Microprocessor Systems

Syllabus

- Introduction, Number Systems
- Computer Overview Memory
- 3. Memory Design
- 4. HW 1, CPU overview, Instruction format
- 5. Addressing methods
- 6. Instruction types
- Instruction types cntd
- Midterm Exam 1
- Parallel communication interface
- 10. Serial communication interface
- 11. HW 2, Subroutines, Interrupts, Stack, Coding techniques
- 12. Coding examples and applications
- 13. Midterm Exam 2
- 14. Development of Microprocessor Based Designs

Comparison of Memory Modules

4

Memory Addressing

- Memory consists of a sequence of directly addressable "locations".
- A memory location is referred to as an information unit.
- An information unit has two components:
 - address
 - contents

Address — Contents

Memory Addressing

- Each location in memory has an address that must be supplied before its contents can be accessed.
- The CPU communicates with memory by first identifying the location's address and then passing this address on the address bus.
- The data are transferred between memory and the CPU along the data bus.
- The number of bits that can be transferred on the data bus at once is called the data bus width of the processor.

Dimensions of Memory

- Memory is usually measured by two numbers: its length and its width (Length x Width).
 - The length is the total number of locations.
 - The width is the number of bits in each location.
- The length (total number of locations) is a function of the number of address lines.

```
# of memory locations = 2( # of address lines)
```

- A memory chip with 10 address lines would have
 2¹⁰ = 1024 locations (1K)
- A memory chip with 4K locations would need
 log₂ 4096=12 address lines

Educational CPU and Memory

 Educational CPU has 16 address lines. That means it can address

 $2^{16} = 64K$ memory locations.

- Then it will need 1 memory chip with 64 K locations, or 2 chips with 32 K in each, or 4 with 16 K each or 16 of the 4 K chips, etc.
- How would we use these address lines to control the multiple chips?

Chip Select

- Usually, each memory chip has a Chip Select (CS) input. The chip will only work if an active signal is applied on that input.
- To allow the use of multiple chips in the make up of memory, we need to use a number of the address lines for the purpose of "chip selection".
- These address lines are decoded to generate the 2ⁿ necessary CS inputs for the memory chips to be used.

Memory Access

Memory Access

Chip Selection Example

 a memory system made up of 4 of the 4 X 2 memory chips

Memory Map

Designates the address space for each memory chip

Address Range of a Memory Chip

- The address range of a particular chip is the list of all addresses that are mapped to the chip.
- An 8-bit CPU with 16 address bits can address a total of 64K memory locations.
 - If we use memory chips with 1K locations each, then we will need 64 such chips.
 - The 1K memory chip needs 10 address lines to uniquely identify the 1K locations. (log₂1024 = 10)
 - That leaves 6 address lines which is the exact number needed for selecting between the 64 different chips ($log_264 = 6$).

Address Range of a Memory Chip

16 bit address lines can be separated into two pieces

 Depending on the combination on the address lines A₁₅-A₁₀, the address range of the specified chip is determined.

Chip Select Example

- A chip that uses the combination [A₁₅-A₁₀] = 001000 would have addresses that range from \$2000 to \$23FF.
 - the 10 address lines on the chip gives a range of xxxx xx00 0000 0000 to xxxx xx11 1111 1111 or \$x000 to \$x3FF for each of the chips.
 - The memory chip in this example would require the following NAND circuit on its chip select input:

Chip Select Example

If we change the above combination to the following:

 Now the chip would have addresses ranging from: 2400 to 27FF.

 Changing the combination of the address bits connected to the chip select changes the address range for the memory chip.

Chip Select Example

Example: For a CPU with 8-bit data bus and 16-bit address bus, build the memory that spans between \$0000 and \$1FFF with 2Kx8 memory chips.

- What is the required memory space?
- How many 2K chips are needed?

$A_{15}A_{14}A_{13}A_{13}$	A_{12} A_{13}	$A_{10}A_{9}A_{8}$	$A_7A_6A_5A_4$	$A_3A_2A_1A_0$	
000) 0	000	0000	0000	\$0000
0000	0	111	1111	1111	\$07FF
0000) 1	000	0000	0000	\$0800
0000) 1	111	1111	1111	\$0FFF
0001	0	000	0000	0000	\$1000
0001	_ 0	111	1111	1111	\$17FF
0001	. 1	000	0000	0000	\$1800
0001	. 1	111	1111	1111	\$1FFF

- Connect the DATA BUS, ADDRESS BUS, R/W together
- CS is determined using A12 and A11

Data Bus D₀-D₇

Memory

Memory Organization

 Chip select is done with address bits that are not used within the memory chip.

	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	
Memory 1	0	0	0	0	0	Used to address locations within a	
Memory 2	0	0	0	0	1		
Memory 3	0	0	0	1	0		
Memory 4	0	0	0	1	1	memory chip	

A₁₅, A₁₄, A₁₃ remain at low at all times. They can be used to form another Chip Select (Group Select)

 A₁₂ and A₁₁ can be used to select memory chips with 2x4 decoder

Example: Organize 8Kx1 memory chips to obtain 8Kx8 memory

