Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Exercise Sheet 9

1. Conformal equivalence

- 1.1. Let $\alpha \in [0, 1]$ and $\mathbb{D}_{\alpha} \stackrel{\text{def}}{=} \mathbb{D} \setminus [\alpha, 1]$.
 - (a) Show that \mathbb{D}_{α} is conformally equivalent to \mathbb{D}_0 .

Hint. Would some automorphism of \mathbb{D} be of any help?

(b) Is \mathbb{D}_{α} conformally equivalent to the upper-half of the unit disc $\mathbb{D}^+ \stackrel{\text{def}}{=} \mathbb{D} \cap \mathbb{H}$?

Hint. The map $z \mapsto z^2$ may be useful.

- 1.2. Let $f(z) \stackrel{\text{def}}{=} \exp(2\pi i z)$, for all $z \in \mathbb{H}$.
 - (a) Show that $f(\mathbb{H}) \subseteq \mathbb{D} \setminus \{0\}$.
 - (b) For r > 0, find the image of $\{z \in \mathbb{H} : \text{Im } z > r\}$.
 - (c) Is $\{z \in \mathbb{H} : \operatorname{Im} z > r\}$ conformally equivalent to its image under f? If not, what needs to be done so as to obtain a conformal equivalence?
- 1.3. In each of the following, exhibit a bijective holomorphic map between the given subsets:
 - (a) The first quadrant $\{z \in \mathbb{C} : \operatorname{Re} z, \operatorname{Im} z > 0\}$ and \mathbb{H} .
 - (b) The quarter disc $\{z \in \mathbb{D} : \text{Re } z, \text{Im } z > 0\}$ and \mathbb{D}^+ .
 - (c) \mathbb{D}^+ and the first quadrant $\{z \in \mathbb{C} : \operatorname{Re} z, \operatorname{Im} z > 0\}$.
 - (d) The quarter disc $\{z \in \mathbb{D} : \operatorname{Re} z, \operatorname{Im} z > 0\}$ and \mathbb{H} .
 - (e) \mathbb{D}^+ and the half strip $\{z \in \mathbb{C} : \operatorname{Re} z < 0, 0 < \operatorname{Im} z < \pi\}$.
 - (f) \mathbb{H} and the strip $\{z \in \mathbb{H} : 0 < \operatorname{Im} z < \pi\}$.
 - (g) $\{z \in \mathbb{D} : \operatorname{Re} z > 0\}$ and \mathbb{D} .
 - (h) $\{z \in \mathbb{C} : r_1 < |z| < r_2\}$ and $\{z \in \mathbb{C} : R_1 < |z| < R_2\}$, where r_1, r_2, R_1 and $R_2 > 0$ and $\frac{r_1}{r_2} = \frac{R_1}{R_2}$.
- 1.4.* (a) Let $\alpha \in [0, \pi]$. Show that $\mathbb{H} \setminus \left\{ e^{it} : t \in [0, \alpha] \right\}$ is conformally equivalent to $\mathbb{H} \setminus \left\{ it : 0 \le t \le \frac{1}{2} \tan \frac{\alpha}{2} \right\}$.
 - (b) Let $\beta \ge 0$. Show that $\{z \in \mathbb{C} : \text{Re } z > 0\} \setminus [0, \beta]$ is conformally equivalent to $\{z \in \mathbb{C} : \text{Re } z > 0\}$.

Hint. What is the image of $\{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ under the map $z \mapsto z^2$? Can you use an analytic square root function?

- (c) Show that, for any a > 0, $\mathbb{H} \setminus \{it : 0 \le t \le a\}$ is conformally equivalent to the right half plane $\{z \in \mathbb{C} : \text{Re } z > 0\}$.
- 1.5. Show that the following map establishes a conformal equivalence between $\{z \in \mathbb{H} : |z| > 1\}$ and \mathbb{H} :

$$f: \{z \in \mathbb{H}: |z| > 1\} \longrightarrow \mathbb{H}, \ f(z) \stackrel{\text{def}}{=} z + \frac{1}{z}.$$

2. Families of analytic functions

Recall that, for $U \subseteq_{open} \mathbb{C}$, one has $U = \bigcup_{n=1}^{\infty} K_n$, where

$$K_n \stackrel{\mathrm{def}}{=} \overline{D(0;n)} \cap \left\{ z \in U : |w-z| \geq \frac{1}{n}, \ \forall w \in \mathbb{C} \setminus U \right\}.$$

These compact sets K_n 's have the following properties:

(i) For all $n \in \mathbb{N}$, K_n is contained in the interior of K_{n+1} .

(ii) For every compact subset K of U, there exists $n \in \mathbb{N}$ such that $K \subseteq K_n$.

Let C(U) denote the set of all complex valued continuous functions on U. For $f, r \in C(U)$, define

$$d(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{\|f - g\|_{K_n}}{1 + \|f - g\|_{K_n}} \right), \tag{2.1}$$

where for any $n \in \mathbb{N}$,

$$||f - g||_{K_n} \stackrel{\text{def}}{=} \begin{cases} \sup_{z \in K_n} |f(z) - g(z)| & \text{if } K_n \neq \emptyset \\ 0 & \text{if } K_n = \emptyset \end{cases}.$$

2.1. Show that d, defined as above in (2.1), is a metric on C(U)

Hint. If $a, b, c \ge 0$ with $a \le b + c$ then $\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}$. This can be seen considering the function $\frac{x}{1+c}$, for all $x \ge 0$.

2.2. Show that the metric d on C(U) is bounded.

From now on, unless otherwise mentioned, C(U) is will always be endowed with the metric d.

- 2.3.* Let $\{f_n\}_{n=1}^{\infty}$ in C(U) be a sequence in C(U).
 - (a) Show that $\{f_n\}_{n=1}^{\infty}$ is convergent (with respect to the metric d) if and only if it is uniformly convergent on each compact subset of U.
 - (b) Show that $\{f_n\}_{n=1}^{\infty}$ is Cauchy (with respect to the metric d) if and only if it is uniformly Cauchy on each compact subset of U.
- 2.4. (a) Show that C(U) is a complete metric space.
 - (b) Show that H(U) is closed in C(U).
 - (c) Conclude that H(U) is a complete metric space.
- 2.5. Show that a sequence $\{f_n\}_{n=1}^{\infty}$ in $H(\mathbb{D})$ converges to f if and only if $\int_{C(0;1)} |f_n(z) f(z)| |dz| \xrightarrow[n \to \infty]{} 0$, for all 0 < r < 1.
- 2.6. Let *U* and *V* are open subsets of \mathbb{C} .
 - (a) Suppose $\varphi: U \longrightarrow V$ is a bijective holomorphic map. Show that, if $\mathscr{F} \subseteq H(V)$ is relatively compact, then so is $\{f \circ \varphi: f \in \mathscr{F}\}$.
 - (b)* Let $\mathscr{F} \subseteq H(U)$ be relatively compact. Assume that $f(U) \subseteq V$, for all $f \in \mathscr{F}$. Show that, for any $g \in H(V)$, $\{g \circ f : f \in \mathscr{F}\}$ is relatively compact.
- 2.7. Let $\mathscr{F} \stackrel{\text{def}}{=} \{ f \in H(\mathbb{D}) : \text{Re } f > 0 \text{ and } |f(0)| \leq 1 \}$. Show that \mathscr{F} is relatively compact, but not compact.
- 2.8. Let $U \subseteq_{open} \mathbb{C}$, $w \in \mathbb{C}$ and r > 0. Consider $\mathscr{F} \stackrel{\text{def}}{=} \{ f \in H(U) : |f(z) w| \ge r \}$. Show that for any sequence $\{ f_n \}_{n=1}^{\infty}$ in \mathscr{F} , one has a subsequence $\{ f_{n_k} \}_{k=1}^{\infty}$ which either converges (in H(U)) to some $f \in H(U)$ or diverges to ∞ uniformly on every compact subset of U.
- 2.9. Let $U \subseteq_{open} \mathbb{C}$ and $\mathscr{F} \subseteq H(U)$. Denote $\mathscr{F}' \stackrel{\text{def}}{=} \{f' : f \in \mathscr{F}\}$.
 - (a) Show that, if \mathscr{F} is relatively compact, then so is \mathscr{F}' .
 - (b) Is the converse of 2.9.a true?
 - (c)* Prove the converse of 2.9.a when U is an open disc under the additional hypothesis that there exists $z_0 \in U$ such that the set $\{f(z_0) : f \in \mathcal{F}\}$ is bounded.

Hint. Let U = D(a; R). One can choose a convergent subsequence $\{f_{n_k}\}_{n=1}^{\infty}$ in such a way

that $\{f_{n_k}(z_0)\}_{n=1}^{\infty}$ also converges. Show that $\{f_{n_k}\}_{n=1}^{\infty}$ is uniformly Cauchy on $\overline{D(a;r)}$, for every 0 < r < R.

(d)* Let the additional assumption be as above in 2.9.c. Denote by V the set of all $z \in U$ such that $\{f|_{D(z_0;r)}: f \in \mathscr{F}\}\$ is relatively compact in $H(D(z_0;r))$, for some r>0. Show that V is nonempty and both open and closed in U.

- (e)* Assume that U is connected. Prove the converse of 2.9.a under the additional assumption mentioned in 2.9.c.
- Show that $\mathscr{F} \subseteq H(\mathbb{D})$ is relatively compact if and only if there exists a sequence $\{M_n\}_{n=0}^{\infty}$ of nonnegative reals such that $\limsup_{n\to\infty} M^{\frac{1}{n}} \leq 1$ and $\left|\frac{f^{(n)}(0)}{n!}\right| \leq M_n$, for all $f \in \mathscr{F}$ and $n = 0, 1, 2, \ldots$
- 2.11.* Let $U \subseteq_{open} \mathbb{C}$ and $L: H(U) \longrightarrow \mathbb{C}$ is a linear map. Assume that L is multiplicative, i.e., L(fg) =L(f)L(g), for all $f, g \in H(U)$. Suppose that L is nonzero.
 - (a) Show that, if $f \equiv 1$, then L(f) = 1.
 - (b) Denote the identity map on U by I. Show that $L(I) \in U$.

Hint. Assume $z_0 \stackrel{def}{=} L(I) \notin U$. Then the function $I - z_0$ is nowhere vanishing, so that you can consider the holomorphic function $\frac{1}{I-z_0}$ on U.

(c) Show that, for every $f \in H(U)$, $L(f) = f(z_0)$.

Hint. Consider
$$g: U \longrightarrow \mathbb{C}$$
, $g(z) \stackrel{def}{=} \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & \text{if } z \neq z_0 \\ f'(z_0) & \text{if } z = z_0. \end{cases}$ Is g analytic? $g(I - z_0)$ might be useful.

(d) Find all linear maps from H(U) to \mathbb{C} that are multiplicative.

3. RIEMANN MAPPING THEOREM

- 3.1. Let *U* be a nonempty proper simply connected region in \mathbb{C} and $z_0 \in U$. If *f* is the Riemann map from U to \mathbb{D} , i.e., f is bijective, holomorphic, $f(z_0) = 0$ and $f'(z_0) > 0$. Express any arbitrary bijective holomorphic map $g: U \longrightarrow \mathbb{D}$ in terms of f.
- Let U and V be nonempty proper simply connected open subsets of \mathbb{C} . Show that, for any $z_1 \in U$ and $z_2 \in V$, there exists a unique bijective holomorphic map $f: U \longrightarrow V$ such that $f(z_1) = z_2$ and $f'(z_1) > 0$.
- 3.3. Let U, V, z_1 and z_2 be as above in 3.2. Suppose that $g: U \longrightarrow V$ is a bijective holomorphic map with $g(z_1) = z_2$ and $h: U \longrightarrow V$ be any holomorphic map satisfying $h(z_1) = z_2$. Show that $|h'(z_1)| \le |g'(z_1)|$. What about the equality case?
- 3.4. Let $U, V \subseteq \mathbb{C}$ be open and connected. Assume further that $V \neq \mathbb{C}$ and it is simply connected. Show that the family $\{f \in H(U) : f(U) \subseteq V\}$ is relatively compact.