Programmation Logique

Arithmétique

Enseignant: NGUYEN Thi Minh Tuyen

Arithmétique en Prolog

- Prolog fournit quelques opérateurs arithmétiques sur nombres entiers et réels.
- Affectation: is
- Fonctions prédéfinies :
 - -, +, *, ∧,
 - Division entière (symbole //), division flottante (symbole /)
 - mod, abs, min, max, sign, random, sqrt, sin, cos, tan, log, exp, ln, ...

Exemples

Arithmétique	Prolog
2 + 3 = 5	
$2 \times 3 = 6$	
4 - 2 = 2	
2-4=-2	
4 : 2 = 2	
1 est le reste de la division de 7 et 2	

Exemples

```
?-X is 10.5+4.7*2.
X = 19.9
?- Y is 10, Z is Y+1.
Y = 10, Z = 11
?- X is sqrt(36).
X=6
?- X is 10, Y is -X-2.
X = 10, Y = -12
```

X+Y The sum of X and Y X-Y The difference of X and Y X*Y The product of X and Y X/Y The quotient of X and Y X//Y The 'integer quotient' of X and Y (the result is truncated to the nearest integer between it and zero X mod Y The remainder when X is divided by Y X^Y The value of X to the power of Y The negative of X		
 X*Y The product of X and Y X/Y The quotient of X and Y X//Y The 'integer quotient' of X and Y (the result is truncated to the nearest integer between it and zeron X mod Y X mod Y The remainder when X is divided by Y X^Y The value of X to the power of Y 	X+Y	The sum of X and Y
 X/Y X/Y The quotient of X and Y X and Y (the result is truncated to the nearest integer between it and zeron X mod Y X mod Y X he remainder when X is divided by Y X^Y The value of X to the power of Y 	C-Y	The difference of X and Y
 X//Y The 'integer quotient' of X and Y (the result is truncated to the nearest integer between it and zer X mod Y X mod Y X he remainder when X is divided by Y X^Y The value of X to the power of Y 	(*Y	The product of X and Y
truncated to the nearest integer between it and ze X mod Y The remainder when X is divided by Y X^Y The value of X to the power of Y	7 /Y	The quotient of X and Y
X mod Y The remainder when X is divided by Y X^Y The value of X to the power of Y	://Y	The 'integer quotient' of X and Y (the result is
$X^{\wedge}Y$ The value of X to the power of Y		truncated to the nearest integer between it and zero)
The state of the period of the	C mod Y	The remainder when X is divided by Y
-X The negative of X	\mathbf{Y}^{\wedge}	The value of X to the power of Y
	X	The negative of X
abs(X) The absolute value of X	bs(X)	The absolute value of X
sin(X) The sine of X (for X measured in radians)	n(X)	The sine of X (for X measured in radians)
cos(X) The cosine of X (for X measured in radians)	os(X)	The cosine of X (for X measured in radians)
max(X,Y) The larger of X and Y	ax(X,Y)	The larger of X and Y
round(X) The value of X rounded to the nearest integer	ound(X)	The value of X rounded to the nearest integer
sqrt(X) The square root of X	qrt(X)	The square root of X

Unification

• Deuxième argument de l'opérateur is/2 est évalué et puis cette valeur est unifiée avec le premier argument.

- Si le premier argument est une variable non liée, il est lié à la valeur du deuxième argument et le but is réussi.
- Si le premier argument est un nombre ou une variable liée avec une valeur numérique, il est comparé à la valeur du deuxième argument. S'ils sont identiques, le but is réussi, sinon il échoue.

Définition des prédicats avec arithétique

```
• calculer(X, Y):- Y is (X+3) * 2.
```

• Requête:

```
?- calculer(1,X).
```

X=8

?- calculer(2,X).

X = 10

Arithmétique et liste

- La longueur d'une liste vide est 0.
- La longueur d'une liste non vide [T|Q]: 1 + longueur(Q) dans laquelle longueur(Q) est la longueur de la queue de la liste.
- En Prolog:

```
longueur([],0).
longueur([_IQ],N) :- longueur([_N1),N) is N1+1.
```

Accumulateur

- Nous utilisons l'accumalateur pour calculer la longeur d'une liste: accLongeur(Liste, Acc, Longeur).
- En Prolog:

```
accLongeur([],A,A).
accLongeur([_IQ],A,L) :-
    Anew is A+1, accLongeur(Q,Anew,L).
longeur(Liste,Longeur) :-
    accLongeur(Liste,0,Longeur).
```

Comparaisons

Arithmétique	Prolog
x < y	
$x < y$ $x \le y$	
x = y	
$x \neq y$	
$x \ge y$	
$x = y$ $x \neq y$ $x \geq y$ $x > y$	

Comparer deux termes

- T₁=:=T₂ réussit si T₁ est identique à T₂
- $T_1 = T_2$ réussit si T_1 n'est pas identique à T_2
- T₁=T₂ unifie T₁ avec T₂
- T₁\=T₂ réussit si T₁ n'est pas unifiable à T₂
- Exemples:
 ?- p(A)=\=p(1).
 true.
 ?- p(A)\=p(1).
 false.

• Définir les prédicats suivants en deux cas: sans accumulateur et avec accumulateur.

1.min

2.max

Exercices [1]

Définir les prédicats suivants:

- 1. scalarMult/3 : prends trois arguments (un entier, une liste des entier, un liste résultante). Exemple:
 - ?- scalarMult(3,[2,7,4],Result).
 - Result = [6,21,12]
- 2. dotProduct/3: prends en arguments deux listes de même taille. Trosième arguments sera un entier qui est le produit scalaire de deux listes. Exemple:
 - ?- dotProduct([2,5,6],[3,4,1],Result).
 Result = 32
- 3. puissant/3 qui prends deux entiers x et y et retourne dans troisième argument le résultat de x^y

Exercices [2]

- 3. fibonacci(N,R) qui retourne l'entier à la position N de la suite de Fibonacci. Exemple:
 - ?-fibonacci(3,R).
 - R = 2
- 4. Somme_des_impairs (L, S) qui retourne dans S la sommes des nombres impairs dans la liste entrée L.
- 5. Somme_des_pairs(L, S) qui retourne dans S la sommes des nombres pairs dans la liste entrée L.
- 6. Nombre_des_pairs(L, N) qui retourne dans le nombre des nombres pairs dans la liste entrée L.

Opérateur 15

Opérateurs

- Prolog nous permet d'utiliser des notions des opérateurs plus conviviales.
- Par exemple: Expression arithmétique 2+2 signifie +(2,2).
- Prolog fournit également d'un mécanisme pour ajouter notre opérateurs.

Propriétés des opérateurs

Opérateur infixé

- Les foncteurs sont écrits entre leur arguments
- Exemple: + = == -->
- Exemple: likes(john, mary) → john likes mary

Opérateur préfixé

- Les foncteurs sont écrits avant leur arguments
- Exemple: négation –.
- Exemple: isa_dog(fred) → isa_dog fred

Opérateur postfixé

- Les foncteurs sont écrits après leur arguments
- Exemple: ++, -- dans la programmation en C
- fred isa_dog

Priorité 18

- Chaque opérateur a une priorité afin d'éliminer ambiguïté.
- Exemple:
 - Est-ce que 2+3*3 est équivalent à 2+(3*3) ou (2+3)*3 ?
 - Parce que la multiplication * est plus prioritaire l'addition + →
 2+3*3 est équivalent à 2+(3*3).

- Prolog utilise l'associativité pour désambiguïser les opérateurs ayant le même niveau de priorité.
- Exemple:
 - Est-ce que 2+3+4 est équivalent à (2+3)+4 ou 2+(3+4) ?
 - associatif à droite
 - associatif à gauche
- Des opérateurs peuvent également être définis comme non associatifs. Nous devons d'utiliser des parenthèses dans les cas ambigus.
 - Exemple: :- -->

Définir des opérateurs

- La définition d'un opérateur:
 - :-op(Priorité, Type, Nom)
 - Nom: nom de l'opérateur
 - Priorité : comprise entre 0 et 1200
 - Type: type de l'opérateur (infixé, associatif, etc.)

Types des opétateurs en Prolog

- yfx : opérateur infixé associatif à gauche
- xfy: opérateur infixé associatif à droite
- xfx: opérateur infixé non associatif
- fx : opérateur préfixé non associatif
- fy : opérateur préfixé associatif à droite
- xf : opérateur postfixé non associatif
- yf : opérateur postfixé associatif à gauche

```
1200
         xfx
                -->,:-
1200
         fx
                :-,?-
                dynamic, discontiguous, initialization, meta_predicate,
1150
        fx
                module_transparent, multifile, public, thread_local,
                thread_initialization, volatile
        xfy
1100
               ;, |
         xfy ->, *->
1050
        xfy
1000
 990
        xfx
                :=
 900
         fy
               \+
         xfx <, =, =.., =@=, \=@=, =:=, =<, ==, =\=, >, >=, @<, @=<, @>, @>=, \=, \==, as, is,
 700
                >:<,:<
         xfy
 600
         yfx +, -, /\, \/, xor
 500
        fx
 500
 400
         yfx *, /, //, div, rdiv, <<, >>, mod, rem
         xfx
 200
                **
         xfy
 200
        fy
 200
              +, -, \
 100
         yfx
         fx
   1
                $
```

Exemple

```
:-op(150,xfy,likes).
:-op(150,xf,is_female).
:-op(150,xf,isa_cat).
:-op(150,xfy,owns).
john likes X:- X is_female, X owns Y, Y isa_cat.
is_female(mary).
owns(mary, fido).
isa_cat(fido).
```

Question?