PLSC 503 – Fall 2024 Central Tendency and Variation

September 23, 2024

Link Of The Day

Link: https://x.com/RandVegan/status/1837958470890348970

Example: Today's Premier League

Team	GamesPlayed	Won	Drew	Lost	GoalsFor	GoalsAgainst	GoalDifference	Points
Manchester City	5	4	1	0	13	5	8	13
Liverpool	5	4	0	1	10	1	9	12
Aston Villa	5	4	0	1	10	7	3	12
Arsenal	5	3	2	0	8	3	5	11
Chelsea	5	3	1	1	11	5	6	10
Newcastle United	5	3	1	1	7	6	1	10
Brighton and Hove Albion	5	2	3	0	8	4	4	9
Nottingham Forest	5	2	3	0	6	4	2	9
Fulham	5	2	2	1	7	5	2	8
Tottenham Hotspur	5	2	1	2	9	5	4	7
Manchester United	5	2	1	2	5	5	0	7
Brentford	5	2	0	3	7	9	-2	6
Bournemouth	5	1	2	2	5	8	-3	5
West Ham United	5	1	1	3	5	9	-4	4
Leicester City	5	0	3	2	6	8	-2	3
Crystal Palace	5	0	3	2	4	7	-3	3
Ipswich Town	5	0	3	2	3	8	-5	3
Southampton	5	0	1	4	2	9	-7	1
Everton	5	0	1	4	5	14	-9	1
Wolverhampton Wanderers	5	0	1	4	5	14	-9	1

Premier League Points: Histogram

The Arithmetic Mean

The "mean":

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

implies that:

$$\sum_{i=1}^{N} X_i = N\bar{X}$$

and so:

$$\sum_{i=1}^{N} (X_i) - N\bar{X} = \sum_{i=1}^{N} (X_i - \bar{X}) = 0.$$

\bar{X} Minimizes Squared Deviations

Find the value of X μ that minimizes the sum of squared deviations...

$$f(X) = \sum_{i=1}^{N} (X_i - \mu)^2$$
$$= \sum_{i=1}^{N} (X_i^2 + \mu^2 - 2\mu X_i)$$
$$\frac{\partial f(X)}{\partial \mu} = \sum_{i=1}^{N} (2\mu - 2X_i)$$

\bar{X} Minimizes Squared Deviations

Solve:

$$\sum_{i=1}^{N} (2\mu - 2X_i) = 0$$

$$2N\mu - 2\sum_{i=1}^{N} X_i = 0$$

$$2N\mu = 2\sum_{i=1}^{N} X_i$$

$$\mu = \frac{1}{N}\sum_{i=1}^{N} X_i \equiv \bar{X}$$

Means from Sums of Frequencies

Frequency table:

Points	Frequency f _j
1	3
3	3
4	1
5	1
:	:
13	1
	<u> </u>

For *J* different unique values of *X*:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{J} f_j X_j$$

Weighted Means

For "weights" w_i , the weighted (arithmetic) mean is:

$$\bar{W} = \frac{\sum_{i=1}^{N} w_i X_i}{\sum_{i=1}^{N} w_i}$$

Things to remember:

- If $w_i = \frac{1}{N} \ \forall \ i$, then $\bar{W} = \bar{X}$
- If $w_i = w \ \forall \ i$, then $\bar{W} = w\bar{X}$
- Weighted means are simpler if $\sum_{i=1}^{N} w_i = 1.0...$
- ... we can normalize any set of weights by $w_i' = \frac{w_i}{\sum_{i=1}^N w_i}$.

Geometric Mean

The geometric mean is:

$$\bar{X}_{G} = \left(\prod_{i=1}^{N} X_{i}\right)^{\frac{1}{N}}$$

$$= \sqrt[N]{X_{1} \cdot X_{2} \cdot \dots \cdot X_{N}}$$

$$= \exp\left[\frac{1}{N} \sum_{i=1}^{N} \ln X_{i}\right]$$

Geometric Mean (graphically)

For example, with N=2:

$$X_2$$
 = \overline{X}_G

With N = 3:

Geometric Mean (continued)

Note: Geometric means don't like zero or negative values...

- Formally, \bar{X}_G is defined only if $X_i > 0 \ \forall i$
- R's geometric.mean() defaults to removing them before calculation...
- If all values of X are negative, the geometric mean will be NaN.

Consider percentage changes:

```
\{ +12\%, +5\%, -9\%, +2\%, -10\% \}
```

```
> geometric.mean(c(12,5,-9,2,-10))
[1] 4.932424

Warning message:
In log(x) : NaNs produced
> geometric.mean(c(1.12,1.05,0.91,1.02,0.90))
[1] 0.9964563
```

Harmonic Mean

The harmonic mean is:

$$\bar{X}_{H} = \frac{N}{\sum_{i=1}^{N} \frac{1}{X_{i}}}$$
$$= \frac{1}{\left(\frac{1}{X}\right)}$$

The harmonic mean:

- Is the reciprocal of the arithmetic mean of the reciprocals of X
- Can be calculated for negative values of X, but not for zero values

Harmonic Mean: Applications

If you drive to a friend's house D miles away going 40 mph (X_1) , but bike back at 10 mph (X_2) , what is your average speed?

- Hint: It's not $(X_1 + X_2)/2 = (40 + 10)/2 = 25$ mph...
- Average speed is:

$$\frac{\text{Total Distance}}{\text{Total Time}} = \frac{2D}{\frac{D}{X_1} + \frac{D}{X_2}}$$

$$= \frac{2}{\frac{1}{X_1} + \frac{1}{X_2}}$$

$$= \frac{2}{\frac{1}{40} + \frac{1}{10}}$$

$$= 16 \text{ mph}$$

When X is a *rate*, use the <u>harmonic mean</u>.

The Pythagorean Means

Note that:

$$\bar{X}_H \leq \bar{X}_G \leq \bar{X}_A$$

The Median

The arithmetic median:

$$\check{X}$$
 = "middle observation" of X
= 50th *percentile* of X .

The median minimizes absolute distance:

$$\check{X} = \min\left(\sum_{i=1}^N |X_i - c|\right).$$

Some Fun Facts About Medians

- 1. Median observations need not be <u>unique</u>; more than one observation can be the "median" observation. Likewise...
- 2. By convention, when N is even, \check{X} is the arithmetic mean of the two "middle observations" ...
 - This means for N even, there is no observation in the data that is the median observation. Conversely,
 - A *medoid* is the observation in the data that is the most similar / least distant from the others.
- 3. Medians can be calculated on *discrete* ordinal data (e.g., ranks).
- 4. Medians can be calculated on censored data (e.g., durations).
- 5. If a distribution has finite variance (see below), the difference between the median and the mean can be no more than one standard deviation.

The Mode

The $\underline{\text{mode}}$ of X is "the value of X that appears most frequently in the data."

- That works fine for discrete variables...
 - · There can be zero, one, two, or more modes,
 - · If (say) two values of X have *nearly* the same number of cases, we often refer to that as "bimodal" data.
- For continuous variables:
 - There is often no mode (no two observations have exactly the same values of X)
 - Modes are usually defined as any local maximum of the probability density function of X

Modes: Discrete *X*

Modes: Continuous X

Means, Medians, Modes, and Skewness

Central Tendencies: Premier League Data

Variation

Range and Percentiles

Range:

$$\mathsf{Range}(X) = \mathsf{max}(X) - \mathsf{min}(X)$$

The kth percentile is the value of the variable below which k percent of the observations fall.

- 50th percentile = \check{X}
- 0th percentile = minimum(X)
- 100th percentile = maximum(X)

More Percentiles

- *Quartiles* = {25th, 50th, 75th percentiles}
- Interquartile Range (IQR):

$$IQR(X) = 75th percentile(X) - 25th percentile(X)$$

• *Deciles* = {10th, 20th, 30th, etc. percentiles}

"Mean Deviation"

$$\frac{1}{N}\sum_{i=1}^{N}(X_{i}-\bar{X}).$$

$$\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}) = \frac{1}{N} \left[\left(\sum_{i=1}^{N} X_i \right) - N \bar{X} \right]$$

$$= \frac{1}{N} \left[\sum_{i=1}^{N} X_i - N \left(\frac{1}{N} \sum_{i=1}^{N} X_i \right) \right]$$

$$= \frac{1}{N} \left(\sum_{i=1}^{N} X_i - \sum_{i=1}^{N} X_i \right) = \frac{1}{N} (0)$$

$$= 0$$

Squared Deviation

Mean squared deviation:

$$\mathsf{MSD} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Also known as *mean squared error* ("MSE") in regression models...

Note that MSD is "average squared difference from the mean" \rightarrow expressed in "squared" units of X...

A more useful quantity is "root mean squared deviation":

$$\mathsf{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$

An Important Fact

Consider N = 1:

Team Points
Tottenham Hotspur 7

This gives:

$$\bar{X} = \frac{14}{1} = 7$$
 and $RMSD = \sqrt{\frac{(7-7)^2}{1}} = 0$

For N=2:

Team Points
Tottenham Hotspur 7
Everton 1

we get:

$$\bar{X} = \frac{7+1}{2} = 4$$
 and $RMSD = \sqrt{\frac{(7-4)^2 + (1-4)^2}{2}} = 3$

You cannot learn about more characteristics of data than you have observations.

Variance:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Standard deviation:

$$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(X_i - \bar{X})^2}$$

"Geometric" Standard Deviation:

$$\sigma_G = \exp\left[\sqrt{\frac{\sum_{i=1}^N (\ln X_i - \ln \bar{X}_G)^2}{N}}\right]$$

PL Points Data

> summary(PL\$Points)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 3.00 7.00 6.75 10.00 13.00
```

> var(PL\$Points)

[1] 15.7

> sd(PL\$Points)

[1] 3.96

Standardizing Variables

Sometimes useful to put variables on a common scale... ("z-scores")...

Typically:

$$Z_i = \frac{X_i - \bar{X}}{\sigma}$$

A standardized variable Z has:

- A mean of zero, and
- A standard deviation (and therefore variance) of 1.0

Standardizing Example

- > library(psych)
- > PLSmall<-PL[,4:10]
- > describe(PLSmall,trim=0,skew=FALSE)

	vars	n	${\tt mean}$	sd	${\tt median}$	\min	${\tt max}$	range	se
Won	1	20	1.75	1.45	2.0	0	4	4	0.32
Drew	2	20	1.50	1.05	1.0	0	3	3	0.24
Lost	3	20	1.75	1.33	2.0	0	4	4	0.30
GoalsFor	4	20	6.80	2.78	6.5	2	13	11	0.62
GoalsAgainst	5	20	6.80	3.27	6.5	1	14	13	0.73
GoalDifference	6	20	0.00	5.30	0.5	-9	9	18	1.19
Points	7	20	6.75	3.96	7.0	1	13	12	0.89

- > PL.Z<-scale(PLSmall)
- > describe(PL.Z,trim=0,skew=FALSE)

	vars	n	mean	sd	median	min	max	range	se
Won	1	20	0	1	0.17	-1.21	1.56	2.77	0.22
Drew	2	20	0	1	-0.48	-1.43	1.43	2.85	0.22
Lost	3	20	0	1	0.19	-1.31	1.69	3.00	0.22
GoalsFor	4	20	0	1	-0.11	-1.72	2.23	3.95	0.22
GoalsAgainst	5	20	0	1	-0.09	-1.77	2.20	3.98	0.22
GoalDifference	6	20	0	1	0.09	-1.70	1.70	3.40	0.22
Points	7	20	0	1	0.06	-1.45	1.58	3.03	0.22

Absolute Deviations and MAD

Median Absolute Deviation ("MAD"):

$$\mathsf{MAD} = \mathsf{median}[|X_i - \check{X}|]$$

Mean Absolute Deviation:

Mean Absolute Deviation =
$$\frac{1}{N} \sum_{i=1}^{N} |X_i - \bar{X}|$$

Moments

Moments are functions of distributions that characterize their shape...

For a random variable X, the kth raw moment is:

$$m_k = \begin{cases} \sum f(X) \Pr(X) \text{ if } X \text{ is discrete} \\ \int f(X) \Pr(X) dX \text{ if } X \text{ is continuous.} \end{cases}$$

The kth central moment is:

$$M_k = \begin{cases} \mathsf{E}[(X - \mu)^k] \text{ for discrete } X\\ \int_{-\infty}^{+\infty} (X - \mu)^k f(X) \, dX \text{ for continuous } X \end{cases}$$

A distribution for X can be completely characterized by its non-zero moments...

Why Might We Care?

The first (raw) moment of a variable is the mean:

$$\mu = \mathsf{E}(X)$$

The second (central) moment of a variable is its variance:

$$\sigma^2 = \mathsf{E}[(X - \mu)^2]$$

[†]The first central moment is zero (why?)...

Skewness

Third central moment:

$$M_3 = \mathsf{E}[(X - \mu)^3]$$

More typically, we use the third *standardized moment* (usually called *skewness*):

$$\mu_{3} = \frac{M_{3}^{2}}{\sigma^{3}}$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{3}}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right]^{3/2}}$$

- Skewness = $0 \rightarrow \text{symmetrical}$
- Skewness $> 0 \rightarrow$ "positive" (tail to the right)
- Skewness $< 0 \rightarrow$ "negative" (tail to the left)

Skewness Illustrated

Symmetry

If a distribution is *symmetrical*, then:

- $\mu_3 = 0$
- $\check{X} = (Q_{25} + Q_{75})/2$,
- $MAD = \frac{IQR}{2}$

Note that:

- Both discrete and continuous variables can be symmetrical or asymmetrical;
- Every distribution with no mode is symmetrical, but
- Unimodal, bimodal, etc. distributions can be symmetrical or asymmetrical.

Kurtosis

Fourth moment:

$$M_4 = \mathsf{E}[(X - \mu)^4]$$

More typically, kurtosis ("excess kurtosis"):

$$\mu_4 = \frac{M_4}{\sigma^4} - 3$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^4}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right]^2} - 3$$

Note that:

$$\frac{M_4}{\sigma^4} \ge \left(\frac{M_3}{\sigma^3}\right)^2 + 1$$

Kurtosis Intuition

Kurtosis is "the average of the standardized X raised to the fourth power (minus three)."

- Values of standardized variables within one σ of \bar{X} have $|X| \leq 1$
- Taking X^4 when $|X| \le 1$ gives values very close to 0
- $\bullet \to \text{only those values on the "tail" of the distribution contribute significantly to kurtosis$

Kurtosis Explained

Kurtosis:

- "Fat-tailed" = leptokurtic: μ_4 is positive.
- "Medium-tailed" = mesokurtic: μ_4 is close to zero.
- "Thin-tailed" = platykurtic: μ_4 is negative.

Kurtosis Illustrated

Kurtosis Examples

PL Points Data

- > library(moments)
- > skewness(PL\$Points)
 [1] -0.0447
- > kurtosis(PL\$Points)-3
 [1] -1.29

Binary Variables

For a Bernoulli (binary) variable D:

- $mode(D) = \check{D} (why?)$
- The mean of *D* is:

$$\bar{D} = \frac{1}{N} \sum_{i} D_{i}$$

$$= \pi \left[\equiv \Pr(D=1) \right]$$

• The variance is:

$$\sigma_D^2 = \pi \times (1 - \pi)$$

• and so the standard deviation is:

$$\sigma_D = \sqrt{\pi \times (1 - \pi)}$$

Implies:

- $\sigma_D > \sigma_D^2$
- $\max(\sigma_D^2) \leftrightarrow \pi = 0.5$

Binary Variables (continued)

For a binary variable, skewness is:

$$\mu_3 = \frac{1-2\pi}{\sqrt{\pi(1-\pi)}}$$

and the (excess) kurtosis is:

$$\mu_4 = rac{1 - 6\pi(1 - \pi)}{\pi(1 - \pi)}$$

Getting Summary Statistics

Good: summary

```
> summary(PLSmall)
```

Won	Drew	Lost	GoalsFor	GoalsAgainst		
Min. :0.00	Min. :0.00	Min. :0.00	Min. : 2.00	Min. : 1.00		
1st Qu.:0.00	1st Qu.:1.00	1st Qu.:1.00	1st Qu.: 5.00	1st Qu.: 5.00		
Median :2.00	Median :1.00	Median :2.00	Median: 6.50	Median: 6.50		
Mean :1.75	Mean :1.50	Mean :1.75	Mean : 6.80	Mean : 6.80		
3rd Qu.:3.00	3rd Qu.:2.25	3rd Qu.:2.25	3rd Qu.: 8.25	3rd Qu.: 8.25		
Max. :4.00	Max. :3.00	Max. :4.00	Max. :13.00	Max. :14.00		
GoalDifference	Points					
Min. :-9.00	Min. : 1.00					
1st Qu.:-3.25	1st Qu.: 3.00					
Median: 0.50	Median: 7.00					
Mean : 0.00	Mean : 6.75					
3rd Qu.: 4.00	3rd Qu.:10.00					
Max . 9.00	May -13 00					

Better: describe (in psych)

> describe(PLSmall)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Won			1.75						4	_	0.12		
Drew	2	20	1.50	1.05	1.0	1.50	1.48	0	3	3	0.26	-1.31	0.24
Lost	3	20	1.75	1.33	2.0	1.69	1.48	0	4	4	0.31	-1.08	0.30
GoalsFor	4	20	6.80	2.78	6.5	6.69	2.22	2	13	11	0.40	-0.60	0.62
GoalsAgainst	5	20	6.80	3.27	6.5	6.50	2.22	1	14	13	0.66	0.05	0.73
GoalDifference	6	20	0.00	5.30	0.5	0.06	5.19	-9	9	18	-0.10	-1.11	1.19
Points	7	20	6.75	3.96	7.0	6.75	5.19	1	13	12	-0.04	-1.46	0.89

Reporting Summary Statistics

> stargazer(PLSmall,title="Summary Statistics")

Table: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max
Won	20	1.750	1.450	0	4
Drew	20	1.500	1.050	0	3
Lost	20	1.750	1.330	0	4
Goals For	20	6.800	2.780	2	13
Goals Against	20	6.800	3.270	1	14
Goal Difference	20	0.000	5.300	_9	9
Points	20	6.750	3.960	1	13

R Things

Packages / commands for summary statistics:

- summary basic summaries by variable
- describe (in psych) flexible summary statistics
- describe (in Hmisc) more information than you probably want
- stat.desc (in pastecs) like psych::describe, but sideways

Packages / commands for making pretty tables:

- stargazer
- tinytable
- gt

- kable / kableExtra
- flextable
- huxtable