Real Variables

March 28, 2025

Chapter 1

Number Systems

```
Natural numbers: \mathbb{N} = \{1, 2, 3, \ldots\}
Integers: \mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}
Rational numbers: \mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}
```

Remark. Note for real numbers, \mathbb{Q} has holes in it. **Example.** $\nexists p \in \mathbb{Q}$ s.t $p^2 = 2$

Proof. Assume $\exists p \in \mathbb{Q} \text{ s.t } p^2 = 2$. Then $p = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. So, $p^2 = \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2$. So, a^2 is even $\Rightarrow a$ is even. So, a = 2k for some $k \in \mathbb{Z}$. So, $4k^2 = 2b^2 \Rightarrow b^2 = 2k^2$. So, b^2 is even $\Rightarrow b$ is even. So, b = 2l for some $l \in \mathbb{Z}$. So, a and b are both even, which contradicts the fact that a and b are coprime. So, $\not \exists p \in \mathbb{Q} \text{ s.t } p^2 = 2$. Q.E.D.

Definition 1.1 (Order). An order on a set S is a relation < such that:

- (a) If $a, b \in S$, then exactly one of a < b, a = b, or b < a is true.
- (b) If $a, b, c \in S$ and a < b and b < c, then a < c.

Definition 1.2 (Ordered Set). An ordered set S is a set with an order <.

Definition 1.3. Let S be an ordered set. A set $E \subset S$ is bounded above if $\exists \beta \in S \text{ s.t } \forall x \in E : x \leq \beta$.

Similarly, a set S is bounded below if $\exists \beta \in S \text{ s.t } \forall x \in E : x \geq \beta$.

Definition 1.4 (LUB, GLB). Let S be an ordered set and $E \subset S$, $E \neq \emptyset$, with E bounded above. If $\exists \alpha$ s.t. α is an upper bound for E and $\forall \gamma < \alpha$: γ is not an upper bound for E, then such α is called least upper bound (LUB), or *Supremum*. Similarly, if $\exists \alpha$ s.t. α is a lower bound for E and $\forall \gamma > \alpha$: γ is

not a lower bound for E. Then such α is called greatest lower bound (GLB), or Infimum.

Definition 1.5 (LUB property). An ordered set S has the least upper bound (LUB) property if $\forall E \subset S$ if $E \neq \emptyset$ and E bounded above implies $\exists \sup E \in S$; i.e., Every bounded subset of S has the least upper bound(LUB). **Example.**

- \mathbb{Z} has the LUB property.
- \mathbb{Q} does not have the LUB property.

Theorem 1.1. Let S be an ordered set. Then S has the LUB property if and only if S has the GLB property.

Proof. (\Rightarrow) Suppose S has the LUB property. Let $B \subset S$ be non-empty and bounded below. Let L be the set of all lower bounds of B. Then L is non-empty and bounded above. Let $\alpha = \sup L$. We claim that $\alpha = \inf B$. (\Leftarrow)Suppose S has the GLB property. Let $E \subset S$ be non-empty and bounded above. Let U be the set of all upper bounds of E. Then U is non-empty and bounded below. Let $\beta = \inf U$. We claim that $\beta = \sup E$.

Definition 1.6 (Fields). Let F be a set with two operations, addition and multiplication. Then F is a field if the following axioms are satisfied:

- (a) a+b=b+a and $a \cdot b=b \cdot a$ for all $a,b \in F$ (Commutative laws).
- (b) (a+b)+c=a+(b+c) and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ for all $a,b,c\in F$ (Associative laws).
- (c) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$ (Distributive law).
- (d) $\exists 0 \in F \text{ s.t. } a + 0 = a \text{ for all } a \in F.$
- (e) $\exists (-a) \in F$ s.t. a + (-a) = 0 for all $a \in F$.
- (f) $\forall x, y \in F : xy \in E$.
- (g) $\forall x, y \in F : xy = yx$.
- (h) $\exists 1 \in F \text{ s.t. } a \cdot 1 = a \text{ for all } a \in F.$
- (i) If $a \neq 0$, then $\exists a^{-1} \in F$ s.t. $a \cdot a^{-1} = 1$.
- (j) $\forall x, y, z \in F : x(y+z) = xy + xz$ Example.
- (a) \mathbb{Q} is a field, while \mathbb{Z} is not a field.
- (b) $F_p = \{0, 1, \dots, p-1\}$ with mod p arithmetic is a field.

Read Text book: 114,115,116,118

Definition 1.7 (Ordered Field). An ordered field F is a field that is an ordered set such that the following properties are satisfied:

- (a) If $a, b, c \in F$ and a < b, then a + c < b + c.
- (b) If $a, b \in F$ and 0 < a and 0 < b, then 0 < ab.

Remark. We say x is positive if x > 0 and x is negative if x < 0.

Example. \mathbb{Q} is an ordered field.

Theorem 1.2. \exists an ordered field \mathbb{R} which has the LUB property and contains \mathbb{Q} as a subfield.

Theorem 1.3.

- (a) Arithmetic properties of \mathbb{R} : If $x, y \in \mathbb{R}$ and x > 0 then $\exists n \in \mathbb{N}$ such that nx > y.
- (b) \mathbb{Q} is dense in \mathbb{R} : If $x, y \in \mathbb{R}$ and x < y, then $\exists p \in \mathbb{Q}$ such that x .
- (c) $x, y \in \mathbb{R}$ then $\exists \alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that $x < \alpha < y$.
- **Proof.** (a) Let $A = \{nx \mid n \in \mathbb{N}\}$. Suppose $\forall nx \in A : nx \leq y$. Then y is an upper bound for A. So, A has a least upper bound α . Since $\alpha x < \alpha$ as x > 0, αx is not an upper bound for A. Thus, $\exists m \in \mathbb{N} : mx > \alpha x$, so $\alpha < (m+1)x \in A$, contradicting the fact that α is a supremum of A. Therefore, $\exists n \in \mathbb{N}$ such that nx > y.
 - (b) Since y x > 0, by (a), $\exists n \in \mathbb{N}$ such that n(y x) > 1. ny nx > 1 and therefore, 1 + nx < ny. Let $m \in \mathbb{Z}$ such that $(m 1) \le nx < m$. Such m exists by the extended version of (a). This implies there exists $m \in \mathbb{N}$ such that $nx < m \le nx + 1 < ny$. Therefore, $x < \frac{m}{n} < y$.
 - (c) $\exists k \in \mathbb{Q}$ such that $k^2 = 2$; i.e., $\exists \sqrt{2} \in \mathbb{R}$. $0 < \sqrt{2} < 2$ because if $\sqrt{2} \geq 2$ then $2 = \sqrt{2} \cdot \sqrt{2} \geq 2 \cdot 2 = 4$, which is a contradiction. By (b), $\exists p \in \mathbb{Q}$ such that $x and <math>\exists q \in \mathbb{Q}$ such that $x . Let <math>\alpha = p + \frac{\sqrt{2}}{2}(q p)$. Then $x and <math>\alpha \notin \mathbb{Q}$ since otherwise $\sqrt{2} = 2 \cdot \frac{\alpha p}{q p}$ would be rational

Q.E.D.

Note. (a) can be improved to:

$$\forall x, y \in \mathbb{R}, x > 0, \exists n \in \mathbb{Z} \text{ such that } (n-1)x \le y < nx.$$
 (1.1)

Proof. Case 1: $y \ge 0$. Let $A = \{m \in \mathbb{N} : y < mx\} \subset \mathbb{N}$. By (a), $A \ne \emptyset$. Every non-empty subset of \mathbb{N} has a smallest element. Let n = smallest element of A. Then the inequality holds true. Case 2: Let y < 0, then there exists $n \in \mathbb{N}$ such that $(n-1)x \le -y < nx$, which implies that (by changing sign for all terms) $-nx < y \le -(n-1)x$. Hence, the statement holds. Q.E.D.

Lemma. Let $a, b \in \mathbb{R}$ such that 0 < a < b, then $0 < b^n - a^n \le nb^{n-1}(b-a)$ for some $n \in \mathbb{N}$.

Proof.

$$b^{n} - a^{n} = (b - a)(\underbrace{b^{n-1} + ab^{n-2} + \dots + a^{n-2}b + a^{n-1}}_{n \text{ terms}})$$

$$< (b - a)nb^{n-1}$$

Q.E.D.

Theorem 1.4. $\forall x \in \mathbb{R}, x > 0, n \in \mathbb{N}: \exists ! (\mathrm{unique}) y > 0: y^n = x \text{ (we write } y = x^{1/n} = \sqrt{x}^n, \text{ the } n^{\mathrm{th}} \text{ root of } x).$

Proof. Uniqueness: For any $y_1, y_2 \in \mathbb{R}$, if $0 < y_1 < y_2$, then $0 < y_1^n < y_2^n$, hence y_1^n and y_2^n cannot both be equal to x.

Existence: Let $E_x = \{t \in \mathbb{R}_{>0} \mid t^n < x\}$. If $E \neq \emptyset$, E is bounded above, hence (by the least-upper-bound property) there exists a $\sup E$. Choose $y = \sup E$. Consider two cases.

- (a) If $x \leq 1$, then $t_0 = \frac{x}{2}$ and thereby $t_0^n = \frac{x^n}{2^n} < x^n \leq x$ (by assumption that $x \leq 1$).
- (b) If x > 1, then let $t_0 = 1$, leading to $t_0^n = 1 < x$.

In either case, $t_0 \in E$, and hence E is not empty. 1(a) (E is bounded above) Let $\beta = x + 1$. Then, $\beta^n = (x + 1)^n > x + 1 > x$. Then, for any $t \in E$, we have that $t^n < x < \beta^n$, hence $t < \beta$, making t an upper bound of E.

- (a) Assuming that $y^n < x$, we find 0 < h < 1 such that $(y+h)^n < x$, which leads to $y+h \in E$, something that contradicts with the fact that $y = \sup E$. This is equivalent to finding an 0 < h < 1 such that $(y+h)^n y^n < x y^n$. By the lemma, we have $0 < (y+h)^n y^n < n(y+1)^{n-1}h$ for any 0 < h < 1. Choose h so that $\frac{(x-y)^n}{n(y+1)^{n-1}}$. Then 0 < h < 1 still holds and $hn(y+1)^{n-1} < x y^n$, leading to $(y+h)^n < x$, and therefore $y+h \in E$. However, this contradicts the fact that $y = \sup E$ as y+h > y.
- (b) Assuming that $y^n > x$, we find k > 0 such that $(y k)^n > x$, which leads to a contradiction since otherwise y k would be an upper bound for E that's smaller than y, which is $\sup E$. By the lemma, $y^n (y k)^n \le ny^{n-1}k < y^n x$ for any $h < \frac{y^n x}{ny^{n-1}}$. Therefore, $-(y k)^n < -x$, or $x < (y k)^n$. Thus, y k is also an upper bound of E and $y k < y = \sup E$, which is a contradiction.

Since $y^n < x$ and $y^n > x$ are both contradictions, $y^n = x$. Q.E.D.

Definition 1.8 (Cut/Dedekind Cut). The set \mathbb{R} elements are (Dedekind) cuts, which are sets $\alpha \subset \mathbb{Q}$ such that

- $\forall p \in \alpha, q \in \mathbb{Q} : q$
- No greatest element in α

Example. $\alpha=\{p\in\mathbb{Q}\mid p<0\},\ \alpha=\{p\in\mathbb{Q}\mid p\leq 0\lor p^2<2\}$

Definition 1.9 (Order of cuts). For $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta := \alpha \subset \beta$

Proof (test). Let γ be set of cuts A, and show that γ is a cut and that $\gamma = \sup A$. Q.E.D.

Theorem 1.5. There exists an ordered field \mathbb{R} such that $\mathbb{Q} \subset \mathbb{R}$ and \mathbb{R} has the LUB property.

```
Proof. Let \mathbb{R} be the set of all cuts with: order a < b := a \subset b. addition \alpha + \beta = \{p + q \mid p \in \alpha, q \in \beta\}. multiplication \alpha \cdot \beta = \{p \cdot q \mid p \in \alpha, q \in \beta\}.
```

Q.E.D.

Complex Numbers

```
Definition 1.10 (Complex Field). The underlying set is \mathbb{C} = \{(a,b) | a \in \mathbb{R}, b \in \mathbb{R}\} Addition is defined as (a,b) + (c,d) = (a+c,b+d) Multiplication is defined as (a,b) \cdot (c,d) = (ac-bd,ad+bc) Zero element is (0,0) One element is (1,0)
```

Theorem 1.6. \mathbb{C} is a field.

```
Proof. Verify the 11 field axioms. For just a few axioms: (M3): x = (a,b), y = (c,d), z = (e,f). \quad x(yz) = (a,b)(ce-df,cf+de) = (a(ce-df)-b(cf+de),a(cf+de)+b(ce-df)) = (ac-bd,ad+bc)(e,f) = (xy)z (M4): (a,b)(1,0) = (a\cdot 1-b\cdot 0,a\cdot 0+b\cdot 1) = (a,b) (M5): x \neq 0 \text{ means } x = (a,b) \text{ with } a \neq 0 \text{ or } b \neq 0. \text{ That is, } a^2+b^2 > 0. \text{ Let } \frac{1}{x} = (\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}). \text{ Then } x\cdot \frac{1}{x} = (a,b)(\frac{a}{a^2+b^2}+\frac{-b}{a^2+b^2}) = (\frac{a^2+b^2}{a^2+b^2},\frac{-ab+ba}{a^2+b^2}) = (1,0). Q.E.D.
```

Identification of \mathbb{R} as a subfield of \mathbb{C} . Identify $(a,0) \in \mathbb{C}$ with $a \in \mathbb{R}$. Then (a,0)+(b,0)=(a+b,0), (a,0)(b,0)=(ab,0), so we can represent them by $a+b=a+b, a\cdot b=a\cdot b.$ Write i=(0,1). $i^2=(0,1)(0,1)=(-1,0).$ So, $i^2=-1.$ $(a,b) \leftrightarrow a+bi.$ Usually write z=a+bi for $z \in \mathbb{C}$. Re(z)=a,Im(z)=b.

Definition 1.11. Complex conjugate of z = a + bi is defined as a - bi and denoted by \overline{z}

Note.

(a)
$$\overline{z+w} = \overline{z} + \overline{u}$$

(b)
$$\overline{zw} = \overline{z} \cdot \overline{u}$$

(c)
$$z + \overline{z} = 2 \cdot \text{Re}(z)$$

(d)
$$z - \overline{z} = 2i \cdot \operatorname{Im}(z)$$

(a)
$$\overline{z+w} = \overline{z} + \overline{w}$$

(b) $\overline{zw} = \overline{z} \cdot \overline{w}$
(c) $z + \overline{z} = 2 \cdot \text{Re}(z)$
(d) $z - \overline{z} = 2i \cdot \text{Im}(z)$
(e) $z\overline{z} = (a+bi)(a-bi) = a^2 + b^2 \ge 0$, with $=$ if any only if $z = 0$
(f) $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{a-bi}{a^2+b^2}$

(f)
$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{a-bi}{a^2+b^2}$$

Definition 1.12.
$$|z|=\sqrt{z\overline{z}}=\sqrt{a^2+b^2}$$
 In particular, if $z=a\in\mathbb{R}$ then $|z|=\sqrt{a^2}=|a|=\begin{cases} a & \text{if } a\geq 0\\ -a & \text{if } a<0 \end{cases}$

Theorem 1.7. For $z, w \in \mathbb{C}$,

(a)
$$|z| \ge 0$$
 with $= \inf z = 0$

(b)
$$|z| = |\overline{z}|$$

(c)
$$|zw| = |z| \cdot |w|$$

(d)
$$|\text{Re}(z) \le |z|, |\text{Im}(z)| \le |z|$$

Proof. Let
$$z = a + bi$$
. Then $|\text{Re}(z)| = |a| \le \sqrt{a^2 + b^2} = |z|$ Q.E.D.

(e)
$$|z+w| \le |z| + |w|$$
 (Triangle inequality)

Proof.

$$|z + w|^2 = (z + w)(\overline{z + w})$$

$$= z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$$

$$= |z|^2 + z\overline{w} + w\overline{z} + |w|^2$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$$

$$\leq (|z| + |w|)^2$$

Q.E.D.

Theorem (Cauchy-Schwarz inequality). If $a_1, a_n, b_1, b_n \in \mathbb{C}$, then

$$\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right| \leq \left(\sum_{j=1}^{n} |a_{j}|^{2}\right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |b_{j}|^{2}\right)^{\frac{1}{2}}.$$

Interpretation: $(\vec{a}, \vec{b}) = \sum_{j=1}^{n} a_j \overline{b_j}$ defined on inner product on \mathbb{C}^n and $|(\vec{a}, \vec{b})| \leq \sqrt{(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})}$. (Note that $\vec{a} \cdot \vec{b} = \overline{\vec{b} \cdot \vec{a}}$)

Proof. Let $A = \sum |a_j|^2$, $B = \sum |b_j|^2$, $C = \sum a_j \overline{b_j}$ We can assume 1. $B \neq 0$ because B = 0 is $0 \leq 0$, 2. $C \neq 0$ because C = 0, LHS is 0. For any $\lambda \in \mathbb{C}$, $0 \leq \sum_{j=1}^n |a_j + \lambda b_j|^2 = \sum_{j=1}^n (a_j + \lambda b_j)(\overline{a_j} + \overline{\lambda b_j}) = \sum_{j=1}^n |a_j|^2 + \lambda \sum_{j=1}^n b_j \overline{a_j} + \overline{\lambda} \sum_{j=1}^n a_j \cdot \overline{b_j} + |\lambda|^2 \sum_{j=1}^n |b_j|^2$. Let $\lambda = tC$ for $t \in \mathbb{R}$. Then $0 \leq A + \lambda \overline{C} + \overline{\lambda} C + |\lambda|^2 B = A + 2|C|^2 t + B|C|^2 t^2 = p(t)$. p(t) is a quadratic function in terms of t and it must be non-negative. Regardless of the value of t. Therefore, the discriminant of $p(t) = (2|C|^2)^2 - 4AB|C|^2 = 4|C|^2(|C|^2 - AB) \leq 0$. Since $|C| \geq 0$, $|C|^2 \leq AB$.

Definition 1.13 (Euclidean k-space). For $k \in N$, $\mathbb{R}^k := \{\vec{x} = (x_1, x_2, \dots, x_k) :$ $x_1, x_2, \ldots, x_k \in \mathbb{R}$ with the following properties:

Addition

$$\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, \dots, x_k + y_k)$$

Scalar multiplication

$$\lambda \vec{x} = (\lambda x_1, \lambda x_2, \dots, \lambda x_k)$$

Inner(dot) product

$$(\vec{x}, \vec{y}) = \sum_{j=1}^{k} x_j y_j$$
, which is bilinear: $(\alpha \vec{x} + \beta \vec{y}) \cdot \vec{z} = \alpha \vec{x} \cdot \vec{z} + \beta \vec{y} \cdot \vec{z}$.

Norm

$$|\vec{x}| = \sqrt{(\vec{x}, \vec{x})} = \sum_{j=1}^{k} |x_j|^{2^{1/2}}$$

Remark. Addition and Scalar multiplication make \mathbb{R}^k into a vector space.

heorem 1.8. Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^k$. Then

- (a) $|\vec{x}| \ge 0$ (b) $|\vec{x}| = 0 \leftrightarrow \vec{x} = \vec{0}$ (c) $|\alpha \vec{x}| = |\alpha| |\vec{x}|$

- (d) $|\vec{x} \cdot \vec{y}| \le |\vec{x}| |\vec{y}|$ (special case of Cauchy-Schwarz inequality)
- (e) $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$ (Triangle inequality)

$$\begin{aligned} & \text{Proof. } |\vec{x} + \vec{y}|^2 = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) = |\vec{x}|^2 + 2\vec{x} \cdot \vec{y} + |\vec{y}|^2 \leq \\ & |\vec{x}|^2 + 2|\vec{x} \cdot \vec{y}| + |\vec{y}|^2 \leq (|\vec{x}| + |\vec{y}|)^2 \end{aligned} \qquad \text{Q.E.D.}$$
 (f) $|\vec{x} - \vec{y}| \leq |\vec{x} - \vec{z}| + |\vec{z} - \vec{y}|$
$$\begin{aligned} & \text{Proof. } |\vec{x} - \vec{y}| = |(\vec{x} - \vec{z}) + (\vec{z} - \vec{y})| \leq |\vec{x} - \vec{z}| + |\vec{z} - \vec{y}| \end{aligned} \qquad \text{Q.E.D.}$$

(f)
$$|\vec{x} - \vec{y}| \le |\vec{x} - \vec{z}| + |\vec{z} - \vec{y}|$$

Proof.
$$|\vec{x} - \vec{y}| = |(\vec{x} - \vec{z}) + (\vec{z} - \vec{y})| \le |\vec{x} - \vec{z}| + |\vec{z} - \vec{y}|$$
 Q.E.D

Chapter 2

Basic Topology

Definition 2.1. Sets A and B have the same cardinality, if $\exists f: A \to B$ that is 1-1 and onto (i.e., bijective).

Theorem 2.1. Let $A \sim B$ be a relation between two sets having the same cardinality. Then is an equivalence relation. That is,

(a) $A \sim A$ (Reflexive)

(b) $A \sim B \Rightarrow B \sim A$ (Symmetry)

(c) $A \sim B \& B \sim C \Rightarrow A \sim C$ (Transitivity)

Definition 2.2. Let $\mathbb{N} = \{1, 2, 3, ...\}$. Let $J_n = \{1, 2, ..., n\}$ for $n \in \mathbb{N}$.

- A set A is finite if $A \sim J_n$ for some $n \in \mathbb{N}$ (or if $A = \emptyset$).
- A set A is countably infinite if $A \sim \mathbb{N}$.
- A set A is countable if A is finite or countably infinite.

Example. \mathbb{Z} is a countably infinite. For $n \in \mathbb{Z} = \{0, +1, -1, +2, -2, \ldots\}$,

$$Let f(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2n & \text{if } n > 0 \\ -2n + 1 & \text{if } n < 0 \end{cases}$$

Theorem 2.8. A subset of a countably infinite set is countable.

Proof. Let A be some countably infinite set and S be a infinite subset of A.

As A is a countably infinite set, we can remove duplicates and arrange A so that $A = \{a_1, a_2, a_3, \ldots\}$. Let n_1 be the smallest positive integer such that $x_{n_1} \in S$. Let n_k be the smallest positive integer greater than n_{k-1} such that $x_{n_k} \in E$ for $k = 2, 3, \ldots$ Let $f(k) = x_{n_k}$ for $k = 1, 2, 3, \ldots$ Then this is a bijection from $\mathbb N$ to S. Q.E.D.

Remark. Roughly speaking, countable sets represent the **smallest infinity**, as no uncountable set can be a subset of a countable set.

Theorem 2.12. Let E_1, E_2, \ldots be countably infinite sets. Then $S = \bigcup_{n=1}^{\infty} E_n$ is countably infinite.

```
Proof. Write E_1 = \{x_{11}, x_{12}, x_{13}, x_{14}, \ldots\}
E_2 = \{x_{21}, x_{22}, x_{23}, x_{24}, \ldots\}
Form an array:
\begin{cases} x_{11} & x_{12} & x_{13} & x_{14} & \ldots \\ x_{21} & x_{22} & x_{23} & x_{24} & \ldots \\ x_{31} & x_{32} & x_{33} & x_{34} & \ldots \\ x_{41} & x_{42} & x_{43} & x_{44} & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{cases}
This matrix might have distinct X_1 = X_1 = X_2 = X_2 = X_3 = X_
```

This matrix might have duplicates. Let T be a subset of \mathbb{N} such that $t \in T$ if and only if t is the smallest positive integer such that $x_t \in E_1 \cup E_2 \cup \ldots \cup E_n$.

Then a set $\{x_t|t\in T \text{ and } \exists_{i\in\mathbb{N}}: x_t\in E_i\}$ is S. Clearly, |S|=|T|, or $S\sim T$, and T is a subset of a countably infinite set, \mathbb{N} . Therefore, T is also countable, implying S is also countable. As S is infinite, S is countably infinite. Q.E.D.

Corollary 2.13. If A is countable and $n \in \mathbb{N}$, then $\{(a_1, a_2, \dots, a_n) | a_1, a_2, \dots, a_n \in A\}$ is countable.

Theorem 2.14. Let $A = \{(b_1, b_2, b_3 ...) | b_i \in \{0, 1\}\}$. I.e., A is a set of all infinite binary strings. Then A is uncountable.

Proof (Contor's Diagonalization argument, 1891). Let $E \subset A$ be countably infinite. $E = \{s^{(1)}, s^{(2)}, s^{(3)}, \dots | s^{(i)} \in A\}$. It suffices to find some $s \in A \setminus E$, for this shows every countably infinite subset of A is proper construction of s. Write

$$s^{(1)} = b_1^1 b_2^1 \dots (2.1)$$

$$s^{(2)} = b_1^2 b_2^2 b_3^2 \dots$$

$$s^{(3)} = b_1^3 b_2^3 b_3^3 \dots$$
(2.2)

$$s^{(3)} = b_1^3 b_2^3 b_3^3 \dots (2.3)$$

On diagonal, flip each bit, i.e., 0 \rightarrow 1 and 1 \rightarrow 0 and represent the flipped bit of b_i^i by $\tilde{b_i^i}$. Let $s=\tilde{b_1^1}\tilde{b_2^2}\tilde{b_3^3}\dots$ Then $s\in A$ and $s\notin E$ as s differs from each $s^{(i)}$ in the i-th bit. Therefore, A is

Corollary 2.15. The set $\mathcal{P}(\mathbb{N})$ of subsets of \mathbb{N} is uncountable.

Proof. We can create $f: \mathcal{P}(\mathbb{N}) \to A$ be a bijection, where A is the set of all infinite binary strings, by

$$f(S)_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$
 (2.4)

For example, if $f(\{\text{odd natural numbers}\}) = (1,0,1,0,1,0,1,0...)$. This f is a bijection, and therefore A is uncountable.

Q.E.D.

Theorem 2.16. \mathbb{R} is uncountable.

Proof. This is a rough sketch of the proof:

- (a) It's enough to show that [0, 1] is uncountable.
- (b) Consider binary decimal representation of $x \in [0,1]$. For example, x = 0.101001001... Given x, choose maximal $b_1 \in \{0,1\}$ such that $\frac{b_1}{2} + \frac{b_2}{2} \le x$. Then choose $b_2 \in \{0,1\}$ such that $\frac{b_1}{2} + \frac{b_2}{2} \le x$. Continue this process to get $b_1, b_2, b_3, ...$ Then $x = \sup\left\{\sum_{i=1}^n \frac{b_i}{2^i}\right\}$. Consider any dyadic rational of the form $\frac{m}{2^n}$. Let it be $\frac{3}{2^4}$. Then this maps $\frac{3}{2^4} \to 0, 0, 1, 1, 0, 0, 0, ...$ and never produce 0, 0, 1, 0, 1, 1, 1, 1, ..., which also represents $\frac{3}{2^4}$. Let A_1 be a subset of $A = \{\text{infinite binary strings}\}$ such that A_1 does not contain any strings ending in 1, 1, 1, 1, ... Then the decimal representation defines a bijection $f:[0) \to A \setminus A_1$.
- (c) A_1 is countable because $A = (A \setminus A_1) \cup A_1$, which is uncountable.

This shows that [0,1] is uncountable, and therefore $\mathbb R$ is uncountable. Q.E.D.

Definition 2.3 (Metric Spaces). A set X is a metric space with metric $d: X \times X \to \mathbb{R}$ if

- (a) d(p,q) > 0 if $p \neq q$ and d(p,q) = 0 if $p = q, \forall p, q \in X$
- (b) $\forall_{p,q \in X} : d(p,q) = d(q,p)$
- (c) $\forall_{p,q,r \in X} : d(p,q) \leq d(p,r) + d(r,q)$ (Triangle Inequality)

Remark. A metric space does not need to be an ordered set or to have addition or multiplication defined on it.

Example (Metric Spaces). (a) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^k$ are metric spaces with d(p,q) = |p-q|. Note the meaning of |x| depends on the context.

- (b) Every subset of a metric space is a metric space.
- (c) $X = \{1, 2, 3, 4, 5, 6\}$

Definition 2.4 (Neighborhood). A neighborhood in X is a set $N_r(p) := \{q : d(q, p) < r\}$, where $p \in X, r > 0$.

Remark. If $r_1 \leq r_2$, then $N_{r_1}(p) \subset N_{r_2}(p)$.

Example.

 \mathbb{R}^1 intervals, $N_r(x) = \{ y \in \mathbb{R}^1 : |x - y| < r \}$

$$\mathbb{R}^2 \ disks \ N_r(x) = \{ y \in \mathbb{R}^2 : |x - y| < r \}$$

$$\mathbb{R}^3 \text{ balls, } N_r(x) = \{ y \in \mathbb{R}^3 : |x - y| < r \}$$

Given example (c), $N_1(2) = \{2\} = N_{\frac{1}{2}}(2)$, $N_2(2) = \{1, 2, 4, 6\}$, $N_3(2) = \{1, 2, 3, 4, 5, 6\} = X$.

Definition 2.5. Let $E \subset X$. $p \in E$ is an interior point of E if $\exists r > 0$ such that $N_r(p) \subset E$.

Example.

$$X = \mathbb{R}^2, E = \{x \in \mathbb{R} : |x| \le 1\}$$

$$X = \mathbb{N}, E \subset X$$
.

Definition 2.6. $E \subset X$ is an open set if $\forall_{x \in E}$ is an interior point of E.

Theorem 2.19. Every neighborhood is an open set.

Proof. Let $g \in N_r(p)$. Then we must find s > 0, such that $N_s(g) \subset N_r(p)$. We know d(p,q) < r. Choose s such that 0 < s < r - d(p,q). Let $x \in N_s(q)$, then d(q,x) < s < r - d(p,q). By triangle inequality, $d(p,x) \le d(p,q) + d(q,x) < d(p,q) + r - d(p,q)$, so $x \in N_r(p)$, so $N_s(q) \subset N_r(p)$. Q.E.D.

Definition 2.7. Let $E \subset X$ and $p \in X$. p is a limit point of E if $\forall_{r>0} \exists_{q \in E}$ such that $q \neq p$ and $q \in N_r(p)$

Example. $E = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R} \text{ has exactly one limit point, 0. note } 0 \notin E.$

Theorem 2.20. If p is a limit point of $E \subset S$, then every neighborhood of p contains infinitely many points of E.

Proof. Let $N_r(p)$ be a neighborhood of p. Then $N_r(p)$ contains at least one point $q_1 \in E$ such that $q_1 \neq p$. Let $r_1 = d(p,q_1)$. Then $N_{r_1}(p)$ contains some $q_2 \in E$ such that $q_2 \neq p$. Let $r_2 = d(p,q_2)$. Then $N_{r_2}(p)$ contains some $q_3 \in E$ such that $q_3 \neq p$. Continue this process to get q_1, q_2, q_3, \ldots Q.E.D.

Corollary 2.21. If $E \subset X$ is finite then E has no limit points.

Definition 2.8 (Closed Set). A set $E \subset X$ is closed if every limit point of E is in E.

Theorem 2.23. $E \subset X$ is open iff $E^c = \{x \in X : x \notin E\}$ is closed.

Proof.

- E is open $\Rightarrow E^c$ is closed. Let p be a limit point of E^c . Then every neighborhood of p contains some $q \in E^c$ such that $q \neq p$. If $p \in E$, then because E is open, p is an interior point, i.e., there exists some neighborhood of p that is a subset of E, which does not contain any points of E^c . This implies $p \notin E$ and therefore $p \in E^c$.
- E^c is closed $\Rightarrow E$ is open. Let $p \in E$. Then $p \notin E^c$, so p is not a limit point of E^c . Therefore, there exists some neighborhood of p that contains no points of E^c , i.e., all points of the neighborhood are in E. pThus, Every $p \in E$ is an interior point of E, and hence E is

Q.E.D.

Theorem 2.24 (De Morgan's Laws).

- (a) $(\bigcup_{\alpha} E_{\alpha})^{c} = \bigcap_{\alpha} E_{\alpha}^{c}$ (b) $(\bigcap_{\alpha} E_{\alpha})^{c} = \bigcup_{\alpha} E_{\alpha}^{c}$

Theorem 2.24.

- (a) For all collection $\{G_{\alpha}\}\$ of open sets : $\bigcup_{\alpha} G_{\alpha}$ is open.
- (b) For all collection $\{F_{\alpha}\}$ of closed sets : $\bigcap_{\alpha} F_{\alpha}$ is closed.
- (c) For all finite collection $\{G_1, G_2, \dots, G_n\}$ of open sets : $\bigcap_{i=1}^n G_i$ is
- (d) For all finite collection $\{F_1, F_2, \dots, F_n\}$ of closed sets: $\bigcup_{i=1}^n F_i$ is

- **Proof.** (a) Let $x \in \bigcup_{\alpha} G_{\alpha}$. Then $x \in G_{\alpha_0}$ for some α_0 . So there exists a neighborhood N of x such that $N \subset G_{\alpha_0} \subset \bigcup_{\alpha} G_{\alpha}$.
- (b) it's suffice to prove that $(\bigcap_{\alpha} F_{\alpha})^{c}$ is open. But $(\bigcap_{\alpha} F_{\alpha})^{c}$ $\bigcup_{\alpha} F_{\alpha}^{c}$ is open by (a).
- (c) Let $x \in \bigcap_{i=1}^n G_i$. Then $x \in G_i$ for i = 1, 2, ..., n. So there exists a $r_i > 0$ such that $N_{r_i}(x) \subset G_i$. Let $r = \min\{r_1, r_2, ..., r_n\}$. Then $N_r(x) \subset N_{r_i} \subset G_i$ for i = 1, 2, ..., n and therefore $N_r(x) \subset \bigcap_{i=1}^n G_i$.

 (d) $(\bigcup_{i=1}^n F_i)^c = \bigcap_{i=1}^n F_i^c$ is open by (c).

Q.E.D.

Definition 2.9 (Closure). Let $E \subset X$. Let E' be a set of limit points of E in X. The set $\overline{E} = E \cup E'$ is the closure of E.

Theorem 2.27.

- (a) \overline{E} is closed.
- (b) $E = \overline{E} \Leftrightarrow E$ is closed.
- (c) If $F \subset X$ is closed and $E \subset F$, then $\overline{E} \subset F$. (i.e., \overline{E} is the smallest closed set containing E, and $\overline{E} = \bigcap_{F: \text{closed set with } F \supset E} F$.)
- **Proof.** (a) Let p be a limit point of \overline{E} . It suffices to show $p \in E'$ since this implies that $p \in E' \subset E \cup E' = \overline{E}$. Let r > 0. $\begin{array}{l} \exists_{q\in\overline{E},q\neq p}:q\in N_{\frac{r}{2}}(p), \text{ i.e., } d(p,q)<\frac{r}{2}. \text{ Since } q\in E\cup E', \, \exists_{s\in\overline{E}} \\ \text{such that } d(q,s)<\frac{r}{2} \text{ (if } q\in E, \text{ take } s=q). \text{ But } d(p,s)\leq \\ d(p,q)+d(q,s)<\frac{r}{2}+\frac{r}{2}=r. \end{array}$

 - (b) (\Rightarrow) by (a) (\Leftarrow) Suppose E is closed. Then $E' \subset E$, so $\overline{E} = E \cup E' = E$.
 - (c) Suppose F is closed. Then $F'\supset E'$ and also $F\supset F'$. So $F=\overline{F}=F\cup F'\supset E\cup E'=\overline{E}$

Q.E.D.

Theorem 2.28. Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup\{E\}$. Then $y \in \overline{E}$. Hence, $y \in E$ if E is closed.

Example. Let $X = \mathbb{R}$, d(p,q) = |p-q|. Let $E \subset \mathbb{R}$ be nonempty and bounded above, and let $y = \sup E$. Then $y \in \overline{E}$.

Proof. Suppose for contradiction $y \notin \overline{E}$. Then y is neither a point in E nor a limit point of E, so \exists some interval $N_r(y) = (y - r, y + r)$ such that $(y-r,y+r)\cap E = \emptyset$. However, then y-r in an upper bound for E since y is a least upper bound, which is a contradiction. Therefore, $y \in \overline{E}$. Q.E.D.

Definition 2.10 (Relative Openness). Suppose X is a metric space, so $Y \in X$ is a metric space with the same metric. Let $E \subset Y$. Then E is open relative to Y if E is an open set in the metric space Y

Example. $X = R^2 \supset \mathbb{R} = y, E = (0,1) \subset Y$. Then E is open relative to Y, but E is neither open nor closed in X.

Theorem 2.30. A set $E \subset Y \subset X$ is open relative to $Y \Leftrightarrow \exists_{\text{open set } G \subset X} : E = G \cap Y$

Proof. (\Rightarrow) Suppose $E \subset Y$ is open relative to Y. Given $p \in E$, $\exists_{r_p>0}: N_{r_p}{}^Y(p) \subset E$, where $N_r{}^Y(p) = \{q \in Y: d(p,q) < r\}$. Then $E \subset \bigcup_{p \in E} N_{r_p}{}^Y(p)$ and $\bigcup_{p \in E} N_{r_p}{}^Y(p) \subset E$. Therefore, $E = \bigcup_{p \in E} N_{r_p}{}^Y(p)$.

Let $G = \bigcup_{p \in E} N_{r_p}^{X}(p)$. This time, we are considering p's neighborhood in X, so each $N_{r_p}^{X}$ is open. Thus G is a union of open sets in X, and therefore open.

 $\forall_{p \in E} : p \in N_{r_p}(p)^X$, so $E \subset G \cap Y$.

Let $p \in G \cap Y$. Then $p \in G$ and $p \in Y$. So $p \in N_{r_p}{}^X(p)$ for some $r_p > 0$. But $p \in Y$, so $p \in N_{r_p}{}^Y(p)$. Therefore, $p \in E$. This implies $G \cap Y \subset E$, and therefore $E = G \cap Y$.

(\Leftarrow) Suppose $G \subset X$ is open and $E = G \cap Y$. Then $\forall_{p \in E} : \exists_{r_p > 0} : N_{r_p}^{X}(p) \subset G$, so $N_{r_p}^{Y}(p) = N_{r_p}^{X}(p) \cap Y \subset G \cap Y = E$.

Q.E.D.

Note: Midterm 1 material ends here.

Definition 2.11 (Open Cover). An open cover of $E \subset X$ is a collection $\{G_{\alpha}\}$ of open subsets of X s.t $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition 2.12 (Compact). A set $K \subset X$ is compact if every open cover has a finite subcover; i.e., $\exists_{\alpha_1,\alpha_2,\dots\alpha_n}: \text{ s.t } K \subset G_{\alpha_1} \cup G_{\alpha_2} \cup \dots \cup G_{\alpha_n}$

Example.

- If E is finite, then E is compact.
- $(0,1) \subset \mathbb{R}$ is not compact. Bad cover: $(\frac{1}{n},1), n>2$
- $[0,\infty] \subset \mathbb{R}$ is not compact. Bad cover: (-1,n) for $n \in \mathbb{N}$.
- $E \subset \mathbb{R}^k$ is compact if and only if E is closed and bounded.

Theorem 2.34. If K is compact then K is closed.

Proof. Suppose K is compact. It suffices to prove that K^c is open. Let $p \in K^c$. We need to produce r > 0 s.t. $N_r(p) \subset K^c$. For $q \in K$, let $W_q = N_{r_q}(q)$, where $r_q = \frac{1}{2}d(p,q) > 0$. $\forall_{x \in N_{r_q}(p)} : x \in W_q \Rightarrow d(x,p) + d(x,q) < 2r_q = d(p,q)$. However, X is a metric space and $p,q,x \in X$, so $d(p,q) \leq d(p,x) + d(x,q)$, leading to $d(p,q) \leq d(p,x) + d(x,q) < d(p,q)$, which is a contradiction. Hence, $\forall_{x \in N_{r_q}} : x \notin W_q$. $N_{r_q}(p) \subset W_q^c$ for $\forall_{q \in K}$. Note that $\{W_q\}_{q \in K}$ is an open cover of K. K compact $\Rightarrow \exists_{\text{finite number of open sets } W_{q_1}, W_{q_2}, \dots W_{q_n} \text{ s.t. } K \subset \bigcup_{i=1}^n W_{q_i}$. Let $r = \min\{r_{q_1}, r_{q_2}, \dots r_{q_n}\} > 0$.

$$\therefore N_r(p) \subset \left(\bigcap_{i \in \{1,2,\dots n\}} N_{r_p}(p)\right) \subset \left(\bigcap_{i \in \{1,2,\dots n\}} W_{q_i}{}^c\right) = \left(\bigcup_{i \in \{1,2,\dots \mathbb{N}\}} W_{q_i}\right)^c \subset K^c$$
 Q.E.D.

Theorem 2.35. If $K \subset X$ is compact then K is bounded; i.e., $\exists_{M < \infty}$ s.t. $\forall_{p,q \in K} : d(p,q) \leq M$

Proof. Fix $p \in K$. An open cover of K is $\{N_n(p)\}_{n \in \mathbb{N}}$. In fact, this is an open cover of X. K compact $\Rightarrow \exists_{\text{finite subcover}N_{n_1}(p),N_{n_2}(p)...N_{n_m}(p)}$. Let $R = \max\{n_1,n_1,\ldots n_m\}$. $K \subset N_R(p)$. Let M = 2R. $\forall_{q,r \in K}: d(q,r) \leq d(q,p) + d(p,r) < R + R = 2R = M$. Q.E.D.

Theorem 2.35. If F is closed, K is compact, and $F \subset K$ then F is compact.

Proof. Suppose $F \subset K$. Let $\{V_{\alpha}\}$ be an open cover of F. It suffice to produce a finite subcover:

Consider $\{V_{\alpha}\}$ together with F^c . This gives an open cover of X, hence of K, so $\exists_{\text{subcover of }K}$. Drop F^c from this finite subcover. The result is a finite subcover of $\{V_{\alpha}\}$, which covers F Q.E.D.

Corollary 2.36. If *F* is closed and *K* is compact then $F \cap K$ is compact.

Theorem 2.33. Suppose $K \subset Y \subset X$. Then K is compact relative to X iff K is compact relative to Y.

Note. This is not true for open sets. For instance, let K = Y = $[0,1] \subset X = \mathbb{R}$. Y is open and closed relative to Y, but Y is not open relative to X

Proof.

- (\Rightarrow) Suppose K is compact relative to X. Let $\{V_{\alpha}\}$ be an open cover of K relative to Y. For any subset of a metric space, there always exists an open cover relative to the whole space, as the whole metric space is trivially an open cover of itself. Then $\{V_{\alpha}\}\$ is an open cover of K relative to X. Since K is compact relative to X, $\exists_{\text{finite subcover}}$.
- (\Leftarrow) Suppose K is compact relative to Y. Let $\{V_{\alpha}\}$ be an open cover of K relative to X. Then $\{V_{\alpha} \cap Y\}$ is an open cover of K relative to Y. Since K is compact relative to Y, $\exists_{\text{finite subcover}}$.

Q.E.D.

Theorem 2.36. Suppose $\{K_{\alpha}\}$ is a collection of compact sets such that $\bigcap_{i \in \{1,2,\ldots,n\}} K_{\alpha_i} \neq \emptyset \text{ for any } n < \infty, \alpha_i. \text{ Then, } \lim_{n \to \infty} \bigcap_{i \in \{1,2,\ldots,n\}} K_{\alpha_i} \neq \emptyset,$

or equivalently, $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$. **Example.** Let $G_j = (0, \frac{1}{j}) \subset \mathbb{R}$. Then $\{G_j\}$ is a collection of open sets, but none of them are compact. (compact sets are closed) Then $\{G_j\}$ satisfies non-empty finite intersection property but $\bigcap_{i\in\mathbb{N}} G_i = \emptyset$.

Proof. Suppose for contradiction $\bigcap_{i\in\{1,2,\ldots,n\}} K_{\alpha_i} \neq \emptyset$ for any $n < \infty$, α_i and $\bigcap_{\alpha} K_{\alpha} = \emptyset$. For any α_0 , $K_{\alpha_0} \cap \left(\bigcap_{\alpha \neq \alpha_0} K_{\alpha}\right) = \emptyset$. Hence, $K_{\alpha_0} \subset \left(\bigcap_{\alpha \neq \alpha_0} K_{\alpha}\right)^c = \bigcup_{\alpha \neq \alpha_0} \left(K_{\alpha}\right)^c$ and $\{(K_{\alpha})^c\}_{\alpha \neq \alpha_0}$ is an open cover of K_{α_0} , so \exists a finite subcover of $K_{\alpha_0} \subset \bigcup_{i=1}^n K_{\alpha_i}^c$, which implies $K_{\alpha_0} \cap \left(\bigcap_{i=1}^n K_{\alpha_i}\right) = \emptyset$, contradiction. Q.E.D.

Corollary 2.37. If $\{K_1, K_2, ...\}$ are non-empty compact sets with $\forall_n : K_n \supset K_{n+1}$, then $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$. **Proof.** If $n_1 < n_N$ then $\bigcap_{i=1}^N K_{n_i} = K_{n_N} \neq \emptyset$ Q.E.D.

Theorem 2.37. If K is compact and $E \subset K$ is infinite, then E has a limit point in K.

Proof. Contrapositive of the statement is : if $E \subset K$ has no limit point in K, then E is finite.

Suppose every point $q \in K$ is not a limit point of E. Then

$$\exists_{V_q = N_{r_q}(q)} : V_q \cap E = \begin{cases} \emptyset & \text{if } q \notin E \\ \{q\} & \text{if } q \in E \end{cases}.$$

Suppose every point $q \in \mathbb{N}$... $\exists_{V_q = N_{r_q}(q)} : V_q \cap E = \begin{cases} \emptyset & \text{if } q \not\in E \\ \{q\} & \text{if } q \in E \end{cases}.$ $\{V_q\}_{q \in K} \text{ is an open cover of } K, \text{ so } \exists_{\text{finite subcover } V_{q_1} \cup V_{q_2} \cup \cdots \cup V_{q_n}}. \text{ Then } E = E \cap K \subset (\bigcup_{i=1}^n V_{q_i} \cap E) \subset \{q_1, q_2, \ldots q_n\}, \text{ so } E \text{ is finite.}$ Q.E.D.

Theorem 2.38. Let $I_n = [a_n, b_n] \subset \mathbb{R}$ be such that $\forall_n : I_n \supset I_{n+1}$. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. Since $I_n \supset I_{n+1}$, $\forall_{n,m}: a_n \leq a_{n+m} \leq b_{n+m} \leq b_n$. Let $E = \{a_1, a_2, \ldots\}$. Then $E \neq \emptyset$, every b_k is an upper bound for E, so $\exists x = \sup E \text{ and } a_k \leq x \leq b_k \text{ for all } k$. Therefore, $x \in I_k$ for all k, so $x \in \bigcap_{n=1}^{\infty} I_n$. Q.E.D.

Theorem 2.39. Let $\{I_n\}$ be a sequence of k-cells such that $i_n \supset I_{n+1}$;i.e., $I_n = \{\mathbf{x} = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k : a_{nj} \le x_j \le b_{nj}, \ a_{nj} \le a_{n+1,j} \le b_{n+1,j} \le b_{nj} \text{ for } j = 1, 2, \dots, k\}$. Then $\bigcap_{n=1}^{\infty} I_n \ne \emptyset$.

Note. k-cell is a higher dimensional analog of a rectangle or rectangular solid, which is a Cartesian product of k closed intervals on the

Formally, Given real numbers a_i and b_i such that $a_i < b_i$ for every

$$I = \{x = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k : a_i \le x_i \le b_i \text{ for } i = 1, 2, \dots, k\}$$

Theorem 2.40. Let $I \subset \mathbb{R}^k$ be a k-cell. Then I is compact.

Proof. Let $I = I_0 = \{x = (x_1, x_2, \dots, x_k), a_j \le x_j \le b_j\}.$

Let $\Delta = \left\{ \sum_{i=1}^{k} (b_j - a_j)^2 \right\}^{1/2}$. Then $|\mathbf{x} - \mathbf{y}| \leq \Delta$ for $\mathbf{x}, \mathbf{y} \in I$. Suppose for contradiction $\{G_{\alpha}\}$ is an open cover of I that has no finite subcover.

Let $c_j = \frac{1}{2}(a_j + b_j)$ for j = 1, 2, ..., k. Using $[a_j, c_j], [c_j, b_j]$, we get 2^k k-cells Q_i with $I = \bigcup_{i=1}^{2^k} Q_i$. At least one Q_i , call it I_1 , has no finite subcover. Otherwise, every Q_i has a finite subcover, and I would have a finite subcover, namely the union of the finite subcovers of each Q_i . Repeat this step to construct $I_0 = I, I_1, I_2, \ldots$ Then the sequence $\{I_n\}$ constructed by this process satisfies the following properties:

- (a) $I_0 = I \supset I_1 \supset I_2 \supset I_3 \supset \dots$
- (b) $\forall_n : I_n$ has no finite subcover from $\{G_\alpha\}$ (c) if $x, y \in I_n$ then $|x y| \leq 2^{-n}\Delta$, where $\Delta =$ diagonal of $I = \left(\sum_{j=1}^k (b_j a_j)^2\right)^{1/2}$.

By theorem 2.38 and (a), $\exists_{x^* \in \bigcap_{n=1}^{\infty} I_n}$. Since $x^* \in I$, $x^* \in G_{\alpha_0}$ for some α_0 , so $\exists r > 0$ such that $N_r(x^*) \subset G_{\alpha_0}$. But by (c), $I_n \subset G_{\alpha_0}$ $N_{2^{-n}\Delta}(x^*)$. As soon as n is large enough that $2^{-n}\Delta < r$, we have $I_n \subset N_{2^{-n}\Delta}(x^*) \subset G_{\alpha_0}$, which contradicts (b).

Note. Reverse triangle inequality

 $\forall_{a,b,c \in X} : d(a,b) \ge d(a,c) - d(c,b) \text{ because } d(a,c) \le d(a,b) + d(b,c).$

Theorem 2.41. For $E \subset \mathbb{R}^k$, the following are equivalent:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

Proof.

- $(a) \Rightarrow (b)$ Because E is bounded, i.e., \exists_M s.t. $\forall_{x,y \in E} : |x y| \leq M$, there exists a k-cell I such that $E \subset I$. Since every k-cell is compact, this implies E is a closed subset of a compact set. Hence, E is also compact.
- $(b) \Rightarrow (c)$ by theorem 2.37
- $(c) \Rightarrow (a)$ To see that E is bounded, suppose it were not. Then E has an infinite subset $S = \{x_1, x_2, x_3, \ldots\}$ with $\forall_n : |x_n| \geq n$. S has no limit point in \mathbb{R}^k Let $S = \{(x_1, x_2, x_3, ...) \in E : |x_n - x_0| < 0\}$ $\frac{1}{n}$. Then S is an infinite set because if S is finite, there exists a point $\mathbf{x} \in S$ such that $|\mathbf{x}| \geq |\mathbf{x}'|$ for $\mathbf{x}' \in S$. However, there exists $n \in \mathbb{N}$ such that $n > |\mathbf{x}|$ and by definition of S, there exists $x_n \in S$ such that $|x_n| \ge n > |\mathbf{x}|$, which is a contradiction. Thus, S is infinite. This S however, cannot have a limit point in E. By triangle inequality, for any $y \in \mathbb{R}^k$, $|x_n| \leq |x_n - y| + |y|$, and from archimedean property, $\exists_{m \in \mathbb{N}}$ s.t. $m > |x_n - y| + |y|$, which implies for any $y \in \mathbb{R}^k$, r > 0, $\exists_{m \in \mathbb{N}} : |x - y| < r < m$. However, by the definition of S, there are at most m such elements in S. Since a limit point y of E must contain an infinite number of points of E such that d(x,y) < r for any r > 0, y cannot be a limit point, which contradicts the assumption that any infinite subset of E contains a limit point in E. Therefore, E must be bounded.

To see that E is closed, suppose it were not closed. Then $\exists_{x_0 \in} : E' \setminus E$. If T has no limit point in E except $x_0 \notin E$, it contradicts (c) because T is infinite and there must be a limit point of T in E.

Therefore, we can show that E is closed by showing that T has no limit point in E except x_0 . Form an infinite sequence $(x_1, x_2, x_3, \ldots), x_n \in E$ with $|x_n - x_0| < \frac{1}{n}$. Let $y \in E, y \neq x_0$. We'll show that y cannot be a limit point of T. $|y - x_n| \geq |y - x_0| + |x_0 - x_n| > |y - x_0| - |x_0 - x_n| > |y - x_0| - \frac{1}{n}$. Choose $n \geq \frac{2}{|y - x_0|}$, so $\frac{1}{n} \leq \frac{|y - x_0|}{2}$. Then $|y - x_n| \geq |y - x_0| - \frac{1}{2}|y - x_0| = \frac{1}{2}|y - x_0|$. So only finitely many x_n can lie in $N_{\frac{1}{2}|y - x_0|}(y)$. So y cannot be a limit point of S. Therefore, E is closed.

Q.E.D.

Remark. (b) and (c) are equivalent in any metric space, but (a) does not, in general, imply (b) or (c) in a metric space other than \mathbb{R}^k .

Example. Failure of Heine-Borel theorem in general metric spaces.

some infinite set, discrete metric $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$. Then E is bounded and closed but not compact.

Theorem 2.42. [Weirstrass's theorem] Every bounded infinite subset $E \subset \mathbb{R}^k$ has a limit point in \mathbb{R}^k .

Proof. Choose a k-cell $I \supset E$. Since I is compact, by theorem 2.41, E has a limit point in I. Q.E.D.

Example. Let

$$E_0 = [0, 1] (2.5)$$

$$E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \tag{2.6}$$

$$E_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$$
 (2.7)

$$\vdots (2.8)$$

This gives $E_0 \supset E_1 \supset E_2 \supset E_3 \supset \ldots$, where each E_n is the union of 2^n closed intervals of length $\frac{1}{3^n}$.

Definition 2.13 (Perfect Sets). A set P is perfect if there is no isolated point in P; i.e.,

$$P = P'$$
.

Theorem 2.43. Let P be a non-empty perfect set in \mathbb{R}^k . Then P is uncountable.

Proof. Suppose for contradiction P is countable. Since P is non-empty, there exists some $p_1 \in P$. p_1 is then also a limit point of P. Let $p_2 \in P(\neq p_1)$ be a point in $V_1 = N_{r_1}(p_1)$ for some r_1 such that $d(p_1, p_2) > r_1/2$. Let $r_2 = r_1 - d(p_1, p_2)$, $V_2 = N_{r_2}p_2$. Then $\forall_{x \in V_2} : d(p_1, x) \leq d(p_1, p_2) + d(p_2, x) < d(p_1, p_2) + r_2 = r_1$. Hence, $V_2 \subset V_1$. $\overline{V_2} \subset V_1$ as well. Also, note that $d(p_1, p_2) > r_1/2$, so $r_2 = r_1 - d(p_1, p_2) < r_1/2 < d(p_1, p_2)$. So $p_1 \notin V_2$. Repeat this process, and let $K_n = \overline{V_n} \cap P$. $K_n \subset \overline{V_n}$. Since $\overline{V_n}$ is closed and bounded, it's compact. $\overline{V_n} \cap P$ is a closed subset of $\overline{V_n}$, so K_n is also compact. However, for any p_n , $p_n \notin K_{n+1}$, so $\bigcap_{1 \in \infty} K_n \cap P = \emptyset$. Since $K_n \subset P$, this implies $\bigcap_{1 \in \infty} K_n = \emptyset$, but each K_n is not empty, $K_n \supset K_{n+1}$, and K_n is compact. Thus, $\bigcap_{1 \in \infty} K_n \cap P$ can't be empty, so this is a contradiction. Q.E.D.

Definition 2.14 (Cantor Set). The cantor set $P := \bigcap_{n=1}^{\infty} E_n$.

Proposition. P is compact, non-empty and contains no open intervals (a, b)and uncountable.

Proof. Compactness P is compact because $P \subset E_0 = [0, 1]$ and E_0

Non-emptiness P is non-empty because $P \subset E_0$ and E_0 is non-

No open intervals P contains no open intervals (a,b) because any (a,b) contains some $(\frac{3k+1}{3^n},\frac{3k+2}{3^n})$ and these are all removed.

Uncountability P is uncountable because P is a perfect set. Equivalently, P consists of points in [0,1] whose ternary, i.e., base 3, representation contains only 0's and 2's.

Note. ternary representation: $0.a_1a_2a_3... = \sum_{n=1}^{\infty} \frac{a_n}{3^n}$ where $a_n \in \{0, 1, 2\}.$

Q.E.D.

Example (Cantor Set). Let E = [0,1], $E_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$. $E_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1]$, etc. Keep removing open middle third. This gives $E_0 \supset E_1 \supset E_2 \dots$ Each E_n is the union of 2^n closed intervals of length $\frac{1}{3^n}$.

Definition 2.15 (Separated Sets). **Separated Sets** $A, B \subset X$ are separated if $\overline{A} \cap B = A \cap \overline{B} = \emptyset.$

Connected Sets $E \subset X$ is connected if there is no non-empty separated sets $A, B \subset E$.

Example (Separated Sets). In \mathbb{R}^1 , [0,1) and (1,2] are separated so $[0,1)\cup(1,2]$ is not connected. Every interval is connected (open, closed, semi-open).

Theorem 2.47. $E \subset \mathbb{R}^1$ is connected if and only if E is an interval; i.e., $\forall_{x,y\in E, x < y} \text{ s.t. } \forall_{z\in(x,y)}: z\in E$ **Proof.** Let $x,y\in E$.

Q.E.D.

Theorem 2.48. A metric space X is connected if and only if the only nonempty subset of X which is both open and closed is X itself. $|\limsup_{n\to\infty}|\gamma_n|| \le 0 + \varepsilon \alpha$. Since ε is arbitrary, this implies $|\limsup_{n\to\infty}|\gamma_n|| = 0$, so $\lim_{n\to\infty}|\gamma_n| = 0$

Chapter 3

Sequence and Series

3.1 Sequences

Definition 3.1. In a metric space (X,d), a sequence $\{p_n\}$ converges to p if $\forall_{\varepsilon>0}\exists_N \text{ s.t. } n \geq N \Rightarrow d(p_n, p) < \varepsilon.$ We write $\lim_{n\to\infty} p_n = p$ or $p_n \to p$.

If $\{p_n\}$ does not converge to any p then it is said to diverge.

Theorem 3.3. If s_n and t_n are sequences in \mathbb{C} with $s_n \to s$ and $t_n \to t$, then the following hold:

(a) $s_n + t_n \to s + t$ (b) $cs_n \to cs$, $c + s_n \to c + s$ for any $c \in \mathbb{C}$ (c) $s_n t_n \to st$ (d) $\frac{1}{s_n} \to \frac{1}{s}$ if $s \neq 0$

Lemma (Squeeze Lemma). In \mathbb{R} , if $\forall_{n\in\mathbb{N}}: 0 \leq x_n \leq s_n$ and $\lim_{n\to\infty} s_n \to 0$,

then $\lim_{n\to\infty} x_n = 0$.

Proof. Let $\varepsilon > 0$. Choose N such that $n \ge N \Rightarrow 0 \le s_n < \varepsilon$. Then $0 \le x_n \le s_n < \varepsilon$ for $n \ge N$, so $x_n \to 0$.

Q.E.D.

Theorem 3.20. (a) If p > 0 then $\frac{1}{n^p} \to 0$.

Proof. Let $\varepsilon > 0$. Choose N such that $\frac{1}{N^p} < \varepsilon$; i.e., $N > \frac{1}{\frac{1}{\varepsilon^p}}$. Then for $n \geq N$, $\frac{1}{n^p} \leq \frac{1}{N^p} < \varepsilon$. Q.E.D.

(b) If p > 0 then $\sqrt[n]{p} \to 1$.

Proof. p = 1 is obvious.

Suppose p > 1. Let $x_n = \sqrt[n]{p} - 1 > 0$. Want to show $x_n \to 0$. Since $(x_n+1)^n$, we have $p = (x_n+1)^n = \sum_{k=0}^n \binom{n}{k} x_n^k > \binom{n}{1} x_n' = nx_n$. Therefore, $x_n \leq \frac{p}{n}$, so $x_n \to 0$ by the Squeeze Lemma. Suppose $p \in (0,1)$. Let $q = \frac{1}{p} > 1$. Then $\sqrt[n]{q} \to 1$ by the previous case. By 3.3, $\sqrt[n]{p} = \frac{1}{\sqrt[n]{q}} \to 1$. Q.E.D.

Proof. Let $x_n = \sqrt[n]{n} - 1 > 0$, for $n \ge 2$. $n = (x_n + 1)^n = \sum_{k=0}^n \binom{n}{k} (x_n)^k > \binom{n}{2} x_n^2 = \frac{n(n-1)}{2} x_n^2$. Therefore, $x_n \le \sqrt{\frac{2}{n-1}}$. Q.E.D.

(d) If p > 0 and $\alpha \in \mathbb{R}$, then $\frac{n^{\alpha}}{(1+p)^n} \to 0$; i.e., Exponentials beat pow-

Proof. We want an upper bound on $\frac{n^{\alpha}}{(1+p)^n}$, so seek a lower bound on $(1+p)^n$.

bound on $(1+p)^n$. $(1+p)^n = \sum_{k=0}^n \binom{n}{k} p^k > \binom{n}{k} p^k$ for $k \le n$ $(1+p)^n > \binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k$. Then for $k \le \frac{n}{2}$, $\binom{n}{k} p^k > (\frac{n}{2})^k \frac{p^k}{k!}$. Therefore, $\frac{n^\alpha}{(1+p)^n} < (\frac{2}{p})^k k! \frac{1}{n^{k-\alpha}}$. Let $k_0 \in \mathbb{Z}$ s.t. $k > \alpha$. Then for $n \ge 2k_0$, RHS $\to 0$ by (a).

If |x| < 1 then $x^n \to 0$.

Proof. $|x^n - 0| = |x|^n$, so $x^n \to 0 \Leftrightarrow |x|^n \to 0$ and $|x|^n = \frac{n_0}{(\frac{1}{|x|})^n} \to 0$ by (d) with $\alpha = 0$ and $1 + p = \frac{1}{|x|} > 1$, so $p = \frac{1}{|x|} - 1 > 0$. Q.E.D.

Q.E.D.

Theorem 3.2. (a) $p_n \to p \Leftrightarrow \forall_{r>0} : N_r(p)$ contains all but finitely many

Proof. $\forall_{n\geq N}: p_n \in N_r(p)$ Q.E.D. (b) If $p_n \to p$ and $p_n \to p'$ then p = p'.

Proof. $d(p,p') \leq d(p_n,p) + d(p_n,p')$ for all n. Fix ε . Choose N such that $d(p_n,p) < \frac{\varepsilon}{2}$ and $d(p_n,p') < \frac{\varepsilon}{2}$ for $n \geq N'$. Then $d(p,p') < \varepsilon$. Then for $n \geq \max\{N,N'\}$, $d(p,p') < \varepsilon$. This is true for all $\varepsilon > 0$, so d(p,p') = 0. Q.E.D.

(c) If $\{p_n\}$ converges, then p_n is bounded, in a sense that $\exists_{M>0,q\in X}$ s.t. $d(p_n,q)\leq M$ for all n.

Proof. If $p_n \to p$, then $\exists N \text{ s.t. } d(p_n, p) < 1 \text{ for all } n \geq N$. Thus, $\forall_{n \geq 1} : d(p_n, p) \leq \max\{1, d(p, p_1), \dots, d(p, p_{N-1})\} = M$ Q.E.D.

(d) If $E \subset X$ has a limit point p, then $\exists_{p_n \in E}$ s.t. $p_n \to p$.

Proof. We need to choose $p_n \in E$ s.t. $d(p,p_n) < \frac{1}{n}$. Let $\varepsilon > 0$. Then $d(p,p_n) < \varepsilon$ if $n > \frac{1}{\varepsilon}$ Q.E.D.

Definition 3.2. Given $p_n, n_1 < n_2 < n_3 < \ldots$, we say $p_{n_i} = (p_{n_1}, p_{n_2}, \ldots)$ is a subsequence of p_n .

Lemma. $p_n \to p \Leftrightarrow \text{every subsequence of } \{p_n\} \text{ converges to } p$

Proof. Look at assignment 6

Q.E.D.

Theorem 3.6. (a) $\{p_n\}$ in X, X compact, then \exists convergent subsequence.

Proof. Let $E = \text{range of}\{p_n\}$. If E is finite, then $\exists p \in X$ and $n_1 < n_2 < \ldots$ s.t. $p_n = p$ for $\forall i$. This subsequence converges to p. If E is infinite then by Theorem 2.37, E has a limit point $p \in X$; i.e., every neighborhood of p contains infinitely many points of E. Choose n_1 s.t. $d(p, p_{n_1}) < 1$.

Q.E.D.

(b) $\{p_n\}$ in \mathbb{R}^k , bounded, then \exists convergent subsequence.

Proof. Choose a k-cell I that contains $\{p_n\}$. I is compact. Apply (a).

Q.E.D.

Definition 3.3 (Cauchy Sequence). $\{p_n\}$ is a Cauchy sequence in (X,d) if $\forall \varepsilon$:

 $\exists_{N \in \mathbb{N}} \text{ s.t. } d(p_m, p_n) < \varepsilon \forall m, n \geq N.$

Definition 3.4. For $E \subset X$, $E \neq \emptyset$, we define diam $E = \sup \{d(p,q) : p,q \in E\}$. diam $E = \infty$ if the set is not bounded above.

Example. For a sequence p_n in X, let $E_n = \{p_N, p_{N+1}, \ldots\}$. Then $\{p_n\}$ is a Cauchy sequence iff $\lim_{N \to \infty} diam E_N = 0$.

Theorem 3.11. (a) If $p_n \to p$ then $\{p_n\}$ is a Cauchy sequence.

- (b) If X is a compact metric space and $\{p_n\}$ in X is a Cauchy sequence, then $\exists_{n \in X}$ s.t. $p_n \to p$.
- (c) In \mathbb{R}^K every Cauchy sequence converges.

Remark. If a Cauchy sequence has a convergent subsequence in a metric space, then the full sequence itself converges to the same point the subsequence converges to.

Proof. Let $\varepsilon > 0$. Choose N s.t., $d(p_n, p) < \varepsilon/2$ if $n \ge N$. Then for $m, n \ge N$, $d(p_m, p_n) \le d(p_n, p) + d(p, p_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Suppose $\{p_n\}$ is Cauchy. Let $E_N = \{p_N, P_{N+1}, \ldots\}$. Then $\overline{E_N}$ is closed, hence compact. Also $\overline{E_N} \supset \overline{E_{N+1}}$ and $\lim_{N \to \infty}$ diam $\overline{E_N} = 0$ (use

Theorem 3.10(a) to see diam $\overline{E_N} = \text{diam } E_N$) By theorem 3.10(b), $\exists ! p \in \bigcap_{N=1}^{\infty} \overline{E_N}$. Claim: $p_n \to p$.

 $\exists ! p \in \bigcap_{N=1}^{\infty} \overline{E_N}. \text{ Claim: } p_n \to p.$ Proof of the claim: Let $\varepsilon > 0$. Choose N_0 s.t.diam $\overline{E_{N_0}} < \varepsilon$, so $d(p,q) < \varepsilon \forall g \in \overline{E_{N_0}}$, and hence $\forall g \in N_0$; i.e., $d(p,p_n) < \varepsilon$ if $n \geq N_0$.

Let $\varepsilon > 0$. Choose N s.t., $d(p_n, p) < \varepsilon/2$ if $n \ge N$. Then for $m, n \ge N$, $d(p_m, p_n) \le d(p_n, p) + d(p, p_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Suppose $\{p_n\}$ in \mathbb{R}^k is Cauchy. Cauchy sequences are bounded in any metric space. Therefore, $\exists k$ -cell I, which is compact, containing $\{p_n\}$. Then (b) applies Q.E.D.

Note. The converse of Theorem 3.11(a) does not hold in general. **Example.** $X = \mathbb{Q}$ has a Cauchy sequence with no limit in \mathbb{Q} . (see assignment 6). Converse does hold if X is compact.

Theorem 3.12. (a) diam $\overline{E} = \text{diam } E$

(b) If $K_n \subset X$, $K_n \neq \emptyset$, K compact, $K_n \supset K_{n+1} \forall n$ and if $\lim_{n \to \infty} \text{diam } K_n = 0$, then $\bigcap_{n=1}^{\infty} K_n$ is a single point.

- **Proof.** (a) $E \subset \overline{E} \Rightarrow \operatorname{diam} E \leq \operatorname{diam} \overline{E}$. For the opposite inequality, let $\varepsilon > 0, p, q \in \overline{E}$,. Choose $p', q' \in E$ s.t. $d(p, p') < \varepsilon, d(q, q') < \varepsilon$. Then $d(p, q) \leq d(p, p') + d(p', q') + d(q', q) < \varepsilon + \varepsilon = 2\varepsilon$. diam $\overline{E} \leq \operatorname{diam} E + 2\varepsilon$. Since ε is arbitrary, diam $\overline{E} \leq \operatorname{diam} E$.
 - (b) Let $K = \bigcap_{n=1}^{\infty} K_n$. By Theorem 2.36, $K \neq \emptyset$. Since $K \subset K_n \forall n$, diam $k \leq \text{diam } K_n \forall n$, so diam K = 0. Therefore, $d(p,q) = 0 \forall p,q \in K$, so K is a simple point.

Q.E.D.

Definition 3.5 (Complete Metric Space). A metric space (X, d) is complete if every Cauchy sequence in X converges to a point in X.

Example. (a) $X compact \Rightarrow X complete$.

- (b) \mathbb{R}^k is complete, so is \mathbb{C} .
- (c) \mathbb{Q} is not complete. (see assignment 6)
- (d) See assignment 6 for reference to completion of a metric space.

We've seen that convergent sequences are bounded. $p_n = (-1)^n$ shows the converse if false. However the converse does hold for monotonic sequences.

Definition 3.6 (Monotone). • A sequence $\{s_n\}$ in \mathbb{R} is monotonically increasing if $s_n \leq s_{n+1} \forall n$.

• A sequence $\{s_n\}$ in \mathbb{R} is monotonically decreasing if $s_n \geq s_{n+1} \forall n$.

Theorem 3.14. A monotone sequence in \mathbb{R} converges if and only if it is bounded.

Proof. \Rightarrow all convergent sequences are bounded in any metric space.

 $\Leftarrow \text{ Increasing case Let } \{s_n\} \text{ be monotonically increasing and } s_n \leq M \forall n. \text{ Let } s = \sup\{s_n : n \in \mathbb{N}\}. \text{ Then } s_n \leq s \forall n. \text{ Let } \varepsilon > 0. \exists N \text{ s.t. } s - \varepsilon < s_N \leq s. \text{ But then } s - \varepsilon < s_N \leq s_{N+1} \leq s_{N+2} \ldots \leq s, \text{ so } |s - s_n| < \varepsilon \forall n \geq N, \text{ and therefore } s_n \to s.$

Q.E.D.

Definition 3.7 (Infinite Limits). We say

- $s_n \to \infty$ if $\forall_{M \in \mathbb{R}} : \exists_N \text{ s.t. } s_n \geq M \forall_{n \in N}$.
- $s_n \to -\infty$ if $\forall_{M \in \mathbb{R}} : \exists_N \text{ s.t. } s_n \leq M \forall_{n \in \mathbb{N}}$.

Definition 3.8. Let $\{s_n\}$ be a sequence in \mathbb{R} . We define $\limsup_{n\to\infty} s_n =$ $\overline{\lim_{n\to\infty}} s_n = \inf_{n\geq 1} \{\sup_{m\geq n} \{s_m\}\} = \lim_{n\to\infty} \sup_{m\geq n} \{s_m\}.$ $\liminf_{n\to\infty} s_n = \lim_{n\to\infty} s_n = \sup_{n\geq 1} \{\inf_{m\geq n} \{s_m\}\} = \lim_{n\to\infty} \inf_{m\geq n} \{s_m\}.$

Note. Alternate definition; see ass 7 for equivalence

Remark. (a) If $a_n \leq b_n \forall n \text{ and } a_n \to a \text{ and } b_n \to b$, then $a \leq b$.

(b) $\liminf_{n\to\infty} s_n \le \limsup_{n\to\infty} s_n$

Example. (a) $s_n = (-1)^n (1 + \frac{1}{n^2}) \ 1 \le \sup_{m \ge n} s_m \le 1 + \frac{1}{n^2}$, so $\limsup_{n \to \infty} s_n = 1$. Similarly, $\liminf_{n \to \infty} s_n = -1$

(b) If $\{s_n\}$ has no upper bound, then $\sup_{m\geq n} s_m = \infty$ and in this case we say $\limsup_{n\to\infty} s_n = \infty; \ e.g.,$

$$s_n = \begin{cases} n & n \text{ odd} \\ -n & n \text{ even} \end{cases}$$

 $has \lim \sup_{n\to\infty} s_n = \infty$, $\lim \inf_{n\to\infty} s_n = -\infty$

emma. $\limsup_{n\to\infty} s_n = \liminf_{n\to\infty} s_n = L \Leftrightarrow s_n \to L$.

- Proof (L finite). $\Rightarrow \text{ This follows from } \inf_{m \geq n} s_m \leq s_n \leq \sup_{m \geq n} s_m. \lim_{n \to \infty} \inf_{m \geq n} s_m = \lim_{n \to \infty} \inf_{n \to \infty} s_n, \text{ and } \lim_{n \to \infty} \sup_{m \geq n} s_m = \lim\sup_{n \to \infty} s_n. \text{ Therefore, } \lim_{n \to \infty} s_n = L.$ $\Leftarrow \text{ If } s_n \to L, \text{ then } \forall_{\varepsilon > 0} : \exists_N \text{ s.t. } s_m \in [L \varepsilon, L + \varepsilon] \forall m \geq N. \text{ Therefore, } \forall_{n \geq N} : L \varepsilon \leq \inf_{m \geq N} s_m \leq \inf_{m \geq n} s_m \leq \sup_{m \geq n} s_m \leq \sup_{m \geq N} s_m \leq L + \varepsilon. \text{ Let } n \to \infty: L \varepsilon \leq \liminf_{n \to \infty} s_n \leq \lim_{n \to \infty} s_n \leq L + \varepsilon. \text{ Since } \varepsilon \text{ is arbitrary, so } L \leq \lim\inf_{n \to \infty} s_n \leq \lim_{n \to \infty} s_n \leq L = \lim_{n \to \infty} \sup_{n \to \infty} \sup_{n \to \infty} s_n \leq L = \lim_{n \to \infty} \sup_{n \to \infty} s_n \leq L = \lim_{n \to \infty} \sup_{n \to \infty} \sup_{n \to \infty} \sup_{n \to \infty} s_n \leq L = \lim_{n \to \infty} \sup_{n \to \infty} \sup_{n \to \infty} \sup_{n \to \infty} \sup_{n \to \infty}$ $\limsup_{n\to\infty} s_n \le L.$

Q.E.D.

3.2Series

Definition 3.9 (Series). Let $\{a_n\}$ be a sequence in \mathbb{C} . Form a new sequence $\{s_n\}$, the sequence of partial sums, by $s_n = a_1 + a_2 + \ldots + a_n = \sum_{k=1}^n a_k$. If $s_n \to s$, we say **the series** $\sum_{k=1}^{\infty} a_k$ **converges** and that $\sum_{k=1}^{\infty} a_k = s$. If $\{s_n\}$ diverges then we say $\sum_{k=1}^{\infty} a_k$ diverges. **Theorem 3.15.** $\sum_{n\in\mathbb{N}} a_n$ converges if and only if $\forall_{\varepsilon>0}: \exists N \text{ s.t. } \forall n\geq m\geq N:$

Proof. $\sum_{n=m}^{n} a_{k} | < \varepsilon$.

Proof. $\sum_{n} a_{n}$ converges $\Leftrightarrow \{s_{n}\}$ converges $\Leftrightarrow \{s_{n}\}$ is a Cauchy sequence (: \mathbb{C} is compact). Use $s_{n} - s_{m-1} = \sum_{k=m}^{n} a_{k}$. Q.E.D.

Corollary 3.16. If $\sum_n a_n$ converges then $a_n \to 0$.

Proof. Take m=n in Theorem 3.22. $\sum_n a_n$ converges $\Rightarrow \forall_{\varepsilon>0}: \exists_N \text{ s.t. } |a_n| < \varepsilon \text{ if } n \geq N.$ Q.E.D.

Remark. n-th term test for divergence: If $a_n \not\to 0$ then $\sum_n a_n$ diverges.

Example. $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges because $\frac{n}{n+1} \to 1 \neq 0$.

Converse to Corollary 3.16 is false! E.g., $\sum_n \frac{1}{n}$ diverges but $\frac{1}{n} \to 0$.

Theorem 3.24. If $a_n \geq 0$, then $\sum_n a_n$ converges if and only if $\{s_n\}$ is

Proof. $\{s_n\}$ is monotone increasing, so by Theorem 3.14, it converges if and only if it is bounded. Q.E.D.

Theorem 3.25. [Comparison Test]

a) If $|a_n| \leq c_n \forall n \geq N_0$ and $\sum_n c_n$ converges, then $\sum_n a_n$ converges.

Proof. Suppose $|a_n| \leq c_n \forall n \geq N_0$ and $\sum_n c_n$ converges. Let $\varepsilon > 0$. By theorem 3.22, $\exists N$ s.t. $\sum_{k=m}^n c_k < \varepsilon$ if $n \geq m \geq N$. Can take $N \geq N_0$. Then $|N \geq N_0|$. $|\sum_{k=m}^n a_k| \leq \sum_{k=m}^n |a_k| \leq \sum_{k=m}^n |a_k| \leq \sum_{k=m}^n c_k < \varepsilon$ if $n \geq m \geq N$. By theorem 3.22 again, $\sum_n a_n$ converges. Q.E.D.

(b) If $a_n \ge d_n \ge 0 \forall n \ge N_0$ and if $\sum_n d_n$ diverges, then $\sum_n a_n$ diverges.

Proof. This follows from (a): if $\sum_n a_n$ converges then $\sum_n d_n$ converges. Thus it's contrapositive, (b) is true. Q.E.D.

Theorem 3.26. [Geometric Series] $\sum_{n=0}^{\infty} x^n = \begin{cases} \frac{1}{1-x} & \text{if } -1 < x < 1 \\ \text{diverges} & \text{otherwise} \end{cases}$ Proof. Let $S_n = 1 + x + x^2 + \dots + x^n$, $xS_n = x + x^2 + \dots + x^n + x^{n+1}$. Then $S_n - xS_n = 1 - x^{n+1} \Rightarrow S_n = \frac{1-x^{n+1}}{1-x}$ If $|x| < 1 (\Leftrightarrow -1 < x < 1)$, then $x^{n+1} \to 0$ and $S_n \to \frac{1}{1-x}$. If $|x| \ge 1$, then x^{n+1} does not converge to 0, so $\sum_{n=0}^{\infty} x^n$ diverges. Q.E.D.

$$S_n - xS_n = 1 - x^{n+1} \Rightarrow S_n = \frac{1 - x^{n+1}}{1 - x}$$

Theorem 3.27. Suppose $a_1 \geq a_2 \geq a_3 \geq \cdots \geq 0$. Then $\sum_{n=1}^{\infty} a_n$ converges

- Proof. (\Leftarrow) We show that if $\sum_n a_n$ diverges, then $\sum_k 2^k a_{2^k}$ diverges. For this, note that $a_1 + a_2 + \ldots + a_n \leq a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \cdots (a_{2^k} + a_{2^{k+1}} + \cdots + a_{2^{k+1}-1})$ if $2^{k+1} > n$. $a_1 + a_2 \cdots + a_n \leq a_1 + 2a_2 + 4a_4 + \cdots + 2^k a_{2^k}$. LHS unbounded as $n \to \infty$, so RHS is also unbounded as $k \to \infty$.

 (\Rightarrow) $a_1 + a_2 + a_3 + \cdots + a_n \geq a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \cdots + (a_{2^{k-1}+1} + a_{2^{k-1}+2} + \cdots + a_{2^k})$ if $2^k \leq n$. $a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \cdots + (a_{2^{k-1}+1} + a_{2^{k-1}+2} + \cdots + a_{2^k}) \geq a_1 + a_2 + 2a_4 + 4a_8 + \cdots + 2^{k-1} a_{2^k} \geq \frac{1}{2}(a_1 + 2a_2 + 4a_4 + \cdots + 2^k a_{2^k})$. If $\sum_n a_n$ converges, then LHS is bounded for all n so RHS is bounded for all k. Hence RHS converges since it is monotone. bunded for all k. Hence RHS converges since it is monotone.

Q.E.D.

Theorem 3.28. [p-series] $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p>1 and diverges if $p\leq 1$

Proof. For $p \leq 0$, $\frac{1}{n^p} \not\to 0$, so series diverges. For p > 0, $\frac{1}{n^p}$ is decreasing, so $\sum_{n=1}^{n} \frac{1}{n^p}$ converges iff $\sum_k 2^k \cdot \frac{1}{(2^k)^p}$ converges. But $\sum_k 2^k \cdot \frac{1}{(2^k)^p} = \sum_k (\frac{1}{2^{p-1}})^k$ converges iff $\frac{1}{2^{p-1}} < 1 (\Leftrightarrow p-1>0)$, which is equivalent to p > 1. Q.E.D.

Theorem 3.29. $\sum_{n=3}^{\infty} \frac{1}{n(\log n)^p}$ converges if p > 1 and diverges if $p \leq 1$. (log is to base e.)

Proof. If $p \leq 0$, then $\frac{1}{n(\log n)^p} \geq \frac{1}{n}$, so $\sum_n \frac{1}{n(\log n)^p}$ diverges by the comparison test. If p > 0 then $\frac{1}{n(\log n)^p}$ decreases since $\log n$ increases. By theorem 3.27, $\sum_n \frac{1}{n(\log n)^p}$ converges $\Leftrightarrow \sum_k 2^k \cdot \frac{1}{2^k(\log 2^k)^p}$ converges $\Leftrightarrow \sum_k \frac{1}{(\log 2)^p} \cdot \frac{1}{k^p}$ converges $\Leftrightarrow p > 1$ Q.E.D.

Definition 3.10 (e). $e := \sum_{n=0}^{\infty} \frac{1}{n!}$.

Remark. Convergence $\frac{1}{n!} = \frac{1}{(n(n-1)(n-2)\cdots 3\cdot 2\cdot 1)} \leq \frac{1}{2\cdot 2\cdot 2\cdot 2\cdot 2\cdots 2\cdot 1} = \frac{1}{2^{n-1}}.$ Therefore, $S_n = \sum_{k=0}^n \frac{1}{k!} \leq 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} < 1 + \sum_{k=1}^\infty \frac{1}{2^{k-1}} = 1 + \frac{1}{1-1/2} = 3.$ Then S_n is a monotonically increasing sequence that's also bounded. Hence, $e \leq 3$

Rate of Convergence
$$0 < e - S_n = \sum_{k=n+1}^{\infty} \frac{1}{k!} < \sum_{k=n+1}^{\infty} \frac{1}{(n+1)^{k-n+1}} \cdot \frac{1}{(n+1)!}$$
$$= \frac{1}{(n+1)!} \sum_{k=n+1}^{\infty} \frac{1}{(n+1)^{k-(n+1)}}$$
$$= \frac{1}{(n+1)!} \cdot \frac{1}{1-1/(n+1)} = \frac{1}{(n!) \cdot n}.$$

Theorem 3.32. $e \notin \mathbb{Q}$.

ī

Proof. For contradiction, suppose $e=\frac{p}{q}, p, q\in\mathbb{N}$. As $0< e-S_q<\frac{1}{q\cdot q!},\ 0< q!\cdot e-q!\cdot S_q<\frac{1}{q}$. Since $S_q=\sum_{k=0}^q\frac{1}{k!},\ q!\cdot e$ and $S_q\cdot q!$ are both integers. However, then $q!\cdot e-q!\cdot S_q$ is an integer between 0 and $\frac{1}{q}<1$, which is a contradiction. Q.E.D.

Theorem 3.31. $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$.

Proof. Let $t_n = (1 + \frac{1}{n})^n$. Then $t_n = \sum_{k=0}^n \binom{n}{k} \cdot \frac{1}{n^k} = \sum_{k=0}^n \frac{1}{k!} \cdot (\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n}) \le S_n$. So $\limsup_{n \to \infty} t_n \le \limsup_{n \to \infty} S_n = \lim_{n \to \infty} S_n = e$. On the other hand, for fixed m and $n \ge m$, $t_n \ge \sum_{k=0}^m \binom{n}{k} \cdot \frac{1}{n^k} = \sum_{k=0}^m \frac{1}{k!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdots (1 - \frac{k-1}{n})$. Let $n \to \infty$ with m fixed. $\liminf_{n \to \infty} t_n \ge \sum_{k=0}^m \frac{1}{k!} \cdot 1 = S_m$. This is true for any m. Now let $m \to \infty$. $\liminf_{n \to \infty} t_n \ge \limsup_{m \to \infty} s_m = e$. $e \le \liminf_{n \to \infty} t_n \le \limsup_{n \to \infty} t_n \le e$. Therefore, $\lim_{n \to \infty} t_n$ exists and equals e. Q.E.D.

Theorem 3.33. [Root test] Let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Then,

$$\sum a_n \begin{cases} \text{converges} & \text{if } \alpha < 1 \\ \text{diverges} & \text{if } \alpha > 1 \\ \text{inconclusive} & \text{if } \alpha = 1 \end{cases}$$

Proof (Just outline). $\alpha < \beta < 1$ Eventually $|a_n| \leq \beta^n$, thus convergence. $\alpha > 1$ $|a_n| > 1$ for infinitely many n, thus divergence. $\alpha = 1$ $\frac{1}{n}$ diverges, $\frac{1}{n^2}$ converges.

Q.E.D.

Theorem 3.34. [Ratio test] The series $\sum_{n=1}^{\infty} a_n$ with $a_n \neq 0$ converges if $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ and diverges if $\exists_{N \in \mathbb{N}}$ s.t. $\forall_{n \geq N} : \left| \frac{a_{n+1}}{a_n} \right| \geq 1$. Otherwise, inconclusive.

$$\textbf{Convergence} \; \sum a_n \begin{cases} \text{converges} & \text{if } \lim\limits_{n \to \infty} |\frac{a_{n+1}}{a_n}| < 1 \\ \text{diverges} & \text{if } \lim\limits_{n \to \infty} |\frac{a_{n+1}}{a_n}| > 1 \\ \text{diverges} & \text{if } \lim\inf_{n \to \infty} |\frac{a_{n+1}}{a_n}| > 1 \\ \text{inconclusive} & \text{otherwise. e.g., } \lim\limits_{n \to \infty} |\frac{a_{n+1}}{a_n}| = 1 \end{cases}$$

Note. Note that we cannot replace \liminf with \limsup in the third case. For inconclusive case, check $\sum 1/n \to \infty$ and $\sum 1/n^2 \to \infty$

Q.E.D.

Example. Let $s_n = \sum_{n=0}^{\infty} a_n = \frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$. First, note that $a_{2k} = \frac{1}{2} \cdot \frac{1}{4^k}, a_{2k+1} = 2a_{2k} = \frac{1}{4^k}$ for $k \ge 0$.

Ratio test Then the ratio $\frac{a_{n+1}}{a_n}$ is the sequence $2, \frac{1}{8}, 2, \frac{1}{8}, 2, \frac{1}{8}, \ldots$ Therefore, $\lim_{n\to\infty} \inf_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{8}, \lim\sup_{n\to\infty} \frac{a_{n+1}}{a_n} = 2$. The ratio test is inconclusive

Root test $a_n = \begin{cases} \frac{1}{2} \cdot \frac{1}{2^n} & n \ even, \ so(\frac{1}{2})^{1/n} \cdot \frac{1}{2} \leq \sqrt[n]{a_n} \leq \frac{2^{1/n}}{2}, \ thus \lim_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{2} < 1. \ Therefore, \ s_n = \sum_{n=0}^{\infty} a_n \ converges. \end{cases}$

This is an example where the ratio test is inconclusive but the root test is conclusive.

Theorem 3.47. If $\sum a_n = A$ and $\sum b_n = B$, then $\sum a_n + b_n = A + B$ and

3.3 Power Series

Definition 3.11 (Power Series). For $z \in \mathbb{C}$ and a complex sequence $\{c_n\}, \sum_{n=0}^{\infty} c_n z^n$ is a power series.

Remark. As $z^0 = 1$ for all $z \in \mathbb{C}$, by convention we write $\sum_{n=0}^{\infty} c_n z^n = c_0 + \sum_{n=1}^{\infty} c_n z^n$.

Theorem 3.39. Let $R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|c_n|}}$, where

$$R = \begin{cases} 0 & \text{if } \limsup_{n \to \infty} \sqrt[n]{|c_n|} = \infty \\ \infty & \text{if } \limsup_{n \to \infty} \sqrt[n]{|c_n|} = 0 \end{cases}$$

 $R = \begin{cases} 0 & \text{if } \limsup_{n \to \infty} \sqrt[n]{|c_n|} = \infty \\ \infty & \text{if } \limsup_{n \to \infty} \sqrt[n]{|c_n|} = 0 \end{cases}.$ Then $\sum c_n z^n \begin{cases} \text{converges} & \text{if } |z| < R \\ \text{diverges} & \text{if } |z| > R. \text{ Note } R = 0 \text{ implies the series inconclusive} & \text{if } |z| = R \end{cases}$ diverges for $z \neq 0$, and $R = \infty$ implies the series converges for any $z \in \mathbb{C}$.

Proof. $\limsup_{n\to\infty} \sqrt[n]{|c_n z^n|} = |z| \cdot \limsup_{n\to\infty} \sqrt[n]{|c_n|} = \frac{|z|}{R}$. By root test, the series converges if $\frac{|z|}{R} < 1$ and diverges if $\frac{|z|}{R} > 1$.

Q.E.D.

Example. (a) $\sum n! \cdot z^n$ has R = 0.

By ratio test $\forall z \neq 0 : \left| \frac{(n+1)! \cdot z^{n+1}}{n! \cdot z^n} \right| = |z| \cdot (n+1) \rightarrow \infty$. Hence, the

By root test Note $n \neq \frac{1}{2}(\frac{2}{3})^2(\frac{3}{4})^3 \cdots (\frac{n-1}{n})^{n-1} n^n$ for $n \geq 2$. Then $n \neq \frac{n^n}{(1+1)^1(1+\frac{1}{2})^2(1+\frac{1}{n-1})^{n-1}}$. In the proof of Theorem 3.31, we saw $(1+\frac{1}{j}) \leq e$. So $n! \geq \frac{n^n}{e^{n-1}} = e \cdot (\frac{n}{e})^n$. $\sqrt[n]{n!} \geq e^{1/n} \cdot \frac{n}{e} \to \infty$ as $n \to \infty$. Therefore, $R = \frac{1}{\infty} = 0$.

Note. Cf. Stirling's formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Definition 3.12 (Absolute Convergence, Conditional Convergence).

- (a) $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.
- (b) $\sum a_n$ converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Remark. All other convergence tests seen so far are actually tests for absolute convergence.

nple. • $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ converges conditionally by the alternating series test of assignment 7's practice problem 1. See also Theorem 3.43. Example. (MUST TAKE A LOOK!)

- Given $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$ and $a_n \to 0$, then $\sum (-1)^n a_n$ converges.
- $\sum_{n=0}^{\infty} n! 2^n$ has R=0
- $\sum_{n=0}^{\infty} \frac{z^n}{n^n} has \ R = \infty \ since \ R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|c_n|}} = \frac{1}{\limsup_{n \to \infty} \frac{1}{n}} = 1/0 = \infty$, or use ratio test, $|\frac{z^{n+1}/(n+1)^{n+1}}{z^n/n^n}| = |z| = \frac{n^n}{(n+1)^{n+1}} = |z| \frac{1}{n+1} \frac{1}{(1+\frac{1}{n})^n}$. Since $(1+\frac{1}{n})^n \to \frac{1}{e}$ as $n \to \infty$, $|z| \frac{1}{n+1} \frac{1}{(1+\frac{1}{n})^n} \to 0$ as $n \to \infty \forall z \in \mathbb{C}$ so $R=\infty$.

Theorem 3.45. If $\sum a_n$ converges absolutely, then $\sum a_n$ converges.

Theorem 3.54. Suppose $\sum a_n$ converges conditionally. Let $-\infty \le \alpha \le \beta \le +\infty$. Then \exists bijection $f: \mathbb{N} \to \mathbb{N}$ such that with $a'_n = a_{f(n)}$ and $S'_n = \sum_{k=1}^n a'_k$, $\liminf_{n\to\infty} s'_n = \alpha$ and $\limsup_{n\to\infty} s'_n = \beta$. In other words, there exists a rearrangement of $\sum a_n$, $\sup \sum a'_n$, such that $\liminf_{n\to\infty} \sum a'_n = \alpha$, $\limsup_{n\to\infty} \sum a'_n = \beta$.

Proof. Take a look at the textbook

Q.E.D.

Theorem 3.55. If $\sum a_n$ converges absolutely, then every rearrangement of $\sum a_n$ converges to the same sum.

Q.E.D.

3.4 Products of Series

Motivation Consider z^N in $(\sum_{n=0}^{\infty} a_n z^n)(\sum_{n=0}^{\infty} b_n z^n)$. Since $(\sum_{n=0}^{\infty} a_n z^n)(\sum_{n=0}^{\infty} b_n z^n) = (a_0 + a_1 z + a_2 z^2 + \cdots)(b_0 + b_1 z + b_2 z^2 + \cdots) = (a_0 b_0) + (a_0 b_1 + a_1 b_0) z + (a_0 b_2 + a_1 b_1 + a_2 b_0) z^2 + \cdots, z^N$ has coefficient $\sum_{k=0}^{N} a_k b_{N-k}$. **Definition 3.13.** The product of $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ is $\sum_{n=0}^{\infty} c_n$ where $c_n = \sum_{k=0}^{n} a_k b_{n-k}$.

Note. This is a discrete convolution.

Question If $\sum a_n = A$ and $\sum b_n = B$ both converge, does $\sum c_n$ converge and if so, does it converge to AB?

Answer $\sum c_n$ converges if $\sum a_n$ and $\sum b_n$ converge absolutely. (Theorem 3.50). Moreover, if $\sum c_n$ does converge, then it must converge to AB (Theorem 3.51). Maybe no otherwise (ref: Example 3.49).

Theorem 3.50. Suppose $\sum a_n$ converges absolutely to A and $\sum b_n$ converges to B. Then $\sum c_n$ converges to AB.

Proof. Let $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$, $C_n = \sum_{k=0}^n c_k$. Then $A_n \to A$, $B_n \to B$. By definition, $C_n = \sum_{k=0}^n \sum_{j=0}^k a_j b_{k-j} = \sum_{j=0}^n a_j \sum_{k=j}^n a_j b_{k-j} = \sum_{j=0}^n a_j B_{n-j} = \sum_{j=0}^n a_j B_{n-j} + \sum_{j=0}^n a_j b_{n-j}$. Let β_{n-j} , where $\beta_k = B_k - B$. Then $C_n = A_n B + \sum_{j=0}^n a_j \beta_{n-j}$. Let $\gamma_n = \sum_{j=0}^n a_j \beta_{n-j}$. Note that $A_n B \to AB$, $\beta_k \to 0$ as $n \to \infty$. Let $\alpha = \sum_{k=0}^\infty |a_k| < \infty$ (: a_n converges absolutely by assumption). Rewrite γ_n as $\gamma_n = \sum_{j=0}^n a_{n-j} \beta_j$. We know $\beta_j \to 0$ as $j \to \infty$. Let $\varepsilon > 0$. Choose N s.t. $|\beta_j| < \varepsilon$ if $j \ge N$. Then for $n \ge N + 1$, $|\gamma_n| \le |\sum_{j=0}^N a_{n-j} \beta_j| + |\sum_{j=N+1}^n a_{n-j} \beta_j|$. Note $|\sum_{j=N+1}^n a_{n-j} \beta_j| \le \varepsilon \sum_{j=N+1}^n |a_{n-j}| \le \varepsilon \alpha$. Let $n \to \infty$ with N fixed. Then $a_{n-j} \to 0$ for $0 \le j \le N$ since $|a_n| \to 0$. Q.E.D.

Theorem 3.51. If the series $\Sigma a_n, \Sigma b_n, \Sigma c_n$ converge to A, B, C respectively and $c_n = \sum_{k=0}^n a_k b_{n-k}$, then C = AB.

Midterm 2 covers up to this point (TB p.36-82, A.5-8)

Chapter 4

Continuity

Assume general metric spaces X, Y and $f: X \to Y$.

Definition 4.1. Suppose X, Y are metric spaces, $E \subset X$, $f: E \to Y$, $p \in E'$, where E': set of limit points in metric space X. We say $\lim_{x\to p} f(x) = q$, or $f(x) \to q$ as $x \to p$, if $\forall_{\varepsilon>0}: \exists_{\delta>0}$ s.t. $(0 < d_X(x,p) < \delta \text{ and } x \in E) \Rightarrow$ $d_Y(f(x),q) < \varepsilon$.

Note. We don't say anything about x = p, f(p) may not even be defined.

Theorem 4.2. $\lim_{x\to p}f(x)=q\Leftrightarrow \forall_{\{p_n\}\text{ in }E}: \text{ if }p_n=p \text{ or }p_n\to p, \text{ then }$ $\lim_{n\to\infty}f(p_n)=q,$ where the RHS is the limit of Definition 3.1.

$$\lim_{n \to \infty} f(p_n) = q,$$

Note. This implies uniqueness of q in Definition 4.1.

- **Proof.** \Rightarrow Suppose $\lim_{x \to p} f(x) = q$. Let $\varepsilon > 0$. Choose $\delta > 0$ s.t. $d_Y(f(x),q)\varepsilon$ if $0 < d_X(x,p) < \delta$. Let $\{p_n\}$ be a sequence in E such that $p_n \to p$ and $p_n \neq p$. Then \exists_N s.t. $0 < d_X(p_n,p) < \delta$ if $n \geq N$; i.e., $f(p_n) \to q$. \Leftrightarrow Consider the contrapositive of (\Leftarrow) : $\neg(\lim_{x \to p} f(x) = q) \Rightarrow \neg(\forall_{\{p_n\} \text{ in } E} : \lim_{n \to \infty} f(p_n) = q)$. Suppose $\neg(\lim_{x \to p} f(x) = q)$. Then $\exists_{\varepsilon > 0}$ s.t. $\forall_{\delta > 0} : \exists_{x \in N_\delta^E(p)}$ s.t. $x \neq p$ and $d_Y(f(x),q) \geq \varepsilon$. Take $\delta = \delta_n = \frac{1}{n}$ and let p_n be an x as above for δ_n . Then $p_n \to p$, but $d_Y(f(p_n),q) \geq \varepsilon \forall n$, so $f(p_n) \not\to q$. $\varepsilon \forall n$, so $f(p_n) \not\to q$.

Q.E.D.

Theorem 4.4. When $Y = \mathbb{C}$, limit as defined in Definition 4.1 respects sums, products and quotients.

Proof. By Theorem 4.2, it suffices to show that the theorem holds for Q.E.D.

Definition 4.2. Suppose X, Y are metric spaces, $p \in E \subset X$, $f : E \to Y$. Then f is continuous at p if $\forall_{\varepsilon>0}: \exists_{\delta>0}$ s.t. $d_X(x,p) < \delta \Rightarrow d_Y(f(x),f(p)) < \varepsilon$; i.e., $f(N_{\delta}^{E}(p)) \subset N_{\varepsilon}^{y}(f(p))$. We say f is continuous if f is continuous at p for all $p \in E$.

Note. If p is an isolated point; i.e., $\exists_{\delta>0}$ s.t. $N_{\delta}^{E}(p) = \{p\}$, then every $f: E \to Y$ is continuous at p.

Theorem 4.6. Suppose $E \subset X, p \in E \cap E', f : E \to Y$. Then f is continuous at p if and only if $\lim_{x\to p} f(x) = f(p)$.

Proof. By Definition 4.1 and Definition 4.2 with q = f(p). Q.E.D.

Theorem 4.7. For $E \subset X$, $f: E \to Y$, $g: f(E) \to Z$, let $h = g \circ f: E \to Z$. If f is continuous at $p \in E$ and if g is continuous at $f(p) \in Y$, then h is continuous at p.

Proof. Choose $\eta > 0$ such that $d_Y(f(p),y) < \eta \Rightarrow d_Z(g(f(p)),g(y)) < \varepsilon$ (continuity of g at f(p)). Choose $\delta > 0$ s.t. $d_E(x,p) < \delta \Rightarrow d_Y(f(x),f(p)) < \eta$ (continuity of f at p). Then $d_E(x,p) < \delta \Rightarrow d_Z(g(f(x)),g(f(p))) = d_Z(h(x),h(p)) < \varepsilon$. Q.E.D.

Theorem 4.8. [Topological Characterization of Continuity] $f: X \to Y$ is continuous $\Leftrightarrow f^{-1}(V)$ is open for every open $V \subset Y$.

- **Proof.** (\Rightarrow) Suppose f is continuous. Let $V \subset Y$ be open. Then $f^{-1}(V)$ is open. Let $p \in f^{-1}(V)$. We need to show $\exists_{\delta>0}$ s.t. $N_{\delta}^X(p) \subset f^{-1}(V)$. Since V is open, $\exists_{\varepsilon>0}$ s.t. $N_{\varepsilon}^Y(f(p)) \subset V$. Since f is continuous, $\exists_{\delta>0}$ s.t. $f(N_{\delta}^X(p)) \subset N_{\varepsilon}^Y(f(p)) \subset V$.
- $(\Leftarrow) \text{ Suppose } f^{-1}(V) \text{ is open for every open } V \subset Y. \text{ Let } p \in X \\ \text{ and } \varepsilon > 0. \text{ Then } N_\varepsilon^Y(f(p)) \text{ is open, so } f^{-1}(N_\varepsilon^Y(f(p))) \text{ is open.} \\ \text{ Take } V = N_\varepsilon^Y(f(p)), \text{ which is open. Since } f^{-1}(V) \text{ is open and } \\ p \in f^{-1}(V), \text{ there exists } \delta > 0 \text{ such that } N_\delta^X(p) \subset f^{-1}(V). \\ \text{ Then } f(N_\delta^X(p)) \subset V = N_\varepsilon^Y(f(p)); \text{ i.e., } f \text{ is continuous at } p.$

Q.E.D.

Remark.

(a)

(b) Continuity is determined by the open sets, not the metric. For instance, if metrics l_1, l_2, l_{∞} have the same open sets in \mathbb{R}^k , hence the same continuous functions.

$$l_1(x,y) = \sum_{i=1}^{k} |x_i - y_i|$$

$$l_2(x,y) = \sqrt{\sum_{i=1}^k (x_i - y_i)^2}$$

$$l_{\infty}(x,y) = \max_{1 \le i \le k} |x_i - y_i|$$

(c) f with open $U \subset X \Rightarrow f(U)$ is open are called open maps. Continuous maps need not be open(e.g., f(x) = some constant, $f(x) = x^2$), and open maps need not be continuous(e.g., floor function: $[\cdot]: \mathbb{R} \to \mathbb{Z}$).

Corollary 4.9. $f: X \to Y$ is continuous if and only if $f^{-1}(F)$ is closed for every closed $F \subset Y$.

Proof. Let $V \subset Y$ be open and $F = V^c$. Then the above condition (RHS) is the same as $f^{-1}(V) = f^{-1}(F^c) = (f^{-1}(F))^c$ is open. Q.E.D.

Theorem 4.9. Let $f: X \to \mathbb{C}, g: X \to \mathbb{C}$ be continuous. Then f+g, f. g, f/g(at points p where $g(p) \neq 0$) are also continuous.

Theorem 4.10. Given $f_i: X \to \mathbb{R} (i = 1, 2, ..., k)$, define $f: X \to \mathbb{R}^k$ by $f(x) = (f_1(x), ..., f_k(x))$. Then

(a) f is continuous if and only if each f_i is continuous.

(b) if $f, g: X \to \mathbb{R}^k$ are continuous, then so are $f + g: X \to \mathbb{R}^k$, $f \cdot g: X \to \mathbb{R}^k$

Example. (a) For i = 1, ..., k, define $\varphi_i : \mathbb{R}^k \to \mathbb{R}$ by $\varphi_i(x) = x_i$, where $x = x_i$ $(x_1, x_2, ..., x_k)$. Then $|\varphi_i(x) - \varphi_i(y)| = |x_i - y_i| \le \left(\sum_{j=1}^k |x_j - y_j|^2\right)^{1/2} = |x - y|$, so φ_i is continuous(take $\delta = \varepsilon$. If $|x - y| < \delta = \varepsilon$, then $|\varphi_i(x) - \varphi_i(y)| \le \varepsilon$)

- (b) The functions $\mathbb{R}^k \to \mathbb{R}$ defined by $x \mapsto x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k} (n_i \in \{0, 1, 2, \ldots\})$ is continuous on \mathbb{R}^k and so is any polynomial $P(x) = \sum_{i=1}^k C_{n_1, n_2, n_3, \ldots, n_k} x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$, where $C_{n_1, n_2, n_3, \ldots, n_k}$ is a constant (function) in \mathbb{C} .
- (c) Rational functions $f(x) = \frac{P(x)}{Q(x)}$ are continuous at points where $Q(x) \neq 0$.
- (d) The function $\mathbb{R}^k \to \mathbb{R}$ defined by $x \mapsto |x|$ is continuous.

Proof. $|x| = |y + (x - y)| \le |y| + |x - y|$, so $|x| - |y| \le |x - y|$. Similarly, $|y| - |x| \le |y - x|$, so $||x| - |y|| \le |x - y|$. Thus by taking $\delta = \varepsilon$, $|x - y| < \delta \Rightarrow ||x| - |y|| < \varepsilon$. Q.E.D.

(e) Suppose $f: X \to \mathbb{R}^k$ is continuous. Then $p \mapsto |f(p)|$ is continuous.

Proof. $p \mapsto |f(p)| = (y \mapsto |y|) \circ (p \mapsto f(p))$. Since both $(y \mapsto |y|)$, $(p \mapsto f(p))$ are continuous, $p \mapsto |f(p)|$ is continuous by Theorem 4.7. OF D

Note. A function is said to be continuous on the *domain*, not on the *range*.

Theorem 4.14. Let $f: X \to Y$ be continuous and X be compact. Then f(X) is compact.

Proof. Let $\{V_{\alpha}\}$ be an open cover of f(X). We need to find a finite subcover of f(X). By Theorem 4.8, each set $O_{\alpha} = f^{-1}(V_{\alpha})$ is open and $\bigcup_{\alpha} O_{\alpha} = \bigcup_{\alpha} f^{-1}(V_{\alpha}) = f^{-1}(\bigcup_{\alpha} V_{\alpha}) = f^{-1}(f(X)) = X$. Hence, $\{O_{\alpha}\}$ is an open cover of X, so there exists a finite subcover $X = O_{\alpha_1} \cup \cdots \cup O_{\alpha_n}$. However, then $f(x) = \bigcup_{i=1}^n f(O_{\alpha_i}) = \bigcup_{i=1}^n f(f^{-1}(V_{\alpha_i})) \subset \bigcup_{i=1}^n V_{\alpha_i}$. Therefore, $\{V_{\alpha_i}\}_{i=1}^n$ is a finite subcover of f(X). Q.E.D.

Definition 4.3 (4.13). $f: E \to \mathbb{R}^k$ is bounded if $\exists_{M>0}$ s.t. $|f(x)| \leq M \, \forall x \in E$.

Theorem 4.15. If X is compact and $f: X \to \mathbb{R}^k$, then f(X) is closed and bounded (so f is bounded).

Proof. f(X) is compact by Theorem 4.14, and since $f(X) \subset \mathbb{R}^k$, it is closed and bounded. Q.E.D.

Theorem 4.16. If X is compact and $f: X \to \mathbb{R}^1$ is continuous, then $\exists_{p,q \in X} \text{ s.t. } f(p) \leq f(x) \leq f(q) \text{ for all } x \in X.$

Proof. By Theorem 4.15, f(X) is closed and bounded. By Theorem 2.28, $M \in f(X)$ and similarly $m \in f(X)$. Q.E.D.

Example. Let X = (0,1), not compact, let $f(x) = \frac{1}{x}$, continuous. However, $\not\equiv_{p \in X} s.t. \ \forall_{x \in X} : f(p) \leq f(x)$ and $\not\equiv_{q \in X} s.t. \ \forall_{x \in X} : f(x) \leq f(q)$.

Theorem 4.17. Suppose $f: X \to Y$ is one-to-one, onto, continuous, where X is compact. Define $f^{-1}: Y \to X$ by $f^{-1}(f(x)) = x$. Then f^{-1} is continuous.

Proof. By Theorem 4.8, it suffices to prove that if $V \subset X$ is open then $(f^{-1})^{-1}(v)(=f(v))$ is open. However, $V^c \subset X$ is closed, hence V^c is compact by Theorem 4.14 and $(f(V^c))^c = f(V)$ is open. Q.E.D.

Example (Compactness is needed in Theorem 4.17). Let $X = [0, 2\pi), Y = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Define $f : X \to Y$ by $f(\theta) = (\cos \theta, \sin \theta)$. This f is 1-1, onto, and continuous, but f^{-1} is not continuous as X is not compact.

Proof. (1) $[0,1) \subset X$ is open but $(f^{-1})^{-1}([0,1)) = f([0,1))$ is not open because (1,0) is not an interior point of Y.

(2) In Y, as $(x,y) \to (1,0)$ from above, $f((x,y)) \to 0$. As $(x,y) \to (1,0)$ from below, $\lim_{x \to 0} f^{-1}(x,y)$ does not exist in X. (Wants to be $2\pi \notin X$), so f^{-1} is not continuous at $(1,0) \in Y$.

Q.E.D.

Definition 4.18. Let X, Y be metric spaces and $f: X \to Y$. f is uniformly continuous on X if $\forall_{\varepsilon>0}: \exists_{\delta>0}$ s.t. for all $p, q \in X$ with $d_x(p,q) < \delta$, we have $d_Y(f(p), f(q)) < \varepsilon$.

Remark. The point is for any ε , there is some δ that works for every $p, q \in X$ such that d(p,q).

Example. (a) $X = (0,1), Y = \mathbb{R}, f(x) = \frac{1}{x}$. f is continuous on X but is not uniformly continuous.

Proof. For $x \in (0, \frac{1}{2})$, $|f(x) - f(2x)| = |\frac{1}{x} - \frac{1}{2x}| = \frac{1}{2x} \to \infty$ as $x \to 0$. Then for $\varepsilon = 1$, given any $\delta \in (0, \frac{1}{2})$, we can pick $x < \delta$ s.t. $d_{\ell}(X)(x, 2x) = x < \delta$, but $d_{\ell}(f(x), f(2x)) = \frac{1}{2x} > \frac{1}{2\delta} > 1$. Q.E.D.

(b) $X = [0, 5], Y = \mathbb{R}, f(x) = x^2$ is uniformly continuous.

Proof. For $0 \le x_1 \le x_2 \le 5$ and $\varepsilon > 0$, $|f(x_1) - f(x_2)| = x_2^2 - x_1^2 = (x_2 - x_1)(x_2 + x_1) \le 10 \cdot (x_2 - x_1)$, which is less than ε if $|x_2 - x_1| < \frac{\varepsilon}{10} = \delta$ Q.E.D.

Theorem 4.19. Suppose X is a compact metric space, Y is a metric space, and $f: X \to Y$ is continuous. Then f is uniformly continuous.

Proof. Fix $\varepsilon > 0$. For $p \in X$ there exists $\delta = \delta_p(\varepsilon)$ s.t. $d_X(p,q) < \delta_p \Rightarrow d_Y(f(p),f(q)) < \frac{\varepsilon}{2}$. We need to remove the p-dependence of δ_p . Let $J_p = N_{\frac{1}{2}\delta_p}(p)$. Then $\{J_p\}_{p\in X}$ is an open cover of X. Then there exists subcover $X = J_{p_1} \cup J_{p_2} \cdots \cup J_{p_n}$ (equality works as X is the whole metric space, so $X \subset J \Rightarrow X = J$). Let $\delta = \min\{\frac{1}{2}\delta_{p_1},\frac{1}{2}\delta_{p_2},\ldots,\frac{1}{2}\delta_{p_n}\}$. Suppose p,q with $d_X(p,q) < \delta$. Choose $m \in \{1,2,\ldots n\}$ s.t. $p \in J_{p_m}$. Then $d_X(p,p_n) < \frac{1}{2}\delta_{p_m}$. $d_X(q,p_m) \le d_X(q,p) + d_X(p,p_m) < \delta + \frac{1}{2}\delta_{p_m} \le \delta_{p_m}$. $\therefore d_Y(f(q),f(p)) \le d_Y(f(q),f(p_m)) + d_Y(f(q_m),f(p)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Q.E.D.

Theorem 4.22. If X, Y are metric spaces, $f: X \to Y$ is continuous, and $E \subset X$ is connected, then f(E) is connected.

Proof (By Contradiction). Suppose for contradiction E is connected and there exists $A, B \subset Y$ s.t. $f(E) = A \cap B, f(E) \neq \emptyset, \overline{A} \cup A \cap B$ $B = A \cap \overline{B} = \emptyset$. Let $G = f^{-1}(A) \cap E, H = f^{-1}(B) \cap E$. Then $E = G \cup H$, G, H are nonempty. If $G \cap \overline{H} = \overline{G} \cap H = \emptyset$, it leads to a contradiction. First, $G \subset f^{-1}(A) \subset (:A \subset \overline{A})f^{-1}(\overline{A})$, where $f^{-1}(\overline{A})$ is closed by the corollary to Theorem 4.8, so $\overline{G} \subset f^{-1}(\overline{A})$. Second, $f(H) = B, \overline{A} \cap B = \emptyset$. Therefore, $\overline{G} \cap H = \emptyset$. WLOG, $G \cap \overline{H} = \emptyset$ as well. Hence a contradiction.

Theorem 4.23. [Intermediate Value Theorem] Suppose $f:[a,b]\to\mathbb{R}$ is continuous. $\forall_{c \in (\min\{f(a), f(b)\}, \max\{f(a), f(b)\})} : \exists_{x_0 \in (a, b)} \text{ s.t. } f(x_0) = c.$

Proof. [a, b] is connected by Theorem 2.47. Hence, by Theorem 4.22, f([a,b]) is connected and therefore contains all points between f(a) and f(b). In particular, $c \in f((a,b))$ Q.E.D.

Example. (a) there exists a continuous function called (Peano/space-filling curve) from [0,1] onto the closed unit square $S=[0,1]\times[0,1]\subset\mathbb{R}^2$.

> Proof. Omitted. See Rudin's problem 7.14 for an explicit example(covered in MATH-321).

(b) But no such function can be one-to-one.

Proof. Suppose $f:[0,1]\to S$ is 1-1, onto, continuous. Since [0,1]is compact, f^{-1} is continuous by Theorem 4.17. Let $E = [0, \frac{1}{2}) \cup (\frac{1}{2}, 1]$. Then, $f(E) = S \setminus \{f(\frac{1}{2})\}$ is S minus one point, which is connected (pf omitted). But then, $f^{-1}(f(E)) = E$ must be connected by Theorem 4.22. E is not connected, so this is a contradiction. Q.E.D.

Theorem 4.29. Let f be a monotonically increasing function on (a,b). Then f(x+) and f(x-) exist at every $x \in (a,b)$; i.e.,

$$\sup_{a < t < x} f(t) = f(x^{-}) \le f(x) \le f(x^{+}) = \inf_{x < t < b} f(t).$$

Moreover, if a < x < y < b, then $f(x^+) \le f(y^-).$

$$f(x^+) \le f(y^-).$$

Analogous results hold for monotonically decreasing functions.

Example (18). Every rational x can be written in the form x = m/n, where

n>0 and m and n are integers without any common divisors. When x=0, we take n=1. Consider the function f defined on \mathbb{R}^1 by

$$f(x) = \begin{cases} 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \\ \frac{1}{n} & (x = \frac{m}{n}) \end{cases}.$$

Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point, and that f has a simple discontinuity at every rational point.

Chapter 5

Differentiation

We consider $f:[a,b]\to\mathbb{R}$.

Definition. For $f:[a,b]\to\mathbb{R}$ and $x\in[a,b]$, let $f'(x)=\lim_{t\to x}\frac{f(t)-f(x)}{t-x}$ if limit exists. Equivalently, f(t)=f(x)+(t-x)[f'(x)+u(x,t)] with $\lim_{t\to x}u(x,t)=0$.

Example. (a) f(x) = c for all $x \Rightarrow f'(x) = \lim_{t \to x} \frac{c-c}{t-x} = 0$.

- (b) f(x) = x for all $x \Rightarrow f'(x) = \lim_{t \to x} \frac{t-x}{t-x}$
- (c) $f(x) = e^x := \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Write t = x + h, so $t \to x \Leftrightarrow h \to 0$. $\frac{e^{x+h} e^x}{(x+h) x} = e^x \frac{e^h 1}{h} = e^x \frac{e^h 1}{h} + e^x e^x = e^x + e^x \frac{e^h 1 h}{h}$. Let $u(h) = \frac{e^h 1 h}{h}$. Then $u(h) = \frac{1}{h} \sum_{n=2}^{\infty} \frac{h^n}{n!}$, so $|u(h)| = |\frac{1}{h} \sum_{n=2}^{\infty} \frac{h^n}{n!}| \le |h| \sum_{n=2}^{\infty} \frac{1}{n!} = (e-2)|h|$ (note for $n \ge 2$, $|h^{n-1}| \le |h|$ if $|h| \le 1$). Hence, $u(h) \to \infty$ as $h \to 0$ and therefore $f'(x) = e^x$.

Remark. $e^x:=\sum_{n=0}^\infty \frac{x^n}{n!}$ is well defined. $e^1=\sum_{n=0}^\infty \frac{1}{n!}=e$. Regarding it as a power series, its radius of convergence is $R=\infty$. Also, $e^{x+y}=e^xe^y$ using definition 3.48 of product series (Rudin's p.178-180).

Note. f'(x): Lagrange's notation, $\frac{df}{dx}$: Leibnitz notation

Theorem 5.2. Suppose $f:[a,b]\to\mathbb{R}$ and f'(x) exists. Then f is continuous at x.

Proof. The existence of $f'(x) \Leftrightarrow f(t) = f(x) + (t-x)[f'(x) + u(x,t)]$ with $\lim_{t \to x} u(x,t) = 0$. Let $t \to x$. $\lim_{t \to x} f(x) + (t-x)[f'(x) + u(x,t)] = f(x) + 0[f'(x) + 0] = f(x)$, so $\lim_{t \to x} f(t) = f(x)$; i.e., f is continuous at x. Q.E.D.

Remark. The converse is false; e.g., f(x) = |x| is continuous for all x, but f'(0) does not exist.

Theorem 5.3. If $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are both differentiable at x then so are $f+g,fg,\frac{f}{g}($ if $g(x)\neq 0),$ and $(f+g)'(x)=f'(x)+g'(x),(fg)'(x)=f'(x)g(x)+f(x)g'(x),(\frac{f}{g})'(x)=\frac{f'(x)g(x)-g'(x)f(x)}{g(x)^2}.$

 $\begin{array}{l} \textbf{Proof (Only the quotient rule).} \ h(t) - h(x) = \frac{f(t)}{g(t)} - \frac{f(x)}{g(x)} = \frac{1}{g(t)g(x)} [(f(t)g(x) - f(x)g(x)) - (f(x)g(t) - f(x)g(x))]. \\ \text{Then } \frac{h(t) - h(x)}{t - x} = \frac{1}{g(t)g(x)} \left[\frac{f(t) - f(x)}{t - x} g(x) - f(x) \frac{g(t) - g(x)}{t - x} \right]. \ \text{Let } t \to x. \ h'(x) = \frac{1}{g(x)^2} \left[f'(x)g(x) - f(x)g'(x) \right]. \end{array}$

Remark. By induction, $(f_1 \cdots f_n)' = f'_1 f_2 \cdots f_n + f_1 f'_2 f_3 \cdots f_n + f_1 f_2 \cdots f'_n$. **Example.** For n = 2, 3, $\frac{d}{dx} x^n = n x^{n-1}$ and we know this already for n = 0, 1. For n = -1, -2, let m = -n > 0. Then $\frac{d}{dx} x^n = \frac{d}{dx} \frac{1}{x^m} = \frac{(\frac{d}{dx} 1) x^m - (\frac{d}{dx} x^m) 1}{(x^m)^2} = \frac{0 x^m - m x^{m-1} 1}{x^{2m}} = -m x^{m-1} = n x^{n-1}$. Hence, $\forall_{n \in \mathbb{Z}} : \frac{d}{dx} = n x^{n-1}$.

Theorem 5.5. [Chain Rule] Suppose $f:[a,b]\to\mathbb{R},\ f'(x)$ exists for some $x\in[a,b],f([a,b])\subset I,$ where I is some interval in \mathbb{R} . Suppose $g:I\to\mathbb{R}$ and g'(f(x)) exists. Then $g\circ f$ is differentiable at x and $(g\circ f)(x)'=g'(f(x))f'(x)$

Proof. Let $h(t) = (g \circ f)(t) = g(f(t))$ for $t \in [a, b]$. Fix $x \in [a, b]$ where f'(x) exists. We know:

(a)
$$f(t) - f(x) = (t - x)[f'(x) + u(t)]$$
 with $\lim_{t \to x} u(t) = 0$.

(b) With
$$y = f(x)$$
, $g(s) - g(y) = (s - y)(g'(y) + v(s))$ with $\lim_{s \to y} v(s) = 0$

where
$$f(x)$$
 exists. We know.

(a) $f(t) - f(x) = (t - x)[f'(x) + u(t)]$ with $\lim_{t \to x} u(t) = 0$.

(b) With $y = f(x)$, $g(s) - g(y) = (s - y)(g'(y) + v(s))$ with $\lim_{s \to y} v(s) = 0$

As $\frac{h(t) - h(x)}{t - x} = \frac{g(f(t)) - g(f(x))}{t - x}$. By (2), $\frac{g(f(t)) - g(f(x))}{t - x}[g'f(x) + v(f(t))]$. Let $t \to x$. Then RHS $\to f'(x)[g'(f(x)) + 0]$ since $f(t) \to f(x)$ by continuity of f at x . Therefore, $h'(x) = f'(x)g'(f(x))$. Q.E.D.

Note. Suppose you produce f(t) meters of wire by time t; i.e., rate of wire production is f'(t) m/x. Also suppose you get g(l) for l meters of wire; rate of profit is g'(l) \$/m. Then the rate of earning by time t is g'(f(t))f'(t) \$/m.

Example. (a) $\frac{d}{dx}e^{x^2} = 2xe^{x^2}$

(b)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Remark. (a) f is continuous on \mathbb{R} , including at x = 0.

Proof.
$$|f(x)| \le |x|$$
, so by the Squeeze theorem, $\lim_{x\to 0} f(x) = 0 = f(0)$. Q.E.D.

Proof. $|f(x)| \le |x|$, so by the Squeeze theorem, $\lim_{x\to 0} f(x) = 0 = f(0)$. Q.E.D.

(b) f is differentiable on $x \ne 0$, but not differentiable at x = 0. For $x \ne 0$, $f'(x) = \sin\frac{1}{x} + x(\cos\frac{1}{x})(\frac{-1}{x^2}) = \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x}$. For x = 0, $\frac{f(t) - f(0)}{t - 0} = \frac{t\sin\frac{1}{t}}{t} = \sin\frac{1}{t}$, which does not converge. Therefore, f not differentiable at x = 0. Therefore, f not differentiable at x =

(c) Let
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & x = 0 \end{cases}$$
.

- (a) f is continuous in \mathbb{R} including at x = 0 (: $|f(x)| \le |x^2|$).
- (b) f is differentiable in \mathbb{R} including at x = 0.

Proof. For $x \neq 0$, $f'(x) = 2x \sin \frac{1}{x} + x^2(\cos \frac{1}{x})(\frac{-1}{x^2}) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$. For x = 0, $\frac{f(t) - f(0)}{t - 0} = \frac{t^2 \sin \frac{1}{t}}{t} = t \sin \frac{1}{t} \to 0$ as $t \to 0$. Hence, f'(0) = 0. HOWEVER! f' is not continuous at x = 0, because $\lim_{x \to 0} f'(x)$ does not exist. Q.E.D.

Definition 5.1. Let X be a metric space, $f: X \to \mathbb{R}$. f has a local max at $x \in X$ if $\exists_{\delta>0}$ s.t. $f(y) \geq f(x)$ for all $y \in N_{\delta}(x)$.

Theorem 5.8. Let $f:[a,b] \to \mathbb{R}$. If f has a local min or a local max at $x \in (a,b)$ and if f'(x) exists, then f'(x) = 0.

Proof (local min). Suppose f has a local min at x and f'(x) exists. Choose $\delta > 0$ s.t. $N_{\delta}(x) \subset (a,b)$ and $f(t) \geq f(x)$ if $t \in (x-\delta,x+\delta)$. For $x < t < x+\delta$, $\frac{f(t)-f(x)}{t-x} \geq 0$ ($\because f(t) \geq f(x), t > x$), so $f'(x) \geq 0$. For $x-\delta < t < x$, $\frac{f(t)-f(x)}{t-x} \leq 0$ ($\because f(t)-f(x) \geq 0, t < x$), so $f'(x) \leq 0$. Hence, f'(x) = 0. Q.E.D.

Remark. Note that the hypothesis of the theorem requires *open* interval and existence f'(x). If these conditions are not met, then f'(x) = 0 doesn't have to be the case.

Example. (a) f(x) = |x| has a local min at x = 0 but f'(0) does not exist.

(b) $f:[0,1] \to \mathbb{R}$ defined by f(x) = x has a local max at x = 1 and local min at x = 0, but f'(0) = f'(1) = 1.

Theorem 5.10. [Mean-Value Theorem] If $f:[a,b] \to \mathbb{R}$ is continuous and differentiable on (a,b), then $\exists_{x \in (a,b)}$ s.t. f(b) - f(a) = f'(x)(b-a).

Proof. Let L: y = f(a) + m(t-a), where $m = \frac{y-f(a)}{t-a} = \frac{f(b)-f(a)}{b-a}$. Subtract L from the curve y = f(t). Let h(t) = f(t) - [f(a) + m(t-a)]. Then h(a) = h(b) = 0. $h'(t) = f'(t) - m = f'(t) - \frac{f(b)-f(a)}{b-a}$. Therefore, it suffices to find x s.t. h'(x) = 0. h is continuous and [a,b] is compact, so h([a,b]) is also compact. Hence, h attains its above. compact, so h([a,b]) is also compact. Hence, h attains its global $\max(=\sup\{h([a,b])\})$ and global $\min(=\inf\{h([a,b])\})$ on [a,b]. If h(t) = 0 for all $t \in [a,b]$ then h'(t) = 0 for all $t \in [a,b]$ so any $x \in (a,b)$ will do. Otherwise, h attains its global max or global min at some $x \in (a, b)$. By Theorem 5.8, h'(x) = 0.

Theorem 5.11. If f is differentiable on (a, b) then

- (a) $f'(x) \ge 0$ for all $x \in (a, b)$ implies f is monotone increasing.

(b) $f'(x) \le 0$ for all $x \in (a, b)$ implies f is monotone decreasing. (c) f'(x) = 0 for all $x \in (a, b)$ implies f is constant. **Proof** ((a) only). Suppose $f'(x) \ge 0$ for all $x \in (a, b)$. For $a < x_1 < x_2 < b$, $\exists_{x \in (x_1, x_2)}$ s.t. $f(x_2) - f(x_1) = f'(x)(x_2 - x_1)$ by Theorem 5.10. As $f'(x) \ge 0$, $x_2 \ge x_1$, $f(x_2) - f(x_1) \ge 0$. Q.E.D.

Definition 5.2. $f^{(0)} = f$, $f^{(1)} = f'$, $f^{(2)} = f''$, $f^{(3)} = f'''$ and so on.

Theorem 5.15. [Taylor's Theorem] Suppose $f:[a,b]\to\mathbb{R},\ n\in\mathbb{N}$, and

 $f^{(n+1)}(x)$ exists for all $x \in (a,b)$. Let $x, x_0 \in [a,b]$. Then $\exists_{c \in (x,x_0)}$ s.t.

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}_{P_n(x), n^{\text{th Taylor polynomial of } f} \text{ at } x_0} + \underbrace{\frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}}_{\text{Taylor Remainder}}.$$

Proof. If n = 0, the mean-value theorem guarantees existence of c. For general $n, A \in \mathbb{R}$ by $R_n(x) = f(x) - P_n(x) = \frac{A}{(n+1)!}(x-x_0)^{n+1}$, where A depends on f, n, x, x_0 . Claim: $A = f^{(n+1)}(c)$ for some c between x and x_0 .

Define $g(t) = f(t) - P_n(t) - \frac{A}{(n+1)!}(t-x_0)^{n+1}$ for $t \in [a,b]$. Then $g(x_0) = 0$. $g(x) = f(x) - P_n(x) - \frac{A}{(n+1)!}(x-x_0)^{n+1} = 0$ by the definition of A. Also for $j = 1, \ldots, n$, then $P_n^{(j)}(x_0) = f^{(j)}(x_0)$, $\frac{\mathrm{d}^j}{\mathrm{d}x^j}(x-x_0)^{n+1}|_{x=x_0}=0$. Hence, $g^{(j)}(x_0) = f^{(j)}(x_0) - P_n^{(j)}(x_0) - 0 = 0$. $g^{(n+1)}(t) = f^{(n+1)}(t) - 0 - A$. We need to find c s.t. $g^{(n+1)}(c) = 0$. $g(x) = g(x_0) = 0 \Rightarrow \exists_{c_1 \in (\min\{x_0, x\}, \max\{x_0, x\})} \text{ s.t. } g'(c_1) = 0$. $g'(x_0) = g'(c_1) = 0 \Rightarrow \exists_{c_2 \in (\min\{x_0, x, c_1\}, \max\{x_0, x, c_1\})} \text{ s.t. } g''(c_2) = 0$. \vdots Finally, $\exists_{c_{n+1}=c} \text{ s.t. } g^{n+1}(c) = 0$ and hence $f^{(n+1)}(c) = A$. Q.E.D.

Example. (not in Rudin) Does $\sum_{n=1}^{\infty} \left(\sqrt{1 + \frac{1}{n^2}} - 1 \right)$ converge or diverge? Method 1:

$$\sqrt{1 + \frac{1}{n^2}} - 1 = \frac{\left(\sqrt{1 + \frac{1}{n^2}} - 1\right)\left(\sqrt{1 + \frac{1}{n^2}} + 1\right)}{\sqrt{1 + \frac{1}{n^2}} + 1} = \frac{1 + \frac{1}{n^2} - 1}{\sqrt{1 + \frac{1}{n^2}} + 1} = \frac{1}{n^2} \frac{1}{\sqrt{1 + \frac{1}{n^2}} + 1} \le \frac{1}{n^2}$$

so the series converges by the comparison test since $\sum \frac{1}{n^2}$ converges.

Method 2: Using Taylor's theorem. Let $f(x) = \sqrt{1+x} = (1+x)^{1/2}$. Then

$$f'(x) = \frac{1}{2}(1+x)^{-1/2}$$

$$f''(x) = \frac{1}{2}(-\frac{1}{2})(1+x)^{-3/2} = -\frac{1}{4}(1+x)^{-3/2}$$

$$f(x) = P_1(x) + R_1(x)$$

$$= f(0) + \frac{f'(0)}{1!}(x-0)^1 + \frac{f''(c)(x-0)^2}{2!}$$

$$= 1 + \frac{1}{2}x + R_1(x).$$

 $|R_1(x)| \leq (\frac{1}{2} \cdot \frac{1}{2} \cdot 1) \frac{1}{2!} x^2 = \frac{1}{8} x^2 \text{ for } x \in [0,1]. \text{ Therefore, } \sqrt{1 + \frac{1}{n^2}} - 1 = f(\frac{1}{n^2}) - 1 = \frac{1}{2} (\frac{1}{n^2}) + R_1(\frac{1}{n^2}) \leq \frac{1}{2n^2} + \frac{1}{8} \frac{1}{n^4}. \text{ Since } \sum \left(\frac{1}{2n^2} + \frac{1}{8n^4}\right) \text{ converges,}$ $\sum \left(\sqrt{1 + \frac{1}{n^2}} - 1\right) \text{ converges by comparison test.}$

Example. Let $f(x) = \sin x, x_0 = 0$.

 $\begin{aligned} & \textbf{Taylor series for } f(x). \ f'(x) = \cos x, f''(x) = -\sin x, f'''(x) = -\cos x, \ldots, \\ & so \ f^{(k)}(x) = \begin{cases} (-1)^m \sin x & (k = 2m) \\ (-1)^m \cos x & (k = 2m + 1) \end{cases}. \ Hence \ n \geq 0, f(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k + \\ & \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}, \ where \ c \ between \ 0 \ \ and \ x. \ \ Remainder \ estimate: \ \left| \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \right| \leq \\ & \frac{|x|^{n+1}}{(n+1)!} \to 0 \ \ as \ n \to \infty \ \ because \ \frac{|x|^{n+1}}{(n+1)!} \ \ is \ the \ (n+1)^{th} \ \ term \ in \ convergent \ series \ e^{|x|} = \sum_{n=0}^{\infty} \frac{|x|^n}{n!}. \\ & \sin x = \sum_{n=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}. \end{aligned}$

Taylor approximation. Find $\sin 0.2$ to within an error $\pm 10^{-6}$. Use $\sin 0.2 = \frac{2}{10} - \frac{1}{3!} (\frac{2}{10})^3 + \frac{1}{5!} (\frac{2}{10})^5 - \cdots$.

 $\begin{array}{l} \textbf{Method 1: Alternating Series Test.} \ If \ a_1 \geq a_2 \geq a_3 \geq \cdots \geq 0, \ and \\ a_n \to 0, \ then \ \sum_{k=1}^{\infty} (-1)^{k-1} a_k = s \ converges \ and \ |s-s_n| \leq a_{n+1}. \\ Above \ series \ satisfies \ the \ hypotheses, \ so \ truncation \ error \ is \leq first \\ omitted \ term. \ We \ look \ for \ when \ \frac{1}{(2k+1)!} (\frac{2}{10})^{2k+1} \leq 10^{-6}; \ i.e., \\ (2k+1)! \cdot \frac{10^{2k+1}}{2^{2k+1}} \geq 10^6. \\ If \ k=1, \ 3! \cdot \frac{10^3}{2^3} < 10^6. \end{array}$

If k = 2, $5! \cdot \frac{10^5}{2^5} < 10^6$. If k = 3, $7! \cdot \frac{10^7}{2^7} \ge 10^6$, so k = 3 works. Therefore, $\sin 0.2 = 0.2 - \frac{1}{3!}(0.2)^3 + \frac{1}{5!}(0.2)^5 \pm 10^{-6} = 0.198669 \pm 10^{-6}$.

Method 2: General Case. If alternating series test does not apply, estimate remainder using the worst c for $\left| \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \right|$. In our example, $\left| \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \right| \leq \frac{1}{(n+1)!} (0.2)^{n+1}$, so seek n s.t. $\frac{1}{(n+1)!} \left(\frac{2}{10} \right)^{n+1} \leq 10^{-6}$. First n that works is n=6, same as before.

Chapter 6

Riemann-Stieltjes Integral

Definition (Partition). A partition P of [a,b] is $\{x_0,x_1,x_2,\ldots,x_n\}$ for some $n \geq 1$, with $a = x_0 \leq x_1 \ldots \leq x_{n-1} \leq x_n = b$.

Notation. $\Delta x_i = x_i - x_{i-1}$ for $i = 1, \ldots, n$

 $f:[a,b]\to\mathbb{R}$ be bounded, which is not necessarily continuous

$$M_i = \sup\{f(x) : x_{i-1} \le x \le x_i\}, m_i = \inf\{f(x) : x_{i-1} \le x \le x_i\}$$

$$U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i$$

$$L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i.$$

Note. $L(P, f) \leq U(p, f)$ always.

Definition (Riemann Integral). **Upper Riemann Integral** : $\overline{\int_a^b} f(x) dx = \inf_P \{U(P, f)\} = \inf \{U(P, f) : P \text{ is a partition of } [a, b]\}.$

Lower Riemann Integral : $\int_a^b f(x)dx = \sup_P \{L(P,f)\} = \sup\{L(P,f): P \text{ is a partition of } [a,b]\}.$

Riemann Integrable: f is Riemann integrable on [a,b] if $\overline{\int_a^b} f(x) dx = \underline{\int_a^b} f(x) dx$. If f is Riemann integrable on [a,b], we write $f \in \mathcal{R}[a,b]$ and

$$\int_{a}^{b} f(x)dx = \overline{\int_{a}^{b}} f(x)dx = \underline{\int_{a}^{b}} f(x)dx.$$

Note. Since f is bounded, $m = \inf\{f(x) : a \le x \le b\}$ and $M = \sup\{f(x) : a \le x \le b\}$ $a \leq x \leq b$ } are both finite. Hence, for any $P, m \leq m_i \leq M$ and $\forall_i : m(b-a) \leq L(P,f) \leq U(P,f) \leq M(b-a)$.

Notation. Let $\alpha:[a,b]\to\mathbb{R}$ is a monotone increasing function. Then $\Delta\alpha_i=$ $\alpha(x_i) - \alpha(x_{i-1}).$

Definition 6.2. Given P, let $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$. (Note: $\Delta \alpha_i \geq 0$). For bounded f, let $U(P, f, \alpha) = \sum_{i=1}^n M_i \Delta \alpha_i$, $L(P, f, \alpha) = \sum_{i=1}^n m_i \Delta \alpha_i$.

Upper Riemann-Stieltjes Integral $\overline{\int_a^b} f(x) d\alpha = \overline{\int_a^b} f(x) d\alpha(x) = \inf_P \{U(P, f, \alpha)\} = \inf_{\{U(P, f, \alpha) : P \text{ is a partition of } [a, b]\}.$ Lower Riemann-Stieltjes Integral $\int_a^b f(x) d\alpha = \int_a^b f(x) d\alpha(x) = \sup_P \{L(P, f, \alpha)\} = \lim_{x \to a} \frac{1}{x} \int_a^b f(x) d\alpha(x) = \lim_{x \to a} \frac{1}{x} \int_a^b f(x) d\alpha(x)$

 $\sup\{L(P, f, \alpha) : P \text{ is a partition of } [a, b]\}.$

If $\overline{\int_a^b} f(x) d\alpha = \underline{\int_a^b} f(x) d\alpha$, then $f \in R[a,b,\alpha]$ and $\int_a^b f(x) d\alpha = \overline{\int_a^b} f(x) d\alpha = \overline{\int_a^b} f(x) d\alpha$ $\int_a^b f(x)d\alpha$.

If $\alpha(x) = x$, then equivalent to $\int_a^b f(x) dx$.

Definition 6.3. (a) Partition P^* is called a refinement of P if $P \subset P^*$.

(b) Partition P^* is called the common refinement of P_1 and P_2 if $P^* = P_1 \cup P_2$.

Theorem 6.4. If P^* is a refinement of P then $L(P, f, \alpha) \leq L(P^*, f, \alpha) \leq L(P^*, f, \alpha)$ $U(P^*, f, \alpha) \le U(P, f, \alpha).$

Proof. It's enough to consider p^* with one extra point: $x_{i-1} \leq x^* \leq x^*$

$$x_{i}.$$
Sketch for L :
$$L(P^{*}, f, \alpha) - L(p, f, \alpha)$$

$$= m^{*}[\alpha(x^{*}) - \alpha(x_{i-1})] + m_{i}[\alpha(x_{i})\alpha(x^{*})] - m_{i}[\alpha(x^{*}) - \alpha(x_{i-1})] - m_{i}[\alpha(x_{i}) - \alpha(x^{*})]$$

$$= (m^{*} - m_{i})[\alpha(x^{*}) - \alpha(x_{i-1})] + (m_{i} - m_{i})[\alpha(x_{i}) - \alpha(x^{*})]$$
Q.E.D.

Q.E.D.

Notation. When f, α are fixed, we write $L(P) = L(P, f, \alpha), U(P) = U(P, f, \alpha)$

 $\begin{array}{ll} \textbf{Theorem 6.5.} \ \underline{\int_a^b} f \mathrm{d}\alpha \leq \overline{\int_a^b} f \mathrm{d}\alpha. \\ \\ \textbf{Proof.} \ \text{For partitions} \ P_1, P_2, \ \text{let} \ P^* = P_1 \cup P_2. \ \text{By Theorem 6.4,} \\ L(P_1) \leq L(P^*) \leq U(P^*) \leq U(P_2). \ \text{In particular, } \sup_{P_1} \{L(P_1)\} \leq U(P_2) \ \text{for all} \ P_2. \ \text{Hence, } \sup_{P_1} \{L(P_1)\} \leq \inf_{P_2} \{U(P_2)\}. \end{array}$ Q.E.D.

Theorem 6.6. $f \in \mathscr{R}_{\alpha}[a,b] \Leftrightarrow \forall_{\varepsilon>0} : \exists P_{\varepsilon} \text{ s.t. } U(P_{\varepsilon}) - L(P_{\varepsilon}) < \varepsilon$

- Proof. Let $\varepsilon > 0$.

 (\Rightarrow) By hypothesis, $\sup_P \{L(P)\} = \underline{\int_a^b} f d\alpha = \overline{\int_a^b} f d\alpha = \inf_P \{U(P)\}$. $\exists P_1, P_2 \text{ s.t. } L(P_1) > \underline{\int_a^b} f d\alpha \varepsilon/2 \text{ and } U(P_2) < \overline{\int_a^b} f d\alpha + \varepsilon/2.$ Then $U(P_2) L(P_1) < \varepsilon$. Let $P_\varepsilon = P^* = P_1 \cup P_2$. By Theorem 6.4, $L(P_1) \le L(P^*) \le U(P^*) \le U(P_2)$, so $U(P_\varepsilon) L(P_\varepsilon) \le U(P_2) L(P_1) < \varepsilon$.

 (\Leftarrow) $0 \le \overline{\int_a^b} f d\alpha \underline{\int_a^b} f d\alpha \le U(P_\varepsilon) L(P_\varepsilon) < \varepsilon$. Since ε is arbitrary, $\overline{\int_a^b} f d\alpha = \underline{\int_a^b} f d\alpha$.

Theorem 6.7. Let $\varepsilon_0 > 0$ be fixed. Suppose there exists a partition P = $\{x_0 = a, \ldots, x_n = b\}$ s.t. $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon_0$. Let s_i, t_i are arbitrary points in $[x_{i-1}, x_i]$. Then,

- (a) For any refinement of P, denoted by P^* , $U(P^*, f, \alpha) L(P^*, f, \alpha) < \varepsilon_0$ also holds true (b) $\sum_{i=1}^n |f(s_i) f(t_i)| \Delta \alpha_i < \varepsilon_0$ (c) If $f \in \mathcal{R}_{\alpha}$, then $\left| \sum_{i=1}^n f(t_i) \Delta \alpha_i \int_a^b f d\alpha \right| < \varepsilon_0$

Theorem 6.8. If f is continuous on [a, b] then $f \in \mathcal{R}_{\alpha}[a, b]$.

Proof. For any P, $U(P)-L(P)=\sum_{i=1}^n{(M_i-m_i)\Delta\alpha_i}$. Since [a,b] is compact, f is uniformly continuous on [a,b] (Theorem 4.19), so $\forall \eta>0:\exists \delta>0$ s.t. $|x-t|<\delta\Rightarrow|f(x)-f(t)|<\eta$. Given $\varepsilon>0$, choose η s.t. $\eta[\alpha(b)-\alpha(a)]<\varepsilon$ and choose P with $\Delta x_i<\delta=\delta(\eta)$ for all i. For such P, $M_i-m_i\leq\eta$. Then $U(P)-L(P)\leq\sum_{i=1}^n{\eta\Delta\alpha_i}=\eta[\alpha(b)-\alpha(a)]<\varepsilon$. Therefore, $f\in\mathscr{R}_\alpha[a,b]$. Q.E.D.

Theorem 6.9. If f is monotone increasing or decreasing on [a,b] and α is continuous on [a,b] then $f \in \mathcal{R}_{\alpha}[a,b]$.

Proof. By definition, $U(P) - L(P) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$. Given $n \in \mathbb{N}$, let P s.t. $\Delta \alpha_i = \frac{\alpha(b) - \alpha(a)}{n}$ for all i. Such P exists by the intermediate value theorem (Theorem 4.23) as α is continuous. Then, $U(P) - L(P) = \frac{\alpha(b) - \alpha(a)}{n} \sum_{i=1}^{n} M_i - m_i$. Suppose f is increasing, so $M_i - m_i = f(x_i) - f(x_{i-1})$. Then $U(P) - L(P) = \frac{\alpha(b) - \alpha(a)}{n} \sum_{i=1}^{n} f(x_i) - f(x_{i-1}) = \frac{\alpha(b) - \alpha(a)}{n} [f(b) - f(a)]$. Given $\varepsilon > 0$, we can choose n (hence P) s.t. $U(P) - L(P) < \varepsilon$. Therefore, $f \in \mathcal{R}_{\alpha}[a, b]$ by Theorem 6.6.

Note. We always assume α is monotone.

Theorem 6.10. If f is bounded on [a,b] and has only finitely many discontinuities, and α is continuous at each point where f is not, then $f \in \mathscr{R}_{\alpha}[a,b]$.

Proof. We apply Theorem 6.6. Use $U(P)-L(P) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$. Let $\varepsilon > 0$ and $E = \{e_1, \dots, e_k\}$ be the set of points where f is discontinuous. α is assumed to be continuous at each e_i , which implies $\exists (u_j, v_j)$ s.t. $u_j < e_j < v_j$ and $\alpha(v_j) - \alpha(u_j) < \varepsilon$. (Relax inequality to include equality if $e_1 = a$, $e_k = b$).

Let $K = [a,b] \cap \left(\bigcup_{j=1}^k (u_j,v_j)\right)^c$. K is compact. f is continuous on K, so f is uniformly continuous on K by Theorem 4.19. Hence, $\exists \delta > 0$ s.t. for $s,t \in K$, $|s-t| < \delta \Rightarrow |f(s)-f(t)| < \varepsilon$.

Form P to consist of $\{u_1, v_1, \ldots, u_k, v_k\}$ and additional points in K so that $\Delta x_i < \delta$. If x_i is in K, then $M_i - m_i < \varepsilon$. Otherwise, $x_i = u_j$ or $x_i = v_j$ for some j, so $\Delta \alpha_i \leq \varepsilon$. Then

$$0 \le U(P) - L(P) = \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

$$\le \underbrace{k \cdot 2M\varepsilon}_{\text{from intervals in } \bigcup_{j=1}^{k} (u_j, v_j)} + \underbrace{\varepsilon[\alpha(b) - \alpha(a)]}_{\text{from intervals in } K}.$$

As RHS is as small as we want by taking ε small enough, $f \in \mathcal{R}_{\alpha}[a, b]$. Q.E.D.

Remark. (a) Theorem 6.10 implies part of A1.2 but do the problem from first principles. Do not apply Theorem 6.10 directly.

(b) A1.4 shows what can happen if f, α are discontinuous at the same point.

Theorem 6.11. If $f \in \mathcal{R}_{\alpha}[a,b], m \leq f(x) \leq M$ for all $x \in [a,b]$, and $\varphi : [m,M] \to \mathbb{R}$ is continuous, then $\varphi \circ f \in \mathcal{R}_{\alpha}[a,b]$.

Proof. Let $\varepsilon > 0$. As φ continuous on [m, M], φ is uniformly continuous on [m, M] by Theorem 4.19. That is, $\exists \delta < \varepsilon$ s.t. $|\varphi(s) - \varphi(t)| < \varepsilon$ if $|s - t| < \delta$ for $s, t \in [m, M]$.

Since $f \in \mathcal{R}_{\alpha}$, there exists a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] such that $U(P) - L(P) < \delta^2$.

Let $A = \{i \in \{1, 2, ..., n\} : M_i - m_i < \delta\}, B = \{i \in \{1, 2, ..., n\} : M_i - m_i \ge \delta\}.$ Note $A \cup B = \{1, 2, ..., n\}.$

Let $M_i^* = \sup\{\varphi(f(x)) : x_{i-1} \leq x \leq x_i\}$ and $m_i^* = \inf\{\varphi(f(x)) : x_{i-1} \leq x \leq x_i\}$. Suppose $i \in A$. Then $M_i - m_i < \delta$. By definition of δ , this implies $|M_i^* - m_i^*| \leq \varepsilon$.

Suppose $i \in B$. By definition of P,

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i \in B} (M_i - m_i) \Delta \alpha_i < \delta^2.$$

As $M_i - m_i \geq \delta$.

$$\delta \sum_{i \in B} \Delta \alpha_i \le \sum_{i \in B} (M_i - m_i) \Delta \alpha_i < \delta^2.$$

Hence, $\sum_{i \in B} \Delta \alpha_i < \delta$. Then,

$$\sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i$$

$$\leq 2 \cdot \sup_{=\sup\{|\varphi(t)|: m \leq t \leq M\}} \cdot \left(\sum_{i \in B} \Delta \alpha_i\right)$$

$$< 2 \cdot \sup\{|\varphi|\} \cdot \delta$$

 $< 2 \cdot \sup\{|\varphi|\} \cdot \varepsilon.$

Therefore,

$$U(P, \varphi \circ f, \alpha) - L(P, \varphi \circ f, \alpha) = \sum_{i=1}^{n} (M_i^* - m_i^*) \Delta \alpha_i$$
$$= \sum_{i \in A} (M_i^* - m_i^*) \Delta \alpha_i + \sum_{i \in B} (M_i^* - m_i^*) \Delta \alpha_i$$
$$< \varepsilon[(\alpha(b) - \alpha(a)) + 2 \cdot \sup\{|\varphi|\}]$$

Q.E.D.

Example. $f \in \mathcal{R}_{\alpha}[a,b] \Rightarrow f^2 \in \mathcal{R}_{\alpha}[a,b], |f| \in \mathcal{R}_{\alpha}[a,b] \text{ where } \varphi(t) = t^2 \text{ and } f$

 $\varphi(t) = |t| \ respectively.$

Note. $\varphi \in \mathscr{R}_{\alpha}[m,M]$ does not imply $\varphi \circ f \in \mathscr{R}_{\alpha}[a,b]$. See A2.

Theorem 6.12. (Linearity and related properties)

(a) If $f, f_1, f_2 \in \mathscr{R}_{\alpha}[a, b]$, then $f_1 + f_2 \in \mathscr{R}_{\alpha}[a, b]$, $cf \in \mathscr{R}_{\alpha}[a, b]$, and

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha$$
$$\int_{a}^{b} cf d\alpha = c \int_{a}^{b} f d\alpha.$$

Proof. TEXTBOOK

Q.E.D.

(b) $f_1, f_2 \in \mathcal{R}_{\alpha}$ and $f_1(x) \leq f_2(x)$ for all $x \in [a, b]$, then $\int_a^b f_1 d\alpha \leq \int_a^b f_2 d\alpha$.

Proof. $L(P, f_1) \leq L(P, f_2) \leq \sup_P L(P, f_2) = \int_a^b f_2 d\alpha$. $\int_a^b f_1 d\alpha = \sup_P L(P, f_1) \leq \int_a^b f_2 d\alpha$. Q.E.D.

- (c) If $f \in \mathscr{R}_{\alpha}[a,b], c \in [a,b]$ then $f \in \mathscr{R}_{\alpha}[a,c]$ and $f \in \mathscr{R}_{\alpha}[a,b]$ and $\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$.
- (d) If $f \in \mathcal{R}_{\alpha}$ and $|f(x)| \leq M$ for all $x \in [a, b]$, then $|\int_a^b f d\alpha| \leq M(\alpha(b) \alpha(a))$.

Proof. Let $P = \{a, b\}$. Then $-M[\alpha(b) - \alpha(a)] \leq m_1 \Delta \alpha_1 = L(P) \leq \int_a^b f d\alpha \leq U(P) = M_1 \Delta \alpha_1 \leq M[\alpha(b) - \alpha(a)]$. Q.E.D.

(e) If $f \in \mathcal{R}_{\alpha_1}$ and $f \in \mathcal{R}_{\alpha_2}$, then $f \in \mathcal{R}_{\alpha_1 + \alpha_2}$ and

$$\int_{a}^{b} f d(\alpha_1 + \alpha_2) = \int_{a}^{b} f d\alpha_1 + \int_{a}^{b} f d\alpha_2.$$
 (*)

If $f \in \mathscr{R}_{\alpha}$ and $c \geq 0$ then $f \in \mathscr{R}_{\alpha}$ and $\int_{a}^{b} f dc \alpha = c \int_{a}^{b} f d\alpha$.

Proof (*). Let $\varepsilon > 0$. Choose P_1, P_2 s.t. $U(P_j, f, \alpha_j) - L(P_j, f, \alpha_j) < 0$ $\frac{\varepsilon}{2}$, where j=1,2. Let $P^*=P_1\cup P_2$. By Theorem 6.4,

$$U(P^*, f, \alpha_j) - L(P^*, f, \alpha_j) < \frac{\varepsilon}{2}.$$
 (**)

Since $(\Delta \alpha_1)_i + (\Delta \alpha_2)_i = (\Delta(\alpha_1 + \alpha_2))_i$,

$$U(P^*, f, (\alpha_1 + \alpha_2)) - L(P^*, f, (\alpha_1 + \alpha_2))$$

$$U(P^*, f, (\alpha_1 + \alpha_2)) - L(P^*, f, (\alpha_1 + \alpha_2))$$

$$= \sum_{i=1}^{n} (M_i - m_i)(\Delta(\alpha_1 + \alpha_2))_i$$

$$= \sum_{i=1}^{n} (M_i - m_i)[(\Delta \alpha_1)_i + (\Delta \alpha_2)_i]$$

$$= \sum_{i=1}^{n} (M_i - m_i)[(\Delta \alpha_1)_i + (\Delta \alpha_2)_i]$$

$$= \sum_{i=1}^{n} (M_i - m_i)(\Delta \alpha_1)_i + \sum_{i=1}^{n} (M_i - m_i)(\Delta \alpha_2)_i$$

$$= U(P^*, f, \alpha_1) - L(P^*, f, \alpha_1) + U(P^*, f, \alpha_2) - L(P^*, f, \alpha_2) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

By Theorem 6.6, $f \in \mathcal{R}_{\alpha_1+\alpha_2}$. Also $\int_a^b f d(\alpha_1 + \alpha_2) \leq U(P^*, f, \alpha_1 + \alpha_2) = U(P^*, f, \alpha_1) + U(P^*, f, \alpha_2) < \int_a^b f d\alpha_1 + \frac{\varepsilon}{2} + \int_a^b f d\alpha_2 + \frac{\varepsilon}{2}$ by (**). Similarly, $\int_a^b f d(\alpha_1 + \alpha_2) \geq L(P^*, f, \alpha_1 + \alpha_2) = L(P^*, f, \alpha_1) + L(P^*, f, \alpha_2) > \int_a^b f d\alpha_1 - \frac{\varepsilon}{2} + \int_a^b f d\alpha_2 - \frac{\varepsilon}{2}$ by (**). As ε is arbitrary, (*) holds. Q.E.D.

Theorem 6.13. (a) $f, g \in \mathcal{R}_{\alpha} \Rightarrow fg \in \mathcal{R}_{\alpha}$

Proof. By Theorem 6.11 with $\varphi(t) = t^2$, $h \in \mathcal{R}_{\alpha} \Rightarrow h^2 \in \mathcal{R}_{\alpha}$. By Theorem 6.12(a), $f, g \in \mathcal{R}_{\alpha} \Rightarrow f + g \in \mathcal{R}_{\alpha}$, so $(f \pm g)^2 \in \mathcal{R}_{\alpha}$. Since $(f + g)^2 - (f - g)^2 = 4fg$, by Theorem 6.12(a), $fg \in \mathcal{R}_{\alpha}$. Q.E.D.

Proof. By Theorem 6.11, $|f| \in \mathcal{R}_{\alpha}$ (take $\varphi(t) = |t|$). Let

$$c = \operatorname{sgn}\left(\int_a^b f d\alpha\right) = \begin{cases} +1 & \text{if } \int_a^b f d\alpha > 0\\ 0 & \text{if } \int_a^b f d\alpha = 0\\ -1 & \text{if } \int_a^b f d\alpha < 0 \end{cases}$$

$$\operatorname{As} cf \leq |f|, \left|\int_a^b f d\alpha\right| = c \int_a^b f d\alpha = \int_a^b c f d\alpha \leq \int_a^b |f| d\alpha. \quad \text{Q.E.D.}$$

Definition 6.14. [Unit Step Function]

$$I(x) = \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases}$$

Theorem 6.15. Suppose f is bounded on [a, b] and continuous at $s \in (a, b)$. $\alpha(x) = \begin{cases} 0 & x \le s \\ 1 & x > s \end{cases}.$ Then $\int_a^b f \mathrm{d}\alpha$ exists, and $\int_a^b f \mathrm{d}\alpha = f(s)$

$$\alpha(x) = \begin{cases} 0 & x \le s \\ 1 & x > s \end{cases}.$$

$$\int_{a}^{b} f d\alpha = f(s).$$

Q.E.D.

Remark. (a) By Theorem 4.29, if α is monotone-increasing, then $\alpha(x^+)$ and $\alpha(x^-)$ exist for all $x \in (a,b)$, and $\alpha(x^-) \leq \alpha(x) \leq$ $\alpha(x^+)$.

(b) In Theorem 6.15, α is left-continuous at s.

Exercise

Prove the same conclusion for $\alpha(x) = \begin{cases} 0 & x < s \\ 1 & x \ge s \end{cases}$.

(c) This α plays the role of the Dirac delta function:

$$\int_{a}^{b} f(x)\delta(x-s)dx = f(s)$$

where $\delta(x-s) = \begin{cases} 0 & x \neq s \\ \infty & x = s \end{cases}$ is the Dirac delta function. Technically, there is no such function as $\delta(x-s)$, but it is a useful concept in physics. Note δ is kind of like α' in Theorem 6.15. (See A2).

(d) Theorem 6.15 has $\alpha(x) = I(x - s)$.

Theorem 6.16. Let $c_n \geq 0, \sum_{n=1}^{\infty} c_n < \infty, s_n \in (a,b)$, where $s_i \neq s_j$ if $i \neq j$ Let $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$, a monotone increasing function. Let f be continuous on [a,b]. Then $\int_a^b f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$.

(a)
$$\alpha(x)$$
 converges for any $x \in (a,b)$ by the comparison test, with
$$0 \le \sum_{i=1}^{\infty} c_n I(x-s_n) \le \sum_{n=1}^{\infty} c_n < \infty$$
(b) $\sum_{n=1}^{\infty} c_n f(s_n)$ converges by the comparison test, with

$$|c_n f(x_n)| < M \cdot c_n$$

Proof. Let $R_N = \int_a^b f d\alpha - \sum_{i=1}^N c_n f(s_n)$. Claim: $R_N \to 0$ as $N \to \infty$; i.e., given $\varepsilon > 0$, $\exists N_0$ s.t. $|R_N| < \varepsilon$ for

$$\alpha_1(x) = \sum_{n=1}^{N} c_n I(x - s_n)$$

$$\alpha_2(x) = \sum_{n=N+1}^{\infty} c_n I(x - s_n).$$

By Theorem 6.12 and Theorem 6.15,

$$\int_{a}^{b} f d\alpha_{1} = \sum_{n=1}^{N} c_{n} \int_{a}^{b} f(x) dI(x - s_{n}) = \sum_{n=1}^{N} c_{n} f(s_{n})$$

$$\int_{a}^{b} f d\alpha_{2} = \sum_{n=N+1}^{\infty} c_{n} f(s_{n}).$$

By Theorem 6.12,

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}.$$

Then $R_N = \int_a^b f d\alpha_2$. Choose N_0 s.t. $\sum_{n=N_0+1}^\infty c_n < \varepsilon$. By Theorem 6.12(d), $|R_N| \leq M \cdot [\alpha_2(b) - \underbrace{\alpha_2(a)}_{=0}] = M \cdot \sum_{n=N+1}^\infty c_n < M \cdot \varepsilon$

$$|R_N| \le M \cdot [\alpha_2(b) - \underbrace{\alpha_2(a)}_{=0}] = M \cdot \sum_{n=N+1}^{\infty} c_n < M \cdot \varepsilon$$

Q.E.D.

Theorem 6.17. Suppose

- (a) $|f(x)| \leq M$ for all $x \in [a, b]$, (b) α is differentiable on [a, b] and increasing on [a, b]. (c) $\alpha'(x) \in \mathcal{R}[a, b]$

$$f \in \mathcal{R}_{\alpha}[a,b] \Leftrightarrow f\alpha' \in R[a,b]$$
 (*)

If (*) holds, then

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f \alpha' dx \tag{**}$$

Proof. (i) It suffices to show that $\overline{\int_a^b} f d\alpha = \overline{\int_a^b} f \alpha' dx$ and $\underline{\int_a^b} f d\alpha = \underline{\int_a^b} f \alpha' dx$.

(ii) Let $\varepsilon > 0$. Since $\alpha' \in \mathcal{R}$, there exists P s.t. $U(P, \alpha') - L(P, \alpha') < \varepsilon$ by Theorem 6.6.

Note this and the rest of the proof hold for any refinement of P. $U(P,\alpha') - L(P,\alpha') = \sum_{i=1}^{n} (A_i - a_i) \Delta x_i$, where $A_i = \sup\{\alpha'(x) : x \in [x_{i-1}, x_i]\}$ and $a_i = \inf\{\alpha'(x) : x_{i-1} \le x \le x_i\}$. By the mean value theorem,

$$\exists t_1 \in [x_{i-1}, x_i] \text{ s.t. } \Delta \alpha_i = \alpha'(t_i) \cdot \Delta x_i.$$

For any $s_i \in [x_{i-1}, x_i]$, $|\alpha'(s_i) - \alpha'(t_i)| \le A_i - a_i$, so

$$\sum_{i=1}^{n} |\alpha'(s_i) - \alpha'(t_i)| \, \Delta x_i < \varepsilon.$$

[cf. Theorem 6.7(b)]

(iii) For any $s_i \in [x_{i-1}, x_i]$,

$$\left| \sum_{i=1}^{n} f(s_i) \cdot \underbrace{\Delta \alpha_i}_{\alpha'(t_i)\Delta x_i} - \sum_{i=1}^{n} f(s_i)\alpha'(s_i)\Delta x_i \right| = \left| \sum_{i=1}^{n} f(s_i)[\alpha'(t_i) - \alpha'(s_i)]\Delta x_i \right| < M\varepsilon.$$

Therefore,

$$\sum_{i=1}^{n} f(s_i) \Delta \alpha_i \le \sum_{i=1}^{n} f(s_i) \alpha'(s_i) \Delta x_i + M \varepsilon \le U(P, f \alpha') + M \varepsilon.$$

Taking supremum over s_i 's, $U(P, f, \alpha) \leq U(P, f\alpha') + M\varepsilon$, so

$$\overline{\int_{a}^{b}} f d\alpha \le U(P, f, \alpha)$$

$$\le U(P, f\alpha') + M\varepsilon.$$

As $\inf_P U(P, f, \alpha) \leq \inf_P U(P, f\alpha')$,

$$\overline{\int_a^b} f d\alpha \le \overline{\int_a^b} f \alpha' dx + M\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary,

$$\overline{\int_a^b} f d\alpha \le \overline{\int_a^b} f \alpha' dx.$$

Similarly, $\int_{0}^{b} f d\alpha \ge \int_{0}^{b} f \alpha' dx$. CHAPTER 6. RIEMANN-STIELTJES INTEGRAL **Theorem 6.19.** [Change of Variables]

Suppose $\varphi: [A, B] \to [a, b]$ is strictly increasing, continuous, and onto.

Suppose φ . $[A, D] \to [a, v]$ is strictly increasing, continuous, and onto. Suppose α is increasing on [a, b] and $f \in \mathscr{R}_{\alpha}[a, b]$. Let $g = f \circ \varphi : [A, B] \to \mathbb{R}$, $\beta = \alpha \circ \varphi : [A, B] \to \mathbb{R}$. Then $g \in \mathscr{R}_{\beta}[A, B]$ and $\int_A^B g \mathrm{d}\beta = \int_a^b f \mathrm{d}\alpha$.

Note. This is the change of variables formula for Riemann-Stieltjes integrals. It generalizes the calculus formula. $\int_a^b f(x) \mathrm{d}x = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(y)) \varphi'(y) \mathrm{d}y$. Here $\alpha(x) = x$, so $\beta = \varphi$ and $\mathrm{d}\beta = \varphi'(y) \mathrm{d}y$

Proof. Partition P of [a,b] and Q of [A,B] are in one-to-one correspondence via $x_i = \varphi(y_i)$. $g([y_{i-1}, y_i]) = f([x_{i-1}, x_i])$ and $\alpha(x_i) = (\alpha \circ \varphi)(y_i) = \beta(y_i)$, so $U(P, f, \alpha) = U(Q, g, \beta)$, and $L(P, f, \alpha) = L(Q, g, \beta)$. Let $\varepsilon > 0$. Since $f \in \mathcal{R}_{\alpha}[a, b]$, there exists P s.t. $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$, so $U(Q, g, \beta) - L(Q, g, \beta) < \varepsilon$, and $g \in \mathcal{R}_{\beta}[A, B]$. Also, $\int_A^B g d\beta = \inf_Q U(Q, g, \beta) = \inf_P (P, f, \alpha) = \int_a^b f d\alpha$. Q.E.D.

Example. $\int_a^b \sin x^2 dx$ for $0 \le a < b$. Here, $f(x) = \sin x^2, \alpha(x) = x$. Let $x^2 = y$, so $x = \varphi(y) = \sqrt{y}, \varphi^{-1}(y) = y^2$. Then $\varphi : \underbrace{[a^2, b^2]}_{=[A, B]} \to [a, b]$ is continuous, strictly increasing, and onto. $g(y) = (f \circ \varphi)(y) = \sin y$.

 $\beta(y) = (\alpha \circ \varphi)(y) = \sqrt{y}$. Theorem 6.19 gives

$$\int_{a}^{b} \sin x^{2} ddx = \int_{a^{2}}^{b^{2}} \sin y d\beta = \int_{a^{2}}^{b^{2}} \sin y \frac{1}{2\sqrt{y}} dy,$$

where the last equality follows from the Theorem 6.17 as $\beta' = \frac{1}{2\sqrt{y}} \in \mathscr{R}[a^2, b^2]$. Hence, $\int_{-\infty}^{b} \sin y \, \mathrm{d}y.$

$$\int_a^b \sin x^2 \mathrm{d}x = \int_{a^2}^{b^2} \frac{\sin y}{2\sqrt{y}} \mathrm{d}y.$$

Theorem 6.20. Let $f \in \mathcal{R}[a,b]$ and for $x \in [a,b]$, define $F(x) = \int_a^x f(t) dt$. Then F is continuous on [a,b], and if f is continuous at $x_0 \in [a,b]$, then $F'(x_0)$ exists and $F'(x_0) = f(x_0)$. **Proof. Continuity of** F: Choose M s.t. $|f(t)| \leq M$ for all $t \in [a,b]$. For $a \leq x < y \leq b$, $|F(y) - F(x)| = \left|\int_a^y f(t) \mathrm{d}t - \int_a^x f(t) \mathrm{d}t\right| = \left|\int_x^y f(t) \mathrm{d}t\right| \leq M \, |y-x|$. Let $\varepsilon > 0$. If $|y-x| < \delta = \frac{\varepsilon}{M}$, then $|F(y) - F(x)| < M \cdot \frac{\varepsilon}{M} = \varepsilon$. Therefore, F is continuous on [a,b].

Differentiability of F and $F'(x_0) = f(x_0)$: Let h > 0.

$$\frac{[F(x_0+h)-F(x_0)}{h}-f(x_0) = \frac{1}{h} \left[\int_{x_0}^{x_0+h} f(t) dt \right] - f(x_0) = \frac{1}{h} \int_{x_0}^{x_0+h} [f(t)-f(x_0)] dt.$$

As f is continuous at x_0 , $\forall \varepsilon > 0$: $\exists \delta > 0$ s.t. $|t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \varepsilon$. Thus, if $h < \delta$,

$$\left| \frac{\left[F(x_0 + h) - F(x_0) \right]}{h} - f(x_0) \right| = \left| \frac{1}{h} \int_{x_0}^{x_0 + h} \underbrace{\left[f(t) - f(x_0) \right]}_{\in (-\varepsilon, \varepsilon)} dt \right| \le \frac{1}{h} \cdot h\varepsilon = \varepsilon$$

Q.E.D.

Theorem 6.21. [Fundamental Theorem of Calculus] If $f \in \mathcal{R}[a,b]$ and if \exists differentiable function F on [a,b] s.t. F'=f, then $\int_a^b f(x) dx = F(b) - F(a)$.

Proof. For any partition P, $F(b) - F(a) = \sum_{i=1}^{n} [F(x_i) - F(x_{i-1})]$, and by the mean value theorem 5.10,

 $\forall i \in \{1, 2, \dots, n\} : \exists t_i \in [x_{i-1}, x_i] \text{ s.t. } F(x_i) - F(x_{i-1}) = F'(t_i) \Delta x_i = f(t_i) \Delta x_i.$

Therefore,
$$F(b)-F(a) = \sum_{i=1}^{n} F'(t_i) \Delta x_i = \left[\sum_{i=1}^{n} \underbrace{f(t_i)}_{\in [m_i, M_i]} \Delta x_i\right] \in [L(P, f), U(P, f)].$$
 Also,
$$\int_a^b f(t) \mathrm{d}t \in [L(P, f), U(P, f)].$$

$$L(P, f) \qquad F(b) - F(a) \quad \int_a^b f(t) \mathrm{d}t \qquad U(P, f)$$
 Let $\varepsilon > 0$. Choose P s.t. $U(P, f) - L(P, f) < \varepsilon$. Then
$$\left| [F(b) - F(a)] - \int_a^b f(t) \mathrm{d}t \right| < \varepsilon.$$
 Since $\varepsilon > 0$ is arbitrary,
$$\left| [F(b) - F(a)] - \int_a^b f(t) \mathrm{d}t \right| = 0.$$
 Q.E.D.

$$L(P,f)$$
 $F(b) - F(a)$ $\int_a^b f(t) dt$ $U(P,f)$

$$\left| \left[F(b) - F(a) \right] - \int_{a}^{b} f(t) dt \right| < \varepsilon.$$

Theorem 6.22. [Integration by Parts] If F, G are differentiable on [a, b]and $F' = f, G' = g \in \mathcal{R}[a, b]$, then

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx.$$

Moreover, if F,G are (monotone) increasing, on [a,b], then

$$\int_{a}^{b} F dG = FG|_{a}^{b} - \int_{a}^{b} G dF.$$

Proof. Let H(x) = F(x)G(x). Then $H' = F'G + FG' = fG + Fg \in$

$$\int_a^b H'(x) dx = \int_a^b f(x) G(x) dx + \int_a^b F(x) g(x) dx.$$

$$\mathcal{R}[a,b], \text{ so}$$

$$\int_{a}^{b} H'(x) dx = \int_{a}^{b} f(x)G(x)dx + \int_{a}^{b} F(x)g(x)dx.$$
By Theorem 6.21 to H ,
$$\int_{a}^{b} H'(x)dx = H(b) - H(a) = F(b)G(b) - F(a)G(a)$$

$$= \int_{a}^{b} f(x)G(x)dx + \int_{a}^{b} F(x)g(x)dx$$

$$\therefore \int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x)dx.$$
Q.E.I.

$$\int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x)dx.$$
Q.E.I

Remark. See problem 6.17 for a version with α .

Definition (Limits of Integration). If $f \in \mathcal{R}[a,b]$ for all b > 0, then we define $\int_a^\infty f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx$ if the limit exists (in $(-\infty, \infty)$) and we say $\int_a^\infty f(x) dx$ converges. If $\int_a^\infty |f(x)| dx$ converges, then we say the integral converges absolutely.

Example (1). Prove that $\int_0^\infty \sin t^2 dt$ converges but not absolutely. $\left[\int_0^x \sin t^2 dt\right]$ is a Fresnel integral and $\int_0^\infty \sin t^2 dt = \sqrt{\frac{\pi}{8}}$, as can be shown by contour integration.

Proof. Let $I_x = \int_0^x \sin t^2 dt$ for x > 0. **Proof of Convergence**:

(a) Claim: I_n is a Cauchy Sequence $(n \in \mathbb{N})$, so it has a limit in

Proof. For 0 < x < y, $\int_x^y \sin t^2 dt = \int_{x^2}^{y^2} \sin u \cdot \frac{1}{2\sqrt{u}} du$. Using Theorem 6.22,

$$\int_{x^2}^{y^2} \underbrace{\frac{1}{2\sqrt{u}}}_{F(u)} \cdot \underbrace{\sin u du}_{dG(u)} = FG \Big|_{x^2}^{y^2} - \int_{x^2}^{y^2} G dF$$

$$= \frac{\cos y^2}{2y} + \frac{\cos x^2}{2x} - \int_{x^2}^{y^2} \cos u \frac{1}{4u^{3/2}} du$$

$$\therefore |I_x - I_y| \le \frac{1}{2y} + \frac{1}{2x} + \underbrace{\int_{x^2}^{y^2} \frac{1}{4u^{3/2}} du}_{-\frac{1}{2u^{1/2}} \Big|_{x^2}^{y^2} = -\frac{1}{2y} + \frac{1}{2x}}$$

$$= \frac{1}{x}.$$

In particular, for $n\geq m, \ |I_n-I_m|\leq \frac{1}{m}, \ \text{so} \ (I_n)$ is a Cauchy sequence. Therefore, $\exists I\in\mathbb{R} \ \text{s.t.} \ I_n\to I \ \text{as} \ n\to \infty.$ Q.E.D.

(b) Let $\varepsilon > 0$. Choose $N_0 > \frac{1}{\varepsilon}$, so that $N \ge N_0 \Rightarrow |I_N - I| < \varepsilon$. Let $b > N_0$. Choose N s.t. $b \in [N, N+1)$. As $N_0 \le N$

$$I_b = \int_0^b \sin t^2 dt = I_N + \int_N^b \sin t^2 dt \le I_N + \frac{1}{N}.$$

Hence,

$$|I - I_b| \le |I - I_N| + \frac{1}{N} < \frac{1}{N} + \frac{1}{N} = \frac{2}{N} \le \frac{2}{N_0} < 2\varepsilon.$$
$$\therefore \int_0^\infty \sin t^2 dt = I.$$

Failure of Absolute Convergence:

Proof. For
$$n \geq 0$$
, let $[A_n, B_n] = [2n\pi, (2n+1)\pi]$, and let $a_n^2 = A_n, b_n^2 = B_n$.
Then $\int_0^{b_N} |\sin t^2| dt \geq \sum_{n=0}^N \int_{a_n}^{b_n} \sin t^2 dt$. Now
$$\int_{a_n}^{b_n} \sin t^2 dt = \int_{A_n}^{B_n} \sin u \cdot \frac{1}{2\sqrt{u}} du \geq \frac{1}{2\sqrt{B_n}} \cdot \int_{A_n}^{B_n} \sin u du = \frac{1}{\sqrt{B_n}}.$$

$$\therefore \int_0^{b_N} |\sin t^2| dt \geq \sum_{n=0}^N \frac{1}{\sqrt{(2n+1)\pi}} = \frac{1}{\sqrt{\pi}} \cdot \sum_{n=0}^N \frac{1}{\sqrt{2n+1}}.$$
Hence,
$$\int_0^\infty |\sin t^2| dt = \infty.$$
Q.E.D.

Note. Material for MT 1 ends here, including A1,A2,A3.

Q.E.D.

Chapter 7

Sequences and Series of Functions

Example. Bad behaviour of limits

(1) For $m, n \in \mathbb{N}$, let $p_{m,n} = \frac{m}{n}$. Then

$$\lim_{m \to \infty} p_{m,n} = \infty$$

and

$$\lim_{n\to\infty} p_{m,n} = 0.$$

Hence,

$$\lim_{n \to \infty} \underbrace{\lim_{m \to \infty} p_{m,n}}_{=\infty} = \infty \neq \lim_{m \to \infty} \underbrace{\lim_{n \to \infty} p_{m,n}}_{=0}.$$

This shows the order of limits matters.

(2) Let

$$f_n(x) = \begin{cases} 1 & x \ge 0 \\ 1 + nx & -\frac{1}{n} < x < 0 \\ 0 & x \le -\frac{1}{n} \end{cases}$$

Then $f_n(x)$ is a continuous function. Then $\lim_{n\to\infty} f_n(x) = \begin{cases} 1 & x\geq 0\\ 0 & x<0 \end{cases}$, which is not continuous at 0. This shows that the limit of continuous functions need not be continuous. Moreover,

$$\lim_{n \to \infty} \underbrace{\lim_{x \to 0} f_n(x)}_{-1} = 1,$$

while

$$\lim_{x \to 0} \underbrace{\lim_{n \to \infty} f_n(x)}_{=f(x)}$$

does not exist. This shows again that the order of limits matters.

(3) For $x \in [0, 1]$, let

$$f_n(x) = \begin{cases} 1 & n! \cdot x \in \mathbb{Z} \\ 0 & n! \cdot x \notin \mathbb{Z} \end{cases}.$$

Each $f_n \in \mathcal{R}[0,1]$ by Theorem 6.10. However,

$$f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} 1 & x \in Q \cap [0, 1] \\ 0 & x \notin Q \cap [0, 1] \end{cases}$$

Hence, f(x) is nowhere continuous, and $f \notin \mathcal{R}[0,1]$.

(4) Let

$$f_n(x) = \begin{cases} 0 & |x| \ge \frac{1}{n} \\ n^2 x + n & -\frac{1}{n} < x < 0 \\ -n^2 x + n & 0 < x < \frac{1}{n} \\ 0 & x = 0 \end{cases}.$$

Ten $f(x) = \lim_{n \to \infty} f_n(x) = 0$ for all $x \in \mathbb{R}$. Moreover,

$$\forall n : \int_{-1}^{1} f_n(x) dx = 1,$$
$$\int_{-1}^{1} f(x) dx = 0.$$

Hence, $\lim_{n\to\infty} \int_{-1}^{1} f_n(x) dx = 1 \neq \int_{-1}^{1} \left(\lim_{n\to\infty} f_n(x) \right) dx$

(5) Let

$$f_n(x) = \frac{\sin nx}{\sqrt{n}} \text{ for } n \in \mathbb{N}, x \in \mathbb{R}.$$

Let

$$f(x) = \lim_{n \to \infty} f_n(x) = 0,$$

so

$$\forall x \in \mathbb{R} : f'(x) = 0.$$

However,

$$f'_n(x) = \frac{n\cos x}{\sqrt{n}} = \sqrt{n}\cos nx.$$

Therefore, $f'_n(\pi) = \sqrt{n}(-1)^n$ diverges as $n \to \infty$. Hence,

$$\underbrace{f'(\pi) = \left(\lim_{n \to \infty} f_n\right)'(\pi)}_{=0} \neq \underbrace{\lim_{n \to \infty} f'_n(\pi)}_{DNE}.$$

These examples show bad behaviour under interchange of limits, which suggests the need of a stronger notion of convergence.

Definition 7.7. Let E be any set and $f_n: E \to \mathbb{R}$ (or \mathbb{C}) for $n \in \mathbb{N}$. Then f_n converges uniformly to f on E if

$$\forall \varepsilon > 0 : \exists N \text{ s.t. } \forall n \geq N : \forall x \in E : |f_n(x) - f(x)| < \varepsilon.$$

Example. (a) Consider the example (2)

$$f_n(x) = \begin{cases} 1 & x \ge 0 \\ 1 + nx & -\frac{1}{n} < x < 0 \\ 0 & x \le -\frac{1}{n} \end{cases}$$

$$f_n(x) - f(x) = \begin{cases} 1 + nx & -\frac{1}{n} < x < 0 \\ 0 & otherwise \end{cases}$$
.

In particular, $f_n(-\frac{1}{2n}) - f(-\frac{1}{2n}) = \frac{1}{2}$, so we cannot choose N s.t. $n \ge N \Rightarrow |f_n(x) - f(x)| < \varepsilon = \frac{1}{4}$ for all x.

 $\therefore f_n$ does not converge uniformly to f on \mathbb{R} .

(b) Consider the example (5).

$$f(x) = \lim_{n \to \infty} f_n(x) = 0,$$

$$\forall x \in \mathbb{R} : f'(x) = 0.$$

Then

$$\left| f_n(x) - \underbrace{f(x)}_{=0} \right| = \left| \frac{\sin nx}{\sqrt{n}} \right| \le \frac{1}{\sqrt{n}},$$

so $f_n \to f$ uniformly on \mathbb{R} . [Note: uniform convergence is not enough for $\lim_{n \to \infty} f'_n = (\lim_{n \to \infty} f_n)'$.]

Theorem 7.8. [Cauchy Criteria for Uniform Convergence] f_n converges uniformly to f on E if and only if

$$\forall \varepsilon > 0 : \exists N \text{ s.t. } m, n \ge \mathbb{N} \Rightarrow \forall x \in E : |f_n(x) - f_m(x)| < \varepsilon.$$

That is, we can choose such N independent of x.

Proof. (\Rightarrow) Suppose f_n converges uniformly to f on E. Then

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)|.$$

$$\forall m, n \ge N : \forall x \in E : |f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \varepsilon$$

For $\varepsilon > 0$, choose N s.t. $\forall n \geq I_{N} \dots$ Then $\forall m, n \geq N : \forall x \in E : |f_{n}(x) - f_{m}(x)| \leq |f_{n}(x) - f(x)| + |f_{m}(x) - f(x)| < \varepsilon.$ (\Leftarrow) Let $x \in E$. $\{f_{n}(x)\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C} , so has a limit $f(x) = \lim_{n \to \infty} f_{n}(x)$. To check uniformity, let $\varepsilon > 0$. We know that $\exists N$ s.t. $|f_{n}(x) - f_{m}(x)| < \varepsilon$ if $n, m \geq N$ for all $x \in E$. Let $m \to \infty$. Then $|f_{n}(x) - f(x)| \leq \varepsilon$ if $n \geq N$ for all $x \in E$.

Q.E.D.

Definition. $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on E if $s_n(x) = \sum_{i=1}^n f_i(x)$ is a uniformly convergence sequence of functions.

Theorem 7.10. [Weierstass M-test] If $|f_n(x)| \leq M_n$ for all $n \geq N_0$ and all $x \in E$ and if $\sum_{n=N_0}^{\infty} M_n < \infty$, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on

$$x \in E \text{ and if } \sum_{n=N_0}^{\infty} M_n < \infty, \text{ then } \sum_{n=1}^{\infty} f_n(x) \text{ converges unif } E.$$

$$\text{Proof. Let } s_n(x) = \sum_{i=1}^n f_i(x). \text{ For } n > m \ge N_0,$$

$$\forall x \in E : |s_n(x) - s_m(x)| = \left| \sum_{i=m+1}^n f_i(x) \right| \le \sum_{i=m+1}^n M_i.$$

$$\text{Let } \varepsilon > 0. \text{ Choose } N \ge N_0 \text{ s.t. } \sum_{i=N+1}^{\infty} M_i < \varepsilon. \text{ Then } |s_n(x) - s_n(x)| \le \sum_{i=N+1}^{\infty} M_i < \varepsilon.$$

Let $\varepsilon > 0$. Choose $N \ge N_0$ s.t. $\sum_{i=N+1}^{\infty} M_i < \varepsilon$. Then $|s_n(x) - s_m(x)| < \varepsilon$ if $n > m \ge N$ for all $x \in E$. Hence, s_n converges uniformly on E

Theorem 7.11. Let $E \subset X$ and $f_n : E \to \mathbb{R}(\text{ or } \mathbb{C}), \ n \in \mathbb{N}$. Suppose $f_n \to f$ uniformly on E. Let $x \in E'$ and suppose $\lim_{t \to x} f_n(t) = A_n$ exists for each n. Then $A_n \to A$ for some A and $\lim_{t \to x} f(t) = A$; i.e., $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t) = A.$

$$\lim_{t \to x} \underbrace{\lim_{n \to \infty} f_n(t)}_{f(t)} = \lim_{n \to \infty} \underbrace{\lim_{t \to x} f_n(t)}_{A_n} = A$$

Proof. $A_n \to A$ for some A:

It suffices to show that $\{A_n\}$ is a Cauchy sequence. Since $f_n \to f$ uniformly on E, for any $\varepsilon > 0$, we can choose N s.t. $m, n \geq N \Rightarrow$ $|f_m(t)-f_n(t)|<\varepsilon$ for all $t\in E$. Let $t\to x$. $|A_m-A_n|<\varepsilon$ if $m, n \geq N$. Therefore, $\{A_n\}$ is a Cauchy sequence and converges to some A by completeness of $\mathbb{R}(\text{ or }\mathbb{C})$.

 $f(t) \to A \text{ as } t \to x$:

For $t \in E$ and $n \in \mathbb{N}$,

$$|f(t) - A| \le |f(t) - f_n(t)| + |f_n(t) - A_n| + |A_n - A|$$
 (*)

Let $\varepsilon > 0$. Since $f_n \to f$ uniformly $\exists N_1$ s.t. $|f(t) - f_n(t)| < \frac{\varepsilon}{3}$ if $n \geq N_1$ for all $t \in E$.

Since $A_n \to A$, $\exists N_2$ s.t. $|A_n - A| < \frac{\varepsilon}{3}$ if $n \ge N_2$. Let $N = \max\{N_1, N_2\}$ and use n = N in (*). Then

$$\forall t \in E : |f(t) - A| \le \frac{\varepsilon}{3} + |f_N(t) - A_N| + \frac{\varepsilon}{3}.$$

Since $\lim_{t\to x} f_N(t) = A_N$, there exists $\delta>0$ s.t. $t\in N^E_\delta(x)\setminus\{x\}\Rightarrow |f_N(t)-A_N|<\frac{\varepsilon}{3}$. Then

$$t \in N_{\delta}^{E}(x) \setminus \{x\} \Rightarrow |f(t) - A| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Hence, $\lim_{t \to x} f(t) = A$.

Q.E.D.

Corollary 7.12. If f_n is continuous on E and $f_n \to f$ uniformly on E, then f is continuous on E.

Proof. Every function is continuous at an isolated point, so only need

to consider
$$x \in E' \cap E$$
.
$$f(x) := \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{t \to x} f_n(t) \qquad (\because f_n \text{ continuous})$$

$$= \lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{t \to x} f(t) \qquad (\because \text{ Theorem 7.11}).$$
Q.E.D.

$$= \lim_{t \to \infty} \lim_{n \to \infty} f_n(t) = \lim_{t \to \infty} f(t)$$
 (: Theorem 7.11).

Q.E.D.

Remark. VERY IMPORTANT

Theorem 7.13. Suppose K is compact and

- (a) f_n is continuous on K for all $n \in \mathbb{N}$

(a) f_n is continuous on K for all $n \in \mathbb{N}$ (b) $f_n \to f$ pointwise on K and f is continuous on K(c) $f_n(x) \geq f_{n+1}(x) \ \forall x \in K, \ \forall n \in \mathbb{N}.$ Then $f_n \to f$ uniformly on K. Proof. Let $g_n = f_n - f$. Then (a) g_n is continuous on K for all $n \in \mathbb{N}$ (b) $g_n \to 0$ pointwise on K(c) $g_n(x) \geq g_{n+1}(x) \ \forall x \in K, \ \forall n \in \mathbb{N}.$ Goal: Prove $g_n \to 0$ uniformly on K; i.e., given $\varepsilon > 0$, $\exists N$ s.t. $\forall n \geq N : \forall x \in K : |g_n(x)| < \varepsilon$. For this, it suffices if $\exists N$ s.t. $g_N(x) < \varepsilon$ for all $x \in K$.

For this, it suffices if $\exists N \text{ s.t. } g_N(x) < \varepsilon \text{ for all } x \in K$.

Let $K_n = g_n^{-1}([\varepsilon, \infty))$. Then the goal becomes: find N s.t. $K_N = \emptyset$, since this implies $(K_N)^c = g_N^{-1}([0, \varepsilon)) = K$; i.e., $\forall x \in K : g_N(x) < \varepsilon$. Since g_n is continuous, K_n is closed by Theorem 4.8. Since $K_n \subset K$, K_n is compact. Also $K_{n+1} \subset K_n$ because $g_{n+1}(x) \geq 1$

Since $K_n \subset K$, K_n is compact. The $X_{n+1} \subset X_n$ and $X_n \subset K$, $X_n \subset K$ and $X_n \subset K$ are $X_n \subset K$. Since $X_n \subset K$ are $X_n \subset K$ and $X_n \subset K$ are $X_n \subset K$. Let $X \in K$. Since $X_n \subset K$ are $X_n \subset K$ and $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ are $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ are $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ and $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ and $X_n \subset K$ for large $X_n \subset K$ for large $X_n \subset K$ are $X_n \subset K$ for large $X_n \subset K$ for large

(a) Let K = (0,1] (not compact). Let Example.

$$f_n(x) = \begin{cases} 1 - nx & 0 < x \le \frac{1}{n} \\ 0 & \frac{1}{n} < x \le 1 \end{cases}.$$

 $f_n(x) \to 0$ for all $x \in K$ so (a), (b), (c) all hold, but f_n does not converge uniformly to zero function on K as K not compact.

(b) Let K = [0, 1] (compact). Let

$$f_n(x) = \begin{cases} 2nx & 0 \le x \le \frac{1}{2n} \\ -2nx + 2 & \frac{1}{2n} \le x \le \frac{1}{n} \\ 0 & \frac{1}{n} < x \le 1 \end{cases}.$$

 f_n continuous, $f_n(x) \to 0$ for all $x \in K$ but not uniformly. Here, (a) and (b) hold, but (c) does not.

Definition 7.14. For a metric space X, let

$$\mathscr{C}(X) = \{ f : X \to \mathbb{C} \text{ s.t. } f \text{ is continuous} \}.$$

The supremum norm of $f \in \mathcal{C}(X)$ is defined by

$$||f|| = \sup_{x \in X} \{|f(x)|\}.$$

Notation. When X = [a, b], often write $||f||_{\infty}$ instead of ||f|| since $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$ (C.f A3-Q2).

Proposition.

$$d(f,g) = ||f - g||$$
 defines a metric on $\mathscr{C}(X)$.

$$d(f,g)=0\Leftrightarrow \sup_{x\in X}\{|f(x)-g(x)|\}=0$$
 and hence $f(x)=g(x)$ $\forall x\in X;$ i.e., $f=g.$

- **(a)** d(f,g) = d(g,f)
- (c) $d(f,g) \le d(f,h) + d(h,g)$ since $\forall x \in X : |f(x) g(x)| \le |f(x) h(x)| + |h(x) g(x)| \le ||f h|| + ||h g||$. Hence, $||f g|| \le ||f h|| + ||h g||$.

As a consequence, $f_n \to f$ uniformly on X if and only if $f_n \to f$ in the metric space $(\mathscr{C}(X), \|\cdot\|)$. Proof:

LHS
$$\Leftrightarrow \forall \varepsilon > 0 : \exists N \text{ s.t. } |f_n(x) - f(x)| < \varepsilon \text{ if } n \geq N \text{ for all } x \in X.$$

$$\Leftrightarrow \forall \varepsilon > 0 : \exists N \text{ s.t. } ||f_n - f|| < \varepsilon \text{ if } n \geq N$$

$$\Leftrightarrow f_n \to f \text{ in } (\mathscr{C}(X), ||\cdot||).$$

Theorem 7.15. \mathscr{C} is a complete metric space.

Proof. Let $\{f_n\}$ be a Cauchy sequence in $\mathscr{C}(X)$; i.e.,

$$\forall \varepsilon > 0 : \exists N \text{ s.t. } n, m \ge N \Rightarrow ||f_m - f_n|| < \varepsilon.$$

By Cauchy criterion (Theorem 7.8), $f_n \to f$ uniformly for some f. Now it is sufficient to check that $f \in \mathscr{C}(X)$. By Cor 7.12, f is continuous. Also, f is bounded since $\exists N_0$ s.t. $|f(x) - f_{N_0}(x)| < 1$ for all $x \in X$. Then $|f(x)| \leq |f_{N_0}(x)| + |f(x) - f_{N_0}(x)| \leq \underbrace{M_0}_{\text{bound for } f_{N_0}} + 1 \text{ for all } x \in X.$ $\therefore f \in \mathscr{C}(X).$ Q.E.D.

$$|f(x)| \le |f_{N_0}(x)| + |f(x) - f_{N_0}(x)| \le \underbrace{M_0}_{\text{bound for } f_{N_0}} + 1 \text{ for all } x \in X$$

$$\therefore f \in \mathscr{C}(X).$$
 Q.E.D

Theorem 7.16. Suppose $f_n \in \mathcal{R}_{\alpha}[a,b]$ for $n \in \mathbb{N}$ and $f_n \to f$ uniformly on [a,b]. Then $f \in \mathscr{R}_{\alpha}[a,b]$ and

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha.$$

Proof. First, we prove $f \in \mathscr{R}_{\alpha}[a,b]$; i.e.,

$$\overline{\int_a^b} f \mathrm{d}\alpha = \int_a^b f \mathrm{d}\alpha$$

 $\overline{\int_a^b} f \mathrm{d}\alpha = \underline{\int_a^b} f \mathrm{d}\alpha.$ Let $\varepsilon > 0$. Since $f_n \to f$ uniformly on [a,b], $\exists N$ s.t. $n \geq N \Rightarrow \forall x \in [a,b]: f_n(x) - \varepsilon < f(x) < f_n(x) + \varepsilon.$ Hence,

$$n \ge N \Rightarrow \forall x \in [a, b] : f_n(x) - \varepsilon < f(x) < f_n(x) + \varepsilon$$

$$\underline{\int_{a}^{b}}(f_{n}-\varepsilon)d\alpha \leq \underline{\int_{a}^{b}}fd\alpha \leq \overline{\int_{a}^{b}}fd\alpha \leq \overline{\int_{a}^{b}}(f_{n}+\varepsilon)d\alpha.$$
ore,

$$\overline{\int_a^b} f \mathrm{d}\alpha - \underline{\int_a^b} f \mathrm{d}\alpha \le \int_a^b 2\varepsilon \mathrm{d}\alpha = 2\varepsilon \left[\alpha(b) - \alpha(a)\right].$$
 bitrary, this implies

$$\overline{\int_a^b} f \mathrm{d}\alpha = \int_a^b f \mathrm{d}\alpha$$

$$\int_a^b f \mathrm{d}\alpha - \int_{\underline{a}}^{\underline{b}} f \mathrm{d}\alpha \leq \int_a^a 2\varepsilon \mathrm{d}\alpha = 2\varepsilon \left[\alpha(b) - \alpha(a)\right].$$
 As ε arbitrary, this implies
$$\overline{\int_a^b} f \mathrm{d}\alpha = \int_{\underline{a}}^b f \mathrm{d}\alpha,$$
 so $f \in \mathscr{R}_\alpha[a,b].$ Since
$$\int_a^b f \mathrm{d}\alpha - \int_a^b f_n \mathrm{d}\alpha = \int_a^b f - f_n \mathrm{d}\alpha \leq \int_a^b \underbrace{\left[f - f_n\right]}_{<\varepsilon \text{ for all } x \text{ if } n \geq N} \mathrm{d}\alpha \leq \varepsilon \int_a^b \mathrm{d}\alpha = \varepsilon \left[\alpha(b) - \alpha(a)\right],$$
 We have
$$\lim_{n \to \infty} \int_a^b f_n \mathrm{d}\alpha = \int_a^b f \mathrm{d}\alpha.$$
 Q.E.D.
$$Q.E.D.$$

$$\lim_{n \to \infty} \int_a^b f_n d\alpha = \int_a^b f d\alpha.$$

$$\int_{a}^{b} f d\alpha = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n} d\alpha.$$

Proof. Let $s_n(x) = \sum_{i=1}^n f_i(x)$. Then $s_n \to f$ uniformly so

$$\int_a^b f \mathrm{d}\alpha = \lim_{n \to \infty} \int_a^b s_n \mathrm{d}\alpha = \lim_{n \to \infty} \sum_{i=1}^n \int_a^b f_i \mathrm{d}\alpha = \sum_{i=1}^\infty \int_a^b f_i \mathrm{d}\alpha.$$
 Q.E.D.
Note. Recall the example $f_n(x) = \frac{\sin nx}{\sqrt{n}}, \, f_n \to 0$ uniformly on \mathbb{R} , but $f'_n(x)$ does not converge.

Notation. For $a, b, \int_b^a f d\alpha = -\int_a^b f d\alpha$.

Theorem 7.17. Suppose

(a) f_n is differentiable on [a, b].
(b) ∃x₀ ∈ [a, b] s.t. f_n(x₀) converges, say to L₀, as n → ∞.
(c) f'_n converges uniformly on [a, b].
Then ∃f s.t. f_n → f uniformly on [a, b] and lim_{n→∞} f'_n(x) = f'(x) for all x ∈ [a, b].

- **Remark.** 1. The hypothesis (b) is needed. E.g., $f_n(x) = n$ obeys hypotheses (a),(c), but the conclusion of the theorem fails as it fails (b). We can assume $f_n(x) \to 0$ by replacing f_n by $f_n - L_0$.
 - 2. We add a hypothesis (d) to make the proof simpler: f'_n is continuous on [a,b] for all $n \in \mathbb{N}$

Proof (With hypothesis (d) added). 1. By (c), $\exists g \text{ s.t. } f'_n \to g \text{ uniformly on } [a,b]$, and hence on any subintervals of [a,b]. By (d), g is continuous.

2. By Theorem 7.16 (applied to $[x, x_0]$ or $[x_0, x]$ in [a, b]),

$$(\pm) \int_{x_0}^x f'_n(t) dt \to \int_{x_0}^x g(t) dt = \underbrace{\qquad}_{\text{by defn. of } f(x)} f(x).$$

By Theorem 6.21,

$$\int_{x_0}^x f_n'(t) dt = f_n(x) - f_n(x_0)$$

$$\int_{x_0}^x g(t)dt = f(x) - f(x_0).$$

Hence,

$$[f_n(x) - f_n(x_0)] \to f(x)$$

$$g(x) = f'(x).$$

Note we assume $f_n(x_0) \to 0$.

Then for all $x \in [a, b]$,

$$f_n(x) - f_n(x_0) \to f(x) - 0 = f(x).$$

Therefore,

$$f'_n(x) \to g(x) = f'(x)..$$

3. It remains to prove that $f_n \to f$ uniformly on [a,b]: Let $\varepsilon > 0$. By (b), $\exists N_0$ s.t. $n \ge N_0 \Rightarrow |f_n(x_0) - L_0| = |f_n(x_0)| < \frac{\varepsilon}{2}$. By (c), $\exists N_1$ s.t. $n \ge N_1 \Rightarrow |f'_n(x) - g(x)| < \frac{\varepsilon}{2(b-a)}$ for all $x \in [a,b]$.

Let $N = \max\{N_0, N_1\}$. Then N is independent of x. For $n \geq N$,

$$\forall x \in [a, b] : |f(x) - f_n(x)| = \left| \int_{x_0}^x g(t) dt - \left(\int_{x_0}^x f'_n(t) dt + f_n(x_0) \right) \right|$$

$$\leq \left| \int_{x_0}^x \left[g(t) - f'_n(t) \right] dt \right| + |f_n(x_0)|$$

$$< \left| \int_{x_0}^x \frac{\varepsilon}{2(b-a)} dt \right| + \left| \frac{\varepsilon}{2} \right| = \int_{x_0}^x \frac{\varepsilon}{2(b-a)} dt + \frac{\varepsilon}{2}$$

$$= \frac{\varepsilon}{2(b-a)} \cdot (b-a) + \frac{\varepsilon}{2} = \varepsilon.$$

Theorem 7.18. There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ s.t. for all $x \in \mathbb{R}$, f'(x) does not exist.

Proof (Theorem 7.18). Let

$$\varphi: \mathbb{R} \to \mathbb{R} \text{ by } \varphi(x) = \begin{cases} |x| & |x| \leq 1 \\ \varphi(x) = \varphi(x-2) & \text{otherwise} \end{cases}.$$

Then φ is continuous on \mathbb{R} , and in fact, $|\varphi(x) - \varphi(y)| \leq |x - y|$ for all $x, y \in \mathbb{R}$ (Lipschitz bound).

$$f_n(x) = \sum_{k=0}^{n} \left(\frac{3}{4}\right)^n \varphi(4^n x)$$

$$f(x) = \lim_{n \to \infty} f_n(x) = \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x).$$

Then the series f(x) converges uniformly on \mathbb{R} by the Weierstrass M-test (Theorem 7.10) since $\left|\left(\frac{3}{4}\right)^n \varphi(4^n x)\right| \leq \left(\frac{3}{4}\right)^n$ and $\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n < \infty$.

Also, f is continuous on \mathbb{R} by Corollary 7.12. Claim: f'(x) does not exist for any $x \in \mathbb{R}$.

It suffices to show that for $x \in \mathbb{R}$, there exists $\delta_m \to 0$ s.t.

$$\left| \underbrace{\frac{f(x+\delta_m) - f(x)}{\delta_m}}_{=\sum_{n=0}^{\infty} \frac{3}{4}^n \gamma_n, \gamma_n = \frac{\varphi(4^n(x+\delta_m)) - \varphi(4^n x)}{\delta_m}} \right| \to \infty \text{ as } m \to \infty.$$

Note

$$4^{m} (x + \delta_{m}) = 4^{m} x - \frac{1}{2},$$

$$4^{m} (x + 1 - \delta_{m}) = 4^{m} x + \frac{1}{2},$$

Choose $\delta_m = \pm \frac{1}{2} \cdot 4^{-m}$ with sign chosen (depending on x) so that there is no integer between $4^m x$ and $4^m (x + \delta_m)$.

Then $\gamma_n = 0$ if $n \neq m$ and $\gamma_m = \frac{\varphi(4^m(x+4^{-m})) - \varphi(4^m x)}{4^{-m}}$. In particular,

$$|\varphi(4^m(x+\delta_m)) - \varphi(4^mx)| = |4^m\delta_m| = \frac{1}{2}.$$

If n > m, then

$$\varphi(4^n(x+\delta_m)) - \varphi(4^m x) = \varphi(4^n x \pm \underbrace{4^n \cdot \frac{1}{2} \cdot \frac{1}{4^m}}_{\text{even integer}}) - \varphi(4^m x) = 0.$$

Hence, $\gamma_n = 0$ for n > m. Since $\varphi(x) - \varphi(y) \le |x - y|$, for $n \le m$,

$$\gamma_n \le \frac{1}{|\delta_m|} \cdot |4^m \delta_m| = 4^m.$$

In fact,
$$|\gamma_m| = \frac{1}{|\delta_m|} \cdot \frac{1}{2} = 4^m$$
.
Therefore,
$$\left| \frac{f(x + \delta_m) - f(x)}{\delta_m} \right| = \left| \sum_{n=0}^{\infty} \left(\frac{3}{4} \right)^n \gamma_n \right| = \left| \sum_{n=0}^{m} \left(\frac{3}{4} \right)^n \gamma_n \right|$$

$$\geq \left(\frac{3}{4}\right)^m |\gamma_m| - \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^n |\gamma_n|$$

$$\geq \left(\frac{3}{4}\right)^m \cdot 4^m - \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^n 4^n$$

$$= 3^m - \frac{3^m - 1}{3 - 1} = \frac{1}{2}(3^m + 1) \to \infty \text{ as } m \to \infty.$$

Definition (Equicontinuity). A family \mathscr{F} of functions on E is equicontinuous if $\forall \varepsilon > 0 : \exists \delta > 0 \text{ s.t. } f \in \mathscr{F}; x, y \in E; d(x, y) < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$

Remark. (a) If \mathscr{F} is equicontinuous, then every $f \in \mathscr{F}$ is uniformly continuous on E.

(b) Any finite set of uniformly continuous functions is equicontinuous.

Example. Let $\mathscr{F} = \{f_1, f_2, \ldots\}$, where $f_n(x) = \frac{\sin nx}{\sqrt{n}}$, $x \in E = [0, 1]$. We have seen $f_n \to 0$ uniformly on E.

Claim \mathcal{F} is equicontinuous.

Let $\varepsilon > 0$. Choose N s.t. $\frac{2}{\sqrt{n}} < \varepsilon$ for all $n \ge N$.

Since $\{f_1, f_2, \dots f_{N-1}\}$ is a finite set of uniformly continuous functions, it is equicontinuous.

Hence, $\exists \delta > 0 \text{ s.t. } n < N \text{ and } |x - y| < \delta \Rightarrow |f_n(x) - f_n(y)| < \varepsilon$.

Therefore, $n \in \mathbb{N}$ and $|x - y| < \delta \Rightarrow |f_n(x) - f_n(y)| < \varepsilon$.

Problem (7.16). Let $\{f_n\}$ be an equicontinuous sequence of functions $f_n: K \to \mathbb{R}$ \mathbb{C} , where K is compact.

Suppose $\lim_{n\to\infty} f_n(x) = f(x)$ exists for all $x\in K$. Then $f_n\to f$ uniformly on K.

Proof. We use $\frac{\varepsilon}{3}$ argument. Let $\varepsilon > 0$. $\exists \delta > 0$ s.t. $|f_n(x) - f_n(y)| < \frac{\varepsilon}{3}$ for all $x, y \in K$ s.t. $d(x, y) < \delta$

Since K is compact, the open cover $\{N_{\delta}(x)\}_{x\in K}$ has a finite subcover $\{N_{\delta}(x_1),\ldots,N_{\delta}(x_k)\}.$

Thus, given any $x \in K$, $\exists j$ s.t. $d(x, x_j) < \delta$. Then,

$$|f_n(x) - f_m(x)| \le \underbrace{|f_n(x) - f_n(x_j)|}_{<\frac{\varepsilon}{3}} + |f_n(x_j) - f_m(x_j)| + \underbrace{|f_m(x_j) - f_m(x)|}_{<\frac{\varepsilon}{3}}.$$

For each $i=1,\ldots,k$, we know $\{f_n(x_i)\}_n$ is a convergent sequence, so it's a Cauchy sequence. Hence, $\exists N_i$ s.t. $m,n\geq N_i\Rightarrow |f_m(x_i)-f_n(x_i)|<\frac{\varepsilon}{3}$.

$$m, n \ge N \Rightarrow |f_m(x) - f_n(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Q.E.D.

Theorem 7.24. If $f_n: K \to \mathbb{C}$ are continuous and K is compact and $f_n \to f$ uniformly on K, then $\{f_n\}$ is equicontinuous.

Proof. (Using $\frac{\varepsilon}{3}$ argument)
Let $\varepsilon > 0$. Since $f_n \to f$ uniformly, $\exists N$ s.t. $m, n \ge N \Rightarrow |f_m(x) - f_n(x)| < \frac{\varepsilon}{3}$ for all $x \in K$. Since K is compact, each f_n is uniformly continuous.

Hence, $\{f_1, \dots, f_N\}$ is equicontinuous, so $\exists \delta > 0$ s.t. $|f_i(x) - f_i(y)| < \frac{\varepsilon}{3}$ if $d(x, y) < \delta$ for all $i \in \{1, 2, \dots, N\}$.

For $n \ge N$, $|f_n(x) - f_n(y)| \le |f_n(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f_n(y)| < \varepsilon \text{ if } d(x, y) < \delta.$ Q.E.D.

$$|f_{n}(x) - f_{n}(y)| \leq \underbrace{|f_{n}(x) - f_{N}(x)|}_{<\frac{\varepsilon}{3}} + \underbrace{|f_{N}(x) - f_{N}(y)|}_{<\frac{\varepsilon}{3} \text{ if } d(x,y) < \delta} + \underbrace{|f_{N}(y) - f_{n}(y)|}_{<\frac{\varepsilon}{3}} < \varepsilon \text{ if } d(x,y) < \delta$$

Example. Let

$$f_n(x) = \begin{cases} 2nx & 0 \le x < \frac{1}{2n} \\ -2nx + 2 & \frac{1}{2n} \le x < \frac{1}{n} \\ 0 & \frac{1}{n} \le x \le 1 \end{cases}.$$

 $\{f_n\}$ obeys $|f_n(x)| \leq 1$ for all $n \in \mathbb{N}, x \in [0,1]$. It is not equicontinuous because $\left|f_n(\frac{1}{2n}) - f_n(0)\right| = 1 - 0 = 1$ for all n. Also, no subsequence of $\{f_n\}$ can converge uniformly since $f_n(\frac{1}{2n}) = 1$ whereas $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in [0, 1]$.

Definition (7.19). (a) $\{f_n\}$ is pointwise bounded on E if $\exists \varphi : E \to \mathbb{R}$ s.t. $|f_n(x)| < \varphi(x)$ for all $n \in \mathbb{N}, x \in E$.

Note: < can be replaced with \le but Rudin uses strict inequality

(b) $\{f_n\}$ is uniformly bounded on E if $\exists M>0$ s.t. $|f_n(x)|< M$ for all $n\in\mathbb{N},x\in E$.

Example. Let

$$f_n(x) = \frac{1}{x} + \frac{1}{n}, n \in \mathbb{N}, x \in E = (0, 1]..$$

Then $f_n(x)$ is pointwise bounded on E since $|f_n(x)| < \frac{1}{x} + 2$ for all $n \in \mathbb{N}, x \in E$. However, $\{f_n\}$ is not uniformly bounded on E since $f_n(x) > \frac{1}{x}$ and $\frac{1}{x} \to \infty$ as $x \to 0^+$.

Theorem 7.23. [Selection Theorem] Suppose E is a countable set and f_n : $E \to \mathbb{C}$ is pointwise bounded. Then there exists $\{f_{n_k}\}$ of $\{f_n\}$ which is pointwise convergent on E; i.e.,

$$\lim_{k\to\infty} \{f_{n_k}(x)\} \text{ exists for all } x\in E.$$

Proof. (Using diagonal argument) Let $E = \{x_1, x_2, x_3, \ldots\}$. Since $\{f_n(x_1)\}_n$ is bounded, \exists subsequence $\{f_{1,k}\}$ s.t. $\lim_{k \to \infty} f_{1,k}(x_1)$ exists by Weierstrass theorem 2.42. Successive subsequences can be constructed as follows: $S_1: f_{1,1}, f_{1,2}, f_{1,3}, f_{1,4}, \ldots \text{ converges on } x_1$ $S_2: f_{2,1}, f_{2,2}, f_{2,3}, f_{2,4}, \ldots \text{ converges on } x_1, x_2$ $S_3: f_{3,1}, f_{3,2}, f_{3,3}, f_{3,4}, \ldots \text{ converges on } x_1, x_2, x_3$ \vdots

Note we can make S_n converges not just on x_n but also for $\{x_1, x_2, \dots, x_{n-1}\}$ by taking a subsequence of S_{n-1} .

This is because $f_{n-1,k}$ is also a pointwise bounded sequence itself. Form a diagonal subsequence $S: f_{1,1}, f_{2,2}, f_{3,3}, f_{4,4}, \ldots$ Then S is eventually a subsequence of each S_j , so it converges on $x_1, x_2, x_3, \ldots, x_j$. This is true for all j, so $\{f_{n,n}(x_i)\}_n$ converges for each $x_i \in E$. Q.E.D.

Lemma. If K is compact then K has a countable dense subset $E \subset K$; i.e., $\overline{E} = K$, or $\forall p \in K : \forall r > 0 : \exists x \in E \text{ s.t. } d(p,x) < r$. We also say K is separable. See Problem 2.25.

Proof. For $n \in \mathbb{N}$, $\{N_{\frac{1}{n}}(p)\}_{p \in K}$ is an open cover of K, so \exists finite subcover $\{N_{\frac{1}{n}}(p)\}_{p \in E_n}$, $E_n \subset K$, E_n finite. Let $E = \bigcup_{n=1}^{\infty} E_n$, a countable set.

Let $p \in K$ and r > 0. Choose n_0 s.t. $\frac{1}{n_0} < r$. By definition of E_{n_0} , there exists $x_0 \in E_{n_0}$ s.t. $p \in N_{\frac{1}{n_0}}(x_0)$.

Then $d(p, x_0) < \frac{1}{n_0} < r$, so E is dense in K. Q.E.D.

Theorem 7.25. Suppose K is compact and that $\mathscr{F} = \{f_n\} \subset \mathscr{C}(K)$ is equicontinuous and pointwise bounded on K. Then

- (a) $\{f_n\}$ is uniformly bounded
- (b) $\{f_n\}$ has a uniformly convergent subsequence; i.e., a subsequence

that converges uniformly in $(\mathscr{C}(K), \|\cdot\|)$

Remark. 1. A more topological statement: A5.3

- 2. Converse: [(b) \Rightarrow equicontinuity and uniform boundedness] see A5.4
- 3. need for compactness of K: see A5.5
- $4.\ \, {\rm good\ theorem/proof\ to\ master..}$

Proof. (a) Goal: Find M s.t. $|f_n(x)| \leq M$ for all $n \in \mathbb{N}, x \in K$. Since \mathscr{F} is equicontinuous,

 $\forall \varepsilon > 0 : \exists \delta > 0 \text{ s.t. } \forall n \in \mathbb{N} : d(x,y) < \delta \Rightarrow |f_n(x) - f_n(y)| < \varepsilon.$

As K is compact, $\exists \{p_1, p_2, ..., p_r\} \in K \text{ s.t. } \{N_{\delta}(p_i)\}_{i \in \{1, ..., r\}}$ covers K.

For each i, $\{f_n(p_i)\}_n$ is bounded as \mathscr{F} is pointwise bounded, so there exists M_i s.t. $|f_n(p_i)| \leq M_i$ for all $n \in \mathbb{N}$.

Let $M_0 = \max\{M_1, \dots, M_r\}$.

Given $x \in K$, choose $p \in \{p_1, p_2, \dots, p_r\}$ such that $x \in N_{\delta}(p)$. Then $|f_n(x)| \le |f_n(p)| + |f_n(x) - f_n(p)| \le M_0 + \varepsilon$ for any $\varepsilon > 0$. Let $M = M_0 + 1$. Then $|f_n(x)| \leq M$ for all $n \in \mathbb{N}, x \in K$.

(b) Goal: Construct a uniformly convergent subsequence of $\{f_n\}$. Step 1. By the lemma, K has a countable dense subset $E \subset K$. By Theorem 7.23, $\exists \{f_{n_i}\}$ s.t. $\lim_{i \to \infty} f_{n_i}(x)$ exists for all $x \in E$. Write $g_i = f_{n_i}$. We can show g_i converges uniformly on K via the Uniform Cauchy Criterion Theorem 7.8. Step 2. Let $\varepsilon > 0$. By equicontinuity, $\exists \delta > 0$ s.t. $d(x,y) < \delta \Rightarrow$ $|g_i(x) - g_i(y)| < \frac{\varepsilon}{3}$ for all i. $\{N_{\delta}(p)\}_{p\in E}$ covers K since E is dense. There exists a finite sub-

cover $\{N_{\delta}(x_1), \ldots, N_{\delta}(x_m)\}$ with each $x_s \in E$. Given $x \in K$ there exists x_s s.t. $d(x, x_s) < \delta$.

Step 3. (using $\frac{\varepsilon}{3}$ argument)

$$g_i(x) - g_j(x) \leq \underbrace{|g_i(x) - g_i(x_s)|}_{<\frac{\varepsilon}{3} \ (\because d(x,x_s) < \delta)} + |g_i(x_s) - g_j(x_s)| + \underbrace{|g_j(x_s) - g_j(x)|}_{<\frac{\varepsilon}{3}}.$$

Since $\lim \{g_i(x)\}\$ converges for any $x \in K$, $\{g_i(x_s)\}_i$ is a Cauchy sequence.

Hence for s = 1, ..., m, we can choose N_s s.t. $i, j \geq N_s \Rightarrow$ $|g_i(x_s) - g_j(x_s)| < \frac{\varepsilon}{3}$.

Let $N = \max\{N_1, \dots, N_m\}$. Then for $i, j \ge N$ (independent of x),

$$|g_i(x) - g_j(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}.$$

Hence, $\{g_i\}$ converges uniformly on K by Theorem 7.8.

Q.E.D.

Theorem 7.26. [Weierstrass's Theorem] Let $f:[a,b]\to\mathbb{R}(\text{ or }\mathbb{C})$ be continuous.

There exists a polynomial sequence $\{P_n\}$ s.t. $P_n \to f$ uniformly on [a, b].

Exercise

By a linear change of variable, can assume [a, b] = [0, 1].

We'll discuss Bernstein's proof (1912), which needs some background in probability theory.

Fix $p \in [0,1]$. Perform a sequence of n independent of Bernoulli trials:

Success with probability p, failure with probability 1 - p.

Let S_n be the number of successes observed. Then

$$p_m = P(S_n = m) = \binom{n}{m} p^m (1-p)^{n-m}.$$

Note:

$$\sum_{m=0}^{n} p_m = \sum_{m=0}^{n} \binom{n}{m} p^m (1-p)^{n-m} = [p+(1-p)]^n = 1.$$

Random variable: a function $X : \{0, 1, ..., n\} \to \mathbb{R}$; e.g.,

- $X = S_n$ is the identity function $S_n(m) = m$.
- $X(m) = \begin{cases} 0 & m < \frac{n}{2} \\ 1 & m \ge \frac{n}{2} \end{cases}$ is the indicator random variable for the event that at least half of trials are success

Expectation of X: $EX = E(X) = \sum_{m=0}^{n} X(m)p_m$. E.g.,

$$ES_n = \sum_{m=0}^n m \binom{n}{m} p^m (1-p)^{n-m}$$

$$= np \sum_{m=1}^n \frac{(n-1)!}{(m-1)!(n-m)!} p^{m-1} (1-p)^{n-m}$$

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k} \quad (k := m-1)$$

$$= np.$$

Hence, $ES_n = np$.

Variance of X:
$$VarX = Var(X) = E[(X - EX)^2] = E(X^2) - (EX)^2$$
.
E.g., $VarS_n = ES_n^2 - (ES_n)^2 = np(1-p)$

Standard deviation of X: $\sigma_X = \sqrt{VarX}$.

E.g., $\sigma_{S_n} = \sqrt{np(1-p)}$. Now let $X_n = \frac{1}{n}S_n = \text{proportion of successes}$.

Then

•
$$EX_n = \frac{1}{n}ES_n = \frac{1}{n}np = p$$

•
$$VarX_n = \frac{1}{n^2} \cdot VarS_n = \frac{p(1-p)}{n}$$

•
$$\sigma_{X_n} = \sqrt{\frac{p(1-p)}{n}}$$

Proposition (Chebyshev's Inequality). For all $\delta > 0$, $p \in [0,1]$, $n \in \mathbb{N}$,

$$P(|X_n - p| > \delta) \le \frac{1}{\delta^2} \frac{p(1-p)}{n}.$$

Proof.

LHS =
$$\sum_{m:\left|\frac{m}{n}-p\right|>\delta} p_m \cdot 1 \le \sum_{m=0}^{n} p_m \cdot \left(\frac{\frac{m}{n}-p}{\delta}\right)^2$$

$$= \frac{1}{\delta^2} \sum_{m=0}^{n} \left(X_n(m)-p\right)^2 p_m = \frac{1}{\delta^2} E\left[\left(X_n-p\right)^2\right]$$

$$= \frac{1}{\delta^2} E\left[\left(X_n-EX_n\right)^2\right] = \frac{1}{\delta^2} Var X_n = \frac{1}{\delta^2} \frac{p(1-p)}{n}$$
Q.E.D.

Proof (Theorem 7.26). Choose $p = x \in [0, 1]$ in above, so now

$$p_m = \binom{n}{m} x^m (1-x)^{n-m}.$$

Let
$$P_n(x) = E[f(X_n)] = \sum_{m=0}^n f(\frac{m}{n}) p_m$$
.

$$p_m=\binom{n}{m}x^m(1-x)^{n-m}.$$
 Let $P_n(x)=E\left[f(X_n)\right]=\sum_{m=0}^nf(\frac{m}{n})p_m.$ Then
$$f(x)-P_n(x)=\sum_{m=0}^n\left[f(x)-f(\frac{m}{n})\right]p_m.$$

Remark. C.f. A4-Q3

$$|f(x) - P_n(x)| \le \sum_{m: \left|\frac{m}{n} - x\right| \le \delta} \left| f(x) - f(\frac{m}{n}) \right| p_m + \sum_{m: \left|\frac{m}{n} - x\right| > \delta} 2 \underbrace{\mathcal{M}}_{\sup|f(x)|} p_m.$$
Let $\varepsilon > 0$. Choose $\delta > 0$ s.t.
$$|x - y| \le \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}.$$

$$|x - y| \le \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2}$$

Note this is possible since f is continuous on [0,1], which is a compact set, and thus uniformly continuous on [0,1].

$$\sum_{m: |\frac{m}{m} - x| < \delta} \left| f(x) - f(\frac{m}{n}) \right| p_m \le \frac{\varepsilon}{2} \sum_{m=0}^{n} p_m = \frac{\varepsilon}{2}$$

$$\sum_{m: \left|\frac{m}{n} - x\right| \le \delta} \left| f(x) - f(\frac{m}{n}) \right| p_m \le \frac{\varepsilon}{2} \sum_{m=0}^{n} p_m = \frac{\varepsilon}{2}$$

$$\sum_{m: \left|\frac{m}{n} - x\right| > \delta} 2M p_m \le 2M \frac{1}{\delta^2} \frac{\overbrace{x(1-x)}}{n} \le \frac{M}{2\delta^2 n} \quad (\because \text{ Chebyshev's}).$$
Choose $N \text{ s.t. } n \ge N \Rightarrow \frac{M}{2\delta^2} \frac{1}{n} < \frac{\varepsilon}{2}. \text{ Then for } n \ge N, |f(x) - p_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Q.E.D.

Definition 7.28.

Algebra: Let \mathscr{A} be a set of functions $f: E \to \mathbb{C}$. Then \mathscr{A} is an algebra if $\forall f,g \in \mathscr{A} \ \forall c \in \mathbb{C} : f+g \in \mathscr{A}, \ fg \in \mathscr{A}, \ cf \in \mathscr{A}.$

Example. Let E = [0,1], $\mathscr{A} = \mathscr{P} = polynomials$, or $\mathscr{A} = \mathscr{C}(E)$.

Uniform Closure: The uniform closure \mathscr{B} of \mathscr{A} is $\{f: E \to \mathbb{C} \mid \exists \{f_n\} \text{ in } \mathscr{A} \text{ s.t. } f_n \to \mathbb{C} \}$ f uniformly $\}$.

Note. We say an algebra \mathscr{A} is uniformly closed if $\mathscr{A} = \mathscr{B}$.

• $\mathscr{C}[0,1]$ is the uniform closure of \mathscr{P} . (by Theorem 7.26) Example.

- \mathscr{P} is uniformly closed on \mathbb{R} (See A6)
- \mathscr{P} is not uniformly closed on [0,1]
- $\mathscr{C}[0,1]$ is uniformly closed

Note. If \mathscr{A} is an algebra of bounded functions then it has a metric

$$d(f,g) = ||f - g|| = \sup_{x \in E} |f(x) - g(x)|.$$

In this case, uniform convergence is merely convergence in this metric, and the uniform closure is the closure in this metric; i.e., $\mathscr{B} = \overline{\mathscr{A}}$.

Theorem 7.29. The uniform closure $\mathscr{B} = \overline{\mathscr{A}}$ of an algebra \mathscr{A} of bounded functions is a uniformly closed algebra.

Proof. Suppose $f, g \in \mathcal{B}$ and $c \in \mathbb{C}$. Then $\exists f_n, g_n \in \mathcal{A}$ s.t. $f_n \to f$ uniformly and $g_n \to g$ uniformly:

$$||f - f_n|| \to 0, ||g - g_n|| \to 0.$$

Then $f_n + g_n \to f + g$ uniformly (Prob. 7.2 of Rudin's) so $f + g \in \mathcal{B}$, and $f_n g_n \to f g$ uniformly (Prob. 7.2,7.3 of Rudin's; need for bounded functions here), so $fg \in \mathcal{B}$, $cf_n \to cf$ uniformly so $cf \in \mathcal{B}$. Therefore, \mathcal{B} is an algebra. \mathcal{B} is uniformly closed because it consists of \mathcal{A} and all limit points of \mathcal{A} ; i.e., $B = \overline{\mathcal{A}}$. Q.E.D.

Definition 7.30.

Separation of Points: A set \mathscr{A} (not necessarily algebra) of functions $f: E \to \mathbb{C}$ separates points on E if for all $x_1, x_2 \in E$ with $x_1 \neq x_2$, there exists $f \in \mathscr{A}$ such that $f(x_1) \neq f(x_2)$

Non-Vanishment: A set \mathscr{A} vanishes at no point if $\forall x \in E : \exists f \in \mathscr{A}$ s.t. $f(x) \neq 0$.

Example. • The set of polynomials on [-1,1] separates points and vanishes at no point.

- The set of even polynomials on [-1,1] does not separate points.
- The set of odd polynomials on [-1, 1] vanishes at x = 0.

Theorem 7.31. If an algebra \mathscr{A} of functions on E separates points and vanishes at no point, then given any $x_1, x_2 \in E$ with $(x_1 \neq x_2)$ and constants c_1, c_2 , there exists $f \in \mathscr{A}$ such that $f(x_1) = c_1$ and $f(x_2) = c_2$.

Proof. By hypothesis, $\exists g, h, k \in \mathscr{A}$ such that

$$q(x_1) \neq q(x_2)$$
 (: A separates points)

$$h(x_1) \neq 0$$
 (: A does not vanish at x_1)

$$k(x_2) \neq 0$$
 (: A does not vanish at x_2).

$$g(x_1) \neq g(x_2) \qquad \qquad (\because A \text{ separates points })$$

$$h(x_1) \neq 0 \qquad \qquad (\because A \text{ does not vanish at } x_1)$$

$$k(x_2) \neq 0 \qquad \qquad (\because A \text{ does not vanish at } x_2).$$

$$Q.E.D.$$
Let $u(x) = [g(x) - g(x_1)]k(x)$. Then $u \in \mathscr{A}, u(x_1) = 0, u(x_2) \neq 0$.
Let $v(x) = [g(x) - g(x_2)]h(x)$. Then $v \in \mathscr{A}, v(x_1) \neq 0, v(x_2) = 0$.
Let
$$f(x) = c_1 \frac{v(x)}{v(x_1)} + c_2 \frac{u(x)}{u(x_2)}.$$
Then $f \in \mathscr{A}, f(x_1) = c_1 \cdot 1 + c_2 \cdot 0 = c_1, f(x_2) = c_1 \cdot 0 + c_2 \cdot 1 = c_2.$

$$f(x) = c_1 \frac{v(x)}{v(x_1)} + c_2 \frac{u(x)}{u(x_2)}.$$

Theorem 7.32. [Stone-Weierstrass Theorem] The uniform closure of any algebra of real continuous functions on a compact set K, which separates points and vanishes at no point, is the set of all real-valued continuous functions on K; i.e., $\mathscr{C}(K)$.

For the proof of Theorem 7.32, we need the following lemmas

Lemma (1). Let \mathscr{A} be an algebra of real-valued continuous functions on a compact set K. If $f \in \overline{\mathscr{A}}$ then $|f| \in \overline{\mathscr{A}}$.

Proof. Note that $\overline{\mathscr{A}}$ is an algebra since it is a uniform closure of a bounded algebra, where the boundedness is due to the continuity of functions in \mathscr{A} on a compact set K.

Let $f \in \overline{\mathscr{A}}$. Let $M = \sup_{x \in K} |f(x)|$. Then $M < \infty$. Let $\varepsilon > 0$. By Theorem 7.26, there exists a polynomial \tilde{P} such that $\sup_{|y| \leq M} \left| \tilde{P}(y) - |y| \right| < \frac{\varepsilon}{2}$. Let $P(y) = \tilde{P}(y) - \tilde{P}(0) = \sum_{j=1}^{n} c_j y^j$.

$$\begin{split} |P(y)-|y|| &= \left|\tilde{P}(y)-\tilde{P}(0)-|y|\right| \\ &\leq \left|\tilde{P}(y)-|y|\right| + \left|\tilde{P}(0)-|0|\right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ for all } y \text{ such that } |y| \leq M. \end{split}$$

Also, $P(f) = \sum_{j=1}^n c_j f^j \in \overline{\mathscr{A}}$ since \overline{A} is an algebra, and $\sup_{x \in K} |(P(f))(x) - |f(x)|| < \varepsilon$ as $|f(x)| \leq M$. Thus, |f| can be approximated arbitrarily by an element of $\overline{\mathscr{A}}$, so

[Note we don't know if constants are in $\overline{\mathscr{A}}$, so we omitted the j=0

Lemma (2). Let \mathscr{A} as in Lemma 1. If $f_1, f_2, \ldots, f_n \in \overline{\mathscr{A}}$, then $\max\{f_1, f_2, \ldots, f_n\} \in \overline{\mathscr{A}}$ and $\min\{f_1, f_2, \ldots, f_n\} \in \overline{\mathscr{A}}$

$$\max\{f,g\}(x) := \begin{cases} f(x) & f(x) \ge g(x) \\ g(x) & f(x) < g(x) \end{cases}$$

$$\min\{f,g\}(x) := \begin{cases} g(x) & f(x) \ge g(x) \\ f(x) & f(x) < g(x) \end{cases}.$$

Proof. It suffices to consider n=2, and for this, use

$$\max\{f_1, f_2\} = \frac{1}{2}(f_1 + f_2) + \frac{1}{2}|f_1 - f_2|$$

$$\min\{f_1, f_2\} = \frac{1}{2}(f_1 + f_2) - \frac{1}{2}|f_1 - f_2|,$$
(*)

and apply Lemma 1.

(*) holds because if $f_1(x) \leq f_2(x)$, then $(LHS(*))(x) = f_2(x)$, and $(RHS(*))(x) = \frac{1}{2}(f_1(x) + f_2(x)) + \frac{1}{2}(f_2(x) - f_1(x)) = f_2(x)$.

Proof (Theorem 7.32). It suffices to prove that if \mathscr{A} is an algebra of real continuous functions on a compact set K that separates points and vanishes at no points, then $\forall f \in \mathscr{C}(K) : \forall \varepsilon > 0 : \exists h \in \mathscr{B} = \overline{\mathscr{A}} \text{ such that } ||f - h|| < \varepsilon$. This suffices because if there exists such an h, then we can choose $g \in \mathcal{A}$ such that $||g - h|| < \varepsilon$, so $||f - g|| \le ||f - h|| + ||h - g|| < \varepsilon + \varepsilon = 2\varepsilon$.

Claim (1). Let $f: K \to \mathbb{R}$ be continuous, $\varepsilon > 0$. Then

 $\exists g_x \in \mathscr{B} \text{ such that } g_x(x) = f(x) \text{ and } g_x(t) - f(t) > -\varepsilon \text{ for all } t \in K.$

Proof (Claim 1). Given $y \in K$ with $y \neq x$, by Theorem 7.31, there exists $h_y \in \mathscr{A}$ such that $h_y(x) = f(x), h_y(y) = f(y)$. Since $h_y - f(y)$ is continuous and $h_y(y) - f(y) = 0$, there exists open $J_y \subset K$ with $y \in J_y$ such that $h_y(t) - f(t) > -\varepsilon$ for all $t \in J_y$.

Since K is compact, $K \subset J_{y_1} \cup \cdots \cup J_{y_n}$ for some $y_1, y_2, \ldots, y_n \in K$, where some y_i may be x.

Let $g_x = \max\{h_{y_1}, h_{y_2}, \dots, h_{y_n}\}$. Then $g(x) \in \mathcal{B}$ by Lemma , and $g_x(x) = \max\{h_{y_1}(x), \dots, h_{y_n}(x)\} = f(x).$ Also, $g_x(t) - f(t) \ge h_{y_i}(t) - f(t) > -\varepsilon$, where i is chosen such that

Claim (2). Let $f: K \to \mathbb{R}$ be continuous, $\varepsilon > 0$. Then

 $\exists h \in \mathscr{B} \text{ such that } \sup_{x \in K} |h(x) - f(x)| < \varepsilon.$

Proof (Claim 2). Since $g_x - f$ is continuous and $g_x(x) - f(x) = 0$, there Proof (Claim 2). Since $g_x - f$ is continuous and $g_x(x) - f(x) = 0$, there exists open $V_x \subset K, V_x \ni x, g_x(t) - f(t) < \varepsilon$ for all $t \in V_x$. Since K is compact, $K \subset V_{x_1} \cup V_{x_2} \cup \cdots \cup V_{x_m}$ for some $x_1, x_2, \ldots, x_m \in K$. Let $h = \min\{g_{x_1, g_{x_2}}, \ldots, g_{x_n}\} \in \mathcal{B}$. Then by Claim 1, $\forall t \in K : h(t) - f(t) \qquad \qquad \qquad g_{x_i}(t) - f(t) > -\varepsilon.$ $\text{choose } i \text{ s.t. } g_{x_i}(t) \text{ gives the minimum}$ We also have $h(t) - f(t) \leq g_{x_j}(t) - f(t) < \varepsilon$ (Choose $j \text{ s.t. } t \in V_{x_j}$). Therefore, $-\varepsilon < h(t) - f(t) < \varepsilon$ for all $t \in K$, and hence $\sup_{t \in K} |h(t) - f(t)| < \varepsilon$. Q.E.D.

$$\forall t \in K : h(t) - f(t) \underbrace{\qquad \qquad}_{\text{choose } i \text{ s.t. } g_{x_i}(t) \text{ gives the minimum}} g_{x_i}(t) - f(t) > -\varepsilon$$

Q.E.D.

Theorem 7.33. [Complex Stone-Weierstrass Theorem] Let \mathscr{A} be a selfadjoint algebra of complex continuous functions on a compact set K that separates points and vanishes at no point. Then the uniform closure of \mathcal{A} is the set of complex continuous functions on K; i.e.,

$$\overline{\mathscr{A}} = \mathscr{C}_{\mathbb{C}}(K).$$

Note. Complex case of Theorem 7.32 requires additional hypothesis that $\mathscr A$ is self-adjoint; i.e., if $f\in\mathscr A$ then $\overline f\in\mathscr A$, where $\overline f(x)=\overline{f(x)}=\overline{f(x)}$

Proof. Let $\mathscr{A}_{\mathbb{R}}$ be the algebra of real continuous functions in \mathscr{A} .

- (i) If $f = u + iv \in \mathscr{A}$, then $u, v \in \mathscr{A}_{\mathbb{R}}$. Proof. Since $u = \frac{1}{2}(f + \overline{f}) \in \mathscr{A}$ by self-adjointness of \mathscr{A} and u is real-valued. Similarly, $v = \frac{1}{2i}(f - \overline{f}) \in \mathscr{A}_{\mathbb{R}}$.
- (ii) $\mathscr{A}_{\mathbb{R}}$ separates points. Proof. Let $x_1, x_2 \in K$ with $x_1 \neq x_2$. By Theorem 7.31, $\exists f \in \mathscr{A}$ such that $f(x_1) = 1$ and $f(x_2) = 0$. Write f = u + iv. Then $u(x_1) = 1, u(x_2) = 0, u \in \mathscr{A}_{\mathbb{R}}$
- (iii) $\mathscr{A}_{\mathbb{R}}$ vanishes at no point. Proof. Let $x \in K.$ Choose $g \in \mathscr{A}$ s.t. $g(x) \neq 0$. Write $g(x) = re^{i\theta}(r > 0)$. Let $f(t) = e^{-i\theta}g(t)$. Then $\operatorname{Re} f \in \mathscr{A}$ obeys $(\operatorname{Re} f)(x) = \operatorname{Re} e^{-i\theta}g(x) = \operatorname{Re} e^{-i\theta}re^{i\theta} = r \neq 0$.

Therefore, by Theorem 7.32, $\overline{\mathscr{A}_{\mathbb{R}}} = \mathscr{C}(K)$. Let $f = u + iv \in \mathscr{C}_{\mathbb{C}}(K)$. Let $\varepsilon > 0$.

Since $u, v \in \mathscr{C}_{\mathbb{R}}(K) = \overline{\mathscr{A}_{\mathbb{R}}}$, there exists $\tilde{u}, \tilde{v} \in \mathscr{A}_{\mathbb{R}}$ s.t. $||u - \tilde{u}|| < \frac{\varepsilon}{2}$ and $||v - \tilde{v}|| < \frac{\varepsilon}{2}$, so

$$||f - \underbrace{(\tilde{u} + i\tilde{v})}_{\in \mathscr{A}}|| \le ||u - \tilde{u}|| + ||v - \tilde{v}|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Q.E.D.

Chapter 8

Some Special Functions

Power series, e^x , $\log x$, $\sin x$, $\cos x$, Fourier series (we're omitting Gamma function)

8.1 **Power Series**

Recall $\sum_{n=0}^{\infty} c_n x^n$ has a radius of convergence $R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|c_n|}}$ such that the series absolutely converges for |x| < R, diverges for |x| > R and anything possible for |x| = R.

Remark. To determine R, we often use the ratio test instead:

Remark. To determine
$$R$$
, we often use the ratio test instead:
$$\left|\frac{c_{n+1}x^{n+1}}{c_nx^n}\right| = |x| \cdot \left|\frac{c_{n+1}}{c_n}\right| \xrightarrow{\text{if limit exists}} |x| \cdot L \Rightarrow \text{ absolute convergence if } |x| < \frac{1}{L}, \text{ diverges if } |x| > \frac{1}{L},$$
 where $R = \frac{1}{L} = \frac{1}{\lim_{n \to \infty} \left|\frac{c_{n+1}}{c_n}\right|}.$ In general, by Theorem 3.37, we also have
$$\frac{1}{\lim\inf_{n \to \infty} \left|\sqrt[n]{c_n}\right|} \le R \le \frac{1}{\lim\inf_{n \to \infty} \frac{c_{n+1}}{c_n}}.$$

where
$$R = \frac{1}{L} = \frac{1}{\lim_{c \to 1} \left| \frac{c_{n+1}}{c_n} \right|}$$
.

$$\frac{1}{\lim\inf_{n\to\infty}\left|\sqrt[n]{c_n}\right|}\leq R\leq \frac{1}{\lim\inf_{n\to\infty}\frac{c_{n+1}}{c_n}}.$$

Theorem 8.1. Suppose $\sum_{n=0}^{\infty} c_n x^n$ has a radius of convergence R > 0 and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$ for |x| < R. Such a function f(x) is called an analytic function. If $R < \infty$, then the series converges uniformly on $[-R + \varepsilon, R - \varepsilon]$ for all $\varepsilon > 0$.

If $R = \infty$, then the series converges uniformly on [-M, M] for all $M < \infty$.

The function f is continuous and differentiable on (-R,R) with f'(x) =

Note. a function of the form $f(x) = \sum_{n=0}^{\infty} c_n x^n$ is called an *analytic*

Remark. Uniform convergence may not hold on (-R, R). C.f. A7-Q3.

Proof.

Uniform convergence: For $|x| \leq R - \varepsilon$, $|c_n x^n| \leq |c_n| (R - \varepsilon)^n$. $\sum_{n=0}^{\infty} |c_n| (R-\varepsilon)^n < \infty$ by absolute convergence on (-R,R). Hence, by Weierstass M-test, $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-R+\varepsilon,R-\varepsilon]$.

Derivative: The radius of convergence of $\sum_{n=1}^{\infty} nc_n x^{n-1}$ is

$$\begin{split} \frac{1}{\limsup_{n\to\infty} \sqrt[n]{n\,|c_n|}} &= \frac{1}{\limsup_{n\to\infty} \sqrt[n]{n}\,\sqrt[n]{|c_n|}} \\ &= R = \text{ radius of convergence of } \sum_{n=0}^{\infty} c_n x^n \text{ (\because $\lim_{n\to\infty} \sqrt[n]{n} = 1$)}. \end{split}$$

Let $S_n(x) = \sum_{m=0}^n c_m x^m$. Then $S'_n(x) = \sum_{m=1}^n c_m m x^{m-1}$. By the first part of the proof, $S'_n(x) \to \sum_{m=1}^\infty c_m m x^{m-1}$ uniformly on $[-R+\varepsilon, R-\varepsilon]$. Since also $S_n(x) \to f(x)$, by Theorem 7.17, f' exists on $[-R+\varepsilon, R-\varepsilon]$, and $f'(x) = \sum_{m=1}^{\infty} c_m m x^{m-1}$. Since ε is arbitrary, $f'(x) = \sum_{m=1}^{\infty} c_m m x^{m-1}$ for all $x \in (-R, R)$. In particular, f is also continuous.

Q.E.D.

Corollary 8.2. If $f(x) = \sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R, then $f^{(k)}(x)$ exists for all $k \in \mathbb{N}$, and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} c_n n(n-1) \cdots (n-k+1) x^{n-k}. \tag{*}$$
 Consequently, $c_k = f^{(k)}(0)$ and $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$

Note. C.f. Taylor's theorem.

Proof. By Theorem 8.1,
$$f'(x) = \sum_{n=1}^{\infty} c_n n x^{n-1}$$
, $f''(x) = (f')'(x) = \sum_{n=2}^{\infty} c_n n (n-1) x^{n-2}$,
Set $x = 0$ in (*) to get $f^{(k)}(0) = c_k k(k-1) \cdots 1 = c_k \cdot k!$.

Q.E.D.

Example. Let $f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0 \\ 0 & x = 0 \end{cases}$. By Rudin's problem 8.1, $f^{(n)}(0) = 0$ for all $n = 0, 1, 2, ..., so f(x) \neq \sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^n$ except for x = 0.

Remark (Bump Function). Bump functions are infinitely differentiable functions with compact support. E.g.,

$$f(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & x \in (-1,1) \\ 0 & |x| \ge 1 \end{cases}.$$

Theorem 8.2. [Abel's Theorem] Suppose $\sum_{n=0}^{\infty} c_n$ converges (perhaps conditionally). Let $f(x) = \sum_{n=0}^{\infty} c_n x^n$. Then f(x) converges for |x| < 1 and $\lim_{x \to 1^-} f(x) = f(1) = \sum_{n=0}^{\infty} c_n$. **Remark.** Interesting case is at R = 1, since R > 1 implies continuity of f for |x| < R.

Proof. By the root test, $\limsup_{n\to\infty} \sqrt[n]{|c_n|} \le 1$, so $\sum_{n=0}^{\infty} c_n x^n$ has $R \ge 1$. Let $S_n = \sum_{m=0}^n c_m$ and $S = \sum_{m=0}^{\infty} c_m = \lim_{n\to\infty} S_n$.

Set $S_{-1} = 0$. Then $c_n = s_n - s_{n-1}$ for $n \ge 0$. Let $\varepsilon > 0$. We need to show $\exists \delta > 0$ such that $1 - \delta < x < 1 \Rightarrow |f(x) - S| < \varepsilon$.

Start with partial sum for f(x). For |x| < 1,

$$\sum_{m=0}^{n} c_m x^m = \sum_{m=0}^{n} (S_m - S_{m-1}) x^m = \sum_{m=0}^{n} S_m x^m - \sum_{m=0}^{n} S_{m-1} x^m.$$

$$\sum_{m=0}^{n} S_{m-1} x^m = \underbrace{S_{0-1}}_{0} \cdot 1 + \sum_{m=1}^{n} S_{m-1} x^m = x \sum_{k=0}^{n-1} S_k x^k$$

$$\sum_{m=0}^{n} c_m x^m = (1-x) \sum_{m=0}^{n} S_m x^m + \underbrace{S_n x^{n+1}}_{\text{$\rightarrow 0$ as $n\rightarrow\infty$ since } S_n \text{ is bounded and } |x| < 1}.$$

$$f(x) = (1-x)\sum_{n=0}^{\infty} S_n x^n$$

Start with partial sum for
$$f(x)$$
. For $|x| < 1$,

$$\sum_{m=0}^{n} c_m x^m = \sum_{m=0}^{n} (S_m - S_{m-1}) x^m = \sum_{m=0}^{n} S_m x^m - \sum_{m=0}^{n} S_{m-1} x^m.$$

Let $k = m - 1$ so that $m = k + 1$. Then

$$\sum_{m=0}^{n} S_{m-1} x^m = \underbrace{S_{0-1} \cdot 1}_{0} \cdot 1 + \sum_{m=1}^{n} S_{m-1} x^m = x \sum_{k=0}^{n-1} S_k x^k$$

$$\sum_{m=0}^{n} c_m x^m = (1 - x) \sum_{m=0}^{n} S_m x^m + \underbrace{S_n x^{n+1}}_{0 \text{ as } n \to \infty \text{ since } S_n \text{ is bounded and } |x| < 1}_{0 \text{ as } n \to \infty}.$$

Let $n \to \infty$. Then

$$f(x) = (1 - x) \sum_{n=0}^{\infty} S_n x^n.$$

$$|f(x) - S| = \left| (1 - x) \sum_{n=0}^{\infty} S_n x^n - S(1 - x) \cdot \frac{1}{1 - x} \right| = \left| (1 - x) \sum_{n=0}^{\infty} S_n x^n - S(1 - x) \sum_{n=0}^{\infty} x^n \right|$$

$$= (1 - x) \left| \sum_{n=0}^{\infty} (S_n - S) x^n \right| \le (1 - x) \sum_{n=0}^{\infty} |S_n - S| \cdot |x|^n.$$

Choose N s.t. $n \ge N \Rightarrow |S_n - S| < \frac{\varepsilon}{2}$. For $x \in (0, 1)$,

$$|f(x) - S| \le (1 - x) \sum_{n=0}^{N} |S_n - S| x^n + (1 - x) \sum_{n=N+1}^{\infty} |S_n - S| x^n$$

$$|f(x) - S| \le (1 - x) \sum_{n=0}^{N} |S_n - S| x^n + (1 - x) \sum_{n=N+1}^{\infty} |S_n - S| x^n$$

$$<(1-x)\sum_{n=0}^{N}|S_n-S|x^n+(1-x)\left(\frac{\varepsilon}{2}\cdot\frac{1}{1-x}\right)=(1-x)\left(\sum_{n=0}^{N}|S_n-S|x^n\right)+\frac{\varepsilon}{2}.$$

Since $(1-x)\sum_{n=0}^{N}|S_n-S|\,x^n$ is a polynomial in x, so it is continuous and equals 0 at x=1. Hence, $(1-x)\sum_{n=0}^{N}|S_n-S|\,x^n<\frac{\varepsilon}{2}$ if $|x-1|<\delta$ for some $\delta>0$. Therefore, for $1-\delta< x<1$, $|f(x)-S|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Q.E.D.

Note. For an application of Abel's theorem, see Rudin's p. 175. For the case $\sum_{n=0}^{\infty} c_n = \infty$, see A7.

Theorem 8.3. If $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|$ converges, then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij},$$

where both sides converge.

Proof. Rudin has a too clever proof \dots A7 involves a more straightforward proof. Q.E.D.

Theorem 8.4. Suppose $f(x) = \sum_{n=0}^{\infty} c_n x^n$ (Taylor series of f at x = 0, a.k.a Maclauren series) has a radius of convergence R > 0. Let |a| < R. Then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ for (at least) |x-a| < R - |a|.

Proof. Note

$$f(x) = \sum_{n=0}^{\infty} c_n (a + (x - a))^n = \sum_{n=0}^{\infty} c_n \sum_{m=0}^{n} \binom{n}{m} (x - a)^m a^{n-m}.$$

We want to interchange the order of summation.

By Theorem 8.3, interchange of summations is justified if

$$\sum_{n=0}^{\infty} \sum_{m=0}^{n} |c_n| \binom{n}{m} |x-a|^m |a|^{n-m} < \infty.$$

Note
$$\sum_{n=0}^{\infty} |c_n| (|x-a|+|a|)^n$$
 does converge as we assume $|x-a|+|a| < R$.
Therefore, for $|x-a| < R - |a|$,
$$f(x) = \sum_{m=0}^{\infty} \frac{1}{m!} (x-a)^m \sum_{n=m}^{\infty} c_n [n \cdot (n-1)(n-2) \cdot \dots \cdot (n-m+1)] a^{n-m}$$

$$= \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} \frac{1}{m!} (x-a)^m \sum_{n=m}^{\infty} c_n [n \cdot (n-1)(n-2) \cdot \dots \cdot (n-m+1)] a^{n-m} \right)$$

$$= \sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} \frac{1}{m!} (x-a)^m \sum_{n=m}^{\infty} c_n [n \cdot (n-1)(n-2) \cdot \dots \cdot (n-m+1)] a^{n-m} \right) (x-a)^m$$

Example. Let $f(x) = \sum_{n=0}^{\infty} x^n$ for |x| < 1. Then $f(x) = \frac{1}{1-x}$ for |x| < 1. Taylor series of $\frac{1}{1-x}$ at $x = -\frac{1}{2}$: For |x| < 1, $f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$, so $f^{(n)}(-\frac{1}{2}) = \frac{n!}{(\frac{3}{2})^{n+1}}$. By Theorem 8.4,

$$f(x) = \sum_{n=0}^{\infty} \frac{n!}{(\frac{3}{2})^{n+1} n!} \left(x + \frac{1}{2} \right)^n = \sum_{n=0}^{\infty} (\frac{2}{3})^n \left(x + \frac{1}{2} \right)^n$$

for $\left|x+\frac{1}{2}\right|<1-\left|-\frac{1}{2}\right|=\frac{1}{2}$. In fact, the series converges even when $\left|\frac{2}{3}\left(x+\frac{1}{2}\right)\right|<1$; i.e., $\left|x+\frac{1}{2}\right|<\frac{3}{2}$. C.f. Analytic continuation. Another way to get Taylor series at $x=-\frac{1}{2}$:

$$f(x) = \frac{1}{1-x} = \frac{1}{\left(1 + \frac{1}{2}\right) - \left(x + \frac{1}{2}\right)} = \frac{2}{3} \frac{1}{1 - \frac{2}{3}\left(x + \frac{1}{2}\right)} = \frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n \left(x + \frac{1}{2}\right)^n.$$

Theorem 8.5. [Principle of Permanence of Form] Suppose $\sum_n a_n x^n$ and $\sum_n b_n x^n$ have radii of convergence at least R. Suppose $D \subset (-R,R)$ has a limit point in (-R,R). If $\sum_n a_n x^n = \sum_n b_n x^n$ for all $x \in D$, then $a_n = b_n$ for all n, and hence $\sum_n a_n x^n = \sum_n b_n x^n$ for all |x| < R.

Proof. Let $c_n = a_n - b_n$ and $f(x) = \sum_{n=0}^{\infty} c_n x^n$. Then f(x) = 0 for all $x \in D$.

Let $E = \{x \in (-R, R) : f(x) = 0\}$. Then $D \subset E$.

We want to show E = (-R, R). Let $A = E' \cap (-R, R)$. Then $A \neq \emptyset$ because D has a limit point in (-R, R).

Also, relative to (-R, R), A is closed as the set of all limit points is always closed (C.f. Problem 2.6).

Let $B = (-R, R) \setminus A$. Then $A \cup B = (-R, R)$, $A \cap B = \emptyset$, and B is open.

Claim. A is also open.

Proof. Let $x_0 \in A = E' \cap (-R, R)$. Then $\exists \{d_n\}$ such that f(x) = $\sum_{n=0}^{\infty} d_n (x-x_0)^n$ for $|x-x_0| < R-|x_0|$. If we show that $d_n = 0$ for all $n \geq 0$, it proves $(x_0 - r, x_0 + r) \subset A$, and hence that A is open. Suppose for contradiction there exists $k \ge 0$ such that $d_k \ne 0$ and $f(x) = \sum_{n=k}^{\infty} d_n (x - x_0)^n$. Then $f(x) = (x - x_0)^k \sum_{n=k}^{\infty} d_n (x - x_0)^{n-k}$. Let m = n - k.

$$f(x) = (x - x_0)^k \sum_{m=0}^{\infty} d_{m+k} (x - x_0)^m.$$

Say $g(x) = \sum_{m=0}^{\infty} d_{m+k}(x-x_0)^m$. Then $g(x_0) = d_k \neq 0$, and by continuity of g, $\exists \delta > 0$ such that $g(x) \neq 0$ if $|x - x_0| < \delta$. However, $f(x) = (x - x_0)^k g(x) \neq 0$ if $0 < \infty$ $|x-x_0|<\delta$, so x_0 is an isolated zero of f and $x_0\in E'$. This is a contradiction, so $d_n = 0$ for all $n \ge 0$. Q.E.D.

Given the claim, in (-R, R), A and B are both open and closed. Since (-R, R) is connected (C.f. MATH-320's A5.3(c)), one of

(i)
$$A = \emptyset, B = (-R, R)$$

(ii)
$$A = (-R, R), B = \emptyset$$

must hold.

As A is non-empty, A = (-R, R) = E'.

Therefore, $\forall x \in (-R, R) : \exists \{x_n\} \text{ in } E \text{ such that } x_n \to x.$ Since f is continuous on (-R,R), $f(x) = \lim_{n \to \infty} f(x_n) = 0$. Therefore, for all $x \in (-R,R)$, $x \in E$, so $(-R,R) \subset E$.

Q.E.D.

Remark. CUT-OFF for MT2 ends here, including A4,5,6,7 and up to Rudin's p.143-178.

Exponential Function 8.2

Recall

$$e := \sum_{n=0}^{\infty} \frac{1}{n!}.$$

Also, $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$, $e < 3, e \in \mathbb{Q}$.

Definition. For $z \in \mathbb{C}$, $E(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$ and it has a radius of convergence $R = \infty$. Note E(1) = e is given by the definition of e.

Theorem 8.6. For $p \in \mathbb{Q}$, $E(p) = e^p$.

of. (i) Note
$$E(w)E(z) = \sum_{m=0}^{\infty} \frac{w^m}{m!} \sum_{n=0}^{\infty} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^k}{k!} \frac{w^{n-k}}{(n-k)!} \text{ (by Theorem 3.50)}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^k w^{n-k} = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!} = E(z+w).$$

In particular,

$$E(2) = E(1+1) = E(1)^{2} = e^{2}$$

$$E(3) = E(1+2) = E(1)E(2) = e \cdot e^{2} = e^{3}$$

$$E(n) = e^n \text{ for } n = 0, 1, 2, 3, \dots, (E(0) = \frac{1}{0!} = 1).$$

- (ii) Since $E(z)E^{-z} = E(z-z) = 1$, $E(-z) = \frac{1}{E(z)}$. Hence, $E(-n) = \frac{1}{E(n)} = \frac{1}{e^n} = e^{-n}$. Thus, $E(n) = e^n$ for $n \in \mathbb{Z}$.

Thus,
$$E(n) = e^m$$
 for $n \in \mathbb{Z}$.
(iii) Let $p = \frac{m}{n}$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Then
$$e^m = E(m) = E(np) = E(p+p+\cdots+p) = E(p)^n.$$
Hence, $E(\frac{m}{n}) = E(p) = e^{\frac{m}{n}} = e^p.$

Hence,
$$E(\frac{m}{n}) = E(p) = e^{\frac{m}{n}} = e^{p}$$
.

Q.E.D.

Definition. For $x \in \mathbb{R}$, let $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = E(x)$. This defines $x \mapsto e^x$ as an

analytic function on \mathbb{R} , which must be infinitely differentiable and

$$\frac{\mathrm{d}}{\mathrm{d}x}e^x = \sum_{n=1}^{\infty} \frac{1}{n!} n x^{n-1} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n-1} = e^x.$$

We then have $\frac{\mathrm{d}^k}{\mathrm{d}x^k}e^x=e^x$ for all $x=0,1,2,\ldots$ Since $e^xe^{-x}=1$ and since $e^x>0$ for $x\geq 0,\,e^{-x}>0$, so $e^x>0$ for all $x\in\mathbb{R}$. From the first two derivatives, $x\mapsto e^x$ is strictly increasing and strictly convex. For $n\geq 0$ and $x>0,\,e^x>\frac{x^{n+1}}{(n+1)!},\,\mathrm{so}\,\frac{e^x}{x^n}>\frac{x}{(n+1)!}\to\infty$ as $x\to\infty$. In particular, with $n=0,\,e^x\to\infty$ as $x\to\infty$, and $e^{-x}=\frac{1}{e^x}\to0$ as $x\to\infty$.

Definition. For y > 0, define $L(y) = \log y (= \ln y)$ by E(L(y)) = y. Equivalently, L(E(x)) = x for all $x \in \mathbb{R}$, or $e^{\log y} = y$ for all y > 0 and $\log e^x = x$.

Since $x \mapsto e^x$ is strictly increasing and differentiable, its inverse $y \mapsto \log y$ is also strictly increasing and differentiable.

Theorem. $L'(y) = \frac{1}{y}$ for y > 0, L(uv) = L(u) + L(v) for u, v > 0.

Proof. Apply the chain rule to L(E(x)) = x (C.f. Rudin's Problem

5.2). Then L'(E(x))E'(x)=1, so $L'(y)=L'(E(x))=\frac{1}{E(x)}=\frac{1}{y}$. Also, since there exist unique x,y such that E(x)=u, E(y)=v, L(uv)=L(E(x)E(y))=L(E(x+y))=x+y=L(u)+L(v). Q.E.D.

Corollary. For y>0, $L(y)=\int_1^y\frac{1}{t}\mathrm{d}t$. Proof. By Theorem 6.21, RHS = $L(t)\Big|_1^y=L(y)-L(1)=L(y)$. Q.E.D.

Theorem. For $p \in \mathbb{Q}$ and x > 0, $L(x^p) = pL(x)$, so $x^p = e^{p \log x}$.

Proof. C.f. Rudin's p.181. Q.E.D.

Definition. For $\alpha \in \mathbb{R}$, x > 0, define $x^{\alpha} = e^{\alpha \log x}$.

Theorem 8.7. For $x>0,\ \alpha\in\mathbb{R},\ \frac{\mathrm{d}}{\mathrm{d}x}x^\alpha=\alpha x^{\alpha-1}.$ Hence, x^α has an antiderivative of $\begin{cases} \frac{x^{\alpha+1}}{\alpha+1}+C & \alpha\neq-1\\ \log x+C & \alpha=-1 \end{cases}.$

Proof. $\frac{\mathrm{d}}{\mathrm{d}x}x^{\alpha} = \frac{\mathrm{d}}{\mathrm{d}x}e^{\alpha\log x} = e^{\alpha\log x}\frac{\alpha}{x} = \frac{x^{\alpha}\alpha}{x} = \alpha x^{\alpha-1}.$ Q.E.D.

(b)
$$\lim_{x \to 0^+} \log x = -\infty$$

(c)
$$\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0$$
 if $\alpha > 0$

Theorem 8.8. (a)
$$\lim_{x\to\infty}\log x=\infty$$
 (b) $\lim_{x\to 0^+}\log x=-\infty$ (c) $\lim_{x\to\infty}\frac{\log x}{x^\alpha}=0$ if $\alpha>0$. Proof. (a) exercise (b) exercise (c) For $a>0$, $x>1$,
$$\log x=\int_1^x\frac{1}{t}\mathrm{d}t\leq \int_1^xt^a\frac{1}{t}\mathrm{d}t=\frac{1}{a}(x^a-1)<\frac{1}{a}x^a.$$
 Choose $a\in(0,\alpha)$. Then

Choose
$$a \in (0, \alpha)$$
. Then
$$\frac{1}{x^{\alpha}} \log x \le \frac{1}{x^{\alpha}} \frac{1}{a} x^{a} = \frac{1}{a} \frac{1}{x^{\alpha - a}} \to 0 \text{ as } x \to \infty.$$

Q.E.D.

For sine, cosine, pi, read Rudin's p. 182-184.

Theorem 8.8. [Fundamental Theorem of Algebra]

Let
$$n \in \mathbb{N}$$
, $a_0, a_1, a_2, \dots, a_n \in \mathbb{C}$, $a_n \neq 0$, $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1} + a_n z^n$ for $z \in \mathbb{C}$. Then there exists $z_0 \in \mathbb{C}$ such that $P(z_0) = 0$.

Proof. Can assume $a_n=1$. Let $\mu=\inf_{z\in\mathbb{C}}|P(z)|$. We want to show that $\mu=0$ and is attained at some $z_0\in\mathbb{C}$.

Claim (1). There exists $z_0\in\mathbb{C}$ such that $|P(z_0)|=\mu$.

Proof. Suppose |z| = R. Then

$$|P(z)| = |z|^n \cdot \left| 1 + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right|$$

$$\geq |z|^n \left(1 - \frac{|a_{n-1}|}{|z|} - \dots - \frac{|a_0|}{|z|^n} \right)$$

$$= R^n \left(1 - \frac{|a_{n-1}|}{R} - \dots - \frac{|a_0|}{R^n} \right).$$

Hence, $|P(z)| \to \infty$ as $R \to \infty$, so there exists R_0 that depends on μ such that $|P(z)| \ge \mu$ if $|z| \ge R_0$. Since |P| is continuous and $|z| \le R_0$ is compact, by Theorem 4.16, $\mu = \inf_{|z| \le R_0} |P(z)| = P(z_0)$ for some z_0 with $|z_0| \le R_0$. Q.E.D.

Claim (2). $\mu=0$.

Proof. Suppose for contradiction $\mu > 0$, so $\mu = P(z_0) \neq 0$. Let

$$Q(z) = \frac{P(z_0 + z)}{P(z_0)}.$$

As we assume $P(z_0) = \mu > 0$, Q(z) is well defined.

As Q(0) = 1, we can write $Q(z) = 1 + b_k z^k + \cdots + b_n z^n$, where b_k is the first non-zero coefficient.

By definition of z_0 , for all $z \in \mathbb{C}$,

$$|P(z_0 + z)| \ge P(z_0) = \mu.$$

Hence,

$$|Q(z)| \ge |Q(0)| = 1.$$

Note

$$|Q(z)| \le |1 + b_k z^k| + \sum_{m=k+1}^n |b_m| |z|^m.$$

We need to choose z s.t. $\left|1+b_kz^k\right|<1$. Write $b_kz^k=\left|b_k\right|\frac{b_k}{\left|b_k\right|}z^k,\,\frac{b_k}{\left|b_k\right|}=e^{it}.\,\,z=re^{i\theta}$ to be chosen..

$$b_k z^k = |b_k| e^{it} r^k e^{ik\theta} = |b_k| r^k e^{i(t+k\theta)}.$$

Let θ so that $t+k\theta=\pi$; i.e., $\theta=\frac{\pi-t}{k}$. Let $\varepsilon=1+b_kz^k=1-|b_k|\,r^k$. Then $\varepsilon<1$, and for a small enough r, we have

$$\sum_{m=k+1}^{n} |b_m| \, r^m < 1 - \varepsilon.$$

Therefore, there exists $z=re^{i\theta}\in\mathbb{C}$ such that

$$|Q(z)| = |Q(re^{i\theta})| \le 1 - |b_k|^{r^k} + \sum_{m=k+1}^n |b_m| r^m = \varepsilon + \sum_{m=k+1}^n |b_m| r^m < 1.$$

This contradicts $|Q(z)| \ge 1$ for all $z \in \mathbb{C}$, so $\mu = 0$.

Q.E.D.

8.3 Fourier Series

Definition (Fourier Series). Given a < b and integrable $f, g : [a, b] \to \mathbb{C}$, we write

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

Remark. $\langle f, g \rangle = \overline{\langle g, f \rangle}, ||f||_2^2 = \langle f, f \rangle = \int_a^b |f(x)|^2 dx.$

Note. (a) $d(f,g) = ||f-g||_2$ defines a metric on $\mathscr{C}([a,b])$ but not on $\mathscr{R}[a,b]$, as we can have $f \in \mathscr{R}[a,b], f \neq 0, \int_a^b |f(x)|^2 dx = 0.$

(b) Sometimes when $[a,b] = [-\pi,\pi]$, we prefer $< f,g> = \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$.

Definition (Orthogonal Family of Functions). Functions $\varphi_n:[a,b]\to\mathbb{C}$ are orthogonal if $\langle \varphi_n, \varphi_m \rangle = 0$ for $n \neq m$.

They are orthonormal if $\langle \varphi_m, \varphi_n \rangle = \delta_{mn} = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases}$.

Example. (a) $[a,b] = [-\pi,\pi]$, $\varphi_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$ for $n \in \mathbb{Z}$ obey $\langle \varphi_m, \varphi_n \rangle = \int_{-\pi}^{\pi} \frac{1}{2\pi}e^{-i(m-n)x} dx = \frac{1}{2\pi}\int_{-\pi}^{\pi} \left[\cos{(m-n)x} + i\sin{(m-n)x}\right] dx = \delta_{mn}$. Hence $\{\varphi_n\}_{n \in \mathbb{Z}}$ is an orthonormal set.

- (b) $\varphi_1, \varphi_2, \varphi_3, \ldots$ given by $\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos{(nx)}, \frac{1}{\sqrt{\pi}}\sin{(nx)}, \ldots$ are orthonormal
- (c) Legendre polynomials $\{P_n(x)\}$ are orthogonal with $\|P_n\|_2 = \sqrt{\frac{2}{2n+1}}$ on

$$P_n(x) = \sum_{k=0}^{n} {n \choose k} {n+k \choose n} \left(\frac{x-1}{2}\right)^k \text{ for } n = 0, 1, 2, \dots$$

Definition (Fourier Coefficients). Let $\{\varphi_n\}_{n\in\mathbb{Z}}$ be an orthonormal set on [a,b]. Suppose $f(x) = \sum_{m=0}^{N} c_m \varphi_m(x)$ with $\{\varphi_n\}_{n \in \mathbb{Z}}$ orthonormal on [a, b]. Then

$$< f, \varphi_n > = < \sum_{m=0}^{N} c_m \varphi_m, \varphi_n > = \sum_{m=0}^{N} c_m < \varphi_m, \varphi_n > = \sum_{m=0}^{N} c_m \delta_{mn} = c_n.$$

I.e., $c_n = \langle f, \varphi_n \rangle = \int_a^b f(x) \overline{\varphi_n(x)} dx$. E.g., if $f(x) = \sum_{n=-N}^N c_n e^{inx} = \sum_{n=-N}^N c_n \sqrt{2\pi} \cdot \left(\frac{1}{\sqrt{2\pi}} e^{inx}\right)$, then $\sqrt{2\pi}c_n = \langle f, \varphi_n \rangle = \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2\pi}} e^{-inx} dx$; i.e., $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$

Question: When does the Fourier series converge and when does it equal f?

Theorem 8.11. Suppose $f \in \mathcal{R}[a,b]$ and $\{\varphi_m\}_{m=1,2,\dots}$ is orthonormal. Let $c_n = \langle f, \varphi_n \rangle, s_n = \sum_{m=1}^n c_m \varphi_m, t_n = \sum_{m=1}^n a_m \varphi_m$ for some $a_m \in \mathbb{C}$. Then $\|f - s_n\|_2 \leq \|f - t_n\|_2,$

$$||f - s_n||_2 \le ||f - t_n||_2$$

where the equality holds if and only if $a_m = c_m$ for all m = 1, 2, ...

Proof.
$$||f - t_n||_2^2 = \langle f - t_n, f - t_n \rangle = \langle f, f \rangle - \langle t_n, f \rangle - \langle f, t_n \rangle + \underbrace{\langle t_n, t_n \rangle}_{=||t_n||_2^2}$$
. Note
$$||t_n||_2^2 = \langle t_n, t_n \rangle = \sum_{k,m=1}^n a_k \overline{a_m} \underbrace{\langle \varphi_k, \varphi_m \rangle}_{=\delta_{k,m}} = \sum_{m=1}^n a_m \overline{a_m} \quad (*)$$

$$\langle f, t_n \rangle = \sum_{m=1}^n \overline{a_m} \underbrace{\langle f, \varphi_m \rangle}_{=c_m} = \sum_{m=1}^n \overline{a_m} c_m.$$

$$||t_n||_2^2 = \langle t_n, t_n \rangle = \sum_{k,m=1}^n a_k \overline{a_m} \underbrace{\langle \varphi_k, \varphi_m \rangle}_{=\delta_{k,m}} = \sum_{m=1}^n a_m \overline{a_m} \qquad (*)$$

$$\langle f, t_n \rangle = \sum_{m=1}^n \overline{a_m} \underbrace{\langle f, \varphi_m \rangle}_{=c_m} = \sum_{m=1}^n \overline{a_m} c_m.$$

$$||f - t_n||_2^2 = ||f||_2^2 + \sum_{m=1}^n \underbrace{a_m \overline{a}_m - \overline{a}_m c_m - a_m \overline{c}_m + c_m \overline{c}_m}_{=|a_m - c_m|^2} - \underbrace{\sum_{m=1}^n c_m \overline{c}_m}_{=||s_n||_2^2 \text{ by } (*)}.$$

Thus, $||f - t_n||_2^2 = ||f||_2^2 - ||s_n||^2 + \sum_{m=1}^n |a_m - c_m|^2$. With $a_m = c_m$, this gives $||f - s_n||_2^2 = ||f||_2^2 - ||s_n||_2^2 + 0$. Hence,

$$||f - t_n||_2^2 = ||f - s_n||_2^2 + \underbrace{\sum_{m=1}^n |a_m - c_m|^2}_{\geq 0},$$

$$||f - s_n||_2^2 \le ||f - t_n||_2^2,$$

with equality if and only if $a_m = c_m$ for all $m = 1, 2, \ldots$

Note. We have proven that $\|f\|_2^2 = \|s_n\|_2^2 + \|f - s_n\|_2^2$. Let V_n be a subspace of linear combinations of $\{\varphi_m\}_{m=1,2,\ldots,n}$; i.e., $V_n = \{\sum_{m=1}^n a_m \varphi_m : a_m \in \mathbb{C}\}$. Then $s_n = L^2$ projection of f onto V_n . Also, $\|s_n\|_2^2 = \sum_{m=1}^n |c_m|^2 \le \|f\|_2^2$. If we have an infinite set $\{\varphi_m\}_{m \in \mathbb{N}}$ then we can let $n \to \infty$, and we get $\sum_{m=1}^\infty |c_m|^2 \le \|f\|_2^2$. This is called Bessel's inequality. In particular, $\lim_{n \to \infty} c_n = 0$.

Example. If $f \in \mathcal{R}[-\pi, \pi]$, then

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = 0.$$

This is an instance of Riemann-Lebesgue lemma.

From here on, we restrict to $f: [-\pi, \pi] \to \mathbb{C}$ with $f \in \mathcal{R}[-\pi, \pi]$ and take $\varphi_n(x) = e^{inx}, n \in \mathbb{Z}$. We extend f by 2π -periodicity to \mathbb{R} ; i.e., $f(x+2\pi) = f(x)$ for all $x \in \mathbb{R}$.

In order to make $\{\varphi_n\}$ orthonormal, we change the definition of < f, g > to

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx,$$

and

$$||f||_2^2 = \langle f, f \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx.$$

Then, $\langle \varphi_m \varphi_n \rangle = \delta_{mn}$, so Theorem 8.11 still holds.

Definition (Fourier Series).

• For $f \in \mathcal{R}[-\pi, \pi]$, the Fourier series of f is

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \varphi_n(x)$$

with $c_n = \langle f, \varphi_n \rangle$.

Remark. At this point, we don't claim that the series converges or

• The N^{th} partial Fourier series of f is

$$s_N(x) = \sum_{n=-N}^{N} c_n e^{inx}.$$

We have seen that $\sum_{n=-N}^{N} |c_n|^2 = ||s_N||_2^2 \le ||f||_2^2$.

Lemma. For $x \in \mathbb{R}$, $S_N(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) D_N(t) dt$ with $D_N(t) = \sum_{n=-N}^{N} e^{int} = e^{int} \int_{-\pi}^{\pi} f(x-t) D_N(t) dt$ Lemma. For $x \in \frac{\sin{(N+\frac{1}{2})t}}{\sin{(\frac{t}{2})t}}$.

| Remark. D_N is called the Dirichlet kernel.

| Note. (a) $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) dt = \langle D_N, \underbrace{1}_{\varphi_0} \rangle = \sum_{n=-N}^{N} \underbrace{\langle \varphi_n, \varphi_0 \rangle}_{=\delta_{n_0}} = 1.$ (b) $D_N(t) = \frac{1}{\sin{(\frac{t}{2})}} \left[\sin{(\frac{t}{2})} \cos{(Nt)} + \cos{(\frac{t}{2})} \sin{(Nt)} \right] = \cos{(Nt)} + \cot{(\frac{t}{2})} \sin{(Nt)}.$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) dt = \langle D_N, \underbrace{1}_{\varphi_0} \rangle = \sum_{n=-N}^{N} \underbrace{\langle \varphi_n, \varphi_0 \rangle}_{=\delta_{n_0}} = 1$$

$$D_N(t) = \frac{1}{\sin\left(\frac{t}{2}\right)} \left[\sin\left(\frac{t}{2}\right) \cos\left(Nt\right) + \cos\left(\frac{t}{2}\right) \sin\left(Nt\right) \right] = \cos\left(Nt\right) + \cot\left(\frac{t}{2}\right) \sin\left(Nt\right)$$

$$\begin{split} D_N(t) &= \sum_{n=-N}^N e^{int} = e^{-iNt} \sum_{k=0}^{2N} (e^{it})^k \\ &= e^{-iNt} \cdot \frac{e^{it(2N+1)} - 1}{e^{it} - 1} \cdot \frac{e^{-\frac{it}{2}}}{e^{-\frac{it}{2}}} = \frac{e^{i(N+\frac{1}{2})t} - e^{-i(N+\frac{1}{2})t}}{e^{i\frac{t}{2}} - e^{-i\frac{t}{2}}} = \frac{\sin{(N+\frac{1}{2})t}}{\sin{\frac{t}{2}}}. \end{split}$$

$$S_{N}:$$

$$S_{N}(x) = \sum_{n=-N}^{N} c_{n}e^{inx} = \sum_{n=-N}^{N} \langle f, \varphi_{n} \rangle e^{inx}$$

$$= \sum_{n=-N}^{N} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)\overline{e^{int}} dt e^{inx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \sum_{n=-N}^{N} e^{in(x-t)} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)D_{N}(x-t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)D_{N}(t) dt.$$

(Last equality left as an exercise)

Q.E.D.

Theorem 8.14. Let $x \in \mathbb{R}$ and $f \in \mathscr{R}[-\pi,\pi]$ with $f(x+2\pi)=f(x)$. Suppose there exist δ, M such that

$$|f(x+t)-f(x)| \leq M|t|$$
 for $|t| \leq \delta$

 $|f(x+t)-f(x)| \leq M\,|t| \ \mbox{for} \ \ |t| \leq \delta.$ Then $\lim_{N \to \infty} S_N(x) = f(x).$

Remark. Such f is said to be Lipschitz continuous at x.

From:
$$f(x) - S_N(x) = f(x) \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) D_N(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(x) - f(x-t) \right] D_N(t) dt$$

$$= \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(x) - f(x-t) \right] \cos\left(Nt\right) dt}_{*} + \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(x) - f(x-t) \right] \cot\left(\frac{t}{2}\right) \sin\left(Nt\right) dt}_{**}.$$
Since $f(x) - f(x-t) \in \mathcal{R}(dt), * \to 0 \text{ as } N \to \infty \text{ by Riemann-Lebesgue lemma.}$
For **, note that $[f(x) - f(x-t)] \cot\left(\frac{t}{2}\right) = \frac{f(x) - f(x-t)}{t} \cdot 2\frac{\frac{t}{2}}{\sin\left(\frac{t}{2}\right)} \cos\left(\frac{t}{2}\right).$
Since $\frac{f(x) - f(x-t)}{t}$ is bounded by hypothesis and $\cos\left(\frac{t}{2}\right)$ is continuous, ** $\to 0$ as $N \to \infty$ by Riemann-Lebesgue lemma. Q.E.D.

For **, note that
$$[f(x) - f(x-t)] \cot(\frac{t}{2}) = \frac{f(x) - f(x-t)}{t} \cdot 2\frac{\frac{t}{2}}{\sin(\frac{t}{2})} \cos(\frac{t}{2})$$
.

Corollary 8.15. • If f(x) = 0 for all $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ then $S_N(f; x) \to \infty$

0 for all such x because f is Lipschitz continuous at x.

• If f(x) = g(x) for all $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$, then by linearity, $S_N(f; x) - S_N(g; x) \to 0$ as $N \to \infty$ for all such x.

Example. Suppose

$$f(x) = \begin{cases} 0 & x \in (0, \pi) \\ \frac{3}{\pi}x & x \in (\pi, \frac{4}{3}\pi) \\ 1 & x \in (\frac{4}{3}\pi, \frac{5}{3}\pi) \\ -\frac{3}{\pi}(x - 2\pi) & x \in (\frac{5}{3}\pi, 2\pi) \\ f(x) = f(x + 2\pi) & otherwise \end{cases}$$

$$g(x) = \begin{cases} 0 & x \in (0, \pi) \\ \frac{2}{\pi}x & x \in (\pi, \frac{3}{2}\pi) \\ -\frac{2}{\pi}(x - 2\pi) & x \in (\frac{3}{2}\pi, 2\pi) \\ g(x) = g(x + 2\pi) & otherwise \end{cases}.$$

Then f, g have different Fourier series, but both converge to zero on $[0,\pi]$: Localisation Principle. Contract this to the behaviour of power series in Theorem 8.5.

Theorem 8.15. If $f:\mathbb{R}\to\mathbb{C}$ is continuous and 2π -periodic, then for all $\varepsilon>0$, there exists a trigonometric polynomial $P(x)=\sum_{n=-N}^N c_n e^{inx}$ such that $\|f-P\|=\sup_{x\in\mathbb{R}}|f(x)-P(x)|<\varepsilon.$

Proof. Let $T = \{z \in \mathbb{C} \mid |z| = 1\}$, the unit circle in \mathbb{C} .

T is compact. Define $F: T \to \mathbb{C}$ by F(z) = f(t), where $z = e^{it}$. This is well defined by the 2π -periodicity of f.

Let $\mathscr{A} = \text{Algebra of trigonometric polynomials } \sum_{n=-N}^{N} a_n z^n, \ z \in T, a_n \in \mathbb{C}, N = 0, 1, 2, \dots$ Then \mathscr{A} vanishes at no point since it contains 1.

Also, \mathscr{A} separates points and self-adjoint since

$$\sum_{n=-N}^N a_n z^n = \sum_{n=-N}^N \overline{a_n z^n} = \sum_{n=-N}^N \overline{a_n} z^{-n}$$

$$\underbrace{=}_{m=-n} \sum_{m=-N}^{N} \overline{a_{-m}} z^{m} \in \mathscr{A}.$$

By Stone-Weierstrass, $\overline{\mathscr{A}} = \mathscr{C}(T)$, so given $\varepsilon > 0$, there exists $\mathscr{P} \in$ $\mathscr{A} \text{ such that } |F(z) - \mathscr{P}(z)| < \varepsilon \text{ for all } z \in T. \text{ Write } \mathscr{P}(z) = \sum_{n=-N}^{N} a_n z^n \text{ and let } P(x) = \sum_{n=-N}^{N} c_n e^{inx} = \mathscr{P}(e^{ix}). \text{ Then } |f(x) - P(x)| = |F(e^{ix}) - \mathscr{P}(e^{ix})| < \varepsilon \text{ for all } x \in \mathbb{R}.$ Q.E.D.

Remark. (a) \mathscr{P} in Theorem 8.15 need not involve the Fourier coefficients. In fact, there exists a continuous f whose Fourier series does not converge pointwise.

- (b) For a continuous f, Rudin's Problem 8.15 gives an explicit sequence of trigonometric polynomials that converge uniformly to f (Cesaro summation of Fourier partial sums).
- (c) (theorem not in Rudin's) If f is 2π -periodic and continuously differentiable then its Fourier series converge uniformly to f (proof omitted).
- (d) Theorem (Kolmogorov): There exists a Lebesgue integrable function f on $[-\pi, \pi]$ whose Fourier series diverges everywhere.

• For $\{c_n\}_{n\in\mathbb{Z}}$ and $\{\gamma_n\}_{n\in\mathbb{Z}}$, let $(c,\gamma)=\sum_{n=-\infty}^{\infty}c_n\overline{\gamma}_n$ when the Notation. series converges.

•
$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx, \|f\|_{2}^{2} = \langle f, f \rangle.$$

•
$$\varphi_n(x) = e^{inx}$$
, $S_N(f) = \sum_{n=-N}^N \langle f, \varphi_n \rangle \varphi_n$.
Problem (6.10). Cauchy-Schwarz inequality: $|\langle f, g \rangle| \leq ||f||_2 ||g||_2$.

Problem (6.11). Minkowski inequality: $||f + g||_2 \le ||f||_2 + ||g||_2$.

(so $||f - g||_2 \le ||f - h||_2 + ||h - g||_2$)

Problem (6.12). For $f \in \mathcal{R}[-\pi,\pi], \varepsilon > 0$, there exists a continuous function (piecewise-linear) h s.t. $||f - h|| < \varepsilon$.. If $f(-\pi) = f(\pi)$ then we can choose h s.t. $h(-\pi) = h(\pi)$.

Theorem 8.16. For $f,g \in \mathcal{R}[-\pi,\pi]$ that are 2π -periodic, let $c_n = < f, \varphi_n >$, $\gamma_n = < g, \varphi_n >$. Then $\lim_{N \to \infty} \|f - s_N(f)\|_2 = 0$ (convergence of $s_N(f)$ to f in L^2 -norm), and $< f,g > = (c,\gamma)$ (Parseval's frelation). In particular, $\|f\|_2^2 = (c,c)$; i.e., $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$. This is called Bessel's equality.

Proof. L^2 convergence: Let $\varepsilon > 0$. Choose a continuous h () s.t. $||f-h||_2 < \frac{\varepsilon}{3}$. Then $||s_N(f)-f||_2 \le \underbrace{||s_N(f)-s_N(h)||_2}_{(*)} + \underbrace{||s_N(h)-h||_2}_{(**)} + \underbrace{||h-f||_2}_{(**)}$.

Note $(*) = \|s_N(f-h)\|_2 \le \|f-h\|_2$ from the proof of Bessel's inequality. Also by Theorem 8.15, there exists a trigonometric polynomial P s.t. $\|P-h\|_{\infty} < \frac{\varepsilon}{3}$ and hence $\|P-h\|_2 \le \|P-h\|_{\infty} < \frac{\varepsilon}{3}$.

Say $deg(P) = N_0$. By Theorem 8.11, for $N \ge N_0$,

$$||s_N(h)||_2 \le ||P - h||_2.$$

Thus, for $N \geq N_0$

$$||s_N(h) - h||_2 < \frac{\varepsilon}{3}.$$

Therefore, $||s_N(f) - f||_2 < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$ if $N \geq N_0$, so $\lim_{N \to \infty} ||s_N(f) - f||_2 = 0$.

Remark. Good proof to master.

Note. $||f||_2 \le ||f||_{\infty}$ for all $f \in \mathscr{R}[-\pi, \pi]$ since $||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx \le \frac{1}{2\pi} \int_{-\pi}^{\pi} ||f||_{\infty}^2 dx = ||f||_{\infty}^2$.

Parseval relation:

$$\langle s_N(f), g \rangle = \sum_{n=-N}^N c_n \underbrace{\langle \varphi_n, g \rangle}_{\overline{\gamma}_n}.$$

 $\left| \langle f,g \rangle - \sum_{n=-N}^{N} c_n \overline{\gamma}_n \right| = \left| \langle f,g \rangle - \langle s_N(f),g \rangle \right| = \left| \langle f-s_N(f),g \rangle \right| \le \|f-s_N(f)\|_2 \|g\|_2 \to 0 \text{ as } N \to \infty, \text{ where the last inequality follows from Cauchy-Schwarz inequality (Problem 6.106.10).}$

Note. The symmetric sum $\sum_{n=-N}^{N} c_n \overline{\gamma}_n$ converges to < f, g>, but

$$\sum_{n=-N}^{N} |c_n \overline{\gamma}_n| \le \left(\sum_{n=-N}^{N} |c_n|^2 \right)^{\frac{1}{2}} \cdot \left(\sum_{n=-N}^{N} |\overline{\gamma}_n|^2 \right)^{\frac{1}{2}}$$

$$\leq \|f\|_2 \cdot \|g\|_2,$$

so $\sum_{n=-\infty}^{\infty} c_n \overline{\gamma}_n$ converges absolutely and its sum is independent of how we make partial sums.

Q.E.D.

Chapter 9

Functions of Several variables

Theorem 9.23. [Bananach's Fixed Point Theorem/Contraction Mapping Theorem Let (X, d) be a complete metric space. Suppose $\exists c < 1$ such that the map $\varphi: X \to X$ obeys $d(\varphi(x), \varphi(y)) \leq cd(x, y)$ for all $x, y \in X$ (φ is a contraction). Then $\exists ! x \in X$ such that $\varphi(x) = x$.

Proof. Uniqueness: If $\varphi(x)=x$ and $\varphi(y)=y$, then $d(x,y)=d(\varphi(x),\varphi(y))\leq cd(x,y),$ so d(x,y)=0 and x=y.

Existence: Given $x_0 \in X$, let $x_1 = \varphi(x_0), x_2 = \varphi(x_1) = (\varphi \circ \varphi)(x_0),$ $x_{n+1} = \varphi(x_n) = \underbrace{(\varphi \circ \varphi)}_{n+1}(x_0).$ Then $d(x_{n+1}, x_n) = d(\varphi(x_n), \varphi(x_{n-1})) \le cd(x_n, x_{n-1}),$ so by induction, $d(x_{n+1}, x_n) \le c^n d(x_1, x_0)$ and

hence for n > m,

$$d(x_n, x_m) \le \sum_{i=m+1}^n d(x_i, x_{i-1}) \le \sum_{i=m+1}^n c^{i-1} d(x_1, x_0) \le \sum_{i=m+1}^\infty c^{i-1} d(x_1, x_0) = \frac{c^m}{1 - c} d(x_1, x_0).$$

Hence, $\{x_n\}$ is a Cauchy sequence. As X is assumed to be complete, $\exists x \in X$ such that $x_n \to x$. Since φ is continuous $\varphi(x) = \lim_{n \to \infty} \varphi(x_n) = \lim_{n \to \infty} x_{n+1} = x$.

Q.E.D.

Remark. (a) φ is uniformly continuous (take $\delta = \varepsilon$).

- (b) The proof gives an exponentially convergent algorithm to find the fixed point.
- (c) Visualization of the algorithm used in the proof:

Reading assignment: Rudin's theorems 9.1-9.9.

9.1 Diffrentiation of functions of $f: \mathbb{R}^n \to \mathbb{R}^m$

Recall for n = m = 1,

$$f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}.$$

Equivalently,

$$\lim_{h \to 0} \left| \frac{f(x+h) - f(x) - f'(x)h}{h} \right| = 0.$$

This again is equivalent to

$$f(x+h) = f(x) + \underbrace{f'(x)h}_{\text{best linear approximation to } f(x+h) - f(x)} + \underbrace{r(h)}_{r(h) = o(h)},$$

with $\lim_{h\to 0} \frac{r(h)}{h} = 0$.

Definition 9.11. Let $m, n \in \mathbb{N}$, $E \subset \mathbb{R}^n$ an open set, $f: E \to \mathbb{R}^m, x \in E$. Then f is differentiable at x and f'(x) = A if

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0,$$

where A depends on $x, A \in L(\mathbb{R}^n, \mathbb{R}^m)$. Note $L(\mathbb{R}^n, \mathbb{R}^m)$ is the vector space of linear maps from \mathbb{R}^n to \mathbb{R}^m . That is, if f(x+h)=f(x)+Ah+r(h) with $\lim_{h \to 0} \frac{\|r(h)\|}{\|h\|} = 0.$

Notation. r(h) = o(h) means $\lim_{h \to 0} \frac{\|r(h)\|}{\|h\|} = 0$.

Theorem 9.12. A in the definition of differentiability is unique if it ex-

$$f(x+h) = f(x) + A_1h + r_1(h)$$
$$f(x+h) = f(x) + A_2h + r_2(h)$$

$$f(x+h) = f(x) + A_2h + r_2(h)$$

with $r_1h = o(h)$, $r_2h = o(h)$. Let $B = A_1 - A_2$. Then $Bh = r_2(h) - r_1(h)$, so for a fixed $h \neq 0$ and t > 0,

$$\frac{|Bh|}{|h|} = \frac{|B(th)|}{|th|} \le \frac{|r_2(th)|}{th} + \frac{|r_1(th)|}{th}$$

 $\frac{|Bh|}{|h|} = \frac{|B(th)|}{|th|} \le \frac{|r_2(th)|}{th} + \frac{|r_1(th)|}{th}.$ $\frac{|Bh|}{|h|} \text{ is independent of } t. \text{ Hence, } \frac{|Bh|}{|h|} \to 0 \text{ as } h \to 0 \text{ (think of } th = h' \to 0). \ Bh = 0 \text{ for all } h \in \mathbb{R}^n; \text{ i.e., } B = 0; \text{ i.e., } A_1 = A_2. \quad \text{Q.E.D.}$

Note. (a) If f'(x) exists for all $x \in E$ then we can regard f' as a function $f': E \to L(\mathbb{R}^n, \mathbb{R}^m)$.

(b) Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear. Then for all $x,h \in \mathbb{R}^n,$

$$f(x+h) = f(x) + \underbrace{f(h)}_{\text{each with } A=f} +0.$$

Hence, f'(x) = f(x) for all $x \in \mathbb{R}^n$. For n = m = 1, we can identify a linear map

$$f: \mathbb{R} \to \mathbb{R}, f(x) = ax,$$

where $a \in \mathbb{R}$. Then f'(x) = a is consistent with the above.

(c) If f'(x) exists then f is continuous at x since $\lim_{h\to 0} f(x+h) =$

Definition. For a linear map $A: \mathbb{R}^n \to \mathbb{R}^m$, we define the *norm* of A as

$$||A|| = \sup_{\|h\|=1} ||Ah||.$$

Note. $|Ax| = \left|A\frac{x}{|x|}\right| |x| \le \|A\| |x|$ for all $x \in \mathbb{R}^n, x \ne 0$; i.e., $\|A\|$ is the best constant such that $\|Ax\| \le \|A\| \|x\|$.

Note. The following facts are immediate from Theorem 9.7 of Rudin's.

- $\begin{array}{l} \text{(a)} \ \|A\| < \infty \\ \\ \text{(b)} \ \text{For} \ A: \mathbb{R}^n \to \mathbb{R}^m, B: \mathbb{R}^m \to \mathbb{R}^k, \ \|BA\| \leq \|B\| \cdot \|A\| \\ \\ \text{(c)} \ \ d(A,B) = \|A-B\| \ \text{defines a metric on} \ L(\mathbb{R}^n,\mathbb{R}^m). \end{array}$

Theorem 9.5. [Chain Rule] Suppose $E \subset \mathbb{R}^n$ is open, $f: E \to \mathbb{R}^m, V \subset \mathbb{R}^m$ is open, $f(E) \subset V$, $g: V \to \mathbb{R}^k$, $x_0 \in E$, f'(x) exists, $g'(f(x_0))$ exists. Let $F = g \circ f: E \to \mathbb{R}^k$. Then $F'(x_0)$ exists and $F'(x) = g'(f(x_0))f'(x_0) \in L(\mathbb{R}^n, \mathbb{R}^k)$, where $g'(f(x_0)) \in L(\mathbb{R}^m, \mathbb{R}^k)$, $f'(x_0) \in L(\mathbb{R}^n, \mathbb{R}^m)$.

Remark. Similar to the proof of Theorem 5.5.

$$F(x_0 + h) - F(x_0) = g(f(x_0 + h)) - g(f(x_0)) = g'(f(x_0)) + \underbrace{v(k)}_{o(k)}$$
$$= g'(f(x_0)) [f'(x_0)h + u(h)] + v(k) = g'(f(x_0))f'(x_0)h + r(h),$$

where $r(h)=g'(f(x_0))u(h)+v(k)$. We want to prove that r(h)=o(h); i.e., $\lim_{h\to 0}\frac{|r(h)|}{|h|}$. Note

$$\frac{|g'(f(x_0))u(h)|}{|h|} \le ||g'(f(x_0))|| \cdot \frac{|u(h)|}{|h|} \to 0 \text{ as } h \to 0 \text{ since } u(h) = o(h).$$

$$\frac{|v(k)|}{|h|} = \frac{|v(k)|}{|k|} \cdot \frac{|k|}{|h|} \le \frac{|v(k)|}{|k|} \left[\frac{|f'(x_0)h|}{|h|} + \frac{|u(h)|}{|h|} \right]
\le \frac{|v(k)|}{|k|} \cdot \left[||f'(x_0)|| \cdot \frac{|h|}{|h|} + \frac{|u(h)|}{|h|} \right] \to 0 \text{ as } h \to 0.$$

Thus,
$$r(h) = o(h)$$
. Q.E.D.

Notation. Standard bases of \mathbb{R}^n and \mathbb{R}^m are denoted by e_1, \ldots, e_n and u_1, \ldots, u_m respectively, where

$$e_i = (0, \dots, 0, 1, 0, \dots, 0),$$

$$u_i = (0, \dots, 0, 1, 0, \dots, 0)$$

where the 1 is in the i-th position.

For $f: \mathbb{R}^n \to \mathbb{R}^m$, write

$$f(x) = \sum_{j=1}^{m} f_j(x)u_j,$$

so that

$$f=(f_1,\ldots,f_m),$$

where $f_j: \mathbb{R}^n \to \mathbb{R}$, $f_j(x) = u_j \cdot f$.

Definition 9.16. [Partial Derivatives] For i = 1, 2, ..., j = 1, 2, ..., m,

$$\frac{\partial f_i}{\partial x_j}(x) = (D_j f_i)(x) = \lim_{t \to 0} \frac{f_i(x + te_j) - f_i(x)}{t}$$
 if the limit exists.

Theorem 9.17. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in \mathbb{R}^n$, then $(D_i f_j)(x)$ exists for all i = 1, 2, ..., n, j = 1, 2, ..., m, and

$$[f'(x)] = \begin{bmatrix} (D_1 f_1)(x) & \dots & (D_n f_1)(x) \\ \vdots & & \vdots & & \vdots \\ (D_1 f_m)(x) & \dots & (D_n f_m)(x) \end{bmatrix}.$$
 In other words,
$$[f'(x)]_{ij} = (D_i f_j)(x) = \frac{\partial f_j}{\partial x_i}(x).$$

Proof. We want to prove that A = f'(x) has matrix elements:

$$u_i \cdot Ae_j = (D_j f_i)(x) = \frac{\partial f_i}{\partial x_j}(x).$$

$$f_i(+te_i) = f_i(x) + A_{ii}t + o(t)$$

$$u_i\cdot Ae_j=(D_jf_i)(x)=\frac{\partial f_i}{\partial x_j}(x).$$
 hat is,
$$f_i(+te_j)=f_i(x)+A_{ij}t+o(t).$$
 et
$$\varepsilon(t)=f_i(x+te_j)-f_i(x)-A_{ij}t=u_i\cdot [f(x+te_j)-f(x)-A(te_j)]\,.$$

By Cauchy-Schwartz inequality,

$$|\varepsilon(t)| \le |u_i| \cdot |f(x+te_j) - f(x) - A(te_j)|.$$

Since
$$|u_i|=1$$
 and
$$|f(x+te_j)-f(x)-A(te_j)|=o(te_j)=o(t) \ (\because \ \text{by def. of} \ f'(x)),$$
 we have $\varepsilon(t)=o(t).$

Note. Existence of all partial derivatives does not imply differentia-

Q.E.D.

Example. (see also p.215 of Rudin's)

(a) (check desmos3d for the graph of)

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

We have

$$\left. \frac{\partial f}{\partial x} \right|_{(0,0)} = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0,$$

$$\left. \frac{\partial f}{\partial y} \right|_{(0,0)} = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0.$$

However, f is not continuous at (0,0):

$$\lim_{t \to 0} f(t, at) = \lim_{t \to 0} \frac{at^2}{t^2 + (at)^2} = \lim_{t \to 0} \frac{a}{1 + a^2} = \frac{a}{1 + a^2} \neq f(0, 0) \text{ if } a \neq 0.$$

Definition (Gradient). Let $E \subset \mathbb{R}^n$ be open, $f: E \to \mathbb{R}^1$. If the partial derivatives $\frac{\partial f}{\partial x_i}$ exist for all $i = 1, 2, \dots n$, then the *gradient* of f at $x \in E$ is given by

$$\nabla f(x) = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(x)e_j = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right).$$

Hence, $\nabla f: E \to \mathbb{R}^n$.

If f'(x) exists then the gradient is the matrix representation of f'(x). In particular, if $h = (h_1, h_2, \dots, h_n) \in \mathbb{R}^n$, then

$$f'(x)h = \nabla f(x) \cdot h = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)h_i.$$

Also, for $u \in \mathbb{R}^n$ with |u| = 1,

$$\lim_{t \to 0} \frac{f(x+tu) - f(x)}{t} = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} f(x+tu) = f'(x)u = \nabla f(x) \cdot u.$$

This is the directional derivative of f at x in the direction of u, and is denoted by $(D_u f)(x)$. Note that $(D_u f)(x) = \nabla f(x) \cdot u$ is maximal when $u \parallel \nabla f$. Hence, ∇f points in the direction of maximal increase of f at x.

Example. Let $z = f(x, y) = x^2 + y^2$. Then

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x, 2y).$$

The maximal rate of increase of f at (x,y) is in direction of $\nabla f(x,y)$.

Definition (Convexity). A $E \subset \mathbb{R}^n$ is *convex* if for all $x, y \in E$ and $\lambda \in [0, 1]$, $(1 - \lambda)x + \lambda y \in E$.

Example.

Theorem 9.19. Let $E \subset \mathbb{R}^n$ be open and convex, and let $f: E \to \mathbb{R}^m$. Suppose f is differentiable on E and $||f'|| \leq M$ for all $x \in E$. Then for all $a, b \in E$, we have

$$|f(b) - f(a)| \le M |b - a|.$$

Proof. Note

$$f(b) - f(a) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} f((1-t)a + tb) \mathrm{d}t$$

by convexity of E, component-wise integration (Theorem 6.23) and Theorem 6.21. We now have

$$f(b) - f(a) = \int_0^1 f'((1-t)a + tb)(b-a)dt.$$

Since
$$f'((1-t)a+tb) \in L(\mathbb{R}^n, \mathbb{R}^m)$$
 and $(b-a) \in \mathbb{R}^n$, we have
$$|f(b)-f(a)| = \left| \int_0^1 f'((1-t)a+tb)(b-a) dt \right|$$
$$\leq \int_0^1 |f'((1-t)a+tb)(b-a)| dt \leq \int_0^1 M |b-a| dt \leq M |b-a|.$$