Rettelser

Fatal: Start mere generelt. Mere teori om lydm før vi angriber enheden. Mere teori	
om impedans-tilpasningen - AB	7
Fatal: Men hvorfor er det vigtigt? Teorien bag! - AB	8
Fatal: Find ud af at lave det i matlab!!!! LS	8

Ingeniørhøjskolen Aarhus

E6Bac - Forprojekt

Forbedring af Bas-Gengivelse v. Placering af Resonans-Rør

Rapport

GRUPPE 1

Navn	${\bf Studienummer}$
Alexander Dahl Bennedsen(E)	201310498
Lasse Stenhøj Kofoed(E)	201407500
Thomas Skovgaard Rasmussen(E)	201406754

DATO: 30. MAJ 2017

Indholdsfortegnelse

${f Indholds for tegnelse}$		
Kapitel 1 Projektformulering	5	
Kapitel 2 Teori	6	
2.1 Højtaler	6	
2.2 Kabinet	6	
Kapitel 3 Simuleringer	7	
3.1 Højtaler	7	
3.2 Kabinet	9	
3.3 Rum	9	
Kapitel 4 Målinger 1	.0	
4.1 Måleteknik	10	
Kapitel 5 Konklusion 1	.1	
Litteratur 1	2	

Resume

Noget klogt her

Projektformulering

Noget mere klogt her

Teori 2

Kort introduktion til kapitlet...

2.1 Højtaler

Ting og sager...

2.2 Kabinet

Ting og sager...

Simuleringer 3

Kort introduktion til kapitlet...

3.1 Højtaler

¹ Højtaleren der benyttes til projektet er en 6.5"mellemtone elektrodynamisk højtaler af mærket FW168[1] fra firmaet Fountek [2].

På figur 3.1 ses den komplette model for højtalerens elektriske, mekaniske og akustiske system.[3] Komponentværdierne og forklaringen af disse, kan ses i tabel 3.1.

 ${\it Figur~3.1.}$ Komplet model fro højtalerens elektrisk, mekaniske- og akustiske system.

Omregner man modellen til en komplet elektrisk model, kan man udregne den elektriske impedans Z_E for modellen. Denne impedans har et toppunkt ved højtalerens

¹FiXme Fatal: Start mere generelt. Mere teori om lydm før vi angriber enheden. Mere teori om impedans-tilpasningen - AB

Thiele-Small parameter	Symbol	Værdi for FW168
Svingspolens DC modstand	R_E	7.2Ω
Svingspolens selvinduktion	L_E	1mH
Elektrisk godhed	Q_{ES}	0.452
Masse af bevægeligt system	M_{MS}	14.7g
Eftergivelighed af styr	C_{MS}	0.821mm/N
Mekanisk godhed	Q_{MS}	3.246
Mekanisk tabsmodstnd	R_{MS}	$\frac{1}{Q_{MS}} \sqrt{\frac{M_{MS}}{C_{MS}}} = 1.304 Ns/m$
Resonansfrekvens	f_s	$\frac{1}{2\pi\sqrt{M_{MS}C_{MS}}} = 45.813Hz$
Ækvivalent volumen	V_{AS}	$16.5L = 0.017m^3$
Kraftfaktor	Bl	8.2Tm
Membranens effektive areal	S_D	$119cm^{2}$
Maksimal lineær bevægelse	X_{MAX}	$4.6mm\pm$

resonansfrekvens, og en minimumsværdi ved svingspolens R_E -værdi. 2

Med værdierne fra tabel 3.1, som er opgivet i højtalerens datablad[1], udregnes den elektriske impedans for højtaleren i ligning 3.1

$$Z_E(s) = R_E + sL_E + \frac{Bl^2}{\omega_s M_{MS}} \frac{\omega_s s}{s^2 + \frac{1}{Q_{MS}} \omega_s s + \omega_s^2}$$

$$(3.1)$$

$$=7.2\Omega + s \cdot 1mH + \frac{(8.2Tm)^2}{287.8Hz \cdot 14.7gm} \frac{287.8Hz \cdot s}{s^2 + \frac{1}{3.246} 287.8Hz \cdot s + (287.8Hz)^2}$$
(3.2)

Impedansen vil være størst ved højtalerensresonansfrekvens f_s , som beregnes i ligning 3.3. Dette toppunkts maksimumværdi er givet ved ligning 3.4

$$f_s = \frac{1}{2\pi\sqrt{M_{MS}C_{MS}}} = 45.813Hz \tag{3.3}$$

$$Z_{max} = R_E + \frac{Bl^2}{RMS} = 58.781\Omega \tag{3.4}$$

På figur 3.1 ³ ses plottet af ligning 3.1 med værdierne for højtaleren. Kurveforløbet stemmer overens med det beregnede toppunkt f_s og minimumsværdien R_E . Kurveforløbet stemmer ligeledes overens med det opgivne i databladet [1].

²FiXme Fatal: Men hvorfor er det vigtigt? Teorien bag! - AB

³FiXme Fatal: Find ud af at lave det i matlab!!!! LS

 ${\it Figur~3.2.}$ Den elektriske impedans Z_E som funktion af frekvensen

3.2 Kabinet

Ting og sager...

3.3 Rum

Ting og sager...

Målinger 4

Kort introduktion til kapitlet...

4.1 Måleteknik

Ting og sager...

Konklusion 5

Her skal der stå noget meget klogt

Litteratur

- [1] Fountek. FW168 Midwoofer Datasheet, 2017.
- [2] Fountek Electronic Co. Ltd. Fountek. URL https://www.fountek.net. Last Visited d. 24/05-2017.
- [3] Tore Arne Skogberg. *Elektroakustik*. 2016. Bilag: Elektroakustik.pdf.