W3026623 Midterm — Problem 2 April 8, 2018

Solution

a)

Algorithm 1 given S and d finds a d-net of S of minimum size

```
Require: An array of integers S sorted in ascending order and a positive integer d
 1: where S = \{s_1 < s_2 < ... < s_n\}
 2: Let R be an empty set
 3: r \leftarrow 0
 4: for s_i \leftarrow s_2 to n do
       if s_i > s_1 + d then
          add s_{i-1} to R {finds the first element of R}
 7:
          break
       end if
 8:
 9: end for
10: for s_i \leftarrow s_2 to n do
       if abs(R[r] - s_i) > d then
11:
          add s_i to R
12:
13:
          r \leftarrow r + 1
       end if
14:
15: end for
16: return R
```

Time Complexity: Find the first element of R: O(n) + build R: O(n) = O(n)Space Complexity: R = O(n)

Proof. We claim that this greedy method will find a d-net of S of minimum size. Let $W=\{w_1,w_2,...,w_m\}$ be any d-net of S of minimum size where $m \leq n$. Assume that the greedy algorithm produces $R=\{r_1,r_2,...,r_k\}$ where $k \leq n$. If k=m then our greedy algorithm found a d-net of S of minimum size. We will show that k=m. We know that the first item in the d-net of S must be within d distance away from s_1 . By finding the largest element in S that falls within this distance, we make sure that r_1 maximizes the distance to s_1 which minimizes |R|. It must be the case that w_1-s_1 is also close to zero. Now, assume inductively that or some $j\geq 1$, we have $r_t\geq w_t$, for each $t\leq j$. If j=m, we are done. So, suppose j< m and consider w_{j+1} and r_{j+1} . We know that $w_j\leq r_j$, and our greedy algorithm will pick the next integer that is more than d away from r_j , so it must be the case that $r_{j+1}\geq w_{j+1}$. Thus, our greedy algorithm maximizes the distance between elements of R and S.

b) The first element a_1 of our d— approximation for S A will be $s_1 + d$ and the last element a_k will be $s_n - d$ if s_n is not within d units away from $s_1 + d$. If s_n is within d units away from a_1 then we simply return $A = \{a_1\}$. Otherwise, we walk through S and see if s_i falls within distance of either a_1 or a_k . If it does, we move on to s_{i+1} . If it does not, we add $s_i + d$ to A and set it as the lower bound for comparison. Meaning that we will check if s_{i+1} falls within d units of $s_i + d$ or a_k and so on.

```
Time Complexity: Determine a_1 and potential a_k: O(n) + Walk through S:O(n) * add to A:O(n)=O(n) Space complexity: A:O(n)
```

Proof. We claim that this greedy method will find a d-approximation of S of minimum size. Let $B = \{b_1, b_2, ..., b_m\}$ be a minimum size d-approximation of S where $m \le n$. Assume our greedy algorithm produces $A = \{a_1, a_2, ..., a_k\}$ where $k \le n$. If k = m then our greedy algorithm found a d-approximation of S of minimum size. We will show that k = m

Clearly, $a_1 \ge b_1$ since our algorithm makes sure a_1 is furthest away from s_1 . It is crucial that $a_i \ge b_i$ for some $i \le k$ as it shows that we are maximizing the distance between a_i and the corresponding element of S, the greater distance will require less elements in A. Assume, inductively, that for some $j \ge 1$, we have $a_j \ge b_j$. If j = m, we are done as our greedy solution is of same size as an optimal solution. Now, suppose j < m and consider a_{j+1} and b_{j+1} . We know $a_j \ge b_j$ and our greedy algorithm will pick an a_{j+1} so that it is as far away from the next s_i that does not satisfy $|s_i - a_j| \le d$. Thus, $a_{j+1} \ge b_{j+1}$ so our greedy solution is optimal.

c) Let r = |R| and a = |A|. Claim: $a \le r \le 2a$.

Proof. First, we will prove that $a \le r$. a could be smaller than r, because $A \not\subset S$ meaning that there is more freedom when picking elements of A. Restricting R to being a subset of S limits the possible elements of R and some choices are not maximizing distance. Also, a could be equal r as you can just find a d-approximation of S of minimum size by running the algorithm to find a d-net of S of minimum size.

Now, we will show that $r \leq 2a$. If $R \cap A = \{\}$, then no element $r \in R$ is able to maximize distance the same way all elements $a \in A$ do. This means that for all a, R must contain an element $r_i < a$ and an element $r_j > a$ such that $|r_i - s_l| \leq d$, $|r_i - s_{l+1}| > d$, and $|r_j - s_{l+1}| \leq d$ for some integer l. Also if $R \cap A \neq \{\}$, then it follows that an element of S is optimal for maximizing the distance for some elements in S.

Therefore, since $a \le r$ and $r \le 2a$, then $a \le r \le 2a$.