

Description

The VSM25P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-60V, I_{D} =-25A $R_{DS(ON)}$ <45mΩ @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM25P06-T2	VSM25P06	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-25	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	-17.7	А	
Pulsed Drain Current	I _{DM}	-60	А	
Maximum Power Dissipation	P _D	90	W	
Derating factor		0.72	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	300	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	R _{eJC}	1.4	°C/W	l
--	------------------	-----	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-2	-2.6	-3.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	37	45	mΩ
Forward Transconductance	g FS	V _{DS} =-10V,I _D =-10A	-	25	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}		-	3430	-	PF
Output Capacitance	C _{oss}	V _{DS} =-30V,V _{GS} =0V,	-	391	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	272	-	PF
Switching Characteristics (Note 4)	<u> </u>		•			
Turn-on Delay Time	t _{d(on)}		-	12	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, R_L =1.5Ω, V_{GS} =-10V, R_G =3Ω	-	15	-	nS
Turn-Off Delay Time	t _{d(off)}		-	38	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	V _{DS} =-30,I _D =-20A,	-	46		nC
Gate-Source Charge	Q _{gs}		-	9.5		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	10.5		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-25	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 10A	-	47		nS
Reverse Recovery Charge Qrr		di/dt = -100A/µs ^(Note3)	-	53		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-20V,V_G=-10V,L=1mH,Rg=25 Ω ,I_{AS}=33A

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

100.0

R_{DS(ON)}

Immited

1.0

T_{J(Max)}=175°C, T_c=25°C

0.1

0.1

Vds Drain-Source Voltage (V)

Figure 8 Safe Operation Area

BV_{DSS} (norm)

1.2

1.1

1.0

0.9

0.8

-50

0 50

100

T_J(°C)

T_J-Junction Temperature(°C)

Figure 9 BV_{DSS} vs Junction Temperature

25

(V) tuesum 10

10

0 25 50 75 100 125 150

TJ-Junction Temperature(°C)

Figure 11 Normalized Maximum Transient Thermal Impedance