

# Complexidade de Algoritmos

Prof<sup>a</sup>. Barbara Quintela Prof. Jose J. Camata Prof. Marcelo Caniato

barbara@ice.ufjf.br camata@ice.ufjf.br marcelo.caniato@ice.ufjf.br





## Algoritmo como Tecnologia

Pense na seguinte frase:

Suponha que os computadores fossem infinitamente rápidos e que a memória do computador fosse gratuita. Você teria alguma razão para estudar algoritmos?





### Algoritmo como Tecnologia

Pense na seguinte frase:

Suponha que os computadores fossem infinitamente rápidos e que a memória do computador fosse gratuita. Você teria alguma razão para estudar algoritmos?

A resposta deve ser SIM!!!!

Verificar que seu método termina, e o faz com a resposta correta





## Algoritmo como Tecnologia

- Computadores podem ser rápidos mas não são infinitamente rápidos!!
- Limitantes:
  - Hardware
  - Custo (\$\$\$)
  - Gasto Energético
- Tempo de processamento é um recurso limitado, bem como espaço de memória.
  - Necessário aliar estruturas de dados adequadas com algoritmos eficientes





#### Analisando um algoritmo qualquer....

- Analisar um algoritmo significa prever os recursos de que o algoritmo necessita.
- Qual é o custo de usar um dado algoritmo para resolver um problema específico?
  - Características que devem ser investigadas:
    - análise do número de vezes que cada parte do algoritmo deve ser executada,
    - estudo da quantidade de memória necessária.





## Analisando uma classe de algoritmo

- Qual é o algoritmo de menor custo possível para resolver um problema particular?
  - Toda uma família de algoritmos é investigada.
  - Procura-se identificar um que seja o melhor possível.
  - Coloca-se limites para a complexidade computacional dos algoritmos pertencentes à classe.





## Funções de Complexidade

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade g.
- Pode ser:
  - Função de complexidade de tempo: g(n) mede o tempo necessário para executar um algoritmo em um problema de tamanho n.
  - Função de complexidade de espaço: g(n) mede a memória necessária para executar um algoritmo em um problema de tamanho n.
    - OBS.: Utilizaremos g para denotar uma função de complexidade de tempo daqui para a frente.





## **Exemplo - Maior Elemento**

Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros  $v[0,1,...,n-1], n \ge 1$ .

```
int max(int V[], int n)
{
    int max = v[0];
    for(int i=1;i < n; i++)
        if(v[i]>max)
            max = v[i];
    return max;
}
```

Seja **g** uma função de complexidade tal que g(n) é o **número** de **comparações entre os elementos** de v, se v contiver n elementos.





## **Exemplo - Maior Elemento**

Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros  $v[0,1,...,n-1], n \ge 1$ .





## **Exemplo - Maior Elemento**

Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros  $v[0,1,...,n-1], n \ge 1$ .





## **Observações**

- A medida do custo de execução de um algoritmo depende principalmente do tamanho da entrada dos dados.
- Mas para alguns algoritmos, o custo de execução é uma função da entrada particular dos dados, não apenas do tamanho da entrada.
- Exemplos:
  - Para um algoritmo de ordenação se os dados de entrada já estiverem quase ordenados, então o algoritmo pode ter um custo menor.





#### Melhor Caso, Pior Caso e Caso Médio

- **Melhor caso:** menor tempo de execução sobre todas as entradas de tamanho *n*.
- Pior caso: maior tempo de execução sobre todas as entradas de tamanho n.
- Caso médio (ou caso esperado): média dos tempos de execução de todas as entradas de tamanho n.

```
Exemplo:
```

```
// busca sequencial
for(int i=0; i<n; i++) {
    if (v[i] == x) break;
```

**Melhor caso:** se a chave está na primeira posição, apenas uma comparação, v[0] == x

Pior caso: sendo todos os elementos igualmente prováveis, comparar todos os valores até o final, n

Caso médio: média de comparação, (1+n)/2





## Comportamento Assintótico

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema.
- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes.
- A análise de algoritmos é realizada para valores grandes de n (quando tende ao infinito).
- O comportamento assintótico de g(n) representa o limite do comportamento do custo quando n cresce.





## Notações Assintóticas

- Fornecem um vocabulário para discutir o projeto e a análise de algoritmos
  - suficientemente amplo ignora detalhes que dependem de arquitetura, escolha da linguagem de programação, compilador etc.
  - suficientemente preciso permite comparações úteis entre abordagens algorítmicas de alto nível distintas para resolver problemas





## Notação Big-O

- ightharpoonup Escrevemos g(n) = O(f(n)) para expressar que f(n) domina assintoticamente g(n). Lê-se g(n) é da ordem no máximo f(n).
- Exemplo gráfico de dominação assintótica que ilustra a notação Big-O



O valor da constante *m* é o menor possível, mas qualquer valor maior é válido

**Definição:** Uma função g(n) é O(f(n)) se existem duas constantes positivas c e m tais que  $g(n) \le cf(n)$ , para todo  $n \ge m$ 





### **Exemplos Notação Big-O**

- > **Exemplo 1:**  $g(n) = (n + 1)^2$ 
  - o  $g(n) \in O(n^2)$ , quando m = 1 e c = 4
  - Isto porque  $(n+1)^2 \le 4n^2$  para  $n \ge 1$ .

#### Exemplo 1:

```
(n+1)^2 \le c n^2 \implies

(n^2+2n+1) \le c n^2 \implies

(1+2/n+1/n^2)n^2 \le c n^2 \implies

(1+2/n+1/n^2) \le c

Note que, para n \ge 1, c=4 satisfaz a desigualdade acima
```

- > **Exemplo 2**:  $g(n) = n e h(n) = n^2$ .
  - Sabemos que g(n) é O(n²), pois para n≥0, n ≤ n².
  - Entretanto *h(n)* não é O(n).
    - Suponha que existam constantes  $c \in m$  tais que para todo  $n \ge m$ ,  $n^2 \le cn$ .
    - Logo  $c \ge n$  para qualquer  $n \ge m$ , e não existe uma constante c que possa ser maior ou igual a n para todo n.





## Classes de Comportamento Assintótico

- Em geral, é interessante agrupar os algoritmos / problemas em Classes de Comportamento Assintótico, que vão determinar a complexidade inerente do algoritmo
- Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade.
- $\triangleright$  Um programa com tempo O(n) é melhor que outro com tempo  $O(n^2)$ .
  - o Porém, as constantes de proporcionalidade podem alterar esta consideração.





## Comparação de Programas

- Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva 2n². Qual dos dois programas é melhor?
  - Para n < 50, o programa com tempo  $2n^2$  é melhor do que o que possui tempo 100n.
  - Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é O(n²).
  - Entretanto, quando n cresce, o programa com tempo de execução  $O(n^2)$  leva muito mais tempo que o programa O(n).





- > O(1)
  - Algoritmos de complexidade O(1) são ditos de complexidade constante.
  - Uso do algoritmo independe de *n*.
- > O(log n)
  - Um algoritmo de complexidade O(log n) é dito ter complexidade logarítmica
  - o Típico em algoritmos que transformam um problema em outros menores.
  - Quando n é mil, log₂n ≈ 10, quando n é 1 milhão, log₂n ≈ 20





#### > O(n)

- Um algoritmo de complexidade O(n) é dito ter complexidade linear.
- o Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
- É a melhor situação possível para um algoritmo que tem de processar/produzir n elementos de entrada/saída.
- Cada vez que n dobra de tamanho, o tempo de execução dobra.

#### > $O(n \log n)$

- Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e ajuntando as soluções depois.
- Quando n é 1 milhão, nlog,n é cerca de 20 milhões.
- Quando n é 2 milhões, nlog,n é cerca de 42 milhões, pouco mais do que o dobro.





#### $> O(n^2)$

- Um algoritmo de complexidade  $O(n^2)$  é dito ter **complexidade quadrática**.
- Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um laço dentro de outro.
- Sempre que n dobra, o tempo de execução é multiplicado por 4.

#### $> O(n^3)$

- Um algoritmo de complexidade  $O(n^3)$  é dito ter **complexidade cúbica**.
- Úteis apenas para resolver pequenos problemas.
- Sempre que n dobra, o tempo de execução fica multiplicado por 8.





#### $> O(2^n)$

- Um algoritmo de complexidade  $O(2^n)$  é dito ter **complexidade exponencial.**
- Ocorrem na solução de problemas quando se usa força bruta para resolvê-los
- Geralmente não são úteis sob o ponto de vista prático.
- Quando n é 20, o tempo de execução é cerca de 1 milhão. Quando n dobra, o tempo fica elevado ao quadrado

#### > O(n!)

- Um algoritmo de complexidade O(n!) também é dito ter complexidade exponencial.
- Geralmente ocorrem quando se usa força bruta na solução do problema.





## Comparação de Funções de Complexidade

| Classe       | Número de complexidade de operações e tempos de execução (1 instr/µseg) |          |          |                  |                       |                   |          |  |  |  |  |
|--------------|-------------------------------------------------------------------------|----------|----------|------------------|-----------------------|-------------------|----------|--|--|--|--|
| n            |                                                                         |          | 10       | 10               |                       | 10³               |          |  |  |  |  |
| constante    | O(1)                                                                    | 1        | 1 μseg   | 1                | 1 μseg                | 1                 | 1 μseg   |  |  |  |  |
| logarítmico  | $O(\lg n)$                                                              | 3,32     | 3 µseg   | 6,64             | 7 μseg                | 9,97              | 10 μseg  |  |  |  |  |
| linear       | O(n)                                                                    | 10       | 10 µseg  | $10^{2}$         | 100 μseg              | 10 <sup>3</sup>   | 1 mseg   |  |  |  |  |
| $O(n \lg n)$ | $O(n \lg n)$                                                            | 33,2     | 33 µseg  | 664              | 664 µseg              | 9970              | 10 mseg  |  |  |  |  |
| quadrático   | $O(n^2)$                                                                | $10^2$   | 100 µseg | $10^{4}$         | 10 mseg               | 10 <sup>6</sup>   | 1 seg    |  |  |  |  |
| cúbico       | $O(n^3)$                                                                | $10^{3}$ | 1 mseg   | 106              | 1 seg                 | 109               | 16,7 min |  |  |  |  |
| exponencial  | $O(2^n)$                                                                | 1024     | 10 mseg  | 10 <sup>30</sup> | 3,17 *                | 10 <sup>301</sup> |          |  |  |  |  |
|              |                                                                         |          |          |                  | 10 <sup>17</sup> anos |                   |          |  |  |  |  |





## Comparação de Funções de Complexidade

| n            | 10 <sup>4</sup> |                   |           | į                     | 10 <sup>5</sup> | 10 <sup>6</sup>         |             |
|--------------|-----------------|-------------------|-----------|-----------------------|-----------------|-------------------------|-------------|
| constante    | O(1)            | 1                 | 1 μseg    | 1                     | 1 μseg          | 1                       | 1 μseg      |
| logarítmico  | $O(\lg n)$      | 13,3              | 13 μseg   | 16,6                  | 7 μseg          | 19,93                   | 20 μseg     |
| linear       | O(n)            | $10^{4}$          | 10 mseg   | 10 <sup>5</sup>       | 0,1 seg         | 10 <sup>6</sup>         | 1 seg       |
| $O(n \lg n)$ | $O(n \lg n)$    | $133 \times 10^3$ | 133 mseg  | 166 * 10 <sup>4</sup> | 1,6 seg         | 199,3 * 10 <sup>5</sup> | 20 seg      |
| quadrático   | $O(n^2)$        | $10^{8}$          | 1,7 min   | $10^{10}$             | 16,7 min        | 10 <sup>12</sup>        | 11,6 dias   |
| cúbico       | $O(n^3)$        | $10^{12}$         | 11,6 dias | $10^{15}$             | 31,7 anos       | $10^{18}$               | 31,709 anos |
| exponencia   | $O(2^n)$        | $10^{3010}$       |           | 1030103               |                 | 10301030                |             |





#### **Outras Notações Importantes**

## Notação Big-Omega Ω

- $\triangleright$  g(n) é  $\Omega(f(n))$  se se existir uma constante real positiva c e uma constante inteira positiva m tais que g(n) ≥ c f(n) para n ≥ m.
- Exemplo:
  - O g(n) = 2n² + 3n + 1 é Ω(n²) para todo n > 0 e c ≤
- Ao contrário do Big-O, toma-se a maior classe de funções possível
  - O Diz-se que  $2n^2 + 3n + 1$  é  $\Omega(n^2)$ , embora f(n) = n log n, log n e 1 sejam válidas.
  - Já g(n) = n³, f(n) = n⁴, etc não satisfazem a definição.







#### **Outras Notações Importantes**

## Notação Big-Theta Θ

- prices g(n) é  $\Theta(f(n))$  se se existirem duas constantes reais positivas  $c_1$  e  $c_2$ , e uma constante inteira positiva m tais que  $c_1$   $f(n) ≤ g(n) ≤ c_2$  f(n) para n ≥ m.
- $\triangleright$  Em outras palavras: g(n) =  $\Theta(f(n))$  se for ao mesmo tempo  $\Omega(f(n))$  e O(f(n))
- Exemplo:
  - $\circ$  g(n) = 5n<sup>2</sup> é  $\Theta(n^2)$  para  $c_1 = c_2 = 5$  e quaisquer valor de n;
- Observação:
  - o qualquer polinômio de ordem d é  $\Theta(n^d)$ .







#### Em resumo ...

- ➤ Big-O
  - $g(n) \in \mathbf{O}(f(n))$  se g(n) cresce a uma taxa menor ou igual a f(n).
- ➤ Big-Omega
  - $g(n) \in \Omega(f(n))$  se g(n) cresce a uma taxa maior ou igual a f(n).
    - Nota: Nota:  $g(n) \in \Omega(f(n))$  se e somente se  $f(n) \in O(g(n))$
- ➤ Big-Theta
  - $\circ$   $g(n) \notin \Theta(f(n))$  se for Big-O e Big-Omega ao mesmo tempo
  - o f(n) e g(n) crescem a uma mesma taxa assintótica.
    - Nota:  $g(n) \in \Theta(f(n))$  se e somente se  $f(n) \in \Theta(g(n))$











- 1. Agora que as notações já foram definidas, qual a complexidade temporal para um algoritmo de busca sequencial considerando um vetor de tamanho n?
- a) O(1)
- b) O(log n)
- √ c) O(n)
- d)  $O(n^2)$





2. E se fizermos buscas em dois vetores distintos?

```
a) O(1)
                        bool busca(int vetA[], int vetB[], int n, int x)
  b) O(log n)
                            for(int i=0; i<n; i++)
                                if(vetA[i] == x)

√ c) O(n)

                                    return true;
                            for(int i=0; i<n; i++)
                                if(vetB[i] == x)
                                    return true;
                            return false;
```





3. Qual a complexidade temporal do código a seguir?

```
    a) O(1)
    b) O(log n)
    c) O(n)
    d) O(n<sup>2</sup>)
```

```
bool confere(int vetA[], int vetB[], int n)
{
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
            if(vetA[i] == vetB[j])
            return true;
}</pre>
```





4. Qual a complexidade temporal do código a seguir?

```
    a) O(1)
    b) O(log n)
    c) O(n)
    d) O(n<sup>2</sup>)
```

```
bool confere(int vetA[], int n)
{
    for(int i=0; i<n; i++)
        for(int j=i+1; j<n; j++)
            if(vetA[i] == vetA[j])
            return true;
}</pre>
```





Utilizando as definições para as notações assintóticas, prove se são **verdadeiras** ou **falsas** as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

2. 
$$7n^2 = O(n)$$

3. 
$$2^n+2 = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

5. 
$$5n^2 + 7n = \Theta(n^2)$$

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$











Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$
 2.  $7n^2 = O(n)$ 

3. 
$$2^n+2 = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

5. 
$$5n^2 + 7n = \Theta(n^2)$$

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$

Pela definição do Big-O:  $3n^3 + 2n^2 + n + 1 \le c * n^3$  (dividindo por  $n^3$ )  $3 + 2/n + 1/n^2 + 1 \le c$ menor valor possível de c: 3 + 2 + 1 + 1 = 7Logo, é verdade para c = 7 e m = 1





Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

2. 
$$7n^2 = O(n)$$

3. 
$$2^{n+2} = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

5. 
$$5n^2 + 7n = \Theta(n^2)$$

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$

Pela definição do Big-O:

 $7n^2 \le c * n$ 

7n <= c

não existe um valor para c que seja sempre maior que n, portanto a afirmação é **falsa** 





Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

2. 
$$7n^2 = O(n)$$

3. 
$$2^{n+2} = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

5. 
$$5n^2 + 7n = \Theta(n^2)$$

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$

Pela definição do Big-O:  

$$2^{n+2} <= c * 2^n$$
  
 $2^n * 2^2 <= c * 2^n$   
 $2^2 <= c$ 

verdadeira para m = 1 e c = 4





Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

2. 
$$7n^2 = O(n)$$

3. 
$$2^{n+2} = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

5. 
$$5n^2 + 7n = \Theta(n^2)$$

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$

Pela definição do Big-O:

(2<sup>n</sup>)<sup>2</sup> <= c \* 2<sup>n</sup> (dividindo por 2<sup>n</sup>)

2<sup>n</sup> <= c

Logo, não existe um valor para c que seja sempre

Logo, não existe um valor para c que seja maior que n, portanto a afirmação é **falsa** 





Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

2. 
$$7n^2 = O(n)$$

3. 
$$2^{n+2} = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$
  
5.  $5n^2 + 7n = \Theta(n^2)$ 

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$

Por definição de Biq-Θ:

$$5n^2 + 7n \le c2 * n^2$$
  $c1 * n^2 \le 5n^2 + 7n$   
 $5 + 7/n \le c2$   $c1 \le 5 + 7/n$   
 $5 + 7/1 \le c2$   $c1 \le 5 + 7/infinito$ 

**verdadeiro** para m = 1, c1 = 5 e c2 = 12no cálculo de c1, considera-se m tendendo ao infinito fazendo 7/n assumir o menor valor possível; já no cálculo de c2, considera-se m = 1 para que 7/n assuma o maior valor possível.





Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

2. 
$$7n^2 = O(n)$$

3. 
$$2^{n+2} = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

4. 
$$2^{211} = O(2^{11})$$

5. 
$$5n^2 + 7n = \Theta(n^2)$$

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$

Por definição de Big-Θ:  $c1 * n^2 \le 6n^3 + 5n^2$   $6n^3 + 5n^2 \le c2 * n^2$ para m = 1, c1 pode valer 11. Porém, não existe um valor fixo para c2. Portanto, a afirmativa é **VERDADEIRA**, pois perguntava se a expressão era DIFERENTE de Θ(n²).





Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas:

1. 
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

2. 
$$7n^2 = O(n)$$

3. 
$$2^{n+2} = O(2^n)$$

4. 
$$2^{2n} = O(2^n)$$

5. 
$$5n^2 + 7n = \Theta(n^2)$$

6. 
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

7. 
$$9n^3 + 3n = \Omega(n)$$

Por definição de Big- $\Omega$ :  $9n^3 + 3n >= c * n$  $9n^2 + 3 >= c$ 

verdadeira para m = 1 e c = 12.





#### Referências

- 1. Slides baseados nos slides de Nivio Ziviani. Disponivel em http://www2.dcc.ufmg.br/livros/algoritmos/slides.php
- 2. LEISERSON, C. E.; STEIN, C.; RIVEST, R. L., CORMEN, T.H. Algoritmos: Teoria e Prática. Editora Campus, 2002. Segunda a. Cap. 1, Cap. 3
- 3. <u>Cap 2 Livro Adam Drozdek Estrutura de Dados e Algoritmos em C++ (disponível na biblioteca virtual)</u>

