

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής - ΠΜΣ «Υπολογιστική Φυσική»

Μάθημα: Υπολογιστικός Ηλεκτρομαγνητισμός και Εφαρμογές

Διδάσκων: Θεόδωρος Σαμαράς

Σετ ασκήσεων: 1

Ημερομηνία παράδοσης: 28 Μαρτίου 2021

Άσκηση 1.1

Η αριθμητική ταχύτητα φάσης στον ελεύθερο χώρο της λύσης της διακριτής μονοδιάστατης κυματικής εξίσωσης δίνεται από τη σχέση

$$\tilde{v}_{p} = \frac{\omega}{\tilde{k}} = \frac{2\pi c}{\cos^{-1} \left[\frac{\Delta x^{2}}{(c\Delta t)^{2}} \left(\cos(\omega \Delta t) - 1 \right) + 1 \right]} \frac{\Delta x}{\lambda}$$

Σχεδιάστε τον λόγο της αριθμητικής προς την αναλυτική ταχύτητα φάσης (βλ. διαφάνεια 2-12 του S. Gedney) ως συνάρτηση του λόγου $\Delta x/\lambda$ για (α) c $\Delta t = \Delta x/2$ και (β) c $\Delta t = \Delta x/4$.

Άσκηση 1.2

Γράψτε τον κατάλληλο κώδικα, για να μελετήσετε τη μονοδιάστατη κυματική $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} εξίσωση με ένα εξωτερικό (βλ. διαφάνεια 2-4 του S. Gedney) και ένα εσωτερικό (βλ. διαφάνεια 2-29 του S. Gedney) αριθμητικό σχήμα ακρίβειας δεύτερης τάξης.$

- Υποθέστε ότι c = 1.
- Ω ς αρχική συνθήκη θεωρήστε έναν ορθογωνικό παλμό με $u_i^{-1} = \left\{ egin{matrix} 1, & i=2...11 \\ 0, & \text{αλλού} \end{matrix} \right.$

 Ω ς u_i^0 θεωρήστε τον ίδιο ορθογωνικό παλμό που έχει μετακινηθεί προς τα δεξιά κατά ένα χωρικό βήμα.

- Χρησιμοποιήστε συνοριακές συνθήκες Dirchlet στα δυο άκρα του υπολογιστικού χώρου (uⁿ = 0).
- Δείξτε στιγμιότυπα του οδεύοντος κύματος (παλμού) κάθε 25 χρονικά βήματα για τα πρώτα 100 χρονικά βήματα (πάρτε τον υπολογιστικό σας χώρο αρκετά μεγάλο, ώστε να μην έχει φτάσει ο παλμός στα άκρα του χώρου μέσα στα 100 αυτά βήματα). Τα στιγμιότυπα (u_i^n για n=25,50,75,100) αυτά να τα λάβετε και για τα δυο αριθμητικά σχήματα (εξωτερικό και εσωτερικό) αλλά και για τρία χρονικά βήματα: $\Delta t = 0.9 \ \Delta x/c, \ \Delta t = \Delta x/c, \ \text{and} \ \Delta t = 1.1 \Delta x/c.$ (Το Δx αφήνεται στη δική σας επιλογή...)
- Σχολιάστε και προσπαθήστε να εξηγήσετε τι βλέπετε στα στιγμιότυπα, ως προς το σχήμα του παλμού.