CHAPITRE 1	
	INTERPOLATION POLYNÔMIALE

CHAPITRE 2	
	INTÉGRATION NUMÉRIQUE

CHAPITRE 3_	
	ا RÉSOLUTION DE SYSTÈMES D'ÉQUATIONS LINÉAIRES

CALCUL APPROCHÉ DES ZÉROS D'UNE FONCTION

4.1 Définitions

Définition 4.1. Soit I un sous ensemble de \mathbb{R} et f une fonction définie sur I et à valeurs dans \mathbb{R} . On appelle zéro de f tout point $\alpha \in I$ vérifiant $f(\alpha) = 0$.

Définition 4.2. Soit I un sous ensemble de \mathbb{R} et g une fonction définie sur I et à valeurs dans \mathbb{R} . On appelle point fixe de g tout point $\beta \in I$ vérifiant $g(\beta) = \beta$.

FIGURE $4.1-\alpha_1$, α_2 et α_3 sont des zéros de f (à gauche) et β est un point fixe de g (à droite).

Propriété 4.1. Soit I un sous ensemble de \mathbb{R} et f une fonction définie sur I et à valeurs dans \mathbb{R} . Soit $g:I\to\mathbb{R}$ la fonction définie par g(x)=f(x)+x, alors α est un zéro de f si et seulemnt si α est un point fixe de g. De même, α est un zéro de f si et seulemnt si α est un point fixe de la fonction h définie par h(x)=x-f(x).

Preuve. $f(\alpha) = 0 \Leftrightarrow g(\alpha) = f(\alpha) + \alpha = \alpha$. De même, $f(\alpha) = 0 \Leftrightarrow h(\alpha) = \alpha - f(\alpha) = \alpha$.

Conséquence 4.1. La recherche des zéros est équivalente à la recherche des points fixes.

Exemple 4.1. 1. α est un zéro de la fonction $f(x) = \sin(x) - x$ si et seulemnt si α est un point fixe de la fonction $g(x) = \sin(x)$.

2. α est un zéro de la fonction $f(x) = 3x^5 - 2x^4 + 2$ si et seulemnt si α est un point fixe de la fonction $h(x) = -3x^5 + 2x^4 + x - 2$.

4.2 Calcul numérique approché des points fixes

Définition 4.3. Soit g une fonction définie sur [a,b] et à valeurs dans \mathbb{R} . Soit k un réel strictement positif. La fonction g est dite k-lipschitzienne sur [a,b] si pour tous $x,y\in [a,b]$ on a:

$$|g(y) - g(x)| \le k|y - x|.$$

Définition 4.4. Une fonction $g:[a,b] \to \mathbb{R}$ est strictement contractante sur [a,b] si elle est k-lipschitzienne sur [a,b] et si $k \in]0,1[$. k est appelé rapport rapport de contraction de g.

Propriété 4.2. Une fonction k-lipschitzienne sur [a, b] est continue sur [a, b].

Preuve. Montrons que f est uniformément continue sur [a,b]. En effet, étant donné $\varepsilon > 0$ et en choisissant $\eta = \frac{\varepsilon}{k}$, on a

$$|x - y| < \eta \quad \Rightarrow \quad |f(x) - f(y)| \le k|x - y| < k\eta = \varepsilon.$$

Ainsi f est uniformément continue sur [a, b], et par conséquent elle est continue sur [a, b].

Théorème 4.1. Si la fonction $g:[a,b] \to \mathbb{R}$ est de classe \mathcal{C}^1 sur [a,b], et s'il existe k>0 tel que $|g'(x)| \le k$ pour tout $x \in]a,b[$, alors f est k-lipschitzienne sur [a,b].

Preuve. Soit $x, y \in [a, b]$ avec x < y. Comme g est de classe C^1 sur [a, b], alors on peut appliquer à g le théorème des accroissements finis sur l'intervalle [x, y]. Ainsi, il existe $z \in]x, y[$ tel que

$$q(y) - q(x) = (y - x)q'(z),$$

Par suite,

$$|g(y) - g(x)| = |y - x||g'(z)| \le k|y - x|.$$

5

Théorème 4.2. (du point fixe)

- 1. Soit $g:[a,b] \to [a,b]$ une fonction strictement contractante de rapport de contraction λ , alors g admet un point fixe unique $\alpha \in [a,b]$.
- 2. Si $(x_n)_n$ est une suite définie par :

$$\begin{cases} x_0 \in [a, b] \\ x_{n+1} = g(x_n) \quad pour \ n \ge 0, \end{cases}$$

alors la suite $(x_n)_n$ converge vers α et pour tout $n \in \mathbb{N}^*$ on a :

$$|x_n - \alpha| \le \frac{\lambda^n}{1 - \lambda} |x_1 - x_0|.$$

Preuve.

- 1. La démonstration de ce résultat se fera en quatre étapes.
 - a. Montrons à l'aide d'un raisonnement par récurrence que pour tout $n \in \mathbb{N}$ on a :

$$|x_{n+1} - x_n| \le \lambda^n |x_1 - x_0|. (4.1)$$

Il est évident que (4.1) est vérifiée pour n=0.

Supposons que

$$|x_{n+1} - x_n| \le \lambda^n |x_1 - x_0|,$$

alors

$$|x_{n+2} - x_{n+1}| = |g(x_{n+1}) - g(x_n)|$$

$$\leq \lambda |x_{n+1} - x_n| \quad \text{(car } g \text{ est strictement contractante)}$$

$$\leq \lambda^{n+1} |x_1 - x_0| \quad \text{(d'après l'hypothèse de récurrence)}.$$

b. Montrons que pour tous $n \in \mathbb{N}$ et $p \in \mathbb{N}^*$ on a :

$$|x_{n+p} - x_n| \le \frac{\lambda^n}{1-\lambda} |x_1 - x_0|.$$
 (4.2)

En effet,

$$|x_{n+p} - x_n| = |\sum_{i=0}^{p-1} (x_{n+i+1} - x_{n+i})|$$

$$\leq \sum_{i=0}^{p-1} |x_{n+i+1} - x_{n+i}| \leq \sum_{i=0}^{p-1} \lambda^{n+i} |x_1 - x_0|$$

$$= \lambda^n |x_1 - x_0| \sum_{i=0}^{p-1} \lambda^i = \lambda^n |x_1 - x_0| \left(\frac{1 - \lambda^p}{1 - \lambda}\right)$$

$$\leq \frac{\lambda^n}{1 - \lambda} |x_1 - x_0|. \tag{4.3}$$

c. Montrons que la suite $(x_n)_n$ est une suite de Cauchy. En effet, étant donnée $\varepsilon > 0$, comme $\lim_{n \to +\infty} \lambda^n = 0$, alors il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geq N_0$ on a

$$\lambda^n \le \frac{(1-\lambda)\varepsilon}{|x_1 - x_0|},$$

d'où

$$\frac{\lambda^n}{1-\lambda}|x_1-x_0| \le \varepsilon.$$

On conclut donc à partir de (4.3) que pour tout $\varepsilon > 0$, il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geq N_0$, on a

$$|x_{n+p} - x_n| < \varepsilon$$
.

Par conséquent, la suite $(x_n)_n$ est une suite de Cauchy.

d. Soit $\alpha = \lim_{n \to +\infty} x_n$. Puisque $x_{n+1} = g(x_n)$ et que la fonction g est continue en α , alors par passage à la limite on obtient $\alpha = g(\alpha)$. D'autre part, comme $x_n \in [a, b]$ pour tout $n \in \mathbb{N}$, alors $\alpha \in [a, b]$.

Conclusion : α est un point fixe de la fonction g. Pour finir, montrons que α est l'unique point fixe de g. En effet, si β est un autre point fixe de g, alors

$$|\beta - \alpha| = |g(\beta) - g(\alpha)| \le \lambda |\beta - \alpha|.$$

Ainsi, $(1 - \lambda)|\beta - \alpha| \le 0$. Enfin, de la relation $(1 - \lambda) > 0$ on déduit que $|\beta - \alpha| = 0$, et cela est équivalent à $\beta = \alpha$.

2. D'après (4.2) on a

$$|x_{n+p} - x_n| \le \frac{\lambda^n}{1-\lambda} |x_1 - x_0|.$$

On faisant tendre p vers l'infini on obtient

$$|\alpha - x_n| \le \frac{\lambda^n}{1 - \lambda} |x_1 - x_0|.$$

Remarque 4.1. Le théorème du point fixe reste valable si on remplace l'intervalle [a,b] par $[a,+\infty[$ ou $]-\infty,b]$ ou \mathbb{R} .

Définition 4.5. Un réel β est une valeur approchée du réel α avec la précision ε si

$$|\beta - \alpha| < \varepsilon$$
.

Remarque 4.2. Pour avoir une valeur approchée de α avec une précision ε , il suffit de prendre la valeur de x_{n_0} où l'entier n_0 est tel que

$$\frac{\lambda^{n_0}}{1-\lambda}|x_1-x_0| \le \varepsilon \quad \Leftrightarrow \quad n_0 \ge \frac{\ln(\varepsilon) + \ln(1-\lambda) - \ln(|x_1-x_0|)}{\ln(\lambda)}.$$

Exemple 4.2. On désire chercher les solutions de l'équation

$$x\ln(x) = 14. (4.4)$$

Existence de la solution : On remarque que les solutions de (4.4) ne sont autres que les zéros de la fonction f définie sur $]0, +\infty[$ par

$$f(x) = x \ln(x) - 14.$$

En étudiant le tableau de variation de f, on montre que f admet un seul zéro α compris entre 7 et 8.

Problème de point fixe : Il est facile de vérifier que α est un point fixe de la fonction g définie sur [7,8] par

$$g(x) = x + 1 - \frac{x \ln(x)}{14}.$$

Comme $g'(x) = \frac{13 - \ln(x)}{14} \ge 0$ pour tout $x \in [7, 8]$, alors g est croissante sur [7, 8] et

$$g([7,8]) = [g(7), g(8)] = [7.02, 7.81] \subset [7,8].$$

D'autre part, pour tout $x \in [7,8]$ on a

$$g'(8) = \frac{13 - \ln(8)}{14} = 0.780 \le g'(x) \le g'(7) = \frac{13 - \ln(7)}{14} = 0.789.$$

Ainsi, g est strictement contractante sur [7,8] de rapport de contraction $\lambda = 0.789$. Conclusion: La suite $(x_n)_n$ définie par

$$\begin{cases} x_0 = 7 \\ x_{n+1} = g(x_n) = x_n + 1 - \frac{x_n \ln(x_n)}{14} \quad pour \ n \ge 0, \end{cases}$$

converge vers α . Nous donnons dans le tableau ci-dessous les premières valeurs de la suite $(x_n)_n$.

n	0	1	2	3	4	5	6	7	8	9
x_n	7	7.0270	7.0484	7.0652	7.0785	7.0890	7.0973	7.1038	7.1090	7.1130
\overline{n}	10	11	12	13	14	15	16	17	18	19
x_n	7.1162	7.1187	7.1207	7.1223	7.1235	7.1245	7.1253	7.1259	7.1264	7.1267

Remarque 4.3. D'après la remarque 4.2, x_{n_0} est une valeur approchée de α avec la précision $\varepsilon = 10^{-2}$ dès que l'entier n_0 est tel que

$$n_0 \ge \frac{\ln(10^{-2}) + \ln(1 - \lambda) - \ln(|g(7) - 7|)}{\ln(\lambda)} = 10.8.$$

Donc, $x_{11} = 7.1187$ est une valeur approchée de α avec la précision 10^{-2} .

4.3 Résolution numérique approchée de l'équation f(x) = 0

Pour la recherche des zéros d'une fonction, on commence par localiser les zéros, c-à-d, trouver un intervalle [a,b] de $\mathbb R$ dans lequel il existe un unique zéro α . Ensuite, on construit une suite $(x_n)_n$ qui converge vers α .

Théorème 4.3. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue.

- 1. Si f(a)f(b) < 0, alors il existe $\alpha \in]a,b[$ tel que $f(\alpha) = 0$.
- 2. Si de plus f est strictement monotone, alors α est unique.

Preuve.

- 1. Conséquence du théorème des valeurs intermédiaires.
- 2. Si f est strictement monotone, alors f est injective. Ainsi, s'il existe $\beta \in]a,b[$ tel que $f(\beta)=0$ alors $f(\alpha)=f(\beta)$, d'où $\alpha=\beta$.

Dans la suite de ce paragraphe, on suppose que la fonction f est continue sur [a, b], admet un unique zéro $\alpha \in [a, b]$. On propose des méthodes permettant le calcul approché du zéro α de f.

4.3.1 Méthode de dichotomie

On pose

$$\begin{cases} a_0 = a \\ b_0 = b \text{ et} \\ x_0 = \frac{a_0 + b_0}{2} \end{cases}$$
 le milieu du segment $[a, b]$.

Si $f(x_0) = 0$ alors $\alpha = x_0$,

Sinon, on distingue deux cas:

- Si
$$f(a_0)f(x_0) < 0$$
 alors $\alpha \in]a_0, x_0[$. On pose $\begin{cases} a_1 = a_0 \\ b_1 = x_0. \end{cases}$

- Si
$$f(x_0)f(b_0) < 0$$
 alors $\alpha \in]x_0, b_0[$. On pose $\begin{cases} a_1 = x_0 \\ b_1 = b_0. \end{cases}$

Ainsi,
$$\begin{cases} \alpha \in]a_1, b_1[& \text{et} \\ (b_1 - a_1) = \frac{(b_0 - a_0)}{2} = \frac{(b - a)}{2}. \end{cases}$$

On recommence avec l'intervalle $[a_1,b_1]$ et son milieu $x_1=\frac{a_1+b_1}{2}$.

Si $f(x_1) = 0$ alors $\alpha = x_1$, Sinon, on distingue deux cas:

- Si
$$f(a_1)f(x_1) < 0$$
 alors $\alpha \in]a_1, x_1[$. On pose $\left\{ \begin{array}{l} a_2 = a_1 \\ b_2 = x_1. \end{array} \right.$

- Si
$$f(x_1)f(b_1) < 0$$
 alors $\alpha \in]x_1, b_1[$. On pose $\begin{cases} a_2 = x_1 \\ b_2 = b_1. \end{cases}$

Ainsi,
$$\begin{cases} \alpha \in]a_2, b_2[& \text{et} \\ (b_2 - a_2) = \frac{(b_1 - a_1)}{2} = \frac{(b - a)}{2^2}. \end{cases}$$

 $FIGURE\ 4.2-\mbox{La méthode de dichotomie}.$

En itérant (recommençant) ce procédé, on obtient une suite de segments $[a_n, b_n]$ vérifiant les propriétés suivantes :

Propriété 4.3. 1. $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$.

2.
$$(b_{n+1} - a_{n+1}) = \frac{(b_n - a_n)}{2} = \frac{(b-a)}{2^{n+1}}$$
.

Preuve.

- 1. Par construction, l'intervalle $[a_{n+1}, b_{n+1}]$ est l'un des segments $[a_n, \frac{a_n+b_n}{2}]$ ou $[\frac{a_n+b_n}{2}, b_n]$, d'où $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$.
- 2. On a $(b_{n+1} a_{n+1}) = \frac{(b_n a_n)}{2}$. Montrons par récurrence sur n que $(b_n a_n) = \frac{(b-a)}{2^n}$. En effet,
 - Pour n = 0 la relation est évidente.
 - Supposons que la relation est vérifiée pour $n \in \mathbb{N}$, c-à-d $(b_n a_n) = \frac{(b-a)}{2^n}$, et montrons qu'elle reste vraie pour (n+1). Puisque $(b_{n+1} a_{n+1}) = \frac{(b_n a_n)}{2}$ et $(b_n a_n) = \frac{(b-a)}{2^n}$ alors $(b_{n+1} a_{n+1}) = \frac{(b-a)}{2^{n+1}}$, d'où le résultat.

Théorème 4.4. La suite $(x_n)_n$ définie par

$$x_n = \frac{a_n + b_n}{2}$$

 $(x_n \ est \ le \ milieu \ du \ segment \ [a_n,b_n]) \ converge \ vers \ \alpha \ et$

$$|x_n - \alpha| \le \frac{(b-a)}{2^{n+1}}.$$

-

Preuve. Comme $\alpha \in [a_n, b_n]$ et x_n est le milieu de l'intervalle $[a_n, b_n]$, alors

$$|x_n - \alpha| \le \frac{(b_n - a_n)}{2} \le \frac{(b - a)}{2^{n+1}} \quad \Rightarrow \quad \alpha - \frac{(b - a)}{2^{n+1}} \le x_n \le \alpha + \frac{(b - a)}{2^{n+1}}.$$

D'autre part, $\lim_{n\to +\infty}\frac{1}{2^{n+1}}=0$, par suite en utilisant le résultat sur l'encadrement des suites, on déduit que $\lim_{n\to +\infty}x_n=\alpha$.

Remarque 4.4. Pour avoir une valeur approchée de α avec une précision ε , il suffit de prendre la valeur de x_{n_0} où l'entier n_0 est tel que

$$\frac{(b-a)}{2^{n_0+1}} \le \varepsilon \quad \Leftrightarrow \quad n_0 \ge \frac{\ln(b-a) - \ln(\varepsilon)}{\ln(2)} - 1.$$

Exemple 4.3. Soit la fonction f définie $sur \mathbb{R}$ par $f(x) = x - e^{-x}$. $f'(x) = 1 + e^{-x} > 0$ pour tout $x \in \mathbb{R}$, ainsi f est strictement croissante $sur \mathbb{R}$. D'autre part,

$$\begin{cases} \lim_{x \to -\infty} f(x) = -\infty & et \\ \lim_{x \to +\infty} f(x) = +\infty, \end{cases}$$

d'où f admet un unique zéro α . Puisque f(0) = -1 < 0 et $f(1) = 1 - e^{-1} > 0$ alors $\alpha \in [0, 1]$. En appliquant la méthode de dichotomie à f sur l'intervalle [a, b] = [0, 1], on obtient les premières valeurs de la suite $(x_n)_n$ données dans le tableau ci-dessous.

n	0	1	2	3	4	5	6	7	8	9
x_n	0.5	0.75	0.625	0.5625	0.5938	0.5781	0.5703	0.5664	0.5684	0.5674
\overline{n}	10	11	12	13	14	15	16	17	18	19
x_n	0.5669	0.5671	0.5673	0.5672	0.5672	0.5672	0.5671	0.5671	0.5671	0.5671

Remarque 4.5. x_n est une valeur approchée de α avec la précision 10^{-3} dès que

$$n \ge \frac{\ln(1-0) - \ln(10^{-3})}{\ln(2)} - 1 = 8.96.$$

Ainsi, $x_9 = 0.5674$ est une valeur approchée de α avec la précision 10^{-3} . De même, x_n est une valeur approchée de α avec la précision 10^{-4} dès que

$$n \ge \frac{\ln(1-0) - \ln(10^{-4})}{\ln(2)} - 1 = 12.28.$$

Ainsi, $x_{13} = 0.5672$ est une valeur approchée de α avec la précision 10^{-4} .

4.3.2 Méthode de la sécante

On choisit deux point $x_0, c \in [a, b[$ vérifiant $f(x_0)f(c) < 0$. La droite passant par les points $M_c = (c, f(c))$ et $M_0 = (x_0, f(x_0))$ coupe l'axe des x en un point dont l'abscisse est noté x_1 . La droite (M_cM_0) a pour équation

$$y = \frac{f(c) - f(x_0)}{c - x_0}x + \frac{cf(x_0) - x_0f(c)}{c - x_0}.$$

Ainsi,

$$x_1 = \frac{cf(x_0) - x_0 f(c)}{f(x_0) - f(c)} = x_0 - \frac{(x_0 - c)f(x_0)}{f(x_0) - f(c)}.$$

On recommence avec les points $M_c = (c, f(c))$ et $M_1 = (x_1, f(x_1))$, alors la droite $(M_c M_1)$ coupe l'axe des x en un point dont l'abscisse est noté x_2 et est donné par

$$x_2 = x_1 - \frac{(x_1 - c)f(x_1)}{f(x_1) - f(c)}.$$

En itérant ce procédé, on obtient une suite $(x_n)_n$ définie par :

$$x_{n+1} = x_n - \frac{(x_n - c)f(x_n)}{f(x_n) - f(c)} = \frac{cf(x_n) - x_n f(c)}{f(x_n) - f(c)} = g(x_n),$$

avec

$$g(x) = x - \frac{(x-c)f(x)}{f(x) - f(c)} = \frac{cf(x) - xf(c)}{f(x) - f(c)}.$$

 $Figure \ 4.3 - \text{La méthode de la sécante}.$

Théorème 4.5. Si la suite $(x_n)_n$ converge alors sa limite α est un zéro de f.

Preuve. Comme $x_{n+1} = g(x_n)$ et la fonction g est continue, alors par passage à la limite on obtient $\alpha = g(\alpha)$, donc

$$\alpha = \alpha - \frac{(\alpha - c)f(\alpha)}{f(\alpha) - f(c)} \Leftrightarrow f(\alpha) = 0.$$

Théorème 4.6. Si la fonction $f:[a,b] \to \mathbb{R}$ vérifie les propriétés suivantes :

- 1. f est de classe C^2 sur [a,b] et f''(x) < 0 pour tout $x \in [a,b]$,
- 2. f'(x) > 0 pour tout $x \in [a, b]$,
- 3. f(a) < 0 < f(b).

Alors, f admet un unique zéro $\alpha \in]a,b[$ et la suite $(x_n)_n$ obtenue par la méthode de la sécante converge vers α pour tout choix de c et x_0 vérifiant $f(c) < 0 < f(x_0)$.

Preuve. A partir du théorème 4.3, les hypothèses 2 et 3 impliquent que la fonction f admet un unique zéro $\alpha \in]a,b[$.

La suite de la démonstration se fera en deux étapes.

a. Vérifions à l'aide d'un raisonnement par récurrence que pour tout $n \in \mathbb{N}$ on a : $x_n \ge \alpha$. Pour n = 0, on a par hypothèse $x_0 \ge \alpha$.

Supposons que $x_n \ge \alpha$, alors $f(x_n) \ge 0$ et par suite $\frac{f(x_n)}{f(x_n) - f(c)} \in [0, 1[$.

D'autre part, puisque

$$x_{n+1} = \frac{f(x_n)}{f(x_n) - f(c)}c + \frac{-f(c)}{f(x_n) - f(c)}x_n$$

et la fonction f est concave alors

$$f(x_{n+1}) \ge \frac{f(x_n)}{f(x_n) - f(c)} f(c) + \frac{-f(c)}{f(x_n) - f(c)} f(x_n) = 0 = f(\alpha).$$

Ainsi, $x_{n+1} \ge \alpha$.

b. Montrons que $(x_n)_n$ est une suite décroissante. En effet,

$$x_{n+1} - x_n = \frac{(c - x_n)f(x_n)}{f(x_n) - f(c)} \le 0 \quad \Rightarrow \quad x_{n+1} \le x_n.$$

Conclusion : La suite $(x_n)_n$ est décroissante minorée donc convergente. Soit $\beta = \lim_{n \to +\infty} x_n$. Comme,

$$x_{n+1} = x_n - \frac{(x_n - c)f(x_n)}{f(x_n) - f(c)}$$

et la fonction f est continue en β , alors par passage à la limite on obtient

$$\beta = \beta - \frac{(\beta - c)f(\beta)}{f(\beta) - f(c)} \quad \Leftrightarrow \quad (\beta - c)f(\beta) = 0 \quad \Leftrightarrow \quad f(\beta) = 0.$$

Enfin, l'unicité du zéro de f implique que $\beta = \alpha$.

13

Remarque 4.6. Le théorème précédent reste valable si on remplace les conditions 1, 2 et 3 par les conditions plus générales suivantes :

- 1. f est de classe C^2 sur [a,b] et $f''(x) \neq 0$ pour tout $x \in [a,b]$,
- 2. $f'(x) \neq 0$ pour tout $x \in [a, b]$,
- 3. f(a)f(b) < 0.

Exemple 4.4. Soit la fonction f définie sur [0,1] par $f(x)=x-e^{-x}$. En choisissant $x_0=b=1$ et c=a=0, la suite $(x_n)_n$ est donnée par :

$$\begin{cases} x_0 = 1 \\ x_{n+1} = \frac{-x_n f(0)}{f(x_n) - f(0)} = \frac{x_n}{x_n - e^{-x_n} + 1} \quad pour \ n \ge 0. \end{cases}$$

Dans le tableau ci-dessous, on donne les premières valeurs de la suite $(x_n)_n$.

n	0	1	2	3	4	5	6	7	8
x_n	1	0.6127	0.5722	0.5677	0.5672	0.5672	0.5671	0.5671	0.5671

Remarque 4.7. On remarque que $x_3 = 0.5677$ est une valeur approchée de α avec une erreur de l'ordre de 10^{-3} et $x_6 = 0.5671$ est une valeur approchée de α avec une erreur de l'ordre de 10^{-4} . Par conséquent, la suite $(x_n)_n$ obtenue par la méthode de la sécante converge vers α plus rapidement que celle obtenue par la méthode de dichotomie.

4.3.3 Méthode de Newton (ou méthode de la tangente)

Soit $x_0 \in [a, b]$. La tangente à la courbe de f au point $M_0 = (x_0, f(x_0))$ coupe l'axe des x en un point d'abscisse x_1 . L'équation de la tangente est

$$y = f(x_0) + (x - x_0)f'(x_0).$$

Ainsi, si $f'(x_0) \neq 0$ on obtient

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

On recommence avec le point $M_1 = (x_1, f(x_1))$. La tangente à la courbe de f au point M_1 coupe l'axe des x en un point d'abscisse x_2 . Si $f'(x_1) \neq 0$, alors

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

En itérant ce procédé, on construit une suite $(x_n)_n$ définie par :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = g(x_n),$$

avec

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

FIGURE 4.4 - La méthode de Newton.

Théorème 4.7. On suppose que la fonction f est de classe C^1 et que $f'(x) \neq 0$ pour tout $x \in [a,b]$. Si la suite $(x_n)_n$ converge, alors sa limite α est un zéro de f.

Preuve. Puisque f est de classe \mathcal{C}^1 sur [a,b], on déduit que la fonction g est continue sur [a,b]. Comme $x_{n+1}=g(x_n)$, alors en passant à la limite on obtient $\alpha=g(\alpha)$, d'où

$$\alpha = \alpha - \frac{f(\alpha)}{f'(\alpha)} \Leftrightarrow f(\alpha) = 0.$$

Théorème 4.8. Si la fonction $f:[a,b] \to \mathbb{R}$ vérifie les propriétés suivantes :

- 1. f est de classe C^2 sur [a,b] et f''(x) < 0 pour tout $x \in [a,b]$,
- 2. f'(x) > 0 pour tout $x \in [a, b]$,
- 3. f(a) < 0 < f(b).

Alors, f admet un unique zéro $\alpha \in]a,b[$ et la suite $(x_n)_n$ obtenue par la méthode de Newton converge vers α pour tout choix de x_0 dans $[a,\alpha]$. De plus, pour tout $n \in \mathbb{N}^*$, on a

$$|x_n - \alpha| \le \frac{1}{c} (c|x_0 - \alpha|)^{2^n}$$

avec
$$c = \frac{m}{2M}$$
, où $m = -\min_{a \le x \le b} (f''(x))$ et $M = \max_{a \le x \le b} (f'(x))$.

Preuve. A partir du théorème 4.3, les hypothèses 2 et 3 impliquent que la fonction f admet un unique zéro $\alpha \in]a,b[$.

Pour montrer que la suite $(x_n)_n$ obtenue par la méthode de Newton converge vers α , nous allons procéder en plusieurs étapes.

a. Première étape : Vérifions que

$$f(y) \le f(x) + (y - x)f'(x) \quad \text{pour tous } x, y \in [a, b]. \tag{4.5}$$

La formule de Taylor à l'ordre 2 appliquée à f relativement aux points x et y implique l'existance d'un point θ entre x et y vérifiant

$$f(y) = f(x) + (y - x)f'(x) + \frac{(y - x)^2}{2}f''(\theta).$$

Ainsi, en utilisant la première condition du théorème 4.8 on déduit le résultat.

b. Deuxième étape : On a

$$x \le g(x) \le \alpha$$
 pour tout $x \in [a, \alpha]$. (4.6)

Comme f est strictement croissante sur $[a,\alpha]$ (conséquence de 2) alors pour tout $x \in [a,\alpha]$ on a $f(x) < f(\alpha) = 0$. Par suite, $g(x) = x - \frac{f(x)}{f'(x)} \ge x$. D'autre part, d'après (4.5) on a $f(x) + (\alpha - x)f'(x) \ge f(\alpha) = 0$, d'où $0 \le \frac{f(x)}{f'(x)} + (\alpha - x) = \alpha - g(x)$ et ceci donne le résultat.

c. Troisième étape : Pour tout choix de $x_0 \in [a, \alpha]$, la suite $(x_n)_n$ vérifie la propriété suivante

$$a \le x_n \le x_{n+1} \le \alpha$$
 pour tout $n \in \mathbb{N}$.

Montrons ce résultat à l'aide d'un raisonnement par récurrence.

Pour n = 0, $x_0 \in [a, \alpha]$ et par suite (4.6) donne $a \le x_0 \le g(x_0) = x_1 \le \alpha$.

Supposons que $a \le x_n \le x_{n+1} \le \alpha$, alors d'après (4.6) on a $x_{n+1} \le g(x_{n+1}) \le \alpha$, d'où $a \le x_{n+1} \le x_{n+2} \le \alpha$.

Conclusion : La suite $(x_n)_n$ est croissante majorée donc convergente. Soit $\beta = \lim_{n \to +\infty} x_n$.

Comme g est continue en β et $x_{n+1} = g(x_n)$, alors par passage à la limite on obtient $\beta = g(\beta)$ et ceci est equivalent à $f(\beta) = 0$. Enfin, l'unicité du zéro de f implique que $\beta = \alpha$.

d. Quatrième étape : Pour tout $x \in [a, \alpha]$ on a

$$0 \le \alpha - g(x) \le \frac{m}{2M} (\alpha - x)^2. \tag{4.7}$$

Il est évident que la relation (4.6) implique que $0 \le \alpha - g(x)$. D'autre part, d'après la formule de Taylor, il existe $\gamma \in]x, \alpha[$ tel que $0 = f(\alpha) = f(x) + (\alpha - x)f'(x) + \frac{(\alpha - x)^2}{2}f''(\gamma)$. En utilisant les propriétés 1, 2 et 3 sur f il vient :

$$-f(x) - (\alpha - x)f'(x) = \frac{(\alpha - x)^2}{2}f''(\gamma) \ge \frac{(\alpha - x)^2}{2}(-m)$$

$$\Leftrightarrow -\frac{f(x)}{f'(x)} - (\alpha - x) = g(x) - \alpha \ge \frac{(\alpha - x)^2}{2}\frac{(-m)}{f'(x)} \ge \frac{(\alpha - x)^2}{2}\frac{(-m)}{M}$$

$$\Leftrightarrow \alpha - g(x) \le \frac{(\alpha - x)^2}{2}\frac{m}{M}.$$

e. Cinquième étape : Pour tout $n \in \mathbb{N}$ on a $|x_n - \alpha| \leq \frac{1}{c}(c|x_0 - \alpha|)^{2^n}$. La relation (4.7) appliquée à x_n nous donne

$$0 \le \alpha - x_{n+1} = \alpha - g(x_n) \le \frac{m}{2M} (\alpha - x_n)^2 = c(\alpha - x_n)^2.$$
 (4.8)

Posons $e_n = c(\alpha - x_n)$, alors en remplaçant dans (4.8) on obtient

$$e_{n+1} \le e_n^2. \tag{4.9}$$

Vérifions par récurrence que $e_n \leq e_0^{2^n}$. En effet, le résultat est immédiat pour n = 0. Supposons que $e_n \leq e_0^{2^n}$, alors (4.9) et l'hypothèse de récurrence impliquent

$$e_{n+1} \le e_n^2 \le (e_0^{2^n})^2 = e_0^{2^{n+1}}.$$

Enfin, en remplaçant e_n par son expression on obtient l'inégalité du théorème.

Remarque 4.8. Le théorème précédent reste valable si on remplace les conditions 1, 2 et 3 par les conditions plus générales suivantes :

- 1. f est de classe C^2 sur [a,b] et $f''(x) \neq 0$ pour tout $x \in [a,b]$,
- 2. $f'(x) \neq 0$ pour tout $x \in [a, b]$,
- 3. f(a)f(b) < 0.

Exemple 4.5. Soit f la fonction définie sur [0,1] par $f(x)=x-e^{-x}$. La suite $(x_n)_n$ est définie par :

$$\begin{cases} x_0 = 0 \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{(1+x_n)e^{-x_n}}{1+e^{-x_n}} = \frac{1+x_n}{1+e^{x_n}} \quad pour \ n \ge 0. \end{cases}$$

Dans le tableau ci-dessous, on donne les premières valeurs de la suite $(x_n)_n$.

I	n	0	1	2	3	4	5
ĺ	x_n	0	0.5	0.5663	0.5671	0.5671	0.5671

Remarque 4.9. On remarque que $x_3 = 0.5671$ est une valeur approchée de α avec une erreur de l'ordre de 10^{-4} . Par conséquent, la suite $(x_n)_n$ obtenue par la méthode de la tangente converge vers α plus rapidement que celle obtenue par la méthode de la sécante.

Conclusion: Les suites obtenues par la méthode de la sécante et celle de la tangente sont de la forme $x_{n+1} = g(x_n)$. Ainsi, ces suites convergent dès que g définie sur [a, b] est à valeurs dans [a, b] et est strictement contractante. On rappelle que pour que g soit strictement contractante, il suffit qu'elle soit de classe \mathcal{C}^1 et qu'il existe k < 1 tel que pour tout $x \in [a, b]$ on ait : $|g'(x)| \le k$.