

TRIGONOMETRY Chapter 05

Sesión 2

Razones trigonométricas de ángulos notables

MOTIVATING STRATEGY

SE PUEDE DETERMINAR LAS RAZONES TRIGONOMÉTRICAS CON LA MANO ?

Razones Trigonométricas de Ángulos Notables

RT ⋖	30 °	60°	37°	53 °	45°
sen	$\frac{1}{2}$	$\sqrt{3}$	3_	4	$\sqrt{2}$
	2	2	- 5	- 5	2
cos	$\sqrt{3}$	1	4	3	$\sqrt{2}$
	2	2	- 5	- 5	2
tan	$\sqrt{3}$	$\sqrt{3}$	$\frac{3}{4}$	4	1
	3		$\overline{4}$	- 3	
cot	$\sqrt{3}$	$\sqrt{3}$	4	3	1
		3	$\overline{3}$	4	
sec	$2\sqrt{3}$	2	5 - 4	5	$\sqrt{2}$
	3		$\overline{4}$	<u>3</u>	
csc	2	$2\sqrt{3}$	5	5	$\sqrt{2}$
		3	- 3	4	

1. Efectúe: $P = (5 sen 37^{\circ} + \sqrt{3} tan 60^{\circ} + cot^2 30^{\circ})^{\cos 60^{\circ}}$

RESOLUCIÓN

$$P = \left(5 \times \left(\frac{3}{5} \right) + \sqrt{3} \times \left(\sqrt{3} \right) \right) + \left(\sqrt{3} \right)^2$$

$$P = (3 + 3 + 3)^{1/2}$$

$$P = \sqrt{9}$$

2. Del gráfico, calcule cot φ si PC=3BP.

RESOLUCIÓN

En el AABP (Notable de 45°)

$$AB = BP$$

Pero

AB=1

Piden:

$$\cot \phi = \frac{4}{1}$$

∴
$$\cot \phi = 4$$

3. Si $\tan \alpha = \frac{\sec 45^{\circ} + \cos 45^{\circ}}{\tan^2 60^{\circ}}$,

donde α es un ángulo agudo, efectúe:

$$K = \sqrt{6} \sec \alpha + 6 \sec^2 \alpha$$

RESOLUCIÓN

Del dato: $tan\alpha = \frac{sec45^{\circ} + cos45^{\circ}}{tan^260^{\circ}}$

$$tan\alpha = \frac{(\sqrt{2}) + (\frac{\sqrt{2}}{2})}{(\sqrt{3})^2} = \frac{\frac{8\sqrt{2}}{2}}{\frac{3}{1}}$$

$$tan\alpha = \frac{\sqrt{2}}{2} = \frac{co}{3}$$

$$(H)^{2} = (\sqrt{2})^{2} + (2)^{2}$$
$$(H)^{2} = 6$$
$$H = \sqrt{6}$$

Piden: $K = \sqrt{6}sec\alpha + 6sen^2\alpha$

$$K = \sqrt{6} \times \left(\frac{\sqrt{6}}{2}\right) + 6 \times \left(\frac{\sqrt{2}}{\sqrt{6}}\right)^2$$

$$K = \frac{6}{2} + \frac{\cancel{6} \times 2}{\cancel{6}}$$

$$K = 3 + 2$$

$$\therefore K=5$$

◎1

4. Del gráfico, calcule tanθ, si BM = MC y AC=CD

RESOLUCIÓN

Sea:
$$BM = MC = \sqrt{3}$$

En el $\triangle ACB$ (Notable de 30° y 60°)

$$BC = k\sqrt{3} \implies 2\sqrt{3} = k\sqrt{3}$$

$$k=2$$

Pero

$$AC = k \implies AC = 2$$

Del dato:

$$AC = CD = 2$$

Piden: $tan \theta$

$$\therefore \tan\theta = \frac{\sqrt{3}}{2}$$

5. Del gráfico, efectúe:

$$E = \sqrt{10} \operatorname{sen} \alpha + \cot \alpha$$

RESOLUCIÓN

En el $\triangle AHB$ (Notable de 45°)

$$AB = k\sqrt{2} \implies 5\sqrt{2} = k\sqrt{2}$$
$$\implies k = 5$$

Pero:
$$AH = HB = k$$
 \Rightarrow $AH = HB = 5$

En el $\triangle BHC$ (Por el Teorema de Pitágoras)

$$(BC)^2 = (5)^2 + (15)^2$$

$$(BC)^2 = 250$$
 \Rightarrow $BC = 5\sqrt{10}$

Piden:
$$E = \sqrt{10}sen\alpha + cot\alpha$$

$$E = \sqrt{10} \times \left(\frac{5}{5\sqrt{10}}\right) + \frac{15}{5}$$

$$E = 1 + 3$$

$$\therefore E = 4$$

Dos barras metálicas se encuentran apoyadas, tal como se muestra en la figura. Si el ángulo que forman las barras en su punto de apoyo es de 143°, calcule 13 cot α.

RESOLUCIÓN

En el $\triangle BHC$ (Notable de 37° y 53°)

$$HC = 3k$$
; $HB = 4k$; $BC = 5k$

Pero

$$BC = 65cm$$

$$5k = 65cm \implies k = 13cm$$

Luego:

$$HB = 4(13cm) = 52cm$$

$$HC = 3(13cm) = 39cm$$

Piden:
$$13 \cot \alpha = 13 \times \left(\frac{90}{39}\right)_3$$

$$\therefore 13 \cot \alpha = 30$$

7. Del gráfico, calcule tan θ si AM = MB.

RESOLUCIÓN

Sea:
$$AM = MB = \sqrt{2}$$

En el $\triangle ABC$ (Triángulo Notable de 45°)

$$AB = a$$
 ; $AC = a\sqrt{2}$

Pero:
$$AB = 2\sqrt{2}$$
 $\Rightarrow a = 2\sqrt{2}$

Luego:

$$AC = a\sqrt{2} = (2\sqrt{2})\sqrt{2} \longrightarrow AC = 4$$

En el $\triangle AHM$ (Triángulo Notable de 45°)

$$AM = k\sqrt{2} \qquad \mathbf{\sqrt{2}} = k\sqrt{2}$$

$$\mathbf{k} = 1$$

Luego:
$$AH = MH = k = 1$$

Piden:
$$tan \theta$$

$$\therefore \tan \theta = \frac{1}{3}$$

8. En una reunión familiar se encuentra dos primos, Rodrigo y Saúl. Se sabe que la edad de Rodrigo 3 duplica la de Saúl, además, la edad de Saúl está dada por:

$$S = 6 \left[\tan \left(\frac{37^{\circ}}{2} \right) + \cot \left(\frac{53^{\circ}}{2} \right) \right]$$

¿Cuál es la edad de Rodrigo?

