Exercises for MOS Device Operation and Large Signal Model

Exercise 1: Compute i_D and v_{DS} in the circuit below. MOS has $V_{t,n}=0.4$ V and $\mu_n C_{ox}$ (W/L) = 1.0 mA/V 2 for A) Ignoring Channel-Width Modulation, b) Including channel-width modulation with $\lambda=0.05$ V $^{-1}$.

It is generally advantageous to solve for $V_{OV} = V_{GS} - V_t$ (instead of V_{GS}).

$$i_D = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV}^2 \left[1 + \lambda v_{DS} \right]$$

- > Ignoring channel width modulation introduces a relative error in circuit parameters (e.g., i_D) of $\sim \lambda v_{DS}$.
 - This is an acceptable error in most biasing calculations.

$$V_{OV} = v_{GS} - V_{t,n} = v_G - v_S - V_{t,n} = 1 - 0 - 0.4 = 0.6 \text{ V}$$

Assume Saturation*: $V_{OV} \ge 0$ and $v_{DS} \ge V_{OV}$

A) $\lambda = 0$

Saturation:
$$i_D = 0.5 \mu_n C_{ox} \frac{W}{I} V_{OV}^2 = 0.5 \times 1.0 \times 10^{-3} \times (0.6)^2 = 0.180 \text{ mA}$$

KVL:
$$1.8 = 5 \times 10^3 i_D + v_{DS} \implies v_{DS} = 1.8 - 5 \times 10^3 \times (0.18 \times 10^{-3}) = 0.90 \text{ V}$$

(Expected error in i_D and v_{DS} is $\sim \lambda v_{DS} = 0.05 \times 0.90 = 4.5\%$)

B)
$$\lambda = 0.05 \text{ V}^{-1}$$

Saturation:
$$i_D = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV}^2 \left[1 + \lambda v_{DS} \right] = 0.18 \times 10^{-3} \left[1 + 0.05 v_{DS} \right]$$

KVL:
$$1.8 = 5 \times 10^{3} i_{D} + v_{DS} \Rightarrow 1.8 = 5 \times 10^{3} \times (0.18 \times 10^{-3})(1 + 0.05 v_{DS}) + v_{DS}$$

 $1.8 = 0.9 + 0.045 v_{DS} + v_{DS} \Rightarrow v_{DS} = 0.86 \text{ V}$
 $i_{D} = 0.18 \times 10^{-3} \left[1 + 0.05 v_{DS} \right] = 0.188 \text{ mA}$

*Note $V_{OV} \ge 0$ and $v_{DS} \ge V_{OV}$ for both cases, so assumption of saturation is justified.

Exercise 2: An NMOS $\mu_n C_{ox} \, (W/L) = 0.1 \, \, \mathrm{mA/V^2} \,$ and $V_t = 0.5 \, \, \mathrm{V}$ is to be operated in the saturation region. If $i_D = 12.5 \, \, \mathrm{\mu A}$, find the required v_{GS} and the minimum required v_{DS} . Ignore channel width modulation.

Saturation:
$$V_{OV} \ge 0$$
 and $v_{DS} \ge V_{OV}$ $i_D = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV}^2 \left[1 + \lambda v_{DS} \right]$

$$\lambda = 0 \implies i_D = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV}^2$$

$$12.5 \times 10^{-6} = 0.5 (0.1 \times 10^{-3}) V_{OV}^2$$

$$V_{OV} = 0.5 \text{ V}$$

$$v_{GS} = V_{OV} + V_t = 1 \text{ V}$$

For NMOS in saturation : $v_{DS} \ge V_{OV} = 0.5 \text{ V} \implies \text{Minimum } v_{DS} = 0.5 \text{ V}$

An important aspect of amplifier design is to ensure that MOS is always in saturation.

Exercise 3: The PMOS transistor in the circuit below has $V_{t,p} = -0.5 \text{ V}$. As the gate voltage, v_G , is varied from +2.5 V to 0, PMOS moves through all of its three states. Find values of v_G at which the device changes modes of operation.

$$v_{SD} = v_S - v_D = 2.5 - 1 = 1.5 \text{ V}$$

 $V_{OV} = v_{SG} - |V_{t,p}| = v_S - v_G - |V_{t,p}| = 2.5 - v_G - 0.5 = 2.0 - v_G$

Cut-Off:
$$V_{OV} \le 0 \implies 2.0 - v_G \le 0 \implies v_G \ge 2.0 \text{ V}$$

Triode:
$$V_{OV} \ge 0$$

and

$$V_{OV} \ge 0$$
 $\Rightarrow v_G \le 2.0 \text{ V}$
 $v_{SD} \le V_{OV}$ $\Rightarrow 1.5 \le V_{OV} = 2.0 - v_G$ $\Rightarrow v_G \le 2.0 - 1.5 = 0.5 \text{ V}$

Saturation:
$$V_{OV} \ge 0$$
 $\Rightarrow v_G \le 2.0 \text{ V}$

and
$$v_{SD} \ge V_{OV} \implies 1.5 \ge V_{OV} = 2.0 - v_G \implies v_G \ge 2.0 - 1.5 = 0.5 \text{ V}$$

 $0.5 \le v_G \le 2 \text{ V}$

Transition from cut-off to saturation at v_G = 2 V transition from saturation to triode at v_G = 0.5 V

Exercise 4: Find V_S for $\mu_p C_{ox} \left(W/L\right) = 0.5 \text{ mA/V}^2$, $V_{tp} = -0.6 \text{ V}$ and $\lambda = 0$).

- \blacktriangleright Since $i_D = 40 \mu A$, PMOS is ON
- Assume PMOS in saturation

$$i_D = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV}^2$$

 $40 \times 10^{-6} = 0.5 \times 0.5 \times 10^{-3} V_{OV}^2 \rightarrow V_{OV} = 0.4 \text{V}$

$$v_{SG} = V_{OV} + |V_{tp}| = 0.4 + 0.6 = 1 \text{ V}$$

$$v_{SG} = V_S - V_G = V_S - 0 \longrightarrow V_S = 1 \text{ V}$$

$$v_{SD} = V_S - V_D = 1 - (-5) = 6V$$

 $v_{SD} = 6 > V_{OV} = 0.4 \text{ V}$ (PMOS in saturation)

Exercise 5: Find V_1 and V_2 ($\mu_n C_{ox}$ (W/L) = 5 mA/V 2 , V_t = 1 V, and ignore channel-width modulation).

GS1-KVL:
$$0 = v_{GS1} + 10^3 i_D - 2.5 = V_{OV1} + V_t + 10^3 i_D - 2.5$$

 $\rightarrow V_{OV1} + 10^3 i_D = 1.5$

GS2 - KVL:
$$2.5 = v_{GS2} + v_{DS1} + 10^3 i_D - 2.5$$

DS-KVL:
$$2.5 = v_{DS2} + v_{DS1} + 10^3 i_D - 2.5$$

KCL:
$$i_{D1} = i_{D2} = i_D$$

- ightharpoonup Q1 is not in cut-off since for i_{D1} = 0, GS1-KVL gives V_{OV} = 1.5 V > 0.
 - o Q2 is not in cut-off either as $i_{D2} = i_D > 0$

Exercise 5 (cont'd): Find V_1 and V_2 ($\mu_n C_{ox}$ (W/L) = 5 mA/V² , V_t = 1 V, and ignore channel-width modulation).

Assume both MOS in saturation

$$i_D = i_{D1} = 0.5 \mu_n C_{ox} \frac{W}{L} V_{OV1}^2$$
GS1-KVL: $1.5 = V_{OV1} + 10^3 i_D = V_{OV1} + 10^3 \times 0.5 \times 5 \times 10^{-3} V_{OV}^2$

$$2.5 V_{OV1}^2 + V_{OV1} - 1.5 = 0$$

$$V_{OV1} = -1.0 \text{V (incorrect, need } V_{OV} > 0)$$

$$V_{OV1} = 0.60 \text{V}$$

Both MOS in saturation, i_{D2} = i_{D1} and λ = 0: V_{OV2} = V_{OV1} = 0.60 V

$$v_{GS1} = V_{OV1} + V_t = 0.6 + 1 = 1.6 \text{ V}$$

$$v_{GS1} = V_{G1} - V_{S1} = 0 - V_2 \rightarrow V_2 = -1.6 \text{ V}$$

$$v_{GS2} = V_{OV2} + V_t = 0.6 + 1 = 1.6 \text{ V}$$

$$v_{GS2} = V_{G2} - V_{S2} = 2.5 - V_1 \rightarrow V_1 = 0.9 \text{ V}$$

Exercise 5 (cont'd): Find V_1 and V_2 ($\mu_n C_{ox}$ (W/L) = 5 mA/V 2 , V_t = 1 V, and ignore channel-width modulation).

Need to confirm our assumption of both MOS in saturation

$$v_{DS1} = V_{D1} - V_{S1} = V_1 - V_2 = 0.90 - (-1.6) = 2.5 \text{ V}$$

 $v_{DS1} = 2.5 > V_{OV1} = 0.6 \text{ V}$

$$v_{DS2} = V_{D2} - V_{S2} = 2.5 - V_1 = 2.5 - 0.9 = 1.6 \text{ V}$$

 $v_{DS2} = 1.6 > V_{OV2} = 0.6 \text{ V}$

For circuits with multiple transistors, it is usually advantageous to keep track of node voltages (at transistor terminals!