COMS W4701: Artificial Intelligence

Lecture 2: Agents, Environments, and Search Problems

Instructor: Tony Dear

*Lecture materials derived from UC Berkeley's AI course at <u>ai.berkeley.edu</u>

Announcements

- Wait lists have not changed much...
- Auditors are welcome, please reach out to Tony

HW0 submission for wait list students out next Tuesday

Attend Pieter Abbeel's talk!

Deep Learning to Learn

SEPT. 10, 2018 (MONDAY) 11:30AM-12:30PM DAVIS AUDITORIUM (412 CEPSR)

Last Time

Definitions of Al

History of Al

Modern applications

What do you want to take away from this course?

What do you want to take away from this course?

- Applications and modern technology, AI in the real world
- Fundamental theory and general methods
- Human-Al interactions
- Deep learning, reinforcement learning
- Outlook for the future

Today

Characteristics of agents

Properties of environments

Time permitting: Search problems

Agents

Sensors and Actuators

Human agents

- Sensors
 - Eyes, ears, nose, mouth, skin
- Actuators
 - Mouth, arms, hands, legs, feet

Robot agents

- Sensors
 - Cameras (stereo, infrared, lidar, etc.), force sensors, encoders
- Actuators
 - Motors, wheels, arms and grippers, legs

Failures of Robot Agents

Other Examples of Agents

- Self-driving cars
- Roombas
- Watson
- Spam filters
- Google Maps
- Siri

Agent Functions

$$f: P^* \to A$$

Percept history Actions

Vacuum Cleaner World

- Agent: Vacuum cleaner
- Environment: Two discrete locations

Vacuum Cleaner World

- Percepts: Current Location, IsDirty?
- Actions: Move left, move right, clean, do nothing

[A, IsClean]	Move right
[A, IsDirty]	Clean
[B, IsClean]	Move left
[B, IsDirty]	Clean
[[A, IsDirty], [A, IsClean]]	Move right
[[B, IsDirty], [A, IsClean]]	Move right
[[B, IsClean], [A, IsClean]]	Do nothing

Rational Agents

How do we define agent functions?

- "Rationality" depends on several factors
 - Agent's knowledge of the environment
 - Agent's percept history
 - Agent's available actions
 - A performance measure or utility that defines success

• What are some examples of utilities for the vacuum cleaner?

Environments

Environments

- Fully observable vs partially observable
- Deterministic vs stochastic
- Episodic vs sequential
- Static vs dynamic
- Discrete vs continuous
- Single-agent vs multi-agent

Examples of Environments

Environment	Partially / Fully Observable	Deterministic / Stochastic	Sequential / Episodic	Dynamic / Static	Continuous / Discrete	Single- / Multi-Agent
Vacuum cleaner world	Р	D	S	S	d	S
Chess	F	D	S	S	d	
Self-driving car (real world)	Р	S	S	D	С	
Image classification	F	D	E	S	d	S

Reflex vs Goal-Based Agents

Reflex Agents

Goal-Based (Planning) Agents

Search Problems

- State space: All possible descriptions of the agent in the world
- Action space: All possible actions an agent can take in its state
 - Actions(s), $s \in state space$
- Transition model: Function mapping current state + action to a new state
 - Results: $(s_1, a) \rightarrow s_2$, $a \in Actions(s_1)$
- Path costs
- Start state and goal test
- Solution: Sequence of actions going from start state to goal state

Example: Route Planning

Example: Route Planning

- State space: S = {Vancouver, Seattle, Portland, Calgary, ...}
- Action space: Go from current city to adjacent city
 - Actions(Vancouver) = {Go(Seattle), Go(Calgary)}
- Transition model: Trivial result of the action
 - Results(Vancouver, Go(Seattle)) = Seattle
- Start state: s_0 = Vancouver
- Goal test: In(New York)
- Solution: {Go(Calgary), Go(Helena),...}

Example: 8-Queen Problem

Starting out with an empty chess board, we want to place 8 queen pieces such that no piece is in the same row, column, or diagonal as any other piece.

- Initial state
- Goal test
- State space
- Action space
- Transition model

Review

Agent percepts (sensors) and actions (actuators)

Agent functions and rational agents

Properties of environments

Reflex vs planning agents

Next Time

Search!

Trees vs graphs

DFS, BFS, UCS