Model Formulation

Table 1: List of Variables

Variable	Definition	Unit
k_s^B	Battery power rating at charging station s	MW
e_s^B	Energy capacity for battery at charging station s	MWh
g_{st}^B	Battery electricity generation at charging station s at time t	MWh
d_{st}^B	Inflow demand for battery at charging station s at time t	MWh
x_{st}^B	State of charge for battery at charging station s at time t	MWh
k_s^H	H_2 power rating at charging station s	MW
e_s^H	Energy capacity for H_2 at charging station s	MWh
g_{st}^H	H_2 electricity generation at charging station s at time t	MWh
x_{st}^H	State of charge for H_2 at charging station s at time t	MWh
d_{st}^H	Inflow demand for H_2 at charging station s at time t	MWh
k_s^P	Solar capacity at charging station s	MW
g_{st}^{P}	Solar electricity generation at charging station s at time t	MWh
g_{st}^{M}	SMR electricity generation at charging station s at time t	MWh
u_s^M	Number of SMR modules to build at charging station s	Whole number
k_s^W	Capacity of transmission line connecting wholesale markets to charging station s	MW
g_{st}^W	Electricity generation purchased from wholesale markets to charging station s at time t	MWh

Table 2: List of Parameters and Sets

Parameter/Set	Definition	Unit
Parameters:		
p_s^{BK}	Battery capital cost at charging station s	\$/MW
p_s^{BC}	Battery energy cost at charging station s	\$/MWh
p_{st}^{BE}	Battery operating cost at charging station s at time t	\$/MWh
r_s^B	Battery ramp rate at charging station s at time t	MWh
p_s^{HK}	${ m H_2}$ capital cost at charging station s	\$/MW
p_s^{HC}	${\rm H_2}$ energy cost at charging station s	\$/MWh
p_{st}^{HE}	H_2 operating cost at charging station s at time t	\$/MWh
r_s^H	H_2 ramp rate at charging station s at time t	MWh
r_s^{HE}	H_2 inflow ramp rate at charging station s at time t	MWh
p_s^{PK}	Solar capital cost at charging station s	\$/MW
p_{st}^{PE}	Solar operating cost at charging station s at time t	\$/MWh
f_{st}^P	Solar capacity factor at charging station s at time t	%
p_s^{MK}	SMR capital cost at charging station s	\$/MW
p_{st}^{ME}	SMR operating cost at charging station s at time t	\$/MWh
$ar{k}_s^M$	SMR capacity at charging station s	MW
l_s^W	Length of transmission line built to connect to charging station \boldsymbol{s}	Miles
p_s^{WK}	Transmission capital cost at charging station s	\$/MW
p_s^{WI}	Transmission infrastructure cost at charging station s	\$/mile
p_s^{WC}	Conductor cost at charging station s	\$/mile
p_{st}^{WE}	Wholesale electricity cost at charging station s at time t	\$/MWh
p_s^{WO}	Other costs (including land costs and overhead costs)	\$
d_{st}^{E}	Electricity demand at charging station s at time t	MWh
Sets:		
S	Set of stations, index $s = \{1, 2, 3,, 170\}$	-
${\mathbb T}$	Set of hours, index $t = \{1, 2, 3,, 24\}$	-
\mathbb{Z}_0^+	Set of whole number, $\mathbb{Z}_0^+ = \{0, 1, 2, 3,\}$	_

$$\min_{\substack{k_s^W, k_s^B, k_s^H, k_s^P, u_s^M, \\ e^B, e^H, \\ g^W_{st}, g^B_{st}, g^H_{st}, g^M_{st}, \\ d^B_{st}, d^H_{st}, d^H_{st}}}$$

$$\sum_{s} \left\{ \underbrace{\left[p_{s}^{BK} \mathbf{k}_{s}^{B} + p_{s}^{BC} \mathbf{e}_{s}^{B} + \sum_{t} p_{st}^{BE} \mathbf{g}_{st}^{B} \right]}_{\text{Battery Expansion and Operating Costs}} + \underbrace{\left[p_{s}^{HK} \mathbf{k}_{s}^{H} + p_{s}^{HC} \mathbf{e}_{s}^{H} + \sum_{t} p_{st}^{HE} \mathbf{g}_{st}^{H} \right]}_{\text{H}_{2} \text{ Expansion and Operating Costs}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PE} \mathbf{g}_{st}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PK} \mathbf{k}_{s}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PK} \mathbf{k}_{s}^{P} \right]}_{\text{Solar PV Expansion}} + \underbrace{\left[p_{s}^{PK} \mathbf{k}_{s}^{P} + \sum_{t} p_{st}^{PK} \mathbf{k}_{s}^{P} \right]}_{\text{Solar PV Expansi$$

$$+ \underbrace{\left[p_s^{MK} \boldsymbol{u_s^M} \bar{k}_s^M + \sum_t p_{st}^{ME} \boldsymbol{g_{st}^M}\right]}_{t} + \underbrace{\left[p_s^{WK} \boldsymbol{k_s^W} + \sum_t p_{st}^{WE} \boldsymbol{g_{st}^W} + \left(p_s^{WI} + p_s^{WC}\right) l_s^W + p_s^{WO}\right]}_{t}$$
(1)

SMR Expansion and Operating Costs

Transmission Expansion and Operating Costs

s.t.

General Non-negativity:
$$k_s^B, k_s^H, k_s^P, k_s^W, e_s^B, e_s^H \ge 0,$$
 $\forall s \in \mathbb{S}$ (2)

Market Clearing Conditions:
$$g_{st}^B + g_{st}^H + g_{st}^P + g_{st}^M + g_{st}^W \ge d_{st}^E + d_{st}^B + d_{st}^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (3)

Battery Constraints:
$$0 \le d_{st}^B \le k_s^B$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (4) $0 \le g_{st}^B \le k_s^B$, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (5) $0 \le g_{st}^B \le x_{st}^B$, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (6)

$$0 \le x_{st}^B \le e_s^B, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (7)

$$x_{st}^{B} = x_{s(t-1)}^{B} + d_{st}^{B} - g_{st}^{B}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$

$$(8)$$

$$\|g_{st}^B - g_{s(t-1)}^B\| \le r_s^B, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (9)

(10)

Hydrogen Constraints:
$$0 \le d_{st}^H \le k_s^H$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (11) $0 \le g_{st}^H \le k_s^H$, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (12)

$$0 \le g_{st}^H \le x_{st}^H, \qquad \forall s \in \mathbb{S}, \, \forall t \in \mathbb{T}$$
 (13)

$$0 \le \mathbf{x}_{st}^{H} \le e_{s}^{H}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (14)

$$x_{st}^{H} = x_{s(t-1)}^{H} + d_{st}^{H} - g_{st}^{H}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (15)

$$\|g_{st}^{H} - g_{s(t-1)}^{H}\| \le r_{s}^{H}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (16)

$$\|e_{st}^{H} - e_{s(t-1)}^{H}\| \le r_{s}^{HE}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (17)

Solar PV Constraints:
$$0 \le g_{st}^P \le f_{st}^P k_s^P$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (19)

SMR Constraints:
$$0 \le g_{st}^M \le u_s^M \bar{k}_s^M$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (20)

$$u_s^M \in \mathbb{Z}_0^+,$$
 (21)

$$\|g_{st}^{M} - g_{s(t-1)}^{M}\| \le r_{s}^{M}, \qquad \forall s \in \mathbb{S}, \forall t \in \mathbb{T}$$
 (22)

Wholesale Power Constraints:
$$0 \le g_{st}^W \le k_s^W$$
, $\forall s \in \mathbb{S}, \forall t \in \mathbb{T}$ (23)