THB6128

高细分两相混合式步进电机驱动芯片

一、 特性:

- 双全桥 MOSFET 驱动, 低导通电阻 Ron=0.55 Ω
- 最高耐压 36VDC, 大电流 2.2A (峰值)
- 多种细分可选(1、1/2、1/4、1/8、1/16、1/32、1/64、1/128)
- 自动半流锁定功能
- 快衰、慢衰、混合式衰减三种衰减方式可选
- 内置温度保护及过流保护

二、 管脚图:

三、 管脚说明:

端子 No	端子符号	端子说明
17	DOWN	通电锁定时输出端
14/23	SGND	信号地
20	OSC1	斩波频率设定电容连接端
18	PFD	衰减模式选择电压输入端
15	VREF	电流设定端
11	VMB	B 相 电机电源连接端
28	M1	细分设置端
27	M2	细分设置端
26	M3	细分设置端
13	OUT2B	B相 OUTB输出端
10	NFB	B 相 电流检测电阻连接端
9	OUT1B	B相 OUTB输出端
12	PGNDB	B相 功率地
7	OUT2A	A 相 OUTA 输出端
6	NFA	A 相 电流检测电阻连接端
3	OUT1A	A 相 OUTA 输出端
4	PGNDA	A 相 功率地
25	ENABLE	脱机信号控制端
24	RESET	复位信号输入端
5	VMA	A 相 电机电源连接端
21	CLK	脉冲信号输入端
22	CW/CCW	正 / 反转信号输入端
19	0SC2	通电锁定检出时间设定电容连接端
16	MO	位置检出 Monitor 端
30	VREG1	内部稳压器用电容连接端
1	VREG2	内部稳压器用电容连接端
2	VM	电机电源连接端
29	ST/VCC	待机控制端

四、 电器参数:

1、 最高额定值 Absolute Maximum Ratings (Ta = 25°C)

项目	符号	额定值	符号
最高耐压	VMmax	36	V
最大输出电流	Iomax	2.2	A
最高逻辑输入电压	VINmax	6	V
VREF 最高输入电压	VREFmax	3	V
工作环境温度	Topg	$-20 \sim +85$	$^{\circ}$
保存环境温度	Tstg	$-55 \sim +150$	$^{\circ}$

2、 正常运行参数范围 Operating Range (Ta = 30 to 85°C)

参数	符号	最小	典型.	最大	单位
逻辑输入电压	VIN	4.5	5. 0	6	V
电源电压	VM	9		36	V
输出电流	Io	_		2	A
电流设定端	VREF	0		3	V

3、 电器特性 Electrical Characteristics (Ta = 25°C, VREF =1.5 V, VM = 24 V)

项目	符号	条件	最小	标准	最大	符号
待机时消耗电流	IMstn	ST="L"		200		μА
消耗电流	IM	ST="H"、OE="H"、无负载		4		mA
TSD 温度	TSD			180		$^{\circ}$
Thermal Hysteresis 值	ΔTSD			40		$^{\circ}$
逻辑端子输入电流	IinL1	VIN=0.8V		8		μА
	IinH1	VIN=5V		50		μА
逻辑输入"H"Level 电压	Vinh		2.0			V
逻辑输入"L"Level 电压	Vinl				0.8	V
FDT 端子"H"Level 电压	Vfdth		3.5			V
FDT 端子"M"Level 电压	Vfdtm		1. 1		3. 1	V
FDT 端子"L"Level 电压	Vfdt1				0.8	V
斩波频率	Fch	Cosc1=100pF		100		KHz
0SC1 端子充放电电流	Iosc1			10		μА
斩波振荡电路	Vtup1			1		V
电压阈值	Vtdown1			0.5		V
VREF 端子输入电流	Iref	VREF=1.5V	-0.5			μА
DOWN 输出残电压	VolDO	Idown=1mA			400	mV
MO 端子残电压	VolMO	Imo=1mA			400	mV
通电锁定切换频率	Falert	Cosc2=1500pF		1.6		Hz
0SC2 端子充放电电流	Iosc2			TBD		μА
通电锁定切换振荡电路	Vtup2			TBD		V
电压阈值	Vtdown2			TBD		V
REG1 输出电压	Vreg1			5		V
REG2 输出电压	Vreg2			19		V
Blanking 时间	Tb1			1		uS
输出						
输出 ON 阻抗	Ronu	Io=2.0A、上側 ON 阻抗		0.3		Ω
THULL ON PLANE	Rond	Io=2.0A、下側 ON 阻抗		0. 25		Ω
输出漏电流	Ioleak	VM=36V			50	μА
二极管正向压降	VD	ID = -2.0A		1		V
电流设定基准电压	VRF	VREF=1.5V、電流比 100%		300		mV
输出短路保护						
Timer Latch 时间	Tscp			256		μs
·						

五、 使用说明

1、细分设定(M1、M2、M3)

M1	M2	М3	细分数
L	L	L	1
Н	L	L	1/2
L	Н	L	1/4
Н	Н	L	1/8
L	L	Н	1/16
Н	L	Н	1/32
L	Н	Н	1/64
Н	Н	Н	1/128

2、衰减模式设定

PFD 为衰减方式控制端,调节此端电压可以选择不同的衰减方式,从而获得更好的驱动效 果。

VPFD	衰减方式
3. 5 <vpfd<vcc< td=""><td>慢衰减模式</td></vpfd<vcc<>	慢衰减模式
1. 1V <vpfd<3. 1v<="" td=""><td>混合式衰减模式</td></vpfd<3.>	混合式衰减模式
VPFD<0.8V	快衰减模式

^{**}混合式衰减模式中,80%为慢衰减,20%为快衰减。

3、电流设定

VREF 电流设定端,调整此端电压即可设定驱动电流值

Io (100%) = VREF* (1/5) * (1/Rs) Rs 为 NFA(B)外接检测电阻

(例) VREF=1.5V、Rs 电阻为 0.3Ω时,设定电流为:

Iout = (1.5V/5) / 0.3Ω = 1.0A

4、待机功能

ST/VCC 端子为低电平时,THB6128 进入待机模式,所有的逻辑被重置,关断输出。ST/VCC 端子为高电平时芯片恢复正常工作模式。待机时芯片以极低功耗工作(200uA)。

5、CLK 脉冲输入端

输	·入	芯片工作状态	
ST/VCC	CLK	心开工肝状态	
L	*	待机状态	
Н		输出励磁 Step	
Н		保持励磁 Step	

6、CW/CCW: 电机正反转控制端

CW/CCW 为低电平时,电机正转 CW/CCW 为高电平时,电机反转

7、RESTER: 上电复位端

RESET 端子为低电平时,输出为初始模式。励磁位置不再与 CLK、CW/CCW 端子关联,而被固定在初始位置。初识位置时,MO 端子输出低电平。

8、ENABLE: 使能端

ENABLE 端子为低电平时,输出强制关断,为高阻状态。但是,由于内部逻辑电路仍在动作,如果在 CLK 端子输入信号,励磁位置仍在进行。因此,将 ENABLE 重新置为高电平时,根据 CLK 输入,遵循进行的励磁位置的电平输出。

9、DOWN、MO 输出端

输出端子为开漏式输出。各端子在设定状态下导通,输出低电平。

端子状态	DOWN	MO
低电平	通电锁定时	初始位置
0FF	通电时	初始以外

DOWN 在 CLK 输入低于 1.6Hz 时导通,输出低电平。正常使用时它和 VREF 端用一电阻 R 连接,当 DOWN 为低电平时,通过 R 将 VREF 的值拉低,而达到降低输出电流的作用。可通过调整 R 的大小来设定不同值的锁定电流。

当电机每转动一个步距脚 1.8°时, MO 输出一个低电平。

10、斩波频率设定功能

斩波频率由 OSC1 端子端子连接的电容,依据下面的公式设定。

Fcp = 1 / $(Cosc1 / 10 \times 10^{-6})$ (Hz)

(例) Cosc1=100pF 时, 斩波频率如下。

Fcp = 1 $/ (100 \times 10^{-12} / 10 \times 10^{-6}) = 100 (kHz)$

11、输出短路保护电路

THB6128 为防止对电源或对地短路导致其损坏的情况,内置了短路保护电路,使输出置于 待机模式。检测出输出短路状态时,短路检出电路动作,关断一次输出。此后,延迟一段时 间(typ:256uS)之后再度输出,如果输出仍然短路的话,将输出固定于待机模式。

由输出短路保护电路动作而使输出固定于待机模式的场合,通过给 ST/VCC 端一个低电平解除锁定。

12、半流锁定输出端

输出端子为开漏式输出,从 CLK 输入的一个上升沿脉冲开始,在由 OSC2 连接的电容决定的时间以内,下一个 CLK 的上升沿脉冲没有输出时, DOWN 输出低电平。当有下一个 CLK 的上升沿脉冲时关断输出。

保持通电电流切换时间(Tdown)由 OSC2 端子连接的电容由如下的公式设定。

$$Tdown = Cosc2 \times 0.4 \times 10^9 \text{ (s)}$$

(例)Cosc2=1500pF时,保持通电电流切换时间如下。

Tdown = $1500pF \times 0.4 \times 10^9 = 0.6$ (s)

六、 参考电路图 Wiring diagram

七、 封装尺寸 Package Dimensions

