→ Import Data

```
1 import warnings
2 warnings.filterwarnings('ignore')
1 from keras.datasets import mnist
1 # the data, split between train and test sets
2 (x_train, y_train), (x_test, y_test) = mnist.load_data()
1 from keras import backend as K
2 K.image_data_format()
「→ 'channels last'
1 # 'channels_last' data format
2 x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
3 \times \text{test} = x_{\text{test.reshape}}(x_{\text{test.shape}}[0], 28, 28, 1)
1 input_shape = (28, 28, 1)
1 x_train = x_train.astype('float32')
2 x_test = x_test.astype('float32')
3 x_train /= 255
4 x_test /= 255
1 # convert class vectors to binary class matrices
2 from keras.utils import to_categorical
3 y_train = to_categorical(y_train, 10)
4 y_test = to_categorical(y_test, 10)
```

→ Create CNN Model

```
10 model.add(Dropout(0.5))
11 model.add(Dense(10, activation='softmax'))
1 model.summary()
```

By Model: "sequential_5"

Layer (type)	Output	Shape	Param #
conv2d_9 (Conv2D)	(None,	26, 26, 32)	320
conv2d_10 (Conv2D)	(None,	24, 24, 64)	18496
max_pooling2d_5 (MaxPooling2	(None,	12, 12, 64)	0
dropout_9 (Dropout)	(None,	12, 12, 64)	0
flatten_5 (Flatten)	(None,	9216)	0
dense_9 (Dense)	(None,	128)	1179776
dropout_10 (Dropout)	(None,	128)	0
dense_10 (Dense)	(None,	10)	1290

Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0

→ Compile CNN Model

→ Train CNN Model

```
Saved successfully!

3 epochs=20,
4 verbose=1,
5 validation_split=0.2)

$\tilde{\text{C}}$
```

```
Train on 48000 samples, validate on 12000 samples
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
```

```
Saved successfully!

1 model.evaluate(x_test, y_test, verbose=0)

    [0.025763151499420656, 0.9918]

1 from matplotlib import pyplot as plt
2 epochs = history.epoch
3 acc = history.history['acc']
4 val_acc = history.history['val_acc']
5 plt.plot(epochs, acc, color='red', label='train data')
6 plt.plot(epochs, val_acc, color='yellow', label='validation data')
7 plt.title('Accuracy')
```

```
8 plt.legend()
9 plt.show()
```



```
1 epochs = history.epoch
2 loss = history.history['loss']
3 val_loss = history.history['val_loss']
4 plt.plot(epochs, loss, color='red', label='train data')
5 plt.plot(epochs, val_loss, color='yellow', label='validation data')
6 plt.title('Loss')
7 plt.legend()
8 plt.show()
```


DoubledMNIST?

1 # For practise