Nome, cognome, matricola

Calcolatori Elettronici (12AGA) – esame del 7.9.2023

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Tempo: 15 minuti.

1	Si consideri un banco di memoria di dimensioni pari a 32M parole, ciascuna da 32 bit, composto di moduli da 2 Mbyte. Quanti moduli compongono il banco?		
2	Dove è memorizzata la Interrupt Vector Table in un	Nella MMI I	A
-	sistema general purpose?	All'interno della memoria ROM	В
		All'interno della memoria RAM	С
		Nella memoria secondaria	D
2	61	2117	A
3	Si consideri una cache con le seguenti caratteristiche	23 bit	A B
	• 128 linee da 16 byte	25 bit	С
		28 bit	D
	sostituzione LRU.		
	Assumendo che gli indirizzi emessi dal processore		
	siano su 32 bit, qual è la dimensione del campo tag		
	associato a ogni linea?		
4	Si considerino i processori RISC: quale delle seguenti affermazioni è <u>vera</u> ?	Tutte le istruzioni possono avere al più un operando memorizzato in una cella di memoria	A
		In assenza di stalli, tutte le istruzioni richiedono un solo colpo di clock per essere eseguite	В
		Il numero di registri disponibili è inferiore ad un processore CISC	С
		Solo le istruzioni di load e store possono accedere alla memoria	D
5	Si consideri un sistema che utilizza il meccanismo della	Quando la pagina richiesta dal processore non si trova in memoria	A
	memoria virtuale: quando si verifica il Page Fault?	secondaria	
		Quando la pagina richiesta dal processore non si trova in memoria principale	В
		Quando la pagina richiesta dal processore si trova in memoria principale	С
		Quando la pagina richiesta dal processore non si trova in cache	D
6	Si consideri il meccanismo della parità, utilizzato per aumentare l'affidabilità delle DRAM: quando		A
	viene calcolato il bit di parità associato ad una	Solo quando la parola viene letta dalla memoria	В
	parola?	Quando la parola viene scritta in memoria e quando viene letta dalla	С
		memoria	
		Solo in momenti prefissati, in cui si calcola il bit di parità per tutte le	D
		parole presenti in quel momento in memoria	
7	Quale tra i fenomeni elencati a lato può causare uno stallo in un processore con pipeline?	L'esecuzione di un'istruzione in virgola mobile	A
	stano in un processore con pipenne:	L'esecuzione di un'istruzione logica	В
		L'esecuzione di un'istruzione aritmetica che produce un overflow	С
		L'esecuzione di un'istruzione NOP	D
8	Si consideri il meccanismo noto come write-back	Esiste un dirty bit per ciascuna parola	Λ
0	utilizzato nella gestione delle cache. Quale delle		A B
	seguenti affermazioni è <u>vera</u> ?	sulla memoria	
		Esiste un dirty bit per ciascuna linea	С
		Il dirty bit viene complementato ad ogni operazione di lettura	D

9	Considerando il linguaggio MIPS a quale tipo di formato corrisponde l'istruzione <i>beq</i> ?	S-type	A	
	Tormato corresponde i isatazione seq .	R-type	В	
		I-type	С	
		J-type	D	
			1	
10	Dato il seguente frammento di codice in linguaggio	\$t3 = 10	A	
	MIPS si indichi il valore finale del registro \$t3	\$t3 = 5	В	
	main: addi \$t2, \$0, 5			
	addi \$12, \$0, 5 addi \$11, \$0, 5	\$t3 = 1	С	
	slt \$t4, \$t2, \$t1	$\boxed{\$t3 = 0}$	Ъ	
	bne \$t4, \$0, L1	313 – 0	D	
	addi \$t3, \$0, 1			
	j L2			
	L1: addi \$t3, \$0, 10			
	L2:			

Risposte corrette

1	2	3	4	5	6	7	8	9	10
64	С	В	D	В	С	A	С	С	С

	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.
111	Tempo: 40 minuti.

Nome, cognome, matricola....

12	Si cons	ideri un sistema composto da <i>n</i> moduli master con arbitraggio del bus di tipo daisy chain. onda ai seguenti punti
	1.	Quanti e quali segnali sono necessari per l'arbitraggio? Chi genera e chi legge ciascuno di tali segnali?
	2.	Come funziona il meccanismo di arbitraggio?
	3.	Quali vantaggi / svantaggi presenta la soluzione basata su daisy chain rispetto ad una soluzione basata su polling?

13		side	rino le var	rie s	soluz	ioni	per	la real	lizzazione	di un contat	ore. In partic	olar	e	1:	1:	-1	4:1:4:	- 1-	1
	1.		onnession		arcn	пеш	па	ai un	contatore	asincrono,	specificand	0 11	про	aı	modun	elementari	utilizzati	e ia	1010
	2.				oroh	itattı	120	di un	contatora	sinorono	specificando	. ;1	tino	di.	moduli	alamantari	utilizzoti	a 1a	loro
	۷.		onnession		arcii	пеш	па	ai uii	comatore	Siliciolio,	specificando) 11	про	uı	modum	elementari	umizzan	e ia	1010
	3.				vante	anni	/cv2	ntaga	i delle due	coluzioni									
	٥.	3	i eteliciiiii	01	vanic	aggi	sva	magg.	i delle due	SOIUZIOIII.									

14	Con rife	erimento all'organizzazione e al funzionamento dei dischi magnetici, si risponda alle seguenti domande: Come sono organizzati i dati sulle facce dei vari dischi?
	2.	
	3.	Quali sono i vantaggi / svantaggi di una soluzione di tipo CAV (Constant Angular Velocity) rispetto ad una soluzione CLV (Constant Linear Velocity)? Quale delle due soluzioni è usata nei dischi magnetici e perché?

Nome, Cognome, Matricola:

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio consegnato con l'instruction set MIPS - tempo: 60 minuti

Si scriva una procedura **Ricostruzione** in linguaggio Assembly MIPS che esegua la ricostruzione dei dati mancanti a seguito di un'operazione di campionamento di un segnale analogico.

I valori relativi al campionamento sono memorizzati in vettore di byte, i valori campionati considerati fuori scala o comunque non affidabili vengono rappresentati con il valore 255.

La procedura dovrà "ricostruire" il segnale, più precisamente i campioni "errati" pari a 255, sostituendo ad essi il valore medio calcolato su un numero di campioni prima e dopo la sequenza pari al numero dei valori "errati".

Si faccia l'ipotesi semplificatrice che il numero massimo dei valori "errati" consecutivi sia pari a 2 e che sia sempre possibile ricostruire il valore "errato" grazie alla presenza di un numero sufficiente di valori "corretti" prima e dopo il/i valore/i errato/i.

In altre parole, se è presente un singolo valore 255, questo è sostituito con la media fra il valore precedente e quello successivo. Se sono presenti due valori 255 consecutivi, entrambi sono sostituiti con la media fra i due valori precedenti e i due successivi.

	vettore Ante
0	11
1	255
2	1
3	255
4	255
5	2
6	12

vettore Post
11
6
1
5
5
2
12

Il valore vettore[1] viene sostituito con il seguente valore: (11+1)/2 = 6I valori vettore[3] e vettore[4] sono sostituiti con il seguente valore: ((6+1)+(2+12))/4 = 5

I parametri passati alla procedura **Ricostruzione** sono (nell'ordine indicato):

- indirizzo del vettore
- numero di elementi del vettore.

La procedura restituisce il numero di elementi del vettore che sono stati "corretti". Nell'esempio precedente, la procedura restituisce 3.

Di seguito un esempio di programma chiamante:

```
DIM=7
.data
vettore: .byte 11 255 1 255 255 2 12

.text
.globl main
.ent main

main: subu $sp, $sp, 4
        sw $ra, ($sp)
        ...
        la $a0, vettore
        li $a1, DIM
        jal Ricostruzione
        ...
        lw $ra, ($sp)
        addiu $sp, $sp, 4
        jr $ra
.end main
```