САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Дисциплина

«Администрирование компьютерных сетей»

Курсовая работа

Тема: «Проектирование корпоративной компьютерной сети Управления Росреестра»

Выполнил студент:

Бараев Дамир

Группа: 3540901/02001

Проверил:

Малышев Игорь Алексеевич

Санкт-Петербург 2021

Содержание

Список иллюстраций	3
1. Цель работы	4
2. Постановка задачи	
3. Требования и ограничения	
4. Этапы проектирования и его сроки	4
5. Ход работы	5
5.1 Создание сети	5
5.2 Настройка NET1	5
5.3 Настройка NET2	6
5.4 Настройка NET3	
5.5 Настройка NET4	
5.6 Настройка NAT	
5.7 Настройка Email и TFTP	
6. Тестирование сети	12
6.1. Проверка работоспособности сети	
6.2. Проверка работоспособности сети	
7. Вывод	

Список иллюстраций

Рисунок 1 - Настройка DHCP сервера	6
Рисунок 2 - Настройка IP PC0	
Рисунок 3 - Настройка маршрутизатора	
Рисунок 4 - IP-Конфигурация одного из ПК в NET3	
Рисунок 5 - Конфигурация коммутатора в подсети NET4	9
Рисунок 6 - Конфигурация маршрутизатора	9
Рисунок 7 - IP-Конфигурация одного из ПК в подсети NET4	10
Рисунок 8 - Настройка Email-сервиса	11
Рисунок 9 - Настройка доступа к Email-серверу на одном из пользовательских узлов	
Рисунок 10 - Ping от маршрутизатора к конечному пользователю	12
Рисунок 11 - Ping от маршрутизатора к внешнему маршрутизатору	13
Рисунок 12 - Загрузка файла по TFTP	
Рисунок 13 - Получение письма.	14

1. Цель работы

- Создать и настроить компьютерную сеть для управления Росреестра по региону средствами Cisco Packet Tracer.
- Установить необходимые сервисы.
- Разграничить области компьютерной сети.
- Настроить выход во внешнюю сеть.
- Выполнить проверку работы сети.

2. Постановка задачи

Разрабатываемая сеть должна отвечать следующим требованиям:

- 1. Иметь несколько подсетей:
 - пользовательская (для сотрудников);
 - почтовый сервис и в которой хранятся рабочие файлы компании.
- 2. Пользовательская сеть должна иметь доступ к другим подсетям, а также к сети "интернет";

Реализуемая функциональность подсетей:

- 1. Пользовательская (для сотрудников):
 - Настроенный DHCP сервер, для автоматического получения адреса сотрудниками
- 2. Подсеть с сайтом компании:
 - Email
 - ТГТР сервер для хранения файлов

3. Требования и ограничения

Основное требование, которое должно удовлетворяться при проектировании сети — это обеспечение доступа пользователей ко всем разделяемым ресурсам в пределах их прав. В целях информационной безопасности следует разграничить доступ пользователей на уровне отделов, так же в связи с родом деятельности, а именно оказание услуг пользования компьютерами и доступа в Интернет, следует усилить меры безопасности по контролю несанкционированного доступа.

4. Этапы проектирования и его сроки

Дата получения задания: «28» января 2021 г.

- 1. Анализ ТЗ и эскизный проект (март-апрель 2021)
- 2. Архитектурное проектирование ККС (апрель 2021)
- 3. Техническое проектирование и макетирование ККС (апрель 2021)
- 4. Тестирование работоспособности и оценка эффективности ККС (апрельмай 2021)

5. Ход работы

5.1 Создание сети

Для создания сети, были использованы следующие элементы Cisco Packet Tracer:

- Конечные устройства:
 - PC-PT компьютер;
 - Server-PT сервер;
 - Printer-PT принтер;
- Сетевые устройства:
 - Router-2911 роутер;
 - 2960 коммутатор на 24 порта;

Связь между устройствами была произведена с использованием инструмента **Automatically choose connection type**, который автоматически подключает интерфейсы устройств.

Была спроектирована следующая сеть:

Представленную сеть можно разделить на следующие подсети:

- NET1 Серверная к которой есть доступ из NET2 и NET3
- NET2 1 этаж сотрудников
- NET3 2 этаж сотрудников
- NET4 Бухгалтерия, имеющая два VLAN
- NET5 Эмуляция сети интернет

5.2 Настройка NET1

В подсеть NET1 входят только коммутатор и два сервера.

- ІР первого сервера-192.168.10.2
- ІР второго сервера-192.168.10.3

На одном из серверов устанавливаем DHCP, чтобы компьютеры в подсети NET2 и NET3 получали динамический IP-адрес. Адрес у серверов должен быть статическим.

На коммутаторе создаем VLAN4, так как сервера определяются в отдельный VLAN. Далее настраиваем два Access-порта и один Trunk-порт на следующий коммутатор, на котором во все стороны настроены Trunk-порты. Через него подсоединяемся к маршрутизатору. На маршрутизаторе поднимаем Sub-Interface, задаем ему IP-адрес 192.168.4.1 и прописываем команду «encapsulation dot1Q 4», где «4» означает номер VLAN.

DHCP сервер настраиваем следующим образом:

DHCP										
Service		On		(Off					
Pool Name	DHCP-VLA	N2								
Default Ga	teway 192.168.2	.1								
DNS Server 8.8.8.8										
Start IP A	ddress :			192	168	2	0			
Subnet Mask: 255 255 0							0			
Maximum number of Users :										
TFTP Server: 0.0.0.0										
Add			Save		Remove					
Pool Name	Default Gateway	DNS Server	Start IP Address	Subnet	Mask	Max Number	TFTP Sever			
serverPool	0.0.0.0	0.0.0.0	192.168.4.0	255.255	.255.0	256	0.0.0.0			
DHCP-VLAN2	192.168.2.1	8.8.8.8	192.168.2.0	255.255	.255.0	256	0.0.0.0			
DHCP-VLAN3	192.168.3.1	8.8.8.8	192.168.3.0	255.255	.255.0	256	0.0.0.0			
DHCP-VLAN5	192.168.5.1	8.8.8.8	192.168.5.0	255.255	.255.0	256	0.0.0.0			

Рисунок 1 - Настройка DHCP сервера

5.3 Настройка NET2

В коммутаторе подсети NET1 создается VLAN2, и на интерфейсах: Access-порт и Trunk-порт. Далее подсоединяемся к маршрутизатору через еще один коммутатор, в котором в обе стороны настроены Trunk-порты. На маршрутизаторе поднимаем Sub-Interface и задаем ему IP-адрес 192.168.2.1. Аналогично, как и в настройке NET1, прописываем команду «encapsulation dot1Q 4». Настраиваем IP helper-address, прописывая в него IP-сервера DHCP.

На конечных устройствах указываем динамический ІР.

Рисунок 2 - Настройка ІР РСО

5.4 Настройка NET3

Аналогичным способом настраиваем подсеть NET3. В промежуточный коммутатор на одном из интерфейсов прописываем Trunk-порт для VLAN 2-4.

```
interface GigabitEthernet0/0
no ip address
duplex auto
speed auto
shutdown
interface GigabitEthernet0/1
no ip address
duplex auto
speed auto
interface GigabitEthernet0/1.1
encapsulation dot1Q 1 native
ip address 192.168.1.1 255.255.255.0
ip helper-address 192.168.4.3
shutdown
interface GigabitEthernet0/1.2
encapsulation dot1Q 2
ip address 192.168.2.1 255.255.255.0
ip helper-address 192.168.4.3
interface GigabitEthernet0/1.3
encapsulation dot1Q 3
ip address 192.168.3.1 255.255.255.0
ip helper-address 192.168.4.3
interface GigabitEthernet0/1.4
encapsulation dot1Q 4
ip address 192.168.4.1 255.255.255.0
interface GigabitEthernet0/2
no ip address
duplex auto
speed auto
 shutdown
```

Рисунок 3 - Настройка маршрутизатора

Рисунок 4 - IP-Конфигурация одного из ПК в NET3

5.5 Настройка NET4

Подсеть NET4 была поделена два VLAN. Два компьютера и принтер на одном VLAN, и другие два компьютера на другом VLAN. Также в подсети NET4 имеется отдельный сервер с TFTP и DHCP. Настраиваем всё также, как и в предыдущих пунктах.

В итоге у нас имеется: VLAN2, VLAN3, VLAN4.

VLAN2 и VLAN3 получают IP-адрес автоматически. Адрес сервера статичен — 192.168.44.2.

```
interface FastEthernet0/1
 switchport access vlan 2
switchport mode access
interface FastEthernet0/2
 switchport access vlan 2
switchport mode access
interface FastEthernet0/3
switchport access vlan 2
switchport mode access
interface FastEthernet0/4
switchport access vlan 3
switchport mode access
interface FastEthernet0/5
switchport access vlan 3
switchport mode access
interface FastEthernet0/6
switchport access vlan 4
switchport mode access
interface FastEthernet0/7
 switchport trunk allowed vlan 2-4
switchport mode trunk
```

Рисунок 5 - Конфигурация коммутатора в подсети NET4

```
interface GigabitEthernet0/1
no ip address
duplex auto
speed auto
interface GigabitEthernet0/1.2
encapsulation dot1Q 2
ip address 192.168.22.1 255.255.255.0
ip helper-address 192.168.33.2
ip helper-address 192.168.44.1
ip helper-address 192.168.44.2
interface GigabitEthernet0/1.3
encapsulation dot1Q 3
ip address 192.168.33.1 255.255.255.0
ip helper-address 192.168.44.1
ip helper-address 192.168.44.2
interface GigabitEthernet0/1.4
encapsulation dot1Q 4
ip address 192.168.44.1 255.255.255.0
ı
```

Рисунок 6 - Конфигурация маршрутизатора

Рисунок 7 - IP-Конфигурация одного из ПК в подсети NET4

На маршрутизаторе прописываем маршруты от NET4 до маршрутизатора, который будет иметь доступ в сеть. Настраивается это с помощью команды «ip route».

5.6 Настройка NAT

На внешней сети у нас имеется два элемента: маршрутизатор и сервер. У обоих элементов публичные («белые») IP-адреса. В маршрутизаторе на оба интерфейса прописываются «белые» IP. Один интерфейс смотрит на сеть самой организации, а другой - на доступный сервер.

На основном маршрутизаторе, в интерфейсе, который смотрит во внешнюю сеть, прописываем «белый» IP. В нем происходит настройка NAT. На интерфейсе, который смотрит наружу, прописываем команду: «ip nat outside», а на интерфейсы, которые смотрят внутрь, «ip nat inside».

Также создаем Access-list, где с помощью команды «permit» добавляем наши подсети. В команде «permit» используется «wildcard mask», поэтому после IP-адресов прописываем: «0.0.0.255».

5.7 Настройка Email и TFTP

В подсети NET1 на одном из серверов был настроен Email.

Рисунок 8 - Настройка Email-сервиса

Доменное имя — **rosreestr.ru**. Добавлены все пользователи, которые подключены к сети.

На клиентских узлах, при помощи утилиты **Email**, был настроен доступ к Email-серверу организации.

Рисунок 9 - Настройка доступа к Email-серверу на одном из пользовательских узлов

Настройка TFTP сервиса была произведена во вкладке **Services**, где его необходимо включить, и, для удобства, удалить предварительно сгенерированные в нем файлы.

6. Тестирование сети

6.1. Проверка работоспособности сети

Проверяем каждую подсеть утилитой «ping». Каждый VLAN проверяем от маршрутизатора и до внешнего сервера.

```
Router#ping 192.168.22.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.22.2, timeout is 2 seconds:
.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 0/0/1 ms

Router#
```

Рисунок 10 - Ping от маршрутизатора к конечному пользователю

```
Router#ping 213.234.20.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 213.234.20.1, timeout is 2 seconds:
!.!.!

Success rate is 60 percent (3/5), round-trip min/avg/max = 0/0/0 ms
```

Рисунок 11 - Ping от маршрутизатора к внешнему маршрутизатору

6.2. Проверка работоспособности сети

Открываем на *Router 1* консоль, где выполнены следующие команды:

Рисунок 12 - Загрузка файла по TFTP

- 1. Командой *enable* был совершен переход в привилегированный режим (можно заметить по символу решетки);
- 2. Командой *show flash* было выведено содержимое флеш-памяти (в данном случае это необходимо для тестовой загрузки по TFTP);
- 3. Командой *copy flash tftp* сообщаем о начале загрузке файла по TFTP, где далее указывается файл(ы), TFTP-сервер для загрузки, а также новое имя файла(ов).

На TFTP-сервере, в настройках TFTP появится выбранный ранее файл с указанным именем.

6.3. Проверка Email-сервиса

1. От пользователя user2@rosreestr.ru создается письмо пользователю user1@rosreestr.ru.

Для отправки необходимо нажать кнопку **Send**.

2. Заходим в утилиту **Email** от пользователя **user1@rosreestr.ru**, и получаем почту с помощью кнопки **Receive**.

Рисунок 13 - Получение письма

7. Вывод

В ходе выполнения данной курсовой работы был получен опыт по работе в Cisco Packet Tracer.

Построение и настройка были выполнены с помощью встроенных инструментов, которые в общем виде имитируют реальное оборудование. В каждой подсети были разные варианты проектирование, для разнообразия задач. Вариативность задач помогла закрепить все основные навыки, полученные при изучении Cisco Packet Tracer.

Решения, созданные Cisco Packet Tracer, более легковесны как в настройке, так и в проектировании.

Отличительной особенностью является то, что за любым пакетом можно наблюдать по шагам, что может помочь в определении ситуации из-за чего сеть может работать некорректно.

К недостаткам Cisco Packet Tracer можно отнести лишь то, что все действия ограничены, то есть установить на устройство какое-либо ПО или сервис, которого нет в Cisco Packet Tracer, не предоставляется возможным. Также отсутствует возможность работать с конкретными операционными системами.