Linear Representations of Finite Groups by Serre Exercises completed by Caitlin Beecham

Exercise 2.7

Show that each character of G which is zero for all $s \neq 1$ is an integral multiple of the character r_G of the regular representation.

Note that since $(\chi|1)$ is the number of times the associated representation contains the unit representation, it is an integer. Recall that

$$(\chi|1) = \frac{1}{g} \sum_{s \in G} \chi(s)$$

but $\chi(s) = 0$ for $s \neq 1$ and thus

$$(\chi|1) = \frac{1}{q}\chi(1)$$

which implies that g divides $\chi(1)$, thus proving that $\chi = mr_G$ for some $m \in \mathbb{Z}$.

Exercise 2.8

Let H be the vector space of linear mappings $h: W_i \to V$ such that $\rho_s h = h \rho_s$ for all $s \in G$. Each $h \in H_i$ maps W_i into V_i . (Note: In the given exercise Serre seems to use ρ_s to denote two different representations since one acts on W_i (not yet embedded into V) and another acts on V, meaning technically this should say $\rho_s(h) = h \rho_s'$ where we have representations (ρ, V) and (ρ', W_i) but I will stay consistent with the notation given and use ρ for both).

- (a) Show that the dimension of H_i is equal to the number of times that W_i appears in V, i.e. to $\dim(V_i)/\dim(W_i)$. (Reduce to the case where $V=W_i$ and use Schur's Lemma).
 - Fix any non-zero $h \in H_i$. Denote it h_1 and let $U_i^1 := im(h_1) \subseteq V_i$.
 - Show that $U_i^1 \cong W_i$
 - To do so, we note that U_i^1 is a subspace of V_i , which I also claim is stable under the action of ρ_g for all g which along with the fact that U_i^1 is irreducible (Is it?) would imply that $U_i^1 \cong W_i$.
 - Indeed, U_i^1 is stable under the action of ρ_g since for all $u \in U_i^1$ one has by definition that $u = h_1(w)$ for some $w \in W_i$ and then

$$\rho_q(u) = \rho_q(h_1(w)) = h_1(\rho_q(w)) = h(w')$$

for some $w' \in W_i$ since W_i is stable under the action of G. and thus $\rho_q(u) \in U_i^1 = \operatorname{im}(h_1)$.

- Also, U_i^1 is irreducible for the same reason. Otherwise, if there were some subspace $U_{i'}^1 \subseteq U_i^1$ which was stable under the action of G, then note that if $W_1' := h^{-1}(U_{i'}^1) := \{w \in W_i : h_1(w) \in U_{i'}^1\}$ denotes the set of pre-images under h_1 , then $W_1' \subseteq W_i$ and since W_i is irreducible one knows that W_1' is not stable under G. More precisely, there exists $g \in G, w' \in W_1'$ such that $u' := \rho_g(w_1') \notin W_1'$. Thus,

$$\rho_q(h_1(w_1')) = h_1(\rho_q(w_1')) = h_1(u') \notin U_{i'}^1$$

since W_1' was by definition all pre-images $\{w \in W_i : h_1(w) \in U_i^{1'}\}$, which provides a contradiction since $h_1(w_1') \in U_1'$ which implies $\rho_g(h_1(w_1')) \in U_1'$ since U_1' was stable under G by assumption.

- Also, up to isomorphism W_i is the only irreducible subspace of V_i .
- Then, use Schur's Lemma.
 - Namely, $W_i \cong U_i^1$ implies that there exists an isomorphism $\phi_i^1: U_i^1 \to W_i$. So, define $\hat{h}: U_i^1 \to U_i^1$ by $\hat{h}(w) = h(\phi_i^1(w))$.

- Now, part (2) of Schur's lemma says that since $\rho_g \hat{h} = \hat{h} \rho_g$ for all $g \in G$, \hat{h} is a homothety.
- Now, we first show that $\dim(H_i) \geq n_i$ by an inductive argument. Namely, for $k < n_i$ suppose we have

 $\{h_1,\ldots,h_k\}\subseteq H_i$ a linearly independent set

such that

$$U_i^j := \operatorname{im}(h_i) \cong W_i$$

and

$$Y_k := \operatorname{span}(\{U_i^j : j \in [k]\}) \cong \bigoplus_{j \in [k]} W_i.$$

Then, we show that there exists

$$h_{k+1} \in H_i$$

such that

- $-U_i^{k+1} := \operatorname{im}(h_{k+1}) \cong W_i,$
- $-Y_k \cap U_i^{k+1} = \{0\},\$
- and $\{h_1, \ldots, h_k, h_{k+1}\} \subseteq H_i$ is a linearly independent set.
- The first two points of course imply that

$$Y_{k+1} := \operatorname{span}(\{U_i^j : j \in [k+1]\}) \cong \bigoplus_{j \in [k+1]} U_i^j \cong \bigoplus_{j \in [k+1]} W_i.$$

- All together, this will show that we can find a set of n_i linearly independent functions $\{h_1, \ldots, h_{n_i}\} \subseteq H_i$ which shows $\dim(H_i) \ge n_i$.
- After we carry out the above argument we will also show that $\dim(H_i) \leq n_i$.
- Now, we perform the above inductive proof by constructing the desired $h_{k+1} \in H_i$ from above as follows.
 - First, recall by Theorem 1 that there exists a complement Y'_{k+1} of Y_k in V_i which is stable under the action of G.
 - So, since $Y_k = \bigoplus_{j \in [k]} U_i^j \cong \bigoplus_{j \in [k]} W_i$ we have that

$$Y'_{k+1} \cong \bigoplus_{j \in [k+1:n_i]} W_i$$

since otherwise,

$$V_i \cong \bigoplus_{j \in [n_i]} W_i$$

and

$$V_i \cong Y_k \oplus Y'_{k+1} \cong \left(\bigoplus_{j \in [k]} W_i\right) \oplus Y'_{k+1} \ncong \left(\bigoplus_{j \in [k]} W_i\right) \oplus \left(\bigoplus_{j \in [k+1:n_i]} W_i\right) \cong \bigoplus_{j \in [n_i]} W_i$$

provide a contradiction. TODO: Prove definitively that if $W \ncong V$ then $U \oplus W \ncong U \oplus V$.

- So, since $Y'_{k+1} \cong \bigoplus_{j \in [k+1:n_i]} W_i$ that implies that there exist subspaces $U_i^{k+1}, \ldots, U_i^{n_i} \subseteq Y'_{k+1}$ such that $U_i^j \cong W_i$ are isomorphic as representations for all $j \in [k+1:n_i], U_i^j \cap U_i^l = \{0\}$ for $j \neq l \in [k+1:n_i]$ and so that $Y'_{k+1} = \operatorname{span}\{U_i^j : j \in [k+1:n_i]\}$.

– So, we choose $w' \in U_i^{k+1}$ and recall that since $U_i^k \cong W_i$ we have an isomorphism of representations

$$\phi_i^k: U_i^k \to W_i$$

and likewise we have an isomorphism of representations

$$\phi_i^{k+1}: U_i^{k+1} \to W_i$$

which means that for all $j \in [k+1:n_i]$ we have an isomorphism of representations

$$\phi_i^{k+1} \circ (\phi_i^k)^{-1} : U_i^k \to U_i^{k+1}$$

- Then, if one defines

$$h_{k+1}: W_i \to U_i^{k+1}$$

by

$$h_{k+1}(w) = \phi_i^{k+1}((\phi_i^k)^{-1}(h_k(w)))$$
 for all $w \in W_i$,

then one has that

$$\operatorname{im}(h_{k+1}) = U_i^{k+1} \text{ since } \operatorname{im}(h_k) = U_i^k,$$

Also, we define

$$\widehat{h}_{k+1}: U_i^{k+1} \to U_i^{k+1}$$

by

$$\hat{h}_{k+1}(w) = h_{k+1}(\phi_i^{k+1}(w))$$

then I claim that

$$\rho_g h_{k+1} = h_{k+1} \rho_g$$

since

$$\rho_q h_{k+1} = \rho_q \tau h_k$$

and

$$h_{k+1}\rho_g = \tau h_k \rho_g = \tau \rho_g h_k = \rho_g \tau h_k$$

since τ is an isomorphism of representations.

- Then, by Schur's Lemma,

$$\hat{h}_{k+1}: U_i^{k+1} \to U_i^{k+1}$$

is a scalar operator.

- Now, we show that

 $\{h_1,\ldots,h_{k+1}\}\subseteq H_i$ is a linearly independent set

and that

$$Y_k \cap U_i^{j'} = \{0\}$$

as follows.

- First, assume for contradiction that $\{h_1, \ldots, h_{k+1}\}$ is dependent. Then there exist $c_1, \ldots, c_{k+1} \in F$, not all zero, such that

$$\sum_{j \in [k+1]} c_j h_j = 0$$

is the zero function, then for arbitrary $w \in W_i$ and in particular arbitrary $w \neq 0$ we have that

$$\sum_{j \in [k+1]} c_j h_j(w) = 0$$

meaning that if $c_{j'} \neq 0$ for $j' \in [k+1]$ then

$$h_{j'}(w) = \sum_{j \in [k+1]: j \neq j'} \frac{-c_j}{c_{j'}} h_j(w).$$

However, $h_{j'}(w) \in U_i^{j'}$ and $h_j(w) \in U_i^{j}$ for all $j \in [k+1] \setminus \{j'\}$.

– Furthermore, $U_i^j \cap U_i^{j'} = \{0\}$ for all $j \neq j'$ and $dim(Y_k \oplus U_i^{k+1}) = \sum_{j \in [k+1]} dim(U_i^j)$ which implies that

$$(\operatorname{span}(\{U_i^j : j \in [k+1], j \neq j'\})) \cap U_i^{j'} = \{0\}$$

since

$$Y_k \oplus U_i^{k+1} \cong (\bigoplus_{j \in [k]} U_i^j) \oplus U_i^{k+1} \cong (\bigoplus_{j \in [k+1]: j \neq j'} U_i^j) \oplus U_i^{j'} \cong \operatorname{span}(\{U_i^j: j \in [k+1], j \neq j'\}) \oplus U_i^{j'}$$

which by definition of direct sum gives the above.

- Now, we have a contradiction since

$$h_{j'}(w) \in (\text{span}(\{U_i^j : j \in [k+1], j \neq j'\})) \cap U_i^{j'}$$

implies that $h_{j'}(w) = 0$ but that implies that w = 0 since $h_{j'}$ is a bijection, a contradiction.

- So, we have shown that $\dim(H_i) \geq [n_i]$.
- Now, to show that $\dim(H_i) \leq [n_i]$, we show that one cannot have a set of n_i+1 linearly independent functions $\{h_1,\ldots,h_{n_i+1}\}$. The idea is to show that

$$\operatorname{im}(h_{n_i+1}) \cap \left(\operatorname{span}(\{U_i^j : j \in [n_i]\})\right) = \{0\}$$

where we denote $U_i^j := \operatorname{im}(h_j)$, which will provide a contradiction if we can also show that

$$im(h_i) \cong W_i$$

for all $j \in [n_i + 1]$.

- Once again, by the same logic as our earlier argument that $U_i^1 \cong W_i$, we have that $U_i^j \cong W_i$ for all $j \in [n_i + 1]$ (since the earlier logic actually shows that $\operatorname{im}(h) \cong W_i$ for all $h \in H_i$).
- Now, if we assume for contradiction that $U_i^{n_i+1} \cap (\operatorname{span}(\{U_i^j: j \in [n_i]\})) \supseteq \{0\}$, note that the intersection of subspaces $U_i^{n_i+1} \cap (\operatorname{span}(\{U_i^j: j \in [n_i]\}))$ is a subspace and then the preimage of a subspace is a subspace. Thus,

$$h_{n_i+1}^{-1}(U_i^{n_i+1}\cap \left(\operatorname{span}(\{U_i^j:j\in [n_i]\})\right)$$
 is a subspace of $W_i.$

I claim that $h_j^{-1}(U_i^j\cap U_i^k)$ is a proper (since $U_i^{n_i+1}\not\subseteq \left(\operatorname{span}(\{U_i^j:j\in[n_i]\})\right)$ TODO: double check!), non-zero subspace that is stable under the action of G, a contradiction since W_i is irreducible, thus proving that $U_i^{n_i+1}\cap \left(\operatorname{span}(\{U_i^j:j\in[n_i]\})\right)=\{0\}$, thus providing a contradiction since $V_i=\operatorname{span}(\{U_i^j:j\in[n_i]\})$ and $U_i^{n_i+1}\subseteq V_i$ implies that $U_i^{n_i+1}=\{0\}$ which would imply that $h_{n_i+1}=0$ is the zero function, a contradiction.

(b) Let G act on $H_i \otimes W_i$ through the tensor product of the trivial representation of G on H_i and the given representation on W_i . show that the map

$$F: H_i \otimes W_i \to V_i$$

defined by the formula

$$F(\sum h_{\alpha} \cdot w_{\alpha}) = \sum h_{\alpha}(w_{\alpha})$$

is an isomorphism of $H_i \otimes W_i$ onto V_i . [Same method].

We must show that

$$\rho_q F = F \rho_q$$

for all $g \in G$. So, first note that

$$\rho_g(\sum c_{\alpha}h_{\alpha}\otimes w_{\alpha})=\sum c_{\alpha}h_{\alpha}\otimes(\rho_g(w_{\alpha})),$$

and thus

$$F(\rho_g(\sum c_{\alpha}h_{\alpha}\otimes w_{\alpha})) = F(\sum c_{\alpha}h_{\alpha}\otimes (\rho_g(w_{\alpha})))$$

but by definition of F we have

$$F(\sum c_{\alpha}h_{\alpha}\otimes(\rho_g(w_{\alpha})))=\sum c_{\alpha}h_{\alpha}(\rho_g(w_{\alpha}))$$

but since $h_{\alpha} \in H_i$ we have that

$$h_{\alpha}\rho_{q} = \rho_{q}h_{\alpha}$$

and thus

$$\sum c_{\alpha}h_{\alpha}(\rho_g(w_{\alpha})) = \sum c_{\alpha}\rho_g(h_{\alpha}(w_{\alpha})) = \rho_g(\sum c_{\alpha}h_{\alpha}(w_{\alpha})) = \rho_g(F(\sum c_{\alpha}h_{\alpha}\otimes w_{\alpha}))),$$

proving the claim. We now must show that F is a bijection. In particular, my work in part (a) shows that $V_i \cong \bigoplus_{j \in [n_i]} \operatorname{im}(h_j)$ where $\{h_j\}$ is any basis for H_i and also that $\operatorname{im}(h_j) \cong W_i$. So, we note that if $\{w^1, \ldots, w^m\}$ is a basis for W_i , then

$$\{h_j \otimes w^k : j \in [n_i], k \in [m]\}$$

is a basis for $H_i \otimes W_i$. Now, to show that F is onto, we note that for any $v \in V_i$ we have since $V_i \cong \bigoplus_{j \in [n_i]} \operatorname{im}(h_j)$ that

$$\bigsqcup_{j \in [n_i]} \{ u_{i,k}^j : k \in [m] \}$$

is a basis for V_i where $\{u_{i,k}^j: k \in [m]\}$ is a basis for $\operatorname{im}(h_j)$ for each $j \in [n_i]$. Thus, for all $v \in V_i$, there exist c_k^j for $j \in [n_i], k \in [m]$ such that

$$v = \sum_{j \in [n_i]} \sum_{k \in [m]} c_k^j u_{i,k}^j.$$

Then, $u_{i,k}^j \in \operatorname{im}(h_j)$ for all $j \in [n_i]$ and $k \in [m]$ implies that there exist $w_k^j \in W_i$ (not necessarily distinct) such that $h_j(w_k^j) = u_{i,k}^j$, and thus

$$v = \sum_{j \in [n_i]} \sum_{k \in [m]} c_k^j h_j(w_k^j) = F(\sum_{(j,k) \in [n_i] \times [m]} c_k^j h_j \otimes w_k^j).$$

Finally, F is injective, since otherwise if $F(\sum_{(j,k)\in[n_i]\times[m]}c_k^jh_j\otimes w_k)=0$ for $\sum_{(j,k)\in[n_i]\times[m]}c_k^jh_j\otimes w_k\neq 0$, then that means precisely that

$$\sum_{(j,k)\in[n_i]\times[m]} c_k^j h_j(w_k) = 0$$

but

$$\sum_{(j,k)\in[n_i]\times[m]} c_k^j h_j(w_k) = \sum_{j\in[n_i]} (\sum_{k\in[m]} h_j(c_k^j w_k)).$$

Now, $c_{k'}^{j'} \neq 0$ for at least one (j', k') which implies that

$$h_{j'}(w_{k'}) = \sum_{(j,k)\in[n_i]\times[m]\setminus(j',k')} \frac{-c_k^j}{c_{k'}^j} h_j(w_k).$$

However, $h_j(c_k^j w_k) \in U_i^j$ for all $j \in [n_i]$ and as shown in (a), $U_i^{j'} \cap \text{span}(\{U_i^j : j \in [n_i] \setminus \{j'\}\}) = \{0\}$ which implies that $h_{j'}(w_{k'}) = 0$ and thus $w_{k'} = 0$ since h'_j is not the zero function, proving injectivity.

(c) Let (h_1, \ldots, h_k) be a basis of H_i and form the direct sum $W_i \oplus \cdots \oplus W_i$ of k copies of W_i . The system (h_1, \ldots, h_k) defines in an obvious way a linear mapping h of $W_i \oplus \cdots \oplus W_i$ into V_i ; show that it is an isomorphism of representations and that each isomorphism is thus obtainable [apply (b), or argue directly]. In particular, to decompose V_i into a direct sum of representations isomorphic to W_i amounts to choosing a basis for H_i .

The obvious mapping is defined as follows. As I showed in part (a), for this basis (h_1, \ldots, h_{n_i}) we have that

$$V_i \cong \bigoplus_{j \in [n_i]} U_i^j$$

and

$$U_i^j \cong W_i$$

where U_i^j denotes $U_i^j = \operatorname{im}(h_j)$. Thus, for $h \in H_i$ there of course exist $c_1, \ldots, c_{n_i} \in F$ so that $h = \sum_{j \in [n_i]} c_j h_j$ and then we define

$$h: \bigoplus_{j \in [n_i]} W_i \to V_i$$

by

$$h(\bigoplus_{j\in[n_i]} w_j) = \sum_{j\in[n_i]} c_j h_j(w_j).$$

I claim that $h: \bigoplus_{j \in [n_i]} W_i \to V_i$ as defined above is an isomorphism of representations for all $h \in H_i$. Namely, I must show that

$$h\rho_g = \rho_g h$$

for all $g \in G$ where we define action of G on V_i as usual and action of G on $\bigoplus_{j \in [n_i]} W_i$ by

$$\rho_g(\bigoplus_{j\in[n_i]} w_j) = \bigoplus_{j\in[n_i]} \rho_g(w_j).$$

So,

$$h\rho_g(\bigoplus_{j\in[n_i]}w_j)=h(\bigoplus_{j\in[n_i]}\rho_g(w_j))=\sum_{j\in[n_i]}c_jh_j(\rho_g(w_j))=\sum_{j\in[n_i]}c_j\rho_g(h_j(w_j)) \text{ (since } h\in H_i)$$

but then

$$\sum_{j\in[n_i]}c_j\rho_g(h_j(w_j))=\rho_g(\sum_{j\in[n_i]}c_jh_j(w_j))=\rho_g(h(\bigoplus_{j\in[n_i]}w_j)).$$

Exercise 2.9

Let H_i be the space of linear maps $h: W_i \to V$ such that $h \circ \rho_s = \rho_s \circ h$. Show that the map $f: H_i \to V_i$ defined by $f: h \mapsto h(e_\alpha)$ is an isomorphism of H_i onto $V_{i,\alpha}$.

We must show that $f(h_1 + h_2) = f(h_1) + f(h_2)$, that f(kh) = kf(h) and that f is a bijection. To show the first claim we note that $f(h_1 + h_2) = f(h_1) + f(h_2)$

$$f(h_1 + h_2) = (h_1 + h_2)(e_\alpha) = h_1(\alpha) + h_2(\alpha) = f(h_1) + f(h_2).$$

To show the second claim we note that

$$f(kh) = (kh)(e_{\alpha}) = kh(e_{\alpha}) = kf(h).$$

Finally, to show that f is injective we show that $ker(f) = \{0\}$. In particular, note that ker(f) is a subspace of H_i . Suppose there exists $k \neq 0$ in such that f(k) = 0 meaning

$$f(k) = k(e_{\alpha}) = 0.$$

Now we wish to show that k(w) = 0 for all $w \in W_i$. Luckily, since W_i is irreducible we know that no subspace of W_i is stable under G. We will use this fact to iteratively construct a set $\{e_{\alpha} = w_1, \ldots, w_n\}$ of $n = dim(W_i)$ linearly independent vectors that span W_i for each of which we show that $k(w_j) = 0$ for all j which will imply by linearity that k is the zero map on W_i .

So, we need to construct that set of vectors and in the process show $k(w_i) = 0$ for each. Namely, starting with w_1 we know that $span(\{w_1\})$ is not stable under G meaning that there exists $g \in G$ such that $\rho g_1(w_1) \notin span(\{w_1\})$.

So, we keep track of such $g_i's$ and w_i 's. We let $w_2 := \rho_{g_1}(w_1)$.

Also, we can now show that $k(w_2) = 0$ since $\rho_{g_1} \circ k = k \circ \rho_{g_1}$ namely we have that $k(\rho_{g_1}(w_1)) = \rho_{g_1}(k(w_1)) = 0$.

Now, we iterate. In particular, $span(\{w_1, w_2\})$ is not stable under G which implies that there exists $w_2' \in span(\{w_1, w_2\})$ and $g_2 \in G$ such that $\rho_{g_2}(w_2') \notin span(\{w_1, w_2\})$. Denote $w_3 := \rho_{g_2}(w_2')$. Now, once again we see that $k(w_3) = 0$. Why? Since k is linear and $\rho_{g_2} \circ k = k \circ \rho_{g_2}$. Namely, k linear implies that $k(w_2') = 0$ and then $k(w_3) = k(\rho_{g_2}(w_2')) = \rho_{g_2}(0) = 0$.

Now, inductively say we have w_1, \ldots, w_j for $j \in [1:n-1]$ with $k(w_i) = 0$ for all $i \in [1:j]$ then since $span(\{w_1, \ldots, w_j\})$ is not stable under G that implies there exists $w_j' \in span(\{w_1, \ldots, w_j\})$ and $g_j \in G$ such that $\rho_{g_j}(w_j') \notin span(\{w_1, \ldots, w_j\})$. Then, set $w_{j+1} := \rho_{g_j}(w_j')$ and note again by $\rho_{g_j} \circ k = k \circ \rho_{g_j}$ that $k(w_{j+1}) = 0$.

Inductively, we obtain a basis $\{w_1, \ldots, w_n\}$ of W_i with $k(w_i) = 0$ for all $i \in [n]$ proving that k is the zero map and thus f is injective.

To show that $dim(H_i) = dim(V_{i,\alpha})$ recall that by Exercise 2.8 that $dim(H_i)$ is the number of times W_i appears in V_i or otherwise put it is $dim(H_i) = dim(V_i)/dim(W_i)$. Now, recall that by part (d) of Proposition 8 we know that if $m = dim(V_{i,\alpha})$ then $V_i = \bigoplus_{j \in [m]} W(x_1^{(j)})$ and since $dim(W(x_1^{(j)})) = dim(W_i)$ for all $j \in [m]$ we have that $dim(V_i) = mdim(W_i)$ meaning $dim(V_i) = dim(V_{i,\alpha})dim(W_i)$ so that $dim(V_{i,\alpha}) = dim(H_i) = dim(V_i)/dim(W_i)$. So, any injective map $f: H_i \to V_{i,\alpha}$ is also surjective, concluding our proof.

Exercise 2.10

Let $x \in V_i$ and let V(x) be the smallest subrepresentation of V containing x. Let x_1^{α} be the image of x under $\rho_{1\alpha}$; show that V(x) is the sum of the representations $W(x_1^{\alpha}), \alpha = 1, \ldots, n$. Deduce from this that V(x) is the direct sum of at most n representations isomorphic to W_i .

- First we show that $V(X) \subseteq \sum_{\alpha \in [n]} W(x_1^{\alpha})$.
 - In particular, we do so by noting that
 - * $x \in \sum_{\alpha \in [n]} W(x_1^{\alpha})$, since $x = \sum_{\alpha \in [n]} p_{\alpha \alpha} x$ and $(x_1^{\alpha})_{\alpha} = p_{\alpha \alpha} x$. (Recall that by definition $W(x_1^{\alpha}) = span(\{(x_1^{\alpha})_{\beta} : \beta \in [n]\})$).
 - * the sum of the representations $W(x_1^{\alpha}), \alpha \in [n]$ is a representation, since $\rho_g(\sum_{\alpha \in [n]} c_{\alpha} w_{\alpha}) = \sum_{\alpha \in [n]} c_{\alpha} \rho_g(w_{\alpha}) \in \sum_{\alpha \in [n]} c_{\alpha} W(x_1^{\alpha}).$
 - * Then, since V(x) is the smallest subrepresentation of V containing x and since $\sum_{\alpha \in [n]} W(x_1^{\alpha})$ is another such representation that means that $V(x) \subseteq \sum_{\alpha \in [n]} W(x_1^{\alpha})$.
- Then we show that $\sum_{\alpha \in [n]} W(x_1^{\alpha}) \subseteq V(X)$. We do so by proving that
 - $-\sum_{\alpha\in[n]}W(x_1^{\alpha})=span(\{p_{\alpha\beta}x:\alpha,\beta\in[n]\}).$
 - $-p_{\alpha,\beta}x \in V(x)$ for all $\alpha,\beta \in [n]$
 - Then that will imply that $\sum_{\alpha \in [n]} W(x_1^{\alpha}) \subseteq V(X)$ since V(x) is a vector subspace.

These statements are non-trivial to prove. First to show that $\sum_{\alpha \in [n]} W(x_1^{\alpha}) = span(\{p_{\alpha\beta}x : \alpha, \beta \in [n]\})$ we note that by definition

$$W(x_1^{\alpha}) = span(\{(x_1^{\alpha})_{\beta} : \beta \in [n]\}) = span(\{p_{\beta 1}(x_1^{\alpha}) : \beta \in [n]\}) = span(\{p_{\beta 1}p_{1\alpha}x : \beta \in [n]\})$$
$$= span(\{p_{\beta \alpha}x : \beta \in [n]\})$$

and thus

$$\sum_{\alpha \in [n]} W(x_1^{\alpha}) = span(\{p_{\beta \alpha} x : \alpha, \beta \in [n]\}).$$

Now, to show that $p_{\alpha,\beta} \in V(x)$ for all $\alpha,\beta \in [n]$ it suffices to show that $p_{\alpha,\beta} \in span(\{\rho_g x : g \in G\})$. We do so purely from the definition. In particular,

$$p_{\alpha\beta}x = \frac{n}{g} \sum_{t \in G} r_{\beta\alpha}(t^{-1})\rho_t$$

which is clearly in the span of $\{\rho_g x : g \in G\}$ since $r_{\beta\alpha}(t^{-1}) \in \mathbb{C}$.

Finally, we deduce that V(x) is the direct sum of at most n representations isomorphic to W_i since for all $\alpha_1, \alpha_2 \in [n]$ we have that $W(x_1^{\alpha_1}) = W(x_1^{\alpha_2})$ or $W(x_1^{\alpha_1}) \cap W(x_1^{\alpha_2}) = \{0\}$. TODO: Prove this.