

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING

В

Continuous Learning Assessment

: CLA-2

: 10.04.2023 Date

: 50

Course Code & Course

: 18CEO306T Municipal Solid Waste Management

Duration : 90 minutes

Name

Maximum

Year / Semester : III/ VI

Marks

Academic year : 2022 - 2023 (Even Semester) Mode of : Offline Exam

Course Art	ticulation Matrix															
Course Lea	arning Outcomes (CLO):	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
CO-1:	Recognize the various sources of solid and hazardous waste	3	-	-	-	-	2	3	-	-	-	-	-	3	-	-
CO-2:	Identify the options for Reduction, reuse and recycling of waste	3	1	-	-	-	2	3	-	-	1	-	1	3	-	-
CO-3:	Analyze the collection and transport of solid and hazardous waste	3	-	-	-	-	2	3	-	-	-	-	-	3	-	-
CO-4:	Recognize the various waste processing techniques	3	-	-	-	-	2	3	-	-	-	-	-	3	-	-
CO-5:	Identify the waste disposal methods and management	3	-	-	-	-	2	3	-	-	-	-	-	3	-	-

Qn. No.	Question	Marks	BL	со	РО	PI
PAR'	Γ A : Answer all the questions($10 \times 1 = 10 \text{ M}$)	larks)				
1	In the waste management hierarchy, which less preferable a. Source reduction b. Recycling c. Treatment d. Disposal	1	4	2	7	7.1.1
2	Which is Non-recyclable dry waste a. Glass bottles	1	1	2	1	1.2.1

	b. Shoes					
	c. Tyres					
	d. Hazardous chemicals					
	Solid waste					
	Generation (kg/percapita/day) in middle income countries in the range of					
3	a. 0.4 – 0.6	1	1	2	7	7.1.1
	b. 0.5 – 0.9					
	c. 0.7 – 1.8					
	d. 0.1 – 0.4					
	According to CPHEEO in the year					
	2000, Institutional refuse generation					
	in India (kg/percapita/day)					
4	a. $0.05 - 0.2$	1	3	2	1	1.2.1
	b. $0.01 - 0.02$					
	c. $0.3 - 0.6$					
	d. 0.1 – 0.2					
	Substitution of lead and cadmium in					
	inks (solvent based to water based)					
5	Is an example of a. Product reuse	1	2	2	7	7.1.1
	a. Product reuseb. Material volume reduction	1	_	_	,	7.1.1
	c. Decreased Consumptiond. Toxicity reduction					
	In the one way method of waste					
	collection, waste is picked up in clear					
	plastic or plastic bags whose volume					
6.	is limited to a maximum of	1	3	3	1	1.2.1
0.	a. 100 litre	1	3	3	1	1.2.1
	b. 110 litre					
	c. 150 litre					
	d. 200 litre					
7	Storage containers are used for	1	3	3	1	1.2.1
7	contents to be directly transferred to	1	3	3	1	1.2.1
	collection vehicle at the site of					

	storage					
	Stationary Cantainary					
	a. Stationary Containers					
	b. Hauled Containers					
	c. Moving Containers					
	d. Hauled vehicles					
	When the disposal site is far away					
	from the generation point, it is necessary to provide					
8	a. Transfer station	1	3	3	1	1.2.1
	b. Compact truck					
	c. More number of crew					
	d. More number of vehicles					
	Small to medium transfer stations					
	have capacities generally less than					
0	a. 50 tonnes/day	1	3	3	1	101
9	b. 100 tonnes/day					1.2.1
	c. 200 tonnes/day					
	d. 300 tonnes/day					
	Which technique is adopted to	1	2	3	1	
	observe and estimate the movement					
	of the collection crew with the help					
10	of stopwatches?					1.3.1
	a. Motion time measurement					
	b. Measurement time motion					
	c. Manual time motion					
	d. Speed time motion					
	PART B: Answer any four question	s (4 × 4 =	= 16 Ma	ırks)		
	What are the importances of waste	,		_	_	
11	stream assessment in municipal solid	4	4 1	2	6	6.1.1
	waste management system?					
12	Write a short note on source	4	3	2	7	7.1.1
	reduction in waste management.					
13	What do you mean by Material	4	1	2	6	6.1.1

	Recovery Facility (MRF) and what the different factors influences MRF?					
14	List out the various types of waste collection method.	4	2	3	7	7.1.1
15	What is transfer station and list out the different types of transfer stations?	4	2	3	7	7.1.1
	PART C : Answer any one question	(2 × 12 =	= 24 Ma	rks)		
16.a	Explain the factors causing variation in waste generation.	12	3	2	6	6.1.1
	OR					
16.b.	Discuss in detail about the processing equipment's for recycling of solid waste and write the significance of recycling.	12	3	2	6	6.1.1
17.a.	List out and explain the collection components of waste management system.	12	2	3	7	7.1.2
	OR					
17.b.	Write in detail about the waste collection components and waste collection methods.	12	2	3	7	7.1.2

------ALL THE BEST -----