Painel / Meus cursos / SC26EL / 3-Projeto de Controlador de Avanço-Atraso pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador de Avanço-Atraso por Lugar das Raízes

Iniciado em	segunda, 8 mar 2021, 13:54
Estado	Finalizada
Concluída em	sábado, 13 mar 2021, 14:29
Tempo	5 dias
empregado	
Notas	3,0/3,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1** Correto

Atingiu 1,0 de 1,0

Marque a(s) alternativa(s) correta(s):

- a. O controlador de avanço-atraso é usualmente empregado quando deseja-se melhoria na resposta transitória do sistema e redução do erro em regime permanente
- ☑ b. O controlador de avanço-atraso altera o lugar das raízes do sistema compensado. Com isso, é possível se obter os polos de ✓ malha fechada desejados para definir a resposta transitória almejada para o sistema. Esse compensador também eleva as constantes de erro estático do sistema. Com isso o erro em regime permanente é reduzido.
- c. Se definirmos os polos de malha fechada dominantes desejados para o sistema compensado, uma vez que são os dominantes, a resposta transitória do sistema já está definida e não depende dos demais polos e zeros do sistema em malha fechada.
- d. A partir dos polos de malha fechada dominantes obtidos ao final do projeto do controlador de avanço-atraso obtém-se os indicadores de desempenho do sistema compensado (sobressinal e tempo de acomodação) e sempre saberemos como o sistema irá se comportar.

As respostas corretas são:

O controlador de avanço-atraso é usualmente empregado quando deseja-se melhoria na resposta transitória do sistema e redução do erro em regime permanente,

O controlador de avanço-atraso altera o lugar das raízes do sistema compensado. Com isso, é possível se obter os polos de malha fechada desejados para definir a resposta transitória almejada para o sistema. Esse compensador também eleva as constantes de erro estático do sistema. Com isso o erro em regime permanente é reduzido.

Questão **2**Correto
Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{4}{s(s+1)(s+2)}$. Deseja-se projetar um controlador de avanço-atraso C(s) para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 10% e tempo de acomodação de 5 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo rampa deve ser de 0,05. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta = 0.591$

 \checkmark . A frequência natural destes polos deve ser $\omega_n =$

1,354

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$

-0,8

✓ ± j
1,092

V

A contribuição angular que o termo de avanço do compensador deve inserir no lugar das raízes é $\phi=$

68,150

graus.

Considerando que o zero do termo de avanço do compensador esteja em s=-1 , seu polo deve estar em s=

-6,182

~

O ganho do termo de avanço do compensador projetado é $K_c =$

3,015

✔ .

Para atender a especificação de erro em regime permanente, a constante de erro estático de velocidade do sistema compensado deve ser $\hat{\mathcal{K}}_{v}=$

20

 $\checkmark s^{-1}$. Logo, o parâmetro β do termo de atraso do controlador vale

20,501

~

Considerando que o zero do termo de atraso do controlador esteja em s=-0, 04 o polo do termo de atraso deve estar em s=-0,002

~

Com o controlador de avanço-atraso projetado, o sistema em malha fechada tem polos dominantes em $s_{1,2}=$

-0,781

✓ ±**j**

ullet . O sobressinal teórico associado a estes polos é $M_p=$

10,1

🗸 % enquanto o tempo de acomodação teórico associado é de $t_s =$

5,125

segundos.

Todavia, devido aos efeitos dos demais polos e zeros do sistema em malha fec	chada, o sobressinal do sistema compensado é de $M_p = \displaystyle$	
\checkmark % enquanto o seu tempo de acomodação é de $t_s=18,4$		
✓ segundos.		
Supondo que seja tolerável uma variação de até 50% sobre o sobressinal e tempo de acomodação especificados no problema, você		
julga necessário um reprojeto do controlador para atender as especificações?	Sim ♦	

Questão **3**Correto
Atingiu 1,0 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{1}{s(s+4)}$. Deseja-se projetar um controlador C(s) para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 5% e tempo de acomodação de 2 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo rampa deve ser de 0,2. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos. Caso seja necessário um termo de atraso no controlador, considere que o zero deste termo está em s=-0.1. Neste caso, também considere a modificação do lugar das raízes devido ao termo de atraso e obtenha os novos polos de malha fechada nesse novo lugar das raízes mantendo o coeficiente de amortecimento dos polos de malha fechada originalmente desejados.

Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$

0,690

ullet . A frequência natural destes polos deve ser $\omega_n=$

2,895

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$

-2

✓ ± j

✓ .

Considerando a função de transferência do controlador obtido, tem-se que:

a) O ganho do controlador é Kc=

8,397

v ;

b) O polinômio do numerador do controlador é:

0

√ s²+

✓ s+

v ;

c) O polinômio do denominador do controlador é:

0 • s²+

1

✓ 5+ 0,042

~

Para a implementação deste controlador pode-se utilizar um circuito de controlador de:

Atraso 💠 🗸

 Aula 4 - Projeto de Compensador PD pelo Método do Lugar das Raízes ►