Separación de cascadas electromagnéticas en el experimento SBND mediante técnicas de Machine Learning

Alejandro Ponce Miguela

Tutores: Alberto Guillén Perales y Bruno Zamorano García

Universidad de Granada

Figura: Un astronauta jugando al baloncesto con gatos en el espacio con un estilo minimalista. https://openai.com/dall-e-2/#demos.

Índice

- Objetivos
- 2 Contextualización física
- 3 Estudio de los datos: Representaciones propuestas
- Resultados
- 6 Conclusiones

Objetivos

- Aprender la física necesaria para la resolución del problema.
- Aprender técnica de MLOps.
- Usar Pytorch para el diseño de los modelos de DL.
- Lograr la clasificación de cascadas electromagnéticas.

Neutrino estéril

Standard Model of Elementary Particles

https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary
Particles.svg

Detección de neutrinos

- Muy complicada debido a la poca interacción con la materia.
- Detectores LArTPC: SBND y DUNE.
- Neutrinos electrónico dan lugar a cascadas electromagnéticas.

https://en.wikipedia.org/wiki/File:schematic_of_a_particle_showsvg

LArTPC

Resumen

Pensar

Datos

mencionar forma y que vamos a usar CNN, es una elección

Creación de las imágenes

comentar que discretizamos poner figura

Representación tridimensional

Proyección de un eje

Proyección de un eje con color

Transformers

SOLO SI TIEMPO

Modelos

Selección de resolución y representación

Ajuste de hiperparámetros

Estudio del mejor modelo

Agregación de modelos

Conclusiones

- Poner en manifiesto la utilidad de la teoría de grupos:
 - Descripción matemática de la **simetría** y la **degeneración**.
 - Caracterización de estados.
- Descripción de **moléculas diatómicas** usando el hamiltoniano del oscilador armónico con interacción a dos cuerpos.
- Se pude **mejorar** el ajuste si incluimos **invariantes de Casimir** de orden superior en el limite SO(2).
- Establece las bases para el estudio de moléculas más complejas. Moléculas triatómicas usando el $U(2)\otimes U(2)$.
- Mejora en mis conocimientos en Python y en el uso de ordenadores para la resolución de problemas físicos.

Diagonalización del hamiltoniano

$$\hat{H} = E_0' + \epsilon \hat{n}_t + \alpha \hat{n}_t^2 + \beta \hat{J}_z^2.$$

Base $|[N]n_t\rangle$:

$$\langle jm'|\hat{H}|jm\rangle$$
, $m,m'=-j,-j+1\ldots,j$.

Necesitamos obtener:

$$\begin{split} \hat{n}_t \left| jm \right\rangle &= \frac{N}{2} \left| jm \right\rangle + \\ &- \frac{1}{2} \sqrt{j \left(j+1 \right) - m \left(m+1 \right)} \left| jm + 1 \right\rangle + \\ &- \frac{1}{2} \sqrt{j \left(j+1 \right) - m \left(m-1 \right)} \left| jm - 1 \right\rangle. \end{split}$$

Resultados

• Molécula HCl:

	$\omega_e \hbar \; (\mathrm{cm}^{-1})$	$x_e \omega_e \hbar \; (\text{cm}^{-1})$
Experimental	2988.90	51.60
Modelo	2988.90	51.60

• Molécula O_2 :

	$\omega_e \hbar \; (\mathrm{cm}^{-1})$	$x_e \omega_e \hbar \; (\mathrm{cm}^{-1})$
Experimental	1580.361	12.0730
Modelo	1580.284	11.5978