

CIÊNCIAS DA COMPUTAÇÃO

Aspectos Teóricos da Computação

Prof. César C. Xavier

Aspectos Teóricos da Computação

ROTEIRO

Máquinas de Turing – Parte II

- Exercícios
- Expressões Regulares
- Autômato Finito Não-Determinístico (NFA)
- Conversão NFA para DFA
- Máquina de Turing Não Determinísticas
- Máquina de Turing com Várias Fitas
- Máquina de Turing com Acesso Aleatório

Autômato Finito Não Determinístico

• O que o seguinte autômato tem de diferente?

- Novas características para o modelo não determinístico:
 - > caminhos múltiplos são possíveis, inclusive nenhum caminho
 - transição com ε é livre mesmo que não tenha sido lido uma entrada
 - > uma entrada é aceita se algum caminho leva ao estado final
- Exemplo de Entradas: (i) ab, (ii) aa, (iii) aba e (abb)
 - b ab → aceita
 - → rejeitada
 - → aba → aceita
 - → abb → rejeitada

Uma máquina não determinística não pode ser construída fisicamente mas é muito importante matematicamente.

Prof. César C. Xavier

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

- Características
 - ao processar uma entrada, pode "escolher" entre várias transições ou caminhos possíveis simultaneamente.
 - pode seguir várias computações em paralelo para explorar todas as possibilidades e "adivinhar" o caminho correto para a solução, se ele existir.
- · Na prática
 - o "poder" de adivinhar o caminho correto simultaneamente é uma abstração teórica que simplifica a modelagem de certos tipos de problemas.

Autômato Finito Não Determinístico

- Por que não pode ser construída fisicamente?
 - Execução simultânea de múltiplos caminhos
 - * várias computações ocorrem ao mesmo tempo, e a máquina "seleciona" o caminho correto, se ele existir.
 - * a implementação de algo que explora todos os caminhos simultaneamente exigiria um grau de paralelismo praticamente ilimitado, o que não é fisicamente possível com os computadores que temos.
 - Capacidade de memória infinita
 - para processar infinitas possibilidades simultaneamente, a máquina precisaria de memória infinita e processamento simultâneo infinito, o que viola os limites físicos dos sistemas computacionais reais.
 - Decisão instantânea
 - poder "adivinhar" o caminho correto sem explorar todas as possibilidades contradiz as limitações físicas e temporais dos computadores reais, que precisam explorar cada possibilidade sequencialmente ou usar paralelismo limitado.

Prof. César C. Xavier

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

- Sistemas que se aproximam do não determinismo:
 - Computação paralela e distribuída
 - pode-se usar paralelismo ou distribuição para explorar vários caminhos ao mesmo tempo, mas...
 - > ... ainda é limitado pelo hardware disponível.
 - Algoritmos probabilísticos e heurísticos
 - existem algoritmos que utilizam probabilidade ou heurísticas para tentar "adivinhar" soluções de maneira eficiente em certos problemas, mas...
 - não há garantia que eles encontrarão o caminho correto em todas as situações, como uma máquina não determinística faria.

Autômato Finito Não Determinístico

O que N₁ fará com a entrada aab?

- (a) aceita
- (b) rejeita
- (c) ambos, aceita e rejeita
- Resp.: (a)

Prof. César C. Xavier

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

- Definição AFND (NFA):
 - N é uma quíntupla (Q, Σ , δ , q_0 , F)
 - > Q: conjunto finito de estados
 - > Σ: alfabeto, conjunto finito de símbolos de entrada
 - \succ δ : função transição que recebe um estado de Q e um símbolo de Σ como argumento e retorna um subconjunto de Q.
 - q₀: estado inicial, é um elemento de Q
 - F: estados finais (ou de aceitação)

Autômato Finito Não Determinístico

- Definição AFND (NFA):
 - N é uma quíntupla (Q, Σ , δ , q_0 , F)
 - $^{\succ}$ δ : $Q \times \Sigma_{\varepsilon} \rightarrow P(Q) = \{R \mid R \subseteq Q\}$
 - $\Sigma_{\varepsilon} = \Sigma \cup \varepsilon \in P(Q)$ é um conjunto.
 - \rightarrow (i) $\delta(q_1, a) = ? e (ii) \delta(q_1, b) = ?$
 - \rightarrow (i) $\delta(q_1, a) = \{q_1, q_2\}$
 - \rightarrow (ii) $\delta(q_1, b) = \emptyset$

Prof. César C. Xavier

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

- Relembrando: formas de pensar sobre não determinístico
 - Computacionalmente:
 - r forma de processamento paralelo mas que interrompe threads paralelas quando um estado final ou aceito é encontrado.
 - Matematicamente:
 - árvores com galhos nas quais um estado é aceito se um galho me leva a um estado final.
 - Mágico:
 - * adivinha para cada passo não determinístico qual o caminho a ser seguido. A máquina sempre fará a melhor escolha que leva ao estado final, se possível.

Autômato Finito Não Determinístico

Prof. César C. Xavier

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

- Se A_1 e A_2 são linguagens regulares então A_3 = $A_1 \cup A_2$ também é.
- **Demonstração**: Existem dois autômatos finitos e determinísticos M_1 e M_2 que reconhecem A_1 e A_2 .

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, reconhece A_1 .
 $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, reconhece A_2 .

Construir AFND $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.

M deverá aceitar w como entrada se M_1 ou M_2 aceitar w.

Autômato Finito Não Determinístico

• Construir AFND $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.

M deverá aceitar w como entrada se M_1 ou M_2 aceitar w.

Prof. César C. Xavier

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

• Construir AFND $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 \cup A_2$.

M deverá aceitar w como entrada se M_1 ou M_2 aceitar w.

Autômato Finito Não Determinístico

- Se A_1 e A_2 são linguagens regulares então $A_3 = A_1$ A_2 também é (concatenação).
- **Demonstração**: Existem dois autômatos finitos e determinísticos M_1 e M_2 que reconhecem A_1 e A_2 .

 $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, reconhece A_1 . $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, reconhece A_2 .

Construir AFND $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se M_1 e M_2 aceitar w.

Prof. César C. Xavier

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

• Construir AFND $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se M_1 ou M_2 aceitar w.

Autômato Finito Não Determinístico

• Construir AFND $M = (Q, \Sigma, \delta, q_0, F)$, reconhece $A_1 A_2$.

M deverá aceitar w como entrada se M_1 ou M_2 aceitar w.

O não determinismo tem a opção de pular para M_2 quando M_1 o aceitar!

Aspectos Teóricos da Computação

Autômato Finito Não Determinístico

≻ Considere o autômato N_1 a seguir. Faça: (i) a descrição formal de N_1 ; e (ii) a representação em árvore sobre a entrada 010110.

