Recommender Systems

Challenge 2022/23

Nicola Cecere Andrea Riboni

What we have done, briefly

What we have done, briefly

01 Dataset analysis: item length

There are movies or mono-episodes series

Dataset analysis: item length

There are series with more than one episode

Dataset analysis: item length

There are series with probably "corrupted" values (10k)

01 Dataset analysis: item types, interactions

01 Dataset analysis: item types, interactions

01.1 Anomalous item type distribution

01.2 No cold users

01 Dataset analysis: item types, interactions

O 1 . 1 Anomalous item type distribution

01.2 No cold users

01.3 3000 cold items

Our resources

02.1 Personal resources

Macbook Pro 2019

Lenovo Yoga Slim 7 Pro

Our resources

02.1 Personal resources

Macbook Pro 2019

Lenovo Yoga Slim 7 Pro

02.2 Cloud

Kaggle

Microsoft Azure Student

03 Approaches

What did work

Weighted stacking too

IOIO Binary URM and ICM

Based on interaction count Normalized using tanh()

Hierarchical hybrids

What made us happy at least once

List combination

Round robin
Condorcet-Schulze method

What did not work

Pipelined hybrids

Recommenders tailored on specific groups of users

Using the profile length Using K-Means

Recommenders based on user-similarity

Feature weighting

03 Approaches

What did work

Stacking URM + ICM
Weighted stacking too

1010

Binary URM and ICM

Non-binary URM

Based on interaction count Normalized using tanh()

Hierarchical hybrids

But mostly

Trial and Error

04 Our solution The "binary-trained" hybrid

04 Our solution The "binary-trained" hybrid

04 Our solution

The "binary-trained" hybrid The "tanh-trained" hybrid

04 Our solution

04 Our solution

Final MAP@10:

0.06101 private 0.06200 public

Intuition:

Different URMs imply different results

Algorithms coefficients:

Binary:	6
SLIM-EN:	400
IALS:	41
MultVAE:	4
<i>RP3</i> :	4
EASE:	27
TanH:	60
SLIM-EN:	62
IALS:	22
MultVAE:	2
RP3:	200
EASE:	50
IALS:	169

05 Further improvements

Thanks

