CLAIMS

What is claimed is:

1	1.	A flexible sheet, comprising:	
2		a polyimide base layer; and	
3		a metallic layer formed in a grid pattern upon said base layer.	
1	2.	The flexible sheet of claim 1, further comprising:	
2		a plurality of metallic layers, formed upon said base layer, at least one of	
3	said plurality	y of metallic layers formed in said grid pattern.	
1	3.	The flexible sheet of claim 2, wherein said plurality of metallic layers	
2	further comprise:		
3		an adhesion layer, said adhesion layer further comprising:	
4		a chromium layer, applied upon said polyimide base layer; and	
5		a copper layer, formed upon said chromium layer;	
6		a nickel layer, formed upon said adhesion layer; and	
7		a gold layer, formed upon said nickel layer.	
1	4.	The flexible sheet of claim 1, wherein said polyimide base layer is about 8	
2	to about 25	angstroms (Å) in thickness.	
1	5.	The flexible sheet of claim 4, wherein said polyimide base layer is about 18	
2	angstroms i	n thickness.	
1	6.	The flexible sheet of claim 3, wherein said chromium layer is about 250	
2	angstroms i	n thickness.	

14

1	7.	The flexible sheet of claim 3, wherein said copper layer is about 1,500 to
2	about 2,500 ar	ngstroms in thickness.
1	8.	The flexible sheet of claim 3, wherein said nickel layer is about 20,000
2	angstroms in t	
1	9.	The flexible sheet of claim 3, wherein said gold layer is about 350 to about
2	15,000 angstr	oms in thickness.
1	10.	The flexible sheet of claim 3, wherein said nickel layer is formed upon
2	said adhesion	layer by plating in accordance with said grid pattern.
1	11.	The flexible sheet of claim 10, wherein said gold layer is formed upon said
2	nickel layer b	y plating in accordance with said grid pattern.
1	12.	The flexible sheet of claim 11, wherein portions of said adhesion layer are
2	removed such	that remaining portions of said adhesion layer conform to said grid pattern.
1	13.	The flexible sheet of claim 12, wherein said removed portions of said
2	adhesion laye	r are removed by etching.
1	14.	The flexible sheet of claim 10, wherein said gold layer is formed upon said

nickel layer by evaporation thereon.

2

1	15.	The flexible sheet of claim to, wherein.
2		portions of said adhesion layer are removed such that remaining portions
3	of said adhes	ion layer conform to said grid pattern; and
4		said gold layer is formed upon said nickel layer by evaporation thereon.
1	16.	The flexible sheet of claim 15, wherein said removed portions of said
2	adhesion laye	er are removed by etching.
1	17.	The flexible sheet of claim 3, wherein said nickel layer provides a
2	diffusion bar	rier between said adhesion layer and said gold layer.
1	18.	The flexible sheet of claim 17, wherein said gold layer has low contact
2	resistance.	
1	19.	The flexible sheet of claim 18, wherein said gold layer protects underlying
2	layers from o	oxidation.
1	20.	The flexible sheet of claim 1, wherein said grid pattern further comprises:
2		a plurality of horizontally oriented strips; and
3		a plurality of vertically oriented strips.
1	21.	The flexible sheet of claim 20, wherein:
2		said plurality of horizontally and vertically oriented strips have a width of
3	about 25 μm	to about 50 μm.

1	22.	The flexible sheet of claim 21, wherein:
2		said plurality of horizontally oriented strips are separated from one another
3	by about 15 µ	ım to about 25 μm.
1	23.	The flexible sheet of claim 22, wherein:
1	23.	said plurality of vertically oriented strips are separated from one another
2	114 05 .	
3	by about 25 p	um to about 1 mm.
1	24.	A method of forming a flexible sheet, comprising:
2		forming a polyimide base layer; and
3		depositing a metallic layer in a grid pattern upon said base layer.
1	25.	The method of claim 24, further comprising:
2		depositing a plurality of metallic layers upon said base layer, at least one
3	of said plura	lity of metallic layers formed in said grid pattern.
1	26.	The method of claim 25, wherein said depositing a plurality of metallic
2	layers further comprises:	
3		forming an adhesion layer, said adhesion layer further comprising:
4		a chromium layer, applied upon said polyimide base layer; and
5		a copper layer, formed upon said chromium layer;
6		forming a nickel layer upon said adhesion layer; and
7		forming a gold layer upon said nickel layer.
1	27.	The method of claim 24, wherein said polyimide base layer is about 8 to
2		gstroms (Å) in thickness.

FIS920010048US1 17

1	28.	The method of claim 27, wherein said polyimide base layer is about 18
2	angstroms in	thickness.
1	29.	The method of claim 26, wherein said chromium layer is about 250
2	angstroms in	thickness.
1	30.	The method of claim 26, wherein said copper layer is about 1,500 to about
2	2,500 angstro	oms in thickness.
1	31.	The method of claim 26, wherein said nickel layer is about 20,000
2	angstroms in	thickness.
1	32.	The method of claim 26, wherein said gold layer is about 350 to about
2	15,000 angst	roms in thickness.
1	33.	The method of claim 26, wherein said nickel layer is formed upon said
2	adhesion lay	er by plating in accordance with said grid pattern.
1	34.	The method of claim 33, wherein said gold layer is formed upon said
2	nickel layer	by plating in accordance with said grid pattern.
1	35.	The method of claim 34, wherein portions of said adhesion layer are
2	removed suc	th that remaining portions of said adhesion layer conform to said grid pattern.
1	36.	The method of claim 35, wherein said removed portions of said adhesion
2	layer are ren	noved by etching.

1	37.	The method of claim 33, wherein said gold layer is formed upon said
2	nickel layer b	by evaporation thereon.
1	38.	The method of claim 33, wherein:
2		portions of said adhesion layer are removed such that remaining portions
3	of said adhes	sion layer conform to said grid pattern; and
4		said gold layer is formed upon said nickel layer by evaporation thereon.
1	39.	The method of claim 38, wherein said removed portions of said adhesion
2	layer are rem	noved by etching.
1	40.	The method of claim 26, wherein said nickel layer provides a diffusion
2	barrier between	een said adhesion layer and said gold layer.
1	41.	The method of claim 40, wherein said gold layer has low contact
2	resistance.	
1	42.	The method of claim 41, wherein said gold layer protects underlying layers
2	from oxidat	ion.
1	43.	The method of claim 24, wherein said grid pattern further comprises:
2		a plurality of horizontally oriented strips; and
3		a plurality of vertically oriented strips.

1	44.	The method of claim 43, wherein:
2		said plurality of horizontally and vertically oriented strips have a width of
3	about 25 μm to about 50 μm .	
1	45.	The method of claim 44, wherein:
2		said plurality of horizontally oriented strips are separated from one another
3	by about 15 p	um to about 25 μm.
1	46.	The method of claim 44, wherein:
2		said plurality of vertically oriented strips are separated from one another
2		Said pluranty of vertically offenced strips are separated and and and
3	by about 25	μm to about 1 mm.