HEURISTIC ANALYSIS

```
Problems Definition & Result Matrix:
- Air Cargo Action Schema:
Action(Load(c, p, a),
        PRECOND: At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)
        EFFECT: \neg At(c, a) \land In(c, p)
Action(Unload(c, p, a),
       PRECOND: In(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)
       EFFECT: At(c, a) \land \neg In(c, p)
Action(Fly(p, from, to),
        PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)
        EFFECT: \neg At(p, from) \land At(p, to))
- Problem 1 initial state and goal:
Init(At(C1, SFO) \land At(C2, JFK))
        \wedge At(P1, SFO) \wedge At(P2, JFK)
        \land Cargo(C1) \land Cargo(C2)
        \land Plane(P1) \land Plane(P2)
        \land Airport(JFK) \land Airport(SFO))
Goal(At(C1, JFK) \land At(C2, SFO))
Optimal Plan:
Load(C1, P1, SFO)
Load(C2, P2, JFK)
Fly(P2, JFK, SFO)
Unload(C2, P2, SFO)
Fly(P1, SFO, JFK)
Unload(C1, P1, JFK)
```

Search Method	Optimalit y	Plane Length	Time Elapsed	New nodes	# Node Expand	Goal Tests
breadth_first_search	Yes	6	0.052	180	43	56
depth_first_graph_s earch	No	6	1.36	5960	1458	1459
greedy_best_first_gr aph_search h_1	Yes	6	0.01	28	7	9

```
- Problem 2 initial state and goal:
```

$$Init(At(C1,\,SFO)\,\wedge\,At(C2,\,JFK)\,\wedge\,At(C3,\,ATL)$$

 \wedge At(P1, SFO) \wedge At(P2, JFK) \wedge At(P3, ATL)

 \land Cargo(C1) \land Cargo(C2) \land Cargo(C3)

 \land *Plane*(*P1*) \land *Plane*(*P2*) \land *Plane*(*P3*)

 \land Airport(JFK) \land Airport(SFO) \land Airport(ATL))

 $Goal(At(C1, JFK) \land At(C2, SFO) \land At(C3, SFO))$

Search Method	Optimality	Plane Length	Time Elapsed	# Node Expand

- Problem 3 initial state and goal:

٠,,

$$Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD)$$

 \wedge $At(P1, SFO) \wedge At(P2, JFK)$

 $\land \ Cargo(C1) \land \ Cargo(C2) \land \ Cargo(C3) \land \ Cargo(C4)$

 \land *Plane*(*P1*) \land *Plane*(*P2*)

 \land Airport(JFK) \land Airport(SFO) \land Airport(ATL) \land Airport(ORD))

 $Goal(At(C1, JFK) \land At(C3, JFK) \land At(C2, SFO) \land At(C4, SFO))$

,	١,	`
1	1	1

Search Method	Optimality	Plane Length	Time Elapsed	# Node Expand