Sustitución, funciones de orden superior e introducción a mónadas Lógica Computacional 2017-2

Lourdes del Carmen González Huesca Roberto Monroy Argumedo Fernando A. Galicia Mendoza

Facultad de ciencias, UNAM

Miércoles,8 de marzo del 2016

Sustitución

En el primer tercio de la clase nos dedicaremos a implementar la sustitución en la lógica de primer orden.

La función de orden superior mas intutiva

```
\begin{array}{lll} \texttt{map} & :: & (\texttt{a} \to \texttt{b}) \to \texttt{[a]} \to \texttt{[b]} \\ \texttt{map} & \_ & \texttt{[]} = \texttt{[]} \\ \texttt{map} & \texttt{f} & (\texttt{x} \text{:xs}) = (\texttt{f} & \texttt{x} \text{:map} & \texttt{f} & \texttt{xs}) \end{array}
```


Las funciones fold

Problema:

Crear una función f que reciba un operador binario \circ , un elemento x de tipo a y una lista ℓ de tipo a, tal que:

$$pliegue(\circ, x, \ell) = (\dots ((x \circ x_1) \circ x_2) \circ \dots \circ x_n)$$

Las funciones fold

Problema:

Crear una función f que reciba un operador binario \circ , un elemento x de tipo a y una lista ℓ de tipo a, tal que:

$$pliegue(\circ, x, \ell) = (\dots ((x \circ x_1) \circ x_2) \circ \dots \circ x_n)$$

Solución:

```
--plIzq = Pliegue Izquierdo plIzq :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b plIzq f z [] = z plIzq f z (x:xs) = plIzq f (f z x) xs
```


Las funciones fold

Problema:

Crear una función f que reciba un operador binario \circ , un elemento x de tipo a y una lista ℓ de tipo a, tal que:

$$pliegue(\circ, x, \ell) = (\dots ((x \circ x_1) \circ x_2) \circ \dots \circ x_n)$$

Solución:

```
--plIzq = Pliegue Izquierdo plIzq :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b plIzq f z [] = z plIzq f z (x:xs) = plIzq f (f z x) xs
```

Problema 2: Definir el pliegue derecho.

Problemas de funciones de orden superior:

- Oefine una función que devuelva el máximo elemento, según indique la clase Ord, de una lista.
- ② Utilizando la función foldl da una construcción alternativa a length.
- Otilizando la función foldl da una construcción alternativa a map.
- O Utilizando la función foldl da una construcción alternativa a concat.

Seamos monjes sabios

En cualquier lenguaje de programación imperativo (Java,Python,C,etc.) define un programa que reciba un archivo de texto y convierta todas las letras minúsculas a mayúsculas.

Seamos monjes sabios

En cualquier lenguaje de programación imperativo (Java,Python,C,etc.) define un programa que reciba un archivo de texto y convierta todas las letras minúsculas a mayúsculas.

En Haskell el programa que hace eso es el siguiente:

```
import Data.Char
main = do
    inpStr ←readFile "input.txt"
    writeFile "output.txt" (map toUpper inpStr)
```

Simple pero veamos el fondo de este programa.

Notación do

La notación do esta implementada de la siguiente forma:

```
do \{v\} = v
do \{x \leftarrow m; p\} = m \gg \lambda x \rightarrow do \{p\}
do \{m1; m2\} = m1 \gg m2 do \{m2\}
do \{let \{x1=y1; ...; xn=yn\}; p\} = let \{x1=y1; ...; xn=yn\} in do p
```

Analicemos esta notación brindada por el lenguaje.

Un error usual...¿O excepción usual?

Es usual que cuando se inicia a estudiar errores en un lenguaje imperativo, se de el ejemplo de división entre cero. En Haskell la función que divide dos números enteros es la siguiente:

```
divide :: Int \to Int \to Float divide _ 0 = error "Division entre cero." divide n m = n/m
```

Recordando que la expresión error termina el programa, para evitar esto podemos definir la función encapsulando el resultado correcto:

Un error usual...¿O excepción usual?

Es usual que cuando se inicia a estudiar errores en un lenguaje imperativo, se de el ejemplo de división entre cero. En Haskell la función que divide dos números enteros es la siguiente:

```
divide :: Int \to Int \to Float divide _ 0 = error "Division entre cero." divide n m = n/m
```

Recordando que la expresión error termina el programa, para evitar esto podemos definir la función encapsulando el resultado correcto:

```
divide :: Int \rightarrow Int \rightarrow Maybe Float divide _ 0 = Nothing divide n m = Just (n/m)
```


Maybe la monada introductoria ideal

Maybe está implementada de la siguiente forma:

```
\begin{array}{ll} \text{instance Monad Maybe where} \\ \text{return} = \text{Just} \\ \text{x } \text{*= f = case x of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just x} \rightarrow \text{f x} \end{array}
```

Tratemos de inferir las firmas y especificaciones de los métodos return y >>=.

Maybe la monada introductoria ideal

Maybe está implementada de la siguiente forma:

```
\begin{array}{ll} \text{instance Monad Maybe where} \\ \text{return} = \text{Just} \\ \text{x } \text{*= f = case x of} \\ & \text{Nothing} \rightarrow \text{Nothing} \\ & \text{Just x} \rightarrow \text{f x} \end{array}
```

Tratemos de inferir las firmas y especificaciones de los métodos return y >>=. Observamos que Maybe es instancia de la clase Monad, cuya implementación de esta última es la siguiente:

Un par de hermosos monstruos

Observemos que return la moneria que hace es encapsular un tipo dado en una mónada y bind dado un tipo a encapsulado y una función f que va del tipo a al tipo b encapsulado, devuelve la aplicación de f a cada elemento del tipo a encapsulado.

Esto claramente recuerda a ...

Un par de hermosos monstruos

Observemos que return la moneria que hace es encapsular un tipo dado en una mónada y bind dado un tipo a encapsulado y una función f que va del tipo a al tipo b encapsulado, devuelve la aplicación de f a cada elemento del tipo a encapsulado.

Esto claramente recuerda a ... la estructura de listas. La cual resulta también ser una monada, veamos su implementación.


```
instance Monad List where
     return x = Cons x Nil
     xs \gg k = join (map k xs)
join :: List (List a) \rightarrow List a
join Nil = Nil
join (Cons xs xss) = cat xs (join xss)
\mathtt{cat} :: \mathtt{List} \ \mathtt{a} \to \mathtt{List} \ \mathtt{a} \to \mathtt{List} \ \mathtt{a}
cat Nil ys = ys
cat (Cons x xs) ys = Cons x (cat xs ys)
```

Expliquen al ayudante que hacen las funciones join y cat.

¿Qué necesito para que mi estructura sea una monada?

Como hemos visto las clases son abstracciones cuyos métodos deben de cumplir los tipos que las instancien y a parte cada clase cuenta con cierta axiomatización para analizar sus funciones.

Por parte de las mónadas se deben cumplir los siguiente axiomas, propuestos por Kleisli:

```
x >= return = x

(return x) >= f = f x

(x >= f) >= g = \lambdaz \rightarrow (f z >= g)
```

Para mayor información de esta axiomatización revisar el trabajo *Mónadas* en la programación funcional: Una prueba formal de su equivalencia con las ternas de Kleisli de C. Moisés Vázquez Reyes.

Exepciones

Veamos por último la simulación de excepciones utilizando Maybe.

```
divide :: Int \rightarrow Int \rightarrow Maybe Float
divide _{-} 0 = Nothing
divide n m = Just (fromIntegral n / fromIntegral m)
res :: Maybe Float \rightarrow String
res Nothing = "Execpcion: Division entre cero."
res (Just x) = "Respuesta "++show x
main = do
  putStrLn "Ingresa un numero: ";
  x \leftarrow readLn;
  putStrLn "Ingresa otro numero: ";
  y \leftarrow readLn;
  putStrLn (res (divide x y));
  --Aqui no se detuvo el computo
  putStrLn "Sigo vivo :D"
```

