ARHITECTURA SISTEMELOR DE CALCUL

UB, FMI, CTI, ANUL III, 2021-2022

BLOCURI DE MEMORIE ELECTRONICA

CEA MAI SIMPLA ARHITECTURA DE MEMORIE RAM SCALABILA

Circuite elementare de memorie

Circuitul bistabil

Exemplu de circuit cu tranzistori bipolari

Schema logica echivalenta

INPUT:

S-SET

R -RESET

- Un impuls pozitiv pe S aduce iesirea Q1 in starea 1
- Un impuls pozitiv pe R aduce iesirea Q1 in starea 0

Echivalentul mecanic al memoriei

CELULA DE MEMORIE SRAM DE 1 bit

Diagrama logica pentru celula de 1 bit

Bloc de memorie: 1K x 8-bit RAM (chip)

■ 1K= 1024 cuvinte=2¹⁰

pentru 1024 cuvinte este nevoie de o dimensiune de adresa de 10 biti

Diagrama bloc a unui chip RAM de 1K x 8b

Blocurile OR de colectare sunt omis pentru simplificarea desenului

Tema: redesenati schema, incluzand si blocurile de colectare

Alt exemplu:

Modul de memorie de **2M** × **32b** asamblat cu

512K × 8b static memory chips.

Semnalul: Read/Write este omis

Tema: redesenati schema, incluzand toate blocurile si semnalele omis

TEMA

Desenati schema unui modul de memorie de $2G \times 64b$, folosind cipuri de memorie de $512M \times 32b$

