# IMPLEMENTATION OF FACIAL KEY POINTS DETECTION SYSTEM



A Thesis report presented to the National University in partial fulfilment of the requirement for the degree of M.Sc.(Master's) in Computer Science & Engineering

#### Submitted By

Md. Ikramul Murad
Registration Number: 15602000014
Session: 2015-2016
Department of Computer Science and Engineering
Institute of Science and Technology
National University, Bangladesh

#### **DECLARATION**

I hereby declare that I have completed the work of this thesis under the supervision of Ditee Yasmeen, Assistant Professor, Department of Computer Science and Engineering (CSE), Institute of Science and Technology (IST), affiliated with the National University of Bangladesh. I also declare that neither this thesis nor any part of this has been submitted elsewhere for the award of any degree.

#### Signature

\_\_\_\_\_

Md. Ikramul Murad Registration Number: 15602000014

Session: 2015-2016

Department of Computer Science and Engineering

Institute of Science and Technology National University, Bangladesh

#### **APPROVAL**

The thesis "Implementation of Facial Key Points Detection System" submitted by Md. Ikramul Murad, Registration No: 15602000014 to the Department of Computer Science and Engineering, Institute of Science and Technology (IST), Dhaka, Bangladesh has been accepted as satisfactory for the fulfillment of the requirements for the Degree of Master of Science in Computer Science and Engineering under National University and approved as to its style and contents.

| Signature of Internal Examiner                                                                                                          | 1. Signature of External Examiner |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Ditee Yasmeen (Supervisor) Assistant Professor Department of Computer Science and Engineering Institute of Science and Technology (IST) | 2. Signature of External Examiner |

#### **ACKNOWLEDGMENTS**

This is my humble attempt to present gratitude in preparing this report. I have truly drawn upon my own experience as a student of computer science. This thesis would not have been possible without the dedications and contributions of a number of individuals.

First and foremost, I would like to express my gratitude to Allah for always help me. Then I would like to thanks, Ditee Yasmeen, Assistant Professor, Department of Computer Science and Engineering (CSE) for agreeing to supervise me during the thesis. Her eagerness helped me in every step of the way and encouraged me to propel myself higher.

#### **Abstract**

This paper gives the intersection between the vision based and knowledge based facial key points detection system which will be used in several modern world applications. It undertakes two primary tasks; namely understanding of the traditional vision based system provided by the OpenCV and a proposed methodology to make them more accurate in facial key points detection. The proposed methodology uses both vision and knowledge for the facial key points detection procedure. This system can be used as a building block in several applications, such as Track faces in images and videos, Analyzing facial expressions, Detecting facial signs for medical diagnosis, Biometrics etc. This paper provides a generalized solution for facial key points detection system for the field of modern applications.

### **Table of Contents**

#### **Chapter 1: Introduction**

Page No.

| 1.1 | Introduction          | 02 |
|-----|-----------------------|----|
| 1.2 | Motivation            | 02 |
| 1.3 | Objective             | 02 |
| 1.4 | Scope of the Work     | 03 |
| 1.5 | Outline of the Thesis | 03 |

#### **Chapter 2: Literature Review**

| 2.1 | Introduction                             | 05 |
|-----|------------------------------------------|----|
| 2.2 | How Facial Key Points can be Detected?   | 05 |
| 2.3 | Existing Key Points Detection Algorithms | 05 |
|     | 2.3.1 Advantages                         | 05 |
|     | 2.3.2 Disadvantages                      | 06 |
| 2.4 | Machine Learning                         | 06 |
|     | 2.4.1 Supervised Machine Learning        | 06 |
|     | 2.4.2 Unsupervised Machine Learning      | 07 |
| 2.5 | Deep Learning                            | 07 |
| 2.6 | Convolutional Neural Network             | 09 |
| 2.7 | Summary                                  | 10 |

#### **Chapter 3: Existing System Overview**

| 3.1 | Introduction                 | 12 |
|-----|------------------------------|----|
| 3.2 | OpenCV                       | 12 |
| 3.3 | Workflow                     | 13 |
| 3.4 | Advantages and Disadvantages | 14 |
|     | 3.4.1 Advantages             | 14 |
|     | 3.4.2 Disadvantages          | 14 |
| 3.5 | Summary                      | 14 |

Chapter 4: Proposed Machine Learning Based Facial Key Points Detection System Page No.

| 4.1 | Introduction                                | 16 |
|-----|---------------------------------------------|----|
| 4.2 | Approach of the Proposed System             | 16 |
| 4.3 | Workflow of the Proposed System             | 17 |
|     | 4.3.1 User Perspective                      | 17 |
| 4.4 | Convolutional Neural Network                | 17 |
|     | 4.4.1 What Convolutional Neural Network is? | 17 |
|     | 4.4.2 CNNs Operate Over Volumes             | 18 |
|     | 4.4.3 Convolution                           | 18 |
|     | 4.4.4 CNNs Parameter and Connectivity       | 21 |
|     | 4.4.5 Pooling Layers                        | 21 |
|     | 4.4.6 Typical Architecture of CNN           | 22 |
| 4.5 | Summary                                     | 23 |

#### **Chapter 5: Implementation and Testing**

| 5.1 | Platform               | 25 |
|-----|------------------------|----|
|     | 5.1.1 Jupyter Notebook | 25 |
|     | 5.1.2 Tensorflow       | 25 |
| 5.2 | Dataset                | 26 |
| 5.3 | 2D Convolution         | 28 |
| 5.4 | Testing                | 32 |
| 5.5 | Features               | 35 |
| 5.6 | Merits of the System   | 35 |
| 5.7 | Required Tools         | 35 |
|     | 5.7.1 Hardware Tools   | 35 |
|     | 5.7.2 Software Tools   | 35 |
| 5.8 | Summary                | 36 |

#### **Chapter 6: Conclusion and Future Works**

| 6.1 | Conclusion   | 38 |
|-----|--------------|----|
| 6.2 | Future Works | 38 |

# List of Figures

|      |                                           | Page No. |  |
|------|-------------------------------------------|----------|--|
| 2.1  | Supervised learning                       | 06       |  |
| 2.2  | Unsupervised learning                     | 07       |  |
| 2.3  | Layers of Deep Neural Network             | 08       |  |
| 2.4  | Performance of Deep Neural Network        | 08       |  |
| 2.5  | Working Principle of CNN                  | 09       |  |
| 3.1  | Image Conversion                          | 12       |  |
| 3.2  | LBP Method                                | 13       |  |
| 3.3  | Workflow of Existing System               | 14       |  |
| 4.1  | Proposed ML Based System                  | 16       |  |
| 4.2  | User Perspective Workflow                 | 17       |  |
| 4.3  | Example of an RGB Image                   | 18       |  |
| 4.4  | Convolving an Image with a Filter         | 18       |  |
| 4.5  | How Convolution Looks                     | 19       |  |
| 4.6  | Convolved Image                           | 19       |  |
| 4.7  | Convolution Layer                         | 20       |  |
| 4.8  | Convolution Layers in Sequence            | 20       |  |
| 4.9  | Filters in a Trained Network              | 21       |  |
| 4.10 | Pooling                                   | 22       |  |
| 4.11 | Max Pooling                               | 22       |  |
| 4.12 | Typical Architecture of CNN               | 23       |  |
| 5.1  | Jupyter Notebook on Windows               | 25       |  |
| 5.2  | Image Data                                | 27       |  |
| 5.3  | Image Data without and with Labelling     | 28       |  |
| 5.4  | Model                                     | 29       |  |
| 5.5  | Model Summary                             | 30       |  |
| 5.6  | Model Compilation                         | 31       |  |
| 5.7  | Loss per Epoch in Training and Validation | 32       |  |
| 5.8  | Residual Sum of Square                    | 33       |  |
| 5.9  | Score of Residual Sum of Square           | 33       |  |
| 5.10 | Actual Keypoints vs Prediction            | 34       |  |

## List of Tables

| 5.1 | Dataset Indicating Several Keypoints           | 26 |
|-----|------------------------------------------------|----|
| 5.2 | Dataset Indicating Several Keypoints and Image | 27 |