ANTICIPATING A WORLD OF AUTOMATED VEHICLES:

Cost, Energy, & Urban System Implications

Dr. Kara Kockelman

+ Dan Fagnant, Donna Chen, Ben Loeb, Neil Quarles, & Murthy Gurumurthy

Part 1

Forecasting Americans' Plans for Acquiring & Using Self-driving, Shared (& Electric) Vehicles

2017 U.S. Survey

- n = 1,426 complete, adult respondents, weighted to match U.S. population.
- Questions about current & coming vehicle & travel choices
- Focus on electric, autonomous, & shared vehicles & rides
 - EVs, CAVs, SAVs, & DRS(dynamic ride-sharing)
- Questions provide values for regression models used in fleet-evolution simulation.

Results: AV & SAV Technology

- □ **32.4% prefer an AV for next vehicle**, *if price premium neglected*.
- □ If vehicle is **capable of both human (HV) & autonomous (AV) driving**, average respondent believes he/she would use **AV mode** for **36% of travel distance**.
- □ WTP for full AV technology is nearly \$1,000 higher if HV capability maintained.
- □ What if SAVs exist at \$0.50 to \$2 per mile? Will people still use private cars?

Vehicle Ownership Preference	\$2/mile	\$1/mile	\$0.50/mile
NOT OWN personal vehicle RELY primarily on SAVs	3.6%	4.3%	4.4%
NOT OWN vehicle, Use COMBO of SAVs & other modes	3.6%	3.7%	4.1%
Rely primarily on other modes, like Bike, Walk & Transit	10 /%	9.2%	7.5%
MOSTLY USE SAVs but still own 1+ vehicles	7.5%	8.5%	12.5%
SOME SAV USE Rely primarily on personal vehicle(s)	29.3%	31.2%	32.4%
NO SAV USE Rely primarily on personal vehicles	44 5%	42.5%	38.3%

Results: SAVs + Policy Opinions

- □ Respondents state **average WTP** for **SAV**s = **\$0.44/mile**.
- □ 49% select dynamic ride-sharing (DRS) at 40% discount vs. "private" SAV.
- □ Just 19% say their SAV rides will be DRS, assuming a 40% discount.

Will you do some things more often if SAVs are available?	Very Likely	Somewhat Likely	Neither Likely nor Unlikely	Somewhat Unlikely	Very Unlikely
I will go places where parking is an issue more often, like downtown.	14.7%	26.5%	16.6%	9.3%	32.9%
I will use public transit more often, with SAVs as a backup	7.3%	19.7%	20.5%	14.3%	38.3%
I will use bikeshare or walk more, with SAVs as a backup	5.4%	17.1%	22.5%	13.8%	41.2%

- Respondents believe ~20% of AV travel should be allowed empty for both SAV fleets & private AVs!
- 24.8% believe empty travel should always be banned or heavily tolled.

Fleet Evolution

- Simulation through year 2050 using MATLAB.
- Decisions via series of regression models (calibrated using survey results & MNL, ordered probit, & WLS specifications).
- Includes vehicle acquisition & release, SAV use, home location, & VMT by mode & vehicle type (powertrain & automation alternatives).
- 7 scenarios include different rates of AV technology price reductions & WTP for AVs retaining an HV option.

Household Fleet Microsimulation

Predicted Household Fleet in 2035 & 2050

Scenario	2035 % AV	2035 % HV	2050 % AV	2050 % HV
5%/yr AV Price Decline + HV Capability	8.6%	91.4%	55.1%	44.9%
5% Decline + No HV Capability	<u>2.4%</u>	97.6%	<u>32.4%</u>	67.6%
7.5%/yr AV Price Decline + HV Capability	17.4%	82.6%	73.7%	26.3%
7.5% Decline + No HV Capability	11.0%	89.0%	52.5%	47.5%
10%/yr AV Price Decline + HV Capability	33.2%	66.8%	84.3%	15.7%
10% Decline + No HV Capability	18.8%	81.2%	65.2%	34.8%

- Much higher AV adoption rates if HV option is retained.
- Pricing decline assumptions are key in future-year adoption levels.

AV Ownership Shares by US Households Over Time, across 7 Scenarios

Mileage Splits in 2035 & 2050

	SAVs	in <mark>2035</mark>	Privately-Held Cars 2035		SAVs in 2050		Privately-Held Cars 2050	
Scenario vs. Year	2035 DRS	Private SAV	2035 AV	HV	2035 DRS	Private SAV	2050 AV	2050 HV
(1) 5% Decline + HV Capability	5.6%	11.0%	9.6%	73.8%	12.1%	23.3%	39.8%	24.9%
(2) 5% Decline + No HV Capability	5.6%	11.0%	3.3%	80.2%	12.1%	23.3%	<u>25.1%</u>	39.4%
(3) 7.5% Decline + HV Capability	5.6%	11.0%	17.7%	65.7%	12.1%	23.2%	50.1%	13.6%
(4) 7.5% Decline + No HV Capability	5.8%	11.2%	12.1%	71.0%	12.5%	23.8%	39.3%	24.3%
(5) 10% Decline + HV Capability	5.5%	10.8%	31.5%	52.2%	12.0%	23.1%	<u>57.3%</u>	7.7%
(6) 10% Decline + No HV Capability	5.6%	10.9%	19.8%	63.8%	12.0%	23.1%	47.1%	17.9%

- Total SAV use is 16% & then 35% of VMT. Private SAV is double that of DRS.
- VMT per vehicle is higher for AVs than HVs, due to lower vehicle age.

Conclusions

- Americans' willingness to give up vehicle ownership is low, even among those who expect to rely mostly on SAVs.
- Proactive policies to limit empty driving are needed to moderate congestion from empty VMT. Americans appear unwilling to limit such driving.
- AV price drops & WTP to retain human-driving option are key to AV adoption rates.
- Overall home locations not significantly affected by these transport technologies.

Caveat: Changing **demographics** (e.g., aging of the population) can affect results.

Part 2

Agent-Based Models for Shared AVs

- Less than 20% of newer (& 15% of all) personal vehicles are in-use at peak times, even with 5-minute pickup & drop-off buffers.
- Car-sharing programs like Car2go & ZipCar have expanded quickly, with the number of U.S. users doubling every year or two, over the past decade.
- Shared Autonomous Vehicles (SAVs) can help overcome car-sharing barriers, like return-trip certainty & vehicle access distances.

Agent-Based Model Framework

- Grid-based 10 mi x 10 mi urban area with 0.25-sq. mile zones.
- Trip generation:
 - Poisson-based PK & OP counts for trip generation, every 5 minutes.
 - Higher trip production & attraction rates closer to city center.
 - Mostly round-trip travel, with 78% travelers returning via SAVs.
 - Random departure times & trip distances (2009 NHTS).
- SAVs travel at fixed speeds, with 5 min. intervals.

Trip Generation

Dwell Times (hrs.)

Trip Distances (mi.)

Example: One SAV's 24-hour Journey

- Urban Core
 Higher AM Trip
 Attraction
- Outer
 Periphery
 Higher PM Trip
 Attraction
- Red Arrows
 SAV Relocation
- Blue ArrowsServing Riders

Case Study Results

□ **100 days were simulated** to assess SAV travel implications.

Scenario Results

- Each SAV replaced 9 to 13 conventional vehicles.
- Avg. wait time ≈ 2.8 min.
- 11% new/induced (empty-vehicle) travel.
- Yet 5% to 50% (GHG vs. VOCs) life-cycle emissions reductions, thanks to smaller vehicles, fewer cold starts, & less parking infrastructure!

Parameter	Value		
Service area	10 mi. x 10 mi.		
Outer trip generation rate	9 trips/cell/day		
CBD edge trip generation rate	27 trips/cell/day		
CBD core trip generation rate	30 trips/cell/day		
Off-peak speed	33 mph		
Peak speed	21 mph		
AM peak	7 AM - 8 AM		
PM peak	4 PM - 6:30 PM		
Trip share returning by SAV	78%		

Part 3

What if SAVs Serve Central Austin, & Offer Dynamic Ride-Sharing (DRS)?

Case Study Results

- 24-hour days simulated with 56,300 to 270,000 trips served.
- Excellent Level of Service (typ. wait time < 3 min.)</p>
- □ 1:10 & 1:8 veh. replacement rates (with & w/o DRS)
- System pays for itself with just \$1/mile fares!
- Electric vehicles (Leaf & Model S) also tested (with inductive charging), using
 100 mi x 100 mi region.
- DRS saves more emissions -& VMT even falls (vs. BAU).

Measure	With DRS	Without DRS
SAV fleet size	1,855	2,181
Veh. replacement rate	9.95	8.47
Average wait time	57 sec	47 sec
% Waiting > 10 min.	0.60%	0.33%
5-6 PM avg. wait	3.0 min	2.4 min
Avg. total trip time	14.4 min	13.8 min
New VMT introduced	4.90%	7.92%
# rides shared	5,754	0
% VMT shared	4.50%	0%

Part 4

What if SAVs Serve the Entire Region? & Are SAElectricVs?

Shared Autonomous Electric Vehicles SAEVs

or

Station Generation via 30-day Initial Run

Charging Station Locations

- Charging stations generated based on demand.
- Number of charging stations formed is dependent only on vehicle range.
- Stations formed for
 200-mile range (left)
 & 60-mile range (right)

Central Austin Station Locations

Assuming 60 mile range + 4 hour charge time + 5:1 travelers per SAEV (= 28 stations over 6 x 10 mi area)

Austin SAEV Results

Slow Fast Fast Charge, Slow **Fast** Charge, Charge. Long-Range, Gas Scenario Charge, Charge, SAV **Short-Range Short-**Smaller Long-Range Long-Range **SAEV** Range **Fleet** Range (mi) Recharge/Refuel Time (min) # of Charging/Gas Stations Fleet Size (# vehicles) Avg. Daily miles per Vehicle % of Unserved Trips Avg. Daily Trips per Vehicle **Avg Wait Time Per Trip (min)** % Unoccupied Travel % Travel for Charging

- Fleet size is key to lower response times. Tripling fleet (from 9:1 to 3:1 travelers per SAEV) lowers average response times by >75%.
- Longer charge times increase response times & unserved trips rise dramatically.
- Longer ranges lower empty VMT & shares of unserved trips.
- Trips in Austin's urban core served best (e.g., never exceed 30-min wait times).

SAEV Cost Assumptions

- Conventional BEV Costs: \$25,000 (short range) to \$35,000 (long-range)
- Self-driving Technology Cost: \$5,000 to \$25,000 per vehicle
- Battery Replacement: \$100 \$190 per kWh (once per vehicle life)
- Vehicle Maintenance: 5.4¢ to -6.6¢ per mile
- Insurance & Registration: \$550 \$2,200 per vehicle-year
- Electricity: 8¢ to 20¢ per kWh
- Level II Chargers: \$8,000 \$18,000 each
- Level II Charger Maintenance: \$25 \$50 per year, per charger
- Fast (Level III) Charger: \$10,000 \$100,000 per charger
- Fast Charger Maintenance: \$1,000 \$2,000 per year, per charger
- Station Properties: \$1,980 to \$6,900 per vehicle space (based on location)

Financial Results: Costs per Mile

Mid-Range Expected Costs per mile	Hybrid SAV	Slow Charge, Short- Range	Slow Charge, Long- Range	Fast- Charge, Long- Range	Fast- Charge, Short Range	Fast-Charge, Long-Range, Reduced Fleet
Electricity/Fuel	6.39¢/mi	4.51	4.26	4.21	4.57	4.29
Vehicle Maint., Admin + Attendants	18.4¢/mi	19.7	18.6	18.4	19.9	18.7
Charger Costs (Land + Infrastructure)	n/a	3.57	1.35	2.15	6.30	2.20
Vehicle Purchase	19.6¢/mi	27.7	29.4	28.3	25.3	28.4
Battery Costs	n/a	1.58	4.91	4.85	1.60	4.95
Total Costs per Mile	45¢/mi	59¢/mi	59¢/mi	59¢/mi	58¢/mi	59¢/mi
Daily Vehicle Profit (\$1/mile fare)	\$234 / veh-day	\$72	\$132	\$170	\$126	\$187
#Trips/vehicle-day	28 trips/ veh-day	11	23	28	24	35
Response time/trip	4.4 min	9.8	8.8	5.5	6.2	9.6

In Conclusion...

- CAVs offer tremendous benefits for mobility, safety & parking, but will add VMT & congestion.
- SAVs offer a new & exciting (transit?) mode, with each SAV replacing ~8 personal vehicles, for same level of motorized tripmaking.
- □ SAVs add **7-15% extra VMT** (though DRS may reduce VMT).
- Yet SAVs may bring useful travel-cost savings, emissions benefits
 + profits for transit providers.
- Smart system management practices (like credit-based congestion pricing) are also needed, to avoid gridlock, sprawl, greater energy use, & other downsides.

Thank you! Questions & Suggestions?

30 CAV papers & reports at www.caee.utexas.edu prof/kockelman