SIMPLE IPR CURVE FOR UNDERSATURATED RESERVOIR

Avg. Pr	1300	psi
(Pwf)stablized	900	psi
(Qo)stablized	110	STB/day

Productivity index	0.275 STB/day-p	
AOF	357.5 STB/day	

data values for plotting IPR curve

Pwf	Qo
1300	0
1170	35.75
1040	71.5
910	107.25
780	143
650	178.75
520	214.5
390	250.25
260	286
130	321.75
0	357.5

Vogel's Method

Saturated oil reservoirs (pr ≤ pb)		
Avg. Pr	2500	psi
(Pwf)stablized	2000	psi
(Qo)stablized	350	STB/day

data for plotting IPR curve

	vogel's	constant J approach
Pwf	Qo	Qo
2500	0	0
2250	183.5365854	175
2000	350	350
1750	499.3902439	525
1500	631.7073171	700
1250	746.9512195	875
1000	845.1219512	1050
750	926.2195122	1225
500	990.2439024	1400
250	1037.195122	1575
0	1067.073171	1750

$$\left(Q_o\right)_{max} = Q_o / \left[1 - 0.2 \left(\frac{p_{wf}}{\overline{p}_r}\right) - 0.8 \left(\frac{p_{wf}}{\overline{p}_r}\right)^2\right]$$

		_
J	0.7	STB/day-psi
(Qo)max	1067.073171	STB/dav

$$Q_o = (Q_o)_{max} \left[1 - 0.2 \left(\frac{p_{wf}}{p_r} \right) - 0.8 \left(\frac{p_{wf}}{p_r} \right)^2 \right]$$

Undersaturated oil reservoirs (pr > pb)

vg. Pr	3000	psi
Pwf)stablized	2500	psi
Qo)stablized	250	STB/day
b	2130	psi

CASE 1:

The recorded stabilized bottom-hole flowing pressure is greater than or equal to the bubble-point pressure, i.e. pwf ≥ pb

J	0.5	STB/day-psi	0	
Qob	435	STB/day	$J = \frac{Q_p}{Q_p}$	$Q_{ab} = J (\overline{p}_c - P_b)$
(Qmax)vogel	591.6666667	STB/day	$P_r - P_{xx}$	CDD - (PT - D)

 $Q_o = J \; (\overline{p}_r - p_{wt}).$

Pwf	Qo
3000	0
2826	87
2652	174
2478	261
2304	348
2130	435
1917	536.7666667
1704	629.0666667
1491	711.9
1278	785.2666667
1065	849.1666667
852	903.6
639	948.5666667
426	984.0666667
213	1010.1
0	1026 666667

$$Q_{\sigma} = Q_{\sigma b} + \frac{J p_b}{1.8} \left[1 - 0.2 \left(\frac{p_{wf}}{p_b} \right) - 0.8 \left(\frac{p_{wf}}{p_b} \right)^2 \right]$$

Undersaturated oil reservoirs (pr > pb)

Avg. Pr	3000	psi
(Pwf)stablized	1700	psi
(Qo)stablized	630.7	STB/d
Pb	2130	psi

CASE 2:

The recorded stabilized bottom-hole flowing pressure is less than the bubble-point pressure pwf < pb

$\bar{p}_{r} - P_{b}$

IPR CURVE USING FETKOVITCH MODEL

$$Q_{\varphi} = \frac{0.00708 \, kh}{\left[\ln\frac{\Gamma_{e}}{r_{w}} - 0.75 + s\right]} \int\limits_{p \, wf}^{\overline{\rho}_{g}} f\left(p\right) dp \qquad f\left(p\right) = \frac{k_{\infty}}{\mu_{\alpha}\beta_{\alpha}} \label{eq:Qphi}$$

Saturated oil reservoirs (pr ≤ pb) Avg. Pr 3600 psi

Qo, S	STB/day	pwf, psi		(Pr^2 - Pwf^2)
	263		3170	291110
	383		2890	4607900
	407		2440	700640

$$f(p) \!=\! \! \left(\frac{1}{\mu_{\alpha} B_{\sigma}} \right)_{pb} \! \left(\frac{P}{pb} \right)$$

log(Qo)		log(Pr^2 - Pwf^2)	.0
	2.42	6.46	not
	2.58	6.66	log
	2.70	6.85	
	2.81	6.92	

229	slope	1.2264304
C	intercept	3.5023980
	n	0.8153744
	С	0.0013939

Pwf		Qo
	3600	0
	3240	226.7695
	2880	381.8483
	2520	507.2600
	2160	610.4282
	1800	694.7021
	1440	761.9557
	1080	813.3432
	720	849.6007
	360	871.1872
	0	878.3557

 $f(p) = \left(\frac{1}{\mu_o B_o}\right)_p$

CASE 1:

$$Q_{o} = \frac{0.00708 \, kh}{ln \left(\frac{r_{e}}{r_{w}}\right) - 0.75 + s} \int\limits_{pwf}^{p_{c}} \left(\frac{1}{\mu_{o}B_{o}}\right) \! dp \, Q_{o} = \frac{0.00708 \, kh}{\mu_{o}B_{o} \left[ln \left(\frac{r_{e}}{r_{w}}\right) 0.755 + S \right]} \! \left(\bar{p}_{r} - p_{wf}\right)$$

0.424944982 STB/day-psi

Pwf	Qo
3000	0.00
2700	127.48
2400	254.97
2100	382.45
1800	509.93
1500	637.42
1350	697.97
1200	752.15
1050	799.96
900	841.39
750	876.45
600	905.13
450	927.44
300	943.38
150	952.94
_	000 10

$$Q_o = J_i(\overline{p}_i - p_{wf})$$

$$\boldsymbol{Q}_{o} = \boldsymbol{J} \Bigg[\frac{1}{2\boldsymbol{p}_{b}} \bigg(\boldsymbol{p}_{b}^{2} - \boldsymbol{p}_{wf}^{2} \bigg) + \bigg(\boldsymbol{\bar{p}}_{r} - \boldsymbol{p}_{b} \bigg) \Bigg]$$

CASE 2:

Pwf		Qo
	4000	0
	3840	112
	3680	224
	3520	336
	3360	448
	3200	560
	2880	772.8
	2560	963.2
	2240	1131.2
	1920	1276.8
	1600	1400
	1280	1500.8
	960	1579.2
	640	1635.2
	320	1668.8
	0	1680

$$Q_o = J\left(\overline{p}_i - p_{wf}\right)$$

$$Q_{o} = J \Bigg| \frac{1}{2p_{b}} \Big(p_{b}^{2} - p_{wf}^{2} \Big) + \Big(\bar{p}_{r} - p_{b} \Big) \Bigg|$$

Field case 3: Well B, Keokuk Pool, Seminole County, Oklahoma, August 1935

Saturated reservoir

Pr	1714	ps
Pb	3420	ps
C1	0.41	

Multi-rate test data

Pwf (psi)		Oil Rate (bbl/day)	
	1714	0	
	1583	280	
	1443	508	te
	1272	780	
	1196	1125	te
	000	4005	í

test point (for two point correlation's)

test point (for single point correlation's)

IPR curve by using New correlation

C1	0.41	
(Qo)max	2636.899892	STB/day

Pwf	Qo
1714	0
1583	311.3553721
1443	624.0096558
1272	977.7314268
1196	1125
982	1506.812135
800	1793.363642
600	2067.796199
400	2299.863093
200	2489.564324
0	2636.899892

$$\frac{q_o}{q_{omax}} = 1 - C_l \left[\frac{P_{wf}}{P_r} \right] - \left(1 - C_l \left(\frac{P_{wf}}{P_r} \right)^2 \right] \tag{Qo)max} \qquad 2388.927833 \text{ STB/day}$$

IPR curve by using Vogel's method

(Qo)	max	2388.927833	STB/day

Pwf	Qo
1714	0
1583	317.4879492
1443	632.106709
1272	981.7948926
1196	1125
982	1487.863165
800	1749.580982
600	1987.482024
400	2173.340179
200	2307.155449
0	2388.927833

IPR curve by using Fetkovitch's method

Multi-rate test data

	Pwf (psi)	Oil Rate (bbl/day)	(Pr^2-Pwf^2)	log(Qo)	log(Pr^2-Pwf^2)
	1714	0	0	null	null
	1583	280	431907	2.447158031	5.635390243
test point	1443	508	855547	2.705863712	5.932243873
	1272	780	1319812	2.892094603	6.120512073
test point	1196	1125	1507380	3.051152522	6.178222749
	982	1335	1973472	3.125481266	6.295230969

using test points to calculate C and n					
Pwf	log(Qo)	log(Pr^2-Pwf^2)			
1443	2.705863712	5.932243873			
1196	3.051152522	6.178222749			

test point test point

_		_	
intercept	4.004624747	С	2.39097E-0
slope	0.712385889	n	1.40373358

wf	Qo	
1714	0	
1583	194.607826	
1443	508	
1272	933.5597266	
1196	1125	
982	1642.104878	
800	2033.107343	
600	2389.233856	
400	2653.458781	
200	2815.75826	
0	2870.469609	

		New correlation	Vogel's	Fetkovitch's
Pwf (psi)	Oil Rate (bbl/day)	Qo	Qo	Qo
1714	0	0	0	0
1583	280	311.3553721	317.4879492	194.607826
1443	508	624.0096558	632.106709	508
1272	780	977.7314268	981.7948926	933.5597266
1196	1125	1125	1125	1125
982	1335	1506.812135	1487.863165	1642.104878

Percentage Error

New correlation Vogel's Fetkovitch's 13.38855328 24.43045453 30.49720499 2.57362E-13 22.83654641 19.68714444 2.62743E-13 23.00411072 14.63769203 11.45042437 15.02811445 12.86982287 14.45097988

Average absolute errors

