Introduction

FET (Field-effect transistor)

- High input impedance
- Low power consumption
- Control an output drain current by a small input voltage (gate voltage)
- Widely use in high-frequency application

BJT = Current control device

FET = Voltage control device

BJT has β (beta) FET has g_m transconductance factor

JFET

- Input AC voltage to Gate-Source
- The main current I_{DS} is controlled
- No current flow from gate
- Very high input impedance
- Current $Gain = \infty$

Fixed-Bias Configuration

- In case of ac analysis, the ac equivalent model is used.
- Small signal analysis is necessary.
- Short source, Short C and redraw

Connect ground, obtain ac equivalent circuit

$$G = \frac{1}{R}$$

$$\downarrow$$
Conductance

Find Parameters

$$Z_i = R_G$$

$$Z_o = R_D \| r_d$$
 See next slide

$$Z_o \cong R_D$$
 $r_d \ge 10R_D$

Good switch r_d High or Low ??

$$A_v = \frac{V_o}{V_i} = -g_m R_D$$

$$r_d \ge 10R_D$$

Find gain
$$A_v$$
 V_i

$$V_o = -g_m V_g (r_d || R_D)$$

$$= -g_m V_i (r_d || R_D)$$

Minus sign means inverse phase i/p and o/p

$$A_{v} = \frac{V_{o}}{V_{i}} = \bigcirc g_{m}(r_{d} \| R_{D})$$

- Short input source $V_i = 0 \text{ V}$

Current Source = g_mV_{gs} open circuit, no current flow

Finally we obtain the equivalent circuit

Small Signal Analysis

Shockley's equation (From Ch.6)

<u>trans</u>conductance factor g_m

$$\Delta I_D = g_m \, \Delta V_{GS}$$

Current to Voltage ratio

Transfer Characteristic Curve

$$g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{V_{GS}}{V_P} \right]$$

Mathematical Definition of g_m

$$\begin{split} g_{m} &= \frac{dI_{D}}{dV_{GS}} \Big|_{Q\text{-pt.}} = \frac{d}{dV_{GS}} \left[I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} \right] \\ &= I_{DSS} \frac{d}{dV_{GS}} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} = 2I_{DSS} \left[1 - \frac{V_{GS}}{V_{P}} \right] \frac{d}{dV_{GS}} \left(1 - \frac{V_{GS}}{V_{P}} \right) \\ &= 2I_{DSS} \left[1 - \frac{V_{GS}}{V_{P}} \right] \left[\frac{d}{dV_{GS}} (1) - \frac{1}{V_{P}} \frac{dV_{GS}}{dV_{GS}} \right] = 2I_{DSS} \left[1 - \frac{V_{GS}}{V_{P}} \right] \left[0 - \frac{1}{V_{P}} \right] \end{split}$$

Transfer Characteristic Curve

$$g_{m0}$$

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$

$$g_m = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right]$$

Z_i , Z_o , r_d

Definition of r_d using JFET drain characteristics

$$Z_i(JFET) = \infty \Omega$$

$$Z_o ext{ (JFET)} = r_d = \frac{1}{g_{os}} = \frac{1}{y_{os}}$$
 admittance

$$r_d=rac{$$
นอน $}{\hat{\delta}}$ ง

Large $r_d \rightarrow \text{Slope}??$

Small $r_d \rightarrow$ Slope??

Fixed-Bias Configuration

$$g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{V_{GS}}{V_P} \right]$$

$$Z_o (JFET) = r_d = \frac{1}{g_{os}} = \frac{1}{y_{os}}$$

Self-Bias Configuration (bypass R_s)

Fixed-Bias Configuration

Self-Bias Configuration

Demerit: 2 voltage sources

AC Equivalent Circuit

$$Z_i = R_G$$

$$A_v = -g_m(r_d || R_D)$$

$$Z_o = r_d \| R_D$$

$$A_{v} = -g_{m}R_{D}$$

VOLTAGE-DIVIDER CONFIGURATION

$$Z_i = R_1 \| R_2$$

$$Z_o \cong R_D$$
 $r_d \ge 10R_D$

$$Z_o = r_d \| R_D$$

$$A_v = \frac{V_o}{V_i} = -g_m(r_d || R_D)$$

- The controlled source g_mV_{gs} be connected from drain to source
- No isolation between input and output

$$Z_i' = \frac{V'}{I'} = \frac{V_{RD}}{g_m V_{gs}} ; V_{RD} = V_{gs}$$

$$= \frac{1}{g_m}$$

$$Z_i \cong R_S || 1/g_m$$

Find Z_0 , A_v

Give
$$V_i = 0 \longrightarrow V_{gs} = 0$$

No current flow

$$Z_{o} = R_{D}$$

A_v: Consider Node b

$$I_D + g_m V_{gs} = 0$$

$$I_D = -g_m V_{gs}$$

$$= g_m V_i$$

$$V_o = I_D R_D$$

$$=g_m V_i R_D$$

$$\frac{V_o}{V_i} = g_m R_D$$

means in-phase

SOURCE-FOLLOWER (COMMON-DRAIN) CONFIGURATION

- BJT emitter-follow configuration
- V_o out from source (normally from drain)
- Short VDD to ground → Drain to ground

Find Z_i , Z_o , A_v

$$Z_i = R_G$$

$$V_o = -V_{gs}$$

$$Z_o = \frac{V_o}{I_o} = \frac{V_o}{V_o \left[\frac{1}{r_d} + \frac{1}{R_S} + g_m \right]} = \frac{1}{\frac{1}{r_d} + \frac{1}{R_S} + g_m} = \frac{1}{\frac{1}{r_d} + \frac{1}{R_S} + \frac{1}{R_S} + \frac{1}{1/g_m}}$$

$$Z_o = r_d \|R_S\| 1/g_m$$

$$V_o = g_m V_{gs}(r_d || R_S)$$

Consider outer loop

$$V_i = V_{gs} + V_o$$

$$V_{gs} = V_i - V_o$$

$$V_{o} = g_{m}(V_{i} - V_{o})(r_{d} || R_{S})$$

$$= g_{m}V_{i}(r_{d} || R_{S}) - g_{m}V_{o}(r_{d} || R_{S})$$

$$V_o[1 + g_m(r_d || R_S)] = g_m V_i(r_d || R_S)$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}(r_{d} || R_{S})}{1 + g_{m}(r_{d} || R_{S})}$$

Gain always < 1