Announcements

Reminder: ps4 self-grading form out, due Friday 10/30

Assignment Project Exam Help

- pset 5 out Thursdaypt@/291ed.uen1/5 (1 week)
- Midterm grades will go up by Monday (don't discuss it yet)
- My Thursday office hours moved to 11am
- Lab this week probabilistic models, ipython notebook examples

Add WeChat powcoder CS542 Machine Learning

Bayesian Methods

Before, we derived cost functions from maximum likelihood,
 then added regularization terms to these cost functions

Assignment Project Exam Help

• Can we derive regularization directly from probabilistic principles? https://powcoder.com

Add WeChat powcoder

Yes! Use Bayesian methods

Add WeChat powcoder Motivation

Problem with Maximum Likelihood: Bias

- ML estimates are biased
- Especially a problem for small number of samples, or high input dimensionalityment Project Exam Help
- Suppose we sample 2,3,6 points from the same dataset, use
 ML to fit regression parameters

Problem with Maximum Likelihood: Overfitting

 $h(x, \theta_{ML})$

X

 \mathcal{X}

- ML estimates cannot be used to choose complexity of model
 - E.g. supposei warwant to estimate am Help the number of basis functions
 - Choose K=1? https://powcoder.com
 - Or K=15? Add WeChat powcoder
 - ML will always choose K that best fits training data (in this case, K=15)
 - Solution: use a Bayesian method--define a prior distribution over the parameters (results in regularization)

Bayesian vs. Frequentist

Frequentist: maximize data likelihood

Bayesian: treat θ as tapes of power in the posterior

$$p(\theta|D) = \frac{\text{Mod We follows}}{p(D)}$$

 $p(D|\theta)$ is the data likelihood, $p(\theta)$ is the prior over the model parameters

Bayesian Method

Treat θ as random variable, maximize posterior

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\text{Proje(Ot)}}$$
Assignment Proje(Ot)Exam Help

Likelihood $p(D|\theta)$ is the same we before, as in Maximum Likelihood Add We Chat powcoder

Prior $p(\theta)$ is a new distribution we model; specifies which parameters are more likely *a priori*, before seeing any data

p(D) does not depend on θ , constant when choosing θ with the highest posterior probability

Add WeChat powcoder Intuition

Will he score?

Will he score?

Prior Distribution

Prior distributions $p(\theta)$ are probability distributions of model parameters based on some a priori knowledge about the parameters. Assignment Project Exam Help

Prior distributions are independent of the observed data.

Coin Toss Example

What is the probability of heads (θ) ?

Assignment Project Exam Help

https://powcoder.com

Beta Prior for θ

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Assignment Project Exam Help

https://powcoder.com

Beta Prior for θ

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Uninformative Prior

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Informative Prior

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

Coin Toss Experiment

- n=10 coin tosses
- y = 4 number of heads Assignment Project Exam Help

https://powcoder.com

Likelihood Function for the Data

$$P(y|\theta) = Binomial(n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{(n-y)}$$

Assignment Project Exam Help

https://powcoder.com

Prior and Likelihood

$$P(y|\theta) = Binomial(n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{(n-y)}$$

Posterior Distribution

Posterior = Prior × Likelihood

$$P(\theta|y) = \frac{\text{Mither Report Exam Help}}{P(\theta|y)} = \frac{\text{Mither Report Exam Help}}{Beta(\alpha, \beta) \times Binomial(n, \theta)}$$

$$Add \text{ We Chat powcoder}$$

$$= Beta(y + \alpha, n - y + \beta)$$

This is why we chose the Beta distribution as our prior, posterior is also a Beta distribution: conjugate prior.

Posterior Distribution

Effect of Informative Prior

Effect of Uninformative Prior

Bayesian Linear Regression

Let's now apply the Bayesian method to linear regression.

To do that, we resign a prior over it. https://powcoder.com

First, review maximanddikalio Control of the contro

ML for Linear Regression

$$t=y+\epsilon=h(x)+\epsilon$$

Noise $\epsilon \sim N(\epsilon|0,\beta^{-1})$,
where $\beta=\frac{1}{\sigma^2},\ h(x)=\theta^T x$

Probability of one datatasint/powcoder.com

$$p(t|x,\theta,\beta) = N(t|h(x),\beta^{-1})$$

Add WeChat powcoder

$$p(t|x,\theta,\beta) = \prod_{i=1}^{m} N(t^{(i)}|h(x^{(i)}), \beta^{-1})$$
 Likelihood function

Maximum likelihood solution

$$\theta_{ML} = \underset{\theta}{\operatorname{argmax}} p(t|x, \theta, \beta)$$
 $\beta_{ML} = \underset{\beta}{\operatorname{argmax}} p(t|x, \theta, \beta)$

What is β useful for?

- Recall: we assumed observations t are Gaussian given h(x)
- β allows us to write down distribution over t, given new x, called predictive distribution of Exam Help

https://powcoder.com

Add Weckfar you wooder

 β_{ML}^{-1} is the variance of this distribution

Predictive Distribution

Given a new input point x, we can now compute a distribution over the output t:

Define a distribution over parameters

• Define prior distribution over θ as

$$p(\theta) = N(\theta | m_0, S_0)$$

Assignment Project Exam Help

 Combining this with the likelihood function and using results for marginal and httpditipawcade and batributions¹, gives the posterior

Add WeChat powcoder
$$p(\boldsymbol{\theta}|\boldsymbol{t}) = N(\boldsymbol{\theta}|\boldsymbol{m}_N, \boldsymbol{S}_N)$$

where

$$\boldsymbol{m}_{N} = \boldsymbol{S}_{N}(\boldsymbol{S}_{0}^{-1}\boldsymbol{m}_{0} + \beta \boldsymbol{X}^{T}\boldsymbol{t})$$
$$\boldsymbol{S}_{N}^{-1} = \boldsymbol{S}_{0}^{-1} + \beta \boldsymbol{X}^{T}\boldsymbol{X}$$

A common choice for prior

A common choice for the prior is

 $P(\boldsymbol{\theta}) = N(\boldsymbol{\theta} | \boldsymbol{0}, \alpha^{-1} \boldsymbol{I})$ Assignment Project Exam Helpo

for which

https://powcoder.com
$$m_N = \beta S_N X^T t$$
Add WeChat powcoder
 $S_N^{-1} = \alpha I + \beta X^T X$

Intuition: prefer θ to be simple

For a linear model for regression, $\theta^T x$ θ_1 What do we mean by θ being simple?

Assignment Project Exam Help $p(\theta) = N(\theta | \mathbf{0}, \alpha^{-1} \mathbf{I})$ https://powcoder.com

Namely, put a prior And θ , Which captures could be lief that θ is around zero, i.e., resulting in a simple model for prediction.

This Bayesian way of thinking is to regard θ as a random variable, and we will use the observed data D to update our prior belief on θ

Bayesian Linear Regression Example

0 data points observed

Bayesian Linear Regression Example

1 data point observed

Bayesian Linear Regression Example

2 data points observed

Bayesian Linear Regression Example

20 data points observed

Add WeChat powcoder Prediction

Prediction

 Now that we have a Bayesian model, how do we use it to make predictions for new data points?

Prediction

- One way is to maximize the posterior to get an estimate of $oldsymbol{ heta}_*$
- Then, plug $oldsymbol{ heta}_*$ into the predictive distribution
- This is known as the maximum a posteriori estimate Assignment Project Exam Help

Maximum A Posteriori (MAP)

Output the parameter that maximizes its posterior distribution given the data

Recall: for our prior $\frac{httpe{}'}{p}$

the posterior is Apt Dechatopany, soder

where
$$\boldsymbol{m}_N = \beta \boldsymbol{S}_N \boldsymbol{X}^T \boldsymbol{t}$$
, $\boldsymbol{S}_N^{-1} = \alpha \boldsymbol{I} + \beta \boldsymbol{X}^T \boldsymbol{X}$.

Therefore,
$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta|t) = \left(X^TX + \frac{\alpha}{\beta}I\right)^{-1}X^Ty$$

Same as solution to regularized regression with $\|\boldsymbol{\theta}\|^2$ term.

Note, this is the mode of the distribution

Add WeChat powcoder Connection to Regularized Linear Regression

Maximizing posterior leads to regularized cost function

Joint likelihood of both training data and parameter

$$\begin{split} \log p(\mathcal{D},\theta \) &= \sum \log p(y_n|\boldsymbol{x}_n,\theta \) + \log p(\theta \) \\ &\quad \text{Assignment Project Exam Help} \\ &\quad \frac{\sum_n (\theta^{\text{T}}\boldsymbol{x}_n - y_n)^2}{\text{https://powgoder.com}} \sum_d \frac{1}{2\alpha^{-2}} \, \theta_d^2 + \text{const} \end{split}$$

where β^{-2} is the noise A dance A dan

Maximum a posterior (MAP) estimate: we seek to maximize

$$\theta_{MAP} = \operatorname{arg\,max}_{\theta} \log p(\theta \mid \mathcal{D}) \propto \log p(\mathcal{D}, \theta)$$

that is, the most likely θ conditioning on observed training data \mathcal{D} .

Maximizing posterior leads to regularized cost function

Can re-write the optimization in the same form as the **regularized linear regression** cost:

$$Assignment Project Exam Help$$

where $\lambda = \beta^{-2}/\alpha^{-2}$ corresponds to the regularization hyperparameter. https://powcoder.com

- Intuitively, as $\lambda \to Ad\sigma$, then $\beta^{-2} \to \alpha^{-2}$. That is, the variance of noise if far greater than what our prior model can allow for θ . In this case, our prior would be more accurate than what data can tell us, so we are getting a simple model, where $\theta_{MAP} \to 0$.
- If $\lambda \to 0$, then $\beta^{-2} \ll \alpha^{-2}$, and we trust our data more, so the MAP solution approaches the maximum likelihood solution, i.e. $\theta_{MAP} \to \theta_{ML}$.

Effect of lambda

Overfitting is reduced from complex model to simpler one with the help of increasing regularizers

Add WeChat powcoder λ vs. residual error shows the difference of the model performance on training and testing dataset

Bayesian Predictive Exam Help Distribution

https://powcoder.com

Add WeChat powcoder

Maximum A Posteriori (MAP)

Output the parameter that maximizes its posterior distribution given the data

 However, sometimes we may want to hedge our bets and average (integrate) over all possible parameters, e.g. if the posterior is multi-modal

Bayesian Predictive Distribution

• Predict t for new values of x by integrating over θ :

$$p(t|\mathbf{x}_{\mathbf{s}}\mathbf{t}_{\mathbf{i}}\mathbf{g}_{\mathbf{n}}\mathbf{h})\mathbf{e}_{\mathbf{n}}\mathbf{t}$$

where

Add WeChat powcoder
$$\sigma_N^2(x) = \frac{1}{\beta} + x^T S_N x$$

What does it look like?

Compare to Maximum Likelihood:

$$p(t|x, \boldsymbol{x}, \boldsymbol{t}) = N(t|m_N^T x, \sigma_N^2)$$

$$p(t|x, \boldsymbol{x}, \boldsymbol{t}) = N(t|m_N^T x, \sigma_N^2) \qquad p(t|x, \theta_{ML}, \beta_{ML}) = N(t|\theta_{ML}^T x, \beta_{ML}^{-1})$$

Next Class

Support Vector Machines I

maximum margin methods; support vector Assignment Project Exam Help machines; primal vs dual SVM formulation; Hinge loss vs. cross-entropy loss

Add WeChat powcoder

Reading: Bishop Ch 7.1.1-7.1.2