(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年8 月4 日 (04.08.2005)

PCT

(10) 国際公開番号 WO 2005/071781 A1

(51) 国際特許分類7:

H01M 8/04, 8/10

(21) 国際出願番号:

PCT/JP2005/000559

(22) 国際出願日:

2005年1月19日(19.01.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-013107 2004年1月21日(21.01.2004) JF

(71) 出願人(米国を除く全ての指定国について): 松下電 器産業株式会社 (MATSUSHITA ELECTRIC INDUS-TRIAL CO., LTD.) [JP/JP]; 〒5718501 大阪府門真市大 字門真 1 0 0 6 番地 Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 柴田 礎一(SHI-BATA, Solchi). 浦田 隆行(URATA, Takayuki). 菅原 靖(SUGAWARA, Yasushi). 梅田 孝裕(UMEDA, Takahiro). 森田 純司(MORITA, Junji). 羽藤 一仁(HATOH, Kazuhito). 北野 幸信(KITANO, Yukinobu).
- (74) 代理人: 石井和郎、外(ISHII, Kazuo et al.); 〒5410041 大阪府大阪市中央区北浜2丁目3番6号 北浜山本 ビル Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,

[続薬有]

(54) Title: FUEL CELL SYSTEM

(54) 発明の名称:燃料電池システム

A...POWER SUPPLY FOR HOUSEHOLD

(57) Abstract: A fuel cell system that conducts a purge operation to supply an inert gas to the anode and/or cathode during the stop of operation of the fuel cell. The differential pressure is defined as $\Delta P=Pa-Pc$ where Pa is the pressure in the inlet port passage of the anode and Pc is the pressure in the inlet port passage of the cathode. The differential pressure ΔPp in purging is controlled so that the ΔPp may satisfy the relation: $0 < \Delta Pp \times \Delta Pp$. Thus, the stress in the solid electrolytic membrane is reduced, and the long-term or reliability of the fuel cell is improved.

P(57)要約: 燃料電池の運転停止時に、アノードおよび/またはカソードに不活性ガスを供給するパージ動作を行う燃料電池システムにおいて、アノードの入口側流路の圧カPaとカソードの入口側流路の圧カPcとの差圧△P 「=Pa-Pcと定義したとき、運転状態における差圧△Poと、パージ中の差圧△Ppが、O<△Po×△Ppの関)係を満足

WO 2005/0717