John Karasinski

625 G Street • Davis, CA 95616 (916) 467-2727 • karasinski@gmail.com

Education

• University of California, Davis

Davis, CA

Ph.D. Mechanical and Aerospace Engineering

2016 - Current

Human systems integration and control theory

M.S. Mechanical and Aerospace Engineering

2013-2016

- Real-time performance feedback for the manual control of spacecraft

• University of California, Santa Cruz

Santa Cruz, CA

B.S. Physics

2008-2012

- High-energy astroparticle physics with the Fermi Gamma-ray Telescope

Experience

• NASA Ames Research Center

NASA Pathways Intern

NASA Ames Research Center, Moffett Field, CA

August 2017 – Current

- Human factors and human performance within the Human Systems Integration Division

- Teleoperator performance modeling
- Development and design of Playbook scheduling tool
- Software development with python, Unity, node, and C#

• UC Davis Center for Human/Robotics/Vehicle Integration and Performance

Davis, CA

Graduate Student Researcher

2013 - Current

- Development and validation of methods to assess task performance in real-time and provide immediate feedback to improve mission outcomes for spaceflight operations
- Customized refresher and just-in-time training for long-duration spaceflight crews
- Simulation development for the analysis of human performance and human-automation interaction
- Multiple human subject research campaigns
- Computer-vision techniques for autonomous spacecraft rendezvous and docking
- Optimal control theory for spacecraft attitude pointing

• San José State University Research Foundation

NASA Ames Research Center, Moffett Field, CA

Research Intern

June – September 2016, June – August 2017

- Designed and built a prototype of a mobile procedure viewer with the goals of reducing execution time, training time, and procedure execution errors for astronauts on the International Space Station
- Directed design interns on prototyping, usability testing, analysis and feasibility tasks
- Mentored software development interns learning Arduino, node, and Unity to accomplish tasks
- Integrated HoloLens augmented reality display and ESP8266 hardware through a MQTT broker
- Software development with Unity, node, and C++

• Foodfully, Inc. Davis, CA

Lead Software Developer

2015-2018

- Development of web, iOS, and Android mobile apps to reduce household food waste
- Full-stack software development in Javascript, Meteor, MongoDB, and React

• Teachers Curriculum Institute

Mountain View, CA

Software Developer

2013-2015

- Development of interactive science curriculum, comprehensive educational suite, and online store
- Software development in JavaScript, HTML5, and Ruby on Rails

• Handstand Inc. Mountain View, CA

Content Administrator

- Curated and published a library of over 2,000 creative commons and open source textbooks for free use (over 2 million views as of January 2017, see https://archive.org/details/opensource_textbooks)
- Assisted with the design, creation, and quality assurance of both the mobile and web applications
- Selected science, technology, engineering, and mathematics (STEM) textbooks for use with Android education application
- Effectively managed small teams of 3-7 people to complete various start up projects

• University of California, Santa Cruz

Santa Cruz, CA

Undergraduate Student Researcher

2010 - 2012

- Search for 'smoking gun' signatures of dark matter in the galactic center
- High energy gamma-ray timing analyses with the Fermi Gamma Ray Telescope

Junior Specialist

2009 – 2010, Balloon Campaigns 2011-13

- Computer-aided testing and evaluation of hardware and software for use on both test and final BARREL (Balloon Array for RBSP Relativistic Electron Losses) balloon campaigns
- Monitored data acquisition and performance of balloons during multiple campaigns to determine the electron loss rate during RBSP relativistic electron events

Selected Publications

Sarah M. O'Meara, **John A. Karasinski**, Casey L. Miller, Sanjay Joshi, and Stephen K. Robinson. The Effects of Training Methodology on Performance, Workload, and Trust During Human Learning of a Computer-Based Task. In *AIAA Scitech Forum*, 2020. doi:10.2514/6.2020-1110.

John A. Karasinski and Stephen K. Robinson. Utility of Concurrent Bandwidth Feedback in Training Aircraft Flight Tasks. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, 63(1):1729–1733, 2019a. doi:10.1177/1071181319631097.

John A. Karasinski and Stephen K. Robinson. Evaluating Augmented Reality in a Three-Axis Manual Tracking Task. In *AIAA SciTech Forum*, 2019b. doi:10.2514/6.2019-1227.

Jack Gale, Karasinski, John, and Steve Hillenius. Playbook for UAS: UX of Goal-Oriented Planning and Execution. In Engineering Psychology and Cognitive Ergonomics, pages 545–557. Springer International Publishing, 2018. ISBN 978-3-319-91122-9. doi:10.1007/978-3-319-91122-9_44.

Jessica J. Marquez, Mai L. Chang, Bettina L. Beard, Yun Kyung Kim, and **Karasinski, John A.** Human-Automation Allocations for Current Robotic Space Operations. 2018.

Karasinski, John A., Richard Joyce, Colleen Carroll, Jack Gale, and Steven Hillenius. An Augmented Reality/Internet of Things Prototype for Just-in-time Astronaut Training. In *Virtual, Augmented and Mixed Reality*, pages 248–260, Cham, 2017. Springer International Publishing. ISBN 978-3-319-57987-0. doi:10.1007/978-3-319-57987-0 20.

John A. Karasinski, Stephen K. Robinson, Patrick Handley, and Kevin R. Duda. Real-Time Performance Feedback in a Manually-Controlled Spacecraft Inspection Task. In *AIAA Modeling and Simulation Technologies Conference*, 2017. doi:10.2514/6.2017-1314.

Karasinski, John Austin. Real-Time Performance Feedback for the Manual Control of Spacecraft. Master's thesis, University of California, Davis, 2016.

Karasinski, John A., Stephen K. Robinson, Kevin R. Duda, and Zahar Prasov. Development of real-time performance metrics for manually-guided spacecraft operations. In *IEEE Aerospace Conference*, pages 1–9. IEEE, 2016. doi:10.1109/AERO.2016.7500734.

Karasinski, John Austin. A HIGH ENERGY TIMING ANALYSIS WITH THE FERMI GAMMA-RAY TELESCOPE. Bachelor's thesis, University of California, Santa Cruz, 2012.

Core Technical Skills

Core Languages: Python, Javascript

Additional Languages: C#, FORTRAN, C++, MATLAB, Simulink, LATEX, jQuery, Ruby on Rails, HTML5, CSS3

Development Environments: Linux, macOS, Windows, Android, iOS