Статистический анализ корректирующих способностей различных методов при передаче данных в каналах со стираниями

Модель канала со стиранием

q – вероятность правильного приема;
 p₀ – вероятность ошибочного приема символа;
 p_C – вероятность получения стертого символа;
 y₃ – символ стирания.

Граф переходных вероятностей двоичного симметричного канала со стиранием

Модель канала со стиранием

• Если $U_C > U_{\Pi 2}$, то фиксируется символ "1". Если $U_C < U_{\Pi 1}$, то фиксируется символ "0". Если $U_{\Pi 1} >= U_C >= U_{\Pi 2}$, то фиксируется символ стирания.

Декодирование символов при использовании стирания

Модель канала со стиранием

- В канале связи могут возникать ошибки двух типов: ошибки трансформации и ошибки стирания.
- Ошибка трансформации возникает с вероятностью p_0 и для двоичного канала связи физически означает трансформацию "0" в "1" или "1" в "0".
- Ошибка стирания возникает с вероятностью $p_{\mathcal{C}}$. Под ней понимают прием вместо "1" или "0" какого-то третьего символа (символа стирания), который указывает на позицию искаженного символа.

Модель канала со стиранием. Уточнение

- Считаем, что вероятность ошибки трансформации p_0 = 0.
- Символы пакеты данных.

Постановка задачи

- Дано сообщение длины К (то есть состоящее из К пакетов-«символов». Вероятность потери каждого пакета в сообщении независима и неизменна: p_C = p = const. Пусть в результате некоторого преобразования данных длина сообщения стала N = K + M. Назовем М - избыточными пакетами, а M/N – избыточностью кода.
- Необходимо, чтобы в результате кодирования-восстановлениядекодирования, вероятность потери пакета = рі (при вероятностной интерпретации полученного сообщения аналогичной исходному) с минимальной избыточностью
- pi = 0.001

Помехоустойчивое кодирование

• Чтобы обнаружить и исправить ошибку, применяют помехоустойчивое кодирование, т.е. кодируют сообщение таким образом, чтобы принимающая сторона знала, произошла ошибка или нет, и при могла исправить ошибки в случае их возникновения.

По сути, кодирование — это добавление к исходной информации дополнительной, проверочной, информации. Для кодирования на передающей стороне используются кодер, а на принимающей стороне — используют декодер для получения исходного сообщения.

Добавление пакета четности

- Пакет чётности формируется при выполнении операции «Исключающее-ИЛИ» побитово между пакетами
- Избыточность = 1/(K+1)

Добавление пакета четности

Текущая	Число		
вероятность	информационных	«Новая» вероятность (π)	π(K+1)
потери пакетов (р)	пакетов(К)		
0.002	346	0.0009995635838150288	0.0010026512968299712
0.003	134	0.0009971194029850747	0.0010016296296296297
0.005	44	0.00099525	0.0010155333333333333
0.007	21	0.0009626619047619048	0.00100972727272728
0.01	10	0.00095315	0.0010507727272727272
0.02	2	0.000791185	0.0011813
0.03	1	0.0008987	0.0017721
0.05	-	-	-

График зависимости пост-вероятности от длины сообщения при р=0.002, М=1

Добавление пакета четности

$$\pi = p * (1 - p)^{K-1} * (1 - p)$$

$$K = \left[\frac{\ln(\pi) - \ln(p)}{\ln(1-p)}\right]$$

Модификация even/odd

- Пакеты чётности формируются при выполнении операции «Исключающее-ИЛИ» побитово для каждой группы из К/М пакетов
- Избыточность = M/(K+M)
- В частности, even/odd имеет избыточность = 2/(K+2)

Модификация even/odd

Текущая	Число		
вероятность	информационных	«Новая» вероятность (π)	π(K+1)
потери пакетов (р)	пакетов(К)		
0.002	692	0.0009977702312138727	0.0010039206349206349
0.003	269	0.0009958884758364311	0.0010050888888888888
0.005	88	0.000996556818181818	0.0010056516853932584
0.007	43	0.000978511627906977	0.0010167727272727273
0.01	20	0.00097205	0.001010095238095238
0.02	4	0.0007985	0.0010252199999999999
0.03	2	0.00089915	0.0014863666666666666
0.05	-	-	-

График зависимости пост-вероятности от длины сообщения при p=0.002, even/odd

Модификация even/odd

$$\pi = p * (1 - p)^{K/2-1} * (1 - p)$$

$$K = \left[2 \frac{\ln(\pi) - \ln(p)}{\ln(1-p)} \right]$$

Корректирующая способность

• Корректирующая способность— характеристика t кода C, описывающая возможность исправить ошибки в кодовых словах. Определяется как целое число, меньшее половины от минимального расстояния dmin между кодовыми словами минус один в принятой метрике кода:

$$t = \left\lfloor \left(d_{\min} - 1
ight)/2
ight
floor$$

• Для Хемминговой метрики корректирующую способность кода можно определить как максимальный радиус сфер Хемминга, при котором для двух различных кодовых векторов сферы не пересекаются:

$$t = \max_{ec{v}_i, ec{v}_j \in C} \left\{ l | S_l\left(ec{v}_i
ight) \cap S_l\left(ec{v}_j
ight) = \emptyset, ec{v}_i
eq ec{v}_j
ight\}$$

Коды Рида-Соломона

• Рида — Соломона коды (РС-код) можно интерпретировать как недвоичные коды БЧХ (Боуза — Чоудхури — Хоквингема), значения кодовых символов которых взяты из поля GF(2^r), т. е. r информационных символов отображаются отдельным элементом поля. Коды Рида — Соломона — это линейные недвоичные систематические циклические коды, символы которых представляют собой r-битовые последовательности, где r — целое положительное число, большее 1.

Коды Рида — Соломона (n, k) определены на r-битовых символах при всех n и k, для которых:

 $0 < k < n < 2^r + 2$, где

k – число информационных блоков, подлежащих кодированию,

n – число кодовых символов в кодируемом блоке.

• Для большинства (n, k)-кодов Рида — Соломона; (n, k) = $(2^r-1, 2^r-1-2\cdot t)$, где t — количество ошибочных символов, которые может исправить код, а n-k=2t — число контрольных символов.

Коды Рида-Соломона

Почему именно РС-коды?

- **Теорема (граница Рейгера)**. Каждый линейный блоковый код, исправляющий все пакеты длиной t и менее, должен содержать, по меньшей мере, 2t проверочных символов.
- Код Рида Соломона, исправляющий t ошибок, требует 2t проверочных пакетов, и с его помощью исправляются произвольные t ошибок и меньше.

График зависимости пост-вероятности от длины сообщения при р=0.005, РС-коды

N	Р (в %)	M
	0.5	1
	0.7	1
5	1	1
	1.5	1
	2	1
	0.5	1
	0.7	1
10	1	1
	1.5	1
	2	2
	0.5	1
	0.7	2
50	1	2
	1.5	2
	2	3
	0.5	2
	0.7	2
100	1	3
	1.5	3
	2	4
	0.5	2
	0.7	3
300	1	5
	1.5	7
	2	9
	0.5	3
	0.7	5
500	1	6
	1.5	10
	2	13
	0.5	5
	0.7	8
1000	1	11
	1.5	17
	2	22

N	Р (в %)	М
	0.5	1
	0.7	1
5	1	2
	1.5	2
	2	2
	0.5	2
	0.7	2
10	1	2
	1.5	2
	2	2
	0.5	2
	0.7	3
50	1	3
	1.5	4
	2	4
	0.5	3
	0.7	3
100	1	4
	1.5	5
	2	6
	0.5	4
	0.7	5
300	1	7
	1.5	9
	2	12
	0.5	6
	0.7	7
500	1	10
	1.5	13
	2	17
	0.5	9
	0.7	12
1000	1	16
	1.5	22
	2	28