Today: Security

 Before discussing the system property, a common understanding of the threat model is necessary.

Threat Model	Mitigations / Techniques	System Property
Accidental corruption	 IP header checksum TCP/UDP has header + payload checksum Ethernet has header + payload FCS 	Integrity - data received = data sent
Adversarial modification (Modify dst address / payload and modify the checksum)	 Secure hash with agreed hash value Message Authentication Code 	
Replay	Idempotence of messages	
	- AEAD - AKE	Confidentiality - only intended recipients can see the message
		Authenticity - parties are who the say they are

Cryptography Tools

- Secure hash algorithm: hash: X: arbitrary-length -> Y: 256 bits
 - hash is a one-way function. In other words, given y, it's hard to find the x such that hash (x) = y.

- If two parties agree on the y before-hands, then the receiving party can verify whether the x is not corrupted by calculating hash(x).
- (But if someone corrupt the message for sending y, and change it to y', which it get from x' such that hash(x') = y', this may still be insecure, so that the process of sending y needs to be done in a 100% secure way: e.g. hand a physical piece of paper in person. And this needs to happen for every x).
- Trust On First Use (TOFU)
- Message Authentication Code (keyed hash)
 - mac(x, key) -> tag
 - verify(x, tag, key) -> bool
 - The adversarial party cannot generate a tag that passes the verify without knowing the key.
 - The key still needs to be sent in a secure way, but this only needs to be done once.
- Authenticated Encryption (AE(AD))
 - box(plain text, key) -> (cipher text, tag)
 - unbox(cipher text, tag, key) -> optional<plain text>
 - It's hard to generate a pair of (cipher text, tag) to pass the unbox function, and it's hard to unbox a cipher text without knowing the key.
 - But still, we have the pain of how to establish a shared secret.
- Public-key Cryptography / Authenticated Key Exchange (AKE)
 - Alice: (public key_1, private key_1) and
 Bob: (public key_2, private key_2)
 - So Alice know public_1, private_1 and public_2
 - Bob know public_2, private_2 and public_1
 - Alice sends some x 1 to Bob
 - Bob sends some x 2 to Alice
 - Adversarial parties can observe public_1, public_2, x_1, x_2
 - And, we have: AKE(x_1, x_2, private_1, public_2) = AKE(x_1, x_2, private_2, public_1) = *key* and this *key* is only known by Alice and Bob.