ID	Policy Description	Testable?	Remarks
	If the current altitude is less than RTL_ALT, then altitude		
A.RTL1	must be increased until the altitude is greater or equal to	Yes	
	the RTL_ALT.		
	If the current altitude is greater or equal to RTL_ALT,		
A.RTL2	current flight mode is RTL, and the current vehicle is not at	Yes	
	home position, then the vehicle must move to the home		
	position while maintaining the current altitude.		
	If current altitude is greater or equal to RTL_ALT and		
	current position is the same as home position, then flight	Yes	
A.RTL3	mode must be LAND.		
	If current flight mode is LAND and the vehicle touches the	Yes	
A.RTL4	ground, then the vehicle must disarm motors	163	
	If and only if roll is less than 45 degree, throttle is greater		Unable to test FLIP
	or equal to 1,500, altitude is more than 10 meters, and the	No	Mode with our
	current flight mode is one of ACRO and ALT_HOLD, then	NO	implementation
A.FLIP1	the flight mode can be changed to FLIP.		implementation
			Unable to test FLIP
	If the current flight mode is FLIP and roll is between -90	No	Mode with our
A.FLIP2	and 45 degree, then rolling right at 400 degree per second.		implementation
	After the vehicle finishes A.FLIP2, the vehicle must recover		Unable to test FLIP
	the original attitude (i.e., roll, pitch, and yaw) within k	No	Mode with our
A.FLIP3	seconds.		implementation
	The vehicle should complete the rolling (A.FLIP2) within	No	Unable to test FLIP
A.FLIPGeneral	2.5 seconds and must return to the original flight mode		Mode with our
	If the altitude source is the barometer, the vehicle must		
	follow the altitude computed by this source, rather than	Yes	
A.ALT_HOLD1			
	If the throttle stick is in the middle (i.e., 1,500) the vehicle	Yes	
A.ALT_HOLD2	must maintain the current altitude.	163	
		No	Unable to test
A.CIRCLE1	Pitch stick up must reduce the radius until it reaches zero.	INO	CIRCLE with our
		No	Unable to test
A.CIRCLE2	Pitch stick down must increase the radius.	140	CIRCLE with our
	Roll stick right (think clockwise) must increase the speed	No	Unable to test
A.CIRCLE3	while moving clockwise.	INO	CIRCLE with our
	Roll stick right (think clockwise) must decrease the speed	No	Unable to test
A.CIRCLE4	while moving counterclockwise.	140	CIRCLE with our
	Roll stick left (think counterclockwise) must increase the	No	Unable to test
A.CIRCLE5	speed while moving counterclockwise	INO	CIRCLE with our
	Roll stick left (think counterclockwise) must decrease the	No	Unable to test
A.CIRCLE6	speed while moving clockwise	INO	CIRCLE with our
			Unable to test
	The users do not have any control over the roll, pitch, and	No	CIRCLE with our
A.CIRCLE7	yaw but can change the altitude with the throttle stick.		implementation
	Above 10 meters the vehicle must descend at the rate	Yes	
A.LAND1	specified in the LAND_SPEED_HIGH parameter.	163	

A LAND2	Below 10 meters the vehicle must descend at the rate	Yes	
A.LAND2	specified in the LAND_SPEED parameter.		
	The pilot's roll, pitch and throttle inputs must be ignored	Yes	
A.AUTO1	but the yaw can be overridden with the yaw stick.		
A DDAKE4	When the vehicle is in BRAKE mode, it must stop within k	Yes	
A.BRAKE1	seconds.		
	If the vehicle loses GPS signals in flight while in DRIFT		DRIFT Mode was not
	mode, the vehicle must either LAND or enter ALT_HOLD	No	possible with our
A.DRIFT1	mode based on FS_EKF_ACTION parameter.		implementation
	The vehicle must maintain a constant location, heading,	Yes	
A.LOITER1	and altitude.		
			Our missions
	If there is no more way point, the vehicle must stay at the	No	required vehicle to
A.GUIDED1	same location, heading, and altitude.		return after
			SPORT Mode was
	In SPORT mode, the vehicle must climb as indicated by the	No	not possible with our
A.SPORT1	PILOT_SPEED_UP parameter.	No	implementation
	If and only if the vehicle is armed in ACRO mode and the		ACRO Mode was not
	throttle input is less than the minimum (FS_THR_VALUE		possible with our
A.RC.FS1	parameter), the vehicle must immediately disarm.		implementation
			Fail-safe mode was
	If the throttle input is less than FS_THR_VALUE parameter,	No	not testable with our
A.RC.FS2	it must change the current mode to the RC fail-safe mode.		implementation
	Deploying a parachute requires following conditions: (1)		
	the motors must be armed, (2) the vehicle must not be in	No	CHUTE was not testable with our
	the FLIP or ACRO flight modes, (3) the barometer must		
	show that the vehicle is not climbing, and (4) the vehicle's		
	current altitude must be above the CHUTE_ALT_MIN		implementation
A.CHUTE1	parameter value.		
	When the number of detected GPS satellites is less than	No	GPS was not testable
A.GPS.FS1	four, the vehicle must trigger the GPS fail-safe mode.	No	with our
	When the GPS fail-safe mode is triggered and there is a		GPS was not testable
	secondary altitude sensor, the vehicle must change the	No	with our
A.GPS.FS2	current primary altitude source to the secondary sensor.		implementation