

ZADATAK 1B – LV4 OPERACIONA ISTRAŽIVANJA

Studenti: Mašović Haris, Muminović Amir

Indeksi: 1689/17993, 1661/17744

Odsjek: Računarstvo i Informatika

Datum:	Potpisi:		
04.02.2020			

Rješiti problem ranca korištenjem proždrljivog algoritma (Dantzig). Na raspolaganju je ranac kapaciteta W=15 litara i 3 vrste predmeta, čije su zapremine i cijene dati u sljedećoj tabeli:

Vrsta predmeta (i)	1	2	3
Zapremina $(w_i)[l]$	3	5	3
Cijena (c _i) [KM]	500	2000	1000

Predmeta svake vrste ima dovoljno da se čitav ranac može napuniti čak i samo predmetima jedne vrste. Potrebno je napuniti ranac tako da se ostvari najveća ukupna vrijednost predmeta u rancu, a da se pri tome ne premaši kapacitet ranca.

Rješiti isti problem koristeći dinamičko programiranje.

Imamo sljedeci matematicki model:

$$\arg\max Z = 500x_1 + 2000x_2 + 1000x_3$$

$$po. \ 3x_1 + 5x_2 + 3x_3 \le 15$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$x_1 \in Z, x_2 \in Z, x_3 \in Z$$

Mozemo ujedno formirati sljedecu tabelu:

i	c_i	w_i
1	500	3
2	2000	5
3	1000	3

Formirajmo sada tabelu za dinamicko programiranje (uz sljedecu jednacinu):

$$z(v) = \max\{c_i + z(v - w_i) | w_i \le v, i = 1, 2, ... n\}$$

v	500 + z(v-3)	2000 + z(v-5)	1000 + z(v-3)	z(v)	i
0	-	-	-	0	-
1	-	-	-	0	-
2	-	=	-	0	-
3	500	=	1000	1000	3
4	500	=	1000	1000	3
5	500	2000	1000	2000	2
6	1500	2000	2000	2000	2 ili 3
7	1500	2000	2000	2000	2 ili 3
8	2500	3000	3000	3000	2 ili 3
9	2500	3000	3000	3000	2 ili 3
10	2500	4000	3000	4000	2
11	3500	4000	4000	4000	2 ili 3
12	3500	4000	4000	4000	2 ili 3
13	4500	5000	5000	5000	2 ili 3
14	4500	5000	5000	5000	2 ili 3
15	4500	6000	5000	6000	2

- Imamo optimum za Z(15) = 6000. Pored toga imamo max i za i = 2 što znači da trebamo uzeti dva put. Kada uzmemo jos 2 ostane nam 10l prostora u rancu (15-5).
- Maksimum za Z(10) postignut je za i=2 pa opet uzimamo x2. U ruksaku ostaje 5l prostora.
- Za Z(5) postignut je maksimum za i=2 pa uzimamo još jedan predmet kojeg mozemo uzeti dva put. Konačan rezultat je: x1 = 0 x2 = 3 x3=0 i z=6000.