Métodos Numéricos Aritmética de Ponto Flutuante

Aritmética de Ponto Flutuante

Introdução

- Representação pode variar ("flutuar") a posição da vírgula, ajustando potência da base.
 - $-54,32 = 54,32 \times 10^0 = 5,432 \times 10^1 = 0,5432 \times 10^2 = 5432,0 \times 10^{-2}$
 - Forma normalizada usa um único dígito antes da vírgula, diferente de zero
 - Exemplo: 5,432 x 10¹

Aritmética de Ponto Flutuante

Introdução

- No sistema binário:
 - $-110101 = 110,101x2^3 = 1,10101x2^5 = 0,0110101x2^7$
 - No caso dos números serem armazenados em um computador, os expoentes serão também gravados na base dois
 - $110,101 \times (10)^{11} = 1,10101 \times (10)^{101} = 0,0110101 \times (10)^{111}$
 - Na representação normalizada, há apenas um "1" antes da vírgula
 - Exemplo: 1,10101x(10)¹⁰¹

Aritmética de Ponto Flutuante

Introdução

Algumas definições

- No número $1,10101x(10)^{101}$, tomado como referência:
 - **1,10101** = **significando** (ou "mantissa")
 - 101 = expoente

OBS:

- a base binária não precisa ser explicitada (o computador usa sempre esta)
- O "1" antes da vírgula, na representação normalizada se esta for adotada, também pode ficar implícito, economizando um bit ("bit escondido").

Aritmética de Ponto Flutuante

Introdução

Representação genérica

```
- \qquad \pm d_0, d_1 d_2 \dots d_t x(b)^{exp} ,
```

- t é o número de dígitos da mantissa
- $d_1d_2...d_t$ = mantissa, com $0 \le d_i \le (b-1)$
- exp = expoente (inteiro com sinal)

OBS:

a base não precisa ser explicitada

Aritmética de Ponto Flutuante

- Na organização/arquitetura do computador, definir:
 - Número de bits da mantissa (precisão, p)
 - Número de bits do expoente
 - Um bit de sinal ("0" para + e "1" para -) para o número (geralmente o primeiro, da esquerda)

Aritmética de Ponto Flutuante

Armazenamento de floats

Ilustração

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sinal	Expoente (+/-)			Significando			

- Sinal do número: 0 = + e 1 = -
- Expoentes: 8 combinações possíveis
 - 000 e 111 especiais (ver adiante)
 - 011 (3₁₀) = expoente zero
 - 001 e 010 = expoente -2 e -1 (abaixo de zero)
 - 100, 101 e 110 = expoentes 1, 2 e 3 (acima zero)

Aritmética de Ponto Flutuante

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Sinal	Exp	Expoente (+/-)			Significando			

```
0 = +

1 = -

- 000 (especial)

001 (2<sup>-2</sup>)

1,0000

1,0001

....

100 (2<sup>-1</sup>)

100 (2<sup>-1</sup>)

1,1111

101 (2<sup>-2</sup>)

1 = bit escondido

111 (especial)
```

Aritmética de Ponto Flutuante

- Ainda os expoentes na ilustração...
 - Maior número positivo é (lembre do bit escondido)
 - 0 110 1111 = $+ 2^3 \times 1,1111 = 2^3 \times (2-2^{-4}) = 1111,1 = 15,5$ decimal
 - Menor número positivo é (lembre do bit escondido)
 - $0.0010000 = +2^{-2} \times 1,0000 = 2^{-2} \times 2^{0} = 0,01$ ou 0,25 decimal

Aritmética de Ponto Flutuante

- Combinações especiais dos expoentes na ilustração...
 - 000 representação NÃO normalizada
 - Significando passa a ser 0,___ ...
 - Expoente (000) = -2
 - Menor número positivo passa a ser
 - $0\ 000\ 0001 = 2^{-2} \times 0,0001 = 2^{-2} \times 2^{-4} = 2^{-6} = 0,015625$

Métodos Numéricos <u>Aritmética de Ponto Flutuante</u>

- Ainda as combinações especiais...
 - Normalização não permite representar zero!
 - 000 representação NÃO normalizada
 - 00000000 = + 0 decimal
 - 10000000 = 0 decimal
 - São iguais em comparações

Métodos Numéricos Aritmética de Ponto Flutuante

- Ainda as combinações especiais...
 - 111 representações de infinito
 - 01110000 = + infinito
 - 11110000 = infinito
 - 11111000 = indeterminação
 - Outras combinações 11111___ = Not A Number (NANs)

Métodos Numéricos <u>Aritmética de Ponto Flutuante</u>

Armazenamento de floats

• Exemplo: Armazenar 2,75

- Resposta: 01000110

Métodos Numéricos <u>Aritmética de Ponto Flutuante</u>

Padrão IEEE para floats

O padrão IEEE 754 para ponto (vírgula) flutuante é a representação mais comum para números reais em computadores de hoje, incluindo PC's compatíveis com Intel, Macintosh, e a maioria das plataformas Unix/Linux.

Métodos Numéricos Aritmética de Ponto Flutuante

Padrão IEEE para floats

- O padrão (ou norma) IEEE 754 define dois formatos básicos para os números em ponto flutuante:
 - o formato ou precisão simples, com 32 bits; e,
 - o duplo com 64 bits.

Aritmética de Ponto Flutuante

Padrão IEEE para floats

	Sinal	Expoente(+/-)	Significando
Simples (32bits)	1 [bit31]	8 [bits30-23]	23 [bits22-00]
Dupla (64 bits)	1 [bit63]	11 [bits62-52]	52 [bits51-00]

- Sinal: 0 = + e 1 = -
- Combinações Sinal + Expoente + Significando

Métodos Numéricos Aritmética de Ponto Flutuante

IEEE 754 com precisão simples

- Expoentes na precisão simples c/256 combinações
 - **-** 1111 1111
 - sinal=1 e significando = 0...0 : -infinito
 - sinal=0 e significando = 0...0 : +infinito
 - sinal=1 e significando =10...0: indeterminado
 - c/outras combinações: NAN

Aritmética de Ponto Flutuante

IEEE 754 com precisão simples

- Expoentes na precisão simples c/256 combinações
 - 0111 1111 (127₁₀) = expoente zero (*bias* = polarização)
 - -00000001 = menor expoente = -126 (abaixo de um)
 - 1111 1110 = maior expoente = +127 (acima de um)
 OBS: Expoente vale (Número em binário MENOS 127)
 - -00000000
 - sinal=1 e significando = 0...0 : -zero
 - sinal=0 e significando = 0...0 : +zero

Aritmética de Ponto Flutuante

IEEE 754 com precisão simples

Expoentes na <u>precisão simples</u> c/256 combinações

```
(0) 0000 0000 (especial)
(1) 0000\ 0001 (2<sup>-126</sup>) menor expoente
     0111 1100
(125) 0111 1101 (2<sup>-2</sup>)
(126)\ 0111\ 1110\ (2^{-1})
(127) 0111 1111 (2°)
(128) 1000 0000 (2<sup>1</sup>)
(129) 1000 0001 (2<sup>2</sup>)
     1000 0010
(254) 1111 1110 (2<sup>127</sup>) maior expoente
(255) 1111 1111 (especial)
```

Aritmética de Ponto Flutuante

IEEE 754 com precisão simples

- Menor número positivo (lembre do bit escondido e não normalizada)
- Maior número positivo (lembre do bit escondido)
 - $-0111111011...11 = 2^{127} \times (2-2^{-23})$

Aritmética de Ponto Flutuante

IEEE 754 com precisão dupla

No <u>formato</u> (precisão) duplo, o menor expoente é representado por 00000000001, valendo -1022, e o maior expoente é representado por 11111111110, valendo +1023. Em ambos os casos, o expoente vale o número representado em binário menos 1023 (este é o valor da *bias* = zero).

Aritmética de Ponto Flutuante

IEEE 754 com precisão dupla

Verifique:

- Menor número positivo (lembre do bit escondido e não normalizada)
- Maior número positivo (lembre do bit escondido)
 - $-0111111011...11 = 2^{1023} \times (2-2^{-52})$

Aritmética de Ponto Flutuante

IEEE 754 com precisão dupla

Expoentes na precisão dupla c/2048 combinações

```
(0)
      0000000000 (especial)
      0000000001 (2<sup>-1022</sup>) menor expoente
(1)
      01111111100
      01111111101 (2-2)
(1022) 01111111110 (2^{-1})
(1023) 0111111111 (2°)
(1024 \ 10000000000 \ (2^1)
      1000000001 (2<sup>2</sup>)
     1000000010
(2046) 11111111110 (2<sup>1023</sup>) maior expoente
(2047) 11111111111 (especial)
```

Aritmética de Ponto Flutuante

Quadro resumo IEEE 754

	Não	Normalizado	Decimal
	normalizado		
Simples	± 2 ⁻¹⁴⁹	± 2 ⁻¹²⁶	± ~10 ^{-44.85}
-	a (1-2 ⁻²³) x 2 ⁻¹²⁶	a (2-2 ⁻²³) x 2 ¹²⁷	a ~10 ^{38.53}
Dupla	± 2 ⁻¹⁰⁷⁴	± 2 ⁻¹⁰²²	± ~10 ^{-323.3}
	a (1-2 ⁻⁵²)x2 ⁻¹⁰²²	a (2-2 ⁻⁵²)x2 ¹⁰²³	a ~10 ^{308.3}

Aritmética de Ponto Flutuante

Erro na representação de *floats*

- Número finito de bits na representação (número é apenas "maior" na precisão dupla), implica em "truncamento" (ou arredondamento) do número real a ser representado. Truncamento introduz erro na representação. Casos especiais:
 - Overflow: número a representar é maior que maior número possível de ser representado
 - Underflow: número a representar é menor que menor número possível de ser representado

Aritmética de Ponto Flutuante

Limite no erro na representação de um float

- A forma normalizada do número N é 1,n x 2^e
 - Supõe-se que e esteja dentro dos limites dessa representação (ou ocorreria overflow).
 - Se n não couber no número de bits da representação (precisão) do significando, p, haverá truncamento, introduzindo erro.

Aritmética de Ponto Flutuante

Limite no erro na representação de um float

- A forma normalizada do número N é 1,n x 2^e
- Ex: N = 1,101011110100101... x 2^e e que **p** número de bits (precisão) do significando seja 4.
 - A representação de **N** seria 1,1010 x 2^e gerando um Erro_N = 0,11110100101... x 2^{e-4}
 - O erro relativo é definido como $E_N = Erro_N / N$, ou: 0,11110100101... x $2^{e-4} / 1,1010111110100101...$ x 2^e
 - $= 0,11110100101... \times 2^{-4} / 1,101011110100101...$