一 选择题 (每题 3 分,共 21 分)
1. 设 A, B 为两个随机事件, 且 $P(A) = 0.4$, $P(B) = 0.8$,则 $P(\bar{A}\bar{B})$ 的取值范围是()
A. [0.1, 0.4] B. [0, 0.2] C. [0, 0.3] D. [0.1, 0.3]
2. 以下随机变量X,Y一定相互独立的是()
A. X, Y 满足 $P\{X \le 1, Y \le 1\} = P\{X \le 1\}P\{Y \le 1\}$
B. X, Y 的方差存在, 且 $D(X + Y) = D(X) + D(Y)$
C. (X,Y) 的联合概率密度函数 $f(x,y) = \begin{cases} 4xy, & 0 \le x,y \le 1 \\ 0, & \text{其他} \end{cases}$
D. 抛掷一颗均匀骰子 n 次,朝上的那面是偶数的次数 X 与朝上的那面是奇数的次数 Y
3. 从2至8的7个整数中随机取两个不同的数,则这两个数互质的概率是()
A. 1/2 B. 2/3 C. 1/4 D. 3/4
4. 随机变量 X 和 Y 的分布律: $X \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.2 & 0.5 & 0.3 \end{pmatrix}$, $Y \sim \begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix}$, 且 $P\{X \neq Y\} = 1$,则
Cov(X,Y) = ()
A0.05 B. 0.1 C. 0.05 D0.1
5. 盒中有20张卡片, 其中15张写着"你曾在考试中作弊了吗?", 另外5张写着"你参加过校园马拉
松吗?"。100名学生每人有放回随机抽取一张,根据抽到的问题回答"是"或"否",回答"是"
有30人,回答"否"有70人,假设每人都真实回答,则学生中曾考试作弊的比例的估计值是 ()(已知约有20%的学生参加过校园马拉松)
A. 1/3 B. 1/4 C. 1/2 D. 1/5
6. 体育课上随机测试了36位学生的50米游泳成绩,他们平均成绩 $\bar{x} = 40$ 秒,样本标准差 $s = 6$ 秒,
已知学生的 50 米游泳成绩 $X\sim N(\mu,\sigma^2)$,则 μ 的置信度为 0.95 的置信区间是()
A. (38, 42) B. (39, 41) C. (38. 5, 41. 5) D. (39. 5, 40. 5)
7. 设 X_1, X_2, \cdots , X_{100} 是来自总体 $N(\mu, 100)$ 的样本,在显著性水平 $\alpha=0.05$ 下,检验
H_0 : $\mu=0$, H_1 : $\mu<0$, 拒绝域是 $\{(x_1,x_2,\cdots,x_{100}): \bar{x}\in D\}$, 则 $D=($
A. $(1.65, +\infty)$ B. $(1.96, +\infty)$ C. $(-\infty, -1.65)$ D. $(-\infty, -1.96)$
二 填空题 (每题 3 分, 共 21 分)
8. 设事件 A,B 相互独立, $P(A)=0.6,\ P(B)=0.3,\ 则P(ar{A} A\cup B)=$
9. 设随机变量 X 的概率密度函数 $f(x) = \begin{cases} 1/x, & 1 < x < e \\ 0, & \text{其他} \end{cases}$,且 $P\{X > c\} = P\{X < c\}$,则 $c^2 = \underline{\hspace{1cm}}$
10. 设 X_1,X_2,\cdots , X_n 是取自总体 $U(0,2)$ 的样本,若 $\forall \varepsilon>0$, $\lim_{n\to\infty}P\{ \bar{X}-a <\varepsilon\}=1$, 则 $a=\underline{\hspace{1cm}}$
11. 设二维随机变量(X,Y)~ $N(1,-1,2,4,0)$,则 $E[(X+Y)^2]=$

12. 设(
$$X,Y$$
)的概率密度函数是 $f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1 \\ 0, & \text{其他} \end{cases}$,则 $E(X+Y) = \underline{\qquad}$

13. 设 X_1, X_2, \cdots, X_n 是取自总体 $U(\theta, 2\theta)$ 的样本, $\hat{\theta} = c\bar{X}$ 是 θ 的无偏估计,则 $c = c\bar{X}$

14. 设
$$X_1, X_2, X_3$$
 是来自总体 $U(0,1)$ 的样本, 则 $P\{X_1^2 + X_2^2 + X_3^2 \le 1\} =$ ______

三 计算题

15. 一串钥匙共8把,只有一把能打开门,某人随机选钥匙去开门,已经试过的不会重复试,求:

- (1)第二次就打开门的概率
- (2) 打开门时所用次数的分布律和数学期望
- 16. (1) 设随机变量X的数学期望和方差都存在,证明:对于任意常数C, $E(X-C)^2 \ge D(X)$

a为何值时, $E(X-a)^2$ 取得最小值?并求其最小值

- 17. 两人相约在某地碰面, 他们的到达时刻X,Y相互独立, 且都服从上午9点到10点间的均匀分布U(0,1), (单位: 小时)
- (1) 求先到者需等待另一人15分钟以上的概率
- (2) 求先到者的到达时刻 $T = \min(X,Y)$ 的概率密度函数和数学期望
- 18. 仪器测量某零件的长度时产生的误差 $X \sim N(\mu, 0.5)$ (单位:毫米),
- (1) 如果已知 $\mu = 0$, 求E(|X|)
- (2) 记录的n次测量的误差是 x_1, x_2, \dots, x_n , 求 μ 的矩估计和最大似然估计
- 19. 设二维随机变量(*X*, *Y*)的联合概率密度函数为: $f(x,y) = \begin{cases} e^{-x}, & 0 < y < x \\ 0, & \text{其他} \end{cases}$
- (1) 求边缘密度函数 $f_X(x)$, $f_Y(y)$
- (2) 求Cov(X,Y)