```
In [30]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib.cm import rainbow
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
In [31]:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
In [32]:
df=pd.read_csv('dataset.csv')
In [33]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
 # Column Non-Null Count Dtype
              _____ ___
 0 age
            303 non-null int64
            303 non-null int64
 1 sex
 2
    ср
              303 non-null
                              int64
 3 trestbps 303 non-null
                             int64
 4 chol 303 non-null int64
 5 fbs
             303 non-null
                            int64
 6 restecg 303 non-null int64
 7 thalach 303 non-null 8 exang 303 non-null
                             int64
int64
 9 oldpeak 303 non-null
                             float64
 10 slope
             303 non-null int64
             303 non-null int64
 11 ca
 12 thal 303 non-null 13 target 303 non-null
                             int64
                              int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
In [34]:
df.describe()
Out[34]:
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak			
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00		
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.39		
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.6		
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000 133.500000		0.000000	0.00		
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000			0.000000	1.00		
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.00		
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.00		
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.00		
4	4 b												

Feature Selection

```
In [35]:
```

```
import seaborn as sns
corrmat=df.corr()
top_corr_features=corrmat.index
plt.figure(figsize=(20,20))
g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn")
```



```
In [36]:
```

```
df.hist()
```

Out[36]:

In [37]:

```
sns.set_style('whitegrid')
sns.countplot(x='target',data=df,palette='RdBu_r')
```

Out[37]:

<matplotlib.axes. subplots.AxesSubplot at 0x18cf9549ac8>

In [38]:

```
dataset=pd.get_dummies(df,columns=['sex','cp','fbs','restecg','exang','slope','ca','thal'])
```

In [39]:

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
standardScaler=StandardScaler()
columns_to_scale=['age','trestbps','chol','thalach','oldpeak']
dataset[columns_to_scale]=standardScaler.fit_transform(dataset[columns_to_scale])
```

In [40]:

```
dataset.head()
```

Out[40]:

	age	trestbps	chol	thalach	oldpeak	target	sex_0	sex_1	cp_0	cp_1	 slope_2	ca_0	ca_1	ca_2	ca_3	ca_4	th
0	0.952197	0.763956	0.256334	0.015443	1.087338	1	0	1	0	0	 0	1	0	0	0	0	
1	1.915313	0.092738	0.072199	1.633471	2.122573	1	0	1	0	0	 0	1	0	0	0	0	
2	1.474158	0.092738	0.816773	0.977514	0.310912	1	1	0	0	1	 1	1	0	0	0	0	
3	0.180175	0.663867	0.198357	1.239897	0.206705	1	0	1	0	1	 1	1	0	0	0	0	
4	0.290464	0.663867	2.082050	0.583939	0.379244	1	1	0	1	0	 1	1	0	0	0	0	

5 rows × 31 columns

In [41]:

```
y=dataset['target']
X=dataset.drop(['target'],axis=1)
```

In [44]:

```
from sklearn.model_selection import cross_val_score
knn_scores=[]

for k in range(1,21):
    knn_classifier=KNeighborsClassifier(n_neighbors =k)
    score=cross_val_score(knn_classifier,X,y,cv=10)
    knn_scores.append(score.mean())
```

In [50]:

```
plt.plot([k for k in range(1,21)], knn_scores, color='red')

for i in range(1,21):
    plt.text(i, knn_scores[i-1], (i, knn_scores[i-1]))

plt.ticks([i for i in range(1,21)])
plt.Xlabel('Number of neighbors(k)')
plt.ylabel("Scores")
plt.title('K neighbors Classifier scores for different k values')
```

```
AttributeError Traceback (most recent call last)
```

AttributeError: module 'matplotlib.pyplot' has no attribute 'ticks'


```
In [48]:
    knn_classifier = KNeighborsClassifier (n_neighbors = 12)
    score=cross_val_score(knn_classifier, X,y,cv=10)
    score.mean()

Out[48]:
    0.8448387096774195

In [52]:
    from sklearn.ensemble import RandomForestClassifier

In [54]:
    randomforest_classifier=RandomForestClassifier (n_estimators=10)
    score=cross_val_score(randomforest_classifier,X,y,cv=10)
    score.mean()

Out[54]:
    0.821505376344086

In []:
```