## **Séries**

## por Abílio Lemos

Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147 - 2019

26 e 29 de Agosto de 2019

A soma dos termos de uma **sequência**  $\{a_n\}$  é denominado **série** e é denotado por  $\sum_{n=1}^{\infty} a_n$  ou  $\sum a_n$ .

Podemos nos equivocar ao tentar calcular a soma de forma usual. Veja o exemplo abaixo.

$$\sum_{n=1}^{\infty} (-1)^n = \begin{cases} -1 + (1-1) + (1-1) + \cdots & = -1 \\ (-1+1) + (-1+1) + \cdots & = 0 \end{cases}$$

## Somas Parciais:

$$s_1 = a_1, s_2 = a_1 + a_2, s_3 = a_1 + a_2 + a_3, \dots, s_n = \sum_{i=1}^n a_i, \dots$$

Essas somas formam um sequência  $(s_n)$  que pode ou não possuir um limite. Cada  $s_n$  é chamado **soma parcial de ordem** n e os termos  $a_n$  são chamados os **termos da série**.



## Definição 1

A **série**  $\sum a_n$  é dita **convergente** se a sequência  $(s_n)$  for convergente. Caso contrário a série é dita divergente.

Se a sequência  $(s_n) \to L$  dizemos que a série  $\sum a_n$  converge e sua soma é L.

Notação: 
$$\sum a_n = L$$
.

Notação: 
$$\sum_{n=1}^{\infty} a_n = L$$
.  
Note que  $\sum_{n=1}^{\infty} a_n = L = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left( \sum_{j=1}^n a_j \right)$ .

Exemplos:1) Faça um estudo sobre a convergência das séries abaixo. Para as convergentes determine sua soma.

- (a) **Série Geométrica**:  $\sum_{n=1}^{\infty} ar^{n-1}$ ,  $a \neq 0$ , r é chamado **razão** da série;
- (b)  $\sum_{n=1}^{\infty} 5(-2/3)^{n-1}$ ;
- (c)  $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ ;
- (d)  $\sum_{n=1}^{\infty} 3^{-n} 8^{n+1}$ ;

(e) 
$$\sum_{n=0}^{\infty} x^n;$$

- (f) Série Telescópica:  $\sum_{n=1}^{\infty} \frac{1}{n(n+1)};$
- (g) Série Harmônica:  $\sum_{n=1}^{\infty} \frac{1}{n}$ .
- 2) Escreva o número  $2,3\overline{17}=2,3171717\ldots$  como uma razão de números inteiros.

**Teorema**: Se a série  $\sum_{n=1}^{\infty} a_n$  é convergente, então  $\lim_{n\to\infty} a_n = 0$ .

**Teste da Divergência**: Se  $\lim_{n\to\infty} a_n \neq 0$  ou  $\lim_{n\to\infty} a_n$  não existe, então a série  $\sum_{n=1}^{\infty} a_n$  é divergente. *Exemplo*: Mostre que as séries abaixo divergem.

(a) 
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$$
;

(b) 
$$\sum_{n=1}^{\infty} n^{1/n}$$
;

(c) 
$$\sum_{n=1}^{\infty} (n!)^{1/n}$$
.

**Teorema 1**: Sejam  $\sum a_n$  e  $\sum b_n$  séries convergentes, ou seja,  $\sum a_n = L$  e  $\sum b_n = R$  e  $c \in \mathbb{R}$ . Então:

(a) 
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n = cL;$$

(b) 
$$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n = L \pm R.$$

Exemplo: Calcule a soma da série  $\sum_{n=1}^{\infty} \left( \frac{4}{n(n+1)} + \frac{1}{2^n} \right)$ .

**Teorema 2**: Sejam  $\sum a_n$  e  $\sum b_n$  duas séries que diferem apenas pelo seus m primeiros termos (isto é,  $a_k = b_k$  se k > m), então ambas convergem ou ambas divergem.

Exemplo: A série 
$$\sum_{n=1}^{\infty} \frac{1}{n+4}$$
 diverge ou converge?

**Teorema 3**: Se  $\sum a_n$  diverge e  $\sum b_n$  converge, então  $\sum ca_n, c \in \mathbb{R}^*$  e  $\sum (a_n + b_n)$  divergem.

Exemplo: A série 
$$\sum \left(\frac{1}{10n} + \frac{2}{3^n}\right)$$
 diverge ou converge?

*OBS*: Se ambas  $\sum a_n$  e  $\sum b_n$  divergem, então não se pode afirmar nada sobre  $\sum (a_n + b_n)$ . Por exemplo tome  $a_n = -b_n$  fazendo  $b_n = n$ .



**Teste da Integral**: Dada a série  $\sum_{n=1}^{\infty} a_n$ ,  $a_n > 0$ , suponhamos que exista uma função f(x) > 0, contínua e decrescente em  $[1, \infty)$  tal que  $f(n) = a_n$ . Então

 $\sum_{n=1}^{\infty} a_n$  é convergente se, e só se,  $\int_{1}^{\infty} f(x) dx$  é convergente.

Exemplos: 1) Verifique se as séries abaixo são convergentes:

- (a)  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ ;
- (b)  $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}};$
- (c)  $\sum_{n=4}^{\infty} \frac{1}{(n-3)^2}$ ;

(d) 
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
;

(e) 
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
.

2) Série Hiper-Harmônica: Estude a convergência da série

$$\sum_{p=1}^{\infty} \frac{1}{n^p}, p \in \mathbb{R}.$$

**Teste da Comparação**: Considere as séries  $\sum a_n$  e  $\sum b_n$ , tais que  $a_n > 0$  e  $b_n > 0$ . Então

- (i) se  $\sum_{n=1}^{\infty} b_n$  é convergente e  $a_n \leq b_n$ ,  $\forall n$ , então  $\sum_{n=1}^{\infty} a_n$  é convergente;
- (ii) se  $\sum_{n=1}^{\infty} b_n$  é divergente e  $b_n \leq a_n, \forall n$ , então  $\sum_{n=1}^{\infty} a_n$  é divergente.

Exemplos: Verifique se as séries abaixo são convergentes:

(a) 
$$\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$$
;

(b) 
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$
;

(c) 
$$\sum_{n=1}^{\infty} \frac{6}{5^n + 2}$$
;

(d) 
$$\sum_{n=1}^{\infty} \frac{7n}{3n^3 + 5n + 3}$$
;

(e) 
$$\sum_{n=1}^{\infty} \frac{1}{n!};$$

(f) 
$$\sum_{1}^{\infty} \frac{\ln n}{n}$$

**Teste da Comparação por Limite**: Considere as séries  $\sum a_n$  e  $\sum b_n$ , tais que  $a_n > 0$  e  $b_n > 0$ . Então

- (i) se  $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$ , então ambas convergem ou ambas divergem;
- (ii) se  $\lim_{n\to\infty}\frac{a_n}{b_n}=0$  e se  $\sum b_n$  converge, então  $\sum a_n$  converge;
- (iii) se  $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$  e se  $\sum b_n$  diverge, então  $\sum a_n$  diverge.

Exemplos: Verifique se as séries abaixo são convergentes:

(a) 
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{n^5 + 5}}$$
;

(b) 
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
;  
(c)  $\sum_{n=1}^{\infty} \frac{n^3}{n!}$ .

(c) 
$$\sum_{n=1}^{\infty} \frac{n^3}{n!}$$