1. Mediciones basicas

1.1. Introduccion

Para verificar el funcionamiento del circuito se realizaron mediciones utilizando las siguientes funciones como entradas:

Señal	Descripcion
Coseno	$5.cos(2\pi f_{in}t)$
$\frac{3}{2}seno$	$V_{max}.sen(\frac{2\pi}{T_0}t)$ (de periodo $\frac{3}{2}T_0$)
Cuadratica	$V_{max}t^2$ (extension periodica entre[-2,2]de periodo T_0)

Cuadro 1: Lista de senales medidas

Donde V_{max} es la tenion maxima que admite el circuito y $f_{in} == 1Khz$

Para cada entrada de la tabla anterior se realizo el muestreo natural de la misma, es decir utizando solo la llave analogica para hacer el muestreo, con distintas frecuencias fundamentales para la entrada asi tambien como con distintas frecuencias de muestreo. Asimismo, se repitieron las mismas mediciones utilizando mustreo instantaneo, es decir utilizando el integrado de Sample And Hold en lugar de la llave analogica.

A continuacion se muestra un diagrama que muestra los nombres utilizados para los nodos del circuito:

Figura 1: Diagrama del circuito

1.2. Muestreo natural

1.2.1. Coseno

a,b.1

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	1	7.5	5

Cuadro 2: Parametros utilizados en la medicion

Figura 2: Graficas en el tiempo

Figura 3: Graficas en frecuencia

Figura 4: Grafica en el tiempo a la salida de la llave analogica

Figura 5: Grafica en frecuencia a la salida de la llave analogica

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	7.5	20	5

Cuadro 3: Parametros utilizados en la medicion

Figura 6: Grafica en el tiempo a la salida del circuito

Figura 7: Grafica en frecuencia de la salida del circuito

 \mathbf{c}

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	3	3	5

Cuadro 4: Parametros utilizados en la medicion

Figura 8: Grafica en el tiempo a la salida de la llave analogica

Figura 9: Grafica en frecuencia de la salida de la llave analogica

Figura 10: Grafica en el tiempo a la salida del circuito

Figura 11: Grafica en frecuencia de la salida del circuito

1.2.2. $\frac{3}{2}$ seno

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	0.1	7.5	5

Cuadro 5: Parametros utilizados en la medicion

Figura 12: Grafica en el tiempo a la salida de la llave analogica

Figura 13: Grafica en frecuencia a la salida de la llave analogica

Figura 14: Grafica en el tiempo a la salida del filtro recuperador

Figura 15: Grafica en frecuencia a la salida del filtro recuperador

b.2

	Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
ſ	5	7.5	20	5

Cuadro 6: Parametros utilizados en la medicion

Figura 16: Grafica en el tiempo a la salida de la llave analogica

Figura 17: Grafica en frecuencia a la salida de la llave analogica

Figura 18: Grafica en el tiempo a la salida del filtro recuperador

Figura 19: Grafica en frecuencia a la salida del filtro recuperador

 \mathbf{d}

A continuacion se muestran mediciones de la salida del FAA a medida que se va subiendo la frecuencia de la señal:

(b) Medicion con $f_o = 500$

(c) Medicion con $f_o = 3Khz$

Figura 20: Salida del filtro Antialias

1.2.3. Cuadrática

a,b.1

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	0.1	7.5	5

Cuadro 7: Parametros utilizados en la medicion

Figura 21: Grafica en el tiempo a la salida de la llave analogica

Figura 22: Grafica en frecuencia a la salida de la llave analogica

Figura 23: Grafica en el tiempo a la salida del filtro recuperador

Figura 24: Grafica en frecuencia a la salida del filtro recuperador

b.2

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	7.5	20	5

Cuadro 8: Parametros utilizados en la medicion

Figura 25: Grafica en el tiempo a la salida de la llave analogica

Figura 26: Grafica en frecuencia a la salida de la llave analogica

Figura 27: Grafica en el tiempo a la salida del filtro recuperador

Figura 28: Grafica en frecuencia a la salida del filtro recuperador

 \mathbf{d}

A continuacion se muestran mediciones de la salida del FAA a medida que se va subiendo la frecuencia de la señal:

(b) Medicion con $f_o = 500 Me$ dicion con $f_o = 3Khz$

Figura 29: Salida del filtro Antialias

1.3. Muestreo instantáneo

1.3.1. Coseno

a,**b**.1

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	1	7.5	50

Cuadro 9: Parametros utilizados en la medicion

Figura 30: Grafica en el tiempo a la salida del Sample And Hold

Figura 31: Grafica en frecuencia a la salida del Sample And Hold

Figura 32: Grafica en el tiempo a la salida del filtro recuperador

Figura 33: Grafica en frecuencia a la salida del filtro recuperador

b.2

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	7.5	20	50

Cuadro 10: Parametros utilizados en la medicion

Figura 36: Grafica en el tiempo a la salida del circuito

Figura 34: Grafica en el tiempo a la salida del Sample and Hold

Figura 35: Grafica en frecuencia a la salida del Sample and Hold

Figura 37: Grafica en frecuencia de la salida del circuito

Amplitud(Vp)	$f_o(Khz)$	$f_s(Khz)$	DutyCycle(%)
5	3	3	30

 \mathbf{c}

Cuadro 11: Parametros utilizados en la medicion

Figura 38: Grafica en el tiempo a la salida del Sample and Hold

Figura 39: Grafica en frecuencia de la salida del Sample And Hold

Figura 40: Grafica en el tiempo a la salida del circuito

Figura 41: Grafica en frecuencia de la salida del circuito

- **1.3.2.** $\frac{3}{2}$ seno
- 1.3.3. Cuadrática