# **CIRCUITOS DIGITAIS**

#### CÓDIGOS BINÁRIOS

Prof. Marcelo Grandi Mandelli mgmandelli@unb.br

#### Códigos Binários

- Código BCD
- Código de Gray
- Códigos k-de-n
- Códigos de paridade
- Códigos de Hamming

## Códigos Binários

- Qualquer informação no computador é representada por códigos binários:
  - caracteres, números, símbolos, etc.
- Existem diversas alternativas para codificar elementos dependendo das características desejadas.
- Um código pode ser otimizado para
  - reduzir espaço de armazenamento necessário
  - representar informações de forma unívoca
  - ainda explorar redundâncias para deteção e correção de erros

- Associam os 10 algarismos decimais (0 a 9) a códigos de 4 bits (16 combinações possíveis)
- Diversas associações são utilizadas, com predominância da representação BCD natural
- Na tabela apresentada a seguir, os pesos associados a cada um dos quatro dígitos binários aparecem entre parênteses



BCD Natural é igual ao código binário até o valor 9. Os valores entre 10 e 15 não são válidos.

| Dígito | BC | D r | nati | ural |    | Aik | ær | 1  |
|--------|----|-----|------|------|----|-----|----|----|
| Dígito | (8 | 4   | 2    | 1)   | (2 | 4   | 2  | 1) |
| 0      | 0  | 0   | 0    | 0    | 0  | 0   | 0  | 0  |
| 1      | 0  | 0   | 0    | 1    | 0  | 0   | 0  | 1  |
| 2      | 0  | 0   | 1    | 0    | 0  | 0   | 1  | 0  |
| 3      | 0  | 0   | 1    | 1    | 0  | 0   | 1  | 1  |
| 4      | 0  | 1   | 0    | 0    | 0  | 1   | 0  | 0  |
| 5      | 0  | 1   | 0    | 1    | 1  | 0   | 1  | 1  |
| 6      | 0  | 1   | 1    | 0    | 1  | 1   | 0  | 0  |
| 7      | 0  | 1   | 1    | 1    | 1  | 1   | 0  | 1  |
| 8      | 1  | 0   | 0    | 0    | 1  | 1   | 1  | 0  |
| 9      | 1  | 0   | 0    | 1    | 1  | 1   | 1  | 1  |

Aiken é igual ao código binário até o valor 4. Os valores 5 a 9 são formados Pela inversão dos bits dos valores 4 a 0.

Excesso-de-três: simplifica a aritmética BCD

|        |    |     |     |      |    |     |     |    |    |     | \ \ |       |
|--------|----|-----|-----|------|----|-----|-----|----|----|-----|-----|-------|
| Díaita | BC | D r | nat | ural | 4  | Aik | cer | 1  |    | Sti | bit | Z     |
| Dígito | (8 | 4   | 2   | 1)   | (2 | 4   | 2   | 1) | (8 | 4   | 2   | 1) +3 |
| 0      | 0  | 0   | 0   | 0    | 0  | 0   | 0   | 0  | 0  | 0   | 1   | 1     |
| 1      | 0  | 0   | 0   | 1    | 0  | 0   | 0   | 1  | 0  | 1   | 0   | 0     |
| 2      | 0  | 0   | 1   | 0    | 0  | 0   | 1   | 0  | 0  | 1   | 0   | 1     |
| 3      | 0  | 0   | 1   | 1    | 0  | 0   | 1   | 1  | 0  | 1   | 1   | 0     |
| 4      | 0  | 1   | 0   | 0    | 0  | 1   | 0   | 0  | 0  | 1   | 1   | 1     |
| 5      | 0  | 1   | 0   | 1    | 1  | 0   | 1   | 1  | 1  | 0   | 0   | 0     |
| 6      | 0  | 1   | 1   | 0    | 1  | 1   | 0   | 0  | 1  | 0   | 0   | 1     |
| 7      | 0  | 1   | 1   | 1    | 1  | 1   | 0   | 1  | 1  | 0   | 1   | 0     |
| 8      | 1  | 0   | 0   | 0    | 1  | 1   | 1   | 0  | 1  | 0   | 1   | 1     |
| 9      | 1  | 0   | 0   | 1    | 1  | 1   | 1   | 1  | 1  | 1   | 0   | 0     |
|        |    |     |     |      | I  |     |     |    |    |     |     |       |

Stibitz é igual ao BCD + 3.

Excesso-de-três: simplifica a aritmética BCD

|        |    |     |      |      |    |     |     |    |    |      | <b>*</b> |       |    |   |   |    |    |   |   |     |
|--------|----|-----|------|------|----|-----|-----|----|----|------|----------|-------|----|---|---|----|----|---|---|-----|
| Dígita | BC | D r | nati | ural | ,  | Aik | cer | 1  |    | Stil | bit      | Z     |    |   |   |    |    |   |   |     |
| Dígito | (8 | 4   | 2    | 1)   | (2 | 4   | 2   | 1) | (8 | 4    | 2        | 1) +3 | (7 | 4 | 2 | 1) | (6 | 4 | 2 | -1) |
| 0      | 0  | 0   | 0    | 0    | 0  | 0   | 0   | 0  | 0  | 0    | 1        | 1     | 0  | 0 | 0 | 0  | 0  | 0 | 0 | О   |
| 1      | 0  | 0   | 0    | 1    | 0  | 0   | 0   | 1  | 0  | 1    | 0        | 0     | 0  | 0 | 0 | 1  | 0  | 0 | 1 | 1   |
| 2      | 0  | 0   | 1    | 0    | 0  | 0   | 1   | 0  | 0  | 1    | 0        | 1     | 0  | 0 | 1 | 0  | 0  | 0 | 1 | 0   |
| 3      | 0  | 0   | 1    | 1    | 0  | 0   | 1   | 1  | 0  | 1    | 1        | 0     | 0  | 0 | 1 | 1  | 0  | 1 | 0 | 1   |
| 4      | 0  | 1   | 0    | 0    | 0  | 1   | 0   | 0  | 0  | 1    | 1        | 1     | 0  | 1 | 0 | 0  | 0  | 1 | 0 | 0   |
| 5      | 0  | 1   | 0    | 1    | 1  | 0   | 1   | 1  | 1  | 0    | 0        | 0     | 0  | 1 | 0 | 1  | 0  | 1 | 1 | 1   |
| 6      | 0  | 1   | 1    | 0    | 1  | 1   | 0   | 0  | 1  | 0    | 0        | 1     | 0  | 1 | 1 | 0  | 1  | 0 | 0 | 0   |
| 7      | 0  | 1   | 1    | 1    | 1  | 1   | 0   | 1  | 1  | 0    | 1        | 0     | 0  | 1 | 1 | 1  | 1  | 0 | 1 | 1   |
| 8      | 1  | 0   | 0    | 0    | 1  | 1   | 1   | 0  | 1  | 0    | 1        | 1     | 1  | 0 | 0 | 1  | 1  | 0 | 1 | 0   |
| 9      | 1  | 0   | 0    | 1    | 1  | 1   | 1   | 1  | 1  | 1    | 0        | 0     | 1  | 0 | 1 | 0  | 1  | 1 | 0 | 1   |

#### **Decimal** ←→**BCD**

■ Exemplo Decimal → BCD



■ Exemplo BCD → Decimal



| Decimal | E | 3in | áric | ) |
|---------|---|-----|------|---|
| 0       | 0 | 0   | 0    | 0 |
| 1       | 0 | 0   | 0    | 1 |
| 2       | 0 | 0   | 1    | 0 |
| 3       | 0 | 0   | 1    | 1 |
| 4       | 0 | 1   | 0    | 0 |
| 5       | 0 | 1   | 0    | 1 |
| 6       | 0 | 1   | 1    | 0 |
| 7       | 0 | 1   | 1    | 1 |
| 8       | 1 | 0   | 0    | 0 |
| 9       | 1 | 0   | 0    | 1 |

- Algoritmo para soma de números BCD
  - Efetuar a soma binária convencional dos dois números
  - 2. Adicionar 6 a cada nibble (grupo de 4 bits) que não seja um valor BCD válido
  - 3. Repetir o passo 2 até que todos os nibbles do resultado correspondam a valores BCD válidos

■ Exemplo de soma de números BCD



Exemplo de soma de números BCD



□ É um código numérico binário onde dois valores sucessivos diferem em somente um bit

- Também conhecido como código binário refletido, pois o código de Gray para n bits pode ser obtido a partir da reflexão do código de Gray para (n-1) bits em torno de um eixo situado ao término do código
  - Adiciona-se "0" como bit mais significativo (MSB -Most Significant Bit) acima do eixo
  - Adiciona-se "1" como MSB abaixo do eixo.



Circuitos Digitais – Marcelo Grandi Mandelli Slide 14

#### Conversão Gray – binário

- g<sub>i</sub> = i-ésimo bit do código de Gray
   g0 = MSB
- b<sub>i</sub> = i-ésimo bit do código binário
- $\bullet$  b<sub>0</sub> = MSB

$$g_{0} = b_{0}$$

$$g_{i} = \begin{cases} b_{i} = b_{i-1} \to g_{i} = 0 \\ b_{i} \neq b_{i-1} \to g_{i} = 1 \end{cases}$$

|   | ay<br>91 | <b>9</b> 2 | _ | Biná<br>b <sub>1</sub> | _ |
|---|----------|------------|---|------------------------|---|
| 0 | 0        | 0          | 0 | 0                      | 0 |
| 0 | 0        | 1          | 0 | 0                      | 1 |
| 0 | 1        | 1          | 0 | 1                      | 0 |
| 0 | 1        | 0          | 0 | 1                      | 1 |
| 1 | 1        | 0          | 1 | 0                      | 0 |
| 1 | 1        | 1          | 1 | 0                      | 1 |
| 1 | 0        | 1          | 1 | 1                      | 0 |
| 1 | 0        | 0          | 1 | 1                      | 1 |

#### Conversão Gray – binário

- g<sub>i</sub> = i-ésimo bit do código de Gray
   g0 = MSB
- b<sub>i</sub> = i-ésimo bit do código binário
- $\bullet$  b<sub>0</sub> = MSB

$$g_{0} = b_{0}$$

$$g_{i} = \begin{cases} b_{i} = b_{i-1} \to g_{i} = 0 \\ b_{i} \neq b_{i-1} \to g_{i} = 1 \end{cases}$$

 $g_i = b_i XOR b_{i-1}$ 

| Gr<br>90 | ay<br>91 | <b>9</b> 2 |   | Biná<br>b₁ |   |
|----------|----------|------------|---|------------|---|
| 0        | 0        | 0          | 0 | 0          | 0 |
| 0        | 0        | 1          | 0 | 0          | 1 |
| 0        | 1        | 1          | 0 | 1          | 0 |
| 0        | 1        | 0          | 0 | 1          | 1 |
| 1        | 1        | 0          | 1 | 0          | 0 |
| 1        | 1        | 1          | 1 | 0          | 1 |
| 1        | 0        | 1          | 1 | 1          | 0 |
| 1        | 0        | 0          | 1 | 1          | 1 |

■ Exemplo → Converter 101 para código de gray

Binário





| <b>9</b> 0 | 91 | <b>9</b> <sub>2</sub> |
|------------|----|-----------------------|
|            |    |                       |

■ Exemplo → Converter 101 para código de gray

Binário

| b <sub>0</sub> | b <sub>1</sub> | b <sub>2</sub> |
|----------------|----------------|----------------|
| 1              | 0              | 1              |



| 90 | 91 | <b>9</b> <sub>2</sub> |
|----|----|-----------------------|
| 1  |    |                       |

$$g_0 = b_0 = 1$$

■ Exemplo → Converter 101 para código de gray

Binário

| b <sub>0</sub> | b <sub>1</sub> | b <sub>2</sub> |
|----------------|----------------|----------------|
| 1              | 0              | 1              |



| 90 | 91 | <b>9</b> <sub>2</sub> |
|----|----|-----------------------|
| 1  | 1  |                       |

$$g_i = \begin{cases} b_i = b_{i-1} \to g_i = 0 \\ b_i \neq b_{i-1} \to g_i = 1 \end{cases}$$

$$g_1 = \begin{cases} b_1 = b_0 \to g_1 = 0 \\ b_1 \neq b_0 \to g_1 = 1 \end{cases}$$

■ Exemplo → Converter 101 para código de gray

Binário

| b <sub>0</sub> | b <sub>1</sub> | $b_2$ |
|----------------|----------------|-------|
| 1              | 0              | 1     |



| 90 | 91 | <b>9</b> <sub>2</sub> |
|----|----|-----------------------|
| 1  | 1  | 1                     |

$$g_i = \begin{cases} b_i = b_{i-1} \to g_i = 0 \\ b_i \neq b_{i-1} \to g_i = 1 \end{cases}$$

$$g_2 = \begin{cases} b_2 = b_1 \to g_2 = 0 \\ b_2 \neq b_1 \to g_2 = 1 \end{cases}$$

■ Exemplo → Converter 101 para código de gray

Binário

| b <sub>0</sub> | b <sub>1</sub> | b <sub>2</sub> |
|----------------|----------------|----------------|
| 1              | 0              | 1              |



| 90 | <b>9</b> 1 | <b>9</b> <sub>2</sub> |
|----|------------|-----------------------|
| 1  | 1          | 1                     |

|   | ay<br>91 | <b>9</b> 2 |   | Biná<br>b <sub>1</sub> |   |
|---|----------|------------|---|------------------------|---|
| 0 | 0        | 0          | 0 | 0                      | 0 |
| 0 | 0        | 1          | 0 | 0                      | 1 |
| 0 | 1        | 1          | 0 | 1                      | 0 |
| 0 | 1        | 0          | 0 | 1                      | 1 |
| 1 | 1        | 0          | 1 | 0                      | 0 |
| 1 | 1        | 1          | 1 | 0                      | 1 |
| 1 | 0        | 1          | 1 | 1                      | 0 |
| 1 | 0        | 0          | 1 | 1                      | 1 |

#### Principais utilizações

- Codificadores mecânicos
  - Pequenas mudanças de posição afetam apenas um único bit, diferentemente de certas situações que ocorrem com o código binário tradicional

- Mapas de Karnaugh
  - O ordenamento das células é feito segundo o código de Gray, para possibilitar as simplificações booleanas
  - Visto nas próximas aulas

- Ex: Codificador binário para um sistema mecânico rotacional
  - Codificação binária: 45°



- Ex: Codificador binário para um sistema mecânico rotacional
  - Caso haja desbalanceamento nas agulhas o erro produzido pode ser grande:



 Ex: Codificador Gray para um sistema mecânico rotacional



 Ex: Codificador Gray para um sistema mecânico rotacional



#### Código k de n

- São códigos ponderados constituídos por n bits
  - k bits são 1
  - n-k bits são 0

 Normalmente utilizados em detecção de erros transmissões de dados

□ Número de combinações possíveis

$$\frac{n!}{k!(n-k)!}$$

#### Código k de n

- □ Exemplo: código 74210, ou 2 de 5
  - A detecção de erros pode ser feita simplesmente conferindo se o número de 1s for diferente de 2

| Dígito decimal | (7 | 4 | 2 | 1 | 0)              |
|----------------|----|---|---|---|-----------------|
| 0              | 1  | 1 | 0 | 0 | O Caso especial |
| 1              | 0  | 0 | 0 | 1 | 1               |
| 2              | 0  | 0 | 1 | 0 | 1               |
| 3              | 0  | 0 | 1 | 1 | 0               |
| 4              | 0  | 1 | 0 | 0 | 1               |
| 5              | 0  | 1 | 0 | 1 | 0               |
| 6              | 0  | 1 | 1 | 0 | 0               |
| 7              | 1  | 0 | 0 | 0 | 1               |
| 8              | 1  | 0 | 0 | 1 | 0               |
|                |    |   |   |   |                 |
|                | l  |   |   |   |                 |

#### Código k de n

- Exemplo: código 2 de 7 bits ponderado
  - (50 43210), ou biquinário

| Dígito decimal | (5 | 0 | 4 |   | 3 | 2 | 1 | O) |
|----------------|----|---|---|---|---|---|---|----|
| 0              | 0  | 1 | ( | ) | 0 | 0 | 0 | 1  |
| 1              | 0  | 1 | ( | ) | 0 | 0 | 1 | 0  |
| 2              | 0  | 1 | ( | ) | 0 | 1 | 0 | 0  |
| 3              | 0  | 1 | ( | ) | 1 | 0 | 0 | 0  |
| 4              | 0  | 1 | • |   | 0 | 0 | 0 | 0  |
| 5              | 1  | 0 | ( | ) | 0 | 0 | 0 | 1  |
| 6              | 1  | 0 | ( | ) | 0 | 0 | 1 | 0  |
| 7              | 1  | 0 | ( | ) | 0 | 1 | 0 | 0  |
| 8              | 1  | 0 | ( | ) | 1 | 0 | 0 | 0  |
| 9              | 1  | 0 | • |   | 0 | 0 | 0 | 0  |

Em códigos de paridade simples acrescenta-se um bit à palavra de tal forma que a paridade seja par ou ímpar

 O objetivo é a detecção de erros simples na transmissão de dados

| Paridade $\neg$ |     |            |  |  |  |
|-----------------|-----|------------|--|--|--|
| Código          | Par | Nº de "1"s |  |  |  |
| 0 0 0           | 0   | 0          |  |  |  |
| 0 0 1           | 1   | 2          |  |  |  |
| 0 1 0           | 1   | 2          |  |  |  |
| 0 1 1           | 0   | 2          |  |  |  |
| 1 0 0           | 1   | 2          |  |  |  |
| 1 0 1           | 0   | 2          |  |  |  |
| 1 1 0           | 0   | 2          |  |  |  |
| 1 1 1           | 1   | 4          |  |  |  |

| Paridade – |       |            |  |  |  |  |
|------------|-------|------------|--|--|--|--|
| Código     | ĺmpar | Nº de "1"s |  |  |  |  |
| 0 0 0      | 1     | 1          |  |  |  |  |
| 0 0 1      | 0     | 1          |  |  |  |  |
| 0 1 0      | 0     | 1          |  |  |  |  |
| 0 1 1      | 1     | 3          |  |  |  |  |
| 1 0 0      | 0     | 1          |  |  |  |  |
| 1 0 1      | 1     | 3          |  |  |  |  |
| 1 1 0      | 1     | 3          |  |  |  |  |
| 1 1 1      | 0     | 3          |  |  |  |  |

#### □ Paridade em transmissão de dados



#### Código de Hamming

- Códigos de Hamming utilizam vários bits de paridade para
  - a detecção e correção de erros simples (em apenas um bit da palavra)
  - a detecção (mas não a correção) de erros duplos
- Código de Hamming terá:
  - d bits de dados
  - p bits de paridade

#### Código de Hamming

Com d bits de dados, precisamos que a paridade seja:

$$2^{p} \ge d + p + 1, p \ge 2$$

## **Exemplo**

#### ■ 4 bits de dados

$$2^{p} \ge d + p + 1, p \ge 2$$

■ Começamos com p = 2

$$2^{2} \ge 4 + 2 + 1$$
$$4 \ge 7 \quad \textcircled{:}$$

■ Agora vamos tentar p = 3

$$2^3 \ge 4 + 3 + 1$$
$$8 \ge 8 \quad \bigcirc$$

Código de Hamming (7,4)

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |

Definimos que a paridade será PAR

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----|---|---|---|---|---|---|---|
|     |   |   |   |   |   |   |   |

Teremos 3 bits de paridade  $\rightarrow$  7 - 4 = 3

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit | 1              | 2              | 3 | 4              | 5 | 6 | 7 |
|-----|----------------|----------------|---|----------------|---|---|---|
|     | P <sub>1</sub> | P <sub>2</sub> |   | P <sub>4</sub> |   |   |   |

Os bits de paridade serão colocados nos bits que representam potências de 2: 1, 2, 4

Assim teremos as paridades: P<sub>1</sub>P<sub>2</sub>P<sub>4</sub>

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit | 1              | 2              | 3 | 4              | 5 | 6 | 7 |
|-----|----------------|----------------|---|----------------|---|---|---|
|     | P <sub>1</sub> | P <sub>2</sub> | 1 | P <sub>4</sub> | 1 | 0 | 1 |

Os bits de dados são colocados de forma ordenada nos bits restantes

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit            | 1              | 2              | 3 | 4              | 5 | 6 | 7 |
|----------------|----------------|----------------|---|----------------|---|---|---|
|                | P <sub>1</sub> | P <sub>2</sub> | 1 | P <sub>4</sub> | 1 | 0 | 1 |
| P <sub>1</sub> | P <sub>1</sub> |                | 1 |                | 1 |   | 1 |

#### Para calcular a paridade P<sub>1</sub>:

- Começamos a partir da posição de P<sub>1</sub> (1)
- Pegamos 1 bit
- Pulamos 1 bit
- Repetimos até o fim

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit            | 1              | 2              | 3 | 4              | 5 | 6 | 7 |
|----------------|----------------|----------------|---|----------------|---|---|---|
|                | P <sub>1</sub> | P <sub>2</sub> | 1 | P <sub>4</sub> | 1 | 0 | 1 |
| P <sub>1</sub> | P <sub>1</sub> |                | 1 |                | 1 |   | 1 |
| P <sub>2</sub> |                | P <sub>2</sub> | 1 |                |   | 0 | 1 |

#### Para calcular a paridade P<sub>2</sub>:

- Começamos a partir da posição de P<sub>2</sub> (2)
- Pegamos 2 bits
- Pulamos 2 bits
- Repetimos até o fim

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit            | 1              | 2              | 3 | 4              | 5 | 6 | 7 |
|----------------|----------------|----------------|---|----------------|---|---|---|
|                | P <sub>1</sub> | P <sub>2</sub> | 1 | P <sub>4</sub> | 1 | 0 | 1 |
| P <sub>1</sub> | P <sub>1</sub> |                | 1 |                | 1 |   | 1 |
| P <sub>2</sub> |                | P <sub>2</sub> | 1 |                | 1 | 0 |   |
| P <sub>4</sub> |                |                |   | P <sub>4</sub> | 1 | 0 | 1 |

#### Para calcular a paridade $P_4$ :

- Começamos a partir da posição de P<sub>4</sub> (4)
- Pegamos 4 bits
- Pulamos 4 bits
- Repetimos até o fim

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit            | 1 | 2              | 3 | 4              | 5 | 6 | 7 |
|----------------|---|----------------|---|----------------|---|---|---|
|                | 1 | P <sub>2</sub> | 1 | P <sub>4</sub> | 1 | 0 | 1 |
| P <sub>1</sub> | 1 |                | 1 |                | 1 |   | 1 |
| P <sub>2</sub> |   | P <sub>2</sub> | 1 |                |   | 0 | 1 |
| P <sub>4</sub> |   |                |   | P <sub>4</sub> | 1 | 0 | 1 |

Definimos a paridade como PAR:

$$P_1 = 1$$

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit            | 1 | 2 | 3 | 4              | 5 | 6 | 7 |
|----------------|---|---|---|----------------|---|---|---|
|                | 1 | 0 | 1 | P <sub>4</sub> | 1 | 0 | 1 |
| P <sub>1</sub> | 1 |   | 1 |                | 1 |   | 1 |
| P <sub>2</sub> |   | 0 | 1 |                |   | 0 | 1 |
| P <sub>4</sub> |   |   |   | P <sub>4</sub> | 1 | 0 | 1 |

Definimos a paridade como PAR:

$$P_2 = 0$$

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit            | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------------|---|---|---|---|---|---|---|
|                | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| P <sub>1</sub> | 1 |   | 1 |   | 1 |   | 1 |
| P <sub>2</sub> |   | 0 | 1 |   |   | 0 | 1 |
| P <sub>4</sub> |   |   |   | 0 | 1 | 0 | 1 |

Definimos a paridade como PAR:

$$P_4 = 0$$

- □ Código de Hamming (7,4)
  - Exemplo → 4 bits de dados: 1101

| Bit            | 1 | 2              | 3 | 4 | 5 | 6 | 7 |
|----------------|---|----------------|---|---|---|---|---|
|                | 1 | 0              | 1 | 0 | 1 | 0 | 1 |
| P <sub>1</sub> | 1 |                | 1 |   | 1 |   | 1 |
| P <sub>2</sub> |   | P <sub>2</sub> | 1 |   |   | 0 | 1 |
| P <sub>4</sub> |   |                |   | 0 | 1 | 0 | 1 |

O valor a ser transmitido será: 1010101

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----|---|---|---|---|---|---|---|
|     | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----|---|---|---|---|---|---|---|
|     | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
|     |   |   |   |   |   |   |   |

**BIT 6 CONTÉM ERRO!** 

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----|---|---|---|---|---|---|---|
|     | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

Deveremos recalcular as paridades para detectar um erro!

Definimos a paridade como PAR

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit            | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------------|---|---|---|---|---|---|---|
|                | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| P <sub>1</sub> | 1 |   | 1 |   | 1 |   | 1 |

 $P_1 \rightarrow 11111 \rightarrow Valor PAR de 1s \rightarrow \bigcirc$ 

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit            | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------------|---|---|---|---|---|---|---|
|                | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| P <sub>1</sub> | 1 |   | 1 |   | 1 |   | 1 |
| P <sub>2</sub> |   | 0 | 1 |   |   | 1 | 1 |

$$P_1 \rightarrow 1 \ 1 \ 1 \ 1 \rightarrow Valor PAR de 1s \rightarrow \bigcirc$$

$$P_2 \rightarrow 0 \ 1 \ 1 \ 1 \rightarrow Valor MPAR de 1s \rightarrow \bigcirc$$

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit            | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------------|---|---|---|---|---|---|---|
|                | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| P <sub>1</sub> | 1 |   | 1 |   | 1 |   | 1 |
| P <sub>2</sub> |   | 0 | 1 |   |   | 1 | 1 |
| P <sub>4</sub> |   |   |   | 0 | 1 | 1 | 1 |

$$P_1 \rightarrow 1 \ 1 \ 1 \ 1 \ 2 \rightarrow Valor PAR de 1s \rightarrow \bigcirc$$
 $P_2 \rightarrow 0 \ 1 \ 1 \ 1 \rightarrow Valor MPAR de 1s \rightarrow \bigcirc$ 
 $P_4 \rightarrow 0 \ 1 \ 1 \ 1 \rightarrow Valor MPAR de 1s \rightarrow \bigcirc$ 

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----|---|---|---|---|---|---|---|
|     | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

Como descobrir o bit errado?

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111

| Bit | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----|---|---|---|---|---|---|---|
|     | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

As paridades erradas foram a 2 e a 4:

BIT ERRADO = 
$$2 + 4 = 6$$

$$P_1 \rightarrow 11111 \rightarrow Valor PAR de 1s \rightarrow \bigcirc$$

$$P_2 \rightarrow 0 \ 1 \ 1 \ 1 \rightarrow Valor MPAR de 1s \rightarrow \bigcirc$$

$$P_4 \rightarrow 0 \ 1 \ 1 \ 1 \rightarrow Valor MPAR de 1s \rightarrow \bigcirc$$

- □ Código de Hamming (7,4) → CORREÇÃO
  - Exemplo → Valor recebido = 1010111



O bit 6 é 1, então deveria ser 0!!

 Codificador/decodificador para o Código de Hamming



Códigos Hamming até um máximo de 255 bits

| Combinações de parâmetros do códigos de Hamming |                  |                   |  |  |  |  |  |
|-------------------------------------------------|------------------|-------------------|--|--|--|--|--|
| d                                               | р                | d + p             |  |  |  |  |  |
| Bits de dados                                   | Bits de paridade | Total da mensagem |  |  |  |  |  |
| 1                                               | 2                | 3                 |  |  |  |  |  |
| 4                                               | 3                | 7                 |  |  |  |  |  |
| 11                                              | 4                | 15                |  |  |  |  |  |
| 26                                              | 5                | 31                |  |  |  |  |  |
| 57                                              | 6                | 63                |  |  |  |  |  |
| 120                                             | 7                | 127               |  |  |  |  |  |
| 247                                             | 8                | 255               |  |  |  |  |  |