Math 231b Problem Set 2

Lev Kruglyak

Due: February 14, 2023

Problem 1. Let W be a pointed k-space. Show that the functors

$$W \wedge -: k\mathbf{Top}_* \to k\mathbf{Top}_*$$
 and $(-)_*^W : k\mathbf{Top}_* \to k\mathbf{Top}_*$

are homotopy functors: they descend to well-defined functors

$$W \wedge -: \operatorname{ho}(k\mathbf{Top}_*) \to \operatorname{ho}(k\mathbf{Top}_*)$$
 and $(-)_*^W : \operatorname{ho}(k\mathbf{Top}_*) \to \operatorname{ho}(k\mathbf{Top}_*)$.

For the functor $W \wedge -$, suppose we had pointed k-spaces X and Y with maps $f,g:X \to Y$. By a simple construction, a homotopy $f \simeq g$ is equivalent to a map $H:X \wedge I_+ \to Y$, where I_+ is the interval disjoint union a basepoint. Applying the $W \wedge -$ functor gives us a map $W \wedge H:W \wedge (X \wedge I_+) \to Y$. If we use the natural associativity isomorphism on smash products, this can be considered as a map $W \wedge H:(W \wedge X) \wedge I_+ \to Y$, which by naturality must be a homotopy between the maps $W \wedge f$ and $W \wedge g$. This is sufficient to show that $W \wedge -$ is a well defined functor on homotopy categories.

For the other functor $(-)_*^W$, we first will construct a map $\Psi: A \wedge X_*^W \to (A \wedge X)_*^W$. Using the adjunction, associativity, natural isomorphisms, we get:

$$k\mathbf{Top}_*(X_*^W, X_*^W) \to k\mathbf{Top}_*(W \wedge (X_*^W), X) \to k\mathbf{Top}_*(A \wedge (W \wedge X_*^W), A \wedge X) \\ \to k\mathbf{Top}_*(W \wedge (A \wedge X_*^W), A \wedge X) \to k\mathbf{Top}_*(A \wedge X_*^W, (A \wedge X)^W)$$

So natural choice of map $A \wedge X_*^W \to (A \wedge X)_*^W$ is thus to just take the image of the identity 1_{X^W} under this sequence of compositions. A simpler presentation of this map is given by $(a,f) \in A \wedge X_*^W \mapsto ((a',x) \mapsto f(x)) \in (A \wedge X)_*^W$. Now suppose $f,g:X \to Y$ are two maps, and $H:X \wedge I_+ \to Y$ is a homotopy between them. By functoriality, we then have a map $H_*^W:(X \wedge I_+)_*^W \to Y_+^W$. Precomposing with Ψ , we get a map $H_*^W \circ \Psi:X_*^W \wedge I_+ \to Y_+^W$. It's clear to see that this is a homotopy between f_*^W and g_*^W by the expanded definition of Ψ , so this completes the proof.

Problem 2. Cofibration sequences and co-exactness.

Homotopy equivalence of mapping cones:

a. Use a homotopy $h: A \times I \to Y$ between the branches of the first diagram to construct a map $C(i) \to C(j)$ such that in the second diagram, the left square commutes and the right one commutes up to homotopy:

First of all, to disambiguate the homotopy $h: A \times I \to Y$, let $h(-,0) = g \circ i$ and $h(-,1) = j \circ f$. Now by the universal property of the pushout, to construct a map $X \cup_i CA \to Y \cup_j CB$, it suffices to construct maps $X \to Y \cup_j CB$ and $CA \times I \to Y \cup_j CB$ which agree on the map $i: A \to X$ and inclusion $A \to CA$. To get from $X \to Y \cup_j CB$ we can simply compose $g: X \to Y$ with the natural inclusion $i(j): Y \to Y \cup_j CB$. For the map $H: CA \times I \to Y \cup_j CB$, let's define it as

$$H(a,t) = \begin{cases} i(j)(h(a,2t)) & 0 \le t \le 1/2 \\ i_{CB}(Cf(a,2t-1)) & 1/2 \le t \le 1 \end{cases}$$

where $i(j): Y \to Y \cup_f CB$ and $i_{CY}: CB \to Y \cup_f CB$ are the natural maps. Note that this is well defined since at t=1/2, we have $i(j)(h(a,1))=(i(j)\circ j\circ f)(a)=i_{CB}(f(a))=i_{CB}(Cf(f(a),0))=i_{CB}(Cf(a,0))$. Furthermore, H is a well defined map on the cone, since $H(a,1)=i_{CB}(Cf(a,1))$ is a constant map. Next, we claim that $i(j)\circ g\circ i=H\circ \iota_A$ where $\iota:A\to CA$ is the natural inclusion. This is because for any $a\in A$, we have $i(j)\circ g\circ i(a)=i(j)(h(a,0))=H(a,0)=H\circ \iota_A(a)$. Putting everything together, we have a map $\lambda_h:C(i)\to C(j)$ by the universal property of the coproduct. We thus have two things to check.

- 1. The left square commutes: The bottom side is the map $X \to Y \cup_j CB = C(j)$ given by g composed with the inclusion $Y \to Y \cup_j CB$. However by construction of λ_h , the top square is also the composition of g with the inclusion $Y \to Y \cup_j CB$.
- 2. The right square commutes up to homotopy: Both maps $C(i) \to \Sigma B$ are uniquely determined by maps $X \to \Sigma B$ and $CA \to \Sigma B$ that agree on the map $A \to X$ and inclusion $A \to CA$. Since mapping from the mapping cones to the suspension collapses X,Y to a point, it suffices to just specify maps $CA \to \Sigma B$. The top map is the standard map $CA \to \Sigma B$ which sends $A \times I \to B \times I$ by $f \times I$ and passes to the quotient in both cases. The bottom map is the map which takes CA to the top half of ΣB . However these maps are clearly homotopic by linear interpolation.
- **b.** Use a homotopy $f \simeq g: X \to Y$ to construct a homotopy equivalence $C(f) \simeq C(g)$.

Letting h be the homotopy $f \simeq g$ and \overline{h} be the homotopy $g \simeq f$. Note that the functions $\lambda_h : C(f) \to C(g)$ and $\lambda_{\overline{h}} : C(g) \to C(f)$ are given on CX by:

$$\lambda_h(x,t) = \begin{cases} h(x,2t) & 0 \le t \le \frac{1}{2}, \\ (x,2t-1) & \frac{1}{2} \le t \le 1, \end{cases} \text{ and } \lambda_{\overline{h}}(x,t) = \begin{cases} h(x,1-2t) & 0 \le t \le \frac{1}{2}, \\ (x,2t-1) & \frac{1}{2} \le t \le 1, \end{cases}$$

Then the composition $\lambda_{\overline{h}} \circ \lambda_h$ is given by:

$$\lambda_{\overline{h}} \circ \lambda_h(x,t) = \begin{cases} h(x,2t) & 0 \le t \le \frac{1}{2}, \\ h(x,3-4t) & \frac{1}{2} \le t \le \frac{3}{4}, \\ (x,4t-3) & \frac{3}{4} \le t \le 1. \end{cases}$$

We can then define a homotopy $\lambda_{\overline{h}} \circ \lambda_h \simeq \mathrm{id}_{C(f)}$ by

$$H(x,t,s) = \begin{cases} h(x,2t(1-s)) & 0 \le t \le \frac{1-s}{2}, \\ h(x,(3-4t)(1-s)) & \frac{1-s}{2} \le t \le \frac{3(1-s)}{4}, \\ (x,(4t-3)+st) & \frac{3(1-s)}{4} \le t \le 1. \end{cases}$$

We can do a very similar thing for $\lambda_h \circ \lambda_{\overline{h}}$, so we have a homotopy equivalence $C(f) \simeq C(g)$.

Problem 3. Let p denote a prime number and let $n \geq 2$. Let $M(\mathbb{Z}/p, n) = S^{n-1} \cup_p D^n$ denote the n-dimensional mod p Moore space, and define the m-od p homotopy groups of a pointed space X to be $\pi_n(X; \mathbb{Z}/p) = [M(\mathbb{Z}/p, n), X]_*$. Since $M(\mathbb{Z}/p, n) \simeq \Sigma^{n-2} M(\mathbb{Z}/p, 2)$, this is a group for $n \geq 3$, and abelian for $n \geq 4$. When $n \geq 3$, prove that there is a short exact sequence

$$0 \to \pi_n(X)/p \to \pi_n(X; \mathbb{Z}/p) \to \operatorname{tors}_p \pi_{n-1}(X) \to 0.$$

This is the analogue of the universal coefficients theorem for homotopy groups.

Before constructing this exact sequence, we'll first prove some relevant properties of the degree of a map of spheres. (We've only defined it in terms of homology.)

Claim. For any $n \geq 1$, suppose $f: S^n \to S^n$ is a continuous map. We claim that $\deg f = \pm \deg \Sigma f$ where Σf is the induced map $\Sigma S^n \to \Sigma S^n$ and we use the homeomorphism $\Sigma S^n \cong S^{n+1}$.

Proof. We proved last semester that for any $n \geq 1$ there is a natural isomorphism $\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(\Sigma X)$ for any space X. Since this is natural in X, we can form a commutative square:

$$\widetilde{H}_n(S^n) \xrightarrow{f_*} \widetilde{H}_n(S^n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{H}_{n+1}(\Sigma S^n) \xrightarrow{\Sigma f_*} \widetilde{H}_{n+1}(\Sigma S^n)$$

All the groups involved are \mathbb{Z} , and the vertical maps must be the ± 1 maps since they are isomorphisms, thus we have $\deg f = \pm \deg \Sigma f$.

Claim. Let $n \geq 1$, and suppose $f: S^n \to S^n$ is a continuous map. For any space X, we defined the n-th homotopy group of X as $\pi_n(X) = [S^n, X]_*$. Thus we have an induced pullback map $f^*: \pi_n(X) \to \pi_n(X)$ given by precomposition with f. We claim that $f^*(\sigma) = \deg f \cdot \sigma$.

Proof. To prove this fully, we need a couple of facts from homotopy theory that we haven't proved yet. To make our life easier, let's assume that we have the natural group composition map $*: [S^n, X]_* \times [S^n, X]_* \to [S^n, X]_*$ which is associative, unital, and invertible. Furthermore, we assume that the map $f \in [S^n, S^n]_*$ is given by $p \cdot 1_{S^n} = 1_{S^n} * \cdots * 1_{S^n}$.

Now for any $\sigma \in \pi_n(X)$, the pullback map $f^*(\sigma)$ is given by $\sigma \circ f$, which under homotopy is $\sigma \circ (1_{S^n} * \cdots * 1_{S^n})$. By naturality of the group operation, this is $(\sigma \circ 1_{S^n}) * \cdots * (\sigma \circ 1_{S^n}) = \sigma * \cdots * \sigma$ as desired.

Now the observation that $M(\mathbb{Z}/p, n) \simeq \Sigma^{n-2}M(\mathbb{Z}/p, 2)$ follows from the fact that Σ is a left adjoint and thus preserves colimits, including adjunctions, so $\Sigma M(\mathbb{Z}/p, n) = \Sigma (S^{n-1} \cup_p D^n) \cong \Sigma S^{n-1} \cup_{\Sigma p} \Sigma D^n = M(\mathbb{Z}/p, n+1)$. So let's set $n \geq 3$ such that we have a group structure on $\pi_n(X; \mathbb{Z}/p)$. Recall that to define the Moore space, we have a pushout square

$$S^{n-1} \longrightarrow S^{n-1} \cup_f D^n$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$S^{n-1} \longrightarrow D^n$$

where $f: S^{n-1} \to S^{n-1}$ is some map of degree p. We can notice, either by construction or by the universal property that the composition $S^{n-1} \to S^{n-1} \to S^{n-1} \cup_f D^n$ is a homotopy cofiber sequence. Thus for any

space X we get the Barratt-Puppe long exact sequence:

$$[S^{n-1}, X]_* \stackrel{f_{n-1}^*}{\longleftarrow} [S^{n-1}, X]_* \stackrel{i(f_{n-1}^*)}{\longleftarrow} [S^{n-1} \cup_f D^n, X]_* \stackrel{\pi_{n-1}}{\longleftarrow} [\Sigma S^{n-1}, X]_* \stackrel{f_n^*}{\longleftarrow} [\Sigma S^{n-1}, X]_* \stackrel{\cdots}{\longleftarrow} \cdots$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\pi_{n-1}(X) \longleftarrow \pi_{n-1}(X) \longleftarrow \pi_n(X) \longleftarrow \pi_n(X) \longleftarrow \cdots$$

We can now make a couple of reductions to reduce this long exact sequence into the desired short exact sequence.

First recall that by the second claim, the map $f_{n-1}^*: \pi_{n-1}(X) \to \pi_{n-1}(X)$ is the multiplication by $\pm p$ map, and exactness says that $(f_{n-1}^*)^{-1}(c_*) = \operatorname{Im}(i(f_{n-1}^*))$. However $(f_{n-1}^*)^{-1}(c_*)$ is exactly $\operatorname{tors}_p \pi_{n-1}(X)$, so by the first isomorphism theorem we have an exact sequence:

$$\pi_n(X; \mathbb{Z}/p) \to \operatorname{tors}_p \pi_{n-1}(X) \to 0.$$

We can do the same thing on the other side of the diagram; by the first claim, the map $f_n^* = \Sigma f_{n-1}^*$ also has degree p, and exactness shows that $\pi_{n-1}^{-1}(c_*) = \operatorname{Im}(f_n^*) = p \cdot \pi_n(X)$. Thus we also have an exact sequence:

$$0 \to \pi_n(X)/p \to \pi_n(X; \mathbb{Z}/p).$$

The center term is exact by the long exact sequence, so we are done, and we get a short exact sequence:

$$0 \to \pi_n(X)/p \to \pi_n(X; \mathbb{Z}/p) \to \operatorname{tors}_p \pi_{n-1}(X) \to 0.$$

Problem 4. Let R denote a commutative ring. Given a chain complex of R-modules C and integer $i \in \mathbb{Z}$, let C[i] denote a chain complex with $C[i]_n = C[n-i]$ and boundary maps $d_n^{C[1]} = (-1)^i d_{n-i}^C$. Given a map $f: C \to D$ of chain complexes of R-modules, define the homotopy cofiber $i(f): D \to C(f)$ and construct a map $\pi(f): C(f) \to C[1]$ by analogy with the case of spaces.

Prove that applying H_0 to the bi-infinite sequence

$$\cdots \longrightarrow C(f)[-1] \xrightarrow{\pi(f)[-1]} C \xrightarrow{f} D \xrightarrow{i(f)} C(f) \xrightarrow{\pi(f)} C[1] \xrightarrow{f[1]} D[1] \xrightarrow{i(f)[1]} C(f)[1] \longrightarrow \cdots$$

gives rise to a long exact sequence

$$\cdots \longrightarrow H_{-1}(C(f)) \longrightarrow H_0(C) \longrightarrow H_0(D) \longrightarrow H_0(C(f)) \longrightarrow H_1(C) \longrightarrow H_1(D) \longrightarrow H_1(C(f)) \longrightarrow \cdots$$

Let $C(f)_{\bullet}$ be the chain complex given by:

$$C(f)_n = D_n \oplus C_{n-1}$$
 with $d^{C(f)}(d,c) = (d^D d + f(c), -d^C c).$

We have a clear map $i(f): D \to C(f)$ by taking the inclusion of $D_n \to D_n \oplus C_{n-1}$ and a map $\pi(f): C(f) \to C[1]$ by taking the projection $D_n \oplus C_{n-1} \to C_{n-1}$. It's clear that these are in fact chain map, by definition of the boundary map $d^{C(f)}$. Now let's prove that we get an exact sequence. Since this exact sequence is completely translation invariant, it suffices to prove three exactness conditions for any $n \in \mathbb{Z}$.

1. $\underline{\operatorname{Im}(H_{n-1}(\pi(f)[-1]))} = \operatorname{Ker}(H_n(f))$: For the forward inclusion, suppose $(\omega_d, \omega_c) \in D_{n+1} \oplus C_n = C(f)_{n-1}$ is a cycle, so $d^D\omega_d + f(\omega_c) = 0$ and $d^C\omega_c = 0$. Then $H_{n-1}(\pi(f)[-1])(\omega_d, \omega_c) = \omega_c$, and $H_n(f)(\omega_c) = 0$ since $f(\omega_c) = -d^D$ is a boundary. For the converse direction, suppose $\omega \in C_n$ and with $H_n(f)(\omega) = 0$. This means $f(\omega) = d^D\sigma$ for some $\sigma \in D_{n+1}$. Then $\omega = H_{n-1}(\pi(f)[-1])(-\sigma, \omega)$ which is a cycle because $d^{H(f)}(-\sigma, \omega) = (-f(\omega) + f(\omega), -d\omega) = 0$.

- 2. $\underline{\operatorname{Im}(H_n(f))} = \operatorname{Ker}(H_n(i(f)))$: For the forward inclusion, suppose $\omega \in C_n$ is a cycle, so $f(\omega) \in D_n$ is a cycle. Then $H_n(i(f))(f(\omega)) = (f(\omega), 0)$. This is also a cycle, since $d^{C(f)}(f(\omega), 0) = (d^D f(\omega), 0) = 0$. But up to boundaries, $0 = d^{C(f)}(0, \omega) = (f(\omega), -d^C \omega) = (f(\omega), 0)$, so $(f(\omega), 0) = 0$. In the reverse direction, suppose $\omega \in D_n$ with $H_n(i(f))(\omega, 0) = 0$. This means that there exists some $(\omega_d, \omega_c) \in D^{n+1} \oplus C_n$ with $d^{C(f)}(\omega_d, \omega_c) = 0$. Thus $d^D \omega_d + f(\omega_c) = \omega$ so $\omega = H_n(f)(\omega_c)$.
- 3. $\underline{\operatorname{Im}(H_n(i(f)))} = \operatorname{Ker}(H_n(\pi(f)))$: The forward direction follows trivially because $i(f) \circ \pi(f) = 0$. To prove the converse direction, suppose $(\sigma_d, \sigma_c) \in D_n \oplus C_{n-1}$ for some cycle (σ_d, σ_c) , with $H_n(\pi(f))(\sigma_d, \sigma_c) = 0$. This means that σ_c is a boundary, so $H_n(i(f))(\sigma_d) = (\sigma_d, 0)$ is equal to (σ_d, σ_c) relative to a boundary.