

Scalable Data Science

Lecture 3: Background on Linear Algebra

Sourangshu Bhattacharya

Computer Science and Engineering
IIT KHARAGPUR

In this review

- Recall concepts we'll need in this class
- Geometric intuition for linear algebra
- Outline:
 - Matrices as linear transformations.
 - Linear systems & vector spaces.
 - Solving linear systems.
 - Eigenvalues & eigenvectors.

- Vector in \mathbb{R}^n is an ordered set of n real numbers.
 - e.g. v = (1,6,3,4) is in R^4
 - (1,6,3,4) is a column vector:
 - as opposed to a row vector: \longrightarrow $\begin{pmatrix} 1 & 6 & 3 & 4 \end{pmatrix}$
- m by n matrix is an object with m rows and n columns, each entry fill with a real number: $\begin{pmatrix} 1 & 2 & 8 \\ 4 & 78 & 6 \\ 9 & 3 & 2 \end{pmatrix}$

Transpose: reflect vector/matrix on line:

$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix} \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

- Note: $(Ax)^T = x^T A^T$
- Vector norms:
 - L_p norm of $v = (v_1, ..., v_k)$ is $(\Sigma_i |_{\mathcal{V}_i}|^p)^{1/p}$
 - Common norms: L_1, L_2
 - $-L_{infinity} = maxi |vi|$
- Length of a vector v is $L_2(v)$

Vector dot product:

$$u \bullet v = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \bullet \begin{pmatrix} v_1 & v_2 \end{pmatrix} = u_1 v_1 + u_2 v_2$$

- Note dot product of u with itself is the square of the length of u.
- Matrix product (multiplication):

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

- Vector products in matrix multiplication notation:
 - Dot product:

$$u \bullet v = u^T v = (u_1 \quad u_2) \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1 v_1 + u_2 v_2$$

– Outer product:

$$uv^{T} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} (v_1 \quad v_2) = \begin{pmatrix} u_1v_1 & u_1v_2 \\ u_2v_1 & u_2v_2 \end{pmatrix}$$

Special matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 I (identity matrix)
$$\begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{pmatrix}$$
 lower-triangular

Matrices as linear transformations

Multiplication with $m \times n$ matrices transform vectors in \mathbb{R}^n into vectors in \mathbb{R}^m

$$\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

Scaling: scalar product of identity matrix

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Rotation: Orthogonal matrices

Matrices as linear transformations

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Reflection

Projection onto axis

Vector spaces

 Formally, a vector space is a set of vectors which is closed under addition and multiplication by real numbers (also called linear combination).

$$x = \alpha_1 v_1 + \cdots + \alpha_n v_n$$

- A *subspace* is a subset of a vector space which is a vector space itself, e.g. the plane z=0 is a subspace of R^3 (It is essentially R^2).
- We'll be looking at Rⁿ and subspaces of Rⁿ

Our notion of planes in R³ may be extended to *hyperplanes* in Rⁿ (of dimension n-1)

Note: subspaces must include the origin (zero vector).

Matrices as sets of constraints

Matrix equations (linear system of equations) can encode a set of linear constraints

$$x + y + z = 1$$

$$x + y + z = 1$$
$$2x - y + z = 2$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Linear system & subspaces

$$\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 written as a linear combination the columns of A

• The set of all possible vectors b forms a subspace called the

$$u\begin{pmatrix} 1\\2\\1 \end{pmatrix} + v\begin{pmatrix} 0\\3\\3 \end{pmatrix} = \begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix}$$

- Ax = b is solvable iff b may be written as a linear combination of
- forms a subspace called the column space of A

Linear system & subspaces

The set of solutions to Ax = 0 forms a subspace called the *null space* of A.

$$\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 \rightarrow Null space: {(0,0)}

$$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 5 \\ 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \text{Null space: {(c,c,-c)}}$$

• Vectors $v_1, ..., v_k$ are linearly independent if $c_1v_1 + ... + c_kv_k = 0$ implies $c_1 = ... = c_k = 0$

i.e. the nullspace is the origin

$$\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Recall nullspace contained only (u, v) = (0,0). i.e. the columns are linearly independent.

If all vectors in a vector space may be expressed as linear combinations of v_1, \dots, v_k , then v_1, \dots, v_k span the space.

- A basis is a set of linearly independent vectors which span the space.
- The *dimension* of a space is the # of "degrees of freedom" of the space; it is the number of vectors in any basis for the space.
- A basis is a maximal set of linearly independent vectors and a minimal set of spanning vectors.

- Two vectors are orthogonal if their dot product is 0.
- An orthogonal basis consists of orthogonal vectors.
- An *orthonormal basis* consists of orthogonal vectors of unit length.

About subspaces

- The *rank* of A is the dimension of the column space of A.
- It also equals the dimension of the *row space* of A (the subspace of vectors which may be written as linear combinations of the rows of A).

$$\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix}$$
 (1,3) = (2,3) - (1,0)
Only 2 linearly independent rows, so rank = 2.

About subspaces

Fundamental Theorem of Linear Algebra:

If A is $m \times n$ with rank r,

Column space(A) has dimension r

Nullspace(A) and Nullspace(A^T) has dimension n-r (= nullity of A)

Row space(A) = Column space(A^T) has dimension r

<u>Rank-Nullity Theorem</u>: rank + nullity = n

Matrix inversion

- To solve Ax = b, we can write a closed-form solution if we can find a matrix A^{-1} s.t. $AA^{-1} = A^{-1}A = I$ (identity matrix)
- Then Ax = b iff $x = A^{-1}b$: $x = Ix = A^{-1}Ax = A^{-1}b$
- A is *non-singular* iff A^{-1} exists iff Ax = b has a unique solution.
- Note: If A^{-1} , B^{-1} exist, then $(AB)^{-1} = B^{-1}A^{-1}$, and $(A^{T})^{-1} = (A^{-1})^{T}$

Special matrices

- Matrix A is *symmetric* if A = A^T
- A is *positive definite* if $x^T A x > 0$ for all non-zero x (*positive semi-definite* if inequality is not strict).

$$(a \quad b \quad c) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a^2 + b^2 + c^2 \qquad (a \quad b \quad c) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a^2 - b^2 + c^2$$

• Useful fact: Any matrix of form A^TA is positive semi-definite.

To see this,
$$x^T(ATA)x = (x^TA^T)(Ax) = (Ax)^T(Ax) \ge 0$$

Determinants

- If det(A) = 0, then A is singular, also called rank deficient
- If det(A) ≠ 0, then A is invertible.
- To compute:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

$$de\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{33} & a_{33} \end{bmatrix} = a_1 \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_1 \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_1 \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Eigenvalues & eigenvectors

- How can we characterize matrices?
- The solutions to $Ax = \lambda x$ in the form of eigenpairs $(\lambda,x) =$ (eigenvalue, eigenvector) where x is non-zero.
- To solve this, $(A \lambda I)x = 0$
- λ is an eigenvalue iff $\det(A \lambda I) = 0$

Eigenvalues & eigenvectors

$$(A - \lambda I)x = 0$$

 λ is an eigenvalue iff $\det(A - \lambda I) = 0$

Example:

$$A = \begin{pmatrix} 1 & 4 & 5 \\ 0 & 3/4 & 6 \\ 0 & 0 & 1/2 \end{pmatrix}$$

$$\det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & 4 & 5 \\ 0 & 3/4 - \lambda & 6 \\ 0 & 0 & 1/2 - \lambda \end{pmatrix} = (1 - \lambda)(3/4 - \lambda)(1/2 - \lambda)$$

$$\lambda = 1, \lambda = 3/4, \lambda = 1/2$$

Eigenvalues & eigenvectors

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
 Eigenvalues $\lambda = 2, 1$ with eigenvectors (1,0), (0,1)

Eigenvectors of a linear transformation A are not rotated (but will be scaled by the corresponding eigenvalue) when A is applied.

Properties of Eigenvalues and Eigenvectors

- If $\lambda_1, ..., \lambda_n$ are *distinct* eigenvalues of a matrix, then the corresponding eigenvectors $e_1, ..., e_n$ are linearly independent.
- If e_1 is an eigenvector of a matrix with corresponding eigenvalue λ_1 , then any nonzero scalar multiple of e_1 is also an eigenvector with eigenvalue λ_1 .
- A real, symmetric square matrix has real eigenvalues, with orthogonal eigenvectors (can be chosen to be orthonormal).

SVD: Singular Value Decomposition

- Any matrix A(m n) can be written as the product of three matrices: $A = UDV^T$
 - U is an $m \times m$ orthonormal matrix
 - *D* is an $m \times n$ diagonal matrix. Its diagonal elements, $\sigma_1, \sigma_2, ..., \sigma_n$ are called the **singular values** of A, and satisfy $\sigma_1 \ge \sigma_2 \ge ... \ge 0$.
 - V is an $n \times n$ orthonormal matrix
- Example: if *m* > *n*

Some Properties of SVD

- The rank of matrix A is equal to the number of nonzero singular values σ_i .
- A square $(n \times n)$ matrix A is singular if and only if at least one of its singular values $\sigma_1, ..., \sigma_n$ is zero.

References:

- Strang, Gilbert. **Introduction to Linear Algebra.** 4th ed. *Wellesley-Cambridge Press*, 2009.
- Wikipedia.

Thank You!!

