SEIS 763 - Machine Learning - Project Plan

Jikai Tang, Josh Janzen, Davis Nyabuti, Chenchao Lu, Tong Wu, Usman Waheed

March 18, 2017

1 Time Series Anomaly Detection

1.1 Problem Statement

There are periods of time where yahoo expects higher than normal network traffic. One example of such a period of high network traffic is during March Madness when users of their services are constantly checking their performance on the fantasy leagues. This kind of anomaly is expected. The challenge for Yahoo is being able to distinguish between the expected anomalies and those that aren't. Yahoo Webscope data sharing program provides a dataset that can be used to test and validate anomaly detection algorithms.

1.2 Data Selection

Announcing A Benchmark Dataset for Time Series Anomaly Detection

https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-detection

These Webscope Datasets available from Yahoo! Labs requires one to request access to download it. Approval could take up to a week.

We will chose 1 of 4 available datasets, in which the data is labeled. The data is highly unbalanced, with anomalies representing 0.56% of the data.

1.2.1 Description

The Webscope Dataset we used contained 100 csv files with a total of 169680 rows of time series data. In this dataset there are 8 predictors and 1 target column. All of the predictors are numerical. Using this dataset we intend to build time series models that can identify anomalies.

1.3 Data Preprocessing & Summary

We used python and R to analyze the dataset.

1.3.1 Loading the data using R

```
In [1]: setwd('./data')
In [4]: file_list <- list.files(".")
        if (exists("dataset")){
        rm(dataset)</pre>
```

```
for (file in file_list){

# if the merged dataset doesn't exist, create it
   if (!exists("dataset")){
      dataset <- read.csv(file, header=TRUE, sep=",")
   }

# if the merged dataset does exist, append to it
   if (exists("dataset")){
      temp_dataset <-read.csv(file, header=TRUE, sep=",")
      dataset<-rbind(dataset, temp_dataset)
      rm(temp_dataset)
   }
}</pre>
```

1.3.2 Summary

```
changepoint
  timestamps
                         value
                                            anomaly
       :1.417e+09
                            :-7987.86
Min.
                     Min.
                                         Min.
                                                 :0.000000
                                                             Min.
                                                                    :0
1st Qu.:1.418e+09
                     1st Qu.: -977.93
                                         1st Qu.:0.000000
                                                             1st Qu.:0
Median: 1.420e+09
                     Median :
                                23.94
                                         Median :0.000000
                                                             Median:0
Mean
       :1.420e+09
                            : -58.89
                     Mean
                                         Mean
                                                :0.005616
                                                             Mean
                                                                    :0
3rd Qu.:1.421e+09
                     3rd Qu.: 947.70
                                         3rd Qu.:0.000000
                                                             3rd Qu.:0
       :1.423e+09
                            : 7006.21
                                                :1.000000
Max.
                     {\tt Max.}
                                         Max.
                                                             Max.
                                                                    :0
                        noise
                                          seasonality1
                                                            seasonality2
    trend
Min.
       :-5040.00
                           :-877.8337
                                         Min.
                                                :-955.0
                                                                  :-920.0
                    Min.
                                                           Min.
1st Qu.: -858.00
                    1st Qu.: -23.8288
                                         1st Qu.:-233.7
                                                           1st Qu.:-151.7
Median :
            0.00
                    Median :
                               0.0142
                                         Median :
                                                    0.0
                                                           Median :
Mean
      : -58.25
                    Mean
                           : -0.1996
                                         Mean
                                               :
                                                           Mean
                                                                 :
                                         3rd Qu.: 233.7
                                                           3rd Qu.: 151.7
3rd Qu.: 853.00
                    3rd Qu.: 23.6788
Max.
       : 5040.00
                    Max.
                         : 961.3856
                                         Max.
                                              : 955.0
                                                           Max.
                                                                : 920.0
 seasonality3
       :-792.00
Min.
1st Qu.: -99.29
Median :
           0.00
Mean
           0.00
3rd Qu.: 99.29
Max.
       : 792.00
```

Number of rows is 169680

From the output above it can be observed that our dataset contains 169680 rows of data. Additional summary statistics have also been included. It can be observed that the predictors will

require standardization because they are not all on the same scale

In [9]: head(dataset)

timestamps	value	anomaly	changepoint	trend	noise	seasonality1	seasonality2	seas
1416722400	6.470061	0	0	0	6.470061	0.0000	0.00000	0.00
1416726000	80.972293	0	0	0	-11.077853	67.6000	22.20667	2.24
1416729600	159.014680	0	0	0	-5.455761	117.0866	42.90000	4.48
1416733200	214.721803	0	0	0	12.134172	135.2000	60.66976	6.71
1416736800	201.695834	0	0	0	1.361684	117.0866	74.30498	8.94
1416740400	172.005843	0	0	0	10.374710	67.6000	82.87644	11.1

snippet of the time series data

1.3.3 Missing Data

seasonality3

It is important to check for missing data prior to building the model. To impute missing data we will use the MICE package

```
In [36]: library(mice)
         libraryi(VIM)
         mice_plot <- aggr(dataset, col=c('navyblue','yellow'),</pre>
                              numbers=TRUE, sortVars=TRUE,
                              labels=names(dataset), cex.axis=.7,
                              gap=3, ylab=c("Missing data", "Pattern"))
 Variables sorted by number of missings:
     Variable Count
   timestamps
        value
                  0
  changepoint
                  0
        trend
                  0
        noise
                  0
 seasonality1
                  0
seasonality2
                  0
```


As indicated above our dataset has no missing values.

1.3.4 Transformations

The summary statistics above indicated that our predictors were not on the same scale. Standardizing them would make our models easier to interpret and also save time on building the models.

To do this, we first begin by saving the anomaly column into a variable y and remove it from the dataset dataframe

Y

1. 0 2. 0 3. 0 4. 0 5. 0 6. 0

Х

timestamps	value	changepoint	trend	noise	seasonality1	seasonality2	seasonality3
1416722400	6.470061	0	0	6.470061	0.0000	0.00000	0.000000
1416726000	80.972293	0	0	-11.077853	67.6000	22.20667	2.243472
1416729600	159.014680	0	0	-5.455761	117.0866	42.90000	4.483806
1416733200	214.721803	0	0	12.134172	135.2000	60.66976	6.717869
1416736800	201.695834	0	0	1.361684	117.0866	74.30498	8.942536
1416740400	172.005843	0	0	10.374710	67.6000	82.87644	11.154696

snippet of the dataset dataframe after removing the target cariable anomaly

Skewness We also check for skewness in the data using the e1071 package which calculates the sample skewness statistic for each predictor.

 $\begin{array}{ll} \textbf{timestamps} \ 0 \ \textbf{value} \ -0.169731344525992 \ \textbf{trend} \ -0.163896618243957 \ \textbf{noise} \ 0.0252930711938632 \\ \textbf{seasonality1} & 6.63313924896381e\text{-}16 \ \textbf{seasonality2} & 1.6569203818992e\text{-}16 \end{array}$

Asses shape of distribution

value	trend	noise	seasonality1	seasonality2	seasonality3
6.470061	0	6.470061	0.0000	0.00000	0.000000
80.972293	0	-11.077853	67.6000	22.20667	2.243472
159.014680	0	-5.455761	117.0866	42.90000	4.483806
214.721803	0	12.134172	135.2000	60.66976	6.717869
201.695834	0	1.361684	117.0866	74.30498	8.942536
172.005843	0	10.374710	67.6000	82.87644	11.154696

Histogram of skewValues

We consider the data to be extremely skewed if the ratio of the highest value to the lowest is greater than 20

Ratio of highest to lowest skew value 1.526511e+14

A value of 1.526511e+14 indicates that our data has extreme skewness. This is also indicated in the histogram above. As a result we need to standardize our data.

BoxCox transformation To standardize our data we use the caret function preProcess which applies transformations to a set of predictors.

We will exclude the timestamp from this transformation

apply transformations

timestamps	value	trend	noise	seasonality1	seasonality2	seasonality3
1416722400	0.03407135	0.03150748	0.07685769	2.501110e-16	-4.501564e-18	7.797788e-17
1416726000	0.07290769	0.03150748	-0.12535642	1.881166e-01	7.961877e-02	1.166703e-02
1416729600	0.11358943	0.03150748	-0.06057001	3.258275e-01	1.538116e-01	2.331775e-02
1416733200	0.14262830	0.03150748	0.14212831	3.762332e-01	2.175225e-01	3.493585e-02
1416736800	0.13583816	0.03150748	0.01799110	3.258275e-01	2.664096e-01	4.650509e-02
1416740400	0.12036143	0.03150748	0.12185308	1.881166e-01	2.971413e-01	5.800929e-02

1.3.5 Filtering

To filter near-zero variance predictors, the caret package function nearZeroVar will return the column numbers of any predictors that don't explain the variance in the data.

When a vector should be removed, a vector of integers is returned that indicates which columns should be removed

```
In [38]: nearZeroVar(x_trans)
```

We now remove the trend predictor because it has a near-zero variance. This predictor unlikely to improve our predictive accuracy

timestamps	value	noise	seasonality1	seasonality2	seasonality3
1416722400	0.03407135	0.07685769	2.501110e-16	-4.501564e-18	7.797788e-17
1416726000	0.07290769	-0.12535642	1.881166e-01	7.961877e-02	1.166703e-02
1416729600	0.11358943	-0.06057001	3.258275e-01	1.538116e-01	2.331775e-02
1416733200	0.14262830	0.14212831	3.762332e-01	2.175225e-01	3.493585e-02
1416736800	0.13583816	0.01799110	3.258275e-01	2.664096e-01	4.650509e-02
1416740400	0.12036143	0.12185308	1.881166e-01	2.971413e-01	5.800929e-02

1.3.6 Correlation

Correlated predictors do not add any extra knowledge to our model. In order to simplify our model we need to remove the correlated predictors. The cor function can calculate the correlations between predictor variables. To visualize the correlation data structure we use correlation package

	timestamps	value	noise	seasonality1	seasonality2	seasonality3
timestamps	1.000000000	-0.02594959	-0.0018780573	-4.697417e-03	-9.264234e-03	-6.299239e-02
value	-0.025949589	1.00000000	0.0461569071	1.877230e-01	1.457534e-01	1.021793e-01
noise	-0.001878057	0.04615691	1.0000000000	4.110017e-03	9.919681e-04	1.417808e-03
seasonality1	-0.004697417	0.18772303	0.0041100167	1.000000e+00	2.041722e-16	1.047899e-15
seasonality2	-0.009264234	0.14575345	0.0009919681	2.041722e-16	1.000000e+00	6.267565e-17
seasonality3	-0.062992389	0.10217932	0.0014178081	1.047899e-15	6.267565e-17	1.000000e+00
0	1					

It does not appear that any of our predictors have a high correlation.

1.4 Tools

Since we are all new to anomaly/outlier detection, we plan on taking multiple approaches to solve. We will most likely use R and Python libraries to help is developing a solution.

1.5 Deliverable

A confusion matrix along with key metrics such as Recall, Precision, F1-score, Balance Accuracy. Also, graphical summary such as ROC curve and Precision-Recall Plot.