

## Theory and Practice of Finite Element Methods

A Poisson solver - deal.ll step-3

Luca Heltai < luca.heltai@sissa.it >

International School for Advanced Studies (<u>www.sissa.it</u>) Mathematical Analysis, Modeling, and Applications (math.sissa.it) Master in High Performance Computing (www.mhpc.it) SISSA mathLab (mathlab.sissa.it)









## Mill: Aims for this Lecture

- First introduction into assembly of sparse linear systems
  - Translation of weak form to assembly loops
  - Applying boundary conditions
- Using linear solvers
- Post-processing and visualisation







### Reference material

- Tutorials
  - Step-3
     https://dealii.org/current/doxygen/deal.II/step\_3.html
- Documentation
  - https://www.dealii.org/current/doxygen/deal.ll/ group FE vs Mapping vs FEValues.html
  - https://www.dealii.org/current/doxygen/deal.ll/ group\_UpdateFlags.html







## Recap of Poisson Problem

Variational, continuous problem, infinte dimensional space:

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv \qquad \forall v \in H_0^1(\Omega)$$

Variational, discrete problem, finite dimensional space:

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h \qquad \forall v_h \in V_h \subset H_0^1(\Omega)$$







## Recap of Poisson Problem

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h \qquad \forall v_h \in V_h = \operatorname{span}\{v_i\}_{i=1}^N$$



$$A_{ij}u^j = F_i \qquad u_h := u^i v_i$$

$$A_{ij} := \int_{\Omega} \nabla v_j \nabla v_i \qquad F_i := \int_{\Omega} f v_i$$







## Split Assembly on cells

$$A_{ij} := \int_{\Omega} \nabla v_j \cdot \nabla v_i d\Omega \qquad F_i := \int_{\Omega} f v_i d\Omega$$

$$A_{ij} = \sum_{m} \int_{T_m} \nabla v_j \cdot \nabla v_i dT_m$$

To make this efficiently, we need a smart way to map local dofs to global dofs









## Split Assembly on cells

$$A_{ij} = \sum_{m} \int_{T_m} \nabla v_j \cdot \nabla v_i dT_m = \sum_{m} \int_{\hat{T}} [(\nabla v_j) \circ F_m] \cdot [(\nabla v_i) \circ F_m] J_m d\hat{T}$$

$$v_i \circ F_m|_{T_m} = \sum_{\alpha} P_{mi\alpha} \hat{v}_{\alpha}$$

$$P_{mi\alpha} = \begin{cases} 1 & \text{if local dof } \alpha \text{ on element } T_m \text{ maps to global dof } i \\ 0 & \text{otherwise} \end{cases}$$









## Split Assembly on cells

$$A_{ij} = \sum_{m} \int_{T_m} \nabla v_j \cdot \nabla v_i dT_m = \sum_{m} \int_{\hat{T}} [(\nabla v_j) \circ F_m] \cdot [(\nabla v_i) \circ F_m] J_m d\hat{T}$$

$$A_{ij} = \sum_{m} \sum_{\alpha} \sum_{\beta} P_{mi\alpha} \int_{\hat{T}} [(DF_m^{-T} \hat{\nabla} \hat{v}_{\alpha})] \cdot [DF_m^{-T} (\hat{\nabla} \hat{v}_{\beta})] J_m d\hat{T} P_{mj\beta}$$

$$A_{ij} = \sum_{m} \sum_{\alpha} \sum_{\beta} \sum_{\alpha} P_{mi\alpha} [(DF_m^{-T} \hat{\nabla} \hat{v}_{\alpha})](\hat{x}_q) \cdot [DF_m^{-T} (\hat{\nabla} \hat{v}_{\beta})](\hat{x}_q) J_m(\hat{x}_q) w_q P_{mj\beta}$$

$$m \in [0,N_{\text{Cell}}]$$

 $m \in [0, N_{\text{Cell}})$   $\alpha, \beta \in [0, N_{\text{localdofs}})$   $i, j \in [0, N_{\text{dofs}})$   $q \in [0, N_{\text{qpoints}})$ 







## Local VS global matrix

$$A_{ij} = \sum_{m} \int_{T_m} \nabla v_j \cdot \nabla v_i dT_m = \sum_{m} \int_{\hat{T}} [(\nabla v_j) \circ F_m] \cdot [(\nabla v_i) \circ F_m] J_m d\hat{T}$$

$$A_{ij} = \sum_{m} \sum_{\alpha} \sum_{\beta} \sum_{q} P_{mi\alpha} [(DF_m^{-T} \hat{\nabla} \hat{v}_{\alpha})](\hat{x}_q) \cdot [DF_m^{-T} (\hat{\nabla} \hat{v}_{\beta})](\hat{x}_q) J_m(\hat{x}_q) w_q P_{mj\beta}$$

$$a_{m \alpha \beta} := \sum_{q} \left[ (DF_m^{-T} \hat{\nabla} \hat{v}_{\alpha}) \right] (\hat{x}_q) \cdot \left[ DF_m^{-T} (\hat{\nabla} \hat{v}_{\beta}) \right] (\hat{x}_q) J_m(\hat{x}_q) w_q$$

$$A = \sum_{m} P_{m}^{T} a_{m} P_{m}$$







## Local VS global right-hand-side

$$F_{i} = \sum_{m} \int_{T_{m}} f v_{i} dT_{m} = \sum_{m} \int_{\hat{T}} [f \circ F_{m}] [v_{i} \circ F_{m}] J_{m} d\hat{T}$$

$$F_i = \sum_{m} \sum_{\alpha} \sum_{p} P_{mi\alpha}[f \circ F_m](\hat{x}_q) \hat{v}_{\alpha}(\hat{x}_q) J_m(\hat{x}_q) w_q$$

$$f_{m \alpha} := \sum_{\alpha} \sum_{q} [f \circ F_{m}](\hat{x}_{q}) \hat{v}_{\alpha}(\hat{x}_{q}) J_{m}(\hat{x}_{q}) w_{q}$$

$$F = \sum_{m} P_{m}^{T} f_{m}$$









## Structure of a prototypical FE problem









## Integration on a cell: the Quadrature classes

- n-Order Gauss quadrature
- Other rules
  - Gauss Lobatto
  - Simpson
  - Trapezoidal
  - Midpoint
  - A few others
- Anisotropic













Integration on a cell: the Mapping classes

- n-order mappings
  - Increase accuracy of:
    - Integration schemes
    - Surface basis vectors
- Lagrangian / Eulerian
  - Latter useful for fluid and contact problems, data visualisation
- Boundary and interior manifolds











**International Centre** 



# Structure of a prototypical FE problem









## Integration on a cell: the FEValues class

- Object that helps perform integration
- Combines information of:
  - Cell geometry
  - Finite-element system
  - Quadrature rule
  - Mappings
- Can provide:
  - Shape function data
  - Quadrature weights and mapping jacobian at a point
  - Normal on face surface
  - Covariant/contravariant basis vectors
- More ways it can help:
  - Object to extract shape function data for individual fields
  - Natural expressions when coding
- Low level optimisations

```
a_{IJ} := \sum_{q} [(DF_m^{-T} \hat{\nabla} \hat{v}_I)](\hat{x}_q) \cdot [DF_m^{-T} (\hat{\nabla} \hat{v}_J)](\hat{x}_q) J_m(\hat{x}_q) w_q
```

```
cell_matrix(I,J) +=
```

- \* fe\_values.shape\_grad (I, q\_point)
- \* fe\_values.shape\_grad (J, q\_point)
- \* fe\_values.JxW (q\_point);







### Structure of a prototypical FE problem









## Sparse linear systems

- Minimise data storage
  - Evaluate grid connectivity
- Functions to help set up
  - Connectivity
  - Constraints
- Minimal access times
  - Direct manipulation of (non-zero) entries
  - Matrix-vector operations
    - Skip over zero-entries
- Types
  - Unity (monolithic, contiguous)
  - Block sparse structures
- Sub-organisation (e.g. component-wise)

$$[K]$$
  $\{d\}$  =  $\{F\}$ 

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{Bmatrix} d_1 \\ d_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ F_2 \end{Bmatrix}$$

• 
$$(K_{11} - K_{12}K_{22}^{-1}K_{21}) d_1$$
  
=  $F_1 - K_{12}K_{22}^{-1}F_2$ 

• 
$$d_2 = K_{22}^{-1} (F_2 - K_{21} d_1)$$





## Solving Poisson's equation

- Demonstration: Step-3
   https://www.dealii.org/current/doxygen/deal.II/step\_3.html
   http://www.math.colostate.edu/~bangerth/videos.676.10.html
- Key points
  - Local assembly + quadrature rules
  - Distribution of local contributions to the global linear system
  - Application of boundary conditions
  - Solving a linear system
  - Output for visualisation





