Ch 21 Electric Charge & Electric Field

Season 2 Episode 3 - POINT CHARGES GO WHooOOSH

In this episode of LARC Physics 3B, we're going to . . .

- Mourn our losses after Midterm 1
- Rebound by building a strong foundation for Midterm 2 based on Coulomb's Law with electric point charges.

Guided Practice

Particles of charge $+80\,\mu\text{C}$, $-40\,\mu\text{C}$, and $+35\,\mu\text{C}$ are placed along a line shown in the figure below. They are equally spaced by a distance of $0.35\,\text{m}$. Find the net force \vec{F}_{net} on the $+35\,\mu\text{C}$ charge.

- (a) Find $\vec{F}_{\rm net}$ by first finding the net electric field $\vec{E}_{\rm net}$ at where the $+35\,\mu{\rm C}$ charge is
- (b) Find \vec{F}_{net} directly by using Coulomb's Law $F = k \frac{q_1 q_2}{r^2}$

Beware of proper vector notation!

Answer: $\vec{F}_{net} = -(51.4 \text{ N}) \,\hat{i}$

Breakout-Room Activity

Two point charges $Q_1 = -25\,\mu\text{C}$ and $Q_2 = +45\,\mu\text{C}$, are separated by a distance of 12 cm. The electric field at the point P is **zero**. What's the distance between Q_1 and point P?

Answer: $x = 35 \,\mathrm{cm}$

Challenge Problem

Find the magnitude and electric field at points A and B due to the two positive point charges with charge $Q=+5.7\,\mu\text{C}.$

Answer: $\vec{E}_A = -(5.30 \times 10^6 \,\text{N/C})\,\hat{i} + (7.89 \times 10^6 \,\text{N/C})\,\hat{j}$ $\vec{E}_B = (3.7 \times 10^6 \,\text{N/C})\,\hat{j}$

