Adopted Levels, Gammas

 $Q(\beta^{-})=15753 \ 10$; $S(n)=859.8 \ 87$; $S(p)=2.344\times10^{4} \ 60$; $Q(\alpha)=-1.808\times10^{4} \ 27$

 $Q(\beta^-)$,S(n),S(p), $Q(\alpha)$: Deduced by the evaluator using mass excesses of 15529.5 71 for ³⁵Mg measured by 2025Ly01, and 8318 5 for ³⁴Mg: a weighted average of 8323 7 (2019As04) and 8315 5 (2025Ly01); -224 7 for ³⁵Al, 31680 600 for ³⁴Na, and 31180 270 for ³¹Ne from 2021Wa16. Values from 2021Wa16: $Q(\beta^-)$ =15860 270, S(n)=750 270, S(p)=23330 660, $Q(\alpha)$ =-17970 380.

 $S(2n)=5576.0~76, Q(\beta^-n)=10455.8~74$, from mass excesses of 15529.5 71 for ^{35}Mg measured by 2025Ly01; 4962.9 27 for ^{33}Mg and -2997.6~21 for ^{34}Al from 2021Wa16. Values from 2021Wa16: $S(2n)=5470~270, Q(\beta^-n)=10570~270.$ S(2p)=45070~660 (syst) (2021Wa16).

Isotope discovery (2012Th10): Ta(⁴⁸Ca,X) projectile fragmentation at GANIL (1989Gu03,1991Or01).

2013StZY: 35 Mg produced by 9 Be(48 Ca,X) fragmentation at E(48 Ca)=345 MeV/nucleon at RIKEN. Measured $T_{1/2}$ and delayed γ rays.

2012Kw02: 35 Mg produced by 9 Be, nat Ni, 181 Ta(40 Ar,X) at E(40 Ar)=140 MeV/nucleon at NSCL. Measured fission fragment spectra, average isobaric velocities, parallel momentum transfers, widths, fragment σ . Comparison with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI codes.

2011Ka01: ³⁵Mg produced by ⁹Be(⁴⁸Ca,X) fragmentation at GSI. Measured interaction cross sections with C and CH₂ targets at 900 MeV/nucleon. Deduced rms matter radii.

2011FuZZ: ³⁵Mg produced by ⁹Be(⁴⁸Ca,X) fragmentation at E(⁴⁸Ca)=345 MeV/nucleon at RIKEN. Measured thick target fragmentation and deduced production cross sections.

2007Ts09: Analyzed fragmentation cross sections of ⁴⁸Ca beam on ⁹Be and ¹⁸¹Ta targets.

2006Kh08: ³⁵Mg produced by ¹⁸¹Ta(⁴⁸Ca,X) fragmentation at E(⁴⁸Ca)=60.3 MeV/nucleon at GANIL. Measured energy-integrated reaction cross sections at 30-65 MeV/nucleon using a silicon telescope as both active target and detector. Deduced radii, isospin dependence, and possible halo structure or large deformation.

1999YoZW: 35 Mg produced by 9 Be(48 Ca,X) and $^{\bar{1}81}$ Ta(48 Ca,X) fragmentations at E(48 Ca)=70 MeV/nucleon at RIKEN. Measured $T_{1/2}$ and delayed neutron emission probabilities.

Mass measurements: 2025Ly01, 2007Ju03, 2001Sa72, 2000Sa21, 1991Or01.

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J, π , mass, $T_{1/2}$, etc): 2023Ra22, 2021Ka07, 2020Mi15, 2016Ba59, 2016Sa46, 2016Sh05, 2015Sh21, 2014Ga13, 2014Wa14, 2013Ch31, 2013Li39, 2013Sh05, 2012Fo27, 2012Ho19, 2007Ha53, 2006Zh19, 2005Ch71, 2004Kh16, 1996Re10, 1991Pa19, 1991Pa21.

35Mg Levels

Cross Reference (XREF) Flags

- A 35 Na β^{-} decay (2.1 ms)
- B ⁹Be(³⁸Si, ³⁵Mgγ) C C(³⁶Mg, ³⁵Mgγ),(³⁷Al, ³⁵Mgγ)
- $\frac{\text{E(level)}^{\dagger}}{0} = \frac{J^{\pi}}{(3/2^{-}5/2^{-})} = \frac{\text{T}_{1/2}}{11.3 \text{ ms } 6} = \frac{\text{XREF}}{\text{RC}}$

Comments

 $\%\beta^{-}=100$; $\%\beta^{-}n=52$ 46; $\%\beta^{-}2n=$?

% β ⁻n: From 2015Bi05 evaluation; originally from 2008ReZZ. Other: 52 *11* (1999YoZW, preliminary).

Theoretical $\%\beta^-0n=29$, $\%\beta^-1n=66$, $\%\beta^-2n=5$ (2021Mi17).

Theoretical $\%\beta^-0n=65$, $\%\beta^-1n=32$, $\%\beta^-2n=3$ (2019Mo01).

J^π: 3/2⁻ from shell-model calculations with the SDPF-M and SDPF-M+2p_{1/2} interactions (2017Mo26). Near degenerate 30-keV 3/2⁻ and 5/2⁻ g.s. from Monte Carlo shell-model calculations with the SDPF-M interaction (2011Ga15), and 3/2⁻ g.s. from shell-model calculations with the SDPF-U interaction (2011Ga15). 3/2⁻ from projection of the odd-neutron angular momentum along the symmetry axis and parity of the wave function (2019Mo01). Others: 3/2⁺ from antisymmetrized molecular dynamics (AMD) calculations with the Gogny D1S force (2017Mo26).

 $T_{1/2}$: 11.3 ms 5 (stat) 4 (syst) (2013StZY, implant- β correlation). Other: 72 ms 43 (2008ReZZ,1995ReZZ) and \approx 9 ms (1999YoZW, implant- β correlation, preliminary).

Adopted Levels, Gammas (continued)

³⁵Mg Levels (continued)

E(level) [†]	${ m J}^{\pi}$	XREF	Comments
			Theoretical $\%\beta^-$ 0n=29, $\%\beta^-$ 1n=66, $\%\beta^-$ 2n=5 (2021Mi17). Theoretical $\%\beta^-$ 0n=65, $\%\beta^-$ 1n=32, $\%\beta^-$ 2n=3 (2019Mo01). J ^{π} : 3/2 ^{$-$} from shell–model calculations with the SDPF–M and SDPF–M+2p _{1/2} interactions (2017Mo26). Near degenerate 30-keV 3/2 ^{$-$} and 5/2 $^-$ g.s. from Monte Carlo shell-model calculations with the SDPF-M interaction (2011Ga15), and 3/2 $^-$ g.s. from shell-model calculations with the SDPF-U interaction (2011Ga15). 3/2 $^-$ from projection of the odd-neutron angular momentum along the symmetry axis and parity of the wave function (2019Mo01). Others: 3/2 $^+$ from antisymmetrized molecular dynamics (AMD) calculations with the Gogny D1S force (2017Mo26).
			$T_{1/2}$: 11.3 ms 5 (stat) 4 (syst) (2013StZY, implant- β correlation). Other: 72 ms 43 (2008ReZZ,1995ReZZ) and ≈9 ms (1999YoZW, implant- β correlation, preliminary).
			Reduced strong absorption radius=1.64 fm ² 15 from 2006Kh08. The rms matter radius=3.40 fm 24 (2011Ka01).
0+x		BC	E(level): x≤80 keV (2011Ga15 detection threshold); x≤200 keV (2017Mo26 detection threshold).
			J ^π : Shell–model calculations with the SDPF–M+2p _{1/2} interaction predict a 1/2 ⁻ level at 141 keV (2017Mo26). Shell-model calculations with the SDPF-M interaction predict a 5/2 ⁻ level at 84 keV (2017Mo26). Monte Carlo shell-model calculations with the SDPF-M interaction predict a 3/2 ⁻ level at 30 keV (2011Ga15).
0+y?		С	XREF: C(?) E(level): y≤200 keV (2017Mo26 detection threshold). 2017Mo26 suggested a low-lying L=3
206+x 8		С	level from the observed L=3 component in the inclusive parallel momentum distribution. J^{π} : 2017Mo ₂ 6 stated that based on the observed weak γ -ray intensity, this level is not the $1/2^-$ level at 141 keV predicted by shell-model calculations with the SDPF-M+2p _{1/2} interaction.
445+x 5	$(3/2^+, 5/2^+)$	ВС	J^{π} : L(36 Mg, 35 Mg)=(2) from 0 ⁺ . 3/2 ⁺ from shell–model calculations with the SDPF–M+2p _{1/2} interaction (2017Mo ₂ 6).
619+x 7	(1/2-,3/2-)	ВС	J^{π} : L(36 Mg, 35 Mg)=(1) from 0 ⁺ . 3/2 ⁻ from shell–model calculations with the SDPF–M+2p _{1/2} interaction (2017Mo26).
670+x 8		BC	

 $^{^{\}dagger}$ From Ey data in $(^{38}Si,^{35}Mg\gamma)$ and $(^{36}Mg,^{35}Mg\gamma),(^{37}Al,^{35}Mg\gamma).$

$\gamma(^{35}\text{Mg})$

$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbf{E}_f	Comments
206+x		206 8	100	0+x	
445 + x	$(3/2^+, 5/2^+)$	445 5	100	0+x	E_{γ} : weighted average of 443 7 (2017Mo26) and 446 5 (2011Ga15).
619+x	$(1/2^-,3/2^-)$	619 7	100	0+x	E_{γ} : weighted average of 616 8 (2017Mo26) and 621 7 (2011Ga15).
670 + x		670 8	100	0+x	E_{γ} : From 2011Ga15, as this γ is not resolved from the 616 γ in 2017Mo26, but its
					presence is indicated in the fit of the spectrum. 2017Mo26 stated that the origin
					of the 670y remained vague.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

