三. 证明题:

1. 证明: \Rightarrow 若 AA^T 正定,则二次型 $f(X) = X^T AA^T X$ 正定,故 $X^T AA^T X = 0 \Leftrightarrow X = 0$,

假设
$$A^TX = (y_1, y_2, \dots y_n)^T$$
,则 $X^TAA^TX = y_1^2 + y_2^2 + \dots + y_n^2 = 0 \Leftrightarrow y_1 = y_2 = \dots = y_n = 0$,即 $A^TX = 0$

故 $X^T A A^T X = 0 \Leftrightarrow X = 0$ 转化为 $A^T X = 0 \Leftrightarrow X = 0$,此时系数矩阵 A^T 列满秩,即 r(A) = m.

仁若
$$r(A) = m$$
,考察二次型 $f(X) = X^T A A^T X$,令 $A^T X = (y_1, y_2, \dots, y_n)^T$,则 $f(X) = y_1^2 + y_2^2 + \dots + y_n^2 \ge 0$,

而 $f(X) = 0 \Leftrightarrow A^T X = 0$,由于 r(A) = m,则 $A^T X = 0 \Leftrightarrow X = 0$,故二次型正定,矩阵 AA^T 正定.

2. 提示:
$$\begin{vmatrix} 0 & X^T \\ -X & A \end{vmatrix} = \begin{vmatrix} X^T A X & 0 \\ -X & A \end{vmatrix} = |A|X^T A X = X^T A^* X, 由于 A 对称,则 A* 对称,为 $f(x_1,\dots,x_n)$ 的矩阵.$$

- 3. 证明: 取初等矩阵 P(i,1),则 $P(i,1)^T$ AP(i,1) = B 的 (1,1) 位置元素是 a_{ii} , A 与 B 合同,故 A 正定当且仅当 B 正定.现在假设 A 是正定阵,则 B 也是正定阵,故其顺序主子式应全为正,而 B 的一阶顺序主子式为 $a_{ii} < 0$,矛盾,故 A 不是正定阵.
- 4. 提示: $X^{T}(kE + A)X = kX^{T}X + X^{T}AX > 0$.
- 5. 证明: A 的秩是 r,则存在可逆矩阵 C,使得 $C^TAC = \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix}$,其中 B_1 是 r 阶满秩对角阵.则

$$A = (C^T)^{-1} \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} C^{-1}, \text{ if } AC \begin{pmatrix} 0 & 0 \\ 0 & E_{n-r} \end{pmatrix} C^T = (C^T)^{-1} \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} C^{-1} C \begin{pmatrix} 0 & 0 \\ 0 & E_{n-r} \end{pmatrix} C^T = 0.$$

取
$$B = C \begin{pmatrix} 0 & 0 \\ 0 & E_{n-r} \end{pmatrix} C^T$$
 即可.