LISTA 10: FIS670 - Métodos Computacionais da Física. (Prof. Leandro Rizzi)

Exercício 1. Diversas abordagens de problemas na Física requerem o uso de números pseudo-aleatórios. Bons geradores de números pseudo-aleatórios usualmente possuem [1]:

- aleatoriedade: números da sequência assumem valores entre 0 e 1 amostrados de acordo com uma distribuição uniforme em uma sequência minimamente correlacionada;
- período longo: um número grande de chamadas pode ser feito sem que a sequência se repita;
- eficiência computacional: execução rápida e que requer pouca memória;
- reprodutibilidade: estado inicial (semente) determina totalmente a sequência de números aleatórios;
- portabilidade: sequências idênticas para computadores/compiladores/sistemas operacionais diferentes;
- homogeneidade: até mesmo os bits são aleatórios.

Considere, por exemplo, o gerador de números pseudo-aleatórios disponível no arquivo marsaglia.f90, o qual é uma adaptação do gerador desenvolvido por Marsaglia [1] e que possui todas as características descritas acima. Tal gerador consiste de três subrotinas:

ranmar(xr): subrotina principal que fornece um número aleatório xr entre 0 e 1 a cada vez que é chamada;

rmaget(): armezena o estado atual do gerador no arquivo seedou.rng;

rmaset(): inicializa o gerador dependendo das variáveis lógicas seed_list e get_seed; três tipos de inicialização são possíves:

- ♦ valores default: seed_list=.FALSE. e get_list=.FALSE., nesse caso não é necessário nenhum arquivo de entrada para inicializar o gerador;
- vitilizando lista: seed_list=.TRUE. e get_list=.FALSE., aqui é preciso tanto do arquivo seeds.txt (que contém uma lista de sementes) quanto do arquivo input.dat (o qual define qual semente da lista será utilizada);
- continuando sequência: seed_list=.FALSE. e get_list=.TRUE., nesse caso é necessário renomear o arquivo seedou.rng para seedin.rng, o qual será lido para inicializar o estado do gerador
 exatamente do ponto onde foi chamado pela última vez.
- a) Mostre através de um gráfico que uma sequência de números pseudo-aleatórios x_n com $n=1,\ldots,100$ pode ser também obtida por partes, isto é, obtendo primeiro x_n com $n=1,\ldots,50$ e depois utilizando a inicialização continuando sequência para obter x_n com $n=51,\ldots,100$.
- b) A partir de uma sequência de números x_n com N números, obtenha histogramas $H_m = H(x_m)$ normalizados, isto é, $\sum_m H_m \Delta x = 1$, com $\Delta x = 0.1$ para $N = 10^3$, 10^4 e 10^6 .
- \mathbf{c}) A partir de uma sequência com N números pseudo-aleatórios é possível obter sua auto-correlação, que é dada por

$$C(i) = \frac{1}{\sigma^2(n_k - i)} \sum_{s=1}^{n_k - i} (x_s - \bar{x})(x_{s+i} - \bar{x}) , \qquad (1)$$

sendo as estimativas para a média e a variância da sequência calculadas, respectivamente, como

$$\bar{x} = \frac{1}{n_k} \sum_{l=1}^{n_k} x_l \tag{2}$$

$$\sigma^2 = \frac{1}{n_k} \sum_{l=1}^{n_k} (x_l - \bar{x})^2 . \tag{3}$$

Assim, o tempo de auto-correlação integrado pode ser estimado como [2,3]

$$\tau_{\text{int}} = \frac{1}{2}C(0) + \sum_{i=1}^{n_k} C(i) \quad , \tag{4}$$

onde o valor $2\tau_{\rm int}$ indica o número médio de passos necessários para que a sequência x_n torne-se descorrelacionada; note que esse valor **não** deve depender do valor n_k . Faça um gráfico de $2\tau_{\rm int}$ em função de $n_k = 2^k$ com $k = 1, \ldots, 20$ utilizando a subrotina **ranmar()**. Grafique a auto-correlação C(i) em função de $i = 0, \ldots, 30$ utilizando um n_k grande, isto é, onde $2\tau_{\rm int}$ é aproximadamente constante.

Exercício 2. Considere a sequência de números pseudo-aleatórios com $N=2^{20}$ valores do arquivo random_seq.dat.

a) Calcule a média \bar{x} (Eq. 2) e a variância σ^2 (Eq. 3) dos valores x_n dessa sequência. Comente se o valor de 2σ estimado numericamente é compatível com o intervalo de valores observados no gráfico da sequência x_n .

- b) Faça um gráfico (log-log se necessário) do tempo de auto-correlação integrado $2\tau_{\rm int}$ em função de $n_k=2^k$ e forneça uma estimativa para o valor aproximadamente constante de $2\tau_{\rm int}$ para n_k grande.
- c) Grafique a auto-correlação C(i) em função de i assumindo $n_k \approx 4 \times (2\tau_{\rm int})$.
- d) De acordo com o método de Jackknife [1], estimativas menos viesadas para a média e a variância de sequências correlacionadas podem ser obtidas através de uma análise onde a sequência com N pontos é divida em N_a subintervalos com n_a pontos cada, ou seja, $N = N_a \times n_a$. Nesse método a média e a variância são definidos como

$$\bar{x}_J = \frac{1}{N_a} \sum_{j=1}^{N_a} \bar{x}_j \qquad e \qquad \sigma_J^2 = \frac{1}{N_a} \sum_{j=1}^{N_a} \sigma_j^2 \quad ,$$
 (5)

onde

$$\bar{x}_j = \frac{1}{N - n_a} \sum_{k \neq \{j\}}^N x_k \quad , \quad \bar{x}_j^2 = \frac{1}{N - n_a} \sum_{k \neq \{j\}}^N x_k^2 \quad e \quad \sigma_j^2 = \bar{x}_j^2 - \bar{x}_j^2 \quad ,$$
 (6)

sendo que a notação $k \notin \{j\}$ indica que k percorre toda a sequência com N valores, **exceto** os n_a pontos que pertencem ao j-ésimo subintervalo. Calcule $2\sigma_J$ utilizando $N_a = 256$ e compare com 2σ obtido no item (a). Discuta os resultados em relação ao intervalo de valores (flutuações) observado no gráfico da sequência x_n .

Exercício 3. Considere a simulação de um gás ideal onde N=1000 moléculas puntuais não-interagentes de massa $m=10^{-26}\,\mathrm{kg}$ estão em um recipiente fechado aproximadamente bidimensional (d=2) de lado $L=100\,\mathrm{\mathring{A}}$ à uma temperatura constante igual à $T=303\,\mathrm{K}$.

a) Crie uma subrotina que forneça condições iniciais para as posições das moléculas $(r_{x,i}, r_{y,i})$ distribuidas uniformemente no recipiente e as velocidades $(v_{x,i}, v_{y,i})$ distribuidas de acordo com a distribuição de Maxwell com variância $\sigma^2 = k_B T/m$. Note que é possível obter variáveis v_x e v_y amostradas de acordo com uma distribuição gaussiana (vide pág. 23 de [1]) com média zero e variância σ^2 fazendo

$$r = \sigma \sqrt{-2\ln(1-u)}$$
 , $v_x = r\cos\phi$, $e \quad v_y = r\sin\phi$, (7)

com u e ϕ sendo números aleatórios distribuidos uniformemente, isto é, $u \in (0,1)$ e $\phi \in (0,2\pi)$.

- b) Considerando a evolução temporal das posições das moléculas $\vec{r_i}(t_{n+1}) = \vec{r_i}(t_n) + \vec{v_i}\Delta t$, com $\Delta t = t_{n+1} t_n = 0.1$ ps, grafique a energia cinética do sistema $K = \sum_{i=1}^N m v_i^2/2$ em função do tempo t_n assumindo que cada vez que a molécula choca-se com a parede do recipiente a velocidade dela seja alterada aleatoriamente de acordo com 7.
- c) Forneça a evolução temporal das estimativas numéricas para a média (sobre as moléculas) do módulo das velocidades $|\bar{v}|$ e para a raíz da média das velocidades quadráticas $v_{\rm rms} = (\bar{v}^2)^{1/2}$ das moléculas do gás, comparando com os resultados teóricos esperados para essas duas grandezas.

Exercício 4. Considere o modelo de urna Ehrenfest, onde N partículas são inicialmente distribuidas aleatoriamente entre duas urnas A e B. Então, a partir da condição inicial definida por $i=i_0$ partículas na urna A, é possível obter a evolução do número de partículas i_n nesta caixa após o n-ésimo sorteio realizando uma simulação onde a partícula sorteada é transferida para a outra caixa (note que a partícula sorteada pode estar tanto na caixa A quando na B). Considerando M condições inicias distintas, podemos obter uma estimativa para a distribuição de probabilidades $\boldsymbol{\pi}^{(n)} = (\pi_0^{(n)}, \pi_1^{(n)}, \dots, \pi_N^{(n)})$, com os valores $\pi_k^{(n)}$ estimados por

$$\pi_k^{(n)} \approx \frac{H_k^{(n)}}{M} \quad , \tag{8}$$

onde $H_k^{(n)}$ é o número de vezes que observa-se um número de partículas i=k na caixa A logo após ao n-ésimo sorteio. Obtenha estimativas para $\pi^{(n)}$ em tempos $n=0,1000,2000,3000,\ldots,10000$ assumindo N=599 partículas e $M=M^{(1)}+M^{(2)}=10^7$ condições iniciais diferentes, sendo $M^{(1)}=0,5\times 10^7$ condições iniciais com $i_0=534$ e $M^{(2)}=0,5\times 10^7$ condições iniciais com $i_0=535$. Inclua também o gráfico do número médio de partículas $\langle i\rangle$ em função do número de sorteios n.

Referências:

- [1] B. A. Berg. Markov Chain Monte Carlo Simulations and Their Statistical Analysis (World Scientific, 2004).
- [2] A. D. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms. Lectures at the Cargese Summer School on "Functional Integration: Basics and Applications" (1996).
- [3] http://www.hep.fsu.edu/ berg/teach/mcmc08/material/lecture07mcmc3.pdf