인공지능 기말시험 문제지

2022.06.15. 14:00 ~ 15:30 (open books, open internet)

퍼셉트론을 이용하여 OR gate를 구현하려고 한다.
가중치 w₀(b), w₁, w₂가 학습되는 과정의 다음 표를 완성하라.
w₀(b), w₁, w₂의 초기 가중치는 모두 0이고, 학습율은 0.1이다. (10)

가중치 학습알고리듬

$$y^k(t) = f(w \cdot x)$$
 if $d^k == y^k(t)$ continue else 모든 가중치 w_i 에 대하여 $w_i(t+1) = w_i(t) + \eta \cdot (d^k - y^k(t)) \cdot x_i^k$

epoch	입력		OR 출력	퍼셉트론 출력	오차	변경된 가중치		
	\mathbf{x}_1	X2	d	У	d-y	w ₀ (b)	\mathbf{w}_1	W ₂
1	0	0	0					
	0	1	1					
	1	0	1					
	1	1	1					
2	0	0	0					
	0	1	1					
	1	0	1					
	1	1	1					

2. 다음 용어를 설명하라. (20)

(1) hyper parameter	(2) vanishing gradient		
(3) batch normalization	(4) optimizer		
(5) dropout	(6) convolution		
(7) transfer learning	(8) singular value decomposition		
(9) manifold	(10) latent representation		

3. sigmoid함수를 활성화함수로 사용했을 때, 다음 MLP에서의 가중치 w, u1, u2 가 수정되는 과정(오류역전파 과정)을 설명하라. (15)

- 4. (keras-python program)
 - 28 x 28 크기의 fashion-MNIST(10가지의 이미지)를 분류하고자 한다.
 - (1) 다음 조건을 만족하는 MLP 모델을 설계하라 (10)
 - 입력은 1차원 벡터로 변환
 - 2개의 은닉층(hidden layer) (첫번째 256개 node, 두번째 64개 node)를 가짐
 - 각 은닉층의 활성화 함수는 ReLU
 - 첫번째 은닉층 이후 20%의 dropout, 두번째 은닉층 이후에 30%의 dropout
 - 출력층은 10개의 이미지를 분류(활성화 함수는 softmax)
 - optimizer는 adam 사용
 - batch size는 128개
 - fashion-MNIST 이미지는 0 ~ 9로 분류되어 있음(one-hot encoding 아님). 손실함수는 이에 맞게 사용
 - 50회 학습
 - 검증데이터는 훈련데이터의 30%를 사용
 - 정확률(accuracy)로 검증 평가
 - (2) 위 (1) 모델의 학습해야할 layer별로 parameter를 계산하라. (5)
 - (3) 다음 조건을 만족하는 CNN을 설계하라. 2개의 (convolution과 pooling)을 가짐. CNN 이 후는 위 (1)의 MLP를 사용함(10)
 - 필터크기: 3 x 3
 - 필터 이미지 개수: 64개
 - 스트라이드: 2
 - 패딩: 이전 층의 이미지와 같은 크기의 이미지를 생성
 - 활성화 함수: ReLU
 - max poolong 사용, pooling 크기: 2 x 2
 - (4) 위 (3) 모델의 학습해야할 CNN 계층의 parameter를 계산하라. (5)
- 5. (차원 축소) (15)
 - (1) 차원축소를 통해 차원의 저주 때문에 발생하는 어떤 문제점을 해소 할 수 있는가?
 - (2) 차원 축소 과정에서 감수해야 하는 단점은 무엇인가?
 - (3) autoencoder를 이용한 차원축소와 주성분 분석을 통한 차원 축소의 차이점은?
- 6. machine learning과 deep learning의 차이를 설명하라 (10)
- 평가: 중간시험(50%), 기말시험(40%), 레포트(20%)