Prediction of Wine type using Deep Learning

We use deep learning for the large data sets but to understand the concept of deep learning, we use the small data set of wine quality. You can find the wine quality data set from the UCI Machine Learning Repository which is available for free. The aim of this article is to get started with the libraries of deep learning such as Keras, etc and to be familiar with the basis of neural network. About the Data Set: Before we start loading in the data, it is really important to know about your data. The data set consist of 12 variables that are included in the data. Few of them are as follows –

1. Fixed acidity: The total acidity is divided into two groups: the volatile acids and

the nonvolatile or fixed acids. The value of this variable is represented by in gm/dm3 in the data sets.

2. Volatile acidity: The volatile acidity is a process of wine turning into vinegar.

In this data sets, the volatile acidity is expressed in $\ensuremath{\mathsf{gm}}/\ensuremath{\mathsf{dm}}\xspace$ 3.

- 3. Citric acid : Citric acid is one of the fixed acids in wines. It's expressed in g/dm3 in the data sets.
- 4. Residual Sugar : Residual Sugar is the sugar remaining after fermentation stops, or is stopped.

It's expressed in g/dm3 in the data set.

5. Chlorides : It can be a important contributor to saltiness in wine.

The value of this variable is represented by in gm/dm3 in the data sets.

6. Free sulfur dioxide : It is the part of the sulfur dioxide that is added to a wine.

The value of this variable is represented by in gm/dm3 in the data sets.

7. Total Sulfur Dioxide : It is the sum of the bound and the free sulfur dioxide.

The value of this variable is represented by in gm/dm3 in the data sets.

Step #1: Know your data.

In [2]: # Loading the data.
Import Required Libraries

import matplotlib.pyplot as plt

import pandas as pd

```
Prediction of Wine type using Deep Learning
          import numpy as np
           # Read in white wine data
          white = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/wine-
           # Read in red wine data
           red = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/wine-qu
          # First rows of `red`
In [3]:
           red.head()
Out[3]:
                                                                free
                                                                         total
               fixed
                      volatile
                                citric
                                       residual
                                                 chlorides
                                                              sulfur
                                                                        sulfur
                                                                                density
                                                                                          pH sulphates alcohol
                       acidity
                                 acid
              acidity
                                          sugar
                                                            dioxide
                                                                      dioxide
                                                     0.076
          0
                  7.4
                          0.70
                                 0.00
                                             1.9
                                                                11.0
                                                                          34.0
                                                                                0.9978
                                                                                        3.51
                                                                                                     0.56
                                                                                                               9.4
          1
                  7.8
                          0.88
                                 0.00
                                                     0.098
                                                                25.0
                                                                                 0.9968
                                                                                                     0.68
                                             2.6
                                                                          67.0
                                                                                        3.20
                                                                                                               9.8
          2
                                                     0.092
                                                                                 0.9970
                  7.8
                          0.76
                                 0.04
                                             2.3
                                                                15.0
                                                                          54.0
                                                                                        3.26
                                                                                                     0.65
                                                                                                               9.8
                                                                                 0.9980 3.16
          3
                          0.28
                                 0.56
                                                     0.075
                                                                                                     0.58
                 11.2
                                             1.9
                                                                17.0
                                                                          60.0
                                                                                                               9.8
          4
                  7.4
                          0.70
                                 0.00
                                             1.9
                                                     0.076
                                                                11.0
                                                                          34.0
                                                                                 0.9978
                                                                                        3.51
                                                                                                     0.56
                                                                                                               9.4
          # Last rows of `white`
In [4]:
           white.tail()
                                                                            total
Out[4]:
                                                                    free
                   fixed
                          volatile
                                    citric
                                          residual
                                                                  sulfur
                                                                           sulfur
                                                                                              рΗ
                                                     chlorides
                                                                                                  sulphates alcoh
                                                                                   density
                           acidity
                                     acid
                 acidity
                                             sugar
                                                                dioxide
                                                                          dioxide
           4893
                              0.21
                                     0.29
                                                         0.039
                                                                    24.0
                                                                             92.0
                                                                                   0.99114
                                                                                            3.27
                                                                                                        0.50
                                                                                                                  1.
                     6.2
                                                1.6
           4894
                      6.6
                              0.32
                                     0.36
                                                8.0
                                                         0.047
                                                                    57.0
                                                                            168.0
                                                                                   0.99490
                                                                                           3.15
                                                                                                        0.46
                                                                                                                   ć
                                                                                                        0.46
                                                                                                                   ć
          4895
                     6.5
                              0.24
                                     0.19
                                                1.2
                                                         0.041
                                                                    30.0
                                                                            111.0
                                                                                   0.99254
                                                                                           2.99
           4896
                      5.5
                              0.29
                                     0.30
                                                         0.022
                                                                    20.0
                                                                            110.0
                                                                                   0.98869
                                                                                            3.34
                                                                                                        0.38
                                                                                                                  12
                                                1.1
          4897
                     6.0
                              0.21
                                     0.38
                                                8.0
                                                         0.020
                                                                    22.0
                                                                             98.0
                                                                                   0.98941
                                                                                            3.26
                                                                                                        0.32
                                                                                                                  11
          # Take a sample of five rows of `red`
In [5]:
           red.sample(5)
Out[5]:
                                                                    free
                                                                            total
                          volatile
                   fixed
                                    citric residual
                                                     chlorides
                                                                  sulfur
                                                                           sulfur
                                                                                   density
                                                                                              рΗ
                                                                                                   sulphates
                                                                                                             alcoh
                  acidity
                           acidity
                                     acid
                                             sugar
                                                                dioxide
                                                                          dioxide
            792
                     7.1
                              0.61
                                     0.02
                                                2.5
                                                         0.081
                                                                    17.0
                                                                             87.0
                                                                                   0.99745
                                                                                            3.48
                                                                                                        0.60
                                                                                                                   ć
             39
                     7.3
                              0.45
                                     0.36
                                                5.9
                                                         0.074
                                                                    12.0
                                                                             87.0
                                                                                   0.99780
                                                                                           3.33
                                                                                                        0.83
                                                                                                                  1(
                     10.2
                              0.42
                                                         0.070
                                                                                   0.99710 3.04
                                                                                                                   ć
             56
                                     0.57
                                                3.4
                                                                     4.0
                                                                             10.0
                                                                                                        0.63
                                                         0.076
                                                                                   0.99672
           1145
                     8.2
                              0.20
                                     0.43
                                                2.5
                                                                    31.0
                                                                             51.0
                                                                                            3.53
                                                                                                        0.81
                                                                                                                  1(
           1410
                     6.6
                              0.96
                                     0.00
                                                1.8
                                                         0.082
                                                                     5.0
                                                                             16.0 0.99360 3.50
                                                                                                                  11
                                                                                                        0.44
```

```
In [6]: # Describe `white`
white.describe()
```

Out[6]:

total sulfur dioxide	free sulfur dioxide	chlorides	residual sugar	citric acid	volatile acidity	fixed acidity	
4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	count
138.360657	35.308085	0.045772	6.391415	0.334192	0.278241	6.854788	mean
42.498065	17.007137	0.021848	5.072058	0.121020	0.100795	0.843868	std
9.000000	2.000000	0.009000	0.600000	0.000000	0.080000	3.800000	min
108.000000	23.000000	0.036000	1.700000	0.270000	0.210000	6.300000	25%
134.000000	34.000000	0.043000	5.200000	0.320000	0.260000	6.800000	50%
167.000000	46.000000	0.050000	9.900000	0.390000	0.320000	7.300000	75%
440.000000	289.000000	0.346000	65.800000	1.660000	1.100000	14.200000	max

→

In [7]: # Check for null values in `red`.

Double check for null values in `red`
pd.isnull(red)

Out[7]:

•		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
	0	False	False	False	False	False	False	False	False	False	False	Fa
	1	False	False	False	False	False	False	False	False	False	False	Fa
	2	False	False	False	False	False	False	False	False	False	False	Fa
	3	False	False	False	False	False	False	False	False	False	False	Fa
	4	False	False	False	False	False	False	False	False	False	False	Fa
	•••				•••							
	1594	False	False	False	False	False	False	False	False	False	False	Fa
	1595	False	False	False	False	False	False	False	False	False	False	Fa
	1596	False	False	False	False	False	False	False	False	False	False	Fa
	1597	False	False	False	False	False	False	False	False	False	False	Fa
	1598	False	False	False	False	False	False	False	False	False	False	Fa

1599 rows × 12 columns

Step #2: Distribution of Alcohol.

```
In [8]: #Creating Histogram.
# Create Histogram
fig, ax = plt.subplots(1, 2)
```

Distribution of Alcohol in % Vol

In [9]: # Splitting the data set for training and validation.

```
In [14]: # Add `type` column to `red` with price one
    red['type'] = 1

# Add `type` column to `white` with price zero
    white['type'] = 0

# Append `white` to `red`
    wines = red.append(white, ignore_index = True)

C:\Users\DELL\AppData\Local\Temp\ipykernel_9084\120391132.py:8: FutureWarning: The
    frame.append method is deprecated and will be removed from pandas in a future vers
    ion. Use pandas.concat instead.
        wines = red.append(white, ignore_index = True)
In [19]: wines.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6497 entries, 0 to 6496
Data columns (total 13 columns):

	#	Column	Non-Null Coun	t Dtype
-				
	0	fixed acidity	6497 non-null	float64
	1	volatile acidity	6497 non-null	float64
	2	citric acid	6497 non-null	float64
	3	residual sugar	6497 non-null	float64
	4	chlorides	6497 non-null	float64
	5	free sulfur dioxide	6497 non-null	float64
	6	total sulfur dioxide	6497 non-null	float64
	7	density	6497 non-null	float64
	8	рН	6497 non-null	float64
	9	sulphates	6497 non-null	float64
	10	alcohol	6497 non-null	float64
	11	quality	6497 non-null	int64
	12	type	6497 non-null	int64

dtypes: float64(11), int64(2)
memory usage: 660.0 KB

In [20]: wines.head()

Out[20]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4

In [21]: wines.tail()

Out[21]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
6492	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	0.50	11
6493	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	0.46	ć
6494	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	0.46	ć
6495	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	0.38	12
6496	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	0.32	11

Step #3: Structure of Network

```
In [28]: # Import `Sequential` from `keras.models`
         from keras.models import Sequential
         # Import `Dense` from `keras.layers`
         from keras.layers import Dense
         # Initialize the constructor
         model = Sequential()
         # Add an input layer
         model.add(Dense(12, activation ='relu', input_shape =(11, )))
         # Add one hidden Layer
         model.add(Dense(9, activation ='relu'))
         # Add an output layer
         model.add(Dense(1, activation = 'sigmoid'))
         # Model output shape
         model.output_shape
         # Model summary
         model.summary()
         # Model config
         model.get_config()
         # List all weight tensors
         model.get_weights()
         model.compile(loss ='binary_crossentropy',
         optimizer ='adam', metrics =['accuracy'])
         Model: "sequential_1"
```

Layer (type)	Output Shape	Param #						
dense_3 (Dense)	(None, 12)	144						
dense_4 (Dense)	(None, 9)	117						
dense_5 (Dense)	(None, 1)	10						
Total papage: 271								

Total params: 271
Trainable params: 271
Non-trainable params: 0

Step #4: Training and Prediction