

## A卷

### 2019-2020 学年第 1 学期

(2019 秋季)

## 《编译原理与技术》期末考试卷

| 班级 | 学号 |  |
|----|----|--|
|    |    |  |
| 姓名 | 成绩 |  |

2020年1月2日



# 《编译原理与技术》 期末考试卷

注意事项: 1. 所有答案请直接写在题目中, 另附纸无效。

2. 交卷时请以班为单位交卷。

| 题号     | _   | <br>E |   |   | 四 |   |   | 总分 |
|--------|-----|-------|---|---|---|---|---|----|
| 超了     | 1   | -1    | 1 | 2 | 3 | 4 | 5 | 心分 |
| 成绩     |     |       |   |   |   |   |   |    |
| 阅卷人 签字 |     |       |   |   |   |   |   |    |
| 任课教师   | 币签字 |       | • |   |   |   |   |    |

#### 题目:

| 一、 | 填空题 | (9 分)  |
|----|-----|--------|
| _, | 判断题 | (10 分) |
| 三、 | 单选题 | (21 分) |
| 四、 | 综合题 |        |
|    | 1   | (10 分) |
|    | 2   | (6分)   |
|    | 3   | (14 分) |
|    | 4   | (16 分) |
|    | 5   | (14 分) |

#### 一、填空题(每空1分,共9分)

| 1. | 在编译过程的五个阶段中, | _的输出是 token 序列, |  |
|----|--------------|-----------------|--|
|    | 输出是抽象语法树。    |                 |  |

- 2. 根据乔姆斯基对文法的分类,正则文法是\_\_\_\_\_型文法,它可以被\_\_\_\_\_\_接受。
- 3. 算符优先分析过程每次规约的是\_\_\_\_\_。
- 4. 向输入文法插入动作符号后得到的文法是\_\_\_\_\_\_\_文法,这个文法推导所产生的终结符号串称为\_\_\_\_\_\_序列。

#### 二、判断题(每题1分,共10分)

- 1. 整个编译过程中只对源代码做一次从头到尾扫描的编译器,就是"一遍扫描的编译器"。
- 2. 文法 G 所描述的语言,就是文法 G 的终结符集合 Vt 的闭包 Vt\*。
- 3. NFA 的接受状态可以多于一个,但 DFA 只能有一个。
- 4. 算符优先分析过程中,栈顶运算符优先级小于栈外输入运算符时,执行入栈操作;栈顶运算符优先级大于栈外输入运算符时,执行出栈规约操作;其他情况说明遇到了错误。
- 5. 属性翻译文法中综合属性的求值是自下向上的;而继承属性的求值是自上向下的。
- 6. First 集合可以包含ε, Follow 集中不可以包含ε。
- 7. 规范句型的活前缀不一定是唯一的。
- 8. LL(1) 文法和 SLR(1) 文法都一定是无二义性的。
- 9. 与机器有关的优化一般是在中间代码上进行的。
- 10. 对于右侧的代码块: 语句 return j+1 等价于 return 1,

```
int fun(int i) {
   int j = i;
   if (j == 0) return j+1;
   else return j-1;
}
```

语句 return i-1 等价于 return i-1; 因此可以在优化时应用复写传播改为:

```
if (i == 0) return 1;
  else return i-1;
```

| 三  | 、单选题(每题 3 分              | ,共 21 分)                 |        |             |            |        |
|----|--------------------------|--------------------------|--------|-------------|------------|--------|
| 1. | 已知语言 $L = \{a^nbc^n\}$   | $m \mid n \ge 0, m > 0$  | 0},下   | 列文法中        | 产生的语言      | 不等于L。  |
|    | A. $Z := AbC$            | $A ::= Aa \mid \epsilon$ | C := 0 | Cc   c      |            |        |
|    | B. $Z := AC$             | $A ::= aA \mid b$        | C := C | Cc   c      |            |        |
|    | C. $Z := bC \mid aZ$     | $C ::= cC \mid c$        |        |             |            |        |
|    | D. $Z := aZc \mid B$     | B := b                   |        |             |            |        |
| 2. | 对于文法 G[S]:               |                          |        |             |            |        |
|    | $S ::= icSE \mid a$      |                          |        |             |            |        |
|    | $E ::= eS \mid \epsilon$ |                          |        |             |            |        |
|    | 下列符号串中能证明                | ]该文法有二义性                 | 生的是    | o           |            |        |
|    | A. icicica               | B. icicicaea             | C      | . icicaeaea | D. icaeaea |        |
| 3. | 对于算符优先文法G                | [Z]:                     |        |             |            |        |
|    | Z ::= E? E: E            |                          |        |             |            |        |
|    | $E ::= T \mid E + T$     |                          |        |             |            |        |
|    | $T ::= F \mid -F$        |                          |        |             |            |        |
|    | $F ::= i \mid (Z)$       |                          |        |             |            |        |
|    | 其中出现的运算符的                | 的优先关系,下列                 | 可正确的   | 有。          |            |        |
|    | ① ?等于: ② +               | 等于+ ③ (4                 | 小于—    | ④ (小于:      | ⑤ -大于+     | ⑥ ?大于+ |
|    | A. 124                   | B. 135                   | C      | 2. 236      | D. 456     |        |
| 4. | 对于文法G[I]:                |                          |        |             |            |        |
|    | I ∷= PBBB∣D              |                          |        |             |            |        |

P := 0b

 $B := 0 \mid 1$ 

D := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

下列说法正确的是\_\_\_\_。

- A. 它是一个算符优先文法
- B. 它是一个 LL(1)文法
- C. 它是一个2型文法
- D. 它的句子集合是无限的

- 5. 记正则表达式 r 定义的语言为 L(r) , 下列选项中正确的是\_\_\_\_\_。
  - A.  $L(a)L(a^*) = L(a^*)$
  - B. L(a|b) = L(a)L(b)
  - C.  $L(b(ab)^*) = L((ba)^*b)$
  - D. L(ab|c) = L(a)L(b|c)
- 6. 算术表达式 a + b \* (c d)/e 的后缀表示为\_\_\_\_\_。
  - A. abcd-\*e/+
  - B. b c d e/\* a +
  - C. abcd-e/\*+
  - D. c d b \* e/a +
- 7. 如下是某函数的中间代码表示。
  - (1) a = 0
  - (2) b = 1
  - (3) i = 0
  - (4) if i >= 10 goto (10)
  - (5) c = a + b
  - (6) a = b
  - (7) b = c
  - (8) i = i + 1
  - (9) goto (4)
  - (10) v1 = i
  - (11) v2 = b

下列中间代码序列中, \_\_\_\_\_是一个基本块。

- A. (1) (2) (3) (4) B. (4) (5) (6) (7) (8) (9) C. (5) (6) (7) (8) D. (10) (11)

#### 四、综合题(共60分)

1. (10 分) 有文法**G**[E]: E ::= TT'

T ::= FF'

 $T' ::= \varepsilon \mid +TT'$ 

 $F := v \mid i$ 

 $F' ::= \epsilon \mid * FF'$ 

#### 对于句型 v + v \* i:

(1) 写出它的最左推导过程。(3分)

- (2) 画出它的语法树。(3分)
- (3) 写出它的所有短语、简单短语和句柄(4分)

2. (6分) n 维数组某元素绝对地址 ADDR 的计算公式为

$$ADDR = LOC + RC + E\sum_{i=1}^{n} V(i)P(i)$$
,  $RC = -E\sum_{i=1}^{n} L(i)P(i)$ 

其中 LOC 是分配给数组的连续内存空间的开始地址; RC 是相对不变部分; E 是数组中每个元素占用的内存大小。V(i) 是指定元素第 i 维下标的值; P(i) 是

$$P(i) = \begin{cases} 1 & \stackrel{\underline{u}}{=} i = n \\ \prod_{j=i+1}^{n} [U(j) - L(j) + 1] & \stackrel{\underline{u}}{=} 1 \le i < n \end{cases}$$

U(i) 是数组第i 维下标的最大值; L(i) 是数组第i 维下标的最小值。

假设 E = 4 且程序中声明了数组 arr(1:5, -1:2, 0:3)。

- (1) 计算数组 arr 的 RC 值。(3分)
- (2) 若对于数组 arr 有 LOC = x, 求数组元素 arr(2,2,2) 的绝对地址。(3分)

- 3. (14 分) 记正则表达式 a(a(bc)\*|a(b|c)\*a)\*a 对应的最小化的 DFA 为 M1。
- (1) 求 M1。(12 分)
- (2) 右图所示的 DFA 已经最小化,记为 M2。判断 M1 和 M2 是否等价,并证明你的结论。(2分)



4. (16分)给定对于文法G[E]:

 $E \rightarrow TE \mid \epsilon$   $T \rightarrow aFP$   $P \rightarrow bF \mid \epsilon$   $F \rightarrow i; F \mid ;$ 

用 # 表示输入串的结尾。

(1) 求各候选式的 FIRST 集,以及各非终结符的 FIRST 集和 FOLLOW 集。请直接以集 合的形式填写下面的表格,空集合写 $\Phi$ 。(6分)

| 候选式 | FIRST | 候选式 | FIRST |
|-----|-------|-----|-------|
| 3   |       | bF  |       |
| TE  |       | i;F |       |
| aFP |       | ;   |       |

| 非终结符 | FIRST | FOLLOW |
|------|-------|--------|
| E    |       |        |
| T    |       |        |
| P    |       |        |
| F    |       |        |

(2) 此文法是否适合使用自顶向下的方法分析?说明理由。(2分)

(3) 尝试构造该文法的 LL(1) 分析表。请直接填写下面的表格,如果有表项被多次填入, 在该处标记×。(8分)

|   | a | b | i | ; | # |
|---|---|---|---|---|---|
| E |   |   |   |   |   |
| T |   |   |   |   |   |
| P |   |   |   |   |   |
| F |   |   |   |   |   |

- 5. (14分) 文法 G[S] 的拓广文法 G[S'] 如下:
  - $(0) S' \rightarrow S$
  - (1)  $S \rightarrow AB$
  - (2)  $A \rightarrow aB$
  - (3)  $B \rightarrow Ab$
  - (4)  $B \rightarrow b$

该文法的 LR(1) 项目集如下图所示。



- (1) 指出对该 LR(1) 项目规范族合并同心集时,哪些项目集会被合并。(3分)
- (2) 构造 LALR(1) 分析表。请直接填写下面的表格。(8分)
- (3)利用 LALR(1)分析表,分析输入串 aabbabb。 请直接填写下面的表格。(3分)注意:合并同心集后的编号取原项目集的最小值,比如将 I<sub>3</sub>、I<sub>4</sub>与 I<sub>6</sub>合并,得到的新项目集为 I<sub>3</sub>,因此得到的新项目族的编号可能是不连续的。填写分析表和推导过程时,可能不会用到表格的所有行。

### (2) LALR(1) 分析表:

| \ <del>\\</del> |   | ACTION |   |   | GOTO |   |
|-----------------|---|--------|---|---|------|---|
| 状态              | a | b      | # | S | A    | В |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |
|                 |   |        |   |   |      |   |

#### (3) 分析输入串 aabbabb 的过程:

| 步骤 | 状态栈(栈底在左) | 已识别符号 | 待输入串     |
|----|-----------|-------|----------|
| 0  | 0         | #     | aabbabb# |
| 1  |           |       |          |
| 2  |           |       |          |
| 3  |           |       |          |
| 4  |           |       |          |
| 5  |           |       |          |
| 6  |           |       |          |
| 7  |           |       |          |
| 8  |           |       |          |
| 9  |           |       |          |
| 10 |           |       |          |
| 11 |           |       |          |
| 12 |           |       |          |
| 13 |           |       |          |
| 14 |           |       |          |
| 15 |           |       |          |
| 16 |           |       |          |
| 17 |           |       |          |
| 18 |           |       |          |
| 19 |           |       |          |
| 20 |           |       |          |
| 21 |           |       |          |