Project-Phase-2 Questions

Instructions:

- All problems are minimization-type.
- Some problem can be scaled to many number of variables. I have mentioned number of variables in the yellow box.
- The program should be generic so that any variable problem can be solved. I will ask you to run the examples with different number of variables.
- No. of variables for a given problem should be read from the input file.
- The codes developed in Project Phase-1 should be used for unidirectional searches
- Include linear independency check between two search directions. Also, include option of restart.
- Make slides and include your results (Table, convergence plots, etc.). You may change initial guess and/or input parameters to see their effect on the results.
- Make a zip file of your codes and ppt file, and name it as "G_group_number" and upload on TEAMS.

SUM SQUARES FUNCTION

Description:

Dimensions: d

The Sum Squares function, also referred to as the Axis Parallel Hyper-Ellipsoid function, has no minimum except the global one. It is continuous, convex and unimodal. It is shown here in its tw dimensional form.

Input Domain:

The function is usually evaluated on the hypercube $x_i \in [-10, 10]$, for all i = 1, ..., d, although this restricted to the hypercube $x_i \in [-5.12, 5.12]$, for all i = 1, ..., d.

Global Minimum:

$$f(\mathbf{x}^*) = 0$$
 , at $\mathbf{x}^* = (0, \dots, 0)$

Solve for five variables: $x = (x_1, x_2, x_3, x_4, x_5)^T$

ROSENBROCK FUNCTION

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]$$

Description:

Dimensions: d

The Rosenbrock function, also referred to as the Valley or Banana function, is a popular test progradient-based optimization algorithms. It is shown in the plot above in its two-dimensional form

The function is unimodal, and the global minimum lies in a narrow, parabolic valley. However, even this valley is easy to find, convergence to the minimum is difficult (Picheny et al., 2012).

Input Domain:

The function is usually evaluated on the hypercube $x_i \in [-5, 10]$, for all i = 1, ..., d, although it may restricted to the hypercube $x_i \in [-2.048, 2.048]$, for all i = 1, ..., d.

Global Minimum:

$$f(\mathbf{x}^*) = 0$$
, at $\mathbf{x}^* = (1, \dots, 1)$

Solve for three variables: $x = (x_1, x_2, x_3)^T$

DIXON-PRICE FUNCTION

$$f(\mathbf{x}) = (x_1 - 1)^2 + \sum_{i=2}^d i (2x_i^2 - x_{i-1})^2$$

Description:

Dimensions: d

Input Domain:

The function is usually evaluated on the hypercube $x_i \in [-10, 10]$, for all i = 1, ..., d.

Global Minimum:

$$f(\mathbf{x}^*)=0,$$
 at $x_i=2^{-\frac{2^i-2}{2^i}},$ for $i=1,...,d$

Solve for four variables: $x = (x_1, ..., x_4)^T$

TRID FUNCTION

Description:

Dimensions: d

The Trid function has no local minimum except the global one. It is shown here in its two-dimens

Input Domain:

The function is usually evaluated on the hypercube $x_i \in [-d^2,\,d^2]$, for all i = 1, ..., d.

Global Minimum:

Solve for six variables:
$$x = (x_1, ..., x_6)^T$$

$$f(\mathbf{x}^*) = -d(d+4)(d-1)/6$$
, at $x_i = i(d+1-i)$, for all $i = 1, 2, \dots, d$

ZAKHAROV FUNCTION

$$f(\mathbf{x}) = \sum_{i=1}^{d} x_i^2 + \left(\sum_{i=1}^{d} 0.5ix_i\right)^2 + \left(\sum_{i=1}^{d} 0.5ix_i\right)^4$$

Description:

Dimensions: d

The Zakharov function has no local minima except the global one. It is shown here in its two-din form.

Input Domain:

The function is usually evaluated on the hypercube $x_i \in [-5, 10]$, for all i = 1, ..., d.

Global Minimum:

Solve for two variables: $x = (x_1, x_2)^T$

$$f(\mathbf{x}^*) = 0$$
, at $\mathbf{x}^* = (0, \dots, 0)$