Geometría y Álgebra Lineal 2

Mauro Polenta Mora

CLASE 19 - 14/07/2025

Operadores autoadjuntos

Teorema

Retomamos el teorema visto en la clase anterior, para demostrarlo en esta clase.

Sea V un \mathbb{R} -espacio vectorial de dimensión finita con producto interno, sea $T:V\to V$. Entonces las siguientes afirmaciones son equivalentes:

- 1. T es autoadjunto
- 2. $\forall \mathcal{B} \to V$ ortonormal, $_{\mathcal{B}}(T)_{\mathcal{B}}$ es simétrica
- 3. $\exists \mathcal{B}_0 \to V$ ortonormal, $_{\mathcal{B}_0}(T)_{\mathcal{B}_0}$ es simétrica

Demostración

 $1 \implies 2$

Queremos probar que si T es autoadjunta, entonces $\forall \mathcal{B} \to V$ ortonormal, $_{\mathcal{B}}(T)_{\mathcal{B}}$ es simétrica.

Entonces:

Como T es autoadjunto, entonces $T=T^*$, en particular tenemos que $_{\mathcal{B}}(T)_{\mathcal{B}}=_{\mathcal{B}}(T^*)_{\mathcal{B}}$.

Por la representación matricial de la transformación adjunta, tenemos que: - $_{\mathcal{B}}(T^*)_{\mathcal{B}}=\frac{1}{(\mathcal{B}(T)_{\mathcal{B}})^t}$

En particular, como estamos en un \mathbb{R} -espacio vectorial, tenemos que: - $_{\mathcal{B}}(T^*)_{\mathcal{B}}=(_{\mathcal{B}}(T)_{\mathcal{B}})^t$

Además, como T es autoadjunta, tenemos que:

$$\bullet \quad {}_{\mathcal{B}}(T^*)_{\mathcal{B}} = {}_{\mathcal{B}}(T)_{\mathcal{B}} = ({}_{\mathcal{B}}(T)_{\mathcal{B}})^t$$

Que es la definición de matriz simétrica, por lo tanto queda demostrada esta implicancia.

$$2 \implies 3$$

Esta demostración es trivial, pues si se cumple que $\forall \mathcal{B} \to V$ ortonormal, $_{\mathcal{B}}(T)_{\mathcal{B}}$ es simétrica, entonces en particular existe una base \mathcal{B}_0 que cumple con dicha propiedad.

 $3 \implies 1$

Queremos probar que si $\exists \mathcal{B}_0 \to V$ ortonormal, $_{\mathcal{B}_0}(T)_{\mathcal{B}_0}$ es simétrica, entonces T es autoadjunta.

Veamos lo siguiente:

$$\begin{split} &\mathcal{B}_0(T)_{\mathcal{B}_0} \\ &= (\text{por ser simétrica}) \\ &(\mathcal{B}_0(T)_{\mathcal{B}_0})^t \\ &= (\text{como } \mathbb{K} = \mathbb{R}) \\ &\overline{(\mathcal{B}_0(T)_{\mathcal{B}_0})}^t \\ &= (\text{representación matricial de la adjunta}) \\ &\mathcal{B}_0(T^*)_{\mathcal{B}_0} \end{split}$$

Entonces T es autoadjunta.

Por lo tanto, queda probada esta implicancia, y en consecuencia todas las equivalencias.

Observación

El teorema vale también para los complejos, pero con una pequeña diferencia.

Sea V un \mathbb{K} -espacio vectorial de dimensión finita con producto interno, sea $T:V\to V$. Entonces las siguientes afirmaciones son equivalentes:

- 1. T es autoadjunta
- 2. $\forall \mathcal{B} \to V$ ortonormal, $_{\mathcal{B}}(T)_{\mathcal{B}}$ es hermítica
- 3. $\exists \mathcal{B}_0 \to V$ ortonormal, $\mathcal{B}_0(T)_{\mathcal{B}_0}$ es hermítica

Observación: Una matriz A es hermítica sii $A = \overline{(A)}^t$

Teorema espectral de operadores autoadjuntos

Sea V un \mathbb{K} -espacio vectorial de dimensión finita con producto interno. Sea $T:V\to V$ un operador autoadjunto.

Entonces existe \mathcal{B} una base ortonormal de vectores propios de T.

Observación: Para probar este resultado, necesitamos de algunos resultados anteriores que vamos a probar a continuación.

Teorema 1

Sea $T:V\to V$ un operador autoadjunto en un \mathbb{C} -espacio vectorial con producto interno. Entonces si $\lambda\in\mathbb{C}$ es un valor propio $\implies \lambda\in\mathbb{R}$

Demostración (Teorema 1)

- 1. Como $\lambda \in \mathbb{C}$ es un valor propio, entonces existe $v_0 \in V, v_0 \neq \vec{0}$ tal que $T(v_0) = \lambda v_0$
- 2. Como T es autoadjunto, entonces tenemos que:
 - $T = T^*$
 - $\langle T(v), w \rangle = \langle v, T(w) \rangle$ $\forall v, w \in V$ en particular,
 - $\langle T(v), v \rangle = \langle v, T(v) \rangle \quad \forall v \in V$
 - Ahora consideremos el vector propio v_0 asociado a λ , entonces:

$$\begin{split} \langle T(v_0), v_0 \rangle &= \langle v_0, T(v_0) \rangle \\ &\iff (\text{definición de valor propio}) \\ \langle \lambda v_0, v_0 \rangle &= \langle v_0, \lambda v_0 \rangle \\ &\iff (\text{propiedades de producto interno}) \\ \lambda \, \langle v_0, v_0 \rangle &= \overline{\lambda} \, \langle v_0, v_0 \rangle \\ &\iff (\text{como } v_0 \neq \vec{0}) \\ \lambda &= \overline{\lambda} \end{split}$$

Donde esto último solo se cumple si $\lambda \in \mathbb{R}$

Esto prueba el teorema.

Corolario (del teorema 1)

Sea V un \mathbb{C} -espacio vectorial de dimensión finita con producto interno y T un operador autoadjunto. Entonces $X_T(\lambda)$ tiene todas las raíces reales.

Teorema 2

Sea V un \mathbb{R} -espacio vectorial de dimensión finita con producto interno y $T:V\to V$ un operador autoadjunto. Entonces X_T tiene raíces reales.

Demostración (Teorema 2)

Definimos \mathcal{B} una base ortonormal de V.

Definimos $T_1:\mathbb{C}^n\to\mathbb{C}^n,$ con n=dim(V). Consideramos \mathcal{B}_1 una base ortonormal de \mathbb{C}^n tal que:

$$_{\mathcal{B}_{1}}(T_{1})_{\mathcal{B}_{1}}={}_{\mathcal{B}}(T)_{\mathcal{B}}$$

Observemos que como T es autoadjunta y $\mathcal B$ es una base ortonormal, tenemos que $_{\mathcal B}(T)_{\mathcal B}$ es simétrica.

Ahora veamos el siguiente razonamiento:

$$\mathcal{B}_1(T_1)_{\mathcal{B}_1}$$

$$= (\text{definición de } T_1)$$

$$\mathcal{B}(T)_{\mathcal{B}}$$

$$= (\text{por simetría})$$

$$(\mathcal{B}(T)_{\mathcal{B}})^t$$

$$= (T \text{ es real})$$

$$\overline{(\mathcal{B}(T)_{\mathcal{B}})}^t$$

$$= (T \text{definición de } T_1)$$

$$\overline{(\mathcal{B}_1(T_1)_{\mathcal{B}_1})}^t$$

Por lo tanto, $_{\mathcal{B}_1}(T_1)_{\mathcal{B}_1}$ es hermítica, y por el teorema de inicio de clase, tenemos que T_1 es autoadjunta.

Con esto y el corolario anterior, \mathbf{X}_{T_1} tiene raíces reales.

Como por construcción $\mathbf{X}_{T_1} = \mathbf{X}_T,$ entonces \mathbf{X}_T también tiene raíces reales.

Esto prueba el teorema.

Proposición

Sea V un K-espacio vectorial con producto interno y $T:V\to V$ un operador autoadjunto. Consideremos dos vectores y valores propios distintos entre si: - v_1 asociado a λ_1 - v_2 asociado a λ_2

Entonces $v_1 \perp v_2$.

Demostración (proposición)

Consideremos el siguiente razonamiento:

$$\begin{split} \langle T(v_1), v_2 \rangle &= \langle v_1, T(v_2) \rangle \\ &\iff (\text{definición de valor propio}) \\ \langle \lambda_1 v_1, v_2 \rangle &= \langle v_1, \lambda_2 v_2 \rangle \\ &\iff (\text{propiedades de producto interno y } \lambda_2 \in \mathbb{R}) \\ \lambda_1 \langle v_1, v_2 \rangle &= \lambda_2 \langle v_1, v_2 \rangle \\ &\iff (\text{aritmética}) \\ (\lambda_1 - \lambda_2) \langle v_1, v_2 \rangle &= 0 \\ &\iff (\lambda_1 - \lambda_2 \neq 0) \\ \langle v_1, v_2 \rangle &= 0 \end{split}$$

Es decir que $v_1 \perp v_2$