

Recommendation Systems Project

Mate Balogh

U STORE

Item recommendations for visitors in an online store based on *implicit feedback* to provide better user experience and to boost sales.

Methodology

- 1. Dataset
- 2. Business needs
- 3. Requirement details
- 4. Model planning
- 5. Model construction
- 6. Explanation
- 7. Evaluation

Dataset

E-commerce dataset¹

Elements:

- Tree of categories
- Click stream data of users
- Item properties

Event types in stream:

- View
- Add to cart
- Transaction

¹ Retailrocket recommender system <u>dataset from Kaggle</u>

Event distribution

Business Needs

- Home page recommendations

 Popular items, Items purchased by similar users
- Newsletter recommendations Discovered patterns

All-time Favorites

Others are Coming Back for

Item #396042

Ut id imperdiet lectus. In blandit scelerisque odio eu fringilla. Maecenas sit amet pretium nunc.

See more

We think You will Love these

Item #10572

Ut id imperdiet lectus. In blandit scelerisque odio eu fringilla. Maecenas sit amet pretium nunc.

Requirement Details

Business need	In-app title	Expected behavior	Model name	
Popular item recommendation	All-time Favorites	The N most-frequently purchased items are recommended.	PopularItemRecommender	
Popular item recommendation	Others are Coming Back for	The N items with the largest mean purchase frequency are recommended.	MeanPopularItemRecommender	
Items purchased by similar users	We think You will Love these	Based on the entire purchase history of the given user, similar K users are selected and N items from their purchases (not yet bought by the given user) are recommended.	UserBasedCollabFilterItemRecommender	
Discover hidden patterns	Already Picked for You	Based on the entire purchase history of all the users, hidden factors are discovered via $Matrix\ Factorization$. N not yet purchased items with the top score implied by the factors are recommended for the given user.	MatrixFactorizationItemRecommender	

Model Planning

Model name	User elements	Measurement	Similarity	Filtering	Selection
PopularItemRecommender	-	Purchase frequency, item-wise	-	-	Top N items
MeanPopularItemRecommender	-	Mean purchase frequency, item-wise, after grouping by user	-	-	Top N items
UserBasedCollabFilterItemRecommender	Previously purchased items	Binary purchase flag, user-item pairwise	Cosine similarity, user-user pairwise	K-most similar users (threshold: 0.1)	Top N items
MatrixFactorizationItemRecommender	Previously purchased items for all users (implicit feedback, weighted)	Discovered latent factors (U,V)	Dot product of latent factors of users and items (U, V, T)	_	Top N items

Model Construction*

```
items_recommended = (
    PopularItemRecommender(transaction_events, verb=True)
        . recommend(N)
items_recommended = (
    MeanPopularItemRecommender(transaction_events, verb=True)
        . recommend(N)
items_recommended = (
    UserBasedCollabFilterItemRecommender(visitor_item_pivot, visitor_item_similarity, verb=True)
        .fit(designated_visitor_id)
        .recommend(K, N, sim_threshold=0.1)
```

^{*} Model call syntaxes. For the model implementations, visit the <u>Python notebook</u> on GitHub

Explanation

Item popularity based on purchase count

Item popularity based on mean purchase count

Matrix Factorization (Weighted)

model = MatrixFactorizationItemRecommender(verb=True)
model.experiment(ratio_split, metrics, k=2, max_iter=100, learning_rate=0.001)

Reconstruction with *U* and *V*

Reconstruction with *U* and *V*

Reconstruction with *U* and *V*

Variance of Latent Factors

Already Picked for You

Future Directions

- Investigate effect of bias(es)
- Complete MF model
- Interpret behavior of MF in details
- Evaluate model performances
- Incorporate other implicit feedbacks (view, addtocart, addtocart -> transaction)

Project-based Topics and Questions

- 1. Collaborative Filtering Fundamentals and Similarity-Based Methods
- 2. Matrix Factorization and Latent Factor Models
- 3. Handling Implicit Feedback and Data Preprocessing

1. Collaborative Filtering Fundamentals and Similarity-Based Methods

Source: Recommender Systems Handbook – Chapter 4:

Neighborhood-based Recommendation Methods

Key aspects:

- · Core concepts of user-based and item-based collaborative filtering
- Different similarity metrics (e.g., Cosine, Pearson)
- Rating normalization and neighborhood selection strategies

2. Matrix Factorization and Latent Factor Models

Source: ch09-recsys2.pdf

Concepts of SVD, latent factors, and gradient descent optimization

Key aspects:

- Representing users/items as vectors in a shared latent space
- Learning via RMSE minimization using gradient descent
- Comparing factorization with neighborhood methods

3. Handling Implicit Feedback and Data Preprocessing

Source: Recommender Systems Handbook – Chapter 2:

Data Mining Methods for Recommender Systems

Key aspects:

- How to interpret implicit feedback (views, cart additions) as signals of user preference
- Denoising, dimensionality reduction, and sampling strategies
- Importance of preprocessing for high-quality recommendations