MA202 Complex Analysis, Midterm Exam

Name:

ID:

Problem 1. [15 pts]

7(i) What is the definition of a holomorphic function on a domain $\Omega \subseteq \mathbb{C}$?

(ii) Determine whether z^3 , $|z|^3$ are holomorphic functions on \mathbb{C} .

Problem 2. [15 pts] Let f be a holomorphic function on a connected open set $\Omega \subseteq \mathbb{C}$. Show that if |f| is constant, then f is constant.

Problem 3. [20 pts] Show that for all $w \in \mathbb{C}$, there is

$$\int_{-\infty}^{\infty} e^{-\pi x^2} e^{2\pi i x w} dx = e^{-\pi w^2}.$$

Problem 4. [20 pts] Let n be an integer ≥ 2 and α a real number such that $n > 1 + \alpha > 0$. Evaluate the integral

$$\int_0^\infty \frac{x^\alpha}{1+x^n} \mathrm{d}x.$$

Problem 5. [15 pts] Find the number of zeros, counting multiplicity, of the polynomial $z^8 - 7z^3 + 2z + 1$ in the annulus 1 < |z| < 2.

Problem 6. [15 pts] Let f(z) be a holomorphic function on the annulus

$$\Omega := \{ z \in \mathbb{C} : r_1 < |z| < r_2 \}.$$

Show that there exists complex numbers $\{a_n\}_{n\in\mathbb{Z}}$ such that

$$f(z) = \sum_{n \in \mathbb{Z}} a_n z^n,$$

where the right hand side is absolutely and uniformly convergent on any closed annulus $\Omega' := \{z \in \mathbb{C} : r_1' \leq |z| \leq r_2' \}$ contained in Ω .