Predicting Weekly Revenue of Walmart

Sophia Song
Data Science Career Track, 2019

Introduction:

Walmart is an American retail operation that operates a chain of grocery stores by the same name. Since its opening in 1962, it has expanded its ventures to many other countries, including Mexico, China, and Germany.

As of 2019, Walmart is the world's largest company by both revenue and number of employees, at \$514.405 billion per year and 2.2 million people, respectively.

Problem

We're trying to predict a department - store combination's weekly revenue using previous information about revenue as well as a couple of geographical factors, like temperature, gas price, and unemployment rate.

Data

The columns included are:

- Store ID integer
- Department ID integer
- Date string
- IsHoliday boolean
- Temperature float
- Gas-Price float
- MarkDown1, MarkDown2,
 Markdown3, MarkDown4,
 MarkDown5 float

- CPI float
- Unemployment float
- Type string
- Size integer
- Weekly_Sales float

The data comes in two .csv files, one for testing and one for training. The training dataset contains 282,000 rows and 16 columns, one of which is the weekly revenue column that's the object of our prediction, and the testing test is identical in format with the training, but doesn't have the weekly revenue.

Data Cleaning

There were missing values in the markdown columns, which I assumed meant no promotional events.

There were also an outlier in the weekly sales column that interfered with our analysis, so I removed it.

Exploratory Data Analysis

Weekly Sales

The weekly sales column have an exponential distribution. For easier analysis, I normalized the weekly sales using a logarithmic scale.

Target's relationship with other variables

Date

			ssion Resul				
Dep. Variable:		Weekly_Sales	R-squared:		0.007		
Model:		OLS Adj. R-squared		quared:		0.007	
Method:		Least Squares	F-statistic:		226.1		
		, 16 Sep 2019	Prob (F-statistic):		:	0.00	
Time:		18:28:53	:53 Log-Likelihood:		-3.2323e+06		
No. Observations:		282451	AIC:		6.465e+06		
Df Residuals:		282441	BIC:			6.465e+06	
Df Model:		9					
Covariance Ty	pe:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	2.606e+04	494.488	52.711	0.000	2.51e+04	2.7e+04	
Temperature	23.9436	2.471	9.691	0.000	19.101	28.786	
Fuel Price	-1483.2012	102.857	-14.420	0.000	-1684.798	-1281.604	
MarkDown1	0.1904	0.014	13.386	0.000	0.163	0.218	
MarkDown2	0.0513	0.009	5.919	0.000	0.034	0.068	
MarkDown3	0.1500	0.008	19.263	0.000	0.135	0.165	
MarkDown4	-0.0727	0.021	-3.545	0.000	-0.113	-0.033	
MarkDown5	0.1940	0.011	17.401	0.000	0.172	0.216	
CPI	-25.0676	1.203	-20.834	0.000	-27.426	-22.709	
Unemployment	-388.1754	24.458	-15.871	0.000	-436.113	-340.238	
======== Omnibus:	:=======	205761.418	Durbin-W	atson:	=======	2.001	
Prob(Omnibus):		0.000 Jarque-Bera (JB):		5733316.107			
Skew:		3.215 Prob(JB):		0.00			
Kurtosis:		24.114	17 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			9.45e+04	

Intercorrelations

- Positive between MarkDown Columns
- Negative between Unemployment and CPI

Inferential Statistics

Holiday

Distribution of the log of revenues for Holiday and Non-Holiday weeks

Holiday weeks see significantly more sales than non-holiday weeks

Markdown

Distribution of the log of revenues for MarkDown and Non-Markdown weeks

Markdown weeks generally see significantly more sales than non-markdown weeks, though the highest sale is made in a non-markdown week

Store Type

Distribution of the log of revenues for different store types

Feature Engineering

New Features

- Total Markdowns
- Type A, B, and C store dummy variables
- Year, Month, Week of Year, and Day
- Yearly Median value of each Store-Dept combination
- Lagged Revenue and its difference from Median
- Big Holidays
- Department 72 dummy variable

Machine Learning

Models I tried

- Linear Regression
- Ridge Regression
- Lasso Regression
- RandomForestRegressor
- XGBoost
- Support Vector Regressor

Training and Testing

Feature Selection

 For Linear Regression and all of its closely related algorithms (Lasso, Ridge), I used RFE (Recursive Feature Elimination) to select for the optimal number of features.

Results

In the models I tried both the unscaled, unmodified dataset and a standardized version of it

Model	MAE(Scaled)	MAE(unscaled)	
Linear Regression	16030153634809.34	2641.02	
Ridge Regression	14979.07	2641.02	
Lasso Regression	15045.89	2631.40	
RandomForestRegressor	11766.21	2573.75	
XGBoost	13107.88	2224.51	
SVR	13345.28	13431.92	

1566.00

Final MAE using our test Dataset