EEG/MEG source localisation

Théo Papadopoulo

Cronos
UCA, INRIA Sophia Antipolis

Msc DSAI

Application of ML to MRI, electrophysiology and brain computer interfaces

Theoretical results / Practice

- III-posed problem
 - Non existence.
 - Non uniqueness → Silent sources.
 - Non continuity.
- Several cases where uniqueness can be proved.
 - Linear combination of isolated dipoles.
 - Surfacic distribution (up to a constant).
- This is with continuous measurements.
 - In practice, we only have a finite number of them.

Measurement model

$$\mathbf{M} = \mathbf{\Sigma} \mathbf{G}(\mathbf{r}_i) \mathbf{J}_i + \mathbf{\epsilon}$$
 $\mathbf{M} = \mathbf{G} \mathbf{J} + \mathbf{\epsilon}$

Source models (J)

- Continuous vs isolated dipoles.

 We can model continuous distributions over a surface or a volume or just keep a finite number of single dipoles.
- Decrease number of parameters (often needed).
 - Known location
 - Cortical patches.
 - Constrain moments.

Source models (constraining moments)

Moving dipole: position and moment can change (6 parameters r, q).

Rotation dipole: position is fixed only the moment can change (3 parameters).

• Fixed dipole: position and moment direction are fixed, only the strength of the moment can change (1 parameter).

Dipole fit

• Find the dipole(s) position(s) and moment(s) that best fit the measurements.

$$\mathbf{J}_{ ext{sol}} = rac{ ext{minimize}}{ ext{dipole(s)}} \ \|\mathbf{M} - \mathbf{G}\mathbf{J}\|_F^2$$

- Works when the number of (isolated) dipoles is low.
- Non-linear problem (in position), linear (in moment) → Solved by gradient descent.

Dipole fit (example of solution)

$$\sigma_{scalp}/\sigma_{skull}=20$$

 $\sigma_{\rm scalp}/\sigma_{\rm skull}=40$

 $\sigma_{\rm scalp}/\sigma_{\rm skull}=80$

Dipole fit

Advantages

- Very simple method.
- No assumption on dipole positions.

Drawbacks

- Depends on initialization.
- More complex when the number of dipole increases.
- Choice of the right number of dipoles ?
- Local minima.

Imaging method

- Opposite view of dipole fit.
- Place dipole everywhere and evaluate their strengths.
- Very often used with "Fixed dipole paradigm".
- Add regularization to remove "spurious" solutions.

Imaging method

Data attachment

Solution:

$$\mathbf{J}_{\lambda} = \left(\mathbf{G}^{T} \mathbf{G} + \lambda \mathbf{I}\right)^{-1} \mathbf{G}^{T} M$$
$$= \mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} + \lambda \mathbf{I}\right)^{-1} M \blacktriangleleft$$

More efficient.

Imaging method (L-curve)

How to find a proper value for λ .

The best compromise between "smoothness" and "data attachment".

Imaging method (Leave one out)

How to find a proper value for λ .

- With multiple trials for the same task.
- Keep one sample as a test-set. Use the others for finding the solution \mathbf{J}_{λ}
- Select the value of λ that minimizes the reconstruction error (data attachment) over all choices of the "leaved out" sample.

Imaging method (examples of solution)

Simulated data (10% of noise).

Imaging methods

Advantages

- Very simple method.
- Problem with unique solution.
- No need to choose a number of dipoles.
- Efficient (closed-form) solutions.

Drawbacks

- Depends on the regularization parameter.
- Complex solution which has to be interpreted by a human.
- Exploration of the solution.

Scanning method

Intermediate between "Moving dipole" and "Imaging methods":

- As in moving dipole, assume a limited number of dipoles (choice of this number).
- As in imaging methods, possible dipole positions a fixed a priori.

Selection of columns (positions) in the leadfield matrix.

Spatio-temporal methods.

• Two families: MUSIC and beamformers/LCMV (Linear Constrained Minimum Variance).

Scanning method: MUSIC

MUltiple Signal Classification

- Gain matrix assumption: The G matrix for p dipoles is full rank / (i.e. of rank r).
- Asynchronous assumption: The correlation matrix $R_{\mathbf{Q}} = E(\mathbf{Q}_k \mathbf{Q}_k^T)$ matrix for p dipoles is full rank (i.e. of rank r).
- Noise whiteness assumption: The noise is considered additive and temporally and spatially zero-mean white noise with variance σ^2 . When a good noise model can be established, a prewhitening phase ensures that this is the case. Additionally the signal and noise are assumed to be uncorrelated.

Scanning method: MUSIC

Compute the matrix $\mathbf{F} = E(\mathbf{M}_k \mathbf{M}_k^T)$ or $\mathbf{F} \approx E(\mathbf{M}_k) E(\mathbf{M}_k)^T$.

Find the eigenvectors **U** of **F**.

Data for trial k.

Split U between signal and noise spaces $U = [U_r, U_{m-r}]$.

$$C(x_i) = \frac{\|\mathbf{U}_{m-r}^T \mathbf{G}_i\|}{\|\mathbf{G}_i\|} = \frac{\|P_{\mathbf{U}_r}^{\perp} \mathbf{G}_i\|}{\|\mathbf{G}_i\|}$$

Find the position(s) x_i (corresponding to G_i) that minimize(s) the projection $C(x_i)$ of the measurements on the noise space (i.e. maximize the contribution in the signal space).

Scanning method: MUSIC

Find the position(s) x_i (corresponding to \mathbf{G}_i) that minimize(s) the projection $C(x_i)$ of the measurements on the noise space (i.e. maximize the contribution in the signal space).

- Greedy approach (RAP-MUSIC):
 - 1. Extract the biggest maximum.
 - 2. Remove the contribution of that source to the signal.
 - 3. Re-apply MUSIC on this new signal (p times) to succesive sources.
- Many other variants (TRAP-MUSIC)...

Scanning method: Beamformers

- the noise N is zero-mean, with covariance C_N .;
- the sources are decorrelated: if $i \neq k$, $E\left([J(x_i) \overline{J(x_i)}][J(x_k) \overline{J(x_k)}]^T\right)$ is the 3×3 null matrix;
- the noise and the source amplitudes are decorrelated

Scanning method: Beamformers

Similar ideas as with MUSIC but for the criterion:

$$\widehat{VarJ(x_0)} = \frac{Tr\left((G(x_0)^T C_{\mathbf{M}}^{-1} G(x_0))^{-1}\right)}{Tr\left((G(x_0)^T C_{\mathbf{N}}^{-1} G(x_0))^{-1}\right)}.$$

 $J(x_0)$ is the reconstructed source by applying a filter $W(x_0)$ to the data.

The concept behind beamforming is, for a given spatial position x_0 , to apply a spatial filtering to the measurements, which filters out sources which do not come from a small volume around x_0 . Let $W(x_0)$ be a $m \times 3$ matrix representing the spatial filter: the source amplitude in the vicinity of x_0 will be estimated by

$$S(x_0) = W(x_0)^T \mathbf{M}$$
.

 $W(x_0)$ is computed to minimize the strength of the reconstructed source under the constraint that $W(x_0)\mathbf{G}(x_0)^T = \mathbf{I}$.