M621, HW 8, due Tuesday Oct 18

- 1. Let $n \in \mathbb{N}$ with n > 1.
 - (a) Suppose $(a_1
 ldots a_k)$ is a k-cycle in S_n . Provide a concise, clear explanation (as if to a M521 student) why it is true that $(a_1
 ldots a_n) = (a_1 a_n)
 ldots (a_1 a_2)$. (For example, (123) = (13)(12).) With $\beta = (a_1 a_2)
 ldots (a_1 a_n)$, you should explain why $\beta(a_1) = a_2, \beta(a_2) = a_3$, and so on, and that β fixes everything in $\{1, \dots, n\} \{a_1, \dots, a_n\}$.

- (b) You just showed that every k-cycle is a product of 2-cycles. 2-cycles are often referred to as transpositions. Give a one or two sentence explanation of the following: S_n is generated by its transpositions. That is, $S_n = \langle \{(ij) : n \geq j > i \geq 1\} \rangle$.
- (c) Show that $S_n = \langle \{(12), (23), \dots, (n-1, n), (n1)\} \rangle$. Suggestions: For $j \in \{1, \dots, n\}, k \in \mathbb{N}$, you'll show that every transposition (j, j + k) is generated by the set of n transpositions given above. When k = 1, there's nothing to prove. Proceed by induction on k. As usual, "j+k" is interpreted mod n. Of course, k need not be greater than n-1. (Continue proof on other side of sheet, if necessary.)

- 2. This is a longer proof, one that you will "sketch in" below. Prove the following proposition. **Proposition.** Suppose G is a group having normal subgroups H and K satisfying the following:
 - (a) $H \cap K = \{e\}.$
 - (b) G = HK.

Then $G \cong H \times K$.

Proof. The proof is by a series of claims (whose proofs you'll supply).

Claim 1 For all $h \in H$ and all $k \in K$, hk = kh.

Proof.

Claim 2 Let h_1, h_2 be in H, and let k_1, k_2 be in K. Then $h_1k_1 = h_2k_2$ if and only if $h_1 = h_2$ and $k_1 = k_2$.

Proof.

Since G = HK, it follows from Claim 2, that each element $g \in G$ has a unique representation as a product g = hk, where $h \in H$ and $k \in K$.

Claim 3 The function $\Gamma: G \to H \times K$ given by $\Gamma(g) = (h, k)$, where g = hk is the unique representation of g by an element of H times an element of K, is a homomorphism.

Proof.

With the proof of the next claim, you've proved the proposition.

Claim 4 Γ is a bijection.

Proof.

(EC: +.5) The converse to our proposition is true. What would the converse say?