第三部分 回顾教材 以点带面

回顾5 数 列

[必记知识]

1 等差数列、等比数列

	等差数列	等比数列
通项公式	$a_n = a_1 + (n-1)d$	$a_n = a_1 q^{n-1} (q \neq 0)$
前n项和	$S_n = \frac{n(a_1 + a_n)}{2}$ $= na_1 + \frac{n(n-1)}{2}d$	(1) $q \neq 1$, $S_n = \frac{a_1(1-q^n)}{1-q} = \frac{a_1-a_nq}{1-q}$; (2) $q = 1$, $S_n = na_1$
	$=na_1+\frac{n(n-1)}{2}d$	$(2)q=1, S_n=na_1$

② 等差、等比数列的判断方法

- (1)等差数列的判断方法
- ①定义法: $a_{n+1}-a_n=d(d)$ 为常数, $n\in\mathbb{N}^*$) $\Leftrightarrow \{a_n\}$ 是等差数列.
- ②通项公式法: $a_n = a_1 + (n-1)d(其中 a_1, d)$ 为常数, $n \in \mathbb{N}^*$) $\Leftrightarrow \{a_n\}$ 为等差数列.
- ③等差中项法: $2a_{n+1} = a_n + a_{n+2} (n \in \mathbb{N}^*) \Leftrightarrow \{a_n\}$ 是等差数列.
- ④前 n 项和公式法: $S_n = An^2 + Bn(A, B)$ 为常数, $n \in \mathbb{N}^*$) $\Leftrightarrow \{a_n\}$ 是等差数列.

(2)等比数列的判断方法

①定义法:
$$\frac{a_{n+1}}{a_n} = q(q)$$
 为常数且 $q \neq 0$, $n \in \mathbb{N}^*$)或 $\frac{a_n}{a_{n-1}} = q(q)$ 为常数

且 $q \neq 0$, $n \geq 2$) $\Leftrightarrow \{a_n\}$ 为等比数列.

- ②等比中项法: $a_{n+1}^2 = a_n \cdot a_{n+2} (a_n \neq 0, n \in \mathbb{N}^*) \Leftrightarrow \{a_n\}$ 为等比数列.
- ③通项公式法: $a_n = a_1 q^{n-1}$ (其中 a_1 , q 为非零常数, $n \in \mathbb{N}^*$) $\Leftrightarrow \{a_n\}$ 为等比数列.

[必会结论]

■ 等差数列的重要结论

设 S_n 为等差数列 $\{a_n\}$ 的前n项和,则

$$(1)a_n = a_1 + (n-1)d = a_m + (n-m)d, \ p+q = m+n \Rightarrow a_p + a_q = a_m + a_n.$$

$$(2)a_p = q$$
, $a_q = p(p \neq q) \Rightarrow a_{p+q} = 0$; $S_{m+n} = S_m + S_n + mnd$.

$$(3)S_k$$
, $S_{2k}-S_k$, $S_{3k}-S_{2k}$,…,构成的数列是等差数列.

$$(4)\frac{S_n}{n} = \frac{d}{2}n + \left(a_1 - \frac{d}{2}\right)$$
 是关于 n 的一次函数或常函数,数列 $\left\{\frac{S_n}{n}\right\}$ 也是等差数列.

$$(5)S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(a_2 + a_{n-1})}{2} = \frac{n(a_3 + a_{n-2})}{2} = \cdots.$$

(6)若等差数列 $\{a_n\}$ 的项数为偶数 2m,公差为 d,所有奇数项之和为 S_{\oplus} ,所有偶数项之和为 S_{\oplus} ,则所有项之和 $S_{2m}=m(a_m+1)$

$$a_{m+1}$$
), $S_{\mathbb{A}} - S_{\mathbb{A}} = md$, $\frac{S_{\mathbb{A}}}{S_{\mathbb{A}}} = \frac{a_{m+1}}{a_m}$.

(7)若等差数列 $\{a_n\}$ 的项数为奇数 2m-1,所有奇数项之和为 S_{δ} ,所有偶数项之和为 $S_{\mathcal{B}}$,则所有项之和 $S_{2m-1}=(2m-1)a_m$, S_{δ}

$$-S_{\mathbb{A}} = a_m, \frac{S_{\oplus}}{S_{\mathbb{A}}} = \frac{m}{m-1}.$$

2 等比数列的重要结论

- $(1)a_n = a_m \cdot q^{n-m}, \ a_{n+m} = a_n q^m = a_m q^n (m, \ n \in \mathbb{N}^*).$
- (2)若 m+n=p+q,则 $a_m \cdot a_n=a_p \cdot a_q$; 反之,不一定成立 $(m,n,p,q\in \mathbb{N}^*)$.
- $(3)a_1a_2a_3\cdots a_m$, $a_{m+1}a_{m+2}\cdots a_{2m}$, $a_{2m+1}a_{2m+2}\cdots a_{3m}$, …,成等比数 列 $(m \in \mathbb{N}^*)$.

 $(4)S_n, S_{2n}-S_n, S_{3n}-S_{2n}, \dots, S_{kn}-S_{(k-1)n}, \dots,$ 成等比数列 $(n \ge 2,$

且 $n \in \mathbb{N}^*$, $k \ge 2$, $k \in \mathbb{N}^*$, $q \ne -1$).

(5)若等比数列的项数为 $2n(n \in \mathbb{N}^*)$,公比为 q,奇数项之和为

S $_{\mathfrak{H}}$,偶数项之和为S $_{\mathfrak{H}}$,则 $\frac{S_{\mathfrak{H}}}{S_{\mathfrak{H}}}=q$.

 $(6)\{a_n\}$, $\{b_n\}$ 成等比数列,则 $\{\lambda a_n\}$, $\{\frac{1}{a_n}\}$, $\{a_nb_n\}$, $\{\frac{a_n}{b_n}\}$ 成等比数列 $(\lambda \neq 0, n \in \mathbb{N}^*)$.

- (7)通项公式 $a_n = a_1 q^{n-1} = \frac{a_1}{q} \cdot q^n$,从函数的角度来看,它可以看作是一个常数与一个关于 n 的指数函数的积,其图象是指数函数图象上一群孤立的点.
- (8)与等差中项不同,只有同号的两个数才能有等比中项;两个同号的数的等比中项有两个,它们互为相反数.