = P(\frac{Y}{\sqrt{5n/2}} > \delta \sqrt{2n/5}) \approx 1 - F(\delta \sqrt{2n/5})$
• $n = 10, \ \delta = 1: \approx 0.0228$
• $n = 100, \ \delta = 1: \approx 1.27 \times 10^{-10}$

$$X_1,\ldots,X_n\sim \mathsf{iid}\ X,\,Y=X_1+\cdots+X_n$$

$$\mu = 0, \ \sigma^2 = 5/2$$

► CLT:
$$\frac{Y}{\sqrt{5n/2}} \approx \text{Normal}(0,1)$$

$$P(Y > \delta n) = P(\frac{Y}{\sqrt{5n/2}} > \delta \sqrt{2n/5}) \approx 1 - F(\delta \sqrt{2n/5})$$

- ★ n = 10, $\delta = 1$: ≈ 0.0228
- * $n = 100, \delta = 1$: $\approx 1.27 \times 10^{-10}$
- $X \sim \text{Uniform}[-1, 1]$ (continuous)
 - $\mu = 0, \ \sigma^2 = 1/3$
 - ► CLT: $\sqrt{3}Y \approx \text{Normal}(0,1)$
 - $P(Y > 0.1\sqrt{n}) = P(\sqrt{3}Y > 0.1\sqrt{3n}) \approx 1 F(0.1\sqrt{3n})$
 - ★ n = 10: ≈ 0.2919
 - ★ n = 100: ≈ 0.0416

Subsection 8

Distributions, properties and connections

Shapes of histograms: What distribution?

0.75

0.50

0.25

0.00

0.0

Linear combination of iid normals

$$X_1, \ldots, X_n \sim \stackrel{\checkmark}{\bowtie} \text{Normal}$$

- Let $X_i \sim \text{Normal}(\mu_i, \sigma_i^2)$
- Suppose $Y = a_1 X_1 + \cdots + a_n X_n$
 - ► Linear combination of informals
- Then,

$$Y \sim \mathsf{Normal}(\mu, \sigma^2)$$

where $\mu = E[Y] = a_1 \mu_1 + \dots + a_n \mu_n$, $\sigma^2 = a_1^2 \sigma_1^2 + \dots + a_n^2 \sigma_n^2$.

- Linear combinations of is normals is normal

Proof: Use moment generating functions
$$E[e^{\lambda t}] = E[e^{\lambda(x_1 + \dots + x_n)}] = E[e^{\lambda(x_1 + \dots +$$

Gamma distribution

$$X \sim \text{Gamma}(\alpha, \underbrace{\Longrightarrow}) \text{ if PDF } f_X(x) \propto \underbrace{x^{\alpha-1}e^{-\beta x}}, \underbrace{x>0}$$

- $\alpha > 0$: shape parameter, $\beta > 0$: rate parameter, $\theta = 1/\beta$: scale parameter
- Mean: α/β , Variance: α/β^2 , MGF: $(1-\lambda/\beta)^{-\alpha}$, $\lambda < \beta$
- Sum of *n* iid $Exp(\beta)$ is $Gamma(n, \beta)$
 - Proof: Use MGF (mostly)
- Square of Normal(0, σ^2) is Gamma(1/2, 1/2 σ^2)
 Proof: Use CDF method

Cauchy distribution

$$X \sim \mathsf{Cauchy}(\theta, \alpha^2)$$
 if PDF $f_X(x) = \frac{1}{\pi} \frac{\alpha}{\alpha^2 + (x - \theta)^2}$

- θ : location parameter, $\alpha > 0$: scale parameter
- Mean: undefined, Variance: undefined, MGF: undefined
- Suppose $X, Y \sim \text{iid Normal}(0, \sigma^2)$. Then,

$$\frac{X}{Y} \sim \mathsf{Cauchy}(0,1)$$

Beta distribution

$$X \sim \text{Beta}(\alpha, \beta) \text{ if PDF } f_X(x) \propto x^{\alpha-1} (1-x)^{\beta-1}, \underbrace{0 < x < 1}_{}$$

- $\alpha > 0, \beta > 0$: shape parameters
- Mean: $\alpha/(\alpha+\beta)$, Variance: $\alpha\beta/((\alpha+\beta)^2(\alpha+\beta+1))$
- Beta $(\alpha,1)$ has PDF $\propto x^{\alpha-1}$: power function distribution
- Suppose $X\sim \mathsf{Gamma}(\alpha,1/\theta)$, $Y\sim \mathsf{Gamma}(\beta,1/\theta)$, then $\frac{X}{X+Y}\sim \mathsf{Beta}(\alpha,\beta)$

Plots of PDFs

Subsection 9

Descriptive statistics of normal samples

Normal samples

$$X_1, \ldots, X_n \sim \text{iid Normal}(\mu, \sigma^2)$$

- Very common assumption in many situations
 - CLT is used as justification, often

Normal samples

$$X_1, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Normal}(\mu, \sigma^2)$$

- Very common assumption in many situations
 - CLT is used as justification, often
- Sample mean

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$

Sample variance

$$S^2 = \frac{(X_1 - \overline{X})^2 + \dots + (X_n - \overline{X})^2}{n-1}$$

- Recall: Sample mean and sample variance are random variables
- For normal samples, the distribution of the sample mean and variance can be characterised in more detail

Distribution of Sample Mean

$$X_1, \ldots, X_n \sim \text{iid Normal}(\mu, \sigma^2)$$

- $\bullet \ \overline{X} = \frac{1}{n}X_1 + \cdots + \frac{1}{n}X_n$
- Sample mean is a linear combination of iid normal random variables
 - So, Sample mean has a normal distribution

Distribution of Sample Mean

$$X_1, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Normal}(\mu, \sigma^2)$$

- $\bullet \ \overline{X} = \frac{1}{n}X_1 + \cdots + \frac{1}{n}X_n$
- Sample mean is a linear combination of iid normal random variables
 - So, Sample mean has a normal distribution

$$\overline{X} \sim \mathsf{Normal}(\mu, \sigma^2/n)$$

- $E[\overline{X}] = \mu$
- $Var(\overline{X}) = \frac{1}{n^2}\sigma^2 + \dots + \frac{1}{n^2}\sigma^2 = \sigma^2/n$

Sum of squares of normal samples: Chi-square

$$X_1, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Normal}(0, \sigma^2)$$

- X_i^2 : Gamma $(1/2, 1/2\sigma^2)$, independent
- **Result**: Sum of *n* independent Gamma (α, β) is Gamma $(n\alpha, \beta)$

Sum of squares of normal samples: Chi-square

$$X_1,\ldots,X_n\sim\mathsf{iid}\;\mathsf{Normal}(0,\sigma^2)$$

- X_i^2 : Gamma $(1/2, 1/2\sigma^2)$, independent
- **Result**: Sum of *n* independent $Gamma(\alpha, \beta)$ is $Gamma(n\alpha, \beta)$

$$X_1^2 + \dots + X_n^2 \sim \mathsf{Gamma}(\frac{n}{2}, \frac{1}{2\sigma^2})$$

• Gamma(n/2,1/2): called Chi-square distribution with n degrees of freedom, denoted χ^2_n

Sample mean and variance of normal samples

Theorem

Suppose $X_1, \ldots, X_n \sim Normal(\mu, \sigma^2)$. Then,

- **1** $\overline{X} \sim Normal(\mu, \sigma^2/n)$
- $(n-1)S^2 \sim \chi^2_{n-1}$, Chi-square with n-1 degrees of freedom.
- 3 \overline{X} and S^2 are independent.
 - For normal samples, the joint distribution of sample mean and variance is precisely known.

is precisely known.

$$S^{\frac{1}{2}} = (X_1 - \overline{X})^{\frac{1}{2}} + \dots + (X_n - \overline{X})^{\frac{1}{2}}$$

$$(n-1) S^{\frac{1}{2}} = (X_1 - \overline{X})^{\frac{1}{2}} + \dots + (X_n - \overline{X})^{\frac{1}{2}} \sim X_{n-1}^{\frac{1}{2}}$$