# Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation

Christopher E. Denniston<sup>1</sup> David Millard<sup>1</sup> Fabio Ramos<sup>2,3</sup> Gaurav S. Sukhatme<sup>1</sup> Eric Heiden<sup>1</sup>

<sup>1</sup>University of Southern California, USA

#### <sup>2</sup>Nvidia, USA

<sup>3</sup>University of Sydney, Australia

#### Why probabilistic parameter estimation?

- Reality gap in simulators often due to incorrect simulation settings
- Inference of simulation parameters is difficult for chaotic, nonlinear systems
- Observations are noisy, state estimates are uncertain
- There can be multiple possible parameter settings explaining the same observed behavior

#### **Smoother gradients with Multiple Shooting**

- Split up trajectory into shooting windows
- Jointly estimate start states of shooting windows with simulation parameters
- Impose *defect constraints* to ensure continuity
- Yields smoother likelihood landscape than single-shooting





# Particle-based Bayesian inference

Infer posterior  $p(\theta|D_{\chi})$  over simulation parameters  $\theta \in \mathbb{R}^{M}$  and a set of trajectories  $D_{\mathcal{X}}$  via Bayes' rule:

$$p(\theta|D_{\mathcal{X}}) \propto p(D_{\mathcal{X}}|\theta) p(\theta)$$

#### **Hidden Markov Model:**

 $\mathcal{X} = f_{\text{obs}}([s]_{t=1}^T)$ 

initial state  $s_0$ , observation function  $f_{\rm obs}$ , simulation function  $f_{\rm sim}$ 

$$f_{\text{sim}}(\theta, s_0) = [s]_{t=1}^T$$

$$= sim \quad \left[ s - \left( s - \left( s - \frac{s}{2} \right) \right) \right]$$





**Objective**: minimize KL divergence

$$d_{\mathrm{KL}} \big[ p \big( D_{\mathcal{X}}^{\mathrm{sim}} \big| \theta^{\mathrm{sim}} \big) \, p \big( \theta^{\mathrm{sim}} \big) \, \| \, p \big( D_{\mathcal{X}}^{\mathrm{real}} \big| \theta^{\mathrm{real}} \big) \, p \big( \theta^{\mathrm{real}} \big) \big]$$
 simulation reality

#### **Stein Variational Gradient Descent (SVGD):**

- represents posterior distribution by particles
- can accurately estimate complex multimodal distributions
- leverages parallel, differentiable likelihoods



#### **Our method**

#### **Constrained Stein Variational Gradient Descent (SVGD):**

Extends SVGD to include hard constraints in the particle estimation:

- Parameter limit constraints
- Defect constraints to realize Multiple Shooting approach

# $\dot{\theta} = \phi(\theta) \left| -\lambda \frac{\partial g(\theta)}{\partial \theta} - cg(\theta) \frac{\partial g(\theta)}{\partial \theta}, \quad \dot{\lambda} = g(\theta) \right|$ **CSVGD**

$$\phi(\cdot) = \frac{1}{N} \sum_{j=1}^{N} \left[ k(\theta_j, \theta) \nabla_{\theta_j} \log p(D_{\mathcal{X}} | \theta) + \nabla_{\theta_j} k(\theta_j, \theta) \right]$$
 SVGD

where  $k(\cdot,\cdot)$  is a positive definite kernel (RBF), N is the number of particles

### **Double pendulum**

Infer 11 parameters of a real double pendulum system



# **Experiments**

Trajectory densities resulting from the estimated parameter distributions:





#### **Underactuated mechanism**

Infer the locations of the two 500g weights in the box attached to a Panda robot arm through a universal joint

Setup on real robot

GPU-based, parallel differentiable simulations



# Inferred posterior distributions:











