# GeeksQuiz

Computer science mock tests for geeks

|           | Dynamic Programming                                                 |
|-----------|---------------------------------------------------------------------|
| Question  | 1                                                                   |
| Which of  | the following standard algorithms is not Dynamic Programming based. |
| A         | Bellman–Ford Algorithm for single source shortest path              |
| В         | Floyd Warshall Algorithm for all pairs shortest paths               |
| С         | 0-1 Knapsack problem                                                |
| D         | Prim's Minimum Spanning Tree                                        |
| Discuss i | t                                                                   |
| Question  | 2                                                                   |
| We use d  | ynamic programming approach when                                    |
| A         | It provides optimal solution                                        |
| В         | The solution has optimal substructure                               |
| С         | The given problem can be reduced to the 3-SAT problem               |

| D          | It's faster than Greedy                                                                                                                                                                                                                                                            |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Discuss i  | t                                                                                                                                                                                                                                                                                  |  |
| Question   | 3                                                                                                                                                                                                                                                                                  |  |
| an array A | thm to find the length of the longest monotonically increasing sequence of numbers in A[0:n-1] is given below. Let Li denote the length of the longest monotonically increasing a starting at index i in the array. Initialize $L_{n-1}=1$ For all i such that $0 \le i \le n-2$   |  |
|            | $\begin{split} L_{_{_{i}}} &= \begin{cases} 1 + L_{_{_{i+1}}} \text{ if A [i]} < A [i+1] \\ 1 & \text{Otherwise} \end{cases} \\ \text{Finally the length of the longest monotonically increasing sequence is} \\ Max\left(L_{_{0}},L_{_{1}},\ldots,L_{_{n-1}}\right). \end{split}$ |  |
| Which of   | the following statements is TRUE?                                                                                                                                                                                                                                                  |  |
| A          | The algorithm uses dynamic programming paradigm                                                                                                                                                                                                                                    |  |
| В          | The algorithm has a linear complexity and uses branch and bound paradigm                                                                                                                                                                                                           |  |
| С          | The algorithm has a non-linear polynomial complexity and uses branch and bound paradigm                                                                                                                                                                                            |  |
| D          | The algorithm uses divide and conquer paradigm.                                                                                                                                                                                                                                    |  |
| Discuss i  | t                                                                                                                                                                                                                                                                                  |  |
| Question   | 4                                                                                                                                                                                                                                                                                  |  |
| Kadane a   | lgorithm is used to find:  Maximum sum subsequence in an array                                                                                                                                                                                                                     |  |

| В                                   | Maximum sum subarray in an array                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С                                   | Maximum product subsequence in an array                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D                                   | Maximum product subarray in an array                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Discuss i                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| multiplie<br>multiplie<br>multiplie | rices M1, M2, M3 and M4 of dimensions pxq, qxr, rxs and sxt respectively can be d is several ways with different number of total scalar multiplications. For example, when d as ((M1 X M2) X (M3 X M4)), the total number of multiplications is pqr + rst + prt. When d as (((M1 X M2) X M3) X M4), the total number of scalar multiplications is pqr + prs + pst. $q = 100$ , $r = 20$ , $s = 5$ and $t = 80$ , then the number of scalar multiplications needed is |
| Α                                   | 248000                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В                                   | 44000                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| С                                   | 19000                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D                                   | 25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Discuss i                           | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Question                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The subs                            | et-sum problem is defined as follows. Given a set of p positive integers. S = \21, 22, 23                                                                                                                                                                                                                                                                                                                                                                            |

The subset-sum problem is defined as follows. Given a set of n positive integers,  $S = \{a1, a2, a3, ..., an\}$  and positive integer W, is there a subset of S whose elements sum to W? A dynamic program for solving this problem uses a 2-dimensional Boolean array X, with n rows and W+1 columns. X[i, j], 1 <= i <= n, 0 <= j <= W, is TRUE if and only if there is a subset of  $\{a1, a2, ..., ai\}$  whose elements sum to j. Which of the following is valid for 2 <= i <= n and ai <= j <= W?

|           | Dynamic Programming - GeeksQuiZ                                                                                      |
|-----------|----------------------------------------------------------------------------------------------------------------------|
| Α         | $X[i,j] = X[i-1,j] \lor X[i,j-ai]$                                                                                   |
| В         | $X[i,j] = X[i-1,j] \vee X[i-1,j-ai]$                                                                                 |
| С         | X[i,j] = X[i-1,j] V X[i,j-ai]                                                                                        |
| D         | X[i,j] = X[i-1,j] V X[i-1,j-ai]                                                                                      |
| Discuss i |                                                                                                                      |
| Quescion  | •                                                                                                                    |
| In the ab | ove question, which entry of the array X, if TRUE, implies that there is a subset whose sum to W?                    |
| In the ab | ove question, which entry of the array X, if TRUE, implies that there is a subset whose                              |
| In the ab | ove question, which entry of the array X, if TRUE, implies that there is a subset whose s sum to W?                  |
| In the ab | ove question, which entry of the array X, if TRUE, implies that there is a subset whose s sum to W?  X[1, W]         |
| In the ab | ove question, which entry of the array X, if TRUE, implies that there is a subset whose s sum to W?  X[1, W]  X[n,0] |

## **Question 8**

A sub-sequence of a given sequence is just the given sequence with some elements (possibly none or all) left out. We are given two sequences X[m] and Y[n] of lengths m and n respectively, with indexes of X and Y starting from N. We wish to find the length of the longest common subsequence (LCS) of X[m] and Y[n] as I(m,n), where an incomplete recursive definition for the function I(i,j) to compute the length of The LCS of X[m] and Y[n] is given below:

- A expr1 ≡ l(i-1, j) + 1
- $\Rightarrow$  expr1 = l(i, j-1)
- expr2 = max(l(i-1, j), l(i, j-1))
- expr2  $\equiv$  max(l(i-1,j-1),l(i,j))

## Discuss it

## **Question 9**

Consider two strings A = "qpqrr" and B = "pqprqrp". Let x be the length of the longest common subsequence (not necessarily contiguous) between A and B and let y be the number of such longest common subsequences between A and B. Then x + 10y =\_\_\_.

- A 33
- **B** 23
- ( 43
- 34

## Discuss it

There are 9 questions to complete.



Iconic One Theme | Powered by Wordpress