Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Робототехника и комплексная автоматизация» Кафедра «Системы автоматизированного проектирования»

Домашнее задание №4 по дисциплине «Теория вероятностей и математическая статистика»

Вариант 14

Выполнил: студент группы РК6-36Б Петраков С.А.

Москва

Оглавление

Генератор псевдослучайных чисел
1. Постройте свой генератор с параметрами а = R1, c = G1, X0 = B1, m = 100 (здесь и далее числовые значения берутся из таблиц исходных данных к первому домашнему заданию). Составьте таблицу элементов последовательности до первого повторения, определите период генератора.
2. Постройте свой генератор с рационально выбранными параметрами а и с (согласно таблицам ниже), $X0 = B1$, $m = 100$. Составьте таблицу элементов последовательности до первого повторения, убедитесь в достижении максимального периода генератора.
3. Для этого возьмите первые n = 50 значений из ранее полученной таблицы. Разбейте отрезок [0;99] на r = 10 равных частей [0;9], [10;19],, [90;99]. Определите число элементов усечённой последовательности ni , попавших в соответствующий диапазон и постройте гистограмму
4. Для этого рассчитаем значение коэффициента $\chi 2$ по $n=50$ точкам: $\chi n2 = i = 1rni - n \cdot pi2n \cdot pi$, где p_i – вероятность попадания случайной величины в соответствующий диапазон (численно соответствует площади под графиком плотности распределения для рассматриваемого диапазона). Для равномерного распределения $pi = const = 1r = 0, 1$, и поэтому в рассматриваемой задаче $n \cdot pi = 5$.
5. В нашем случае требуется определить такое значение уровня значимости, с которым можно принять гипотезу о том, что статистическая выборка соответствует равномерному распределению. Полученный уровень значимости можно будет рассматривать как характеристику качества работы генератора случайных чисел, с помощью которого была получена статистическая выборка. Таблицы критических значений распределения $\chi n2$ в часто ограничены представлением уровней значимости, близкими к 0 или к 1. Поэтому в рамках решаемой задачи рекомендуется пользоваться расширенным вариантом этой таблицы, в котором представлены и промежуточные значения (приводится ниже) 6
6. Требуется рассчитать выборочные характеристики (выборочное среднее смещённую и исправленную оценки выборочной дисперсии) для n = 5, 10, 25 и 50 и сравнить их с соответствующими характеристиками теоретического равномерного распределения (математическим ожиданием и дисперсией). Результаты свести в таблицу, с указанием величины
отклонений от теоретических значений

1. Рассчитайте выборочные средние и исправленные выборочные оценки дисперсии для каждой собранной характеристики при n = 10, 25, 50, 100. 10
2. На основе полученных выборок для n = 100 построить гистограммы. Ширину интервалов выбирать не более половины исправленной оценки среднеквадратичного отклонения соответствующей величины. При попадании в крайние интервалы менее 5 значений объединять их с соседними
3. Для каждой пары собранных характеристик рассчитайте выборочные ковариации и коэффициенты корреляции (для значений $n=10,25,50,100$). 13
4. Для тех же значений $n=10, 25, 60$ требуется рассчитать доверительные интервалы для математических ожиданий каждой из собранных характеристик с уровнями значимости $\alpha=0,1$ и $0,01$ (для двусторонней
симметричной области)

R1	G1	B1	R2	G2	B2	R3
11	10	11	10	9	10	9
G3	В3	R	G	В	n	
11	5	1	1	3	5	

Генератор псевдослучайных чисел

$$X_i = (a \cdot X_{i-1} + c) \mod m$$

1. Постройте свой генератор с параметрами а = R1, с = G1, X0 = B1, m = 100 (здесь и далее числовые значения берутся из таблиц исходных данных к первому домашнему заданию). Составьте таблицу элементов последовательности до первого повторения, определите период генератора.

$$a = 11$$
 $c = 10$ $X_0 = 11$ $m = 100$

i	X_i	i	X_i	i	X_i
0	11	10	11	20	11
1	31	11	31	21	31
2	51	12	51	22	51
3	71	13	71	23	71
4	91	14	91	24	91
5	11	15	11	25	11
6	31	16	31	26	31
7	51	17	51	27	51
8	71	18	71	28	71
9	91	19	91	29	91

Период равен 10

2. Постройте свой генератор с рационально выбранными параметрами а и с (согласно таблицам ниже), X0 = B1, m = 100. Составьте таблицу элементов последовательности до первого повторения, убедитесь в достижении максимального периода генератора.

$$a = 41$$
 $c = 67$ $X_0 = 11$ $m = 100$

i	X_i	i	X_i	i	X_i	i	X_i	i	X_i
0	11	25	86	50	61	75	36	100	11
1	18	26	93	51	68	76	43	101	18
2	5	27	80	52	55	77	30	102	5

3	72	28	47	53	22	78	97	103	72
4	19	29	94	54	69	79	44	104	19
5	46	30	21	55	96	80	71	105	46
6	53	31	28	56	3	81	78	106	53
7	40	32	15	57	90	82	65	107	40
8	7	33	82	58	57	83	32	108	7
9	54	34	29	59	4	84	79	109	54
10	81	35	56	60	31	85	6	110	81
11	88	36	63	61	38	86	13	111	88
12	75	37	50	62	25	87	0	112	75
13	42	38	17	63	92	88	67	113	42
14	89	39	64	64	39	89	14	114	89
15	16	40	91	65	66	90	41	115	16
16	23	41	98	66	73	91	48	116	23
17	10	42	85	67	60	92	35	117	10
18	77	43	52	68	27	93	2	118	77
19	24	44	99	69	74	94	49	119	24
20	51	45	26	70	1	95	76	120	51
21	58	46	33	71	8	96	83	121	58
22	45	47	20	72	95	97	70	122	45
23	12	48	87	73	62	98	37	123	12
24	59	49	34	74	9	99	84	124	59

Период достигает максимального периода генератора (m)

3. Для этого возьмите первые n=50 значений из ранее полученной таблицы. Разбейте отрезок [0;99] на r=10 равных частей [0;9], [10;19], ..., [90;99]. Определите число элементов усечённой последовательности n_i , попавших в соответ-

ствующий диапазон и постройте гистограмму.

[0; 9]	2
[10; 19]	8
[20; 29]	7
[30; 39]	2
[40; 49]	5
[40; 49]	5

[50; 59]	8
[60; 69]	2
[70; 79]	3
[80; 89]	8
[90; 99]	5

4. Для этого рассчитаем значение коэффициента χ^2 по n=50 точкам: $\chi_n^2 = \frac{\sum_{i=1}^r (n_i - n \cdot p_i)^2}{n \cdot p_i}$, где p_i – вероятность попадания случайной величины в соответствующий диапазон (численно соответствует площади под графиком плотности распределения для рассматриваемого диапазона). Для равномерного распределения $p_i = const = \frac{1}{r} = 0$, 1, и поэтому в рассматриваемой задаче $n \cdot p_i = 5$.

$$\chi_n^2 = 12.4$$

5. В нашем случае требуется определить такое значение уровня значимости, с которым можно принять гипотезу о том, что статистическая выборка соответствует равномерному распределению. Полученный уровень значимости можно будет рассматривать как характеристику качества работы генератора случайных чисел, с помощью которого была получена статистическая выборка. Таблицы критических значений распределения χ_n^2 в часто ограничены представлением уровней значимости, близкими к 0 или к 1. Поэтому в рамках решаемой задачи рекомендуется пользоваться расширенным вариантом этой таблицы, в котором представлены и промежуточные значения (приводится ниже).

В нашем случае $\nu=r-1=9,$ $\chi_n^2=12.4.$ Тогда ближайшим значением будет $\alpha=0.2.$

6. Требуется рассчитать выборочные характеристики (выборочное среднее, смещённую и исправленную оценки выборочной дисперсии) для n = 5, 10, 25 и 50 и сравнить их с соответствующими характеристиками теоретического равномерного распределения (математическим ожиданием и дисперсией). Результаты свести в таблицу, с указанием величины отклонений от теоретических значений.

$$\underline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

n	<u>x</u>	M(x)	$ \underline{x} - M(x) $
5	25	49.5	24.5
10	32.5	49.5	17
25	43	49.5	6.5
50	50.5	49.5	1

$$\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \underline{x})^2$$

n	σ_n^2	D(x)	$ \sigma_n^2 - D(x) $
5	578	816.75	238.75
10	494.25	816.75	322.5
25	716	816.75	100.75
50	832.25	816.75	15.5

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \underline{x})^2$$

n	S_n^2	D(x)	$ S_n^2 - D(x) $
5	722.5	816.75	94.25
10	549.1667	816.75	267.5833
25	745.8333	816.75	70.916667
50	849.2346938776	816.75	32.4846938776

Задание 2(GPSS)

Рассматривается имитационная модель системы массового обслуживания на GPSS. Смоделируем поведение покупателя в магазине, в котором работают 2 кассы, причём к каждой из них выстраивается отдельная очередь, а квалификация сотрудников немного отличается, поэтому время обслуживания распределено с разными параметрами. Все случайные интервалы времени для простоты будем считать равномерно распределёнными (но независимыми, привязанными к разным потокам случайных чисел). Каждая касса будет представлена одноканальным устройством, обращение к которым будем осуществлять по номерам. Очереди также будут идентифицироваться номерами, без введения символьных имён.

Моделирование будем проводить в течение 1 часа, в качестве единицы времени будем выбирать секунду. Время между приходом покупателей распределено на отрезке [0; R1+G1+B1]. Время обслуживания на первой кассе распределено на отрезке [R1; R1+G1+B1]. Время обслуживания на второй кассе распределено на отрезке [G1; R1+G1+B1].

При принятии решения покупатель сперва проверяет, есть ли свободная касса, и, если есть, направляется к ней. Если же обе кассы заняты, то выбирает кассу, очередь к которой в данный момент короче (очередь понимается с бытовой точки зрения, хотя модель можно было бы упростить, если иначе выбрать расположение блоков DEPART). Если же свободны обе кассы, или очередь к ним одинакова, то выбирается первая касса.

Перед описанием модели используем конструкцию EQU (сокращение от слова «эквивалентность») для удобства изменения привязки к потокам

случайных чисел. По смыслу она аналогична директиве define препроцессора языка С.

```
EQU 1
 rnd
      GENERATE (uniform(rnd,0,32))
      GATE U 1,metka1
      GATE U 2,metka2
      TEST LE Q1,Q2,metka2
 metka1
             QUEUE 1
      SEIZE 1
      DEPART 1
      ADVANCE (uniform(rnd+1,11,32))
      RELEASE 1
      TERMINATE
             QUEUE 2
 metka2
      SEIZE 2
      DEPART 2
       ADVANCE (uniform(rnd+2,10,32))
      RELEASE 2
       TERMINATE
      GENERATE 3600
      TERMINATE 1
START 1
```

rnd	1	2	1	2	rnd	1	2	1	2
	Загрух	кен-	Средня	я длина		Загруж	ен-	Средняя,	длина
	ность		очереді			ность		очереди	
1	0,764	0,487	0,188	0,046	51	0,739	0,511	0,128	0,017
2	0,79	0,517	0,203	0,082	52	0,815	0,568	0,214	0,052
3	0,788	0,51	0,165	0,056	53	0,775	0,564	0,122	0,029
4	0,773	0,538	0,146	0,023	54	0,752	0,488	0,102	0,027
5	0,805	0,497	0,191	0,043	55	0,775	0,548	0,267	0,17
6	0,827	0,534	0,261	0,078	56	0,812	0,549	0,221	0,055
7	0,773	0,478	0,155	0,053	57	0,775	0,489	0,163	0,036
8	0,771	0,549	0,209	0,093	58	0,757	0,542	0,183	0,047
9	0,802	0,521	0,228	0,07	59	0,751	0,567	0,147	0,056
10	0,785	0,519	0,208	0,089	60	0,788	0,584	0,221	0,073
11	0,841	0,619	0,42	0,23	61	0,781	0,535	0,156	0,059
12	0,817	0,595	0,28	0,1	62	0,813	0,573	0,177	0,042
13	0,781	0,491	0,172	0,031	63	0,799	0,542	0,178	0,04
14	0,748	0,523	0,117	0,027	64	0,778	0,544	0,225	0,057
15	0,768	0,544	0,164	0,052	65	0,779	0,541	0,18	0,042
16	0,779	0,494	0,18	0,027	66	0,798	0,56	0,188	0,03
17	0,778	0,51	0,169	0,059	67	0,757	0,51	0,206	0,068
18	0,798	0,558	0,236	0,097	68	0,81	0,599	0,248	0,061
19	0,774	0,568	0,138	0,025	69	0,825	0,579	0,212	0,072
20	0,799	0,546	0,213	0,074	70	0,77	0,449	0,121	0,047
21	0,784	0,497	0,182	0,032	71	0,777	0,513	0,147	0,043
22	0,815	0,598	0,282	0,12	72	0,79	0,543	0,255	0,109
23	0,784	0,567	0,194	0,052	73	0,756	0,499	0,148	0,05
24	0,802	0,594	0,353	0,192	74	0,775	0,55	0,172	0,057
25	0,781	0,563	0,201	0,071	75	0,788	0,551	0,224	0,059
26	0,784	0,497	0,182	0,032	76	0,763	0,634	0,216	0,112
27	0,766	0,542	0,138	0,029	77	0,803	0,577	0,244	0,08
28	0,767	0,507	0,152	0,053	78	0,763	0,48	0,148	0,021
29	0,727	0,503	0,0124	0,037	79	0,793	0,552	0,241	0,113
30	0,806	0,529	0,252	0,071	80	0,806	0,576	0,227	0,052
31	0,794	0,572	0,209	0,063	81	0,761	0,507	0,121	0,036
32	0,809	0,516	0,249	0,088	82	0,796	0,591	0,225	0,073
33	0,747	0,474	0,128	0,033	83	0,778	0,528	0,128	0,005
34	0,826	0,667	0,431	0,247	84	0,777	0,55	0,262	0,107
35	0,798	0,555	0,2	0,044	85	0,728	0,533	0,105	0,01
36	0,808	0,553	0,312	0,142	86	0,786	0,547	0,183	0,07
37	0,801	0,594	0,17	0,024	87	0,767	0,525	0,155	0,059
38	0,762	0,544	0,186	0,045	88	0,772	0,476	0,142	0,044
39	0,777	0,551	0,2	0,053	89	0,781	0,566	0,218	0,063
	2								

40	0,762	0,519	0,166	0,05	90	0,78	0,532	0,223	0,075
41	0,8	0,581	0,252	0,055	91	0,762	0,486	0,114	0,015
42	0,776	0,538	0,137	0,018	92	0,799	0,549	0,212	0,047
43	0,764	0,586	0,228	0,074	93	0,749	0,465	0,125	0,034
44	0,777	0,522	0,21	0,062	94	0,788	0,539	0,146	0,046
45	0,784	0,583	0,353	0,235	95	0,788	0,593	0,237	0,053
46	0,826	0,589	0,211	0,058	96	0,795	0,548	0,209	0,077
47	0,758	0,481	0,116	0,025	97	0,781	0,522	0,244	0,097
48	0,766	0,558	0,236	0,113	98	0,822	0,596	0,238	0,103
49	0,822	0,611	0,307	0,126	99	0,803	0,574	0,183	0,049
50	0,806	0,552	0,271	0,101	100	0,766	0,553	0,166	0,041

1. Рассчитайте выборочные средние и исправленные выборочные оценки дисперсии для каждой собранной характеристики при n = 10, 25, 50, 100.

Загруженность 1 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.7878	0.00033336	0.0003704
25	0.78908	0.0004243136	0.0004419933
50	0.786804	0.0005320024	0.0005428596
100	0.783822	0.0004983007	0,0005033341

Загруженность 2 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.515	0.0004604	0.0005115556
25	0.53668	0.0014438976	0.00150406
50	0.54282	0.0016749076	0.0017090894
100	0.54238	0.0015287356	0,0015441774

Средняя длина очереди 1 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.1954	0.00108384	0.0012042667
25	0.2102	0.00437528	0.0045575833
50	0.201508	0.0063920211	0.0065224705
100	0.196214	0.0044808538	0,004526115

Средняя длина очереди 2 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.0633	0.00046481	0.0005164556
25	0.07288	0.0023590656	0.00245736
50	0.21206	0.4632836164	0.4727383841
100	0.13483	0.2380616611	0,2404663243

2. На основе полученных выборок для n = 100 построить гистограммы. Ширину интервалов выбирать не более половины исправленной оценки среднеквадратичного отклонения соответствующей величины. При попадании в крайние интервалы менее 5 значений объединять их с соседними.

Загруженность 1 канала

Интервал	Количество
$0,727 \le x < 0,7494$	28
$0,7718 \le x < 0,7943$	64
$0.8167 \le x \le 0.8391$	8

Загруженность 2 канала

Интервал	Количество
$0,449 \le x < 0,4714$	12
$0,4938 \le x < 0,5163$	30
$0.5387 \le x < 0.5611$	43
$0,58361 \le x \le 0,6060$	15

Средняя длина очереди 1 канала

Интервал	Количество
$0.0572 \le x < 0.1245$	21
$0.1470 \le x < 0.1694$	28
$0,1918 \le x < 0,2143$	29
$0,2367 \le x < 0,2591$	15
$0.2816 \le x \le 0.3040$	7

Средняя длина очереди 2 канала

Интервал	Количество
$0.005 \le x < 0.02743$	39
$0.0498 \le x < 0.0723$	43
$0.0947 \le x < 0.1171$	12
$0,1396 \le x \le 0,162$	6

3. Для каждой пары собранных характеристик рассчитайте выборочные ковариации и коэффициенты корреляции (для значений n = 10, 25, 50, 100).

$$cov_n(X,Y) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \underline{x}) (y_i - \underline{y})$$
$$\rho(X,Y) = \frac{cov_n(X,Y)}{S_n(X) \cdot S_n(Y)}$$

n	Коэффициент загрузки		Средняя дли	ина очереди
	Выборочная	Коэффици-	Выборочная	Коэффици-
	ковариация ент корре-		ковариация	ент корре-
		ляции		ляции
10	0.000091	0.000963	0.000544	0.026101
25	0.000436	0.001579	0.003165	0.026250
50	0.000559	0.000893	0.003688	0.013278
100	0.000501	0.000414	0.002474	0.005925

4. Для тех же значений n=10, 25, 60 требуется рассчитать доверительные интервалы для математических ожиданий каждой из собранных характеристик с уровнями значимости $\alpha=0,1$ и 0,01 (для двусторонней симметричной области).

$$\underline{x} - \frac{S_n}{\sqrt{n}} \cdot t_{n-1}(\alpha) < M < \underline{x} + \frac{S_n}{\sqrt{n}} \cdot t_{n-1}(\alpha)$$

Загруженность 1 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.776663 < M < 0.798937	0.768020 < M < 0.807580
25	0.781890 < M < 0.796270	0.777307 < M < 0.800853
60	0.779490 < M < 0.789817	0.776429 < M < 0.792877

Загруженность 2 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.501911 < M < 0.528089	0.491755 < M < 0.538245
25	0.523416 < M < 0.549944	0.514962 < M < 0.558398
60	0.533907 < M < 0.551126	0.529010 < M < 0.556024

Средняя длина очереди 1 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.175318 < M < 0.215482	0.159735 < M < 0.231065
25	0.187112 < M < 0.233288	0.172394 < M < 0.248006
60	0.189716 < M < 0.221331	0.180723 < M < 0.230323

Средняя длина очереди 2 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.050149 < M < 0.076451	0.039944 < M < 0.086656
25	0.055926 < M < 0.089834	0.045120 < M < 0.100640
60	0.059697 < M < 0.082369	0.053249 < M < 0.088818