

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-134494
(43)Date of publication of application : 12.05.2000

(51)Int.CL H04N 1/60
G06T 1/00
H04N 1/46

(54) COLOR CONVERSION COEFFICIENT DETERMINING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a device which determine color conversion coefficients actualizing color conversion between color output devices so that color matching and superior continuity are obtained in the entire color space.

SOLUTION: A weighting coefficient determination part 207 sends a weighting coefficient corresponding to a grating point address ($L^*a^*b^*$ value) to a color prediction part 206, which calculates a final color predicted value ($L^*a^*b^*$) from a color predicted value by a hierarchical neural net and a color predicted value by a hue division type linear model according to the weighting coefficient. Here, the weighting coefficient determined by the weighting coefficient determination part 207 is so calculated that continuous conversion is performed through table conversion, etc., in an input color space (CIELAB) by referring to the variation quantity of a colorimetric value for the variation quantity of the color material coordinate value of, for example, a color output device.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Best Available Copy

(12) 公開特許公報 (A)

〔特許請求の範囲〕

(11) 特許出願公開番号
特開2000-134494
(P2000-134494A)
(4) 公開日 平成12年5月12日(2000.5.12)

(6) In1 C.1'	発明記号	F1	テーブル(参考)
H04N 1/60		H04N 1/40 D 5B057	
G06T 1/00		G06F 15/66 310 5C077	
H04N 1/46		H04N 1/46 Z 5C079	

審査請求 未請求	請求項の数 3	FD	(全7頁)
		(7) 出願人 000006747 株式会社リコー 東京都大田区中馬込1丁目3番6号	
		(72) 発明者 小島 学 東京都大田区中馬込1丁目3番6号 株式会 社リコー内	
		Fターム(参考) S5057 CA01 CA16 CC01 CE18 CH20 5C077 PP31 PP35 PP36 PP38 PP41 PP15 PP18 5C079 HB03 HB06 HB08 LA02 LB00 LB02 MA04 MA13 NA03	
		(54) [発明の名称] 色変換係数決定装置	
		(57) [要約]	
		〔現因〕 全色空間において、カラーマッチングし、か つ、連続性に優れたカラー出力デバイス間の色変換を実 現する色変換係数を決定する色変換係数決定装置を提供 すること。	
		〔解決手段〕 色みかけ係数決定部201は、被子点ア ドレス(L^* - a^* - b^*)に基づいて算出した色みかけ係数を色子 測部206に送り、色子測部206では、色みかけ係数 に基づいて、所蔵型ニューラルネットによる色子測定と色 相別型映像モデルによる色子測定どちらも、量はめな色 子測定(L^* - a^* - b^*)を計算する。ここで、色みかけ 係数決定部207で決定する色みかけ係数は、入力色空 間(CIELAB)において、例えば、カラー出力デバ イスの色材固有値の変化量に対する割色の変化量を參 考としたテーブルを用いて、通常的に変換するようにな る。	

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1

[図5]

*** NOTICES ***

Japan Patent Office is not responsible for any
damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The input chrominance signal of arbitration is changed into the control signal of a color picture output device by the operation of a color transform coefficient. It is color transform coefficient decision equipment which determines said color transform coefficient with the color predictive model which learned the color-material coordinate and colorimetry value of a color picture output device. The color-material coordinate of at least two kinds of color picture output devices, and the color predictive model which learned the colorimetry value, Color transform coefficient decision equipment characterized by having a color prediction means to predict the color of a color picture output device with said color predictive model which changed weighting, and a color correction factor decision means to determine said color correction factor based on prediction of this color prediction means, according to a standard color space coordinate.

[Claim 2] Modification of said weighting is color transform coefficient decision equipment according to claim 1 characterized by determining the lightness and the highest saturation of a color picture output device for every hue in a standard color space as criteria.

[Claim 3] The input chrominance signal of arbitration is changed into the control signal of a color picture output device by the operation of a color transform coefficient. It is color transform coefficient decision equipment which determines said color transform coefficient with the color predictive model which learned the color-material coordinate and colorimetry value of a color picture output device. The color-material coordinate of at least two kinds of color picture output devices, and the color predictive model which learned the colorimetry value, A color prediction means to predict the color of a color picture output device with said color predictive model which changed weighting according to the color-material coordinate of a color picture output device, Color transform coefficient decision equipment characterized by having a color correction factor decision means to determine said color correction factor, based on prediction of this color prediction means.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the color transform coefficient decision equipment which determines the color transform coefficient used with the color inverter which changes an input signal into the control signal of a color output unit.

[0002]

[Description of the Prior Art] Generally, as for the conversion to the device independent CMYK signal which is a control signal of a color output unit from the L* a* b* signal in a color output unit, the matrix operation and the interpolation operation of a look-up table are used. For example, in JP,5-22586,A, although a color transform function is derived The algorithm which learns function amendment of a high order term performs to linear transform, linear transform, and a degree gradually first. In each phase The parameter of a certain transform function of a kind of is learned, the parameter of the transform function obtained in the 1st step is not changed after it, and the color conversion system which the parameter of the transform function obtained in the 2nd step becomes from the equipment which has each process which is not changed in the stage after it is indicated. Moreover, in JP,8-102865,A, the color transform coefficient decision approach determined by the neural network who learned the actual measurement of the color-material coordinate value corresponding to the input color coordinate and this in the equipment which performs color conversion for the lattice point data of a look-up table is indicated in the approach of determining the lattice point data of a look-up table which change an input color coordinate value into the color-material coordinate value of a color picture output unit.

[0003]

[Problem(s) to be Solved by the Invention] With the technique which used the neural network (the error reverse spreading method) etc. for the above highly precise color transform coefficient decision, by there being a field (for example, high concentration section) with few colorimetry value changes to change of each color of the control signal CMYK of a color output unit, when inverse transformation which actually asks for a color transform coefficient is carried out, a value cannot become settled easily uniquely, and there is a problem in the continuity of gradation etc. moreover, the color reproduction of a color output unit -- there was a problem also in the dependability in a color, i.e., a non-learned field.

[being out of range (near)] Then, the 1st object of this invention is offering the color transform coefficient decision equipment which determines the color transform coefficient which realizes color conversion between the color output devices which carried out color matching and were excellent in the continuity in all color spaces.

[0004] The 2nd object of this invention is grasping the property of the color output device in a standard color space in a detail, and is offering the color transform coefficient decision equipment which determines the color transform coefficient which realizes color conversion between the color output devices which carried out color matching and were excellent in the continuity in all color spaces. The 3rd object of this invention is easy technique (short time), and is offering the color transform coefficient decision equipment which determines the color transform coefficient which realizes color conversion

between the color output devices which carried out color matching and were excellent in the continuity in all color spaces.

[0005]

[Means for Solving the Problem] In invention according to claim 1, the input chrominance signal of arbitration is changed into the control signal of a color picture output device by the operation of a color transform coefficient. It is color transform coefficient decision equipment which determines said color transform coefficient with the color predictive model which learned the color-material coordinate and colorimetry value of a color picture output device. The color-material coordinate of at least two kinds of color picture output devices, and the color predictive model which learned the colorimetry value, Said 1st object is attained by having had a color prediction means to predict the color of a color picture output device with said color predictive model which changed weighting, and a color correction factor decision means to determine said color correction factor based on prediction of this color prediction means, according to the standard color space coordinate.

[0006] In invention according to claim 2, modification of said weighting attains said 2nd object in invention according to claim 1 by determining the lightness and the highest saturation of a color picture output device for every hue in a standard color space as criteria.

[0007] In invention according to claim 3, the input chrominance signal of arbitration is changed into the control signal of a color picture output device by the operation of a color transform coefficient. It is color transform coefficient decision equipment which determines said color transform coefficient with the color predictive model which learned the color-material coordinate and colorimetry value of a color picture output device. The color-material coordinate of at least two kinds of color picture output devices, and the color predictive model which learned the colorimetry value, A color prediction means to predict the color of a color picture output device with said color predictive model which changed weighting according to the color-material coordinate of a color picture output device, Said 3rd object is attained by having had a color correction factor decision means to determine said color correction factor, based on prediction of this color prediction means.

[0008]

[Embodiment of the Invention] Hereafter, the gestalt of suitable operation of this invention is explained to a detail with reference to drawing 1 thru/or drawing 5. First, the color inverter by the look-up table (lattice point output value) is explained as an example which changes an input chrominance signal into the control signal of a color output unit. When the CIELAB color space which is a typical color space is made into an input color space as shown in drawing 1 for example, a CIELAB color space is divided into a solid figure (here cube) of the same kind. And in order to calculate the lattice point output value P which is an input and which can be set a coordinate ($L^* a^* b^*$ value), a cube including the coordinate of said input is chosen and linear interpolation is carried out based on the location in the output value on the lattice point of eight points of the this chosen cube set up beforehand, and said cube of said input (distance from each lattice point).

[0009] Here, when it is the control signal of 4 color printer, the lattice point output value P is equivalent to C, M, Y, and K value, respectively. this input color space (CIELAB) -- inner -- the block block diagram of an example of lattice point output-value (color transform coefficient) decision equipment which determines the output value on all the lattice point (C, M, Y, K) is shown in drawing 2. The lattice point output-value storage section which memorized the output value on the lattice point which 201 determined (C, M, Y, K) in drawing 2, and 202 and 203 The lattice point address selection section which generates the lattice point address at the time of dividing into plurality the input color space which carries out color conversion (202:RGB and 203: $L^* a^* b^*$), and 204 Desired value ($L^* a^* b^*$) and $L^* a^* b^*$ of an output color corresponding to the lattice point address It is the Target date creation section which determines the ink volume K to an input.

[0010] 205 is the CMY signal generator which generates a suitable CMY signal according to the lattice point address. 206 It is the color prediction section which predicts the output color ($L^* a^* b^*$) of the color output unit to the CMY input from the CMY signal generator 205, and K input from the Target date creation section 204. With reference to the multiplier according to the lattice point address ($L^* a^*$

b^*), the lattice point address is generated from the weighting multiplier decision section of 207. 208 is the color difference operation part which computes the difference of the target color ($L^* a^* b^*$) determined in the Target date creation section 204, and the color ($L^* a^* b^*$) predicted in the color prediction section 206, and 209 is the lattice point output-value decision section which extracts the combination of CMY from which the color difference computed by the color difference operation part 208 (as opposed to $L^* a^* b^* K$) serves as min for every lattice point address.

[0011] Next, when actuation of this equipment is explained, they are RGB from the lattice point address selection sections 202 and 203, or $L^* a^* b^*$. The carrier beam Target date creation section 204 doubles a signal with the lightness range of ink volume (in the case of a RGB input $L^* a^* b^*$ after conversion) K, for example, range comprehension is carried out by linear transform like a bottom type.

[0012]

[Equation 1] $L^* = L^* \times (L_{white} - L_{black}) / 100 + L_{black}$, however L_{white} : The maximum lightness of an output unit (white point)

L_{black} : The minimum lightness of an output unit (black point)

[0013] Furthermore, at the Target date creation section 204, it is $L^* a^* b^*$. The ink volume K to a value defined beforehand is set up. About the method of setting up ink volume K, although set up in the range which generally does not exceed the maximum ink volume (ink volume which does not narrow the color reproduction range) although various approaches are proposed, according to the property of a color output unit, the suitable ink volume K is determined eventually.

[0014] $L^* a^* b^*$ to the lattice point address created in the Target date creation section 204 In order to look for the combination of CMY of the color output unit reproducing the (K) value, in the color prediction section 206, the property (CMY-> $L^* a^* b^*$) of a color output unit is expected. In order to find a solution early by the CMY signal generator 205 in that case, sequential generating of the CMY signal according to the lattice point address is carried out.

[0015] The color prediction section 301 according to a hierarchical neural network as the color prediction section 206 is shown in drawing 3, Consist of the color prediction section 302 by the hue assembled-die linear model, and in the color prediction section 301 by the hierarchical neural network By the error reverse spreading method using a hierarchical neural network, it is $L^* a^* b^*$ from the white point of CMYK monochrome. The relation of the colorimetry value ($L^* a^* b^*$) of distance and color mixture is learned. At the color prediction section 302 by the hue assembled-die linear model, it is $L^* a^* b^*$ from the white point of CMYK monochrome by the least square error method for every same color phase in a CIELAB color space. The relation of the colorimetry value ($L^* a^* b^*$) of distance and color mixture is learned.

[0016] The weighting multiplier decision section 207 calculates a final color forecast ($L^* a^* b^*$) in delivery and the color prediction section 206 according to a weighting multiplier from the color forecast according the weighting multiplier according to the lattice point address ($L^* a^* b^*$ value) to a hierarchical neural network, and the color forecast by the hue assembled-die linear model in the color prediction section 206. Here, in an input color space (CIELAB), the weighting multiplier determined in the weighting multiplier decision section 207 is table conversion modeled after the amount of colorimetry value changes to the variation of the color-material coordinate value of a color output device etc., and it is calculated so that it may change continuously. In addition, the configuration of the color prediction section 206 shown in this drawing 3 is an example, and is not limited to this.

[0017] In the color operation part 208, a difference with the color ($L^* a^* b^*$) predicted in the color prediction section 206 is computed, and it sets in the lattice point output-value decision section 209, and is $L^* a^* b^*$. The combination of CMY from which the color difference over (K) serves as min (sequential generating was carried out by the CMY signal generator 205) is extracted for every lattice point address, and the lattice point output-value storage section 201 is made to memorize.

[0018] Next, the gestalt of the 2nd operation is explained. Drawing 4 is the block block diagram of the equipment concerning the gestalt of the 2nd operation. In this drawing 4, 410 is the device property storage section which memorized each hue of the color output device in an input color space (CIELAB), and the highest saturation (color reproduction range) for every lightness. The weighting multiplier

decision section 407 computes the hue of the lattice point address ($L^* a^* b^*$ value), and saturation, and is based on the same color phase of the color output device in the device property storage section, and the highest saturation (color reproduction range) in this lightness for them. A weighting multiplier is calculated and a final color forecast ($L^* a^* b^*$) is calculated according to this weighting multiplier from the color forecast of the color prediction section 301 by the hierarchical neural network, and the color forecast of the color prediction section 302 by the hue assembled-die linear model (refer to drawing 3). [0019] Here, about the lattice point address ($L^* a^* b^*$ value) outside the highest saturation of raising (curves differ according to a hue and lightness), and a color output device, it calculates so that the color forecast of the color prediction section 301 according the specific gravity of the color forecast of the color prediction section 302 by the hue assembled-die linear model to a hierarchical neural network may not be used and it may change continuously, as it approaches near the highest saturation of a color output device fundamentally. In delivery and the color prediction section 206, a final color forecast ($L^* a^* b^*$) is calculated according to a weighting multiplier from the color forecast according the weighting multiplier according to the lattice point address ($L^* a^* b^*$ value) to a hierarchical neural network, and the color forecast by the hue assembled-die linear model in the color prediction section 206. Here, in an input color space (CIELAB), the weighting multiplier determined in the weighting multiplier decision section 207 refers to the amount of colorimetry value changes to the variation of the color-material coordinate value of a color picture device etc., and it calculates it so that it may change continuously. [0020] Next processing is the same as that of the gestalt of the 1st operation, a difference with the color ($L^* a^* b^*$) predicted in the color prediction section 406 is computed in the color difference operation part 408, and it is the lattice point output-value decision section 409. $L^* a^* b^*$ The combination of CMY from which the color difference over (K) serves as min (sequential generating was carried out by the CMY signal generator 405) is extracted for every lattice point address, and the lattice point output-value storage section 401 is made to memorize.

[0021] Next, the gestalt of the 3rd operation is explained. Drawing 5 is the block block diagram of the equipment concerning the gestalt of the 3rd operation. RGB or $L^* a^* b^*$ from the lattice point address selection sections 502 and 503 The carrier beam Target date creation section 504 doubles a signal with the lightness range of ink volume (in the case of a RGB input $L^* a^* b^*$ after conversion) K, and range comprehension is carried out by linear transform like the aforementioned formula. Furthermore, at the Target date creation section, it is $L^* a^* b^*$. The ink volume K to a value defined beforehand is set up. [0022] $L^* a^* b^*$ to the lattice point address set up in the Target date creation section 504 In order to look for the combination of CMY of the color output unit reproducing the (K) value, in the color prediction section 506, the property (CMYK-> $L^* a^* b^*$) of a color output unit is expected. In order to find a solution early by the CMY signal generator 505 in that case, sequential generating of the CMY signal according to the lattice point address is carried out. The color prediction section 301 according to a hierarchical neural network as the color prediction section 506 is shown in drawing 3 , Consist of the color prediction section 302 by the hue assembled-die linear model, and in the color prediction section 301 by the hierarchical neural network By the error reverse propagation approach using a hierarchical neural network, it is $L^* a^* b^*$ from the white point of CMYK monochrome. The relation of the colorimetry value ($L^* a^* b^*$) of distance and color mixture is learned. At the color prediction section 302 by the hue assembled-die linear model, it is $L^* a^* b^*$ from the white point of CMYK monochrome by the least square error method for every same color phase in a CIELAB color space. The relation of the colorimetry value ($L^* a^* b^*$) of distance and color mixture is learned.

[0023] The weighting multiplier decision section 507 calculates a final color forecast ($L^* a^* b^*$) in delivery and the color prediction section 506 according to a weighting multiplier from the color forecast according the weighting multiplier according to the color-material coordinate (CMYK) of the color output device sent from the CMY signal generator 505 and the Target date creation section 504 to a hierarchical neural network, and the color forecast by the hue assembled-die linear model in the color prediction section 506. Here, with reference to the total value (total amount) of the color-material coordinate value (CMYK) of for example, a color picture device etc., the weighting multiplier determined in the weighting multiplier decision section 507 is calculated so that it may change

continuously. In the color difference operation part 508, a difference with the color ($L^* a^* b^*$) predicted in the color prediction section 506 is computed, and it sets in the lattice point output-value decision section 509, and is $L^* a^* b^*$. The combination of CMY from which the color difference over (K) serves as min (sequential generating was carried out by the CMY signal generator 505) is extracted for every lattice point address, and the lattice point output-value storage section 501 is made to memorize.

[0024]

[Effect of the Invention] In invention according to claim 1, the color transform coefficient which realizes color conversion between the color output devices which carried out color matching and were excellent in the continuity can be determined in all color spaces including a field with few amounts of colorimetry value changes to the variation of the color-material coordinate value of a color output device.

[0025] In invention according to claim 2, the color transform coefficient which realizes color conversion between the color output devices which have grasped the property of the color output device in a standard color space in the detail, and carried out color matching in all color spaces including the field (outside of a color reproduction field) in which precision like a non-learning field is inferior, and were excellent in the continuity can be determined.

[0026] In invention according to claim 3, the color transform coefficient which realizes color conversion between the color output devices which carried out color matching in all color spaces including a field with few amounts of colorimetry value changes to the variation of the color-material coordinate value of a color output device, and were excellent in the continuity with easy technique (short time) can be determined.

[Translation done.]

*** NOTICES ***

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

- [Drawing 1] It is drawing explaining processing of the gestalt of operation of this invention.
[Drawing 2] It is the block block diagram of the color transform coefficient decision equipment concerning the gestalt of operation of the 1st of this invention.
[Drawing 3] It is drawing explaining the gestalt of operation of the 1st of this invention.
[Drawing 4] It is the block block diagram of the color transform coefficient decision equipment concerning the gestalt of operation of the 2nd of this invention.
[Drawing 5] It is the block block diagram of the color transform coefficient decision equipment concerning the gestalt of operation of the 3rd of this invention.

[Description of Notations]

- 201 Lattice Point Output-Value Storage Section
202 203 Lattice point address selection section
204 Target-date creation section
205 CMY Signal Generator
206 Color Prediction Section
207 Weighting Multiplier Decision Section
208 Color Difference Operation Part
209 Lattice Point Output-Value Decision Section
302 Color Prediction Section
407 Weighting Multiplier Decision Section
410 Device Property Storage Section
-

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]
201

[Drawing 3]

[Drawing 4]

[Drawing 5]

[Translation done.]

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.