

EE141-Spring 2012 Digital Integrated Circuits

Lecture 18 Dynamic Logic

EECS141

Lecture #18

1

Administrativia

- □ Midterm 2 Graded!
- □ Project Phase 1 discussion
- □ Phase 2 Launch Energy

tlh=zero, the result has been stored in CL. If we want to get one, we do not need to do anything. If we want to get zero, we discharge the CL.

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- □ Inputs to the gate can make at most one transition during evaluation.
- □ Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C₁

EECS141 Lecture #18

Properties of Dynamic Gates

- □ Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static complementary CMOS)
- \Box Full swing outputs (V_{OL} = GND and V_{OH} = V_{DD})
- Non-ratioed sizing of the devices does not affect the logic levels
- □ Faster switching speeds
 - reduced capacitance due to lower input capacitance (C_{in})
 - no I_{sc}, so all the current provided by PDN goes into discharging C_L

Previously, most chips used dynamic logics. But now, we only use a few of dynamic logic. The main reason is leakage.

Properties of Dynamic Gates

- Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between V_{DD} and GND (including P_{sc})
 - no glitching
 - higher transition probabilities
 - extra load on Clk
- ightharpoonup PDN starts to work as soon as the input signals exceed V_{Tn} , so V_{M} , V_{IH} and V_{IL} equal to V_{Tn}
 - low noise margin (NM_L)
- □ Needs a precharge/evaluate clock

EECS141 Lecture #18

CMOS CVoo Po >if Po >i = Po Pi Dynamic CVoo Po f

Challenges of Dynamic Gates

- □ Noise sensitivity and small noise margins
 - Leakage
 - Charge sharing
 - Clock feedthrough

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic

EECS141 Lecture #18

Dynamic Gate VTC

Issues in Dynamic Design 2: Charge Sharing

- □ Charge initially stored on C_L clk ⊣ M_M
 - C_A previously discharged

- □ When A rises, this charge is redistributed (shared) between C₁ and C₄
- $\hfill \square$ Makes Out drop below V_{DD}

EECS141 Lecture #18

Charge Sharing

- Two cases:
 - M_a stays on complete charge share
 - M_a turns off incomplete charge share
- •Complete charge share:

•
$$Q_{Ca} = V_{Out}C_a$$

 $\Delta Q_{CL} = -V_{Out}C_a$

$$\rightarrow \boxed{\Delta V_{Out} = -V_{DD}C_a/(C_a + C_L)}$$

•Incomplete charge share:

$$\bullet Q_{Ca} = (V_{DD} - V_{TN}^*)C_a$$

$$\Delta Q_{CL} = -(V_{DD} - V_{TN}^*)C_a$$

$$\Rightarrow \Delta V_{Out} = -(V_{DD} - V_{TN}^*)C_a/C_L$$

EECS141 Lecture #18 15

Solution to Charge Sharing

- Keeper helps a lot
 - Can still get failures if Out drops below inverter V_{sw}
- Another option: precharge internal nodes
 - · Increases power and area

Issues in Dynamic Design 3: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD}. The fast rising (and falling edges) of the clock couple to Out.

Other Effects

- □ Capacitive coupling
- □ Substrate coupling
- □ Minority charge injection
- □ Supply noise (ground bounce)

EECS141 Lecture #18 21

Domino Logic

Properties of Domino Logic

- □ Only non-inverting logic can be implemented
- □ Very high speed
 - static inverter can be skewed, only L-H transition critical
 - Input capacitance reduced smaller logical effort

Cell Design

- □ Standard Cells
 - General purpose logic
 - Used to synthesize RTL/HDL
 - Same height, varying width
- □ Datapath Cells
 - For regular, structured designs (arithmetic)
 - Includes some wiring in the cell

