ESMA 5015: Simulaciones Estocasticas

Alejandro Ouslan

Spring 2025

Contents

1	mportance sampling	
	.1 generando n para \hat{p}_1	
	.2 generando n para \hat{p}_2	
	.3 generando n para \hat{p}_3	
	formulas utiles de Integracion de Monte Carlos mportabnce Sampling	:
J		4
	.1 Ejemplos de practicas	
	3.1.1 Ejemplo 1	-
	.2 Ejemplo 2	;
	3.2.1 Metodo alterno	:

1 Importance sampling

1.1 generando n para \hat{p}_1

Para Encontrar cuantas n son necesarias para estimar la integracion de markovs

- 1. Se
a $n=\frac{z\sigma}{d}^2,$ para un confianza de 95% y z=1.96.
- 2. Para $\hat{p}_1 \to n = \frac{1.96\sqrt{0.127}}{.01}^2$
- 3.

1.2 generando n para \hat{p}_2

Para encontrar p_2 :

1.
$$n = \frac{1.96\sqrt{0.052}}{.01}^2$$

2. n = 1998

1.3 generando n para \hat{p}_3

Para encontrar p_3 :

1.
$$n = \frac{1.96\sqrt{0.0302}}{.01}^2$$

2.
$$n = 1161$$

2 Formulas utiles de Integracion de Monte Carlos

Definition 1 (Formula).

$$\int_{a}^{b} g(x)dx = \int_{0}^{1} g(u(b-a) + a)(b-a)du$$

$$\to \frac{1}{n} \sum_{i=1}^{n} g(u_{i}(b-a) + a)(b-a)$$

Definition 2 (Formula).

$$\int_{0}^{\infty} g(x)dx = \int_{0}^{1} g(\frac{1}{u} - 1) \frac{1}{u^{2}} du$$

$$\to \frac{1}{n} \sum_{i=1}^{n} g(\frac{1}{u_{i}} - 1) \frac{1}{u_{i}^{2}}$$

3 Importabnce Sampling

En un metodo altenativo para la estimaxion $E_f[\ln x] = \int h(x)f(x)dx$ basado en una muestra de x_1, x_2, \dots, x_n de una distribución g(x), donde se aproxima.

$$E_f[\ln x] = \int h(x)f(x)dx$$

$$= \int \frac{h(x)f(x)}{g(x)}g(x)dx$$

$$= \frac{1}{n}\sum_{i=1}^n \frac{h(x_i)f(x_i)}{g(x_i)} \xrightarrow{n \to \infty} E_f[\ln x]$$

Un aventaja de este metodo es que una misma muestra generada de g puede usar para estimar $E_f[\ln(x)]$ para diferentes h y f. Aunque cualquier g sea potencialmente posible, algun g sin mejor que otro NOTE:

$$var(\frac{h(x)f(x)}{q(x)}) = E_g[\frac{h(x)^2 f(x)^2}{q(x)}^2] - E_g[\frac{h(x)f(x)}{q(x)}]^2$$

donde:

$$E_g\left[\frac{h(x)^2 f(x)^2}{g(x)}^2\right] = \int \frac{h(x)^2 f(x)^2}{g(x)} g(x) dx$$
$$= \int h(x)^2 f(x)^2 \frac{g(x)}{g(x)} dx$$

1. > M de modo que la varianza de estimar no son infinita (o sea pequena) similara a accept reject

3.1 Ejemplos de practicas

3.1.1 Ejemplo 1

Considere $X \sim t_v$.

1.
$$f_x(x) = \frac{\Gamma \frac{v+1}{2}}{\Gamma \frac{v}{2}} \frac{1}{v\sqrt{\pi}} \frac{1}{(1+\frac{2^2}{v})^{\frac{v+1}{2}}}$$

2. para
$$-\infty < x < \infty$$

3.
$$E_x[x] = 0 \forall v > 2$$

4.
$$var(x) = \frac{v}{v-2} \forall v > 2$$

Para v = 12 Estimar:

1.
$$E[\sqrt{|\frac{x}{1-x}|} = 1.13$$

2.
$$E[x^2I[x > 2.1] = 6.54$$

3.
$$E\left[\frac{x^5}{1+(x-3)^2}I[x \ge 0] = 4.64\right]$$

Considere g

1. Caushy(0,1), v = 1

2. $N(0,\sigma^2=\frac{v}{v-2})$ para que tengas lamisma varianza que f algoritmo

$$\begin{split} E[\sqrt{|\frac{x}{1-x}|} &= \int_{-\infty}^{\infty} \sqrt{|\frac{x}{1-x}|} f(x) dx \\ &= \int_{-\infty}^{\infty} \frac{\sqrt{|\frac{x}{1-x}|} f(x)}{g(x)} g(x) dx \\ &= \frac{1}{n} \sum_{i=1}^{n} \sqrt{|\frac{x_i}{1-x_i}|} \frac{f(x_i)}{g(x_i)} dx \end{split}$$

cuando x_1, x_2, \ldots, x_n son idd de g(x)

1.
$$g(x) = caushy(0, 1)$$

2.
$$g(x) = N(0, \sigma^2 \frac{v}{v-2})$$

3.
$$f(x) = zv$$

3.2 Ejemplo 2

$$E[x^{5}I[x > 2.1] = \int_{-\infty}^{\infty} x^{5}I[x > 2.1]f(x)dx$$

$$= \int_{2.1}^{\infty} x^{5}f(x)dx$$

$$= \int_{-\infty}^{\infty} \frac{x^{5}I[x \ge 2.1]f(x)}{g(x)}g(x)dx$$

$$\xrightarrow{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}^{5}I[x_{i} \ge 2.1]f(x_{i})}{g(x_{i})}$$

se estan generando x_1, x_2, \dots, x_n a una distribución Caushy(0,1) y $N(0, \frac{v}{v-2})$.

$$\bar{hn} = \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$
$$= \frac{1}{n^2} \sum_{i=1}^{n} h(x_i)$$

3.2.1 Metodo alterno

para el sigiente paso considere una transformacion:

$$\bullet \ \ y = \frac{1}{x}$$

•
$$x = \frac{1}{y}$$

$$dx = -\frac{1}{y^2}$$

entonces

$$= \int_{1/2.1}^{0} \frac{1}{y^{5}} \left[-\frac{1}{y^{2}} \right] f(\frac{1}{y}) dy$$

$$= \int_{0}^{1/2.1} \frac{1}{y^{7}} f(\frac{1}{y}) dy$$

$$= \int_{0}^{1/2.1} \frac{1}{y^{7}} f(\frac{1}{y}) dy$$