

National University of Sciences and Technology (NUST)

School of Electrical Engineering and Computer Science (SEECS)

Digital Image Processing

Intensity Transformations

Look-up Tables
Linear Contrast Stretch
Piece-wise Contrast Stretch
Histogram Equalization
Power Law
Log Transform - Gamma correction

Dynamic Range vs Contrast

Dynamic Range

Minimum Possible Intensity to Maximum Possible Intensity

Contrast

Minimum Image Intensity to Maximum Image Intensity

What do you think is the dynamic range of this image?

What is the approximate contrast range?

Dynamic Range vs Contrast

Dynamic range (8-bit) = max - min = 255 - 0 = 255

Contrast = 0 - 55

Contrast = 0 - 255

Dynamic Range vs Contrast

XY	Dynamic Range	Contrast
	255	0-255
	255	50-255
	255	75-255
	255	100-255

Intensity Transformations

Point/Pixel operations

Output value at specific coordinates (x,y) is dependent only on the input value at (x,y)

Local operations

The output value at (x,y) is dependent on the input values in the neighborhood of (x,y)

Global operations

The output value at (x,y) is dependent on all the values in the input image

Intensity Transformations

Basic Concept

Most spatial domain enhancement operations can be generalized as:

$$g(x, y) = T[f(x, y)]$$

f(x, y) = Input image g(x, y) = Processed/output image T = Operator defined over some neighbourhood of (x, y)

Look up Table Mapping

Point Processing using Look-up Tables

Original Image

Original Image

Original Image

Linear Contrast Stretching

Original Image

Linear Contrast Stretching

Output Image

Piece-wise Contrast Stretching

Objective

- Increase the dynamic range of the gray levels for low contrast images
- Rather than using a well defined mathematical function we can use arbitrary user-defined transforms

- If $r_1 = s_1 & r_2 = s_2$, no change in gray levels
- If $r_1 = r_2$, $s_1 = 0$ & $s_2 = L-1$, then it is a threshold function. The resulting image is binary

Piece-wise Contrast Stretching

a b c d

FIGURE 3.10

Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences. Australian National University, Canberra, Australia.)

Window Level

Selecting a Window of the intensity values to be enhanced.

Window Level

Window of dark intensity values are enhanced.

17

Window Level

Intensity values corresponding to the Lungs is enhanced.

Histogram Of Images

ACtiVity

How many of you eaten egg, roti, paratha, bread or rice in breakfast?

ACtivity

How many of you eaten egg, roti, paratha, bread or rice in breakfast?

ACtivity

How many of you eaten egg, roti, paratha, bread or rice in breakfast?

Image Histogram

 The histogram of a digital image with gray values is the discrete function

$$p(r_k) = \frac{n_k}{n}$$
 $k = 0,1,...,L-1$

- N_k : Number of pixels with gray value r_k
- N: Total number of pixels in the image
- The function $p(r_k)$ represents the fraction of the total number of pixels with gray value r_k .

Image Histogram

The (intensity or brightness) histogram shows how many times a particular grey level (intensity) appears in an image.

For example, 0 - black, 255 - white

0	1	1	2	4
2	1	0	0	2
5	2	0	0	4
1	1	2	4	1

Image

Histogram Calculation


```
I = imread('rain.jpg');
G = rgb2gray(I);
[x,y] = size(G);
H = zeros(1,256);
  for i=1:x
      for j=1:y
              H(G(i,j)+1) = H(G(i,j)+1) + 1;
       end
  end
stem(H);
```

Histogram - Gray Scale Image

 $h_I(g)$ = the number of pixels in Iwith graylevel g.

Histogram - Color Image

There is one histogram per color band R, G, & B. Gray histogram is from 1 band = (R+G+B)/3

Histogram - Color Image

0	0	0	2	2
1	1	1	2	2
5	5	5	3	3
5	6	6	4	3
4	4	4	4	4

 5×5 matrix

0	0	0	2	2
1	1	1	2	2
5	5	5	3	3
5	6	6	4	3
4	4	4	4	4

_		_	
5	Х	5	matrix

0	0	0	2	2
1	1	1	2	2
5	5	5	3	3
5	6	6	4	3
4	4	4	4	4

 5×5 matrix

0	0	0	2	2
1	1	1	2	2
5	5	5	3	3
5	6	6	4	3
4	4	4	4	4

 5×5 matrix

0	0	0	2	2
1	1	1	2	2
5	5	5	3	3
5	6	6	4	3
4	4	4	4	4

 5×5 *matrix*

 $Total\ pixels: 5\times 5=25\ pixels$

Number of pixels	Probability	CDF
1	1/25 = 0.04	0.04
2	2/25 = 0.08	0.12
8	8/25 = 0.32	0.44
10	10/25 = 0.40	0.84
2	2/25 = 0.08	0.92
1	1/25 = 0.04	0.96
1	1/25 = 0.04	1.00

Total pixels : $5 \times 5 = 25$ pixels

Number of pixels	Probability	CDF
1	1/25 = 0.04	0.04
2	2/25 = 0.08	0.12
8	8/25 = 0.32	0.44
10	10/25 = 0.40	0.84
2	2/25 = 0.08	0.92
1	1/25 = 0.04	0.96
1	1/25 = 0.04	1.00

Histogram to CDF

Histogram to CDF

$Total\ pixels: 5\times 5=25\ pixels$

Number of pixels	Probability	CDF
1	1/25 = 0.04	0.04
2	2/25 = 0.08	0.12
8	8/25 = 0.32	0.44
10	10/25 = 0.40	0.84
2	2/25 = 0.08	0.92
1	1/25 = 0.04	0.96
1	1/25 = 0.04	1.00

Histogram Equalization Example

Original Image

Histogram

Original Image

Histogram

CDF (Cumulative Density Function)

Original Image

Original Image

Original Image

Original Image

Histogram Equalization - Local

Original Image

Global Equalization

Local Equalization

Histogram Equalization - Problem

Problem with Histogram Equalization

Power law transformations have the following form

$$s = c \times r^{\gamma}$$

- Map a narrow range of dark input values into a wider range of output values or vice versa
- Varying y gives a whole family of curves

• For q < 1: Expands values of dark pixels, compress

values of brighter pixels

For q > 1: Compresses values of dark pixels, expand

values of brighter pixels

• If g=1 & c=1: Identity transformation (s=r)

A variety of devices (image capture, printing, display)
respond according to a power law and need to be corrected.

Gamma (g) correction

The process used to correct the power-law response phenomena.

MR image of human spine

Result after
Power law
transformation

 $\gamma = 0.6$

Result after
Power law
transformation

 $\gamma = 0.4$

Result after
Power law
transformation

 $\gamma = 0.3$

Image has a washed-out appearance - needs $\gamma > 1$

Aerial Image

Result of Power law transformation $\gamma = 3.0$ (suitable)

Result of Power law transformation $\gamma = 4.0$ (suitable)

Result of Power law transformation γ = 5.0 (high contrast, some regions are too dark)

Logarithmic Transformations

The general form of the log transformation is

$$s = c \times \log(1+r)$$

- The log transformation maps a narrow range of low input grey level values into a wider range of output values
- The inverse log transformation performs the opposite transformation

Logarithmic Transformations

Properties

- For lower amplitudes of input image the range of gray levels is expanded.
- For higher amplitudes of input image the range of gray levels is compressed.

Intensity Transformations

Negative of an image?

Intensity Slicing?

Semester project

End Intensity Transformations