Quiz 3

2024年5月19日

1 室温下,25L 立方箱中的 1 mol O_2 ,比较各个量子自由度的热力学性质,正确的是

选择题(每小题2分。请从题中所给的四个选项中选出最佳的一个选项。)

A. 配分函数: 平动 > 转动 > 振动 > 电子 C. 热能: 平动 > 转动 > 振动 > 电子		
解 C。B 选项, $U_{\rm Prid} \approx Q_{\rm Prid} = rac{3}{2}NkT$, $U_{\rm ftid} = Q_{\rm ftid} = NkT$, $U_{\rm ftid} \approx U_{\rm ftid}(0) = rac{1}{2}Nhc\tilde{v} = 3.8NkT$ 。其他在作业里已经计算过。		
2 25 L 立方箱、300 K 条件下,分子数相等的 气比氧气更大的是 A. 平动基态对平动配分函数的贡献数值 C. 转动第一激发态对配分函数的贡献数值		
解 B。A 选项,平动基态对平动配分函数的贡献数值都是 1。B 选项,分子处于平动基态的概率是平动配分函数的倒数,氢气因为质量更小,配分函数更小,概率更大。C 选项,氢气转动常数大,第一激发态对配分函数贡献数值小。D 选项,氢气转动能隙大,转动热能比氧气的高温近似小。		
3 一个长方体大箱子被一块板子从中间隔开,数完全相同的氩气,将所有这些氩气视为系统A. 增大 B. 不变	,箱子内两边是一些体积、温度(室温)和分子 统。现在抽去隔板,达到平衡后,系统的熵 C. 减小 D. 无法判断	
解 B。该条件下, 氩气熵仅有平动贡献, 可用平动熵公式计算。检验后发现, 抽去隔板前后系统熵不变。		
4 下列关于系统热能、内能和基态能说法正确的是 A. 只有处在基态的分子才对基态能有贡献 B. 只有处在激发态的分子才对热能有贡献 C. 热能大小和外界条件有关,而基态能只和分子种类有关 D. 热能总是比基态能大很多		
解 B。基态能也和外界条件有关,比如平动基态能和体积有关。振动热能一般小于基态能。		
5 关于能量均分原理(每个能量二次项对热能的贡献是 $\frac{1}{2}NkT$)和能量最低原理(分子全部处于基态)这两个近似说法正确的是 A. 任何情况下,两者至少有一个适用 B. 某些情况下两者都适用 C. 能量最低原理对室温高频振动适用 D. 能量均分原理对低温转动适用		
142 TZ-LV 144/4 1. TV 4 TZ mm 144 NV 4/W- 14 V/C) 14	- 14077-14 \4 \\ \4 \\ \7 \\ \4 \\ \7 \\ \4 \\ \7 \\ \4 \\ \7 \\ \\	

- **解** C。A 选项,当能隙和 kT 相当时,两者都不适用。B 选项,能量均分原理适用 $\Delta\varepsilon \ll kT$ 的情况,能量最低原理适用 $\Delta\varepsilon \gg kT$ 的情况,不可能都适用。D 选项,低温下转动能隙与 kT 相当,能量均分原理不适用。
- 6 一个长方体大箱子被一块板子从中间隔开,箱子内两边是一些体积、温度(室温)和分子数完全相同的氩气和氦气,将所有这些气体视为系统。现在抽去隔板,达到平衡后系统的熵A. 增大 B. 不变 C. 减小 D. 无法判断
- **解 A**。当气体混合时,氩气和氦气的体积均变为原来的两倍(即盒子的体积),这时对应两种气体的平动熵都增加,因此系统总熵增加。
- 7 对于一氧化碳分子而言,下列说法正确的是:
- A. 一氧化碳分子的振动自由度可用低温高频近似,对热能的贡献为 nRT
- B. 计算可视为理想气体一氧化碳分子的转动熵时, 我们使用离域子熵计算公式
- C. 在室温下,对于其转动和电子能级,能量最低原理都是适用的
- D. 对于振动而言,当kT 远高于能隙时,其每个自由度对热能的贡献为nRT
- 解 D。A 选项错误,低温高频近似下振动自由度对热能的贡献为 0;B 选项错误,转动熵的 计算和分子的具体位置并无关联,应该使用定域子熵计算公式;C 选项错误,在室温下,由 于一氧化碳的转动能隙并不显著大于 kT,因此能量最低原理并不适用,即一氧化碳分子在 转动激发态上仍有可观的布居;D 选项正确,当能隙相比于 kT 很小时,相当于高温低频近似,这时每个振动自由度对热能的贡献为 nRT。
- 8 在通过系统的配分函数计算系统热能时:
- A. 不能忽略基态能的贡献
- B. 需要设定所有分子、所有运动形式的基态能为零
- C. 与所有分子、所有运动形式的基态能无关
- D. 电子自由度对热能的贡献一般要远大于平动能
- 解 C。A 选项错误, 热能和基态能无关, 热能 + 基态能 = 内能, 因此 C 选项正确; B 选项错误, 在通过系统配分函数计算系统热能的公式中并不涉及到对基态能的处理; D 选项错误, 一般情况下电子自由度在激发态上的布居非常有限, 平动自由度对热能的贡献远远大于电子自由度。
- 9 下列说法错误的是:
- A. 如果能量最低原理是普遍正确规律,那么所有系统的内能将不含热能这一部分
- B. 2000 K 的碘单质理想气体, 其摩尔热能为 3.5RT
- C. 2000 K 的氧气理想气体, 其摩尔热能为 3.5RT
- D. 一个系统的基态能不仅与分子自身性质有关, 也与外界条件有关
- 解 C。A 选项正确,如果能量最低原理是普遍正确的,那么所有系统中的所有粒子都将分布在能量基态,没有激发态布居,热能自然为零。B 选项正确, I_2 单键折合质量大,因此振动频率低(213 cm⁻¹),振动能隙小,在 2000 K 下可以采用低频近似,其振动自由度对热能的贡献为 nRT。C 选项错误,氧氧双键力常数大,折合质量小,因此振动频率高(1556 cm⁻¹),振动能隙大,在 2000 K 不能用近似。D 选项正确,基态能不仅与分子自身性质有关,也与外界条件有关,如平动基态能与体积有关。
- A 卷: 2、4、9、7、3、1。答案: BBCDBC。
- B卷: 8、2、5、7、6、1。答案: CBCDAC。