

Comparing Optimization and Estimation Techniques for Low-Thrust Spacecraft Rendezvous

Andrew Cox, Mike Sparapany, Collin York, Waqar Zaidi April 25, 2018

AAE 568 Course Project, Purdue University

Problem Motivation

Problem Motivation, Cont'd

Low-Thrust Control

Chaser with low-thrust:

$$\vec{F}_{lt} = \frac{T}{m} \begin{Bmatrix} \cos \alpha \\ \sin \alpha \end{Bmatrix}$$

$$m = m_0 - \frac{T}{I_{sn}q_0}$$

T: Thrust magnitude (const)

m: Chaser mass (const)

 α : Thrust angle (**ctrl**)

2. Propagate truth and estimated state, covariance for **subset** of optimal arc

Optimal Control

Solver

u

 \hat{x}

Goal: minimize propellant usage = maximize m_r = minimize t_r

$$\min_{\alpha} J = t_f$$

Subject to:

$$\dot{\vec{x}} = \begin{cases} \dot{r} \\ \dot{\theta} \\ r\dot{\theta}^2 - \frac{\mu}{r^2} + \frac{T}{m} \left(C_{\alpha} C_{\theta} + S_{\alpha} S_{\theta} \right) \\ -2\frac{\dot{r}\dot{\theta}}{r} + \frac{T}{mr} \left(S_{\alpha} C_{\theta} - C_{\alpha} S_{\theta} \right) \end{cases} \qquad \vec{x}(t_f) = \begin{cases} r' \\ \theta'_0 + \dot{\theta}' t \\ \dot{r}'_0 \\ \dot{\theta}'_0 \end{cases}$$

$$\vec{x}(t_0) = \left\{ r_0 \quad \theta_0 \quad \dot{r}_0 \quad \dot{\theta}_0 \right\}^T, \qquad t_0 = 0$$

$$ec{x}(t_f) = \left\{ egin{aligned} r' \ heta'_0 + \dot{ heta}'t \ \dot{r}'_0 \ \dot{ heta}'_0 \end{aligned}
ight\}$$

$$t_f = \text{free}$$

Indirect Optimization

- Non-dimensionalize the problem by initial radius, mean motion, and spacecraft mass to help convergence
- Utilize Euler-Lagrange Equations

$$\dot{\lambda} = \left(\frac{\partial H}{\partial x}\right)^T \qquad \frac{\partial H}{\partial \alpha} = 0$$

• Two-Point Boundary Value Problem requires one more constraint from the Transversality Condition,

$$H_f dt_f - \lambda_f^T dx_f + dg = 0$$

$$H_f dt_f - \lambda_2 \left(\partial \theta_f + \frac{\partial \theta}{\partial t} \Big|_{t_f} dt_f \right) + dt_f = 0$$

$$H_f - \lambda_2 \dot{\theta}' + 1 = 0$$

Direct Optimization

Model dynamics by piecewise 3rd-degree polynomials (control constant along segments)

$$\tilde{p}_{0.5} = \frac{1}{2}(p_0 + p_1) + \frac{t_f(dp_0 - dp_1)}{8(N - 1)}$$

$$d\tilde{p}_{0.5} = -\frac{3(N - 1)(p_0 - p_1)}{2t_f} - \frac{1(dp_0 + dp_1)}{4}$$

$$dp_{0.5} = f(t, \tilde{p}_{0.5})$$

Constraint: $\mathrm{d}p_{0.5} - \mathrm{d}\tilde{p}_{0.5} = 0 \ \forall$ polynomial midpoints

Driven by Sequential Quadratic Programming (SQP from MATLAB's *fmincon*)

	Direct	Indirect
Pros	 No variational calculus Easy to make initial guess (no costates) Easy to find a potential (suboptimal) solution 	 Root-solver is simpler Solution guaranteed locally optimal Convincing global optimum with engineering judgement
Cons	 Unsure if solution is optimal, or even real Numerical optimizer is more complicated 	 Initial guess hard to make Sensitive to initial guess

Estimation Problem Definition

$$\dot{x} = f(x, \alpha) + Bw$$
 Process equations with acceleration noise $y_k = Cx_k + Dz_k$ Range & range-rate measurements

- w is mean-zero Gaussian white noise with $\sigma = 10^{-8}$ km/s² (J₂, lunar gravity at GEO)
- z is mean-zero Gaussian white noise with $\sigma_1 = 10$ m, $\sigma_2 = 1$ mm/s
- Continuous-discrete formulations to model continuous gravity perturbation and discrete measurement intervals

Goals:

- Determine appropriate sample time for Extended Kalman Filter (EKF)
- Compare EKF and Unscented Kalman Filter (UKF)

Extended Kalman Filter

Continuous Propagation Equations:

$$\dot{\hat{x}} = f(\hat{x}, \alpha)$$

$$\dot{P} = A(\hat{x}(t))P + PA(\hat{x}(t))^T + BWB^T$$

$$P(0) = P_0$$
where $A(\hat{x}(t)) = \frac{\partial f}{\partial x}\Big|_{\hat{x}(t)}$

Discrete Update Equations:

$$\hat{x}(t_k^+) = \hat{x}(t_k^-) + L_k \left(y_k - C\hat{x}(t_k^-) \right)$$

$$P(t_k^+) = (I - L_k C) P(t_k^-)$$
where $P(t_k^-) C^T \left(CP(t_k^-) C^T + DZD^T \right)^{-1}$

EKF Sampling Time Determination

4-Hr Sampling Rate

30-min Sampling Rate

Unscented Kalman Filter

Waqar

Estimation Method Comparison

Waqar

Contributions

Andrew: Dynamics derivation, integration of components into mission loop

Michael: Direct optimization implementation, optimizer comparison

Collin: EKF implementation, indirect optimization implementation

Waqar: UKF implementation, estimator comparison

Comparing Optimization and Estimation Techniques for Low-Thrust Spacecraft Rendezvous

Andrew Cox, Mike Sparapany, Collin York, Waqar Zaidi April 25, 2018

AAE 568 Course Project, Purdue University