| Cognome   |                              |   |    |     |      |      |     |   |  |
|-----------|------------------------------|---|----|-----|------|------|-----|---|--|
| Nome      |                              | N | ON | SCR | IVEI | RE ( | QUI |   |  |
| Matricola |                              |   | Τ  |     | Τ    |      | Τ   | ] |  |
| Laurea    | CIV AMB GEST INF ELN TLC MEC | 1 | 2  | 3   | 4    | 5    | 6   |   |  |

## Università degli Studi di Parma

Dipartimento di Ingegneria e Architettura Esame di Analisi Matematica 2 — Soluzioni A.A. 2017-2018 — PARMA, 5 SETTEMBRE 2018

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di due ore e mezza. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

**Esercizio 1.** Sia  $A = \{(x,y) \in \mathbb{R}^2 : |x| - 4 \le y < e^{-|x|} e^{-3} \le x \le 2\}$ . Allora,

- (a) è chiuso;
- (b) il punto (1, 1/e) è punto di accumulazione di A;
- è convesso.

**Soluzione.** L'insieme A non è chiuso poichè i punti (x,y) con  $y=e^{|x|}$  e  $-3 \le x \le 2$  sono punti del bordo di A che non appartengono ad A. In particolare, sono tutti punti di accumulazione di A e tra essi vi è il punto di coordinate (1,1/e) corrispondente a x=1. Inoltre, A non è convesso poiché la funzione  $f(x) = e^{-|x|}, x \in \mathbb{R}$ , è convessa in ciascun intervallo  $(-\infty, 0]$  e  $[0, +\infty)$ . La risposta corretta è quindi (b).

Esercizio 2. Sia  $\gamma$  la curva parametrica definita da  $\gamma(t) = (\pi t + \operatorname{sen}(\pi t)) e_1 - t^2 e_2$  per  $t \in \mathbb{R}$ . Allora, il vettore normale n a  $\gamma$  in  $t_0 = 1$  è

(a) 
$$n = e_1;$$
 (b)  $n = e_1 - e_2;$  (c)  $n = -2e_2.$ 

(b) 
$$n = e_1 - e_2$$

(c) 
$$n = -2e_2$$

**Soluzione.** La curva  $\gamma$  è liscia e il vettore tangente è  $\gamma'(t) = (\pi + \pi \cos(\pi t))e_1 - 2te_2$  per ogni t. In  $t_0 = 1$  risulta  $\gamma'(1) = -2e_2$ . Dei tre vettori proposti, solo il primo è perpendicolare al vettore tangente ed è dunque il vettore normale a  $\gamma$  in  $t_0 = 1$ . La risposta corretta è quindi (a).

**Esercizio 3.** Sia  $\Phi \in C^{\infty}(\mathbb{R}^2, \mathbb{R}^2)$  la funzione di componenti  $\Phi = (\Phi^1, \Phi^2)$  definite da

$$\Phi^{1}(x,y) = x + e^{-y}$$
 e  $\Phi^{2}(x,y) = \operatorname{sen}(xy) + x^{2} - 3y$ 

per ogni  $(x,y) \in \mathbb{R}^2$ . Allora,

- (a)  $D\Phi(1,2)$  è simmetrica;
- (b)  $D\Phi(1,0)$  è invertibile;
- (c)  $J\Phi(4\pi, 1) > 0$ .

Soluzione. Le derivate parziali di  $\Phi$  sono date da

$$\partial_x \Phi^1(x,y) = 1; \quad \partial_y \Phi^1(x,y) = -e^{-y}; \quad \partial_x \Phi^2(x,y) = y \cos(xy) + 2x; \quad \partial_y \Phi^2(x,y) = x \cos(xy) - 3;$$

per ogni  $(x,y) \in \mathbb{R}^2$  e quindi le matrici gradiente di  $\Phi$  nei punti considerati sono

$$D\Phi(1,2) = \begin{pmatrix} 1 & -\mathrm{e}^{-2} \\ -2\cos(2) + 2 & \cos(2) + 3 \end{pmatrix}; \quad D\Phi(1,0) = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}; \quad D\Phi(1,2) = \begin{pmatrix} 1 & -\mathrm{e}^{-1} \\ 3 & 4\pi + 3 \end{pmatrix}.$$

Di esse, la prima è evidentemente non simmetrica e la seconda non è invertibile poiché ha determinante nullo. Infine risulta  $J\Phi(4\pi,1) = 4\pi + 3 + 3/e > 0$  e quindi la risposta corretta è (c).

## Esercizio 4. Sia

$$f(x, y, z) = x + y^2 + 2z^3/3,$$
  $(x, y, z) \in \mathbb{R}^3.$ 

- (a) Determinate gli eventuali punti critici di f e stabilitene la natura.
- (b) Determinate i massimi ed i minimi globali di f sulla palla

$$B = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}.$$

**Soluzione.** (a) La funzione f è un polinomio e quindi è di classe  $C^{\infty}(\mathbb{R}^3)$ . Le sue derivate parziali sono date da

$$f_x(x, y, z) = 1;$$
  $f_y(x, y, z) = 2y;$   $f_z(x, y, z) = 2z^2$ 

per ogni (x, y, z) e quindi non esistono punti critici di f.

(b) La palla B è un insieme compatto e quindi f assume minimo e massimo globale su B per il teorema di Weierstrass. Poiché f non ha punti critici in  $\mathbb{R}^3$ , il massimo e il minimo globali di f su B devono essere assunti in punti del bordo  $\partial B$ .

Per determinare tali punti osserviamo che si ha

$$\partial B = \{(x, y, z) : q(x, y, z) = 1\}$$

dove q denota il polinomio  $q(x,y,z)=x^2+y^2+z^2$ ,  $(x,y,z)\in\mathbb{R}^3$ , e che il gradiente  $\nabla q$  si annulla solo nell'origine. Pertanto,  $\partial B$  risulta essere una 2-superficie regolare in  $\mathbb{R}^3$ . Per il teorema dei moltiplicatori di Lagrange, nei punti di massimo e minimo di f su  $\partial B$  il gradiente  $\nabla f=(1,2y,2z^3)$  di f deve essere parallelo al gradiente  $\nabla q(x,y,z)=(2x,2y,2z)$ .

I punti  $(x,y,z) \in \mathbb{R}^3$  in cui  $\nabla f(x,y,z)$  e  $\nabla q(x,y,z)$  sono paralleli sono i punti (x,y,z) tali che risulti

$$\operatorname{rk} \begin{pmatrix} 1 & 2y & 2z^{2} \\ 2x & 2y & 2z \end{pmatrix} \le 1 \qquad \Longleftrightarrow \qquad \begin{cases} y(1-2x) = 0 \\ z(1-2xz) = 0 \\ yz(1-z) = 0 \end{cases}.$$

Dalla prima equazione si ricava che deve essere y=0 oppure x=1/2. Nel primo caso, per le restanti equazioni deve essere z=0 oppure  $z\neq 0$  e x=1/2z. Imponendo che i corrispondenti punti si trovino su  $\partial B$  si trovano i punti di coordinate

$$P_{\pm} = (\pm 1, 0, 0)$$
 e  $Q_{\pm} = (\pm 1/\sqrt{2}, 0 \pm 1/\sqrt{2}).$ 

Nell'altro caso deve essere x=1/2 e per le restanti equazioni deve essere z=0 oppure z=1. Imponendo che i corrispondenti punti si trovino su  $\partial B$  si trovano i punti di coordinate

$$R_{\pm} = (1/2, \pm \sqrt{3}/2, 0).$$

Nei punti così ottenuti risulta

$$f(P_{\pm}) = \pm 1;$$
  $f(Q_{\pm}) = \pm \frac{4}{\sqrt{2}};$   $f(R_{\pm}) = 5/4;$ 

da cui segue

$$\max_{B} f = f(Q_{\pm}) = 5/4$$
 e  $\min_{B} f = f(P_{-}) = 1$ .

Esercizio 5. Sia

$$K = \left\{ (x,y,z): \, \max\left\{ \sqrt{x^2 + y^2}, 1 - \sqrt{x^2 + y^2} \right\} \le z \le \sqrt{1 - x^2 - y^2} \, \, \mathrm{e} \, \, x, y \ge 0 \right\}.$$

(a) Descrive te l'insieme K.

(b) Calcolate 
$$I = \int_K xy \, dV_3(x, y, z)$$
.

**Soluzione.** L'insieme K è la porzione compresa tra i semispazi  $x \ge 0$  e  $y \ge 0$  del solido di rotazione che si ottiene facendo ruotare attorno all'asse z la figura contenuta nel primo quadrante del piano rz (con  $r = \sqrt{x^2 + y^2}$ ) compresa tra la circonferenza di equazione  $r^2 + z^2 = 1$  e il grafico della funzione  $z = \max\{r, 1 - r\}$  per  $0 \le r \le 1$  come illustrato nella figura seguente.



L'insieme K è compatto perché è limitato ed è intersezione di controimmagini di intervalli chiusi mediante funzioni continue. Inoltre, K è misurabile poiché è intersezione di un solido di rotazione e di semispazi. La funzione

$$f(x, y, z) = xy,$$
  $(x, y, z) \in \mathbb{R}^3,$ 

è un polinomio in  $\mathbb{R}^3$  e quindi integrabile su K.

Calcoliamo l'integrale di f su K mediante la formula di riduzione per fili. La proiezione di K sul piano xy è il cerchio

$$\pi_{xy}(K) = \left\{ (x, y) : x^2 + y^2 \le 1/\sqrt{2} \text{ e } x, y \ge 0 \right\}$$

che scriviamo con ovvio significato dei simboli come unione dei due insiemi non sovrapposti

$$\pi_{xy}(K) = \left\{ (x,y) : \sqrt{x^2 + y^2} \le 1/2 \text{ e } x, y \ge 0 \right\} \cup \left\{ (x,y) : 1/2 \le \sqrt{x^2 + y^2} \le 1/\sqrt{2} \text{ e } x, y \ge 0 \right\} = \pi_1 \cup \pi_2.$$

Per ogni  $(x,y) \in \pi_{xy}(K)$  la corrispondente sezione è il segmento

$$K_{(x,y)} = \begin{cases} \left[ 1 - \sqrt{x^2 + y^2}, \sqrt{1 - x^2 - y^2} \right] & \text{se } (x,y) \in \pi_1 \\ \left[ \sqrt{x^2 + y^2}, \sqrt{1 - x^2 - y^2} \right] & \text{se } (x,y) \in \pi_2. \end{cases}$$

Per la formula di riduzione si ha allora

$$I = \int_{\pi_1} \left( \int_{1-\sqrt{x^2+y^2}}^{\sqrt{1-(x^2+y^2)}} xy \, dz \right) dV_2(x,y) + \int_{\pi_2} \left( \int_{\sqrt{x^2+y^2}}^{\sqrt{1-(x^2+y^2)}} xy \, dz \right) dV_2(x,y)$$

e, utilizzando coordinate polari nel piano abbinate nuovamente alla formula di riduzione, risulta

$$\begin{split} I &= \int_0^{\pi/2} \cos\theta \sin\theta \, d\theta \int_0^{1/2} r^3 \left( \sqrt{1-r^2} - (1-r) \right) \, dr + \int_0^{\pi/2} \cos\theta \sin\theta \, d\theta \int_{1/2}^{1/\sqrt{2}} r^3 \left( \sqrt{1-r^2} - r \right) \, dr = \\ &= \frac{1}{2} \left\{ \int_0^{1/\sqrt{2}} r^3 \sqrt{1-r^2} \, dr - \int_0^{1/2} r^3 (1-r) \, dr - \int_{1/2}^{1/\sqrt{2}} r^4 \, dr \right) = \\ &= -\frac{1}{2} \left\{ \frac{1}{3} r^2 (1-r^2)^{3/2} + \frac{2}{15} (1-r^2)^{5/2} \Big|_0^{1/\sqrt{2}} + \left( \frac{1}{4} r^4 - \frac{1}{5} r^5 \right) \Big|_0^{1/2} + \frac{1}{5} r^5 \Big|_{1/2}^{1/\sqrt{2}} \right\} = \dots = \frac{25 - 16\sqrt{2}}{384}. \end{split}$$

Esercizio 6. Considerate il problema di Cauchy

$$\begin{cases} x''(t) + 4x'(t) + 3x(t) = 4te^{-t} + 3t - 5\\ x(0) = -1 e x'(0) = -10. \end{cases}$$

- (a) Determinate tutte le soluzioni dell'equazione differenziale.
- (b) Determinate la soluzione del problema di Cauchy.

**Soluzione.** (a) L'equazione proposta è una equazione differenziale lineare del secondo ordine a coefficienti costanti. L'equazione caratteristica è  $\lambda^2 + 4\lambda + 3 = 0$  e le sue soluzioni sono  $\lambda_1 = -3$  e  $\lambda_2 = -1$ . Quindi, le funzioni

$$x_1(t) = e^{-3t}$$
 e  $x_2(t) = e^{-t}$ 

con  $t \in \mathbb{R}$  sono un sistema fondamentale di soluzioni dell'equazione omogenea e tutte le soluzioni dell'equazione omogenea sono le funzioni

$$x(t) = C_1 e^{-3t} + C_2 e^{-t}, \qquad t \in \mathbb{R},$$

con  $C_i \in \mathbb{R}$  (i = 1, 2) costanti arbitrarie.

Poiché il termine non omogeneo dell'equazione è somma di un polinomio moltiplicato per una soluzione dell'equazione omogenea e di un polinomio di primo grado, cerchiamo una soluzione dell'equazione completa  $x_p(t)$ ,  $t \in \mathbb{R}$ , della forma

$$x_p(t) = (At^2 + Bt) e^{-t} + Ct + D, \qquad t \in \mathbb{R},$$

ove  $A, B, C, D \in \mathbb{R}$  sono costanti da determinare. Si ha allora

$$x_p''(t) - x_p'(t) - 2x_p(t) = 4Ate^{-t} + 2(A+B)e^{-t} + 3Ct + (4C+3D), \quad t \in \mathbb{R},$$

cosicché la funzione  $x_p$  è soluzione dell'equazione completa per  $A=1,\,B=-1,\,C=1$  e D=-3. Pertanto tutte le soluzioni dell'equazione completa sono le funzioni

$$x(t) = C_1 e^{-3t} + C_2 e^{-t} + (t^2 - t) e^{-t} + t - 3, \quad t \in \mathbb{R},$$

con  $C_i \in \mathbb{R}$  (i = 1, 2) costanti arbitrarie.

(b) Scegliamo le costanti  $C_i \in \mathbb{R}$  (i = 1, 2) in modo che la soluzione x(t) definita in (a) sia tale che x(0) = 1 e x'(0) = 0. Si ha

$$\begin{cases} x(0) = C_1 + C_2 - 3 = -1 \\ x'(0) = -3C_1 - C_2 = -10 \end{cases}$$

da cui segue  $C_1=4$  e  $C_2=-2$ . La soluzione cercata è dunque la funzione

$$x(t) = 4e^{-3t} + (t^2 - t - 2)e^{-t} + t - 3, t \in \mathbb{R}$$