

Algorithms: Design and Analysis, Part II

Huffman Codes

Introduction and Motivation

Binary Codes

Binary code: Maps each character of an alphabet Σ to a binary string.

Example: $\Sigma = \text{a-z}$ and various punctuation (size 32 overall, say)

Obvious encoding: Use the 32 5-bit binary strings to encode this Σ (a fixed-length code)

Can we do better? Yes, if some characters of Σ are much more frequent than others, using a variable-length code.

Ambiguity

Example: Suppose $\Sigma = \{A,B,C,D\}$. Fixed-length encoding would be $\{00,01,10,11\}$.

Suppose instead we use the encoding $\{0,01,10,1\}$. What is 001 an encoding of?

- A) AB \rightarrow Leads to 001
- B) CD
- C) AAD \rightarrow Also leads to 001
- D) Not enough info to answer question

Prefix-Free Codes

Problem: With variable-length codes, not clear where one character ends + the next one begins.

Solution: Prefix-free codes - make sure that for every pair $i, j \in \Sigma$, neither of the encodings f(i), f(j) is a prefix of the other.

Example: {0,10,110,111}

Why useful? Can give shorter encodings with non-uniform character frequencies.

Example

Example:

Α	60%	00	0
В	25%	01	10
C	10%	10	110
D	5%	11	111

 Σ frequencies fixed-length variable-length (prefix free)

Fixed-length encoding: 2 bits/character

Variable-length encoding: How many bits needed on average?

$$0.6 \cdot 1 + 0.25 \cdot 2 + (0.1 + 0.05) \cdot 3 = 1.55$$

Huffman Codes

Problem Definition

Algorithms: Design and Analysis, Part II

Codes as Trees

Goal: Best binary prefix-free encoding for a given set of character frequencies.

Useful fact: Binary codes ↔ Binary trees

Examples: $(\Sigma = \{A,B,C,D\})$

Prefix-Free Codes as Trees

In general: - Left child edges \leftrightarrow "0", right child edges \leftrightarrow "1"

- For each $i \in \Sigma$, exactly one node labeled "i"
- Encoding of $i \in \Sigma \leftrightarrow$ Bits along path from node to the node "i"
- Prefix-free ↔ Labelled nodes = the leaves
 [since prefixes ↔ one node an ancestor of another]

To decode: Repeadetly follow path from root until you hit a leaf. [ex. $0110111 \mapsto ACD$] (unambiguous since only leaves are labelled)

Note: Encoding length of $i \in \Sigma$ = depth of i in tree.

Problem Definition

Input: Probability p_i for each character $i \in \Sigma$.

Notation: If T = tree with leaves \leftrightarrow symbols of Σ , then average encoding length $L(T) = \sum_{i \in \Sigma} p_i \cdot [\text{depth of } i \text{ in } T]$

Example: If $p_A = 60\%$, $p_B = 25\%$, $p_C = 10\%$, $p_D = 5\%$, then

$$L(\bigcirc) = 2$$
 while $L(\bigcirc) = 1.55$

Output: A binary tree T minimizing the average encoding length $L(\cdot)$.

Huffman Codes

A Greedy Algorithm

Algorithms: Design and Analysis, Part II

Codes as Trees

Input: Probability p_i for each character $i \in \Sigma$.

Output: Binary tree (with leaves \leftrightarrow symbols of Σ) minimizing the average encoding length:

$$L(T) = \sum_{i \in \Sigma} p_i[\text{depth of } i \text{ in } T]$$

Building a Tree

Question: What's a principled approach for building a tree with leaves \leftrightarrow symbols of Σ ?

Natural but suboptimal idea: Top-down/divide+conquer.

- Partition Σ into Σ_1, Σ_2 each with $\approx 50\%$ of total frequency.
- Recursively compute T_1 for Σ_1 , T_2 for Σ_2 , return:

Huffman's (optimal) idea: Build tree bottom-up using successive mergers.

A Greedy Approach

Question: Which pair of symbols is "safe" to merge?

Observation: Final encoding length of $i \in \Sigma = \#$ of mergers its subtree endures.

[Each merger increases encoding length of participating symbols by

1]

Greedy heuristic: In first iteration, merge the two symbols with the smallest frequencies.

How to Recurse?

Suppose: 1st iteration of algorithm merges symbols *a* & *b*.

Idea: Replace symbols a, b by a new "meta-symbol" ab.

Question: What should be the frequency p_{ab} if this meta-symbol?

- A) $\max\{p_a, p_b\}$
- B) $min\{p_a, p_b\}$
- C) $p_a + p_b$ since ab is a proxy for "a or b" (intuitively)
- D) $p_a p_b$

Example

Huffman's Algorithm

(Given frequencies p_i as input)

If $|\Sigma| = 2$ return

Let $a, b \in \Sigma$ have the smallest frequencies.

Let $\Sigma' = \Sigma$ with a, b replaced by new symbol ab.

Define $p_{ab} = p_a + p_b$.

Recursively compute T' (for the alphabet Σ')

Extend T' (with leaves $\leftrightarrow \Sigma'$) to a tree T with leaves $\leftrightarrow \Sigma$ by splitting leaf ab into two leaves a & b.

Algorithms: Design and Analysis, Part II

Huffman Codes

Huffman's Algorithm: A More Complex Example

Input and Steps 1 and 2

Input: Characters A B C D E F Weights 3 2 6 8 2 6

 Step 1: Merge B and E:
 A BE C D F

 3 4 6 8 6

Steps 3 and 4

Step 3: Merge C and F:

ABE CF D
7 12 8

Step 2: Merge ABE and D: ABDE CF 15 12

Final Output

Final tree:

Corresponding code:

A 000 D 01 B 0010 E 10 C 0011 F 11

Huffman Codes

Correctness Proof

Algorithms: Design and Analysis, Part II

Correctness of Huffman's Algorithm

Theorem: [Huffman 52] Huffman's algorithm computes a binary tree (with leaves \leftrightarrow symbols of Σ) that minimizes the average encoding length

$$L(T) = \sum_{i \in \Sigma} p_i[\text{depth of leaf } i \text{ in } T].$$

Proof: By induction on $n = |\Sigma|$. (Can assume $n \ge 2$.)

Base case: When n = 2, algorithm outputs the optimal tree.

(Needs 1 bit per symbol)

Inductive step: Fix input with $n = |\Sigma| > 2$.

By inductive hypothesis: Algorithm solves smaller subproblems (for Σ') optimally.

Inductive Step

Let $\Sigma' = \Sigma$ with a, b (symbols with smallest frequencies) replaced by meta-symbol ab. Define $p_{ab} = p_a + p_b$.

Recall: Exact correspondence between:

Important: For every such pair T' and T, L(T) - L(T') is (after cancellation)

$$p_a$$
 [a's depth in T] $+p_b$ [b's depth in T] $-p_{ab}$ [ab's depth in T'] = Each is one more than

$$= p_A(d+1) + p_b(d+1) - (p_a + p_b)d = p_a + p_b$$
, Independent of $T, T'!$

Proof of Theorem

Inductive hypothesis: Huffman's algorithm computes a tree \hat{T}' that minimizes L(T') for Σ' .

Upshot of last slide: Corresponding tree \hat{T} minimizes L(T) for Σ over all trees in X_{ab} (i.e., where a & b are siblings)

Key lemma: [Completes proof of theorem] There is an optimal tree (for Σ) in X_{ab} . [i.e., a & b were "safe" to merge]

Intuition: Can make an optimal tree better by pushing a & b as deep as possible (since a, b have smallest frequencies).

Proof of Key Lemma

By exchange argument. Let T^* be any tree that minimizes L(T)for Σ . Let x, y be siblings at the deepest level of T^* .

The exchange: Obtain \hat{T} from T^* by swapping $a \leftrightarrow x$, $b \leftrightarrow y$

Note: $\hat{T} \in X_{ab}$ (by choice of x, y).

To finish: Will show that $L(\hat{T}) \leq L(T^*)$ $[\Rightarrow \hat{T} \text{ also optimal, completes proof}]$

Reason:

$$L(T^*) - L(\hat{T}) = (p_x - p_a)$$
 [x's depth in T^* - a's depth in T^*]
+ $(p_y - p_b)$ [y's depth in T^* - b's depth in T^*]
 $\geq \emptyset$ QED!

 ≥ 0 since a, b have smallest frequencies ≥ 0 by choice of x, y

Notes on Running Time

Naive implementation: $O(n^2)$ time, where $n = |\Sigma|$.

Speed ups: - Use a heap! [to perform repeated minimum computations]

- Use keys = frequencies
- After extracting the two smallest-frequency symbols, re-Insert the new meta-symbol [new key = sum of the 2 old ones]
- \Rightarrow Iterative, $O(n \log n)$ implementation.

Even faster: (Non-trivial exercise) Sorting + O(n) additional work.

- Manage (meta-)symbols using two queues.

Huffman Codes

Correctness Proof

Algorithms: Design and Analysis, Part II

Correctness of Huffman's Algorithm

Theorem: [Huffman 52] Huffman's algorithm computes a binary tree (with leaves \leftrightarrow symbols of Σ) that minimizes the average encoding length

$$L(T) = \sum_{i \in \Sigma} p_i[\text{depth of leaf } i \text{ in } T].$$

Proof: By induction on $n = |\Sigma|$. (Can assume $n \ge 2$.)

Base case: When n = 2, algorithm outputs the optimal tree.

(Needs 1 bit per symbol)

Inductive step: Fix input with $n = |\Sigma| > 2$.

By inductive hypothesis: Algorithm solves smaller subproblems (for Σ') optimally.

Inductive Step

Let $\Sigma' = \Sigma$ with a, b (symbols with smallest frequencies) replaced by meta-symbol ab. Define $p_{ab} = p_a + p_b$.

Recall: Exact correspondence between:

Important: For every such pair T' and T, L(T) - L(T') is (after cancellation)

$$p_a$$
 [a's depth in T] $+p_b$ [b's depth in T] $-p_{ab}$ [ab's depth in T'] = Each is one more than

 $= p_A(d+1) + p_b(d+1) - (p_a + p_b)d = p_a + p_b$, Independent of T, T'!

Proof of Theorem

Inductive hypothesis: Huffman's algorithm computes a tree \hat{T}' that minimizes L(T') for Σ' .

Upshot of last slide: Corresponding tree \hat{T} minimizes L(T) for Σ over all trees in X_{ab} (i.e., where a & b are siblings)

Key lemma: [Completes proof of theorem] There is an optimal tree (for Σ) in X_{ab} . [i.e., a & b were "safe" to merge]

Intuition: Can make an optimal tree better by pushing a & b as deep as possible (since a, b have smallest frequencies).

Proof of Key Lemma

By exchange argument. Let T^* be any tree that minimizes L(T)for Σ . Let x, y be siblings at the deepest level of T^* .

The exchange: Obtain \hat{T} from T^* by swapping $a \leftrightarrow x$, $b \leftrightarrow y$

Note: $\hat{T} \in X_{ab}$ (by choice of x, y).

To finish: Will show that $L(\hat{T}) \leq L(T^*)$ $[\Rightarrow \hat{T} \text{ also optimal, completes proof}]$

Reason:

$$L(T^*) - L(\hat{T}) = (p_x - p_a)$$
 [x's depth in T^* - a's depth in T^*]
+ $(p_y - p_b)$ [y's depth in T^* - b's depth in T^*]
 $\geq \emptyset$ QED!

 ≥ 0 since a, b have smallest frequencies ≥ 0 by choice of x, y

Notes on Running Time

Naive implementation: $O(n^2)$ time, where $n = |\Sigma|$.

Speed ups: - Use a heap! [to perform repeated minimum computations]

- Use keys = frequencies
- After extracting the two smallest-frequency symbols, re-Insert the new meta-symbol [new key = sum of the 2 old ones]
- \Rightarrow Iterative, $O(n \log n)$ implementation.

Even faster: (Non-trivial exercise) Sorting + O(n) additional work.

- Manage (meta-)symbols using two queues.