$11a_{196} (K11a_{196})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.56366 \times 10^{21} u^{26} + 2.00582 \times 10^{21} u^{25} + \dots + 7.42142 \times 10^{21} b - 9.93961 \times 10^{20}, \\ &- 1.23252 \times 10^{22} u^{26} + 1.13313 \times 10^{22} u^{25} + \dots + 7.42142 \times 10^{21} a - 2.69156 \times 10^{22}, \ u^{27} - u^{26} + \dots + 2u - I_2^u \\ &= \langle -466470675905338 u^{23} - 397267180404293 u^{22} + \dots + 6630830886537376b - 264157828925488, \\ &26944089879716 u^{23} + 14049375398024 u^{22} + \dots + 121666621771328a - 16982188896888, \\ &u^{24} + 3 u^{22} + \dots - 4u + 8 \rangle \\ &I_3^u &= \langle u^{14} - 3 u^{10} - u^9 - 2 u^8 - u^7 + 3 u^6 + 4 u^5 + 4 u^4 + u^3 - u^2 + 2b - 3, \\ &- 2 u^{14} - 3 u^{13} - u^{12} - 5 u^{11} + u^{10} + 6 u^9 + u^8 + 13 u^7 + 6 u^6 - 7 u^5 + u^4 - 7 u^3 - 8 u^2 + 2a + u - 1, \\ &u^{15} + u^{13} + u^{12} - 2 u^{11} - 2 u^9 - 4 u^8 + 2 u^7 + u^5 + 4 u^4 - 1 \rangle \\ &I_4^u &= \langle 5.79410 \times 10^{18} u^{23} + 1.97168 \times 10^{19} u^{22} + \dots + 1.42067 \times 10^{19} b - 3.77005 \times 10^{17}, \\ &19264503378333 u^{23} + 64217498098488 u^{22} + \dots + 8090899806416a - 59730846409593, \\ &u^{24} + 3 u^{23} + \dots - 6u + 1 \rangle \\ &I_5^u &= \langle b - 1, \ 59 u^5 + 76 u^4 + 242 u^3 + 190 u^2 + 67 a + 487 u + 146, \ u^6 + u^5 + 4 u^4 + 2 u^3 + 8 u^2 + 1 \rangle \\ &I_6^u &= \langle -u^2 + b, \ -u^2 + a - 1, \ u^6 - u^5 + 2 u^4 - 2 u^3 + 2 u^2 - 2 u + 1 \rangle \\ &I_7^u &= \langle b - 1, \ a - 2, \ u + 1 \rangle \\ &I_7^u &= \langle b - 1, \ a - 2, \ u + 1 \rangle \end{aligned}$$

* 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 103 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated

$$I. \\ I_1^u = \langle -1.56 \times 10^{21} u^{26} + 2.01 \times 10^{21} u^{25} + \dots + 7.42 \times 10^{21} b - 9.94 \times 10^{20}, \ -1.23 \times 10^{22} u^{26} + 1.13 \times 10^{22} u^{25} + \dots + 7.42 \times 10^{21} a - 2.69 \times 10^{22}, \ u^{27} - u^{26} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.66077u^{26} - 1.52684u^{25} + \dots + 1.11901u + 3.62674 \\ 0.210696u^{26} - 0.270275u^{25} + \dots + 2.39290u + 0.133931 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.312172u^{26} + 0.638396u^{25} + \dots - 1.77480u + 3.01621 \\ 0.581257u^{26} - 0.629489u^{25} + \dots + 0.803940u + 1.08450 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.18988u^{26} + 1.11302u^{25} + \dots - 4.45598u + 1.89491 \\ -0.241743u^{26} + 0.0536668u^{25} + \dots - 0.670686u - 0.868814 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.66077u^{26} - 1.52684u^{25} + \dots + 0.119008u + 3.62674 \\ 0.210696u^{26} - 0.270275u^{25} + \dots + 2.39290u + 0.133931 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1.45007u^{26} - 1.25656u^{25} + \dots - 1.27390u + 3.49281 \\ 0.210696u^{26} - 0.270275u^{25} + \dots + 2.39290u + 0.133931 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1.19231u^{26} - 0.633674u^{25} + \dots + 2.39290u + 0.133931 \\ -0.107812u^{26} + 0.130431u^{25} + \dots - 0.365474u + 0.791952 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.19260u^{26} - 0.799146u^{25} + \dots + 2.64209u - 0.651268 \\ -0.0394366u^{26} + 0.164653u^{25} + \dots + 0.0481946u + 0.646177 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.451600u^{26} + 0.986823u^{25} + \dots + 5.66786u - 0.00121263 \\ 0.328533u^{26} - 0.284050u^{25} + \dots - 0.908870u + 0.936550 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.451600u^{26} + 0.986823u^{25} + \dots + 5.66786u - 0.00121263 \\ 0.328533u^{26} - 0.284050u^{25} + \dots - 0.908870u + 0.936550 \end{pmatrix}$$

(ii) Obstruction class = -1

in decimal forms when there is not enough margin.

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{27} + 6u^{26} + \dots - 40u - 8$
c_2	$u^{27} + 14u^{26} + \dots + 32u - 64$
c_3, c_5, c_9 c_{10}	$u^{27} - 9u^{25} + \dots - u - 1$
c_4, c_{11}	$u^{27} - u^{26} + \dots + 2u - 1$
c_7	$u^{27} - 9u^{26} + \dots + 2296u - 232$
c ₈	$u^{27} + 22u^{26} + \dots - 7680u - 512$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{27} + 14y^{26} + \dots + 32y - 64$
c_2	$y^{27} + 2y^{26} + \dots + 39424y - 4096$
c_3, c_5, c_9 c_{10}	$y^{27} - 18y^{26} + \dots - 7y - 1$
c_4, c_{11}	$y^{27} - 5y^{26} + \dots + 16y - 1$
c_7	$y^{27} - 7y^{26} + \dots + 586144y - 53824$
<i>c</i> ₈	$y^{27} - 4y^{26} + \dots + 1966080y - 262144$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.898231 + 0.526385I		
a = 0.209642 + 0.703154I	-1.84219 + 1.61763I	-0.34752 - 1.90846I
b = -0.122251 + 0.700628I		
u = -0.898231 - 0.526385I		
a = 0.209642 - 0.703154I	-1.84219 - 1.61763I	-0.34752 + 1.90846I
b = -0.122251 - 0.700628I		
u = 1.012540 + 0.318884I		
a = -0.308945 + 0.757476I	-5.36570 + 2.03204I	-4.32275 - 2.13513I
b = 0.238061 + 0.818947I		
u = 1.012540 - 0.318884I		
a = -0.308945 - 0.757476I	-5.36570 - 2.03204I	-4.32275 + 2.13513I
b = 0.238061 - 0.818947I		
u = -0.276412 + 0.776716I		
a = 0.023671 + 0.586360I	0.18488 + 1.81939I	2.29374 - 3.76762I
b = -0.037108 + 0.457608I		
u = -0.276412 - 0.776716I		
a = 0.023671 - 0.586360I	0.18488 - 1.81939I	2.29374 + 3.76762I
b = -0.037108 - 0.457608I		
u = -0.795815 + 0.903407I		
a = 0.26309 + 1.49507I	7.97470 + 2.85426I	8.94272 - 2.79876I
b = 1.305830 + 0.251781I		
u = -0.795815 - 0.903407I		
a = 0.26309 - 1.49507I	7.97470 - 2.85426I	8.94272 + 2.79876I
b = 1.305830 - 0.251781I		
u = 1.074420 + 0.604846I		
a = -0.257278 + 0.648739I	-4.76097 - 6.00409I	-3.69772 + 5.84582I
b = 0.028367 + 0.782017I		
u = 1.074420 - 0.604846I		
a = -0.257278 - 0.648739I	-4.76097 + 6.00409I	-3.69772 - 5.84582I
b = 0.028367 - 0.782017I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.208550 + 0.274221I		
a = -1.302050 + 0.508274I	-2.56542 - 5.05729I	5.23613 + 5.90187I
b = -0.932187 + 0.115358I		
u = 1.208550 - 0.274221I		
a = -1.302050 - 0.508274I	-2.56542 + 5.05729I	5.23613 - 5.90187I
b = -0.932187 - 0.115358I		
u = 0.878818 + 1.037850I		
a = -0.167256 + 1.255180I	8.49644 - 8.55345I	9.20145 + 7.26296I
b = -1.359850 + 0.350164I		
u = 0.878818 - 1.037850I		
a = -0.167256 - 1.255180I	8.49644 + 8.55345I	9.20145 - 7.26296I
b = -1.359850 - 0.350164I		
u = -0.421872 + 0.462971I		
a = 2.45358 - 1.32260I	0.99303 + 9.06795I	3.46736 - 11.63407I
b = -1.027750 - 0.447368I		
u = -0.421872 - 0.462971I		
a = 2.45358 + 1.32260I	0.99303 - 9.06795I	3.46736 + 11.63407I
b = -1.027750 + 0.447368I		
u = -0.591031 + 0.138214I		
a = 0.54492 - 1.69705I	-2.72477 + 1.50676I	-3.17250 - 4.01509I
b = -0.688350 - 0.511205I		
u = -0.591031 - 0.138214I		
a = 0.54492 + 1.69705I	-2.72477 - 1.50676I	-3.17250 + 4.01509I
b = -0.688350 + 0.511205I		
u = 0.338852 + 0.350615I		
a = -3.02283 - 2.53673I	3.01066 - 3.39049I	3.02884 + 10.08685I
b = 0.966126 - 0.347074I		
u = 0.338852 - 0.350615I		
a = -3.02283 + 2.53673I	3.01066 + 3.39049I	3.02884 - 10.08685I
b = 0.966126 + 0.347074I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.13972 + 1.08957I		
a = 0.255186 + 0.962671I	0.91508 + 8.68990I	2.54049 - 5.35859I
b = 1.279710 + 0.563405I		
u = -1.13972 - 1.08957I		
a = 0.255186 - 0.962671I	0.91508 - 8.68990I	2.54049 + 5.35859I
b = 1.279710 - 0.563405I		
u = 1.07737 + 1.19752I		
a = -0.142409 + 0.974746I	6.16613 - 11.88750I	7.81516 + 6.29925I
b = -1.39888 + 0.56362I		
u = 1.07737 - 1.19752I		
a = -0.142409 - 0.974746I	6.16613 + 11.88750I	7.81516 - 6.29925I
b = -1.39888 - 0.56362I		
u = -1.12228 + 1.24272I		
a = 0.128320 + 0.924082I	3.6775 + 17.2855I	4.85544 - 9.87335I
b = 1.41876 + 0.62158I		
u = -1.12228 - 1.24272I		
a = 0.128320 - 0.924082I	3.6775 - 17.2855I	4.85544 + 9.87335I
b = 1.41876 - 0.62158I		
u = 0.309622		
a = 3.64471	1.29009	9.31830
b = 0.659027		

$$II. \\ I_2^u = \langle -4.66 \times 10^{14} u^{23} - 3.97 \times 10^{14} u^{22} + \dots + 6.63 \times 10^{15} b - 2.64 \times 10^{14}, \ 2.69 \times 10^{13} u^{23} + 1.40 \times 10^{13} u^{22} + \dots + 1.22 \times 10^{14} a - 1.70 \times 10^{13}, \ u^{24} + 3u^{22} + \dots - 4u + 8 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.221458u^{23} - 0.115474u^{22} + \dots - 5.16359u + 0.139580 \\ 0.0703488u^{23} + 0.0599121u^{22} + \dots + 3.44503u + 0.0398378 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.131260u^{23} - 0.121483u^{22} + \dots - 3.05755u + 2.19329 \\ -0.0922969u^{23} + 0.000104233u^{22} + \dots - 1.11867u - 0.780159 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.108244u^{23} + 0.149259u^{22} + \dots + 1.62669u + 5.33342 \\ 0.00600815u^{23} + 0.116833u^{22} + \dots - 2.41450u - 0.278416 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.277967u^{23} - 0.143397u^{22} + \dots + 3.78541u + 0.263215 \\ 0.0235493u^{23} + 0.106410u^{22} + \dots + 3.78541u + 0.263215 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.291807u^{23} - 0.175386u^{22} + \dots - 8.60861u + 0.0997419 \\ 0.0703488u^{23} + 0.0599121u^{22} + \dots + 3.44503u + 0.0398378 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.187834u^{23} + 0.00949931u^{22} + \dots + 7.51428u - 1.76112 \\ -0.0903139u^{23} - 0.101796u^{22} + \dots + 0.0682743u + 0.252378 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.1073779u^{23} + 0.0153619u^{22} + \dots + 9.34212u + 4.09583 \\ 0.123742u^{23} - 0.0875102u^{22} + \dots + 0.0211572u - 1.70617 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.340801u^{23} - 0.152896u^{22} + \dots + 7.31312u + 2.28466 \\ 0.170602u^{23} + 0.00657076u^{22} + \dots + 1.79380u - 0.738436 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.340801u^{23} - 0.152896u^{22} + \dots + 7.31312u + 2.28466 \\ 0.170602u^{23} + 0.00657076u^{22} + \dots + 1.79380u - 0.738436 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes $=\frac{\frac{867553217111521}{1657707721634344}u^{23}+\frac{56390307623253}{3315415443268688}u^{22}+\cdots+\frac{3770100918086014}{207213465204293}u+\frac{1919092137145043}{207213465204293}u$

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^4 + u^2 + u + 1)^6$
c_2	$(u^4 + 2u^3 + 3u^2 + u + 1)^6$
c_3, c_5, c_9 c_{10}	$u^{24} - 9u^{22} + \dots + 56u + 8$
c_4, c_{11}	$u^{24} + 3u^{22} + \dots - 4u + 8$
c_7	$(u^4 + 3u^3 + 4u^2 + 3u + 2)^6$
<i>c</i> ₈	$(u^3 - u^2 + 1)^8$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^4 + 2y^3 + 3y^2 + y + 1)^6$
c_2	$(y^4 + 2y^3 + 7y^2 + 5y + 1)^6$
c_3, c_5, c_9 c_{10}	$y^{24} - 18y^{23} + \dots - 864y + 64$
c_4, c_{11}	$y^{24} + 6y^{23} + \dots + 944y + 64$
c_7	$(y^4 - y^3 + 2y^2 + 7y + 4)^6$
<i>c</i> ₈	$(y^3 - y^2 + 2y - 1)^8$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.077838 + 1.001210I		
a = -0.058264 + 0.749436I	3.42323 - 7.64338I	9.24932 + 6.51087I
b = -1.40920 + 0.84871I		
u = 0.077838 - 1.001210I		
a = -0.058264 - 0.749436I	3.42323 + 7.64338I	9.24932 - 6.51087I
b = -1.40920 - 0.84871I		
u = 0.554955 + 0.881319I		
a = -0.156285 - 1.094010I	2.89077 - 4.22521I	8.26043 + 6.84681I
b = 0.443978 - 1.026930I		
u = 0.554955 - 0.881319I		
a = -0.156285 + 1.094010I	2.89077 + 4.22521I	8.26043 - 6.84681I
b = 0.443978 + 1.026930I		
u = 0.214202 + 0.934183I		
a = 0.962122 - 0.718649I	2.89077 + 1.43103I	8.26043 + 0.88791I
b = -0.207958 + 0.155122I		
u = 0.214202 - 0.934183I		
a = 0.962122 + 0.718649I	2.89077 - 1.43103I	8.26043 - 0.88791I
b = -0.207958 - 0.155122I		
u = -0.810739 + 0.684928I		
a = -0.178616 - 1.069640I	-0.71436 + 10.47150I	2.72006 - 9.49032I
b = 0.034600 - 1.374090I		
u = -0.810739 - 0.684928I		
a = -0.178616 + 1.069640I	-0.71436 - 10.47150I	2.72006 + 9.49032I
b = 0.034600 + 1.374090I		
u = -1.023630 + 0.332750I		
a = -0.989201 + 0.406110I	-0.71436 + 4.81525I	2.72006 - 3.53142I
b = -0.441767 + 0.651030I		
u = -1.023630 - 0.332750I		
a = -0.989201 - 0.406110I	-0.71436 - 4.81525I	2.72006 + 3.53142I
b = -0.441767 - 0.651030I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.299931 + 0.824118I		
a = -0.455949 - 1.230640I	2.89077 - 1.43103I	8.26043 - 0.88791I
b = 1.091230 - 0.434477I		
u = 0.299931 - 0.824118I		
a = -0.455949 + 1.230640I	2.89077 + 1.43103I	8.26043 + 0.88791I
b = 1.091230 + 0.434477I		
u = -0.233421 + 0.551322I		
a = 0.491584 + 1.161090I	7.02835 + 1.39709I	14.7897 - 3.8674I
b = 1.68223 + 0.39397I		
u = -0.233421 - 0.551322I		
a = 0.491584 - 1.161090I	7.02835 - 1.39709I	14.7897 + 3.8674I
b = 1.68223 - 0.39397I		
u = 0.208549 + 0.403398I		
a = 2.34438 - 0.96312I	-0.71436 - 4.81525I	2.72006 + 3.53142I
b = -1.141110 + 0.176547I		
u = 0.208549 - 0.403398I		
a = 2.34438 + 0.96312I	-0.71436 + 4.81525I	2.72006 - 3.53142I
b = -1.141110 - 0.176547I		
u = -0.69942 + 1.38686I		
a = 0.173806 - 0.720332I	2.89077 + 4.22521I	8.26043 - 6.84681I
b = -1.091770 - 0.185403I		
u = -0.69942 - 1.38686I		
a = 0.173806 + 0.720332I	2.89077 - 4.22521I	8.26043 + 6.84681I
b = -1.091770 + 0.185403I		
u = 1.50603 + 0.81015I		
a = -0.388743 + 0.209121I	7.02835 + 1.39709I	14.7897 - 3.8674I
b = -1.370290 - 0.060244I		
u = 1.50603 - 0.81015I		
a = -0.388743 - 0.209121I	7.02835 - 1.39709I	14.7897 + 3.8674I
b = -1.370290 + 0.060244I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.25615 + 1.37119I		
a = 0.023380 - 0.618493I	-0.71436 - 10.47150I	2.72006 + 9.49032I
b = 1.312800 - 0.417455I		
u = 1.25615 - 1.37119I		
a = 0.023380 + 0.618493I	-0.71436 + 10.47150I	2.72006 - 9.49032I
b = 1.312800 + 0.417455I		
u = -1.35044 + 1.60451I		
a = 0.231785 + 0.275391I	3.42323 - 7.64338I	9.24932 + 6.51087I
b = 1.097260 - 0.209996I		
u = -1.35044 - 1.60451I		
a = 0.231785 - 0.275391I	3.42323 + 7.64338I	9.24932 - 6.51087I
b = 1.097260 + 0.209996I		

$$III. \\ I_3^u = \langle u^{14} - 3u^{10} + \dots + 2b - 3, \ -2u^{14} - 3u^{13} + \dots + 2a - 1, \ u^{15} + u^{13} + \dots + 4u^4 - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{14} + \frac{3}{2}u^{13} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{14} + \frac{3}{2}u^{10} + \dots + \frac{1}{2}u^{2} + \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{14} + u^{12} + u^{11} - 2u^{10} - 2u^{8} - 4u^{7} + 2u^{6} + u^{4} + 4u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{14} + u^{13} + \dots + 4u + \frac{1}{2} \\ \frac{3}{2}u^{14} + 2u^{12} + \dots + 2u - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{14} + \frac{3}{2}u^{13} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{14} + \frac{3}{2}u^{10} + \dots + \frac{1}{2}u^{2} + \frac{3}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{2}u^{14} + \frac{3}{2}u^{13} + \dots - \frac{1}{2}u - 1 \\ -\frac{1}{2}u^{14} + \frac{3}{2}u^{10} + \dots + \frac{1}{2}u^{2} + \frac{3}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{2}u^{13} + \frac{1}{2}u^{12} + \dots + \frac{3}{2}u - \frac{1}{2} \\ -\frac{1}{2}u^{13} - \frac{1}{2}u^{12} + \dots - \frac{3}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{14} + \frac{3}{2}u^{13} + \dots + \frac{1}{2}u - \frac{3}{2} \\ -\frac{1}{2}u^{14} - u^{13} + \dots - 2u + \frac{3}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{14} + \frac{1}{2}u^{13} + \dots + \frac{7}{2}u + \frac{5}{2} \\ 2u^{14} + 2u^{12} + \dots + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{14} + \frac{1}{2}u^{13} + \dots + \frac{7}{2}u + \frac{5}{2} \\ 2u^{14} + 2u^{12} + \dots + u - 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= -\frac{11}{2}u^{14} - u^{13} - 2u^{12} - 8u^{11} + \frac{23}{2}u^{10} + \frac{7}{2}u^9 + 6u^8 + \frac{47}{2}u^7 - \frac{9}{2}u^6 - 10u^5 + 4u^4 - \frac{33}{2}u^3 - \frac{19}{2}u^2 + \frac{5}{2}u^8 - \frac{19}{2}u^4 - \frac{19}{2}u$$

Crossings	u-Polynomials at each crossing
c_1	$ u^{15} + 4u^{13} + 8u^{11} - u^{10} + 8u^9 - 3u^8 + 4u^7 - 5u^6 - 5u^4 - 3u^2 - 1 $
c_2	$u^{15} + 8u^{14} + \dots - 6u - 1$
c_3, c_9	$u^{15} + u^{14} + \dots - u - 1$
c_4, c_{11}	$u^{15} + u^{13} + u^{12} - 2u^{11} - 2u^9 - 4u^8 + 2u^7 + u^5 + 4u^4 - 1$
c_5, c_{10}	$u^{15} - u^{14} + \dots - u + 1$
	$u^{15} + 4u^{13} + 8u^{11} + u^{10} + 8u^9 + 3u^8 + 4u^7 + 5u^6 + 5u^4 + 3u^2 + 1$
c_7	$u^{15} - 4u^{13} + \dots + 2u + 1$
c ₈	$u^{15} + 7u^{14} + \dots - 4u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{15} + 8y^{14} + \dots - 6y - 1$
c_2	$y^{15} + 16y^{13} + \dots - 2y - 1$
c_3, c_5, c_9 c_{10}	$y^{15} - 15y^{14} + \dots + 13y - 1$
c_4, c_{11}	$y^{15} + 2y^{14} + \dots + 8y^2 - 1$
c_7	$y^{15} - 8y^{14} + \dots - 10y - 1$
<i>c</i> ₈	$y^{15} - 7y^{14} + \dots + 8y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.185034 + 0.977053I		
a = 0.901834 - 0.120626I	1.66412 + 7.79387I	4.71821 - 7.48440I
b = -0.971462 - 0.539948I		
u = 0.185034 - 0.977053I		
a = 0.901834 + 0.120626I	1.66412 - 7.79387I	4.71821 + 7.48440I
b = -0.971462 + 0.539948I		
u = 1.059920 + 0.125997I		
a = -0.505429 + 0.152100I	5.03009 - 3.03027I	-0.29865 + 6.15454I
b = -1.66034 - 0.09253I		
u = 1.059920 - 0.125997I		
a = -0.505429 - 0.152100I	5.03009 + 3.03027I	-0.29865 - 6.15454I
b = -1.66034 + 0.09253I		
u = -1.017990 + 0.343618I		
a = -1.24822 - 0.67823I	-3.33930 + 4.72492I	-3.76065 - 3.56168I
b = -0.602647 - 0.093142I		
u = -1.017990 - 0.343618I		
a = -1.24822 + 0.67823I	-3.33930 - 4.72492I	-3.76065 + 3.56168I
b = -0.602647 + 0.093142I		
u = -0.877006 + 0.163803I		
a = 0.740351 + 0.352474I	6.32524 - 0.81175I	6.18881 - 3.33873I
b = 1.52784 - 0.11487I		
u = -0.877006 - 0.163803I		
a = 0.740351 - 0.352474I	6.32524 + 0.81175I	6.18881 + 3.33873I
b = 1.52784 + 0.11487I		
u = -0.034209 + 0.765835I		
a = -1.59402 - 0.49939I	3.58065 - 2.83345I	10.68843 + 2.87579I
b = 0.941073 - 0.390006I		
u = -0.034209 - 0.765835I		
a = -1.59402 + 0.49939I	3.58065 + 2.83345I	10.68843 - 2.87579I
b = 0.941073 + 0.390006I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.162111 + 1.223850I		
a = 0.441400 - 0.577132I	-0.031900 + 0.989940I	0.43333 - 2.78857I
b = -0.716431 - 0.549731I		
u = -0.162111 - 1.223850I		
a = 0.441400 + 0.577132I	-0.031900 - 0.989940I	0.43333 + 2.78857I
b = -0.716431 + 0.549731I		
u = 0.493147 + 1.132940I		
a = -0.152438 - 0.861689I	1.26100 - 3.34950I	3.87772 + 4.04913I
b = 0.628299 - 0.406815I		
u = 0.493147 - 1.132940I		
a = -0.152438 + 0.861689I	1.26100 + 3.34950I	3.87772 - 4.04913I
b = 0.628299 + 0.406815I		
u = 0.706418		
a = 2.83303	0.629027	-6.69440
b = 0.707336		

\mathbf{TV}

 $\begin{array}{l} I_4^u = \langle 5.79 \times 10^{18} u^{23} + 1.97 \times 10^{19} u^{22} + \dots + 1.42 \times 10^{19} b - 3.77 \times 10^{17}, \ 1.93 \times 10^{13} u^{23} + 6.42 \times 10^{13} u^{22} + \dots + 8.09 \times 10^{12} a - 5.97 \times 10^{13}, \ u^{24} + 3u^{23} + \dots - 6u + 1 \rangle \end{array}$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.38101u^{23} - 7.93700u^{22} + \dots - 16.0638u + 7.38247 \\ -0.407843u^{23} - 1.38785u^{22} + \dots - 3.78446u + 0.0265372 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3.15250u^{23} - 10.3010u^{22} + \dots - 32.7601u + 11.4367 \\ 0.503685u^{23} + 1.63902u^{22} + \dots + 4.73930u - 0.983119 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.98429u^{23} - 6.73679u^{22} + \dots + 12.6550u + 5.30508 \\ 0.0494630u^{23} + 0.168935u^{22} + \dots + 0.574708u - 1.77150 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2.20112u^{23} - 7.24702u^{22} + \dots - 14.6622u + 8.14991 \\ -0.371131u^{23} - 1.31484u^{22} + \dots - 3.06241u - 0.123786 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.97317u^{23} - 6.54915u^{22} + \dots - 12.2793u + 7.35594 \\ -0.407843u^{23} - 1.38785u^{22} + \dots - 3.78446u + 0.0265372 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.146254u^{23} + 0.641487u^{22} + \dots - 7.52556u - 0.845528 \\ 0.836864u^{23} + 2.81155u^{22} + \dots + 6.03475u - 0.313883 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.375295u^{23} + 1.14401u^{22} + \dots + 6.69523u - 0.288437 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.35971u^{23} - 4.26371u^{22} + \dots - 17.1675u + 3.44827 \\ -0.195361u^{23} - 0.483364u^{22} + \dots - 8.48872u + 3.10314 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.35971u^{23} - 4.26371u^{22} + \dots - 17.1675u + 3.44827 \\ -0.195361u^{23} - 0.483364u^{22} + \dots - 8.48872u + 3.10314 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_6	$ (u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1)^4 $
c_2	$(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)^4$
c_3, c_5, c_9 c_{10}	$u^{24} + 4u^{23} + \dots + 106u + 59$
c_4,c_{11}	$u^{24} + 3u^{23} + \dots - 6u + 1$
c_7, c_8	$(u^3 - u^2 + 1)^8$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)^4$
c_2	$(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)^4$
c_3, c_5, c_9 c_{10}	$y^{24} - 20y^{23} + \dots - 32240y + 3481$
c_4, c_{11}	$y^{24} - y^{23} + \dots - 6y + 1$
c_{7}, c_{8}	$(y^3 - y^2 + 2y - 1)^8$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.723079 + 0.704365I		
a = 0.107758 - 1.135100I	1.64493 - 5.65624I	6.00000 + 5.95889I
b = 0.041447 - 1.243490I		
u = 0.723079 - 0.704365I		
a = 0.107758 + 1.135100I	1.64493 + 5.65624I	6.00000 - 5.95889I
b = 0.041447 + 1.243490I		
u = -0.315281 + 0.984494I		
a = 0.427343 - 1.028110I	1.64493 + 5.65624I	6.00000 - 5.95889I
b = -1.107680 - 0.653656I		
u = -0.315281 - 0.984494I		
a = 0.427343 + 1.028110I	1.64493 - 5.65624I	6.00000 + 5.95889I
b = -1.107680 + 0.653656I		
u = -1.013310 + 0.252112I		
a = -0.643211 - 0.895112I	-2.49265 + 2.82812I	-0.52927 - 2.97945I
b = -0.786818 - 0.569360I		
u = -1.013310 - 0.252112I		
a = -0.643211 + 0.895112I	-2.49265 - 2.82812I	-0.52927 + 2.97945I
b = -0.786818 + 0.569360I		
u = -0.159442 + 0.926668I		
a = 0.136132 + 0.791192I	5.78252 + 2.82812I	12.52927 - 2.97945I
b = 1.43944 + 0.70156I		
u = -0.159442 - 0.926668I		
a = 0.136132 - 0.791192I	5.78252 - 2.82812I	12.52927 + 2.97945I
b = 1.43944 - 0.70156I		
u = -0.691733 + 0.527113I		
a = -0.283373 - 1.292740I	-2.49265 + 2.82812I	-0.52927 - 2.97945I
b = 0.222973 - 1.116570I		
u = -0.691733 - 0.527113I		
a = -0.283373 + 1.292740I	-2.49265 - 2.82812I	-0.52927 + 2.97945I
b = 0.222973 + 1.116570I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.097732 + 1.282650I		
a = -0.629193 - 0.636142I	1.64493 - 5.65624I	6.00000 + 5.95889I
b = 0.554361 + 0.213748I		
u = -0.097732 - 1.282650I		
a = -0.629193 + 0.636142I	1.64493 + 5.65624I	6.00000 - 5.95889I
b = 0.554361 - 0.213748I		
u = 1.22255 + 1.06383I		
a = 0.106727 - 0.702138I	-2.49265 - 2.82812I	-0.52927 + 2.97945I
b = 1.173390 - 0.504296I		
u = 1.22255 - 1.06383I		
a = 0.106727 + 0.702138I	-2.49265 + 2.82812I	-0.52927 - 2.97945I
b = 1.173390 + 0.504296I		
u = 0.122779 + 0.275025I		
a = -1.02171 + 2.28864I	5.78252 + 2.82812I	12.52927 - 2.97945I
b = -1.87511 + 0.22835I		
u = 0.122779 - 0.275025I		
a = -1.02171 - 2.28864I	5.78252 - 2.82812I	12.52927 + 2.97945I
b = -1.87511 - 0.22835I		
u = 0.290085 + 0.035799I		
a = 2.66725 - 2.89690I	-2.49265 - 2.82812I	-0.52927 + 2.97945I
b = -0.732109 - 0.436774I		
u = 0.290085 - 0.035799I		
a = 2.66725 + 2.89690I	-2.49265 + 2.82812I	-0.52927 - 2.97945I
b = -0.732109 + 0.436774I		
u = -1.11766 + 1.32293I		
a = 0.001573 - 0.664583I	1.64493 + 5.65624I	6.00000 - 5.95889I
b = -1.243000 - 0.376081I		
u = -1.11766 - 1.32293I		
a = 0.001573 + 0.664583I	1.64493 - 5.65624I	6.00000 + 5.95889I
b = -1.243000 + 0.376081I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.78242 + 0.43596I		
a = 0.399606 + 0.097740I	5.78252 + 2.82812I	12.52927 - 2.97945I
b = 1.46829 - 0.05407I		
u = -1.78242 - 0.43596I		
a = 0.399606 - 0.097740I	5.78252 - 2.82812I	12.52927 + 2.97945I
b = 1.46829 + 0.05407I		
u = 1.31909 + 1.40108I		
a = -0.268903 + 0.285617I	5.78252 + 2.82812I	12.52927 - 2.97945I
b = -1.155190 - 0.130975I		
u = 1.31909 - 1.40108I		
a = -0.268903 - 0.285617I	5.78252 - 2.82812I	12.52927 + 2.97945I
b = -1.155190 + 0.130975I		

V.
$$I_5^u = \langle b-1, 59u^5 + 76u^4 + \dots + 67a + 146, u^6 + u^5 + 4u^4 + 2u^3 + 8u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.880597u^{5} - 1.13433u^{4} + \dots - 7.26866u - 2.17910 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.149254u^{5} - 0.582090u^{4} + \dots - 2.16418u - 3.77612 \\ -0.253731u^{5} - 0.0895522u^{4} + \dots - 1.17910u + 0.880597 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.597015u^{5} - 0.328358u^{4} + \dots - 3.65672u + 2.89552 \\ 0.179104u^{5} + 0.298507u^{4} + \dots + 1.59701u - 0.268657 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.716418u^{5} - 1.19403u^{4} + \dots - 6.38806u - 2.92537 \\ -0.149254u^{5} + 0.417910u^{4} + \dots - 0.164179u + 1.22388 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.880597u^{5} - 1.13433u^{4} + \dots - 7.26866u - 3.17910 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.880597u^{5} - 1.13433u^{4} + \dots - 7.26866u - 2.17910 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0746269u^{5} + 0.208955u^{4} + \dots + 1.41791u + 0.611940 \\ -0.253731u^{5} - 0.0895522u^{4} + \dots + 1.17910u + 0.880597 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.149254u^{5} - 0.582090u^{4} + \dots - 2.16418u - 3.77612 \\ -0.253731u^{5} - 0.0895522u^{4} + \dots - 1.17910u + 0.880597 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.149254u^{5} - 0.582090u^{4} + \dots - 2.16418u - 3.77612 \\ -0.253731u^{5} - 0.0895522u^{4} + \dots - 1.17910u + 0.880597 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_6, c_{11}	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_2, c_5, c_9	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_3, c_{10}	$(u-1)^6$
c_4	$u^6 + u^5 + 4u^4 + 2u^3 + 8u^2 + 1$
c_{7}, c_{8}	$(u^3 - u^2 + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_{11}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_2, c_5, c_9	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_3, c_{10}	$(y-1)^6$
c_4	$y^6 + 7y^5 + 28y^4 + 62y^3 + 72y^2 + 16y + 1$
c_7, c_8	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.42975 + 1.50598I		
a = -0.303615 - 0.669275I	1.64493	6.00000
b = 1.00000		
u = 0.42975 - 1.50598I		
a = -0.303615 + 0.669275I	1.64493	6.00000
b = 1.00000		
u = 0.017526 + 0.363437I		
a = -1.92858 - 2.50729I	1.64493	6.00000
b = 1.00000		
u = 0.017526 - 0.363437I		
a = -1.92858 + 2.50729I	1.64493	6.00000
b = 1.00000		
u = -0.94728 + 1.47725I		
a = 0.232199 + 0.362106I	1.64493	6.00000
b = 1.00000		
u = -0.94728 - 1.47725I		
a = 0.232199 - 0.362106I	1.64493	6.00000
b = 1.00000		

VI.
$$I_6^u = \langle -u^2 + b, -u^2 + a - 1, u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1\\u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + 2u^{3} + u\\u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{5} - 2u^{3} - u + 1\\-u^{5} - u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + 1\\u^{5} - 2u^{4} + 2u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1\\u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} + u^{4} - 2u^{3} + 2u^{2} - 2u + 2\\u^{5} - 2u^{4} + 2u^{3} - 3u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{5} + 2u^{3} + u\\2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{5} + 2u^{3} + u\\2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_2, c_3, c_{10}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_5, c_9	$(u-1)^{6}$
c_7, c_8	$(u^3 - u^2 + 1)^2$
c_{11}	$u^6 + u^5 + 4u^4 + 2u^3 + 8u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_2, c_3, c_{10}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_{5}, c_{9}	$(y-1)^6$
c_{7}, c_{8}	$(y^3 - y^2 + 2y - 1)^2$
c_{11}	$y^6 + 7y^5 + 28y^4 + 62y^3 + 72y^2 + 16y + 1$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = 0.246226 - 0.998963I	1.64493	6.00000
b = -0.753774 - 0.998963I		
u = -0.498832 - 1.001300I		
a = 0.246226 + 0.998963I	1.64493	6.00000
b = -0.753774 + 0.998963I		
u = 0.284920 + 1.115140I		
a = -0.162359 + 0.635452I	1.64493	6.00000
b = -1.162360 + 0.635452I		
u = 0.284920 - 1.115140I		
a = -0.162359 - 0.635452I	1.64493	6.00000
b = -1.162360 - 0.635452I		
u = 0.713912 + 0.305839I		
a = 1.41613 + 0.43668I	1.64493	6.00000
b = 0.416133 + 0.436684I		
u = 0.713912 - 0.305839I		
a = 1.41613 - 0.43668I	1.64493	6.00000
b = 0.416133 - 0.436684I		

VII.
$$I_7^u=\langle b-1,\ a-2,\ u+1
angle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_{11}	u+1
c_2, c_3, c_5 c_9, c_{10}	u-1
c_7, c_8	u+2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_9, c_{10}, c_{11}	y-1
c_7, c_8	y-4

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 2.00000	1.64493	6.00000
b = 1.00000		

VIII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u+1)(u^4+u^2+u+1)^6(u^6-u^5+2u^4-2u^3+2u^2-2u+1)^6$ $\cdot (u^{15}+4u^{13}+8u^{11}-u^{10}+8u^9-3u^8+4u^7-5u^6-5u^4-3u^2-1)$ $\cdot (u^{27}+6u^{26}+\cdots-40u-8)$
c_2	$(u-1)(u^4 + 2u^3 + 3u^2 + u + 1)^6(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)^6$ $\cdot (u^{15} + 8u^{14} + \dots - 6u - 1)(u^{27} + 14u^{26} + \dots + 32u - 64)$
c_3, c_9	$((u-1)^{7})(u^{6} + 3u^{5} + \dots + 2u^{3} + 1)(u^{15} + u^{14} + \dots - u - 1)$ $\cdot (u^{24} - 9u^{22} + \dots + 56u + 8)(u^{24} + 4u^{23} + \dots + 106u + 59)$ $\cdot (u^{27} - 9u^{25} + \dots - u - 1)$
c_4, c_{11}	$(u+1)(u^{6}-u^{5}+\cdots-2u+1)(u^{6}+u^{5}+\cdots+8u^{2}+1)$ $\cdot (u^{15}+u^{13}+u^{12}-2u^{11}-2u^{9}-4u^{8}+2u^{7}+u^{5}+4u^{4}-1)$ $\cdot (u^{24}+3u^{22}+\cdots-4u+8)(u^{24}+3u^{23}+\cdots-6u+1)$ $\cdot (u^{27}-u^{26}+\cdots+2u-1)$
c_5, c_{10}	$((u-1)^{7})(u^{6} + 3u^{5} + \dots + 2u^{3} + 1)(u^{15} - u^{14} + \dots - u + 1)$ $\cdot (u^{24} - 9u^{22} + \dots + 56u + 8)(u^{24} + 4u^{23} + \dots + 106u + 59)$ $\cdot (u^{27} - 9u^{25} + \dots - u - 1)$
c_6	$(u+1)(u^4+u^2+u+1)^6(u^6-u^5+2u^4-2u^3+2u^2-2u+1)^6$ $\cdot (u^{15}+4u^{13}+8u^{11}+u^{10}+8u^9+3u^8+4u^7+5u^6+5u^4+3u^2+1)$ $\cdot (u^{27}+6u^{26}+\cdots-40u-8)$
<i>C</i> ₇	$(u+2)(u^3 - u^2 + 1)^{12}(u^4 + 3u^3 + 4u^2 + 3u + 2)^6$ $\cdot (u^{15} - 4u^{13} + \dots + 2u + 1)(u^{27} - 9u^{26} + \dots + 2296u - 232)$
c ₈	$(u+2)(u^3 - u^2 + 1)^{20}(u^{15} + 7u^{14} + \dots - 4u^2 + 1)$ $\cdot (u^{27} + 22u^{26} + \dots - 7680u - 512)$

IX. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y-1)(y^4 + 2y^3 + 3y^2 + y + 1)^6(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)^6$ $\cdot (y^{15} + 8y^{14} + \dots - 6y - 1)(y^{27} + 14y^{26} + \dots + 32y - 64)$
c_2	$(y-1)(y^4 + 2y^3 + 7y^2 + 5y + 1)^6(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)^6$ $\cdot (y^{15} + 16y^{13} + \dots - 2y - 1)(y^{27} + 2y^{26} + \dots + 39424y - 4096)$
c_3, c_5, c_9 c_{10}	$((y-1)^{7})(y^{6}-y^{5}+\cdots+8y^{2}+1)(y^{15}-15y^{14}+\cdots+13y-1)$ $\cdot (y^{24}-20y^{23}+\cdots-32240y+3481)(y^{24}-18y^{23}+\cdots-864y+64)$ $\cdot (y^{27}-18y^{26}+\cdots-7y-1)$
c_4, c_{11}	$(y-1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{6} + 7y^{5} + \dots + 16y + 1)(y^{15} + 2y^{14} + \dots + 8y^{2} - 1)$ $\cdot (y^{24} - y^{23} + \dots - 6y + 1)(y^{24} + 6y^{23} + \dots + 944y + 64)$ $\cdot (y^{27} - 5y^{26} + \dots + 16y - 1)$
c_7	$(y-4)(y^3 - y^2 + 2y - 1)^{12}(y^4 - y^3 + 2y^2 + 7y + 4)^6$ $\cdot (y^{15} - 8y^{14} + \dots - 10y - 1)(y^{27} - 7y^{26} + \dots + 586144y - 53824)$
c_8	$(y-4)(y^3 - y^2 + 2y - 1)^{20}(y^{15} - 7y^{14} + \dots + 8y - 1)$ $\cdot (y^{27} - 4y^{26} + \dots + 1966080y - 262144)$