CS231n: Convolutional Neural Network for Visual Recognition

Lecture 1: Introduction

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 1 24-Mar-21

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 3 24-Mar-21

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 4 24-Mar-21

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 5 24-Mar-21

Computer Vision

- Object detection
- Object classification
- Scene understanding
- Semantic scene segmentation
- 3D reconstruction
- Object tracking
- Human pose estimation
- Activity recognition
- VQA
-

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 6 24-Mar-21

Today's agenda

A brief history of computer vision

CS231n overview

Evolution's Big Bang:

Cambrian Explosion, 530-540 million years, B.C.

This image is licensed under CC-BY 2.5

This image is licensed under CC-BY 2.5

This image is licensed under CC-BY 3.0

Camera Obscura

Encyclopedia, 18th Century

Gemma Frisius, 1545

This work is in the public

Leonardo da Vinci, 16th Century AD

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 11 24-Mar-21

Where did we come from?

The known story – Neuroscience inspired Al

Hubel and Wiesel, 1959

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 13 24-Mar-21

High-Level Patterns

Cortical surface

Cortical Column (Biological)

Neural Networks (Digital)

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 14 24-Mar-21

FIGURE 2
ORGANIZATION OF A PERCEPTRON WITH
THREE INDEPENDENT OUTPUT-SETS

F. Rosenblatt, 1957

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

Rumelhart, Hinton & Williams, 1986

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 15 24-Mar-21

"The mere formulation of a problem is often far more essential than its solution, which [...] requires creative imagination and marks real advances in science."

- Albert Einstein, 1921

Where did we come from?

The not-so-known story – the search for computer vision's "North Star"

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 17 24-Mar-21

1960s: Interpretation of synthetic world

In put image

2x2 gradient operator

computed 3D model rendered from new viewpoint

Larry Roerts 1963, 1st thesis of Computer Vision

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

David Marr, 1970s

Stages of Visual Representation, David Marr, 1970s

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 21 24-Mar-21

Edges, segmentation, and perception

D. Lowe. IJCV. 199

Normalized Cut (Shi & Malik, 1997)

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 23 24-Mar-21

3D reconstruction

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 24 24-Mar-21

Generalized Cylinder

Brooks & Binford, 1979

Pictorial Structure

Fischler and Elschlager, 1973

Single Object Recognition

D. Lowe. *ICCV*, 1999

Spatial Pyramid Matching, Lazebnik, Schmid & Ponce, 2006

Histogram of Gradients (HoG) Dalal & Triggs, 2005

Deformable Part Model Felzenswalb, McAllester, Ramanan, 2009

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 28 24-Mar-21

Face Detection, Viola & Jones, 2001

CVPR topic distribution: 2000

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 30 24-Mar-21

In the mean time...

Perceiving Real-World Scenes

Irving Biederman

I. Biederman, *Science*, 1972

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 32 24-Mar-21

Rapid Serial Visual Perception (RSVP)

Potter, etc. 1970s

Speed of processing in the human visual system

Simon Thorpe, Denis Fize & Catherine Marlot

RESTAURANT

Neural correlates of object & scene recognition

Faces > Houses

Kanwisher et al. J. Neuro. 1997

Epstein & Kanwisher, Nature, 1998

A Computer Vision/AI "holy grail" – Object Recognition

Caltech 101 images

Visual Object Classes Challenge 2009 (VOC2009)

[click on an image to see the annotation]

Everingham et al. 2006-2012

Fei-Fei et al. 2004

There are MANY objects; organized HIERARCHICALLY

(in the case of cups) to perhaps 15 or more (in the case of lamps) readily discernible exemplars.¹¹ Let us assume (liberally) that the mean number of types is 10. This would yield an estimate of 30,000 readily discriminable objects (3,000 categories × 10 types/category).

A second source for the estimate derives from considering plausible rates for learning new objects. Thirty thousand objects would require learning an average of 4.5 objects per day, every day for 18 years, the modal age of the subjects in the experiments described below.

Biederman: Recognition by Component, 1987

Eleanor Rosch: Principles of Categorization, 1978

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 37 24-Mar-21

G. A. Miller, Communications of the ACM, 1995

IM & GENET

22,000 categories

15,000,000 images

IM GENET Classification Task

Deng et al. CVPR, 2009; Russakovsky et al. IJCV, 2012;

CS231n: Lecture 1 -41 24-Mar-21 Fei-Fei Li & Ranjay Krishna & Danfei Xu

2012 Krizhevsky et al.

of transistors

GPUs

of pixels used in training

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

10¹⁴ IM GENET

IMAGENET Large Scale Visual Recognition Challenge

Image Captioning: Richer Descriptions

Image Captioning

A man riding a horse drawn carriage down a street

Prior Work

Dense **Captioning**

JKF, CVPR 2016

Paragraph Captioning

> KJKF, CVPR 2017

Horse pulling a cart. A wheel on a cart. A window on a building. A horse in a picture. A large white umbrella. A woman sitting on a bench. Man sitting on a *motorcycle.* A cart with a cart.

A man is riding a carriage on a street. Two people are sitting on top of the horses. The carriage is made of wood. The carriage is black. The carriage has a white stripe down the side. The building in the background is a tan color.

Results:

spatial, comparative, asymmetrical, verb, prepositional

CVPR topic distribution: 2000 vs. 2013

The Deep Learning Revolution

Al's Explosive Growth & Impact

Number of attendance At Al conferences

Source: The Gradient

Startups Developing Al Systems

Source: Crunchbase, VentureSource, Sand Hill Econometrics

Enterprise Application Al Revenue

Source: Statista

Many Applications of computer vision

Slide source: World Capital Partners, 2017

Fei-Fei Li & Ranjay Krishna & Danfei Xu CS231n: Lecture 1 - 49 24-Mar-21

How to take care of seniors while keeping them safe?

Early Symptom Detection of COVID-19

Monitor Patients with Mild Symptoms

Manage Chronic Conditions

Versatile

Infection

Scalable

Low-cost

Burden-free

Today's agenda

A brief history of computer vision

CS231n overview