Examen

Durée 3h00. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. Les exercices sont indépendants. La qualité de la rédaction sera prise en compte.

Exercice 1. Un livre contient des erreurs de rédaction. À chaque relecture, une faute non corrigée est corrigée avec une probabilité de 1/3. Les corrections des différentes fautes sont indépendantes les unes des autres ; les relectures successives aussi.

- 1. On suppose que le livre contient exactement 4 erreurs. Soit $n \in \mathbb{N}$, calculer la probabilité que toutes les fautes ait été corrigées en n relectures.
- 2. On suppose maintenant que le livre contient un nombre aléatoire d'erreurs qui suit une loi uniforme sur $\{0, 1, 2, 3, 4\}$. Soit $n \in \mathbb{N}$, calculer la probabilité que toutes les fautes ait été corrigées en n relectures.
- 3. Dans lequel des 2 cas, faudra-t-il faire le moins de relectures pour que la probabilité qu'il ne subsiste aucune erreur soit supérieure à 0.9?

Exercice 2. Soit $\varphi : [0, \infty[\to \mathbb{R} \text{ dérivable et de dérivée continue sur } [0, \infty[$. On pose :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto \varphi(\sqrt{x^2 + y^2})$

- 1. Montrer que $f \in \mathcal{C}(\mathbb{R}^2)$.
- 2. Montrer que $f \in \mathcal{C}^1(\mathbb{R}^2 \setminus \{(0,0)\})$ et calculer $\nabla f(x,y)$ pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.
- 3. En déduire que $f \in \mathcal{C}^1(\mathbb{R}^2)$ si et seulement si $\varphi'(0) = 0$. On supposera cette condition satisfaite par la suite.
- 4. On suppose de plus φ' dérivable et φ'' continue sur $[0, \infty[$.
 - (a) Montrer que $f \in \mathcal{C}^2(\mathbb{R}^2 \setminus \{(0,0)\})$ et, pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, calculer

$$\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y),$$

en fonction de $\sqrt{x^2 + y^2}$, $\varphi'(\sqrt{x^2 + y^2})$ et $\varphi''(\sqrt{x^2 + y^2})$.

(b) Montrer que $\Delta f \in \mathcal{C}(\mathbb{R}^2 \setminus \{(0,0)\})$ et admet un prolongement par continuité sur \mathbb{R}^2 .

Exercice 3. On définit les applications $\mathbb{R}^2 \to \mathbb{R}$ suivantes :

$$\begin{split} N_1(x,y) &= |x| + |y| + \max \{|x|, |y|\}, \\ N_2(x,y) &= |x| + |y| + \min \{|x|, |y|\}, \\ N_3(x,y) &= N_1(x,y) + N_2(x,y). \end{split}$$

- 1. Tracer la courbe de niveau 1 de chacune de ces applications.
- 2. Au vu des dessins, justifier dans quels cas ces applications définissent une norme sur \mathbb{R}^2 .

Exercice 4. On pose pour tout $x, y \in \mathbb{R}$,

$$f(x,y) = |4(x-1)^2 + 9(y+2)^2 - 1|.$$

1. On pose $N=\{(x,y)\in\mathbb{R}^2, 4(x-1)^2+9(y+2)^2-1\leq 0\}.$ C'est l'intérieur de l'ellipse suivante :

Calculer $I = \iint_N f(x,y) dx dy$ en utilisant un changement de variable.

- 2. Étudier la continuité f et donner l'ensemble image de f.
- 3. Dessiner l'ensemble $L = \{(x, y) \in \mathbb{R}^2 | f(x, y) > 1/2 \}.$
- 4. Sur quel ensemble f est-elle \mathcal{C}^{∞} ? Justifier la réponse.
- 5. Donner les points de minimum de f sur \mathbb{R}^2 . Indiquer, en justifiant, la nature de ces points (minimum global ou local). Indication: cette question se traitera sans calcul
- 6. Calculer le gradient et la Hessienne de f en les points de \mathbb{R}^2 pour lesquels ces quantités sont bien définies.
- 7. Déterminer alors le(s) point(s) critique(s) de f donner leur nature (minimum/maximum, local/global, point selle,...).