QCM N°4

lundi 28 septembre 2020

Question 11

La négation de

$$\forall x \le 0, \quad (\forall y \in \mathbb{R}, \ x < y^2) \Longrightarrow x \ne 0$$

est:

a.
$$\exists x \leq 0, \quad x = 0 \Longrightarrow (\exists y \in \mathbb{R}, \ x \geqslant y^2)$$

b.
$$\exists x \leq 0$$
, $(\exists y \in \mathbb{R}, x \geq y^2)$ et $x \neq 0$

c.
$$\exists x > 0$$
, $x \neq 0$ et $(\exists y \in \mathbb{R}, x \geqslant y^2)$

d.
$$\exists x > 0$$
, $(\exists y \in \mathbb{R}, x \geqslant y^2)$ et $x \neq 0$

e. rien de ce qui précède.

Question 12

La contraposée de

$$\forall x \le 0, \quad (\forall y \in \mathbb{R}, \ x < y^2) \Longrightarrow x \neq 0$$

est:

$$\boxed{a.} \ \forall \, x \leqslant 0, \quad x = 0 \Longrightarrow \left(\exists \, y \in \mathbb{R}, \ x \geqslant y^2\right)$$

b.
$$\forall x \leq 0, \quad x \neq 0 \quad \text{et} \quad (\exists y \in \mathbb{R}, \ x \geq y^2)$$

c.
$$\forall x \leq 0$$
, $(\exists y \in \mathbb{R}, x > y^2) \Longrightarrow x = 0$

d.
$$\exists x \leq 0$$
, $(\exists y \in \mathbb{R}, x \geq y^2) \Longrightarrow x = 0$

e. rien de ce qui précède

Question 13

On considère les ensembles A=[1,5] et $B=]3,+\infty[.$ Alors :

a.
$$A \cup \overline{B} =]-\infty, 3]$$

b.
$$A \cap \overline{B} =]-\infty, 3]$$

$$\overline{C}$$
. $\overline{A} \cap B =]5, +\infty[$

d.
$$\overline{A} \cup B =]5, +\infty[$$

e. rien de ce qui précède

Question 14

On considère les ensembles A = [1, 5] et $B = [3, +\infty[$. Alors :

$$\overline{A \cup B} =]-\infty, 1[$$

b.
$$\overline{A \cap B} =]5, +\infty[$$

$$\overline{c}$$
. $\overline{A} \cap \overline{B} =]-\infty, 1[$

d.
$$\overline{A} \cup \overline{B} =]5, +\infty[$$

e. rien de ce qui précède

Question 15

On considère l'ensemble $A=\{a,b,c\}$ et on note $\mathscr{P}(A)$ l'ensemble des parties de A et $A^2=A\times A$. Alors :

a.
$$a \in \mathscr{P}(A)$$

b.
$$(a,c) \in \mathscr{P}(A)$$

c.
$$\{c, b\} \in A^2$$

$$\boxed{d.} \{b,c\} \in \mathscr{P}(A)$$

$$e$$
. $(a,c) \in A^2$

Question 16

On veut montrer par récurrence que : $\forall n \geqslant 2$, $\sum_{k=2}^n (k-1)(k-2) = \frac{n(n-1)(n-2)}{3}$. On pose : P(n) : $\ll \sum_{k=2}^n (k-1)(k-2) = \frac{n(n-1)(n-2)}{3}$ »

On pose:
$$P(n): \ll \sum_{k=2}^{n} (k-1)(k-2) = \frac{n(n-1)(n-2)}{3} \times \frac{n}{3}$$

 \boxed{a} . On initialise en montrant P(2).

- b. Pour montrer l'hérédité, on montre que P(n+1) est vraie.
- c. Pour montrer l'hérédité, on suppose que P(n) est vraie pour tout $n \ge 2$ et on montre qu'alors P(n+1)est vraie.

d.
$$P(n+1)$$
: $\sum_{k=3}^{n+1} (k-1)(k-2) = \frac{(n+1)n(n-1)}{3}$

e. rien de ce qui précède

Question 17

Soit f de $E=\{1,2,3,4\}$ dans E définie par :

$$\forall n \in E \text{ si } n \text{ est pair, } f(n) = \frac{n}{2} \text{ sinon } f(n) = n$$

Alors:

$$a. f(E) = \{1, 2, 3\}$$

b.
$$f^{-1}(\{1\}) = \{1\}$$

c.
$$f({1,2,3}) = {1,2,3}$$

$$\boxed{d.} f^{-1}(\{4\}) = \emptyset.$$

e. rien de ce qui précède

Question 18

Soient f et g deux fonctions de $\mathbb{R}^{\mathbb{R}}$ définies pour tout x de \mathbb{R} par :

$$f(x) = 2x$$
 et $g(x) = x^2 + 1$

Alors:

a.
$$f \circ g(x) = 2(x^2 + 1)$$

b.
$$f \circ g(x) = 4x^2 + 1$$

c. rien de ce qui précède.

Question 19

Soient E et F deux sous-ensembles de \mathbb{R} et f une fonction de $E \longrightarrow F$ définie pour tout x de E par :

$$f(x) = \sqrt{x+1}$$

Alors, on peut prendre (cochez la(les) bonne(s) réponse(s)) :

a.
$$E = \mathbb{R}$$
 et $F = \mathbb{R}^+$

$$b$$
. $E = [-1, +\infty[$ et $F = \mathbb{R}$

$$\overline{c}$$
. $E = [-1, +\infty[$ et $F = \mathbb{R}^+$

d.
$$E = \mathbb{R}^+$$
 et $F = [2, +\infty[$

e. rien de ce qui précède

Question 20

Soit f la fonction $\begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^2 \end{cases}$ Alors:

- a. f est injective.
- b. f est surjective.
- c. rien de ce qui précède.