Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration

Clarice Poon (University of Bath) & Jingwei Liang (University of Cambridge)

A composite and constrained optimisation problem

Consider the following problem

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} R(x) + J(y) \quad \text{such that} \quad Ax + By = b$$
 (P)

under basic assumptions

- R, J are proper, convex, lower semi-continuous functions.
- $A: \mathbb{R}^n \to \mathbb{R}^p$ and $B: \mathbb{R}^m \to \mathbb{R}^p$ are injective linear operators.
- $\operatorname{ri}(\operatorname{dom}(R) \cap \operatorname{dom}(J)) \neq \emptyset$ and the set of minimizers is non-empty.

Augmented Lagrangian:

$$\mathcal{L}(x,y,\psi) \stackrel{\text{\tiny def.}}{=} R(x) + J(y) + \langle \psi, \, Ax + By - b \rangle + \frac{\gamma}{2} \|Ax + By - b\|_2^2$$

where $\gamma > 0$ and $\psi \in \mathbb{R}^p$ is the Lagrangian multiplier.

ADMM

The ADMM iterations are:

$$\begin{split} & x_k = \operatorname{argmin}_{x \in \mathbb{R}^n} R(x) + \frac{\gamma}{2} \|Ax + By_{k-1} - b + \frac{1}{\gamma} \psi_{k-1}\|^2 \\ & y_k = \operatorname{argmin}_{y \in \mathbb{R}^m} J(y) + \frac{\gamma}{2} \|Ax_k + By - b + \frac{1}{\gamma} \psi_{k-1}\|^2 \\ & \psi_k = \psi_{k-1} + \gamma (Ax_k + By_k - b). \end{split}$$

It is well known that ADMM is equivalent to applying the Douglas-Rachford (DR) iterations on the dual of (\mathcal{P}) and the equivalent DR iterates are

$$z_k \stackrel{\text{def.}}{=} \psi_{k-1} + \gamma A x_k$$

Moreover, there is a fixed-point operator \mathcal{F} such that $z_k = \mathcal{F}(z_{k-1})$.

Partial smoothness

Definition [Lewis '05]: Let $R \in \Gamma_0(\mathbb{R}^n)$, R is partly smooth at x relative to a set \mathcal{M} containing x if $\partial R(x) \neq \emptyset$ and

Smoothness: \mathcal{M} is a C^2 -manifold, $R|_{\mathcal{M}}$ is C^2 near x

Sharpness: Tangent space $\mathcal{T}_{\mathcal{M}}(x)$ is $T_x \stackrel{\text{def.}}{=} \operatorname{par} (\partial R(x))^{\perp}$

Continuity: $\partial R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is continuous along $\mathcal M$ near x

Examples:

- $\ell_1, \ell_{1,2}, \ell_{\infty}$ -norm
- Nuclear norm
- Total variation

par(C): sub-space parallel to C, where $C \subset \mathbb{R}^n$ is a non-empty convex set.

Partial smoothness

It is known that under nondegeneracy conditions around the fixed points, if R and J are both partly smooth functions, then the behaviour of z_k is eventually **regular**.

Local linearisation [Liang, Fadili & Peyré '16]

There exists $K \in \mathbb{N}$ and a matrix M_{ADMM} such that for all $k \geqslant K$,

$$v_k = M_{\text{ADMM}} v_{k-1} + \varphi_{k-1}, \text{ where } \varphi_{k-1} = o(\|v_{k-1}\|).$$

We will discuss the implications of this for the case where

- R and J are both non-smooth.
- At least one of R or J is smooth.

Partial smoothness and sequence trajectory

Let $v_k \stackrel{\text{def.}}{=} z_k - z_{k-1}$ and let $\theta_k = \angle(v_k, v_{k-1})$.

Two non-smooth terms

Suppose R and J are locally polyhedral around x^* and y^* . Then

- $\varphi_k = 0$, M_{ADMM} is normal
- Spiral trajectory: $\cos(\theta_k) = \cos(\alpha) + \mathcal{O}(\eta^{2k})$ for some $\eta < 1$.

At least one smooth term

Suppose A is full rank square matrix and R is locally C^2 around x^* . Then

- Eigenvalues of M_{ADMM} are all real-valued for $\gamma > \|(A^{\top}A)^{-\frac{1}{2}}\nabla^2R(x^*)(A^{\top}A)^{-\frac{1}{2}}\|$.
- Straight line trajectory: $cos(\theta_k) \rightarrow 1$.

Inertial ADMM

$$\begin{split} &x_k = \operatorname{argmin}_{x \in \mathbb{R}^n} R(x) + \frac{\gamma}{2} \|Ax + \frac{1}{\gamma} \left(2\psi_{k-1} - \bar{z}_{k-1} \right) \|^2 \\ &z_k = \psi_{k-1} + \gamma A x_k \\ &\bar{z}_k = z_k + a_k (z_k - z_{k-1}) \\ &y_k = \operatorname{argmin}_{y \in \mathbb{R}^m} J(y) + \frac{\gamma}{2} \|By - b + \frac{1}{\gamma} (\bar{z}_k - \gamma b) \|^2 \\ &\psi_k = \bar{z}_k + \gamma (By_k - b). \end{split}$$

- Convergence is guaranteed for appropriate choice of a_k [Alvarez & Attouch '01].
- Acceleration guarantees are only available under additional assumptions such as Lipschitz smoothness and strong convexity [Pejcic & Jones '16, Kadkhodaie et al '15, França et al '18].

Failure of inertial

Find $z \in T_1 \cap T_2$. Solve using ADMM

$$\min_{x,y} \iota_{T_1}(x) + \iota_{T_2}(y) \quad \text{such that} \quad x - y = 0.$$

Consider $z_k \stackrel{\text{def.}}{=} \psi_{k-1} + \gamma x_k$. Standard ADMM:

Failure of inertial

Find $z \in T_1 \cap T_2$. Solve using ADMM

$$\min_{x,y} \iota_{T_1}(x) + \iota_{T_2}(y)$$
 such that $x - y = 0$.

Consider $z_k \stackrel{\text{def.}}{=} \psi_{k-1} + \gamma x_k$. Inertial ADMM with a = 0.2:

Failure of inertial

Consider the Lasso for a random Gaussian matrix $K \in \mathbb{R}^{m \times n}$ with m < n:

$$\min_{x,y\in\mathbb{R}^n}\mu\|x\|_1+\frac{1}{2}\|\mathit{K} y-f\|^2\quad\text{such that}\quad x-y=0.$$

Eventual trajectory:

- Straight line when $\gamma > ||K||^2$
- Linearisation matrix may have complex leading eigenvalue if $\gamma \leqslant \|K\|^2$.

Goal: Given past points $\{z_{k-j}\}_{j=0}^q$, predict z_{k+1} .

Idea

Define $v_j \stackrel{\text{def.}}{=} z_j - z_{j-1}$,

1. Fit the past directions v_{k-1}, \ldots, v_{k-q} to the latest direction v_k :

$$c_k \stackrel{\text{def.}}{=} \mathsf{argmin}_{c \in \mathbb{R}^q} \, \|V_{k-1}c - v_k\|^2, \quad \text{where} \quad V_{k-1} = [v_{k-1}, \dots, v_{k-q}] \in \mathbb{R}^{n \times q}.$$

2. If $V_k c_k pprox v_{k+1}$, then $ar{z}_{k,1} \stackrel{ ext{def.}}{=} z_k + V_k c_k pprox z_{k+1}$

Goal: Given past points $\{z_{k-j}\}_{j=0}^q$, predict z_{k+1} .

Idea

Define $v_j \stackrel{\text{def.}}{=} z_j - z_{j-1}$,

1. Fit the past directions v_{k-1}, \ldots, v_{k-q} to the latest direction v_k :

$$c_k \stackrel{\text{def.}}{=} \operatorname{argmin}_{c \in \mathbb{R}^q} \|V_{k-1}c - v_k\|^2$$
, where $V_{k-1} = [v_{k-1}, \dots, v_{k-q}] \in \mathbb{R}^{n \times q}$.

2. If $V_k c_k pprox v_{k+1}$, then $ar{z}_{k,1} \stackrel{ ext{def.}}{=} z_k + V_k c_k pprox z_{k+1}$

Repeat s times to predict z_{k+s} .

Goal: Given past points $\{z_{k-j}\}_{j=0}^q$, predict z_{k+1} .

Idea

Define $v_j \stackrel{\text{def.}}{=} z_j - z_{j-1}$,

1. Fit the past directions v_{k-1}, \ldots, v_{k-q} to the latest direction v_k :

$$c_k \stackrel{\text{def.}}{=} \operatorname{argmin}_{c \in \mathbb{R}^q} \|V_{k-1}c - v_k\|^2$$
, where $V_{k-1} = [v_{k-1}, \dots, v_{k-q}] \in \mathbb{R}^{n \times q}$.

2. If $V_k c_k \approx v_{k+1}$, then $\bar{z}_{k,1} \stackrel{\text{def.}}{=} z_k + V_k c_k \approx z_{k+1}$

Repeat s times to predict z_{k+s} .

Define: $H(c_k) \stackrel{\text{def.}}{=} \left[\begin{array}{c|c} c_k & \overline{1d_{q-1}} \\ \hline 0_{1 \ q-1} \end{array} \right]$ and $\overline{V}_{k,s} \stackrel{\text{def.}}{=} V_k H(c_k)^s$.

NB: $\bar{V}_{k,1} \stackrel{\text{def.}}{=} [(\bar{z}_{k,1} - z_k)|v_k| \cdots |v_{k-q+1}]$. The s-step extrapolation is

$$\bar{z}_{k,s} = z_k + \sum_{j=1}^{s} (\bar{V}_{k,j})_{(:,1)} = z_{k+1} + \underbrace{V_k \left(\sum_{j=1}^{s} H(c_k)^j\right)_{(:,1)}}_{\mathcal{E}_{s,q}\left(\{z_{k-j}\}_{j=0}^q\right)}$$

Adaptive Acceleration for ADMM

Initial: Let $s \geqslant 1$ and $q \geqslant 1$, p = q + 1. Let $\bar{z}_0 = z_0 \in \mathbb{R}^n$ and $V_0 = 0_{n \times q}$.

Repeat: For $k \geqslant 1$

$$\begin{split} y_k &= \mathsf{argmin}_{y \in \mathbb{R}^m} \, J(y) + \frac{\gamma}{2} \|By + \frac{1}{\gamma} \left(\bar{z}_{k-1} - \gamma b \right) \|^2 \\ \psi_k &= \bar{z}_{k-1} + \gamma (By_k - b) \\ x_k &= \mathsf{argmin}_{x \in \mathbb{R}^n} \, R(x) + \frac{\gamma}{2} \|Ax - \frac{1}{\gamma} \left(\bar{z}_{k-1} - 2\psi_k \right) \|^2 \\ z_k &= \psi_k + \gamma A x_k \\ v_k &= z_k - z_{k-1} \quad \text{and} \quad V_k = [v_k, V_k(:, 1:q-1)] \end{split}$$

• If $\operatorname{mod}(k,p)=0$: Compute coefficients c_k and let $C_k\stackrel{\text{def.}}{=} H(c_k)$.

If
$$\rho(C_k) < 1$$
: $\bar{z}_k = z_k + a_k \mathcal{E}_{s,q}(z_k, \dots, z_{k-q-1})$; else: $\bar{z}_k = z_k$.

• If $mod(k, p) \neq 0$: $\bar{z}_k = z_k$.

Remarks

- Typically set $q \leq 10$.
- When $\rho(C_k)$ < 1, $\sum_{i=1}^{s} C_k^i = \begin{cases} (C_k C_k^{s+1})(\mathrm{Id} C_k)^{-1} & s < \infty \\ (\mathrm{Id} C_k)^{-1} \mathrm{Id} & s = +\infty \end{cases}$.
- Extra memory cost of $n \times (q+1)$ (storing V_k).
- Extra computation cost of q^2n every (q+2) iterations.
- One could also extrapolate $\{x_k,y_k\}$ simultaneously. But this would require extra storage of past directions.

Theoretical guarantees

Global convergence:

- If $z_k = \mathcal{F}(z_{k-1})$ converges to fixed point z_* , then iterates $z_k = \mathcal{F}(z_{k-1} + \varepsilon_{k-1})$ also converge to z_* .
- Convergence is therefore guaranteed by appropriate choice of a_k .

Theoretical guarantees

Global convergence:

- If $z_k = \mathcal{F}(z_{k-1})$ converges to fixed point z_* , then iterates $z_k = \mathcal{F}(z_{k-1} + \varepsilon_{k-1})$ also converge to z_* .
- Convergence is therefore guaranteed by appropriate choice of a_k .

Local acceleration: Let $v_k \stackrel{\text{def.}}{=} z_k - z_{k-1}$ and assume that $v_k = Mv_{k-1}$.

- Coefficients fitting error: $\varepsilon_k \stackrel{\text{def.}}{=} \min_c \|V_{k-1}c v_k\|$.
- For $s \in \mathbb{N}$, $\|\bar{z}_{k,s} z^*\| \le \|z_{k+s} z^*\| + B_s \varepsilon_k$. If $\rho(M) < 1$ and $\rho(C_k) < 1$, then B_s is uniformly bounded in s.

Coefficients fitting error

Suppose that M is diagonalisable. Denote its distinct eigenvalues by $\left(\lambda_j\right)_j$ and order them in decreasing order.

- Asymptotic bound (fixed q and let $k \to +\infty$): $\varepsilon_k = \mathcal{O}(|\lambda_{q+1}|^k)$.
- Non-asymptotic bound (fixed q and k): Suppose that $\lambda(M)$ is real-valued and contained in the interval $[\alpha,\beta]$ with $-1<\alpha<\beta<1$, then $\varepsilon_k\lesssim \beta^{k-q}\left(\frac{\sqrt{\eta}-1}{\sqrt{\eta}+1}\right)^q$, where $\eta=\frac{1-\alpha}{1-\beta}$.

Remark: There is perfect linearisation for all k sufficiently large in the case where R and J are both polyhedral. Local acceleration is guaranteed with the choice of q=2.

Previous works

The topic of convergence acceleration is a well-established field in numerical analysis.

- 1927 Aitkin's ∆-process.
- 1965 Andersen's acceleration.
- 1970's Vector extrapolation techniques such as minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) [Sidi '17].
- 2016 Regularized non-linear acceleration (RNA) is a regularised version of RRE introduced by [Scieur et al '16].

Previous works

The topic of convergence acceleration is a well-established field in numerical analysis.

- 1927 Aitkin's ∆-process.
- 1965 Andersen's acceleration.
- 1970's Vector extrapolation techniques such as minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) [Sidi '17].
- 2016 Regularized non-linear acceleration (RNA) is a regularised version of RRE introduced by [Scieur et al '16].

Relations to our work:

- 1. Based on the notion of minimal polynomials, MPE aims to compute the limit point of $\{z_j\}_{j\in\mathbb{N}}$ given points $\{z_j\}_{j=0}^{q+1}$ by computing $\bar{z}=\sum_{j=0}^q c_j z_j$.
- 2. Linear prediction with infinite step is the same as MPE shifted by one point $\bar{z}_{\infty} = \sum_{j=0}^{q} c_{j} z_{j+1}$.

Our formulation gives an alternative viewpoint on MPE, specific to nonsmooth optimisation.

Experiment: Affine constrained minimisation

Consider the basis pursuit problem with $\Omega \stackrel{\text{def.}}{=} \{x \in \mathbb{R}^n ; Kx = f\}$:

$$\min_{x,y\in\mathbb{R}^n}R(x)+\iota_\Omega(y) \quad \text{such that} \quad x-y=0.$$

- Both functions are nonsmooth (and both are polyhedral for $R = \ell_1$).
- Inertial ADMM is slower than ADMM as eventual trajectory is a spiral.

Experiment: Lasso

Consider the Lasso problem

$$\min_{x,y\in\mathbb{R}^n}R(x)+\frac{1}{2}\|\mathit{K} y-f\|^2\quad\text{such that}\quad x-y=0.$$

Although inertial ADMM provides acceleration, A^3DMM is significantly faster.

Experiment: Total variation based image inpainting

Let $\Omega \stackrel{\text{def.}}{=} \big\{ x \in \mathbb{R}^{n \times n} \; ; \; P_{\mathcal{D}}(x) = f \big\}, \; P_{\mathcal{D}}$ randomly sets 50% pixels to zero and consider $\min_{x \in \mathbb{R}^{n \times n}} \|y\|_1 + \iota_{\Omega}(x) \quad \text{such that} \quad \nabla x - y = 0.$

- Both functions are polyhedral, trajectory is a spiral.
- Inertial ADMM is slower than ADMM.

Summary of contributions

Trajectory analysis

Under the assumption that R and J are partly smooth functions, $\{z_k\}_k$ eventually settles onto a regular trajectory. In particular:

- When both R and J are locally polyhedral (hence non-smooth) around the fixed point, z_k eventually moves along a spiral.
- 2. When at least one of R or J is smooth, the trajectory of z_k depends on γ and can be either a spiral or a straight line.

An adaptive acceleration scheme for ADMM

- The different trajectory behaviour of ADMM can lead to the failure of the inertial technique.
- We propose an acceleration strategy based on the idea of following the sequence trajectory.
- This provides an alternative geometric interpretation of vector extrapolation techniques such as MPE and RRE.