A Pattern Growth Approach

FP-growth: Frequent Pattern-Growth

- Adopts a divide and conquer strategy
- Compress the database representing frequent items into a frequent -pattern tree or FP-tree
 - → Retains the itemset association information
- Divide the compressed database into a set of conditional databases, each associated with one frequent item

Mine each such databases separately

Example: FP-growth

- The first scan of data is the same as Apriori
- Derive the set of frequent 1itemsets

Item ID	Support count
11	6
12	7
13	6
14	2
15	2

- Let min-sup=2
- Generate a set of ordered items (apply condition (min-sup=2) & write in descending order)

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

Transactional Database

TID	List of item IDS
שוו	2.51 01 110111 120
T100	11,12,15
T200	12,14
T300	12,13
T400	11,12,14
T500	11,13
T600	12,13
T700	11,13
T800	11,12,13,15
T900	11,12,13

Transactional Database

TID	Items	TID	Items	TID	Items
T100	11,12,15	T400	11,12,14	T700	11,13
T200	12,14	T500	11,13	T800	11,12,13,15
T300	12,13	T600	12,13	T900	11,12,13

- Create a branch for each transaction
- Items in each transaction are processed in order

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

- 1- Order the items T100: {I2,I1,I5}
- 2- Construct the first branch:

<l2:1>, <l1:1>,<l5:1>

Transactional Database

TID	Items	TID	Items	TID	Items
T100	11,12,15	T400	11,12,14	T700	11,13
T200	12,14	T500	11,13	T800	11,12,13,15
T300	12,13	T600	12,13	T900	11,12,13

- Create a branch for each transaction
- Items in each transaction are processed in order

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

- 1- Order the items T200: {I2,I4}
- **2-** Construct the second branch:

<l2:1>, <l4:1>

Transactional Database

TID	Items	TID	Items	TID	Items
T100	11,12,15	T400	11,12,14	T700	11,13
T200	12,14	T500	11,13	T800	11,12,13,15
T300	12,13	T600	12,13	T900	11,12,13

- Create a branch for each transaction
- Items in each transaction are processed in order

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

- 1- Order the items T300: {I2,I3}
- **2-** Construct the third branch:
- <l2:2>, <l3:1>

Transactional Database

TID	Items	TID	Items	TID	Items
T100	11,12,15	T400	11,12,14	T700	11,13
T200	12,14	T500	11,13	T800	11,12,13,15
T300	12,13	T600	12,13	T900	11,12,13

- Create a branch for each transaction
- Items in each transaction are processed in order

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

- 1- Order the items T400: {I2,I1,I4}
- 2- Construct the fourth branch:

<l2:3>, <l1:1>,<l4:1>

Transactional Database

TID	Items	TID	Items	TID	Items
T100	11,12,15	T400	11,12,14	T700	11,13
T200	12,14	T500	11,13	T800	11,12,13,15
T300	12,13	T600	12,13	T900	11,12,13

- Create a branch for each transaction
- Items in each transaction are processed in order

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

- 1- Order the items T400: {I1,I3}
- 2- Construct the fifth branch:

<l1:1>, <l3:1>

Transactional Database

TID	Items	TID	Items	TID	Items
T100	11,12,15	T400	11,12,14	T700	11,13
T200	12,14	T500	11,13	T800	11,12,13,15
T300	12,13	T600	12,13	T900	11,12,13

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

The problem of mining frequent patterns in databases is transformed to that of mining the FP-tree

- **-Occurrences of 15:** <12,11,15> and <12,11,13,15>
- **-Two prefix Paths** <12, 11: 1> and <12,11,13: 1>
- -Conditional FP tree contains only <12: 2, 11: 2>, 13 is not considered because its support count of 1 is less than the minimum support count.
- **-Frequent patterns** {12,15:2}, {11,15:2},{12,11,15:2}

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

Item ID	Conditional Pattern Base	Conditional FP-tree
15	{{ 2, 1: <mark>1</mark> },{ 2, 1, 3: 1 }}	<12:2,11:2>
14	{{ 2, 1: 1 },{ 2: 1 }}	< 2:2>
13	{{ 2, 1: 2 },{ 2: 2 }, { 1: 2 }}	< 2:4, 1:2>,< 1:2>
11	{I2: 4 }	<12:4>

Item ID	Support count
12	7
11	6
13	6
14	2
15	2

TID	Conditional FP-tree	Frequent Patterns Generated
15	<12:2,11:2>	{ 2, 5:2}, { 1, 5:2}, { 2, 1, 5:2}
14	<12:2>	{12,14:2}
13	< 2:4, 1:2>,< 1:2>	{ 2, 3:4},{ 1, 3:4},{ 2, 1, 3:2}
11	<12:4>	{12,11:4}

FP-growth properties

- FP-growth transforms the problem of finding long frequent patterns to searching for shorter ones recursively and concatenating the suffix
- It uses the least frequent suffix offering a good selectivity
- It reduces the search cost
- If the tree does not fit into main memory, partition the database
- Efficient and scalable for mining both long and short frequent patterns

Generating Association Rules

- Once the frequent itemsets have been found, it is straightforward to generate strong association rules that satisfy:
 - → **minimum** support
 - → minimum confidence
- Relation between support and confidence:

$$confidence(A \Rightarrow B) = P(B \mid A) = \frac{support_count(A \cup B)}{support_count(A)}$$

- → Support_count(A∪B) is the number of transactions containing the itemsets A ∪ B
- → Support_count(A) is the number of transactions containing the itemset A.

Generating Association Rules

- For each frequent itemset L, generate all non empty subsets of L
- For every non empty subset S of L, output the rule:

$$S \Rightarrow (L-S)$$

If (support_count(L)/support_count(S)) >= min_conf

(or) Confidence

Example

- → Suppose the frequent Itemset L={I1,I2,I5}
- → Subsets of L are: (i.e.)

$$S = \{11,12\}, \{11,15\},\{12,15\},\{11\},\{12\},\{15\}\}$$

 $S \Rightarrow (L-S)$

→ Association rules:

$11 \land 12 \Rightarrow 15$	confidence = 2/4= 50%
I1 ∧ I5 ⇒ I2	confidence=2/2=100%
I2 ∧ I5 ⇒ I1	confidence=2/2=100%
I1 ⇒ I2 ∧ I5	confidence=2/6=33%
I2 ⇒ I1 ∧ I5	confidence=2/7=29%
I5 ⇒ I2 ∧ I2	confidence=2/2=100%

If the minimum confidence =70%

Transactional Database

TID	List of item IDS
T100	11,12,15
T200	12,14
T300	12,13
T400	11,12,14
T500	11,13
T600	12,13
T700	11,13
T800	11,12,13,15
T900	11,12,13

If support_count(L)/support_count(S))
>= min_conf

support_count(L) = 2

support_count(S) = 4

2/4 =0.5 (or) 50% this value should be >=70% (not satisfying)