Introduction to Intelligent Vehicles [0. Course Introduction]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Fall 2019

Introduction to Myself

- ☐ B.S. Student
 - > 2001.09--2005.06, CSIE Department, NTU
- ☐ M.S. Student
 - > 2005.09--2007.06, GIEE (EDA Group), NTU
- ☐ Ph.D. Student
 - > 2009.08--2015.08, EECS Department, UC Berkeley
 - Some interesting teaching experience here
- Researcher
 - ➤ 2015.09--2018.07, Systems and Software Division, Toyota InfoTechnology Center (Mountain View, CA)
- ☐ Assistant Professor
 - ➤ 2018.08--, CSIE Department, NTU

And You Are?

- ☐ Department?
- ☐ Year?
- ☐ Enrolled or Auditing?
- ☐ Waiting List?
- ☐ Programming Skill?
- ☐ Research Topic?
- ☐ Career Goal?

Intelligent Vehicles

■ Connected and Autonomous Vehicles (CAV)

> A good application may need both of "connectivity" and "autonomy"

- ➤ What if the intersection management does not have connectivity?
- What if the intersection management does not have autonomy?

Learning Goals (1/2)

- ☐ Skills in
 - Modeling
 - We will work (design and analyze) upon models rather than real vehicles
 - Design
 - We will optimize some objectives (performance, robustness, security, etc.)
 - > Analysis
 - How good are the designs?
- ☐ Philosophy behind technology (which may expire soon)
 - > Example
 - The Controller Area Network (CAN) is old and slow (~500kbps)
 - Why is it still the most popular in-vehicular network protocol?

Learning Goals (2/2)

- NOT covered in this course
 - > The mechanics of vehicles
 - > The physics of vehicles
 - > The chemistry of vehicles
 - > Electric vehicles
- Covered a little in this course
 - Machine learning

https://www.thehenryford.org/

https://www.formula1.com

Calendar (Tentative)

Date	Topic	Note
Sep 9	[0] Course Introduction [1] System Architecture	Homework 0 Posted
Sep 16	[2] Timing Analysis I	
Sep 23	[3] Timing Analysis II	Homework 1 Posted
Sep 30	[4] System Design	
Oct 7	[5] Advanced Driver-Assistance Systems [6] Cooperative Adaptive Cruise Control	Homework 1 Due (Noon)
Oct 14	TBD	Homework 2 Posted
Oct 21	[7] Intersection Management	V-7775
Oct 28	[8] Connectivity	Homework 2 Due (Noon)
Nov 4	[9] Sensing and Perception	Homework 3 Posted
Nov 11	[10] Planning and Control	V-775
Nov 18	[11] Verification and Testing	Project Proposal Due (Noon)
Nov 25	[12] Security	Homework 3 Due (Noon)
Dec 2	[12] Security	V-7775
Dec 9	Midterm	N-1175
Dec 16	[13] Edge Computing [14] Certification)
Dec 23	Project Presentation	
Dec 30	Project Presentation	0
Jan 6	Project Presentation [15] Summary	Project Report Due

► 2 Weeks for HW1

2 Weeks for HW2

→ 3 Weeks for Proposal and HW3

2 Weeks for Midterm

4 Weeks for Project Presentation and Report

Lecture Plan

- ☐ Four parts in sequence
 - > [Part 1] Preliminary
 - > [Part 2] Applications
 - > [Part 3] Intelligent Technology
 - ➤ [Part 4] Advanced Topics
- ☐ However, please expect that topics will be "discrete"
 - May exchange the order of topics
 - May have a business trip
- ☐ Third hours in the second half of the semester
 - > May have discussion, practice, project presentation, or random talks
 - Reason
 - Three-hour knowledge is too much

Websites and TAs

- Basic information
 - https://www.csie.ntu.edu.tw/~cwlin/teaching/5452.html
- ☐ Slides, homework assignments, homework solutions, announcement, and discussion
 - > NTU COOL: https://cool.ntu.edu.tw/courses/366
 - > You are mandatory to check the announcement there
- ☐ Homework submission and grading
 - ➤ Gradescope: https://www.gradescope.com/courses/54496
 - > You can use the entry code MVWNX8 to sign up
 - > You can use Homework 0 to practice it
- ☐ TAs: Yi-Ting Lee and Pin-Yen Huang

Grading (1/2)

- ☐ Homework: 20%➢ Homework 1: 7%➢ Homework 2: 6%➢ Homework 3: 7%
- ☐ Midterm: 40%
- ☐ Project: 40%
 - ➤ Proposal: 5%
 - > Presentation: 10%
 - Earlier? (you do not need to complete your work to present)
 - December 23 and 30 (you do not need to complete your work to present)
 - January 6 (you should complete your work to present)
 - > Report: 25%
- Bonus

Grading (2/2)

Please

- > Do not negotiate your final grade
 - Some philosophy
- > Follow the policy on academic honesty
 - Any student found to be cheating risks automatically failing the class

Homework

- ☐ Homework is due at **noon**
 - No late homework is accepted
 - Though the submission site will be open until 1pm
 - Exception: you email Chung-Wei and get the approval before the deadline (noon)
- ☐ You will need to do some programming
 - > Example: read numbers from files and compute something
- ☐ You are encouraged to work on homework in study groups, but you must write up the solutions on your own

Midterm

- ☐ You can bring 1 page of single sided A4 note
- ☐ You can ask (= challenge) for regrading (based on problems) before a deadline, and Chung-Wei will regrade them
 - > For each problem
 - If your score becomes higher, you win the challenge
 - If your score becomes lower, you lose the challenge
 - Starting from the 3rd failed challenge, you get a deduction of midterm score

Project

- ☐ A team can have 1 up to 3 members
 - More members, higher expectation
 - The contribution of each member needs to be specified clearly in the report
- ☐ A project can be survey, implementation, or research
 - You can propose your own topic
 - Of course, it must be related to intelligent vehicles
- ☐ It is highly encouraged to combine your project with your current research, your thesis, or another course project (if the instructor agrees)
 - > This must be specified clearly in the proposal and the report
 - > Anything you have completed before the semester is not counted

Selection of Project Topics

- ☐ Survey
 - ➤ If you want to have the safest choice
- ☐ Implementation
 - > If you are a programming enthusiast
- ☐ Research
 - > If you are a graduate student or thinking to pursue Ph.D. abroad

Examples of Project Topics (1/3)

■ Machine learning

- Behavior prediction
- > Image recognition, traffic sign recognition
- > Pedestrian recognition, objective detection
- Play around some data (check https://www.its.dot.gov/data/)

Applications

- Advanced Driver-Assistance Systems (ADAS)
- Cooperative Adaptive Cruise Control (CACC)
- > Intersection management
 - Payment with blockchains?

Examples of Project Topics (2/3)

- Networking
 - > Performance evaluation
 - Comparison between different communication protocols
- ☐ Security
 - > Adversary classification
 - > Intrusion detection
 - > Applications of blockchain
- ☐ Human-computer interaction
 - Augmented reality and virtual reality?
 - > "Safe" interface
 - > Language understanding

Examples of Project Topics (3/3)

- ☐ Software architecture and engineering
 - Edge computing
 - Architecture (https://local.iteris.com/arc-it/)
 - > Open source software
- ☐ Theory
 - > Scheduling
 - > Timing analysis
 - Game theory analysis
- Design methodology and tools
 - Simulation environment (e.g., Simulink, Unity)
 - > Data collection and creation
 - ➤ Modeling, optimization, formal verification

Q&A