Panel Test

Tang Jie, Zou Yunlong

2022年11月2日

目录

1	Model	1
2	LR Test	2
3	Simulation	3
4	EL Test	6

1 MODEL

1 Model

 I_{κ} is an identity matrix of dimension κ , J_{κ} is a matrix of ones of dimension κ , $\mathbf{1}_{\kappa}$ is a vector of ones of dimension κ , \otimes denotes the Kronecker product.

Consider the following panel data regression model,

$$y_{it} = x'_{it}\beta + u_{it}, \quad i = 1, 2, ..., N, \ t = 1, 2, ..., T,$$
 (1)

where y_{it} is the observation on the *i*-th region for the *t*-th time period, x_{it} denotes the $k \times 1$ vector of observations on the non-stochastic regressors and u_{it} is the regression disturbance. The disturbance vector of (1) is assumed to have random region effects as well as spatially autocorrelated residual disturbances, i.e.,

$$u_t = \mu + \varepsilon_t \tag{2}$$

with

$$\varepsilon_t = \lambda W \varepsilon_t + v_t, \tag{3}$$

where $u'_t = (u_{1t}, u_{2t}, ..., u_{Nt})$, $\varepsilon'_t = (\varepsilon_{1t}, \varepsilon_{2t}, ..., \varepsilon_{Nt})$ and $\mu' = (\mu_1, \mu_2, ..., \mu_N)$ denote the vector of random region effects which are assumed to be IIN(0, σ^2_μ). λ satisfes $|\lambda| < 1$. W is known $N \times N$ spatial weight matrix. $v'_t = (v_{1t}, v_{2t}, ..., v_{Nt})$, where v_{it} is i.i.d over i and t and is assumed to be N(0, σ^2_ν). One can rewrite (3) as

$$\varepsilon_t = (I_N - \lambda W)^{-1} v_t = B^{-1} v_t, \tag{4}$$

where $B = I_N - \lambda W$. Then (2) can be written as

$$u_t = \mu + B^{-1}v_t, \tag{5}$$

Denoting $y_t = (y_{1t}, y_{2t}, ..., y_{Nt})'$, and $x_t = (x_{1t}, x_{2t}, ..., x_{Nt})'$, the model (1) has the following reduced-form representation,

$$y_t = x_t \beta + u_t, \quad t = 1, 2, ..., T,$$
 (6)

We continue with the model (5)-(6). With t = 1, 2, ..., T, model (5)-(6) can be written into a matrix form as follows:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_T \end{pmatrix} \beta + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_T \end{pmatrix}$$

2 LR TEST 2

with

$$\begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_T \end{pmatrix} = \begin{pmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{pmatrix} + \begin{pmatrix} B^{-1} & 0 & \cdots & 0 \\ 0 & B^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B^{-1} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_T \end{pmatrix}$$

or

$$y = X\beta + u, (7)$$

with

$$u = (\mathbf{1}_T \otimes I_N)\mu + (I_T \otimes B^{-1})v, \tag{8}$$

where $y'=(y_1',y_2',...,y_T'), \ X'=(x_1',x_2',...,x_T'), \ u'=(u_1',u_2',...,u_T'),$ and $v'=(v_1',v_2',...,v_T').$

2 LR Test

To clearly show the model in this report, the model (7)-(8) is rewritten as follows

$$y = X\beta + u$$
, $u = (\mathbf{1}_T \otimes I_N)\mu + (I_T \otimes B^{-1})v$.

This variance-covariance matrix can be written as

$$\Omega_u = \sigma_v^2 \Sigma_u$$

where $\Sigma_u = \bar{J}_T \otimes [T\phi I_N + (B'B)^{-1}] + E_T \otimes (B'B)^{-1}$, with $\bar{J}_T = J_T/T$, $\phi = \sigma_\mu^2/\sigma_v^2$, $E_T = I_T - \bar{J}_T$. Σ_u^{-1} is given by

$$\Sigma_u^{-1} = \bar{J}_T \otimes [T\phi I_N + (B'B)^{-1}]^{-1} + E_T \otimes (B'B).$$
(9)

Under the assumption of normality, the log-likelihood function for this model was derived as

$$L = -\frac{NT}{2}\log(2\pi\sigma_v^2) - \frac{1}{2}\log|\Sigma_u| - \frac{1}{2\sigma_v^2}u'\Sigma_u^{-1}u$$

$$= -\frac{NT}{2}\log(2\pi\sigma_v^2) - \frac{1}{2}\log|T\phi I_N + (B'B)^{-1}| + \frac{(T-1)}{2}\log|B'B| - \frac{1}{2\sigma_v^2}u'\Sigma_u^{-1}u$$
 (10)

with $u = y - X\beta$.

Baltagi et al. (2003) derived the lagrange multiplier (LM) tests and the corresponding likelihood ratio (LR) tests for this model. Here, we redo the LR test under the hypotheses for $H_0^a: \lambda = \sigma_\mu^2 = 0$ and the alternative H_1^a is that at least one component is not zero.

3 SIMULATION 3

Firstly, we obtain the estimations of the unrestricted log-likelihood function using the method of scoring. Let $\hat{\sigma}_v^2$, $\hat{\phi}$, $\hat{\lambda}$ and $\hat{\beta}$ denote the unrestricted maximum likelihood estimators (MLEs) and let $\hat{B} = I_N - \hat{\lambda}W$ and $\hat{u} = y - X'\hat{\beta}$, and then, by (10), the unrestricted maximum log-likelihood function is given by

$$L_U = -\frac{NT}{2}\log(2\pi\hat{\sigma}_v^2) - \frac{1}{2}\log|T\hat{\phi}I_N + (\hat{B}'\hat{B})^{-1}| + (T-1)\log|\hat{B}| - \frac{1}{2\hat{\sigma}_u^2}\hat{u}'\hat{\Sigma}_u^{-1}\hat{u},$$

where $\hat{\Sigma}_{u}^{-1}$ is obtained from (9) with $\hat{\beta}$ replacing β and $\hat{\phi}$ replacing ϕ .

Secondly, we obtain the estimations of the restricted log-likelihood function. Under the null hypothesis H_0^a , the restricted MLE of β is $\widetilde{\beta}_{OLS}$, and $\widetilde{\beta}_{OLS} = (X'X)^{-1}X'Y$, so that $\widetilde{u} = y - X'\widetilde{\beta}_{OLS}$ and $\widetilde{\sigma}_v^2 = \widetilde{u}'\widetilde{u}/NT$. Therefore, the restricted maximum log-likelihood function under H_0^a is given by

$$L_R = -\frac{NT}{2}\log(2\pi\tilde{\sigma}_v^2) - \frac{1}{2\tilde{\sigma}_z^2}\tilde{u}'\tilde{u}.$$

Finally, the LR test statistic for H_0^a is given by

$$LR = 2(L_U - L_R) \tag{11}$$

and this should be asymptotically distributed as a mixture of χ^2 given in (12) under the null hypothesis H_0^a , χ_m^2 has a mixed χ^2 -distribution:

$$\chi_m^2 \sim \frac{1}{4}\chi^2(0) + \frac{1}{2}\chi^2(1) + \frac{1}{4}\chi^2(2)$$
(12)

The critical values for the mixed χ_m^2 are 7.289, 4.321 and 2.952 for $\alpha=0.01$,0.05 and 0.1, respectively.

3 Simulation

We conducted a small simulation study to compare the finite sample performances of the critial regions based on LR tests at $\alpha = 0.05$ level, and report the proportion of LR $> \chi_m^2$ in our 2,000 simulations. The results of simulations are reported in Tables 1-2.

In the simulations, we used the model as Baltagi et al. (2003):

$$y_{it} = \beta_1 + x'_{it}\beta_2 + u_{it}, i = 1, \dots, N, t = 1, \dots, T,$$

where $\beta_1 = 5$, $\beta_2 = 0.5$ and $x_{it} = 0.1t + 0.5x_{i,t-1} + z_{it}$ with $z_{it} \sim U(-0.5, 0.5)$ and $x_{i0} = 5 + 10z_{i0}$. W is a queen type weight matrix. For the disturbances, $u_{it} = \mu_i + \varepsilon_{it}$, $\varepsilon_{it} = \lambda \sum_{j=1}^{N} w_{ij}\varepsilon_{it} + v_{it}$

3 SIMULATION 4

with $\mu_i \sim \text{IIN}(0, \sigma_{\mu}^2)$ and $v_{it} \sim \text{N}(0, \sigma_v^2)$. We fix $\sigma_{\mu}^2 + \sigma_v^2 = 20$ and let $\rho = \sigma_{\mu}^2/(\sigma_{\mu}^2 + \sigma_v^2)$ vary over the set (0, 0.2, 0.5). The spatial autocorrelation factor λ is varied over a positive range from 0 to 0.9 by increments of 0.1. Two values for N = 25 and 49, and two values for T = 3 and 7 are chosen.

表 1	: LR	test	for	H_0^a ,	λ	$=\sigma_u^2$	= 0
-----	------	-----------------------	-----	-----------	-----------	---------------	-----

N, T	λ	ho =	$\rho = 0$		$\rho = 0.2$		$\rho = 0.5$	
		Baltagi	Tang	Baltagi	Tang	Baltagi	Tang	
25, 3	0.0	0.064	0.071	0.372	0.412	0.958	0.976	
	0.1	0.066	0.100	0.380	0.421	0.967	0.969	
	0.2	0.140	0.180	0.411	0.459	0.968	0.969	
	0.3	0.282	0.316	0.519	0.564	0.981	0.977	
	0.4	0.514	0.533	0.650	0.670	0.984	0.987	
	0.5	0.743	0.740	0.806	0.845	0.992	0.989	
	0.6	0.891	0.908	0.923	0.946	0.995	0.999	
	0.7	0.974	0.977	0.980	0.985	1.000	0.999	
	0.8	0.997	1.000	0.996	1.000	0.999	1.000	
	0.9	1.000	1.000	1.000	1.000	1.000	1.000	
25, 7	0.0	0.056	0.074	0.876	0.902	1	1.000	
,	0.1	0.117	0.107	0.904	0.910	1	1.000	
	0.2	0.317	0.340	0.932	0.945	1	0.999	
	0.3	0.646	0.670	0.951	0.973	1	1.000	
	0.4	0.883	0.894	0.989	0.992	1	1.000	
	0.5	0.987	0.989	0.999	0.999	1	1.000	
	0.6	0.999	1.000	1.000	1.000	1	1.000	
	0.7		1.000		1.000		1.000	
	0.8		1.000		1.000		1.000	
	0.9		1.000		1.000		1.000	

Simulation results show that the frequency of rejections in Baltagi et al. (2003) is larger than Tang and Zou. Some blank means no data in Baltagi et al. (2003).

3 SIMULATION 5

表 2: LR test for H_0^a , $\lambda = \sigma_\mu^2 = 0$

N, T	λ	$\rho = 0$		$\rho =$	$\rho = 0.2$		$\rho = 0.5$	
		Baltagi	Tang	Baltagi	Tang	_	Baltagi	Tang
49, 3	0.0	0.057	0.035	0.622	0.599		1.000	0.998
	0.1	0.100	0.042	0.636	0.598		1.000	0.999
	0.2	0.232	0.075	0.716	0.635		1.000	1.000
	0.3	0.517	0.119	0.804	0.685		1.000	1.000
	0.4	0.782	0.235	0.901	0.762		1.000	1.000
	0.5	0.953	0.382	0.973	0.820		1.000	1.000
	0.6	0.993	0.600	0.995	0.894		1.000	0.999
	0.7	1.000	0.790	1.000	0.958		1.000	0.997
	0.8		0.907		0.982			0.985
	0.9		0.906		0.979			0.996
49, 7	0.0	0.056	0.025	0.995	0.992		1.000	1.000
	0.1	0.153	0.054	0.995	0.992		1.000	1.000
	0.2	0.536	0.198	0.996	0.996		1.000	1.000
	0.3	0.899	0.503	0.999	0.997		1.000	1.000
	0.4	0.994	0.777	1.000	0.998		1.000	1.000
	0.5	1.000	0.926	1.000	0.997		1.000	1.000
	0.6	1.000	0.992	1.000	0.998		1.000	1.000
	0.7		0.999		1.000			1.000
	0.8		1.000		1.000			1.000
	0.9		0.963		1.000			1.000

4 EL TEST 6

4 EL Test

 ℓ is the likelihood function, L is the log-likelihood function (10):

$$LR = -2\log\frac{\ell_R}{\ell_U} = 2(L_U - L_R)$$
 (13)

 $\tilde{\ell}$ is the empirical likelihood, $\tilde{\ell}(b) = \sup_{\{p_i\}_{i=1}^n} \prod_{i=1}^n p_i$, $\tilde{L}(b)$ is the empirical log-likelihood:

$$EL = -2\log \frac{\sup_{b \in \Omega_0} \tilde{L}(b)}{\sup_{b \in \Omega_0 + \Omega_1} \tilde{L}(b)} = 2(\tilde{L}_{\Omega_0 + \Omega_1} - \tilde{L}_{\Omega_0})$$
(14)

$$EL = -2\log \frac{\sup_{b \in \Omega_0} \tilde{L}(b)}{\sup_{b \in \Omega_0 + \Omega_1} \tilde{L}(b)} = -2\log \frac{\sup_{b \in \Omega_0} \tilde{L}(b)}{\sup_{b \in \mathbf{R}} \tilde{L}(b)} I(\hat{b} \in \Omega_1)$$
(15)