第1章 定位模块—AMCL

1.1 主要接口

1.1.1 amcl_node

1. AMCL 的入口函数:

```
Amcl::Amcl(std::string cfg_fname, std::shared_ptr < CommonData > cdata)
```

其中参数列表中的第一个参数说明了 amcl 配置参数路径, 第二个参数包含了 amcl 需要用到的数据, 比如激光扫描数据, 里程计数据.

该函数完成地图数据的读取,同时开启两个子线程分布处理激光数据和里程计的数据:

```
laser_process_thread_ = new std::thread([&]{runLaserThread();});
odom_process_thread_ = new std::thread([&]{runOdomThread();});
```

2. 雷达数据处理接口

```
void Amcl::runLaserThread()
```

3. 里程计数据处理接口

```
void Amcl::runOdomThread()
```

1.2 参数配置

表 1.1 粒子滤波配置

参数名称	数据类型	默认值	说明
min_particles	int	100	粒子滤波器使用的最小粒子数量。
max_particles	int	500	粒子滤波器使用的最大粒子数量。
kld_err	double	0.01	真实分布与估计分布之间的最大误差。
kld_z	double	0.99	上标准分位数 (1-p), 其中 p 是估计分布上
			误差小于 kld_err 的概率。
update_min_d	double	0.2	执行一次滤波器更新所需的最小位移。
update_min_a	double	$\frac{\pi}{6}$	执行一次滤波器更新所需的最小转角。
resample_interval	int	2	重采样间隔。
transform_tolerance	double	0.1	重采样间隔。
recovery_alpha_slow	double	0.0	慢速平均权重滤波器 (slow average weight fil-
			ter) 的指数衰减速率,用于确定添加随机位
			姿的时机,以达到 recover 的目的。
recovery_alpha_fast	double	0.0	快速平均权重滤波器 (fast average weight fil-
			ter) 的指数衰减速率,用于确定添加随机位
			姿的时机,以达到 recover 的目的。
initial_pose_x	double	0.0	初始位姿中心的 x 分量,用作初始位姿的高
			斯分布的均值。
initial_pose_y	double	0.0	初始位姿中心的 y 分量,用作初始位姿的高
			斯分布的均值。

表 1.2 粒子滤波配置 (续)

参数名称	数据类型	默认值	说明
initial_pose_a	double	0.0	初始方向角, 用作初始位姿的高斯分布的均
			值。
initial_cov_xx	double	0/25	初始位姿方差 (x*x),用作初始位姿的高斯
			分布的协方差矩阵。
initial_cov_yy	double	0.25	初始位姿方差 (y*y),用作初始位姿的高斯
			分布的协方差矩阵。
initial_cov_aa	double	$\frac{\pi}{12} * \frac{\pi}{12}$	初始方向角方差 (a*a),用作初始位姿的高
			斯分布的协方差矩阵。

表 1.3 雷达模型配置

参数名称	数 据	默认值	说明
	类型		
laser_min_range	double	-1.0	激光扫描的最小距离,该值为-1
			时,amcl 将使用激光传感器上报
			数据中的最小值。
laser_max_range	double	-1.0	激光扫描的最大距离,该值为-1
			时, amcl 将使用激光传感器上报
			数据中的最大值。
laser_max_beams	double	30	更新滤波器的时候,使用激光扫
			描束的间隔。一方面可以减少计
			算量,另一方面也是因为临近的
			激光数据之间也不是独立的。
laser_z_hit	double	0.95	传感器模型中的 z_hit 部分的混
			合权重。
laser_z_short	double	0.1	传感器模型中的 z_short 部分的
			混合权重。
laser_z_max	double	0.05	传感器模型中的 z_max 部分的混
			合权重。
laser_z_rand	double	0.05	传感器模型中的 z_rand 部分的混
			合权重。
laser_sigma_hit	double	0.2	z_hit 部分的高斯标准差。
laser_lambda_short	double	0.1	z_short 部分的指数衰减系数。
laser_likelihood_max_dist	double	2.0	似然场模型中, 对障碍物膨胀的
			最大距离。
laser_model_type	string	likelihood_field	激光传感器模型。

表 1.4 雷达模型配置

参数名称	数 据	默认值	说明
	类型		
laser_min_range	double	-1.0	激光扫描的最小距离,该值为-1
			时,amcl 将使用激光传感器上报
			数据中的最小值。
laser_max_range	double	-1.0	激光扫描的最大距离,该值为-1
			时, amcl 将使用激光传感器上报
			数据中的最大值。
laser_max_beams	double	30	更新滤波器的时候,使用激光扫
			描束的间隔。一方面可以减少计
			算量,另一方面也是因为临近的
			激光数据之间也不是独立的。
laser_z_hit	double	0.95	传感器模型中的 z_hit 部分的混
			合权重。
laser_z_short	double	0.1	传感器模型中的 z_short 部分的
			混合权重。
laser_z_max	double	0.05	传感器模型中的 z_max 部分的混
			合权重。
laser_z_rand	double	0.05	传感器模型中的 z_rand 部分的混
			合权重。
laser_sigma_hit	double	0.2	z_hit 部分的高斯标准差。
laser_lambda_short	double	0.1	z_short 部分的指数衰减系数。
laser_likelihood_max_dist	double	2.0	似然场模型中, 对障碍物膨胀的
			最大距离。
laser_model_type	string	likelihood_field	激光传感器模型。

表 1.5 雷达模型配置

参数名称	数据	默认值	说明
	类型		
odom_model_type	string	diff	里程计模型类型。
odom_alpha1	double	0.2	机器人运动模型中,旋转部分的
			旋转期望噪声。
odom_alpha2	double	0.2	机器人运动模型的平移部分的旋
			转期望噪声。
odom_alpha3	double	0.2	机器人运动模型的平移部分的平
			移期望噪声。
odom_alpha4	double	0.2	机器人运动模型的旋转部分的平
			移期望噪声。
odom_alpha5	double	0.2	平移相关的噪声参数。

第2章 避障模块—DWA

2.1 主要接口

dwa 是局部规划的接口, 它定义在 dwa.h 中, 包含了四个接口函数:

```
bool computeVelocityCommands(bros::geometry_msgs::Twist& cmd_vel);
bool isGoalReached();
bool setPlan(const std::vector<bros::geometry_msgs::PoseStamped>& orig_global_plan);
void initialize(bros::geometry_msgs::Twist* global_vel);
```

其中:

- computeVelocityCommands: 通过该接口获取局部规划器输出的机器人控制速度指令.
 - isGoalReached: 用于判定是否到达目标点.
 - setPlan: 用于设定全局规划的路径.
 - initialize: 用于初始化局部规划器.

2.2 参数配置

表 2.1 DWA 配置参数

参数名称	数据类型	默认值	说明
acc_lim_x	double	2.5	机器人在x方向的加速度极限。
acc_lim_y	double	2.5	机器人在y方向的速度极限。
acc_lim_th	double	3.2	机器人的角加速度极限。
max_trans_vel	double	0.55	机器人最大平移速度的绝对值。
min_trans_vel	double	0.1	机器人最小平移速度的绝对值。
max_vel_x	double	0.55	机器人在x方向到最大速度。
min_vel_x	double	0.0	机器人在x方向到最小速度。
max_vel_y	double	0.1	机器人在y方向到最大速度。
min_vel_y	double	-0.1	机器人在y方向到最小速度。
max_rot_vel	double	1.0	机器人的最大角速度的绝对值。
min_rot_x	double	0.0	机器人的最小角速度的绝对值。

表 2.2 DWA 配置参数 (续)

参数名称	数据类型	默认值	说明
yaw_goal_tolerance	double	0.05	达到目标时弧度偏差。
xy_goal_tolerance	double	0.1	达到目标时 x/y 轴的偏差。
sim_time	double	1.7	前向模拟轨迹的时间。
sim_granularity	double	0.025	给定轨迹上的点之间的间隔尺寸。
vx_samples	int	20	x 方向速度的样本数。
vy_samples	int	10	y方向速度的样本数。
vth_samples	int	20	角速度的样本数。
path_distance_bias	double	32.0	贴近全局路径权重。
goal_distance_bias	double	24.0	到达目标点的权重。
occdist_scale	double	0.01	远离障碍物的权重。