### (19) World Intellectual Property Organization

International Bureau





### (43) International Publication Date 15 September 2005 (15.09.2005)

### **PCT**

# (10) International Publication Number WO 2005/085481 A1

(51) International Patent Classification<sup>7</sup>: C21D 8/00, B21B 1/08

(21) International Application Number:

PCT/JP2005/004582

(22) International Filing Date: 9 March 2005 (09.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

2004-065676 9 March 2004 (09.03.2004) JP 2004-285934 30 September 2004 (30.09.2004) JP

(71) Applicant (for all designated States except US): NIP-PON STEEL CORPORATION [JP/JP]; 6-3, Otemachi 2-chome, Chiyoda-ku, Tokyo, 1008071 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): UEDA, Masaharu [JP/JP]; c/o NIPPON STEEL CORPORATION YAWATA WORKS, 1-1, Tobihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 8048501 (JP). FUJITA, Kazuo [JP/JP]; c/o NIPPON STEEL CORPORATION YAWATA WORKS, 1-1, Tobihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 8048501 (JP). MATSUSHITA, Koichiro [JP/JP]; c/o

NIPPON STEEL CORPORATION YAWATA WORKS, 1-1, Tobihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 8048501 (JP). YAMAMOTO, Takeshi [JP/JP]; c/o NIPPON STEEL CORPORATION YAWATA WORKS, 1-1, Tobihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 8048501 (JP). SATOH, Takuya [JP/JP]; c/o NIPPON STEEL CORPORATION YAWATA WORKS, 1-1, Tobihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka, 8048501 (JP).

- (74) Agent: KOKUBUN, Takayoshi; 5th Floor, Ikebukuro TG Homest Building, 17-8, Higashi-Ikebukuro 1-chome, Toshima-ku, Tokyo, 1700013 (JP).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: A METHOD FOR PRODUCING HIGH-CARBON STEEL RAILS EXCELLENT IN WEAR RESISTANCE AND DUCTILITY



NO. 1~4,6~15 BY THE INVENTION
NO. 5,16~26 BY THE INVENTION AND
PC YALUE IS ALSO CONTROLLED

O 2005/085481

(57) Abstract: Disclosed are methods of producing steel rails having a high carbon content and being excellent in wear resistance and ductility from the slabs for rails. One method involves producing a steel rail having a high content of carbon, comprising finish rolling the rail in two consecutive passes, with a reduction rate per pass of a cross-section of the rail of 2-30%, wherein the conditions of the finish rolling satisfy the following relationship:  $S \le 800 / (C \times T)$ , wherein S is the maximum rolling interval time (seconds), C is the carbon content of the steel, wherein the carbon content is 0.85-1.40 mass%, and T is the maximum surface temperature (°C) of the rail head. Another method involves producing a steel rail with a high content of carbon, comprising: finish rolling three or more passes, with a reduction rate per pass of a cross-section of the rail of 2-30%, wherein the conditions of the finish rolling satisfy the following relationship:  $S \le 2400 / (C \times T \times P)$ , wherein S is the maximum rolling interval time (seconds), C is the carbon content of the steel rail, wherein the carbon content is  $0.85 \sim 1.40$  mass%, T is the maximum surface temperature (°C) of a rail head, and P is the number of passes, which is 3 or more. In addition to above, controlled additional amounts of V, Nb, N may be added to the steel rail and/or controlled rapid cooling of the rail after rolling may be accomplished to provide further improvements.

## WO 2005/085481 A1

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### **Published:**

— with international search report

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.