

FINAL JEE-MAIN EXAMINATION - APRIL, 2023

(Held On Saturday 08th April, 2023)

TEST PAPER WITH SOLUTION

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. Let
$$I(x) = \int \frac{(x+1)}{x(1+xe^x)^2} dx, x > 0$$
,

If $\lim_{x\to\infty} I(x) = 0$, then I(1) is equal to

$$(1)\frac{e+1}{e+2} - \log_e\left(e+1\right)$$

(2)
$$\frac{e+1}{e+2} + \log_e(e+1)$$

(3)
$$\frac{e+2}{e+1} + \log_e(e+1)$$

(4)
$$\frac{e+2}{e+1} - \log_e(e+1)$$

Official Ans. by NTA (4) Allen Ans. (4)

Sol.
$$I(x) = \int \frac{xe^x + e^x}{xe^x (1 + xe^x)^2} dx$$

Put $1 + xe^x = t$

$$I(x) = \int \frac{1}{(t-1)t^2} dt = \frac{1}{t} + \ln \left| \frac{t-1}{t} \right| + C$$

 $\lim_{x\to\infty} I(x) = 0 :: C = 0$

$$I(1) = \frac{e+2}{e+1} - \ln(1+e)$$

2. If the equation of the plane containing the line x+2y+3z-4=0 = 2x+y-z+5

and perpendicular to the plan $\vec{r} = (\hat{i} - \hat{j}) + \lambda(\hat{i} + \hat{j} + \hat{k}) + \mu(\hat{i} - 2\hat{j} + 3k)$

ax + by + cz = 4, then (a-b+c) is equal to

(1) 20

(2)24

(3)22

(4) 18

Official Ans. by NTA (3) Allen Ans. (3) **Sol.** D.R's of line $\vec{n}_1 = -5\hat{i} + 7\hat{j} - 3\hat{k}$ D.R's of normal of second plane

$$\vec{n}_2 = 5\hat{i} - 2\hat{j} - 3\hat{k}$$

 $\vec{n}_1 \times \vec{n}_2 = -27\hat{i} - 30\hat{j} - 25\hat{k}$

A point on the required plane is $\left(0, -\frac{11}{5}, \frac{14}{5}\right)$

The equation of required plane is

$$27x + 30y + 25z = 4$$

$$\therefore a - b + c = 22$$

- 3. Let R be the focus of the parabola $y^2 = 20x$ and the line y = mx + c intersect the parabola at two points P and Q. Let the point G(10, 10) be the centroid of the triangle PQR. If c-m = 6, then $(PQ)^2$ is
 - (1) 325
- (2) 317
- (3) 296
- (4) 346

Official Ans. by NTA (1) Allen Ans. (1)

Sol.

$$10t_1 + 10t_2 = 30$$

$$\Rightarrow m = \frac{2}{t_1 + t_2} = \frac{2}{3}$$

$$C = m + 6 = \frac{20}{3}$$

$$PQ = \frac{4\sqrt{a^2 - amc}\sqrt{1 + m^2}}{m^2} = \sqrt{325}$$

4. Let $C(\alpha, \beta)$ be the circumcenter of the triangle formed by the lines

$$4x + 3y = 69$$

$$4y - 3x = 17$$
 and

$$x + 7y = 61$$

Then $(\alpha - \beta)^2 + \alpha + \beta$ is equal to

- (1) 18
- (2) 17
- (3) 16
- (4) 15

Official Ans. by NTA (2) Allen Ans. (2)

Sol.

$$\Rightarrow$$
 Circumcentre $\left(\frac{17}{2}, \frac{15}{2}\right)$

$$\Rightarrow (\alpha - \beta)^2 + \alpha + \beta = 17$$

5. Let
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and

$$Q = PQP^T$$
. If $P^TQ^{2007}P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then

2a+b-3c-4d equal to

- (1) 2007
- (2) 2005
- (3)2006
- (4) 2004

Official Ans. by NTA (2) Allen Ans. (2)

Sol.
$$PP^{T} = I$$

 $P^{T} Q^{2007}P = A^{2007}$
 $= \begin{bmatrix} 1 & 2007 \\ 0 & 1 \end{bmatrix} \Rightarrow 2a + b - 3c - 4d = 2005$

6. Let α, β, γ be the three roots of the equation

$$x^3 + bx + c = 0$$
. If $\beta y = 1 = -\alpha$, then

$$b^{3} + 2c^{3} - 3\alpha^{3} - 6\beta^{3} - 8\gamma^{3}$$
 is equal to

- (1) 21
- (2) $\frac{169}{8}$

(3) 19

(4) $\frac{155}{8}$

Official Ans. by NTA (3)

Allen Ans. (3)

Sol.
$$\alpha\beta\gamma = -c$$

$$\alpha = -c$$

$$c = 1$$

since
$$\alpha^3 + b\alpha + c = 0$$

$$\Rightarrow (-1)^3 + b(-1) + 1 = 0$$

$$b = 0$$

$$\therefore x^3 + 1 = 0$$

$$x = -1, -\omega, -\omega^2$$

$$b^3 + 2c^3 - 3\alpha^3 - 6\beta^3 - 8\gamma^3 = 19$$

7. The number of ways, in which 5 girls and 7 boys can be seated at a round table so that no two girls sit together, is

- $(1)126(5!)^2$
- $(2)7(360)^2$
- (3)720
- $(4) 7(720)^2$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. 7 boys can be seated in 6! ways now girls will be placed in gaps

$$\therefore \text{ total ways} = 6! \times {}^{7}\text{C}_{5} \times 5!$$

$$= 126 (5!)^2$$

Final JEE-Main Exam April, 2023/08-04-2023/Morning Session

- 8. In a bolt factory, machines A, B and C manufacture respectively 20%, 30% and 50% of the total bolts. Of their output 3, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product. If the bolt drawn is found the defective, then the probability that it is manufactured by the machine C is
 - (1) $\frac{2}{7}$

- (2) $\frac{9}{28}$
- (3) $\frac{5}{14}$
- $(4) \frac{3}{7}$

Official Ans. by NTA (3) Allen Ans. (3)

- Sol. $P\left(\frac{C}{D}\right) = \frac{0.5 \times 0.02}{0.2 \times 0.03 + 0.3 \times 0.04 + 0.5 \times 0.02}$ = $\frac{5}{14}$
- **9.** The number of arrangements of the letter of the word "INDEPENDENCE" in which all the vowels always occur together is
 - (1) 16800
- (2) 14800
- (3) 18000
- (4) 33600

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. Vowels: I, 4E

Consonants: 3N, 2D, P, C

Total ways of arrangements taking vowels together

$$=\frac{8!}{3!2!}\times\frac{5!}{4!}$$

= 16800

10. Let $f(x) = \frac{\sin x + \cos x - \sqrt{2}}{\sin x - \cos x}, x \in [0, \pi] - \left\{ \frac{\pi}{4} \right\}.$

Then $f\left(\frac{7\pi}{12}\right) f''\left(\frac{7\pi}{12}\right)$ is equal to

- $(1)\frac{-2}{3}$
- (2) $\frac{2}{9}$
- $(3) -\frac{1}{3\sqrt{3}}$
- (4) $\frac{-2}{3\sqrt{3}}$

Official Ans. by NTA (2)

Allen Ans. (2)

Sol.
$$f(x) = \frac{\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x - 1}{\frac{1}{\sqrt{2}}\sin x - \frac{1}{\sqrt{2}}\cos x}$$

$$=\frac{\sin\left(x+\frac{\pi}{4}\right)-\sin\left(\frac{\pi}{2}\right)}{\sin\left(x-\frac{\pi}{4}\right)}$$

$$=-\tan\left(\frac{x}{2}-\frac{\pi}{8}\right)$$

$$f'(x) = -\frac{1}{2}sec^{2}\left(\frac{x}{2} - \frac{\pi}{8}\right)$$

$$f''(x) = -\frac{1}{2} \sec^2 \left(\frac{x}{2} - \frac{\pi}{8}\right) \cdot \tan \left(\frac{x}{2} - \frac{\pi}{8}\right)$$

$$f\left(\frac{7\pi}{12}\right).f''\left(\frac{7\pi}{12}\right) = \frac{2}{9}$$

11. If the points with vectors $\alpha \hat{i} + 10\hat{j} + 13\hat{k}$,

$$6\hat{i} + 11\hat{j} + 11\hat{k}$$
, $\frac{9}{2}\hat{i} + \beta\hat{j} - 8\hat{k}$ are collinear, then

$$(19\alpha - 6\beta)^2$$
 is equal to

- (1)36
- (2) 16
- (3) 25
- (4)49

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. $\overrightarrow{AB} \parallel \overrightarrow{BC}$

$$\frac{6-\alpha}{-\frac{3}{2}} = \frac{1}{\beta - 11} = \frac{2}{19}$$

$$6\beta = 123, 19\alpha = 117$$

- 12. If the coefficients of the three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:5:20, then the coefficient of the fourth term is
 - (1) 3654
- (2) 1827
- (3) 5481
- (4) 2436

Official Ans. by NTA (1) Allen Ans. (1)

Sol.
$$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{1}{5}, \frac{{}^{n}C_{r}}{{}^{n}C_{r+1}} = \frac{1}{4}$$
$$\frac{r}{n-r+1} = \frac{1}{5}, \frac{r+1}{n-r} = \frac{1}{4}$$
$$n = 29$$
$$T_{4} = {}^{29}C_{3}$$

13. Let
$$S_k = \frac{1+2+....+K}{K}$$
 and

$$\sum_{j=l}^{n}S_{j}^{2}=\frac{n}{A}\Big(Bn^{2}+Cn+D\Big)\,,\text{ where }A,\ B,\ C,\ D\in N$$

and A has least value. Then

- (1) A + B is divisible by D
- (2) A + B = 5 (D-C)
- (3) A + C + D is not divisible by B
- (4) A + B + C + D is divisible by 5

Official Ans. by NTA (1) Allen Ans. (1)

Sol.
$$S_k = \frac{k+1}{2}$$

$$\sum_j S_j^2 = \frac{1}{4} (2^2 + 3^2 + ... + (n+1)^2)$$

$$= \frac{2n^3 + 9n^2 + 13n}{24}$$

14. Let
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
. If $| adj(adj(adj2A))| = (16)^n$,

then n is equal to

- (1) 10
- (2)9
- (3) 12

(4) 8

Official Ans. by NTA (1) Allen Ans. (1)

Sol. $\left| \text{adj}(\text{adj}(\text{adj}2\text{A}) \right| = \left| 2\text{A} \right|^{(k-1)^3}$, k is order of matrix = 16^{10}

- 15. Negation of $(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$ is
 - $(1) (\sim p) \vee q$
- $(2) (\sim q) \wedge p$
- (3) $q \land (\sim p)$
- (4) $p \lor (\sim q)$

Official Ans. by NTA (3)

Allen Ans. (3)

Sol.
$$(\sim p \lor q) \to (\sim q \lor p)$$

= $\sim (\sim p \lor q) \lor (\sim q \lor p)$
= $(p \land \sim q) \lor (\sim q \lor p)$

 \therefore negation is $q \land \sim p$ (from venn diagram)

- 16. The shortest distance between the lines $\frac{x-4}{4} = \frac{y+2}{5} = \frac{z+3}{3} \text{ and } \frac{x-1}{3} = \frac{y-3}{4} = \frac{z-4}{2}$
 - (1) $3\sqrt{6}$
- (2) $6\sqrt{3}$
- (3) $6\sqrt{2}$
- (4) $2\sqrt{6}$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. Shortest distance =
$$\frac{\left| (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) \right|}{|\vec{b}_1 \times \vec{b}_2|} = 3\sqrt{6}$$

- 17. The area of the region $\left\{ \left(x,y\right) \colon x^2 \leq y \leq 8-x^2, y \leq 7 \right\} \text{ is }$
 - (1)21

(2) 18

(3)24

(4) 20

Official Ans. by NTA (4)

Allen Ans. (4)

Sol.
$$2\left(\int_0^4 \sqrt{y} \, dy + \int_4^7 \sqrt{8 - y} \, dy\right) = 20$$

- 18. Let the number of elements in sets A and B be five and two respectively. Then the number of subsets of A × B each having at least 3 and at most 6 element is:
 - (1)792
- (2)752
- (3)782
- (4) 772

Official Ans. by NTA (1)

Allen Ans. (1)

- **Sol.** $n(A \times B) = 10$ ${}^{10}C_3 + {}^{10}C_4 + {}^{10}C_5 + {}^{10}C_6 = 792$
- 19. $\lim_{x \to 0} \left(\left(\frac{1 \cos^2(3x)}{\cos^3(4x)} \right) \left(\frac{\sin^3(4x)}{\left(\log_e(2x+1) \right)^5} \right) \right) \text{ is equal}$
 - to ____
 - (1) 9

(2) 18

(3) 15

(4) 24

Official Ans. by NTA (2)

Allen Ans. (2)

- Sol. $\lim_{x \to 0} \left(\frac{\sin^2(3x)}{(3x)^2} \left(\frac{\sin^3(4x)}{(4x)^3} \left(\frac{\log_e(2x+1)}{2x} \right)^5 \right) \times \frac{(3x)^2 \times (4x)^3}{(2x)^5} \right)$
 - = 18
- 20. If for $z = \alpha + i\beta$, |z+2| = z + 4(1+i), then $\alpha + \beta$ and $\alpha\beta$ are the roots of the equation
 - (1) $x^2 + 7x + 12 = 0$
 - $(2) x^2 + 3x 4 = 0$
 - $(3) x^2 + 2x 3 = 0$
 - (4) $x^2 + x 12 = 0$

Official Ans. by NTA (1)

Allen Ans. (1)

Sol. $\sqrt{(\alpha+2)^2 + \beta^2} = (\alpha+4) + i(\beta+4)$ $\Rightarrow \beta = -4, \alpha = 1$ $\therefore x^2 + 7x + 12 = 0$

SECTION-B

21. Let [t] denotes the greatest integer \leq t. Then $\frac{2}{\pi} \int_{\pi/6}^{5\pi/6} \left(8 \left[\cos \operatorname{ec} x \right] - 5 \left[\cot x \right] \right) dx \text{ is equal to}$

Official Ans. by NTA (14)

Allen Ans. (14)

Sol.
$$I = \frac{2}{\pi} \int_{\pi/6}^{5\pi/6} (8[\csc x] - 5[\cot x]) dx$$

$$2I = \frac{4}{\pi} \int_{\pi/6}^{5\pi/6} 8[\csc x] dx$$

$$-\frac{10}{\pi} \int_{\pi/6}^{5\pi/6} ([\cot x] + [-\cot x]) dx$$

$$2I = \frac{4}{\pi} \times 8 \times \frac{4\pi}{6} + \frac{10}{\pi} \times \frac{4\pi}{6}$$

$$I = 14$$

22. Let [t] denotes the greatest integer \leq t. If the constant term in the expansion of $\left(3x^2 - \frac{1}{2x^5}\right)^7$ is

$$\alpha$$
, then $[\alpha]$ is equal to

Official Ans. by NTA (1275)

Allen Ans. (1275)

Sol. For constant term 14 - 7r = 0

$$r = 2$$

$$\therefore$$
 constant term is ${}^{7}C_{2}3^{5}\left(-\frac{1}{2}\right)^{2}$ or $\alpha = \frac{5103}{4}$

$$[\alpha] = 1275$$

23. Let $\vec{a} = 6\hat{i} + 9\hat{j} + 12\hat{k}$, $\vec{b} = \alpha\hat{i} + 11\hat{j} - 2\hat{k}$ and \vec{c} be vectors such that $\vec{a} \times \vec{c} = \vec{a} \times \vec{b}$. If $\vec{a} \cdot \vec{c} = -12$, $\vec{c} \cdot (\hat{i} - 2\hat{j} + \hat{k}) = 5$, then $\vec{c} \cdot (\hat{i} + \hat{j} + \hat{k})$ is equal to _____.

Official Ans. by NTA (11)

Allen Ans. (11)

Sol.
$$\vec{a} \times (\vec{c} - \vec{b}) = \vec{0} \Rightarrow \vec{a} \parallel \vec{c} - \vec{b}$$

 $\vec{c} = \vec{b} + \lambda \vec{a}$

$$\vec{a} \cdot \vec{c} = \vec{a} \cdot \vec{b} + \lambda |\vec{a}|^2 = -12$$

$$6\alpha + 261\lambda = -87$$

$$\vec{c}.\left(\hat{i}-2\hat{j}+\hat{k}\right)=5$$

$$(\vec{b} + \lambda \vec{a}) \cdot (\hat{i} - 2\hat{j} + \hat{k}) = 5$$

$$\Rightarrow \alpha = 29, \lambda = -1$$

24. The largest natural number n such that 3ⁿ divides 66! is _____.

Official Ans. by NTA (31)

Allen Ans. (31)

Sol.
$$\left[\frac{66}{3} \right] + \left[\frac{66}{3^2} \right] + \left[\frac{66}{3^3} \right] = 22 + 7 + 2 = 31$$

25. If a_n is the greatest term in the sequence $a_n = \frac{n^3}{n^4 + 147}, n = 1, 2, 3....., \text{ then } \alpha \text{ is equal to}$

Official Ans. by NTA (5)

Allen Ans. (5)

Sol.
$$a'(n) = \frac{(3n^2)(n^4 + 147) - n^3(4n^3)}{(n^4 + 147)^2}$$

 $a'(n) = 0 \text{ or } n = \sqrt{21}$
 $a_4 = \frac{64}{403}$
 $a_5 = \frac{125}{772} \text{ which is largest}$

26. Let $A = \{0, 3, 4, 6, 7, 8, 9, 10\}$ and R be the relation defined on A such that $R = \{(x,y) \in A \times A : x-y \text{ is odd positive integer or } x-y=2\}$. The minimum number of elements that must be added to the relation R, so that it is a symmetric relation, is equal to _____.

Official Ans. by NTA (19)

Allen Ans. (19)

- Sol. 5 even numbers and 3 odd numbers $\therefore {}^{5}C_{1} \times {}^{3}C_{1} + 4 = 19$
- 27. Consider a circle $C_1: x^2+y^2-4x-2y=\alpha-5$. Let its mirror image in the line y=2x+1 be another circle $C_2: 5x^2+5y^2-10fx-10gy+36=0$. Let r be the radius of C_2 . Then $\alpha+r$ is equal to _____.

Official Ans. by NTA (2)

Allen Ans. (2)

Sol. Mirror image of centre of $C_1(2,1)$ in y=2x+1 is centre of $C_2\left(-\frac{6}{5},\frac{13}{5}\right)$

$$\therefore C_2 \text{ is } x^2 + y^2 + \frac{12}{5}x - \frac{26}{5}y + \frac{36}{5} = 0$$

$$r_2 = 1 \text{ and } \alpha = 1 \Rightarrow \alpha + r_2 = 2$$

28. If the solution curve of the differential equation

$$(y-2\log_{e} x)dx + (x\log_{e} x^{2})dy = 0, x > 1$$

passes through the points $\left(e,\frac{4}{3}\right)$ and $\left(e^4,\alpha\right)$, then

 α is equal to ____.

Official Ans. by NTA (3)

Allen Ans. (3)

Sol.
$$\frac{dy}{dx} + \frac{y}{2x \ln x} = \frac{1}{x}$$

$$I.F. = e^{\int \frac{1}{2x \ln x}} dx = \sqrt{\ln x}$$

$$y\sqrt{\ln x} = \int \frac{1}{x}\sqrt{\ln x} \, dx$$

Put
$$lnx = t^2 \Rightarrow \frac{1}{x} dx = 2t dt$$

$$\Rightarrow y\sqrt{\ln x} = \int 2t^2 dt$$

$$y\sqrt{\ln x} = \frac{2(\ln x)^{\frac{3}{2}}}{3} + \frac{2}{3}$$

 (e^4, α) satisfies curve

$$\therefore \alpha = 3$$

29. Let λ_1, λ_2 be the values of λ for which the points $\left(\frac{5}{2}, 1, \lambda\right)$ and $\left(-2, 0, 1\right)$ are at equal distance from the plane 2x + 3y - 6z + 7 = 0. if $\lambda_1 > \lambda_2$, then the distance of the point $\left(\lambda_1 - \lambda_2, \lambda_2, \lambda_1\right)$ from the line $\frac{x-5}{1} = \frac{y-1}{2} = \frac{z+7}{2}$ is ____.

Official Ans. by NTA (9)

Allen Ans. (9)

Sol.
$$\left| \frac{5+3-6\lambda+7}{\sqrt{49}} \right| = \left| \frac{-4+0-6+7}{\sqrt{49}} \right|$$
$$\Rightarrow \lambda_1 = 3, \, \lambda_2 = 2$$

Shortest distance =
$$\left| \frac{\left| (\vec{a}_2 - \vec{a}_1) \times \vec{b} \right|}{\left| \vec{b} \right|} \right| = 9$$

30. Let the mean and variance of 8 numbers x, y, 10, 12, 6, 12, 4, 8, be 9 and 9.25 respectively. If x > y, then 3x - 2y is equal to ____.

Official Ans. by NTA (25)

Allen Ans. (25)

Sol. Mean =
$$\frac{x + y + 52}{8} = 9 \Rightarrow x + y = 20$$

Variance =
$$\frac{x^2 + y^2 + 504}{8} - 9^2 = 9.25$$

$$\Rightarrow$$
 x² + y² = 218

$$\therefore x = 13, y = 7 \qquad \Rightarrow 3x - 2y = 25$$