

LFA0001 – Linguagens Formais e Autômatos Aula 09 Minimização de Autômatos Finitos

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Sumário

Autômatos Finitos × Complexidade

Autômato Finito Mínimo

Algoritmo de Minimização

Autômatos Finitos versus Complexidade

Simulador de AFD

- A cada símbolo lido da palavra de entrada
- Controla o estado atual do autômato
- Tempo de processamento: diretamente proporcional ao tamanho da palavra de entrada

Tempo de Processamento

- Não depende do autômato considerado
- Qualquer AFD que reconheça a linguagem terá a mesma eficiência

Karina G. Roggia 2016 LFA0001 - Aula09 3 / 20

Autômatos Finitos versus Complexidade

Otimização possível

- minimização do número de estados
- importante para diminuir o tamanho do programa simulador

AFD Mínimo (ou Autômato Finito Mínimo)

AFD equivalente, com o menor número de estados possível

Aplicações Específicas podem não utilizar ADF mínimo

- Nem sempre o número menor de estados dará o menor custo de implementação
- exemplo: circuitos lógicos
 - pode ser desejável introduzir estados intermediários
 - para melhorar eficiência ou facilitar ligações físicas

Karina G. Roggia 2016 LFA0001 - Aula09 4 / 22

Unicidade do Autômato Finito Mínimo

Autômato Finito Mínimo é único

- a menos de isomorfismo
- diferenciação na identificação dos estados

Karina G. Roggia 2016 LFA0001 - Aula09 5 / 22

Autômato Finito Mínimo

Definição (Estados Equivalentes)

Dado $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ um AFD qualquer, $q, p \in Q$ são **estados equivalentes** se e somente se, para qualquer $w \in \Sigma^*$

$$\delta^*(q, w) \in \delta^*(p, w)$$

resultam simultaneamente em estados finais, ou não-finais.

Algoritmo de Minimização

• unifica os estados equivalentes

Karina G. Roggia 2016 LFA0001 - Aula09 6 / 22

Autômato Finito Mínimo

Definição (Autômato Finito Mínimo)

Seja $L\subseteq \Sigma^*$ uma linguagem regular. O Autômato Finito Mínimo de L é um AFD

$$M_m = \langle \Sigma, Q_m, \delta_m, q_{0_m}, F_m \rangle$$

tal que:

- ACEITA $(M_m) = L$
- para qualquer AFD $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ tal que ACEITA(M) = L

$$|Q| \geq |Q_m|$$

Karina G. Roggia 2016 LFA0001 - Aula09 7 / 2:

Pré-Requisitos

Antes de executar o Algoritmo de Minimização, o Autômato deverá

- ser determinístico
- ter somente estados alcançáveis a partir do estado inicial
- ullet ter sua função de transição δ total

O que fazer caso um dos pré-requisitos não seja satisfeito?

Ideia de execução

- Identificar os estados equivalentes por exclusão
- Organização de tabela de estados
 - marca estados não-equivalentes
 - ao final, entradas não marcadas indicam estados equivalentes.

Seja $M=\langle \Sigma,Q,\delta,q_0,F\rangle$ um AFD que satisfaça os pré-requisitos do algoritmo de minimização.

Passo 1: Construção da Tabela: relaciona estados distintos.

		1		
q_1				
q_2				
q_{n-1}				
q_n				
	q 0	q_1	 q_{n-2}	q_{n-1}

Passo 2: Marcação dos Estados Trivialmente Não Equivalentes Marcar todos os pares do tipo {estado final, estado não final} Passo 3: Marcação dos Estados Não Equivalentes Para $\{q_u, q_v\}$ não marcado e $a \in \Sigma$, suponha que

$$\delta(q_u,a)=p_u$$
 e $\delta(q_v,a)=p_v$

- $p_u = p_v$ q_u é equivalente a q_v para a: não marcar.
- $p_u \neq p_v$ e $\{p_u, p_v\}$ não está marcado $\{q_u, q_v\}$ incluído na lista encabeçada por $\{p_u, p_v\}$
- $p_u \neq p_v$ e $\{p_u, p_v\}$ está marcado
 - $\{q_u, q_v\}$ não é equivalente: marcar
 - se $\{q_u, q_v\}$ encabeça uma lista: marcar todos os pares da lista (e, recursivamente, se algum par da lista encabeça outra lista)

Passo 4: Unificação dos Estados Equivalentes Pares não marcados, após passar por todos os símbolos de Σ , são equivalentes.

- Equivalência de estados é transitiva.
- Pares de estados não finais equivalentes: um único estado não final
- Pares de estados finais equivalentes um único estado final
- se algum dos estados equivalentes é inicial estado unificado é inicial
- transições com origem(destino) em um estado equivalente origem(destino) no estado unificado

Passo 5: Exclusão dos Estados Inúteis q é um estado inútil se

- for não final e
- a partir de q não é possível atingir um estado final

Transições com origem ou destino em estado inútil serão excluídas.

Se, originalmente, o autômato não possuía δ total, o estado incluído para cumprir o pré-requisito será um estado inútil.

Passo 0 - Verificar os pré-requisitos de minimização

Karina G. Roggia 2016 LFA0001 - Aula09 14 / 22

Passo 1 – Construção da tabela

Passo 2 – Marcação dos pares {estado final, estado não final}

$\overline{q_1}$	×				
$\overline{q_2}$	×				
q ₃	×				
q_4		×	×	×	
q_5		×	×	×	
	q_0	q_1	q_2	q_3	q_4

Karina G. Roggia 2016 LFA0001 - Aula09 15 / 22

Passo 3 – Análise dos pares de estados não marcados $\{q_0, q_4\}$

$$\delta(q_0, a) = q_2$$
 $\delta(q_0, b) = q_1$
 $\delta(q_4, a) = q_3$ $\delta(q_4, b) = q_2$

• $\{q_1, q_2\}$ e $\{q_2, q_3\}$ são não marcados * inclui $\{q_0, q_4\}$ nas listas de $\{q_1, q_2\}$ e $\{q_2, q_3\}$

$$\{q_0,q_5\}$$
 $\delta(q_0,a)=q_2 \qquad \delta(q_0,b)=q_1$ $\delta(q_5,a)=q_2 \qquad \delta(q_5,b)=q_3$

• $\{q_1, q_3\}$ é não marcado $(\{q_2, q_2\}$ é trivialmente equivalente) * inclui $\{q_0, q_5\}$ na lista de $\{q_1, q_3\}$

$$\{q_1,q_2\}$$
 $\delta(q_1,a)=q_1 \qquad \delta(q_1,b)=q_0$ $\delta(q_2,a)=q_4 \qquad \delta(q_2,b)=q_5$

- $\{q_1, q_4\}$ é marcado: marca $\{q_1, q_2\}$
- $\{q_1, q_2\}$ encabeça uma lista: marca $\{q_0, q_4\}$

$$\{q_1,q_3\}$$
 $\delta(q_1,a)=q_1 \qquad \delta(q_1,b)=q_0$ $\delta(q_3,a)=q_5 \qquad \delta(q_3,b)=q_4$

- $\{q_1, q_5\}$ e $\{q_0, q_4\}$ são marcados: marca $\{q_1, q_3\}$
- $\{q_1, q_3\}$ encabeça uma lista: marca $\{q_0, q_5\}$

$$\{q_2,q_3\}$$

$$\delta(q_2,a)=q_4 \qquad \delta(q_2,b)=q_5$$

$$\delta(q_3,a)=q_5 \qquad \delta(q_3,b)=q_4$$

• $\{q_4, q_5\}$ é não marcado: inclui $\{q_2, q_3\}$ na lista de $\{q_4, q_5\}$

$$\{q_4,q_5\}$$

$$\delta(q_4,a)=q_3 \qquad \delta(q_4,b)=q_2$$

$$\delta(q_5,a)=q_2 \qquad \delta(q_5,b)=q_3$$

ullet $\{q_2,q_3\}$ é não marcado: inclui $\{q_4,q_5\}$ na lista de $\{q_2,q_3\}$

Karina G. Roggia 2016 LFA0001 - Aula09 18 / 22

Passo 4 – Unificação de estados não marcados

- q_{23} : unificação dos estados q_2 e q_3
- ullet q_{45} : unificação dos estados finais q_4 e q_5

Mínimo e Único

O autômato construído usando o algoritmo de minimização apresentado é o Autômato Finito Mínimo para a linguagem que ele aceita.

Teorema (Unicidade do Autômato Finito Mínimo)

O Autômato Finito Mínimo de uma linguagem é único, a menos de isomorfismo.

Karina G. Roggia 2016 LFA0001 - Aula09 21 / 22

Isomorfismo de AFD

Autômatos isomorfos

- diferenciam-se, eventualmente, na identificação dos estados
- definição formal: não será apresentada
- "único a menos de isomorfismo": referimo-nos como o autômato mínimo, ao invés de um autômato mínimo.

Karina G. Roggia 2016 LFA0001 - Aula09 22 / 22