Matrix Elimination Calculation Process

Yuntao JU^{1*}, Yarong Ma¹, Zhinan Qi¹, Ruosi Zhang¹

¹ College of Information and Electrical Engineering, China Agricultural University, Beijing, China E-mail: juyuntao@cau.edu.cn

The matrix A_2 is shown in equation(A2).

$$\mathbf{x} = \begin{bmatrix} \delta\theta_{VSM} & \delta\omega_{VSM} & v_{0,d} & v_{0,q} & i_{cv,d} & \dots \\ \dots & i_{cv,q} & \gamma_d & \gamma_q & i_{o,d} & \dots \\ \dots & i_{o,q} & \varphi_d & \varphi_q & v_{PLL,d} & \dots \\ \dots & v_{PLL,q} & \varepsilon_{PLL} & \xi_d & \xi_q & \dots \\ \dots & q_m & \delta\theta_{PLL} \end{bmatrix}$$
(A1)

Non-zero elements in the original state space matrix are represented by table elements in Figure A1. Move the state variable power angle $\delta\theta_{VSM}$ and angular velocity $\delta\omega_{VSM}$ to the first two rows, and extend the rows of the remaining state variables to obtain a new matrix form \tilde{A}_1 . The new order of state variables is shown in equation (A1).

Matrix transformation principle:: $Z_{(1,2)}$ is the $X_{(14,18)}$ element in the original matrix; $Z_{(2,2)}$ is the $X_{(18,18)}$ element in the original matrix; $Z_{(5,2)}$ is the $X_{(3,18)}$ element in the original matrix; $Z_{(6,2)}$ is the $X_{(4,18)}$ element in the original matrix; $Z_{(7,2)}$ is the $X_{(5,18)}$ element in the original matrix; $Z_{(8,2)}$ is the $X_{(6,18)}$ element in the original matrix;

 $Z_{(9,1)}$ is the $X_{(7,14)}$ element in the original matrix; $Z_{(10,1)}$ is the $X_{(8,14)}$ element in the original matrix; $Z_{(14,1)}$ is the $X_{(11,14)}$ element in the original matrix; $Z_{(14,1)}$ is the $X_{(12,14)}$ element in the original matrix; $Z_{(16,2)}$ is the $X_{(15,18)}$ element in the original matrix; $Z_{(17,2)}$ is the $X_{(16,18)}$ element in the original matrix; $X_{(2,3)}$ is the $X_{(18,1)}$ element in the original matrix; $X_{(2,4)}$ is the $X_{(18,2)}$ element in the original matrix; $X_{(2,10)}$ is the $X_{(18,8)}$ element in the original matrix; $X_{(2,10)}$ is the $X_{(18,8)}$ element in the original matrix; $X_{(2,14)}$ is the $X_{(18,12)}$ element in the original matrix; $X_{(2,15)}$ is the $X_{(18,13)}$ element in the original matrix. The remaining elements move to the next row in orde.

	$\Lambda_{(6,18)}$ defined in the original flatter,																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1		Z																	
2		Z	X	X					X	X				X	X				
3				X	X				X										
4			X			X				X									
5		Z	X	X	X		X		X	X	X					X		X	
6		Z	X	X		X		X	X	X		X					X		
7		Z	X	X	X				X	X						X		X	
8		Z	X	X		X			X	X							X		
9	Z		X						X	X									
10	Z			X					X	X									
11			X								X								
12				X								X							
13	Z		X	X									X						X
14	Z		X	X										X					X
15														X					
16		Z	X						X	X								X	
17		Z		X					X	X									
18			X	X					X	X								X	
19														X	X				
	•									•		. ~	•						

Fig.A1 Matrix form of \tilde{A}_I

$$A_2 = \begin{bmatrix} 0 & a_{12} \cdot \Delta \omega & 0 & \dots & 0 & \dots & 0 & s\Delta \theta \\ a_{21} \cdot \Delta \theta & a_{22} \cdot \Delta \omega & a_{23} \cdot \Delta Z_1 & \dots & 0 & \dots & a_{2n} \cdot \Delta Z_{n-2} & s\Delta \omega - a_{\left[2,(i+2)\right]} \cdot \Delta Z_i \\ a_{31} \cdot \Delta \theta & a_{32} \cdot \Delta \omega & a_{33} \cdot \Delta Z_1 & \dots & 0 & \dots & a_{3n} \cdot \Delta Z_{n-2} & s\Delta Z_1 - a_{\left[3,(i+2)\right]} \cdot \Delta Z_i \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{\left[(i+2),1\right]} \cdot \Delta \theta & a_{\left[(i+2),2\right]} \cdot \Delta \omega & a_{\left[(i+2),3\right]} \cdot \Delta Z_1 & \dots & 0 & \dots & a_{\left[(i+2),n\right]} \cdot \Delta Z_{n-2} & s\Delta Z_i - a_{\left[(i+2),(i+2)\right]} \cdot \Delta Z_i \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} \cdot \Delta \theta & a_{n2} \cdot \Delta \omega & a_{n3} \cdot \Delta Z_1 & \dots & 0 & \dots & a_{nn} \cdot \Delta Z_{n-2} & s\Delta Z_{n-2} - a_{\left[n,(i+2)\right]} \cdot \Delta Z_i \end{bmatrix}$$

Expression of parameters in matrix analysis of phase locked loop are:

$$\begin{cases} v_{pll,q1} = \frac{Z_{(14,1)}}{s - X_{(14,14)} - \frac{X_{(14,19)}}{s} P_1} \\ P_1 = X_{(19,14)} + X_{(19,15)} \frac{X_{(15,14)}}{s} \\ v_{pll,q2} = \frac{X_{(14,3)}}{s - X_{(14,14)} - \frac{X_{(14,19)}}{s} P_1} \\ v_{pll,q3} = \frac{X_{(14,14)}}{s - X_{(14,14)} - \frac{X_{(14,19)}}{s} P_1} \end{cases}$$
(A3)

$$\begin{cases} \varepsilon_{pll1} = \frac{Z_{(14,1)}}{s \left\{ s - X_{(14,14)} - \frac{X_{(14,19)}}{s} P_1 \right\}} \\ \varepsilon_{pll2} = \frac{X_{(14,3)}}{s \left\{ s - X_{(14,14)} - \frac{X_{(14,19)}}{s} P_1 \right\}} \\ \varepsilon_{pll3} = \frac{X_{(14,4)}}{s \left\{ s - X_{(14,14)} - \frac{X_{(14,19)}}{s} P_1 \right\}} \end{cases}$$

The parameters of the phase locked loop on the electromechanical oscillation circuit are:

$$\begin{cases} PLL_1 = X_{(2,15)} \mathcal{E}_{pll1} + X_{(2,14)} \mathcal{V}_{pll,q1} \\ PLL_2 = X_{(2,15)} \mathcal{E}_{pll2} + X_{(2,14)} \mathcal{V}_{pll,q2} \\ PLL_3 = X_{(2,15)} \mathcal{E}_{pll3} + X_{(2,14)} \mathcal{V}_{pll,q3} \end{cases}$$
(A5)

Now the 13th, 14th, 15th, and 19th rows and columns of the phase locked loop in the matrix can be eliminated to obtain a matrix \tilde{A}_2 of size 15×15 .

Matrix analysis of residual variables: First, eliminate intermediate variables $\ \gamma_a$, $\ \gamma_q$, $\ \xi_a$,

 ξ_q , φ_d , φ_q and q_m in the \tilde{A}_2 matrix.

1) Eliminate variable q_m

Move the element in the 18th column of the matrix \tilde{A}_2 to the right side of the equation, multiply the elements in the

18th row by $1/\left(s-X_{(18,18)}\right)$, then multiply this row by $X_{(5,18)}$, $X_{(7,18)}$, and $X_{(16,18)}$, and add them to the 5th, 7th, and 16th rows, respectively. At this time, the elements marked as the 18th rows and columns in the matrix \tilde{A}_2 are eliminated, and the matrix becomes \tilde{A}_3 of size 14×14 .

2) Eliminate variables φ_d and φ_q

Shift the column elements marked as 11th and 12th in matrix \tilde{A}_3 , then the expressions of φ_d and φ_q will be got. Multiply the 11th row by $\frac{1}{s-X_{(11,11)}}$, then multiply the 12th row by $\frac{1}{s-X_{(12,12)}}$. Afterwards, multiply the 11th row by $X_{(5,11)}$ and add it to the 5th row, then multiply the 12th row by $X_{(6,12)}$ and add it to the 6th row. At this time, the elements marked as the 11th and 12th rows and columns in the matrix \tilde{A}_3 are eliminated, and the matrix becomes \tilde{A}_4 of size 12×12 .

3) Eliminate variables ξ_d and ξ_q

Shift the column elements marked as 16th and 17th in matrix \tilde{A}_4 , then the expressions of ξ_d and ξ_q will be got.

Multiply the 16th row by $\frac{1}{s - X_{(16.16)}}$, then multiply the 17th

row by $\frac{1}{s - X_{(17,17)}}$, and then multiply the 16th row by

 $X_{(5.16)}$, and add it to the 5th row. Multiply the 16th rowby $X_{(7.16)}$ to add to the 7th row, then multiply the 17th row by $X_{(6.17)}$ to add to the 6th row, and multiply the 17th rowby $X_{(8.17)}$ to add to the 8th row. At this time, the elements marked as the 16th and 17th rows and columns in the matrix \tilde{A}_4 are eliminated, and the matrix becomes \tilde{A}_5 of size 10×10

4) Eliminate variables γ_d and γ_q

Shift the column elements marked as 7th and 8th in matrix \tilde{A}_5 . Multiply the 7th row by $\frac{1}{s-X_{(7,7)}}$, then

multiply the 8th row by $\frac{1}{s-X_{(8.8)}}$. Next, multiply the 7th row by $X_{(5.7)}$ to add to the 5th row and multiply the 8th row by $X_{(6.8)}$ add to the 6th row. At this time, the elements marked as the 7th and 8th rows and columns in the matrix

 $ilde{A}_{\scriptscriptstyle 5}$ are eliminated, and the matrix becomes $\tilde{A}_{\scriptscriptstyle 6}$ of size $8\! imes\!8$.

The above complex coefficients are expressed by

variables $D_1 - D_6$ and $Q_1 - Q_6$.									
		1	2	3	4	5	6	9	10
		θ	ω	$V_{o,d}$	$V_{o,q}$	$i_{cv,d}$	$i_{_{\scriptscriptstyle CV,q}}$	$i_{o,d}$	$i_{o,q}$
	1		Z						
	2		Z	X	X			X	X
	3				X	X		X	
	4			X			X		X
	5		D	D	D	D		D	D

Fig.A2 Matrix form of \tilde{A}_{ϵ}

The specific values of each parameter are:

X

 Q_1

Z

Z

$$D_{1} = \frac{X_{(5,16)}Z_{(16,2)}}{s} + Z_{(5,2)} + Z_{72}$$
 (A6)

 Q_4

 Q_6

X

 \mathbf{X}

X

$$D_{2} = \left[X_{(16,3)} + \frac{X_{(16,18)}X_{(18,3)}}{s - X_{(18,18)}} \right] \frac{X_{(5,16)}}{s} + X_{(5,3)} + X_{(5,18)} \frac{X_{(18,3)}}{s - X_{(18,18)}} + X_{(5,11)} \frac{X_{(11,3)}}{s - X_{(11,13)}} + X_{73}$$
(A7)

$$D_{3} = \frac{X_{(5,16)}}{s} \left[X_{(16,4)} + \frac{X_{(16,18)} X_{(18,4)}}{s - X_{(18,18)}} \right] +$$

$$X_{(5,4)} + X_{(5,18)} \frac{X_{(18,4)}}{s - X_{(18,18)}} + X_{74}^{'}$$
(A8)

$$D_4 = X_{(5,5)} + \frac{X_{(5,7)}X_{(7,5)}}{s}$$
 (A9)

$$D_{5} = \frac{X_{(5,16)}}{s} \left[X_{(16,9)} + \frac{X_{(16,18)} X_{(18,9)}}{s - X_{(18,18)}} \right] +$$

$$X_{(5,9)} + X_{(5,18)} \frac{X_{(18,9)}}{s - X_{(18,18)}} + X_{79}^{'}$$
(A 10)

$$D_{6} = \frac{X_{(5,16)}}{s} \left[X_{(16,10)} + \frac{X_{(16,18)} X_{(18,10)}}{s - X_{(18,18)}} \right] + X_{(5,10)} + \frac{X_{(5,18)} X_{(18,10)}}{s - X_{(18,18)}} + X_{710}^{'}$$
(A11)

$$Q_{1} = Z_{82}' + Z_{(6,2)} + \frac{X_{(6,17)}Z_{(17,2)}}{s}$$
 (A12)

$$Q_2 = \frac{X_{(6,8)}X_{(8,3)}}{s} + X_{(6,3)}$$
 (A13)

$$Q_{3} = X_{84} + X_{(6,4)} + X_{(6,12)} \frac{X_{(12,4)}}{s - X_{(12,12)}} + \frac{X_{(6,17)}X_{(17,4)}}{s}$$
(A14)

$$Q_4 = \frac{X_{(6,8)}X_{(8,6)}}{s} + X_{(6,6)}$$
 (A15)

$$Q_5 = X_{89}' + X_{(6,9)} + \frac{X_{(6,17)}X_{(17,9)}}{s}$$
 (A16)

$$Q_6 = X_{810} + X_{(6,10)} + \frac{X_{(6,17)}X_{(17,10)}}{s}$$
 (A17)

The expression of the intermediate variable is:

$$Z_{72}' = \frac{X_{(5,7)}}{s} \left[\frac{X_{(7,16)} Z_{(16,2)}}{s} + Z_{(7,2)} \right]$$
 (A18)

$$X_{73}^{'} = \frac{X_{(5,7)}}{s} \times \left\{ \frac{X_{(7,16)}}{s} \left[X_{(16,3)} + \frac{X_{(16,18)} X_{(18,3)}}{s - X_{(18,18)}} \right] + X_{(7,3)} + \frac{X_{(7,18)} X_{(18,3)}}{s - X_{(18,18)}} \right\}$$
(A19)

$$X_{74}^{'} = \frac{X_{(5,7)}}{s} \times \left\{ \frac{X_{(7,16)}}{s} \left[X_{(16,4)} + \frac{X_{(16,18)} X_{(18,4)}}{s - X_{(18,18)}} \right] + X_{(7,4)} + \frac{X_{(7,18)} X_{(18,4)}}{s - X_{(18,18)}} \right\}$$
(A20)

$$X_{79} = \frac{X_{(5,7)}}{s} \times \left\{ \frac{X_{(7,16)}}{s} \left[X_{(16,9)} + \frac{X_{(16,18)} X_{(18,9)}}{s - X_{(18,18)}} \right] + X_{(7,9)} + \frac{X_{(7,18)} X_{(18,9)}}{s - X_{(18,18)}} \right\}$$
(A21)

$$X_{710} = \frac{X_{(5,7)}}{s} \times \begin{bmatrix} X_{10} & X_{10} & X_{10} & X_{10} \end{bmatrix}$$

$$\left\{ \frac{X_{(7,16)}}{s} \left[X_{(16,10)} + \frac{X_{(16,18)} X_{(18,10)}}{s - X_{(18,18)}} \right] +$$
 (A22)

$$X_{(7,10)} + \frac{X_{(7,18)}X_{(18,10)}}{s - X_{(18,18)}}$$

$$Z_{82}' = \frac{X_{(6,8)}}{s} \left[Z_{(8,2)} + \frac{X_{(8,17)} Z_{(17,2)}}{s} \right]$$
 (A23)

$$\dot{X_{84}} = \frac{X_{(6,8)}}{s} \left[X_{(8,4)} + \frac{X_{(8,17)} X_{(17,4)}}{s} \right]$$
 (A24)

$$X_{89}' = \frac{X_{(6,8)}}{s} \left[X_{(8,9)} + \frac{X_{(8,17)}X_{(17,9)}}{s} \right]$$
 (A25)

$$X_{810} = \frac{X_{(6,8)}}{s} \left[X_{(8,10)} + \frac{X_{(8,17)} X_{(17,10)}}{s} \right]$$
 (A26)

At this point, the intermediate variables have been eliminated, and the remaining variables will be eliminated in the next step.

5) Eliminate variables $i_{cv,d}$ and $i_{cv,q}$

The following elimination is based on matrix \tilde{A}_6 , First, shift the 5th and 6th columns of this matrix, then multiply the 5th row by $\frac{1}{s-D_4}$, and multiply the 6th row by

 $\frac{1}{s-Q_4}$. Next, multiply the 5th row by $X_{(3.5)}$ to add to the 3rd row. Multiply the 6th row by $X_{(4.6)}$ and add to the 4th row. At this time, the elements marked as the 5th and 6th rows and columns in the matrix \tilde{A}_6 are eliminated, and the matrix becomes \tilde{A}_7 of size 6×6 .

51165 12/ 515EE 51161									
	1	2	3	4	9	10			
	θ	ω	$V_{o,d}$	$V_{o,q}$	$i_{o,d}$	$i_{o,q}$			
1		Z							
2		Z	X	X	X	X			
3		Y_1	Y_2	Y_3	Y_4	Y_5			
4		Y_6	Y_7	Y_8	Y_9	Y_{10}			
9	Z		X		X	X			
10	Z			X	X	X			

Fig.A3 Matrix form of \tilde{A}_{7}

Where the matrix elements are:

$$Y_{1} = \frac{X_{(3,5)}D_{1}}{s - D_{4}} \tag{A27}$$

$$Y_2 = \frac{X_{(3,5)}D_2}{s - D_4} \tag{A28}$$

$$Y_3 = \frac{X_{(3,5)}D_3}{s - D_4} + X_{(3,4)} \tag{A29}$$

$$Y_4 = \frac{X_{(3,5)}}{s - D_4} D_5 + X_{(3,9)}$$
 (A30)

$$Y_5 = \frac{X_{(3,5)}D_6}{s - D_4} \tag{A31}$$

$$Y_6 = \frac{X_{(4,6)}}{s - Q_4} Q_1 \tag{A32}$$

$$Y_7 = \frac{X_{(4,6)}}{s - Q_2} Q_2 + X_{(4,3)}$$
 (A33)

$$Y_8 = \frac{X_{(4,6)}}{s - Q_3} Q_3 \tag{A34}$$

$$Y_9 = \frac{X_{(4,6)}}{s - Q_5} Q_5 \tag{A35}$$

$$Y_{10} = \frac{X_{(4,6)}}{s - Q_4} Q_6 + X_{(4,10)}$$
 (A36)

6) Eliminate the variables $i_{o,d}$ and $i_{o,q}$

Shift the 9th and 10th columns of this matrix \tilde{A}_7 . First, multiply the 9th row by $\frac{1}{s-X_{9.9}}$, then multiply the 9th row by $X_{(2.9)}$ and add it to 2nd row. Next, multiply the 9th row by Y_4 and add it to 3rd row, then multiply the 9th row by Y_9 and add it to the 4th row. Last, multiply the 9th row by $X_{(10.9)}$ and add it to the 10th row. At this time, the elements marked as the 9th and 10th rows and columns in the matrix \tilde{A}_7 are eliminated, and the matrix becomes \tilde{A}_8 of size 4×4 .

	1	2	3	4
	θ	ω	$V_{o,d}$	$V_{o,q}$
1		Z		
2	E_{21}	Z	X 23	$X_{24}^{'}$
3	E_{31}	Y_1	$Y_{2}^{'}$	Y_3
4	E_{41}	Y_6	Y,	Y_8

Fig.A4 Matrix form of \tilde{A}_s

Where the matrix elements are:

$$X_{23}' = \frac{X_{(10,9)}X_{(9,3)}X_{(2,10)}}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} \times \frac{1}{s - X_{(9,9)}} + \frac{X_{(9,3)}X_{(2,9)}}{s - X_{(9,9)}} + X_{(2,3)}$$
(A37)

$$X_{24}' = \frac{X_{(10,4)}X_{(2,10)}}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} + X_{(2,4)}$$
(A38)

$$Y_{2}' = \frac{X_{(10,9)}X_{(9,3)}Y_{5}'}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} \times \frac{1}{s - X_{(9,9)}} + \frac{X_{(9,3)}Y_{4}}{s - X_{(9,9)}} + Y_{2}$$
(A39)

$$Y_{3}' = \frac{X_{(10,4)}A_{5}'}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} + Y_{3}$$
(A40)

$$Y_{7}' = \frac{X_{(10,9)}X_{(9,3)}Y_{10}'}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} \times \frac{1}{s - X_{(9,9)}} + \frac{X_{(9,3)}Y_{9}}{s - X_{(9,9)}} + Y_{7}$$
(A41)

$$Y_{8}' = \frac{A_{10}'X_{(10,4)}}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(0,0)}} - X_{(10,10)}} + Y_{8}$$
 (A42)

$$E_{21} = \frac{X_{(2,10)} \left[\frac{X_{(10,9)} Z_{(9,1)}}{s - X_{(9,9)}} + Z_{(10,1)} \right]}{s - \frac{X_{(10,9)} X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} + \frac{Z_{(9,1)} X_{(2,9)}}{s - X_{(9,9)}}$$
(A43)

$$E_{31} = \frac{\left[\frac{X_{(10,9)}Z_{(9,1)}}{s - X_{(9,9)}} + Z_{(10,1)}\right]A_{5}^{'}}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} + \frac{Z_{(9,1)}Y_{4}}{s - X_{(9,9)}}$$
(A44)

$$E_{41} = \frac{\left(\frac{X_{(10,9)}Z_{(9,1)}}{s - X_{(9,9)}} + Z_{(10,1)}\right)A_{10}^{'}}{s - \frac{X_{(10,9)}X_{(9,10)}}{s - X_{(9,9)}} - X_{(10,10)}} + \frac{Z_{(9,1)}Y_{9}}{s - X_{(9,9)}}$$
(A45)

The influence of phase locked loop is considered in the above matrix. At this time, parameters E_{21} , X_{23} and X_{24} in the above matrix should be modified.

7) Eliminate variables $v_{o,d}$ and $v_{o,q}$

First, shift the 4th column of the matrix \tilde{A}_8 , then multiply the 4th row by $\frac{1}{s-Y_{8p}}$ and X_{24p} and then add it to the 2nd row. Next, multiply the 4th row by Y_{3p} and add it to the 3rd row. Last, the 3rd column is shifted, and multiply this column by the corresponding coefficient, then

add it to the 2nd row, then matrix \tilde{A}_9 (size of 2×2) is obtained. The effect of the non-electromechanical oscillation circuit of the VSG on the electromechanical oscillation is obtained by the following equation:

$$F = F_{\rho} + F_{\phi} \tag{A46}$$

Where:

$$\begin{cases} F_{\theta} = \frac{\left(\frac{E_{41}}{s - Y_{8}}, Y_{3}^{'} + E_{31}\right) \left(\frac{Y_{7}^{'}}{s - Y_{8}^{'}}, X_{24}^{'} + X_{23}^{'}\right)}{s - \frac{Y_{7}^{'}}{s - Y_{8}^{'}}, Y_{3}^{'} - Y_{2}^{'}} + \frac{E_{41}}{s - Y_{8}^{'}}, X_{24}^{'} + E_{21} \\ F_{\omega} = \frac{\left(\frac{Y_{6}}{s - Y_{8}^{'}}, Y_{3}^{'} + A1\right) \left(\frac{Y_{7}^{'}}{s - Y_{8}^{'}}, X_{24}^{'} + X_{23}^{'}\right)}{s - \frac{Y_{7}^{'}}{s - Y_{8}^{'}}, Y_{3}^{'} - Y_{2}^{'}} + \frac{Y_{6}^{'}}{s - Y_{8}^{'}}, X_{24}^{'} + \frac{Y_{24}^{'}}{s - Y_{8}^{'}}, X_{24}^{'}} \end{cases}$$

This document is an appendix to the article "Research on the Influence Mechanism of Virtual Synchronous Generator on Small-signal Stability Based on Damping Torque Analysis", which is the specific process of matrix elimination.