Machine Learning facilitates bibliometric analyses of emerging fields with inconsistent terminology and enables mapping of unexplored fields

	Inclusion probability ≥ .9			Inclusion probability <.9 ∩ ≥.7*		
Round of Active Learning	<i>n</i> Predicted	<i>n</i> Included	Precision	<i>n</i> Predicted	<i>n</i> Included	Precision
1	211	107	.51	76	43	.57
2	74	74	1	62	59	.95

Inconsistent Terminology
↓
Broader Search
False Positives
↓
ML-Assisted Screening

Criteria	Search Dataset	ML Dataset	
N. of publications	229	683	
Annual growth rate	9.33	13.07	
M citations	21.56	67.38	
Median citations	17	21	
M Twitter mentions	4.86	20.58	
Median Twitter mentions	1	2	
Open Access	34.74%	37.21%	

A similar trend is also observed in the journal distribution, where 5 of the Top 10 journals differ in distribution by 50%. **Vector Machine**

Citation Mining

Active Learning

Background

- Traditional bibliometric methods can be limited in their ability to analyze **emerging** fields where the object of study resists clear delineations, the boundaries between subfields are porous or the relationships between different subfields are complex.
- Inconsistent terminology prevents a satisfactory coverage of the construct of interest and leads to biased and distorted representations.
- Broadening the search dramatically increases the noise and the amount of publications needed to be screened, but ML helps semi-automatizing the screening process.

Aim

Mapping the emerging research landscape of translational psychotherapy and comparing the ML-augmented results with those based on a typical search query.

Methods

- PsycInfo & PSYNDEX databases
- APA-Thesaurus
- 200 000 + records
- Citation Mining
- Support Vector Machine for Screening Automation
- OpenScience Tools

Leveraging machine learning for bibliometric analysis of emerging fields

- ¹ ZPID Leibniz Institute for Psychology, Trier, Germany
- ² Goethe-University of Frankfurt, Dept. of Psychology
- ³ Philipps-University of Marburg, Dept. of Psychology