MAS AI Assignment 7

Simon Deussen

January 15, 2021

Task 1: Definitions

All answers use the book "Artificial Intelligence - A modern approach" from Russel and Norvig as basis.

Enumeration A way to **check** a sentence in against a **model** in propositional logic. This works by *enumerating* each possible row of a truth table for a given sentence.

Validity Also a property of propositional logic. A sentence is valid if it is true in all models.

Satisfiability A sentence is *satisfiable*, if it is true in a subset of all models.

CNF and DNF

Conjunctive normal form, CNF Expressing a sentence as a conjunction of clauses. For every sentence exists as CNF. This way the sentence can be put into an resolution algorithm. The sentence $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ can be converted in following CNF: $(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,2})$

Disjunctive normal form, DNF This is a form were a disjunction of conjunctions of literals is used. Example from the book: $(A \land B \land C) \lor (\neg A \land C) \lor (B \land \neg C)$

Resolution This is a specific inference rule which creates a complete inference algorithm when using any search algorithm. It uses factoring to eliminate multiple copies of literals.

Task 2: Implications

Given sentence: $[(F \Longrightarrow P) \lor (D \Longrightarrow P)] \Longrightarrow [(F \land D) \Longrightarrow P]$

Proof by enumeration

The truth table shows that the sentence is valid because it holds true in all models:

\mathbf{F}	Ρ	D	$F \Longrightarrow P$	$D \Longrightarrow P$	$(F \Longrightarrow P) \lor (D \Longrightarrow P)$	$F \wedge D$	$(F \wedge D) \Longrightarrow P$	Full sentence
0	0	0	1	1	1	0	1	1
0	0	1	1	0	1	0	1	1
0	1	0	1	1	1	0	1	1
0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	0	1	1
1	0	1	0	0	0	1	0	1
1	1	0	1	1	1	0	1	1
1	1	1	1	1	1	1	1	1

Convert to CNF

1. Given sentence:

$$[(F \Longrightarrow P) \lor (D \Longrightarrow P)] \Longrightarrow [(F \land D) \Longrightarrow P]$$

2. Eliminate three times the inner $implications\colon$

$$[(\neg F \lor P) \lor (\neg D \lor P)] \Longrightarrow [\neg (F \land D) \lor P]$$

3. Use *De Morgan* on the right side: $[(\neg F \lor P) \lor (\neg D \lor P)] \Longrightarrow [(\neg F \lor \neg D) \lor P]$

4. Eliminate remaining implication:

$$\neg[(\neg F \lor P) \lor (\neg D \lor P)] \lor [(\neg F \lor \neg D) \lor P]$$

5. Use $De\ Morgan$ on the left side:

$$[\neg(\neg F \lor P) \land \neg(\neg D \lor P)] \lor [(\neg F \lor \neg D) \lor P]$$

6. Use two times $De\ Morgan$ on the left side: $[(F \land \neg P) \land (D \land \neg P)] \lor [(\neg F \lor \neg D) \lor P]$

7. Remove inner brackets:

$$[F \land \neg P \land D \land \neg P] \lor [\neg F \lor \neg D \lor P]$$

8. Remove double $\neg P$ get CNF:

$$[F \land D \land \neg P] \lor [\neg F \lor \neg D \lor P]$$

Prove using resolution

F	D	Ρ	!F	!D	!P	$F \wedge D \wedge \neg P$	$\neg F \vee \neg D \vee P$	$[F \land D \land \neg P] \lor [\neg F \lor \neg D \lor P]$
0	0	0	1	1	1	0	1	1
0	0	1	1	1	0	0	1	1
0	1	0	1	0	1	0	1	1
0	1	1	1	0	0	0	1	1
1	0	0	0	1	1	0	1	1
1	0	1	0	1	0	0	1	1
1	1	0	0	0	1	1	0	1
1	1	1	0	0	0	0	1	1

We see that the CNF $[F \land D \land \neg P] \lor [\neg F \lor \neg D \lor P]$ is equal to $False \lor True$ which is always True.

Task 3: Entailment

Given formula $(A \wedge B) \Longrightarrow C$ prove that $(A \Longrightarrow C) \vee (B \Longrightarrow C)$ is equivalent.

- 1. Given formula:
 - $(A \wedge B) \Longrightarrow C$
- 2. Eliminate implication: $\neg (A \land B) \lor C$
- 3. Use De Morgan:
- $\neg A \lor \neg B \lor C$ 4. Which is equivalent to:
- $\neg A \lor C \lor \neg B \lor C$
- 5. Recreate *implications*: $(A \Longrightarrow C) \lor (B \Longrightarrow C)$

Task 4: Proving

- **a**)
 - 1. Given formula:

$$\neg P \wedge \neg Q \Leftrightarrow \neg (P \vee Q)$$

- 2. Use $De\ Morgan$ on the right side: $\neg P \wedge \neg Q \Leftrightarrow \neg P \wedge \neg Q$
- b)
 - 1. Given formula:

$$\neg P \vee \neg Q \Leftrightarrow \neg (P \wedge Q)$$

2. Use $De\ Morgan$ on the right side:

$$\neg P \land \neg Q \Leftrightarrow \neg P \land \neg Q$$

- **c**)
 - 1. Given formula:

$$P \lor (P \land Q) \Leftrightarrow P$$

2. Left side, distribute \vee over \wedge :

$$(P \lor Q) \land (P \lor P) \Leftrightarrow P$$

3. Which is equivalent to:

$$P \wedge (P \vee Q) \Leftrightarrow P$$

4. Because P overshadows all values of Q this is equivalient to: $P \Leftrightarrow P$