Stabilizer formalism and fault-tolerant quantum computing

Othmane Benhayoune Khadraoui othmane.benhayounkhadraoui@epfl.ch

Physics Department Ecole polytechnique federale de Lausanne

January 19, 2022

Overview of the presentation

Stabilizer formalism

- Gottesman-Knill theorem
- Stabilizer codes
- The repetition code as an example

Fault Tolerant quantum computing

- Threshold theorem
- Fault tolerant implementation of an universal set of gates in a stabilizer code?

For any subgroup $\mathcal{S}=\langle g_1,g_2,\ldots,g_{n-k}\rangle\subset\mathcal{P}_n$, one can define the vector space $\mathcal{T}(\mathcal{S})$ as the space stabilized by S:

$$\mathcal{T}(\mathcal{S}) = \{ |\psi\rangle \mid g \mid \psi\rangle = |\psi\rangle \, \forall g \in \mathcal{S} \}$$

There are three possibilities:

- 1. $-\mathcal{I} \in \mathcal{S}$ then $\mathcal{T}(\mathcal{S}) = \{0\}$.
- 2. S is not abelian then $\mathcal{T}(S) = \{0\}$.
- 3. $-\mathcal{I} \notin \mathcal{S}$ and S is abelian then $\dim(\mathcal{T}(\mathcal{S})) = 2^k$.

The first non trivial example :

$$\mathcal{T}(\mathcal{S}) = \mathsf{Span}\left\{\ket{\psi}\right\}$$

Up to a global phase, there is a one a one correspondence between $\mathcal{S}=\langle g_1,g_2,\ldots,g_n\rangle$ and $|\psi\rangle$.

Then there are two possible way that could change the generators as the state evolves in a quantum circuit :

- 1. Unitary gate : if $|\psi\rangle$ is stabilized by $\langle g_1,\ldots,g_n\rangle$. Then $U|\psi\rangle$ is stabilized by $\langle Ug_1U^\dagger,\ldots,Ug_nU^\dagger\rangle$. Particular case : if U is an elementary Clifford gate $\in \{H,S,\text{C-NOT}\}$. Then it takes only \mathcal{O} (n^2) to simulate classically this quantum gate.
- 2. Measurement of some observable $M \in \mathcal{P}_n$: Two possibilities
 - $[M, g_i] = 0 \ \forall i \Rightarrow \text{The stabilizer does not change.}$
 - $[M,g_1] \neq 0 \Rightarrow$ The stabilizer became $\langle \pm g_1,\ldots,g_n \rangle$

Gottesman-Knill theorem : If a quantum computation is performed by involving only :

- State preparation in the computational basis
- Clifford gates
- Measurement of observables in the Pauli group
- Classical control conditioned on the outcome of such measurements
- \Rightarrow Such computation may be efficiently simulated on a (probabilistic) classical computer.

The second non trivial case is when $\dim(\mathcal{T}(\mathcal{S})) = 2^k$ with $k \ge 1$. \to This defines a [n,k] stabilizer code $\mathcal{T}(\mathcal{S})$.

Classification of errors : For $E \in \mathcal{P}_n$, there are three possibilities:

- 1. $\mathsf{E} \in \mathcal{S} \iff \forall |\psi\rangle \in \mathcal{T}(\mathcal{S}) \quad \mathsf{E} |\psi\rangle = |\psi\rangle \to \mathsf{E}$ does not corrupt the code space at all.
- 2. $\mathsf{E} \notin \mathcal{S}$ and $\exists g \in \mathcal{S}$ such that $\{E,g\} = 0 \to \mathsf{E}$ takes the code space to an orthogonal subspace. Therefore, the error can be detected and corrected.
- 3. $\mathsf{E} \notin \mathcal{S}$ and $\forall g \in \mathcal{S}$ $[E,g] = 0 \to \forall |\psi\rangle \in \mathcal{T}(\mathcal{S})$ $E |\psi\rangle \in \mathcal{T}(\mathcal{S})$ \to Unitary operations on the code space

This motivates the definition of the normalizer of ${\mathcal S}$

$$\mathcal{N}(\mathcal{S}) = \{ E \in \mathcal{P}_n \mid \forall g \in \mathcal{S} \ [E, g] = 0 \}$$

According to our previous analysis, errors that are not correctable are element of $\mathcal{N}(\mathcal{S}) - \mathcal{S}$. Moreover, the coset group $\mathcal{N}(\mathcal{S})/\mathcal{S} \simeq \mathcal{P}_k$.

Knill-Laflamme conditions for stabilizer codes : If $\mathcal{T}(\mathcal{S})$ is a stabilizer code and $\{E_r\}$ a set of errors in \mathcal{P}_n such that $E_r^{\dagger}E_s\notin\mathcal{N}(\mathcal{S})-\mathcal{S}\Rightarrow\{E_r\}$ is a correctable set of errors for the code $\mathcal{T}(\mathcal{S})$.

Correcting the errors : If an error $E_j \in \mathcal{P}_n$ occurs, Then $\{g_1,\ldots,g_{n-k}\} \to \left\{E_jg_1E_j^\dagger,\ldots,E_jg_{n-k}E_j^\dagger\right\}$

- 1. Error-detection is performed by measuring $\{g_1, \ldots, g_{n-k}\}$ to obtain the error syndrome $\{\beta_1, \ldots, \beta_{n-k}\}$
- 2. Recovery is achieved by applying the right operator :
 - If E_j is the only error having this syndrome \rightarrow apply E_i^{\dagger}
 - If there are $E_j \neq E_{j'}$ giving the same error syndromes $\to E_i^\dagger E_{j'} \in \mathcal{S}$

Summary : Measure the generators $\{g_1,\ldots,g_{n-k}\}$

- \rightarrow obtain the error syndromes $\{\beta_1, \dots, \beta_{n-k}\}$
- \rightarrow identify E_j
- \rightarrow apply E_i^{\dagger} to recover

Repetition code : Encoding k=1 qubit in n=3 physical qubits with stabilizer $\mathcal{S} = \langle Z_1 Z_2, Z_2 Z_3 \rangle \to \mathcal{T}(\mathcal{S}) = \operatorname{Span} \{|000\rangle, |111\rangle\}$. The error set $\{I, X_1, X_2, X_3\}$ is correctable thanks to Knill-Laflamme conditions since the set of all possible product $\{I, X_1, X_2, X_3, X_1 X_2, X_1 X_3, X_2 X_3\} \notin \mathcal{N}(\mathcal{S}) - \mathcal{S}$.

Figure: Correcting 1 bit flip with repetition code

Figure: Correcting 1 bit flip with repetition code

However, if we add two bit flip to our set of errors $\{I, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3\}$, it is non longer correctable since $X_{log} = X_1X_2X_3 \in \mathcal{N}(\mathcal{S}) - \mathcal{S}$.

In order to correct two bit flip error, we concatenate our repetition code:

$$\begin{split} & \rightarrow \mathcal{S} = \langle Z_1 Z_2, Z_2 Z_3, Z_4 Z_5, Z_5 Z_6, Z_7 Z_8, Z_8 Z_9, Z_1 Z_4, Z_4 Z_7 \rangle \\ & \rightarrow \mathcal{T}(\mathcal{S}) = \mathsf{Span}\left\{ \left| 0 \right\rangle^{\otimes 9}, \left| 1 \right\rangle^{\otimes 9} \right\} \end{split}$$

One can easily check that the set of errors

$$\{I, X_i, X_i X_j, X_i X_j X_k, X_{i_1} X_{j_1} X_{k_2} X_{l_3}, X_{i_1} X_{j_1} X_{k_1} X_{l_2} X_{m_3}\} \notin \mathcal{N}(S) - S.$$

 \rightarrow can be corrected thanks to the concatenation procedure.

Example:
$$|000\ 000\ 000\rangle \xrightarrow{X_1X_2X_3X_4X_7} |111\ 100\ 100\rangle \xrightarrow{MR/block} |111\ 000\ 000\rangle \xrightarrow{MR-blocks} |000\ 000\ 000\rangle$$

The concatenation procedure is efficient if the probability of logical bit flip is reduced.

In other words:

$$p_k < p_{k-1} < \ldots < p_1 < p_0 \equiv p$$

With p_k : the probability of a logical bit flip after k concatenation.

p: the probability of a physical bit flip.

Repetition code :
$$p_1 = 3p^2(1-p) + p^3$$

 $p_2 = 3p_1^2(1-p_1) + p_1^3$

Therefore,

$$p_2 < p_1 < p \iff p < \frac{1}{2}$$

Fault tolerant quantum computing &Threshold theorem

Threshold theorem for quantum computation:

A quantum circuit containing p(n) gates may be simulated with probability of error at most ϵ using only $\mathcal{O}(\text{poly}\log\left(\frac{p(n)}{\epsilon}\right)p(n))$ gates provided that the probability of physical error p is below some constant threshold $p < p_{th}$.

Idea: Concatenating our codes multiple times and performing *fault-tolerant* operations on encoded states.

Fault tolerant quantum computing &Threshold theorem

 \rightarrow Can we implement a universal set of logical operations on encoded quantum states in *fault-tolerant* manner?

Clifford gates: Any logical Clifford gate on encoded states can be implemented transversely in a stabilizer code.

Proof: if $\mathcal{T}(S)$ is a stabilizer code with stabilizer

 $S = \langle g_1, g_2, \dots, g_{n-k} \rangle$, then the action of a logical Clifford gate U

is : $g = \sigma_{j_1} \otimes \ldots \otimes \sigma_{j_n} \to UgU^{\dagger} = \sigma_{i_1} \otimes \ldots \otimes \sigma_{i_n}$.

Then if one write $U = \otimes U$. One should expect to

Then if one write $U = \otimes U_{\alpha}$. One should expect to solve the equation : $U_{\alpha}\sigma_{j_{\alpha}}U_{\alpha} = \sigma_{i_{\alpha}} \rightarrow U_{\alpha} \in \{H, S, X, Y, Z\}$

Eastin-Knill Theorem: No quantum error correcting code can transversely implement a universal set of unitary gates.

- ightarrow Logical T gate, and Toffoli gate can not be implemented transversely.
- ightarrow But still can be implemented in a fault-tolerant way if one can prepare fault-tolerantly the state $|\Theta\rangle=\frac{1}{\sqrt{2}}(|0_L\rangle+e^{i\frac{\pi}{4}}\,|1_L\rangle$

