RoFormer: Enhanced Transformer with Rotary Position Embedding

윤세환

목차

- 1. 이전의 position embedding 소개
 - a. Absolute Position Embedding
 - b. Relative Position Embedding
 - i. XL
 - ii. T5
 - iii. TUPE
 - iv. DeBERTa
- 2. Rotary Position Embedding
 - a. 목적
 - b. 사전지식
 - c. 적용 방식
 - d. Experiments

기존 Position Embedding 소개

기존 Position Embedding 방식 - absolute PE

- 각 단어의 위치값을 사용하여 위치 정보를 $p_{i,2t} = \sin(k/10000^{2t/d})$ 임베딩하고, 해당 값을 단어 임베딩값에 $p_{i,2t+1} = \cos(k/10000^{2t/d})$ 더하여 사용하는 방식

$$egin{aligned} \langle f_q(x_m,\, m),\, f_k(x_n,\, n)
angle &=\, g(x_m,\, x_n,\, m,\, n) \ &=\, (W_q(x_m+p_m))^T W_k(x_n+p_n) \end{aligned}$$

기존 Position Embedding 방식 - relative PE

- query와 key단어간 상대적 거리를 사용할 때, 두 단어간 거리가 특정 값 이상일 경우 거리가 더 멀어져도 더 이상 유의미한 정보를 제공하지 않을 것이라는 가설에 따라 거리차이에 대해 clipping을 수행할 수 있다.
- 두 거리의 간격을 r이라 할 경우 다음과 같이 표현된다.

$$r = \mathit{clip}(m-n,\,r_{min},\,r_{max})$$

r_min과 r_max가 위에서 언급한 "두 단어간 거리차이에 대한 특정 값"이 된다.

기존 Position Embedding 방식 - relative PE

- absolute position embedding에서 사용된 수식을 전개해보면...

$$egin{aligned} &(W_q(x_m+p_n))^T W_k(x_n+p_n) = \ &x_m^T W_q^T W_k x_n + x_m^T W_q^T W_k p_n + p_m^T W_q^T W_k x_n + p_m^T W_q^T W_k p_n \end{aligned}$$

위와 같은 수식이 되는데, x는 단어(content), p는 위치정보이므로 이를 토대로 생각해보면 순서대로 q단어-k단어, q단어-k위치, q위치-k단어, q위치-k위치를 의미하게 된다.

위 수식의 위치 정보를 각 단어의 위치가 아닌, 상대적인 위치 차이를 사용하는 방식이 relative position embedding

relative position embedding - XL, T5

- XL
 - query에 대해 위치정보를 사용하지 않는 대신, key의 위치정보를 query-key의 상대거리정보로 대체한다.

고 대신 query 위치정보 자리에 학습 가능한 파라미터(u, v)를 사용한다.
$$x_m^T W_q^T W_k x_n + x_m^T W_q^T W_k p_{m-n} + u^T W_q^T W_k x_n + v^T W_q^T W_k p_{m-n}$$

- T5
 - q단어-k단어 외 나머지 부분을 모델이 알아서 학습하도록 만드는 방법

$$(x_m^TW_q^TW_kx_n+b_{n,\,m})$$

relative position embedding - TUPE

- 단어와 절대적인 위치간의 상관관계가 매우 작은 것을 확인하였고, 이에 기존 단어-위치간 관계를 나타내는 2개의 항을 통합한 항을 추가
- 단어 임베딩에 사용되는 가중치(W)와 위치 임베딩값이 사용되는 가중치(U)를 분리

$$\left(x_m^T W_q^T W_k x_n + p_m^T U_q^T U_k p_n + b_{n,\,m}
ight)$$

relative position embedding - DeBERTa

- 기존 단어-위치간 관계를 나타내는 2개의 항에서 사용되던 위치 값을 모두 relative 위치로 교체
- 이미 상대적인 위치를 고려했으므로, 마지막 항인 위치-위치간 관계는 더 이상 많은 정보를 제공하지 못한다고 판단하여 제거

$$\left\{ x_{m}^{T}W_{q}^{T}W_{k}x_{n} + x_{m}^{T}W_{q}^{T}W_{k}p_{m-n} + p_{m-n}^{T}W_{q}^{T}W_{k}x_{n}
ight\}$$

본 논문에서 소개한 Rotary Position Embedding은 아래 목적을 달성하기 위해 사용됨.

 $- \operatorname{query} \langle k_q^{\text{ey}}(\vec{x}_m^{\text{cy}}, \vec{y}_m^{\text{cy}}), \vec{y}_k^{\text{ey}}(\vec{x}_n^{\text{cy}}, \vec{y}_n^{\text{cy}}) \rangle^{\text{deg}} g(k_m^{\text{ey}}, \vec{x}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}) \rangle^{\text{deg}} = g(k_m^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}) \rangle^{\text{ey}} = 2g(k_m^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}) \rangle^{\text{ey}} = 2g(k_m^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text{ey}}) \rangle^{\text{ey}} = 2g(k_m^{\text{ey}}, \vec{y}_n^{\text{ey}}, \vec{y}_n^{\text$

- 이 때, 기존의 position embedding방식인, 값을 더하는 방식이 아닌 특정 값을 곱하는 방식을 적용하며, 이 곱해지는 matrix가 회전 변환을 수행하는 matrix가 된다.
- 즉, 두 단어간 상대적인 거리차이를 얼만큼 회전했는가로 나타내는 방식

필요 사전 지식 - complex number와 회전 변환

y축을 허수측, x축을 실수측이라고 가정하여 극 좌표계와 직교 좌표계간의 변환을 고려

빨간 점을 z라고 한다면, z의 직교 좌표계 상의 $z^{\frac{n}{2}} = x + jy$

이며, x와 y는 다음과 같이 표시할 수 있다.

$$\begin{cases} x &= r \cos(\theta) \\ y &= r \sin(\theta) \end{cases}$$

즉, r=1 이라면 z는

$$z = \cos(\theta) + j\sin(\theta)$$

필요 사전 지식 - complex number와 회전 변환

$$z = \cos(\theta) + j\sin(\theta)$$

$$rac{dz}{d heta} = \ -\sin{(heta)} + j\cos{(heta)} = \ j^2\sin{(heta)} + j\cos{(heta)} = \ j(\cos{(heta)} + j\sin{(heta)}) = \ jz$$

$$\frac{1}{z}\frac{dz}{d\theta} = j$$

$$\int rac{1}{z} dz = \int j d heta \implies \ln{(z)} = j heta + C \implies j heta$$
 (theta에 0을 대입하면 C=0임을 쉽게 알 수 있습니다.)

$$z = e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

회전 변환을 통해 위치 정보를 반영한다고 가정했을시, f_q, f_k, g를 아래와 같이 정의할 $rac{c}{f_q}$ (있다. $f_q(x_m,m)=(W_qx_m)e^{im heta}$ $f_k(x_n,n)=(W_kx_n)e^{in heta}$ $g(x_m,x_n,m-n)=Re\Big[(W_qx_m)(W_kx_n)^*e^{i(m-n) heta}\Big]$

이전 페이지에서 나온 결과를 보면, e의 지수항에 있는 부분이 얼만큼 회전하는가를 의미하며 이는 곧 위치 정보를 의미하게 된다.

따라서 위 복소수의 실수 부분은 단어에 대한 정보, 허수에 대한 부분은 위치에 대한 정보를 나타낸다고 볼 수 있다.

$$g(x_m,\,x_n,\,m-n)\,=\,Re\Big[(W_qx_m)(W_kx_nig)^*e^{i(m-n) heta}\Big]$$

위 수식에서 Re는 복소수의 실수 부분을 의미하며, *는 conjugate complex number를 의미한다.

$$Re[a+bi] = a$$
 $\overline{a+bi} = a-bi$

- Re의 경우, 실제 attention score를 구하는 과정에서는 허수부를 사용할 수 없기에 사용됨
- conjugate를 수행한 이유는, 회전변환시 두 위치간의 차이를 반영해야 하므로, 위치 정보를 표시하는 허수부의 기호를 변경하기 위해서 사용됨

$$-ig(W_q x_m e^{im heta}ig) \Big(\overline{W_k x_n e^{in heta}}\Big)$$

단어 embedding 벡터의 element에 대해, 2개씩 묶어서 아래 회전 변환을 수행한다. (수식에서는 query에 대해 수행하지만, key에 대해서도 수식 자체는 동일)

$$f_q(x_m,\,m) = egin{pmatrix} \cos{(m heta)} & -\sin{(m heta)} \ \sin{(m heta)} & \cos{(m heta)} \end{pmatrix} egin{pmatrix} W_q^{11} & W_q^{12} \ W_q^{21} & W_q^{22} \end{pmatrix} egin{pmatrix} x_m^1 \ x_m^2 \end{pmatrix}$$

단어 임베딩값

	0.24	0.55	0.06	0.1	0.02	0.01				
--	------	------	------	-----	------	------	--	--	--	--

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \boldsymbol{R}_{\Theta,m}^d \boldsymbol{W}_{\{q,k\}} \boldsymbol{x}_m$$

$$\boldsymbol{R}_{\Theta,m}^{d} = \begin{pmatrix} \cos m\theta_{1} & -\sin m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ \sin m\theta_{1} & \cos m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos m\theta_{2} & -\sin m\theta_{2} & \cdots & 0 & 0\\ 0 & 0 & \sin m\theta_{2} & \cos m\theta_{2} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2}\\ 0 & 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{pmatrix}$$

$$\boldsymbol{q}_{m}^{\intercal}\boldsymbol{k}_{n}=(\boldsymbol{R}_{\Theta,m}^{d}\boldsymbol{W}_{q}\boldsymbol{x}_{m})^{\intercal}(\boldsymbol{R}_{\Theta,n}^{d}\boldsymbol{W}_{k}\boldsymbol{x}_{n})=\boldsymbol{x}^{\intercal}\boldsymbol{W}_{q}R_{\Theta,n-m}^{d}\boldsymbol{W}_{k}\boldsymbol{x}_{n}$$

$$m{R}_{\Theta,m}^dm{x} = egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \ dots \ x_{d-1} \ x_d \end{pmatrix} egin{pmatrix} \cos m heta_1 \ \cos m heta_2 \ \cos m heta_2 \ \cos m heta_{d/2} \ \cos m heta_{d/2} \ \end{pmatrix} + egin{pmatrix} -x_2 \ x_1 \ -x_4 \ x_3 \ dots \ \vdots \ -x_d \ x_{d-1} \ \end{pmatrix} egin{pmatrix} \sin m heta_1 \ \sin m heta_2 \ \sin m heta_2 \ \sin m heta_2 \ \vdots \ \sin m heta_{d/2} \ \sin m heta_{d/2} \ \end{pmatrix}$$

Figure 1: Implementation of Rotary Position Embedding(RoPE).

Rotary Position Embedding - Long term decay

- Long term decay
 - transformer와 동일하게 $heta_i = 10000^{-2i/d}$ 사용
 - Relative Position이 멀어지면 Inner product값이 감소하는 효과를 얻을 수 있으며, 이는 RelativePosition에서 사용한 clipping과 유사한 효과를 낼 수 있다.

Figure 2: Long-term decay of RoPE.

- 기계번역
 - 영어를 독일어로 번역하는 task에 적용하였으며, 일반적인 transformer와 Roformer를 사용한 transformer를 BLEU 스코어로 비교
 - 기본 transformer 모델에 비해 약간 더 높은 BLEU 스코어를 보여줌

Model	BLEU
Transformer-baseVaswani et al. [2017]	27.3
RoFormer	27.5

- pre-training language modeling
 - BERT 모델에서 position embedding으로 RoFormer 사용하여 pre-training 수행
 - BERT 모델의 손실함수 중 MLM (Masked Language Modeling) 에 대한 손실값을 비교지표로 사용

- fine-tuning on GLUE tasks (Global Language Understanding Evaluation, 모델들의 자연어 이해 능력을 평가)
 - MRPC, QQP, STS-B는 f1 score, 나머지는 정확도를 사용

Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks.

Model	MRPC	SST-2	QNLI	STS-B	QQP	MNLI(m/mm)
BERTDevlin et al. [2019]	88.9	93.5	90.5	85.8	71.2	84.6/83.4
RoFormer	89.5	90.7	88.0	87.0	86.4	80.2/79.8

- 중국어 데이터 평가
 - 긴 텍스트에 대한 성능을 보여주기 위해, 평가시에는 **512**개 이상의 단어로 구성된 데이터를 사용
 - 3개의 입력을 받고 (A, B, C) A와 B 그리고 A와 C중 어떤 것이 더 가까이 위치했는지 맞추는

Model	BERTDevlin et al. [2019]	WoBERTSu [2020]	NEZHAWei et al. [2019]	RoFormer
Tokenization level	char	word	char	word
Position embedding	abs.	abs.	rel.	RoPE

Stage	Max seq length	Batch size	Training steps	Loss	Accuracy	Model	Validation	Test
1	512 1536	256 256	200k 12.5k	1.73 1.61	65.0% 66.8%	BERT-512	64.13%	67.77%
3	256	256	12.3k	1.75	64.6%	WoBERT-512	64.07%	68.10%
4	128	512	80k	1.83	63.4%	RoFormer-512	64.13%	68.29%
6	1536 512	256 512	10k 30k	1.58 1.66	67.4% 66.2%	RoFormer-1024	66.07%	69.79%

관련 정보

- 본 논문은 EleutherAI에 적용되기 시작하면서 유명해졌으며, 실제 해당 논문에 RoFormer을 적용한 결과를 통해 RoFormer의 효과를 확인할 수 있음.

- 이후 ALiBi라는 방식이 제시되었는데, 구현이 더 쉽고 성능 및 속도 측면에서도 RoFormer 방식보다 더 높은 성능을 보임

참고 링크

- 복소수 기초 https://angeloyeo.github.io/2022/01/05/complex_number_basic.html
- 회전변환
 https://laplandjin.tistory.com/entry/%ED%9A%8C%EC%A0%84-%EB%B3%8
 0%ED%99%98
- 논문 https://arxiv.org/abs/2104.09864