Testul 1

Problema 1 Să se aproximeze funcția $f: [-\pi, \pi] \to \mathbb{R}, \ f(x) = x + \sin x^2.$

- (a) Folosind toate cele patru tipuri de spline, noduri echidistante și noduri $Ceb\hat{i}$ șev de speța a doua, n=10.
- (b) Folosind metoda celor mai mici pătrate discretă şi noduri Cebîşev de speţa I, n = 10.

În fiecare caz se va reprezenta grafic funcția și aproximanta.

Testul 2

Problema 2 Să se aproximeze funcția $f: [-\pi, \pi] \to \mathbb{R}, f(x) = x + \cos x^2$.

- (a) Folosind toate cele patru tipuri de spline, noduri echidistante și noduri $Ceb\hat{i}$ sev de speța I, n = 10.
- (b) Folosind metoda celor mai mici pătrate discretă și noduri Cebîşev de speța II, n = 10.

În fiecare caz se va reprezenta grafic funcția și aproximanta.

Testul 3

Problema 3 Să se aproximeze funcția $f(x) = \arctan x$, pe [-1, 1].

- (a) Folosind toate cele patru tipuri de spline, noduri echidistante şi noduri $Ceb\hat{i}$ şev de speţa I, n = 15.
- (b) Folosind metoda celor mai mici pătrate discretă și noduri echidistante, n=10...

În fiecare caz se va reprezenta grafic funcția și aproximanta.

Testul 4

Problema 4 Să se aproximeze funcția $f(x) = x^2 \sin x$, pe $[-2\pi, 2\pi]$.

- (a) Folosind toate cele patru tipuri de spline, noduri echidistante și noduri $Ceb\hat{i}$ șev de speța a doua, n=12.
- (b) Folosind metoda celor mai mici pătrate discretă și noduri echidistante, n=11.

ÎÎn fiecare caz se va reprezenta grafic funcția și aproximanta.