Indefinite Integration & Area Under Curves

Indefinite Integration

1. Integrate the following

(a)
$$\int \left(\frac{3}{x^4} + 2 - \frac{3}{x^2}\right) dx$$

(b)
$$\int \frac{12t^8 - t}{t^3} dt$$

(c)
$$\int 5m(12m^3 - 10m) dm$$

Evaluating Riemann Sums

2. Speedometer readings for a motorcycle over a 4 second time period are given in the table below

t(s)	1	1.5	2	2.5	3	3.5	4	4.5	5
v (m/s)	50	50	60	60	55	65	50	60	70

Find the indicated Riemann sum approximations to the displacement on [1,5] with n=4 subintervals.

- (a) left Riemann sum.
- (b) right Riemann sum.
- (c) midpoint Riemann sum.

3. using a Riemann sum with n=4 approximate the area of the region bounded by the graph of $f(x)=2-2\sin(x)$ and the x-axis on the interval $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ with

- (a) left endpoints.
- (b) right endpoints.
- (c) midpoints.

Initial Value Problems

4. Given the acceleration function of an object moving along a line, find the position function with the given initial velocity and initial position.

$$a(t) = 2t + 1$$
, $v(0) = -2$, $s(0) = 3$

5. Solve the initial value problem

$$g'(x) = \frac{x^4 - 1}{x^3}, \quad g(1) = 6$$