Deconstructing Alice & Bob

Carlos Caleiro

CLC, Dep. Mathematics, IST, TU Lisbon, Portugal

Luca Viganò and David Basin

Dep. Computer Science, ETH Zurich, Switzerland

ARSPA'05 – Lisbon, Portugal – July 16, 2005

The context

- Formal analysis of security protocols
- Strand spaces, multiset rewriting, theorem proving ...

The context

- Formal analysis of security protocols
- Strand spaces, multiset rewriting, theorem proving ...
- Distributed temporal logic

Caleiro, Viganò and Basin. Relating strand spaces and distributed temporal logic for security protocol analysis. Logic Journal of the IGPL, in print.

Caleiro, Viganò and Basin. *Metareasoning about security protocols using distributed temporal logic*. ENTCS 125(1):67–89, 2005.

Caleiro, Viganò and Basin. *Towards a metalogic for security protocol analysis*. In Proceedings of the CombLog'04 Workshop, 2004.

The problem

$$\begin{array}{llll} ({\bf nspk}_1) & a \to b & : & (n_1).\,\{n_1;a\}_{K_b} \\ ({\bf nspk}_2) & b \to a & : & (n_2).\,\{n_1;n_2\}_{K_a} \\ ({\bf nspk}_3) & a \to b & : & \{n_2\}_{K_b} \end{array}$$

The problem

$$\begin{array}{lll} (\mathbf{nspk}_1) & a \rightarrow b & \vdots & (n_1).\,\{n_1;a\}_{K_b} \\ (\mathbf{nspk}_2) & b \rightarrow a & \vdots & (n_2).\,\{n_1;n_2\}_{K_a} \\ (\mathbf{nspk}_3) & a \rightarrow b & \vdots & \{n_2\}_{K_b} \end{array}$$

- How to formalize a protocol specified in Alice&Bob-notation?
- What is the meaning of such protocol descriptions?
- How much is made explicit or left implicit?
- What is the expressive power of Alice&Bob-style protocol specifications?

A little philosophy and literary theory

deconstruction

"(noun) a method of critical analysis of language and text which emphasizes the relational quality of meaning and the assumptions implicit in forms of expression"

taken from the Compact Oxford English Dictionary

The plan

- Preliminaries
- The standard semantics
- Good examples and bad examples
- Message forwarding and conditional abortion
- Opaque and transparent messages
- Incremental symbolic runs
- Characterization theorems
- Conclusion and further work

- Messages are built from atomic messages (identifiers, numbers, and variables) by pairing, encryption and hashing
- Perfect cryptography
- Every message can be used as an encryption key and has an inverse for decryption
- Communication is asynchronous and takes place over a hostile network

- Messages are built from atomic messages (identifiers, numbers, and variables) by pairing, encryption and hashing
- Perfect cryptography
- Every message can be used as an encryption key and has an inverse for decryption
- Communication is asynchronous and takes place over a hostile network
- Honest actions
 - $\mathbf{s}(M,A)$ sending the message M to the principal A
 - $\mathbf{r}(M)$ receiving the message M
 - f(N) generating the fresh number N

In general, a protocol description in Alice&Bob-notation involves a collection of principal variables corresponding to protocol participants (a_i) and of number variables (n_j) , and consists of a sequence $\langle {\bf step}_1 \dots {\bf step}_m \rangle$ of message exchange steps, each of the form

$$(\operatorname{step}_q)$$
 $a_s \to a_r : (n_{q_1}, \dots, n_{q_t}).$ M

In general, a protocol description in Alice&Bob-notation involves a collection of principal variables corresponding to protocol participants (a_i) and of number variables (n_j) , and consists of a sequence $\langle {\bf step}_1 \dots {\bf step}_m \rangle$ of message exchange steps, each of the form

$$(\mathsf{step}_q) \quad a_s \to a_r \ : \ (n_{q_1}, \dots, n_{q_t}). \ M$$

These steps are meant to prescribe a sequence of actions to be executed by each of the participants in a run of the protocol. But how?

The standard semantics

$$(\operatorname{step}_q) \quad a_s \to a_r \ : \ (n_{q_1}, \dots, n_{q_t}). \ M$$

The sequence of actions corresponding to the execution of a's role in the protocol is a-run = $\operatorname{step}_1^a \cdot \cdots \cdot \operatorname{step}_m^a$, where step_q^a is defined by

$$\mathbf{step}_q^a = \begin{cases} \langle \mathbf{f}(n_{q_1}) \dots \mathbf{f}(n_{q_t}) \, . \, \mathbf{s}(M, a_r) \rangle & \text{if } a = a_s \\ \langle \mathbf{r}(M) \rangle & \text{if } a = a_r \\ \langle \rangle & \text{otherwise} \end{cases}$$

A good example

$$\begin{array}{llll} ({\bf nspk}_1) & a \to b & : & (n_1).\,\{n_1;a\}_{K_b} \\ ({\bf nspk}_2) & b \to a & : & (n_2).\,\{n_1;n_2\}_{K_a} \\ ({\bf nspk}_3) & a \to b & : & \{n_2\}_{K_b} \end{array}$$

A good example

$$\begin{array}{lll} (\mathbf{nspk}_1) & a \rightarrow b & \vdots & (n_1).\,\{n_1;a\}_{K_b} \\ (\mathbf{nspk}_2) & b \rightarrow a & \vdots & (n_2).\,\{n_1;n_2\}_{K_a} \\ (\mathbf{nspk}_3) & a \rightarrow b & \vdots & \{n_2\}_{K_b} \end{array}$$

$$a$$
-run : $\langle \mathbf{f}(n_1).\mathbf{s}(\{n_1;a\}_{K_b},b).\mathbf{r}(\{n_1;n_2\}_{K_a}).\mathbf{s}(\{n_2\}_{K_b},b) \rangle$

A good example

$$\begin{array}{llll} ({\bf nspk}_1) & a \to b & : & (n_1).\,\{n_1;a\}_{K_b} \\ ({\bf nspk}_2) & b \to a & : & (n_2).\,\{n_1;n_2\}_{K_a} \\ ({\bf nspk}_3) & a \to b & : & \{n_2\}_{K_b} \end{array}$$

$$a$$
-run : $\langle \mathbf{f}(n_1).\mathbf{s}(\{n_1;a\}_{K_b},b).\mathbf{r}(\{n_1;n_2\}_{K_a}).\mathbf{s}(\{n_2\}_{K_b},b) \rangle$

b-run :
$$\langle \mathbf{r}(\{n_1; a\}_{K_b}) \cdot \mathbf{f}(n_2) \cdot \mathbf{s}(\{n_1; n_2\}_{K_a}, a) \cdot \mathbf{r}(\{n_2\}_{K_b}) \rangle$$

Another example

```
\begin{array}{llll} (\mathbf{or}_1) & a \to b & \vdots & (n_1).\,i;\,a;\,b;\,\{n_1;i;\,a;\,b\}_{K_{as}} \\ (\mathbf{or}_2) & b \to s & \vdots & (n_2).\,i;\,a;\,b;\,\{n_1;i;\,a;\,b\}_{K_{as}};\,\{n_2;i;\,a;\,b\}_{K_{bs}} \\ (\mathbf{or}_3) & s \to b & \vdots & (k).\,i;\,\{n_1;k\}_{K_{as}};\,\{n_2;k\}_{K_{bs}} \\ (\mathbf{or}_4) & b \to a & \vdots & i;\,\{n_1;k\}_{K_{as}} \end{array}
```

Another example

$$\begin{array}{llll} (\mathbf{or}_1) & a \to b & \vdots & (n_1).\,i;\,a;\,b;\,\{n_1;i;\,a;\,b\}_{K_{as}} \\ (\mathbf{or}_2) & b \to s & \vdots & (n_2).\,i;\,a;\,b;\,\{n_1;i;\,a;\,b\}_{K_{as}};\,\{n_2;i;\,a;\,b\}_{K_{bs}} \\ (\mathbf{or}_3) & s \to b & \vdots & (k).\,i;\,\{n_1;k\}_{K_{as}};\,\{n_2;k\}_{K_{bs}} \\ (\mathbf{or}_4) & b \to a & \vdots & i;\,\{n_1;k\}_{K_{as}} \end{array}$$

```
\begin{array}{l} b\text{-run}:\\ \left<\mathbf{r}(i;a;b;\{n_1;i;a;b\}_{K_{as}})\,.\\ \mathbf{f}(n_2)\,.\\ \mathbf{s}(i;a;b;\{n_1;i;a;b\}_{K_{as}};\{n_2;i;a;b\}_{K_{bs}},s)\,.\\ \mathbf{r}(i;\{n_1;k\}_{K_{as}};\{n_2;k\}_{K_{bs}})\,.\\ \mathbf{s}(i;\{n_1;k\}_{K_{as}},a)\right> \end{array}
```

A bad example

```
\begin{array}{llll} (\mathbf{or}_1) & a \to b & \vdots & (n_1).\,i;\,a;\,b;\,\{n_1;\,i;\,a;\,b\}_{K_{as}} \\ (\mathbf{or}_2) & b \to s & \vdots & (n_2).\,i;\,a;\,b;\,\{n_1;\,i;\,a;\,b\}_{K_{as}};\,\{n_2;\,i;\,a;\,b\}_{K_{bs}} \\ (\mathbf{or}_3) & s \to b & \vdots & (k\ ).\,i;\,\{n_1;\,k\}_{K_{as}};\,\{n_2;\,k\}_{K_{bs}} \\ (\mathbf{or}_4) & b \to a & \vdots & i;\,\{n_1;\,k\}_{K_{as}} \end{array}
```

```
\begin{aligned} b\text{-run}: \\ & \langle \mathbf{r}(i;a;b;\{n_1;i;a;b\}_{K_{as}}) \,. \\ & \mathbf{f}(n_2) \,. \\ & \mathbf{s}(i;a;b;\{n_1;i;a;b\}_{K_{as}};\{n_2;i;a;b\}_{K_{bs}},s) \,. \\ & \mathbf{r}(i;\{n_1;k\}_{K_{as}};\{n_2;k\}_{K_{bs}}) \,. \\ & \mathbf{s}(i;\{n_1;k\}_{K_{as}},a) \rangle \end{aligned}
```

Message variables

$$\begin{array}{llll} (\mathbf{or}_1) & a \to b & \vdots & (n_1).\,i; a; b; \{n_1; i; a; b\}_{K_{as}} \\ (\mathbf{or}_2) & b \to s & \vdots & (n_2).\,i; a; b; \{n_1; i; a; b\}_{K_{as}}; \{n_2; i; a; b\}_{K_{bs}} \\ (\mathbf{or}_3) & s \to b & \vdots & (k).\,i; \{n_1; k\}_{K_{as}}; \{n_2; k\}_{K_{bs}} \\ (\mathbf{or}_4) & b \to a & \vdots & i; \{n_1; k\}_{K_{as}} \end{array}$$

```
\begin{array}{lll} b\text{-run}: & & \text{symbolic $b$-possrun}: \\ \langle \mathbf{r}(i;a;b;\{n_1;i;a;b\}_{K_{as}}) \,. & & \langle \mathbf{r}(i;a;b;m_1) \,. \\ \mathbf{f}(n_2) \,. & & \mathbf{f}(n_2) \,. \\ \mathbf{s}(i;a;b;\{n_1;i;a;b\}_{K_{as}};\{n_2;i;a;b\}_{K_{bs}},s) \,. & & \mathbf{s}(i;a;b;m_1;\{n_2;i;a;b\}_{K_{bs}},s) \,. \\ \mathbf{r}(i;\{n_1;k\}_{K_{as}};\{n_2;k\}_{K_{bs}}) \,. & & \mathbf{r}(i;m_2;\{n_2;k\}_{K_{bs}}) \,. \\ \mathbf{s}(i;\{n_1;k\}_{K_{as}},a) \rangle & & \mathbf{s}(i;m_2,a) \rangle \end{array}
```

Message variables

The Otway-Rees Authentication/Key-Exchange Protocol

```
\begin{array}{llll} (\mathbf{or}_1) & a \to b & \vdots & (n_1).\,i; a; b; \{n_1; i; a; b\}_{K_{as}} \\ (\mathbf{or}_2) & b \to s & \vdots & (n_2).\,i; a; b; \{n_1; i; a; b\}_{K_{as}}; \{n_2; i; a; b\}_{K_{bs}} \\ (\mathbf{or}_3) & s \to b & \vdots & (k).\,i; \{n_1; k\}_{K_{as}}; \{n_2; k\}_{K_{bs}} \\ (\mathbf{or}_4) & b \to a & \vdots & i; \{n_1; k\}_{K_{as}} \end{array}
```

Message Forwarding

```
\begin{array}{l} \text{symbolic $b$-possrun:} \\ \left<\mathbf{r}(i;a;b;m_1) \right. \\ \mathbf{f}(n_2) \\ \mathbf{s}(i;a;b;m_1;\{n_2;i;a;b\}_{K_{bs}},s) \\ \mathbf{r}(i;m_2;\{n_2;k\}_{K_{bs}}) \\ \mathbf{s}(i;m_2,a) \right> \end{array}
```

Another bad example

The Asokan-Shoup-Waidner Optimistic Fair-Exchange Subprotocol

```
\begin{array}{llll} (\mathsf{asw}_1) & a \to b & \vdots & (n_1).\,\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}} \\ (\mathsf{asw}_2) & b \to a & \vdots & (n_2).\,\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}};H(n_2)\}_{K_b^{-1}} \\ (\mathsf{asw}_3) & a \to b & \vdots & n_1 \\ (\mathsf{asw}_4) & b \to a & \vdots & n_2 \end{array}
```

Another bad example

The Asokan-Shoup-Waidner Optimistic Fair-Exchange Subprotocol

```
\begin{array}{llll} ({\sf asw}_1) & a \to b & \vdots & (n_1).\,\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}} \\ ({\sf asw}_2) & b \to a & \vdots & (n_2).\,\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}};H(n_2)\}_{K_b^{-1}} \\ ({\sf asw}_3) & a \to b & \vdots & n_1 \\ ({\sf asw}_4) & b \to a & \vdots & n_2 \end{array}
```

b-run:

$$\langle \mathbf{r}(\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}})\,.\quad \mathbf{f}(n_2)\,.\mathbf{s}(\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}};\quad H(n_2)\}_{K_b^{-1}},a)\,.\mathbf{r}(n_1)\,.\quad \mathbf{s}(n_2,a)\rangle$$

Another bad example

The Asokan-Shoup-Waidner Optimistic Fair-Exchange Subprotocol

(asw₁) $a \to b$: $(n_1).\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}$

b-run:

```
\begin{array}{llll} ({\sf asw}_2) & b \to a & : & (n_2). \, \{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; H(n_2)\}_{K_b^{-1}} \\ ({\sf asw}_3) & a \to b & : & n_1 \\ ({\sf asw}_4) & b \to a & : & n_2 \end{array}
```

 $\langle \mathbf{r}(\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}})$. $\mathbf{f}(n_2)$. $\mathbf{s}(\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}}; H(n_2)\}_{K_a^{-1}},a)$. $\mathbf{r}(n_1)$. $\mathbf{s}(n_2,a)\rangle$

Message Variables Needed

Even so ...

The Asokan-Shoup-Waidner Optimistic Fair-Exchange Subprotocol

```
\begin{array}{llll} (\mathsf{asw}_1) & a \to b & \vdots & (n_1).\,\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}} \\ (\mathsf{asw}_2) & b \to a & \vdots & (n_2).\,\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}};H(n_2)\}_{K_b^{-1}} \\ (\mathsf{asw}_3) & a \to b & \vdots & n_1 \\ (\mathsf{asw}_4) & b \to a & \vdots & n_2 \end{array}
```

b-possrun:

$$\langle \mathbf{r}(\{K_a;K_b;t;m_1\}_{K_a^{-1}})\,. \qquad \mathbf{f}(n_2)\,.\mathbf{s}(\{\{K_a;K_b;t;m_1\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}},a)\,.\mathbf{r}(n_1)\,. \quad \mathbf{s}(n_2,a)\rangle$$

Even so ...

The Asokan-Shoup-Waidner Optimistic Fair-Exchange Subprotocol

```
\begin{array}{llll} (\mathsf{asw}_1) & a \to b & \vdots & (n_1).\,\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}} \\ (\mathsf{asw}_2) & b \to a & \vdots & (n_2).\,\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}};H(n_2)\}_{K_b^{-1}} \\ (\mathsf{asw}_3) & a \to b & \vdots & n_1 \\ (\mathsf{asw}_4) & b \to a & \vdots & n_2 \end{array}
```

b-possrun:

$$\langle \mathbf{r}(\{K_a;K_b;t;m_1\}_{K_a^{-1}})\,. \qquad \mathbf{f}(n_2)\,.\mathbf{s}(\{\{K_a;K_b;t;m_1\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}},a)\,.\mathbf{r}(n_1)\,. \quad \mathbf{s}(n_2,a)\rangle$$

Eager Check Needed

With eager checking

The Asokan-Shoup-Waidner Optimistic Fair-Exchange Subprotocol

```
\begin{array}{llll} ({\sf asw}_1) & a \to b & \vdots & (n_1).\,\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}} \\ ({\sf asw}_2) & b \to a & \vdots & (n_2).\,\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}};H(n_2)\}_{K_b^{-1}} \\ ({\sf asw}_3) & a \to b & \vdots & n_1 \\ ({\sf asw}_4) & b \to a & \vdots & n_2 \end{array}
```

b-possrun:

$$\begin{split} & \langle \mathbf{r}(\{K_a; K_b; t; m_1\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; m_1\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. \quad \mathbf{s}(n_2, a) \rangle \\ & b\text{-possruns} : \\ & \langle \mathbf{r}(\{K_a; K_b; t; m_1\}_{K_a^{-1}}) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; m_1\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; m_1\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; m_1\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. & \qquad \mathbf{s}(n_2, a) \rangle \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. & \qquad \mathbf{s}(n_2, a) \rangle \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. & \qquad \mathbf{s}(n_2, a) \rangle \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. & \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad \mathbf{f}(n_2) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad \mathbf{f}(n_2) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad \mathbf{f}(n_2) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad \mathbf{f}(n_2) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad \mathbf{f}(n_2) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad \mathbf{f}(n_2) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad \mathbf{f}(n_2) \,. \\ & | \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}, a) \,. & \qquad$$

With eager checking

The Asokan-Shoup-Waidner Optimistic Fair-Exchange Subprotocol

```
\begin{array}{llll} (\mathsf{asw}_1) & a \to b & \vdots & (n_1).\,\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}} \\ (\mathsf{asw}_2) & b \to a & \vdots & (n_2).\,\{\{K_a;K_b;t;H(n_1)\}_{K_a^{-1}};H(n_2)\}_{K_b^{-1}} \\ (\mathsf{asw}_3) & a \to b & \vdots & n_1 \\ (\mathsf{asw}_4) & b \to a & \vdots & n_2 \end{array}
```

Conditional Abortion

b-possruns:

$$\begin{split} & \langle \mathbf{r}(\{K_a; K_b; t; m_1\}_{K_a^{-1}}) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; m_1\}_{K_a^{-1}}) \,. \qquad \mathbf{f}(n_2) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; m_1\}_{K_a^{-1}}) \,. \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; m_1\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \rangle \\ & \langle \mathbf{r}(\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}) \,. \qquad \mathbf{f}(n_2) \,. \mathbf{s}(\{\{K_a; K_b; t; H(n_1)\}_{K_a^{-1}}; \qquad H(n_2)\}_{K_b^{-1}}, a) \,. \mathbf{r}(n_1) \,. \qquad \mathbf{s}(n_2, a) \rangle \end{split}$$

Forwarding and conditional abortion

Forwarding and conditional abortion

Forwarding and conditional abortion

analysis

$$\frac{M_1; M_2}{M_1}$$
 $\frac{M_1; M_2}{M_2}$ $\frac{\{M\}_K K^{-1}}{M}$

synthesis

$$\frac{M_1 \quad M_2}{M_1; M_2} \qquad \frac{M \quad K}{\{M\}_K} \qquad \frac{M}{H(M)}$$

close(S)

$$a$$
-run = $\langle \mathbf{act}_1, \dots, \mathbf{act}_s \rangle$

initial data D_a^0

$$D_a^0 \xrightarrow{\text{act}_1} D_a^1 \xrightarrow{\text{act}_2} D_a^2 \xrightarrow{\text{act}_3} \cdots \xrightarrow{\text{act}_{s-1}} D_a^{s-1} \xrightarrow{\text{act}_s} D_a^s$$

$$D_a^{i+1} = \begin{cases} D_a^i & \text{if } \mathbf{act}_{i+1} = \mathbf{s}(M,y) \\ close(D_a^i \cup \{M\}) & \text{if } \mathbf{act}_{i+1} = \mathbf{r}(M) \\ close(D_a^i \cup \{n\}) & \text{if } \mathbf{act}_{i+1} = \mathbf{f}(n) \end{cases}$$

$$a$$
-run = $\langle \mathsf{act}_1, \dots, \mathsf{act}_s \rangle$

initial data D_a^0

$$D_a^0 \xrightarrow{\text{act}_1} D_a^1 \xrightarrow{\text{act}_2} D_a^2 \xrightarrow{\text{act}_3} \cdots \xrightarrow{\text{act}_{s-1}} D_a^{s-1} \xrightarrow{\text{act}_s} D_a^s$$

$$D_a^{i+1} = \begin{cases} D_a^i & \text{if } \mathbf{act}_{i+1} = \mathbf{s}(M,y) \\ close(D_a^i \cup \{M\}) & \text{if } \mathbf{act}_{i+1} = \mathbf{r}(M) \\ close(D_a^i \cup \{n\}) & \text{if } \mathbf{act}_{i+1} = \mathbf{f}(n) \end{cases}$$

Executability

for each participant a and $1 \leq i \leq t$, if $\mathbf{act}_i = \mathbf{s}(M,b)$ then $M \in D_a^{i-1}$

Given the closed dataset D

$$v_D(M) = \begin{cases} M & \text{if } M \text{ is atomic} \\ v_D(M_1); v_D(M_2) & \text{if } M = M_1; M_2 \\ \{v_D(M_1)\}_{v_D(K)} & \text{if } M = \{M_1\}_K \text{ and } K^{-1} \in D \text{ or } M_1, K \in D \\ H(v_D(M_1)) & \text{if } M = H(M_1) \text{ and } M_1 \in D \\ m_M & \text{otherwise} \end{cases}$$

Given the closed dataset *D*

$$v_D(M) = \begin{cases} M & \text{if } M \text{ is atomic} \\ v_D(M_1); v_D(M_2) & \text{if } M = M_1; M_2 \\ \{v_D(M_1)\}_{v_D(K)} & \text{if } M = \{M_1\}_K \text{ and } K^{-1} \in D \text{ or } M_1, K \in D \\ H(v_D(M_1)) & \text{if } M = H(M_1) \text{ and } M_1 \in D \\ \hline m_M & \text{otherwise} \end{cases}$$

Abadi and Rogaway. *Reconciling two views of cryptography*. Journal of Cryptology 15(2):103–127, 2002.

Given the closed dataset *D*

$$v_D(M) = \begin{cases} M & \text{if } M \text{ is atomic} \\ v_D(M_1); v_D(M_2) & \text{if } M = M_1; M_2 \\ \{v_D(M_1)\}_{v_D(K)} & \text{if } M = \{M_1\}_K \text{ and } K^{-1} \in D \text{ or } M_1, K \in D \\ H(v_D(M_1)) & \text{if } M = H(M_1) \text{ and } M_1 \in D \\ m_M & \text{otherwise} \end{cases}$$

A message M is

- **D**-transparent if $v_D(M) = M$
- D-opaque if $v_D(M) = m_M$, i.e.
 - $M = \{M_1\}_K$, $K^{-1} \notin D$ and $\{M_1, K\} \nsubseteq D$, or else
 - $M = H(M_1)$ and $M_1 \notin D$

Opaque and transparent messages

Given the closed dataset *D*

$$v_D(M) = \begin{cases} M & \text{if } M \text{ is atomic} \\ v_D(M_1); v_D(M_2) & \text{if } M = M_1; M_2 \\ \{v_D(M_1)\}_{v_D(K)} & \text{if } M = \{M_1\}_K \text{ and } K^{-1} \in D \text{ or } M_1, K \in D \\ H(v_D(M_1)) & \text{if } M = H(M_1) \text{ and } M_1 \in D \\ m_M & \text{otherwise} \end{cases}$$

A message M is

● *D*-transparent if $v_D(M) = M$

Eagerness

- D-opaque if $v_D(M) = m_M$, i.e.
 - $M = \{M_1\}_K$, $K^{-1} \notin D$ and $\{M_1, K\} \nsubseteq D$, or else
 - $M = H(M_1)$ and $M_1 \notin D$

Incremental symbolic runs

$$a$$
-run = $\langle \mathbf{act}_1, \dots, \mathbf{act}_s \rangle$

initial data D_a^0

$$D_a^0 \xrightarrow{\text{act}_1} D_a^1 \xrightarrow{\text{act}_2} D_a^2 \xrightarrow{\text{act}_3} \cdots \xrightarrow{\text{act}_{s-1}} D_a^{s-1} \xrightarrow{\text{act}_s} D_a^s$$

Incremental symbolic runs

$$a$$
-run = $\langle \mathbf{act}_1, \dots, \mathbf{act}_s \rangle$

initial data D_a^0

$$D_a^0 \xrightarrow{\text{act}_1} D_a^1 \xrightarrow{\text{act}_2} D_a^2 \xrightarrow{\text{act}_3} \cdots \xrightarrow{\text{act}_{s-1}} D_a^{s-1} \xrightarrow{\text{act}_s} D_a^s$$

a-possrun₁ : $\langle \mathbf{act}_1^1 \rangle$

a-possrun₂ : $\langle \mathbf{act}_1^2 . \mathbf{act}_2^2 \rangle$

a-possrun₃ : $\langle \mathbf{act}_1^3 . \mathbf{act}_2^3 . \mathbf{act}_3^3 \rangle$

. . .

a-possrun $_s$: $\langle \mathbf{act}_1^s . \mathbf{act}_2^s . \mathbf{act}_3^s . \dots . \mathbf{act}_s^s \rangle$

where each a-possrun $_i=v_{D_a^i}(a$ -run $|_i)$, i.e. $\mathbf{act}_j^i=v_{D_a^i}(\mathbf{act}_j)$

The Needham-Schroeder Public-Key Authentication Protocol

```
\begin{array}{llll} ({\sf nspk}_1) & a \to b & : & (n_1).\,\{n_1;a\}_{K_b} \\ ({\sf nspk}_2) & b \to a & : & (n_2).\,\{n_1;n_2\}_{K_a} \\ ({\sf nspk}_3) & a \to b & : & \{n_2\}_{K_b} \end{array}
```

a-run:
$$\langle \mathbf{f}(n_1).\mathbf{s}(\{n_1;a\}_{K_b},b).\mathbf{r}(\{n_1;n_2\}_{K_a}).\mathbf{s}(\{n_2\}_{K_b},b) \rangle$$

The Needham-Schroeder Public-Key Authentication Protocol

Theorem

The standard sequence a-run is representative if and only if every received message is transparent when it is received, i.e. if $\mathbf{act}_i = \mathbf{r}(M)$, then M is D_a^i -transparent.

Theorem

The standard sequence a-run is representative if and only if every received message is transparent when it is received, i.e. if $\mathbf{act}_i = \mathbf{r}(M)$, then M is D_a^i -transparent.

For instance, NSPK fulfils this condition Otway-Rees and Asokan-Shoup-Waidner do not

The Otway-Rees Authentication/Key-Exchange Protocol

```
\begin{array}{llll} (\mathbf{or}_1) & a \to b & \vdots & (n_1).\,i;\,a;\,b;\,\{n_1;\,i;\,a;\,b\}_{K_{as}} \\ (\mathbf{or}_2) & b \to s & \vdots & (n_2).\,i;\,a;\,b;\,\{n_1;\,i;\,a;\,b\}_{K_{as}};\,\{n_2;\,i;\,a;\,b\}_{K_{bs}} \\ (\mathbf{or}_3) & s \to b & \vdots & (k\ ).\,i;\,\{n_1;\,k\}_{K_{as}};\,\{n_2;\,k\}_{K_{bs}} \\ (\mathbf{or}_4) & b \to a & \vdots & i;\,\{n_1;\,k\}_{K_{as}} \end{array}
```

b-possrun:

```
\langle \mathbf{r}(i;a;b;m_1) \, . \, \mathbf{f}(n_2) \, . \, \mathbf{s}(i;a;b;m_1;\{n_2;i;a;b\}_{K_{bs}},s) \, . \, \mathbf{r}(i;m_2;\{n_2;k\}_{K_{bs}}) \, . \, \mathbf{s}(i;m_2,a) \rangle
```

The Otway-Rees Authentication/Key-Exchange Protocol

```
(\mathbf{or}_1) a \to b : (n_1).i; a; b; \{n_1; i; a; b\}_{K_{as}}
      (\mathbf{or}_2) b \to s : (n_2).i; a; b; \{n_1; i; a; b\}_{K_{as}}; \{n_2; i; a; b\}_{K_{bs}}
      (\mathbf{or}_3) s \to b : (k).i; \{n_1; k\}_{K_{as}}; \{n_2; k\}_{K_{bs}}
      (\mathbf{or}_{A}) b \rightarrow a : i; \{n_1; k\}_{K_{as}}
b-possrun:
\langle \mathbf{r}(i;a;b;m_1) \, . \, \mathbf{f}(n_2) \, . \, \mathbf{s}(i;a;b;m_1;\{n_2;i;a;b\}_{K_{bs}},s) \, . \, \mathbf{r}(i;m_2;\{n_2;k\}_{K_{bs}}) \, . \, \mathbf{s}(i;m_2,a) \rangle
b-possruns:
\langle \mathbf{r}(i;a;b;m_1) \rangle
\langle \mathbf{r}(i;a;b;m_1) . \mathbf{f}(n_2) \rangle
\langle \mathbf{r}(i;a;b;m_1) . \mathbf{f}(n_2) . \mathbf{s}(i;a;b;m_1;\{n_2;i;a;b\}_{K_{bs}},s) \rangle
\langle \mathbf{r}(i;a;b;m_1) \cdot \mathbf{f}(n_2) \cdot \mathbf{s}(i;a;b;m_1;\{n_2;i;a;b\}_{K_{bs}},s) \cdot \mathbf{r}(i;m_2;\{n_2;k\}_{K_{bs}}) \rangle
\langle \mathbf{r}(i;a;b;m_1) \cdot \mathbf{f}(n_2) \cdot \mathbf{s}(i;a;b;m_1;\{n_2;i;a;b\}_{K_{bs}},s) \cdot \mathbf{r}(i;m_2;\{n_2;k\}_{K_{bs}}) \cdot \mathbf{s}(i;m_2,a) \rangle
```

Theorem

The symbolic sequence a-possrun is representative if and only if every received message preserves the message variables that occur in the views of previously received messages, i.e. if j < i, act_j and act_i are receiving actions, and m_M occurs in $v_{D_x^{i-1}}(\operatorname{act}_j)$, then m_M also occurs in $v_{D_x^i}(\operatorname{act}_j)$.

Theorem

The symbolic sequence a-possrun is representative if and only if every received message preserves the message variables that occur in the views of previously received messages, i.e. if i < i act; and act; are receiving actions, and m_M occurs in

if j < i, act_j and act_i are receiving actions, and m_M occurs in $v_{D_x^{i-1}}(\operatorname{act}_j)$, then m_M also occurs in $v_{D_x^i}(\operatorname{act}_j)$.

For instance, NSPK and Otway-Rees fulfill this condition Still, Asokan-Shoup-Waidner does not

Conclusion and further work

- Denotational semantics of Alice&Bob-style protocol specifications
 - Incremental symbolic runs
 - Message forwarding
 - Conditional abortion
- Operational semantics
 - Basis for automated protocol analysis tools
 - Step towards implementation
- Fill in the gap between Alice&Bob-notation and HLPSL
- Distributed temporal logic
 - Object level and metalevel reasoning
 - Reduction results
 - Calculus

Conclusion and further work

- Denotational semantics of Alice&Bob-style protocol specifications
 - Incremental symbolic runs
 - Message forwarding
 - Conditional abortion
- Operational semantics
 - Basis for automated protocol analysis tools
 - Step towards implementation
- Fill in the gap between Alice&Bob-notation and HLPSL
- Distributed temporal logic
 - Object level and metalevel reasoning
 - Reduction results
 - Calculus

Thank you!