PHYS210

Alfaifi, Ammar

 $March\ 22,\ 2021$

Contents

1	\mathbf{Seri}	Series		
	1.1	Infinite Series	2	
	1.2	Series Tests	2	
	1.3	Power Series	3	
2	Complex Numbers 4			
	2.1	Introduction	4	
	2.2	The Complex Plane	4	
	2.3	Complex Algebra	4	
	2.4	Complex Infinite Series	5	
	2.5	Complex Power Series	5	
	2.6	Euler's Formula	5	
	2.7	Powers and Roots of Complex Numbers	5	
	2.8	The Exponential and The Trigonometric	6	
	2.9	Hyperbolic Functions	6	
3	Linear Algebra 7			
	3.1	Introduction	7	
	3.2	Matrices: Row Reduction	7	
	3.3	Determinants; Carmer's Rule	8	
	3.4	Vectors	10	
	3.5	Lines and Planes	12	
	3.6	Matrix Operations	13	
	3.7	Linear Combinations, Functions, and Opreators	15	
	3.8	Linear Dependence and Independence	17	
	3.9	Special Matrices and Formulas	18	
	3.10	Linear Vector Spaces	19	
		Eigenvalues and Eigenvectors; Diagonalizing Matrices		
		An Introduction to Groups	23	
4	Vec	tor Analusis	24	
-		Theorems	24	

Chapter 4

Vector Analusis

4.1 Theorems

Line Integral The line integral for f(x, y); x = x(t) & y = y(t)

$$\int_C f(x,y) ds = \int_a^b f(x(t), y(t)) L dt$$

The integral of f(x,y) along C' with respect to x'. Or,

$$\int_C f(x,y) dx dy = \int_a^b f(x(t), y(t)) x'(t) dt$$

where x'(t)dt = dx.

$$\star$$
 $\vec{r}(t) = (1-t)\vec{r_1} + \vec{r_2}$

Line integral of vector fields If $\vec{F} = P\hat{\imath} + Q\hat{\jmath} + R\hat{k}$, where Q, P, and R are scalar functions of (x, y, z).

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r'}(t) dt = \int_{C} \vec{F} \cdot \vec{T} ds$$

$$\Rightarrow \int_{C} P dx + Q dy + R dz$$

where \vec{T} is the unit tangent vector.

Fundamental theorem for line integral

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

$$\int_{C} \nabla f \cdot d\vec{r} = \int_{C} df = \vec{r}(b) - \vec{r}(a)$$

which says that the line integral of ∇f is the <u>net</u> change in f. Note that $\oint \vec{F} \cdot d\vec{r} = 0$

Green's Theorem

$$\oint_C \vec{F} \cdot d\vec{r} = \oint_R P \, dx + Q \, dy = \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

let $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1$ to get the area A. In vector form

$$\oint_R \vec{F} \cdot d\vec{r} = \int_D \nabla \vec{F} \cdot \hat{k} \, dA$$

As an special case of Stoke's theorem The integral of the tangential component of \vec{F} along C is the the double integral of the vertical component of $\text{curl}\vec{F}$ over the region D enclosed by C. Also we have

$$\oint_R \vec{F} \cdot \hat{n} \, ds = \int_D \nabla \cdot \vec{F} \, dA$$

The line integral of the normal component of \vec{F} along C is the double integral of the divergence of \vec{F} over region D enclosed by C.

- \star tangent $d\vec{r} = dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k}$
- \star normal $\hat{n}ds = dy\hat{i} dx\hat{j}$

Stoke's Theorem

$$\oint_C \vec{F} \cdot d\vec{r} = \int_S \nabla \times \vec{F} \cdot d\vec{S}$$

The line integral <u>around</u> the boundry curve of S of the tangential component of \vec{F} is the the surface integral <u>over</u> S of the normal component of $\text{curl}\vec{F}$.

Divergence Theoprem

$$\oint_A \vec{F} \cdot d\vec{s} = \int_E \nabla \cdot \vec{F} dV$$

The flux of F across the boundry surface of E is the triple integral of the divergence of F over E.