Three Components of Machine Learning

Alex(ander) Jung Assistant Professor for Machine Learning Department of Computer Science Aalto University

Learning Goals

- develop intuition for how ML works
- become familiar with concept of
 - data points (features, labels)
 - model (hypothesis space)
 - loss function (quality measure)

Reading.

Chapter 1,2 of [MLBook]

AJ, "Machine Learning: The Basics", Springer, 2022.

free preprint: https://mlbook.cs.aalto.fi

What is it all About?

fit model to data to make accurate

predictions or forecasts!

let's look at some learning problems

New cases Deaths Vaccinations Tests Hospitalisations

From $\underline{\text{Our World in Data}} \cdot \text{Last updated: 2 days ago} \cdot \text{Based on 7-day average}$

7

INNOVATION

How Artificial Intelligence Completed Beethoven's Unfinished Tenth Symphony

On October 9, the work will be performed in Bonn, Germany, and a recording will be released

Ahmed Elgammal, The Conversation

September 24, 2021

features (pixel RGB values)

https://commons.wikimedia.org/

min tmp: -10

max tmp: -3

so, how does it work?

use hypothesis about data generation to make predictions (forecasts)

4, 5, 6, 7, 8, ?

"hypothesis"

The Learning Cycle

Three Components of ML

"What I'm finding is that for a lot of problems, it'd be useful to shift our mindset toward not just improving the code but in a more systematic way of improving the data," said Andrew Ng

https://read.deeplearning.ai/the-batch/issue-84/

data = set of datapoints

What is a Datapoint?

some object that might carry relevant information

Datapoint = Some Item in Wikidata

https://upload.wikimedia.org/wikipedia/commons/a/ae/Datamodel_in_Wikidata.svg

Datapoint = Some Period of Time

1.1.2020 01:00 - 2.1.2020 13:00

Datapoint = Some Wireless Signal

T. J. O'Shea, T. Roy and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal Classification," in *IEEE Journal of Selected Topics in Signal Processing*, vol. 12, no. 1, pp. 168-179, Feb. 2018, doi: 10.1109/JSTSP.2018.2797022.

Datapoint = Some Country

Datapoint = Some Protein

Datapoint = A Partial Differential Equation

$$\frac{\partial u}{\partial t}(t, x) + \frac{1}{2} \text{Tr} \left(\sigma \sigma^{\text{T}}(t, x) (\text{Hess}_{x} u)(t, x) \right) + \nabla u(t, x) \cdot \mu(t, x) + f\left(t, x, u(t, x), \sigma^{\text{T}}(t, x) \nabla u(t, x) \right) = 0$$
[1]

RESEARCH ARTICLE

Solving high-dimensional partial differential equations using deep learning

D Jiegun Han, Arnulf Jentzen, and Weinan E

+ See all authors and affiliations

https://www.pnas.org/content/115/34/8505/tab-article-info

Datapoint = Some Bridge

https://commons.wikimedia.org/wiki/Category:Bridges

Datapoint = Image Sketch

https://ml4a.net/

Machine Learning for Art ml4a is a collection of tools and educational resources which apply techniques from machine learning to arts and creativity. Models Fundamentals ml5.js

Features and Labels.

datapoint characterized by

 features: low-level properties; easy to measure/compute

 labels: high-level quantity of interest; difficult to measure/determine

Numeric Features

we mainly use numeric features x1,...,xn to characterize a datapoint

stack features into feature vector

Python: use numpy array to store features

discuss feature learning methods later

Features of an Image.

Figure 2.5: If the snapshot $\mathbf{z}^{(i)}$ is stored as a 512×512 RGB bitmap, we could use as features $\mathbf{x}^{(i)} \in \mathbb{R}^n$ the red-, green- and blue component of each pixel in the snapshot. The length of the feature vector would then be $n = 3 \times 512 \times 512 \approx 786000$.

Features of an Audio Recording.

Figure 2.4: Two visualizations of a data point that represents an audio recording. The left figure shows a line plot of the audio signal amplitudes. The right figure shows a spectogram of the audio recording.

Datapoint = Period of Time

1.1.2020 00:00 - 1.1.2020 23:55

features: temperature recordings @ 01:00, 03:00, 05:00

label: temperature recording @ 23:00

Datapoint = Wireless Signal

features:

label:

T. J. O'Shea, T. Roy and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal Classification," in *IEEE Journal of Selected Topics in Signal Processing*, vol. 12, no. 1, pp. 168-179, Feb. 2018, doi: 10.1109/JSTSP.2018.2797022.

Datapoint = A Protein

features:

label:

Datapoint = A Partial Differential Equation

$$\frac{\partial u}{\partial t}(t,x) + \frac{1}{2} \text{Tr} \left(\sigma \sigma^{\text{T}}(t,x) (\text{Hess}_{x} u)(t,x) \right) + \nabla u(t,x) \cdot \mu(t,x)$$

$$+ f \left(t, x, u(t,x), \sigma^{\text{T}}(t,x) \nabla u(t,x) \right) = 0$$
[1]

features:

label:

Datapoint = A Bridge

features:

label:

https://commons.wikimedia.org/wiki/Category:Bridges

Datapoint = Image Sketch

features:

label:

https://ml4a.net/

Datapoints, their Features and Labels are Design Choices!

4	A	В	С	U	Ł	F	G	Н	1
L	Year	m	d	Time	precp	snow	airtmp	mintmp	maxtmp
2	2020	1	2	00:00	0,4	55	2,5	-2	4,5
3	2020	1	3	00:00	1,6	53	0,8	-0,8	4,6
1	2020	1	4	00:00	0,1	51	-5,8	-11,1	-0,7
5	2020	1	5	00:00	1,9	52	-13,5	-19,1	-4,6
5	2020	1	6	00:00	0,6	52	-2,4	-11,4	-1
7	2020	1	7	00:00	4,1	52	0,4	-2	1,3
3	2020	1	8	00:00	4,3	51	0,8	0,1	1,8
)	2020	1	9	00:00	-1	51	-0,6	-1,9	1,6
0	2020	1	10	00:00	-1	51	-6,2	-11	-1,4
1	2020	1	11	00:00	2,8	50	-4,8	-10,7	-2,1
2	2020	1	12	00:00	-1	53	-1,3	-3,5	0,9
3	2020	1	13	00:00	-1	53	-6,4	-12,9	-3,1
4	2020	1	14	00:00	9,7	52	-2,8	-9	-0,7
5	2020	1	15	00:00	-1	63	0,2	-0,7	0,6
6	2020	1	16	00:00	0,4	62	-3,9	-5,2	0,1
7	2020	1	17	00:00	2	62	-5,2	-8,4	-0,7

	24	A	В	С	υ	Ł	ŀ	G	Н	1	
	ι	Year	m	d	Time	precp	snow	airtmp	mintmp	maxtmp	
	2	2020	1	2	00:00	0,4	55	2,5	-2	4,5	
(0	3	2020	1	3	00:00	1,6	53	0,8	-0,8	4,6	
ě	1	2020	1	4	00:00	0,1	51	-5,8	-11,1	-0,7	
7	5	2020	1	5	00:00	1,9	52	-13,5	-19,1	-4,6	
at		2020	1	6	00:00	0,6	52	-2,4	-11,4	-1	
features	7	2020	1	7	00:00	4,1	52	1990 (4.77)		1,3	1 - 1 1
4	3	2020	1	8	00:00	4,3	51	0,8	0,1	1,8	label
	3	2020	1	9	00:00	-1	51	-0,6	-1, }	1,6	
	0	2020	1	10	00:00	-1	51	-6,2	II	-1,4	data point
	1	2020	1	11	00:00	2,8	50	-4,8	-10,7	-2,1	uata ponit
	2	2020	1	12	00:00	-1	53	-1,3	-3,5	0,9	
	3	2020	1	13	00:00	-1	53	-6,4	-12,9	-3,1	
	4	2020	1	14	00:00	9,7	52	-2,8	-9	-0,7	
	5	2020	1	15	00:00	-1	63	0,2	-0,7	0,6	
	6	2020	1	16	00:00	0,4	62	-3,9	-5,2	0,1	data point, features and labe
	7	2020	1	17	00:00	2	62	-5,2	-8,4	-0,7	are design choices!

```
newdataset= somedata[somedata['date'] == '2021-06-01'];
print(newdataset)
         date
                time
                       temperature
   2021-06-01
               00:00
                               6.2
   2021-06-01
               01:00
                               6.4
   2021-06-01
               02:00
                               6.4
   2021-06-01
               03:00
                               6.8
   2021-06-01
               04:00
                               7.1
   2021-06-01
               05:00
                               7.6
   2021-06-01
               06:00
                               7.5
   2021-06-01
               07:00
                               8.1
   2021-06-01
               08:00
                              10.3
   2021-06-01
               09:00
                              12.8
10 2021-06-01
                              15.0
                10:00
11 2021-06-01
               11:00
                              14.1
12 2021-06-01
               12:00
                              16.5
13 2021-06-01
               13:00
                              13.6
14 2021-06-01
               14:00
                              14.2
15 2021-06-01
                              13.3
               15:00
16 2021-06-01
                16:00
                              14.5
17 2021-06-01
                17:00
                              13.8
```

Key Parameters of a Data Set

number *n* of features

number m of data points "sample size"

A	В	C	υ	Ł	+	G	н	
Year	m	d	Time	precp	snow	airtmp	mintmp	maxtmp
2020	1	2	00:00	0,4	55	2,5	-2	4,5
2020	1	3	00:00	1,6	53	0,8	-0,8	4,6
2020	1	4	00:00	0,1	51	-5,8	-11,1	-0,7
2020	1	5	00:00	1,9	52	-13,5	-19,1	-4,6
2020	1	6	00:00	0,6	52	-2,4	-11,4	-1
2020	1	7	00:00	4,1	52	0,4	-2	1,3
2020	1	8	00:00	4,3	51	0,8	0,1	1,8
2020	1	9	00:00	-1	51	-0,6	-1,9	1,6
2020	1	10	00:00	-1	51	-6,2	-11	-1,4
2020	1	11	00:00	2,8	50	-4,8	-10,7	-2,1
2020	1	12	00:00	-1	53	-1,3	-3,5	0,9
2020	1	13	00:00	-1	53	-6,4	-12,9	-3,2
2020	1	14	00:00	9,7	52	-2,8	-9	-0,7
2020	1	15	00:00	-1	63	0,2	-0,7	0,6
2020	1	16	00:00	0,4	62	-3,9	-5,2	0,3
2020	1	17	00:00	2	62	-5,2	-8,4	-0,7
2020	1	18	00:00	19,6	65	-4,6	-7,3	-4,2
2020	1	19	00:00	0,7	81	-4,4	-8,8	-2,7
2020	1/	A 20	ØØ:@0 H	CN21,8	Sung	nm. <u>e</u> ,g	Scho,s	1'22 _{1,2}

Feature Deluge.

modern information technology provides huge number of raw features

- smartphones
- webcams
- social networks
- smart watch

use only most relevant features but not fewer.

missing relevant features bad for accuracy

using many irrelevant features wastes computation and might result in overfitting

```
newdataset= somedata[somedata['date'] == '2021-06-01'] ;
print(newdataset)
        date
               time
                     temperature
              00:00
  2021-06-01
  2021-06-01
              01:00
  2021-06-01 02:00
                                                   data point = some day at
                             6.8
  2021-06-01 03:00
  2021-06-01 04:00
                                                   FMI station
                             7.6
  2021-06-01 05:00
6 2021-06-01 06:00
                             7.5
  2021-06-01
             07:00
                             8.1
                             10.3
8 2021-06-01
             08:00
9 2021-06-01
             09:00
                                                   feature = nr of hourly observations
10 2021-06-01 10:00
11 2021-06-01
             11:00
12 2021-06-01
             12:00
                                                   want to predict maximum daytime
13 2021-06-01
             13:00
14 2021-06-01
              14:00
                                                   temperature
15 2021-06-01
             15:00
16 2021-06-01 16:00
                            14.5
17 2021-06-01
              17:00
                            13.8
```

missing relevant features bad for accuracy

```
newdataset= somedata[somedata['date'] == '2021-06-01'] :
print(newdataset)
        date
               time
                     temperature
              00:00
  2021-06-01
                             6.2
                                             data point = some day at
              01:00
  2021-06-01
                             6.4
  2021-06-01
              02:00
                             6.4
                                             FMI station
  2021-06-01
              03:00
                             6.8
                             7.1
  2021-06-01
             04:00
  2021-06-01
             05:00
                             7.6
  2021-06-01
              06:00
                             7.5
                             8.1
  2021-06-01
              07:00
                            10.3
  2021-06-01
              08:00
  2021-06-01
                            12.8
              09:00
                                             feature = hourly temp. 00:00 -
                            15.0
10 2021-06-01
              10:00
11 2021-06-01
              11:00
                            14.1
                                             15:00
              12:00
                            16.5
12 2021-06-01
13 2021-06-01
              13:00
                            13.6
                            14.2
14 2021-06-01
              14:00
                            13.3
15 2021-06-01
              15:00
                                             want to predict temp at 16:00
              16:00
                            14.5
16 2021-06-01
                            13.8
17 2021-06-01
              17:00
```

using irrelevant features wastes comp. resources

Label is Design Choice!

YOU choose the label of a data point

by choosing/defining label you define the ML problem or learning task!

Regression. Numeric Labels.

```
date
               time
                     temperature
                                     datapoint
  2021-06-01
              00:00
                            6.2
                            6.4
  2021-06-01
              01:00
                                     "2021-06-01 at some FMI station"
  2021-06-01
              02:00
                            6.4
                            6.8
  2021-06-01
              03:00
4 2021-06-01
              04:00
                            7.1
                            7.6
 2021-06-01
              05:00
6 2021-06-01
              06:00
                            7.5
  2021-06-01
              07:00
                            8.1
8 2021-06-01
              08:00
                           10.3
                           12.8
  2021-06-01
              09:00
                           15.0
10 2021-06-01
              10:00
                           14.1
11 2021-06-01
              11:00
                           16.5
12 2021-06-01
              12:00
13 2021-06-01
              13:00
                           13.6
                                       label = tmp at 15:00
                           14.2
14 2021-06-01
              14:00
15 2021-06-01
              15:00
                           13.3
                           14.5
13.8
16 2021-06-01
              16:00
17 2021-06-01
              17:00
```

Binary Classification.

```
temperature
                time
         date
  2021-06-01
               00:00
                              6.2
                              6.4
  2021-06-01
               01:00
  2021-06-01
               02:00
                              6.4
                              6.8
  2021-06-01
              03:00
4 2021-06-01
               04:00
                              7.1
                              7.6
 2021-06-01
               05:00
6 2021-06-01
               06:00
                              7.5
  2021-06-01
               07:00
                              8.1
8 2021-06-01
               08:00
                             10.3
                             12.8
  2021-06-01
               09:00
                             15.0
10 2021-06-01
               10:00
                             14.1
11 2021-06-01
               11:00
                             16.5
12 2021-06-01
               12:00
13 2021-06-01
               13:00
                             13.6
14 2021-06-01
               14:00
                             14.2
15 2021-06-01
                             13.3
               15:00
16 2021-06-01
                             14.5
               16:00
17 2021-06-01
               17:00
                             13.8
```

datapoint

"2021-06-01 at some FMI station"

```
label =
```

- "hot" if tmp at 15:00 > 10
- "cold" if ... <= 10

Multi-Class Classification

```
date
                time
                       temperature
  2021-06-01
               00:00
                               6.2
                               6.4
  2021-06-01
               01:00
  2021-06-01
               02:00
                               6.4
                               6.8
  2021-06-01
               03:00
  2021-06-01
               04:00
                               7.1
  2021-06-01
               05:00
                               7.6
  2021-06-01
               06:00
                               7.5
  2021-06-01
               07:00
                               8.1
  2021-06-01
               08:00
                              10.3
  2021-06-01
               09:00
                              12.8
10 2021-06-01
                              15.0
               10:00
                              14.1
11 2021-06-01
               11:00
                              16.5
12 2021-06-01
               12:00
13 2021-06-01
               13:00
                              13.6
14 2021-06-01
               14:00
                              14.2
15 2021-06-01
               15:00
                              13.3
16 2021-06-01
               16:00
                              14.5
17 2021-06-01
               17:00
                              13.8
```

```
datapoint
```

"2021-06-01 at some FMI station"

```
label =
```

- "nice morning" if tmp at 15:00
 - < 10 and tmp at 10:00 > 10
- "nice noon" if tmp at 15:00 >
 - 10 and tmp at 10:00 < 10
- "nice day" if tmp at 15:00 > 10
 and tmp at 10:00 > 10

Multilabel Problems – Multitask Learning

by choosing/defining label you define the ML task!

for same data, use different labels \rightarrow multiple learning tasks

multi-label class. (special case of multi-task learning)

Multi-Label Regression.

```
time
                    temperature
        date
                                    datapoint
  2021-06-01
              00:00
                            6.2
                            6.4
  2021-06-01
              01:00
                                    "2021-06-01 at some FMI station"
  2021-06-01
              02:00
                            6.4
                            6.8
  2021-06-01
              03:00
4 2021-06-01
              04:00
                            7.1
                            7.6
 2021-06-01
              05:00
6 2021-06-01
              06:00
                            7.5
  2021-06-01
              07:00
                            8.1
                                      label1 = tmp at 10:00
8 2021-06-01
              08:00
                           10.3
                           12.8
  2021-06-01
              09:00
10 2021-06-01
              10:00
                           15.0
                           14.1
11 2021-06-01
              11:00
                           16.5
12 2021-06-01
              12:00
13 2021-06-01
              13:00
                           13.6
                                      label2= tmp at 15:00
14 2021-06-01
              14:00
                           14.2
15 2021-06-01
                           13.3
              15:00
16 2021-06-01
                           14.5
              16:00
17 2021-06-01
              17:00
                           13.8
```

Multilabel Classification.

 y_1 = 1 or 0 if car present or not y_2 = 1 or 0 if person present or not y_3 = 1 or 0 if tree present or not

Feature Matrix. Label Vector.

- consider m datapoints, indexed by i = 1,...,m
- i-th datapoint characterized by features $x_1^{(i)}$, \cdots , $x_n^{(i)}$ and label $y^{(i)}$
- stack features of i-th data point into feature vector $\mathbf{x}^{(i)} = \left(x_1^{(i)}, \cdots, x_n^{(i)}\right)^T$
- stack feature vectors into feature matrix, labels into label vector
- compact representation of dataset by feature matrix and label vector!

Feature Matrix.

$$\mathbf{X} = \left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\right)^{T} = \begin{pmatrix} x_{1}^{(1)} & x_{2}^{(1)} & \dots & x_{n}^{(1)} \\ x_{1}^{(2)} & x_{2}^{(2)} & \dots & x_{n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{(m)} & x_{2}^{(m)} & \dots & x_{n}^{(m)} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Label Vector.

$$\mathbf{y} = (y_1, y_2 \dots, y_m)^T \in \mathbb{R}^m$$

NumPy Arrays

- feature matrix and label vector are numeric arrays
- Python library NumPy provides methods for num.arr.

```
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
```


Statisticians, like artists, have the bad habit of falling in love with their models.

— George Е. Р. Вох —

AZ QUOTES

Machine Learning.

"learn to predict the label of a data point solely from its features"

Scatterplot

How to Predict?

apply a hypothesis map h to features x,

$$\hat{y} = h(x)$$

A Hypothesis.

Model = Several Hypotheses.

Linear Model

Linear Model is Versatile!

Linear + Feature Map

$$\begin{cases} x_1 = \phi_1(x) \\ x_2 = \phi_2(x) \end{cases}$$
$$\vdots$$
$$\langle x_n = \phi_n(x) \rangle$$

linear map

$$\begin{pmatrix} x_1 = \phi_1(x) \\ x_2 = \phi_2(x) \\ \vdots \end{pmatrix} \mathbf{w}^T \mathbf{x} = \sum_{j=1}^n w_j x_j$$

$$h(\mathbf{x})$$

$$h(x) = \sum_{j=1}^{n} w_j \phi_j(x)$$

Polynomials

Decision Tree

more in lecture "Non-Parametric Models"

feature x

Artificial Neural Network

Which Model To Choose?

large to offer a good hypothesis

small to fit computational resources

simple or interpretable

Sufficiently Large

linear model might be to small for such data

there is no straight line that fits well the data points here

need larger models that also contain non-linear maps

more on large (non-linear) models in Lectures "Deep Learning" and "Non-Parametric Models"

Sufficiently Small (Statistically)

 large model contains by accident a hypothesis that perfects fits training data

 model fits well training data but does a very poor job outside the training data
 more on overfitting in Lectures
 "Model Val/Sel" and "Diagnosing ML"

Sufficiently Small (Statistically)

source: https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

rule of thumb:

training set (much) larger than # model parameters

Sufficiently Small (Comput.)

- consider linear model using n features
- fit linear model on m > n datapoints
- need to invert "n by n" matrix! [Sec. 4.3, MLBook]

Sufficiently Simple (Comput.)

- hypothesis maps h(x) should be easy to evaluate
- recent MSc thesis on "Predicting Gas Valve Position"

need to compute h(x) in real-time (while engine is running!)

Problem: predict the price trend of a cryptocurrency other than Bitcoin (e.g., ADA)

• Datapoint: some day

- Features:
 - Bitcoin price
 - Fear and Greed Index
- Label: ADA's price

by Esther Gallego

tradingview.com

Predicting future purchases

Datapoint = some customer

Features = customer attributes (age, sex, purchase history, etc.)

Label = interest in some (new) product

Marko Ikävalko

Datapoint = A Day in the Canteen

features:

label:

https://commons.wikimedia.org/wiki/File:Suzhou_High_School-canteen.jpg

Datapoint = A Cow

Features:

- Quantity of milk produced per day or over time
- Temperature of the milk

- Is the cow sick or not.
- Is it past its peak productin time or not.
- Is it of species X or Y.

Which Hypothesis is Better?

A Loss Function

The Squared Error Loss

The Absolute Error Loss

Loss Functions for Binary Classification

features x = pixels

Loss = 100

Loss Functions for Binary Classification

features x = pixels

Loss = 0

Classifiers

- consider label values either "cat" or "dog"
- features vector x = pixels values
- can we use linear hypothesis maps h(x)?

- YES!
- use sign h(x) to classify: h(x) > 0 \rightarrow "dog"
- use |h(x)| as confidence measure

Loss Functions for Binary Classification

more on this in lecture "Classification"

Which Loss Function?

- statistical aspects (should favour "reasonable" hypothesis)
- computational aspects (must be able to minimize them)
- interpretation (what does log-loss = -3 mean ?)

.....choosing a suitable loss function is often non-trivial!

Recent Paper about Constructing Loss Function

Algorithm 1 Generalized ground truth matching method for typical object detector performance evaluation.

```
Input: \mathcal{B}^p = \{(b_i^p, s_i)\}_{i=1}^D \mid D \text{ bounding box predictions sorted } 
                                            by decreasing confidence score s_i
                                           for class c from input image I.
               \mathcal{B}^g = \{b_k^g\}_{k=1}^N
                                           N ground truth bounding box labels
                                           for class c from input image I.
                 \varepsilon \in [0,1] \subset \mathbb{R}
                                            Box IoU threshold for matching.
            g_{\max} \in \mathbb{N}
                                           Maximum number of GT boxes b_{i}^{g}
                                           to match with a single prediction \hat{b}_{i}^{p}.
            a_{\min} \in [0,1] \subset \mathbb{R}
                                          | Minimum value for A(b_{\nu}^p)/A(b_{\nu}^g),
                                           which limits TP prediction box size.
   Output: \mathcal{Y} \in \{0,1\}^X
                                            A binary sequence of variable length
                                            X \in \mathbb{N}_0 indicating true and false
                                            positives, if g_{\text{max}} = 1 \Rightarrow X = D.
1 function MATCHBOXESGENERIC(\mathcal{B}^p, \mathcal{B}^g, \varepsilon, g_{\max}, a_{\min})
```

https://arxiv.org/pdf/2111.09406.pdf

Main Components of ML

data

model

• loss

Landscape of ML Methods

ML Method: Linear Regression

```
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
                                                                     data
\Rightarrow \Rightarrow \# y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
                                                                   model, loss
>>> reg.coef_
array([1., 2.])
>>> reg_intercept_
3.0...
>>> reg.predict(np.array([[3, 5]]))
array([16.])
```

ML Method: Decision Tree Classifier

loss

ML Method: Deep Learning

```
# -*- coding: utf-8 -*-
import torch
import math
# Create Tensors to hold input and outputs.
                                                                              data
x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
# Prepare the input tensor (x, x^2, x^3).
p = torch.tensor([1, 2, 3])
                                                                             model
xx = x.unsqueeze(-1).pow(p)
# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
    torch.nn.Linear(3, 1),
   torch.nn.Flatten(0, 1)
                                                                             loss
loss_fn = torch.nn.MSELoss(reduction='sum')
```

Three Views on Machine Learning

Three Main Flavours of ML

- supervised ML (use labeled data to imitate teacher)
- unsupervised ML (no labeled data needed)
- reinforcement learning (learn while collecting data)

Supervised Learning

Unsupervised Learning

more on this in Lecture "Clustering",
"Feature Learning"

label of datapoint = cluster assignment or nearby subspace

A. Jung HCML Summer School'22

Reinforcement Learning

features = on-board camera video

label = "optimal steering

direction"

not covered in this school!

Wrap Up

- data points characterized by features and label
- features ≈ low-level properties
- labels ≈ high-level properties (quantity of interest)
- GOAL of ML: learn a hypothesis h such that $h(x) \approx y$
- ML model = comp. tractable subset of possible hypothesis maps h(x)
- prediction error y-h(x) quantified using a loss function

Next Lecture: Regression

GOAL of ML: Learn hypothesis h(.) such that $y \approx h(x)$ for any data point (x,y).

what exactly is "any data point"?