We claim:

10

15

20

25

35

40

- 1. A process for separating a mixture comprising
- a) a monoolefinically unsaturated compound which is obtainable by adding two terminal olefins which bear the functional groups required to prepare the monoolefinically unsaturated compound containing at least two functional groups, or a saturated compound obtained by hydrogenating such a compound,
 - a compound which is obtainable by adding more than two of the terminal olefins mentioned in a) or a compound obtained by hydrogenating such a compound,
 and
 - c) a compound which contains a transition metal, is homogeneous with respect to the mixture and is suitable as a catalyst for preparing a monoolefinically unsaturated compound by adding two terminal olefins which bear the functional groups required to prepare the monoolefinically unsaturated compound containing at least two functional groups,

by means of a semipermeable membrane to obtain a permeate and a retentate in such a way that the weight ratio of component b) to component c) in the mixture fed to the semipermeable membrane is smaller than in the retentate.

- 2. A process as claimed in claim 1, wherein the component c) used is a rhodium-, ruthenium-, palladium- or nickel-containing compound.
- 3. A process as claimed in claim 1, wherein the component c) used is a rhodiumcontaining compound.
 - 4. A process as claimed in any of claims 1 to 3, wherein the component c) used is a rhodium-containing compound which is homogeneous with respect to the mixture and is of the formula [L¹RhL²L³R]⁺X⁻ where
 - L¹ is an anionic pentahapto ligand;
 - L² is an uncharged 2-electron donor;
 - L³ is an uncharged 2-electron donor;
 - R is selected from the group consisting of H, C₁-C₁₀-alkyl, C₆-C₁₀-aryl and C₇-C₁₀-aralkyl ligands;

10

15

X is an uncoordinating anion;

and where two or three of L², L³ and R are optionally joined.

- 5 5. A process as claimed in claim 4, wherein L¹ is pentamethylcyclopentadienyl.
 - 6. A process as claimed in either of claims 4 and 5, wherein X⁻ is selected from the group consisting of BF₄⁻, B(perfluorophenyl)₄⁻, B(3,5-bis(trifluoromethyl)phenyl)₄⁻, Al(OR^F)₄⁻ where R^F is identical or different fluorinated or perfluorinated aliphatic or aromatic radicals.
 - 7. A process as claimed in any of claims 4 to 6, wherein L² and L³ are each independently selected from the group consisting of C₂H₄, CH₂=CHCO₂Me, P(OMe)₃ and MeO₂C-(C₄H₆)-CO₂Me.
 - 8. A process as claimed in any of claims 4 to 6, wherein L² and L³ together are selected from the group consisting of acrylonitrile and 5-cyanopentenoic ester.
- 9. A process as claimed in any of claims 4 to 7, wherein L² and R together are -CH₂-CH₂CO₂Me.
 - 10. A process as claimed in any of claims 4 to 7 or 9, wherein L², L³ and R together are MeO₂C(CH₂)₂-(CH)-(CH₂)CO₂Me.
- 25 11. A process as claimed in claim 3, wherein the component c) used is a compound selected from the group consisting of

[Cp*Rh(C₂H₄)₂H]⁺BF₄,

 $[Cp*Rh(P(OMe)_3)(CH_2=CHCO_2Me)(Me)]^+BF_4$,

 $[Cp*Rh(-CH₂-CH₂CO₂Me)(P(OMe)₃)]^{\dagger} BF_{4},$

 $[Cp*Rh(MeO_2C(CH_2)_2-(CH_2)-(CH_2)CO_2Me)]^+BF_4^-,$

 $[Cp*Rh(C_2H_4)_2H]^{\dagger}$ B(3,5-bis(trifluoromethyl)phenyl)₄,

[Cp*Rh(P(OMe)₃)(CH₂=CHCO₂Me)(Me)]⁺ B(3,5-bis(trifluoromethyl)phenyl)₄,

[Cp*Rh(-CH₂-CH₂CO₂Me)(P(OMe)₃)]⁺ B(3,5-bis(trifluoromethyl)phenyl)₄,

- [Cp*Rh(MeO₂C(CH₂) ₂-(CH-)-(CH₂)CO₂Me)]* B(3,5-bis(trifluoromethyl)phenyl)₄, [Cp*Rh(C₂H₄)₂H]* B(perfluorophenyl)₄, [Cp*Rh(P(OMe)₃)(CH₂=CHCO₂Me)(Me)]* B(perfluorophenyl)₄,
 - $[Cp*Rh(-CH_2-CH_2CO_2Me)(P(OMe)_3)]*B(perfluorophenyl)_4^-[Cp*Rh(MeO_2C(CH_2)_2-(CH_2)-(CH_2)CO_2Me)]*B(perfluorophenyl)_4^-,$
- 40 $[Cp*Rh(C_2H_4)_2H]^+ Al(OR^F)_4^-,$

15

30

$$\begin{split} &[Cp^*Rh(P(OMe)_3)(CH_2=CHCO_2Me)(Me)]^+\ Al(OR^F)_4^-\ ,\\ &[Cp^*Rh(-CH_2-CH_2CO_2Me)(P(OMe)_3)]^+\ Al(OR^F)_4^-\ and\\ &[Cp^*Rh(MeO_2C(CH_2)\ _2-(CH-)-(CH_2)CO_2Me)]^+\ Al(OR^F)_4^-\ ,\\ \end{split}$$

- where R^F is identical or different part-fluorinated or perfluorinated aliphatic or aromatic radicals.
- 12. A process as claimed in any of claims 1 to 11, wherein the compound a) used is a compound selected from the group consisting of adipic diester, adiponitrile,
 5-cyanovaleric ester, 1,4-butenedinitrile, 5-cyanopentenoic ester and hexenedioic diester.
 - 13. A process as claimed in any of claims 1 to 12, wherein a membrane which comprises substantially one or more organic or inorganic materials.
 - 14. A process as claimed in any of claims 1 to 13, wherein the mean average pore size of the membrane is in the range from 0.9 to 50 nm in the case of inorganic membranes.
- 20 15. A process as claimed in any of claims 1 to 13, wherein the mean average separation limit of the membrane is in the range from 500 to 100000 daltons in the case of organic membranes.
- 16. A process as claimed in any of claims 1 to 15, wherein the ratio of the pressure on the retentate side of the membrane to the pressure on the permeate side of the membrane is in the range from 2 to 100.
 - 17. A process as claimed in any of claims 1 to 16, wherein a pressure in the range from 0.1 to 10 MPa is applied on the retentate side of the membrane.
 - 18. A process as claimed in any of claims 1 to 17, wherein a pressure in the range from 1 to 1000 kPa is applied on the permeate side of the membrane.
- 19. A process as claimed in any of claims 1 to 18, wherein the membrane separation
 35 is carried out at a temperature in the range from 0 to 150°C.