0.1 Formlar for areal og omkrins

En formel er en likning der en variabel (som oftest) står alene på én side av likhetstegnet. I seksjon ?? har vi allerede sett på formler for arealet til rektangel og trekantar, men der brukte vi ord i steden for symboler. Her skal vi gjengi desse to formlene i en mer algebraisk form, etterfulgt av andre klassiske formler for areal og omkrets.

0.1 Arealet til eit rektangel (??)

Arealet A til et rektangel med grunnlinje g og høgde h er

$$A=gh$$

Eksempel 1

Finn arealet til rektangelet.

Svar:

Arealet A til rektangelet er

$$A = b \cdot 2 = 2b$$

Eksempel 2

Finn arealet til kvadratet.

Svar:

Arealet A til kvadratet er

$$A = a \cdot a = a^2$$

0.2 Arealet til ein trekant (??)

Arealet A til en trekant med grunnlinje g og høyde h er

$$A=\frac{gh}{2}$$

Eksempel

Hvilken av trekantane har størst areal?

Svar:

Vi lar A_1 , A_2 og A_3 være arealene til henholdsvis trekanten til venstre, i midten og til høyre. Da har vi at

$$A_1 = \frac{4 \cdot 3}{2} = 6$$

$$A_2 = \frac{2 \cdot 3}{2} = 3$$

$$A_3 = \frac{2 \cdot 5}{2} = 5$$

2

Altså er det trekanten til venstre som har størst areal.

0.3 Arealet til eit parallellogram

Arealet A til eit parallellogram med grunnlinje g og høgde h er

Eksempel

Finn arealet til parallellogrammet

Svar:

Arealet A til parallellogrammet er

$$A = 5 \cdot 2 = 10$$

0.3 Arealet til eit parallellogram (forklaring)

Av et parallellogram kan vi alltid lage oss to trekantar ved å tegne inn en av diagonalene:

De fargede trekantene på figuren over har begge grunnlinje g og høgde h. Da vet vi at begge har areal lik $\frac{gh}{2}$. Arealet A til parallelogrammet blir dermed

$$A = \frac{gh}{2} + \frac{gh}{2}$$
$$= g \cdot h$$

0.4 Arealet til eit trapes

Arealet A til et trapes med parallelle sider a og b og høgde h er

Eksempel

Finn arealet til trapeset.

Svar:

Arealet A til trapeset er

$$A = \frac{3(6+4)}{2}$$
$$= \frac{3 \cdot 10}{2}$$
$$= 15$$

Merk

Når man tar utgangspunkt i ei grunnlinje og ei høgde, er arealformlene for et parallellogram og et rektangel identiske. Å anvende Regel~0.4 på et parallellogram vil også resultere i et uttrykk tilsvarande gh. Dette er fordi et parallellogram bare er et spesialtilfelle av et trapes (og et rektangel er bare et spesialtilfelle av et parallellogram).

0.4 Arealet til eit trapes (forklaring)

Også for et trapes får vi to trekanter viss vi tegner en av diagonalene:

I figuren over er

Arealet til den blå trekantet =
$$\frac{ah}{2}$$

Arealet til den grønne trekanten =
$$\frac{bh}{2}$$

Arealet A til trapeset blir dermed

$$A = \frac{ah}{2} + \frac{bh}{2}$$

$$=\frac{h(a+b)}{2}$$

0.5 Omkrinsen til ein sirkel (og π)

Omkretsen O til en sirkel med radius r er

$$O = 2\pi r$$

 $\pi = 3.141592653589793....$

Eksempel 1

Finn omkretsen til sirkelen.

Svar:

Omkretsen O er

$$O=2\pi\cdot 3$$

$$=6\pi$$

0.6 Arealet til ein sirkel

Arealet A til en sirkel med radius r er

Eksempel

Finn arealet til sirkelen.

Svar:

Arealet A til sirkelen er

$$A = \pi \cdot 5^2 = 25\pi$$

0.6 Arealet til ein sirkel (forklaring)

I figuren under har vi delt opp en sirkel i 4, 10 og 50 (like store) sektorer, og lagt disse bitene etter hverandre.

I hvert tilfelle må de små sirkelbuene til sammen utgjøre hele buen, altså omkretsen, til sirkelen. Hvis sirkelen har radius r, betyr dette at summen av buene er $2\pi r$. Og når vi har like mange sektorer med buen vendt opp som sektorer med buen vendt ned, må totallengden av buene være πr både oppe og nede.

Men jo flere sektorer vi deler sirkelen inn i, jo mer ligner sammensetningen av dem på et rektangel (i figuren under har vi 100 sektorer). Grunnlinja g til dette "rektangelet" vil være tilnærmet lik πr , mens høgda vil være tilnærmet lik r.

Arealet A til "rektangelet", altså sirkelen, blir da

$$A \approx qh \approx \pi r \cdot r = \pi r^2$$

0.7 Pytagoras' setning

I en rettvinklet trekant er arealet til kvadratet dannet av hypotenusen lik summen av arealene til kvadratene dannet av katetene.

Eksempel 1

Finn lengden til c.

Svar:

Vi vet at

$$c^2 = a^2 + b^2$$

der a og b er lengdene til de korteste sidene i trekanten. Dermed er

$$c^2 = 4^2 + 3^2$$
$$= 16 + 9$$
$$= 25$$

Altså har vi at

$$c = 5$$
 \vee $c = -5$

Da c er en lengde, er c = 5.

0.7 Pytagoras' setning (forklaring)

Under har vi tegnet to kvadrat som er like store, men som er inndelt i forskjellige former.

Vi observerer nå følgende:

- 1. Arealet til det røde kvadratet er a^2 , arealet til det lilla kvadratet er b^2 og arealet til det blå kvadratet er c^2 .
- 2. Arealet til et oransje rektangel er ab og arealet til en grønn trekant er $\frac{ab}{2}$.
- 3. Om vi tar bort de to oransje rektanglene og de fire grønne trekantane, er det igjen (av pkt. 2) et like stort areal til venstre som til høyre.

Dette betyr at

$$a^2 + b^2 = c^2 (1)$$

Gitt en trekant med sidelengder a, b og c, der c er den lengste sidelengden. Så lenge trekanten er rettvinklet, kan vi alltid lage to kvadrat med sidelengder a + b, slik som i første figur. (1) gjelder dermed for alle rettvinklede trekanter.

0.2 Kongruente og formlike trekantar

0.8 Konstruksjon av trekantar

En trekant $\triangle ABC$, som vist i figuren under, kan bli unikt konstruert hvis en av følgende kriterium er oppfylt:

- i) $c, \angle A \text{ og } \angle B \text{ er kjente.}$
- ii) a, b og c er kjente.
- iii) $b, c \text{ og } \angle A \text{ er kjente.}$

0.9 Kongruente trekantar

To trekanter som har samme form og størrelse er kongruente.

At trekantane i figuren over er kongruente skrives

$$\triangle ABC \cong \triangle DEF$$

0.10 Formlike trekantar

Formlike trekanter har tre vinkler som er parvis like store.

At trekantane i figuren over er formlike skrives

$$\triangle ABC \sim \triangle DEF$$

Samsvarende sider

Når vi studerer formlike trekantar er samsvarende sider et viktig begrep. Samsvarende sider er sider som i formlike trekantar står motstående den samme vinkelen.

For de formlike trekantane $\triangle ABC$ og $\triangle DEF$ har vi at

I $\triangle ABC$ er

- BC motstående til u.
- \bullet AC motstående til v
- AB motstående til w.

I $\triangle DEF$ er

- FE motstående til u.
- ullet FD motstående til v
- ED motstående til w.

Dette betyr at disse er samsvarende sider:

- BC og FE
- $AC \circ FD$
- AB og ED

0.11 Forhold i formlike trekantar

Når to trekantar er formlike, er forholdet mellom samsvarende¹ sider det samme.

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

¹Vi tar det her for gitt at hvilke sider som er samsvarande kommer fram av figuren.

Eksempel

Trekantene i figuren under er formlike. Finn lengden til EF.

Svar:

Vi observerer at AB samsvarer med DE, BC med EF og AC med DF. Det betyr at

$$\frac{DE}{AB} = \frac{EF}{BC}$$

$$\frac{10}{5} = \frac{EF}{3}$$

$$2 \cdot 3 = \frac{EF}{3} \cdot 3$$

$$6 = EF$$

Merk

Av Regel 0.11 har vi at for to formlike trekanter $\triangle ABC$ og $\triangle DEF$ er

$$\frac{AB}{BC} = \frac{DE}{EF} \quad , \quad \frac{AB}{AC} = \frac{DE}{DF} \quad , \quad \frac{BC}{AC} = \frac{EF}{DF}$$

0.12 Vilkår i formlike trekantar

To trekanter $\triangle ABC$ og $\triangle DEF$ er formlike hvis en av disse vilkårene er oppfylt:

i) To vinkler i trekantane er parvis like store.

ii)
$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

iii)
$$\frac{AB}{DE} = \frac{AC}{DF}$$
 og $\angle A = \angle D$.

D E

Eksempel 1

 $\angle ACB = 90^{\circ}$. Vis at $\triangle ABC \sim ACD$.

Svar:

 $\triangle ABC$ og $\triangle ACD$ er begge rettvinklede og de har $\angle DAC$ felles. Dermed er vilkår i fra Regel 0.12 oppfylt, og trekantene er da formlike.

Merk: På en tilsvarende måte kan det vises at $\triangle ABC \sim CBD$.

Eksempel 2

Undersøk om trekantane er formlike.

Svar:

Vi har at

$$\frac{AC}{FD} = \frac{18}{12} = \frac{3}{2} \quad , \quad \frac{BC}{FE} = \frac{9}{6} = \frac{3}{2} \quad , \quad \frac{AB}{DE} = \frac{12}{10} = \frac{6}{5}$$

$$\frac{AC}{IG} = \frac{18}{12} = \frac{3}{2}$$
 , $\frac{BC}{IH} = \frac{9}{6} = \frac{3}{2}$, $\frac{AC}{IG} = \frac{18}{12} = \frac{3}{2}$

Dermed oppfyller $\triangle ABC$ og $\triangle GHI$ vilkår i
i fra Regel 0.12, og trekantene er da formlike.

Eksempel 3

Undersøk om trekantane er formlike.

Svar:

Vi har at $\angle BAC = \angle EDF$ og at

$$\frac{ED}{AB} = \frac{8}{4} = 2$$
 , $\frac{FD}{AC} = \frac{14}{7} = 2$

Altså er vilkår iii fra $Regel\ 0.12$ oppfylt, og da er trekantene formlike.

0.3 Forklaringar

0.5 Omkrinsen til ein sirkel (og π) (forklaring)

Vi skal her bruke regulære mangekanter langs veien til ønsket resultat. I regulære mangekanter har alle sidene lik lengde. Da det er utelukkande regulære mangekanter vi kommer til å bruke, vil de bli omtalt bare som mangekanter.

Vi skal starte med se på tilnærminger for å finne omkretsen O_1 av en sirkel med radius 1.

Øvre og nedre grense

En god vane når man skal prøve å finne en størrelse, er å spørre seg om man kan vite noe om hvor stor eller liten man forventer at den er. Vi starter derfor med å omslutte sirkelen med et kvadrat med sidelengder 2:

Omkretsen til sirkelen må vere mindre enn omkretsen til kvadratet, derfor vet vi at

$$O_1 < 2 \cdot 4$$

$$< 8$$

Videre innskriver vi en sekskant. Sekskanten kan deles inn i 6 likesidede trekantar som alle må ha sidelengder 1. Omkretsen til sirkelen må være større enn omkretsen til sekskanten, noe som gir at

 $O_1 > 6 \cdot 1$

Når vi nå skal gå over til en mye mer nøyaktig jakt etter omkretsen, vet vi altså at vi søker en verdi mellom 6 og 8.

Stadig bedre tilnærminger

Vi fortsetter med tanken om å innskrive en mangekant. Av figurane under lar vi oss overbevise om at dess flere sider mangekanten har, dess bedre estimat vil omkretsen til mangekanten være for omkretsen til sirkelen.

Da vi vet at sidelengden til en 6-kant er 1, er det fristende å undersøke om vi kan bruke denne kunnskapen til å finne sidelengden til andre mangekanter. Om vi innskriver også en 12-kant i sirkelen vår (og i tillegg tegner en trekant) får vi en figur som denne:

(a) En 6-kant og en 12-kant i lag med en trekant dannet av sentrum i sirkelen og en av sidene i 12-kanten.

(b) Utklipp av trekant fra figur (a).

La oss kalle sidelengden til 12-kanten for s_{12} og sidelengden til 6-kanten for s_6 . Videre legger vi merke til at punktene A og C ligger på sirkelbuen og at både $\triangle ABC$ og $\triangle BSC$ er rettvinklede trekantar (forklar for deg selv hvorfor!). Vi har at

$$SC = 1$$

$$BC = \frac{s_6}{2}$$

$$SB = \sqrt{SC^2 - BC^2}$$

$$BA = 1 - SB$$

$$AC = s_{12}$$

$$s_{12}^2 = BA^2 + BC^2$$

For å finne s_{12} må vi finne BA, og for å finne BA må vi finne SB. Vi starter derfor med å finne SB. Da SC=1 og $BC=\frac{s_6}{2}$, er

$$SB = \sqrt{1 - \left(\frac{s_6}{2}\right)^2}$$
$$= \sqrt{1 - \frac{s_6^2}{4}}$$

Vi går så videre til å finne s_{12} :

$$s_{12}^2 = (1 - SB)^2 + \left(\frac{s_6}{2}\right)^2$$
$$= 1^2 - 2SB + SB^2 + \frac{s_6^2}{4}$$

Ved første øyekast ser det ut som vi ikke kan komme særlig lengre i å forenkle uttrykket på høyre side, men en liten operasjon vil endre på dette. Hadde vi bare hatt -1 som et ledd kunne vi slått saman -1 og $\frac{s_6^2}{4}$ til å bli $-SB^2$. Derfor "skaffer" vi oss -1 ved å både addere og subtrahere 1 på høgresiden:

$$s_{12}^{2} = 1 - 2SB + SB^{2} + \frac{s_{6}^{2}}{4} - 1 + 1$$

$$= 2 - 2SB + SB^{2} - \left(1 - \frac{s_{6}^{2}}{4}\right)$$

$$= 2 - 2SB + SB^{2} - SB^{2}$$

$$= 2 - 2SB$$

$$= 2 - 2\sqrt{1 - \frac{s_{6}^{2}}{4}}$$

$$= 2 - \sqrt{4}\sqrt{1 - \frac{s_{6}^{2}}{4}}$$

$$= 2 - \sqrt{4 - s_{6}^{2}}$$

Altså er

$$s_{12} = \sqrt{2 - \sqrt{4 - s_6^2}}$$

Selv om vi her har utledet relasjonen mellom sidelengdene s_{12} og s_6 , er dette en relasjon vi kunne vist for alle par av sidelengder der den ene er sidelengden til en mangekant med dobbelt så mange sider som den andre. La s_n og s_{2n} respektivt være sidelengden til en mangekant og en mangekant med dobbelt så mange sider. Da er

$$s_{2n} = \sqrt{2 - \sqrt{4 - s_n^2}} \tag{2}$$

Når vi kjenner sidelengden til en innskrevet mangekant, vil tilnærmingen til omkretsen til sirkelen være denne sidelengden ganget med antall sidelengder i mangekanten. Ved hjelp av (2) kan vi stadig finne sidelengden til en mangekant med dobbelt så mange sider som den forrige, og i tabellen under har vi funnet sidelengden og tilnærmingen til omkretsen til sirkelen opp til ein 96-kant:

Formel for sidelengde	$oxed{Sidelengde}$	Tilnærming for omkrets
	$s_6 = 1$	$6 \cdot s_6 = 6$
$s_{12} = \sqrt{2 - \sqrt{4 - s_6^2}}$	$s_{12} = 0.517$	$12 \cdot s_{12} = 6.211$
$s_{24} = \sqrt{2 - \sqrt{4 - s_{12}^2}}$	$s_{24} = 0.261$	$24 \cdot s_{24} = 6.265$
$s_{48} = \sqrt{2 - \sqrt{4 - s_{24}^2}}$	$s_{48} = 0.130$	$48 \cdot s_{48} = 6.278$
$s_{96} = \sqrt{2 - \sqrt{4 - s_{48}^2}}$	$s_{96} = 0.065$	$96 \cdot s_{96} = 6.282$

Utregningene over er faktisk like langt som matematikeren Arkimedes kom allerede ca 250 f. kr!

For en datamaskin er det ingen problem å regne ut 1 dette for en mangekant med ekstremt mange sider. Regner vi oss frem til en $201\,326\,592$ -kant finner vi at

Omkrins av sirkel med radius 1 = 6.283185307179586...

(Ved hjelp av mer avansert matematikk kan det vises at omkretsen til en sirkel med radius 1 er et irrasjonalt tal, men at alle desimalane vist over er korrekte, derav likhetstegnet.)

Den endelige formelen og π

Vi skal nå komme fram til den kjente formelen for omkretsen til en sirkel. Også her skal vi ta for gitt at summen av sidelengdene til en innskrevet mangekant er en tilnærming til omkrinsen som blir bedre og bedre dess flere sidelengder det er.

For enkelhets skyld skal vi bruke innskrevne firkantar for å få fram poenget vårt. Vi tegner to sirkler som er vilkårleg store, men der den ene er større enn den andre, og innskriver en firkant (eit kvadrat) i begge. Vi lar R og r være radien til henholdsvis den største og den minste sirkelen, og K og k vere sidelengden til henholdsvis den største og den minste firkanten.

Begge firkantene kan deles inn i fire likebeinte trekanter:

Da trekantane er formlike, har vi at

$$\frac{K}{R} = \frac{k}{r} \tag{3}$$

Vi lar $\tilde{O} = 4K$ og $\tilde{o} = 4k$ være tilnærmingen av omkretsen til henholdsvis den største og den minste sirkelen. Ved å gange med 4 på begge sider av (3) får vi at

$$\frac{4A}{R} = \frac{4a}{r}$$

$$\frac{\tilde{O}}{R} = \frac{\tilde{o}}{r}$$
(4)

Og nå merker vi oss dette:

Selv om vi i hver av de to sirklene innskriver en mangekant med 4, 100 eller hvor mange sider det skulle vere, vil mangekantane alltid kunne deles inn i trekantar som oppfyller (3). Og på samme måte som vi har gjort i eksempelet over kan vi omskrive (3) til (4) i stedet.

La oss derfor tenke oss mangekanter med så mange sider at vi godtar omkretsene deres som lik omkretsene til sirklene. Om vi da skriver omkretsen den største og den minste sirkelen henholdsvis O og o, får vi at

 $\frac{O}{R} = \frac{o}{r}$

Da de to sirklene våre er helt vilkårlig valgt, har vi nå kommet fram til at alle sirkler har det samme forholdet mellom omkretsen og radiusen. En enda meir brukt formulering er at alle sirkler har det samme forholdet mellom omkretsen og diameteren. Vi lar D og d være diameteren til henholdsvis sirkelen med radius R og r. Da har vi at

$$\frac{O}{2R} = \frac{o}{2r}$$
$$\frac{O}{D} = \frac{o}{d}$$

Forholdstalet mellom omkretsen og diameteren i en sirkel blir kalt π (uttales "pi"):

$$\frac{O}{D} = \pi$$

Likningen over fører oss til formelen for omkretsen til en sirkel:

$$O = \pi D$$
$$= 2\pi r$$

Tidligere fant vi at omkretsen til en sirkel med radius 1 (og diameter 2) er 6.283185307179586.... Dette betyr at

$$\pi = \frac{6.283185307179586...}{2}$$
$$= 3.141592653589793...$$

¹For den datainteresserte skal det sies at iterasjonsalgoritmen må skrives om for å unngå instabiliteter i utregningene når antall sider blir mange.

0.11 Forhold i formlike trekantar (forklaring)

I figuren under er BB'||CC'. Arealet til en trekant $\triangle ABC$ skriver vi her som ABC.

Med BB' som grunnlinje har både $\triangle CBB'$ og $\triangle CBB'$ HB' som høyde, derfor er

$$CBB' = C'BB' \tag{5}$$

Videre har vi at

$$ABB' = AB \cdot HB'$$

$$CBB' = BC \cdot HB'$$

Altså er

$$\frac{ABB'}{CBB'} = \frac{AB}{BC} \tag{6}$$

På lignende vis er

$$\frac{ABB'}{C'BB'} = \frac{AB'}{B'C'} \tag{7}$$

Av (5), (6) og (7) følger det at

$$\frac{AB}{BC} = \frac{ABB'}{CBB'} \frac{ABB'}{C'BB'} = \frac{AB'}{B'C'}$$
 (8)

For de formlike trekantene $\triangle ACC'$ og $\triangle ABB'$ er

$$\frac{AC}{AB} = \frac{AB + BC}{AB}$$
$$= 1 + \frac{BC}{AB}$$

$$\frac{AC'}{AB'} = \frac{AB' + B'C'}{AB'}$$
$$= 1 + \frac{B'C'}{AB'}$$

Av (8) er dermed forholdet mellom de samsvarande sidene like.

Merk

I de kommnde forklaringene av vilkårene ii og iii fra Regel 0.8 tar man utgangspunkt i følgende:

- To sirkler skjærer kvarandre i maksimalt to punkt.
- Gitt at et koordinatsystem blir plassert med origo i senteret til den ene sirkelen, og slik at horisontalaksen går gjennom begge sirkelsentrene. Viss (a,b) er det ene skjæringspunktet, er (a,-b) det andre skjæringspunktet.

Punktene over kan enkelt vises, men er såpass intuitivt sanne at vi tar dem for gitt. Punktene forteller oss at trekanten som består av de to sentrene og det ene skjæringspunktet er kongruent med trekanten som består av de to sentrene og det andre skjæringspunktet. Med dette kan vi studere egenskaper til trekanter ved hjelp av halvsirkler.

0.8 Konstruksjon av trekantar (forklaring)

Vilkår i

Gitt en lengde c og to vinkler u og v. Vi lager et linjestykke AB med lengde c. Så stipler vi to vinkelbein slik at $\angle A = u$ og B = v. Så lenge disse vinkelbeina ikke er parallelle, må de nødvendigvis skjære hverandre i ett, og bare ett, punkt (C i figuren). I lag med A og B vil dette punktet danne en trekant som er unikt gitt av c, u og v.

Vilkår ii

Gitt tre lengder a, b og c. Vi lager et linjestykket AB med lengde c. Så lager vi to halvsirkler med henholdsvis radius a og

b og sentrum B og A. Skal nå en trekant $\triangle ABC$ ha sidelengder a, b og c, må C ligge på begge sirkelbuene. Da buene bare kan møtes i ett punkt, er formen og størrelsen til $\triangle ABC$ unikt gitt av a, b og c.

Vilkår iii

Gitt to lengder b og c og en vinkel u. Vi starter med følgende:

- 1. Vi lager et linjestykke AB med lengde c.
- 2. I A tegner vi en halvsirkel med radius b.

Ved å la C vere plassert hvor som helst på denne sirkelbuen, har vi alle mulige varianter av en trekant $\triangle ABC$ med sidelengdene AB = c og AC = b. Å plassere C langs bogen til halvsirkelen er det samme som å gi $\angle A$ en bestemt verdi. Det gjenstår nå å vise at hver plassering av C gir en unik lengde av BC.

Vi lar C_1 og C_2 være to potensielle plasseringer av C, der C_2 , langs halvsirkelen, ligger nærmere E enn C_1 . Videre stipler vi en sirkelbue med radius BC_1 og sentrum i B. Da den stiplede sirkelbuen og halvsirkelen bare kan skjære hverandre i C_1 , vil alle andre punkt på halvsirkelen ligge enten innenfor eller utenfor den stiplede sirkelbuen. Slik vi har definert C_2 , må dette punktet ligge utenfor den stiplede sirkelbuen, og dermed er BC_2 lengre enn BC_1 . Av dette kan vi konkludere med at BC blir lengre dess nærmere C beveger seg mot E langs halvsirkelen. Å sette $\angle A = u$ vil altså gi en unik verdi for BC, og da en unik trekant $\triangle ABC$ der AC = b, c = AB og $\angle BAC = u$.

0.12 Vilkår i formlike trekantar (forklaring)

Vilkår i

Gitt to trekanter $\triangle ABC$ og $\triangle DEF$. Av Regel ?? har vi at

$$\angle A + \angle B + \angle C = \angle D + \angle E + \angle F$$

Hvis $\angle A = \angle D$ og $\angle B = \angle E$, følger det at $\angle C = \angle E$.

Vilkår ii

Vi tar utgangspunkt i trekantene $\triangle ABC$ og $\triangle DEF$ der

$$\frac{AC}{DF} = \frac{BC}{EF} \qquad , \qquad \angle C = \angle F \tag{9}$$

Vi setter a = BC, b = AC, d = EF og e = DF. Vi plasserer D' og E' på henholdsvis AC og BC, slik at D'C = e og $AB \parallel D'E'$. Da er $\triangle ABC \sim \triangle D'E'C$, altså har vi at

$$\frac{E'C}{BC} = \frac{D'C}{AC}$$
$$E'C = \frac{ae}{b}$$

Av (9) har vi at

$$EF = \frac{ae}{b}$$

Altså er E'C = EF. Nå har vi av vilkår ii fra Regel 0.9 at $\triangle D'E'C \cong \triangle DEF$. Dette betyr at $\triangle ABC \sim \triangle DEF$.

Vilkår iii

Vi tar utgangspunkt i to trekanter $\triangle ABC$ og $\triangle DEF$ der

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} \tag{10}$$

Vi plasserer D' og E' på henholdsvis AC og BC, slik at D'C=e og E'C=d. Av vilkår i fra Regel 0.12 har vi da at $\triangle ABC\sim\triangle D'E'C$. Altså er

$$\frac{D'E'}{AB} = \frac{D'C}{AC}$$
$$D'E' = \frac{ae}{c}$$

Av (10) har vi at

$$f = \frac{ae}{c}$$

Altså har $\triangle D'E'C$ og $\triangle DEF$ parvis like sidelengder, og av vilkår i fra Regel 0.9 er de da kongruente. Dette betyr at $\triangle ABC \sim \triangle DEF$.

