The mechanism of attention and transformers

Machine translation: Recap

skoltech

Evaluations of Machine Translation: BLEU

"the closer a machine translation is to a professional human translation, the better it is"

• Precision: share of words from \hat{y} that appear in y

True y	the	cat	is	on	the	mat
Candidate \hat{y}	the	the	the	the	the	the

- Unigram precision is 6/6 = 1
- ullet Limit with number of words from references: there are 2 "the" in y
- BLEU modified unigram precision is 2/6 = 0.33

Skoltech

BLEU evaluation examples

True y	the	cat	is	on	the	mat
Candidate \hat{y}	the	the	the	the	the	the

- Unigram precision is 6/6 = 1
- Bigram precision is 1/5 = 0.2
- BLEU unigram score 2/6
- BLEU bigram score is 1/5

seq2seq model

Source: DeepLearning.Al

Main issue: bottleneck, the network will have time to forget everything

Attention model

Attention focusing,

Source: DeepLearning.Al

Solution: focus attention in the right place

New state of the art: attention is all we need

How to use all the hidden states?

How to use all the hidden states?

How to use all the hidden states?

The attention layer in more depth

Learnable parameters

$$c_i = \sum_{j=1}^{T_x} \boxed{\alpha_{ij} h_j}$$

$$\boxed{\alpha_{i1} h_1 + \alpha_{i2} h_2 + \alpha_{i3} h_3 + \dots + \alpha_{iM} h_M \longrightarrow c_i}$$

Context Vector is an expected value

skoltec

Attention is just great

- Solves the bottleneck problem: all encoder tokens are connected to all decoder tokens
- No more vanishing gradients : all to all connection
- Provides some interpretability: see alignment figure

Similar to RNN seq2seq, but greater!

Transformers

Queries, Keys, and Values

Scaled dot-product attention

Similarity Between Q and K

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Scale using the root of the key vector size

 We produce queries, keys, and values using initial word embeddings:

$$Q = XW^Q$$
, $dim(W^Q) = d_x \times d_q$

$$K = XW^K$$
, $dim(W^Q) = d_x \times d_k$

$$V = XW^V$$
, $dim(W^Q) = d_x \times d_v$

Source: Vaswani et al., 2017

Multi-Head attention

MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Position encoding

- In addition to usual embeddings of inputs we use position encoding to capture position
- They are not one-hot vectors, as we want to handle various-length sequences

Decoder is similar with another N blocks

Conclusion

- For long sequences in RNNs there is loss of information
- In RNNs there is the problem of vanishing gradient
- Transformers help with all of the above

Next lecture: Hawke's neural process