Rings and Modules

Nachiketa Kulkarni

Contents

1	Intr	ntroduction to Rings																1 1	,																		
	1.1	Definition of a Ring														Ĺ																					
		1.1.1	Examples																																	1	L

Chapter 1

Introduction to Rings

1.1 Definition of a Ring

A ring R is a set with two binary operations, + and \times , satisfying the following conditions:

- (R, +) is an abelian group.
- \times is associative.
- × distributes over +.

A Ring is said to be commutative if $a \times b = b \times a$ for all $a, b \in R$.

A Ring is said to have a multiplicative identity if there exists an element $1 \in R$ such that $1 \times a = a \times 1 = a$ for all $a \in R$.

1.1.1 Examples

- Trivial Ring: Take any abelian group (G, +) and define multiplication as $a \times b = 0$ for all $a, b \in G$, where 0 is the identity of the group.
- Integers: The set of integers \mathbb{Z} with usual addition and multiplication forms a ring. Also, the quotient group $\mathbb{Z}/n\mathbb{Z}$ is a ring for any integer n.
- Hamiltonian Quaternions: The set of quaternions $\mathbb{H}=1,i,j,k$, where $i^2=j^2=k^2=-1$.
- · Polynomial Rings: