Fecha. Cálculo Diferencial e Integral-RECUPERATORIO DEL SEGUNDO EXA Apellido/s y nombre/s del alumno/a. Apellido/s y nombre/s del profesor/a: Apellido/s y nombre/s del profesor/a: 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 + 3x - 4$ y $g(x) = -2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funciones $f(x) = 2x^2 - x + 4$ Calcular el área encerrada 1) Dada las funci	por sus gráficas
Dada las funciones) (X) — X Calcular el volumen del sólido generado por la rotación de la región limitada por las funciones alrededor del eje X.	s. y = 2x , y = 4x
3) Estudiar la continuidad de la función en los puntos que se indican.	1) 20 ptos. 2) 20 ptos. 3) 20 ptos.
$f: \mathbb{R}^2 \to \mathbb{R} / f(x) = \begin{cases} 4 & si & (x;y) = (0;0) \\ \frac{-x^2 + 2y}{5x + 4y} & si & (x;y) \neq (0;0) & \wedge (x;y) \neq (1;2) \\ 6 & si & (x;y) = (1;2) \end{cases}$	4) 20 ptos. 5) 20 ptos.
and less to continuidad on los puntos (0:0) y (1:2)	

4) Dada la función: $f(x,y) = e^{xy} \cdot sen\left(\frac{x}{y}\right)$. Determinar las siguientes derivadas parciales:

a)
$$f_{xy}(x;y)$$
 b) $f_{xx}(x;y)$

5) Hallar los extremos relativos de la siguiente función $z = 4x^3 - 3xy + 2y^2 + 5$

Fecha	Cálculo Diferencial e Integral-RECUPERATORIO DEL SEG	UNDO EXAMEN PARCIAL Tema 2
Apellido/s y nombre/s	del alumno/a:L	U o DNI:
Apellido/s y nombre/s	del profesor/a:	
4) Dada las Éconianas	$s(x) = 2x^2 - 2x \pm 4$ $y = g(x) = 2x^2 \pm x = 4$ Calcular el áres	a encerrada por sus gráficas

PUNTAJE:

1) 20 ptos. 2) 20 ptos. 3) 20 ptos. 4) 20 ptos. 5) 20 ptos.

- 1) Dada las funciones $f(x) = -2x^2 3x + 4$ y $g(x) = 2x^2 + x 4$. Calcular el área encerrada por sus gráficas
- 2) Calcular el volumen del sólido generado por la rotación de la región limitada por las funciones. $y = x^2$, y = xalrededor del eje X
- 3) Estudiar la continuidad de la función en los puntos que se indican.

$$f: \mathbb{R}^2 \to \mathbb{R} / f(x) = \begin{cases} 4 & si & (x;y) = (0;0) \\ \frac{x^2 - 2y}{5x + 4y} & si & (x;y) \neq (0;0) \land (x;y) \neq (1;2) \\ 6 & si & (x;y) = (1;2) \end{cases}$$

Analizar la continuidad en los puntos (0;0) y (1;2)

- 4) Dada la función: $f(x,y) = e^{xy} \cdot \cos(\frac{y}{x})$. Determinar las siguientes derivadas parciales a) fxy (x:y)
- 5) Hallar los extremos relativos de la siguiente función $z = -4x^3 + 3xy 2y^2 5$

Cálculo Diferencial e Integral

SEGUNDO EXAMEN PARCIAL

Tema 1

Apellido/s y nombre/s del alumno/a:LU o DNI:LU o DNI:

Apellido/s y nombre/s del profesor/a:

- a) Calcule el área de la región del plano limitada por las curvas $f(x) = |x^2 4x + 3|$ e y = 0. 1) b) Siendo $f(x) = 2x^{\frac{3}{2}}$, halle la longitud de arco del gráfico de f, desde x = 0 hasta x = 1.
- Analice la continuidad de la siguiente función en el punto (0,0). Si fuera discontinua, indique el tipo de 2)

$$f(x,y) = \left\{ \frac{3x^2 + y^2}{x^4 + y^2}, \ si(x,y) \neq (0,0) \ 0, \ si(x,y) = (0,0) \right\}$$

Determine el valor de verdad de la siguiente proposición: 3)

$$f_{xy} = f_{yx}$$
, $si f(x, y) = xe^{y^2} + ylnx$

Halle las coordenadas de los extremos relativos y puntos de ensilladura, si existen, de la siguiente curva: 4)

$$f(x, y) = x^3 + y^2 + 2xy - 4x - 3y + 5$$

PUNTUACIÓN:	1a) 15p	1b) 15p	2) 20p	3) 25p	4) 25p	

Cálculo Diferencial e Integral

SEGUNDO EXAMEN PARCIAL

Tema 2

Apellido/s y nombre/s del alumno/a:LU o DNI:LU o DNI:

Apellido/s y nombre/s del profesor/a:

- a) Halle el área de la figura limitada por: $y = x^2$, y = x, x = 0, x = 21) b) Calcule el volumen del sólido obtenido al girar, alrededor del eje x, la región limitada por las curvas:
 - $y = 2 \frac{1}{2}x$, y = 0, x = 1, x = 2
- Analice la continuidad de la siguiente función en el punto (1,2). Si fuera discontinua, indique el tipo de 2) discontinuidad que presenta.

$$f(x,y) = \left\{2x^3 - 3y^2 + 1, \ si(x,y) \neq (1,2) \ 0, \ si(x,y) = (1,2)\right\}$$

Determine el valor de verdad de la siguiente proposición:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0, \ si \ f(x, y) = e^x seny$$

4) Halle las coordenadas de los extremos relativos y puntos de ensilladura, si existen, de la siguiente curva:

$$f(x,y) = 14x^2 - 2x^3 + 2y^2 + 4xy$$

Cálculo Diferencial e Integral	SEGUNDO EXAMEN PAI	RCIAL Tema 1
Apellido/s y Nombre/s del alumr	no/a:	LU o DNI:
<i>1)</i> Halle y grafique una (15p)	curva de nivel de la fu	$nción f(x,y) = x^2 + 4y^2$
2) Dada la siguiente función:	$f(x, y) = \frac{(x - y)^2}{x^2 - y^2}$	
a) Calcule los (10p)	límites iterados	en $P = (0,0)$
• • •	a del límite doble en $P = (0,0)$. Justifique su respuesta
• •	lineal de la función $f(x,y) = x$	r^2+y^2-2xy , en $P=(-2,3)$
(15p)		2
4) a)	Calcule f_{yz} ,	siendo $f(x, y, z) = 2^{x^2zy}$
(15p) b) Halle las coordenadas de la siguiente función: $z = y^3$	e los extremos relativos y puntos de $-x^2 + 2x - 3y - 2$	(20p)
5) Resuelva	la siguiente	integral: $\int_{1}^{\infty} \frac{1}{x^2} dx$
(15p)		•
Cálculo Diferencial e Integral	SEGUNDO EXAMEN PAI	RCIAL Tema 2
Anellido/s v Nombre/s del alumr	no/a:	I II o DNI:

- Halle y grafique una superficie de nivel de la función f(x,y,z) = x-2y+3z1) (15p)
- $f(x,y) = \frac{-21x+15y+87}{-6x-18y-42}$ 2) Dada la siguiente función:
 - P = (2,-3)a) Calcule los límites iterados en (10p)
 - b) Analice la existencia del límite doble en P = (2,-3). Justifique su respuesta (10p)
- Calcule la aproximación lineal de la función $f(x,y) = 1-x^2-2y^2$, en P = (1,01;0,98)3) (15p)

4) (15p)	a)	Calcule f_{xx}	У	f_{xy} ,	siendo $f(x, y)$	$y) = sen(x^2y)$
\ 17	b) Halle	las coordenadas	de los extremos	relativos y pu	ntos de ensilladura,	si existen, de

 $z = \frac{1}{3}x^3 + y^3 + \frac{3}{2}x^2 - \frac{9}{2}y^2 + 1$ (20p)

5) Resuelva la siguiente integral:
$$\int_{1-x}^{3} \int_{1-x}^{x} (x^2 - y^2) dy dx$$
 (15p)

Cálculo Diferencial e Integral SEGUNDO EXAMEN PARCIAL Tema 3

Apellido/s y Nombre/s del alumno/a: LU o DNI:

1) Halle y grafique una curva de nivel de la función $f(x,y) = \sqrt{x^2 + y^2}$ (15p)

$$f(x,y) = \frac{x^2 - y^2}{(5x + 5y)^2}$$
 Dada la siguiente función:

- a) Calcule los límites iterados en P=(0,0) (10p)
- b) Analice la existencia del límite doble en P=(0,0) . Justifique su respuesta (10p)
- 3) Calcule la aproximación lineal de la función $f(x,y) = (2x-y)^2 + 2x + y$, en P = (0,99; 1,99) (15p)

4) a) Calcule
$$f_{xz}$$
, siendo $f(x,y,z)=3^{xyz^2}$ (15p)

b) Halle las coordenadas de los extremos relativos y puntos de ensilladura, si existen, de la siguiente función: $z = x^3 - y^2 + 2y - 3x + 2$ (20p)

5) Resuelva la siguiente integral: $\int_{-\infty}^{0} e^{x} dx$ (15p)

1) Halle y grafique una superficie de nivel de la función f(x,y,z) = x-y-z+2 (15p)

 $f(x,y) = \frac{-8x - 12y - 28}{14x - 10y - 58}$ 2) Dada la siguiente función:

- a) Calcule los límites iterados en P=(2,-3) (10p)
- b) Analice la existencia del límite doble en P = (2,-3). Justifique su respuesta (10p)
- 3) Calcule la aproximación lineal de la función $f(x,y) = x^3y^4$, en P = (0,0) (15p)
- 4) a) Calcule f_{xx} y f_{xy} , siendo $f(x,y) = \cos(x^2y)$ (15p)
 - b) Halle las coordenadas de los extremos relativos y puntos de ensilladura, si existen, de la siguiente función: $z = x^3 + y^3 6xy$ (20p)
- 5) Resuelva la siguiente integral: $\int_{1-x}^{3} \int_{1-x}^{x} (x^2 y^2) dy dx$ (15p)

Segundo Parcial de Cálculo Diferencial e Integral - LSI - 2021

Apellido y nombre del alumno: DNI: DNI:

1. Resuelva las siguientes integrales:

a)
$$\int \frac{\ln x}{x} dx$$
 b) $\int \sqrt{x \ln x} dx$

2. Calcule el área limitada por las gráficas de las siguientes funciones de dominio real:

$$3y = x^2$$
 e $y = -x^2 + 4x$

- **3.** Halle el volumen generado por las siguientes curvas, al girar alrededor del eje x: $y = 2x x^2$ e y = -x + 2
- **4.** Determine y grafique dos curvas de nivel de la función: $f(x,y) = 8 x^2 2y$
- **5.** Analice la continuidad de la siguiente función en el punto (0,0). Si fuera discontinua, indique el tipo de discontinuidad que presenta

$$f(x,y) = \{\frac{x-y}{x^2-y^2}, si x^2 \neq y^2 0, si x^2 = y^2 \}$$

NOTA: a cada ejercicio correcto se le asigna 20 puntos.

Segundo Parcial de Cálculo Diferencial e Integral - LSI - 2021

Apellido y nombre del alumno: DNI: DNI:

1. Resuelva las siguientes integrales:

a)
$$\int senx \cos^2 x dx$$

b)
$$\int e^x senx dx$$

2. Calcule el área limitada por las gráficas de las siguientes funciones de dominio real:

$$y = \frac{1}{4}x^2$$

$$y = \frac{1}{4}x^2 \qquad \text{e} \qquad y = 2\sqrt{x}$$

3. Halle el volumen generado por las siguientes curvas, al girar alrededor del eje x: $y = 6x - x^2 \qquad \text{e} \qquad y = x$

4. Determine y grafique el dominio de la función: $f(x, y) = \frac{2x-y}{(x-2)^2+(y-1)^2}$

5. Analice la continuidad de la siguiente función en el punto (0,0). Si fuera discontinua, indique el tipo de discontinuidad que presenta

$$f(x,y) = \begin{cases} \frac{3x^2y^2}{x^4+y^4}, & si(x,y) \neq (0,0) \ 0, & si(x,y) = (0,0) \end{cases}$$

NOTA: a cada ejercicio correcto se le asigna 20 puntos.

Segundo Parcial de Cálculo Diferencial e Integral - 2022 - Tema 1

1. Resuelva las siguientes integrales:

a)
$$\int \frac{e^{-x}}{1+e^{-x}} dx$$
 b) $\int \sqrt{x} \ln x dx$ (15p c/u)

2. Calcule el área limitada por las gráficas de las siguientes funciones:

$$y = x^2 - 4x$$
 e $y = 6x - x^2$
Grafique y justifique el cálculo. (20p)

- **3.** Halle los límites iterados de la función $f(x,y) = \frac{2y^2}{x^2 + y^2}$ en el punto P(0,0). ¿Existe el límite doble de dicha función en tal punto? Justifique. (25p)
- **4.** Sea $f(x,y) = e^x seny$. Determine el valor de verdad de la proposición: $f_{xx}^{"} + f_{yy}^{"} = 0$. Justifique (25p)

Segundo Parcial de Cálculo Diferencial e Integral – 2022 – Tema 2

1. Resuelva las siguientes integrales:

a)
$$\int \frac{e^x}{\sqrt{1-e^{2x}}} dx$$
 b) $\int x^3 dx$ (15p c/u)

2. Calcule el área limitada por las gráficas de las siguientes funciones:

$$y = x^2 - 4$$
 e $y = 8 - 2x^2$
Grafique y justifique el cálculo. (20p)

3. Halle los límites iterados de la función $f(x,y) = \frac{4x-y}{3x+2y}$, en el punto (0,0).

¿Existe el límite doble de dicha función en tal punto? Justifique. (25p)

4. Sea $f(x,y) = xe^{y^2} + ylnx$. Determine el valor de verdad de la proposición: $f_{xy} = f_{yx}$. Justifique (25p)

Calculo Diferencial e Integral RECUPERATORIO DEL 2do PARCIAL

Apellido y nombres......DNI:

- 1) Determine y grafique el dominio de la función: $f(x,y) = \sqrt{-y x^2}$
- 2) Calcule el área limitada por las gráficas de las siguientes funciones de dominio real:

$$y=-3x$$
 , $2y+x=0$, La recta que pasa por los puntos: (-3.9) ; (-6.3)

- 3) Dada la siguiente función: $y = 2\sqrt{x}$
- a) Hallar la longitud del arco de curva en el intervalo [1,4]
- b) Determinar el volumen del cuerpo engendrado por la curva entre $x_1 = 0$ y $x_2 = 9$, cuando giran alrededor del eje y.
- 4) a) Halle los límites iterados o sucesivos de la función: $f(x,y) = \frac{-2x^2 4 \cdot x 4 \cdot (y-1)^2}{2x^2 + 2y^2 10}$ en el punto P(-2,1)
- b) ¿Existe el límite doble? Justifique su respuesta.
- 5) Resuelva la siguiente integral: $\int_2^\infty \frac{3x}{e^{x^3}} \, dx$

Recuerden:

- Escribir en cada una de sus hojas: Apellido y Nombre / DNI o LU.
- Escribir el nombre del profesor/a.
- Respetar el formato de presentación: 1(un) único archivo PDF
- Respetar el horario establecido.