Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Forma di Jordan e Polinomio Minimo

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

Nelle scorse lezioni

▶ Motivazione: soluzioni di un sistema autonomo

▶ Calcolo dell'esponenziale di matrice: metodo diretto

▶ Concetti base di algebra lineare

▶ Calcolo dell'esponenziale di matrice: diagonalizzazione

▶ Forma canonica di Jordan: idea generale

In questa lezione

▶ Forma canonica di Jordan: costruzione

▶ Forma canonica di Jordan: algoritmo generale

▶ Forma canonica di Jordan: osservazioni

▶ Polinomi annullatori e polinomio minimo

Forma di Jordan: idea generale

$$F \in \mathbb{R}^{n imes n}$$
 con autovalori $\{\lambda_i\}_{i=1}^\ell$

 $u_i = \text{molteplicità algebrica } \lambda_i$ $g_i = \text{molteplicità geometrica } \lambda_i$

Caso 1:
$$\nu_i = g_i$$
 per ogni $i \implies F$ diagonalizzabile \checkmark

Caso 2: Esiste
$$i$$
 tale che $\nu_i > g_i \implies F$ non diagonalizzabile \times

Non esistono ν_i vettori lin. indip. in $\ker(F - \lambda_i)$

Però possiamo aggiungere agli autovettori di λ_i altri $\nu_i - g_i$ vettori lin. indip. in modo da formare ν_i vettori lin. indip.!

Tante scelte possibili, ma ne esiste una "furba"...

Fatto importante

$$\ker(F - \lambda_i I)^{\ell} \subseteq \ker(F - \lambda_i I)^{\ell+1}$$
, per ogni $\ell = 1, 2, 3, \dots$

ed esiste $\bar{\ell}$ tale che dim $\ker(F - \lambda_i I)^{\bar{\ell}} = \nu_i$

$$F\in\mathbb{R}^{10\times 10}\ \text{con 1 autovalore}\ \lambda_1\ \text{con}\ \nu_1=10\ \text{e}\ g_1=5$$

$$\dim\ker(F-\lambda_1I)=5\qquad \qquad \textbf{v}_1,\ \textbf{v}_2,\ \textbf{v}_3,\ \textbf{v}_4,\ \textbf{v}_5\quad \text{autovettori lin. indip.}$$

$$\dim\ker(F-\lambda_1I)^2=8\qquad \qquad \textbf{v}_6,\ \textbf{v}_7,\ \textbf{v}_8$$

$$\dim\ker(F-\lambda_1I)^3=9\qquad \qquad \textbf{v}_9\qquad \text{autovettori generalizzati}$$

$$\dim\ker(F-\lambda_1I)^4=10\qquad \qquad \textbf{v}_{10}$$

Giacomo Baggio IMC-TdS-1920: Lez. 5 October 15, 2019 7 / 18

$$v_{10}: (F - \lambda_1 I)^4 v_{10} = 0, (F - \lambda_1 I)^3 v_{10} \neq 0$$

$$\omega_9 \triangleq (F - \lambda_1 I) v_{10}: (F - \lambda_1 I)^3 \omega_9 = 0, (F - \lambda_1 I)^2 \omega_9 \neq 0$$

$$v_9 \leftarrow \omega_9$$

$$\omega_8 \triangleq (F - \lambda_1 I)\omega_9 : (F - \lambda_1 I)^2 \omega_8 = 0, (F - \lambda_1 I)\omega_8 \neq 0$$

$$v_8 \leftarrow \omega_8$$

 $v_5 \leftarrow \omega_5$

$$\omega_5 \triangleq (F - \lambda_1 I)\omega_8 : (F - \lambda_1 I)\omega_5 = 0$$

catena di autovettori generalizzati
$$C_{r} = [v_{r}, v_{r}]$$

$$\mathcal{C}_1 = [\omega_5, \omega_8, \omega_9, \mathsf{v}_{10}]$$

Giacomo Baggio

$$\mathcal{C}_1 = [\omega_5, \omega_8, \omega_9, v_{10}]$$

$$C_2 = [\omega_4, v_6]$$

$$\mathcal{C}_3 = [\omega_3, v_7]$$

$$C_4 = v_2$$

$$C_5 = v_1$$

matrice di cambio base

$$\mathcal{T} = [\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_4, \mathcal{C}_5]$$

oppure
$$\mathcal{T} = [\mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_5, \mathcal{C}_2, \mathcal{C}_1]$$

oppure
$$T = [\mathcal{C}_5, \mathcal{C}_4, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3]$$

...ma mai spezzare le catene!

che forma ha $F' = T^{-1}FT$?

$$(F - \lambda_1 I)\omega_5 = 0 \implies F\omega_5 = \lambda_1 \omega_5$$

$$(F - \lambda_1 I)\omega_8 = \omega_5 \implies F\omega_8 = \omega_5 + \lambda_1 \omega_8$$

$$(F - \lambda_1 I)\omega_9 = \omega_8 \implies F\omega_9 = \omega_8 + \lambda_1 \omega_9$$

$$(F - \lambda_1 I)v_{10} = \omega_9 \implies Fv_{10} = \omega_9 + \lambda_1 v_{10}$$

$$F\omega_4 = \lambda_1 \omega_4 \qquad F\omega_3 = \lambda_1 \omega_3 \qquad Fv_2 = \lambda_2 v_2 \qquad Fv_1 = \lambda_1 v_1$$

$$Fv_6 = \omega_4 + \lambda_1 v_6 \qquad Fv_7 = \omega_3 + \lambda_1 v_7$$

$$F_J \triangleq F' = T^{-1}FT =$$

	λ_1	1	0	0	0	0	0	0	0	0
	0	λ_1	1	0	0	0	0	0	0	0
	0	0	λ_1	1	0	0	0	0	0	0
	0	0	0	λ_1	0	0	0	0	0	0
	0	0	0	0	λ_1	1	0	0	0	0
	0	0	0	0	0	λ_1	0	0	0	0
	0	0	0	0	0	0	λ_1	1	0	0
	0	0	0	0	0	0	0	λ_1	0	0
	0	0	0	0	0	0	0	0	λ_1	0
	0	0	0	0	0	0	0	0	0	λ_1

Forma di Jordan: caso generale

F ha autovalori $\{\lambda_i\}_{i=1}^{\ell}$ (possibilmente con $\nu_i > g_i$)

Fatto importante: autovettori (veri o generalizzati) corrispondenti ad autovalori diversi sono linearmente indipendenti.

$$F_{J} = T^{-1}FT = \begin{bmatrix} J_{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{\ell}} \end{bmatrix} \quad J_{\lambda_{i}} = \begin{bmatrix} J_{\lambda_{i},1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_{i,2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_{i},\ell_{i}} \end{bmatrix} \quad J_{\lambda_{i,j}} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix}$$

$$J_{\lambda_i} = egin{bmatrix} J_{\lambda_i,1} & 0 & \cdots & 0 \ \hline 0 & J_{\lambda_{i,2}} & \ddots & dots \ \hline dots & \ddots & \ddots & 0 \ \hline 0 & \cdots & 0 & J_{\lambda_i,d} \ \end{pmatrix}$$

$$J_{\lambda_{i,j}} = \begin{bmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{bmatrix}$$

blocco di Jordan

miniblocco di Jordan

Forma di Jordan: algoritmo generale

- **1.** Data $F \in \mathbb{R}^{n \times n}$, calcolare autovalori λ_i , molt. algebriche ν_i e geometriche g_i
- **2.** Per tutti i λ_i tali che $\nu_i = g_i$ calcolare ν_i autovettori lin. indip.
- **3.** Per tutti i λ_i tali che $\nu_i > g_i$ (se esistono) calcolare ν_i vettori lin. indip. completando i g_i autovettori con $\nu_i g_i$ autovettori generalizzati in

$$\ker(F - \lambda_i I)^2, \ker(F - \lambda_i I)^3, \dots, \ker(F - \lambda_i I)^{\bar{\ell}}$$

- 4. Calcolare le catene di Jordan partendo dagli ultimi autovettori generalizzati
- **5.** Calcolare la matrice di cambio di base *T* ottenuta concatenando le catene (nell'ordine inverso e senza spezzarle!)
- **6.** $F_1 = T^{-1}FT$

Forma di Jordan: osservazioni

- **1.** La forma canonica di Jordan F_J è univocamente determinata a meno di una permutazione dei suoi blocchi/miniblocchi.
- 2. Dimensione blocco = molteplicità algebrica autovalore corrispondente Dimensione miniblocco = lunghezza catena corrispondente Numero miniblocchi = molteplicità geometrica autovalore corrispondente
- **3.** Per calcolare F_J non è sempre necessario il calcolo esplicito delle catene!!!

(i)
$$F: \lambda_1 = 1, \ \nu_1 = 2, \ g_1 = 1, \ \lambda_2 = 5, \ \nu_2 = 2, \ g_2 = 2$$

(ii)
$$F: \lambda_1 = 2, \nu_1 = 3, g_1 = 2$$

(iii)
$$F: \lambda_1 = 2, \nu_1 = 3, g_1 = 1$$

Polinomio annullatore di una matrice

Definizione: Un polinomio $p(x) = a_{\ell}x^{\ell} + a_{\ell-1}x^{\ell-1} + \cdots + a_1x + a_0$ si dice *polinomio annullatore* di $F \in \mathbb{R}^{n \times n}$ se

$$p(F) = a_{\ell}F^{\ell} + a_{\ell-1}F^{\ell-1} + \cdots + a_1F + a_0I = 0.$$

$$p(F)=0\iff p(T^{-1}FT)=0,\ T\in\mathbb{R}^{n\times n}=$$
 matrice di cambio di base
$$\iff p(F_J)=0$$

$$\iff p(J_{\lambda_{i,j}})=0,\ \forall i,j$$

Polinomio annullatore di una matrice

$$p(x) = (x - x_1)^{\alpha_1} \cdots (x - x_\ell)^{\alpha_\ell} \implies p(F) = (F - x_1 I)^{\alpha_1} \cdots (F - x_\ell I)^{\alpha_\ell}$$
$$\implies p(J_{\lambda_{i,j}}) = (J_{\lambda_{i,j}} - x_1 I)^{\alpha_1} \cdots (J_{\lambda_{i,j}} - x_\ell I)^{\alpha_\ell}$$

Per avere p(F) = 0:

- $p(\lambda_i) = 0$, per ogni autovalore λ_i di F
- $\alpha_i \geq$ dimensione del più grande miniblocco associato a $\lambda_i \triangleq h_i$

Polinomio minimo di una matrice

Definizione: Il polinomio annullatore di $F \in \mathbb{R}^{n \times n}$ di grado più piccolo possibile si dice *polinomio minimo* di F e verrà denotato con $\Psi_F(x)$.

$$\Psi_F(x) = (x - \lambda_1)^{h_1} (x - \lambda_2)^{h_2} \cdots (x - \lambda_\ell)^{h_\ell}$$

Notare che: $\nu_i \geq h_i$

Teorema di Cayley-Hamilton

Teorema: Il polinomio caratteristico di $F \in \mathbb{R}^{n \times n}$ è sempre un polinomio annullatore di F stessa:

$$\Delta_F(F) = 0.$$

Più precisamente $\Delta_F(x)$ è un multiplo di $\Psi_F(x)$ e $\Delta_F(x) = \Psi_F(x)$ quando F ha un solo miniblocco per ogni autovalore!