## Aproximación numérica de las soluciones

Coordinación de Ecuaciones Diferenciales y Métodos Numéricos, DMCC

- Errores.
- Aproximación numérica de las soluciones.

DMCC, Facultad de Ciencia, USACH

## Solución Numérica de un P.V.I.

Los métodos numéricos son útiles para resolver problemas diferenciales, para los cuales no existe un método para obtener la solución análitica ( solución en términos de funciones elementales). Estos métodos proporcionan una sucesión de aproximaciones a la solución exacta en un conjunto finito de puntos.

Por ejemplo, si queremos resolver la ecuación

$$y'(x) = e^{-x^2}.$$

Una solución sería

$$y(x) = \int e^{-x^2} dx + C,$$

pero sabemos que no existe una solución en términos de funciones comunes de cálculo elemental

## Solución Numérica de un P.V.I.

Los métodos numéricos para resolver el P.V.I.

$$\begin{cases} y'(x) = f(x, y(x)), & x \in [a, b], \\ y(a) = y_0 \text{ dado,} \end{cases}$$
 (1)

se basan en tomar una partición en N subintervalos del intervalo [a, b],

$$a = x_0 < x_1 < \cdots < x_N = b,$$

y obtener sucesivamente N números  $y_1, y_2, \ldots, y_N$  que aproximan a los valores  $y(x_1), \ldots, y(x_N)$ de la solución exacta en los nodos  $x_1, \ldots, x_N$ .

Típicamente los nodos se escogen equiespaciados; es decir, están definidos por

$$x_i = a + ih$$
,  $i = 0, \dots, N$ , con  $h = \frac{b-a}{N}$ .

## Método de Euler (o de la Tangente)

Considere el P.V.I.

$$\begin{cases} y'(x) = f(x, y(x)), & x \in [a, b], \\ y(a) = y_0. \end{cases}$$

Una manera geométrica de aproximar la solución de este problema consiste en reemplazar la derivada  $y^\prime$  por la aproximación

$$y'(x) \approx \frac{y(x+h) - y(x)}{h}$$

válida para h pequeño.



Haciendo este reemplazo en la ecuación se encuentra

$$\frac{y(x+h)-y(x)}{h}\approx f(x,y(x))$$

de donde,

$$y(x + h) \approx y(x) + hf(x, y(x)).$$

Partiendo de la condición inicial  $y(a) = y_0$  y considerando h pequeño, el valor

$$y_1 := y(a) + hf(a, y(a))$$

define una aproximación para y(a + h).

Una vez calculada esta aproximación, se puede utilizar para obtener la aproximación  $y_2$  de y(a+2h), a saber,

$$y_2 := y_1 + hf(a + h, y_1).$$

Repitiendo este proceso se pueden obtener aproximaciones para y(a+3h), y(a+4h), ..., y(a+Nh).

Usando nodos  $x_i$  equiespaciados obtenemos el siguiente algoritmo:

Algoritmo de Euler
Para 
$$i = 0, ..., N-1$$

$$x_i = a + ih$$

$$y_{i+1} = y_i + hf(x_i, y_i)$$
fin  $i$ .

**Definición:** El error global de discretización, E(h), se define por:

$$E(h) = \max_{1 \leq i \leq N} |y_i - y(x_i)|.$$

En general, los errores son de orden p si existe una constante C tal que

$$E(h) \leq Ch^p$$
.

El orden de un método coincide con el entero p. El método de Euler es de orden 1, ya que el crecimiento del error es lineal con respecto a h

$$E(h) \leq Ch$$
.

#### Ejemplo.

$$\begin{cases} y' = y, \\ y(0) = 1. \end{cases}$$
 (2)

#### Solución:

$$y(x) = e^x$$
.

#### Método de Euler.

$$[a, b] = [0, 1], \quad N = 5,$$
  
 $h = \frac{b-a}{N} = 0.2, \quad f(x, y) = y.$ 



#### Iteraciones:

- $v(0) = v_0 = 1$
- $v(0.2) \approx v_1 = v_0 + hf(x_0, y_0) = 1 + 0.2 f(0, 1) = 1 + 0.2 \cdot 1 = 1.2$
- $v(0.4) \approx v_2 = v_1 + hf(x_1, v_1) = 1.2 + 0.2 f(0.2, 1.2) = 1.2 + 0.2 \cdot 1.2 = 1.44$
- $(0.6) \approx y_3 = y_2 + hf(x_2, y_2) = 1.44 + 0.2 f(0.4, 1.44) = 1.44 + 0.2 \cdot 1.44 = 1.728$
- $v(1) \approx v_5 = v_4 + hf(x_4, y_4) = 2.0736 + 0.2 f(0.8, 2.0736) = 2.0736 + 0.2 \cdot 2.0736 = 2.48832$

Si gueremos aproximar el valor de e, usando la solución aproximada de la ecuación diferencial (2) cometemos un error del 22%. En efecto, el error absoluto, sabiendo que y(1) = e, se obtiene

$$E = |y(1) - y_5| = |2.71828 - 2.48832| = 0.22.$$

7/12

# Método de Heun o Euler Mejorado

Una modificación del método de Euler se consigue integrando la ecuación diferencial (1) entre  $x_i$  y  $x_{i+1}$ 

$$\int_{x_i}^{x_{i+1}} y'(x) dx = \int_{x_i}^{x_{i+1}} f(x, y(x)) dx.$$
 (3)

La primera integral, puede calcularse directamente, mientras que la otra, puede calcularse mediante la regla del trapecio<sup>1</sup>, así:

$$y(x_{i+1}) - y(x_i) = \frac{h}{2} [f(x_i, y(x_i)) + f(x_{i+1}, y(x_{i+1}))],$$

osea,

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})],$$

$$\implies y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$$

donde  $y_i$  es la aproximación de y(x) en el punto  $x_i$ .



<sup>&</sup>lt;sup>1</sup>Regla del trapecio:  $\int_a^b f(x) dx = \frac{(b-a)}{2} (f(a) + f(b))$ 

## Método de Heun o de Euler Mejorado

También se conoce como un método de Runge Kutta de orden 2, RK2, donde el crecimiento del error es cuadrático con respecto a h, es decir,  $E(h) \leq Ch^2$ .

# Algoritmo de Euler Mejorado, RK2 Para $i = 0, \dots, N-1$ $x_i = a + ih$ $x_{i1} = x_i + h$ $y_{i1} = y_i + hf(x_i, y_i)$ $y_{i+1} = y_i + \frac{h}{2}[f(x_i, y_i) + f(x_{i1}, y_{i1})]$ fin i.



# Método de Runge Kutta de orden 4

Este método se obtiene aplicando la regla de integración de Simpson<sup>2</sup> en (3). Para determinar cada  $y_{i+1}$  se realizan cuatro estimaciones previas:

Algoritmo (RK4)

Para 
$$i = 0, ..., N - 1$$
 $x_i = a + ih$ 
 $K_1 = h f(x_i, y_i)$ 
 $K_2 = h f(x_i + \frac{h}{2}, y_i + \frac{1}{2}K_1)$ 
 $K_3 = h f(x_i + \frac{h}{2}, y_i + \frac{1}{2}K_2)$ 
 $K_4 = h f(x_i + h, y_i + K_3)$ 
 $y_{i+1} = y_i + \frac{1}{6}[K_1 + 2K_2 + 2K_3 + K_4]$ 

fin  $i$ .

Este método es de orden 4, es decir  $E(h) \le Ch^4$ , por lo que es uno de los métodos más usados.

<sup>&</sup>lt;sup>2</sup>Regla de Simpson:  $\int_{a}^{b} f(x) dx = \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$ 



**Ejemplo.** 
$$\begin{cases} y' = y, \\ y(0) = 1. \end{cases}$$
 Solución exacta:  $y(x) = e^x$ .

|     |          | Euler: $h = 0.1$ |                      | Euler: $h = 0.025$ |                      | $RK4: h = 0.1$ |                      |
|-----|----------|------------------|----------------------|--------------------|----------------------|----------------|----------------------|
| X   | Sol. Ex. | Sol. Cal.        | Error                | Sol. Cal.          | Error                | Sol. Cal.      | Error                |
| 0.0 | 1.000000 | 1.000000         | 0.0                  | 1.000000           | 0.0                  | 1.000000       | 0.0                  |
| 0.1 | 1.105170 | 1.100000         | $5.1 \times 10^{-3}$ | 1.103812           | $1.3 \times 10^{-3}$ | 1.105170       | $8.4 \times 10^{-8}$ |
| 0.2 | 1.221402 | 1.210000         | $1.1 \times 10^{-2}$ | 1.218402           | $2.9 \times 10^{-3}$ | 1.221402       | $1.8 \times 10^{-7}$ |
| 0.3 | 1.349858 | 1.331000         | $1.8 \times 10^{-2}$ | 1.344888           | $4.9 \times 10^{-3}$ | 1.349858       | $3.1 \times 10^{-7}$ |
| 0.4 | 1.491824 | 1.464100         | $2.7 \times 10^{-2}$ | 1.484505           | $7.3 \times 10^{-3}$ | 1.491824       | $4.5 \times 10^{-7}$ |
| 0.5 | 1.648721 | 1.610510         | $3.8 \times 10^{-2}$ | 1.638616           | $1.0 \times 10^{-2}$ | 1.648720       | $6.3 \times 10^{-7}$ |
| 0.6 | 1.822118 | 1.771561         | $5.0 \times 10^{-2}$ | 1.808725           | $1.3 \times 10^{-2}$ | 1.822117       | $8.3 \times 10^{-7}$ |
| 0.7 | 2.013752 | 1.948717         | $6.5 \times 10^{-2}$ | 1.996495           | $1.7 \times 10^{-2}$ | 2.013751       | $1.0 \times 10^{-6}$ |
| 0.8 | 2.225540 | 2.143588         | $8.1 \times 10^{-2}$ | 2.203756           | $2.1 \times 10^{-2}$ | 2.225539       | $1.3 \times 10^{-6}$ |
| 0.9 | 2.459603 | 2.357947         | 0.1                  | 2.432535           | $2.7 \times 10^{-2}$ | 2.459601       | $1.6 \times 10^{-6}$ |
| 1.0 | 2.718281 | 2.593742         | 0.12                 | 2.685063           | $3.3 \times 10^{-2}$ | 2.718279       | $2.0 \times 10^{-6}$ |

