Sage Quick Reference: Elementary Number Theory

William Stein (modified by nu) Sage Version 3.4

http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use

整数 Integers

```
\dots, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots
```

n を m で割ると余りは n % m

gcd(n,m), gcd(list) 拡張された公約数 q = sa + tb = gcd(a,b): g,s,t=xgcd(a,b)

lcm(n,m), lcm(list)

二項係数 $\binom{m}{n} = \text{binomial(m,n)}$

base 進法による表示: n.digits(base)

base 進法による桁数: n.ndigits(base)

(base は省略可, デフォルトは 10)

割り切る. $n \mid m$: n.divides(m), nk = m を満たす k があるか.

約数 $-d \mid n$ を満たす d 達:n.divisors()

階乗 -n! = n.factorial()

ORGINAL TEXT n divided by m has remainder n % m $\gcd(n,m), \gcd(list)$ extended $\gcd g = sa + tb = \gcd(a,b)$: $g,s,t=\gcd(a,b)$ lcm(n,m), lcm(list) binomial coefficient $\binom{m}{n} = \text{binomial(m,n)}$ digits in a given base: n.digits(base) number of digits: n.ndigits(base) (base is optional and defaults to 10) divides $n \mid m$: n.divides(m) if nk = m some k divisors — all d with $d \mid n$: n.divisors() factorial — n! = n.factorial()

素数 Prime Numbers

 $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, \dots$

素因数分解: factor(n)

素数判定: is_prime(n), is_pseudoprime(n)

素冪判定: is_prime_power(n)

 $\pi(x) = \#\{p : p \le x \text{ is prime}\} = \text{prime_pi(x)}$

素数の集合: Primes()

factorization: factor(n) primality testing: is_prime(n), is_pseudoprime(n) prime power testing: is_prime_power(n) $\pi(x) = \#\{p: p \leq x \text{ is prime}\} = \text{prime_pi}(x)$ set of prime numbers: Primes() $\{p: m \leq p < n \text{ and } p \text{ prime}\} = \text{prime_range}(m,n)$ prime powers: prime_powers(m,n) first n primes: primes_first_n(n) next and previous primes: next_prime(n), previous_prime(n), next_probable_prime(n) prime powers: next_prime_power(n), pevious_prime_power(n)
Lucas-Lehmer test for primality of 2^p-1 def is_prime_lucas_lehmer(p): s = Mod(4, 2^p-1) for i in range(3, p+1): s = s^2 - 2 return s == 0

合同式, モジュラ計算 Modular Arithmetic and Congruences

 $k=12; \ m \ = \ matrix(ZZ, \ k, \ [(i*j)\%k \ for \ i \ in \ [0..k-1] \ for \ j \ in \ [0..k-1]]); \ m.plot(cmap='gray')$

オイラーの $\phi(n)$ 関数: euler_phi(n)

クロネッカーシンボル $\left(\frac{a}{b}\right) = \text{kronecker_symbol(a,b)}$

平方剰余: quadratic_residues(n)

平方非剰余: quadratic_residues(n)

環 $\mathbb{Z}/n\mathbb{Z} = \text{Zmod}(n) = \text{IntegerModRing}(n)$

 $\mathbb{Z}/n\mathbb{Z}$ の元としての $a\ (a \bmod n)$: Mod(a, n)

 $\mathbb{Z}/n\mathbb{Z}$ での原始根 = primitive_root(n)

ℤ/nℤでの逆元: n.inverse_mod(m)

 $\mathbb{Z}/n\mathbb{Z}$ での冪 $a^n \pmod{m}$: power_mod(a, n, m)

 $x \equiv a \pmod{m}$ かつ $x \equiv b \pmod{n}$ を満たす x を探す離散対数: $\log(\text{Mod}(6,7), \text{Mod}(3,7))$

 $a \pmod{n}$ の次数 = Mod(a,n).multiplicative_order()

 $a \pmod{n}$ の平方根 = Mod(a,n).sqrt()

中国の剰余定理: x = crt(a,b,m,n)

Euler's $\phi(n)$ function: euler_phi(n)

Kronecker symbol $\left(\frac{a}{b}\right) = \text{kronecker_symbol}(a,b)$ Quadratic residues: quadratic_residues(n)

Quadratic non-residues: quadratic_residues(n)

ring $\mathbb{Z}/n\mathbb{Z} = \text{Zmod}(n) = \text{IntegerModRing}(n)$ $a \mod n$ as element of $\mathbb{Z}/n\mathbb{Z}$: Mod(a, n)

primitive root modulo $n = \text{primitive_root}(n)$ inverse of $n \pmod m$: n.inverse_mod(m)

power $a^n \pmod m$: power_mod(a, n, m)

Chinese remainder theorem: $\mathbf{x} = \text{crt}(\mathbf{a}, \mathbf{b}, \mathbf{m}, \mathbf{n})$ finds x with $x \equiv a \pmod n$ and $x \equiv b \pmod n$ discrete log: $\log(\text{Mod}(6,7), \text{Mod}(3,7))$ order of $a \pmod n = \text{Mod}(\mathbf{a}, \mathbf{n})$ multiplicative_order()

特殊函数 Special Functions

complex_plot(zeta, (-30,5), (-8,8))

square root of $a \pmod{n} = Mod(a,n).sqrt()$

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} = \sum \frac{1}{n^s} = \mathtt{zeta}(s)$$

$$\mathtt{Li}(x) = \int_{2}^{x} \frac{1}{\log(t)} dt = \mathtt{Li}(\mathbf{x})$$

$$\Gamma(s) = \int_{0}^{\infty} t^{s-1} e^{-t} dt = \mathtt{gamma}(s)$$

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} = \sum \frac{1}{n^s} = \mathtt{zeta}(s)$$

$$\mathtt{Li}(x) = \int_{2}^{x} \frac{1}{\log(t)} dt = \mathtt{Li}(\mathbf{x})$$

$$\Gamma(s) = \int_{0}^{\infty} t^{s-1} e^{-t} dt = \mathtt{gamma}(s)$$

連分数 Continued Fractions

continued_fraction(pi)

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \cdots}}}}$$

楕円曲線 Elliptic Curves

EllipticCurve([0,0,1,-1,0]).plot(plot_points=300,thickness=3)

E = EllipticCurve([
$$a_1, a_2, a_3, a_4, a_6$$
])
 $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$

$$E$$
 の導手 (conductor) $N = E.conductor()$

$$E$$
 の判別式 $\Delta = E.discriminant()$

Eの階数 = E.rank()

$$E(\mathbb{Q})$$
 の自由生成系 = E.gens()

$$N_p = \#\{\text{modulo } p \ \texttt{での} E \ \texttt{の解} \} = \texttt{E.Np}(prime)$$

$$a_p = p + 1 - N_p = \mathbb{E}.ap(prime)$$

$$L(E,s) = \sum rac{a_n}{n^s} = exttt{E.lseries()}$$

$$\operatorname{ord}_{s=1} L(E,s) = \text{E.analytic_rank()}$$

 $\begin{aligned} \mathbf{E} &= \mathbf{EllipticCurve}([a_1, a_2, a_3, a_4, a_6]) \\ &\quad y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6 \end{aligned}$ conductor N of $E = \mathbf{E}.$ conductor() discriminant Δ of $E = \mathbf{E}.$ discriminant() rank of $E = \mathbf{E}.$ rank() free generators for $E(\mathbb{Q}) = \mathbf{E}.$ gens() j-invariant $= \mathbf{E}.$ \mathbf{j} -invariant() $N_p = \#\{\text{solutions to } E \text{ modulo } p\} = \mathbf{E}.$ $\mathbf{Np}(prime)$ $a_p = p + 1 - N_p = \mathbf{E}.$ ap(prime) $L(E, s) = \sum_{\substack{n = n \\ n \neq s}} \frac{a_n}{n^s} = \mathbf{E}.$ Iseries() ord_{s=1} $L(E, s) = \mathbf{E}.$ analytic_rank()

p で合同な楕円曲線 Elliptic Curves Modulo p

EllipticCurve(GF(997), [0,0,1,-1,0]).plot()

