Assignment #1 Math 584A

John Cohen

Due September 10th at 1 am (via Gradescope)

For uploading to Gradescope, it will be easiest to put each solution on a different page. The code for this is commented out in the tex file.

Problem 1. Fix any two points $x, y \in \mathbb{R}^n$. Show that

$$\lim_{p \to \infty} d_p(x, y) = d_{\infty}(x, y).$$

Solution. Let $i \leq n$ be defined such that $|x_i - y_i| \geq |x_m - y_m|$ for all $m \leq n$. By definition, $|x_i - y_i| = d_{\infty}(x, y)$. Notice that

$$|x_i - y_i| \le |x_1 - y_1| + \ldots + |x_i - y_i| + \ldots + |x_n - y_n| \le n|x_i - y_i|.$$

Thus,

$$|x_i - y_i|^p < |x_1 - y_1|^p + \dots + |x_i - y_i|^p + \dots + |x_n - y_n|^p < n|x_i - y_i|^p$$

By taking the each expression in the inequality to the 1/p power, we get

$$(|x_i - y_i|^p)^{\frac{1}{p}} < (|x_1 - y_1|^p + \ldots + |x_i - y_i|^p + \ldots + |x_n - y_n|^p)^{\frac{1}{p}} < (n|x_i - y_i|^p)^{\frac{1}{p}},$$

and

$$|x_i - y_i| \le d_p(x, y) \le n^{\frac{1}{p}} |x_i - y_i|.$$

Taking the limit as p approaches infinity gives

$$\lim_{p \to \infty} |x_i - y_i| \le \lim_{p \to \infty} d_p(x, y) \le \lim_{p \to \infty} n^{\frac{1}{p}} |x_i - y_i|.$$

Thus,

$$d_{\infty}(x,y) \le \lim_{p \to \infty} d_p(x,y) \le d_{\infty}(x,y).$$

Therefore, by the Squeeze Theorem,

$$\lim_{p \to \infty} d_p(x, y) = d_{\infty}(x, y).$$

Problem 2. Fix $p_1, p_2 \in [1, \infty]$ such that $p_1 < p_2$ (we allow the case $p_2 = \infty$). Find constants $C, \overline{C} > 0$ such that

$$\underline{C}d_{p_1}(\bar{x},\bar{y}) \le d_{p_2}(\bar{x},\bar{y}) \le \overline{C}d_{p_1}(\bar{x},\bar{y}),$$

for all $x, y \in \mathbb{R}^N$. Hint: you may find it helpful to do the case $p_1 = 1$ and $p_2 = \infty$ first.

Problem 3. Consider the metric space (X, d_{disc}) , where X is a nonempty set. Suppose that $(x_n)_n$ is a sequence in X. Show that

$$\lim_{n \to \infty} x_n = x$$

if and only if there exists N such that $x_n = x$ for all $n \ge N$.

Problem 4. Prove Young's inequality: for any p, q > 1 such that

$$1 = \frac{1}{p} + \frac{1}{q}$$

for any $x, y \in \mathbb{R}$,

$$xy \le \frac{|x|^p}{p} + \frac{|y|^q}{q}.$$

Hint: for any fixed $y \geq 0$, consider the function $f:[0,\infty) \to \mathbb{R}$, defined by

$$f(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy,$$

and show that the minimum of f is zero.

Problem 5. Fix $N \ge 1$ and p > 1. Let q be as in problem 4. Show the following:

(i) Show that, for any $\bar{x}, \bar{y} \in \mathbb{R}^N$, we have

$$x \cdot y \le \frac{|x|_p^p}{p} + \frac{|y|_q^q}{q}.$$

Recall that

$$|x|_p = (|x_1|^p + \dots + |x_N|^p)^{1/p},$$

and similarly for $|\cdot|_q$.

(ii) Show that d_p is a metric on \mathbb{R}^N . You may find it helpful to write, for any $i = 1, \ldots, N$,

$$|x_i - y_i|^p = (x_i - y_i)z_i$$

for a well-chosen z_i .

Problem 6. Suppose that (X,d) is a metric space and $x,y,z \in X$. Show that

$$d(x,z) \ge |d(x,y) - d(y,z)|.$$

Problem 7. Show that the following functions are continuous:

(i) $\psi : \mathbb{R} \to \mathbb{R}$ defined by $\psi(x) = 2x^3 + 1$.

- (ii) $E: C(\mathbb{R}) \to \mathbb{R}$ defined by E(f) = f(0)
- (iii) $S: C(\mathbb{R}) \to C(\mathbb{R})$ defined by $S(f) = f^2$

You may find it helpful to note that $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$. Also, for (iii), please show that S is well-defined; that is, show that $f^2 \in C(\mathbb{R})$.

Problem 8. Suppose that d_1, d_2 are equivalent metrics on a set X. Suppose that (Y, d_Y) is a metric space and $f: (X, d_1) \to (Y, d_Y)$ is continuous. Show that $\tilde{f}: (X, d_2) \to (Y, d_Y)$, defined by $\tilde{f}(x) = f(x)$ for all $x \in X$, is continuous.