

스마트 공장 제품 품질 상태 분류 AI 오프라인 해커톤

팀 쥬혁이 강민규 김영준 배홍섭 전주혁 최다희

- Intro
- Feature Engineering
- Validation
- Modeling
- 05 Outro

대회개요

대회 배경 및 목표

제조 지능화를 통해 공정 과정에서 발생하는 이벤트에 신속 대응 및 인전 성과 효율성 극대화하기 위한 방안 도모

제공데이터

Train.csv:

학습 데이터셋(1132개), PRODUCT_ID, Y_Class(3개), Y_Quality, LINE, PRODUCT_CODE, X Feature(3326개)

Test.csv:

테스트 데이터셋(535개), PRODUCT_ID, LINE, PRODUCT_CODE, X Feature(3326개)

평가 항목

- 모델 성능
- Feature 상관관계분석
- Feature Selection, 결측치보간
- Validation set 구축 전략
- 모델 적용 가능성

대회개요 Our Approach

How to Access Data

아이디어 실제 공정은 Shut Down 기간이 존재

분석 PRODUCT CODE와 LINE 피처 존재

아이디어 같은 PRODUCT CODE라도 측정한 기계가 다르다면?

검증 데이터가 나누어지는 특성 발견

적용 다른 측정 기기들을 기반으로 split

d	I.	IM	IN	10	10	IQ		順	15	IT	IU	IV
1	X,241	X,242	X,243	X,244	X,245	X,246		X,247	X_248	X,249	X,250	X,251
ž							- 1		8	0 4	5 11	115
1							- 1	- 1	1	1 4	5 12	
6	999	36	36	3		6						
5							- 1	- 8	9	0 4	5 11	4
6	999	36.3	36.3	3		3						
7							1	- 1	3	4 4	5 11	
0	999	36	36	3		6						
p							2	9	5 12	4 4	5 11	
0	999	36	36	3		6						
1							- 2		8	0 4	5 11	90
2							2	8	7	0 4	5 11	12
3	999	35.8	35.8	3		3						
4							2	- 4	8	0 4	5 11	120
5							1		6 2	7 4	5 12	
6	999	34.4	34.4	3		6						
7	999	36	36	3		3						
8							1	- 8	9	0 4	5 11	9
9	999	34.7	34.7	3		6						
0	999	36	36	3		3						
3							- 1	9	2 15	2 4	5 11	(
2	999	35.7	35.7	3		3						
3							- 2	- 8	9 14	9 4	5 11	(
4	999	35	35	3		6						
5	999	35	35	3		3						
6							- 1	9	6	5 4	5 12	
7	999	36	36	3		6						
9	999	35	35	3		3						
9							11	9	0	0 4	5 11	4
0							- 1	- 4	9	0 4	5 11	9
5	999	36.4	36.4	3		3						
2							4	9	3 15	0 4	5 12	
3	999	34.4	34.4	3		3						
4							1	- 1	6 9	5 4	5 12	
5							2		1	0 4	5 11	6

01 Intro

O2 Feature Engineering

03 Validation

04 Modeling

05 Outro

결측치 보간 Feature Selection & Feature Correlation

Before

After

제품 코드별, 생산 라인별 고유 칼럼 존재로 인해 결측치가 많아 트리기반 모델 학습에 있어서 일 반적인 통계량은 모델 학습에 방해가 될 것이라 판단하여 -9999 로 결측치를 대체함

결측치 보간 Feature Selection & Feature Correlation

Correlation

X_129 0.275226

X_128 0.272317

X 382 0.257216

X_1219 0.237186

X_1525 0.236820

X_3302 0.188313

X 3266 0.188305

X 3221 0.188299

X 3265 0.188276

X_3262 0.188276

Train 데이터셋에 대하여 Y_Quality 와 X_Feature 상관관계를 확인한 결과 전체 3326개 칼럼 중 3102개의 칼럼이 상관계가 0.1 이하로 대부분의 칼럼이 Y_Quality 와 낮은 상관성을 보임

PRODUCT_CODE 별로 데이터셋을 나눈 후 Y_Quality 와 X_Feature 사이 상관관계가 높은 피처가 다름을 확인

PRODUCT_CODE 별로 학습을 나눠서 진행

< A_31 상관관계 높은 피처> < T_ 31 상관관계 높은 피처 >

결측치 보간 Feature Selection & Feature Correlation

Correlation outro

Intro

X_Feature 사이 상관성이 매우 높음

실제 공정은 연속적 프로세스 과정이지만 **변수가 비식별화** 되어있고 **TIME_STAMP 누락**으로 인해 제공받은 데이터의 경우 time delay를 고려하기 어려웠음

실제 공정 과정에서는 시계열적 요소를 반영하여 더 좋은 성 등을 이끌 수 있을 것으로 해석됨

- 01 Intro
- **02** Feature Engineering
- **03** Validation
- **04** Modeling
- 05 Outro

Validation System - Stratified Sampling

Intro

10-CV Average Score

Intro

Thresholding Strategy – Variant of 'MetaClass' Algorithm

Figure 1. Example run of MetaClass on Nursery, a 5-class problem.

Converted version in ML

Decision Tree Structure

^{*} loss functions is gini, use all features

Thresholding Strategy – Variant of 'MetaClass' Algorithm

- 01 Intro
- **02** Feature Engineering
- **03** Validation
- **04** Modeling
- 05 Outro

모델소개 적용가능성

Catboost

특징

- Ordering Boosting & Random Permutation
 - Prevent Overfitting
- Auto Ordered Target Encoding & One-hot Encoding
- Categorical Feature Combinations
 - Feature Cardinality ↓
 - 연속형 변수가 아닌 수치형 변수는 범주형 변수로 볼 수 있음
- Optimized Parameter Tuning
 - Cat_features = 'LINE'

전체 데이터셋 중 Feature Cardinality 가 10 이하 인 Feature 개수 1622개 임을 확인할 수 있다.

Intro

학습시간

Intel(R) Xeon(R) CPU @ 2.20GHz

Model 1, 2:약 70sec

Model 3, 4 : 약 45sec

Model 5:약 5sec

"공정적용을 위한 빠른 학습이가능"

② 현업 적용 가능성

- 앙상블보다 구조가 단순하여 이해가 쉽고 현업 환경에서 시간 과 비용 절약 가능
- 빠른 예측속도로 고성능이 요구되는 실시간 시스템에서 유리
- 적은 컴퓨팅 자원을 필요로 하여 제한된 환경에서도 모델을 효 과적으로 사용할 수 있음

Valid: 0.68004

Test: 0.69342

- 01 Intro
- **02** Feature Engineering
- **03** Validation
- **04** Modeling
- 05 Outro

[참고_추가적인 시도 가능성]

IF 시간 정보와 Domain을 활용 가능할 때

- -> 각 피처들마다 Y_Quality의 반응에 영향을 미치는 시간이 다를 것
- -> 그 시간을 파악한다면 Transpose를 통해 새로운 피처들을 만들어 예측 성능이 높아질 것

1	A	В	С
1		DSL D-95	FIC21185(F1 Flow)
2	2015-01-01 0:00	396.6	550.4523
3	2015-01-01 1:00	396.6	551.4136
4	2015-01-01 2:00	396.6	550.1314
5	2015-01-01 3:00	396.6	550.2445
6	2015-01-01 4:00	396.6	550.4148
7	2015-01-01 5:00	396.6	551.0786
8	2015-01-01 6:00	396.6	369
9	2015-01-01 7:00	396.6	. 83

Outro

[참고_추가적인 시도 가능성]

Smoothing

Intro

-> Kalman filter, Low pass filter, MA, log ..etc 사용

Moving Average(30)

- -> 중심극한정리의 기본값인 30으로 설정
- -> 분산과 측정오차 보정

Kalman Filter

-> 이전 상태와 현재 측정값을 이용하여 예측값 을 계산하고, 측정값과 예측값을 조합하여 보다 정확한 추정값을 계산하는 통계적

