

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 22

Transformações Lineares:

Isomorfismo, Autovalores e Autovetores

Professora: Isamara C. Alves

Data: 27/05/2021

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$,

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) =$

Matriz Associada - Operações

EXERCÍCIOS:

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt$

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2$

Matriz Associada - Operações

EXERCÍCIOS:

Matriz Associada - Operações

EXERCÍCIOS:

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \ \textbf{e}$$

Matriz Associada - Operações

EXERCÍCIOS:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Matriz Associada - Operações

EXERCÍCIOS:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

1. Encontre, as transformações lineares:

Matriz Associada - Operações

EXERCÍCIOS:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

1. Encontre, as transformações lineares: $(5\mathcal{F})$,

Matriz Associada - Operações

EXERCÍCIOS:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$,

Matriz Associada - Operações

EXERCÍCIOS:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$,

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

1. Encontre, as transformações lineares:

$$(5\mathcal{F})$$
, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.

Matriz Associada - Operações

Exercícios:

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares:

Matriz Associada - Operações

Exercícios:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: (5 \mathcal{F}),

Matriz Associada - Operações

EXERCÍCIOS:

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{F})$,

Matriz Associada - Operações

Exercícios:

Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$, tais que $\mathcal{F}(x, y, z, w) = x - yt + wt^2 - zt^3$;

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: $(5\mathcal{F}), (\mathcal{H}o\mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H}o\mathcal{F})^{-1}$ e $(\mathcal{H}o\mathcal{I}_{\mathcal{D}_2(\mathbb{R})})$.

 $(50), (7000), 70, (7000) = (7000)_{3(\mathbb{R})}$

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: $(5\mathcal{F}), (\mathcal{H}o\mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H}o\mathcal{F})^{-1}$ e $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$.
- 3. Classifique as transformações lineares abaixo em INJETORA, SOBREJETORA, BIJETORA:

Exercícios:

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: (5F), (HoF), H⁻¹, (HoF)⁻¹ e (HoI_{P3(ℝ)}).
- 3. Classifique as transformações lineares abaixo em INJETORA, SOBREJETORA, BIJETORA: (utilize o núcleo e a imagem destas transformações)

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: $(5\mathcal{F}), (\mathcal{H}o\mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H}o\mathcal{F})^{-1}$ e $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})})$.
- 3. Classifique as transformações lineares abaixo em INJETORA, SOBREJETORA, BIJETORA: (utilize o núcleo e a imagem destas transformações) (5F),

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: $(5\mathcal{F}), (\mathcal{H}o\mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H}o\mathcal{F})^{-1}$ e $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})})$.
- 3. Classifique as transformações lineares abaixo em INJETORA, SOBREJETORA, BIJETORA: (utilize o núcleo e a imagem destas transformações) $(5\mathcal{F})$, $(\mathcal{H} \circ \mathcal{F})$,

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: $(5\mathcal{F}), (\mathcal{H}o\mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H}o\mathcal{F})^{-1}$ e $(\mathcal{H}o\mathcal{I}_{\mathcal{D}_2(\mathbb{R})})$.
- 3. Classifique as transformações lineares abaixo em INJETORA, SOBREJETORA, BIJETORA: (utilize o núcleo e a imagem destas transformações) $(5\mathcal{F}), (\mathcal{H} \circ \mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H} \circ \mathcal{F})^{-1} \in (\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})}).$

$$\mathcal{G}(e_1) = e_1 + e_3; \mathcal{G}(e_2) = -e_4; \mathcal{G}(e_3) = 2e_1; \mathcal{G}(e_4) = e_3 + e_4; \mathbf{e} \ [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- 1. Encontre, as transformações lineares: $(5\mathcal{F})$, $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})$, $(\mathcal{H}o\mathcal{F})$, \mathcal{H}^{-1} e $(\mathcal{H}o\mathcal{F})^{-1}$.
- 2. Determine uma base e a dimensão do NÚCLEO e da IMAGEM das seguintes transformações lineares: $(5\mathcal{F}), (\mathcal{H}o\mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H}o\mathcal{F})^{-1}$ e $(\mathcal{H}o\mathcal{I}_{\mathcal{D}_2(\mathbb{R})})$.
- 3. Classifique as transformações lineares abaixo em INJETORA, SOBREJETORA, BIJETORA: (utilize o núcleo e a imagem destas transformações) $(5\mathcal{F}), (\mathcal{H}o\mathcal{F}), \mathcal{H}^{-1}, (\mathcal{H}o\mathcal{F})^{-1} \in (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})}).$

Matriz Associada - Operações

```
EXERCÍCIOS (Solução): Sejam \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})),
```

Matriz Associada - Operações

Exercícios (Solução):

 $\text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})) \text{, } \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \text{ e } \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})).$

Matriz Associada - Operações

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) =$

Matriz Associada - Operações

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) =$

Matriz Associada - Operações

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$

Matriz Associada - Operações

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) =$

Matriz Associada - Operações

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$

Matriz Associada - Operações

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$

$$[\mathcal{H}(p(t))] = [\mathcal{H}][p(t)] =$$

Matriz Associada - Operações

$$\begin{split} & \text{Exercícios}(\text{Solução}): \\ & \text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ \text{e} \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})). \\ & (5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3 \\ & (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(\rho(t)) = \mathcal{H}(\rho(t)) \\ & [\mathcal{H}(\rho(t))] = [\mathcal{H}][\rho(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \end{split}$$

Matriz Associada - Operações

$\begin{aligned} & \text{Exercícios}(\text{Solução}) : \\ & \text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ \text{e} \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})). \\ & (5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3 \\ & (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t)) \\ & [\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_1 \end{bmatrix} = \end{aligned}$

Matriz Associada - Operações

$$\begin{aligned} & \text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ \text{e} \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})). \\ & (5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3 \\ & (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t)) \\ & [\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_1 \\ a_2 \end{bmatrix} \end{aligned}$$

Matriz Associada - Operações

$$\begin{aligned} & \text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ \text{e} \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})). \\ & (5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3 \\ & (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t)) \\ & [\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \end{bmatrix}$$

Matriz Associada - Operações

Exercícios (Solução):

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$$
, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$

$$[\mathcal{H}(p(t))] = [\mathcal{H}][p(t)] = egin{bmatrix} 1 & 0 & 0 & 1 \ 1 & -1 & -1 & 0 \ 1 & -1 & -1 & 1 \ 0 & 1 & 0 & 0 \end{bmatrix} egin{bmatrix} a_0 \ a_1 \ a_2 \ a_3 \end{bmatrix} = egin{bmatrix} a_0 + a_3 \ a_0 - a_1 - a_2 \ a_0 - a_1 - a_2 + a_3 \ a_1 \end{bmatrix}$$

Matriz Associada - Operações

EXERCÍCIOS (Solução): Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ e \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})).$ $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$ $[\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \\ a_1 \end{bmatrix}$ $\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 \\ a_0 + a_3 \end{bmatrix}$

Matriz Associada - Operações

EXERCÍCIOS (Solução): Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ e \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})).$ $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$ $[\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \\ a_1 \end{bmatrix}$ $\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 \\ a_0 + a_3 \\ a_0 - a_1 - a_2 \end{bmatrix}$

EXERCÍCIOS (Solução):

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ e \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})).$$

$$(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$$

$$(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(\rho(t)) = \mathcal{H}(\rho(t))$$

$$[\mathcal{H}(\rho(t))] = [\mathcal{H}][\rho(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$$

$$\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$$

Exercícios (Solução):

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ e \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})).$$

$$(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$$

$$(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(\rho(t)) = \mathcal{H}(\rho(t))$$

$$[\mathcal{H}(\rho(t))] = [\mathcal{H}][\rho(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$$

$$\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

Exercícios (Solução): Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5vt + 5wt^2 - 5zt^3$ $(\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$ $[\mathcal{H}(p(t))] = [\mathcal{H}][p(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$ $\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$ $(\mathcal{H}o\mathcal{F})(x, v, z, w) =$

Exercícios (Solução): Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$ $[\mathcal{H}(p(t))] = [\mathcal{H}][p(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$ $\mathcal{H}(a_0 + a_1 t + a_2 t^2 + a_3 t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$ $(\mathcal{H} \circ \mathcal{F})(x, y, z, w) = \mathcal{H}(\mathcal{F}(x, y, z, w)) =$

EXERCÍCIOS(Solução): Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R}))$, $\mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$ e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$. $(5\mathcal{F})(x, y, z, w) = 5\mathcal{F}(x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3$ $(\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t))$

$$[\mathcal{H}(p(t))] = [\mathcal{H}][p(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$$

$$\mathcal{H}(a_0 + a_1 t + a_2 t^2 + a_3 t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$(\mathcal{H} \circ \mathcal{F})(x, y, z, w) = \mathcal{H}(\mathcal{F}(x, y, z, w)) = \mathcal{H}(x - yt + wt^2 - zt^3) =$$

EXERCÍCIOS (Solução): Sejam $\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ e \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})).$ (5 \mathcal{F})(x, y, z, w) = 5 \mathcal{F} (x, y, z, w) = 5($x - yt + wt^2 - zt^3$) = 5 $x - 5yt + 5wt^2 - 5zt^3$ ($\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})}$)(p(t)) = $\mathcal{H}(p(t))$ $[\mathcal{H}(p(t))] = [\mathcal{H}][p(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \\ a_1 \end{bmatrix}$ $\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \\ a_1 \end{bmatrix}$

 $(\mathcal{H}\circ\mathcal{F})(x,y,z,w) = \mathcal{H}(\mathcal{F}(x,y,z,w)) = \mathcal{H}(x-yt+wt^2-zt^3) = \begin{bmatrix} x-z \\ -z \end{bmatrix}$

Exercícios (Solução):

$$\begin{split} & \text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ \text{e} \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})). \\ & (5\mathcal{F})(x,y,z,w) = 5\mathcal{F}(x,y,z,w) = 5(x-yt+wt^2-zt^3) = 5x-5yt+5wt^2-5zt^3 \\ & (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t)) \\ & [\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix} \\ & \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix} \\ & (\mathcal{H}o\mathcal{F})(x,y,z,w) = \mathcal{H}(\mathcal{F}(x,y,z,w)) = \mathcal{H}(x-yt+wt^2-zt^3) = \begin{bmatrix} x-z & x+y-w \\ x-y-w & x+y-w \\ x-y-w & x+y-w \end{bmatrix} \end{split}$$

Exercícios (Solução):

$$\begin{split} & \text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ e \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})). \\ & (5\mathcal{F})(x,y,z,w) = 5\mathcal{F}(x,y,z,w) = 5(x-yt+wt^2-zt^3) = 5x-5yt+5wt^2-5zt^3 \\ & (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t)) \\ & [\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0+a_3 \\ a_0-a_1-a_2 \\ a_0-a_1-a_2+a_3 \\ a_1 \end{bmatrix} \\ & \mathcal{H}(a_0+a_1t+a_2t^2+a_3t^3) = \begin{bmatrix} a_0+a_3 & a_0-a_1-a_2 \\ a_0-a_1-a_2+a_3 & a_1 \end{bmatrix} \\ & (\mathcal{H}o\mathcal{F})(x,y,z,w) = \mathcal{H}(\mathcal{F}(x,y,z,w)) = \mathcal{H}(x-yt+wt^2-zt^3) = \begin{bmatrix} x-z & x+y-w \\ x+y-w-z \end{bmatrix} \end{split}$$

EXERCÍCIOS (Solução):

$$\begin{split} & \text{Sejam } \mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \ \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})) \ e \ \mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})). \\ & (5\mathcal{F})(x,y,z,w) = 5\mathcal{F}(x,y,z,w) = 5(x-yt+wt^2-zt^3) = 5x-5yt+5wt^2-5zt^3 \\ & (\mathcal{H}o\mathcal{I}_{\mathcal{P}_3(\mathbb{R})})(p(t)) = \mathcal{H}(p(t)) \\ & [\mathcal{H}(p(t))] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0+a_3 \\ a_0-a_1-a_2 \\ a_0-a_1-a_2+a_3 \\ a_1 \end{bmatrix} \\ & \mathcal{H}(a_0+a_1t+a_2t^2+a_3t^3) = \begin{bmatrix} a_0+a_3 & a_0-a_1-a_2 \\ a_0-a_1-a_2+a_3 & a_1 \end{bmatrix} \\ & (\mathcal{H}o\mathcal{F})(x,y,z,w) = \mathcal{H}(\mathcal{F}(x,y,z,w)) = \mathcal{H}(x-yt+wt^2-zt^3) = \begin{bmatrix} x-z & x+y-w \\ x+y-w-z & -y \end{bmatrix} \end{split}$$

EXERCÍCIOS (Solução):

Sejam
$$\mathcal{F} \in \mathcal{L}(\mathbb{R}^4, \mathcal{P}_3(\mathbb{R})), \mathcal{G} \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R}))$$
 e $\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})).$ (5 \mathcal{F})(x, y, z, w) = 5 \mathcal{F} (x, y, z, w) = 5(x - yt + wt^2 - zt^3) = 5x - 5yt + 5wt^2 - 5zt^3 ($\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})}$)(p(t)) = \mathcal{H} (p(t))
$$[\mathcal{H}(p(t))] = [\mathcal{H}][p(t)] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_0 + a_3 \\ a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$$

$$\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$(\mathcal{H} \circ \mathcal{F})(x, y, z, w) = \mathcal{H}(\mathcal{F}(x, y, z, w)) = \mathcal{H}(x - yt + wt^2 - zt^3) = \begin{bmatrix} x - z & x + y - w \\ x + y - w - z & -y \end{bmatrix}$$

Matriz Associada - Operações

Exercícios(Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$$
 tal que $\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_1t + a_2t^2 + a_3t^3 \end{bmatrix}$

Matriz Associada - Operações

Exercícios(Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) ext{ tal que } \mathcal{H}(a_0+a_1t+a_2t^2+a_3t^3) = egin{bmatrix} a_0+a_3 & a_0-a_1-a_1 & a_0+a_2 & a_0+a_2$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) ext{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = egin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \ a_0 - a_1 - a_2 + a_3 \end{bmatrix}$$

Matriz Associada - Operações

Exercícios(Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) \text{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

Matriz Associada - Operações

Exercícios(Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) ext{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = egin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$\mathcal{H}^{-1}\in\mathcal{L}(\mathcal{M}_2(\mathbb{R}),\mathcal{P}_3(\mathbb{R}))$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R}))$$
 tal que $\mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = egin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$ $\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathcal{P}_3(\mathbb{R}))$ tal que $\mathcal{H}^{-1}\left(egin{bmatrix} x & y \ z & w \end{bmatrix}\right) =$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) \text{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$
$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathcal{P}_3(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1} \begin{pmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} \end{pmatrix} = a_0 + a_1t + a_2t^2 + a_3t^3 = ?$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) \text{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathcal{P}_3(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_0 + a_1t + a_2t^2 + a_3t^3 = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) =$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) \text{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathcal{P}_3(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_0 + a_1t + a_2t^2 + a_3t^3 = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3)$$

Matriz Associada - Operações

Exercícios(Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) \text{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathcal{P}_3(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_0 + a_1t + a_2t^2 + a_3t^3 = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3)$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) =$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) \text{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathcal{P}_3(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1} \left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right) = a_0 + a_1t + a_2t^2 + a_3t^3 = ?$$

$$\mathcal{H}(\mathcal{H}^{-1} \left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right)) = \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3)$$

$$\mathcal{I}_{\mathcal{V}} \left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right) = \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3)$$

Matriz Associada - Operações

Exercícios(Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{M}_2(\mathbb{R})) \text{ tal que } \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_3 & a_0 - a_1 - a_2 \\ a_0 - a_1 - a_2 + a_3 & a_1 \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathcal{P}_3(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1} \left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right) = a_0 + a_1t + a_2t^2 + a_3t^3 = ?$$

$$\mathcal{H}(\mathcal{H}^{-1} \left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right)) = \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3)$$

$$\mathcal{I}_{\mathcal{V}} \left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right) = \mathcal{H}(a_0 + a_1t + a_2t^2 + a_3t^3)$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} =$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow a_{0} + a_{3} = x$$

$$a_{0} + a_{3} = x$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow a_{0} + a_{3} = x \qquad a_{0} - a_{1} - a_{2} = y$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} = z \end{cases}$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{cases}$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} = w \end{cases}$$
 Solução do sistema:

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{cases}$$
 Solução do sistema: $a_{0} = x + y - z$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} = w \end{cases}$$
Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{cases}$$
Solução do sistema: $a_{0} = x + y - z = a_{2} = x - z - w = a_{3} = z - y$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{cases}$$
Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w \quad a_{3} = z - y \quad a_{1} = w$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{array}{c} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{bmatrix}$$
 Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w \quad a_{3} = z - y \quad a_{1} = w$

$$\mathcal{H}^{-1}\left(\begin{bmatrix}x & y\\ z & w\end{bmatrix}\right) =$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{cases}$$
 Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w \quad a_{3} = z - y \quad a_{1} = w$

$$\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+y-z)$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{cases}$$
 Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w \quad a_{3} = z - y \quad a_{1} = w$

$$\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+y-z) + (w)t$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{cases} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} = w \end{cases}$$
 Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w \quad a_{3} = z - y \quad a_{1} = w$

$$\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+y-z) + (w)t + (x-z-w)t^2$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{array}{c} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{bmatrix}$$
 Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w \quad a_{3} = z - y \quad a_{1} = w$

$$\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+y-z) + (w)t + (x-z-w)t^2 + (z-y)t^3$$

Matriz Associada - Operações

Exercícios (Solução):

$$\mathcal{H} \in \mathcal{L}(\mathcal{P}_{3}(\mathbb{R}), \mathcal{M}_{2}(\mathbb{R})) \text{ tal que } \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3}) = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix}$$

$$\mathcal{H}^{-1} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathcal{P}_{3}(\mathbb{R})) \text{ tal que } \mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} = ?$$

$$\mathcal{H}(\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right)) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\mathcal{I}_{\mathcal{V}}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \mathcal{H}(a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3})$$

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} a_{0} + a_{3} & a_{0} - a_{1} - a_{2} \\ a_{0} - a_{1} - a_{2} + a_{3} & a_{1} \end{bmatrix} \Rightarrow \begin{array}{c} a_{0} + a_{3} = x & a_{0} - a_{1} - a_{2} = y \\ a_{0} - a_{1} - a_{2} + a_{3} = z & a_{1} = w \end{bmatrix}$$
 Solução do sistema: $a_{0} = x + y - z \quad a_{2} = x - z - w \quad a_{3} = z - y \quad a_{1} = w$

$$\mathcal{H}^{-1}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+y-z) + (w)t + (x-z-w)t^2 + (z-y)t^3$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] =$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix}$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_4;$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] =$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_4; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] =$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_4; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H} \circ \mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$

Matriz Associada - Operações

Exercícios(Solução):

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$

$$[\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})}] =$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_4;$$
$$[\mathcal{H} \circ \mathcal{I}_{\mathcal{P}_3(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \qquad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$

$$[\mathcal{H}o\mathcal{T}_{-}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

Matriz Associada - Operações

EXERCÍCIOS (Solução):

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$

$$[\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações(representadas abaixo por \mathcal{F}): $dim(\mathcal{I}m(\mathcal{F})) =$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} =$$

EXERCÍCIOS (Solução):

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4$$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) =$$

Matriz Associada - Operações

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações(representadas abaixo por
$$\mathcal{F}$$
):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} =$$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações(representadas abaixo por
$$\mathcal{F}$$
):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\mathrm{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\mathrm{NULIDADE}} = 4 - 4$$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações(representadas abaixo por
$$\mathcal{F}$$
):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

EXERCÍCIOS (Solução):

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por
$$\mathcal{F}$$
):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são injetoras e

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por
$$\mathcal{F}$$
):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são injetoras e sobrejetoras ao mesmo tempo

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por \mathcal{F}):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são **injetoras** e **sobrejetoras** ao mesmo tempo ⇒ as transformações são **bijetoras**.

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por \mathcal{F}):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são **injetoras** e **sobrejetoras** ao mesmo tempo \Rightarrow as transformações são **bijetoras**. Assim, $\beta_{\mathcal{N}(\mathcal{F})} = \emptyset$

EXERCÍCIOS (Solução):

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por \mathcal{F}):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são **injetoras** e **sobrejetoras** ao mesmo tempo \Rightarrow as transformações são **bijetoras**. Assim, $\beta_{\mathcal{N}(\mathcal{F})} = \emptyset$ e

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por \mathcal{F}):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são **injetoras** e **sobrejetoras** ao mesmo tempo \Rightarrow as transformações são **bijetoras**. Assim, $\beta_{\mathcal{N}(\mathcal{F})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F})} =$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}o\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}o\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por \mathcal{F}):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são **injetoras** e **sobrejetoras** ao mesmo tempo \Rightarrow as transformações são **bijetoras**. Assim, $\beta_{\mathcal{N}(\mathcal{F})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F})} = \beta_{\mathcal{V}}$

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por \mathcal{F}):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são **injetoras** e **sobrejetoras** ao mesmo tempo \Rightarrow as transformações são **bijetoras**. Assim, $\beta_{\mathcal{N}(\mathcal{F})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F})} = \beta_{\mathcal{V}} = \{e_1, e_2, e_3, e_4\}$.

EXERCÍCIOS (Solução):

$$[5\mathcal{F}] = 5[\mathcal{F}] = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix} \sim \mathcal{I}_{4}; \quad [\mathcal{H}\circ\mathcal{F}] = [\mathcal{H}][\mathcal{F}] = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4};$$
$$[\mathcal{H}\circ\mathcal{I}_{\mathcal{P}_{3}(\mathbb{R})}] = [\mathcal{H}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \mathcal{I}_{4}.$$

Note que estas transformações (representadas abaixo por \mathcal{F}):

$$dim(\mathcal{I}m(\mathcal{F})) = \underbrace{\mathcal{P}([\mathcal{F}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F})) = \underbrace{\mathcal{N}([\mathcal{F}])}_{\text{NULIDADE}} = 4 - 4 = 0.$$

Portanto, as transformações são **injetoras** e **sobrejetoras** ao mesmo tempo \Rightarrow as transformações são **bijetoras**. Assim, $\beta_{\mathcal{N}(\mathcal{F})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F})} = \beta_{\mathcal{V}} = \{e_1, e_2, e_3, e_4\}$.

Matriz Associada - Operações

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}$$
; e

Matriz Associada - Operações

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}; \ \mathsf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1}$$

Matriz Associada - Operações

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}$$
; e $([\mathcal{H}o\mathcal{F}])^{-1} =$

Matriz Associada - Operações

Exercícios (Solução):

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H}o\mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

Matriz Associada - Operações

Exercícios(Solução):

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; \mathbf{e} \ ([\mathcal{H} \circ \mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} ,

Matriz Associada - Operações

Exercícios(Solução):

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}; \ \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 \ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**;

Matriz Associada - Operações

Exercícios(Solução):

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}; \ \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 \ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora**

Matriz Associada - Operações

Exercícios(Solução):

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}; \ \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 \ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será!

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}; \ \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 \ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) =$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, <u>se</u> a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} =$

$$[\mathcal{H}^{-1}] = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & -1 & -1 \ 0 & -1 & 1 & 0 \end{bmatrix}; \ \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = egin{bmatrix} 1 & 1 & -1 & 0 \ 0 & 0 & 0 & -1 \ 0 & 1 & -1 & 0 \ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, <u>se</u> a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, <u>se</u> a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \mathcal{P}([\mathcal{F}^{-1}]) = 4$ e

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; \mathbf{e} \ ([\mathcal{H}o\mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4$ e $dim(\mathcal{N}(\mathcal{F}^{-1})) =$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H}o\mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \mathcal{P}([\mathcal{F}^{-1}]) = 4$ e $dim(\mathcal{N}(\mathcal{F}^{-1})) = \mathcal{N}([\mathcal{F}^{-1}]) = 1$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H}o\mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4$ e $dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H}o\mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4$ e $dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4 = 0$.

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H} \circ \mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4$ e $dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4 = 0$.

Assim,
$$\beta_{\mathcal{N}(\mathcal{F}^{-1})} = \emptyset$$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; \ \mathbf{e} \ ([\mathcal{H} \circ \mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4$ e $dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4 = 0$.

Assim,
$$eta_{\mathcal{N}(\mathcal{F}^{-1})} = \emptyset$$
 e

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H} \circ \mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4$ e $dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4 = 0$. Assim, $\beta_{\mathcal{N}(\mathcal{F}^{-1})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F}^{-1})} = \emptyset$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H} \circ \mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4 = 0.$ Assim, $\beta_{\mathcal{N}(\mathcal{F}^{-1})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F}^{-1})} = \beta_{\mathcal{U}}$

Assim,
$$\beta_{\mathcal{N}(\mathcal{F}^{-1})} = \emptyset$$
 e $\beta_{\mathcal{I}m(\mathcal{F}^{-1})} = \beta_{\mathcal{U}}$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H} \circ \mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4 = 0.$ Assim, $\beta_{\mathcal{N}(\mathcal{F}^{-1})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F}^{-1})} = \beta_{\mathcal{U}} = \{e_1, e_2, e_3, e_4\}.$

$$[\mathcal{H}^{-1}] = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}; e ([\mathcal{H} \circ \mathcal{F}])^{-1} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & -1 & -1 \end{bmatrix};$$

OBSERVAÇÃO: Para estas transformações INVERSAS, \mathcal{F}^{-1} , podemos afirmar que são **bijetoras**; pois, se a transformação linear \mathcal{F} é **bijetora** a sua inversa também o será! E ainda, $dim(\mathcal{I}m(\mathcal{F}^{-1})) = \underbrace{\mathcal{P}([\mathcal{F}^{-1}])}_{\text{POSTO}} = 4 \text{ e } dim(\mathcal{N}(\mathcal{F}^{-1})) = \underbrace{\mathcal{N}([\mathcal{F}^{-1}])}_{\text{NULIDADE}} = 4 - 4 = 0.$ Assim, $\beta_{\mathcal{N}(\mathcal{F}^{-1})} = \emptyset$ e $\beta_{\mathcal{I}m(\mathcal{F}^{-1})} = \beta_{\mathcal{U}} = \{e_1, e_2, e_3, e_4\}.$

Inversa

TEOREMA:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$

Inversa

TEOREMA:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V,\mathcal U)$.

Inversa

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então,

Inversa

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível

Inversa

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se,

Inversa

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se, \mathcal{F} é BIJETORA.

Inversa

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se, \mathcal{F} é BIJETORA.

Isto é:

Inversa

TEOREMA:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V,\mathcal U)$. Então, $\mathcal F$ é $\operatorname{Invertível}$ se, e somente se, $\mathcal F$ é $\operatorname{BIJETORA}$.

Isto é: Se \mathcal{F} é Invertível

Inversa

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]_{\beta\nu}^{\beta\nu}$ é invertível

Inversa

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se $\mathcal F$ é <code>Invertível</code> então $[\mathcal F]_{\beta u}^{\beta \nu}$ é invertível portanto, $[\mathcal F]_{\beta u}^{\beta \nu}$

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se $\mathcal F$ é Invertível então $[\mathcal F]_{\beta_\mathcal U}^{\beta_\mathcal V}$ é invertível portanto, $[\mathcal F]_{\beta_\mathcal U}^{\beta_\mathcal V}\sim \mathcal I_n$

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V,\mathcal U)$. Então, $\mathcal F$ é $\operatorname{Invertível}$ se, e somente se, $\mathcal F$ é $\operatorname{BIJETORA}$.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}$ é invertível portanto, $[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}) = n$ e

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V,\mathcal U)$. Então, $\mathcal F$ é $\operatorname{Invertível}$ se, e somente se, $\mathcal F$ é $\operatorname{BIJETORA}$.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]_{\beta u}^{\beta v}$ é invertível portanto, $[\mathcal{F}]_{\beta u}^{\beta v} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]_{\beta u}^{\beta v}) = n$ e $\mathcal{N}([\mathcal{F}]_{\beta u}^{\beta v}) = 0$

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é $\operatorname{Invertível}$ se, e somente se, \mathcal{F} é $\operatorname{BIJETORA}$.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}$ é invertível portanto, $[\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}) = n$ e $\mathcal{N}([\mathcal{F}]_{\beta_{\mathcal{U}}}^{\beta_{\mathcal{V}}}) = 0 \Rightarrow dim(\mathcal{I}m(\mathcal{F})) = n$ e

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é $\operatorname{Invertível}$ se, e somente se, \mathcal{F} é $\operatorname{BIJETORA}$.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0$

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V,\mathcal U)$. Então, $\mathcal F$ é $\operatorname{Invertível}$ se, e somente se, $\mathcal F$ é $\operatorname{BIJETORA}$.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$ e $\mathcal{N}(\mathcal{F}) = \{0\}$.

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é Invertível se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$ e $\mathcal{N}(\mathcal{F}) = \{0\}$. Logo;

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é INVERTÍVEL se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$ e $\mathcal{N}(\mathcal{F}) = \{0\}$. Logo; \mathcal{F} é SOBREJETORA

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é INVERTÍVEL se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$ e $\mathcal{N}(\mathcal{F}) = \{0\}$. Logo; \mathcal{F} é SOBREJETORA e INJETORA

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é INVERTÍVEL se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$ e $\mathcal{N}(\mathcal{F}) = \{0\}$. Logo; \mathcal{F} é SOBREJETORA e INJETORA \Leftrightarrow

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é INVERTÍVEL se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$ e $\mathcal{N}(\mathcal{F}) = \{0\}$. Logo; \mathcal{F} é SOBREJETORA e INJETORA $\Leftrightarrow \mathcal{F}$ é BIJETORA.

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, \mathcal{F} é INVERTÍVEL se, e somente se, \mathcal{F} é BIJETORA.

Isto é; Se \mathcal{F} é Invertível então $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}$ é invertível portanto, $[\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}} \sim \mathcal{I}_n \Rightarrow \mathcal{P}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = n$ e $\mathcal{N}([\mathcal{F}]^{\beta_{\mathcal{V}}}_{\beta_{\mathcal{U}}}) = 0 \Rightarrow \dim(\mathcal{I}m(\mathcal{F})) = n$ e $\dim(\mathcal{N}(\mathcal{F})) = 0 \Rightarrow \mathcal{I}m(\mathcal{F}) = \mathcal{U}$ e $\mathcal{N}(\mathcal{F}) = \{0\}$. Logo; \mathcal{F} é SOBREJETORA e INJETORA $\Leftrightarrow \mathcal{F}$ é BIJETORA.

Transformações Lineares Matriz Associada

$$\mathcal{F}\in\mathcal{L}(\mathcal{M}_2(\mathbb{R}),\mathbb{R}^3);\quad \mathcal{F}$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w, z, y).$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w, z, y).$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$
$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$
$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Matriz Associada

EXEMPLO.1:
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\dim(\mathcal{I}m(\mathcal{F})) =$$

Matriz Associada

EXEMPLO.1:

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

 $[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
 $dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}])$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3$$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow$$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora}.$$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{F}))$$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{F})) = \mathcal{N}([\mathcal{F}])$$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora.}$$

$$dim(\mathcal{N}(\mathcal{F})) = \mathcal{N}([\mathcal{F}]) = 4 - 3 = 1$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \in \mathbf{sobrejetora}.$$

$$dim(\mathcal{N}(\mathcal{F})) = \mathcal{N}([\mathcal{F}]) = 4 - 3 = 1 \neq 0.$$

Matriz Associada

EXEMPLO.1: $\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$ $[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \in \mathbf{sobrejetora}.$ $dim(\mathcal{N}(\mathcal{F})) = \mathcal{N}([\mathcal{F}]) = 4 - 3 = 1 \neq 0. \Rightarrow$

Matriz Associada

EXEMPLO.1: $\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$ $[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $\dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora.}$ $\dim(\mathcal{N}(\mathcal{F})) = \mathcal{N}([\mathcal{F}]) = 4 - 3 = 1 \neq 0. \Rightarrow \mathcal{F} \text{ n\~ao \'e injetora.}$

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_{2}(\mathbb{R}), \mathbb{R}^{3}); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{F})) = \mathcal{N}([\mathcal{F}]) = 4 - 3 = 1 \neq 0. \Rightarrow \mathcal{F} \text{ n\~ao \'e injetora.}$$
 Portanto, \mathcal{F} n\~ao \'e Bijetora

Matriz Associada

EXEMPLO.1:
$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y).$$

$$[\mathcal{F}] = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\dim(\mathcal{I}m(\mathcal{F})) = \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{F})) = \mathcal{N}([\mathcal{F}]) = 4 - 3 = 1 \neq 0. \Rightarrow \mathcal{F} \text{ n\~ao \'e injetora.}$$
 Portanto, \mathcal{F} n\~ao \'e Bijetora $\Rightarrow \mathcal{F}$ não será invertível!

Matriz Associada

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y). \\ [\mathcal{F}] &= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \\ \dim(\mathcal{I}m(\mathcal{F})) &= \mathcal{P}([\mathcal{F}]) = 3 \Rightarrow \mathcal{F} \text{ \'e sobrejetora.} \\ \dim(\mathcal{N}(\mathcal{F})) &= \mathcal{N}([\mathcal{F}]) = 4 - 3 = 1 \neq 0. \Rightarrow \mathcal{F} \text{ \~n\~ao} \text{ \'e injetora.} \\ \text{Portanto, } \mathcal{F} \text{ \~n\~ao} \text{ \'e Bijetora} \Rightarrow \mathcal{F} \text{ \~n\~ao} \text{ ser\'a invert\'evel!} \end{split}$$

Matriz Associada

$$(\mathcal{G}+(\mathcal{H} \circ \mathcal{F})) \in \mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G}+(\mathcal{H} \circ \mathcal{F}))(x,y,z,w)$$

Matriz Associada

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) \end{bmatrix}$$

Matriz Associada

$$(\mathcal{G}+(\mathcal{H}o\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G}+(\mathcal{H}o\mathcal{F}))(x,y,z,w)=iggl[(2x+z+w)\quad (x+y-w)$$

Matriz Associada

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) \end{bmatrix}$$

$$(\mathcal{G}+(\mathcal{H}o\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R}));\quad (\mathcal{G}+(\mathcal{H}o\mathcal{F}))(x,y,z,w)=egin{bmatrix} (2x+z+w) & (x+y-w) \ (2x+y-z) & (-2y+w) \end{bmatrix}.$$

$$(\mathcal{G}+(\mathcal{H}o\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R}));\quad (\mathcal{G}+(\mathcal{H}o\mathcal{F}))(x,y,z,w)=egin{bmatrix} (2x+z+w) & (x+y-w) \ (2x+y-z) & (-2y+w) \end{bmatrix}.$$

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = egin{bmatrix} 2 & 0 & 1 & 1 \ 1 & 1 & 0 & -1 \ 2 & 1 & -1 & 0 \ 0 & -2 & 0 & 1 \end{bmatrix}$$

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = egin{bmatrix} 2 & 0 & 1 & 1 \ 1 & 1 & 0 & -1 \ 2 & 1 & -1 & 0 \ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H}o\mathcal{F})))$$

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))])$$

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^{4}, \mathcal{M}_{2}(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_{4}$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))]) = 4 \Rightarrow$$

Matriz Associada

EXEMPLO.2: $(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$ $[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$ $dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H}o\mathcal{F})) \text{ \'e sobrejetora.}$

Matriz Associada

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H}o\mathcal{F})) \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{G} + (\mathcal{H}o\mathcal{F})))$$

Matriz Associada

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H}o\mathcal{F})) \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{N}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))])$$

Matriz Associada

$$(\mathcal{G} + (\mathcal{H}o\mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H}o\mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H}o\mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H}o\mathcal{F})) \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{G} + (\mathcal{H}o\mathcal{F}))) = \mathcal{N}([(\mathcal{G} + (\mathcal{H}o\mathcal{F}))]) = 4 - 4 = 0 \Rightarrow$$

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{N}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 - 4 = 0 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e injetora.}$$

Matriz Associada

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{N}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 - 4 = 0 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e injetora.}$$
Portanto,
$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e Bijetora}$$

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{N}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 - 4 = 0 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e injetora.}$$
Portanto,
$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e Bijetora} \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e injetora.}$$

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); \quad (\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$[(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))] = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} \sim \mathcal{I}_4$$

$$\dim(\mathcal{I}m(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{P}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e sobrejetora.}$$

$$\dim(\mathcal{N}(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))) = \mathcal{N}([(\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))]) = 4 - 4 = 0 \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e injetora.}$$
Portanto,
$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e Bijetora} \Rightarrow (\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e injetora.}$$

Isomorfismo

DEFINIÇÃO:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$

Isomorfismo

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$.

Isomorfismo

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo

Isomorfismo

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se,

Isomorfismo

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$. Dizemos que \mathcal{F} é um ISOMORFISMO se, e somente se, \mathcal{F} é Bijetora.

Isomorfismo

DEFINIÇÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se, \mathcal{F} é Bijetora.

Além disso, dizemos que os espaços \mathcal{V} e \mathcal{U}

Isomorfismo

DEFINICÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se, \mathcal{F} é Bijetora.

Além disso, dizemos que os espaços \mathcal{V} e \mathcal{U} são Isomorfos.

Isomorfismo

DEFINICÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se, \mathcal{F} é Bijetora.

Além disso, dizemos que os espaços \mathcal{V} e \mathcal{U} são Isomorfos.

OBSERVAÇÃO:

Isomorfismo

DEFINICÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se, \mathcal{F} é Bijetora. Além disso, dizemos que os espaços \mathcal{V} e \mathcal{U} são Isomorfos.

Observação:

Um Isomorfismo

Isomorfismo

DEFINICÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se, \mathcal{F} é Bijetora.

Além disso, dizemos que os espaços \mathcal{V} e \mathcal{U} são Isomorfos.

Observação:

Um Isomorfismo $\mathcal{F} \in \mathcal{L}(\mathcal{V})$

Isomorfismo

DEFINICÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se, \mathcal{F} é Bijetora.

Além disso, dizemos que os espaços \mathcal{V} e \mathcal{U} são Isomorfos.

Observação:

Um Isomorfismo $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ é também denominado Automorfismo.

Isomorfismo

DEFINICÃO:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Dizemos que \mathcal{F} é um Isomorfismo se, e somente se, \mathcal{F} é Bijetora.

Além disso, dizemos que os espaços \mathcal{V} e \mathcal{U} são Isomorfos.

Observação:

Um Isomorfismo $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ é também denominado Automorfismo.

Transformações Lineares Matriz Associada

$$\mathcal{F}\in\mathcal{L}(\mathcal{M}_2(\mathbb{R}),\mathbb{R}^3);\quad \mathcal{F}$$

Transformações Lineares

• Exemplo.1:

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(egin{bmatrix} x & y \ z & w \end{bmatrix}
ight) = (x+w,z,y).$$

Transformações Lineares

• Exemplo.1:

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(egin{bmatrix} x & y \ z & w \end{bmatrix}
ight) = (x+w,z,y).$$

Transformações Lineares Matriz Associada

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y). \\ \mathcal{F} & \text{n\~ao} \text{ \'e Bijetora}. \end{split}$$

Transformações Lineares

Matriz Associada

$$\begin{split} \mathcal{F} &\in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y). \\ \mathcal{F} \text{ n\~ao \'e Bijetora}. \text{ Consequentemente, n\~ao ser\'a um ISOMORFISMO!} \end{split}$$

Matriz Associada

• Exemplo.1:

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y).$$

 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R}));(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)$$

Matriz Associada

• Exemplo.1:

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

F não é Bijetora. Consequentemente, não será um ISOMORFISMO!

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=\left[(2x+z+w)\right]$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=\Big\lceil (2x+z+w) \quad (x+y-w)$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=\begin{bmatrix}(2x+z+w)&(x+y-w)\\(2x+y-z)&\end{bmatrix}$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

• Exemplo.2:

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=\begin{bmatrix}(2x+z+w)&(x+y-w)\\(2x+y-z)&(-2y+w)\end{bmatrix}.$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x+w,z,y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=\begin{bmatrix}(2x+z+w)&(x+y-w)\\(2x+y-z)&(-2y+w)\end{bmatrix}.$$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

• Exemplo.2:

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=\begin{bmatrix}(2x+z+w)&(x+y-w)\\(2x+y-z)&(-2y+w)\end{bmatrix}.$$
 $(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))$ é **Bijetora**.

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

• Exemplo.2:

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=\begin{bmatrix}(2x+z+w)&(x+y-w)\\(2x+y-z)&(-2y+w)\end{bmatrix}.$$
 $(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))$ é **Bijetora**. Portanto, $(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))$ é um ISOMORFISMO!

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$

F não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

• Exemplo.2:

$$(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))\in\mathcal{L}(\mathbb{R}^4,\mathcal{M}_2(\mathbb{R})); (\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))(x,y,z,w)=egin{bmatrix} (2x+z+w) & (x+y-w) \\ (2x+y-z) & (-2y+w) \end{bmatrix}.$$
 $(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))$ é **Bijetora**. Portanto, $(\mathcal{G}+(\mathcal{H}\circ\mathcal{F}))$ é um ISOMORFISMO! E ainda, os espaços vetoriais \mathbb{R}^4 e $\mathcal{M}_2(\mathbb{R})$

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

• Exemplo.2:

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); (\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e um ISOMORFISMO!}$$
 E ainda, os espaços vetoriais \mathbb{R}^4 e $\mathcal{M}_2(\mathbb{R})$ são **isomorfos**.

Matriz Associada

$$\mathcal{F} \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}), \mathbb{R}^3); \quad \mathcal{F}\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = (x + w, z, y).$$
 \mathcal{F} não é **Bijetora**. Consequentemente, não será um ISOMORFISMO!

• Exemplo.2:

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \in \mathcal{L}(\mathbb{R}^4, \mathcal{M}_2(\mathbb{R})); (\mathcal{G} + (\mathcal{H} \circ \mathcal{F}))(x, y, z, w) = \begin{bmatrix} (2x + z + w) & (x + y - w) \\ (2x + y - z) & (-2y + w) \end{bmatrix}.$$

$$(\mathcal{G} + (\mathcal{H} \circ \mathcal{F})) \text{ \'e um ISOMORFISMO!}$$
 E ainda, os espaços vetoriais \mathbb{R}^4 e $\mathcal{M}_2(\mathbb{R})$ são **isomorfos**.

Isomorfismo

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K}

Isomorfismo

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$.

Isomorfismo

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$. Então.

Isomorfismo

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V},\mathcal{U})$. Então, os espaços \mathcal{V} e \mathcal{U}

Isomorfismo

TEOREMA:

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais de dimensão finita sobre o mesmo corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V}, \mathcal{U})$. Então, os espaços $\mathcal V$ e $\mathcal U$ são Isomorfos

Isomorfismo

TEOREMA:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V,\mathcal U)$. Então, os espaços \mathcal{V} e \mathcal{U} são Isomorfos se, e somente se, $dim(\mathcal{V}) = dim(\mathcal{U})$.

Isomorfismo

TEOREMA:

Sejam $\mathcal V$ e $\mathcal U$ espaços vetoriais de dimensão finita sobre o mesmo corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V,\mathcal U)$. Então, os espaços \mathcal{V} e \mathcal{U} são Isomorfos se, e somente se, $dim(\mathcal{V}) = dim(\mathcal{U})$.

Autovalores e Autovetores

DEFINIÇÃO:

Seja ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K}$ e

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$.

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$:

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$

Autovalores e Autovetores

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

Autovalores e Autovetores

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) =$$

Autovalores e Autovetores

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Autovalores e Autovetores

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ

Autovalores e Autovetores

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um AUTOVALOR

Autovalores e Autovetores

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um AUTOVALOR (ou VALOR PRÓPRIO,

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um AUTOVALOR (ou VALOR PRÓPRIO, ou VALOR CARACTERÍSTICO) de \mathcal{F} : e

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um AUTOVALOR (ou VALOR PRÓPRIO, ou VALOR CARACTERÍSTICO) de \mathcal{F} : e v é um AUTOVETOR

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um AUTOVALOR (ou VALOR PRÓPRIO, ou VALOR CARACTERÍSTICO) de \mathcal{F} ; e v é um AUTOVETOR (ou VETOR PRÓPRIO,

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um autovalor (ou valor próprio, ou valor característico) de \mathcal{F} ; e v é um autovetor (ou vetor próprio, ou vetor característico)

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um autovalor (ou valor próprio, ou valor característico) de \mathcal{F} ; e v é um autovetor (ou vetor próprio, ou vetor característico) de \mathcal{F} associado ao autovalor λ .

Autovalores e Autovetores

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Se existirem $v \in \mathcal{V}$; $v \neq 0$ e $\lambda \in \mathbb{K}$ tais que,

$$\mathcal{F}(v) = \lambda v.$$

Então, dizemos que λ é um autovalor (ou valor próprio, ou valor característico) de \mathcal{F} ; e v é um autovetor (ou vetor próprio, ou vetor característico) de \mathcal{F} associado ao autovalor λ .

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$;

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$. Por definição, temos;

$$\mathcal{F}(v) =$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R}$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x e$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x, y) = (y, x)$.

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x)$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos;

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} :

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos;

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos;

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Autovalores e Autovetores

EXEMPLO.1:

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos;

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Autovalores e Autovetores

EXEMPLO.1:

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1$$

Autovalores e Autovetores

EXEMPLO 1:

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1 \Rightarrow (y, x) = -(x, y)$$

Autovalores e Autovetores

EXEMPLO 1.

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1$$
 \Rightarrow $(y, x) = -(x, y) \Rightarrow y = -x e x = -y$

Autovalores e Autovetores

EXEMPLO 1.

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1$$
 \Rightarrow $(y, x) = -(x, y) \Rightarrow y = -x e x = -y \Rightarrow v = (-y, y); y \neq 0$ é o autovetor associado ao λ_1 .

Autovalores e Autovetores

EXEMPLO 1.

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1 \Rightarrow (y, x) = -(x, y) \Rightarrow y = -x \text{ e } x = -y \Rightarrow v = (-y, y); y \neq 0$$
 é o autovetor associado ao λ_1 .

Para
$$\lambda_2 = 1$$

Autovalores e Autovetores

EXEMPLO 1.

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1 \Rightarrow (y, x) = -(x, y) \Rightarrow y = -x \text{ e } x = -y \Rightarrow v = (-y, y); y \neq 0$$
 é o autovetor associado ao λ_1 .

Para
$$\lambda_2 = 1 \Rightarrow (y, x) = (x, y)$$

Autovalores e Autovetores

EXEMPLO 1.

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1 \Rightarrow (y, x) = -(x, y) \Rightarrow y = -x \text{ e } x = -y \Rightarrow v = (-y, y); y \neq 0$$
 é o autovetor associado ao λ_1 .

Para
$$\lambda_2 = 1 \Rightarrow (y, x) = (x, y) \Rightarrow y = x e x = y$$

Autovalores e Autovetores

EXEMPLO 1.

Seia $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos:

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Para
$$\lambda_1 = -1 \Rightarrow (y, x) = -(x, y) \Rightarrow y = -x \text{ e } x = -y \Rightarrow v = (-y, y); y \neq 0$$
 é o autovetor associado ao λ_1 .

Para
$$\lambda_2 = 1 \Rightarrow (y, x) = (x, y) \Rightarrow y = x e x = y \Rightarrow x = y$$

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos;

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, encontramos os autovetores associados :

Para
$$\lambda_1 = -1 \Rightarrow (y, x) = -(x, y) \Rightarrow y = -x \text{ e } x = -y \Rightarrow v = (-y, y); y \neq 0$$
 é o autovetor associado ao λ_1

autovetor associado ao λ_1 .

Para
$$\lambda_2 = 1 \Rightarrow (y, x) = (x, y) \Rightarrow y = x \text{ e } x = y \Rightarrow x = y \Rightarrow v = (x, x); x \neq 0$$
 é o autovetor associado ao λ_2 .

14 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Autovalores e Autovetores

EXEMPLO.1:

Seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^2)$; talque $\mathcal{F}(x,y) = (y,x)$.

Por definição, temos;

$$\mathcal{F}(v) = \lambda v; \lambda \in \mathbb{R} \Rightarrow (y, x) = \lambda(x, y) \Rightarrow y = \lambda x \text{ e } x = \lambda y \Rightarrow x = \lambda(\lambda x) = \lambda^2 x \Rightarrow \lambda = \pm 1.$$

determinamos os autovalores de \mathcal{F} : $\lambda_1 = -1$ e $\lambda_2 = 1$.

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, encontramos os autovetores associados :

Para
$$\lambda_1 = -1 \Rightarrow (y, x) = -(x, y) \Rightarrow y = -x \text{ e } x = -y \Rightarrow v = (-y, y); y \neq 0$$
 é o

autovetor associado ao λ_1 .

Para
$$\lambda_2 = 1 \Rightarrow (y, x) = (x, y) \Rightarrow y = x \text{ e } x = y \Rightarrow x = y \Rightarrow v = (x, x); x \neq 0$$
 é o autovetor associado ao λ_2 .

14 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Subespaço Característico (ou Subespaço Próprio)

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e

Subespaço Característico (ou Subespaço Próprio)

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$.

Subespaço Característico (ou Subespaço Próprio)

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ}

Subespaço Característico (ou Subespaço Próprio)

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaço Característico

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaço Característico ou (Subespaço Próprio ou Auto-espaço)

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaço Característico ou (Subespaço Próprio ou Auto-Espaço) associado ao Autovalor $\lambda \in \mathbb{K}$,

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaço Característico ou (Subespaço Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaço Característico ou (Subespaço Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} =$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaço Característico ou (Subespaço Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$\mathcal{V}_{\lambda} = \{ v \in \mathcal{V} \mid \mathcal{F}(v) =$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

OBSERVAÇÃO: \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

OBSERVAÇÃO: \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA:

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

OBSERVAÇÃO: \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) =$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

OBSERVAÇÃO: \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

OBSERVAÇÃO: \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - v$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

OBSERVAÇÃO: \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v)$ -

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) -$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$

$$\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou AUTO-ESPACO) associado ao AUTOVALOR $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$

$$\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - v) = 0$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$

$$\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V}

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$

$$\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$ $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) =$ SUBESPACO DE ν

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

OBSERVAÇÃO:
$$\mathcal{V}_{\lambda}$$
 é um Subespaço de \mathcal{V}
Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$
 $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{v \in \mathcal{V} \mid v \in \mathcal{V}$

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$ $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - v) \}$ SUBESPACO DE ν

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$ $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} =$ SUBESPACO DE ν

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$ $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid (\mathcal$ SUBESPACO DE ν

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$ $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid \mathcal{F}(v) = 0 \}$ SUBESPACO DE ν

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

```
Observação : \mathcal{V}_{\lambda} é um Subespaço de \mathcal{V}
Considerando a EQUAÇÃO CARACTERÍSRICA: \mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0
\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})
    \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid \mathcal{F}(v) = \lambda v \}
SUBESPACO DE \nu
```

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$ $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid \mathcal{F}(v) = \lambda v \} = \mathcal{V}_{\lambda}.$ SUBESPACO DE ν

Subespaço Característico (ou Subespaço Próprio)

DEFINICÃO:

Seja \mathcal{V} um espaco vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por \mathcal{V}_{λ} e denominamos Subespaco Característico ou (Subespaco Próprio ou Auto-Espaco) associado ao Autovalor $\lambda \in \mathbb{K}$, o seguinte subconjunto de \mathcal{V} :

$$V_{\lambda} = \{ v \in V \mid \mathcal{F}(v) = \lambda v \}.$$

Observação : \mathcal{V}_{λ} é um Subespaço de \mathcal{V} Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \Rightarrow v \in \mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})$ $\mathcal{N}(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}}) = \{ v \in \mathcal{V} \mid (\mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0 \} = \{ v \in \mathcal{V} \mid \mathcal{F}(v) = \lambda v \} = \mathcal{V}_{\lambda}.$ SUBESPACO DE ν

Matriz Associada - Autovalores e Autovetores

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} ,

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e

Matriz Associada - Autovalores e Autovetores

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada. Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) =$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada. Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - v$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada. Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$

16 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada. Considerando a EQUAÇÃO CARACTERÍSRICA: $\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$ $\Rightarrow \mathcal{F}(v)$ -

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) -$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - v)$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v)$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

Matriz Associada - Autovalores e Autovetores

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}_{\text{SISTEMA HOMOGÊNEO}}$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}_{}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL:

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} -$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v]$

16 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$,

16 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde;

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$ onde: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v]

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas**

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$.

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$. Por isso, vamos impor

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$. Por isso, vamos impor $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})])$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$. Por isso, vamos impor $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = 0$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$.

Por isso, vamos impor $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = 0$ a fim de obtermos soluções distintas da trivial!

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$. Por isso, vamos impor $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = 0$ a fim de obtermos soluções distintas da trivial! $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})])$

Matriz Associada - Autovalores e Autovetores

```
Seja \mathcal V um espaço vetorial de dimensão finita sobre o corpo \mathbb K, seja \mathcal F\in\mathcal L(\mathcal V) e seja \beta_{\mathcal V}=\{v_1,\ldots,v_n\} uma base ordenada.
```

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow \underbrace{(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0}$

SISTEMA HOMOGÊNEO

```
O SISTEMA HOMOGÊNEO NA FORMA MATRICIAL: [(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n, onde; [(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})] é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das incógnitas representando os AUTOVETORES \Rightarrow [v] \neq 0. Por isso, vamos impor det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = 0 a fim de obtermos soluções distintas da trivial! det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = det([\mathcal{F}])
```

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal V}=\{v_1,\ldots,v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

O SISTEMA HOMOGÊNEO NA FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$. Por isso, vamos impor $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = 0$ a fim de obtermos soluções distintas da trivial! $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = det([\mathcal{F}] - v)$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

SISTEMA HOMOGÊNEO na FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$. Por isso, vamos impor $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = 0$ a fim de obtermos soluções distintas da trivial! $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = det([\mathcal{F}] - \lambda [\mathcal{I}_{\mathcal{V}}])$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal V}=\{v_1,\ldots,v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

O SISTEMA HOMOGÊNEO NA FORMA MATRICIAL: $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})][v] = 0_n$, onde; $[(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]$ é a MATRIZ DOS COEFICIENTES, e [v] é a matriz das **incógnitas** representando os AUTOVETORES $\Rightarrow [v] \neq 0$. Por isso, vamos impor $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = 0$ a fim de obtermos soluções **distintas da trivial**! $det([(\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})]) = det([\mathcal{F}] - \lambda [\mathcal{I}_{\mathcal{V}}]) = det([\mathcal{F}] - \lambda [\mathcal{I}_{\mathcal{V}}])$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal V}=\{v_1,\ldots,v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$
 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal V}=\{v_1,\ldots,v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

$$det([\mathcal{F}] -$$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal V}=\{v_1,\ldots,v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

$$det([\mathcal{F}] - \lambda \mathcal{I}_n) = 0.$$

Matriz Associada - Autovalores e Autovetores

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal V}=\{v_1,\ldots,v_n\}$ uma base ordenada.

Considerando a EQUAÇÃO CARACTERÍSRICA:
$$\mathcal{F}(v) = \lambda v \Rightarrow \mathcal{F}(v) - \lambda v = 0$$

 $\Rightarrow \mathcal{F}(v) - \mathcal{I}_{\mathcal{V}}(\lambda v) = 0 \Rightarrow \mathcal{F}(v) - \lambda \mathcal{I}_{\mathcal{V}}(v) = 0 \Rightarrow (\mathcal{F} - \lambda \mathcal{I}_{\mathcal{V}})(v) = 0$

SISTEMA HOMOGÊNEO

$$det([\mathcal{F}] - \lambda \mathcal{I}_n) = 0.$$

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja ${\mathcal V}$ um espaço vetorial de dimensão finita sobre o corpo ${\mathbb K},$

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta'_{\mathcal{V}} = \{v'_1, \dots, v'_n\}$ bases ordenadas de \mathcal{V} .

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta'_{\mathcal{V}} = \{v'_1, \dots, v'_n\}$ bases ordenadas de \mathcal{V} . Então.

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta'_{\mathcal{V}} = \{v'_1, \dots, v'_n\}$ bases ordenadas de \mathcal{V} . Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>:

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são SEMELHANTES:

 $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel;

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta'_{\mathcal{V}} = \{v'_1, \dots, v'_n\}$ bases ordenadas de \mathcal{V} .

$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}$$

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta'_{\mathcal{V}} = \{v'_1, \dots, v'_n\}$ bases ordenadas de \mathcal{V} .

$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}$$
P

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta'_{\mathcal{V}} = \{v'_1, \dots, v'_n\}$ bases ordenadas de \mathcal{V} .

$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}} P =$$

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta'_{\mathcal{V}} = \{v'_1, \dots, v'_n\}$ bases ordenadas de \mathcal{V} .

$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} P = P$$

Matriz Associada - Autovalores e Autovetores

Proposição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

$$[\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}} P = P[\mathcal{F}]_{eta_{\mathcal{V}}'}^{eta_{\mathcal{V}}'}$$

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

$$[\mathcal{F}]_{\beta \nu}^{\beta \nu} P = P[\mathcal{F}]_{\beta' \nu}^{\beta' \nu}; \quad P = [\mathcal{I}]_{\beta \nu}^{\beta' \nu}$$

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel;

$$[\mathcal{F}]_{\beta \nu}^{\beta \nu} P = P[\mathcal{F}]_{\beta' \nu}^{\beta' \nu}; \quad P = [\mathcal{I}]_{\beta \nu}^{\beta' \nu}$$

Observação:

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel:

$$[\mathcal{F}]_{\beta\nu}^{\beta\nu}P = P[\mathcal{F}]_{\beta'\nu}^{\beta'
u}; \quad P = [\mathcal{I}]_{\beta\nu}^{\beta'
u}$$

OBSERVAÇÃO: Pela propriedade(AULA6 - slide.6) de MATRIZES SEMELHANTES,

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel:

$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} P = P[\mathcal{F}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}'}; \quad P = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}$$

OBSERVAÇÃO: Pela propriedade(AULA6 - slide.6) de MATRIZES SEMELHANTES,

$$det([\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}})$$

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel:

$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} P = P[\mathcal{F}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}'}; \quad P = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}$$

OBSERVAÇÃO: Pela propriedade(AULA6 - slide.6) de MATRIZES SEMELHANTES,

$$det([\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}) = det([\mathcal{F}]_{eta_{\mathcal{V}}^{'}}^{eta_{\mathcal{V}}^{'}}).$$

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel:

$$[\mathcal{F}]_{\beta\nu}^{\beta\nu}P = P[\mathcal{F}]_{\beta'\nu}^{\beta'\nu}; \quad P = [\mathcal{I}]_{\beta\nu}^{\beta'\nu}$$

OBSERVAÇÃO: Pela propriedade(AULA6 - slide.6) de MATRIZES SEMELHANTES,

$$det([\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}) = det([\mathcal{F}]_{eta_{\mathcal{V}}^{\prime}}^{eta_{\mathcal{V}}^{\prime}}).$$

Logo,

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel:

$$[\mathcal{F}]_{\beta\nu}^{\beta\nu}P = P[\mathcal{F}]_{\beta'\nu}^{\beta'\nu}; \quad P = [\mathcal{I}]_{\beta\nu}^{\beta'\nu}$$

OBSERVAÇÃO: Pela propriedade(AULA6 - slide.6) de MATRIZES SEMELHANTES,

$$det([\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}) = det([\mathcal{F}]_{eta_{\mathcal{V}}^{'}}^{eta_{\mathcal{V}}^{'}}).$$

Logo,

$$det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) =$$

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel:

$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} P = P[\mathcal{F}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}'}; \quad P = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}$$

OBSERVAÇÃO: Pela propriedade(AULA6 - slide.6) de MATRIZES SEMELHANTES,

$$det([\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}) = det([\mathcal{F}]_{eta_{\mathcal{V}}^{'}}^{eta_{\mathcal{V}}^{'}}).$$

Logo,

$$\det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = \det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} - \lambda \mathcal{I}_n).$$

Matriz Associada - Autovalores e Autovetores

Proposicão:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e sejam $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ e $\beta_{\mathcal{V}}' = \{v_1', \dots, v_n'\}$ bases ordenadas de \mathcal{V} .

Então, as matrizes associadas ao operador linear $\mathcal{F} \in \mathcal{L}(\mathcal{V})$ são <u>SEMELHANTES</u>: $\exists P \in \mathcal{M}_n(\mathbb{K})$ invertivel:

$$[\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} P = P[\mathcal{F}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}'}; \quad P = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}$$

OBSERVAÇÃO: Pela propriedade(AULA6 - slide.6) de MATRIZES SEMELHANTES,

$$det([\mathcal{F}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}) = det([\mathcal{F}]_{eta_{\mathcal{V}}^{'}}^{eta_{\mathcal{V}}^{'}}).$$

Logo,

$$\det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = \det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} - \lambda \mathcal{I}_n).$$

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$,

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada. Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$ e denominamos polinômio característico de \mathcal{F}

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$ e denominamos polinômio característico de \mathcal{F} o polinômio de grau < n obtido do seguinte modo,

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$ e denominamos POLINÔMIO CARACTERÍSTICO DE \mathcal{F} o polinômio de grau < n obtido do seguinte modo,

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n);$$

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$ e denominamos POLINÔMIO CARACTERÍSTICO DE \mathcal{F} o polinômio de grau < n obtido do seguinte modo,

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n);$$

cuias raízes $\lambda \in \mathbb{K}$ são os AUTOVALORES de \mathcal{F} :

Polinômio Característico

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$ e denominamos POLINÔMIO CARACTERÍSTICO DE \mathcal{F} o polinômio de grau < n obtido do seguinte modo,

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n);$$

cujas raízes $\lambda \in \mathbb{K}$ são os AUTOVALORES de $\mathcal{F}\colon \left| \mathcal{P}_{\mathcal{F}}(\lambda) = 0 \right|$

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$ e denominamos Polinômio Característico de \mathcal{F} o polinômio de grau < n obtido do seguinte modo.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n);$$

cujas raízes
$$\lambda \in \mathbb{K}$$
 são os AUTOVALORES de \mathcal{F} : $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow \det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n) = 0.$

Definição:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$, seja $\mathcal F\in\mathcal L(\mathcal V)$ e seja $\beta_{\mathcal{V}} = \{v_1, \dots, v_n\}$ uma base ordenada.

Indicamos por $\mathcal{P}_{\mathcal{F}(\lambda)}$ e denominamos Polinômio Característico de \mathcal{F} o polinômio de grau < n obtido do seguinte modo.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} - \lambda \mathcal{I}_n);$$

cujas raízes $\lambda \in \mathbb{K}$ são os AUTOVALORES de \mathcal{F} : $\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \det([\mathcal{F}]_{\beta \nu}^{\beta \nu} - \lambda \mathcal{I}_n) = 0$.

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de RAZÃO k; $0 \le k \le 1$.

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de RAZÃO k; $0 \le k \le 1$.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) =$$

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de RAZÃO k; 0 < k < 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} =$$

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de RAZÃO k; 0 < k < 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}$$

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de Razão k; 0 < k < 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix}$$

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de RAZÃO k; 0 < k < 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} =$$

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de Razão k; 0 < k < 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix};$$

Aplicação: Contração

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada Contração de Razão k; 0 < k < 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix};$$

cuia MATRIZ CANÔNICA:

$$[\mathcal{F}] = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$$

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO k; k > 1.

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO k; k > 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) =$$

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO $k; \quad k > 1$.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} =$$

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO $k; \quad k > 1$.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix}$$

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO $k; \quad k > 1$.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix}$$

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO k; k > 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} =$$

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO k; k > 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix};$$

Aplicação: DILATAÇÃO

A transformação $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ é denominada DILATAÇÃO DE RAZÃO k; k > 1.

$$\mathcal{F}\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} kx \\ ky \\ kz \end{bmatrix} = x \begin{bmatrix} k \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ k \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix};$$

cuja MATRIZ CANÔNICA:

$$[\mathcal{F}] = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Determine, se possível,

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Determine, se possível, os $\operatorname{AUTOVALORES}$ de $\mathcal F$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Determine, se possível, os AUTOVALORES de \mathcal{F} e os AUTOVETORES associados,

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \right)$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \left(egin{bmatrix} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 3 \end{bmatrix} - \lambda$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\pmb{\lambda}) = det \left(egin{bmatrix} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 3 \end{bmatrix} - \pmb{\lambda} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}
ight) =$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right)$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right)$$

Seia $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = 0$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 =$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \text{ são os autovalores de } \mathcal{F}.$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = det([\mathcal{F}] - \boldsymbol{\lambda}\mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = \det \left(\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \right) = (3 - \lambda)^3$$

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \text{ são os autovalores de } \mathcal{F}.$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x, y, z) = \lambda(x, y, z)$;

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 =$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial: $\begin{pmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{pmatrix}$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3 - 3 & 0 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 3 - 3 \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3-\lambda & 0 & 0 \\ 0 & 3-\lambda & 0 \\ 0 & 0 & 3-\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3 - 3 & 0 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 3 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3-3 & 0 & 0 \\ 0 & 3-3 & 0 \\ 0 & 0 & 3-3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3-3 & 0 & 0 \\ 0 & 3-3 & 0 \\ 0 & 0 & 3-3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x, y, z \in \mathbb{R}$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3-3 & 0 & 0 \\ 0 & 3-3 & 0 \\ 0 & 0 & 3-3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x, y, z \in \mathbb{R}$$

Assim,

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3 - 3 & 0 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 3 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x, y, z \in \mathbb{R}$$

Assim, obtivemos o AUTOVETOR associado:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3 - 3 & 0 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 3 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x, y, z \in \mathbb{R}$$

Assim, obtivemos o AUTOVETOR associado:

$$v \in \mathbb{R}^3$$
; $v = (x, y, z) \neq 0$.

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3 - 3 & 0 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 3 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x, y, z \in \mathbb{R}$$

Assim, obtivemos o AUTOVETOR associado:

$$v \in \mathbb{R}^3$$
; $v = (x, y, z) \neq 0$.

e o Auto-espaço:

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \}$$

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3 - 3 & 0 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 3 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x, y, z \in \mathbb{R}$$

Assim, obtivemos o AUTOVETOR associado:

$$v \in \mathbb{R}^3$$
; $v = (x, y, z) \neq 0$.

e o Auto-espaço:

$$V_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3$$

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = \lambda_3 = 3$$
 $\Rightarrow \mathcal{F}(x, y, z) = 3(x, y, z)$.

resolvendo na forma matricial:
$$\begin{bmatrix} 3 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3 - 3 & 0 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 3 - 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow x, y, z \in \mathbb{R}$$

Assim, obtivemos o AUTOVETOR associado:

$$v \in \mathbb{R}^3$$
; $v = (x, y, z) \neq 0$.

e o Auto-espaço:

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}}.$$

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINIÇÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINIÇÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$.

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Indicamos por $m_a(\lambda)$

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja $\mathcal V$ um espaço vetorial de dimensão finita sobre o corpo $\mathbb K$ e seja $\mathcal F\in\mathcal L(\mathcal V)$. Indicamos por $m_a(\lambda)$ e denominamos

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_a(\lambda)$ e denominamos MULTIPLICIDADE ALGÉBRICA

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$,

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_a(\lambda)$ e denominamos MULTIPLICIDADE ALGÉBRICA do AUTOVALOR $\lambda \in \mathbb{K}$. o NÚMERO de vezes

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_a(\lambda)$ e denominamos MULTIPLICIDADE ALGÉBRICA do AUTOVALOR $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_a(\lambda)$ e denominamos MULTIPLICIDADE ALGÉBRICA do AUTOVALOR $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ aparece como raiz do polinômio característico.

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$, o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_{\sigma}(\lambda)$

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$, o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_g(\lambda)$ e denominamos

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_{\sigma}(\lambda)$ e denominamos MULTIPLICIDADE GEOMÉTRICA

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_g(\lambda)$ e denominamos Multiplicidade Geométrica do Autovalor $\lambda \in \mathbb{K}$.

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_{\sigma}(\lambda)$ e denominamos MULTIPLICIDADE GEOMÉTRICA do AUTOVALOR $\lambda \in \mathbb{K}$, a DIMENSÃO

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_{\sigma}(\lambda)$ e denominamos MULTIPLICIDADE GEOMÉTRICA do AUTOVALOR $\lambda \in \mathbb{K}$, a DIMENSÃO do AUTO-ESPAÇO de λ :

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_g(\lambda)$ e denominamos Multiplicidade Geométrica do Autovalor $\lambda \in \mathbb{K}$, a DIMENSÃO do AUTO-ESPAÇO de λ : $m_{\sigma}(\lambda) = dim(\mathcal{V}_{\lambda})$.

Multiplicidades Algébrica e Geométrica do autovalor λ

DEFINICÃO:

Seja \mathcal{V} um espaço vetorial de dimensão finita sobre o corpo \mathbb{K} e seja $\mathcal{F} \in \mathcal{L}(\mathcal{V})$. Indicamos por $m_3(\lambda)$ e denominamos Multiplicidade Algébrica do Autovalor $\lambda \in \mathbb{K}$. o NÚMERO de vezes que λ aparece como raiz do polinômio característico. E, indicamos por $m_g(\lambda)$ e denominamos Multiplicidade Geométrica do Autovalor $\lambda \in \mathbb{K}$, a DIMENSÃO do AUTO-ESPAÇO de λ : $m_{\sigma}(\lambda) = dim(\mathcal{V}_{\lambda})$.

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\mathcal{P}_{\mathcal{F}}(\boldsymbol{\lambda}) = 0$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 0$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$
 \Rightarrow $(3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$.

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$V = \mathbb{R}^3$$
 e seja $F \in \mathcal{L}(\mathbb{R}^3)$ tal que; $F(x, y, z) = (3x, 3y, 3z)$.

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \}$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

$$\overline{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
e:

$$V_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$.

$$\overline{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3;$$
e;

$$\mathcal{V}_{(1,-3)} \equiv \{ v \in \mathbb{R}^3 \mid v \equiv (x, v, z) \}$$

$$\mathcal{V}_{(\lambda=3)} = \{ v \in \mathbb{R}^3 \mid v = (x, y, z) \} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}},$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$.
$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0 \Rightarrow \lambda_1=\lambda_2=\lambda_3=3 \Rightarrow m_a(\lambda)=3;$$
 e;
$$\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$$
 então:

24 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}}$, então; $m_{\sigma}(\lambda)$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3-\lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda=3)} = \{v \in \mathbb{R}^3 \mid v = (x,y,z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda=3)}}$, então; $m_{\sigma}(\lambda) = \dim(\mathcal{V}_{\lambda}) =$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x, y, z) = (3x, 3y, 3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow (3 - \lambda)^3 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 3 \Rightarrow m_a(\lambda) = 3$; e; $\mathcal{V}_{(\lambda = 3)} = \{v \in \mathbb{R}^3 \mid v = (x, y, z)\} = \mathbb{R}^3 \Rightarrow \beta_{\mathbb{R}^3} = \beta_{\mathcal{V}_{(\lambda = 2)}}$,

então:

$$m_g(\lambda) = dim(\mathcal{V}_{\lambda}) = 3.$$

Polinômio Característico - Autovalores - Autovetores

EXEMPLO:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(3x,3y,3z)$. $\boxed{\mathcal{P}_{\mathcal{F}}(\lambda)=0}\Rightarrow (3-\lambda)^3=0\Rightarrow \lambda_1=\lambda_2=\lambda_3=3\Rightarrow m_a(\lambda)=3;$ e; $\mathcal{V}_{(\lambda=3)}=\{v\in\mathbb{R}^3\mid v=(x,y,z)\}=\mathbb{R}^3\Rightarrow \beta_{\mathbb{R}^3}=\beta_{\mathcal{V}_{(\lambda=3)}},$ então; $m_\sigma(\lambda)=\dim(\mathcal{V}_\lambda)=3.$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Seja $\mathcal{V}=\mathbb{R}^3$ e

Polinômio Característico - Autovalores - Autovetores

Exercício:

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

Polinômio Característico - Autovalores - Autovetores

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

Polinômio Característico - Autovalores - Autovetores

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) =$$

Polinômio Característico - Autovalores - Autovetores

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \left(egin{bmatrix} 2 - \lambda & -1 & 1 \ 0 & 3 - \lambda & -1 \ 2 & 1 & 3 - \lambda \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \left(egin{bmatrix} 2 - \lambda & -1 & 1 \ 0 & 3 - \lambda & -1 \ 2 & 1 & 3 - \lambda \end{bmatrix}
ight)$$

Polinômio Característico - Autovalores - Autovetores

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \left(egin{bmatrix} 2-\lambda & -1 & 1 \ 0 & 3-\lambda & -1 \ 2 & 1 & 3-\lambda \end{bmatrix}
ight) =$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{pmatrix} = -(\lambda - 2)$$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \left(\begin{vmatrix} 2-\lambda & -1 & 1 \\ 0 & 3-\lambda & -1 \\ 2 & 1 & 3-\lambda \end{vmatrix} \right) = -(\lambda-2)(\lambda-2)$$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{bmatrix} \end{pmatrix} = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 2-\lambda & -1 & 1 \\ 0 & 3-\lambda & -1 \\ 2 & 1 & 3-\lambda \end{bmatrix} \end{pmatrix} = -(\lambda-2)(\lambda-2)(\lambda-4)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0$$

Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{bmatrix} \end{pmatrix} = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = \lambda_2 = 2;$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 2-\lambda & -1 & 1 \\ 0 & 3-\lambda & -1 \\ 2 & 1 & 3-\lambda \end{bmatrix} \end{pmatrix} = -(\lambda-2)(\lambda-2)(\lambda-4)$$

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 2-\lambda & -1 & 1 \\ 0 & 3-\lambda & -1 \\ 2 & 1 & 3-\lambda \end{bmatrix} \end{pmatrix} = -(\lambda-2)(\lambda-2)(\lambda-4)$$

$$|\mathcal{P}_{\mathcal{F}}(\lambda) = 0| \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4$$

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 2-\lambda & -1 & 1 \\ 0 & 3-\lambda & -1 \\ 2 & 1 & 3-\lambda \end{bmatrix} \end{pmatrix} = -(\lambda-2)(\lambda-2)(\lambda-4)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 \text{ são os AUTOVALORES de } \mathcal{F}.$$

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{F} \in \mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z) = (2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{pmatrix} = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\boxed{\mathcal{P}_{\mathcal{F}}(\lambda) = 0} \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_a(\lambda_1 = \lambda_2) =$$

Seja $\mathcal{V}=\mathbb{R}^3$ e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} \begin{bmatrix} 2-\lambda & -1 & 1 \\ 0 & 3-\lambda & -1 \\ 2 & 1 & 3-\lambda \end{bmatrix} \end{pmatrix} = -(\lambda-2)(\lambda-2)(\lambda-4)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 \text{ são os AUTOVALORES de } \mathcal{F}.$$
 $m_2(\lambda_1 = \lambda_2) = 2; \text{ e}$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{pmatrix} = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 \text{ são os AUTOVALORES de } \mathcal{F}.$$
 $m_a(\lambda_1 = \lambda_2) = 2; \text{ e } m_a(\lambda_3) =$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{pmatrix} = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1 = \lambda_2) = 2; \text{ e } m_2(\lambda_3) = 1.$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $\mathcal{F}\in\mathcal{L}(\mathbb{R}^3)$ tal que; $\mathcal{F}(x,y,z)=(2x-y+z,3y-z,2x+y+3z)$.

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det([\mathcal{F}] - \lambda \mathcal{I}_3)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = det \begin{pmatrix} 2 - \lambda & -1 & 1 \\ 0 & 3 - \lambda & -1 \\ 2 & 1 & 3 - \lambda \end{pmatrix} = -(\lambda - 2)(\lambda - 2)(\lambda - 4)$$

$$\mathcal{P}_{\mathcal{F}}(\lambda) = 0 \Rightarrow \lambda_1 = \lambda_2 = 2; \lambda_3 = 4 \text{ são os AUTOVALORES de } \mathcal{F}.$$

$$m_2(\lambda_1 = \lambda_2) = 2; \text{ e } m_2(\lambda_3) = 1.$$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x, y, z) = \lambda(x, y, z)$;

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\lambda_1 = \lambda_2 =$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x, y, z) = \lambda(x, y, z)$; encontramos os AUTOVETORES associados:

Para
$$\lambda_1 = \lambda_2 = 2$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x, y, z) = \lambda(x, y, z)$; encontramos os AUTOVETORES associados:

Para
$$\lambda_1 = \lambda_2 = 2$$
 $\Rightarrow \mathcal{F}(x, y, z) = 2(x, y, z)$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x, y, z) = \lambda(x, y, z)$; encontramos os AUTOVETORES associados:

Para
$$\lambda_1 = \lambda_2 = 2 \Rightarrow \mathcal{F}(x, y, z) = 2(x, y, z) \Rightarrow$$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = 2$$
 $\Rightarrow \mathcal{F}(x, y, z) = 2(x, y, z) \Rightarrow \begin{bmatrix} 2-2 & -1 & 1 \\ 0 & 3-2 & -1 \\ 2 & 1 & 3-2 \end{bmatrix}$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = 2$$
 $\Rightarrow \mathcal{F}(x, y, z) = 2(x, y, z) \Rightarrow \begin{bmatrix} 2-2 & -1 & 1 \\ 0 & 3-2 & -1 \\ 2 & 1 & 3-2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

$$\mathsf{Para} \begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix} \Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z) \Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

AUTOVETOR associado:

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$. AUTO-ESPAÇO:

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\lambda_1 = \lambda_2 = 2$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z) \Rightarrow \begin{bmatrix} 2 - \mathbf{2} & -1 & 1 \\ 0 & 3 - \mathbf{2} & -1 \\ 2 & 1 & 3 - \mathbf{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

AUTO-ESPAÇO: $V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \}$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = 2$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z) \Rightarrow \begin{bmatrix} 2-2 & -1 & 1 \\ 0 & 3-2 & -1 \\ 2 & 1 & 3-2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

Auto-Espaço: $V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$eta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\}$$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$$

$$eta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1$$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado:
$$v \in \mathbb{R}^3$$
; $v = (x, -x, -x)$; $x \neq 0$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - \mathbf{2} & -1 & 1 \\ 0 & 3 - \mathbf{2} & -1 \\ 2 & 1 & 3 - \mathbf{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-espaço:
$$V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 =$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-espaço:
$$V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-espaço:
$$V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4 \Rightarrow \mathcal{F}(x, y, z) = \mathbf{4}(x, y, z)$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - \mathbf{2} & -1 & 1 \\ 0 & 3 - \mathbf{2} & -1 \\ 2 & 1 & 3 - \mathbf{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4 \Rightarrow \mathcal{F}(x, y, z) = \mathbf{4}(x, y, z) \Rightarrow$$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-espaço:
$$V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4 \Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4$$
 $\Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2-4 & -1 & 1 \\ 0 & 3-4 & -1 \\ 2 & 1 & 3-4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\begin{bmatrix} \lambda_3 = 4 \end{bmatrix} \Rightarrow \mathcal{F}(x, y, z) = \mathbf{4}(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4 \Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2-4 & -1 & 1 \\ 0 & 3-4 & -1 \\ 2 & 1 & 3-4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

AUTOVETOR associado:

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4$$
 $\Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\lambda_1 = \lambda_2 = 2$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z) \Rightarrow \begin{bmatrix} 2-2 & -1 & 1 \\ 0 & 3-2 & -1 \\ 2 & 1 & 3-2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

AUTOVETOR associado: $v \in \mathbb{R}^3$; $v = (x, -x, -\bar{x})$; $x \neq 0$.

Auto-espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4 \Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, x); $x \neq 0$.

Auto-espaço:

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

Auto-Espaço: $V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4$$
 $\Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Auto-Espaço:
$$V_{(\lambda=4)} = \{ v \in \mathbb{R}^3 \mid y = -x \text{ e } z = x \}$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

Auto-espaço:
$$V_{(\lambda=2)} = \{v \in \mathbb{R}^3 \mid y = z = -x\} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4$$
 $\Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, x); $x \neq 0$.

Polinômio Característico - Autovalores - Autovetores

EXERCÍCIO:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados :

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x); $x \neq 0$.

Auto-Espaço:
$$V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid y = z = -x \} = [(1, -1, -1)]$$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4 \Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, x); $x \neq 0$.

$$\beta_{\mathcal{V}_{(\lambda=4)}} = \{(1,-1,1)\}$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x): $x \neq 0$.

AUTO-ESPACO: $V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4 \Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, x); $x \neq 0$.

$$eta_{\mathcal{V}_{(\lambda=4)}}=\{(1,-1,1)\}\Rightarrow \mathit{dim}(\mathcal{V}_{(\lambda=4)})=1$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x): $x \neq 0$.

AUTO-ESPACO: $V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4$$
 $\Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, x); $x \neq 0$.

$$\beta_{\mathcal{V}_{(\lambda=4)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=4)}) = 1 \Rightarrow m_{g}(\lambda=4) = 1.$$

Polinômio Característico - Autovalores - Autovetores

Exercício:

Agora, utilizando a EQUAÇÃO CARACTERÍSTICA, $\mathcal{F}(x,y,z) = \lambda(x,y,z)$; encontramos os AUTOVETORES associados:

Para
$$\begin{bmatrix} \lambda_1 = \lambda_2 = 2 \end{bmatrix}$$
 $\Rightarrow \mathcal{F}(x, y, z) = \mathbf{2}(x, y, z)$ $\Rightarrow \begin{bmatrix} 2 - 2 & -1 & 1 \\ 0 & 3 - 2 & -1 \\ 2 & 1 & 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, -x): $x \neq 0$.

AUTO-ESPACO: $V_{(\lambda=2)} = \{ v \in \mathbb{R}^3 \mid v = z = -x \} = [(1, -1, -1)]$

$$\beta_{\mathcal{V}_{(\lambda=2)}} = \{(1,-1,-1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=2)}) = 1 \Rightarrow m_g(\lambda=2) = 1.$$

Para
$$\lambda_3 = 4$$
 $\Rightarrow \mathcal{F}(x, y, z) = 4(x, y, z) \Rightarrow \begin{bmatrix} 2 - 4 & -1 & 1 \\ 0 & 3 - 4 & -1 \\ 2 & 1 & 3 - 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

AUTOVETOR associado: $v \in \mathbb{R}^3$; v = (x, -x, x); $x \neq 0$.

$$\beta_{\mathcal{V}_{(\lambda=4)}} = \{(1,-1,1)\} \Rightarrow \dim(\mathcal{V}_{(\lambda=4)}) = 1 \Rightarrow m_{g}(\lambda=4) = 1.$$