教师签名	批改日期
	教师签名

深圳大学实验报告

课程名称:	大学	物理实验((<u> </u>		
实验名称:	密立村	艮油滴实验			
学 院:	数	学与统计学	送院		_
指导教师 <u>:</u>	1	兒燕翔			
报告人:	王曦	组号:_	20		_
学号 <u>202</u>	a <u>1192010</u> 乡	毕验地点	致原	<u>楼 204B</u>	
实验时间:	<u>2022</u> 年	10	月	20	_日
提交时间.	2022	年10月2	7 FI		

1

·、实验目的

- 1.了解油滴法测电子(静态法)电量的基本原理和实验方法.
- 2.验证电荷的不连续性.
- 3.测量基本电荷电量 e.

实验原理

$$mg=qE=qrac{V}{d}\Rightarrow q=rac{mg}{V}d$$
,其中 $m=rac{4}{3}\pi a^3
ho$,只需测量油滴半径 a .

确定 a:未加电压时,油滴加速下落,直至重力与粘滞阻力平衡,平衡时速度为 Vg(不计空气浮力).

设空气的粘滞系数为
$$\eta$$
,则 $f_r=6\pi a\eta v_g=mg, m=rac{4}{3}\pi a^3
ho$,则 $a=\sqrt{rac{6\eta v_g}{2
ho g}}.$

由 Stokes 定律:在静止的均匀流体中运动时,对半径小到 $^{10^{-6}}$ m 的小球,空气的粘滞系数经修正后为:

$$\eta'=\dfrac{\eta}{1+\dfrac{b}{Pa}}, a=\sqrt{\dfrac{9\eta v_g}{2\rho g}\cdot\dfrac{1}{1+\dfrac{n}{Pa}}}$$
 ,只需测量下落速度 v_g 即可.而 $v_g=\dfrac{l}{t_g}$,只需测量距离和

下落时间即可.

$$q=rac{18\pi}{\sqrt{2
ho g}} \left[rac{\eta l}{t_g\left(1+rac{b}{Pa}
ight)}
ight]^{rac{3}{2}} rac{d}{V}$$

空气粘滞系数 $\eta=1.83 imes10^{-5}~\mathrm{kg\cdot m^{-1}\cdot s^{-1}}$

大气压
$$P=76.0~\mathrm{cmHg}$$

重力加速度 $g=9.8~\mathrm{m\cdot s^{-2}}$

$$a=\sqrt{rac{6\eta l}{2
ho gt_g}}$$
由滴半径

Stokes 公式修正常数 $b=6.17 imes 10^{-6}~ ext{m}\cdot ext{cmHg}$.

平行板的距离 $d = 5.00 \times 10^{-3} \,\mathrm{m}$.

主要技术指标:

平行极板间距离:5.00 mm, 0.01 mm.

极板电压: ±DC 0~700V 可调.

提升电压:自动跟踪平衡电压产生 1.5 倍平衡电压的提升电压.

数字电压表:0~999V 1V.

数字毫秒计:0~99.99 s 0.01s.

电视显微镜:放大倍数 60x(标准物镜)、120x(选购物镜).

分划板刻度:8*3 结构,垂直线视场分 8 格,每格值 0.25 mm.

三、实验仪器:

四、实验内容:

4.1 现象观察

- 4.1.1 控制油滴移到起跑线(一般取第二格线).
- 4.1.2 油滴静止,显示平衡电压.
- 4.1.3 油滴下降时开始计时至终点(一般六格)停止即使,显示时间 t_g .

4.2 仪器调整

- 4.2.1 调节水准仪,使主机放置平稳,打开主机与显示器电源.
- 4.2.2 喷油前,打开油雾孔开关,使得小铁片上的孔与油雾孔对齐.

4.3 练习控制油雾

- 4.3.1 熟悉 0V 电压、工作电压、提升电压、计时、联动、喷油,调节显微镜焦距,在屏上找到油滴移动速度缓慢的油滴.
- 4.3.2 选择电量合适的油滴:①速度不能太快,否则计时误差大;②带电量不能太大,否则无法反映电子量子性;③质量不能太小,否则油滴做布朗运动.

建议:平衡电压 200~300 V,下降 1.5 mm(6 格),用时 10~20 s.

4.4 正式测量

- 4.4.1 将油滴移动到某条横线上,调节工作电压,使得油滴在此位置附近漂移不大,认为此时电压为平衡电压 U.
- 4.4.2 测出油滴匀速下落 1.5 mm 所用时间 t_g .
- 4.4.3 对同一油滴测量 5~10 次,选择不同的几滴油滴测量.

五、数据记录:

组号: ___20___; 姓名___王曦____

油滴	次数	$U/{ m V}$	t_g/s	油滴	次数	$U/{ m V}$	t_g/s	油滴	次数	$U/{ m V}$	t_g/s
1	1	48	44.37	2	1	52	44.03	3	1	220	29.82
	2	39	45.61		2	46	45.62		2	222	28.71
	3	44	44.29		3	47	45.77		3	227	28.47
	4	46	45.50		4	44	43.94		4	225	28.53
	5	46	45.40		5	46	46.13		5	223	28.39
	6	47	45.39		6	45	45.03		6	224	28.61
	7	45	44.29		7	47	45.68		7	226	28.32
	8	46	45.66		8	46	46.04		8	225	28.51
	平均	45.1	45.064		平均	46.6	45. 280		平均	224.0	28. 670
油滴	次数	$U/{ m V}$	t_g/s	油滴	次数	$U/{ m V}$	t_g/s	油滴	次数	$U/{ m V}$	t_g/s
4	1	356	10.09	5	1	303	12.93	6	1	94	43.2
	2										
	_	370	10.15		2	346	13.21		2	93	42.8
	3	370 350	10.15		3	346 348	13.21 13.05		3	93 92	42.8
	3	350	10.14		3	348	13.05		3	92	41.9
	3 4	350 348	10.14		3 4	348 353	13.05 13.08		3 4	92 93	41.9
	3 4 5	350 348 352	10.14 10.04 10.12		3 4 5	348 353 350	13.05 13.08 12.94		3 4 5	92 93 96	41.9 42.7 42.6
	3 4 5 6	350 348 352 351	10.14 10.04 10.12 10.17		3 4 5 6	348 353 350 357	13.05 13.08 12.94 13.18		3 4 5 6	92 93 96 95	41.9 42.7 42.6 43.7

油滴密度: $0.93 \times 10^3 \text{ g/mL}$.

六、数据处理	I						
油滴	1	2	3	4	5	6	
$q/10^{-19}\mathrm{C}$	5.437	5.222	2.262	7.230	5.035	2.849	
n_0	3.394	3.259	1.412	4.531	3.143	1.778	
n	4	3	1	5	3	2	
$e_i/10^{-19}\mathrm{C}$	1.359	1.741	2.262	1.446	1.678	1.424	
$\overline{e_i}/10^{-19}{ m C}$	1.652						

以第一个油滴为例:

油滴半径
$$a=\sqrt{\frac{6\eta l}{2\rho gt_g}}$$

$$=\sqrt{\frac{6\times(1.83\times10^{-5})\times(6\times0.25\times10^{-3})}{2\times(0.93\times10^3)\times9.8\times45.064}}~\mathrm{m}=4.478\times10^{-7}~\mathrm{m}$$
 油滴带电量 $q=\frac{18\pi}{\sqrt{2\rho g}}\left[\frac{\eta l}{t_g\left(1+\frac{b}{Pa}\right)}\right]^{\frac{3}{2}}\frac{d}{V}$
$$=\frac{18\times3.1415}{\sqrt{2\times0.93\times10^3\times9.8}}\left[\frac{(1.83\times10^{-5})\times(6\times0.25\times10^{-3})}{45.064\left(1+\frac{6.17\times10^{-6}}{76.0\times4.478\times10^{-7}}\right)}\right]^{\frac{3}{2}}\times\frac{5\times10^{-3}}{45.1}~\mathrm{C}$$

$$=5.437\times10^{-19}~\mathrm{C}$$

$$n_0=\frac{q}{e}=\frac{5.437\times10^{-19}}{1.602\times10^{-19}}=3.394.$$

$$n=3.$$
 实验测得元电荷 $e=\frac{q}{n}=1.1.812\times10^{-19}~\mathrm{C}.$

不确定度分析:

$$\overline{e} = \frac{1.359 + 1.741 + 2.262 + 1.446 + 1.678 + 1.424}{6} \text{ C} = 1.652 \text{ C}.$$

$$u_{A}\left(\overline{e}
ight)=\sqrt{rac{\displaystyle\sum_{i=1}^{n}\left(e_{i}-\overline{e}
ight)^{2}}{n(n-1)}}$$

$$=\sqrt{\frac{(1.359-1.652)^2+(1.741-1.652)^2+(2.262-1.652)^2+(1.446-1.652)^2+(1.678-1.652)^2+(1.424-1.652)^2}{6\times 5}}$$

= 0.136744 C.

$$u=t_p u_A \, (\overline{e}) = 10^{-19} imes 0.136744 \, \mathrm{C} = 1.37 imes 10^{-20} \, \mathrm{C}.$$
 $e=\overline{e} \pm u \in [1.515 imes 10^{-19}, 1.789 imes 10^{-19}] \, \mathrm{C}.$

七、结果陈述:

实验测得电子电量约 1.652×10^{-19} C .验证了电荷具有量子性.

八、实验总结与思考题

- 8.1 如何判断油滴盒内平行极板是否水平?不水平对实验结果有何影响?
 - ①判断方法:观察油滴的运动方向是否垂直于极板.若垂直则水平:否则不水平.
- ②影响:电场力与重力的合力方向不垂直于极板,导致油滴运动方向不垂直于极板,路程偏大,导致测得的时间偏大.
- 8.2 简述选择油滴大一点好还是小一点好及其原因.如何选择一个合适的油滴?
- (1)油滴的选择标准: ①速度不能太快,否则计时误差大;②带电量不能太大,否则无法反映电子量子性; ③质量不能太小,否则油滴做布朗运动.综上,油滴太大或太小都不好,太大的油滴带电量太大,无法验证电子量子性;太小的油滴容易做布朗运动,无法测定时间.
 - (2)选择方法:在平衡电压 200~300 V 下.选择下降 1.5 mm(6 格)用时 10~20 s 的油滴.
- 8.3 对实验结果造成影响的主要因素有哪些?
 - ①油滴尺寸可能偏大或偏小,导致带电量偏大或偏小.
 - ②平行极板不够水平.
 - ③测量电压、时间的误差.

指	导教师批阅	阅意见:					
成组	绩评定:						
							_
	预习	操作及记录	数据处理与结果陈述 30 分	思考题	报告整体	总分	
	(20分)	(40分)	数据处理与组术协处 30 万	10分	印象	76.77	