Advanced Algorithms

南京大学

尹一通

Constraint Satisfaction Problem

- variables: $X = \{x_1, x_2, ..., x_n\}$
- domain: Ω , usually $\Omega = [q]$ for a finite q
- constraints: $c = (\psi, S)$ where $\psi: \Omega^k \to \{0,1\}$ and scope $S \subseteq X$ is a subset of k variables
- CSP instance: a set of constraints defined on X
- assignment: $\sigma \in \Omega^X$ assigns values to variables
- a constraint $c = (\psi, S)$ is satisfied if $\psi(\sigma_S) = 1$
- examples:
 - max-cut: q=2, constraints are \neq
 - k-SAT: q=2, constraints are k-clauses
 - matching/cover: q=2, constraints are $\sum \le 1$ (or $\sum \ge 1$)
 - k-coloring: q=k, constraints are \neq
 - graph homomorphism: constraint is adjacency matrix

Constraint Satisfaction Problem

- variables: $X = \{x_1, x_2, ..., x_n\}$
- domain: Ω , usually $\Omega = [q]$ for a finite q
- constraints: $c = (\psi, S)$ where $\psi: \Omega^k \to \{0,1\}$ and scope $S \subseteq X$ is a subset of k variables
- CSP instance: a set of constraints defined on X
- assignment: $\sigma \in \Omega^X$ assigns values to variables
- a constraint $c = (\psi, S)$ is satisfied if $\psi(\sigma_S) = 1$
- examples:
 - unique games: $\Omega = [q]$, each constraint is an arbitrary binary bijective predicate:
 - $\psi: \Omega^2 \to \{0,1\}$ where $\forall a \in \Omega$, \exists unique $b \in \Omega$, $\psi(a,b)=1$

Algorithmic Problems for CSP

Given a CSP instance *I*:

- satisfiability: decide whether ∃ an assignment satisfying all constraints
 - search: find such a satisfying assignment
- optimization: find an assignment satisfying as many constraints as possible
 - refutation (dual): find a "proof" of "no assignment can satisfy >m constraints" for m as small as possible
- counting: estimate the number of satisfying assignments
 - sampling: random sample a satisfying assignments
 - inference: observing part of a satisfying assignment, guess the value of an unobserved variable

Algorithmic Problems for CSP

CSP	Satisfiability	optimization	counting
2SAT	P	NP -hard	#P -complete
3SAT	NP- complete	NP- hard	#P -complete
matching	perfect matching P	max matching P	#P -complete
cut (2-coloring)	bipartite test P	max-cut NP -hard	FP (poly-time)
3-coloring	NP- complete	max-3-cut NP -hard	#P -complete

A Wishlist for Optimization Algorithms

- Nonlinear, non-convex objectives.
- Powerful enough to tackle hard problems in a systematic way, and meanwhile is still practical.
- Becoming more accurate as we're paying more (but certainly won't beat the inapproximability).
- A generic framework that can be applied obviously to various problems.

sum-of-squares (SoS) SDP, Lasserre hierarchy, Lovász-Schrijver hierarchy, ...

A Polynomial Program?

Given an n-variate polynomial f, determine:

• whether $f(x) \ge 0$ for all $x \in \{0,1\}^n$.

polynomial:

$$f(\boldsymbol{x}) = \sum_{\boldsymbol{d} = (d_1, \dots, d_n) \in \mathbb{N}^n} a_{\boldsymbol{d}} \cdot x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n}$$

degree of monomial $a_d \cdot x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n} : d_1 + \cdots + d_n$

degree of f: largest degree for non-zero monomials

multilinear:
$$f(\mathbf{x}) = \sum_{\mathbf{d} = (d_1, \dots, d_n) \in \{0,1\}^n} a_{\mathbf{d}} \cdot x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n}$$

A Polynomial Program?

Given an n-variate polynomial f, determine:

• whether $f(x) \ge 0$ for all $x \in \{0,1\}^n$.

graph G(V, E): $\forall x \in \{0,1\}^n$ represents a cut of size

$$cut(\boldsymbol{x}) = \sum_{ij \in E} (x_i - x_j)^2$$

$$\mathbf{let} \ f(\boldsymbol{x}) = C - cut(\boldsymbol{x})$$

- $\exists x \in \{0,1\}^n$, $f(x) < 0 \Leftrightarrow$ found a cut of size >C;
- $\forall x \in \{0,1\}^n : f(x) \ge 0 \Leftrightarrow \text{ no cut of size } > C;$

decision of non-negativity of f

optimization of cut by binary search for ${\cal C}$

Sum-of-Squares (SoS) Proofs

Given an n-variate polynomial f, find:

- either an $x \in \{0,1\}^n$ such that f(x) < 0;
- or a "proof" of $f(x) \ge 0$ over all $x \in \{0,1\}^n$.

a proof of non-negativity over hypercube:

f(x) can be represented as a sum of squares

$$f(x) = g_1(x)^2 + g_2(x)^2 + \cdots + g_r(x)^2$$

for all $x \in \{0,1\}^n$

 $f(x) \ge 0 \text{ over all } x \in \{0,1\}^n$

Sum of Squares (SoS) Polynomials

 $f:\mathbb{R}^n \to \mathbb{R}$ is an n-variate non-negative polynomial $\forall x \in \mathbb{R}^n, f(x) \ge 0$

Minkowaski: "Can any such f be represented as a sum of squares of other polynomials?"

- Hilbert (1888): No. (nonconstructive)
- Hilbert's 17th problem (1900):
 "Can such f be represented as SoS of rational functions?"
- Artin (1927): Yes. (to Hilbert's question)
- Motzkin (1967):

$$f(x,y,z) = z^6 + x^4y^2 + x^2y^4 - 3x^2y^2z^2$$

nonnegative but not SoS of polynomials

David Hilbert (1862-1943)

SoS Proofs

degree-d SoS proof for $f: \{0,1\}^n \rightarrow \mathbb{R}$:

n-variate polynomials $g_1, g_2, ..., g_r$: $\{0,1\}^n \rightarrow \mathbb{R}$ of degree $\leq d/2$ such that

$$f(x) = g_1(x)^2 + g_2(x)^2 + \cdots + g_r(x)^2$$

for all $x \in \{0,1\}^n$.

For nonnegative polynomial $f: \{0,1\}^n \rightarrow \mathbb{R}$

- degree-2n SoS proof always exists (by interpolation);
- a degree-d SoS proof needs at most $r = n^{O(d)}$ length;
- a degree-d SoS proof $f = \sum_i g_i^2$ over $\{0,1\}^n$, can be verified in $n^{O(d)}$ time (by reducing to multilinear polynomials);
- if f has degree-d SoS proof, then it can be found in $n^{O(d)}$ time (by SDP).

A Polynomial Program?

Given an n-variate polynomial f, find:

- either an $x \in \{0,1\}^n$ such that f(x) < 0;
- or a "proof" of $f(x) \ge 0$ over all $x \in \{0,1\}^n$.

each $x \in \{0,1\}^n \Leftrightarrow \text{ a cut in } G(V,E) \text{ of size:}$

$$cut(\boldsymbol{x}) = \sum_{ij \in E} (x_i - x_j)^2$$

$$\mathbf{let} \ f(\boldsymbol{x}) = C - cut(\boldsymbol{x})$$

optimization

- $\exists x \in \{0,1\}^n$, $f(x) < 0 \Leftrightarrow$ found a cut of size >C;
- $\forall x \in \{0,1\}^n : f(x) \ge 0 \Leftrightarrow \text{ no cut of size } > C;$

decision of non-negativity of f

optimization of cut refutation by binary search for C

Pseudo-Distribution

degree-d pseudo-distribution over $\{0,1\}^n$:

 $\mu: \{0,1\}^n \rightarrow \mathbb{R}$ (could be negative) such that

- $\bullet \sum_{\boldsymbol{x} \in \{0,1\}^n} \mu(\boldsymbol{x}) = 1$
- for every polynomial $f: \{0,1\}^n \rightarrow \mathbb{R}$ of degree $\leq d/2$, the formal expectation:

$$\mathbb{E}_{\mu} f^2 = \sum_{\boldsymbol{x} \in \{0,1\}^n} \mu(\boldsymbol{x}) f(\boldsymbol{x})^2 \ge 0$$

- any degree-d pseudo-distribution μ can be represented as a multilinear polynomial of degree at most d;
- if an f of degree $\leq d$ has a pseudo-distribution μ such that $\mathbf{E}_{\mu}f < 0$, then μ can be found in $n^{\mathrm{O}(d)}$ time (by SDP).

Duality

degree-d SoS proof for $f: \{0,1\}^n \rightarrow \mathbb{R}$:

$$f = g_1^2 + \cdots + g_r^2$$
 for g_1, \ldots, g_r for of degree $\leq d/2$

degree-d pseudo-distribution $\mu: \{0,1\}^n \rightarrow \mathbb{R}$:

$$\mathbb{E}_{\mu}\mathbf{1}=1$$
 and $\mathbb{E}_{\mu}f^2\geq 0$ for any f of degree $\leq d/2$

Duality of SoS proofs and pseudo-distributions:

(SDP) f has degree-d \longrightarrow $\mathbb{E}_{\mu}f \geq 0$ for all degree-d pseudo-distribution μ $\mathbb{E}_{\mu} f \geq 0$ for all degree-d

f has no degree-dSoS proof

 \Leftrightarrow $\mathbf{E}_{\mu}f < 0$ for some degree-dpseudo-distribution μ (SDP)

• functions with degree-d proofs form a convex set; pseudo-distribution is a separating hyperplane from it.

The SoS Algorithm

a polynomial $f: \{0,1\}^n \rightarrow \mathbb{R}$ of degree $\leq k$, find:

- either a proof of $f(x) \ge 0$ over all $x \in \{0,1\}^n$;
- or an $x \in \{0,1\}^n$ such that f(x) < 0.

Duality of SoS proofs and pseudo-distributions:

SoS Algorithm:

try for every even $d \ge k$, to find (by SDP in $n^{O(d)}$ time):

- either a degree-d SoS proof for f;
- or a degree-d pseudo-dist. μ such that $\mathbf{E}_{\mu}f<0$;

The SoS Algorithm

```
a polynomial f: \{0,1\}^n \rightarrow \mathbb{R} of degree \leq k, find:
```

- either a proof of $f(x) \ge 0$ over all $x \in \{0,1\}^n$;
- or an $x \in \{0,1\}^n$ such that f(x) < 0.

SoS Algorithm:

try for every even $d \ge k$, to find (by SDP in $n^{O(d)}$ time):

- either a degree-d SoS proof for f;
- or a degree-d pseudo-dist. μ such that $\mathbf{E}_{\mu}f<0$;

```
for specific from \mu
```

efficiently sample-able probability distribution ν over $\{0,1\}^n$ such that $\mathbf{E}_{\nu}f\!\!<\!\!0$

- time complexity: for what d, f has degree-d SoS proof
- approximation ratio: gap between pseudo-dist. and dist.

Max-Cut

$$\forall x \in \{0,1\}^n$$
:

$$cut(\boldsymbol{x}) = \sum_{ij \in E} (x_i - x_j)^2$$

Rounding pseudo-distributions:

 $\forall G$ and $\forall degree-2$ pseudo-dist. μ \exists an efficiently sample-able dist. ν such that

$$\underset{\boldsymbol{x} \sim \nu}{\mathbb{E}}[cut(\boldsymbol{x})] \ge 0.878 \underset{\boldsymbol{x} \sim \mu}{\mathbb{E}}[cut(\boldsymbol{x})]$$

for every C: polynomial $f(x) = C - 0.878 \cdot cut(x)$

- either has a degree-2 SoS proof of non-negativity (by duality);
- or produce a random cut $\sim \nu$ with $\mathbf{E}[\text{cut-size}] > 0.878 \cdot C$

for C = OPT(G), this means $E[cut\text{-size}] > 0.878 \cdot OPT$

Convex Programming

Convex programming:

min
$$m{c}^Tm{x}$$
 s.t. $m{x} \in \mathcal{K}$

$$\exists oldsymbol{x} \in \mathcal{K}'$$
?

$$\mathcal{K}' = \mathcal{K} \cap \{ \boldsymbol{x} : \boldsymbol{c}^T \boldsymbol{x} \leq b \}$$
 still convex

 \mathcal{K} : convex body

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{K}, \quad \forall \lambda \in [0, 1]$$

$$\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in \mathcal{K}$$

convex polytope, set of positive semidefinite matrices

Separation Oracle

Farkas's Lemma:

convex set $\ \mathcal{K} \subseteq \mathbb{R}^n$, point $oldsymbol{p}
ot\in \mathcal{K}$

 \exists a hyperplane separating p from \mathcal{K}

poly-time separation oracle for convex set \mathcal{K} :

Given a point p, either confirms that $p \in \mathcal{K}$ or returns a hyperplane separating p from \mathcal{K} within poly-time.

- even works for programs with infinite constraints: SDP
- LP: returns a violated linear constraint
- SDP: returns an eigenvector with negative eigenvalue

The Ellipsoid Method

Assume ∃ a poly-time Separation Oracle (SO)

bounding boxes are ellipsoids:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - a_i) b_{ij} (x_j - a_j) \le 1$$

Divide & Conquer:

Start with a bounding box $\supseteq \mathcal{K}$; pick a point $p \in \text{bounding box}$ and asks SO if $p \in \mathcal{K}$; if SO says "yes", done; else SO returns a half-space $a^Tx \leq b$ containing \mathcal{K} but $a^Tp > b$; continue with the minimum bounding box $\supseteq \{x : a^Tx \leq b\}$;

The Ellipsoid Method

Assume ∃ a poly-time

Separation Oracle (SO)

bounding boxes are ellipsoids:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - a_i) b_{ij} (x_j - a_j) \le 1$$

Ellipsoid Method:

```
Start with an ellipsoid E_0 \supseteq \mathcal{K};
for i=0,1,2, ... until E_i is too small, then returns "\mathcal{K} is empty";
pick the center p of E_i and asks SO if p \in \mathcal{K};
if SO says "yes", return p;
else SO returns a half-space a^Tx \leq b containing \mathcal{K} but a^Tp > b;
E_{i+1} = the minimum ellipsoid \supseteq E_i \cap \{x : a^Tx \leq b\};
```

The Ellipsoid Method

$$\mathcal{K} \subseteq \mathbb{R}^n$$

Lemma:

 $\operatorname{Vol}(E_{i+1}) \le (1-1/2n) \operatorname{Vol}(E_i)$

Ellipsoid Method:

```
Start with an ellipsoid E_0 \supseteq \mathcal{K};
for i=0,1,2, ... until E_i is too small, then returns "\mathcal{K} is empty";
pick the center p of E_i and asks SO if p \in \mathcal{K};
if SO says "yes", return p;
else SO returns a half-space a^Tx \leq b containing \mathcal{K} but a^Tp > b;
E_{i+1} = the minimum ellipsoid \supseteq E_i \cap \{x : a^Tx \leq b\};
```