EJERCICIO 7 : Multiplicación matricial

Autor: Jesús Ruiz Castellano, 76439001-L

1.- Código fuente : multiplicacion.cpp

EJERCICIO 7 : Multiplicación matricial

2.- Hardware usado:

2.1- CPU

vendor_id : GenuineIntel

model name : Intel(R) Core(TM) i3 CPU M 330 @ 2.13GHz

cpu MHz : 933.000

2.2- Velocidad de Reloj

Versión : hwclock de util-linux 2.20.1

jue 13 oct 2016 10:45:11 CEST -0.563198 segundos

2.3- Memoria RAM

MemTotal : 3907668 kB **SwapTotal** : 4049916 kB

3.- Sistema Operativo

Ubuntu 14.04.3 LTS

Arquitectura: x86_64 (64 bits)

4.- Compilador usado y opciones de compilación

```
gcc - GNU project C and C++ compiler

Opción de compilación : g++ -o <nombre_ejecutable> <ejecutable.cpp>
g++ -o multiplicacion multiplicacion.cpp
```

EJERCICIO 7 : Multiplicación matricial

5.- Desarrollo completo del cálculo de la Eficiencia teórica

EFICIENCIA TEÓRICA

EJERCICIO 7: Multiplicación matricial

6.- Parámetros usados para el cálculo de la eficiencia empírica y gráfica

Para ésta parte he ejecutado el programa con los siguientes valores para tamaño máximo de las matrices A y B: 100, 300, 600, 1000, 1500, 3000, 6000 y 10000.

6.1- Gráfica de tiempos para la ejecución del programa con num. de elementos = 100

6.2- Gráfica de tiempos para la ejecución del programa con num. de elementos = 300

EJERCICIO 7: Multiplicación matricial

6.3- Gráfica de tiempos para la ejecución del programa con num. de elementos = 600

6.4- Gráfica de tiempos para la ejecución del programa con num. de elementos = 1000

^{*}Con numero de elementos = 1000, en adelante, mi ordenador tarda demasiado en ejecutarlo. Por eso he probado hasta ahí.

^{*}Como se ve en el caso en el que hay 1000 elementos, la gráfica se ajusta más a la forma que tiene que tener, dada por su valor de eficiencia teórica ($O(n^3)$)