FAI Final Project Report

B10401006 洪愷希

June 15, 2024

Heuristic Algorithm

首先我嘗試的是貪心的 heuristic 演算法。在每次 declare_action 時,使用 Monte Carlo method 估計目前的勝率,再從 look-up table 決定 action。具體而言,估計勝率的方式是進行 N 次抽樣,每次將對手和尚未掀開的 community card 隨機抽樣,計算勝負並統計總勝利次數。計算出勝負之後以下表選擇行動:

勝率	[0, 0.4)	[0.4, 0.5)	[0.5, 0.6)	[0.6, 0.7)	[0.7, 0.8)	[0.8, 0.9)	[0.9, 1]
行動	fold	call	raise 10	raise 50	raise 100	raise 200	all in

其中參數為經過搜尋之後所選取。

以上方法相較於 random agent 已經有了顯著的進步,也是在不考慮對手行為下的最佳策略。不過,若能根據對手的行為調整策略,應當能進一步提升則勝率,這在撲克牌術語稱作 exploit。我在和 baseline7 的對局中觀察到對手似乎也採取了與前述 Monte Carlo method 相似的策略,只有在手牌較好時才會進行 raise,且絕大多數是在 preflop 的小額加注,只有在牌況極好時才會 all-in。對此,我加入了三個簡單的策略:

- 設定參數 $p_{\text{bluff}}, x_{\text{bluff}}$, 使得 agent 在勝率低於 0.5 時,仍有 p_{bluff} 的機率進行 x_{bluff} 的加注。
- 若對手在 preflop 進行加注,並且我方勝率小於一定門檻,則有機率直接棄牌。
- 若對手 all-in,並且我方勝率小於一定門檻,則直接棄牌。

若對手只會依據手牌勝率選擇行動,則以上策略在長期而言應當能夠獲利。

Heuristic agent 的表現顯然並不夠好,不過它有一個重要的目的:產生 neural network 的訓練資料。

Deep Q-Learning Network (DQN)

Basic Algorithm

Q-learning 是一種 reinforcement learning 的方法,它的目標是學習一個 action-value function Q(s,a),其中 s 是狀態,a 是行動,使得在狀態 s 下採取行動 a 的期望報酬最大。Q-learning 的更新規則如下:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$$

其中 α 是 learning rate γ 是 discount factor γ 是獲得的報酬,s' 是下一個狀態。理論上 $s \to_a s'$ 是一個狀態轉移的隨機過程,所以在這裡進行的是一種 sampling。根據 Bellman equation,以上更新式能夠使得 Q 收斂到 optimal Q^* 。

對於連續且高維的狀態空間,我們可以使用 neural network 來近似 Q 函數,這就是 **Deep Q-Learning Network (DQN)**。 DQN 的目標是學習一個 neural network $Q(s,a;\theta)$,其中 θ 是參數,使得 $Q(s,a;\theta)$ 能夠近似 $Q^*(s,a)$ 。以 temporal difference (TD) 的角度,我們希望能夠使以下兩者的差距最小:

$$Q(s, a) \approx r + \gamma \max_{a'} Q(s', a'; \theta)$$

因此我們可以定義 loss function 為:

$$L(\theta) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta) - Q(s, a; \theta)\right)^{2}\right]$$

在實作上為了穩定訓練,我們會額外使用一個 target network 來計算 Q(s',a'),並且以較慢的速度更新 target network 的參數。

另外,因為訓練中所使用的資料僅和當前節點及行動有關,因此 DQN 是一種 off-policy 的方法,也就是我們可以利用不同的策略產生的資料來訓練,這也是使用 heuristic agent 來產生訓練資料的原因。

State Representation

我將狀態轉化為一個 vector s, 其中包含了以下資訊:

個數	資訊	備註
1	round count	
4	street	one hot encoding
1	stacks	除以 2000
1	hand strength	以 HandEvaluator.eval_hand 計算,除以 2^16
1	win rate	Monte Carlo method 估計
52	community cards	one hot encoding
1	pot amount	除以 2000

因此轉化後的狀態為一個 66 維的向量。這個狀態向量提供 agent 更多的特徵來計算,並且透過 stacks 來衡量對手的狀態。比較不足之處在於這裡並沒有加入同一局遊戲中過去的紀錄,因此無法很好地學習對手的策略。在實作中,狀態會在每次輪到我們行動時由場上資訊計算而得。

Action Space

目前主流的 deep RL 方法中已有許多針對 continuous action space 的方法,例如 DDPG、SAC 等,但是根據我查到的資料,DQN 在 discret action space 上的表現較好。因此我將 raise amount 設定為離散值,從而讓 action space 為離散空間。完整的 action space 如下:

action	amount		
fold	0		
call	call amount		
raise	raise max		
raise	10		
raise	25		
raise	50		
raise	100		
raise	150		
raise	200		
raise	250		
raise	300		
raise	400		
raise	500		

另一個可能的選擇是以 pot size 的比例做為 raise amount,不過我並未嘗試。

Network Sturcture

我使用三層神經元,以 ReLU 為 activation function, 最後一層則為 linear。

Exploration vs. Exploitation

在 RL 中一個很重要的議題是 exploration vs. exploitation,也就是如何在探索新的策略和利用已有的策略 之間取得平衡。在 DQN 中,我使用了 ϵ -greedy 的策略,也就是以 ϵ 的機率隨機選擇行動,以 $1-\epsilon$ 的機率 選擇 Q 函數估計的最佳行動。在訓練過程中,我將 ϵ 設定為一個指數下降的函數,如下:

$$\epsilon(t) = e^{-t/\lambda} \epsilon_{\text{start}} + (1 - e^{-t/\lambda}) \epsilon_{\text{end}}$$

其中 λ 決定衰減的速率。此策略僅適用於訓練,在實際遊戲中 ϵ 應當設定為 0。 作為另外一種 exploration 的方法,我也嘗試了 **Boltzmann exploration**,也就是以 softmax 的方式選擇 行動。具體而言,對於 action a,我們選擇的機率為:

$$\frac{e^{Q(s,a)/T}}{\sum_{a'} e^{Q(s,a')/T}}$$

其中 T 為參數。

Replay Buffer

前面提及 DQN 是 off-policy 的方法,因此我們可以先利用不同的 agent (如:heuristic)產生訓練資料,而後再進行訓練。為了穩定訓練,我們會使用 replay buffer 來存儲過去的狀態、行動、報酬等資訊,並且在訓練時從中隨機抽樣。這樣做的好處是可以減少樣本間的相關性,從而穩定訓練。在訓練的過程中,我們也會將目前 agent 的狀態存入 replay buffer,從而使 replay buffer 中的資料更加多樣化。

Reward

一開始,我將一個 action 所帶來的 reward 定義為該回合最終的獲利。不過嘗試後發現效果不佳,我推測這和 RL 中 credit assignment 的議題相關,也就是應如何決定一個 action 在 reward 當中的貢獻。思考後我認為既然未來的獲利會由下一個 state 的 Q 函數決定,那麼 reward 應當僅和當前狀態及下一狀態的差異有關。因此我將 reward 定義為下一狀態的 stacks 減去目前的 stacks。例如,若在 flop 時 raise 100,則 reward 為 turn 時的 stacks 減去目前的 stacks,即 100。若在進行動作後回合結束,則 reward 為下一回合 preflop 時的 stacks 減去目前的 stacks。

Improvements

Double DQN

Double DQN 是 DQN 的一個 variant,它的目的是解決 DQN 在估計 Q 函數時的 overestimation 問題。在 DQN 中,我們使用 $Q(s',a';\theta)$ 來估計 Q(s',a'),這將會使得 Q 函數的估計值偏向於 overestimation,因為若一個 action a 的 Q 值較大,那麼在更新 Q 函數時,它將會被選擇的機率也較大,進而使得 Q 值更大。為了解決這個問題,double DQN 將決定 action 的 network 和估計 Q 值的 network 分開。在實作上,可以使用 target network 來估計 Q 值,也就是:

$$Q(s', a'; \theta) \approx r + \gamma Q(s', \arg\max_{a'} Q(s', a'; \theta); \theta^{-})$$

Dueling DQN

Dueling DQN 是 DQN 的另一個 variant,它的目的是將 Q 函數分解為 state value 和 action advantage 兩部分。具體而言,我們將 Q 函數定義為:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha)$$

也就是在 network structure 上將 Q 值拆分為了 V (value) 和 A (advantage) 兩部分,其中 V 表示和狀態 較相關而和行動無關的價值,A 則和兩者皆有關,從而使 network 更加靈活。在實作上,我們會將 A 進行 normalization。

Dueling Double DQN (D3QN)

即結合前二者的方法。

DQN with LSTM

前述提及我設計的 state features 並沒有包含雙方行動的歷史,因此較不利於推測對手的行動。然而,從 game theory 的角度而言,二人零和遊戲中對手的行動應當是一個重要的特徵,從而衍伸出 Nash equilibrium 及 game theory optimal (GTO) 的概念。雖然 DQN 本身與 GTO 並無直接關係,不過我認為將對手的行動納入 state features 應當能夠提升 agent 的表現,因此嘗試用 LSTM 來記憶過去的行動。 我將過去 L 個狀態作為 sequence 輸入 LSTM,而後再輸入原先的三層神經元中,並同樣以 Q 函數作為輸出。遺憾的是其效果並不如預期,我推測可能是 hyperparameter 的設定不當,或是 LSTM 並不適合於這個問題。

Comparison

下圖為比較各個作法的勝率,可以看到表現相對好的反而是 vanilla DQN。礙於有的 baseline 跑太久了,能夠玩的局數很少,因此難以判斷這些數據是由於其他方法確實表現較差,或是由於撲克牌的隨機性所造成。整體而言,我認為這個 project 相當程度增進了我對 reinforcement learning 的理解,也讓我對於如何設計 agent 有了更多的想法。不過在 RL 中 domain knowledge 的重要性也是不可忽視的,而我對於德州撲克的了解就相當不足,因此可能在 feature 的設計還有評估上有所不足。

References

- 李宏毅老師課程
- PyTorch turorial