



# The Art of Training Deep Neural Networks

King Abdullah University of Science and Technology (KAUST)
KAUST Academy





# Table of Contents

- 1. Introduction
- 2. Losses & Metrics
- Hyperparameter Tuning
- 4. Reading & Debugging Loss Curves
- 5. Memory & Speed Optimisation

#### Introduction

- Training Al models is an iterative process of trying, failing, and refining.
- Success depends on empirical experimentation, not just theory.
- Practically, we can offer guidelines on what is likely to work, but there are no guarantees.



#### Introduction

- In this session, we'll explore the key components that influence deep learning training.
- What they are, why they matter, and how to optimize them.



# **Losses & Metrics**

What You Optimize Is What You Get.







# Loss vs Metric: spot the difference

| Role   | Used during | Differentiable? | Typical examples                                |
|--------|-------------|-----------------|-------------------------------------------------|
| Loss   | ?           | ?               | Cross-Entropy, MSE, L1, Huber, Focal, Dice-Loss |
| Metric | ?           | ?               | Accuracy, F1, mAP, IoU, AUC-ROC, MAE            |





# Loss vs Metric: spot the difference

| Role   | Used during            | Differentiable? | Typical examples                                |
|--------|------------------------|-----------------|-------------------------------------------------|
| Loss   | Back-prop optimisation | Yes             | Cross-Entropy, MSE, L1, Huber, Focal, Dice-Loss |
| Metric | Validation / reporting | No              | Accuracy, F1, mAP, IoU, AUC-ROC, MAE            |

"Loss is for machines, metrics are for humans."





| Loss                                  | Minimises                         | Used for                                   |
|---------------------------------------|-----------------------------------|--------------------------------------------|
| Mean Squared Error (MSE)              | L² distance between points/pixels | Regression / autoencoders                  |
| Mean Absolute Error (MAE)             | ?                                 | Regression / autoencoders                  |
| Huber (Smooth L1) Loss                | ?                                 | Regression / autoencoders                  |
| Dice / IoU Loss                       | ?                                 | Segmentation / Detection                   |
| Cross-Entropy (CE) / KL<br>divergence | ?                                 | Classification / language<br>models (LLMs) |





| Loss                                  | Minimises                         | Used for                                |
|---------------------------------------|-----------------------------------|-----------------------------------------|
| Mean Squared Error (MSE)              | L² distance between points/pixels | Regression / autoencoders               |
| Mean Absolute Error (MAE)             | L¹ distance between points/pixels | Regression / autoencoders               |
| Huber (Smooth L1) Loss                | ?                                 | Regression / autoencoders               |
| Dice / IoU Loss                       | ?                                 | Segmentation / Detection                |
| Cross-Entropy (CE) / KL<br>divergence | ?                                 | Classification / language models (LLMs) |





| Loss                                  | Minimises                         | Used for                                |
|---------------------------------------|-----------------------------------|-----------------------------------------|
| Mean Squared Error (MSE)              | L² distance between points/pixels | Regression / autoencoders               |
| Mean Absolute Error (MAE)             | L¹ distance between points/pixels | Regression / autoencoders               |
| Huber (Smooth L1) Loss                | ?                                 | Regression / autoencoders               |
| Dice / IoU Loss                       | ?                                 | Segmentation / Detection                |
| Cross-Entropy (CE) / KL<br>divergence | ?                                 | Classification / language models (LLMs) |

Is MAE differentiable? No, but we can use a special type of gradient (subgradient) to minimize it.





| Loss                                  | Minimises                                                                          | Used for                                   |
|---------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|
| Mean Squared Error (MSE)              | L² distance between points/pixels                                                  | Regression / autoencoders                  |
| Mean Absolute Error (MAE)             | L¹ distance between points/pixels                                                  | Regression / autoencoders                  |
| Huber (Smooth L1) Loss                | Piecewise L¹ & L² (quadratic near 0, linear beyond) distance between points/pixels | Regression / autoencoders                  |
| Dice / IoU Loss                       | ?                                                                                  | Segmentation / Detection                   |
| Cross-Entropy (CE) / KL<br>divergence | ?                                                                                  | Classification / language<br>models (LLMs) |





| Loss                                  | Minimises                                                                          | Used for                                   |
|---------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|
| Mean Squared Error (MSE)              | L² distance between points/pixels                                                  | Regression / autoencoders                  |
| Mean Absolute Error (MAE)             | L¹ distance between points/pixels                                                  | Regression / autoencoders                  |
| Huber (Smooth L1) Loss                | Piecewise L¹ & L² (quadratic near 0, linear beyond) distance between points/pixels | Regression / autoencoders                  |
| Dice / IoU Loss                       | Overlap ratio between masks/boxes                                                  | Segmentation / Detection                   |
| Cross-Entropy (CE) / KL<br>divergence | ?                                                                                  | Classification / language<br>models (LLMs) |





| Loss                                  | Minimises                                                                          | Used for                                |
|---------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|
| Mean Squared Error (MSE)              | L² distance between points/pixels                                                  | Regression / autoencoders               |
| Mean Absolute Error (MAE)             | L¹ distance between points/pixels                                                  | Regression / autoencoders               |
| Huber (Smooth L1) Loss                | Piecewise L¹ & L² (quadratic near 0, linear beyond) distance between points/pixels | Regression / autoencoders               |
| Dice / IoU Loss                       | Overlap ratio between masks/boxes                                                  | Segmentation / Detection                |
| Cross-Entropy (CE) / KL<br>divergence | Information (entropy) difference between probability distributions                 | Classification / language models (LLMs) |





Q: Can we optimize for multiple losses at the same time?





# Some Popular Composite Losses

| Scenario            | Composite Loss                | Purpose                           |
|---------------------|-------------------------------|-----------------------------------|
| Detection (Yolo)    | BCE_obj + BCE_cls + λ·IoU_reg | Objectness + class + boxes        |
| Segmentation (UNet) | CE + λ·Dice                   | Pixels + mask overlap             |
| Generative (VAE)    | Reconstruction_obj + β·KL     | Rebuild + Gaussian latent         |
| Generative (GAN)    | CE_adv + λ·Perceptual         | Realism + texture & color details |

# Hyperparameters Tuning

Loss tells us where to climb Hyper-params decide how fast and which path.





#### **Hyperparameters**

#### What are Hyper-parameters?

⇒ values you set before training (not learned).

#### Role?

⇒ steer optimisation speed, capacity & generalisation.

#### How to set them?

 $\Rightarrow$  pick sensible starters  $\rightarrow$  train  $\rightarrow$  inspect  $\rightarrow$  iterate.





# Hyperparameters Tuning

| Hyperparameter             | Quick rule-of-thumb                                                                                                                   |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Optimiser                  | Usually Adam/AdamW works the best.                                                                                                    |
| LR                         | CNNs-based: (1e-3–1e-4)-ish ↔ Transformers-based: (1e-5–1e-6)-ish. Usually used with a scheduler (learning rate decay).               |
| Batch size                 | Vision: (4–32)-ish ↔ Text: (1–16)-ish keep fixed; scale only if needed.                                                               |
| Epochs                     | Vision ≈ 5–300; NLP ≈ 1-10; LLMs ≈ 1 (up to 3).                                                                                       |
| Img size / sequence length | prototype small (e.g. img_size ≈ 224*224, seq_len ≈ 256)  → upscale when everything else is stable.                                   |
| Backbone family & size     | start tiny → scale up once pipeline is stable<br>(e.g. EfficientNetV2-Small → EfficientNetV2-Large,<br>BERT-base → BERT-large, etc.). |

## Hyperparameters Tuning

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology



**Tip:** Scale batch size when adjusting learning rate.

But by how much?





#### Hyperparameters Tuning

Tip: Scale batch size when adjusting learning rate.

1. SGD: Use linear scaling rule\*

$$LR_{new} = LR_{old} imes rac{Batch Size_{new}}{Batch Size_{old}}$$

Adam/AdamW: Square-root scaling rule\*

$$ext{LR}_{new} = ext{LR}_{old} imes \sqrt{rac{ ext{Batch Size}_{new}}{ ext{Batch Size}_{old}}}$$





#### **Early Stopping**

- Goal: stop training just after validation metric flattens or degrades.
- How: monitor val-loss / val-metric → patience=N epochs.
- Helps auto-select optimal epochs value.







#### **Schedulers**

- A scheduler is the rule that automatically adjusts the learning rate during training.
- They help speed convergence, escape plateaus, and reach a better optimum.
- Most teams now default to cosine decay.







# **Schedulers Types**

| Scheduler Type | How It Triggers            | Typical Use-case                                           |
|----------------|----------------------------|------------------------------------------------------------|
| Step-based     | After every optimiser step | When low number of epochs used (e.g. NLP)                  |
| Epoch-based    | After every epoch          | When a high number of epochs used (e.g. Vision, Audio,etc) |





#### Warm-up

#### Problem:

- large initial LR + random weights
  - ⇒ gradients explode.
- large initial LR + Pretrained weights
  - ⇒ Forget previous knowledge.





#### Warm-up

- Solution: gradually increase LR from 0 → base LR over some steps/epochs (or 3-5 % of total steps/epochs).
- Usually used with Transformers.







## **Early-Stopping vs Fixed Epochs**

- Which one is better:
  - Many epochs + Early stopping.
  - Fixed epochs + Learning rate scheduler.





#### Early-Stopping vs Fixed Epochs

#### Which one is better:

- Many epochs + Early stopping.
- Fixed epochs + Learning rate scheduler.

#### **⇒** Recommended:

- 1. Use early stopping initially to discover optimal epoch range.
- 2. Then, set a fixed number of epochs and apply a scheduler to smoothly decay the learning rate within that range.





#### **Augmentations**

- Data augmentation is generating new training examples from existing ones through various transformations.
- Types:

#### Random Augmentations:

Flip, Crop, Noise,...

#### **Mix Augmentations:**

MixUp, CutMix,...

- How to choose? do error analysis
  - → add augs that mimics real mistakes.
- **Note**: heavy augs  $\Rightarrow$  add more epochs.





#### **Tuning Order (practical)**

- 1. LR & Epochs: lock batch size unless GPU forces change.
- 2. **Scheduler:** cosine is usually the best.
- 3. Augmentations: add gradually, re-train.
- 4. **Model / Input complexity:** scale backbone, image size, sequence length.





#### Tuning Order (practical)

#### • Tips:

- Make one change at a time.
- Start with small experiments, then scale up.
- Always ensure the loss behaves normally and check for common bugs (e.g., exploding loss, NaNs, unstable curves).

# Reading & Debugging Loss Curves

See the Signal, Catch the Bug





# **Debugging Loss Curves**

Let's have a look at some plots...





# Case 1: Diverging







#### **Case 1: Diverging**

- High LR
- Exploding gradient
- Bad data
- No normalization







#### **Case 2: Slow Decline**







#### **Case 2: Slow Decline**

- Very small LR
- Vanishing gradients







# Case 3: Oscillating







# Case 3: Oscillating

- High LR
- Small batch size
- Poor shuffle
- A lot of bad samples







# Case 4: Val flat







### Case 4: Val flat

- Coding bug in data preparation (e.g. wrong labels)
- Very hard val (distribution shift)
- Significant imbalance







### Case 5: Both flat







### Case 5: Both flat

- Wrong loss
- Arch mismatch
- Bad labels
- Frozen grads
- Very small LR
- No normalization







# Case 6: NaN Loss







# Case 6: NaN Loss

- Grad explode
- Log/Div 0







# Case 7: Sharp jump







# Case 7: Sharp jump

- NaNs/Inf
- Outliers
- Poor shuffling







# Case 8: Val rises, train falls







# Case 8: Val rises, train falls

Why did this happen?

 Overfitting (Big Model, many epochs, few data, weak aug,...)



# Memory & Speed Optimisation

Train Faster, Fit Bigger.







### **Mixed Precision**

- Mixed precision combines the use of both FP32 and lower bit floating points (FP16) to reduce memory footprint during model training.
- It halves GPU memory use and often boosts training throughput by 1.5–2×.
- Implementation.





### **Mixed Precision**

#### • How it works?

- 1. FP32 original weights are kept for full-precision updates.
- 2. Cast to FP16 for forward/backward.
- 3. Compute FP16 gradients, then cast back to FP32.
- 4. Optimizer updates the FP32 "original" copy.







### Quantization

- Convert the weights of a trained model from FP32 → INT8/4.
- Why?
  - Model size ↓ 4–8×
  - Inference speed ↑ 2-4×
  - Minimal accuracy drop \







# Mixed Precision vs Quantization

|             | Mixed Precision                  | Quantization                               |
|-------------|----------------------------------|--------------------------------------------|
| Data type   | FP32 ↔ FP16 (floats)             | FP32 → INT8/4 (integers)                   |
| When to use | Training                         | Inference                                  |
| Benefit     | ½ memory & 1.5–2× training speed | 4–8× smaller model & 2–4× faster inference |
| Drawback    | Needs GPU support (AMP)          | Possible small accuracy drop               |

Why not training on INT8/4 to make training even faster/lighter?





### **Mixed Precision vs Quantization**

|             | Mixed Precision                  | Quantization                               |
|-------------|----------------------------------|--------------------------------------------|
| Data type   | FP32 ↔ FP16 (floats)             | FP32 → INT8/4 (integers)                   |
| When to use | Training                         | Inference                                  |
| Benefit     | ½ memory & 1.5–2× training speed | 4–8× smaller model & 2–4× faster inference |
| Drawback    | Needs GPU support (AMP)          | Possible small accuracy drop               |

Why not training on INT8/4 to make training even faster/lighter? unstable or no learning.





### **Gradient Accumulation**

- Simulate large-batch training on limited GPU memory.
- How: accumulate gradients over k mini-batches before optimizer step.
- Result:
  - Stable updates
  - Bigger effective batch size without OOM.







# **Freezing Backbone**

- Freeze pretrained backbone and train only head or adapter layers.
- Benefits:
  - Faster training
  - Lower memory
  - Less overfitting on small data







# **Knowledge Distillation (Teacher-Student Models)**

- Knowledge distillation is a machine learning technique that aims to transfer the learnings of a large pre-trained model (teacher) to a smaller model (student).
- Why?
  - $\circ$  ≈ 95 % accuracy with < ½ parameters.
  - $\circ$  Memory & latency  $\downarrow \rightarrow$  deploy on edge/phone.
  - Decrease inference cost significantly.





# **Knowledge Distillation (Teacher-Student Models)**

- Knowledge distillation is a machine learning technique that aims to transfer the learnings of a large pre-trained model (teacher) to a smaller model (student).
- Why?
  - $\circ$  ≈ 95 % accuracy with < ½ parameters.
  - $\circ$  Memory & latency  $\downarrow \rightarrow$  deploy on edge/phone.
  - Decrease inference cost significantly.

Example: GPT-o3 → GPT-o3-mini





# Knowledge Distillation (Teacher-Student Models)

There are many ways of doing distillation, but simplest way is:

- 1. Inference teacher on large unlabeled pool → soft logits.
- 2. Consider these logits as labels.
- 3. Train student on these labels with loss:

```
KLDiv(Student logits // Teacher logits)
```





# Thanks for Attending!

**Prepared By: Mohamed Eltayeb**