

Deep Learning

Prof. Silvio R. R. Sanches

silviosanches@utfpr.edu.br

Redes Neurais Recorrentes

Memória Longa de Curto Prazo

no tempo atual X_{t}

Inicialmente, informações do estado oculto no tempo anterior e a entrada no tempo atual passam por uma camada de rede linear e o resultado dessa combinação passa por uma função sigmóide

σ Retorna valores entre 0 e 1

Quanto mais próximo de 1, mais informações serão preservadas Se a sigmóide retornar zero, todas as informações serão descartadas

As informações que passaram pela função sigmóide são combinadas com o estado da memória no tempo anterior no "forget gate", que decide o que será apagado na memória

As informações que passaram pela função sigmóide são combinadas com o estado da memória no tempo anterior no "forget gate", que decide o que será apagado na memória

Ainda com o objetivo de decidir quais informações novas serão armazenadas no estado da célula, as informações do estado anterior e da entrada no tempo atual também servem de entrada para uma função tangente hiperbólica

tanh Normaliza os valores para o intervalo [–1, 1]

Estabiliza a rede - trabalha com valores menores Introduz não linearidade - essencial para a rede aprender relações não triviais

Depois de passar pelo "forget gate", a informação é combinada com a saída do "forget gate" anterior. Essa combinação é realizada por um "input gate", que decide quais dessas novas informações serão adicionadas à memória da rede

Neste momento, a rede já calculou o estado atual da célula de memória

entrada da rede no tempo atual X Operação de apagar (forget gate)

+) Operação de adicionar (input gate)

O próximo passo é decidir quais informações serão passadas adiante por meio do estado da rede

 X_{t}

Primeiro, uma função tangente hiperbólica recebe o estado atual da célula Uma sigmóide recebe informações da entrada atual e do estado anterior A saída da sigmóide é combinada com a da hiperbólica em um "forget gate"

Primeiro, uma função tangente hiperbólica recebe o estado atual da célula

Uma sigmóide recebe informações da entrada atual e do estado anterior

A saída da sigmóide é combinada com a da hiperbólica em um "forget gate"

As informações resultantes são então enviadas para a saída e para a própria rede

Dissipação do gradiente

Vanishing Gradient

