Maximum de vraisemblance et méthode des moments

Warm-up

Soit (X_1, \ldots, X_n) des variables alátoires i.i.d. réelles d'espérance μ et de variance σ^2 , on suppose que X_1 a un moment d'ordre 4 fini. On note

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad s_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2, \quad T_n = \sqrt{n-1} \frac{\bar{X}_n - \mu}{s_n}.$$

- 1. Calculer $\mathbb{E}[\bar{X}_n]$, $\mathbb{V}[\bar{X}_n]$ et $\mathbb{E}[(\bar{X}_n \mu)^2]$.
- 2. Montrer que $(\bar{X}_n)_{n\geq 0}$ converge en probabilité vers μ et que $(\sqrt{n}(\bar{X}_n-\mu))_{n\geq 0}$ converge en loi vers Z où $Z\sim \bar{\mathcal{N}}(0,\sigma^2)$.
- 3. Calculer $\mathbb{E}[s_n^2]$ et montrer que $(s_n^2)_{n\geq 0}$ converge en probabilité vers σ^2 .
- 4. Déterminer la limite en loi de $(T_n)_{n\geq 0}$.
- 5. Nous supposons dans la suite que les $(X_i)_{1 \leq i \leq n}$ sont gaussiennes. Quelle est la loi de \bar{X}_n ? Montrer que \bar{X}_n et s_n^2 sont indépendantes.

Loi Gamma

Soit a>0 et b>0. La densité de la loi Gamma de paramètres a et b est définie sur \mathbb{R}_+^* par :

$$f_{a,b}: x \mapsto \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx},$$

où Γ est la fonction gamma. Soit $(X_i)_{1 \leq i \leq n}$ des variables i.i.d. de loi Gamma de paramètres a et b.

- 1. Calculer $\mathbb{E}[X_1^k]$ pour $k \geq 1$. Notons $m_1(a,b) = \mathbb{E}[X_1]$ et $m_2(a,b) = \mathbb{E}[X_1^2]$.
- 2. Calculer un estimateur de a et b par la méthode des moments en résolvant le système

$$\frac{1}{n} \sum_{i=1}^{n} X_i = m_1(a, b) \,,$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = m_2(a, b) \,.$$

- 3. Calculer la log vraisemblance $\ell:(a,b)\mapsto \log p_{\theta}(X_1,\ldots,X_n)$ où $\theta=(a,b)$ et où p_{θ} est la densité jointe des variables $(X_i)_{1\leq i\leq n}$.
- 4. Calculer le gradient et la matrice hessienne de ℓ et en déduire un algorithme itératif pour estimer θ par la méthode de Newton-Raphson.