Álgebra I

Curso 2020/21

Índice

1	El lenguaje de los conjuntos		5
	1.1	Sobre la teoría axiomática de conjuntos	6
		1.1.1 Proposiciones y Demostraciones	
	1.2	El conjunto producto cartesiano. Aplicaciones	
		1.2.1 Imágenes directas e inversas	
	1.3	Relaciones de equivalencia. Conjuntos cocientes	
2	Anillos conmutativos		25
	2.1	Los anillos \mathbb{Z}_n	26
	2.2	Generalidades	
	2.3	Los anillos de enteros cuadráticos $\mathbb{Z}[\sqrt{n}]$	
	2.4	Múltiplos y potencias naturales	
	2.5	Unidades. Cuerpos	
	2.6	Múltiplos negativos y potencias de exponente negativo	
	2.7	Los anillos de polinomios $A[x]$	
	2.8	Homomorfismos	
3	Congruencias. Ideales y Cocientes		45
	3.1	El primer teorema de Isomorfía	48
	3.2	Operaciones con ideales	
4	Divisibilidad en Dominios de Integridad		51
	4.1	Dominios de Integridad	51
	4.2	El cuerpo de fracciones de un DI	
	43	Divisibilidad	54

Tema 4

Divisibilidad en Dominios de Integridad

Ecuaciones sencillas, como ax = b, con $a \neq 0$, no son sencillas de resolver en el contexto de un anillo conmutativo arbitrario (a diferencia de las del tipo a + x = b, que siempre tiene solución única: x = b - a). Si estamos en un cuerpo K (como \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_2 , etc.), tal ecuación siempre tiene solución $x = ba^{-1}$, y esta es única. Pero, en general, puede no tener solución (por ejemplo, 2x = 3 en \mathbb{Z}), y puede tener más de una (por ejemplo, 2x = 2 en \mathbb{Z}_6 , tiene dos: x = 1, x = 4). En lo que sigue, nos centraremos en anillos conmutativos donde las ecuaciones ax = b, con $a \neq 0$, caso de tener solución, esta es única. Estos anillos son los "Dominios de integridad", que presentamos a continuación.

4.1 Dominios de Integridad

Un anillo conmutativo no trivial $(1 \neq 0)$ es un Dominio de Integridad (DI, para acortar) si en él se verifica la "propiedad cancelativa":

Si
$$a \neq 0$$
, entonces $ax = ay \Rightarrow x = y$.

En adelante, los anillos serán serán supuestos no triviales.

Proposición 4.1.1. Un anillo commutativo A es un DI si y solo si el producto de elementos no nulos es no nulo, esto es, si

$$a \neq 0 \land b \neq 0 \Rightarrow ab \neq 0$$
,

o, equivalentemente,

$$ab = 0 \Rightarrow a = 0 \lor b = 0.$$

Demostración.

- \Rightarrow) Si ab=0, tendríamos que ab=a0. Si $a\neq 0$ tendría que ser b=0, al estar en un DI.
- \Leftarrow) Supongamos ax = ay, con $a \neq 0$. Entonces a(x y) = 0 y será x y = 0, es decir que x = y.

Proposición 4.1.2.

- 1. Cualquier subanillo de un DI es un DI.
- 2. Todo cuerpo es un DI.

Demostración.

- 1. Si la propiedad cancelativa se verifica para todos los elementos no nulos de un anillo, obviamente se verifica para los de un subanillo suyo.
- 2. Si A es cuerpo, todo elemeto no nulo es unidad. Si $a \neq 0$ y ax = ay, multiplicando por a^{-1} , obtenemos que $a^{-1}ax = a^{-1}ay$, de donde x = y.

EJEMPLOS.

- 1. \mathbb{Z} , que es un subanillo de \mathbb{Q} o de \mathbb{R} , es un DI. También los anillos $\mathbb{Z}[\sqrt{n}]$, que son todos subanillos de \mathbb{C} , son DI.
- 2. El anillo \mathbb{Z}_4 no es un DI, pues $2 \cdot 2 = 0$.
- 3. Si A es un DI, en anillo de polinomios A[x] es in DI. Para ver esto, introduzcamos una terminología:
 - Para un polinomio no nulo $f(x)=\sum_{m\geq 0}a_mx^m$, decimos que su "grado" es r, si $a_r\neq 0$ y $a_n=0$ para todo n>r.

Si $g(x) = \sum_{m \geq 0} b_m x^m$ es otro no nulo de grado, digamos s, entonces los coeficientes del producto en grados n > r + s, $\sum_{i+j=n} a_i b_j$ son todos nulos, pues i+j > r + s obliga a que bien i > r o bien j > s, o sea que $a_i = 0$ o $b_j = 0$ en todos los sumandos. Por otra parte, el coeficiente de grado r + s del producto es $\sum_{i+j=r+s} a_i b_j = a_r b_s$, pues si i < r entonces ha de ser j > s (para que sumen r + s) y entonces $b_j = 0$. Conclusión:

• En general

$$gr(fg) \le gr(f) + gr(g).$$

Pero puede darse que gr(fg) < gr(f)gr(g): En $\mathbb{Z}_6[x]$, sea f(x) = 3 + 2x y g(x) = 3x. Entonces fg = x y gr(fg) = 1 < gr(f) + gr(g) = 1 + 1 = 2.

Ahora, si el anillo A es un DI, entonces el coeficiente en grado r+s de fg es $a_rb_s\neq 0$, pues $a_r\neq 0$ y $b_s\neq 0$. Luego $fg\neq 0$, y concluimos que A[x] es un DI. Además, se da la igualdad

$$gr(fg) = gr(f) + gr(g)$$

para todos los polinomios no nulos $f, g \in A[x]$, siempre que A sea un DI.

Una observación interesante está dada en la siguiente

Proposición 4.1.3. Si A es un DI finito, entonces es un cuerpo.

Demostración. Sea $a \in A$, $a \neq 0$. La aplicación $f: A \to A$ definida por f(x) = ax es inyectiva, y por tanto biyectiva. Luego existe un $x \in A$ tal que ax = 1. Esto es, $a \in U(A)$.

Hemos visto que todo subanillo de un cuerpo es un DI. La relación entre dominios de integridad y cuerpos es mucho más estrecha: todo DI es subanillo de un cuerpo, como vemos a continuación.

4.2 El cuerpo de fracciones de un DI

Sea A un DI. En el conjunto

$$A \times (A \setminus \{0\}) = \{(a, s) \mid a, s \in A, s \neq 0\}$$

establecemos la relación

$$(a,s) \sim (b,t) \Leftrightarrow at = bs.$$

Claramente es reflexiva y simétrica. Para ver que es transitiva, supongamos $(a,s) \sim (b,t) \sim (c,u)$, de manera que $at=bs \wedge bu=ct$. Entonces, atu=bsu=cts. Como $t\neq 0$, simplificando en la igualdad tau=tcs, y obtenemos que au=cs, así que $(a,s) \sim (c,u)$.

Consideremos el conjunto cociente $A \times (A \setminus \{0\}) / \sim y$ denotaremos $\frac{a}{s}$ a la clase de equivalencia del par (a,s) (esto es, $\frac{a}{s} = \overline{(a,s)}$). Llamaremos a este elemento "fracción de numerador a y denominador b". Entonces,

$$\frac{a}{s} = \frac{b}{t} \Leftrightarrow at = bs.$$

Al conjunto cociente $A \times (A \setminus \{0\}) / \sim$ le donotaremos por $\mathbb{Q}(A)$. Así que

$$\mathbb{Q}(A) = \left\{ \frac{a}{s} \mid a, s \in A, a \neq 0 \right\}.$$

Definimos ahora en $\mathbb{Q}(A)$ una suma y un producto por

$$\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2}, \quad \frac{a_1}{s_1} \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2},$$

que están bien definidas:

Si $\frac{a_1}{s_1} = \frac{b_1}{t_1}$ y $\frac{a_2}{s_2} = \frac{b_2}{t_2}$, entonces

$$\frac{a_1s_2 + a_2s_1}{s_1s_2} = \frac{b_1t_2 + b_2t_1}{t_1t_2} \text{ y } \frac{a_1a_2}{s_1s_2} = \frac{b_1b_2}{t_1t_2},$$

pues

$$(a_1s_2 + a_2s_1)t_1t_2 = a_1s_2t_1t_2 + a_2s_1t_1t_2 = b_1s_1s_2 + b_2s_1s_2t_1 = (b_1t_2 + b_2t_1)s_1s_2$$
 y $a_1a_2t_1t_2 = b_1s_1b_2s_2 = b_1b_2s_1s_2$.

Así, $\mathbb{Q}(A)$ resulta un anillo conmutativo, que además es un cuerpo:

- Su "cero" es $\frac{0}{1}$ (= $\frac{0}{s}$, para cualquier $s \neq 0$).
- El opuesto de una fracción $\frac{a}{s}$ es $-\frac{a}{s} = \frac{-a}{s} = \frac{a}{-s}$.
- Su "uno" es $\frac{1}{1}$ (= $\frac{s}{s}$, para cualquier $s \neq 0$).
- Además, si $\frac{a}{s} \neq \frac{0}{1}$, entonces $a \neq 0$ y $\frac{s}{a} \in \mathbb{Q}(A)$ y se verifica que $\frac{a}{s} \frac{s}{a} = \frac{as}{as} = \frac{1}{1}$. Luego $(\frac{a}{s})^{-1} = \frac{s}{a}$.

Al cuerpo $\mathbb{Q}(A)$ se le llama "el cuerpo de fracciones de A".

Por ejemplo, es claro que $\mathbb{Q}(\mathbb{Z}) = \mathbb{Q}$ el cuerpo de los números racionales.

En $\mathbb{Q}(A)$, una fracción de denominador 1, $\frac{a}{1}$ está univocamente determinada por el numerador ($\frac{a}{1} = \frac{b}{1} \Leftrightarrow a = b$), y la representaremos simplemente por el numerador. Esto es, ponemos $a = \frac{a}{1}$. De esta forma $A \subseteq \mathbb{Q}(A)$ como un subanillo. Pero notemos que los elementos a de A pueden ser representados en $\mathbb{Q}(A)$ por las diferentes fracciones equivalentes a $\frac{a}{1}$. Así, por ejemplo, en $\mathbb{Q} = \mathbb{Q}(\mathbb{Z})$, $-2 = \frac{-2}{1} = \frac{6}{-3}$.

Observación 4.2.1. Si K es un cuerpo, entonces $K = \mathbb{Q}(K)$.

En efecto, para cualquier $\frac{a}{s} \in \mathbb{Q}(K)$, como $s \neq 0$, $s^{-1} \in K$ y, entonces, $as^{-1} \in K$. Pero $as^{-1} = \frac{as^{-1}}{1} = \frac{a}{s}$, luego $\frac{a}{s} \in K$.

Esto nos permite utilizar legítimamente la notación de fracciones en cualquier cuerpo: $as^{-1} = \frac{a}{s}$. Por ejemplo, en \mathbb{R} , tenemos que

$$\frac{1}{2} = 2^{-1}, \quad \frac{3}{2} = 3 \cdot 2^{-1}, \quad (\sqrt{2})^{-1} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}, \quad \frac{\sqrt{2}}{\sqrt{3}} = \sqrt{2}(\sqrt{3})^{-1}, \quad etc.$$

Por ejemplo, es fácil comprobar que todo elemento no nulo de \mathbb{Z}_5 es una unidad, por ejemplo $3^{-1}=2$ así podremos escribir

$$2 \cdot 3^{-1} = \frac{2}{3} = 2 \cdot 4.$$

Y esto permite a su vez la siguiente regla operativa para las fracciones en cualquier cuerpo (en $\mathbb{Q}(A)$, en particular.)

$$\frac{\frac{a}{s}}{\frac{b}{t}} = \frac{a}{s} \left(\frac{b}{t}\right)^{-1} = \frac{a}{s} \frac{t}{b} = \frac{at}{bs}.$$

Observación 4.2.2. Si $A \subseteq B$, entonces $\mathbb{Q}(A) \subseteq \mathbb{Q}(B)$.

<u>Observación</u> 4.2.3. Si $A \subseteq K$, donde K es un cuerpo, entonces $\mathbb{Q}(A) \subseteq \mathbb{Q}(K) = K$. Así que, " $\mathbb{Q}(A)$ es el menor cuerpo que contiene a A".

<u>Observación</u> 4.2.4. El cuerpo de fracciones de $\mathbb{Z}[\sqrt{n}]$ es $\mathbb{Q}[\sqrt{n}]$. En efecto, sabemos que $\mathbb{Q}[\sqrt{n}]$ es un cuerpo y $\mathbb{Z}[\sqrt{n}] \subseteq \mathbb{Q}[\sqrt{n}]$. Por tanto, el cuerpo de fracciones de $\mathbb{Z}[\sqrt{n}]$ está contenido en $\mathbb{Q}[\sqrt{n}]$. Por otra parte, cualquier cuerpo que contenga a $\mathbb{Z}[\sqrt{n}]$ contiene a $\mathbb{Q}[\sqrt{n}]$, pues al contener a \mathbb{Z} también contiene a $\mathbb{Q} = \mathbb{Q}(\mathbb{Z})$, y entonces a todo número de la forma $a+b\sqrt{n}$ con $a,b\in\mathbb{Q}$, esto es, contiene a $\mathbb{Q}[\sqrt{n}]$. En particular, el cuerpo de fracciones de $\mathbb{Z}[\sqrt{n}]$ contiene a $\mathbb{Q}[\sqrt{n}]$.

4.3 Divisibilidad

En lo que sigue A es un DI. El estudio de la ecuación ax = b, conduce de forma natural a estudiar la relación de "divisibilidad" entre elementos del anillo, que se establece como sigue.

Definición 4.3.1. Dados $a, b \in A$, decimos que "a divide a b", situación que representamos por "a|b", o que "a es un divisor de b" o también que "b es un múltiplo de a", si existe un $c \in A$ tal que ac = b.

4.3. DIVISIBILIDAD 55

Esto es, a|b si la ecuación ax = b tiene solución, la cual, si $a \neq 0$, será necesariamente única, pues A es un DI.

El caso a = 0, se discute de forma trivial:

$$0|b \Leftrightarrow b = 0.$$

Esto es, 0 solo es divisor del cero, o, en otras palabras, 0 es el único múltiplo del 0. Notemos ahora que cuando $a \neq 0$, podemos expresar la relación a|b en términos de $\mathbb{Q}(A)$:

$$a|b \Leftrightarrow \frac{b}{a} \in A.$$

En efecto, si a|b, existirá un $c \in A$ tal que ac = b, en cuyo caso $\frac{b}{a} = \frac{ac}{a} = \frac{c}{1} = c \in A$. Y recíprocamente, si $\frac{b}{a} \in A$, será $\frac{b}{a} = c = \frac{c}{1}$ para algún $c \in A$, en cuyo caso b = ac y, por tanto, a|b.

Las siguientes son propiedades elementales de la relación de divisibilidad.

- 1. (Reflexiva) a|a.
- 2. (Transitiva) $a|b \wedge b|c \Rightarrow a|c$.
- 3. Si $a|b \ y \ a|c$, entonces a|(bx+cy), para todo $x,y \in A$.
- 4. Si $c \neq 0$, entonces $a|b \Leftrightarrow ac|ab$.

<u>Observación</u> 4.3.1. Todos los elementos del anillo dividen a 0, esto es, a|0 para todo $a \in A$ (pues a0 = 0).

<u>Observación</u> 4.3.2. Los divisores de 1 son precisamente los elementos invertibles del anillo, es decir los elementos del conjunto U(A) de unidades de A.

EJEMPLOS.

- 1. $U(\mathbb{Z}) = \{1, -1\}.$
- 2. $U(\mathbb{Z}[i]) = \{1, -1, i, -i\}.$
- 3. U(A[x] = U(A). En efecto, es claro que $U(A) \subseteq U(A[x])$. Si $f(x) = \sum_m a_m x^m \in U(A[x])$, existirá $g(x) = \sum_m b_m x^m \in A[x]$ tal que f(x)g(x) = 1. Pero entonces gr(f(x)) + gr(g(x)) = 0, así que gr(f(x)) = 0 = gr(g(x)). Esto es, $f(x) = a_0 \in A$, $g(x) = b_0 \in A$ y $a_0b_0 = 1$. En particular $f(x) = a_0 \in U(A)$.
- 4. $U(\mathbb{Z}[x]) = \{1, -1\}, U(\mathbb{Q}[x]) = \mathbb{Q} \{0\}, U(\mathbb{Z}_3[x]) = \{1, 2\}, \text{ etc.}$

<u>Observación</u> 4.3.3. Las unidades del anillo son divisores de todos los elementos del anillo: Si $u \in U(A)$, entonces para todo elemento a, se tiene que $a = a1 = (au^{-1})u$, así que u|a. También ocurre que si multiplicamos cualquier elemento a por una unidad u el resultado ua es un divisor de a, pues $a = (ua)u^{-1}$. Así que, para cualquier elemento a, los elementos del conjunto

$$\{u, ua \mid u \in U(A)\}$$

son siempre divisores de a, les llamamos los "divisores triviales" de a. Por ejemplo, en \mathbb{Z} , los divisores triviales del 2 son $\{1, -1, 2, -2\}$. En el anillo $\mathbb{Z}[i]$ de los enteros de Gauss, los divisores triviales de 1 + i son

$$\{1, -1, i, -i, 1+i, -1-i, -1+i, 1-i\}.$$

<u>Observación</u> 4.3.4. Para cada elemento a, los divisores triviales de la forma ua, con $u \in U(A)$, se llaman "asociados" de a. Observar que, dada cualquier unidad $u \in U(A)$, tenemos que $u^{-1} \in U(A)$ y $b = ua \Leftrightarrow a = u^{-1}b$. Por tanto un elemento b es asociado de un a si y solo si este a es asociado de b. Hablamos simplemente de que "a y b son asociados".

Estos se pueden caracterizar como sigue.

Proposición 4.3.2. Para cualesquiera $a, b \in A \setminus \{0\}$, son equivalentes

- 1. a y b son asociados.
- 2. $a/b \wedge b/a$.

Demostración. Es claro que si a y b son asociados, cada uno es divisor del otro. Recíprocamente, supongamos que a y b se dividen mutuamente. Digamos que b = ua y que a = vb. Entonces a = uva y, como $\neq 0$, es uv = 1. Luego $u, v \in U(A)$ y a y b son asociados.

Definición 4.3.3. Un elemento $a \in A$, se dice que es "irreducible" si no es cero ni unidad y sus únicos divisores son los triviales, esto es, las unidades y sus asociados.

Proposición 4.3.4. Un elemento $a \in A$, no nulo ni unidad, es irreducible si y solo si se verifica que, dada cualquier factorización suya en producto de dos elementos entonces uno de los factores es una unidad (y entonces el otro un asociado); esto es:

a es irreducible
$$\Leftrightarrow a = bc$$
, entonces $b \in U(A)$ o $c \in U(A)$.

Demostración.

- \Rightarrow) Supongamos que a=bc y que $b,c\notin U(A)$. Como b y c son divisores triviales, ambos serán asociados de a. Digamos que b=ua y que c=va, con $u,v\in U(A)$. Entonces $a=uava=uva^2$. Como $a\neq 0$, será 1=(uv)a, y concluimos que a es una unidad, lo que supone una contradicción.
- \Leftarrow) Supongamos que b|a. Será a=bc para un cierto $c\in A$. Entonces $b\in U(A)$ o $c\in U(A)$. Si $b\in U(A)$, b es un divisor trivial. Si $b\notin U(A)$, será $c\in U(A)$, y por tanto b un asociado de a.

EJERCICIOS.

1. Argumenta si los siguientes anillos son, o no, Dominios de Integridad:

$$\mathbb{Z}_8$$
, $\mathbb{Z}[\sqrt{2}]$, \mathbb{Z}_3 , $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}_6[x]$, $\mathbb{Z}[i]$, $\mathbb{Z}_5[x]$.

2. Es el anillo definido por el conjunto $\mathbb{Z} \times \mathbb{Z}$ con las operaciones

$$(a, a') + (b, b') = (a + b, a' + b')$$
 y $(a, a')(b, b') = (ab, ab' + a'b)$,

un Dominio de Integridad?

- 3. ¿Es el anillo definido por el conjunto $\mathbb Z$ de los números enteros con las operaciones $a\oplus b=a+b-1$ y $a\otimes b=a+b-ab$ un Dominio de Integridad? integridad?
- 4. Se define el cuerpo $\mathbb{Q}(x)$ como el cuerpo de fracciones del anillo $\mathbb{Z}[x]$, esto es $\mathbb{Q}(x) = \mathbb{Q}(\mathbb{Z}[x])$. Describe como son sus elementos y sus operaciones.

4.3. DIVISIBILIDAD

5. Demuestra que $\mathbb{Z}[x]$ y $\mathbb{Q}[x]$ tienen el mismo cuerpo de fracciones. Esto es,

$$\mathbb{Q}(\mathbb{Q}[x]) = \mathbb{Q}(x).$$

57

- 6. Sea $A=\{\frac{m}{2^k}\in\mathbb{Q}\mid m\in\mathbb{Z} \text{ y } k\geq 0\}.$ Argumentar que
 - (a) A es subanillo de \mathbb{Q} .
 - (b) $\mathbb{Z} \subsetneq A$.
 - (c) El cuerpo de fracciones de A es el mismo que el de \mathbb{Z} , o sea \mathbb{Q} .
- 7. Argumentar la veracidad o falsedad de las siguientes porposiciones referidas a elementos de un Dominio de Integridad
 - (a) $a \mid b \land a \nmid b \Rightarrow b \nmid b + c$.
 - (b) $a \nmid b \land a \nmid c \Rightarrow a \nmid b + c$.
- 8. ¿Es la relación "ser divisor de" una relación de orden entre los elementos de un DI?
- 9. En un Dominio de Integridad A establecemos la relación \sim diciendo que $a \sim b$ si a es asociado con b.
 - (a) Probar que \sim es una relación de quivalencia en A.
 - (b) Sea $A/\sim=\{\bar{a}\mid a\in A\}$, el correspondiente conjunto cociente. Establecemos entre sus elementos la relación por la cual $\bar{a}\leq\bar{b}$ si a es un divisor de b en al anillo A ¿Está bien definida esa relación en A/\sim ? ¿Es una relación de orden?.