contrasts {1,2} (conj. null) contrasts

Statistics: p-values adjusted for search volume

Ottation prairies adjusted to course veraine					
set-level	cluster-level		peak-level		mm mm mm
рс	p _{FWE-corr} g _{FDR-corr} k _E	$p_{ m uncorr}$	$\rho_{FWE-corrFDR-corr}^{}}}}$	$(Z_{\equiv}) p_{\text{uncorr}}$	
	1.000 0.723 2 1.000 0.723 2 1.000 0.723 2 1.000 0.714 3 1.000 0.723 1 1.000 0.723 1 1.000 0.723 1 1.000 0.723 1 1.000 0.723 2 1.000 0.723 2 1.000 0.723 2 1.000 0.723 1 1.000 0.723 1	0.598 0.306 0.598 0.510 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723	1.000 0.635 3.48 1.000 0.652 3.46 1.000 0.670 3.44 1.000 0.714 3.40 1.000 0.757 3.37 1.000 0.770 3.36 1.000 0.811 3.33 1.000 0.834 3.30 1.000 0.834 3.30 1.000 0.834 3.28 1.000 0.864 3.28 1.000 0.889 3.26 1.000 0.899 3.25 1.000 0.948 3.21 1.000 0.948 3.21 1.000 0.948 3.21 1.000 0.948 3.21 1.000 0.948 3.21 1.000 0.948 3.21	3.37 0.000 3.35 0.000 3.33 0.000 3.29 0.000 3.27 0.001 3.26 0.001 3.21 0.001 3.21 0.001 3.17 0.001 3.16 0.001 3.16 0.001 3.12 0.001 3.12 0.001 3.12 0.001 3.12 0.001 3.12 0.001	-30 -72 60 -32 -74 -34 22 44 -16 -50 -44 -34 40 -88 6 -64 -32 46 -54 -32 42 44 16 8 24 36 22 42 44 10 -54 6 42 -54 6 42 -54 -32 18 -32 36 32 36 -46 32 34 -46 28 -10 -52 -44 18 -24 52 30

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 3.18, p = 0.001 (1.00 Ω)egrees of freedom = [1.0, 98.0]

Extent threshold: k = 0 voxels

FWHM = 8.2 8.1 7.9 mm mm mm; 4.1 4.0 4.0 {voxels}

Expected voxels per cluster, $\langle k \rangle = 7.217$ Volume: 1784456 = 223057 voxels = 3155.8 resels

Expected number of clusters, $\langle c \rangle = 33.56$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 65.58 voxels FWEp: 5.310, FDRp: 5.649, FWEc: 98, FDReg@13/3