

Challenge: Generic Optimizer

- Generic Model
- Customization by activating a subset
 - Reduction to customer problem
 - inactivate constraints
 - inactivate objectives
 - However No Enhancements
 - additional constraints
 - additional objectives
- Open Architecture
 - most generic core model
 - embedding of different special optimizer

Expectation for Optimization

Optimal Solution ?

Output Better than 5% below optimum?

- Best-of-Breed Solution!
 - Depends on Problem Complexity (Model, Size)
 - Computation time

Solution: Scalability ?!

Challenge: Hardware Scalability

Parallelization

- 3-tier Client Server
 - Separation Application, LiveCache and Optimizer server
 - Several Optimizer server
- Multi Processor
 - Multi user: parallel optimization runs
 - Multi optimizer agents in one optimization run

Challenge: Algorithmic Scalability

- Tradeoff: generalization vs computation time
 - Two Optimization Models
 - Linear Optimization vs Scheduling
 - Several optimization algorithms
 - e.g. 4 different scheduling optimizer
 - e.g. 3 different LP optimizer

- Tradeoff: algorithmic complexity vs computation time
 - Cubic computation time acceptable for small problems
 - Linear computation time required for large problems
 - → Solution: Metaheuristics / Decomposition

Integrated SC Planning with APO

Decision Variables

- Detailed Scheduling
 - starting time
 - resource selection

- Supply Network Planning
 - Production quantity
 - Transportation quantity
 - Additional Capacities
 - External supplies

Objective function

- Detailed Scheduling
 - Delay costs
 - Setup costs
 - Makespan (compactness)
 - Production Costs (Priorities)
 - Inventory Costs (Earliness)

- Supply Network Planning
 - Delay costs
 - Nondelivery Costs (Maxim. Profit)
 - Production costs
 - Transportation costs
 - Inventory costs
 - Costs for additional capacities
 - Transportation (Outsourcing)
 - Production (over time)
 - Product (Outsourcing)

Constraints

- Detailed Scheduling
 - delivery time
 - setup activities
 - time constraints
 - minimal (sequencing)
 - maximal (shelf life)
 - capacities
 - production
 - storage
 - calendar
 - capacities
 - breaks / shifts
 - productivity

Supply Network Planning

- delivery time
- shelflife
- capacities
 - storage
 - production
 - transport
 - handling
- calendar
 - capacities
 - breaks (weekends)
- discretization
 - lot sizes
 - minimal lot sizes
 - additional shifts
 - piecewise linear cost functions

Scheduling Optimizer Architecture

SNP Optimizer Architecture

Time Decomposition - Local Improvement

Gliding window script

- 1. Optimize only in current window
- 2. Move window by a time delta
- 3. Go to first step

Metaheuristics - Bottleneck

Bottleneck Script

- 1. Determine bottleneck
- 2. Schedule bottleneck resources only
- 3. Fix sequence on bottleneck resource
- 4. Schedule all resources

Multi Agent Optimization

Objective

- Multi Criteria Optimization
- user selects out of solutions with
 - similar overall quality
 - different components
- Use power of Parallelization

Multi Agent Strategy

- Different AGENTS focusing on Setup or Delay or Makespan
- New solutions by local improvement
- Integrated in Optimizer Architecture (independent of basic optimizer)

Performance

Speedup » available processors

SNP Optimizer - Customer Problems

Kimberley Clark

- Model: 30 Buckets, 19.000 Locations-Products, 23.000 Arc-Materials, 8.500 PPMs
- LP: 2.600.000 Variables, 600.000 Constraints
- Solution: optimal after 30 minutes

Johnson&Johnson

- Model: 22 Buckets, 916 Location-Products, 333 Arc-Materials, 741 PPMs
- MIP: 104.000 Variables (14.000 discrete), 46.000 Constraints
- Solution:
 - ♦ < 5% optimality-gap after 5 minutes
 </p>
 - < 3% optimality-gap after 80 minutes</p>

PPDS Optimizer - Customer Problems

Wacker

Model: 124 resources, maximal time constraint, alternatives modes

Problem Size: 30 000 activities

Objective: makespan, delay

Run Time: 20 minutes (periodically every 2 hours)

Vicaima

Model: 30 resources, maximal time constraint, setup activities

Problem Size: 12 500 activities, 2 000 setup activities

Objective: makespan, delay, setup

Run Time: 3 hours (periodically every night)

Mastering the Challenge of SCM

- Open Optimization Architecture
 - embedding of new optimizer
 - embedding of new metaheuristics
- Scalability / Flexibility
 - generic modeling (customizing by activating a subset)
 - special optimizer
 - special metaheuristics
 - parallelization
- Open to external solutions
 - BAPI: Certificated Interface
 - Heuristic Framework: User defined heuristics
 - Optimizer extension workbench: Partner Solutions

Campaigns

Campaign Optimization

