4.2 Data Design (Table Design)

4.2.1 Schema Design

The data design for EcoSweep is structured to define the flow of command and sensor data between the Mobile App, Raspberry Pi, and Arduino Mega. The following schemas describe the structure of data packets exchanged during operation.

✓ Table 1 – Command_Data

Field Name	Data Type	Description	Example Value
command_id	Integer	Unique identifier for the command	1
timestamp	Datetime	Time the command was sent	2025-09-10
			12:45:30
mode	String	Mode of operation ('manual', 'semi-auto')	'manual'
action_type	String	Type of action ('move', 'arm', 'stop')	'move'
direction	String	Movement direction ('forward', 'backward',	'forward'
		'left', 'right')	
speed	Integer	Speed percentage (0–100)	70
arm_position	Integer	Servo motor position (0–180 degrees)	90

Example Row:

command_id	timestamp	mo de	action_t ype	direct ion	sp ee d	arm_posit ion
1	2025-09-10 12:45:30	man ual	move	forwar d	70	NULL

✓ Table 2 – Sensor_Data

Field Name	Data	Description	Example Value
	Туре		
sensor_id	Integer	Unique identifier for the sensor reading	1
timestamp	Datetime	Time of the sensor reading	2025-09-10
			12:45:31

sensor_type	String	Type of sensor ('ultrasonic', 'GPS', 'IMU', 'Compass', 'IR')	'ultrasonic'
sensor_value	Float	Measured value (e.g., distance in cm or coordinates)	25.3

Example Row:

sensor_id	timestamp	sensor_typ	sensor_valu	
		е	е	
1	2025-09-10	ultrasonic	25.3	
	12:45:31			

4.2.2 Data Integrity and Constraints

To ensure consistent, valid, and reliable operation of the EcoSweep system, the following data integrity rules and constraints are applied to the above schema design:

☑ Primary Key Constraints

- command_id is the primary key in the **Command_Data** table.
- sensor_id is the primary key in the Sensor_Data table.

This ensures every command and sensor reading is uniquely identifiable.

☑ Data Type Constraints

Field	Constraint	Example
speed	Integer between 0 and 100	70
arm_position	Integer between 0 and 180	90
timestamp	Not NULL – Must follow proper datetime	2025-09-10
	format	12:45:30
mode	Enum: 'manual', 'semi-auto'	'manual'
action_type	Enum: 'move', 'arm', 'stop'	'move'
sensor_type	Enum: 'ultrasonic', 'GPS', 'IMU',	'ultrasonic'
	'Compass', 'IR'	
sensor_value	Float, NOT NULL	25.3

✓ NOT NULL Constraints

- Fields timestamp, mode, and action_type in Command_Data must always have a value.
- Fields timestamp, sensor_type, and sensor_value in **Sensor_Data** must never be null.

✓ Logical Data Relationships

- Each command generated by the mobile app is assigned a unique command id.
- Sensor data is captured periodically and assigned a unique sensor id.
- Both data types are time-synchronized using timestamp to track the exact sequence of operations and sensor readings for debugging or future Al processing.
- Future expansion can allow commands and sensor readings to be logged in a database for offline analytics.

Final Summary of This Section

- The **Command_Data schema** captures structured commands with explicit control over movement, speed, and robotic arm position.
- The **Sensor_Data schema** provides structured environmental awareness information used by Arduino for basic navigation and future AI expansion.
- Proper constraints (primary keys, data type limits, NOT NULL fields) ensure the system remains robust and fault-tolerant.