WO 2005/026319 PCT/US2004/025395

WHAT IS CLAIMED IS:

-		4.	11 mound for foating a solute into an erythocytic cen, comprising.			
2			disposing an erythrocytic cell in a solution having a solute			
3	concentration of sufficient magnitude to produce hyperosmotic pressure on the cell, thereby					
4			rom the solution into the cell.			
1	:	2.	The method of claim 1 wherein said solute is present in said solution in			
2	a concentration	of bet	ween 700 and 1000 mM.			
1	:	3.	The method of claim 1, wherein said solute is a disaccharide.			
1	•	4.	The method of claim 3, wherein said disaccharide is trehalose.			
1		5.	The method of claim 1, wherein said solution further comprises a			
2	potassium salt.					
1		5.	The method of claim 5, wherein said potassium salt is potassium			
2	phosphate.					
1		7.	The method of claim 1, wherein said solution further comprises α -			
2	crystallin.					
1			The method of claim 1, wherein said solution further comprises a			
2	strong reducing agent.					
1 2	acid.) .	The method of claim 8, wherein said strong reducing agent is ascorbic			
1	1	10.	The method of claim 1, wherein said solution comprises a			
2	disaccharide, α-crystallin, ascorbic acid, and a potassium salt.					
_						
1			A method of claim 1, further wherein the loading is conducted at a			
2	temperature of between 25 and 40° C.					
1	1	12.	A method of claim 11, further wherein the loading is conducted at a			
2	temperature of between 30 and 40° C.					

1	13. A method of claim 11, further wherein the loading is conducted at a				
2	temperature of about 37° C.				
1	14. An erythrocyte loaded with from 10 mM to 50 mM trehalose.				
1	15. An erythrocyte of claim 11, further comprising ascorbic acid.				
1	16. An erythrocyte of claim 11, further comprising α-crystallin.				
1	17. A method for separating fragile or damaged cells from a population of				
2	procytes, said method comprising				
3	contacting said population with a first solution which is hyperosmotic with				
4	respect to a solute,				
5	loading a solute into said erythrocytes,				
6	removing said erythrocytes from said hyperosmotic solution,				
7	contacting said erythrocytes with a second solution which is mildly				
8	hypoosmotic in comparison to said hyperosmotic solution, thereby lysing fragile or damaged				
9	cells, and				
10	separating said fragile or damaged cells from said population.				
1	18. A method of claim 14, wherein said separation is by centrifugation.				
1	19. A method for freeze-drying erythrocytes comprising lowering the				
2	hematocrit of said erythrocytes to between 2 and 5%.				
1	20. A method for freeze-drying erythrocytes, comprising drying said				
2	erythrocytes in the presence of liposomes.				
1	21. A method of claim 18, wherein said liposomes are composed primarily				
2	of unsaturated lipids.				
2	of thisattifated ripids.				
1	22. A method for freeze-drying erythrocytes, comprising freeze-drying				
2	said erythrocytes in the presence of 200-300 mOsm of potassium salts.				
1	23. A method of claim 19, wherein said erythrocytes are present in a				
2	hematocrit of up to 15%.				
1	24. A buffer for drying erythrocytes, said buffer comprising liposomes.				

WO 2005/026319 PCT/US2004/025395

1		25.	A buffer of claim 21, wherein said liposomes are composed primarily	
2	of unsaturated	l lipids.		
1		26.	A buffer for drying erythrocytes, said buffer comprising ascorbic acid	
1		27.	A buffer for rehydrating dried erythrocytes, said buffer comprising	
2	methylene blu	ıe.		
1		28.	A buffer for rehydrating dried erythrocytes, said buffer comprising	
2	transition met	al ions.		
1		29.	A buffer of claim 24, wherein said transition metal ions are selected	
2`	from the group consisting of zinc, copper, magnesium, and nickel.			
1		30.	A solution for rehydrating dried erythrocytes, said solution comprising	
2	ascorbic acid.		•	
1		31.	A solution for rehydrating dried erythrocytes, said solution comprising	
2	methylene blu	e, ascoi	bic acid, and transition metal ions.	
1		32.	A method for rehydrating dried erythrocytes, said method comprising	
2	contacting said	dried	erythrocytes with a solution comprising methylene blue.	
1		33.	A method for rehydrating dried erythrocytes, said method comprising	
2	contacting said	dried	erythrocytes with a solution comprising transition metal ions.	
1		34.	A method for rehydrating dried erythrocytes, said method comprising	
2	contacting said	dried (erythrocytes with a solution comprising ascorbic acid.	
1		35.	A method for rehydrating dried erythrocytes, said method comprising	
2	contacting said		erythrocytes with a solution comprising methylene blue, and transition	
3	metal ions.		,	