Homework 1

ECE 102: Systems and Signals

Winter 2022

Instructor: Prof. Danijela Cabric

Due Date: 23:59 on 14th January, 2022. Submission via gradescope.

Kindly enroll yourself in the class: ECE 102 on gradescope. Entry code: X3PPGR

1 Problems

1. A continuous-time signal x(t) is shown in Figure 1. Sketch and label carefully each of the following signals:

Figure 1: x(t)

- (a) x(t-1)
- (b) x(4-t)
- (c) $[x(t-2)-2x(-t+1)]u(t-\frac{1}{2})$
- 2. (a) Using complex exponentials, prove that:

$$a(t) = \cos(\theta t)\sin(\psi t) = \frac{1}{2}(\sin((\theta + \psi)t) - \sin((\theta - \psi)t))$$

- (b) Can a(t) be periodic? If so, use $\theta = 2\pi$ to find the value of ψ where a(t) has a period of 3.
- (c) Determine the fundamental period of the signal $x(t) = 2\cos(10t+1) \sin(4t-1)$
- 3. Consider the periodic signal $x(t) = \cos(3\Omega_o t) + 5\cos(\Omega_o t)$, $-\infty < t < \infty$, and $\Omega_o = \pi$. The frequencies of the two sinusoids are harmonically related (that is, one is a multiple of the other).
 - (a) Determine the period T_o of x(t).
 - (b) Compute the power P_x of x(t).
 - (c) Verify that the power P_x is the sum of the powers P_1 of $x_1(t) = \cos(3\Omega_o t)$ and P_2 of $x_2(t) = 5\cos(\Omega_o t)$, for $\Omega_o = \pi$.

1

- (d) In the above case, we see that there is superposition of the powers because the frequencies are harmonically related. Suppose that $\gamma(t)=\cos(t)+\cos(\frac{\pi}{2}t)$ where the frequencies are not harmonically related. Find out whether $\gamma(t)$ is periodic or not. Indicate how you would find the power P_{γ} of $\gamma(t)$. Would $P_{\gamma}=P_1+P_2$ where P_1 is the power of $\cos(t)$ and P_2 is the power of $\cos(\frac{\pi}{2}t)$? Explain what is the difference with respect to the case of harmonic frequencies.
- 4. (a) Determine and sketch the even and odd parts of the signal depicted in the figure below. Label your sketches carefully.

(b) Show that the energy of a general continuous time signal x(t) can be expressed as the sum of the energies of its even and odd components. That is,

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x_e(t)|^2 dt + \int_{-\infty}^{\infty} |x_o(t)|^2 dt$$