Comparaison et combinaisons de méthodes de sélection d'attributs

(pour l'analyse du transcriptome)

Antoine Cornuéjols , Romaric Gaudel

```
(J-P. Comet, M. Dutreix, Ch. Froidevaux J. Mary1, G. Mercier)

<sup>1</sup>LRI (Orsay) - <sup>2</sup> Institut Curie (Orsay) - <sup>3</sup> LAMI (Evry)

antoine@lri.fr, http://www.lri.fr/~antoine
```


Plan

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- 1- Illustration
- 2- Le problème de la sélection d'attributs
- 3- L'approche classique
- 4- Combiner des méthodes
- 5- Comparaison
- 6- Combinaison
- 7- Conclusion

Contexte : un pb d'analyse du transcriptome

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- Projet INRS, Bioingéniérie 2001
- **[2001-2004]**

Étude de l'effet des très faibles radiations sur le génome

Etude des radiations

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

 Danger indiscutable dans certains cas. En particulier pour les fortes doses d'irradiation.

- Quel impact des faibles doses ?
- Aucun détecté biologiquement
- Y a-t-il des effets au niveau des gènes ?

Protocole expérimental

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- S. Cerevisiae en croissance exponentielle (séquencée complètement et eucaryote avec peu de gènes).
- Six cultures (Irradiées I) exposées pendant 20 heures entre 15 et 30 mGy/h
- Douze cultures non exposées (Non Irradiées NI)
- Mesure effectuées sur puce Corning où l'hybridation a été faite avec double marquage fluorescent (Cy3 pour les cADN contrôles et Cy5 pour les cADN étudiés).

Questions des biologistes

L'irradiation à de faibles doses est-elle détectable?

- Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- Nombre de gènes impliqués dans la réponse à une irradiation à faible dose ?
- Groupes de gènes impliqués dans la réponse à l'irradiation et de quelle manière ?

- Est-il possible de deviner le traitement subi par une levure en regardant l'expression de son génome ?
- Peut-on généraliser cette approche à d'autres types de traitements (pollutions, cancer, ...)

« Précarité » des données

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Extrêmement peu de données / dimension

(12 - (non irradiées) & 6 + (irradiées) vs. 6135 gènes)

- Données imparfaites
 - Bruit expérimental
 - Irradiation
 - Puces à ADN
 - Prétraitement et normalisation
- Pas idéales :
 - Déséquilibre des classes + et -
 - Absence d'indépendance conditionnelle entre les gènes

Le problème de la sélection d'attributs

Mais a priori plus simple que celui de la classification

Problème NP-difficile

· Contexte

Le pb de la sélection d'attributs

- Approche standard

- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

a1	a2	a3	XOR
0	0	0	-
0	0	1	+
0	1	0	+
0	1	1	-
1	0	0	-
1	0	1	+
1	1	0	+
1	1	1	-

$$2^{2^3} = 2^8 = 256$$
 fonctions possibles

Mais seulement 10 tris possibles sur les attributs (e.g. (a1,a2,a3))

Le problème de la sélection d'attributs (2)

· Contexte

sélection
d'attributs

- Approche standard

- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- Pourtant il manque une théorie fournissant des garanties sur la qualité des classements (analogue à théorie statistique de l'apprentissage)
 - Pas d'équivalent du risque empirique
 - Tâche non supervisée

Méthodes (essentiellement) de nature heuristique

Définitions de la « pertinence »

[Blum & Langley, 97], [Bell & Wang, 00]

· Contexte

sélection
d'attributs

- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- Pas de définition unique car dépend du domaine
 - Par rapport à la cible
 - d_i est pertinent si \exists une paire d'exemples ne différant qu'en d_i et de classes différentes
 - Idem par rapport à la distribution (ou à l'échantillon)
 - Idem, sauf que la paire d'exemples peut être tirée avec une probabilité non nulle (ou appartient à l'échantillon)
 - Faible pertinence
 - Si pertinent quand on retire un sous-ensemble des attributs
 - **-** ...
 - Pertinent si permet une meilleure classification
 - ... si permet de comprendre mieux

Objectifs de l'évaluation des attributs

· Contexte

sélection
d'attributs
Approche standard

· Combiner des méthodes

- · Corrélation
- · Combinaison
- · Conclusion

Sélection

D'un sous-ensemble d'attributs

Classement

• Calcule un score pour chaque attribut

Propriétés des attributs

· Contexte

 Le pb de la sélection d'attributs
 Approche standard

- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Bruités

- Imperfection des mesures
 - E.g. problèmes de normalisation
- Contrôle imparfait des conditions expérimentales

Corrélés entre eux

■ E.g. gènes codant deux bouts d'une même molécule

Décorrélés avec la classe

■ E.g. gènes en rapport avec la taille lors d'une étude sur le cancer

Les approches

· Contexte

Le pb de la sélection d'attributs

- Approche standard

- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

1. Approche directe (« embedded »)

[Blum & Langley, 97] [Kohavi & John, 97] [Guyon & Elisseeff, 03]

2. « Wrapper methods »

- Utilisent la performance en aval pour sélectionner les attributs
- Deux stratégies
 - Ascendante (« forward selection »)
 - Par ajouts successifs d'attributs
 - Descendante (« backward selection »)
 - Par retraits successifs d'attributs

3. « Filter methods »

Indépendantes des traitements aval

Comparaison

- · Contexte
- sélection
 d'attributs

 Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- « Filter methods »
 - Peu coûteuses
- « Wrapper methods »
 - Coûteuses
 - Plus précises ?

Evaluation des attributs

Hypothèse de linéarité

[Guyon & Elisseeff, 03]

· Contexte

sélection d'attributs

Approche standard

· Combiner des méthodes

- · Corrélation
- · Combinaison
- · Conclusion

Critères de performance

- Mesurer la corrélation entre un attribut et la classe
 - Corrélation de Pearson (Critère de Fisher, T-test, ...)
 - Détecte uniquement les dépendances linéaires entre variables

$$\mathcal{R}_i = \frac{cov(X_i, Y)}{\sqrt{var(X_i)var(Y)}}$$

- Puissance prédictive de l'attribut
- Marge liée à chaque attribut
- Critères liés à la théorie de l'information
 - E.g. évaluation empirique de l'estimation mutuelle entre variables

$$\mathcal{I}_{i} = \int_{x_{i}} \int_{y} p(x_{i}, y) \log \frac{p(x_{i}, y)}{p(x_{i}) \cdot p(y)} dxdy$$

Critères d'arrêt

Évaluation passant en-dessous d'un certain seuil

· Contexte

sélection d'attributs

Approche standard

.

- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Méthode par « témoins »

- Inclure des attributs aléatoires
- Ne pas retenir les attributs dont l'évaluation est en-dessous

La sélection d'attributs en pratique

- Recours à des méthodes d'évaluation raisonnables
 - Hypothèse d'indépendance des attributs (*linéarité*)
 - On peut les évaluer indépendamment
 - Spectre large de régularités détectables
- Utilisation de connaissances a priori
 - E.g.: Groupement de gènes *a priori* (réseaux de régulation)
- Méthode de filtrage (« filter »)
 - E.g.: SAM, ANOVA, RELIEF
- Estimation
 - On ordonne les attributs en fonction d'un critère de performance
 - → Quel seuil (choisi globalement)?
 - → Quelle confiance ?

- · Contexte
- Le pb de la sélection d'attributs
- Approche standard
- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Critères de performance

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- Hypothèse de distribution paramétrique $\mathcal{N}(\mu, \sigma)$
 - Comparaison à hypothèse nulle locale : ANOVA
 - Idem (mais différent) : SAM

- Méthodes non paramétriques
 - Critère heuristique : RELIEF

Utilisation d'ANOVA

· Contexte

 Le pb de la sélection d'attributs

- · Approche standard
- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Deux classes (Irradiée / Non Irradiée)

- $\mathbb{N}(\boldsymbol{\mu}_1,\boldsymbol{\sigma}) \text{ et } \mathbb{N}(\boldsymbol{\mu}_2,\boldsymbol{\sigma})$
- Comparaison
 - Variance intra-classe
 - Variance inter-classes
- Hypothèse nulle $\mathcal{H}_0: \mu_1 = \mu_2$
- Rejet si

$$\frac{V_{\text{int er}}}{V_{\text{int ra}}}$$

significativement trop grand par rapport aux quantiles de la foi $\mathcal{F}(k-1,n-k)$

SAM (Significance Analysis of Microarrays)

- · Contexte
- Le pb de la sélection d'attributs
- Approche standard
- Combiner des méthodes
- · Corrélation
- Combingison
- · Conclusion

Pour chaque gène :

$$d(i) = \frac{x_{I}(i) - x_{NI}(i)}{s(i) + s_{0}}$$

déviation standard Constante > 0

- Gènes potentiellement significatifs: gènes dont le score d(g) est supérieur au score moyen du gène obtenu après permutations des classes, de plus d'un certain seuil Δ
- Calcul du nombre de gènes *faussement significatifs* : nombre moyen de gènes faussement significatifs pour chaque permutation
- Taux de fausse découverte (FDR)

- · Contexte
- Le pb de la sélection d'attributs
- Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- [Kira & Rendell,92], [Kononenko,94]
 - Les attributs les plus pertinents sont ceux qui varient plus lorsque l'exemple (lame) considéré change de classe que lorsqu'il ne change pas

- Complexité faible
- Grande résistance au bruit

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

RELIEF (3)

- · Contexte
- Le pb de la sélection d'attributs
- Approche standard
- Combiner des méthodes
- · Corrélation
- Combinaison
- · Conclusion

- Une lame L est vue comme un point dans un espace à p = 6157 dimensions
 - On cherche ses k plus proches voisins dans la même classe et on note H (nearest Hit) leur barycentre.
 - > On calcule ses k plus proches voisins dans l'autre classe et on note M (nearest Miss) leur *barycentre*.

$$\operatorname{poids}(g\grave{e}ne) = \frac{1}{m} \sum_{L=1}^{m} \left\{ \left[\exp \mathbf{r}_{g\grave{e}ne}(L) - \exp \mathbf{r}_{g\grave{e}ne}(M) \right] - \left[\exp \mathbf{r}_{g\grave{e}ne}(L) - \exp \mathbf{r}_{g\grave{e}ne}(H) \right] \right\}$$

- où $\exp r_{g \nmid ne}(x)$ est la projection selon $g \nmid ne$ du point x, et m est le nombre total de lames.
- Le poids calculé pour chaque gène gène est ainsi une approximation de la différence de deux probabilités comme suit :

Poids $(g\grave{e}ne)$ = P $(g\grave{e}ne$ a une valeur différente / k plus proches voisins dans une classe différente) - P $(g\grave{e}ne$ a une valeur différente / k plus proches voisins dans la même classe)

- \rightarrow Algorithme polynomial: $\Theta(pm^2)$
- Rôle de k : prise en compte du bruit

Sélection des attributs

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Y a-t-il vraiment de l'information dans les données ?

Quels gènes retenir ?

Avec quelle confiance ?

4

Hypothèse nulle globale

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combingison
- · Conclusion

Nombre de gènes dont le poids dépasse la valeur repérée en abscisse

rouge : Avec les classes réelles ;

bleu : Courbe moyenne obtenue avec des classes aléatoires

Nombre de gènes dont le poids dépasse la valeur repérée en abscisse

rouge : Avec les classes réelles ;

bleu : Courbe moyenne obtenue avec des classes aléatoires

Précision ou rappel : choix d'un seuil

Il faut choisir entre :

- Une liste contenant presque tous les gènes impliqués mais comportant des faux-positifs
- Une liste de gènes impliquées de manière quasi-certaine dans la réponse à l'Irradiation (quitte à ne pas avoir tous les gènes impliqués)

Problème du seuil

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Intersections (1)

Pour les 500 meilleurs gènes de chaque technique (poids 0.2) :

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des
- · Corrélation
- · Combinaison
- · Conclusion

ANOVA
409
SAM

Pour les 35 meilleurs (poids 0.5):

RELIEF

0 8

SAM

ANOVA

Intersections (2)

Est-ce que ces intersections sont significatives?

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des
- · Corrélation
- · Combinaison
- · Conclusion

Problème :

Étant données 2 méthodes sélectionnant au hasard chacune n gènes parmi N gènes, quelle est la probabilité que ces deux paquets de n gènes aient une intersection de cardinal supérieur ou égal à k?

= = > loi hypergéométrique H(n, N-n, k)

avec N = 6157:

> n = 500: P (taille intersection ≥ 257) = 10^{-169}

> n = 35: P (taille intersection ≥ 8) = 10^{-12}

Le biologiste est satisfait!

Répartition des meilleurs gènes

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standar
- · Combiner des
- · Corrélation
- · Combinaison
- · Conclusion

	function of 91 induced genes/171	number of ORFs	% in this list	% total ORFS	(61:53)ep
unknown		38	41,8	50,4	0,8
	oxidative stress response	4	4,4	0,3	14,3
	oxidative phosphorylation	9	9,9	0,3	30,5
transport gluconeogenesis		4	4,4	2,2	2,0
		1	1,1	0,1	16,9
C	protein processing & synthesis	3	3,3	2,0	1,6
	ATP synthesis	7	7,7	0,4	20,6
	glucose repression	1	1,1	0,2	4,8
	respiration	2	2,2	0,1	22,0
	function of 80 repressed genes/171	number of ORFs	% in this list	% total ORFS	sur-rep
	ranction of our epicosea genes, it i	number of Otti 3	/0 III tili3 li3t	70 total	
	unknown	45	56,3	50,4	1,1
					-
	unknown	45	56,3	50,4	1,1
	unknown stress response (putative)	45 1	56,3 1,3	50,4 0,2	1,1 7,0
	unknown stress response (putative) glycerol metabolism	45 1 2	56,3 1,3 2,5	50,4 0,2 0,1	1,1 7,0 30,8
	unknown stress response (putative) glycerol metabolism protein processing & synthesis	45 1 2 3	56,3 1,3 2,5 3,8	50,4 0,2 0,1 2,0	1,1 7,0 30,8 1,9

Interprétation biologique

-				
 ~~	nt	-	/ +	_
 JU	ru	E)	C I	е.

 Le pb de la sélection d'attributs

- · Approche standard
- · Combiner des
- · Corrélation
- · Combinaison
- · Conclusion

Cytochrome bc1
Cyt1
QCR7
QCR10

Cytochrome c oxidase
COX5A
COX6
COX4
COX 13
COX12
COX7
COX8
COX20

Combinaison de méthodes ?

■ Peut-on faire mieux avec deux méthodes?

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des
- · Corrélation
- · Combinaison
- · Conclusion

Est-ce mieux de prendre l'intersection de leurs sélections ?

Doit-on avoir plus de confiance dans la valeur du résultat ainsi obtenu ?

Combinaison de méthodes ?

Intuition:

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des
- · Corrélation
- · Combingison
- · Conclusion

L'intersection des top-n suit une certaine loi tant qu'il y a des attributs pertinents, et une autre après

Mesure de corrélation entre méthodes

- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Trois causes possibles pour l'intersection :

- 1. Le **hasard**. Tirage aléatoire de deux sous-ensembles de n (e.g. 500) éléments parmi d (e.g. 6135) $P(k|n,d) = \frac{\binom{n}{k} \cdot \binom{d-n}{n-k}}{\binom{d}{k}}$
- 2. La corrélation des méthodes a priori.
- 3. Les **régularités dans les données** sur lesquelles les méthodes sont d'accord, au-delà de leur corrélation *a priori*.

Mesure de corrélation entre méthodes (2)

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Exemple

- 281 gènes dans (RELIEF ∩ ANOVA)₅₀₀
- 40 attendus par simple chance (loi hypergéométrique)
- + 241?
 - Information?
 - Corrélation *a priori* ?

Mesure de la corrélation a priori

Nouvelle hypothèse nulle

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- Pour toutes les permutations de 6 + & 12 sur les données
- Calculer: $(RELIEF \cap ANOVA)_{500}$
- Faire la moyenne

Intersection due à la corrélation *a priori* des méthodes

Comment l'interpréter ?

■ \mathbf{Si} (RELIEF \cap ANOVA)₅₀₀ =

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- **0** :?
- **40** :?
- **281:**?
- **500**:?

Ici: 180 ± 40

Application aux données

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

k: taille de l'intersection des top-n pour ANOVA et RELIEF sur les données pour plusieurs valeurs de n.

 μ_{H_0} : intersection mesurée pour les données étiquetées aléatoirement (mesure de corrélation *a priori*)

 $\sigma_{\mathcal{H}_0}$: écart-type.

n	100	200	300	400	500	600	700	800	900	1000
$\mu_{\mathcal{H}_0}$	21.2	54.2	93.2	135.4	180.3	226.9	276.3	326.2	378.9	432.5
$\sigma_{\mathcal{H}_0}$	8.0	16.9	24.5	32.3	41.8	50.3	57.7	64.1	71.3	78.0
k	37	93	149	210	281	339	406	470	535	605

Types d'information dans les données

- · Corrélation
- · Combinaison
- · Conclusion

(À gauche) Valeur de n en abscisse et taille k de l'intersection en proportion de n en ordonnée (e.g. k = 0.6 n). Courbe du <u>haut</u> : k, du <u>milieu</u> : $\mu_{\mathcal{H}_0}$ (corrélation a priori), du <u>bas</u> : taille de l'intersection due au hasard.

(À <u>droite</u>) Différence relative entre k et μ_{H_0} .

L'information apportée par les données est donc maximale pour $n \approx 180$ et $n \approx 540$.

Sur des données artificielles

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- 20 exemples (10 positifs, 10 négatifs)
- **d** : nombre d'attributs par exemple (d = 1000)
- **p** : nombre d'attributs pertinents $(p \in [|50, 400|])$
- Attributs suivent une loi gaussienne
- σ : variance des attributs $(\sigma \in [1,5])$
- δ : écart entre la moyenne des attributs pertinents positifs et la moyenne des attributs pertinents négatifs ($\delta \in [0.1, 5]$)

Effet de p sur k (l'intersection des top-n)

- Courbes différentes suivant le nombre p d'attributs pertinents
- → On peut déterminer p à partir de l'étude de la corrélation entre deux algorithmes

Fig.: Variation de l'intersection en fonction du nombre d'attributs pertinents ($\delta=1$)

Fig.: Variation de l'intersection en fonction du nombre d'attributs pertinents ($\delta = 2$)

Peut-on tirer de l'information de la combinaison de deux méthodes ?

· Contexte

 Le pb de la sélection d'attributs

- · Approche standard
- Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

On dispose de la **loi empirique** de

$$k = (RELIEF \cap ANOVA)_n$$

en fonction de *n* (intersection des « top_n »)

► Peut-on la comparer à une **courbe théorique** paramétrée et trouver les paramètres maximisant la vraisemblance ?

- 1. Construction d'un « modèle génératif »
 - On suppose deux méthodes M_1 et M_2 d'évaluation d'attributs telles que:
 - $(M_1 \cap M_2)_n = k$
 - M_1 retourne p_1 attributs pertinents dans n
 - M_2 retourne p_2 attributs pertinents dans n
 - On suppose *p* vrais attributs pertinents sur *d* attributs en tout
 - On calcule la loi:

$$k = \text{fct}(d, n, k_{corr}, p, p_1, p_2)$$

- 2. Principe de maximum de vraisemblance
 - On retient (p, p_1, p_2) maximisant la vraisemblance par rapport à la courbe observée

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

Combien parmi les k sont positifs?

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combingison
- Conclusion

de sac-1:
$$N_1 = \frac{\binom{p}{p_1} \cdot \binom{d-p_1}{n-p_1}}{\binom{d}{n}}$$

de sac-2:
$$N_2 = \frac{\sum_{k=0}^{k} \binom{p_1}{k+} \binom{p-p_1}{p_2-k+} \binom{n-p_1}{k-k+} \binom{d-n-(p-p_2)}{n-p_1-(k-k+)}}{\binom{d}{n}}$$

connus

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Comment calculer ce terme de normalisation ?

Fonction de la corrélation a priori

Terme de corrélation a priori

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combingison
- Conclusion

$$\frac{\binom{p}{p_1}\cdot\binom{d-p_1}{n-p_1}}{\binom{d}{n}}\cdot\frac{\sum_{k=\mathbf{k_{Corr}}}^{k}\binom{p_1}{k+}\binom{p-p_1}{p_2-k+}\binom{n-p_1}{k-k+}\binom{d-n-(p-p_2)}{n-p_1-(k-k+)}}{\binom{d}{n}}$$

Pas d'intersection $k < k_{Corr}$

Terme de corrélation a priori

- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

Permet aussi de rendre compte d'une corrélation négative

$$P(\mathbf{k}|\mathbf{d},\mathbf{n},p,p_1,d_{Corr})$$

Tests sur données artificielles

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

- Objectif des tests :
 - Vérifier l'égalité des courbes d'intersection :
 - mesurées pour des données artificielles
 - prédites par le modèle
- Paramètres des tests :
 - Données artificielles générées comme pour la première étude
 - $p \in [|50, 400|]$
 - $\sigma = 1$
 - $\delta \in [0.1, 5]$
 - m mesuré sur les données

Tests sur données artificielles

- m est la proportion d'attributs pertinents dans le Top_n
- Donc m est mesuré sur les données artificielles
- Problème : m diffère suivant l'algorithme
- · Contexte
- Le pb de la sélection d'attributs
- · Approche star
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

Fig.: Valeurs moyennes de m mesurées pour 1000 tirage (p=200, $\sigma=1$, $\delta=1.5$)

•
$$\Rightarrow m = \frac{m_{Relief} + m_{Anova}}{2}$$

Tests sur données artificielles

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combingison
- Conclusion

- Modèle imparfait pour les petites tailles d'intersection
- Modèle bon à partir du moment où m est proche de p

Fig.: Comparaison entre le modèle et les données artificielles

Fig.: Valeur sur les données artificielles moins valeur prédite par le modèle

Tests: Conclusions

- Modèle *imparfait* pour les petites tailles d'intersection
- · Contexte
- Le pb de la sélection d'attributs
- Modèle *correct* pour $p_1 \ge p$
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

- L'intersection entre attributs non pertinents est bien modélisée
- L'intersection entre attributs pertinents doit être modélisée différemment
 - Revoir la corrélation *a priori*

Conclusions / Perspectives

Fixer le seuil de pour la sélection d'attributs est difficile

Approche originale : combinaison de méthodes

- · Contexte
- Le pb de la sélection d'attributs
- Approche standard
- Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

Conclusions

- La corrélation (taille intersection) dépend de p (# attributs pertinents) dépendance exploitable
- Le modèle génératif est encore imparfait

Perspectives

- Tester sur des données réelles
- Étendre à corrélations à > 2 algorithmes
 - (cf. rank boosting [ECML-04])

Formules

- · Contexte
- · Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

$$p_1 \leq n \leq p_2 \leq p$$

$$p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \frac{\binom{d-n}{n-k} \binom{n}{k} \binom{p}{n}}{\binom{d}{n}^2} / \sum_{j=k_C}^n \frac{\binom{d-n}{n-j} \binom{n}{j} \binom{p}{n}}{\binom{d}{n}^2}$$

 $p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \binom{n}{k} \binom{p-n}{n-k} / \sum_{i=k}^{n} \binom{n}{i} \binom{p-n}{n-i}$

 $p_1 \leq p_2 \leq n$

$$p(\cap = k | d, p, n_1 = n_2 = n, k_C) = \frac{\binom{p}{p_1} \binom{d-p}{n-p_1} \sum_{k=\max(0, p_1 + p_2 - p)}^{p_1} \binom{p_1}{k} \binom{p-p_1}{p_2 - k} \binom{n-p_1}{k-k} \binom{d-n-(p-p_1)}{n-p_2-(k-k^+)}}{\binom{d}{n}^2} \bigg/ \sum_{i=k_C}^n \dots$$

 n_2

Et alors ...

Pour

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- *d*:6135
- *n*:500
- k_{corr} : 170

Le maximum de vraisemblance est obtenu pour :

- p
- ≈ 410
- $p_1 = p_2$

Conclusion

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

On peut tirer de l'information de l'utilisation de plusieurs méthodes

Pas de travaux connus dans ce domaine

Propositions

- Méthode de mesure de corrélation a priori des méthodes
- Méthode de *maximum de vraisemblance* pour suggérer le nombre d'attributs pertinents à partir de deux méthodes

Références

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- Conclusion

- Bell, D., & Wang, H. (2000). A formalism for relevance and its application in feature subset selection. *Machine Learning Journal*, 41, 175-195.
- Blum, A., & Langley, P. (1997). Selection of relevant features and examples in machine learning. *Artificial Intelligence journal*(97), 245-271.
- Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of Machine Learning Research*, 3, 1157-1182.
- Liu, H., & Motoda, H. (1998). *Feature selection for knowledge discovery & data mining*: Kluwer Academic Publisher.
- Mercier, G., Berthault, N., Mary, J., Antoniadis, A., Comet, J.-P., Cornuéjols, A., Froidevaux, C.,
 & Dutreix, M. (2004). Biological detection of low radiation by combining results of two analysis methods. *Nucleic Acids Research (NAR)*, 32(1), 1-8.

- Les données reflètent-elles la présence de l'irradiation? ou
- Le pb de la sélection d'attributs
- Approche standard Combien de gènes sont-ils impliqués? Plus de 100
- · Combiner des méthodes
- · Corrélation
- Y a-t-il des groupes de gènes impliqués et lesquels?
- Oui: ATP synthesis, oxidative phosphorylation et oxidative stress response
 - Est-il possible de déterminer si une levure est irradiée en regardant son transcriptome ?

Oui et il suffit de ne regarder qu'un petit nombre de gènes

Tâche de classification

Plusieurs techniques ont été utilisées

- · Contexte
- → Vote « d'experts »
- Le pb de la sélection d'attributs
- → Technique du maximum de vraisemblance
- · Approche standard K
- *K* plus proches voisins
- · Combiner des méthodes
- Essai de classification en aveugle sur six nouvelles lames :
- · Combinaison
- · Conclusion

		Avec sélect	ion d'un seul	Avec le	s gènes	Avec les gènes	
		gène ((1575)	sélectionnés	s par ANOVA	sélectionné	<mark>s par REL</mark>
Traitement	Dose	Sain	Irradié	Sain	Irradié	Sain	Irradié
Irradiation	0.003 mGy/	h 0,95	0,04	0,53	0,47	1	0
Irradiation	0.007 mGy/	h 0,35	0,65	0,46	0,54	0,01	0,9
Irradiation	0.1 mGy/h	0,02	0,97	0,5	0,5	0	1
Irradiation	1.1 mGy/h	0,15	0,84	0,47	0,53	0	1
Formaldehyd	0.07 mM	1	0	0,65	0,35	1	0
aucun	0	0,82	0,17	0,55	0,44	1	0

Le gène 1575

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- Publication des résultats biologiques obtenus
- Le pb de la sélection d'attibuts Étude sur d'autres données (Cancer de la vessie avec Curie,
- · Approche standard
- · Combiner des arts)
 méthodes
- Mise au point d'une méthode de classification avec peu de
- · Conclusion gènes
 - Étude du critère de RELIEF
 - Quelles propriétés ?
 - Exploitation de multiples méthodes de sélection d'attributs

Normalisation des données

- La normalisation a été réalisée par LOWESS (LOcally WEighted Scatterplot Smoothing), Julie **PEYRE & Anestis ANTONIADIS (IMAG)**
- · Contexte
- · Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation · Combinaison = $\frac{1}{2} \log_2(R * G)$ · Conclusion $M = \log_2(\frac{R}{G})$ · Corrélation

$$M = \log_2(\frac{R}{G})$$

Où R et G sont les niveaux d'intensité de Rouge et de Vert.

Normalisation par lowess.

Les sources de problèmes

Présence de bruit dans les données à deux niveaux :

- · Contexte
- Le pb de la sélection d'attributs

 Imprécision de la mesure : bruit classique supposé gaussien, bruit qui est très élevé pour certains gènes (cf doubles mesures)
- · Approche standard
- Combiner des méthodes Présence de valeurs aberrantes dues
- · Corrélation à un problème lors de l'hybridation
- · Combinaison
- · Conclusion

- Nombreux attributs : 6157 gènes
- Très faible nombre d'instances : 12 cultures non-traitées, 6 irradiées
- Classes déséquilibrées (elles ne contiennent pas le même nombre d'éléments)
- Absence d'indépendance conditionnelle probabiliste entre les gènes

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

 Trop peu de garantie sur chaque corrélation détectée (attribut)

- Comparaison à hypothèse nulle globale
- Interprétation / confirmation par les biologistes

Utilisation d'ANOVA (suite)

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

On peut aussi calculer la *p-value* pour chaque gène et ordonner les gènes

Probabilité que le test rejette l'hypothèse \mathcal{H}_0 à tort

$$p(t) = \min \{F_0(t), 1 - F_0(t)\}$$

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

- · Contexte
- Le pb de la sélection d'attributs
- · Approche standard
- · Combiner des méthodes
- · Corrélation
- · Combinaison
- · Conclusion

