# **Екзамен з Функціонального Аналізу**

Захарова Дмитра Олеговича, МП-31 12 червня 2024 р.

#### Білет №16

| Вміст |     |                                            |              |
|-------|-----|--------------------------------------------|--------------|
| 1     | 1.1 | скаючі відображення Ліпшицеві відображення |              |
| 2     | 2.1 | довження оператора.<br>Допоміжна Лема      | <b>4</b> 5 6 |
| 3     | -   | ктичне завдання Ортонормованість систем    |              |

# 1 Стискаючі відображення

Умова. Стискаючі відображення. Теорема Банаха.

**Відповідь.** Перед тим, як перейти до стискаючих зображень, ми розглянемо Ліпшицеві відображення, з яких стискаючі відображення будуть частковим випадком.

### 1.1 Ліпшицеві відображення

Отже, наведемо означення K-Ліпшицевого відображення.

**Definition 1.1.** Нехай  $(X, d_X)$  та  $(Y, d_Y)$  є метричними просторами. Тоді функцію  $f: X \to Y$  називають **Ліпшицевою** або K-**Ліпшицевою**, якщо існує таке K > 0, що:

$$(\forall x, y \in X) \{ d_Y(f(x), f(y)) \le K d_X(x, y) \}$$
 (1)

Візуалізацію означення можна побачити на Рисунку 1.



Рис. 1: Візуаліація K-Ліпшицевої функції. Як бачимо, початкова відстань d(x,y) для  $x,y\in X$  більша за кінцеву  $d(f(x),f(y)),\ f(x),f(y)\in Y$ .

Тут і далі будемо наводити багато прикладів, щоб зрозуміти кожне означення і поняття.

**Example.** Нехай  $(X, d_X) = (Y, d_Y) = (\mathbb{R}, |\cdot|)$  – стандартний простір дійсних чисел з модулем в якості метрики. Тоді, K-Ліпшицевою називають такі неперервно-диференційовані функції  $f: \mathbb{R} \to \mathbb{R}$ , у яких  $\sup_x |f'(x)| = K$ . Наприклад, функція  $f(x) = \sqrt{1 + x^2} \in 1$ -Ліпшицевою.

## 1.2 Стискаючі відображення

**Definition 1.2.** Функція  $f: X \to Y$  є стискаючою, якщо вона є k-Ліпшицевою для деякого  $0 \le k < 1$ .

Теорема Банаха, про яку далі піде мова, також включає в себе наступне поняття.

**Definition 1.3.** Нехай маємо відображення  $f: X \to X$ . Тоді,  $x^* \in X$  називають **нерухомою**, якщо  $f(x^*) = x^*$ .

**Example.** Нехай маємо функцію  $f: x \mapsto -x^2 - 1$ . Якщо вона задана над комплексним простором, то щоб знайти нерухому точку, потрібно розв'язати наступне рівняння:

$$z = -z^2 - 1 \implies z^2 + z + 1 = 0$$
 (2)

Звідси маємо дві нерухомі точки:  $z_1^* = e^{2\pi i/3}$  та  $z_2^* = e^{4\pi i/3}$ .

Якщо ж мова б йшла про простір над  $\mathbb{R}$ , то нерухомих точок не було б.

Отже, ми готові розглянути ключову теорему цього питання.

**Theorem 1.4.** Банаха про стискаючі відображення. Нехай (X, d) — непустий повний метричний простір та  $f: X \to X$  є стискаючою. Тоді f має єдину фіксовану точку.

**Доведення.** Отже за означенням потрібно довести існування такого  $x^* \in X$ , для якого  $f(x^*) = x^*$ . Як ми це зробимо?

Доведення буде конструктивим. Візьмемо будь-яке  $x_0 \in X$  і задамо послідовність  $\{x_n\}_{n\in\mathbb{Z}_{>0}}$  рекурсивно:  $x_{n+1}=f(x_n)$ . Покажемо справедливість леми.

**Lemma 1.5.** Послідовність  $\{x_n\}_{n\in\mathbb{Z}_{\geq 0}}$  для довільного  $x_0$  та  $x_{n+1}=f(x_n)$  для всіх  $n\in\mathbb{Z}_{>0}$  є фундаментальною.

Для цього доведемо те, що

$$d(x_{n+1}, x_n) \le k^n d(x_1, x_0) \tag{3}$$

Це достатньо легко показати за означенням нашої послідовності:

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) \le k d(x_n, x_{n-1}) \le \dots \le k^n d(x_1, x_0)$$
 (4)

В першій рівності ми за означенням послідовності виписали  $x_{n+1} = f(x_n)$ ,  $x_n = f(x_{n-1})$ , а нерівності випливають з означення стискаючого відображення. Отже, це твердження ми довели.

Отже, тепер візьмемо деякі два  $n, m \in \mathbb{N}$  такі, що  $m \geq n$ . Тоді:

$$d(x_m, x_n) \leq \sum_{i=n}^{m-1} d(x_{i+1}, x_i) \leq \sum_{i=n}^{m-1} k^i d(x_1, x_0) = d(x_1, x_0) \sum_{i=n}^{m-1} k^i =: d(x_1, x_0) C_{n,m}$$
(5)

Перша нерівність випливає з нерівності трикутника, а наступна з доведеної пропозиції. Отже, зашилилось знайти простий вираз для  $C_{n,m} = \sum_{i=n}^{m-1} k^i$ .

Маємо:

$$C_{n,m} = k^n \sum_{i=0}^{m-n-1} k^i = \frac{k^n (1 - k^{m-n})}{1 - k} \le \frac{k^n}{k - 1}$$
 (6)

Отже, отримали:

$$d(x_m, x_n) \le \frac{k^n}{k-1} \cdot d(x_1, x_0) \tag{7}$$

Отже, видно, що  $d(x_m,x_n) \xrightarrow[n \to \infty]{} 0$ , а отже послідовність є фундаментальною. Звідси випливає існування  $\exists x \in X : x_n \to x$ . Доведемо наступне твердження.

#### **Proposition 1.6.** Побудоване x і $\epsilon$ єдиною фіксованою точкою.

Спочатку покажемо, що вона є фіксованою:

$$f(x) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x \tag{8}$$

Тепер покажемо єдиність. Нехай у – також фіксована точка. Тоді:

$$d(x, y) = d(f(x), f(y)) \le kd(x, y) \implies (1 - k)d(x, y) \le 0$$
 (9)

Оскільки |k| < 1 та  $d(x,y) \ge 0$ , то маємо d(x,y) = 0, звідки з визначення метрики одразу випливає x = y. Теорема доведена.

Розглянемо приклад.

**Example.** Скільки розв'язків на [-1, 1] має рівняння

$$\cos^2 x = 2x, \ x \in [-1, 1] \tag{10}$$

Без знання теореми Банаха не зрозуміло, що робити. Проте, знаючи, задачу можна переформулювати так: скільки нерухомих точок має відображення  $f(x)=\frac{1}{2}\cos^2 x$  на [-1,1]? Оскільки  $|f'(x)|=|\frac{1}{2}\sin 2x|\leq \frac{1}{2}$ , то  $k=\frac{1}{2}$  і тому за теоремою Банаха маємо єдину фіксовану точку.

# 2 Продовження оператора.

Умова. Продовження оператора по неперервності.

Відповідь. Отже, ключовою в цьому питання є теорема Хана-Банаха.

**Theorem 2.1. Хана-Банаха.** Нехай V — нормований векторний простір і нехай  $W \subset V$  — підпростір. Якщо  $T:W \to \mathbb{C}$  є лінійним відображенням для якого  $\|T(w)\| \le C\|w\|$  для всіх  $w \in W$  (тобто маємо обмежений лінійний функціонал), тоді існує неперервне продовження оператора  $\overline{T}:V \to \mathbb{C}$ 

таке, що 
$$\overline{T}\Big|_W = T$$
 та  $\|\overline{T}(v)\| \le C\|v\|$  для всіх  $v \in V$ .

Проте, для доведення нам потрібно розібрати ще одну теорему.

#### 2.1 Допоміжна Лема

Для доведення теореми Хана-Банаха, розглянемо допоміжну лему.

**Lemma 2.2.** Нехай V — нормований простір,  $W \subset V$  — підпростір. Нехай  $T:W \to \mathbb{C}$  — лінійний з  $|T(w)| \le C \|w\|$  для всіх  $w \in W$ . Якщо  $x \notin W$ , то існує функція  $T':W' \to \mathbb{C}$ , що є лінійною на просторі  $W'=W+\mathbb{C}x$  з  $T'\Big|_W = T$  та  $|T'(w')| \le C \|w'\|$  для всіх  $w' \in W'$ .

**Доведення Леми.** По-перше, треба дізнатися трошки більше про простір W'. Доведемо, що:

- 1.  $W' \in підпростором W$ .
- 2. Репрезентація довільного  $w' \in W'$  як w' = ax + w,  $w \in W$ ,  $a \in \mathbb{C}$  є єдиним.

Перше твердження достатньо очевидне, а друге доводиться наступним чином: нехай вийшло, що  $w' = \widetilde{a}x + \widetilde{w}$  для  $\widetilde{a} \neq a$ ,  $\widetilde{w} \neq w$ . Тоді:

$$ax + w = \widetilde{a}x + \widetilde{w} \implies (a - \widetilde{a})x = \widetilde{w} - w \in W$$
 (11)

Проте, при  $a \neq \tilde{a}$  звідси випливає  $x \in W$  — протиріччя. Якщо ж  $a = \tilde{a}$ , то і  $w = \tilde{w}$ . Таким чином, w' задано єдиним чином через вираз ax + w.

Цей факт потрібен, щоб коректно визначити відображення  $\mathcal{T}'$  наступним чином:

$$T'(ax + w) = T(w) + a\lambda \tag{12}$$

для деякого  $\lambda \in \mathbb{C}$ . Якщо C=0, то  $T\equiv 0$  і тоді  $T'\equiv 0$ . Якщо ж  $C\neq 0$ , то без обмеження загальності будемо вважати, що C=1.

Отже, лише залишилось підібрати таке  $\lambda$ , щоб для всіх  $a \in \mathbb{C}$ ,  $w \in W$  виконувалось  $|T(w)| \leq \|ax + w\|$ . По-перше, це очевидно виконується за a=0 з умови. Тому, сфокусуємось на випадку  $a \neq 0$  і поділимо обидві частини на |a|:

$$\left| T\left(\frac{w}{-a}\right) - \lambda \right| \le \left\| \frac{w}{-a} - x \right\| \tag{13}$$

Оскільки  $w/-a \in W$ , то це твердження еквівалентно:

$$|T(w) - \lambda| \le ||w - x|| \ \forall w \in W \tag{14}$$

Доведемо існування такого  $\alpha \in \mathbb{R}$ , що для  $R(w) = \operatorname{Re}\{T(w)\}$  виконується

$$|R(w) - \alpha| \le ||w - x|| \tag{15}$$

Помітимо, що  $|R(w)| \le ||T(w)|| \le ||w||$  і оскільки  $R \in \text{функцією над } \mathbb{R}$ :

$$R(w_1) - R(w_2) = R(w_1 - w_2) \le |R(w_1 - w_2)| \le ||w_1 - w_2||$$
 (16)

Отже, продовжуючи, бачимо, що

$$R(w_1) - R(w_2) \le \|(w_1 - x) + (x - w_2)\| \le \|w_1 - x\| + \|w_2 - x\| \tag{17}$$

Отже, для довільних  $w_1, w_2 \in W$  маємо:

$$R(w_1) - \|w_1 - x\| \le R(w_2) + \|w_2 - x\| \tag{18}$$

Отже, візьмемо супремум по лівій частині:

$$\sup_{w \in W} \{ R(w) - \|w - x\| \} \le R(w_2) + \|w_2 - x\| \ \forall w_2 \in W$$
 (19)

і тому

$$\sup_{w \in W} \{R(w) - \|w - x\|\} \le \inf_{w \in W} \{R(w) + \|w - x\|\}$$
= U
(20)

**Твердження.** Дійсно, якщо обрати будь-який  $L \leq \alpha \leq U$ , то він підійде. Дійсно, тоді для всіх  $w \in W$ :

$$R(w) - \|w - x\| \le \alpha \le R(w) + \|w - x\| \tag{21}$$

Звідси  $|R(w) - \alpha| \leq ||w - x||$ .

Такі самі міркування справедливі і для  $I(w) = \text{Im}\{T(w)\}.$ 

### 2.2 Доведення теореми Хана-Банаха

Для доведення згадаємо одне означення з математичної логіки.

**Definition 2.3. Частковий порядок** на множині E це відношення  $\leq$ , що має наступні властивості:

- 1. Для всіх  $e \in E$  :  $e \leq e$ .
- 2. Для всіх  $e,e'\in E:e\preceq e'\wedge e'\preceq e\implies e=e'.$
- 3. Для всіх e, e',  $e'' \in E$  :  $e \preceq e' \land e' \preceq e'' \implies e \preceq e''$ .

**Example.** Нехай S множина, а на  $E = 2^S$  ми задали частковий порядок:  $A \leq B$  якщо  $A \in підмножиною <math>B$ .

**Definition 2.4.** Нехай  $(E, \preceq)$  є частково упорядкована множина. Тоді множина  $C \subset E$  є **ланкою** якщо для всіх  $e, f \in C$  маємо або  $e \preceq f$ , або  $f \preceq e$ .

**Theorem 2.5. Лема Цорна.** Якщо кожна ланка в непустій частковоупорядкованій множині E має верхню межу, то E є максимальним елементом.

**Доведення теореми.** Нехай  $\mathcal{F}$   $\epsilon$  множиною усіх неперервних розширень

$$\mathcal{F} = \{(\overline{T}, U) : W \subset U \subset V, \overline{T} \in \text{неперервним розширенням } T \text{ на } U\}$$
 (22)

Ця множина непуста, оскільки  $(T,W)\in\mathcal{F}$ . Задаємо частковий порядок на цій множині наступним чином:

$$(T_1, U_1) \preceq (T_2, U_2)$$
 якщо  $U_1 \subset U_2 |_{U_1} = T_1$  (23)

Легко бачити, що це дійсно є частковим порядком. Нехай тепер кожна ланка має верхню межу (це буде доведено нижче). Тоді за лемою Цорна,  $\mathcal{F}$  має максимум  $(\hat{T},\hat{U})$ . Доведемо, що  $\hat{U}=V$ . Нехай це не так. Тоді існує  $x\in V\setminus \hat{U}$ . Проте, за доведеною лемою існує неперервне розширення T' функціоналу  $\hat{T}$  на  $\hat{U}+x\mathbb{C}$ . Тоді,  $(T',\hat{U}+\mathbb{C}x)\in\mathcal{F}$ , причому  $(\hat{T},\hat{U})\preceq (T',\hat{U}+\mathbb{C}x)$  — протиріччя. Отже  $\hat{U}=V$  і тому існує відповідне  $\hat{U}$ .

Перевіримо тепер, чи кожна ланка має верхню межу. Нехай ланка задана як  $C = \{(T_i, U_i) : i \in I\}$ . Тоді нехай  $U = \bigcup_{i \in I} U_i$ . U є лінійним підпростором V: нехай  $x_1, x_2 \in U$ ,  $a_1, a_2 \in \mathbb{C}$ . Тоді ми можемо знайти такі індекси  $i_1, i_2$ , що  $x_1 \in U_{i_1}, x_2 \in U_{i_2}$ . Також, оскільки маємо ланку, то або  $U_{i_1} \subset U_{i_2}$ , або  $U_{i_2} \subset U_{i_1}$ . Тоді, без втрати загальності, нехай  $x_1, x_2 \in U_{i_2}$ . Оскільки  $U_{i_2}$  є підпростором V, то  $a_1x_1 + a_2x_2 \in U_{i_2} \subset U$ , що і треба було довести.

Маючи підпростір U, ми хочемо його перетворити на елемент  $\mathcal{F}$ , додавши функціонал  $T:U\to\mathbb{C}$ , що задовольняє нашим умовам. Проте, це достатньо просто: для кожного  $u\in U$  ми знаємо, що існує  $i\in I$ , для якого  $u\in U_i$ , а тому  $T(u)=T_i(u)$ . Тоді  $(T_i,U_i)\preceq (T,U)$ , тому (T,U) – наш максимум.

# 3 Практичне завдання

**Умова.** Перевірити, що множина функцій  $\{\sqrt{\frac{2}{\pi}}\sin nt\}_{n\in\mathbb{N}}$  утворюють ортонормований базис в  $L^2[0,\pi]$ , але в просторі  $L^2[-\pi,\pi]$  є тільки ортонормованою системою, яка не утворює базис.

#### Розв'язання.

Будемо позначати  $e_n := \sqrt{\frac{2}{\pi}} \sin nt, n \in \mathbb{N}$ . Розіб'ємо розв'язок на дві частини: спочатку покажемо, що системи є ортонормованими, а далі вже покажемо чому лише для  $[0,\pi]$  маємо базис.

### 3.1 Ортонормованість систем

Отже, спочатку покажемо, що перед нами дійсно ортонормована система в обох випадках. Згадаємо означення.

**Definition 3.1.** Нехай H  $\varepsilon$  пре-Гільбертовим простором. Підпростір  $\{e_{\lambda}\}_{\lambda\in\Lambda}\subset H$   $\varepsilon$  **ортонормованим** якщо  $\|e_{\lambda}\|=1\ \forall\lambda\in\Lambda$  а також для усіх  $\lambda_1\neq\lambda_2\in\Lambda$  маємо  $\langle e_{\lambda_1},e_{\lambda_2}\rangle=0$ .

Отже, нехай маємо простір  $L^2(\Omega)$ , де  $\Omega \subset \mathbb{R}$  вимірна, а функції  $f:\Omega \to \mathbb{C}$  є вимірними і  $\int_\Omega f \, d\mu < \infty$ , то внутрішній добуток на норма задаються наступним чином:

$$\langle f, g \rangle_{L^2(\Omega)} \triangleq \int_{\Omega} f \overline{g} d\mu, \ \|f\|_{L^2(\Omega)} \triangleq \left( \int_{\Omega} |f|^2 d\mu \right)^{1/2}$$
 (24)

Розглянемо випадок  $\Omega = [0, \pi]$ . Для двох  $n, m \in \mathbb{N}$  маємо:

$$\langle e_n, e_m \rangle = \frac{2}{\pi} \int_0^{\pi} \sin nt \sin mt dt$$
 (25)

Згадаємо наступну тригонометричну формулу:

$$\sin nt \sin mt = \frac{1}{2} \left( \cos(n-m)t - \cos(n+m)t \right) \tag{26}$$

Нехай  $n \neq m$ . Отже, наш добуток має вигляд:

$$\langle e_n, e_m \rangle = \frac{1}{\pi} \left( \int_0^{\pi} \cos((n-m)t) dt - \int_0^{\pi} \cos((n+m)t) dt \right)$$
 (27)

Окремо інтеграли знайти легко. Маємо:

$$\langle e_n, e_m \rangle = \frac{1}{\pi} \left( \frac{\sin(n-m)t}{n-m} \Big|_{t=0}^{t=\pi} - \frac{\sin(n+m)t}{n+m} \Big|_{t=0}^{t=\pi} \right) = 0$$

Якщо ж n = m, то тоді

$$\langle e_n, e_n \rangle = \frac{2}{\pi} \int_0^{\pi} \sin^2 nt dt = \frac{2}{\pi} \int_0^{\pi} \frac{1 - \cos 2nt}{2} dt = \frac{1}{\pi} \left( \pi - \int_0^{\pi} \cos(2nt) dt \right)$$
 (28)

Інтеграл праворуч у дужках нуль, а тому  $\langle e_n, e_n \rangle = 1$ , а отже остаточно:

$$\langle e_n, e_m \rangle = \delta_{n,m},$$
 (29)

що означає ортонормованість системи. Тепер розглянемо  $[-\pi,\pi]$ . Добре видно, що зміняться лише межі підстановки і тому видно, що результат такий самий. Перейдемо до того, що з цього є базисом.

## 3.2 Ортонормований базис

Введемо два додаткових означення:

**Definition 3.2.** Ортонормована підмножина  $\{e_{\lambda}\}_{{\lambda}\in{\Lambda}}$  пре-Гільбертового простору є **максимальною** якщо для кожного  $u\in H$ , що задовольняє  $\langle u,e_{\lambda}\rangle=0$  для кожного  $\lambda\in{\Lambda}$ , виконується u=0.

**Definition 3.3.** Нехай H Гільбертів простір. **Ортонормованим базисом** називають зліченну максимальну ортонормовану підмножину H.

Оскільки наша множина  $\{e_n\}_{n\in\mathbb{N}}$  є зліченною і ортонормованою, залишилось довести, що для  $\Omega=[0,\pi]$  вона є максимальною, а для  $\Omega=[-\pi,\pi]$  ні.

Легше одразу розглянути  $\Omega = [-\pi, \pi]$ . Доведемо, що знайдеться така вимірна  $u \in L^2[-\pi, \pi]$ , що  $\langle u, e_n \rangle = 0$  для всіх  $n \in \mathbb{N}$ , але  $u \not\equiv 0$ . Отже умова  $\langle u, e_n \rangle = 0$  означає:

$$\int_{-\pi}^{\pi} u(t)\sin nt dt = 0, \ n \in \mathbb{N}$$
 (30)

Проте, нехай  $u(t)=\cos t$ . Тоді легко показати, що  $\langle u,e_n\rangle=0$  для всіх  $n\in\mathbb{N}$ . Дійсно,  $\cos t\sin nt$  є непарною, а інтеграл по симетричному відносно 0 відрізку дасть 0. Отже, аналогічно можна було взяти будь-яке парне  $u\in L^2[-\pi,\pi]$ , як наприклад  $u(t)=t^2$ .

Добре, залишилось розібратись з  $\Omega = [0, \pi]$ . Доводити аналог Рівняння 30 буде надто складно, оскільки по суті ми повторимо доведення максимальності базису Фур'є. Тому скористаємося тим, що ми вже знаємо, що наступна система функцій  $\{\cos nx : n \in \mathbb{Z}_{\geq 0}\} \cup \{\sin nx : n \in \mathbb{N}\}$  є ортогональним базисом  $L^2[-\pi,\pi]$  (позначимо через  $\{e'_\lambda\}_{\lambda\in\Lambda}$ ). Також нехай  $\langle u,e_n\rangle_{L^2[0,\pi]}=0$ ,  $n\in\mathbb{N}$  Розглянемо розширену функцію:

$$g(t) = \begin{cases} u(t), & t \in [0, \pi] \\ -u(t), & t \in [-\pi, 0] \end{cases} \in L^{2}[-\pi, \pi]$$
 (31)

Ця функція є неперервною, а також непарною: g(-t) = -g(t). Тоді, за теоремою про ряд Фур'є-Бесселя, маємо наступне розкладання g у ряд:

$$g = \sum_{\lambda \in \Lambda} b_{\lambda} e_{\lambda},\tag{32}$$

де  $b_{\lambda}$  пропорційне  $\langle g,e_{\lambda}'\rangle$ . Для базисів виду  $\{\cos nt:n\in\mathbb{N}\}$  будемо мати  $\langle g,\cos nt\rangle=\int_{-\pi}^{\pi}g(t)\cos nt=0$ , оскільки функція g непарна, а для базисів  $\{\sin nt:n\in\mathbb{N}\}$  за припущенням маємо  $\langle g,\sin nt\rangle=\langle u,\sin nt\rangle=0$ . Отже,  $g\equiv 0$  на  $L^2[-\pi,\pi]$ , а отже і на  $L^2[0,\pi]$ . Що і треба було довести.