19日本国特許庁

①特許出願公開

公開特許公報

昭53—145621

⑤Int. Cl.²
G 03 B 27/76

識別記号

103 F 53 103 C 21 庁内整理番号 6239— 2H ④公開 昭和53年(1978)12月19日

発明の数 4 審査請求 未請求

(全 12 頁)

9色相抽出装置

②特

顧 昭52-60831

②出 願 昭52(1977)5月25日

仰発 明 者 浅井英一

南足柄市中沼210番地 富士写

真フィルム株式会社内

同 塩田和生 .

南足柄市中沼210番地 富士写 真フイルム株式会社内

⑩発 明 者 秋本泰造

南足柄市中沼210番地 富士写

真フィルム株式会社内

⑪出 願 人 富士写真フィルム株式会社

南足柄市中沼210番地

個代 理 人 弁理士 柳田征史 外1名

明 細 種

1 発明の名称 色相抽出装置

2 特許請求の範囲

- (1) カラー写真フィルムの各点の色相を育色、 緑色、赤色に分解してその歳度を測定する 測定手段によつて得られた 育色、緑色、赤色濃度をカラー写真フィル ムに応じて「補正及び感度補正して規格化 する規格化手段、および育色、緑色、赤色 濃度の組合せを軸とした2次元座際によい て、所定の色相を閉じた領域で定鉄し、 の中に各測定点の色相が含まれるかとらか を判定する色相判定手段からなることを特 饮とする色相抽出契値。
- (3) 前記 2 次元 22 標が 青色 濃度 15 一線色 濃度 の、緑色 濃度 G 一 赤色 濃度 R を それ ぞれ X

- 軸、 ア 軸とした 直交 座標 である ことを 特 依とする 特許 請求の 範囲 第 1 項 また は 第 2 項 記載 の 色相 抽 出 装 筐 。
- (4) 前記色相判定手段がガーび、びーバをそれぞれ演算する少なくとも2つの被算器と、このガーび、びーバによつて決まる医標上の点が多角形の各辺の内側にあるかどうかを比較する複数側の比較器と、この比較器からの信号を入力するイバリ回路とからなることを特徴とする色相抽出接触。
- (5) 削記所定の色柏が肌色であることを特徴とする特許額求の範囲第 1 項ない し第 4 項記載の色相抽出裝置。
- (6) 前記所定の色柏が空色であることを特改とする特許請求の範囲第1項ないし第4項記載の色相抽出装置。
- (7) 前記測定手段がカラー写真フィルムを光 学的に走査するスキャナーと、このスキャナーによるカラー写真フィルムの透過光ま たは反射光を背色、緑色、赤色の3 色に色

特別 昭53-145621(2)

分解する色分解光学系子と、この色分解光学系子からの光を測定する青色、緑色、赤色用の3個の受光累子とからなることを特徴とする特許節求の範囲第1項ないし第6項記載の色相抽出装置。

- (9) カラー写真フイルムの各点の色相を青色。 ・ 緑色、赤色に分解してその濃度を測定する

3 発明の詳細な説明

本発明はカラー写真フィルムに所定の色相 が含まれているかどうかを検出する色相抽出 装置に関するものである。

アマチュアが撮影したカラー写真フイルム (カラーネガフイルム、カラーボジフイルム 等)には、路光量に過 等各種のものが含まいた ラストが大きいもの等各種のものが含まれた フー写真フィルムであつても、プリントが は過ごなカラーバランスと機度とをものた ラープリントが待られるようにするため、プリンターにおいて各色別の露光量を補正する ことが行なわれている。

この路光風の袖正の基本は、エバンスの原理(例えば米国特許第2,571,697号公報 総服)に基づいている。すなわち一般的な被写体を撮影したカラー写真フィルムは透過光の背色、緑色、赤色の3成分の割合がほぼ等しいため、透過光を画面全体について積分し

混合したものは、灰色または灰色に近い一定の色相になる。 この灰色または灰色に近い色相は、各色の熱光量をほぼ等しくすれば符られるから、この熱光量を目標値として各色別の第光量を調節し、腰度およびカラーバランスのととのつたカラーブリントを得るようにするものである。

カラー写真フィルムの画面全体の平均透過 農艇すなわち大面桜平均濃度(L A T D と称 する)を D i (i は 青色、緑色、 赤色のいず れか 1 つを 要わす)とすると、 各色の 鶴光時 間 T i は次式で与えられる。

 $\log T$ $i = \alpha$ i D $i + \beta$ i $(\alpha, \beta$ G 定数)

したがつて、各色の大面機平均濃度値 V : が小さければ露光時間を少なくし、これとは逆に大きければ露光時間を多くするように調節して濃度およびカラーバランスの補正が行なわれる。

ところで殆どのカラー写真フィルムには人

特別 昭53-145621(3)

物、 野空、樹木、 冬季には雪等が含まれている。 これらの被写体はその色相がよく知られているから、 との色相の仕上りに対しては多いに関心が特たれる。 したがつてこれらの被写体がカラーベーバー上で好ましい本来の色相に再現されることが望ましい。

しかし上配の L A 7 D 方式は、 特定の被写体 (画像) に 着目して 3 色の熱光量の補正を 行なつているものでなく、 画面全体の情報に 茜づいて行なうものであるから、 これらの特定の被写体が好ましい本来の色相に再現されないことが多い。

本発明は、色相から特定の被写体を抽出するようにした色相抽出装置を提供することを 目的とするものである。

本発明の色相抽出装置は、背色、緑色、赤色濃度の組合せを軸とした2次元路標にないて、所定の被写体を閉じた領域を有する色相で定義し、各点を測定して得た育色、緑色、赤色濃度を色相判定手段に入力して、これら

の機度から決められる座標上の点が前記領域 内に含まれているかどうかを演算して判定す るようにしたことを特徴とするものである。

測定点が前記領域内にあるかどうかを判定するには、測定点が境界線を越えるかどうかをもりかを比較すればよい。例えば領域が多角形の場合には、各辺毎に比較される。 このカンバレーターによる比較結果にいいる。 このカンバレーターによる比較結果について検討される。 これらの演算処理を迅速で行なうためには、アナログ方式で処理するのがよい。

一般に主要被写体は、適面の中央部に比較的大きな面積をもつて写されるということが経験的に知られている。したがつて所定の色相であるとして判定された測定点の個数が一定値以上ある場合には、その色相を有する被写体が主要被写体であるとして判定するのがよい。このため、判定された測定点の個数は

カウンターで針数される。

以下、図面を参照して本発明の実施例について詳細に説明する。

第1 図は本発明装置の散略を示すプロック 図である。スキャナー 1 によつてカラー写真 フィルムの画面が走査され、カラー写真フィ ルムを透過した透過光(反射光でもよい)が 色分解光学架子によつて育色、緑色、赤色の 3 色光に分解される。この3 色光は、背色、緑色、赤色用の受光聚子例えばフォトマル 2 に入つてそれぞれ測定される。

とのフォトマル2の測定信号は、増幅器 (プリアンプ)3で3色毎に増幅された後、 サンプルホールド回路4でサンプルホールド される。このサンプルホールド回路4はスキ ヤナー制御回路5からのサンプリングパルス でサンプルホールドされる。 またスキャナー 制御回路5は、スキヤナーの走査部を制御し ているから、スキャナーに同期してサンプル ホールドが行なわれる。これによりカラー写 **真フィルムの画面に規則正しく並んだ多数の** 側定点が待られる。例えばカラー写真フィル ムが35㎜サイズの場合は、その外間縁を除 いた22×34mの範囲を対象として、後1 m(カラープリント上では約3mとなる)の 尖点で1 ㎜間隔に走査される。したがつて画 面は、22×34=748点の測定位置で測 定される。

特別 昭53-145621(4)

サンブルホールド回路 4 によつてサンプリングされた各測定点の背色、緑色、赤色の側定信号は、対数変換回路 6 に送られる。 この対数変換回路 6 で測定信号が対数変換され、背色機度 4 、緑色濃度 4 、赤色濃度 2 が算出される。具体的には透過率を 7 とすると

 $\log \frac{1}{T}$

が演算されるのである。

そとでフィルムの種類毎にキーを設けてお さ、とれを操作するととによつて、 濃度信号 に加算器一定定数を加えて感度補正し、 しか

2 次元座標において、人間の肌の色を四角形で定義した実施例を示すものである。 この場合に、四角形 9 の各辺を含む直線 1 0 ~ 1 3 は、次式で示される。

直線 1 0 : Y = tan α · X

直級11: Y = tan p · X

直線 1 2 : Y = - tan 7 · X + a

直線13: Y = - too 8・X + b

したがつて、側定点が前配四角形 9 内に含まれるための条件は、

 $Y \ge (-\tan r) \cdot X + \alpha \cdots (3)$

 $Y \leq (-tab \delta) \cdot X + b \cdots \cdots (4)$

となる。この各条件は、右辺と左辺の値をコンパレーターに入力して判定することができる。そしてこれらの各条件が全て満足しているかどうかは、コンパレーターの判定結果をオメリ回路に入力することによつて知ることができる。

る後増幅器の利得を調節して係数倍して r 補正する。 とれにより、同一の被写体に対しては、同一の機度となるように変換される。

規格化回路 7 で規格化された脊色濃度 8、緑色濃度 6、赤色濃度 14 に、色相判定回路 8 に送られ、各測定点の色相が所定の色相であるかどうかについて演算され判定される。

所定の被写体を表わす色相は、予めその被写体が写つている多数のカラー写真フィルムを取り出し、それを機度計で制定して定められる。

第2図は、育色濃度 B - 緑色濃度 G を F 軸とし、緑色濃度 G - 赤色濃度 R を X 軸とした

カラー写真フィルムに所定の色柏があるとして判定されても、その個数が少ないと、 この色柏の被写体の大きさが小さく、 主要 でない場合が多い。 このときには、 その 被写体に着目してこれを好ましい色柏に再現してもその効果が小さい。 したがつて、 それの 伯数が一定数以上ある場合には、 それが 盆ましい。

このため、色相判定回路 8 から、所定の色相であるとして判定され、「1」の出力信号が出ると、これがカウンター 1 6 に送られて

特別 昭53-145621(5)

カウントされる。このカウンタ・一16として は、一定数をセットすると、この一定数を越 えたとき、出力が出るプリセットカウンター 等が用いられる。 このカウンター16からの 出力信号がインターフェース14を経て UPU(中央漁算処理装置)17に送られる。 「カラー写真ブイルムの全面が走涯された後、 カ ウ ン g ー 1 6 か ら 所 定 の 色 相 が 一 定 数 存 在 していることが指示されると、メモリー15 からデーターの読み出しが行なわれる。この とき各測定点のデーターは、それぞれの番地 C 記憶されているから、フラッグが「I」す なわち所足の色相があると判定された測定点 のデーターのみがじとび17に送られる。こ とで所定の色相の背色、緑色、赤色濃度の平 均値が算出される。

との平均値がカラープリンターの豁光制御 跳に送られ、カラーペーパー上で目標優度と なるように露光量が削御される。したがつて 所定の被写体が好ましい本来の色相に再現さ れる。例えば肌色の場合には、人物の飲等が 肉眼で観察したときと同じ色相に再現される。 なお、所足の色相を有する測定点の個数が一 定数以下のときには、従来のカラープリンタ ーで行なわれている L A T D 方式等によつて プリントすればよい。

本発明装置がカラープリンターとオフラインになつている場合は、前記データーを穿孔カード、磁気テーブに配録し、これを用いてカラープリンターを制御する。

前記色相判定回路 8 は、所定の被写体の色相毎に散けてもよい。 この場合に、 2 つ以上の色相が含まれていると判定された場合は、 個数の多いもの、あるいは後先順次を決めておき、 これに基づいて 1 つの色相を選択し、 これが好ましい色相再現されるようにプリントするのがよい。

第3回はスキャナーの実施例を示すもので ある。光顔20から出た照明光は、細長のス リット21を通つて照明幅が規制される。と

のスリット 2 1 を通つた照明光は、レンズ 2 2 を透過して反射ミラー 2 3 に入射する。 この反射ミラー 2 3 で下方に折り曲げられた 照明光は、レンズ 2 4 を透過してカラー写真 フィルム 2 5 の画面 2 6 に選し、約 1 mm 幅で 帯状に画面の幅方向を照明する。

カラー写真フィルム 2 5 を 透過 した 帯状の 透過光は、 下方に配した スキャナー ミラー 2 7 で反射され、 レンズ 2 8 を経てスリット 2 9 に選する。 前記 スキャナー ミラー 2 7 としては、 ガリバノメーターに ミラーを 取り付けたもの 等が 用いられ、 第 1 図の スキャナー 制御 回路 5 から送られて くるの こぎり 波状の ミラー制御 信号で首 振りが行なわれる。

前記カラー写真フィルム 2 5 の画面 2 6 の 5 ち照明されている帯状の部分の画像 3 0 は スリット 2 9 上にとれに直交するように像 3 1 が結ばれる。スキャナーミラー 2 7 がミ ラー 制御信号によつて一定速度で揺動すれば、 この像 3 1 がスリット 2 9 と直交する方向に 移動する。したがつて_像 3 1 の一部がスリット 2 9 を透過し、これが一端から他端に向かつて移動してゆくことになる。

スリット29を透過した光は、レンズ32を通つた後ダイクロイックミラー33、34によつて赤色光、背色光、緑色光の3色に色分解され、各フォトマル2。、26、2cに入射してその光量が測定される。

前記画面26はスキャナーミラー27によって、ど方向について走査され、ど方向について走査され、ど方向については画面26を一定ピッチ送ることによって行なわれる。すなわち、スキャナーミラー27が走登完了して原点位位に復帰する際に、スキャナー制御回路5からパルスモーター88が一定角度だけ回転される。

このパルスモーター 3 5 K、フイルム送り ローラー 3 6 が連結されているため、このフ イルムローラー 3 6 とローラー 3 7 との間で カラー写真フイルム 2 5 が挟まれ、一定距離 だけ送られる。

第4回は、増幅器、サンプルホールド回路 対数変換回路の契施例を示すものである。前記増幅器3は背色用増幅器3a、緑色用増幅器3a、緑色用増幅器3b、赤色用増幅器3cを偏えている。各増性器例えば3aは、演算増幅器40から構成されている。

选過率(7)%	选過激收(7)	入力的	出力的
1 0 0	0	10	4
1 0	. 1	1	2
1	2	0. 1	0
0. 1	3	0. 01	– 2

アナログ旗舞器は、約±10 Vの出力範囲と何しているから、この範囲を有効に利用するため、次段のレベル調節用演算増稿器 4 6 でレベル調整される。すなわち、対数変換された機度信号は、ボテンショメーター 4 8 によつて一定の電位が加算され、これがフィードバック抵抗 4 9 の抵抗値によつて決められる利得で増幅される。

第5回は規格化回路を示すものである。 との規格化回路 7 は、感材特性に応じて r 補正

一44に記憶される。

演算増幅器 4 3 は、反転側入力端子と出力端子とが短絡されているから、コンデンサー 4 4 の電圧に応じた電流が出力される。 このサンブルホールド回路 4 a、 4 b、 4 c によつて、各側定点での青色、緑色、赤色の側定信号が順次サンブリングされる。

及び感度補正し、同一条件で撮影した場合には、フィルムの種類に関係なく一定になるように補正するためのものである。規格化化的路では、育色用規格化的路では、存色用規格化的路では、存色用規格化的路では、では、有機成立れた2つの液質増幅器500万年版を持されている。 漢字増幅器500万年版表 3、54が接続されており、対数変換の形式を対している。

ポテンショメーター 5 2、 5 3、 5 4 には 選択スインチ 6 3、 5 5、 5 6 が接続され、 カラー写真フイルムの種類に応じて選択され る。この実施例では3 種類のカラー写真フイ ルムを規格化するようになつているが、さら に多くの選択スインチを設けるのが望ましい。

演算増幅器 5 0 で感度補正された濃度信号は、演算増幅器 5 1 で増幅される。 この増幅

器 5 1 のフィードバック回路に利得調整用の可変抵抗 5 7、 5 8、 5 9 が並列に接続されている。とれらの可変抵抗 5 7、 5 8、 5 9 と 値列に進択スイッチ 6 0、 6 1、 6 3 が接続され、少なくとも3 段階に利待が調節される。この選択スイッチ 6 0、 6 1、 6 3 は 演算増縮器 5 0 に 設けた選択スイッチ 6 2、 5 5、 5 6 にそれぞれ連動して リル・リドドされる。

前記したように削定点が四角形内に存在するための条件は、(B-G)をYとし、(G-E)をXとすると、

路 8 2 から「1」の信号が出力され、その測 定点の色相が、所定の色相であるとして判定 される。

上記したように本発明装置は、所定の被写体が存任しているかどうかを、色相で判定するものであるから、簡単な装置で被写体を認識することができる。こうして判定した測定点の背色、緑色、赤色濃度を用いて、カラーブリンターを制御すれば、所定の被写を好ましい本来の色相に再現することができる。4 図面の簡単な説明

第1回は本発明装成のブロック図、第2図は肌色の領域を示すグラフ、第3図はスキャナーの斜視図、第4図は増輸器サンプルホールト回路、対数変換回路の実施例を示す回路図、第5図は規格化回路の実施例を示す回路図、第6図は色相判定回路の実施例を示す回路図である。

25……カラー写真フィルム

2 6 … … 画 而

8 1 で「a」、「b」の値が(ダー ½)に加算される。

数項があるため、ポテンショメーター80、

これらの各コンパレーター 7 6 ~ 7 9 において、式(1) ~ (4) のそれぞれを満足する場合には、各コンパレーター 7 7 ~ 7 9 から「1」の信号が出力され、そうでないときには「0」の信号が出力される。

これらの各コンパレーター 7 6 ~ 7 9 の出 力作号は、 A N D 回路 8 2 に送られる。 した がつて式(1) ~ (4) を全て満足すると、 A N D 回

- 2 7 スキャナーミラー
- 3 3 、 3 4 … … ダイクロイツクミラー
- 2 a … … 育色用フォトマル
- 2 6 … … 緑色用フォトマル
- 2 α … … 赤色用フォトマル
- 3 a … … 骨色用增幅器
- 3 6 … … 緑色用增幅器
- 3。……赤色用增幅器
- . 4 a…… 脊色用サンプルホールド回路
- 4 6 … … 緑色用サンプルホールド回路
- 4 c ··· · · · 赤色用サンブルホールド回路
- 6 a … … 宵色用对数変换回路
- 6 6 … … 禄色用对数変换回路
- 6 。 … … 赤色用对数变换回路
- 7 a … … 背色用規格化回路
- 7 6 … … 綠色用規格化回路
- 7。……赤色用規格化回路
- 70、71……演算增幅器
- 72~75 係数器

76~79……コンパレーター

8 2 ··· ··· A N D 回路

特別昭53-145621(10)

自 発手 統 補 正 魯

昭和52年7月27日

特許庁長官殿

1. 事件の表示 昭和 52 年 特 許 顕 60831 号

- 2. 発明の名称 色相抽出装置
- 3. 補正をする者 事件との関係 特許出額人

生 所 神奈川県南足柄市中沼210番地名 称 (520)富士写真フィルム株式会社 代表者 平田九州男

4. 代 理 人

〒106 東京都港区六本木5-2-1 ほうらいやビル702号 電話 (479) 2367 (7318) 弁理士 柳 田 征 史 (ほか1名)

5. 補正命令の日付

な し

- 6. 相近により増加する発明の数 ・ 左 し
- 7. 柳正の対象 明細書の「特許請求の範囲」、「発明の
- 8. 補 正 の 内 容 詳細な説明」の欄および図面

別紙添付の通り

- (1) 図面(第4 および5 図)を添付のように樹正します。
- 2) 「特許請求の紙出」を別紙添付のように裸正します。
- 3) 明細審第11頁第19行 「た加算器」の後に「で」を挿入する。
- 4) 同第18 寅第15行 「パルスモーター38」を「パルスモーター 35」と訂正する。
- 5) 同第19頁第10行 「緑色用サンプルホールド回路46、」を 「緑色用サンプルホールド回路4b、」と訂正 する。
- 6) 同第21頁第8行 「と有しているから、」を「を有しているか ら、」と訂正する。
- 7) 尚第22頁第2行 「関係なく一定」の後に「旗度」を挿入する。
- 8) 同第22頁第14行 「スイッチ63、」を「スイッチ62、」と 訂正する。

特許請求の範囲

- (1) カラー写真フィルムの各点の色相を背色、緑色、赤色に分解してその濃度を削定する 測定手段、この測定手段によって得られた 時色、緑色、赤色濃度をカラー写真フィルムに応じて了補正及び感度補正して規格化 する規格化手段、および育色、緑色、赤色 濃度の観合せを輸とした2次で定義し、たりの中に各測定点の色相が含まれるかどうかを判定する色相加出技能。
- (2) 青色濃度、緑色濃度、赤色濃度を2つず つ組み合わせた2次元座標において所定の 色相を多角形で定義したことを特徴とする 特許請求の551四第1項記載の色相抽出装置。
- (3) 削記2次元應標が最色濃度G 赤色濃度
 R、腎色濃度B 緑色濃度GをそれぞれX
 軸、Y 軸とした直交座標であることを特徴
 とする特許請求の範囲第1項または第2項

記載の色相抽出装除。

- (4) 前記色相判定手段がB-G、G-Rをそれぞれ演算する少なくとも2つの演算器と、このB-G、G-Rによつて決まる無線上の点が多角形の各辺の内側にあるかどうかを比較する複数個の比較器と、この比較器からの信号を入力するAND値断とからなることを特徴とする色相抽出装備。
- (5) 前記所定の色相が肌色であることを特徴とする特許請求の戦闘第1項ないし第4項記載の色利抽出装飾。
- (6) 前記所定の色柏が空色であることを特徴とする特許請求の顧囲第1項ないし第4項 記載の色柏抽出装旗。
- (7) 前記測定手段がカラー写真フィルムを光学的に走査するスキャナーと、このスキャナーによるカラー写真フィルムの造過光または反射光を背色、緑色、赤色の3色に色分解する色分解光学素子と、この色分解光学素子と、この色分解光学素子からの光を測定する背色、緑色、赤

特問昭53-145621(11)

色用の3個の受光繋子とからなることを特徴とする特許額状の範囲第1項ないし第6項記載の色相抽出装置。

- (g) カラー写真フィルムの各点の色相を背色、緑色、赤色に分解してその機能を測定する 脚定手段、この測定手段によつて偽られた 背色、緑色、赤色濃度をカラー写真フィル

1字挿入

· . : . . .