Introductory Course on Non-smooth Optimisation

mercuacity course on their simestin openinguit

Lecture 03 - Krasnosel'skiĭ-Mann iteration

Outline

2 Monotone and non-expansive mappings

3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skiĭ-Mann iteration

Recap

Recap of descent methods:

- include gradient descent, proximal gradient descent
- convergence (rate) properties
 - objective function value
 - \circ O(1/k) convergence rate
 - o optimal $O(1/k^2)$ convergence rate
 - sequence
 - o $O(1/\sqrt{k})$ convergence rate
 - \circ optimal O(1/k) convergence rate
 - linear convergence under e.g. strong convexity

Operator splitting

Consider the problem

$$\min_{x \in \mathbb{R}^n} \mu_1 ||x||_1 + \mu_2 ||\nabla x||_1 + \frac{1}{2} ||Ax - f||^2.$$

In 1-D, both

$$\operatorname{prox}_{\gamma\|\cdot\|_1}(\cdot)$$
 and $\operatorname{prox}_{\gamma\|\nabla\cdot\|_1}(\cdot)$

have close form solution. However, not for

$$\mathsf{prox}_{\gamma(\|\cdot\|_1+\|\nabla\cdot\|_1)}(\cdot).$$

Operator splitting design properly structured scheme such that

- the proximal mapping of non-smooth functions are evaluated separated
- gradient descent is applied to the smooth part

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skiĭ-Mann iteration

Feasibility problem

Problem (Feasibility problem)

Consider finding a common point

find
$$x \in \Omega_1 \cap \Omega_2$$
,

where $\Omega_1, \Omega_2 \in \mathbb{R}^n$ are two closed and convex sets.

Method of alternating projection

Equivalent formulation

$$\min_{x\in\mathbb{R}^n} \ \iota_{\Omega_1}(x) + \iota_{\Omega_2}(x).$$

Method of alternating projection (MAP)

initial: $x_0 \in \Omega_1$;

repeat:

- 1. Projection onto Ω_2 : $y_k = \text{proj}_{\Omega_2}(x_k)$
- 2. Projection onto Ω_1 : $x_{k+1} = \text{proj}_{\Omega_1}(y_k)$

until: stopping criterion is satisfied.

- The projection onto two sets are computed separately
- Stopping criterion: $||x_k x_{k-1}|| \le \epsilon$

Method of alternating projection

Convergence analysis

MAP:

$$x_{k+1} = \operatorname{proj}_{\Omega_1} \circ \operatorname{proj}_{\Omega_2}(x_k).$$

How to:

- analyse the convergence proerties
- not convergence result for the objective function value
- how about the sequence $\{x_k\}_{k\in\mathbb{N}}$

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skiĭ-Mann iteration

Notations

Given two non-empty sets $\mathcal{X}, \mathcal{U} \subseteq \mathbb{R}^n$, $A: \mathcal{X} \rightrightarrows \mathcal{U}$ is called set-valued operator if A maps every point in \mathcal{X} to a subset of \mathcal{U} , *i.e.*

$$A: \mathcal{X} \rightrightarrows \mathcal{U}, \ x \in \mathcal{X} \mapsto A(x) \subseteq \mathcal{U}.$$

• The graph of A is defined by

$$\operatorname{\mathsf{gra}}(A) \stackrel{\scriptscriptstyle\mathsf{def}}{=} \big\{ (x,u) \in \mathcal{X} \times \mathcal{U} : u \in A(x) \big\}.$$

• The domain and range of A are

$$dom(A) \stackrel{\text{def}}{=} \{x \in \mathcal{X} : A(x) \neq \emptyset\}, \ ran(A) \stackrel{\text{def}}{=} A(\mathcal{X}).$$

• The inverse of A defined through its graph

$$\operatorname{\mathsf{gra}}(A^{-1}) \stackrel{\scriptscriptstyle\mathsf{def}}{=} \big\{ (u,x) \in \mathcal{U} \times \mathcal{X} : u \in A(x) \big\}.$$

• The set of zeros of A are the points such that

$$\operatorname{zer}(A) \stackrel{\text{def}}{=} A^{-1}(0) = \{ x \in \mathcal{X} : 0 \in A(x) \}.$$

Monotone operator

Definition (Monotone operator)

Let $\mathcal{X}, \mathcal{U} \subseteq \mathbb{R}^n$ be two non-empty convex sets, $A: \mathcal{X} \rightrightarrows \mathcal{U}$ is monotone if

$$\langle x-y, u-v \rangle \ge 0, \ \forall (x,u), (y,v) \in \operatorname{gra}(A).$$

It is moreover maximal monotone if gra(A) is not strictly contained in the graph of any other monotone operators.

A is called α -strongly monotone for some $\kappa > 0$ if

$$\langle x - y, u - v \rangle \ge \kappa ||x - y||^2.$$

Lemma

Let $R \in \Gamma_0$, then ∂R is maximal monotone.

Definition (Resolvent and reflection)

The resolvent and reflection of $A: \mathcal{X} \rightrightarrows \mathcal{U}$ are defined by

$$\mathcal{J}_A \stackrel{\text{def}}{=} (\mathsf{Id} + A)^{-1}$$
 and $\mathcal{R}_A \stackrel{\text{def}}{=} 2\mathcal{J}_A - \mathsf{Id}$.

Cocoersive operator

Definition (Cocoercive operator)

An operator $B:\mathbb{R}^n \to \mathbb{R}^n$ is called β -cocoercive if there exists $\beta>0$ such that

$$\|\beta\|B(x)-B(y)\|^2 \leq \langle B(x)-B(y), x-y\rangle, \ \forall x,y \in \mathbb{R}^n.$$

The above equation implies that B is $(1/\beta)$ -Lipschitz continuous.

Theorem (Baillon-Haddad)

Let $F \in C_L^1$, then ∇F is β -cocoercive.

Lemma

Let $C : \mathbb{R}^n \implies \mathbb{R}^n$ be β -strongly monotone, then its inverse C^{-1} is β -cocoercive.

Non-expansive operator

Definition (Non-expansive operator)

An operator $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ is called non-expansive if it is 1-Lipschitz continuous, *i.e.*

$$\|\mathcal{T}(x) - \mathcal{T}(y)\| \le \|x - y\|, \ \forall x, y \in \mathbb{R}^n.$$

For any $\alpha \in]0,1[$, $\mathcal T$ is α -averaged if there exists a non-expansive operator $\mathcal T'$ such that

$$\mathcal{T} = \alpha \mathcal{T}' + (1 - \alpha) \mathsf{Id}.$$

- $\mathcal{A}(\alpha)$ denotes the class of α -averaged operators on \mathbb{R}^n
- $\mathcal{A}(\frac{1}{2})$ is the class of firmly non-expansive operators

Properties: α -averaged operators

 $\mathcal{A}(\alpha)$ is closed under relaxations, convex combinations and compositions.

Lemma

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be non-expansive and $\alpha \in]0,1[$. The following statements are equivalent:

- T is α -averaged non-expansive.
- The operator

$$ig(1-rac{1}{lpha}ig)\mathsf{Id} + rac{1}{lpha}\mathcal{T}$$

is non-expansive.

• For any $x, y \in \mathbb{R}^n$,

$$\|\mathcal{T}(x) - \mathcal{T}(y)\|^2 \le \|x - y\|^2 - \frac{1 - \alpha}{\alpha} \|(\operatorname{Id} - \mathcal{T})(x) - (\operatorname{Id} - \mathcal{T})(y)\|^2.$$

Properties: firmly non-expansive operators

Lemma

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be non-expansive. The following statements are equivalent:

- T is firmly non-expansive.
- 2T Id is non-expansive.
- $\|\mathcal{T}(x) \mathcal{T}(y)\|^2 \le \langle \mathcal{T}(x) \mathcal{T}(y), x y \rangle, \forall x, y \in \mathbb{R}^n$.
- For any $x, y \in \mathbb{R}^n$,

$$\|\mathcal{T}(x) - \mathcal{T}(y)\|^2 + \|(\operatorname{Id} - \mathcal{T})(x) - (\operatorname{Id} - \mathcal{T})(y)\|^2 \le \|x - y\|^2.$$

• \mathcal{T} is the resolvent of a maximal monotone operator A, i.e. $\mathcal{T} = \mathcal{J}_A$.

Lemma

Let operator $B: \mathbb{R}^n \to \mathbb{R}^n$ be β -cocoercive for some $\beta > 0$. Then

- $\beta B \in \mathcal{A}(\frac{1}{2})$, i.e. is firmly non-expansive.
- Id $-\gamma B \in \mathcal{A}(\frac{\gamma}{2\beta})$ for $\gamma \in]0, 2\beta[$.

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings
- 3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skiĭ-Mann iteration

Fixed point

Definition (Fixed point)

Let $\mathcal{T}:\mathbb{R}^n\to\mathbb{R}^n$ be a non-expansive operator, $x\in\mathbb{R}^n$ is called the fixed point of \mathcal{T} if

$$x = \mathcal{T}(x)$$
.

The set of fixed points of \mathcal{T} is denoted as fix(\mathcal{T}).

fix(T) may be empty, e.g. translation by a non-zero vector.

Theorem

Let \mathcal{X} be a non-empty bounded closed convex subset of \mathbb{R}^n and $\mathcal{T}: \mathcal{X} \to \mathcal{X}$ be a non-expansive operator, then $fix(\mathcal{T}) \neq \emptyset$.

Lemma

Let \mathcal{X} be a non-empty closed convex subset of \mathbb{R}^n and $\mathcal{T}: \mathcal{X} \to \mathbb{R}^n$ be a non-expansive operator, then fix (\mathcal{T}) is closed and convex.

III: Krasnosel'skiī-Manniteration 17/28

Krasnosel'skii-Mann iteration

Fixed-point iteration

$$x_{k+1} = \mathcal{T}(x_k).$$

However, it may not converge, e.g. $\mathcal{T} = -\text{Id}...$

Definition (Krasnosel'skii-Mann iteration)

Let $\mathcal{T}:\mathbb{R}^n\to\mathbb{R}^n$ be a non-expansive operator such that $\mathrm{fix}(\mathcal{T})\neq\emptyset$. Let $\lambda_k\in[0,1]$ and choose x_0 arbitrarily from \mathbb{R}^n , then the Krasnosel'skiĭ-Mann iteration of \mathcal{T} reads

$$x_{k+1} = x_k + \lambda_k (\mathcal{T}(x_k) - x_k). \tag{3.1}$$

• If $\mathcal{T} \in \mathcal{A}(\alpha)$, then $\lambda_k \in [0, 1/\alpha]$

III: Krasnosel'skiī-Mann iteration 18/28

Fejér monotonicity

Definition (Fejér monotonicity)

Let $S \subseteq \mathbb{R}^n$ be a non-empty set and $\{x_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^n . Then

(i) $\{x_k\}_{k\in\mathbb{N}}$ is Fejér monotone with respect to S if

$$||x_{k+1} - x|| \le ||x_k - x||, \ \forall x \in \mathcal{S}, \forall k \in \mathbb{N}.$$

(ii) $\{x_k\}_{k\in\mathbb{N}}$ is quasi-Fejér monotone with respect to \mathcal{S} , if there exists a summable sequence $\{\epsilon_k\}_{k\in\mathbb{N}}\in\ell^1_+$ such that

$$\forall k \in \mathbb{N}, \quad ||x_{k+1} - x|| \le ||x_k - x|| + \epsilon_k, \quad \forall x \in \mathcal{S}.$$

Example

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a non-empty convex set, and $\mathcal{T}: \mathcal{X} \to \mathcal{X}$ be a non-expansive operator such that $\operatorname{fix}(\mathcal{T}) \neq \emptyset$. The sequence $\{x_k\}_{k \in \mathbb{N}}$ generated by $x_{k+1} = \mathcal{T}(x_k)$ is Fejér monotone with respect to $\operatorname{fix}(\mathcal{T})$.

III: Krasnosel'skiī-Mann iteration 19/28

Convergence

Lemma

Let $S \subseteq \mathbb{R}^n$ be a non-empty set and $\{x_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^n . Assume the $\{x_k\}_{k \in \mathbb{N}}$ is quasi-Fejér monotone with respect to S, then the following holds

- $\{x_k\}_{k\in\mathbb{N}}$ is bounded.
- $||x_k x||$ is bounded for any $x \in \mathcal{S}$.
- $\{\operatorname{dist}(x_k,\mathcal{S})\}_{k\in\mathbb{N}}$ is decreasing and convergent.

If every sequential cluster point of $\{x_k\}_{k\in\mathbb{N}}$ belongs to S, then $\{x_k\}_{k\in\mathbb{N}}$ converges to a point in S.

Weak convergence in general real Hilbert space

III: Krasnosel'skiī-Mann iteration 20/28

Convergence

Theorem

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be a non-expansive operator such that $fix(\mathcal{T}) \neq \emptyset$. Consider the Krasnosel'skiĭ-Mann iteration of \mathcal{T} , and choose $\lambda_k \in [0,1]$ such that

$$\sum_{k\in\mathbb{N}}\lambda_k(1-\lambda_k)=+\infty,$$

then the following holds

- $\{x_k\}_{k\in\mathbb{N}}$ is Fejér monotone with respect to $fix(\mathcal{T})$.
- $\{x_k \mathcal{T}(x_k)\}_{k \in \mathbb{N}}$ converges strongly to 0.
- $\{x_k\}_{k\in\mathbb{N}}$ converges to a point in fix (\mathcal{T}) .

When \mathcal{T} is α -averaged, then

$$\lambda_k \in [0, 1/\alpha]$$
 such that $\sum_{k \in \mathbb{N}} \lambda_k (1/\alpha - \lambda_k) = +\infty$.

III: Krasnosel'skiī-Mann iteration 20/28

Preliminiary

Krasnosel'skiĭ-Mann iteration with constant relaxation

$$egin{aligned} x_{k+1} &= x_k + \lambda (\mathcal{T}(x_k) - x_k) \ &= ig((1 - \lambda) \mathsf{Id} + \lambda \mathcal{T} ig) (x_k). \end{aligned}$$

Denote $\mathcal{T}_{\lambda} = (1 - \lambda) \operatorname{Id} + \lambda \mathcal{T}$, and define residual

$$e_k = (\operatorname{Id} - \mathcal{T})(x_k) = \frac{1}{\lambda}(x_k - x_{k+1}).$$

Preliminiary

Krasnosel'skiĭ-Mann iteration with constant relaxation

$$egin{aligned} x_{k+1} &= x_k + \lambda (\mathcal{T}(x_k) - x_k) \ &= ig((1 - \lambda) \mathsf{Id} + \lambda \mathcal{T} ig) (x_k). \end{aligned}$$

Denote $\mathcal{T}_{\lambda} = (1 - \lambda) \operatorname{Id} + \lambda \mathcal{T}$, and define residual

$$e_k = (\operatorname{Id} - \mathcal{T})(x_k) = \frac{1}{\lambda}(x_k - x_{k+1}).$$

- $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda)$ if $\lambda \in]0,1[$. If $\mathcal{T} \in \mathcal{A}(\alpha)$, then $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda \alpha)$
- For any $x^* \in fix(\mathcal{T})$,

$$x^* \in fix(\mathcal{T}) \Leftrightarrow x^* \in fix(\mathcal{T}_{\lambda}) \Leftrightarrow x^* \in zer(Id - \mathcal{T})$$

- If $\lambda \in [\epsilon, 1 \epsilon], \epsilon \in]0, 1/2]$,
 - $-e_k$ converges to 0.
 - $\{x_k\}_{k\in\mathbb{N}}$ is quasi-Fejér monotone with respect to fix(\mathcal{T}), and converges to a $x^* \in \text{fix}(\mathcal{T})$.

III: Krasnosel'skiī-Mann iteration 21/28

Pointwise convergence rate

Rate of $||e_k||^2$:

• For residual

$$\|e_{k+1}\|^2 \le \|e_k\|^2 - \frac{1-\lambda}{\lambda} \|e_k - e_{k+1}\|^2.$$

• $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda)$, $\tau = \lambda(1 - \lambda)$

$$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - \tau ||e_k||^2.$$

Summation

$$|(k+1)||e_k||^2 \le \tau \sum_{i=0}^k ||e_i||^2 \le ||x_0 - x^*||^2 - ||x_{k+1} - x^*||^2.$$

Rate

$$||e_k||^2 \le \frac{||x_0 - x^*||^2}{k+1}.$$

If $T \in \mathcal{A}(\alpha)$, then the above holds for $\lambda \in [\epsilon, 1/\alpha - \epsilon]$.

Ergodic convergence rate

Define $\bar{e}_k = \frac{1}{k+1} \sum_{i=0}^k e_i$.

Boundedness

$$||x_{k+1} - x^*|| = ||\mathcal{T}_{\lambda}(x_k) - \mathcal{T}_{\lambda}(x^*)|| \le ||x_k - x^*||$$

 $\le ||x_0 - x^*||$

$$\begin{array}{l} \bullet \ \, \lambda e_k = x_k - x_{k+1} \\ \|\bar{e}_k\| = \frac{1}{k+1} \| \sum_{i=0}^k e_i \| = \frac{1}{\lambda(k+1)} \| \sum_{i=0}^k \left(x_i - x_{i+1} \right) \| \\ = \frac{1}{\lambda(k+1)} \| x_0 - x_{k+1} \| \\ \leq \frac{1}{\lambda(k+1)} (\| x_0 - x^* \| + \| x_{k+1} - x^* \|) \\ \leq \frac{2 \| x_0 - x^* \|}{\lambda(k+1)} \end{array}$$

Both rates (pointwise and ergodic) can be extended to the inexact case...

III: Krasnosel'skiĩ-Mann iteration 23/28

Optimal relaxation parameter?

Consider
$$\lambda_k \in [0,1]$$
 and $x_{k+1} = (1-\lambda_k)x_k + \lambda_k \mathcal{T}(x_k)$. Then $\|x_{k+1} - x^*\|^2 = \|(1-\lambda_k)(x_k - x^*) + \lambda_k (\mathcal{T}(x_k) - x^*)\|^2$ $= (1-\lambda_k)\|x_k - x^*\|^2 + \lambda_k \|\mathcal{T}(x_k) - x^*\|^2$ $-\lambda_k (1-\lambda_k)\|x_k - \mathcal{T}(x_k)\|^2$ $= \lambda_k^2 \|x_k - \mathcal{T}(x_k)\|^2$ $-\lambda_k (\|x_k - x^*\|^2 - \|\mathcal{T}(x_k) - x^*\|^2 + \|x_k - \mathcal{T}(x_k)\|^2)$ $+ \|x_k - x^*\|^2$,

which is a quadratic function of λ_k , and minimises at

$$\lambda = \frac{1}{2} + \frac{\|x_k - x^*\|^2 - \|\mathcal{T}(x_k) - x^*\|^2}{2\|x_k - \mathcal{T}(x_k)\|^2}.$$

Approximation:

$$\lambda = \frac{1}{2} + \frac{\|x_k - \mathcal{T}(x_k)\|^2 - \|\mathcal{T}(x_k) - \mathcal{T}^2(x_k)\|^2}{2\|(x_k - \mathcal{T}(x_k)) - (\mathcal{T}(x_k) - \mathcal{T}^2(x_k))\|^2}.$$

III: Krasnosel'skiī-Mann iteration 24/28

Outline

- 1 Method of alternating projection
- 2 Monotone and non-expansive mappings

3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skiĭ-Mann iteration

Inertial Krasnosel'skii-Mann iteration

An inertial Krasnosel'skii-Mann iteration

Initial:
$$x_0 \in \mathbb{R}^n$$
, $x_{-1} = x_0$;
 $y_k = x_k + a_k(x_k - x_{k-1}), \ a_k \in [0, 1],$
 $z_k = x_k + b_k(x_k - x_{k-1}), \ b_k \in [0, 1],$
 $x_{k+1} = (1 - \lambda_k)y_k + \lambda_k \mathcal{T}(z_k), \ \lambda_k \in [0, 1].$

- Covers heavy-ball method, Nesterov's scheme, inertial FB and FISTA
- Convergence analysis is much harder than the inertial version of descent methods
- No convergence rate
- May perform very poorly in practice, slower than the original scheme

A multi-step inertial scheme

A multi-step inertial Krasnosel'skii-Mann iteration

Initial:
$$x_0 \in \mathbb{R}^n, x_{-1} = x_0 \text{ and } \gamma \in]0, 2/L[;$$

$$y_k = x_k + a_{0,k}(x_k - x_{k-1}) + a_{1,k}(x_{k-1} - x_{k-2}) + \cdots,$$

$$z_k = x_k + b_{0,k}(x_k - x_{k-1}) + b_{1,k}(x_{k-1} - x_{k-2}) + \cdots,$$

$$x_{k+1} = (1 - \lambda_k)y_k + \lambda_k \mathcal{T}(z_k), \ \lambda_k \in [0, 1].$$

- Even harder to analyse convergence
- No rate
- However, can outperform the original scheme...

Convergence

• Conditional convergence, i = 0, 1, ...

$$\sum_{k \in \mathbb{N}} \max \big\{ \max_{i} |a_{i,k}|, \max_{i} |b_{i,k}| \big\} \sum_{i} \|x_{k-i} - x_{k-i-1}\| < +\infty.$$

Online updating rule

$$a_{i,k} = \min \left\{ a_i, c_{i,k} \right\}$$

where

$$c_{i,k} = \frac{c_i}{k^{1+\delta} \sum_i \|x_{k-i} - x_{k-i-1}\|}, \ \delta > 0.$$