$\underline{\mathrm{MSL}}$	<u>Haksell</u>	$\underline{\mathrm{Agda}}$
<pre>Monoid := Theory { U : type; * : (U,U) -> U;</pre>	<pre>class Semigroup a => Monoid a where mempty :: a</pre>	<pre>data Monoid (A : Set)</pre>
e : U; axiom right_identity_*_e :	mappend :: a -> a -> a mappend = (<>)	where monoid :
<pre>forall x : U . (x * e) = x axiom left_identity_*_e :</pre>	<pre>mconcat :: [a] -> a mconcat =</pre>	(z : A) (_+_ : A -> A -> A)
<pre>forall x : U . (e * x) = x; axiom associativity_* :</pre>	foldr mappend mempty MMT	<pre>(left_Id : LeftIdentity Eq z _+_)</pre>
forall x,y,z : U . ((x * y) * z) = (x * (y * z));	theory Semigroup : ?NatDed =	<pre>(right_Id : RightIdentity Eq z _+_)</pre>
} Coq	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>(assoc : Associative Eq _+_) -></pre>
Class Monoid {A : type}	#1 * 2 prec 40 assoc : $\vdash \forall \ [\mathtt{x}] \ \forall \ [\mathtt{y}] \ \forall \ [\mathtt{z}]$	Monoid A Eq Alternative Definition:
(dot : A -> A -> A) (one : A) : Prop := {	(x * y) * z = x * (y * z)	Alternative Dennition: $ \texttt{record Monoid } \texttt{c} \; \ell \; : $
<pre>dot_assoc : forall x y z : A,</pre>	assocLeftToRight : $\{ x y z \} \vdash (x * y) * z$	Set (suc (c \sqcup ℓ)) where infixl 7 $_ullet$ _
(dot x (dot y z)) = dot (dot x y) z	= x * (y * z) = [x,y,z]	infix 4 $_{\sim}$ _ field
<pre>unit_left : forall x, dot one x = x</pre>	allE (allE (allE assoc x) y) z	Carrier : Set c _ $pprox_{-}$: Rel Carrier ℓ
<pre>unit_right : forall x, dot x one = x</pre>	<pre>#assocLR %I1 %I2 %I3 assocRightToLeft :</pre>	${ t _}ullet { t .}$ 0p $_2$ Carrier isMonoid :
Alternative Definition:	$\{x,y,z\} \vdash x * (y * z)$ = $(x * y) * z$	Is Monoid $_\approx_$ $_\bullet_$ ϵ where Is Monoid is defined as
Record monoid := {	= [x,y,z] sym assocLR # assocRL %I1 %I2 %I3	record IsMonoid ($ullet$: ${\tt Op}_2$) ($arepsilon$: A)
dom : Type; op : dom -> dom -> dom	theory Monoid : ?NatDed includes ?Semigroup	: Set (a \sqcup ℓ) where field
where $"x_{\perp}*_{\perp}y" := (op x y)$; id : dom where "1" := id ;	unit : tm u $\#$ e $@_description$ the $unit$	isSemigroup : IsSemigroup •
assoc : forall x y z, x * (y * z)	element of the monoid unit_axiom : $\vdash \forall [x] = x * e =$	identity : Identity $arepsilon$ $ullet$
= (x * y) * z;	$^{\odot}$ _description the axiom	$\begin{array}{ccc} \mathtt{identity}^l & \colon LeftIdentity \ \ \varepsilon \\ & \bullet \end{array}$
<pre>left_neutral : forall x, 1 * x</pre>	of the neutral element	$identity^l = proj_1$ $identity$
<pre>right_neutral : forall x, x * 1 = x</pre>		$\begin{array}{ccc} \mathtt{identity}^r & : & \mathtt{RightIdentity} \\ \varepsilon & \bullet \end{array}$
· .		$identity^r = proj_2 identity$