Math Review Part II

Problem Set 1: Real Analysis

Divya Bhagia*

August 19, 2019

1. The **inverse** image of a set $T \subset Y$ under a function $f: X \to Y$ is defined as

$$f^{-}(T) = \{x \in X : f(x) \in T\}$$

Let $T_1, T_2 \subset Y$, prove that $f^-(T_1 \cup T_2) = f^-(T_1) \cup f^-(T_2)$.

- 2. Prove that in a metric space (X, d), any open ball is an open set.
- 3. Let (X,d) be a metric space. Suppose $x_n \to x$ and $x_n \to x'$, then prove that x = x'.
- 4. Prove the following statement: Let (x_n) be a sequence in (\mathbb{R}^k, d_2) . The sequence (x_n) converges to $x \in \mathbb{R}^k$ iff the sequence (x_n^i) converges to x^i in (\mathbb{R}, d_2) for any $i \in \{1, 2, ..., k\}$.
- 5. In (\mathbb{R}, d_2) , let there be two convergent sequences $x_n \to x$ and $y_n \to y$. Then prove that $x_n y_n \to xy$.
- 6. Let (X, d) be a metric space, and S a subset of X. If S is compact in (X, d), then S is closed in (X, d).
- 7. Let (X,d) be a metric space, and $S \subset Y \subset X$. If S is closed in (X,d) and Y is compact in (X,d), then S is compact in (X,d).
- 8. Prove that any closed interval [a, b] is compact in (\mathbb{R}, d_2) .

^{*}PhD Candidate in Economics at Boston College (email: bhagia@bc.edu)