Data Analysis and Machine Learning: Linear Regression and more Advanced Regression Analysis

Morten Hjorth-Jensen^{1,2}

Department of Physics, University of Oslo¹

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University²

Oct 14, 2017

© 1999-2017, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

General linear models

Before we proceed let us study a case from linear algebra where we aim at fitting a set of data $\hat{y} = [y_0, y_1, \dots, y_{n-1}]$. We could think of these data as a result of an experiment or a complicated numerical experiment. These data are functions of a series of variables $\hat{x} = [x_0, x_1, \dots, x_{n-1}]$, that is $y_i = y(x_i)$ with

 $i = 0, 1, 2, \dots, n - 1$. The variables x_i could represent physical quantities like time, temperature, position etc. We assume that y(x) is a smooth function.

Since obtaining these data points may not be trivial, we want to use these data to fit a function which can allow us to make predictions for values of v which are not in the present set. The perhaps simplest approach is to assume we can parametrize our function in terms of a polynomial of degree n-1 with n points, that is

$$y = y(x) \rightarrow y(x_i) = \tilde{y}_i + \epsilon_i = \sum_{i=0}^{n-1} \beta_i x_i^j + \epsilon_i,$$

where ϵ_i is the error in our approximation.

Generalizing the fitting procedure as a linear algebra problem

We are obviously not limited to the above polynomial. We could replace the various powers of x with elements of Fourier series, that is, instead of x_i^j we could have $\cos(jx_i)$ or $\sin(jx_i)$, or time series or other orthogonal functions. For every set of values y_i, x_i we can then generalize the equations to

$$y_0 = \beta_0 x_{00} + \beta_1 x_{01} + \beta_2 x_{02} + \dots + \beta_{n-1} x_{0n-1} + \epsilon_0$$
(7)

$$y_1 = \beta_0 x_{10} + \beta_1 x_{11} + \beta_2 x_{12} + \dots + \beta_{n-1} x_{1n-1} + \epsilon_1$$
(8)

$$y_1 = \beta_0 x_{10} + \beta_1 x_{11} + \beta_2 x_{12} + \dots + \beta_{n-1} x_{1n-1} + \epsilon_1$$
 (8)

$$y_2 = \beta_0 x_{20} + \beta_1 x_{21} + \beta_2 x_{22} + \dots + \beta_{n-1} x_{2n-1} + \epsilon_1$$
 (9)
..... (10)

$$y_i = \beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{n-1} x_{in-1} + \epsilon_1$$
 (11)

$$y_i = \beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{n-1} x_{in-1} + \epsilon_1$$

$$\dots$$
(11)

$$y_{n-1} = \beta_0 x_{n-1,0} + \beta_1 x_{n-1,2} + \beta_2 x_{n-1,2} + \dots + \beta_1 x_{n-1}^{n-1,n-1} + \epsilon_{n-1}.$$
(13)

We redefine in turn the matrix \hat{X} as

Regression analysis, overarching aims

Regression modeling deals with the description of the sampling distribution of a given random variable y varies as function of another variable or a set of such variables $\hat{x} = [x_0, x_1, \dots, x_p]^T$. The first variable is called the **dependent**, the **outcome** or the **response** variable while the set of variables \hat{x} is called the independent variable, or the predictor variable or the explanatory

A regression model aims at finding a likelihood function $p(y|\hat{x})$, that is the conditional distribution for y with a given \hat{x} . The estimation of $p(y|\hat{x})$ is made using a data set with

- n cases i = 0, 1, 2, ..., n-1
- \bullet Response (dependent or outcome) variable y_i with $i = 0, 1, 2, \dots, n-1$
- p Explanatory (independent or predictor) variables $\hat{x}_i = [x_{i0}, x_{i1}, \dots, x_{ip}]$ with $i = 0, 1, 2, \dots, n-1$

The goal of the regression analysis is to extract/exploit relationship between v_i and \hat{x}_i in or to infer causal dependencies.

Rewriting the fitting procedure as a linear algebra problem

For every set of values y_i, x_i we have thus the corresponding set of equations

$$y_0 = \beta_0 + \beta_1 x_0^1 + \beta_2 x_0^2 + \dots + \beta_{n-1} x_0^{n-1} + \epsilon_0$$
 (1)

$$y_1 = \beta_0 + \beta_1 x_1^1 + \beta_2 x_1^2 + \dots + \beta_{n-1} x_1^{n-1} + \epsilon_1$$
 (2)

$$y_2 = \beta_0 + \beta_1 x_2^1 + \beta_2 x_2^2 + \dots + \beta_{n-1} x_2^{n-1} + \epsilon_2$$
 (3)

$$y_{n-1} = \beta_0 + \beta_1 x_{n-1}^1 + \beta_2 x_{n-1}^2 + \dots + \beta_1 x_{n-1}^{n-1} + \epsilon_{n-1}.$$
 (5)

Defining the vectors

$$\hat{y} = [y_0, y_1, y_2, \dots, y_{n-1}]^T$$

$$\hat{\beta} = [\beta_0, \beta_1, \beta_2, \dots, \beta_{n-1}]^T,$$

$$\hat{\epsilon} = [\epsilon_0, \epsilon_1, \epsilon_2, \dots, \epsilon_{n-1}]^T$$
,

Optimizing our parameters

$$y_0 = \beta_0 x_{00} + \beta_1 x_{01} + \beta_2 x_{02} + \dots + \beta_{n-1} x_{0n-1} + \epsilon_0$$
 (15)

$$y_1 = \beta_0 x_{10} + \beta_1 x_{11} + \beta_2 x_{12} + \dots + \beta_{n-1} x_{1n-1} + \epsilon_1$$
 (16)

$$y_2 = \beta_0 x_{20} + \beta_1 x_{21} + \beta_2 x_{22} + \dots + \beta_{n-1} x_{2n-1} + \epsilon_1$$
 (17)

$$y_i = \beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{n-1} x_{in-1} + \epsilon_1$$
 (19)

$$y_{n-1} = \beta_0 x_{n-1,0} + \beta_1 x_{n-1,2} + \beta_2 x_{n-1,2} + \dots + \beta_1 x_{n-1}^{n-1,n-1} + \epsilon_{n-1}.$$

(22)