Natural Language Processing

Introduction

Agenda

- Language + NLP
- How to represent words?
- How do we learn these representations?
- Are these representations are good? Why?
- MATLAB + homework

Natural Language Processing

NLP + Machine Learning

ANY WORDS WILL MEAN TO ANNONE.
ALL YOU CAN DO IS TRY TO GET BETTER AT GUESSING HOW YOUR WORDS AFFECT PEOPLE, SO YOU CAN HAVE A CHANCE OF FINDING THE ONES THAT WILL MAKE THEM FEEL SOMETHING LIKE WHAT YOU WANT THEM TO FEEL.

EVERYTHING ELSE IS POINTLESS.

YOU CAN NEVER KNOW FOR SURE WHAT

riverrun, past Eve and Adam's, from swerve of shore to bend of bay, brings us by a commodius vicus of recirculation back to

Howth Castle and Environs.

Sir Tristram, violer d'amores, fr'over the short sea, had passen-

core rearrived from North Armorica on this side the scraggy isthmus of Europe Minor to wielderfight his penisolate war: nor had topsawyer's rocks by the stream Oconee exaggerated themselse to Laurens County's gorgios while they went doublin their mumper all the time: nor avoice from **afire** bellowsed mishe mishe to tauftauf thuartpeatrick: not yet, though venissoon after, had a kidscad buttended a bland old isaac: not yet, though all's fair in

vanessy, were sosie sesthers wroth with twone nathandjoe.

Joyce, James. Finnegans Wake.

Language Characteristics

- Not a formal system
- Is the hallmark of human success
 - How we encode knowledge
- It's new
- It's slow
- But information dense
- Spoken vs written

IRL

- Search / question answering
- Text summarization
- Resume filtering
- FB: hate speech, hate memes
- Identifying AI-generated text
- Chatbots
- Translation

Word Representations

As discrete entities

- "Denotational semantics"
- Symbols that point to a meaning
 - A chair denotes all possible chairs

```
cat = [ 0 0 0 0 0 1 0 0 0 ]
dog = [ 0 0 0 0 1 0 0 0 0 ]
pet = [ 0 0 0 0 0 0 0 1 ]
```

WordNet

- Lexical database
- Thesaurus / dictionary
- Capture synonym sets and hypernyms (relationships)
- Capture different senses of a word
- A "network" of words
- Drawbacks:
 - o In some cases, words may share some meaning but be in different synonym sets, so not an explicit representation
 - o Built by human labor
 - Isn't up to date new slang

Distributional Hypothesis

- "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
- Words that are used and occur in the same contexts tend to purport similar meanings (Harris, Z. 1954)
- Words that share a "context" have similar meanings

Here are a few facts that will _____ you.

Distributed

cats

pet Cat hat

lovers

beat

bass

Meaningful Directions

Learning Embeddings

Word2Vec

- A word's **embedding** is a d-dimensional vector that we learn (starts random)
- A word's **context** is the set of words that occur near it (e.g. **n** words on either side)
- We want the model to be able to predict what the context words are given the content words

Word2Vec

Word2Vec

$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta) \qquad P(o \mid c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Evaluating Embeddings

Evaluate Embeddings

- Intrinsic
 - Specific, intermediate task
 - Help us understand vector space properties
 - Word analogies
 - Similarity correlation evaluation
- Extrinsic
 - On actual task
 - Can be slow
 - Sentiment classification

Cosine Similarity/Distance

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

cosine distance = 1 - cosine similarity


```
>> a = rand(50,1);
>> b = rand(50,1);
>> dot(a,b) / (norm(a) * norm(b))
ans =
     0.8186
>> (a' * b) / (norm(a) * norm(b))
ans =
     0.8186
```

Word Similarity

- Compute similarity between two words
- Ask humans to rate how similar two words are
- Correlate the ratings

		cos-sim
Ring	Apple	0.2760
Dog	Cat	0.9218
Thumb	Tree	0.3564
Germany	Berlin	0.7985

Analogies

- a:b::c:d
- B-a=d-c
- b a + c = d

Queen - king = woman - man

King - man + woman = queen

Visualization - PCA

- Principal component analysis
- Allows us to reduce dimensionality of the data
- While preserving much of the variance

- Procedure:
 - Compute principal components (coefficients)
 - Multiply original data by n components to reduce dimensions

PCA - MATLAB

Column sorted by how much variance they explain

Clustering

- Hierarchical
- K-means
- What kind of clusters do you think you would get?

Polysemy

- A problem with word embeddings...
- The same word can have multiple meanings
- Context matters

"The word *good* has many meanings. For example, if a man were to shoot his grandmother at a range of five hundred yards, I should call him a good shot, but not *necessarily* a good man."

– G.K. Chesterton, "Orthodoxy," 1909

MATLAB / hw