Introduction to Reinforcement Learning in PyTorch[2]

1 Basics of Reinforcement Learning

RL algorithms are often modeled as Markov Decision Processes. Hence, at time step t, the agent (RL algorithm) is situated in state s_t . The agent interacts with an environment by taking an action a_t . This action results in a new state s_{t+1} and the transition (s_t, a_t) brings with it a reward r_t . Often times, there is a probability distribution over the transition (s_t, a_t) to a new state s_{t+1} . Additionally, there often exist episode-ending states, which corresponds to reaching a final goal. Your goal is to learn a policy π that maps states to actions.

Although, in an MDP, we assume that we can always tell which state s_t our agents is in, this isn't always the case. In these cases, we have observations o_t .

2 Notes

We always know the state of the agent \rightarrow no observations necessary.

3 Notation

a	Action
r	Reward
cell7	cell8

4 Definitions

Episode: The trajectory of going from start to finish of a task.

References

- [1] Roohollah Amiri et al. "A Machine Learning Approach for Power Allocation in HetNets Considering QoS". In: (Mar. 2018).
- [2] Harsh Panchal. Introduction to Reinforcement Learning (RL) in PyTorch. URL: https://medium.com/analytics-vidhya/introduction-to-reinforcement-learning-rl-in-pytorch-c0862989cc0e. (accessed: 26.08.2024).