AME1117

1A Low Dropout Positive Voltage Regulator

■General Descriptions

The AME1117 is a 1A low-dropout positive voltage regulator. It is available in fixed and adjustable output voltage versions. Overcurrent and thermal protection are integrated onto the chip. Output current will limit as while it reaches the pre-set current or temperature limit. The dropout voltage is specified at 1.4V Maximum at full rated output current. The AME1117 series provides excellent regulation over line, load and temperature variations.

■Key Features

- Low dropout voltage1.2V at 1A
- Adjustable or fixed voltages 2.5V, 3.3V, 5.0V
- Typical line regulation 0.2%
- Typical load regulation 0.15%
- Adjust pin current less than 90μA
- Overcurrent protection
- Thermal protection
- Available in TO-220, TO-252, SOT-223

■Applications

- High Efficiency Linear Regulators
- 5V to 3.3V Voltage Converter
- Battery Charger
- Post Regulators for Switching Supplies

■Functional Block Diagram

Current Limiting Amplifier Thermal Protection Bandgap Reference Amp. Bandgap Reference

Figure 1

■ Typical Application

Please refer to electrical characteristics.

Figure 2

AME1117

■ Pin Configuration

TO-220 Front View

TO-252 (DPAK-2) Front View

SOT-223 Front View

TO-252 (DPAK-2) Front View

AME1117

1A Low Dropout Positive Voltage Regulator

■ Ordering Information

Part Number	Marking	Output Voltage	Package
AME1117ACGT	ABEyww	ADJ	
AME1117BCGT	AKEyww	2.5	SOT-223
AME1117CCGT	ABFyww	3.3	301-223
AME1117DCGT	AKFyww	5.0	
AME1117ACCT	AME1117 ACCT yyww	ADJ	
AME1117BCCT	AME1117 BCCT yyww	2.5	TO-252
AME1117CCCT	AME1117 CCCT yyww	3.3	(DPAK-2)
AME1117DCCT	AME1117 DCCT yyww	5.0	
AME1117ACBT	AME1117 ACBT yyww	ADJ	
AME1117BCBT	AME1117 BCBT yyww	2.5	TO-220
AME1117CCBT	AME1117 CCBT yyww	3.3	10-220
AME1117DCBT	AME1117 DCBT yyww	5.0	

AME1117

■ Absolute Maximum Ratings

Parameter	Symbol	Maximum	Unit		
Input Voltage	V _{IN}	7	V		
The word Decistors	TO-220		2.5		
Thermal Resistance (Junction to Case)	TO-252	θιс	5		
(sunstion to ease)	SOT-223		15	00/14/	
The word Decistors of	TO-220		50	°C/W	
Thermal Resistance (Junction to Ambient)	TO-252	hetaJA	90		
	SOT-223		160		
Operating Junction Temperat	T_J	0 to 125			
Storage Temperature Range	T _{STG}	-65 to 150	°C		
Lead Temperature (10 sec)		T_{LEAD}	260		

■ Electrical Characteristics

AME1117AXXX

Parameter	Symbol	Test conditions		Min.	Тур.	Max.	Unit
Poforonco voltago	W	$V_{IN} = 5V, I_{O} = 10mA$	$T_J = 25^{\circ}C$	1.238	1.250	1.262	V
Reference voltage	V_{REF}	$V_{IN} = 5V$, $I_O = 10 \text{IIIA}$	Over Temp.	1.225	1.250	1.275	V
Line regulation *	Reg _{LINE}	$V_{IN} = 4.75 \sim 7V, I_{O} = 10 \text{mA}$	T _J = 25°C	1	1	0.2	%
Load regulation	Reg _{LOAD}	$V_{IN} = 5V, I_{O} = 10mA \sim 1A$	$T_J = 25^{\circ}C$	•	0.05	0.3	70
Load regulation	IXC9LOAD	VIN = 5V, IO = 10IIIA 1A	Over Temp.	•	0.2	0.4	
Dropout voltage	V_{D}	$I_{O} = 10 \text{mA} \sim 1 \text{A}, \ \Delta \text{Vo} = \pm 1 \%$	$T_J = 25^{\circ}C$	-	1.2	1.4	V
Diopout voltage	V D	$10 - 1000A^{\sim} 1A$, $\Delta VO = \pm 170$	Over Temp.	-	1.3	-	V
Current limit	Is	V _{IN} = 2.75~7V	Over Temp.	1.0	-	-	Α
Temp. coefficient	T _C	$V_{IN} = 2.75 \sim 7V, I_{O} = 10 \text{mA} \sim 1 \text{A}$		-	0.005	-	%/"C
Adjust pin current	1	$V_{IN} = 2.75 \sim 7V$, $I_{O} = 10 \text{mA} \sim 1A$	$T_J = 25^{\circ}C$	-	55	-	
Aujust pili culletit	I _{ADJ}	VIN = 2.75~7V, 10 = 10111A~1A	Over Temp.	-		90	μΑ
Adjust pin	ΔI_{ADJ}	$V_{IN} = 2.75 \sim 7V$, $I_{O} = 10 \text{mA} \sim 1A$,	Over Temp.	-	0.2	5	μ
current change	∆-ADJ	V = 2.75 · 7 · γ, ₀ = 10 · 17 · 17 · 17 · 17 · 17 · 17 · 17 ·					
Temperature stability	T_S	$V_{IN} = 5V$, $I_O = 100$ mA, Over Temp.			0.5		%
Minimum load current	lo	$V_{IN} = 5V$			5	10	mA
RMS output noise	V_N	$T_J = 25^{\circ}C$			0.003	-	%Vo
Ripple rejection ratio	R_A	$V_{IN} = 5V$, $I_{O} = 1A$, Over Temp.		60	72	-	dB

AME1117

1A Low Dropout Positive Voltage Regulator

AME1117BXXX

Parameter	Symbol	Test conditions		Min.	Тур.	Max.	Unit
Output voltage	Vo	$V_{IN} = 5V, I_{O} = 0A$	$T_J = 25^{\circ}C$	2.475	2.500	2.525	V
Output voltage	٧٥	VIN = 5V, IO = 0A	Over Temp.	2.450	2.500	2.550	V
Line regulation	Reg _{LINE}	$V_{1N} = 4.75 \sim 7V, I_{O} = 0A$	$V_{IN} = 4.75 \sim 7V, I_{O} = 0A$ $T_{J} = 25^{\circ}C$		-	0.2	0/
Load regulation	Reguests	$V_{IN} = 5V, I_{O} = 0A \sim 1A$	$T_J = 25^{\circ}C$	ı	0.05	0.3	%
Load regulation	I COLOAD	VIN = 3V, IO = 0A* IA	Over Temp.	ı	0.2	0.4	
Dropout voltage	V _D	$I_0 = 0A \sim 1A, \ \Delta Vo = \pm 1\%$	$T_J = 25^{\circ}C$	-	1.2	1.4	V
Bropout voltage	V D	$10 = 0$ A $^{\circ}$ 1A, Δ V $^{\circ}$ 0 = \pm 170	Over Temp.	1	1.3	1	
Current limit	I _S	$V_{IN} = 4.75 \sim 7V$, Over Temp.	1.0	1	1	Α	
Quiescent Current	l _Q	$V_{IN} = 5V$, $I_O = 0A~1A$, Over Te	emp.	1	6	13	mA
Temp. Coefficient	T _C	$V_{IN} = 4.75 \sim 7V, I_{O} = 0A \sim 1A$	1	0.005	1	%/"C	
Temperature stability	T _S	$V_{IN} = 5V$, $I_O = 100$ mA, Over Temp.		1	0.5	1	%
RMS output noise	V_N	$T_J = 25^{\circ}C$	1	0.003	-	%Vo	
Ripple rejection ratio	R _A	$V_{IN} = 5V$, $I_O = 1A$, Over Temp.		60	72		dB

AME1117CXXX

Parameter	Symbol	Test conditions	Min.	Тур.	Max.	Unit	
Output voltage	Vo	$V_{IN} = 5V, I_{O} = 0A$	$T_{J} = 25^{\circ}C$	3.270	3.300	3.330	V
Output voltage	٧٥	VIN - 3V, IO - 0A	Over Temp.	3.234	3.300	3.366	V
Line regulation	Reg _{LINE}	$V_{IN} = 4.75 \sim 7V, I_{O} = 0A$	$T_J = 25^{\circ}C$	-	-	0.2	
Load regulation	Reg _{LOAD}	$V_{IN} = 5V, I_{O} = 0A~1A$	$T_{J} = 25^{\circ}C$	ı	0.05	0.3	%
Load regulation	TCGLOAD	VIN = 5V, IO = 0A~ 1A	Over Temp.	-	0.2	0.4	
Dropout voltage	V _D	$I_0 = 0A \sim 1A, \ \Delta Vo = \pm 1\%$	$T_J = 25^{\circ}C$	1	1.2	1.4	V
Dropout voltage	VD	$10 - 0A \sim 1A$, $\Delta VO - \pm 1/6$	Over Temp.	1	1.3	ı	v
Current limit	I _S	$V_{IN} = 4.75 \sim 7V$, Over Temp.	V _{IN} = 4.75~7V, Over Temp.			ı	Α
Quiescent Current	lα	$V_{IN} = 5V$, $I_O = 0A\sim 1A$, Over Te	emp.	-	6	13	mA
Temp. coefficient	T _C	$V_{IN} = 4.75 \sim 7V, I_{O} = 0A \sim 1A$	ı	0.005	1	%/"C	
Temperature stability	T _S	$V_{IN} = 5V$, $I_O = 100$ mA, Over Te	1	0.5	1	%	
RMS output noise	V _N	$T_J = 25^{\circ}C$	-	0.003	-	%V _o	
Ripple rejection ratio	R _A	$V_{IN} = 5V$, $I_O = 1A$, Over Temp.		60	72	-	dB

AME1117

1A Low Dropout Positive Voltage Regulator

AME1117DXXX

Parament	Symbol	Test conditions		Min.	Тур.	Max.	Unit
Output voltage	Vo	$V_{IN} = 7V, I_{O} = 0A$	$T_{J} = 25^{\circ}C$	4.950	5.000	5.050	V
Output voltage	v 0	VIN = 7 V, IO = OA	Over Temp.	4.900	5.000	5.100	V
Line regulation	Reguus	$V_{IN} = 7 \sim 9V, I_{O} = 0A$	$T_J = 25^{\circ}C$	ı	-	0.3	
Line regulation	INEGLINE	VIN = 1~3V, IO = 0A	Over Temp.	ı	-	0.4	%
Load regulation	Regions	$V_{IN} = 7V, I_{O} = 0A \sim 1A$	$T_{\rm J} = 25^{\rm o}{\rm C}$	ı	0.05	0.3	70
Load regulation	TCGLOAD	VIN = 7 V, 10 = 0A~ 1A	Over Temp.	i	0.2	0.4	
Dropout voltage	V-	$V_{D} = I_{O} = 0A \sim 1A, \ \Delta V_{O} = \pm 1\%$	$T_J = 25^{\circ}C$	-	1.2	1.4	V
Diopout voitage	V D		Over Temp.	-	1.3	-	V
Current limit	I _S	V _{IN} = 7~10V, Over Temp.		1.0	-	-	Α
Quiescent Current	lα	$V_{IN} = 7V$, $I_O = 0A\sim 1A$, Over To	emp.	-	6	13	mA
Temp. coefficient	T _C	$V_{IN} = 7 \sim 10 V, I_{O} = 0 A \sim 1 A$	-	0.005	-	%/"C	
Temperature stability	T _S	$V_{IN} = 7V$, $I_O = 100$ mA, Over Temp.		-	0.5	-	%
RMS output noise	V _N	$T_J = 25^{\circ}C$	-	0.003	-	%V _o	
Ripple rejection ratio	R _A	$V_{IN} = 7V$, $I_O = 1A$, Over Temp	•	60	72	-	dB

Figure 3

AME1117

1A Low Dropout Positive Voltage Regulator

■ Performance Characteristics

1. Load Regulation

3. Temperature Stablilty

2. Short Circuit Current

4. Dropout Voltage

AME1117

5. Adjust Pin Current

7. Load Transient Response

6. Minimum Operating Current

8. Line Transient Response

AME1117

1A Low Dropout Positive Voltage Regulator

■ Application Descriptions

1. Output voltage adjustment

Like most regulators, the AME1117 regulates the output by comparing the output voltage to an internally generated reference voltage. On the adjustable version, the V_{REF} is available externally as 1.25V between V_{OUT} and ADJ. The voltage ratio formed by R1 and R2 should be set to conduct 10mA (minimum output load). The output voltage is given by the following equation:

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1}\right) + I_{ADJ} x R2$$

On fixed versions of AME1117, the voltage divider is provided internally.

Figure 4

2. Thermal protection

AME1117 has thermal protection which limits junction temperature to 150°C. However, device functionality is only guaranteed to a maximum junction temperature of +125°C.

The power dissipation and junction temperature for AME1117 in DPAK package are given by

$$\begin{aligned} &P_{_{D}} = (V_{_{IN}} - V_{_{OUT}}) \times I_{_{OUT}} \\ &T_{_{JUNCTION}} = T_{_{AMBIENT}} + (P_{_{D}} \times \theta_{_{JA}}) \end{aligned}$$

Note: T_{JUNCTION} must not exceed 125°C

3. Current Limit Protection

AME1117 is protected against overload conditions. Current protection is triggered at typically 1.5A.

4. Stability and Load Regulation

AME1117 requires a capacitor from V_{OUT} to GND to provide compensation feedback to the internal gain stage. This is to ensure stability at the output terminal. Typically, a $10\mu\text{F}$ tantalum or $50\mu\text{F}$ aluminum electrolytic is sufficient.

Note: It is important that the ESR for this capacitor does not exceed 0.5Ω .

The output capacitor does not have a theoretical upper limit and increasing its value will increase stability. $C_{OUT} = 100 \mu F$ or more is typical for high current regulator design.

For the adjustable version, the best load regulation is accomplished when the top of the resistor divider (R1) is connected directly to the output pin of the AME1117. When so connected, R_P is not multiplied by the divider ratio.

For fixed output versions, the top of R1 is internally connected to the output. The ground pin can be connected to the low side of the load in order to eliminate ground loop errors.

Figure 5

AME1117

1A Low Dropout Positive Voltage Regulator

5. Thermal Consideration

The AME1117 series contain thermal limiting circuitry designed to protect itself from over-temperature conditions. Even for normal load conditions, maximum junction temperature ratings must not be exceeded. As mentioned in thermal protection section, we need to consider all sources of thermal resistance between junction and ambient. It includes junction-to-case, case-to-heat-sink interface and heat sink thermal resistance itself.

Junction-to-case thermal resistance is specified from the IC junction to the bottom of the case directly below the die. Proper mounting is required to ensure the best possible thermal flow from this area of the package to the heat sink. The case of all devices in this product series is electrically connected to the output. Therefore, if the case of the device must be electrically isolated, a thermally conductive spacer is recommended.

AME1117

1A Low Dropout Positive Voltage Regulator

■ Advanced Applications

Adjustable Output Voltage

- * V_O = Vref (1 + R2/R1) + ladj X R2
 ** Optional for improved ripple rejection

Paralleling Regulators

* $20m\Omega$ is ballast resistance The inter-connection of #18 wire could act as ballast resistance.

AME1117

Regulator with Reference

- * V_O = Vref + V_Z (V_Z is breakdown voltage of Zener Diode) ** Optional for improved ripple rejection

Regulator with Reverse Diode Protection

AME1117

1A Low Dropout Positive Voltage Regulator

■ Package Dimension

TO-220

SYMBOLS	MILLIN	IETERS	INCHES		
SIMBOLS	MIN	MAX	MIN	MAX	
A	4.06	4.83	0.160	0.190	
b	0.63	1.02	0.025	0.040	
C1	0.35	0.60	0.0138	0.0236	
D	14.22	14.99	0.056	0.590	
E	9.66	10.54	0.385	0.415	
e	-	2.79	-	0.110	
e1	4.83	5.33	0.190	0.210	
e3	1.14	1.40	0.045	0.055	
f	1.14	1.40	0.045	0.055	
H1	5.94	6.55	0.234	0.258	
K	2.29	2.92	0.090	0.115	
СР	3.71	3.96	0.146	0.156	
Q	2.62	2.87	0.103	0.113	
L	12.70	14.27	0.500	0.5618	
a	3D	7D	3D	7D	
b1	1.14	1.52	0.0449	0.06	
R	6.17	REF.	0.243	REF.	

Notes:

- 1. Dimension C1 apply for tin plate finish.
- 2. For solder dip lead finish dimension C1 should be 0.015"-0.027" (0.38-0.69)

SOT-223

SYMBOLS	MILLIN	1ETERS	INC	HES
SIMBOLS	MIN	MAX	MIN	MAX
A	1.50	1.80	0.0591	0.0709
$\mathbf{A_1}$	0.02	0.10	0.0008	0.0039
В	0.60	0.838	0.0236	0.033
$\mathbf{B_1}$	2.895	3.15	0.1140	0.1240
C	0.24	0.381	0.0094	0.0150
D	6.299	6.706	0.2480	0.2640
E	3.30	3.708	0.1299	0.1460
e	2.30	BSC	0.090	BSC
e ₁	4.60	BSC	0.181 BSC	
Н	6.70	7.30	0.2638	0.2874
L	0.91 MIN		0.0360 MIN	
L_1	2.00 MAX		0.0787 MAX	
L_2	0.06 BSC		0.0024 BSC	
a	0?	10 [?]	0?	10 ?

AME1117

1A Low Dropout Positive Voltage Regulator

■ Package Dimension

TO-252 (DPAK)

SYMBOLS	MILLIN	METERS	INCHES	
SIMBOLS	MIN	MAX	MIN	MAX
A	0.45	0.58	0.0177	0.023
В	1.60	1.95	0.06	0.0768
С	0.51	-	0.02	-
D	0.45	0.60	0.0177	0.0236
E	6.40	6.80	0.252	0.2677
F	5.40	5.80	0.2126	0.2283
G	2,20	2.85	0.0866	0.1122
H	-	* 2.30	-	* 0.0906
I	-	0.90	-	0.0354
J	-	0.97	-	0.038
K	5.20	5.50	0.20	0.22
L	0.89	2.03	0.035	0.08

^{*:} Typical value

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS.
- 2. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

TO-252 (DPAK)

SYMBOLS	MILLIN	METERS	INC	THES
SIVIBOLS	MIN	MAX	MIN	MAX
A	0.45	0.58	0.0177	0.023
В	1.60	1.95	0.06	0.0768
C	0.51	-	0.02	-
D	0.45	0.60	0.0177	0.0236
E	6.40	6.80	0.252	0.2677
F	5.40	5.80	0.2126	0.2283
G	2.20	2.85	0.0866	0.1122
Н	-	* 2.30	-	* 0.0906
I	-	0.90	-	0.0354
J	-	0.97	-	0.038
K	5.20	5.50	0.20	0.22
L	0.89	2.03	0.035	0.08

^{*:} Typical value

- 1. CONTROLLING DIMENSION: MILLIMETERS.
- 2. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

www.analogmicro.com E-Mail: info@analogmicro.com

Life Support Policy:

These products of Analog Microelectronics, Inc. are not authorized for use as critical components in lifesupport devices or systems, without the express written approval of the president of Analog Microelectronics, Inc.

Analog Microelectronics, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.

© Analog Microelectronics, Inc. , December, 2001

Document: 1014-DS1117-C

Corporate Headquarters Analog Microelectronics, Inc.

3100 De La Cruz Blvd. Suite 201 Santa Clara, CA. 95054-2046

Tel: (408) 988-2388 Fax: (408) 988-2489

Asia Pacific Headquarters AME, Inc.

2F, 187 Kang-Chien Road, Nei-Hu Dist., Taipei 114 Taiwan, R.O.C.

Tel: 886 2 2627-8687 Fax: 886 2 2659-2989