Convex Functions (II)

Lecture 4, Convex Optimization

National Taiwan University

March 18, 2020

Table of contents

- Operations that preserve convexity (§3.2)
 - Basic operations that preserve convexityPointwise maximum and supremum

 - Composition
 - Minimization

Basic operations that preserve convexity Pointwise maximum and supremum Composition Minimization

- 1 Operations that preserve convexity (§3.2)
 - Basic operations that preserve convexity
 - Pointwise maximum and supremum
 - Composition
 - Minimization

Basic Operations that Preserve Convexity

- If f is convex and $\alpha \geq 0$, then αf is also convex.
- If both f_1 and f_2 are convex, then $f_1 + f_2$ is also convex.
- More generally, if $f_1, ..., f_n$ are convex functions, then any of their "conic combinations",

$$f = w_1 f_1 + \cdots + w_n f_n,$$

is also convex (with $w_1, ..., w_n \ge 0$). This is also called the **nonnegative weighted sum**.

• Extension: if f(x, y) is convex in x for any $y \in \mathcal{A}$, and $w(y) \ge 0$ for any $y \in \mathcal{A}$, then the function

$$g(x) = \int_{A} w(y)f(x,y)dy$$

is convex in x.

Basic Operations that Preserve Convexity

• Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $b \in \mathbb{R}^n$. Define $g: \mathbb{R}^m \to \mathbb{R}$ by

$$g(x) = f(Ax + b)$$

with **dom**
$$g = \left\{ x \mid Ax + b \in \text{dom } f \right\}.$$

- If f is convex, then g is also convex.
- If f is concave, so is g.

Pointwise maximum

• If f_1 and f_2 are convex functions then their **pointwise maximum** f, defined as

$$f(x) = \max\{f_1(x), f_2(x)\},\$$

with **dom** f =**dom** $f_1 \cap$ **dom** f_2 , is also convex.

Proof:

$$f(\theta x + (1 - \theta)y) = \\ \leq \\ \leq \\ = \theta f(x) + (1 - \theta)f(y).$$

• It can be easily extended: if $f_1, ..., f_m$ are convex, then their pointwise maximum

$$f(x) = \max\{f_1(x), ..., f_m(x)\},\$$

is also convex.

Pointwise maximum – Examples

Piecewise-linear functions

A piecewise-linear function $f(x) = \max \{a_1^T x + b_1, ..., a_L^T x + b_L\}$ is convex, since the affine functions $a_i^T x + b_i$ are all convex.

Sum of r largest components

For $x \in \mathbf{R}^n$, we denote by $x_{[i]}$ the *i*th largest component of x, i.e.,

$$x_{[1]} \ge x_{[2]} \ge \cdots \ge x_{[n]}$$

are the components of x sorted in nonincreasing order $(\{x_{[1]},...,x_{[n]}\}=\{x_1,...,x_n\})$. Then the function $f(x)=\sum_{i=1}^r x_{[i]}$ is convex.

• Note that, as a generalization, the function $f(x) = \sum_{i=1}^{r} w_i x_{[i]}$ is also convex as long as $w_1 \ge w_2 \ge ... \ge w_r \ge 0$.

Pointwise supremum

• If for each $y \in A$, f(x, y) is convex in x, then the function g, defined as

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex in x. Here

$$\operatorname{dom} g = \left\{ x \mid (x, y) \in \operatorname{dom} f \ \forall y \in \mathcal{A}, \ \sup_{y \in \mathcal{A}} f(x, y) < \infty \right\}.$$

 Similarly, the pointwise infimum of a set of concave functions is a concave function.

Recall: the supremum and infimum of a set A are defined as

$$\sup A = \min \{ y \mid y \ge x, \forall x \in A \}$$
 (i.e., the minimum upper bound of A)

and

$$\inf \mathcal{A} = \max \left\{ y \mid y \leq x, \forall x \in \mathcal{A} \right\} \text{ (i.e., the maximum lower bound of } \mathcal{A} \text{)},$$
 respectively.

Pointwise supremum

• In terms of epigraphs, the pointwise supremum of functions corresponds to the intersection of epigraphs: if

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y),$$

then we have

$$\mathbf{epi}\ g = \bigcap_{y \in \mathcal{A}} \mathbf{epi}\ f(\cdot, y).$$

 Thus, the result follows from the fact that the intersection of a family of convex sets is convex.

Pointwise supremum – Examples

Support function of a set

Let $C \subseteq \mathbb{R}^n$ with $C \neq \emptyset$. The support function S_C associated with the set C, defined as

$$S_C(x) = \sup \left\{ x^T y \mid y \in C \right\},$$

with **dom** $S_C = \{x \mid \sup_{y \in C} x^T y < \infty \}$, is convex.

Distance to farthest point of a set

Let $C \subseteq \mathbb{R}^n$. The distance (in any norm) to the farthest point of C,

$$f(x) = \sup_{y \in C} ||x - y||,$$

is convex.

Pointwise supremum – Examples

Maximum eigenvalue of a symmetric matrix

The function $f(X) = \lambda_{max}(X)$, with **dom** $f = \mathbf{S}^m$, is convex.

Proof:

$$f(X) = \sup \{ y^T X y \mid ||y||_2 = 1 \}.$$

Norm of a matrix

The function $f(X) = ||X||_2$ with **dom** $f = \mathbb{R}^{p \times q}$, where $||\cdot||_2$ denotes the spectral norm or maximum singular value, is convex.

Proof:

$$f(X) = \sup \left\{ u^T X v \mid ||u||_2 = 1, ||v||_2 = 1 \right\},$$

is the pointwise supremum of a family of linear functions of X.

Convexity of composition of functions

Convexity of composition of functions

Let $h : \mathbf{R} \to \mathbf{R}$, and $g : \mathbf{R} \to \mathbf{R}$ and $f = h \circ g : \mathbf{R} \to \mathbf{R}$, f(x) = h(g(x)). Let **dom** f =**dom** g =**dom** $h = \mathbf{R}$ and f, g, h be differentiable. Then,

- f is convex if h is convex and nondecreasing, and g is convex,
- f is convex if h is convex and nonincreasing, and g is concave,
- f is concave if h is concave and nondecreasing, and g is concave,
- f is concave if h is concave and nonincreasing, and g is convex.

Proof (for the case where h and g are both twice differentiable):

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x).$$

Proof for the case where h and g are not twice differentiable

- If h and g are convex, then $g(y) \ge g(x) + g'(x)(y x)$ and $h(y) \ge h(x) + h'(x)(y x)$.
- If h is further nondecreasing, then $h'(x) \ge 0$.
- Now, we have

$$f(y) = h(g(y)) \ge h(g(x) + g'(x)(y - x))$$
 (: h is n.d. & g is convex)
 $\ge h(g(x)) + h'(g(x)) \cdot g'(x)(y - x)$
 $= f(x) + f'(x)(y - x)$.

Examples – Convexity of composition of functions

- If g is convex then $\exp g(x)$ is convex.
- If g is concave and positive, then $\log g(x)$ is concave.
- If g is concave and positive, then 1/g(x) is convex.
- If g is convex and nonnegative and $p \ge 1$, then $g(x)^p$ is convex.
- If g is convex then $-\log(-g(x))$ is convex on $\{x \mid g(x) < 0\}$.

A generalization

Convexity of composition of functions

Let $h: \mathbf{R} \to \mathbf{R}$, and $g: \mathbf{R}^n \to \mathbf{R}$ and $f = h \circ g: \mathbf{R}^n \to \mathbf{R}$, f(x) = h(g(x)). Let **dom** f =**dom** $g = \mathbf{R}^n$, **dom** $h = \mathbf{R}$, and f, g, h be differentiable. Then,

- f is convex if h is convex and nondecreasing, and g is convex,
- f is convex if h is convex and nonincreasing, and g is concave,
- f is concave if h is concave and nondecreasing, and g is concave,
- f is concave if h is concave and nonincreasing, and g is convex.

Proof idea: convexity is determined by the behavior of a function on arbitrary lines that intersect its domain.

Vector composition – A further generalization

Vector Composition

Suppose $f(x) = h(g(x)) = h(g_1(x), ..., g_k(x))$, with $h : \mathbb{R}^k \to \mathbb{R}$, $g_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., k. Then,

- f is convex if h is convex, h is n.d. in each argument, and g_i are convex,
- f is convex if h is convex, h is n.i. in each argument, and g_i are concave,
- f is concave if h is concave, h is n.d. in each argument, and g_i are concave.
- f is concave if h is concave, h is n.i. in each argument, and g_i are convex.

Proof: W.I.o.g., we can assume n = 1.

$$f''(x) = g'(x)^T \nabla^2 h(g(x))g'(x) + \nabla h(g(x))^T g''(x),$$

Vector composition examples

- Let $h(z) = z_{[1]} + ... + z_{[r]}$, the sum of the r largest components of $z \in \mathbf{R}^k$. Then h is convex and nondecreasing in each argument.
- Suppose $g_1, ..., g_k$ are convex functions on \mathbb{R}^n . Then the composition function $f = h \circ g$, i.e., the pointwise sum of the r largest g_i 's, is convex.
- The function $h(z) = \log(\sum_{i=1}^k e^{z_i})$ is convex and nondecreasing in each argument, so $\log(\sum_{i=1}^k e^{g_i})$ is convex whenever g_i are.
- For $0 , the function <math>h(z) = (\sum_{i=1}^k z_i^p)^{1/p}$ on \mathbf{R}_+^k is concave, and its extension (which has the value $-\infty$ for $z \not\succeq 0$) is nondecreasing in each component. So if g_i are concave and nonnegative, we conclude that $f(x) = (\sum_{i=1}^k g_i(x)^p)^{1/p}$ is concave.

Vector composition examples

- Suppose $p \ge 1$, and $g_1, ..., g_k$ are convex and nonnegative. Then the function $(\sum_{i=1}^k g_i(x)^p)^{1/p}$ is convex.
 - Proof idea: The ℓ_p -norm is convex, and is nondecreasing in each argument if the considered domain is $\operatorname{dom} ||\cdot||_p = \mathbf{R}^k_+$.
- The geometric mean $h(z) = (\prod_{i=1}^k z_i)^{1/k}$ on \mathbb{R}_+^k is concave and its extension is nondecreasing in each argument. It follows that if $g_1, ..., g_k$ are nonnegative concave functions, then so is their geometric mean,

$$\left(\prod_{i=1}^k g_i\right)^{1/k}.$$

Minimization

Minimization and convexity

If f is convex in (x, y), and C is a convex nonempty set, then $\forall q$, f(x) is convex

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex in x, provided $g(x)>-\infty$ for some x (which implies $g(x)>-\infty$ for all x), with

$$\mathbf{dom}\ g = \{x \mid (x,y) \in \mathbf{dom}\ f,\ \exists y \in C\}.$$

• Proof: For $x_1, x_2 \in \text{dom } g$. Let $\epsilon > 0$. Then $\exists y_1, y_2 \in C$ such that $f(x_i, y_i) \leq g(x_i) + \epsilon$ for i = 1, 2. For any $\theta, 0 \leq \theta \leq 1$, we have

Minimization

Minimization and convexity

If f is convex in (x, y), and C is a convex nonempty set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex in x, provided $g(x) > -\infty$ for some x (which implies $g(x) > -\infty$ for all x), with

$$\operatorname{dom} g = \{x \mid (x, y) \in \operatorname{dom} f, \exists y \in C\}.$$

Alternative proof (based on epigraph): Since

$$g(x) = \inf_{y \in C} f(x, y),$$

we have

$$\mathbf{epi}\ g = \{(x,t) \mid (x,y,t) \in \mathbf{epi}\ f, \ \exists y \in C\}.$$

A challenge of the previous proof and a potential correction of the proof

• I received from a student that if we define $f: \mathbb{R}^2 \to \mathbb{R}$, dom $f = \mathbb{R} \times \mathbb{R}_{++}$, with

$$f(x,y)=x+\frac{1}{y},$$

and letting $C = \mathbf{R}_{++}$, then we have

$$g(x) = \inf_{y \in C} f(x, y) = x.$$

So, it is obvious that $(0,0) \in \mathbf{epi} \ g$.

- However, $(0,0) \notin \{(x,t) \mid (x,y,t) \in \mathbf{epi}\ f, \ \exists y \in C\}$, since $\forall y \in C$, f(x,y) > x. This example has essentially invalidate the proof in the previous page.
- A possible correction of this proof is to instead argue that

epi
$$g = \operatorname{cl} \{(x, t) \mid (x, y, t) \in \operatorname{epi} f, \exists y \in C\},$$

noting that the epigraph of any function is a closed set, and that the closure operation preserves convexity of a set.

Example - Distance to a set

convex set

• The distance of a point x to a set $S \subseteq \mathbb{R}^n$, in the norm $||\cdot||$, is defined as

$$\operatorname{dist}(x,S) = \inf_{y \in S} ||x - y||.$$

• The function ||x - y|| is convex in (x, y), so if the set S is convex, the distance function **dist** (x, S) is a convex function of x.

21/21

Example

• Suppose h is convex. Then the function g defined as

$$g(x) = \inf \{h(y) \mid Ay = x\}^{-1}$$

is convex.

• Proof: We define f by ²

$$f(x,y) = \begin{cases} h(y) & \text{if } Ay = x \\ \infty & \text{otherwise} \end{cases}$$

which is convex in (x, y). Then g is the minimum of f over y, and hence is convex. (It is not hard to show directly that g is convex.)

¹In fact, it can be shown that $g(x) = \min \{h(y) \mid Ay = x\}$.

²Note that **dom** $f = \{(x, y) \mid Ay = x\}$ is convex.