Lecture 2 Discrete Distributions · Random Variable of the Discrete Type

Given a random experiment with an outcome space S, a function X that assigns to each element S in S one and only one real number X(S) = x is called a RANDOM VARIABLE. The space of X is the set of all real numbers. X:S > R

For example, if your experiment" is flipping a coin, your ontcome space S is

Iteads Tails whose onterme is random.

I assigns each of the ontones anumber, e.g.

This allows you to do math on these otherwise abstract outcomes.

Probability Mass Function

The probability mass huchion (pmf) f(x) da discrete random variable X is a function that satisfies the following properties:

Where XEA means x belongs to the set A.

Example: There are 100 people in a class who have taken an exam. The exam is graded in such a way the the score can only be an integer the score is discrete). The faction of people obtaining each score is, say:

this fraction represents the probability to observe a given score in the class; it is the prof for the score:

notice

Mathematical Expectation

If f(x) is the port of the random variable X of the discrete type within the space S, and if the summation

expected value of the function u(x) and is denoted

00

(u(x)) = Eu(x)f(x)

* Note: compare this to Bracket notadon in QM

HIH) = EIH) => E is the expectation value of the engry
recall QM only calculates expected value. The wave Reaction acts
as a probability mass function.

(actually density)

Example: Given our prior pont for exam scores, what is the areage, or expected value of the score, for the exam?

We want to calculate

= 5 5 (number appeals with scare s)
total number alpeople

This is exactly how you're probably used to calculating exam averages! But this works for any function.

Let's consider a typical, and important, discrete distribution: Bernoulli Trials and the Binomial Distribution

Binomial Distribution

The binomial distribution is the discrete probability distribution of the number of successes in a sequence of a inalgoridate yes/40 (or 0/1) experiments, each of which yields success with probability p.

When n=1, this is called a Bernoulli distribution, based on a Bernoulli trial.

- · Let p devote the probability of success, then p=1-9 where 9 is the probability of failure, and q=1-p
- · Let X be a random variable associated with a Bernoulli Trial:

Then, the purf can be written f(x) = p x g1-x

 $= \rho^{x} (1-\rho)^{1-x}$ x = 91

and we say that X has a Bernoulli distribution

. The expected value of X as $E[X] = \langle X \rangle = \sum_{x=0}^{1} \times p^{x} (1-p)^{1-x}$

$$= \bigcirc \cdot \rho^{\circ} (1-\rho)^{1-0} + 1 \cdot \rho^{1} (1-\rho)^{1-1}$$

$$= \bigcirc + \rho$$

$$= \rho$$

- · In a sequence of Bernoulli trials, we are interested in the total number of successes and not in the order of this occurrence
- If we let the random vocable X equal the numbered observed successes in n trials, the possible values of X are 0,1,3,..., n. If X successes occur, then n-x failures occur.
- . The number of ways of selecting x positions for the x successes in n trials is

 $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ "Binomial coefficient" or "n choose x" $n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot \cdot 1$

Since trials are independent, and the probabilities of success and failure are p and q=1-p, the probability of each of these ways is p*(1-p)1-x

So the pmf of X, call it f(x), is the sum of the probabilities of them

(**) mutually exclusive exacts:

$$f(x) = {\binom{N}{x}} p^{x} (1-p)^{1-x} x = 0!, ..., n$$

$$= \frac{N!}{x!(n-x)!} p^{x} (1-p)^{1-x}$$

Binomial Distribution Example: Suppose a brased coin comes up heads with probability of achieving 0,1,2, or 3 heads after 3 tosses?

So here
$$N=3$$
, and we want
$$P(0) = f(0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} 0.3^{\circ} (1-0.3)^{3-0}$$

$$P(1) = f(1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} 0.3^{\circ} (1-0.3)^{3-1}$$