Scilab Textbook Companion for Optical Fiber Communication by A. Selvarajan, S. Kar and T Srinivas¹

Created by
Lochan Jolly
Optical communication
Electrical Engineering
Tcet
College Teacher
None
Cross-Checked by
Reshma

June 7, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Optical Fiber Communication

Author: A. Selvarajan, S. Kar and T Srinivas

Publisher: McGraw-Hill, New Delhi

Edition: 1

Year: 2002

ISBN: 0070445567

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

LIS	st of Schab Codes	4
2	Light propagation in optical fiber	6
3	Fiber optic technology	22
4	Optical sources and transmitter circuits	26
5	Optical Detectors and Receivers	35
6	Integrated Optics and Photonic Circuits	44
7	Wavelength Division Multiplexing	54
8	Coherent Optical Communication	57
9	Optical Amplifiers	60
10	Photonic Switching	66
11	Fiber Optic Communication System Design	70
13	Video Transmission	7 6
14	Data Communication and LAN	7 9
16	Soliton Communication Systems	82

List of Scilab Codes

Exa 2.1	1	6
Exa 2.2	2	7
Exa 2.3	3	9
Exa 2.4	4	13
Exa 2.6	6	13
Exa 2.8	8	15
Exa 2.9	9	18
Exa 2.10	10	19
Exa 3.1	1	22
Exa 3.2	2	22
Exa 4.1	1	26
Exa 4.2	2	28
Exa 4.3	3	30
Exa 4.4	4	32
Exa 5.1	1	35
Exa 5.2	2	37
Exa 5.3	3	38
Exa 5.4	4	40
Exa 5.5	5	41
Exa 6.1	1	44
Exa 6.2	2	47
Exa 6.3	3	47
Exa 6.4	4	50
Exa 6.5	5	50
Exa 6.6	6	52
Exa 7.1	1	54
Exa 8.1	1	57
Exa 9.1	1	60

Exa 9.2	2																62
Exa 9.3	3																63
Exa 10.1	1																66
Exa 10.2	2																66
Exa 11.1	1																70
Exa 11.2	2																72
Exa 13.1	1																76
Exa 14.1	1																79
Exa 16.1	1																82
Exa 16.2	2																84
Exa 16.3	3																85
Exa 16.4	4																86
Eva 16.5	5																88

List of Figures

2.1	1 .																	8
2.2	2 .																	10
2.3	3 .																	11
2.4	4 .																	12
2.5	6.																	14
2.6	8.																	16
2.7	9 .																	17
2.8	10											•						19
3.1	1 .																	23
3.2	2 .											•						25
4.1	1 .																	27
4.2	2 .																	29
4.3	3 .																	31
4.4	4 .																	33
5.1	1 .																	36
5.2	2 .																	37
5.3	3 .																	39
5.4	4 .																	40
5.5	5.																	42
6.1	1 .																	45
6.2	2 .																	46
6.3	3 .																	48
6.4	4 .																	49
6.5	5 .																	51
6.6	6.																	53

7.1	1					•												55
8.1	1																	58
9.1	1																	61
9.2	2																	62
9.3	3																	64
10.1	1																	67
10.2																		68
11.1	1																	71
11.2																		73
13.1	1																	77
14.1	1																	80
16.1	1																	83
16.2	2																	84
16.3	3																	85
16.4																		87
16.5	K																	00

Chapter 2

Light propagation in optical fiber

Scilab code Exa 2.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 2.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 / case -1
8 ncore=1.46//refractive index of core
9 nclad=1//refractive index of cladding
10 c=3e5//velocity of light in Km/s
11 L=1// length of path in Km
12 NA=sqrt(ncore^2-nclad^2)//Numerical aperture
13 delt_tau_by_L=(NA^2)/(2*c*ncore) //multipath pulse
     broadening in s/Km
14 delt_tau=delt_tau_by_L*L//bandwidth distance product
15 BL=(1/delt_tau)*L//bandwidth distance product Hz
16 mprintf('Numerical aperture=%f', NA); //The answers
     vary due to round off error
```

```
17 mprintf('\nMultipath pulse broadening=\%fns/Km',
      delt_tau_by_L*1e9); //The answer provided in the
      textbook is wrong//multiplication by 1e9
      convert s/Km to ns/Km
18 mprintf('\nBandwidth distance product=%fMHz', BL*1e
      -6); //The answer provided in the textbook is
      wrong//multiplication by 1e-6 to convert Hz to
     MHz
19 / case - 2
20 ncore=1.465//refractive index of core
21 nclad=1.45//refractive index of cladding
22 NA=sqrt(ncore^2-nclad^2)//Numerical aperture
23 delt_tau_by_L=(NA^2)/(2*c*ncore) //multipath pulse
      broadening in s/m
24 BL=(1/delt_tau_by_L)*L//bandwidth distance product
25 mprintf('\n\nNumerical aperture=\%f', NA);
26 mprintf('\nMultipath pulse broadening=%fns/Km',
      delt_tau_by_L*1e9); //The answer provided in the
      textbook is wrong//multiplication by 1e9 to
      convert s/Km to ns/Km
27 mprintf('\nBandwidth distance product=%fGHz', BL*1e
      -9); //The answer provided in the textbook is
      wrong//multiplication by 1e-6 to convert Hz to
     GHz
```

Scilab code Exa 2.2 2

```
1 //Optical Fiber communication by A selvarajan
2 //example 2.2
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
```


Figure 2.1: 1

```
6 clear all;
7 lamda1=0.7//wavelength in um
8 lamda2=1.3//wavelength in um
9 lamda3=2//wavelength in um
10 f_{and a1} = (303.33*(lamda1^-1) - 233.33) // equation for
      lambda1
11 f_{\text{lambda2}} = (303.33*(lamda2^-1)-233.33) // equation for
      lambda2
12 f_{ambda3} = (303.33*(lamda3^-1) - 233.33) // equation for
      lambda3
13 mprintf("Material dispersion at Lambda 0.7um=%f",
      f_lambda1)
14 mprintf("\nMaterial dispersion at Lambda 1.3um=%f",
      f_lambda2)//The answers vary due to round off
      error
15 mprintf("\nMaterial dispersion at Lambda 2um=%f",
      f_lambda3) // The answers vary due to round off
16 mprintf('\nIts is a standard silica fiber')
```

Scilab code Exa 2.3 3

```
// Optical Fiber communication by A selvarajan
// example 2.3
//OS=Windows XP sp3
// Scilab version 5.5.1
clc;
clear all;
// given
ncore=1.505//refractive index of core
nclad=1.502//refractive index of cladding
```


Figure 2.2: 2

Figure 2.3: 3

Figure 2.4: 4

```
10 V=2.4//v no. for single mode
11 lambda=1300e-9//operating wavelength in m
12 //to find
13 NA=sqrt(ncore^2-nclad^2)//numerical aperture
14 a=V*(lambda)/(2*%pi*NA)//dimension of fiber core in m
15 //display
16 mprintf("The numerical aperture =%f",NA);
17 mprintf("\n Dimension of fiber core =%f um",a*1e6)//multiplication by 1e6 to convert unit from m to um
```

Scilab code Exa 2.4 4

```
// Optical Fiber communication by A selvarajan
//example 2.4
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given

V=2//v no. for single mode
a=4//radius of fiber in um
//to find
w=a*(0.65+1.619*V^(-3/2)+2.87*V^-6)//effective mode radius in um
//display
mprintf("Effective mode radius =%f um",w)
```

Scilab code Exa 2.6 6

```
//Optical Fiber communication by A selvarajan
//example 2.6
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given
m=0// for dominant mode
v=0// for dominant mode
n1=1.5// refractive index of core
delta=0.01// core clad index difference
a=5// fiber radius in um
```


Figure 2.5: 6

Scilab code Exa 2.8 8

```
1 // Optical Fiber communication by A selvarajan
2 //example 2.8
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 M=1000; //modes supported
9 lambda=1.3;//operating wavelength in um
10 n1=1.5; //refractive index of core
11 n2=1.48; //refractive index of cladding
12 //to find
13 V=sqrt(2*M)// normalised frequency V no.
14 NA=sqrt(n1^2-n2^2)//numerical apperture
15 R=lambda*V/(2*%pi*NA)//radius of fiber in um
16 //display
17 mprintf ("Core Radius=%fum", R) // The answer provided
     in the textbook is wrong
```


Figure 2.6: 8

Figure 2.7: 9

Scilab code Exa 2.9 9

```
1 // Optical Fiber communication by A selvarajan
2 //example 2.9
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 lambda=1.3; //wavelength of operation in um
9 n1=1.5; // refractive index of core
10 n2=1.48; // refractive index of cladding
11 k0=2*\%pi/lambda;//constant in /m
12 / case -1
13 b=0.5//normalized propagation constant
14 \text{ k0=2*\%pi/lambda//constant}
15 beta=k0*sqrt(n2^2+b*(n1^2-n2^2))/propagation
      constant
16 mprintf ("Propagation constant=%frad/um", beta)//The
      answers vary due to round off error
17 / case - 2
18 //given
19 lambda=1.3; //wavelength of operation in um
20 n1=1.5; // refractive index of core
21 n2=1.48; // refractive index of cladding
22 k0=2*\%pi/lambda; //constant in /m
23 b=0.5//normalized propagation constant
24 \text{ k0=2*\%pi/lambda//constant}
25 b = (((n1+n2)/2)^2-n2^2)/(n1^2-n2^2)/normalized
      propagation constant
26 mprintf("\nPropagation constant=%f",b)//The answers
       vary due to round off error
27
28 / \cos -3
29 / given
30 lambda=1.3; //wavelength of operation in um
31 n1=1.5; // refractive index of core
32 n2=1.0; // refractive index of cladding
```

Figure 2.8: 10

Scilab code Exa 2.10 10

1 // Optical Fiber communication by A selvarajan

```
\frac{2}{2} //example 2.10
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 / \text{case} -1
9 n1=1.49; //refractive index of core
10 n2=1.46//refractive index of cladding
11 c=3*10^5; //speed of light in Km/s
12 t1=n1/c; //time delay for one traveling along axis in
       s/Km
13 t2=(n1^2/n2)/c//time delay for one traveling along
     path that is totally reflecting at the first
     interface in s/km
14 mprintf("time delay for traveling along axis = %f us/
     Km", t1*1e6) // multiplication by 1e6 to convert the
       unit from s/Km to us/Km
15 mprintf("\ntime delay for traveling along path that
       is totally reflecting at the first interface =
     %fus/km, t2*1e6)//multiplication by 1e6 to
      convert the unit from s/Km to us/Km
16 / case - 2
17 n1=1.47; //refractive index of core
18 n2=1.46//refractive index of cladding
19 c=3*10^5; //speed of light in Km/s
20 t1=n1/c; //time delay for one traveling along axis in
21 t2=(n1^2/n2)/c//time delay for one traveling along
     path that is totally reflecting at the first
     interface
22 mprintf("\ntime delay for traveling along axis = %f
     us/Km",t1*1e6)//multiplication by 1e6 to convert
     the unit from s/Km to us/Km
23 mprintf("\ntime delay for traveling along path that
     is totally reflecting at the first interface =
     %fus/km", t2*1e6)//multiplication by 1e6 to
     convert the unit from s/Km to us/Km
24
```

//The answer provided in the textbook is wrong it has got wrong unit

Chapter 3

Fiber optic technology

Scilab code Exa 3.1 1

```
//Optical Fiber communication by A selvarajan
//example
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given
PL=1;//length of preform in m
PD=25e-3;//daimeter of preform in m
OD=125e-6;//outer daimeter of optical fiber in m
V=%pi*((PD/2)^2)*PL;//volume of Preform cylinder in m^3
L=V/(%pi*((OD)^2));//Length of optical fiber in m
mprintf("Length of optical fiber=%fKm",L/1e3);//division by 1e3 to convert unit from m to Km
```


Figure 3.1: 1

```
// Optical Fiber communication by A selvarajan
// example 3.2
// OS=Windows XP sp3
// Scilab version 5.5.1
clc;
clear all;
// given
NA1=0.2; // numerical apperture of fiber 1
NA2=0.1; // numerical apperture of fiber 2
D1=12; // core daimeter of fiber 1 in um
D2=6; // core daimeter of fiber 2 in um
Losses=20*log10(NA1/NA2)+20*log10(D1/D2); // total fiber to fiber coupling losses due to NA mismatch and size mismatch
mprintf("total losses=%fdB", Losses);
```


Figure 3.2: 2

Chapter 4

Optical sources and transmitter circuits

Scilab code Exa 4.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 4.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 tau_r=12*10^-9//radiative recombination time in s
9 tau_nr=35*10^-9//non-radiative recombination time in
10 n1=3.5//refractive index of semiconductor
11 n2=1//refractive index of air
12 d=0.4*10^-6//active later thickness in m
13 V=8//recombination velocity
14 eta_int=1/(1+(tau_r/tau_nr))//internal quantum
      efficiency
15 tau=1/((tau_r^-1)+(tau_nr^-1)+(2*V/d))//total
```


Figure 4.1: 1

```
recombination time in s
16 f=sqrt(3)/(2*%pi*tau)//bandwidth in Hz
17 F3=((n1-n2)^2/(n1+n2)^2)/fresnel reflection
18 eta_ext=eta_int*(1-F3)//external quantum efficiency
19 mprintf("internal quantum efficiency=%f",eta_int)//
     The answers vary due to round off error
20 mprintf("\ntotal recombination time =\%f ns", tau *1e9)
     //multiplication by 1e9 to convert unit from s to
      ns//The answers vary due to round off error
21 mprintf("\nbandwidth = \%f MHz",f*1e-6)//
      multiplication by 1e-6 to convert unit from Hz to
      MHz///The answers vary due to round off error
22 mprintf("\nfresnel reflection=%f",F3)//The answers
     vary due to round off error
23 mprintf("\nexternal quantum efficiency=\%f", eta_ext)
     //The answers vary due to round off error
```

Scilab code Exa 4.2 2

```
//Optical Fiber communication by A selvarajan
//example 4.2
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given
lambda=1.3//wavelength of laser in um
w=5//active layer width in um
lambda=1.3//refractive index of core
n2=3.49//refractive index of cladding
//to find
k0=2*%pi/lambda//propagation constant
```


Figure 4.2: 2

```
15 row=0.3//confinement factor
16 neff=sqrt(n2^2+row)//effective refractive index
17 D=k0*d*(sqrt(n1^2-n2^2))//normalized thickness
18 W=k0*w*(sqrt(neff^2-n2^2))//normalized width// the
     answer given in textbook is wrong
19 Wlat=w*(sqrt(2*log(2)))*(0.32+2.1*(W^-1.5))//Full
     width lateral at half maximum in um/ the answer
     given in textbook is wrong
20 Wtra=d*(sqrt(2*log(2)))*(0.32+2.1*(D^-1.5))//Full
     width transverse at half maximum in um/ the
     answer given in textbook is wrong
21 mprintf("Normalized thickness=%f",D)//The answers
     vary due to round off error
22 mprintf("\n Normalized width = %f", W) // multiplication
      by 1e9 to convert unit from s to ns/// the
     answer given in textbook is wrong
23 mprintf("\nFull width lateral at half maximum = %f um
     ", Wlat) // multiplication by 1e-6 to convert unit
     from Hz to MHz//// the answer given in textbook
     is wrong
24 mprintf("\nFull width transverse at half maximum = %f
      um", Wtra) // multiplication by 1e-6 to convert
     unit from Hz to MHz//// the answer given in
     textbook is wrong
```

Scilab code Exa 4.3 3

```
1 // Optical Fiber communication by A selvarajan
2 // example 4.3
3 // OS=Windows XP sp3
4 // Scilab version 5.5.1
5 clc;
6 clear all;
```


Figure 4.3: 3

```
7 //given
8 clear all;
9 Eg=1.3//band gap energy in eV
10 1=0.4//cavity length in mm
11 R1=0.5//reflectivities on ends
12 R2=0.5//reflectivities on ends
13 alpha=3//loss coefficient in /mm
14 current_density=30*10^5//current_density_in_amp/m^2
15 area=0.2*0.5*10^-6//laser active area in m^2
16
17 lambda=1.24/Eg//emission wavelength in um
18 gth=alpha+(1/(2*1))*log(1/(R1*R2))// Threshold Gain
19 threshold_current=current_density*area//threshold
     current in A
20 mprintf("Emission wavelength = %f nm", lambda)//
     multiplication by 1e3 to convert unit from um to
     nm
21 mprintf("\nThreshold Gain=%f/mm",gth)
22 mprintf("\nThreshold current =\%f mA",
     threshold_current*1e3)//for converting unit from
     A to mA
```

Scilab code Exa 4.4 4

```
//Optical Fiber communication by A selvarajan
//example 4.4
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given
clear all;
lamda=0.85*10^-6//wavelength of operation in m
```


Figure 4.4: 4

Optical Detectors and Receivers

Scilab code Exa 5.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 5.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
9 optical_power=10*10^-6//optical power in W
10 R=0.5 // Responsivity in A/W
11 Is=optical_power*R//shot noise current in A
12 Id=2*10^-9/dark current in A
13 Rl=1e6//Load resistance in ohm
14 B=1e6//bandwidth in Hz
15 T=300//Temperature in K
16 K=1.38*10^-20/Boltzman constant in m2 g s-2 K-1
17 q=1.609*10^-19//charge of a electron in Coulombs
```


Figure 5.1: 1

Figure 5.2: 2

```
18 Ith=4*K*T*B/R1//Mean Square Thermal noise current in
    A
19 SNR=(Is^2)/(2*q*(Is+Id)+Ith)//Signal to noise ratio
20 mprintf("Thermal noise current=%f*10^-18A",Ith
        *10^18)
21 mprintf("\nShot noise current=%f*10^-6A",Is*10^6)
22 mprintf("\nSignal to noise ratio=%fdB",10*log10(SNR)
    )//The answers vary due to round off error
```

Scilab code Exa 5.2 2

```
1 // Optical Fiber communication by A selvarajan
2 //example 5.2
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 eta=0.6//quantum efficiency
9 Po=10*10^-6//optical power in W
10 q=1.6*10^-19//charge of an electron in columb
11 lambda=0.85*10^-6//wavelength in m
12 h=6.6*10^-34/planck's constant
13 c=3*10^8/velocity of light in m/s
14 R1=50//load Resistance in ohm
15 R=(q*eta*lambda)/(h*c)//responsivity in A/W
16 I=R*Po//current in A
17 V=R1*I//Voltage in V
18 mprintf ("Responsivity=%f", R)
19 mprintf("\nCurrent=%fuA", I*10^6)//multiplication by
     1e6 to convert unit from A to uA
20 mprintf("\nVoltage=\%fmV", V*10^3) // multiplication by
     1e6 to convert unit from V to mV
```

Scilab code Exa 5.3 3

```
1 // Optical Fiber communication by A selvarajan
2 // example 5.3
3 // OS=Windows XP sp3
4 // Scilab version 5.5.1
5 clc;
6 clear all;
7 // given
8 tau_tr=2*1e-9// transit time in sec
```


Figure 5.3: 3

Figure 5.4: 4

```
9 Rl=50//load resistance in ohm
10 Cd=3*1e-12// Junction capacitance in farad
11 tau=2*Rl*Cd// Circuit time constant in sec
12 f3dB=(0.35/tau_tr)//3dB bandwidth in Hz
13 mprintf("Circuit time constant =%f ns",tau*1e9)//
    multiplication by 1e9 to convert unit from s to
    ns
14 mprintf("\n3dB bandwidth=%fMHz",f3dB*1e-6)//
    multiplication by 1e-6 to convert unit from Hz to
    MHz
```

Scilab code Exa 5.4 4

```
1 // Optical Fiber communication by A selvarajan
2 //example 5.4
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 I=100*1e-9//current in A
9 P=5*1e-9//Incident power in W
10 h=6.6*10^-34//planck's constant
11 c=3*10^8/velocity of light in m/s
12 q=1.6*10^-19//charge of an electron in columb
13 eta=0.7//quantum efficiency
14 \quad lambda=1.5*10^-6//wavelength in m
15 R=I/P; //APD responsivity in A/W
16 M= (R*h*c)/(q*eta*lambda);//Multiplication factor
17 mprintf ("Responsivity=%f",R)
18 mprintf("\nMultiplication factor=%f",M)
```

Scilab code Exa 5.5 5

```
//Optical Fiber communication by A selvarajan
//example 5.5
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given
h=6.6*10^-34//planck's constant
c=3*10^8//velocity of light in m/s
q=1.6*10^-19//charge of an electron in columb
```


Figure 5.5: 5

Integrated Optics and Photonic Circuits

Scilab code Exa 6.1 1

```
//Optical Fiber communication by A selvarajan
//example 6.1
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given
lamda=1.55;//wavelength in um
n1=1.51;//Film refractive index
n2=1.5;//substrate refractive index
t=(lamda)/(2*%pi*sqrt(n1*n1-n2*n2));//Thickness of film in um
mprintf('Film thickness=%fum',t);
```


Figure 6.1: 1

Figure 6.2: 2

Scilab code Exa 6.2 2

```
1 // Optical Fiber communication by A selvarajan
2 //example 6.2
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 b=0.5//normalized propoagation constant
9 V = (2*atan(b/(1-b))/(sqrt(1-b)))//normalized
     frequency
10 mprintf('Normalized frequency=%f', V)
11 lamda=1.3; //wavelength in um
12 n1=2.21; //Film refractive index
13 n2=2.2; //substrate refractive index
14 t=(lamda)/(2*\%pi*sqrt(n1*n1-n2*n2));//Thickness of
      film in um
15 mprintf('\nFilm thickness=\%fum',t);
```

Scilab code Exa 6.3 3

```
// Optical Fiber communication by A selvarajan
// example 6.3
//OS=Windows XP sp3
// Scilab version 5.5.1
clc;
clear all;
// given
lamda=1.3; // wavelength in um
```


Figure 6.3: 3

Figure 6.4: 4

```
9    nf=1.51; //Film refractive index
10    t=1.5; //Film thickness in um
11    ns=1.5//Waveguide refractive index
12    na=1//refractive index of air
13    V=(2*%pi*t/lamda)*sqrt(nf^2-ns^2)//V-number
14    a=(ns^2-na^2)/(nf^2-ns^2)//asymmetry parameter of
        the waveguide
15    Vc=atan(a^0.5)//cutoff V-number
16    mprintf("V-number=%f",V)
17    mprintf("\nasymmetry parameter of the waveguide=%f",
        a)
18    mprintf("\nCutoff V-number=%f",Vc)
```

Scilab code Exa 6.4 4

```
1 //Optical Fiber communication by A selvarajan
2 // \text{example } 6.4
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 delta_phi=%pi
9 d=4*10^-6//seperation between electrodes
10 n=2.2// approximate inder in absence of voltage
11 r13=30*10^-12//poper electro optic coefficient
12 row=0.4//overlap factor
13 lambda=1300*1e-9/wavelength in m
14 L=8*10^-3//length of electrode in m
15 delta_n=delta_phi*lambda/(2*%pi*L)//change in
      refractive index
16 V_pi=2*d*delta_n/(n^3*row*r13)//Voltahe required for
       using the device as BPSK modulator
17 mprintf("Voltage required for using the device as
     BPSK modulator=%fV", V_pi)
18 mprintf("\nVoltage length product for unit length is
     =%fVm", V_pi)
```

Scilab code Exa 6.5 5

```
1 // Optical Fiber communication by A selvarajan
2 // example 6.5
3 // OS=Windows XP sp3
```


Figure 6.5: 5

```
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 d=10*10^-6//seperation between electrodes
9 ne=2.2// approximate inder in absence of voltage
10 r33=32*10^-12//poper electro optic coefficient
11 lambda=1*1e-6//wavelength in m
12 L=5*10^-3//length of electrode in m
13 V=d*lambda/(2*%pi*ne^3*r33*L)//Voltahe required for using the device as BPSK modulator
14 mprintf("Voltage required for using the device as BPSK modulator=%fV",V)//the answer is different because of rounding off error
```

Scilab code Exa 6.6 6

```
//Optical Fiber communication by A selvarajan
//example 6.6
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
//given
delta_L=1/100//error in effective interaction length
P=(%pi/2*delta_L)^2//cross talk power output in W
mprintf("cross talk power output=%fx10^-4W",P*10^4);
//multiplication by 10^4 to convert unit from W
to 10^-4 W
PdB=10*log10(P)//power in dB
mprintf("\ncross talk power output=%fdB",PdB)
```


Figure 6.6: 6

Wavelength Division Multiplexing

Scilab code Exa 7.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 7.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 //given
8 delta_lambda=60e-9; // delta lambda in m
9 lambda=1550e-9;//wavelength in m
10 c=3e8//velocity of light in m/s
11 CS=75*1e9//Channel spacing in Hz
12 Power_margin=30//power margin in dB
13 Fiber_loss=0.25//fiber loss in dB/Km
14 channel_capacity=2.5*1e9//channel capacity STM-16 in
15 delta_f = (c*delta_lambda)/lambda^2; // frequency
     bandwidth in Hz
```


Figure 7.1: 1

Coherent Optical Communication

Scilab code Exa 8.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 8.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 eta=0.8; //quantum efficiency of detection
8 Ps=2e-9; //received optical power in W
9 h=6.62*1e-34; // plancks constant
10 lambda=1500*1e-9//wavelength in m
11 c=3*1e8//velocity of light in m/s
12 new=c/lambda; //frequency in Hz
13 B=1e6; // Signal Bandwidth in Hz
14 SNR=(eta*Ps)/(2*h*new*B);//signal to noise ratio
15 SNRdB=10*log10(SNR)//signal to noise ratio in dB)
16 mprintf("signal to noise ratio=%f", SNR)//the answer
     in textbook is wrong
```


Figure 8.1: 1

 $\mbox{mprintf("\nsignal to noise ratio=\%f dB",SNRdB)//the}$ answer in textbook is wrong

Optical Amplifiers

Scilab code Exa 9.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 9.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 lambda=1.3*1e-6//wavelength in m
8 c=3*1e8//velocity of light in m/s
9 SNRoutdB=30//signal to noise ratio at outputin dB
10 SNRout=10^(SNRoutdB/10); //signal to noise ratio at
     output normal scale
11 new=c/lambda; // frequency in Hz
12 h=6.6e-34; // plancks constant
13 P=0.5e-3; //Input power in W
14 NFdB=4//noise figure in dB
15 NF=10^(NFdB/10);//noise figure in normal scale
16 SNRin=NF*SNRout//signal to noise ratio at input
     normal scale
17 delta_Be=P/(2*h*new*SNRin);//receiver bandwidth in
```


Figure 9.1: 1

Figure 9.2: 2

Scilab code Exa 9.2 2

```
1 // Optical Fiber communication by A selvarajan2 // example 9.2
```

```
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 PASE=1e-3; // amplified spontaneous emission power in W
8 Gdb=20; // optical amplifier gain in dB
9 G=10^(Gdb/10); // optical amplifier gain in normal scale
10 delta_newbynew=5e-6; // fractional bandwidth
11 h=6.6e-34; // planck's constant
12 ns=PASE/((G-1)*h/delta_newbynew); // noise factor
13 mprintf('noise factor is=%fx10^21',ns/1e21); // division by 1e21 to convert the unit from Hz to 10^21 Hz
14 // The answer given in textbook is wrong
```

Scilab code Exa 9.3 3

```
//Optical Fiber communication by A selvarajan
//example 9.3
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
L=50//link length in Km
Fiber_loss=0.2//fiber loss in dB/Km
Req_Gain=Fiber_loss*L//required Gain
Fn1db=5//Noise figure in dB
Fn2db=5//Noise figure in dB
Fn3db=5//Noise figure in dB
Fn3db=5//Noise figure in dB
Fn1=10^(Fn1db/10);//Noise figure in normal scale for all amplifiers
```


Figure 9.3: 3

```
14 Fn2=10^(Fn2db/10);//Noise figure in normal scale for
       all amplifiers
15 Fn3=10^(Fn3db/10);//Noise figure in normal scale for
       all amplifiers
16 G1=10^(Req_Gain/10)//gain in normal scale
17 G2=10^(Req_Gain/10)//gain in normal scale
18 Fneff=Fn1+(Fn2/G1)+(Fn3/(G1*G2)); // Effective noise
      figure
19 SNRindb=30; //Signal to noise ratio at input in dB
20 SNRout=10^(SNRindb/10)/Fneff;//Signal to noise ratio
       at output in dB
21 SNRoutdb=10*log10(SNRout);
22 mprintf("Required Gain=%f", Req_Gain)
23 mprintf(" \setminus nEffective noise figure=\%f", Fneff)
24 mprintf("\nSignal to noise ratio at output = %f dB",
      SNRoutdb)
```

Photonic Switching

Scilab code Exa 10.1 1

```
// Optical Fiber communication by A selvarajan
//example 10.1
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
Xx=-30//crosstalk in dB
L=0.3//typical value
N=5//no. of switches Nb+Nc
SXR=Xx-L*(N)-10*log10(5*(10^(-L*N/10))/N)//Signal power to noise power in dB
mprintf('Minimum and maximum SXR values=%fdB',SXR)
```

Scilab code Exa 10.2 2

Figure 10.1: 1

Figure 10.2: 2

```
1 // Optical Fiber communication by A selvarajan
2 //example 10.2
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 PB=40//power budget in dB
8 x=-30//\text{crosstalk} in dB assumed
9 N=4/no. of switches
10 Lin=1//insertion loss of in dB
11 Linw=Lin*N//worst case insertion loss of in dB
12 Lc=2//worst case connector loss in dB
13 L=Linw+2*Lc//total power lost in the worst case
      signal path in dB
14 Power_margin=PB-L//power margin in dB
15 \text{ K=0};
16 for i=1:N
17 K=K+(((-1)^{(i+1)})*(10^{(-x/10)})^{i};
18 \, \text{end}
19 SbyN=10*log10(K)//Signal power to noise power in dB
20 mprintf('Signal power to noise power = %fdB', SbyN)
21 mprintf('\nPower Margin = %fdB', Power_margin)//The
      Textbook answer is wrong
```

Fiber Optic Communication System Design

Scilab code Exa 11.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 11.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 BW=7//bandwidth in MHz
8 SNR=60//signal to noise ratio in dB
9 Pin=0//Launched power in dBm
10 Trise_source=20//risetime at source LED in ns
11 delta_lambda=20//spectra width in nm
12 lambda=850; //operating wavelength in nm
13 c=2.998*10^5; // velocity of light in Km/sec
14 R=0.3//Detector PIN FET responsivity in A/W
15 Cdiode=3//diode capacitance in pf
16 trise_detector=1//risetime at detector in ns
17 S=-30//sensitivity in dbm
```


Figure 11.1: 1

```
18 Lsplice=0.2//splice loss in dB/connector
19 NA=0.2//numerical aperture for GI/MM
20 n1=1.46//refractive index of core
21 A=2// attenuation in dB/Km
22 Ls=3//loss due to source in dB
23 Ld=1//loss due to detector in dB
24 Psm=5//system margin in dB
25 c=3*10^8/velocity of light in m/s
26
27 //solution
28
29 Available_power=Pin-S;//available power in dB
30 Total_loss=Ls+Ld+Psm;
31 Power_left=Available_power-Total_loss;//power left
     in dB
32 L=(Power_left+Lsplice)/(Lsplice/2+2);
33 tmod=L*10^3*(NA^2)/(2*c*n1); //modal dispersion in s
34 Bit_rate=1/tmod;//bit_rate_in_bps
35 mprintf('Maximum permissible link length is =%fKm',L
     );
36
37 mprintf('\nMaximum permissible bit rate is =\%fMbps',
     Bit_rate/10^6); // division by 10^6 to convert the
     unit from bps to Mbps//the answer is different
     because of rounding off
```

Scilab code Exa 11.2 2

```
1 //Optical Fiber communication by A selvarajan
2 //example 11.2
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
```


Figure 11.2: 2

```
6 clear all;
7 BW=7//bandwidth in MHz
8 SNR=60//signal to noise ratio in dB
9 Pin=0//Launched power in dBm
10 Trise_source=4//risetime at source LED in ns
11 delta_lambda=1//spectra width in nm
12 lambda=1300; //operating wavelength in nm
13 c=2.998*10^5; // velocity of light in Km/sec
14 R=0.3//Detector PIN FET responsivity in A/W
15 Cdiode=3//diode capacitance in pf
16 trise_detector=5//risetime at detector in ns
17 F=2.1//amplifier noise figure in dB
18 Camp=2//amplifier capacitance in pf
19 L=2//minimum link length in Km
20 Lsplice=0.5//splice loss in dB/connector
21 NA=0.22//numerical aperture for GI/MM
22 BWGI=600//GI/MM fiber bandwidth in MHz F3dB_optical
23 Te=630//temperate in Kelvin
24 K=1.38064852 *10-23//boltzman constant in m2 kg s-2
     K-1
25 //solution
26 Rload=1/(2*\%pi*(Cdiode+Camp)*BW)*10^6//maximum load
      resistance in ohm Actual value
27 Rload=4300//approximated value in ohm
28 BWRx=1/(2*%pi*(Cdiode+Camp)*Rload)//receiver BW in
     Hz
29 SbyN=10^(SNR/10)//SNR in normal scale
30 Pmin=10*log10(sqrt(SbyN*4*K*Te*BW/(0.5*Rload*R^2)))
     //input power in W
31 L1=Pmin/0.2//power budget limited link length in Km
32 mprintf('Maximum permissible link length is =\%fKm',
     L1);
33
34 Trise_required=(0.35/BW)*10^3//Bandwith budgetting
      rise time required is rise time required in ns//
      multiplication by 10<sup>3</sup> to convert msec to ns
35 Trise_receiver=2.19*Rload*(Cdiode+Camp)*10^-3//rise
     time of receiver in ns//multiplication by 10<sup>3</sup> to
```

Video Transmission

Scilab code Exa 13.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 13.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 Sigma_s=0.1//source dispersion inns
8 Sigma_D=0.1//detector dispersion in ns
9 Sigma_F=0.05//fiber dispersion in ns
10 bitrate=622//bitrate in Mbps
11 STM_rate=250//4 channel VSB PCM
12 Power_margin=30//power margin in dB
13 system_margin=6//system margin in dB
14 Average_loss=0.6//average loss in dB/Km
15
16 //solution
17 Sigma_max=STM_rate/bitrate//max dispersion allowed
18 L2=sqrt((Sigma_max-Sigma_s^2-Sigma_D^2)/(Sigma_F^2))
     //dispersion limited maximum length in Km
```


Figure 13.1: 1

- 19 L1=(Power_margin-system_margin)/Average_loss//
 Attenuation limited length in km
- 20 mprintf("Since dispersion limited maximum length is less than Attenuation limited length \nso present system length limit is =%fKm", L2)

Data Communication and LAN

Scilab code Exa 14.1 1

```
1 // Optical Fiber communication by A selvarajan
2 //example 14.1
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 \text{ N=}256/\text{no. of nodes}
8 Lc=0.25//loss per coup; er in dB
9 Power_margin=30//power margin in dB
10 system_margin=6//system margin in dB
11 Average_loss=0.6//average loss in dB/Km
12 TxRX_powergain=32//transmitter to receiver power
     gain in dB
13 Avg_Tr_loss=0.5//average transmitter loss in dB/Km
14
15 //solution
16 Nc = log 2(N) / since 2x2 couplers are used
17 Ns=N/2//each stage coupler
18 T_Nc=Nc*Ns//total no. of couplers
```


Figure 14.1: 1

```
19 Total_Lc=Nc*Lc//total coupler loss in dB
20 Permissible_loss=TxRX_powergain-Total_Lc//
        permissible cable loss in dB
21 L=Permissible_loss/Avg_Tr_loss//Transmission
        distance in Km
22 mprintf("Transmission distance =%fKm",L)
```

Soliton Communication Systems

Scilab code Exa 16.1 1

```
//Optical Fiber communication by A selvarajan
//example 16.1
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
lambda=850;//operating wavelength in nm
Beta2=-1//dispersion regime ps^2/Km
Gama=2//nonlinearity in /W-Km
TFWHM=10//fundamental soliton width in ps
To=TFWHM/1.763//pulse width in ps
Ppeak=1/(Gama*(To^2))//peak power in W
mprintf("Peak power required to maintain fundamental soliton=%fmW",Ppeak*10^3)//multiplication by
10^3 is to convert the unit from w to mW
```


Figure 16.1: 1

Figure 16.2: 2

Scilab code Exa 16.2 2

```
// Optical Fiber communication by A selvarajan
// example 16.2
//OS=Windows XP sp3
// Scilab version 5.5.1
clc;
clear all;
lambda=1.55;//operating wavelength in um
Beta2=-1//dispersion regime ps^2/Km
```


Figure 16.3: 3

Scilab code Exa 16.3 3

```
//Optical Fiber communication by A selvarajan
//example 16.3
//OS=Windows XP sp3
//Scilab version 5.5.1
clc;
clear all;
alpha=0.2//fiber loss in dB/Km
LA=50//Amplifier spacing in Km
G=(alpha*LA)//gain in fiber
PbyPo=G*log(G)/(G-1)//Multiple of power required by single soliton
mprintf('Multiple of power required by single soliton =%f',PbyPo)// the answer is slightly varing due to rounding error
```

Scilab code Exa 16.4 4

```
1 //Optical Fiber communication by A selvarajan
2 //example 16.4
3 //OS=Windows XP sp3
4 //Scilab version 5.5.1
5 clc;
6 clear all;
7 lambda=1.55; //operating wavelength in um
8 LA=50//Amplifier spacing in Km
9 qo=6//Half of separation between two neighbouring
      solitons in normalized units
10 Beta2=-1//dispersion regime ps^2/Km
11 B=1/(4*(qo)^2*abs(Beta2))/bandwidth in THz
12 mprintf('Communication Link bitrate is limited to =
     \%f GHz', B*10^3) // Multiplication by 10^3 to
     convert unit from THz to GHz
13 //the answer is wrong
```


Figure 16.4: 4

Figure 16.5: 5

Scilab code Exa 16.5 5

```
// Optical Fiber communication by A selvarajan
// example 16.5
//OS=Windows XP sp3
// Scilab version 5.5.1
clc;
clear all;
LT=10000//Transmission distance in Km
alpha=0.2//fiber loss in dB/Km
```

```
9 lambda=1.55*10^-6; //operating wavelength in m
10 Gama=2//nonlinearity in /W-Km
11 LA=50//Amplifier spacing in Km
12 D=1//dispersion parameter ps/(Km-nm)
13 FG=3.518//Fiber gain factor
14 fj=0.1//timing jitter factor
15 h=6.62607004 * 10-34 //planck's constant in m2 kg /
16 nsp=2//spontaneous emission factor
17 qo=6//Half of separation between two neighbouring
     solitons in normalized units
18 B1=((9*\%pi*fj^2*LA)/(nsp*FG*qo*lambda*h*Gama*D
     *10^-3))//variable converting la
19 B2=B1^(1/3)//variable
20 B=B2/LT//bandwidth in THz
21 mprintf('Communication Link bitrate is limited to =
     \%f Gb/s',B*10^3)// Multiplication by 10^3 to
     convert unit from THz to GHz
22 //the answer is wrong
```