Intégration - TD10 Calcul d'integrales, Changement de variables et Intégration par parties

Exercice 1. Calcul d'intégrales et de primitives

Calculer:
a) $A = \int_0^1 \ln(1+x^2) dx$ b) $B = \int_0^1 (\arcsin x)^2 dx$ c) $C = \int_1^2 (\ln x)^2 dx$ d) $\int (x^2 - 1)e^{3x} dx$ e) $\int \frac{dx}{1+x^3}$ f) $\int \frac{x^3}{x^2 + 2x + 2} dx$ g) $\int \frac{1-\sqrt{x}}{1+\sqrt{x}} dx$ h) $\int \frac{dx}{1+\sqrt[3]{x}}$ i) $\int e^x \left(\frac{1}{x} + \ln x\right) dx$ j) $\int \sin^4 x dx$ k) $\int \frac{\sin x}{1+\cos^3 x} dx$ l) $D = \int_0^\pi \sqrt{1+\sin x} dx$

Solution de l'exercice 1.

a) Integrer par parties : $A = \ln 2 - 2 + \pi/2$.

b) Poser $u = \arcsin x$ et intégrer par parties deux fois : $B = \pi^2/4 - 2$.

c) Faire $u = \ln x$ et intégrer par parties deux fois : $C = (\ln 2 - 1)^2$.

d) Intégrer deux fois par parties : $\left((x^2-1)-\frac{2}{3}x+\frac{2}{9}\right)\frac{e^{3x}}{3}$. (on peut aussi chercher une primitive de la forme $P(x)e^{3x}$ avec P un polynôme.)

e) Décomposer la fraction en éléments simples. On trouve : $\frac{1}{3}\ln(1+x) - \frac{1}{6}\ln(x^2 - x + 1) + \frac{1}{\sqrt{3}}\arctan\left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}}\right)$

f) Décomposer la fraction en éléments simples. On trouve $\frac{x^2}{2} + 2x + \ln(x^2 + 2x + 2) + 2\arctan(1+x)$

g) Poser $y=\sqrt{x}$, puis décomposer en éléments simples. On trouve $4\sqrt{x}-x-4\ln(1+\sqrt{x})$

h) Poser $y = \sqrt[3]{x}$. On trouve $\frac{3}{2}x^{2/3} - 3x^{1/3} + 3\ln(1+\sqrt[3]{x})$

i) On intègre par parties le deuxième terme et on trouve $e^x \ln x$.

j) Il faut linéariser $\sin^4 x$. $\frac{1}{3} 2 \sin(4x) - \frac{1}{4} \sin(2x) + \frac{3}{8} x$

k) On pose $u = \cos x$. Resultat: $-\frac{1}{3}\ln(1+\cos x) + \frac{1}{6}\ln(\cos^3 x - \cos x + 1) - \frac{1}{\sqrt{3}}\arctan\left(\frac{2}{\sqrt{3}}\cos x - \frac{1}{\sqrt{3}}\right)$.

l) On pose $u = \sin x$. D = 4.

Exercice 2. Une primitive sophistiquée

Calculer $I = \int_0^{\pi/4} \ln(1 + \tan x) dx$.

Solution de l'exercice 2. Il s'agit d'un exemple classique d'un cas où la primitive n'est pas calculable (il n'y en a pas beaucoup). Il faut donc ruser un peu. On remplace $\tan x = \sin x/\cos x$ et on utilise les propriétés du logarithme pour obtenir $I = \int_0^{\pi/4} \ln(\cos x + \sin x) \, dx - \int_0^{\pi/4} \ln\cos x \, dx$. Puis on utilise les formules d'addition : $\cos x + \sin x = \sqrt{2} \cos \left(\frac{\pi}{4} - x\right)$, d'où

$$I = \frac{\pi}{8} \ln 2 + \int_0^{\pi/4} \ln \cos \left(\frac{\pi}{4} - x\right) dx - \int_0^{\pi/4} \ln \cos x dx$$

En faisant le changement de variable $u=\pi/4-x$ dans la première intégrale, les deux derniers termes s'annulent et il reste $I=\frac{\pi}{8}\ln 2$.

Exercice 3.

a) Soit $(p,q) \in \mathbb{N}^2$. Calculer

$$I_{p,q} = \int_0^{2\pi} e^{ipx} e^{-iqx} dx \quad , \qquad J_{p,q} = \int_0^{2\pi} \cos px \cos qx dx,$$

$$K_{p,q} = \int_0^{2\pi} \cos px \sin qx dx \quad , \qquad L_{p,q} = \int_0^{2\pi} \sin px \sin qx dx.$$

- b) Soit $I_n = \int_0^1 \frac{dx}{(1+x^3)^n}$ pour $n \ge 1$. Trouver une relation de récurrence sur I_n .
- c) Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n} \frac{C_n^k}{k+1} = \frac{(2^{n+1} - 1)}{n+1}$$

Solution de l'exercice 3.

- a) Le calcul de $I_{p,q}$ est immédiat : $I_{p,q}=2\pi\delta_{pq}$. Les formules d'Euler permettent d'en déduire $J_{p,q}=\pi\delta_{|p|,[q]},\,K_{p,q}=0$ et $L_{p,q}=\pi(\delta_{p,-q}-\delta_{p,q})$.
- b) Une intégration par parties donne $3nI_{n+1} = (3n-1)I_n + \frac{1}{2^n}$.
- c) Il suffit d'utiliser $\frac{1}{k+1} = \int_0^1 x^k dx$ puis le binôme de Newton.