哈希表(散列表,杂凑)

- 1. 哈希表的本质是通过运算,将高维度元素映射在低维度中进行存储
- 2. 一般步骤:元素->哈希函数->哈希值->冲突处理->装入表中
- 3. 装填因子 = 表中元素 / 总容量上限
- 4. 计数排序可以帮助我们更好的理解哈希表

元素个数	0	2	0	0	1	0	3	1	1
下标	0	1	2	3	4	5	6	7	8

大家回忆一下计数排序的计数数组

哈希表的例子

- 1. 对数字序列进行hash, 表容量上限为13
- 2. 采用的hash函数 h(x) 为: h(x) = x % 11 (一般选择比容量上限小一点的质数)
- 3. 冲突处理方法采用线性探测再散列法(找不到就继续向后找)

元素	Y				40.							<u> </u>	*
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

开始模拟插入过程!

元素					-33.								*
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 20 根据哈希函数, 计算出元素 20 的哈希值为 20 % 11 = 9 哈希表中下标为 9 的位置是空的, 直接插入即可

元素					· X							<u> </u>	× -
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 20 根据哈希函数, 计算出元素 20 的哈希值为 20 % 11 = 9 哈希表中下标为 9 的位置是空的, 直接插入即可

元素					-X).					20	190	>	×
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

哈希表的例子

元素					-33.					20		>	**************************************
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 68 根据哈希函数, 计算出元素 68 的哈希值为 68 % 11 = 2 哈希表中下标为 2 的位置是空的, 直接插入即可

元素										20			* *
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 68 根据哈希函数, 计算出元素 68 的哈希值为 68 % 11 = 2 哈希表中下标为 2 的位置是空的, 直接插入即可

元素			68	\$	-XX.					20		>	24-
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

哈希表的例子

元素			68		-33.					20	5,00	<u>}</u>	× (
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 4 根据哈希函数, 计算出元素 4 的哈希值为 4 % 11 = 4 哈希表中下标为 4 的位置是空的, 直接插入即可

元素			68							20			× (*)
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 4 根据哈希函数, 计算出元素 4 的哈希值为 4 % 11 = 4 哈希表中下标为 4 的位置是空的, 直接插入即可

元素			68		4					20			* *
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

哈希表的例子

元素			68		4					20	130	>	×
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 35 根据哈希函数, 计算出元素 35 的哈希值为 35 % 11 = 2 哈希表中下标为 2 的位置已被占用, 继续向后寻找 哈希表中下标为 3 的位置是空的, 直接插入即可

元素			68		4					20			2
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 35 根据哈希函数, 计算出元素 35 的哈希值为 35 % 11 = 2 哈希表中下标为 2 的位置已被占用, 继续向后寻找 哈希表中下标为 3 的位置是空的, 直接插入即可

元素			68	35	4					20			2
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

元素			68	35	4					20	130	<u>}</u>	× (
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 80 根据哈希函数, 计算出元素 80 的哈希值为 80 % 11 = 3 哈希表中下标为 3 的位置已被占用, 继续向后寻找 哈希表中下标为 4 的位置已被占用, 继续向后寻找 哈希表中下标为 5 的位置是空的, 直接插入即可

元素			68	35	4					20			*
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 80 根据哈希函数, 计算出元素 80 的哈希值为 80 % 11 = 3 哈希表中下标为 3 的位置已被占用, 继续向后寻找 哈希表中下标为 4 的位置已被占用, 继续向后寻找 哈希表中下标为 5 的位置是空的, 直接插入即可

元素			68	35	4	80				20			**************************************
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

元素			68	35	4	80				20	130	>	×-
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 57

根据哈希函数, 计算出元素 57 的哈希值为 57 % 11 = 2

哈希表中下标为 2 的位置已被占用,继续向后寻找哈希表中下标为 3 的位置已被占用,继续向后寻找哈希表中下标为 4 的位置已被占用,继续向后寻找哈希表中下标为 5 的位置已被占用,继续向后寻找哈希表中下标为 6 的位置是空的,直接插入即可

元素			68	35	4	80				20)	*
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

向哈希表中插入元素 57

根据哈希函数, 计算出元素 57 的哈希值为 57 % 11 = 2

哈希表中下标为2的位置已被占用,继续向后寻找哈希表中下标为3的位置已被占用,继续向后寻找哈希表中下标为4的位置已被占用,继续向后寻找哈希表中下标为5的位置已被占用,继续向后寻找哈希表中下标为6的位置是空的,直接插入即可

元素			68	35	4	80	57			20		>	*
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

哈希表的例子

元素	1		68	35	4	80	57			20		<u> </u>	*
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

哈希表的例子

如果插入位置及后序到表末尾的空间都被占用,则移动到最开始继续找空位如下表状态,此时插入元素43

根据哈希函数, 计算出元素 43 的哈希值为 43 % 11 = 10

哈希表中下标为 10 的位置已被占用,继续向后寻找哈希表中下标为 11 的位置已被占用,继续向后寻找哈希表中下标为 12 的位置已被占用,继续向后寻找

哈希表中下标为0的位置是空的,直接插入即可

元素			68	35	4	80	57			20	10	21	32
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

哈希表的例子

如果插入位置及后序到表末尾的空间都被占用,则移动到最开始继续找空位如下表状态,此时插入元素43

根据哈希函数, 计算出元素 43 的哈希值为 43 % 11 = 10

哈希表中下标为 10 的位置已被占用,继续向后寻找哈希表中下标为 11 的位置已被占用,继续向后寻找哈希表中下标为 12 的位置已被占用,继续向后寻找

元素 下标

哈希表中下标为0的位置是空的,直接插入即可

j	元素	43		68	35	4	80	57			20	10	21	32
_	下标	0	1	2	3	4	5	6	7	8	9	10	11	12

开始模拟查找过程!

元素	43		68	35	4	80	57			20	10	21	32
下村	0	1	2	3	4	5	6	7	8	9	10	11	12

在哈希表中查找元素 68 根据哈希函数, 计算出元素 68 的哈希值为 68 % 11 = 2 在哈希表中下标为 2 的位置查找, 发现 68, 查找成功

元素	43		68	35	4	80	57			20	10	21	32
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

在哈希表中查找元素 8

根据哈希函数, 计算出元素 8 的哈希值为 8 % 11 = 8 在哈希表中下标为 8 的位置查找, 发现此处为空, 查找失败

元素	43		68	35	4	80	57			20	10	21	32
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

在哈希表中查找元素 80

根据哈希函数, 计算出元素 80 的哈希值为 80 % 11 = 3

在哈希表中下标为3的位置查找,发现此处元素为35,不是80,继续向后查找在哈希表中下标为4的位置查找,发现此处元素为4,不是80,继续向后查找在哈希表中下标为5的位置查找,发现元素80,查找成功

元素	43		68	35	4	80	57			20	10	21	32
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

在哈希表中查找元素 5

根据哈希函数, 计算出元素 5 的哈希值为 5 % 11 = 5

在哈希表中下标为5的位置查找,发现此处元素为80,不是5,继续向后查找在哈希表中下标为6的位置查找,发现此处元素为57,不是5,继续向后查找在哈希表中下标为7的位置查找,发现此处为空,查找失败

元素	43		68	35	4	80	57			20	10	21	32
下标	0	1	2	3	4	5	6	7	8	9	10	11	12

常见的哈希冲突处理方法

1. 线性探测再散列法

35

4. 随机法

元素	,				(- 139)				4				
下标	0	1	2	3	4	5	6	7	8	9	10	11	12