

Requirements Engineering Processes

With materials adapted from Software Engineering, Ian Sommerville

Requirements Engineering

Topics covered

- - Requirement engineering processes
 - Feasibility studies
 - Requirements elicitation and analysis
 - Requirements validation
 - Requirements management

Requirements engineering (RE) processes

- RE process is a set of activities performed to create software requirements
- Processes used for RE vary widely
 - Dependent on organizations, domains, process methodologies
- Common activities
 - Requirements elicitation
 - Requirements analysis
 - Requirements validation
 - Requirements management

RE process

Requirements engineering

Topics covered

- Requirement engineering processes
- Feasibility studies
- Requirements elicitation and analysis
- Requirements validation
- Requirements management

Feasibility studies

- Feasibility studies decide whether or not the proposed system is worthwhile
- A short focused study checks
 - if the system contributes to organizational objectives
 - if the system can be developed using current technology
 - if the system can be integrated with other systems that are used
 - if the system can be developed within budget and schedule
 - if the system can compete with other similar systems

Feasibility study implementation

- Based on information assessment (what is required), information collection and report writing
- Questions for people in the organization
 - What if the system wasn't implemented?
 - What are current process problems?
 - How will the proposed system help?
 - What will be the integration problems?
 - Is new technology needed? What skills?
 - What facilities must be supported by the proposed system?
- Feasibility report can be included in vision document

Topics covered

- Requirement engineering processes
- Feasibility studies
- Requirements elicitation and analysis
- Requirements validation
- Requirements management

Requirements elicitation and analysis

- Also called requirements elicitation or requirements discovery
- Involves technical staff working with customers to find out
 - the application domain
 - the services that the system should provide
 - the system's operational constraints
- May involve end-users, customers, managers, engineers, domain experts, maintainers, operators, etc.
 - also called stakeholders

Problems of requirements analysis

- Stakeholders don't know what they really want
- Stakeholders express requirements in their own terms
- Different stakeholders may have conflicting requirements
- Organizational and political factors may influence the system requirements
- Requirements change during the analysis process
 - New stakeholders may emerge and the business environment change

The requirements spiral

Process activities

- Requirements discovery
 - Interacting with stakeholders to discover their requirements
- Requirements classification and organization
 - Groups related requirements and organizes them into coherent clusters
- Prioritization and negotiation
 - Prioritizing requirements and resolving requirements conflicts
- Requirements documentation
 - Requirements are documented

Requirements discovery

- Gathering information about the proposed and existing systems
 - extracting user and system requirements from this information
- Sources of information
 - documentation and specifications of similar systems
 - observations
 - existing procedures, processes, and reports
 - other materials

ATM stakeholders

- Bank customers
- Representatives of other banks
- Bank managers
- Counter staff
- Database administrators
- Security managers
- Marketing department
- Hardware and software maintenance engineers
- Banking regulators

Viewpoints

- Viewpoints are a way of structuring the requirements to represent perspectives of different stakeholders
- This multi-perspective analysis is important
 - there is no single correct way to analyze system requirements

Types of viewpoint

Interactor viewpoints

- People or other systems that interact directly with the system
 - In an ATM, the customer's and the account database are interactor view points

Indirect viewpoints

- Stakeholders who do not use the system themselves but who influence the requirements
 - E.g., management and security staff are indirect viewpoints

Domain viewpoints

- Domain characteristics and constraints that influence the requirements
 - E.g., standards for inter-bank communications

Viewpoint identification

- Identify viewpoints using
 - Providers and receivers of system services
 - Systems that interact directly with the system being specified
 - Regulations and standards
 - Sources of business and non-functional requirements
 - Engineers who have to develop and maintain the system
 - Marketing and other business viewpoints

LIBSYS viewpoint (VP) hierarchy

Interviewing

- RE team questions stakeholders about the existing system and the system to be developed
- Types of interview
 - Closed or structured interviews: prepared questions are answered
 - Open or unstructured interviews: no pre-defined agenda and a range of issues to explored with stakeholders
 - Mixed: some prepared and follow-up questions

Interviews in practice

- Normally a mix of closed and open-ended interviewing
- Interviews are good for getting an overall understanding of
 - what stakeholders do
 - how they might interact with the system

Effective interviews

- Open-minded, willing to listen to stakeholders
- No pre-conceived ideas about the requirements
- Prompt interviewees with questions or proposals
- Avoid asking 'what do you want'

Use Case Diagrams

- Use case diagrams are used to model the use case view of a system as seen by end users, analysts, and testers
- Use case diagrams are usually a part of requirement specifications
 - Accompanying use case specifications
- Main elements
 - Actors
 - Use cases
 - Relationships

Actors

- An actor represents an external person, process, or anything that interacts with the system
- It represents a role that a person, process, or thing plays with the system
 - One physical user can play multiple roles. Thus, multiple actors can be bound to one physical user
 - Multiple users have the same role, hence, represented by one actor
- Between actors may have a generalization

Use Cases

 A use case describes a set of sequences of actions performed by an actor to produce observable results value to the actor

Use Cases (cont'd)

11/5/21

- At the system level, use cases represent external behavior of a system that is visible to outside users
- A use case specifies WHAT the system does, but not HOW it does
- A use case hides internal structure and operations of a system. It usually represents system-level functions of a system

Description of Use Cases

- The behavior of a use case is described by a flow of events
- A use case has one main flow (basic flow) and alternative flows
 - Regular variants
 - Odd cases
 - Exceptions

Successful checkout, order fulfilled

Scenarios

- A use case describes a set of sequences which each sequence in the set represents a possible flow in the use case
- A scenario is a specific sequence of events happening
- A scenario is viewed as an instance of a use case
- Scenarios are real-life examples of how a system can be used

Scenarios (cont'd)

- Scenarios may include
 - A description of the starting situation
 - A description of the normal flow of events
 - A description of what can go wrong
 - Information about other concurrent activities
 - A description of the state when the scenario finishes

Types of Use Case Relationships

Association

Between actors and use cases

Generalization

 Between general use cases and more specific ones

Include

- Between use cases
- Extend
 - Between use cases

Exercise - Interview Stakeholders

- One member of your project plays a role as customer
- Everyone else will interview the customer and form a use case model
 - The customer will answer questions based on his/her knowledge about his/her current project
- You have 15 minutes for interviewing, 5 minutes for reporting (two teams to report)

Topics covered

- Requirement engineering processes
- Feasibility studies
- Requirements elicitation and analysis
- Requirements validation
- Requirements management

Requirements validation

- Validate that the requirements reflect what the customer wants
- Errors in requirements result problems in design, code, and test
- Requirements error costs are high
 - Fixing errors caused by incorrect requirements after delivery is much higher than in early stages

Requirements checking

- Validity
 - Does the system provide the functions which best support the customer's needs?
- Verifiability
 - Can the requirements be checked?
- Consistency
 - Are there any requirements conflicts?
- Completeness
 - Are all functions required by the customer included?
- Realism
 - Can the requirements be implemented given available budget and technology

Requirements validation techniques

Requirements reviews

- Systematic manual analysis of the requirements
- Most common approach

Prototyping

 Using an executable model of the system to check requirements

Test-case generation

Developing tests for requirements to check testability

Requirements reviews

- Regular reviews should be held while requirements are defined
- Requirements analysts, designers, developers, testers should be involved in reviews
- Reviews may be formal or informal
- Good communications help resolve problems at an early stage

Topics covered

- Requirement engineering processes
- Feasibility studies
- Requirements elicitation and analysis
- Requirements validation
- Requirements management

Requirements management

- Requirements management
 - process of managing changing requirements during the project
- Requirements are inevitably incomplete and inconsistent
 - New requirements emerge
 - business needs change
 - better understanding of the system

Requirements change

- New and changed business needs
- Better understanding of the system
- Priority of requirements from different viewpoints changes
- Business and technical environments change during project

Requirements change management

- Performed throughout the project
- Main steps
 - Change request
 - Request changes from customers, users, team
 - Change analysis and costing
 - Assess effects of change on other requirements
 - Change implementation
 - Modify requirements and affected docs
 - Change design, code, and test

Key points

- Requirements engineering process includes
 - feasibility study, requirements elicitation and analysis,
 requirements specification and requirements management
- Requirements elicitation and analysis is iterative involving
 - domain understanding, requirements collection, classification, structuring, prioritisation and validation.
- Systems have multiple stakeholders with different requirements

Key points

- Social and organization factors influence system requirements
- Requirements validation is concerned with checks for validity, consistency, completeness, realism and verifiability
- Business changes inevitably lead to changing requirements
- Requirements management includes planning and change management