

# Getting started with secondary data analysis:

Dr Ana Morales-Gomez

Introduction to analysing data about crime using R Manchester 4-5 February 2020



Copyright © 2020 UK Data Service. Created by Cathie Marsh Institute for Social Research, University of Manchester.



#### **Data and Crime**

- Jack Maple and the "Charts of the Future"
- Steve Talley: How facial recognition can ruin your life
- Paul Zilly: Human versus Machine





Case #91A-DN-5510012



Lobby Camera Image

Jack Maple

Jack Maple: <a href="https://en.wikipedia.org/wiki/Jack Maple">https://en.wikipedia.org/wiki/Jack Maple</a>

Steve Talley: <a href="https://theintercept.com/2016/10/13/how-a-facial-recognition-mismatch-can-">https://theintercept.com/2016/10/13/how-a-facial-recognition-mismatch-can-</a>

ruin-your-life/

Paul Zilly: https://www.sciencefocus.com/future-technology/can-an-algorithm-deliver-



#### More about Data and Crime

Chapter Justice Chapter Crime





Twitter: @FryRsquared



## What is Research?

Adding a contribution to an existing body of knowledge



#### THE DATA SCIENCE PROCESS





# The data Science process (1): Ask an interesting question

# Ask an interesting question What is the specific GOAL? What would you do if you had all the DATA? What do you want to PREDICT or ESTIMATE?

#### ✓ A topic of interest:

- > Crime
- ➤ Health inequalities
- > Pollution

#### √ Specific goal

- Confidence in the Criminal Justice System in England
- Antisocial behaviour in Manchester

## ✓ What do you want to predict or estimate?

- National level estimates
- Local level indicators
- CJS as a whole or concentrate on Police, prisons, Sentencing?





## The data Science process (2): Get the data



- ✓ Police recorded crime data
- ✓ CSEW: For England and Wales
- ✓ Scottish Crime Survey
- ✓ European Social Survey
- ✓ Others:
  - ➤ Administrative data of prisons
  - Administrative data sentencing council



# The data Science process (2): Get the data



## ✓ Police recorded crime data:

- ✓ **CSEW UK Data Service**
- > Coverage
  - Date range
  - Spatial units

#### > What data

- Available for surveys
- Open data may not have any

#### > Format

- Depending on the source.
   UKDS: Stata, SPSS,
- Excel
- Text

#### Crime Survey for England and Wales 2017-2018



#### Coverage and methodology

Weighting:

| Time period:               | The survey covers experiences of crime in the 12 months prior to interview                                                                           |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dates of fieldwork:        | 1 April 2017 - 31 March 2018                                                                                                                         |
| Country:                   | England and Wales                                                                                                                                    |
| Spatial units:             | Police Force Areas<br>Government Office Regions                                                                                                      |
| Observation units:         | Individuals                                                                                                                                          |
| Observation unit location: | National                                                                                                                                             |
| Population:                | Adults aged 16 and over in private households in England and Wales, and children aged 10-15 years resident in the same households, during 2017-2018. |
| Number of units:           | Adults: 34,715 cases. Children: 3,008 cases.                                                                                                         |
| Method of data collection: | Self-completion Face-to-face interview: Computer-assisted (CAPI/CAMI)                                                                                |
| Time dimensions:           | Repeated cross-sectional study                                                                                                                       |
| Sampling procedures:       | Multi-stage stratified random sample                                                                                                                 |
| Kind of data:              | Numeric                                                                                                                                              |
|                            |                                                                                                                                                      |

Weighting used. See documentation for details

# The data Science process (3a): Explore the data



- ✓ What data do we have?
  - Variables (name some variables)
  - > Type of data
    - Numeric?
    - Attribute (character)
  - > Is it ready to analyse?
    - Data cleaning
    - Manipulation



# The data Science process (3b): Explore the data



- ✓ What data do we have?
  - > Variables

(name some variables)

- > Type of data
  - Numeric?
  - Attribute (character)
- ➤ Is it ready to analyse?
  - Data cleaning
  - Manipulation

#### ✓ Descriptive statistics

- > Central tendency measures
  - Any correlations?
  - Anomalies?

#### > Plot the data

- Anomalies?
- Patterns?

#### **➤ More questions**

- Are the data enough for my RQ?
- Do we need more data?
- Is there more data?
- Change RQs?



# The data Science process (4): Model the data



- ✓ What is the best approach to understand the data we have?
  - ➤ Depends on...
    - Our research questions
    - Our data available

#### > Example:

- > Correlation to look for association of two variables
- > Generalised Linear models /Regression based models for
  - ➤ Multiple linear regression (continuous outcome)
  - ➤ Logistic/Probit regression (binary outcome)
  - ➤ Ordinal regresions
  - ➤ Multilevel models (clusters and hierarchy dependence)
  - Longitudinal models (samples at different time points)



# The data Science process (5): Communicate and visualise the results



- ✓ Visualise the results
  - > Tables
  - Figures
  - > Plots
  - > Maps
- ✓ Communicate the results
  - > Know your audience
    - Effective
    - The right details for each audience
    - Academic ≠ Local Government officers







# Exploratory Data Analysis



### **Exploratory data analysis**

#### Flowchart for data preparation



From R for data science



#### What is data?

- Information, especially facts or numbers, collected to be examined and considered and used to help decision-making, or information in an electronic form that can be stored and used by a computer (Cambridge dictionary)
  - Numeric
  - Images
  - Attributes (characters)















Figures: © Allison Horst

#### **Describe the data**

#### ✓ To Understand:

- data availability,
- > Types,
- quality,
- data complexity (i.e. nonlinearity, requires transformation, etc)

## ✓ Guided by two types of questions (Grolemund and Wickham, 2016):

- ➤ What type of covariation occurs between my variables?
- ➤ What type of variation occurs within my variables?



### How to describe the data (1)

#### ✓ Distribution of numerical variables:

- Extreme values (outliers)
- ➤ Shape of the distribution
- ➤ Missing cases
- ➤ Unusual patterns



#### ✓ Distribution of categorical variables

- Missing cases
- Odd values
- Unusual patterns
- Most common values



Figure: © Allison Horst

### How to describe the data (2)

#### ✓ Central tendency measures

- Mean
- median
- > mode

#### ✓ Measures of spread

- Variance and standard deviation
- > Range:
  - ➤ Interquartile range (IQR)

#### ✓ Visualisations

Histograms, boxplots, bar plots, scatterplots









## How to describe the data (3)

- ✓ Mean (sample vs. population):  $\mu = \frac{\sum x}{N}$ 
  - The "average" number; found by adding all data points and dividing by the number of data points
- ✓ Median
  - Middle value if odd number of values, or average of the middle two values otherwise
- ✓ Mode
  - Value that occurs most frequently in the data
    - Unimodal, bimodal, trimodal

Is the mean always the best central tendency measure?



## The problem with the mean



"There are two pieces of bread. You eat two. I eat none. Average consumption: one bread per person."

Nicanor Parra, (Anti)Poet, Mathematician and Physicist



#### More about visualisations

#### Two types:

#### 1. Exploring and getting to know the data

- 1. Assess the data: decide what to do next
- 2. Accurate
- 3. Internal, never reach the wider audience

#### 2. Communication

- 1. Present data and ideas
- 2. Accurate: provide evidence
- 3. Easy to understand
- 4. Effective
- 5. It would depend on the audience







#### Effective visualisations for communication

- ✓ Simple but effective (don't over do it!)
  - ✓ Easy to understand
- ✓ Use the right type of graph of figure
  - ✓ Not a fit them all purpose graph
- ✓ Appropriate use of colours (colour blind people)
- ✓ Know your audience



#### **Effective visualisations for communication**

#### Chart Suggestions—A Thought-Starter





https://www.data-to-viz.com/

# Effective visualisations for communication: Use the right display

- ✓ Comparisons:
  - > Bars
  - **>** lines
- ✓ Proportions
  - ➤ Pie charts
  - > Stacked charts

- ✓ Trends over time
  - ➤ Lines
  - > Scatterplots
- ✓ Distributions
  - ➤ Density plots
  - ➤ Histograms
- ✓ Correlations
  - ➤ Scatterplots



## Your turn



### Questions

**Ana Morales-Gomez** 

ana.morales@Manchester.ac.uk

