BISECTION

Variable Key:

Y₁ - The function to be evaluated

L - Lower bound

U - Upper bound

O - Stopping criteria Option

E - Tolerance, Epsilon (Either y-axis magnitude or percent error)

D - Tolerance, Delta x (Difference between upper and lower bound)

M - Maximum number of iterations

G - The function evaluated at the Lower bound, L

H - The function evaluated at the Upper bound, I

I - Current number of Iterations

X - The current root approximation

F - The function evaluated at the root approximation

Z- The old X value, used in the percent error criteria

Comments: (not in actual program) Program: //Inputs Input "EQUATION:",Y₁ //Input equation //Input lower bound Input "LOWER BOUND:",L Input "UPPER BOUND:",U //Input upper bound Repeat O=1 or O=2 or O=3 //Repeat until O equals 1, 2, or 3 Disp "1=F(X) TOLERANCE" //Display options for stopping criteria Disp "2=DX TOLERANCE" Disp "3=PERCENT ERROR" Prompt O //Prompt for stopping criteria option End If 0=1 //If option 1 is selected Then Input "F(X) TOLERANCE:",E //Input y-axis magnitude tolerance, epsilon End If O=2 //If option 2 is selected Then Input "F(X) TOLERANCE:",E //Input y-axis magnitude tolerance, epsilon Input "DX TOLERANCE:",D //Input change in x tolerance, delta x End If O=3 Then Input "PERCENT ERROR:", E //Input percent error tolerance, epsilon End Input "MAX ITERATIONS:",M //Input the maximum iterations to run

pgrmEQUATION	//Call the Equation sub-program, sets Y ₁ to the equation
$Y_1(L) \rightarrow G$ $Y_1(u) \rightarrow H$	specified in the Equation sub-program //Calculate the value of the function at the lower bound //Calculate the value of the function at the upper bound
For(I,1,M,1)	//Begin iterative numerical process //Repeat the following steps at least M times
(1/2)*(L+U)→X	//Calculate the approximation, the midpoint between the upper and lower bounds
$Y_1(X) \rightarrow F$	//Calculate the value of the function at the approximation
Disp "X IS:", X Disp "ITERS IS:",I Pause	//Display the approximation for the iteration //Display the number of iterations
prgmSTPCRTRA	//Call the STPCRTRA sub-program, determines if s
X→Z	topping criteria are met //Store the x value for the percent error calculation
G*F→T	//Find the product of the function evaluated at the lower bound and approximation
If T>0	//If product is greater than 0, the root is in the upper
Then	half of the current interval
F→G	//Set the value of the function at the approximation and
X→L Else	the approximation to the values for the lower bound //If the product is less than 0, the root is in the lower half of the current interval
F→H	//Set the value of the function at the approximation and
X→U	the approximation to the values for the upper bound
End	//End if statement
End	//End for loop
Disp "NO ROOT"	//If an accurate approximation is not found in the gi number of iterations, M, display no root was found
Disp "MAX ITERS",M Pause Stop	//Display the maximum number of iterations

False Position

Variable Key:

Y₁ - The function to be evaluated

L - Lower bound

U - Upper bound

O - Stopping criteria Option

E - Tolerance, Epsilon (Either y-axis magnitude or percent error)

D - Tolerance, Delta x (Difference between upper and lower bound)

M - Maximum number of iterations

G - The function evaluated at the Lower bound, L

H - The function evaluated at the Upper bound, I

I - Current number of Iterations

X - The current root approximation

F - The function evaluated at the root approximation

Program: Comments: (not in actual program) //Inputs Input "EQUATION:",Y₁ //Input equation Input "LOWER BOUND:",L //Input lower bound Input "UPPER BOUND:",U //Input upper bound Repeat O=1 or O=2 or O=3 //Repeat until O equals 1, 2, or 3 Disp "1=F(X) TOLERANCE" //Display options for stopping criteria Disp "2=DX TOLERANCE" Disp "3=PERCENT ERROR" Prompt O //Prompt for stopping criteria option End If 0=1 //If option 1 is selected Then Input "F(X) TOLERANCE:",E //Input y-axis magnitude tolerance, epsilon End If O=2 //If option 2 is selected Then Input "F(X) TOLERANCE:",E //Input y-axis magnitude tolerance, epsilon Input "DX TOLERANCE:",D //Input change in x tolerance, delta x End If O=3 Then Input "PERCENT ERROR:", E //Input percent error tolerance, epsilon End Input "MAX ITERATIONS:",M //Input the maximum iterations to run

pgrmEQUATION	//Call the Equation sub-program, sets Y ₁ to the equation specified in the Equation sub-program
$Y_1(L) \rightarrow G$ $Y_1(u) \rightarrow H$	//Calculate the value of the function at the lower bound //Calculate the value of the function at the upper bound
For(I,1,M,1) Y1(L)*U - Y1(U)*L/ Y1(L)- Y1(U) \rightarrow X Y ₁ (X) \rightarrow F	//Begin iterative numerical process //Repeat the following steps at least M times //Calculate the approximation, use the False Position root approximation equation //Calculate the value of the function at the approximation
Disp "X IS:", X Disp "ITERS IS:",I Pause	//Display the approximation for the iteration //Display the number of iterations
prgmSTPCRTRA	//Call the STPCRTRA sub-program, determines if s topping criteria are met
X→Z	//Store the x value for the percent error calculation
G*F→T	//Find the product of the function evaluated at the lower bound and approximation
If T>0	//If product is greater than 0, the root is in the upper
Then F→G	half of the current interval //Set the value of the function at the approximation and
X→L	the approximation to the values for the lower bound
Else	//If the product is less than 0, the root is in the lower half of the current interval
F→H	//Set the value of the function at the approximation and
X→U	the approximation to the values for the upper bound
End End	//End if statement //End for loop
Disp "NO ROOT"	//If an accurate approximation is not found in the gi number of iterations, M, display no root was found
Disp "MAX ITERS",M Pause Stop	//Display the maximum number of iterations

Newton-Raphson

Variable Key:

Y₁ - The function to be evaluated

Y₂ - The analytical derivative of Y₁

L - The initial guess

O - Stopping criteria Option

E - Tolerance, Epsilon (Either y-axis magnitude or percent error)

D - Tolerance, Delta x (Difference between upper and lower bound)

M - Maximum number of iterations

G - The function evaluated at the Lower bound, L

H - The function evaluated at the Upper bound, I

I - Current number of Iterations

X - The current root approximation

F - The function evaluated at the root approximation

Comments: (not in actual program) Program: //Inputs Input "EQUATION:",Y₁ //Input equation Input "EQUATION:",Y2 //Input analytical derivative Input "GUESS:",L //Input initial guess Repeat O=1 or O=3 //Repeat until O equals 1 or 2 Disp "1=F(X) TOLERANCE" //Display options for stopping criteria Disp "3=PERCENT ERROR" Prompt O //Prompt for stopping criteria option End //End repeat If 0=1 //If option 1 is selected Then Input "F(X) TOLERANCE:",E //Input y-axis magnitude tolerance, epsilon End If O=3 //If option 2 is selected Then Input "PERCENT ERROR:", E //Input percent error tolerance, epsilon End Input "MAX ITERATIONS:",M //Input the maximum iterations to run pgrmEQUATION //Call the Equation sub-program, sets Y₁ and Y₂to the equations specified in the Equation sub-program //Begin iterative numerical process For(I,1,M,1) //Repeat the following steps at least M times $L-(Y_1(L)/Y_2(L)) \rightarrow X$ //Calculate the approximation, use the Newton-Raphson root approximation equation

 $Y_1(X) \rightarrow F$ //Calculate the value of the function at the approximation Disp "X IS:", X //Display the approximation for the iteration Disp "ITERS IS:",I //Display the number of iterations Pause prgmSTPCRTRA //Call the STPCRTRA sub-program, determines if the stopping criteria are met $X \rightarrow Z$ //Store the x value for the percent error calculation $X \rightarrow L$ //Set the root approximation to the next guess End //End for loop Disp "NO ROOT" //If an accurate approximation is not found in the gi number of iterations, M, display no root was found Disp "MAX ITERS",M //Display the maximum number of iterations Pause Stop

Secant

Variable Key:

```
Y<sub>1</sub> - The function to be evaluated
```

- L Guess on, x_n
- U Guess two, x_{n-1}
- O Stopping criteria Option
- E Tolerance, Epsilon (Either y-axis magnitude or percent error)
- D Tolerance, Delta x (Difference between upper and lower bound)
- M Maximum number of iterations
- G The function evaluated at the Lower bound, L
- H The function evaluated at the Upper bound, I
- I Current number of Iterations
- X The current root approximation
- F The function evaluated at the root approximation

```
Program:
                                                Comments: (not in actual program)
                                                //Inputs
Input "EQUATION:",Y<sub>1</sub>
                                                //Input equation
Input "LOWER BOUND:",L
                                                //Input guess one
Input "UPPER BOUND:",U
                                                //Input guess two
Repeat O=1 or O=3
                                                //Repeat until O equals 1, 2, or 3
        Disp "1=F(X) TOLERANCE"
                                                //Display options for stopping criteria
        Disp "3=PERCENT ERROR"
        Prompt O
                                                //Prompt for stopping criteria option
End
If 0=1
                                                //If option 1 is selected
Then
        Input "F(X) TOLERANCE:",E
                                               //Input y-axis magnitude tolerance, epsilon
End
If O=3
Then
                Input "PERCENT ERROR:", E
                                               //Input percent error tolerance, epsilon
End
Input "MAX ITERATIONS:",M
                                                //Input the maximum iterations to run
pgrmEQUATION
                                                //Call the Equation sub-program, sets Y<sub>1</sub> to the equation
                                                specified in the Equation sub-program
                                                //Begin iterative numerical process
For(I,1,M,1)
                                                //Repeat the following steps at least M times
        L-(Y_1(L)^*(U-L))/(Y_1(U) - Y_1(L)) \rightarrow X
                                                //Calculate the approximation, use the Secant
                                                  root approximation equation
```

 $Y_1(X) \rightarrow F$ //Calculate the value of the function at the approximation Disp "X IS:", X //Display the approximation for the iteration Disp "ITERS IS:",I //Display the number of iterations Pause prgmSTPCRTRA //Call the STPCRTRA sub-program, determines if s topping criteria are met $L \rightarrow U$ //Set x_n to x_{n-1} $X \rightarrow L$ //Set x_{n+1} to x_n End //End for loop Disp "NO ROOT" //If an accurate approximation is not found in the gi number of iterations, M, display no root was found Disp "MAX ITERS",M //Display the maximum number of iterations Pause Stop

Equation (subroutine)

Variable Key:

 Y_1 – Function

Y₂ – Analytical Derivative

Program:

"" $\rightarrow Y_1$

"" \rightarrow Y₂

Return

Comments: (not in actual code)

//Assign the function to Y1, Enter between the quotes //Assign the derivative to Y₂,Enter between the brackets //Returns

STPCRTRA (subroutine)

Variable Key:

```
O – Stopping criteria Option
```

F – The function evaluated at the root approximation

E - Tolerance, Epsilon (Either y-axis magnitude or percent error)

X – The current root approximation

I – Current number of Iterations

U – Upper bound L – Lower bound

```
Z – The root approximation from the previous iteration
Program:
                                               Comments: (not in actual code)
If O=1 and abs(F)<E
                                               //If the absolute value of the function at X is less than
                                               //epsilon
Then
        Disp "ROOT IS:",X
                                               //Display the approximation for the iteration
        Disp "ITERS IS:",I
                                               //Display the number of iterations
       Pause
                                               //Pause execution
                                               //Stop the program
       Stop
End
If O=2 and abs(F)<E and (U-L)<D
                                               //If the absolute value of the function is less than
                                               //epsilon and the range between the upper and
                                               //lower bounds is less than delta
Then
        Disp "ROOT IS:",X
                                               //Display the approximation for the iteration
        Disp "ITERS IS:",I
                                               //Display the number of iterations
        Pause
                                               //Pause execution
       Stop
                                               //Stop the program
End
If O=3 and abs(X-Z)/X)*100<E
                                               //If the percent change between the current and
                                               //the previous root is less than epsilon
Then
        Disp "ROOT IS:",X
                                               //Display the approximation for the iteration
        Disp "ITERS IS:",I
                                               //Display the number of iterations
       Pause
                                               //Pause execution
       Stop
                                               //Stop the program
End
                                               //End the if statement
Return
                                               //Return to the previous routine
```