1 Lista de exercícios: Ajuste de curvas

1.1 Caso contínuo

- 1. Seja $f(x) = \frac{1}{x+2}$, $x \in [-1,1]$. Usando o método dos mínimos quadrados e o produto escalar usual em C[-1,1], aproximar a função f(x) por um polinômio do 2^0 grau.
- 2. Seja $f(x) = \frac{1}{x^4}$, $x \in [0,1]$. Usando o método dos mínimos quadrados, aproximar a função f(x) por um polinômio do tipo $P(x) = ax^2 + bx^4$, usando o seguinte produto escalar:

$$\langle f, g \rangle = \int_0^1 x^2 f(x) g(x) dx.$$
 (1)

Note que a base do sub-espaço neste caso é: $\{x^2, x^4\}$.

- 3. Seja $f(x) = (x^3 1)^2$, $x \in [0, 1]$. Usando o método dos mínimos quadrados, aproximar a função f(x) por:
 - a) uma reta,
 - b) um polinômio do 2º grau,

usando o produto escalar usual em C[0,1].

1.2 Caso discreto

1. Determinar, pelo método dos mínimos quadrados, a reta mais próxima dos pontos (x_i, y_i) para a função y = f(x) dada pela tabela:

Table 1: Caption

2. Determinar a parábola mais próxima dos pontos (x_i, y_i) para a função f = f(x) dada pela tabela: usando o método dos mínimos quadrados.

Table 2: Caption

3. Usando o método dos mínimos quadrados, aproxime a função dada pela tabela: por

Table 3: Caption

1

um polinômio do tipo: $P(x) = a + bx^3$, usando o produto escalar:

$$\langle x, y \rangle = \sum_{i=0}^{n} (i+1) x_i y_i.$$
 (2)

4. De uma tabela são extraídos os valores: usando o método dos mínimos quadrados,

Table 4: Caption

ajuste os dados acima por polinômio de grau adequado. Sugestão: use gráfico.