Clustering Data Streams: Theory and Practice

Guha, Meyerson, Mishra, Motwani, O'Callaghan

Philipp Lies

Technische Universität Darmstadt

6. Dezember 2006

Definitionen Algorithmus Ergebnisse Quellen

Vortragsübersicht

- Definitionen
 - Clustering
 - k-Median
- 2 Algorithmus
 - Skizze
 - Randomized-Algorithmus
 - Lokale Suche
 - Primal-Dual-Algorithmus
 - Und was hat das mit Data Streams zu tun?
- 3 Ergebnisse
- Quellen

Was ist "Clustering"?

Clustering

Finde eine *Aufteilung* des Datenraums, so dass *ähnliche* Objekte in der gleichen Gruppe sind und verschiedene Objekte in verschiedenen Gruppen sind.

- Auch der Negativeinschluss ist wichtig (vgl Recall/Precision) sonst wäre eine Partition mit allen Elementen die ideale Lösung
- Methoden: k-Median, k-Means, k-Center, ...
- Wir betrachten hier: k-Median Clustering

Was ist k-Median? (1)

- k Elemente (Mediane) in einer Menge finden
- Summe der Abstände zwischen jedem Element der Menge und dem nähsten Median soll minimal sein
- Formal: $\sum_{x_i \in N} \min_{c_i \in C} dist(x_i, c_j)$
- k-Mediane einer Menge finden $\Rightarrow NP$ -schweres Problem
- Reduzierung auf Heuristiken notwendig
- Soll nur um konstanten Faktor schlechter sein als Optimum

Was ist k-Median? (2)

Postfilialen in Deutschland verteilt

Deutschland

Was ist k-Median? (2)

- Postfilialen in Deutschland verteilt
- Verteilzentren beliefern umliegende Postfilialen
- k Filialen sollen Verteilzentren bekommen

Deutschland

Was ist k-Median? (2)

- Postfilialen in Deutschland verteilt.
- Verteilzentren beliefern umliegende Postfilialen
- k Filialen sollen Verteilzentren bekommen
- Lieferweg soll minimal sein
- Sonderfall des Facility-Location-Problems

Deutschland

Definitionen

- n₀ Anzahl der Punkte im gesamten Block
 - n Anzahl der Eingabepunkte im aktuellen Teil
- M Vorhandener bzw. maximal benutzbarer Speicher
 - k Zielanzahl der Mediane für den Algorithmus
 - ϵ Konstante $0 \ll \epsilon < 1$, $\epsilon \in \mathbb{R}$
 - d Euklidscher Abstand eines Punktes zum nähsten Median
- C Menge der Mediane
- x_i Datenpunkte

Basis

- Vorbedingung: Distanzen erfüllen Dreiecksungleichung $|x + y| \le |x| + |y|$
- Sei S Menge aller Punkte, C_S deren Mediane. Auf reduzierter Menge $Q \subseteq S$ gibt es für jeden Cluster einen Punkt $x_j \in Q$ mit kleinster Distanz zum Median $c_k \in C, \notin Q$. Durch Dreiecksungleichung folgt Abstand $dist(x_r, x_j) \leq 2 dist(x_r, c_k) \forall x_r \in Q$.

k-Median kurzgefasst

- Der Algorithmus besteht aus 3 Schritten:
 - **1** Eingabepunkte (Lvl 0) clustern in 2k Mediane (Lvl 1)
 - Randomized-Algorithmus
 - Anzahl der zugeordneten Punkte pro Median speichern
 - 2 M Mediane (Lvl i) clustern in 2k Mediane (Lvl i + 1) mit LSFARCH
 - Bei < M Mediane clustern in k Mediane mit Primal-Dual-Algorithmus
- Laufzeit: $\tilde{O}(n_o k)$, Speicher: $O(n_0^{\epsilon})$

Ergebnisse

Definitionen

Randomized-Algorithmus

- Nimm \sqrt{nk} zufällig ausgewählte Punkte
- Erzeuge k Mediane mittels Primal-Dual-Algorithmus
- Nimm die $\frac{n}{\sqrt{nk}}$ Punkte mit dem größtem d
- Clustern zu k Medianen mit Primal-Dual-Algorithmus
- $\bullet \Rightarrow 2k$ Mediane
- Laufzeit: O(nk log nk)

LSEARCH (1)

- Setze die $z_{\min} = 0$, $z_{\max} = \sum d(x_i, x_0)$, $z = \frac{z_{\max} z_{\min}}{2}$
- Erzeuge eine zufällige Startlösung
 - Punkte mischen
 - 1. Punkt ist Median
 - Mit Ws(d/z) wird ein Punkt zusätzlicher Median, sonst füge den Punkt zum nähsten Median hinzu
- Extra zufällig $\frac{1}{n} \log k$ Punkte als mögliche Mediane
- $p \in (0,1)$ untere Schranke für die Größe der Cluster

LSEARCH (2)

solange $|C_{i-1}| \neq k$ wiederhole:

- ② Für jeden der zulässigen Mediane $c_{neu} \notin C_{i-1}$ prüfen, ob die Kosten sinken wenn $C_i = c_{i-1} \cap \{c_{neu}\}$
- **Solution** Falls ja, alle x_i mit $d(x_i, c_{neu}) < d(x_i, c_i)$ zu c_{neu} hinzu
- Sollte ein c; keine Punkte mehr haben, entfernen
- **5** Wenn $k < |C_i| < 2k$ beende Schleife
- **10** Wenn $|C_i| < k$: $z_{\text{max}} = z$, sonst $z_{\text{min}} = z$, $z = \frac{z_{\text{max}} z_{\text{min}}}{2}$

gib C; als Mediane zurück

Laufzeit $O(nk_l + nk \log k)$, $k_l = \#$ Mediane in Startlösung

Ergebnisse

Definitionen

Primal-Dual-Algorithmus

- Basiert auf Integer Linear Programming
- Implementierung extrem komplex, sprengt den Rahmen
- Idee: Betrachte Problem als bipartiten Graphen mit Kanten zwischen Punkten und möglichen Medianen, Kantenkosten = Distanz, finde das MIN VERTEX COVER
- Laufzeit $O(m \log m(L + \log n))$, m Kanten, $L = \max \log d$
- Mediane unbekannt \Rightarrow kompletter Graph: $m = \frac{n^2 n}{2}$

Beispiel

Definitionen

- \bullet $n_0 = 12000$, M = 60, k = 3
- $\frac{M}{k} = 20$ Punkte zu 2k = 6 Mediane clustern
- $12000 \Rightarrow 3600 \quad (i = 1)$
- $M = 60 \Rightarrow 2k = 6$
- $3600 \Rightarrow 360 \quad (i = 2)$
- $360 \Rightarrow 36 \quad (i = 3)$
- da 36 < M = 60: $36 \Rightarrow k = 3$

Ergebnisse

Definitionen

Komplexitätsanalyse

- Autoren postulieren: Laufzeit $O(n_0k)$
- Nachrechnen:
 - Randomized Algorithmus:

$$\frac{n_0 k}{M}$$
 Blöcke, je $n_1 = \frac{M}{k}$ Punkte

- 1 $\sqrt{n_1 k}$ Punkte mit Primal-Dual $\Rightarrow O(n_1 k \log n_1 k)$
- 2 Berechne $dist(x_i, c_i)$ für alle $i \in (1..n), j \in (1..k) \Rightarrow O(n_1 k)$
- 3 $\frac{n_1}{\sqrt{n_1 k}}$ Punkte mit Primal-Dual $\Rightarrow O(\frac{n_1}{k} \log \frac{n_1}{\sqrt{n_2 k}})$
- $\Rightarrow O(n_1 k \log n_1 k)$ pro Block, $O(n_0 k \log n_0 k)$ gesamt
- Da danach die Punktmenge $\ll n$ ist fallen die folgenden Terme nicht mehr ins Gewicht.
- $\bullet \Rightarrow O(n_0 k \log n_0 k) \equiv \tilde{O}(n_0 k)$

Und was hat das mit Data Streams zu tun?

- Der Algorithmus arbeitet auf einer festen Grundmenge N
- Die Autoren führen lediglich an, dass die Laufzeit linear und der Speicherbedarf sublinear ist und damit tauglich für Datenströme
- Mögliche Verwendung in Datenströmen:
 - Daten puffern und die Mediane neu berechnen ⇒ nur letzte Daten werden betrachtet
 - Mediane der alten Lösung und neue Punkte zusammen als Grundmenge nehmen, Mediane mit den Gewichten der Punkte darin, neue Punkte mit Gewicht 1
- Den Ergebnissen nach verwenden die Autoren das 2. Verfahren

Worst Case Performance

- Alle Messungen wurden 10 mal durchgeführt und gemittelt
- k-Median liefert selbst im Worst
 Case gute Ergebnisse im Vergleich
 zu k-Means (wird von Philip
 vorgestellt)
- Preis: 3-6-fache Laufzeit

Definitionen Algorithmus Ergebnisse Quellen

Vergleiche syntherische Daten

- Beispiele für LSEARCH und k-Means verwendet in BIRCH und diesem Clusteringalgorithmus
- BIRCH deterministischer Algorithmus
- STREAMLS liefert nahezu optimale Ergebnisse
- Stochastischer Ansatz in STREAM bringt deutliche Verbesserung, auch mit k Means
- BIRCH deutlich ungenauer aber deutlich schneller

Vergleiche reale Daten

- Tradeoff Performance → Zeit
- Unbrauchbar für Schnelle Datenströme (Webclicks, ...)
- Gut für langsame Datenströme mit Bedarf an Präzision (IDS, ...)
- Vergleich für IDS Simulation einer Airforce Base
- 9 Blöcke TCP Rohdaten je 16MB in 2 Wochen

00000

Quellen

- Guha, Sudipto *et al*, 2003, Clustering Data Streams: Theory and Practice
- Guha, Sudipto et al, 2000, Clustering Data Streams
- KAMAL JAIN AND VIJAY V. VAZIRANI, 1999,
 Primal-Dual Approximation Algorithms for Metric Facility
 Location and k-Median Problems
- CHARIKAR, GUHA, 1999, Improved Combinatorial Algorithms for the Facility Location and k-Median Problems
- ...
- WIKIPEDIA, http://www.wikipedia.org