I. Proof of uan Kampen K=K,UKz, PEKINKz $E(K, n, K_{2}, p)$ $= (K_{2}, p)$ $= (K_{2}, p)$

(Van Kampen) If $K_1 \cap K_2$ connected then $E(K_1,p) \cong E(K_1,p) * E(K_2,p) / ((\epsilon)_{j_2(\epsilon)}) : \epsilon \in E(K_1 \cap K_2)$

Example
$$T^2$$
 $\pi_1(T^2) = \langle x,y \mid xyx'y' = i \rangle$

$$= \mathbb{Z}^2$$

$$\pi_1(A \cap B) = \mathbb{Z} = \langle x,y \rangle$$

$$R = \mathbb{D}^2$$

$$\pi_1(A) = \mathbb{Z} \times \mathbb{Z} = \langle x,y \rangle$$

$$\pi_1(T^2) = \pi_1(A) + \pi_1(B)$$

$$\pi_1(A \cap B) \xrightarrow{J^2} \pi_1(B)$$

$$\xi \longmapsto xyx'y' \qquad \xi \longmapsto 1$$

Recay presentation for E(Lip): Choise TCL max tree Write V., -, Va for vertices of L E(L,p) = { gij fr {vi,vj}el | gij=1 if {vi,vj}eT }

E(L,p) = { gij fr {vi,vj}el | gij gje=gik if {vi,vj,vk}el }

Proof of van Kampen compare présentations for E(L,p) u L= k, k, , kz, k, nkz. Chouse max the Tiz Kinkz Extend to max tree T, CK, & Tzc Kz Set T = T, UTz. Observe T is a max tree of K T, T,

aij=1 {vi,vijeT, aijqik=aik {vi,vijuk}e k, bij = 1 {u: 1/3 7 = T2 bijbik-pik {vi.vijuk} e Ke E(K)= { gij { vijvj} e k | gij=1 { vijvj e k } 9ijgjk=gik { vijvj u k} e k } {gij? = {aij? v {bij? but this is not a disjoint mon E(K.) * E(K) and E(K). Compare presentations for

le get from paresent ation for E(K1) * E(K2) to presentation for E(K) need only add relations 4: = bij it {vi,vi} E KinKz.

II. Simplicial approximation 5: |K|-11 11 Jmphicial if Recall sends simplices to simplices linearly. For xx|K| the courser of x corr(x) 17 the unique simples of K St. XE int lol. f.s: |K|->|L|, s simplicial, Say s is a simplicial approximation of f if s(x) ∈ carr (f(x)) AXE IKI.

Ex.
$$|K| = [0,1]$$
 $f:[0,1] \rightarrow [0,1]$
 $f(x) = x^2$

Then $s(x) = x$ is a simplicial approximation $f(x) = x^2$
 $f(x) = x^2$

Properties of a simplicial approximation $f(x) = x^2$
 $f(x) = x^2$

Properties of a simplicial approximation $f(x) = x^2$
 $f($

S simplicity to
$$S(\frac{1}{3})$$
 is a vertex of L
 $S(\frac{1}{3}) \in Carr(f(\frac{1}{3})) = [0, \frac{2}{3}] \implies S(\frac{1}{3}) \in \{0, \frac{2}{3}\}$
Case $S(\frac{1}{3}) = 0$ Then $S([\frac{1}{3}, \overline{1}]) = [0, \overline{1}]$
 $S(x) = \frac{3}{2}x - \frac{1}{2} \implies S(\frac{7}{3}) + \frac{2}{3}$
Simplicity if $S(\frac{1}{3}) = \frac{2}{3}$ find contradiction.

Similarly if $5(\frac{1}{3}) = \frac{2}{3}$ find contradiction.

=) f does not have a simplicial approximation

Lemma If s is a simplicial approx of f: |K|-> |L| than for s Proof WTS 3 h: IKI x [0,1] -11 Ll 1. $h|_{|K|\times 3} = f \qquad h|_{|K|\times 1} = S.$

re call $|K|, |L| \subseteq \mathbb{R}^N$ consider $h(x,t) = (1+t) f(x) + t \cdot s(x)$. Need to check $h(x,t) \in |L| \forall x,t$.

For xe IKI, let $\sigma = corr(f(x)).$ s(x) e | [101 is convex so straight line fall ITIC ILI f(x) to S(x) is contained 17 (0)

Thm (Simplicial approximation) f: |K|-> |L| any mp. 3 subdivision K' of K st. f:|K'|=|K|-|L|a simplicial approximation.

