

# XAttention: Unlocking the Power of Block Sparse Attention with Antidiagonal Scoring

Ruyi Xu\*, Guangxuan Xiao\*, Haofeng Huang, Junxian Guo, Song Han

Tsinghua University
Massachusetts Institute of Technology
SJTU
NVIDIA

## Motivation

### Deploying Long-Context LLMs is Crucial But Challenging

- LLMs need to handle long-context like summarizing long texts and processing images/videos.
- Prefilling Memory and Latency Increase Quadratically with Context Length
- Sparse attention can be used to address this issue.



Table 5. Density on Different Context Lengths. Stride S=8 achieves lower sparsity, and as context length increases, sparsity generally increases (lower density).

| SeqLen | Stride 4 | Stride 8 | Stride 16 |
|--------|----------|----------|-----------|
| 4k     | 51.73%   | 52.16%   | 55.38%    |
| 8k     | 40.96%   | 43.77%   | 43.55%    |
| 16k    | 27.43%   | 27.49%   | 28.91%    |
| 32k    | 21.09%   | 20.97%   | 27.93%    |
| 64k    | 9.43%    | 10.98%   | 11.32%    |
| 128k   | 6.20%    | 6.89%    | 7.32%     |

a 224×224 image = 256 tokens

a 1-hour video at 1 FPS = 1 million tokens

# Key Challenges

### Block Pooling, Index Search and Accuracy

- Block Pooling: Current methods use block pooling to predict the importance of attention blocks
- Index Search: To achieve lossless accuracy, index search is required, which is time-consuming.
- Prediction method should automatically and robustly identify significant patterns, including crucial vertical and slash patterns.



## Importance Prediction

### **Antidiagonal Selection Method**

- Within each block of size B, we select elements along the antidiagonal using a stride S to predict importance of the whole block.
- Information Preservation: Ensure that information from all tokens is considered, as each token contributes to at least one antidiagonal sum.
- Pattern Detection: Antidiagonal intersects every possible vertical and slash pattern within a block



### Threshold Block Selection

### Dynamically determine density according to context.

- Antidiagonal sum: Select elements along the antidiagonal within each S × S block of the attention map and compute the sum of these elements for each antidiagonal.
- Softmax normalization: Apply the softmax function to these antidiagonal sums, yielding a probability distribution
- Block selection: identify the minimal set of blocks whose cumulative sum of antidiagonal probabilities exceeds a predefined threshold  $\tau$  .

$$\text{find\_blocks}(A,\tau) = \arg\min_{\mathcal{B}} \left\{ |\mathcal{B}| \ \Big| \ \sum_{b \in \mathcal{B}} \sum_{(i,j) \in b} A_{i,j} \geq \tau \right\}$$

#### Algorithm 1 Block Selection

**Require:** Query matrix  $Q \in \mathbb{R}^{L \times d}$ , Key matrix  $K \in \mathbb{R}^{L \times d}$ , block size B, stride S, head dimension  $d_h$ , threshold  $\tau$ 

#### **Ensure:** Sparse mask M

- 1:  $N_B \leftarrow \lfloor L/B \rfloor$  {Number of blocks}
- 2: **for** b = 0 to  $N_B 1$  **do**
- 3:  $Q_{\text{slice}} \leftarrow Q[bB:(b+1)B,:]$  {Extract Q block}
- 4:  $Q_{\text{reshaped}} \leftarrow []$
- 5: **for** i = S 1 down to 0 **do**
- 6:  $Q_{\text{reshaped}}$ .append $(Q_{\text{slice}}[i::S,:])$  {Reshape along antidiagonals with stride S}
- 7: **end for**
- 8:  $K_{\text{reshaped}} \leftarrow []$
- 9: **for** i = 0 to S 1 **do**
- 10:  $K_{\text{reshaped}}$ .append(K[i::S,:]) {Reshape along antidiagonals with stride S}
- 1: end for
- 12:  $A_{\text{approx}} \leftarrow \text{Softmax}\left(\frac{Q_{\text{reshaped}}K_{\text{reshaped}}^T}{\sqrt{d_h} \cdot S}\right)$  {Approximate attention scores}
- 13:  $M_b \leftarrow \text{find\_blocks}(A_{\text{approx}}, \tau)$  {Find blocks based on threshold}
- 14: **end for**
- 15:  $M \leftarrow \text{concatenate}(M_0, M_1, \dots, M_{N_B-1})$  {Concatenate block masks}



## Minimum Threshold Prediction

### Dynamic programming to determine the optimal threshold for each attention head.

- Problem Formulation: Consider a model with H attention heads.
- We define a dynamic programming table D[h][m], where h ∈ {1, 2, ..., H} represents the h-th head,
   and m ∈ {1, 2, ..., M} denotes the number of threshold adjustments made.

$$D[h][m] = \max(D[h-1][m], P(h,m))$$

- **Dynamic Programming:** D[h][m] stores the best performance achievable when exactly m threshold adjustments have been made across the first h heads.
- $t_h(m) = t_h(m-1) \times 0.9$
- This Further reduces the density and computational cost of Xattention.

| Stride               | S=4 |                  | S   | = 8     | S = 16 |         |  |
|----------------------|-----|------------------|-----|---------|--------|---------|--|
| Metric               | Avg | Density          | Avg | Density | Avg    | Density |  |
| au=0.9 Minimum $	au$ |     | 23.06%<br>21.09% |     |         |        |         |  |

# Results on Accuracy Benchmarks

### Long-context Benchmarks: RULER and LongBench

#### • RULER:

| Input Len                                            | 4k                             | 8k                             | 16k                     | 32k                            | 64k                            | 128k                    | Avg.                           |
|------------------------------------------------------|--------------------------------|--------------------------------|-------------------------|--------------------------------|--------------------------------|-------------------------|--------------------------------|
| Full                                                 | 96.74                          | 94.03                          | 92.02                   | 84.17                          | 81.32                          | 76.89                   | 87.52                          |
| FlexPrefill MInference SeerAttn Xattn S=8 Xattn S=16 | 96.54<br>84.43<br><b>96.83</b> | 94.06<br>79.55<br><b>94.07</b> | 91.37<br>79.80<br>93.17 | 85.79<br>72.95<br><b>90.75</b> | 83.03<br>64.79<br><b>84.08</b> | 54.12<br>51.61<br>72.31 | 84.15<br>72.18<br><b>88.47</b> |

#### LongBench:

|                                         | Sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | le-Doc             | QA    | Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ulti-Doc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QA                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Summa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rization |          | Few-  | shot Le  | arning                         |       | Code        |       |       |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------|----------|--------------------------------|-------|-------------|-------|-------|
| Method                                  | AND STANDARD OF THE STANDARD O | Ossport<br>Sperior |       | SON TO STATE OF THE STATE OF TH | Zhiring<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Marian<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma<br>Ma | A San | 2000 of 1000 o | O State of the sta | 250ga    | Malijing |       | Zizigo X | SAA Samman                     | 25.7  | \chi_{\chi} | \$5°  | Avg.  |
| Full                                    | 31.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |       | 16.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.79                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |       |          | 43.74                          |       |             |       |       |
| MInference<br>FlexPrefill<br>XAttention | 27.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.56              | 27.66 | 17.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>16.46</b><br>15.14<br>16.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.58<br>9.46<br><b>11.88</b>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.05    | 27.25    | 64.00 | 88.18    | 43.55<br>41.28<br><b>44.13</b> | 31.00 | 45.69       | 47.54 | 36.83 |

## Results on Accuracy Benchmarks

### Video Understanding Benchmark: Video-MME

- Xattention demonstrates good transferability on the QwenVL-2-7B model.
- XAttention outperforms Full Attention on long video tasks and achieves the best average performance among all sparse attention methods.

|             | Shor        | t (%)       | Medi        | ium (%)     | Long        | g (%)       | Over | all (%)     |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------------|
| subs        | w/o         | w/          | w/o         | w/          | w/o         | w/          | w/o  | w/          |
| Full        | 72.1        | 78.1        | 63.9        | 69.4        | 55.1        | 60.2        | 63.7 | 69.2        |
| MInference  |             |             | 0_10        | 0.12        |             |             |      |             |
| FlexPrefill | 71.4        | 77.4        | 62.6        | 68.3        | 53.8        | 57.3        | 62.6 | 67.7        |
| XAttention  | <b>71.9</b> | <b>78.8</b> | <b>62.6</b> | <b>68.5</b> | <b>55.7</b> | <b>60.3</b> | 63.3 | <b>69.1</b> |

# Prefilling Latency Improvements

- XAttention provides up to 13.5× decoding latency improvement for Llama-3-8B-Instruct model
- XAttention accelerates pattern search time by up to 24.9x compared to Minference and 5.9x compared to Flexprefill.





# **Ablation Study**

#### Antidiagonal Pattern

|              | St    | ride S | = 8     | Str   | = 16  |         |
|--------------|-------|--------|---------|-------|-------|---------|
| Metric       | 32k   | Avg.   | Density | 32k   | Avg.  | Density |
| Random       | 82.53 | 82.48  | 27.57%  | 82.35 | 80.94 | 31.36%  |
| Diagonal     | 76.47 | 81.06  | 24.47%  | 58.26 | 79.63 | 25.31%  |
| Antidiagonal | 90.75 | 88.47  | 20.97%  | 90.64 | 88.08 | 27.93%  |

#### Top-K vs. Top-Ratio vs. Dynamic

| Stride                    | S=4 |                  | S   | = 8     | S = 16 |         |  |
|---------------------------|-----|------------------|-----|---------|--------|---------|--|
| Metric                    | Avg | Density          | Avg | Density | Avg    | Density |  |
| Top K                     |     | 17.40%           |     |         |        |         |  |
| Ratio<br><b>Threshold</b> |     | 21.00%<br>21.09% |     |         |        |         |  |

#### Minimum Threshold Prediction

| Stride               | S=4 |                  | S   | = 8     | S = 16 |         |  |
|----------------------|-----|------------------|-----|---------|--------|---------|--|
| Metric               | Avg | Density          | Avg | Density | Avg    | Density |  |
| au=0.9 Minimum $	au$ |     | 23.06%<br>21.09% |     |         |        |         |  |

#### Stride Sizes

| Stride  | S=4    | S = 8  | S = 16 | S = 64 |
|---------|--------|--------|--------|--------|
| Avg     | 88.89  | 88.47  | 88.08  | 81.21  |
| Density | 21.09% | 20.97% | 27.93% | 39.88% |

## Conclusion

- We present XAttention, a novel plug-and-play framework for accelerating long-context inference in Transformer models
- Code: https://github.com/mit-han-lab/x-attention







