Matemática ComputacionalConjuntos

Prof. Rogério Figueredo de Sousa

rogerio.sousa@ifpi.edu.br

05/07/2024

Conjunto não se define formalmente. Usa-se uma ideia intuitiva de que se trata de uma coleção de objetos, logo, informalmente, um conjunto é uma coleção desordenada de zero ou mais objetos, denominados elementos do conjunto. Dizemos que um conjunto contém seus elementos.

- Esses objetos de um conjunto possuem alguma propriedade em comum.
- Em geral, trata-se de uma estrutura discreta, usada para construir outras estruturas;
- O propósito fundamental é o de agrupar elementos.

Notação: Indicamos um conjunto, em geral, com uma letra maiúscula e um elemento com letra minúscula.

- Se A é um conjunto e x pertence a A, esse fato é denotado por: $x \in A$.
- Se, por outro lado, tivermos que x não pertence ao conjunto A, escrevemos: $x \notin A$.

Usamos chaves para indicar um conjunto.

- Se $A = \{azul, verde, branco\}$, então $verde \in A$ e $preto \notin A$.
- Os elementos em um conjunto não tem nenhuma ordem, de modo que {azul, verde, branco} é o mesmo que {branco, azul, verde}.

Dois conjuntos são iguais se contêm os mesmos elementos. Ou seja,

$$A = B \text{ significa } (\forall x)[x \in A \rightarrow x \in B \land (x \in B \rightarrow x \in A)]$$

- Ao descrever um conjunto particular, temos que identificar seus elementos.
- Para um **conjunto finito** (com n elementos para n > 0), isso é feito listando-se todos os seus elementos.
- Para um **conjunto infinito**, podemos indicar a forma geral listando os primeiros elementos.

Conjunto infinito: exemplos:

- \blacksquare $A = \{2, 4, 6, ...\}$
- \blacksquare $B = \{0, 1, 2, 3, 4, ...\}$
- $C = \{2, 4, 8, 16, ..\}$

Ou podemos representar por uma relação de recorrência.

- **■** 2 ∈ *A*
- se $n \in A$, então $n + 2 \in A$

Temos, $A = \{2, 4, 6, ...\}$

Conjunto infinito: exemplos:

- 0 ∈ *B*
- se $n \in B$, então $n + 1 \in B$

Temos, $B = \{0, 1, 2, ...\}$

- 2 ∈ *C*
- se $n \in C$, então $2n \in C$

Temos, $C = \{2, 4, 8, 16...\}$

A descrição um conjunto pode ser feita de várias maneiras, conforme segue.

a) Enumerando seus elementos, entre chaves:

- 1 $V = \{a, e, i, o, u\}$
- $I = \{1, 3, 5, 7, 9, ...\}$
- $D = \{0, 1, 2, 3, ..., 9\}$
- $Q = \{0, 1, 4, 9, 25, 36, ...\}$
- $P = \{2, 3, 5, 7, 11, ...\}$

D Quando conhecemos uma certa propriedade característica de seus elementos:

Escrevemos $A = \{x \mid P(x)\}$, x tem um predicado P. Ou seja,

$$A = \{x \mid P(x)\} \text{ significa } (\forall x)[(x \in S \to P(x)) \land (P(x) \to x \in S)]$$

Exemplo:

 $A = \{x | x \text{ \'e um inteiro positivo par}\}$

"O conjunto de todos os x tais que x é um inteiro positivo par"

- 1 $L = \{x | x \text{ \'e aluno do primeiro semestre do Curso de ADS} \}$
- **2** $D = \{x | x \text{ \'e inteiro positivo menor que } 10\}$
- **3** $N = \{x | x \text{ \'e n\'umero natural e 4} < x < 3500\}$
- $M = \{x | x \text{ \'e m\'ultiplo de 5} \}$

Exemplo:

Seja um conjunto A dado por:

$$A = \{x | (\exists y)(y \in \{0, 1, 2\} \ e \ x = y^3)\}$$

- Esse conjunto é da forma $A = \{x | P(x)\}.$
- Encontra-se cada elemento de A atribuindo-se a y cada um dos valores e elevando-os ao cubo.
- Então $A = \{0, 1, 8\}$

Por uma relação de recorrência:

- Sequência de Fibonacci
 - F(1) = 1
 - F(2) = 1
 - F(n) = F(n-1) + F(n-2),
- **2** 1 ∈ *S*
 - Se $x \in S$, então $X + 2 \in S$

É conveniente usarmos uma notação padrão para determinados conjuntos, de modo que se possa se referir mais facilmente a eles.

 $\mathbb{N} = N$ úmeros naturais

 $\mathbb{Z} = N$ úmeros inteiros

 $\mathbb{R} = \mathsf{N}\mathsf{\acute{u}}\mathsf{meros}$ reais

 $\mathbb{Q} = \mathsf{N}\mathsf{\acute{u}}\mathsf{meros}\,\mathsf{racionais}$

I = Números Irracionais

Conjuntos - Exercícios

Exercício 1: Julgue se os conjuntos são finitos ou infinitos:

- Conjunto das letras do alfabeto;
- **2** $P = \{y | y = 2x \ e \ x \in \mathbb{N}\}$
- $M = \{x \in \mathbb{N} | x > 0 \ e \ x < 6\}$
- 4 O conjunto do números naturais.

Conjuntos - Exercícios

Exercício 2: Descreva cada um dos conjuntos a seguir listando seus elementos:

- **1** $A = \{x | x \text{ \'e um inteiro e } 3 < x < 8\}$
- **2** $B = \{x | x \text{ \'e um m\'es com exatamente 30 dias}\}$
- $C = \{x | x \text{ \'e a capital do Brasil}\}$
- $D = \{x | (\exists y)(y \in \{0, 1, 2\} \ e \ x = y^3)\}$
- $E = \{x | x \in \mathbb{N} \ e \ (\exists y)(y \in \mathbb{N} \ e \ x \leq y)\}$
- 6 $F = \{x | x \in \mathbb{N} \ e \ (\forall y)(y \in \mathbb{N} \ \to \ x \le y)\}$
- 7 $A = \{x | x \in \mathbb{N} \ e \ (\forall y)(y \in \{2,3,4,5\}) \to x \ge y\}.$
- 8 $B = \{x | (\exists y)(\exists z)(y \in \{1,2\} \ e \ z \in \{2,3\} \ e \ x = y + z)\}$

Conjuntos - Exercícios

Exercício 3: Descreva cada um dos conjuntos a seguir através de uma relação de recorrência.

- $B = \{1, 4, 9, 16, ...\}$
- $C = \{1, 3, 9, 27, ...\}$
- $D = \{2, 3, 5, 7, 11, ... \}$

Conjuntos importantes:

Conjunto Conjunto Unitário: é um conjunto que possui um único elemento.

- i) Conjunto das soluções da equação 5x + 4 = 19.
- ii) Conjunto de todos os números que são pares e primos simultaneamente.
- 2 Conjunto vazio: é um conjunto que não possui elemento algum. Notação: $A = \{\} = \emptyset$ Exemplos:
 - i) Conjunto dos brasileiros com mais de 400 anos.
 - ii) $\{x | x \in impar \ e \ multiplo \ de \ 2\}$

3 Conjuntos Numéricos:

- a Naturais: $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- b Inteiros: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- Racionais: $\mathbb{Q} = \{p/q | p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$
- d Irracionais (Ⅱ): {x|x não pode ser escrito na forma de fração, com p e q inteiros}
- e Reais(\mathbb{R}): é a reunião dos racionais com irracionais.
- **f** Complexos (\mathbb{C}): tem a forma a + bi, com $i^2 = -1$

Um conjunto **A é subconjunto de um conjunto B** se, e somente se, **todo elemento de A também é elemento de B**.

Dizemos neste caso que A está contido em B, ou ainda, que B contém A.

$$A \subseteq B \leftrightarrow (\forall x)(x \in A \rightarrow x \in B)$$

Se existe

$$b \in B$$
 e $b \notin A$, então $A \subset B$

Neste caso A é um subconjunto próprio de B.

OBS.:
$$A \subseteq A$$
 e $\emptyset \subseteq A$

- 1 Para $A = \{2, 3, 5, 12\}$ e $B = \{2, 3, 4, 5, 9, 12\}$, todo elemento de A é, também, elemento de B.
 - A é um subconjunto de B. $(A \subseteq B)$
 - A é também subconjunto próprio de B. $(A \subset B)$
- Sejam $A = \{1, 7, 9, 15\}$, $B = \{7, 9\}$ e $C = \{7, 9, 15, 20\}$, então as seguintes proposições são verdadeiras (entre outras):
 - B ⊆ C
 - \blacksquare $B \subseteq A$
 - *B* ⊂ *C*
 - \blacksquare $A \nsubseteq C$

- 15 ∈ *C*
- **■** {7,9} ⊆ *B*
- **■** {7} *⊂ A*
- $\blacksquare \emptyset \subseteq C$

- \blacksquare $\mathbb{N} \subset \mathbb{Z}$.
 - \blacksquare Todo elemento de $\mathbb N$ é também um elemento de $\mathbb Z$.
 - \blacksquare Porém, nem todo inteiro está presente em \mathbb{N} .
 - Contra-exemplo: inteiros negativos.
- $S \subset \mathbb{N}$, onde $S = \{x | x \text{ \'e primo}\}$:
 - Todo número primo é também um número natural.
 - Porém, nem todo natural é um número primo.
 - Contra-exemplos: naturais pares (exceto 2).

Exercício:

Sejam $A = \{x | x \in \mathbb{N} \ e \ x \ge 5\}$, $B = \{10, 12, 16, 20\}$ e $C = \{x | (\exists y)(y \in \mathbb{N} \ e \ x = 2y)\}$ Quais das proposições abaixo são verdadeiras:

- \blacksquare $B \subset C$
- \blacksquare $B \subset A$
- \blacksquare $A \subset C$
- 26 ∈ *C*
- \blacksquare {11, 12, 13} \subseteq *A*
- {11, 12, 13} *⊂ C*

$$\blacksquare$$
 $\{\emptyset\} \subseteq B$

Exercício:

Sejam:

$$A = \{x | x \in \mathbb{R} \ e \ x^2 - 4x + 3 = 0\}$$

е

$$B = \{x | x \in \mathbb{N} \text{ e } 1 \le x \le 4\}$$

Prove que $A \subset B$.

Conjuntos iguais: dois conjuntos são iguais se todo elemento de A pertence a B e vice-versa, ou seja eles possuem os mesmos elementos.

Formalmente,

$$A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$$

- \blacksquare $A = \{1, 3, 5\}$ e $B = \{5, 3, 1\}$. A = B
- $A = \{1,3,5\}$ e $B = \{1,1,5,5,5,5,3\}$. A = B
- $A = \{1, 3, 5\}$, $B = \{1, 1, 5, 5, 5, 5, 5, 3\}$ e C = $\{3, 1, 5\}$. A = B = C
- $A = \{1,3,5\}$, $B = \{1,5,\}$ e $C = \{5,5,5,3,3,1\}$. A = B, $A \neq B$.
- $A = \{1, 3, 5\}$ e $B = \{1, 5, 1, 5, 1, 5\}$. $A \neq B$

Exercício: Sejam

$$A = \{x | x \in \mathbb{N} \ e \ x^2 < 15\}$$

е

$$B = \{x | x \in \mathbb{N} \ e \ 2x < 7\}$$

Prove que A = B.

Conjuntos de Conjuntos

- Para um conjunto S, podemos formar um novo conjunto cujos elementos são subconjuntos de S.
 - **E**sse novo conjunto é chamado de **conjunto das partes** de S e é denotado por $\wp(S)$
 - Para $S = \{0,1\}$, $\wp(S) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$.
 - Os elementos do conjunto das partes de S são conjuntos.
 - Para qualquer conjunto S, $\wp(S)$ sempre tem, pelo menos \emptyset e S como elementos, já que é sempre verdade que $\emptyset \subseteq S$ e $S \subseteq S$.
 - Para encontrar $\wp(S)$, comece com \emptyset , depois coloque os conjuntos formados por 1 elemento de S, depois ao formados por 2 elementos de S, por 3 e assim por diante, até o próprio S.

Exercício:

- **1** Para $A = \{1, 2, 3\}$, qual é o $\wp(A)$?
- **2** Se S tem *n* elementos, então $\wp(A)$ tem quantos elementos?

Partição de um Conjunto - Definição: Uma partição de um conjunto A é um conjunto de subconjuntos não-vazios, disjuntos entre si, cuja união é igual a A.

Requisitos:

- Cada subconjunto na partição deve ser não-vazio.
- Os subconjuntos devem ser mutuamente disjuntos (não têm elementos em comum).
- A união de todos os subconjuntos na partição deve ser igual ao conjunto original A.

Exemplo:

Para $A = \{1, 2, 3, 4\}$, uma partição possível de A é $\mathcal{P}(A) = \{\{1, 2\}, \{3, 4\}\}$.

Questão: Sobre o conjunto $A = \{1, 2, 3, 4\}$, considere as afirmativas a seguir.

- 1 $\mathcal{P}(A) = \{\emptyset, \{2,3,4\}\}\$ é uma partição de A.
- **2** $\mathcal{P}(A) = \{\emptyset, \{1, 2, 3\}, \{3, 4\}\}\$ é uma partição de A.
- **3** $\mathcal{P}(A) = \{\{1,2\}, \{3,4\}\}\$ é uma partição de A.
- 4 $\mathcal{P}(A) = \{\{1\}, \{2\}, \{3\}, \{4\}\}\}$ é uma partição de A.

Assinale a alternativa correta.

- Somente as afirmativas I e II são corretas;
- Somente as afirmativas I e IV são corretas;
- Somente as afirmativas III e IV são corretas;
- Somente as afirmativas I, II e III são corretas;
- Somente as afirmativas II, III e IV são corretas;

Definição(Cardinalidade): Seja A um conjunto. Se existem exatamente n elementos distintos em A, com $n \ge 0$, então dizemos que A é um conjunto finito e que n é a cardinalidade de A.

OBS.: A cardinalidade de A é denotada por |A|.

- **1** $A = \{x | x \text{ \'e inteiro \'impar e } x < 10\}. \text{ Logo, } |A| = 5.$
- **2** $B = \{x | x \text{ \'e uma letra do alfabeto}\}$. Logo, |B| = 26.
- 3 $P = \{x | x \text{ \'e primo e } x < 30\}$. Logo, |P| = 10.
- 4 $C=\emptyset$. Como o conjunto vazio não possui elementos, Então $|\emptyset|=0$.

- A maior parte das operações que envolvem números podem ser efetuadas também em conjuntos.
- Dado um conjunto S, podemos definir operações no conjunto $\wp(S)$.
 - S, nesse caso, é chamado de conjunto universo, que define o contexto dos objetos em discussão.
 - Se $S = \mathbb{Z}$, então os subconjuntos conterão apenas inteiros.
- Operação unária e binária
 - Unária: quando age em apenas um elemento do conjunto (por exemplo, uma negação de um elemento).
 - Binária: quando acontece em dois inteiros do conjunto (por exemplo, uma subtração).

União: Dados os conjuntos A e B chama-se união ou reunião de A e B, denotada por $A \cup B$, ao conjunto formado pelos elementos que pertencem a A ou a B.

Formalmente:

$$A \cup B = \{x | x \in A \text{ ou } x \in B\}$$

Sejam
$$A = \{1, 2, 4\}$$
 e $B = \{1, 3, 5\}$.
 $A \cup B = \{1, 2, 4\} \cup \{1, 3, 5\}$
 $A \cup B = \{1, 2, 3, 4, 5\}$

Interseção: Dados os conjuntos A e B a interseção de A e B, denotada por $A \cap B$, é o conjunto formado pelos elementos que pertencem a A e a B.

Formalmente:

$$A \cap B = \{x | x \in A \mathbf{e} x \in B\}$$

Sejam
$$A = \{1, 2, 4\}$$
 e $B = \{1, 3, 5\}$.
 $A \cap B = \{1, 2, 4\} \cap \{1, 3, 5\}$
 $A \cap B = \{1\}$

Conjuntos Disjuntos: Dois conjuntos A e B são disjuntos se $A \cap B = \emptyset$. **Exemplo:**

Sejam $A = \{1, 2, 3, 4\}$ e $B = \{5, 6, 7, 8\}$.

 $A \cap B$ = elementos em comum entre A e B

$$A \cap B = \emptyset$$

Logo, A e B são disjuntos.

Diferença: Dados os conjuntos A e B. A diferença A - B ou $A \setminus B$ contém os elementos que estão em A mas não estão em B.

Formalmente:

$$A - B = \{x | x \in A \land x \notin B\}$$

Sejam
$$A = \{a, b, c, d\}$$
 e $B = \{c, d, e, f, g\}$.

$$A \backslash B = \{a, b\}$$

Complementar: Dados os conjuntos A e U(universo). O complementar de A em relação a U é o conjunto formado pela diferença U-A.

Formalmente:

$$A' = \{x | x \in U \ e \ x \notin A\}$$

- Seja $A = \{a, e, i, o, u\}$, onde o conjunto U são as letras do alfabeto. $A' = \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}$
- Seja $A = \{x | x > 10\}$ e $U = \mathbb{Z}^+$ $A' = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Exercícios

Sejam

$$A = \{x | x \text{ \'e um inteiro n\~ao} - \text{negativo par}\}$$

$$B = \{x | (\exists y)(y \in \mathbb{N} \text{ e } x = 2y + 1)\}$$

$$C = \{x | (\exists y)(y \in \mathbb{N} \text{ e } x = 4y)\}$$

Julgue a veracidade de cada alternativa:

- a) $A \cup B$
- b) A = B
- c) $C \subset A$
- d) $A \cup C$
- e) $A C = \{x | (\exists y)(y \in \mathbb{N} \ e \ x = 4y + 2)\}$

Exercícios

Sejam

$$A = \{1, 2, 3, 5, 10\}$$
$$B = \{2, 4, 7, 8, 9\}$$
$$C = \{5, 8, 10\}$$

Se $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, encontre:

- a) |A| + |B|
- **b)** *A* ∪ *B*
- c) A C
- d) $B \cap (A \cup C)$
- e) *C'*

Exercícios

Considerando os conjuntos A, B, C e D, assinale a alternativa que representa, corretamente, a região sombreada associada à relação $\{(A \cap B) \cup (C \cap D)\} \cap \{(A \cap B) \cup (B \cap C)\}$.

Operações em conjuntos

Produto cartesiano: Sejam A e B subconjuntos de S. O produto cartesiano de A e B, denotado por $A \times B$, é definido por

$$A \times B = \{(x, y) | x \in A \land y \in B\}$$

- Os elementos do resultado n\u00e3o pertencem a S mas s\u00e3o pares ordenados de elementos de S.
- O produto $A \times A$ é denotado por A^2 .
- A^n denota o conjunto $(x_1, x_2, ..., x_n)$ de elementos de A.

Exemplo: sejam $A = \{1, 2\}$ e $B = \{3, 4\}$

- 1 Encontre $A \times B$
- 2 Encontre $B \times A$

- 3 Encontre A²
- 4 Encontre A^3

Identidades básicas envolvendo conjuntos:

- Existem várias igualdades entre conjuntos nas operações de união, interseção, diferença e complementação.
- Essas igualdades são independentes dos subconjuntos particulares utilizados e são chamadas de identidades.
 - Essas identidades são semelhantes às equivalências tautológicas da lógica formal.

Identidades básicas envolvendo conjuntos:

Propriedade	Identidade 1	Identidade 2
Elementos Neutros	$A \cup \emptyset = A$	$A \cap U = A$
Dominação	$A \cup U = U$	$A \cap \emptyset = \emptyset$
Idempotentes	$A \cup A = A$	$A \cap A = A$
Complementação	$\overline{(\overline{A})} = A$	-
Comutativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associativa	$A \cup (B \cup C) = (A \cup B) \cup C$	$A\cap (B\cap C)=(A\cap B)\cap C$
Distributiva	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorção	$A \cup (A \cap B) = A$	$A\cap (A\cup B)=A$

Tabela: Propriedades e Identidades

■ Provando identidades: Ex. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Queremos então provar que:

$$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$$

e que

$$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$$

Podemos, então, proceder da seguinte maneira:

(seja \times um elemento arbitrário de $A \cup (B \cap C)$):

1
$$x \in A \cup (B \cap C) \rightarrow x \in A \text{ ou } x \in (B \cap C)$$
 4 $\rightarrow x \in (A \cup B) \text{ e } x \in (A \cup C)$

$$A \rightarrow x \in (A \cup B) \text{ e } x \in (A \cup C)$$

$$2 \rightarrow x \in A \text{ ou } (x \in B \text{ e } x \in C)$$

$$\exists A \rightarrow (x \in A \text{ ou } x \in B) \text{ e } (x \in A \text{ ou } x \in C)$$

Para mostrarmos que $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$, basta fazer o argumento de trás para frente.

Ex: Use as identidades básicas para provar que:

$$[A \cup (B \cap C)] \cap ([\overline{A} \cup (B \cap C)] \cap \overline{(B \cap C)}) = \emptyset$$

- $(B \cap C) \cup (A \cap \overline{A})] \cap \overline{(B \cap C)}$ (distributividade)
- $[(B \cap C) \cup \emptyset] \cap \overline{(B \cap C)}$ (complemento)
- 5 $(B \cap C) \cap \overline{(B \cap C)}$ (elemento neutro)
- 6 ∅ (complemento)

Ex: Use as identidades básicas para provar que:

$$[C\cap (A\cup B)]\cup [(A\cup B)\cap \overline{C}]=(A\cup B)$$

Ex: Use as identidades básicas para provar que:

$$[C \cap (A \cup B)] \cup [(A \cup B) \cap \overline{C}] = (A \cup B)$$

- 1 $[(A \cup B) \cap C] \cup [(A \cup B) \cap \overline{C}]$ (comutatividade)
- $(A \cup B) \cap (C \cup \overline{C})$ (distributividade)
- $(A \cup B) \cap S$ (complemento)
- \blacksquare $(A \cup B)$ (elemento neutro)

■ A,B e C são subconjuntos de S. Demonstre a seguinte identidade usando as identidades básicas de conjuntos.

$$[A \cap (B \cup C)] \cup ([\overline{A} \cap (B \cup C)] \cup \overline{(B \cup C)}) = S$$

Identidades envolvendo Conjuntos

A,B e C são subconjuntos de S. Demonstre a seguinte identidade usando as identidades básicas de conjuntos.

$$[A \cap (B \cup C)] \cup ([\overline{A} \cap (B \cup C)] \cup \overline{(B \cup C)}) = S$$

Identidades envolvendo Conjuntos

■ O dual de cada identidade é obtido permutando-se \cup com \cap e S com \emptyset . Por exemplo: O dual de

$$[A \cup (B \cap C)] \cap \left([\overline{A} \cup (B \cap C)] \cap \overline{(B \cap C)} \right) = \emptyset \text{ \'e}$$
$$[A \cap (B \cup C)] \cup \left([\overline{A} \cap (B \cup C)] \cup \overline{(B \cup C)} \right) = S$$

Essa identidade também pode ser provada substituindo cada identidade básica pela sua dual.

Ex. 1 Usando as identidades básicas, prove a identidade:

$$[C\cap (A\cup B)]\cup \big[(A\cup B)\cap \overline{C}\big]=A\cup B$$
 (A, B e C são subconjuntos arbitrários de *S*.)

- **Ex. 2** Enuncie a identidade dual do exemplo anterior.
- **Ex. 3** Usando as identidades básicas, prove a identidade:

$$(A \cup B) \cap (A \cup \overline{B}) = A$$

Resumo

Resumo dos métodos para provar identidades envolvendo conjuntos

Método	Comentário	
Desenhe um diagrama de venn	Não é um bom plano, já que nenhum di- agrama vai cobrir todos os casos e não demonstrará a identidade no caso geral.	
Prove a inclusão em cada direção	Tome um elemento arbitrário de um dos termos da identidade e mostre que ele pertence ao outro termo, e reciprocamente.	
Use identidades já demonstradas	Verifique se a forma da expressão é exa- tamente igual à forma da identidade que você quer usar.	

- Um conjunto é dito contável, quando podemos contar, ou enumerar, todos os seus elementos. Ser contável não significa que podemos dizer qual o número total de elementos do conjunto; significa que podemos dizer "aqui está o primeiro elemento", "aqui está o segundo elemento", e assim por diante.
- Todo conjunto finito é contável pois podemos ordenar seus elementos em uma lista como a seguinte, onde cada elemento da lista representa um elemento do conjunto:

$$s_1, s_2, s_3, ..., s_n$$

- Um conjunto infinito também pode ser contável, desde que tenhamos uma relação biunívoca com o números naturais. Ou seja, podemos relacionar cada elemento desse conjunto infinito com um elemento dos números naturais.
- Um conjunto é dito enumerável, quando for infinito e contável.

Para verificar se um conjunto é enumerável precisamos organizar uma lista de seus elementos.

Exemplos:

Verifique que os conjuntos a seguir são enumeráveis:

- 1 Conjunto dos números ímpares positivos.
- 2 Conjunto dos múltiplos de 5.
- Conjunto dos números naturais.
- Conjuntos dos números inteiros.

Os conjuntos infinitos que não podem ser enumerados são não-enumeráveis.

Exemplos:

- 1 O conjunto de todos os reais entre 0 e 1.
- 2 Um intervalo de números reais.
- 3 O conjunto dos números reais.

