Embedded systems for smart cities: intelligent traffic lights

Progetto per il corso di Computer Systems Design - Prof. Nicola Mazzocca

M63001494 Abdel Majid Zaira

M63001490 Cipollaro Daiana

M63001442 Di Serio Francesco

N000122476 Manco Lorenzo

Schematizzazione del problema

- Si vuole progettare un sistema costituito da due semafori e un giudice per regolamentare il traffico in un incrocio come quello schematizzato in figura
- Si assume che la strada a nord e quella ad est siano a senso unico e sia sempre consentito alle macchine, supposto che esse abbiano il verde, di svoltarvici
- Alla pressione di un bottone, sarà consentito l'attraversamento pedonale e bloccato il flusso di traffico in tutte le direzioni che entrano in conflitto e mettono in pericolo l'attraversamento dei pedoni

Architettura complessiva

Abbiamo realizzato un sistema **multi-computer** costituito da tre nodi:

- uno schedino (STM32F3DISCOVERY) che ricopre il ruolo di **giudice**: si occupa di comunicare ai semafori quali luci accendere;
- due schedini (*NUCELO-F401RE*) che rappresentano i **semafori**: inviano le richieste di prenotazione da parte dei pedoni al giudice e accendono i led indicati.

Convenzione

- Con 'Semaforo1' intendiamo il complesso di semafori della strada in basso
- Con 'Semaforo2' intendiamo il complesso di semafori della strada a sinistra
- Con 'SemDritto' intendiamo **il semaforo specifico** che regola il traffico per andare dritto
- Con 'SemSvolta' intendiamo il semaforo specifico che regola il traffico per svoltare nella strada adiacente
- Con 'R1' intendiamo **la richiesta di attraversamento** effettuata da un pedone a semaforo1
- Con 'R2' intendiamo **la richiesta di attraversamento** effettuata da un pedone a semaforo2

Automi semafori

Main

• Il main sarà dato esclusivamente dall'inizializzazione delle periferiche e dall'avvio del timer per il watchdog. Dopodiché, il sistema compirà ulteriori azioni solo se interrotto da eventi esterni e per eseguire le relative ISR.

Automa ISR pressione bottone

 L'automa descrive il flusso di esecuzione per la gestione dell'evento "pressione del bottone", con cui un pedone esprime la volontà di attraversare

Automa ISR ricezione messaggio

- L'automa descrive il flusso di esecuzione per la gestione dell'evento di ricezione di un messaggio.
- Un messaggio dal Giudice rappresenta, infatti, un messaggio di alive, che assicura che esso è ancora in funzione, e resetta il watchdog

Automa ISR TimerWatchdog

- L'automa descrive il flusso di esecuzione per la gestione dell'evento di scadenza del TimerWatchdog, che indica un failure del Giudice.
- La disattivazione viene effettuata per fare in modo che il timer non continui a scattare; esso sarà infatti riattivato alla ricezione di un nuovo messaggio/al restore del giudice

Automa ISR TimerBlinking

- L'automa descrive il flusso di esecuzione per la gestione dell'evento dello scadere del TimerBlinking, che mette in idle il semaforo qualora il Giudice dovesse fallire
- Ad ogni scadere del timer, si cambierà lo stato del led giallo, che passerà da acceso a spento e viceversa generando quindi un blinking
- Si uscirà dallo stato di idle alla ricezione di un nuovo messaggio dal giudice

Automi giudice

Pattern di attivazione

- S0 Mettiamo tutti a rosso per 3 secondi
- S1 Mettiamo a verde il semaforo1 per 3 secondi
- S2 Mettiamo a giallo il semaforo1 per 2 secondi
- S3 Mettiamo tutti a rosso per 3 secondi
- S4 Mettiamo a verde il semaforo2 per 3 secondi
- S5 Mettiamo a giallo il semaforo2 per 2 secondi

Tabella codici di comando

Dritto	Svolta	Pedone	Simbolo
			А
			В
			С
			D
			Е
			F
			G

Automa TimerMain Giudice

- Il Main consisterà nel mandare un pattern di accensione ai diversi semafori, che si ripeterà ciclicamente.
- Si passerà da uno stato all'altro allo scadere del TimerMain, il quale prima di mettere uno dei due semafori a verde controllerà se vi è stata una richiesta di attraversamento
 - In questo caso, si interrompe il normale pattern di attivazione

Automa ISR Richiesta Attraversamento

- L'automa descrive il flusso di esecuzione per la gestione di ricezione di una richiesta di attraversamento
- Prima di intraprendere alcuna azione, si controlla se si è già in una condizione in cui il pedone sta attraversando
 - Se stiamo già attraversando, non faremo niente, altrimenti setteremo la variabile di richiesta del relativo semaforo di provenienza

Automa ISR TimerPedone

- L'automa descrive il flusso di esecuzione per la gestione dello scadere del TimerPedone
- A seconda della provenienza della richiesta (sem1 e/o sem2) setteremo il corrispondente pedone (P1 e/o P2) e il semDritto dell'altra strada
 - Se abbiamo una richiesta da entrambe le strade, tutti i semafori relativi ai veicoli saranno rossi e non ci sarà alcuna istruzione del tipo SemDritto=giallo

Periferiche e componenti utilizzati

- Componenti aggiuntivi:
 - Led RGB
 - 1 per ogni semaforo, 6 in totale
 - BreadBoard
 - Cavi MM
 - Resistori
 - 300 Ω e 4.7 kΩ
- Periferiche adoperate:
 - USART
 - User Button
 - Timer

Timer

- Sia nel giudice che nei semafori, avremo bisogno di 2 timer
 - TimerWatchdog e TimerBlinking per i semafori
 - TimerMain e TimerPedone per il giudice
- In tutti e 4 i casi, i timer saranno settati in modalità base dei tempi
 - è definito l'intervallo di tempo allo scadere del quale vogliamo che avvenga un determinato evento
- Si utilizzeranno i Timer Basic e il prescaler per ottenere un conteggio dell'ordine dei secondi

Mapping dei pin

Mapping Pin Semafori

Led

- Semaforo dritto: rosso sul pin PA0 e verde sul pin PA1
- Semaforo svolta: rosso sul pin PA4 e verde sul pin PB0
- Semaforo pedone: rosso sul pin PC1 e verde sul pin PC0

• Usart:

- USART1_RX mappato su PA10
- USART1_TX mappato su PA9

• Button:

- User button mappato su PC13, interruzioni abilitate sul fronte di discesa
- Timer:
 - TimerBlinking sarà implementato utilizzando il Timer10
 - TimerWatchdog sarà implementato utilizzando il Timer11

Mapping Pin Giudice

Giudice:

- UART4_RX mappato su PC11, UART4_TX mappato su PC10, baud rate 9600
- UART5_RX mappato su PD2, UART5_TX mappato su PC12, baud rate 9600

• Timer:

- TimerMain sarà implementato utilizzando il Timer6
- TimerPedone sarà implementato utilizzando il Timer7

Schema di collegamento di Giudice e Semaforo CN2 jumpers OFF-SWD connector breadboard

www.st.com/stm32nucleo

Schema di collegamento dei led RGB

Collegamento effettivo del sistema

Video dimostrativo

