

Вторая Студенческая Универсиада по эконометрике МГУ имени М. В. Ломоносова

27-28 апреля 2013, Москва

Задача 1. В соответствии с кейнсианской теорией анализируется зависимость спроса на деньги y_t (агрегат денежной массы М1, млрд. долл.) от валового национального продукта $x_t^{(1)}$ (ВНП, млрд. долл.) и процентных ставок по государственным облигациям $x_t^{(2)}$ (%) по годовым данным

$$(x_t^{(1)}, x_t^{(2)}, y_t), t = 1, 2, \dots, 12$$
 (*)

При этом, оцениваются две конкурирующие модели:

$$y_t = \theta_0 + \theta_1 \ x_t^{(1)} + \theta_2 \ x_t^{(2)} + \varepsilon_t \tag{1}$$

$$\ln y_t = \beta_0 + \beta_1 \ln x_t^{(1)} + \beta_2 \ln x_t^{(2)} + \tilde{\varepsilon}_t \tag{2}$$

Результаты статистического анализа моделей (1) и (2) по данным (*) приведены в табл. 1. Таблица 1

Переменная	Оценка коэф- фициента	Стандартные ошибки оценок коэффициентов	Природа случай- ных ошибок ε_t	\hat{R}^2
Модель (1):			Взаимнонекорре-	0,965
Константа	89,777	4,103	лированные, гетероскедастичные:	
x ⁽¹⁾	0,136	0,004	$D\varepsilon_t = 0.05 \left(x_t^{(1)}\right)^2$	
x ⁽²⁾	-2,577	1,189		
Модель (2):			Связаны моделью	0,975
Константа	0,575	0,082	автокорреляции 1-го порядка:	
$\ln x^{(1)}$	0,709	0,016	_	
		0.001	$\tilde{\varepsilon}_t = -0.40 \ \tilde{\varepsilon}_{t-1} + \delta_t$	
$\ln x^{(2)}$	-0,053	0,021		

Для анализа точности модели (2) были рассчитаны отношения наблюденных $\left(\hat{y}_t\right)$ и модельных $\left(\hat{y}_t = e^{0.575} \left(x_t^{(1)}\right)^{0.709} \left(x_t^{(2)}\right)^{-0.053}\right)$ значений денежной массы (см. табл. 2):

t	1	2	3	4	5	6	7	8	9	10	11	12
y_t/\hat{y}_t	1,003	1,006	1,149	0,928	1,026	1,006	0,980	1,086	0,981	0,952	1,022	1,080
	0	8	5	0	2	6	6	3	1	8	6	0

Требуется:

- 1) Объяснить высокие значения \hat{R}^2
- 2) Опишите общую схему процедур, с помощью которых была выявлена природа остатков ε_t .
- 3) Вычислить и прокомментировать эластичности y по $x_{13}^{(1)}$ и по $x_{13}^{(2)}$ в **модели 1** при $x^{(1)} = 1000$ и $x^{(2)} = 8$, а также при $x^{(1)} = 1600$ и $x^{(2)} = 5,0$; в **модели 2** при любых $x^{(1)}$ и $x^{(2)}$.
- 4) Рассчитать точечный прогноз на момент времени t = 13 спроса на деньги при заданных выше двух вариантах значений $x_{13}^{(1)}$ и $x_{13}^{(2)}$ по модели 1 и по модели 2.
- 5) Какая из моделей Вам представляется более предпочтительной с точки зрения экономической теории? Объясните почему?
- 6) К наблюдениям (*) добавились наблюдения за три последних года

$$\left(x_t^{(1)}, x_t^{(2)}, y_t\right), \quad t = 13,14,15,$$
 (**)

соответствующие периоду экономического кризиса.

Назовите и опишите процедуру, с помощью которой можно проверить наличие/отсутствие структурных изменений в каждой из моделей (1) и (2) после учета в их статистическом анализе наблюдений (**).

Задача 2. Страна Кейнсиания является закрытой экономикой без непосредственного государственного вмешательства, поэтому основное макроэкономическое тождество в ней имеет следующий вид:

$$Y_{t} = C_{t} + I_{t},$$

где Y_t – ВВП в месяце t, C_t – совокупное потребление в месяце t, а I_t – инвестиции в месяце t. Потребление следующим образом зависит от дохода:

$$C_t = C_A + mpcY_t + \varepsilon_t$$

где ε_t – случайные шоки потребления, которые представляют собой независимые одинаково распределенные случайные величины с нулевым математическим ожиданием и постоянной дисперсией, случайные шоки потребления не коррелированы с инвестициями. Структурных сдвигов в Кейнсиании не происходит, поэтому автономное потребление и предельная склонность к потреблению неизменны.

Вы знаете указанные выше факты об экономике Кейнсиании, а также располагаете ежемесячными данными о динамике потребления, инвестиций и ВВП в этой стране за последние 100 лет. Вас интересует, чему равна предельная склонность к потреблению в Кейнсиании.

Ваш ассистент осуществил предварительные расчеты и вычислил выборочные ковариации и дисперсии для имеющихся в вашем распоряжении переменных:

$$Cov(C_t, Y_t) = 150$$
, $Var(C_t) = 100$, $Var(Y_t) = 300$.

- (а) Найдите состоятельную оценку предельной склонности к потреблению в Кейнсиании. Обоснуйте свой ответ.
- (6) Эконометрист Джон Инконсистент, располагая той же самой информацией, что и вы, тоже решил получить оценку предельной склонности к потреблению. Используя обычный МНК, он просто оценивает регрессию потребления на доход. Объясните, почему результату, который получит Джон, нельзя доверять, и почему самого Джона надо гнать из профессии?

Задача 3. С целью прогноза доли тех студентов-выпускников бакалавриата, которые решат продолжить обучение в магистратуре, был проведен анализ выпусков бакалавриата предыдущих восьми лет, в ходе которого регистрировались значения переменных: $x_i^{(1)}$ (тыс.руб.) — среднедушевые доходы в семье i-го выпускника, $x_i^{(2)}$ — средний балл в его дипломе по трем основным дисциплинам, π — доля выпускников-бакалавриатов, решивших продолжить обучение в магистратуре (от общего числа окончивших бакалавриат). Были подсчитаны следующие оценки:

$$\overline{X}(1) = \begin{pmatrix} \overline{x}^{(1)}(1) \\ \overline{x}^{(2)}(1) \end{pmatrix} = \begin{pmatrix} 50, 3 \\ 4, 5 \end{pmatrix} \quad \text{if} \quad \overline{X}(2) = \begin{pmatrix} \overline{x}^{(1)}(2) \\ \overline{x}^{(2)}(2) \end{pmatrix} = \begin{pmatrix} 38, 2 \\ 3, 8 \end{pmatrix} - \dots$$

средние значения переменных $X = (x^{(1)}, x^{(2)})^{\mathrm{T}}$ *отдельно* по выпускникам, решившим продолжить обучение в магистратуре (класс 1), и по остальным выпускникам (класс 2), а также — ковариационные матрицы

$$\Sigma(1) = \Sigma(2) = \Sigma = \begin{pmatrix} 100 & 3,0 \\ 3,0 & 1,0 \end{pmatrix}$$

и доля $\pi = 0,3$.

Было также проверено, что предположение о нормальности распределения двумерной случайной величины X внутри каждого из классов не противоречит имеющимся исходным данным. Требуется:

- 1) Оценить долю тех студентов-выпускников бакалавриата, которые, имея среднедушевой доход в семье 60 тыс.руб. и средний балл по трем основным дисциплинам на уровне 4,2, решат продолжить обучение в магистратуре.
- 2) Какой из известных Вам моделей соответствует способ вычисления искомой доли, следующий из правильного решения задачи?

Задача 4. Анализируемый временной ряд может быть описан моделью

$$x(t) = 0,7x(t-1) - 0,1x(t-2) + \delta(t) - 0,2\delta(t-1),\tag{1}$$

в которой остатки $\delta(1)$, $\delta(2)$,... — взаимнонекоррелированны, имеют нулевые средние значения и дисперсию, равную 0,4.

Требуется:

- 1) Проверить стационарность и обратимость ряда (1).
- 2) Вычислить значения автокорреляционной функции (а.к.ф.) r(k) = corr(x(t), x(t-k)) при k = 0, 1, 2, 3. Определить характер ее поведения при k > 3.
- 3) Вычислить значения частной автокорреляционной функции (ч.а.к.ф.) $r_{\text{част.}}(2) = \text{corr}(x(t), x(t+2) \mid x(t+1))$.
- 4) Как изменится поведение автокорреляционных функций в случае отсутствия слагаемого $\delta(t-1)$ в правой части (1)?