Cursul 8

Tipuri de grafuri. Structuri de date pentru grafuri. Conectivitate: Algoritmul naiv și algoritmul lui Warshall

noiembrie 2016

Reamintim că:

Graf = structură matematică G = (V, E) unde

- V : mulțime de noduri (sau vârfuri)
- E : mulțime de muchii incidente la două noduri, sau la 1 nod

Tipuri de grafuri, în funcție de tipul muchiilor $e \in E$:

▶ Neorientate: Fiecare muchie are 2 capete

Reprezenare grafică:
$$a \stackrel{e}{\longrightarrow} b$$
 sau $a \stackrel{\bigcirc}{\longrightarrow} (buclă)$

▶ Orientate (sau digrafuri): Fiecare muchie $e \in E$ are o sursă (sau start) și o destinație (sau end)

Reprezentare grafică:
$$a \xrightarrow{e} b$$
 sau $a \xrightarrow{b}$ (buclă)

Muchiile orientate se numesc si arce (singular: arc).

Graf simplu: graf neorientat sau orientat, care are cel mult un arc între orice două noduri și nu are nici o buclă.

$$G = (V, E)$$

 $e_1,e_2\in E$ sunt muchii paralele dacă sunt incidente la aceleași noduri și

- Dacă G este orientat, atunci start(e₁) = start(e₂) și end(e₁) = end(e₂)
- Multigraf orientat sau neorientat: nu are bucle, iar dacă graful este

```
neorientat: poate avea muchii paralele orientat: pooate avea arce paralele
```

- ▶ Pseudograf: graf neorientat care poate avea muchii paralele și bucle.
- ▶ **Graf ponderat**: fiecare muchie $e \in E$ are o pondere (sau greutate) w(E); de obicei $w(e) \in \mathbb{R}$.

Reprezentări grafice ale grafurilor Exemple

 Grafuri simple: se trasează linii sau săgeți între nodurile conectate

Graf simplu **neorientat**: $b - c \\ b - c \\ c \\ Graf simplu$ **orientat** $: <math>a - c \\ c \\ e$

 Grafuri simple ponderate: se indică ponderea în dreptul conexiunilor

Reprezentări grafice ale grafurilor Exemple (continuare)

Multigrafuri sau pseudografuri: dacă au muchii paralele pe care vrem să le distingem, se etichetăm muchiile:

Reprezentări concrete ale grafurilor simple

- Listă de noduri + listă de muchii
- Liste de adiacență
- Matrice de adiacență
- Matrice de incidență
- Matrice de ponderi

Exemplu

Listă de noduri
$$V = [a, b, c, d, e]$$

Listă de muchii $E = [\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, e\}, \{d, e\}]$
Observații: $\{a, b\} = \{b, a\}, \{a, c\} = \{c, a\}$, etc.
muchie \leftrightarrow multimea de noduri adiacente la muchie


```
Listă de noduri V = [a,b,c,d,e]
Listă de arce E = [(a,b),(c,a),(c,b),(d,a),(e,c),(e,d)]
Observații: (a,b) \neq (b,a), (a,c) \neq (c,a), etc.
muchie \leftrightarrow pereche (start,end)
```

Remarcă

Dacă nu există noduri izolate (cu 0 vecini), nu este necesar să fie reținută lista de noduri V:

▶ V se poate calcula din E

Pentru fiecare nod $u \in V$ se reține lista de noduri adiacente la u

- ▶ Dacă G este neorientat, v este adiacent la u dacă există o muchie cu capetele u și v.
 - În grafuri neorientate, relația de adiacență este simetrică.
- ▶ Dacă G este **orientat**, v este adiacent la u dacă există un arc $e \in E$ de la u la v, adică start(e) = u și end(e) = v.

Dacă G are n noduri, $A_G = (m_{ij})$ are dimensiunea $n \times n$ și $m_{ij} := \text{numărul de muchii de la al } i\text{-lea nod la al } j\text{-lea nod.}$

Observații

- ① Înainte de a construi M_G din G, trebuie fixată o enumerare a tuturor nodurilor: $[v_1, v_2, \ldots, v_n]$
- ② Dacă G este neorientat, A_G este matrice simetrică
- $oldsymbol{0}$ Dacă G este graf simplu, A_G conține doar 0 și 1

Grafuri neorientate

Matricea de adiacență A_G a unui graf neorientat G

Matricea de adiacență a grafului neorientat

$$G: \int_{a-d}^{b-c} e$$

pentru enumerarea de noduri [a, b, c, d, e] este

$$A_G = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Observație: A_G este matrice simetrică.

Dacă A este o matrice simetrică $n \times n$ cu $a_{ij} \in \mathbb{N}$ pentru toți i, j, un digraf G care are matricea de adiacență A se construiește astfel:

- Se desenează n puncte v_1, \ldots, v_n în plan
- 2 Pentru orice $i,j \in \{1,\dots,n\}$, se trasează a_{ij} muchii distincte între v_i și v_j

Exemplu

$$A = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \end{pmatrix} \Rightarrow G : \begin{vmatrix} v_2 - v_3 \\ & & \\ & & \\ v_1 - v_4 \end{vmatrix}$$

Matricea de adiacență a grafului orientat

$$G: \int_{a \leftarrow d}^{b \leftarrow c} e$$

pentru enumerarea de noduri [a, b, c, d, e] este

$$A_G = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Dacă A este o matrice $n \times n$ cu $a_{ij} \in \mathbb{N}$ pentru toți i, j, un digraf G care are matricea de adiacență A se construiește astfel:

- Se desenează n puncte v_1, \ldots, v_n în plan
- 2 Pentru orice $i,j \in \{1,\dots,n\}$, se trasează a_{ij} arce distincte de la v_i la v_j

Exemplu

$$A = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \Rightarrow G : \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Digrafuri cu muchii etichetate

Reprezentarea cu matrice de incidență

Presupunem date două liste (sau enumerări):

- $V = [v_1, \dots, v_n]$ a nodurilor lui G
- $L = [e_1, \dots, e_p]$ a etichetelor de muchii din G

Matricea de incidență $M_G = (m_{ij})$ are dimensiunea $n \times p$ și

$$m_{ij} = \left\{ egin{array}{ll} -1 & \mathsf{dac\check{a}} \; \mathsf{start}(e_j) = v_i \ 1 & \mathsf{dac\check{a}} \; \mathsf{end}(e_j) = v_i \ 0 & \mathsf{\hat{n}} \; \mathsf{toate} \; \mathsf{celelalte} \; \mathsf{cazuri}. \end{array}
ight.$$

Exemplu

Dacă
$$V = [a, b, c, d, e], L = [e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8]$$
 și
$$M_G = \begin{pmatrix} -1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \end{pmatrix} \Rightarrow \underbrace{\begin{pmatrix} b & b & b & b \\ e_4 & b & b \\ e_5 & c & c \\ e_7 & d \end{pmatrix}}_{e_7}$$

Grafuri simple ponderate

Reprezentarea cu matrice de ponderi

Matricea de ponderi $W_G = (w_{ij})$ a unui graf simplu ponderat G cu n noduri $[v_1, \ldots, v_n]$ are dimensiunea $n \times n$ și

- $\triangleright w_{ii} = 0$ pentru toți $1 \le i \le n$.
- $\triangleright w_{ij} = w(\{v_i, v_j\})$ pentru orice muchie $\{v_i, v_j\} \in E$, dacă G este neorientat.
- $\triangleright w_{ij} = w((v_i, v_j))$ pentru orice arc $(v_i, v_j) \in E$, dacă G este orientat.
- $\triangleright w_{ii} = \infty$ în toate celelalte cazuri.

Exemplu (Digraf ponderat cu enumerare de noduri [a, b, c, d, e, f])

$$G: a \xrightarrow{g} b \xrightarrow{g} c \\ \downarrow b \xrightarrow{g} c \xrightarrow{g} c \\ \downarrow b \xrightarrow{g} c \xrightarrow{g} c \\ \downarrow b \xrightarrow{g} c \xrightarrow{g} c \xrightarrow{g} c \\ \downarrow b \xrightarrow{g} c \xrightarrow{g} c \xrightarrow{g} c \xrightarrow{g} c$$

Reprezentarea grafurilor Studiu comparativ

- Reprezentarea cu listă de muchii
 - Adecvată pentru reprezentarea grafurilor simple fără noduri izolate, cu $|E| \ll |V|$
 - Complexitate spațială (memorie ocupată): O(|E|)
- Reprezentarea cu liste de adiacenţă
 - Permite enumerarea rapidă a vecinilor unui nod
 - Complexitate spațială (memorie ocupată): O(|V| + |E|)
- ▶ Reprezentarea cu matrice de adiacență $A_G = (a_{ij})$ sau cu matrice de ponderi $W_G = (w_{ij})$
 - Test rapid de conectivitate directă între 2 noduri: O(1)
 - $\nexists(v_i,v_j) \in E$ dacă $a_{ij}=0$ sau dacă $w_{ij}=\infty$
 - Complexitate spațială (memorie ocupată): $O(|V|^2)$
 - reprezentare neadecvată când $|E| \ll |V|^2$
- Reprezentare cu matrice de incidență M_G
 - ▶ Complexitate temporală: $O(|V| \cdot |E|)$

Digrafuri simple Proprietăți ale matricii de adiacență A_G

Presupunem că G este (di)graf simplu cu n noduri și matricea de adiacență $A_G=(a_{ij})$

- $a_{ij}=0$ (sau false) dacă \nexists arc $v_i o v_j$
- $a_{ij}=1$ (sau true) dacă \exists arc $v_i
 ightarrow v_j$

Definim:

- I_n : matricea identitate $n \times n$
- Operațiile booleene ⊙ (conjuncție) și ⊕ (disjuncție):

\odot	0	1	\oplus	0	1	Observații:
0	0	0	0	0	1	$a \odot b = \min(a, b)$
1	0	1	1	1	1	$a \oplus b = \max(a, b)$

- Dacă $U=(u_{ij}),\ V=(v_{ij})$ sunt matrici $n\times n$ cu elemente 0 sau 1, definim
 - $U \oplus V = (c_{ij})$ dacă $c_{ij} = u_{ij} \oplus v_{ij}$ pentru toți i, j
 - $U \odot V = (d_{ij})$ dacă $d_{ij} = (u_{i1} \odot v_{1j}) \oplus \ldots \oplus (u_{in} \odot v_{nj})$
 - $U^k = \underbrace{U \odot \ldots \odot U}_{}$ pentru orice k > 0

Proprietăți

- **1** Dacă $A_G^k = (a_{ij}^{(k)})$ pentru $k \ge 1$ atunci $a_{ij}^{(k)} = 1$ dacă și numai dacă există o cale cu lungimea k de la nodul v_i la v_i .
- - $\overline{a}_{ij}=1$ dacă și numai dacă există o cale de lungime $j\in\{1,\ldots,n-1\}$ de la nodul v_i la v_j .
 - A_G^* se poate calcula în $O(n^4)$.
 - A_G^* se numește închidere reflexivă și tranzitivă a lui A_G .
- 3 $v_i \not = v_j$ sunt conectate $\Leftrightarrow \exists$ o cale simplă $v_i \leadsto v_j \Leftrightarrow \overline{a}_{ij} = 1$.

Digrafuri simple

Proprietăți ale matricii de adiacență A_G (continuare)

Proprietăți

- **1** Dacă $A_G^k = (a_{ij}^{(k)})$ pentru $k \ge 1$ atunci $a_{ij}^{(k)} = 1$ dacă și numai dacă există o cale cu lungimea k de la nodul v_i la v_i .
- ② Fie $A_G^* = I_n \oplus A_G \oplus A_G^2 \oplus \ldots \oplus A_G^{n-1} = (\overline{a}_{ij})$. Atunci
 - $\overline{a}_{ij}=1$ dacă și numai dacă există o cale de lungime $j\in\{1,\ldots,n-1\}$ de la nodul v_i la v_j .
 - A_G^* se poate calcula în $O(n^4)$.
 - A_G^* se numește închidere reflexivă și tranzitivă a lui A_G .

Corolar

Conectivitatea într-un digraf simplu se poate detecta în $O(n^4)$.

Algoritmul lui Warshall calculează A_G^* în $O(n^3)$.

Idee de bază a lui Warshall

Dacă $V = [v_1, \ldots, v_n]$ este o enumerare a nodurilor lui G și $v_k \in V$, atunci orice cale simplă $\pi: v_i \leadsto v_j$ are una din următoarele forme:

• v_k nu apare în π ca nod intermediar între v_i și v_j

$$(v_i) \sim \sim \sim \sim (v_j)$$

② v_k apare exact o dată în π ca nod intermediar între v_i și v_j

Presupunem că $A_G = (a_{ij})$ are dimensiune $n \times n$

Se calculează recursiv $C^{[n]} = (c_{ij}^{[n]})$ unde

$$c_{ij}^{[k]} := \left\{egin{array}{ll} \mathsf{a}_{ij} & \mathsf{dac\check{a}} \ k=0 \ c_{ij}^{[k-1]} \oplus (c_{ik}^{[k-1]} \odot c_{kj}^{[k-1]}) & \mathsf{dac\check{a}} \ k \geq 1 \end{array}
ight.$$

Proprietăți

- $C^{[0]} = A_G$
- $c_{ij}^{[k]}=1$ dacă și numai dacă există o cale $\pi:v_i\leadsto v_j$ în care toate nodurile intermediare sunt din submulțimea $\{v_1,\ldots,v_k\}$
- $C^{[n]} = A_G^*$
- $C^{[n]}$ se calculează în $O(n^3)$.

Se consideră digraful simplu G=(V,E) cu $V=\{1,\ldots,n\}$ și funcția de greutate $w:E\to\mathbb{R}^+$

- ▶ În G, greutatea unei căi $\pi: v_1 \to v_2 \to \ldots \to v_p$ este
 - $w(\pi) = \sum_{i=1}^{p-1} w((v_i, v_{i+1}))$
 - (se adună greutățile tuturor arcelor din π)
- ▶ Pentru orice pereche de noduri (i,j) din V, se dorește găsirea
 - celei mai ușoare căi de la nodul i la nodul j (pot fi mai multe căi cele mai ușoare)
 - greutatea celei mai ușoare căi

Reamintim că matricea de ponderi a lui G este $W_G = (w_{ij})$ unde

$$w_{ij} = \left\{ egin{array}{ll} 0 & ext{dacă} \ j = i, \ w((i,j)) & ext{dacă}(i,j) \in E, \ \infty & ext{dacă} \ (i,j)
otin E \end{array}
ight.$$

Generalizare a ideii de calcul a celor mai mai scurte căi: Fie $k \in V = \{1, \ldots, n\}$, și $\pi : i \leadsto j$ o cale cea mai ușoară de la i la j. Distingem două cazuri:

- \bullet \bullet nu trece prin nodul k
- ② π trece prin k. Atunci $\pi = i \stackrel{\pi_1}{\leadsto} k \stackrel{\pi_2}{\leadsto} j$ și $w(\pi) = w(\pi_1) + w(\pi_2)$.

Generalizare a ideii de calcul a celor mai mai scurte căi: Fie $k \in V = \{1, \ldots, n\}$, și $\pi : i \leadsto j$ o cale cea mai ușoară de la i la j. Distingem două cazuri:

- \bullet π nu trece prin nodul k
- ② π trece prin k. Atunci $\pi = i \stackrel{\pi_1}{\leadsto} k \stackrel{\pi_2}{\leadsto} j$ și $w(\pi) = w(\pi_1) + w(\pi_2)$.

Structură de date auxiliară de calcul:

ullet Matrice de căi ușoare $P^{[k]}=(p_{ij}^{[k]})$ în care fiecare

$$p_{ij}^{[k]} := \left\{ \begin{array}{ll} \bullet & \text{valoare specială: } \nexists \text{ cale } i \leadsto j \text{ prin noduri} \\ & \text{intermediare din submulţimea } \{1,\ldots,k\} \\ \pi & \text{o cea mai ușoară cale de la } i \text{ la } j \text{ prin noduri} \\ & \text{intermediare din submulţimea } \{1,\ldots,k\} \end{array} \right.$$

Presupunem că matricea de ponderi a lui G este $W_G = (w_{ij})$. Pentru orice $0 \le k \le n$ se calculează recursiv, începând de la k = 0, următoarele valori:

- ▶ $p_{ij}^{[k]}$: o cale cea mai ușoară $p:i \leadsto j$, în care toate nodurile intermediare sunt din mulțimea $\{1,2,\ldots,k\}$.
- $w_{ij}^{[k]}$: greutatea căii $p_{ij}^{[k]}$

Observații:

- Dacă nu există o astfel de cale de la i al j, definim $p_{ij}^{[k]} = \bullet$ și $w_{ij}^{[k]} = \infty$.
- $\bullet \ w_{ij}^{[0]} := w_{ij} \ \mathrm{şi}$

$$\bullet \ p_{ij}^{[0]} := \left\{ \begin{array}{ll} [i] & \mathsf{dac\check{a}} \ i = j \ (\hat{\mathsf{n}} \ \mathsf{acest} \ \mathsf{caz}, \ w_{ij} = w_{ii} = 0) \\ [i,j] & \mathsf{dac\check{a}} \ i \neq j \ \mathrm{si} \ w_{ij} < \infty \\ \bullet & \mathsf{dac\check{a}} \ w_{ij} = \infty \end{array} \right.$$

Algoritmul lui Warshall: Formule de calcul recursiv

Pentru $0 < k \le n$:

$$\textbf{\textit{p}}_{ij}^{[k]} := \left\{ \begin{array}{ll} p_{ij}^{[k-1]} & \text{dacă } w_{ij}^{[k-1]} \leq w_{ik}^{[k-1]} + w_{kj}^{[k-1]} \\ p_{ik}^{[k-1]} \asymp p_{kj}^{[k-1]} & \text{în caz contrar} \end{array} \right.$$

unde $p_{ik}^{[k-1]} symp p_{kj}^{[k-1]}$ denotă concatenarea căilor $p_{ik}^{[k-1]}$ și $p_{kj}^{[k-1]}$.

$$\label{eq:wij} \textbf{\textit{w}}_{ij}^{[k]} := \left\{ \begin{array}{ll} w_{ij}^{[k-1]} & \text{dacă } w_{ij}^{[k-1]} \leq w_{ik}^{[k-1]} + w_{kj}^{[k-1]} \\ w_{ik}^{[k-1]} + w_{kj}^{[k-1]} & \text{în caz contrar} \end{array} \right.$$

Observații

- ▶ Pentru orice $1 \le i, j \le n$, dacă $p_{ij}^{[n]} \ne \bullet$ atunci $p_{ij}^{[n]}$ este o cea mai ușoară cale de la i la j, iar $w(p_{ij}^{[n]}) = w_{ij}^{[n]}$.
- ▶ Calculul matricilor $W^{[n]}$ și $P^{[n]}$ se efectuează în $O(n^3)$.

Cele mai scurte căi într-un digraf simplu

- Lungimea unei căi $p = [x_1, \dots, x_n]$ este n-1, adică numărul de arce ce la x_1 la x_n de-a lungul căii p.
- Dacă presupunem că fiecare arc are greutatea 1, atunci lungimea unei căi coincide cu greutatea ei.
 - ⇒ cele mai scurte căi dintre orice pereche de noduri pot fi calculate cu algoritmul lui Warshall (vezi slide-ul următor.)

Cele mai scurte căi într-un digraf simplu

Algoritmul lui Warshall ilustrat

$$PW_{G}^{[0]} = \begin{pmatrix} [v_{1}]_{0} & & [v_{1}, v_{3}]_{1} & & & & & \\ [v_{2}, v_{1}]_{1} & [v_{2}]_{0} & & & & [v_{3}, v_{5}]_{1} \\ & & & & [v_{3}]_{0} & & [v_{3}, v_{5}]_{1} \\ [v_{5}, v_{1}]_{1} & & & & & [v_{4}, v_{3}]_{1} & [v_{4}]_{0} & & & \\ [v_{5}, v_{4}]_{1} & [v_{5}]_{0} & & & & [v_{5}, v_{4}]_{1} & [v_{5}]_{0} \\ \end{pmatrix},$$

$$PW_{G}^{[1]} = \begin{pmatrix} [v_{1}]_{0} & & [v_{1}, v_{3}]_{1} & & & & & \\ [v_{2}, v_{1}]_{1} & [v_{2}]_{0} & [v_{2}, v_{1}, v_{3}]_{2} & & & & \\ [v_{3}]_{0} & & & [v_{3}, v_{5}]_{1} \\ & & & & [v_{4}, v_{3}]_{1} & [v_{4}]_{0} & & \\ [v_{2}, v_{1}]_{1} & [v_{2}]_{0} & [v_{2}, v_{1}, v_{3}]_{2} & & & [v_{2}, v_{1}, v_{3}, v_{5}]_{2} \\ & & & & [v_{3}]_{0} & & & [v_{3}, v_{5}]_{1} \\ & & & & [v_{3}]_{0} & & & [v_{3}, v_{5}]_{1} \\ & & & & & [v_{3}]_{0} & & & [v_{3}, v_{5}]_{2} \\ & & & & & [v_{3}]_{0} & & & [v_{3}, v_{5}]_{2} \\ & & & & & [v_{3}]_{0} & & & [v_{3}, v_{5}]_{2} \\ & & & & & [v_{3}]_{0} & & & [v_{3}, v_{5}]_{2} \\ & & & & & [v_{3}]_{0} & & & [v_{3}, v_{5}]_{2} \\ & & & & & [v_{3}, v_{5}]_{1} & [v_{5}]_{0} \\ \end{pmatrix}, PW_{G}^{[4]} = PW_{G}^{[3]},$$

$$PW_{G}^{[5]} = \begin{pmatrix} [v_{1}]_{0} & & & [v_{1}, v_{3}] & [v_{1}, v_{3}, v_{5}, v_{4}]_{3} & [v_{1}, v_{3}, v_{5}]_{2} \\ [v_{2}, v_{1}]_{1} & [v_{2}]_{0} & [v_{2}, v_{1}, v_{3}]_{2} & [v_{2}, v_{1}, v_{3}, v_{5}, v_{4}]_{3} & [v_{1}, v_{3}, v_{5}]_{3} \\ & & & & [v_{3}, v_{5}]_{1} & [v_{2}]_{0} & [v_{2}, v_{1}, v_{3}]_{2} & [v_{2}, v_{1}, v_{3}, v_{5}, v_{4}]_{3} & [v_{1}, v_{3}, v_{5}]_{3} \\ & & & & [v_{3}, v_{5}]_{1} & [v_{3}]_{0} & & [v_{3}, v_{5}]_{1} \\ & & & & [v_{3}, v_{5}]_{1} & [v_{4}]_{0} & [v_{4}, v_{3}]_{1} & [v_{4}]_{0} & [v_{4}, v_{3}, v_{5}]_{2} \\ & & & & [v_{3}, v_{5}]_{1} & [v_{5}]_{0} & & [v_{5}, v_{4}]_{1} & [v_{5}]_{0} \end{pmatrix}$$