Algèbre et théorie de Galois

Corrigé de la Feuille d'exercices 7

Exercice 1. Puisque f est irréductible, B est un corps. Le polynôme $X^p - X$ a donc au plus p racines dans B et puisqu'il annule tous les éléments de \mathbf{F}_p , on a $\mathrm{Ker}(F - \mathrm{Id} : B \to B) = \mathbf{F}_p$.

La réciproque est fausse. En effet, tout élément de $B = \mathbf{F}_p[T]/(T^2)$ s'écrit sous la forme $x = \alpha + \beta T$ où $\alpha, \beta \in \mathbf{F}_p$. On a alors $x^p = \alpha^p + \beta^p T^p = \alpha$ (car $T^p = 0$ dans $\mathbf{F}_p[T]/(T^2)$) donc $x^p = x \Leftrightarrow \beta = 0$ i.e. on a encore $\text{Ker}(F - \text{Id}: B \to B) = \mathbf{F}_p$.

Exercice 2.

- (i) Puisque les éléments de \mathbf{F}_{q^n} sont exactement les racines du polynôme $X^{q^n} X$, \mathbf{F}_{q^n} est le corps de décomposition de $X^{q^n} X$ et l'extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ est par conséquent galoisienne. De plus, le sous-corps de \mathbf{F}_{q^n} fixé par $F_q: x \mapsto x^q$ est exactement \mathbf{F}_q donc le groupe de Galois de l'extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ est cyclique engendré par F_q (d'après correspondance de Galois). Ce groupe est aussi d'ordre le degré de l'extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ c'est-à-dire n.
- (ii) Puisque $Gal(\mathbf{F}_{q^n}/\mathbf{F}_q) = \langle F_q \rangle$ est d'ordre n, ses sous-groupes sont de la forme $\langle F_q^d \rangle$ pour d un diviseur de n. La sous-extension fixée par $\langle F_q^d \rangle$ est l'ensemble des éléments $x \in \mathbf{F}_{q^n}$ vérifiant $x^{q^d} = x$ c'est-à-dire \mathbf{F}_{q^d} .

Exercice 3. Soit $x = \sqrt[4]{2}$, et $K = \mathbf{Q}[x, i]$.

(i) Les racines du polynôme $P(X) = X^4 - 2$ sont x, -x, ix et -ix. Ainsi, on voit que K est le corps de décomposition de P sur \mathbf{Q} et l'extension K/\mathbf{Q} est par conséquent galoisienne. De plus, P est irréductible sur \mathbf{Q} (par le critère d'Eisenstein) d'où $[\mathbf{Q}[x]:\mathbf{Q}] = \deg(P) = 4$. D'autre part, puisque i vérifie l'équation $i^2 + 1 = 0$ l'extension $K/\mathbf{Q}[x]$ est de degré au plus 2 mais $i \notin \mathbf{Q}[x]$ (car $\mathbf{Q}[x] \subset \mathbf{R}$) donc $[K:\mathbf{Q}[x]] = 2$. Par téléscopage on obtient

$$[K : \mathbf{Q}] = [K : \mathbf{Q}[x]][\mathbf{Q}[x] : \mathbf{Q}] = 8.$$

Puisque K est le corps de décomposition de P, l'action de $\operatorname{Gal}(K/\mathbf{Q})$ sur l'ensemble de ses racines $\{x, -x, ix, -ix\}$ donne un morphisme injectif $\varphi : \operatorname{Gal}(K/\mathbf{Q}) \to \mathfrak{S}_4$. L'image de ce morphisme préserve la partition $\{\{x, -x\}, \{ix, -ix\}\}$. Or, on vérifie aisément que le sous-groupe des permutations préservant cette partition est isomorphe au groupe D_4 . Comme $|\operatorname{Gal}(K/\mathbf{Q})| = |D_4| = 8$, φ induit donc un isomorphisme $\operatorname{Gal}(K/\mathbf{Q}) \simeq D_4$. Alternativement, on peut aussi construire un isomorphisme explicite comme suit. La conjugaison complexe induit un élément σ de $\operatorname{Gal}(K/\mathbf{Q})$ qui fixe x, -x et échange ix avec -ix. D'autre part, puisque P est irréductible, on sait que l'action de $\operatorname{Gal}(K/\mathbf{Q})$ sur $\{x, -x, ix, -ix\}$ est transitive. En particulier, il existe $\tau \in \operatorname{Gal}(K/\mathbf{Q})$ qui envoie x sur ix. On a alors $\tau(-x) = -\tau(x) = -ix$ et $\tau(ix)$ vaut x ou -x. Quitte à remplacer τ par $\tau\sigma$ on peut supposer que $\tau(ix) = -x$ et donc $\tau(-ix) = x$. Le sous-groupe engendré par σ et τ est alors isomorphe à D_4 (placer x, ix, -x, -ix aux sommets d'un carré dans cet ordre: σ correspond à la symétrie par rapport à la diagonale passant par x et -x tandis que τ est une rotation d'angle 45) donc égal à $\operatorname{Gal}(K/\mathbf{Q})$ car ce dernier est d'ordre 8.

- (ii) Avec les notations de la question précédente, les sous-groupes de $\mathrm{Gal}(K/\mathbf{Q})$ sont les suivants:
 - $Gal(K/\mathbf{Q})$, d'ordre 8;

- $\langle \tau \rangle$, $\langle \sigma, \tau^2 \rangle$ et $\langle \tau \sigma, \tau^2 \rangle$, d'ordres 4;
- $\langle \tau^2 \rangle$, $\langle \sigma \rangle$, $\langle \tau \sigma \rangle$, $\langle \tau^2 \sigma \rangle$ et $\langle \tau^3 \sigma \rangle$, d'ordres 2;
- {1}, d'ordre 1.

Les sous-extensions correspondantes, via la correspondance de Galois, sont:

- $K^{\operatorname{Gal}(K/\mathbf{Q})} = \mathbf{Q}$ de degré 1;
- $K^{\langle \tau \rangle} = \mathbf{Q}[i], K^{\langle \sigma, \tau^2 \rangle} = \mathbf{Q}[x^2] = \mathbf{Q}[\sqrt{2}]$ et $K^{\langle \tau \sigma, \tau^2 \rangle} = \mathbf{Q}[ix^2] = \mathbf{Q}[\sqrt{-2}]$ de degré 2;
- $K^{\langle \tau^2 \rangle} = \mathbf{Q}[i, x^2], K^{\langle \sigma \rangle} = \mathbf{Q}[x], K^{\langle \tau \sigma \rangle} = \mathbf{Q}[ix^2, x + ix], K^{\langle \tau^2 \sigma \rangle} = \mathbf{Q}[ix, x^2] \text{ et } K^{\langle \tau^3 \sigma \rangle} = \mathbf{Q}[x ix, ix^2] \text{ de degrés } 4;$
- $K^{\{1\}} = K$ de degré 8.

Exercice 4.

(i) Soit $x \in K$ non réel. Alors $K = \mathbf{R}[x]$ et le polynôme minimal π_x de x sur \mathbf{R} est irréductible de degré 2 donc de la forme $\pi_x(X) = (X - a)^2 + b$ avec $a, b \in \mathbf{R}, b > 0$. On a alors

$$K \simeq \mathbf{R}[X]/((X-a)^2 + b) \simeq \mathbf{R}[Y]/(Y^2 + b) \simeq \mathbf{R}[Z]/(Z^2 + 1) \simeq \mathbf{C}.$$

- (ii) Soit $x \in K$ et π_x son polynôme minimal sur \mathbf{R} . Alors $[\mathbf{R}[x]:\mathbf{R}] = \deg(\pi_x)$ divise $[K:\mathbf{R}]$, donc $\deg(\pi_x)$ est impair. D'après le théorème des valeurs intermédiaires, un polynôme réel de degré impair a au moins une racine réelle. Comme π_x est irréductible, il est donc de degré 1. Donc $\pi_x = X x$ et x est réel. Tous les éléments de K sont par conséquent réels et $K = \mathbf{R}$.
- (iii) Supposons que K soit une extension de degré 2 de \mathbb{C} et soit $x \in K$ non complexe. Alors, le polynôme minimal π_x de x sur \mathbb{C} est irréductible de degré 2. Or, on sait calculer explicitement les racines d'un polynôme de degré 2 à coefficients et elles sont toutes complexes. Contradiction.
- (iv) Soit $G = \operatorname{Gal}(K/\mathbb{R})$ le groupe de Galois de l'extension. Écrivons $|G| = 2^n m$ où $n \in \mathbb{N}$ et $m \in \mathbb{N}^*$ est impair. D'après le résultat admis de théorie des groupes, G admet un sous-groupe P de cardinal 2^n . Choisissons de plus une suite de sous-groupes $P_1 \subset \ldots \subset P_n = P$ avec $|P_i| = 2^i$. Posons $K_i = K^{P_{n+1-i}}$ pour $1 \leq i \leq n$. Puisque la correspondance de Galois est décroissante, on obtient une tour d'extensions

$$\mathbf{R} \subset K_1 \subset \ldots \subset K_{\alpha} = K.$$

De plus, $[K_1 : \mathbf{R}] = |G|/|P| = m$ est impair et $[K_{i+1} : K_i] = |P_{n+1-i}|/|P_{n-i}| = 2$ pour tout $1 \le i \le n-1$.

(v) D'après la première question, on a $K_1 = \mathbf{R}$ et d'après la deuxième question, si $n \geq 2$, $K_2 \simeq \mathbf{C}$. Il s'ensuit, d'après la question (iii), que K_2 n'admet pas d'extension de degré 2 donc forcément $n \leq 2$ et on en déduit que $K = \mathbf{R}$ ou $K \simeq \mathbf{C}$. D'autre part, pour toute extension finie k/\mathbf{R} il existe une extension galoisienne K/\mathbf{R} telle que $k \subset K$ et il s'ensuit que les seules extensions finies de \mathbf{R} sont, à isomorphisme près, \mathbf{R} et \mathbf{C} . En particulier, \mathbf{C} n'a pas d'extension finie non triviale et le résultat s'en déduit.

Exercice 5.

(i) Supposons qu'il existe $x \in \mathbb{Q}[\sqrt{21}]$ tel que $x^2 = 5 + \sqrt{21}$. En décomposant $x = a + b\sqrt{21}$, où $a, b \in \mathbb{Q}$, on obtient

$$5 + \sqrt{21} = (a + b\sqrt{21})^2 = a^2 + 21b^2 + 2ab\sqrt{21}.$$

D'où $a^2+21b^2=5$ et 2ab=1 donc $a^2+\frac{21}{4a^2}=5$ puis $a^4-5a^2+\frac{21}{4}=0$. On en tire que $a^2=(5\pm 2)/2$ et a ne peut pas être dans ${\bf Q}$, contradiction.

Soient

$$z = \sqrt{5 + \sqrt{21}}$$
 et $K = \mathbf{Q}[z]$.

(ii) On remarque que $\mathbf{Q}[\sqrt{21}] = \mathbf{Q}[z^2] \subset K$. D'après la question précédente on a $[K:\mathbf{Q}[\sqrt{21}]] = 2$ donc

$$[K : \mathbf{Q}] = [K : \mathbf{Q}[\sqrt{21}]] \times [\mathbf{Q}[\sqrt{21}] : \mathbf{Q}] = 4.$$

(iii) On calcule

$$zz' = \sqrt{(5+\sqrt{21})(5-\sqrt{21})} = \sqrt{25-21} = 2.$$

Ainsi, $z' = \frac{2}{z} \in K$. D'autre part, on a $z^2 - 5 = \sqrt{21}$ et z est racine du polynôme $P(X) = (X^2 - 5)^2 - 21$. Puisque z est de degré 4 sur \mathbf{Q} (question (ii)), il s'en suit que P est le polynôme minimal de z sur \mathbf{Q} . Les conjugués de z sur \mathbf{Q} sont les racines de P c'est-à-dire z, -z, z' et -z'. D'après ce qu'on vient de voir, tous ces conjugués sont dans K donc K/\mathbf{Q} est galoisienne.

- (iv) Puisque le groupe de Galois agit transitivement sur l'ensemble des conjugués de z, un tel élément g existe bien. De plus, comme z engendre K sur \mathbf{Q} un tel élément est unique.
 - (v) Idem.
 - (vi) On a

$$g(z') = g(2/z) = 2/g(z) = -2/z = -z'.$$

De façon similaire,

$$h(z') = h(2/z) = 2/h(z) = 2/z' = z.$$

Puisque z engendre K, pour montrer que g et h commutent il suffit de vérifier que g(h(z)) = h(g(z)). Or, d'après ce qui précède, on a g(h(z)) = g(z') = -z' et h(g(z)) = h(-z) = -h(z) = -z'. Ainsi, g et h commutent et comme ils sont tous les deux d'ordre 2 (car g(g(z)) = h(h(z)) = z), ils engendrent un sous-groupe de G isomorphe à $(\mathbf{Z}/2\mathbf{Z})^2$. Or, G est d'ordre $[K: \mathbf{Q}] = 4$ donc $G \simeq (\mathbf{Z}/2\mathbf{Z})^2$.

(vii) D'après la question précédente, les sous-groupes de G sont G, $\langle g \rangle$, $\langle h \rangle$, $\langle gh \rangle$ et $\{1\}$. D'après la correspondance de Galois, les sous-corps de K sont donc

$$K^G = \mathbf{Q}, \ K^{\langle g \rangle} = \mathbf{Q}[\sqrt{21}], \ K^{\langle h \rangle} = \mathbf{Q}[z+z'] = \mathbf{Q}[\sqrt{14}], \ K^{\langle gh \rangle} = \mathbf{Q}[z-z'] = \mathbf{Q}[\sqrt{6}], \ K^{\{1\}} = K$$

où on a remarqué que $(z+z')^2=z^2+(z')^2+2zz'=5+\sqrt{21}+5-\sqrt{21}+4=14$ et de façon similaire $(z-z')^2=6$.

Exercice 6. On considère le polynôme

$$P(X) = X^3 - 3X - 4 \in \mathbf{Q}[X].$$

(i) Puisque P est de degré 3, il suffit de montrer qu'il n'admet pas de racine rationnelle. Or si $\frac{p}{q}$ est racines de P avec $p, q \in \mathbf{Z}^*$ premiers entre eux, on a $p^3 - 3pq^2 - 4q^3 = 0$ donc

q=1 et $p\mid 4$ or on vérifie aisément que ni 1, ni -1, ni 2, ni -2, ni 4 ni -4 ne sont racines de P.

- (ii) Puisque $x^3 = 2 + \sqrt{3}$, on a $\mathbf{Q}[\sqrt{3}] \subset \mathbf{Q}[x]$ donc $2 = [\mathbf{Q}[\sqrt{3}] : \mathbf{Q}]$ divise $[\mathbf{Q}[x] : \mathbf{Q}]$.
- (iii) Il s'agit de montrer que $[\mathbf{Q}[x]:\mathbf{Q}[\sqrt{3}]]=3$. Or, x est annulé par le polynôme $T^3-(2+\sqrt{3})$ et il suffit de montrer que ce dernier est irréductible dans $\mathbf{Q}[\sqrt{3}][T]$ ou, ce qui revient au même, que $2+\sqrt{3}$ n'est pas un cube dans $\mathbf{Q}[\sqrt{3}]$. Supposons que contraire que $2+\sqrt{3}=(\frac{a}{q}+\frac{b}{q}\sqrt{3})^3$ où $a,b\in\mathbf{Z},\ q\in\mathbf{N}^*$. On ne perd rien à supposer que a,b et q sont premiers entre eux dans leur ensemble. En développant, on obtient $2q^3=a^3+9ab^2$ et $q^3=3a^2b+3b^3$. De la dernière égalité on tire $3\mid q$ d'où, par la première identité, $3\mid a$ et enfin $3\mid b$ à nouveau par la deuxième égalité ce qui contredit le fait que a,b et q sont premiers entre eux.

Une autre façon de procéder est de remarquer que x est annulé par le polynôme $Q(X) = (X^3 - 2)^2 - 3$ de degré 6. Or, on vérifie aisément que Q(X + 2) satisfait au critère d'Eisenstein pour le premier p = 3 donc Q est irréductible dans $\mathbf{Q}[T]$.

- (iv) Le polynôme minimal de x sur \mathbf{Q} est $(X^3-2)^2-3$ donc jx (où on a posé $j=e^{2i\pi/3}$) est un conjugués de x sur \mathbf{Q} . Or $jx \notin \mathbf{Q}[x]$ car $\mathbf{Q}[x] \subset \mathbf{R}$ et $j \notin \mathbf{R}$. Donc $\mathbf{Q}[x]/\mathbf{Q}$ n'est pas galoisienne.
- (v) Les conjugués de x sont les racines de $(X^3-2)^2-3$ c'est-à-dire $x,\,jx,\,j^2x,\,y,\,jy$ et j^2y où on a posé $y=\sqrt[3]{2-\sqrt{3}}$. Parmi ceux-ci seul y est réel et distinct de x.
 - (vi) On a $xy = \sqrt[3]{4-3} = 1$ i.e. $y = x^{-1}$ et il en découle que $\mathbf{Q}[x] = \mathbf{Q}[y]$.
- (vii) On remarque que $X^3P(X+\frac{1}{X})=(X^3-2)^2-3$ donc les racines de P sont $x+x^{-1}=x+y,\ jx+(jx)^{-1}=jx+j^2y$ et $j^2x+(j^2x)^{-1}=j^2x+jy$. Par conséquent, $K=\mathbf{Q}[x+y,jx+j^2y,j^2x+jy]$.
- (viii) Le groupe de Galois de K/\mathbf{Q} est un sous-groupe de S_3 donc le degré divise 6. Mais K contient strictement $\mathbf{Q}[x+y]$ (car $\mathbf{Q}[x,y] \subset \mathbf{R}$ et $jx+j^2y \notin \mathbf{R}$) qui est de degré 3 sur \mathbf{Q} (puisque c'est un corps de rupture de P sur \mathbf{Q}) donc $[K:\mathbf{Q}]=6$.