<u>Задача 65</u>

Полная электронная формула атома алюминия в основном состоянии:

$$_{13}$$
Al $1s^2 2s^2 2p^6 3s^2 3p^1$

Полная электронная формула атома магния в возбужденном состоянии:

$$_{13}$$
Al* $1s^2 2s^2 2p^6 3s^1 3p^2$

Распределение валентных электронов по квантовым ячейкам:

В нормальном состоянии:

Al ...3s
$$\uparrow \downarrow$$
 3p \uparrow

В возбужденном состоянии:

$$Al^* \dots 3s$$
 \uparrow $3p$ \uparrow \uparrow

(При переходе атома алюминия в возбужденное состояние один электрон с 3s-подуровня перемещается на 3p-подуровень).

В нормальном состоянии у атома алюминия 1 неспаренный валентный электрон на внешнем энергетическом уровне, значит, валентность атома алюминия в нормальном (стандартном) состоянии равна 1. (B=1)

В возбужденном состоянии у атома алюминия 3 неспаренных валентных электрона на внешнем энергетическом уровне, значит, валентность атома алюминия в возбужденном состоянии равна 3. (В*=3)

Нейтральный атом алюминия в основном состоянии обладает парамагнитными свойствами, так как у атома алюминия имеется неспаренный электрон.

Орбитали внешнего энергетического уровня атома алюминия в основном состоянии (одна 3sорбиталь и одна 3p-орбиталь):

