Une Analyse des Méthodes de Projections Aléatoires par la Théorie des Matrices Aléatoires Colloque GRETSI 2017

Zhenyu Liao, Romain Couillet

CentraleSupélec Université Paris-Saclay

Juan-Les-Pins, 05 Septembre, 2017

Plan

Introduction

Résultats Principaux

Conclusion

Plan

Introduction

Résultats Principaux

Conclusion

Apprentissage = Représentation + Évaluation + Optimisation.¹

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

Comment trouver les "bonnes" features?

▶ apprendre les features à partir des données:

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- ▶ apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - ▶ problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)
 - analyse théorique possible

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - ▶ absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)
 - analyse théorique possible
 - mais difficultés théoriques dans le cas non linéaire

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

Comment trouver les "bonnes" features?

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)
 - analyse théorique possible
 - mais difficultés théoriques dans le cas non linéaire

Exemples dans la littérature:

random features maps: projections non linéaires aléatoires

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

Comment trouver les "bonnes" features?

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)
 - analyse théorique possible
 - mais difficultés théoriques dans le cas non linéaire

Exemples dans la littérature:

- random features maps: projections non linéaires aléatoires
- extreme learning machine (ELM): réseaux de neurones aléatoires simples

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

Comment trouver les "bonnes" features?

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)
 - analyse théorique possible
 - mais difficultés théoriques dans le cas non linéaire

Exemples dans la littérature:

- random features maps: projections non linéaires aléatoires
- extreme learning machine (ELM): réseaux de neurones aléatoires simples
- echo state nets: réseaux de neurones récurrents simples

 $^{^{1}}$ Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

Comment trouver les "bonnes" features?

- ▶ apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)
 - analyse théorique possible
 - mais difficultés théoriques dans le cas non linéaire

Exemples dans la littérature:

- random features maps: projections non linéaires aléatoires
- extreme learning machine (ELM): réseaux de neurones aléatoires simples
- echo state nets: réseaux de neurones récurrents simples

Dans ce travail:

> analyse spectrale des matrices de projections aléatoires non linéaire en grande dimension

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Apprentissage = Représentation + Évaluation + Optimisation.¹

Comment trouver les "bonnes" features?

- apprendre les features à partir des données:
 - réseaux de neurones: backprop coûteux
 - problème de sur-apprentissage: jeux de données très grands
 - absence de compréhension théorique
- méthodes aléatoires: projections aléatoires, compressive sensing
 - simples et rapides
 - adaptées aux applications en ligne (e.g., moindres carrées récursifs)
 - analyse théorique possible
 - mais difficultés théoriques dans le cas non linéaire

Exemples dans la littérature:

- random features maps: projections non linéaires aléatoires
- extreme learning machine (ELM): réseaux de neurones aléatoires simples
- echo state nets: réseaux de neurones récurrents simples

Dans ce travail:

- ▶ analyse spectrale des matrices de projections aléatoires non linéaire en grande dimension
- ▶ application à l'analyse des performances asymptotiques de l'ELM

¹Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55.10 (2012): 78-87.

Projections aléatoires: une exemple

Figure: Illustration de la méthode de projections aléatoires

avec la matrice de poids $\mathbf{W} \in \mathbb{R}^{n \times p}$ telle que les \mathbf{W}_{ij} 's sont des variables aléatoires i.i.d. et la fonction d'activation $\sigma(\cdot)$ appliquée élément par élément.

Projections aléatoires: une exemple

$$\begin{array}{c|c} \text{vecteur} \\ \text{des} \\ \text{données} \end{array} \xrightarrow[\sigma(\cdot) \text{ entry-wise}]{} \begin{array}{c} \text{vecteur} \\ \text{des} \\ \text{features} \end{array}$$

Figure: Illustration de la méthode de projections aléatoires

avec la matrice de poids $\mathbf{W} \in \mathbb{R}^{n \times p}$ telle que les \mathbf{W}_{ij} 's sont des variables aléatoires i.i.d. et la fonction d'activation $\sigma(\cdot)$ appliquée élément par élément.

Exemple: Classification des spams

Quand $n, p \to \infty$, on obtient de "bonnes" features, ensuite un prédicteur peut être appris de manière supervisée, e.g., en appliquant une régression normalisée.

$$\begin{array}{c|c} \text{vecteur} & \mathbf{W} \in \mathbb{R}^{n \times p} \\ \text{données} & \sigma(\cdot) \text{ entry-wise} \end{array} \begin{array}{c} \text{vecteur} \\ \text{des} \\ \text{features} \end{array}$$

$$\mathbf{x} \in \mathbb{R}^p \qquad \qquad \sigma(\mathbf{W}\mathbf{x}) \in \mathbb{R}^n$$

Figure: Illustration de la méthode de projections aléatoires

$$\begin{array}{c|c} \text{vecteur} & \mathbf{W} \in \mathbb{R}^{n \times p} \\ \text{données} & \overline{\sigma(\cdot) \text{ entry-wise}} \end{array} \begin{array}{c} \text{vecteur} \\ \text{des} \\ \text{features} \end{array}$$

$$\mathbf{x} \in \mathbb{R}^p \qquad \qquad \sigma(\mathbf{W}\mathbf{x}) \in \mathbb{R}^n$$

Figure: Illustration de la méthode de projections aléatoires

Pour matrice de données $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$, on note la matrice de feature $\mathbf{\Sigma} \equiv \sigma(\mathbf{W}\mathbf{X}) = [\sigma(\mathbf{W}\mathbf{x}_1), \dots, \sigma(\mathbf{W}\mathbf{x}_T)] \in \mathbb{R}^{n \times T}$

Figure: Illustration de la méthode de projections aléatoires

- Pour matrice de données $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$, on note la matrice de feature $\mathbf{\Sigma} \equiv \sigma(\mathbf{W}\mathbf{X}) = [\sigma(\mathbf{W}\mathbf{x}_1), \dots, \sigma(\mathbf{W}\mathbf{x}_T)] \in \mathbb{R}^{n \times T}$
- ▶ Objet clé: la matrice de Gram $G = \frac{1}{T} \Sigma^T \Sigma$: matrice de corrélation dans l'espace "features"

$$\begin{array}{c|c} \textbf{vecteur} & \textbf{W} \in \mathbb{R}^{n \times p} \\ \textbf{donn\'ees} & \sigma(\cdot) \text{ entry-wise} & \textbf{features} \\ \textbf{x} \in \mathbb{R}^p & \sigma(\textbf{Wx}) \in \mathbb{R}^n \end{array}$$

Figure: Illustration de la méthode de projections aléatoires

- Pour matrice de données $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$, on note la matrice de feature $\mathbf{\Sigma} \equiv \sigma(\mathbf{W}\mathbf{X}) = [\sigma(\mathbf{W}\mathbf{x}_1), \dots, \sigma(\mathbf{W}\mathbf{x}_T)] \in \mathbb{R}^{n \times T}$
- Objet clé: la matrice de Gram $\mathbf{G} = \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$: matrice de corrélation dans l'espace "features"
- ► RMT ⇒ analyse de la résolvante associée

$$\mathbf{Q}(z) = (\mathbf{G} - z\mathbf{I}_T)^{-1} = \left(\frac{1}{T}\mathbf{\Sigma}^\mathsf{T}\mathbf{\Sigma} - z\mathbf{I}_T\right)^{-1}, \ z \in \mathbb{C} \setminus \mathbb{R}^+$$

donne accès à:

Figure: Illustration de la méthode de projections aléatoires

- Pour matrice de données $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$, on note la matrice de feature $\mathbf{\Sigma} \equiv \sigma(\mathbf{W}\mathbf{X}) = [\sigma(\mathbf{W}\mathbf{x}_1), \dots, \sigma(\mathbf{W}\mathbf{x}_T)] \in \mathbb{R}^{n \times T}$
- Objet clé: la matrice de Gram $\mathbf{G} = \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$: matrice de corrélation dans l'espace "features"
- ► RMT ⇒ analyse de la résolvante associée

$$\mathbf{Q}(z) = (\mathbf{G} - z\mathbf{I}_T)^{-1} = \left(\frac{1}{T}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{\Sigma} - z\mathbf{I}_T\right)^{-1}, \ z \in \mathbb{C} \setminus \mathbb{R}^+$$

donne accès à:

ightharpoonup valeurs propres de G (via transformée de Stieltjes $\frac{1}{T}\operatorname{tr}\mathbf{Q}$)

Figure: Illustration de la méthode de projections aléatoires

- Pour matrice de données $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$, on note la matrice de feature $\mathbf{\Sigma} \equiv \sigma(\mathbf{W}\mathbf{X}) = [\sigma(\mathbf{W}\mathbf{x}_1), \dots, \sigma(\mathbf{W}\mathbf{x}_T)] \in \mathbb{R}^{n \times T}$
- ▶ Objet clé: la matrice de Gram $\mathbf{G} = \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$: matrice de corrélation dans l'espace "features"
- ► RMT ⇒ analyse de la résolvante associée

$$\mathbf{Q}(z) = (\mathbf{G} - z\mathbf{I}_T)^{-1} = \left(\frac{1}{T}\mathbf{\Sigma}^\mathsf{T}\mathbf{\Sigma} - z\mathbf{I}_T\right)^{-1}, \ z \in \mathbb{C} \setminus \mathbb{R}^+$$

donne accès à:

- ightharpoonup valeurs propres de G (via transformée de Stieltjes $\frac{1}{T} \operatorname{tr} \mathbf{Q}$)
- ▶ vecteurs propres isolés de G (via intégrale complexe sur Q)

Figure: Illustration de la méthode de projections aléatoires

- Pour matrice de données $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$, on note la matrice de feature $\mathbf{\Sigma} \equiv \sigma(\mathbf{W}\mathbf{X}) = [\sigma(\mathbf{W}\mathbf{x}_1), \dots, \sigma(\mathbf{W}\mathbf{x}_T)] \in \mathbb{R}^{n \times T}$
- ▶ Objet clé: la matrice de Gram $G = \frac{1}{T} \Sigma^T \Sigma$: matrice de corrélation dans l'espace "features"
- ► RMT ⇒ analyse de la résolvante associée

$$\mathbf{Q}(z) = (\mathbf{G} - z\mathbf{I}_T)^{-1} = \left(\frac{1}{T}\mathbf{\Sigma}^\mathsf{T}\mathbf{\Sigma} - z\mathbf{I}_T\right)^{-1}, \ z \in \mathbb{C} \setminus \mathbb{R}^+$$

donne accès à:

- ightharpoonup valeurs propres de G (via transformée de Stieltjes $\frac{1}{T}$ tr Q)
- vecteurs propres isolés de G (via intégrale complexe sur Q)
- be dans le régime où $n, p, T \to \infty$, on cherche un équivalent déterministe asymptotique de \mathbf{Q}

Plan

Introduction

Résultats Principaux

Conclusion

Hypothèse 1: Taux de Croissance

Lorsque $n \to \infty$, on a

Hypothèse 1: Taux de Croissance

Lorsque $n \to \infty$, on a

- $ightharpoonup \frac{p}{n} \to c_0 \in (0,\infty)$
- $T_n \to c_T \in (0, \infty)$

Hypothèse 1: Taux de Croissance

Lorsque $n \to \infty$, on a

- $ightharpoonup \frac{p}{n} \to c_0 \in (0,\infty)$
- $ightharpoonup \frac{T}{n} \to c_T \in (0,\infty)$
- $\qquad \qquad ||\mathbf{X}|| = O(1) \,\, [\mathsf{norme \,\, op\'erateur}]$

Hypothèse 1: Taux de Croissance

Lorsque $n \to \infty$, on a

- $ightharpoonup \frac{p}{n} \to c_0 \in (0,\infty)$
- $ightharpoonup \frac{T}{n} \to c_T \in (0,\infty)$
- ▶ $\|\mathbf{X}\| = O(1)$ [norme opérateur]

Hypothèse 2: Fonction d'activation

La fonction σ est Lipschitzienne avec constante de Lipschitz λ_{σ} indépendante de n.

Hypothèse 1: Taux de Croissance

Lorsque $n \to \infty$, on a

- $ightharpoonup \frac{p}{n} \to c_0 \in (0,\infty)$
- $ightharpoonup \frac{T}{n} \to c_T \in (0,\infty)$
- ▶ $\|\mathbf{X}\| = O(1)$ [norme opérateur]

Hypothèse 2: Fonction d'activation

La fonction σ est Lipschitzienne avec constante de Lipschitz λ_{σ} indépendante de n.

Hypothèse 3: W Gaussienne

La matrice ${\bf W}$ a ses entrées i.i.d. ${\cal N}(0,1).$

Équivalent déterministe de \mathbf{Q} (1)

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\mathbf{\Phi}\bar{\mathbf{Q}})$ et $\mathbf{\Phi} \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

Équivalent déterministe de Q(1)

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\Phi \bar{\mathbf{Q}})$ et $\Phi \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

Intuition:

 $lackbox{
hound}$ pour $\sigma(t)=t$, [Silverstein et Bai'95]: $\|\mathbb{E}[\mathbf{Q}]-\bar{\mathbf{Q}}\| o 0$, $\bar{\mathbf{Q}}\equiv \left(rac{n}{T}rac{\mathbf{X}^\mathsf{T}\mathbf{X}}{1+\delta}-z\mathbf{I}_T
ight)^{-1}$

Équivalent déterministe de Q (1)

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\Phi \bar{\mathbf{Q}})$ et $\Phi \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

Intuition:

- ▶ pour $\sigma(t) = t$, [Silverstein et Bai'95]: $\|\mathbb{E}[\mathbf{Q}] \bar{\mathbf{Q}}\| \to 0$, $\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{X}^\mathsf{T} \mathbf{X}}{1+\delta} z \mathbf{I}_T\right)^{-1}$
- ightharpoonup repose essentiellement sur lemme de la trace: pour ${f A}$ de norme borné et indépendante de ${f W}$,

$$\left| \frac{1}{n} \mathbf{w}_i^\mathsf{T} \mathbf{A} \mathbf{w}_i - \frac{1}{n} \operatorname{tr} \mathbf{A} \right| \to 0$$

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\mathbf{\Phi}\bar{\mathbf{Q}})$ et $\mathbf{\Phi} \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

Intuition:

- ▶ pour $\sigma(t) = t$, [Silverstein et Bai'95]: $\|\mathbb{E}[\mathbf{Q}] \bar{\mathbf{Q}}\| \to 0$, $\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{X}^\mathsf{T} \mathbf{X}}{1+\delta} z \mathbf{I}_T\right)^{-1}$
- lacktriangle repose essentiellement sur lemme de la trace: pour ${f A}$ de norme borné et indépendante de ${f W}$,

$$\left| \frac{1}{n} \mathbf{w}_i^\mathsf{T} \mathbf{A} \mathbf{w}_i - \frac{1}{n} \operatorname{tr} \mathbf{A} \right| \to 0$$

 \checkmark \mathbf{w}_i^T (colonne de \mathbf{W}) indépendants

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\mathbf{\Phi}\bar{\mathbf{Q}})$ et $\mathbf{\Phi} \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

- ▶ pour $\sigma(t) = t$, [Silverstein et Bai'95]: $\|\mathbb{E}[\mathbf{Q}] \bar{\mathbf{Q}}\| \to 0$, $\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{X}^\mathsf{T} \mathbf{X}}{1+\delta} z \mathbf{I}_T\right)^{-1}$
- lacktriangle repose essentiellement sur lemme de la trace: pour ${f A}$ de norme borné et indépendante de ${f W}$,

$$\left| \frac{1}{n} \mathbf{w}_i^\mathsf{T} \mathbf{A} \mathbf{w}_i - \frac{1}{n} \operatorname{tr} \mathbf{A} \right| \to 0$$

- \checkmark $\mathbf{w}_{i}^{\mathsf{T}}$ (colonne de \mathbf{W}) indépendants
- \checkmark \mathbf{w}_{i}^{i} à entrées i.i.d. $\mathcal{N}(0,1)$,

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $\bar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\mathbf{\Phi}\bar{\mathbf{Q}})$ et $\mathbf{\Phi} \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

- ▶ pour $\sigma(t) = t$, [Silverstein et Bai'95]: $\|\mathbb{E}[\mathbf{Q}] \bar{\mathbf{Q}}\| \to 0$, $\bar{\mathbf{Q}} \equiv \left(\frac{n}{T}\frac{\mathbf{X}^\mathsf{T}\mathbf{X}}{1+\delta} z\mathbf{I}_T\right)^{-1}$
- repose essentiellement sur lemme de la trace: pour A de norme borné et indépendante de W,

$$\left| \frac{1}{n} \mathbf{w}_i^\mathsf{T} \mathbf{A} \mathbf{w}_i - \frac{1}{n} \operatorname{tr} \mathbf{A} \right| \to 0$$

- \checkmark $\mathbf{w}_i^{\mathsf{T}}$ (colonne de \mathbf{W}) indépendants \checkmark \mathbf{w}_i à entrées i.i.d. $\mathcal{N}(0,1)$,
- lci, pour $\frac{1}{n}\sigma(\mathbf{w}_i^\mathsf{T}\mathbf{X})\mathbf{A}\sigma(\mathbf{X}^\mathsf{T}\mathbf{w}_i)$,

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\boldsymbol{\Phi}\bar{\mathbf{Q}})$ et $\boldsymbol{\Phi} \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

- ▶ pour $\sigma(t) = t$, [Silverstein et Bai'95]: $\|\mathbb{E}[\mathbf{Q}] \bar{\mathbf{Q}}\| \to 0$, $\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{X}^\mathsf{T} \mathbf{X}}{1+\delta} z \mathbf{I}_T\right)^{-1}$
- ▶ repose essentiellement sur lemme de la trace: pour A de norme borné et indépendante de W,

$$\left| \frac{1}{n} \mathbf{w}_i^\mathsf{T} \mathbf{A} \mathbf{w}_i - \frac{1}{n} \operatorname{tr} \mathbf{A} \right| \to 0$$

- $\checkmark \ \mathbf{w}_i^{\mathsf{T}}$ (colonne de \mathbf{W}) indépendants
- \checkmark **w**_i à entrées i.i.d. $\mathcal{N}(0,1)$,
- lci, pour $\frac{1}{n}\sigma(\mathbf{w}_i^\mathsf{T}\mathbf{X})\mathbf{A}\sigma(\mathbf{X}^\mathsf{T}\mathbf{w}_i)$,
 - \checkmark les colonnes de $\Sigma \equiv \sigma(\mathbf{W}\mathbf{X})$: $\sigma(\mathbf{X}^\mathsf{T}\mathbf{w}_i)$ i.i.d.

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\mathbf{\Phi}\bar{\mathbf{Q}})$ et $\mathbf{\Phi} \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

- ▶ pour $\sigma(t) = t$, [Silverstein et Bai'95]: $\|\mathbb{E}[\mathbf{Q}] \bar{\mathbf{Q}}\| \to 0$, $\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{X}^\mathsf{T} \mathbf{X}}{1+\delta} z \mathbf{I}_T\right)^{-1}$
- ▶ repose essentiellement sur lemme de la trace: pour A de norme borné et indépendante de W,

$$\left| \frac{1}{n} \mathbf{w}_i^\mathsf{T} \mathbf{A} \mathbf{w}_i - \frac{1}{n} \operatorname{tr} \mathbf{A} \right| \to 0$$

- \checkmark \mathbf{w}_i^T (colonne de \mathbf{W}) indépendants
- \checkmark \mathbf{w}_{i}^{i} à entrées i.i.d. $\mathcal{N}(0,1)$,
- lci, pour $\frac{1}{n}\sigma(\mathbf{w}_i^\mathsf{T}\mathbf{X})\mathbf{A}\sigma(\mathbf{X}^\mathsf{T}\mathbf{w}_i)$,
 - \checkmark les colonnes de $\Sigma \equiv \sigma(\mathbf{W}\mathbf{X})$: $\sigma(\mathbf{X}^\mathsf{T}\mathbf{w}_i)$ i.i.d.
 - imes mais $\sigma(\mathbf{X}^\mathsf{T}\mathbf{w}_i)$ à entrées non-indépendants

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n o \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\mathbf{\Phi}\bar{\mathbf{Q}})$ et $\mathbf{\Phi} \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

Theorem (Équivalent déterministe de Q)

Sous hypothèses 1 - 3, lorsque $n \to \infty$, on a

$$\|\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}\| \to 0$$

où $ar{\mathbf{Q}}$ est donnée par

$$\bar{\mathbf{Q}} \equiv \left(\frac{n}{T} \frac{\mathbf{\Phi}}{1+\delta} - z \mathbf{I}_T\right)^{-1}$$

avec δ l'unique solution positive $\delta = \frac{1}{T}\operatorname{tr}(\Phi \bar{\mathbf{Q}})$ et $\Phi \equiv \mathbb{E}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

Intuition:

▶ On remplace le lemme de la trace par concentration de la mesure:

$$P\left(\left|\frac{1}{n}\sigma(\mathbf{w}_{i}^{\mathsf{T}}\mathbf{X})\mathbf{A}\sigma(\mathbf{X}^{\mathsf{T}}\mathbf{w}_{i}) - \frac{1}{n}\operatorname{tr}(\mathbf{\Phi}\mathbf{A})\right| > t\right) \leq Ce^{-cn\max(t,t^{2})}$$

avec $\Phi \equiv \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{X}^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{X})]$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$.

features aléatoires $\mathbf{W} \in \mathbb{R}^{n \times p}$ entrées $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_T] \in \mathbb{R}^{p \times T}$ $\mathbf{\Sigma} \equiv \sigma(\mathbf{W}\mathbf{X}) \in \mathbb{R}^{n \times T}$

Figure: Illustration de l'ELM

Phase d'apprentissage:

Figure: Illustration de l'ELM

Phase d'apprentissage:

lacktriangle génération de features aléatoires pour les données d'entraı̂nement X: $\Sigma \equiv \sigma(WX)$

Figure: Illustration de l'ELM

Phase d'apprentissage:

- lacktriangle génération de features aléatoires pour les données d'entraînement ${f X}$: ${f \Sigma} \equiv \sigma({f W}{f X})$
- ightharpoonup régression normalisée de Σ aux sorties associées Y:

$$oldsymbol{eta} = rac{1}{T} oldsymbol{\Sigma} \left(rac{1}{T} oldsymbol{\Sigma}^\mathsf{T} oldsymbol{\Sigma} + \gamma \mathbf{I}_T
ight)^{-1} \mathbf{Y}^\mathsf{T} = rac{1}{T} oldsymbol{\Sigma} \mathbf{Q}(-\gamma) \mathbf{Y}^\mathsf{T}$$

Figure: Illustration de l'ELM

Phase d'apprentissage:

- ightharpoonup génération de features aléatoires pour les données d'entraînement X: $\Sigma \equiv \sigma(WX)$
- ightharpoonup régression normalisée de Σ aux sorties associées Y: $\beta = \frac{1}{T} \mathbf{\Sigma} \left(\frac{1}{T} \mathbf{\Sigma}^{\mathsf{T}} \mathbf{\Sigma} + \gamma \mathbf{I}_{T} \right)^{-1} \mathbf{Y}^{\mathsf{T}} = \frac{1}{T} \mathbf{\Sigma} \mathbf{Q} (-\gamma) \mathbf{Y}^{\mathsf{T}}$

Phase de test:

Figure: Illustration de l'ELM

Phase d'apprentissage:

- lacktriangle génération de features aléatoires pour les données d'entraînement ${f X}$: ${f \Sigma} \equiv \sigma({f W}{f X})$
- régression normalisée de Σ aux sorties associées \mathbf{Y} : $\beta = \frac{1}{T} \mathbf{\Sigma} \left(\frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma} + \gamma \mathbf{I}_T \right)^{-1} \mathbf{Y}^\mathsf{T} = \frac{1}{T} \mathbf{\Sigma} \mathbf{Q}(-\gamma) \mathbf{Y}^\mathsf{T}$

Phase de test:

ightharpoonup appliquer le régresseur aux nouvelles données $\hat{\mathbf{X}}$, sorties $\hat{\mathbf{Y}}$ inconnues

Figure: Illustration de l'ELM

Phase d'apprentissage:

- lacktriangle génération de features aléatoires pour les données d'entraı̂nement ${f X}$: ${f \Sigma} \equiv \sigma({f W}{f X})$
- régression normalisée de Σ aux sorties associées \mathbf{Y} : $\beta = \frac{1}{T} \mathbf{\Sigma} \left(\frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma} + \gamma \mathbf{I}_T \right)^{-1} \mathbf{Y}^\mathsf{T} = \frac{1}{T} \mathbf{\Sigma} \mathbf{Q}(-\gamma) \mathbf{Y}^\mathsf{T}$

Phase de test:

- ightharpoonup appliquer le régresseur aux nouvelles données $\hat{\mathbf{X}}$, sorties $\hat{\mathbf{Y}}$ inconnues
- sortie de l'ELM donnée par $\mathbf{Z} = \boldsymbol{\beta}^\mathsf{T} \hat{\boldsymbol{\Sigma}}$, avec $\hat{\boldsymbol{\Sigma}} \equiv \sigma(\mathbf{W}\hat{\mathbf{X}})$

Compréhension la performance de l'ELM

Figure: Illustration of ELM

avec un ridge-regressor
$$\beta = \frac{1}{T} \mathbf{\Sigma} \left(\frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma} + \gamma \mathbf{I}_T \right)^{-1} \mathbf{Y}^\mathsf{T} = \frac{1}{T} \mathbf{\Sigma} \mathbf{Q} \mathbf{Y}^\mathsf{T}.$$

Compréhension la performance de l'ELM

Figure: Illustration of ELM

avec un *ridge-regressor* $\beta = \frac{1}{T} \mathbf{\Sigma} \left(\frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma} + \gamma \mathbf{I}_T \right)^{-1} \mathbf{Y}^\mathsf{T} = \frac{1}{T} \mathbf{\Sigma} \mathbf{Q} \mathbf{Y}^\mathsf{T}.$ Pour comprendre le MSE (mean-square error) d'apprentissage:

$$E_{\mathrm{train}} = \frac{1}{T} \left\| \mathbf{Y}^\mathsf{T} - \mathbf{\Sigma}^\mathsf{T} \boldsymbol{\beta} \right\|_F^2 = \frac{\gamma^2}{T} \operatorname{tr}(\mathbf{Y} \mathbf{Q}^2 \mathbf{Y}^\mathsf{T})$$

Compréhension la performance de l'ELM

Figure: Illustration of ELM

avec un ridge-regressor $\beta = \frac{1}{T} \mathbf{\Sigma} \left(\frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma} + \gamma \mathbf{I}_T \right)^{-1} \mathbf{Y}^\mathsf{T} = \frac{1}{T} \mathbf{\Sigma} \mathbf{Q} \mathbf{Y}^\mathsf{T}$. Pour comprendre le MSE (mean-square error) d'apprentissage:

$$E_{\text{train}} = \frac{1}{T} \left\| \mathbf{Y}^{\mathsf{T}} - \mathbf{\Sigma}^{\mathsf{T}} \boldsymbol{\beta} \right\|_{F}^{2} = \frac{\gamma^{2}}{T} \operatorname{tr}(\mathbf{Y} \mathbf{Q}^{2} \mathbf{Y}^{\mathsf{T}})$$

aussi la performance de test pour les nouvelles données $\hat{\mathbf{X}}$ et les sorties associées $\hat{\mathbf{Y}}$:

$$E_{\text{test}} = \frac{1}{T} \left\| \hat{\mathbf{Y}}^{\mathsf{T}} - \hat{\mathbf{\Sigma}}^{\mathsf{T}} \boldsymbol{\beta} \right\|_{F}^{2}, \ \hat{\mathbf{\Sigma}} = \sigma(\mathbf{W}\hat{\mathbf{X}})$$

Équivalent déterministe de MSE

Theorem (Équivalent déterministe de E_{train})

Sous hypothèses 1-3, lorsque $n \to \infty$, on a

$$\left| E_{\text{train}} - \bar{E}_{\text{train}} \right| \to 0$$

avec

$$\bar{E}_{\mathrm{train}} = \frac{\gamma^2}{T} \operatorname{tr} \left(\mathbf{Y} \mathbf{\bar{Q}} \left[\frac{\frac{1}{n} \operatorname{tr} (\mathbf{\bar{Q}} \mathbf{\Psi} \mathbf{\bar{Q}})}{1 - \frac{1}{n} \operatorname{tr} (\mathbf{\Psi}^2 \mathbf{\bar{Q}}^2)} \mathbf{\Psi} + \mathbf{I}_T \right] \mathbf{\bar{Q}} \mathbf{Y}^\mathsf{T} \right), \ \mathbf{\Psi} \equiv \frac{n}{T} \frac{\mathbf{\Phi}}{1 + \delta}$$

Équivalent déterministe de MSE

Theorem (Équivalent déterministe de E_{train})

Sous hypothèses 1-3, lorsque $n \to \infty$, on a

$$\left| E_{\text{train}} - \bar{E}_{\text{train}} \right| \to 0$$

avec

$$\bar{E}_{\mathrm{train}} = \frac{\gamma^2}{T} \operatorname{tr} \left(\mathbf{Y} \mathbf{\bar{Q}} \left[\frac{\frac{1}{n} \operatorname{tr} (\mathbf{\bar{Q}} \mathbf{\Psi} \mathbf{\bar{Q}})}{1 - \frac{1}{n} \operatorname{tr} (\mathbf{\Psi}^2 \mathbf{\bar{Q}}^2)} \mathbf{\Psi} + \mathbf{I}_T \right] \mathbf{\bar{Q}} \mathbf{Y}^\mathsf{T} \right), \ \mathbf{\Psi} \equiv \frac{n}{T} \frac{\mathbf{\Phi}}{1 + \delta}$$

Dernière mission: évaluer $\Phi_{ab} \equiv \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{w}^\mathsf{T}\mathbf{a})\sigma(\mathbf{w}^\mathsf{T}\mathbf{b})]$ pour des $\sigma(\cdot)$ différents:

Équivalent déterministe de MSE

Theorem (Équivalent déterministe de E_{train})

Sous hypothèses 1-3, lorsque $n \to \infty$, on a

$$\left| E_{\text{train}} - \bar{E}_{\text{train}} \right| \to 0$$

avec

$$\bar{E}_{\mathrm{train}} = \frac{\gamma^2}{T} \operatorname{tr} \left(\mathbf{Y} \bar{\mathbf{Q}} \left[\frac{\frac{1}{n} \operatorname{tr} (\bar{\mathbf{Q}} \boldsymbol{\Psi} \bar{\mathbf{Q}})}{1 - \frac{1}{n} \operatorname{tr} (\boldsymbol{\Psi}^2 \bar{\mathbf{Q}}^2)} \boldsymbol{\Psi} + \mathbf{I}_T \right] \bar{\mathbf{Q}} \mathbf{Y}^\mathsf{T} \right), \ \boldsymbol{\Psi} \equiv \frac{n}{T} \frac{\boldsymbol{\Phi}}{1 + \delta}$$

Dernière mission: évaluer $\Phi_{ab} \equiv \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{w}^\mathsf{T} \mathbf{a})\sigma(\mathbf{w}^\mathsf{T} \mathbf{b})]$ pour des $\sigma(\cdot)$ différents:

$$\begin{array}{c|c} \sigma(t) & \Phi_{\mathbf{a}\mathbf{b}} \\ \hline t & \mathbf{a}^{\mathsf{T}}\mathbf{b} \\ \\ \max(t,0) & \frac{1}{2\pi}\|\mathbf{a}\|\|\mathbf{b}\| \left(\angle(\mathbf{a},\mathbf{b})\arccos\left(-\angle(\mathbf{a},\mathbf{b})\right) + \sqrt{1-\angle(\mathbf{a},\mathbf{b})^2} \right) \\ \\ \mathrm{erf}(t) & \frac{2}{\pi}\arcsin\left(\frac{2\mathbf{a}^{\mathsf{T}}\mathbf{b}}{\sqrt{(1+2\|\mathbf{a}\|^2)(1+2\|\mathbf{b}\|^2)}}\right) \\ \\ 1_{t>0} & \frac{1}{2} - \frac{1}{2\pi}\arccos\left(\angle(\mathbf{a},\mathbf{b})\right) \\ \mathrm{sign}(t) & \frac{2}{\pi}\arcsin\left(\angle(\mathbf{a},\mathbf{b})\right) \\ \mathrm{cos}(t) & \exp\left(-\frac{1}{2}\left(\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2\right)\right)\cosh(\mathbf{a}^{\mathsf{T}}\mathbf{b}) \\ \mathrm{sin}(t) & \exp\left(-\frac{1}{2}\left(\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2\right)\right)\sinh(\mathbf{a}^{\mathsf{T}}\mathbf{b}) \end{array}$$

Table: Valeurs de Φ_{ab} pour $w \sim \mathcal{N}(0, \mathbf{I}_p)$, avec $\angle(\mathbf{a}, \mathbf{b}) \equiv \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$.

Figure: Exemples de la base de données MNIST

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Figure: Exemples de la base de données MNIST

Figure: Performance de l'ELM pour σ Lipschitzienne, en fonction de γ , pour 2 classes de données de MNIST (sept et neuf), $n=512,\,T=\hat{T}=1024,\,p=784.$

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Figure: Exemples de la base de données MNIST

Figure: Performance de l'ELM pour σ Lipschitzienne, en fonction de γ , pour 2 classes de données de MNIST (sept et neuf), $n=512,\,T=\hat{T}=1024,\,p=784.$

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Figure: Performance de l'ELM pour σ Lipschitzienne, en fonction de γ , pour 2 classes de données de MNIST (sept et neuf), $n=512,\,T=\hat{T}=1024,\,p=784.$

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Figure: Exemples de la base de données MNIST

Figure: Performance de l'ELM pour σ Lipschitzienne, en fonction de γ , pour 2 classes de données de MNIST (sept et neuf), $n=512,\,T=\hat{T}=1024,\,p=784.$

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Figure: Exemples de la base de données MNIST

Figure: Performance de l'ELM pour σ Lipschitzienne, en fonction de γ , pour 2 classes de données de MNIST (sept et neuf), $n=512,\,T=\hat{T}=1024,\,p=784.$

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Figure: Exemples de la base de données MNIST

Figure: Performance de l'ELM pour σ Lipschitzienne, en fonction de γ , pour 2 classes de données de MNIST (sept et neuf), $n=512,\,T=\hat{T}=1024,\,p=784.$

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Figure: Exemples de la base de données MNIST

Figure: Performance de l'ELM pour σ Lipschitzienne, en fonction de γ , pour 2 classes de données de MNIST (sept et neuf), $n=512,\,T=\hat{T}=1024,\,p=784.$

 $^{^2}$ Les images des chiffres manuscrits de taille 28 28×28 .

Plan

Introduction

Résultats Principaux

Conclusion

Messages:

lackbox étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$

Messages:

- étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$
- lacktriangle objet clé: la résolvante ${f Q}$ et son équivalent déterministe asymptotique $ar{{f Q}}$

Messages:

- étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$
- lacktriangle objet clé: la résolvante f Q et son équivalent déterministe asymptotique $ar{f Q}$
- ▶ permet la compréhension de la performance de l'ELM et projections aléatoires

Messages:

- étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$
- lacktriangle objet clé: la résolvante ${f Q}$ et son équivalent déterministe asymptotique $ar{f Q}$
- permet la compréhension de la performance de l'ELM et projections aléatoires
- lacktriangle optimisation théorique des hyper-paramètres (ici γ)

Messages:

- étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$
- lacktriangle objet clé: la résolvante ${f Q}$ et son équivalent déterministe asymptotique $ar{{f Q}}$
- ▶ permet la compréhension de la performance de l'ELM et projections aléatoires
- lacktriangle optimisation théorique des hyper-paramètres (ici γ)

Travaux à venir:

analyse des méthodes plus sophistiquées basées sur les projections aléatoires,
 e.g., projections aléatoires + régression logistique, projections aléatoires + SVM, etc.

Messages:

- étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$
- ▶ objet clé: la résolvante Q et son équivalent déterministe asymptotique Q̄
- ▶ permet la compréhension de la performance de l'ELM et projections aléatoires
- ightharpoonup optimisation théorique des hyper-paramètres (ici γ)

Travaux à venir:

- analyse des méthodes plus sophistiquées basées sur les projections aléatoires,
 e.g., projections aléatoires + régression logistique, projections aléatoires + SVM, etc.
- lacktriangle analyse de ${f Q}$ pour un modèle statistique des données: choisir $\sigma(\cdot)$ en fonction des données

Messages:

- étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$
- lacktriangle objet clé: la résolvante ${f Q}$ et son équivalent déterministe asymptotique $ar{{f Q}}$
- ▶ permet la compréhension de la performance de l'ELM et projections aléatoires
- ightharpoonup optimisation théorique des hyper-paramètres (ici γ)

Travaux à venir:

- analyse des méthodes plus sophistiquées basées sur les projections aléatoires,
 e.g., projections aléatoires + régression logistique, projections aléatoires + SVM, etc.
- lacktriangle analyse de ${f Q}$ pour un modèle statistique des données: choisir $\sigma(\cdot)$ en fonction des données
- \blacktriangleright combinaison de plusieurs types de non-linéarités, e.g., random Fourier features ($\sin+\cos\approx$ noyau Gaussien)

Messages:

- étude de la matrice de Gram non-linéaire: $\mathbf{G} \equiv \frac{1}{T} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}$
- ▶ objet clé: la résolvante Q et son équivalent déterministe asymptotique Q̄
- ▶ permet la compréhension de la performance de l'ELM et projections aléatoires
- ightharpoonup optimisation théorique des hyper-paramètres (ici γ)

Travaux à venir:

- analyse des méthodes plus sophistiquées basées sur les projections aléatoires,
 e.g., projections aléatoires + régression logistique, projections aléatoires + SVM, etc.
- lacktriangle analyse de ${f Q}$ pour un modèle statistique des données: choisir $\sigma(\cdot)$ en fonction des données
- \blacktriangleright combinaison de plusieurs types de non-linéarités, e.g., random Fourier features ($\sin+\cos\approx$ noyau Gaussien)

References:

C. Louart, Z. Liao, R. Couillet, "A Random Matrix Approach to Neural Networks", (à paraître) Annals of Applied Probability, 2017.

Merci!