Arithmétique : DS du 9 novembre 2022

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

- EXERCICE 1. Soit $A = \mathbb{F}_3[X]/(X^3 + X)$.
 - a) Combien l'anneau A contient-il d'éléments? Combien d'éléments contient le groupe multiplicatif A^* des éléments inversibles de A?
 - b) Montrer que tout élément α de A vérifie $\alpha^9 \triangleq \alpha$. En déduire que le groupe multiplicatif A^* n'est pas cyclique.
- EXERCICE 2. Tous les polynômes considérés sont dans $\mathbb{F}_2[X]$.
 - a) Calculer X^{2^i} modulo $X^7 + X^3 + 1$, i = 0, 1, 2, ..., 7 et en déduire que $X^7 + X^3 + 1$ est irréductible.
 - b) Soit $P(X) = X^8 + X^4 + X^3 + X + 1 \in \mathbb{F}_2[X]$. On admettra que le plus petit entier $i \ge 1$ tel que $X^{2^i} = X \mod P(X)$ vaut 8. Expliquer comment on peut en déduire que P(X) est irréductible.
- EXERCICE 3. On considère \mathbb{F}_{16} , le corps à 16 éléments. Soit γ un élément primitif de \mathbb{F}_{16} .
 - a) Quelles sont les puissances de γ , qui avec 0 et 1 constituent un sous-corps K de \mathbb{F}_{16} isomorphe à \mathbb{F}_4 ?
 - **b)** Montrer que pour tout $\alpha \in \mathbb{F}_{16}$, $\alpha + \alpha^4 \in K$.
 - c) Soit $\alpha \in \mathbb{F}_{16}$, $\alpha \notin K$. Que vaut $[\mathbb{F}_{16} : K]$?
 - d) En déduire le degré du polynôme minimal de $\alpha \notin K$ dans K[X]. Donner une expression des coefficients de ce polynôme minimal en fonction de α .
- Exercice 4.
 - a) On considère le polynôme $X^6 + X^3 + 1$ dans $\mathbb{F}_2[X]$. Calculer X^{64} modulo $X^6 + X^3 + 1$ et en déduire, en faisant très attention, que $X^6 + X^3 + 1$ est irréductible.
 - b) $X^6 + X^3 + 1$ est-il primitif?
 - c) Soit α une racine de $X^6 + X^3 + 1$ dans \mathbb{F}_{64} . Soit $\beta = \alpha^5 + \alpha^2 + \alpha$. Calculer $[\mathbb{F}_2(\beta) : \mathbb{F}_2]$.
 - d) Montrer que $\alpha + 1$ est primitif.
 - e) Trouver le polynôme minimal de $\alpha + 1$.