Тренировки по алгоритмам 5.0 от Яндекса — Занятие 2 (Линейный поиск)

9 мар 2024, 16:04:45 старт: 6 мар 2024, 20:30:00

финиш: 20 мар 2024, 18:00:00

до финиша: 11д. 1ч.

начало: 6 мар 2024, 20:30:00

конец: 20 мар 2024, 18:00:00

длительность: 13д. 21ч.

F. Колесо Фортуны

Ограничение времени	1 секунда
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Развлекательный телеканал транслирует шоу «Колесо Фортуны». В процессе игры участники шоу крутят большое колесо, разделенное на сектора. В каждом секторе этого колеса записано число. После того как колесо останавливается, специальная стрелка указывает на один из секторов. Число в этом секторе определяет выигрыш игрока.

Юный участник шоу заметил, что колесо в процессе вращения замедляется из-за того, что стрелка задевает за выступы на колесе, находящиеся между секторами. Если колесо вращается с угловой скоростью v градусов в секунду, и стрелка, переходя из сектора X к следующему сектору, задевает за очередной выступ, то текущая угловая скорость движения колеса уменьшается на k градусов в секунду. При этом если $v \le k$, то колесо не может преодолеть препятствие и останавливается. Стрелка в этом случае будет указывать на сектор X.

Юный участник шоу собирается вращать колесо. Зная порядок секторов на колесе, он хочет заставить колесо вращаться с такой начальной скоростью, чтобы после остановки колеса стрелка указала на как можно большее число. Колесо можно вращать в любом направлении и придавать ему начальную угловую скорость от a до b градусов в секунду.

Требуется написать программу, которая по заданному расположению чисел в секторах, минимальной и максимальной начальной угловой скорости вращения колеса и величине замедления колеса при переходе через границу секторов вычисляет максимальный выигрыш.

Формат ввода

Первая строка входного файла содержит целое число n — количество секторов колеса ($3 \le n \le 100$).

Вторая строка входного файла содержит n положительных целых чисел, каждое из которых не превышает 1000 — числа, записанные в секторах колеса. Числа приведены в порядке следования секторов по часовой стрелке. Изначально стрелка указывает на первое число.

Третья строка содержит три целых числа: a, b и k ($1 \le a \le b \le 10^9, 1 \le k \le 10^9$).

Формат вывода

Пример 1 Ввод Вывод 5 5 1 2 3 4 5 3 5 2 Пример 2 Ввод Вывод 5 4 1 2 3 4 5 15 15 2 Пример 3 Ввод Вывод

В выходном файле должно содержаться одно целое число — максимальный выигрыш.

Примечания

5

5 4 3 2 1 2 5 2

В первом примере возможны следующие варианты: можно придать начальную скорость колесу равную 3 или 4, что приведет к тому, что стрелка преодолеет одну границу между секторами, или придать начальную скорость равную 5, что позволит стрелке преодолеть 2 границы между секторами. В первом варианте, если закрутить колесо в одну сторону, то выигрыш получится равным 2, а если закрутить его в противоположную сторону, то — 5. Во втором варианте, если закрутить колесо в одну сторону, то выигрыш будет равным 3, а если в другую сторону, то — 4.

5

Во втором примере возможна только одна начальная скорость вращения колеса — 15 градусов в секунду. В этом случае при вращении колеса стрелка преодолеет семь границ между секторами. Тогда если его закрутить в одном направлении, то выигрыш составит 4, а если в противоположном направлении, то — 3.

Наконец, в третьем примере оптимальная начальная скорость вращения колеса равна 2 градусам в секунду. В этом случае стрелка вообще не сможет преодолеть границу между секторами, и выигрыш будет равен 5.

